

Curso Superior de Sistemas para Internet

IFSC Câmpus Garopaba UC - Fundamentos de Sistemas para Internet

Conhecimentos desta aula:
Bases numéricas
Unidades de medida de dados

Bases Numéricas

Objetivos

- Reconhecer a utilidade das bases numéricas em tecnologia da informação;
- Quantificar e converter bases numéricas (binária, octal, decimal e hexadecimal);
- Reconhecer unidades de medidas importantes para Sistemas para Internet.

Bases numéricas na computação

- Na computação, diferentes bases numéricas são utilizadas apresentadas o tempo todo, mesmo em nível de usuário; Exemplos:
 - Como você gerencia suas unidades de armazenamento, como HDs e pendrives?
 - Como você determina a velocidade de sua internet?
 - E a cor #FF0000?

```
#660099 #6600CC #6600FF #66330
 #33FF33 #33FF66 #33FF99
 #6633FF #666600 #666633 #66666
  #669933 #669966 #669999 #6699
36 #66CC99 #00FF00) #66CCCC #66C
99 #66FFCC #66FFFF #990000 #9C
FF #993300 #993333 #993366 #C
    #996666 #996699 #9966CC #
          ac #9999FF #99CC00
```


Bases numéricas

O nome de uma base numérica representa a quantidade de símbolos utilizados para demonstrar ou representar um número ou contagem.

Base	Símbolos
Decimal	0, 1, 2, 3, 4, 5, 6, 7, 8 e 9
Octal	0, 1, 2, 3, 4, 5, 6 e 7
Binário	0 e 1
Hexadecimal	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E e F

Equivalências

$$25 = 31_8$$

$$25 = 19_{16}$$

A representação não decimal é indicada ao lado em subscrito.

Binário

Um computador trabalha com bits, que é uma representação binária como um interruptor, ligado ou desligado, 0 ou 1, verdadeiro ou falso.

Sistemas binários são utilizados pelo processamento do computador,

Octal e Hexadecimal

- O sistema octal já foi muito utilizado na informática devido a sua simplicidade de representar bits, ou seja, um sistema binário;
- 3 dígitos binários eram substituídos por 1 octal, já que o valor máximo de 3 dígitos binários é 111, ou seja, 7, que é o número máximo de um dígito na base octal;
- O octal, assim como hexadecimal, você consegue um aproveitamento ótimo de representações.
 - \circ (1111 = 15 = F)
 - 1 Byte é uma combinação de 8 bits (11111111), o que em hexadeximal é FF e em decimal é 255.

Hexadecimal

Computadores também utilizam o sistema hexadecimal para endereçamento, embora façam cálculos em binário.

Hexadecimal

Cores na informática podem ser representadas de diversas formas, como RGB (Red, Green, Blue), RGBA (Red, Green, Blue, Alpha), HSL (Hue, Saturation, Lightness) e Hexadecimal.

RGB utiliza uma escala decimal de 0 a 255 para cada cor.

O formato hexadecimal é uma forma simplificada, mais curta e muito utilizada em programação web.

Hexadecimal

As cores geralmente aparecem no formato de 6 dígitos, sendo 2 para red, 2 para green e 2 para blue.

Você consegue imagina o que representam, em termos de cores, os números abaixo?

#FF0000 #0000FF #FF00FF

#FFFFF #000000 #555555

Conversão decimal para binário

Para converter de decimal para binário, devemos realizar divisões consecutivas, dividindo o número da base decimal por 2 até que não seja mais divisível ao final.

Conversão binário para decimal

Para converter de binário para decimal, precisamos multiplicar cada símbolo do número binário por 2 elevado à sua posição da esquerda para a direita, iniciando em zero sempre.

32+0+0+0+2+0 = 34

Decimal para Hexadecimal

Decimal	Hexa				
8	8				
9	9				
10	А				
11	В				
12	С				
13	D				
14	E				
15	F				

Hexadecimal para decimal

F 3 C

$$16^{\circ}$$
 1 x 12 = **12**

Decimal	Hexa
8	8
9	9
10	А
11	В
12	С
13	D
14	E
15	F

Treinando...

- Qual o valor da cor rgb(255, 255, 255) em hexadecimal?
- Qual o valor da cor #000000 em rgb?
- Qual o valor da cor rgb(255,192,203) em hexadecimal?
- Qual o nome desta cor?
- Em que ano estamos em binário?

Unidades de Medida de Dados

Unidades de medida... conceito de bit

- Já vimos anteriormente que a identificação da informação computacional se baseia em dois estados... 0 ou 1
 - Poderíamos comparar a uma lâmpada acesa ou desligada
 - Também podemos equiparar a corrente elétrica
 - O nome bit vem da abreviatura de *binary* digit
 - ele representa a menor porção de informação

Bytes e o armazenamento das informações

- Cada elemento possível de ser armazenado na memória do computador fica em um local fixo
 - recebe um endereçamento específico e identificável
 - desta forma é possível buscá-lo sempre que possível
 - a memória computacional funciona como um conjunto destes endereços
- O Byte representa a unidade básica da informação
 - um caractere é composto por 8 bits contíguos
 - pode ser uma letra, um algarismo, um símbolo
 - o pode usar todos os bits ou parte deles

Bytes e o armazenamento das informaçõ

- A convenção de criação do Byte surgiu através da IBM
 - o Em 1960 foi criado o código EBCDIC (Extended Binary Coded Decimal Interchange Code
 - consiste em uma codificação de 8 bits derivada do código BCD (Binary coded decimal)
 - Desta forma são utilizados pela primeira vez a notação de 8 bits -> 1 byte para codificar um estado
 - Esta convenção representa a primeira tentativa de normalização em paralelo com a normalização ASCII, criado a partir de 1961 utilizado ainda até hoje e que acabam sendo substituídos pelos padrões UNICODE
 - desta forma um único estado tem a possibilidade de codificar 256 estados diferentes.
 - os padrões UNICODE permitem representar e manipular de forma consistente o texto de qualquer sistema de escrita existente.

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
2D3	0	Θ	\oplus	X	X	X	I.	Λ	V	Ε	Э	0	Н	K	:	K
2D4	Φ	Ø	:	X	Н	Ж	::	\mathbb{Z}		≶	I	χ	#	H		Т
2D5	#	Ţ	3	0	0	Q	Y	:	::	0	Ø	C	+	Χ	€	E
2D6	Δ	Ш	5	\mathbb{X}	1	\mathbb{X}										П
2D7																

E qual é o tamanho da memória?

DDR Memory

- A memória principal dos computadores armazena temporariamente as informações
 - mantém o sistema operacional, os programas em uso e os dados de processamento necessários a cada momento
 - o tamanho dessa memória é um indicador de capacidade do computador, quanto maior mais informações poderá armazenar
- Em tempos e armazenamento remoto, lembre-se que a informação sempre ficará em alguma memória.... no seu computador ou em algum outro, ou ambos.

E qual é o tamanho da memória?

- Resumidamente, temos as unidades de medida de tamanho atualmente existentes são:
 - o bit
 - o Byte
 - KiloByte ou KB
 - MegaByte ou MB
 - GigaByte ou GB
 - TeraByte ou TB
 - PetaByte ou PB
 - ExaByte ou EX
 - ZettaByte ou ZB
 - YottaByte ou YB
 - Suas grandezas, a partir do KB estão convencionadas 1:1024, baseando-se nos prefixos binários

DDR Memory

Detalhando melhor para adequar às convenções...

1 byte	1	8 bits
1 Kilobyte (KB)	1.024	1024 bytes
1 Megabyte (MB)	1.048.576	1024 KB
1 Gigabyte (GB)	1.073.741.824	1024 MB
1 Terabyte (TB)	1.099.511.627.776	1024 GB

Como funciona a transferência dos dados na Internet?

- É importante sabermos o quanto trafegamos ou podemos trafegar de dados na internet
 - Consiste no número médio de bits, caracteres ou blocos convertidos ou processados por unidade de tempo em um equipamento de dados
 - Diversos profissionais necessitam medir e estimar taxas de transferência de dados
 - medir ou dimensionar a eficiência em sistemas
 - estimar tempo ou quantitativos de tráfego
 - Utiliza-se a nomenclatura bit rate

Unidades de medida para a Internet

Velocidade da conexão de internet

- O que significa ter um plano de internet de 200 mega? Refere-se a velocidade de transferência por segundo.
- Será que você consegue baixar 200MB por segundo?

Velocidade da conexão de internet

- 200 mega na realidade significa
 200mbps, mega bits por segundo
- Utilizando nossa tabela de conversão, podemos dizer que 200mbps são 25MBps ou 25.600KBps
- Atenção: muitas empresas e fabricantes utilizam a base 1000 e não 1024, como fabricantes de HD, o que gera alguma confusão e tabelas diferentes.

1 byte	1	8 bits
1 Kilobyte (KB)	1.024	1024 bytes
1 Megabyte (MB)	1.048.576	1024 KB
1 Gigabyte (GB)	1.073.741.824	1024 MB
1 Terabyte (TB)	1.099.511.627.776	1024 GB

Taxa de transferência de dados (download)

- Como arquivos são medidos geralmente a partir de KiloBytes, é comum que as taxas de transferência adotem Kilobytes por segundo, ou Kbps
 - 1 Byte = 8 bits
 - 1KiloByte = 1024 bytes
 - 1MegaByte = 1024 kilobytes

Taxa de transferência de dados

 Desta forma, se utilizamos um outro exemplo de conexão doméstica de 10Mbps, quanto ficaria a taxa de transferência em Kilobytes?

- o 10Mbits/8 = 1,25MB
- o 1,25 x 1024 = 1280KB

Ou

- 0.00 10Mbits = 1MB
- o 1MB * 1000 = 1000KB

Pesquisa

- Qual o valor de transferência das conexões 3g e 4g (telefonia móvel)
- Qual o valor média de conexão de uma internet residencial de upload e download?
- Quantos KB por segundo um modem 33600bps da época da internet discada conseguiria utilizando sua capacidade máxima?

Vamos praticar... Tempo de transferência

- Você fez uma página web contendo uma galeria de 40 fotos que fotografou utilizando seu celular, sem nenhuma edição posterior.
- Quanto tempo levará para um usuário abrir completamente seu site utilizando conexões:
 - 2g
 - 3g
 - 49

Vamos praticar... Tempo de transferência

- O seu servidor web possui limite de banda de 100mbps.
- Considerando que ele possua 30
 usuários acessando ao mesmo tempo,
 quanto tempo cada usuário levará para
 baixar completamente esta mesma
 página utilizando uma conexão:
 - 1mbps
 - 5mbps
 - 100mbps

Vamos praticar... Tempo de download

- Outros exemplos para praticar...
 - Filme de 4GB para ser transferido
 - Conexão de 10Mb/s
 - Conexão de 100Mb/s
 - Quanto tempo leva para transferir?
 - Imagem de disco de 12GB para ser transferida
 - Conexão de 200Mb/s
 - Calcule o tempo de download
 - Sincronização de fotos do google Photos com tamanho de 40Gb
 - Conexão de 5Mb
 - Calcule o tempo de finalização do processo....

