

TPC N°2: Entradas y Salidas de propósito general

Los ejercicios pertenecientes a esta guía se resuelven en su totalidad mediante la utilización de la placa de expansión 1

Función	Puerto	net
LED1	P07	Expansion0
LED2	P129	Expansion1
LED3	P428	Expansion2
LED4	P123	Expansion3
LED5	P120	Expansion4
LED6	P019	Expansion5
LED7	P326	Expansion6
LED8	P125	Expansion7
DIP1-1	P122	Expansion8
DIP1-2	P119	Expansion9
DIP1-3	P020	Expansion10
DIP1-4	P325	Expansion11
DIP1-5	P127	Expansion12
DIP1-6	P124	Expansion13
DIP1-7	P121	Expansion14
DIP1-8	P118	Expansion15
DIP2-1	P212	Expansion16
DIP2-2	P28	Expansion17
DIP2-3	P016	rx1_2

Ejemplo 1.2

Realice una función que utilice las líneas indicadas en la Tabla 1 como entrada y salida para que las mismas se comporten como una compuerta AND.

Tabla 1

Función	Puerto	Dirección			
Α	P122	Entrada			
В	P119	Entrada			
Z	P07	Salida			

Ejemplo 2.2

Realice una función que utilice las líneas indicadas en la Tabla 2 como entrada y salida para que las mismas se comporten como una compuerta OR.

Tabla 2

Función	Puerto	Dirección
Α	P020	Entrada
В	P325	Entrada
Z	P129	Salida

Ejercicio 3.2

Repita los ejemplos 1.2 y 2.2 sin utilizar los operadores de bit & y |

Ejercicio 4.2

Incorpore en un solo programa la utilización de las funciones de los ejercicios 2.1 y 2.2

Ejercicio 5.2

Realice una función que utilice las líneas indicadas en la Tabla 2 como entrada y salida para que las mismas se comporten como una compuerta XOR.

Tabla 3

Función	Puerto	Dirección			
Α	P020	Entrada			
В	P325	Entrada			
Z	P129	Salida			

Ejercicio 6.2

Realice una función que utilice las líneas indicadas en la Tabla 4 como entrada y salida para que las mismas se comporten como una compuerta NAND.

Tabla 4

Función	Puerto	Dirección			
Α	P124	Entrada			
В	P121	Entrada			
Z	P326	Salida			

Ejercicio 7.2

Realice una función que utilice las líneas indicadas en la Tabla 5 como entrada y salida para que las mismas se comporten como una compuerta NOR.

Tabla 5

Función	Puerto	Dirección		
Α	P124	Entrada		
В	P121	Entrada		
Z	P125	Salida		

Ejercicio 8.2

Realice una función que lea el estado de las entradas presentes en DIP1 y retorne el valor de cada uno de ellos en una variable unsigned char según indica la Figura 1.

Figura1

Variable unsigned char

DIP1-8	DIP1-7	DIP1-6	DIP1-5	DIP1-4	DIP1-3	DIP1-2	DIP1-1
--------	--------	--------	--------	--------	--------	--------	--------

Departamento de Electrónica Informática II

GUIA DE TRABAJOS PRACTICOS

Ejercicio 9.2

Realice una función que reciba un unsigned char y devuelva su valor traspuesto.

- a) Usando campos de bits
- b) Usando operadores a nivel de bits

Ejercicio 10.2

Utilizando las funciones desarrolladas en los ejercicios 9.2 y 10.2 realice un programa que muestre en los LED1 a LED8 el valor traspuesto de lo representado por DIP1-1 a DIP1-8.

Ejercicio 11.2

Realice una función que presente en LED1 a LED4 la información presente en DIP1-1 a DIP1-4 o DIP1-5 a DIP1-8 seleccionado por DIP2-1

Ejercicio 12.2

Realice una función que simule un **decodificador de 3 a 8** según lo indicado en la Tabla 6. Considere al estado natural de las salidas en cero.

Tabla 6

HW	Función	Puerto	Dirección
DIP2-1	In0	P212	Entrada
DIP2-2	ln1	P28	Entrada
DIP2-3	ln2	P016	Entrada
LED1	Out0	P07	Salida
LED2	Out1	P129	Salida
LED3	Out2	P428	Salida
LED4	Out3	P123	Salida
LED5	Out4	P120	Salida
LED6	Out5	P019	Salida
LED7	Out6	P326	Salida
LED8	Out7	P125	Salida

El estado natural de las salidas es 0, y se pondrá en 1 la que se corresponda con la combinación binaria de las tres líneas de entrada (in0 a in1) según indica la Tabla 7.

Tabla 7

. asia .										
ln2	ln1	In0	Out7	Out6	Out5	Out4	Out3	Out2	Out1	Out0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Ejercicio 13.2

Ídem Ejercicio 12.2 pero el estado natural de las salidas será el valor que esté presente en **P122** y se pondrá en ~ **P122**, la que se corresponda con la combinación binaria de las tres líneas de entrada.

Ejercicio 14.2

Realice una función que simule un **codificador de 8 a 3** según lo indicado en la Tabla 8 y Tabla 9.

Tabla 8

HW	Función	Puerto	Dirección
DIP1-1	In0	P122	Entrada
DIP1-2	ln1	P119	Entrada
DIP1-3	ln2	P020	Entrada
DIP1-4	ln3	P325	Entrada
DIP1-5	ln4	P127	Entrada
DIP1-6	In5	P124	Entrada
DIP1-7	In6	P121	Entrada
DIP1-8	In7	P118	Entrada
LED1	Out0	P07	Salida
LED2	Out1	P129	Salida
LED3	Out2	P428	Salida

Tabla 9

In7	In6	ln5	ln4	ln3	ln2	ln1	In0	Out2	Out1	Out0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

Ejercicio 15.2

Idem Ejercicio 14.2 pero la configuración de las entradas, dependerá del valor que esté presente en **P122** (selección entre detectar unos o ceros).

Si **P122** = 0 => detecta ceros. Si **P122** = 1 => detecta unos.

Ejercicio 16.2

Realice una función que simule un **demultiplexor** con las líneas indicadas en la **Tabla 10**, El estado de la entrada, se refleja en la de salida indicada por las entradas de selección.

Tabla10

in	Out2	Out1	Out0	In7	In6	In5	In4	In3	In2	ln1	In0
X	0	0	0	0	0	0	0	0	0	0	х
X	0	0	1	0	0	0	0	0	0	х	0
X	0	1	0	0	0	0	0	0	х	0	0
X	0	1	1	0	0	0	0	х	0	0	0
X	1	0	0	0	0	0	х	0	0	0	0
X	1	0	1	0	0	х	0	0	0	0	0
X	1	1	0	0	х	0	0	0	0	0	0
X	1	1	1	Х	0	0	0	0	0	0	0

Ejercicio 17.2

Realice un programa que simule un **multiplexor** con las líneas indicadas en la **Tabla 11.** El estado de la entrada, se refleja a la salida según la elección realizada con las líneas de selección.

Tabla 11

In0 – In7	Sel2	Sel1	Sel0	Salida
X	0	0	0	In0
X	0	0	1	In1
X	0	1	0	ln2
X	0	1	1	In3
X	1	0	0	In4
X	1	0	1	In5
X	1	1	0	In6
Х	1	1	1	In7

Departamento de Electrónica Informática II

GUIA DE TRABAJOS PRACTICOS

Ejercicio 18.2

Realice una función que simule un **decodificador** de dígito hexadecimal a su equivalente en código ASCII con las líneas indicadas en la **Tabla 12.**

NOTA: Utilice el vector declarado en el Ejercicio 16.1

Tabla 12

HW	Función	Puerto	Dirección
DIP2-1	BCD0	P212	Entrada
DIP2-2	BCD1	P28	Entrada
DIP2-3	BCD2	P016	Entrada
DIP1-4	BCD3	P325	Entrada
LED1	ascii0	P07	Salida
LED2	ascii1	P129	Salida
LED3	ascii2	P428	Salida
LED4	ascii3	P123	Salida
LED5	ascii4	P120	Salida
LED6	ascii5	P019	Salida
LED7	ascii6	P326	Salida
LED8	ascii7	P125	Salida

Ejercicio 19.2

Realice una función que simule un **decodificador** de códigos ASCII a códigos hexadecimales, utilizando las líneas indicadas en la **Tabla 13.**

NOTA: Considere letras mayúsculas y minúsculas.

Tabla 13

HW	Función	Puerto	Dirección
DIP1-1	ascii0	P122	Entrada
DIP1-2	ascii1	P119	Entrada
DIP1-3	ascii2	P020	Entrada
DIP1-4	ascii3	P325	Entrada
DIP1-5	ascii4	P127	Entrada
DIP1-6	ascii5	P124	Entrada
DIP1-7	ascii6	P121	Entrada
DIP1-8	ascii7	P118	Entrada
LED1	Dgt0	P07	Salida
LED2	Dgt1	P129	Salida
LED3	Dgt2	P428	Salida
LED4	Dgt3	P123	Salida

Ejercicio 20.2

Utilice un bit de un puerto a su elección que sirva para seleccionar el funcionamiento de un decodificador que combine el ejercicio 12.2 y 14.2 en uno solo.

Ejercicio 21.2

Realice una función que cuente los cambios de estado en **P122** y cada vez que supere los 200 cambie de estado a **P07**.

Ejercicio 22.2

Realice una función que cuente los cambios de estado suscitados en P122 y P119, y cada vez que se superen las 350 cuentas en cada uno de ellos, cambie de estado a P07 y P129 respectivamente.

Ejercicio 23.2

Realice una función que responda al circuito de compuertas de la Figura 1.

Ejercicio 24.2

Realice una función que responda al circuito de compuertas de la Figura 2.

Ejercicio 25.2

Diseñar un comparador que tenga como entradas DIP1-1 a DIP-4 (**DIPL**), DIP1-5 a DIP8-1(**DIPH**) y tres LEDS asociados para las siguientes condiciones

- Si **DIPL == DIPH** => LED1 = ON
- Si DIPL > DIPH => LED2 = ON
- Si DIPL < DIPH => LED3 = ON

Ejercicio 26.2

Realce una función que represente en un dígito del tipo 7 segmentos en la Placa de Expansión 2 según sea la combinación BCD ingresada por los cuatro pulsadores ubicados en la placa base.

Los puertos que permiten llevar adelante la resolución del programa se indican en la Tabla 14

Tabla 14

Función	Puerto	Dirección
а	P07	Salida
b	P129	Salida
С	P428	Salida
d	P123	Salida
е	P120	Salida
f	P019	Salida
g	P326	Salida
digito	P125	Salida
Tecla 0	P122	Entrada
Tecla 1	P119	Entrada
Tecla 2	P020	Entrada
Tecla 3	P325	Entrada