Propositional Probability II: A Propositional PPL¹

Steven Holtzen s.holtzen@northeastern.edu

September 17, 2023

Now we are ready to ask: can we use propositional logic as the basis for an effective probabilistic model? The first question is: what is our sample space? It's clear so far that a logical choice of sample space is the set of all possibly instances for a fixed set of Boolean formulae; this sample space will have size 2^n , where n is the number of propositional variables. Now, if we want to efficiently evaluate queries over this sample space, we need need two more components:

- 1. A way to efficiently represent a probability distribution on the sample space;
- 2. A way to efficiently represent queries over that sample space.

Let's tackle (1) first. What is an alternative representation of a distribution that avoids the space-explosion we saw in the lookuptable representation? We will need to be more clever about how we represent probabilities. One useful choice is to assume that all random variables are *independent from each other*, and therefore we can concisely describe a joint distribution over all of them:

Definition 1 (Fully factorized probabilistic model). Let X_1, X_2, \dots, X_n be jointly independent random variables (i.e., for any pair X_i, X_j , it is the case that $X_i \perp \!\!\! \perp X_j$). Then, a fully-factorized probabilistic model is a collection of n probability lookup tables $\Pr(X_i)$, one for each i. The joint probability is computed as $\Pr(X_1, X_2, \dots, X_n) \triangleq \prod_i^n \Pr(X_i)$.

Observe that a fully-factorized model only requires $O(\sum_i |X_i|)$ space, which is significantly smaller than $|\Omega|$.² This is a big improvement over plain lookup tables, but it comes at a cost of expressivity: there are some distributions that cannot be represented in a fully-factorized way.

² The notation |X| refers to the size of a random variable's co-domain.

- 1 A Propositional PPL (Prop)
- We will introduce a simple probabilistic programming language based on propositional logic called Prop.
- The syntax of Prop has two parts: a query φ , written in propositional logic, and a fully-factorized distribution w on propositional variables:

These are fresh semantics and there may be bugs! If you see any let me know.

¹ CS7470 Fall 2023: Foundations of Probabilistic Programming. Syntax of Prop:

```
\varphi ::= x \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \neg \varphi \mid \mathsf{true} \mid \mathsf{false}
w := [x \mapsto \theta_x, y \mapsto \theta_y, \cdots]
_{3} p ::= (\varphi, w)
```

Example Prop program:

```
(x \lor y, [x \mapsto 0.1, y \mapsto 0.2])
```

- In order to interpret programs, we need to define a propositional universe, which tells us which propositional variables the program is defined over. We denote this universe Γ , which is a finite set of propositional variables.
- A syntactic term in Prop is well-typed by universe Γ if every propositional variable that is free in Prop can is in Γ . If a term is well-typed by Γ , we write $\Gamma \vdash p$. We can formalize this description of Γ inductively on Prop programs. First, we describe whether or not a propositional term is well-typed, $\Gamma \vdash \varphi$:

$$\Gamma \vdash \mathsf{true}$$
 $\Gamma \vdash \mathsf{false}$ $\dfrac{x \in \Gamma}{\Gamma \vdash x}$
$$\dfrac{\Gamma \vdash \alpha \qquad \Gamma \vdash \beta}{\Gamma \vdash \alpha \land \beta}$$

The rest of the propositional connectives proceed similarly.

• Similarly, we can type the w terms:

$$\frac{x \in \Gamma \qquad \Gamma \vdash r}{\Gamma \vdash [x \mapsto \theta, r]} \qquad \qquad \Gamma \vdash []$$

• Finally, we can type programs:

$$\frac{\Gamma \vdash \varphi \qquad \Gamma \vdash w}{\Gamma \vdash (\varphi, w)}$$

• We can interpret a propositional universe Γ as the set of all propositional instances that can be formed from variables in Γ ; we write this set as $[\Gamma]$.

Denotational semantics

• Denotational semantics of Prop: we want to associate every welltyped program in Prop with the probability that φ holds according to the fully-factorized distribution described by w

- Goal: Define a map $\llbracket \Gamma \vdash p \rrbracket : [0,1]$ that maps well-typed terms from Prop to real values.
- We will need semantics for φ and the map m in order to interpret p. They have the following types:
 - $\llbracket\Gamma \vdash \varphi\rrbracket$ maps propositional formulae to the set of all instances that model them over universe drawn from Γ :

$$\llbracket \Gamma \vdash \varphi \rrbracket \triangleq \{ I \in \llbracket \Gamma \rrbracket \mid I \models \varphi \} \tag{1}$$

- $\llbracket\Gamma \vdash w\rrbracket : \Gamma \to \mathbb{B} \to [0,1]$ produces a map from assignments to propositional variables to real values:

$$\llbracket \Gamma \vdash [x_1 \mapsto \theta_1, \dots, x_n \mapsto \theta_n] \rrbracket (x_i) (\mathsf{true}) \triangleq \theta_i \tag{2}$$

$$\llbracket \Gamma \vdash [x_i \mapsto \theta_1, \dots, x_n \mapsto \theta_n] \rrbracket (x_i) (\mathsf{false}) \triangleq 1 - \theta_i \tag{3}$$

We need to assume a propositional universe so that these equations are well-defined. Assume that all instances are defined on all free variables in p.

• For notational convenience we define the probability of an instance $\llbracket\Gamma \vdash w\rrbracket(I)$ as the product of probabilities of each variable in the instance. For instance,

$$[(x \mapsto 0.1, y \mapsto 0.3)](x, \overline{y}) = 0.1 * 0.7.$$

Formally, we will write:

$$\llbracket\Gamma \vdash w\rrbracket(I) = \prod_{[x_i \mapsto v] \in I} \llbracket w\rrbracket(x_i)(v) \tag{4}$$

• Now we are ready to interpret Prop programs as the sum of the probabilities of each model:

$$\llbracket\Gamma \vdash (\varphi, w)\rrbracket \triangleq \sum_{I \in \llbracket\Gamma \vdash \varphi\rrbracket} \llbracket\Gamma \vdash w\rrbracket(I). \tag{5}$$

- Is this a useful PPL? What kinds of programs can we write in it? Exercise: write a Prop program that computes the probability that a dice roll is even.
- Big-step semantics
- Our denotational model does not tell us how to efficiently compute probabilities
- Goal: given a Prop program, efficiently evaluate it Running example: The simple PROP program:

For more on the history and context of different styles of semantics, see Pierce [2002, Chapter 3]

- $(x \lor y, [x \mapsto 0.1, y \mapsto 0.3])$
- Worst-case hardness: computing $Pr(\varphi_{ex})$ is NP-hard for arbitrary formulae.

We will show this by reduction to the SAT problem: the problem of determining whether or not a formula has a model.

Reduction: Let φ be a formula. Assign a probability of 0.5 to every assignment of variables. Then, φ has a model if and only if $\Pr(\varphi) > 0$.

• In fact, computing $Pr(\varphi_{ex})$ is #P-hard. #P is the class of problems that are polytime reducible to counting the number of solutions to an arbitrary Boolean formula. See Goldreich [2008, Chapter 6] for more discussion on this complexity class, as well as Roth [1996].

Evaluating queries via search

- Need to avoid worst-case exponential behavior.
- Idea: We want to search through the space of models of the formula to potentially avoid exploring all possible worlds. Aim for better average-case/common-case behavior than the naive table enumeration.

- We will describe a relation $(\pi, p) \downarrow^{e} \mathbb{R}$:
 - π is an ordered list of propositional variables. We denote list concatenation as $x :: \pi$.
 - p is a Prop program
 - The result \mathbb{R} will be equal to $\llbracket p \rrbracket$
- Define $\varphi[x \mapsto v]$ as the substitution where we replace all instances of x with the value $v \in \{\text{true}, \text{false}\}\$ in φ , and "simplify" φ by evaluating connectives until either (1) there are no more true or false constants, or (2) the formula is equal to true or false. Example: $(x \lor y)[x \mapsto \mathsf{true}] = y$.

• Now, let's describe our procedure for searching to solve our inference problem. We will define \downarrow^e inductively. The base-cases will be formulas without any free variables:

(True) (False)
$$(\pi,(\mathsf{true},w)) \Downarrow^e 1 \qquad (\pi,(\mathsf{false},w)) \Downarrow^e 0$$

• Then, the inductive step:

$$\frac{(\mathsf{SPLIT})}{(\pi, (\varphi[x \mapsto \mathsf{true}], w)) \Downarrow^e v_1 \qquad (\pi, (\varphi[x \mapsto \mathsf{false}], w)) \Downarrow v_2}{(x :: \pi, (\varphi, w)) \Downarrow^e w(x) v_1 + w(\overline{x}) v_2}$$

Here we are being a bit loose with the weight function w; we can give an evaluation semantics for w as well, but assume for now that we can look up the weight of x and \overline{x} .

- Example derivation tree for our running example for the order $\pi = [x, y]$ and our program $(x \lor y, [x \mapsto 0.1, y \mapsto 0.3])$
- The **cost** of evaluating a formula φ for order π under these semantics is equal to the total number of derivations in the derivation tree.

Theorem 1. Let p be Prop program and π be an ordering on all variables in p, and let $\Gamma \vdash p$. If $(\pi, p) \Downarrow v$, then $\llbracket \Gamma \vdash p \rrbracket = v$.

Proof sketch. We will show this by structural induction on p. The base cases are straightforward: If p = (true, w), then $(\pi, (true, w)) \Downarrow^{e} 1$. By definition, $\llbracket \Gamma \vdash (\mathsf{true}, w) \rrbracket = \sum_{I \in \llbracket \Gamma \vdash \mathsf{true} \rrbracket} w(I) = 1$; similar for the false case.

Induction hypothesis (IH): Let $(x :: \pi, (\varphi[x \mapsto \mathsf{true}], w)) \downarrow^e$ v_1 and $(x :: \pi, (\varphi[x \mapsto \mathsf{false}], w)) \Downarrow^e v_2$, and $(\pi, (\varphi, w)) \Downarrow^e v$. Assume by induction that $v_1 = \llbracket \Gamma \vdash (\varphi[x \mapsto \mathsf{false}], w) \rrbracket$ and $v_2 = \emptyset$ $\llbracket \Gamma \vdash (\varphi[x \mapsto \mathsf{true}], w) \rrbracket.$

We are done if we can show that $\llbracket \Gamma \vdash (\varphi, w) \rrbracket = \llbracket w \rrbracket(x)(\mathsf{true}) \llbracket \Gamma \vdash (\varphi[x \mapsto \mathsf{true}], w) \rrbracket +$ $\llbracket w \rrbracket(x)(\mathsf{false}) \llbracket \Gamma \vdash (\varphi[x \mapsto \mathsf{false}], w) \rrbracket.$

To make progress we need to apply Shannon expansion: it is always the case that $\llbracket \Gamma \vdash (\varphi, w) \rrbracket = \llbracket \Gamma \vdash (\varphi \land x, w) \rrbracket + \llbracket \Gamma \vdash (\varphi \land \neg x, w) \rrbracket.$ Then, observe that $\llbracket \Gamma \vdash (\varphi \land x), w \rrbracket = w(x)(\mathsf{true}) \llbracket \Gamma \vdash (\varphi[x \mapsto \mathsf{true}], w) \rrbracket$ (this fact is not as straightforward to show as Shannon expansion, and proving it rigorously relies on a full inductive definition of substitution, so we elide step for the time being).

• What is the cost of enumerating the formula $x \lor y \lor z \lor w$ with these semantics? It will be linear-time for any order; a big improvement over the exhaustive enumeration!

The proof of Shannon expansion is a good exercise, and relies on splitting up the models of φ into 2 sets.

Todo: finish up this proof.

• However, what about a formula like $(a \land b) \lor (c \land d)$? We will see how to handle this case next time.

References

Oded Goldreich. Computational complexity: a conceptual perspective. ACM Sigact News, 39(3):35–39, 2008.

Benjamin C Pierce. Types and programming languages. MIT press, 2002.

Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2):273-302, 1996.