

· Members

>>>>>

Pham Dinh Hieu

12A1 Math - HUS High School for Gifted Students

Nguyen Trong Viet

12A1 Math - HUS High School for Gifted Students

Bui Quang Nguyen

11A1 Math - HUS High School for Gifted Students

Phan Viet Hoang

11A2 English - Hanoi - Amsterdam High school for the Gifted

Table of Tasks

Prediction

Predict PM2.5 parameter

Classify pill images

Summarization

Summarize biomedical texts

General Idea

~~~

1. Data Analysis

2. Data Preprocessing

4. Evaluating Model

3. Training Model

>>>> Checking Data statistics

~~~~											
	•	•	•	•	•						

	PM10	502	NO2	со	03	TEMP	PRES	DEWP	RAIN	wd	WSPM	PM2.5
0	129.0	29.0	78.0	4800.0	2.0	-0.7	1019.6	-4.6	0.0	ENE	0.9	116.0
1	101.0	4.0	49.0	2500.0	2.0	21.2	992.8	20.7	0.0	NE	1.3	141.0
2	29.0	NaN	20.0	400.0	40.0	-1.1	1016.0	-16.5	0.0	Е	2.1	26.0
3	419.0	13.0	176.0	7900.0	2.0	-1.0	1023.8	-3.2	0.0	ESE	1.6	378.0
4	140.0	2.0	24.0	1000.0	58.0	21.6	991.0	19.9	0.0	E	0.6	140.0
							120	***	***			
280507	98.0	24.0	82.0	1700.0	23.0	0.6	1013.1	-5.9	0.0	WNW	0.8	101.0
280508	150.0	29.0	58.0	1700.0	16.0	-2.5	1020.7	-6.7	0.0	SE	1.3	137.0
280509	283.0	18.0	116.0	4400.0	6.0	1.0	1021.0	-0.6	0.0	WNW	0.9	191.0
280510	85.0	3.0	19.0	400.0	79.0	35.0	994.4	15.8	0.0	SSE	1.1	30.0
280511	324.0	2.0	46.0	2000.0	6.0	13.5	1013.3	12.7	0.0	SE	0.8	324.0

<class 'pandas.core.frame.DataFrame'> RangeIndex: 280512 entries, 0 to 280511 Data columns (total 12 columns): Column Non-Null Count Dtype 276518 non-null float64 PM10 274943 non-null float64 S02 NO₂ 272151 non-null float64 266022 non-null float64 272089 non-null float64 TEMP 280226 non-null float64 PRES 280228 non-null float64 DFWP 280221 non-null float64 280232 non-null float64 RAIN 279068 non-null object 280278 NON-NULL T10at64 PM2.5 274850 non-null float64 dtypes: float64(11), object(1) memory usage: 25.7+ MB

280512 rows × 12 columns

Checking Data statistics

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
PM10	276518.0	NaN	NaN	NaN	105.348214	91.901267	2.0	36.0	83.0	146.0	999.0
SO2	274943.0	NaN	NaN	NaN	16.164495	21.965474	0.2856	2.0	7.9968	20.0	500.0
NO2	272151.0	NaN	NaN	NaN	51.485212	34.981628	1.0265	24.0	44.0	72.0	276.0
со	266022.0	NaN	NaN	NaN	1240.888171	1164.054442	100.0	500.0	900.0	1500.0	10000.0
O 3	272089.0	NaN	NaN	NaN	56.424005	56.343474	0.2142	10.0	44.0	80.0	1071.0
TEMP	280226.0	NaN	NaN	NaN	13.467613	11.45245	-19.9	3.0	14.4	23.2	41.6
PRES	280228.0	NaN	NaN	NaN	1010.66181	10.443439	982.4	1002.2	1010.3	1019.0	1042.8
DEWP	280221.0	NaN	NaN	NaN	2.513185	13.806107	-43.4	-8.9	3.1	15.2	29.1
RAIN	280232.0	NaN	NaN	NaN	0.064697	0.824627	0.0	0.0	0.0	0.0	72.5
wd	279068	16	NE	29366	NaN	NaN	NaN	NaN	NaN	NaN	NaN
WSPM	280278.0	NaN	NaN	NaN	1.698511	1.242021	0.0	0.9	1.4	2.2	12.9
PM2.5	274850.0	NaN	NaN	NaN	80.194411	80.811425	2.0	21.0	56.0	112.0	957.0

Missing values

Variability

Outliers

Categorical Data

Correlation and Missing

PM10	1.423825
S02	1.985298
NO2	2.980621
CO	5.165554
03	3.002724
TEMP	0.101956
PRES	0.101243
DEWP	0.103739
RAIN	0.099817
wd	0.514773
WSPM	0.083419
PM2.5	2.018452
dtype:	float64

Checking Categorical

Encoding Categorical

								_	_	_		
	PM10	S02	NO2	со	03	TEMP	PRES	DEWP	RAIN	WSPM	PM2.5	Newwd
0	129.0	29.0	78.0	4800.0	2.0	-0.7	1019.6	-4.6	0.0	0.9	116.0	13.0
1	101.0	4.0	49.0	2500.0	2.0	21.2	992.8	20.7	0.0	1.3	141.0	10.0
2	29.0	NaN	20.0	400.0	40.0	-1.1	1016.0	-16.5	0.0	2.1	26.0	15.0
3	419.0	13.0	176.0	7900.0	2.0	-1.0	1023.8	-3.2	0.0	1.6	378.0	16.0
4	140.0	2.0	24.0	1000.0	58.0	21.6	991.0	19.9	0.0	0.6	140.0	15.0
				••••						***		
280507	98.0	24.0	82.0	1700.0	23.0	0.6	1013.1	-5.9	0.0	8.0	101.0	3.0
280508	150.0	29.0	58.0	1700.0	16.0	-2.5	1020.7	-6.7	0.0	1.3	137.0	14.0
280509	283.0	18.0	116.0	4400.0	6.0	1.0	1021.0	-0.6	0.0	0.9	191.0	3.0
280510	85.0	3.0	19.0	400.0	79.0	35.0	994.4	15.8	0.0	1.1	30.0	12.0
280511	324.0	2.0	46.0	2000.0	6.0	13.5	1013.3	12.7	0.0	8.0	324.0	14.0

280511 524.5 2.6 40.6 2606.6 6.6 16.5 1616.5 12.7 6.6 6.6 524.6 14.5 memory

RangeIndex: 280512 entries, 0 to 280511 Data columns (total 12 columns): Column Non-Null Count Dtype PM10 276518 non-null float64 502 274943 non-null float64 NO₂ 272151 non-null float64 CO 266022 non-null float64 272089 non-null float64 TEMP 280226 non-null float64 PRES 280228 non-null float64 280221 non-null float64 DEWP RATN 280232 non-null float64 280278 non-null float64 WSPM

PM2.5 274850 non-null float64

279068 non-null float64

<class 'pandas.core.frame.DataFrame'>

dtypes: float64(12) memory usage: 25.7 MB

11 Newwd

Handling Missing Values

	PM10	S02	NO2	СО	03	TEMP	PRES	DEWP	RAIN	WSPM	PM2.5	Newwo
0	129.0	29.0	78.0	4800.0	2.0	-0.7	1019.6	-4.6	0.0	0.9	116.0	13.
1	101.0	4.0	49.0	2500.0	2.0	21.2	992.8	20.7	0.0	1.3	141.0	10.
3	419.0	13.0	176.0	7900.0	2.0	-1.0	1023.8	-3.2	0.0	1.6	378.0	16.
4	140.0	2.0	24.0	1000.0	58.0	21.6	991.0	19.9	0.0	0.6	140.0	15.
5	165.0	15.0	80.0	800.0	3.0	19.4	990.0	6.5	0.0	1.2	58.0	10.
	•••		•••									
280507	98.0	24.0	82.0	1700.0	23.0	0.6	1013.1	-5.9	0.0	0.8	101.0	3.
280508	150.0	29.0	58.0	1700.0	16.0	-2.5	1020.7	-6.7	0.0	1.3	137.0	14
280509	283.0	18.0	116.0	4400.0	6.0	1.0	1021.0	-0.6	0.0	0.9	191.0	3
280510	85.0	3.0	19.0	400.0	79.0	35.0	994.4	15.8	0.0	1.1	30.0	12
280511	324.0	2.0	46.0	2000.0	6.0	13.5	1013.3	12.7	0.0	0.8	324.0	14.

Correlation of Preprocessed Data

Train data after dropping all missing values

XGBoost (Extreme Gradient Boosting)

A popular library that implements the Gradient Boosting algorithm, with a lot of optimisation.

Training Process

```
~~~
```

```
validation 0-rmse:20.07643
290
291]
       validation 0-rmse:20.07225
       validation 0-rmse:20.06987
292
       validation 0-rmse:20.08764
293
294
       validation 0-rmse:20.08771
       validation 0-rmse:20.08976
295
296
       validation 0-rmse:20.09241
       validation 0-rmse:20.09309
297
       validation 0-rmse:20.08762
298
       validation 0-rmse:20.08863
[299]
12.763986913566914
```

- Data Split: The data is split into 2 parts: training set, validation set.
- Hyperparameter values:
 - + n_estimators = 300
 - + learning_rate = 0.1
 - $+ max_depth = 14$

Result

~~~

<u>15.5612</u>

Result

~~~

# <u>15.5612</u>

#### Potential ways to improve:

- Further optimise hyperparameters
- Try different methods for handling missing data and transforming category data









**~~~** 

| Notebook             | labels.txt | × |
|----------------------|------------|---|
| 1 0.jpg 40           |            |   |
| 2 1.jpg 107          |            |   |
| 3 <b>2.jpg 118</b>   |            |   |
| 4 3.jpg 125          |            |   |
| 5 <b>4.jpg 42</b>    |            |   |
| 6 5.jpg 103          |            |   |
| 7 6.jpg 85           |            |   |
| 8 7.jpg 113          |            |   |
| 9 <b>8.jpg 21</b>    |            |   |
| 10 9.jpg 123         |            |   |
| 11 10.jpg 149        |            |   |
| 12 <b>11.jpg 100</b> | i          |   |
| 13 <b>12.jpg 18</b>  |            |   |
| 14 13.jpg 140        |            |   |
| 15 <b>14.jpg 61</b>  |            |   |



8693 images

150 types of pills





~~~


Building Model

~~~

Model	size (pixels)	acc top1	acc top5	Speed CPU ONNX (ms)	Speed A100 TensorRT (ms)	params (M)	FLOPs (B) at 640
YOLOv8n-cls	224	69.0	88.3	12.9	0.31	2.7	4.3
YOLOv8s-cls	224	73.8	91.7	23.4	0.35	6.4	13.5
YOLOv8m-cls	224	76.8	93.5	85.4	0.62	17.0	42.7
YOLOv8I-cls	224	76.8	93.5	163.0	0.87	37.5	99.7
YOLOv8x-cls	224	79.0	94.6	232.0	1.01	57.4	154.8

Building Model

~~~

#### YOLOv8m-cls:

- epochs = 30
- imgsz = 640
- patience = 10
- batch = 32

| Epoc<br>28/3         | <br>loss<br>0.178<br>top1_acc<br>0.9 | Instances<br>9<br>top5_acc:<br>0.978 | <br>100%  15/1 | 244/244 [05:25<00:00,<br>L5 [00:19<00:00, 1.28s/it] | 1.34s/it] |
|----------------------|--------------------------------------|--------------------------------------|----------------|-----------------------------------------------------|-----------|
| Epoc<br><b>2</b> 9/3 | loss<br>0.1698<br>top1_acc<br>0.899  | Instances<br>9<br>top5_acc:<br>0.977 | 100%  15/1     | 244/244 [05:26<00:00,<br>15 [00:19<00:00, 1.27s/it] | 1.34s/it] |
| Epoc<br>30/3         | loss<br>0.1542<br>top1_acc<br>0.899  | Instances<br>9<br>top5_acc:<br>0.98  | <br>100%  15/1 | 244/244 [05:27<00:00,<br>15 [00:20<00:00, 1.39s/it] | 1.34s/it] |



### Result

**~~~** 

# 0.8947





### Result

**~~~** 

# 0.8947

#### For reference:

- Score of previous round with this approach: <u>0.8761</u>
- Score of previous round with data augmentation (fine-tune from the best model) : **0.8698**







## **General idea**

~~~

This text is important. (1)

This text is not as important. (2)

This text is very important. (3)

This text is not important. (4)

This text is very important. (5)

General idea

~~~

This text is important. (1)

This text is not as important. (2)

This text is very important. (3)

This text is not important. (4)

This text is very important. (5)

This text is very important. (3)

This text is very important. (5)

This text is important. (1)

This text is not as important. (2)

This text is not important. (4)



Level of importance decreases





## **General idea**

~~~

Will be in the summary

This text is very important. (3)

This text is very important. (5)

This text is important. (1)

This text is not as important. (2)

This text is not important. (4)

the quick brown fox? he jumps over the lazy dog.

the quick brown fox? he jumps over the lazy dog.

the quick brown fox he jumps over the lazy dog

the quick brown fox he jumps over the lazy dog

the quick brown fox he jumps over the lazy dog

quick brown fox jumps lazy dog

quick brown fox jumps lazy dog

quick brown fox jumps lazy dog

quick brown fox jump lazi dog

the quick brown fox? he jumps over the lazy dog.

quick brown fox jump lazi dog

Punctuation and stopwords removed Stemmed with Porter stemmer

TF-IDF score

$$tfidf(w) = tf(w) imes idf(w)$$

$$tf(w) = rac{ ext{count of word } w ext{ in text}}{ ext{number of words in text}} \ idf(w) = -\log rac{ ext{count of sentence with word } w ext{ in text}}{ ext{number of sentences in text}}$$

TF-IDF score

$$tfidf(w) = tf(w) imes idf(w)$$

$$score(s) = \frac{\sum_{w \text{ in } s} tfidf(w)}{\text{number of words in s}}$$

General idea

~~~

Top 20% will be in the summary

This text is very important. (3)

This text is very important. (5)

This text is important. (1)

This text is not as important. (2)

This text is not important. (4)

Sorted in decreasing order, according to the aforementioned criterion





>>>>>

### Result

**~~~** 

# 0.2871





#### Result

~~~

0.2871

For reference:

- Score of previous round with this approach: **0.3767**
- Score of previous round with a random approach
 (25% of all sentences are randomly selected): 0.2482

