Andrea Gadotti 12/01/2015

Exercise 63. Let L/K be an algebraic function field, $x \in L$ transcendent over K, $[L:K(x)] = n < \infty$ and $y \in L$ with L = K(x,y). Then:

- 1. There exists an irreducible polynomial $f \in K[X,Y] \setminus K$, uniquely determined up to factors from K^{\times} , such that f(x,y) = 0.
- 2. Let \overline{K} be an algebraic closure of K, $C = \mathcal{V}_{\overline{K}} \subseteq \overline{K}^2$ the associated curve, and $x_C, y_C \in K(C)$ the coordinate function of C. Then there is a unique K-isomorphism $\Phi: L \to K(C)$ with $\Phi(x) = x_C$ and $\Phi(y) = y_C$.

Proof.

1. Since L = K(x, y), we have [K(x, y) : K(x)] = n, i.e. the minimal polynomial of y over K(x) has degree n. This means that there exists $g \in K(x)[Y]$ irreducible such that

$$g(y) = a_n y^n + \ldots + a_0 = 0,$$

where $a_0, ..., a_n \in K(x)$. Let m be the least common multiple of the denominators of $a_0, ..., a_n$. By multiplying g by m, we get $f(X,Y) \in K[X,Y] \setminus K$ such that f(x,y) = 0. Thus $(f) \subseteq \mathcal{J}(V)$. We want to show that the equality holds. Suppose to the contrary that there exists $f' \in K[X,Y] \setminus K$ such that f'(x,y) = 0. Then $f'(x,Y) \in K(x)[Y] \setminus K$ is such that f'(x,y) = 0, i.e. y is a root of f'(x,Y), and thus f'|g. But since g is irreducible, this means f' = ag for some $a \in K(x)$. Since $f' \in K[X,Y] \setminus K$, by definition of m we must have m|a, i.e. f|f', which finally means $f' \in (f)$.

So $\mathcal{J}(V) = (f)$. Since V is a singleton, it is trivially irreducible (but we should show that it is a variety!!!). Thus, by Exercise 51, $\mathcal{J}(V)$ is a prime ideal. Therefore f is irreducible, and of course it is uniquely determined up to a constant of K^{\times} .

2. First, observe that if such a K-isomorphism exists, then it is trivially unique, since L = K(x, y) and thus every K-homomorphism is uniquely determined by its behaviour on x and y (should be explained better). Now consider

$$\varphi: K[X,Y] \to K[x,y]$$
$$X \mapsto x$$
$$Y \mapsto y.$$

 φ is obviously a well defined K-homomorphism. It is also trivially surjective. Now observe that

$$h \in \ker \varphi \iff h(x,y) = 0 \iff h \in \mathcal{J}(\{(x,y)\}) = \mathcal{J}(V),$$

i.e. $\ker \varphi = \mathcal{J}(V)$. So $K[x,y] \simeq K[X,Y]/\mathcal{J}(V)$. But

$$\mathcal{J}(C) = \mathcal{J}(\mathcal{V}_{\overline{K}}(f)) = \sqrt{(f)} = (f) = \mathcal{J}(V)$$

and thus $K[x,y] \simeq K[X,Y]/\mathcal{J}(C) =: K[C]$, whereby easily follows $K(x,y) \simeq K(C)$.

Finally, it's easy to show that the isomorphism between K(x, y) and K(C) inducted by φ is precisely Φ .

Exercise 64.

1. We already know that (R[H], +) is an abelian group. The associativity of \cdot follows easily by the one of R's multiplication. It is also clear that \cdot is commutative. Also the distributivity is immediate. We only have to check that X^0 is the unit element:

$$(f \cdot X^h)(z) = \sum_{\substack{(x,y) \in H \times H \\ x+y=z}} f(x)X^0(y) = \sum_{\substack{(x,0) \in H \times \{0\} \\ x=z}} f(x) = f(z).$$

As for $\theta: R \to R[H]$, it's easy to show that it's a ring homomorphism. It is also injective since

$$\theta(a) \equiv 0 \Rightarrow \theta(a)(0_H) = 0_R \Rightarrow a = 0_R.$$

As for the map $h \mapsto X^h$, observe that

$$(X^h \cdot X^k)(z) = \sum_{\substack{(x,y) \in H \times H \\ x+y=z}} X^h(x)X^k(y) = \begin{cases} 1_R, & \text{if } z = h+k, \\ 0_R, & \text{otherwise,} \end{cases}$$

i.e. $X^h \cdot X^k = X^{h+k}$. So $h \mapsto X^h$ is a semigroup homomorphism. The injectivity is trivial.

2. We have

$$f = \sum_{h \in \text{supp}(f)} f(h)X^h,$$

thus, defining $a_h := f(h)$ for all $h \in H$ and recalling that $|\operatorname{supp}(f)| < \aleph_0$, follows that every $f \in R[H]$ has a representation like the one in the statement. It is trivially unique.

3. The statement about the sum is trivial. The statement about the product is trivial by definition of X^h and $f \cdot g$, since $a_x = f(x)$ and $g(y) = b_y$.

Exercise 65. Let $f \in R[G]$ be

$$f = \prod_{i=1}^{l} (X^{g_i} - a_i),$$

where by a_i we actually mean $\theta(a_i)$.

We have already proved that $(R[H], +, \cdot)$ is a commutative ring (with unit element X^0), and that $X^h \cdot X^k = X^{h+k}$. So we can write f as

$$f = X^{\sum_{g \in S} g} + \ldots + \prod_{i=1}^{l} a_i = X^{\sum_{g \in S} g} + \ldots + X^0 \cdot \prod_{i=1}^{l} a_i.$$

Let's evaluate the last expression in 0_H . By the last line of the first point of Exercise 64, we have

$$\left(X^0 \cdot \prod_{i=1}^{l} a_i\right)(0_H) = \prod_{i=1}^{l} a_i.$$

Furthermore, all the other terms are 0_R when evaluated in 0_H , because in all the other terms there is a term of the form $X^{\sum_{g\in I}g}$ for some $I\subseteq S$, which is necessarily $\neq X^0$ because S is zero-sum free, and so they all are 0_R when evaluated in 0_H . Therefore $f(0) = \prod_{i=1}^l a_i \neq 0$ since R is a domain, and thus $f \neq 0$.

Exercise 66.

- 1. By the same argument of Exercise 7 it follows that 2 is irreducible (since, if d < -2, then $a^2 db^2 \neq 2$ for all $a, b \in \mathbb{Z}$). In order to show that 2 is not prime, we consider two different cases:
 - If d is even: then $2 \mid -d = -\sqrt{d}\sqrt{d}$, but 2 does not divide any of the two factors.
 - If d is odd: then $2 \mid 1 d = (1 + \sqrt{d})(1 \sqrt{d})$, but 2 does not divide any of the two factors.
- 2. " \Rightarrow ": If $x \in K_d^{\circ}$, then $x = \frac{y}{z}$ with $y, z \in R_d$. Let q, r be the quotient and the rest of y divided by z. We have

$$|N_{K_d/\mathbb{Q}}(x-q)| = |N_{K_d/\mathbb{Q}}(\frac{y}{z}-q)| = \frac{|N_{K_d/\mathbb{Q}}(y-zq)|}{|N_{K_d/\mathbb{Q}}(z)|} = \frac{|N_{K_d/\mathbb{Q}}(r)|}{|N_{K_d/\mathbb{Q}}(z)|} < 1.$$

" \Leftarrow ": Let $y, z \in R_d$. Then $x := \frac{y}{z} \in K_d$. Let $q \in R_d$ be such that $|N_{K_d/\mathbb{Q}}(x - q)| < 1$. Then we obtain (same computations of above):

$$\frac{|N_{K_d/\mathbb{Q}}(y-zq)|}{|N_{K_d/\mathbb{Q}}(z)|} < 1.$$

By defining r := y - zq we have y = zq + r with $|N_{K_d/\mathbb{Q}}(r)| < |N_{K_d/\mathbb{Q}}(z)|$, as wanted.

3. Consider the basis $\mathbf{u} = ((1,0), (0,\sqrt{d}))$ for K_d over \mathbb{Q} . Let $\alpha = a + b\sqrt{d} \in K_d$, i.e. $a,b \in \mathbb{Q}$. Then $\mu_{\alpha} : K_d \to K_d$ given by $\mu_{\alpha}(\beta) = \alpha\beta$ is such that

$$\mathcal{M}_{\mathbf{u},\mathbf{u}}(\mu_{\alpha}) = \begin{pmatrix} a & bd \\ b & a \end{pmatrix},$$

and so $N_{K_d/\mathbb{Q}}(\alpha) = \det(\mu_{\alpha}) = a^2 - db^2$.

Now, in order to prove that R_d is an Euclidean ring it is sufficient to show that for any $\alpha \in K_d$ there exists $q = q_1 + q_2 \sqrt{d} \in R_d$ such that

$$1 > |N_{K_d/\mathbb{Q}}(\alpha - q)| = |(a - q_1)^2 - d(b - q_2)^2|.$$

Let's define q_1 and q_2 as follows:

$$q_1 := \begin{cases} \lfloor a \rfloor & \text{if } 0 \le a - \lfloor a \rfloor < \frac{1}{2}, \\ \lceil a \rceil & \text{if } -\frac{1}{2} < a - \lceil a \rceil \le 0, \end{cases} \quad \text{and} \quad q_2 := \begin{cases} \lfloor b \rfloor & \text{if } 0 \le b - \lfloor b \rfloor < \frac{1}{2}, \\ \lceil b \rceil & \text{if } -\frac{1}{2} < b - \lceil b \rceil \le 0. \end{cases}$$

Of course q_1 and q_2 are well-defined and are such that $a-q_1 < \text{and } b-q_2 < 1/2$. Before the conclusion, we introduce the following notation:

Notation: Given $r_1, r_2, s_1, s_2, t \in \mathbb{Q}$, we define $[r_1, r_2] + t[s_1, s_2] := \{h = r + ts \mid r \in [r_1, r_2], s \in [s_1, s_2]\}$.

So q_1 and q_2 are such that $(a - q_1)^2 \in [0, 1/4]$ and $(b - q_2)^2 \in [0, 1/4]$. Now:

- d = -1. We have $|(a q_1)^2 + (b q_2)^2| < 1$, since $[0, 1/4] + [0, 1/4] = [0, 1/2] \subseteq (-1, 1)$.
- d = -2. We have $|(a q_1)^2 + 2(b q_2)^2| < 1$, since $[0, 1/4] + 2[0, 1/4] = [0, 3/4] \subseteq (-1, 1)$.
- d = 2. We have $|(a q_1)^2 2(b q_2)^2| < 1$, since $[0, 1/4] 2[0, 1/4] = [-1/2, 1/4] \subseteq (-1, 1)$.
- d = 3. We have $|(a q_1)^2 3(b q_2)^2| < 1$, since $[0, 1/4] 3[0, 1/4] = [-3/4, 1/4] \subseteq (-1, 1)$.

Exercise 68

- 1. We must show that φ is a K-vector space iff $\varphi_{|_K} = \mathrm{id}_K$. " \Rightarrow " Let $\lambda \in K$. Then $\varphi(\lambda) = \varphi(\lambda 1_L) = \lambda \varphi(1_L) = \lambda 1_{L'} = \lambda$. " \Leftarrow " Let $\lambda, \mu \in K$ and $u, v \in L$. Then $\varphi(\lambda u + \mu v) = \varphi(\lambda)\varphi(u) + \varphi(\mu)\varphi(v) = \lambda \varphi(u) + \mu \varphi(v)$.
- 2. By first point, the element of Gal(L/K) are precisely the K-vector space endomorphisms of L, and it is well known that they form a group under composition.
- 3. Trivial.
- 4. If L/K is of finite degree, then L is a finite-dimension K-vector space, and thus (by the first point and by Rank-Nullity Theorem) an injective K-endomomorphism must be also surjective, i.e. it is an isomorphism. If L/K is not of finite degree (which is possible!), then I don't know (and I even guess it's not true).

Exercise 69. Consider the following collection:

 $\Omega := \{ N \subseteq M \mid N \text{ subm. and } N \text{ is not a finite intersection of irreducible submodules} \}.$

Suppose towards a contradiction that $\Omega \neq \emptyset$. Then Ω has a maximal element Q, since M is noetherian (because it's finitely generated over a noetherian ring). Of course Q is not irreducible. This means that there exist N_1, N_2 such that $Q = N_1 \cap N_2$ with $Q \neq N_1$ and $Q \neq N_2$, i.e. $Q \subsetneq N_1, N_2 \neq M$. By maximality of Q, this means that N_1 and N_2 can be written as a finite intersection of irreducible submodules, and thus Q as well, contradiction.