高二综合练习 9

一、单项选择题(每题2分,共40分)

1	下列化合物中所含化学元素的种类最少的是()
⊥.		,

A. 生长激素

B. 纤维素 C. 叶绿素 D. ATP

2. 下列细胞中最可能为浆细胞的是(

В

D

3. 某细胞对氨基酸、钠离子、葡萄糖和氧气的吸收方式如图 1 所示。已知细胞膜上的

"●、◆"为载体蛋白,氨基酸以主动运输的方式进入该细胞。以下分析不正确的是()

A. 同一载体蛋白运输的物质可能不止一种

B. 葡萄糖进入该细胞的方式为主动运输

C. 氧气进入该细胞不需要载体, 也不消耗能量

D. 氨基酸可逆浓度进入该细胞且不消耗能量

4. 下列关于实验的叙述,正确的是(

B. 为获得 10ml 色素提取液,研磨时一次性加入 10mL 乙醇研磨效果最好

C. 真空渗水法是利用植物呼吸作用产生二氧化碳使叶片上浮

D. 植物细胞质壁分离实验中 B/A 比值越小, 液泡颜色越深

5. 下列物质转化过程会发生在人体内的是()

A. H₂0中的0转移到0₂中

B. CO₂中的C转移到C₆H₁₂O₆中

C. 0₂中的0转移到H₂0中

D. C₆H₁₂O₆中的H转移到C₂H₅OH中

6. 2014 年诺贝尔奖成果——超分辨率荧光显微镜,将光学显微镜带入到纳米维度,下列 有关其应用的说法错误的是(

A. 可观察到基因突变位点

B. 能观察受体在神经突触中的分布

C. 可捕捉到纺锤丝的重构过程

D. 能观察埃博拉病毒的衣壳颗粒

- 7. 以下关于图 2 两种生物描述正确的是(
 - A. 两种生物体内均含有 C、H、O、N、P
 - B. 两种生物均含有 DNA、蛋白质、糖类和脂质
 - C. 甲、乙生物均可在培养基上培养

图 2

D. 甲、乙两种生物大小差别不大

8. 在真核细胞中,不会在同一结构中发生的生命活动是()

A. [H]的跨膜运输与 ATP 的合成

B. 丙酮酸的生成与乳酸的生成

C. 信息交流与物质交换

D. 酶的合成与运输

- 9. 血液中甘油三酯的主要去路是()
 - A. 水解为游离脂肪酸及甘油,运往组织细胞 B. 形成极低密度脂蛋白运往肝脏
 - C. 形成低密度脂蛋白运送到全身组织 D. 转化为葡萄糖运输到组织细胞

10. 塞卡病毒病是通过伊蚊传播的一种疾病。图 3 表示塞卡病毒 进入人体后发生的免疫过程(I-IV表示细胞或物质),下列相关 叙述正确的是() A. 该疾病传播途径为媒介物传播 B. 该病毒能与 II 发生特异性结合 C. III为记忆 B细胞,参与体液免疫 D. IV的化学本质是多糖 11. 结核杆菌感染人体后诱导巨噬细胞高效表达冠蛋白-1, 冠蛋白-1 激活钙调磷酸酶信号 通路,抑制吞噬小泡和溶酶体融合,从而逃逸巨噬细胞的免疫杀伤而在细胞中长期存活。下 列有关结核病治疗的机制中合理的是() A. 增强巨噬细胞的胞吞作用 B. 增强冠蛋白-1 基因的表达 C. 阴断钙调磷酸酶信号通路 D. 促进溶酶体酶的合成 12. 下列表示去除部分甲状腺后的狗体内发生变化的正确顺序是(①垂体 ②大脑皮层 ③促甲状腺激素增多 ④甲状腺激素减少 A. $(4) \rightarrow (2) \rightarrow (3)$ $B.(4) \rightarrow (1) \rightarrow (3)$ $C.(2) \rightarrow (4) \rightarrow (3)$ $D. (1) \rightarrow (3) \rightarrow (4)$ 13. 四氧嘧啶可选择性地破坏胰岛 B 细胞, 是制备糖尿病大鼠模型的常用药物。与正常大鼠 相比,注射四氧嘧啶后的大鼠() A. 饱食后胰岛素浓度低 B. 尿量减少, 体重增加 C. 空腹时血糖浓度低 D. 肝细胞对胰岛素反应不灵敏 14. 在巴浦洛夫实验中,狗看到灯光会留口水,该条件反射的建立所对应的非条件刺激是 () A. 灯光 B. 铃声 C. 开灯的人 D. 食物 15. 关于人体内环境的叙述,正确的是() A. 人体遇冷时, 甲状腺和肾上腺均可作为效应器参与机体产热调节 B. 正常情况下血浆蛋白属于内环境, 血红蛋白不属于内环境 C. 胰岛素和胰高血糖素的分泌受血糖浓度的调节,不受神经调节 D. 饮水不足会引起垂体产生分泌抗利尿激素,促进肾小管和集合管重吸收水 16. 2014年,埃博拉病毒肆虐南非,造成大量人员死亡。该病毒入侵人体后,会引起人体 相应的免疫反应,下列叙述正确的是(A. 抗体可直接作用于细胞外的病毒,而对细胞内的病毒不起作用

- B. 相同病毒再次侵入人体,记忆细胞产生大量抗体清除病毒
- C. 淋巴因子、溶菌酶都是免疫活性物质,均在第三道防线中发挥作用
- D. T细胞增殖分化为致敏 T细胞,直接作用于该病毒

图 4

17. 为研究细胞分裂素对生长素合成的影響 啊,将生长 10 天的拟南芥幼苗分别置于添加 est (细胞分裂素合成诱导剂) 和 BAP (细胞分凝 裂素类似物) 培养液中培养 24 小时,结果如半 图 4 所示。以下推测不正确的是 ()

- A. 细胞分裂素可以促进幼叶和根系中生长素的合成
- B. 成熟叶片中细胞分裂素合成诱导剂对生长素的合成影响不大
- C. 随着幼苗的不断长大,细胞分裂素的促进作用会更显著
- D. 幼叶对细胞分裂素敏感度大于成熟叶片
- 18. 下列关于微生物传染病的说法正确的是()
 - ①对于人类的传染病来说最主要的传染源是易感人群
 - ②相当多的病毒携带者会因为获得对该病的免疫力而终止感染
 - ③疫苗的有效性在很大程度上依赖于病原微生物抗原结构的稳定性。
 - ④某种微生物传染病的易感人群人数越多群体免疫力越强
 - A. 23
- B. 34
- C. 14
- D. 12
- 19. 图 5 中能说明胚芽鞘尖端是感受光刺激部位的最佳实验组合是(

- A. ①和②
- B. ③和④
- C. ④和⑥
- D. ⑤和⑥
- 20. 某同学最近到医院体检,体检报告中的肝功能检查结果显示: 乙肝抗原呈阴性(一), 乙肝抗体呈阳性(+)。他说自己没有注射过乙肝疫苗,就此向你咨询,你应该给他怎样的 合理解释?(说明: "+"表示有,"一"表示没有)()
 - A. 若体内带有乙肝抗体,说明一定也有乙肝病毒,需要到医院就诊
 - B. 若体内没有乙肝病毒,但含有乙肝抗体,一定是母亲传递给你的免疫力
 - C. 若体内没有乙肝病毒,但含有乙肝抗体,说明你可能曾经感染乙肝病毒后痊愈了
 - D. 若体内没有乙肝病毒,但含有乙肝抗体,这是父母遗传给你的免疫力

二、综合分析题(共60分)

(一) 回答有关微生物及细胞免疫的问题(12分)

图 6 是 HIV 病毒结构示意图,图 7 是 HIV 病毒侵入人体 T 淋巴细胞并增殖的示意图,图 8 表示 HIV 病毒侵入人体后,随时间的变化体内 HIV 病毒和 T 淋巴细胞数量的变化曲线。据图分析回答。

21. (2分)图6中的E表示_____, A的成分是____。(这两空均从下列选项选 择)

A. 蛋白质 B. 氨基酸 C. 核酸 D. 核苷酸 E. 磷脂 F. 胆固醇 22. (2分)图7中过程①所需的原料是______,过程④发生的场所是___ 23. (4分) HIV 病毒在免疫学上称为 , 其通过 方式进入 T 淋巴细胞。 写出 HIV 病毒进入 T淋巴细胞后其遗传信息的传递和表达过程:

24. (2分)图8中第1年HIV病毒数量明显下降, 后来又逐渐上升,据图分析其原因是

25. (2分) T淋巴细胞介导的免疫属于。(多选)

- A. 特异性免疫 B. 非特异性免疫
- C. 细胞免疫
- D. 体液免疫
- E. 获得性免疫
- F. 先天免疫

700 600 T淋巴细胞 500 HIV数量 图 8

(二)回答下列有关人体内环境的问题(13分)

人体内环境的稳态受神经和体液调节,图 9 表示部分调节过程,其中字母表示激素。 ([]]内填字母,横线上写文字)。

26. (2分)某人大量饮水,1小时内尿量显著增加,此调节过程中激素[]会减少,从 而使肾小管和集合管对水的重吸收 (增加/减少)。

27. (2分) 当人体进入寒冷环境,体温保持相对稳定,下列关于此体温调节过程相关叙述正

确的是	(多选)
佣的定	(わ玩)

- A. 感受器为冷感受器 B. 体温调节中枢在下丘脑 C. 效应器有骨骼肌

- D. 导致皮肤血管舒张
- E. 抑制组织细胞的新陈代谢

图 10 是图 9 中甲的放大结构。

BO

28. (2分)图 10 中作为神经递质的是

≬.▼

(, ●

D

29. (2分)运动过程中,该轴突构成的神经属于

神经。

①传入神经 ②传出神经

③交感神经

④副交感神经

A. (1)(3) B. (2)(4) C. (1)(4)

D. (2)(3)

图 10

研究表明吸毒会导致细胞和器官功能异常,降低免疫力。某研究者对吸毒者进行了相关 激素的检测,并与健康人作了比较,检测结果均值如表 1,其中 LH、FSH 均为垂体释放的调 节性腺分泌的激素。 表 1

组别	平均年龄	吸毒史	吸毒量	LH(mlu/mL)	FSH(mlu/mL)	睾丸酮(mlu/mL)
吸毒者	23 岁	4年	1.4g/d	1.45	2.87	4.09
健康人	23 岁	_	_	4.66	6.6	6.69

- 30. (1分) 据题意分析, LH、FSH 对应图 14 中的激素[]。
- 31. (2分)毒品会导致与性激素分泌相关的器官功能障碍,根据表1中数据和图14所示的 调节过程,下列推测中可能的是 (多选)
 - A. 毒品仅导致下丘脑功能障碍
 - B. 毒品仅导致垂体功能障碍
 - C. 毒品仅导致性腺功能障碍
 - D. 毒品导致下丘脑、垂体和性腺功能障碍
- 32. (2分)研究发现由于毒品会导致下丘脑调节垂体功能障碍,吸毒者大多伴有怕冷、乏力 等症状,推测吸毒者功能紊乱的其他腺体有

(三)回答有关现代生物技术的问题(12分)

海洋石油污染正引起广泛关注,利用基因工程菌进行生物降解具有巨大的应用潜力。 P450 是石油降解的关键酶,用 Sa1 I和 Nde I联合酶切获得的 P450 基因,与图 11 所示的 质粒(pCom8) 重组,导入土著菌种 Y9,获得了基因工程菌 P450/Y9。图 11 中 me1 是红色素 合成基因,其表达能使蓝色的菌落变成红色,aacCl 是庆大霉素(一种抗生素)抗性基因, 限制酶 Nde I、Xho I 和 Ssp I 在原质粒上均只有一个酶切位点,数字表示酶切位点间的碱 基对数。图 12 表示几种限制酶的识别序列和切割位点。

- 33. (2分)上述基因工程中的受体细胞是
- 34. (2 分) 原质粒需用限制酶______作用后,才能与目的基因_____ 在 DNA 连接酶的作用下形成重组质粒。
- 35. $(2\, \mathcal{G})$ 经测定原质粒为 7. 8kb (1kb 为 1000 个碱基对),重组质粒经 *Nde* I、*Ssp* I 联合酶切后获得了 6. 0 和 1. 2kb 的两个片段,则目的基因的长度为 kb。
- 36. (4分)由于重组质粒导入受体细胞的成功率很低,所以需要经过筛选才能获得工程菌。操作的大致思路是:
 - 第一步,配制培养基。除表2中的成分外,还必须添加____。
 - 第二步, 待检菌液用涂布法接种在第一步配制的培养基上。
 - 第三步,选择______色菌落扩大培养即可获得所需的工程菌。

蛋白胨	酵母浸膏	NaC1	KC1	$MgC1_2$	H_2O	рН
20.0 g	5.0 g	0.5 g	0.2 g	1.0 g	1000 mL	7. 0

表 2

为检测基因工程菌降解石油的能力,科研人员做了如下 4 组实验,测定不同时间各组的石油降解率,实验结果见图 13。

A组:单独使用 Y9

B组:单独使用 P450/Y9

C 组: 联合使用 Y9、W3、F9、X1 四种 京种

D组:联合使用P450/Y9、W3、F9、 X1 四种菌种

37. (2 分) 据图 13 分析以下说法正确的是 (多选)。

- A. 为达到更好的效果,最好单独使用基因工程菌 P450/Y9
- B. 单独使用 P450/Y9 对石油的降解能力比单独使用 Y9 略强
- C. 作用时间越长, P450/Y9 对石油降解的能力越强
- D. 联合使用时, P450/Y9 能显著增加四种菌的整体降解石油的能力

(四)回答下列有关光合作用的问题。(12分)

某研究小组对马褂木、光皮桦和楸树三种落叶阔叶幼树的光合特性进行研究,于 2019 年 8 月的一天测定了这三种树净光合速率 (Pn) 和气孔导度 (Gs) 的日变化曲线。

(注:气孔导度指气孔的开放程度)

38. (2分)由图 14 可知,对于马褂木而言,7:00 时其叶肉细胞中叶绿体和线粒体间的气体交换关系可表示为。

39. (2分)由图 14 可知,光皮桦的净光合速率在 9:00~11:00 时间段不断增强,此时限制光合速率的环境因素主要是 ;

A. 光照强度 B. 温度 C. CO₂浓度 D. 叶绿素含量

受此因素影响,光皮桦叶肉细胞中五碳化合物的含量______(选填"上升""下降""不变"或"无法判断")。

40. (4分)根据图 15,比较光皮桦和楸树气孔导度日变化情况的差异:

41. (4分) 由图 14可知, 马褂木和_______有相似的净光合速率日变化曲线,它们均呈双峰曲线,有明显的"午休"现象。小王同学推测,这种"午休"现象的出现是由于正午高温所致的气孔关闭,根据图 15 信息,你______(选填"同意"或"不同意")这一推测,高二综合练习9 7/8

理由是:		

(五)回答下列有关遗传的问题。(11分)

图 16 为某遗传病的家族系谱图 (基因用 D 和 d 表示)

图 16

- 42. (2分)据图 16 判断该病为 (显/隐)性遗传病。
- 43. (3 分) 若 II_3 不带致病基因, II_7 带致病基因,则致病基因位于______(常 / X) 染色体上, II_4 号的基因型可能是_____。
- 44. $(2\, \beta)$ 若 II_3 、 II_7 均不带致病基因,则致病基因位于______(常 / X)染色体, II_4 号产生的配子带有致病基因的几率是_____。
 - A. 1/2 B. 1/4 C. 1/8
- D. 100%

某男子表现型正常,但其一条14号和一条21号染色体相互连接形成一条异常染色体,如图17。减数分裂时异常染色体三条染色体会配对在一起,如图18,配对的三条染色体中,在分离时,任意配对的两条染色体移向一极,另一条染色体随机移向细胞另一极。

- 45. (2分)图17所示的变异是____。观察此异常染色体应选处于____期的细胞。
- 46. (2分) 该男子与正常女子婚配能否生育染色体组成正常的后代? 并请说出原因。