Paper / Subject Code: FE114 / Basic Electrical Engineering

FE114

Total No. of Printed Pages: 3

F.E. Semester-I (Revised Course 2007-2008) EXAMINATION MAY/JUNE 2019 Basic Electrical Engineering

[Duration: 3 Hours]

[Max. Marks: 100]

Instruction:-

- 1) Answer any five questions with atleast one question from each module.
- 2) Assume suitable additional data if necessary.

Module - I

1. a. State and explain Thevenin's theorem.

(6)

b. In the circuit shown in fig (1b), find the value of supply voltage V, so that the 20Ω resistor can (6) dissipate 180W of power.

c. Using Norton's theorem, calculate the current flowing through the 6Ω resistor in the circuit shown in fig(1c) (8)

2. a. State and explain Kirchhoff's current law and Kirchhoff's voltage law.

(6)

- b. Define Resistance, inductance and Capacitance from their Circuit and Geometrical viewpoints. (6)
- c. Find the current in the 10Ω resistor in the given network shown in fig.(2c).

(8)

Paper / Subject Code: FE114 / Basic Electrical Engineering

FE114

Module - II

- 3. a. Explain the concept of mutually induced emf and self-induced emf. (7)
 - b. Derive expression for Force between two current carrying conductors. Comment on the direction of Force with respect to the direction of current in the conductors.
 - c. Two identical coils P and Q of 900 turns each lie in parallel such that 70% of flux produced by (7) one coil links to the other. A current of 5A flowing in coil P produces a flux of 0.05mwb in it. If the current in coil P changes from 12A to zero in 0.02sec, then calculate:
 - i) Mutual inductance between the two coils
 - ii) Self-inductances of the two coils.
 - iii) EMF induced in coil P and coil Q.
- 4. a. Discuss the analogy between electric and magnetic circuits. (7)
 - b. Derive an expression for energy stored in magnetic circuit. (6)
 - c. A coil 120 turns is uniformly wound over a wooden ring. The ring is having a mean circumference of 400mm and a uniform cross sectional area of 400sq. mm. A current of 5A is passed through the coil.
 Calculate:
 - (i) Magnetic field strength H
 - (ii) The flux density B
 - (iii) The total fluxΦ.

Module - III

- 5. a. Derive the expression for instantaneous current and instantaneous power in an AC circuit containing Resistance only. Draw neat and labeled waveforms and phasor diagram.
 - b. A balanced star connected load of (8+j6) Ω is connected across three phase, 50Hz, 440V supply system. Calculate the line current, power absorbed and reactive volt amperes.
 - c. With a neat sketch explain how an alternating voltage is produced, when a coil is rotated in a (6) magnetic field. Derive the expression for the instantaneous value of alternating sinusoidal emf.

Paper / Subject Code: FE114 / Basic Electrical Engineering

			E114
6.	a.	Define the following terms as related to ac quantities: (i) Waveform (ii) RMS value (iii) Form factor (iv) Frequency (v) Active power (vi) Power factor	(6)
	b.	In a Delta connected, three phase system, derive relationship between line voltage and phase voltage, line current and phase current and the expression for total power consumed.	(8)
	c.	A coil dissipates 10W at 0.1 power factor lagging when connected to a 240V, 50Hz ac supply. Calculate the resistance, impedance and inductance of the coil.	(6)
)		Module - IV	
7.	a.	Describe, with the help of a neat sketch, the construction and principle of operation of permanent magnet moving coil type of instrument.	(10)
	b.	Distinguish between Core type and shell type single phase transformers.	(5)
	c.	A 6600/400V, single phase 600KVA single phase transformer has 1200 primary turns. Find (i) Transformation ratio, (ii) Number of secondary turns (iii) Voltage per turn, (iv) Secondary current when it supplies a load of 400KW at 0.8 power factor lagging.	(5)
8.	a.	Derive the EMF equation of a single phase transformer. Mention the assumptions made.	(6)
	b.	A balance 3-phase, star-connected load draws power from 440V supply. The two wattmeter's connected read 5KW and 1.2KW. Calculate power, power factor and current in circuit.	(6)
	Ċ.	Write short notes on the following: (i) Rating of a transformer (ii) Efficiency of a transformer	(8)