Database Systems: Design, Implementation, and Management

Tenth Edition

Chapter 3
The Relational Database Model

Objectives

In this chapter, students will learn:

- That the relational database model offers a logical view of data
- About the relational model's basic component: relations
- That relations are logical constructs composed of rows (tuples) and columns (attributes)
- That relations are implemented as tables in a relational DBMS

Database Systems, 10th Edition

Objectives (cont'd.)

- About relational database operators, the data dictionary, and the system catalog
- How data redundancy is handled in the relational database model
- · Why indexing is important

Database Systems, 10th Edition

A Logical View of Data

- Relational model
 - View data logically rather than physically
- Table
 - Structural and data independence
 - Resembles a file conceptually
- Relational database model is easier to understand than hierarchical and network models

Database Systems, 10th Edition

4

Tables and Their Characteristics

- Logical view of relational database is based on relation
 - Relation thought of as a table
- Table: two-dimensional structure composed of rows and columns
 - Persistent representation of logical relation
- Contains group of related entities (entity set)

Database Systems, 10th Edition

5

Database Systems, 10th Edition

Keys

- Each row in a table must be uniquely identifiable
- Key: one or more attributes that determine other attributes
 - Key's role is based on determination
 - If you know the value of attribute A, you can determine the value of attribute B
 - Functional dependence
 - Attribute B is functionally dependent on A if all rows in table that agree in value for A also agree in value for B

in value for B Database Systems, 10th Edition

Database Systems, 10th Edition

Types of Keys

- · Composite key
 - Composed of more than one attribute
- Key attribute
 - Any attribute that is part of a key
- Superkey
 - Any key that uniquely identifies each row
- · Candidate key
 - A superkey without unnecessary attributes

Database Systems, 10th Edition

10

Types of Keys (cont'd.)

- Entity integrity
 - Each row (entity instance) in the table has its own unique identity
- Nulls
 - No data entry
 - Not permitted in primary key
 - Should be avoided in other attributes

Database Systems, 10th Edition

11

Types of Keys (cont'd.)

- Can represent:
 - An unknown attribute value
 - A known, but missing, attribute value
 - A "not applicable" condition
- Can create problems when functions such as COUNT, AVERAGE, and SUM are used
- Can create logical problems when relational tables are linked

Database Systems, 10th Edition

Types of Keys (cont'd.)

- · Controlled redundancy
 - Makes the relational database work
 - Tables within the database share common attributes
 - Enables tables to be linked together
 - Multiple occurrences of values not redundant when required to make the relationship work
 - Redundancy exists only when there is unnecessary duplication of attribute values

Database Systems, 10th Edition

13

Types of Keys (cont'd.)

- Foreign key (FK)
 - An attribute whose values match primary key values in the related table
- · Referential integrity
 - FK contains a value that refers to an existing valid tuple (row) in another relation
- · Secondary key
 - Key used strictly for data retrieval purposes

Database Systems, 10th Edition

Integrity Rules

- Many RDBMs enforce integrity rules automatically
- Safer to ensure that application design conforms to entity and referential integrity rules
- Designers use flags to avoid nulls
 - Flags indicate absence of some value

Database Systems, 10th Edition

Relational Set Operators

- Relational algebra
 - Defines theoretical way of manipulating table contents using relational operators
 - Use of relational algebra operators on existing relations produces new relations:
 - SELECT
- UNION
- PROJECT
- DIFFERENCE
- JOIN
- PRODUCT
- INTERSECT
- DIVIDE

Database Systems, 10th Edition

Relational Set Operators (cont'd.)

- Natural join
 - Links tables by selecting rows with common values in common attributes (join columns)
- Equijoin
 - Links tables on the basis of an equality condition that compares specified columns
- Theta join
 - Any other comparison operator is used

Database Systems, 10th Edition

25

Relational Set Operators (cont'd.)

- Inner join
 - Only returns matched records from the tables that are being joined
- Outer join
 - Matched pairs are retained, and any unmatched values in other table are left null

Database Systems, 10th Edition

26

Relational Set Operators (cont'd.)

- Left outer join
 - Yields all of the rows in the CUSTOMER table
 - Including those that do not have a matching value in the AGENT table
- Right outer join
 - Yields all of the rows in the AGENT table
 - Including those that do not have matching values in the CUSTOMER table

Database Systems, 10th Edition

28

The Data Dictionary and System Catalog

- · Data dictionary
 - Provides detailed accounting of all tables found within the user/designer-created database
 - Contains (at least) all the attribute names and characteristics for each table in the system
 - Contains metadata: data about data
- · System catalog
 - Contains metadata
 - Detailed system data dictionary that describes all objects within the database

Database Systems, 10th Edition

The Data Dictionary and System Catalog (cont'd.)

- Homonym
 - Indicates the use of the same name to label different attributes
- Synonym
 - Opposite of a homonym
 - Indicates the use of different names to describe the same attribute

Database Systems, 10th Edition

32

Relationships within the Relational Database

- 1:M relationship
 - Relational modeling ideal
 - Should be the norm in any relational database design
- 1:1 relationship
 - Should be rare in any relational database design

Database Systems, 10th Edition

Relationships within the Relational Database (cont'd.)

- M:N relationships
 - Cannot be implemented as such in the relational model
 - M:N relationships can be changed into 1:M relationships

Database Systems, 10th Edition

34

The 1:M Relationship

- Relational database norm
- Found in any database environment

Database Systems, 10th Edition

The 1:1 Relationship

- One entity related to only one other entity, and vice versa
- Sometimes means that entity components were not defined properly
- Could indicate that two entities actually belong in the same table
- Certain conditions absolutely require their use

Database Systems, 10th Edition

37

The M:N Relationship

- Implemented by breaking it up to produce a set of 1:M relationships
- Avoid problems inherent to M:N relationship by creating a composite entity
 - Includes as foreign keys the primary keys of tables to be linked

Database Systems, 10th Edition

Data Redundancy Revisited

- Data redundancy leads to data anomalies
 - Can destroy the effectiveness of the database
- Foreign keys
 - Control data redundancies by using common attributes shared by tables
 - Crucial to exercising data redundancy control
- Sometimes, data redundancy is necessary

Database Systems, 10th Edition

Indexes

- Orderly arrangement to logically access rows in a table
- Index key
 - Index's reference point
 - Points to data location identified by the key
- Unique index
 - Index in which the index key can have only one pointer value (row) associated with it
- Each index is associated with only one table

Database Systems, 10th Edition

Codd's Relational Database Rules

- In 1985, Codd published a list of 12 rules to define a relational database system
 - Products marketed as "relational" that did not meet minimum relational standards
- Even dominant database vendors do not fully support all 12 rules

Database Systems, 10th Edition

49

Summary

- Tables are basic building blocks of a relational database
- Keys are central to the use of relational tables
- Keys define functional dependencies
 - Superkey
 - Candidate key
 - Primary key
 - Secondary key
 - Foreign key

Database Systems, 10th Edition

50

Summary (cont'd.)

- Each table row must have a primary key that uniquely identifies all attributes
- Tables are linked by common attributes
- The relational model supports relational algebra functions
 - SELECT, PROJECT, JOIN, INTERSECT UNION, DIFFERENCE, PRODUCT, DIVIDE
- Good design begins by identifying entities, attributes, and relationships
 - 1:1, 1:M, M:N

Database Systems, 10th Edition