

SenNet IO ETH/RS485

Módulo de expansión de señales con comunicaciones Modbus TCP y RTU

Contenido

SenNet Digital IO es una gama de módulos de expansión de señales digitales y analógicas con comunicaciones Modbus TCP/RTU y formato carril DIN, para la ampliación de entradas digitales NPN, salidas tipo relé, entradas y salidas analógicas. Indicación led de estado.

Conexionado

La alimentación del dispositivo se realiza a través de 24Vdc.

Los diferentes modelos dentro de la gama SenNet IO presentan hasta un máximo de 42 señales distribuidas de la siguiente forma:

Modelo	Nº de	Tipo de señales	Características
	señales	Conexión	
2ED+2SR	4	2 x Entrada digital	NPN
ZLDTZJN		2 x Salida digital	Relé
4ED+4SR+8EA	16	4 x Entrada digital	NPN
		4 x Salida digital	Relé
		8 x Entrada analógica	4 x 0-10 V + 4 x 0-20mA
8ED+8SR+8EA+1SA	25	8 x Entrada digital	NPN
		8 x Salida digital	Relé
		8 x Entrada analógica	4 x 0-10 V + 4 x 0-20mA
		1 x Salida analógica	1 x 0-10V
16ED+16SR+8EA+2SA	42	16 x Entrada digital	NPN
		16 x Salida digital	Relé
		8 x Entrada analógica	4 x 0-10 V + 4 x 0-20mA
		2 x Salida analógica	1 x 0-10V + 1x 0-20mA

Pasos para la instalación:

- 1. Alimentar el módulo (24Vdc).
- 2. Conectar el bus de comunicaciones RS485 o mediante conector Ethernet.
- 3. Configurar un ID Modbus RTU mediante el banco de switch o utilizar el de por defecto (ID=1) o una IP mediante la conexión TCP/IP.
- Acceder a los datos con el estado entradas y salidas mediante los registros Modbus TCP/RTU detallados en la tabla "Tabla – Modbus TCP/RTU".

Configuración del banco de switch

Las posiciones del AO al A5, sirven para configurar el Id de esclavo Modbus. El ID puede ser configurado con un valor entre 1 y 64 siguiente la siguiente lógica.

La posición A7 del banco de switch en ON, activa el modo pasarela a RS485, es decir, podremos controlar el módulo mediante la conexión TCP/IP y adicionalmente comunicar con otros módulos de expansión de señales usando el puerto RS485 de este mismo módulo.

La posición A8 del banco de switch debe estar siempre en OFF.

Conexionado para entradas digitales.

Las conexiones de las entradas digitales se harán mediante la conexión de la borna "COM" del módulo con las diferentes entradas, mediante algún tipo de actuador o dispositivo a monitorizar

Conexionado del resto de señales

Las conexiones se deben realizar de la siguiente forma:

Tabla – Modbus RTU para valores de configuración (función 03 - lectura)

• Modbus RTU por defecto: 9600 baud – 8N1

• Formato: signed int

• 2 bytes

Base 0

Register	Description	Formato de lectura	Posibles Valores	Tipo de variable
0x00FD (253)	ID Modbus	Signed int	1 y 63	R
0x00FE (254)	Velocidad	Signed int	0:1200	
			1:2400	
			2:4800	
			3:9600 (defecto)	R/W
			4:19200	K/ VV
			5:38400	
			6:57600	
			7:115200	
0X00FF (255)	Paridad	Signed int	0 None Parity	
			1 Odd Parity	R/W
			2 Even Parity	

Tabla – Modbus TCP/RTU para entradas y salidas (función 01, 02, 03 – lectura / función 05, 06 – escritura)

Modbus RTU por defecto: 9600 baud – 8N1

• Formato: signed int / unsigned

• 2 bytes

Base 0

Function Code	Register	Description	Formato de lectura	Posibles valores	Tipo de variable
03 (Read Holding)	0000	Lectura y escritura de salida analógica 0-5/10 V	Signed int	0.01V	R/W
03 (Read Holding)	0001 (1)	Lectura y escritura de salida analógica 0/4-20 mA	Signed int	0.01 mA	R/W
03 (Read Holding)	00F5 (245)	Modo seguro de las salidas analógicas. Salidas analógicas se almacenan cuando se apaga el módulo	Signed int	0=Deshabilitado 1=Habilitado	R/W
03 (Read Holding)	00A0-00A3 (160-163)	Lectura de entradas analógicas 0-5/10V	Signed int	Factor /100	R
03 (Read Holding)	00A4-00A7 (164-167)	Lectura de las entradas analógicas 0/4-20mA	Signed int	Factor /100	R
03 (Read Holding)	0080 (128)	Escritura y lectura de salidas digitales. Un bit por señal	Binario	ON=1 OFF=0	R/W
03 (Read Holding)	0090 (144)	Lectura de estado de entradas digitales. Un bit por señal	Binario	ON=1 OFF=0	R
01 (Read Coils)	0000-000F (0-15)	Escritura y lectura de las salidas digitales de forma individual. Un registro por señal	Signet int	ON=1 OFF=0	R/W
02 (Read Discrete Inputs)	0000-000F (0-15)	Lectura de estado de entradas digitales de forma individual. Un registro por señal	Signet int	ON=1 OFF=0	R/W

Parámetros de fábrica

Modbus RTU. El ID de Modbus se configura mediante el banco de switch. Para reiniciar el módulo a los valores de fábrica, hay que cortocircuitar el jumper RS485_RES durante 5 segundos y reiniciar el módulo. La configuración por defecto, la configuración es ID Modbus 1, 9600 bps, sin paridad y 1 bit de parada.

Modbus TCP. La IP por defecto del módulo 192.168.1.45 y el puerto 502. Para reiniciar el módulo a los valores de fábrica, hay que cortocircuitar el jumper ETH_RES durante 5 segundos y reiniciar el módulo.

Para poder acceder al equipo mediante la interfase web, por favor, solicitar el usuario y password al departamento técnico de Satel Iberia, mediante la dirección de correo support@satel-iberia.com.

Envolvente

Características ambientales	
Temperatura trabajo	-20ºC+55ºC
Temperatura de almacenamiento	-25ºC+60ºC
Características físicas	
Dimensiones	268 x 102 x 45 mm
Peso	558g
Montaje	A carril DIN 35 y C45
Nivel aislamiento	VO retardante de llama
Normativas	
CE	

Caracterísiticas

Alimentación		
Tensión	24 Vdc	
Consumo	15-600 mA	
Entradas / Salidas		
Entradas	Ópticamente aisladas	
Tipo de entrada digital	NPN	
Salida digital	Relé	
Carga máxima por salida digital	10A	
Tensión en salidas digital	1-110Vdc / 85-265 Vac	
Comunicaciones		
Protocolo	Modbus RTU / TCP	
ID Modbus	1-64	
Velocidad	1200-115200 bps	

Garantía

Satel Spain garantiza sus productos contra todo defecto de fabricación por un periodo de 1 año.

No se aceptará ninguna devolución de material ni se reparará ningún equipo si no viene acompañado de un informe (RMA) indicando el defecto observado o los motivos de la devolución.

La garantía quedará sin efecto si el equipo ha sufrido "mal uso" o no se han seguido las instrucciones de almacenaje, instalación o mantenimiento de este manual. Se define "mal uso" como cualquier situación de empleo o almacenaje contraria al Código Eléctrico Nacional o que supere los límites indicados en este manual.

Satel Spain declina toda responsabilidad por los posibles daños, en el equipo o en otras partes de las instalaciones y no cubrirá las posibles penalizaciones derivadas de una posible avería, mala instalación o "mal uso" del equipo. En consecuencia, la garantía no es aplicable a las averías producidas en los siguientes casos.

- Por sobretensiones y/o perturbaciones eléctricas en el suministro.
- Por agua, si el producto no tiene la clasificación IP apropiada.
- Por exponer al equipo a temperaturas extremas, que superen el límite de temperatura de funcionamiento o almacenaje.
- Por una modificación del producto por parte del cliente sin previo aviso a Satel Spain.

Frente a posibles erratas de la presente hoja técnica, manténgala actualizada.