We Claim:

1 1. Compounds having the structure of Formula I: 2 3 4 5 6 7 8 Formula I 9 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, 10 enantiomers, diastereomers or N-oxides wherein 11 1) when X is oxygen in Formula I: 12 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino; 13 substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR' 14 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, 15 aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl); 16 aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR' 17 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y 18 (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆ 19 alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl, 20 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or 21 $(CH_2)_m$ - $C(=O)R_3$ 22 [wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted 23 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or 24 bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the 25 ring can be attached to (CH₂)_mC(=0) through N and R₀ can be a 4-12 membered 26 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected 27 from the group consisting of N, O and S wherein the ring can be attached to (CH₂)_mC(=0) through C) and wherein the substituents of R₃ can be one or more 28 29 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, 30 aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,

WO 2005/051931

64

PCT/IB2004/003893

31 optionally substituted amino (wherein the substituents are selected from C₁-C₆ alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 32 C(=O)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 33 alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted 34 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 35 36 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 37 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 38 heterocyclylalkyll; 39 R₂ is selected from: cyano; heteroaryl; heterocyclyl; or (CH₂)_nNHCOR₇ (wherein n 40 represents an integer 1 to 6 and R7 can represent hydrogen, alkyl, alkenyl, alkynyl, 41 (un)saturated, cycloalkyl, alkoxy, aryloxy, aryl, aralkyl, heteroaryl, heterocyclyl, $(CH_2)_{1,\Delta}OR'$ wherein R' is the same as defined above, or NR_xR_v wherein R_x and R_v are the 42 43 same as defined above); 44 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR_xR_y wherein R_x and R_y are the same as defined above; 45 46 X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 47 Y is selected from: an oxygen atom; a sulphur atom; or NR 48 (wherein R is selected from hydrogen, alkyl, alkenyl, alkynyl, un(saturated) 49 50 cycloalkyl, acyl, aryl, aralkyl, heteroaryl, heterocyclyl, (heteroaryl)alkyl, or 51 (heterocyclyl)alkyl); 52 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 53 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 54 as defined above, or further, Y₁ and X₂, X₁ and Y₂, X₁ and X₂ may together form a ring 55 56 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 57 heteroatoms selected from N, O or S; and 2) when X is NR₈ or S wherein R₈ is hydrogen, lower alkyl (C_1 - C_6) or aryl: 58 59 $R_1, R_4, X_1, X_2, Y, Y_1$ and Y_2 are the same as defined above;

60 R₂ is selected from: (CH)_nNHCOR₇ (wherein n represents an integer 1 to 6 and R₇ is the

61 same as defined above),

62 with the provisio that when R₂ is heterocyclyl, R₁ can not be (CH₂)₁₋₄OR', C(=O)NR_xR_y or

63 $(CH_2)_m$ - $C(=O)R_3$.

1 2. A compound having the structure of Formula XXXIV,

2 3 4 5 6 7

Formula XXXIV

8 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

9 enantiomers, diastereomers or N-oxides

10 wherein

11 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

12 substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

13 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

14 aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

15 aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH2)14OR'

16 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

17 (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

18 alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

19 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

20 $(CH_2)_m - C(=O)R_3$

26

21 [wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted 22 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or 23 bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the 24 ring can be attached to (CH₂)_mC(=0) through N and R₀ can be a 4-12 membered 25 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected

from the group consisting of N, O and S wherein the ring can be attached to

27 (CH₂)_mC(=0) through C) and wherein the substituents of R₃ can be one or more 28 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy. aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 29 30 optionally substituted amino (wherein the substituents are selected from C1-C6 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 31 32 C(=0)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 33 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 34 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 35 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 36 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 37 heterocyclylalkyl]; 38 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR_xR_y wherein 39 R_x and R_y are the same as defined above; 40 X_1 and X_2 are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 41 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 42 Y is selected from: an oxygen atom; a sulphur atom; or NR 43 (wherein R is selected from hydrogen, alkyl, alkenyl, alkynyl, un(saturated) 44 cycloalkyl, acyl, aryl, aralkyl, heteroaryl, heterocyclyl, (heteroaryl)alkyl, or 45 (heterocyclyl)alkyl); 46 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 47 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 48 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 49 as defined above, or further, Y₁ and X₂, X₁ and Y₂, X₁ and X₂ may together form a ring 50 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 51 heteroatoms selected from N, O or S; and 52 R₁₉ represents -CONHNH₂, or c=N-0-c-R', wherein R' is the same as defined for Formula I. 53

54 3. The compound of claim 1 having the structure of Formula XXXII,

55
56
57
58
59
60
61
Formula XXXII

62 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

63 enantiomers, diastereomers or N-oxides wherein

64 wherein

69

71

72

73

75

76

77

78

79

80

81

82

83

65 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

66 substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

67 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH2)1-4OR'

70 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

74 $(CH_2)_m$ - $C(=O)R_3$

[wherein m is an integer in the range of 0-2 and R_3 can be optionally substituted R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the ring can be attached to $(CH_2)_mC(=O)$ through N and R_q can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to $(CH_2)_mC(=O)$ through C) and wherein the substituents of R_3 can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,

84	optionally substituted amino (wherein the substituents are selected from C_1 - C_6
85	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether,
86	C(=O)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
87	alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted
88	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
89	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
90	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
91	heterocyclylalkyl];
92	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR _x R _y wherein
93	R_x and R_y are the same as defined above;
94	Y is selected from: an oxygen atom; a sulphur atom; or NR
95	(wherein R is selected from hydrogen, alkyl, alkenyl, alkynyl, un(saturated)
96	cycloalkyl, acyl, aryl, aralkyl, heteroaryl, heterocyclyl, (heteroaryl)alkyl, or
97	(heterocyclyl)alkyl);
98	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
99	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
100	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same
101	as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring
102	fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3
103	heteroatoms selected from N, O or S;
104	X ₁ represents alkyl;
105	X ₂ represents alkyl, cycloalkyl or aralkyl;
106	X ₃ , X ₄ , X ₅ and X ₆ independently represent C, CH, CH ₂ , CO, CS, NH, N, O, S; R ₁₅ ,
107	R ₁₆ , and R ₁₇ independently represent no atom, alkyl, COCH ₃ , COOC ₂ H ₅ , NH ₂ ,
108	NH-cyclopropyl, CN, SH; and
109	represents an optional single bond.

4. The compound of claim 1 having the structure of Formula XXIII,

2
3
4
5
6
7
8
R₁₈
Formula XXXIII

10 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

11 enantiomers, diastereomers or N-oxides wherein

12 wherein

1

13 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

(wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

19 (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

20 alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

21 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

22 $(CH_2)_m$ - $C(=O)R_3$

23

24

25

26

27

28

29

30

31

[wherein m is an integer in the range of 0-2 and R_3 can be optionally substituted R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the ring can be attached to $(CH_2)_mC(=O)$ through N and R_q can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to $(CH_2)_mC(=O)$ through C) and wherein the substituents of R_3 can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,

PCT/IB2004/003893

32	optionally substituted amino (wherein the substituents are selected from C ₁ -C ₆
33	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether,
34	C(=O)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
35	alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted
36	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
37	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
38	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
39	heterocyclylalkyl];
40	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR _x R _y wherein
41	R_x and R_y are the same as defined above;
42	X ₁ and X ₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl;
43	acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;
44	Y is selected from: an oxygen atom; a sulphur atom; or NR
45	(wherein R is selected from hydrogen, alkyl, alkenyl, alkynyl, un(saturated)
46	cycloalkyl, acyl, aryl, aralkyl, heteroaryl, heterocyclyl, (heteroaryl)alkyl, or
47	(heterocyclyl)alkyl);
48	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
49	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
50	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same
51	as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring
52	fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3
53	heteroatoms selected from N, O or S;
54	X ₇ represents O or S; and
55	R ₁₈ represents hydrogen, alkyl, aryl, heteroaryl, cycloalkyl or heterocyclyl.
1	5. The compound of claim 1 wherein R ₂ is cyano.
1	6. The compound of claim 1 wherein R ₂ is (CH ₂) _n NHCOR ₇ , n represents an integer 1
2	to 6; and R7 can represent hydrogen, alkyl, alkenyl, alkynyl, (un)saturated, cycloalkyl,
3	alkoxy, aryloxy, aryl, aralkyl, heteroaryl, heterocyclyl, (CH ₂) ₁₋₄ OR' wherein R' is the same

as defined above, or NR_xR_y (wherein R_x and R_y can be independently selected from

WO 2005/051931 PCT/IB2004/003893

- 5 hydrogen, alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl,
- 6 heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl).
- 1 7. The compound of claim 1 wherein R_2 is 6-membered heteroaryl.
- 1 8. A pharmaceutical composition comprising a therapeutically effective amount of a
- 2 compound of claim 1, together with at least one pharmaceutically acceptable
- 3 carrier, excipient or diluent.
- 1 9. A method for treating, preventing, inhibiting or suppressing an inflammatory
- 2 condition or disease in a patient, comprising administering to the said patient a
- 3 therapeutically effective amount of a compound of claim 1.
- 1 10. A method for treating, preventing, inhibiting or suppressing an inflammatory
- 2 condition or disease in a patient, comprising administering to the said patient a
- 3 therapeutically effective amount of a pharmaceutical composition of claim 8.
- 1 11. A method for the treatment, prevention, inhibition or suppression of AIDS, asthma,
- 2 arthritis, bronchitis, chronic obstructive pulmonary disease (COPD), psoriasis,
- 3 allergic rhinitis, shock, atopic dermatitis, crohn's disease, adult respiratory distress
- 4 syndrome (ARDS), eosinophilic granuloma, allergic conjunctivitis, osteoarthritis,
- 5 ulcerative colitis and other inflammatory diseases in a patient comprising
- 6 administering to said patient a therapeutically effective amount of a compound of
- 7 claim 1.
- 1 12. A method for the treatment, prevention, inhibition or suppression of AIDS, asthma,
- arthritis, bronchitis, chronic obstructive pulmonary disease (COPD), psoriasis,
- 3 allergic rhinitis, shock, atopic dermatitis, crohn's disease, adult respiratory distress
- 4 syndrome (ARDS), eosinophilic granuloma, allergic conjunctivitis, osteoarthritis,
- 5 ulcerative colitis and other inflammatory diseases in a patient comprising
- 6 administering to said patient a therapeutically effective amount of a pharmaceutical
- 7 composition of claim 8.

9

13. A method for the preparation of compounds of Formula VII (a),

$$X_{2}$$

$$X_{1}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{5}$$

$$X_{5}$$

$$X_{5}$$

$$X_{7}$$

$$X_{7$$

7 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

8 enantiomers, diastereomers or N-oxides, the method comprising:

reacting a compound of Formula II

with a compound of Formula X₂Z (wherein Z is halogen) to give a compound of Formula

16 III, wherein

17
$$X_2$$
 Y_1 O H 19 X_1 O Y_2 Formula III

21 X₁ and X₂ are independently selected from: alkyl; alkenyl; alkynyl; cycloalkyl; acyl; aryl;

aralkyl; heterocyclyl; (heterocyclyl)alkyl; or (heterocyclyl)alkyl;

23 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR

24 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;

25 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same

as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring

fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3
heteroatoms selected from N, O or S;

reacting the compound of Formula III with hydroxylamine hydrochloride to give a compound of Formula IV;

treating the compound of Formula IV with a compound of Formula V to give a compound of Formula VI

39
40
41
42
Formula V
$$X_{2}$$

$$X_{1}$$

$$X_{1}$$

$$X_{2}$$

$$Y_{2}$$

$$Y_{2}$$

$$Y_{2}$$

$$Y_{3}$$

$$Y_{2}$$

$$Y_{3}$$

$$Y_{2}$$

$$Y_{3}$$

$$Y_{2}$$

$$Y_{3}$$

$$Y_{2}$$

$$Y_{3}$$

$$Y_{2}$$

$$Y_{3}$$

$$Y_{4}$$

$$Y_{2}$$

$$Y_{3}$$

$$Y_{4}$$

$$Y_{2}$$

$$Y_{3}$$

$$Y_{4}$$

$$Y_{5}$$

44 wherein

45 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

47 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

50 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

52 alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

54 $(CH_2)_{m}$ - $C(=O)R_3$

55

[wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted

57

58 59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

'77

78 79 80

81

82 83

84

85

 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the ring can be attached to (CH₂)_mC(=0) through N and R_q can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to (CH₂)_mC(=O) through C) and wherein the substituents of R₃ can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, optionally substituted amino (wherein the substituents are selected from C₁-C₆ alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, C(=0)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl];

 R_4 is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or $C(=O)NR_xR_y$ wherein R_x and R_y are the same as defined above;

and Rr represents [(CH₂)_nCN, COOH, COOCH₃, CHO or pyridyl, wherein n is 0 to 2)];

reacting the compound of Formula VI with hydroxylamine hydrochloride (when Rr is CN) to give a compound of Formula VII; and

$$X_2$$
 Y_1
 $N = 0$
 R_1
 $N = 0$
 N

Formula VII

reacting the compound of Formula VII with a compound of Formula (R'CO)₂O to give the compound of Formula VII(a) (wherein R' can be hydrogen, alkyl, alkenyl,

- alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl).
 - 14. A method for the preparation of compounds of Formula IX,

- 7 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,
- 8 enantiomers, diastereomers or N-oxides, the method comprising:
- 9 reacting a compound of Formula VI (when Rr is COOCH₃) with hydrazine hydrate 10 to give a compounds of Formula VIII

11
12
$$X_2$$
 Y_1
 Y_1
 Y_1
 Y_1
 Y_1
 Y_2
 Y_1
 Y_2
 Y_1
 Y_2
Formula VIII

wherein

17

- 19 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;
- 20 substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'
- 21 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,
- aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);
- 23 aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH_2)₁₋₄OR'
- 24 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y
- (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C_{3-6}
- alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,
- 27 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

WO 2005/051931 PCT/IB2004/003893

28	$(CH_2)_m$ - $C(=U)R_3$
29	[wherein m is an integer in the range of 0-2 and R ₃ can be optionally substituted
30	R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or
31	bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the
32	ring can be attached to (CH ₂) _m C(=0) through N and R _q can be a 4-12 membered
33	(un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected
34	from the group consisting of N, O and S wherein the ring can be attached to
35	(CH ₂) _m C(=O) through C) and wherein the substituents of R ₃ can be one or more
36	of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy,
37	aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,
38	optionally substituted amino (wherein the substituents are selected from C1-C6
39	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether,
40	C(=O)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
41	alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted
42	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
43	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
44	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
45	heterocyclylalkyl];
46	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR _x R _y wherein
47	R_x and R_y are the same as defined above;
48	X_1 and X_2 are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl
49	acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;
50	Y is selected from: an oxygen atom; a sulphur atom; or NR
51	(wherein R is selected from hydrogen, alkyl, alkenyl, alkynyl, un(saturated)
52	cycloalkyl, acyl, aryl, aralkyl, heteroaryl, heterocyclyl, (heteroaryl)alkyl, or
53	(heterocyclyl)alkyl);
54	Y_1 and Y_2 are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
55	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
56	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same
57	as defined above, or further, Y ₁ and X ₂ , X ₁ and Y ₂ , X ₁ and X ₂ may together form a ring

- 58 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3
- 59 heteroatoms selected from N, O or S;
- reacting the compound of Formula VIII with a compound of Formula HC(OR₁₁)₃
- to give a compound of Formula IX (wherein R_{11} represents alkyl from C_1 to C_3).
- 1 15. A method for the preparation of compounds of Formula X,

$$X_2$$
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_5
 X_5
 X_5
 X_5
 X_5
 X_6
 X_7
 X_7

Formula X

- 7 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,
- 8 enantiomers, diastereomers or N-oxides, the method comprising:
- 9 reacting a compound of Formula VI (when Rr is CN)

15 wherein

- 16 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;
- 17 substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'
- 18 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,
- aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);
- aryl; aralkyl; heterocyclyl; (heterocyclyl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'
- 21 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y
- 22 (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆
- 23 alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,
- 24 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or
- 25 $(CH_2)_m$ - $C(=O)R_3$

WO 2005/051931 PCT/IB2004/003893

78

26 [wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted 27 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or 28 bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the 29 ring can be attached to (CH₂)_mC(=0) through N and R₀ can be a 4-12 membered 30 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected 31 from the group consisting of N, O and S wherein the ring can be attached to 32 (CH₂)_mC(=0) through C) and wherein the substituents of R₃ can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, 33 34 aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 35 optionally substituted amino (wherein the substituents are selected from C₁-C₆ 36 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 37 $C(=0)NR_5R_6$ (wherein R_5 and R_6 are independently selected from hydrogen, 38 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 39 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 40 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 41 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 42 heterocyclylalkyl]; 43 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR_xR_y wherein 44 R_x and R_y are the same as defined above; 45 X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 46 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 47 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 48 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 49 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 50 as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring 51 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 52 heteroatoms selected from N, O or S;

with sodium azide to give the compound of Formula X.

1 16. A method for the preparation of compounds of Formula XI,

6 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

7 enantiomers, diastereomers or N-oxides, the method comprising:

reacting a compound of Formula VII

9
$$X_{2}$$

$$Y_{1}$$

$$NOH$$
11
$$X_{1}$$

$$Y_{2}$$

$$Y_{2}$$

$$NH_{2}$$

$$Y_{3}$$
Formula VII

14 wherein

8

15 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

17 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

20 (wherein R' is as defined above, but also including hydroxy); C(=0)NR_xR_y

21 (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

22 alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

23 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

24 $(CH_2)_m$ - $C(=O)R_3$

25

[wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted

26 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or

bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the

WO 2005/051931 PCT/IB2004/003893

80

28	ring can be attached to (CH ₂) _m C(=O) through N and R _q can be a 4-12 membered
29	(un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected
30	from the group consisting of N, O and S wherein the ring can be attached to
31	(CH ₂) _m C(=0) through C) and wherein the substituents of R ₃ can be one or more
32	of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy,
33	aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,
34	optionally substituted amino (wherein the substituents are selected from C ₁ -C ₆
35	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether,
36	C(=O)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
37	alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted
38	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
39	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
40	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
41	heterocyclylalkyl];
42	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR _x R _y wherein
43	R_x and R_y are the same as defined above;
44	X ₁ and X ₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl
45	acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;
46	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
47	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
48	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same
49	as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring
50	fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3
51	heteroatoms selected from N, O or S;

with methyl chloroformate to give the compound of Formula XI.

17. A method for the preparation of compounds of Formula XII,

7 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

8 enantiomers, diastereomers or N-oxides, the method comprising:

9 reacting compounds of Formula VII

10
$$X_{2}$$

$$Y_{1}$$

$$12$$

$$13$$

$$X_{1}$$

$$Y_{2}$$

$$NH_{2}$$

$$NH_{2}$$

$$14$$
Formula VII

15 wherein

16 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

17 substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

21 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

22 (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

23 alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

24 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

25 $(CH_2)_m$ -C(=O)R₃

26

27

28

29

[wherein m is an integer in the range of 0-2 and R_3 can be optionally substituted R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the

ring can be attached to (CH₂)_mC(=O) through N and R_q can be a 4-12 membered

30	(un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected
31	from the group consisting of N, O and S wherein the ring can be attached to
32	(CH ₂) _m C(=O) through C) and wherein the substituents of R ₃ can be one or more
33	of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy,
34	aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,
35	optionally substituted amino (wherein the substituents are selected from C ₁ -C ₆
36	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether,
37	C(=O)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
38	alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted
39	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
40	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
41	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
42	heterocyclylalkyl];
43	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR _x R _y wherein
44	R_x and R_y are the same as defined above;
45	X ₁ and X ₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl
46	acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;
47	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
48	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
49	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same
50	as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring
51	fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3
52	heteroatoms selected from N, O or S;
53	with thiocarbonyl diimidazole and 1,8-diazabicyclo[5.4.0]undec-7-one to give the
54	compound of Formula XII.

8

9

10

16

18

19

22

23

24

25

27

29

30

18. A method for the preparation of compounds of Formula XIII,

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

enantiomers, diastereomers or N-oxides, the method comprising:

treating a compounds of Formula XII,

$$\begin{array}{c} X_2 \\ Y_1 \\ Y_2 \\ Y_2 \\ \hline \\ Formula XII \\ \end{array}$$

wherein

17 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

21 aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

(wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

26 $(CH_2)_m$ - $C(=O)R_3$

[wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted

 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or

bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the

ring can be attached to (CH₂)_mC(=O) through N and R_q can be a 4-12 membered

(un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected 31 32 from the group consisting of N, O and S wherein the ring can be attached to 33 (CH₂)_mC(=0) through C) and wherein the substituents of R₃ can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, 34 35 aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, optionally substituted amino (wherein the substituents are selected from C₁-C₆ 36 37 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, C(=O)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 38 39 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 40 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 41 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 42 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 43 heterocyclylalkyl]; 44 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR_xR_y wherein 45 R_x and R_y are the same as defined above; 46 X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 47 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 48 49 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 50 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 51 as defined above, or further, Y₁ and X₂, X₁ and Y₂, X₁ and X₂ may together form a ring 52 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 53 heteroatoms selected from N. O or S; with a compound of Formula R₁₁Z (wherein Z is halogen) to gives the compound 54 55 of Formula XIII (wherein R₁₁ is alkyl).

1 19. A method for the preparation of compounds of Formula XIV,

6 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

7 enantiomers, diastereomers or N-oxides, the method comprising:

reacting a compound of Formula VII

$$X_2$$
 Y_1
 X_2
 X_1
 Y_2
 Y_1
 Y_2
 Y_2
 Y_1
 Y_2
 Y_2
 Y_1
 Y_2
 Y_1
 Y_2
 Y_2
 Y_1
 Y_2
 Y_2
 Y_1
 Y_2
 Y_1
 Y_2
 Y_2
 Y_2
 Y_1
 Y_2
 Y_2
 Y_2
 Y_2
 Y_1
 Y_2
 Y_2
 Y_3
 Y_4
 Y_4
 Y_4
 Y_4
 Y_5
 Y_5

9

10

11

21

8

wherein

R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heterocyclyl; (heterocyclyl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

16 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

17 (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

19 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

20 $(CH_2)_m$ - $C(=O)R_3$

[wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted

22	R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or
23	bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the
24	ring can be attached to (CH ₂) _m C(=O) through N and R _q can be a 4-12 membered
25	(un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected
26	from the group consisting of N, O and S wherein the ring can be attached to
27	(CH ₂) _m C(=0) through C) and wherein the substituents of R ₃ can be one or more
28	of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy,
29	aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,
30	optionally substituted amino (wherein the substituents are selected from C1-C6
31	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether,
32	C(=O)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
33	alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted
34	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
35	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
36	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
37	heterocyclylalkyl];
38	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR _x R _y wherein
39	R_x and R_y are the same as defined above;
40	X ₁ and X ₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl
41	acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;
42	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
43	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
44	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same
45	as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring
46	fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3
47	heteroatoms selected from N, O or S;
48	with thiocarbonyl diimidazole and boron trifluoride etherate to give the compound
49	of Formula XIV.

)

20. A method for the preparation of compounds of Formula XV,

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

9 enantiomers, diastereomers or N-oxides, the method comprising:

reacting compounds of Formula VII

$$X_2$$
 Y_1
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_2
 X_3
 X_4
 X_4

11 12

19

20

21

23

1

8

10

wherein

13 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

15 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

(wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C_{3-6}

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

22 $(CH_2)_m$ - $C(=O)R_3$

[wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted

24 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or

25 bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the

WO 2005/051931 PCT/IB2004/003893

ring can be attached to (CH₂)_mC(=O) through N and R_q can be a 4-12 membered 26 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected 27 from the group consisting of N, O and S wherein the ring can be attached to 28 (CH₂)_mC(=O) through C) and wherein the substituents of R₃ can be one or more 29 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, 30 aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 31 optionally substituted amino (wherein the substituents are selected from C1-C6 32 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 33 C(=O)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 34 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 35 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 36 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 37 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 38 heterocyclylalkyl]; 39 -R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR_xR_y wherein 40 R_x and R_y are the same as defined above; 41 X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 42 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 43 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 44 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 45 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 46 as defined above, or further, Y1 and X2, X1 and Y2, X1 and X2 may together form a ring 47 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 48 heteroatoms selected from N, O or S; 49 with compounds of Formula (a) R₁₂COOH; (b) R₁₂COCl or (c) R₁₂COOC₂H₅ to 50 give the compound of Formula XV (wherein R₁₂ is alkyl, cycloalkyl, aryl, 51 heteroaryl or heterocyclyl). 52

21. A method for the preparation of compounds of Formula XX,

$$X_{2}$$

$$X_{1}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{1}$$

$$X_{2}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_{1}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_{1}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{7}$$

$$X_{8}$$

$$X_{9}$$

$$X_{9}$$

$$X_{9}$$

$$X_{9}$$

$$X_{9}$$

$$X_{9}$$

$$X_{9}$$

$$X_{9}$$

$$X_{9$$

7 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

8 enantiomers, diastereomers or N-oxides,

9 wherein

. 1

10 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino; 11 substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

12 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

15 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

16 (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

19 $(CH_2)_m$ - $C(=O)R_3$

20

21

22

23

24

25

2627

28

29

30

31

[wherein m is an integer in the range of 0-2 and R_3 can be optionally substituted R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the ring can be attached to $(CH_2)_mC(=0)$ through N and R_q can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to $(CH_2)_mC(=0)$ through C) and wherein the substituents of R_3 can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, optionally substituted amino (wherein the substituents are selected from C_1 - C_6 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, $C(=0)NR_5R_6$ (wherein R_5 and R_6 are independently selected from hydrogen,

alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 32 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 33 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 34 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 35 heterocyclylalkyl]; 36 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR_xR_y wherein 37 R_x and R_y are the same as defined above; 38 39 X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 40 41 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 42 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 43 as defined above, or further, Y1 and X2, X1 and Y2, X1 and X2 may together form a ring 44 45 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 heteroatoms selected from N, O or S; and 46 R₁₂ is alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl; 47 48 the method comprising: reacting a compound of Formula IV with a compound of Formula XVI 49 50 51 52 53 54 55 Formula IV Formula XVI to give a compound of Formula XVII; 56 57 58 $(CH_2)_n$ 59 60 61

Formula XVII

64

treating the compound of Formula XVII with potassium phthalamide to give a compound of Formula XVIII;

65 X 66 67 68 X 5

Y₂ Formula XVIII

treating the compound of Formula XVIII with a hydrazine hydrate to give a compound of Formula XIX; and

72 73

74 75

69

$$X_2$$
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_3
 X_4
 X_4
 X_4
 X_4
 X_4
 X_4
 X_4
 X_5
 X_6
 X_6
 X_7
 X_8
 X_8

76

Formula XIX

77 78

79

treating the compound of Formula XIX with a compound of Formula $R_{12}COCl$ or $R_{12}COOH$ to give the compound of Formula XX.

1 22.

22. A method for the preparation of compounds of Formula XXIII,

2 3 4

$$X_1$$
 Y_2
Formula XXIII
 R_{13}

6 7

8

- their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,
- 9 enantiomers, diastereomers or N-oxides,
- 10 wherein
- 11 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;
- 12 substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'
- (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

14	aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);
15	aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH2)1-4OR'
16	(wherein R' is as defined above, but also including hydroxy); C(=O)NR _x R _y
17	(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C_{3-6}
18	alkenyl, C_{3-6} alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,
19	heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or
20	(CH2)m-C(=O)R3
21	[wherein m is an integer in the range of 0-2 and R ₃ can be optionally substituted
22	R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or
23	bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the
24	ring can be attached to (CH ₂) _m C(=O) through N and R _q can be a 4-12 membered
25	(un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected
26	from the group consisting of N, O and S wherein the ring can be attached to
27	(CH ₂) _m C(=O) through C) and wherein the substituents of R ₃ can be one or more
28	of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy,
29	aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,
30	optionally substituted amino (wherein the substituents are selected from C1-C6
31	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether,
32	C(=O)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
33	alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted
34	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
35	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
36	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
37	heterocyclylalkyl];
38	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR _x R _y wherein
39	R_x and R_y are the same as defined above;
40	X ₁ and X ₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl
41	acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;
42	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
43	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
44	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same

- 45 as defined above, or further, Y1 and X2, X1 and Y2, X1 and X2 may together form a ring
- fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 46
- heteroatoms selected from N, O or S; and 47
- R₁₃ is alkyl, aryl or heteroaryl; 48
- 49 the method comprising
- reacting compounds of Formula XXI with hydroxylamine hydrochloride to give 50
- compounds of Formula XXII, 51

52
53
$$R_{13}$$
 N R_{13} OH

54 Formula XXI Formula XXII

which on reaction with compounds of Formula VI (when Rr is COOH), 55

62 gives compounds of Formula XXIII.

> A method for the preparation of compounds of Formula XXIV, 23.

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, 7

- enantiomers, diastereomers or N-oxides, 8
- 9 wherein

61

- R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino; 10
- substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR' 11
- (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, 12

13 aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl); aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR' 14 (wherein R' is as defined above, but also including hydroxy); C(=0)NR_xR_y 15 16 (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆ 17 alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or 18 19 $(CH_2)_m - C(=O)R_3$ [wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted 20 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or 21 bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the 22 ring can be attached to (CH₂)_mC(=O) through N and R_q can be a 4-12 membered 23 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected 24 from the group consisting of N, O and S wherein the ring can be attached to 25 (CH₂)_mC(=O) through C) and wherein the substituents of R₃ can be one or more 26 27 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 28 optionally substituted amino (wherein the substituents are selected from C₁-C₆ 29 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 30 C(=0)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 31 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 32 33 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 34 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 35 36 heterocyclylalkyl]; R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR_xR_y wherein 37 R_x and R_y are the same as defined above; 38 39 X₁ and X₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 40 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 41 42 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 43

73

74

 $(CH_2)_m$ - $C(=O)R_3$

44 as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring 45 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 46 heteroatoms selected from N, O or S; 47 the method comprising: 48 reacting a compound of Formula VI (when Rr is CN) 49 50 51 52 53 with NH₂CH₂CH₂SH. HCl to give the compounds of Formula XXIV. 54 55 24. A method for the preparation of compounds of Formula XXV, 56 57 58 59 NHR₁₄ 60 Formula XXV 61 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, 62 enantiomers, diastereomers or N-oxides, 63 wherein 64 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino; 65 substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR' 66 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, 67 aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl); 68 aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)_{1.4}OR' 69 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y 70 (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆ 71 alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

[wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted

heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

WO 2005/051931 PCT/IB2004/003893

96

R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the ring can be attached to (CH₂)_mC(=O) through N and R_q can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to (CH₂)_mC(=0) through C) and wherein the substituents of R₃ can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 82 optionally substituted amino (wherein the substituents are selected from C1-C6 83 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 84 C(=O)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 85 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 86 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 87 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 88 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 89 heterocyclylalkyl]; 90 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR_xR_y wherein 91 R_x and R_y are the same as defined above; 92 X_1 and X_2 are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 93 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 94 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 95 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 96 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 97 as defined above, or further, Y₁ and X₂, X₁ and Y₂, X₁ and X₂ may together form a ring 98 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 99 100 heteroatoms selected from N, O or S;

101 the method comprising:

75

76

77

78

79

80

102 reacting a Formula VI

$$X_2$$
 Y_1
 X_1
 X_2
 X_1
 X_2
 X_3
 X_4
 X_4
 X_4
 X_4
 X_4
 X_4
 X_4
 X_4
 X_5
 X_5
 X_5
 X_5
 X_5
 X_5

Formula VI

103104

105

1

(wherein Rr is COOH) with NH₂NHCSNHR₁₄ (wherein R₁₄ represents hydrogen, alkyl or cycloalkyl) to give the compound of Formula XXV.

25. A method for the preparation of compounds of Formula XXVII,

7

17

18

21

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,
enantiomers, diastereomers or N-oxides,

10 wherein

11 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

13 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heterocyclyl; (heterocyclyl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

16 (wherein R' is as defined above, but also including hydroxy); C(=O)NR_xR_y

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

19 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

20 $(CH_2)_m$ - $C(=O)R_3$

[wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted

22 R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or

WO 2005/051931 PCT/IB2004/003893

98

bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the 23 24 ring can be attached to (CH₂)_mC(=0) through N and R₀ can be a 4-12 membered 25 (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected 26 from the group consisting of N, O and S wherein the ring can be attached to 27 (CH₂)_mC(=0) through C) and wherein the substituents of R₃ can be one or more 28 of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy. 29 aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, 30 optionally substituted amino (wherein the substituents are selected from C₁-C₆ 31 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, 32 C(=0)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, 33 alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted 34 monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the 35 optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, 36 hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or 37 heterocyclylalkyl]; 38 R₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=0)NR_xR_y wherein 39 R_x and R_y are the same as defined above; 40 X_1 and X_2 are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; 41 acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl; 42 Y₁ and Y₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR 43 wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; 44 NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same 45 as defined above, or further, Y₁ and X₂, X₁ and Y₂, X₁ and X₂ may together form a ring 46 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 47 heteroatoms selected from N, O or S;

48 the method comprising:

reacting a compound of Formula VI 49 50 51 52 53 54 Formula VI 55 (wherein Rr is CHO) with hydroxylamine hydrochloride to give a compound of 56 57 Formula XXVI; and 58 59 60 NOH 61 62 Formula XXVI 63 reacting the compound of Formula XXVI with methacrylonitrile to give the 64 65 compound of Formula XXVII. 1 26. A method for the preparation of compounds of Formula XXIX, 2 3 COCH₃ 4 5 \dot{C}_2H_5 6 Formula XXIX 7 8 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, 9 enantiomers, diastereomers or N-oxides, 10 wherein R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino; 11 12 substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR' 13 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

15	aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH2)1-4OR'
16	(wherein R' is as defined above, but also including hydroxy); C(=O)NR _x R _y
17	(wherein R _x and R _y can be independently selected from hydrogen, alkyl, C ₃₋₆
18	alkenyl, C_{3-6} alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,
19	heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or
20	(CH2)m-C(=O)R3
21	[wherein m is an integer in the range of 0-2 and R ₃ can be optionally substituted
22	R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or
23	bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the
24	ring can be attached to (CH ₂) _m C(=O) through N and R _q can be a 4-12 membered
25	(un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected
26	from the group consisting of N, O and S wherein the ring can be attached to
27	(CH ₂) _m C(=0) through C) and wherein the substituents of R ₃ can be one or more
28	of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy,
29	aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,
30	optionally substituted amino (wherein the substituents are selected from C1-C6
31	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether,
32	C(=O)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
33	alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted
34	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
35	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
36	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
37	heterocyclylalkyl];
38	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR _x R _y wherein
39	R_x and R_y are the same as defined above;
40	X ₁ and X ₂ are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl;
41	acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;
42	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
43	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
44	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same
45	as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring

46 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3

47 heteroatoms selected from N, O or S;

48 the method comprising:

49 reacting a compound of Formula VIII

55 56

with ethylmethylketone to give a compound of Formula XXVIII; and

62

63

64

1

treating the compound of Formula XXVIII with acetic anhydride to give the compound of Formula XXIX.

27. A process for the preparation of compounds of Formula XXX,

U

7 their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

- 8 enantiomers, diastereomers or N-oxides,
- 9 wherein

10 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

- substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'
- 12 (wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

13	aryi, araikyi, neterocyciyi, (neterocyciyi)aikyi, or (neteroaryi)aikyi);
14	aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH ₂) ₁₋₄ OR
15	(wherein R' is as defined above, but also including hydroxy); C(=O)NR _x R _y
16	(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C_{3-6}
17	alkenyl, C_{3-6} alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,
18	heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or
19	$(CH_2)_m$ - $C(=O)R_3$
20	[wherein m is an integer in the range of 0-2 and R ₃ can be optionally substituted
21	R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or
22	bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the
23	ring can be attached to (CH ₂) _m C(=O) through N and R _q can be a 4-12 membered
24	(un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected
25	from the group consisting of N, O and S wherein the ring can be attached to
26	$(CH_2)_mC(=0)$ through C) and wherein the substituents of R_3 can be one or more
27	of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy,
28	aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,
29	optionally substituted amino (wherein the substituents are selected from C ₁ -C ₆
30	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether
31	C(=O)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
32	alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted
33	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
34	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
35	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
36	heterocyclylalkyl];
37	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR _x R _y wherein
38	R_x and R_y are the same as defined above;
39	X_1 and X_2 are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl
10	acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;
1 1	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
12	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
13	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same

as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring

45 fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3

46 heteroatoms selected from N, O or S;

the method comprising reacting a compound of Formula VIII

$$X_2$$
 Y_1
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_3
 X_4
 X_4
 X_4
 X_4
 X_5
 X_5

Formula VIII

48 49

1

2345

47

with carbon disulphide to give the compound of Formula XXX.

28. A method for the preparation of compounds of Formula XXXI,

$$X_{1}$$
 Y_{1}
 X_{2}
 Y_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{2}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}

7

8

9

6

their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,

enantiomers, diastereomers or N-oxides,

10 wherein

11 R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino;

substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl,

aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

16 (wherein R' is as defined above, but also including hydroxy); C(=0)NR_xR_y

17 (wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆

alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl,

19 heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or

20	$(CH_2)_m$ - $C(=O)R_3$
21	[wherein m is an integer in the range of 0-2 and R ₃ can be optionally substituted
22	R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or
23	bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the
24	ring can be attached to (CH ₂) _m C(=0) through N and R _q can be a 4-12 membered
25	(un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected
26	from the group consisting of N, O and S wherein the ring can be attached to
27	(CH ₂) _m C(=O) through C) and wherein the substituents of R ₃ can be one or more
28	of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy,
29	aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl,
30	optionally substituted amino (wherein the substituents are selected from C ₁ -C ₆
31	alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether,
32	C(=O)NR ₅ R ₆ (wherein R ₅ and R ₆ are independently selected from hydrogen,
33	alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted
34	monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the
35	optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen,
36	hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or
37	heterocyclylalkyl];
38	R ₄ is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or C(=O)NR _x R _y wherein
39	R _x and R _y are the same as defined above;
40	X_1 and X_2 are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl;
41	acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;
42	Y ₁ and Y ₂ are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR
43	wherein R is the same as defined earlier; SR wherein R is the same as defined earlier;
44	NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same
45	as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring
46	fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3
47	heteroatoms selected from N, O or S;
48	the method comprising:

105

with hydrazine hydrate to give the compounds of Formula XXXI.