Deadlock

Slide 18

Hệ thống có 12 ổ đĩa từ, ở thời điểm t_0 yêu cầu về sử dụng ổ đĩa từ như sau:

	Cần tối đa	Đang chiếm giữ	Cần thêm
P_0	10	5	10-5=5
\mathbf{P}_1	4	2	4-2= <mark>2</mark>
P_2	9	2	9-2=7

- Tại t_0 số ổ đĩa còn trống là 12 (5+2+2) = 3
- Cấp phát thêm 2 ổ đĩa cho P₁, P₁ hoàn thành, giải phóng 4 ổ đĩa đang chiếm giữ → số ổ đĩa trống : (3 2) + 4 =5
- Cấp phát thêm 5 ổ đĩa cho P₀, P₀ hoàn thành, giải phóng 10 ổ đĩa đang chiếm giữ → số ổ đĩa trống : 10
- Cấp phát thêm 7 ổ đĩa cho P₂, P₂ hoàn thành, giải phóng 9 ổ đĩa đang chiếm giữ

Trạng thái của hệ thống ở thời điểm t_0 là an toàn vì chuỗi $\langle P_1, P_0, P_2 \rangle$ thoả mãn điều kiện an toàn.

5 tiến trình P₀ P₁ P₂ P₃ P₄

3 nguồn tài nguyên:

A (10 đơn vị), B (5 đơn vị), and C (7 đơn vị)

Tại thời điểm t₀:

	Allocation	Max	Available	Need = $Max - Allocation$
	A B C	ABC	ABC	ABC
P_0	0 1 0	7 5 3	3 3 2	7 4 3
P_1	200	3 2 2		1 2 2
P_2	3 0 2	902		6 0 0
P_3	2 1 1	2 2 2		0 1 1
P_4	0 0 2	4 3 3		4 3 1

Sử dụng thuật toán banker để kiểm tra xem hệ thống ở trạng thái an toàn không ?

1. Khởi tạo

Work = Available =
$$[3, 3, 2]$$

Finish $[i]$ = FALSE với i = $[0, 1, ..., 4]$

2. Vì P₁ thoả mãn *Need[1]* <= *Work* và *Finish* [1] =*FALSE* nên cấp phát tài nguyên còn thiếu cho P₁, P₁ hoàn thành và giải phóng hết tài nguyên đang chiếm giữ:

(chú ý: ở bước này có thể chọn P3 thực thi vì P3 cũng thoả mãn các điều kiện)

3. Tương tự, lặp lại với P3, P4, P2, P0.

Ta có, <**P1, P3, P4, P2, P0>** là chuỗi an toàn → hệ thống đang ở trạng

thái an toàn (Có thể có nhiều chuỗi an toàn khác)