Simon Schirber

Homework #1

C143a

1.)

- a) False: There are an order of ~100 billion neurons or ~10^11 neurons
- b) False: the frontal lobe is anterior to the occipital lobe
- c) True
- d) False: Both have sensory and motor processing, however each half of the brain controls the opposite side of the body (for the most part)
- e) True
- f) False: myelin is produced by oligodendrocytes and Schwann cells
- g) True
- h) False: At the synapse communication is generally done chemically through neurotransmitters
- i) False: Action potential are binary (all or nothing) and thus frequency contains more information
- j) False: Sodium is more abundant on the extracellular side
- k) False: The refractory period limits the frequency to around 200Hz max
- False: though the potential can be both positive and negative, depolarization leads to a more positive membrane potential
- m) False: depolarization occurs when an action potential is triggers and so only a repolarized cell can fire an action potential.
- n) True
- o) False: it will increase its speed as it will decrease the overall capacitance
- p) True
- q) True
- r) True
- s) True
- t) False: they are less permeable in general due to size and polarity

c.)

Answer: The Eternal Na+ concentration would be decreased from our original measurement. **Explanation**: The sauce is likely to have high concentration of ions and thus likely would have increased the measured Na+ eternal concentration but kept everything else the same. If we then recalculated the equilibrium potential with a decreased k+ eternal concentration, the equilibrium potential would decrease to a more negative number and thus the peak-to-peak amplitude potential for an action potential would increase and allow for a greater difference between the equilibrium potentials for each ion and thus potential for greater possible peak to peak amplitude explaining my partners measurements.

3) a) $N_{a}+: i = I_{p}A$ $V=4SmV$ $G=\frac{1}{V}=\frac{1\times 10^{-17}}{45\times 10^{-2}}&=\frac{1220S}{N_{a}}N_{a}+\frac{1}{V}$ $K^{+}: i = I_{p}a$ $V=SomV$ $G=\frac{1}{V}=\frac{1\times 10^{-17}}{45\times 10^{-2}}&=\frac{1200S}{80mV}=\frac{1}{200S}=\frac{1}{V}$ b) $R=\frac{1}{C}$ $RM_{a}+=\frac{1}{220S}=\frac{1}{220S}=\frac{1}{V}$
$RK^{\dagger} = \overline{zoys} = 50 G \Omega = k + $ $Rtot = \frac{1}{RN} = 24 G \Omega = rembire RSistance$
C) $t = R_2 - R_1 = 100 \text{ pm}$ $R_1 = R_2 - t = 100 \text{ pm}$ $R_1 = R_2 - t = 100 \text{ pm}$ $R_2 = 10 \text{ um}$ $R_3 = 10 \text{ um}$ $R_4 = 10 \text{ um}$ $R_4 = 10 \text{ um}$ $R_5 = 10 \text{ um}$ $R_7 = 10 u$
D) Taken = Rin Cin = (11 × 10-12) (24 × 10-1) = 2.66 s = Taken Thunch < taken > (11 × 10-12) (24 × 10-1) = 2.66 s = Taken Thunch < taken > (11 × 10-12) (24 × 10-1) = 2.66 s = Taken

4).

- a) Yes, the definition of equilibrium meansthat there is no net movement of ions into or out of the cell for all ions and means that for each ion there is and equal and opposite balance of drift and diffusion currents occurring. Even though the chemical and electrical force magnitudes will change as you add multiple ions and the resting membrane potential changes, it will still result in equal and opposite forces for each ion.
- b) They use active pumping (ATP energy) to bring the concentrations to the levels and work against gradients.

+	5)	
50	a) SPECIES Radius Merbra A 4904M 104M B 2504M 2504M	
	Reconstruction of the	
,	TX k. Fd	
	Ty = k . 490m 100mm = (204) X 106 R	
	76 = 250,250,0 = (16) × 106) }	
	Answer: I expect exam & to have a fixter action potential	
	When we calculate the two constant for both and add a constant or 2 pale we can see that the two constant for species Lis smaller and thus able to propagate taster	
	constat a 7 pel we con see that it was to toster	
	LIS Smaller and That The Life of the Control of the	
56)	Wo! Losing speed cot thing could be very dangeron in situation where first processing is necrossary. Most Importantly the mydern is cosseny to decruse confactorice and insulate the names as without reversifiend could be stopped or slowed such as in MS.	15
	where fast processing is necrosary. Most Importantly the myden is	
ne	cesson to decruse capacitance and insulate the names as without	
ſţ	remesting and be stopped of sioner such to	
7.7	Nodes of Renvier are sonces between myklin on an axon. The purpose	
70). Nodes of Ranvier are spaces between myklin on an axon. The purpose is to insulate the neuron but at the nodes of Romvier allow is ion gates to recharge cleatric/chemical signal propagation dawn the ar	
to to	or ion gates to recharge dectar/chemical signal propagation down the as	ron
		N. W. W. W.