An Incremental Encoder For Sequence-to-Sequence Modelling

Dennis Ulmer¹, Dieuwke Hupkes^{1,2}, Elia Bruni^{1,2}

¹ Universiteit van Amsterdam

² Institute for Language, Logic and Computation

Contents

- 1. Motivation
- Metrics
- Models
- 4. Experiments
- Outlook
- 6. Bibliography

What is incrementality?

(and why do we care)

What is incrementality?

 "In incremental processing, representations are built up as rapidly as possible as the input is encountered" (Christiansen and Chater, 2016)

What is incrementality?

- "In incremental processing, representations are built up as rapidly as possible as the input is encountered" (Christiansen and Chater, 2016)
- → "Incrementally integrating information"

Why do we care?

 "Now-or-Never bottleneck" seems fundamental to Human Language Processing (Christiansen and Chater, 2016)

Why do we care?

- "Now-or-Never bottleneck" seems fundamental to Human Language Processing (Christiansen and Chater, 2016)
- Incrementality is closely related to *Compositionality*, a possible milestone to human-level intelligence (Lake et al., 2017)

Why do we care?

- "Now-or-Never bottleneck" seems fundamental to Human Language Processing (Christiansen and Chater, 2016)
- Incrementality is closely related to *Compositionality*, a possible milestone to human-level intelligence (Lake et al., 2017)
- Attention-based models are not biologically plausible; don't give incentive to encode efficiently

Contents

- Motivation
- 2. Metrics
- Models
- Experiments
- Outlook
- 6. Bibliography

Metrics

How to measure incrementality?

Metrics

How to measure incrementality?

- 1. How well / long is past information stored?
- 2. How much new information is integrated?

Metrics

How to measure incrementality?

- 1. How well / long is past information stored?
- 2. How much new information is integrated?
- 3. Do representations for the same type resemble each other?

Use Diagnostic Classifiers (Hupkes et al., 2018)

- Use Diagnostic Classifiers (Hupkes et al., 2018)
 - Use hidden activations as input for a simple Perceptron, try to predict some information

- Use Diagnostic Classifiers (Hupkes et al., 2018)
 - Use hidden activations as input for a simple Perceptron, try to predict some information
 - → High Accuracy = Information is likely being stored

- Average Diagnostic Classifier Accuracy
 - Use activations h_t to predict the occurrence of token $x_{t'}$

- Average Diagnostic Classifier Accuracy
 - Use activations h_t to predict the occurrence of token $x_{t'}$
- Weighed Average Diagnostic Classifier Accuracy
 - Weigh by distance t t'

• If no new information is integrated, then $||h_t - LSTM(\vec{0}, h_{t-1})|| = 0$

- If no new information is integrated, then $||h_t \text{LSTM}(\vec{0}, h_{t-1})|| = 0$
- If the whole history is forgotten, then $||h_t LSTM(x_t, \vec{0})|| = 0$

- If no new information is integrated, then $||h_t \text{LSTM}(\vec{0}, h_{t-1})|| = 0$
- If the whole history is forgotten, then $||h_t LSTM(x_t, \vec{0})|| = 0$
- Hypothesis: Incremental model finds trade-off between old and new information

→ Integration Ratio

$$\phi = \frac{||h_t - \text{LSTM}(\vec{0}, h_{t-1})||}{||h_t - \text{LSTM}(x_t, \vec{0})||}$$
(1)

intratio(
$$\{x\}_{0}^{T}$$
) = $\frac{1}{T}\sum_{t=1}^{T} \min\left(\phi, \phi^{-1}\right)$ (2)

3. Do representations for the same type resemble each other?

 We expect representations to be close in hidden space when encoding the same type

3. Do representations for the same type resemble each other?

- We expect representations to be close in hidden space when encoding the same type
- Representational similarity
 - Calculate average euclidean distance between h_t for same x_t

Contents

- Motivation
- 2. Metrics
- 3. Models
- 4. Experiments
- Outlook
- 6. Bibliography

Standard models

- Vanilla LSTM
- LSTM with dot-product attention

An incremental (?) model

 Part of what enables fast human processing seems to be the ability to anticipate future utterances (Christiansen and Chater, 2016)

An incremental (?) model

- Part of what enables fast human processing seems to be the ability to anticipate future utterances (Christiansen and Chater, 2016)
- → Add a secondary Anticipation Loss to training
 - Project hidden representations into vocabulary space, use cross-entropy loss to compare with actual next token

Contents

- Motivation
- 2. Metrics
- Models
- 4. Experiments
- Outlook
- 6. Bibliography

Dataset

- Use the SCAN (Lake and Baroni, 2018) data set
 - Translate commands in Natural Language into sequence of commands

```
jump thrice and look \rightarrow I_JUMP I_JUMP I_JUMP I_LOOK
```

- Designed to test compositionality

• Train 15 models per class to account for variance

- Train 15 models per class to account for variance
- Compute metric scores for every model

- Train 15 models per class to account for variance
- Compute metric scores for every model
 - Are they measuring the same?

- Train 15 models per class to account for variance
- Compute metric scores for every model
 - Are they measuring the same?
 - Do high scores imply better performance?

- Train 15 models per class to account for variance
- Compute metric scores for every model
 - Are they measuring the same?
 - Do high scores imply better performance?
 - → Measure correlation!

Results

```
Modelseq_accdc_accwdc_accintratiorepsimBL.765 \pm .07.958 \pm 0.945 \pm 0.714 \pm .024.399 \pm .08BL + Attn..919 \pm .05.950 \pm 0.935 \pm 0.697 \pm .013.859 \pm .08Antcp. Loss.661 \pm .23.957 \pm 0.943 \pm 0.664 \pm .023.834 \pm .11
```

Figure: Results on SCAN add_prim_left with n = 15.

Anticipation Loss insights

Metrics Insights I

Metrics Insights II

Metrics Insights III

Metrics Insights IV

	seq_acc	dc_acc	wdc_acc	intratio	repsim
seq_acc	1	-0.80	-0.79	0.05	-0.74
dc_acc		1	0.78	0.29	0.81
wdc_acc			1	0.40	0.80
intratio				1	0.39
repsim					1

Figure: Correlation between metrics measured with Pearson's ρ .

Contents

- 1. Motivation
- Metrics
- Models
- 4. Experiments
- 5. Outlook
- 6. Bibliography

Open Questions

• Do the metrics actually measure incrementality? What would be a better metric?

Open Questions

- Do the metrics actually measure incrementality? What would be a better metric?
- What would an incremental model look like?

Open Questions

- Do the metrics actually measure incrementality? What would be a better metric?
- What would an incremental model look like?
- How to realize insights about human cognition in model architectures?

Improving metrics

- Improving metrics
- Models based on Chunk-and-Pass processing

- Improving metrics
- Models based on Chunk-and-Pass processing
- Your ideas?

- Improving metrics
- Models based on Chunk-and-Pass processing
- Your ideas?
- Master thesis: Activation interventions

Contents

- Motivation
- Metrics
- Models
- Experiments
- Outlook
- 6. Bibliography

Bibliography

- Morten H Christiansen and Nick Chater. The now-or-never bottleneck: A fundamental constraint on language. Behavioral and Brain Sciences, 39, 2016.
- Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema. Visualisation and diagnostic classifiers' reveal how recurrent and recursive neural networks process hierarchical structure. Journal of Artificial Intelligence Research, 61:907–926, 2018.
- Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks. In International Conference on Machine Learning, pages 2879–2888, 2018.
- Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building machines that learn and think like people.

 Behavioral and Brain Sciences, 40, 2017.