Started on	Wednesday, 2 November 2022, 4:19 PM
State	Finished
Completed on	Wednesday, 2 November 2022, 4:54 PM
Time taken	35 mins 45 secs
Marks	18.50/30.00
Grade	6.17 out of 10.00 (62 %)

Correct

Mark 1.00 out of 1.00

Consider the following recursive algorithm:

procedure TT(m: positive integer)

if m = 1 **then** TT(m) := 1

else TT(m) := TT(m-1) + 2m -1

What does this algorithm compute?

- a. The sum of the first m positive integers.
- b. The sum of the first m even positive integers.
- c. The sum of the first m odd positive integers.
- od. The sum of the first m even positive integers that are less than m.

The correct answer is:

The sum of the first m odd positive integers.

<u>م.</u> .	4	:	2
υu	est	ıor	

Partially correct

Mark 0.50 out of 1.00

Which propositions are true?

- a. If a, b, m are integers such that $m \ge 2$ and $a \equiv b \pmod{m}$, then gcd(a, m) = gcd(b, m).
- b. The sum of two primes is always a prime.
- c. The product of any three consecutive integers is divisible by 6.
- d. There are a finite number of primes.

The correct answers are:

If a, b, m are integers such that $m \ge 2$ and $a \equiv b \pmod{m}$, then gcd(a, m) = gcd(b, m).

The product of any three consecutive integers is divisible by 6.

Question 3
Correct
Mark 1.00 out of 1.00
Using the function f(p)=(3p+1) mod 26 to encrypt the message "T". What is a true message?
A None of these

C. "G"D. "B"

The correct answer is: "G"

Correct

Mark 1.00 out of 1.00

Find f(0) if f(m) = 2f(m-1) - 6 for all positive integers m, and f(1) = 0.

- a. -4
- b. -3
- (a) C. 3
- od. 4

~

The correct answer is:

3

Correct

Mark 1.00 out of 1.00

Suppose |A| = 4 and |B| = 5. Find the number of functions from set A to set B.

- a. 20
- b. 4⁵
- o. 4!
- \odot d. 5^4
- e. 5!

The correct answer is: 5^4

Question $\bf 6$

Correct

Mark 1.00 out of 1.00

Suppose that f(n) = f(n/3) + 1 when n is a positive integer divisible by 3, and f(1) = 1. Find f(27).

- o a. 5
- b. 4
- oc. 3
- od. 6

The correct answer is:

4

Question /
Correct
Mark 1.00 out of 1.00
A palindrome is a string whose reversal is identical to the string. For example, 1101011 is a palindrome of length 7. How many bit strings of length 5 are palindromes?

o a. 5

ob. 6

oc. None of these

od. 6

e. 8

The correct answer is: 8

Correct

Mark 1.00 out of 1.00

Give a recursive definition of the set of strings S = {1,111,111111,1111111, ...}

- (i) $1 \in S$; $x \in S \rightarrow x11 \in S$
- (ii) $1 \in S$; $x \in S \rightarrow x1 \in S$
- a. Both
- b. Only (ii)
- oc. Only (i)
- d. Neither

The correct answer is:

Only (i)

Correct

Mark 1.00 out of 1.00

Give a <u>recursive definition</u> with initial condition(s) of $f(n) = (-3)^n$, n = 0, 1, 2, ...

- a. None of these
- \bigcirc b. f(0) = 1, and f(n) = -f(n+1)/3 for n > 0
- o c. f(0) = 1, and f(n) = -3f(n-1) for n > 0
- od. f(n) = -3f(n-1)
- e. f(0) = 1, and $f(n) = -3^{f(n-1)}$ for n > 0

The correct answer is: f(0) = 1, and f(n) = -3f(n-1) for n > 0

Incorrect

Mark 0.00 out of 1.00

Give the function $f(n)=(n^2+n+n\sqrt{n^2+1})\log n$ and consider the following statements:

f is O($n^2 \log n$)

f is O(n^3)

f is $\Omega(n^3$)

f is $\Theta(n^2)$

How many correct statements are there?

- A. 1
- B. ₀
- C. 3
- O. 2

The correct answer is:

2

The correct answer is:

18

Question 12		
Correct		
Mark 1.00 out of 1.00		

A multiple-choice test contains 6 questions. There are four possible answers for each question. In how many ways can a student answer the questions on the test if the student answers every question?

- \odot a. 4^6
- b. 24
- c. None of these
- \circ d. 6^4
- e. 6!

The correct answer is: 4⁶

Question 13	
Correct	
Mark 1.00 out of 1.00	

How many comparisons are needed for a binary search in a set of 64 elements?

a. 14
b. 16
c. 12
d. 10

The correct answer is: 14

Question 14 Incorrect Mark 0.00 out of 1.00

```
Let's consider the following procedures:
procedure double(n: positive integer)
while n > 0
  n := 2n
return n;
procedure divide(n: positive integer)
while n ≥ 0:
    m := 1/n
     n = n - 1
return m;
procedure sum(n: positive integer)
sum := 0
i := 0
while i < n:
   sum = sum + i
return sum;
procedure choose(a, b: integers)
x := either a or b
return x;
How many procedures are algorithms?
 A. 2
                                                                                                                              ×
 B. 4
 C. 3
 O D. 1
```

The correct answer is:

1

Question 15

Correct

Mark 1.00 out of 1.00

Give a correct recursive definition for the Factorial of non-negative integer n.

- a. None of the other choices is correct
- b. $n! = n * (n-1), \text{ for } n \ge 1$ n! = 1 , for n = 0
- c. n! = (n-2) + (n-1), for $n \ge 1$ n! = 1 , for n = 0
- d. n! = n + (n-1), for $n \ge 1$ n! = 1 , for n = 0

The correct answer is:

None of the other choices is correct

Incorrect

Mark 0.00 out of 1.00

Suppose $A = \{x, \{x\}, y, z\}$ and $B = \{y, y, z, w\}$. Find the number of functions from the set A to the set B.

- \circ a. 4^3
- b. 3⁴
- \circ c. 3^3
- \odot d. 4^4
- e. 12

The correct answer is:

Correct

Mark 1.00 out of 1.00

Given a recursive definition of the set of strings S

 $1 \in S; x \in S \rightarrow x11 \in S$

Which one is true?

- (i) $1111 \in S$
- (ii) 11111 $\in S$
- a. Neither
- b. Only (i)
- c. Both
- d. Only (ii)

The correct answer is: Only (ii)

Question 18
Correct
Mark 1.00 out of 1.00
Encrypt the message "BUY" using the encryption function $f(x) = (5x + 7) \mod 26$.
○ a. MEX

b. MDXc. NDX

d. NEY

oe. None of the other choices is correct

The correct answer is:

MDX

Question 19	
Incorrect	
Mark 0.00 out of 1.00	
Let a and b be integers such that a b. Consider the following statements:	
(P) If b a then a=b	
(Q) If b c then a c	
Choose the correct answer.	
 A. P is correct and Q is wrong 	×
○ B. P is wrong and Q is correct	
○ C. Both P and Q are wrong	
○ D. Both P and Q are correct	

The correct answer is: P is wrong and Q is correct

Incorrect

Mark 0.00 out of 1.00

Given the pseudorandom number $x_{n+1}=(3x_n+2) \mod 13$ with seed x_0 . What is the possible value of x_0 if $x_2=1$?

- A. 5
- B. 0
- C. 2
- O. 8

The correct answer is:

Incorrect

Mark 0.00 out of 1.00

What is the total number of additions and shifts of bits used to multiply $a = (101)_2$ and $b = (100)_2$ by using the Algorithm below?

ALGORITHM 3 Multiplication of Integers.

```
procedure multiply(a, b): positive integers)
{the binary expansions of a and b are (a_{n-1}a_{n-2} \dots a_1a_0)_2 and (b_{n-1}b_{n-2} \dots b_1b_0)_2, respectively}
for j := 0 to n-1

if b_j = 1 then c_j := a shifted j places
else c_j := 0
\{c_0, c_1, \dots, c_{n-1} \text{ are the partial products}\}
p := 0
for j := 0 to n-1
p := add(p, c_j)
return p {p is the value of ab}
```

- a. 5
- o b. 4
- oc. 3
- od. 2

The correct answer is:

4

Correct

Mark 1.00 out of 1.00

Suppose you wish to prove that the following is true for all positive integers *n* by using the Principle of Mathematical Induction:

P(n):
$$2 + 4 + 6 + ... + 2n = n \cdot (n + 1)$$

Write P(4)

- a. 2 + 4 = 6
- \bullet b. 2 + 4 + 6 + 8 = 4.5
- \circ c. 2 + 4 + 6 + 8
- d. None of these
- e. 8

The correct answer is:

$$2 + 4 + 6 + 8 = 4.5$$

Incorrect

Mark 0.00 out of 1.00

Give a recursive definition for the set of odd positive integers.

- Basis Step: $3 \in S$
 - Recursive Step: if $x \in S$, then $x-2 \in S$
- b. None of the other choices is correct
- lacktriangledown C. Basis Step: $1 \in S$ Recursive Step: if $x \in S$, then $x+2 \in S$ and $x-2 \in S$
- O d. Basis Step: $0 \in S$ Recursive Step: if $x \in S$, then $2x+1 \in S$

The correct answer is:

None of the other choices is correct.

Incorrect

Mark 0.00 out of 1.00

Prove that P(n) = "for all $n \ge 6$ we have n = 3x + 4y with x, y non-negative integers" is true. In the strong induction proof, assuming that P(k) is true for some k, in order to prove P(k+1) is true we should ______

- a. use P(k-1) = "k-1 = 3a + 4b, (a, b non-negative integers)" is true and k + 1 = (k-1) + 2.
- b. use P(k-4) = "k 4 = 3a + 4b, (a, b non-negative integers)" is true and k + 1 = (k 4) + 5.
- o. use P(k-2) = "k 2 = 3a + 4b, (a, b non-negative integers)" is true and k + 1 = (k 2) + 3.

The correct answer is:

use P(k-2) = "k - 2 = 3a + 4b, (a, b non-negative integers)" is true and k + 1 = (k - 2) + 3.

Incorrect

Mark 0.00 out of 1.00

Give a recursive definition of the sequence $\{a_n=2n+3\}$, $n=1,2,3,\ldots$

- igcup a. $a_1=5$ and $a_n=a_{n-1}+3$ for $n=1,2,3,\ldots$
- \odot b. $a_n=a_{n-1}+3$ for $n=1,2,3,\ldots$
- lacksquare c. $a_1=3$ and $a_n=a_{n-2}+1$ for $n=1,2,3,\ldots$
- d. None of the other choices is correct

The correct answer is:

None of the other choices is correct

Question 26	
Correct	
Mark 1.00 out of 1.00	

What is 3²⁰²² mod 100?

■ a. 9
□ b. 99
□ c. 61
□ d. 41

The correct answer is:

Question 27
Correct
Mark 1.00 out of 1.00

Find the prime factorization of 11!.

- \circ a. $2^7 \times 3^4 \times 5^2 \times 7 \times 11$
- o b. $2^8 \times 3^5 \times 5^2 \times 7 \times 11$
- \circ c. $2^8 \times 3^4 \times 5^2 \times 7 \times 11$
- \circ d. $2^8 \times 3^4 \times 5^2 \times 11$

The correct answer is: 28x34x52x7x11

Question 28	
Correct	
Mark 1.00 out of 1.00	

How many one-to-one functions are there from a set with five elements to sets with seven elements?

- \bigcirc a. 7^5
- o b. 7!
- oc. None of these
- o d. 7.6.5.4.3
- e. 5⁷

/

The correct answer is: 7.6.5.4.3

Incorrect

Mark 0.00 out of 1.00

Give a <u>recursive definition</u> with initial condition(s) of the set A = {1, 3, 9, 27, 81, ...}.

Which one is true?

- (i) $1 \in A$; $x \in A \rightarrow 3x \in A$.
- (ii) $1 \in A$; $x \in A \rightarrow 3^x \in A$.
- a. Only (i)
- b. Only (ii)
- o. Neither
- d. Both

The correct answer is: Only (i)

Question	30
Queenon	-

Incorrect

Mark 0.00 out of 1.00

Consider two set A, B such that |A| = 13, |A - B| = 10 and |B - A| = 2. Find |B|.

- a. 7
- o b. 6
- oc. 5
- od. 8

The correct answer is: 5

«

>>