MATH 1800-C HANDOUT 10 PRACTICE PROBLEMS FOR THE FINAL EXAM

Subhadip Chowdhury

§1. Change of Variables (Optional)

■ Exercise 1.

Use change of variables to set up the following integrals in terms of (u, v)-coordinates so that the domain of integration becomes a rectangle with sides parallel to the axes.

- (a) $\iint_R (4x + 8y) dA$ where R is the parallelogram with vertices (-1,3), (1,-3), (3,-1), and (1,5).
- (b) $\iint_R e^{x+y} dA$ where R is the region $|x| + |y| \le 1$.

■ Exercise 2.

Evaluate

$$\iint_{R} \cos\left(\frac{y-x}{y+x}\right) dA$$

where R is the trapezoidal region with vertices (1,0), (2,0), (0,2), and (0,1).

■ Exercise 3.

Let f be continuous on [0,1] and let R be the triangular region with vertices (0,0), (0,1), and (1,0). Show that

$$\iint_R f(x+y) dA = \int_0^1 u f(u) du$$

§2. Line Integrals

■ Exercise 1.

Evaluate the following line integrals.

- (a) $\oint_C y dx + (x + y^2) dy$ where *C* is the ellipse $4x^2 + 9y^2 = 36$ with counterclockwise orientation.
- (b) $\int \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where $\vec{\mathbf{F}}(x,y) = xy\vec{\mathbf{i}} + x^2\vec{\mathbf{j}}$ and C is given by $\vec{\mathbf{r}}(t) = \sin t\vec{\mathbf{i}} + (1+t)\vec{\mathbf{j}}$, $0 \le t \le \pi$
- (c) $\int \vec{\mathbf{f}} \cdot d\vec{\mathbf{r}}$, where $\vec{\mathbf{f}}(x,y) = (4x^3y^2 2xy^3) \vec{\mathbf{i}} + (2x^4y 3x^2y^2 + 4y^3) \vec{\mathbf{j}}$ and C is given by $\vec{\mathbf{r}}(t) = (t + \sin \pi t) \vec{\mathbf{i}} + (2t + \cos \pi t) \vec{\mathbf{j}}$, $0 \le t \le 1$
- (d) $\int \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where $\vec{\mathbf{F}}(x,y,z) = \sin y \vec{\mathbf{i}} + x \cos y \vec{\mathbf{j}} \sin z \vec{\mathbf{k}}$, and C is the helix $x = 3 \cos t$, y = t, $z = 3 \sin t$ from (3,0,0) to $(0,\pi/2,3)$

1

(e) $\oint_C \sqrt{1+x^3}dx + 2xydy$ where *C* is the triangle with vertices (0,0), (1,0), and (1,3)

Figure 1

- (f) $\int \vec{\mathbf{f}} \cdot d\vec{\mathbf{r}}$, where $\vec{\mathbf{f}}(x,y,z) = (3x^2yz 3y) \vec{\mathbf{i}} + (x^3z 3x) \vec{\mathbf{j}} + (x^3y + 2z) \vec{\mathbf{k}}$ and C is the curve shown in figure 1.
- (g) $\int \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where $\vec{\mathbf{F}}(x,y) = \frac{\left(2x^3 + 2xy^2 2y\right)\vec{\mathbf{i}} + \left(2y^3 + 2x^2y + 2x\right)\vec{\mathbf{j}}}{x^2 + y^2}$ and C is the curve shown in figure 2.

Figure 2

- (h) $\int \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where $\vec{\mathbf{F}}(x,y,z) = \langle y \cos x xy \sin x, xy + x \cos x \rangle$, and C is the triangle from (0,0) to (0,4) to (2,0) to (0,0).
- (i) $\int \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where $\vec{\mathbf{F}}(x,y) = xy^2\vec{\mathbf{i}} + x^2y\vec{\mathbf{j}}$, and C is $\vec{\mathbf{r}}(t) = \cos t\vec{\mathbf{i}} + 2\sin t\vec{\mathbf{j}}$, $0 \le t \le \pi/2$

■ Exercise 2.

- (a) A **160** lb man carries a **25** lb can of paint up a helical staircase that encircles a silo with a radius of **20** ft. If the silo is **90** ft high and the man makes exactly three complete revolutions climbing to the top, how much work is done by the man against gravity?
- (b) Suppose there is a hole in the can of paint and 9 lb of paint leaks steadily out of the can during the mans ascent. How much work is done?