Departamento de Electrónica

Alejandro S. GHERSIN

Profesor Regular Asociado Dpto. de Electrónica -FIUBA

aghersin@fi.uba.ar

Control Automático I 86.08/66.18

Presentación de la materia

Guillermo Sellerio, gsellerio@fi.uba.ar Marcelo Bruno, mabruno@fi.uba.ar Andrés Angelopulo, aangelopulo@fi.uba.ar Pedro Martos, pmartos@fi.uba.ar

Control Automático I: Equipo docente

Bibliografía: Åstrom & Murray

Feedback Systems: An Introduction for Scientists and Engineers

Libre para descarga en PDF. Muy buena página wiki

SEGUNDA EDICIÓN, 2020

Link de descarga directa:

www.cds.caltech.edu/~murray/books/AM08/pdf/fbs-public 18Aug2019.pdf

Bibliografía: Ogata

Bibliografía:

FRANKLIN POWELL EMAMI-NAEINI

FEEDBACK CONTROL

OF DYNAMIC SYSTEMS

Global Edition Paperback – 2014by Abbas Emami-Naeini J. Da Powell Gene F. Franklin (Author)

La tercera edición (1991) está en castellano y posiblemente en la biblioteca, como

Sistemas dinámicos con retroalimentación.

Muy buena.

Feedback Control of Dynamic Systems

Bibliografía (más):

Experimento: Control del Sube y Baja.

Experimento: Control del Sube y Baja: Video 1

Experimento: Control del Sube y Baja

Control del Sube y Baja: Explicación sobre el video de la próx. dispositiva.

IN1-IN4 - L298N CONFIG.

PID MODE: AUTO / MANUAL

PID MANUAL CONTROL

CLOSED LOOP SETPOINT

Leonardo (Left) / Pro Micro (Right)

-1 -0,75 -0,5 -0,25 0 0,25 0,5 0,75 1

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Experimento: Control del Sube y Baja: Video 3

-1,2

-1,4

Motor A

0,9-

0,8-

0,7-

0,6-

0,5-

0,4-

0,3-

0,2-

0,1-

0,9-

0,8-

0,6-

0,4-

0,3-

CONTROL

ACTION

0,3-

-0,3-

STOP ARDUINO

RUN

ARDUINO

PID BLOCK ENGAGED

Comentarios adicionales sobre el video de la dispositive anterior.

Sistema de Control Realimentado: ¿Qué es "Control"?

EJEMPLO: Helicóptero multirotor GPSIC – FIUBA.

Cortesía del Ing. C.D. Pose – GPSIC – FIUBA

EJEMPLO: Helicóptero multirotor : LA PLANTA

EJEMPLO: LA PLANTA c ACTUADORES

Cortesía del Ing. C.D. Pose – GPSIC – FIUBA

EL CONTROLADOR CON LOS SENSORES (casi todos).

Controladora de vuelo "CHORIBOARD I" Diseño del Claudio Pose GPSIC – FIUBA

Ejemplos (en los que yo intervine)

Ventilación mecánica para terapia intensiva

Ejemplos (en los que yo intervine)

Ventilación mecánica para terapia intensiva

$$\frac{P_c}{Q_c} = \frac{\frac{1}{C_T} (s + \omega_L)}{s (s + \omega_P)}$$

$$\omega_L = \frac{1}{RC_L}$$

$$\omega_T = \frac{1}{RC_T}$$

$$\omega_P = \omega_T + \omega_T$$

Lazo de control:

- Sistema.
- K(s) Controlador.
- d(s) Perturbación.

Figura: Transformación de Bloques

Figura: Lazo de control

Figura: Lazo transformado

Por qué realimentamos?

Hay REALIMENTACIÓN porque hay "incerteza"

De la ecuación para la señal de realimentación:

$$f(s) = d(s) + \underbrace{[S - G(s)]}_{\Delta} u(s).$$

Observamos:

- Distinguimos Sistema (S) de Modelo (G)
- ▶ Si no hay elementos inciertos (d(s) = 0 y $\Delta = 0$)

$$\implies$$
 No hay realimentación ($f = 0$)

Por qué realimentamos?

El problema general de Control

Fases del Problema de Control (Sánchez Peña)

Otros Ejemplos (libro)

LA REALIMENTACIÓN Y EL CONTROL SON UBICUOS

OTROS EJEMPLOS DE REALIMENTACIÓN Y CONTROL (ver libro)

- CONTROL DE TRÁFICO EN REDES DE DATOS (por ej. internet).
- MACROECONOMÍA (interrelación entre PBI, inversión, consumo y gasto público).
- MICROECONOMÍA, dinámica de CADENA de SUMINISTROS.
- SISTEMAS BIOLÓGICOS.