Stochastic Analysis

Ikhan Choi Lectured by Shigeki Aida University of Tokyo, Autumn 2023

October 21, 2023

Contents

1	Day 1: October 5	2
2	Day 2: October 12	5
3	Day 3: October 19	8

1 Day 1: October 5

For each $\omega \in \Omega$ the map $t \mapsto B_t(\omega)$ is continuous, but possibly not differentiable.

The meaning of the equation

$$dX(t) = \sigma(X(t)) dB_t + b(X_t) dt$$

is more clarified by the integral equation

$$X(t) = x + \int_0^t \sigma(X(s)) dB_s + \int_0^t b(x(s)) ds.$$

Stochastic processes

Definition 1.1 (Filtrated probability space). Let $\mathbb{T} \in \{[0, \infty), [0, T], \mathbb{Z}_{\geq 0} : 0 < T < \infty\}$. A filtered probability space is a tuple $(\Omega, \mathcal{F}, P, \{\mathcal{F}_t\}_{t \in \mathbb{T}})$ such that (Ω, \mathcal{F}, P) is a probability space, $\mathcal{F}_t \subset \mathcal{F}$ is a σ -subfield, and $\mathcal{F}_s \subset \mathcal{F}_t$ if s < t. We say, when \mathbb{T} is continuous, that $\{\mathcal{F}_t\}$ is right continuous if

$$\mathcal{F}_t = \bigcap_{\varepsilon > 0} \mathcal{F}_{t+\varepsilon} =: \mathcal{F}_{t+}, \qquad t \in \mathbb{T}.$$

Definition 1.2 (Usual condition). A filtered probability space $(\Omega, \mathcal{F}, P, \{\mathcal{F}_t\}_{t\in\mathbb{T}})$ is said to satisfy the *usual condition* if (Ω, \mathcal{F}, P) is complete, $\mathcal{N} = \{A \in \mathcal{F} : P(A) = 0\}$ is a subset of \mathcal{F}_0 , and $\{\mathcal{F}_t\}$ is right continuous.

Definition 1.3 (Measurability of stochastic processes). Let $(\Omega, \mathcal{F}, P, \{\mathcal{F}_t\}_{t \in \mathbb{T}})$ be a filtrated probability space. A family of random variables $\{X_t\}_{t \in \mathbb{T}}$ is called a *stochastic process* or a *random process*. From now on, we will consider random *vectors* with $X_t(\omega) \in \mathbb{R}^d$ for each t, ω .

- (a) $\{X_t\}$ is called $\{\mathcal{F}_t\}$ -adapted if X_t is \mathcal{F}_t -measurable for each $t \in \mathbb{T}$.
- (b) $\{X_t\}$ is called *measurable* if $X: \mathbb{T} \times \Omega \to \mathbb{R}^d$ is $\mathcal{B}(\mathbb{T}) \otimes \mathcal{F}$ -measurable.
- (c) For \mathbb{T} continuous, $\{X_t\}$ is called *right or left continuous* if for each ω the *sample path* $t \mapsto X_t(\omega)$ is right or left continuous respectively.
- (d) For \mathbb{T} continuous, $\{X_t\}$ is called $\{\mathcal{F}_t\}$ -progressively measurable if for each $t \in \mathbb{T}$ the map $X : [0,t] \times \Omega \to \mathbb{R}^d$ is $\mathcal{B}(\mathbb{T}) \otimes \mathcal{F}_t$ -measurable.
- (e) For \mathbb{T} continuous, the *predictable* σ -*field* is the minimal σ -subfield of $(\mathbb{T} \times \Omega, \mathcal{B}(\mathbb{T}) \otimes \mathcal{F})$ such that every real-valued left continuous $\{\mathcal{F}_t\}$ -adapted process is measurable.
- (f) For \mathbb{T} continuous, a *predictable process* is a stochastic process that is measurable with respect to the predictable σ -field.

Remark. In other words, stochastic process is a random element on $(S^{\mathbb{T}}, \mathcal{B}(S^{\mathbb{T}}))$, which is not standard if \mathbb{T} is uncountable. Also, a continuous stochastic process is a random element on $(C(\mathbb{T}, S), \mathcal{B}(C(\mathbb{T}, S)))$ because the Borel σ -algebra coincides with the induced σ -algebra from $S^{\mathbb{T}}$!

If $\{\mathcal{F}_t\}$ -progressive measurable, then measurable and $\{\mathcal{F}_t\}$ -adapted.

Proposition 1.5. If $\{X_t\}$ is left or right continuous and $\{\mathcal{F}_t\}$ -adapted, then $\{X_t\}$ is progressively measurable

Proof. Suppose $\{X_t\}$ is right $\{\mathcal{F}_t\}$ -adapted and fix $t \in \mathbb{T}$. Let $I_k := [\frac{k-1}{n}t, \frac{kt}{n}), 1 \le k \le n-1$, and let $I_n := [\frac{n-1}{n}t, t]$. Let

$$X_s^n(\omega) := \begin{cases} X_{\frac{k}{n}t}(\omega) & , s \in I_k, \ k \le n-1 \\ X_t(\omega) & , s \in I_n \end{cases}.$$

Then, for every Borel set $A \in \mathcal{B}(\mathbb{R}^d)$,

$$(X^n)^{-1}(A) = \bigcup_{k=1}^n (I_k \times X_{\frac{k}{n}t}^{-1}(A)) \in \mathcal{B}([0,t]) \otimes \mathcal{F}_t.$$

Thus X^n is $\mathcal{B}([0,t]) \otimes \mathcal{F}_t$ -measurable, and we are done because

$$X(s,\omega) = \lim_{n \to \infty} X^n(s,\omega), \qquad (s,\omega) \in [0,t] \times \Omega.$$

Proposition 1.6.

(a) Let $\mathbb{T} = [0, \infty)$. If

$$I := \{ A \times (s, t] : A \in \mathcal{F}_s, \ 0 < s < t \} \cup \{ A \times [0, t] : A \in \mathcal{F}_0 \},$$

then I is a π -system, which generates the predictable σ -field.

(b) A predictable process is progressively measurable.

Definition 1.7 (Stopping times). Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\in\mathbb{T}})$ be a filtrated measurable space.

- (a) A random variable $\tau: \Omega \to \mathbb{T} \cup \{+\infty\}$ is called a $\{\mathcal{F}_t\}$ -stopping time if for every $t \in \mathbb{T}$ we have $\{\tau \leq t\} \in \mathcal{F}_t$.
- (b) For $\{\mathcal{F}_t\}$ -stopping time τ ,

$$\mathcal{F}_{\tau} := \{ A \in \mathcal{F} : A \cap \{ \tau \le t \} \in \mathcal{F}_{t}, \ \forall t \in \mathbb{T} \}.$$

Remark 1.8.

- (a) For $t_0 \in \mathbb{T}$, $\tau \equiv t_0$ is a $\{\mathcal{F}_t\}$ -stopping time.
- (b) For $\{X_t\}$ an \mathbb{R}^d -valued $\{\mathcal{F}_t\}$ -adapted process, then for any Borel $E \in \mathbb{R}^d$ the function

$$\sigma_{E}(\omega) := \inf\{t : X_{t}(\omega) \in E\},\$$

where $\inf \emptyset = \infty$, is a $\{\mathcal{F}_t\}$ -stopping time called the *hitting time*.

Proposition 1.9. Let τ be a $\{\mathcal{F}_t\}$ -stopping time.

- (a) \mathcal{F}_{τ} is a σ -field and τ is \mathcal{F}_{τ} -measurable.
- (b) Let $\mathbb{T} = [0, \infty)$, and let $\{\mathcal{F}_t\}$ be right continuous. Then, τ is a $\{\mathcal{F}_t\}$ -stopping time if and only if $\{\tau < t\} \in \mathcal{F}_t$ for all $t \in \mathbb{T}$. If τ is a $\{\mathcal{F}_t\}$ -stopping time, then $A \in \mathcal{F}_\tau$ if and only if $A \cap \{\tau < t\} \in \mathcal{F}_t$ for all $t \in \mathbb{T}$.
- (c) Let $\mathbb{T} = [0, \infty)$. If $\{X_t\}$ is a $\{\mathcal{F}_t\}$ -progressively measurable and τ is $\{\mathcal{F}_t\}$ -stopping time, then $X_{\tau} \mathbf{1}_{\tau < \infty}$ is \mathcal{F}_{τ} -measurable.

Proof. (a) If $A \in \mathcal{F}_{\tau}$, then for every t we have $A \cap \{\tau \leq t\} \in \mathcal{F}_{t}$, so $A^{c} \cap \{\tau \leq t\} = \{\tau \leq t\} \setminus (A \cap \{\tau \leq t\}) \in \mathcal{F}_{t}$, which implies $A^{c} \in \mathcal{F}_{\tau}$. For countable union, if $(A_{n})_{n=1}^{\infty} \subset \mathcal{F}_{\tau}$, then $(\bigcup A_{n}) \cap \{\tau \leq t\} \in \mathcal{F}_{t}$ is clear

For a > 0, we can show $\{\tau \le a\} \in \mathcal{F}_{\tau}$ since

$$\{\tau \leq a\} \cap \{\tau \leq t\} = \{\tau \leq a \land t\} \in \mathcal{F}_{a \land t} \subset \mathcal{F}_t.$$

$$\begin{array}{l} \text{(b) } (\Rightarrow) \; \{\tau < t\} = \bigcup_{n=1}^{\infty} \{\tau \leq t - \frac{1}{n}\} \in \mathcal{F}_t. \\ \text{(\Leftarrow)} \; \{\tau \leq t\} = \bigcap_{n=N}^{\infty} \{\tau \leq t + \frac{1}{n}\} \in \mathcal{F}_{t+\frac{1}{N}}, \, \text{so} \; \{\tau \leq t\} \in \mathcal{F}_t. \end{array}$$

(c) For $A \in \mathcal{B}(\mathbb{R}^d)$ and $t \in \mathbb{T}$, it suffices to show $\{X_{\tau} \in A\} \cap \{\tau \leq t\} \in \mathcal{F}_t$. Maps

$$\Phi: \{\tau \le t\} \to [0, t] \times \Omega: \omega \mapsto (\tau(\omega), \omega)$$

and

$$X:[0,t]\times\Omega\to\mathbb{R}^d:(t,\omega)\mapsto X_t(\omega)$$

are measurable with respect to \mathcal{F}_t , $\mathcal{B}([0,t]) \otimes \mathcal{F}_t$, $\mathcal{B}(\mathbb{R}^d)$, because $\Phi^{-1}([a,b] \times B) = \{\tau \leq b\} \cap \{\tau < a\}^c \cap B \in \mathcal{F}_t$, and because of the definition of progressive measurability.

Proposition 1.10. Let $\mathbb{T} = [0, \infty)$ and $\{X_t\}$ be a $\{\mathcal{F}_t\}$ -progressively measurable process. For Borel $E \subset \mathbb{R}^d$, let σ_E be the hitting time of $\{X_t\}$.

- (a) If $\{X_t\}$ and $\{\mathcal{F}_t\}$ are right continuous, and if E is open, then σ_E is $\{\mathcal{F}_t\}$ -stopping time.
- (b) If $\{X_t\}$ is continuous and E is closed, then σ_E is $\{\mathcal{F}_t\}$ -stopping time.

Proof. (a) Let t > 0. Then,

$$\{\sigma_E < t\} = \bigcup_{s \in [0,t) \cap \mathbb{Q}} \{X_s \in E\} \in \mathcal{F}_t.$$

(b) We show $\{\sigma_E \le t\} \in \mathcal{F}_t$ for each t > 0. If we introduce $f_E(x) := d(x, E) = \inf\{|x - y| : y \in E\}$, then f_E is continuous and $f_E(x) = 0$ is equivalent to $x \in E$. Now we can write

$$\{\sigma_E \le t\} = \{\min_{s \in [0,t]} f_E(X_s) = 0\} = \{\inf_{s \in [0,t] \cap \mathbb{O}} f_E(X_s) = 0\} \in \mathcal{F}_t.$$

2 Day 2: October 12

Definition 2.1. Let (Ω, \mathcal{F}, P) be a probability space. A stochastic process $\{B_t\}_{t\geq 0}$ on Ω is called a d-dimensional standard Brownian motion if

- (i) it is continuous, i.e. each sample path for ω is continuous,
- (ii) $B_t B_s \sim N(0, (t s)I)$ for $0 \le s < t$
- (iii) $B_{t_{i+1}} B_{t_i}$ are independent for $0 = t_0 < t_1 < \dots < t_n < \infty$.

Remark. If we write $B_t = (B_t^1, \dots, B_t^d)$, then

$$E[(B_t^i - B_s^i)(B_t^j - B_s^j)] = \delta_{ij}(t - s).$$

If $B_0 \equiv x$ for a vector $x \in \mathbb{R}^d$, then we say $\{B_t\}$ is a Brownian motion starts from x, and if $B_0 \equiv v$ for a distribution v on \mathbb{R}^d , then we say v is the initial distribution of $\{B_t\}$.

Proposition 2.2. Let $\{B_t\}$ be a standard Brownian motion with initial distribution ν . For $0 = t_0 < t_1 < \cdots < t_n < \infty$ and $A_0, \cdots, A_n \in \mathcal{B}(\mathbb{R}^d)$, we have

$$P(B_{t_0} \in A_0, \dots, B_{t_n} \in A_n) = \int \mathbf{1}_{A_0}(x_0) \dots \mathbf{1}_{A_n}(x_n)$$

$$g_d(t_1 - t_0, x_0, x_1) \dots g_d(t_n - t_{n-1}, x_{n-1}, x_n) d \nu(x_0) dx_1 \dots dx_n,$$

where

$$g_d(t, x, y) := \frac{1}{\sqrt{2\pi t}^d} e^{-\frac{|x-y|^2}{2t}}.$$

Proof.

$$P(B_{t_0} \in A_0, \dots, B_{t_n} \in A_n) = P(B_{t_0} \in A_0, \dots, B_{t_0} + \sum_{i=1}^n (B_{t_i} - B_{t_{i-1}}) \in A_n)$$

$$= \int \mathbf{1}_{A_0}(y_0) dv(y_0) \int \mathbf{1}_{A_1}(y_0 + y_1) g_d(t_1 - t_0, 0, y_1) dy_1$$

$$\cdots \int \mathbf{1}_{A_n}(y_0 + \sum_{i=1}^n y_i) g_d(t_n - t_{n-1}, 0, y_n) dy_n.$$

Here the matrix of coordinate change $x_0 = y_0$, $x_i = y_0 + \sum_{k=1}^{i} y_k$ has determinant one. Then we are done.

Theorem 2.3. For a d-dimensional stochastic process $\{B_t\}$, TFAE:

- (1) $\{B_t\}$ is a standard Brownian motion starting from zero.
- (2) $\{B_{\star}^{i}\}$ are mutually independent standard Brownian motions starting from zero.

In particular, for its construction the one-dimensional Brownian motion is sufficient.

Remark. For stochastic processes $\{X_t\}$ and $\{Y_t\}$ are said to be independent if and only if for an arbitrarily long sequence $0 = t_0 < \cdots < t_M < \infty$ with $A_0, \cdots A_M$ and B_0, \cdots, B_M , we have

$$P(X_{t_0} \in A_0, \dots, X_{t_M} \in A_M, \quad Y_{t_0} \in B_0, \dots, Y_{t_M} \in B_M)$$

$$= P(X_{t_0} \in A_0, \dots, X_{t_M} \in A_M) P(Y_{t_0} \in B_0, \dots, Y_{t_M} \in B_M).$$

Definition 2.4 (Modification). A stochastic process $\{X_t\}$ is called a *modification* of $\{Y_t\}$ if $P(X_t = Y_t) = 1$ for all $t \ge 0$. We say $\{X_t\}$ and $\{Y_t\}$ are *indistinguishable* if $P(X_t = Y_t : t \ge 0) = 1$.

Proposition 2.5. If $\{X_t\}$ and $\{Y_t\}$ are right continuous modifications of each other, then they are indistinguishable.

Proof. By the definition of modifications, the following set is full:

$$\widetilde{\Omega} := \{ \omega \in \Omega : X_t(\omega) = Y_t(\omega), \ \forall t \in \mathbb{Q}_{>0} \}.$$

Then, by the right continuity, $\widetilde{\Omega} \subset \{X_t = Y_t : t \ge 0\}$.

Let $\Omega := (\mathbb{R}^d)^{[0,\infty)}$, and $\mathcal{F} := \sigma(\{\pi_t\})$ be the Borel σ -algebra. It is not a standard Borel space. We will construct a probability measure P on (Ω, \mathcal{F}) such that $\pi_t \sim B_t$ for all t (it means the π_t satisfies the conditions for the Brownian motion only in distribution) and we will find a continuous modification of $\{\pi_t\}$.

Let \mathcal{T} be the set of all strictly increasing finite nonnegative real sequences (t_i) such that $t_0 = 0$. For $\overline{t} = (t_0, \dots, t_n) \in \mathcal{T}$, consider $\mathcal{F}_{\overline{t}}$ and $\pi_{\overline{t}} : \Omega \to (\mathbb{R}^d)^{n+1}$.

Theorem 2.6 (Kolmogorov extension). Suppose a probability measure $P_{\overline{t}}$ is given on $(\Omega, \mathcal{F}_{\overline{t}})$ for every $\overline{t} \in \mathcal{T}$. Then, TFAE:

- (1) There is a probability measure P on (Ω, \mathcal{F}) such that $P|_{\mathcal{F}_{\overline{t}}} = P_{\overline{t}}$ for all $\overline{t} \in \mathcal{T}$.
- (2) If $\overline{t} \subset \overline{t}'$, then $P_{\overline{t}'}|_{\mathcal{F}_{\overline{t}}} = P_{\overline{t}}$.

Remark. (2) in the above is equivalent to the following: If $\overline{t} = (t_0, t_1, \dots, t_{i-1}, t_i, t_{i+1}, \dots, t_n)$ and $\overline{t}_i = (t_0, t_1, \dots, t_{i-1}, t_{i+1}, \dots, t_n)$, for $A \in \mathcal{B}((\mathbb{R}^d)^i)$ and $B \in \mathcal{B}((\mathbb{R}^d)^n - i)$, we have

$$P_{\overline{t}}(\pi_{\overline{t}}^{-1}(A\times\mathbb{R}^d\times B))=P_{\overline{t}_i}(\pi_{\overline{t}_i}^{-1}(A\times B)).$$

Remark. The consistency condition is equivalent to

$$g_d(t_i - t_{i-1}, x_{i-1}, x_i)g_d(t_{i+1} - t_i, x_i, x_{i+1})dx_i = g_d(t_{i+1} - t_{i-1}, x_{i-1}, x_{i+1}).$$

It is called the Chapman-Kolmogorov equation.

In fact, we have stronger estimate $E[e^{\varepsilon ||B||_{\gamma}^2}] < \infty$.

Theorem 2.7. Let $\{X_t\}_{t\in[0,T]}$ be a stochastic process on \mathbb{R}^d . If there is $\alpha, \beta, C > 0$ such that

$$E[|X_t - X_s|^{\alpha}] \le C|t - s|^{1+\beta}, \quad 0 \le s < t \le T,$$

then there is a modification $\{\tilde{X}_t\}$ of $\{X_t\}$ such that there is a \mathcal{F} -measurable random variable $C(\omega) < \infty$ for each $\omega \in \Omega$ and there is $\gamma \in (0, \frac{\beta}{a})$ satisfying

$$|\widetilde{X}_t(\omega) - \widetilde{X}_s(\omega)| \le C(\omega)|t - s|^{\gamma}, \qquad 0 \le s < t \le T.$$

In other words, there is a γ -Hölder continuous modification.

Proof. Suppose d = T = 1. Fix $n \in \mathbb{N}$. Then, for r > 0 and $k = 1, \dots, 2^n$,

$$P(|X_{k2^{-n}} - X_{(k-1)2^{-n}}| \ge 2^{-nr}) \le C2^{-n(1+\beta-r\alpha)}$$

so that

$$P(\bigcup_{k=1}^{2^n} \{|X_{k2^{-n}} - X_{(k-1)2^{-n}}| \ge 2^{-nr}\}) \le C2^{-n(\beta - r\alpha)}.$$

If we let $r = \gamma < \beta/\alpha$, then $A_n := \bigcup_{k=1}^{2^n} \{|X_{k2^{-n}} - X_{(k-1)2^{-n}}| \ge 2^{-nr}\}$ satisfies $\sum_{n=1}^{\infty} P(A_n) < \infty$, which implies $P(\limsup_{n \to \infty} A_n) = 0$ and $P(\liminf_{n \to \infty} A_n^c) = 1$ by the Borel-Cantelli. Let $\widetilde{\Omega} := \liminf_{n \to \infty} A_n^c$. If we let $N(\omega) := \inf\{n : \omega \in \bigcap_{k=n}^{\infty} A_k^c\}$, then $\widetilde{\Omega} = \{N < \infty\}$.

We claim that if 2-adic rational number $0 \le s < t \le 1$ satisfies $|t - s| < 2^{-N(\omega)}$, then

$$|X_t(\omega) - X_s(\omega)| \le \frac{2}{1 - 2^{-\gamma}} |t - s|^{\gamma}.$$

Assume that the claim is true. Consider a sequence $s=t_0<\cdots< t_l=t$ such that $t_i-t_{i-1}=2^{-(N(\omega)+1)}$ for $1\leq i\leq l-1$ and $t_l-t_{l-1}\leq 2^{-(N(\omega)+1)}$. Then, $l\leq 2^{N(\omega)+1}+1$, and we can estimate as follows: for $\omega\in\widetilde{\Omega}$,

$$\begin{split} |X_{t}(\omega) - X_{s}(\omega)| &\leq \sum_{i=1}^{l} |X_{t_{i}}(\omega) - X_{t_{i-1}}(\omega)| \\ &\leq \sum_{i=1}^{l} \frac{2}{1 - 2^{-\gamma}} |t_{i} - t_{i-1}|^{\gamma} \\ &\leq \frac{2(2^{N(\omega)+1} + 1)}{1 - 2^{-\gamma}} |t_{i} - t_{i-1}|^{\gamma} \\ &=: C(\omega) |t_{i} - t_{i-1}|^{\gamma}. \end{split}$$

Let $\widetilde{X}(\omega) := 0$ for $\omega \notin \widetilde{\Omega}$ and $\widetilde{X}(\omega) = \lim_{t_n \to t} X_{t_n}(\omega)$ for $\omega \in \widetilde{\Omega}$, where t_n runs through 2-adic rationals. The assumption $E[|X_t - X_s|^{\alpha}] \le C|t - s|^{1+\beta}$ implies that $X_{t_n} \to X_t$ in probability as $t_n \to t$, we have $P(\widetilde{X}_t = X_t) = 1$ for each t.

3 Day 3: October 19

Claim. Let $\widetilde{\Omega} \subset \Omega$, $P(\widetilde{\Omega}) = 1$ with $N(\omega) < \infty$ for all $\omega \in \widetilde{\Omega}$. Then, for 2-adic rationals $0 \le s < t \le 1$, we have

 $|X_t(\omega)-X_s(\omega)|<\frac{2}{1-s^{-\gamma}}|t-s|^{\gamma}.$

Proof. Suppose first $|t-s| < 2^{N(\omega)}$. Then, there is $m \ge N(\omega)$ such that $2^{-m+1} \le t-s < 2^{-m}$. There are two cases:

$$k2^{-m} < s < (k+1)2^{-m} < t < (k+2)2^{-m}$$

or

$$k2^{-m} < s < t < (k+1)2^{-m}$$

for some *k*. See the note.

 σ -subalgebra provides the von Neumann subalgebra together with a conditional expectation.

Proposition 3.1. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be convex. If $X, \varphi(X) \in L^1$, then $E(\varphi(X)|\mathcal{G}) \geq \varphi(E(X|\mathcal{G}))$. In particular, $E(-|\mathcal{G}|)$ is L^p -bounded.

Definition 3.2. Let $(\Omega, \mathcal{F}, P, \{\mathcal{F}_t\})$ be a filtered probability space. A stochastic process $\{X_t\}$ is called a $\{\mathcal{F}_t\}$ -submartingale if it is $\{\mathcal{F}_t\}$ -adapted, $X_t \in L^1$ for each t, and $E(X_t|\mathcal{F}_s) \geq X_s$ for each s < t.

Proposition 3.3. *Let* $\varphi : \mathbb{R} \to \mathbb{R}$ *be convex.*

- (a) If $\{X_t\}$ is a martingale and $\varphi(X_t) \in L^1$ for all t, then $\{\varphi(X_t)\}$ is a submartingale.
- (b) If $\{X_t\}$ is a submartingale and $\varphi(X_t) \in L^1$ for all t, and if φ is non-decreasing, then $\{\varphi(X_t)\}$ is a submartingale.

For example,

- $\{X_t\}$ is a martingale, then $\{|X_t|\}$ is a submartingale,
- $\{X_t\}$ is a non-negative martingale with $X_t \in L^p$, then $\{X_t^p\}$ is a submartingale,
- $\{B_t\}$ is a $\{\sigma(\{B_s\}: s \leq t)\}$ -martingale. Because it is not right continuous, so we need to do something.

Theorem 3.4 (Doob's inequality). Let $\{X_t\}$ be a non-negative right continuous $\{\mathcal{F}_t\}$ -submartingale.

(a) For a > 0 and t > 0,

$$P(\sup_{s \le t} X_s \ge a) \le \frac{1}{a} E(X_t | \sup_{s \le t} X_s \ge a).$$

(b) For p > 1 let $X_t \in L^p$. Then,

$$P(\sup_{s \le t} X_s \ge a) \le \frac{1}{a^p} E(X_t^p)$$

and

$$E((\sup_{s \le t} X_s)^p) \le (\frac{p}{p-1})^p E(X_t^p).$$

(c) If $\{X_t\}$ is a right continuous $\{\mathcal{F}_t\}$ -martingale with $X_T \in L^p$ for some p > 1, then

$$E(\sup_{t \le T} |X_t|^p) \le \left(\frac{p}{p-1}\right)^p E(|X_T|^p)$$

Proof. (a) Use the discrete version.

$$P(A_n) \le \frac{1}{a} E(X_t | \sup_{s \le t} X_s \ge a)$$

and $\{\sup_{s \le t} X_s > a\} \subset \liminf_n A_n$ implies by Fatou

$$P(\{\sup_{s < t} X_s > a\}) \le P(\liminf_n A_n) \le \frac{1}{a} E(X_t | \sup_{s < t} X_s \ge a).$$

Using the right continuity, we can limit

$$P(\{\sup_{s\leq t}X_s>a\})\to P(\{\sup_{s\leq t}X_s\geq a\}).$$

(b) Let $X_t^* := \sup_{s < t} X_s$.

$$E((X_t^*)^p) = \int_0^\infty px^{p-1}P(X_t^* > x) dx$$

$$= \int_0^\infty px^{p-2}E(X_t : X_t^* > x) dx$$

$$= pE(X_t \frac{(X_t^*)^{p-1}}{p-1})$$

$$= \frac{p}{p-1}E(X_t(X_t^*)^{p-1})$$

$$\leq \frac{p}{p-1}E(X_t^p)^{\frac{1}{p}}E(((X_t^*)^{p-1})^{\frac{p}{p-1}})^{\frac{p-1}{p}}.$$

(c) Corollary.

Lemma 3.5. Let $(\Omega, \mathcal{F}, P, \{\mathcal{F}_t\})$ be a filtered probability space. Let σ, τ be $\{\mathcal{F}_t\}$ -stopping times such that $\sigma \leq \tau$. Then, $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$.

Theorem 3.6 (Doob's optional sampling theorem). Let $\mathbb{T} = [0, \infty)$. Let $\{X_t\}$ be a right continuous $\{\mathcal{F}_t\}$ -submartingale and let $\sigma \leq \tau$ be bounded $\{\mathcal{F}_t\}$ -stopping times. Then, $E(X_\tau|F_\sigma) \geq X_\sigma$.

Proof.

$$\sigma_{\Lambda}(\omega) := \inf\{t : \sigma(\omega) \le t, \ t \in \Delta\}.$$