- ① Det R is Northerian if every ideal is finitely generated
 iff R satisfies ascending charling condition (ACC)
- ② R is Artinian if R satisfies Descending Chain Condition (DCC)

Non-Noetherian example: R(x1, x2, x3,].

Int(K) =
$$\begin{cases} f \in K(x) \mid f(n) \in \mathbb{Z} \ \forall n \in \mathbb{Z} \end{cases}$$

(whenever $K > \mathbb{Z}$ is a field)
ey $f(x) = \frac{\chi(\chi+1)}{2} \in Int(K)$.

If Ris Noetherian, then

- · R[x] is Noetherian,
- · Rs is Noetherian (Localization)
- · R/I is Northerian
- · R has only finitely many minimal prime ideals

If R is comm & Artinian then R is Noetherian.

(1888)

Hilbert Basis Thm: R Noetherian => R(x) Noetherian.

If Let I = R[X] be an ideal, L be the set of leading coefficients of elements of I. Then L is an ideal of R.

Why: OEL since OEI.

• ra-bel \forall a,bel, reR since if $f = ax^n + \cdots$ then $r f x^m - g x^n \in I$.

So L is finitely gen, say $L = (a_1, ..., a_n)$.

For each i, let $f_i \in I$ be of minimal degree w/ leading coefficient a_i . Let $N = \max \{e_i = \deg f_i\}$.

For each $d \in \{0,...,N-1\}$, let L_d be the set of (0 and the) leading coefficients of polynomials in I w/ degree d

Each La is an ideal of R, so each La is f.g.

 $L_d = (b_{d,i}, b_{d,2}, \dots, b_{d,n_d})$. Let $f_{d,i} \in I$ w/ degree d and leading coefficient $b_{d,i}$.

 $\underline{\text{Claim}}: \ \underline{\mathsf{I}} = \left(\{f_1, ..., f_n\} \cup \{f_{d,i} \mid 0 \leq d \leq N-1, 1 \leq i \leq n_d\} \right) =: \underline{\mathsf{I}}'.$

why: I'cI by construction. Assume $f \in I \setminus I'$ by minimal degree d and leading coefficient a.

case 1: d < N. Then $a \in L_d$ so $a = r_1 b_{d,1} + r_2 b_{d,2} + \cdots + r_{n_d} b_{d,n_d}$. Let $g = r_1 f_{d,1} + \cdots + r_{n_d} f_{d,n_d}$. Then $g \in I' \ w/ \ same \ degree$ as f and same leading coeff. Thus $f-g \notin I \setminus I'$ has degree < d. Contradiction Case 2: d > N. Something similar.

C