Les méthodes de descente

Guillaume TOCHON

Laboratoire de Recherche de l'EPITA

Rappels sur la géométrie du gradient

Dans toute la suite, on se donne une fonction $f: \mathbb{R}^n \to \mathbb{R}$

- supposée différentiable
- pas nécessairement convexe (mais on appréciera particulièrement celles qui le sont...)
- dont on cherche un minimiseur : $\mathbf{x}^{\star} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$ et $f^{\star} = f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$

Rappels sur la géométrie du gradient

Dans toute la suite, on se donne une fonction $f: \mathbb{R}^n \to \mathbb{R}$

- supposée différentiable
- pas nécessairement convexe (mais on appréciera particulièrement celles qui le sont...)
- dont on cherche un minimiseur : $\mathbf{x}^* = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$ et $f^* = f(\mathbf{x}^*) = \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$

Si f est convexe:

 $\rightarrow \boxed{\nabla f(\mathbf{x}^*) = \mathbf{0} \Leftrightarrow \mathbf{x}^* \text{ minimum global}} \Rightarrow \text{le minimiseur est un point critique de } f$ Si f n'est pas convexe, cette garantie ne tient plus :

 $ightarrow
abla f(\mathbf{x}^{\star}) = \mathbf{0} \Leftrightarrow \mathbf{x}^{\star}$ est un extremum (minimum ou maximum) local (donc pas nécessairement global) ou un point selle.

Rappels sur la géométrie du gradient

Dans toute la suite, on se donne une fonction $f: \mathbb{R}^n \to \mathbb{R}$

- supposée différentiable
- pas nécessairement convexe (mais on appréciera particulièrement celles qui le sont...)
- dont on cherche un minimiseur : $\mathbf{x}^* = \underset{\mathbf{x} \in \mathbb{R}^n}{\arg\min} f(\mathbf{x})$ et $f^* = f(\mathbf{x}^*) = \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$

Si f est convexe:

 $\rightarrow \nabla f(\mathbf{x}^*) = \mathbf{0} \Leftrightarrow \mathbf{x}^*$ minimum global \Rightarrow le minimiseur est un point critique de f Si f n'est pas convexe, cette garantie ne tient plus :

 $ightarrow
abla f(\mathbf{x}^{\star}) = \mathbf{0} \Leftrightarrow \mathbf{x}^{\star}$ est un extremum (minimum ou maximum) local (donc pas nécessairement global) ou un point selle.

Mais en un point x donné, $\nabla f(x)$ pointe dans la direction de plus forte pente montante

- ightarrow faire un petit pas à l'opposée de $\nabla f(\mathbf{x})$ doit permettre de faire décroître la valeur de f.
- ightarrow si \mathbf{d}_k est une direction opposée à $\nabla f(\mathbf{x}_k)$ et η_k un petit pas, on peut construire $\mathbf{x}_{k+1} = \mathbf{x}_k + \eta_k \mathbf{d}_k$ tel que $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$
- → chaque itération de cette procédure fait décroître la valeur de f, on peut espérer atteindre un minimum (à minima local).

G. TOCHON (LRE)

Procédure générale d'une méthode de descente

Étant donnée une fonction $f:\mathbb{R}^n \to \mathbb{R}$ différentiable dont on cherche un minimiseur :

Algorithme : Procédure générale d'une méthode de descente

Entrée : Point de départ $\mathbf{x}_0 \in \mathbb{R}^n$

tant que critère d'arrêt non satisfait faire

- \rightarrow calcul d'une direction de descente \mathbf{d}_k
- \rightarrow calcul d'un pas de descente "acceptable" $\eta_k > 0$ dans la direction \mathbf{d}_k
- ightarrow calcul du nouvel itéré $\mathbf{x}_{k+1} = \mathbf{x}_k + \eta_k \mathbf{d}_k$

fin

Sortie: Minimum global x* (du moins, on l'espère 🔞)

Procédure générale d'une méthode de descente

Étant donnée une fonction $f:\mathbb{R}^n o \mathbb{R}$ différentiable dont on cherche un minimiseur :

Algorithme : Procédure générale d'une méthode de descente

Entrée : Point de départ $\mathbf{x}_0 \in \mathbb{R}^n$

tant que critère d'arrêt non satisfait faire

- \rightarrow calcul d'une direction de descente \mathbf{d}_k
- \rightarrow calcul d'un pas de descente "acceptable" $\eta_k > 0$ dans la direction \mathbf{d}_k
- ightarrow calcul du nouvel itéré $\mathbf{x}_{k+1} = \mathbf{x}_k + \eta_k \mathbf{d}_k$

fin

Sortie: Minimum global x* (du moins, on l'espère 🔞)

Évidemment, cette procédure vient avec son lot de questions, parmi lesquelles :

- \rightarrow Comment choisir la condition initiale x_0 ?
- \rightarrow Comment choisir la direction de descente \mathbf{d}_k ?
- \rightarrow Comment choisir un pas de descente acceptable η_k ?
- → Comment choisir le critère d'arrêt ?
- → Comment garantir la convergence de la méthode ?

La question qui vaut chère 💰 💰

Si f est convexe:

Les facteurs critiques pour garantir la convergence sont la direction de descente \mathbf{d}_k et le pas de descente η_k

- \rightarrow s'ils sont bien choisis, alors l'impact de \mathbf{x}_0 est limité
- limité, mais pas nul pour autant... (cf plus loin)

La question qui vaut chère 💰 💰

Si f est convexe:

Les facteurs critiques pour garantir la convergence sont la direction de descente \mathbf{d}_k et le pas de descente η_k

- \rightarrow s'ils sont bien choisis, alors l'impact de \mathbf{x}_0 est limité
- → limité, mais pas nul pour autant... (cf plus loin)

Si f n'est pas convexe :

On peut, dans certains cas, écrire des résultats de convergence, mais vers quoi ?

La question qui vaut chère 💰 💰

Si f est convexe:

Les facteurs critiques pour garantir la convergence sont la direction de descente \mathbf{d}_k et le pas de descente η_k

- \rightarrow s'ils sont bien choisis, alors l'impact de \mathbf{x}_0 est limité
- → limité, mais pas nul pour autant... (cf plus loin)

Si f n'est pas convexe :

On peut, dans certains cas, écrire des résultats de convergence, mais vers quoi ?

- \rightarrow impact de \mathbf{x}_0 sur la position du minimum local atteint ?
- \rightarrow choix de \mathbf{x}_0 pour trouver le meilleur minimum local ?

La question qui vaut chère 💰 💰

Si f est convexe:

Les facteurs critiques pour garantir la convergence sont la direction de descente \mathbf{d}_k et le pas de descente η_k

- \rightarrow s'ils sont bien choisis, alors l'impact de \mathbf{x}_0 est limité
- → limité, mais pas nul pour autant... (cf plus loin)

Si f n'est pas convexe :

On peut, dans certains cas, écrire des résultats de convergence, mais vers quoi ?

- \rightarrow impact de \mathbf{x}_0 sur la position du minimum local atteint ?
- \rightarrow choix de \mathbf{x}_0 pour trouver le meilleur minimum local ?

- ⇒ Utilisation d'heuristiques telles que de multiples initialisations aléatoires ou méthodes de descente accélérées
- ⇒ ou simplement accepter le fait que la solution sera potentiellement sous-optimale.

G. TOCHON (LRE) OCVX1 4 / 17

Restriction de f le long d'un axe

La définition d'une direction de descente \mathbf{d} à partir d'un point \mathbf{x} donné nécessite d'évaluer le comportement de f lorsqu'on évolue "proche" de \mathbf{x} , selon l'axe engendré par \mathbf{d} :

Restriction de f le long d'un axe

La définition d'une direction de descente \mathbf{d} à partir d'un point \mathbf{x} donné nécessite d'évaluer le comportement de f lorsqu'on évolue "proche" de \mathbf{x} , selon l'axe engendré par \mathbf{d} :

 \rightarrow Définition (paramétrique) de la droite $\mathcal{D}_{\mathbf{x},\mathbf{d}}$ passant par \mathbf{x} et de vecteur directeur \mathbf{d} : $\mathcal{D}_{\mathbf{x},\mathbf{d}} = \{x + t\mathbf{d}, t \in \mathbb{R}\}.$

G. TOCHON (LRE) OCVX1 5/17

Restriction de f le long d'un axe

La définition d'une direction de descente \mathbf{d} à partir d'un point \mathbf{x} donné nécessite d'évaluer le comportement de f lorsqu'on évolue "proche" de \mathbf{x} , selon l'axe engendré par \mathbf{d} :

- ightarrow Définition (paramétrique) de la droite $\mathcal{D}_{\mathbf{x},\mathbf{d}}$ passant par \mathbf{x} et de vecteur directeur \mathbf{d} : $\mathcal{D}_{\mathbf{x},\mathbf{d}} = \{x + t\mathbf{d}, t \in \mathbb{R}\}.$
- \rightarrow Définition de la fonction $\varphi: t \mapsto f(\mathbf{x} + t\mathbf{d})$ comme restriction de $f \ni \mathcal{D}_{\mathbf{x},\mathbf{d}}$.

Restriction de f le long d'un axe

La définition d'une direction de descente \mathbf{d} à partir d'un point \mathbf{x} donné nécessite d'évaluer le comportement de f lorsqu'on évolue "proche" de \mathbf{x} , selon l'axe engendré par \mathbf{d} :

- \rightarrow Définition (paramétrique) de la droite $\mathcal{D}_{\mathbf{x},\mathbf{d}}$ passant par \mathbf{x} et de vecteur directeur \mathbf{d} : $\mathcal{D}_{\mathbf{x},\mathbf{d}} = \{x + t\mathbf{d}, t \in \mathbb{R}\}.$
- \rightarrow Définition de la fonction $\varphi: t \mapsto f(\mathbf{x} + t\mathbf{d})$ comme restriction de $f \ à \mathcal{D}_{\mathbf{x},\mathbf{d}}$.

Rappels sur la dérivée directionnelle

Dérivée directionnelle

On appelle dérivée directionnelle de f en x selon le vecteur $\mathbf{d} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ la dérivée en 0, si elle existe, de la fonction $\varphi(t) = f(\mathbf{x} + t\mathbf{d})$: $D_{\mathbf{d}}f(\mathbf{x}) = \varphi'(0) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{d}) - f(\mathbf{x})}{t}$

$$D_{\mathbf{d}}f(\mathbf{x}) = \varphi'(0) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{d}) - f(\mathbf{x})}{t}$$

Rappels sur la dérivée directionnelle

Dérivée directionnelle

On appelle dérivée directionnelle de f en x selon le vecteur $\mathbf{d} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ la dérivée en 0, si elle existe, de la fonction $\varphi(t) = f(\mathbf{x} + t\mathbf{d})$: $D_{\mathbf{d}}f(\mathbf{x}) = \varphi'(0) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{d}) - f(\mathbf{x})}{t}$

$$D_{\mathbf{d}}f(\mathbf{x}) = \varphi'(0) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{d}) - f(\mathbf{x})}{t}$$

- \rightarrow si $\|\mathbf{d}\| = 1$, on parle de dérivée dans la direction de **d**
- \rightarrow si $D_{\mathbf{d}}f(\mathbf{x})$ existe, alors $D_{\alpha\mathbf{d}}f(\mathbf{x})$ existe et $D_{\alpha\mathbf{d}}f(\mathbf{x})=\alpha D_{\mathbf{d}}f(\mathbf{x})$ pour $\alpha\in\mathbb{R}$
- $ightarrow \ D_{\mathbf{e}_i}f(\mathbf{x})=rac{\partial f}{\partial \mathbf{x}_i}(\mathbf{x})$: dérivée dans la direction du vecteur de la base canonique \mathbf{e}_i

Rappels sur la dérivée directionnelle

Dérivée directionnelle

On appelle dérivée directionnelle de f en x selon le vecteur $\mathbf{d} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ la dérivée en 0, si elle existe, de la fonction $\varphi(t) = f(\mathbf{x} + t\mathbf{d})$: $D_{\mathbf{d}}f(\mathbf{x}) = \varphi'(0) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{d}) - f(\mathbf{x})}{t}$

$$D_{\mathbf{d}}f(\mathbf{x}) = \varphi'(0) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{d}) - f(\mathbf{x})}{t}$$

- \rightarrow si $\|\mathbf{d}\| = 1$, on parle de dérivée dans la direction de **d**
- \rightarrow si $D_{\mathbf{d}}f(\mathbf{x})$ existe, alors $D_{\alpha\mathbf{d}}f(\mathbf{x})$ existe et $D_{\alpha\mathbf{d}}f(\mathbf{x})=\alpha D_{\mathbf{d}}f(\mathbf{x})$ pour $\alpha\in\mathbb{R}$
- $ightarrow D_{\mathbf{e}_i}f(\mathbf{x})=rac{\partial f}{\partial \mathbf{x}_i}(\mathbf{x})$: dérivée dans la direction du vecteur de la base canonique \mathbf{e}_i
- \rightarrow si f est différentiable en x, de différentielle df_x , alors f admet une dérivée directionnelle dans toute direction **d** et $D_{\mathbf{d}}f(\mathbf{x}) = df_{\mathbf{x}}(\mathbf{d}) = \nabla f(\mathbf{x})^{T}\mathbf{d}$

G. Tochon (LRE) OCVX1 6 / 17

Rappels sur la dérivée directionnelle

Dérivée directionnelle

On appelle *dérivée directionnelle* de f en \mathbf{x} selon le vecteur $\mathbf{d} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ la dérivée en 0, si elle existe, de la fonction $\varphi(t) = f(\mathbf{x} + t\mathbf{d})$:

si elle existe, de la fonction
$$\varphi(t) = f(\mathbf{x} + t\mathbf{d})$$
:
$$D_{\mathbf{d}}f(\mathbf{x}) = \varphi'(0) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{d}) - f(\mathbf{x})}{t}$$

- \rightarrow si $\|\mathbf{d}\| = 1$, on parle de dérivée dans la direction de \mathbf{d}
- ightarrow si $D_{\mathbf{d}}f(\mathbf{x})$ existe, alors $D_{\alpha\mathbf{d}}f(\mathbf{x})$ existe et $D_{\alpha\mathbf{d}}f(\mathbf{x})=\alpha D_{\mathbf{d}}f(\mathbf{x})$ pour $\alpha\in\mathbb{R}$
- $\rightarrow D_{\mathbf{e}_i}f(\mathbf{x}) = \frac{\partial f}{\partial \mathbf{x}_i}(\mathbf{x})$: dérivée dans la direction du vecteur de la base canonique \mathbf{e}_i
- \rightarrow si f est différentiable en \mathbf{x} , de différentielle $df_{\mathbf{x}}$, alors f admet une dérivée directionnelle dans toute direction \mathbf{d} et $D_{\mathbf{d}}f(\mathbf{x}) = df_{\mathbf{x}}(\mathbf{d}) = \nabla f(\mathbf{x})^T \mathbf{d}$

$$f(\mathbf{x}) = x_1^2 + x_1 x_2 + x_2^2 \to \nabla f(\mathbf{x}) = \begin{pmatrix} 2x_1 + x_2 \\ 2x_2 + x_1 \end{pmatrix}$$

En $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ selon $\mathbf{d} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$:
$$D_{\mathbf{d}} f(\mathbf{x}) = \nabla f(\mathbf{x})^T \mathbf{d} = -6$$

Direction de descente

On dit que $\mathbf{d} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ est une direction de descente en \mathbf{x} si $\varphi : t \mapsto f(\mathbf{x} + t\mathbf{d})$ est strictement décroissante au voisinage de 0, c'est-à-dire $\varphi'(\mathbf{0}) = D_{\mathbf{d}}f(\mathbf{x}) < 0$

Direction de descente

On dit que $\mathbf{d} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ est une direction de descente en \mathbf{x} si $\varphi : t \mapsto f(\mathbf{x} + t\mathbf{d})$ est strictement décroissante au voisinage de 0, c'est-à-dire $\varphi'(\mathbf{0}) = D_{\mathbf{d}}f(\mathbf{x}) < 0$

- \rightarrow II existe c > 0 tel que $\forall t \in [0, c[, f(\mathbf{x} + t\mathbf{d}) < f(\mathbf{x})]$
- \rightarrow Si $\nabla f(\mathbf{x}) \neq \mathbf{0}$, **d** est une direction de descente en \mathbf{x} si et seulement si $\nabla f(\mathbf{x})^T \mathbf{d} < 0$

Direction de descente

On dit que $\mathbf{d} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ est une direction de descente en \mathbf{x} si $\varphi: t \mapsto f(\mathbf{x} + t\mathbf{d})$ est strictement décroissante au voisinage de 0, c'est-à-dire $\varphi'(0) = D_\mathbf{d}f(\mathbf{x}) < 0$

- \rightarrow II existe c > 0 tel que $\forall t \in [0, c[, f(\mathbf{x} + t\mathbf{d}) < f(\mathbf{x})]$
- \rightarrow Si $\nabla f(\mathbf{x}) \neq \mathbf{0}$, **d** est une direction de descente en \mathbf{x} si et seulement si $\nabla f(\mathbf{x})^T \mathbf{d} < 0$

 $\begin{aligned} & \mathbf{d} = -\nabla f(\mathbf{x}) \text{ donne bien une direction de descente}: \\ & \rightarrow \nabla f(\mathbf{x})^T \mathbf{d} = \nabla f(\mathbf{x})^T (-\nabla f(\mathbf{x})) = -\|\nabla f(\mathbf{x})\|^2 < 0 \end{aligned}$

C'est même la direction de plus forte pente !

Conditions d'optimalité d'un point

L'objectif d'une méthode de descente est de s'approcher itérativement d'un point *optimal* (minimum local)

Conditions d'optimalité (cas général)

f admet un minimum local en un point \mathbf{x}^* si

- 1. $\nabla f(\mathbf{x}^*) = 0 \Leftrightarrow \mathbf{x}^*$ est un point critique (condition d'optimalité du 1er ordre)
- 2. $\mathbf{H}_f(\mathbf{x}^*) \succ \mathbf{0} \Leftrightarrow \mathsf{La}$ hessienne de f en \mathbf{x}^* est définie positive (condition d'optimalité du 2nd ordre)

Apport de la convexité

Si f est convexe

- \rightarrow $\mathbf{H}_f(\mathbf{x}) \succeq \mathbf{0}$ pour tout point $\mathbf{x} \in \mathbb{R}^n$ (caractérisation à l'ordre 2 de la convexité)
- $f(\mathbf{x}) \geq f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T (\mathbf{x} \mathbf{x}^*) = f(\mathbf{x}^*)$ (caractérisation à l'ordre 1 de la convexité)
- \Rightarrow Tout point critique \mathbf{x}^* de f est un minimum global

Le but du critère d'arrêt est de permettre à l'algorithme de descente de s'arrêter en un point \mathbf{x}_k suffisamment proche d'un minimum local (ou global) \mathbf{x}^*

tant que critère d'arrêt non satisfait faire

 \rightarrow itération de descente **fin**

Le but du critère d'arrêt est de permettre à l'algorithme de descente de s'arrêter en un point \mathbf{x}_k suffisamment proche d'un minimum local (ou global) \mathbf{x}^*

tant que critère d'arrêt non satisfait faire

ightarrow itération de descente

fin

Critère d'arrêt naturel : $\|\nabla f(\mathbf{x}_k)\| \leq \varepsilon$ (condition d'optimalité du 1er ordre)

 $\stackrel{L}{\rightarrow}$ À priori suffisant si f est convexe.

 \P Nécessite de tester si la hessienne $\mathbf{H}_f(\mathbf{x}_k)$ est définie positive sinon.

Le but du critère d'arrêt est de permettre à l'algorithme de descente de s'arrêter en un point x_k suffisamment proche d'un minimum local (ou global) x^*

tant que critère d'arrêt non satisfait faire

→ itération de descente

fin

Critère d'arrêt naturel : $\|\nabla f(\mathbf{x}_k)\| \leq \varepsilon$ (condition d'optimalité du 1er ordre)

- $\stackrel{\wedge}{=}$ À priori suffisant si f est convexe.
- \P Nécessite de tester si la hessienne $\mathbf{H}_f(\mathbf{x}_k)$ est définie positive sinon.

Autres critères d'arrêt possibles :

- limite du nombre d'itérations : k < MAXITER

Le but du critère d'arrêt est de permettre à l'algorithme de descente de s'arrêter en un point x_k suffisamment proche d'un minimum local (ou global) x^*

tant que critère d'arrêt non satisfait faire

→ itération de descente

fin

Critère d'arrêt naturel : $\|\nabla f(\mathbf{x}_k)\| \leq \varepsilon$ (condition d'optimalité du 1er ordre)

- $\stackrel{\wedge}{=}$ À priori suffisant si f est convexe.
- \P Nécessite de tester si la hessienne $\mathbf{H}_f(\mathbf{x}_k)$ est définie positive sinon.

Autres critères d'arrêt possibles :

- \rightarrow limite du nombre d'itérations : k < MAXITER

En général : limite du nombre d'itérations + test d'optimalité ou stagnation (early stopping)

 \Rightarrow introduction d'hyperparamètres supplémentaires MAXITER et tolérance ε ...

Descente de gradient à pas constant

Algorithme : Descente de gradient à pas constant

Entrée : Point de départ $\mathbf{x}_0 \in \mathbb{R}^n$, pas de descente η tant que *critère* d'arrêt non satisfait faire

$$\mathbf{d}_k = -\nabla f(\mathbf{x}_k)$$

 $\eta_k = \eta$
 $\mathbf{x}_{k+1} = \mathbf{x}_k + \eta_k \mathbf{d}_k$

Algorithme : Descente de gradient à pas optimal

Entrée : Point de départ $\mathbf{x}_0 \in \mathbb{R}^n$

tant que critère d'arrêt non satisfait faire

$$\begin{aligned} \mathbf{d}_k &= -\nabla f(\mathbf{x}_k) \\ \eta_k &= \min_{\eta \in \mathbb{R}^+_*} f(\mathbf{x}_k - \eta \nabla f(\mathbf{x}_k)) \\ \mathbf{x}_{k+1} &= \mathbf{x}_k + \eta_k \mathbf{d}_k \end{aligned}$$

Algorithme: Descente avec critère d'Armijo

```
Entrée : Point de départ \mathbf{x}_0 \in \mathbb{R}^n, \alpha \in ]0, \frac{1}{2}[, \beta \in ]0, \frac{1}{2}[ tant que critère d'arrêt non satisfait faire \mathbf{d}_k = \text{direction de descente} \qquad \qquad \text{pas nécessairement } \mathbf{d}_k = -\nabla f(\mathbf{x}_k) \eta = 1 tant que f(\mathbf{x}_k + \eta \mathbf{d}_k) > f(\mathbf{x}_k) + \alpha \eta \nabla f(\mathbf{x}_k)^T \mathbf{d}_k faire  | \quad \eta = \beta \eta  fin  \eta_k = \eta
```

fin

 $\mathbf{x}_{k+1} = \mathbf{x}_k + \eta_k \mathbf{d}_k$

ightarrow Si $\mathbf{d}_k = -
abla f(\mathbf{x}_k)$, on parle de descente de gradient avec critère d'Armijo.

On utilise typiquement 0.1 $\leq \alpha \leq$ 0.3 et 0.2 $\leq \beta \leq$ 0.8

G. TOCHON (LRE) OCVX1 12/17

Algorithme: Descente avec momentum

Entrée : Point de départ $\mathbf{x}_0 \in \mathbb{R}^n$, $\alpha \in]0,1[$, pas de descente η $\mathbf{v}_0 = 0$

tant que critère d'arrêt non satisfait faire

$$\mathbf{v}_{k+1} = \alpha \mathbf{v}_k - \eta \nabla f(\mathbf{x}_k)$$
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{v}_{k+1}$$

fin

Algorithme : Accélération de Nesterov

Entrée : Point de départ $\mathbf{x}_0 \in \mathbb{R}^n$, $\alpha \in]0,1[$, pas de descente η $\mathbf{v}_0 = 0$

tant que critère d'arrêt non satisfait faire

$$\mathbf{y}_{k} = \mathbf{x}_{k} + \mathbf{v}_{k}$$
 $\mathbf{v}_{k+1} = \alpha \mathbf{v}_{k} - \eta \nabla f(\mathbf{y}_{k})$
 $\mathbf{x}_{k+1} = \mathbf{x}_{k} + \mathbf{v}_{k+1}$

Dans le cas où
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} - \mathbf{b}^T \mathbf{x}$$
 avec $\mathbf{A} \in \mathbb{R}^{n \times n}$ symétrique définie positive

Algorithme : Gradient conjugué - cas quadratique

Entrée : Point de départ
$$\mathbf{x}_0 \in \mathbb{R}^n$$
 pour $k = 0, \dots, n-1$ faire

$$\mathbf{g}_k = \nabla f(\mathbf{x}_k) = \mathbf{A}\mathbf{x}_k - \mathbf{b}$$

si
$$k = 0$$
 alors

$$\mathbf{d}_k = -\mathbf{g}_k$$

$$| \mathbf{a}_k = -\mathbf{g}$$

sinon

$$\beta_k = \frac{\mathbf{g}_k^T \mathbf{g}_k}{\mathbf{g}_{k-1}^T \mathbf{g}_{k-1}}$$
$$\mathbf{d}_k = -\mathbf{g}_k + \beta_k \mathbf{d}_{k-1}$$

coefficient pour $\mathbf{A}-$ conjuguer la nouvelle direction de descente à la précédente

nouvelle direction de descente $\mathbf{A}-$ conjuguée à la précédente $(\mathbf{d}_k^T\mathbf{A}\mathbf{d}_{k-1}=0)$

pas de descente optimal dans le cas quadratique

gradient au point actuel

direction de descente initiale

$$\alpha_k = \frac{\mathbf{g}_k^T \mathbf{g}_k}{\mathbf{d}_k^T \mathbf{A} \mathbf{d}_k}$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$$

Algorithme: Gradient conjugué - cas général

Entrée: Point de départ $\mathbf{x}_0 \in \mathbb{R}^n$, $\alpha \in]0, \frac{1}{2}[, \beta \in]0, \frac{1}{2}[$ tant que critère d'arrêt non satisfait faire

$$\begin{aligned} \mathbf{g}_k &= \nabla f(\mathbf{x}_k) \\ \mathbf{si} \ k &= 0 \ \mathbf{alors} \\ &\mid \ \mathbf{d}_k = -\mathbf{g}_k \\ \mathbf{fin} \\ \mathbf{sinon} \\ &\mid \ \beta_k = \begin{cases} \frac{\mathbf{g}_k^T \mathbf{g}_k}{\mathbf{g}_{k-1}^T \mathbf{g}_{k-1}} \\ \frac{(\mathbf{g}_k - \mathbf{g}_{k-1})^T \mathbf{g}_k}{\mathbf{g}_{k-1}^T \mathbf{g}_{k-1}} \\ \mathbf{d}_k &= -\mathbf{g}_k + \beta_k \mathbf{d}_{k-1} \end{aligned}$$

gradient au point actuel

direction de descente initiale

ои

méthode de Polack-Ribière

pas selon la méthode d'Armijo

méthode de Fletcher-Reeves

 $\alpha_k = ARMIJO(\mathbf{x}_k, \alpha, \beta)$

 $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$

Algorithme : Méthode de Newton

Entrée : Point de départ $\mathbf{x}_0 \in \mathbb{R}^n$

tant que critère d'arrêt non satisfait faire

$$\mathbf{d}_k = -\mathbf{H}_f(\mathbf{x}_k)^{-1} \nabla f(\mathbf{x}_k)$$
 pas de Newton $\lambda(\mathbf{x}_k) = \sqrt{\mathbf{d}_k^T \mathbf{H}_f(\mathbf{x}_k) \mathbf{d}_k} = \sqrt{\nabla f(\mathbf{x}_k)^T \mathbf{H}_f(\mathbf{x}_k)^{-1} \nabla f(\mathbf{x}_k)}$ décrément de Newton $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{d}_k$

fin

Le critère d'arrêt de la méthode de Newton fait en général intervenir le *décrément* de Newton :

ightarrow stagnation du décrément de Newton: $\lambda(\mathbf{x}_k)^2 \leq \varepsilon$

Algorithme: Méthode de quasi-Newton (Broyden-Fletcher-Goldfarb-Shanno)

Entrée : Point de départ $\mathbf{x}_0 \in \mathbb{R}^n$, $\alpha \in]0, \frac{1}{2}[$, $\beta \in]0, \frac{1}{2}[$

 $H_0 = I_n$

tant que critère d'arrêt non satisfait faire

$$\mathbf{d}_k = -\mathbf{H}_k \nabla f(\mathbf{x}_k)$$

approximation du pas de Newton

$$\eta_k = ARMIJO(\mathbf{x}_k, \alpha, \beta)$$

pas selon la méthode d'Armijo

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \eta_k \mathbf{d}_k$$

$$\delta \mathbf{x}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$$

$$\mathbf{y}_k = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$$

$$\mathbf{H}_{k+1} = \left(\mathbf{I}_n - \frac{\delta \mathbf{x}_k \mathbf{y}_k^T}{\mathbf{y}_k^T \delta \mathbf{x}_k}\right) \mathbf{H}_k \left(\mathbf{I}_n - \frac{\mathbf{y}_k \delta \mathbf{x}_k^T}{\mathbf{y}_k^T \delta \mathbf{x}_k}\right) + \frac{\delta \mathbf{x}_k \delta \mathbf{x}_k^T}{\mathbf{y}_k^T \delta \mathbf{x}_k} \quad \textit{mise à jour de l'approximation de } \mathbf{H}_f(\mathbf{x}_{k+1})^{-1}$$