复习

- 电子模型
 - 自由电子
 - 原子/分子中电子
 - 晶体中电子
- 晶体中电子的能带
 - 能带的填充
 - 群速度、运动方程、有效质量
 - 空穴

能带理论: 抽象概念和模型

	自由电子	原子中电子	分子中电子	晶体中电子
薛定谔方程中 的势场	V=0	库伦势	多个库伦势	周期性库伦势
解法	计算求解	计算求解	原子轨道线性 组合(或计算)	原子轨道线性 组合(或计算)
解(波函数)	平面波、波包	束缚态: 1s、 2s、2p	分子轨道:成键、反键、非键	布洛赫波、波包
解(能量)	$E = \frac{\hbar^2 \mathbf{k}^2}{2m}$	E和量子数有 关,不含 k	E和节面的多少有关,可认为是"驻波"	E-k有较复杂的 关系(能带), 能带边缘可使 用抛物线近似, 有效质量m*
在力场中	F = ma	束缚态	束缚态	$F \sim m^* a$
在电磁波中	(散射)	散射、能级跃 迁	散射、能级跃 迁	散射、能级跃 迁

复习: 自由电子

- 如何求解电子状态?
 - 1. 解薛定谔方程,得到波函数,同时得到能量-波矢关系(色散关系)

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial\psi}{\partial t}$$

• 2. 利用能量-波矢关系,算得群速度(波包速度):

$$\boldsymbol{v} = \frac{d\omega}{d\boldsymbol{k}}$$

• 3. 在准经典近似下,利用群速度列出运动方程并求解

复习: 原子/分子中电子

- 如何求解电子状态?
 - 1. 解薛定谔方程(或利用原子轨道线性组合),得到 波函数,同时得到能量的表达式(和主量子数等的关 系)

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial\psi}{\partial t}$$

- 2. 利用电子能级填充规律填充电子
- 3. 和光子(电磁波)作用,利用能量守恒求解

复习:晶体中电子

- 如何求解电子状态?
 - 1. 解薛定谔方程(或利用原子轨道线性组合),得到波函数,同时得到能量-波矢关系(色散关系)

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial\psi}{\partial t}$$

• 2. 利用能量-波矢关系,算得群速度(波包速度):

$$\boldsymbol{v} = \frac{d\omega}{d\boldsymbol{k}}$$

- 3. 在准经典近似下,利用群速度列出运动方程并求解
- 4. 和光子(电磁波)作用,利用能量守恒求解(第五章)

紧束缚模型怎么建立?

$$\widehat{H}\psi = \widehat{E}\psi$$

• 以一维氢晶体为例
$$\hat{H}\psi = \hat{E}\psi$$
 • 1. 列薛定谔方程 $-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial\psi}{\partial t}$ $V = \sum_{R} -\frac{e^2}{4\pi\epsilon_0|x-R|}$

$$V = \sum_{R} -\frac{e^2}{4\pi\epsilon_0 |\mathbf{x} - \mathbf{R}|}$$

• 2. 利用原子轨道线性组合,得到波函数,近似满足薛 定谔方程

"波形"式线性组合

$$k = \frac{2m\pi}{Na}$$

$$m = -\frac{N}{2} + 1, \dots, \frac{N}{2}$$

• 3. 求其平均能量

$$\int \psi(\mathbf{x},t)^* \hat{E} \psi(\mathbf{x},t) dV \sim \int \psi(\mathbf{x})^* \hat{H} \psi(\mathbf{x}) dV \qquad (\hat{H} \psi \sim \hat{E} \psi)$$

紧束缚模型怎么建立?

- 以一维氢晶体为例
 - 3. 求其平均能量,是波矢的函数

$$\int \psi(\mathbf{x}, t)^* \widehat{E} \psi(\mathbf{x}, t) dV \sim \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \int \psi_{1s}(\mathbf{x})^* \widehat{H} \psi_{1s}(\mathbf{x} - \mathbf{R}) dV$$
$$= E_{1s} - Te^{i\mathbf{k}\cdot\mathbf{a}} - Te^{-i\mathbf{k}\cdot\mathbf{a}}$$
$$= E_{1s} - 2T\cos ka$$

• 4. 求群速度

$$v = \frac{d\omega}{dk} \sim \frac{2Ta}{\hbar} \sin ka$$

• 5. 列出运动方程,即可求解

$$\mathbf{F} = \frac{\hbar d\mathbf{k}}{dt}$$

复习:晶体中电子

- 能带的填充
 - 半满: 导体; 全满/全空: 非导体
 - 半导体通常填充至能带底或能带顶
- 能带的抛物线近似和有效质量
 - 在能带底和能带顶做泰勒展开保留到二阶项
 - 例: 一维氢晶体的紧束缚模型, $E = \hbar\omega \sim E_0 2T \cos ka = E_0 2T + T(ka)^2 = E_c + \hbar^2 k^2 / 2m^*$
- 态密度的概念: 单位能量中的状态数
- 空穴的概念
 - 本质是为了规避负(有效)质量的电子

三维立方氢晶体的能带

将紧束缚近似推广到三维立方氢晶体(晶格常数a),依然有

$$\psi(\mathbf{x}) = \frac{1}{\sqrt{N^3}} \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \psi_{1s}(\mathbf{x} - \mathbf{R})$$

$$\mathbf{k} = (\frac{2m_1\pi}{Na}, \frac{2m_2\pi}{Na}, \frac{2m_3\pi}{Na}) \quad m_1, m_2, m_3 = -\frac{N}{2} + 1, \dots, \frac{N}{2} \quad \text{ 向的原子数}$$

能量为
$$\int \psi(\mathbf{x},t)^* \hat{E} \psi(\mathbf{x},t) dV = \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \int \psi_{1s}(\mathbf{x})^* \hat{H} \psi_{1s}(\mathbf{x}-\mathbf{R}) dV$$

$$= E_{1s} - Te^{i\mathbf{k}\cdot\mathbf{a}_1} - Te^{-i\mathbf{k}\cdot\mathbf{a}_1} - Te^{i\mathbf{k}\cdot\mathbf{a}_2} - Te^{-i\mathbf{k}\cdot\mathbf{a}_2}$$

$$- Te^{i\mathbf{k}\cdot\mathbf{a}_3} - Te^{-i\mathbf{k}\cdot\mathbf{a}_3}$$

$$= E_{1s} - 2T \left(\cos k_x a + \cos k_y a + \cos k_z a\right)$$
能带底
$$= E_{1s} - 6T + T(k_x a)^2 + T(k_y a)^2 + T(k_z a)^2$$

$$+ O(k^4)$$

$$= E_{1s} - 6T + \frac{\hbar^2 k_x^2}{2m^*} + \frac{\hbar^2 k_y^2}{2m^*} + \frac{\hbar^2 k_z^2}{2m^*} + O(k^4)$$

三维立方氢晶体的能带

$$\int \psi(x,t)^* \hat{E} \psi(x,t) dV = E_{1s} - 2T \left(\cos k_x a + \cos k_y a + \cos k_z a \right)$$

$$\text{\text{$\psi}$ $\psi \psi_{1s} = E_{1s} - 6T + \frac{\hbar^2 k_x^2}{2m^*} + \frac{\hbar^2 k_y^2}{2m^*} + \frac{\hbar^2 k_z^2}{2m^*} + O(k^4)$}$$

$$= E_{1s} - 6T + \frac{\hbar^2 k^2}{2m^*} + O(k^4)$$

此时依然有有效质量、空穴等概念; $F \sim m^* a$

态密度(单位能量中波函数/电子态的数目dZ/dE)怎么算?

$$m{k} = (rac{2m_1\pi}{Na}, rac{2m_2\pi}{Na}, rac{2m_3\pi}{Na})$$
 $m_1, m_2, m_3 = -rac{N}{2} + 1, ..., rac{N}{2}$ 波矢之间的间距: $\Delta k = rac{2\pi}{Na}$

k空间中单位体积含有的波函数(电子态)的数目: $\frac{dZ}{dk^3} = \left(\frac{1}{\Delta k}\right)^3 = \left(\frac{Na}{2\pi}\right)^3$ 考虑自旋再乘以2

等能面

$$E = \frac{\hbar^2 \mathbf{k}^2}{2m^*} +$$
常数 不妨令常数等于 E_c ,即带底能量

对于确定的E,对应的k称为等能面

$$|\mathbf{k}| = \frac{\sqrt{2m^*(E - E_c)}}{\hbar}$$

图 1-19 k 空间球形等能面平面示意图

E到E+dE之间可取的波矢有多少个?

三维立方氢晶体的能带

E到E+dE之间可取的波矢有多少个?

E到E+dE之间的体积是等能面包围的体积相减,即4π/3 [(k+dk)³-k³]=4πk²dk

k空间中单位体积含有
$$\frac{dZ}{dk^3} = 2\left(\frac{Na}{2\pi}\right)^3$$
 个状态(考虑自旋)

因此
$$dZ = 2\left(\frac{Na}{2\pi}\right)^3 4\pi k^2 dk$$

<u>态密度(状态密度、能态密度、Density of States/DOS)</u> 单位能量中波函数(电子态)的数目

DOS =
$$\frac{dZ}{dE} = 2\left(\frac{Na}{2\pi}\right)^3 4\pi \frac{2m^*(E - E_c)}{\hbar^2} \frac{m^*}{\hbar\sqrt{2m^*(E - E_c)}} = \frac{(Na)^3 m^* \sqrt{2m^*(E - E_c)}}{\pi^2 \hbar^3}$$

 $\sqrt{2m^*(E - E_c)} \quad dE \quad d \quad \hbar^2 k^2 \quad \hbar^2 \quad \hbar\sqrt{2m^*(E - E_c)}$

$$k = |\mathbf{k}| = \frac{\sqrt{2m^*(E - E_c)}}{\hbar}$$
 $\frac{dE}{dk} = \frac{d}{dk} \frac{\hbar^2 k^2}{2m^*} = \frac{\hbar^2}{m^*} k = \frac{\hbar\sqrt{2m^*(E - E_c)}}{m^*}$

态密度和维数

<u>态密度(状态密度、能态密度、Density of States/DOS)</u> 单位能量中波函数(电子态)的数目

三维 DOS =
$$\frac{dZ}{dE} = \frac{(Na)^3 m^* \sqrt{2m^*(E - E_c)}}{\pi^2 \hbar^3}$$

一维 DOS =
$$\frac{dZ}{dE} \frac{Na}{2\pi\hbar} \sqrt{\frac{m^*}{2(E - E_c)}}$$

注意和E的关系

二维情况如何? (见习题)

习题

- 1. (a)硅的布里渊区[111]方向边界叫做L点,求L点的位置。(b)考虑一个自由电子,其波矢量恰好位于L点,求其能量。
- 2. 考虑一个<u>自由电子</u>,要求其波矢量分布(展宽) 小于硅布里渊区大小的千分之一。此时,其位置 的不确定性是多少?

习题

- 3. 试求氢原子Balmer谱线(n>2跃迁到n=2)中红线、蓝线和波长最长的紫线的波长。
- 4. He+离子中1s、2s、2p轨道能量分别各是多少?
- 5. 考虑一维晶体紧束缚模型。H_N、Li_N、Na_N三种晶体中,哪一种能带展宽较大?哪一种能带有效质量较大?说明理由。
- 6. 考虑一维H晶体紧束缚模型。施加外电场**E**, 不考虑散射,一个电子由带顶运动到带底需要多长时间?

习题

- 7. 求二维(简单正方晶格)H晶体紧束缚模型的 能带E(k)和态密度。
- 8. 三维简单立方H晶体(原胞仅含一个原子)晶格常数为0.5 nm,最近邻T = 1 eV。采用紧束缚模型。求:布里渊区大小;能带表达式;带顶/带底有效质量;要求电子波矢量分布(展宽)小于布里渊区大小的千分之一时,电子位置的不确定性。

阅读材料 (非作业)

- 如何利用紧束缚理论计算硅的能带?
- http://materia.fisica.unimi.it/manini/theses/cinqua nta.pdf
- 如果学有余力,不妨学习学习