

FINAL EXPANDED SITE INSPECTION AMMUNITION STORAGE AREA

ANNISTON ARMY DEPOT ANNISTON, ALABAMA

Contract Number

DAAA15-90-D-0013

Task Order Number

6

Document Number

THA-35G30600-B6-1910

NOVEMBER 1994

JACOBS ENGINEERING GROUP INC.

1950227 052

REPORT DOCUMENTATION PAGE

Form Approved
CNS No. 0704-0188

Public reporting durating for this collection of information is estimated to allerage. Industry net one for reviewing instructions, searching existing data sources, and making and reviewing the collection of information. Send comments regarding this burden estimate or any other ascert of this gathering and reviewing the collection of information. Send comments regarding this burden expenditures are record, it is a fersion specific and collections are record, it is a fersion specific and collections are record, it is a fersion specific and collections are recorded as a fersion of a collection of a collection and collections.

November 15, 1994 Final (9/92		3. REPORT TYPE AND DATES COVERED Final (9/92 to 11/94)
4. TITLE AND SUBTITLE Final Expanded Site Inspection, Ammunition Storage Area, Anniston Army Depot, Anniston,	Alabama	Contract No. DAAA15-90-D-0013 Task Order No. 6
S. AUTHOR(3)		
Suomela, Kirt D.; Highsmith, Rona Kirchner, Bruce	ald L.; Rapuano, Kenneth F.;	
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)	3. PERFORMING ORGANIZATION REPORT NUMBER
Jacobs Engineering Group Inc. 1212 New York Ave, N.W., Suite Washington, DC 20005	1050	
9. SPONSORING: MONITORING AGENCY	AND ADDRESS(ES)	10. SPONSORING / MONITORING
U.S. Army Environmental Center	· ····································	AGENCY REPORT HORIDER
Aberdeen Proving Ground, Maryla	and 21010	SFIM-AEC-IR-CR-94116
11. SUPPLEMENTARY NOTES		
	•	
S. DISTRIBUTION / AVAILABILITY STATE	TEMENT	126. DISTRIBUTION CODE
Approved for public release; dis	stribution is unlimited	

13. ABSTRACT (Maximum 200 words)

An Expanded Site Inspection (ESI) was conducted at the Anniston Army Depot (ANAD) Ammunition Storage Area (ASA). The objective of this ESI was to gather the information and data necessary to determine whether there is sufficient evidence of any release of contamination that would require additional investigation. The ASA contains 1,300 ammunition storage magazines and an ammunition maintenance workshop complex which includes buildings for maintenance, demilitarization, and inspection of all types of ammunition and their components. Fifteen Solid Waste Management Units (SWMUs) were the focus of the ESI, of which 11 were recommend for further investigation.

The work included a review of historical records, field investigations, laboratory analyses, data interpretation, and report preparation. Contamination from volatile organic compounds and semi volatile organic compounds is not a major problem at the ASA. Arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, silver, vanadium, zinc, explosives, and total petroleum hydrocarbons were detected above control screening values levels in one or more of the media sampled. Nitrate/nitrite and total organic carbon were also detected above control screening values in samples of groundwater, soil, and sediment from a number of SWMUs.

14. SUBJECT TERMS		•	15. NUMBER OF PAGES
Site Inspection, SWMUs, o	control screening values, contami	ination	16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	222 (20v 2.99)

EXECUTIVE SUMMARY

This document presents the results of the Expanded Site Inspection (ESI) conducted at the Anniston Army Depot (ANAD) Ammunition Storage Area (ASA). The objective of this ESI was to gather the information and data necessary to determine whether there is sufficient evidence of any release of contamination that would require additional investigation.

The 15,200 acres comprising the ANAD are located in northeastern Alabama in Calhoun County. The ASA, which occupies over 90% of the site, contains 1,300 ammunition storage magazines and an ammunition maintenance workshop complex which includes buildings for maintenance, demilitarization, and inspection of all types of ammunition and their components.

Fifteen Solid Waste Management Units (SWMUs) have been identified in the ASA, and are the focus of this report. Five SWMUs are currently active. Permits for four of these SWMUs have been applied for as required by the Resource Conservation and Recovery Act (RCRA) for current waste management. The ESI was concerned with identifying potential contamination from past activities.

The ESI was guided by the work plan written by Jacobs Engineering Group Inc. (Jacobs, 1991). The work included a review of historical records, field investigations, laboratory analyses, data interpretation, and report preparation. Field work included geophysical surveys; soil borings; well installations; and collection of groundwater, soil, sediment, and surface water samples. Laboratory analyses of samples were selected based on a review of historical records and potential contaminants were identified at each of the SWMUs from previous site investigations. All field activities, sample management, laboratory analyses and data management activities were conducted in accordance with an approved Health and Safety Plan, and an approved Quality Assurance Program Plan.

Analytical data for each medium were evaluated to select samples believed to be representative of the natural background. Samples evaluated were collected at locations within the ASA expected to be free of contamination.

Contamination from volatile organic compounds and semi-volatile organic compounds is not a problem at the ASA. Arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, silver, vanadium, zinc, explosives, and total petroleum hydrocarbons were detected above control screening values in one or more of the media sampled. Nitrate/nitrite and total organic carbon were also detected above control screening values in samples of groundwater, soil, and sediment from a number of SWMUs.

Analyses of groundwater and surface water samples collected indicate the presence of a number of elements which occur naturally in soil, sediment, and rocks in the area. Specifically, these are aluminum, barium, calcium, cobalt, copper, iron, magnesium, manganese, molybdenum, potassium, and sodium. However, where the reported concentrations of these elements in soil, sediment, groundwater, and surface water samples are above control screening values, they are considered potential contaminants of concern.

High concentrations of explosives are reported to be present in the SWMU #11 leaching bed. Analysis of samples collected from the leaching bed by ANAD safety personnel prior to capping the bed revealed explosives concentrations ranging from 40-80%. However, documentation of this analysis cannot be located and may no longer exist (personal communication, ANAD-RMD).

The recommendations concerning the 15 ESI SWMUs are based on the results of the field investigations, laboratory analysis of environmental samples, and analyses presented in this report. As a result of these efforts, further investigation to confirm and evaluate potential contamination is recommended at the following 11 SWMUs:

- SWMU #5 Sinkhole
- SWMU #8 Acid Disposal Pit
- SWMU #10 TNT Washout Facility
- SWMU #11 TNT Washout Facility Leaching Beds
- SWMU #14 Laundry Waste Leaching Facility
- SWMU #15 Propellant Disposal Facility
- SWMU #18 Old Sewage Treatment Plant
- SWMU #26 North TNT Burial Pit

- SWMU #27 South TNT Burial Pit
- SWMU #35 Deactivation Furnace
- SWMU #37 Vehicle Wash Rack.

No further action is recommended at the following four SWMUs:

- SWMU #16 Burning Ground (subject to future RCRA Corrective Action)
- SWMU #17 Demolition Pit (subject to future RCRA Corrective Action)
- SWMU #34 Chemical Storage Igloos
- SWMU #36 Drill and Transfer System Site.

TABLE OF CONTENTS

Section	า		Page
1.0 INT	RODUCT	ION	. 1-1
1.1	PURPOS	SE	. 1-1
1.2	SCOPE		. 1-1
1.3	ORGAN	IZATION	. 1-2
0.0.017		ROUND	2-1
	E BACKO	CATION AND DESCRIPTION	
2.1	2.1.1	Regional Setting	
	2.1.2	Demography and Land Use	
	2.1.3	ANAD Site Description	
2.2		STORY	
		US INVESTIGATIONS	
		DESCRIPTIONS	2-10
	2.4.1	SWMU #5 — Sinkhole	2-12
	2.4.2	SWMU #8 — Acid Disposal Pit	2-13
	2.4.3	SWMU #10 — TNT Washout Facility	2-13
	2.4.4	SWMU #11 — TNT Washout Facility Leaching Beds	2-14
	2.4.5	SWMU #14 — Laundry Waste Leaching Facility	2-15
	2.4.6	SWMU #15 — Propellant Disposal Facility	2-15
	2.4.7	SWMU #16 — Burning Ground	2-16
	2.4.8	SWMU #17 — Demolition Pit	2-17
	2.4.9	SWMU #18 — Old Sewage Treatment Plant (STP)	2-18
	2.4.10	SWMUs #26 and #27 — North TNT Burial Pit and South TNT Burial Pit	2-19
	2.4.11	SWMU #34 — Chemical Storage Igloos	2-19
	2.4.12	SWMU #35 — Deactivation Furnace	2-20
	2.4.13	SWMU #36 — Drill and Transfer System Site	
	2.4.14	SWMU #37 — Vehicle Wash Rack	2-22
3.0 SIT	E PHYSIC	CAL CHARACTERIZATION	3-1
		GRAPHY	
	3.1.1	Regional Physiography	
	3.1.2	Local Physiography	3-1
	3.1.3	Topography and Drainage	
3.2		AL RESOURCES	
	3.2.1	Regional Natural Resources	
	3.2.2	ANAD Natural Resources	
3.3	ECOLO	GICAL EVALUATION	
		OLOGY/METEOROLOGY	
	3.4.1	Regional Climatology/Meteorology	3-7
	3.4.2	ANAD Climatology/Meteorology	

Sectio	n		Page
3.5	REGION	IAL GEOLOGY AND HYDROLOGY OF THE ANAD AREA	3-8
	3.5.1	Geologic Setting	3-8
	3.5.2	Structural Setting	3-12
	3.5.3	Lithology of Region Around Jacksonville and Pell City Thrust Faults	3-15
		3.5.3.1 Chilhowee Group	3-15
		3.5.3.2 Shady Dolomite	3-16
		3.5.3.3 Rome Formation	3-16
		3.5.3.4 Conasauga Formation	3-16
			3-16
	3.5.4		3-18
3.6	REGION		3-18
	3.6.1		3-19
	3.6.2		3-20
		, ,	
4.0 FIE	LD INVES	STIGATIONS	4-1
4.1	CONDU	CT OF INVESTIGATIONS	4-1
4.2	SPECIA	L SURVEYS	4-2
4.3	SAMPLI	NG AND ANALYSIS	4-2
4.4	QUALIT	Y ASSURANCE	4-3
		IONS AND RESULTS	5-1
		OL SAMPLES	5-1
5.2	ANALY	TIC DATA OVERVIEW	5-8
	5.2.1	Groundwater	5-8
	5.2.2		5-17
	5.2.3		5-18
5.3	FIELD II		5-40
	5.3.1		5-40
			5-40
			5-42
	5.3.2		5-46
			5-47
		•	5-49
			5-50
	5.3.3		5-50
			5-51
		5.3.3.2 Results of Investigation	
	5.3.4	SWMU #11 — TNT Washout Facility Leaching Beds	
		5.3.4.1 Investigative Activities	
		5.3.4.2 Results of Investigation	5-56

Section		Page
5.3.	5 SWMU #14 — Laundry Waste Leaching Facility	5-58
	5.3.5.1 Investigative Activities	5-58
	5.3.5.2 Results of Investigation	5-60
5.3.	6 SWMU #15 — Propellant Disposal Facility	5-61
	5.3.6.1 Investigative Activities	5-61
	5.3.6.2 Results of Investigation	5-63
5.3.	=	5-64
4.5.	5.3.7.1 Investigative Activities	5-64
	5.3.7.2 Results of Investigation	5-66
5.3.	· ·	5-70
	5.3.8.1 Investigative Activities	5-70
	5.3.8.2 Results of Investigation	5-70
5.3.	· · · · · · · · · · · · · · · · · · ·	5-75
5.3.	· · · · · · · · · · · · · · · · · · ·	5-77
	5.3.10.1 Investigative Activities	5-77
	5.3.10.2 Results of Investigation	5-82
5.3.	11 SWMU #34 — Chemical Storage Igloos	5-84
5.3.		5-86
_	5.3.12.1 Investigative Activities	5-86
	5.3.12.2 Results of Investigation	5-86
5.3.	13 SWMU #36 - DRILL AND TRANSFER SITE	5-91
5.3.		5-93
	5.3.14.1 Investigative Activities	5-93
	5.3.14.2 Results of Investigation	5-93
5.3.	15 ANAD Northern Boundary Contamination Screening	5-99
	5.3.15.1 Investigative Activities	5-99
	5.3.15.2 Results of Investigation	5-99
E O NATURI	E AND EXTENT OF CONTAMINATION	6-1
61 911	MMARY OF ANALYTIC RESULTS	6-1
6.1 301	AVIOR AND FATE OF RELEASES	6-3
63 15	SESSMENT OF DETECTED ELEMENTS AND COMPOUNDS	6-3
6.4 CO	NTAMINATION INDICATORS	6-9
65 CO	NCEPTUAL MODEL	6-10
0.5 00	IOPI IOUR MORRE (())	
7.0 COMMU	NITY RELATIONS	7-1

Section		Page
8.1 Gi 8.2 SV 8.3 8.4 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	SWMU #8 — Acid Disposal Pit SWMU #10 — TNT Washout Facility SWMU #11 — TNT Washout Facility Leaching Beds SWMU #14 — Laundry Waste Leaching Facility SWMU #15 — Propellant Disposal Facility SWMU #16 — Burning Ground SWMU #17 — Demolition Pit	8-1 8-2 8-3 8-3 8-4 8-5 8-5 8-6 8-7 8-8 8-9 8-10 8-11 8-11
	LIST OF FIGURES	
Figure		Page
Figure 2-1. Figure 2-2. Figure 2-4. Figure 3-1. Figure 3-3 Figure 3-4 Figure 3-5 Figure 3-6 Figure 3-7	ANAD General Location Map Adjacent Outpost Areas ANAD General Facility Layout Map SWMU Locations in ASA Physiographic Setting Geologic Provinces and Hydrogeologic Models Geologic Profile of the ANAD Vicinity Regional Geologic Structure in Vicinity of ANAD Cross Section — Southwest End of Coldwater Mountain Regional Stratigraphy in Vicinity of ANAD Facility Regional Surface Water Features	2-3 2-6 2-11 3-2 3-9 3-11 3-13 3-14 3-17

Figure	Page Page
Figure 5-11. Figure 5-12. Figure 5-13. Figure 5-14. Figure 5-15. Figure 5-16.	Surface Water Features on ANAD
	LIST OF TABLES
Table	Page
Table 2-1. Table 3-1. Table 5-1. Table 5-2. Table 5-3. Table 5-4. Table 5-5. Table 5-6. Table 5-7. Table 5-8. Table 5-9. Table 5-10. Table 5-11. Table 5-12. Table 5-13.	1990 Land Area and Population Density for Calhoun County, Alabama 2-4 Monthly Rainfall, Temperature & Wind Speed at ANAD 3-7 Groundwater Control Samples 5-3 Subsurface Soil Control Samples 5-5 Surface Soil Control Samples 5-6 Sediment Control Samples 5-7 Groundwater Chemical Data Summary 5-9 Groundwater and Surface Water Parameters Measured During Sample Collection 5-16 Surface Soil Chemical Data Summary 5-20 Subsurface Soil Chemical Data Summary 5-27 Sediment Chemical Data Summary 5-33 SWMU #5 — Data Summary 5-33 SWMU #10 — Data Summary 5-54 SWMU #11 — Data Summary 5-58 SWMU #14 — Data Summary 5-58

Table		Page
Table 5-14 .	SWMU #15 — Data Summary	5-63
	SWMU #16 — Data Summary	
	SWMU #17 — Data Summary	
	SWMU #26 — Data Summary	
Table 5-18.	SWMU #27 — Data Summary	5-81
Table 5-19.	SWMU #35 — Data Summary	5-89
Table 5-20.	SWMU #37 — Data Summary	5-96
Table 5-21.	Northern Boundary Area Samples — Data Summary	5-100

APPENDICES

- Appendix A Aquatic and Terrestrial Species in the Immediate Vicinity of ANAD
- Appendix B Field Boring Logs
- Appendix C Geophysical Survey Reports by UXB and Technos
- Appendix D Deviations from Approved Work Plan and Quality Assurance Program Plan
- Appendix E Data Review and Validation
- Appendix F Surface Soil Data
- Appendix G Subsurface Soil Data
- Appendix H Sediment Data
- Appendix I Surface Water Data
- Appendix J Groundwater Data

ACRONYM LIST

ANAD Anniston Army Depot
ASA Ammunition Storage Area

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CRL Certified Reporting Limit
EM Electromagnetic Method
ESI Expanded Site Inspection
GPR Ground-Penetrating Radar

IRDMIS Installation Restoration Data Management Information System

NGVD National Geodetic Vertical Datum

PCBs Polychlorinated Biphenyls

QA Quality Assurance

QAPP Quality Assurance Program Plan

RCRA Resource Conservation and Recovery Act RI/FS Remedial Investigation/Feasibility Study

SIA Southeast Industrial Area

SARA Superfund Amendments and Reauthorization Act

STP Sewage Treatment Plant
SVOC Semivolatile organic compound
SWMU Solid Waste Management Unit

TAL Target Analyte List

TCLP Toxicity characteristic leaching procedure

TDS Total dissolved solids

TPHCs Total Petroleum Hydrocarbons

TOC Total Organic Carbon

USACE U.S. Army Corps of Engineers

USAEC U.S. Army Environmental Center (formerly USATHAMA)

USATHAMA U.S. Army Toxic and Hazardous Material Agency

UXO Unexploded ordnance
VOC Volatile organic compound
μg/l Micrograms per liter
μg/g Micrograms per gram

SECTION 1 INTRODUCTION

This report presents results from the Expanded Site Inspection (ESI) conducted by Jacobs Engineering Group Inc., of the Ammunition Storage Area (ASA) at the Anniston Army Depot (ANAD) located near Anniston, Alabama. The report has been prepared in accordance with Contract No. DAAA15-90-D-0013 for the U.S. Army Environmental Center (AEC). The report presents the scope of the ESI, describes data collection activities, and presents results and conclusions of the work that was conducted in accordance with the ESI Work Plan (Jacobs 1991) and the Field Sampling and Analysis Plan contained therein.

1.1 PURPOSE

The purpose of the ESI was to determine whether there is sufficient evidence of a release at any Solid Waste Management Unit (SWMU) to require additional investigation. The objective of the ESI was to narrow data gaps and facilitate remedial planning (including a determination of the extent of remedial investigations required) should the need for additional action be indicated. U.S. Environmental Protection Agency Region IV has determined that a Hazard Ranking System Scoring as a part of the ESI is not required.

1.2 SCOPE

The ESI was directed at investigating 15 SWMUs within the ASA.¹ The work involved a records search, field investigations, laboratory analysis, data interpretation, and report preparation. The field work included soil boring and well installation, geophysical surveys, and sampling of groundwater, soil, sediment, and surface water for chemical analysis. Field work and analytical activities were conducted in accordance with the approved Health and Safety Plan and the Quality Assurance Program Plan prepared for investigations at ANAD. Samples were delivered to PACE Laboratories, Inc. for chemical analysis. The data were entered into AEC's Installation Restoration Data Management Information System (IRDMIS).

¹Two of the 15 SWMUs (#'s 18 and 37) are outside the ASA boundary, but are included within the scope of the ESI. References to the ASA throughout this ESI include these SWMUs.

Intrusive investigation of some SWMUs (#'s 10, 11, 14, 16, and 17) was restricted because of the suspected presence of explosive materials. Investigations at these SWMUs were limited to records reviews and sampling around the perimeter to identify evidence of contaminant release. Because there were no suspected releases from SWMUs #34 and #36, and because of the extreme toxic chemical hazard at SWMU #34, investigations at these two sites were limited to record searches.

Several SWMUs are currently in use (#'s 16, 17, 18, 34, and 37). The ESI focus was on potential contaminant releases within or from these SWMUs under conditions existing at the time of the investigation.

1.3 ORGANIZATION

The ESI report format is based on the EPA document entitled, "Expanded Site Inspection, Transitional Guidance for Fiscal Year 1988" (EPA 1987). The report is organized by major sections that include an Introduction; a discussion of the Site Background; a Site Physical Characterization; a description of the ESI Field Investigations; a presentation of Investigations and Results; a discussion of the Nature and Extent of Contamination; a presentation of Community Relations Activities; a presentation of Conclusions and Recommendations; and a list of References. Appendices contain detailed supporting information. An Executive Summary appears at the beginning of this report.

SECTION 2 SITE BACKGROUND

The Anniston Army Depot (ANAD) Ammunition Storage (ASA) has been the subject of a number of previous investigations. The information presented in this section was compiled from previous studies and investigations conducted at or near the site. The discussion includes a description of the study area, information on the demography and land use of the region, and a historical review of ANAD operations. A description of Solid Waste Management Units (SWMUs) and an overview of previous investigations are included.

2.1 SITE LOCATION AND DESCRIPTION

2.1.1 Regional Setting

ANAD is located in northeastern Alabama as shown in Figure 2-1. It is 110 miles west of Atlanta, Georgia, 50 miles east of Birmingham, Alabama, 100 miles north of Montgomery, Alabama, and 25 miles south of Gadsden, Alabama, in the southwestern section of Calhoun County; the towns of Eulaton and Vinnette are less than 2 miles directly east of ANAD. The City of Anniston is located within 10 miles east of ANAD; it is surrounded by the suburban areas of Westend-Cobb Town, Blue Mountain, Oxford, and Hobson City. The location of the site with respect to major population centers and other topographic features is presented in Figure 2-2.

2.1.2 Demography and Land Use

The 1990 census for Alabama reports that a total of 116,034 persons reside in Calhoun County and a total of 75,674 reside in the Anniston Division of Calhoun County (Table 2-1). The division contains ANAD and surrounding communities of Anniston City, Westend-Cobb Town Census Designated Place (CDP), Blue Mountain Town, Hobson City Town, Bynum CDP, Oxford City, Fort McClellan CDP, Saks CDP, and Weaver City (Bureau of the Census, 1990). The largest population center near ANAD is Anniston, with a population of 26,623.

Table 2-1. 1990 Land Area and Population Density for Calhoun County, Alabama

		LAND AREA	
COUNTY, COUNTY SUBDIVISION AND PLACE	ALL PERSONS	SQUARE KILOMETERS	SQUARE MILES
CALHOUN COUNTY	116,034	1,576.0	608.5
ANNISTON DIVISION	75,674	532.4	205.6
ANNISTON CITY	26,623	52.3	20.2
BLUE MOUNTAIN TOWN	221	0.2	.08
BYNUM CDP	1,917	8.6	3.3
FORT McCELLAN CDP	4,128	18.3	7.1
HOBSON CITY TOWN	794	3.0	1.2
OXFORD CITY (PT.)	8,333	24.2	9.3
SAKS CDP	11,138	31.8	12.3
WEAVER CITY	2,715	6.3	2.4
WESTEND—COBB TOWN CDP	4,034	13.1	5.1
CHOCCOLOCCO DIVISION	4,740	241.8	93.4
JACKSONVILLE DIVISION	15,216	185.7	71.7
JACKSONVILLE CITY	10,283	17.4	6.7
OHATCHEE DIVISION	3,367	178.3	68.8
OHATCHEE TOWN	1,042	12.7	4.9
SOUTHSIDE CITY (PT.)	54	4.0	1.5
PIEDMONT DIVISION	7,902	175.5	67.8
PIEDMONT CITY (PT.)	5,286	21.9	8.5
WEBSTERS CHAPEL—ALEXANDRIA VALLEY DIVISION	9,135	262.3	101.3
GLENCOE CITY (PT.)	7	0.4	0.15
SOUTHSIDE CITY (PT.)	90	0.6	0.23

NOTE: When a city or town is in more than one division, PT. signifies that part of that city is in the specified division.

The area is serviced by a network of state and federal highways including Interstate 20, which connects the major population centers of Atlanta and Birmingham. The Coosa River, one of the major drainages in northeastern Alabama, flows in a southwesterly direction approximately 5 miles to the west of the depot. Access to ANAD is restricted by a chain link fence that encloses the entire depot. The major features in the immediate vicinity of ANAD include a series of small communities clustered primarily along the southern and eastern boundaries of the depot. A catfish farm is located approximately 300 feet southeast of ANAD's boundary. ANAD is bordered on the north by the Fort McClellan Military Reservation.

Calhoun County is both industrial and agricultural. Industry is highly diversified and includes the manufacture of textiles, chemicals, steel, paper, and electronic products. In addition to the military installations, such as ANAD and Fort McClellan, other industries in the county include the processing of food and agricultural products. The principal source of agricultural income is poultry; other important sources are dairy products, cattle, hogs, and cotton.

2.1.3 ANAD Site Description

The roughly square-shaped configuration of ANAD in the general facility layout map shown in Figure 2-3 encompasses approximately 15,200 acres. Ammunition storage bunkers occupy the majority of the depot with individual areas, primarily along the southern boundary, allocated for warehouse storage, storage tanks, administration, shop/industrial facilities, and recreation. The main vehicle access is in the south-central portion of the depot via State Highway 202. The site is serviced by Southern Railroad, which maintains an extensive network of spur lines primarily within the southern industrial/storage complexes.

Source: AIIC (American Digital Cartography), US Army Corp. of Engineers, Mobile, Alabama

16/2

ANAD GENERAL FACILITY LAYOUT MAP

SITE NAME/LOCATION

AMMUNITION STORAGE AREA
ANNISTON ARMY DEPOT
ANNISTON, ALABAMA

| REVISIONS | JACOBS | PROJECT | NO. | NO.

JACOBS ENGINEERING GROUP INC. Southern Region – Washington, D.C. FIGURE NO. 2-3

ANAD is divided into nine areas, briefly described below:

- Administration Area The Administration Area is located in the south-central
 portion and consists of a series of permanent structures and contains the
 installation headquarters.
- Administration Recreation Area The Administration Recreation Area was the
 original administrative area for the depot and is located to the west of the
 present administration facilities. It consists of a series of structures which house
 the facility engineer and communication center, the fire fighter headquarters, the
 officer quarters, and open mess. The area contains recreational facilities
 including tennis courts, shuffleboard courts, and a picnic area.
- <u>Utility Area</u> This area located directly west of the administration recreation area, is utilized for various depot support operations. Most of the facilities engineer shops are located in this area. It also contains the main motor pool, administrative vehicle repair shops, equipment repair shops, and property disposal facilities.
- <u>Civilian Housing Area</u> The Civilian Housing Area covers approximately 15 acres and is located directly east of the Administration Recreation Area. The area contains approximately 100 family-housing units which are currently unoccupied and are scheduled to be demolished in 1997.
- Storage Area This area is located adjacent to the southern boundary of the
 depot immediately southwest of the Civilian Housing Area. The area contains a
 series of steel tanks used to store vehicles and other major supply items, a
 series of 10 transitory shelters, and a processing facility building.
- Warehouse Area The Warehouse Area is located in the western portion of the depot and includes general supply; the shipping and receiving building; three large storage warehouses; and a series of smaller, general purpose warehouses.
- Recreation Area This area is located to the south of the present
 Administration Area and contains the post commissary, a gymnasium, a filled-in swimming pool, and a bath house.
- Southeast Industrial Area (SIA) This area is located in the southeastern portion of the depot and contains general purpose warehouses, depot maintenance, materiel rebuild and support shops, general supply processing facilities, major items inloading and out-loading facilities, and vehicle test facilities.
- <u>Ammunition Storage Area (ASA)</u> The Ammunition Storage Area occupies the entire central and northern portions of the depot. The area contains approximately 1,300 ammunition storage magazines. An ammunition maintenance workshop complex is located in the center of the ASA. This complex consists of the operating buildings required for maintenance, demilitarization, and inspection of all types of ammunition and ammunition components. Other facilities located within this service and storage area are the Lance Missile Fueling Facility and ammunition disposal areas used for the disposal of out-of-date and deteriorated explosives.

2.2 SITE HISTORY

The U.S. Army has operated ANAD for over 50 years. During that period, the depot mission has progressively expanded to include the storage of munitions and the refurbishment, testing, and decommissioning of combat vehicles and various types of ordnance. This expanding mission resulted in a changing and evolving approach to the control and management of generated solid and liquid wastes.

The initial mission for the U.S. Army depot at Anniston was munitions storage. Construction operations for the depot were initiated on February 17, 1941, and the first ammunition storage magazines were completed on October 3, 1941. The facility was officially designated as the Anniston Ordnance Depot on October 14, 1941.

During World War II, the mission of the depot was expanded to include a combat equipment storage area, and over 1,230,000 tons of materiel were handled. Although the Ordnance Department operated the depot, the Chrysler Corporation assumed management responsibilities during the later part of 1943; depot operations were the responsibility of a subsidiary of Chrysler known as the Anniston Warehouse Corporation.

Over the years, Anniston's mission was further expanded to include the overhauling and repairing of ordnance vehicles; fire control and small arms rebuild from the Augusta Arsenal (closed in 1954); modification of M48A1 tanks and M67 flame throwers; calibration support for the southeastern states; and logistics support for the Lance missile, Shillelagh and TOW systems, and the Dragon missile. The bulk of this work was conducted in the SIA.

On August 21, 1962, as a result of Army reorganization, the depot was redesignated a Class II installation under the United States Army Supply and Maintenance Command and was retitled Anniston Army Depot. In July 1966, with the merging of higher headquarters, the depot was placed under the United States Army Materiel Command, which was redesignated the U.S. Army Materiel Development and Readiness Command in January 1976.

Currently, ANAD is one of the major employers in the Anniston area. Approximately 3,900 people work at the depot, but live off-site. Five military personnel and dependents reside on the depot grounds in military housing.

2.3 PREVIOUS INVESTIGATIONS

ANAD is participating in the Department of Defense Installation Restoration Program, which was established in 1978 to identify and evaluate past Department of Defense hazardous waste sites and to control the migration of hazardous contaminants from these sites. A number of studies have been conducted at ANAD to support the Installation Restoration Program as well as other environmental management programs. These studies have yielded a significant amount of information on the extent of contamination at ANAD. However, only a small portion of this work has been performed in the ASA. Some of the studies have resulted in the alteration of certain waste management practices and the implementation of remedial operations.

In September 1979, the Mobile District of the Corps of Engineers contracted with Environmental Science and Engineering, Inc. (ESE) to investigate four solid and hazardous waste disposal facilities. Three of the facilities located in the SIA and a fourth, the TNT Washout Facility Leaching Beds (SWMU #11) located in the ASA, were evaluated to determine the potential for contamination of groundwater, surface water, and air, and to recommend actions to bring the sites into compliance with state and federal regulations. At SWMU #11, four wells were sampled to determine groundwater quality in the shallow aquifer, and two surface water samples from a stream just east of the site were analyzed.

In 1987, NUS Corporation (NUS) conducted a Facility Assessment as required by the Resource Conservation and Recovery Act (RCRA) to evaluate releases of hazardous waste or hazardous constituents (NUS, 1987). The assessment provided information on 38 SWMUs (13 located in the ASA), evaluated the potential for release to the environment, and determined the need for further investigation. The report discussed each identified SWMU in terms of site description, waste characteristics, migration pathways, and evidence of release. For those SWMUs in the ASA, NUS

recommended no further action for seven SWMUs (#5, #14, ,#18, #26, #27, #36, and #37), referred one SWMU (#34) to another environmental program office for further assessment, recommended a sampling investigation at four SWMUs (#10, #15, #16, and #17), and recommended a remedial investigation at one SWMU (#11).

In 1989, ESE prepared a remedial investigation report. The report (ESE, 1989) presented a comprehensive overview of the past and present contaminant remediation activities for all of ANAD, including the ASA. Information compiled included a summary of generated wastes, SWMU descriptions, a summary of on-depot soil boring data, a history of groundwater chemistry data for the SIA, a summary of preliminary results of off-depot investigations, and an off-depot endangerment assessment.

2.4 SWMU DESCRIPTIONS

Thirteen identified SWMUs are located within the ASA. Two other SWMUs, located within the Administration Area, are included in this ESI. These 15 SWMUs are areas known or suspected to be contaminated from past waste disposal, treatment, or storage practices. At ANAD, SWMUs are assigned numbers according to a convention started in the 1980s (ESE, 1989) which also applies to SWMUs located in the SIA. Hence, SWMUs addressed in the ESI are not consecutively numbered. A brief history and description of each SWMU that was evaluated follows. Locations are shown on Figure 2-4.

SWMUs that are currently in use are identified as such in the individual SWMU descriptions. Investigations reported in this ESI were concerned with evaluation of potential contaminant releases during past or existing (at the time of investigation) operations. Four of the SWMUs investigated have RCRA permit applications under review by ADEM. Any potential contamination from on-going operations at these four SWMUs will be addressed under the forthcoming permits.

Source: ADC (American Digital Cantography), US Army Corp. of Engineers, Mobile, Alabama

100

2.4.1 SWMU #5 - Sinkhole

The Sinkhole (SWMU #5) is located immediately east of the 900 Row of B-Block between Alabama Avenue and the Restricted Area perimeter patrol road. This SWMU is approximately 0.63 acres in area, 40-50 feet deep, and contains a pond. Previous reports state that the Sinkhole was developed from geologic processes that form karst topography (ESE, 1989). Although karst origin of the Sinkhole is a possibility because of the underlying carbonate strata, some doubt exists concerning the origin of this feature. The depression was suspiciously not mapped by the USGS and Alabama Highway Department during a 1977 survey of natural sinkholes and depressions in this area of Calhoun County (Technos, 1981).

The steep sides of the sinkhole are atypical of other sinkholes in the area (Ewers Water Consultants, personal communication, 1993). Aerial photographs of the area taken before ANAD was constructed show the same steep-sided nature of the Sinkhole (ANAD-RMD files). This suggests that either the feature has enlarged recently (within the last 100 years or so) or was significantly disturbed by human activity before ANAD was built. Warman and Causey (1962) discuss historic iron ore and chert mining in this portion of Calhoun County. Iron ore was mined from Cambrian and Ordovician formations as early as 1848. The area of ore deposits extends from Cane Creek/Pelham Range north and eastward to Oxford. Chert pits excavated for road metal are also common in siliceous dolomites of the region.

SWMU #5 was used periodically from 1942 to 1978 for disposal of various wastes including construction debris, burned ammunition components, railroad ties, and empty containers (USTHAMA, 1978). During a survey for the 1978 Installation Assessment, containers labelled ammonium hydroxide, sodium hydroxide, and sodium hypochlorite were observed in the area. In 1978, drums and other large debris were removed from the Sinkhole; no visual evidence of contamination was noted (USAEHA, 1986).

2.4.2 SWMU #8 - Acid Disposal Pit

The acid disposal pit (SWMU #8) is a concrete pit located in the Chemical Limited Area (CLA) of the ASA between C-Block and G-Block. SWMU #8 was used circa 1959-1961 before the Old Lagoons Facility (SWMU #12 in the SIA) was placed in service. The Installation Assessment Report (USATHAMA, 1978) indicates that wastes disposed in the pit included paint stripper, alkalies, cadmium, phosphoric acid, and stripped paint containing lead and zinc chromate. These wastes were possibly contained in drums. The concrete pit was reportedly filled in with sand after its use as a disposal pit was discontinued (USATHAMA 1978). The sand was used previously for cleaning metal parts. The area in vicinity of the pit is now overgrown with trees and grass.

Previous reports available to Jacobs at the time of the field investigations did not contain sufficient information or information of sufficient quality to determine an exact location for the pit with respect to identifiable landforms or site buildings. Maps showing the location of SWMU #8 cover areas of the CLA ranging from approximately 90,000 (USATHAMA, 1978) to greater than 280,000 square feet (ESE, 1989). A map produced for the ESI work plan shows an assumed location of the pit in a wooded area west of storage igloo C-809, east of Building 611, and south of a bauxite storage area. See Section 5.3.2 for additional detail on the search for SWMU #8.

2.4.3 SWMU #10 — TNT Washout Facility

The TNT Washout Facility (SWMU #10) is located in the central portion of the ASA approximately 3,300 feet north of I-Block. It consists of a large metal building (Building 172) and a waste water sedimentation tank located approximately 100 feet north/northeast of the building. TNT washout operations were conducted from 1948 until the mid 1950s. Access to the interior of the building is restricted due to explosive hazards.

A waste slurry stream from ammunition washout operations discharged from the building to the sedimentation tank. Overflow from this tank then discharged through a pipe under the road into leaching beds (SWMU #11). The facility was closed in the mid 1950s except for occasional use in a pelletizing operation through the late 1960s, and is currently inactive.

The sedimentation tank is approximately 6 feet wide, 10 feet long, open-topped at ground level, and filled with water. The area around the tank is partially paved and graveled with weeds growing in spots. A small drainage ditch is located beyond the sedimentation tank along the northern border of the facility area.

2.4.4 SWMU #11 — TNT Washout Facility Leaching Beds

The TNT leaching beds, (SWMU #11) are located across the road from SWMU #10, east of Building 172. Overflow from the sedimentation tank was directed into the beds for treatment and disposal. The leaching beds are described as a series of 24 parallel soil troughs located at the surface, each approximately 70 feet long, 8 feet wide (USATHAMA, 1978 and USAEHA, 1986), and 4 feet deep (personal communication, ANAD-RMD and ANAD-Safety). Overall, the beds occupy an area of approximately ¾ acres. A small intermittent stream is located along the east side of the SWMU within 15 feet of the beds. A 1 to 2 foot earthen berm was constructed along the eastern perimeter of the beds to prevent direct runoff into the stream. Intrusive activities within the bed are limited because of an explosive hazard.

From 1948 until the mid 1950s, the leaching beds received waste water from the TNT Washout Facility sedimentation tank. From the mid 1950s through the late 1960s, the beds were also used occasionally for disposal of wash water from pelletizing system filters. In April 1978, an unknown quantity of octol pink water was discharged to the beds at a concentration of 15 parts per million. The beds have not been used since April 1978. In 1985, the area was leveled and capped with 2 to 5 feet of native clay, but there was no official closure. Remaining explosive contaminated waste/soil was estimated to be three to four feet thick (USASEHA, 1986). An Army report by the USAEHA from 1986 notes that "soil and three of the groundwater samples (AAD14 and 2 of the dug wells) contained high concentrations of 2,4,6-TNT and RDX" (USAEHA, 1986).

Five monitoring wells were installed around the leaching bed during two previous environmental studies. Wells W2-19 and W2-20 were drilled upstream and downstream of the beds in approximately 1978 by the U.S. Army Environmental Hygiene Agency (USAEHA). Wells AAD-13, AAD-14, and AAD-15 were installed around the perimeter of the leaching beds in 1980 by ESE. Reports suggest that some of the wells (well numbers unknown) may have been damaged or destroyed during the 1985 capping of SWMU #11. "Only the upgradient wells remain" was stated in an evaluation of SWMU #11 (USAEHA, 1986).

2.4.5 SWMU #14 — Laundry Waste Leaching Facility

The Laundry Waste Leaching Facility (SWMU #14) is located approximately 950 feet northeast of the TNT Washout Facility (Building 172) on the north side of the road leading to the Ammunition Workshop from Elwood Avenue. The laundry (Building S-162, demolished circa 1973) was used from 1948 to 1973 to wash the clothing of workers who handled explosives. One machine was used to wash 7 to 8 loads of clothing per day. At capacity, approximately 1,400 to 1,600 gallons per day of waste water containing soap, lye, and entrained explosive materials were generated. Waste water from the washing machine appears to have been piped to an above grade sump to remove heavy solids and then to the leaching bed. Runoff from the leaching bed area discharges to a nearby stream.

2.4.6 SWMU #15 - Propellant Disposal Facility

The Propellant Disposal Facility (SWMU #15) is located in the northwest portion of the depot approximately 2400 feet northeast of Building S-662 along the east side of the road to Gate E-1. Propellant disposal operations were conducted at the site from approximately 1968 to 1978. SWMU #15 is currently inactive and overgrown with brush. Topography of the SWMU #15 area slopes gently to the southwest. A drainage ditch is located along its southwestern boundary.

SWMU #15 consists of a one acre, fenced field on which two open, concrete-lined disposal units were constructed for burning propellants from Lance missiles. The propellant disposal units consist of concrete pads and small incinerators. One unit was used to dispose of unsymmetrical dimethylhydrazine (UDMH); the other was used to dispose of inhibited red fuming nitric acid (IRFNA). Diesel fuel was used to help ignite and burn the IRFNA. Concrete troughs connect the pads and incinerators to sumps which appear to have been designed to contain spills of propellant. The sump servicing the northernmost unit contains a metal box. Limestone gravel was placed in the sump servicing the southern unit.

Fuel for the incinerators was supplied either from a diesel fuel tank or liquified petroleum (LP) gas tank. A diesel fuel tank (approximately 500 gallon capacity) remains onsite while only a distribution manifold for the LP gas was observed. No documentation of spills at SWMU #15 has been found in this or previous investigations.

2.4.7 SWMU #16 - Burning Ground

The Burning Ground (SWMU #16) is located in the northwestern portion of the depot on the Gate 2 to Gate E Road approximately one mile southwest of Building S-662. The site covers approximately 35 acres in a small, flat-floored valley. Trees and other vegetation have been cleared from most of the area. SWMU #16 has been used for open burning (OB) operations for over 40 years. The site remains an active OB facility. A RCRA Subpart X Permit application has been submitted to ADEM for the OB operation. The application is currently under review.

The actual burning area covers approximately 6 acres of the valley floor and measures approximately 350 feet by 750 feet. In the past, explosives and explosive-contaminated materials were placed in open, unlined soil burn beds, soaked with diesel fuel, and ignited.

Three pits formerly used in burning operations are located at SWMU #16. Pit number 1 was used for burning of "Comp. B" explosive compound. Octol was burned in pit number 2. Materials burned in pit number 3 include white phosphorus, hexachloroethane, octol, and possibly other hazardous material. The burning process at times resulted in incomplete destruction of the wastes; residues were not removed from the pits (personal communication, ANAD-RMD). Jacobs was requested by ANAD Safety Officers to avoid these areas during the investigation because of the extremely hazardous nature of the buried materials.

Current burning operations are conducted in fifteen steel burning pans, a burn cage, or a fenced dunnage burning area. Materials are mixed with excelsior and ignited with an ignitor and non-electric fuse. Materials commonly burned include scrap explosives and explosive-contaminated material, demilitarized ammunition, containers, boxes, and inert materials. Remaining salvageable materials are removed to the salvage yard; ash is handled as hazardous waste.

Soil around the former burn beds was excavated and removed because it contained elevated levels of lead. The current practice is to remove lead foil from the propellant before it is burned (personal communication from ANAD Burning Ground Supervisor). Intrusive sampling activity within this SWMU is restricted due to explosives hazards.

2.4.8 SWMU #17 — Demolition Pit

The Demolition Pit (SWMU #17) is located near the northwest corner of the depot approximately 2400 feet northwest of Building S-662. The demolition pit is located in a cleared area that occupies approximately 40 acres of a small valley. There is a small intermittent stream at the base of the valley. The pit is approximately 5 acres in area and contains multiple soil detonation sites located either at or beneath the surface (ESE, 1989). Aerial photographs show the Demolition Pit has been operated for at least 40 years. SWMU #17 remains an active open detonation (OD) facility. A RCRA Subpart X Permit application has been submitted to ADEM for the OD operation. The application is currently under review.

The pit is used for destruction of high explosive items including cartridges and projectiles of various calibers, bombs, grenades, rockets, warheads, mines, etc. Items may be detonated at depths ranging from ground level to approximately 14 feet depending on the type and amount of explosive material (USAEC, 1978). Debris from demolition pit operations (e.g., shell casings, bomb and rocket fragments) is scattered around the area by the explosions. Encountering unexploded ordnance is always a possibility at SWMU #17. Intrusive sampling activity within this SWMU is restricted due to explosive hazards.

2.4.9 SWMU #18 — Old Sewage Treatment Plant (STP)

The Old Sewage Treatment Plant (SWMU #18) is located in the southwestern area of the depot on the south side of Gadsden Avenue, south/southwest of the ANAD Administration Area. (Although this SWMU is not within the ASA boundaries, it is within the scope of the ESI). The Old STP was used from 1942 to 1982 to treat domestic sewage from the west area of the depot. The treatment plant was originally designed to treat wastewater at a capacity of 75,000 gallons per day. Original design drawings show a bar rack, Imhoff tank, trickling filter, and sludge-drying beds. A final clarifier and effluent chlorination tank were added to the STP in 1975. Effluent was discharged to Eastaboga Creek which flows past, but not into, the state fish hatchery located at the ANAD southwest boundary.

The area surrounding the abandoned STP is graveled and covered with grass. The trickling filter is currently used as a fire fighting training pit. For this use, the filter sludge discharge pipeline was plugged and the filter was lined with firebrick. During fire-fighting training exercises, the filter is filled (as needed) with water, diesel fuel is poured on the water, ignited, and extinguished. An emergency oil/water separator was added to prevent accidental overflow of diesel fuel from the filter.

2.4.10 SWMUs #26 and #27 — North TNT Burial Pit and South TNT Burial Pit

The North and South TNT Burial Pits (SWMUs #26 and #27) are located in a remote section of the depot near the northern installation boundary along the road leading from Gate E-1 to the Chemical Limited Area gate on the north side of G-Block. Aerial photographs from 1969 clearly show these pits as open rectangular excavations. Estimated dimensions taken from these photographs indicate both pits are roughly the same size, approximately 50 feet long and 25 feet wide. SWMUs #26 and #27 were backfilled and are currently well vegetated. They show little evidence of past burial activities except for immature trees and four posted "Closed Landfill" warning signs around each pit. The area surrounding the pits is heavily wooded. Intrusive activities within these SWMUs is restricted due to possible explosive hazards. Reports suggest that TNTcontaminated wastes and decontamination dunnage from project "Z" may have been burned and buried in these pits (ESE, 1989). Documentation confirming waste burning or burial has not been found in this or previous investigations. ESE, 1989 quotes a "Memorandum of Record (Williams, 1982)" which "stated that between 1967 and 1969 decontaminated dunnage from "Project Z" was burned" at "an 'Old Burning Pit north of the Chemical Exclusion Area". However, Jacobs was unable to locate this memorandum during the ESI or find any independent confirmation of this statement. Available aerial photographs show no excavations at the sites in 1957 although both sites have been cleared of trees. In the 1969 photographs, excavations and areas cleared of vegetation around the pits are evident at both sites. Aerial photographs from 1977 show both sites overgrown with small trees; outlines of the pits are visible in the clusters of trees.

2.4.11 SWMU #34 — Chemical Storage Igloos

Forty-one Chemical Storage Igloos (SWMU #34) are located in G-Block inside the Chemical Limited Area (CLA). M55 rockets which contain GB and VX nerve agents are stored in these igloos. The rockets have been declared obsolete and are classified as hazardous waste.

The igloos in SWMU #34 are earth-covered, semicircular arches with a maximum ceiling height of approximately 13 feet and floor dimensions of approximately 26.5 feet wide and 60 to 80 feet long. Gutters are located inside the igloos along the base of the sidewall and slope gently toward the front of the igloo. The gutters are connected to 4-inch pipes which extend through the front wall of the igloo and discharge to outside. The igloos are equipped with air vents located at the top of the back wall and on the door.

Monitoring for nerve agent leaks from the M55 rockets is performed within the igloos on a weekly basis. Any rocket discovered to be leaking is packed in a special leak-proof container, which is also stored in one of the forty-one igloos. These weapons were previously stored in igloos at F-Block until they were moved to their present location during the 1970s. Agent decontamination wastes are stored in the igloos in 55-gallon drums.

A RCRA Hazardous Waste TSD Part B Permit application has been submitted to ADEM for forty-one storage igloos. The application is currently under review. Access to this SWMU is restricted due to the toxic chemical hazard.

2.4.12 SWMU #35 — Deactivation Furnace

The Deactivation Furnace (SWMU #35) is located in Building 393 in the northwest quarter of ANAD along the southeastern side of the Gate 2 to Gate E Road. SWMU #35 lies approximately 1500 feet southwest of Building S-662 and 2400 feet northeast of the Burning Ground (SWMU #16). Building 393 was constructed on a concrete pad and is surrounded by a gravel-covered parking lot. A small stream is located approximately 175 feet south/southwest of SWMU #35.

The facility is used to deactivate small arms munitions up to 50 caliber with less than 600 grains energetic material. Munitions are fed into a rotating retort where propellants are burned and lead projectiles are melted. Empty brass and steel shell casings are collected in a bin; molten lead is collected in an ingot mold. Particulate emissions from the furnace

are collected in a bag house where the dust is drummed and stored as a hazardous waste. Although the furnace is currently inactive, operations will resume upon approval of the RCRA Part B Permit application which ADEM is currently reviewing.

A leaking 1,000 gallon underground diesel fuel tank was located approximately 30 feet from the furnace building. Circa 1990, the tank was removed and surrounding contaminated soils were remediated in accordance with ADEM requirements. An above ground fuel tank was installed to replace the underground tank.

2.4.13 SWMU #36 — Drill and Transfer System Site

The Drill and Transfer Site (SWMU #36) is located approximately 900 feet north of G-Block between G-Block and the northern depot boundary. The site was constructed circa mid-1970s and was used until the early 1980s. SWMU #36 is currently abandoned. Three conex storage containers, a small laboratory building, and a concrete-floored pavilion with a corrugated metal roof remain in the fenced one acre site. Topography slopes moderately to the east/northeast from SWMU #36 toward a small stream approximately 150 feet from the fence.

Chemical agents were transferred from leaking chemical munitions into ton containers (ESE, 1989). Agent transfers were performed at the pavilion in glove boxes under negative pressure. Exhaust air from the glove boxes was filtered through charcoal and monitored for chemical agents. The floor of the pavilion was designed to contain any agent spills and the decontaminating fluids used to clean up a spill.

Other reports indicate the site was used for chemical quality assurance testing of GB-containing munitions (USATHAMA, 1978). Small quantities of agent were removed from rounds and tested. All of the agent extracted from the munitions was consumed in the tests.

2.4.14 SWMU #37 — Vehicle Wash Rack

The Vehicle Wash Rack (SWMU #37) is located in the western end of Building 45 along the east side of Gadsden Avenue approximately 1000 feet south of the Restricted Area (ASA) fence in the Utility Area. Although this SWMU is not within the ASA boundaries, it is within the scope of the ESI. The wash rack is designed with two wash bays and a water heating/steam generating unit. Kerosene fuel for the water heating unit is stored in an above ground tank located on the north side of the building.

One bay is used for general washing of depot vehicles, the other for steam cleaning operations. Waste waters from cleaning operations are collected through floor drains, pumped through an above ground oil/water separator and discharged to the sanitary sewer system. Oils and solids are collected in drums for disposal.

SECTION 3 SITE PHYSICAL CHARACTERIZATION

This section characterizes the physical setting of the Anniston Army Depot (ANAD). The Ammunition Storage Area (ASA) constitutes approximately 90% of the ANAD acreage. The discussion includes descriptions of the physiography, natural resources, ecology, climatology/meteorology, geology, and hydrogeology of the project site and vicinity.

3.1 PHYSIOGRAPHY

3.1.1 Regional Physiography

ANAD is located in the northeastern portion of Alabama in the southern portion of Calhoun County (see Figure 2-1). The County is located almost entirely within the Valley and Ridge physiographic province of the Appalachian Highlands (Fenneman, 1938). The Valley and Ridge physiographic province is characterized by sharply folded consolidated strata which tend to form northeastwardly trending, sub-parallel valleys and ridges. A small area in the eastern-most part of Calhoun County is located in the Piedmont physiographic province (see Figure 3-1).

3.1.2 Local Physiography

ANAD is located near the western end of the Weisner Ridge District of the Valley and Ridge physiographic province. Ground elevations range from about 600 feet to 1000 feet (National Geodetic Vertical Datum [NGVD]). ANAD is characterized by gently rolling wooded ridges and valleys. Streams draining the ASA are tributary to the Coosa River located approximately 15 miles west of the site.

3.1.3 Topography and Drainage

The topography of Calhoun County ranges from flat to gently rolling in the western part and is mountainous in the eastern part attaining elevations of approximately 2,100 feet NGVD at Choccolocco Mountain. Coldwater Mountain is the most predominant topographic feature immediately adjacent to ANAD and has a peak elevation of 1,709 feet NGVD. Elevations at ANAD range from near 600 feet to about 1,000 NGVD.

The County contains six major drainage basins. The largest is the Choccolocco Creek, which drains the extreme eastern and southern parts of the County. The stream flows south through a narrow valley bordered on the east by Bryner and Horseblock Mountains (southwestern Cleburne County) and on the west by Choccolocco Mountain (southeastern part of Calhoun County) and then westward to the Coosa River. Nances and Terrapin Creeks drain the extreme northeastern corner of the county and flow northward to the Coosa River. Cane, Chatchee, and Tallaseehatchee Creeks drain the area west of Choccolocco Mountain to the Coosa River. ANAD is located primarily in the Cane and Choccolocco watersheds.

3.2 NATURAL RESOURCES

3.2.1 Regional Natural Resources

Developed regional natural resources in the ANAD area include timber, iron ore, chert gravel, clay (mined), and water from Coldwater Spring. The mountains, forests, and streams in the area are used extensively for recreation. Recreation facilities include Logan Martin Lake near Pell City, approximately 15 miles west of the site. The lake is the impoundment above Logan Martin Dam on the Coosa River. Dry Creek, which extends along the southeast boundary of ANAD, has been classified as a fish and wildlife stream by the State of Alabama. The Talladega National Forest is located in the mountainous areas to the east and south of the site.

3.2.2 ANAD Natural Resources

Historically, ANAD has been the site of mostly unused forested land and agricultural operations. No mining activities have been reported on the project site, although iron ore mining has occurred in the Pelham Range and Cane Creek area (Warman and Causey, 1962).

One of the most significant natural resources at ANAD is timber. Logging of the abundant loblolly and longleaf pine forests located in the ASA has been practiced for years as a forestry management tool and for its economic benefit.

During the four decades that the ASA has been a restricted access area, wildlife populations have proliferated, generating the need for management of deer and wild turkey populations. Wildlife resources are controlled through periodic permitted hunting and trapping.

3.3 ECOLOGICAL EVALUATION

Regionally, the ASA lies in the transition zone between the Appalachian Valley and Ridge and the Piedmont physiographic province. This transition zone is typified by uneven terrain, with isolated conspicuous mountains and mountain ridges. The ASA exhibits topographic relief typical of the inter-mountain areas, with elevations ranging from greater than 1000 feet to less than 700 feet above mean sea level. The majority of the land cover in this physiographic transition zone is mixed deciduous-coniferous forest. The ASA is bounded to the north and east by woodland habitat (Fort McClellan), to the south by the industrial portions of the depot, to the southeast by the Southeast Industrial Area (SIA), and to the west by farmland. A 6-foot chain-link fence presents an entry/egress obstruction for wildlife.

Selected flora and fauna that constitute the biota of the immediate ASA area are listed in Appendix A. Additional lists of the flora and fauna of Calhoun County are provided in the Anniston Army Depot Installation Assessment (USTHAMA, 1978). Flora and fauna include trees and shrubs, and a broad inventory of vertebrates, including mammals, amphibians and reptiles, and resident and transient birds. The ASA is dominated by woodland habitat, and is managed in accordance with the current Anniston Army Depot Natural Resources Management Plan.

Woodland communities that predominate are a mixture of 50% pine (dominated by loblolly and longleaf), 25% hardwood (dominated by white oak, southern red oak, yellow poplar, and blackjack oak), and 25% pine/hardwood codominant. As with many plant communities, predominance is largely a function of fire frequency and intensity. Conifers, which are more tolerant of fire, dominate in drier areas and in areas subject to frequent burning. Hardwood species predominate in the areas of greater relief and in wetland areas and are especially prevalent where fire is infrequent.

The northwest portion of the ASA is mostly undisturbed woodland. Vegetation along the numerous roads throughout the ASA is primarily grass species, which are managed by periodic mowing. Vegetation in the areas around the ammunition storage igloos is composed mainly of broomsedge, dog fennel, pine seedlings, sweetgum, briar, and lespedeza and bermuda grasses. This vegetation is managed through application of various herbicides. Vegetation within the Chemical Munitions Storage area consists mainly of various grasses. Intensive management through mowing and the application of growth inhibitors maintains the grass at a height of 8 inches or less.

Resident indigenous large mammal and avian species include deer, fox, coyote, bobcat, rabbit, raccoon, opossum, turkey, quail, and dove. Waterfowl are not known to use any areas of the ASA. The Chemical Munitions Storage Area supports a resident deer population that is prevented from egress by the 8-foot-high double fencing that surrounds the area, and is managed by trapping and removal.

Although no federal or state-designated threatened or endangered species are known to occur in the ASA area, habitats at ANAD may be suitable for three endangered vertebrates observed in Calhoun County, and for a fourth, for which there are unconfirmed sightings at the ASA. Several areas at ANAD were determined by the US Fish and Wildlife Service (1979) to be forested with trees of adequate, though marginal, age and size classes for habitation by red-cockaded woodpeckers (Picoides borealis). At least one cave is present at the ANAD which may be suitable roosting habitat for the gray bat (Myotis grisescens) and the Indiana myotis (Myotis sodalis). There are no sightings of other evidence to substantiate possible presence of any of these animals. There have been reported sightings of dark-phased mountain lions (Felis concolor) by ANAD personnel, but none of these sightings has been confirmed. In addition, Dry Creek, which drains a portion of the SIA, joins Coldwater Creek downstream of ANAD. Coldwater Creek is designated as critical habitat for the pygmy sculpin, a small fish which is listed as a threatened species.

A tributary of Cane Creek which exits the ASA to the north represents the most conspicuous surface drainage feature. Two perennial streams and several intermittent streams that feed this tributary drain the north and central portions of the ASA. Several intermittent streams also drain the southwest and southeast portions of the ASA, flowing into the Eastaboga Creek system and the Dry Creek system, respectively. The invertebrate biota present in Cane Creek are listed in Appendix A, along with the aquatic species that have been observed in other local aquatic communities (Dry Creek, Coldwater Creek, and Coldwater Spring) and may occur in the streams at the ASA. Various minnows are the only fish species known to occur in Cane Creek. Except for flood incidents, larger species are probably excluded due to the small size of this creek. Aquatic environments at the ASA also include several manmade ponds of one-quarter acre or less. They probably contain various minnows, catfish, and sunfish.

Wet areas and wetland-type areas are common in hollows along intermittent streams in the ASA, particularly in the northwestern and eastern portions. Vegetation in these areas is dominated by alder, witch hazel, Carolina willow, water oak, willow oak, persimmon, dogwood, black willow, needle rush, and typical wetland species.

3.4 CLIMATOLOGY/METEOROLOGY

3.4.1 Regional Climatology/Meteorology

The ANAD area has a moist, temperate climate with an average annual rainfall of 53.25 inches. During the period from December through March, rainfall is the heaviest, with March having the greatest precipitation, approximately 7 inches on average. The driest period is from June through October. October, which averages 2.50 inches is the driest month. Average monthly rainfalls for the Anniston area are shown in Table 3-1.

Table 3-1. Monthly Rainfall, Temperature & Wind Speed at ANAD

MONTH	AVERAGE PRECIPITATION (INCHES)	AVERAGE TEMPERATURE (°F)	AVERAGE WIND SPEED (MPH)
JANUARY	5.36	47.9	8.2
FEBRUARY	4.82	54.7	8.8
MARCH	6.82	56.9	8.1
APRIL	5.35	60.8	8.3
MAY	3.99	68.5	6.8
JUNE	3.89	77.8	6.1
JULY	4.23	79.4	5.7
AUGUST	3.80	81.9	5.5
SEPTEMBER	4.15	75.6	6.4
OCTOBER	2.50	61.6	6.2
NOVEMBER	3.35	53.8	7.3
DECEMBER	4.99	49.5	7.8

Source: NOAA, 1988—1990, State of Alabama, Climatological Data Annual Summary, 1990

The mean maximum temperatures for the Anniston area in January and July are 47.9 degrees Fahrenheit (°F) and 79.4°F, respectively. The U.S. Weather Bureau recorded temperature extremes of (-3)°F and 105°F for this area (ESE, 1989). Average monthly temperatures for the Anniston area are shown in Table 3-1.

Seasonal winds for the area are approximately 7 mph on the average. From March through August, the prevailing wind direction is from the south-southwest and will change direction to north-northwesterly in the fall and winter months. Average monthly wind speeds are shown in Table 3-1.

3.4.2 ANAD Climatology/Meteorology

Meteorological data collected on site during the field investigations (from October 1, 1991 to February 29, 1992) include the daily precipitation, temperature and wind direction. Recorded precipitation data show rainfall accumulation to be the greatest during the month of February, with an approximate rainfall total of 6.31 inches. In the month of October, precipitation is minimal, averaging only 0.20 inches of rainfall. Average monthly temperature during this period was recorded at 61.6°F. Wind direction is generally from the north-northwest, changing periodically, for short periods, to south-southwesterly.

3.5 REGIONAL GEOLOGY AND HYDROLOGY OF THE ANAD AREA

3.5.1 Geologic Setting

Anniston Army Depot lies within the Alabama sector of the Appalachian Valley and Ridge geologic province. This province is represented by a long, narrow, curving band of geologic structures that extends from Newfoundland, Canada to central Alabama, United States. This province is subdivided into three hydrogeologically defined subregions. These subregions include (from east to west) the Valley and Ridge, the Appalachian Plateaus, and the Interior Low Plateaus (see Figure 3-2).

The Appalachian Plateaus and Valley and Ridge subregions encompass two major tectonic domains that include the southern extent of the Appalachian basin and the southeastern part of the Eastern Interior Basin.

Geology of the area around ANAD consists of Cambrian to Pennsylvanian age indurated sedimentary rocks that are exposed in long narrow belts of northeast trending ridges and valleys (Seaber, 1988). The ridges are generally underlain by folded and faulted resistant sandstones, cherty limestones and dolomites, and conglomerates. These rock types are generally less susceptible to weathering and erosion due to high quartz content in the rock formations. The valleys are typified by non-resistant limestones, shales, and dolomites that weather rather easily in a rainy humid climate. Flanks of the ridges are underlain by moderately resistant rocks that include siltstones and shales. Regionally, the ridges are underlain by the resistant silicious rocks of the Weisner Formation. Figure 3-3 shows the geology in vicinity of ANAD.

Coldwater Mountain is an uplifted anticlinorium comprised of the resistant Weisner Formation (Osborne and Szabo, 1984). In the vicinity of ANAD, however, the topographic highs are underlain by the Copper Ridge Dolomite (Knox Group). The Conasauga Formation forms topographic lows (ESE, 1982). Drilling cores collected from both rock units are practically indistinguishable. Both of these dolomites exhibit similar frequencies and distributions of fractures and solution cavities, and are hydrogeologically very similar (ESE, 1982). One characteristic that distinguishes the dolomites from one another is the high silica content of the Copper Ridge Formation of the Knox Group.

ANAD lies on the margin of a widespread distribution of carbonate rocks within a high rainfall area of the United States. Under such climatic conditions, karst topography may form in areas underlain by soluble carbonate strata. Aside from a sinkhole-like depression along the eastern ASA boundary (see Section 2.4.1) and a cave reported in the southwest portion of ANAD, no other karst-type topographic expressions were recognized during the 1991-1992 RI activities (Jacobs, 1991).

3.5.2 Structural Setting

The northeast boundary of ANAD is bound by the regional Pell City Fault. The Jacksonville Fault is a major but not regional thrust fault that Osborne and Szabo (1984) defined as lying adjacent to the southeast boundary of the ANAD (Figure 3-4). The Jacksonville Fault is a northeast trending southwest dipping low angle thrust fault that has been defined by Osborne and Szabo as a major splay fault of the more regional Pell City Fault.

The sedimentary rocks found in the subsurface are tilted and thrust faulted into a series of disharmonic sheets which were regionally thrust from several kilometers west or northwestward (see Figure 3-5). The geologic structure is expressed in the northern portion of the Valley and Ridge subregion by extensive folding, whereas in the southern region, thrust faults dominate.

Osborne and Szabo (1984) state in their report on the stratigraphy and structure of the Jacksonville Fault:

• Recent seismic profiling in other areas of the Appalachian fold and thrust belt documents that most of the thrust faults dip to the southeast...Northwestward transport of the paleozoic sequence along the thrust faults has resulted in the imbricate stacking of large slabs of rock referred to as thrust sheets or panels. Within an individual thrust sheet, smaller faults may splay off the larger thrust fault that bounds the lower surface of the thrust sheet, resulting in the imbricate stacking of rocks within the thrust sheet.

Boring log information indicates that in areas south of the Jacksonville Fault trace, older consolidated rocks of the Cambrian Conasauga and Rome Formation, Shady Dolomite, and the Chilhowee Group have been thrust up onto rocks of the younger Ordovician and Cambrian Knox Group. Tremendous tectonic energy dissipated by the intense thrust faulting of the regional Pell City and secondary Jacksonville splay fault caused extensive secondary stress that resulted in numerous high angle faults in the area around ANAD. At various locations within the southern region of the Valley and Ridge, faults are so closely spaced that no intervening folds are preserved (Seaber, 1988).

Additional relevant information has been provided by field work which is currently being conducted in the ANAD area to relocate a road and pipeline. The construction contractor has uncovered evidence that rock fracturing and normal faulting has occurred more frequently than previously documented in areas north of Coldwater Spring (personal communication, USGS Alabama Region, 1992).

3.5.3 Lithology of Region Around Jacksonville and Pell City Thrust Faults

The lithologies affected by the Jacksonville and Pell City Faults are the Cambrian age rocks of the Chilhowee Group, Conasauga Formation, and the younger undifferentiated Knox Group (Osborne and Szabo, 1984.) The major rock formations mapped within the Jacksonville and Pell City Faults are described below in detail from oldest to youngest age. Figure 3-6 depicts the stratigraphy of the region near the Jacksonville and Pell City Faults.

3.5.3.1 Chilhowee Group. The Lower Cambrian Chilhowee Group consists of four formations: the Cochran, Nichols, Wilson Ridge, and Weisner Formations (from oldest to youngest age, respectively). These formations have been mapped and subdivided based on the relationship of their coarse-grained and fine-grained clastic components. In the study area that encompasses the ANAD facility, the Chilhowee Group has not been differentiated into its various formations. The coarse grained facies are comprised of primarily vitreous quartzite and friable, fine to coarse-grained ortho-quartzite sandstone, which are locally conglomeritic. In minor occurrences, micaceous shale and mudstones are found. The predominance of quartzite and sandstone within the area under study suggests a lithologic assignment of this rock type to the Weisner Formation. In addition, interbedded coarse and fine-grained rocks that have been noted within the local region indicate the occurrence of the Wilson Ridge Formation. A complete section of the Weisner Formation exists in Cherokee County, Alabama. In that section the Weisner Formation is 492 feet thick and the Wilson Ridge Formation is 604 feet thick. It is believed that although complicated by the presence of structural deformation, the thicknesses of the

Weisner and Wilson Ridge Formations are comparable in the ANAD area to those mapped in the section found in Cherokee County (Osborne and Szabo, 1984).

- 3.5.3.2 Shady Dolomite. The Lower Cambrian Shady Dolomite overlies the Chilhowee Group as mapped within the structural zone of the Jacksonville Fault. This unit is approximately 500 feet thick and, where exposed, is composed of light-gray, argillaceous to sandy, laminated dolostone and dolomitic limestone. Around the Anniston area, the Shady Dolomite consists of a compact mass of yellow-brown clay containing yellowish brown porcelaneous chert that weathers to a lacey "boxwork" texture (Osborne and Szabo, 1984).
- **3.5.3.3** Rome Formation. The Lower Cambrian Rome Formation overlies the Shady Dolomite Formation in the Jacksonville Fault region. It is comprised of clastic rocks that include mudstones, siltstone, sandstone, with interbeds of dolostone. In the Jacksonville thrust fault locality, the Rome Formation is approximately 1,000 feet thick.
- **3.5.3.4** Conasauga Formation. The Rome Formation within the study area is overlain by the Middle to Upper Cambrian Conasauga Formation. The Conasauga consists of thin bedded pale-olive mudstones, shaley mudstones, and shale, with local interbeds of limestone and rare siltstone. The limestone interbeds increase in thickness from the northeast to the southwest near the ANAD facility. The thickness of the Conasauga Formation around ANAD is approximately 100 feet.
- 3.5.3.5 Knox Group. The Upper Cambrian and Lower Ordovician Knox Group overlies the Conasauga Formation in the study area. The rocks of the Knox Group consist of a thick sequence of light to medium gray, fine to medium crystalline, variably bedded, laminated siliceous dolostone that weathers to a chert residuum (Osborne and Szabo, 1984). Within the Knox Group are also included rocks of the Copper Ridge and Chepultepec Dolomites. Because of poor exposure, however, the stratigraphy of the Knox in the ANAD area is not well understood. A complete section of the Knox is not exposed in the region, therefore the thickness is not known.

		SYSTEM	SERIES		GROUP DRMATION, ID MEMBER	LITHO- LOGY	THICKNESS	(leet)	THICKNESS	(meters)	
		syl-			Pottsville Formation	o. [0.]	30	00+	9	11+	
		Pennsyl- vanian	Lower		Parkville Formation		12	69	3	187	
	· · · · · · · · · · · · · · · · · · ·	Mississippian	Upper		Floyd Shale		12 20	00-		66- 10	
			Lower	- 6	orl Payne Charl Bury Formation	Z-V-9	-15	-175 3-3		-83 }-1	
		Desc.	Upper		nog liberiain Sandrione usionie Pormation			-200 -120		-61 -37	
ĺ	~æ.a			Sacr			0-70	0_	0-21		
l	en.		Middle	2			230	200	120	100	İ
	-			Len	our Limestone			250		-76	1
				Laker 1	Newsis and Longview Limestones			099		201	,
		Ordovician	Lower	Knox Group	Chepultepec Dolomite	8	3150	1245	096	380	
			Upper		Copper Ridge Dolomite			1245		380	
	i.	an									
		Cambrian	Middi⊕		onasauga Formation			0081	578		
				F	Rome Formation		700 100		21: 30:		
					Shady Dolomite		37 60	°0-	11 18		
			Lower	<u> </u>	Weisner Formation	**************************************		492		150	
				Chilhowee Group	Wilson Ridge Formation		1738+	603	\$30÷	184	
				5	Nichols Formation			410		125	
				L_	Cochran Formation			233		71+	
ı											

1		Lower	Fort Payne Chert Maury Formation	15-175 0-3	4-53 0-1
1	Devo- nian		Frog Mountain Sandstone	0–200	061
		Upper	Sequatchie Formation	0-120	0-37
34 to 1		Middle	Ceivin Mountain Sendsione Greensport Formation Uttle Coak Limestone Lenoir Limestone	0-70 0- 230 0-33+ 0-250	0-21 0- 0- 70 61 0-10+ 0-76
L			Lenoii Limestone	0-230	V=70

(ENLARGED SECTION)

FIGUREDESCRIPTION:	JACOBS PROJECT NO.
REGIONAL STRATIGRAPHY NEAR	
THE ANAD FACILITY	35-G306-00
ANNISTON ARMY DEPOT ANNISTON, ALABAMA	
JE JACOBS ENGINEERING GROUP INC.	FIGURE NO.
DRAWN BY: DJK DATE: 4/20/92	3-6
	3-5

3-17

3.5.4 Soils

Soils of Calhoun County were classified and mapped by the U.S. Department of Agriculture in the late 1950's. These soils are classified according to parent materials from which they are derived and the characteristics of their natural soil horizons occurring within approximately 5 feet of the surface. Soils of the Clarksville-Fullerton group are mapped throughout most of ANAD. Decatur-Cumberland soils are found in the southern extremities of the Depot and in the eastern portion of the Southeast Industrial Area.

Clarksville-Fullerton soils are developed in the residuum of cherty limestone. These soils are shallow, well-drained, dark brown to yellowish-brown stony loams to cherty clay loams and are highly susceptible to erosion. Chert and limestone inclusion from 3 inches to 8 inches in diameter occur commonly on the surface or within the soil profile. The permeability of these soils is from 2 to 10 inches per hour. The soil average pH range is from 4.5 to 5.4.

Decatur-Cumberland soils occur on transitional upland areas and are developed in residuum of underlaying limestone and ancient valley fills of limestone residuum detritus. They are fine-textured, well-drained, deep, dark reddish-brown to dark red, loam to silty clay loam. Decatur-Cumberland soils are highly susceptible to erosion on steeper slopes. The permeability of these soils is from 0.8 to 2.0 inches per hour. The soil average pH range is 4.5 to 5.4.

3.6 REGIONAL HYDROGEOLOGY

Topography influences the hydrogeology within the local region and plays a significant role at ANAD. Field studies conducted in humid regions have found that water tables in unconfined aquifers usually have the same general shape as the surface topography (Fetter, 1988). This is explained by the fact that recharge takes place in topographically high areas and has a greater potential energy than recharge occurring in topographically lower areas. The higher energy is reflected in the higher elevations of the water table at these locations. During the recent field investigation, water levels were measured and groundwater elevations were calculated.

The carbonate rocks (limestones, dolomites) and shales of the Middle to Upper Cambrian Conasauga Formation and undifferentiated Knox Group form some of the most transmissive aquifers of this subregion of the Valley and Ridge province. Compared to the more prolific regional aquifers of North America, aquifers in this area yield less water to wells. While it is important to note that some of these aquifers are highly permeable and porous on a local to subregional scale, few are permeable on a regional scale of hundreds to thousands of kilometers (Seaber, 1988).

Within this subregion, groundwater flow paths are typically relatively short, commonly extending no more than several tens of kilometers in their longest dimension. The rock units of the area that includes ANAD have little primary porosity. The permeability of the indurated Cambrian rocks is secondary and in general, the permeability decreases with depth.

Most of the large springs and high yield wells in the area are associated with significant subareal flow channels that include cavities, fractures, and faults within the rock units. The surface residuum, which can be characterized as the weathered by-product of the Knox Group, has variable transmissivity limiting the development of high yield wells. Structurally, this region has been affected by extensive folding and faulting. The existence of folds and faults that characterize the Valley and Ridge province contribute significantly to the present lack of understanding of the hydrogeologic conditions and potential subsurface transport pathways.

3.6.1 Regional Groundwater Flow

The groundwater flow systems of the ANAD area are controlled by an exceedingly complex geologic structure. The complex nature of the geology is represented by many semi-isolated hydrogeologic units that are characterized by jointing, fracturing, faulting, and possible solution cavities.

The groundwater aquifer in the ANAD area is discussed as a number of strata that possess similar hydraulic characteristics such as hydraulic potential, response to rainfall, permeability, and lithology. The four hydrogeologic layers that were described previously support these hydrologic distinctions on a local scale. Regionally, the groundwater aquifers consist of a shallow zone comprised of low permeability sandy, clayey silt, which is approximately 20 to 40 feet thick; and a deep zone comprised of low to high permeability sand and gravel sediment above weathered bedrock. The weathered bedrock zone is at the top of competent bedrock that has an approximate thickness of 1000 feet (Osborne and Szabo, 1984).

Regionally, the potentiometric surface of the shallow groundwater system in the unconsolidated residuum tends to resemble the topography (as expected in humid climate regions). In contrast, the deep potentiometric surface of the bedrock aquifer is influenced more by fracture systems and the regional gradient. Differences in hydraulic potentials indicate that the shallow groundwater system is not always isolated and leakage between the shallow and deep systems is common.

3.6.2 Surface Water Hydrology

Surface water runoff at ANAD is controlled by three prominent drainage divides. Surface water at ANAD flows into three major streams: Cane Creek to the north, Blue Eye Creek to the west, and Choccolocco Creek to the south. All of the streams draining ANAD eventually flow into the Coosa River, which lies west of the depot (see Figure 3-7). Dendritic drainage patterns are predominant in the area. Straightened drainage channels and pseudo-trellis drainage patterns are apparent in areas of the depot where construction of roadways and buildings has taken place.

Figure 3-8 illustrates surface water drainage patterns and drainage divides on ANAD. As shown, a pronounced drainage divide bisects the depot from the east-central boundary to the southwest boundary. To the north of the divide the drainage flows into Cane Creek, whereas the southern drainage flows into the Choccolocco Creek system. North of the divide, a series of small drainageways exit the depot along the west-central boundary and flow westward to the Coosa River. The remainder of the drainage flows north into the Pelham Range, which is a part of the Fort McClellan Military Reservation. All drainage leaving the depot south of the divide flows onto private land (USATHAMA, 1978).

The average flow of streams in the area varies throughout the year. Daily flow rates respond not only to precipitation events but also to base flow contributions. Approximately one-third of the annual precipitation contributes to evaporation and transpiration processes. The remaining two-thirds are available for surface water runoff and groundwater infiltration.

Lakes and ponds in the immediate vicinity of ANAD occur south of the Choccolocco Creek divide. Two artificial lakes, Cone Lake and 5-Acre Lake, lie within the ANAD boundary and are used for recreational purposes. Twenty-four smaller (1/4 acre) ponds are located throughout ANAD. These are used for fire protection.

SECTION 4 FIELD INVESTIGATIONS

The expanded site inspection (ESI) of the Anniston Army Depot (ANAD) Ammunition Storage Area (ASA) was performed to determine whether there is sufficient evidence of contaminant release within the ASA solid waste management unis (SWMUs) to warrant further investigation. Specific investigations that were conducted and their results are discussed on a SWMU-by-SWMU basis in Section 5.

4.1 CONDUCT OF INVESTIGATIONS

Field investigations were conducted during the period January through May 1992. The work involved records searches, geophysical surveys, soil borings, well installations, and sampling of groundwater, surface waters, soils, and sediments for laboratory analyses.

The field investigation sample locations for each SWMU were based on the design presented in Section 5 of the ESI Work Plan (Jacobs 1991). In some instances, sample locations were modified to reflect site evaluation by the Jacobs on-site hydrogeologist of SWMU topography, geologic and surface soil observations, drainage patterns, and other field conditions. The sampling program at some SWMUs was modified because of limitations on access due to concerns about the presence of explosives or chemical hazards. Further modification of the Work Plan sampling design was required where well drilling or soil borings could not be completed because of geologic impediments that were encountered during drilling.

A hollow-stem auger rig was used to drill borings to collect subsurface soil samples. In some instances where drilling conditions precluded completion of planned borings, subsurface soil samples were not collected. Borings successfully drilled to the water table were completed as monitoring wells. Sediment samples were collected at locations determined in the field during the investigation, where a preferential drainage path was located or a stream flowed adjacent to a SWMU. Surface soil samples were collected by taking and homogenizing a 6-inch deep plug of

were installed. A detailed description of the sampling design is presented in the Work Plan. Field boring logs are presented in Appendix B.

4.2 SPECIAL SURVEYS

In December 1991, surface geophysical surveys were performed by Technos, Inc. at SWMUs #8, #16, #17, #26, and #27 to locate their exact boundaries. The survey conducted at the presumed location of SWMU #8 did not delineate the Acid Disposal Pit. Surveys conducted at SWMUs #26 and #27 successfully defined their boundaries. At the remaining SWMUs, typical conductivity values were encountered with no unusual features generally identified. A detailed description of the geophysical survey results is presented in Appendix C.

Unexploded ordnance (UXO) surveys were conducted at SWMUs #16 and #17. Both SWMUs were surveyed and cleared by UXB, International, Inc., using a magnetometer. In addition to these UXO surveys, soil collected from soil borings at SWMUs #10, #11, and #14 was screened by UXB for the presence of TNT and RDX. A detailed description of the UXO survey and TNT and RDX testing results is presented in Appendix C.

4.3 SAMPLING AND ANALYSIS

The selection of analyses that were performed on the collected samples is described in the ESI Work Plan. As detailed in that document, the analytic requirements were based upon a review of historic records and previous investigations that documented the historic patterns of activity, including SWMU purpose and function, chemicals used, and any waste disposal practices. The number, type, and location of sampling points, and recommended analyses were also based upon assumed behavior of any contaminants that could be inferred from ANAD records and prior investigations and reports.

4.4 QUALITY ASSURANCE

Installation of monitoring wells was generally in accordance with Section 6.9 of the Quality Assurance Program Plan (QAPP). Field adjustments from the Work Plan were necessary for the installation of some wells due to shallow depths at which groundwater was encountered. Appendix D describes the well installation modifications.

Sampling was conducted in accordance with appropriate sections of the QAPP: Section 6.8.2 for soil borings, Section 6.8.1, surface soil; Section 6.12, surface sediment; Section 6.10, groundwater; and Section 6.11, surface water.

Field investigations and laboratory analyses were conducted in accordance with procedures specified in the QAPP for sample collection, management, custody, equipment use and maintenance, and laboratory analytical methods. Only quality-level III data were used to support evaluations and recommendations that have been made in this report.

As required by Section 10.0 of the QAPP, data management was performed by carefully following chain of custody, data reduction, validation, and reporting procedures.

SECTION 5 INVESTIGATIONS AND RESULTS

Completion of the Expanded Site Inspection (ESI) of the Anniston Army Depot (ANAD) Ammunition Storage Area (ASA) entailed document reviews, geophysical investigations, and collection of surface soil, sediment, soil boring, surface water, and groundwater samples. Samples were subjected to laboratory analysis as reported throughout this report. This section of the ESI discusses the field investigations that were conducted and presents their results. All analytical results are presented in Appendix F. Procedures used to validate the ESI data and results are described in Appendix E.

Inorganic analytes are naturally occurring in soils, and organic compounds generally are not (with the exception of trace levels produced by the metabolic activity of soil microorganisms). Therefore, the presence of organic compounds in the environment at concentrations above the certified reporting limit (CRL) are considered, in this report, indicative of potential contamination. The presence of inorganic analytes at concentrations above the naturally occurring levels are also indicative of potential contamination. Samples were collected within the ASA to evaluate the naturally occurring values of inorganics, and are referred to as the control samples. A discussion of the control screening value selection criteria and development of these levels is presented in Section 5.1. A discussion of comparisons to the field data sets of control values is presented in Section 5.2. Section 5.3 presents a summary of field investigations conducted and results.

5.1 CONTROL SAMPLES

Selected sample locations within the ASA were used to determine control screening values using the following criteria:

- Sample locations are within the ASA.
- Sample locations were up-gradient of potential sources of contamination.
- Samples each had a "full scan" of the inorganics on the Target Analyte List (TAL) from the 1991–92 field investigations.
- Analytical results showed no obvious indications of contamination in the TAL
 analytes or in any other analytical result, for any medium. (Total organic carbon
 [TOC] and nitrate/nitrite in the absence of other contaminants are assumed to be
 naturally occurring and not indicative of contamination)

Samples selected as control samples for each medium were:

Groundwater: W2-17, 91B18, 91B18D

Sediment: S8SD1, S8SD2, S8SD3, S8SD3D, S8SD4

Surface Soil: S10S01, S26S02, S27S02

Subsurface Soil: 91B17, 91B18

Tables 5-1 through 5-4 present analytical results of samples collected from each medium to be used in the determination of control values for screening potential contamination. (Surface water has not been assessed because only one sample was collected during the ESI.) Each table presents the inorganic certified reporting limits (CRLs) and the sample data. Sample data were averaged, and the average was doubled to attain each inorganic analyte's control screening value. For Table 5-1, Groundwater Control Samples, maximum contaminant levels (MCLs) were also included in the assessment. Where twice the average was greater than the MCL, the value selected as the control screening value was the greater of the MCL or the average. For values reported as being less than the detection limit (identified with a "<"), the average was calculated using the value at the detection limit, according to EPA recommendations (EPA 1989).

Table 5-1. Groundwater Control Samples

ELEMENT/	CBT	MCL	W2—17	91B18	918180		CONTROL !	CONTROL SCREENING VALUE	ALUE
COMPOUND	(l/6rl)	(l/gt/)	(hgrl)	(l/grl).	(l/6rl)	Avg.	2' Avg.	Use	Comment
Figure No.			5-1	5-8	5-8				
Aluminum	107		591	14,400	13,700	9,564	19,127	19,127	2xAvg.
Antimony	37.1	9	<37.1	<37.1	<37.1	37.1	74.2	37.1	Avg.>MCL
Arsenic	6.01	50	<6.01	<6.01	<6.01	6.01	12.02	50	MCL
Barium	20	2,000	51.4	219	230	167	334	2,000	MCL
Beryllium	2.5	4	<2.5	<2.5	<2.5	2.5	5	4	MCL
Cadmium	S	S	\$	<5	<5	5	10	9	MCL
Calcium	200		38,400	6,320	6,170	16,963	33,927	33,927	2xAvg.
Chromium	15	100	<15	54.9	42.7	38	75	100	MCL
Cobalt	25		<25	28.4	33.5	29	58	89	2xAvg.
Copper	20	1,300**	<2.0	23.1	23.1	22	44	1,300	MCL
Cyanide	8.17	200	<8.17	<8.17	<8.17	8.17	16.34	200	MCL
Iron	120		2,220	58,000	57,000	39,073	78,147	78,147	2xAvg.
Lead	1.26	15**	5.12	23.8	29	19	39	19	Avg>MCL
Magnesium	500		3,790	1,590	1,470	2,283	4,567	4,567	2xAvg.
Manganese	5.11	_	469	2,800	2,900	2,056	4,113	4,113	2xAvg.
Мегсилу	0.74	2	<0.74	<0.74	<0.74	0.74	1.48	2	MCL

Table 5-1. (Continued)

ELEMENT/	"CBL"	MCL	W2—17	91818	91B18D		CONTROL	CONTROL SCREENING VALUE	VALUE
COMPOUND	(hg/l)	(hgrl)	(l/Grl)	(hg/l)	(l/6rl)	Avg.	2' Avg.	Use	Comment
Molybdenum	30.9		<30.9	<30.9	<30.9	30.9	61.8	61.8	2xAvg.
Nickel	63.1	100	<63.1	<63.1	<63.1	63.1	126.2	001	WC
Potassium	1,250		12,300	<1,250	<1,250	4,933	9,867	9,867	2xAvg.
Selenium	14.9	50	<14.9	<14.9	<14.9	14.9	29.8	20	MOL
Silver	12.5		<12.5	<12.5	<12.5	12.5	25	25	2xAva.
Sodium	500		2,770	3,320	3,340	3,143	6,287	6.287	2xAvo
Thallium	2.5	2	<2.5	<2.5	<2.5	2.5	2	2.5	AvesMCI
Vanadium	20		<20	44.5	42.5	36	71	71	2×Avo.
Zinc	13		426	540	491	486	971	971	2xAvq.
				Other Analyses				-	
Nitrate/Nitrite	1.00		N/A	29.6	24.7	27.1	54.3	54.3	2xAvg.
тос	•		N/A	N/A	N/A			-	CRL

N/A = not analyzed
'Limit of Detection — No "CRL" for these methods
"Values listed for copper and lead are "action levels," not MCLs.
"Pace Laboratories

Jacobs Engineering Group Inc. Washington Operations

Table 5-2. Subsurface Soil Control Samples

	CRL"	91B17	91817	91B17	91B18	CONTRO	L VALUE
ANALYTE	(µg/g)	(5 ft.) (µg/g)	(10 ft.) (µg/g)	(15 ft.) (µg/g)	(5 ft.) (µg/g)	Avg.	2 Avg.
Figure No.		5-7	5-7	5-7	5-8		
Aluminum	10.7	6,300	3,100	14,000	5,450	7,212	14,425
Antimony	82.9	<82.9	<82.9	<82.9	<82.9	82.9	165.8
Arsenic	12.7	<12.7	<12.7	<12.7	<12.7	12.7	25.4
Barium	4.87	47.5	33.4	17.6	55	38.4	76.7
Beryllium	0.25	0.684	1.14	1.99	0.875	1.17	2.34
Cadmium	0.427	<0.427	<0.427	<0.427	<0.427	0.427	0.854
Calcium	109	428	756	896	208	572	1,144
Chromium	0.974	51.6	6.63	15.8	8.13	20.5	41.1
Cobalt	2.5	17.4	10.7	20.4	12	15.1	30.2
Copper	3.38	8.51	9.52	28	11.7	14.4	28.9
Cyanide	1.22	<1.22	<1.22	<1.22	<1.22	1.22	2.44
Iron	12	40,000	9,400	29,000	15,000	23,350	46,700
Lead	10	38.4	17.2	23.3	21.7	25.1	50.3
Magnesium	138	279	416	896	265	464	928
Manganese	0.511	930	590	440	310	567	1,135
Mercury	0.087	<0.087	0.134	<0.087	<0.087	0.098	0.197
Molybdenum	4	<4	<4	<4	<4	4	8
Nickel	7.5	<7.5	11.6	38.5	13	17.6	35.3
Potassium	142	142	229	776	235	345	691
Selenium	12.4	<12.4	<12.4	<12.4	<12.4	12.4	24.8
Silver	1.01	<1.01	<1.01	<1.01	<1.01	1.01	2.02
Sodium	50	<50	<50	75.6	<50	56.4	112.8
Thallium	12.5	<12.5	<12.5	<12.5	<12.5	12.5	25.0
Vanadium	2	63.8	20	44.6	16.2	36.1	72.3
Zinc	4	40.9	32.9	119	51	60.9	121.9
			Other Analyses				
Nitrate/Nitrite	1.00	N/A	N/A	N/A	N/A	1.00	2.00
тос	40°	N/A	N/A	N/A	N/A	40	80

^{&#}x27;Limit of Detection — No "CRL" for these methods
"Pace Laboratories
N/A = not analyzed

Table 5-3. Surface Soil Control Samples

	CRL"	SAMPLE S10S01	SAMPLE S26S02	SAMPLE S27S02	CONTRO	. VALUE
ANALYTE	(µg/g)	0.5 ft. (µg/g)	0.5 ft. (µg/g)	0.5 ft. (µg/g)	Avg.	2 Avg.
Figure No.		5-4	5-10	5-10		
Aluminum	10.7	5,130	31,000	15,000	17,043	34,087
Antimony	82.9	<82.9	<82.9	<82.9	82.9	165.8
Arsenic	12.7	<12.7	<12.7	<12.7	12.7	25.4
Barium	4.87	21.4	72.2	51.7	48.4	96.9
Beryllium	0.25	<0.25	0.817	0.419	0.495	0.991
Cadmium	0.427	<0.427	<0.427	<0.427	0.427	0.854
Calcium	109	1,300	525	420	748	1497
Chromium	0.974	9 .59	25.2	13.6	16.1	32.3
Cobalt	2.5	4.75	26.9	15.2	15.6	31.2
Copper	3.38	<3.38	16.3	10.1	9.9	19.9
Cyanide	1.22	<1.22	<1.22	<1.22	1.22	2.44
Iron	12	9,300	28,000	17,000	18,100	36,200
Lead	10	<10	28.6	20.9	19.8	39.7
Magnesium	138	242	1,160	678	693	1,387
Manganese	0.511	120	1,200	320	547	1093
Mercury	0.087	<0.087	<0.087	<0.087	0.087	0.174
Molybdenum	4	<4	<4	<4	4	8
Nickel	7.5	<7.5	17.4	9.76	11.6	23.1
Potassium	142	208	858	413	493	986
Selenium	12.4	<12.4	<12.4	<12.4	12.4	24.8
Silver	1.01	<1.01	<1.01	<1.01	1.01	2.02
Sodium	50	<50	100	<50	67	133
Thallium	12.5	<12.5	<12.5	<12.5	12.5	25.0
Vanadium	2	19.6	54.8	32.4	35.6	71.2
Zinc	4	15.1	49.5	42.6	35.7	71.5
		0	ther Analyses			
Nitrate/nitrite	1.0	1.0	N/A	N/A	1.0	2.0
TOC	40°	10,400	N/A	N/A	10,400	20,800

Limit of Detection — No "CRL" for these methods N/A = not analyzed Pace Laboratories

Table 5-4. Sediment Control Samples

	CRL"	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	CONTRO	L VALUE
ANALYTE	(ha/a)	\$8\$D1 (µg/g)	\$8SD2 (µg/g)	\$8\$D3 (µg/g)	\$8SD3D (µg/g)	\$8\$D4 (µg/g)	Avg.	2 Avg.
Figure No.		5-3	5-3	5-3	5-3	5-3		
Aluminum	10.7	15,000	16,000	13,000	20,000	17,000	16,200	32,400
Antimony	82.9	<82.9	<82.9	<82.9	<82.9	<82.9	82.9	165.8
Arsenic	12.7	<12.7	<12.7	<12.7	<12.7	<12.7	12.7	25.4
Barium	4.87	24.6	59.6	73.9	30.4	56.3	49.0	97.9
Beryllium	0.25	0.57	0.498	0.704	0.771	0.997	0.708	1.416
Cadmium	0.427	<0.427	<0.427	<0.427	<0.427	<0.427	0.427	0.854
Calcium	109	220	<109	237	238	358	232	465
Chromium	0.974	16.8	15.9	18.7	51.5	19.6	24.5	49.0
Cobalt	2.5	22.5	20.7	32.1	28.9	55.8	32	64
Copper	3.38	21.7	12.3	21	24.7	33.9	22.7	45.4
Cyanide	1.22	<1.22	<1.22	<1,22	<1.22	<1.22	1.22	2.44
Iron	12	29,000	12,000	41,000	48,000	37,000	33,400	66,800
Lead	10	<10	19.1	14.7	18.3	24	17.2	34.4
Magnesium	138	515	649	334	572	613	537	1,073
Manganese	0.511	192	540	740	330	1,200	600	1,201
Mercury	0.087	<0.0087	<0.087	<0.087	<0.087	<0.087	0.087	0.174
Molybdenum	4	<4	<4	<4	<4	<4	4	8
Nickel	7.5	14.3	12.8	<7.5	15.2	28.9	15.7	31.5
Potassium	142	846	607	376	736	735	660	1,320
Selenium	12.4	<12.4	<12.4	<12.4	<12.4	<12.4	12.4	24.8
Silver	1.01	<1.01	<1.01	<1.01	<1.01	<1.01	1.01	2.02
Sodium	50	<50	<50	81.5	91.5	80.9	70.8	141.6
Thallium	12.5	<12.5	<12.5	<12.5	<12.5	<12.5	12.5	25.0
Vanadium	2	48.5	29.4	47.9	57	52	47	94
Zinc	4	54.4	42.4	37.7	53.9	87.3	55.1	110.3
			Other	Analyses				
Nitrate/nitrite	1.00°	N/A	N/A	N/A	N/A	N/A	1.00	2.00
TOC	40°	N/A	N/A	N/A	N/A	N/A	40	80

Limit of Detection — No *CRL* for these methods Pace Laboratories N/A = not analyzed

5.2 ANALYTIC DATA OVERVIEW

5.2.1 Groundwater

A summary of on-site groundwater chemical data is presented in Table 5-5. Each inorganic analyte was evaluated against the control screening value derived in Table 5-1, and each organic compound was evaluated against the CRL to determine potential contaminants. Table 5-5 lists the number of results for each chemical parameter, together with the CRL, a count of how many times it exceeded the control screening value, what frequency of excess this was, and what was found to be the maximum concentration.

The potential inorganic contaminants of concern are: aluminum, beryllium, cadmium, calcium, chromium, cobalt, iron, lead, magnesium, manganese, nickel, potassium, selenium, silver, sodium, vanadium, and zinc. The VOC acetone and the SVOC bis(2-ethylhexyl) phthalate were detected in several groundwater samples. The explosives 4-nitrotoluene and HMX were detected in one sample each, while RDX was detected in two. Nitrate/nitrite was detected in nine samples, and TOC was detected in the only sample.

Table 5-6 presents pH, conductivity and temperature data for all water samples collected on-site during the field investigations. The pH values range from 4.94 to 10.30 with a mean value of 6.84. Conductivity values range from a minimum of 50 μmhos/cm to a maximum of 533 μmhos/cm with a mean value of 180.05. The relatively low conductivity is indicative of a low concentration of ions in solution. This supports the presumption that elevated concentrations of inorganics in water sample analyses is most probably due to particulate inorganic material. The high pH value (10.30) is probably due to grout contamination of well 91B11.

Table 5-5. Groundwater Chemical Data Summary

ELEMENTS/COMPOUNDS		NUMBER OF	RESULTS ABOVE CONTROL SCREENING VALUE		MAXIMUM CONCENTRATION (µg/l)
	CRL" (µg/l)		Frequency (%)		
	Inc	rganics			
Aluminum	107	16	2	12	31,600
Antimony	37.1	16	0	0	<37.1
Arsenic	6.01	16	0	0	11.6
Barium	20	16	0	0	1,650
Beryllium	2.5	16	2	12	3.22
Cadmium	5	16	11	6	18.4
Calcium	500	16	3	19	63,000
Chromium	15	16	3	19	145
Cobalt	25	16	2	12	433
Copper	20	16	0	0	353
Cyanide	8.17	17	0	0	<8.17
Iron	120	16	1	6	99,000
Lead	1.261	34	8	24	137
Magnesium	500	16	5	31	33,000
Manganese	5.11	16	1	6	18,000
Mercury	0.74	16	0	0	<0.74
Molybdenum	30.9	16	0	0	<30.9
Nickel	63.1	16	2	12	180
Potassium	1250	16	1	6	12,300
Selenium	14.9²	34	0	0	<75
Silver	12.5	16	1	6	105
Sodium	500	16	4	25	38,400
Thallium	2.5³	34	1	3	2.64/<100
Vanadium	20	16	3	19	109
Zinc	13	16	3	19	1,240

Table 5-5. Groundwater Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	RESULTS ABOVE CONTROL SCREENING VALUE		MAXIMUM CONCENTRATION
	CRL" (µg/l)	RESULTS	Number	Frequency (%)	(hâ\J)
		VOCs			
Acetone	10	16	5	31	21
Benzene	5	16	0	0	<5
Bromodichloromethane	5	16	0	0	<5
Bromoform	5	16	0	0	<5
Bromomethane	10	16	0	0	<10
Carbon disulfide	5	16	0	0	<5
Carbon tetrachloride	5	16	0	0	<5
Chlorobenzene	5	16	0	0	<5
Chloroethane	10	16	0	0	<10
Chloroethene	10	16	0	0	<10
Chloroform	5	16	0	0	<5
Chloromethane	10	16	0	0	<10
Dibromochloromethane	5	16	0	0	<5
1,1-Dichlorethane	5	16	0	0	<5
1,2-Dichloroethane	5	16	0	0	<5
1,1-Dichloroethylene	5	16	0	0	<5
cis-1,2-Dichloroethylene	5	16	0	0	<5
cis-1,3-Dichloropropylene	5	16	0	0	< 5
trans-1,2-Dichloroethylene	5	16	0	0	< 5
1,2-Dichloropropane	5	16	0	0	<5
trans-1,3-Dichloropropylene	5	16	0	0	<5
Ethylbenzene	5	16	0	0	<5
Methylene chloride	5	16	0	0	<5
Methylethyl ketone	10	16	0	0	<10
Methylisobutyl ketone	10	16	0	0	<10

Table 5-5. Groundwater Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	RESULTS ABOVE CONTROL SCREENING VALUE		MAXIMUM CONCENTRATION
	CRL" (µg/l)	RESULTS	Number	Frequency (%)	(µg/I)
Methyl-N-butyl ketone	10	16	0	0	<10
Styrene	5	16	0	0	<5
1,1,2,2-Tetrachloroethane	5	16	0	0	<5
Tetrachloroethylene	5	16	0	0	<5
1,1,1-Trichloroethane	5	16	0	0	<5
1,1,2-Trichloroethane	5	16	0	0	<5
Trichloroethylene	5	16	0	0	<5
Trifluorochloromethane	5	16	0	0	<5
Toluene	5	16	0	0	<5
Xylenes	5	16	0	0	<5
	(SVOCs			
Acenaphthene	10	16	0	0	<10
Acenaphthylene	10	16	0	0	<10
Anthracene	10	16	0	0	<10
Benzo[a]anthracene	10	16	0	0	<10
Benzo[a]pyrene	10	16	0	0	<10
Benzo[b]fluoranthene	10	16	0	0	<10
Benzo[g,h]perylene	10	16	0	0	<10
Benzo[k]fluoranthene	10	16	0	0	<10
Benzoic acid	50	16	0	0	<50
Benzyl alcohol	10	16	0	0	<10
Bis (2-chloroisopropyl) ether	10	16	0	0	<10
Bis (2-chloroethyl) ether	10	16	0	0	<10
Bis (2-chloroethoxy) methane	10	16	0	0	<10
Bis (2-ethylhexyl) phthalate	10	16	1	6	41
4-Bromophenylphenyl ether	10	16	0	0	<10

Table 5-5. Groundwater Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	CO	TS ABOVE NTROL NNG VALUE	MAXIMUM CONCENTRATION
	CRL" (µg/l)	RESULTS	Number	Frequency (%)	(µg/l)
Butylbenzyl phthalate	10	16	0	0	<10
4-Chloroaniline	10	16	0	0	<10
2-Chloronaphthalene	50	. 16	0	0	<50
Chlorophenols	10	16	0	0	<10
4-Chlorophenylphenyl ether	10	16	0	0	<10
Chrysene	10	16	0	0	<10
Dibenz[a,h]anthracene	10	16	0	0	<10
Dibenzofuran	10	16	0	0	<10
1,2-Dichlorobenzene	10	16	0	0	<10
1,3-Dichlorobenzene	10	16	0	0	<10
1,4-Dichlorobenzene	10	16	0	0	<10
3,3 Dichlorobenzidine	20	16	0	0	<20
2,4-Dichlorophenol	10	16	0	0	<10
Diethyl phthalate	10	16	0	0	<10
2,4-Dimethylphenol	10	16	0	0	<10
Dimethyl phthalate	10	16	0	0	<10
Di-N-butyl phthalate	10	16	0	0	<10
Di-N-octyl phthalate	10	16	0	0	<10
2,4-Dinitrophenol	50	16	0	0	<50
Fluoranthene	10	16	0	0	<10
Fluorene	10	16	. 0	0	<10
Hexachlorobenzene	10	16	0	0	<10
Hexachlorobutadiene	10	16	0	0	<10
Hexachlorocyclopentadiene	10	16	0	0	<10
Hexachloroethane	10	16	0	0	<10
Indeno[1,2,3-c,d]pyrene	10	16	0	0	<10

Table 5-5. Groundwater Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	co	TS ABOVE NTROL IING VALUE	MAXIMUM CONCENTRATION
	CRL" (µg/I)	RESULTS	Number	Frequency (%)	(µg/l)
Isophorone	10	16	0	0	<10
3-Methyl-4-chlorophenol	10	16	0	0	<10
2-Methyl-4,6-dinitrophenol	50	16	0	0	<50
2-Methylnaphthalene	10	16	0	0	<10
2-Methylphenol	10	16	0	0	<10
4-Methylphenol	10	16	0	0	<10
Napthalene	10	16	0	0	<10
2-Nitroaniline	50	16	0	0	<50
3-Nitroaniline	50	16	0	0	<50
4-Nitroaniline	50	16	0	0	<50
Nitrobenzene	10	16	0	0	<10
2-Nitrophenol	10	16	0	0	<10
4-4-Nitrophenol	50	16	0	0	<50
N-Nitrosodi-N-propylamine	10	16	0	0	<10
N-Nitrosodiphenylamine	10	16	0	0	<10
Pentachlorophenol	50	16	0	0	<50
Phenanthrene	10	16	0	0	<10
Phenol	10	16	0	0	<10
Pyrene	10	16	0	0	<10
1,2,4-Trichlorobenzene	10	16	0	0	<10
2,4,5-Trichlorophenol	50	16	0	0	<50
2,4,6-Trichlorophenol	10	16	0	0	<10
	Ex	olosives			
1,3-Dinitrobenzene	0.319	16	0	0	<0.319
2,4-Dinitrotoluene	0.3214	32	0	0	<10
2,6-Dinitrotoluene	0.64 ⁵	32	0	0	<10

Table 5-5. Groundwater Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	co	TS ABOVE NTROL IING VALUE	MAXIMUM CONCENTRATION (µg/l)
	CRL" (µg/i)	RESULTS	Number	Frequency (%)	
HMX	2.29	16	1	6	86
Nitroglycerine	3.2	16	0	0	<3.2
2-Nitrotoluene	0.646	16	0	0	<0.646
3-Nitrotoluene	0.492	16	0	0	<0.492
4-Nitrotoluene	0.338	16	1	6	2.25
Pentaerythritol tetranitrate	5.02	16	0	0	<5.02
RDX	0.653	16	2	12	40.6
Tetryl	1.29	16	0	0	<1.29
1,3,5-Trinitrobenzene	0.517	16	0	0	<0.517
2,4,6-Trinitrotoluene	0.319	16	0	0	<0.319
	Pe	sticides			
Aldrin	0.0638	1	0	0	<0.0638
alpha-Benzenehexachloride	0.0434	1	0	0	<0.0434
beta-Benzenehexachloride	0.0109	1	0	0	<0.0109
delta-Benzenehexachloride	0.0488	1	0	0	<0.0488
2,2-Bis (p-chlorophenyl)-1,1-dichloroethane	0.0848	11	0	0	<0.0848
2,2-Bis (p-chlorophenyl)-1,1-dichloroethene	0.0946	1	0	0	<0.0946
2,2-Bis (p-chlorophenyl)-1,1,1-trichloroethane	0.0316	1	0	0	<0.0316
alpha-Chlordane	0.0202	1	0	0	<0.0202
gamma-Chlordane	0.045	1	0	0	<0.045
Dieldrin	0.0321	1	0	0	<0.0321
alpha-Endosulfan	0.00856	1	0	0	<0.00856
beta-Endosulfan	0.012	1	0	0	<0.012
Endrin	0.0372	1	0	0	<0.0372
Endrin Aldehyde	0.0697	1	0	0	<0.0697
Endrin ketone	0.0282	1	0	0 -	<0.0282

Table 5-5. Groundwater Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	RESULTS ABOVE CONTROL SCREENING VALUE		MAXIMUM CONCENTRATION
	CRL" (µg/l)	RESULTS	Number	Frequency (%)	(µg/l)
Endosulfan sulfate	0.02	1	0	0	<0.02
Heptachlor	0.0631	1	0	0	<0.0631
Heptachlor epoxide	0.006	1	0	0	<0.006
Lindane	0.0429	1	0	0	<0.0429
Methoxychlor	0.267	1	0	0	<0.267
PCB 1016	0.1	1	0	0	<0.1
PCB 1221	0.2	1	0	0	<0.2
PCB 1232	0.1	1	0	0	<0.1
PCB 1242	0.1	1	0	0	<0.1
PCB 1248	0.1	1	0	0	<0.1
PCB 1254	0.1	1	0	0	<0.1
PCB 1260	0.1	1	0	0	<0.1
Toxaphene	0.5	1	0	0	<0.5
	Other	r Analyses			
Nitrate/nitrite	1.0°	15	9	60	1,050
TPHC	1,000	1	0	0	<1,000
TOC	1.0°	1	1	100	3,150

¹Pb was analyzed by method SD08 (CRL = 1.26 μ g/l) and SS15 (CRL = 100 μ g/l). ²Se was analyzed by method SD08 (CRL = 14.9 μ g/l) and SS15 (CRL = 75 μ g/l). ³Tl was analyzed by method SD08 (CRL = 2.5 μ g/l) and SS15 (CRL = 100 μ g/l). ⁴2,4-Dinitrotoluene was analyzed by method UW35 (CRL = 0.0321 μ g/l) and UM06 (MDL = 10 μ g/l). ⁵2,6-Dinitrotoluene was analyzed by method UW35 (CRL = 0.64 μ g/l) and UM06 (MDC = 10 μ g/l). Limit of Detection - No "CRL" for these methods "Pace Laboratories

Table 5-6. Groundwater and Surface Water Parameters Measured During Sample Collection

LOCATION	pH (Std. Units)	CONDUCTIVITY (µmhos/cm)	TEMP. (°C)	NOTES
NBSW1	6.75	65	9.2	SURFACE
NBSW2	6.80	70	8.4	SURFACE
NBSW3	7.50	183	12.0	SURFACE
S5SW1	7.97	533	6.12	SURFACE
W2-17	6.18	246	15.0	WELL
W2-18	6.15	50	16.8	WELL
91B11	10.30	230	19.0	WELL
91B12	6.34	85	11.5	WELL
91B13	5.92	55	14.7	WELL
91B14	4.94	52	13.4	WELL
91B15	8.51	514	17.5	WELL
91B16	6.45	54	15.0	WELL
91B17	7.05	175	14.0	WELL
91B18	6.25	136	13.5	WELL
91B19	6.62	86	15.7	WELL
91B20	6.17	60	17.6	WELL
91B21	6.52	526	17.5	WELL
91B22	6.56	101	15.2	WELL
91B23	7.77	312	15.6	WELL
91B24	6.20	68	15.5	WELL

5.2.2 Soil and Sediment

Surface soil, subsurface soil and sediment chemistry data summaries are presented in Tables 5-7 and 5-8, and 5-9 respectively. The summaries include the number of results in the IRDMIS data base for the ESI, the frequency of detections above the control screening values (listed in Tables 5-1 through 5-4), and maximum concentrations.

For surface soil, the most frequent of the analytical detections above the control screening values include the inorganics copper, lead, and zinc. Total petroleum hydrocarbons (TPHC) was detected in all of the surface soil samples on which this analysis was performed. Other detections include methylene chloride, trichlorofluoromethane, trichloroethylene, anthracene, bis(2-ethylhexyl) phthalate, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h]perylene, benzo[k]fluoranthene, chrysene, fluoranthene, indeno[1,2,3-c,d]pyrene, phenanthrene, pyrene and toluene. Nitrate/nitrite was detected in one sample. Explosives 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, HMX, and nitroglycerine were each detected once in surface soil samples.

For subsurface soil, the most frequent of the analytical detections above the control screening values were the inorganics aluminum, cobalt, copper, potassium, manganese, and sodium. The VOC acetone was detected in three subsurface samples, methylene chloride was detected in two, and trichloroethylene was detected in one. TPHC was detected in six samples, nitrate/nitrite in one, and TOC in two.

For sediments, the frequency of detection of inorganics above the control screening values is the lowest of all media, with calcium and chromium occurring most frequently. Acetone and methylene ethyl ketone were each detected in the one sample for which they were analyzed. Benzo[a]anthracene, benzo[a]pyrene, chrysene, and fluoranthene were also detected in the one instance where they were analyzed. Nitrate/nitrite was detected in one sample, and TPHC and TOC were each detected in both samples where these analyses were performed. PCB 1254 was detected in one sample.

5.2.3 Chemical Quality Control Data

Chemical quality control (CQC) samples were collected and analyzed during the ESI to assess the quality of the data generated during the project. See Appendix E for a full discussion of this data and their significance to the project. Appendix E concludes that although various chemical parameters were detected in the CQC samples, the quality of the data was not negatively impacted. Equipment rinse blanks were collected in the field to evaluate the quality of field decontamination procedures. Trip blanks accompanied all samples while in the field and during shipment to the laboratory to evaluate the quality of sample storage, handling, and shipment. Field blanks are often collected to evaluate the quality of the field ambient air, however, no samples of this type were collected during the ESI. Method blanks were analyzed in the laboratory to assess the quality of the laboratory performance.

Six equipment rinse blanks were collected in the field and analyzed in the laboratory. Detected inorganic analytes included: aluminum, barium, calcium, iron, manganese, lead and zinc. Detected organic compounds included TOC and trichloroethylene. All parameters detected in the rinsate samples were also detected in environmental samples collected during the ESI. Trichloroethylene was detected in rinsate sample ER91B23 at $5.3~\mu g/l$ and was also detected in the associated soil sample at $0.011~\mu g/g$. With this association between results, it is possible that contaminated equipment was responsible for the detection in the soil sample. However, because the concentration of trichloroethylene in the soil sample was less than 10 times the amount detected in the blank, it is considered insignificant. And because this event only happened once, it can be concluded that decontamination procedures in the field were adequate and did not negatively impact data quality.

Twenty-two trip blanks were managed in the field and shipped with the samples to the laboratory for analysis. Detectable concentrations of acetone and trichloroethylene were found in trip blanks. However, because the concentrations of acetone and

Expanded Site Inspection of the Ammunition Storage Area

trichloroethylene in environmental samples were at values less than 10 times the amount detected in the blanks, they are considered insignificant. It can be concluded that the storage, handling, and shipment of the samples did not negatively impact the quality of the data.

Organic compounds were detected in method blanks collected in the laboratory. However, because they were all "unknown" contaminants, it can be concluded that these results are due to the sensitivity of the analytical equipment and not to the presence and use of contaminated equipment, and it can be concluded the laboratory performance did not negatively impact the quality of the data.

Table 5-7. Surface Soil Chemical Data Summary

ELEMENTS/COMPOUNDS		NUMBER OF	RESULTS ABOVE CONTROL SCREENING VALUE		MAXIMUM CONCENTRATION
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(hâ\ð)
	lne	organics		•	
Aluminum	10.7	32	3	9	56,000
Antimony	82.9	32	0	0	<82.9
Arsenic	12.7	32	0	0	<12.7
Barium	4.87	32	10	31	954
Beryllium	0.25	32	6	19	2.42
Cadmium	0.427	32	8	25	22.1
Calcium	109	32	14	44	100,000
Chromium	0.974	32	5	16	114
Cobalt	2.5	32	5	16	90.8
Copper	3.38	32	22	69	453
Cyanide	1.22	35	0	0	1.92
Iron	12	32	7	22	69,000
Lead	10	32	15	47	9,100
Magnesium	138	32	10	31	59,000
Manganese	0.511	32	8	25	7,100
Mercury	0.087	32	1	3	0.195
Molybdenum	4	32	2	6	16.5
Nickel	7.5	32	6	19	84.4
Potassium	142	32	6	19	1,850
Selenium	12.4	32	0	0	<12.4
Silver	1.01	32	2	6	2.92
Sodium	50	32	1	3	177
Thallium	12.5	32	0	0	<12.5
Vanadium	2	32	4	12	83.4
Zinc	4	32	20	62	969

Table 5-7. Surface Soil Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	NUMBER CONTROL OF		MAXIMUM CONCENTRATION
	CRL." (µg/g)	RESULTS	Number	Frequ ency (%)	(hâ/ā)
	,	VOCs			
Acetone	0.045	4	0	0	<0.045
Benzene	0.0025	4	0	0	<0.0025
Bromodichloromethane	0.0025	4	0	0	<0.0025
Bromoform	0.0025	4	0	0	<0.0025
Bromomethane	0.0031	4	0	0	<0.0031
Carbon disulfide	0.014	4	0	0	<0.014
Carbon tetrachloride	0.0031	4	0	0	<0.0031
Chlorobenzene	0.0025	4	0	0	<0.0025
Chloroethane	0.003	4	0	0	<0.003
Chloroethene	0.0038	4	0	0	<0.0038
Chloroform	0.0026	4	0	0	<0.0026
Chloromethane	0.035	4	0	0	<0.035
Dibromochloromethane	0.057	4	0	0	<0.057
1,1-Dichlorethane	0.0025	4	0	0	<0.0025
1,2-Dichloroethane	0.0027	4	0	0	<0.0027
1,1-Dichloroethylene	0.32	4	0	0	<0.032
cis-1,2-Dichloroethylene	0.0025	4	0	0	<0.0025
trans 1,2-Dichloroethene	0.0025	4	0	0	<0.0025
1,2-Dichloropropane	0.0025	4	0	0	<0.0025
cis-1,3-Dichloropropylene	0.003	4	0	0	<0.003
trans-1,3-Dichloropropylene	0.0025	4	0	0	<0.0025
Ethylbenzene	0.0025	4	0	0	<0.0025
Methylene chloride	0.0062	4	1	25	0.0098
Methylethyl ketone	0.0051	4	0	0	<0.0051
Methylisobutyl ketone	0.019	4	0	0	<0.019

Table 5-7. Surface Soil Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	CONTROL	TS ABOVE SCREENING ALUE	MAXIMUM CONCENTRATION
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(µg/g)
Methyl-N-bütyl ketone	0.018	4	0	0	<0.018
Styrene	0.0025	4	0	0	<0.0025
1,1,2,2-Tetrachloroethane	0.012	4	0	0	<0.012
Tetrachloroethylene	0.0025	4	0	0	<0.0025
1,1,1-Trichloroethane	0.0025	4	0	0	<0.0025
1,1,2-Trichloroethane	0.0025	4	0	0	<0.0025
Trichloroethylene	0.0025	4	1	25	0.0033
Trichlorofluoromethane	0.005	4	1	25	0.0075
Toluene	0.0025	4	1	25	0.0043
Xylenes	0.0075	4	0	0	<0.0075
	S	VOCs			
Acenaphthene	0.27	4	0	0	<0.27
Acenaphthylene	0.27	4	0	0	<0.27
Anthracene	0.17	4	1	25	0.23
Benzo[a]anthracene	0.17	4	1	25	1.1
Benzo[a]pyrene	0.24	4	2	50	1.4
Benzo[b]fluoranthene	0.73	4	1	25	1.8
Benzo[g,h]perylene	0.25	4	1	25	0.98
Benzo[k]fluoranthene	0.4	4	1	25	1
Benzoic acid	0.92	4	0	0	<0.92
Benzyl alcohol	0.17	4	0	0	<0.17
Bis (2-chloroethoxy) methane	0.17	4	0	0	<0.17
Bis (2-chloroethyl) ether	1.6	4	0	0	<1.6
Bis (2-chloroisopropyl) ether	0.17	4	0	0	<0.17
Bis (2-ethylhexyl) phthalate	0.19	4	1	25	0.37
4-Bromophenylphenyl ether	0.17	4	0	0	<0.17

Table 5-7. Surface Soil Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER CONTRO		TS ABOVE SCREENING ALUE	MAXIMUM CONCENTRATION
	CRL ^{**} (µg/g)	RESULTS	Number	Frequency (%)	(µg/g)
Butylbenzyl phthalate	0.2	4	0	0	<0.2
4-Chloroaniline	0.33	4	0	0	<0.33
2-Chloronaphthalene	0.33	4	0	0	<0.33
Chlorophenols	0.17	4	0	0	<0.17
4-Chiorophenylphenyl ether	0.2	4	0	0	<0.2
Chrysene	0.27	4	11	25	0.88
Dibenz[a,h]anthracene	0.27	4	0	0	<0.27
Dibenzofuran	0.17	4	0	0	<0.17
1,2-Dichlorobenzene	0.32	4	0	0	<0.32
1,3-Dichlorobenzene	0.58	4	0	0	<0.58
1,4-Dichlorobenzene	0.17	4	0	0	<0.17
3,3 Dichlorobenzidine	0.66	4	0	0	<0.66
2,4-Dichlorophenol	0.28	4	0	0	<0.28
Diethyl phthalate	0.35	4	0	0	<0.35
2,4-Dimethylphenol	0.33	4	0	0	<0.33
Dimethyl phthalate	0.17	4	0	0	<0.17
Di-N-butyl phthalate	0.51	4	0	0	<0.51
Di-N-octyl phthalate	0.22	4	0	0	<0.22
2,4-Dinitrophenol	1.7	4	0	0	<1.7
Fluoranthene	0.17	4	1	25	2.4
Fluorene	0.17	4	0	0	<0.17
Hexachloreobenzene	0.26	4	0	0	<0.26
Hexachlorobutadiene	0.28	4	0	0	<0.28
Hexachlorocyclopentadiene	1.8	4	0	0	<1.8
Hexachloroethane	0.17	4	0	0	<0.17
Indeno[1,2,3-c,d]pyrene	0.17	4	1	25	1.2

Table 5-7. Surface Soil Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	CONTROL	TS ABOVE . SCREENING ALUE	MAXIMUM CONCENTRATION
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(ha/a)
Isophorone	0.32	4	0	0	<0.32
3-Methyl-4-chlorophenol	0.23	4	0	0	<0.23
2-Methyl-4,6-dinitrophenol	0.84	4	0	0	<0.84
2-Methylnaphthalene	0.17	4	0	0	<0.17
2-Methylphenol	0.17	4	0	0	<0.17
4-Methylphenol	0.18	4	0	0	<0.18
Naphthalene	0.17	4	0	0	<0.17
2-Nitroaniline	0.36	4	0	0	<0.36
3-Nitroaniline	1.7	4	0	0	<1.7
4-Nitroaniline	1.7	4	0	0	<1.7
Nitrobenzene	0.19	4	0	0	<0.19
2-Nitrophenol	0.26	4	0	0	<0.26
4-4-Nitrophenol	2.5	4	0	0	<2.5
N-Nitrosodi-N-propylamine	1.1	4	0	0	<1.1
N-Nitrosodiphenylamine	0.17	4	0	0	<0.17
Pentachiorophenol	0.48	4	0	0	<0.48
Phenanthrene	0.17	4	1	25	0.83
Phenol	0.17	4	0	0	<0.17
Pyrene	0.97	4	1	25	1.4
1,2,4-Trichlorobenzene	0.29	4	0	0	<0.29
2,4,5-Trichlorophenol	0.24	4	0	0	<0.24
2,4,6-Trichlorophenol	0.3	4	0	0	<0.3
	Ехр	losives		· · · · · · · · · · · · · · · · · · ·	
1,3-Dinitrobenzene	0.249	26	0	0	<0.249
2,4-Dinitrotoluene	0.251	26	1	4	0.448
2,6-Dinitrotoluene	0.5	26	0	0	<0.5

Table 5-7. Surface Soil Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER CONTROL		TS ABOVE SCREENING ALUE	MAXIMUM CONCENTRATION
	CRL." (µg/g)	RESULTS	Number	Frequency (%)	(ha\a)
нмх	0.499	26	1	4	1.01
Nitroglycerine	2.5	26	1	4	17.6
2-Nitrotoluene	0.505	26	0	0	<0.505
3-Nitrotoluene	0.251	26	0	0	<0.251
4-Nitrotoluene	0.245	26	0	0 .	<0.245
Pentaerythritol tetranitrate	2.5	26	0	0	<2.5
RDX	0.51	26	0	0	<0.51
Tetryl	1.27	26	0	0	<1.27
1,3,5-Trinitrobenzene	0.25	26	0	0	<0.25
2,4,6-Trinitrotoluene	0.25	26	1	4	1.28
	Pestic	cides/PCBs			
Aldrin	0.013	1	0	0	<0.013
alpha-Benzenehexachloride	0.0025	1	0	0	<0.0025
beta-Benzenehexachloride	0.0054	1	0	0	<0.0054
delta-Benzenehexachloride	0.0228	1	0	0	<0.0228
2,2-Bis (p-chlorophenyl)-1,1-dichloroethane	0.0112	1	0	0	<0.0112
2,2-Bis (p-chlorophenyl)-1,1-dichloroethene	0.0142	1	0	0	<0.0142
2,2-Bis (p-chlorophenyl)-1,1,1-trichloroethane	0.0096	1	0	0	<0.0096
alpha-Chlordane	0.004	1	0	0	<0.004
gamma-Chlordane	0.0214	1	0	0	<0.0214
Dieldrin	0.0078	1	0	0	<0.0078
alpha-Endosulfan	0.0047	1	0	0	<0.0047
beta-Endosulfan	0.0071	1	0	0	<0.0071
Endrin	0.0111	1	0	0	<0.0111
Endrin aldehyde	0.0276	1	0	0	<0.0276
Endrin ketone	0.0061	1	0	0	<0.0061

Table 5-7. Surface Soil Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	CONTROL	TS ABOVE . SCREENING ALUE	MAXIMUM CONCENTRATION
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(hā/ā)
Endosulfan sulfate	0.013	1	0	0	<0.013
Heptachlor	0.0096	1	0	0	<0.0096
Heptachlor epoxide	0.0039	1	0	0	<0.0039
Lindane	0.02	1	0	0	<0.02
Methoxychlor	0.211	1	0	0	<0.211
PCB 1016	0.04	1	0	0	<0.04
PCB 1221	0.08	1	0	0	<0.08
PCB 1232	0.04	1	0	0	<0.04
PCB 1242 .	0.04	1	0	0	<0.04
PCB 1248	0.04	1	0	0	<0.04
PCB 1254	0.04	1	0	0	<0.04
PCB 1260	0.04	1	0	0	<0.04
Toxaphene	0.2	1	0	0	<0.2
	Other	Analyses			
Nitrate/Nitrite	1.00	5	1	20	4.14
TPHC	10°	12	12	100	658
тос	40°	9	0	0	17,900

Limit of Detection - No "CRL" for these methods "Pace Laboratories

Table 5-8. Subsurface Soil Chemical Data Summary

ELEMENTS/COMPOUNDS		NUMBER OF	CONTROL	S ABOVE SCREENING LUE	MAXIMUM CONCENTRATION					
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(hā\ā)					
Inorganics										
Aluminum	10.7	37	7	19	27,000					
Antimony	82.9	37	0	0	<82.9					
Arsenic	12.7	37	0	0	<12.7					
Barium	4.87	37	6	16	547					
Beryllium	0.25	37	3	8	3.66					
Cadmium	0.427	37	1	3	6.51					
Calcium	109	37	3	8	1,860					
Chromium	0.974	37	2	5	70.9					
Cobalt	2.5	37	8	22	66.8					
Copper	3.38	37	7	19	146					
Cyanide	1.22	36	0	0	<1.22					
Iron	12	37	3	8	53,000					
Lead	10	37	4	11	136					
Magnesium	138	37	5	14	1,990					
Manganese	0.511	37	8	22	3,600					
Mercury	0.087	37	5	14	0.521					
Molybdenum	4	37	0	0	5.87					
Nickel	7.5	37	6	16	61					
Potassium	142	37	9	24	928					
Selenium	12.4	37	0	0	<12.4					
Silver	1.01	37	0	0	<1.01					
Sodium	50	37	8	22	278					
Thallium	12.5	37	0	0	<12.5					
Vanadium	2	37	2	5	76.5					
Zinc	4	37	3	8	336					

Table 5-8. Subsurface Soil Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	CONTROLS		MAXIMUM CONCENTRATION
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(hā/ā)
		VOCs			
Acetone	0.045	8	3	38	0.1
Benzene	0.0025	8	0	С	<0.0025
Bromodichloromethane	0.0025	8	0	0	<0.0025
Bromotorm	0.0025	8	0	0	<0.0025
Bromomethane	0.0031	8	0	0	<0.0031
Carbon disulfide	0.014	8	0	0	<0.014
Carbon tetrachloride	0.0031	8	0	0	<0.0031
Chlorobenzene	0.0025	8	0	0	<0.0025
Chloroethane	0.003	8	0	0	<0.003
Chloroethene	0.0038	8	0	0	<0.0038
Chloroform	0.0026	8	0	0	<0.0026
Chloromethane	0.035	8	0	0	<0.035
Dibromochloromethane	0.057	8	0	0	<0.057
1,1-Dichlorethane	0.0025	8	0	0	<0.0025
1,2-Dichloroethane	0.0027	8	0	0	<0.0027
1,1-Dichloroethylene	0.32	8	0	0	<0.032
cis-1,2-Dichloroethylene	0.0025	8	0	0	<0.0025
trans-1,2-Dichloroethylene	0.0025	8	0	0	<0.0025
1,2-Dichloropropane	0.0025	8	0	0	<0.0025
cis-1,3-Dichloropropylene	0.003	8	0	0	<0.003
trans-1,3-Dichloropropylene	0.0025	8	0	0	<0.0025
Ethylbenzene	0.0025	8	0	0	<0.0025
Methylene chloride	0.0062	8	2	25	0.03
Methylethyl ketone	0.0051	8	0	0	<0.0051

Table 5-8. Subsurface Soil Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	CONTROL	S ABOVE SCREENING LUE	MAXIMUM CONCENTRATION
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(ha\a)
Methylisobutyl ketone	0.019	8	0	0	<0.019
Methyl-N-butyl ketone	0.018	8	0	0	<0.018
Styren e	0.0025	8	0	0	<0.0025
1,1,2,2-Tetrachloroethane	0.012	8	0	0	<0.012
Tetrachloroethylene	0.0025	8	0	0	<0.0025
1,1,1-Trichloroethane	0.0025	8	0	0	<0.0025
1,1,2-Trichloroethane	0.0025	8	0	0	<0.0025
Trichloroethylene	0.0025	8	1	13	0.011
Trifluorochloromethane	0.005	8	0	0	<0.005
Toluene	0.0025	8	0	0	<0.0025
Xylenes	0.0075	8	0	0	<0.0075
		SVOCs			
Acenaphthene	0.27	8	0	0	<0.27
Acenaphthylene	0.27	8	0	0	<0.27
Anthracene	0.17	8	0	0	<0.17
Benzo[a]anthracene	0.17	8	0	0	<0.17
Benzo[a]pyrene	0.24	8	0	0	<0.24
Benzo[b]fluoranthene	0.73	8	0	0	<0.73
Benzo[g,h]perylene	0.25	8	0	0	<0.25
Benzo[k]fluoranthene	0.4	8	0	0	<0.4
Benzoic acid	0.92	8	0	0	<0.92
Benzyl alcohol	0.17	8	0	0	<0.17
Bis (2-chloroisopropyl) ether	0.17	8	0	0	<0.17
Bis (2-chloroethyl) ether	1.6	8	0	0	<1.6
Bis (2-chloroethoxy) methane	0.17	8	0	0	<0.17
Bis (2-ethylhexyl) phthalate	0.19	8	0	0	<0.19

Table 5-8. Subsurface Soil Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF			MAXIMUM CONCENTRATION
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	The second state of the se
4-Bromophenylphenyl ether	0.17	8	0	0	<0.17
Butylbenzyl phthalate	0.2	8	0	0	<0.2
4-Chloroaniline	0.33	8	0	0	<0.33
2-Chloronaphthalene	0.33	8	0	0	<0.33
Chlorophenols	0.17	8	0	0	<0.17
4-Chlorophenylphenyl ether	0.2	8	0	0	<0.2
Chrysene	0.27	8	0	0	<0.27
Dibenz[a,h]anthracene	0.27	8	0	0	<0.27
Dibenzofuran	0.17	8	0	0	<0.17
1,2-Dichlorobenzene	0.32	8	0	0	<0.32
1,3-Dichlorobenzene	0.58	8	0	0	<0.58
1,4-Dichlorobenzene	0.17	8	0	0	<0.17
3,3 Dichlorobenzidine	0.66	8	0	0	<0.66
2,4-Dichlorophenol	0.28	8	0	0	<0.28
Diethyl phthalate	0.35	8	0	0	<0.35
2,4-Dimethylphenol	0.33	8	0	0	<0.33
Dimethyl phthalate	0.17	8	0	0	<0.17
Di-N-butyl phthalate	0.51	8	0	0	<0.51
Di-N-octyl phthalate	0.22	8	0	0	<0.22
2,4-Dinitrophenol	1.7	8	0	0	<1.7
Fluoranthene	0.17	8	0	0	2.4
Fluorene	0.17	8	0 ·	0	<0.17
Hexachloreobenzene	0.26	8	0	0	<0.26
Hexachlorobutadiene	0.28	8	0	0	<0.28
Hexachlorocyclopentadiene	1.8	8	0	0	<1.8
Hexachloroethane	0.17	8	0	0	<0.17

Table 5-8. Subsurface Soil Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	CONTROL	S ABOVE SCREENING LUE	MAXIMUM CONCENTRATION
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(hā/ā)
Indeno[1,2,3-c,d]pyrene	0.17	8	0	0	1.2
Isophorone	0.32	8	0	0	<0.32
3-Methyl-4-chlorophenol	0.23	8	0	0	<0.23
2-Methyl-4,6-dinitrophenol	0.84	8	0	0	<0.84
2-Methylnaphthalene	0.17	8	0	0	<0.17
2-Methylphenol	0.17	8	0	0	<0.17
4-Methylphenol	0.18	8	0	0	<0.18
Naphthalene	0.17	8	0	0	<0.17
2-Nitroaniline	0.36	8	0	0	<0.36
3-Nitroaniline	1.7	8	0	0	<1.7
4-Nitroaniline	1.7	8	0	0	<1.7
Nitrobenzene	0.19	8	0	0	<0.19
2-Nitrophenol	0.26	8	0	0	<0.26
4-4-Nitrophenol	2.5	8	0	0	<2.5
N-Nitrosodi-N-propylamine	1.1	8	0	0	<1.1
N-Nitrosodiphenylamine	0.17	8	0	0	<0.17
Pentachlorophenol	0.48	8	0	0	<0.48
Phenanthrene	0.17	8	0	0	0.83
Phenol	0.17	8	0	0	<0.17
Pyrene	0.97	8	0	0	1.4
1,2,4-Trichlorobenzene	0.29	8	0	0	<0.29
2,4,5-Trichlorophenol	0.24	8	0	0	<0.24
2,4,6-Trichlorophenol	0.3	8	0	0	<0.3
		Explosives			
1,3-Dinitrobenzene	0.249	37	. 0	0	<0.249
2,4-Dinitrotoluene	0.251	37	0	0	<0.251

Table 5-8. Subsurface Soil Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NIMBED CONTRE		S ABOVE SCREENING LUE	MAXIMUM CONCENTRATION
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(ha\a)
2,6-Dinitrotoluene	0.5	37	0	0	<0.5
НМХ	0.499	37	0	0	<0.499
Nitroglycerine	2.5	37	0	· C	<2.5
2-Nitrotoluene	0.505	37	0	0	<0.505
3-Nitrotoluene	0.251	37	0	0	<0.251
4-Nitrotoluene	0.245	37	0	0	<0.245
Pentaerythritol tetranitrate	2.5	37	0	0	<2.5
RDX	0.51	37	0	0	<0.51
Tetryl	1.27	37	0	0	<1.27
1,3,5-Trinitrobenzene	0.25	37	0	0	<0.25
2,4.6-trinitrotoluene	0.25	37	0	0	<0.25
		Other Analyse	es		
Nitrate/Nitrite	1.00°	23	1	4	2.58
TPHC	10°	14	6	43	62.8
тос	40°	2	2	100	6,970

Limit of detection Pace Laboratories

Table 5-9. Sediment Chemical Data Summary

ELEMENTS/COMPOUNDS		NUMBER OF	col	TS ABOVE NTROL ING VALUE	MAXIMUM CONCENTRATION
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(ha\a)
	in	organics			
Aluminum	10.7	14	0	0	22,000
Antimony	82.9	14	0	0	<82.9
Arsenic	12.7	14	0	0	<12.7
Barium	4.87	14	0	0	73.9
Beryllium	0.25	14	0	0	1.18
Cadmium	0.427	14	1	7	0.899
Calcium	109	14	3	21	3,850
Chromium	0.974	14	2	14	55.4
Cobalt	2.5	14	0	0	55.8
Copper	3.38	14	1	7	97.6
Cyanide	1.22	15	0	0	<1.22
Iron	12	14	1	7	96,000
Lead	10	14	1	7	45.1
Magnesium	138	14	1	7	1,190
Manganese	0.511	14	1	7	1,400
Mercury	0.087	14	0	0	<0.087
Molybdenum	4	14	0	0	<4
Nickel	7.5	14	0	0	28.9
Potassium	142	14	0	0	846
Selenium	12.4	14	0	0	<12.4
Silver	1.01	13	0	0	<1.01
Sodium	50	14	0	0	91.5
Thallium	12.5	14	0	0	<12.5
Vanadium	2	14	0	0	88.4
Zinc	4	14	1	7	422

Table 5-9. Sediment Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	co	TS ABOVE NTROL IING VALUE	MAXIMUM CONCENTRATION					
	СR L" (µg/g)	RESULTS	Number	Frequency (%)	(hā\ā)					
VOCs										
Acetone	0.045	1	1	100	0.14					
Benzene	0.0025	1	0	0	<0.0025					
Bromodichloromethane	0.0025	1	0	0	<0.0025					
Bromoform	0.0025	1	0	0	<0.0025					
Bromomethane	0.0031	1	0	0	<0.0031					
Carbon disulfide	0.014	1	0	0	<0.014					
Carbon tetrachloride	0.0031	1	0	0	<0.0031					
Chlorobenzene	0.0025	1	0	0	<0.0025					
Chloroethane	0.003	1	0	0	<0.003					
Chloroethene	0.0038	1	0	0	<0.0038					
Chloroform	0.0026	1	. 0	0	<0.0026					
Chloromethane	0.035	1	0	0	<0.035					
Dibromochloromethane	0.057	1	0	0	<0.057					
1,1-Dichlorethane	0.0025	1	0	0	<0.0025					
1,2-Dichloroethane	0.0027	1	0	0	<0.0027					
1,1-Dichloroethylene	0.32	1	0	0	<0.032					
cis-1,2-Dichloroethylene	0.0025	1	0	0	<0.0025					
trans-1,2-Dichloroethylene	0.0025	1	0	0	<0.0025					
1,2-Dichloropropane	0.0025	1	0	0	<0.0025					
cis-1,3-Dichloropropylene	0.003	1	0	0	<0.003					
trans-1,3-Dichloropropylene	0.0025	1	0	0	<0.0025					
Ethylbenzene	0.0025	1	0	0	<0.0025					
Methylene chloride	0.0062	1	0	0	0.0098					
Methylethyl ketone	0.0051	1	1	100	0.025					
Methylisobutyl ketone	0.019	1	0	0	<0.019					

Table 5-9. Sediment Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	CO	TS ABOVE NTROL IING VALUE	MAXIMUM CONCENTRATION
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(µg/g)
Methyl-N-butyl ketone	0.018	1	0	0	<0.018
Styrene	0.0025	1	0	0	<0.0025
1,1,2,2-Tetrachloroethane	0.012	1	0	0	<0.012
Tetrachloroethylene	0.0025	1	0	0	<0.0025
1,1,1-Trichloroethane	0.0025	1	0	0	<0.0025
1,1,2-Trichloroethane	0.0025	1	0	0	<0.0025
Trichloroethylene	0.0025	1	0	0	<0.0025
Trifluorochloromethane	0.005	1	0	0	0.0075
Toluene	0.0025	1	0	0	0.0043
Xylenes	0.0075	1	0	0	<0.0075
		SVOCs			
Acenaphthene	0.27	1	0	0	<0.27
Acenaphthylene	0.27	1	0	0	<0.27
Anthracene	0.17	1	0	0	<0.17
Benzo[a]anthracene	0.17	1	1	100	0.51
Benzo[a]pyrene	0.24	1	1	100	0.58
Benzo[b]fluoranthene	0.73	1	0	0	<0.73
Benzo[g,h]perylene	0.25	1	0	0	<0.25
Benzo[k]fluoranthene	0.4	1	0	0	<0.4
Benzoic acid	0.92	1	0	0	<0.92
Benzyl alcohol	0.17	1	0	0	<0.17
Bis (2-chloroisopropyl) ether	0.17	1	0	. 0	<0.17
Bis (2-chloroethyl) ether	1.6	1	0	0	<1.6
Bis (2-chloroethoxy) methane	0.17	1	0	0	<0.17
Bis (2-ethylhexyl) phthalate	0.19	1	0	0	<0.19
4-Bromophenylphenyl ether	0.17	1	0	0	<0.17

Table 5-9. Sediment Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	RESULTS ABOVE CONTROL SCREENING VALUE		MAXIMUM CONCENTRATION
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(hā/ā)
Butylbenzyl phthalate	0.2	1	0	0	<0.2
4-Chloroaniline	0.33	1	0	0	<0.33
2-Chloronaphthalene	0.33	1	0	0	<0.33
Chiorophe nois	0.17	1	0	0	<0.17
4-Chiorophenylphenyl ether	0.2	1	0	0	<0.2
Chrysene	0.27	1	1	100	0.71
Dibenz[a,h]anthracene	0.27	1	0	0	<0.27
Dibenzo furan	0.17	1	0	0	<0.17
1,2-Dichlorobenzene	0.32	1	0	0	<0.32
1.3-Dichlorobenzene	0.58	1	0	0	<0.58
1,4-Dichlorobenzene	0.17	1	0	0	<0.17
3.3 Dichlorobenzidine	0.66	1	0	0	<0.66
2,4-Dichlorophenol	0.28	1	0	0	<0.28
Diethyl phthalate	0.35	1	0	0	<0.35
2.4-Dimethylphenol	0.33	1	0	0	<0.33
Dimethyl phthalate	0.17	1	0	0	<0.17
Di-N-butyl phthalate	0.51	1	0	0	<0.51
Di-N-octyl phthalate	0.22	1	0	0	<0.22
2,4-Dinitrophenol	1.7	1	0	0	<1.7
Fluoranthene	0.17	1	1	100	0.88
Fluorene	0.17	1	0	0	<0.17
Hexachloreobenzene	0.26	1	0	0	<0.26
Hexachlorobutadiene	0.28	1	0	0	<0.28
Hexachlorocyclopentadiene	1.8	1	0	0	<1.8
Hexachloroethane	0.17	1	0	0	<0.17
Indeno[1,2,3-c,d]pyrene	0.17	1	0	0	1.2

Table 5-9. Sediment Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	RESULTS ABOVE CONTROL SCREENING VALUE		MAXIMUM CONCENTRATION
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(ha\a)
Isophorone	0.32	1	0	0	<0.32
3-Methyl-4-chlorophenol	0.23	1	0	0	<0.23
2-Methyl-4,6-dinitrophenol	0.84	1	0	0	<0.84
2-Methylnaphthalene	0.17	1	0	0	<0.17
2-Methylphenol	0.17	1	0	0	<0.17
4-Methylphenol	0.18	1	0	0	<0.18
Naphthalene	0.17	1	0	0	<0.17
2-Nitroaniline	0.36	1	0	0	<0.36
3-Nitroaniline	1.7	1	0	0	<1.7
4-Nitroaniline	1.7	1	0	0	<1.7
Nitrobenzene	0.19	1	0	0	<0.19
2-Nitrophenol	0.26	1	0	0	<0.26
4-4-Nitrophenol	2.5	1	0	0	<2.5
N-Nitrosodi-N-propylamine	1.1	1	0	0	<1.1
N-Nitrosodiphenylamine	0.17	1	0	0	<0.17
Pentachlorophenol	0.48	1	0	0	<0.48
Phenanthrene	0.17	1	0	0	0.83
Phenol	0.17	1	0	0	<0.17
Pyrene	0.97	1	0	0	1.4
1,2,4-Trichlorobenzene	0.29	1	0	0	<0.29
2,4,5-Trichlorophenol	0.24	1	0	0	<0.24
2,4,6-Trichlorophenol	0.3	1	0	0	<0.3
	Exp	olosives			
1,3-Dinitrobenzene	0.249	17	0	0	<0.249
2,4-Dinitrotoluene	0.251	17	0	0	<0.251
2,6-Dinitrotoluene	0.5	17	0	0	<0.5

Table 5-9. Sediment Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	RESULTS ABOVE CONTROL SCREENING VALUE		MAXIMUM CONCENTRATION
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(µg/g)
HMX	0.499	17	0	0	<0.499
Nitroglycerine	2.5	17	0	0	<2.5
2-Nitrotoluene	0.505	17	0	0	<0.505
3-Nitrotoluene	0.251	17	0	0	<0.251
4-Nitrotoluene	0.245	17	0	0	<0.245
Pentaerythritol tetranitrate	2.5	17	0	0	<2.5
RDX	0.51	17	0	0	<0.51
Tetryl	1.27	17	0	0	<1.27
1,3,5-Trinitrobenzene	0.25	17	0	0	<0.25
2,4,6-trinitrotoluene	0.25	17	0	0	<0.25
	Pesti	cides/PCBs			
Aldrin	0.013	1	0	0	<0.013
alpha-Benzenehexachloride	0.0025	1	0	0	<0.0025
beta-Benzenehexachloride	0.0054	1	0	0	<0.0054
delta-Benzenehexachloride	0.0228	1	0	0	<0.0228
2,2-Bis (p-chlorophenyl)-1,1-dichloroethane	0.0112	1	0	0	<0.0112
2,2-Bis (p-chlorophenyl)-1,1-dichloroethene	0.0142	1	0	0	<0.0142
2,2-Bis (p-chlorophenyl)-1,1,1-trichloroethane	0.0096	1	0	0	<0.0096
alpha-Chlordane	0.004	1	0	0	<0.004
gamma-Chlordane	0.0214	1	0	0	<0.0214
Dieldrin	0.0078	1	0	0	<0.0078
alpha-Endosulfan	0.0047	1	0	0	<0.0047
beta-Endosulfan	0.0071	1	0	0	<0.0071
Endrin	0.0111	1	0	0	<0.0111
Endrin aldehyde	0.0276	1	0	0	<0.0276
Endrin ketone	0.0061	1	0	0	<0.0061

Table 5-9. Sediment Chemical Data Summary (Continued)

ELEMENTS/COMPOUNDS		NUMBER OF	RESULTS ABOVE CONTROL SCREENING VALUE		MAXIMUM CONCENTRATION	
	CRL" (µg/g)	RESULTS	Number	Frequency (%)	(ha\a)	
Endosulfan sulfate	0.013	1	0	0	<0.013	
Heptachlor	0.0096	1	0	0	<0.0096	
Heptachlor epoxide	0.0039	1	0	0	<0.0039	
Lindane	0.02	1	0	0	<0.02	
Methoxychlor	0.211	1	0	0	<0.211	
PCB 1016	0.04	1	0	0	<0.04	
PCB 1221	0.08	1	0	0	<0.08	
PCB 1232	0.04	1	0	0	<0.04	
PCB 1242	0.04	1	0	0	<0.04	
PCB 1248	0.04	1	0	0	<0.04	
PCB 1254	0.04	1	1	100	0.21	
PCB 1260	0.04	1	0	0	<0.04	
Toxaphene	0.2	1	0	0	<0.2	
Other Analyses						
Nitrate/Nitrite	1.00*	8	1	12	2.07	
TPHC	10°	2	2	100	110	
тос	40°	2	2	100	9,230	

Limit of Detection - No "CRL" for these methods "Pace Laboratories

5.3 FIELD INVESTIGATIONS

This section presents a discussion, on a SWMU-by-SWMU basis, of investigations and sampling activities that were conducted, and the results of laboratory analyses that were reported for collected samples. Only analytical results that exceeded control screening values (listed in Tables 5-1 through 5-4) are presented for each SWMU.

5.3.1 SWMU #5 - Sinkhole

Limited environmental media sampling had been conducted in previous investigations. Historical chemical analysis data are available for a few metals and organic chemicals from previous surface water and sediment sampling activities. Chromium, manganese, and strontium were detected in surface water samples collected from the Sinkhole in December 1981. Chromium, mercury, and nickel were detected in a sediment sample collected during the same sampling campaign. Traces of organic chemicals were also detected in the sediment sample. Historical groundwater data provide a listing of a greater number of metals and organic compounds.

Disposal of wastes containing contaminants other than those found in previous investigations may have taken place over the years of ANAD operations (ESE, 1989). Therefore, selected environmental media samples collected for the ESI from SWMU #5 were analyzed for parameters that included inorganics, VOCs, SVOCs, pesticides/PCBs, and explosives.

Construction debris, railroad ties, and other miscellaneous municipal-type wastes such as discarded telephones, containers, etc. were found in the sinkhole during the ESI. Also, during ESI field activities, the wall and rim of the Sinkhole were noted to be well-vegetated and showed no signs of recent disturbance. No swallett openings were discovered either by visual observation or by systematically probing the bottom of the sinkhole with a hand auger.

5.3.1.1 <u>Investigative Activities.</u> Four surface soil samples, one sediment sample, one surface water sample, and groundwater samples from two existing monitoring wells were collected at SWMU #5. The sample locations are identified in Figure 5-1. A summary of chemical analysis of the samples is presented in Table 5-10.

5.3.1.2 Results of Investigation.

Surface Soil Samples — Four surface soil samples were collected at SWMU #5. Identified as S5S01, S5S02, S5S03, and S5S04, these samples were analyzed for inorganics and explosives. Sample S5S04 was also analyzed for pesticides/PCBs, VOCs and SVOCs. Explosives and organics were not detected in any of the samples. All detections above control screening values were inorganics, and are tabulated in Table 5-10. These include aluminum, barium, beryllium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, vanadium, and zinc.

Sediment Samples — One sediment sample was collected 6 inches below the surface water/sediment interface in the sinkhole. Identified as S5SD1, this sample was analyzed for VOCs, SVOCs, inorganics, explosives, and pesticides/PCBs. Contaminants in the sediment sample detected above control screening values are tabulated in Table 5-10. Cyanide and explosives were not detected in the sample. PCB 1254 was detected in the sediment sample at a concentration of 0.21 µg/g. The VOCs acetone and methylethyl ketone, as well as the SVOCs benzo(a)anthracene, benzo(a)pyrene, chrysene, and fluoranthene were detected in trace concentrations. Calcium and zinc are the only inorganics reported at concentrations above control screening values.

Groundwater Samples — Groundwater samples were collected from existing groundwater monitoring wells W2-17 and W2-18. Samples were analyzed for VOCs, SVOCs, inorganics, explosives, and pesticides/PCBs. Potential contaminants are listed in Table 5-10.

Surface Water Samples — One surface water sample (S5SW1) was collected from the standing water located in the sinkhole. Samples were analyzed for VOCs, SVOCs, inorganics, pesticides/PCBs, and explosives. Analytical results are presented in Table 5-10. All contaminants detected at concentrations above control screening values are inorganics.

Table 5-10. SWMU #5 — Data Summary

MATRIX	SAMPLE I.D.	DEPTH (ft)	ANALYTE/ COMPOUND	CONCENTRATION (µg/g)
SEDIMENT	S5SD1	0.5	Calcium	3,850
			Zinc	422
			PCB 1254	0.21
			Benzo[a]anthracene	0.51
			Benzo[a]pyrene	0.58
			Chrysene	0.71
			Fluoranthene	0.88
			Acetone	0.14
			Methylethyl ketone	0.025
SURFACE SOIL	S5S01	0.5	Calcium	1,760
			Chromium	51.6
			Copper	33.9
			Iron	47,000
			Vanadium	83.4
			Zinc	221
	\$5S02	0.5	Aluminum	41,000
			Barium	102
			Beryllium	1.01
			Calcium	2,210
			Chromium	46.5
			Cobalt	42.5
			Copper	35.1
			Iron	51,000
			Manganese	1,400
			Nickel	25.5
		:	Potassium	1,340
			Vanadium	83.3
			Zinc	220

Table 5-10. SWMU #5 — Data Summary (Continued)

MATRIX	SAMPLE I.D.	DEPTH (ft)	ANALYTE/ COMPOUND	CONCENTRATION (µg/g)
SURFACE SOIL	S5S03	0.5	Aluminum	56,000
			Barium	123
			Beryllium	1.04
			Calcium	6,000
			Chromium	101
			Cobalt	42
			Copper	37.6
		:	Iron	39,000
			Lead	338
			Magnesium	1,480
			Manganese	2,700
			Nickel	30.6
			Potassium	1,750
			Vanadium	80.5
			Zinc	155
SURFACE SOIL	S5S04	0.5	Aluminum	37,000
			Barium	161
			Beryllium	1.02
			Calcium	1,770
			Cobalt	32.1
			Copper	21.6
			Manganese	2,700
			Potassium	1,300
			Zinc	95.6

Table 5-10. SWMU #5 — Data Summary (Continued)

MATRIX	SAMPLE I.D.	DEPTH (ft)	ANALYTE/ COMPOUND	CONCENTRATION (µg/l)
GROUNDWATER	W2-18	49		
			Beryilium	3.22
			Cobalt	433
			Iron	99,000
			Lead	137
			Nickel	128
			Vanadium	102
	W2-17	38	Calcium	38,400
			Potassium	12,300
SURFACE WATER	S5SW1	0	Aluminum	111
			Barium	188
		:	Calcium	130,000
			Iron	481
			Magnesium	12,200
			Manganese	1,010
			Potassium	20,200
			Sodium	2,810
			Zinc	450

5.3.2 SWMU #8 — Acid Disposal Pit

Previous investigations reported uncertainty about the location of this SWMU. Visual inspections of the suspected SWMU #8 location identified in the ESI Work Plan were conducted by a Jacobs geologist on three occasions. These inspections were focused on the area between the railroad tracks east of Building 611 and Benecia Avenue, west and north of storage igloo CV-809. Two inspections were made in December 1991 prior to conducting geophysical surveys of the area. The third inspection was conducted with an observer from USATHAMA in February 1992 prior to collecting environmental samples.

No evidence was observed that would indicate the presence of a buried concrete-lined pit or that heavy equipment operations associated with burial activity had occurred in that area. The inspected area was covered mainly with pine trees as large as 18 inches in diameter, briary undergrowth, and grass. Several small earthen mounds and a bulldozer cut across the creek were observed in the area immediately west of igloo C-809. A former roadbed and dilapidated wooden bridge abutment were located at the northern end of the investigated area north of the igloo. The northwest portion of the inspected area was covered by a large pile of bauxite (aluminum ore).

Although no surficial evidence for SWMU #8 was observed during the first two visual inspections, geophysical survey grids were established at two locations on the site (shaded areas marked on Figure 5-2). The rationale for proceeding with the geophysical surveys was based on rapid pine tree growth rate and a possibility that these trees and other vegetation may have obscured any surface evidence of the buried SWMU. It was expected that sufficient contrast in conductivities would be observed between native soils and the drums, sand, and concrete associated with the pit. The bauxite pile was excluded from the survey because the material would probably mask contrasts in conductivity of any features buried beneath the pile.

Expanded Site Inspection of the Ammunition Storage Area

5.3.2.1 Investigative Activities. Geophysical surveys were conducted at SWMU #8 in December 1991 using magnetometry and electromagnetics. Mounds of earth observed during the visual inspection were screened with the magnetometer for any indication of buried metal objects prior to running the electromagnetic (EM) surveys. No magnetometer readings were observed that would suggest buried metal (drums, reinforcing rod, etc.) beneath the earthen mounds. EM surveys of the gridded areas also showed no indication of a buried pit, although two anomalies of high conductivity are shown in the grid 8B EM survey results. Results of the EM surveys are presented in Appendix C.

Because SWMU #8 was not positively located in the geophysical surveys, soil borings, groundwater monitoring wells, and surface soil sampling points could not be located in an area potentially affected by reported contaminants with any degree of confidence. The drilling and soil sampling programs for SWMU #8 were suspended by a representative of USATHAMA, with concurrence of a representative from EPA Region IV.

At the direction of USATHAMA, sediment sampling sites were located at four areas along the stream west of C-809. Samples S8SD1 and S8SD4 were collected at stream level. Samples S8SD2 and S8SD3 were collected approximately two feet above stream level where seeps of groundwater were noted in the stream bank. These sediment samples were submitted for analysis of inorganics and explosives. Sample locations for SWMU #8 are identified in Figure 5-2. These samples were used for establishing control screening values for sediments. There were no explosives or cyanide detected.

Expanded Site Inspection of the Ammunition Storage Area

5.3.2.2 Additional Investigations. Stereo pair aerial photographs of ANAD were obtained by Jacobs in late spring 1992 after the ESI field work was completed. Aerial photographs from 1944, 1948, 1952, 1957, 1959, and 1961 as well as enlargements of the 1957 and 1961 aerial photos were carefully examined for evidence of activity which might be related to anomalies recorded in the geophysical survey. The photographs show no evidence of an open pit or concrete lagoon in vicinity of either of the areas investigated during the geophysical surveys. The photographs sufficiently cover the time period that the Acid Disposal Pit was reportedly used.

The area investigated in the SWMU #8 survey appears to have been sparsely covered with trees in 1944 photographs. A linear feature running east/west at the approximate location of the anomaly in the geophysical survey can be seen in the stereo pair. Because the feature is covered with grass or low vegetation, it may be either an excavation made before ANAD was constructed, or an excavation made while C-block was being constructed. This linear feature passes under the former roadbed which is visible in all the photos examined.

It is probable that the anomaly of high conductivity in the northeast corner of the #8 area is associated with backfill materials used to raise the Benecia Avenue roadbed. Most of the roads in this section of the ASA are elevated approximately 6 to 10 feet above natural ground level. The eastern line of the geophysical survey is located at the base of the road berm approximately 10 to 12 feet from the pavement.

The SWMU #8 area was revisited by representatives from AEC, ADEM, ANAD, and Jacobs in April 1993. An original photograph of the "Old Acid Disposal Pit" from the Installation Assessment Report (USATHAMA, 1978) was provided by the AEC representative prior to the site visit. The original photograph shows a large red metal box and metal fence posts lying on the ground in the area where SWMU #8 is reportedly located. (The original photograph was not previously available for review during the ESI field investigation of SWMU #8; the quality of the copies of the photograph included in the 1978 report is insufficient to show any of the crucial details.)

The metal box (approximately 4 feet x 4 feet x 6 feet) and fence posts were located during reinspection of the site. They were approximately 150 feet southeast of building 635 near the edge of a wooded area between the bauxite stockpile railroad siding and the railroad tracks east of building 611. The metal box was reported to be a chemical weapons disposal coffin from Operation CHASE (Cut Holes And Sink 'Em). The box was labelled as "Inert" and dated circa 1971. Aerial photographs from 1957 and 1961 show a square-roofed structure located in the area in which the box was found. No evidence of an open pit was observed in the photographs. If it exists, the "Old Acid Disposal Pit" (SWMU #8) may have been covered by a roof to prevent rainfall from filling the pit and washing away the contents.

5.3.2.3 Results of Investigation. Since SWMU #8 was not located, the analytical results obtained from samples collected during the ESI are not reported here. This is because they do not contribute to assessment of any contaminant releases from the actual SWMU. As discussed above, the sediment sample data have been used to support definition of control screening values in the ASA.

5.3.3 SWMU #10 — TNT Washout Facility

Limited environmental media sampling has been conducted during previous investigations of SWMU #10. Historical chemical data show traces of explosive compounds detected in groundwater samples from wells AAD13 and AAD15 during a sampling campaign (circa 1980). Relatively high concentrations of explosive compounds were detected in groundwater samples from AAD14 (ESE, 1981). TNT, octol, RDX, HMX, Comb B, and explosive compound degradation products (dinitrotoluenes, nitrophenols, and cresols) are the common contaminants associated with waste water from TNT washout operations (ESE, 1989).

5.3.3.1 Investigative Activities. On the basis of previous investigations, the SWMU #10 area was inspected in November 1991 by Jacobs representatives and personnel from the ANAD Safety Office to assure that drilling and sampling sites were safe from potential explosive hazards. Prior to the start of drilling, additional requirements for chemically field screening subsurface soils for explosive compounds TNT and RDX were given to Jacobs by a representative from the USATHAMA Safety Office. Intrusive sampling within the sedimentation tank and Building 172 was not permitted because of an explosion hazard. There were no restrictions on surface soil sampling.

Difficult drilling conditions were encountered at SWMU #10 soil boring sites. Monitoring well 91B11 was completed after five attempts to drill. Conditions causing auger refusal were encountered at three of the aborted 91B11 drilling sites. A coresampling tool was lost down the borehole on the fourth drilling attempt. In most cases, subsurface soil samples from failed drilling attempts were placed into drums for disposal with cuttings from the boring.

Subsurface soil samples from two soil borings, two surface soil samples, two sediment samples, and groundwater samples from two monitoring wells (91B11 and AAD13) were collected and submitted to the laboratory. Samples were analyzed for selected parameters that included inorganics, nitrate/nitrite, TOC, and explosives. Sample locations for SWMU #10 are identified in Figure 5-3. A summary of detections above background is presented in Table 5-11.

5.3.3.2 Results of Investigation.

Surface Soil Samples — Two surface soil samples were collected at SWMU #10. Identified as S10S01 and S10S02, these samples were analyzed for inorganics, explosives, nitrate/nitrite, and TOC. Sample S10S01 was selected to be one of the control samples. Chemicals detected above control screening values in sample S10S02 are tabulated in Table 5-11. The only inorganic detected above control screening values was calcium. Nitrate/nitrite was detected at 4.14 μ g/g. The explosive 2,4,6-trinitrotoluene was detected at 1.28 μ g/g.

Soil Boring Samples — Two soil borings, identified as 91B11C, and 91B11D were drilled successfully into the area near SWMU #10. Eleven soil samples were collected from these borings. Five soil samples were collected from borehole 91B11C at the following depths: 0, 10, 15, 20 and 30 feet. Six samples were collected from borehole 91B11D at the following depths: 0, 5, 10, 22.5, 25, and 35 feet. The soil samples were analyzed for inorganics, explosives, nitrate/nitrite, and TOC. Analytical results above control screening values are included in Table 5-11.

The soil boring samples were found to contain concentrations of TOC, chromium, potassium, and sodium above control screening values.

Sediment Samples — Two sediment samples, identified as S10SD1 and S10SD2, were collected from SWMU #10 at 6 inches below the surface water/sediment interface and were analyzed for inorganics, explosives, nitrate/nitrite, and TOC. The analytical results for the sediment samples are included in Table 5-11.

Sample S10SD1 contained 3,680 μ g/g of TOC and sample S10SD2 contained 2.07 μ g/g of nitrate/nitrite. Calcium was detected in S10SD2 at a concentration of 663 μ g/g.

Groundwater Samples — Two groundwater samples were collected from monitoring wells located in the area of SWMU #10. One sample was collected from the monitoring well installed in borehole 91B11, and one sample was collected from a pre-existing monitoring well identified as AAD13. The samples were analyzed for inorganics, nitrate/nitrite, VOCs and explosives. The analytical results are presented in Table 5-11.

The majority of the contaminants detected above control screening values in the samples were inorganics. Aluminum, sodium, and vanadium were all detected at concentrations greater than control screening values in sample 91B11, and zinc was detected at a concentration greater than the control screening value in sample AAD13. Both samples contained nitrate/nitrite, with a concentration of 320 μ g/l in sample 91B11 and 271 μ g/l in sample AAD13. Both sample 91B11 and AAD13 contained RDX at concentrations of 4.56 μ g/l and 40.6 μ g/l, respectively. Sample AAD13 also contained 86 μ g/l of HMX.

Table 5-11. SWMU #10 — Data Summary

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT/ COMPOUND	CONCENTRATION (µg/g or µg/l)
SEDIMENT	S10SD1	0.5	тос	3,680
	S10SD2	0.5	Nitrate/Nitrite	2.07
		· · · · · · · · · · · · · · · · · · ·	Calcium	663
SURFACE SOIL	S10S02	0.5	Nitrate/Nitrite	4.14
			Calcium	1,910
		-	2,4,6-Trinitrotoluene	1.28
SOIL BORING	91B11C	0	тос	772
		10	Chromium	70.8
			Sodium	152
	91B11D	0	Potassium	824
			TOC	6,970
		5	Potassium	819
GROUNDWATER	91B11	23	Nitrate/Nitrite	320
			Aluminum	31,600
			Sodium	38,400
			Vanadium	109
			RDX	4.56
	AAD13	25	Zinc	1,070
			Nitrate/Nitrite	271
			HMX	86
			RDX	40.6

5.3.4 SWMU #11 — TNT Washout Facility Leaching Beds

Contaminants of concern observed from previous sample analyses conducted for SWMU #11 are similar to those found at SWMU #10. Historical chemical data show traces of explosive compounds detected in groundwater samples from wells AAD13 and AAD15 during a sampling campaign (circa 1980). Relatively high concentrations of explosive compounds were detected in groundwater samples from AAD14 (ESE, 1981). Also, there is a 3 to 4 foot thick layer of explosive-contaminated soil beneath the clay cover installed in 1985 (USAEHA, 1986). Surface samples were collected from this layer by ANAD Safety personnel just prior to the installation of the clay layer. Analysis of the samples revealed explosives concentrations of up to 60% (ANAD-Safety, 1985). Based on these findings, samples collected at this SWMU were analyzed for inorganics, nitrate/nitrite, TOC, and explosives. Soil samples from one boring, three surface soil samples, three surface sediment samples, and groundwater samples were collected and analyzed. All samples were collected outside the bed area except for the surface soils, which were collected from the top of the cover.

5.3.4.1 Investigative Activities. On the basis of previous investigations, the SWMU #11 area was inspected in November 1991 by Jacobs representatives and personnel from the ANAD Safety Office to assure that drilling and sampling sites were safe from potential explosive hazards. Prior to the start of drilling, additional requirements for field screening subsurface soils for explosive compounds TNT and RDX were given to Jacobs by a representative from the USATHAMA Safety Office. Intrusive (subsurface) soil sampling within the SWMU boundary was not permitted because of an explosion hazard. There were no restrictions on surface soil sampling down to six inches within the SWMU #11 boundary.

Difficult drilling conditions were encountered at SWMU #11 soil boring sites.

Monitoring well 91B12 was completed after three attempts to drill. In the first attempt, auger refusal was caused by a dolomite boulder at a depth of approximately

10 feet. On the second attempt, the explosive compound tetryl was detected in surface soils during field screening, and the drilling site was rejected. On the third attempt, the well was completed despite an organic vapor detection of 28 ppm at 50 to 55 feet. See Section 6.1 for additional discussion of this detection.

Collecting groundwater samples from five existing monitoring wells at SWMU #11 was called for in the ESI Work Plan. Only one of the existing monitoring wells (AAD 13) was actually sampled. Two wells (W2-19 and W2-20) were not located by the sampling team. Wells AAD14 and AAD15 were uncapped, damaged, and considered unreliable for sampling due to their condition.

Three surface soil and three sediment samples were collected from the leaching bed area. Sample locations for SWMU #11 are identified in Figure 5-3. A data summary of chemicals detected above background is presented in Table 5-12.

5.3.4.2 Results of Investigation.

Soil Boring Samples — A soil boring identified as 91B12 was drilled near SWMU #11 (Figure 5-3). Six soil samples were collected from the boring at depths of 5, 10, 15, 20, 25 and 32 feet. The samples were analyzed for inorganics, TOC, explosives, and nitrate/nitrite. The analytical results are presented in Table 5-12.

Cyanide and explosives were not detected in any of the samples. Nitrate/nitrite was detected at a concentration of 2.58 μ g/g.

Surface Soil Samples — Two surface soil samples, identified as S11S01 and S11S02, were collected from SWMU #11 at 6 inches below ground surface. The samples were analyzed for inorganics, explosives, nitrate/nitrite, and TOC. The analytical results for detections above control screening values are presented in Table 5-12.

Expanded Site Inspection of the Ammunition Storage Area

Cyanide, explosives, and nitrate/nitrite were not detected in any of the samples. Copper was the only inorganic detected in both samples at concentrations greater than the control screening value. In addition, potassium was detected above its control screening value in sample S11S01.

Sediment Samples — Two sediment samples, identified as S11SD1 and S11SD2 were collected at 6 inches below the surface water/sediment interface. These samples were analyzed for inorganics, explosives, nitrate/nitrite, and TOC. The analytical results of the sediment samples are presented in Table 5-12.

Cyanide, explosives, and nitrate/nitrite were not detected in any of the samples. TOC was detected in sample S11SD2 at a concentration of 9,230 μ g/g. Manganese was detected in S211D1 at a concentration of 1,400 μ g/g.

Groundwater Samples — One groundwater sample was collected from the monitoring well installed in borehole 91B12 (upgradient). The sample was analyzed for inorganics, nitrate/nitrite, explosives, and VOCs. The analytical results are presented in Table 5-12.

The following inorganics were detected in the sample at concentrations greater than control screening values: aluminum, cobalt, chromium, sodium, and vanadium. The VOC acetone was detected in the sample at $21 \mu g/l$.

Table 5-12. SWMU #11 — Data Summary

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT/ COMPOUND	CONCENTRATION (µg/g or µg/l)
SEDIMENT	S11SD1	0.5	Manganese	1,400
	S11SD2	0.5	TOC	9,230
SURFACE SOIL	S11S01	0.5	Copper	30.3
			Potassium	1,110
	S11S02	0.5	Copper	20.8
SOIL BORING	91B12	25	Nitrate/Nitrite	2.58
GROUNDWATER	91B12	45	Aluminum	26,400
			Cobalt	50.7
			Chromium	113
			Sodium	9,910
			Vanadium	94
			Acetone	21

5.3.5 SWMU #14 — Laundry Waste Leaching Facility

No historical environmental sampling data exists for the Laundry Waste Leaching Facility. Possible contaminants of concern at SWMU #14 include soap, lye, TNT, DNT, and cresols. A suite of analyses was selected for samples collected from SWMU #14 that include inorganics, TOC, and explosives.

5.3.5.1 Investigative Activities. The SWMU #14 area was inspected in December 1991 by a Jacobs geologist and members of the UXO team from UXB International. Iron piping was located which led from the site of the demolished laundry building to a manhole across the road (see Figure 5-4). From the manhole, the pipe was traced to a concrete sump. The pipe was then traced to a junction box at the head of a raised gravel area approximately 30 feet wide and 75 feet long. Lateral pipes were located with a magnetometer by the UXO specialists and marked at each pipe joint. An area of broken terra cotta piping was observed south of the road. This area was reported as a possible leaching bed area.

SITE PLAN

LEGEND

GROUNDWATER SAMPLE

SURFACE SOIL SAMPLE

APPROXIMATE DIRECTION OF FLOW

APPROXIMATE SWMU BOUNDARY

NOTE: WELL AND SOIL SAMPLES IN WOODED AREA.

SWMU #14 LAUNDRY WASTE LEACHING FACILITY SAMPLE LOCATIONS

SITE NAME/LOCATION		REVISIONS					
AMMUNITION STORAGE AREA	DRWN BY	DATE	CHOO BY	DATE	PROJEC NO.		
ANNISTON ARMY DEPOT	HJW	7/2/92	CAF	7/20/92			
anniston, alabama	KFR	2/25/93	8HK	2/17/93	35G306		

JACOBS ENGINEERING GROUP INC. Southern Region — Washington, D.C.

FIGURE NO. 5-4

Drilling inside the boundary of the gravel bed was prohibited due to safety concerns by the ANAD Safety Officer. Additional requirements for chemically field screening subsurface soils for explosive compounds TNT and RDX during drilling operations were given to Jacobs by a representative from the USATHAMA Safety Office. A monitoring well location was selected at the downgradient end of the gravel bed approximately 15 feet from the end of the lateral pipes.

Four surface soil samples and one groundwater sample from one new monitoring well were collected and analyzed. The sample locations for SWMU #14 are identified in Figure 5-4 and the data summary of analyte detections above control screening values are presented in Table 5-13.

5.3.5.2 Results of Investigation.

Surface Soil Samples — Four surface soil samples, identified as S14S01, S14S02, S14S03, and S14S04, were collected from SWMU #14. The samples were analyzed for inorganics, explosives, and TOC. The analytical results are presented in Table 5-13.

Cyanide was not detected in any of the samples. TOC was not detected above the control screening value in any of the samples. Inorganics detected above control screening values in sample S14S01 were limited to copper; in sample S14S02, iron; and in sample S14S04, copper, molybdenum, and zinc. No inorganics were detected above control screening values in sample S14S03. The explosive compound HMX was detected in sample S14S01 at $1.01 \mu g/g$.

Groundwater Samples — A groundwater sample was collected from monitoring well 91B13 (upgradient). The sample was analyzed for inorganics, explosives, and TOC. The analytical results are presented in Table 5-13. Cyanide and explosives were not detected in the samples. TOC was detected in the sample.

Table 5-13. SWMU #14 — Data Summary

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT/ COMPOUND	CONCENTRATION (µg/g or µg/l)
SURFACE SOIL	S14S01	0.5	Copper	20.4
			HMX	1.01
	S14S02	0.5	Iron	69,000
	S14S04	0.5	Copper	30
			Molybdenum	8.46
			Zinc	92.2
GROUNDWATER	91B13	15	TOC	3,150

5.3.6 SWMU #15 - Propellant Disposal Facility

No historical environmental sampling data exists for the Propellant Disposal Facility. Possible contaminants of concern at SWMU #15 include unsymmetrical dimethylhydrazine (UDMH), inhibited red fuming nitric acid (IRFNA), diesel fuel, and inorganics. Surface soil samples were analyzed for TPHC; soil boring samples were analyzed for TPHC and nitrate/nitrite; and groundwater samples were analyzed for nitrate/nitrite, VOCs, and SVOCs.

5.3.6.1 <u>Investigative Activities</u>. Subsurface soil samples from two soil borings, two surface soil samples, and groundwater samples from the two new monitoring wells were collected and analyzed. The sample locations for SWMU #15 are identified in Figure 5-5. A summary of chemicals detected above control screening values are presented in Table 5-14.

5.3.6.2 Results of Investigation.

Soil Boring Samples — Two soil borings, identified as 91B14 and 91B15, were drilled at SWMU #15. Three soil samples were collected from 91B14 at approximately 5 foot intervals ranging from 5 to 15 feet. Two soil samples were collected from 91B15 at 5 and 9 feet. The samples were analyzed for nitrate/nitrite and TPHC. The analytical results are presented in Table 5-14. Nitrate/nitrite were not detected in any of the samples. TPHC was detected in sample 91B14 and 91B15 at concentrations of 20.9 μ g/g and 12.2 μ g/g, respectively.

Surface Soil Samples — Two surface soil samples, identified as S15S01 and S15S02, were collected from SWMU #15. The samples were analyzed for TPHC. The analytical results are presented in Table 5-14. TPHC was detected in sample S15S01 and S15S02 at concentrations of 28.3 μg/g and 108 μg/g, respectively.

Groundwater Samples — Two groundwater samples were collected from monitoring wells 91B14 (downgradient) and 91B15 (upgradient). The samples were analyzed for VOCs, SVOCs, TPHC, and nitrate/nitrite. The analytical results are presented in Table 5-14. Sample 91B14 contained 1,050 μ g/l of nitrate/nitrite, sample 91B15 contained 17 μ g/l of acetone.

Table 5-14. SWMU #15 -- Data Summary

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT/ COMPOUND	CONCENTRATION (µg/g or µg/l)
SURFACE SOIL	S15S01	0.5	TPHC	28.3
	S15S02	0.5	TPHC	108
SOIL BORING	91B14	5	TPHC	20.9
	91B15	9	TPHC	12.2
GROUNDWATER	91B14	8	Nitrate/Nitrite	1,050
	91B15	11	Acetone	17

5.3.7 SWMU #16 — Burning Ground

Possible contaminants of concern at SWMU #16 include TNT, octol, explosive D, tetryl, RDX, smokeless powder, Comp B, amatol, various propellants, ignitors, and hydrocarbons. Samples were analyzed for parameters that included inorganics, TPHC, and explosives.

5.3.7.1 Investigative Activities. Geophysical surveys were conducted at proposed SWMU #16 soil boring and monitoring well sites in December 1991; EM methods were used for this purpose. Results of the geophysical surveys were examined for evidence of burial pits or other ground disturbances indicative of buried materials. Typical conductivity values were encountered during the survey with no unusual anomalies identified. Appendix C describes the result of the geophysical survey.

The location of one well site (91B16) was changed when the original site was inaccessible to the drilling rig. The rig was stuck in soft ground while the drillers attempted to set up on the site. At the direction of USATHAMA, the well site was relocated closer to the Burning Ground in an area potentially affected by OB activities (as evidenced by the black ashy material intersected just below the surface). Aerial photographs show that the site of 91B16 is located near the perimeter of a former shallow excavation. The pit was reportedly used for burning of white phosphorus (WP) or other explosive materials (personal communication, ANAD Safety Office). A 1991 surveyor's report identified a smaller area for the former pit. Both pit areas, identified as Burial Pit #3, are shown on Figure 5-6.

Intrusive (subsurface) soil sampling activities were restricted by the ANAD Safety Office to areas outside the Burning Ground. UXO surface sweeps were conducted at each soil boring site to assure the safety of drilling crews. Borehole surveys for UXO were conducted during borehole drilling operations in this SWMU. UXO hazards were not encountered during soil boring operations.

Subsurface soil samples from two soil borings, four surface soil samples, and groundwater samples from two monitoring wells were collected and analyzed. The sample locations for SWMU #16 are identified in Figure 5-6. A summary of chemicals detected above control screening values are presented in Table 5-15.

5.3.7.2 Results of Investigation.

Soil Boring Samples — Two soil borings, identified as 91B16 and 91B17, were drilled at SWMU #16. Black ashy material was intersected from 0.25 to 0.5 feet below the surface in boring 91B16. Five soil samples were collected from boring 91B16, at depths of 0.5 (the black ashy material), 10, 15, 18, and 24 feet below ground surface. Three soil samples were collected from boring 91B17, at depths of 5, 10, and 15 feet below ground surface. Monitoring wells were constructed in these boreholes. The samples collected from both borings were analyzed for inorganics, explosives, and TPHC. The three samples collected from boring 91B17 were selected to be control samples. The analytical results from the five soil boring samples collected at SWMU #16 are tabulated in Table 5-15.

TPHC was detected at 24 feet at 15.8 μg/g. Inorganics were detected above control screening values at all five depths including aluminum, barium, chromium, cobalt, copper, iron, lead, manganese, nickel, potassium, sodium, and zinc.

Surface Soil Samples — Four surface soil samples, identified as S16S01, S16S02, S16S03, and S16S04, were collected and analyzed for inorganics, explosives, and TPHC. The analytical results are tabulated in Table 5-15. The inorganics detected above control screening values were barium, cadmium, cobalt, copper, lead, manganese, nickel and zinc. TPHC was detected in surface soil samples S16S01, S16S02, S16S04 at concentrations of 249, 589, and 658 μg/g, respectively.

Groundwater Samples — Two groundwater samples, identified as 91B16 and 91B17, were collected from monitoring wells that were installed in boreholes 91B16 and 91B17. The samples were analyzed for VOCs, SVOCs, inorganics, explosives, and nitrate/nitrite. The analytical results are presented in Table 5-15.

Cyanide, explosives and TPHC were not detected in either of the samples. Nitrate/nitrite was detected in samples 91B16 and 91B17 at 349 μ g/l and 580 μ g/l, respectively. The only inorganics that were detected at concentrations greater than the control screening values were chromium in 91B16 and magnesium and sodium in 91B17.

Table 5-15. SWMU #16 — Data Summary

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT COMPOUND	CONCENTRATION (µg/g or µg/l)
SURFACE SOIL	S16S01	0.5	TPHC	249
			Barium	925
			Cadmium	2.34
			Copper	82.5
			Lead	203
			Zinc	648
	S16S02	0.5	TPHC	589
			Barium	622
			Cobalt	90.8
			Copper	84.1
			Lead	43.7
			Manganese	7,100
			Nickel	84.4
			Zinc	161
	S16S03	0.5	Zinc	141
	S16S04	0.5	TPHC	658
			Copper	20.9
			Lead	64.1
			Zinc	73.4

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT COMPOUND	CONCENTRATION (µg/g or µg/l)
SOIL BORING	91B16	0.5	Barium	148
			Cobalt	43.3
			Copper	45.1
			Iron	53,000
			Lead	136
			Manganese	1,600
			Sodium	278
			Zinc	180
SOIL BORING	91B16	10	Barium	191
			Cobalt	66.8
			Copper	51.4
			Manganese	3,600
			Sodium	182
			Nickel	61
			Zinc	124
		15	Barium	88.2
			Cobalt	33.2
		•	Copper	29.5
			Manganese	1,500
			Nickel	40.7
		18	Aluminum	16,000
			Potassium	901
			Sodium	159
		24	TPHC	15.8
			Barium	91.6
			Manganese	1,400
			Nickel	36.9

Table 5-15. SWMU #16 — Data Summary (Continued)

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT COMPOUND	CONCENTRATION (µg/g or µg/l)
GROUNDWATER	91B16	25	Chromium	145
			Nitrate/Nitrite	349
	91B17	14	Magnesium	12,000
			Sodium	7,040
			Nitrate/Nitrite	580

5.3.8 SWMU #17 — Demolition Pit

A suite of analytical parameters was selected for SWMU #17 that included inorganics, nitrate/nitrite, VOCs, SVOCs, and explosives based upon the diversity of materials in the demolition pit area.

5.3.8.1 Investigative Activities. Geophysical surveys were conducted at proposed SWMU #17 soil boring and monitoring well sites in December 1991; EM methods were used for this purpose. Results of the geophysical surveys were examined for evidence of burial pits or other ground disturbances indicative of buried materials. Typical conductivity values were encountered during the survey with no unusual anomalies identified. Appendix C describes the results of the geophysical survey performed at this SWMU.

Intrusive (subsurface) soil sampling activities were restricted by the ANAD Safety Office to areas outside the Demolition Pit. Surface sweeps for UXO were conducted at each soil boring site to assure the safety of drilling crews. Borehole surveys for UXO were conducted during borehole drilling operations in this SWMU. UXO hazards were not encountered during soil boring operations.

Subsurface soil samples from two soil borings, two surface soil samples, two surface sediment samples, and groundwater samples from two new monitoring wells were collected and analyzed. The sample locations for SWMU #17 are identified in Figure 5-7 and the data summary of analyte detections above the control screening values are presented in Table 5-16.

5.3.8.2 Results of Investigation.

Soil Boring Samples — Two soil borings, identified as 91B18 and 91B19, were drilled at SWMU #17. Four soil samples were collected: one at a depth of 5 feet below ground surface from boring 91B18 and three at depths of 5, 10, and 12 feet

below ground surface from boring 91B19. The samples were analyzed for inorganics, explosives, and TPHC. As described in Section 5.1, soil samples from boring 91B18 were selected as control screening samples. The analytical results for the three samples from 91B19 are presented in Table 5-16.

Cyanide and explosives were not detected in soil samples collected from boring 91B19. The following inorganics were detected in the 5 foot deep sample collected from boring 91B19 at concentrations greater than control screening values: barium, cadmium, copper, lead, mercury, potassium, sodium, and zinc. Mercury and TPHC were detected in the 10 foot deep sample, and cobalt and manganese were detected in the 12 foot deep sample collected from boring 91B19.

Surface Soil Samples — Two surface soil samples, identified as S17S01 and S17S02, were collected from SWMU #17. The samples were analyzed for inorganics, explosives, and TPHC. The analytical results are presented in Table 5-16. Cyanide was not detected in either of the samples. The following inorganics were detected at concentrations greater than control screening values: beryllium, cadmium, copper, iron, lead, nickel, silver, vanadium, and zinc. TPHC was detected in sample S17S01 and S17S02 at concentrations of 55.6 μ g/g and 22.4 μ g/g, respectively. Two explosives were detected in sample S17S02: nitroglycerin at 17.6 μ g/g and 2,4-dinitrotoluene at 0.448 μ g/g.

Sediment Samples — Two sediment samples, identified as S17SD3 and S17SD4, were collected at depths of 6 inches below the surface water/sediment interface. The samples were analyzed for inorganics, explosives, and TPHC. The analytical results are presented in Table 5-16. Cyanide and explosives were not detected in either sample. TPHC was detected in samples S17SD3 and S17SD4 at concentrations of 36.3 μ g/g and 110 μ g/g, respectively. Two inorganics, cadmium and copper, were detected in sample S17SD3 at concentrations greater than control screening values.

Expanded Site Inspection of the Ammunition Storage Area

Groundwater Samples — Two groundwater samples were collected from the monitoring wells installed in boreholes 91B18 and 91B19. The samples were analyzed for inorganics, explosives, nitrate/nitrite and VOCs. As discussed in Section 5.1, groundwater samples from well 91B18 were selected as control samples. The analytical results are presented in Table 5-16. Cyanide and nitrate/nitrite were not detected. The following inorganics were detected at concentrations greater than control screening values: beryllium, cadmium, cobalt, lead, manganese, nickel, thallium, and zinc. The explosive 4-nitrotoluene and the VOC acetone were also detected.

Table 5-16. SWMU #17 — Data Summary

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT/ COMPOUND	CONCENTRATION (µg/g or µg/l)
SEDIMENT	S17SD3	0.5	TPHC	36.3
			Cadmium	0.899
		~~~~~~	Copper	97.6
	S17SD4	0.5	TPHC	110
SURFACE SOIL	S17S01	0.5	TPHC	55.6
			Beryllium	2.42
			Copper	30
			Iron	50,000
			Lead	41
			Nickel	24.6
			Vanadium	72.6
			Zinc	212
	\$17\$02	0.5	TPHC	22.4
			Cadmium	7.36
			Copper	438
			Silver	2.92
_			Zinc	220
		ļ	2,4-Dinitrotoluene	0.448
			Nitroglycerine	17.6
SOIL BORING	91B19	5	Barium	547
			Cadmium	6.51
			Copper	146
			Lead	61.8
			Mercury	0.521
			Potassium	740
			Sodium	141
			Zinc	336

Table 5-16. SWMU #17 — Data Summary (Continued)

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT/ COMPOUND	CONCENTRATION (µg/g or µg/l)
SOIL BORING	91B19	. 10	TPHC	25.8
			Mercury	0.44
		12	Cobalt	43.6
			Manganese	2,200
GROUNDWATER	91B19	17	Beryllium	3.22
			Cadmium	18.4
		!	Cobalt	131
			Lead	100
			Manganese	18,000
			Nickel	180
			Thallium	2.64
			Zinc	1,240
			Acetone	13
			4-Nitrotoluene	2.25

## 5.3.9 SWMU #18 — Old Sewage Treatment Plant (STP)

SWMU #18 is no longer active as a sewage treatment plant, but is now used as a fire training area. A recent records search included a review of all available records pertinent to this SWMU. These records were stored in filing cabinets located in the environmental engineering offices at ANAD. No records are available that would indicate whether groundwater or soils were impacted by past sewage treatment operations. A recent visit to the site found evidence that fire training activities had recently been conducted: vegetation was charred, and the odor of petroleum was present at ground surface.

No field sampling was conducted at SWMU #18. A map of this SWMU is presented as Figure 5-8.



#### 5.3.10 SWMU #26 & #27-North and South TNT Burial Pits

SWMUs #26 and #27 were reported as burn sites for wastes which may have included TNT-contaminated wastes (ESE, 1989). Samples collected at these SWMUs were analyzed for selected parameters that included inorganics and explosives.

**5.3.10.1** Investigative Activities. SWMUs #26 and #27 were inspected in December 1991 by a Jacobs geologist and UXO specialists from UXB International prior to starting sampling activities. The inspection concluded there was no need for UXO surface sweep of either area. UXO clearance of sampling sites was not performed.

Geophysical surveys were performed by technicians from Technos, Inc. in December 1991. EM surveys were used to identify the boundaries of the pits for selecting intrusive environmental sampling sites. A determination of the lateral extent of the pits in these SWMUs was accomplished using these techniques. GPR was used at SWMU #26 to verify results of the EM survey. Appendix C describes results of the geophysical surveys performed.

Both sites were inspected in January 1991 by a representative of the USATHAMA Safety Office to determine whether chemical field screening of soils for explosives was necessary. Due to the nature of the wastes and reports that the wastes were burned prior to burial, it was determined that no chemical field screening was necessary. Intrusive (subsurface) soil sampling activities were restricted by the ANAD Safety Office to areas outside the TNT Burial Pit boundaries; surface soil sampling down to six inches was unrestricted.

Subsurface soil samples from four soil borings, four surface soil samples, one sediment sample, and groundwater samples from four monitoring wells were collected and analyzed. Sample locations for SWMUs #26 and #27 are identified in Figure 5-9 and the data summary of detections above control screening values are presented in Table 5-17 (SWMU #26) and Table 5-18 (SWMU #27).



Table 5-17. SWMU #26 — Data Summary

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT/ COMPOUND	CONCENTRATION (µg/g)
SURFACE SOIL	S26S01	0.5	Iron	40,000
		:	Manganese	1,700
			Lead	43.6
SEDIMENT	S26SD1	0.5	Calcium	795
			Lead	45.1
			Magnesium	1,190
SOIL BORING	91B20	20	Aluminum	18,000
			Cobalt	37.7
			Mercury	0.228
			Potassium	789
			Sodium	144
			Methylene chloride	0.03
	91B21	10	Aluminum	15,000
			Barium	52.3
			Cobalt	19.6
			Magnesium	1,020
			Manganese	460
			Sodium	130
			Acetone	0.045
		33	Aluminum	27,000
			Beryllium	2.89
			Calcium	1,730
			Copper	35
			Magnesium	1,990
			Manganese	1,500
			Potassium	928

Table 5-17. SWMU #26 — Data Summary (Continued)

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT/ COMPOUND	CONCENTRATION (µg/l)
GROUNDWATER	91B20	13	Chromium	110
			Silver	105
			Nitrate/Nitrite	375
	91B21	10	Calcium	63,000
			Magnesium	33,000
			Zinc	1,090
			Nitrate/Nitrite	317

Table 5-18. SWMU #27 — Data Summary

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT/ COMPOUND	CONCENTRATION (µg/g or µg/l)
SURFACE SOIL	S27S01	0.5	Lead	47.4
SOIL BORING	91B22	17	Acetone	0.064
			Sodium	85.4
	91B23	37.5	Beryllium	3.5
			Calcium	1,450
			Cobalt	37.3
			Copper	44.4
			Iron	47,000
			Lead	51.6
			Magnesium	1,560
			Mercury	0.215
			Nickel	41.3
		100	Potassium	734
			Vanadium	76.5
			Trichloroethylene	0.011
GROUNDWATER	91B22	8	Magnesium	8,020
			Nitrate/Nitrite	68.3
			Bis(2-ethylhexyl) phthalate	41
	91B23	6	Nitrate/Nitrite	200
			Calcium	50,000
			Magnesium	26,700

### 5.3.10.2 Results of Investigation.

Soil Boring Samples — Two soil borings, identified as 91B20 and 91B21, were drilled at SWMU #26, and two soil borings, identified as 91B22 and 91B23, were drilled at SWMU #27. Soil samples were collected at 20 feet below ground surface from boring 91B20; 10 feet and 33 feet below ground surface from boring 91B21; 17 feet below ground surface from boring 91B22; and 37.5 and 100 feet below ground surface from boring 91B23. The samples were analyzed for inorganics, explosives, and VOCs. The analytical results are presented in Tables 5-17 and 5-18.

Cyanide and explosives were not detected in any of the soil boring samples. Several inorganics were detected at concentrations greater than the control screening values in samples collected from boreholes 91B20, 91B21, 91B22, and 91B23 including aluminum, barium, beryllium, calcium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, sodium, and vanadium. Methylene chloride was detected in a sample collected from borehole 91B20 at a concentration of 0.03  $\mu$ g/g. Acetone was detected in the 10 foot deep sample collected from borehole 91B21 and the 17 foot deep sample collected from borehole 91B22 at concentrations of 0.045  $\mu$ g/g and 0.064  $\mu$ g/g. Trichloroethylene was detected in the 37.5 feet deep sample collected from borehole 91B23 at 0.011  $\mu$ g/g.

Surface Soil Samples — Four surface soil samples, identified as S26S01, S26S02, S27S01, and S27S02, were collected from SWMU #26 and SWMU #27. The samples were analyzed for inorganics and explosives. Samples S26S02 and S27S02 were selected to be control samples. The analytical results above control screening values for the remaining samples are presented in Tables 5-17 and Table 5-18. Explosives were not detected in any of the samples. The inorganics, iron, manganese, and lead were detected at concentrations greater than control screening values.

Sediment Samples — One sediment sample, identified as S26SD1, was collected at SWMU #26 from a depth of 6 inches below the surface water/sediment interface. This sample was analyzed for inorganics and explosives. The analytical results for this sample are presented in Table 5-17. Cyanide and explosives were not detected in the sediment sample. The following inorganics were detected in the sample at concentrations greater than the control screening values: calcium, magnesium and lead.

Groundwater Samples — Four groundwater samples were collected from the monitoring wells that were constructed in boreholes 91B20 (upgradient), 91B21 (downgradient), 91B22 (downgradient), and 91B23 (upgradient). The samples were analyzed for inorganics, explosives, nitrate/nitrate, and VOCs. The analytical results are presented in Table 5-17 and 5-18. Cyanide and explosives were not detected in any of the samples. Inorganics were detected in all of the samples at concentrations greater than control screening values including calcium, chromium, magnesium, silver, and zinc. Nitrate/nitrite was detected in sample 91B20, 91B21, 91B22, and 91B23 at concentrations of 375  $\mu$ g/l, 317  $\mu$ g/l, 68.3  $\mu$ g/l, and 200  $\mu$ g/l, respectively. The SVOC bis(2-ethylhexyl) phthalate was detected in sample 91B22 at a concentration of 41  $\mu$ g/l.

This concentration of bis(2-ethylhexyl) phthalate was compared to the QA/QC blanks to determine whether or not this represented laboratory contamination or a positive detection. Because no bis(2-ethylhexyl) phthalate was detected in the QA/QC blank, the sample result is considered a positive detection.

### 5.3.11 SWMU #34 — Chemical Storage Igloos

SWMU #34 includes 41 chemical storage igloos. No documentation that indicates that groundwater or soils are impacted by release of contaminants from the contents of these igloos was found during the records search. ANAD-RMD personnel informed Jacobs that air monitoring of the igloo interiors is performed on a weekly basis. Any leaks detected within the igloos are immediately investigated and the source of the leak remediated (i.e., leaking M55 rockets are overpacked).

No field investigation was conducted at SWMU #34. A map of this SWMU is presented as Figure 5-10.



SITE PLAN









APPROXIMATE SWMU BOUNDARY

NOTE: NO SAMPLES WERE COLLECTED AT THIS SWMU; ONLY A DOCUMENTS REVIEW WAS PERFORMED.

# SWMU #34 CHEMICAL STORAGE IGLOOS AREA

SITE NAME/LOCATION			JACOBS		
AMMUNITION STORAGE AREA	DRWN BY	DATE	CHICO BY	DATE	
ANNISTON ARMY DEPOT		2/26/93	BHK	2/18/93	
ANNISTON, ALABAMA					35630600



JACOBS ENGINEERING GROUP INC. Southern Region - Washington, D.C. FIGURE NO. 5-10

### 5.3.12 SWMU #35 — Deactivation Furnace (Building 393)

Potential contaminants of concern at SWMU #35 include lead, cadmium, copper, zinc, and TPHC. Samples collected at this SWMU were analyzed for selected parameters that include inorganics and TPHC.

5.3.12.1 <u>Investigative Activities</u>. Proposed sampling sites at SWMU #35 were inspected in November 1991 by representatives from Jacobs and the ANAD Safety Office prior to initiating the intrusive sampling program. Proposed surface soil sampling sites were cleared with ANAD Safety Office representative. At the request of the ANAD Safety Office, the site of a proposed soil boring/monitoring well installation was moved from its proposed location in the parking area near the former UST site to a location at the edge of the gravel parking lot away from the building (the proposed location would have created a traffic hazard).

Subsurface soil samples from one soil boring, three surface soil samples, and a groundwater sample from one monitoring well were collected and submitted to the laboratory. The sample locations for SWMU #35 are identified in Figure 5-11. A summary of contaminants detected above control screening values is presented in Table 5-19.

### 5.3.12.2 Results of Investigation.

Soil Boring Samples — One soil boring, identified as 91B24, was drilled at SWMU #35. Four soil samples were collected from the boring at depths of 10, 20, 30, and 40 feet below ground surface. The samples were analyzed for TPHC. The analytical results are presented in Table 5-19. TPHC was detected in the 20 and 40 feet deep samples collected from borehole 91B24 at concentrations of 62.8  $\mu$ g/g and 20.4  $\mu$ g/g, respectively.



Surface Soil Samples — Three surface soil samples, identified as S35S01, S35S02, and S35S03, were collected at SWMU #35. The samples were analyzed for inorganics, explosives, and TPHC. The analytical results are presented in Table 5-19. Inorganics were detected in all three surface soil samples at concentrations greater than control screening values including barium, cadmium, calcium, cobalt, copper, lead, magnesium, manganese, nickel, silver, and zinc. TPHC was detected in S35S01, S35S02, and S35S03 at 133  $\mu$ g/g, 61.4  $\mu$ g/g, and 73.5  $\mu$ g/g, respectively.

Groundwater Samples — One groundwater sample was collected from the monitoring well constructed in borehole 91B24 (downgradient). The sample was analyzed for inorganics, explosives, TPHC, and VOCs. The analytical results are presented in Table 5-19. Cyanide, explosives, VOCs and TPHC were not detected in the sample. The following inorganics were detected in the sample at concentrations greater than the control screening values: sodium and lead.

Table 5-19. SWMU #35 — Data Summary

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT/ COMPOUND	CONCENTRATION (µg/g or µg/l)
SURFACE SOIL	S35S01	0.5	TPHC	133
			Barium	954
			Cadmium	20.4
			Calcium	100,000
			Copper	422
			Lead	9,100
·			Magnesium	59,000
			Silver	2.65
			Zinc	607
	S35S02	0.5	TPHC	61.4
			Barium	184
			Cadmium	2.62
			Calcium	15,000
			Cobalt	40.7
			Copper	102
			Lead	1,200
			Magnesium	8,000
			Manganese	4,200
			Nickel	52.9
			Zinc	937
	S35S03	0.5	TPHC	73.5
			Barium	196
			Cadmium	7.18
			Calcium	4,160
			Copper	310

Table 5-19. SWMU #35 — Data Summary (Continued)

	SAMPLEI	.D. DEPTH	ELEMENT/ COMPOUND	CONCENTRATION (µg/g or µg/l)
SURFACE S	SOIL \$35\$03	0.5	Lead	1,700
			Magnesium	2,120
			Zinc	969
SOIL BORI	NG 91B24	20	TPHC	62.8
		40	TPHC	20.4
GROUNDWA	TER 91B24	47	Sodium	7,640
			Lead	24.7

### 5.3.13 SWMU #36 - DRILL AND TRANSFER SITE

Activities at SWMU #36 were limited to quality assurance testing of GB nerve agents and transferring chemical agents from leaking munitions into one ton containers. Record searches at the ANAD Environmental Engineering offices reveal no indication of agent releases at this site. No evidence of ongoing agent-handling activity or areas of suspected soil contamination was noted during walk through inspections of the site in fall 1991.

No field sampling was conducted at SWMU #36. A map of this SWMU is presented as Figure 5-12.



FORT McCLELLAN MILITARY RESERVATION

SITE PLAN







APPROXIMATE SWMU BOUNDARY

NOTE: NO SAMPLES WERE COLLECTED AT THIS SWMU; ONLY A DOCUMENTS REVIEW WAS PERFORMED.

SWMU #36
DRILL AND TRANSFER SITE

SITE NAME/LOCATION
AMMUNITION STORAGE AREA
ANNISTON ARMY DEPOT
ANNISTON, ALABAMA

	JACOB				
DRWN BY	DATE	CHKD 5Y	DATE	PROJECT: NO.	
ā	2/26/93	BHK	2/17/93		
KUFR	5/3/93	BHK	6/3/93	350306	

JE

JACOBS ENGINEERING GROUP INC. Southern Region - Washington, D.C. FIGURE NO. 5-12

#### 5.3.14 SWMU #37 - VEHICLE WASH RACK

Contaminants of concern at SWMU #37 include oils, grease, industrial cleaning chemicals, and inorganics. Based on these findings, a suite of parameters that included inorganics, VOCs, and SVOCs was selected for chemical analysis.

**5.3.14.1** <u>Investigative Activities.</u> Six surface soil samples were collected and submitted to the laboratory. Sample locations for SWMU #37 are identified in Figure 5–13. A summary of contaminants detected above control screening values is presented in Table 5–20.

The site was revisited in April 1993 to confirm locations of soil sampling sites and observe site conditions. Soil samples were collected from areas where construction activities have severely altered natural soil horizons. Most of the area around SWMU #37 is covered with gravel, railroad track ballast, and asphalt.

Groundwater samples were not collected from SWMU #37 because no monitoring wells are located in the vicinity.

### 5.3.14.2 Results of Investigation.

Surface Soil Samples — Six surface soil samples, identified as S37S01, S37S02, S37S03, S37S04, S37S05, and S37S06 were collected from SWMU #37. Samples S37S01, S37S02, and S37S03 were collected within drainage channels on each side of the railroad tracks. These channels do not appear to receive wash rack operations runoff. Samples S37S01, S37S03, and S37S05 were analyzed for inorganics, VOC, and SVOCs. Samples S37S02, S37S04, and S37S06 were analyzed for inorganics only. The analytical results are presented in Table 5–20.



Cyanide was not detected in any of the samples. Several inorganics were detected in all the samples at concentrations greater than control screening values. Several organic compounds were detected. Sample S37S01 contained 0.37  $\mu$ g/g of bis(2-ethylhexyl) phthalate, 0.31  $\mu$ g/g of benzo(a)pyrene, 0.0098  $\mu$ g/g of methylene chloride, 0.0043  $\mu$ g/g of toluene, and 0.0033  $\mu$ g/g of trichloroethylene. Sample S37S03 contained 0.23  $\mu$ g/g of anthracene, 1.1  $\mu$ g/g of benzo(a)anthracene, 1.4  $\mu$ g/g of benzo(a)pyrene, 1.8  $\mu$ g/g of benzo(b)fluoranthene, 0.98  $\mu$ g/g of benzo(g,h,i)perylene, 1  $\mu$ g/g of benzo(k)fluoranthene, 0.88  $\mu$ g/g of chrysene, 2.4  $\mu$ g/g of fluoranthene, 1.2  $\mu$ g/g of indeno(1,2,3-c,d)pyrene, 0.83  $\mu$ g/g of phenanthrene, 1.4  $\mu$ g/g of pyrene, and 0.0075  $\mu$ g/g of trichlorofluoromethane. Contamination detected in samples S37S01, S37S02, and S37S03 appears to be related to the railroad tracks only rather than the wash rack operation and consequently are not discussed in the remaining sections of this report.

Table 5-20. SWMU #37 — Data Summary

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT/ COMPOUND	CONCENTRATION (µg/g)
SURFACE SOIL	S37S01	0.5	Barium	179
			Beryllium	1.05
			Cadmium	22.1
			Calcium	19,000
			Chromium	114
			Copper	453
			Iron	46,000
			Lead	900
			Magnesium	8,400
			Molybdenum	16.5
			Nickel	76.5
			Potassium	1,710
			Zinc	594
			Bis(2-ethylhexyl) phthalate	0.37
			Benzo[a]pyrene	0.31
			Methylene chloride	0.0098
			Toluene	0.0043
			Trichloroethylene	0.0033
	S37S02	0.5	Barium	926
			Beryllium	2.06
			Cadmium	3.52
			Calcium	47,000
			Chromium	41.8
			Copper	53
			Lead	423
			Magnesium	13,000

Table 5-20. SWMU #37 — Data Summary (Continued)

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT/ COMPOUND	CONCENTRATION (µg/g)
SURFACE SOIL	S37S02	0.5	Manganese	5,800
•			Potassium	1,850
			Sodium	177
			Zinc	319
	\$37\$03	0.5	Calcium	3,160
			Copper	36
			Magnesium	1,550
			Lead	81.4
			Zinc	159
			Anthracene	0.23
			Benzo[a]anthracene	1.1
			Benzo[a]pyrene	1.4
			Benzo[b]fluoranthene	1.8
			Benzo[g,h,i]perylene	0.98
			Benzo[k]fluoranthene	1
			Chrysene	0.88
			Fluoranthene	2.4
			Indeno[1,2,3-c,d]pyrene	1.2
			Phenanthrene	0.83
			Pyrene	1.4
			Trichlorofluoromethane	0.0075
	S37S04	0.5	Calcium	4,070
			Magnesium	2,250
			Zinc	302

Table 5-20. SWMU #37 — Data Summary (Continued)

MATRIX	SAMPLE I.D.	DEPTH (ft)	ELEMENT/ COMPOUND	CONCENTRATION (µg/g)
SURFACE SOIL	S37S05	0.5	Calcium	20,000
			Copper	36
			Lead	58.4
			Magnesium	8,700
			Zinc	134
	S37S06	0.5	Cadmium	6.06
			Calcium	26,000
			Copper	63.4
			Lead	127
			Magnesium	8,600
			Zinc	191

### 5.3.15 ANAD Northern Boundary Contamination Screening

Consideration was given to the potential for off-site migration of contaminants from the ASA. Surface water runoff from the investigated ASA SWMUs is carried in four stream channels which cross the northern boundary of ANAD. After evaluation of contaminant mobility in surface streams, explosives and nitrate/nitrite were selected as analytical parameters for Northern Boundary area sampling efforts. The analytical results are presented in Table 5-21.

**5.3.15.1** <u>Investigative Activities.</u> Four sampling sites were proposed for the North Boundary contamination assessment. One site was eliminated from the sampling program due to a lack of water in the stream at the time of sampling. Locations of the three remaining sampling sites are shown on Figures 5-14 through 5-16.

### 5.3.15.2 Results of Investigation.

Sediment Samples — Three sediment samples, identified as NBSD1, NBSD2, and NBSD3, were collected from the northern boundary at 6 inches below the surface water/sediment interface. The samples were analyzed for nitrate/nitrite and explosives. No contaminants were detected in any of the sediment samples.

Surface Water Samples — Three surface water samples, identified as NBSW1, NBSW2, and NBSW3, were collected from water courses flowing out from the northern boundary of the ANAD. The samples were analyzed for nitrate/nitrite and explosives. The analytical results are presented in Table 5–21.

Nitrate/nitrite was detected in samples NBSW1 and NBSW3 at 92.6  $\mu$ g/l and 86.6  $\mu$ g/l respectively. Nitrate/nitrite was not detected in NBSW2. Explosives were not detected in any of the samples.

Table 5-21. Northern Boundary Area Samples — Data Summary

MATRIX	SAMPLE I.D.	DEPTH (ft)	ANALYTE	CONCENTRATIONS (µg/l)
SURFACE WATER	NBSW1	0	Nitrate/Nitrite	92.6
	NBSW3	0	Nitrate/Nitrite	86.6







FORT McCLELLAN MILITARY RESERVATION









# NORTHERN BOUNDARY SITE NO.3 SAMPLE LOCATIONS

SITE NAME/LOCATION

AMMUNITION STORAGE AREA

ANNISTON ARMY DEPOT

ANNISTON, ALABAMA

	REVISIONS			
	CATE	CHKD BY	DATE	-
		GAF	7/16/92	НЈМ
35G30600	2/19/93	BHK	2/26/93	KFR



JACOBS ENGINEERING GROUP INC. Southern Region — Washington, D.C.

FIGURE NO. 5-16

APPROXIMATE DIRECTION OF FLOW

**LEGEND** 

SEDIMENT SAMPLE

SURFACE WATER SAMPLE

# SECTION 6 NATURE AND EXTENT OF CONTAMINATION

The nature and extent of contamination has been initially identified during the Expanded Site Inspection (ESI) and will be more thoroughly defined during the remedial investigation. The extent of contamination was therefore not calculated or assessed during this investigation, but the nature of contamination was determined. Tables 5-1 through 5-4 evaluated the concentration of inorganic analytes from samples considered to be control samples. Concentrations of each inorganic analyte were averaged and doubled to develop a screening value to assess potential contamination in other samples. Organic contamination is considered to be possible for all compounds whose concentrations are in excess of the certified reporting limit (CRL). A summary of the analytical results is provided with an assessment of the behavior and fate of contaminants, contaminant indicators, and a conceptual model of contaminant migration.

### 6.1 SUMMARY OF ANALYTIC RESULTS

Section 5.3 presented a tabulation of the analytical results of sampling for groundwater, soil borings, surface soil, sediment, and surface water that exceeded control screening values for each solid waste management unit (SWMU). These results are briefly summarized below.

Contaminants detected above control screening values in all media were primarily inorganics and nitrate/nitrite. Organic compounds were detected with lower frequency than inorganic analytes.

Organic compounds detected in groundwater samples include:

- HMX in SWMU #10;
- RDX in SWMU #10;
- 4-Nitrotoluene in SWMU #17;
- Acetone in SWMUs #11, 15, and 17; and
- Bis(2-ethylhexyl) phthalate in SWMU #27.

# Organic compounds detected in sediment samples include:

- TPHC in SWMU #17;
- Methyl ethyl ketone in SWMU #5;
- Acetone in SWMU #5;
- PCB 1254 in SWMU #5; and
- Coal tar derivatives in SWMU #5, including:
  - Benzo(a)anthracene;
  - Benzo(a)pyrene;
  - Chrysene; and
  - Fluoranthene.

# Organic compounds detected in soil boring samples include:

- TPHC in SWMUs #15, #16, #17, and #35;
- Acetone in SWMUs #26, and #27;
- Methylene chloride in SWMU #26; and
- Trichloroethylene in SWMU #27.

### Organic compounds detected in surface soil samples include:

- HMX in SWMU #14;
- 2,4,6-Trinitrotoluene in SWMU #10;
- 2,4-Dinitrotoluene in SWMU #17;
- Nitroglycerin in SWMU #17; and
- TPHC in SWMUs #15, #16, #17, and #35.
- SVOCs at SWMU #37
- Methylene chloride at SWMU #37
- Trichloroethylene at SWMU #37
- Trichlorofluoromethane at SWMU #37
- Toluene at SWMU #37

With one exception, no organic vapors were detected by organic vapor analyzer (OVA) during the soil boring program at any SWMU. Vapors were detected by flame ionization detector (FID) at one borehole location (91B12, SWMU #11) at a depth of 50 to 55 feet at a concentration of 28 ppm. However, methane interference with the instrument is possible, and analysis of the groundwater from the well completed in the borehole indicates no VOC contamination. Similarly, all other analytical data from the ASA indicated that site soil, sediment, surface water, and groundwater samples are virtually free of VOCs.

### 6.2 BEHAVIOR AND FATE OF RELEASES

A factor that significantly affects any conclusions which can be drawn about the nature and extent of contamination is the mobility of contaminants in the environment. In the subsurface, mobility is largely due to the solubility of contaminants in water. Solubility, in turn, is controlled by a number of synergistic factors which cause shifts in chemical equilibrium. These factors include vapor pressure, the pH and temperature of the water, and the concentrations of other dissolved constituents. In evaluating the mobility of a specific analyte or compound it is important to consider that changes in the chemical equilibrium of an element in groundwater can have significant effects on the solubility of other elements or compounds. For example, changes in potassium and manganese concentrations affect the solubility (and mobility) of cobalt.

### 6.3 ASSESSMENT OF DETECTED ELEMENTS AND COMPOUNDS

A discussion of the potential sources of contamination and their fates, is presented below by analyte or compound.

Acetone — Acetone was detected in several groundwater samples in concentrations ranging up to 21  $\mu$ g/l; in one sediment sample from SWMU #5 at 0.14  $\mu$ g/g; and in two soil boring samples in concentrations of 0.045  $\mu$ g/g and 0.064  $\mu$ g/g. Acetone is an ubiquitous laboratory solvent and is also used as a paint, varnish, and lacquer solvent and as a part cleaner.

Aluminum — Aluminum was detected above control screening values in groundwater, soil borings, and surface soil samples. Aluminum in groundwater was reported at concentrations ranging up to 31,600  $\mu$ g/l; the maximum value for soil borings is 27,000

 $\mu$ g/g; and for surface soils 56,000  $\mu$ g/g. The concentration in the single surface water sample for SWMU #5 was 111  $\mu$ g/l. At low pH in surface waters, Al⁺³ is soluble and can be toxic to aquatic organisms. Under the groundwater pH conditions at the site, most aluminum will be in the form of relatively insoluble hydroxides (microcrystalline gibbsite, bayerite, and other amorphous precipitates). Aluminum detected in soil and groundwater is possibly the result of naturally occurring clay minerals.

Barium — Barium, a common alkaline earth element, was detected above the control screening value in several soil borings at concentrations up to 547  $\mu$ g/g. Surface soil sample concentrations ranged up to 954  $\mu$ g/g. The single surface water sample for SWMU #5 had a level of 188  $\mu$ g/l. No barium was detected above the control screening value in groundwater samples or sediment samples. Barium is found naturally in carbonate and igneous rocks. Salts of this element are used in the manufacture of paints, linoleum, and paper. Under pH conditions common to the site, barium usually occurs in the form of insoluble barium sulfate, which greatly limits its mobility. The source of barium detected in soil and groundwater is possibly natural clays and other weathered material.

Beryllium — Another alkaline earth element, beryllium was detected in each of two groundwater samples from SWMUs #5 and #17 at identical concentrations of 3.22  $\mu$ g/l; in soil boring samples in the range up to 3.66  $\mu$ g/g; and in surface soils up to 2.42  $\mu$ g/g. This element is highly toxic and is not normally found in surface waters. Man-made sources of beryllium include explosives and propellants. At pH values found in water at the site, beryllium ions will form polynuclear hydroxide complexes which are highly insoluble. Even at lower pH, the beryllium will be tightly bound to clay materials.

**Bis(2-ethylhexyl) phthalate** — Bis(2-ethylhexyl) phthalate was detected in one groundwater sample from SWMU #27 at a concentration of 41 μg/l, and one surface soil sample at SWMU #37. Bis(2-ethylhexyl) phthalate is used industrially as a plasticizer for many resins and elastomers and is also used as a vacuum pump liquid.

Cadmium — Cadmium was detected in one groundwater sample from SWMU #17 at a concentration of 18.4  $\mu$ g/l, in one soil boring and one sediment sample at concentrations of 6.51 and 0.899  $\mu$ g/g, respectively, and in several surface soil samples collected throughout the ASA at values up to 22.1  $\mu$ g/g. Cadmium is not a common component of rocks and is often introduced to the environment through discharges from plating operations and manufacturers of batteries, paints, and plastics. It is also a common component of explosives and propellants. It is a common indicator of pollution. Data on solubility of cadmium are limited, although it is presumed that the cadmium is in the form of low to moderately soluble salts in the pH conditions at the site.

Calcium — Calcium was detected in groundwater, soil boring, surface soil, and sediment samples collected at the site in concentrations ranging up to  $63,000~\mu g/l$ ,  $1,730~\mu g/g$ ,  $100,000~\mu g/g$ , and  $3,850~\mu g/g$ , respectively. Calcium was detected at a concentration of  $130,000~\mu g/l$  in the surface water sample from SWMU #5. At high concentrations, calcium can cause excessively hard water resulting in poor taste and pipe scaling. A possible source for calcium is the carbonate rock which underlies the site. Calcium is probably the most common cation found in natural waters although free Ca⁺² in the water is rare under equilibrium conditions. Calcium is tied directly to the carbon cycle which is equilibrium-driven, largely due to changes in pH.

Chromium — Chromium was detected above the control screening value in groundwater, surface soil, and soil boring samples at concentrations ranging up to 145  $\mu$ g/l, 114  $\mu$ g/g, and 70.8  $\mu$ g/g, respectively. There are no natural sources of chromium at the site; on-site chromium contamination probably results from plating or painting activities. Chromium has also been employed as a component of laboratory cleaning solutions and is a component of explosives. Under the groundwater conditions found at the site, hexavalent chromium will be present as chromates and dichromates; trivalent species are hydrolyzed and precipitate as chromium hydroxide leaving a minor amount in solution.

Coal Tar Derivatives — Benzo[a]anthracene (0.51  $\mu$ g/g), benzo[a]pyrene (0.58  $\mu$ g/g, chrysene (0.71  $\mu$ g/g) and fluoranthene (0.88  $\mu$ g/g) were detected in a sediment sample from SWMU #5. These three compounds were also found in the surface soil at SWMU #37, together with benzo(b)fluoranthene, benzo(g,h,i) perylene, benzo(k)fluoranthene, ideno(1,2,3-c,d) pyrene, phenanthrene, trichlorofluoromethane and pyrene. All of these compounds have low water solubility and tend to bind to the soil matrix. These compounds are components of coal tar which is used in the production of coatings, dyes, and luminescent surfaces. They are also known as polynuclear aromatic hydrocarbons (PAHs).

Cobalt — Cobalt was detected in several groundwater samples at concentrations up to 433  $\mu$ g/l; in soil boring samples at concentrations up to 66.8  $\mu$ g/g, and in surface soil samples at concentrations up to 90.8  $\mu$ g/g. No cobalt was detected above the control screening value in sediment or surface water samples collected on site. Cobalt is considered a carcinogen; it has a limited distribution in the environment. Cobalt is readily adsorbed by colloidal particles of oxides and hydroxides of magnesium and iron, two common constituents found in samples. As in the cases of aluminum and barium, the cobalt detected is possibly associated with sediment in the water samples.

Copper — Copper was found in several soil boring samples at concentrations up to 146  $\mu$ g/g. Surface soil sample concentrations ranged up to 453  $\mu$ g/g. One sediment sample had a concentration of 97.6  $\mu$ g/g. No copper was found in the groundwater in excess of the control screening value. In natural waters like those at the site, copper has a low to moderate solubility which is probably limited by the presence of cuprous oxide and hydroxy-carbonate minerals. Copper is a naturally-occurring element found in local rocks. It is also widely used as a preservative and as an algicide.

Cyanide — Cyanide was detected at a concentration of 1.92  $\mu$ g/g in one surface soil sample at SWMU #26. Any detection of this toxic ion is considered to be an indication of contamination. Cyanide ion CN⁻ is strongly basic and reacts with alkali metals such as calcium, potassium, and sodium to form cyanide compounds (Ca(CN)₂, KCN, NaCN) which are relatively water soluble. Sources of cyanide include plating wastes, mine tailings and ore recovery operations, and propellants.

Explosives — HMX was detected in one groundwater sample from SWMU #10 at a concentration of 86  $\mu$ g/l. RDX was detected in two groundwater samples from SWMU #10 at 4.56 and 40.6  $\mu$ g/l. 4-Nitrotoluene was detected in one groundwater sample from SWMU #17 at 2.25  $\mu$ g/l. 2,4,6-Trinitrotoluene was detected in a surface soil sample at SWMU #10 at a concentration of 1.28  $\mu$ g/g. HMX was detected at a concentration of 1.01  $\mu$ g/g in a surface soil sample at SWMU #14. 2,4-Dinitrotoluene and nitroglycerine were detected in a surface soil sample at SWMU #17 at concentrations of 0.448 and 17.6  $\mu$ g/g, respectively. At the concentrations detected, these compounds do not present an explosion hazard.

Iron — Iron has been detected above the control screening value in groundwater, soil boring, and surface soil samples, with maximum values of 99,000  $\mu$ g/l, 53,000  $\mu$ g/g, and 69,000  $\mu$ g/g respectively. Iron was detected at 481  $\mu$ g/l in the surface water sample from SWMU #5. Iron is an abundant and widespread constituent of rocks at the site. Under reducing conditions (such as in groundwater) iron is present as the soluble ferrous ion (Fe⁺²) or complexed with organic molecules. As the pH approaches neutrality, ferrous ions are oxidized to the relatively insoluble ferric state (Fe⁺³) which can form complexes with organic molecules.

Lead — Lead was detected above the control screening value in two groundwater samples at a concentration of 100  $\mu$ g/l. Soil boring concentrations ranged up to 136  $\mu$ g/g, surface soil concentrations ranged up to 9,100  $\mu$ g/g, and sediment concentrations ranged up to 45.1  $\mu$ g/g. Lead is a highly toxic metal. Lead is a common trace component of rocks at the site and is normally found in the Pb⁺² oxidation state. The solubility of lead in water is very pH dependent. Under groundwater pH conditions at the site, lead will most commonly form complexes with carbonate and sulfate minerals which are only slightly soluble in water.

Magnesium — Magnesium was detected in all groundwater, soil boring, surface soil, and sediment samples. Groundwater concentrations range up to 33,000  $\mu$ g/l, soil boring concentrations to 1,990  $\mu$ g/g, surface soil concentrations to 59,000  $\mu$ g/g, and sediment concentrations to 1,190  $\mu$ g/g. Magnesium was detected in the surface water sample for SWMU #5 at a concentration of 12,200  $\mu$ g/l. Magnesium has not been determined to be detrimental to human health or the environment; however, in high concentrations it can impart a distasteful quality to drinking water and is a significant contributor to water hardness. This element can be derived from igneous and sedimentary rocks and is quite soluble in water in its only ionization state (Mg⁺²).

Manganese — Manganese was detected above the control screening value in one groundwater, one sediment, and several soil boring and surface soil samples. The manganese concentration in the groundwater sample was 18,000  $\mu$ g/l, the sediment sample concentration was 1,400  $\mu$ g/g. Surface soil concentrations ranged up to 7,100  $\mu$ g/g. Soil boring concentrations ranged up to 3,600  $\mu$ g/g. The surface water sample from SWMU #5 had a detected concentration of 1,010  $\mu$ g/l. When water containing high concentrations of manganese is exposed to air and oxygenated, it will become turbid from the formation of colloidal material due to the oxidation of manganese to the Mn⁺⁴ state. Manganese is a common element at the site and is found in both igneous and sedimentary rocks primarily as oxides and hydroxides in which the oxidation state of the element is +2, +3, or +4. These oxides tend to adsorb other metallic cations very strongly. Under site groundwater conditions, the most commonly occurring oxidation state of manganese is as the divalent cation Mn⁺². In surface waters and soils the predominant state of manganese varies with the degree of oxidation and the presence of organic materials.

Mercury — Mercury was detected in samples from six soil borings at concentrations ranging up to  $0.52~\mu g/g$ . Mercury is a highly toxic element; it is a rare element in natural waters and its presence almost always is a result of human activity including pesticide application and disposal of industrial and mining wastes; mercury is also a component of explosives. A unique characteristic of elemental mercury among metals is its ability to volatilize at relatively low temperatures. At the site, most mercury will be in the form of oxides of low solubility and mercury will most probably be bound to sediments.

Methylene chloride — Methylene chloride was detected in one soil boring sample at SWMU #26 a concentration of 0.03  $\mu$ g/g. Methylene chloride is a very common laboratory solvent and is also commonly used in paint removers and thinners, solvent degreasing, plastics processing, and aerosol propellants.

Methylethyl ketone — Methylethyl ketone was detected in one sediment sample from SWMU #5 at a concentration of 0.025  $\mu$ g/g. Methylethyl ketone is used as a laboratory solvent and is also commonly used in paint removers, resins and cements, manufacture of smokeless powder, printing, and acrylic coatings.

**Molybdenum** — Molybdenum was detected above the control screening value in surface soil samples up to 16.5  $\mu$ g/g. Molybdenum under site conditions is probably present in an anionic species (molybdate) and its concentration is possibly due to the presence of molybdenum deposits in rocks.

Nickel — Nickel was detected in two groundwater samples in concentrations of 128 and 180  $\mu$ g/l, and in several soil boring and surface soil samples. Concentrations ranged up to 61  $\mu$ g/g for soil boring and up to 84.4  $\mu$ g/g for surface soil samples. Nickel has been identified as a carcinogen; it is a fairly common trace component of rocks at the site. It is used in the electroplating industry and is present in trace quantities in explosives. Under conditions at the site, most nickel will be in the oxidation state of Ni⁺² which is strongly adsorbed by iron and manganese oxides. The nickel detected in the samples is in low concentrations and is probably in soil bound compounds.

Nitrate/Nitrite — Nitrate/nitrite was detected in all groundwater samples (when analyzed) at the site in concentrations ranging up to 1,050  $\mu$ g/l. It was detected at 2.07  $\mu$ g/g in one sediment sample, at SWMU #10 and at 4.14  $\mu$ g/g in one surface soil sample at SWMU #10. It was detected at SWMU #11 in two soil borings at 1.41 and 2.58  $\mu$ g/g. Nitrite and r.itrate generally result from the two-step breakdown of proteinaceous materials and ammonia in the groundwater; it can also result from the decomposition of certain explosives. Nitrate is the predominant form in the environment because nitrite (the intermediate step) is rapidly assimilated by nitrate-producing bacteria. It is very soluble in water. Nitrate is a plant nutrient which may contribute to increased eutrophication of surface waters.

**Polychlorinated biphenyl** — PCB 1254 was detected in a single sediment sample at SWMU #5 at a concentration of 0.21  $\mu$ g/g. PCBs have been widely used as insulation around wiring and as a coolant in electrical capacitors and transformers.

**Potassium** — Potassium is an alkali metal which was detected above the control screening value in groundwater, soil boring, and surface soil samples. The concentration range for was 12, 300  $\mu$ g/l; soil borings was up to 928  $\mu$ g/g; the range for surface soils was up to 1,850  $\mu$ g/l. The surface water sample for SWMU #5 had a detection of 20,200  $\mu$ g/l. Potassium is a common element found in sedimentary rocks and does not readily remain in solution. Potassium minerals in silicate rocks are very resistant to attack by water. Potassium in solution is readily reincorporated into clay materials. The concentrations reported for the groundwater samples are possibly due to the presence of clays in the unfiltered sample.

Silver — Silver was detected in one groundwater sample at a concentration of 105  $\mu$ g/l from SWMU #26 and from two surface soil samples at concentrations of 2.65 and 2.92  $\mu$ g/g. Silver is a rare metal which may occur naturally in low concentrations in areas of igneous rock. It may also be introduced to natural waters from electroplating operations and is a component of explosives and propellants. In groundwater at the site silver will be most likely found as silver oxide which has a moderate-to-low solubility in water.

Sodium — The alkali metal sodium was detected in several groundwater samples in concentrations ranging up to 38,400  $\mu g/l$ . A concentration maximum of 278  $\mu g/g$  was observed in soil boring samples; surface soil samples had concentrations ranging up to 177  $\mu g/g$ . The surface water sample concentration for SWMU #5 was reported as 2,810  $\mu g/l$ . In combination with other cations, excess sodium in soil can cause swelling which results in decreased permeability. Sodium is very soluble in water but can be adsorbed by minerals with high cation exchange capacities such as clays. Its presence in soils and waters at the site is possibly due to weathering and dissolution of evaporite rocks and connate water.

**Thallium** — Thallium was detected in one groundwater sample from SWMU #17 at a concentration of 2.64  $\mu$ g/l. Thallium is a rare metal of low solubility under site conditions and will be present primarily as oxide minerals. Thallium is introduced to the environment when used in rodenticides and insecticides; as catalysts in certain organic syntheses; in the production of dyes and pigments; in the manufacture of lenses and optical equipment, fireworks, and imitation precious jewelry; and in mineralogical analysis.

Total Organic Carbon (TOC) — TOC was detected in one groundwater sample from SWMU #14 at a concentration of 3,150  $\mu$ g/l; in two soil boring samples at 772 and 6,970  $\mu$ g/g; in two sediment samples taken at SWMUs #10 and #11 at concentrations of 3,680 and 9,230  $\mu$ g/g; and in one surface soil sample at a concentration of 17,900  $\mu$ g/g. TOC is a measure of the organic matter in a sample and includes both refractive and non-refractive carbon compounds, cellulose and lignins, respectively. TOC components may be soluble or insoluble in groundwater.

Total Petroleum Hydrocarbons (TPHC) — TPHCs was detected in six soil boring samples, ten surface soil samples, and two sediment samples at concentrations ranging up to 62.8  $\mu$ g/g, 658.0  $\mu$ g/g, and 110  $\mu$ g/g, respectively. Detection of TPHCs in the environment is considered indicative of contamination. TPHCs are representative of the less volatile, higher molecular weight petroleum products including diesel fuel, kerosene, hydraulic fluids, oils, and petrochemical residuals. These compounds have low solubilities in water and are generally adsorbed onto sediments.

**Trichloroethylene** — Trichloroethylene was detected in one soil boring sample from SWMU #27 at a concentration of 0.011  $\mu$ g/g and in one surface soil sample from SWMU #37. Trichloroethylene is used in metal degreasing, dry cleaning, electric parts cleaners, paint and adhesive thinners, as an extraction and solvent, and as a refrigerant and heat exchange liquid.

Vanadium — Vanadium was detected in several groundwater samples at concentrations ranging up to 109.0  $\mu$ g/l. Several soil boring samples also contained vanadium in concentrations ranging up to 76.5  $\mu$ g/g. Several surface soil samples contained vanadium in the range of up to 83.4  $\mu$ g/g. Vanadium is not a rare element and is present in low concentrations in rocks at the site. It is widely used as a catalyst in chemical production, is a by-product from the petrochemical industry, and is a component of explosives and propellants. Under site conditions, vanadium can be found in a variety of oxidation states and may be stable in both anionic and cationic species. Depending on pH and other electrochemical factors, the solubility of vanadium and its compounds is highly variable.

Zinc — Zinc was detected in most groundwater, soil boring, surface soil, and sediment samples at concentrations up to 1,240.0  $\mu$ g/l, 336.0  $\mu$ g/g, 969.0  $\mu$ g/g, and 422  $\mu$ g/g, respectively. The surface water sample for SWMU #5 had a concentration of 450  $\mu$ g/l. Zinc is a very common element of sedimentary rocks at the site. It has been widely used to galvanize other metals and is a component of explosives and propellants. Under site conditions, most zinc will be in the form of zinc hydroxide or zinc carbonate.

### 6.4 CONTAMINATION INDICATORS

For purposes of this ESI, any detection of inorganic analytes above control screening values is considered to be an indicator of potential contamination. This includes the inorganics barium, calcium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, potassium,

silver, sodium, vanadium, and zinc which may have significant natural contributions to the levels detected at the site. Although the detections of these elements may be mostly or entirely due to variations in the natural distributions of these elements, the control sample regimen adopted by this ESI does not provide a sufficient statistical base to exclude these elements as indicators of potential contamination.

The detection of any organic compound above its detection limit is considered to be an indicator of potential contamination.

#### 6.5 CONCEPTUAL MODEL

A conceptual model is a graphical depiction of the sources, pathways, and receptors for contamination. The conceptual model for the ASA was developed based upon evidence of past practices, contained in ANAD records and reports of previous investigations which could have resulted in release of contaminants; the results of the field investigation work, local soil and hydrogeological conditions; and ecological and consideration of demographic factors related to the ASA and adjacent areas. Primary and secondary sources of contamination are described and contaminant release mechanisms are portrayed. The migration pathways for contaminants are identified, as are potential receptors and exposure routes such as ingestion, inhalation, and dermal contact.

Generally, the nature of the contaminant tends to govern the migration pathway and, consequently, the type of receptor exposed. For example, airborne contaminants can be transported great distances and affect biota and human receptors far from the sources. Similarly, soluble contaminants in ground or surface waters can be transported down-gradient and may affect distant agricultural, recreational, and municipal supply users. Under different circumstances insoluble contaminants may be closely bound to sediments and have little chance of migrating from the primary source of contamination. With the pathway identified, data on sensitive areas, on-site activities, and proximity to human receptors are incorporated into the conceptual model. The exposure routes to the receptors depend upon the toxicological nature of the contaminant.

Contamination indicators exhibit similar characteristics for transport through the environment (e.g. primarily water insoluble, sediment bound and transported, atmospheric release as dust and fumes). A conceptual model for these elements and compounds is presented in Figure 6-1. The primary sources of contaminants are depicted as the SWMUs. In many cases, specific site activities which could be a source of the contaminants can be identified. Specifically:

Cadmium — Cadmium may be a trace component of the explosives and propellants disposed of at SWMU #17; it may also be a residual from scrap steel and paint chips.

Chromium — The occurrence of chromium in most samples may be due to several maninduced factors, including explosive handling and disposal, dust transport, and waste management.

Cyanide — Cyanide was detected in a single surface soil sample at SWMU #26. It is possibly a residue from plating materials used for site vehicles and equipment.

Coal Tar Derivatives — A variety of hydrocarbons were detected in a sediment sample from SWMU #5. The possible sources are the creosote-treated railroad ties which were observed on the bottom of the sinkhole (SWMU #5).

Explosives — Explosives were detected at SWMU #11 (TNT Washout Facility Leaching Beds) and SWMU #17 (Demolition Pit). The detections are obviously results of past disposal operations at those locations.

**Lead** — Lead was detected at several SWMUs. Lead is a component of paints and old piping, and is a by-product of the combustion of gasoline and diesel fuels. It also is widely used as the projectile material in ammunition. Its widespread occurrence in samples and high levels in SWMU #37 samples suggest that airborne dispersion of this element has occurred.

**Nickel** — Nickel was detected at SWMU #17 (Demolition Pit) and SWMU #5 (Sinkhole). Nickel is a trace constituent of explosive compounds. Its occurrence at the SWMUs may be the result of explosive disposal and waste management practices (e.g., dumping in the sinkhole).

Silver — Silver was detected at SWMU #26 (North TNT Burial Pit). It is a trace element often used as a catalyst in explosives and propellants.

TPHCs — TPHCs were detected at SWMU #15 (Propellant Disposal Facility), SWMU #16 (Burning Ground), and SWMU #17 (Demolition Pit). Primary sources for TPHCs at these sites are likely to be oil and hydraulic fluid leaks from vehicles and equipment and flammable liquids which may have been used to initiate combustion.

**Vanadium** — Vanadium was widespread about ANAD. It may be a trace component of explosives and propellants and may have been dispersed by the wind during demolition activities or transported around the site during waste disposal.



Contaminants, once deposited on the ground, may follow several pathways through secondary sources and release mechanisms before reaching human and biotic receptors. Figure 6-1 depicts a conceptual model for non-volatile contaminants and is applicable to all SWMUs.

As seen in Figure 6-1, the wind pathway is of concern because large portions of the soil entrained by the wind are fine particles which may contain soil-bound contaminants such as beryllium, cadmium, and lead. Fine particulates have the greatest potential for penetrating deep within the respiratory tracts of receptors, where the most severe toxicological effects can occur. Additionally, the finer the particulate, the greater the dispersion distance between the primary and secondary sources. Therefore, contaminants in wind-borne particulates are a concern to on-site workers and visitors, area residents, and biota.

Workers and visitors to the site and on-site biota may be subjected to soil-borne contamination by direct contact with the material. Primary entry routes for contaminants in humans is through the skin and eyes. Skin adsorption of the contaminants arsenic and chromium are of particular concern. Biota which are most affected by direct contact with contaminants in the soil include plants through uptake of materials through the roots and by direct contact with outer tissues, and soil dwelling invertebrates and vertebrates. Excessive uptake of certain elements (sodium, manganese) can adversely affect plant growth primarily through disruption of ionic equilibrium between the soil and plant roots. The contaminant can then be transmitted further in the food chain when these plants and animals are ingested by higher order herbivores (deer, cattle, dove) and carnivores (pygmy rattlesnake, red-tailed hawk, humans). Pollutants which have cumulative effects with chronic exposure such as lead or mercury can cause severe systemic distress in individuals.

Precipitation on contaminated soils and other surfaces can transport contaminants by two pathways. Contaminants which are more soluble in water may infiltrate into the groundwater table. The degree to which a soluble contaminant is dispersed is dependent upon aquifer characteristics such as hydraulic gradient, porosity, and permeability of the sediment/rock matrix. Isolated perched aquifers are most likely to be affected by infiltrating contaminants at the ASA. Based on historical hydrogeological data, the transmissivity of isolated perched aquifers does not facilitate the rapid dispersal of soluble contaminants.

Expanded Site Inspection of the Ammunition Storage Area

Precipitation can also transport contaminants to soils by surface runoff. Depending on such factors as rainfall intensity, soil particle size, topographic slope, and degree of vegetative cover, sediment loads in runoff can be very high. Any sediment will ultimately be deposited once the flow is dissipated, usually in a pond, creek, or other body of surface water. Runoff discharged into depressions may subsequently percolate through the soil into the surficial aquifer. Soil deposits in stream channels may be transported long distances from the site and affect significant numbers of downstream users of water resources. Surface water runoff carrying significant loads of soluble nutrients such as nitrates and TOC can accelerate the eutrophication process in lake and pond systems. Stagnation in lakes, especially in the summer can contribute to reduction in dissolved oxygen concentration, algal blooms, and fish kills. Plant uptake or ingestion by animals of contaminated surface water may be a factor. The primary exposure path for human receptors is through direct contact with the water (e.g. swimming).

# SECTION 7 COMMUNITY RELATIONS

In November of 1990, ANAD RMD personnel conducted interviews with residents of Anniston and surrounding communities to determine their concerns about ANAD. The primary environmental concerns expressed by the public included ANAD's impact on Coldwater Spring (the source of drinking water for 72,000 local residents), the chemical demilitarization program, the effect of discharges on the pygmy sculpin (a small fish considered threatened whose critical habitat encompasses portions of ANAD and adjacent waters), and general contamination at the 44 SWMUs at the facility.

To respond to public concerns, a Public Involvement and Response Plan (Community Relations Plan) was issued in October 1991. The objective of the plan is to provide techniques that will ensure effective communication between the Army, government agencies, and the public regarding the environmental studies ongoing at ANAD.

The plan was designed to fulfill the requirements contained in CERCLA (including Section 117 of SARA), the Army Public Affairs Plan for Installation Restoration Programs, EPA guidance and publications on public involvement in the Superfund Program and CERCLA compliance with other environmental statutes, the Office of Solid Waste's Superfund Community Relations Publication, and the National Oil and Hazardous Substances Pollution Contingency Plan.

Implementation of the Community Relations Plan provides concerned parties with opportunities to review and comment on Remedial Investigation and Feasibility Study plans prepared for ANAD and on recommended remedial action alternatives. It also provides the media with the information they need, identifies issues and areas of concern, and provides for a single entity for dissemination of information regarding the environmental work being conducted at ANAD.

The plan specifies communication techniques to be employed and places responsibility for employing each technique on various personnel at ANAD and other Army commands. There is regular communication between ANAD and the EPA, the U.S. Army Environmental Center, Calhoun County,

Expanded Site Inspection of the Ammunition Storage Area

the City of Anniston, the Alabama Department of Environmental Management, members of the media, the general public, and the employees at ANAD.

Communication techniques include project status meetings, milestone meetings, news and press releases, a technical review committee, public meetings, a community information line, onsite tours, information repositories, and policy letters.

# SECTION 8 CONCLUSIONS AND RECOMMENDATIONS

The Expanded Site Inspection (ESI) of the Anniston Army Depot (ANAD) Ammunition Storage Area (ASA) focused on identifying and evaluating possible contamination of soils, sediments, groundwater and surface water that may have been caused by past activities at fifteen solid waste management units (SWMUs). Activities undertaken as a part of the ESI included review of historical file material; interviews with ANAD personnel; evaluation of data in previous remediation reports; field activities including visual observations, geophysical surveys, installation of groundwater monitoring wells and collection of groundwater, surface water, surface and subsurface soil, and sediment samples for laboratory analysis; and an evaluation of reported laboratory data to support conclusions on possible contamination to make recommendations on further remedial actions.

#### 8.1 GENERAL CONCLUSIONS

Contamination from volatile organic compounds is not a concern in the ASA. Vapors detected at only one borehole (91B12 in SWMU #11) are believed to be the result of methane interference since analysis of the groundwater from the well completed at this borehole showed no volatile organic compound (VOC) contamination. No volatile or semi-volatile compounds were detected in surface soil samples. The positive correlation between non-detections of VOCs in the field and non-detections in the laboratory data suggests the absence of VOCs.

During the remedial investigation, it is recommended that surface water samples be collected for background characterization. Background surface water samples should be analyzed for full scan parameters to define background concentrations. Surface water samples should be collected at locations that have not been impacted by past waste management activities. The analytical results generated should then be compared with SWMU-specific surface water samples to assess the presence of contamination caused by activities at the ASA.

To provide better information on the groundwater flow direction, gradient, and velocity in the aquifers, it is recommended that additional monitoring wells be installed, monitored, and sampled. Groundwater samples from these wells should be analyzed for full scan parameters to define background concentrations. The monitoring wells should be installed at locations that have not been impacted by past waste management activities. Analytical results from the background monitoring wells should then be compared with the results from other monitoring wells to assess the presence of contamination in the groundwater caused by activities at the ASA.

The elements or compounds detected above background are considered to be evidence of potential contamination as described in the SWMU-by-SWMU presentation in the following sections.

#### 8.2 SWMU-BY-SWMU CONCLUSIONS AND RECOMMENDATIONS

#### 8.2.1 SWMU #5 - Sinkhole

**Description:** The Sinkhole is a water-filled, 0.63 acre depression located east of the B-block of storage igloos in the ASA. SWMU #5 was used periodically from 1942 to 1978 for disposal of various wastes. The Sinkhole was cleared of most dumped debris in 1978 (USAEHA, 1986a).

**Investigation:** Four surface soil samples, one sediment sample, one surface water sample, and two groundwater samples were used to evaluate SWMU #5.

Potential Contamination: The indicators of potential contamination detected in the samples were inorganics, PCB 1254, and coal tar derivatives in the sediment sample; and inorganics in the surface soil, groundwater, and surface water samples.

**Recommendation:** As potential contamination from prior disposal activities cannot be ruled out, it is recommended that further investigative action be undertaken at this SWMU as a part of the planned RI at the ASA.

### 8.2.2 SWMU #8 — Acid Disposal Pit

**Description:** The Acid Disposal Pit is located in a highly restricted, remote area of the ASA between the C and G-blocks of storage igloos. The concrete pit was used from 1959 to 1961 for the disposal of various chemicals. It has been filled in and is now overgrown with trees and grass.

Investigation: Physical evidence of the pit has been obscured to such an extent that it could not be located by field observation or geophysical survey. Consequently, no samples pertinent to the characterization of the site were collected. Since the conclusion of ESI field activities, historical aerial photographs not previously available have been reviewed. They suggest that no disposal activity had occurred in the areas that were investigated during the ESI. Subsequently an original photograph of the SWMU and a reinspection of an area nearby indicates that this area may be the actual location.

Potential Contamination: No sample data are available to evaluate SWMU #8.

Recommendation: It is recommended that further attempts be made to locate this SWMU and samples be collected to evaluate the potential for contamination spread at SWMU #8. This work should be incorporated into the planned RI at the ASA.

## 8.2.3 SWMU #10 — TNT Washout Facility

**Description:** SWMU #10 is located in the central portion of the ASA in a restricted access area approximately 3,300 feet north of I-block and 100 feet from Building 172. From 1948 to the mid-1950's, and sporadically after that, slurry from munitions washout operations was discharged from Building 172 into the sedimentation tank. Overflow from the tank was discharged to leaching beds (SWMU #11).

**Investigation:** One surface soil sample, two sediment samples, 11 soil boring samples, and two groundwater samples were collected to evaluate SWMU #10.

**Potential Contamination:** The indicators of potential contamination detected in the samples were calcium, nitrate/nitrite, and the explosive 2,4,6-trinitrotoluene in the surface soil sample; inorganics, nitrate/nitrite, and the explosives HMX and RMX in the groundwater samples; and calcium, TOC, and nitrate/nitrite in the sediment samples.

**Recommendation:** Based on the detection of explosives in the surface soil and groundwater samples, it is recommended that further investigative action be undertaken at SWMU #10 as a part of the planned RI at the ASA.

# 8.2.4 SWMU #11 -- TNT Washout Facility Leaching Beds

**Description:** The leaching beds are located across the road from SWMU #10. The beds consisted of a series of 24 parallel troughs dug into the soil, covering approximately 0.75 acres. The beds received explosives washout waste water from 1948 to the mid-1950's, and sporadically thereafter. Explosives concentrations in the beds are reportedly in the range of up to 60%.

Investigation: Two surface soil samples, two sediment samples, six soil boring samples, and one groundwater sample were collected to evaluate SWMU #11. Four more groundwater samples were planned, but two of the wells to be sampled could not be located and two others were too badly damaged to be used.

Potential Contamination: The potential indicators of contamination detected in the samples include inorganics in the surface soil; inorganics and acetone in groundwater samples; nitrate/nitrite in the soil boring samples; and manganese, and TOC in the sediment samples.

**Recommendation:** The lack of soil samples from within the SWMU and sufficient groundwater samples in the vicinity of the SWMU presents a gap in the data required to

perform an evaluation of potential contamination. It is recommended that further investigative action be undertaken at this SWMU as part of the planned RI at the ASA.

## 8.2.5 SWMU #14 — Laundry Waste Leaching Facility

**Description:** SWMU #14 is located northeast of SWMU #10 and north of the I-Block of storage igloos. From 1948 to 1973, this SWMU was used to dispose of wash water from the explosives handlers laundry. Waste water from the washing machine was piped to an above grade sump and then to the leaching bed. Runoff from the leaching bed discharged to a stream. The laundry was demolished circa 1973.

**Investigation:** Four surface soil samples and one groundwater sample were collected to evaluate SWMU #14.

**Potential Contamination:** Inorganics and the explosive HMX were detected in the soil samples. TOC was detected in the groundwater sample.

**Recommendation:** Due to the detection of an explosive in soil samples, it recommended that further investigations be undertaken at this SWMU as a part of the planned RI at the ASA.

#### 8.2.6 SWMU #15 — Propellant Disposal Facility

**Description:** SWMU #15 is located in the northwest portion of the depot, approximately 2,400 feet northeast of building S-602. Propellent disposal operations were conducted from circa 1968 to 1978. There are two disposal units, one of which was used to dispose of unsymmetrical dimethylhydrazine (UDMH), the other to dispose of inhibited red fuming nitric acid (IRFNA). Each unit consists of a concrete pads and small incinerators.

**Investigation:** Five soil boring, two surface soil, and two groundwater samples were collected to evaluate SWMU #15.

**Potential Contamination:** TPHC was detected in both the soil boring and surface soil samples. Nitrate/nitrite and acetone were found in one of the groundwater samples.

**Recommendation:** The TPHC contamination was detected at a relatively low concentration. However, because contamination was found, an additional field investigation is recommended for this SWMU.

## 8.2.7 SWMU #16 — Burning Ground

**Description:** The Burning Ground is located in the northwestern portion of the depot. The burning area covers approximately 6 acres. Current burning operations are conducted in steel burning pans, a burn cage, and a dunnage burning area. Materials burned include explosives, ammunition, and inert materials. Three burial pits within the SWMU boundary have been used for disposal of a variety of hazardous materials: Comp B, octal, white phosphorus, hexachloroethane, explosives, and others. The three pits are now closed and covered. A RCRA Subpart X permit application for ongoing operations has been submitted.

**Investigation:** Investigation was confined to the perimeter of the burning ground due to the hazardous material distributed in the area. Five soil boring, four surface soil, and two groundwater samples were collected to evaluate SWMU #16.

**Potential Contamination:** Indicators of potential contamination detected at SWMU #16 include TPHC and inorganics in the surface soil and soil boring samples. Inorganics and nitrate/nitrite were detected in the groundwater samples. It should be noted that although boring 91B16 was installed in very close proximity to a former white phosphorus pit, the soil boring and groundwater samples were not analyzed for phosphorus.

Recommendation: This is an active OB area with a RCRA Subpart X permit pending. Due to the active status of the site, future investigation will be managed under the provisions of the RCRA Corrective Action program.

## 8.2.8 SWMU #17 — Demolition Pit

**Description:** The demolition pit is located in the northwest corner of the depot. The pit is approximately 5 acres and contains 22 detonation sites. The pit is currently active and has been in use for at least 40 years. The pit is used for destruction of high explosive items including cartridges, bombs, grenades, rockets, warheads, etc. A RCRA Subpart X permit application for ongoing operations has been submitted.

**Investigation:** Three soil boring samples, two surface soil samples, two sediment samples, and one groundwater sample were collected to evaluate SWMU #17.

Potential Contamination: Indicators of potential contamination detected in SWMU #17 include inorganics and TPHC in the soil boring samples; inorganics, TPHC, and the explosives 2,4-dinitrotoluene and nitroglycerin in the surface soil samples; inorganics and TPHC in the sediment samples; and inorganics, acetone and the explosive 4-nitrotoluene in the groundwater samples.

Recommendation: This is an active OB area with a RCRA Subpart X permit pending. Due to the active status of the site, future investigation will be managed under the provisions of the RCRA Corrective Action program.

#### 8.2.9 SWMU #18 — Old Sewage Treatment Plant

**Description:** The old STP is located south/southwest of the ANAD Administrative Area. The STP was used to treat domestic sewage from 1942 to 1982. It is currently used as a firefighter training area.

Expanded Site Inspection of the Ammunition Storage Area

**Investigation:** Investigations at SWMU #18 were limited to a review of ANAD files and records and a site visit to observe site conditions. No field sampling was conducted for the ESI.

Potential Contamination: None determined by this ESI.

Recommendation: There was insufficient historical data to conclude that SWMU #18 activities (past and present) have had no impact on groundwater. Based on the nature of historical and ongoing activities at SWMU #18, it is recommended that further investigative action be undertaken at this SWMU as a part of the planned RI at the ASA. This investigation should include a review of old facility plans from the date of facility inception to verify the presence or absence of combined sewer lines; monitoring well installation and sampling in and around the trickling filter and oil/water separator; determination of whether or not the fire training area was/is lined, and what materials were burned in it, together with an investigation of potential releases of contaminants from these activities; and any other issues related to the SWMU's historical and current use.

#### 8.2.10 SWMU #26 — North TNT Burial Pit

**Description:** The North TNT Burial Pit is located near the northern installation boundary. The pit was approximately 50 feet long and 25 feet wide. Reports suggest that wastes containing TNT may have been burned and buried at SWMU #26.

**Investigation:** Three soil boring samples, one surface soil sample, one sediment sample, and two groundwater samples were used to evaluate the SWMU.

**Potential Contamination:** Indicators of potential contamination at SWMU #26 include inorganics and VOCs in the soil boring; inorganics in the sediment sample; inorganics in the surface soil sample; and inorganics and nitrate/nitrite in the groundwater samples.

Expanded Site Inspection of the Ammunition Storage Area

**Recommendation:** Due to the lack of subsurface soil samples within the SWMU boundaries, inclusion of this SWMU in the follow-up RI is recommended.

8.2.11 SWMU #27 — South TNT Burial Pit

**Description:** The South TNT Burial Pit is located approximately 500 feet southeast of the North TNT Burial Pit (SWMU #26). Past activities were the same as at SWMU #26

**Investigation:** Three soil boring samples, one surface soil sample, and two groundwater samples were collected to evaluate SWMU #27.

**Potential Contamination:** Indicators of potential contamination detected at SWMU #27 include inorganics and VOCs in the boring samples; lead in the surface soil sample; and inorganics, SVOCs, and nitrate/nitrite in the groundwater samples.

Recommendation: Due to the lack of subsurface soil samples within the SWMU boundaries, inclusion of this SWMU in the follow-up RI is recommended.

8.2.12 SWMU #34 — Chemical Storage Igloos

**Description:** Forty-one chemical storage igloos in G-block are located within this SWMU. Igloos are used to store obsolete M55 rockets containing nerve agents. The interior of each igloo is regularly monitored to detect any leaks. A RCRA Part B application covering these operations has been submitted.

**Investigation:** A review of ANAD files and records, and results of previous investigations led to the conclusion that no field investigation was required here.

Potential Contamination: None determined by this ESI.

**Recommendation:** Monitoring for contaminant releases will continue, ultimately under the RCRA permit. SWMU #34 should not be included in the ASA RI/FS.

#### 8.2.13 SWMU #35 — Deactivation Furnace

**Description:** The deactivation furnace was used to deactivate small munitions (less than 600 grains energetic material up to 50 caliber). Particle emissions were collected in a bag house. Remediation of a leaking 1000 gallon diesel tank has occurred at this location. A final report on this remediation has been approved by ADEM. It is expected that operations will start again in 1993; an air emission permit from the State of Alabama and a RCRA Part B permit are pending.

**Investigation:** Four soil boring samples, three surface soil samples, and one groundwater sample were collected to evaluate SWMU #35.

**Potential Contamination:** Indicators of potential contamination detected in SWMU #35 include TPHC in the soil boring samples; inorganics and TPHC in the surface soil samples; and inorganics in the groundwater sample.

Recommendation: Due to the detection of TAL metals in high concentrations, inclusion of this SWMU in the follow-up RI is recommended. As per Section VIII (Statutory Compliance) of the FFA, follow-up activities covered by the FFA will achieve compliance with both CERCLA and RCRA remedial action/corrective action requirements, thus fulfilling any RCRA Permit requirements.

## 8.2.14 SWMU #36 — Drill and Transfer System Site

**Description:** The drill and transfer system site is where chemical agents were transferred from leaking munitions into one ton containers for safe storage. The SWMU covers about one acre. Transfer of chemicals was conducted within a glove box. Two storage sheds and a metal pavilion are located here.

Anniston Army Depot, Alabama

Expanded Site Inspection of the Ammunition Storage Area

**Investigation:** A review of ANAD files and records, and results of previous investigations disclosed no information suggesting the release of contamination from this site.

Potential Contamination: None determined by this ESI.

**Recommendation:** No further action. SWMU #36 should not be included in the ASA RI/FS.

## 8.2.15 SWMU #37 — Vehicle Wash Rack

**Description:** The Vehicle Wash Rack is located in the western end of Building 45, approximately 1000 feet south of the ASA fence. The two wash bays are currently in use for washing and steam cleaning depot vehicles. Waste waters are collected through floor drains, pumped through an oil/water separator and discharged to the sanitary sewer. Oils are drummed for disposal

**Investigation:** Six surface soil samples were collected at SWMU #37 in order to evaluate the site. Only three of those are considered relevant to wash rack operation.

**Potential Contamination:** Indicators of potential contamination detected in the surface soil samples include inorganics, toluene, and SVOCs.

**Recommendation:** Based upon site history, the detection of organic contamination in surface soil samples, and the lack of groundwater samples, additional investigation of the SWMU is recommended.

# 8.2.16 Northern Boundary Sites

**Description:** The Northern Boundary Sites were three streams flowing out of the ASA at the northern boundary.

Investigation: One surface water/sediment sample pair was collected from each stream and analyzed for nitrate/nitrite and explosives. A fourth stream which was to have been sampled was found to be dry, so no samples were collected there.

**Potential Contamination:** No indicators of potential contamination were detected in the sediment samples. Nitrate/nitrite (not considered to be a "stand-alone" indicator of contamination) was detected in two of the three surface water samples.

Recommendation: Based on the sample results, there is no evidence that explosive contaminants are spreading out of the ASA via surface waters north of the site. No further action is deemed necessary.

#### 8.3 SUMMARY

Completion of this ESI has resulted in an improved characterization of potential contamination at the 15 SWMUs that were the subject of this study. Based on the results of the field investigations, laboratory analysis of environmental samples, and analyses presented in this report, the following 11 SWMUs have been identified as requiring further investigation to confirm and evaluate potential contamination:

- SWMU #5 Sinkhole
- SWMU #8 Acid Disposal Pit
- SWMU #10 TNT Washout Facility
- SWMU #11 TNT Washout Facility Leaching Beds
- SWMU #14 Laundry Waste Leaching Facility
- SWMU #15 Propellant Disposal Facility
- SWMU #18 Old Sewage Treatment Plant
- SWMU #26 North TNT Burial Pits
- SWMU #27 South TNT Burial Pit
- SWMU #35 Deactivation Furnace
- SWMU #37 Vehicle Wash Rack.

Expanded Site Inspection of the Ammunition Storage Area

No further action is recommended at the following SWMUs:

- SWMU #16 Burning Ground (subject to future RCRA Corrective Action)
- SWMU #17 Demolition Pit (subject to future RCRA Corrective Action)
- SWMU #34 Chemical Igloos
- SWMU #36 Drill and Transfer System Site.

#### **SECTION 9**

#### REFERENCES

- Anniston Army Depot (ANAD). 1985. Solid waste management units of Anniston Army Depot. Office of the Commander, Anniston, Alabama.
- Anniston Army Depot Safety Office. 1985. Explosive samples. Memo for Record, 14 August 1985.
- Environmental Science and Engineering, Inc. (ESE). 1981. Anniston Army Depot Resource Conservation and Recovery Act (RCRA) Studies, Final Engineering Report.
- ——. 1988. Feasibility study for Anniston Army Depot: Endangerment assessment ATSDR submittal. Prepared for USAEC, Installation Restoration Division, Aberdeen Proving Ground, Maryland. Contract No. DAAA15-85-D-0017.
- -----. 1989. Remedial investigation: Anniston Army Depot. Prepared for USATHAMA. Contract No. DAAA15-85-D-0017.
- Fetter, C.W. 1988. Applied hydrogeology. Merrill Publishing Co.
- Jacobs Engineering Group. April 1991. *Quality assurance program plan.* U.S. Army Corps of Engineers, Toxic and Hazardous Materials Agency. Contract No. DAAA15-90-D-0013.
- April 1991. Anniston Army Depot: Work plan for expanded site investigation, Anniston storage area. Draft Final. U.S. Army Corps of Engineers, USATHAMA. Contract No. DAA15-90-D-0013.
- NUS Corporation. February 1987. *RCRA facility assessment report at ANAD.* Prepared for USEPA. EPA Contract No. 68-01-7310.
- Office of the State Climatologist (Alabama Climatological Data Annual Summary 1991, Vol. 96, No. 13), NOAA. *USDA soil survey: Calhoun County, Alabama*. Series 1958, No. 9. Issued September 1961.
- Osborne, W. Edward and Michael W. Szabo. 1984. Stratigraphy and structure of the Jacksonville Fault, Calhoun County, Alabama. Geological Survey of Alabama Circular 117, 30 pp.
- Seaber, Paul R. 1988. "Region 20, Appalachian Plateaus and Valley and Ridge." *In The geology of North America*. Vol 0-2, *Hydrogeology*. The Geological Society of America.
- Technos, Inc. 1981. *Geophysical and geohydrologic investigation of Anniston Army Depot, Anniston, Alabama*. Report prepared for U.S. Army Toxic and Hazardous Materials Agency. Contract No. DRXTH-FS-CR-81116.

- USAEHA. 1986. Evaluation of solid waste management units: Anniston Army Depot, Anniston, Alabama. Ground Construction No. 38-26-1363-86.
- USATHAMA. April 1978. Installation assessment of Anniston Army Depot. Report No. 119.
- USEPA. October 1987. Expanded Site Inspection: Transitional Guidance for Fiscal Year 1988.
- ———. February 1989. *Methods for evaluating the attainment of cleanup standards*. EPA 230/02-89-042.
- Warman, J.C., and L.V. Causey. 1962. *Geology and groundwater resources of Calhoun County, Alabama*. Geological Survey of Alabama County Report 7, 77p.

Appendix A

Aquatic and Terrestrial Species in the Immediate Vicinity of ANAD

# **Aquatic Species**

# **Vertebrates**

Least lamprey Redfin pickerel Chain pickerel Rainbow shiner Large scale stoneroller Alabama hog choker Mosquito fish Green sunfish Warmouth Bluegill sunfish Redear sunfish Bream Largemouth bass Coldwater darter Carolina sculpin (*banded*) various minnows

# Invertebrates

May flies
Caddis flies
Stone flies
Oligochaetes (segmented worms)
Crustaceans
Water fleas (cladocera)
Isopods
Decapods (crayfish)
Amphipods
Water boatman
Beetles
Molluscs
Snails

## **Terrestrial Species**

## Mammals/Marsupials

Deer
Squirrel
Rabbit
Opossum
Raccoon
Fox
Bobcat

#### Birds

Turkey Quail Dove Crow

## Reptiles

Timber rattlesnake
Pygmy rattlesnake
Water moccasin (cottonmouth)
King snake
Chicken snake
Black snake
Rat snake

Eastern diamondback rattlesnake

## Common Grasses

Bermuda Dallis Johnson Lespedeza Lespedeza Sericea

# Common Woodland Trees and Shrubs

Longleaf pine
Loblolly pine
Shortleaf pine
Slash pine
Yellow (tulip) poplar
Red (sweet) gum
White oak
Post oak
Eastern red oak
Southern red oak
Blackface oak

Sycamore Eastern red cedar

Red maple

Dogwood Black gum Hickory Black locust Wild plum Red bud Chestnut oak Virginia pine Black walnut Persimmon Bluejack oak American elm Slippery elm Plum Huckleberry Wild grape

Crab apple Wild cherry Mulberry Pecan Blackberry

Honeysuckle

Green briar

# Appendix B

# Field Boring Logs

This Appendix presents field boring logs describing soils acquired in the course of borings that led to completion of well installations. Information acquired from borings that did not result in completed wells is not included in these logs.

Well completion information for well 91B15 is not presented in this Appendix. Examination of field notes indicated that well 91B15 was completed with the following specifications:

- Stainless steel screen from 17 feet 10 feet below ground surface
- Stainless steel riser from 10 feet to zero feet below ground surface
- Stainless steel "stick-up" from zero feet to 2.5 feet above ground surface
- · Gravel pack from 17 feet to 7 feet below ground surface
- Bentonite pellets from 7 feet to 5 feet ground surface
- Grout from 5 feet to zero feet below ground surface

Chial.

निगम्बः छ्य	306∞	रेग्ड)स्टर	14.704	ANAD RI/FS			3110
Cಯಬಾದದ -		Driller		ANAD RI/FS			
<b>ಸ್ಕಾ</b> ಡ	HSA	टाचार्य १		73/4"   ETT 117		D	1.91
Crossed et		डिवध कन्ध		Sala			<u> </u>
بو مولد	DAT	(C)'d by		Date	- pinn	= 26 Total depth 33	5'
		:}		1	1		
<b>.</b>							Rontoure
to.	्रेक्टर १००१	Blove por 6 inches	Ros	Description	let EUG	Commente on	HEAT LIFE
C1	0'-4'		70	0'-4.0' onc-	1.5	1	
SAMPLE	•		1	(NCH OF NEAD	0.8	DRILLING FROM	50
COMPOSITE				SURFACE		0'-4'. NO -	AUGERS
0-41				VEGITATION AND TOP SOIL		SAMPLE FROM	ei
12-613-19-CI		(e)		FOLLOWED BY		41-51 DUE TO	14
		(e)		10YR GTS	1.	· ·	.
٠		•		BROWNISH YELLO	اد	HARD DRILLING	:
				AND 54R 518	1		
		•		BROWN MOIST			:
				SANDY GILT :	. <b>.</b> }.		1
				WITH LIMESTOUR	•		
	•			CHERT FRAGMEN	ار کار		
		1.	40		1	VCDV-11055	
}	5'-10'		٠	154R 518	0.4	VERY HARD	30
sample !				RED DZITO			AUGEL C
composite			٠.	MOIST GILT	:		10'
LABEL		•		WITH SOME			
				MINORCLAY			.
		•		STIMOLOG GUD			
				CHERT FRAGREN		•	
C3	10'-15'		30	SAME AS	0-2	VERY HARD"	0.4
Simple	.			ABOVE		DRILLING .	iu
10'-15'	ŀ						AUGERS
-ABEL							
52918119-42							•
NO Smure	15-20:51		25%	15211 15	<b>  </b>	1100	
	6.0	!	2076	MO JAMPLE	.	VERY HAZD	0.7'
•		- 1	1	FALL BAK MATERIAL IN		DRILLING THROUGH	
				held abite in		ROLL ALL	
Į.		. 1	1		1 1	10001	"
.	1	i	i		] 1		1 1 1

	FELDB	ORING LA	×			A CONTRACTOR OF THE PROPERTY O		3-4: 911	200
	ಷ ಸಭನ್	30600	रेख्य अस्त :	454	ANA	D PI/F	· <		3110
	Consta		Driller					g 2 d 3	
	<b>ಸ</b> ಚಾಜ	HSA	_			ENU 117/6			1.92
	Crossed et.	1101-	३०८ वना	led	3/4	Balos	<u> </u>	O Process and	0
;	المراجعة المراجعة	IAG	(C)'d 57			Date	<u> </u>	1 30 Total depta 3	5
	1				1	i Will	l !		
	,		4						Montoria
	Sampio No.	Despita la lessi	Blows por 6 inches	712	Dese	ripties	Jar UKE	Comments on Minister of Dering	HMU LEL
	CH compasit scomple 2215- 225:	93.2.72,		100	F. 541 STROM MOIST WITH AND I	- 23' R 518 IL BROWN T SILT SOME CLAY DOCOMITE, TONE AND - PRABBANK	0.1	VERY HARD DATLLING THROUGH ROCKS	5 Hora IN
			Δ 42°		A31-2 FISH STROM MOIST WITH A BOLD ON LINEST LIMEST	R 518 - CLAY SOME TONE TONE TONE TONE TONE TONE TONE TON			
	C5 sample 25-24		•	100	54MB	AS ABOUT		VERY HARD'; DRICLING 36-36.5	0.1 AU45 - 10
	No panole	36-32121		81:		SMPLE	200	VERY HAZO DILLING	
!	Cle 5ampl 32.5-35'	32.5:35'		100	Fire Augustanting Pebb	R GIE  SON YELLOW  T SONE  SONE  SAND  ABUNDANT	0-2	Very Hard Drilling to	O.1 IV AVERS Q 35'
						•		<b>l</b>	1 1 1

Project Name ANAD ESI
Project Number 35630600
cation Stundy 10/11
Boring No. 91811
Date 7/5/92

Drilling

Method HSA 10 1/2 INI BIT

Development

Method

# Well Materials Used

Feet of S-foot Riser

Feet of 10-foot Riser 30

Feet of Screen /0

Caps Z

Bags of Sand 17

Bags of Bentonite Powder /2

Buckets of Pellets 3/12

Bags of Concrete Mix

'le Covers )

Stick-Up Riser Pipe: 2.5 FT Type of Surface Seal: Mortar SACKCEETE Riser Pipe I.D.: ZIN Type of Riser Pipe: STAINLESS STEEL Borehole Diameter: 10 /2 INI Type of Backfill: Type II Can + BENTOHITE POWDER Depth to Top of Seal: 13.25 FT Type of Seal: 14 IN BENTONITE PELLETS Depth to Top of Sand Pack: 20 fr. Depth to Top of Screen: 28 FT -Screen I.D.: ZIN Type of Screen: OOIO SLOT STAINLES Length of Screen: 10 FT Depth to Bottom of Screen: 38 FT

Depth to Bottom of Hole: .

	oring ic					-	3-47.	4 201 9	BIZA
Propert SA							7	a	5
	ATEC			= F			192 co	placed	
xaria HS	A 7/21N				至70117/		2 Trac	عددت لوجو	
Crossed et		उ०ध क्ता	led		□ Delo-	grad	1700	d depth	
रहे स्माध्या	SHK	(C) (4 b)			Deta 1/1	0192			
		7							Monit
Same pla	Deyth la	Mays per	712			DEE	CARLE	Les 14 4 18	
Ho.	(201	4 izakes	712 X44	Dese	ripties	Jaz	147134	e e( bertag	ן אפתין
				amel	ly ailt		0755 6	mea	cel  1.0
	0-,5			and so	ly silk id yellow	pe			
			100	brown.	1948 5/4 second ch			•	
50017.5				Cara	As served	eng			
20811805	15-15			sendy	gravell	<b>)</b> .,			
-1				July,	gravelle which y 6/8, day	allow	<del>-</del>		
		•		7.54R	6/8, day				
				ممرم	trues for				
				bush	r MA				
				_					
	2,5-5		80	asa	bove,				1.0
	<u>.</u> .			moust	at	$\mathcal{C}$			
				hotten	guleur		, •		
S - S - T	5-7.5	i ;	50	asal	oecassor	0			
5091812				with	occasion	7			
- 2				cher p	usmento in				
		į		betton	mings in				
				l c	<b>ú</b> b.				
	7.5-10		10	Large	Lades				
			}	ا کیامولا	Dange. W	4	}		
				and a	bove				
							1100	Mine	
. •							14and di	w - 7	
•	10-12.5	1	80	مما	علىسع		10-11		
			1						
1				1					1
•									

		SORMO L						garnet Maria Archael gray	2 may 24 9/8	1,2 0	
3	रेताक्रस ३०.	356306	20 mpm	LIMA	ANG	D ES	)	Market Services			
23	Consta	ATEC	Duni	J€	FF			V57	Constant		
	त्रमा व्य मि	5A 7/2 1~	CIMES!	130		ENG 11.7/		<i>)</i> , , , , ,	Processa Long		
1	टप्ल्यं स		३०७ वन्	14d		Seios			Total depth	<del></del>	
	الم المراهما	BUK	10'd by			Data 1/1		Z			
<b>글</b>		:	-}							Varia	
Circuit	Jempie Na.	Corpth La	Reve per 4 leates	712	Daves	:2:133	EXC EXC		Cammera es itame el bertaj	HUU   Mount	
	5091812 -3	12,5-15			sandy rillo, us red, 5%	gravelly Blowish R 5/8, dry		Han	d dilling	10	
					miredi	with		لتعم	won		
			-								
1 -	591817	15-20		60	sendy	changey		Han	à drilling	1.0	
	-4				Henry	nents Irown		mo,	ni run in artuo ger		
					7.5 41 dug		-	·	iple obtainel		
	\$091317	20-25	·	60	مه ما	boue		Har	A dielling	2,1	
	-5			,	in che	t included by Toward internal		entre	is sun	-   -	
		25-30			as al with cly						
	·										

	3563060	V. 273	11-1	2 / 2	0 6		3-14 24 9	1812
					D ES/		7 3 d	5
	ATEL			FF !			O/SZ Completed	
	5A 7/2 1~			-	ENG 117/		राज्यस्य प्राप्य	
roand er	-	30U de	Ced .		S Below		Total deput	
व्यक्ति हत	BHK	100 pg		1	Data 1/1	119	2	
•		$\cdot i$						Montor
Samue No.	Degta La feet	Mers per Cueles	712 X44	Descr	iptien	les aud	Camments on idvance of bortag	אניטן נד
	30 -32.5		56	Lotar	reily		soft dulling	6-16-30
5091B1Z	37.5-				•		32-33	
-6	33			sandy	clus Jellow			6.6
٠						}	chem sample	,
					18, wet		chem sample only, no get	ίω ·
				geniel				
				بہنرمیں	edon	<u> </u>		
				0 / 0		}		
	33-35		1		0.0			2.2
	73-22			panay	ginielle	þ		
				Jan 1	yellowie YR 5/8			
				red, 5	74K 5/8		. •	li
					<del>قالونا</del> ء ,	<b>b</b>		
				215-2	stiff, one	0		
					vary or a			
				1.0%				
				1				
				j				
	35-38		90%	Oceanite.	, Pepbly	ł	1.10-2201.	
				ch.	11 -4		Hand dulling	(C.O)
•				and 5	yellowish YR 5/3,	1	\$ 24 mm	
							Julius to 40'	
		}		lulosten	grants, and din	1	TO'd hole at	
				Jehler	~30%	1	1	
				10% sen	A, moint,		43'- rocking all	
				phatic			the way though	
•							s'overdill 10	"0
!							Dry hole	
			ł	I		1	Continued 14	_

Property as 35630000 Property Lama ANAD ESI Mg 4 of 5  Contractor ATEC Driller DEFF Demonst 1/10/92 Completed  Method HSA 7/2 IN Classe Line ETT 11/1022 Process Irrus  Crossed Li Soll graded I Date 1/11/92 I  Soll graded I Date 1/11/92 I  Sumplia Dryth la liver per Pia Generation Into Mount International Roll and International Roll and International Roll and International Roll and SYR5/8, -20 & sandy gravelly clay, without well on currend well on currend well and on currend well and soll graded with the soll graded on the sample of soll graded with the soll graded on the soll graded soll graded on the soll graded		iormo u						Serial see	71B12
Contractor ATEC Driller ) EFF Demond 1/10/97 Completed  Method HSA 7/2 IN Clear line   ENTILL7/10.2   Property level  Ground at Sold drilled   Sold or pred   Total depth  Lagra by Bid K Cridby   Date 1/11/97    Sumple Gent Gent Record   Pred   Description   Larged by Bid K   Commercia on the contract of the contract						ID ESI			
Surprise Description   ENTILLY/10.3   Process level  Ground at Soil drailed   Soilow pred   Total degree  Larged by Bid Cidby   Dates 1/11/9 Z    Sumpia (seet & leasess Tee Description   Jar   Commercia on Monitor    140-43   Rock with material and more entered    43-45   100   Sounds   Syk5/8/1, ~100   Seemed    143-45   100   Sounds    145-50   50   as above    145-50   50   as			Dunas	JE	FF	Date Service	1/10		
Jennie Desta la Hore per Pea Description BATU Commercia en Horry  40-43  43-45  AS-45  AS-50  So as above, occasional large confidence of period with the confidence of period with the confidence of periods  45-50  So as above, occasional large confidence of periods  SU-555  We as above in the confidence of periods  SU-555  We as above in the confidence of periods  SU-555  We as above in the confidence of periods  SU-555  We as above in the confidence of periods  SU-555  We as above in the confidence of periods  SU-555  We as above in the confidence of periods  SU-555  We as above in the confidence of periods  SU-555  We as above in the confidence of periods  SU-555  We as above in the confidence of periods  SU-555  We as above in the confidence of periods  SU-555  We as above in the confidence of periods  SU-555  We as above in the confidence of periods  SU-555  We as above in the confidence of periods  SU-555  SU-555  We as above in the confidence of periods  SU-555  SU-555  We as above in the confidence of periods  SU-555  SU-555  We as above in the confidence of periods  SU-555  SU-	Xuza H	SA 7/2 1				क्राच 11.7/	10.2		
Jampia Depta la Bierra per Pasa Description Jar Cammerais en Herry  40-43  Rock with internitional port papers  43-45  100 analy, gravelly clay, yellowish red 548/8, -20% gravel, 5-10% panel, 5-10% panel  very must to well internitional large calibration of particles out publics out publics.  45-50  50 as above, occasional large calibration of publics out publics.  50-55  60 as above internitional large calibration of publics out publics.				led.		✓ Below	beq.		
Jean Ha Tool & Blood per 122 Description BNU Commercia on Herry  40-43  Rock with international continuation of the continuati	couped by	RIAK	107.4 pt		· ·	Date 1/1	1/92		
Surption Description Property of listed Reservations   Hard Sylvanian of Sylvanian   Hard S			· <del>/</del>						Monit
43-45  MO sandy gravelly clay, yethorish red 5485/8, ~20 & gravel, 5-10 % sand very most to wet of secretarial lane cellules on published.  SU-55  W as above it in to 57, for dulled it in to 57, for dulled it in to 57, gravely as a solution of the secretarial secretaria	Sample No.		Mers per Cinches	702 X44	Desc	riptien			<u> </u>
43-45 no clay, yellowish red 5485/8, ~2026 sevel, 5-10% sevel, 5-10% sevel very must to well lave collers on petiles.  50 as above, occasional lave collers on petiles.		40-43			inter	mitteres		no sample	aut
45.50  50 as above, occasional lane calibration at 51 st dulled intended with the 57'  28		43-45		100	1				
45.50  SO-55  Wen months  well  so as above,  occasional large calleles on publishes.  We as above  it dilling it  51 ft dulled  it in \$57'  28					1000, con 5	retlowish YR5/8, revel,			
SU-55 Was above 1/4-1 dulling it 51 ft dulled littled			!		very ,	ound neighted			
SU-55 (as above litter) 28		uc. To		50	ىلە مە	ove.		. •	2،ک
50-55 Was above 14ml inthing it 51 pt dulled situal >57'		4, 50			large	السمنة معاملين معاملين			
50-55 Was above Strut \$55						,		to guille but	
as above Hend dieling, at 57 fit peter 3.2		50-55		ω	ىلە مە	ove		situal > 57	28
as above From 3.2							,	Hand dilling	
	. }	55-57	٨		به مه	we.	, k	ind opened samp	3.2
			¥			•			

LINE S	HORING LA	×			,'		Petrit 211	7
Project 20.	3563060	C PROPERTY IN	424	AN	AD ESI		7 5 0 5	
Cಎಂದಡ ದಾಹ	ATE	Driller	JER			1/10	192 Completed	
xuza K	SATHE IN				ENU 117/1		Process level	
टप्कळ्य ग		३०१ वस्य			Selow		Total depth	
تعروم كم	BHK	C 4 27			Date 1/1	2/9	2	
		·i						Monitort
Sact pile	Denta la	Mave per	712			סמב	CAMEROE IS 12	
No.	lees	4 124200	Res	Desc	iptien	124	Maried of Jednes	HOW LZ
		***************************************		. ,	01.		0755 Mesoured	
	58-59,5		}		, gravelly		writer level to	
	<b>~</b> .			, –	s above	1	51,75 ft below ground surface	
	59.5-60				l, angula		in augus	
•				very lit	the clay;	15%	Dulledont wek	
		•		~ 10% ve	my course		Ez-se stand	
				white	hutand		57-58 stand	
				gray d	olamite.	: 	08.50	
						}		1
	60-61			grave	ely clay			
				متلمنه	h rellow	†		
				SALLE	k, ~50% 2,10-15%	1		
				como	aune,			
				wet			h	
							Overduck for	i
							Overdill for well to 63 to	
				1				
							Replaced Lit @	
			1				52,5 ft - teeth worn 1315-1345	.
						}	10- +. 1/el aurers	
							15.52.5 1345-166	A2
			}				1	19.
							Shaft broke and	
							approximation of the second	
<b>,</b> i							Shaft broke at the replaced shaft and diver cap hower - diverse of contact.	-
							المحمد	
•							1/14/92 They men	
							dive on the to	
				1		1	1 91811 1211	• •

PEDI DE DEED SNAD-TASK #6
Project 8 moet 35/330600
Location
ring No. 9/8/2
ate 01/25/92

0::11e: <u>///=Z</u>

Drilling
Method HSA

Development Method

# Well Materials Used

Feet of 5-foot Riser 5ft

Feet of 10-foot Riser 40 ft

Feet of Streen 10 ff

Caps bottom plag: top Cxp.

Bags of Sand 9

Bags of Bentonite Powder 37 lb

Buckets of Fellets 3

Bags of Cement 7

Bags of Concrete Mix

Hole Covers 1 3 mol dia protutive

Casing with likeling cover

Stick-Op Riser Pipe: 3.1 FT Type of Surface Seal: Concrete (Sakrete mi Riser Pipe I.D .: 2.0 mks Type of Riser Pipe: Stinks Stan -Borehole Diameter: 10/2 Inches Type of Backfill: growt (1 bug Type II coment/8gal parts Depth to Top of Seal: 19.0 H Type of Sezi: boutouik pellets Depth to Top of Sand Pack: 29.5 A Depth to Top of Screen: 41.9 # -Screen I.D.: Zinck Type of Screen: Stanles Steel 0.010 st Length of Screen: 10,0 f Depth to Bottom of Screen: 51.9 Depth to Bottom of Hole: \$2.3

भूतिक धन्त्रम् । धन्त्रम् विन्त्रम् । धन्त्रम् । धन्त्रम् । मान्या प्रदेश प्राप्त क्यांचे प्रदेश प्रदेश प्रदेश प्रदेश ।

Ke. (4	7/21N	Driller Claim si Soil drill Claid by	Pen Rose	Desar	ENU 11.7/1  Z Below Date  iptias  mottlid celclish	.03 7	97 Completed	a 3	Horu L	
Service AT  Lecture at  Lecture at  Lecture at  Annual B H  Annual B H  C -	7/21N	Driller Claim si Soil drill Claid by	Pen Rose	Desar	ENU 11.7/1  Z Below Date  iptias  mottlid celclish	ENU PEG	Completed  Total depth  Comments in	el D	1	
Seems HSA  Seems or BH  Seems or C-	7/21N	Canag su Soul drift Ca'd by	Pen Rose	Desar suit, dentin	ETU 11.7/1  Below  Data  ipitas  mottlid  calclish	ENU PEG	Comments on Mercal Merc	14	1	
Sample Dep	LA LA BLOOM	Soul drill Ca'd by	Pen X44	Desar suit, dentin	Data  Tiptian  mottlid  enthich	##U	Cameraus en	14	1	
Seemed Dep	id to bid	Ca'd by	7 t n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Desar suit, dentin	17ttaz mattied westlich	ם אם	Comments on Minage of both	<b>24</b>	1	
Sampia No. 16	id to the	cus por	X	Desar suit, dentin	nottied which		MTEASS OF MOTO	<b>24</b>	1	
No. (c	per 6	cos por	X	ait, dutin	mettied eddish		MTEASS OF MOTO	<b>24</b>	1	
Ko. (c	per 6	lectes	X	ait, dutin	mettied eddish		MTEASS OF MOTO	24	ו העתן	
			) O Ć	dente.	erclish		1645 Commen	rej		
	}	•		brown occasa noundi	who readi 254Re/5 Linch sub 2 junel much		and the			
	2.5	No. of the last	100	sition clusy yeils couse <5%, ency -25% of our	pendy redonsin ut 7.54Fle innologia apatuel ases to pat base aple, wet	vél	1-and diel 3.5 - 5 ft a	ling		
7.5	-5		TK.	send mixed	I sumple I completed by the gell of the ge	-74	colles and grand, de limit	ilke		

	TILD E	CREYG L	∞						2 XII MOSON LANDON TO STATE OF THE STATE OF
Pr	क्षा स्थ	350304.0	6 me	2474	O Miles	AD E		egonitedo Albanaga	Saray :
Co	25355	2560	ס דונוים	16			5/	The state of the s	3
-	عب عبد المام ا	A 7/210	CIMA	12	<u> </u>				Comple
	—— ं रुज्यं थे		301 27			ENU 117/	rend	( / <i>j</i>	Total de
1 1	धुन्द रेण	BHK	_	-		Data 2			i vacarear
					İ				
	tennia No.	Dogia la Soci	Ross ser	713 244	Decar	ipcian	ir. Sud		Camprat Tlan 4(
		5-8			مله ما	motival ove		6.5.	Latel to 8,
					gums		e	سدرا	See )
		8-10	-	100	clay,	atteny li	jour		
					ocean	Win 1041 ainup	ع ۱۶/۶ مسدول	7	
		!	-		5-10%	o shiphing	muio		
		10-15		160	له مه	-we		Hand 13-1	ldúl 4 fuit
								2/9/9	7_07
						•		15-10	Jull e ft s
								س ما مسام مسام	f hel
	•	15-16,5		50	chiye. redivis 7.54R7	gravel Lyelia 1/4, suft,	٠-	0	
	•		·						
							i	l	

== 91B13 2 = 3 Hodicorta& ובת הבד

TOWN THE 35 COLO PROPER SERIES AND EST PARTY 2/5/5 COMPANIED AT BC DRILLEY DEFF DESCRIPTION 2/5/5 COMPANIED ASSESSMENT 2/5/5 COMPANIED ASSESSMENT 2/5/5 COMPANIED ASSESSMENT AND TOWN AT A PROPERTY AND DESCRIPTION AND TOWN ATTEMPT OF THE ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT ASSESSMENT AND ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT AND ASSESSMENT ASSESSMENT ASSE	Contractor A  Mariam HSA 7  Crown at  Lagraby By  10.5	ATEC-		$ r_{INR}$					
Carried 1954 7/1. 10 Crimy 1200 BNU 127/102 N/A FROM 1970 D  COUNTY BULL Soil defleted Science grad Total deflete  Secretary Bulk Cold by Date 2/9/9 2 1  Secretary Comments of Bulk Cold by Description BNU 121  10.5-185  IL.5-185  IL.5-185  Inches Property 120	Secretary By 10,5		Driller	1 - 5 -		7 /0/01	- St. St. Company		
Solidaried Solidaried Total days Total days Series prod Total days Series prod Total days Series prod Total days Series S	Sampas Corp. 10.5					,			
Serges Copie la Bierra por 703  Serges Copie la Bierra por 703  No. 1001 6 laces Rea Description 121 Commercia en Herri Lei  No. 10,5-155  No. 1001 6 laces Rea Description 121  No. 5-155  No. 1001 6 laces Rea Description 121  No. 5-155  No. 1001 6 laces Rea Description 121  No. 5-155  No. 1001 6 laces Rea Description 121  No. 5-155  No. 1001 6 laces Rea Description 121  N	3 mags 2007 3 Hd 10.5							<u> </u>	
Secreta Copta la Biorre por 702 Rea Decemptias Ju caremonia en Haru l'en 10,5-155  The secretaria of lacker Rea Decemptias Ju caremonia en Haru l'en 15,5467/6 mention 2,5467/6 mention 2,546, plustre, unit, 20% same 5-10% secretaria en 18,5-20  18,5-20  According to the secretaria en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre en 10,000 plustre e	10.5			-			10 m aryta		
SAMELIS COPILIA ELECTOS POR POR ROS DOCEMBRIAS ENTO CARROTELO ES MONO GENERAL ENTO LA TRADE OL MATERIA EL MATERIA DE LA TRADE OL MATERIA DE LA TRADE OL MATERIA DE LA TRADE OL MATERIA DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DEL TRADE DE LA TRADE DEL TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DEL TRADE DE LA TRADE DEL TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DE LA TRADE DEL TRADE DE LA TRADE DEL TRADE DEL TRADE DE LA TRADE DEL TRADE DEL TRADE DEL TRADE DEL TRADE D	10.5		. !				,	Monte	orta
18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.5-20  18.	18.5	Copta in B	ison per 7 Lisches 7	Tee Decer	riptian	1 1			
	70-			1.5 y P.  7.5 y P.  2.5 y P.  3-10%  3-10%  Anouse  10VR L/  Moist  Moist  Moist	shipsy be mother of the server	ellen- nium e,			
	23	23-25		10 60 1	Les des She still intrace you	m and 5% yman	Q 28' 09 20		

Project Name ANAD	ESI
Project Number 356	30600
cation 5WMU 1	TNTLAUNDRY
Boring No. 91813	
Date 7,19/97	•

OFILLER ATEC/JEFF

Method HSA 7/2 IN BIT

Development Method

Well Materials Used

Feet of S-foot Riser 7.5
Feet of 10-foot Riser 10
Feet of Screen 10
Caps 7
Bags of Sand 3
Bags of Bentonite Powder
Buckets of Pellets 1/4
Bags of Cement
Bags of Concrete Mix
"ole Covers 1

Stick-Op Riser Pipe: 2.5 Fr

Type of Surface Seal:

Riser Pipe I.D.: ZIN

Type of Riser Pipe: STAINLESS

STEEL

Borehole Diameter: 772 IN

Type of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE II Company of Backfill: TYPE

Depth to Top of Seal: 4.5 FT

Type of Seal: BENTONITE PELLETS

Depth to Top of Sand Pack: 9,5 FT
Depth to Top of Screen: 15 FT

-Screen I.D.: ZIN

Type of Screen: 0,010 Stor STAINLESS

Length of Screen: 10 FT

Depth to Bottom of Screen: 75 FT

Depth to Bottom of Hole: 28 FT

91814/swmu#15

								017	1 300 MC	<u> </u>	$\subseteq$	
	FREIDE	ORING LC	X AM	AD :	MSK#	6 SW1	nu t	F15	Border of the Control			
	Proport to 35630600 Proport same ANAD T.								Berta 200 \$9/8/4			
	Constant JECOBS Dana ATEC - Jun				2.6		Press / of /					
		Morn on Hollow Starr 3/4 In Carna und 2 " FO				20FEB 92						
; !	टप्ठकाय वा	301 001	Tilled Sec—18'		ENU 11.7/10.2		~ /	LUCACET PANT WAY 1,0 1				
İ	ल्यांच्य के किटि जात कर			-18	Date			Total depth 181				
, I	·	<del> </del>	:7	Δ.I.					1		·	ł
	Secreto No.	Dopit la	Move por Circles	2/Rec		riptian	let aun	<b>د</b> ط	Camenta en Tudos el bertag	inter Rec Rout	PA4	gen
	इवाक्षायाट	0-5'		१००८	5/841	exuec=104R whom, w/grow	d	collec	No AROBLEMS ted Soillouring	51	Zea	
  -  -				•	sorting clast	scurdatz, and object of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of school of sc		Nitri and W	at 59181416 duplication for te Nitrate, TPH lason Jar Lithola			
			•		0-2'a	most comes of the second	m .L	wate	le of so 11 from Table is @ Now Stc. D	5'.	: :	
	5918142C	S-10'		೨೦%		ABOUE -	Ø		No Problems	1'6	20	_
					We V.Ruu	my mud		Same	eted Soil boring slett S91B149 ite,N.Trota	Bton	of ba	rug.
	59181436	10-151	_	30%	Me	t hy mud	Ø	Collec	No Problems Hed Soil boring per & 391B14 te, Nitrate		100	
		15-18'	-	Ø		Lecovery	-	1130 To 1 any	No Recovery vet to Recove soil	1 *	Pec	
	/		/		END	• .	LUN	1.	et well	·	1	
					T	0 18'		#	91814			
				-								
			. /								/	

91815/swmu#15

								<u> </u>	1817/	Su	mu	#10
	FEEDS	CREMO IN	or people	SUEA	my =	USA ARE	4		Ported has 6	210		-, <b>T</b>
	ನಾಧವಾ ಬಂ	356-306-00	) Project	مصد		TASK#U			30 m 30			<u>.</u>  -
	ಯಿರ್ವಾದವ	Jacobs	D41147	ATFC	-51 W	Case marind		0-7	7 d			_
	ಸಾವಾಡ ಕ್ಷಿ	1/00 Steam	כז בו שום ז	120 5 to	in less Stad	500 LL7/	10/20	VA	Сळ्ळाच्याच्य १९			
	ವಿರಾಹನ ಪ್ರ				201	SZ Baloro	क्राय	9'	הסטינים נייטו דיים לייטול לייטול			_
1	مر مراسب	SAC.	C3'4 by		_	Data			roundayer ?	20'Belo	wStr (	(ه ي
			1.1.42	9/	İ			İ		1		_
	منعصة	Depth in	N/A	%/200			OVA		NOTES	Re	c in Au	4
	Mo.	र्क्टर	Aleebra	Pen	Dece	ription	AN G	14	TELEM OF POPULA		14	9
	5918157c	0-51		400	(Gravel)	101mg-104R	(1)		PROBLEMS -			_
	(51)			100	10/8 41	u - 1878 / /	۱.۸	(Possi)	oly pushing re	ck \	a Rec	.
					C 200	Tisand - 50	3	down	e w/ auth-H	201	. 1	
:					1000 50	Milwe et in	γ.	collec	ted Soil Son	مامم		
	·				4030m	" to catales		15918	151C - Nitrite	インソルナ	_	
						· / /	1	apo m	-Mai	sen	• •	.
	(10')	5-10'sne		20%	euy, v.	9 8 31 10 1K	31	1	sample	14	′0	+
	5918152C	5-91			عديد الرحا	20-309		1240	roblems — somple 3.91BI		e'Pu	
			= 91		Chert	SandOtz.			e, Nitrata, TPH		. !	
					vn consol	mm andula	ر. ع	9,25	omo amber			
		15/84			moules	~>067~	1 .					
		10'-80		65%	CLAY/Gr	wel-ylufb	MLI	1	NO PROBLEW	15- 2	Rec.	+-
				1	10147	18 wet, soft urt/soud at	Γ.		ar je			
					augula	l, uniquisolida	Fed.		•	•   .	.   '	.   •
	18FEB92				rebble	ne/chirtfi wet	785	, *				
	19 FEB 92	11-20'		1000	AC A	BOUE	-	t 1/0	PREDIEN			++
	1110			100%	TO	20'150	1	Drill	PROBLEM edout sluff	- I	rec	
-								111/	-191 and de	illel		
	-					•		neu	2 hale 19-2	0170		
		1	1	CAL	0 05	BRILLIA	10	O Leo	in of drillie	rall.		+
			. /	en	0-	BRICIA	6		below Ste.	ger .		
					. /		1	سادا	level after	drilling	a	A
									9'Below St		0	
								. ,	•		.   • /	1.
	. /											
	<b>∕</b>	<i>[.</i> ]									$\bigwedge$ .	
								/			<b>/</b>   ·	
	ŕ		. /			/			/	<b>X</b> :		
			1		/				, <i>/</i> -	/1	. 1	
į							/ 🛴				)	

Secret Name 35 Cape Co / 302  Maximum Scamul # 15  Date 20 FCR92  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Method  Meth		916193WMU+15.
Well Materials Used  Fear of 2-feet Riser Feet of 10-foot Riser Feet of 10-foot Riser Feet of 10-foot Riser Feet of Screen 10'2' Caps Seps of Sand 3 has (200 lb2) Bags of Cament 13 2' Rags of Cament 15 3/4 of 1 books Bags of Cament 15 3/4 of 1 books Role Covers  Type of Backfill: Grout-fold Cament 15 7% buntoniti  Type of Seal: 2 buntoniti  Depth to Top of Seal: 2 begins 10'2'  Depth to Top of Seal: 2 begins 10'2'  Depth to Top of Seal: 2 begins 10'2'  Type of Screen: 5 behavior 15'  Depth to Top of Seal: 2 begins 15'  Type of Screen: 10'2' begins 15'  Depth to Top of Screen: 5 behavior 15'  Type of Screen: 10'2' begins 15'  Depth to Top of Screen: 5 behavior 15'  Screen I.D.: 2''  Type of Screen: 5 behavior 15'  Depth to Top of Screen: 5 behavior 15'  Depth to Bottom of Screen: 10'2' begins 15'  Depth to Bottom of Screen:	Froject Number 356306-00 /302 Mation Schwu #15 Dring No. 591814	Driller ATEC -Jim Planski Drilling Method Hollow Stom Carper 3/4"TI Development *
	Feet of 2-foot Riser 2'  Feet of 5-foot Riser 5'2"  Feet of 10-foot Riser  Feet of Screen 10'2"  Caps 2 cops  Bags of Sand 3 had (20016s)  Bags of Bentonite Powder 2 portland  Buckets of Pellets 3/4 of 1 bucket  Bags of Concrete Mix 1S  Hole Covers   Cap - 3"(w/1"byt after screwed and 2' riser	Type of Surface Seal: Concrete  and Perflond can below 6"  Riser Pipe I.D.: 2"  Type of Riser Pipe: Stainless St  Borehole Diameter: 7" ID  Type of Backfill: Growt-Podde  Cament w/ 5% buntorita  Depth to Top of Seal: 2"  Depth to Top of Sand Pack: 8½  Depth to Top of Screen: 5' below St (LS  Screen I.D.: 2"  Type of Screen: How acc Stool 0.01056  Length of Screen: 10'2" weep

1.44 Line Land المنتا وسميا Lat. Carried & Missin Luzza L. delical Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Commen

Protest sa	3563060			FAIR				300 me can di	B16			
				ANAI				1 a 2				
				TEC   2.16.92				Completed 2.	1/0-9)			
Merthod .	HOA	CIMIN !			ENU 117/	وتعام		Proceeds level	D			
CLOOMY OF		उ०ध क्या	Ced.		Seion	0.04	ಎತ'	l	<u>, 0</u>			
TOPICO TANGET					Deta							
		7							Montor			
Secreta No.	Constitute (not	Nove por Listan	712	Desc	ripties	len aun	1	Cemmento en Trace el bering	אניטן נו			
Chemical Sample BIBIGIC	0'-3,5'		8090	STRON	4R 416 X6 BROWN	1	No 5.	HARD DRICLIN AMPLE FROM 5.01	I'M OPEN			
1.25'-0.5'				W/≤0×	ADDY SILT AE CLAY CONFEE M AND FINE		HNU	0,1 00 EPL 5TH 07 00 RE	HOLE 6			
				DOLOM LIMBETT CHERT SOME MATTE O.25-0 BLACK	DNE AND GRAVELT GREAVIL R							
				WET SX W) SOM AND CO MEDIONITY AND CI GRAVE	TE LIMEST. HERT	1						
remical Al-101 11616 JC	हैं'-10'	,		8'-10'- GIR YEEL BROWNIT AND 2.5 RED MOI W/SOME Dok-, L Chert	MOTILED  MOTILED  MOTILED  MYE 4/8  ST CLAY  SILT  MOCIT +  GRAVEL OF  CES CLUI	0.0	5'-8' 5'-8'	hand Drilling - NO SAMPLE - O. I OVER STE OF CORE	0.1 12 AUGERS			

रिश्रह्म ३४०	356-3066	O Prepare	14784	ANAS	) LES	\ <u>`</u>		Page 2	916	16	
ಎಂದಾದರ	JEG-	Driller	AT	EC			6.91	Companied	2 1	3	
<b>ಸಕ್ಕಾ</b> ದ	HSA	Cruss ?			ENU 117/		1	אבו בוויטסול	2.16	<u>,                                    </u>	
المصعم وا		Soll and	led		Selow		231 1	Total depth		. (	
र्य प्रमुक्त	DAI	רק מינט			Date			.,,,,,,	-30		
·		7								Monis	יסיר
langs No.	Copta ia	discess	712 166	Deces	rigidas	]er aud		AMMERICA CE Tara ( ) ort		HEAT	L
1 h cm car Ample 14-151 11 B 163C	101-151		[00	10'-15' AS AB	SAME OVE	G. 1	AUVA	208 WM3 NCING BO, Alover	5.MP	0-1 IN AUGE	115
SAMPL = 17-181 17-181	12,-18,	-	100	HOWEV:	EZ, 6" SZAVELY EZOM.	0.0	DEILC SAMPI	HARD 106 - NO 106 - N		0.1 Th. 5° 201	13
Chenical Samas 131-241 Confinent Confinent Exalbits	55,-54,		(00)	MOIOT GILT W MINOR AND CO MEDITO LINE E GRAVEL SAND	TO WET  TO WET  JOONE  LOCAT  JOURNE  JOURNE  JOURNE  JOHN  MEDIUM	0.1	371-91-91-91-91-91-91-91-91-91-91-91-91-91	HARD ING. SA. FROM I'.5' AN 14' 6.10'E	i) ER		
NO .	→ Nα .	sample	2		7 7 BARREL		DZ.	EASY LINE 25	-1301		

1		91816	•
	Driller ATEC		
	Drilling Method Hollas Stan	Auger	
	Development Method		

Project Name	ANAD	LESI
Project Number	3563C	0600
cation	SWMU #	16
soring No	91316	
Date	3.18-92	
	<del></del>	

## Well Materials Used

Feet of S-foot Riser 5.

Feet of 10-foot Riser 20

Feet of Screen 10

Caps (1) 16 dgm, 1 Top

Bags of Sand 8

Bags of Bentonite Powder 7/10

Buckets of Pellets 23/4

Bags of Concrete Mix 15

Wole Covers

Stick-Up Riser Pipe: (2.5)
Type of Surface Seal: CONCRET
-
Riser Pipe I.D.: 2"
Type of Riser Pipe: stainles
Steel
Borehole Diameter: 6
Type of Backfill: 95% (or
5% bontonite mi'y
1
1
Depth to Top of Seal: 13
Type of Seal: Bendonite Pellets
Depth to Top of Sand Pack: 17.51
Depth to Top of Screen: 23'
Screen I.D.:
Type of Screen: 0.00 sht skinks
Length of Screen: 10' 57cc)
Depth to Bottom of Screen: 38
 Depth to Bottom of Hole: 38/35

								7		
	SORING LA		13			-	Partie can			
विकासिक विक	3563060	ः ग्राज्याः	مسم	ANAD	Task &	t-6	ha / d 2	2_		
<u> </u>	ATEZ	ರಿನ್ಷ137	Q, B.	onen	िका स्थापन		Completed			
स्थानव्य भ	15A	टायम् ।			ENU 11.7/	10.2				
टपळळ्य बा		३०॥ क्ता			Selon		ि निष्यान विषय	-		
ارد معتبد	C (C)'d by		<del></del> -	04021		Total depta 25.	5 FF			
		, ,				<del>ر رحم .</del> ا				
	_	11						Romroup		
Sample No.	Cost in	Blows per 6 izakos	Pen Red	Decer	ripties	]#T EUA	Comments on Minages of Mercan	भ्रम्या एका		
91817-	P\$ 2.5			Yellow.	is brown	10	1 1 1 1 1 1 1 1 1 1			
P\$ 2,5#					als clay	7	Prilled rasily At 5.	3		
125D					5/4 1016		Oritho water rick	i		
		•			P to 1 inch		3.545.518			
• .				dianoto	i rock		Recovered 2.2 ft same			
<del> </del>	<del> </del>			tras.	mants _		Standing water in boroklo at -3,9 ft	50		
	2.5 \$	• -	-	77	AMPLE	Ī	DAMAGE AND AND AND AND AND AND AND AND AND AND			
	5.5 H			1,47	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		UXB sourg results;	╛.		
509/8/21	<del></del>	_	-	<del> -</del>		一人 '		,   ";		
50 110[//	1				25 p \$	4	Light drill chatte	2		
91817-	7,5	. ,		2.5	printauf		Recovered 3. 6 ft son			
5,5 A										
-	<del>/</del> → -	-	<del> </del>	151	d birmis	,	7,5 to 10,5 ft			
50918172	10.5			Vallace	(104x 6/6)		infeval is weather			
91017 -				yester.	(2548/6)		roch in place, though	lare		
75 \$ 10.5	1			Yellow	d(z.54k4)	<b>)</b>	did not more vig on	4		
H-L50		1		chill	1 2 - / ~ / g	1	run ULB sorry;			
				Suil	Smly iA 0.25	se .	this proceeding OK by	9		
	1			Jag &	to at	7	Gent Branghon, a			
				Burg	7.75 /					
91817-	10.5 F	<del>-</del>	┼ .	<del></del>	•	十	-			
10.5 \$	14.6			Sme	A 7.5	1	Drilled 10.5 to 15.5	PA		
14.6				100	5 ff		Recovered 5,0 H3AM	4		
91817-	14.6.6	-	ļ.,	Corren	of plastic		TOTOMOR SID. JI			
14.6 For	15.0		1	b ration	weethand	1	de masarja sompl			
15,0 A	'			lighta	roug (NT)		was pollected for	.		
509181736	+	_		Colome	le domite	<b>\</b>	1.15,0 815,5 1			
201/32	12.0	-	1	1	フェーケ	1	In Front (not say			
	15.5	• ,		Some	7.5 to	1	( <i>L</i> anal)	1 1		
				Satu	ustif		water level - 8 H			
			'		•	1 .	1	•		
	<u>l'</u>	1								

No. (est 6 inches And December AND Camments on	. :		3563068	_	7/BM	4 7 6			Jenned nea	
Solitated Desired Total deriver 75.5- 17  Sample Desire in Ricers per 70.2  10. (cont. 6 lacker Ass.)  Brownish yellow Print Strain of Desired S. 7 & 20.5- 17  Brownish yellow Print Strain O.5 of sample Loop  15.5 & 20.5  Cloyk 6/0) 1247  Sendy alongwith angular debuild fragments 18 ind  15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 &		प्रकार र	15 A	ट्रायम् स ठसाका	2. Boomen	Cast moraci		TO THE PERSON NAMED IN COLUMN	Completed	2
Sample Dorse in Bloom per Pan Docaription ENU Commerce of Horse (Money Pan discharge Assert Docaription Int with Manage (Money Pan discharge Assert Pan Docaription Int with Manage (Money Pan discharge Assert Pan Docaription Int with I would 0.5 of somple with Consult of Sample definite fragments 18 ind False of Sample With I will be as ity, no Apple TO = 25.5 ft				٠ (١٥) ١	#d			72		5.5 FF
15.5 b 20.5  20.5 pt 120.5  Cloype b/o) very Sendy alongwith angular definite fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1/8 ind  Fragments 1		۲a.	(041	Mous per	Pen Dec	आग्राहरू	( )		True )s extr	HOLD   T
20.5 to 25.5 th TD= 25.5 ft No SAMPLE Drilled easily, no		15.5 A	20.5		Sond angul forage	12 of a seguither describes when describes to be in		Record	4 0.5 pts	It I
			20.5 h	· · · · ·	No		+ $+$	Orille	peoply, a	0
			-							

TO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF TH

Project Name ANAD TASE # 6

Toject Number 35 6 30 600

Cation

Boring No. 9/8/7

Date 02/16/97

Driller ATEC; Richard Bomon

Drilling

Method HSA

Development

Method Dung

#### Well Materials Used

Feet of 5-foot Riser 5 53

Feet of 10-foot Riser 10 57

Feet of Screen 10 31

Caps him, to 55

Bags of Sand

Bags of Bentonite Powder 9/6

Buckets of Pellets 2 0 50 h perf

Bags of Concrete Mix

'le Covers 5 1 x 3 man stull

'incel 1 colod perfective

Ceriai

Stick-Up Riser Pipe: 2.5 1 Type of Surface Seal: Nemoste Riser Pipe I.D.: 2 mg (0,174 Type of Riser Pipe: 55 Borehole Diameter: 6 1/2 inches Type of Backfill: coment hochen 8 galarte / 1 by one CType II (5% buy weight bentmile) Depth to Top of Seal: 2.57 Type of Seal: ha tonite pollets Depth to Top of Sand Pack: 7.5 11 Depth to Top of Screen: 12.5-Screen I.D.: Zinches (0.17 h Type of Screen: 55: 0.010 md Length of Screen: 10.0 f Depth to Bottom of Screen: ZZ.5 Depth to Bottom of Hole: 25.3

रिकार्थ
<u> </u>
<u>,                                    </u>
(1000)
Land
्रकाद <b>्र</b>
<b>.</b> .
Tricosal .
Missin
Lind
1

	BORING LA		5° F	OVEC	cast	Postat on t			91818		
	35630600			ANA	) ESI	ITAS	126 12	has 1 or 2			
	Mentor HSA Comments				Case served	3.13	8.92 Co	expleted 2.	18.92		
<b>Method</b>	. 041						D				
CLOOME OF		३०॥ करा	Ced		Selow	prod			81		
र्व क्ष्मुक्व	DAI	<u>जिल्ल</u> कर			Date				0		
		-}			į				Montrou		
Sampia No.	Corp th La	disches	712 X44	Desc	ripties	וה מגמ		es s(pourt) memre si	אמו וז		
918181C H'-5'	0'- <u>-</u> -	<b>\</b> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		DOWN OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE	Dariot  Dariot  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED  MILTED		HOVAN BORIN HULLO LENGTH	6.01E2	OIZ   NOVERS		
71 B1824 91-10, 51-646,	5'-10		50%	A5 A9  76 - 10  61 L Lig  GRAY EN  5.1+ WI	si same	vede vu	HOW O	ne Borine	0.2 133 Avce 25		

78/00% B.S.	35630690	Prejour :	Maria	A	AD ESI	1~~	/V (-	saint see di	
ootisetes		Driller		EC	Des East				۵
(erthod	HSA	CTRING I			ENU 11.7/4		8.92		118263
محصط فل		Soll cru		<i>y y</i>	Selow		~ 3 /	Total depth 1	<u>)</u> § 1
व्यक्ति हेन	DAI	(C)'d >7		<u> </u>	Date			1	3 '
		-;							1
									Mostort
Sample No.	Doyth is	lierre per 6 lachos	7 t H X 4 4	D+441	ripties	]FL EVA	•	Comments on Panes of boring	אמט נד
10,836			5040	A ? - 1 TO THE STATE OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR OF A COLOR O	GIF WISH DOWN WALLINGS CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHERT CHER	اع	181- 181-	AMPLE 13'-14' LOID OVER GTH OF	0.0 10 10 10 10
NO Sample	15'-181			Nổ SÃ REGOV	MPIE		Vei dal		10 (A A C) 10 10 10 10 10 10 10 10 10 10 10 10 10

Project Name ANAN EST  roject Number 356-30600  cation SWMU #17 / Demarkon Properties No. 91818  Date 2.18.92	Driller ATEC  Drilling Method Hellow Strm Augen  Development Method
Well Materials Used  Frot of 1. Fort Riser 5. Feet of Screen 10' Caps 1: A Top Bags of Sand H.5 Bags of Bentonite Powder L Bags of Cenent Bags of Concrete Mix 15 Le Covers	Stick-Up Riser Pipe: (1) 2.5/  Type of Surface Seal: Concrete  Riser Pipe I.D.:  Type of Riser Pipe: Stainless  Steel  Borehole Diameter: 10 W/  Type of Backfill: Cement/  Bentante Mix 20:1. or  5% bentante  Depth to Top of Seal: 2/  Type of Seal: Reptoute Dellate

Type of Screen: Stainless Steel

Length of Screen: 10'

Depth to Bottom of Screen: -15'

Depth to Bottom of Hole:___

Depth to Top of Sand Pack: 4'

-	SORMO LO	1/E				क्ट्रिया स्ट			
	·357,30600		AND TAX #6			7 d	Reg / d		
ಯಿದ್ದಾದಂ		Drilles &	, Sott	क्रिक स्टब्स		Completed			
<u> </u>	'SA	ट्राचक्द गर		ENG 11.7/	10.3	<u> </u>			
೭ರವಾಗ ಆ		क्रा क्रा	:ત	∑ Beico	ग्रन्थ	Tomlderen Z3	D/L		
ارمن عويسا	2. H. hardre	(C'4 by		Date 02/	11/92		<del>A</del>		
		17							
، معترضات	ا ما دعوت	~1 a					<u>ಗಂವಾಣಚಾ</u>		
గం.	ion:	व विद्युक्त ।	Pen Rea Doce	ಗ್ರಮತ	107	टक्टानाया वर्ष स्टारम्य वर्ष स्टारम्	ואמן נזי		
7/8/9 -	\$ 20.8	i	1.066	pellowish					
\$ 50,8			11911	12/00/8h	p 0	rilled \$ 5.0 ft			
ft LS0				2246/4)		posity	ا ام		
			1 ~ ' /	plantic	E	secret 3.3 ft my			
• .		.	0/29		$\mu$	rilling interrupted a			
						4.0 It for UNB			
		•		•	1	says hule is clear	<b>5</b> :		
•						continue drilling.			
9/01916	0.8 \$5.0	1	+.	-	-	mic with	1		
71BM —		<u> </u>		nde olive			1		
0,65 5,0		.		saturate	1 1	resutad salot			
#150			clay.	ontino		- 2 \$ 242 A-C30	)		
,			roots &			3**			
•				its, such					
				cho 1/4 word					
<b></b> .			to lind	diameter	-  -	•			
91819 -	5.0 \$65			- n.e.t	T T	1 - 4	+		
5.0 1 6.5				. 020	4 1	sovere 3,6 ft			
FRL30	<u> </u>	- 1	13.0 %	+ interf		Soryle			
09181920	6.5 \$ 10.0		my Ata	A brumish	-	•			
ક			yellar	(1042 5/1)					
91619 - 6,5 \$ 10.0			and red	(25424/8)					
ff-650			1/14 50	14 day ).					
•			modera	tal plasfic			•		
		.		gula dolomi		•			
•				to 1/2 inca			.     .		
•		.		al dimeter					
				>20%).	'				
•				, ,,					
•						•			
	1	}	. 1		1 1		1 1		

					·	
FIZED BORING LO	110	_			ेदास् ३८	
2060 2060 3060 C	िरहेल्य अस्त		TASK #6	Mary transportation of the second	2 d	
Contract ATEZ	א ל בפרות	wit	200 E		Canada	
YELL HSA	८रम्बर राम्य		5MU 117/		Promers 'arel	
2004	३०॥ स्नास्त		Salor	प्रच्य	70ml dayu 23%	a fat
2.A. hardre	C14 57		Data 02	/19/	42	200
	1.2		. /			
ما مدوم مدات	Mers per Pen			E 7 17	_	Restructor
గం. !డా:	6 फिटमेट्स सिंबत	3000	ನ್ರಚ್ಚು	EXO EXO	edrame of being	אבתו בזי
91819- 10,0\$12.0		Same	as 6,5 \$	ð		1 10 1
10.0 \$ 12.0 fa-150,			timposal		Recovered 2,5 ft	
509181936					15.0 Stintsuct	
	↓ .	1	-			
91819- 12.0 \$ 12.0 \$ 15.0		modium	- to view	- 4		
15.0 H		angula	a sond;	. •	·	
450		light	yellowsk			•
			-(2545/A)			
·		ando		¥ .		
			nts of dismi	l i		
31 819 PM 100 175	+ -	TAB DI	inch dienef			
150 5 17.5 1-01 300		clay:	some as	ф.	Drillerd veg slowly	<del>                                      </del>
77 230		6.5 6	12.0 ft	-1	duela 15.0 \$ 17.5 \$	i i
91B19 -			with		fulle some take &	
20.0 st LSB			To sond &		recorded 20 ft souple;	
L3D			delonite		drish 017.5020.5 #	1 .
		1 /	与外书		very slowly.	
		angu	ch dienet;			
9,8,9 - 20.0 \$	- +	-				
20.03230 23.0		Some a	b 15.0 %		Drilled sex slowly:	
# 450		20,07	Tintrol		hate more \$ 4.5	
	.				frulan diga 7/2 is	2
1 70-1	23 de	150		ĺ	dioneter arger ware	
10-10	23.0/				Veneret from books	
					finished well in	
					10 1/2 inch sienate,	
			}		well built issite	
					101/2 inch angre	
					in the contract	
						•

Driller ATEC. R. Sooth Project Wame_ Troject Number sacion ANAD Domentin Area, Lour gradias Drilling Method Development Method Stick-Up Riser Pipe: 2.57 Type of Surface Seal: Congrete Well Materials Used Feet of %-foot Riser Feet of 10-foot Riser 10 \$ 55 Feet of Screen_ Cass bolton dag, Riser Pipe I.D.: 2 mm Eags of Sand Bags of Bentonite Powder 14 16 Type of Riser Pipe: 55 Buckets of Pellets //z / Bags of Cement Bags of Concrete Mix Borenole Diameter: 10/2/2/ Le Covers 5 It portet ne stat cong Type of Backfill: Comp grout 24 get potable water 3 bus Type II and a 94#/by Depth to Top of Seal: 3.4 Type of Seal: bonton to pellet Depth to Top of Sand Pack: 5,5 Depth to Top of Screen: 10.0 -Screen I.D.: Zinok Type of Screen: 5> Length of Screen: 104 Depth to Bottom of Screen: 20.0 Depth to Bottom of Hole: 232

## well # 91820 SWMU#26

							$\mathcal{M}_{\mathcal{M}}$	4-26	_	
		SORING LA	<del>∞</del>							
		356306-0		1479.4	1.110 -	-101, lb.		3918 ra 3918	20	1
C	MUICE	Tacobs	Date	7770	ANAD ]	MSK #10. See   a				
			Dunas	11 EC	-Tem	ेक्ष क्याच	21 FE	892 Completed 21 Feb	392	
	مصحر و٦ مصحر ۱۲۵	CANKY	ا معدد المعالم	200	L'Z'ID	HAD 17.4	ک صفا	I pour moures arelling	11 D 11	-
	्याच्य जा स्थाप	ONTRAIN	क्य क्या अवध क्या	ma X.C	-30	A Balan	prod ,	~20'   Total dayer 30' B	ebust	(LSO)
-		<u> </u>	1	)	· · · · · · · · · · · · · · · · · · ·	Date	1			
	Teapla No.	Septh in loss	Bloom por	Pen		ription	מאם  שן	Cammanu an Idrism al barist	Koniu Reca Aug Inu	कर इंडिस इंडिस
		0-5		100%	4/4 00	d/on 2054R	4	1230, No PROBEMS	aug	12
	,				Churt a	rements, Son Jular and ro rounded, póo	H(KZ-	50mm)	di	
			•		clay wo	rhomogenio ctrix w 20- act. b. 5624	\$	). / ·		
		5-10		20%	Waller	BOUEW/ Pochert- re clast	<u>ا</u>	NO PROBLEMS	1'in	augh
					~30-6	00%, orcono	lidate			
		10-15		won	CLAY F	ABOUE- 24/4/W.54R	<1	NoProblems	51	
					ILLUCT	.homogen w/10-152 /otz dai	1.			
_		15-20			n'2+A	ripoorly sor	ed,			
-	<del></del>			30%	<u> </u>	BOVE	-21	No PROBLEMS	۵'-	3777
S	smple 16, 91820,1C	30-25		25%	Churt, S pelolole	NO/GRAVEB 15 4 R 5/6 Semil-fragin 1/2mm-20	uts.	1530, No PROBLEMS Collected Samples 5918201C - BNA, UOA	11/2	101
			-	-	to 20 undifor whether staff de	10% varri 30°2 in reutiated 1. 30ft—Seu publingon	4813	TAL Metols ECYN, and Explosives. No dups due to not enough soil vecovered		
	•	25-30	-	3 <i>6</i> %	cray co	BOUE		150 12 0000		
								1550, No PROBLEMS V. Little Recovery due to water	21	1

	91B20 /SWMU#2/
Project Name ANAD TASK #6/ Project Number 356,306,00 /wg5 302  cation Swww # 26  Loring No. 5 91828	Driller ATEC - Jim Plinske  Drilling Hollow Stemanger 3/4" ID
Date 21 FEB 92	Development Method
Well Materials Used  Feet of 5-foot Riser Feet of 10-foot Riser 2X/0 Feet of Screen 10'4" Caps. 3" X2 Bags of Sand 4 Bags of Bentonite Powder 1Nb Volchy Buckets of Fellets   bucket Bags of Concrete Mix "ole Covers  10'4"  10'4"  30'6"	Above green: 2's"  Type of Surface Seal: Concrete sportland community of Riser Pipe: 3tomber Steel  Borehole Diameter: 7" ID  Type of Backfill: Crout - lost as  Comment w 5% Seatlornte  Depth to Top of Seal: 7'  Type of Seal: Boutmute publit  Depth to Top of Sand Pack: 12'  Depth to Top of Screen: 17'  Screen I.D.: 2"  Type of Screen: 8tomber Steel  Length of Screen: 10'4"  Depth to Bottom of Screen: 27'2''  Depth to Bottom of Screen: 27'2''

FED BOR			13	21				द्रेव्यम् अव		
		1 . sakett T	ه تناه	AKAD	TASK #	£6		≥ / d	7	
Comment A		Delles )	2	mpdell!	ेट व्याच			Camplered		
Your HSA	).	टाचपर ग			ENU 11.7/			Proceed level		
<u> </u>		३०ग स्माप	হ্ব		Z Bairo	क्रम्		Tomlderen 3		
- TRAh	udya	102,q pd			200 02/	24/0	72		3.0	
३८० स्ट De	स्था व्याध	:}			•				प्रव्य	ناداد
No.	(cad   6		P•n ↓cc	Docer	iptics	lor Eul	् - 8द1	ram of bring	. FEAT	1
91821-10 \$ 0 to 3.7 \$6250	3.7		-	darkre Sandy, dry c		) ф	Drille. Recove	nod 5.0 ft say	4	
509/821K 3.7, 9/821- 3.7 # 5.0 \$640	\$5.0		-	olive y (2,5 y	e)100°					•
P+LS D	6.3			plasfia Same a		φ	Orllbd Recover	5.0 \$ 10.0 ff each	¥7, ;	•
09182126 50918219C 6.3 f 91821 - 6.3540.0 f+150	#o.0			nettod brown ( lightyro and red	yellowish 10 yr Tb) 4 (NT) (254 R fb)	-	Soul s	empt sog182 duplkate		
0918213C 18.0 91821 - 15.0 10.0 \$15.0 C+150			- 1	some as	6,3 \$ interval	ф	Recm	4.0 A 30	78	
71821- 15.0 5.0 #200 PHLS 0				olive ya	44) and love(2.54) (17)		Rocorei	e 5.0 ff 30	72	
1/821-20,0 0.0 625D 25, 24650	. 1		E	20.0 sp nefsly	15,0 to	4	Bora	0 5.0 pt son		•
71621- 250 5.05300 300 ef LSO	1 .			ylastic Samo as 200 ft. bat m	· · · · · · · · · · · · · · · · · · ·	P	prilled lance	25.0 \$ 30.05 15.0 ft somple	Tow	•

		PORING LO		7/1.	321		<u></u>	क्ट्राय क्ट		
•		35 43060	Darr.		ANAU		-6	700 2 d	2	-
	Contract		Driller	ه می د (	1 feel age	विकास स्टब्स्ट		Completed		_
	त्रकाय भि	) <del>//</del>	Craus n			ENU 117/		איסטיפרים לפיים!		
	्यन्य	246.1	७०० दन्य	ক্ব		No Balon		Total depth 3	5.0 G	7
		2. A hardra	45 p.m.		1	Date 02/	1/9	7		
	3 ಒದ್ದಾಗಂ	Septh la	Eleve per	7		•			त्रुवाः	ند
	4918219C	(∞ત	8 lacken	Koc .	Desc	riptica	In And	Cammon on sering	HIMU	-
	<i>*</i>	33-2				715.0 to	P	Dridod-30.0 \$ 352	PH-KSO 1	1
	9/821 - 300 £33.Z				20.0 6	of but	4	Recorded 4.4 gfs	ounto	İ
	PFLS b	. ]			plasfie	= 345 1		••••		i
					83.27	of interest	1			
_	_				Setur	Jag.			.	1
	91821-	33.2 \$			Vien Po	retried	†			٠,
	33.2 1 34.5	34.5			gray (			First encontact		•
	AP450	·		•		te and		water of 33.2	10	•
•			•				10			1
						e detomi				
					fragrad					
	91B21-	20 -			SAFA	isted.				
	34.5 =	34,56			satural	ad red				1
	35.0 A	35.0			(2.54	pt6)				
	C 50		_		Sorify	alagi.				
		10-	· 1 A			_	+ •		-	
•		10 =	53 0 19							
•										
							_			
						••				
	[			;·						
			•							
									'	
							• •		•	٠

		•	٠
Project Name ANAN TASL #6 Project Number 35630600  xation doring No. 9/82/ Date 02/24/42		Driller ATEC; J. Camp bell  Drilling  Method HSA	
		Method	
Well Materials Used  PM 2  Feet of 8-foot Riser Z.D 59  Feet of 10-foot Riser 30.0 57  Feet of Screen 5.0 55  Bags of Sand 4/2  Bags of Bentonite Powder  Buckats of Pellets 2/2 (125/b)  Bags of Concrete Mix  Tole Covers 5 H 5/cl 4/2 Man		Development .	- Ly
			 <b>b</b>
		Depth to Bottom of Screen: 3410:	<b>/</b>
	<u> </u>	Depth to Bottom of Hole: 55.0	·

20124 201 91B23	
Proces ( of	-
Completed 9. 29.97	_
Process level D	-
Total degras 27	-
	-

	Moni	ಣಗಾಗ
Time of being	HEYTU	LZL
PROBLEMS NCING NC OVER  0.6 OVER  h of core	3.0 in Ausei Q	
Roblems Noine Boring 6.0 OVER THOF CODE	# 10.1 Augen	2

-							<u> </u>
_						Bartag see	21222
	LATE	ANA	1 553	<u> </u>			71822
_		EC	Description	Managa di Sangara di Sangara di Sangara di Sangara di Sangara di Sangara di Sangara di Sangara di Sangara di S	1.92		2.2292
[ 1	31/	"IO	EMU 11.7.(			Proceers leve	
ri ri	led		∑ Seion	prad ?	171	Total deput	281
7			Date				
							Monitoring
×	712	Decer	iptien	Jet ZVO	1	Cammenta en Tilon el bertaj	
	150%	HIS RE 10 YR CO BROWN MOINT CLAY COUNCE	D 2154 D AND 16 15H Yellow SILTY WISHER Quarter SOLOMITE	800 P. 17 19 19 19 19 19 19 19 19 19 19 19 19 19	ADVA	DEOBLENS	IN IN IN
1	90 %	SAME	AS ASOVE, wet	sarar sarar	_	PROBLEMS  OID OVER  IN OF CORE	OIQ. I'U AUGERY Q
	<i>5</i> 0 ¥.	Ped w WI who Mouther Course and ar grant	Dolomite	245 30172 50		PROBLEMO ANCIUC ZIMV	0.2 in Axebs e 3.5 1
	50°P	bame a	S ABSIC		No	problems	2.) 120 2.5 2.5 2.5

Project Name ANAD / EST Project Number 356.306.00	Driller ATEC
cation SUMU# 37  Date 8:33.91	Drilling  Method Hollow Stem Auge  Development  Method
	l mediod_
Well Materials Used  Fret of 2 Foot Piec - 2' Feet of 5-foot Riser 5' Feet of Soreen ID 0.000 3107  Caps 1 Food 1 Fria Bags of Sand 2 V2 Bags of Sand 3 V2 Bags of Cement 3 Bags of Concrete Mix Vale Covers 1 steel strv.cp.	Stick-Up Riser Pipe: + 2.5'  Type of Surface Seal: Concerts  Riser Pipe I.D.: 2''  Type of Riser Pipe: atmospherical Stock  Borehole Diameter: 6''y''  Type of Backfill: 45''x  Concert 5''o Bontonk Milk  Depth to Top of Seal: 5'  Depth to Top of Sereen: 15''  Screen I.D.: 2''  Type of Screen: Stankes Stock  Length of Screen: 10'  Depth to Bottom of Hole: 28'

. •

-	
	Barn = 91393
-6	Ma   d 3
.92	Compiered 2-7-92
1	D isnay Estadout
34.5'	Total degree 37.51

34.9	T.5 '
Cammenta en	HJU LIT
MARKET IS SOUTH	·
NO PROBLEMS	0.11 IN AXXXX E 51
	:
NO DROBLEMS	O-I IN AUCES
	.

		gard ou dIB93
ANAD		
<u> </u>	۵.7.97	Completed 2.7.92
00	ETT 117/102	ל שמש של של של של של של של של של של של של של
	☐ Below prod 36.5°	Total depth 37.5'
	Date	

			<b>Mostroup</b> €
Description	les And	MTESON OF DELICATION OF THE PROPERTY.	וואט וואנו
10'-14' SAME AS ABOVE	20-1	NO PROBLEMS	N
14'-15' MOTILED 10/R		· <b>-</b>	AUGETS PS'
2.5 412 418 RED)		•	
AND 1048 518 YELLOWISH BROWN MOIST.	**		
CLAMEY SILT WITH MINOR! LIMESTONE AND			
CHARLE EINE			
2,5 YIZ 518 RED MOIST CLAY WITH SOME ISYRGIS	0.3	NO PROBLEM 5	Oil (N AUTORS 20
brownish Yellow MORLING AND MINORSILT			
Dalomiter Grande	·		

Passel
ा जिल्ला
لعضالا
रिस्ट्रम्प
States.
Region
Grand.
·
Means.
لمضيمان
Leader 4
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

T0/2003 2-0	20600	779	MM	ANAI	DIESI	1	- 16 1	91B23				
anca		DHIIst		rec	Destract	THE RESERVE TO STREET, ST.	544	3 4 3				
<i>ಚಿ</i> ಬಿಷ	HSA	टाबर्थ।			E70 11.7/		1.92		7.92			
Located at		\$०८ टन		013	Sales		a. c1	D una Essent		ı		
ज्याच्य रेन	DAI	C) 4 57		<del></del>	Data	, trains	<u> د، تح</u>	Total depta 37	.51			
•	_	,							Ao피	loring		
No.	Ceptà la Ceet	distance	712	Desc	riptias	anu anu	u	Cammerata en Transe el bertag	HOU	LZL		
NO	20'-25'		100	ROU	4	٥٠٦	No	PROBLEMS	0.5			
		-		MEDIC AND GRAY	ec.				AU600	<b>j</b>		
				CHAR	TTE AND  THE AND  BLACK  VIC MATTER							
no samaje	25'-301		100	1.004 6	Hamerely Hamerely	20.1	70	PROBLEMS	0.2 IN AWG 2 30'	1 1		
NO SAMPLE	∂oʻ-35¹		100	SAME ABOVE		20.1	STEA Emil HNY	PROBLEMS.  M. Being TED FROM HOLE NOT FUNCTIONAL TEAM FOCCINC	3.			
DAMALE 19182241 2A DUPLICATI 241822-1 261922-1 261922-1 261922-1 261923-1 261923-1	h た ご ご ご ご ご ご ご ご ご ご ご ご ご ご ご ご ご ご	>= 2×12,	(જ	SOME OF LIM	HOWEVERY WATER  X.5'.  PIECES MESTRADE  HOE OF	?	37 5am W/	usal Q 51 Se problem Huy as	7.			

Project Name ANAD ESI

Toject Number 35630600

Mation SWMU 27 (UPERADIENT)

Boring No. 91823

Driller ATEC/Ris

Driller ATEC/Ris

Method HSA 10

Drilling HSA 10/2 IN BIT

Development
Method

#### Well Materials Used

Feet of 5-foot Riser 2.5
Feet of 10-foot Riser 30
Feet of Screen 10
Caps 7
Bags of Sand 73/4
Bags of Bentonite Powder 3/4
Buckets of Pellets 3
Bags of Concrete Mix
ple Covers 1

Stick-Op Riser Pipe: 2.5ft

Type of Surface Seal: Mortun

F Sankmett

Riser Pipe I.D.: ZIN

Type of Riser Pipe: Standar

Stal

Borehole Diameter: 10/2 IN

Type of Backfill: Type I Potlani

Battonte Pourder

Depth to Top of Seal: 20 FT

Type of Seal: 14 IN BENTONIFE PELLET

Depth to Top of Sand Pack: 25 FT
Depth to Top of Screen: 30 FT

-Screen I.D.: ZIN.

Type of Screen: 0.010 SLOT STAINLES: Length of Screen: 10 FT

Depth to Bottom of Screen: 40 FT

Depth to Bottom of Hole: 40.5 FT

Solution and Solution ATEC Designed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Completed 2.13.92 Comp	Prejous 24	3563060	O Project	MILE	ANAD /ES	~ -	3441 34 91B		1		
Anthor H SA Chiag Lim Brown Brown Light Product Lend D  Compared at Sold critical Long product of the sold critical Sold critical Long product of the sold critical Sold critical Long product of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the sold of the					CI POLICE	T I	ASK6 ma I a B	4			
Creend at Soll drilled   Date   Process   Date    Congress   Date   Date    Congress   Date   Date    Congress   Date   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress    Congress   Date    Congress   Date    Congress   Date    Congress   Date    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Congress    Co					the same of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the la			3.44	1		
STITE OF THE STAND MATTER POR STAND TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE							Processed Level D		-		
Sentich no. 1000 Bloom Pro 100 Description III Commerce of Mining IRIU LEL Greater to 100 Description III written of Mining IRIU LEL Greater to 100 Description III written of Mining IRIU LEL Greater to 100 Description III BONG CONTR AND CONDUCTOR CONTR AND CONDUCTOR AND CONDUCTOR AND CONDUCTOR AND CONDUCTOR AND CONDUCTOR AND CONDUCTOR AND PROBLEMS AND PROBLEMS AND PROBLEMS AND PROBLEMS AND PROBLEMS AND PROBLEMS AND PROBLEMS AND PROBLEMS AND PROBLEMS OF PROJECT OF CORE OF PROJECT OF CORE OF THE WORLD AND PROBLEMS OF CORE OF THE WORLD AND PROBLEMS OF CORE OF THE WORLD AND PROBLEMS OF CORE OF THE WORLD AND PROBLEMS OF CORE OF THE WORLD AND PROBLEMS OF CORE OF THE WORLD AND PROBLEMS OF CORE OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEMS OF THE WORLD AND PROBLEM					1 32 345	berg.	34.5 Tomidayun W	)	_		
Second Description Store per Property And Description Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Property And Store per Prop		1		1	1 Data	-			<b>-</b>		
Geotrich (o'- 5')  Geotrich (o'- 5')  Geotrich (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')  Simple (o'- 5')		·						Manisoria	_		
Gentich Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample S		Depth in loss	Siave per Siaches		Decertyties	7	Camments on		٦		
SYR 5/8  VELOUISH PER MOIST SILT WITH SOME CLAY, SOME DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOLOMITE DOL	-	01-51		100	0'-5'		NO 00031 844		7		
JELOWISH RED MOIST SILT WITH SOMS CLAY, SOME DOLOMITS AND CORDES CONNEL AT EURE ACE AND FINETS MEDION MATEIN AND MINOR WOODY MATTER RES  AS ABOVE  10  SI-TO'  40  5'-CIS' SAME AS ABOVE  MA BROWN  OARK BROWN  NO PROBLEMYS, 0.8  AS ABOVE  LENGTH OF CORE  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  LENGTH OF CORE  O'  O'  LENGTH OF CORE  O'  O'  O'  CO'  O'  CO'  O'  CO'  O'		}			54R 58		ADVANCING		1		
SILT WITH SOME CLAY, SOME DOLOMITE AND CORRES CLAYEL AT EVER AGE AND FINETS MEDION MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA AND MATERA  SOME CLAY AND MEDIUM DOLOMITE GRAVE  BY-BY  GE BROWNER  AND SOME LENOTH OF CORE  OF MATERA  SOME CLAY AND MEDIUM MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME CLAY MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MATERA  SOME MA	]				YELLOWISH.			1 1			
SI-TO!  QUENTE AND  CORRECT CAME  AT EVER AGE  AND FINE TO  MEDION.  DOLOMITE  GRAVEL  THEOLOGIC  MATERIA AND  MINOR WOOM  MATTER & 6  AS ABOVE  AS ABOVE  AS ABOVE  AND FINE AND  AS ABOVE  AND PROBLEMS, 0.8  PID 0.0 OVER IN  LENGTH OF CORE  OF CORE  CONTRACT  AS ABOVE  AND PROBLEMS, 0.8  PID 0.0 OVER IN  LENGTH OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CORE  OF CO				٠.	RED MOIST		7	, , , , , , , , , , , , , , , , , , ,			
BOLOMITS CRAVEL  AT EUR FACE  AND FINETS  MEDIAM  DOLOMITE  THROUGHOUT  MATER & S  PTD 0.0 OUTE  IN  BI-TO'  QU S'-C.S' SAME  AS ABOUS  PTD 0.0 OUTE  IN  GIS-8' ASYR  LENOTH OF CORE  DARK BROWN  DARK BROWN  THELOW VEM  MOIST SILT W  LENOTH SELON  SAMPLE  GIG BROWNEH  GOME CLAY AND  MOIST SILT W  MOINT SILT W  MOINT TO  FINE DOLOMITE  HOLLY AND  PTUP DOLOMITE  HOLLY AND  FINE DOLOMITE							THATH OF CORE	5	į		
AT EUREACE  AND FINETS  MEDIAN  DOLOMITE  GRAVEL  THROWAND  MATER AND  MINDA WOODY  MATTER & S  AS ABOVE  PID 0-0 OVER  IN  GIS-8' TAYR  AM BROWN  DARK BROWN  MOIST SITT.  LITH SOME MINDA  CLAY AND MEDIUM  DOLOMITE GRAVEL  B'-B'  GIG BROWNEH  VELLOW VEMY  MOIST SILTW  LENOTH OF CORE  G'-B'  GIG BROWNEH  VELLOW VEMY  MOIST SILTW  MEDIUM TD  FINE DOLOMITE	•		_		bolomits AND.		LENGIN		į		
AND FINETS  MEDIONA  DOLOMITE  GRAVEL  THEOLOMOUN  MATER & SO  MINDA WOOM  MATER & SO  AS ABOVE  PID OLOVIER  IN  SAMPLE  TI-8'  CLAY AND MEDIUM  DOLOMITE GRAVEL  SI-10'  GIS-8' ASYR  LENGTH OF CORE  NOIST SITT.  LITH SOME MINDA  CLAY AND MEDIUM  DOLOMITE GRAVEL  SI-10'  GOME CLAY HID  MEDIUM TO  FINE DOLOMITE			•		CORRECT GRAVEL				ţ		
MEDION MATER AND MATER AND MINOL WOODY MATER AS ABOVE  FID 0.0 OUTE IN  GIS-8' TSYR  LENGTH OF CORE  MATER SHOWL  DARK BROWN  MIGHT SIFT  WITH SOME MILLY  CLAY AND MEDIUM  DOLOMITE GRANGE  8'-10' 10 YR  GIG BROWNED  AND YELD  AND YELD  AND TSILTW  SOME CLAY AND  MEDIUM TO  FINE DOLOMITE  FINE DOLOMITE									1		
BOLLAMITE GRAVEL THROUGHOUT MATELY AND MINDA WOOM MATTER &S  SI-TO!  90 5'-C.S' SAME AS ABOVE PLO OLO OUFY IN  GIS-8' RSYR LENGTH OF CORE MAY BROWN MOIGH SITT. WITH SOME MINDR PLAY AND MEDIUM DOLOMITE GRAVEL  SI-10! 10 YR GIS BROWNEH MAIOT SILT W HAND YELLOW VEM MAIOT SILT W HAND SILT W HAND TO FINE DOLOMITE  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K  11024 K	İ								İ		
THEOLOGICAL  THEOLOGICAL  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER & S  MATER &	•			•	DOLOMITE						
MATRIX AND MINDA WOODY MATTER @6  90 5'-CIS' SAME AS ABOVE  PTD 0-D OVER IN  LENGTH OF CORE  WOODY  MATTER AND AS ABOVE  PTD 0-D OVER IN  LENGTH OF CORE  WOODY  LENGTH OF CORE  WOODY  LENGTH OF CORE  WOODY  OF BROWN  DOLOMITE GRANT  GIG BROWNSH  VELLOW VEM, MOOT SILTW/ SOME CLAY AND MEDIUM TO FINE DOLOMITE  11024  PTUE DOLOMITE					GRAVEL		•		1		
MINDA WOOD MATTER @ 5  MINDA WOOD MATTER @ 5  MINDA WOOD MATTER @ 5  MATTER @ 5  MO PROBLEMS, 0.8  AS ABOVE PT D 0.0 OVER IN  LENGTH OF CORE  MOIGT SITT.  WITH SOME MINDA  CLAY AND MEDIUM  DOLOMITE GRAVEL  SI-10! 10 YR  GIG BROWNSH  VELLOW VEM,  MOIOT SILTW/  SOME CLAY AND  MEDIUM TD  FINE DOLOMITE	·				MATRIX AND		•				
81-TO!  90 5'-C.S' SAME  AS ABOVE  PID O-D OUTE  IN  LENGTH OF CORE  WAY BROWN  MOIGH SIT.  WITH SOME MINER  CLAY AND MEDIUM  POLOMITE GRAVEL  SI-10!  SOME CLAY AND  MOOT SILTW  MOOT SILTW  MOOT SILTW  MOOT SILTW  MOOT SILTW  MOOT TO  FINE DOLOMITE					MINOR WOODY		the second				
AS ABOVE  GIS-8" ASYR  HM BROWN-  DARK BROWN  MOIGT SITT.  LITH SOME MILLIER  CLAY AND MEDIUM  DOLOMITE GRAVEL  81-101 10 YR  GIG BROWNEH  MEDIUM VEMY  MEDIUM TD  FINE DOLOMITE  FINE DOLOMITE					MATTER CO			1			
AS ABOVE  GIS-8" TAYR  LENGTH OF CORE  AUCUSES  AND EDITOR  MOIGH SITT.  LITH SOME MILLER  TI-8"  GIG Browned  GIG Browned  VELLOW VEM,  MOIOT SILTW  MEDIUM TO  FINE DOLOWITE  FINE DOLOWITE		81-101		90.	5'-6.5' SAME	~	NO PROBLEMS,	1	i		
GIS-8" ABYR  H/M BROWN-  DARK BROWN  MOJET SIFT.  LITH SOME MINER  CLAY AND MEDIUM  DOLOMITE GROWN  SI-10! 10 YR  GIG BROWNER  MOIOT SILTW  MOIOT SILTW  SOME CLAY AND  MEDIUM TO  FINE DOLOMITE			•			·.,	PID 0-0 0125	IN	į		
H/4 BROWN- DARK BROWN MOIST SIFT. WITH SOME MINER CLAY AND MEDIUM DOLOMITE GRAVEL  81-101 10 YEL GIG Brownish YELLOW VEM, MOIOT SILTW SOME CLAY AND MEDIUM TO FINE DOLOMITE					1.5.81 28VR		LENGTH OF CORE		٠		
DARK BROWLE  MOJET EITT.  MITH SOME MINER  CLAY AND MEDIUM  DOLOMITE GROWEL  81-101 10 412  GIG Browneth  YELLOW VEM,  MAIOT SILTW  SOME CLAY AND  MEDIUM TO  FINE DOLOMITE							•				
SAMPLE  71-81  CLAY AND MEDIUM  DOLOMITE GRANGE  81-101 10 YE  616 Browned  VELLOW VEM,  MAIOT SILTW  SOME CLAY AND  MEDIUM TO  FINE DOLOMITE	اميد				DARK BROWN			10			
CLAY AND MEDIUM DOLOMITE GRAVEL  81-101  CHEMINAL  ADIOT SILTW  SOME CLAY AND MEDIUM TO  FINE DOLOMITE  FINE DOLOMITE	SAMPLE				MAILT LILT	12					
DOLOMITE GRAVEL  81-101 10 412  GIG Browned  WELLOW VERY  MAIOT SILTW  SOME CLAY AND  MEDIUM TO  FINE DOLOMITE	71-81				CI AY AUD MED	MLH		•	1		
SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SHARE  SH					DOLONITO GE	wou			ļ		
SAMPLE  ALIGN  THEMICAL  SAMPLE  ALIGN  TO  TIPE DOLOMITE				1							
SAMPLE  ALLOW VEMY  MAIOT SILTH  SOME CLAY AND  MEDIUM TO  FINE DOLOMITE		; .			616 BLOWNAH		•				
ADIOT SILTW SOME CLAY AND MEDIUM TO FINE DOLOMITE		İ		·.	HELLOW YEM!			.			
SAMPLE SAMPLE FINE DOLOMITE	ا ١٥١٠ع	1	' '	.	MAIOT SILT W				ľ		
11834K	Hemical	.			SOME CLAY ATO			· .			
				. ]	EINE DOLOMITE						
	11047			- [				·			

Project na	ORING L			ANA	0 /=::				B24			
Contractor								ल्क के व रूप				
Contractor		Driller		ور			3-92	Completed 2.	13.92			
	1+5A	टायार ग	_		ENU LLTM	( <u>a</u>	-	Proceeds level	D			
टप्ठक्क्य बर		9०१ करा	cd		Seign	prod ;	<u> </u>	Total depth	40			
coaled ph	DAI	102/4 27		~~~	Dete -							
•		: <i>?</i>			•	}			Vante			
Semple Ko.	Desch in	Blows per	Pen	Dane	riptica	]er EXC		Cammento en ivezon el bering	Menteria			
				- <del>                                     </del>		144			ipu   rri			
	10-13'		80		SAME		Very	1 Harl	0.5			
Geotech					OVE W		Deel	ing FROM	IN			
121-131	•				WEDINA		10.5	- 13' "	AUGGRS			
				BEAU			HNV	10.0 over	131			
•	·		•				LEN	STH OF CORE	10.			
	·			121-13	1042.	•	_					
		•		GIX L	THE							
				1320W	いなけ							
	·			626	OUA.	<b>i</b>			•			
	٠.			754	A 518		'	· .				
				STRON	BROWN			•				
			٠.		- clater	1						
				616	m Docomit	e			· j.			
	. ,			MEDIO	CHERT			r.•				
		. `		GRAV	ساجا							
Charia	12'-15'	•	100			·	HAR	DEILLING	0.5			
Chemical Sample	18518	•		But	. 410	-	131-	141 SLOW	עו			
131-14				Vollar	ich Ria			بدر مه الراع	AUGELS.			
4444				moin	ころいとて	$\prod_{i=1}^{n} x_i$	אנוינו	0.0 131-KU)	e.			
				WITH	H-BODOSH			4-5141-15	1,2			
				COAR	E AND	1						
}.				BRAY	בי שמים	7	ŀ					
				141-17	1 104 12	1	1	•				
	1.	<b>!</b> • •	1	5/2 4	ellowin	1.		•	-			
1	].			DO.	Jaion Hr				•			
	: .		1	7,04	ey silt	1:	l	•				
				Condi	60 MF							
				DALDE	CUA STI		·					
. Select	,			CHER'	t wedow			•				
sample	· .			GRAV	EL AND			• • • • • • • • • • • • • • • • • • • •				
141-151.		٠.		SOME	WINOK							
				0264	NIC WATE	+-		•				
•	•	3	1 .	1 .		1	1		1 i			

-		FORING L						Forest sea GI	B24	j i
<u> </u>	No. of Concession, Name of Street, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other Designation, or other	3563060	6 Texas	مصمد	ANA			~ a	<u>027</u> _ 34	
>	Coarean		Dunas		<u> </u>	देखा व्यक्त	2,12	3-92 Completed 2.	13.61	
-	<u> ಗಳ್ತಾಡ</u>	MSA	<u> </u>	حما		ENG 1176	(ED)	Process and I		
-	८०व्ययं स		३०१ व्य	led		Salco	pred :	30 6 1-		
	्≃्राच्य देण	DAI	مو ه، ا		-	Data		34.5 1 रवादास्य 4	0	
			:7							
-	3 ಎಸ್ ಪ್ರತಿ	0							ਸ਼∘ਗ	<b>ಬ</b> ಗ್ನೂ
	ido.	Doped in	धारुपत हस्त ह डिटकेस	Pen	Doce	ription	מאם	Cemmonto en	.	
1		151-201		1			]1.7	parted to sociate	स्था	التدا
-	,	15'-20'		70	,.0	6AME		NO PROBLEMS	NO	
	•				AS A	BOVE		ADVANCING-	AUG	
				1	17-171	51		BOZING	MET	45-
	•				54R			HNY 0.4-3,0	\w/	
					1	•		OVER LENGTH OF	HNI	<b>\</b>
	•				1 .	WISH RED	* *	CORE		!
			. :			CLAYEY				. !
			•			W/SOME		·	.	
				٠.	FINE	DOLOMITE DEL				
					17.61-					
					ł	• •				
					5AME					
	Gentan +				19.8-			The same		
	Chemical 19'-20'				SAME		. •			
	9182434	· ·			17-17			·		
r	11.02.10	ر جو- مح		100	-		•	HO PROBLEMS	100	
		ر جو رسي			70,- 7 :	ed war	·	ADVANCING BORIM	HNU	į .
	-					ROWNISH		a van Vinneb		:
1	Geotech					מעם ב		LENGTH OF CORE		
	24-25,		٠.		,	18 SED		DENSITE OF CORE		$  \  $
	, l		•		SILTY			:		
					WITH	OARSE,	<i>:</i> .			
			•		MEDIU	M AND.		•		
					FING	te, Limeot	, ·	•		
			·		DOWN C	HERTGRA	ובן	· ·		
	· .	1			ANO :	sone By	xx			•  .
				·	OPEAL	IL MATTE				
4	Ample	251-30!	·	100	حد- عد	SAME		No PROBLEMS		
	182446		• ,		AS AR	SUE	. ]	ADVANCING BORING	$\frac{1}{2}i$	
								HAVE 015 IN AUGERS	70	
!				•			· !	HUL OLICID ONER LENGTH OF	1	
_		·	•					CORE	•	

	ORENG LO							30116 30 91B	170	
	35630600		AEEG	ANAD	1E5F			िक्क भ व	4	
ಯಾಗಾದವ		ರಿಗಟ್ಟ			Day Person	2.13	392	0		
त्रक्ताव्य	404	<u> जिल्लाक्ष ।</u>			HMU 11.7/0	<u></u>		בו ופרש בושמות	3,92	
كالمصطل ط		३०॥ दन्य	led		Sales	prod	35.5		01	
تحويح كح	DAI	व्याव केन			Data				0.	
		:}			•				1	
34ವರ್ಷ	Septh la	M	_						Route	ەدلىر
No.	(00%	e lector	Pen Hoo	Docer	iption	]rr Hyu	٩d	Camping on . Trans of being	HEAT	LZL
	30-351		100	7.5 4	IR 5/8	_	NO	PROBLEMS		
				STRON	ic Brown			ANCING BORING	Han	
				1	CLAYU			• • • • •	0.5.	! :
· .				MINOR	SILT AND			0.1.04 OVER COILE	IN Au6	E25
Gestech				COARS	THE CHEK		1	000/2 25 .50	1 -	رب ا
SAMPLE					TONE AND		Moi	BTURE	e .	
34'-35'		·		TOLOM	ITE GRAV	4		TERFFEENCE / LAMP	35	•
				> GUA	DME BLACK	_		/ LAMP		:
				OBEAH	in matter				•	! !
				W W				···		
	85'-40'		100		01 5412	_	700	PROBLEMS		
				5/0 4	IEZLOWISH LOIST TO			ANCING		
		•		WET <	CLAY W/		Boi	21716		: 1
			·	ī	MINOR		14.5	a LAMP _		
				l .	COURSE		[71-	BURNED	7	
Chankal		•	<u>:</u>	1 /	M AND			·00+		
2 August		•		FINE	DOLOMITE			1		
341-401		انہ ہ	1	Chent,	AND				1 .	
G182450		32.5		Limes	TONE	-				
Gootech		<u></u>		GRANG	2 Dack		_			
sample				GREW	ric matter	} .		*		
								· .		
							•			
		,			•					
					·		•			
•					•		•			
		·				·				
				l	-	·		•	1	1

Project Name ANAD   EST Project Number 356-30600 cation Swmw 35 uring No. 918 24	Driller ATEC
Date 2.13.92	Method Hollow Stem Augen  Development  Method
Well Materials Used  Foot of 1 Rot Riser Co. Feet of S-foot Riser Co. Feet of Sorgen Io  Caps FNO AND top Ca)  Bags of Bentonite Powder 1/1  Buckats of Pellets 1  Bags of Concrete Mix  Hole Covers	Stick-Up Riser Pipe:
es de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	Depth to Bottom of Hole: 50*

# Appendix C Geophysical Survey Reports by UXB and Technos

NOTE: All work done by UXB was conducted in the ASA.

NOTE: The work conducted by Technos was located in the ASA and the SIA. A single report was issued for both areas. To serve as an appendix to the ESI Report, pages that contain only discussion of SIA related investigations have been deleted. Figures relate to SIA SWMUs have been removed.

#### PROJECT REPORT FOR UXO SERVICES PROVIDED BY

UXB INTERNATIONAL, INC.

14800 CONFERENCE CENTER DRIVE, SUITE 100
CHANTILLY, VIRGINIA 22021
(703) 803-8904

ANNISTON ARMY DEPOT ACTIVITY
ANNISTON, ALABAMA

FOR

JACOBS ENGINEERING GROUP, INC. 1234 NATIONAL PRESS BUILDING 529 14TH STREET, N. W. WASHINGTON, D.C. 20045 3.2 Task 2 - Field analysis of soil samples for TNT and RDX

Field analysis of soil samples was performed from January 3 to February 10, 1992, by UXB Technicians Daniel Stephens and David Pollard. Both of these technicians were certified to perform TNT and RDX analysis through Spectralytix Environmental & Analytical Services using the USATHAMA approved field methods. Copies of their training certificates are included in Appendix (B) along with the test results.

3.3 Task 3 - Bore hole geophysics - UXB Technician Daniel Isbell performed down hole monitoring for metallic contacts in the auger path of proposed well sites at SWMU 16 and SWMU 17. He also provided safety briefs to the drill crews, UXO safety escort services, and demonstrated the Foerster Ferex Ordnance Locator in the surface sweep and underwater mode for USATHSMA visitors.

APPENDIX A
SCOPE OF WORK

### 1.0 INTRODUCTION

This project report is submitted by UXB International, Inc., to Jacobs Engineering Group, Inc., at the completion of UXO services provided at Annistion Army Depot, Anniston, Alabama from December 9, 1991 through February 20, 1992.

#### 1.1 APPENDICES

The scope of work is included as Appendix (A) and is summarized in section 2.0. Appendix (B) contains the results of the field analysis for TNT and RDX. Appendix (C) is the daily work log submitted by the UXB Project Leader.

### 2.0 SCOPE OF WORK

The Scope of Work is included in this report as Appendix (A) and is summarized here. The project was divided into the following three tasks for UXO services:

Task 1 - Well Site and Access Clearance - UXB technicians cleared paths fifteen feet wide and 2 feet deep from the nearest established roadway to the proposed locations of all wells. A 75 foot radius was cleared around each well site to a wells. Wooden stakes four feet in height with orange depth of 2 feet. Wooden stakes four feet in height with orange flagging tape were used to mark the cleared paths and well sites for safe maneuvering of the drill rigs.

Task 2 - Field Analysis of Soil Samples for TNT and RDX - Soil samples from proposed well sites in areas suspected of containing a reactive amount of explosive compounds will be analyzed using the USATHAMA Field Method for determining TNT and RDX concentrations. Samples from the surface and depths of 2.5, RDX concentrations. Samples from the surface and depths of 2.5, concentration of over 10 % reactive compounds are found, the well site will be considered an explosive hazard area.

Task 3 - Bore Hole Geophysics - One UXB technician will monitor ahead of the auger using a Foerster Ferex Ordnance Locator to check for metallic contacts. If a significant metallic contact is discovered, the well site will re abandoned and relocated a minimum of ten feet.

## 3.0 PERFORMANCE OF FIELD WORK

All field work has been completed without any UXO related incidents having occured.

#### 3.1 Task 1 - Well Site and Access Clearance

Well site and access clearance was performed from December 9 - 17, 1991. The following UXB personnel were on site:

The following is a list of UXO items recovered by UXB personnel during the performance of site clearance operations:

SWMU 17 (Demo Pit)

10 Dec 91

20 mm HE, unfuzed, 1 ea 75 mm HE, unfuzed, 1 ea

Approximately 150 pounds of inert ordnance scrap (mostly fragments) of 20 mm and 75 mm projectiles, 4.2" mortar, 105 mm, 155 mm, 8" projectiles, 2.36" and 3.5" rockets, 100 lb and 750 lb bombs.

11, 12 Dec 91

20 mm HE, fuzed, 7 ea
2.75" Fleshette rocket warheads, 6 ea
75 mm HE, unfuzed, 2 ea
105 mm WP, unfuzed, 3 ea
105 mm HE, unfuzed, 1 ea
Various sized bomb boosters, 4 ea

Approximately 600 pounds of inert ordnance scrap (mostly fragments) consisting of the same variety as found on the 10th of December.

SWMU 16 (Burning Ground)

14 Dec 91

Approximately 150 pounds of ordnance scrap consisting of mostly 20 mm, 75 mm, 105 mm, and various size bomb fragments. No explosive filled ordnance items were found this day.

## SCOPE OF WORK, REVISION 1 SUBCONTRACT NO. 05-G302-S-91-0001

The possibility of finding unexploded ordnance (UXO) or explosives is a possibility at SWMU's Nos. 5, 8, 10, 11, 14, 16, 17, 27 and 35. Therefore, a USATHAMA approved, UXO contractor with assistance from local Explosive Ordinance Disposal (EOD) team members and ANAD Safety office will coordinate the field work effort in these areas. The areas will be surface cleared of UXO and explosives prior to any geological work, soil boring or drilling activities.

During soil boring where UXO are suspected, the drill bit will be retracted at 2 to 4 feet intervals and the UXO technician, using MK-26 Ordnance Locator, will search ahead of the drill bit for metallic contacts. If suspicious contact is discovered, the site will be abandoned and moved at least 10 feet. Search will continue until the drill has reached at least 25 feet in depth. During test pitting where UXO are suspected, the UXO technician, using a MK-26 Ordnance Locator, will search ahead of the backhoe bucket at 2 to 4 feet intervals. If UXO are encountered, the UXO contractor will mark the item's location and contact the EOD Unit at ANAD and arrange for the item to be removed or rendered safe.

The location of all identified or suspected UXO's will be marked, and reported to the local ANAD EOD Unit. The UXO contractor will assist in developing a "render safe" plan for all UXO.

Soils contaminated with explosives are thought to be a factor at SWMU's #14 Laundry Waste Leaching Facility, #16 Burning Ground, #17 Demolition Pit, #27 TNT Burial Pits and #35 DEACT Furnace. No Field investigation work will be conducted at these sites without direct supervision of the ANAD Safety office and EOD team.

The following steps will be followed to ensure the safety of all personnel on the well drilling site and/or soil boring:

- a. A clear team consisting of two UXO Technicians will conduct a surface visual sweep of the proposed route the drilling rig will take from the road to the drilling site and clear a path fifteen feet wide. They will maintain a line of sight with each other at all times and maintain communication with other filed crew members and the command post.
- b. If unexploded ordnance is encountered, they will attempt to find a clear route around the hazardous item. If this cannot be done, because of rough terrain or an abundance of hazardous items in the area, unexploded ordnance that can be moved remotely will be placed outside the area to be cleared.
- c. If unexploded ordnance encountered is not safe to be moved, the UXO project leaded will mark the item's location and contact the ANAD Army EOD, at 235-7541 and arrange for the item to be blown in place.

- d. Using marking stakes and lines as necessary UXB/UXO Technicians will mark the outer perimeter of the cleared area.
- e. Two UXO Technicians will then conduct a geophysical survey of this area, using a Ferex locator, to located metallic items to a minimum depth of three feet. All metallic contacts will be marked with stakes and an alternate clear path for the drilling rig will be used.
- f. If an alternate path cannot be found, the marked locations will be hand excavated by UXO technicians to a maximum depth of three feet and buried ordnance will be handled in accordance with (b) and (c) above.
- During well installation, the drill bit will be retracted every 4 feet and one UXO Technician, using the Ferex locator, will search ahead of the drill bit for metallic contacts. If a significant metallic contact is discovered, the drilling site will be abandoned and moved at least 10 feet. This procedure will continue until the drill has reached a depth of a least 20 feet.
- h. As necessary, the Subcontractor shall perform a field screening chemical procedure for RDX and TNT compounds as prescribed by USATHAMA.

The UXO Project Supervisor Safety Officer, and Technicians have the authority and responsibility to immediately stop work and take corrective action when an unsafe situation is encountered. Standard EOD procedures will be employed in the investigation and handling of ordnance and other hazardous items until it is determined that no explosive hazard exists.

A command post will be established prior to conduction of any field operations. All UXO Technicians operating away from the command post will have radio communications with the command post and the command post will have communication, via portable telephone, with the local fire, ambulance and police departments and the ANAD EOD, team.

APPENDIX B

RESULTS OF

FIELD ANALYSIS FOR THT AND RDX

### TESTS RESULTS

### JANUARY 8, 1992

JANUARY 8, 1992	-
TNT CALIBRATION TESTS	RDX CALIBRATION TESTS
SOLUTION CONC. ABSORBANCE 0 ug/g .003 au 1.0 ug/g .021 au 2.0 ug/g .053 au 5.0 ug/g .106 au 10.0 ug/g .225 au 20.0 ug/g .461 au	SOLUTION CONC. ABSORBANCE 0 ug/g .005 au 1.0 ug/g .016 au 2.0 ug/g .042 au 5.0 ug/g .080 au 10.0 ug/g .156 au 20.0 ug/g .307 au
base response factor (rf) TNT	base response factor RDX
.225au/10.0 ug/g = .023	.156au/10.0 ug/g = .016
THT SOIL SPIKE TESTS	RDX SOIL SPIKE TESTS
SPIKE CONC. ABSORBANCE 0.0 ug/g .000 1.0 ug/g .017 2.0 ug/g .036 5.0 ug/g .103 10.0 ug/g .246 20.0 ug/g .456	SPIKE CONC. ABSORBANCE 0.0 ug/g .004 1.0 ug/g .019 2.0 ug/g .036 5.0 ug/g .078 10.0 ug/g .173 20.0 ug/g .345
JANUARY 9, 1992	
TNT CALIBRATION TEST	RDX CALIBRATION TEST
CONC. ABSORBANCE 10.0 ug/g .223 rf = .022	
TNT SOIL SPIKE	RDX SOIL SPIKES
CONC ABSORBANCE 0.0 ug/g .002 2.0 ug/g .038	CONC ABSORBANCE 0.0 ug/g .002 2.0 ug/g .031
WELL SITE 91B12-1	
DEPTH TNT surface .000/.022 = na 2.5 feet .001/.022 = na 5.0 feet .000/.022 = na 7.5 feet .002/.022 = na 10.0 feet .000/.022 = na refusal, moved well site	.014/.014 - na

```
SITE 91B12-2
 surface .119/.022 = 5.4 \text{ ug/g} .070/.014 = 5 \text{ug/g}
Program Manager moved site due to surface results

      Sile 91812-3

      surface
      .015/.022 = na
      .020/.014 = 1.4 ug/g

      2.5 feet
      .002/.022 = na
      .010/.014 = na

      5.0 feet
      .002/.022 = na
      .001/.014 = na

      7.5 feet
      .007/.022 = na
      .004/.014 = na

      10.0 feet
      .000/.022 = na
      .005/.014 = na

      12.5 feet
      .000/.022 = na
      .003/.014 = na

      15.0 feet
      .000/.022 = na
      .007/.014 = na

 SITE 91B12-3
 SITE 91B11-1
 surface .007/.022 = na .034/.014 = 2.4 ug/g
 JANUARY 13 1992
 TNT CALIBRATION TEST

CONC ABSORBANCE
10.0 ug/g .224 rf = .022 RDX CALIBRATION TEST

CONC ABSORBANCE
10.0 ug/g .128
                                                                                   rf = .013
                                                    RDX SOIL SPIKES
 TNT SOIL SPIKES
                                                    CONC ABSORBANCE
  CONC ABSORBANCE
                                                     0.0 \, \text{ug/g} \, .004
  0.0 ug/g .001
                                                     1.0 ug/g .017
  1.0 ug/g .031
  SITE 91B18-1
                       TNT
                                                    RDX
  DEPTH
  DEPTH TNT surface .002/.022 = na
                                                   .023/.013 = 1.8 \text{ ug/g}
  SITE 91B18-2
                      .003/.022 = na
                                                     .010/.013 = na
  surface
  SITE 91B19-1
                                                     .018/.013 = 1.4 \text{ ug/g}
                      .002/.022 = na
  surface
  SITE 91B19-2
  surface .001/.022 = na .023/.013 = 1.8 ug/g
  JANUARY 15 1992
                                                    RDX CALIBRATION TEST
  TNT CALIBRATION TEST
                                                    CONC ABSORBANCE
  CONC ABSORBANCE
                           rf = .021 10.0 ug/g .136 rf = .014
  10.0 ug/g .213
                                                     RDX SOIL SPIKES
  TNT SOIL SPIKES
                                                     0.0 ug/g .002
```

.015

1.0 ug/g

0.0 ug/g .000

 $1.0 \, \text{ug/g} \, .020$ 

SITE 91B11-1 RDX TNT DEPTH 2.5 feet 5.0 7.5 10.0 refusal, moved well SITE 91B11-2 .009/.021 = na .002/.014 = nasurface refusal, moved well JANUARY 16,1992 RDX CALIBRATION TNT CALIBRATION CONC ABSORBANCE CONC ABSORBANCE CONC ABSORBANCE 10.0 ug/g .231 rf = .023 10.0 ug/g .133 rf = .013 RDX SOIL SPIKES TNT SOIL SPIKES CONC ABSORBANCE CONC ABSORBANCE 0.0 ug/g .0030.0 ug/g .000 1.0 ug/g .014 1.0 ug/g .021 SITE 91B11-3 DEPTH TNT RDX surface .049/.023 = 2.1 ug/g .001/.013 = na 2.5 feet .004/.023 = na .002/.013 = na JANUARY 21, 1992 RDX CALIBRATION TNT CALIBRATION CONC ABSORBANCE CONC ABSORBANCE CONC ABSORBANCE 10.0 ug/g .246 rf = .025 10.0 ug/g .129 rf = .013 RDX SOIL SPIKES TNT SOIL SPIKES CONC ABSORBANCE 0.0 ug/g .002 CONC ABSORBANCE 0.0 ug/g .000 1.0 ug/g .011 1.0 ug/g .032 SITE 91B11-3 DEPTH TNT RDX
5.0 feet .008/.025 = na .004/.013 = na
7.5 feet .002/.025 = na .005/.013 = na
10.0 feet .002/.025 = na .004/.013 = na

refusal, moved well

SITE 91811-4 surface .000/.025 = na .003/.013 = na

SITE 91B11-4

### JANUARY 22, 1992

OMIONIL ELI TOTA	
TNT CALIBRATION TEST CONC ABSORBANCE 10.0 ug/g .217 rf = .022	
TNT SOIL SPIKES CONC ABSORBANCE 0.0 ug/g .002 1.0 ug/g .019	RDX SOIL SPIKES CONC ABSORBANCE 0.0 ug/g .001 1.0 ug/g .011
SITE 91B11-4	
DEPTH TNT  2.5 feet .006/.022 = na  5.0 feet .002/.022 = na  7.5 feet .000/.022 = na  10.0 feet .000/.022 = na  12.5 feet .016/.022 = na  15.0 feet .006/.022 = na	RDX .004/.013 = na .003/.013 = na .002/.013 = na .003/.013 = na .004/.013 = na .003/.013 = na
FEBRUARY 1, 1992	
TNT CALIBRATION TEST CONC ABSORBANCE 10.0 ug/g .217 rf = .022	RDX CALIBRATION TEST CONC ABSORBANCE 10.0 ug/g .128 rf = .013
TNT SOIL SPIKES CONC ABSORBANCE 0.0 ug/g .001 1.0 ug/g .024	RDX SOIL SPIKES CONC ABSORBANCE 0.0 ug/g .002 1.0 ug/g .019
SITE 91B11-5	
surface       .003/.022 = na         2.5 feet       .003/.022 = na         5.0 feet       .005/.022 = na         7.5 feet       .005/.022 = na         10.0 feet       .000/.022 = na	.007/.013 = na .008/.013 = na .004/.013 = na .008/.013 = na .005/.013 = na
FEBRUARY 2, 1992	
TNT CALIBRATION TEST CONC ABSORBANCE 10.0 ug/g .219 rf = .022	RDX CALIBRATION TEST CONC ABSORBANCE 10.0 ug/g .126 rf = .013
TNT SOIL SPIKES CONC ABSORBANCE 0.0 ug/g .002 1.0 ug/g .025	RDX SOIL SPIKES CONC ABSORBANCE 0.0 ug/g .003 1.0 ug/g .016

SITE 91B11-5

12.5 feet .000/.022 = na .006/.013 = na 15.0 feet .000/.022 = na .007/.013 = na

### FEBRUARY 8, 1992

TNT CALIBRATION TEST
CONC ABSORBANCE
10.0 ug/g .216 rf = .022

RDX CALIBRATION TEST
CONC ABSORBANCE
10.0 ug/g .132 rf = .013

TNT SOIL SPIKES
CONC ABSORBANCE
0.0 ug/g .002
1.0 ug/g .019

RDX SOIL SPIKES
CONC ABSORBANCE
0.0 ug/g .003
1.0 ug/g .017

### SITE 91B13

DEPTH	TNT	RDX
surface	.005/.022 = na	.007/.013 = na
2.5 feet	.003/.022 = na	.002/.013 = na
5.0 feet	.001/.022 = na	.004/.013 = na
7.5 feet	.003/.022 = na	.004/.013 = na
10.0 feet	.001/.022 = na	.003/.013 = na
12.5 feet	.000/.022 = na	.002/.013 = na
15.0 feet	.001/.022 = na	.002/.013 = na

# CERTIFICATE OF TRAINING

## SPECTRALYTIX ENVIRONMENTAL & ANALYTICAL SERVICES

This Certificate Stipulates That On This 20 Day Of December, 1991,

## Daniel Stephens

Has been instructed in the field method for determination of 246 TNT and RDX in soil using USATHAMA methodology.

Instructor

# Certificate Of Training

### SPECTRALYTIX ENVIRONMENTAL & ANALYTICAL SERVICES

This Certificate Stipulates That On This 30 Day Of Occombe, 1991,

### David Pollard

Has been instructed in the field method for determination of 246 TNT and RDX in soil using USATHAMA methodology.

Instructor

APPENDIX C
DAILY WORK LOGS

9 Nov 9 Motel of Orion of Main Gode of the cent Badyes and retailed to cent Badyes and retailed to cent Badyes and retailed. Every ser 10 Feor of Coron Correst to Amno excussion Men. 10:15 - Returned to write the ENGR. 5175 TRL TO WAIT TO SAME.

11:00 - DEPART FOR MOTER
TO LOAD EQUIPMENT
12 UAN + BANK TO PIOK-UP
13:00 - RETURN TO JAROAS ENGR
13:00 - RETURN TO MOTER - HAY
14:30 - RETURN TO MOTER - HAY
14:30 - RETURN TO MOTER - HAY

AND Knowso Chan

15:00 -

·£.

FOR 3 LIVE ITEMS AND REMOVED ALL CORNERS 50RAP FROM THE ARDA.

### 11 Das 41

BEEN LAY OUT AND CETAMORE OF 200'X 200' DOWN GRADIENT AREA OF OUR LIVERT SELAP AND ARRIVE SITE OFFICE Depo hotatico LARGE AMOUNT BREAK FOR DINNER CONSTINUE CLEDAMANCE DEPART DENO AREA ARRIVE DEMO Alport Cat wher Court Whow ORBNAND ITEM WILL Several LIVE LOADED show 15 contletos FOR DEFILE AROND 1230 0745 1630 21115 0021

Herue Geral Ortrate Detains Dono Aron Aus Desiver Dono Aron Aus Dono Dono	Continue Sources Of Davis	1000 m 400 km 600 + 185 00 000 100 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500 m 500	2 or John We Weer of the South	
07:00	(2.00)			

## 13 Dec. 91

over Aprive Fierd OFFICE

0-145 DEPORT FIRED DIFFEE W/ JARORS FULL TASK MER OBIC APRIVE BURNING GROUND AND LOVATE UP AND DOWN GRADIENT SOUTH

Seria LAY OUT OF UP

* DOWN CRADIENT SWEET

ALTAS & CLEMANCE OF

TOWN CHADIENT ALEX

1100 BROOM FOR DINNER

1233 POUNTINUE SWEET OF DOWN GANDIENT AREA 1630 DEPOSET BURNING GROUND FOR FLEED OFFICE (DOWN CRADIENT AREN AMINX



---

1130 BRTAK FOR DINNETS 1200 BETON SWEETS OF BUEN 1615 CONTLETE SWEETO OF UP
6RIDIENT AREA.
LOCATED APPROX 1001AS
0F INERT SAMA
AND YEA MZZ 16NITOPE
(WP) LIVE LOADED.

1630 DUPMET BURN ARENT FOR

1700 Defant fier O astille sound

15 DAG 91

Oyer Sin Office

OTEC Wesent site affice for AREA Sunt AREA AREA COTTO AREAN AND STEIN ATTENDED

1.03-1 Cherist Saun Philosophers Theres are the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same o

AND BEEND CLEDRING CARDING CLEDRING CANDIENT AREA.
1200 - BRENK FOR DINNER.
1200 - BRENKE CONTROLL CONTROLL
1230 - CONTRUCT CUTT CLEDRANGE

Often - When Defalt For AND Town To court for Dien AND 1000 TO COURT FOR DIEN AND 1000 STE PROCENT COMBE

1400- W. Werl RETURN TO DEMO 1904- PRETTEM HAS NOT ARRIVED AND NO ASSETTINE

1630 DIFART DOMO AROND FOR FIRED OFFICE 1700- DRUNE FOR THE DAY

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s



## TNT LAUNDRY

.2

UXB International, Inc. 14800 Conference Center Drive Suite 100 Chantilly, Virginia 22021-3806

ATTN: Tom Yancey

SUBJECT: Daily Log of RDX and TNT Soil Contamination Tests at the

Anniston Army Depot

### **GENERAL**

Field tests following the USATHAMA approved methods were conducted to determine the soil concentrations of TNT and RDX. The tests were conducted to ensure that monitoring well drilling operations would not encounter dangerous levels of explosives. Explosive levels of 10% or greater are considered hazardous.

Explosive contamination testing was conducted at three prospective well sites located in the vicinity of the TNT wash out facility. Tests were conducted on the surface and at 2.5 foot intervals to a depth of 15 feet. Tests were also conducted on two sites at the demolition range. Only surface tests were required in the demolition range area.

### TESTING CERTIFICATION

TNT and RDX soil contamination tests were conducted in accordance with the Method Documentation USATHAMA (1987) Format.

### SAFETY

No incidents or accidents occurred during the explosive field testing operations. Personnel wore eye protection and gloves during testing operations and the field laboratory was kept well ventilated.

### MOBILIZATION (January 2, 1992)

UXB International personnel traveled to Oxford, Alabama on January 2, 1992. From January 3th to the 7th UXB personnel purchased equipment and chemicals, procured rental equipment and assembled a field laboratory in a rented, high cube truck.

### DEMOBILIZATION (February 9 - 10, 1992)

UXB personnel cleaned and packed equipment, returned rental equipment and departed the Anniston Army Depot area.

### OPERATIONS

Field testing operations were conducted in accordance with the Method Documentation USATHAMA (1987) Format, Certification, Field Method for the Determination of 246TNT and RDX in Soil.

### RESULTS

The certified reporting limits for the field testing operations were:

RDX not less than 1.4 ug/g and not greater than 20 ug/g without diluting.

TNT not less than 1.11 ug/g and not greater than 22.3 ug/g without diluting.

UXB tested no soil sample which required dilution. Most soil sample test results were less than the lower certified reporting limit. See Appendix B for specific site test results.

24 February 1992

UKB International, Inc. 14800 Conference Center Drive Suite 100 Chantilly, Virginia 22021-3806

Re. After Action Report; Anniston Army Depot, Anniston, Alabama, Phase III, UXB 505.01, 14-20 Feb 92.

To: Mr. Tom Yancey, Project Manager

The purpose of this phase of field operations was to provide down hole monitoring and detection to support Jacobs Engineering and ATEC Associates during drilling operations required to install ground water sampling wells.

Areas of interest were explosives and propellant burning area and ordnance demolition areas located on Anniston Army Depot, Anniston, Alabama. Selected sites were established and surface and subsurface sweeps conducted by UXB personnel in December 1991. Two drilling locations were identified in each area, one up gradient and one down gradient. Access routes, equipment and decon areas were visually swept during this phase of the operation.

The operation was overseen by Mr. Bruce Kirchner, Jacobs Engineering Group, Project Manager.

Site visitors were: Mr. Jerald Broughton, USATHAMA, Vicksburg, MS.
14-18 Feb 92
Ms. Vivian Graham, USATHAMA, Aberdeen, MD.
19 Feb 92
Ms. Leslie Ware, Anniston Army Depot,
Environmental Management Division, 19 Feb 92
Mr. Terry Briggs, Jacobs Engineering Group,
Corporate Health and Safety Officer, 17-19
Feb 92

SUMMARY OF OPERATION-14 Feb 92, 0530-1730

Travel to Anniston Army Depot from Huntsville, AL. Rental van inspected and registered for access to installation and work areas. Reported in to Jacobs office. Escorted Mr. Gardner, Jacobs, and Mr. Broughton, USATHAMA, to burning area and reviewed the sweeps completed in the selected locations in December. Identified the access routes and site locations staked out previously. Moved to demolition area and conducted the same tour. Met with drilling crews and briefed them on hazards associated with the areas. Escorted crew into the down gradient site in the burning area, visually reswept the areas needed for equipment and decon sites. Standing by on site for second drilling crew to be escorted to up gradient site. Second crew arrived and were escorted to site, decision was made to set up drill rig next morning. Returned to office, verified start time for next days operations, returned to motel.

### SUMMARY OF OPERATION-15 Feb 92, 0630-1030

Travel to site, met drilling crew, drizzling rain with forcast to increase. Drill crew sunk rig in soft ground while attempting to move onto drill site. Paining harder with thunder storms moving in on location. Drill rig recovered and moved to more solid area, decision made by Jacobs and USATHAMA representatives to relocate drilling site. Drill rig moved on site. Decision made to suspend operations for safety reasons due to weather. Returned to office for start time for next days operations, returned to motel.

SUMMARY OF OPERATION-16 Feb 92, 0630-1230

Travel to site, both drilling crews to begin operations. Up gradient crew first to 4 foot level, no indications of any item to preclude operations detected with the MK-26. Second drill crew to 4 foot mark, same results at that location. Core sample at first site pulled, sample revealed undisturbed soils below the 4 foot level, further down hole monitoring waived by USATHAMA due to sample and land use. Second drill crew pulling core sampler, results same, down hole again waived by USATHAMA. Standing by on site for requirement to relocate drill sites. Both wells at water level by 18-23 feet. No further UXB support required for this days operations. Returned to office, drill crews to complete wells next day and decon rigs, no UXB support required for next days operations. Advised to call office for start up time for next drilling. Returned to motel.

SUMMARY OF OPERATION-17 Feb 92, No time Logged

Contacted Jacobs office 1645, drilling operation to resume next morning.

SUMMARY OF OPERATION-18 Feb 92, 0630-1730

Travel to site, drilling to start at up gradient site of the ordnance demolition area, second rig not available for operations at this time. Down hole monitor revealed no indications of any items to preclude continued drilling operations. Soil sampler shows undisturbed soils on 8 foot core, further down hole monitoring waived by USATHAMA on site. Standing by on site for requirement to relocate drilling site. Second drilling crew arrived with all-terrain rig to be used in well located at furtherest end of demolition area. Escorted crew into site on foot, advised them of potential hazards and visually swept locatin for rig to be set up and equipment and decon pads to be established. Equipment and rig to be moved on site today, drilling on site tomorrow to start after site visitors arrive to observe operation. Drilling complete on current well, no further UXB support required. Returned to office, briefed by Mr. Kirchner on next days visitors, verified start time on site, returned to motel.

### SUMMARY OF OPERATION-19 Feb 92, 0630-1630 ...

. . .

Travel to office, check status of previous days well, over boring required to set well, all completed. Verified visitors to be on drilling site and checked start time. Travel to site, stand by to escort visitors and monitor drill operation set up. Visitors arrived and requested photos of MK-26 set up and operated for surface sweep. Broke down detector from bore hole mode to set up for sweep and demonstrated operation. Reconfigured back to bore hole mode and escorted visitors to drill site. Provided briefing on previous area surface and subsurface sweep operation and site hazard briefing. Orilling to 4 foot level and auger removed for down hole, no reading to indicate requirement to relocate. Drilling resumed to 8 foot and monitoring was repeated. Core sample could not definately verify area not disturbed at 8 foot level. Core sampler pulled at 12 feet. Soils at 10-12 foot depth not disturbed, further down hole checks waived by Jacobs and USATHAMA. Standing by on site for possible requirement to relocate drill site. Visitors departed. Water at 20 feet. No further requirement for UXB. Returned to office, advised to check in next morning to verify well status. Returned to motel.

### SUMMARY OF OPERATION-20 Feb 92, 0700-1500

Travel to office, verified well status, good well. Out brief with Mr. Kirchner, Jacobs Project Manager. Contacted UXB, Mr. Yancey not available until after 1145, advised office that project was complete andwould contact Mr. Yancey from Huntsville around 1300. Returned to motel, cleaned and packed equipment and checked out. Stopped at South Trust Bank and collected wire transfer funds and departed to Huntsville. Arrive Huntsville, contacted Mr. Yancey, advised on project status. He requested immediate shipment of MK-26 via Delta Airlines to Baltimore. Inspected and sealed unit and transported to airport for shipment. Contacted Mr. Yancey with flight number and arrival time. Returned to town, had rental van washed and fuelled for return to Avis. Rental turned in, accounting ledger completed and closed out, mission completed.

### OBSERVATIONS/COMMENTS

Personnel, supplies and equipment adequate. Site plans and briefing excellent. Coordination with prime contractor and other subcontractors good, operating repor good. No accidents or injuries involving any UXB personnel or as the result of any UXB operation.

DANIEL R. ISBELL



### FINAL REPORT

Geophysical Surveys at anniston Army Depot anniston, Alabama

### TABLE OF CONTENTS

ist of Appendices	/ i
Purpose and Scope Technical Approach	1
Electromagnetics (EM)	
General	3 4
Ground Penetrating Radar	
General	•
Magnetometer	
General Site Specific	7
General Sequence Of Work	
Site Descriptions and Results1	11
	11
Site Description Objective of Geophysical Work Survey Grid Results	11 12 12 12
EMMagnetomete	12 13
Summely	13
Charles West States	14
Sit Description	14
Objective Geophysical Work	14 15
EMRadarMagnetome	15 16 16
Surrary	17

### TABLE OF CONTENTS (CONTD.)

SWMU 8 - Acid disposal pit	17
SWMU 8 - Acid disposal pitti	17
Site Description Objective of Geophysical Work Survey Grids	18
Site 8A (Jacobs Engineering Group, Inc. Work Plan Site)	
Results	19
EM - Area 8A EM - Area 8B	19 19
Summary	20
Summary	20
Description Objective & Geophysical Work Survey Grid Results  EM Radar Magnety Stef	21 21
S mary	23
SWALL 12 Asid Chamical Waste Dit	24
S. Description	24
Objection of Geophysical Work	24 24
EM	24 25
Radar Magnetome	26
9 mary	2

### TABLE OF CONTENTS (CONTD.)

SWMU 16 - Burning Ground2	26
Site DescriptionObjective of Geophysical Work	27
Upgradient Site 16U  Downgradient Site 16D	
Results	
Upgradient Site 16U  Downgradient Site 16D	
SWMU 17 - Demolition Pit	29
Site Description Objective of Geophysical Work Survey Grids	.29
Upgradient Site 17U  Downgradient Site 17D	
Results	. 30
Upgradient Site 17U  Downgradient Site 17D	
SWMU 26 - North TNT Burial Pit	.31
Site Description Objective of Geophysical Work Survey Grid Results	31 31 32
EMRadar	32 32
Summary	32
SWMU 27 - South TNT Burial Pit	33
Site Description Objective of Geophysical Work Survey Grid Results Summary	33 34
derences	3

### LIST OF APPENDICES

Appendix A. Description of the Electromagnetic (EM) Method

Appendix B. Description of the Radar Method

Appendix C. Description of the Magnetometer Method

### LIST OF TABLES AND FIGURES

Table 1. Summary of Work Done

Table 2. Summary of EM Conductivity Values

Figure 1. Anniston Army Depot Location Map

Figure 2. Site Location Map

Save Save Tel Grewing of

C. STRIU 6

rigard do. Em Condestiny Contos map or on mo

Fig. ______ __ _ _ _ _ _ _ _ _ _ _ Magnetometer Data from SWMU-6

CALL CONTROL WIGHT OF DWIND 7

Piger de le Lampie et magnetemeter Data from Ovvivre

Figure 5a. Site Map of SWMU 8

Figure 5b. Survey Grid Map of SWMU 8A

Figure 5c. Survey Grid Map of SWMU 8B

Figure 5d. EM Conductivity Contour Map of SWMU 8A

Figure 5e. EM Conductivity Contour Map of SWMU 8B

E. C.W.L.O.

Figure 61

Signal Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the

Figure 6d Figure or nadar Data from Syvivio

### LIST OF TABLES AND FIGURES (CONTD.)

Figure 75	Site man of SIMMIL 12
51940 7 The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same o	1 Department to
	13
Figure	Podar Data from SWMU 12
	The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th
Figure 8a.	Site Map of SWMU 16
Figure 8b.	Survey Grid Map of SWMU 16U
Figure 8c.	Survey Grid Map of SWMU 16D
Figure 8d.	EM Conductivity Contour Map of SWMU 16U
Figure 8e.	EM Conductivity Contour Map of SWMU 16D
Figure 9a.	Site Map of SWMU 17
Figure 9b.	Survey Grid Map of SWMU 17U
Figure 9c.	Survey Grid Map of SWMU 17D
Figure 9d.	EM Conductivity Contour Map of SWMU 17U
Figure 9e.	EM Conductivity Contour Map of SWMU 17D
Figure 10a.	Site map of SWMU 26
Figure 10b.	Survey Grid Map of SWMU 26
Figure 10c.	EM Conductivity Contour Map of SWMU 26
Figure 10d.	Example of Radar Data from SWMU 26
Figure 11a.	Site Map of SWMU 27
Figure 11b.	Survey Grid Map of SWMU 27
Figure 11c.	EM Conductivity Contour Map of SWMU 27

### PURPOSE AND SCOPE

This report provides documentation of the geophysical survey work done by Technos, Inc. under subcontract to Jacobs Engineering Group, Inc. Monitoring Program at Anniston Army Depot (Figure 1). The surface geophysical surveys provided by Technos include the electromagnetic (EM31), ground penetrating radar (radar), and magnetic methods.

### sites were surveyed, which included:

- O Vare Disposar Fil
- O CHILLIAN TO THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE
- o SWMU 8 Acid Disposal Pit
- o Galeiem rypochlorite Burial Pit
- O ANVIO TO ACIO CHEMICAL Waste Fit
- o SWMU 16 Burning Ground
- o SWMU 17 Demolition Pit
- SWMU 26 North TNT Burial Pit
- SWMU 27 South TNT Burial Pit

Coordination with the various team members (Jacobs Engineering Group, Inc., UXB and Bailey Engineering, surveyors) was a necessary part of this project. In addition, security clearance, site safety training, and blood tests were also required. Technos, Inc. also provided brush clearance of survey lines and survey grid layout at some sites.

Access to some sites were limited due to being restricted areas. Sites 8, 16, 17, 26 and 27 were located within the security area which closed at 5:00 PM each day.

Access at the burn area (Site 16) were limited when materials were being burned. Site 8 was located within the Chemical Limited Area and required special safety training and blood tests. Access to site 8 also required a security guard escort at all times.

A total of 20 days were spent on site providing geophysical services at these nine sites.

### TECHNICAL APPROACH

Three surface geophysical methods were available on-site for this work; electromagnetics (EM) ground penetrating radar (Radar), and magnetometer.

### **ELECTROMAGNETICS (EM)**

### General

The electromagnetic (EM) method measures electrical conductivity of subsurface conductivity in millimhos/meter (millisiemens/meter). Electrical conductivity is a function of the type of soil and rock, its porosity and the fluids which fill the pore spaces.

The method is applicable to the assessment of natural hydrogeologic conditions. Natural variations in subsurface conductivity may be caused by changes in basic soil or rock types, thickness of soil and rock layers, moisture content, and depth to water table. The specific conductance of the pore fluids often dominates the measurement. Because the specific conductance of fluids in pore spaces can dominate the measurements, detection and mapping of contaminant plumes can often be accomplished using the EM method. In addition to evaluation of natural hydrogeologic conditions and mapping of contaminant plumes, some of the electromagnetic instrumentation can be used to locate trench boundaries, buried wastes and drum, and metallic utility lines.

A further detailed description of the EM method is included in Appendix A.

### Site Specific

The EM method was the primary geophysical tool used for this project and was used to assess general subsurface soil conditions, locate boundaries of burial or disposal pits and evaluate conditions at drill sites.

An EM31 was used in this work. The EM31 instrument measures to a depth of about 18 feet based upon criteria defined by the manufacture. The response of the EM31 is non-linear, and asomtotic with depth. Seventy percent of the response is coming from the upper 18 feet. When the instrument is carried at hip height, values are reduced by 12% (McNeill, 1980; Appendix A). If highly conductive conditions occur deeper than 18 feet, they can significantly add to the conductivity values measured.

The EM was used as the primary site investigation tool because it provides a rapid means of measurement. With lines spaced 10 feet apart it provides nearly 100% site coverage. It also provides a first approximation for assessing uncontaminated background conditions versus those with elevated specific conductance (or total dissolved solids) due to the presence of inorganics and provides a means of assessing the presence of buried metals.

An EM31 with a Digital Data Acquisition System (DAS) was used for this work. Samples were obtained at a 1 second interval as the EM31 was walked along the survey line. This method of data acquisition produces essentially continuous EM data. Marks were placed upon the EM data as each station mark was passed. The process of marking survey grid locations on the data at intervals eliminates any cumulative positioning errors along each survey line.

Both in-phase (metal) and out-of-phase (conductivity) data was recorded. The digital data was transferred from the DAS to a lap-top field computer and the data was contoured using Surfer.

The default parameters within the "Surfer" program were found to be satisfactory for use in the gridding and contouring routine. The EM contour data was used to provide the initial assessment of site conditions and to plan any further work. EM contour maps of each site are included.

### GROUND PENETRATING RADAR

### General

Ground penetrating radar uses high frequency electromagnetic waves (from less than 100 MHz to slightly more than 1,000 MHz) to acquire subsurface information. Energy is radiated downward into the ground from a transmitter and is reflected back to a receiving antenna. Reflections of the radar wave occur whenever there is a change in the dielectric constant and/or electrical conductivity between two materials. Changes in conductivity and in dielectric properties are associated with natural geologic and/or hydrogeologic conditions and buried utilities and wastes. The reflected signals are recorded and produce a continuous cross-section or profile of shallow subsurface conditions. The picture-like radar record allows for preliminary field analysis of radar data.

Depth of penetration of the radar wave is highly site-specific. Penetration depth is limited by attenuation due to the higher electrical conductivity, dielectric losses and/or scattering of subsurface materials. Generally, radar penetration is greater in coarser, dry, sandy soils or massive rock, and less penetration is obtained in wet, fine grained

clayey (conductive) soils. While radar penetration in soil and rock to more than 100 feet has been reported, penetration of 15 to 30 feet is more typical. In silts and clays, penetration may be limited to a few feet or less.

Radar has the highest resolution of all of the surface geophysical methods. Vertical resolution of radar data can range from less than an inch to several feet depending upon the depth and the electromagnetic wave frequency used.

A further description of the radar method is included in Appendix B.

### Site Specific

Radar was use on this project to assess general subsurface soil conditions and locate boundaries of burial or disposal pits.

A GSSI SIR System 8 was used to acquire radar data with an 80 MHz antenna. The radar antenna was towed by hand over the site. Data was recorded real-time on a graphic recorder. Marks were placed upon the radar record as each station mark was passed. The process of marking survey grid locations on the data at intervals eliminates any cumulative positioning errors along each survey line.

The radar system range was set at 200 nanoseconds, providing a maximum depth of 40 feet (using 5 nanoseconds/ft two-way travel-time). The use of 5 nanoseconds/ft is an approximation in converting the time scale to depth, since depth calibration to onsite soils was not made. Based upon a travel time of 5 nanoseconds/foot, the maximum depth of radar penetration on site was about 25 feet (Figure 7d). The minimum depth of radar penetration on site was about 6 feet.

Interpretation of the radar data was done from the field records. Profile data from selected radar lines (at sites where radar was run) are included to illustrate site conditions.

### MAGNETOMETER

### General

A magnetometer measures the intensity of the earth's magnetic field. The primary application of magnetic measurements at hazardous waste sites is in detecting buried drums, tanks, pipes, and other ferrous metals. A magnetometer will only respond to ferrous metals (iron and steel) and will not detect nonferrous metals.

Gradient measurements have a distinct advantage over total field measurements. They are insensitive to natural changes in the earth's magnetic field and minimize most cultural effects. Because the response of a gradiometer is the difference of two total field measurements, it responds only to the local gradient. Under ideal conditions, a single drum can be readily detected at depths up to about 10 feet with a gradient magnetometer.

A further description of the magnetometer method is included in Appendix C.

### Site Specific

A Magnetometer was used on this project to assist in locating boundaries of burial or disposal pits and in interpretation of EM anomalies.

A Forester Ferex 4.021 Fluxgate gradiometer was used for the magnetometer surveys (similar to the one used by UXB for their work). The magnetometer range was set to ± 30 full scale deflection which has been found to be a reasonable sensitivity for such work. This scale provides an output of + 228 gammas/foot.

The survey was run with the probe 3 feet off the ground to minimize the influence of small ferrous scrap metals often found at the surface. Data was recorded on an analog strip chart recorder so that a real time record was available as the survey was run. Marks were placed upon the strip-chart record as each station mark was passed. The process of marking survey grid locations on the data at intervals eliminates any cumulative errors along each survey line.

Profile data from selected radar lines (at sites where mag was run) are included to illustrate site conditions.

### **GENERAL SEQUENCE OF WORK**

The team members for this specific work were Technos, Inc. for surface geophysics, UXB for unexploded ordnance clearance, and Bailey Engineering for brushing and survey grid layout. Bruce Kirchner of Jacobs Engineering Group, Inc., provided on site direction.

If a site required unexploded ordinance clearance, the work plan specified that UXB would clear the site first, then the surveyors would layout a survey grid for the geophysical work and then Technos would carry out the geophysical survey(s). At sites that did not require unexploded ordinance clearance, the surveyors would layout

a survey grid for the geophysical work and then Technos would carry out the geophysical survey(s). However, in a number of cases, Technos provided brush clearance and laid out the survey grid because the surveyors were behind schedule.

In all cases an EM31 conductivity survey was run before any radar or magnetometer surveys. Radar and/or magnetometer was then selectively used to assess boundaries of disposal and disturbed soil conditions or the presence of buried ferrous metals.

# SURVEY GRIDS

At sites SWMU, 26, 27, 8, 16 upgradient and downgradient, 17 downgradient, the survey grids consisted of 10-foot line spacing with 20-foot intervals marked along each survey line.

At sites SWMU, 12, and 17 upgradient, the survey grid was flagged on every other line (20-foot line spacing) but geophysical data was obtained at 10-foot line spacing by interpolation.

marked along each line. On the servey lines were interpolated and rain at 5-

The survey grid was oriented according to site geometry with survey lines being parallel or perpendicular to a fence, road or other cultural feature when possible. In some cases, the UXB corner stakes were used to orient the survey grid for geophysical work.

The origin (0,0) of the survey grid was generally located at the southwest corner of each grid. The (0,0) station was marked with a flag, surveyors tape, and paint so that it can be readily relocated. The (0,0) station was also referenced to some cultural feature when possible. We recommend that Jacobs Engineering Group, Inc. have the surveyors locate the 0,0 station at each site so that the survey grid can be reestablished at a later date if necessary.

Geophysical surveys were run along each survey line (10 or 15 feet apart). The survey lines were run in a direction such that they would be perpendicular to a pit if an elongated pit was suspected. No perpendicular survey lines were run as a routine part of each survey but selected lines were run at some sites to aid interpretation of the data.

The EM31 measurements were started about 10 feet before the survey grid and extended about 10 feet beyond the survey grid for contouring purposes. Therefore, the survey grid maps and EM contour maps of the EM31 data extend slightly beyond the survey grid on both ends.

The survey grid dimensions are given for each site in the text. The first number is the baseline length and the second number is the line length of the survey lines (i.e. 130 by 80 feet).

# SITE DESCRIPTIONS AND RESULTS

The following are the descriptions of each site along with the surface geophysical results. Figure 2 shows the map of the Anniston Depot with the general location of the individual sites. Table 1 lists the sites along with the objective(s) of the geophysical work and summarizes the work done at each site. Table 2 shows the maximum range and typical electrical conductivities at each site as well as off-site background conductivities to aid in assessing background versus contaminated conditions.

Site maps (from the Jacobs Engineering Group Work Plan) are included for each site. Site maps provided in the Jacobs Engineering Group Work Plan are not necessarily to scale. Site locations and orientation on these maps may be approximate. A survey grid map and an EM conductivity contour map are also included for each site. Profile data from selected radar and magnetometer lines (at sites where they were run) are included to illustrate site conditions.

### OWNER THE THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PART

# Site Description

This site is located in the Industrial Area of the Depot (Figure 3a). The site is described as a rectangular pit approximately 50 feet by 110 feet, where sodium-filled engine valves where disposed on it is a heavily wooded area can some thick cudzoo growth at the northern edge of the site.

The site was marked by far warning signs and there we obvious indications of trenching with the area marked by the signs. These areas of trene ing contained war from recent rains. The surface contained scattered metal and trash labris

### ummary

characterized by generally elevated conductivities access the entire site. This is supported the reconnaissance EM measurements made indicating lower conductivities off-site. It is in a that this entire area as been filled and built-up using construction debris and high conduction wity fill pa

An obvious linear trend of EM conditivity anomalies seen at this site. A burial pit probably lies along the axis the EM anomalies. It may exten up to 200 feet wide and 540 feet long are is generally supported by radar and to a less extent by magnetic data ne outline of this pit is shown in Figure 4c.

# SWMU 8 - ACID DISPOSAL PIT

# Site Description

This site is located in the northeast section of the Depot in a restricted Chemical Limited Access area, between C and G blocks (Figure 5a). This area has been identified as a disposal area for acids. It is reported to contain heavy metals, explosive compounds, volatile and semi-volatile organics possibly in-cased in a concrete vault.

# Objective of Geophysical Work

The objective at this site was to map the boundaries of the pit or concrete vault. An EM31 survey was run to meet these objectives.

The location of this site was not obvious and considerable time was spent looking for the site. A wooded area west and north of storage igloo #C-809 was determined to be the most likely area identified on Figure 5a based upon the roads and fences in the

area. This site is identified as 8A. A north-south creek with steep banks dissects this site, which caused a 30 foot gap in the data.

Since there was considerable uncertainty in the location of the disposal area a second large area to the north of igloo #C-809 was also surveyed at Bruce Kirchner's request. This site was identified as 8B (identified by B. Kirchner based upon USATHAMA reports).

Reconnaissance EM31 and magnetometer surveys were run over areas 8A and 8B as well as around the perimeter of the bauxite ore pile to the west. The purpose of this reconnaissance information was to check these areas prior to acquiring detail data. No obvious EM or magnetometer anomalies were found. However, sites 8A and 8B were surveyed as identified.

# Survey Grids

SITE 8A (JACOBS ENGINEERING GROUP, INC. WORK PLAN SITE)

A 200-foot by 320-foot survey grid was set up by the surveying crew. The survey grid had 10-foot line spacings and was marked at 20-foot intervals along each survey line. The origin (0,0) is located in the southwest corner of the grid. The survey lines were run in an approximately north to south direction (Figure 5b). There is a 30 foot gap which was not surveyed, because of a creek running south to north, through the site.

### SITE 8B

An 420 foot by 180 foot survey grid was set up at site B by the surveyors with the help of Technos and Bruce Kirchner. The survey line had a 10-foot line spacing and 20foot intervals along each survey line. The origin (0, 0) is located in the southwest corner of the grid. The survey lines were run in a east to west direction (Figure 5c).

#### Results

#### FM - AREA 8A

The EM conductivity contour map (Figure 5d) shows typical conductivity values of about 4.8 to 5.5 mmhos/meter across the site, (background conductivity values of less than 10 mmhos/m are found throughout the Anniston Army Depot). Two very subtle features are identified in the EM data. A linear feature of slightly lower conductivity extends from the western border toward the center of the site between Lines 0 to 70 and centered at about Station 130. Another small localized area of low conductivity is located along Line 200 at Station 295.

These areas are not associated with an obvious in-phase response. Therefore they are likely natural changes in conductivity.

### EM - AREA 8B

The EM conductivity contour map (Figure 5e) shows typical conductivity values of about 5 to 7 mmhos/meter across the site, (background conductivity values of less than 10 mmhos/m are found throughout the Anniston Army Depot). There are two features identified in the conductivity map at this site. A very distinct linear trend running east to west across the site along Line 370. This feature is characterized by a change in conductivity from about 6 mmhos/m to the south to about 9 mmhos/m to the north. The conductivities are uniform on both sides of this feature. There are no obvious surface features which can account for this feature.

The second feature is a higher conductivity zone in the northeast corner of the site. The center of this high conductivity area is located between Lines 290 and 430 and between Station 160 to 190. It should be noted that survey lines in this area stopped

at the base of the berm which rises to a paved road. Therefore, this high conductivity does not appear to be associated with the road.

### Summary

Based on the conductivity contour maps in Figures 5D and 5E, it appears that there is no burial pit or cement vault within the two areas surveyed. The two anomalous features seen at site SA are very subtle in nature and may likely be due to natural variations in conductivity. The two anomalous features seen at site 8B are distinct. Since the linear trend is so obvious it appears to be man-made, however, the exact cause of this feature is unknown.

UXB did not do any UXO clearance at this site.

# SWMU 9 - CALCUM HYDGOTH

### Site Description

This site is located approximately 700 feet west of the sewage treatment plant and approximately 500 feet southwest of the vehicle test track (Figure 6a). The site is bounded on the west was chain-link fence and on the east by a sorage area with tanks and other equipment. This site was totally covered with tanks cudzoo growth. A bulldozer was brought in to clear the tre before gridding was done. The surface soils at this site were very soft and wet.

This site is thought to consiste a pit which contains approximally 40,000 pounds of calcium hypochlorite. In addition, nearby SWMUs have contaminated soils and groundwate containing solvents, sludges and metals.

assonable agreement between the shape of the pit boundaries defined by the EM and ratter data along the four radar lines.

#### MAGNETOMET

An example of the magnetic data is shown in Figure 78. In general the magnetic data shows the presence of to siderable ferrous mosal over the area surveyed. However, between Lines 0 and 40 the magnetic data indicates an area with very few ferrous targets. There is a concentration of magnetic anomalies within and surrounding the pit defined by the EM data.

### Summary

A clear pit is defined by the 10 mmhos/m conductivity sentour. Selected radar data and magnetic data also indicate a pit, but with slightly larger boundaries than that shown by the EM data.

UXB did not do any UXO clearance at this site.

# **SWMU 16 - BURNING GROUND**

### Site Description

This site is located about one kilometer north of Block L (Figure 8a). This location is about 1 kilometer north and 1.3 kilometers west of the TNT Washout Facility. It consists of an open, flat area within a small valley. Several burning trays are evenly spaced and situated within the Burning Ground Area. A storage area is located at the north-end and a large metal cage is located at the south-end of the burning ground area.

# Objective of Geophysical Work

The objectives at this site was to survey 2 proposed drill sites (one upgradient and one downgradient of the actual pit area). An EM31 survey was run to meet these objectives.

### Survey Grids

## **UPGRADIENT SITE 16U**

A 190-foot by 140-foot survey grid was set up by the Technos field crew. The survey grid had 10-foot line spacings and was marked at 20-foot intervals along each survey line. The survey grid origin (0,0) is located in the southwest corner of the grid. The survey lines were run in an approximately north to south direction (Figure 8b).

A creek along the western edge of the grid runs in a northwesterly direction, cutting short some of the grid line on the west side.

### **DOWNGRADIENT SITE 16D**

A 40-foot x 200-foot survey grid was set up by Technos with a 10-foot line spacing and 20-foot intervals along each survey line. The survey grid origin (0,0) is located in the southwest corner of the grid. The survey lines were run in a north to south direction(Figure 8c).

A creek runs a few feet from the western boundary of the grid. The lines west of the dirt road were run along a slightly wooded area.

#### Results

#### **UPGRADIENT SITE 16U**

The EM conductivity contour map of the upgradient area (Figure 8d) shows typical conductivity values of about 6 to 9 mmhos/meter, (background conductivity values of less than 10 mmhos/m are found throughout the Anniston Army Depot). There is a uniform increase in conductivities to the northwest. One EM anomaly was identified in this data centered along Line 110 at about Station 100. This anomaly also has an inphase response and is likely due to buried metal.

This site was surveyed and cleared by UXB using a magnetometer.

#### DOWNGRADIENT SITE 16D

The EM conductivity contour map of the downgradient area (Figure 8e) shows typical conductivity values of about 10 to 11 mmhos/meter, (background conductivity values of less than 10 mmhos/m are found throughout the Anniston Army Depot). Conductivity values are generally elevated at this site with a slight increase in conductivities in the southwestern corner of the site. These generally higher conductivities across the site may be associated with the drainage ditch along the eastern edge of the site and the creek along the western edge of the site. The higher conductivities in the southwest corner appear to be directly associated with a ditch which runs across that area. No unusual conditions are seen in the EM data.

This site was surveyed and cleared by UXB using a magnetometer.

# SWMU 17 - DEMOLITION PIT

### Site Description

This site is located 1.3 kilometers due north of the burning ground (SWMU 16) in the northwest section of the depot (Figure 9a). This area has been identified as a demolition pit. This site is said to contain heavy metals, explosive compounds and organics.

# Objective of Geophysical Work

The objectives at this site was to survey 2 proposed drill sites prior to drilling (one upgradient and one downgradient of the actual pit area). An EM31 survey was run to meet these objectives.

### Survey Grids

# **UPGRADIENT SITE 17U**

A 80-foot by 180-foot survey grid was set up by the Technos field crew. The survey grid had 20-foot line spacings and was marked at 20-foot intervals along each survey line. Geophysical data was obtained at 10-foot line spacing by interpolation. The upgradient survey grid origin (0,0) is located in the southwest corner of the grid. The survey lines were run in an approximately north to south direction (Figure 9b).

This site is bounded on the west by a paved road and on the east by a steep hill. At the northern boundary of the site is a storage area containing pallets and metal containers.

# DOWNGRADIENT SITE 17D

A 110-foot x 200-foot survey grid was set up by the surveyors and Technos. The grid consisted of 10-foot line spacing and 20-foot intervals along each line. The survey

grid origin (0,0) is located in the southwest corner of the grid. The survey lines were run in a north to south direction (Figure 9c).

This is a wooded site with heavy undergrowth, which is bounded on the northwest by a creek and on the southeast by a cleared area.

#### Results

#### **UPGRADIENT SITE 17U**

The EM conductivity contour map of the upgradient area (Figure 9d) shows typical conductivity values of about 4 to 6 mmhos/meter. Background conductivity values of less than 10 mmhos/m are found throughout Anniston Army Depot. In general, the values are quite low over most of the site with no unusual features except in the extreme northwestern and northeastern portion of the site. In the northwestern portion of the site along Line 0 at Station 190, a small area of high conductivity occurs. This feature is not associated with an in-phase response. In the northeastern portion of the site along Line 90 at Station 180, a small area of low conductivity occurs. This feature is associated with an in-phase response indicating the presence of metal. Both of these targets may be due to the storage area along the northern boundary of this site.

This site was survey and cleared by UXB using a magnetometer. Some unexploded ordinance was found by UXB at this site.

### DOWNGRADIENT SITE 17D

The EM conductivity contour map of the downgradient area (Figure 9e) shows typical conductivity values of about 4 to 6 mmhos/meter, (background conductivity values of less than 10 mmhos/m are found throughout the Anniston Army Depot). Conductivity

values generally increase toward the north and then become lower, especially in the northeastern portion of the site. No obvious EM anomalies are identified in this area.

Two in-phase anomalies have been detected. One along Line 60 at about Station 90 and another at Line 90 at about Station 190. The latter feature correlates with a local area of lower conductivities.

This site was survey and cleared by UXB using a magnetometer. Numerous unexploded ordinance was found by UXB at this site.

# SWMU 26 - NORTH TNT BURIAL PIT

### Site Description

This site is located in the north-central section of the depot, about 0.5 kilometer north of the west end of G Block (Figure 10a). This site is marked by four warning signs. A dirt road runs east to west along the southern boundary of the site. Short pine trees occupy the center of the site. It is bounded and contains tall pine trees on the north, east and west.

This area has been identified as the North TNT burial pit. The pit is said to contain heavy metals, explosive or ordnance compounds, volatile and semi-volatile organics.

# Objective of Geophysical Work

The objective at this site was to map pit boundaries. An EM31 survey was run to meet this objective. A single radar line was also run at this site.

## Survey Grid

A 200-foot by 200-foot survey grid was set up by the surveying crew. The survey grid had 10-foot line spacings and was marked at 20-foot intervals along each survey line. The origin (0,0) is located in the southwest corner of the grid. The survey lines were run in an approximately north to south direction (Figure 10b).

### Results

#### EM

The EM conductivity contour map (Figure 10c) shows typical conductivity values of about 9 to 12 mmhos/meter, (background conductivity values of less than 10 mmhos/m are found throughout the Anniston Army Depot). In general the conductivity values are quite uniform over this site, increasing to the northeast. A distinct low conductivity anomaly occurs along Line 100 and 110 between about Stations 40 to 90. This feature is associated with a large in-phase response between about Station 40 to 120.

#### RADAR

A single radar traverse was run along Line 110 in order to cross over the EM anomaly. The radar data (Figure 10d) shows the boundary of the pit from about Station 40 to 90, which agrees quite well with the EM contour data in Figure 10c.

#### Summary

A clear anomaly is defined by the EM conductivity, EM in-phase, and radar data. The pit is bounded by Lines 90 to 120 and Stations 40 to 120.

UXB did not do UXO clearance at this site.

## SWMU 27 - SOUTH THT BURIAL PIT

### Site Description

This site is located in the north-central section of the depot, about 0.5 kilometer north of the west end of G Block (Figure 11a). This site is marked by four metal warning signs. A dirt road runs along the eastern boundary of the site and a trail on the northern boundary.

This area has been identified as the South TNT burial pit. The pit is said to contain heavy metals, explosive or ordnance compounds, volatile and semi-volatile organics.

### Objective of Geophysical Work

The objective at this site was to map pit boundaries. An EM31 survey was run to meet this objective.

#### Survey Grid

An 150-foot by 160-foot survey grid was set up by surveying crew. The survey grid had 10-foot line spacing and was marked at 20-foot intervals along each survey line. The origin (0,0) is located in the southwest corner of the grid. The survey lines were run in an approximately east to west direction (Figure 11b).

#### Results

The EM conductivity contour map (Figure 11c) shows typical conductivity values around 8 mmhos/meter, (background conductivity values of less than 10 mmhos/m are found throughout the Anniston Army Depot). The conductivity values throughout the site are quite uniform. A distinct low conductivity area occurs toward the center of the site, consisting of two separate anomalies. One anomaly is centered along Line

80 at about Station 90. The other anomaly is centered along Line 90 at about Station 130. Both of these features are also associated with a large in-phase response indicating the presence of buried metal.

### Summary

A clear anomaly is defined by the EM conductivity and the EM in-phase data. The pit is bounded by Lines 70 to 100 and Stations 80 to 140. It is not clear whether the two anomalies are separate or part of the same pit.

UXB did not do UXO clearance at this site.

### REFERENCES

Jacobs Engineering Group, Inc., September 1991. Work Plan, Remedial Investigation Feasibility Study Southeast Industrial Area.

Jacobs Engineering Group, Inc., September 1991. Expanded Site Inspection, Ammunition Storage Area.

TABLE 1
SUMMARY OF WORK DONE

SWMU #	UXB Cleared Site	OB Drill Site Survey	JECTIVE Map Boundaries	EM31	MAG	RADAR
			.,		V	
			X			<del>//</del>
7.0.11116			A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA			
8 A			×	×	Recon. only	
8 B			×	×	Recon. only	
9				X	(2 lines)	/3 lines
10				· ·	X	44.1
16 - Upgradient	X	×		X		33)
16 - Downgradient	×	X		×		
17 - Upgradient	×	X		·		
17 - Downgradient		X		×		
26			×	X		X (1 line)
27			x	X		

TABLE 2
SUMMARY OF EM CONDUCTIVITY VALUES

SWMU	Range of EM Conductivity Values (mmhos/m) ¹	On-Site "Typical" Conductivity Values (mmhos/m) ²	Off-Site "Background" Conductivity Values (mmhos/m)	
	< U - 20	<u> </u>		
	2.224		2:3 to 7:5 Woods	
8A 8B	< 0 - 8 4 - 23	4.8 - 5.5 5 - 7		
			6 - 8 Cut	
	< 0.55			
16 - Upgradient 16 - Downgradient	3 - 15 5 - 15	6 - 9 10 - 11		
17 - Upgradient 17 - Downgradient	0 - 7 < 0 - 8	4 - 6 4 - 6		
26	< 0 - 18	9 - 12		
27	<0 - 19	8		

Maximum range of EM values from Surfer DAT File. Note that contour maps may not show complete range due to contour intervals selected.

On-site "typical" conductivity values are those which represent the best estimate of on-site "background" values or are generally the lower conductivity values found at the site.







Figure 2. Site Location Map

TECHNOS.

2 1/ 03





- Area Identified in Jacobs Work Plan
- Areas Actually Surveyed
- SURFACE SOIL SAMPLE ×
- SEDIMENT
- SOIL BORING MONITORING WELL

From Jacobs Engineering Group, Inc. Work Plan

Site Map of SWMU #8 Figure 5a. Drawing not necessarily to scale. Site location and orientation are approximate. North Arrow is Approximate

TECHNOS







Sites Actually Surveyed

SOIL

SOIL BORING/MONITOR WELL From Jacobs Engineering Group, Inc. Work Plan

Figure 8a. Site Map of SWMU #16
Drawing not necessarily to scale.
Site location and orientation are approximate.
North Arrow is Approximate

**TECHNOS** 



1 4/2

1111





1 00 0

4 I i.



Figure 8c. Survey Grid Map of SWMU #16D

North Arrow is Approximate

TECHNOS

21/2



411

1 2 2 1



Figure 8d. EM Conductivity Contour Map of SWMU #16U

North Arrow is Approximate

TECHNOS

24/2





1 10 8

¥13,′

Scale 1'=20'



Figure 8e. EM Conductivity Contour Map of SWMU #16D

North Arrow is Approximate

-----

TECHNOS

240

Figure 9a.





SOIL

SOIL BORING/HOMITOR WELL

From Jacobs Engineering Group, Inc. Work Plan

Sites Actually Surveyed



W | 1°









Figure 9c. Survey Grid Map of SWMU #17D

North Arrow is Approximate

31/0



In-Phase Anomaly



Figure 9d. EM Conductivity Contour Map of SWMU #17U

North Arrow is Approximate

242





In-Phase Anomaly

'! J

1 0/ 2



Figure 9e. EM Conductivity Contour Map of SWMU #17D

North Arrow is Approximate

TECHNOS

2000



109 3

WIL



Figure 10b. Survey Grid Map of SWMU #26

North Arrow is Approximate

TECHNOS.

090





Figure 10c. EM Conductivity Contour Map of SWMU #26
North Arrow is Approximate

TECHNOS







From Jacobs Engineering Group, Inc. Work Plan

Figure 11a. Site Map of SWMU #27
Drawing not necessarily to scale.
Site location, orientation and north arrow are approximate.

TECHNOS .





01/10





Figure 11c. EM Conductivity Contour Map of SWMU #27

North Arrow is Approximate

TECHNOS

### APPENDIX A

# DESCRIPTION OF THE ELECTROMAGNETIC (EM) METHOD

The electromagnetic (EM) method measures the electrical conductivity in millisiemens/meter or millimhos/meter) Electrical conductivity is a function of the type of soil and rock, its porosity and the fluids which fill the pore spaces. The specific conductance of the pore fluids often dominates the measurement.

The method is applicable to the assessment of natural hydrogeologic conditions (Griffith and King, 1969; McNeill, 1980; Telford, et al., 1982). Natural variations in subsurface conductivity may be caused by changes in basic soil or rock types, thickness of soil and rock layers, moisture content, and depth to water table. Localized deposits of natural organics, clay, sand, gravel, or salt-rich zones will affect subsurface conductivity values. Structural features such as fractures or voids can also produce changes in conductivity.

The absolute values of conductivity for geologic materials are not necessarily diagnostic in themselves, but their spatial variations, both laterally and with depth, can be significant. It is the identification of these spatial variations or anomalies which enable the EM method to rapidly find potential problem areas.

Because the specific conductance of fluids in pore spaces can dominate the measurements, detection and mapping of contaminant plumes can often be accomplished using the EM method. Because inorganics in sufficient concentrations are often more electrically conductive than groundwater, both the lateral and vertical extent of an inorganic plume can be mapped using the EM method.

Correlation between groundwater chemistry data and results using electrical methods (EM or resistivity) to map inorganics from landfills has been as good as 0.96 at the 95% confidence level (Benson, et al., 1985). Electrical methods provide a means of directly mapping the extent of the inorganic contaminants in-situ, obtaining direction of flow, and estimating concentration gradients (Figure 8). Time-series measurements can be made with these methods to obtain plume dynamics over time, and thus provide vital information for assessing and modeling of groundwater changes of flow (Benson, et al., 1988).

If the contaminate plume consists of a mix of organics and inorganics, such as leachate from a landfill, a first approximation to the distribution of the organics can often be made by using electrical methods to map the more electrically conductive inorganics. Correlation between groundwater chemistry data for total organic carbon in a landfill leachate and results using electrical methods has been as good as 0.85 at the 95% confidence level (Benson, et al., 1985).

Generally, the geophysical methods are not used to detect and map organic contaminants such as trichloroethylene (TCE). In cases where pure organics such as TCE exist, the EM method can often be used to define permeable pathways or buried channels through which these contaminants can migrate.

Direct detection of hydrocarbons can sometimes be accomplished by looking for a conductivity low associated with the organics. The possibility for such an anomaly exists where large amounts of hydrocarbons have been in place for a long period of time, have replaced pore fluid and there is a sufficient contrast in electrical values between the natural background values and the hydrocarbons. To date this approach has had limited success.

- Appendix A Page 2 -

The EM method may be used to obtain data by "profiling" or "sounding". Profiling provides a means of mapping lateral changes in subsurface electrical conductivity to a given depth. Profiling measurements are made by obtaining data at a number of stations along a survey line. The spacings between the profiling measurements will depend upon the geologic variability of the setting and upon the lateral resolution desired. At each station along the profile line, data may be obtained for one depth or a number of depths depending upon project requirements. It is useful to take at least two measurements, a shallow one and a deeper one, so that the influence of the highly variable shallow soils and cultural influences can be assessed. Profiling is well suited to the delineation of hydrogeologic anomalies, mapping of contaminant plumes and location of buried material.

The sounding method provides a means of determining the vertical changes in electrical conductivity correlating with soil and rock layers. In this case, the instrument is located at one location and measurements made at increasing depths. Interpretation of sounding data provides the depth, thickness and conductivity of subsurface layers with different electrical conductivities.

Because the electromagnetic instruments do not require electrical contact with the ground, measurements may be made quite rapidly. Lateral variations in conductivity can be detected and mapped by profiling. Using commonly available frequency-domain EM instruments, profiling station measurements may be made to depths ranging from 2.5 to 200 feet.

Continuous EM profiling data can be obtained from 2.5 feet to a depth of 50 feet (Benson, et al., 1982). These continuous measurements significantly improve lateral - Appendix A Page 3 -

resolution (compared to station measurements) for mapping small hydrogeologic features. Data can be recorded on an analog strip chart recorder or a digital data acquisition system. The excellent lateral resolution obtained from continuous EM profiling data has been used to outline closely-spaced burial pits, to reveal the migration of contaminants into the surrounding soils, or to delineate complex fracture patterns (Benson, et al., 1982).

in addition to evaluation of natural hydrogeologic conditions and mapping of contaminant plumes, some of the electromagnetic instrumentation can be used to locate trench boundaries, buried wastes and drums, and metallic utility lines. Frequency-domain EM instruments provide two signal outputs consisting of an inphase component and an out-of-phase component. The out-of-phase component is used to measure electrical conductivity and can be used to locate pipes. The inphase component is a measure of the magnetic susceptibility, but it can also be used to detect both ferrous and nonferrous metal. For example, using the in-phase component, a single 55-gallon steel drum can be detected at a depth of about 6 to 8 feet.

Vertical variations in conductivity can be determined by sounding. Frequency domain sounding data can be acquired for depths ranging from 2.5 to 200 feet by combining data from a variety of commonly available frequency-domain EM instruments. The instrumentation is placed at one location and measurements are made at increasing depths by a changing coil orientation and/or coil spacing. The vertical resolution of frequency-domain EM soundings is relatively poor since only a limited number of measurements are made at only a few depths. However, they do provide a quick means of obtaining limited vertical information.

Some of the extremely low conductivity values or conductivities which become negative on the EM contour maps do not necessary mean low or negative conductivity values but are in fact caused by:

- The presence of buried metal in which case the in-phase component of the EM data will also be anomalous and/or;
- The presence of a highly conductive media (such as a salt brine spill) which has exceeded the linear range of the EM31 response (conductivities greater then 400 mmhos/m) resulting in values much lower than actual.

#### REFERENCES

- Griffith, D. H. and King, R. F., 1969. Applied Geophysics for Engineers and Geologists, Pergamon Press.
- Benson, R. C., M. Turner, W. Vogelson, and P. Turner, 1985. Correlation Between Field Geophysical Measurements and Laboratory Water Sample Analysis. Proceedings of the National Water Well Association/Environmental Protection Agency Conference on Surface and Borehole Geophysical Methods in Ground Water Investigations, National Water Well Association.
- Benson, R. C., M. Turner, P. Turner, and W. Vogelson, 1988. In Situ, Time- Series Measurements for Long-Term Ground-Water Monitoring. In: Ground Water Contamination: Field Methods, ASTM STP-963, A.G. Collins and A. I. Johnson, Eds. American Society for Testing and Materials, pp. 58-72.
- Benson, R. C., R. A. Glaccum, and M. R. Noel, 1982. Geophysical Techniques for Sensing Buried Waste and Waste Migration. Environmental Protection Agency -- Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, pp. 236.
- McNeil, J.D., October 1980. Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers. Geonics Ltd. Technical Note TN-6.

#### APPENDIX B

# DESCRIPTION OF THE GROUND PENETRATING RADAR METHOD

Ground penetrating radar uses high frequency electromagnetic waves (from less than 100 MHz to slightly more than 1,000 MHz) to acquire subsurface information. Energy is radiated downward into the ground from a transmitter and is reflected back to a receiving antenna. Reflections of the radar waves occur whenever there is a change in the dielectric constant and/or electrical conductivity between two materials. Changes in conductivity and in dielectric properties are associated with natural geologic and/or hydrogeologic conditions such as bedding, cementation, moisture, clay content, voids, and fractures. Therefore, an interface between two soil or rock layers which has a sufficient contrast in electric properties will show up in the radar profile (Benson, et al., 1979; 1982; 1987).

The reflected signals are recorded and produce a continuous cross-sectional picture or profile of shallow subsurface conditions. The radar record is similar to the view we would get if we observed the cross-section of soils in a trench or a cross-section of rock at a road cut.

The vertical scale of the radar profile is in units of time, the time it takes for an electromagnetic wave to move down to a reflector and back to the surface (two-way travel time). The unit of time is nanoseconds (nanosecond = 10-9 second). This time is relatively short because the waves are travelling at almost the speed of light. Times are then converted to depth by relating measurements or assumptions about the velocity of the waves in the subsurface materials.

Depth of penetration of the radar wave is highly site-specific. Penetration depth is limited by attenuation due to the higher electrical conductivity, dielectric losses and/or scattering of subsurface materials. Generally, radar penetration is greater in coarser, dry, sandy soils or massive rock, and less penetration is obtained in wet, fine grained clayey (conductive) soils. Data may still be obtained from saturated materials if the specific conductance of the pore fluid is sufficiently low. For example, radar has been applied to map the sediments in fresh water lakes and rivers. While radar penetration in soil and rock to more than 100 feet has been reported, penetration of 15 to 30 feet is more typical. In silts and clays, penetration may be limited to a few feet or less. Yet, in some situations, useful results can be obtained in silts and clays (Benson, 1990). The water table can be detected in coarser grained materials but not in finer grained sediments with a large capillary boundary. Both metallic and nonmetallic buried pipes and drums can also be detected.

The continuous data produced by the radar method offers a number of advantages over some of the other geophysical methods. Continuous profiling permits data to be gathered much more rapidly, thereby providing a large amount of data for a given budget. In some cases, total site coverage of an area can be obtained. Radar data may be obtained at speeds up to 5 mph to 10 mph or more. Very high lateral resolution data can be obtained by towing the antenna(s) by hand at much slower speeds (less than 1 mph).

Radar has the highest resolution of all of the surface geophysical methods. Vertical resolution of radar data can range from less than an inch to several feet depending upon the depth and the electromagnetic wave frequency used. A variety of antennas can be selected to cover frequencies from less than 100 MHz to 1,000 MHz. Lower

frequencies provide greater depths of penetration, but lower resolution, and higher frequencies provide less penetration, but higher resolution.

The picture-like radar record allows for preliminary field analysis of radar data is possible using the picture-like record. Despite its simple graphic format, there are many pitfalls in the interpretation of radar data. There are multiple bands within the data due to ringing which may obscure layers and cause confusion in interpretation. If an unsoiled antenna is used, overhead reflections from trees or power lines may appear on the record (this is only a problem with lower frequency unsoiled antennas). System and geologic noise can sometimes clutter up the record, making interpretation difficult. Although radar can be recorded on magnetic media and processed by computer, the necessary geologic or hydrologic information can often be obtained from the raw graphic records.

#### REFERENCES

- Benson, R. C., and Glaccum, R. A., 1979. Radar Surveys for Geotechnical Site Assessment. In: Geophysical Methods in Geotechnical Engineering, Specialty Session, American Society of Civil Engineers, Atlanta, Georgia, pp. 161-178.
- Benson, R. C., R. A. Glaccum, and M. R. Noel, 1982. Geophysical Techniques for Sensing Buried Waste and Waste Migration. Environmental Protection Agency -- Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, pp. 236.
- Benson, R. C., and L. Yuhr, 1987. Assessment and Long Term Monitoring of Localized Subsidence Using Ground Penetrating Radar. Proceedings of the Second Multidisciplinary Conference on Sinkholes and the Environmental Impact of Karst, Orlando, Florida.
- Benson, R. C. and L. Yuhr, 1990. Evaluation of Fractures in Silts and Clay Using Ground Penetrating Radar. Presented at the 4th Radar Conference, Denver, Colorado.

minimize any errors due to natural long period changes of the earth's field. Cultural noise, however, will remain a problem with total field measurements. Many of these problems can be avoided by use of gradiometer measurements and proper field techniques.

Gradiometer measurements are made by a gradiometer, which is simply two magnetic sensors separated vertically (or horizontally) by a few feet. Gradient measurements have a distinct advantage over total field measurements. They are insensitive to natural changes in the earth's magnetic field and minimize most cultural effects. Because the response of a gradiometer is the difference of two total field measurements and it responds only to the local gradient. It is also better able to locate a relatively small target, such as a buried drum.

The disadvantage of a gradiometer is that it is less sensitive than a total field instrument. A total field magnetometer's response is inversely proportional to the cube of the distance to the target (such as a drum). A gradiometer response is inversely proportional to the fourth power of the distance to the target (such as a drum), making it less sensitive than the total field measurement. While gradiometers are inherently less sensitive than total field instruments, they are also much less sensitive to many sources of noise. Under ideal conditions, a single drum can be readily detected at depths up to about 20 feet with a total field magnetometer and at depths of about 10 feet with a gradient magnetometer. Massive piles of drums can be detected at depths up to 50 feet or more with a total field magnetometer and at depths of about 25 feet with a gradient magnetometer.

Two types of magnetometer sensors are in common use, the proton and the fluxgate.

A total field or gradient proton procession magnetometer normally requires the

- Appendix C Page 2 -

operator to stop to take a measurement. The operator then moves to the next station and repeats the measurement process. With a fluxgate gradiometer, continuous acquisition of data can be acquired as the magnetometer is moved across the site. Continuous coverage is much more suitable for very detailed (high resolution) surveys to identify local targets, such as unexploded ordnance, drums, and the mapping of areas in which complex anomalies are expected.

#### REFERENCES

- Breiner, S., 1973. Applications Manual for Portable Magnetometers. Geometrics, Sunnyvale, California, 58 pp.
- Benson, R. C., R. A. Glaccum and M. R. Noel, 1982. Geophysical Techniques for Sensing Buried Waste and Waste Migration. Environmental Protection Agency -- Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, pp 236.

Appendix D

Deviations from the Approved Work Plan and the Quality Assurance Program Plan

# Deviations from the Approved Work Plan and the Quality Assurance Program Plan

The work performed for this ESI consistently followed the approved Work Plan and Quality Assurance Program Plan (QAPP) wherever possible. However, in several instances, field conditions or practical operational requirements dictated that approved deviations be made from the Work Plan or QAPP. This Appendix describes those deviations.

#### Monitoring Well Installation

- Where shallow wells could not be completed as per the work plan, wells were completed with deviations in well design approved by USATHAMA. The shallow wells where these deviations occurred were 91B14, 91B15, 91B18 and 91B19. In these instances, sand pack was brought to elevations of less than three feet above the screen. In addition, no more than two feet of bentonite was used above the sand pack.
- Wells that were slow to recharge were purged less than five well volumes. The number of well volumes was determined in such cases after consulting USATHAMA.

#### Geophysical Surveys

- The instrument used for the magnetometer survey was a Forester Ferex 4.021 Fluxgate gradiometer as opposed to an EDA Instruments Omni Plus gradiometer as discussed in the Work Plan and the QAPP.
- Ground penetrating radar (GPR) was used to confirm the location of the North TNT Burial Pit (SWMU #26) as well as the electromagnetic (EM) survey. There is no discussion of GPR surveys in the QAPP or the Work Plan.

#### Topographic Surveys

- Topographic surveys were not performed at SWMUs on which geophysical surveys were conducted. Survey grids were staked by TECHNOS personnel.
- Natural ground surface is not accessible at monitoring well locations due to placement of concrete pads around the protective casings. Ground elevation at each well was established on the pad at the base of the protective casing. Reference points are chiseled into the concrete.

# Monitoring Well Purge-Water Disposal

Methods for the disposal of water extracted from groundwater monitoring wells for sampling purposes are not discussed in the QAPP. As approved by the Alabama Department of Environmental Management (ADEM), this purge water was disposed of in the Industrial Wastewater Treatment Plant located in the Southeast Industrial Area at ANAD (see attached ADEM approval letter).

2 med



# ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

Guy Hunt Gavernor

Laigh Peguas, Director

1751 Cong. W. L. Dictions on Drive Montgomery, AL 36130 (205.) 271. 7700 FAX 271. 7450 270-5612 December 16, 1991

Mr. Ronald M. Grant, Chief Environmental Management Division U.S. Army Anniston Army Depot SDSAN-DEL-EMD Anniston, Alabama 36201

Freid Others

110 Vuican Road Burningham Ni 35209 (205) 947 615 FAX 941 1657

P.O. Bor 951 Decatur: AL 35407 (705)353-171-340-5355

2104 Promotor Com Mobile, At 34418 (205) 479-2336 (AI 479-2543 Dear Mr Grant:

This is in response to the letter received by the Department on December 2, 1991, in which the Anniston Army Depot requested approval to dispose of wastewaters derived from its groundwater investigations in its industrial Waste Treatment Plant (IWTP). Additionally, approval was requested to place wastewaters containing levels of compounds which exceed tooic characteristic levels under RCRA into the IWTP.

Regarding the first request, the Department does not object to a limited quantity of these wastewaters being placed into the IWTP for treatment. The analyses of these waters submitted with your request do not indicate that they would pose a threat to the operation of the treatment facility. However, as was stated in the Department's letter of November 22, 1991, any long-tenn disposal of these wastewaters in this manner would require a modification of the Depot's NPDES permit.

As for the request regarding RCRA characteristic wastewater, the ADEM Land Division has indicated that it has no regulatory involvement with this disposal method since it occurs under an NPDES permit. Therefore, the Depot may utilize this method of disposal, provided that quantities of these wastewaters are firnited and that their generation is on an intermittent basis. Also, the introduction of these wastewaters into the IWTP shall not cause interference with the treatment facilities or a violation of an instream water quality standard in the receiving stream.

Should you have any questions concerning this matter, please feel free to contact me at 271-7845.

Sincerely,

Philip D. Bavis Industrial Branch

Water Division

cc: Kin

Kim Kennedy - Land Division Joe Downey - Special Projects Appendix E

Data Review and Validation

#### DATA REVIEW AND VALIDATION

As required by the approved ANAD Quality Control Plan (QCP), JEG has undertaken a review of the contractor laboratory data to assure that the data generated by the ESI are accurate and consistent with the project objectives. To this end, the reported data were comprehensively evaluated for accuracy, precision, representativeness, and completeness as described below.

Data generated during the ESI were retrieved from USAEC's Installation Restoration Data Management Information System (IRDMIS). IRDMIS is the minicomputer-based, relational database utilized by USAEC for chemical, physical, geologic, and geographical information. The USAEC-certified contractor laboratory utilized the analytical methods specified in the ANAD Quality Control Plan (QCP). Analytical results were submitted by the laboratory for entry into IRDMIS according to reporting protocols specified in the IRDMIS User's Manual (USATHAMA, 1991).

# 1.0 SAMPLE COLLECTION AND ANALYTIC DATA MANAGEMENT PROCEDURES

Samples collected for laboratory analysis were identified with a unique field sample number. The sample location, matrix sampled, date sampled, sampling technique, and sampling depth were also recorded for each environmental sample. Each sample was further identified by type (i.e., borehole, surface soil, etc). At the analytical laboratory, a unique number was assigned to each aliquot of a sample designated for a separate analysis. These identifying characteristics for each sample were also input into the IRDMIS data management system.

Laboratory data, quality control data and characteristic sample data were formatted for entry into the IRDMIS data management system. IRDMIS incorporates data quality checks to ensure that blanks, duplicates, matrix spike, matrix spike duplicate, and qualifying codes have been included with each lot of samples. Data are entered into IRDMIS before corrections for dilutions, percent moisture, and analysis accuracy. IRDMIS checks that reported values are within certified ranges. Accuracy values, based on percent recovery of specified analytes, are reported to IRDMIS for each data lot.

Chemical data are reported in IRDMIS utilizing abbreviations for analytes (Appendix G). If necessary, flagging codes (Table E-1) are assigned to data points. Boolean indicators may also be added to data points to indicate that a measured quantity is not within the certified range or the analytical method utilized does not yield quantitative results (Table E-2).

# Table E-1 (Continued)

S	Results based on internal standard. This flagging code is to be used in conjunction with methods which use an internal standard. Compounds for which no certification data exist are quantitated by direct comparison to the internal standard. Cannot be used with a boolean, since there is (implied) quantitation.
Т	Analyzed for but not detected. This flagging code is to be used for non-GC/MS multi-analyte methods to report compounds that are a normal part of the methodology but for which no certification data exists.
U	Analysis is unconfirmed. This flagging code is to be used when a conformational analysis is done but does not verify the analytical results obtained from the initial analysis.
V	Sample subjected to unusual storage conditions. This flagging code is to be used when the sample storage conditions may affect the analytical results.
w	Single analyte required from a multi-analyte method. This flagging code is to be used when only one analyte from a multi-analyte method is to be reported. This flagging code is useful when spiking solutions contain more than one analyte of interest for the method.
х	Analyte recovery outside of certified range but within acceptable limits. This flagging code is to be used when analyte recoveries exceed the upper limit of the certified range by less than 15% and the laboratory feels a dilution is not warranted.

^{*}SOURCE: User's Guide Installation Restoration Data Management Information System, Volume II Data Dictionary

#### 2.0 DATA PACKAGES REVIEW

The data packages supplied by the analytical laboratory were reviewed by JEG for completeness, adherence to reporting limits and control limits, holding time exceedances, and initial and continuing calibration requirements as outlined in the QCP. The laboratory data summaries are discussed below.

**Silver:** A below average trend in spike recovery was noted for analyses by USATHAMA method JC02 performed January 20 through January 30, 1993 for lots DAQ and DAR. The percent recovery of silver in the low spike averaged approximately 88%. The results are still within control limits. Spike recoveries for samples analyzed February 14 through 24, were trend free.

Inorganics by ICP: For samples in lots DRY, DRZ and HBA analyzed January 20, 1992 through January 28, 1992 with USATHAMA method JS14, above average three-day trends for spike recoveries were noted for Ba, Co, Cr, Mo, Tl, and Zn. A downward trend was noted for Cu. Sb was characterized by an extended-range below average trend. Some three day and single day control charts were out-of-control for Ba, Sb, Cd, Zn, and Pb for these lots. For lot DRY, the external calibration check was within two standard deviations for Ba, Pb, and Cd, but outside this limit for Cd and Zn. For lot DRZ, the external calibration check was within two standard deviations for Ba, Cu, Pb, and Sb. For lot HBA, the external calibration check was within two standard deviations for Ba, Cu, and Sb. Cd was not identified in any samples from lot DRY and Sb was not identified in any samples in lots DRY or DRZ. The out-of-control situations are unlikely to impact data except for barium. The samples impacted include soil samples from borings 91B12. Barium was detected in these samples at concentrations of less than 4.87 mg/kg to 30.9 mg/kg. Barium results for these samples may show a high bias.

For samples in lots HBF and HBG analyzed between February 24 and 26, 1992, the detected concentrations of Ba and Cr in the low spike for lot HBF were below certified reporting limits (CRLs). The Cr result was flagged as "P" to denote that it is between the criteria of detection (COD) and CRL. The Ba result was reported as less than (LT). Some one-day and three-day control charts were out of control for Ba, Cr, Cu, Ni, and Sb. The impact of the out-of-control situations is negligible except for Sb, whose average recovery in the low spike was 65% and Sb was not detected in any samples in these lots. The samples impacted include surface soil samples from S14S01, S14S02, S14S03, and S14S04. These samples may have a low bias for Sb.

control limits. Lot GOF analyzed for arsenic was out-of-control due to a low spike recovery in the previous lot (GOE) analyzed. Spike recovery in GOF was 97.2%. No arsenic was detected in samples in this lot.

Base, Neutral and Acid Extractables: For samples in lots DUT, DUU, and DUV analyzed January 24 through January 30, the three-day x-bar and range control charts for nitrobenzene-D5 were out-ofcontrol. Lot DUT was out-of-control due to two low terphenyl-D14 spike recoveries. Average percent spike recoveries for nitrobenzene-D5 for these lots were 66.7, 73.3 and 73.3 percent, respectively. The percent recovery for terphenyl-D14 in lot DUT was 80%. This may impact samples from boring 91B12. Lots DUZ and HDA analyzed between February 12 and 17, 1992 were out-of-control for nitrobenzene-D5 recovery and phenol-D5 was out-of-control for lot DUZ. The percent recovery for nitrobenzene-D5 in the high spike was 56.7 and 66.7 respectively in these two lots. It is likely that there is a negligible impact on the environmental data. Lots HDC and HDD analyzed between February 18 and 29, 1992 were out-of-control for 2,4,6-tribromophenol and nitrobenzene-D5 recoveries. The percent recovery of nitrobenzene-D5 in the high spike was 66.7 and 56.7 for these two lots and the recovery of 2,4,6tribromophenol in lot HDC was 66.7 percent. The impact of these low recoveries is likely to be negligible. The samples that may be impacted are surface soil samples S11S01, S11S02, S37S01, S37S03, and S37S05. For lot HDE, the control charts for nitrobenzene-D5 are out-of-control. The percent recovery for nitrobenzene-D5 was 66.7%. The impact of this out-of-control situation is likely to be negligible. Control charts for lots HDE, HDF, and HDG, analyzed March 6 to March 27, 1992, are out of control for nitrobenzene-D5. Lot HDG is out of control for 2,4,6-tribromophenol and phenol-D5. The percent recoveries of 2,4,6-tribromophenol, 2-fluorophenol, nitrobenzene-D5, and phenol-D5 in the high spike in lots HDE through HDG range from 80 to 86.7%, from 73.3 to 86.7%, from 66.7 to 86.7% and 80 to 100% respectively. These out-of-control situations are expected to have minimal impact on data useability. Lots GVA, GVC, GVD, GVE, and GVG through GVP analyzed for BNAs were all within control limits.

PCBs and pesticides: Lot DVP was analyzed within control limits by USATHAMA method LH19 on February 11, 1992. Lots DVR and DVS were also within control limits. The single day x-bar control chart for lindane was out of control in lot DVQ. Percent recoveries for control analytes in this lot were 53.6 to 70.7%. The impact of this out-of-control situation is negligible. Lots DVT and DVU were within control except for the single-day x-bar control chart for Endrin for lot DVT. The impact of this is also negligible.

#### 3.1 ACCURACY

Accuracy is defined as the percent recovery of an analyte. The contract laboratory plotted the mean percent recovery and range of percent recovery on control charts prepared for each control analyte. Data from duplicate spiked QC samples were used to calculate percent recovery.

% Recovery = Found Concentration / (Spiked Concentration + Sample Concentration)

The laboratory utilized percent recovery of each analyte in spiked QC samples, the average percent recovery, and the difference between the percent recovery of two spiked samples in a continuous assessment of method accuracy. A minimum of twenty data points were utilized to set upper and lower control limits for percent recovery. Control charts prepared for each lot of data were utilized to determine if data were within acceptable control limits for accuracy. Control chart summaries are discussed in the introduction to this section.

In addition, an analysis accuracy was calculated for USATHAMA Class 1 analytical methods based on found versus recovered analytes. Analysis accuracies expressed as analyte recoveries are discussed in the introduction to this section of the report. Analysis accuracies are reported with each applicable lot of data to USATHAMA. Concentrations reported in IRDMIS reflect the accuracy of each analytical method.

The recovery of analytes in natural matrix spike (MS) and matrix spike duplicate (MSD) samples were calculated for ASA samples (Table E-3). Above-average recoveries in natural matrix spikes indicate positive matrix interferences and a possible high bias in the data. Below-average recoveries in natural matrix spikes indicate negative matrix interferences. For the soil matrix, several inorganic analytes showed multiple recoveries of greater than 150%. This may indicate a positive matrix interference for barium and cadmium. No other trends in matrix interferences were noted.

Table E-3. Recovery of Analytes in Natural Matrix Spike Samples (Continued)

ELEMENT/COMPOUND	SAMPLE SITE ID	SAMPLE CONC (µg/g)	MATRIX SPIKE SAMPLE (µg/g)	MATRIX SPIKE DUPLICATE SAMPLE (µg/g)	LEVEL OF SPIKE (µg/g)	MS PERCENT RECOVERY D1 (%)	MSD RECOVERY D2 (%)	AVERAGE RECOVERY (%)
Copper	S5SD1	22.4	177	173	100	145	141	143
	S091B172	9.52	133	132	100	121	121	121
	S8SD4	33.9	143	138	100	107	103	105
	S091B17	8.5	130	132	100	120	122	121
Manganese	S5SD1	600	620	570	100	89	92	90
Molybdenum	S5SD1	LT 4.0	1080	1090	640	169	170	170
	S091B172	LT 4.0	879	872	640	137	136	136
	S8SD4	LT 4.0	934	933_	640	146	146	146
	S091B17	LT 4.0	866	777	640	135	121	128
Nickel	S091B172	11.6	1340	1340	1000	132	132	132
	S8SD4	28.9	1580	1550	1000	154	151	152
	S091B17	LT 7.5	1380	1350	1000	138	135	136
Lead .	S091B172	17.2	538	549	400	129	132	130
	S8SD4	24	625	627	400	147	148	148
	S091B17	38.4	558	549	400	127	125	126
Antimony	S091B172	LT 82	4860	5030	5000	97	101	99
	S8SD4	LT 82	6020	5900	5000	120	118	119
	S091B17	LT 82	4810	4430	5000	96	89	92
Selenium	S091B172	LT 12.5	3010	3050	2500	120	122	121
	S8SD4	LT 12.5	3680	3680	2500	147	147	147
	S091B17	LT 12.5	3940	3140	2500	122	126	124
Thallium	S091B172	LT 12.5	3240	3180	2500	130	127	128
	S8SD4	LT 12.5	3550	3470	2500	142	139	140
	S091B17	LT 12.5	3120	3120	2500	125	125	125
Zinc	S5SD1	422	2100	1980	1000	148	139	144
	S091B172	32.9	1340	1330	1000	130	129	130
	S8SD4	87.3	1620	1620	1000	149	149	149
	S091B17	40.9	1410	1410	1000	135	135	135

## 3.2 PRECISION

Precision is defined as the relative percent difference between duplicate samples. Relative percent difference (RPD) is defined:

RPD =  $100 \times (D1 - D2)/[(D1 + D2)/2]$ RPD =Relative Percent Difference

D₁ =Characteristic Sample

D₂ =Duplicate Sample

The agreement between matrix spikes and matrix spike duplicate samples was utilized to assess laboratory precision. Analytical data are checked before acceptance into IRDMIS for adequate precision based on matrix spike/matrix spike duplicate results. Field duplicates assess the precision of field sampling techniques and spatial variability of contamination. RPD for field duplicates will also be affected by the precision achieved in the laboratory. Environmental variability decreases the degree of precision possible between field duplicates over the precision that is expected from laboratory duplicates.

Two groundwater matrix samples were used to assess the degree of precision achieved for field duplicate sample collection. Not all analytes were detected in these duplicates. Detected analytes are presented in Table E-4.

Table E-4. Degree of Precision — Groundwater

Element/Compound	SAMPLE NOS.	RPD (%)
Nitrate	91B15/91B15D	5.8
Nitrate	91B18/91B18D	18.0
Acetone	91B15/91B15D	5.7
Acetone	91B18/91B18D	
Lead	91B18/91B18D	16.2
Lead (lab duplicate)	91B18D	3.5
Aluminum	91B18/91B18D	5.0
Barium	91B18/91B18D	4.9
Calcium	91B18/91B18D	2.4
Cobalt	91B18/91B18D	16.4
Chromium	91B18/91B18D	25.0
Copper	91B18/91B18D	0.0

The RPD was relatively high for several analytes, i.e., barium, chromium, potassium, magnesium, and manganese, indicating that a greater environmental variability exists for the soil matrix, and perhaps a greater degree of variability is introduced through sampling the sediment matrix.

There were no soil matrix field duplicate samples collected to assess the degree of precision achieved between field duplicates.

A limited number of samples were available to assess the precision between field duplicates. In general, the relative percent difference between field duplicates was considerably higher (lower precision) than between lab duplicates indicating a considerable degree of environmental variability.

## 3.3 REPRESENTATIVENESS

Representativeness is defined as the degree with which the data collected accurately and precisely characterize the media being sampled. Sampling protocols specified in the field sampling plan were designed to ensure the collection of representative samples. Blank samples were collected to assess the impact of sample collection, preparation, and decontamination procedures on analytical results. Trip blanks, consisting of laboratory reagent water placed in VOC sample containers, accompanied each shipment of samples for VOC analysis to determine if contamination detected may have been introduced during sample handling, shipment, or storage.

Equipment rinse blanks were prepared by pouring analyte-free water through a decontaminated sample collection device and collecting the water in sample containers. Equipment rinse blanks were analyzed for parameters similar to those of the related samples collected by the sampling device.

Fourteen rinse blanks were collected and analyzed. The following elements and compounds were detected in equipment rinse samples: Al, Ba, Ca, Fe, Mn, Pb, TOC, TRCLE, and Zn. Aluminum was detected in the majority of the rinse samples at concentrations between 157 and 276  $\mu$ g/l. Calcium was detected in all samples at concentrations between 3370 and 9480  $\mu$ g/l. Zinc, manganese, barium, and iron were detected in multiple samples at maximum concentrations of 847, 44.2, 66.5, and 219  $\mu$ g/l, respectively. Lead, TOC and TRCLE were each detected in one rinse sample at 4.28, 9.51, and 5.3  $\mu$ g/l respectively. Additional equipment rinse sample analyses included: four for PCBs, four for explosives, and nine for BNAs. No contaminants were detected by these analyses.

All analytes detected in rinse blanks were also detected in the corresponding environmental samples. Most of the contamination found in CQC rinse blanks is inorganic and is presumably the result of residuals remaining on field equipment after decontamination. Levels detected are very low and are considered to be unlikely to influence subsequent samples to an unacceptable degree.

Deviations from work plan requirements were noted and accounted for. Upon completion of this process, analytical results in the IRDMIS data base were compared to those required by the chain of custody to establish that results for all samples taken were indeed in the data base. The result of this process is summarized in Table E-7. Completeness of the suites of analyses performed was confirmed in the generation of Tables 5-5 through 5-9 of the ESI report. In the course of this process, deficiencies in the IRDMIS data set were noted.

Based on this process, the following are established:

- All differences between samples required in the work plan and those actually collected in the field are accounted for by decisions made as a result of field conditions, or inability to locate a SWMU site.
- In some cases, samples were collected and analyzed in excess of work plan requirements (i.e., more samples were collected than the minimum required, or analyses not specified were performed).
- In only two cases were an analysis or suite of analyses required by work plan and chain of custody not reported by the analytical lab in IRDMIS: Pesticides/PCBs for groundwater sample number W2-17 and TOC for subsurface soil sample number 91B12.
- The following required correction in the IRDMIS Data Base:

# Media File Code: CSO

- Site ID number <u>91B02</u> with Field Sample numbers S091B12 and S091B12C should read <u>91B12</u>.
- Site ID numbers S14S01, S14S02, S14S03, S14S04, S15S01, S15S02 with Site Type BORE should read SURF.
- Site ID number <u>S10B1</u> with Field Sample numbers S10B11-C, S10B12-C, S10B13-C, S10B14-C, and S10B16-C should read <u>91B11C</u>. In addition, all site ID's labeled <u>91B11</u> should read <u>91B11C</u>.
- Field Sample Number S10B11-C with Test Name NIT and Depth reading <u>0.500</u> should read <u>0.00</u>.
- Site ID number 91B11D with Field Sample number S091B110 and depth <u>0.500</u> should read <u>0.00</u>.
- For consistency and to facilitate computer searches of the database, all Sample ID and Field Sample numbers containing the letter "O" should read the numeral zero, "0".

# Media File Code: CSE

- Site ID numbers S27S01 and S27S02 should be moved to <u>Media File Code CSO/Site Type SURF.</u>
- Site ID number S35S01 should be moved to Media Code CSO/Site Type SURF.

# Media File Code: CGW

Site ID number 91B23 with Depth reading 8.00 should read 6.00.

These corrections have been made.

Table E-7 (Continued)

—	ENVIRONMENTAL MEDIA	NUMBER OF SAMPLES		75L 700		SVOC		Ħ	7	T0C	NITRATES		TAL		TCL PEST/ PCBs	EXPLOSIVES	
ତ	GROUNDWATER	2-2-3	-	2-2-3	-	2-2-3	-				2.2.3	-					
ಬ	SURFACE WATER																
ೲ	SUB-SURFACE SOIL	10-6-6	7					2-2-3	_		10-6-6	7					
S	SURFACE-SOIL	2-2-3	-					2-2-3	_								
S	SEDIMENT																
ō	GROUNDWATER	2-2-5		2.2.2		2-5-2					2-2-5		2-5-2			2-2-2	
S.	SURFACE WATER																
<u>s</u>	SUB-SURFACE SOIL	10-8-8	×					2-5-2					10-8-8	×		10-8-8	×
Ø	SURFACE-SOIL	4-4-4						4-4-4					4-4-4			4-4-4	
S	SEDIMENT																
9	GROUNDWATER	2-2-3	-	2-2-3	-	2-2-3	-				2-0-3	Μ,	2-2-3	_		2-2-3	-
S	SURFACE WATER																
Ö	SUB-SURFACE SOIL	10-4-4	٦					2-4-4	Ľ.		-		10-4-4			10-4-4	٦
Ś	SURFACE-SOIL	2-2-2						2-2-2					2-2-2			2-2-2	
S	SEDIMENT	2-2-2						2-2-2					2-2-5			2-2-2	
g	GROUNDWATER	2-2-2		2-2-2		2-2-2					2-0-2	Σ	2-2-2			2-2-2	
S	SURFACE WATER															-	
ီ	SUB-SURFACE SOIL	2-3-4	z	2-3-4	z	2-3-4							2-3-4	z		2.3.4	z
တ	SURFACE-SOIL	2-2-2							-				2-2-2			2-2-2	
_ <u>~</u>	SEDIMENT	1-1-1											<del>-</del>			1-1-1	

# Table E-7 (Continued)

- PCBPPesticide analysis of sample not reported in IRDMIS.
  Site of SWMU 8 not located; no Work-Plan-required-samples taken.
  Site of SWMU 8 not located; no Work-Plan-required-samples taken.
  Four sediments samples collected near presumed location of SWMU 8; not required by Work Plan; one sample was split by analytical lab and duplicate analyses were performed.
  Samples from 6 depths at falled well 91811 was completed and are labeled 91811). Wells AAD14, AAD15, 2-19 and 2-20 were not serviceable or not located.

  - Analyses requested on Chain of Custody in excess of Work Plan requirements.

- Samples taken at 6 depths in boring 91B12 vice 5 required by Work Plan.

  TOC analysis on sample 91B12 not included in IRDMIS database.

  Lab replicate or field duplicate on one sample.

  Shallow depth of water table resulted in 2 fewer samples at each of wells 91B14 and 91B15 than maxima required by Work Plan.

  Shallow water tables at borings 91B16 and 91B17 resulted in fewer sample at each than maximum required by Work Plan.

  Only one sample taken at boring 91B18 and 3 at 91B19 because of shallow water table.
- Analysis for NIT, not required by COC, performed by Lab.
- One sample in excess of Work Plan requirement taken at boring 91B21. One field duplicate was also taken at 91B21. Two samples each collected from 91B22 and 91B23.
  - One sample location was found to be dry and no sample was collected.

# REFERENCES

USATHAMA (1991) User's Manual The Installation Restoration Data Management Information System, Potomac Research, Inc., Aberdeen Proving Ground, MD.

Jacobs Engineering (1991) Anniston Army Deport Quality Control Plan, Washington, D.C.

U.S. EPA (1988) Functional Guidelines for Evaluating Organics Analyses.

U.S. EPA (1988) Functional Guidelines for Evaluation Inorganics Analyses.

USATHAMA (1990) Quality Assurance Program, Aberdeen Proving Ground, MD.

Appendix F
Surface Soil Data

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Pange: 01-!AN-01

	Data	Quals	; ; ;																										¥		¥	¥	۷	2 S2	<b>:</b>	<b>×</b>	:	¥	: ¥		×	<b>~</b> :	2
	Flag .	Codes	-											<b>-</b> -																													
	Unit	Meas.	 090	990	99n	350	200	9 5	3 5	990	990	990	99N	99N	990	ngg	ออก	99N	99N	ngg	ngg	990	990	99N	99N	990	990	99N	990		ยยก	ออก	9	990	] ]	DDO		UGG	990		9 0	99 0	อกก
		Conc.		5130	9300	07.0	120	7	7.5	508	20	12.5	82.9	12.7	21.4	.25	.427	9.59	4.75	3.38	19.6	15.1	1300	12.4	10400	8.70 E -2	1.01	1.22	.25	. !	.251	۲٠.	007	1.27	i i	2.5		٠.	2.5	1	S	.5. 15.	<b>3</b> :
	Meas.	Boot.	Ş		-	<u>-</u>		_	; 5	i	LT	=	5	Q		ב	ב			ב			į.	ב		-1	5	ב			<u>ا</u> ۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔	5		: 5		ב		רו	=		<u>.</u> :	<b>=</b>	<u>.</u>
01-JAN-91 24-OCT-94		Analyte Description	Nitrite, nitrate - nonspecific	Aluminum	I ron	Magnesium	Manganese	Motybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Z1nc	Calcium	Selenium	Total organic carbon	Mercury	Silver	Cyanide	2,4,6-Trinitrotoluene / alpha-	11 IIII trototuene	Z,4-Dinitrotoluene	trinitro-1.3.5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	Z,Z-BIS[(nltrooxy)me*	Z-Nitrotoluene	135-Trinitrobenzene	
Sampling Date Range: 01-JAN-91	:	CAS No.	14797-55-8	7429-90-5	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2440-05-7	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7-14-0447	7440-43-9	7440-47-5	7-84-0-48-4	7440-50-8	7-79-044/	7,440-66-6	7-07-0447	7-65-7911	, ,	7459-97-6	7440-22-4	2/-12-2 110 0/ =	118-96-7	121-17-2	121-14-2	1 20 131	2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5	C-CZ-08	00-08-1	99-35-4	
Sampling	Meth/	Matrix																						:			3007/2																
	Lab	Lab Anly. No.	PC 37575																						PC 3/3/3																		
	Sample	vate	03-FEB-92																					20 272 20	U3-FEB-92																		
	4	undag	0.5																					Ç																			
	Field Sample Mo	Sample NO.	S10S01																					610001	2102015																		
	Site	2 :	S10S01																																								
	Site	:	SURF																																								

^{* -} Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Field Sample No.

Site Site Type ID ---- ----

S10S0Z

S10S02

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

Data Quals	~ 7	<b>2</b>																								¥		¥	¥		¥	¥		¥		¥	¥		¥	¥
Flag Codes												<b>-</b> -														ပ														
Unit Meas.	990	กรอ	990 Ngg	990	99n	990	9 9 9	990	000	990	990	99n	99n		990	n 0	990	9 5	990	000	000	ngg	990	nee	990	nge		DBU	DBU		990	990		990		99N	990		nee	nee
Conc.	.249	4.14	3650 9600	20.4	762	400	7 4	236	20	12.5	82.9	12.7	24.7	<i>c</i> ?	774.	, s	, 8 8	20.8	28.9	1910	12.4	17900	8.70 E -2	1.01	1.22	1.28		.251	.51		665.	1.27		2.5		٠.	2.5		.505	.251
Meas. Bool.	55	_				-	<u> </u>	<u>.</u>		1	5	2		_ : :	5						ב		7	ב	Ľ			11	ב		ב	L		5			=	!	֖֖֖֖֓֞֡֞֜֞֞֞֞֞֜֞	<u>-</u>
Analyte Description	1,3-Dinitrobenzene	4-Nitrite, nitrate - nonspecific	Aluminum Iron	Lead	Magnesium	Manganese	Niokel Winkel	Potassium	Sodium	Thatlium	Antimony	Arsenic	Barium	Beryllium			Copper	Vanadium	Zinc	Calcium	Selenium	Total organic carbon	Mercury	Silver	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	Z,Z-Bis[(nitrooxy)me*	Z-Nitrotoluene	3-Nitrotoluene
CAS No.	99-65-0	14797-55-8	7429-90-5 7439-89-6	7439-92-1	7439-95-4	7/20-08-7	0-20-0772	7440-09-7	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-59-5	7-14-044/	7440-45-9	7-87-077/	7440-50-8	7440-62-2	9-99-0442	7440-70-2	7782-49-2		7439-97-6	7440-22-4	57-12-5	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		2-77-88	99-08-1
Meth/ Matrix	LW32/S	s/ 66																							KY04/	LW32/S														
Lab Lab Anly. No.	37575	37583																				37583																		
Lab A	•	5 																				<u>ج</u>																		
Sample Date	03-FEB-92	03-FEB-92																				03-FEB-92																		
. Depth	0.5	0.5																		_	-	0.5																		

S10S02

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO

24-0C1-94	
01-JAN-91	
Range:	
ing Date	
Sampling	

Data	edats	<b>2</b>	×																									¥		¥	¥		¥	¥	:	¥		⊻ :	¥	¥
Flag												<b>-</b>											<b>-</b>	<b>;</b>																
Unit	1000	990 000	nge Nge	99n	990	990	990	99N	99n	990	990	ngg	990	กก	990	251	990	ออก	nee	ngg	nee	UGG	UGG	990	990	990	990	990		ออก	DDO		ngg	nee		OGG		990	กรา	nee
Juci		.249	9600	27000	10 517	115	. 4	16.4	1110	50	12.5	12.7	12.2	70%	17.9	16.1	30.3	70	56.1	566	12.4	1640	-		8.70 E -2	1.01	1.22	.25		.251	.51		667.	1.27		2.5		۲. د	C•3	.505
Meas.		: 5 :	_	<u>.</u>	5		=			Ľ	=	Q		-	_						LŢ		Ş	웆		<u></u>	ר	5		LT	ב		_	-1		5		5:	5	LT
Analyte Description	1.3 5-Trinitrohenzene	1,3-Dinitrobenzene	Aluminum	I ron	Magnesjim	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Arsenic	Barium Recvitium	Cadmin	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Total organic carbon	Nitrite, nitrate - nonspecific	Antimony	Mercury	Silver	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	<pre>2,6-Dinitrotoluene DEIN / Dontporthrital totromitroto /</pre>	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene
CAS No.	99-35-4	99-65-0	7429-90-5	7,39-69-6	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2440-09-2	7440-23-5	7440-28-0	2-02-0772	7440-39-3	2440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	2440-66-6	7440-70-2	7782-49-2		14797-55-8	7440-36-0	7439-97-6	7440-22-4	57-12-5	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2 78-11-5		88-72-2
Meth/ Matrix	LW32/S		JS14/S																			s/ 00	s/ 66	/ 66	JB06/	JC02/S	KY04/	LW32/S												
Lab Lab Anly. No.	PC 37583		PC 37486																			PC 37486																		
Sample Date	03-FEB-92		04-FEB-92																			04-FEB-92																		
Depth	0.5		0.5																		L	۲:۵																		
	; -		o																			_																		
Field Sample No.	\$10802		S11S01 0.																			S11501 U																		

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

Data Quals	1	~ ;	۷ ک	∠						×		¥	×		¥	¥	:	¥		×	×		⊻.	¥	¥	×	¥																	
Flag Codes	t : : :				<b>;</b> —	<b>-</b>																							<b>-</b>														٠	_
Unit Meas.	 NGG	55N	ם מפ	990 Ngg	990	990	nec	DOU	DOO	DDO		990	ภูติด		ออก	ngg		กลูด		ออก	nee	;	99n	กติด	ngg	99N	99N	DOG	990	990	990	990	990	DDO	nee	990	990	991	201	500	200	550	200	กุกก
Conc.	.251	52.	2,5	1570	_	82.9	8.70 E -2		1.22	53:		.251	.51		667	1.2/	ı	2.5	ı	v.	2.5	1	565	.251	.25	.249	.245	1020	-	8.70 E -2	1.01	7200	26000	10	544	24.1	4	7.5	877	2	13.0	2.5	12.7	16.1
Meas. Bool.		5:	<u> </u>	5	QN	9	רַ	-	_	5		-1	-1		_	-	!	5		L	<u>-</u>	ļ	5!		5	ב	ב		Q	-	ר			-1			<u> -</u>	<u>-</u>	ì	-	<u>.</u> .	<u>.</u> .	<u>.</u>	Ş
Analyte Description	3-Nitrotoluene	1,3,5-Trinitrobenzene	/ J - D in the Openizene	Total organic carbon	Nitrite, nitrate - nonspecific	Antimony	Mercury	Silver	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	letryl / N-Methyl-N,Z,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,42-bis[(iii ti 00A)/iiie	Z-N1trotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene		Nitrite, nitrate - nonspecific		Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Codium	147   1: m	A1+10	Ancing	Al sellic
CAS NO.		99-35-4	0-00-00		3 14797-55-8		7439-97-6		57-12-5	118-96-7		121-14-2	121-82-4		7691-41-0	4/4-42-8	1	0-69-66		606-20-2	78-11-5	1	7-71-88	-80-66	99-35-4	0-59-66	0-66-66				-		7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-0572	5-20-0772	7//0-28-0	0 07 0447	0-96-0447	1 00 011
Meth/ Matrix	LW32/S			s/ 00	S/ 66	66	/908r	JC02/S	KY04/	LW32/S																		8	% 66	JB06/	JC02/8	JS14/S												
Lab Anly. No.	PC 37486			PC 37494																								PC 37516																
Sample Date	0			04-FEB-92																								0.5 04-FEB-92																
Depth	0.5			0.5																								0.5																
Field Sample No.	\$11501			S1150R																								s11s02																
Site Site Type 10	S																											<b>S11</b> S02																

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN)

	Data Quals	! ! !									7	:	¥	¥	۷	۷ ۷	4	<b>×</b>		¥ :	¥	×	: <u>~</u>	· 👱	¥	*													
	Flag Codes	:																																		<b>-</b>			
	Unit Meas.	ngg	99N	990	nec	990	990	990	ออก	990	990	 	99N	990	991	990	?	990		ออก	nee	nee	990	990	990	กดด	990	99n	ากก	990	990	990	990	990	990	990	990	990	อยูก
	ំ	; <b>-</b>	7	. 4	<b>4</b>	œ	9	<b>4</b>		<b>4</b> (	ı		_		0	. ~						ľ	_		0	<u>г</u>	0	00		α	3	2			2	2	M (	<b>.</b> .	<b>.</b> 9
	Conc.	10.4	.411	21.	10.4	20.	43	8,	109		.25		.251	.51	07	1,27		2.5		יי.	<b>6.5</b>	.505	.251	.25	.249	.245	6100	D/2	285	207 87 8	5 -4	12.	594	20	12.5	12.	8.83	, you	19.6
	Meas. Bool.	! ! !	=	i				!	ב ב	<u> </u>	: 5		<u>_</u>	ב	_	; =	i	11		5:	<u>;</u>	5		디	5	ב		<u>.</u>	_		-	i		=	<u>_</u>	2			3
File Type: CSO ate Range: 01-JAN-91 24-OCT-94	Analyte Description	Barium	Beryllium Cadmium	Chromium	Cobalt	Copper	Vanadium	Z10C	Calcium		2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	<pre>RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1 3 5-triazine *</pre>	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N.2.4.6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate		<pre>// PentaerythFitot tetranitrate / 2,2-Bis[(nitrooxy)me*</pre>	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Aluminum	I ron	Magnesium	Manganese	=	Nickel	Potassium	Sodium	Thallium	Arsenic	Barium	מין אַ נְינִיתְּשׁוּ	Cadin dii Chromium
_	CAS No.	7440-39-3	7440-41-7	2440-47-3	7440-48-4	7440-50-8	2-29-044/	0-00-04/	7-07-044/	57-12-5	118-96-7	;	121-14-2	121-82-4	2691-41-0	479-45-8		55-63-0		606-20-2	C-11-02	88-72-2	99-08-1	99-35-4	0-69-66	0-66-66	7429-90-5	7/30-02-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	7440-58-2	7440-59-5	2/707/2	7440-47-3
Sampling	Meth/ Matrix	JS14/S								KY04/	LW32/S																JS14/S												
	Lab Anly. No.	37516																									2/494												
	Lab A	5																									D D												
	Sample Date	04-FEB-92																									04-FEB-92												
	Depth	0.5																								(	ς.								,				
	Field Sample No.	S11S02																								4000	SIISUK												
	Site	S																									S I S UK												
	Site Type	SUR																																					

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site
Type ID
SURF S1150R

**S14**S01

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-001-94

	; ; ;																															7	۷	7	۷ ۷	۷	7	۷ ۷	۷	7	:	¥	
Flag Codes	:																																										
Unit Meas.	000	ngg	990	990	DDU	000	990	990	990	990	990	990	990	990	990	990	990	990	1166	990	991	99	550	990	990	990	200	990		200	500	550	2	991	201	990	991	991	9	ยยก	) )	000	
Conc.	13.5	29.4	47.3	140	12.4	3430	18000	10	138	36.4	6.36	11.4	245	20	12.5	82.9	12.7	4.87	531	427	12.3	8 54	7 5	4.02		145	5 5	3060	8 70 5 - 2	ı		22:- 22:-	:	251	. 12	?	101	1 27	1	2.5	<u>:</u>	5.	
Meas. Bool.	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!				-	I		;	_	;				-	5	: <b>-</b> -	S	: -	i	17	;						-	;	-		; <u>-</u>	; <u>:</u>	;	_	; <u>-</u>	;		-	;	17	į	Ľ	
e De	Cobalt	Copper Vanadim	Zinc	Calcium	Selenium	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Bervllium	Cadmium	Chromium	Cobalt	Conner	Vanadim	Zinc	Calcium	Selenium	Total organic carbon	Marciny	Silver	Civici	2 4 6-Trinitrotoliane / alpha-	Trinitrotoluene	2.4-Dinitrotoluene	RDX / Cyclonite / Hexabydro-1 3 5-	trinitro-1 3 5-triazine *	Cvclotetramethylenetetranitramine	Tetro! / N-Metho!-N 2 & 6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1.2.3-Propanetriol	trinitrate	2,6-Dinitrotoluene	
CAS No.	7440-48-4	7440-50-8 7440-62-2	9-99-0442	7440-70-2	7782-49-2	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-05-2	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	2440-47-3	7440-48-4	2440-50-8	7440-62-2	9-99-077	7440-70-2	2-67-2822	1	7-20-0272	7-62-077	57-12-5	118-96-7		121-14-2	121-82-4	!	2691-41-0	479-45-8		55-63-0		606-20-2	C-11-9/
Meth/ Matrix						JS14/S																						S/ 00	1806/S	1002/8	S/70XX	LW32/S											
Lab Lab Anly. No.	PC 37494					PC 34541																						PC 34541															
Sample Date	04-FEB-92					31-JAN-92								•														31-JAN-92															
Depth	0.5					0.5																						0.5															
Field Sample No.	S1150R					S14S01																						\$14501															

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO

	Data	Quals	⊻	2	۷ ۷	د <i>د</i>		<u>.</u>	!																										<b>×</b>	``	2 <b>3</b> 2		¥	ϫ	×	7	٤
	Flag	Codes																			<b>-</b>																						
	Unit	Meas.	DDN	9	000	990	991	99n	ngg	990	DDD	990	DOO	ngg	DOO	99 <b>0</b>	990	990	990	990	990	99N	990	990	990	OCC	990	990	000	000	990	990	99 :	550	990	0011	990		990	990	nee	1166	) )
	C	Conc.	2.5	ŭ	. 25.	įĸ	249	.245	8.70 E -2		00069	10	138	39.7	<b>7</b>	7.5	142	50	12.5	82.9	12.7	11.7	.25	.427	8.26	2.5	6.19	17.5	18	7.24	12.4	5720	1.01	1.22	9.	25.1	.51		667.	1.27	2.5	٢.	1
	Meas.	Bool.	17	<u>-</u>	: <u>:</u>	<u> </u>	; =	; <b>'</b>	: '			=	L		<u>_</u>			11	ב	-1	Ş		[1	ב		רו					<b></b>		<u>-</u> !	_ :	5	<b>)</b>	: =		<u>-</u>	5	1		;
ate Range: 01-JAN-91 24-0CT-94	Analyte Decreintion	Analyte Description	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me* 2-Witrotolugae	Z-Nitrotoluene	1.3.5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thattium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Total organic carbon	STIVE	Cyanide 3 / / Taimitanthinam / alak	<pre>c,4,0-ifinitrototuene / alpha- Tribitrotoluene</pre>	2.4-Dinitrotollene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	letryl / N-Methyl-N,2,4,6-	Nitroglycerine / 1,2,3-Propanetriol	trinitrate 2,6-Dinitrotoluene	
Date Range:	CAS NO	יייייייי	78-11-5	88-72-2	99-08-1	99-35-4	0-69-66	0-66-66	7439-97-6	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7459-96-5	7459-98-7	7440-02-0	7-40-04-7	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	7440-66-6	7-07-0447	7-64-7811		1440-22-4	118-04-7	1-04-011	121-14-2	121-82-4		2691-41-0	4/9-45-8	55-63-0	606-20-2	
Sampling D	Meth/	Mac: 77	LW32/S						3806/S	JS14/S																						S/ 2001	3/7075	0/62/11	C / 3CM7								
	Lab Antv. No.		PC 34541						PC 34550																							PL 3455U											
	Sample Date		31-JAN-92						31-JAN-92																						74	34-NAL-16											
	Depth		0.5						0.5															-	-						•												
	Field Sample No.		S14S01						S14S02																						600/10	200416											
	Site ID	: ;	S14S01						\$14802																																		
	Site Type		SURF																																								

* - Analyte Description has been truncated. See Data Dictionary

Site Site Type ID

S14S03

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-001-94

Data Quals	· ×	¥	× ×	2 34	2 <b>5</b> 2	:																										×		×	¥		×	¥		¥	2	∠
Flag Codes	; ; ;																	⊢									<del>-</del>															
Unit Meas.	UGG	990	990 1100	991	990	990	990	UGG	990	990	UGG	nec	990	990	ngg	990	990	990	990	990	99N	990	990	990	990	OGG	990	ngg	990	990	990	ยยก		บอด	990		990	990		UGG	7	חחח
Conc.	2.5	.505	.251 25	576	.245	8.70 F -2	ı	14000	10	138	29.5	7	7.5	228	50	12.5	82.9	12.7	4.87	.25	.427	10.3	5.92	15.6	27.1	6.04	128	12.4	5840	1.01	1.22	.25		.251	.51		667.	1.27		2.5	u	·
Meas. Bool.		בן בו	<u>-</u> -	: <u>-</u>	: 5	i	i		ב	LI		11	17		ב	Lĭ	17	Q	Ξ	רי								L		1	L	[]		-1	1			ב		ב	-	<u>.</u>
Analyte Description	PETN / Pentaerythritol tetranitrate / 2.2-Bis[(nitrooxv)me*	2-Nitrotoluene	5-Nitrotoluene 135-Trinitrobenzene	1.3-Dinitrobenzene	4-Nitrotoluene	Mercury	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Total organic carbon	Silver	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	ā	Nitroglycerine / 1,2,3-Propanetriol	trinitrate 2 6-Dinitrotoluene	בים הוויו סיסותפופ
CAS No.	78-11-5	88-72-2	99-35-4	0-69-66	0-66-66	7439-97-6	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-05-2	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7-14-0447	2440-43-9	2440-42-3	7440-48-4	7440-50-8	7440-62-2	9-99-0552	7440-70-2	7782-49-2				118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0	6-06-20	)
Meth/ Matrix	LW32/S					3806/S	JS14/S																						s/ 00	JC02/S	KY04/S	LW32/S										
	PC 34550					PC 34568																							PC 34568													
	0.5 31-JAN-92					0.5 31-JAN-92															_								0.5 31-JAN-92													
	\$14502					S14S03																							\$14803													

* - Analyte Description has been truncated. See Data Dictionary

24-001-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Fange: 01-JAN-91

	Data	Quals	<b>3</b> 2	ž	2 <b>3</b>	<u> </u>	: ¥	· ¥																										¥	:	⊻ :	~	7	2 <b>3</b> 2	:	¥	×
	Flag	codes																		-	-																					
	Unit	Meas.	990	991	1166	000	990	990	990	DOG	990	990	กิดด	990	990	ם מ	990	900	100	)     	100	991	990	990	990	บออก	990	990	99N	99N	990	99N	99n	nee	9	3 3	กุกก	1100	990		990	DDN
	Juci		2.5	505	. 251	52:	. 249	.245	8.70 E -2	5260	24000	13.6	219	9,79	8.46	280	50.	12.5	82.0	12.7	2,42	.828	.427	14.2	12.9	30	43.3	92.2	155	12.4	3360	1.01	1.22	£7:	ניזר		· .	667	1.27		2.5	.5
	Meas.		1.1		, <u></u>	5	ב	<u>_</u>	<u>_</u>								_	; <u> </u>	; =	; <b>2</b>	<u></u>		5							5		_ :	<u>.</u>	_	-	ב ב	<u>.</u>		: 5		H	17
Date Range: 01-JAN-91 24-OCT-94	Analyte Description	יייייייייייייייייייייייייייייייייייייי	PETN / Pentaerythritol tetranitrate /	2,c-bist(nitrodxy)me 2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Aluminum	Iron	Lead	Managnes I uill	No legal rese	Nickel Nickel	Potassium	Sodios	Thattium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Соррег	Vanadium	Zinc	Calcium	Selenium	Total organic carbon	SILVer	cyanide 2 / k-Inimitantelines / Pieks	z,4,0-Irinitrotoluene / alpha-	1 Intrototuene 2 4-Dibitrotoluene	RDX / Cyclonite / Hexabydro-1 3 5-	trinitro-1.3.5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	2,6-Dinitrotoluene
	CAS No.		78-11-5	88-72-2	99-08-1	99-35-4	0-69-66	0-66-66	7439-97-6	7429-90-5	7439-89-6	1-26-6547	7/30-06-5	7,30-08-7	7440-02-0	2-60-0572	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	2440-42-3	7440-48-4	7440-50-8	7440-62-2	9-99-044/	7440-70-2	2-65-28//	, , , , , , , , ,	7440-22-4	118-04-7	1-06-011	121-14-2	121-82-4	!	2691-41-0	479-45-8		55-63-0	606-20-2
Sampling	Meth/ Matrix		LW32/S						3806/S	JS14/S																					s/ 00	3,007/3	1132/6	LW36/3								
	Lab Lab Anly. No.		PC 34568						PC 34576																					76376												
	Sample Date		31-JAN-92					;	31-JAN-92																					21- 1411-02	36 - NWD - 1 C											
	Depth	. !	0.5						0.5														. •							c												
	Field Sample No.		S14S03					,	S14S04																					c1/co/.	5											
	Site ID	i	S14S03					,00,10	514504																																	
	Site Type	:	SURF																																							

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site Type ID ---- ---- SURF S14S04

\$15501 \$15502

\$16801

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0C1-94

Data Quals	¥	¥	¥	¥	¥	¥																																				
flag Codes	; ; ;								۵							-				,_																						
Unit Meas.	ngg	nee	990	990	990	990	nee	ngg	9 <b>9</b> 0	990	990	990	990	990	990	000	บบบ	990	990	990	9911	9911	9911	991	991	550 1	DB0	550	990	990	B 251		990	550	9	990	990		990		DBO	000
Conc.	2.5	.505	.251	.25	.249	.245	28.3	108	107	0009	2 <b>6</b> 000	203	427	780	4	9.54	201	50	12.5	12.7	925	55	2.34	23.5	16.3	2.0	27.7	ξ. χ. γ.	242	10,	25.	)	.251			667.	1.27		2.5		₹.	2.5
Meas. Bool.		1	ב	רו	LT	ר									ב			-	ר	Ą			i							-	; <del> </del>	i	רַ	i <del>-</del>		-1	: -	·	_		11	ב
Analyte Description	PETN / Pentaerythritol tetranitrate / 2 2-Bis [fultroxylme*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene		lotal petroleum hydrocarbons	Total petroleum hydrocarbons	Aluminum	Iron	read	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Conner	Vanadium	7 inc	Calcium	Selenium	2.4.6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1.3.5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	<pre>PEIN / Pentaerythritol tetranitrate / 2,2-Bis[(nitrooxy)me*</pre>
CAS No.	78-11-5	88-72-2	99-08-1	99-35-4	0-59-66	0-66-66				7429-90-5	7439-89-6	1439-92-1	7459-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7-87-0772	7440-50-8	2-29-0572	9-99-077	2-02-07-2	7782-49-2	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0	,	606-20-2	78-11-5
Meth/ Matrix	LW32/S						s :	s/ on	s/ 00	JS14/S																					LW32/S											
Lab Lab Anly. No.	_								34533D																																	
Lab							2 G			2 2																																
Sample Date	31-JAN-92					i	51-JAN-92	7-NAU-10	,	01-FEB-92																																
Depth	0.5						ວ ເ ນໍາ			0.5																																
Field Sample No.	\$14804						S15S01	208618	;	S16S01																																

* - Analyte Description has been truncated. See Data Dictionary

Site Site Type ID ---- SURF S16S01

S16S02

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO

Sample Lab Meth/ Date Lab Anly. No. Matrix CAS No. Analyte Describ	Meth/ Matrix	Meth/ Matrix	CAS No.		Analyte Description	Meas.	7000	Unit	Flag	Data
92 PC 36587 1 W32 /S	36587 1,43278	1 W32 / S	. 8	88-72-2	2-Nitrotollens		. , ,		sanon	oddi s
			0-66	1-6	3-Nitrotoluene	<u> </u>	.251	990		
50-35-46 50-7-50	99-35	99-35	99-35	4.0	1,3,5-Trinitrobenzene	-1	.25	DDU		
0-59-66 0-60-60	-00-66	-69-66	6	<b>.</b>	1,5-Dinitrobenzene	ב ב	. 249	990		
s/	36587 00 /8	s/	77-77	-	4-Nitrotoluene Total petroleum hydrocarbons	_	545	990		
/ 66	/ 66	_	7440-3	0-99	Antimony	QN	82.9	990	<b>-</b>	
			7439-	9-26	Mercury	5	8.70 E -2	990		
JC0Z/S /440-22- KVO4/S 57-13-5	_	_	7440	7440-22-4 57-12-5	Silver	5 !	1.01	990		
• •	36609	• •	7,70	7,20-00-5	Cyanide Aliminim	_	1.22	99n		
2000	2/1/20	- • -	7439-	9-68	Iron		25000	990		
7439-	1439-	7439-	7439-	92-1	Lead		43.7	991		
7439-95-4	5-6572	1439-6	7439-9	75-4	Magnesium		799	990		
2-96-622	5-6272	5-6272	7439-9	9-5	Manganese		7100	990		
7-89-98-7	6-625/	439-9	7439-9	8-7	Molybdenum	LT	) • 4	990		
2440-05-0	2440-0	2440-0	2440-0	2-0	Nickel		84.4	000		
2-60-0772	7440-0	0-0472	2440-0	2-6	Potassium		177	990		
7440-23-5	7440-23	7440-53	7440-23	٠.	Sodium	11	50	990		
7440-28	7440-28	7440-28	7440-28	0	Thallium	П	12.5	บอก		
7,76 16 16 16 16 16 16 16 16 16 16 16 16 16	7440-38	7,10-38	7440-38	۰ ۲	Arsenic	9	12.7	990	⊢	
2//0//2	(440-5)	2-044/ 2//2	7/10-5	٠, د د د	Barıum		622	000		
0-27-0772 /-  h-0hh/	7-0772	7-07/2	7-0447	/ · · · · · · · · · · · · · · · · · · ·	Beryllum Sodmii m		2445	nee		
£-£7-0772	7-0772	7-0772	7-0772	7-7	Chromin	_	724.	990 188		
7-87-0772	7-0772	7-0772	7-0772	7-6	Cobs		0.0	חנה מיני		
8-05-0772	-0442	-0772	7440-	50-8	Copper		84.1	990		
7440-62-2	9-0772	9-0552	2440-6	2-2	Vanadium		7. 77	990		
9-074	9-0572	9-0552	9-0552	9-9	Zinc		161	990		
7440-70-2	2-0772	2-0772	2-0552	0-2	Calcium	17	109	990		
			7782-4	3-5	Selenium	L	12.4	000		
LW32/S 118-96-7			118-96-	~	2,4,6-Trinitrotoluene / alpha-	11	.25	990		
74 104	,, ,,,	* +C+	121 1/	,	Trinitrotoluene	1				
7-41-171	-61-171	-41-171	- 171	у.	Z,4-Dinitrotoluene	-1	.251	55N		
-28-121	-28-171	-78-171	-28-171	4	<pre>KDX / Cyclonite / Hexahydro-1,3,5- trinitro-1 2 5-trining *</pre>	-	.51	990		
0-17-1076	17-1076	17-1076	2401-7.1	c	C. 1111 C. 0 - 1, 0, 0 - C. 142 IIIE	,				
8-57-627	-57-627 -57-627	-57-627 -57-627	57-627 54-1607	⊃ α	<pre>Lyclotetramethylenetetranitramine Tetrol / N-Mothod N 2 / 4-</pre>	5:	.499	99n		
77-6-7	74-7-7-	`t_	1	5	totronitrooniling / Nitromits / *		1.27	990		
55-63-0	-55-63	55-63-	55-63	Ģ	Nitroalycerine / Nitramine / *	-		-		
					trinitrate	5		900		
606-20-2	606-2	2-909	909	2-0	2,6-Dinitrotoluene		٦.	990		
78-1	78-1	78-1	78-1	1-5	2 2-pio//mitmacythritol tetranitrate /	/ 11	2.5	990		
					Z,Z-Bis[(nitrooxy)me*					

* - Analyte Description has been truncated. See Data Dictionary

Field Sample No. 1

Site Site Type ID \$16503

\$16503

**S16S02** 

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO 74-001

24 - OC1 - A4		
Sampung Date Kange: UI-JAN-YI	,	
sampiling na		

Data Quals	1 1 4 1																																							
Flag Codes	f i 1 8			F	-												_																							
Unit Meas.	 090 080	000 1166	990	99n	ngo	990	NGG	990	990	990	990	990	990	990	ngg	990	ออก	990	990	990	UGG	990	990	990	ภูดูด	ngg	99 <b>n</b>	9 <b>9</b> 0		99N	990		บบ	UGG		990		ngg	NGG	
Conc.	.251	.25	.245	589	8.70 E -2		1.22	16000	20000	583	280	7	7.5	391	50	12.5	12.7	33.1	.25	.427	16.7	16.3	17.9	36.9	141	109	12.4	.25	:	.251	.51		.499	1.27		2.5	:	٠,	2.5	
Meas. Bool.		<u>-</u>	ב' ב	Ş	<u> </u>	1						17	: 5		ב	LT	9		LT	רַ						L	-1	רו			1.1		Ľ	ר		L L		-1	5	
Analyte Description	2-Nitrotoluene 3-Nitrotoluene	1,3,5-Trinitrobenzene 13-Dinitrobenzene	4-Nitrotoluene	Total petroleum hydrocarbons	Mercury	Silver	Cyanide	Aluminum		Machenia	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thattium	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	Z,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	<pre>2,2-B1S[(n)trooxy)me*</pre>
CAS No.	88-72-2 99-08-1	99-35-4	0-66-66	0-92-0772	7439-97-6	7440-22-4	57-12-5	7429-90-5	7639-69-6	7-50-0272	7439-96-5	7439-98-7	7440-02-0	2440-09-7	7440-23-5	7440-28-0	7440-38-2	7440-39-3	7440-41-7	2440-43-9	7440-47-3	7440-48-4	7440-50-8	2-79-055	9-99-047	7440-70-2	7782-49-2	118-96-7	•	121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5	
Meth/ Matrix	LW32/S			s/ 00 8	3/908L	JC02/S	KY04/S	JS14/S																				LW32/S												
Lab Anly. No.	PC 36609			36609			1	36617																																
Lab	P D			ည				ပ																																
Sample Date	01-FEB-92			01-FEB-92				01-FEB-92																																
. Depth	0.5			0.5			•	0.5																																

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO

24-0C1-94	
Sampling Date Range: 01-JAN-91	

Data Quals	:																																											
Flag	!						<b>-</b>															-																						
Unit Meas.	991	990	990	990	990	99N	990	99N	991	9911	990	990	990	991	99	901	9 2	3 5	90	200	ָ מפּרַ	nee	nec	DOU	nec	nec	990	990	991	990	991	991	990	, ,	990	000		nee	990		nec		990 000	
Conc.	505	.251	.25	.249	.245	460	82.9	8.70 E -2		1.22	9200	24000	64.1	338	511	: 7	7.5	566	200	5,00	5.51	12.7	23.6	.42	.427	13.3	15.8	20.9	40.5	73.4	109	12.4	.25	į	.251	.51		667.	1.27		2.5	ı	2.5	
Meas. Bool.	-	: =	_	5	Ľ	=	₽	ב	<u> </u>	-						-	; <u>-</u>	i	-	בֿ בֿ	<u>.</u>	2			ב							i 🗀	; <b>;</b>		5	-		-1	Ľ		_		: 5	
Analyte Description	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Total petroleum hydrocarbons	Antimony	Mercury	Silver	Cyanide	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallim		Arsenic	Barıum	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	2 4-Dimitrate	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*
CAS No.	88-72-2	99-08-1	99-35-4	0-59-66	0-66-66		7440-36-0	2439-97-6	7440-22-4	57-12-5	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	27770-38-3	7-06-0441	2-40-044/	7-14-044/	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	2440-66-6	7440-70-2	7782-49-2	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0	606-20-2	78-11-5	
Meth/ Matrix	LW32/S					s/ 00	/ 66	JB06/S	JC02/S	KY04/S	JS14/S																						LW32/S											
	PC 36617					PC 36617					PC 36595																																	
Sample Date	01-FEB-92					01-FEB-92					01-FEB-92																																	
Depth	0.5				(	0.5 0					0.5													-																				
Field Sample No.	\$16803				2007	\$108013				1	S16S04																																	
Site Site Type ID	S										\$1 <b>6</b> \$04																																	

* - Analyte Description has been truncated. See Data Dictionary

Site Site
Type ID

S17S01

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

Data Quals	:								•																																		
Flag Codes	:					<b>-</b>														-	•																						
Unit Meas.	nee	990 000	990	UGG	DOG	990	99N	ngg	nee	nee	990	ออก	990	990	nge	ngg	990	990	990	990	991	991	500	กกก	กรา	99N	99N	990	990	990	nee	990	DDO		OGG	990		990	990		DOO		nec
Conc.	505	[5:2: [5:2:	. 249	.245	658		8.70 E -2	1.01	1.22	3010	2000	41	265	119	4	24.6	487	50	12.5	12.7	0 25	67.6	70/	124.	7.71	19.6	30	72.6	212	109	12.4	1.22	.25		.251	.51		667.	1.27		2.5		z.
Meas. Bool.	5	: 5	ב	ב		욷	ב	-	רַ						רו			5	<u> </u>	9	!		-	5							Ľ	٦	ב		ב	-1		ב	5		ב		Ľ
Analyte Description	2-Nitrotoluene	3-Nitrotoluene 1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Total petroleum hydrocarbons	Antimony	Mercury	Silver	Cyanide	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Arsenic	Raritm	Bri-Lim	Codmitim	נמכוונים!		Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene
CAS No.	88-72-2	99-35-4	0-59-66	0-66-66		7440-36-0	2439-97-6	7440-22-4	57-12-5	7429-90-5	2439-89-6	7439-92-1	7439-95-4	2439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	7440-38-2	2-68-0772	7-17-077	0-27-0772	7/10-43-7	74.0447	4-84-044/	7440-50-8	7440-62-2	9-99-047	7440-70-2	7782-49-2	57-12-5	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2 78-11-5
Meth/ Matrix	LW32/S				s/ 80	66	3806/S	JC02/S	KY04/S	JS14/S																						KY04/S	LW32/S										
Lab Lab Anly. No.	36595				36595					36676																																	
Lab	2				2					ე																																	
Sample Date	01-FEB-92				01-FEB-92					01-FEB-92																																	
Depth	0.5				0.5					0.5																																	
Field Sample No.	\$16504				\$16504					S17S01																																	

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Site Site Type ID ---- SURF S17S01

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

	1 1 1 1 1 1								<b>-</b>												-	-													ပ					C.			
Unit Meas.	990		990	990	990	วอก	990	990	990	99n	DOU	990	990	990	9911	9911	9911	991	9911	991	951	900	000	000	990	ממח	990	9911	990	990	990	990	99n		900	990		ngg	990	990		990	
Conc.	2.5		.505	.251	ς.	. 249	.245	55.6	82.9	1.01	4230	18000	24.1	207	196	7	15.4	372	50	12.5	12.7	21.2	275	7 7	ارد. ج جار	, k	438	26.2	220	109	12.4	1.22	.25		274.	.51		.499	1.2.1	17.6		5.	
Meas. Bool.			5!	<b>=</b> :	_	<u>-</u>			Q.							ļ			-	. h-	S	)								디	LT	LT	[]			_	1	ב ב	3			-	
Analyte Description	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	Z-Withotoluene	1 3 5-Trinitroborzono	alazian ni minin na ala	1,3-Uinitropenzene	4-Nitrotoluene	lotal petroleum hydrocarbons	Antimony	Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	PDY / Cvclonite / Dovahudno-1 2 C	+pipi+po:1 7 E +pipi= +	Cycletotratel, 3, 3-triazine *	<pre>Cyclotetfametnylenetetranitramine Tetryl / N-Methyl-N 2 // 4.</pre>	tetranitroaniline / Withouise / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	
CAS No.	78-11-5	88-72-2	00-08-1	7-52-00	5 57 00	0-00-00	74-74-D	71 01 11	7440-38-0	7440-22-4	7429-90-5	2439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	7440-38-2	7440-39-3	7-11-0447	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-0552	7440-70-2	7.82-49-2	5/-12-5	118-96-7	121-14-2	121-82-4	10.	2401-7.1-0	479-45-8	) )	55-63-0		606-20-2 78-11-5	` :
Meth/ Matrix	LW32/S							< .	/ 66	3005/5	JS14/S																				,	KY04/S	LW32/S										
Lab Lab Anly. No.	PC 36676						72772			,0,,,	30084																																
Lab	5						2			2	<u>م</u>																																
Sample Date	01-FEB-92						0.5 01-558-02	01-1EB-72			01-reb-92																																
Depth	0.5						C	;		•	0.0																																
Field Sample No.	S17S01						\$17501			c17cn2	306716																																

**S17S02** 

* - Analyte Description has been truncated. See Data Dictionary

Site Site Type ID

S2601

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

Field Sample No.	Depth	Sample Date		Lab Lab Anly. No.	Meth/ Matrix	CAS No.	Analyte Description	Meas. Bool.	Conc.	Unit Meas.	Flag Codes	Data
					:					1		
s17s02	0.5	01-FEB-92		36684	LW32/S	78-11-5	PETN / Pentaerythritol tetranitrate /	17	2.5	000		
						;	2,2-Bis[(nitrooxy)me*					
						88-72-2	2-Nitrotoluene	-1	.505	990		
						99-08-1	3-Nitrotoluene	LŢ	.251	990		
						99-55-4	1,5,5-Trinitrobenzene	Ľ	.25	00C		
						99-62-0	1,3-Dinitrobenzene	Ľ	.249	990		
	,					0-66-66	4-Nitrotoluene	ב	.245	99N		
<b>\$17</b> \$02	0.5	01-FEB-92	<u>გ</u>	36684	s/ 00		Total petroleum hydrocarbons		22.4	990		
					\ 66	7440-36-0	Antimony	Q	82.9	UGG	-	
					JC02/S	7440-22-4	Silver		2.92	990		
S26S01	0.5	02-FEB-92	PC C	36897	JS14/S	7429-90-5	Aluminum		24000	000		
						7439-89-6	Iron		40000	000		
						7439-92-1	Lead		43.6	990		
						7439-95-4	Magnesium		701	990		
						7439-96-5	Manganese		1700	990		
						7439-98-7	Molybdenum	L	7	990		
						7440-02-0	Nickel		14.2	990		
						2-60-0552	Potassium		586	9911		
						7440-23-5	Sodium	[]	20	990		
						7440-28-0	Thallium	-1	12.5	990		
						7440-38-2	Arsenic	QN	12.7	ออก	<b>-</b>	
						7440-39-3	Barium		68.8	990		
						7440-41-7	Beryllium		.822	990		
						2440-43-9	Cadmium	L	.427	000		
						7440-47-3	Chromium		56	990		
						7440-48-4	Cobalt		30.6	บอด		
						7440-50-8	Copper		14.9	nec		
						7440-62-2	Vanadium		8.79	nec		
						9-99-057	2 inc		95	990		
						2-02-0442	Calcium		531	DDN		
,		;				7782-49-2	Selenium	17	12.4	990		
226802	0.5	0.5 02-FEB-92	2	36900	JS14/S	7429-90-5	Aluminum		31000	990		
						7439-89-6	Iron		28000	990		
						7439-92-1	Lead		28.6	DBU		
						7439-95-4	Magnesium		1160	990		
						7439-96-5	Manganese		1200	ยยก		
						7439-98-7	Molybdenum	ΓI	7	990		
						7440-02-0	Nickel		17.4	990		
						2-60-0552	Potassium		858	99n		
						7440-23-5	Sodium		100	990		
						7440-28-0	Thallium	11	12.5	990		
						7440-38-2	Arsenic	S	12.7	991	1-	
						2-62-0772	Barium	1			-	
						1			•			

* - Analyte Description has been truncated. See Data Dictionary

S2602

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO 24-OCT-

24-0CT-94

Site Site Type ID .... ....

24-001-94

,	Depth	Sample Date	Lab	Lab Lab Anly. No.	Meth/ Matrix	CAS No.	Analyte Description	Meas. Bool.	Conc.	Unit Meas.	Flag Codes	Data Quals
\$26802	0.5	02-FFR-92	: ¿	36900	151676	0-27-077/				1 6	1	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	;	7, 7,	-		12:4/3	7/10-43-7	Cadim un	_	777.	990		
						7-87-055/			7:57	990		
						7440-50-8	Conner		16.3	990		
						7440-62-2	Vanadium		5.01 8.75	990		
						9-99-077	7 inc		2 07	90		
						7440-70-2	Calcium		47.J	วกก		
						2-07-6822	Cotonium	-	12,	900		
S26S01	0.0	02-FEB-92	D C	36897	KY04/S	57-12-5	Cvanide	_	12.4	990		
\$26501	_ L	02-FEB-02	6	26807	,	7, 0, 7,		!	76.1	ากก .		
	}	75 - 17 75	٥	16000	1806/8	7/30-07-6	Antimony	≘ !	t	990	<b>-</b>	
					5/2021	7-16-16-1	Rei cui y	<u>.</u> :	8.70 E -2	990		
					1 43276	118-06-7	Silver 2 / Arthinitheathlines / clabs	<u>.</u> .	1.0.	99N		:
					6 /3647	200	z, 4,0-11 introcutene / atpna-	5	6.	000		¥
						121-14-2	2.4-Dinitrotoluene	-	251	201		2
						121-82-7	DOV / Cool coite / Hamahandar 4 7 F	<u>.</u>	- 53.	550		<b>2</b> :
						t-20-171	trinitro-1 3 5-trissing *	_	۲۷.	990		¥
						2401-41-0	Cool ototopoothal ocototopoot		9			:
						70-75-9	Total ( M Mathid M ) / /	<u>.</u> :	664.	990		¥
						0-64-614	letryl / N-Metnyl-N, Z, 4, 6-	-	1.27	990		×
							tetranitroaniline / Nitramine / *					
						0-59-66	Nitroglycerine / 1,2,3-Propanetriol		2.5	990		×
							trinitrate					
						606-20-2	2,6-Dinitrotoluene	П	5.	990		×
						78-11-5	PETN / Pentaerythritol tetranitrate /		2.5	990		*
										)		4
						88-72-2	2-Nitrotoluene	-	505	0011		7
						99-08-1	3-Nitrotoliene	; <u>-</u>		ם מפרים מפרים		∠ ≥
						00-25-7	1 2 E-Tribit + 10 Common - 1	<b>.</b> :		กูกก		<b>∠</b> :
						4 60	1, 2, 2 - 11 Ini tropenzene	<u>.</u> .	વ	990		×
						0-60-66	l,3-Ulfilfobenzene		.249	990		¥
50763		4				0-66-66	4-Nitrotoluene		.245	990		¥
32002		02-FEB-92	۲ :	20700		7440-55-4	Silver	Ľ	1.01	990		
208028		UZ-FEB-92	ည	36900	KY04/S	57-12-5	Cyanide	17	1.22	990		
						118-96-7	2,4,6-Trinitrotoluene / alpha-	רו	.25	990		¥
							Trinitrotoluene					
						121-14-2	2,4-Dinitrotoluene	11	.251	990		×
						121-82-4	RDX / Cyclonite / Hexahydro-1 3 5-	_	15	991		: 2
							trinitro-1,3,5-triazine *	-	· •	2		۷
						2691-41-0	Cvriotetramethylenetetramitramina	<b>!</b> -	007	991		3
						7.074	Tetroi / N-Mothylenetetianilliamine	3 5	.499	000		<b>∡</b> :
						2	totropitopopition (Nitropite )	_	1.6/	Ulul		×
						72 73	retranitroanitine / Nitramine / *					
						0-60-66	Nitroglycerine / 1,2,3-Propanetriol		2.5	990		¥
						6.06-20-2	trimitrate 2 k-Dinitratolucas		L			:
						78-11-5	2,0-7 III ti 010 tuene		ι.	990		¥

\$26501

* - Analyte Description has been truncated. See Data Dictionary

\$26502

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-OCI-

24-001-94

Data Quals	1 <u>Se</u> 1	54	: 🗠	: <b>~</b>	¥	¥																																						
Flag Codes	; ; ;						<b>-</b>												-																	<del>-</del>				-	-			
Unit Meas.	ngg	990	990	990	DOO	990	nee	990	990	99N	ngg	ออก	99N	990	99N	990	990	000	990	1000	990	nec	990	990	990	990	990	990	99N	<u> </u>	990	990	99N	990	990	990	990	990	1166	550		000	טפט :	กรด
Conc.	2.5	.505	152	.25	.249	.245	82.9	8.70 E -2	18000	19000	7.27	735	360	7	7.5	422	50	12.5	12.7	41.7	.408	.427	25.5	16.6	7.47	37	34.1	374	12.4	15000	17000	20.9	678	320	7	9.76	413	50	12.5	12.7	51.7		¥. 4. 7	,74.
Meas. Bool.		1	; <u>-</u>	בי	LT		S							ב	רו			[]	윤			-							ב						_			17	-	: S	<u>}</u>			_
Analyte Description	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me* 2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Antimony	Mercury	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Соррег	Vanadium	Zinc	Calcium	Selenium	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thatlium	Arsenic	Baritm		beryttian 6-1-1:-	נפסווו מוו
CAS No.	78-11-5	88-72-2	99-08-1	99-35-4	0-69-66	0-66-66	7440-36-0	2439-97-6	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2440-09-7	7440-23-5	7440-28-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-0572	7440-70-2	7782-49-2	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-0572	7440-23-5	7440-28-0	7440-38-2	2-62-0772	7,1,0,1,7	7-11-0-41-	440-43-4
Meth/ Matrix	LW32/S						/ 66	3/908r	JS14/S																					JS14/S														
Lab Lab Anly. No.	PC 36900						PC 36900		PC 36927																					PC 36935														
	02-FEB-92						02-FEB-92		02-FEB-92																					02-FEB-92														
Depth							0.5		0.5																					0.5														
Field Sample No.	\$26802						S26S02		S27S01																					S27S02														
Site Site Type ID	<b>S</b> 2								S27S01																					227502														

^{* -} Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-1AN-91

					Sampling		Date Range: 01-JAN-91 24-OCT-94					
Site Field ID Sample No. Depth		Sample Date	Lab	Lab Anly. No.	Meth/ Matrix	CAS No.	Analyte Description	Meas. Bool.	Conc.	Unit Meas.	Flag Codes	Data Quals
\$27502	0.5	02-FEB-92	PC	36935	JS14/S	7440-47-3	Chromium	:	13.6	5911	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
						7440-48-4	Cobalt		15.2	99n		
						7440-50-8	Copper Vanadium		10.1	99n		
						9-99-047	Zinc		4.26	900 001		
						7440-70-2	Calcium		75.0	000		
L		1	,	1		7782-49-2	Selenium	רו	12.4	990		
0.0 10.728		02-FEB-92	ည္က မ	36927	KY04/S	57-12-5	Cyanide	-1	1.22	990		
0.0		12-1EB-92	S S	36927	/ 66	7440-36-0	Antimony	QN ON	82.9	090	-	
					3806/S	7439-97-6	Mercury	-1	8.70 E -2	990		
					3/6201	110-07-4	Silver	[1	1.01	nec		
					LW32/3	1-06-011	<pre>2,4,6-irinitrotoluene / alpha- rigitanteluene</pre>	5	.25	990		¥
						121-17-3		!				
						121-82-7	2,4-Uinitrotoluene DDV / Cvolomito / Namabadaa 1 7 5	<u>.</u>	.251	99N		¥
						4	trinitro-1 3 5-triazina *	5	.51	990		×
						2691-41-0	Cyclotetramethylenetetranitramine	-	007	3		2
						479-45-8	Tetrv( / N-Methyl-N.2.4.6-	- 1-	70 1	กา		<b>~</b>
						!	tetranitroaniline / Nitramine / *	<u>-</u>	1.61	กุก		×
						55-63-0	Nitroglycerine / 1,2,3-Propanetriol	-1	2.5	990		74
							trinitrate			1		:
						606-20-2	2,6-Dinitrotoluene	LT	5.	990		7
						78-11-5	PETN / Pentaerythritol tetranitrate /	ב	2.5	990		×
						88-72-2	<pre>2,Z=BISI(NITFOOXY)Me* 2-Nitrotoluene</pre>		i c			
						99-08-1	Z-Nitrotoliono	<u>.</u>	505.	1000		×
						99-35-4	J-Nicrocoldene 1 % 5-Tribitrohensene		155.	ngg		×
						0-69-66	1 3-Dinitrohenzene		o s	กรีย		<b>∠</b> :
						0-66-66	4-Nitrotoluene	; <u>-</u>	7,7	חטט		¥
\$27502 0.5		02-FEB-92	ე ე	36935	/ 66	7440-36-0	Antimony	Š	6.00	990	<b>-</b>	~
					3/908r	7439-97-6	Mercury	: -	8.70 F -2	201	-	
					JC02/S	7440-22-4	Silver		1	201		
					KY04/	57-12-5	Cyanide		1.22	ງກາ		
					LW32/S	118-96-7	2,4,6-Trinitrotoluene / alpha-	5	.25	291		7
							Trinitrotoluene	İ	i I			۷
						121-14-2	2,4-Dinitrotoluene	-1	.251	1166		7
						121-82-4	RDX / Cyclonite / Hexahydro-1,3,5-	רו	. 52	990		2 <u>5</u> 2
							trinitro-1,3,5-triazine *			)		٤
						2691-41-0	Cyclotetramethylenetetranitramine	Lī	667.	9911		74
						479-45-8	Tetryl / N-Methyl-N,2,4,6-	רו	1.27	000		<u> </u>
							tetranitroaniline / Nitramine / *					2
						55-63-0	Nitroglycerine / 1,2,3-Propanetriol	ij	2.5	990		×
						606-20-2	2,6-Dinitrotoluene	-1	2.	9911		7
				•								:

* - Analyte Description has been truncated. See Data Dictionary

Site Site
Type ID
---SURF S27S02

**S35**S01

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

Data Quals	<u>×</u>	¥	~ 7	<b>2</b>	· ×																																					
flag Codes	1					0											-																					_				
Unit Meas.	990	000	00A	990	990	990	990	990	990	99n	กดิด	990	กดด	990	990	000	990	990	990	990	99N	990	990	ngg	990	990	990	990	990	ยยก	990	nec	DDO	000	UGG	990	990	990	990	990	990	990
Conc.	2.5	.505	.251	672	.245	1.22	2600	13000	9100	28000	175	7	7.5	543	9.96	12.5	12.7	954	.25	20.4	16.8	7.95	452	15.3	209	1.0 E 5	12.4	7500	30000	1200	8000	4200	5.51	52.9	417	50	12.5	12.7	184	.523	2.62	10.5
Meas. Bool.	: 1	Lī	ב ב	; ;	: 5	_						ב	ב			_	9		=								ב									-	רי	2				
	tetranitrate /																																									
	PETN / Pentaerythritol tetranitrate	2.2-Bislinitrooxy,mem 2-Nitrotoluene	5-Nitrotoluene 1 % 5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Cyanide	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thattium	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Arsenic	Barium	Beryllium	Cadmium	Chromium
CAS No.	78-11-5	88-72-2	1-80-66	0-69-66	0-66-66	57-12-5	7429-90-5	2439-89-6	7439-92-1	7,39-95-4	7459-96-5	7439-98-7	7440-02-0	2440-09-7	7440-23-5	7440-28-0	7440-38-2	7440-39-3	7440-41-7	2440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-057	2-02-0472	7782-49-2	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2440-09-7	7440-23-5	7440-28-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	2440-47-3
Meth/ Matrix	LW32/S					KY04/	JS14/S																					JS14/S														
Lab Lab Anly. No.	PC 36935					369350																						2 36650														
ľ							<u>გ</u>																					2														
Sample Date	02-FEB-92						01-FEB-92																					01-FEB-92														
Depth	0.5						0.5																					0.5														
Field Sample No.							<b>S35</b> S01																					<b>S35</b> S02														

**S35**S02

^{* -} Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Field Sample No. S35502

Site Site Type ID

**S35**S03

**S35S03** 

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

Data Quals	<u> </u>					<b>y</b> :	~~ ~~ ~ ~
Flag Codes				<b>-</b>		<b>-</b>	
Unit Meas.	990 990 990	990 990 990 990	990 990 990	990 990 990 990 990	990 990 990	990 0900 0900	990 090 090 090 090
Conc.	40.7 102 35.3 937 15000	12.4 4530 14000 1700 2120	4 7.5 266 50 12.5	12.7 196 .25 7.18 12.9 8.37	23 969 4160 12.4 1 25	1.25 133 82.9 2.65 .25	.51 .499 .1.27 2.5
Meas. Bool.	1 + 1 1	5	בר בב	LT RD	1 1	בר א	55 55 5 5
De	Cobalt Copper Vanadium Zinc Calcium	Selenium Aluminum Iron Lead Magnesium Manaanese	Molybdenum Nickel Potassium Sodium Thallium	Arsenic Barium Beryllium Cadmium Chromium Cobalt	Variatium Zinc Calcium Selenium Mercury Cvanide	Total petroleum hydrocarbons Antimony Silver 2,4,6-Trinitrotoluene / alpha-Trinitrotoluene	L, F. Dinitrotoluene  RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine * Cyclotetramethylenetetranitramine Tetryl / N-Methyl-N,2,4,6- tetranitroaniline / Nitramine / * Nitroglycerine / 1,2,3-Propanetriol trinitrate 2,6-Dinitrotoluene
CAS No.	7440-48-4 7440-50-8 7440-62-2 7440-66-6 7440-70-2	7782-49-2 7429-90-5 7439-89-6 7439-92-1 7439-95-4	7439-98-7 7440-02-0 7440-09-7 7440-23-5 7440-28-0	7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4	7440-66-6 7440-70-2 7782-49-2 7439-97-6 57-12-5	7440-36-0 7440-22-4 118-96-7	121-82-4 2691-41-0 479-45-8 55-63-0 606-20-2 78-11-5
Meth/ Matrix	JS14/S	JS14/S			JB06/S	00 /s 99 / JC02/s LW32/s	
Lab Lab Anly. No.	36650	36668			36641	36641	
Lab	2	ភ			PC	2	
Sample Date	01-FEB-92	01-FEB-92			01-FEB-92	01-FEB-92	
Depth	0.5	0.5			0.5	0.5	

**S35S01 S35**S01

\$35501

* - Analyte Description has been truncated. See Data Dictionary

Site Type

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

Data Quals	×	۷	2 54	<u> </u>	¥	<b>~</b>						×		¥	<b>~</b>		¥	¥		¥		¥	¥		<b>Y</b>	: ×	×	: <u>~</u>	¥						*		¥	~		~	×		
Flag										<b></b> -																							_										
Unit Meas.	990	991	990	990 000	99N	990	990	990	990	990	990	nee		990	990		UGG	990		990		990	990		990	990	990	990	99N	990	nee	ngg	DOG	990	990		000	ngg		990	990		
Conc.	2.5	505	25.	52:	.249	.245	8.70 E -2	1.22	61.4	82.9	1.01	52.		.251	.51		667.	1.27		2.5		5.	2.5		.505	.251	.25	.249	.245	8.70 E -2	1.22	73.5	82.9	1.01	52:		.251	.51		667.	1.27		
Meas. Bool.	5	-	; <u>-</u>	: 5	=	5	5	H		Ş	_	<u></u>		_	_		רַ	ב		-1		5	ב	i	17	: <b>:</b> :	17	ב		=	רַז		QN	_	<u>_</u>		17			ב	5		
Analyte Description	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me* 2-Nitrotoluses	3-Nitrotollene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Cyanide	Total petroleum hydrocarbons	Antimony	Silver	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PEIN / Pentaerythritol tetranitrate /		2-Nitrotoluene	3-Nitrotoluene	1.3.5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Cyanide	Total petroleum hydrocarbons	Antimony	Silver	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	
CAS No.	78-11-5	88-72-3	99-18-1	99-35-4	062-0	0-66-66		57-12-5		-	7440-22-4	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-69-66	0-66-66		57-12-5						121-14-2	121-82-4		2691-41-0	479-45-8		0-59-65
Meth/ Matrix	LW32/S						3B06/S	KY04/S	s/ 00	<b>^</b> 66	JC02/	LW32/S																		3806/S	KY04/S	s/ 00	<b>^</b>	JC02/	LW32/S								
Lab Anty. No.							36650		36650																					36668		36668											
Lab	2						ဥ		PC																					S		S S											
Sample Date	01-FEB-92						01-FEB-92		01-FEB-92																					01-FEB-92		01-FEB-92											
Depth	0.5						0.5		0.5																					0.5		0.5											
Field Sample No.	\$35501						S35S02		S35S02																					S35S03		S35S03											
Site 10	835801						<b>S35S02</b>																							<b>S35</b> S03													

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-1AN-91

2/.-OCT-0/

	Data Quals	: 2	۷	¥	×	7	۷ ۷	× ×		· ¥																																		
	Flag Codes	;																				<b>;</b>														~	:					~		
	Unit Meas.		990	990	990	ווניני	991	990	990 000	DDO	990	ngg	กดิด	99N	nee	990	990	99N	990	990	DDO	990	990	990	nge	990	55N	บูบูด	990	990	000	990	990	990	990	990	990	990	ngg	บบก	990	99N	กดด	
	Conc.		;	٠. '	2.5	.505	.251	52.	.249	. 245	8900	46000	006	8400	520	16.5	76.5	1710	93.9	12.5	82.9	12.7	179	1.05	22.1	114	25.7	453	38.9	594	19000		8.70 E -2	1.01	1.22	1.7	2.5	.17	.33	.18	.17	.33	.17	
	Meas. Bool.	: : <del>-</del>	j	<u>-</u> :	5		i	: 5	5	17										ר	LT	Ş										LT	_	ר	11	S		Ξ	Ľ,	ב	ב	2	ב	
Sampling Date Range: 01-JAN-91 24-OCT-94	Analyte Description	Nitrodiverine / 1 2 3-Dronametriol	trinitrate	2,6-Dinitrotoluene	PEIN / Pentaerythritol tetranitrate / 2.2-Ris[Cnitrooxv]me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Mercury	Silver	Cyanide	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol	2,4-Dimethylphenol	p-Cresol / 4-Cresol / 4-Methylphenol	1,4-Dichlorobenzene	4-Chloroaniline	Bis(Z-chloroisopropyl) ether	
Date Range:	CAS No.	55-63-0		505-20-2	6-11-07	88-72-2	99-08-1	99-35-4	0-59-66	99-99-0	4-06-6247	7,20-02-1	1-24-4541	7/20-02-5	7,20,00.7	7-98-8-7	0-20-055	7-40-04-7	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	2440-43-9	2440-42-3	7440-48-4	7440-50-8	7440-62-2	7440-66-6	7-07-0447	7782-49-2	7439-97-6	7440-22-4	57-12-5	100-01-6	100-02-7	100-51-6	105-67-9	106-44-5	106-46-7	100-47-8	108-99-1	
Sampling		LW32/S									7814/																							7005/										
		PC 36668									PC 39012																						PC 39012											
	Sample Date	01-FEB-92								00,411	04-FEB-72																						04-FEB-92											
	_	0.5								c																						c	c. o											
	Field Sample No.	835803								627501	97/90																					27201	106/66											
	Site Site Type ID	S3								647601	000																																	

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-OCT-

24-001-94

Field Sample Sample Sample No. Depth Date Sample No. 0.5 04-FEB-92

Site Site Type ID

Data Quats	:																																										
Flag Codes	:																						~																				
Unit Meas.	nec	9911	990	990	990	990	990	nee	ภอก	วอก	กดด	990	99N	99N	990	990		990	ngg	990	990	990	DDO	990		990		99N	990	990		990	nec	000	990	990	990	990	990	990	990	99n	UGG
																																				,							
Conc.	.17	7	17	.37	.22	92.	.17	.29	.28	.31	26.	.17	.17	.25	.17	.73		.17	4.	.27	.27	.31	1.7	.27		.84	i	. 58	.17	.23		۲.	-:	.92	.17	1.8	.32	.27	.35	.51	.17	5.	<del>`</del> .
Meas. Bool.	L.T.	<u>-</u>	; <u>; ;</u>		Lī	11	-1	LT		LI	[]	LI	LT	LT	П			11	רו	רו	LT		Q	11		LT		_	L.T				LŢ	<u></u>	11	-1			LT	LI	5		_
ž∝																										-9'				-0-3-													
Analyte Description	Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe* Ris(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzo[ghi]perylene	Indeno[1,2,3-C,D]pyrene	Benzo[b]fluoranthene / 3,4-	Benzofluoranthene	Fluoranthene	Benzo [k] fluoranthene	Acenaphthylene	Chrysene	Benzo[a]pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene		3-Methyl-4-chlorophenol / 4-Chloro-3	cresol / 4-Unloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Kexachloroethane	<b>Hexachlorocyclopentadiene</b>	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	n-nitrosogiphenytamine
CAS No.	108-95-2	111-44-4	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2		206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	56-55-3	2-05-65		2-02-909	7-49-179	65-85-0	67-72-1	77-47-4	78-59-1	83-32-9	84-66-2	84-74-2	85-01-8	85-68-7	0-06-00
Meth/ Matrix	LM30/																																										
Lab Lab Anly. No.	PC 39012																																										

* - Analyte Description has been truncated. See Data Dictionary

Site Site
Type ID
----SURF S37S01

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

Field	Sample		Lab	Meth/					:	7	
Sample No. Depth		Lab	Lab Anly. No.	Matrix	CAS No.	Analyte Description	meds. Dool		iun n	r Lag	Data
:	:	:						colle.	Meds.	Codes	unars
S37S01 0.5	.5 04-FEB-92	2	39012	LM30/	86-73-7	Elingan / ON-Elingana	· .	1.7		:	:
					2.64-78				Utili		
						hetachiolobuladiene / Hexachioro-i,5-	_	87.	990		
					3-78-28		!	(			
					C-00-70		_	.48	990		
					2-90-88	ophenol		ĸ.	990		
					88-74-4		<u>-1</u>	.36	550		
					88-75-5	2-Nitrophenol		.26	990		
					91-20-3		1	17	991		
					91-57-6	2-Methylnaphthalene	: <del>-</del>	17	200		
					91-58-7		; :	. 22	990		
					01-04-1	3 3'-nichlorobenzidine	. 9		200		
					05-48-7		<u> </u>	9.	000	×	
					05-50-1	1 2 Nicht Liesut / Z-Metnytphenot	_ ! _ :	.1.	990		
					95-50-1		LT	.32	990		
					8-75-56		LT	.17	990		
					95-95-4	2,4,5-Trichlorophenol	LT	.24	990		
					98-95-3		[1	.19	590		
								•			
					69-09-2		CX	1 7	5511	۵	
						phenyl ether	<u>-</u>	17	200	¥	
						criici othon	- h		000		
						פרוופו	-	7.	000	1	
						USIN COMPONITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITOR SOLITO		. 544	990	8	
								.459	nee	s	
								.803	990	s	
								.115	990	8	
								1.147	UGG	s	
						Unknown compound 544		115	991	· •	
								220	200	י ני	
								220		, (	
								115	5 5	nc	
								000	חחח :	n	
								.229	990	s	
								. 559	990	s	
								.344	990	s	
								.115	ngg	S	
						Unknown compound 595		.115	DOG	s	
						Unknown compound 654		1.147	UGG	S	
				LM33/	100-41-4		LT	2.5 E -3	990		
					100-42-5	Styrene / Ethenylbenzene / Styrol / L	LT	2.5 E -3	บบก		
								ı	! !		
					10061-01-5	ne / cis-1,3-	11	3.0 F -3	9911		
								ı	2		
					107-06-2		-1	ш	nee		
					108-10-1		[1	1.9 E -2	990		
					108-88-7	Isopropylacetone / 4-Methyl-2-pen*		1			
					r-00-001	lotuene		4.3 E -3	990		
ription has been truncated.	runcated. Se	e Data 1	See Data Dictionary	_							

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0C1-94

Data Quals	£																																								
Flag Codes	1 1 1 1																							œ																	
Unit Meas.	000	nee	990	9	3	990	-	990	ngg	ngg	99n	990	990	99N	ngg	990	99N	DDO	990	<b>9</b> 90	990	990		990	990	990	NGG	990		ngg		990	ngg	990	990	DOC	nec	990	990	990	990
Conc.	<u>.</u> ш	5.7 E -2	2.5 E -3	7-356	1	2.5 E -3	L	18 1.2	ننا ا	2.6 E -3	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш		ш	ш	5.1 E -3	ш	ш		1.2 E -2		7.5 E -3	ш	13000	14000	423	13000	5800	4	14.8	1850
Meas. Bool.	: -	רז	רַ	_	i	-1	<b>-</b>	: <u>-</u>	: 5	11	ב	ב	LI	ר	ב	<u>_</u>		ב	ב	L1	[]	-1		ð	5		۲,			5		LT	LT						_		
Analyte Description	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	Dichloroethene	trans-1,2-Dichloroethylene / trans-	1,Z-Dichloroethene	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*	Tetrachloroethane / 1,1,2,2-	<pre>fetrachloroethane / Acetylene *</pre>	Xylenes, total combined	trans-1,3-Dichloropropene	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium
CAS NO.	108-90-7	124-48-1	127-18-4	156-59-2		156-60-5	3-20-73	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		75-69-4	78-87-5	78-93-3	2-00-62	79-01-6		79-34-5				7429-90-5	7439-89-6	7439-92-1	7439-95-4	2439-96-5	7439-98-7	7440-02-0	2-60-0552
Meth/ Matrix	LM33/																																	JS14/							
Lab Lab Anly. No.	39012																																	39020							
Sample Date La	95																																	0.5 04-FEB-92 PC							
Depth	0.5																																	0.5							
Field Sample No.	S37s01																																	<b>S37</b> S02							
Site Site Type ID	S																																	S37S02							

^{* -} Analyte Description has been truncated. See Data Dictionary

Data Quals

Final Documentation Appendix Report
Installation :Anniston AD, AL (AN)
File Type: CSO
74-1AN-01

		,	1
+:	Meas		5511
	Conc.		177
o d N	Bool .		
	iption	111111111111111111111111111111111111111	
	Analyte Descri	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sodium
	CAS No.		7440-23-5
Meth/	Matrix	1	JS14/
Lab	ab Anly. No.		PC 39020 JS14/ 7440-23-5
Sample			
	Depth	1 1 6	0.5
Field	Sample No.		S37s02
Site	2		S37S02
Site	Type	:	SURF
	Site Field Sample Lab Meth/	Site Field Sample Lab Meth/ ID Sample No. Depth Date Lab Anly. No. Matrix CAS No. Analyte Description Bool. Conc.	Meas. O. Matrix CAS No. Analyte Description Bool. Conc.

Flag Codes	1				<b>-</b>																									۱-	-													2	
Unit Meas.	: : :	990	990	990	990	990	990	000	990	990	990	990	991	990	990	990	ngg	990	990	990	990	99N	990	990	1166	9 5	901	900	990	990	ם מפ	950	990	550	UGG	990	990	991	990	990	000	990	990	000	990
Conc.	: ;	177	12.5	82.9	12.7	926	2.06	3,52	41.8	29.5	53	30.5	319	47000	12.4	8.70 E -2	1.01	1.22	11000	26000	81.4	1550	320	4	18.2	526	) (	1, 5, 7, 7,	82.0	12.7	35.1	.867	.427	18.9	18.6	36	41.6	159	3160	12.4	8.70 E -2		1.22	1.7	2.5
Meas. Bool.	1 1 1 1		ר	11	Q										11	5	<b>L1</b>	-1									-	- h	; <u>-</u>	. S	)		רז							[1	<u></u>	[1	-1	S	1
Analyte Description	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		馬	uny	٥	-	ium	W.	En .			En .		E	m	٨		ē	mn.			ilum	lese	lenum		ijum	-	En.	Au	<b>`</b> '		ium	E	En .			5		₩.	ED .	<i>&gt;</i> .		ė.	4-Nitroaniline	4-Nitrophenol
Analyt	1 1 7 6	Sodium	lhallıum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Mercury	Silver	Cyanide	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thatlium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Mercury	Silver	Cyanide	4-Nitr	4-Nitr
CAS NO.	7//0-32 E	7,10 00 0	1440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	2440-43-9	2440-42-3	7440-48-4	7440-50-8	7440-62-2	9-99-047	7440-70-2	7782-49-2	7439-97-6	7440-22-4	57-12-5	7429-90-5	7439-89-6	7459-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2440-09-7	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	7440-66-6	2-02-0472	7782-49-2	2439-97-6	7440-22-4	57-12-5	100-01-6	100-02-7
Meth/ Matrix																JB06/	7005	KYU4/	7514/																						/90gr	JC02/	KY04/	LM30/	
Lab Anty. No.	30000	27020														39020		0.002	39039																						39039				
Lab	, 0	2														ပ		ć																							S S				
Sample Date	0%-FEB-02	04-128-72														04-FEB-92		5	U.3 U4-rEB-92																						04-FEB-92				
Depth	C	3													1	c.5		2	c.5																					1	0.5				
Field Sample No.	237502	100													1	200750		20222	506756																						837803				

**S37S03** 

* - Analyte Description has been truncated. See Data Dictionary

24-001-94

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Fale Anner 01:1AN-01

76-130-77		
Sampling Date Range: U1-JAN-91		

Data Quals	; ;																																					٠									
Flag Codes	! : !				٥	<																										۵	•														
Unit Meas.	1166	991	9911	991	500	990	221	חמח		99N	990	990	UGG	990	990	990	990	000	ngg	990	990	991	101	000	990		990	nee	9911	990	ยยา	9911	)     		บบเ	9	UGG	9911	990		บบแ	901	9 000	การ	מסח	990 NGG	
Conc.	17	33	£ 6	17	£	. 5		Ξ.	•	1.6	.17	-19	.22	.26	.23	.29	.28	.31	1.4	.17	.17	80		7.	٦. ₈		2.4	-	.27	88	7 7	1 7	27	į	78		.58	-	23	ì i	~		- 6	7.	<u>.</u> 6	.32	
Meas. Bool.	<u> </u>	; <u> </u>	; <u>'</u>	: <u> </u>	; <b>S</b>	<u> </u>	- h	3	!	5	<u> </u>	ב	-	LI		5	ב	LI			L1	, , 							1	i		CN	! _	i	-	;	-1			į	_	- ₋	- F	<u> </u>	; :	: 5	
Analyte Description	Benzyl alcohol	2.4-Dimethylphenol	o-Cresol / 4-Cresol / 4-Methylphenol	1.4-Dichlorobenzene	4-Chloroaniline	Ris(2-chloroisopropy) other	Dhanol / Carbolic acid / Dhanic acid	יופווסר / בפוססרוכ מכום / רוופוווכ מכום / סוישיון: - יייין / סויש	/ Frienylic acid / Fries	Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzofahilbervtene	Indeport 2 3-0 Dispresse	Indenoti, z, j-c, bj pyrene	Benzolbjiluoranthene / 5,4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzofalovrene	2.4-Dinitrophenol	Dibenz Tahlanthracene / 1 2:5 6-	Dibenzanthracene	4.6-Dinitro-2-cresol / 2-Methyl-4.6-	dinitrophenol	1,3-Dichlorobenzene	Benzo [a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2.6-Dinitrotoluene	N-Nitrosodi-n-propylamine	מייים שייים אלטוק וייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מייים מיים מייים מייים מייים מייים מייים מייים מייים מייים מייים מ	Heysch proofbane	Hexach lorocycl phantadione	Isophorone	
CAS No.	100-51-6	105-67-9	106-44-5	106-46-7	106-47-8	108-60-1	108-05-2	7 7 7		111-44-4	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	107-70-5	193-39-3	7-66-507	:	206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1	•	541-73-1	56-55-3	59-50-7		606-20-2	621-64-7	45-85-0	67-73-1	7-27-22	78-59-1	
Meth/ Matrix	LM30/																																														
Lab Anty. No.	PC 39039																																														
Sample Date	0																																														
Depth		•																																													
Field Sample No.	\$37803																																														

^{* -} Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Site Site Type ID .... ....

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

Data Quals	1																																											
Flag Codes	;																۵	۷.						•	ĸ			8	S	89	s	S	s	S	s	s	s	æ	s	s				
Unit Meas.	201	9 2	990	000	990	990	990	990		990	990	990	990	991	991	991	9 9	990	99	9 9	9 2		กกด	J	550	กรเ	990	DDO	990	990	ออก	990	990	990	990	990	99N	ngg	990	990	990	990		990
Conc.	27.	35	.51	.83	.2	.17	.17	.28		87.	۲,	.36	. 26	.17	17	22	3 %	2 2	22	17	77	10		17		<u>-</u> .	7.	.126	.881	.126	.252	.252	.126	.252	.252	.126	.503	.377	.377			2.5 E -3		3.0 E -3
Meas. Bool.		<u> </u>	: 5		ר	=	5	ב		Lī	ב	ב	=	1	<b>-</b>	_	; <b>£</b>	<u> </u>	; <u>-</u>	<u> </u>	; <u>-</u>	: <u>-</u>	;	9	2 -	: <u>:</u>	_														רו	רו	į	5
Analyte Description	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichtorophenot	Nitrobenzene / Essence of mirhane /	Oil of mirbane	3-Nitroaniline	4-Bromonbanyl nbanyl other	_	Harmen opinenty pheny ether							compound					Unknown compound 651	Unknown compound 656	Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Clnnamene *	cis-1,3-Dichloropropylene / cis-1,3- Dichloropropene
CAS NO.	83-32-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3	,	87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3		2-00-66																	100-41-4	100-42-5	10041-01-5	6-10-10001
Meth/ Matrix	LM30/																																								LM35/			
Lab Lab Anly. No.	PC 39039																																											
Sample Date	04-FEB-92		-																																									
Depth	0.5																																											
Field Sample No.	S37S03																																											

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data Quals	:																																											
Flag Codes	1 1 1																														s													
Unit Meas.	990	990		nee	ขอก	ออก		nee		ngg		990		99N	990	990	990	000	000	990	990	9911	9911	99N	nee	990	UGG	UGG	ngg		990	DOO	99N	nee	UGG		990		ออก	990	950	990	990	990
Conc.	· w	1.9 E -2		2.5 E -3	ш	ш		2.5 E -3		2.5 E -3		2.5 E -3		ш	ш	ш	ш	ш	ш	ш	ш	ı u.		6.2 E -3	ш	ш	2.5 E -3	w	3.2 E -2		ш	ш	5.1 E -3	ш	ш		1.2 E -2		7.5 E -3		4320	11000	23.8	2250
Meas. Bool.	: 1	5		ב	ב	5		1		11		=			17	-1	11	ב	רו	[]	7		=	<b>-</b>	רו	ב	ר	[1	1			[1	П	1	-1		=		5					
Analyte Description	1,2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorobenzene / Monochlorobenzene	Dibromochtoromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	cis-1,2-Dichloroethylene / cis-1,2-	Dichloroethene	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*		Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1,3-Dichloropropene	Aluminum	Iron	Lead	Magnesium
CAS No.	107-06-2	108-10-1	!	108-88-3	108-90-7	124-48-1		127-18-4		156-59-2		156-60-5		56-23-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		72-69-4	78-87-5	78-93-3	2-00-62	79-01-6		79-34-5				7429-90-5	2439-89-6	7439-92-1	7439-95-4
Meth/ Matrix	LM33/																																								JS14/			
Lab Anly. No.	PC 39039																																								PC 39047			
Sample Date	04-FEB-92																																								04-FEB-92			
Depth	0.5																																								0.5			
Field Sample No.	S37S03																																							i	<b>837804</b>			
Site Site Type ID	83																																								837804			

^{* -} Analyte Description has been truncated. See Data Dictionary

Data Quals

Site Type

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO 74-001

	Flag Codes	:							_													۵											<b>;</b> -									
	Unit Meas.	: : :	99n	990 1100	990	990	990	DOU	UGG	990	990	990	99n	990	99n	066		000	991	990	990	DOU	000	990	990	990	DBO	DGC	000	900	HGG	99n	990	UGG	000	990	DDO	990	99n	990	n 0	990
	Conc.	1 1 1	991 /	7.5	344	20	12.5	82.9	12.7	21.1	.378	.427	9.85	40.	15.1	202	205	12.6	8.70 F -2	ı	1.22	1.22	9300	26000	58.4	8700	320	<b>,</b>	12.3	57	12.5	82.9	12.7	41.6	.636	.728	29.8	16.5	36	12/	20000	12.4
	Meas. Bool.	1	-	ב' כ		۲	ב	Ľ	Q			LŢ						_	; <u>_</u> _	LT	LT	ב									11	Ľ	QN									Lī
Sampling Date Range: 01-JAN-91 24-OCT-94	Analyte Description	111111111111111111111111111111111111111	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryl (1um	Cadmium	Chromium Cobal t	Conoc	Vanadiim	7 inc	Calcium	Selenium	Mercury	Silver	Cyanide	Cyanide	Aluminum	Iron	read	Magnesium	Manganese	Nickel	Potassium	Sodium	Thattium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Vanadim	Zinc	Calcium	Selenium
Date Range:	CAS No.	2-90-0272	7439-98-7	7440-02-0	7440-09-7	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7-14-044/	7//0-43-9	7-87-0552	7440-50-8	7440-62-2	9-99-077	7440-70-2	7782-49-2	7439-97-6	7440-22-4	57-12-5	57-12-5	7429-90-5	7439-89-6	1-26-6647	7/30-95-4	7/30-08-7	7-84 4647	2440-09-7	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-59-3	7-14-0447	7440-43-9	7440-47-5	7//0-40-4	7440-50-5	2440-66-6	7440-70-2	7782-49-2
Sampling	Meth/ Matrix	15167	,																				JS14/																			
	Lab Lab Anly. No.	39047																	39047		1000	390470 39057																				
	La																		٦.				Ξ.																			
		04-FEB-92																	04-FEB-92			5	04-reb-92																			
	Depth	0.5																1	0.5			6	0.0																			
	Field Sample No.	S37S04																1	S37S04			572005	206/66																			
	Site	\$37so4																				547505	מים ביים																			

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site Type ID ... ...

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data Quals	; ; ;																																										
Flag Codes			۵	4					œ																									~	•								
Unit Meas.	090	990	990	990	nec	990	ngg	990	DOO	UGG	990		DOC	DDU	990	990	nee	990	UGG	990	UGG	UGG	000	990	990	251	9911		331	991	1166	556	221	9911	990		ngg		990	990	990	nec	
Conc.	8.70 E -2	1.01	1 7	2.5	11.	.33	.18	.17	.33	.17	.17		1.6	.17	.19	.22	.26	.17	.29	.28	.31	.97	.17	.17	.25	17			17	7	27	27	72	1.7	.27		.84		.58	.17	.23	.2	
Meas. Bool.	רַ	ב ב	3 5	; :	H	-1	=	ב	2	٦.	L		רַ	-	1	Ľ	=	11	11	11	11	ב	11	-1		i <u>-</u>	; ;		<u>-</u>	; <u>-</u>	·	; <del>-</del>	· ;	2	: 5		Lĭ		ב	Ľ	5	-1	
Analyte Description	Mercury	Silver Cvanide	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol	2,4-Dimethylphenol	p-Cresol / 4-Cresol / 4-Methylphenol	1,4-Dichlorobenzene	4-Chloroaniline	Bis(2-chloroisopropyl) ether	Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe*	Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzo[ghi]perylene	Indeno[1,2,3-C,0] pyrene	Benzo [b] fluoranthene / 3.4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzo[a]pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo[a]anthracene	<pre>3-Methyl-4-chlorophenol / 4-Chloro-3- cresol / 4-Chloro-3-m*</pre>	2,6-Dinitrotoluene	
CAS No.	7439-97-6	7440-22-4 57-12-5	100-01-6	100-02-7	100-51-6	105-67-9	106-44-5	106-46-7	106-47-8	108-60-1	108-95-2		111-44-4	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2		206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-75-1	56-55-5	28-20-7	606-20-2	
Meth/ Matrix	/908r	JC02/ KY04/	LM30/																																								
Lab Anly. No.	PC 39055																																										
Sample Date	04-FEB-92																																										
Depth																																											
Field Sample No.	837805																																										

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site Type ID ---- SURF S37S05

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-001-94

Data Quals	1		-																																								
Flag Codes	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																					×						•	×			29 (	י מי	89	s	<b>6</b>							
Unit Meas.	 000	990	9911	990	991	990	990	991	990	990	990	990	5	991	991	991	201	991	500	900	550	000	500	200	200	ם מ	กกก	2	000	000 000	00r	000	000 000	990	000	99N	990	990		000	001	ם פני	990
Conc.	1.1	.92 71		.32	77	.35	.51	17	٠,	 71	17	. 28	)	87	·	36	35	17	17	: %	3 4	. 25	£ £	17	7.	5.	<u>.</u>	1 7		· ·	7.	111.	186.	,00 <b>.</b>	.111		2.5 E -3	2.5 € -3		3.0 E -3	u	10 6 - 2	_
Meas. Bool.		55	; <u> </u>	; <b>;</b>	_	; <u>; ;</u>	_	) <del> </del>	: =	. j	: =	; ;	i		: =	1	: <u>-</u>	: <u>-</u>	: <u>-</u>	: <u>-</u>	2	<u>-</u>	; =	: :	; :	; =	-	Ş	<u> </u>	- L	5						11	=	!	_	-	; <u> </u>	;
Analyte Description	N-Nitrosodi-n-propylamine	Benzoic acid Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1.2-Dichlorobenzene	2-Chlarophenol	2.4.5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromonhenyl phenyl ether	4-Chlorophenyl phenyl ether	Unknown compound 531	Hoknown compound 535	Hoknown comparing 534	The composition of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contrac	UNITOWING COMPONING 623	Unknown compound 631	Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cisti, atulan loropropytene / cisti, statich loropropene	1.2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*
CAS No.	621-64-7	65-85-0 67-72-1	77-47-4	78-59-1	83-32-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	2-84-56	95-50-1	95-57-8	95-95-4	98-95-3	<b>i</b>	99-09-2								100-71-7	4-14-001	4-75-nni	10041-01-5	0-10001	107-06-2	108-10-1	
Meth/ Matrix	LM30/																																			/ ZZM (	LM33/						
Lab Anly. No.	PC 39055																																										
Sample Date	04-FEB-92																																										
Depth	0.5																																										
Field Sample No.	<b>S37</b> S05																																										

^{* -} Analyte Description has been truncated. See Data Dictionary

24-001-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data Quals																																										
Flag Codes																										œ																
Unit Meas.	990	990 000		ยยก	2	ຄຸກ	000		990	990	990	990	990	990	nce	990	UGG	990	ncc	DDO	DDO	990	000	990		ngg	990	DOO	ngg	990		nee	2	บาย	550	990	nee	990	990	nee	000	บเล
Conc.	ш	2.5 E -3 5.7 E -2		2,5 E -3	2 5 5 5	u	2.5 E -3		3.1 E -3	ш	ш	ш	ш	ш	ш	ш	ш	3.8 E -3	ш	ш	ш	ш	ш	ш		ш	ш	ш	2.5 E -3	ш		1.2 E -2		0-11-0		0079	11000	127	8600	270	6.96	0.4
Meas. Bool.	רו		i	ב	<u>-</u>	<u>.</u>	Ľ		ב	-1	11	Lī	LT	רו	[1	[]	[]	Lī	LI	ב	ב	רו	ב	LT		Q	L1	ר	ĽŢ	LT		-1	-	_ :	_							
Analyte Description	Toluene	Chlorobenzene / Monochlorobenzene Dibromochloromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	Dichloroethene	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*	Tetrachloroethane / 1,1,2,2.	Values total combined	Aylenes, total compined	trans-1,5-Dichloropropene	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel
CAS NO.	108-88-3	108-90-7 124-48-1	· }	127-18-4	2000	7-66-961	156-60-5		56-23-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		75-69-4	78-87-5	78-93-3	2-00-62	79-01-6		79-34-5			!	7429-90-5	2439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	0-20-044/
Meth/ Matrix																																			,	1814/						
Lab Lab Anly. No.	PC 39055																																			PC 39063						
Sample Date	04-FEB-92																																			04-FEB-92						
Depth	0.5																																			0.5						
Field Sample No.	\$37805																																			837806						
Site ID	S37S05																																			837806						
Site Type	SURF																																									

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO

	Data Quals																																								
	Flag Codes	3 :				_	<b>3</b> 1																						<b>-</b>	_											
	Unit Meas.		990	990 1100	990	990 000	000	990	ngg	nee	990	990	99n	200	2 2	901	991	990	990	DDO	990	990	990	ngg	000 0	99 i	990	200	990	990	990	990	99n	990	550	990	200	901	000 000		nee
	Conc.		897	12.5	82.9	12.7	84.8	.519	90.9	30	2.6	63.4	13.7	26000	12.4	8.70 E -2		1.22	25000	47000	22.5	265	810	7	16.9	870	) 1	82.0	12.7	66.1	.839	.427	51.6	27.0	72.6	93.4	1760	12 4	.25		.251
	Meas. Bool.	:		-1	17	R									11	; <u>;</u>	ב	=								F	] [	<u>-</u> -	; <del>2</del>			17						_	: 5		_
File Type: CSO 01-JAN-91 24-0CT-94	Analyte Description	Dotoccium	Sodium	Thattium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Zinc	Calcium	Selenium	Mercury	Silver	Cyanide	Aluminum	Iron	Lead	Magnesium	manganese	Molybdenum	NICKEL Dottonii	Sociem	Thallitm	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Copper	Vanadium	Zinc	Calcium	Selenium	2,4,6-Trinitrotoluene / alpha-	Finitrotoluene	
File T g Date Range: 01-JAN-91	CAS No.	2-60-0772	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7,40-43-9	7.440-47-3	77.70-40-4	2-05-0447	7440-66-6	7440-70-2	7782-49-2	7439-97-6	7440-22-4	57-12-5	7429-90-5	7439-89-6	1-26-664/	7/20-05-5	7.30-02-7	7-98-46-7	2-70-0772	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7,40-41-7	7/10-12-9	7-87-055/	7440-50-8	7440-62-2	9-99-0442	7440-70-2	7782-49-2	118-96-7	121-14-2	121-82-4
Sampling	Meth/ Matrix	JS14/	•													/908r	1005/	KY04/	7515														•						LW32/S		
		PC 39063														PC 39063			PL 31383																						
	Sample Date	04-FEB-92														04-FEB-92		20-141-02																							
	Depth	0.5														٥.5		c																							
	Field Sample No.	837806													/00220	837806		55501																							
	Site ID	837806																S5S01																							
	Site																																								

* - Analyte Description has been truncated. See Data Dictionary

Site Type

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data Quals	1 1 1																																									
Flag Codes	1 1 1																												٠	-												
Unit Meas.	000	9	300	UGI	9911	) )	ngg	990		990	000	990	990	990	990	990	990	990	000	000	990	990	1166	999	000	900		מחח מיט	000	990	900	1100	25.	100	990	251	55H	3 2	991	000		UGG
Conc.	.51	ç,	76. F	1.21	2.5	\ I	5.	2.5		.505	. 251	. 52	. 249	.245	8.70 E -2		1.22	41000	51000	35.6	766	1400	7	25.5	13,0	7 2.2	. c.	82.0	12.7	102	101	227	46.5	42.5	35.1	83.3	220	2210	12.4	.25		.251
Meas. Bool.		-		3		ì	11	רז		1	۲1	ב	<u>ب</u>	=	11	=	=						_	i			-	; <u>-</u>	ī <b>⊆</b>	è		<u>-</u>	i						-	: =		<u>_</u>
Analyte Description	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Totan / N-Methyl-N 2 / 4-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Silver	Cyanide	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arcenio	Barium	Bervilium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene
CAS No.	121-82-4	2601-61-0	6.79-65-R		55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-59-66	0-66-66	9-26-6272	7440-22-4	57-12-5	7429-90-5	2439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	7440-36-0	2-82-0772	7440-39-3	7440-41-7	7440-43-9	2440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-0552	7440-70-2	7782-49-2	118-96-7		121-14-2 121-82-4
Meth/ Matrix	LW32/S														3/908r	JC02/S	KY04/S	JS14/																						LW32/S		
Lab Lab Anly. No.	31585														31585			31593																								
Lab A															ည			2																								
Sample Date	30-JAN-92														30-JAN-92			0.0 30-JAN-92																								
Depth	0.0														0.0			0.0																								
Field Sample No.	S5S01														S5S01			2282																								
Site ID	S5S01																	<b>S</b> 2802																								

^{* -} Analyte Description has been truncated. See Data Dictionary

Data Quals

Site Site Type ID ---- SURF S5S02

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

Flag Codes	:																												٠	_													
Unit Meas.	000	-	200	กก	บบก	}	990	990	}	990	990	990	9911	990	990	9911	990	991	900	991	991	991	B 00	200	990	990	กูกก	0 LG	ממים	990	991	991	9911	991	555	991		990	991	997	}	ยยก	7
Conc.	.51	ç `	76 1	17.1	2.5	1	٠.	2.5		.505	.251	.25	.249	.245	8.70 E -2	ı	1.22	25000	39000	338	1480	2700	2017	4 UZ	1750	1030	20- 7 C	0 08	12.7	123	1.04	724	101	45	37.6	80.5	, 57.	0009	12.4	. 25		.251	
Meas. Bool.	- 1	<u>-</u>	; <u>-</u>	5	5	i	-	1	i I	LT	[]	[1	ב	: <u> </u>	<b>'</b>	[1	5	; i			÷		<u>_</u>	;			-	- L	; 5	2		1							-	; <b>;</b> ;		5	I
Analyte Description	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine * Cvclotetramethylenetetranitramine	Tetrv! / N-Methv! -N 2 & 6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	эху)ше*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Silver	Cyanide	Atuminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thatlim	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	
CAS NO.	121-82-4	2691-41-0	479-45-8	!	55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	69-62-0	0-66-66	7439-97-6	7440-22-4	57-12-5	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-0572	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	2440-42-3	7440-48-4	7440-50-8	7440-62-2	2440-66-6	7440-70-2	7782-49-2	118-96-7	,	121-14-2	121-82-4
Meth/ Matrix	LW32/S														3806/S	JC02/S	KY04/S	JS14/																						LW32/S			
Lab Anly. No.	PC 31593														PC 31593			PC 31607																									
Sample Date	92														0.0 30-JAN-92			0.0 30-JAN-92																									
Depth	0.0													•	0.0		•	0.0																									
Field Sample No.	S5S02														20868			S>S03																									

**S5S03** 

* - Analyte Description has been truncated. See Data Dictionary

121-14-2 121-82-4

Field Sample No.

Site Site Type ID .... ....

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

Data	_	:																																										
Flag	Codes	t f f																												-	-										œ			
Unit	Meas.	990	990	990		990	1	ยยา	99n	! !	2011	551	991	550	300	990	990	991	990	9911	990	9911	990	9911	200	200	991	990	990	990	550	990	990	UGG	000	990	000	990	990	990	990	990	000 000	ספפ
	Conc.	.51	667.	1.27		2.5	ļ	ις	2.5		505	251	įκ	570	245	8.70 E -2	ı	1.22	37000	31000	32.7	1060	2700	7	2.	1300	202	12.5	82.9	12.7	161	1.02	.427	29.2	32.1	21.6	57.3	92.6	1770	12.4	1.7	2.5	.17	cr.
Meas.	Bool.	5	ב	[1		-		11	; ;		_	<u>-</u>	·	<b>-</b>	: 1	: 5	<b>.</b>	: <b>!</b> -	i					17	i			17	; 5	Q			ב							ב	S	ב	ב ב	_
	Analyte Description	RDX / Cyclonite / Hexahydro-1,3,5-	_	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2.2-Bis[(nitrooxv)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1.3-Dinitrobenzene	4-Nitrotoluene		-	Cyanide		i Iron		_	_	_	_				_	2 Arsenic	3 Barium	7 Beryllium		_	-	_			2 Calcium	2 Selenium	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol 2 4-Dimethylphenol	בין בייין ישוריין ישוריין
:	CAS NO.	121-82-4	2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-9-66	0-66-66	7439-97-6	7440-22-4	57-12-5	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2440-09-7	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-0552	7440-70-2	7782-49-2	100-01-6	100-02-7	100-51-6	
Meth/	Matrix	LW32/S														3/908r	JC02/S	KY04/S	JS14/																						LM30/			
rab	Lab Anly. No.	31607														31607			31615																									
	- E	<u>٦</u>														<u>۵</u>			<u>۵</u>																									
Sample	Date	30-JAN-92														30-JAN-92			0.0 30-JAN-92																									
:	Depth	0.0														0.0			0.0																									

\$5803

\$5804

**\$5**\$04

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Site Site Type ID ---- SURF S5S04

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data	Quals	i 1 : 1																																													
Flag	Codes	1 1 1		۵	2																										Δ	٤															
Unit	Meas.	991	550	990	550	991		991	200	กอก	กลูก	nec	990	990	990	9911	991	DD0	550	000	000	กกก	nge	99n		000	990	990	9911	9911	201	991	7	990		9911	550	2011	500	2011	990	3311	000	990	חמם	991	กลูก กลุง
,	Conc.	, at		22	17	17	•	1,6		- (	<u>^</u>	.22	.26	.17	.29	28	5 2	20			71.	. C.	-:	.73		.17	4.	.27	27	70	1 2	27		.84		5.8	17		1	^		: 6	7,5	- α	<u>.</u> د	27.	.35
Meas.	Bool.	: : <u>-</u>	· -	: S	<u> </u>	; =	i	_	- <del>-</del>	- L	<u>.</u> !	<u>.</u>	-1	ב	LT		<u>_</u>	· -	; ;	<u>.</u>		- i	<u> </u>	_			רו	L	<u></u>	<u>-</u>	S	: =		Ľ		<b></b>	: <u>-</u>	; <u> -</u>	i	1	; =	; -	: =	; <u> </u>	. <u>.</u>	; <u>-</u>	
	Analyte Description	p-Cresol / 4-Cresol / 4-Methylphenol		4-Chloroaniline	Bis(2-chloroisopropyl) ether	Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe*	Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Ric(2-othylboxyl) phtholoto	Distance chigh methy pitting ate	Ul-n-octyl phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzoldeflohenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Renzolahilaerylene	Indeport 2 %-C Oleman	Donachlizionettee	benzolbjrtuorantnene / 5,4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzo[a] pyrene	2,4-Dinitrophenol	Dibenz [ah] anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo [a] anthracene	3-Methyl-4-chlorophenol / 4-Chlorn-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate
, OH	CAS NO.	106-44-5	106-46-7	106-47-8	108-60-1	108-95-2		111-44-4	111-91-1	117-81-7	117-8/-0	118.7/-1	1.0.74-1	1-71-071	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9		103-30-5	205-00-2	7-44-603	,	506-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	56-55-3	29-50-7		606-20-2	621-64-7	65-85-0	67-72-1	7-47-47	78-59-1	83-32-9	84-66-2
Meth/	Ya C. 17	LM30/																																													
Lab Iab Anly No	-de out y . 10:																																														
Sample	) ! ! !	30-JAN-92															•																														
Depth		0.0																																													
Field Sample No.		\$5804																																													

^{* -} Analyte Description has been truncated. See Data Dictionary

Field Sample No. Depth S5SO4 0.0 3

Site Site Type ID ... ... SURF S5S04

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-OCT-

Data Quals	:																																											
Flag Codes	1 1 1														~							~			œ	s	œ	S																
Unit Meas.	000	990	990	990	990	990		nge	55N	990	990	990	990	บอด	ngg	กดด	990	UGG	990	ngg		990	UGG	DDU	990	990	UGG	nce	990		990	nec		99 <b>0</b>	990		590		990	990		990	99n	990
Conc.	.51	.17	.2	.17	.17	.28		84.	٤,	.36	.26	.17	.17	.33	99.	.17	.32	.17	.24	.19		1.7	.17	.2	1.271	.381	12.706	.127	.25		.251	.51		667.	1.27		2.5	i	5.	2.5		.505	.251	.25
Meas. Bool.	: 17	L		רו	_	_		ב	=	۲,		11	Ħ	=	ð	ר	-1	LT		۲,		Q	ב	Ľ					Ľ		17	[]		Ľ			Ľ		_	5		-1		1
Analyte Description	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	Unknown compound 531	Unknown compound 535	Unknown compound 631	Unknown compound 650	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	5-Nitrotoluene	1,3,5-Trinitrobenzene
CAS NO.	84-74-2	85-01-8	85-68-7	86-50-6	86-73-7	87-68-3	;	87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3		69-09-2							118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		2-07-909	78-11-5	6	2-71-88	99-08-1	99-35-4
Meth/ Matrix																													LW32/S							•								
Lab Lab Anly. No.	PC 31615																																											
Sample Depth Date	30-JAN-92																																											
De																																												

^{* -} Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Site Site Type ID .... .... SURF S5S04

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data Quals	6 6 6 2																																										
Flag Codes							-	- 1-	- +	<b>-</b> -	- +	- 1-	-											<b> </b>	•															-			
Unit Meas.	1166	990	990	990	990	990	200	990	500	990 100	950	200	990	990	! !	990		nee		990	UGG		990	990	990	990	990	! !	990	000	000		DUC		990		990	990		990		nee	990
Conc.	.249		8.70 E -2	1.01	u		1 L	ı u	7.00.1	uч		<b>и</b>		2.50 E -3		5.40 E -3		2.28 E -2		ш	9.60 E -3		4.00 E -3		ш	ш			7.80 E -3				1.12 E -2		1.42 E -2		u	9.60 E -3		.2	;	4.70 E -3	2.5 E -3
Meas. Bool.			ב :	<u></u> = =	; =	: 5	; <b>S</b>	<u> </u>	2	<u> </u>	<b>S</b>	2 2	<u>-</u>	: 5		П		Ľ		רו	-		Ľ	ð	רַ	11	נ		ר	П	۲٦		LT	i	<u></u>	1	-11	LT		Q		<u>.</u>	=
Analyte Description	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Cyanide	Heptachlor epoxide	Endosulfan sulfate	PCB 1221	PCB 1260	PCR 1254	PCB 1232	PCB 1248	PCB 1016	Aldrin	alpha-Hexachlorocyclohexane / alpha-	Benzene hexachloride	beta-Hexachlorocyclohexane / beta-	Benzene hexachloride	delta-Hexachlorocyclohexane / delta-	Benzene hexachloride	Endosulfan II / beta-Endosulfan	2,2-Bis(p-chlorophenyl)-1,1,1-	trichloroethane	alpha-Chlordane	PCB 1242	Endrin ketone	gamma-Chlordane	Lindane / gamma-Benzene hexachloride	/ gamma-Hexachlorocyc*	Dieldrin	Endrin	Methoxychlor / Methoxy-DDT / 1,1'-	(2,2,2-Trichloroethylide*	pp000 / 1,1-Dichloro-2,2-bis(p-	chlorophenyljethane / Rhoth*	Z,Z-Bis(p-chlorophenyl)-1,1-	dichloroethene	Endrin aldenyde	Heptachlor / 1H-1,4,5,6,7,8,8-	Heptachloro-3a,4,7,7a-tetrah*	Toxaphene / Chlorinated camphene /	campheculor / Alltox / *	Ethylbarian 1 / alpha-Endosultan	ברווא והפוזכנוב
CAS No.	0-59-66	0-66-66	7-76-0772	57-12-5	1024-57-3	1031-07-8	1104-28-2	11096-82-5	11097-69-1	11141-16-5	12672-29-6	12674-11-2	309-00-2	319-84-6	;	319-85-7		319-86-8		55213-65-9	50-59-3		5103-71-9	53469-21-9	53494-70-5	5566-34-7	58-89-9		60-57-1	72-20-8	72-43-5	, i	8-46-21	72-55-0	6-66-27	7.21-02-7	4-04-1741	76-44-8		8001-35-2	050-08-8	100-71-7	r -
Meth/ Matrix	LW32/S	37 70 91	2000/S	KY04/S	LH19/																																					1 M33 /	) ]
Lab Anty. No.	PC 31615	21712					=																																				
Sample Date	30-JAN-92	30- JAN-02	27 NV 05																																								
Depth	0.0	C	3																																								
Field Sample No.	\$5804	70858																																									

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Sample Depth Date 0.0 30-JAN-92

Field Sample No. 1

Site Site Type ID

Data Quals	: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																																						
Flag	† ! !																														~								
Unit Meas.	nge	990	9911	199	}	990	990	ngg		99N	000	!	ngg		990	000	300	550	990	990	990	990	990	990	990	990	990	000	990		nee	OGG	NGG	000	990	000		990	990
Conc	2.5 E -3	3.0 E -3	ш	1.9 F -2	1	ш	ш	5.7 E -2		2.5 E -3	2.5 E -3		2.5 E -3		5.1 E -5	u L	4.0 E -2 2 A E -3	u	u u	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш		ш	ш	ш	ш	2.5 E -3	1.2 E -2		7.5 E -3	ш
Meas. Bool.	17	Ħ	=	: =	i	11	LI	<u></u>		<b>5</b>	-		LT		<u> </u>		- <u>-</u>	: <u>-</u>	; ;	<b>.</b>	ב	LT	11	LT	LT	[]		LT	1		2	L1	ĽŢ	ר	[1	[]		רַ	=
Analyte Description	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene * cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene 1.2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Chlorodibromomethane	letrachloroethylene	cis-1,2-Dichloroethylene / cis-1,2-	Dichloroethene	trans-1,2-Dichloroethylene / trans-	1,2-Dichiorethene	Methyl n-butyl ketone / 2-Heyanana	Acetone	Chloroform	Benzene	1,1,1-Trichtoroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	-2'5'	Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1,3-Dichloropropene
CAS No.	100-42-5	10061-01-5	107-06-2	108-10-1		108-88-3	108-90-7	124-48-1	, 07 10	127-18-4	156-59-2		156-60-5	56.22.5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4	:	7-69-6	78-87-5	78-93-3	2-00-62	79-01-6	79-34-5			
Meth/ Matrix	LM33/																																						
Lab Anly. No. N	PC 31615																																						

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-001-94

** End of Report - 1630 Records Found **

* - Analyte Description has been truncated. See Data Dictionary

Appendix G
Subsurface Soil Data

Site Site Type ID .... ----

Final Documentation Appendix Report Installation :Anniston Ab, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data Quals	!	×	¥	×	×	¥	74	<b>!</b>	¥	×	¥	¥	¥	¥	¥																						
Flag Codes	<u> </u>																																				
Unit Meas.	000 000	กอด	UGG	nee	ngg	990	990		99n	nee	990	990	99N	ออก	990	ŋgn	UGG	990	990	UGG	ngg	99N	99N	990	990	99N	ngg	חפפ	990	990	990	9 2	991	99n	990	990	990
Conc.	772	.25	.251	.51	667.	1.27	2.5		_ເ ້.	2.5	.505	.251	.25	.249	.245	8.70 E -2	7500	21000	10	274	41.1	7	7.5	218	20	12.5	82.9	12.6	.c.	124.	2,72	57.75	34.6	15.9	109	12.4	77.1
Meas. Bool.	Q -	: 5	5	_	ב	ב	ב		5!	=	ב	5	_	Ľ	_	_			=			-	_		=		=		<u>.</u> .	3					ב	ב ב	3
Analyte Description	Total organic carbon Nitrite, nitrate - nonspecific Silver	2,4,6-Trinitrotoluene / alpha- Trinitrotoluene	2,4-Dinitrotoluene	<pre>kDx / Lyctonite / Hexanydro-1,5,5- trinitro-1,3,5-triazine *</pre>	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	Vitroglycerine / 1,2,3-Propanetriol	trinitrate		<pre>PEIN / Pentaerythritol tetranitrate / 2,2-Bis[(nitrooxy)me*</pre>	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium		Antimony	Boxyl 1 tom		Chronical	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	
CAS No.	14797-55-8 7440-22-4	118-96-7	121-14-2	+-70-171	2691-41-0	479-45-8	55-63-0		606-20-2 78-11-5	6-11-01	88-72-2	99-08-1	99-35-4	99-65-0	0-66-66	7439-97-6	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	7-40-04-7	7440-23-5	0-97-044/	7.440-30-0	7440-41-7	6-27-0772	7440-47-3	7440-48-4	7440-50-8	7440-62-2	2440-66-6	7440-70-2	//82-49-2 57-12-5	; i
Meth/ Matrix	00 /s 99 /s JC02/s	LW32/S													,	JB06/S	JS14/S																			S/7UAX	
Lab Anly. No.	PC 23400															PC 25400																					
Sample h Date	N														20, 141, 55	J CC-JAN-92																i					
o. Depth															c	٠. م																,					
Field Sample No.	S10B11-C														2100110	31.001.6																					

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data Quals	! ! !		¥	۷	<b>∠</b> :	¥	7	. <u>v</u>	!	¥		×	¥	:	<b>×</b> :	<b>∵</b> ∶	¥	¥	¥																								
Flag Codes	; ; ; ;																																									•	-
Unit Meas.	000	000	990	-	กาก	990	9911	990	!	990		nee	ngg		990	990	990	990	990	ngg	ออก	990	990	nec	990	nee	990	NGG	UGG	990	990	ngg	000	DOO	DOC	990	990	990	990	990	99 1	990	990
Conc.		1.01	.25	120	[ <del>]</del>	15.	067	1.27		2.5		'n.	2.5		.505.		<b>3</b> :	. 249		8.70 E -2	7600	15000	10	178	32.8	7	7.5	142	152	12.5	82.9	8.91	.25	.427	70.9	6.55	6.49	27.5	14.5	109	12.4	1.22	_
Meas. Bool.	2	1	ב		֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		-	: 5	i	ב		ב	-	1	<b>:</b> !	ב :	<u>ר</u>	ב	<u>-</u> 1	-	٠		רו			-	רז	11		רַז	LT		L	ר						5	<u>-</u> !	<u></u>	Š
Analyte Description	Nitrite, nitrate - nonspecific		2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	z'4-DIUI L'OLOLUene	<pre>KDX / Cyclonite / Hexahydro-1,5,5- trinitro-1.3.5-triazine *</pre>	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N.2.4.6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	Z,Z-BISL(NITFOOXY)me*	Z-Nitrotoluene	5-Nitrotoluene	1,5,5-1rinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium		withite, nitrate - nonspecific
CAS NO.	14797-55-8	7440-22-4	118-96-7	131-17-3	7-41-171	121-82-4	2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5	7	2-71-88	1-80-66	44-22-4	99-65-0	0-66-66	7439-97-6	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2440-05-2	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	2440-43-9	7440-47-3	7440-48-4	2440-20-8	7440-62-2	9-99-055	7440-70-2	7-64-797	1/707-55-0	0-77-171
Meth/ Matrix																			,	3B06/S	JS14/S																				0,000	67 04/V	?
Lab Lab Anly. No.	23418																			23418																						76726	
Lab	<u>۳</u>																			ည																						2	2
Sample Date	22-JAN-92																			22-JAN-92																						15 0 22- IAN-02	77 - NUN - 75
Depth	10.0																			10.0																						7.	2
Field Sample No.	\$10B12-C								!										;	S10B12C																						210013	3-C1 001 c
Site ID	918110																																										
Site Type	BORE																																										

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-001-94

Data Quals			¥		¥	¥		¥	· 👱		¥		¥	¥		⊻	¥	¥	¥	: 👱																									
Flag																																											<b>-</b>	-	
Unit Meas.		990	990		ngg	nec		UGG	nee		090		ngg	990		บอด	ngg	nee	UGG	neg	990	DOD	990	990	nec	UGG	ngc	990	ngg	550	000	UGG	DOC	990	000	990	990	990	990	990	990 1861	300	990	ngg	
Conc.		1.01	.25		.251	.51		667.	1.27		2.5		ιĊ	2.5		.505	.251	.25	.249	.245	8.70 E -2		20000	10	138	31.6	7	7.5	142	50	12.5	82.9	9.23	.25	.427	28	7.46	6.45	40.3	12.5	50,	1 22	1	1.01	
Meas. Bool.		ב	ב		ב			5	5		=		5	5		[1	-1	<b>L1</b>	17		11			LT	L1		רו	ב		ב	LT	LT		LT	ב					•	<u> </u>	<u> </u>	2 2	:5	
Analyte Description		Silver	2,4,6-Trinitrotoluene / alpha-	Irinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	Z,Z-Bis[(nitrooxy)me*	Z-Nitrotoluene	5-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadıum	2.1nc	Selenism	Cvanide	Nitrite, nitrate - nonspecific		
CAS No.			118-96-7		7-61-171	5-78-171		2691-41-0	479-45-8	:	55-63-0		606-20-2	78-11-5	6	2-27-88	99-08-1	99-55-4	99-62-0				7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-05-2	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7-79-044/	740-08-0	7782-49-2			7440-22-4	
_		JC02/S	LW32/S																		3/908r	JS14/S																				KY04/S	S/ 66	JC02/S	
	•	72470																			25426																						23434		
Lab	: 6	3																			٦ ۲																						<u>გ</u>		
Sample Date	22. 1411.03	26-JAN-35																			24-JAN-92																						22-JAN-92		
Depth		2.0																		4	2.0																						20.0		
Field Sample No.	C10817-C	3-Cl aol c																		010013	2010015																						S10B14-C		
Site ID	 01811C	2																																											
Site Type	RORF																																												•

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-OCI-

Data Quals	<u> </u>	7	. ¥		<b>∵</b> :	¥	74	4	<b>Y</b>	<b>×</b>		<b>×</b>	¥	~	<b>×</b>	¥																										
Flag Codes	!																																							_		
Unit Meas.	990	991	000		99n	990	9911	3	990	990		990	99N	ngc	000	990	DDU	990	990	99N	000	990	990	000	nge	990	950	990	990	990	990	990	990	990	990	990	990	990	990	990	UGG	
Conc.	.25	251	.51		667.	1.2/	2.5	•	5.	2.5		.505	.251	.25	.249	.245	8.70 E -2	9100	18000	10	138	53	7	7.5	142	50	12.5	82.9	96.6	.25	.427	15.5	7.72	11.9	33.1	18.5	109	12.4	1.22	_	1.01	
Meas. Bool.		-	: 5	:	<u>-</u> :	5	-	;	5	=		5		-1	<u></u>		ב			1	ב		5	_	ב	=	=	ב		ב	17						<u></u>	[]		2	רז	
Analyte Description	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene 2 4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,5,5-triazine *	Cyclotetramethylenetetranitramine	ietryl / N-Methyl-N,2,4,6-	<pre>tetranitroaniline / Nitramine / * Nitroalycerine / 1.2.3-Propapetriol</pre>	trinitrate	2,6-Dinitrotoluene	PEIN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium		Nitrite, nitrate - nonspecific	Silver	
CAS No.	118-96-7	121-14-2	121-82-4	2,000	0-14-1697	8-64-614	55-63-0	}	606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-59-66	0-66-66	7439-97-6	7429-90-5	2439-89-6	7439-92-1	7439-95-4	2439-96-5	7439-98-7	7440-02-0	2-60-05-2	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	2440-43-9	2440-42-3	7440-48-4	7440-50-8	7440-62-2	9-99-0552	7440-70-2	7782-49-2	57-12-5	14797-55-8	7440-22-4 118-96-7	
Meth/ Matrix	LW32/S																JB06/S	JS14/S																					KY04/S	s/ 66	JC02/S LW32/S	
Lab Lab Anly. No.	23434																23434																							23442		
Lab A	წ																<u>ე</u>																							<u>გ</u>		
Sample Depth Date	20.0 22-JAN-92																20.0 22-JAN-92																							30.0 22-JAN-92		
	S10B14-C																S10B14C																							S10B16-C		
Site ID	91B11C																																									
Site Type	BORE																																									

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Site	Site	Field	;		•	Lab	Sampling Meth/		J1-JAN-91 24-0CT-94	Meas.		Unit	Flag	Data
- Abe	e :	Sample No.	Depth		e :	Lab Anly. No.	Matrix	CAS No.	Analyte Description	Bool.	Conc.	Meas.	Codes	Quals
	91B11C	S10B16-C	30.0	22-JAN-92	2		LW32/S	118-96-7	2,4,6-Trinitrotoluene / alpha-	- 17	.25	ng		; ==: :
								121-14-2	Trinitrotoluene 2.4-Dinitrotoluene	=	251	5511		٢
								121-82-4	RDX / Cyclonite / Hexahydro-1,3,5-	: 5	.51	99n		د <i>ي</i> د
								:	trinitro-1,3,5-triazine *					
								2691-41-0	Cyclotetramethylenetetranitramine	רַן	667.	กดด		¥
								479-45-8	Tetryl / N-Methyl-N,2,4,6-	ב	1.27	UGG		×
								0-54-55	Nitrodycerine / NICTAMINE / *	F	LI C	-		2
								}	trinitrate	3	۲.۶	กูก		4
								606-20-2	2,6-Dinitrotoluene	11	٠.	990		<b>×</b>
								78-11-5	PETN / Pentaerythritol tetranitrate /	ב	2.5	ngg		· 🕶
								1	2,2-Bis[(nitrooxy)me*					
		,						88-72-2	2-Nitrotoluene	11	.505	99N		¥
								79-08-1	3-Nitrotoluene	-1	.251	99n		¥
								99-35-4	1,3,5-Trinitrobenzene	<b>L1</b>	.25	99N		¥
								0-69-66	1,3-Dinitrobenzene	LT	.249	990		×
		210016	20	20 0 33, 188, 02	5	07//20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0-66-66	4-Nitrotoluene	-1	.245	990		×
		2018016	20.0	26-JAN-92	T C	75447	JB06/S	7439-97-6	Mercury	ב	8.70 E -2	nee		
							JS14/S	7429-90-5	Aluminum		11000	990		
								0-60-66/2	Lron .		19000	990		
								1439-92-1	read	L	9	990		
								4-54-454	Magnesium		273	990		
								7459-96-5	Manganese		22	nee		
								7439-98-7	Molybdenum	Ľ	7	000		
								7440-02-0	Nickel	ב	7.5	nee		
								2-60-05-2	Potassium		278	UGG		
								7440-23-5	Sodium	LT	50	99N		
								7440-28-0	Thallium	ΓI	12.5	000		
								7440-36-0	Antimony	ב	82.9	nee		
								7440-59-3	Barium		15.4	990		
								7440-41-7	Beryllium	LT	.25	990		
								7440-43-9	Cadmium	L	.427	000		
								7440-47-3	Chromium		15.2	ngg		
								7-87-075/	Cobalt		9.56	nge		
								7440-50-8	Copper		15.1	DDO		
								7440-62-2	Vanadium		35.3	ngg		
								2440-66-6	Zinc		30.6	UGG		
								7440-70-2	Calcium	<u></u>	109	ngg		•
								7782-49-2	Selenium	11	12.4	UGG		
ć	4,70	444	•		;		KY04/S	57-12-5	Cyanide	LT	1.22	990		
*	OLLBIA	S091B11D	0.0	0.0 01-FEB-92	೭	38911	s/ 00		-		0269	990		
							٧ . څ څ	14797-55-8	Nitrite, nitrate - nonspecific	Q	-	990	_	
							` \$	7440-36-0	Antimony	Q	82.9	990	<b>-</b> -	

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data Quals	! ! !																								7	¥		¥	¥		¥	<u>\</u>		¥		×	¥		¥	· 🔽	: <u>~</u>	: >=	: ٧	۷		
Flag Codes	1												<b>-</b>																																	
Unit Meas.	กนิด	55N	990	DBO	nec	วอก	nee	DOU	กดิด	000	990	990	nec	990	990	990	990	990	990	990	990	990	990	990	2 2	ก		990	ngg		nee	บอด		990		990	990		990	990	1166	991	991		ออก	990
Conc.	8.70 E -2	1.01	9500	13000	9	345	29.3	7	12.2	824	20	12.5	12.7	7.74	.25	.427	18.8	9.91	14.5	24.9	30.3	109	12.4	1.22	36	Q.		.251	.51		664.	1.27		2.5		₹.	2.5		.505	.251	5	672	27.5	L	8.70 E -2	1.01
Meas. Bool.	5	רו			-1			5			5	=	용			5						-	; <b>-</b>	-	; <u>-</u>	3		ב	_		٦			רַ		5	=		ב	=	-	; <u>-</u>	; <u>-</u> -		<u>:</u> :	-
Analyte Description	Mercury	Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thatlium	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cvanide	2 / K-Trinitrotoluppo / plabo.	trimitionolumne / alpha-	Irinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1.3.5-Trinitrobenzene	1.3-Dinitrobenzene	4-Nitrotoluene		Mer cury	Silver
CAS No.	7439-97-6	7440-25-4	7429-90-5	7439-89-6	7439-92-1	7439-95-4	2439-96-5	7439-98-7	7440-02-0	2-60-05-2	7440-23-5	7440-28-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	2440-42-3	7440-48-4	7440-50-8	7440-62-2	9-99-0552	7440-70-2	7782-49-2	57-12-5			,	121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-69-66	0-66-66		- •	4-77-044/
Meth/ Matrix	3/908r	JC02/S	JS14/S																					KY04/S	1 1727/6	C / 2CM7																		3/ 7001	8/0095	3005/8
Lab Lab Anly. No.																																												78020	07400	
Sample Date	0																																													
Depth	0.0																																													
Field Sample No.	S091B11D																																													

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

Data	Quals		×		¥	¥		×	¥		¥		¥	¥		¥	<b>∠</b> :	¥	×	¥																								
Flag	Codes																				_	<b>-</b>						<b></b>					_											
Unit	Meas.	9911	990		99N	nee		99N	990		990		ngg	59N		990	990	000	990	99N	990	99N	ngg	990	990	990	990	990	990	990	<u> </u>	990	990	990	990	ngg	990	990	000	990	990	000	990	nec Nec
	conc.	1.22	.25		.251	.51		667.	1.27		2.5		r.	2.5	i.	505.	167.	9.	. 249	.245		82.9	8800	13000	10	323	40.1	4.73	16.2	819	20	12.5	12.7	7.8	.25	.427	37.5	9.11	15.1	20.1	23.3	109	12.4	1 82.9
Meas.	1009	17	5		=	5			=		ב		ב	_		_ !	<u>.</u> :	; ;	<u>.</u> !	_	운.	9			ב						_	_	9		Ľ	5						בי	-1	<del>9</del> 9
Anslyte Doceriotion	יייייייייייייייייייייייייייייייייייייי	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,5,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	2 2 Pic // Fentaerythritol tetranitrate /	2-Nitrotoluono	Z-Without Lines	1 3 S-Trinitroborono	1 2-0 in the bearing	1,3-0 IIII crobenzene 7-Mittotolusen		Nitrite, nitrate - nonspecific	Antimony	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	וויון וויון וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין ווייין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין וויין ווייין ווייין ווייין ווייין ווייין ווייין ווייין וויייין ווייין ווייין וויייין ווייין וויייין וויייין וויייין וויייין ווייייין וויייין וויייייין ווייייין וויייייייי	Arsenic	Barlum	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium		Nitrite, nitrate - nonspecific Antimony
0 N		57-12-5	118-96-7	,	7-51-171	121-82-4	0 17 1070	0-14-1697	479-45-8		55-63-0		606-20-2	6-11-9/	88-72-2	2-71-00	7-52-66	00-45-0	00-00-00	47707 55 0	14/9/-33-8	7440-36-0	5-06-6747	7439-89-6	7459-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	7-60-05-7	7440-23-5	7,10 36 0	7,40-38-2	7440-59-5	7-14-044/	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	7440-66-6	7282-70-2	7-64-7011	7440-36-0
Meth/ Matrix	X - 1 - 1	KY04/S	LW32/S																		<.		2214/2																					۲ <u>-</u> ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲
Lab Antv. No.		38920																		78030	02400																						02002	96,430
Lab		PC C																																									Č	
Sample Date	1	01-FEB-92																		01.550.00																							10 0 02.002.02	76-1-50
Depth	. :	0.0																			•																						100	2
Field Sample No.		S091B11D																																										
Site ID		918110																																										
Site Type		BORE																																										

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-001-94

Site Site Type ID .... BORE 918110

Data Quals	1 1 1 1																					¥		¥	¥		×	×		¥		×	¥		⊻	¥	×	¥	¥			
Flag Codes	)   										_																													<b>-</b>	-	
Unit Meas.	000	990	990	990 000	nge	990	990	990	990	990	99N	UGG	99n	nec	990	990	ngg	nec	990	nee	990	990		990	990		DDN	OGG		990		บอด	บอด		990	990	990	990	990	990	000	990
.conc.	8.70 E -2	4410	9900	169	28.1	7	15.4	382	20	12.5	12.7	4.87	.25	.427	54.7	8.36	12.6	14.7	25.8	109	12.4	.25		.251	.51		667.	1.27		2.5		'n.	2.5		.505	.251	.25	.249	.245	-	82.9	8.70 E -2
Meas. Bool.		;	<u>-</u>	į		ב			=	ב	S	Ľ	= !	=						_	ב	_		Ξ			Ξ	_		ב		<u>-</u>	ב		-	_	_	ב	Ľ	2	2	5
Des	Mercury	Aluminum	Iron	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobait	Copper	Vanadium	Zinc	Calcium	Selenium	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Nitrite, nitrate - nonspecific	Antimony	Mercury
CAS No.	7439-97-6	7429-90-5	7439-89-6 7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	7440-09-7	7440-23-5	7440-28-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-5	7440-48-4	7440-50-8	7440-62-2	9-99-0752	7440-70-2	7782-49-2	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-59-66	0-66-66	14797-55-8	2440-36-0	7439-97-6
Meth/ Matrix	3/908C	JS14/S																				LW32/S																		s/ 66	<b>^</b> 66	2 /90gr
Lab Lab Anly. No.	PC 38938																																							PC 38946		
	02-FEB-92																																							22.5 03-FEB-92		
Depth	10.0																																							22.5		
Field Sample No.	S091B11D																																									

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data	21000																								<b>×</b>		<b>×</b>	: 🛩		×	¥		×		¥	¥		¥	¥	¥	¥	×			
Flag	1												۲	_																													_	_	
Unit	· cool	nec	99n	กาก	nee	99A	990	990	991	999	990	3 5	990	9 2	900	9 2	9 5	9 5	991	990	990	ngg	990	990	990		990	990		DBG	990		990		ออก	990		ngg	990	990	990	UGG	990	99N	990
5000		1.01	14000	21000	10	422	35.7	7	12.7	440	25.25	13.5	12.7	11.7	÷:1:	227	20.3	14.2	16.8	33.7	34.6	109	12.4	1.22	.25		.251	.51		667.	1.27		2.5		'n	2.5		.505	.251	.25	.249	.245	_		8.70 E -2
Meas.		_		!	5			-				<u>-</u>	; <u> </u>	Ş		<u>-</u>	į					5	-	11	ב		ב	_		_	<b>_</b>		5		5	_		_		LI	5	5	윤	읒	ב
Analyte Description		SILVE	A Luminum 1 ros		read	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodiem	That is	Arsonic	Barium	Berv(Lium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	c,b-uinitrotoluene	PEIN / Pentaerythritol tetranitrate /	Z,Z-Bis[(nitrooxy)me*	Z-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Nitrite, nitrate - nonspecific	Antimony	Mercury
CAS NO.	7.66-0772	4-77-044/	7,429-80-5	7, 20-02,7	1-26-6547	4-04-40-1	7439-96-5	7439-98-7	7440-02-0	7440-09-7	7440-23-5	7440-28-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-0442	7440-70-2	7782-49-2	57-12-5	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8	;	55-63-0	ר מר אטא	200-50-5	c-11-9/	د در ده	7-71-00	99-08-1	99-35-4	0-69-66	0-66-66	14797-55-8	7440-36-0	7439-97-6
Meth/ Matrix	3/2031	2005	2/4/2																					KY04/	LW32/S																		s/ 66	/ ; 65:	/908r
Lab Lab Anly. No.	380/.6	20740																																								!	38954		
Lab		2																																									ည		
Sample Date	13-FEB-02	24 - 67 - 60																																								;	25.0 03-FEB-92		
Depth	22.5	;																																									0.0		
Field Sample No.	S091811D																																												
Site ID	 918110	)																																											
	0																																												

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Type

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-001-94

a Ils	1																						¥		¥	×		¥	×		¥		×	×		×	¥	×	×	×			
	:																																										
Flag Codes											<b>-</b>																														<b>-</b>	_	
Unit Meas.	990	000 100	200	990	99n	990	nec	ngg	ngg	ngg	OGG	nee	ngg	กดด	<u> </u>	99n	กดิด	UGG	990	990	990	990	990		99N	DOO		990	990		990		DOC	990		990	990	990	00C	990	990	990 1	2
22	•																																										
:	: -	88	3		9	)	Ŋ			2	7	7	2	7	2	2	_		2	_	4	2			_			6	2							5	=		6	15		9.0 	1
Conc.	1.01	14000	2	394	32.6	4	9.85	468	20	12.	12.	11.7	.4	.427	75.	13.	18	35	34.	109	12.4	1.5	.25		53.	.51		667.	1.27		2.5		z.	2.5		.505	.251	.25	77:	.245	<b>-</b>	82.9	;
Meas. Bool.	: 17		_	;		-			רו	<u></u>	ş			5						Ľ	. 17	רַ	<u>_</u>		Ľ	-1		1	LT		-1		11	ב			11	Ľ	רַ	_	2	을 :	;
																										۰,۲		a.		ı.	iol			ate /									
																							oha-			5-1,3,5		<b>Cyclotetramethylenetetranitramine</b>		tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol			PETN / Pentaerythritol tetranitrate							ific		
																							2,4,6-Trinitrotoluene / alpha-			RDX / Cyclonite / Hexahydro-1,3,	ine *	etranit	-9'4'	litrami	,3-Prop			ol tetr	ىد			41			<ul> <li>nonspecific</li> </ul>		
tion	:																						oluene	•	ene	e / He	triazi	/lenete	N-1×1	ine /	11,2,		nene	/thrite	oxy)me			enzene	ene				
escrip						E		_					_										nitrot	oluene	rotol	lonite	1,3,5	ameth)	N-Meth	oani!	erine	به	rotoli	entaer)	nitro	uene	luene	nitrok	:roben	luene	nitra		
Analyte Description	Silver	Aluminum	. 70	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	ŏ,	Calcium	Selenium	Cyanide	,,6-Tri	Trinitrotoluene	2,4-Dinitrotoluene	) (	trinitro-1,3,5-triazine *	lotetr	ryl /	ranitr	roglyc	trinitrate	2,6-Dinitrotoluene	94 / N.	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	,5-Tri	i-Dinit	4-Nitrotoluene	Nitrite, nitrate	Antimony	į.
Ana	Sil	Alumi	Lead	Mag	Man	Mol	Nic	Pot	Sod	Tha	Ars	Bar	Ber	Cad	ຮີ	<u>ප</u> ප	ပ္သိုင္	Van	Zinc	Cal	Sel	င်္ဂ	5,4	֡֝֟֝֟֝֟֝֟֝֟֝֟֝֟	2,4	S	ţŢ	Š	Tet	tet	N.T.	ţŢ.	2,6	PET	2,2	2-k	3-1	F.	ΕŢ	4-Y	Z ·	A A	:
9	7440-22-4	7429-90-5	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	-58-0	-38-2	7440-39-3	-41-7	7440-43-9	7440-47-5	7440-48-4	7440-50-8	7440-62-2	2440-66-6	7440-70-2	7782-49-2	2-5	2-96		14-2	82-4		2691-41-0	45-8		3-0	;	20-2	1-5		2-5	8-1	2-4	2-0	0-6	14797-55-8	0-95-0572	
			7439-	7439	7439-	7439-	7440	7440	7440	7440	-0440	2440	2440	7440	7440	.0440	7440	7440	7440	7440			118-96-7		121-14-2	121-82-4		2691	479-45-8		55-63-0	,	606-20-2	78-11-5		88-72-2	₽0-66	99-35-4	9-66	_			
Meth/ Matrix	JC02/S	JS14/S																			į	KY04/	LW32/S																		s/ 66	3% / JB06/	
	. 70																																										
Lab Anly. No.	38954																																								38962		
Lak	5																																								<u>გ</u>		
Sample Date	03-FEB-92																																							1	35.0 04-FEB-92		
																																								;	0 04-		
	25.0																																							¦	ξ.		
Field Sample No.	S091B11D																																										
Fi Samp	808																																										
Site ID	: £																																										
<i>σ</i>	918110																																										

^{* -} Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

	Data Quals	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																				2	×	7	<b>∠</b>	4	×	34	77	<u> </u>	¥	¥	٤	<b>~</b> \	< 'y	: 👱	¥			
	Flag Codes	: : : :									,																											<b>-</b>	-	-
	Unit Meas.		990 000	990	990	990	990	990	บบก	990	990	991 1	990	990	990	990	nee	D90	000	990	990	000 1166	กดีน	3	990	)	990	990	990		บอก	UGG	0011	990	990	nge	nge	000	กรก การ	; ;
	Conc.		0096	13000	10	32.2	4	7.5	343	50	(,7)	12.1 8 92	.25	.427	11.7	10.5	15.1	24.3	52.5	, (1	12.4	77.I	G.	25.1			667.	1.27	2.5		٠.	2.5	505	25.	.25	.249	.245		12.7	:
	Meas. Bool.	: -	;	1			LI	1		55	<u>.</u>	Š	17	5							_ :	<u>.</u>	5	-	ב ב		LT	LI			Lī		<u>-</u>		: 5	11	LT	Q <u>-</u>	. <del>S</del>	!
01-JAN-91 24-0CT-94	Analyte Description	Silver	Atuminum	Iron	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Arsonic	Barica	Beryllium	Cadmium	Chromium	Cobalt	Copper	vanadium	Z I I IC	Solonium	Contraction	2 & 6-Trinitrotolugue / alpha-	Trinitrotoluene	2.4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	<pre>letryl / N-Methyl-N,2,4,6- tetranitrophiling / Nitroming / *</pre>	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	<pre>PEIN / Pentaerythritol tetranitrate / 2 2-Bis [/nitrocklime*</pre>	2.K.bisi(illioxy)me. 2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Nitrite, nitrate - nonspecific Cvanida	Arsenic	
Date Range: 01-JAN-91	CAS No.	7440-22-4	7429-90-5	7439-89-6	7439-95-4	7439-96-5	7439-98-7	7440-02-0	7440-09-7	7440-23-5	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7-87-075/	7440-50-8	7-79-0447	2-02-0772	7.67-6822	57-12-5	118-96-7		121-14-2	121-82-4		2691-41-0	4/9-45-8	55-63-0	000	606-20-2 78 11 E	6-11-07	88-72-2	99-08-1	99-35-4	99-65-0	99-99-0 1/202-65-9	14/9/-33-0	7440-38-2	
Sampling	Meth/ Matrix	JC02/S	JS14/S																			LW32/S															9	KY04/S	s/ 66	
	Lab Lab Anly. No.	PC 38962	•																																		DC 01142 2	7.70	1162.2	
	Sample Date	04-FEB-92																																			10-JAN-02			
	Depth	35.0																																			5			
	Field Sample No.	S091B11D																																			S091812			•
	Site Site Type ID	2																																			91812			
	.v.₹.	BC																																						1

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-OCI-

Data Quals	1 4																																						
Flag Codes	1																		<b>,</b>		<b>-</b>																		
Unit Meas.	99n 000	990	990	99n	990	990	nee	UGG	990	ngg	990	990	990	000	990	550	000 1166	200	990	nee	990	000	DBC	990	990	990	990	99n	ncc	99n	99n	55U	บบก	990	59n	990	100	990	ngg
Conc.	8.70 E -2 5700	21000 20.3	334	059	7 7	142	78.5	12.5	82.9	30.9	.543	.427	30	**17	9.44 3/. 6	2	1140	7 61		1.22	12.7	8.70 E -2	3200	16000	10	138	72.1	<b>7</b>	7.5	142	50	12.5	82.9	8.85	.25	775.	30.0 7. 7.	3.38	32.5
Meas. Bool.	17			,	<u>.</u> :	<u> </u>	i	<b>L1</b>				ב						<u>-</u>	2	11	QN	LT			L	<u>-</u> 1	i	<u>⊢</u> !	- 1	_	<u>.</u>	ב.	L	1	<u></u> ::	5		LT	i
Analyte Description	Mercury Aluminum	Iron Lead	Magnesium	Manganese	Molybdenum Nickel	Potassium	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	נחסמו	Copper Vanadi:m	7:50	Calcium	Selenium	Nitrite, nitrate - nonspecific		Arsenic	Mercury	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel T.	Potassium	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmilum		Copper	Vanadium
CAS No.	7429-90-5	7439-89-6 7439-92-1	7439-95-4	7439-96-5	7-84-4647	2440-05-7	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	7440-43-9	7440-47-5	7.70-50-8	2-76-044/	7770-66-6	7440-70-2	7782-49-2	14797-55-8	57-12-5	7440-38-2	7439-97-6	7429-90-5	7439-89-6	1-26-657	7439-93-4	7,30,00,7	7-98-647	0-20-055/	7-60-0557	7440-25-5	7440-28-0	7440-36-0	7440-39-3	7-14-044/	7440-45-9	7-87-0772	7440-50-8	7440-62-2
Meth/ Matrix	JB06/ JS14/																		s/ 66	KY04/S	s/ 66	<b>JB06/</b>	JS14/																
Lab Lab Anty. No.	PC 11622																		01163.0		1163.0	11630																	
Lab																			<u>S</u>																				
Sample Date	10-JAN-92																		10.0 10-JAN-92																				
Depth	5.0																		10.0																				
	8091812																																						

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data s Quals																																										
Flag Codes	;		<b>j</b>		_																						<b>-</b>		<b></b>													
Unit Meas.	050	990	990 090	ngg	DOU	990	990	990	990	חפפ	990 1001	990	991	991	000	990	990	990	990	1100	991	ונים	990	1166	990	990	ngg	DUC	000	990	กดด	บบก	990	990	DDN	990	nce	990	990	990	990	11111
Conc.	8.72	109	t	1.22	12.7	8.70 E -2	4190	0007.	10	92,	<del>5</del> 7	7 5	142	2.49	12.5	82.9	6.47	.25	.427	21.2	89.6	7.93	27	12.9	109	12.4	_	1.22	12.7	8.70 E -2	4910	19000	12.5	138	144	7	7.5	142	66.1	12.5	82.9	07.7
Meas. Bool.	! !	5:	3 8	LT	ð	ב		!	<u>.</u>	3	-	<u>-</u>	: 5		LT	5		5	ר						ר	רז	Ð	-1	Q.	Ľ				רז		LI	Ľ	LI		_	רו	
Analyte Description	Zinc	Calcium Selenium	Nitrite, nitrate - nonspecific		Arsenic	Mercury	Aluminum		Necesium	Managaran	Molyhdenia	Nicket	Potassium	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Nitrite, nitrate - nonspecific		Arsenic	Mercury	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	That trum	Antimony Rarium	
CAS No.	7440-66-6	7440-70-2 7782-49-2	14797-55-8	57-12-5	7440-38-2	7439-97-6	7,20-90-5	7/20-03-1	7-30-0572	5-96-6272	7439-98-7	7440-02-0	7440-09-7	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	2440-66-6	7440-70-2	7782-49-2	14797-55-8	57-12-5	7440-38-2	7459-97-6	7429-90-5	7439-89-6	1459-92-1	7459-95-4	7459-96-5	7439-98-7	7440-02-0	2440-09-7	7440-23-5	0-87-044/	7440-36-0	
Meth/ Matrix	JS14/		s/ 66	KY04/S	s/ 66	JB06/	75150																				s/ 66	KY04/S	s/ 66	7806/	JS14/											
Lab Lab Anly. No.	11630		01164.9	,	1164.9	11649																				!	01165.7	!	1165.7	76911												
Lab	. D		ည																								ည															
Sample Date	10-JAN-92		10-JAN-92																							:	20.0 10-JAN-92															
Depth	10.0		15.0																								50.0															
_	s091B12																																									

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-001-94

Data Quals	1 1 1 1																																											
Ftag Codes	1 1 1											<b>-</b> -																									-							
Unit Meas.	n	000	990	990	99n	กดด	99N	99N	990	990	990	990	990	990	nec	990	990	99N	990	nee	990	990	000	990	000	990	990	ngg	99N	990	NGG	990	990	990	990	ออก	กดด	990	990	990	000	990	99n	UGG
Conc.	.25	.427	28.4	10.8	69.6	30.1	15.3	109	12.4	2.58	1.22		8.70 E -2	4190	13000	10	138	43	7	7.5	142	20	12.5	82.9	4.87	.25	.427	12.5	7.33	24.9	25.8	7.79	109	12.4	1.41	1.22	12.7	8.70 E -2	2230	5800	10	138	26.4	7
Meas. Bool.		[]						ב	5		5	S	ב		į	<u>.</u> .			רו	7	ב	17	ב	LŢ	1		רַ						_			רו	Q	17			ב	П		17
Analyte Description	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadıum	Zinc	Calcium		Nitrite, nitrate - nonspecific	Cyanide	Arsenic	Mercury	Atuminum	l ron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thatlium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadıum	Zinc	Calcium		Nitrite, nitrate - nonspecific	Cyanide	Arsenic	Mercury	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum
CAS No.	7440-41-7	7440-43-9	7440-47-3	7-04-0447	7,40-20-8	7-79-044/	7440-66-6	7440-70-2	7782-49-2	14797-55-8	57-12-5	7440-38-2	7459-97-6	7,20,90-5	0-69-66/2	1459-92-1	4-24-424	7439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7-79-044/	7440-66-6	7-0/-044/	7-64-79/	14/9/-55-8	57-12-5	7440-38-2	2439-97-6	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7
Meth/ Matrix	JS14/								;	s/ 66	KY04/S	s/ 66	JB06/	7814/																				!	s/ 66	KY04/S	s/ 66	/908r	JS14/					
Lab Lab Anly. No.	PC 11657									PC 01166.5	•	1166.5	11665																						PC UTIO/.5	1	1167.5	11673						
Sample th Date	_									25.0 10-JAN-92																									32.U 11-JAN-92									
Field Sample No. Depth									•	2																								1	32.									

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-0CT-

24-001-94

Data Quals	1 1 1 1		
Flag Codes	• • • • • • • • • • • • • • • • • • •		
Unit Meas.	990 990 990 990 990 990 990	990 990 990 990 990 990 990 990	990 000 000
Conc.	7.5 142 50 12.5 82.9 4.87 .427 10.6 3.8 5.74 14.4	2.5 1.27 1.27 1.27 2.5 2.5 2.5 2.5 2.5 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49	.51 .499 1.27
Meas. Bool.	5555555	555 55 55 5 555555 5	t
Analyte Description	Nickel Potassium Sodium Sodium Thallium Antimony Barium Beryllium Cadmium Cobalt Copper Vanadium Zinc Calcium	Selenium Selenium Silver 2,4,6-Trinitrotoluene / alpha- Trinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine * Cyclotetramethylenetetranitramine Tetryl / N-Methyl-N,2,4,6- tetranitroaniline / Nitramine / * Nitroglycerine / 1,2,3-Propanetriol trinitrate 2,6-Dinitrotoluene PETN / Pentaerythritol tetranitrate / 2,6-Dinitrotoluene 7,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrotoluene 5,4,6-Trinitrotoluene 7,4,6-Trinitrotoluene 1,2,4,6-Trinitrotoluene 1,2,1-Dinitrotoluene 2,4,6-Trinitrotoluene 1,2,4,6-Trinitrotoluene 1,2,4,6-Trinitrotoluene 2,4,6-Dinitrotoluene	<pre>RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine * Cyclotetramethylenetetranitramine Tetryl / N-Methyl-N,2,4,6- tetranitroaniline / Nitramine / *</pre>
CAS No.	7440-02-0 7440-03-7 7440-23-5 7440-23-5 7440-43-9 7440-43-9 7440-43-9 7440-48-4 7440-66-6	7440-70-2 7440-22-4 118-96-7 121-14-2 121-82-4 2691-41-0 479-45-8 55-63-0 606-20-2 78-11-5 99-35-4 99-35-4 99-55-0 7440-22-4 118-96-7	121-82-4 2691-41-0 479-45-8 55-63-0
Meth/ Matrix	1814/	JC02/s LW32/ JC02/s	
Lab Lab Anly. No.	PC 11673	PC 1162.2 11622 PC 1163.0	
Sample Date	11-JAN-92	5.0 10-JAN-92	
Depth	32.0	5.0	
Field Sample No.	5091812		

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-0CT-

Field Sample No.	Depth	Sample Date	Lab	Lab Anly. No.	Meth/ Matrix	CAS No.	Analyte Description	Meas. Bool.	Conc.	Unit Meas.	Flag Codes	Data Quals
S091B12C	10.0	10-JAN-92	PC	PC 11630	LW32/	55-63-0	Nitroglycerine / 1,2,3-Propanetriol	LT	2.5	UGG	! ! !	1
						606-20-2	trinitrate 2,6-Dinitrotoluene	רז	5.	990		
						78-11-5	PETN / Pentaerythritol tetranitrate /	LT	2.5	990		
						88-72-2	2-Nitrotoluene	<u>-</u>	505	9911		
						99-08-1	3-Nitrotoluene	; =	25.1	990		
						99-35-4	1,3,5-Trinitrobenzene	: <del>'</del>	.25	990		
						0-69-66	1,3-Dinitrobenzene	1	. 249	nge		
						0-66-66	4-Nitrotoluene	5	.245	990		
	15.0	10-JAN-92	ပ္ရ	1164.9	JC02/S	7440-22-4	Silver	1	1.01	990		
				11649	LW32/	118-96-7	2,4,6-Trinitrotoluene / alpha-	ĽĮ	.25	990		
						121-14-2	7 4-Dimitrotoluene	-	25.4	2		
						121-82-4	RDX / Cyclonite / Hexahydro-1.3.5-	; <u>;</u>	51	990		
							trinitro-1,3,5-triazine *	i		2		
						2691-41-0	Cyclotetramethylenetetranitramine	ב	667.	UGG		
						479-45-8	Tetryl / N-Methyl-N,2,4,6-	17	1.27	990		
							tetranitroaniline / Nitramine / *					
						55-63-0	Nitroglycerine / 1,2,3-Propanetriol	LT	2.5	DOU		
							trinitrate					
						606-20-2	2,6-Dinitrotoluene	LŢ	٦.	990		
						78-11-5	PETN / Pentaerythritol tetranitrate /		2.5	990		
							2,2-Bis[(nitrooxy)me*					
						88-72-2	2-Nitrotoluene	11	.505	990		
						99-08-1	3-Nitrotoluene	ב	.251	nee		
						99-35-4	1,3,5-Trinitrobenzene	-1	.25	990		
						0-69-66	1,3-Dinitrobenzene	-	.249	990		
						0-66-66	4-Nitrotoluene	Ľ	.245	990		
	20.0	20.0 10-JAN-92	ე ე	1165.7	JC02/S	7440-22-4	Silver	-1	1.01	990		
				11657	LW32/	118-96-7	2,4,6-Trinitrotoluene / alpha-	-1	.25	UGG		
							Trinitrotoluene					
						121-14-2	2,4-Dinitrotoluene	-1	.251	บอด		
						121-82-4	RDX / Cyclonite / Hexahydro-1,3,5-	Lĭ	.51	DDN		
							trinitro-1,3,5-triazine *					
						2691-41-0	Cyclotetramethylenetetranitramine	=	667.	UGG		
						479-45-8	Tetryl / N-Methyl-N,2,4,6-	LT	1.27	UGG		
						; ;	tetranitroaniline / Nitramine / *					
						55-63-0	Nitroglycerine / 1,2,3-Propanetriol	ב	2.5	990		
						600	trinitrate	!	i			
						207-000	Z,o-Dinitrotoluene		ζ.	990		
						78-11-5	PETN / Pentaerythritol tetranitrate / 2 2-Ris[(nitroxy)me*	LT	2.5	990		
						88-72-2	2-Nitrotoluene	Ľ	.505	nge		
-		,								!		

* - Analyte Description has been truncated. See Data Dictionary

24-001-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

	Data Quals	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																																											
	Flag Codes																																											1	<b>-</b>
	Unit Meas.	990	DDO	990	990	990	กดด		990	DOO		ngg	บอด		บอด		ngg	990	!	990	990	ยยา	991	991	991	9911	† 	nee	UGG		990	กดด		ngg		990	nee		ngg	990	DDO	nee	nee	990	ออก
	Conc.	.251	52.	.249	.245	1.01	52.		.251	.51		667.	1.27		2.5		5.	2.5	<u>:</u>	.505	.251	K	570	572	5	52.	Ì	.251	.51		667.	1.27		2.5	L	ኅ.	2.5	!	.505	[67:	.25	.249	.245	20.9	-
	Meas. Bool.	: 5	5	5	ב	ב	ב		ב	ב		11	LI		ב		ב	17	i	ב	5	<u> </u>	; <u>-</u>	: <u>-</u>	: <del>-</del>	: -	i	ב	רַ		ב	17		_		: : ت	ב		<u>-</u> !	<u>.</u>	-	-	=	!	2
01-JAN-91 24-0CT-94	Analyte Description	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Silver	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	эху)ше*	2-Nitrotoluene	3-Nitrotoluene	1.3.5-Trinitrobenzene	1.3-Dinitrobenzene	4-Nitrotoluene	Silver	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	Crimitrate 2 A.Dimitrotoluomo		2 2-pip//itimesestation tetranitrate /	Z,Z=BIS[(NITFOOXY)Me*	Z-Nitrotoluene Z-Nitrotoluene	3-Nitrololuene	1,3,5-Irinitrobenzene	1,5-Dinitrobenzene	4-Nitrototuene	≥ .	Nitrite, nitrate - nonspecific
Date Range: 01-JAN-91	CAS No.	99-08-1	99-35-4	99-65-0	0-66-66	7440-22-4	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-69-66	0-66-66	7440-22-4	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		0-60-66	606-20-2	70 11 5	C-11-0/		2-7/-00	73-00-1	44-22-4	0-62-66	0-66-66	1707-65-0	0-66-14141
Sampling	Meth/ Matrix	LW32/				JC05/8	LW32/																		JC02/S	LW32/																		<b>.</b> .	1 / /
	Lab Anly. No.	11657				11665																			11673																		70073	0070	
	Lab Ar	5				ည																			٦																		٤		
	Sample Date	10-JAN-92				25.U 10-JAN-92																			32.0 11-JAN-92																		5 0 20-559-02	20-1EB-72	
	Depth	20.0				O. C																			32.0																		ď	?	
	Field Sample No.	S091B12C																																									201817.10		
	e Site	2																																									01814		
	Site Type	BORE																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

S91B151C S91B152C

91815

9181610

91816

Field Sample No. -----S91B142C S91B143C S91B146C

Site Type

Data Quals																																												
Flag Codes	-	-	_	-	-		<b>-</b>														-																							
Unit Meas.	990	990	DDU	nec	UGG	nee	ngg	UGG	กดด	990	990	990	990	990	000	กดิด	UGG	990	990	9911	990	1991	990	990	990 0	990	990	990	990	990	OCC	990		990	99N		99N	990		990		990	DBO	
Conc.	-	10	10	_	7	12.2	_	. 144	1.01	14000	23000	136	555	1600	4	21.5	428	278	12.5	82.9	12.7	148	.975	.427	30.1	43.3	45.1	45.1	180	935	12.4	.25		.251	.51		667.	1.27		2.5		٦.	2.5	
Meas. Bool.	2	Q.	QN	Q.	Q		2		11						11						: <u>Q</u>			11							ב	ב		_	-1		11	_		ר		ב	ב	
Analyte Description	Nitrite, nitrate - nonspecific	•	≥	Nitrite, nitrate - nonspecific		_≥	Nitrite, nitrate - nonspecific		Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Соррег	Vanadium	Zinc	Calcium	Selenium	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	<pre>PETN / Pentaerythritol tetranitrate / 2.2-Bis[(nitrooxv)me*</pre>	, , , , , , , , , , , , , , , , , , ,
CAS No.	14797-55-8	14797-55-8		14797-55-8	14797-55-8		14797-55-8	9-26-6572	7440-22-4	7429-90-5	7439-89-6	7439-92-1	7439-95-4	2439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	2440-43-9	2440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-0552	7440-70-2	7782-49-2	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5	
Meth/ Matrix	<b>/</b> 66	/ 66	\ 00	/ 66	/ 66	<b>\</b> 00	/ 66	/908f	JC05/	JS14/																						LW32/												
Lab Lab Anty. No.			56316		53350			51438																																				
Lab	<u>გ</u>	S	S		ည	D D		<u>გ</u>																																				
Sample Date	20-FEB-92	20-FEB-92	20-FEB-92		18-FEB-92	18-FEB-92		16-FEB-92																																				
Depth	10.0	15.0	5.0		5.0	9.0		0.5																																				

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO

	•						Sampling	g Date Range: 01-JAN-91	01-JAN-91 24-OCT-94							
Site	Site	Field	4	Sample		Lab	Meth/			Me	as.		Unit	Flag	Data	
	2	samble No.	nebtn	Date		Anly. No.	Matrix		Analyte Description	Bo	Bool.	Conc.	Meas.	Codes	Quals	
			1 1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	;	:	;	1	1 1 1	1	
	91816	9181610	0.5	16-FEB-92		51438	LW32/	88-72-2	2-Nitrotoluene		LT	.505	990			
								99-08-1	3-Nitrotoluene	1	<b>—</b>	.251	DOC			
								99-35-4	1,3,5-Trinitrobenzene	_	-	.25	990			
								0-59-66	1,3-Dinitrobenzene	_	<b>}</b>	.249	nee			
		20,740	•					0-66-66	4-Nitrotoluene		<b>}</b>	.245	ngg			
		2791816	10.0	10.0 16-FEB-92	ည	51446	JB06/	7439-97-6	Mercury	_	_	8.70 E -2	990			
							JC02/	7440-22-4	Silver		_	1.01	000			
							JS14/	7429-90-5	Aluminum			13000	990			
								2439-89-6	Iron			35000	990			
								7439-92-1	Lead			40.2	990			
								7-56-6272	Magnesium			777				

o Anly. No.	Matrix	CAS No.	Analyte Description	Bool.	Conc.	Meas.	Codes
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	•	1 1	1 1
51438	LW32/	88-72-2	2-Nitrotoluene	17	.505	990	
		99-08-1	3-Nitrotoluene	1	.251	99n	
		99-35-4	1,3,5-Trinitrobenzene	: 17	5	9911	
		0-59-66	1,3-Dinitrobenzene		576	991	
		0-66-66	4-Nitrotoluene	1	.245	991	
51446	JB06/	7439-97-6	Mercury	-	8.70 E -2	990	
	JC05/	7440-22-4	Silver	ר	1.01	990	
	JS14/	7429-90-5	Aluminum		13000	990	
		7439-89-6	Iron		35000	990	
		7439-92-1	Lead		40.2	990	
		7439-95-4	Magnesium		644	990	
		7439-96-5	Manganese		3600	991	
		7439-98-7	Molybdenum		5.49	990	
		7440-02-0	Nickel		61	990	
		2-60-05-2	Potassium		537	990	
		7440-23-5	Sodium		182	990	
		7440-28-0	Thallium		12.5	990	
		7440-36-0	Antimony		82.9	991	
		7440-38-2	Arsenic	S	12.7	991	-
		7440-39-3	Barium	1	191	990	-
		7-14-0447	Beryllium		2 20	201	
		7440-43-9	Cadmirm	_	727	990	
		7440-47-3	Chromium	-	2, 70	200	
		7440-48-4	Cobalt		4.42	200	
		7440-50-8	Copper		00.00	กาก	
		0.00.0447	include:		51.4	nge	
		7-70-044/	vanadium		28.7	nee	
		0-00-044/	711C		124	990	
		7440-70-2	Calcium		720	000	
		7782-49-2	Selenium	-1	12.4	1100	
	KY04/	57-12-5	Cyanide .		1.22	9911	
	LW32/	118-96-7	2,4,6-Trinitrotoluene / alpha-	-	52.	990	
			Trinitrotoluene			5	
		121-14-2	2,4-Dinitrotoluene	11	. 251	HGG	
		121-82-4	RDX / Cyclonite / Hexahydro-1.3.5-	1 -	51	100	
			trinitro-1,3,5-triazine *			5	
		2691-41-0	Cyclotetramethylenetetranitramine	[1	667	1166	
		479-45-8	Tetryl / N-Methyl-N,2,4,6-	: 5	1.27	9911	
			tetranitroaniline / Nitramine / *		1	2	
		55-63-0	Nitroglycerine / 1,2,3-Propanetriol	11	2.5	990	
			trinitrate				
		606-20-2	2,6-Dinitrotoluene	ב	٥.	990	
		78-11-5	PEIN / Pentaerythritol tetranitrate /	Ľ	2.5	990	
			Z,Z-BIS[(nitrooxy)me*				
		7-71-00	Z-Nitrotoluene	LT	.505	990	

* - Analyte Description has been truncated. See Data Dictionary

Site Site Type ID .... .... BORE 91816

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Flag [ Codes (	990	39n 100	nau UGG	nee	nee	nee	990	990	מפת	500	251	9911	550	UGG T	000	D00	UGG	กิดด	nee	nee	UGG	UGG	D50	nge	UGG	066		nee	990		990	100		nee		nce	nge		nee	กิดด	nec
Conc.	.251	.249 249	1.01	11000	29000	30.9	606	1500	7.07	40.7	2.5	12.5	82.9	12.7	88.2	1.81	.427	14.2	33.2	29.5	46.1	106	289	12.4	1.22	.25		.251	.51		667.	1.27		2.5		٥.	2.5	1	. 505	.251	.25
Meas. Bool.	5:	: <u> </u> :	בֿב								_	; <u>-</u>	; =	ş			ב							Ľ	<u>_</u>	L			1		רו	ב		LT			ר		_	_	11
Analyte Description	3-Nitrotoluene 1.3.5-Trinitrobenzene	1,3-Dinitrobenzene	Silver	Aluminum	Iron	Lead	Magneslum	Manganese	Michal	Potassium	Sodium	Thattium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	Z-Nitrotoluene	5-Nitrotoluene	1,3,5-Trinitrobenzene
CAS No.	99-08-1 99-35-4	99-65-0	7440-22-4	7429-90-5	7439-89-6	7439-92-1	7459-95-4	7,20,08,7	7,424-76-7	2-60-0772	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	2440-42-3	7440-48-4	7440-50-8	7440-62-2	9-99-0552	7440-70-2	7782-49-2	57-12-5	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5	0	88-72-2	79-08-1	99-35-4
Meth/ Matrix	LW32/		JC02/	JS14/																					KY04/	LW32/															
Lab Anly. No.	PC 51446		PC 51454																																						
Sample Date	16-FEB-92		15.0 16-FEB-92																																						
Depth	10.0		15.0																																						
Field Sample No.	9181620		9181630																																		•				

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-0CI-

Site	Site	Field		Samote		de	Meth/			00 M		<u></u>	2013	o teo
Туре	<u>a</u>	Sample No.	Depth	Date	Lab	Lab Anty. No.	Matrix	CAS No.	Analyte Description	Bool.	Conc.	Meas.	Codes	Qual s
:			:	:	;				1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	:	:	1 1	1 1	1 1
BORE	91816	9181630	15.0	16-FEB-92	٦ <u>.</u>	51454	LW32/	0-59-66	1,3-Dinitrobenzene	רו	.249	990		
								0-66-66	4-Nitrotoluene	11	.245	990		
		91B164C	18.0	18.0 16-FEB-92	<u>۲</u>	51462	<b>7908</b>	2439-97-6	Mercury		.115	ngg		
							JC02/	7440-22-4	Silver	ב	1.01	nec		
							JS14/	7429-90-5	Atuminum		16000	990		
								7439-89-6	Iron		31000	บบบ		
								7439-92-1	Lead		18.7	9911		
								7439-95-4	Magnesium		842	991		
								7439-96-5	Manganese		530	950		
								7.39-98-7		-	2	300		
								0-20-0772	Nickel	-	78 6	990		
								7,70 02 0	N CACL		60.0	กดก		
								7-40-04-7	Potassium		501	000		
								7440-23-5	Sodium		159	990		
								7440-28-0	Thallium	LI	12.5	990		
								7440-36-0	Antimony	ב	82.9	000		
								7440-38-2	Arsenic	i S	12.7	9911	<b>,</b>	
								2-62-0772	Barium	ì	64.7	991	-	
								7440-41-7	Beryl I i.i.		7.0	500		
								7/10/1/2		,	***	กกก		
								K-C#-0##/		5	777	990		
								7440-47-5	Chromium		16.4	990		
								7-84-0-49/	Cobalt		22.9	99N		
								7440-50-8	Соррег		25.7	990		
								7440-62-2	Vanadium		48.3	990		
								9-99-057	Zinc		103	990		
								2-02-0772	Calcin		108	991		
								7782-70-2		<u> </u>	75	000		
							, , ,	7-44-7011	an in in in in in in in in in in in in in	: : ت	12.4	990		
							KYU4/	5/-15-2	Cyanide	_	1.22	99N		
							LW32/	118-96-7	2,4,6-Trinitrotoluene / alpha-	-	.25	990		
									Trinitrotoluene					
								121-14-2	2,4-Dinitrotoluene	-1	.251	990		
								121-82-4	RDX / Cyclonite / Hexahydro-1,3,5-	[1	.51	990		
									trinitro-1,3,5-triazine *					
								2691-41-0	Cyclotetramethylenetetranitramine	-	667.	990		
								479-45-8	Tetryl / N-Methyl-N,2,4,6-		1.27	990		
									tetranitroaniline / Nitramine / *			!		
								55-63-0	Nitroglycerine / 1,2,3-Propanetriol	11	2.5	000		
									trinitrate					
								606-20-2	2,6-Dinitrotoluene	רַ	5.	000		
								78-11-5	PEIN / Pentaerythritol tetranitrate /	L	2.5	990		
									2,2-Bis[(nitrooxy)me*	;	i i	;		
								88-72-2	2-Nitrotoluene	_	.505	1166		
								99-08-1	3-Nitrotoluene	i <u>-</u>	25.1	900		
								99-35-4	1.3.5-Trinitrobenzene	, <u></u>		991		
								0-59-66	1.3-Dinitrobenzene		546	991		
										;	:	)		
4	Anslivte Deer	Cocciption has b	114 400	Coo Protect	400									

* - Analyte Description has been truncated. See Data Dictionary

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Option Quals
Flag Codes
Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit
Conc. .245 15.8 .111 1.01 6900 19000 33.3 422 1400 33.3 422 1400 33.3 12.5 12.5 12.5 12.4 82.8 82.8 82.8 82.8 12.4 12.4 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7
Meas
Analyte Description  4-Nitrotoluene Total petroleum hydrocarbons Mercury Silver Aluminum Iron Lead Magnesium Sodium Nickel Potassium Sodium Thallium Antimony Arsenic Barium Beryllium Cobalt Copper Vanadium Chromium Chromium Chromium Chromium Chromium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Copper Vanadium Copper Vanadium Copper Vanadium Copper Vanadium Copper Vanadium Copper Vanadium Copper Vanadium Copper Copper Vanadium Copper Vanadium Copper Vanadium Copper Vanadium Copper Copper Vanadium Copper Vanadium Copper Vanadium Copper Vanadium Copper Vanadium Copper Copper Vanadium Copper Copper Vanadium Copper Copper Vanadium Copper Copper Vanadium Copper Copper Vanadium Copper Copper Vanadium Copper Copper Vanadium Copper Copper Vanadium Copper Copper Vanadium Copper Copper Vanadium Copper Vanadium Copper Vanadium Copper Vanadium Copper Vanadium Copper Vanadium Copper Vanadium Copper Vanadium Copper Vanadium Copper Vanad
CAS No 99-99-0 7439-97-6 7429-90-5 7429-90-5 7429-90-5 7440-22-4 7439-98-7 7440-39-9 7440-39-9 7440-39-9 7440-39-9 7440-39-9 7440-47-3 7440-47-3 7440-48-4 7440-66-6 7440-66-6 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 744
Meth/ Matrix  00 / J602/ J602/ JS14/ JS14/ LW32/
Lab Anly. No 51462 PC 51470
Sample Date 16-FEB-92 16-FEB-92

* - Analyte Description has been truncated. See Data Dictionary

Site ID

Site Site Type ID

91817

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-001-94

Data Quals	1 1 1																																														
Flag Codes	! ! !																	٢	_																												
Unit Meas.	NGG	UGG	990	ngg	990	1166	550	9 00 1	วาก	00C	บอด	OGG	990	9911	991	99	200	550	การ	990	00C	ngg	000	9911	991	200	กาก	990	nee	nee	UGG		1166	บบก		990	990		1100	5	991	991	3	ยยเ	550	551	nec
Conc.	.245	1.22	1.22	8.70 E -2	1.01	6300	00009	78 /	36.4	575	930	4	7.5	142	0.5	12.5	82.0	12.7	15.1	47.5	-684	.427	51.6	17.4		7:5	03.0	40.9	428	12.4	.25		.251	.51		667.	1.27		2.5	•	L.	2.5	ì	505	.251	, K	. 249
Meas. Bool.		-	[1	[]	-							ב	-	5	<u> </u>	: =	; <u>;</u>	. <u>.</u>	Ş			5								Ľ	11		-	- 1		Ľ	1	i	-	<u>.</u>	-	: <u>-</u>	i	LT	: 5	: =	: 5
Analyte Description	4-Nitrotoluene	Cyanide	Cyanide	Mercury	Silver	Aluminum	Iron	ברים <u>-</u>		Magnesion	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thattium	Antimony	Arsenin	S C C C C C C C C C C C C C C C C C C C		Beryt i um	Cadmium	Chromium	Cobalt	Copper	Vanadium	7:50	2.1.5	calcium	Selenium	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1.3.5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1.2.3-Propanetriol	trinitrate	2.6-Dinitrotoluene	PETN / Pentaervthritol tetranitrate /		2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene
CAS No.	0-66-66	57-12-5	57-12-5	2439-97-6	7440-55-4	7429-90-5	2439-89-6	7.44-02-1	7/20-05-/	4-74-4541	7459-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	7440-36-0	7440-38-2	2-02-0772	7//0-/1-7	7-14-0447	7440-43-9	2440-42-3	7-85-0552	7440-50-8	2-69-077	77.70-64-6	0.00.0447	7-01-0441	7782-49-2	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-59-66
Meth/ Matrix	LW32/	KY04/	KY04/	JB06/	JC02/	JS14/																								i	LW32/																
Lab Anly. No.		PC 51438		PC 51403																																											
Sample Depth Date	_	0.5 16-FEB-92	5.0 16-FEB-92	5.U 16-FEB-92																																											
Field Sample No. De		u		17181708																																											٠

^{* -} Analyte Description has been truncated. See Data Dictionary

Site ID ----

Site Type

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data Quals																																										
Flag														-																												
Unit Meas.	990	990	9 5	99n	990	ngg	990	ngg	ngg	990	990	กดด	990	990	990	990	990	990	990	99N	990	990	990	990	990	990		990	OUC		990	วอก		990		990	000	990	990	990	990	990
Conc.	.245	. 134	3100	2700	17.2	416	590	7	11.6	529	20	12.5	82.9	12.7	33.4	1.14	.427	6.63	10.7	9.52	20	32.9	756	12.4	1.22	.25		.251	.51		667.	1.27		2.5		.5	2.5	.505	.251	.25	.249	.245
Meas. Bool.	LT	<u>-</u>	;								-		11	윤			ב							<u></u>	-	5		17	5		ב	ב		ב		LI	<u></u>	5	=	<u></u>	ר	1
Analyte Description	4-Nitrotoluene	Mercury	Aliminia	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cvanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PEIN / Pentaerythritol tetranitrate /	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1.3-Dinitrobenzene	4-Nitrotoluene
CAS No.	0-66-66	7439-97-6	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	2440-43-9	2440-42-3	7440-48-4	2440-50-8	7440-62-2	2440-66-6	7440-70-2	7782-49-2	57-12-5	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5	88-72-2	99-08-1	99-35-4	0-69-66	0-66-66
Meth/ Matrix	LW32/	JB06/	1514/	2																					KY04/	LW32/																
Lab Anly. No.																																										
Sample Date	16-FEB-92	16-FEB-92																																								
Depth	5.0	10.0											٠																													
Field Sample No.	S091B171	S091B172																																								

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data Quals	:																																										
Flag Codes	-	-													,-	•																											
Unit Meas.	1100	990	990	990	990	990	990	5511	991	550	991	991	3 3 3 3	99	990	990	990	990	990	9911	991	995	BB0	990	991	550	990	3	1166	99n		000	990		990		990	990		990	ם כ	200	99n
Conc.	10	8,70 E -2		14000	29000	23.3	896	740	7	38.5	776	75.6	12.5	82.9	12.7	17.6	1.99	427	15.8	20.4	28	y 77	110	896	12.4	1 22	25.	ì	.251	.51		667.	1.27		2.5		ĸ.	2.5	i.		į ĸ	2.6	.245
Meas. Bool.	<u>.</u>	; :	=							;			-1	: 1	N Q			7								; <u>-</u>	: =	i	_	<u></u>		ב	<u>_</u>		_			11	}	<u>-</u> -	; <u>-</u>	- <u>-</u>	: 5
yte De	Total petroleum hydrocarbons	Mercury	Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	<pre>2,6-Dinitrotoluene</pre>	PETN / Pentaerythritol tetranitrate /	2.Nitrotolueno	3-Nitrotoluene	1.3.5-Trinitrobenzene	1.3-Dinitrobenzene	4-Nitrotoluene
CAS No.	• • • • •	7439-97-6	7440-22-4	7429-90-5	7439-89-0	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	2440-42-3	7440-48-4	7440-50-8	7440-62-2	9-99-0552	7440-70-2	7782-49-2	57-12-5	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8	,	0-60-66	, 00,	7-07-909	78-11-5	88-72-2	99-08-1	99-35-4	0-59-66	0-66-66
Meth/ Matrix	, 8	7908	JC02/	7814/																						KY04/	LW32/																
Lab Lab Anly. No.																																											
Sample Date	16-FEB-92																																										
Depth	15.0																																										
Field Sample No.	S091B173																																										
Site ID	91817																																										
Site Type																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site Type ID .... BORE 91818

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data Quals
Codes T T T
Unit Meas.  UGG UGG UGG UGG UGG UGG UGG UGG UGG UG
Conc. 10 8.70 E -2 1.01 5450 15000 21.7 265 310 4 13 235 310 4 12.5 82.9 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 1
Bods ND
Analyte Description  Total petroleum hydrocarbons Mercury Silver Aluminum Iron Lead Magnesium Manganese Molybdenum Nickel Potassium Sodium Thallium Antimony Arsenic Barium Beryllium Cobalt Copper Vanadium Cobalt Copper Vanadium Cobalt Linitrotoluene Z,4,6-Trinitrotoluene Z,4,6-Trinitrotoluene Z,4-Dinitrotoluene Z,4-Dinitrotoluene Z,4-Dinitrotoluene Z,4-Dinitrotoluene Z,4-Dinitrotoluene Z,4-Dinitrotoluene RDX / Cyclotetramethylenetetranitramine Tetryl / N-Methyl-N, Z,4,6- tetranitroaniline / Nitramine / * Nitroglycerine / 1,2,3-Propanetriol trinitrate Z,6-Dinitrotoluene PETN / Pentaerythritol tetranitrate / Z,1-Bis[(nitrobenzene Z,1-Bis[(nitrobenzene Z,2-Bis[(nitrobenzene Z,1-Bis[(nitrobenzene Z,1-Bis[(nitrobenzene Z,1-Bis[(nitrobenzene Z,2-Bis[(nitrobenzene Z,1-Bis[(nitrobenzene Z,1-Bis[(nitrobenzene Z,2-Bis[(nitrobenzene Z,
CAS No. 7439-97-6 7439-97-6 7440-22-4 7439-89-5 7439-89-6 7439-98-7 7440-28-0 7440-28-0 7440-28-0 7440-36-0 7440-36-0 7440-36-0 7440-36-0 7440-48-4 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7440-73-9 7440-73-9 7440-73-9 7440-73-9 7440-73-9 7440-73-9 7440-73-9 7440-73-9 7440-73-9 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-2 7440-70-7 7440-70-7 7440-70-7 7440-70-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7440-7 7
Meth/ Matrix  00 / J806/ JC02/ JS14/ LW32/ LW32/
Lab Anly. No.
Sample Date  18-FEB-92
5.0 5.0
Field Sample No

* - Analyte Description has been truncated. See Data Dictionary

Site Type ...-

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-001-94

Data Quals	:																																											
Flag ( Codes (		- ،														_																												
Unit Meas.	9911	990	990	990	ngg	990	990	990	990	990	ngg	990	ngg	nec	990	990	990	DDN	ngg	990	990	nge	990	ngc	OGG	990	990	ngg		990	nec		990	990		990		DDN	DDO		000	990	990	nee
Conc.	1.22	10	.521	1.01	12000	27000	61.8	612	234	7	23.3	240	141	12.5	82.9	12.7	247	.776	6.51	21.2	20	146	37.9	336	205	12.4	1.22	.25		.251	.51		667.	1.27		2.5		₹.	2.5		.505	.251	.25	.249
Meas. Bool.		2		ר						[1				רו	[]	QN										۲1	[]	LT		LT	_			Ξ		רַ		LI	-1		LI	౼	רו	LT
Analyte Description	Cyanide	Total petroleum hydrocarbons	Mercury	Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thatlium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene
CAS No.	57-12-5		2439-97-6	7440-22-4	7429-90-5	7439-89-6	7439-92-1	7439-95-4	2439-96-5	7439-98-7	7440-02-0	7440-09-7	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-055	7440-70-2	7782-49-2	57-12-5	118-96-7		121-14-2	121-82-4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0-15-1607	4/9-45-8	!	22-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-59-66
Meth/ Matrix	KY04/	<b>\</b> 00	1B06/	JC02/	JS14/																						KY04/	LW32/																
	PC 533410																																											
Sample Date	18-FEB-92	19-FEB-92																																										
Depth	5.0	2.0																																										
Field Sample No.	9181810	S091B191																																										
Site ID	91818	91819																																										
9 9	ш																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

Field Sample No. 1 S091B191 S091B192

Site Site ID ID SORE 91819

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

S	3 1 : : : : : : : : : : : : : : : : : :														<b>—</b>																												
	1	990	990	990	000	UGG	ngg	090	990	990	99N	nee	990	nee		000	990	nce	nce	DOU	nec	nge	1166	000	9911	550	990		ngg	วบก		990	090		บอด		ngg	nee		990	ອກກ	กอก	Opo
Conc.	.245	25.8	1.01	2030	9100	10	208	83	4	16.2	527	50	12.5	82.9	12.7	14.2	.549	.427	4.21	68.9	12.8	7.71	48.6	109	12.4	1.22	.25		.251	.51		667.	1.27		2.5	:	.5	2.5	i.	505.		67.0	447
Meas. Bool.	LT		1	; !		LT			Ľ			רַ	LT	Ľ	S			Ľľ						-1	-	: =	5		ר	[1		ב			<u>-</u>			-1			֖֖֖֡֞֞֞֓֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֡֡֓֓֓֓֓֓֡֜֜֜֓֓֡֡֡֡֡֡֡֡		
Analyte Description	4-Nitrotoluene	Total petroleum hydrocarbons	Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cyanide	2,4.6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate		PETN / Pentaerythritol tetranitrate /	Z,Z-Bis[(nitrooxy)me~ Z Witzetz[wez	Z-Nitrotoluene Z-Mitrotoluene	1 2 Fathinitabonson	1,3,3-111111 ObenZene	ו, טיט וווו נו טטפוובפוופ
CAS No.	0-66-66	7-20-02/2	7440-22-4	7429-90-5	2439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2440-09-7	7440-23-5	7440-28-0	2440-36-0	7440-38-2	2440-39-3	7440-41-7	2440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-047	7440-70-2	7782-49-2	57-12-5	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8	!	55-63-0		606-20-2	/8-11-5	د در 60	99-12-2	00-35-7	4-77-70 00-65-0	3
Meth/ Matrix	LW32/	/ 00	JC02/	JS14/																						KY04/	LW32/																
Lab Lab Anly. No.	PC 54410																																										
Sample Date	19-FEB-92	19-FEB-92																																									
. Depth	5.0	10.0																																									

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Field Sample No. S091B192 S091B193

Site Site Type ID .... ....

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

	Data Ouals	1																																													
	Flag Codes			<b>-</b>							c	0							<b>-</b>																												
	Unit Meas.	1 1	990	000	990	990	991	991	99		200	กุกก	99n	กูก	990	990	99n	99N	990	nee	nec	nee	5511	991	991	99	901	991		חפת	วกา	990		250	990	9911	990	7	990		990	DDD		DOO	000	990	990
	Conc.	1 1 1 1	. 245	10	8.70 E -2		1410	1600	1000	128	2200	2500	, 62	77.7	142	20	12.5	82.9	12.7	9.67	.25	.427	1 03	43.6	22.1	2	35 6	100	10 /	1,7	27:1	ς.	, L	<u>.</u> 2		667	1.27	<b>i</b>	2.5		₹.	2.5		.505	.251	52.	.249
	Meas. Bool.		11	2	רַ	LT	i i		_	; -	ī	!	<u>.</u>		ָרַ בַּ	_	ב	-1	Q		רז	17				11	i I	_	; <u>-</u>	<u>.</u>	<u>.</u>	=	<u>+</u>	_ <u>_</u>	;		1		11		۲1	-		ב	ר	ר	Ľ
UI-JAN-91 24-OCT-94	Analyte Description		4-Nitrotoluene	Total petroleum hydrocarbons	Mercury	Silver	Aluminum	Iron	Lead	Macook I	Mandanese		Nickel	NICKEL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CONTROL DE LE CON	Potassium		lhall lum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Catcium	Selenium	Cvanide	2 / ArTrinitratelizas / alaka	z,4,0-irinitrotoluene / alpha- Trinitrotoluene	2 /-Dipitrotolump	RDX / Cyclonite / Hexahydro-1 3 5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	5-Nitrotoluene	1,5,5-Trinitrobenzene	1,3-Dinitrobenzene
Date Kange: U≀-JAN-91	CAS No.		0-66-66		7439-97-6	7440-22-4	7429-90-5	7439-89-6	7439-92-1	7-50-6272	5-96-6272	7.20-02.7	7457-98-7	7//0 00 7	7-40-04-7	7,440-62	0-82-044/	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-057	7440-70-2	7782-49-2	57-12-5	118-04-7	1-04-011	121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		88-72-2	1-80-66	99-35-4	0-59-66
sampt 1 ng	_ v		LW32/	<b>/</b> 00																											1 M32 /	LWJC/					•										-
		•	54437																																												
	Lab		2 2																																												
	Sample Date		19-FEB-92	19-FEB-9																																											
	Depth	:	10.0	12.0																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

Field Sample No. S091B193 91B201C S91B201C

Site ID 91819 91820

Site Type BORE

24-0CT-94
01-JAN-91
Range:
g Date

Data Quals				
Flag Codes		⊢	<b>~</b> ~	
unit Meas. UGG UGG UGG UGG UGG	990 000 000 000 000 000 000	000 000 000 000 000 000 000 000 000	990 090 090 090 090 090	090 090 090 090 090 090 090 090
Conc. .245 1.22 .228 1.01 1800 28000 37.4	708 640 4 20.6 789 12.5	12.7 23.3 .806 .427 14.7 37.7 24.3 48.8 56.3	12.4 1.7 2.5 .17 .33 .18 .17 .17	1.6 .17 .19 .22 .26 .29
Meas. Bool. LI LI	ילל ל	ND LT	148111181	55555555
Analyte Description	Magnesium Manganese Molybdenum Nickel Potassium Sodium Thallium	Arsenic Barium Beryllium Cadmium Chromium Copper Copper Vanadium Zinc	Selenium 4-Nitroaniline 4-Nitrophenol Benzyl alcohol 2,4-Dimethylphenol p-Cresol / 4-Cresol / 4-Methylphenol 1,4-Dichlorobenzene 4-Chloroaniline Bis(2-chloroisopropyl) ether Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe* Bis(2-chloroethyl) ether Bis(2-chloroethoxy) methane Bis(2-ethylhexyl) phthalate Di-n-octyl phthalate Hexachlorobenzene Anthracene 1,2,4-Trichlorobenzene 2,4-Dichlorophenol
CAS No 99-99-0 7439-97-6 7440-22-4 7429-90-5 7439-92-1	74,39-95-4 74,39-96-5 74,39-98-7 74,40-02-0 74,40-23-5 74,40-23-5	7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-48-4 7440-50-8 7440-66-6	7782-49-2 100-01-6 100-02-7 100-51-6 105-67-9 106-44-5 106-46-7 106-46-7 108-60-1	111-44-4 111-91-1 117-81-7 117-84-0 118-74-1 120-12-7 120-82-1
Meth/ Matrix ( Matrix ( LW32/ KY04/ JB06/ JC02/ JS14/			LM30/	
Lab Anly. No				
Sample Depth Date 12.0 19-FEB-92 20.0 21-FEB-92 20.0 21-FEB-92				
<u> </u>				

* - Analyte Description has been truncated. See Data Dictionary

24-001-94

Site Site Type ID SORE 91820

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-061-0/

54-DC1-34	
N-NX0-10	
ימווול המרב עמוולבי הו_מאח_או	

Data	Qual s	1 1 1																																											
Flag	Codes	, ; ;													۵	٤																													
Unit	Meas.	11311	) 1166	990	990	990	9911	991	)	9911	991	991	991	990	991	990	1	990		990	990	990		000	1166	9911	991	990	991	991	991	990	991	990	991	991	550	200	990	ngg	nge	ngg	DDO	nee	99N
,	Conc.	.31	26	11.	17	.25	117	27	!	.17	7	.27	27	77	1 7	.27		.84		.58	.17	.23		-5.	1.1	.92	17	۵.	2	.27	35	5.	.17	2.	.17	. 17	.28	)	.48	٤.	.36	.26	.17	.17	.33
Meas.	Boot.	-	1		רי	-1	ĭ	; <u> </u>		-1	; <b>!</b> _		=		S	: -:		11		רַ	LT	LI		LT	LI		-	: -	; <u>-</u>	; <u></u>		-	Ľ	Lī	L		-	i	רז	L	-1	LT	LT	LT	L1
And Lot of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	Alacyce Description	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzo[ghi]perylene	Indeno[1,2,3-C,D]pyrene	Benzo[b] fluoranthene / 3,4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzo[a] pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,5-Dichlorobenzene		3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene
ON ON		121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2		206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1	1	741-73-1	56-55-5	29-50-7		606-20-2	621-64-7	65-85-0	67-72-1	7-47-4	78-59-1	83-32-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-74-19	7-96-16
Meth/		LM30/																																											
tab Aniv No		PC 57258																																											
Sample Date		21-FEB-92																																											
Depth	- :	20.0																																											
Field Sample No.		S91B201C																																											

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-OCT-

Data Quals																																											
Flag Codes	~						~			8	8	<b>6</b> 0	8																														
Unit Meas.	กดิต	990 NGG	990	UGG	990		UGG	nee	99A	nee	UGG	990	000	990	990		99n		99N	99n		UGG	990	990		nec		ออก		990		nee	9 <b>9</b> 0	nec	00C	000	090	55U	UGG	000	990	nge	000
Conc.	99.	.1.	.17	.24	.19		1.7	.17	-5-	.281	.281	.14	.561	5 E -3			6 E -3		5 E -3	ш			5 E -3			5 E -3		5 E -3		5 E -3		ш		ш		ш	ш	ш	ш	ш	8 E -3		3 E -2
Meas. Bool.	Q	55	: 5	5	ב		용	ב	רַ					-	=		5			5		ב	ב	-		5		=				17	ב	LT	5	LI	ב	; <b>;</b>		-	5		ב
Analyte Description	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	2-chlorophenol	2,4,5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	Unknown compound 533	Unknown compound 537			Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	cis-1,2-Dichloroethylene / cis-1,2-	Dichloroethene	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1.1.1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide
CAS NO.	91-94-1	95-48-7 95-50-1	95-57-8	95-95-4	98-95-3		2-60-66							100-41-4	100-42-5		10061-01-5		107-06-2	108-10-1		108-88-3	108-90-7	124-48-1		127-18-4		156-59-2		156-60-5		56-23-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0
Meth/ Matrix	LM30/													LM33/																													
Lab Lab Anly. No.	PC 57258																																										
Sample Date	21-FEB-92																																										
Depth	20.0																																										
Field Sample No.	S91B201C																																										
Site ID	 91820																																										
Site Type	BORE																																										

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

	Data Quals	;																																								
	Flag Codes	:					~																																			
	Unit Meas.	:	99n	9 2	990 000		990	990	990	990	ngg	9	กาก	9911	55 050	990		990	990		ອອກ	อดูด		99N		990	250	9911	900	991	991	991	990	990	7	990	:	990	990	201	990	) ] )
	Conc.	;	יר אייי	ı u	ı		1 E -2	ш	ш	ш	ш		u	2 E -2	5 E -3	.25		.251	.51		. 499	1.21	ti C	۲.5	U	٠. ر	6.3	505	25.1	52:	576	.245		2.5 E -3		3.0 E -3		2.7 E -3	ш	U	2.5 E -3	1
	Meas. Bool.	:	<u> </u>	; <u>-</u>	: 5		2	_	5		<u>_</u>	<u>-</u>	5	ב	17	LT		ב	_	,		-	-	3	-	<u> </u>	<u>.</u>	[]	-	-	רו	ר	LI	רו		ב		<u>ה</u>	_	<u>-</u>	; 5	
01-JAN-91 24-OCT-94	Analyte Description	Dromotorm	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	', c'ulculoropropane	#ethyl ethyl ketone / 2-Butanone	Trickle-cottle		Tetrachloroethane / 1 1 2 2-	Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1,3-Dichloropropene	2,4,6-Trinitrotoluene / alpha-	rinitrotoluene	Z,4-Dinitrotoluene	trinitro-1 2 Estaissis &	CVC otetramethy enctotromit	Tetrol / N-Mathol-N 2 / K-	tetranitroaniline / Nitramine / *	Nitroalycerine / 1 2 3-Brosspotsiol	trinitrate	2.6-Dinitrotoluene	PETN / Pentaerothritol tetranitmato /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Sopropy  Sections / Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy    Sopropy	Toluene	Chlorobenzene / Monochlorobenzene	
Date Range: 01-JAN-91	CAS No.	75-25-2	75-27-4	75-34-3	75-35-4	,	78-87-5	70.07	79-00-5	70-01-6		79-34-5				118-96-7	101.17	121-14-2	t-70-171	2691-41-0	479-45-8		55-63-0	)   	606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-59-66	0-66-66	100-41-4	100-42-5		10061-01-5	, , ,	107-06-2		108-88-3	108-90-7	124-48-1
Sampling	Meth/ Matrix	1 M33/														/2CM1																	LM53/									•
	Lab Anly. No.																																PC 58017									
	Sample Date	25																															41-reb-y2 p									
	Depth	20.0																														. 0 22	0.00									
	Field Sample No.	S91B201C																														S0018217	1 39 700									
	Site Site Type ID	BORE 91820																														91821										

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

	Data Quals	:																																												
	Flag Codes	!																									œ								s											
	Unit Meas.		990	nee		DDN		990		ออก	990	990	990	990	ngg	990	990	nee	ngg	000	990	กดิด	nee	990	990		บอด	990	990	990	990		990		000	99N	990	990	ngg	nce	990	1166	990	990	nee	
	Conc.	1 1 1	5.7 E -2	2.5 E -3		2.5 E -3		2.5 E -3		ш	ш	ш	w	ш	ш	ш	ш	ш	ш	6.2 E -3	ш	ш	ш	ш	ш		ш	ш	5.1 E -3	ш	ш		1.2 E -2				2.5 E -3	1.22	8.70 E -2	ı	15000	23000	19.4	1020	760	
	Meas. Bool.	:	=	5		L		<u>_</u>		ב	רו	LI	<u>-</u> 1	11	ב	11	ב	רו		-1	[1	ב	_	ב	11		ş	ב	ב	ב	<u>_</u>		-1			-1	[]	17	[]	<b>.</b>						
01-JAN-91 24-051-94	Analyte Description	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dibromochloromethane /	Chlorodibromomethane Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	cis-1,2-Dichloroethylene / cis-1,2-	Dichloroethene	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*		Tetrachloroethane / Acetylene *	Unknown compound 218	Xylenes, total combined	trans-1,3-Dichloropropene	Cyanide	Mercury	Silver	Aluminum	l'on	בה מו	Magnesium	Manganese	
Date Kange: UI-JAN-91	CAS No.		124-48-1	127-18-4		156-59-2		156-60-5		56-23-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		75-69-4	78-87-5	78-93-3	2-00-62	79-01-6		79-34-5					57-12-5	9-26-6272	7440-22-4	7429-90-5	7439-89-6	1-20-6272	7439-95-4	7439-96-5	
Sampung	Meth/ Matrix		LM33/																																			<b>/</b> 66	7806/	JC02/	1814/					
	Lab Lab Anly. No.		PC 58017																																			PC 57991								
			~																																			10.0 24-FEB-92								
			33.0																																											
	Field Sample No.		S091B214																																			S091B212								
	Site ID	:	91821																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

24-001-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

							?	• > 0	FK-130-43					
Site	Site	Field	4	٠,	-	Lab	Meth/			Meas.		Unit	Flag	Data
	:		1	חשופ	rap t	Lab Anly. No.	Matrix	CAS No.	Analyte Description	Bool.	Conc.	Meas.	Codes	Oual s
BORE	91B21	S091B212	10.0	~	ď	5,7001	15.17.7	7, 20, 02 /2		: : : : : : : : : : : : : : : : : : : :	;	1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		!			<b>.</b>	1221	74100	1-04-40+1	Mot ybdenum		7	990		
								0-20-055/	Nickel	ב	7.5	กดิด		
								7-60-044/	Potassium		365	990		
								7440-23-5	Sodium		130	990		
								0-82-055/	Inallium	רו	12.5	990		
								7440-36-0	Antimony	-1	82.9	nec		
								7440-38-2	Arsenic	S	12.7	9911	_	
								7440-39-3	Barium	!	5.03	201	-	
								7440-41-7	Beryllium		537	990		
								7440-43-9	Cadmium	_	767	000		
								7440-47-3	Chromium	;	2 72	000		
								7440-48-4	Cobalt		70,7	5 0		
								7440-50-8	Conner		0.6	บอด		
								2-69-0772	Vapadiim		10.5	990		
								7-99-077	Variaci Ciii		50.6	กดิต		
								2.02-07.7	Z I I I C		55.3	99N		
								7-01-0441	Calcium		455	990		
							, 023	7-65-79//	Selenium	-1	12.4	ngg		
							LM50/	9-10-001	4-Nitroaniline	Q	1.7	990	α.	
								100-02-7	4-Nitrophenol		2.5	1166	4	
								100-51-6	Benzyl alcohol	: <del>-</del>	17	200		
								105-67-9	2.4-Dimethylphenol			900		
								106-44-5	D-Cresol / 4-Presol / -Methylaboral	_ L	رر.	กเล		
								106-46-7		<u>.</u>	٠. ت	99n		
								106-77-9				990		
								100-47-0	4-Chloroaniline	R	3.3 E -2	990	∝	
								108-801	Bis(2-chloroisopropyl) ether	Ľ	.17	990		
								108-95-2	Phenol / Carbolic acid / Phenic acid	L1	.17	990		
									/ Phenylic acid / Phe*			) )		
								111-44-4	Bis(2-chloroethyl) ether		1.6	3311		
								111-91-1	Bis(2-chloroethoxy) methane	: <u>-</u>	2.	200		
								117-81-7	Bis(2-ethylhexyl) phthalate	<u> </u>		000		
								117-84-0	Di-n-octvl phthalate		٠١.	500		
								118-74-1	Hexach   orobenzene	_ ;	77.	ปกก การการ		
								120-12-7	Anthracana		07:	990		
								120-82-1	1 2 / Tricklershonson	_ !	<u>/</u>  .	กตต		
							•	120-83-2	2 / Dichlosophan	_ :	67.	ngg		
							-	121-1/-2	2 / Pinitorophenol	ב ב	.28	990		
							•	170 00 00	c,4-vinitrotoluene		.31	990		
							·	129-00-0	Benzo[def]phenanthrene / Pyrene	LT	.97	OGG		
								151-11-3	Dimethyl phthalate	Ľ	.17	990		
								132-64-9	Dibenzofuran	11	17	9911		
									Benzo[ghi]perylene	- 1	22	501		
								193-39-5	Indeno[1,2,3-C,0]pyrene	1	17	201		
								205-99-2	Benzo[b] fluoranthene / 3,4-	: =	.73	990		
							•	:	Benzofluoranthene			!		
								206-44-0	Fluoranthene	רו	.17	OGG		
* . Ar	- Analyte Description ha	rintion has by	+ 500	40400		•								

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Field Sample Sample Sample No. Depth Date So918212 10.0 24-FEB-92

Site Site Type ID

	Flag Data Codes Quals						~																															×						ć	×	
	Unit Meas.	1 1 1	990	DDN	990	990	990	990		DDU		DON	990	990		nec	nee	000	nec	990	990	990	990	ngg	990	990	บอก	990	990		กรด	990	990	090	990	990	990	990	990	บบก	990	nec	990	-	חממ	Out
	Conc.	1 1 1	7.	.27	72.	.24	1.7	.27		.84		.58	.17	.23		.2	1.1	.92	.17	1.8	.32	.27	.35	.51	.17	~;	.17	.17	.28		87.	.3	.36	.26	.17	.17	.33	99.	.17	.32	.17	.24	. 19		1.1	<del>-</del>
	Meas.		-	Ξ	-	ב	용	-1		-1		ב	<u>_</u>	Ļ		_	=	Ľ			[]	=	-1	ב	5	_	17	ב	ב		1	Ľ	_	Ξ	[]	Ξ	ב	₽	H	_	5	_		9	⊋ <u>'</u>	
Date Ralige: 01-348-71	Analyte Description		Benzofklfluoranthene	Acenaphthylene	Chrysene	Benzo [a] pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo[a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9H-fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromophenyl phenyl ether
חמנה אמווץ	CAS NO		207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	56-55-3	59-50-7		606-20-2	621-64-7	65-85-0	67-72-1	7-47-47	78-59-1	83-32-9	84-66-2	84-74-5	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3	000	7-60-66	
Sampt IIIB	Meth/		LM30/	: !																																										
	Lab Lab Aniv No		PC 57991																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Field Sample Sample Sample No. Depth Date So918212 10.0 24-FEB-92

Site Site Type ID .... BORE 91B21

Data Quals	! ! !																																														
Flag Codes			8	s	8		o a	، د	8	S	v	· œ	ں د	,																																	
Unit Meas.	1 4	000	<u> </u>	990	990	991	9	990	990	990	990	9911	991	200	990	2	990		990	1166	9	1100	991	991	900	9911	3	990		990		990	DBU	DDO	990	990	990	9511		200	ממם	99 i	ngg	990	OGG	990	990
Conc.	:	7:	.11/	.467	.234	117	117		/04.	.818	1.051	584	726	u	2.5 F -3		3.0 E -3			1.9 E -2		ш	2.5 E -3	u	J	2.5 F -3	ı	2.5 E -3		2.5 E -3		ш	ш	ш	ш	ш	ш	ш	ם נ	7- 30 2	ם נ	u ı	ш	ш:	ш	2.5 E -3	ш
Meas. Bool.	: -	_												<u>_</u>	, j		11		-1	ב		1	: <del>L</del>	-	į		i I	17		ב		LT	LI	ב	ב	-1	11	17	; <u>-</u>	<u>.</u> -	; :	<u>.</u> :	_ :	<u>-</u> !	5	<u>.</u>	ב
Analyte Description					Unknown compound 537	Unknown compound 581					Unknown compound 650	Unknown compound 667			Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	cis-1,2-Dichloroethylene / cis-1,2-	Dichloroethene	trans-1,2-Dichloroethylene / trans-	l, c-Dichloroethene	Carbon tetrachloride	Methyl n-butyl Ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Winyl chlonide / Chlonothone	Mothylone oblemide / Chicklenene	Carter diamitide / Dichloromethane	Carbon disultide		aromodich toromethane	I,i-Dichloroethane
CAS No.														100-41-4	100-42-5		10061-01-5		107-06-2	108-10-1		108-88-3	108-90-7	124-48-1		127-18-4		156-59-2	;	156-60-5	2 40 73	20-63-3	0-0/-160	1-64-10	67-66-5	17-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-00-2	75-15-0	75-25-2	125	4-17-61	C-9C-C/
Meth/ Matrix	1 M30/													LM33/																																	
Lab Anly. No.	PC 57991																																			,											

* - Analyte Description has been truncated. See Data Dictionary

Site Site Type ID .... ....

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

Data Quals	; ; ;																																										
Flag Codes	: : :	~																																									
Unit Meas.	990	99N	nce	กดด	กดด	nee	;	990		D00	990	ออก		990	nee		UGG	990		DSU		<b>0</b> 00	990		990	000	nee	990	990	990	DDN	990	990	990	990	ngg	990	990	990	990	990	990	nee
Conc.	3.2 E -2	ш	2.5 E -3	ш	ш	ш	,	1.2 E -2		7.5 E -3	ш	.25		.251	.51		667.	1.27		2.5		۲.	2.5		.505	.251	52:	.249	.245	1.22	. 188	1.01	27000	42000	34.6	1990	1500	7	32.5	928	106	12.5	82.9
Meas. Bool.		QN	רַ	5	<u>_</u>	<u></u>	!	_		_	-	5		1	_	!	ב	ב		ב		ב	ר		1	ב	ב	ב	ב	רַ		17						LT				רַ	ב
Analyte Description	1,1-Dichloroethylene / 1,1-	Dichloroethene Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*		Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1,3-Dichloropropene	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Cyanide	Mercury	Silver	Atuminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony
CAS No.	75-35-4	75-69-4	78-87-5	78-93-3	2-00-62	79-01-6		79-34-5				118-96-7		121-14-2	121-82-4	;	2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	99-65-0	0-66-66	57-12-5	7439-97-6	7440-22-4	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	7440-36-0
Meth/ Matrix	LM33/											LW32/																		/ 66	/908r	JC05/	JS14/										
Lab Lab Anly. No.	PC 57991																													PC 58017													
-	24-FEB-92										•																			1 24-FEB-92													
0	10.0																													33.0													
Field Sample No.	S091B212																													S091B214													

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

		Conc.		12.7
	Meas	Bool.	1	QN
54-170-47		Analyte Description	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Arsenic
Sampring Pare Names of SAN 7		CAS No.		7440-38-2
	Meth/	Matrix		JS14/
	Lab	Lab Anly. No. Matrix CAS No.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33.0 24-FEB-92 PC 58017 JS14/ 7440-38-2
	Sample	Date	::::	24-FEB-92
		Depth	,	33.0
	Field	Sample No.		S091B214

_		-	;							
ם ב	Lab A	Lab Lab Anly. No.	Meth/ Matrix	CAS No.	Analyte Description	Meas. Bool.	Conc.	Unit Meas.	Flag Codes	Data Quals
: ;	•				1 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1	: :	1 1 1	; ; ;	:
B-92	ည	58017	JS14/	7440-38-2	Arsenic	QN	12.7	000	<b>—</b>	
				7440-39-3	Barium		68.1	000		
				1-14-044/	Beryllıum		2.89	99n		
				7440-43-9	Cadmium	L	.427	000 000		
				7-67-07-7			6.97	วอก		
				77.40-50-8	Const		4.5.4	990		
				77.70-62-2	ropper		ξ;	990		
				7-79-044/	Variauruiii		67.3	990 0		
					7111C		201	990		
				7-07-0447	raicium Soloni:	:	1730	nec		
			7027	7.64.7077		-1	12.4	nec		
			LE300/	100-01-0	4-Nitromhiline	요!	7.7	000	~	
				100-02-7	4-Nichonenot	<u>.</u>	<b>5.</b> 2	nee		
				105-67-0	penzyl alcohol	_ :	.ı.	กดีด		
				70,001		=	.35	nee		
				106-44-5	p-Cresol / 4-Cresol / 4-Methylphenol	<u>.</u> :	<del>2</del> 5	990		
				100-40-1				nee		
				100-47-8	4-Chloroaniline	R	3.3 E -2	ngg	~	
				108-60-1	Bis(2-chloroisopropyl) ether	רו	.17	ngg		
				108-95-2	Phenol / Carbolic acid / Phenic acid		.17	990		
					/ Phenylic acid / Phe*					
				111-44-4	Bis(2-chloroethyl) ether	-	1.6	ngg		
				111-91-1	Bis(2-chloroethoxy) methane	; <b>-</b>	.17	9911		
				117-81-7	Bis(2-ethylhexyl) phthalate	_	19	9911		
				117-84-0	Di-n-octyl phthalate	: 5	.22	990		
				118-74-1	Hexachlorobenzene	: <u>-</u>	2	991		
				120-12-7	Anthracene	·	17	991		
				120-82-1	1.2.4-Trichlorobenzene	. <u> -</u>	. 2	201		
				120-83-2	2,4-Dichlorophenol	; <u>-</u>	28	990		
				121-14-2	2.4-Dinitrotoluene	: <u>-</u>	3.1	991		
				129-00-0	Benzo[def]phenanthrene / Pyrene	; <u>-</u>	26	200		
				131-11-3	Dimethyl phthalate	<u></u>	17	1166		
				132-64-9	Dibenzofuran	; <b>;</b> ;	17	990		
				191-24-2	Benzo[ghi]perylene		.25	990		
				193-39-5	Indeno[1,2,3-C,0]pyrene		.17	990		
				205-99-2	Benzo[b]fluoranthene / 3,4-		.73	990		
					Benzofluoranthene	I	1	j )		
				206-44-0	Fluoranthene	1	17	331		
				207-08-9	Benzo[k]fluoranthene	: <u>-</u>	7	991		
				208-96-8	Acenaphthylene	LT	.27	990		
				218-01-9	Chrysene		.27	990		
				50-32-8	Benzo [a] pyrene	רַ	.24	990		
				51-28-5	2,4-Dinitrophenol	Q.	1.7	990	~	
				55-70-5						

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-0CT-

Field Sample Sample Sample No. Depth Date So918214 33.0 24-FEB-92

Site Site Type ID .... BORE 91821

Data Quals	! : :																																									
Flag Codes	1 1 1																												œ							~			В	æ	82	8
Unit Meas.	090	990	990	กดด	990		99N	990	99N	990	000	UGG	990	990	000	nee	990	DDN	000	ngg		99N	UGG	ngg	000	990	nce	990	000	990	ngg	990	กดด	nec		nee	990	000	ngg	000	990	ออก
Conc.	.27	.84	.58	.17	.23		.2	1.1	.92	.17	1.8	.32	.27	.35	.51	.17	.2	.17	.17	.28		.48	٣.	.36	.26	.17	.17	.33	99.	.17	.32	.17	.24	.19		1.7	.17	.2	.14	.28	- 14	.559
Meas. Bool.		ב	17	; <b>5</b>	5		-1	<u>.</u>	ב	<u>-</u>		<u>י</u> ב	<u>-</u> !	<u>-</u> :		ב	<u></u>	ב	-	-		-	<u></u>		-	_	ב	L1	웆	LT	ב	L	1	5		S	Ξ	ר				
Analyte Description	Dibenz [ah] anthracene / 1,2:5,6-	Dibenzanthracene 4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol 1.3-Dichlorobenzene	Benzo[a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexach Lorocycl opentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	Unknown compound 533	Unknown compound 537	Unknown compound 581	Unknown compound 629
CAS No.	53-70-3	534-52-1	541-73-1	56-55-3	29-29-	,	606-20-2	621-64-7	65-85-0	67-72-1	4-14-11	78-59-1	85-52-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3		69-09-2						
	LM30/																																									
Lab Lab Anly. No.	PC 58017																																									

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO

	Data Quals	! !																																										
	Flag Codes	:																															<b>j-</b>											œ
	Unit Meas.	090		990	ngg		990	กาก	2011	חפפ		901	3	9911	991	9911	99	9 20	999	990	990	550	9911	9911	991	9 5	מ מ מ	990	99	ยูยเ	99N	990	990	990	990	990	nee	990	990	990	990	990	990	nee
	Conc.			.251	.51	Ş	76.	/7:1	7 5	۲.3	Ľ	5.5	,	505	.251	; K	576	572	1.22	8.70 E -2		17000	20000	8.67	1120	2000	7	12 3	364	113	12.5	82.9	12.7	78.5	.543	.427	16.9	40.2	11.3	42.1	39	528	12.4	1.7
	Meas. Bool.			ר	1	<u>:</u>	5 <u> </u>	;	<u>-</u>	5	-	: <u>-</u>	;		: 5	; []	: 5	<u>-</u>	: =	1	-						-	-			רַ	LT	9			LT							ב	S
01-JAN-91 24-0CT-94	Analyte Description	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	Cyclotetromothylomotetromite	Tetrol / N-Methol-N 2 / K-	+ 0 + 1	Nitrodycerine / 12 3-Dropapetriol	trinitrate	2.6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Cyanide	Mercury	Silver	Aluminum	Iron	Lead	Magnesium	Mandanese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	4-Nitroaniline
Date Range: 01-JAN-91	CAS NO.	118-96-7	;	121-14-2	121-82-4	2601-61-0	479-45-8	:	55-63-0	}	606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-59-66	0-66-66	57-12-5	7439-97-6	7440-22-4	7429-90-5	2439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2440-05-7	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7-41-7	7440-43-9	2440-42-3	7440-48-4	7440-50-8	7440-62-2	9-99-047	7440-70-2	7782-49-2	100-001
Sampling	Meth/ Matrix	LW32/																	/ 66	7806/	JC05/	JS14/																						LM3U/
	Lab Lab Anly. No.	PC 58017																	PC 58009																									
	Sample Date	24-FEB-92																	24-FEB-92																									
	Depth	33.0																	10.0																									
	Field Sample No.	S091B214																	S091B219																									

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-OCT-

Sample Depth Date -----10.0 24-FEB-92

Field Sample No. 1

Site Site Type ID .... SORE 91821

Data Quals	:																																														
Flag Codes							~																											~													
Unit Meas.	5511	900	บาก	990	99N	ngg	ngg	UGG	990	! ! )		ออก	990	990	99N	UGG	990	990	990	991	991	331	ם מ	กาก	99n	nee	990		ngg	090	990	990	UGG	990	990		990		990	990	DDN		990	990	990	990	nee
Conc.	٠.٠.		-:	55.	.18	.17	3.3 E -2	.17	17	;		<u>ئ</u> به	71.	.19	.22	.26	.17	2	28	3.1	. 20	- 2-		/1.	.25	.17	.73		.17	۶.	.27	.27	.24	1.7	.27		-84		.58	.17	.23		.2	1.1	.92	.17	1.8
Meas. Bool.	<u> </u>	- F	: ב	<b>=</b> :	ב	ב	9	ר	LT	i		<u>.</u> .		ב	5	ב	5	<u>-</u>	: <u>-</u>	; <u> </u>	: <u>-</u>	; -		<u>.</u>	[]	11	רו		-1	ב	[1	ר	Ľ	Q	ב		Ľ		LT	_	=		1	ב		LT	ב
	6-Nitrophenol		benzy atconol		p-Cresol / 4-Cresol / 4-Methylphenol	1,4-Dichlorobenzene	4-Chloroaniline	Bis(2-chloroisopropyl) ether	Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe*	Disco attended to the	Bis(2-chloroetnyl) etner	BIS(2-cnloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1.2.4-Trichlorobenzene	2.4-Dichtorophenot	2.4-Dinitrotolyene	Benzoldefluhenanthrene / Pyrene	Dimethyl shibblete	Disposofinance	in periodiali	Benzo[ghi]perylene	Indeno[1,2,3-C,D]pyrene	Benzo[b]fluoranthene / 3,4-	Benzofluoranthene	Fluoranthene	Benzo[k] fluoranthene	Acenaphthylene	Chrysene	Benzo [a] pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo [a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene
CAS NO.	100-02-7	100-51-4	100-21-0	4-70-col	106-44-5	106-46-7	106-47-8	108-60-1	108-95-2		111-11-1	111-44-4		117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	122-64-0	125-25-	191-24-2	193-39-5	202-99-2		206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1	j	541-73-1	56-55-3	29-20-2		606-20-2	621-64-7	65-85-0	67-72-1	4-24-22
Meth/ Matrix	1 M30/	2																																													
Lab Lab Anly. No.	PC 58009	2																																				•									

^{* -} Analyte Description has been truncated. See Data Dictionary

24-001-94

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

**24-**0C1-94

Data Quals	1 1 1																																														
Flag Codes																				œ							ć	×			В	8	œ	: 22													
Unit Meas.	1 :	99N	99N	nee	ngg	nee	ngg	990	921	990	3	9911	200	500	550	חפט	กูก	990	nee	990	990	nee	990	991	200	220	0	nee	990	ngg	nee	nee	066	990	991	990	:	990	! !	บินิด	9911		991	991	991	2	
Conc.	1 (	. 52	.27	çç.	.51	.17	~.	17	17	. «		87	£ ~	72	200	7.		.17	.53	99.	.17	.32	.17	76	0,5		,	<b>)</b> • 1	.17	.2	.236	.118	.118	472	2.5 F -3	ш	t	3.0 E -3	i	2.7 E -3	ш		u	2.5 F -3	ш	1	
Meas. Bool.	1 1		<u></u> :	_		17	17	-	: <u>-</u>	; <u>-</u>	;	_	-	- 1-	- F			_ :		2	17	17	LT	<u>-</u>	; <u>-</u>	;	9	2		רו					-	: =		_		1	17		-	; =	; <u>-</u>	j	
Analyte Description		Sopnorone	Acenaphthene	vietnyt prinalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1 3-	butadiene	Pentachtorophenol	2.4.6-Trichlorophenot	2-Nitroaniline	2-Nitrophonol	Norththalone / Tar campbon	2.Mother Land Campillar	2 of l	z-unloronaphthalene	5,5'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2.4.5-Trichlorophenol	Nitrobenzene / Essence of mirhane /	Oil of mirbane	Z-Nitrospilino	י אורן ספורו ווווב	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	Unknown compound 533	Unknown compound 537	Unknown compound 581	Unknown compound 629	Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Chlorodibromomethane	
CAS No.	70.50	1-66-07	85-52-9	2-00-40	84-14-5	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	01-57-4	71-71-0	7-96-16	1-56-16	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3		00-00	1 () ()							100-41-4	100-42-5		10061-01-5		107-06-2	108-10-1		108-88-3	108-90-7	124-48-1		127-18-4
Meth/ Matrix	1 M20 /																																		LM33/												
Lab Anly. No.	00083 00																																														
Sample Date	2/,-550-02	24 1 50 75																																													
Depth	10	2																																													
Field Sample No.	S0018219																																														

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site Type ID .... 91821

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data Quals	f f ;																																							
Flag Codes	• • •					•	_														œ								S											
Unit Meas.	UGG	nge	9911	90	000	กดด	วยา	99n	99n	550	1156	990	990	ngg	99N	990	UGG	990	990		nee	990	ngg	ngg	9 <b>9</b> 0		วยก		990	บบก	nge	990		990	990		000	990		990
Conc.	2.5 E -3	2.5 E -3	7. 7.		ш	1.8 E -2	ш	w 1	шL	u u	3.5 F -2	ш	ш	ш	ш	ш		ш	ш			ш	5.1 E -3	ш	ш		1.2 E -2		.106		2.5 E -3	.25		.251	.51		667	1.27	ı	<b>5.2</b>
Meas. Bool.		1	-	-	ב	5		<u></u> ::	<u></u> : :	<u>.</u> :	<u>-</u>	: <u> </u>	ב	[]	LŢ	Lĭ	Ľ	LT	LT		Q	רַ	5	LT	5		-1			-	LI	Lı		ר	<u>_</u>			=	1	<b>-</b>
Analyte Description	Tetrachloroethylene /	<pre>Tetrachloroethene / Perchloroethylen* cis-1,2-Dichloroethylene / cis-1,2-</pre>	Dichloroethene	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene 1 1 1 Taiaklanathan	Dromomothono	chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*		Tetrachloroethane / Acetylene *	Unknown compound 077	Xylenes, total combined	trans-1,3-Dichloropropene	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,5-Propanetriol trinitrate
CAS No.	127-18-4	156-59-2	156-60-5		56-23-5	591-78-6	67-64-1	67-66-3	7-65-7	0-76-17	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		75-69-4	78-87-5	78-93-3	2-00-6	79-01-6		79-34-5					118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		0-69-66
Meth/ Matrix	LM33/																															LW32/								
Lab Lab Anty. No.	PC 58009																																							
Sample Date	24-FEB-92																																							
Depth	10.0																																							
Field Sample No.	S091B219																																							

^{* -} Analyte Description has been truncated. See Data Dictionary

24-001-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data Onals																																															
Flag																							_												α.	:					٥	Ł					
Unit		UGG	990		nee	990	ngg	บบก	200	ם מ	500	990	000	010	กรเ	000	000	990	500	550	nee	99N	990	990	990	990	000	990	990	990	990	9911	990	9911	990	9911	1100	555	991	991	000	550	990	200	990	990	
Conc		ĸ.	2.5	į	505	.251	.25	.249	2/5	(47. 10.		12000	00071	<b>†.</b> 02,	7 2 2	<b>C77</b>	7 1	ر. /	977	65.4	12.5	82.9	12.7	17.5	52:	.427	12.2	10.6	8.24	33	27.2	427	12.4	1.22	1.7	2.5	17	7.5	£ = =	17	3 3 6 -2	J	. 2	•	1.6	.17	
Meas. Bool.	1 1 1	L			-		LT	17	<u>-</u>	; <u>:</u>	;					<u>-</u>	- 1	=		!	<u>.</u>	LI	Q		11	רַ							LT	-1	QN QN	11		; <u> -</u>	; <u>-</u>	; =	į	<u> </u>	; <u>-</u>	i	ב	1	
Analyte Description			PETN / Pentaerythritol tetranitrate /	Z,Z-Bis[(nitrooxy)me*	Z With the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the con	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Silver	A Limit of	Ton Ton	Dea -	Madperita	Managanana	Mol vodonim	Niokel Mi	Potassiim	Socien	Tho. 1 i.m.	ווומרנותוו	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cyanide	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol	2,4-Dimethylphenol	p-Cresol / 4-Cresol / 4-Methylphenol	1,4-Dichlorobenzene	4-Chloroaniline	Bis(2-chloroisopropyl) ether	Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe*	Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	
CAS No.		2-02-909	ر-11-8 <i>/</i>	C C C	7-71-00	1-90-64	99-35-4	99-62-0	0-66-66	7440-22-4	7,20-00-5	7439-89-6	7439-92-1	7439-95-4	5-90-0272	2-80-0272	7440-02-0	2-60-0752	7440-23-5	77.40-28-0	0-92-0772	7440-20-0	7-85-0-54	7440-59-3	7440-41-7	2440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	2440-66-6	7440-70-2	7782-49-2	57-12-5	100-01-6	100-02-7	100-51-6	105-67-9	106-44-5	106-46-7	106-47-8	108-60-1	108-95-2		111-44-4	111-91-1	
Meth/ Matrix		LW32/								JC05/	1817	<u> </u>																						KY04/	LM30/												
Lab Lab Anly. No.										PC 57088																																					
Sample Date	2/- EEB-02	74-110-17								21-FEB-92																																					
Depth	10.01	2								17.0																																					
Field Sample No.	S0018210	207.102.1								9182210																																					
	BORE 91821									91822																																					

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Field Sample Sample Sample No. Depth Date 17.0 21-FEB-92

Site Site Type ID

	s duals																																												
Flag	Codes																				œ																								
Unit	Meas.	990	991	990	NGG	990	990	990	990	990	000	000	DCC	990		990	990	990	990	990	990	990		990		990	DDN	990		990	990	บอก	990	990	990	990	000	990	990	990	990	990	000		990
	Conc.	19		. 26	.17	.29	.28	.31	26.	.17	.17	.25	.17	.73		.17	۶.	.27	.27	.24	1.7	.27		.84		.58	.17	.23		.2	1.1	.92	.17	1.8	.32	.27	.35	.51	.17	.2	71.	.17	. 28		.48
Meas.	Bool.		: 1	: <b>:</b> :	=	ב	רי	Ľ	ב	ב	ר	<u>_</u>	LT	ב		LI	L	L	ר	11	Q.			-		L	ב	5		ב	רו	5	LT	ר	11	LT	Ľ	ב	1,1	[1	ĽI	ב	=		ב
	Analyte Description	Bis(2-ethylhexyl) phthalate	Di-n-octvl phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzo[ghi]perylene	Indeno[1,2,3-C,D]pyrene	Benzo[b]fluoranthene / 3,4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzo [a] pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo [a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol
:	CAS No.	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2		206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	56-55-3	29-20-7		606-20-2	621-64-7	65-85-0	67-72-1	7-45-42	78-59-1	83-32-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3		87-86-5
Meth/	Matrix	LM30/	•																																										
rab	Lab Anly. No.	PC 57088																																											

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO

						Sampling	g Date Range: 01-JAN-91	01-JAN-91 24-0CT-94						
Site	Site		,		Lab				Meas.		Unit	Flag	Data	
ype	9 :	Sample No.	Depth		Lab Anly. No.		CAS No.	Analyte Description	Bool.	Conc.	Meas.	Codes	Quals	
								6 8 8 7 1 1 4 8 8 9 5 1 6 2 1 1 1	1 1		1 1 1	1 1 1 1	1 1	
ם מא	71822	718221C	0.7	Z1-FEB-92	PC 5/088	LM30/	88-06-2	2,4,6-Trichlorophenol	רו	٤.	990			
							88-74-4	2-Nitroaniline	17	.36	UGG			
							88-75-5	2-Nitrophenol	11	.26	990			
							91-20-3	Naphthalene / Tar camphor	17	.17	990			
							91-57-6	2-Methylnaphthalene	1	.17	990			
							91-58-7	2-Chloronaphthalene	11	.33	990			
							91-94-1	3,3'-Dichlorobenzidine	2	99.	990	~		
							2-87-56	o-Cresol / 2-Cresol / 2-Methylphenol	: 5	.17	990	:		
							95-50-1	1,2-Dichlorobenzene	; <b>-</b> -	.32	990			
							95-57-8	2-Chlorophenol	: 17	.17	990			
							95-95-4	2,4,5-Trichlorophenol	: <u>-</u>	57	9911			
							98-95-3	Nitrobenzene / Essence of mirbane /	: 13	19	991			
								Oil of mirbane	İ		)			
							66-08-2	3-Nitroaniline	QN	1.7	1166	œ		
								4-Bromophenyl phenyl ether	! =	17	991	<b>2</b>		
								4-Chlorophenyl phenyl ether	i	~	991			
									i	. 241	991	œ		
								Unknown compound 537		242	0011	·		
										121	500	າບ		
										151.	550	n c		
										171.	000	o o		
								compound		121.	กอก	n (		
								compound		. 121	990	S		
								compound		.241	UGG	S		
								compound		.241	990	S		
								compound		.241	990	S		
										.603	990	8		
								compound		.483	990	s		
								compound		.362	990	s		
								compound		.362	990	S		
								compound		.362	990	S		
										.362	วอก	S		
								compound		.241	NGG	s		
										.121	990	S		
								punodwoo		.241	ngg	S		
								Unknown compound 669		.241	990	တ		
								Unknown compound 675		.362	55N	s		
						LM33/	100-41-4	Ethylbenzene	1		000			
							100-42-5	Styrene / Ethenylbenzene / Styrol /		2.5 E -3	DDN			
								Styrolene / Cinnamene *						
							10061-01-5	cis-1,3-Dichloropropylene / cis-1,3-	ב	3.0 E -3	ngg			
							107-06-2	Dichloropene 1 2-Dichloroethane	-	7 2 2 2 6	-			
								7.1.2.2.2.2.1.	-	1	-			

^{* -} Analyte Description has been truncated. See Data Dictionary

107-06-2 108-10-1

990 000

-3

2.7 E . 1.9 E .

ニコ

1,2-Dichloroethane Methyl isobutyl ketone / Isopropylacetone / 4-Methyl-2-pen*

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-OCT-

Site Site Type ID

Data Quals																																											
Flag																												۵	•														
Unit Meas.	บอก	nee	ngg		ออก		99N		ngg		990	990	990	990	990	990	990	000	990	nec	000	990	ngg	990	991	9911	7	991	201	550	550	200	3	090		990	990	990		990	DBU		บเร
Conc.	ш		5.7 E -2		2.5 E -3		2.5 E -3		2.5 E -3		ш	1.8 E -2	ш	ш	ш	ш	ш	ш	ш	ш	6.2 E -3	ш		ш	щ	3 11	1	ц	7.77	1 11	ט נ	ט ע	2	1.2 E -2		7.5 E -3		.25		.251	.51	8	664.
Meas. Bool.	17	1	5				רי		17					ר	L	LT	=	1	ב	Ľ	1	רי	=		: <u>-</u>	; :	;	2	<u>.</u>	-	- L	<u>-</u> -	<u>.</u>	5		-	<u>'</u>	ב		L	רַ		5
Analyte Description	Toluene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	cis-1,2-Dichloroethylene / cis-1,2-	Dichloroethene	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1.1-Dichloroethane	1.1-Dichloroethylene / 1.1-	Dichloroethene	Trichlorofinoromethane	1 2-Dichloropropane	Methyl ethyl betone / 2-Butanone	1 1 2-Trickloroothono	Trichloroothylope /Trichloroothope /	Ethinyl trichloride /T*	Tetrachloroethane / 1.1.2.2-	Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1,3-Dichloropropene	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,5,5-triazine "	Lyctotetfametnytenetetfanitfamine
CAS No.	108-88-3	108-90-7	124-48-1		127-18-4		156-59-2		156-60-5		56-23-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		7-69-52	78-87-5	78-03-3	70-07	70-07		79-34-5				118-96-7		121-14-2	121-82-4	0.17.5070	479-45-8
Meth/ Matrix																																						LW32/					
Lab Anly. No.	PC 57088																																										
Sample Date	21-FEB-92																																										
Depth	17.0																																										
Field Sample No.	9182210																																										

* - Analyte Description has been truncated. See Data Dictionary

24-001-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

76-130-76

	Data Quals	* • • • • • • • • • • • • • • • • • • •																																						
	Flag Codes	! ! !																						<b>-</b>											~	:				
	Unit Meas.	ngg	990	ngg	กดิด	990	ngg	nee	990	ออด	99 : Cec	990	990	550	200	9 0	9 2	900	9 5	991	991	990	990	nee	990	990	990	99n	990	מפת	990	991	990	991	990 000	990	ngg	99N	99 0	
	Conc.	1.27	2.5	٦.	2.5	.505	.251	.25	.249		8.70 E -2	ш	10.1	1,000	10000	. K	6 07	. v	7 5	301	85.3	12.5	82.9	12.7	18.8	.25	.427	11.3	0.7	2/2	25.50	415	12.4	1.22	1.7	2.5	.17	.33	.17	
	Meas. Bool.	5	ב	5	-1	5	5	=	ב	֡֞֞֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֡֜֜֝֡֓֓֓֡֡֡֡֡֡֡֝֡֡֡֡֡֡֡֡	<u>-</u> :	= :	<u>.</u>					<u>-</u>	- h-	i		1	[1	R		5							1	-1	9	[1	_	֖֖֡֜֞֞֜֞֜֞֞֞֜֜֞֜֡֓	: 5	
01-JAN-91 24-OCT-94	Analyte Description	Tetryl / N-Methyl-N,2,4,6-	Nitroglycerine / 1,2,3-Propanetriol	2,6-Dinitrotoluene	PEIN / Pentaerythritol tetranitrate / 2 2-Ris (nitroxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Rei Cul y	Aliminus		Deal.	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Caromium Cobol+	Conner	Vanadium	Zinc	Calcium	Selenium	Cyanide	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol	Z,4-Dimethylphenol	P-dresol / 4-dresol / 4-Metnylphenol 1,4-Dichlorobenzene	
Date Range: 01-JAN-91	CAS No.	479-45-8	55-63-0	606-20-2	78-11-5	88-72-2	99-08-1	99-35-4	99-65-0	99-99-0	0-16-6541	7,427-72-7	77,20-00-5	7429-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7,440-47-3	7440-50-8	7440-62-2	9-99-0442	7440-70-2	7782-49-2	57-12-5	100-01-6	100-02-7	100-51-6	105-67-9	106-44-7	
Sampling	Meth/ Matrix	LW32/								, 700	/00gc	/2021 1002	1516/																					KY04/	LM30/					
	Lab Anly. No.	PC 57088									PC 57096																													
	Sample Date	~									21-FFR-02																													
		17.0								17.0	100.0																													
	Field Sample No.	91B221C								01822150	918222C																													
	Site ID	91822																																						
		BORE																																						

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Field Sample Sample Sample No. Depth Date 91822C 100.0 21-FEB-92

Site Site Type ID .... ....

Data Quals																																										
Flag Codes	~																							œ	:																	
Unit Meas.	990	nec	9911	990	55U	990	990	990	990	99N	UGG	990	990	990	990	990	OGG		990	nee	990	99N	ngg	วรก	99n		990		99N	ออก	ออก		990	990	DOC	990	nee	UGG	ภูภูก	990	DDN	99N
Conc.	3.3 E -2 .17	17.	1.6	.17	.19	.22	.26	.17	.29	.28	.31	26.	.17	.17	.25	.17	۲.		.17	7.	.27	.27	.24	1.7	.27		.84		.58	.17	.23		.2	1.1	.92	.17	1.8	.32	.27	.35	.51	.17
Meas. Bool.	<b>8</b> 13	: 5	1	בי	ב	=	רו	=	ב	=	רו	5	רו	רַז	רַ	ב	<u>_</u>		5	-	5	רו	5	Ş	5		-		רו	_			1	5	ב	<u>_</u>	ב	ב	ב	5	ב	1
Analyte Description	4-Chloroaniline Bis(2-chloroisopropyl) ether	Phenol / Carbolic acid / Phenic acid	/ Pnenylic acid / Pne* Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzoldeflphenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzo[ghi]perylene	Indeno[1,2,3-C,D]pyrene	Benzo[b] fluoranthene / 3,4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzo [a] pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo[a]anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene
CAS No.	106-47-8 108-60-1	108-95-2	111-44-4	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2		206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	56-55-3	29-50-7		606-20-2	621-64-7	65-85-0	67-72-1	77-47-4	78-59-1	83-32-9	84-66-2	84-74-2	85-01-8
Meth/ Matrix	_																																									
Lab Anly. No.	PC 57096																																									

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-OCI-

24-001-94

	Data	Ouals	1 1 1																																												
	Flag	Codes	:													a	e						۵	٤		c	a c	20 1	S	23	S																
	Unit	Meas.	!	990	990	990	ngg		990	9911	201	555	ກຸກຄວາ	000	000	กาก	550	200	550	000	200	2	9911	500	900	200	900	กุกก	000	990	990	990	990		nee		990	000		990	990	990		990		nee	
		Conc.	1 1	2.	.17	.17	.28		87.	~	, ×	25.	. 50 71	17	22			: 2	17		. 51	È	17	17		27.1	141	21.	. 241	.482	.12	5 E -3	5 E -3		6 E -3			4 E -2		ш	5 E -3	ı		5 E -3		5 E -3	
	Meas.	Bool.	: :		ב	17			17	_	<u>-</u>	; <u>-</u>	; <u>:</u>	; =	; =	. S	<u>-</u>	<u>-</u>	- F-	<u> </u>	: _	-	S	: -		_						Ľ	LT		[]		LT			LT	ב	- 1-1		ב		LI	
100 100		Analyte Description		Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9M-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Nampthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3.3'-Dichlorobenzidine	o-frecol / 2-frecol / 2-Methylphenel	1.2-Dichlorobenzene	2-Chlorophenol	2.4.5-Trichlorophenot	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromonhenyl nhenyl ether	4-Chlorophenyl phenyl ether	Unknown compound 533	Hakana compound 527	Unknown compound 50/	unknown compound 361	Unknown compound 629	Unknown compound 652	Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	cis-1,2-Dichloroethylene / cis-1,2-	Ulchloroethene
		CAS No.		85-68-7	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	2-87-56	95-50-1	95-57-8	95-95-4	98-95-3		69-09-2								:	100-41-4	100-42-5		10061-01-5		107-06-2	108-10-1		108-88-3	108-90-7	124-48-1		127-18-4		156-59-2	156.40.5
E	Meth/	Matrix		LM50/																											!	LM55/															
•	Lab	Lab Anly. No.		rc 5/096																																											
	Sample	Date	21-550-02	21-reb-y2																																											
		Depth	100	000																																											
	Field	Sample No.	010222	7105555																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

156-59-2 156-60-5

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-0CT-

Field Sample Sample Sample No. Depth Date 100.0 21-FEB-92

Site Site
Type ID
---BORE 91822

1433, 156-60-5 trans-1,2-Dichloroethylene / trans-	Lab Lab Anly. No. M	Meth/ Matrix	CAS No.	Analyte Description	Meas. Bool.	Conc.	Unit Meas.	Flag Codes	Data Quals	
1,2-Dichloroethene		M33/	156-60-5	trans-1,2-Dichloroethylene / trans-		: ш	000	:	1	
591-78-6         Methyl rbutyl ketone / 2-Hexanone         11         4 6 - 2         0.05           67-64-1         Acetone         1         4 6 - 2         0.05           67-64-3         Chororform         1         1         5 6 - 3         0.05           71-43-2         Benzene         1         1         5 6 - 3         0.05           74-87-3         Chloromethane         1         7 6 - 3         0.05           75-01-4         Vinyl chloride / Chloroethane         1         7 6 - 3         0.05           75-01-4         Vinyl chloride / Chloroethane         1         7 6 - 3         0.05           75-01-4         Vinyl chloride / Dichloromethane         1         7 6 - 3         0.05           75-01-4         Vinyl chloroethane         1         7 6 - 3         0.05           75-01-4         Vinyl chloroethane         1         1         5 6 - 3         0.05           75-01-4         Vinyl chloroethane         1,1-1         1         5 6 - 3         0.05           75-25-2         Bromodocitloromethane         1,1-1         1         5 6 - 3         0.05           75-34-3         1,1-0         1,1-0         1,1-1         1         1         5 6 - 3			56-23-5	1,2-Dichloroethene Carbon tetrachloride	<u>-</u>		9911			
67-64-1 Acetone 67-64-3 Chloropome 71-43-5 71-43-6 71-43-6 71-43-6 71-43-6 71-43-6 71-43-6 71-43-6 71-43-6 71-43-6 71-43-6 71-43-1 71-61-61-61-61-61-61-61-61-61-61-61-61-61			591-78-6	Methyl n-butyl ketone / 2-Hexanone	; <u>-</u>		990			
77-55-6 77-56-3 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-55-6 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-4 77-50-3 77-50-3 77-50-4 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-3 77-50-			67-64-1	Acetone	i		990			
71-55-6 7-55-6 7-55-6 7-55-6 7-55-6 7-55-6 7-55-6 7-68-3 8 romomethane 7-68-3 7-68-3 Chlorocethane 7-68-3 Chlorocethane 7-68-3 Chlorocethane 7-68-3 Chlorocethane 7-68-3 Chlorocethane 7-68-3 Chlorocethane 7-68-3 Nethylere chloride / Dichloromethane 7-7-55-2 Remoform 7-7-55-3 Remoform 7-7-7-7 8 romoform 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-1-0ichlorocethane 7-8-7-3 1-0ichlorocethane 7-8-7-3 1-0ichlorocethane 7-9-3-3 1-0ichlorocethane 7-9-3-3 1-0ichlorocethane 7-9-3-3 1-0ichlorocethane 7-9-3-3 1-0ichlorocethane 7-9-3-3 1-1-0ichlorocethane 7-9-3-3 1-1-0ichlor			67-66-3	Chloroform	רז	ш	UGG			
74-85-6 1.1,1-Trichloroethane			71-43-2	Benzene	ĽΊ	ш	ngg			
7.48.9 Bromomethane 7.48.9 Chloromethane 7.48.7 Chloromethane 7.48.7 Chloromethane 7.50.7 Chloromethane 7.50.8 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.7 Chloromethane 7.50.7 Chloromethane 7.50.7 Chloromethane 7.50.7 Chloromethane 7.50.7 Chloromethane 7.50.7 Chloromethane 7.50.7 Chloromethane 7.50.7 Chloromethane 7.50.8 Chloromethane 7.50.8 Chloromethane 7.50.8 Chloromethane 7.50.8 Chloromethane 7.50.8 Chloromethane 7.50.8 Chloromethane 7.50.8 Chloromethane 7.50.8 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chloromethane 7.50.9 Chl			71-55-6	1,1,1-Trichloroethane	LT		990			
7.487-3 Chloromethane 7.407-4 Chloroethane 7.500-3 Chloroethane 7.500-4 Chloroethane 7.500-2 Methylene chloride / Chloroethane 7.500-2 Methylene chloride / Dichloromethane 7.500-2 Methylene chloride / Dichloromethane 7.500-2 Methylene chloride / Dichloromethane 7.500-3 Bromodichloromethane 7.500-4 1,1-Dichloroethane 7.500-4 1,1-Dichloroethane 7.500-5 Irichloroethane 7.500-6 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroethane 7.500-7 Irichloroetha			74-83-9	Bromomethane	רַז	ш	990			
75-00-3 Chloroethane			74-87-3	Chloromethane	ב	ш	ngg			
75-01-4 Vinyl chloride / Chloroethene			75-00-3	Chloroethane	LI	ш	990			
75-09-2 Methylene chloride / Dichloromethane			75-01-4	Vinyl chloride / Chloroethene	LT	ш	990			
75-15-0 Carbon disulfide 75-25-2 Bromoform Carbon disulfide 75-25-2 Bromoform Carbon disulfide 75-27-4 Bromofichloromethane 75-37-3 1,1-Dichloromethane 1,1			75-09-5	Methylene chloride / Dichloromethane		ш	990	∞		
75-25-2  Bromodich Commethane 75-27-4  Bromodich Loromethane 75-37-4  1,1-Dich Loroethane 75-35-4  1,1-Dich Loroethane 75-40-4  1,1-Dich Loroethane 75-69-4  Trich Loroethane 78-87-5  1,2-Dich Loroethane 78-87-5  1,2-Dich Loropropane 78-87-5  1,2-Dich Loropropane 11			75-15-0	Carbon disulfide	[1	ш	990			
75-27-4 Bromodichloromethane 75-34-3 1,1-Dichlorocethane 75-35-4 1,1-Dichlorocethane 75-48-4 1,1-Dichlorocethane 75-69-4 1richlorofuncmethane 75-69-4 1richlorocethane 75-69-4 1richlorocethane 75-69-4 1richlorocethane 76-69-5 1,2-Dichloropopane 79-01-5 1,2-Trichlorocethane 79-01-6 1richlorocethane 79-01-6 1richlorocethane 1,1,2,2- 8-11 5 6 -3 UGG 79-01-6 1richlorocethane 1,1,2,2- 8-11 5 6 -3 UGG 79-10-6 1richlorocethane 1,1,2,2- 8-11 5 6 -3 UGG 79-10-6 1richlorocethane 1,1,2,2- 8-11 5 6 -3 UGG 79-10-6 1richlorocethane 1,1,2,2- 8-11 5 6 -3 UGG 118-96-7 2,4,6-Trinitrocoluene 1,1,2,2- 8-11 5 6 -3 UGG 118-96-7 2,4,6-Trinitrocoluene 1,1,2,2- 8-11 1,1-14-2 2,4-Dinitrocoluene 1,1,2,3-Dichloropopane 121-14-2 2,4-Dinitrocoluene 1,1,2,3-Propanetriol 1,1 2,5 UGG 479-45-8 1etranitroanitramine 1,1 1,27 UGG 479-45-8 1etranitroanitramine 1,1 1,27 UGG 479-45-8 1etranitroanitramine 1,1 2,5 UGG 606-20-2 2,6-Dinitrocoluene 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 2,5 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 2,5 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 2,5 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 2,5 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 2,5 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 1,2 1,2 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 1,2 1,2 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 1,2 1,2 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 1,2 1,2 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 1,2 1,2 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 1,2 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 1,2 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 1,2 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 1,2 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 1,2 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 1,2 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 1,2 UGG 78-11-5 PEIN Pentaerythritol tetranitrate 1,1 1,2 UGG 78-11-5 PENTAERYTHOROCETHANIT			75-25-2	Bromoform	LŢ	ш	990			
75-34-3 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-69-4			75-27-4	Bromodichloromethane	ב	ш	000			
75-35-4 1,1-Dichloroethylene / 1,1-  75-69-4 Trichloroethane 76-69-4 Trichloroethane 78-87-5 1,2-Dichlorophopane 78-87-5 1,2-Dichlorophopane 78-87-5 1,2-Dichlorophopane 78-87-5 1,2-Dichloroethane 78-93-3 Methyl ethyl ketone / 2-Butanone 78-90-5 1,1,2-Trichloroethane 79-00-5 1,1,1,2-Trichloroethane 79-01-6 Ethinyl trichloride / 1			75-34-3	1,1-Dichloroethane	11	ш	990			
75-69-4 Trichloroethene 75-69-4 Trichloroptopane 78-87-5 1,2-Dichloroptopane 78-87-5 1,2-Dichloroptopane 78-87-5 1,1-Dichloroptopane 78-87-5 1,1-Dichloroptopane 79-00-5 1,1,2-Trichloroethane 79-01-6 Trichloroethane / Trichloroethane / LT 5 E -3 UGG 79-01-6 Ethinyl trichloride / Trichloroethane / LT 5 E -2 UGG 79-01-6 Trichloroethane / Acetylene *  79-34-5 Tetrachloroethane / Acetylene *  Xylenes, total combined 118-96-7 2,4,6-Trinitrotoluene 121-14-2 2,4-Dinitrotoluene / alpha- 121-14-2 2,4-Dinitrotoluene / alpha- 121-14-2 2,4-Dinitrotoluene / alpha- 121-14-2 2,4-Dinitrotoluene / alpha- 121-14-2 2,4-Dinitrotoluene / alpha- 121-14-2 2,4-Dinitrotoluene / alpha- 121-14-2 2,4-Dinitrotoluene / alpha- 121-14-2 2,4-Dinitrotoluene / alpha- 121-14-2 2,4-Dinitrotoluene / Alpha- 121-14-2 2,4-Dinitrotoluene / Alpha- 121-14-2 2,4-Dinitrotoluene / Alpha- 121-14-2 2,4-Dinitrotoluene / Alpha- 121-14-2 2,4-Dinitrotoluene / Alpha- 121-14-2 2,4-Dinitrotoluene / Alpha- 121-14-2 2,4-Dinitrotoluene / Alpha- 121-14-2 2,4-Dinitrotoluene / Alpha- 121-14-2 2,4-Dinitrotoluene / Alpha- 121-14-2 2,4-Dinitrotoluene / Alpha- 121-14-2 2,6-Dinitrotoluene / Alpha- 121-14-14-14-14-14-14-14-14-14-14-14-14-14			75-35-4	1,1-Dichloroethylene / 1,1-	LT		990			
78-87-5 1,2-Dichloroptopane 1,1			i	Dichloroethene						
78-87-5 1,2-Dichloropropane 78-93-3 Methyl ethyl ketone / 2-Butanone 79-00-5 1,1,2-Trichloroethane 79-00-5 Trichloroethane / 1,1,2,2- 11,2-Trichloroethane / 1,1,2,2- 12 Ethinyl trichloride / 1,1,2,2- 12 Intrachloroethane / Actylene *  79-34-5 Intrachloroethane / Actylene *  118-96-7 Intrachloroethane / Actylene *  118-96-7			4-69-5/	Trichlorofluoromethane	Q	w	990	œ		
78-93-5 Methyl ethyl ketone / 2-Butanone LT 79-00-5 1,1,2-Trichloroethane LT 5 E -3 79-00-5 1,1,2-Trichloroethane LT 5 E -3 79-01-6 Trichloroethane / Trichloroethane / Trichloroethane / LT 5 E -3 Ethinyl trichloriae / **  79-34-5 Tetrachloroethane / 1,1,2,2- LT 2 E -2 Tetrachloroethane / Acetylene **  Xylenes, total combined LT 2 E -2 Tetrans-1,3-Dichloropropene LT 2 E -3 Trinitrotoluene / alpha- LT 2 E -3 Trinitrotoluene / alpha- LT 2-4-Dinitrotoluene / E - 1			78-87-5	1,2-Dichloropropane	1.1	ш	990			
79-01-5 1,1,2-Irichloroethane LT 5 E -3 79-01-6 Trichloroethylene /Trichloroethene / LT 5 E -3 Ethinyl trichloride /T* 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Tylenes, total combined trans-1,3-Dichloropropene 121-14-2 Z,4,6-Trinitrotoluene / alpha- 121-14-2 Z,4.6-Trinitrotoluene 121-14-2 Z,4.5-Trinitrotoluene 121-14-2 Z,4.5-Trinitrotoluene 121-14-2 Z,4.5-Trinitrotoluene 121-14-2 Z,4.5-Trinitrotoluene 121-14-2 Z,4.5-Trinitrotoluene 121-14-2 Z,4.5-Trinitrotoluene 121-14-2 Z,4.5-Triazine * 2691-41-0 Cyclotetramethylenetetranitramine   LT 251 Trinitro-1,3,5-Triazine * 2691-41-0 Cyclotetramethylenetetranitramine   LT 1.27 Tetryl / N-Methyl-N,2,4,6- Tetryl / N-Methyl-N,2,4,6- Tetryl / N-Methyl-N,2,4,6- Tetrinitrate 606-20-2 Z,6-Dinitrotoluene 78-11-5 PETN / Pentaerythritol tetranitrate / LT 2.5 78-11-5 PETN / Pentaerythritol tetranitrate / LT 2.5 72-Bis[(nitrooxy)me* LT 2.5 73-11-11-11-11-11-11-11-11-11-11-11-11-11			78-93-3	Methyl ethyl ketone / 2-Butanone	<u>.</u>	ш	บบก			
79-01-6 Trichloroethylene / Trichloroethene / LT 5 E -3 Ethinyl trichloride / T* 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Tylenes, total combined  Xylenes, total combined  LT 2 E -2  Trinitrotoluene  121-14-2  2,4,6-Trinitrotoluene / alpha- Trinitrotoluene  121-82-4  RDX / Cyclonite / Hexahydro-1,3,5- Trinitro-1,3,5-triazine *  2691-41-0  Cyclotetramethylenetetramine / LT  2691-41-0  Cyclotetramethylenetetramine / LT  255-63-0  Nitroglycerine / 1,2,3-Propanetriol  LT 2.5  2,6-Dinitrotoluene  2,2-Bis[(nitrooxy)me*  2,2-Bis[(nitrooxy)me*  2,2-Bis[(nitrooxy)me*  LT  2,505  99-08-1  3-Nitrotoluene  LT  2,5- 11  2,5- 2,-Nitrotoluene  LT  2,5- 2,-Nitrotoluene  LT  2,505			۲-00-6/	1,1,2-Trichloroethane	רו	ш	99n			
79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene / alpha- 121-14-2 2,4-Oinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-18-4 RDX / Cyclonite / Hexahydro-1,3,5- 17-11/2 2,4-Dinitrotoluene 121-18-4 RDX / Cyclonite / Hexahydro-1,3,5- 17-11/2 2,4-Dinitrotoluene 18-79-45-8 Tetryl / N-Methyl-N,2,4,6- 19-25-19-25-19-25-2-Bis[(nitrooxy)me* 11			79-01-6	Trichloroethylene /Trichloroethene /	-	ш	990			
Tarachloroethane / 1,1,2,5  Tetrachloroethane / Acetylene *  Xylenes, total combined  LT 2 E -2  Trans-1,3-Dichloropropene LT 2,6-Trinitrotoluene  121-14-2  2,4,6-Trinitrotoluene  121-18-2  2,4-Dinitrotoluene  121-18-2  2,6-Dinitrotoluene  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,2-Bis[(nitrooxy)me*  121-18-2  2,			70-36-5	Tetrachloroethans (1122	-	u	-			
xylenes, total combined trans-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-1,2-B-1 trans-			,	Tetrachloroethane / Acetvlene *	- L	u u	กอก			
trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene / alpha- 121-14-2 2,4-Dinitrotoluene 121-82-4 ROX Cyclonite / Hexahydro-1,3,5- 17				XVIenes total combined	_		5511			
118-96-7 2,4,6-Trinitrotoluene / alpha-				trans-1.3-Dichloropropene	: =		900			
121-14-2	_	W32/	118-96-7	2.4.6-Trinitrotoluene / alpha-	; <u>-</u>		991			
2,4-Dinitrotoluene RDX / Cyclonite / Hexahydro-1,3,5- LT .51 trinitro-1,3,5-triazine * Cyclotetramethylenetetranitramine LT .499 Tetryl / N-Methyl-N,2,4,6- tetranitroaniline / Nitramine / * Nitroglycerine / 1,2,3-Propanetriol LT 2.5 trinitrate 2,6-Dinitrotoluene PEIN / Pentaerythritol tetranitrate / LT 2.5 2,2-Bis[(nitroavy)me* LT 2.5 2,2-Bis[(nitroavy)me* LT 2.5 3-Nitrotoluene LT 2.55				Trinitrotoluene		i.	!			
RDX / Cyclonite / Hexahydro-1,3,5- LT .51 trinitro-1,3,5-triazine * Cyclotetramethylenetetranitramine LT .499 Tetryl / N-Methyl-N,2,4,6- tetranitroaniline / Nitramine / * Nitroglycerine / 1,2,3-Propanetriol LT 2.5 trinitrate 2,6-Dinitrotoluene PETN / Pentaerythritol tetranitrate / LT 2.5 2,2-Bis[(nitroavy)me* LT 2.5 2,2-Bis[(nitroavy)me* LT 2.5 3-Nitrotoluene LT 2.55 3-Nitrotoluene			121-14-2	2,4-Dinitrotoluene		.251	990			
trinitro-1,3,5-triazine *  Cyclotetramethylenetetranitramine LT .499 Tetryl / N-Methyl-N,2,4,6- LT 1.27 tetranitroaniline / Nitramine / * Nitroglycerine / 1,2,3-Propanetriol LT 2.5 trinitrate 2,6-Dinitrotoluene PEIN / Pentaerythritol tetranitrate / LT 2.5 2,2-Bis[(nitroaxy)me* LT 2.5 2-Nitrotoluene LT 2.5 3-Nitrotoluene LT 2.55			121-82-4	RDX / Cyclonite / Hexahydro-1.3.5-	<u> </u>	. 21	795 			
O Cyclotetramethylenetetranitramine LT .499 Tetryl / N-Methyl-N,2,4,6- LT 1.27 tetranitroaniline / Nitramine / * Nitroglycerine / 1,2,3-Propanetriol LT 2.5 trinitrate 2,6-Dinitrotoluene PEIN / Pentaerythritol tetranitrate / LT 2.5 2,2-Bis[(nitrooxy)me* LT 2.5 2,2-Bis[(nitrooxy)me* LT 2.5 3-Nitrotoluene LT 2.55				trinitro-1,3,5-triazine *	I	-	3			
Tetryl / N-Methyl-N,2,4,6-  tetranitroaniline / Nitramine / *  Nitroglycerine / 1,2,3-Propanetriol LT 2.5  trinitrate 2,6-Dinitrotoluene PETN / Pentaerythritol tetranitrate / LT 2.5 2,2-Bis[(nitrooxy)me* LT 2.5 2,2-Bis[(nitrooxy)me* LT 2.5 3-Nitrotoluene LT 2.551			2691-41-0	Cyclotetramethylenetetranitramine	11	667.	990			
tetranitroaniline / Nitramine / * Nitroglycerine / 1,2,3-Propanetriol LT 2.5 trinitrate 2,6-Dinitrotoluene PETN / Pentaerythritol tetranitrate / LT 2.5 2,2-Bis[(nitrooxy)me* LT 2.5 2,Nitrotoluene 1505 3-Nitrotoluene			479-45-8	Tetryl / N-Methyl-N,2,4,6-	LT	1.27	990			
Nitroglycerine / 1,2,3-Propanetriol LT 2.5 trinitrate 2,6-Dinitrotoluene PETN / Pentaerythritol tetranitrate / LT 2.5 2,2-Bis[(nitrooxy)me* LT .505 2-Nitrotoluene LT .505				tetranitroaniline / Nitramine / *						
trinitrate 2,6-Dinitrotoluene 2,6-Dinitrotoluene PEIN / Pentaerythritol tetranitrate / LT 2.5 2,2-Bis[(nitrooxy)me* 2-Nitrotoluene 3-Nitrotoluene LT .505			55-63-0	Nitroglycerine / 1,2,3-Propanetriol	-1	2.5	ngg			
2,6-Dinitrotoluene LT .5 PEIN / Pentaerythritol tetranitrate / LT 2.5 2,2-Bis[(nitrooxy)me* LT .505 2-Nitrotoluene LT .505 3-Nitrotoluene				trinitrate						
PEIN / Pentaerythritol tetranitrate / LT 2.5 2,2-Bis[(nitrooxy)me* 2-Nitrotoluene LT .505 3-Nitrotoluene LT .251			606-20-2	•	-	₽.	990			
2-Nitrotoluene LI .505 3-Nitrotoluene LI .251			6-11-8/		_	2.5	990			
3-Nitrotoluene LT .251			88-72-2	Z,Z=Bis[(nitrodXy)me= 2-Nitrotoluene	-	202	2			
			99-08-1	3-Nitrotoluene	בב	.251	990			

^{* -} Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data Quals	2 8 8 8								•																																			
Ftag Codes	1														<b>-</b>																							_						
Unit Meas.	1990	000	000 001	990 1100	551	990	990	990	1166	ngg	UGG	000	990	990	990	990	990	ngg	990	990	nec	990	nee	DOU	990	000	990	990	990	ngg	990	990	990	990	990	ngc	990	990	nee	950	990	990	990	
Conc.	.25	.249	. 245	12000	7,000	51.6	1560	096	7	41.3	812	22	12.5	82.9	12.7	53.6	3.5	.427	23.6	37.3	7.77	75.4	92.5	1450	12.4	1.01	17000	49000	55.2	1550	1300	*7	50.3	734	93.5	12.5	82.9	12.7	59	3.66	.427	22.8	54.1	
Meas. Bool.		1	<u>_</u>	5					LT				17	LT	Q			LT							-	ב						L				Ľ	Ľ	Ş						
Analyte Description	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel .	Potassium	Sodium	Ihallıum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	
CAS NO.	99-35-4	99-65-0	7440-22-4	7429-90-5	7439-89-6	7439-92-1	7439-95-4	2439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-0552	7440-70-2	7782-49-2	7440-22-4	7429-90-5	7439-89-6	7439-92-1	7459-95-4	7459-96-5	7459-98-7	0-20-05-7	7-60-0557	5-52-044/	1440-28-U	7440-36-0	7440-58-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	
Meth/ Matrix	LW32/		JC027	JS14/																						7007	JS14/																	
Lab Lab Anly. No.	57096		42323																							42331																		
Lab A			PC .																							ე ე																		
Sample Date	21-FEB-92		07-FEB-92																						1	100.0 07-FEB-92																		7040
Depth	100.0		37.5																						:	100.0																		•
Field Sample No.	91B222C		S091B23																																									- Analyte Description to by
Site Site Type ID	2		91823																																									* - Analyte Dec

* - Analyte Description has been truncated. See Data Dictionary

Field Sample No.

Site Site
Type 10

S091B23C

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

Data	Ouats																																									
Flag	Codes					4	×					~	:																								~					
Unit	Meas.	990	000 000	DDN	000	99N	99n	990	990 100	ກຸກຸດ	990	990	990	ngo		DBU	990	990	99N	990	990	990	000	55N	990	990	990	990	990	590		990	ววก	ภอด	ngg	990	990	nee	2	990	990	000
	Conc.	49.5	7.76	1860	12.4	.215	٦.٢	2.5	<u>}</u> :	 	. 10	33	17	17.		1.6	.17	.19	.22	.26	.17	.29	.28	.31	.97	.17	.17	.25	.17	.73		.17	7.	.27	.27	.24	1.7	.27	6	į.	.58	.17
Meas.	Bool.				<u>_</u>	•	2	<u>-</u> :	_ :	ב ב	<u>.</u> :	: <del>2</del>	: =	; <b>_</b> _		5		רַ	ב	_	ר	-1	<u>[1</u>	5	5	-	ļ	_		=		<u></u>	ב		-1	ב	2	5	<u>-</u>	i	17	ב
	Analyte Description	Copper	Vandalum Zinc	Calcium	Selenium	Mercury	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol		p-cresol / 4-cresol / 4-metnytphenol	4-Chloroaniline	Bis(2-chloroisopropy() ether	Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe*	Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzo[ghi]perylene	Indeno[1,2,3-C,D]pyrene	Benzo[b]fluoranthene / 3,4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzo[a] pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	/ K-Dimitmon2-coccol / 2-Nothul-/ K-	dinitrophenol	1,3-Dichlorobenzene	Benzo[a] anthracene
	CAS No.	7440-50-8	9-99-044/	7440-70-2	7782-49-2	7439-97-6	100-01-6	100-02-7	100-51-6	10-01-9 104-7	106-44-3	106-47-8	108-60-1	108-95-2		111-44-4	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2		206-44-0	507-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3	K2/.52.1	1-30-400	541-73-1	56-55-3
Meth/	Matrix	JS14/				JB06/	LM50/																																			
Lab	Lab Anly. No.					42323																																				
	Lab					ე ე																																				
Sample	Date	07-FEB-92			,	06-FEB-92	07-FEB-92																																			
	Depth	100.0				37.5																																				

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Field Sample No.

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

	Data s Quals	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																																											
	Flag Codes	:																								œ							~		÷	8	S	8							
	Unit Meas.	1166	3	990	990	99N	990	99n	990	990	990	990	990	UGG	000	UGG	ออก		990	DDN	990	DDN	990	nec	000	990	nec	990	UGG	990	990		99N	ออก	550	990	990	990	990	990		990	3311		
	Conc.	23	]	.2	1.1	.92	.17	8.	.32	.27	.35	.51	.17	.2	.17	.17	.28		.48	.3	.36	.26	.17	.17	.33	99.	.17	.32	.17	.24	.19		1.7	.17	.2	.132	.265	.397	щ	2.5 E -3		3.0 E -3	276-3	3	
	Meas. Bool.		i	<u>-</u> 1	<u>ا</u> د		ב	L	L	ב		רו	רו	-1	[1	-1	11		Ľ	ב	Ľ	LT	-	<u>-1</u>	5	9	Ľ	LT	-1	Ľ	-1		Q	ר	Ľ				-1	5		ב	-	i	
	Analyte Description	3-Methyl-4-chlorophenol / 4-Chloro-3-		2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	5-Nitroaniline	shenyl 6	4-Chlorophenyl phenyl ether	Unknown compound 531	Unknown compound 535	Unknown compound 631	Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	1.2-Dichloroethane		
•	CAS No.	59-50-7		606-20-2	1-49-179	02-82-0	1-7/-/9	<b>5-74-77</b>	78-59-1	85-52-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3	;	87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3	000	2-60-66						100-41-4	100-42-5		10061-01-5	107-06-2	108-10-1	
· ;	Metn/ Matrix	LM30/																																					LM33/						
-	Lab Lab Anly. No.	PC 42323																																											
		07-FEB-92																																											
	. Depth	37.5																																											

* - Analyte Description has been truncated. See Data Dictionary

Field Sample No. Depth S091B23C 37.5 0

Site Site Type ID .... BORE 91823

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

42323 LM33/ 108-10-1 M 108-88-3 108-90-7 124-48-1 126-59-2 126-59-2 126-59-2 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-5 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-3 126-60-	108-03-101-1 Methyl isobutyl ketone / 108-08-3	Meas. Bool.	Conc.	Unit Flag Meas. Codes	Data Quals
108-88-3   1sopropyl acetone / 4-Methyl-2-pen*   1   2.5 E - 3   10.6   108-88-3   Toluene   1   2.5 E - 3   10.6   108-88-3   Toluene   1   2.5 E - 3   10.6   124-48-1   Olbromorethane / Farchloroethylen*   1   2.5 E - 3   10.6   127-18-4   Tetrachloroethylene / Farchloroethylen*   1   2.5 E - 3   10.6   156-59-2   Cis-1, 2-Dichloroethylene / Cis-1, 2   1   2.5 E - 3   10.6   156-50-3   Trans-1, 2-Dichloroethylene / Cis-1, 2   1   2.5 E - 3   10.6   156-50-3   Carbon tetrachloride / Carbon tetrachloride   1   1   2.5 E - 3   10.6   156-50-3   Carbon tetrachloride   1   1   2.5 E - 3   10.6   157-64-1   Acetone   1   1   2.5 E - 3   10.6   17.43-2   Benzene   1   2.5 E - 3   10.6   17.43-2   Benzene   1   2.5 E - 3   10.6   17.43-2   Benzene   1   2.5 E - 3   10.6   17.50-3   Chloroethane   1   2.5 E - 3   10.6   17.50-4   Carbon disulfide   Chloroethane   1   3.1 E - 3   10.6   17.50-3   Chloroethane   1   3.5 E - 3   10.6   17.50-4   Acetone chloride / Dichloromethane   1   3.5 E - 3   10.6   17.50-4   Acetone chloride / Dichloromethane   1   3.5 E - 3   10.6   17.50-5   Carbon disulfide   Dichloromethane   1   3.5 E - 3   10.6   17.50-7   Carbon disulfide   Dichloromethane   1   3.5 E - 3   10.6   17.50-7   Carbon disulfide   Dichloromethane   1   3.5 E - 3   10.6   17.50-7   Carbon disulfide   Dichloromethane   1   3.5 E - 3   10.6   17.50-7   Carbon disulfide   Dichloromethane   1   3.5 E - 3   10.6   17.50-7   Carbon disulfide   Dichloroethane   1   3.5 E - 3   10.6   17.50-7   Carbon disulfide   Dichloroethane   1   2.5 E - 3   10.6   17.50-7   Carbon disulfide   Dichloroethane   1   2.5 E - 3   10.6   17.50-7   Carbon disulfide   Dichloroethane   1   2.5 E - 3   10.6   17.50-7   Carbon disulfide   Dichloroethane   1   2.5 E - 3   10.6   17.50-7   Carbon disulfide   Dichloroethane   1   2.5 E - 3   10.6   17.50-7   Carbon disulfide   Dichloroethane   1   2.5 E - 3   10.6   17.50-7   Carbon disulfide   Dichloroethane   1   2.5 E - 3   10.6   17.50-7   Carbon disulfide   Dichloroethane   1   2.5 E - 3   10	108-88-3 Isopropylacetone / 4-Methyl-2-pen* 108-98-7 Coluene 108-90-7 Chlorobenzene / Monchlorobenzene 124-48-1 Chlorobenzene / Monchlorobenzene 124-48-7 Chlorobenzene / Monchlorobenzene 124-8-7 Chlorobenzene / Perchloroethylen* 156-59-2 Cis-1,2-Dichloroethylene / Cis-1,2- Dichloroethene 156-60-5 trans-1,2-Dichloroethylene / Cis-1,2- Dichloroethene 156-60-5 trans-1,2-Dichloroethylene / trans- 1,2-Dichloroethene 26-23-5 Carbon tetrachloride 50-78-6 Methyl n-butyl ketone / 2-Hexanone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Chloroform 71-55-6 1,1,1-Trichloroethane 73-83-9 Chloroethane 75-92-2 Bromomethane 75-92-2 Bromomethane 75-92-2 Bromodichloromethane 75-92-2 Bromodichloromethane 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-16-0 Carbon disulfide 75-17-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-0 Carbon disulfide 75-18-18-18-18-18-18-18-18-18-18-18-18-18-			กชช	
108-88-3 Toluene   Munochlorobenzene   LT   2.5 E -5   UGG   124-48-1   Dibromochloromethane   LT   2.5 E -5   UGG   124-48-1   Chlorobenzene   Munochlorobenzene   LT   2.5 E -5   UGG   LT   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene   Chlorobenzene	108-88-3 Tolluene 108-90-7 Chlorobenzene / Monochlorobenzene 124-48-1 124-48-1 127-18-4 16 condibromomethane / Chlorodenylene / Chlorodibromomethane 127-18-4 16-59-2 cis-1,2-Dichloroethylene / cis-1,2-Dichloroethene / Perchloroethylene / Li-Dichloroethene / Perchloroethylene / Li-Dichloroethene / Carbon tetrachloride / Carbon tetrachloride / Chloroform / Ch-66-3 Carbon tetrachloride / Chloroform / Ch-66-3 Carbon tetrachloride / Chloroethene / Ch-66-3 Chloromethane / Ch-66-3 Chloromethane / Ch-66-3 Chloromethane / Ch-66-3 Chloromethane / Ch-67-60-3 Chloromethane / Ch-67-60-3 Chloromethane / Ch-67-60-3 Chloromethane / Ch-67-60-3 Chloromethane / Ch-67-60-3 Chloroethane / Ch-67-60-3 Chloroethane / Ch-67-60-3 Chloroethane / Ch-67-60-3 Chloroethane / Ch-67-60-3 Chloroethane / Ch-60-6 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchloroethane / Ch-69-4 Inchlor			,	
108-90-7   Chilorobenzene / Monochlorobenzene   11   2.5 E - 3   UGG     124-48-1   Dibromochloromethane   11   5.7 E - 2   UGG     127-18-4   Tetrachlorocethylene / cis-1,2-     127-18-4   Tetrachlorocethylene / cis-1,2-     127-18-5-2   Cis-1,2-Dichlorocethylene / trans-   11   2.5 E - 3   UGG     12-Dichlorocethylene / trans-   11   2.5 E - 3   UGG     13-Dichlorocethylene / trans-   11   2.5 E - 3   UGG     14-Dichlorocethylene / trans-   11   2.5 E - 3   UGG     15-Dichlorocethylene / 2-Hexanone   11   1.8 E - 2   UGG     15-Dichlorocethylene / 2-Hexanone   11   2.5 E - 3   UGG     15-Dichlorocethane   11   2.5 E - 3   UGG     15-Dichlorocethane   11   2.5 E - 3   UGG     15-Dichlorocethane   11   3.1 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11   3.5 E - 3   UGG     15-Dichlorocethane   11	108-90-7 Chlorobenzene / Monochlorobenzene 124-48-1 Chlorodibromomethane / Chlorodibromomethane / Chlorodibromomethane / Intrachloroethylene / Tetrachloroethene / Perchloroethylene / Tetrachloroethene / Perchloroethylene / Tetrachloroethene / Dichloroethene / Dichloroethene / 1,2-Dichloroethene / 1,2-Dichloroethene / 1,2-Dichloroethene / 1,2-Dichloroethene / 1,2-Dichloroethene / 1,2-Dichloroethene / 1,1-Trichloroethane / 1,1-Trichloroethane / 1,1-Trichloroethane / 1,1-S5-6 / 1,1,1-Trichloroethane / 1,1-S5-6 / 1,1,1-Trichloroethane / 1,2-Dichloroethane / 1,1-Dichloroethane רב	ш	nee		
124-48-1         Dibromech loromethane / Independent of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the cont	124-48-1 Dibromochloromethane / Chlorodibromomethane / Chlorodibromomethane / Chlorodibromomethane / Chlorodibromomethane / Tetrachloroethylene / Perchloroethylen* 156-59-2 cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Cachon tetrachloride / Chloroethone / 1,2-Dichloroethane / 1,1-1-Tichloroethane / 1,1-1-Tichloroethane / 1,1-1-Tichloroethane / 1,1-1-Dichloroethane / 1,1-Dichloroethane / 1,1-Dichloroethane / 1,1-Dichloroethane / 1,1-Dichloroethane / 1,2-Dichloroethane / 1,1,2,2-Dichloroethane / 1,1,		ш	nee	
127-18-4 Iterachloroethylene / is-1.2-18-4 Iterachloroethylene / is-1.2-Dichloroethylene / is-1.	Chlorodibromomethane  127-18-4, Tetrachloroethylene / Tetrachloroethylene / Tetrachloroethene / Perchloroethylene / Tetrachloroethene / Perchloroethylene / Tetrachloroethene / Tetrachloroethene / Tetrachloroethene / Tetrachloroethene / Tetrachloroethene / Tetrachloroethene / Tetrachloroethene / Tetrachloroethene / Tetrachloroethene / Tetrachloroethene / Tetrachloroethene / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichlorophone / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichlorophone / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Tetrachloroethane / Acetylene / Te		ш	nee	
127-18-4 Tetrachloroethylene / 127-18-4 Tetrachloroethylene / 156-59-2 Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-1,2-Dichloroethylene / Cis-	127-18-4 Tetrachloroethylene / Tetrachloroethylene / Tetrachloroethene / Perchloroethylen*   Tetrachloroethene / Perchloroethylene / Tetrachloroethene   Tetrachloroethene / Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroethene   Tetrachloroet				
156-59-2	156-59-2 cis-1,2-Dichloroethene / Perchloroethylen* 156-60-5 bichloroethene / cis-1,2- Dichloroethene / cis-1,2- Dichloroethene / cis-1,2- 1,2-Dichloroethene / carbon tetrachloride 591-78-6 Garbon tetrachloride 591-78-6 Methyl n-butyl ketone / 2-Hexanone 67-64-1 Acetone 67-64-1 Acetone 67-64-3 Chloroethene 71-43-2 Benzene 71-55-6 1,1,1-Trichloroethane 71-55-6 1,1,1-Trichloroethane 71-55-6 1,1,1-Trichloroethane 75-00-3 Chloromethane 75-00-3 Chloromethane 75-00-4 Vinyl chloride / Chloroethene 75-10-4 Vinyl chloride / Chloroethene 75-10-4 Vinyl chloroethane 75-27-4 Bromodichloromethane 75-27-4 Bromodichloromethane 75-27-4 Bromodichloroethane 75-27-4 Bromodichloroethane 75-35-4 1,1-Dichloroethane 75-55-7 Tetrachloroethane 79-01-6 Trichloroethane / 1,1,2,2- Tetrachloroethane / 1		.5 E	nee	
156-59-2   cis-1,2-Dichloroethylene   cis-1,2-	156-59-2 cis-1,2-Dichloroethylene / cis-1,2- Dichloroethene 156-60-5 trans-1,2-Dichloroethylene / trans- 1,2-Dichloroethene 56-23-5 Carbon tetrachloride 591-78-6 Methyl n-butyl ketone / 2-Hexanone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-60-3 Chloroethane 67-60-3 Chloroethane 67-60-4 Vinyl chloride / Chloroethene 67-60-4 Vinyl chloroethane 67-65-4 1,1-Dichloroethane 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-64-1 Acetone 67-	erchloroethylen*			
156-60-5 trans-1,2-Dichloroethene / trans-	Dichloroethene 156-60-5 trans-1,2-Dichloroethylene / trans- 1,2-Dichloroethene 56-23-5 carbon tetrachloride 67-64-1 Acetone 67-64-1 Acetone 67-66-3 Chloroform 71-43-2 Benzene 71-55-6 71-57-6 1,1,1-Trichloroethane 72-00-3 Chloromethane 75-00-3 Chloromethane 75-00-3 Vinyl chloride / Dichloromethane 75-00-3 Vinyl chloride / Dichloromethane 75-00-3 Vinyl chloride / Dichloromethane 75-15-0 Carbon disulfide 75-25-2 Bromnoform 8 romodichloroethane 75-54-3 1,1-Dichloroethane 75-54-3 1,1-Dichloroethane 75-56-4 1,1-Dichloroethane 75-69-4 1,1-Dichloroethane 75-69-4 1,1-Dichloroethane 75-69-4 1,1-Dichloroethane 76-69-7 1,1,2-Trichloroethane 79-00-5 1,1,2-Trichloroethane 79-01-6 Ethinyl trichloride / I* 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetr		2 2	nee	
156-60-5         trans-1,2-Dichloroethylene / trans-         LT         2.5 E -3         UGG           56-23-5         Carbon tetracethene         LT         3.1 E -3         UGG           56-23-5         Carbon tetracethene         LT         3.1 E -3         UGG           591-78-6         Methyl n-butyl ketone / 2-Hexanone         LT         4.5 E -2         UGG           67-64-1         Acetone         LT         2.5 E -3         UGG           67-64-3         Chloroform         LT         2.5 E -3         UGG           71-43-2         Benzene         LT         2.5 E -3         UGG           74-32-3         Chloromethane         LT         2.5 E -3         UGG           74-83-9         Bromonichloride / Chloroethene         LT         3.0 E -3         UGG           75-00-3         Chloroethane         LT         3.0 E -3         UGG           75-01-4         Vinyl chloride / Chloroethane         LT         3.0 E -3         UGG           75-15-0         Bromodichloromethane         LT         3.2 E -3         UGG           75-15-1         Bromodichloromethane         LT         3.2 E -3         UGG           75-34-3         1,-1-0-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	156-60-5 trans-1,2-Dichloroethylene / trans- 1,2-Dichloroethene 56-23-5 Carbon tetrachloride 57-64-1 Acetone 67-64-3 Acetone 67-64-3 Chloroform 71-43-2 Benzene 71-55-6 1,1,1-Trichloroethane 74-83-9 Chloroethane 74-83-9 Chloroethane 75-00-3 Chloroethane 75-01-4 Vinyl chloride / Chloroethane 75-01-4 Vinyl chloride / Dichloromethane 75-07-5 Bromoform 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-25-2 Bromodichloromethane 75-34-3 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-59-4 Trichloroethane 75-69-4 Trichloroethane 76-69-4 Trichloroethane 76-69-4 Trichloroethane 77-69-4 Trichloroethane 78-87-5 Methyl ethyl ketone / 1,1-2 79-00-5 Trichloroethane / 1,1,2,2- 79-16- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 trinitrotoluene 121-82-4 trinitrotoluene 121-82-4 trinitro-1,3,5-triazine *				
1,2-Dichloroethene 1,2-Dichloroethene 25-23-5  Garbon tetrachloride 67-64-1  Acetone 67-64-1  Acetone 67-64-3  Chloroform 11-43-2  Bromomethane 11-55-6  1,1-1-Trichloroethene 11-55-6  1,1-1-Trichloroethene 11-55-6  1,1-1-Trichloroethene 11-55-6  1,1-1-Trichloroethene 11-55-6  1,1-1-Trichloroethene 11-5-6  12-5-1-3  13-6-1-3  14-6-1-3  15-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3  16-6-1-3	1,2-Dichloroethene 56-23-5 Carbon tetrachloride 591-78-6 Methyl n-butyl ketone / 2-Hexanone 67-64-1 Acetone 67-66-3 Chloroform 71-43-2 1,1,1-Trichloroethane 71-53-9 Chloromethane 75-00-3 Chloromethane 75-00-3 Chloroethane 75-00-3 Chloroethane 75-01-4 Vinyl chloride / Chloroethane 75-01-4 Vinyl chloride / Dichloromethane 75-01-4 Vinyl chloroethane 75-15-0 Bromodichloroethane 75-25-2 Bromodichloroethane 75-34-3 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-35-4 Trichloroethane 76-34-5 Trichloroethane 79-00-5 Trichloroethane / 1,1,2,2- Etrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,3- Trinitrotoluene 121-14-2 S,4,6-Trinitrotoluene 121-14-2 S,4-Dinitrotoluene 121-14-2 S,4-Dinitrotoluene 121-14-3 Trinitrotoluene		ш	nge	
56-23-5         Carbon tetrachloride         LT         3.1 E -3         UGG           67-64-1         Acetone         LT         1.8 E -2         UGG           67-64-3         Acetone         LT         2.6 E -3         UGG           67-64-1         Acetone         LT         2.6 E -3         UGG           67-66-3         Chloroperane         LT         2.5 E -3         UGG           74-83-9         Bromomethane         LT         2.5 E -3         UGG           74-87-3         Chloropethane         LT         3.5 E -2         UGG           75-00-3         Chloropethane         LT         3.8 E -3         UGG           75-01-4         Vinyl chloride / Dichloromethane         LT         3.8 E -3         UGG           75-01-2         Wethylene chloride / Dichloromethane         LT         3.8 E -3         UGG           75-03-2         Carbon disulfide         LT         2.5 E -3         UGG           75-15-0         Carbon disulfide         LT         2.5 E -3         UGG           75-25-2         Bromodichloromethane         LT         2.5 E -3         UGG           75-35-4         1,1-Dichloroethane         LT         2.5 E -3         UGG	56-23-5 Carbon tetrachloride 591-78-6 Methyl n-butyl ketone / 2-Hexanone 67-64-1 Acetone 67-66-3 Chloroform 71-43-2 Benzene 71-55-6 1,1,1-Trichloroethane 71-55-6 1,000 Chloroethane 72-00-3 Chloromethane 75-00-3 Chloroethane 75-01-4 Vinyl chloride / Chloroethane 75-01-4 Vinyl chloride / Dichloromethane 75-07-2 Carbon disulfide 75-15-0 Carbon disulfide 75-25-2 Bromodichloroethane 75-27-4 Bromodichloroethane 75-34-3 1,1-Dichloroethane 75-35-4 Dichloroethane 75-35-4 Trichloroethane 75-35-4 Trichloroethane 75-35-4 Trichloroethane 75-35-4 Trichloroethane / 1,1-Chloroethane 75-35-4 Trichloroethane / 1,1,2,2-Tetrachloroethane				
991-78-6 Methyl n-butyl ketone / 2-Hexanone LT 1.8 E -2 UGG 67-66-3 Chloroform LT 2-6 E -3 UGG 77-63-2 Benzene LT 2-6 E -3 UGG 77-63-2 Benzene LT 2-5 E -3 UGG 74-83-9 Benzene LT 2-5 E -3 UGG 74-83-9 Benzene LT 2-5 E -3 UGG 74-87-3 Chloromethane LT 3.5 E -2 UGG 75-00-3 Chloromethane LT 3.5 E -2 UGG 75-00-4 Vinyl chloride / Chloromethane LT 3.5 E -2 UGG 75-00-4 Vinyl chloride / Dichloromethane LT 3.5 E -3 UGG 75-00-4 Vinyl chloride / Dichloromethane LT 2-5 E -3 UGG 75-00-4 Vinyl chloride / Dichloromethane LT 2.5 E -3 UGG 75-35-4 1,1-Dichloroethane LT 2.5 E -3 UGG 75-35-4 1,1-Dichloroethane LT 2.5 E -3 UGG 75-35-4 1,1-Dichloroethane LT 2.5 E -3 UGG 75-35-4 1,1-Dichloroethane LT 2-5 E -3 UGG 75-35-4 1,1-Dichloroethane LT 2-5 E -3 UGG 75-35-4 1,1-Dichloroethane LT 2-5 E -3 UGG 75-35-4 1,1-Dichloroethane LT 2-5 E -3 UGG 75-30-6 LT 1.2-Dichloroethane LT 2-5 E -3 UGG 75-30-6 LT 1.2-Dichloroethane LT 2-5 E -3 UGG 75-00-5 LT 1.2-Dichloroethane LT 2-5 E -3 UGG 75-00-5 LT 1.2-Dichloroethane LT 2-5 E -3 UGG 75-00-5 LT 1.1-Dichloroethane LT 2-5 E -3 UGG 118-96-7 LT 1.1-1-2 LT 1.1-2 LT 2-2 E -3 UGG 118-96-7 LT 1.1-1-2 LT 2-2 LT 1.1-1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-2 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1.1-3 LT 1	Methyl n-butyl ketone / 2-Hexanone 67-64-1 67-64-1 Acetone 67-64-1 Chloroform 71-53-6 1,1,1-Trichloroethane 74-87-3 Chloroethane 75-00-3 Chloroethane 75-00-3 Chloroethane 75-09-2 Carbon disulfide 75-15-0 Bromodichloromethane 75-27-4 Bromodichloroethane 75-27-4 Bromodichloroethane 75-35-4 1,1-Dichloroethane 75-35-4 1,2-Dichloroethane 76-35-4 1,2-Dichloroethane 76-35-4 1,1-Dichloroethane 76-35-4 1,1-Dichloroethane 76-35-4 1,1-Dichloroethane 76-35-4 1,1-Dichloroethane 77-35-4 1,1-Dichloroethane 78-93-3 Methyl ethyl ketone / 1,1,2,2- Ethinyl trichloroethane / 1,1,2,2- Ethinyl trichloroethane / 1,1,2,2- Intrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 12-14-2 2,4-Dinitrotoluene 121-14-2 121-14-2 121-82-4 121-82-4 121-82-4 12-13,5-triazine *	<del>-</del> -1	ш	nge	
77-45-7 Gretone Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloro	Acetone 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-64-1 67-67-1 67-60-2 67-60-3 67-60-3 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-4 67-60-		ıu	991	
0.7-64-1 Acetone 0.7-64-1 Acetone 0.7-64-1 Acetone 0.7-64-2 Chloroform 1.43-2 Benzene 1.1,1-Trichloroethane 1.1 2.5 E -3 UGG 1.43-9 Bromomethane 1.1 2.5 E -3 UGG 1.4-87-3 Chloromethane 1.1 3.5 E -2 UGG 1.4-87-3 Chloromethane 1.1 3.5 E -2 UGG 1.2-00-3 Chloromethane 1.1 3.5 E -2 UGG 1.2-00-3 Chloromethane 1.1 3.6 E -3 UGG 1.2-00-3 Chloromethane 1.1 3.6 E -3 UGG 1.2-15-0 Carbon disulfide 1.1 1.4 E -2 UGG 1.2-15-1 Bromodichloromethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-0ichloroethane 1.1 2.5 E -3 UGG 1.1-14-2 Ictrachloroethane -64-1 Acetone 67-66-3 Chloroform 71-43-2 1,1,1-Trichloroethane 71-55-6 1,1,1-Trichloroethane 75-00-3 Chloromethane 75-00-3 Chloroethane 75-00-3 Vinyl chloride / Chloroethane 75-00-2 Methylene chloride / Dichloromethane 75-15-0 Bromodichloromethane 75-27-4 Bromodichloroethane 75-27-4 Bromodichloroethane 75-34-3 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-35-4 1,2-Dichloroethane 75-35-4 1,2-Dichloroethane 76-37-3 Methyl etone / 2-Butanone 78-93-3 Methyl etone / 1,1- 79-34-5 Trichloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-182-4 RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *		J L	200		
67-66-3 Chloroform 71-43-2 Benzene 71-43-2 Benzene 71-43-2 Bromomethane 71-55-6 74-83-9 Bromomethane 74-87-3 Chloroethane 75-00-3 Chloroethane 75-00-3 Chloroethane 75-00-4 Vinyl chloride / Chloroethane 75-00-5 Chloroethane 75-00-5 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-25-2 Bromodichloroethane 75-34-3 1,1-Dichloroethane 75-34-3 1,1-Dichloroethane 75-35-4 Trichloroethane 75-35-4 Trichloroethane 75-35-4 Trichloroethane 75-35-4 Trichloroethane 75-35-4 Trichloroethane 75-35-4 Trichloroethane 75-35-5 Terrachloroethane 77-00-5 Trichloroethane 77-00-5 Trichloroethane 77-00-5 Trichloroethane 77-00-6 Trichloroethane 77-00-6 Trichloroethane 77-00-6 Trichloroethane 77-00-6 Trichloroethane 77-00-6 Trichloroethane 77-00-6 Trichloroethane 77-00-7 Trichloroethane 77-00-6 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7 Trichloroethane 77-00-7	67-66-3 Chloroform 71-43-2 Benzene 71-55-6 11,1-Trichloroethane 74-87-3 Chloroethane 74-87-3 Chloroethane 75-00-3 Chloroethane 75-00-4 Vinyl chloride / Chloroethene 75-01-4 Vinyl chloride / Chloroethane 75-07-2 Carbon disulfide 75-25-2 Bromodichloromethane 75-27-4 Bromodichloroethane 75-35-4 1,1-Dichloroethylene / 1,1- 0ichloroethane 75-35-4 1,1-Dichloroethylene / 1,1- 0ichloroethane 75-35-4 1,2-Dichloroethane 75-35-4 1,2-Dichloroethane 75-35-4 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 76-33-5 Nethyl ketone / 2-Butanone 79-00-5 1richloroethane / 1,1,2,2- 1richloroethane / 1,1,2,2- 1richloroethane / 1,1,2,2- 1richloroethane / 1,1,2,2- 1etrachloroethane / 1,1,2,3- 1etrachloroethane / 1,1,2,3- 1etrachloroethane / 1,1,2,3- 1etrachloroethane / 1,1,2,3- 1etrachloroethane / 1,1,2,3- 1etrachloroethane / 1,1,2,3- 1etrachloroethane / 1,1,2,3- 1etrachloroethane / 1,1,2,3- 1etrachloroethane / 1,1,2,3- 1etrachloroethane / 1,1,2,3- 1etrachloroethane / 1,1,2,3- 1etrachloroethane / 1,1,2,3- 1etrachloroethane / 1,1,2,3- 1etrachloroethane / 1,1,3,5- 1etrachloroethane / 1,1,3,5- 1etrachloroethane / 1,1,3,5-		ч	Usu	
77-43-2 Benzene 77-43-2 17-17-5-6 17-17-ichloroethane 17-55-6 17-17-ichloroethane 17-55-6 17-17-ichloroethane 17-55-7-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 17-57-00-3 1	71-43-2  8 Enzene 71-55-6  1,1,1-Trichloroethane 74-83-9  8 Comomethane 74-87-3  Chloroethane 75-00-3  Vinyl chloride / Chloroethene 75-09-2  Nethylene chloride / Dichloromethane 75-15-0  Carbon disulfide 75-27-4  8 Fromodichloromethane 75-34-3  1,1-Dichloroethane 75-35-4  1,1-Dichloroethane 75-69-4  Trichloroethane 75-69-4  Trichloroethane 76-87-5  Nethyl ethyl ketone / 1,1- Dichloroethane 76-87-5  Trichloroethane 77-69-4  Trichloroethane 78-87-5  Trichloroethane / 1,1- Ethinyl trichloride / T* 79-01-6  Ethinyl trichloride / T* 79-34-5  Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,5-Dichloropropene 118-96-7  Z,4,6-Trinitrotoluene 121-14-2  Z,4-Dinitrotoluene 121-82-4  RX/ Cyclonite / Hexahydro-1,3,5-  trinitro-1,3,5-triazine *	LT	ш	990	
71-55-6 1,1,1-Trichloroethane	71-55-6 74-83-9 74-83-9 Rromomethane 74-87-3 Chloromethane 75-00-3 Chloroethane 75-01-4 Vinyl chloride / Chloroethene 75-09-2 Methylene chloride / Dichloromethane 75-15-0 Carbon disulfide 75-15-0 Bromoform 75-25-4 Bromodichloromethane 75-34-3 1,1-Dichloroethane 75-35-4 Trichloroethene 75-35-4 Trichloroethene 75-35-4 Trichloroethene 75-35-4 Trichloroethene 75-35-4 Trichloroethene 76-37-3 Methyl ethyl ketone / 2-Butanone 79-00-5 Trichloroethane / 1,1,2,2- Ethinyl trichloride / T* 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined Trans-1,3-Dichloropropane 118-96-7 Trinitrotoluene 121-14-2 Z,4,6-Trinitrotoluene 121-182-4 RDX / Cyclonite / Hexahydro-1,3,5- Trinitro-1,3,5-triazine *		ш	nec	
74-83-9 Bromomethane 74-87-3 Chloromethane 74-87-3 Chloromethane 75-00-3 Chloromethane 75-00-4 Vinyl cheloide / Chloroethene 75-01-4 Vinylene chloride / Chloroethene 75-09-2 Methylene chloride / Dichloromethane 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-27-4 Bromodichloromethane 75-27-4 Bromodichloromethane 75-27-4 1,1-Dichloroethene 75-34-3 1,1-Dichloroethene 75-35-4 1,1-Dichloromethane 75-36-4 1,1-Dichloroethene 75-36-4 1,1-Dichloromethane 75-36-4 1,1-Dichloromethane 75-36-4 1,1-Dichlorophane 75-69-4 1,1-Dichlorophane 75-69-4 1,1-Dichlorophane 75-69-4 1,1-Dichlorophane 75-69-4 1,1-Dichlorophane 75-69-4 1,1-Dichlorophane 75-69-4 1,1-Dichlorophane 75-69-4 1,1-Dichlorophane 75-69-4 1,1-Dichlorophane 75-69-4 1,1-Dichlorophane 75-69-4 1,1-Dichlorophane 75-69-4 1,1-Dichlorophane 75-69-4 1,1-Dichlorophane 75-69-4 1,1-Dichlorophane 75-69-4 1,1-Dichlorophane 75-69-7 1,1-Dichlorophane 75-69-7 1,1-Dichlorophane 75-69-7 1,1-Dichlorophane 75-69-7 1,1-Dichlorophane 75-69-7 1,1-Dichlorophane 75-69-7 1,1-Dichlorophane 75-69-7 1,1-Dichlorophane 75-69-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dichlorophane 75-6-7 1,1-Dic	74-83-9 Bromomethane 74-87-3 Chloromethane 75-00-3 Chloroethane 75-00-4 Vinyl chloride / Chloroethene 75-00-2 Methylene chloride / Dichloromethane 75-15-0 Carbon disulfide 75-27-4 Bromodichloroethane 75-34-3 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-35-4 1,2-Dichloroethane 75-35-4 1,2-Dichloroethane 76-87-5 Trichloroethane 78-93-3 Methyl ethone / 2-Butanone 78-93-3 Methyl etholoroethane 79-00-5 1,1,2-Trichloroethane 79-00-5 1,1,2-Trichloroethane 79-01-6 Ethinyl trichloride / T* 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-182-4 RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *		ш	000	
74-87-3 Chloromethane 75-00-3 Chloromethane 75-00-3 Chloromethane 75-00-3 Chloromethane 75-01-4 Vinyl chloride / Chloroethane 75-01-4 Vinyl chloride / Chloroethane 75-01-5 Carbon disulfide 75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-25-2 Bromoform 75-27-4 Bromodichloromethane 75-27-4 Bromodichloroethane 75-34-3 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-36-4 1,1-Dichloroethane 75-39-4 Trichloropropane 75-39-4 Trichloroethane 76-33-3 Methyl ethyl ketone / 2-Butanone 77-39-3 Methyl ethyl ketone / 2-Butanone 77-39-3 Methyl ethyl ketone / 1,1,2,2 79-01-6 Trichloroethane / 1,1,2,2 79-01-6 Trichloroethane / 1,1,2,2 79-34-5 Tetrachloroethane 7-3 Chloromethane 75-00-3 Chloroethane 75-01-4 Vinyl chloride / Chloroethene 75-09-2 Methylene chloride / Dichloromethane 75-15-0 Carbon disulfide 75-25-2 Bromodichloromethane 75-37-4 Store 1,1-Dichloroethane 75-35-4 Dichloroethane 75-35-4 Tichloroethane 75-35-4 Tichloroethane 75-35-4 Tichloroethane 76-35-5 Methyl ketone / 1,1- 78-87-5 Methyl ethyl ketone / 2-Butanone 78-93-3 Methyl ethyl ketone / 2-Butanone 78-00-5 Trichloroethane / 1,1,2,2- 79-01-6 Trichloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined 118-96-7 Z,4,6-Trinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-82-4 ROX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *		ш	990		
75-00-3 Chloroethane LT 3.0 E - 3 UGG 75-01-4 Vinyl chloride / Chloroethane LT 3.8 E - 3 UGG 75-15-0 Carbon disulfide   LT 3.8 E - 3 UGG 75-15-0 Carbon disulfide   LT 3.8 E - 3 UGG 75-15-1 Carbon disulfide   LT 2.5 E - 3 UGG 75-27-4 Bromodichloromethane LT 2.5 E - 3 UGG 75-34-3 1,1-Dichloroethane LT 2.5 E - 3 UGG 75-35-4 1,1-Dichloroethane LT 2.5 E - 3 UGG 75-35-4 1,1-Dichloroethane LT 2.5 E - 3 UGG 75-35-4 1,1-Dichloroethane LT 2.5 E - 3 UGG 75-69-4 Trichloroethane LT 2.5 E - 3 UGG 78-93-3 Methyl ethyl ketone / 2-Butanone LT 2.5 E - 3 UGG 78-93-3 Methyl ethyl ketone / 2-Butanone LT 2.5 E - 3 UGG 79-01-6 Trichloroethane / 1,1,2,2- Ethinyl trichloroethane / 1,1,2,2- Etrachloroethane / Acetylene * LT 7.5 E - 3 UGG 79-01-6 Trichloroethane / Acetylene * LT 7.5 E - 3 UGG 79-01-6 Trichloroethane / Acetylene * LT 7.5 E - 3 UGG 79-01-6 Trichloroethane / Acetylene * LT 7.5 E - 3 UGG 79-01-6 Trichloroethane / Acetylene * LT 7.5 E - 3 UGG 79-01-6 Trinitrotoluene / alpha- LT 7.5 E - 3 UGG 79-11-14-2 2,4-Dinitrotoluene / alpha- LT 7.5 E - 3 UGG 70-12-82-4 RDX / Cyclonite / Hexahydro-1,3,5- LT 7.5 L	75-00-3 Chloroethane 75-00-4 Vinyl chloride / Chloroethane 75-09-2 Methylene chloride / Dichloromethane 75-15-0 Carbon disulfide 75-25-2 Bromodichloromethane 75-27-4 Bromodichloromethane 75-34-3 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-69-4 Trichloroethane 75-69-4 Trichloropthone 78-87-5 Methyl ethyl ketone / 1,1- 78-93-3 Methyl ethyl ketone / 2-Butanone 79-00-5 Trichloroethane / 1,1,2,2- Ethinyl trichloride / T* 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,5-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene / alpha- Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 RNX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *	; <u>-</u>	ı	991	
75-01-4 Vinyl Cathoride / Chloroethene LT 3.8 E -3 UGG 75-02-2 Methylene chloride / Dichloromethane LT 1.4 E -2 UGG 75-15-0 Carbon disulfide 75-25-2 Brommodichloromethane LT 1.4 E -2 UGG 75-27-4 Brommodichloromethane LT 2.5 E -3 UGG 75-35-4 1,-Dichloroethene LT 2.5 E -3 UGG 75-35-4 1,-Dichloroethene LT 2.5 E -3 UGG 75-69-4 Trichloroethene ND 5.0 E -3 UGG 75-69-4 Trichloroethene LT 2.5 E -3 UGG 78-87-5 H,2-Dichloroethene LT 5.1 E -3 UGG 78-93-3 Methyl ketone / 2-Butanone LT 5.1 E -3 UGG 78-93-3 Methyl trichloroethene / LT 2.5 E -3 UGG 79-00-5 1,1,2-Dichloroethene / 1,1,2,2- LT 1.2 E -2 UGG 79-01-6 Ethinyl trichloride / T* 79-34-5 Tetrachloroethane / 1,1,2,2- LT 7.5 E -3 UGG 79-34-5 Tetrachloroethane / 1,1,2,2- LT 7.5 E -3 UGG 118-96-7 2,4,6-Trinitrotoluene / alpha- LT 2.5 E -3 UGG 121-14-2 2,4-Dinitrotoluene / alpha- LT 2.5 E -3 UGG 121-18-4 RDX / Cyclonite / Hexahydro-1,3,5- LT .51 UGG	75-09-2 Vinyl chloride / Chloroethene 75-09-2 Methylene chloride / Dichloromethane 75-09-2 Carbon disulfide Carbon disulfide Sp. 25-2 Bromodichloromethane 75-27-4 Bromodichloromethane 75-37-4 I,1-Dichloroethane 75-35-4 I,1-Dichloroethane 75-35-4 I,1-Dichloroethane 75-35-4 Irichloropthane 75-69-4 Irichloropthane 78-93-3 Methyl ethyl ketone / 2-Butanone 79-00-5 I,1,2-Trichloroethane 79-00-5 Irichloroethane / 1,1,2,2-Ietrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene I18-96-7 2,4,6-Trinitrotoluene / alpha-Irinitrotoluene / alpha-Irinitrotoluene / alpha-Irinitrotoluene / alpha-Irinitrotoluene / alpha-Irinitro-1,3,5-triazine *	- <del> -</del>	ı u	550	
75-09-2 Methylene Chloride / Dichloromethane LT 6.2 E -3 UGG 75-09-2 Carbon disulfide LT 1.4 E -2 UGG 75-15-0 Carbon disulfide LT 2.5 E -3 UGG 75-15-2 Bromoform LT 2.5 E -3 UGG 75-27-4 Bromodichloromethane LT 2.5 E -3 UGG 75-37-4 1,1-Dichloroethane LT 2.5 E -3 UGG 75-35-4 1,1-Dichloropropane LT 2.5 E -3 UGG 75-35-4 Trichloropropane LT 2.5 E -3 UGG 78-87-5 1,2-Dichloropropane LT 2.5 E -3 UGG 78-93-3 Methyl ethyl ketone / 2-Butanone LT 2.5 E -3 UGG 78-93-5 Methyl ethyl ketone / 1,1,2-Trichloroethane LT 2.5 E -3 UGG 79-00-5 1,1,2-Trichloroethane / 1,1,2,2- 79-01-6 Trichloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * LT 2.5 E -3 UGG 79-34-5 Tetrachloroethane / Acetylene * LT 2.5 E -3 UGG 79-34-5 Tetrachloroethane / Acetylene * LT 2.5 E -3 UGG 79-34-5 Tetrachloropropene LT 2.5 E -3 UGG 79-34-5 Trinitrotoluene / alpha- LT 2.5 E -3 UGG 71-14-2 2,4-Dinitrotoluene / alpha- LT 2.5 E -3 UGG 71-14-2 2,4-Dinitrotoluene / 12,3,5- LT 2.51 UGG	75-01-4 Vinyl chloride / Unioroethene / 25-09-2 Methylene chloride / Dichloromethane / 75-15-0 Carbon disulfide / Dichloromethane / 75-25-4 Bromodichloromethane / 75-35-4 1,1-Dichloroethene / 75-35-4 1,1-Dichloroethene / 75-35-4		1 1	25.	
75-27-2 Metrytene chloride / Dichloromethane Li 1,4 E - 2 UGG 75-25-2 Bromodichloromethane Li 2.5 E - 3 UGG 75-27-4 Bromodichloromethane Li 2.5 E - 3 UGG 75-35-4 1,1-Dichloroethane Li 2.5 E - 3 UGG 75-35-4 1,1-Dichloroethane Li 2.5 E - 3 UGG 75-35-4 1,1-Dichloroethane Li 2.5 E - 3 UGG 75-35-4 1,1-Dichloroethane Li 2.5 E - 3 UGG 78-93-3 Methyl ketone / 2-Butanone Li 2.5 E - 3 UGG 78-93-3 Methyl ketone / 2-Butanone Li 2.5 E - 3 UGG 79-00-5 1,1,2-Trichloroethane / 1-1 2.5 E - 3 UGG 79-00-5 1,1,2-Trichloroethane / 1,1,2,2-1 Li 2.5 E - 3 UGG 79-01-6 Ethinyl trichloride / 1*  79-34-5 Tetrachloroethane / Acetylene * Li 2.5 E - 3 UGG 118-96-7 2,4,6-Trinitrotoluene / alpha- Li 2.5 E - 3 UGG 121-14-2 2,4-Dinitrotoluene / alpha- Li 2.5 E - 3 UGG 121-14-2 2,4-Dinitrotoluene / alpha- Li 2.5 Li 2.5 Li 2.5 Li 2.5 Li 2.5 Li 2.5 Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetylene / Li 2.5-Li 2.4-Dinitrotoluene / Acetyl	75-15-0 Carbon disulfide 75-15-0 Carbon disulfide 75-27-4 Bromodichloromethane 75-27-4 Bromodichloroethane 75-34-3 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-35-4 1,1-Dichloroethene 75-35-4 1,2-Dichloropropane 78-93-3 Methyl etyone / 2-Butanone 78-93-3 Methyl ethor / 1,1- 79-00-5 1,1,2-Trichloroethane / 1,1,2,2- Trichloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *		<u>.</u>	551	
75-25-2  Bromodichloroethane 75-27-4  Bromodichloroethane 75-34-3  1,1-Dichloroethane 75-35-4  1,1-Dichloroethane 75-69-4  Trichloroethane 75-69-4  Trichloroethane 75-69-4  Trichloroethane 79-00-5  1,1,2-Trichloroethane 79-00-5  1,1,2-Trichloroethane 79-00-5  1,1,2-Trichloroethane 79-01-6  Ethinyl trichloroethane 79-34-5  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroethane / 1,1,2,2-  Tetrachloroe	75-15-0 Carbon disulfide 75-27-4 Bromodichloromethane 75-37-4 1,1-Dichloroethane 75-35-4 1,1-Dichloroethylene / 1,1- Dichloroethene 75-69-4 1,2-Dichloropropane 78-87-5 Methyl ethyl ketone / 2-Butanone 78-93-3 Methyl ethyl ketone / 2-Butanone 78-00-5 1/1,2-Trichloroethane 79-00-5 Trichloroethylene / 17- Fetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene / alpha- Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 ROX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *		י ע	000	
75-25-2  Bromodich Coromethane 75-27-4  Bromodich Coromethane 75-34-3  1,1-Dich Coroethane 75-55-4  1,1-Dich Coroethone 75-69-4  Trich Coroethone 78-87-5  1,2-Dich Coroethane 78-87-5  1,2-Dich Coroethane 79-00-5  1,1,2-Trich Coroethane 79-00-5  1,1,2-Trich Coroethane 79-00-5  Trich Coroethane 79-01-6  Ethiny trich Coroethane 79-34-5  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetrach Coroethane / 1,1,2,2-  Tetra	75-25-2  Bromodichloromethane 75-34-3  1,1-Dichloroethane 75-35-4  1,1-Dichloroethylene / 1,1- Dichloroethylene / 1,1- Dichloroethone 75-69-4  Trichlorofluoromethane 78-87-5  Methyl ethyl ketone / 2-Butanone 78-93-3  Methyl ethyl ketone / 2-Butanone 79-00-5  1,1,2-Trichloroethane 79-01-6  Ethinyl trichloriethore 79-34-5  Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene Xylenes, total combined trans-1,3-Dichloropropene 118-96-7  2,4,6-Trinitrotoluene 121-14-2  2,4-Dinitrotoluene 121-82-4  Ethinitrotoluene 121-82-4  Ethinitro-1,3,5-triazine *		ш	990	
75-27-4 Bromodichloromethane 75-34-3 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-69-4 Trichloroethane 75-69-4 Trichloropropane 78-93-3 Methyl ethyl ketone / 2-Butanone 79-00-5 1,1,2-Trichloroethane 79-00-5 1,1,2-Trichloroethane 79-01-6 Trichloroethane / 1,1,2,2- 8-11 2.5 E -3 UGG 79-01-6 Trichloroethane / 1,1,2,2- 8-24-5 Tetrachloroethane / 1,1,2,2- 8-24-5 Tetrachloroethane / Acetylene * 8-24-6-Trinitrotoluene 121-14-2 2,4,6-Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-182-4 RDX / Cyclonite / Hexahydro-1,3,5- 11 .51 11 .25 11 .25 11 .25 11 .25 11 .25 11 .25 11 .25 11 .25 11 .25 11 .25 11 .25 11 .25 11 .25 11 .25 11 .25 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- 11 .51 11 .55 11 .55 11 .55 11 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12 .55 12	75-27-4 Bromodichloromethane 75-34-3 1,1-Dichloroethane 75-35-4 1,1-Dichloroethylene / 1,1- Dichloroethylene / 1,1- Dichloroethylene / 1,1- Dichloroethone 78-87-5 Trichloropropane 78-93-3 Methyl ethyl ketone / 2-Butanone 79-00-5 1,1,2-Trichloroethane 79-01-6 Trichloroethylene / Trichloroethene / Ethinyl trichloride / T* 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-182-4 RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *	17	ш	nee	
75-34-3 1,1-Dichloroethane 1,1-1	75-34-3 1,1-Dichloroethane 75-35-4 1,1-Dichloroethane 75-69-4 Trichloroethene 78-87-5 1,2-Dichloropane 78-93-3 Methyl ethyl ketone / 2-Butanone 79-00-5 1,1,2-Trichloroethane 79-00-5 Trichloroethylene / Trichloroethene 79-01-6 Trichloroethylene / Trichloroethene / Ethinyl trichloride / T* 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene / alpha- Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *	רו	ш	DOU	
75-35-4 1,1-Dichloroethylene / 1,1-  Dichloroethene  75-69-4 Trichloroethene  76-69-4 Trichlorofluoromethane  78-87-5 1,2-Dichloropropane  78-87-5 1,2-Dichloropropane  78-87-5 1,2-Dichloropropane  78-93-3 Methyl ethyl ketone / 2-Butanone  79-00-5 1,1,2-Trichloroethane  79-01-6 Trichloroethane  79-01-6 Trichloroethane / 1,1,2,2-  11 1.2 E -2 UGG  79-34-5 Tetrachloroethane / Acetylene *  118-96-7 2,4,6-Trinitrotoluene / alpha-  118-96-7 2,4,6-Trinitrotoluene  121-14-2 2,4-Dinitrotoluene  121-14-2 2,4-Dinitrotoluene  121-14-2 2,4-Dinitrotoluene  121-18-94 RDX / Cyclonite / Hexahydro-1,3,5-  11 .551 UGG	75-35-4 1,1-Dichloroethylene / 1,1-Dichloroethylene / 1,1-Dichloroethene 75-69-4 Trichlorofluoromethane 78-87-5 1,2-Dichloropropane 78-93-3 Methyl ethyl ketone / 2-Butanone 79-00-5 Trichloroethylene / Trichloroethene / Ethinyl trichloride / T* 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene / alpha- Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 ROX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *	17	ш	UGG	
75-69-4 Trichloroethene 75-69-4 Trichloroethene 78-87-5 1,2-Dichloropropane 78-87-5 1,2-Dichloropropane 78-93-3 Methyl ethyl ketone / 2-Butanone 79-00-5 1,1,2-Trichloroethane 79-00-5 1,1,2-Trichloroethane 79-01-6 Trichloroethylene / Trichloroethene / 1.1 E -2 UGG 79-01-6 Trichloroethane / 1,1,2,2- 11 1.2 E -2 UGG 79-34-5 Tetrachloroethane / 1,1,2,2- 11 7.5 E -3 UGG 118-96-7 2,4,6-Trinitrotoluene / alpha- 121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-18-94 RDX / Cyclonite / Hexahydro-1,3,5- 11 .51 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- 11 .51	Dichloroethene 75-69-4 Trichlorofluoromethane 78-87-5 1,2-Dichloropropane 78-93-3 Methyl ethyl ketone / 2-Butanone 79-00-5 1,1,2-Trichloroethane 79-01-6 Ethinyl trichlorie / Trichloroethane 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene / alpha- 171-14-2 2,4-Dinitrotoluene 121-82-4 RNX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *		ш	9911	
75-69-4 Trichloroftwormethane ND 5.0 E -3 UGG 78-87-5 1,2-Dichloropropane 78-87-5 1,2-Dichloropropane 78-93-3 Methyl ethyl ketone / 2-Butanone LT 5.1 E -3 UGG 79-00-5 1,1,2-Trichloroethane LT 2.5 E -3 UGG 79-01-6 Trichloroethylene / Trichloroethene / 1.1 E -2 UGG 79-03-5 Tetrachloroethane / 1,1,2,2- 79-34-5 Tetrachloroethane / 1,1,2,2- 118-96-7 Z,4,6-Trinitrotoluene / alpha- 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene 121-14-2 Z,4-Dinitrotoluene	75-69-4 Trichlorofluoromethane 78-87-5 1,2-Dichloropropane 78-93-3 Methyl ethyl ketone / 2-Butanone 79-00-5 1,1,2-Trichloroethane 79-01-6 Trichloroethylene /Trichloroethene / Ethinyl trichloride /T* 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-182-4 RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *		ı		
79-97-7   1.2. Dictoropropagation   1.1   2.5   2.3   0.66   1.2. Dictoropropagation   1.1   2.5   2.3   0.66   2.5   3.3   0.66   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3	78-73-7 78-73-7 78-75-7 78-75-7 78-75-7 79-70-5 79-70-6 79-70-6 79-70-6 79-70-6 79-70-6 79-70-7 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-5 79-34-		L		
79-97-3 Methyl tetone / 2-Butanone LT 5.7E - 3 79-00-5 1,1,2-Trichloroethane LT 2.5E - 3 79-01-6 Trichloroethane / Trichloroethane / 1.1 E - 2 Ethinyl trichloride / 1* 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * LT 7.5E - 2 Tetrachloroethane / Acetylene * LT 7.5E - 3 Trians-1,3-Dichloropropene LT 2.5E - 3 Triantrotoluene / alpha- 121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-182-4 RDX / Cyclonite / Hexahydro-1,3,5- LT .51	78-93-3 Methyl ketone / 2-Butanone 79-00-5 1,12-Trichloroethane 79-00-5 Trichloroethylene / Trichloroethene 79-01-6 Trichloroethylene / Trichloroethene / 79-34-5 Tetrachloroethane / 1,1,2,2-1 Tetrachloroethane / 1,1,2,2-1 Tetrachloroethane / 1,1,2,2-1 Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene / alpha-1 Trinitrotoluene / alpha-1 Trinitrotoluene / alpha-1 Trinitrotoluene / 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5-trinitro-1,3,5-triazine *		1 11		
78-95-5 Methyl ethyl ketone / 2-Butanone LI 5.1E - 3 79-00-5 1,1,2-Trichloroethane LT 2.5E - 3 79-01-6 Trichloroethane / 1** 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Tetrachloroethane / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene / 1,2,2- Trinitrotoluene	78-95-5 Metnyl etnyl kerone / 2-Butanone 78-95-5 1,1,2-Trichloroethane 79-00-6 Trichloroethylene /Trichloroethene / Ethinyl trichloride /T* 79-34-5 Tetrachloroethane / 1,1,2,2-		ı	000	
79-00-5 1,1,2-Trichloroethane LT 2.5 E -3 79-01-6 Trichloroethylene / Trichloroethene / 1.1 E -2 Ethinyl trichloride /T* 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * LT 1.2 E -2 Tetrachloroethane / Acetylene * LT 7.5 E -3 Xylenes, total combined LT 2.5 E -3 Trans-1,3-Dichloropropene LT 2.5 E -3 Trinitrotoluene 121-14-2 2,4,6-Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-14-2 LT .251 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- LT .51	79-00-5 1,1,2-Trichloroethane 79-01-6 Trichloroethylene /Trichloroethene / Ethinyl trichloride /T* 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene / alpha- Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *	Z-Butanone	ш	กุกก	
79-01-6 Trichloroethylene /Trichloroethene / 1.1 E -2 Ethinyl trichloride /T*  79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Interachloroethane / Acetylene *  Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene / alpha- Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-182-4 RDX / Cyclonite / Hexahydro-1,3,5- LT .51	79-01-6 Trichloroethylene /Trichloroethene / Ethinyl trichloride /T* 79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *		ш	nee	
Ethinyl trichloride /T*  79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene *  Tetrachloroethane / Acetylene *  Xylenes, total combined  trans-1,3-Dichloropropene  LT 7.5 E -3  118-96-7 2,4,6-Trinitrotoluene / alpha- Trinitrotoluene  121-14-2 2,4-Dinitrotoluene  121-14-2 2,4-Dinitrotoluene  121-14-2 2,4-Dinitrotoluene  121-14-2 2,4-Dinitrotoluene  121-14-2 2,4-Dinitrotoluene	Ethinyl trichloride /T*  79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *	richloroethene /	ш	nec	
79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Tetrachloroethane / Acetylene *  Xylenes, total combined     LT 7.5 E -3  118-96-7 2,4,6-Trinitrotoluene / alpha- Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-182-4 RDX / Cyclonite / Hexahydro-1,3,5- LT .51	79-34-5 Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene / alpha- Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 ROX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *	*1/			
Tetrachloroethane / Acetylene *  Tetrachloroethane / Acetylene *  Xylenes, total combined  LT 7.5 E -3  118-96-7 2,4,6-Trinitrotoluene / alpha-  Trinitrotoluene  121-14-2 2,4-Dinitrotoluene  121-14-2 2,4-Dinitrotoluene  121-82-4 RDX / Cyclonite / Hexahydro-1,3,5-  LT51	Tetrachloroethane / Acetylene * Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene / alpha- Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *		ч	nce	
Xylenes, total combined LT 7.5 E -3 trans-1,3-Dichloropropene LT 2.5 E -3 118-96-7 2,4,6-Trinitrotoluene / alpha- Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- LT .51	Xylenes, total combined trans-1,3-Dichloropropene 118-96-7 2,4,6-Trinitrotoluene / alpha- Irinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *	*	ı		
trans-1,3-Dichloropene LT 2.5 E -3 118-96-7 2,4,6-Trinitrotoluene / alpha- LT .25 Trinitrotoluene 121-14-2 2,4-Dinitrotoluene LT .251 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- LT .51	trans-1,3-Dickloropenee 118-96-7 2,4,6-Trinitrotoluene / alpha- 121-14-2 2,4-Dinitrotoluene 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *		Ų,	9911	
118-96-7 2,4,6-Trinitrotoluene / alpha- LT .25 Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-182-4 RDX / Cyclonite / Hexahydro-1,3,5- LT .51	118-96-7 2,4,6-Trinitrotoluene / alpha- Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *			990	
121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- LT .51	121-14-2 2,4-Dinitrotoluene 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *	-equ		9911	
2,4-Dinitrotoluene RDX / Cyclonite / Hexahydro-1,3,5- LT .51	2,4-Dinitrotoluene RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *		7	200	
kDX / Cyclonite / Hexahydro-1,3,5- LT .51	<pre>2,4-Dinitrototuene RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *</pre>	-	130	2	
RDX / Cyclonite / Hexahydro-1,3,5- LT .51	<pre>RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *</pre>		167.	กร	
	trinitro-1,3,5-triazine *		.51	nee	

^{* -} Analyte Description has been truncated. See Data Dictionary

Data Quals

24-0CT-94

Site Type

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-0CT-

24-0CT-94

50	Codec		:	
<u>.</u>	Meas		10011	250
	Conc.		007	1.27
Ne se	Bool.		-	: 5
	Analyte Description		Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N.2.4.6-
	CAS No.		LW32/S 2691-41-0	479-45-8
Meth/	Matrix CAS No.		LW32/S	
Lab	Lab Anly. No.		PC 42323	
Sample	Date		07-FEB-92	
	Depth		37.5	
Field	Sample No.		S091B23C	
Site	<u>e</u>	:	91823	
٥.	۵,			

Analyte Description -0 Cyclotetramethylenetetranitramine 8 Tetryl / N-Methyl N, 2, 4, 6-	Analyte Description -0 Cyclotetramethylenetetranitramine 8 Tetryl / N-Methyl N, 2, 4, 6-	42323 LW32/S 2691-41-0 Cyclotetramethylenetetranitramine 479-45-8 Tetryl / N-Methyl-N,2,4,6-	LW32/S 2691-41-0 Cyclotetramethylenetetranitramine 479-45-8 Tetryl / N-Methyl-N,2,4,6-
0.8 2 9.92.90.5.81	0-8 2 2 9-9-2-6-1-8-1-6	42323 LW32/S 2691-41-0 42323 LW32/S 2691-41-0 479-45-8 55-63-0 606-20-2 78-11-5 88-72-2 99-08-1 99-55-4 99-55-4 99-55-4 99-55-0 100-02-7 100-02-7 100-1-6 105-67-9 106-44-5 110-44-5 110-44-5 110-44-5 110-44-5 110-44-5 110-44-5 110-44-5 110-44-5 110-47-8	07-FEB-92 PC 42323 LW32/S 2691-41-0 479-45-8 55-63-0 606-20-2 78-11-5 88-72-2 99-08-1 99-55-0 07-FEB-92 PC 42331 JB06/ 7439-97-6 100-02-7 100-02-7 106-47-8 108-60-1
2691-41-0 2691-41-0 479-45-8 55-63-0 606-20-2 78-11-5 88-72-2 99-08-1 99-55-0 100-01-6 100-01-6 106-44-5 106-44-5 106-44-5 108-60-1	LM32/S 2691-41-0 479-45-8 55-63-0 606-20-2 78-11-5 78-11-5 99-99-0 100-02-7 100-02-7 106-46-7 106-46-7 108-46-7 108-46-7 108-46-7	42323 LW32/S 42331 JB06/ LM30/	PC 42331 JB06/ LM30/
	JB06/ LM32/s LM30/	42323	PC 42323

Phenol / Carbolic acid / Phenic acid / Phenylic acid / Phe* Bis(2-chloroethoxy) methane Bis(2-ethylhexyl) phthalate Bis(2-chloroethyl) ether Di-n-octyl phthalate Hexachlorobenzene 111-44-4

1,2,4-Trichlorobenzene 2,4-Dichlorophenol 2,4-Dinitrotoluene Anthracene 111-91-1 117-81-7 117-84-0 118-74-1 120-12-7 120-83-2 121-14-2 121-14-2 121-11-3 132-64-9 191-24-2 193-39-5

Benzo[def]phenanthrene / Pyrene Benzo [ghi] perylene Dimethyl phthalate Dibenzofuran

Benzo (b) fluoranthene / 3,4-Indeno[1,2,3-C,D]pyrene Benzof Luoranthene Fluoranthene 206-44-0

4 27 27 27 こここち Benzo [k] fluoranthene Acenaph thy Lene Chrysene 207-08-9 208-96-8 218-01-9

* - Analyte Description has been truncated. See Data Dictionary

Site ID

Site Type ----BORE

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-0CT-94

4	Field		Sample	Lab	Meth/		_	Meas.		Unit	Flag	Data
	Sample No.	Depth	Date			CAS No.	Analyte Description	Boot.	Conc.	Meas.	Codes	Quals
		:		:				:	:	:	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
	S091B23C	100.0	07-FEB-92	PC 42331	LM30/	50-32-8	Benzo[a] pyrene	ב	.24	090 0		
						51-28-5	2,4-Dinitrophenol	2	1.7	nee	~	
						53-70-3	Dibenz[ah]anthracene / 1,2:5,6-	ב	.27	990		
						534-52-1	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	ב	.84	00C		
							dinitrophenol					
						541-73-1	1,3-Dichlorobenzene	ב	.58	DOC		
						56-55-3	Benzo [a] anthracene	ר	.17	990		
						29-50-7	3-Methyl-4-chlorophenol / 4-Chloro-3-	ב	52.	990		
							cresol / 4-Chloro-3-m*					
						606-20-2	2.6-Dinitrotoluene		2.	nec		
						621-64-7	N-Nitrosodi-n-propylamine	17	1,1	990		
						65-85-0	Renzoic acid	: <del>-</del>	. 6	990		
						67-77-1	Hovachloroothana	; <u>-</u>	17	991		
						77-1.7-1.	Hexaciltot decilaise	; :	- α	BB 1		
						78-50-1	Tophonon	- <u>-</u>	2.5	550		
						1-66-07	Sopriorone	<u>:</u> !	25.	990		
						85-52-9	Acenaphthene	<b>5</b>	77:	550		
						84-66-2	Diethyl phthalate	_	.35	990		
						84-74-5	Di-n-butyl phthalate		.51	99N		
						85-01-8	Phenanthrene	Ľ	.17	ngg		
						85-68-7	Butylbenzyl phthalate	Ľ	۲:	990		
						84-30-A	N-Nitrosodiphenylamine	-	17	ยยา		
						86-73-7	Fliorene / OH-Fliorene	; <u>-</u>	17	991		
						87-68-7	Hovach   onchitadione / Hovach   onc-1 3:	- <u>-</u>	. 80	991		
						0.00	historical contradictic / nevaciation of 1,0-	_	07.	990		
							Dutadiene	!	•			
						87-86-5	Pentachlorophenol	5	87.	990		
						88-06-2	2,4,6-Trichlorophenol	ר	۳.	990		
						88-74-4	2-Nitroaniline		.36	ngg		
						88-75-5	2-Nitrophenol	LŢ	.26	990		
						91-20-3	Naphthalene / Tar camphor	ב	.17	000		
						91-57-6	2-Methylnaphthalene	11	.17	990		
						91-58-7	2-Chloronaphthalene	-	.33	000		
						91-94-1	3,3'-Dichlorobenzidine	Q	99.	000	œ	
						95-48-7	o-Cresol / 2-Cresol / 2-Methylphenol		.17	UGG		
						95-50-1	1.2-Dichlorobenzene	ר	.32	990		
						95-57-8	2-chlorophenol	1	.17	000		
						95-95-4	2.4.5-Trichlorophenol	-	.24	990		
						98-95-3	Nitrobenzene / Essence of mirbane /	5	.19	990		
							Oil of mirbane	ì	:			
						69-00-5	3-Nitroaniline	GN	1.7	ยยเ	α:	
						1	/ December of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the con	<u> </u>		5 5	4	
							4-bi omopheny c pheny cernel	_ :	<u>:</u> .	990		
							4-cntorophenyt pnenyt etner	5	7.	กูกก	ď	
							Unknown compound 555		3,5	ปกก การก	<i>o</i> 0	
							Unknown compound os I		607.	กรด	•	

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91

24-001-94

		Sign																																												
	Flag	codes																																				~	:						s	
	Unit	Fireds.	990	990		990		บบเ	201	900	0		ם מ	กาก	0	200	0011	999	9911	;	nec	990	990	990	บบก	990	9911	991	100	990	990	990	000	990	990	000		990	990	000	990	990		DBO	990	
	5400	conc.	2.5 E -3	2.5 E -3		3.0 E -3		u	1.9 F -2	ı	ш	3 6	C	u	7. 7. 7.	_	256.3	1	2.5 E -3	ı		ш	4.5 E -2	ш	ш	щ	ш	ı	u	ш	ш	ш	ш	ш	ш	ш		ш	ш	ш	ш	2.5 E -3	l	1.2 E -2	.009283820167	
	Meas.		1	-1		П		1		;	-	; ;	; <u>-</u>	;	-	-	<u>-</u>	;	-		-		ב	-1	-1	17	-1	1	i	<b>-</b>	Ľ	LT	11	17	LT	L.T		QN		L1	LI	=		LI		
+6-100- <del>1</del> 7	Analyte Description		Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorohenzene / Monochlorohenzene	Dibromochloromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Deschloroethylos*	cis-1,2-Dichloroethylene / cis-1 2-	Dichloroethene	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /		Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Aratylone *	Unknown compound 078	
במיר אמיפרי	CAS No.	1 1 1 1	100-41-4	100-42-5		10061-01-5		107-06-2	108-10-1		108-88-3	108-90-7	124-48-1		127-18-4		156-59-2		156-60-5		56-23-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4	:	75-69-4	78-87-5	78-93-3	2-00-62	79-01-6		79-34-5		
	Meth/ Matrix	:	LM33/																																											
	Lab Lab Anly. No.		PC 42331																																											
	Sample Date		07-FEB-92																																											
	Depth		100.0																																											
	Field Sample No.		S091B25C																																											
	Site ID		y 1825																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

Data Quals

24-0CT-94

54-001-94 Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSO Sampling Date Range: 01-JAN-91 24-OCI-

Flag			<b></b> -
Unit Meas. UGG UGG	990 990 990 990	990 990 990 990 990	066 UGG UGG
Conc. 7.5 E -3 2.5 E -3	.251 .51 .499 1.27 2.5	.5 2.5 2.5 .505 .251 .249 .249	10 10 62.8 10 20.4
Meas. Bool. LT LT	11 11 11	55 55555	<u> </u>
Analyte Description	2,4-Dinitrotoluene 2,4-Dinitrotoluene RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine * Cyclotetramethylenetetranitramine Tetryl / N-Methyl-N,2,4,6- tetranitroaniline / Nitramine / * Nitroglycerine / 1,2,3-Propanetriol	Urinitrate 2,6-Dinitrotoluene PEIN / Pentaerythritol tetranitrate / 2,2-Bis[(nitrooxy)me* 2-Nitrotoluene 3-Nitrotoluene 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 4-Nitrotoluene	iotal petroleum hydrocarbons Iotal petroleum hydrocarbons Iotal petroleum hydrocarbons Iotal petroleum hydrocarbons Iotal petroleum hydrocarbons
Analyte Description	2,4-Dinitro RDX / Cyclo trinitro-1, Cyclotetram Tetryl / N- tetramitros Nitroglycen	1. Tinitrate 2,6-Dinitrotolu PETN / Pentaery 2,2-Bis[(nitroc 2-Nitrotoluene 3-Nitrotoluene 1,3,5-Trinitrod 1,3-Dinitrobens 4-Nitrotoluene	Total pe Total pe Total pe Total pe
CAS No. Analyte Descr Xylenes, tota trans-1,3-Dicl 118-96-7 2,4,6-Trinitr	121-14-2 2,4-Dinit 121-82-4 RDX / Cyc 2691-41-0 Cyclotetr 479-45-8 Tetryl / 55-63-0 Nitrogly	606-20-2 2,6-Dini 78-11-5 PETN / P 2,2-Bis 88-72-2 2-Nitrot 99-08-1 3-Nitrot 99-35-4 1,3,5-Tr 99-65-0 1,3-Dini 99-99-0 4-Nitrot	
		606-20-2 78-11-5 88-72-2 99-08-1 99-35-4 99-65-0	
Lab Meth/ Anly. No. Matrix CAS No. 		606-20-2 78-11-5 88-72-2 99-08-1 99-35-4 99-65-0 99-99-0	49174 00 / Total 49174D 00 / Total 49182 00 / Total 49190 00 / Total 49204 00 / Total
Lab Anly. No. Matrix CAS No		606-20-2 78-11-5 88-72-2 99-08-1 99-35-4 99-65-0 99-99-0	13-FEB-92     PC     49174     00     /     Total       13-FEB-92     PC     49174     00     /     Total       13-FEB-92     PC     49190     00     /     Total       13-FEB-92     PC     49204     00     /     Total       13-FEB-92     PC     49204     00     /     Total
Sample Lab Meth/ Depth Date Lab Anly. No. Matrix CAS No. 100.0 07-FEB-92 PC 42331 LM33/ LW32/S 118-96-7		606-20-2 78-11-5 88-72-2 99-08-1 99-35-4 99-65-0 99-99-0	PC 49174 00 / Total 49174D 00 / Total PC 49182 00 / Total PC 49190 00 / Total PC 49204 00 / Total
Sample Lab Meth/ Date Lab Anly. No. Matrix CAS No		606-20-2 78-11-5 88-72-2 99-08-1 99-35-4 99-65-0	13-FEB-92     PC     49174     00     /     Total       13-FEB-92     PC     49174     00     /     Total       13-FEB-92     PC     49190     00     /     Total       13-FEB-92     PC     49204     00     /     Total       13-FEB-92     PC     49204     00     /     Total
Sample Lab Meth/ Depth Date Lab Anly. No. Matrix CAS No. 100.0 07-FEB-92 PC 42331 LM33/ LW32/S 118-96-7		606-20-2 78-11-5 88-72-2 99-08-1 99-35-4 99-65-0	10.0 13-FEB-92 PC 49174 00 / Total 49174D 00 / Total 20.0 13-FEB-92 PC 49182 00 / Total 30.0 13-FEB-92 PC 49190 00 / Total 40.0 13-FEB-92 PC 49204 00 / Total Total

** End of Report - 2292 Records Found **

Appendix H
Sediment Data

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

Data Quals	t 1 1 4																																								
Flag Codes	:	۵												<b>-</b>																											
Unit Meas.	990	990 1180	990	990	99N	990	990	990	3 2	500	อยูก	990	ngg	ออก	990	990	990	99N	99N	000	990	000	000	990	990		000	990		990	990		990		nee	990		990	990	9 2	990
Conc.	1.22	1.22 8.70 F -2		15000	29000	10	515	761	7, 7	846	50	12.5	82.9	12.7	54.6	.57	.427	16.8	22.5	21.7	48.5	54.4	220	12.4	52.		.251	.51		667.	1.27		2.5	1	5.	2.5	i.	cuc.	<u>.</u> ×	67.	.245
Meas. Bool.	5	===	: 5			_		<del>-</del>	5		ב	17	7	2			=							_	ב			ב		LT	=		ב		ב	ב	<u>.</u>	5 5	; <u>-</u>	<u>-</u>	: 5
ă	Cyanide	Cyanide Mercury	Silver	Aluminum	Iron	Lead	Magnesium	Molyhdenim	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobal t	Copper	Vanadium	Zinc	Calcium	Selenium	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	Z,Z-Bis[(Nitrooxy)me*	Z-Nitrotoluene Z-Nitrotoluene	1 % 5-Trinitrobenzene	1.3-Dinitrobenzene	4-Nitrotoluene
CAS No.	57-12-5	27-12-5 7439-97-6	7440-22-4	7429-90-5	7439-89-6	7/20-05-1	7/20-05-5	7-86-65-7	7440-02-0	2-60-05-2	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	2440-66-6	7440-70-2	7782-49-2	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5	88-72-2	99-08-1	7-52-66	99-65-0	0-66-66
Meth/ Matrix	KY04/	KYU4/ JB06/	JC02/	JS14/																					LW32/																
Lab Anly. No.		66508 PC 66508																																							
Sample Date	04-MAR-92	04-MAR-92																																							
Depth	0.0	0.0																																							
Field Sample No.		S8SD1																																							

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

Data Quals	:																																										
Flag Codes	:													<b>-</b>																													
Unit Meas.	990	000 1166	99n	99N	99N	990	990	990	990	อยูก	990	990	990	99N	99N	990	990	nge	nee	990	nee	UGG	990	กลิด	990	! !	990	nee	!	nee	990		990		nee	990		nee	990	990	99N	99n	ออก
Conc.	1.22	8.70 E -2 1.01	16000	12000	19.1	649	240	7	12.8	209	20	12.5	82.9	12.7	59.6	.498	.427	15.9	20.7	12.3	29.4	45.4	109	12.4	52:		.251	.51		664.	1.27		2.5	1	٠. _'	<b>7.</b> 2	i	55.	.251	53.	.249	.245	1.22
Meas. Bool.			i					=			ב	5	L	웆			בו				,		רו	ב	=		-1	רו		ר	ב		1		5!	_	;	5		ב	ב	ב	5
Analyte Description	Cyanide	Mercury Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Z,Z-Bis[(nitrooxy)me*	Z-Nitrotoluene	5-Nitrotoluene	1,5,5-Trinitrobenzene	1,5-Dinitrobenzene	4-Nitrotoluene	Cyanide
CAS No.	57-12-5	7440-22-4	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2440-05-7	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	2440-66-6	7440-70-2	7782-49-2	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0	000	200-50-2	6-11-0/	27.7	7-71-00	1-90-66	99-55-4	0-69-66	0-66-66	57-12-5
Meth/ Matrix	KY04/	JB06/ JC02/	JS14/																						LW32/																		KY04/
Lab Anly. No.																																											PC 66524
Sample Date	04-MAR-92	U4-MAR-92																																									04-MAR-92
Depth																																											0.0
Field Sample No.	\$85D2	28802																																								100	88503
Site	<b>S8SD2</b>																																									1	Sasus
Site Type																																											

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE

	Data Quals	;																																								
	Flag	:													<b>-</b>																											
	Unit Meas.		990	990	990	990	990	DDO	nee	000	990	990 1100	990	nec	090	nec	nee	55U	DUC	990	99 ! !	550 050	กรเ	990	ם כ	200	990	000		990	550		990	1	990 190	990	990	990	ภูภูก	990	99n	กาก
	Conc.		1.66 8.70 F - 2	1.01	13000	41000	14.7	334	240	7	6.7	370 81 5	12.5	82.9	12.7	73.9	.704	.427	18.7	52.1	77	47.9	7.70	12 /	 	?	.251	.51		667.	1.27	i	2.5	L	ر. ر	5.5	.505	.251	.25	.249	.245	ш
	Meas. Bool.	<u> </u>	; <u> </u>	: =						<u>-</u> :	3		ב	5	QN									<b>-</b>	- <u>-</u>	<u>.</u>	11	LŢ					<u>.</u> .				Ļ	L1	5	<u>.</u>	<u>-</u> :	_
File Type: CSE 01-JAN-91 24-0CT-94	Analyte Description	07:000	Mercury	Silver	Atuminum	Iron	Lead	Magnesium	Manganese	Molybdenum Nickol	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	Cadmium		Condi	Vanadium	7 inc		Selenium	2.4.6-Trinitrotoluene / alnha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	**initional yeerine / 1,2,3-Propanetriol	UTINITIALE 2 A.Dinitrotolucae		2.2-Risf(nitrooxv)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,5-Ulnitropenzene	4-Nitrotoluene Mercury	
File 1) Date Range: 01-JAN-91	CAS No.	57-12-5	7439-97-6	7440-22-4	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7459-98-7	2-60-0572	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	1-14-044/	7440-45-9	7-87-0447	4-04-0772	0-05-0447	7-79-044/	2-02-0772	7782-49-2	118-96-7		121-14-2	121-82-4		2691-41-0	4/9-45-8	55-63-0	0-60-66	606-20-2	78-11-5	) -	88-72-2	99-08-1	99-35-4	0-60-66	9-26-6272	
Sampling	Meth/ Matrix	KY04/	JB06/	JC05/	JS14/																				LW32/																.IR067	
		PC 66532	PC 66524																																						PC 66532	
		0.0 04-MAR-92	0.0 04-MAR-92																																						0.0 04-MAR-92	
	Field Sample No.	S85D3D	S8SD3																																						S8SD3D	
	Site ID	S8SD3																																								
	Site Type	CREK																																								

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

24-0C1-94

	Data Quals		
	Flag Codes	- 0000000000000000000000000000000000000	
	Unit Meas.	990 990 990 990 990 990 990 990 990 990	000 000
	Conc.		8.70 E -2 1.01
	Meas. Bool.	ם בו בו בו בו בו בו בו בו בו בו בו בו בו	בב
	Analyte Description	Aluminum Iron Lead Magnesium Manganese Molybdenum Nickel Potassium Sodium Thallium Antimony Arsenic Barium Beryllium Codulum Cobalt Copper Vanadium Linitrotoluene Z,4.6-Trinitrotoluene Z,4.6-Trinitrotoluene RDX / Cyclonite / Hexahydro-1,3,5- trinitrotoluene Z,4-Dinitrotoluene Z,4-Dinitrotoluene Z,4-Dinitrotoluene Cyclotetramethylenetetranitramine Trinitrosoluene Z,6-Dinitrotoluene RDX / Cyclorite / Nitramine / * Itinitrosoluene Z,6-Dinitrotoluene PEIN / Pentaerythritol tetranitrate / Z,5-Bis[(nitrooxy)me* Z,6-Dinitrotoluene Z,6-Dinitrotoluene Z,5-Bis[(nitrooxy)me* Z,7-Bis[(nitrobenzene Z,7-Bis[Cnitrobenzene Z	Mercury Silver
ı	CAS No.	7,429-90-5 7,439-90-5 7,439-90-5 7,439-90-6 7,439-90-5 7,439-90-5 7,440-23-5 7,440-23-5 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9 7,440-43-9	7439-97-6 7440-22-4
	Meth/ Matrix	JS14/ JS14/ JS14/	JB06/ JC02/
	Lab Lab Anly. No.	7500	96540
	Lab A	2	ე
	Sample Date	04-MAR-92	
	Depth	0.0	0.0
	Field Sample No.	S85D4	\$8\$D4
	Site ID	7000 7000 7000 7000 7000 7000 7000 700	
	Site Type		

^{* -} Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

Data Quals	1 1 1																																									
Flag Codes	:										-																															
Unit Meas.	990	990	חפת	990	ngg	DOU	ngg	DOG	990	99N	990	ว ก	990	990	9 0	9 2	995	900	99	990	990	950	001	990	990		ยูยก	nee	0	กาก	0	9 5	200	000	990	990	990	nge	กดด	2	ອຸກຸດ	
Conc.	17000	37000	47 713	1200	7	28.9	735	80.9	12.5	82.9	12.7	56.3	766.	.421 7 01	. 7. 7. 8. 7. 8.	33.0	52.	87.3	358	12.7		j	200	1.62.	.51		664.	1.27		<b>6.2</b>	Ľ	ر: ر	;	.505	.251	.25	.249	.245	.25	25.1	ī.	
Meas. Bool.	:				-				5	<u></u>	2		<u>.</u>	5						_	; <u>-</u>	3	<u>+</u>	ָּב	5	!	ב !	3	-	3	-	. <u>-</u>	<u>.</u>	ב	5	[1	11	ר	Ļ	-	3	
Analyte Description	Aluminum	I ron	Madresiim	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barlum	Codmin	Chromital	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	2.4.6-Trinitrotoliene / alpha-	Trinitrotoluene	2 /-Dinitactolione	2,4-Dinitrototuene	<pre>KDX / Cyclonite / Hexahydro-1,3,5- trinitno-1 2 E-trinitno</pre>	Contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contact to the contac	cyclotetrametnylenetetranitramine		Nitroclucorine / NICIONNINE / "	trinitrate	2.6-Dinitrotoliene	PETN / Pentaervthritol tetranitrate /		2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	2,4,6-Trinitrotoluene / alpha-	Irinitrotoluene 2 4-Dinitrotoluene		
CAS NO.	7429-90-5	7439-89-6	7-50-6272	7439-96-5	7439-98-7	7440-02-0	2440-09-7	7440-23-5	7440-28-0	7440-36-0	7,440-58-2	7//0-/1-7	0-27-0772	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-0772	7440-70-2	7782-49-2	118-96-7		121-14-2	124 02 7	4-78-171	2401-71-0	720-75-0	0-64-614	55-63-0		606-20-2	78-11-5	<b>1</b>	88-72-2	99-08-1	99-35-4	0-59-66	0-66-66	118-96-7	121-14-2	121-82-4	
Meth/ Matrix	JS14/																				LW32/	i																	LW32/S			
Lab Lab Anly. No.	PC 66540																																						PC 44121			
Sample Date L	35																																						09-FEB-92 P			
Depth	0.0																																						0.5			
Field Sample No.	S8SD4																																						SSSD			
Site ID	\$88D4																																					ļ	SSSD			
Site	CREK																																						SKHL			

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

24-001-94

Data Quals	8 8 5																																										
Flag Codes	: : :																											<b>-</b> -													-	- 1-	_
Unit Meas.	n	-	900	500	บอด		990	990		ออก	990	ngg	1166	990	ออก	990	nee	990	990	990	990	990	990	990	990	990	990	990	990	990	บอด	990	990	990	990	9911	100	551	000	116.0	200	200	990
Conc.	.51	Ç.	.4%	7	2.5		٦,	2.5		.505	.251	52.	546	.245	8.70 E -2	1.01	8900	20000	10	138	909	4	7.5	797	50	12.5	82.9	12.7	77	.25	.427	23.1	15.7	22.4	41.5	755	3850	12.4	ш			u	ı
Meas. Bool.	: 5	<u>}</u>	<u> </u>	;	17		ב	<u>'</u>		5	ב		5	=	-	=			-1	: <b>:</b>		<u></u>	ב		11	=		Ş		5	<u></u>							_	; <u>-</u>	; <u>-</u>	; <b>S</b>	9	<u>}</u>
Analyte Description	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotect ametry tenetect and cramine Tetrol / N-Methol-N 2 & 4-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Heptachlor epoxide	Endosulfan sulfate		PCB 1260	PCB 1254
CAS No.	121-82-4	0401-71-0	479-45-8		55-63-0		606-20-2	78-11-5	1	88-72-2	99-08-1	99-35-4	0-59-66	0-66-66	9-26-6272	7440-25-4	7429-90-5	2439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2440-09-7	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	2440-42-3	7440-48-4	7440-50-8	7440-62-2	9-99-0552	7440-70-2	7782-49-2	1024-57-3	1031-07-8	1104-28-2	11096-82-5	11097-69-1
Meth/ Matrix	LW32/S														7806/	JC05/	JS14/S																						LH19/				
Lab Anty. No.	PC 44121														PC 44121																												
Sample Date	09-FEB-92														04-FEB-92	09-FEB-92																											
Depth	0.5														0.5																												
Field Sample No.	8580														S5SD1																												

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE

	Data																																											
	Flag		; }		-											<b>-</b>																-			~						œ			
	Unit Meas.		990	ממני	991	991	3	990	1	990		ngg	990		DDO	nee	1166	990	9911	}	บบเ	990	991	)	990	7	000	!	990	950		DBO	9	000	990	990	nee	990	ngg	990	990	990	nee	nec
	Conc.		4.00 E -2		ı u.		ı	5.40 E -3		2.28 E -2		ш	9.60 E -3			ш	ш	ш	2.00 E -2		ш	1.11 E -2	i		1.12 E -2	ı	1.42 E -2		ш	9.60 E -3		.2	Ļ	4.70 1.3	·· (	6.5	.17	.33	.18	.17	.33	.17	.17	1.6
	Meas. Bool.	;	2 9	2 9	<u></u>	: <b>-</b>		[1		11		L1			ב	Q.	-	17	ב			: 5	5		ב		5		LT	-1		9	-	_ <u>_</u>	<u> </u>	<u>.</u>	_ :	Γ۱	ב	-	ş	בׁ:	_	П
File Type: CSE 01-JAN-91 24-0CT-94	Analyte Description	0.00 1020	PCB 1248	PCB 1016	Aldrin	alpha-Hexachlorocyclohexane / alpha-	Benzene hexachloride	beta-Hexachlorocyclohexane / beta-	Benzene hexachloride	delta-Hexachlorocyclohexane / delta-	Benzene hexachloride	Endosulfan II / beta-Endosulfan	2,2-Bis(p-chlorophenyl)-1,1,1-	trichloroethane	alpha-Chlordane	PCB 1242	Endrin ketone	gamma-Chlordane	Lindane / gamma-Benzene hexachloride	/ gamma-Hexachlorocyc*	Dieldrin	Endrin	Methoxychlor / Methoxy-DDT / 1,1'-	(2,2,2-Trichloroethylide*	ppDDD / 1,1-Dichloro-2,2-bis(p-	chlorophenyl)ethane / Rhoth*	2,2-Bis(p-chlorophenyl)-1,1-	dichloroethene	Endrin aldehyde	Heptachlor / 1H-1,4,5,6,7,8,8-	Heptachloro-3a,4,7,7a-tetrah*	Toxaphene / Chlorinated camphene /	Endosit fan 1 / atha-Endosit fan	4-Nitrophilips	4-Nitrophenol	Benzyl alcohol	Delizy accompt	2,4-Dimethylphenol	p-cresol / 4-Cresol / 4-Methylphenol	1,4-Dichlorobenzene	4-Chloroaniline	Bis(2-chloroisopropyl) ether	/ Phenylic acid / Phenic acid	Bis(2-chloroethyl) ether
Date Range: 01-JAN-91	CAS No.	111/.1-14-5	12672-29-6	12674-11-2	309-00-2	319-84-6		319-85-7		319-86-8		33213-65-9	50-29-3		5103-71-9	55469-21-9	53494-70-5	5566-34-7	58-89-9		60-57-1	72-20-8	72-43-5		72-54-8		72-55-9		7421-93-4	76-44-8	1	8001-35-2	959-98-8	100-01-6	100-02-7	100-51-6	105 51 0	102-C01	100-44-3	100-40-7	100-47-8	108-60-1	7-72-001	111-44-4
Sampling	Meth/ Matrix	1 110/																																LM30/										
		PC 44121																																										
	Sample Date	 09-FEB-92																																										
	Depth	0.5																																										
	Field Sample No.	\$5sp1																																										
	Site ID	 S5SD																																										
	Site Type																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91 24-OCT-

Field Sample Sample Sample No. Depth Date S55D1 0.5 09-FEB-92

Site Site Type ID .... .... SKHL S5SD

Data Quals	; ; ;																																											
Flag Codes	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																				œ																							
Unit Meas.	1166	990	990	000	nee	990	990	990	9911	991	1166	990	990	991	3	9911	990	990	990	990	59 <b>0</b>	UGG		DDN		990	000	UGG		990	990	990	990	990	990	9911	990	550	1166	990	990	nee	nee	
Conc.	17	. 19	.22	.26	.17	-29	.28	.31	26	17	17		17			88	7.	.27	.71	.58	1.7	.27		.84		.58	.51	.23		.2	1.1	.92	.17	1.8	.32	.27	.35	12	17	~	.17	.17	.28	
Meas. Bool.	: -	: '	-	-1	-1	_	_	5		. <u> -</u>	: =	; =	: <u>-</u>	; <u>-</u>	;			[]			QN			7				٦		ב	<u></u>	[]	[]	Ľ	17	1	5		: =	5		_		
Analyte Description	Bis(2-chloroethoxv) methane	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichlorobenzene	2,4-Dichtorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Renzo Cahil Derviene	Indeport 2 3-f. Dinyrene	Benzofblfluoranthene / 3 4-	Benzofluoranthene	Fluoranthene	Benzo[k] fluoranthene	Acenaphthylene	Chrysene	Benzo[a]pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene		3-Methyl-4-chlorophenol / 4-chloro-3-	cresol / 4-Chloro-5-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9M-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene
CAS NO.	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2		206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	56-55-3	59-50-7	•	606-20-2	621-64-7	65-85-0	67-72-1	77-47-4	78-59-1	83-32-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3	
Meth/ Matrix	LM30/																																											
Lab Anly. No.	PC 44121																																											

* - Analyte Description has been truncated. See Data Dictionary

Field Sample No. 1

Site Site Type ID SKHL SSSD

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91 24-0CT-

Data Quals																																											
Flag Codes							۵	۷						~			8	S	S	s	s	S	v	, v	ı v	0 0	ı v	· 0:	· 0	· v	_	s	s	s	S	· cr	· 0:	ı v	· v	S	S	ď	۵۵
Unit Meas.	000	000	990	990	551	990	901	990	991	990 1	991	990	1	ngg	ngg	UGG	990	UGG	990	nee	ngg	99n	1166	990	9911	990 000	9911	990	9911	990	990	ngg	UGG	000	990	990	9911	9911	990	990	990	991	990
Conc.	87.	ĸ, i	95.	17		÷ 15	99	22.	22	17.	54	.19	1 1	1.7	.17	.2	.344	.515	.687	1.031	.344	1.203	.172	.687	344	2.062	344	.344	.687	.515	.344	.515	.344	.515	.859	789.	1.718	3.436	.344	.515	.515	.859	.515
Meas. Bool.	L	<u></u>	_ <u>-</u>	<u>-</u>	; <u> </u>	: <u>-</u>	; <u>Ş</u>	2 =	: <u>-</u>	: <u>-</u>	: <u>-</u>	; =		Q	רַ	ר																											
Analyte Description	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitrophenol	Nachthalene / Tar camphor	2-Methylpaphthalene	2-Chloronaphthalene	3.3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1.2-Dichlorobenzene	2-Chlorophenot	2,4,5-Trichtorophenot	Nitrobenzene / Essence of mirbane /		3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	Unknown compound 531	punodwoo	Unknown compound 540	punodwoo	punodwoo	compound	Unknown compound 591	Unknown compound 593	Unknown compound 594		Unknown compound 596	Unknown compound 597	Unknown compound 598	Unknown compound 602		Unknown compound 603	compound	punodwoo	compound	Unknown compound 608	Unknown compound 609		Unknown compound 612	Unknown compound 615	punodwoo	Unknown compound 618	
CAS No.	87-86-5	88-06-2	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3		2-60-66																													
Meth/ Matrix	LM30/																																										
Lab Lab Anly. No.	PC 44121																																										
Sample Date	09-FEB-92																																										
. Depth	0.5																																										

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

Sample
Depth Date

Field Sample No.

Site ID ----S5SD

Site Type

Data Quals						
Flag Codes S S S S S S S S S S S S S S S S S S S	•					
Unit Meas. UGG UGG UGG UGG UGG UGG	990	990 090 090	990 000 000	990 990 990 990	990 990 990 990 990	990 990 990
Conc. 172 .172 .515 .687 .344 .344 .344	2.5 E -3 2.5 E -3 3.0 E -3		лиш ш	ш ш шш		0.2 1.4 E -2 2.5 E -3 2.5 E -3 2.5 E -3
Meas. Bool.	55 5	ם בב ב	ב בב:	5 5 55		11111
Analyte Description Unknown compound 620 Unknown compound 624 Unknown compound 632 Unknown compound 644 Unknown compound 648 Unknown compound 651 Unknown compound 651 Unknown compound 651	Ethylbenzene Styrene / Ethenylbenzene / Styrol / Styrolene / Cinnamene *	Dichloropropene 1,2-Dichloroethane Methyl isobutyl ketone / Isopropylacetone / 4-Methyl-2-pen*	Chlorobenzene / Monochlorobenzene Dibromochloromethane / Chlorodibromomethane Tetrachloroethylene / Tetrachloroethene / Perchloroethylen*	cis-1,2-Dichloroethylene / cis-1,2- Dichloroethene trans-1,2-Dichloroethylene / trans- 1,2-Dichloroethene Carbon tetrachloride Methyl n-butyl ketone / 2-Hexanone Acetone	Chloroform Benzene 1,1,1-Trichloroethane Bromomethane Chloromethane Chloroethane Vinyl chloride / Chloroethene	Metnylene chloride / Dichloromethane Carbon disulfide Bromoform Bromodichloromethane 1,1-Dichloroethane
CAS No.	100-41-4 100-42-5 10041-01-5	107-06-2 108-10-1 108-88-3	108-90-7 124-48-1 127-18-4	156-59-2 156-60-5 56-23-5 591-78-6 67-64-1	67-66-3 71-43-2 71-55-6 74-83-9 74-87-3 75-00-3 75-01-4	75-09-2 75-15-0 75-27-4 75-34-3 75-35-4
Meth/ Matrix  LM30/	LM33/					
Lab Anly. No						

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

Data Quals	:																																									
Flag Codes	1 1 1 1	۵	₹									_																														
Unit Meas.	090	9911	990	990	990	990	!	990		nge	000	nec	UGG		990	ngg		990	990	!	ngg	ļ ,	1100	50	2000	9911	990	990	950	55A	DOD	990	!	SUN	99n	! !	9911	551	)	nec		990
Conc.	3.2 E -2	u.	2.5 E -3	ш	ш	ш	ı	1.2 E -2		ш	2.5 E -3	<del></del>	.25		.251	.51		667.	1.27		2.5		<b>ب</b>	,, v 		.505	.251	.25	. 249	.245		.25		.251	.51		667	1.27	i !	2.5		r.
Meas. Bool.	LT	S	ב ו		L1			ב		-	1	Q	ב		-1	ב		11	1				_	<u>-</u>	i		-	11	Lī	LT	QN	LI		ב	ב		17	-	i	[]		11
Analyte Description	1,1-Dichloroethylene / 1,1-	Dichloroethene Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /		Tetrachloroethane / 1,1,2,2-	Tetrachloroethane / Acetylene *	Xylenes, total combined		Nitrite, nitrate - nonspecific		Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaervthritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Nitrite, nitrate - nonspecific	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene
CAS No.	75-35-4	75-69-4	78-87-5	78-93-3	2-00-62	79-01-6		79-34-5				14797-55-8	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-69-66	0-66-66	14797-55-8	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2 78-11-5
Meth/ Matrix	LM33/										,	s/ 66	LW32/S																		s/ 66	LW32/S										
Lab Lab Anly. No.	PC 44121											PC 58890																			PC 38903											
Sample Date	2											U3-FEB-92																			05-FEB-92											
Depth	0.5										•	c.0																		,	0.5											
Field Sample No.	S5SD1										4	NBSD I																			NBSD2											
Site Site Type ID	SS										Access Marc	LUCON MAIC																		6	NBSDZ											

^{* -} Analyte Description has been truncated. See Data Dictionary

606-20-2 78-11-5

Site Site Type ID

NBSD3

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

24-0CT-94

Data Quals	f ; ; ;																																										
Flag Codes	1 1 1						<b>-</b>																				-	-													<b>-</b>		
Unit Meas.	000	000	990	99N	990	99N	990	990		99n	990		990	990		990		990	990		990	990	990	990	991	990	990	990	990	990	990	990	990	990	990	990	990	990	DDO	990	000	990	DBU
Conc.	2.5	.505	. 251	.25	.249	.245	-	.25		.251	.51		667.	1.27		2.5		₹.	2.5		.505	.251	.25	249	245	3680	10	8.70 E -2	1.01	8200	41000	20	138	009	7	7.5	142	50	12.5	82.9	12.7	19.5	.845
Meas. Bool.	11	11	5		5	5	Q	_		5	_		=	Ξ.		_		_	П		1	; <b>;</b> ;		<u></u>	<u> </u>	i	S	! '=	ב				ᄓ		ב	ב	ב		1	=	용		
Analyte Description	PETN / Pentaerythritol tetranitrate /	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene		Nitrite, nitrate - nonspecific	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Total organic carbon	Nitrite, nitrate - nonspecific		Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium
CAS No.	78-11-5	88-72-2	99-08-1	99-35-4	0-59-66	0-66-66	14797-55-8	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-69-66	0-66-66		14797-55-8	7439-97-6	7440-22-4	7429-90-5	7439-89-6	7439-92-1	7439-95-4	2439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7
Meth/ Matrix	LW32/S						s/ 66	LW32/S																		s/ 00	S/ 66	JB06/	JC02/S	JS14/S													
Lab Lab Anly. No.	38903						40835																			37540																	
Lab	PC .						<u>გ</u>																			2																	
Sample Date	05-FEB-92						06-FEB-92																			03-FEB-92																	
Depth	0.5						0.5																			0.5																	
Field Sample No.	NBSD2						NBSD3																			S10SD1																	

S10SD1

^{* -} Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

			-		-	Sampling	Date Range: U1-JAN-91	01-JAN-91 24-OCT-94					
Site Site Type ID	Sample No	Denth	Sample	4	Lab	Meth/	(1. U.)		Meas.	•	Unit		Data
				3 :		Y	CA3 NO.	Analyte Description	1009	conc.	Meas.	Codes	Quals
STRM \$10SD1	S10SD1	0.5	03-FEB-92	<u>م</u>	37540	JS14/S	7440-43-9	Cadmium	-	267	5511	:	! ! !
						•	7440-47-3	Chromium	;	34.3	990		
							7440-48-4	Cobalt		17.1	995		
							7440-50-8	Copper		7.6	991		
							7440-62-2	Vanadium		74.8	9911		
							9-99-0552	Zinc		3.7.6	991		
							7440-70-2	Calcium		230	55		
							7782-49-2	Selection	-	) t	900		
						KY047	57-12-5	Contraction	: :	4.7	900 900		
						1 1/22/6	118-04-7	Cydinae 2 / Artminitemetalines / alaba	<u>:</u> :	77:1	990		
						LW36/3	1-04-011	z,4,0-1rinitrototuene / alpha-		ς.	990		<b>~</b>
							;	irinitrotoluene					
							121-14-2	2,4-Dinitrotoluene	-1	.251	ngg		¥
							121-82-4	RDX / Cyclonite / Hexahydro-1,3,5-		.51	990		: ×
								trinitro-1,3,5-triazine *			! !		:
							2691-41-0	Cyclotetramethylenetetranitramine	17	667	9911		<u></u>
							479-45-8	Tetryl / N-Methyl-N,2,4,6-	: 5	1.27	991		2 کے
								tetranitroaniline / Nitramine / *	i		)		4
							55-63-0	Nitroglycerine / 1,2,3-Propanetriol	11	2.5	9911		>=
								trinitrate			) )		₹
								2.6-Dinitrotoluene	-	Ľ	5511		۷
							78-11-5	PETN / Pentaervthritol tetranitrate /		. c	ם מפו		<b>-</b> 2 3
								2.2-Bis[(nitrooxy)me*			200		∠
								2-Nitrotoluene	-1	.505	990		74
								3-Nitrotoluene		.251	990		۷ ک
								1,3,5-Trinitrobenzene		<u>ا</u> بر	991		۷ کـ
							0-69-66	1.3-Dinitrobenzene		570	995		۷ ک
								4-Nitrotoluene	: =	245	990		۷ ۷
S10SD2	S10SD2	0.5	03-FEB-92	S S	37567	s/ 66	2-8	Nitrite nitrate - nonspecific		20.0	200		۷
						•	9-20-6272		-	20.70	200		
						1002/8	7-66-0772	Silver S	<u>.</u> :	ш	ม กาก		
						1517.75	77.20-00-5	A Limits in	=	1.0.1	550		
						1/ 0	7 00 02/2	י מוווים מוווי		3760	990		
							0-69-66/	Iron		9300	000		
							1459-92-1	Lead	[1	10	990		
							7439-95-4	Magnesium	[]	138	990		
							7439-96-5	Manganese		580	990		
							7439-98-7	Molybdenum	_	7	991		
							7440-02-0	Nicket	: =	7.5	990		
							2-60-0572	Potassium	! ~	27.	500		
							7440-23-5	Sodium	; <u>-</u>	7 05	990		
							7440-28-0	Thallium	; <u>-</u>	1,5	200		
							7440-36-0	Antimony	; =	200	990		
							7440-38-2	Arsenic		12.7	5 0	١	
							2-02-07//2	Dariin	Ş	1.21	מפת :	-	
							7.40-41-7			Ç\$,	990		
							7 - 1 + : 0 + + /	peigricum		.421	nee		

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91 24-0CT-

Data Quals									74		¥	¥		<b>×</b>	¥		¥		×	×		¥	×	: 🛩	. <u>7</u>	< ≯	•																	
Ftag Codes	; ; ;																										<b>-</b>														<b> </b> -			
Unit Meas.	000	ากด	990	990	nee	990	990	990	DOU		990	99N		990	99N		990		ngg	990		990	1166	000	9911	99	990	990	DDU	990	990	990	990	990	990	990	000	990	neg	990	000	ngg	990	
Conc.	.427	5.84	3,38	13.5	41.3	993	12.4	1.22	.25		.251	.51		664.	1.27		2.5		5.	2.5		.505	.251	<u>ئي</u>	676	245		8.70 E -2	1.01	3550	15000	16.3	138	1400	7	7.5	142	50	12.5	82.9	12.7	21.2	.682	
Meas. Bool.	5		-1				<u>'</u>	ב			ב	_		L	ב		_		ר	ב		[1	[1	; <b>_</b>	<u>-</u>	; <u>-</u>	2	ב	רז				רו			רו	7	_	5	ב	9			
Analyte Description	Cadmium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1.3-Dinitrobenzene	4-Nitrotoluene	Nitrite, nitrate - nonspecific		Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Thallium	Antimony	Arsenic	Barium	Beryllium	
CAS No.	7440-43-9	5-44-044	7440-50-8	7440-62-2	9-99-044/	7440-70-2	7782-49-2	57-12-5	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-59-66	0-66-66	14797-55-8	9-26-6572	7440-55-4	7429-90-5	2439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2440-09-7	7440-23-5	7440-28-0	7440-36-0	7440-38-2	7440-39-3	7440-41-7	
Meth/ Matrix	JS14/S							KY04/	LW32/S																		s/ 66	/90gr	JC02/S	JS14/S														
Lab Anly. No.	PC 37567																										PC 37478																	
Sample oth Date	0																										0.5 04-FEB-92																	
Field Sample No. Depth																											S11SD1 (																	
Site Site Type ID	S																										S11SD1																	

^{* -} Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

76-ULT-07

	Data Quals	: : : :								¥		¥	×	7	· ~		×	;	<b>×</b> :	¥	~	: <b>&gt;</b>	: <u>v</u>	· 22	· ×			لت													
	Flag Codes	i i i t					_																				_		-											,	-
	Unit Meas.	090	990	990	990	990	990	990	99N	990		99N	99N	991	99n		DDO		990	990	990	990	nge	990	ออก	990	UGG	nec	บบก	990	กดด	ngg	990	nee	ออก	DDO	nee	ภูภูก	990	550	990
	Conc.	.427	12.8	67.7	30.4	19.8	121	12.4	1.22	.25		.251	.51	007	1.27		2.5	ı	٠, ږ	5.5	.505	.251	.25	.249	.245	9230	7	1.22		8.70 E -2	2060	17000	24.8	138	195	7	7.5	142	50	12.5	26.5
	Meas. Bool.	17						LT	-1	ב		[1		=	: 5		=	!	_ :	3	=	5	ר	11	17		Q	=======================================	Q	ב			Į.	LI		ב	LI		<u></u> ::	_ <u>{</u>	È
Date Range: 01-JAN-91 24-OCT-94	Analyte Description	Cadmium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	<pre>KUX / Cyclonite / Hexahydro-1,5,5- trimitno-1 2 5-triesing *</pre>	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	2 4. Ninitiate		PEIN / Pentaerythritol tetranitrate / 2.2-Bis[(nitropxv)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Total organic carbon	Nitrite, nitrate - nonspecific	Cyanide	Antimony	Mercury	Aluminum	Lon	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Sodium	Arconic	Barium
	CAS No.	7440-43-9	7-87-0772	7440-50-8	7440-62-2	9-99-0552	7440-70-2	7782-49-2	57-12-5	118-96-7	,	121-14-2	4-78-171	2691-41-0	479-45-8	;	55-63-0	6-06-303	78-11-5	C-11-02	88-72-2	99-08-1	99-35-4	0-59-66	0-66-66		14797-55-8	57-12-5	7440-56-0	7459-97-6	7,20,90 -5	7/20 02 7	1-26-654/	7459-95-4	7439-96-5	7-88-74	7440-02-0	7-60-0447	7//0-28-0	2-82-0772	7440-39-3
Sampling	Meth/ Matrix	JS14/S							KY04/	LW32/S																s/ 00	•		,	JBU6/	JS 14/S										
	Lab Anly. No.	PC 37478																								PC 37699															
	Sample Date	04-FEB-92																							;	04-FEB-92															
	Depth	0.5																							,	0.5															
	Field Sample No.	S11SD1																								S11SD2															
	s Site	S																							4	S11SD2															
	Site Type	STRM																																							

* - Analyte Description has been truncated. See Data Dictionary

Site Site
Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

24-001-94

Data Quals	: 1 :								¥		¥	¥		¥	¥		¥		¥	¥		×	74	۷ ک	۷ ۷	∠ ১	∡.	نـ						×		×	¥		×	¥		×	۷	۷
Flag Codes	; ; ;																											,	:	<b>-</b>														
Unit Meas.	nee	990	991	990 000	nee	วีวีก	1166	551	990		ngc	990		วยก	990		990		99N	990		990	ยยเ	201	550	300	066	990	nee	กดิด	990	990	nee	000		990	990		ngg	990		990	551	990
Conc.	.456	427		15	31.3	39.9	272	12.4	.25		.251	.51		665.	1.27		2.5		.5	2.5		.505	.251	. K	5,0	7/6	. 245	77.1	- ;		8.70 E -2	1.01	1.22	.25		.251	.51		667.	1.27		2.5	и	:
Meas. Bool.	1 1 1 1	5						_	: 5		LT	-1		LŢ	-1		17			Lı		LT		; <u>-</u>	; ;	- ا - اد	_ !	: ב	Q :	QN	L	_	Lī			-1	LT		ב	[1		ב	-	_
Analyte Description	Beryllium	Cadmium	Cobalt	Copper	Vanadium	Zinc	Calcin	Selenium	2.4.6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1 % 5-Trinitrohenzene	1 2-Dinitrohonione		4-Nitrototuene		Nitrite, nitrate - nonspecific	Antimony	Mercury	Silver	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate 2 K-Dimitrotoluene	
CAS No.	7440-41-7	7440-43-9	7-87-0772	7440-50-8	7440-62-2	9-99-077	2-02-0772	7782-49-2	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	7-52-66	00-45-0	0-00-00	79-99-0	6-21-76	14/9/-55-8	7440-56-0	7439-97-6	7440-22-4	57-12-5	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0	404-20-2	2 2 2
Meth/ Matrix									LW32/S																			, ;	s/ .	_ ;			KY04/	LW32/S										
Lab Lab Anly. No.																											400722		PC 5//02															
	0.5 04-FEB-92																												0.5 U4-FEB-92															
-	s11sp2 0.5																												STISDR															

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

Site	Site	Field		Sample		Lab	Meth/			Meas		÷.		, ;
Type	0	Sample No.	Depth		Lab		Matrix	CAS No.	Analyte Description	Bool.	Conc.	Meas.		uara Quals
: :					:	•			\$ E P 1 4 4 4 5 5 6 6 E E P 6		: : :	1 1	;	1 1
STRM	S11SD2	S11SDR	0.5	04-FEB-92	2	37702	LW32/S	78-11-5	PETN / Pentaerythritol tetranitrate /	11	2.5	nee		74.
									2,2-Bis[(nitrooxy)me*					
								88-72-2	2-Nitrotoluene	LT	.505	000		12
								99-08-1	3-Nitrotoluene	ב	.251	990		×
								99-35-4	1,3,5-Trinitrobenzene	<u></u>	.25	990		: <u>&gt;</u>
								0-69-66	1.3-Dinitrobenzene	_	676	991		۷ ک
								0-66-66	4-Nitrotoliana	; <u>-</u>	27.5	9 5		۷ ۷
	S11SDR	S11SDR	0.5	04-FFR-92	ď	37702	151675	7,20-00-5	A   in   in   in	_	747	מפר כ		2
					-	1		7 00 02/2			0085	990		
								0-60-6647	Iron		00096	nee		
								7439-92-1	Lead		30.3	990		
								7439-95-4	Magnesium	רז	138	กรูด		
								7439-96-5	Manganese		1000	9971		
								7439-98-7	Molyhdenim	<b> -</b>	200 /	9 5		
								0-20-0772	Nickel	-	ָר <del>,</del>	990		
								7,40-00-7	00+00	,	5.5	550		
								7-40-03-7	Potassium 6 Ji		145	ngg		
								7440-25-5	Sodium	ב	20	990		
								7440-28-0	Thallium		12.5	nee		
								7440-38-2	Arsenic	Q	12.7	1166	<b>)</b> —	
								7440-39-3	Barium		14.1	100	-	
								7440-41-7	Recollina		- 0			
								0-27-0772		F	0.10	กา		
								V V V V V			174.	990		
								C-/5-055/	Chromitam		55.4	990		
								7440-48-4	Cobalt		35.2	nee		
								7440-50-8	Copper		8.13	991		
								7440-62-2	Vanadium		7 88	201		
								9-99-057	Zinc		2 07	200		
								2-02-0772				200		
								7782.70.2		1	777	กรด		
	S17503	c17cn3	C	01-668-02	6	36772	ý	7-64-7011	Set en lum	5	12.4	nee		
			•		<b>)</b>	2005	۲. ۵		lotal petroleum nydrocarbons		36.3	ngg		
								7440-56-0	Antimony	2	82.9	99N	<b>-</b>	
								2439-97-6	Mercury	Ľ	8.70 E -2	ngg		
							JC02/S	7440-22-4	Silver	-1		990		
								7429-90-5	Aluminum		1560	100		
								7439-89-6	Iron		3000	991		
								7439-92-1	Lead		2000	550		
								7439-95-4	Magnesium	-	128	200		
								5-96-6272	Mandanese	3	900	000		
								7/30 00 7	Hangaricae		067	990		
								7-98-86-7	Molybdenum Mi-1-1	-1	7	99N		
								0-20-044/	Nickel		11	990		
								7440-09-7	Potassium	Lī	142	990		
								7440-23-5	Sodium	[]	50	990		
								7440-28-0	Thallium	LT	12.5	990		
								7440-38-2	Arsenic	S	12.7	990	-	
								7440-39-3	Barium		37.5	000		
+		•												
¥ - ×	halyte Desci	* - Analyte Description has been truncated.	een tru	incated. Set	e Data	See Data Dictionary	>							

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

Data Quals																																												
Flag																													<b>-</b>														<b>—</b>	
Unit Meas.	nee	000	200	990	990	NGG	000	990	990	990		DOU	990		99 F	066	-	066		บออ	<b>000</b>		NGG	99N	nee	990	990	990	990	990	990	990	990	990	990	990	990	991		ກຸກຸກ	990	nee	99N	990
Conc.	.538	.899	90.77	97.6	31.4	105	109	12.4	1.22	52.		.25	.51		667.	1.27		۲.5	1	'n.	2.5		.505	.251	.25	.249	.245	110	82.9	8.70 E -2	1.01	3220	26000	19.4	138	450	. 7	۲. ۲	17.3	741	50	12.5	12.7	21.6
Meas. Bool.							ב	ב	ר	ב		5	1		<u>-</u> :	=		=		ב	Ľ		-1	-1	ב	11	ב		2	[]	L				ב			i	-	::	5		웆	
Analyte Description	Beryllium	Cadmium		Copper	Vanadium	Zinc	Calcium	Selenium	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,5,5-triazine *	Cyclotetramethylenetetranitramine	letryl / N-Methyl-N, Z, 4, o-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Total petroleum hydrocarbons	Antimony	Mercury	Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	No.		rotass tall	Sodium	Inallium	Arsenic	Barium
CAS NO.	7440-41-7	7440-43-9	7-67-0447	7440-50-8	7440-62-2	9-99-047	7440-70-2	7782-49-2	57-12-5	118-96-7		121-14-2	121-82-4		2691-41-0	4/7-43-8	77 20	0-60-66	;	606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-59-66	0-66-66		7440-36-0	9-26-6572	7440-22-4	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	0-20-0772	77.40-00-7	7440-03-7	7440-25-5	7440-28-0	7440-38-2	7440-39-3
Meth/ Matrix	JS14/S								KY04/S	LW32/S																		s/ 00	/ 66	3/908r	JC02/S	JS14/S												
Lab Lab Anly. No.	PC 36625																											PC 36633																
Sample Date	01-FEB-92																											01-FEB-92																
Depth	0.5																											0.5																
Field Sample No.	S17SD3																											S17SD4																
te Site	S																											S17SD4																
Site Type	STF																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

Data Quals	1 7 1																																							
Flag Codes	: ; !																									,	·											-		
Unit Meas.	1166	99n	990	990	066	000	วาก	990	ם מים	מפת 1991		990	990	;	990	990	SUL	7	990	990		990	200	990	991	990	990	000	990	990	nee	990	990	99N	990	990	กาก	900 NGG	990	nec
Conc.		.427	28.9	13	0.5	58.5	0.10	158 12.4	1 22	25.	1	.251	.51		664.	1.2/	2.5	\ !	ν.	2.5	L L	.505 551		.249	. 245	82.9	8.70 E -2		22000	28000	45.1	1190	1200	4	17.2	766	10.7	12.7	63.3	.816
Meas. Bool.	:	רז						<u>-</u>	; <u>-</u>	<u> </u>	i		1			_		į	11	L1		<u> </u>	; :	; ;	<u></u>	2	LT	-1									-	. <del>S</del>		
Analyte Description	Beryllium	Cadmium	Chromium	Conner	Vecesia	Zinc	Calcina	Selenium	Cvanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	Cyclotetromothylogotetromite	Totrol / Name trivier electration from the	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate / 2 2-Ris[fnitrooxy,me*	2-Mitrotoliono	3-Nitrotoluene	1.3.5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Antimony	Mercury	Silver	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum Miskel	NICKEL	Sodium	Thattium	Arsenic	Barium	פנולוווווו
CAS No.	7440-41-7	7440-43-9	7770-78	7440-46-4	2-69-0772	7440-66-6	2-02-0772	7782-49-2	57-12-5	118-96-7		121-14-2	121-82-4	2691-61-0	479-45-8		55-63-0		606-20-2	78-11-5	88-72-2	99-08-1	99-35-4	0 62-0	0-66-66	7440-36-0	2439-97-6	7440-22-4	7429-90-5	7439-89-6	7,39-92-1	7459-95-4	7459-96-5	7459-98-7	0-20-077/	7440-23-5	7440-28-0	7440-38-2	7440-59-5	
Meth/ Matrix	JS14/S								KY04/	LW32/S																/ 66	JB06/S	JC02/S	JS14/S											
Lab Lab Anly. No.																										PC 36919														
Sample Date	01-FEB-92																									02-FEB-92														
Depth	0.5																								(	0.5														
Field Sample No.	S17SD4																								7000	SZ6SD1														
Site Site Type ID	S																								140763	105025														•

* - Analyte Description has been truncated. See Data Dictionary

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSE Sampling Date Range: 01-JAN-91

Data Quals	~ ~	2 <b>12</b> 1	~ ~	~ ~	<b>x</b> ×	****
Flag Codes						
Unit Meas. 1006 UGG UGG UGG UGG UGG	9911	nno 090	990 000	000 000	99N	990 090 090
Conc. .427 30.7 31 15.3 61 46.5 795 12.4	.25	. 51	1.27	2.5	2.5	.251 .25 .249 .245
Meas. Bool. LT LT	5 5	: ב:	: :	h	ב ב	בבננ
Analyte Description Cadmium Chromium Cobalt Copper Vanadium Zinc Calcium Selenium Cyanide	2,4,6-Trinitrotoluene / alpha- Trinitrotoluene 2.4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine *	Cyclotetrametnytehetetranitramine Tetryl / N-Methyl-N,2,4,6- tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,5-Propanetriol trinitrate 2,6-Dinitrotoluene	PEIN / Pentaerythritol tetranitrate / 2,2-Bis[(nitrooxy)me* 2-Nitrotoluene	3-Nitrotoluene 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 4-Nitrotoluene
CAS No	118-96-7	121-82-4	479-45-8	606-20-2	78-11-5 88-72-2	99-08-1 99-35-4 99-65-0 99-99-0
Meth/ Matrix JS14/S KY04/S	LW32/S					
Lab Anly. No. 36919						
Sample Date  02-FEB-92						
Depth						
Field Sample No. S26SD1						

^{**} End of Report - 748 Records Found **

Appendix I
Surface Water Data

Site Site Type 1D SKHL S5SW1

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSW Sampling Date Range: 01-JAN-91

Data																																														
Flag		æ	<u>د</u> ر	<b>~</b> (	oz 6	ا צ	~ (	¥	<b>∝</b> i	œ	ć	× 6	× 1	~ 4	<b>×</b> 6	×	× c	× c	¥ 5	¥ :	× (	×	~ 1	¥	œ	œ		œ	~	~	: 0:	: 2:	: 0	د د	<b>:</b>	~	:	2	: 0	۵ ک	٤	۵	د د	× 0	× 04	
Unit		ner	<u>ವ</u>	J G	ה ה	OGF.	J 191	י חפר	를 :	UGL	2	3 3	, OG	년 5	3 5	j :	7 10 10 10 10 10 10 10 10 10 10 10 10 10	4 5	3 5	der.	ָלָה ה	OGE	를 등	OPP	ner	ner		NGL	ner	ner	3	191	101	j 5	<u>;</u>	ner	!	ner	1 2	<b>d</b> 55	1	2	3 5	100	d d	
Conc		20	200	<u> </u>	5 5	5 6	<u> </u>	0 .	5 5	0.	ç	5 5	2 5	5 5	2 €	2 5	2 €	2 5	2 €	5	2 5	5	2 €	2 4	0.	10		10	10	10	10	10	50	10		20		10	10	10		10	2.5	) <u>-</u>	5 0	
Meas.		2 :	2 9	2 9	2 5	2	2 9	2 4	2 9	Š	9	3 5	§ §	<u> </u>	2 5	2 5	<b>2</b>	2 5	2 5	2	2 5	2 5	2 5	2 2	2 9	2		9	Q.	Q	Q	ð	QN	Q		2		2	Q	2		2	S	9	9	
Analyte Description	4-Nitroaniline	/ without me	Benzyl alcohol	2.4-Dimethylphenel	D-Cresol / 4-Cresol / 4-Methylphenol	1.4-Dichlorobenzene	4-Chloroaniline	Ric(2-chloroiconcom/) other	Phenol / Carbolic acid / Phenol / Carbolic acid	) riieiiic	Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octvl ohthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichtorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzofahilberylene	Indeport 2 3-5 Diagrams	Renzo[b] flingsathone / 2 /	Renzofluctanthene / 5,4-	ביונים משורוופום	ruoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzo[a]pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo [a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	
CAS No.	100-01-6	100-02-7	100-51-6	105-67-9	106-44-5	106-46-7	106-47-8	108-60-1	108-95-2		111-44-4	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2	1	0 // 700	202-44-0	200-08-9	208-96-8 218-96-8	218-01-9	50-52-8	51-28-5	53-70-3	1	534-52-1	}	541-75-1	56-55-3	59-50-7		506-20-2	521-64-7	65-85-0	57-72-1	
Meth/ Matrix	UM06/																								•		•	•	•	•			•		•	• •	•	• • •	• •			•	•	•	•	
	PC 44105																																													
Sample Date	09- FEB-92																																													
Depth																																														
Field Sample No.	S5SW																																													•

^{* -} Analyte Description has been truncated. See Data Dictionary

11:09:13

Field Sample No.

Site Site Type ID SKHL S5SW1

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSW Sampling Date Range: 01-JAN-91 24-0CT-

24-001-94

Sample Date	Lab	Lab Anly. No.			Analyte Description	Meas. Bool.	Conc.	Unit Meas.	flag Codes
09-FEB-92	S S	44105	/90WN	4-24-22	Hexachlorocyclopentadiene	9	10	UGL	œ
				78-59-1	Isophorone	QN	10	NGL	~
				83-32-9	Acenaphthene	R	10	NGL	~
				84-66-2	Diethyl phthalate	QN QN	10	NGL	~
				84-74-2	Di-n-butyl phthalate	S	10	NGL	~
				85-01-8	Phenanthrene	QN QN	10	ngr	2
				85-68-7	Butylbenzyl phthalate	Q	10	- Tel	: ~
				86-30-6	N-Nitrosodiohenvlamine	: <del>-</del>	2 (	7 5	د د
				86-73-7	Fluorene / 94-Fluorene	<u> </u>	2 =	<b>1</b> 5	۵ ک
				87-68-3	Hexach orobitadiene / Hexach oro-1 3-	2	5 5	5	< 6
				)	butadiene	Š	2	OGE	Ł
				87-86-5	Dentachlorophenol	9	C	3	•
				88-06-2	2 / A-Trichlophenol	5 5	20	ner Ner	~ (
				7 7 7 80		2 :	2 1	הר	×
				7 7 7 6	2 nitrognitine	2	50	ner	œ
				88-72-5	Z-Ni trophenol	Q.	5	ng.	~
				91-20-3	Naphthalene / Tar camphor	Q.	10	ner	~
				91-57-6	2-Methylnaphthalene	QN	10	ner	~
				91-58-7	2-Chloronaphthalene	QN	10	1911	~
				91-94-1	3,3'-Dichlorobenzidine	2	20	TD:	: 02
				95-48-7	o-Cresol / 2-Cresol / 2-Methylphenol	Q	10	1911	: 0
				95-50-1	1,2-Dichlorobenzene	Q	10	191	: ~
				95-57-8	2-Chlorophenol	9	2 5	d 3	د ۵
				95-95-4	2.4.5-Trichlorophenol	2	2 5	g 5	۵ ک
				98-95-3	Nitrobenzene / Essence of mirbane /	9	10	d =	۵ ۵
					Oil of mirbane	<u>}</u>	2	3	٤
				69-09-2	3-Nitroaniline	C.N	50	2	۵
					4-Bromophenyl phenyl ether	9	2,0	d =	۵ ۵
					4-Chlorophenyl phenyl ether	£	2 =	<b>1</b>	۵ ک
09-FEB-92	P.	44105	/ 66	100-41-4	Ethylbenzene	9	) . Lr	352	2 ک
				100-42-5	Styrene / Ethenylbenzene / Styrol /	Q		190 110 110	: 0:
					Styrolene / Cinnamene *		ı	; ;	:
				10061-01-5	cis-1,3-Dichloropropylene / cis-1,3-	Q	. 7	i9n	~
					Dichloropropene			:	:
				107-06-2	1,2-Dichloroethane	Q	2	1911	~
				108-10-1	Methyl isobutyl ketone /	9	10	150	: 02
					Isopropylacetone / 4-Methyl-2-pen*			! ! !	:
				108-88-3	Toluene	QN	7.	1911	~
				108-90-7	Chlorobenzene / Monochlorobenzene	S		101	۰ ۵
				124-48-1	Dibromochloromethane /	9	, r.	191	ے د
					Chlorodibromomethane	<u>}</u>	•	j	≥
				127-18-4	Tetrachloroethylene /	Š	ď	5	۵
				· !	Tetrachloroethene / Perchloroethylen*	2	<b>1</b>	חמר	¥
				156-59-2	cis-1,2-Dichloroethylene / cis-1,2-	Q	ī.	191	α.
							•		

S5SW1

* • Analyte Description has been truncated. See Data Dictionary

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSW Sampling Date Range: 01-JAN-91

24-0C1-94

Data Quals	1 1																																											
Flag Codes		:	~	~	œ	~	ο.	: O:	: 0:	د ۵	د ۵	: a	: 0=	: ~	: 0:	: œ	: 04	: 0=	<b>:</b>	œ	۰ ۵	: 0	۵ ک	د د	¥	۵	ĸ	œ	· œ															
Unit Meas.	: ::	1 3 1	UGL	ner	NGL	ner	191	1911	1 2	d 5	j 5	151	191	ופו	1911	ngr	190	1911	; ;	121	191	1911	<b>5</b> 5	3 3	100	3	OOL	ngr	l don	ner	ner	ngr	ner	ner	UGL	ner	TS/	ner	NCF	ner	UGL	ner	UGL	ner
Conc.			2	10	10	~	. 20	. 20	, 5	2 €	2 5	2 0		ı ır	ıν	. 20	2	. 5	•	7.	, 10	, 5	2	, L	<b>n</b>	ır	٦	2	2	7.7	1.26	2.5	6.01	14.9	111	481	100	12200	1010	30.9	63.1	20200	12.5	0187
Meas. Bool.	- QN	!	9	R	2	S	QN	2	Ş	9	<b>2</b>	2	2	2	2	2	2	2		S	2	S	2 5	9	Ş	S	Ē	S	S	ר	-1	11		۲,			5			5	-		5	
Analyte Description	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1.1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1.1.2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*	Tetrachloroethane / 1 1 2 2-	Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1,3-Dichloropropene	Mercury	Lead	Thallium	Arsenic	Selenium	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel .	Potassium	Silver	
CAS No.	156-60-5		56-23-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		75-69-4	78-87-5	78-93-3	29-00-5	79-01-6	;	79-34-5	1			9-26-6272	7439-92-1	7440-28-0	7440-38-2	7782-49-2	7429-90-5	2439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	7-60-0447	7-77-044/	C-C3-0447
Meth/ Matrix	/ 66																													<b>ZB07/</b>	SD08/				SS15/									
Lab Lab Anly. No.																																												
Sample Date	09-FEB-92																																											
Depth	0.0																																											
Field Sample No.	S5SW1																																											

* - Analyte Description has been truncated. See Data Dictionary

Site Site Type ID .... SKHL S5SW1

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSW Sampling Date Range: 01-JAN-91

Field Sample No. D	Depth	Sample Date	Lab #	Lab Lab Anly. No.	Meth/ Matrix	CAS No.	Analyte Description	Meas. Bool.	Conc.	Unit Meas.	Flag	Data Quals
	. :		:		:							
S5SW1	0.0	09-FEB-92	<u>გ</u>	44105	SS15/	7440-28-0	Thallium	רו	100	ner		
						7440-36-0	Antimony	11	37.1	ner		
						7440-39-3	Barium		188	ner		
						7440-41-7	Beryllium	ב	2.5	UGL		
						7440-43-9	Cadmium	17	2	UGL		
						7440-47-3	Chromium	-	15	ner		
						7440-48-4	Cobalt	5	52	UGL		
						7440-50-8	Copper	-	20	UGL		
						7440-62-2	Vanadium	5	50	NGL		
						2440-66-6	Zinc		450	ner		
						7440-70-2	Calcium		1.3 E 5	NGL		
						7782-49-2	Selenium	ב	25	ner		
					TY03/	57-12-5	Cyanide	ΓŢ		NGL		
					UH21/	1024-57-3	Heptachlor epoxide	ב		NGL		
						1031-07-8	Endosulfan sulfate	Ľ	 00 00	NGL		
						1104-28-2		윤	.2	ner	~	
						11096-82-5		S		NGL	œ	
						11097-69-1	PCB 1254	Ş	-	ner	~	
						11141-16-5	PCB 1232	8	-	ner	· œ	
						12672-29-6	PCB 1248	QN	-	ner	~	
						12674-11-2	PCB 1016	2	· • •	lgn	· 2	
						309-00-2	Aldrin	! <del> </del>	ш	191	:	
						319-84-6	alpha-Hexachlorocyclohexane / alpha-	; <u>-</u>	2 7 75.7 7 E - 2	] 		
						! !	Benzene hexachloride	;	1	7		
						319-85-7	heta-Hexachlorocyclobexane / heta-	j	1 00 5 -2	2		
							Renzepa haxachlorida	5	L	Joe		
						8-78-012	dol + 2 - Unicophi propried phonone / dol + 2	<u>:</u>	L	3		
						0-00-616	Denies houselorocyclonexane / delta-	5	4.88 E -2	UGL		
						0 3/ 24022	penzene nekacijujuge		1	;		
						55.215-65-9	Endosultan II / beta-Endosultan	_	1.20 E -2	NGL		
						50-59-5	2,2-Bis(p-chlorophenyl)-1,1,1-	ב		NGL		
							trichloroethane					
						5103-71-9	alpha-Chlordane	ב	2.02 E -2	ner		
						53469-21-9	PCB 1242	Q		UGL	~	
						53494-70-5	Endrin ketone	ב	ш	NGL		
						5566-34-7	gamma-Chlordane	-		NGL		
						58-89-9	Lindane / gamma-Benzene hexachloride	-	4.29 E -2	190		
							/ gamma-Hexachlorocyc*	i	•	i i i		
						60-57-1	Dieldrin		ш	191		
						72-20-8	Endrin	i	3.72 E -2	191		
						72-43-5	Methoxychlor / Methoxy-DDT / 1,1'-	: 5	ı	ngr N		
							(2,2,2-Trichloroethylide*					
						72-54-8	pp000 / 1,1-Dichloro-2,2-bis(p-	[1	8.48 E -2	NGL		
						72-55-0	curorophenytjetnane / knotn*					
						,						

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSW Sampling Date Range: 01-JAN-91

PC   44.105   UNE21   72-55-9   2.2-# Histopenhory ]-1,1-	Sam	No.	Depth	Sample Date	Lab /	Lab Anly. No.	Meth/ Matrix	CAS NO.	Analyte Description	Meas. Bool.	Conc.	Unit Meas.	Flag Codes	Data Quals	
1,2,-93-4   Enthiorotechnee   1,1   1,2,6,7,8,8   1,1   1,1   1,1   1,2   1,2   1,2   1,2   1,2   1,2   1,2   1,2   1,2   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,3   1,	S5SW1 0.	Ö	0	09-FEB-92	<u>გ</u>	44105	UH21/	72-55-9	2,2-Bis(p-chlorophenyl)-1,1-	П	'n,	ner	: : :	1	
12-44-8								7421-93-4	dichloroethene Endrin aldehyde	17	LL.	<u> </u>			
12-14-2   Camphene / Chiorinates campnen   No   5   UG1								76-44-8	Heptachlor / 1H-1,4,5,6,7,8,8- Heptachloro-3a 4, 7 2a-tetrah*	Ļ	ш	ner			
11-14-2   2,4,6-Trinitrotluene / alpha   11   3.56 = -3     121-14-2   2,4,6-Trinitrotluene / alpha   11   3.21     121-14-2   2,4-Opitrotluene / alpha   11   3.21     121-14-2   2,4-Opitrotluene   11   3.22     2691-4.0   1   1   2.29     479-45-8   1   1   2   2.49     1   2,45-8   1   1   1   1   1     2,601-4.0   1   1   1   1     2,601-4.0   1   1   1   1     2,605-2.0   2,4-Obitrotluene   1   3.2     2,601-4.1   2,4-Obitrotluene   1   3.2     3,601-4.1   2,4-Obitrotluene   1   3.2     3,601-4.1   3,5-Trinitrotluene   1   3.2     3,601-4.1   3,5-Trinitrotluene   1   3.3     3,601-4.1   3,5-Trinitrotluene   1   3.3     3,6-5-6-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-								8001-35-2	Toraphene / Chlorinated camphene / Campheellor / Alltox / *	QN	5.	UGL	<u>~</u>		
UM35   118-96-7   2.4.6-frinitrotoluene / alpha-   17   1319   118-14.2   2.4.0 initrotoluene   17   12-14.2   12-14.2   2.4.0 initrotoluene   17   12-14.2   12-14.2   12-14.2   12-14.2   12-14.2   12-14.2   12-14.2   12-14.2   12-14.3   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4   12-14.4								959-98-8	Endosulfan I / alpha-Endosulfan		ц	3			
121-14-2 2, d-binitrotoluene 121-18-2 4							UM35/	118-96-7	2,4,6-Trinitrotoluene / alpha-	: <b>:</b>	3	i E			
12.194-2 2,4-Dinitrodulene									Trinitrotoluene						
17-182-4								121-14-2	2,4-Dinitrotoluene	11	.321	UGL			
2691-41-0 Cycloteramethyleneteranitramine LT 2.29 479-45-8 Tetryl / NHethyl-N ₂ -4, 6- 11.29 12.63-0 Nitroplycerine / 1,2,3-Propanetriol LT 3.2 606-20-2 2,6-Dinitropaline								4-28-171	<pre>RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1 2 5-+risaine *</pre>	ב	.653	ner			
779-45-8   Tetry ( Michaely - Michaely - Michaely - Mitrogly Gerine / 1,2,3-Propanetriol   1   2.29   15-63-0   trinitrate   606-20-2   2,6-Dinitrotoluene   1   3.2   16-11-5   2,2-Bis (introoxy)me*   1   5.02   17-11-5   2,2-Bis (introoxy)me*   1   5.02   18-72-2   2,4-Mitrotoluene   1   5.02   18-72-3   1,3,5-Trinitrobenzene   1   5.02   19-35-4   1,3,5-Trinitrobenzene   1   5.02   17-35-5   1,3-Dinitrobenzene   1   5.02   18-96-7   1,3,5-Trinitrobenzene   1   5.02   18-96-7   1,3,5-Trinitrobenzene   1   5.02   18-96-7   1,3,5-Trinitrobenzene   1   5.02   18-96-7   1,4,6-Trinitrotoluene   1   5.02   18-96-7   1,4,6-Trinitrotoluene   1   5.02   18-96-7   1,4,6-Trinitrotoluene   1   5.02   18-96-7   1,4,6-Trinitrotoluene   1   5.02   18-96-8   1,3,5-Trinitrobenzene   1   5.02   18-96-8   1,3,5-Trinitrobenzene   1   5.02   18-1-5   18-10   18-10   18-10   18-10   18-1-5   18-10   18-10   18-10   18-1-5   18-10   18-10   18-10   18-1-5   18-10   18-10   18-10   18-1-5   18-10   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-1-5   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   18-10   1								2691-41-0	Cvclototramothylonototramita		ć	i			
1.23								479-45-8	Tetrol / N-Methol-N 2 & A-	֓֞֞֞֞֓֓֞֞֞֞֓֓֓֓֞֞֓֓֓֓֞֞֓֓֓֓֓֓֡֡֡֡֓֓֓֓֡֡֡֓֜֓֓֡֡֡֡֡֡֡֡	1 20	ng.			
55-63-0 Nitroglycerine / 1,2,3-propanetriol LT 3.2  trinitrate  606-20-2									tetranitroaniline / Nitramine / *	<u>-</u>	67.1	UuL			
05-FEB-92 PC 38873 IF13/ Hypr-55-8 Initrotoluene								55-63-0	Nitroglycerine / 1,2,3-Propanetriol	_	3.2	<u>:</u>			
78-11-5   2,6-Dinitrotoluene									trinitrate	į	;	J.			
78-11-5 PETN / Pentaerythritol tetranitrate / IT 5.02 2,2-818 (initrooxy)me* 88-72-2 2-41 trotoluene 99-08-1 3-Nitrotoluene 99-08-1 3-Nitrotoluene 99-65-0 1,3-Dinitrobenzene 11 .319 99-65-0 4-Nitrotoluene 11 .319 99-99-0 4-Nitrotoluene 11 .338 0W35/ 118-96-7 2,4,6-Trinitrotoluene 121-42 2,4-Dinitrotoluene 121-42 2,4-Dinitrotoluene 121-42 2,4-Dinitrotoluene 121-82-4 RDX / Cyclonite / Heahydro-1,3,5- LT 2691-41-0 Cyclotetramethylenetetranitramine 121-82-4 RDX / Cyclonite / Nitramine / IT 2691-41-0 Cyclotetramethylenetetranitramine 11 .29 479-45-8 Tetryl / N-Methyl-N,2,4,6- 11 .29 479-45-8 Tetryl / N-Methyl-N,2,4,6- 11 .29 479-45-8 Tetryl / N-Methyl-N,2,4,6- 11 .29 479-45-8 Tetryl / N-Methyl-N,2,4,6- 11 .29 479-45-8 Tetryl / N-Methyl-N,2,4,6- 11 .3.2 2,2-Bis[(nitrooxy)me* 11 .492 2,2-Bis[(nitrootoluene 99-08-1 3-Nitrotoluene 99-08-1 1,3,5-Trinitrobenzene 11 .3.19								606-20-2	2,6-Dinitrotoluene	LT	-64	2			
2,2-Bis[(nitrobay)me*  88-72-2 2.Nitrotoluene 99-08-1 3-Nitrotoluene 99-08-1 1,3.5-Trinitrobenzene 1								78-11-5		; <u> </u>	5.02	35			
88-72-2 2-Nitrotoluene										· •	! )	3			
99-08-1 3.Nitrotoluene 99-35-4 1,3,5-Trinitrobenzene 11 .317 99-65-0 1,3-Dinitrobenzene 11 .338 99-99-0 4.Nitrotoluene 99-99-0 4.Nitrotoluene 121-14-2 2,4-Frinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-18-24 RDX / Cyclonite / Hexahydro-1,3,5- LT .3321 121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-14-2 2,4-Dinitrotoluene 131-14-2 2,4-Dinitrotoluene 11 .29 479-45-8 Tetryl / N-Methyl-N,2,4,6- 1479-45-8 Tetryl / N-Methyl-N,2,4,6- 15-60-20-2 2,6-Dinitrotoluene 11 .29 11 .29 11 .29 11 .29 12-9-35-4 1,3,5-Trinitrobenzene 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29 11 .29								88-72-2	2-Nitrotoluene	LT	979.	1911			
99-35-4 1,3,5-Trinitrobenzene LT .517 99-6-0 1,5-Dinitrobenzene LT .319 99-90-0 4.Nitrotoluene LT .338 14797-55-8 Nitrie, nitrate - nonspecific LT .338 118-96-7 2,4,6-Trinitrotoluene / alpha- LT .338 121-14-2 2,4-Dinitrotoluene / alpha- LT .321 121-14-2 2,4-Dinitrotoluene / Hexahydro-1,3,5- LT .321 121-14-0 Cycloetramentylenetranitramine LT .2.29 479-45-8 tetranitroaniline / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine / Nitramine /								99-08-1	3-Nitrotoluene		765	351			
99-65-0 1,3-Dinitrobenzene LT .319 99-99-0 4,Nitrotoluene LT .338 14797-55-8 Nitrite, nonspecific LT .338 12-14-2 2,4,6-Trinitrate - nonspecific .226 121-14-2 2,4-Dinitrotoluene								99-35-4	1,3,5-Trinitrobenzene	-	.517	191			
05-FEB-92         PC         38873         TF13/ 14797-55-8         Witrite, nitrate - nonspecific UM35/ 118-96-7         Livitrotoluene / alpha-         LT         .338 92.6           121-14-2         2,4,6-linitrotoluene 12,5-LT         LT         .321 LT         .321 LT         .321 LT         .321 LT         .321 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .553 LT         .554 LT         .554 LT         .554 LT         .554 LT         .554 LT         .554 LT         .554 LT         .554 LT         .554 LT         .554 LT         .554 LT         .554 LT         .554 LT								0-59-66	1,3-Dinitrobenzene	בו	.319	101			
05-FEB-92 PC 38873 TF13/ 14797-55-8 Nitrite, nitrate - nonspecific 92.6  18-96-7 2,4,6-Trinitrotoluene / alpha- LT 319  121-14-2 2,4-Dinitrotoluene   LT 321 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- LT 653  2691-41-0 Cyclotetramethylenetetranitramine LT 2.29 479-45-8 Tetryl / N-Methyl-N,2,4,6- LT 1.29  Etranitroaniline / Nitramine / * Tetryl / N-Methyl-N,2,4,6- LT 1.29  55-63-0 Nitroglycerine / 1,2,3-Propanetriol LT 3.2  trinitrate 606-20-2 2,6-Dinitrotoluene REIN / Pentaerythritol tetranitrate / LT 646 78-11-5 PEIN / Pentaerythritol tetranitrate / LT 646 99-08-1 3-Nitrotoluene LT 6492 99-35-4 1,3,5-Trinitrobenzene LT 517 99-65-0 1,3-Dinitrobenzene LT 3.19								0-66-66	4-Nitrotoluene	; <u> -</u>	338	<del>1</del> 2			
118-96-7 2,4,6-Trinitrotoluene / alpha- LT .319 Trinitrotoluene 121-14-2 2,4-Dinitrotoluene 121-82-4 RDX / Cyclonite / Hexahydro-1,3,5- LT .653 trinitro-1,3,5-triazine * 2691-41-0 Cyclotetramethylenetetranitramine LT 2.29 479-45-8 Tetryl / N-Methyl-N,2,4,6- LT 1.29 tetranitroaniline / Nitramine / * 55-63-0 Nitroglycerine / 1,2,3-Propanetriol LT 3.2 trinitrate 606-20-2 2,6-Dinitrotoluene Cheranitrate / LT 5.02 2,2-Bis[(nitrooxy)me* LT 5.02 88-72-2 2-Nitrotoluene LT 6.492 99-35-4 1,3,5-Trinitrobenzene LT .319	NBSW1 0.0	0.		05-FEB-92	٦ ک	38873	TF13/	14797-55-8	Nitrite, nitrate - nonspecific	i	95.6	100			
Trinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene RDX / Cyclonite / Hexahydro-1,3,5- LT .653 trinitro-1,3,5-triazine * 0							UM35/	118-96-7	2,4,6-Trinitrotoluene / alpha-	1	319	1 51			
2,4-Dinitrotoluene  RDX / Cyclonite / Hexahydro-1,3,5-									Trinitrotoluene	!		170			
RDX / Cyclonite / Hexahydro-1,3,5- LT .653 trinitro-1,3,5-triazine * Cyclotetramethylenetetranitramine LT 2.29 S Tetryl / N-Methyl-N,2,4,6- LT 1.29 tetranitroaniline / Nitramine / * Nitroglycerine / 1,2,3-Propanetriol LT 3.2 trinitrate 2,6-Dinitrotoluene PETN / Pentaerythritol tetranitrate / LT 5.02 2,2-Bis[(nitrooxy)me* LT 5.02 2,2-Bis[(nitrooxy)me* LT 5.02 1,3,5-Trinitrobenzene LT 5.77 1,3-Dinitrobenzene LT 5.77								121-14-2	2,4-Dinitrotoluene	LT	.321	31			
trinitro-1,3,5-triazine *  Cyclotetramethylenetetranitramine LT 2.29  S Tetryl / N Methyl-N,2,4,6- LT 1.29  Letranitroaniline / Nitramine / *  Nitroglycerine / 1,2,3-Propanetriol LT 3.2  trinitrate 2,6-Dinitrotoluene PETN / Pentaerythritol tetranitrate / LT 5.02 2,2-Bis[(nitrooxy)me* LT 5.02 2,2-Bis[(nitrooxy)me* LT 5.02 1,3,5-Trinitrobenzene LT 5.319								121-82-4	RDX / Cyclonite / Hexahydro-1,3,5-	11	.653	190			
O Cyclotetramethylenetetranitramine LT 2.29  Tetryl / N.Methyl-N,2,4,6-  Tetryl / N.Methyl-N,2,4,6-  Tetranitroaniline / Nitramine / *  Nitroglycerine / 1,2,3-Propanetriol LT 3.2  trinitrate  trinitrate  2,6-Dinitrotoluene  PETN / Pentacrythritol tetranitrate / LT 5.02  2,2-Bis[(nitrooxy)me* LT 5.02  2,2-Bis[(nitrooxy)me* LT 5.02  1,3,5-Trinitrobenzene  1,3,5-Trinitrobenzene  LT .319									trinitro-1,3,5-triazine *						
Tetryl / N-Methyl-N,2,4,6-  tetranitroaniline / Nitramine / *  Nitroglycerine / 1,2,3-Propanetriol LT 3.2  trinitrate  2,6-Dinitrotoluene PETN / Pentaerythritol tetranitrate / LT 5.02  2,2-Bis[(nitrooxy)me* LT 5.02  2,2-Bis[(nitrooxy)me* LT 5.02  1,3,5-Trinitrobenzene LT .492  1,3,5-Trinitrobenzene LT .319								2691-41-0	Cyclotetramethylenetetranitramine	11	2.29	ner			
tetranitroaniline / Nitramine / * Nitroglycerine / 1,2,3-Propanetriol LT 3.2 trinitrate 2,6-Dinitrotoluene 2,2-Bis[(nitrooxy)me* LT 5.02 2,2-Bis[(nitrooxy)me* LT 646 3-Nitrotoluene 1,3,5-Trinitrobenzene LT .319								479-45-8	Tetryl / N-Methyl-N,2,4,6-	1.1	1.29	ner			
Nitroglycerine / 1,2,3-Propanetriol LT 3.2 trinitrate 2,6-Dinitrotoluene PETN / Pentaerythritol tetranitrate / LT 5.02 2,2-Bis[(nitrooxy)me* 2-Nitrotoluene 3-Nitrotoluene 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene LT .319									tetranitroaniline / Nitramine / *						
trinitrate 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,2-Bis[(nitrooxy)me* 2-Nitrotoluene 3-Nitrotoluene 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene trinitrobenzene								55-63-0	Nitroglycerine / 1,2,3-Propanetriol	LT	3.2	ngr.			
2,6-Dinitrotoluene LT .64 PEIN / Pentaerythritol tetranitrate / LT 5.02 2,2-Bis[(nitrooxy)me* LT .646 2-Nitrotoluene LT .646 3-Nitrotoluene LT .492 1,3,5-Trinitrobenzene LT .319									trinitrate						
PEIN / Pentaerythritol tetranitrate / LT 5.02 2,2-Bis[(nitrooxy)me* LT .646 2-Nitrotoluene LT .492 1,3,5-Trinitrobenzene LT .517 1,3-Dinitrobenzene LT .319				٠				606-20-2	2,6-Dinitrotoluene	LT	.64	ner			
c,c-bisl(nitrooxy)me* 2-Nitrotoluene 3-Nitrotoluene 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene LT .319								/8-11-5		-11	5.02	NGL			
Z-Nitrotoluene LT .646 3-Nitrotoluene LT .492 1,3,5-Trinitrobenzene LT .517 1,3-Dinitrobenzene LT .319								C C7 00	Z,Z-Bls[(hltrooxy)me*						
3-Nitrotoluene 1,3,5-Trinitrobenzene LT .517 1,3-Dinitrobenzene LT .319								7-71-99	Z-Nitrotoluene	ב	949.	NGL			
1,3,2-irinitrobenzene LT .517 1,3-Dinitrobenzene LT .319								99-08-1	5-Nitrotoluene		765	NGL			
i, s-uinitropenzene LT .319								77-00	1,3,3-Ifinitropenzene	-1	.517	UGL			
								0-00-66	ı, ɔ-bını tropenzene	5	.319	ner			

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site Type ID STRM NBSW1

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CSW Sampling Date Range: 01-JAN-91

24-001-94

Data Quals		
Flag Codes		
Unit Meas.	190 190 190 190 190 190 190 190	190 190 190 190 190 190 190 190 190
Conc.	338 10 3319 321 5.29 1.29 1.29 3.2 5.02 646	.517 .319 .338 .86.6 .319 .321 .653 .64 .646 .492 .502 .517 .338
Meas. Bool.	555 55 55 5 55	 
te Descrip	4.Nitrotoluene Nitrite, nitrate - nonspecific 2,4,6-Trinitrotoluene / alpha- Irinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine * Cyclotetramethylenetetranitramine Tetyl / N-Methyl-N,2,4,6- tetranitroaniline / Nitramine / * Nitroglycerine / 1,2,3-Propanetriol trinitrate 2,6-Dinitrotoluene PETN / Pentaerythrifol tetranitrate / 2,2-Bis[(nitrooxy)me* 2-Nitrotoluene 3-Nitrotoluene	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 4.Nitrotoluene Nitrite, nitrate - nonspecific 2,4,6-Trinitrotoluene / alpha- Trinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1,3,5-triazine * Cyclotetramethylenetetranitramine Tetryl / N-Methyl-N,2,4,6- tetranitroaniline / Nitramine / * Nitroglycerine / 1,2,3-Propanetriol trinitrate 2,6-Dinitrotoluene PEIN / Pentaerythritol tetranitrate / 2,2-Bis[(nitrooxy)me* 2-Nitrotoluene 3-Nitrotoluene 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 4-Nitrotoluene
CAS No.	99-99-0 14797-55-8 118-96-7 121-14-2 121-82-4 2691-41-0 479-45-8 55-63-0 606-20-2 78-11-5 88-72-2 99-08-1	99-35-4 99-55-0 99-99-0 14797-55-8 118-96-7 121-14-2 121-82-4 2691-41-0 479-45-8 55-63-0 606-20-2 78-11-5 88-72-2 99-08-1 99-55-0
Meth/ Matrix	UW35/ TF13/ UW35/	TF13/ UW35/
	PC 38873	PC 40827
	05-FEB-92 PR	06-FEB-92
Depth	0.0	0.0
Field Sample No.	NBSW1 NBSW2	NBSW3

NBSM3

^{**} End of Report - 211 Records Found **

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW

	Data	0 nals	; ; ;																														۷	×	¥		<b>×</b>	×		æ	<b>×</b>	¥	
	Flag	Codes	! ! !																											,	<b>-</b> 4	2			ပ								
	Unit	Meas.	del	ner	ы	ng N	ŊĠĹ	ner	ց	ner	를 :	털	d =	d d	l I I	ij	ner	ner	NGL	UGL	UGL	UGL	ner	NGL	ngF	힘	ਰ ਹ	UGL	ner	ฮู :	를 를 음	3 5	Joor	ng.	NGL		ner	ng.		ngr	195	UGL	
		Conc.	320	72.	15.4	2.5	6.01	14.9	31600	49000	90.	061 124	0 5 5 6	63.1	0829	12.5	38400	100	37.1	70.6	2.5	2	8.8	22	45.2	109	970	27500	ج :	8.17	0.01	210	<u> </u>	.321	4.56		2.29	1.29	•	3.2	79.	5.02	
	Meas.	Boot.	1 	5		5	5	-			5		-	: 1:		=		=	5		5	=		=					ָב	<u></u> ::	<u>.</u> :	5 5	_	5			5	ב	:	=	5	בו	
01-JAN-91 24-0CT-94			Nitrite, nitrate - nonspecific	Jry	Lead	Thatlium	Arsenic	Selenium	Atuminum	Iron	Lead	Magnes : Unit		Nickel	Potassium	Silver	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobal t	Copper	Vanadium	Zinc .	Catcium	Setenium	Cyanide	Arsenic	2 & K-Trinitrotoliene / alaba-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetry! / N-Methyl-N,2,4,6-	Nitro-lime / Nichalline / "	Nitroglycerine / 1,2,3-Propanetriol trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	Z,Z-BIS[(n)trooxy)me"
Date Range: 01-JAN-91		CAS No.	14797-55-8	7439-97-6	7439-92-1	7440-28-0	7440-38-2	7782-49-2	7429-90-5	7459-89-6	7459-92-1	7.30-06-5	7-80-0572	7440-02-0	2-60-0552	7440-22-4	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	7440-66-6	7-07-0447	7.82-49-2	2/1-12-3	7440-30-2 57-12-5	118-96-7		121-14-2	121-82-4		2691-41-0	8-57-6/7	0.52.03	0-69-66	606-20-2	78-11-5	
Sampling	Meth/	Matrix	<b>%</b>	SB07/	SD08/				SS15/W																					1103/	1404	1435/4	. (2000)										
	Lab	Lab Anly. No.	94978																											0,070	444100	820768											
		Lab	<u>۾</u>																													Ď											
	Sample	Date	27-MAR-92																													27-MAR-92											
		Depth	23.0																												•	23.0											
		Sample No.	91811																													91811											
	Site	<u>e</u>	91811																													918110	!										
	Site	Type	WELL																																								

* - Analyte Description has been truncated. See Data Dictionary

Appendix J
Groundwater Data

Site Site Type ID ....

91812

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Data Quals		× ×	⊻ ;	¥																																						
Flag Codes																																	~	~		~	,	≃ .	~	٥	د ۵۷	£
Unit Meas.	ner ner	Ner	חפר	79 T	<u> </u>	j :	1 1 1 1 1	100	100	3 5	<b>1</b> 50	ngr Ngr	ner	UGL	NGL	NGL	ngr	NGL	ngr	ner	UGL	<b>1</b> 90	UGL	ner	ner	NGL	NGL	ner	ngr.	UGI.	NGL	ner	NGF	Ner		NGL		ngr	UGL	101	191	,
Conc.	646	.517	.319	.338	41.	0.4	6.7	5.5	26,00	62000	100	2080	687	30.9	63.1	2920	12.5	9910	100	37.1	36.3	2.5	5	113	50.7	38.2	7,6	<b>604</b>	0976	75	11.1	8.17	2	2		5	1	ر ا	10	u	י ער	`
Meas. Bool.	55	: 5	ב'	<u>-</u> -		۲	<u>.</u> -	- F	5		П			ר	11		5		5	Lī		Ľ	LI									Ľ	Ð	QN		9	:	2	2	Ç	9 €	į
Analyte Description	2-Nitrotoluene 3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury 1994	Thelling	Trace I and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I are a second and I	Solonium Solonium	A transfer	100	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	Соррег	Vanadium	Zinc	Calcium	Selenium	Nitrite, nitrate - nonspecific	Cyanide	Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl Ketone / Isobrowylacatona / /-Mathyl-2-pan*	Tolliene	Chlorobenzene / Monochlorobenzene	
CAS No.	88-72-2	99-35-4	99-65-0	96-66-66	7/20-02-4	0-86-07/2	7.440-28-0	7-06-0447	7-64-7011	9-68-6272	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-05-2	7440-22-4	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-0442	7440-70-2	7782-49-2	14797-55-8	57-12-5	100-41-4	100-42-5		10061-01-5		107-06-2	108-10-1	108-88-3	108-90-7	
Meth/ Matrix	UW35/W			/2003	//095	/onne			56157	200																					TF13/	TY03/	UM05/									
Lab Anly. No.				97272	P.C. 14140																																					
Sample Date	27-MAR-92			44-446-03	43.U II-MAK-72																																					
Depth	23.0			27	0.0																																					
Field Sample No.	91811			.,,,,	71817																																					

* - Analyte Description has been truncated. See Data Dictionary

Field Sample No. 1

Site Site Type ID ---- WELL 91812

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Data Quals	1 1 1 1 1 1																																								
Flag Codes		œ	: (	×	œ	4	~	<u>م</u> د	nc	z oz	: ~	: ~	∝	~	~	~	~	~	œ	œ	~		<b>«</b>	≃	œ	~	œ		œ		S	œ	~	~	~	œ	œ	~	~	œ	œ
Unit Meas.	ner	· <u>1</u>		UGL	NGL	:	ng.	글 글	j :	1 10 10 11	T <u>D</u>	ngr.	NGL	NGL	NGL	UGL	NGL	ner	ngr	UGL	NGL		NGL	NCL	NGL	NGL	ner		NGL		ner	ner ner	ายก	ner	ner.	ner	UGL	NGF	ner	NGL	Ner
.conc.		t.	· L	n	2	ı	٠;	2 5	7 12	יט רי	. 10	10	10	10	10	2	2	5	5	2	2		2	2	10	2	5		2		7	2	2	20	20	10	10	10	10	10	10
Meas. Bool.	2	9	!	2	9	4	2 :	2	9	2 2	2	2	QN	Q.	Q	읒	Q.	QN QN	Q	Q	QN		2	Q	유	Q	Q		Q			9	ş	身	Q.	QN	Q	ջ	ð	2	2
Analyte Description	Dibromochloromethane /	Chlorodibromomethane Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	Dichloroethene	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	carbon tetrachloride	Metnyl n-butyl Ketone / 2-Hexanone Aratona	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*	Tetrachloroethane / 1,1,2,2-	Tetrachloroethane / Acetylene *	Unknown compound 019	Xylenes, total combined	trans-1,3-Dichloropropene	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol	2,4-Dimethylphenol	p-Cresol / 4-Cresol / 4-Methylphenol	1,4-Dichlorobenzene	4-Chloroaniline	Bis(2-chloroisopropyl) ether
CAS No.	124-48-1	127-18-4	154.50.2	7 (0 00)	156-60-5	54.32.E	20-63-5	67-66-1	2-99-29	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		75-69-4	78-87-5	78-93-3	2-00-62	79-01-6	i	79-34-5					100-01-6	100-02-7	100-51-6	105-67-9	106-44-5	106-46-7	106-47-8	108-60-1
Meth/ Matrix	UM05/																																	/90WN							
Lab Anly. No.	PC 74748																																								
Sample Date	11-MAR-92																																								
. Depth	45.0																																								

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Field Sample Sample Sample No. Depth Date 91812 45.0 11-MAR-92

Site Site Type ID

Data Quals	1 1 4 1																																															
Flag Codes	. ~	ı	<b>×</b> 1	œ	~	œ	œ	. •	۵ د	٠ ،	œ	œ	œ	2	۵	۵ ۵	د د	× 6	¥		œ	œ	: œ	: 0	د د	۷,	œ	œ		œ		œ	~	· œ		~	: œ	: œ	۵	۵ ۵	د د	<b>×</b> 1	×	~	~	~	~	œ
Unit Meas.	UGL	3	תפר מפר	<u>ק</u>	NGL	NgF	ngr	2	3 5	1	NGL	ਰ ਤ	ner n	19N	101	5	150	<u> </u>	UGL		UGL	ner	ายก	3	5	ו חפר מר	NGL	ngr		NGL		NGL	ner	ngr N		190	190	1911	-	7 10 10 10 10 10 10 10 10 10 10 10 10 10	3	ק. מי	ner	NGL	NGL	ner	UGL	UGL
Conc.	10	•	2 ;	2∶	10	10	10		2 5	2 (	2	10	10	10	, C	2 5	<u> </u>	2 5	2		10	10	10	10	2 5	O (	20	10		50		10	10	10		10	10	20	- 1	2 =		2 5	<u> </u>	10	10	10	10	10
Meas. Bool.	S	9	2 !	Q :	2	Q.	9	S	9	2 :	⊋ :	2	2	Q	2	£	2 4	2 5	Ş		2	9	S	S	2 9	€ :	2	Q		욷		Q	Š	QN QN		QN	QN	QN	2	2	9	2 9	2	2	2	9	S	Q
Analyte Description	Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe*	Bis(2-chloroethyl) ether	B1s(Z-chloroethoxy) methane	Bis(2-ethylnexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1 2 4-Trichlorohenzene		z,4-uiculorophenol	Z,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzo [ahil pervlepe	120cm 11 2 2-0 01 minors	Benno [h] fluorenthone / 3 /	Benzolpjitaojantieje / 5,4-	Benzotluoranthene	Fluoranthene	Benzo [k] fluoranthene	Acenaphthylene	Chrysene	Doruge Doruge		<pre>c,4-Dinitrophenol</pre>	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichtorobenzene	Benzo [a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexach occord opentadiene	[southorone	1 Soprior Office	Acenaphruene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine
CAS NO.	108-95-2	, , , , , , , , ,	****	1-14-111	7-18-711	117-84-0	118-74-1	120-12-7	120-82-1	120 05	7-60-021	7-41-171	129-00-0	131-11-3	132-64-9	191-24-2	102-20-5	205-205	7-11-507		206-44-0	207-08-9	208-96-8	218-01-9	50-32-B	7 2 2	2-87-10	53-70-3		534-52-1		541-73-1	56-55-3	29-50-7		606-20-2	621-64-7	65-85-0	67-72-1	7-27-22	78-50-1	82-22-0	4-75-60	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6
Meth/ Matrix	/90WN																																															
Lab Lab Anly. No.	74748																																															
Lat	5																																															

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

Data Quals	; ;																																											
Flag Codes	. ~	· œ		∝ .	œ	œ	~	~	~	∝	· 04	~	~	~	~	~		~	~	œ																			Q	۵	S	n		
Unit Meas.	 Ger	NGL		ายก :	ngr N	ner	NGL	NGL	NGL	NGL	UGL	UGI.	NGL	UGL	NGL	NGL		NGL	UGI.	NGL	UGL		190	190		TSU	UGL		NGL		UGF	UGL		15 <b>0</b>	Ori.	ner:	ngr	ngr	NCL	UGL	ਰ ਹ	ופו ופו	ner	
Conc.	10	10	ć i	20	2 :	20	10	10	10	10	50	10	10	10	50	10		50	10	10	.319		.321	.653		2.29	1.29		3.2		79.	5.02		540.	244.	/10.	.319	.338	2.5	14.9	∽ α	3150	.74	
Meas. Bool.	S S	Q	:	⊋ 9	2 !	Q.	Q.	QN	Q	Q	R	S	Ş	Q	ð	2		Ş	QN	Q	-		1	-1		11	ב		[]		L1	17	,	_ :	<u>-</u> -	<u>-</u> !	<b>5</b> !		<u>-</u> :	_			רַ	
Analyte Description	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachtorophenot	2,4,0-1Fichtorphenol	2	Z-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2.BlS[(NltFooxy)me*	Z-Nitrotoluene	1 3 5-Trinitrobenses	1 2-Dinitroboniono	( ) J-Dinitropenzene	4-Nitrotoluene	Thattium	Jakania seesama 646	Unknown compound 019	Total organic carbon	Mercury	
CAS NO.	86-73-7	87-68-3	3-70-20	88-06-2	7-00-00	4-4-6	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3	,	2-60-66			118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8	:	55-63-0		606-20-2	78-11-5	88.72.2	99-08-1	7-52-66	00-65-0	0-00-00	0-88-88	7783-70-3	7-64-7011			9-26-6272	
Meth/ Matrix	/90Wn																			:	UM35/																	, 0000	spus/	I IMOS /	UM05/	· 00	/L08S	
Lab Lab Anly. No.	PC 74748																																					77.77	/4/48D	7/.7/.8MC	74748SD	PC 77666		
Sample Date	25																																									15-MAR-92 F		
Depth	45.0																																									15.0		
Field Sample No.	91812																																									91813		
Site Site Type ID	WELL 91812																																									91813		

* - Analyte Description has been truncated. See Data Dictionary

Site Site
Type ID
---WELL 91813

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Data Quats																																												
Flag																																												
Unit Meas.	UGI.	NGL	NGL	Ner	NGF	NGL	NGL	ner	UGL	NOI	ner.	NGL	ner	ner	NGT	NGF	ner	ngi.	UGL	ner	UGL	NgF	UGL	NCL	UGL	ner	ner	NGL		Ner	ner		UGI.	NCF		UGL		NGL	UGI.		חפר	מפר	חפר	j
Conc.	1.7	2.5	6.01	14.9	316	632	100	2910	705	30.9	63.1	1250	12.5	4100	100	37.1	21.2	2.5	2	22.4	22	20	20	522	9290	75	8.17	.319		.321	.653		5.29	1.29		3.2		<del>,</del> 97	5.02	***	949.	244.	210	<u>.</u>
Meas. Bool.		ב	Ľ	Ľ			-			-1	ר	רו	ב			רו		_			Ξ	_	Ľ			ר	ב	ב		<u></u>		•	ב	ב		ב		Ξ	=	•	<u>.</u>	<u>.</u> :	<u>;</u>	_
Analyte Description	Lead	Thallium	Arsenic	Selenium	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	2 inc	Calcium	Selenium	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,42-015 Lill ti 00Ay Jille	Z-Nitrotoluene	3-Nitrotoluene	1,5,5-lFinitrobenzene	ו'ס-חווויין סספוולפוופ
CAS No.	7439-92-1	7440-28-0	7440-38-2	7782-49-2	7429-90-5	2439-89-6	7439-92-1	7439-95-4	2439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-22-4	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	2440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-0552	7440-70-2	7782-49-2	57-12-5	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		7-7/-88	79-08-1	99-55-4	0-00-44
Meth/ Matrix	SD08/				SS15/																						TY03/	UM35/																
Lab Lab Anly. No.	PC 77666																																											
Sample Date	15-MAR-92																																											
Depth	15.0																																											
Field Sample No.	91813																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Type ----

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW

	Datu Quats			<b>~</b> i																																								
	Flag (Codes (				~	~	۵	۷	α	: ~	:	~	. c	. ~		~		~	:	×		~	~	~	: ~	· ~	: 0:	: 22	: ~	: 2	: ≃	: 04	: ≃	· ~	: 🗠	: ≃	: ~	•	œ	: 2	· ~	~	œ	
	Unit Meas.	: :	UGI.	ner	חפר חפר	ngr.	<u>:</u>	j D	1981	ner ner		ner	190	ngr.		UGL		UGL		UGL		NGL	NGL	ner	ngr	150	1921	ner	ner	ner	ner	ner Ner	ner	ner	1911	ner	ner		1911	ายก ก	ner	NGL	NGL	
	Conc.	;	.338	1050	ινι	۲	5	`	2	10		5	5	5		5		2		5		5	10	10	7	5	2	10	10	10	10	5	2	5	2	72	2		2	5	10	5	5	
	Meas. Bool.	1 1 1	רַ		9 9	Š	QN	}	QN	QN		QN	QN	P		QN Q		9		QN		욧	Q.	Q	QN	Q	QN	QN	QN	QN	QN	QN	QN	ND	ND	QN	QN		QN	QN	Q.	Q.	QN	
Date Range: 01-JAN-91 24-0CT-94	Analyte Description			Nitrite, nitrate - nonspecific	Ethytoenzene Styrong / Ethomylhomana / Styrong /	Styrolope / Cippomono *	cis-1,3-Dichloropropylene / cis-1.3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl ketone /	<pre>Isopropylacetone / 4-Methyl-2-pen*</pre>	Toluene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	cis-1,2-Dichloroethylene / cis-1,2-	Dichloroethene	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	ברוווואר רו וכוורסו.ומב 11
			0-66-66	_		7	10061-01-5		107-06-2	108-10-1		108-88-3	108-90-7	124-48-1		127-18-4		156-59-2		156-60-5		56-25-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		7-69-52	78-87-5	78-93-3	79-00-5	9-10-6/	79-34-5
Sampling	_		UM35/	11005 /11	) Coulo																																							
			PC 77666																																									
	Sample Date		15-MAR-92																																									
	Depth		0.0	:																																								
	Field Sample No.	74040	91815 91814																																									
	Site 10	01012	91814																																									

^{* -} Analyte Description has been truncated. See Data Dictionary

79-34-5

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCI-

Date Quals																																												
flag Codes	~		~	≃ (	×	œ	~	2	: 02	: 0	۵ ۵	د د	2 م	۷.	~	: ≃	: ≃	: ≃	· ~	· œ	: œ	· ~	. oz	~	~	œ	~	œ	~		~	~	×	~	œ	~	~		œ		~	~	œ	
Unit Meas.	ner.		ner	ngr	ายก	ngr	NGT	ner	1 1 1	3 5		วี เรา	125	OGF	1911	190	1911	ner	ngr	3	i 5	190	TSD Ner	UGL	ngr	UGI.	UGL	UGL	NGL		NCL	NGL	ายก	ngr	NGL	ner.	ner		NGL		ner	ner	NGL	
Conc.	5		ς,	ν,	20	20	10	10	£	5 5	2 5	5 5	5 5	2	10	20,	10	10	10	10	10	10	2 0	10	10	10	10	10	10		10	10	10	10	10	50	10		50		10	10	10	
Meas. Bool.	QN		2	<b>2</b> 9	2	9	QN QN	QN	S	<b>S</b>	9 5	3 5	2 5	2	QN	9	9	9	S	QN	9	2	9	QN	윤	N S	Q	Q	2		QN	QN	Q.	Q	S	Q	Q		S		2	Q	S	
Analyte Description		Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1,5-Dichloropropene	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol	2.4-Dimethylphenol	p-Cresol / 4-Cresol / 4-Methylphenol	1 4-Dichlorohenzene	/-rhloroaniline	bio/2-chlonoiconomy 1 other	bhonol / Carbolic acid / Dhonic acid		Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethy(hexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1.2.4-Trichlorobenzene	2.4-Dichlorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzo[ghi]perylene	Indeno[1,2,3-C,D]pyrene	Benzo[b]fluoranthene / 3,4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzo [a] pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1.2:5.6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo [a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	כו בסחר / א-כשנסו ס-ק-ווו
CAS NO.	79-34-5			, , ,	9-10-001	100-02-7	100-51-6	105-67-9	106-44-5	106-46-7	106-47-8	108-40-1	108-05-2	1 ( )	111-44-4	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2		206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	56-55-3	29-20-7	
Meth/ Matrix	UM05/W			, , ,	OMU6/																		•																					
Lab Anly. No.	PC 89648																																											
Sample Date	24-MAR-92																																											
Depth	8.0																																											
Field Sample No.	91814																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

24-001-94

Data Ouats																																												
Flag Codes	: ≃	~	~	~	~	~	~	~	· œ	: ~	: ≃	~	œ	~		œ	×	c∡	~	œ	~	~	œ	~	~	×	~	~		~	×	~		~	~		~		~	~		~	œ	
Unit Meas.	ner 	UGL	NGL	ngr	NGL	TSO	ner	190	l ion	190	ner	NGL	UGL	NGL		ngr	ner	NGL	UGL	NGL	ngr	UGL	UGL	UGL	ncr	NGL	ner	UGL		UGL	ncı	IDN	NGL	UGI.	UGI.		NGL		NGL	ner		nal	ner	
Conc.	10	10	50	10	10	10	10	10	10	202	10	10	10	10		50	10	50	10	10	10	10	20	10	10	10	50	10		50	10	10	22.7	2	2		5		5	10		2	5	
Meas. Bool.	S ON	Q	9	ş	ş	QN	Q	QN	2	2	S	읒	S	읒		S	S	R	Q.	S	S	9	ᄝ	S	2	윤	S	Q.		Q.	QN	S		Q.	QN		Q		R	S		S	용	
Analyte Description	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichtorobenzene	2-Chlorophenot	2,4,5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	Nitrite, nitrate - nonspecific	Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorobenzene / Monochlorobenzene	
CAS No.	606-20-2	621-64-7	65-85-0	67-72-1	77-47-4	78-59-1	83-32-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	62-65-4	98-95-3		69-09-2			14797-55-8	100-41-4	100-42-5		10061-01-5		107-06-2	108-10-1		108-88-3	108-90-7	124-48-1
Meth/ Matrix	/90WN																																TF13/											
Lab Lab Anly. No.	PC 89648																																PC 85200											
Sample Depth Date	2																																11.0 20-MAR-92											
Field Sample No. De																																	91815 1											

* - Analyte Description has been truncated. See Data Dictionary

91815

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

24-0CT-94

Field Sample Sample Sample No. Depth Date 11.0 20-MAR-92

Site Site
Type ID

Sampting Date Range: 01-088-71 C4-001-74	Meas.UnitFlagDataMatrixCAS No.Analyte DescriptionBool.Conc.Meas.CodesQuals		UMO5/ 124-48-1 Dibromochloromethane / ND 5 UG. R	Unlordibromethale NN 5 IIG R	Tetrachloroethene / Perchloroethylen*	156-59-2 cis-1,2-Dichloroethylene / cis-1,2- ND 5 UGL R	Dichloroethene	156-60-5 trans-1,2-Dichloroethylene / trans- ND 5 UGL R	1,2-Dichloroethene	Carbon tetrachloride ND 5 UGL	Methyl n-butyl ketone / 2-Hexanone ND 10 UGL	, ngr	Chloroform ND 5 UGL	Benzene ND 5 UGL	1,1,1-Trichloroethane ND 5 UGL	Bromomethane ND 10 UGL	Chloromethane ND 10 UGL.	Chloroethane ND 10 UGL	Vinyl chloride / Chloroethene ND 10 UGL	75-09-2 Methylene chloride / Dichloromethane ND 5 UGL R	Carbon disulfide ND 5 UGL	Bromoform ND 5 UGL	ND 5 UGL	1,1-Dichloroethane ND 5 UGL	1,1-Dichloroethylene / 1,1- ND 5 UGL	Dichloroethene	ane ND 5 UGL	1,2-Dichloropropane ND	Methyl ethyl ketone / 2-Butanone ND 10 UGL	1,1,2-Trichloroethane ND 5 UGL	ıloroethene / ND 5 UGI.	Ethinyl trichloride /T*	79-34-5 Tetrachloroethane / 1,1,2,2- ND 5 UGL R	Tetrachloroethane / Acetylene *	ND 5 UGL	trans-1,3-Dichloropropene ND 5 UGL R	ND 50 UGL	100-02-7 4-Nitrophenol ND 50 UGL	Benzyl alcohol NB 10 UGL	enol ND 10 UGL	n-Cresol / 4-Cresol / 4-Methylphenol ND 10 10	1 4-Nichlorobenzene	A DISTRICT CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON THE CONTROLLS ON		10 ngr
חמות הם	CAS NO.	1 1 1 1	124-48-	127-18-	į	156-59-		156-60-		56-23-5	591-78-	67-64-1	67-66-3	71-43-2	71-55-6	74-83-5	74-87-3	75-00-3	75-01-4	75-09-5	75-15-0	75-25-5	75-57-1	75-34-3	75-35-6		1-69-52	78-87	78-93-	-00-62	79-01-(		79-34-				100-01	100-02	100-51	105-67	106-44	106-44	104-47	27.001	108-00
Sampt 1119	Meth/ Matrix	;	UM05/																																		/90MO								
	Lab Lab Anly. No.		PC 85200																																										

^{* -} Analyte Description has been truncated. See Data Dictionary

24-001-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

24-0CT-94

Field Sample Sample No. Depth Date

Site Site
Type ID
....
WELL 91815

Data Quals	;																																												
Flag Codes	. ~	:	œ	œ	œ	~	~	~	~	· œ	: œ	د ۵	2 م	۵ ک	2 ک	د ۵	د α	<b>-</b>	۵	د ۵	2 2	د ۵	2 م	٠ ۵	¥ 0	<b>4</b>	۵	2	α	: C:	: 02	٤	~	~	· œ	· 04	: 0	۵ ک	۵ ک	د 2	۵ ک	د ۵	۵ ک	۰ ۵	:
Unit Meas.	ner	i i	NGL	Ner	NGL	NGL	ner	תפר	TSN	1911	<u> </u>	<u> </u>	<u> </u>	3 3	<u> </u>	] 	<u> </u>	3	=	101	Jon Con	<u> </u>	j 5	3 3	1 2	100	2	30	3	<u> </u>	Hel	7	ner	ner	ner	190	101	d ::	j 5	ğ <u>:</u>	j 1	190	d =	101	1
Conc.	10		<b>1</b> 0	10	10	10	9	9	10	10	10	: <del>C</del>	2 0	: =	<u></u>	: C	2 =	2	10	£	10	: 6	) (	. <u>.</u>	? ⊊	2	5.0	2	10	£	: £	) -	10	10	50	10	10	2 =	2 =	2 €	2 €	2 €	2 =	2	
Meas. Bool.	QN QN		Ş	ş	2	윤	2	2	S	Q	9	9	2	9	2	9	2	!	Q	S	9	Q	S	S	<u> </u>	<u>}</u>	Ş	}	QN	Q	Q		QN.	QN	QN	ON	QX	Ş	Ę	2	Ş	9	Ş	9	
Analyte Description	Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe*	Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzo[ghi]perylene	Indeno[1,2,3-C.D]pyrene	Benzo[b]fluoranthene / 3.4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzo [a] pyrene	2.4-Dinitrophenol	Dibenz[ah]anthracene / 1.2:5.6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4.6-	dinitrophenol	1,3-Dichlorobenzene	Benzo [a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	
CAS No.	108-95-2	;	111-44-4	111-91-1	7-18-711	117-84-0	1-5/-911	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2		206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	56-55-3	29-20-7		606-20-2	621-64-7	65-85-0	67-72-1	77-47-4	78-59-1	83-32-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6	
Meth/ Matrix	/90WD																																												
Lab Lab Anly. No.	PC 85200																																												

* - Analyte Description has been truncated. See Data Dictionary

Field Sample No. 1

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCI-Sampling Date Range: 01-JAN-91 24-OCI-

Data Quals	1																																												
Flag Codes	:	~	~		~	~	~	~	~	œ	œ	~	~	œ	œ	œ	œ		œ	œ	œ	s	œ	~	~	œ	œ	œ	~	~	œ		œ	~	œ	œ	~	~	~	œ	: 0<	~	: 04	œ	· ~
Unit Meas.	:	NGL	NGL		UGL	ng.	ner	Jon	ŊĊſ	NGL	NGL	NGL	NGL	NGL	ner	ner	ner		ner	ng Ng	ner	ner	19N	NGL	19N	UGL	UGL	UGL	NGL	NG!	UGL		ner	NCL	NGL	Net	UGL	UGL	UGL	ner	g	ner	l d	ner	UGL
Conc.	1 1	10	10		20	10	50	10	10	10	50	20	10	10	10	20	10		50	10	10	20	50	50	10	10	10	10	10	10	10		10	10	10	10	10	10	10	10	£	10	10	10	10
Meas. Bool.		ş	2		Q	웆	Ş	2	윤	2	Ş	ջ	QN	2	Q	ջ	ð		2	용	Q		S	9	Ş	Q.	QN	9	S	ð	QN		Q	9	Q.	ə	읒	Q	9	Q	9	QN	9	용	ð
Analyte Description		Fluorene / 9M-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	Unknown compound 565	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol	2,4-Dimethylphenol	p-Cresol / 4-Cresol / 4-Methylphenol		4-Chloroaniline	Bis(2-chloroisopropyl) ether	Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe*	Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzo[ghi]perylene
CAS No.		86-73-7	87-68-3	,	g/-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3		2-60-66				100-01-6	100-02-7	100-51-6	105-67-9	106-44-5	106-46-7	106-47-8	108-60-1	108-95-2		111-44-4	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2
_		NW06/																					/90WN																						
Lab Lab Anly. No.		ىر 85200																					PC 85219																						
Sample Date		20-MAR-92																					20-MAR-92																						
. Depth	: (	11.0																					0.0																						

918150

^{* -} Analyte Description has been truncated. See Data Dictionary

Field Sample No. 1

Site Site Type 10 .... WELL 91815

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW

24-0C1-94	
01-JAN-91	
Range:	
Date	
Sampling	

Data Quats	,																																											
Flag Codes	· ~	œ		~	œ	œ	~	۵	٠ ۵	: 04	<u>:</u>	œ		œ	œ	~		~	~	œ	~	~	: 02	~	· œ	~	: ∝	~	~	œ	~		œ	×	64	œ	×	~	· ~	: ~	۵ ۵	د ۵	<u>د</u> م	< 0≤
Unit Meas.	ner	NGL		NgF	NGL	UGI	NGL	2	nei	5 5	3	NGL		UGL	UGI	ner		ner	ner	TOO	NGL	T90	ner	190	ner	ner	ngn	UGL	UGL	ner	NGL		UGL	UCL	ner	UGI	UCI	ner	190	ner	35	חמר	<u> </u>	ner.
Conc.	10	10		10	10	10	10	10	50	10	<u>}</u>	50		10	10	10		10	10	50	10	10	9 0	10	10	10	10	10	10	10	10		50	10	20	10	10	10	50	20	10	2 5	10	20
Meas. Bool.	9	Q	!	Q.	2	S	S	S	9	S	1	Q		Q	Q	Q		QN	QN	QN	QN	QN	2	Q	QN QN	S	QN	QN.	QN	Q	QN		Q.	QN	QN ON	Q	Q.	Q	Q	2	2	2 5	Ş	Q.
Analyte Description	Indeno[1,2,3-C,D]pyrene	Benzo[b]fluoranthene / 3,4-	Benzofluoranthene	Fluoranthene	Benzo[k] tluoranthene	Acenaphthylene	Chrysene	Benzofalpyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1.2:5.6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo[a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9M-fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Gresol / 2-Methylphenol	1.2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenol
CAS No.	193-39-5	205-99-2	0 // /00	0-44-007	6-80-707	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	56-55-3	59-50-7		606-20-2	621-64-7	65-85-0	67-72-1	7-45-72	78-59-1	83-32-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4
Meth/ Matrix	/90WN																																											
Lab Anly. No.	PC 85219																																											
Sample Date	20-MAR-92																																											
o. Depth	0.0																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

Site ID ----

Site Type TYPE

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

24-001-94

Data Quals	1																																												
Flag Codes		~	~	~	s		~	~		œ	•	œ	~		~	~	~		<u>~</u>		~		22	1	œ	د د	2 0	ne	¥ (	צו	×	×	œ	œ	~	~	č	~	: ≃	: 02	: 0	₹	œ	. œ	
Unit Meas.	ner	1911	ner	ner.	UGL	NGL	ner	ngr		ner		NGL	ner		UGL	ner	ner		nei		NGL		1911	2	191	<b>3</b> 3	101	<b>d</b> 5	OGE	Upl	UGI.	ner.	UCI	<b>n</b> er	NGL	ner	nei	ner	ign ner	5	101	200	ner	ner	
Conc.	10	50	10	10	20	21.4	2	5		5:		5	10		2	ī	5		5		2		5	1	i.r	, <del>.</del>	2 %	2 4	<b>7</b> L	<b>^</b> '	Λ [;]	10	10	10	10	2	2	5	٠ ي	ı.	, tc	1	25	νω	
Meas. Bool.	<del>-</del> 9	Q	9	9			Ð	Q		S		Q	Q		QN	QN	QN		QN		QN.		QN	<u>!</u>	CN	2 5	2		2 4	2 :	2	Q	2	Q	ND ND	QN	QN	QN	Q	9	Ę	ì	S	9	
Analyte Description	Nitrobenzene / Essence of mirbane /	Oil of mirbane 3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	Unknown compound 565	Nitrite, nitrate - nonspecific		Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	cis-1,2-Dichloroethylene / cis-1,2-	Dichloroethene	trans-1.2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-hityl ketone / 2-Hexanone	Acetone	Chloroform			i, i, i-iricnioroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1.1-Dichloroethane	1.1-Dichloroethylene / 1.1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	
CAS No.	98-95-3	2-60-66				14797-55-8	100-41-4	100-42-5		10061-01-5		107-06-2	108-10-1		108-88-3	108-90-7	124-48-1		127-18-4		156-59-2		156-60-5		56-23-5	591-78-6	67-64-1	67-66-3	C 20 10	71-43-6	0.00.17	74-83-4	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		75-69-4	78-87-5	
Meth/ Matrix	/90WN					TF13/	UM05/																																						
Lab Anly. No.	PC 85219					PC 85219																																							
Sample Date	20-MAR-92					20-MAR-92																																							
Depth	0.0					11.0																																							
Field Sample No.	918150																																												

^{* -} Analyte Description has been truncated. See Data Dictionary

91816

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW

Dato Gents	:	
flag Codes	~ ~ ~ <b>~</b>	~ ~ ~ ~ ~ ~
Unit Meas.	<b>NGF</b> 190  100  100  100  100  100	<b>5</b>
Conc.	20 00 00 00	5. 6.71 6.71 14.9 5160 12000 1000 1000 1250 1250 1250 1250 12
Meas. Bool.	ON ON ON ON	9 9 992 ל ללל לל לללל לפ
Analyte Description	Methyl ethyl ketone / 2-Butanone 1,1,2-Trichloroethane Trichloroethylene /Trichloroethene / Ethinyl trichloride /T* Tetrachloroethane / 1,1,2,2- Tetrachloroethane / Acetylene * Xylenes, total combined	trans-1,5-Dichloropropene Mercury Lead Thallium Arsenic Selenium Aluminum Ilron Lead Manganese Molybdenum Nickel Potassium Silver Sodium Thallium Antimony Barium Cobalt Copper Vanadium Cobalt Copper Vanadium Strinc Cilcium Strrene / Ethenylbenzene / Styrol / Styrolene / Cinnamene * Cis-1,3-Dichloropropylene / cis-1,3- Dichloropropene
CAS No.	78-93-3 79-00-5 79-01-6 79-34-5	7439-97-6 7439-92-1 7440-28-0 7440-38-2 7782-49-2 7782-49-2 7429-90-5 7439-90-5 7439-90-5 7439-90-6 7440-02-0 7440-02-0 7440-02-0 7440-23-5 7440-41-7 7440-41-7 7440-66-6 7440-66-6 7440-66-6 7440-66-6 7440-66-6 7440-66-6 7440-66-6 7782-49-2 14797-55-8 57-12-5 100-41-4 100-42-5
Meth/ Matrix	UM05/	SS15/ SS15/ SS15/ UM05/
	PC 85219	PC 77674
Sample Date	20-MAR-92	14-MAR-92
Depth	11.0	25.0
Field Sample No.	918150	91816

* - Analyte Description has been truncated. See Data Dictionary

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-0CI-JAN-91 24-0CI-

	Date: Ottal s	:																																													
	Flag Codes		œ	c	د د	×c	ĸ	٥	¥	c	۷	5	¥		×	~	œ	œ	~	~	: cz	: ≃	: ≃	۵ '	۷ ۵	× c	χ (	¥	œ	œ	~		œ	ď	~	×	~		~		~	~	œ	œ	~	~	œ
	Unit Meas.	1 1 1 1	ner.	2	1 00	חקה.	OGL	3	OGF	Ş	150	Š	Uul		Tgn	NGL	UGL	ngi	NCL	ner	190	i jin	ign	101	100	חחח	מה ה	ng: Odi	UGL	NGL	NCL		NGL	ner	ner	NGL	UGL		NGL		ner	NGL	ner	NGL	ngr	UGL	ner
	Conc.	1 1 1 1	10	Ľ	۵ ـ	<b>Ω</b> μ	<b>-</b>	u	٦	u	1	L	^		2	10	10	5	2	2	10	10	10	£	2 u	<b>∩</b> 4	n 1	Λ 1	2	5	2		5	5	10	5	77		2		2	5	50	50	10	10	10
	Meas. Bool.		9	Ş	2 4	2 5	Š	Ş	Ş	5	2	9	S		Q	Q	QN	Q.	QN	QN	QN.	2	9	2	2 2	2 5	2 5	2	Š	ş	2		9	Q.	2	Q	QN		Q		QN	S	Q	R	Q.	ON	Q
100-47	Analyte Description		Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*		Dibromorblosomorboso /	Chi on distriction of the characters	Interachlorosthylope /	Tetrachioethylene /	letrachloroethene / Perchloroethylen* cis-1 2-pickloroathyloso / cis-1 2-	בוז ולד חורוו מברוולוכווב / בוז ולד	Dichloroethene	trans-1,2-Dichloroetnylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1.1.1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinvl chloride / Chloroethene	Mothylone officers / Dish onesthere	Corpor dionifide / Dichiolomethane	Sampoli disutti de	Bromotorm	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*	Tetrachloroethane / 1,1,2,2-	Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1,3-Dichloropropene	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol	2,4-Dimethylphenol	p-Cresol / 4-Cresol / 4-Methylphenol
Date hange, of this	CAS No.		108-10-1	108-88-7	100 001	12/-/8-1	1 -0+ -+7-	127-18-7	t 01 - 17	154-50-2	7 7 7	154.40.5	0-00-001	,	56-23-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	0-01-07	7-67-61	12-51-4	75-34-3	75-35-4		75-69-4	78-87-5	78-93-3	2-00-62	79-01-6		79-34-5				100-01-6	100-02-7	100-51-6	105-67-9	106-44-5
Sell Johnson	Meth/ Matrix	1	UM05/																																								/90W0				
,		•	PC 77674																																												
	Sample Date		14-MAR-92																																,												
	Depth	:																																													
	Field Sample No.		91816																																												

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

Data Quals																																														
Flag Codes	: : ~	. ≃	œ	œ		œ	~	: 2≃	20	۵ ۵	<u>د</u> 0:	: a	۵ ک	۵ ک	۵ ک	۵ د	< ≏	2 د	<u>∠</u> ⊙	2 د	<b>~</b>	1	× 0	د د	<b>×</b> 0	×	œ	~	~		~		œ	œ	~	:	~	: œ	: ≃	: 22	: 2	: 0	∠ 0	د د	×	×
Unit Meas.	 19 <b>0</b>	UGI.	NCL	NGL		ner	ner	<u>19</u> 11	]   []	101	ופּוּ	101	35	16	<del>1</del> 591	1 0 E	100	d i	יופור	100	Out	9	חפר	i odi:	Jan 1	Olak	UGI,	ner	NGL		חכו		ner	UGI	150	į	NOL	ner	150	190	<u> </u>	<b>1</b> 50	ולה ה	100	UGL	ายเ
Conc.	10	10	10	10		10	10	10	10	2 (	01	2 2	£	10	2 (	10	2 €	£	2 (2	<u></u>	2	Ç	2 5	2 5	2 5	2 ;	10	20	10		50		10	10	10		10	10	50	10	- 2	, <del>,</del>	5 5	2 5	<u> </u>	01.
Meas. Bool.	- QN	Q	Q	Q		Q	Q	Q	9	2	2 9	9	9	9	9	9	2	2	<u> </u>	, <u>5</u>	2	2	2 5	2 5	2 5	2 :	2	Q	QN		Q.		QN	S	QN		QN	ON	QN	QN	CN CN	9	£ 5	2 5	2 5	ON N
Analyte Description	1,4-Dichlorobenzene	4-Chloroaniline	Bis(2-chloroisopropyl) ether	Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe*	Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1.2.4-Trichlorobenzene	2.4-Dichlorophenol	2.4-Dinitrotoluene	Benzo[def]phenanthrene / Pvrene	Dimethyl phthalate	Dibenzofuran	Benzafahilnerviene	Indeno[1,2,3-C.D]pyrene	Benzofblituoranthene / 3 4-	Benzofluoranthene	Flincanthone	Benzofklfluoranthene	Acenanhthylene	Chrysene		penzolaj pyrene	Z,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo[a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthelete	District obtains	DI-M-buryr parmarare
CAS No.	106-46-7	106-47-8	108-60-1	108-95-2		111-44-4	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2		206-44-0	207-08-9	208-96-8	218-01-9	50-22-8	20-02-0	C-87-1C	55-70-3		534-52-1		541-73-1	56-55-3	59-50-7		606-20-2	621-64-7	65-85-0	67-72-1	77-47-4	78-59-1	83-32-9	84-66-2	2 27 - 78	J t 5
Meth/ Matrix	/90MD																																													
Lab Lab Anly. No.	PC 77674																																													
Sample Date	14-MAR-92																																													
Depth	25.0																																													
Field Sample No.	91816																																													

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Jype: CGW 24-OCT-

Data Quals																																											
Ftag Codes	:	<u>~</u>	~	~	~	~		~	~	~	: <b>~</b>	~	~	: œ	~	~	œ	~	œ	~		×	~	œ																			
Unit Meas.	:	ngı.	UGL	UGF	UGL	UGL		UGL	UGL	UGL	T9N	ner	1911	190	190	J J	UGL	UGL	ner	ugr		UGL	NGL	UGL	UGL		UGL	ner		UGI.	nei.		OGI.	ngr	ner	UGL	ner	NGL	ner	NGL	ng.	ner ner	1 }
Conc.		10	10	10	10	10		50	10	50	10	10	10	10	20	10	10	10	50	10		50	10	10	.319		.321	.653		2.29	1.29		5.2	79.	5.02	959.	.492	.517	.319	.338	.74	2.5	1
Meas. Bool.	1 - 1	2	읖	읒	Ş	2		S	Q	Q	2	9	S	2	9	2	S	Ş	S	R		ð	2	S	[1		ר	ב		_			=	11	-	ב	<u>_</u>	ב	ב	-	_	1	;
Analyte Description		Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachtorophenol	2.4.6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylpaphthalene	2-Chloronaphthalene	3.3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,5-Propanetriol	2.6-Dinitrotoluene	PEIN / Pentaerythritol tetranitrate /	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Lead Thallium	
CAS No.		85-01-8	85-68-7	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3		69-09-2			118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8	: :	0-59-65	606-20-2	78-11-5	88-72-2	99-08-1	66-35-4	0-59-66	0-66-66	7439-97-6	7440-28-0	)
_		/90WN																							UM35/															J	SB07/	2008/	
Lab Lab Anly. No.	1 1 1 1 1 1 1	77674																																							81752		
		14-MAR-92 PC																																							14.0 17-MAR-92 PC		
Depth		25.0																																							14.0		
Field Sample No.	1 1 1 1 1 1 1	91816																																							91817		
		91816																																							91817		
Site Type		WELL																																									

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site Type ID WELL 91817

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

Data Quats	:																																											
Flag Codes	1 1																										Ω.	: 2	:	~		œ	: ≃		Œ	د ۵	: 02	£	~		œ		œ	
Unit Meas.	190	d d	UGL	UGL	UGL	NGL	กยา	UGL	ายก	191	3 3	1 2	ק ק ווכי	5 5	1 2	ה ה	750	j 3	d =	35	d ::	j 5	- E	100	<u> </u>	ng.	190	190	1	ner		UGL	UGL		30	d 2	1101	;	UGL		UGL		ner	
Conc.	6.01	14.9	1300	2880	100	12000	88.4	30.9	63.1	1250	12.5	2070	101	27.1	 	7.0		7 72	5 K	2 1	2 2	516	23700	7.	580	8.17	2	2		2		5	10		2		. 50	ı	5		2		2	
Meas. Bool.		; <b>-</b> 5			ב				11			i	11	. ₋	;	-	: <u>-</u>	;	<u>-</u>	i <u>-</u>	; =	i		11	i	LT	Ą	QN QN		S		NO ON	S		QN.	9	Q.	<u>:</u>	N Q		S		QN QN	
e Description	Arsenic	Selenium	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Thattium	Antimony	Barium	Bervilim	Cadmium	Chromitan	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Nitrite, nitrate - nonspecific		Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	cis-1,2-Dichloroethylene / cis-1,2-	Dichloroethene	trans-1,2-Dichloroethylene / trans- 1,2-Dichloroethene	
CAS NO.	7440-38-2	7782-49-2	7429-90-5	7459-89-6	1-26-654/	7459-95-4	7459-96-5	7439-98-7	7440-02-0	2-60-0572	7440-22-4	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7-87-0572	7440-50-8	7440-62-2	2440-66-6	7440-70-2	7782-49-2	14797-55-8	57-12-5	100-41-4	100-42-5		10061-01-5		107-06-2	108-10-1	;	108-88-3	108-90-7	124-48-1		127-18-4		156-59-2		156-60-5	
Meth/ Matrix	SD08/	1	M/CLSS																						TF13/	TY03/	UM05/W																	
Lab Lab Anly. No.	PC 81752																																											
Sample Date	17-MAR-92																																											
Depth	14.0																																											
Field Sample No.	91817																																											

* - Analyte Description has been truncated. See Data Dictionary

Field Sample No. 1

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

| 1<br>,<br>,<br>,<br>, |                                                       |                                                                                                                    |                                                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·<br>·                | ~                                                     | ~                                                                                                                  | œ                                                                                                                                           | ~                                                                                                                                                | ٥                                                                                                                                                                                                        | <b>x</b> (                                                                                                                                                                                                                                                                                                                                                                                                                       | ¥                                                                                                                                                                                                                                                                                                         | ~                                                                                                                                                                                                                                                                                                                                                                                                                                            | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ء د                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | œ                                                                                                                                 | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | œ                                           | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
                                                                                                                                                                                                                                                                          | ~                                            | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ner                   | ngr                                                   | NGL                                                                                                                | UGL                                                                                                                                         | UGL                                                                                                                                              | -                                                                                                                                                                                                        | ָ<br>הַפָּר                                                                                                                                                                                                                                                                                                                                                                                                                      | UGL                                                                                                                                                                                                                                                                                                       | NGL                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ŋgn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UGL                                                                                                                               | UGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ner.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NGI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UGL                                         | UGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                                                                          | NGL                                          | UGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | 10                                                    | 10                                                                                                                 | 2                                                                                                                                           | 2                                                                                                                                                | , <b>u</b>                                                                                                                                                                                               | n •                                                                                                                                                                                                                                                                                                                                                                                                                              | 01                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ο !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ហ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | īΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
                                                                                                                                                                                                                                                                          | 10                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9                     | 2                                                     | Q                                                                                                                  | QN                                                                                                                                          | 9                                                                                                                                                | =                                                                                                                                                                                                        | ₹ :                                                                                                                                                                                                                                                                                                                                                                                                                              | ₽                                                                                                                                                                                                                                                                                                         | ə                                                                                                                                                                                                                                                                                                                                                                                                                                            | QN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ş                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q                                                                                                                                 | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ą                                           | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ş                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
                                                                                                                                                                                                                                                                          | Q                                            | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Carbon tetrachloride  | Methyl n-butyl ketone / 2-Hexanone                    | Acetone                                                                                                            | Chloroform                                                                                                                                  | Benzene                                                                                                                                          | 4 4 4 Think Conceptions                                                                                                                                                                                  | ',','-'I'I'Cntoroetnane                                                                                                                                                                                                                                                                                                                                                                                                          | Bromomethane                                                                                                                                                                                                                                                                                              | Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                | Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vincel obligation / Chlosoothopo                                                                                                                                                                                                                                                                                                                                                                                                                                                         | viny chicolide / chicolochiche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metnylene chloride / Dichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.1-Dichloroethylene / 1.1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Methyl ethyl ketone / 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,1,2-Trichloroethane                                                                                                             | Trichloroethvlene /Trichloroethene /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ethinyl trichloride /1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tetrachloroethane / 1.1.2.2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tetrachloroethane / Acetylene *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Xylenes, total combined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benzyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p-Cresol / 4-Cresol / 4-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bis(2-chloroisopropyl) ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Phenol / Carbolic acid / Phenic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / Phenylic acid / Phe*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bis(2-chloroethyl) ether                    | Bis(2-chloroethoxy) methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bis(2-ethylhexyl) phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
                                                                                                                                                                                                                                                                          | Di-n-octyl phthalate                         | Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2.4-Trichtorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 56-23-5               | 591-78-6                                              | 67-64-1                                                                                                            | 67-66-3                                                                                                                                     | 71-43-2                                                                                                                                          | 71-55-4                                                                                                                                                                                                  | 0-00-17                                                                                                                                                                                                                                                                                                                                                                                                                          | 74-83-9                                                                                                                                                                                                                                                                                                   | 74-87-3                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75-00-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75-01-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7-60-67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75-15-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75-25-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75-27-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75-34-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75-35-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75-69-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78-87-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78-93-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79-00-5                                                                                                                           | 79-01-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79-34-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100-01-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100-02-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100-51-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105-67-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106-44-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 106-46-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 106-47-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108-60-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108-95-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111-44-4                                    | 111-91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117-81-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                                                                                          | 117-84-0                                     | 118-74-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120-12-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120-82-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| UM05/W                |                                                       |                                                                                                                    |                                                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /90MN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | | | | | | | | | | | |
                                                                                                                                                                                                                                                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       |                                                       |                                                                                                                    |                                                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | | | | | | | | | | | |
                                                                                                                                                                                                                                                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 17-MAR-92             |                                                       |                                                                                                                    |                                                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | | | | | | | | | | | |
                                                                                                                                                                                                                                                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| · ;=                  |                                                       |                                                                                                                    |                                                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | PC 81752 UM05/W 56-23-5 Carbon tetrachloride ND 5 UGL | PC 81752 UM05/W 56-23-5 Carbon tetrachloride ND 5 UGL R<br>591-78-6 Methyl n-butyl ketone / 2-Hexanone ND 10 UGL R | PC 81752 UM05/W 56-23-5 Carbon tetrachloride ND 5 UGL R 591-78-6 Methyl n-butyl ketone / 2-Hexanone ND 10 UGL R 67-64-1 Acetone ND 10 UGL R | PC 81752 UM05/W 56-23-5 Carbon tetrachloride ND 5 UGL R 57-64-1 Acetone ND 10 UGL R 67-64-1 Acetone ND 10 10 UGL R 67-66-3 Chloroform ND 5 UGL R | PC 81752 UM05/W 56-23-5 Carbon tetrachloride ND 5 UGL R 591-78-6 Methyl n-butyl ketone / 2-Hexanone ND 10 UGL R 0.5-64-1 Acetone ND 10 10 UGL R 67-66-3 Chloroform ND 5 UGL R 71-43-2 Renzene ND 5 UGL R | PC         81752         UMO5/W         56-23-5         Carbon tetrachloride         ND         59         78-6         Methyl         ND         10         UGL         R           67-64-1         Acetone         ND         10         10         UGL         R           67-66-3         Chloroform         ND         5         UGL         R           71-55-2         Benzene         ND         5         UGL         R | PC 81752 UM05/W 56-23-5       Carbon tetrachloride       ND 5       UGL R         67-64-1       Acetone       ND 10 0GL R         67-64-3       Chloroform       ND 5       UGL R         71-43-2       Benzene       ND 5       UGL R         71-55-6       1,1,1-Trichloroethane       ND 5       UGL R | PC         81752         UMO5/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         ND         10         UGL         R           67-66-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           74-83-9         Bromomethane         ND         5         UGL         R | PC         81752         UMO5/W         56-23-5         Carbon tetrachloride         ND         59         UGL         R           67-64-1         Acetone         ND         10         UGL         R           67-66-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R | PC 81752 UMO5/W 56-23-5         Carbon tetrachloride         ND 5         UGL R           67-64-1 Acetone         Acetone         ND 10 0GL R           67-66-3 Chloroform         ND 5         UGL R           71-43-2 Benzene         ND 5         UGL R           71-55-6 1,1,1-Trichloroethane         ND 5         UGL R           74-83-9 Bromomethane         ND 10 UGL R           74-83-7 Chloromethane         ND 10 UGL R           74-83-7 Chloromethane         ND 10 UGL R | PC 81752         UMO5/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-55-6         1,1,1-Trichloroethane         ND         5         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           75-01-3         Chloromethane         ND         10         UGL         R           75-01-4         Visual chloroethane         ND         10         UGL         R           75-01-4         Visual chloroethane         ND         10         UGL         R | PC 81752         UMO5/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         ND         10         UGL         R           67-64-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-55-6         1,1,1-Trichloroethane         ND         5         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           74-87-3         Chloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-4         Vinyl chloride / Chloroethene         ND         10         UGL         R | PC 81752         UMO5/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-66-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-55-6         1,1,1-Trichloroethane         ND         5         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-3         Chloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloroethane         ND         10         UGL         R           75-01-2         Methylene chloride / Dichloromethane         ND         5         UGL         R | PC 81752 UM05/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-55-6         1,1,1-Trichloroethane         ND         5         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-3         Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloroethene         ND         10         UGL         R           75-03-4         Wethylene chloride / Dichloromethane         ND         5         UGL         R           75-09-2         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R | PC 81752 UMO5/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         ND         10         UGL         R           67-64-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-55-6         1,1,1-Trichloroethane         ND         5         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloroethene         ND         10         UGL         R           75-09-2         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-15-0         Carbon disulfide         Dichloromethane         ND         5         UGL         R           75-15-2         Bromoform         ND         5         UGL         R         75-15-0         UGL         R | PC 81752         UMO5/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-55-6         1,1,1-Trichloroethane         ND         5         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-3         Chloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-4         Vinyl chloride / Chloroethene         ND         5         UGL         R           75-09-2         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-25-2         Bromoform         ND         5         UGL         R         C           75-27-4         Bromodichloromethane         ND         5         UGL         R | PC 81752         UMO5/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-55-6         1,1,1-Trichloroethane         ND         5         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-3         Chloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Dichloromethane         ND         5         UGL         R           75-02-5         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-27-4         Bromodichloromethane         ND         5         UGL         R           75-37-3         1.1-Dichloromethane         ND         5         UGL         R           75-37-4         Bromodichloromethane <t< td=""><td>PC 81752         UMOS/W         Sec23-5         Carbon tetrachloride         ND         10         UGL         R           67-64-1         Acetone         ND         10         UGL         R           67-64-3         Chloroform         ND         10         UGL         R           67-66-3         Chloroform         ND         5         UGL  
      R           71-43-2         Benzene         ND         5         UGL         R           71-55-6         1,1,1-Trichloroethane         ND         10         UGL         R           74-83-9         Brommethane         ND         10         UGL         R           74-87-3         Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloroethane         ND         10         UGL         R           75-09-2         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-09-2         Bromodichloromethane         ND         5         UGL         R           75-25-2         Bromodichloroethane         ND         5         UGL         R           75-34-4         1,1-Dichloroethane         ND</td><td>PC 81752         UMOS/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-3         Chloroform         ND         10         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Dichloromethane         ND         5         UGL         R           75-09-2         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-27-4         Bromodorichloromethane         ND         5</td><td>PC 81752         UMO5/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-66-3         Chloroform         ND         10         UGL         R           67-66-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-55-6         1,1,1-Trichloroethane         ND         10         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-3         Chloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-4         Vinyl chloride / Dichloromethane         ND         5         UGL         R           75-09-2         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-27-4         Bromoform         ND         5         UGL         R           75-35-4         1,1-Dichloroethane         ND         5</td><td>PC 81752         UMO5/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         67-64-1         Acetone         Chloroform         ND         10         UGL         R           67-66-3         Chloroform         ND         10         UGL         R           71-43-2         Benzene         ND         5         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Dichloromethane         ND         5         UGL         R           75-01-4         Vinyl chloride / Dichloromethane         ND         5         UGL         R           75-01-4         Vinyl chloride / Dichloromethane         ND         5         UGL         R           75-01-5         Garbon disulfide         ND         5         UGL         R           75-15-0         Bromodichloromethane         ND         5         UGL         R           75-34-3         1,1-Dichloroethylene         1,1-         ND         5         UGL         R</td><td>PC 81752 UMO5/W 56-23-5         Carbon tetrachloride         ND 5         5         UGL R CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP</td><td>PC         81752         UMO5/W 56-33-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         67-64-1         Acetone         7-Hexanone         ND         10         UGL         R           67-64-3         Chloroform         ND         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10</td><td>PC 81752         UMO5/W 56-33-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         67-64-1         Acetone         7-Hexanone         ND         10         UGL         R           67-64-1         Acetone         67-64-1         Acetone         ND         10         UGL         R           71-63-2         Chloroform         ND         5         UGL         R         10         UGL         R           71-63-2         Bromomethane         ND         5         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         10         <t< td=""><td>PC         81752         UM05/W         56-23-5         Carbon tetrachloride         ND         59         78         79         78         79         78-64-3         Chloroform         ND         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10</td><td>PC         81752         UMOS/W         56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         7-64-1         Acetone         ND         10         UGL         R           67-64-1         Acetone         Chloroform         ND         5         UGL         R           67-64-1         Acetone         ND         10         UGL         R           67-64-1         Acetone         ND         10         UGL         R           77-63-2         Benzene         ND         5         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-4         Vityl chloride / Chloroethane         ND         5         UGL         R           75-00-2         Bromomiorm         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-22-4         Bromomiorm         ND         5         UGL         R           75-34-3         1,1-Dichloroe</td><td>PC         81752         UMOS/M         56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Accerone         Acerone         ND         10         UGL         R           67-64-1         Accerone         Chloroform         ND         10         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-55-6         1,1,1-richlorocethane         ND         10         UGL         R           74-83-9         Bromonethane         ND         10         UGL         R           75-01-3         Chlorocethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chlorocethane         ND         5         UGL         R           75-01-4         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-27-4         Bromodichloromethane         ND         5         UGL         R           75-35-4         1,1-Dichloromethane         ND         5         UGL         R</td><td>PC         81752   
     UM05/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-66-1         Acetone         ND         10         UGL         R           67-66-3         Chloroform         ND         5         UGL         R           71-43-2         Chloromethane         ND         5         UGL         R           77-43-5         1,1,1-fichloroethane         ND         10         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-9         Chloromethane         ND         10         UGL         R           75-00-3         Chloromethane         ND         10         UGL         R           75-01-4         Vinyl chloride/folloroethene         ND         5         UGL         R           75-03-5         Bromoform         ND         5         UGL         R           75-21-6         Bromoform         ND         5         UGL         R           75-25-2         Bromoform         ND         5         UGL         R           75-25-3         1,1-Dichloroethene         ND         5         UGL</td><td>PC 81752 UMO5/W 56-23-5 Carbon tetrachloride  PC 81752 UMO5/W 56-23-5 Carbon tetrachloride  Roy-Red  Rethyl n-butyl ketone / 2-Hexanone  ROY 10 100 UGL R  67-66-3 Carbon tetrachloride  ND 5 UGL R  74-83-6 1,1,1-Trichloroethane  ND 10 UGL R  75-01-3 Chloromethane  ND 10 UGL R  75-01-3 Chloromethane  ND 10 UGL R  75-01-4 Vinyl chloride / Chloroethane  ND 10 UGL R  75-15-0 Carbon disulfide  ND 5 UGL R  75-15-0 Carbon disulfide  ND 5 UGL R  75-27-4 Bromoform  ND 5 UGL R  75-34-3 1,1-Dichloroethane  ND 5 UGL R  75-35-4 1,1-Dichloroethane  ND 5 UGL R  75-35-4 1,1-Dichloroethane  ND 5 UGL R  75-35-4 1,1-Dichloroethane  ND 5 UGL R  75-35-4 1,2-Dichloroethane  ND 5 UGL R  76-35-5 1,2-Dichloroethane  ND 5 UGL R  76-35-5 1,2-Dichloroethane  ND 5 UGL R  76-35-5 1,2-Dichloroethane  ND 5 UGL R  76-35-6 1,2-Dichloroethane  ND 5 UGL R  76-00-5 1,2-Dichloroethane  ND 5 UGL R  77-00-6 Trichloroethane  ND 5 UGL R  78-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-7 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-7 UGL R  79-00-7 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00</td><td>PC         81752         UMOS/W         56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-1         Acetone         Chloroform         ND         5         UGL         R           67-64-1         Acetone         ND         10         UGL         R           71-53-2         Chloroform         ND         5         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloroethane         ND         5         UGL         R           75-01-4         Vinyl chloroethane         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-15-0         Carbo</td><td>PC 81752         UMGS/N 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-3         Acetrone         Acetrone         ND         10         UGL         R           67-64-3         Chloroform         ND         5         UGL         R           67-64-3         Chloroform         ND         5         UGL         R           71-63-2         Benzene         ND         5         UGL         R           71-63-5         1,1,1-Trichloroethane         ND         5         UGL         R           74-87-3         Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Dichloromethane         ND         5         UGL         R           75-01-5         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-01-6         Perbon disulfide         ND         5         UGL         R           75-10-7         Bromoform         ND         5         UGL         R           75-52-2         Bromoform         ND         5         UGL         R           75-53-4         Ti-ichloroethane         ND         5</td><td>PC 81752         UM05/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Methyl n-butyl ketone / 2-Hexanone         ND         10         UGL         R           67-64-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           75-00-3         Chloromethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloromethane         ND         5         UGL         R           75-15-0         Garbon distlifide         ND         5         UGL         R           75-15-1         Bromoform         ND         5         UGL         R           75-15-2         Bromoform         ND         5         UGL         R           75-15-2         Bromoform         ND         5         UGL         R           75-34-3         1,1-Dich loromethane         ND         5         UGL</td><td>PC 81752         UM05/M 56-23-5         Carbon tetrachloride         ND         5         UGL         R           591-78-6         Methyl n-butyl ketone / 2-Hexanone         ND         10         UGL         R           67-66-3         Chloroform         ND         5         UGL         R           71-43-2         Bernaree         ND         5         UGL         R           71-63-6         J.1.1-Trichloroethane         ND         10         UGL         R           74-83-9         Bromomerhane         ND         10         UGL         R           75-01-4         Vinyl, chloride / Chloroethane         ND         10         UGL         R           75-02-5         Bromoform         ND         5         UGL         R           75-15-0         Carbon disulfide / Dichloromethane         ND         5         UGL         R           75-25-2         Bromoform         ND         5         UGL         R         R           75-27-4         Bromoform         Librioroethane         1,1-         ND         5         UGL         R           75-27-4         Bromoform         Librioroethane         1,1-         ND         5         UGL         <td< td=""><td>PC 81722         UMOS/W 56-23-5         Carbon tetrachloride         NO         5         UGL         R           67-66-3         Acetone         Retone         7-10-10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10</td><td>PC 81722         UMOS/W 56-23-5         Carbon tetrachloride         NO         5         UGL         R           67-66-3         Chloroform         NO         10         10         UGL         R           77-56-3         Chloroform         NO         10         UGL         R           77-57-6         1,17-Trichloroethane         NO         5         UGL         R           77-57-6         1,17-Trichloroethane         NO         5         UGL         R           75-00-3         Chloroethane         NO         10         UGL         R           75-00-4         Vinyd chloroethane         NO         10         UGL         R           75-00-5         Methylene chloride / Chloroethane         NO         5         UGL         R           75-00-7         Winyd chloroethane         NO         5         UGL         R           75-00-7         Methylene chloride / Dichloroethane         NO         5         UGL         R           75-00-7         Methylene chloroethane         NO         5         UGL         R           75-00-7         Methyleno chloroethane         NO         5         UGL         R           75-30-7         Bromodich</td><td>PC 81752   
     UMOS/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-3         Chloroform         ND         10         UGL         R           71-53-6         Lill-Trichloroethane         ND         10         UGL         R           71-55-6         Lill-Trichloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloroethane         ND         10         UGL         R           75-03-5         Chloroethane         ND         10         UGL         R           75-03-6         Methylene chloride / Chloroethane         ND         5         UGL         R           75-03-7         Methylene chloride / Chloroethane         ND         5         UGL         R           75-34-3         1-1-Dichloroethane         1,1-         ND         5         UGL         R           75-35-4         1-1-Dichloroethane         1,1-         ND         5         UGL         R</td><td>PC         81752         UMOS/W         56.23.5         Carbon tetrachioride         ND         5         UGL         R           67-64.3         Acetrone         Acetrone         ND         10         UGL         R           71-55-6         1,1-Trichloroethane         ND         5         UGL         R           71-55-6         1,1-Trichloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-4         Vinyl chloride / Chloroethane         ND         5         UGL         R           75-09-2         Methyl chloroethane         ND         5         UGL         R           75-25-2         Bromodic functorethane         ND         5         UGL         R           75-25-4         Bromodic functorethane         1,1-1         ND         5         UGL         R           75-34-3         1,1-1         1,1-1         ND         5         UGL         R</td><td>PC 81752 UMGS/W 56-23-5 Carbon tetrachloride  PC 81752 UMGS/W 56-23-5 Carbon tetrachloride  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-63-4 Intrichloroethane  PC 7-63-5 Intrichloroethane  PC 7-63-5 Carbon disulfide  PC 7-63-5 Chloroform ND 10 UGL R  PC 7-63-5 Chloroform ND 10 UGL R  PC 7-63-5 Chloroform ND 10 UGL R  PC 7-63-6 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10</td><td>PC 81752 (MG)V 56-23-5 Garbon tetrachloride</td><td>PC 81752 UM05/W 56-23-5 Garbon tetrachloride NO 5 0061 R 67-66-3 Chroroform NO 10 10 0061 R 77-65-3 Chroroform NO 10 10 0061 R 77-63-5 Chroroform NO 10 10 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 10 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-4 11-Dichloroform Chroroform NO 5 0061 R 75-60-4 11-Dichloroform Chroroform NO 5 0061 R 75-60-4 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 Chroroform Chroroform NO 5 0061 R 75-60-5 Chroroform Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chror</td><td>PC 81752 UMO5/M 56-23-5 Carbon tetrachloride NO 5 UGL R 67-64-1 Acetore   67-64-1 Acetore   67-64-3 Chichoreform NO 10 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-32-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-34-5 Tetrachloreform NO 5 UGL</td><td>PC 81752 UMOS/M 56-23-5 Carbon tetrachloride</td><td>PC 81722         UMOS/N 56-23-5         Carbon tetrachloride         NO         5         UGL         R           67-64-1         Acetone         Acetone         NO         10         UGL         R           67-64-1         Acetone         Acetone         NO         10         UGL         R           71-32-2         Bromomethane         NO         5         UGL         R           74-32-3         Chloromethane         NO         10         UGL         R           75-00-3         Chloromethane         NO         10         UGL         R           75-00-4         Vint, cthoride / bichloromethane         NO         10         UGL         R           75-00-5         Glichoromethane         NO         5         UGL         R           75-00-4         Vint, cthoride / bichloromethane         NO         5         UGL         R           75-00-4         Trichloromethane         1,1-1         NO         5         UGL         R           75-30-4         Trichloromethane         1,1-1         NO         5         UGL         R           75-30-4         Trichloromethane         1,1-1         NO         5         UGL         R     <!--</td--><td>PC 81722         UMGS/H 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-1         Acetone         Acetone         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           71-43-2         Chlorosachane         ND         5         UGL         R           74-83-3         Chlorosachane         ND         10         UGL         R           75-03-3         Chlorosachane         ND         10         UGL         R           75-03-4         Viny Cahloride Chloride Chlorosachane         ND         5         UGL         R           75-52-5         Bromoform         ND         5         UGL         R         A           75-54-4         Bromoform         ND         5         UGL         R         A           75-54-5         Bromoform         ND         5         UGL         R         A           75-54-7         Bromoform         ND         5         UGL         R         A</td><td>PC 81722         UMOS/N 56-23-5         Carbon tetrachloride         NO         10         UGG         R           67-64-1         Acetone         Acetone         7.1-3-2         1.1.1.Trichlorofum         NO         10         UGG         R           77-65-2    
    1.1.1.Trichloromethane         ND         5         UGG         R           77-65-5         1.1.1.Trichloromethane         ND         10         UGG         R           75-00-3         Chloromethane         ND         10         UGG         R           75-00-4         Vint, cthoride / bichloromethane         ND         10         UGG         R           75-00-5         Glichoromethane         ND         5         UGG         R           75-00-4         Vint, cthoride / bichloromethane         ND         5         UGG         R           75-00-4         Trichloromethane         ND         5         UGG         R         R           75-50-5         Grand for operation         ND         5         UGG         R         R           75-50-5         Grand for operation         ND         5         UGG         R         R           75-50-7         Berxyl ctroportoride         ND</td></td></td<></td></t<></td></t<> | PC 81752         UMOS/W         Sec23-5         Carbon tetrachloride         ND         10         UGL         R           67-64-1         Acetone         ND         10         UGL         R           67-64-3         Chloroform         ND         10         UGL         R           67-66-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-55-6         1,1,1-Trichloroethane         ND         10         UGL         R           74-83-9         Brommethane         ND         10         UGL         R           74-87-3         Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloroethane         ND         10         UGL         R           75-09-2         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-09-2         Bromodichloromethane         ND         5         UGL         R           75-25-2         Bromodichloroethane         ND         5         UGL         R           75-34-4         1,1-Dichloroethane         ND | PC 81752         UMOS/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-3         Chloroform         ND         10         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Dichloromethane         ND         5         UGL         R           75-09-2         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-27-4         Bromodorichloromethane         ND         5 | PC 81752         UMO5/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-66-3         Chloroform         ND         10         UGL         R           67-66-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-55-6         1,1,1-Trichloroethane         ND         10         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-3         Chloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-4         Vinyl chloride / Dichloromethane         ND         5         UGL         R           75-09-2         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-27-4         Bromoform         ND         5         UGL         R           75-35-4         1,1-Dichloroethane         ND         5 | PC 81752         UMO5/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         67-64-1         Acetone         Chloroform         ND         10         UGL         R           67-66-3         Chloroform         ND         10         UGL         R           71-43-2         Benzene         ND         5         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Dichloromethane         ND         5         UGL         R           75-01-4         Vinyl chloride / Dichloromethane         ND         5         UGL         R           75-01-4         Vinyl chloride / Dichloromethane         ND         5         UGL         R           75-01-5         Garbon disulfide         ND         5         UGL         R           75-15-0         Bromodichloromethane         ND         5         UGL         R           75-34-3         1,1-Dichloroethylene         1,1-         ND         5         UGL         R | PC 81752 UMO5/W 56-23-5         Carbon tetrachloride         ND 5         5         UGL R CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP | PC         81752         UMO5/W 56-33-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         67-64-1         Acetone         7-Hexanone         ND         10         UGL         R           67-64-3         Chloroform         ND         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10 | PC 81752         UMO5/W 56-33-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         67-64-1         Acetone         7-Hexanone         ND         10         UGL         R           67-64-1         Acetone         67-64-1         Acetone         ND         10         UGL         R           71-63-2         Chloroform         ND         5         UGL         R         10         UGL         R           71-63-2         Bromomethane         ND         5         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         UGL         R         10         10 <t< td=""><td>PC         81752         UM05/W         56-23-5         Carbon tetrachloride         ND         59         78         79         78         79         78-64-3         Chloroform         ND         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10</td><td>PC         81752         UMOS/W         56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         7-64-1         Acetone         ND         10         UGL         R           67-64-1         Acetone         Chloroform         ND         5         UGL         R           67-64-1         Acetone         ND         10         UGL         R           67-64-1         Acetone         ND         10         UGL         R           77-63-2         Benzene         ND         5         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-4         Vityl chloride / Chloroethane         ND         5         UGL         R           75-00-2         Bromomiorm         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-22-4         Bromomiorm         ND 
       5         UGL         R           75-34-3         1,1-Dichloroe</td><td>PC         81752         UMOS/M         56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Accerone         Acerone         ND         10         UGL         R           67-64-1         Accerone         Chloroform         ND         10         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-55-6         1,1,1-richlorocethane         ND         10         UGL         R           74-83-9         Bromonethane         ND         10         UGL         R           75-01-3         Chlorocethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chlorocethane         ND         5         UGL         R           75-01-4         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-27-4         Bromodichloromethane         ND         5         UGL         R           75-35-4         1,1-Dichloromethane         ND         5         UGL         R</td><td>PC         81752         UM05/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-66-1         Acetone         ND         10         UGL         R           67-66-3         Chloroform         ND         5         UGL         R           71-43-2         Chloromethane         ND         5         UGL         R           77-43-5         1,1,1-fichloroethane         ND         10         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-9         Chloromethane         ND         10         UGL         R           75-00-3         Chloromethane         ND         10         UGL         R           75-01-4         Vinyl chloride/folloroethene         ND         5         UGL         R           75-03-5         Bromoform         ND         5         UGL         R           75-21-6         Bromoform         ND         5         UGL         R           75-25-2         Bromoform         ND         5         UGL         R           75-25-3         1,1-Dichloroethene         ND         5         UGL</td><td>PC 81752 UMO5/W 56-23-5 Carbon tetrachloride  PC 81752 UMO5/W 56-23-5 Carbon tetrachloride  Roy-Red  Rethyl n-butyl ketone / 2-Hexanone  ROY 10 100 UGL R  67-66-3 Carbon tetrachloride  ND 5 UGL R  74-83-6 1,1,1-Trichloroethane  ND 10 UGL R  75-01-3 Chloromethane  ND 10 UGL R  75-01-3 Chloromethane  ND 10 UGL R  75-01-4 Vinyl chloride / Chloroethane  ND 10 UGL R  75-15-0 Carbon disulfide  ND 5 UGL R  75-15-0 Carbon disulfide  ND 5 UGL R  75-27-4 Bromoform  ND 5 UGL R  75-34-3 1,1-Dichloroethane  ND 5 UGL R  75-35-4 1,1-Dichloroethane  ND 5 UGL R  75-35-4 1,1-Dichloroethane  ND 5 UGL R  75-35-4 1,1-Dichloroethane  ND 5 UGL R  75-35-4 1,2-Dichloroethane  ND 5 UGL R  76-35-5 1,2-Dichloroethane  ND 5 UGL R  76-35-5 1,2-Dichloroethane  ND 5 UGL R  76-35-5 1,2-Dichloroethane  ND 5 UGL R  76-35-6 1,2-Dichloroethane  ND 5 UGL R  76-00-5 1,2-Dichloroethane  ND 5 UGL R  77-00-6 Trichloroethane  ND 5 UGL R  78-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-7 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-7 UGL R  79-00-7 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00</td><td>PC         81752         UMOS/W         56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-1         Acetone         Chloroform         ND         5         UGL         R           67-64-1         Acetone         ND         10         UGL         R           71-53-2         Chloroform         ND         5         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloroethane         ND         5         UGL         R           75-01-4         Vinyl chloroethane         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-15-0         Carbo</td><td>PC 81752         UMGS/N 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-3         Acetrone         Acetrone         ND         10         UGL         R           67-64-3         Chloroform         ND         5         UGL         R           67-64-3         Chloroform         ND         5         UGL         R           71-63-2         Benzene         ND         5         UGL         R           71-63-5         1,1,1-Trichloroethane         ND         5         UGL         R           74-87-3         Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Dichloromethane         ND         5         UGL         R           75-01-5         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-01-6         Perbon disulfide         ND         5         UGL         R           75-10-7         Bromoform         ND         5         UGL         R           75-52-2         Bromoform         ND         5         UGL         R           75-53-4         Ti-ichloroethane         ND         5</td><td>PC 81752         UM05/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Methyl n-butyl ketone / 2-Hexanone         ND         10         UGL         R           67-64-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           75-00-3         Chloromethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloromethane         ND         5         UGL         R           75-15-0         Garbon distlifide         ND         5         UGL         R           75-15-1         Bromoform         ND         5         UGL         R           75-15-2         Bromoform         ND         5         UGL         R           75-15-2         Bromoform         ND         5         UGL         R           75-34-3         1,1-Dich loromethane         ND         5         UGL</td><td>PC 81752         UM05/M 56-23-5         Carbon tetrachloride         ND         5         UGL         R           591-78-6         Methyl n-butyl ketone / 2-Hexanone         ND         10         UGL         R           67-66-3         Chloroform         ND         5         UGL         R           71-43-2         Bernaree         ND         5         UGL         R           71-63-6         J.1.1-Trichloroethane         ND         10         UGL         R           74-83-9         Bromomerhane         ND         10         UGL         R           75-01-4         Vinyl, chloride / Chloroethane         ND         10         UGL         R           75-02-5         Bromoform         ND         5         UGL         R           75-15-0         Carbon disulfide / Dichloromethane         ND         5         UGL         R           75-25-2         Bromoform         ND         5         UGL         R         R           75-27-4         Bromoform         Librioroethane         1,1-         ND         5         UGL         R           75-27-4         Bromoform         Librioroethane         1,1-         ND         5         UGL         <td< td=""><td>PC 81722         UMOS/W 56-23-5         Carbon tetrachloride         NO         5         UGL         R           67-66-3         Acetone         Retone         7-10-10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 
       10         10         10         10         10</td><td>PC 81722         UMOS/W 56-23-5         Carbon tetrachloride         NO         5         UGL         R           67-66-3         Chloroform         NO         10         10         UGL         R           77-56-3         Chloroform         NO         10         UGL         R           77-57-6         1,17-Trichloroethane         NO         5         UGL         R           77-57-6         1,17-Trichloroethane         NO         5         UGL         R           75-00-3         Chloroethane         NO         10         UGL         R           75-00-4         Vinyd chloroethane         NO         10         UGL         R           75-00-5         Methylene chloride / Chloroethane         NO         5         UGL         R           75-00-7         Winyd chloroethane         NO         5         UGL         R           75-00-7         Methylene chloride / Dichloroethane         NO         5         UGL         R           75-00-7         Methylene chloroethane         NO         5         UGL         R           75-00-7         Methyleno chloroethane         NO         5         UGL         R           75-30-7         Bromodich</td><td>PC 81752         UMOS/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-3         Chloroform         ND         10         UGL         R           71-53-6         Lill-Trichloroethane         ND         10         UGL         R           71-55-6         Lill-Trichloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloroethane         ND         10         UGL         R           75-03-5         Chloroethane         ND         10         UGL         R           75-03-6         Methylene chloride / Chloroethane         ND         5         UGL         R           75-03-7         Methylene chloride / Chloroethane         ND         5         UGL         R           75-34-3         1-1-Dichloroethane         1,1-         ND         5         UGL         R           75-35-4         1-1-Dichloroethane         1,1-         ND         5         UGL         R</td><td>PC         81752         UMOS/W         56.23.5         Carbon tetrachioride         ND         5         UGL         R           67-64.3         Acetrone         Acetrone         ND         10         UGL         R           71-55-6         1,1-Trichloroethane         ND         5         UGL         R           71-55-6         1,1-Trichloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-4         Vinyl chloride / Chloroethane         ND         5         UGL         R           75-09-2         Methyl chloroethane         ND         5         UGL         R           75-25-2         Bromodic functorethane         ND         5         UGL         R           75-25-4         Bromodic functorethane         1,1-1         ND         5         UGL         R           75-34-3         1,1-1         1,1-1         ND         5         UGL         R</td><td>PC 81752 UMGS/W 56-23-5 Carbon tetrachloride  PC 81752 UMGS/W 56-23-5 Carbon tetrachloride  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-63-4 Intrichloroethane  PC 7-63-5 Intrichloroethane  PC 7-63-5 Carbon disulfide  PC 7-63-5 Chloroform ND 10 UGL R  PC 7-63-5 Chloroform ND 10 UGL R  PC 7-63-5 Chloroform ND 10 UGL R  PC 7-63-6 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10</td><td>PC 81752 (MG)V 56-23-5 Garbon tetrachloride</td><td>PC 81752 UM05/W 56-23-5 Garbon tetrachloride NO 5 0061 R 67-66-3 Chroroform NO 10 10 0061 R 77-65-3 Chroroform NO 10 10 0061 R 77-63-5 Chroroform NO 10 10 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 10 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-4 11-Dichloroform Chroroform NO 5 0061 R 75-60-4 11-Dichloroform Chroroform NO 5 0061 R 75-60-4 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 Chroroform Chroroform NO 5 0061 R 75-60-5 Chroroform Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chror</td><td>PC 81752 UMO5/M 56-23-5 Carbon tetrachloride NO 5 UGL R 67-64-1 Acetore   67-64-1 Acetore   67-64-3 Chichoreform NO 10 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-32-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-34-5 Tetrachloreform NO 5 UGL</td><td>PC 81752 UMOS/M 56-23-5 Carbon tetrachloride</td><td>PC 81722         UMOS/N 56-23-5         Carbon tetrachloride         NO         5         UGL         R           67-64-1         Acetone         Acetone         NO         10         UGL         R           67-64-1         Acetone         Acetone         NO         10         UGL         R           71-32-2         Bromomethane         NO         5         UGL         R           74-32-3         Chloromethane         NO         10         UGL         R           75-00-3         Chloromethane         NO         10         UGL         R           75-00-4         Vint, cthoride / bichloromethane         NO         10         UGL         R           75-00-5         Glichoromethane         NO         5         UGL         R           75-00-4         Vint, cthoride / bichloromethane         NO         5         UGL         R           75-00-4         Trichloromethane         1,1-1         NO         5         UGL         R           75-30-4         Trichloromethane         1,1-1         NO         5         UGL         R           75-30-4         Trichloromethane         1,1-1         NO         5         UGL         R     <!--</td--><td>PC 81722         UMGS/H 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone      
  Acetone         ND         10         UGL         R           67-64-1         Acetone         Acetone         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           71-43-2         Chlorosachane         ND         5         UGL         R           74-83-3         Chlorosachane         ND         10         UGL         R           75-03-3         Chlorosachane         ND         10         UGL         R           75-03-4         Viny Cahloride Chloride Chlorosachane         ND         5         UGL         R           75-52-5         Bromoform         ND         5         UGL         R         A           75-54-4         Bromoform         ND         5         UGL         R         A           75-54-5         Bromoform         ND         5         UGL         R         A           75-54-7         Bromoform         ND         5         UGL         R         A</td><td>PC 81722         UMOS/N 56-23-5         Carbon tetrachloride         NO         10         UGG         R           67-64-1         Acetone         Acetone         7.1-3-2         1.1.1.Trichlorofum         NO         10         UGG         R           77-65-2         1.1.1.Trichloromethane         ND         5         UGG         R           77-65-5         1.1.1.Trichloromethane         ND         10         UGG         R           75-00-3         Chloromethane         ND         10         UGG         R           75-00-4         Vint, cthoride / bichloromethane         ND         10         UGG         R           75-00-5         Glichoromethane         ND         5         UGG         R           75-00-4         Vint, cthoride / bichloromethane         ND         5         UGG         R           75-00-4         Trichloromethane         ND         5         UGG         R         R           75-50-5         Grand for operation         ND         5         UGG         R         R           75-50-5         Grand for operation         ND         5         UGG         R         R           75-50-7         Berxyl ctroportoride         ND</td></td></td<></td></t<> | PC         81752         UM05/W         56-23-5         Carbon tetrachloride         ND         59         78         79         78         79         78-64-3         Chloroform         ND         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 | PC         81752         UMOS/W         56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         7-64-1         Acetone         ND         10         UGL         R           67-64-1         Acetone         Chloroform         ND         5         UGL         R           67-64-1         Acetone         ND         10         UGL         R           67-64-1         Acetone         ND         10         UGL         R           77-63-2         Benzene         ND         5         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-4         Vityl chloride / Chloroethane         ND         5         UGL         R           75-00-2         Bromomiorm         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-22-4         Bromomiorm         ND         5         UGL         R           75-34-3         1,1-Dichloroe | PC         81752         UMOS/M         56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Accerone         Acerone         ND         10         UGL         R           67-64-1         Accerone         Chloroform         ND         10         UGL         R           71-43-2         Benzene         ND         5         UGL         R           71-55-6         1,1,1-richlorocethane         ND         10         UGL         R           74-83-9         Bromonethane         ND         10         UGL         R           75-01-3         Chlorocethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chlorocethane         ND         5         UGL         R           75-01-4         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-27-4         Bromodichloromethane         ND         5         UGL         R           75-35-4         1,1-Dichloromethane         ND         5         UGL         R | PC         81752         UM05/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-66-1         Acetone         ND         10         UGL         R           67-66-3         Chloroform         ND         5         UGL         R           71-43-2         Chloromethane         ND         5         UGL         R           77-43-5         1,1,1-fichloroethane         ND         10         UGL         R           74-83-9         Bromomethane         ND         10         UGL         R           74-87-9         Chloromethane         ND         10         UGL         R           75-00-3         Chloromethane         ND         10         UGL         R           75-01-4         Vinyl chloride/folloroethene         ND         5         UGL         R           75-03-5         Bromoform         ND         5         UGL         R           75-21-6         Bromoform         ND         5         UGL         R           75-25-2         Bromoform         ND         5         UGL         R           75-25-3         1,1-Dichloroethene         ND         5         UGL | PC 81752 UMO5/W 56-23-5 Carbon tetrachloride  PC 81752 UMO5/W 56-23-5 Carbon tetrachloride  Roy-Red  Rethyl n-butyl ketone / 2-Hexanone  ROY 10 100 UGL R  67-66-3 Carbon tetrachloride  ND 5 UGL R  74-83-6 1,1,1-Trichloroethane  ND 10 UGL R  75-01-3 Chloromethane  ND 10 UGL R  75-01-3 Chloromethane  ND 10 UGL R  75-01-4 Vinyl chloride / Chloroethane  ND 10 UGL R  75-15-0 Carbon disulfide  ND 5 UGL R  75-15-0 Carbon disulfide  ND 5 UGL R  75-27-4 Bromoform  ND 5 UGL R  75-34-3 1,1-Dichloroethane  ND 5 UGL R  75-35-4 1,1-Dichloroethane  ND 5 UGL R  75-35-4 1,1-Dichloroethane  ND 5 UGL R  75-35-4 1,1-Dichloroethane  ND 5 UGL R  75-35-4 1,2-Dichloroethane  ND 5 UGL R  76-35-5 1,2-Dichloroethane  ND 5 UGL R  76-35-5 1,2-Dichloroethane  ND 5 UGL R  76-35-5 1,2-Dichloroethane  ND 5 UGL R  76-35-6 1,2-Dichloroethane  ND 5 UGL R  76-00-5 1,2-Dichloroethane  ND 5 UGL R  77-00-6 Trichloroethane  ND 5 UGL R  78-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-7 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-6 Trichloroethane  ND 5 UGL R  79-00-7 UGL R  79-00-7 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00-8 UGL R  79-00 | PC         81752         UMOS/W         56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-1         Acetone         Chloroform         ND         5         UGL         R           67-64-1         Acetone         ND         10         UGL         R           71-53-2         Chloroform         ND         5         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloroethane         ND         5         UGL         R           75-01-4         Vinyl chloroethane         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-15-0         Carbon disulfide         ND         5         UGL         R           75-15-0         Carbo | PC 81752         UMGS/N 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-3         Acetrone         Acetrone         ND         10         UGL         R           67-64-3
        Chloroform         ND         5         UGL         R           67-64-3         Chloroform         ND         5         UGL         R           71-63-2         Benzene         ND         5         UGL         R           71-63-5         1,1,1-Trichloroethane         ND         5         UGL         R           74-87-3         Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Dichloromethane         ND         5         UGL         R           75-01-5         Methylene chloride / Dichloromethane         ND         5         UGL         R           75-01-6         Perbon disulfide         ND         5         UGL         R           75-10-7         Bromoform         ND         5         UGL         R           75-52-2         Bromoform         ND         5         UGL         R           75-53-4         Ti-ichloroethane         ND         5 | PC 81752         UM05/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Methyl n-butyl ketone / 2-Hexanone         ND         10         UGL         R           67-64-3         Chloroform         ND         5         UGL         R           71-43-2         Benzene         ND         5         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           74-87-3         Chloromethane         ND         10         UGL         R           75-00-3         Chloromethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloromethane         ND         5         UGL         R           75-15-0         Garbon distlifide         ND         5         UGL         R           75-15-1         Bromoform         ND         5         UGL         R           75-15-2         Bromoform         ND         5         UGL         R           75-15-2         Bromoform         ND         5         UGL         R           75-34-3         1,1-Dich loromethane         ND         5         UGL | PC 81752         UM05/M 56-23-5         Carbon tetrachloride         ND         5         UGL         R           591-78-6         Methyl n-butyl ketone / 2-Hexanone         ND         10         UGL         R           67-66-3         Chloroform         ND         5         UGL         R           71-43-2         Bernaree         ND         5         UGL         R           71-63-6         J.1.1-Trichloroethane         ND         10         UGL         R           74-83-9         Bromomerhane         ND         10         UGL         R           75-01-4         Vinyl, chloride / Chloroethane         ND         10         UGL         R           75-02-5         Bromoform         ND         5         UGL         R           75-15-0         Carbon disulfide / Dichloromethane         ND         5         UGL         R           75-25-2         Bromoform         ND         5         UGL         R         R           75-27-4         Bromoform         Librioroethane         1,1-         ND         5         UGL         R           75-27-4         Bromoform         Librioroethane         1,1-         ND         5         UGL <td< td=""><td>PC 81722         UMOS/W 56-23-5         Carbon tetrachloride         NO         5         UGL         R           67-66-3         Acetone         Retone         7-10-10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10</td><td>PC 81722         UMOS/W 56-23-5         Carbon tetrachloride         NO         5         UGL         R           67-66-3         Chloroform         NO         10         10         UGL         R           77-56-3         Chloroform         NO         10         UGL         R           77-57-6         1,17-Trichloroethane         NO         5         UGL         R           77-57-6         1,17-Trichloroethane         NO         5         UGL         R           75-00-3         Chloroethane         NO         10         UGL         R           75-00-4         Vinyd chloroethane         NO         10         UGL         R           75-00-5         Methylene chloride / Chloroethane         NO         5         UGL         R           75-00-7         Winyd chloroethane         NO         5         UGL         R           75-00-7         Methylene chloride / Dichloroethane         NO         5         UGL         R           75-00-7         Methylene chloroethane         NO         5         UGL         R           75-00-7         Methyleno chloroethane         NO         5         UGL         R           75-30-7         Bromodich</td><td>PC 81752         UMOS/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-3         Chloroform         ND         10         UGL         R           71-53-6         Lill-Trichloroethane         ND         10         UGL         R           71-55-6         Lill-Trichloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloroethane         ND         10         UGL         R           75-03-5         Chloroethane         ND         10         UGL         R           75-03-6         Methylene chloride / Chloroethane         ND         5         UGL         R           75-03-7         Methylene chloride / Chloroethane         ND         5         UGL         R           75-34-3         1-1-Dichloroethane         1,1-         ND         5         UGL         R           75-35-4         1-1-Dichloroethane         1,1-         ND         5         UGL         R</td><td>PC         81752         UMOS/W         56.23.5         Carbon tetrachioride         ND         5         UGL         R           67-64.3         Acetrone         Acetrone         ND         10         UGL         R           71-55-6         1,1-Trichloroethane         ND         5         UGL         R           71-55-6         1,1-Trichloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-4         Vinyl chloride / Chloroethane         ND         5         UGL         R           75-09-2         Methyl chloroethane         ND         5         UGL         R           75-25-2         Bromodic functorethane         ND         5         UGL         R           75-25-4         Bromodic functorethane         1,1-1         ND         5         UGL         R           75-34-3         1,1-1         1,1-1         ND         5         UGL         R</td><td>PC 81752 UMGS/W 56-23-5 Carbon tetrachloride  PC 81752 UMGS/W 56-23-5 Carbon tetrachloride  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-63-4 Intrichloroethane  PC 7-63-5 Intrichloroethane  PC 7-63-5 Carbon disulfide  PC 7-63-5 Chloroform ND 10 UGL R  PC 7-63-5 Chloroform ND 10 UGL R  PC 7-63-5 Chloroform ND 10 UGL R  PC 7-63-6 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10</td><td>PC 81752 (MG)V 56-23-5 Garbon tetrachloride</td><td>PC 81752 UM05/W 56-23-5 Garbon tetrachloride NO 5 0061 R 67-66-3 Chroroform NO 10 10 0061 R 77-65-3 Chroroform NO 10 10 0061 R 77-63-5 Chroroform NO
10 10 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 10 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-4 11-Dichloroform Chroroform NO 5 0061 R 75-60-4 11-Dichloroform Chroroform NO 5 0061 R 75-60-4 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 Chroroform Chroroform NO 5 0061 R 75-60-5 Chroroform Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chror</td><td>PC 81752 UMO5/M 56-23-5 Carbon tetrachloride NO 5 UGL R 67-64-1 Acetore   67-64-1 Acetore   67-64-3 Chichoreform NO 10 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-32-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-34-5 Tetrachloreform NO 5 UGL</td><td>PC 81752 UMOS/M 56-23-5 Carbon tetrachloride</td><td>PC 81722         UMOS/N 56-23-5         Carbon tetrachloride         NO         5         UGL         R           67-64-1         Acetone         Acetone         NO         10         UGL         R           67-64-1         Acetone         Acetone         NO         10         UGL         R           71-32-2         Bromomethane         NO         5         UGL         R           74-32-3         Chloromethane         NO         10         UGL         R           75-00-3         Chloromethane         NO         10         UGL         R           75-00-4         Vint, cthoride / bichloromethane         NO         10         UGL         R           75-00-5         Glichoromethane         NO         5         UGL         R           75-00-4         Vint, cthoride / bichloromethane         NO         5         UGL         R           75-00-4         Trichloromethane         1,1-1         NO         5         UGL         R           75-30-4         Trichloromethane         1,1-1         NO         5         UGL         R           75-30-4         Trichloromethane         1,1-1         NO         5         UGL         R     <!--</td--><td>PC 81722         UMGS/H 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-1         Acetone         Acetone         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           71-43-2         Chlorosachane         ND         5         UGL         R           74-83-3         Chlorosachane         ND         10         UGL         R           75-03-3         Chlorosachane         ND         10         UGL         R           75-03-4         Viny Cahloride Chloride Chlorosachane         ND         5         UGL         R           75-52-5         Bromoform         ND         5         UGL         R         A           75-54-4         Bromoform         ND         5         UGL         R         A           75-54-5         Bromoform         ND         5         UGL         R         A           75-54-7         Bromoform         ND         5         UGL         R         A</td><td>PC 81722         UMOS/N 56-23-5         Carbon tetrachloride         NO         10         UGG         R           67-64-1         Acetone         Acetone         7.1-3-2         1.1.1.Trichlorofum         NO         10         UGG         R           77-65-2         1.1.1.Trichloromethane         ND         5         UGG         R           77-65-5         1.1.1.Trichloromethane         ND         10         UGG         R           75-00-3         Chloromethane         ND         10         UGG         R           75-00-4         Vint, cthoride / bichloromethane         ND         10         UGG         R           75-00-5         Glichoromethane         ND         5         UGG         R           75-00-4         Vint, cthoride / bichloromethane         ND         5         UGG         R           75-00-4         Trichloromethane         ND         5         UGG         R         R           75-50-5         Grand for operation         ND         5         UGG         R         R           75-50-5         Grand for operation         ND         5         UGG         R         R           75-50-7         Berxyl ctroportoride         ND</td></td></td<> | PC 81722         UMOS/W 56-23-5         Carbon tetrachloride         NO         5         UGL         R           67-66-3         Acetone         Retone         7-10-10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 | PC 81722         UMOS/W 56-23-5         Carbon tetrachloride         NO         5         UGL         R           67-66-3         Chloroform         NO         10         10         UGL         R           77-56-3         Chloroform         NO         10         UGL         R           77-57-6         1,17-Trichloroethane         NO         5         UGL         R           77-57-6         1,17-Trichloroethane         NO         5         UGL         R           75-00-3         Chloroethane         NO         10         UGL         R           75-00-4         Vinyd chloroethane         NO         10         UGL         R           75-00-5         Methylene chloride / Chloroethane         NO         5         UGL         R           75-00-7         Winyd chloroethane         NO         5         UGL         R           75-00-7         Methylene chloride / Dichloroethane         NO         5         UGL         R           75-00-7         Methylene chloroethane         NO         5         UGL         R           75-00-7         Methyleno chloroethane         NO         5         UGL         R           75-30-7         Bromodich | PC 81752         UMOS/W 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-3         Chloroform         ND         10         UGL         R           71-53-6         Lill-Trichloroethane         ND         10         UGL         R           71-55-6         Lill-Trichloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-01-4         Vinyl chloride / Chloroethane         ND         10         UGL         R           75-03-5         Chloroethane         ND         10         UGL         R           75-03-6         Methylene chloride / Chloroethane         ND         5         UGL         R           75-03-7         Methylene chloride / Chloroethane         ND         5         UGL         R           75-34-3         1-1-Dichloroethane         1,1-         ND         5         UGL         R           75-35-4         1-1-Dichloroethane         1,1-         ND         5         UGL         R | PC         81752         UMOS/W         56.23.5         Carbon tetrachioride         ND         5         UGL         R           67-64.3         Acetrone         Acetrone         ND         10 
       UGL         R           71-55-6         1,1-Trichloroethane         ND         5         UGL         R           71-55-6         1,1-Trichloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-3         Chloroethane         ND         10         UGL         R           75-00-4         Vinyl chloride / Chloroethane         ND         5         UGL         R           75-09-2         Methyl chloroethane         ND         5         UGL         R           75-25-2         Bromodic functorethane         ND         5         UGL         R           75-25-4         Bromodic functorethane         1,1-1         ND         5         UGL         R           75-34-3         1,1-1         1,1-1         ND         5         UGL         R | PC 81752 UMGS/W 56-23-5 Carbon tetrachloride  PC 81752 UMGS/W 56-23-5 Carbon tetrachloride  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-66-3 Chloroform  PC 7-63-4 Intrichloroethane  PC 7-63-5 Intrichloroethane  PC 7-63-5 Carbon disulfide  PC 7-63-5 Chloroform ND 10 UGL R  PC 7-63-5 Chloroform ND 10 UGL R  PC 7-63-5 Chloroform ND 10 UGL R  PC 7-63-6 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 5 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 UGL R  PC 7-63-7 Chloroform ND 10 | PC 81752 (MG)V 56-23-5 Garbon tetrachloride | PC 81752 UM05/W 56-23-5 Garbon tetrachloride NO 5 0061 R 67-66-3 Chroroform NO 10 10 0061 R 77-65-3 Chroroform NO 10 10 0061 R 77-63-5 Chroroform NO 10 10 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform NO 5 0061 R 77-63-5 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 10 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-3 Chroroform Chroroform NO 5 0061 R 75-60-4 11-Dichloroform Chroroform NO 5 0061 R 75-60-4 11-Dichloroform Chroroform NO 5 0061 R 75-60-4 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 11-Dichloroform Chroroform NO 5 0061 R 75-60-5 Chroroform Chroroform NO 5 0061 R 75-60-5 Chroroform Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chroroform NO 10 0061 R 106-67-8 Chror | PC 81752 UMO5/M 56-23-5 Carbon tetrachloride NO 5 UGL R 67-64-1 Acetore   67-64-1 Acetore   67-64-3 Chichoreform NO 10 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 71-43-2 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-01-4 Chichoreform NO 5 UGL R 75-32-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-33-4 Il-Dichloreform NO 5 UGL R 75-34-5 Tetrachloreform NO 5 UGL | PC 81752 UMOS/M 56-23-5 Carbon tetrachloride | PC 81722         UMOS/N 56-23-5         Carbon tetrachloride         NO         5         UGL         R           67-64-1         Acetone         Acetone         NO         10         UGL         R           67-64-1         Acetone         Acetone         NO         10         UGL         R           71-32-2         Bromomethane         NO         5         UGL         R           74-32-3         Chloromethane         NO         10         UGL         R           75-00-3         Chloromethane         NO         10         UGL         R           75-00-4         Vint, cthoride / bichloromethane         NO         10         UGL         R           75-00-5         Glichoromethane         NO         5         UGL         R           75-00-4         Vint, cthoride / bichloromethane         NO         5         UGL         R           75-00-4         Trichloromethane         1,1-1         NO         5         UGL         R           75-30-4         Trichloromethane         1,1-1         NO         5         UGL         R           75-30-4         Trichloromethane         1,1-1         NO         5         UGL         R </td <td>PC 81722         UMGS/H 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-1         Acetone         Acetone         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           71-43-2         Chlorosachane         ND         5         UGL         R           74-83-3         Chlorosachane         ND         10         UGL         R           75-03-3         Chlorosachane         ND         10         UGL         R           75-03-4         Viny Cahloride Chloride Chlorosachane         ND         5         UGL         R           75-52-5         Bromoform         ND         5         UGL         R         A           75-54-4         Bromoform         ND         5         UGL         R         A           75-54-5         Bromoform         ND         5         UGL         R         A           75-54-7         Bromoform         ND         5         UGL         R         A</td> <td>PC 81722         UMOS/N 56-23-5         Carbon tetrachloride         NO         10         UGG         R           67-64-1         Acetone         Acetone         7.1-3-2         1.1.1.Trichlorofum         NO         10         UGG         R           77-65-2         1.1.1.Trichloromethane         ND         5         UGG         R           77-65-5         1.1.1.Trichloromethane         ND         10         UGG         R           75-00-3         Chloromethane         ND         10         UGG         R           75-00-4         Vint, cthoride / bichloromethane         ND         10         UGG         R           75-00-5         Glichoromethane         ND         5         UGG         R           75-00-4         Vint, cthoride / bichloromethane         ND         5         UGG         R           75-00-4         Trichloromethane         ND         5         UGG         R         R           75-50-5         Grand for operation         ND         5         UGG         R         R           75-50-5         Grand for operation         ND         5         UGG         R         R           75-50-7         Berxyl ctroportoride         ND</td> | PC 81722         UMGS/H 56-23-5         Carbon tetrachloride         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           67-64-1         Acetone         Acetone         ND         5         UGL         R           67-64-1         Acetone         Acetone         ND         10         UGL         R           71-43-2         Chlorosachane         ND         5         UGL         R       
   74-83-3         Chlorosachane         ND         10         UGL         R           75-03-3         Chlorosachane         ND         10         UGL         R           75-03-4         Viny Cahloride Chloride Chlorosachane         ND         5         UGL         R           75-52-5         Bromoform         ND         5         UGL         R         A           75-54-4         Bromoform         ND         5         UGL         R         A           75-54-5         Bromoform         ND         5         UGL         R         A           75-54-7         Bromoform         ND         5         UGL         R         A | PC 81722         UMOS/N 56-23-5         Carbon tetrachloride         NO         10         UGG         R           67-64-1         Acetone         Acetone         7.1-3-2         1.1.1.Trichlorofum         NO         10         UGG         R           77-65-2         1.1.1.Trichloromethane         ND         5         UGG         R           77-65-5         1.1.1.Trichloromethane         ND         10         UGG         R           75-00-3         Chloromethane         ND         10         UGG         R           75-00-4         Vint, cthoride / bichloromethane         ND         10         UGG         R           75-00-5         Glichoromethane         ND         5         UGG         R           75-00-4         Vint, cthoride / bichloromethane         ND         5         UGG         R           75-00-4         Trichloromethane         ND         5         UGG         R         R           75-50-5         Grand for operation         ND         5         UGG         R         R           75-50-5         Grand for operation         ND         5         UGG         R         R           75-50-7         Berxyl ctroportoride         ND |

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation : Anniston AD, AL (AN) File Type: CGW 24-OCI-

24-0CT-94

3				
Quar	•			
Codes		~	~	c
Meas.	1	UGL	ner	3
Conc.	: : : : : : : : : : : : : : : : : : : :	10	10	1,0
Bool.		QN	QN	Ç.
Analyte Description		2,4-Dichlorophenal	2,4-Dinitrotoluene	Renzoldeflohensorthrene / Dyrane
CAS No.		120-83-2	121-14-2	129-00-0
Matrix				
Lab Anly. No.		PC 81752		
Date		17-MAR-92		
samble No.	1 1 1 1 1 1 1 1 1	91817		
2	1 1 1	91817		
Ď	•	ĘĽ.		
	ID Sample No. Depth Date Lab Anly. No. Matrix CAS No. Analyte Description Bool. Conc. Meas. Codes	1D sample No. Depth Date Lab Anly. No. Matrix CAS No. Analyte Description Bool. Conc. Meas. Codes	1D Sample No. Depth Date Lab Anly. No. Matrix CAS No. Analyte Description Bool. Conc. Meas. 91817 14.0 17-MAR-92 PC 81752 UMO6/ 120-83-2 2,4-Dichlorophenol ND 10 UGL	1D         Sample No. Depth         Date         Lab Anly. No.         Analyte Description         Bool.         Conc.         Meas.         Codes           91817         14.0         17-MAR-92         PC         81752         UM06/ 120-83-2         2,4-Dichlorophenol         ND         10         UGL         R           121-14-2         2,4-Dinitrotoluene         ND         10         UGL         R

۵.		Гар	Meth/			Meas.		Unit	Flag
	Lab	Anty. No.	Matrix	CAS No.	Analyte Description	Bool.	Conc.	Meas.	Codes
	!		1 1 1		* 1	1 1 2 1	:	1	
92	ည	81752	/90WN	120-83-2	2,4-Dichlorophenol	QN	10	UGL	~
				121-14-2	2,4-Dinitrotoluene	ND	10	ner	· ~
				129-00-0	Benzo[def]phenanthrene / Pyrene	QN	10	ner	: œ
				131-11-3	Dimethyl phthalate	QN	10	1911	· 🗠
				132-64-9	Dibenzofuran	Q	10	ner	· ~
				191-24-2	Benzo[ghi]perylene	Q	10	] []	: 2
				193-39-5	Indeno[1,2,3-C,D]pyrene	9	10	191	: 2
				205-99-2	Benzo[b]fluoranthene / 3,4-	S	10	nei	: ≃
					Benzofluoranthene				
				206-44-0	Fluoranthene	Q	10	1911	2
				207-08-9	Benzo[k]fluoranthene	QN	10	T O	: 04
				208-96-8	Acenaphthylene	Q	10	] []	: 0:
				218-01-9	Chrysene	Q	10	50	: 2
				50-32-8	Benzo[a] pyrene	Q	10	1911	: ~
				51-28-5	2,4-Dinitrophenol	Q	20	1911	: œ
				53-70-3	Dibenz[ah]anthracene / 1,2:5,6-	Q	10	ner	: 02
					Dibenzanthracene				
				534-52-1	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	Q	50	UGL	×
					dinitrophenol				
				541-73-1	1,3-Dichlorobenzene	Q	10	ner	~
				56-55-3	Benzo[a] anthracene	QN	10	ng.	: ≃
				29-50-7	3-Methyl-4-chlorophenol / 4-Chloro-3-	QN	10	190	: ≃
					cresol / 4-Chloro-3-m*			!	:
				606-20-2	2,6-Dinitrotoluene	Q	10	1911	œ
				621-64-7	N-Nitrosodi-n-propylamine	2	10	TSO	: ≃
				65-85-0	Benzoic acid	Q	50	191	· 02
				67-72-1	Hexachloroethane	QN	10	l bh	: ≃
				7-47-4	Hexachlorocyclopentadiene	Q <b>N</b>	10	190	: ≃
				78-59-1	Isophorone	ND	10	190	: ≃
				83-32-9	Acenaphthene	QN QN	10	ner	×
				84-66-2	Diethyl phthalate	QN	10	191	: ≃
				84-74-2	Di-n-butyl phthalate	QN	10	190	: 22
				85-01-8	Phenanthrene	QN	10	191	: 02
				85-68-7	Butylbenzyl phthalate	Q	10	: E	: 0:
				86-30-6	N-Nitrosodiphenylamine	2	10	1911	: as
				86-73-7	Fluorene / 9H-Fluorene	QN	10	131	: ≃
				87-68-3	Hexachlorobutadiene / Hexachloro-1,3-	2	10	190	: ≎:
					hitadiono	<u>:</u>	>-	5	£

	ייי מיייי מייייי מיייייייייייייייייייי	Ş	2	
6-55-3	Benzo[a] anthracene	QN	10	
9-50-7	3-Methyl-4-chlorophenol / 4-Chloro-3-	2	10	
	cresol / 4-Chloro-3-m*			
06-20-2	2,6-Dinitrotoluene	QN.	10	
21-64-7	N-Nitrosodi-n-propylamine	9	10	
5-85-0	Benzoic acid	Q.	205	
7-72-1	Hexachloroethane	QN	10	
7-25-2	Hexachlorocyclopentadiene	C.	10	
8-59-1	Isophorone	2	10	
3-32-9	Acenaphthene	9	20	
4-66-2	Diethyl phthalate	2	0,	
	_		,	

999999 butadiene Pentachlorophenol 2,4,6-Trichlorophenol 2-Nitroaniline 2-Nitrophenol Naphthalene / Tar camphor 2-Methylnaphthalene 87-86-5 88-06-2 88-74-4 88-75-5 91-20-3 91-57-6

ner ner ner ner

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

	Data	Utter 18																																												
		Codes	œ	~	~	~	~	œ	×		×	œ	œ																																	
	Unit	Meas.	ner	NGL	NGL	ner	ner	UGI	NGL		UGI.	UGL	NGL	UGL		UGL	NGL		ngr	ner		UGL		NGL	NGL		ner	UGL	UGI	UGL	NGL	ner	ner	ner	<b>n</b> er	UGI.	UGL	UGL	ner.	UGL	NCL	ner	19n	nei:	UGI.	UGL
	4	conc.	50	20	10	10	10	20	10		50	10	10	.319		,321	.653		2.29	1.29		3.2		<b>79.</b>	5.02		979.	765	.517	.319	.338	.74	29.6	8.17	23.8	2.5	6.01	14.9	14400	58000	100	1590	2800	30.9	63.1	1250
	Meas.	.1008	9	S	Q	Q.	2	쥦	S		QN	Q.	Q.	ב		ב	_		_	<u></u>		_		-1	_		LT	ב	-1	Ľ		۲1				11	רו	Ľ			_			_	Lī	Lī
		Analyte Description	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene		Nitrite, nitrate - nonspecific	Cyanide	Lead	Thallium	Arsenic	Selenium	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium
		CAS NO.	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3		99-09-2			118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0	:	606-20-2	78-11-5	;	88-72-2	99-08-1	99-35-4	0-69-66	0-66-66	7439-97-6	14797-55-8	57-12-5	7439-92-1	7440-28-0	7440-38-2	7782-49-2	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-057
	Meth/	marrix	/90MD											NM35/																		2807/	TF13/	TY03/	SD08/				SS15/							
	Lab	ab Anty. No.	PC 81752											PC 81752																		PC 74780			PC 74780											
	Sample		17-MAR-92 F											18-MAR-92 F																		11-MAR-92			6.0 11-MAR-92											
	4		14.0																													5.0			6.0											
	- G	e 20.	91817																													91818														
•	Field	sample	918																																											
,	Site		91817																													91818														

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Site Site Type ID WELL 91818

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

91818 6.0 11-1	Date 11-MAR-92	PC - 29	Lab Anly. No.	Meth/ Matrix  SS15/	CAS NO. 7440-22-4 7440-23-5 7440-23-5 7440-28-0 7440-38-0 7440-39-3 7440-41-7 7440-41-7 7440-43-9 7440-62-2 7440-62-2 7440-62-2 7440-62-2 7782-49-2 100-41-4 100-42-5 100-41-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5 100-42-5	Analyte Description  Silver Silver Sodium Thallium Antimony Beryllium Cadmium Cobalt Copper Vanadium Zinc Calcium Selenium Ethylbenzene Styrene / Ethenylbenzene / Styrol / Styrolene / Cinnamene * Cis-1,3-Dichloropropylene / cis-1,3- Dichloropropene Methyl isobutyl ketone / I.2-Dichloroethane Methyl isobutyl ketone / Isopropylacetone / 4-Methyl-2-pen* Toluene Chlorobenzene / Monochlorobenzene Dibromochloromethane /	Meas. Bool. LT LT LT LT LT ND ND ND ND ND ND ND ND ND ND ND ND ND	Conc. 12.5 3320 100 100 37.1 219 54.9 54.5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Unit Meas.  UGL UGL UGL UGL UGL UGL UGL UGL UGL UGL	T C C C C C C C C C C C C C C C C C C C	Option Option (Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control
					127-18-4 156-59-2 156-60-5 56-23-5 591-78-6 67-64-1 67-64-1 77-43-2 71-43-2 71-43-2 71-43-2 71-55-6 74-83-9 77-500-3 75-00-3 75-09-2	Chlorodischtoromethane / Chlorodischtoromethane / Chlorodischtonethane / Tetrachloroethylene / Tetrachloroethylene / Tetrachloroethene / Perchloroethylene / cis-1,2-Dichloroethene trans-1,2-Dichloroethene carbon tetrachloride Methyl n-butyl ketone / 2-Hexanone Acetone (Chloroform Benzene 1,1,1-Trichloroethane Chloromethane Chloromethane Chloromethane Chloromethane Chloroethane Vinyl chloride / Chloroethene Winyl chloride / Chloroethane Chloromethane Chloroethane Chloromethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Carbon disulfide	2 2 2 2 22 22 22 22 22 22 22 22 22 22 2	v v v v v v v v v v v v v v v v v v v	190 190 190 190 190 190 190 190 190 190	и и и и и и и и и и и и и и и и и и и	

* - Analyte Description has been truncated. See Data Dictionary

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Dat Quats																																											
Flag Codes		œ	œ (	¥	~	: 0:	۰ م	. c	: ~		œ		~	œ	~	~	~	~	×	~	~	· ~	~		œ	~	~	~	×	œ	~	~	×	œ	œ	œ	~	~	~		~	~	×
Unit Meas.	ner	ner	년 기	UGL	101	j	<del>-</del> 5	1911	190		ner		OGL.	NGL	NGL	UGL	UGL	NGL	UGL	NGL	UGL	T DO	UGL		UGL	NGL	NGF	UGL	ner	NGL	OGI.	NGF	19n	ngı.	UCI	NGL	UGL	NCL	UGL		NGL	NCL	NGL
Conc		<b>ب</b> ک	٠ u	00	۲r	י ור	10	. rv	, LO		72		2	2	50	50	10	10	10	10	10	10	10		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10		10	10	10
Meas. Boot.	QN	읒 :	2 5	₹	Š	2	9	2	9		9		Q	Q	QN	Q	QN	Q	QN	Q	Q	Ð	2		Q	2	QN	S	S	QN.	Q.	QN ON	QN	QN	Q	S.	QN	Q	P		Q	Q	QN
Analyte Description	Bromoform	Bromodichloromethane	1,1-Dichloroethane	Dichloroethene	Trichlorofluoromethane	1.2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1.1.2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*	Tetrachloroethane / 1,1,2,2-	Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1,3-Dichloropropene	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol	2,4-Dimethylphenol	p-Cresol / 4-Cresol / 4-Methylphenol	1,4-Dichlorobenzene	4-Chloroaniline	Bis(2-chloroisopropyl) ether	Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe*	Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzo[ghi]perylene	Indeno[1,2,3-C,D]pyrene	Benzo[b]fluoranthene / 3,4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene
CAS No.	75-25-2	75-27-4	75-54-5	4-00-01	7-69-52	78-87-5	78-93-3	20-62	79-01-6		79-34-5				100-01-6	100-02-7	100-51-6	105-67-9	106-44-5	106-46-7	106-47-8	108-60-1	108-95-2		111-44-4	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2		506-44-0	207-08-9	208-96-8
Meth/ Matrix	UM05/														/90WN																												
Lab Lab Anly. No.	PC 74780																																										
Sample Date	-																																										
Depth																																											
Field Sample No.	91818					•																																					

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site Type ID ....

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

Dara Quats	:																																											
Flag Codes	;	⊻ :	<b>z</b> 5	۷ مد	:	~	í	×	œ	~		~	œ	œ	~	~	: ≃	: 2	۔ د	۔ ء	: ~	٠.	× 0	۵ ۵	۷ ۵	<	2	2 ک	د 2	د ۵	: ~	: ∝	~	~	: ~	: ≃	: ≃	: 22	: 2		~	~	~	S
Unit Meas.	1301	or in	100	ign C	i i	NGL	-	UGL	NGL	Jon		NGL	UGL	ngr	UGL	190	1911	1911	191	191	191	101	100	)   [2]	101	Ode	131	UGL		191	TSO.	ngn	UGL	ner	ner	190	190	1911	190		ngr	190	TON	UGL
Conc.	01	2 5	0.5	10		20	ç	2 ;	10	10		10	10	20	10	10	10	10	10	10	10	10	5 5	10	10	2	5.0	10	2.0	10	10	10	10	20	10	10	10	50	10		20	10	10	6
Meas. Bool.	CN	5 5	2 5	2 2		QN	2	2 :	Q	2		9	용	S	2	S	S	QN	9	9	9	9	2	C	9	9	Ç	£	C.	9	9	S	2	S	9	9	₽	QN	2		₽	9	9	
Analyte Description	Chrysene	Document of the second	2.4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	1 3-Dichlorobonsono			5-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-5-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butvibenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1.3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	Unknown compound 532
CAS No.	218-01-9	50-32-B	51-28-5	53-70-3		534-52-1	541-73-1	54-55-2	20-00-00	7-06-66	000	2-02-909	621-64-7	65-85-0	67-72-1	4-24-22	78-59-1	83-32-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3		2-60-66			
Meth/ Matrix																																												
Lab Lab Anly. No.	PC 74780																																											
Sample Da <b>te</b>	11-MAR-92																																											
Depth	6.0																																											
Field Sample No.	91818																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site IVPP ID IVPPELL 91818

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-'

24-0CT-94

Data Quats																																											
Flag Codes	် မ																																										
Unit Meas.	UGL	Ner	2	100	Š	<u> </u>	1911	1	ner		ner	TSO OCT		UGL	ner	NGL	ner	UGI.	NGL	UGL	NGL	UGL	UGL	NGL	190	ner	1911	nen	1911	190	UGI	UGI	UGI.	UGL	ner	UGL	ngr	UGL	ugi.	UGL	UGL	NGL	NGF
Conc.	30	.319	121	135.		2.29	1.29	i i	3.2	!	79.	5.02		979.	765	.517	.319	.338	6.01	7.7	28	2.5	14.9	13700	57000	100	1470	2900	30.9	63.1	1250	12.5	3340	100	37.1	230	2.5	5	42.7	33.5	23.1	42.5	491
Meas. Bool.	1 1 1 1 1	Lī	-	<u>.</u> -	-	_	: =	i	17	i i	LŢ	: =		L	רן	LT	1	-	LI	L1			-			Ļ	i		_	-	LT	Ľ		11	۲1		רן	1					
Analyte Description	Unknown compound 651	2,4,6-Trinitrotoluene / alpha- Trinitrotoluene	2 K-Dimitrotolyono	E,4-Difficiocodesie RNX / Cyclopite / Hexabydro-1 3 5-	trinitro-1 % S-triazine *	Cyclotetramethylenetetranitramine	Tetrv / N-Methv   -N. 2.4.6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1.2.3-Propanetriol	trinitrate	2.6-Dinitrotoluene	PEIN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Arsenic	Mercury	Lead	Thallium	Selenium	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc
CAS No.	:	118-96-7	121-1/-2	121-82-4	1	2691-41-0	479-45-8	! !	55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-9-66	0-66-66	7440-38-2	7439-97-6	7439-92-1	7440-28-0	7782-49-2	7429-90-5	9-68-6272	7439-92-1	7439-95-4	7439-96-5	7-86-6247	7440-02-0	2-60-0552	7440-22-4	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	2440-43-9	2440-42-3	7440-48-4	7440-50-8	7440-62-2	9-99-057
Meth/ Matrix		UM35/																	800S	/208S	SD08/			SS15/																			
Lab Lab Aniy. No.	74780																		66272	24799																							
Lab	: გ																			<u>٦</u>																							
Sample Date	11-MAR-92																			11-MAR-92																							
Depth	6.0																			9.0																							
Š	91818																			918180																							

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

24-001-94

Field Sample Sample Sample No. Depth Date 91818D 6.0 11-MAR-92

Site Site Type 1D ....

Data Quals	1																																										
Flag Codes					٥	۵ ک	۷.	œ		œ	~		~	~	~		≃	6	×	~	٤	~	· œ	~	~	~	œ	œ	~	œ	~	~	~	~	~	~	~		œ	œ	œ	œ	
Unit Meas.	1 0	ner ner	חמר	חפר	1 2	700	ij	NGL		ner	NGL		NGL	NGL	NGL		ner	Ç	ner	TSN	2	Ner	NCL	UGL	UGL	UGL	UGI.	NGL	UCI.	UGL	UGL	UGL	TUN	UGL	UGL	Nor	ner		NGL	ngr	ner	TDN	
Conc.	, , , , ,	0.10	, , ,	7.47	i v	י ער	1	5		7	10		5	5	7		2	t	٥	۲۵	`	5	10	10	2	2	2	10	10	10	10	5	5	2	2	72	20		2	5	10	7	
Meas. Bool.	1	-	5	<u>-</u>	. S	2 5	ì	S		S	S		ş	9	Q		Q	ģ	⊋	Q	!	9	ð	2	Ş	Ş	S	9	S	Q	Ş	Ş	S	2	S	Q	ð		Ş	Q	Q	2	
Analyte Description	m : 0   00	Soloniii	Nitrite nitrate - possessitio		Ethylbenzene	Styrene / Ethenvilbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	Dickloroothono	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	
CAS No.	2-02-0772	7782-40-2	14797-55-R	57-12-5	100-41-4	100-42-5	!	10061-01-5		107-06-2	108-10-1	1	108-88-3	108-90-7	124-48-1	, 69	127-18-4	156-50-2	7 60 00	156-60-5		56-23-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		75-69-4	78-87-5	78-93-3	2-00-62	79-01-6
Meth/ Matrix	5515/		TF13/	TY03/	UM05/																																						
Lab Lab Anly. No.	00272 Jd																																										

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

•		Lab	Lab Anly. No.	Meth/ Matrix	CAS NO.	Analyte Description	Meas. Bool.	Conc.	Unit Meas.	Flag Codes	Data Quals
918180 6.	6.0 11-MAR-92		74799	UM05/	79-01-6	Trichloroethylene /Trichloroethene /	. CX		: 3	: : a	1 1 4 1
				•			!	1	)	2	
					79-34-5	Tetrachloroethane / 1,1,2,2-	QN	2	ner	∝	
						Tetrachloroethane / Acetylene *					
						Xylenes, total combined	S	2	NGL	~	
						trans-1,3-Dichloropropene	R	2	NGL	œ	
				/90MN	100-01-6	4-Nitroaniline	Ş	20	ner	2	
					100-02-7	4-Nitrophenol	Q	20	191	• •	
					100-51-6	Benzyl alcohol	2	) <u>(</u>	- E	۵ :	
					105-67-0	2 4-Dimethylphenol	<u> </u>	2 5	d 3	د د	
					104-77-5	•	2 5	2 5	j :	٠ ٢	
					100-44-7	1 A STATE THE THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT THE PROPERTY AT	5 5	⊇ <b>;</b>	OGL	¥ I	
					1-04-001	i,4-Ulchloropenzene	2	20	UGL	œ	
					106-47-8	4-Chloroaniline	9	10	NGL	œ	
					108-60-1	Bis(2-chloroisopropyl) ether	2	10	UGL	~	
					108-95-2	Phenol / Carbolic acid / Phenic acid	QN QN	10	ngr	~	
						/ Phenylic acid / Phe*					
					111-44-4	Bis(2-chloroethyl) ether	Q	10	131	α	
					111-91-1	Bis(2-chloroethoxv) methane	9	<u></u>	j 5	۵ ۵	
					117-81-7	Dis(2-othylboxyl) abthalata	2 4	2 5	<b>d</b> 5	د د	
					117.0/	bi - contract the billiarare	2 9	2 ;	קר. מיני	۷ (	
					0-40-711	ul-n-octyl phthalate	Q.	<u>D</u> :	ner	œ	
					118-74-1	Hexachlorobenzene	9	10	NGL	œ	
					120-12-7	Anthracene	Q	10	NGL	~	
					120-82-1	1,2,4-Trichlorobenzene	Q	10	NOL	œ	
					120-83-2	2,4-Dichlorophenol	9	10	ner	œ	
					121-14-2	2,4-Dinitrotoluene	Q	10	ugi	· œ	
					129-00-0	Benzo[def]phenanthrene / Pyrene	S	10	1 2	: 0	
					131-11-3	Oimethyl obthalate	2	£	<b>3</b>	۵ ۵	
					132-64-0	Dibonofinan	2 5	2 5	100	د د	
					7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		2 :	⊇ ;	חפר :	צו	
					7-67-161	Benzo Lgn 1 peryt ene	Q.	10	ngr	œ	
					195-39-5	Indeno[1,2,3-C,D]pyrene	9	10	NGL	~	
					205-99-2	Benzo[b]fluoranthene / 3,4-	S	10	NGL	œ	
						Benzofluoranthene					
					206-44-0	Fluoranthene	QN	10	NGL	<b>x</b>	
					207-08-9	Benzo[k]fluoranthene	QN	10	1911	2	
					208-96-8	Acenaphthylene	S	, C	151	: 0	
					218-01-9	Chrysphe	£	) <u>(</u>	3 2	د ۵	
					E0-22-0		2 4	2 5	100	۱ کا	
					20-25-05	penzolaj pyrene	2	01	ner	×	
					C-87-1C	Z,4-Dinitrophenol	æ	20	NGF	œ	
					55-70-5	Dibenz[ah]anthracene / 1,2:5,6-	2	10	ner	œ	
						Dibenzanthracene					
					554-52-1	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	ð	20	ner	~	
					541-73-1	dinitrophenol	Ş	ç	-	ć	
					54-55-3		5 5	2 5	חפור	¥	
					יייייייייייייייייייייייייייייייייייייי					•	

* - Analyte Description has been truncated. See Data Dictionary

Field Sample No. 1

Site Site Type ID ----WELL 91818

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Data Quals	1																																									
Flag Codes	, , ,	<	∝ .	<b>∝</b> (	× 4	× 6	× 1	<b>∝</b> 6	¥	≃ 0	د د	× 0	٤ د	<u>×</u> 0-	: Oz	£	α.	2 ع	: 0	2 ك	: 02	: 2	: 0	≏ ≃	۔ ہ	: ∝	: 22	: ≃	~		×	œ	22									
Unit Meas.	1311	100	חפר חפר	de la	100	19 N	חפר	Net 12:	Ubí.	79A	<b>d</b> 5		9 5	חפר וופו	191		1911	ner Ner	: ::::::::::::::::::::::::::::::::::::	j 1311		T <u>O</u> O	191	191	<b>T</b> 1911	190	1911	ner Ner	190		UGL	UGI.	UGI.	UGI.		UGE	UGL	3	7 m	3	UGI.	
Conc.	10	<u> </u>	20	2 2	0, 5	<u> </u>	2 .	5.5	⊇;	9 9	2 5	2 0	5 5	0 0	10		50	10	5.0	10	10	10	10	20	ĵ.	10	10	50	10		50	10	10	.319		.321	.653	7 30	1.29	1	3.2	
Meas. Bool.	ON ON	) !	2 9	2 5	2 5	2 9	2 9	2 9	2 :	2 5	9	2 S	9	2 9	Q		QN	QN	CN.	QN QN	QN	QN	Q	QN	QN	QN	QN	Q	Q.		Q.	ND	Q.	ב				-			[1	
Analyte Description	3-Methyl-4-chlorophenol / 4-Chloro-3-	2-m*	N.W. + rocod: - range of contract	Renzoic acid	Hexach   oroethane	Hexachlorocyclopentadiene	Technology	Isopilor one Acenaphthene	Diothyl shiple	Diennyt phinalate Di-n-butyt phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodinhenvlamine	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenot	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	<pre>RDX / Cyclonite / Hexahydro-1,3,5- trinitro-1 3 5-triazina *</pre>	Cvclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate
CAS No.	59-50-7	404-30-3	621-66-7	65-85-0	67-72-1	7-27-22	78-50-1	83-32-9	6-79-78	84-74-2	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3		2-60-66			118-96-7		121-14-2	4-78-171	2691-41-0	479-45-8		55-63-0	
Meth/ Matrix	 UM06/																																	UM35/								
Lab Lab Anly. No.	PC 74799																																									
Sample Date	11-MAR-92																																									
o. Depth	0.9																																									

* - Analyte Description has been truncated. See Data Dictionary

Site Site
Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

24-001-94

		- Cura		- -	4 4 6 71			;		:	į	,
Comple No	4		4	LdD Anl:	Meth/		4	Meas.	,	Chrit	Ftag	Data
sample no.	nda.	·	י ב י	Lab Anty. NO.	Marily	LAS NO.	Analyte Description	Bool.	Conc.	Meas.	Codes	00.1.S
918180	6.0	_	S	24799	UM35/	606-20-2	2.6-Dinitrotoluene		79	=	, , ,	
						78-11-5	PEIN / Pentaerythritol tetranitrate /	; <del> </del>	5.02	ner		
							2,2-Bis[(nitrooxy)me*	I	! !			
						88-72-2	2-Nitrotoluene	רַ	949.	NCL		
						99-08-1	3-Nitrotoluene	-1	.492	NGL		
						99-35-4	1,3,5-Trinitrobenzene	-1	.517	UGL		
						0-69-66	1,3-Dinitrobenzene	-1	.319	NGL		
						0-66-66	4-Nitrotoluene	11	.338	NGL		
				747990	800S	7439-92-1	Lead		29	ner	۵	
91819	17.0	30-MAR-92	ე ე	98676	/ 66	14797-55-8	Nitrite, nitrate - nonspecific	ĽI	10	ngr		
					SB07/	2439-97-6		-1	.74	UGL		
					800s	7439-92-1	Lead		100	ner		
						7440-28-0	Thallium		2.64	ner		
						7440-38-2	Arsenic	LI	6.01	ner		
						7782-49-2	Selenium	1	14.9	ner		
					SS15/W	7429-90-5	Aluminum		14400	ligh		
						2439-89-6	Iron		00069	150		
						7439-92-1	Lead		126	<u> </u>		
						7439-95-4	Magnesium		3210	מקד בופו		
						5-90-6272	Mandanasa		18000	5		
						2-80-6272	Molybdenia	-	20.00	רבון. בנו		
						0.00-0772	Ni oko i	_	30.4	Utal.		
						0-20-05-7	Nicket		180	ner	*	
						7-60-0447	Potassium		5550	UGI.		
						7-77-044/	S1lVer		12.5	UGI.		
						7440-23-5	Sodium		1250	ner		
						7440-28-0	Thatlium	11	100	19n		
						7440-36-0	Antimony	LT	37.1	ner		
						7440-39-3	Barium		1650	n <b>er</b>		
						7440-41-7	Beryllium		3.22	UGL		
						2440-43-9	Cadmium		18.4	UGI		
						2440-42-3	Chromium		92.6	ner		
						7440-48-4	Cobal t		131	ner		
						7440-50-8	Copper		353	UGI		
						7440-62-2	Vanadium		61.7	NCI.		
						9-99-055	Zinc		1240	ner		
						7440-70-2	Calcium		0706	UGI		
						7782-49-2	Selenium	בו	75	UGI		
					TY03/	57-12-5	Cyanide	LT	8.17	UGI.		
					UM05/	100-41-4	Ethylbenzene	QN ON	5	Ner	~	
						100-42-5	Styrene / Ethenylbenzene / Styrol /	QN	5	NCL	œ	
							Styrolene / Cinnamene *					
						10061-01-5	cis-1,3-Dichloropropylene / cis-1,3-	QN	5	UGI.	œ	
						2 70	ulculoropropene		1			
						7.90-701	1,2-Dichloroethane	2	2	ngr	œ	
				•								

91819

* - Analyte Description has been truncated. See Data Dictionary

Field Sample No.

Site Site Type ID .... .... WELL 91819

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Datu Guats																																											
	. ~		~	~	~	ć	¥	α.	:	×		œ	~	s	~	×	~	~	~	×	~	: œ	~	~	~	: œ	: ≃	:	2	~	œ	~	~		~		s	~	2	œ	œ	02	: ∝
Unit Neas.	ner		Ner	ner	UGL	3	UuL	ı	! ? )	NGL		NGL	ner	ner	NGL	UGL	ner	ner	UGL	ner	NCL	ner	ner	UGL	1913	190	TSO OCT		ner	NCL	UGL	ner	UGL		ner		UGL	ner	ner	NGL	ner	ner	ner
Conc.	10		5	2	2	и	n	5		5		. 5	10	13	5	2	2	10	10	10	10	5	5	72	2	. 10	22		22	2	10	5	5		5		20	2	2	50	50	10	10
Meas. Bool.	- QN		Q.	2	2	9	Š	QN		Q.		Q.	QN		Q	Q	Q	QN Q	Q	Q	Q	QN	Q	Q	QN QN	QN	QN		QN	ON	ND	QN	QN		QN			Q	QN	Q	Q.	QN	QN
Analyte Description	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorobenzene / Monochlorobenzene	Ulbromochloromethane /	Tetrachlocostbylese /	Tetrachlopoethops / Derchlopoethylos*	cis-1,2-Dichloroethylene / cis-1.2-	Dichloroethene	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*	Tetrachloroethane / 1,1,2,2-	Tetrachloroethane / Acetylene *	Unknown compound 224	Xylenes, total combined	trans-1,3-Dichloropropene	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol	2,4-Dimethylphenol
CAS NO.	108-10-1		108-88-3	108-90-7	1-94-471	127-18-4	2	156-59-2		156-60-5	;	56-23-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		75-69-4	78-87-5	78-93-3	2-00-62	79-01-6		79-34-5					100-01-6	100-02-7	100-51-6	105-67-9
Meth/ Matrix	UM05/																																							/90WN			
Lab Anly. No.	PC 94986																																										
Sample Date	M																																										
. Depth	17.0																																										

* - Analyte Description has been truncated. See Data Dictionary

Field Sample No. [

Site Site Type 1D

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-0C1-JAN-91

Đạt Qualis																																											
Flag Codes	; ∝	~	~	~	~	۵	2 د	<b>د</b> ۵	۵ ک	∠ 6≥	· ~	: œ	~	œ	œ	~	œ	~	œ		~	~	œ	œ	~		~	~	×		~		~	~	~	:	~	: ≃	∞.	œ	×	~	~
Unit Meas.	ner	UGI	NGL	ner	NGL	1311	100	וניה ווניה	1 25	190 191	19n	ner	NCL	NGL	NGL	UGL	NGL	NCL	NGL		190	ner	NGL	NGL	ner		UGL	ner	UGL		UGL		ner	UGI	ner		190	NGI.	NGL	NGL	ner	79N	ner
Conc.	10	10	10	10	01	10	2 5	2 5	2 =	2 6	10	10	10	10	10	10	10	10	10		10	10	10	10	10		10	20	10		50		10	10	10		10	10	20	10	10	10	10
Meas. Bool.	- QN	9	ş	₽!	2	Ş	2 9	2 5	2 5	2 2	2	2	Q	윤	Q	身	QN	용	Q		Q	Ş	ş	QN	용		Q	GN.	9		₽		2	Q	QN		QN	S	2	₽	용	₽	Q
Analyte Description	p-Cresol / 4-Cresol / 4-Methylphenol	sene	4-Chloroaniline	Bis(2-chloroisopropyl) ether	/ Phenot / Larbolic acid / Phenic acid	Ris(2-chloroethyl) ether	Ris(2-chloroethoxy) methons	Bis(2-ethylhexyl) phthalate	Di-n-octvi phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzo[ghi]perylene	Benzo[b]fluoranthene / 3,4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Chlorpyrifos / Phosphorothioic acid	0,0-diethyl 0-(3,5,6-t*	Benzo [a] pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,5-Dichlorobenzene	Benzo [a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Mexachlorocyclopentadiene	Isophorone	Acenaphthene
CAS No.	106-44-5	106-46-7	106-47-8	108-60-1	7-64-001	111-44-4	111-01-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	205-99-2		206-44-0	207-08-9	208-96-8	218-01-9	2921-88-2		50-32-8	51-28-5	53-70-3	!	534-52-1		541-75-1	56-55-3	59-50-7		606-20-2	621-64-7	65-85-0	67-72-1	77-47-4	78-59-1	83-32-9
Meth/ Matrix	/90MN																																										
Lab Lab Anly. No.	PC 94986																																										
	30-MAR-92																																										
. Depth	17.0																																										

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

J Data ss Quals																													2		±	×	be	: <u>*</u>		-£		<u></u>	<b>2</b> 2	74	· ×	
Flag Codes	; <u>~</u>	~	~	~ (	≃ ⊆	<u> </u>		~	~	×	~	œ	œ	œ	œ	24	×	œ	2	~	:	~	~	~	S	ഗ	S	ဟ														
Unit Meas.	Ten	UGL	UGL	ng.	190	UGL		ner	NGL	ner	Not	T9N	ner	NGF	NGL	NGL	ner	UGL	Net	UGL		ngi.	NGL	ner	NOT	ner	NOL	NCI.	NCI.		ngi.	061	ign	NGL		NGL		ner	NGL	Ner	NGL	
Conc.	10	10	10	0 9	2 5	10		20	10	20	10	10	10	10	20	10	10	10	50	10		20	10	10	09	10	70	10	.319		.321	660.	2,29	1.29		3.2		.64	20.6	979.	765	
Meas. Bool.	QN .	Q.	S	<u> </u>	2 5	를 <u>응</u>		용	QN	윤	S	S	S	Ş	S	ş	Q	S	QN	Q		Ş	S	용					ב		_ :	_		-1		11		ב'.	_	ב	ב	
Analyte Description	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	Fluorene / OH-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenot	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	Unknown compound 539	Unknown compound 560	Unknown compound 565	Unknown compound 598	2,4,6-Trinitrotoluene / alpha-	יו ווון רו סרסומפוופ	6/4-Dinitrotoluene	trinitro-1.3.5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate		2.2-Bisfontrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	
۵	84-66-2	84-74-2	85-01-8	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3		69-09-2							118-96-7	6 /1 /64	121-14-2	100	2691-41-0	479-45-8		55-63-0	, ,,	28-11-E	2	88-72-2	99-08-1	
Meth/ Matrix	190WD																											1	UW35/W													
Lab Lab Anly. No.	PC 94986																																									See Data Dictionary
Sample Date	30-MAR-92																																									
Depth	17.0																																									een tru
																																										q sı
Field Sample No.	91819																																									escription ha
Site Field ID Sample No.																																										* - Analyte Description has been truncated.

^{* -} Analyte De

91820

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Dat.a Qual is	: 24	. 12	¥																																										
_ 9	1		=																																œ	œ		~		×	: 22		~	: 2	:
Unit Meas.		ner ner	UGL	ngr Ref	1001	i or	חפר	ופר ופרי	Upl.	TON	UGL	ner	NGL	NGL	ner	ner	UGL	=	101	350	155	Out	ner	ner	ner.	ner	ner	ner	NGL	UGL	UGL	ner	NGI.	UGL	UGI.	UGL		ner		ner	190		ner	190	; ;
Conc.	517	.319	2.25	11.6	47.	10.¢	6.5	0.0	7.4.	5650	17000	100	4910	305	30.9	63.1	1250	105	1190	100	27.1		2.22	5.5	5	110	25	20	29.3	999	13200	75	375	8.17	5	2		2		5	10		2	٠.	i
Meas. Bool.	<u> </u>	- :		•	-	-	- 1		_			ב			<u>ו</u>	רו	-1			-	- <u>+</u>	;	!	5	11			LI				<u>-1</u>		Ļ	Q	QN		QN QN		QN	QN		QN	Q	!
Analyte Description	1 3 5-Trinitrohenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Arsenic	Mercury	read Thollium	וומר ( ותוו * ביייייייייייייייייייייייייייייייייייי	Al'Senic Solonium	serenium	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Thalling	Antimony	Allelinoliy	Barium	Beryllum	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Nitrite, nitrate - nonspecific		Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorobenzene / Monochlorobenzene	
CAS No.	7-32-66	0-59-66	0-66-66	7440-38-2	7/20-03-1	77.70-28-0	0-07-07/2	7-07-0447	7-64-7011	429-90-5	7459-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2-60-0552	7440-22-4	7440-23-5	0-86-0772	0-92-0772	2000//2	7//0 /1 7	1-15-0551	7440-43-9	2440-47-3	7440-48-4	2440-50-8	7440-62-2	9-99-0552	7440-70-2	7782-49-2	14797-55-8	57-12-5	100-41-4	100-42-5		10061-01-5		107-06-2	108-10-1		108-88-3	108-90-7	124-48-1
Meth/ Matrix	11M35 /W			SD08/						M/CLSS																							TF13/	TY03/	UM05/										
	PC 94986			94986MS																																									
	30-MAR-92			17 67																																									
Depth	17.0	:		,	0.0																																								
Field Sample No.	91819			000	<b>7.18</b> 20																																								

^{* -} Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

24-001-94

Field Sample No. Depth

Site Site Type ID ---- ----

Data Quals	1 : : : : : : : : : : : : : : : : : : :																																						
Flag Codes	. ~	: a	٤ ،	¥ .	œ	~	œ (	<b>~</b> c	× 0	۵ ک	< ≃	: 02	· 04	. ∝	. ∝	œ	~	2	2	: 02	:	~	: ~	: 02	: ∝	: ≃		œ		~	· ~	~	: o:	02	: 02	· ~	~	œ	<b>∝</b>
Unit Meas.	190	; :		OGF	ner n	UGI.	ner	וני הני	100 1101	<u> </u>	ner Ner	Ton	ner	ner	NGL	NGL	UGL	UGL	ner	190	! !	ngr	1911	ign	ner	ncr		UGL		ner	Ner	ngr	ner	ner	750 0	]   191	ner	ner	UGL
Conc.		, <i>ເ</i> ɾ	. ц	י ה	٥	5	5 5	⊇ ພ	n ir	, L	, ₁	10	10	10	2	2	2	2	5	2		2	. 10	10	72	2		2		2	2	50	50	10	10	10	10	10	10
Meas. Bool.	- QN	S	! 9	2 9	2	Q.	2 9	2 5	2 2	9	2	ş	2	2	ş	Q	Q	Q	Q	QN		QN QN	Ş	QN	9	2		Q		Q.	S	QN	S	Q	2	2	S	Q	2
Analyte Description	Dibromochloromethane /	Chlorodibromomethane Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	Dichloroethene	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*	Tetrachloroethane / 1,1,2,2-	Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1,3-Dichloropropene	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol	2,4-Dimethylphenol	p-Cresol / 4-Cresol / 4-Methylphenol	1,4-Dichlorobenzene	4-Chloroaniline	Bis(Z-chloroisopropyl) ether
CAS No.	124-48-1	127-18-4	156-59-2	156-60-5		56-23-5	591-78-6 67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4	:	75-69-4	78-87-5	78-93-3	2-00-62	79-01-6		79-34-5				100-01-6	100-02-7	100-51-6	105-67-9	106-44-5	106-46-7	100-47-8	108-95-2
Meth/ Matrix	UM05/																															UM06/							
Lab Anly. No.	PC 80047																																						
Sample Date	17-MAR-92																																						
Depth	13.(																																						

^{* -} Analyte Description has been truncated. See Data Dictionary

Field Sample No. 1

Site Site
Type ID
---WELL 91B20

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

Flag (Codes	UGL R		_		_	UGL R				UGL R				UGL R		UGL R	UGL R		UGL R	UGL R		UGL R			UGL		UGL R		UGL R	UGL R	UGL R			UGL R	UGL R	UGL R			UGL	UGL R				
Conc.	10		10	0.	10	10	10	10	10	10	10	10	10	10	10	10	10		10	10	10	10	2	20	2		20		10	10	10		10	10	20	10	10	10	10	. 10	10	10	10	10
Meas. Bool.	S		오 :	2 :	2	2	2	운	오	욷	S	R	윤	2	S	S	2		2	윷	ջ	R	9	2	9		S		2	Q	Q		S	웆	9	2	ð	ş	용	ş	S	Ş	용	9
Analyte Description	Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe*	Bis(2-chloroethyl) ether	Bis(z-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzo[ghi]perylene	Indeno[1,2,3-C,D]pyrene	Benzo[b] fluoranthene / 3,4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzo [a] pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo [a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine
CAS No.	108-95-2	;	111-44-4	17-71-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2		206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	56-55-3	29-20-7		606-20-2	621-64-7	65-85-0	67-72-1	77-47-4	78-59-1	83-32-9	84-66-2	84-74-5	85-01-8	85-68-7	86-30-6
Meth/ Matrix	UM06/																																											
Lab Anly. No.	PC 80047																																											
Sample Date	17-MAR-92																																											
. Depth	13.0																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

24-001-94

Site Type ....

24-001-94

							-		1, 120					
., 4		Field Sample No.	Depth	Sample Date	rab ,	Lab Lab Anly. No.	Meth/ Matrix	CAS No.	Analyte Description	Meas. Bool	Conc	Unit Meas	Flag	Data
•		1 1 1 1 1 1 1 1	1 1 1 1 1	:	1	1 1 1 1 1 1 1 1 1				· ;	. :		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
916	91820 91	91820	13.0	17-MAR-92	D.	80047	/90WN	86-73-7	Fluorene / 9M-Fluorene	₽	10	ner	~	
								87-68-3	Hexachlorobutadiene / Hexachloro-1,3-	N Q	10	UGI.	~	
									butadiene					
								87-86-5	Pentachlorophenol	ş	20	NCL	œ	
								88-06-2	2,4,6-Trichlorophenol	Q.	10	NGL	œ	
								88-74-4	2-Nitroaniline	Q	50	NGL	~	
								88-75-5	2-Nitrophenol	QN	10	UGL	~	
								91-20-3	Naphthalene / Tar camphor	QN	10	UGL	~	
								91-57-6	2-Methylnaphthalene	QN	10	UGL	~	
								91-58-7	2-Chloronaphthalene	QN	10	UGL	œ	
								91-94-1	3,3'-Dichlorobenzidine	QN	20	UGI.	œ	
								95-48-7	o-Cresol / 2-Cresol / 2-Methylphenol	QN	10	nei	. ~	
								95-50-1	1,2-Dichlorobenzene	QN	10	ner	· œ	
								95-57-8	2-Chlorophenol	Q	10	190	· œ	
								95-95-4	2,4,5-Trichlorophenol	Q	20	ner	: ∝	
								98-95-3	Nitrobenzene / Essence of mirbane /	QN	10	ngr	· œ	
									Oil of mirbane					
								2-60-66	3-Nitroaniline	QN	50	ner	2	
									4-Bromophenyl phenyl ether	QN	10	UGL	· œ	
									4-Chlorophenyl phenyl ether	QN	10	ng.	: ∝	
									Unknown compound 651	!	30	ign ner	· ഗ	
							UM35/	118-96-7	2,4,6-Trinitrotoluene / alpha-	[]	.319	ner.	,	
									Trinitrotoluene			1		
								121-14-2	2.4-Dinitrotoluene	<u>-</u>	321	2		
								121-82-4	RDX / Cyclonite / Hexahydro-1.3 5-	- <u>-</u>	175.	<del>1</del> 21		
									trinitro-1,3,5-triazine *	<u>.</u>		300		
								2691-41-0	Cyclotetramethylenetetranitramine	-1	2.29	ner		
								479-45-8	Tetryl / N-Methyl-N,2,4,6-	-1	1.29	190		
									tetranitroaniline / Nitramine / *					
								55-63-0	Nitroglycerine / 1,2,3-Propanetriol	<u>-</u> :	3.2	UCI.		
									trinitrate					
								606-20-2	2,6-Dinitrotoluene	17	,9,	UGL		
								78-11-5	PETN / Pentaerythritol tetranitrate /	LT	5.02	UGI.		
									2,2-Bis[(nitrooxy)me*					
								88-72-2	2-Nitrotoluene	17	949.	UGI.		
								99-08-1	3-Nitrotoluene	LT	765	ner		
								99-35-4	1,3,5-Trinitrobenzene	רז	.517	UGL		
								0-59-66	1,3-Dinitrobenzene	11	.319	UGL		
č		į	•	;				0-66-66	4-Nitrotoluene	LT	.338	UGL		
71821		91821	10.0	10.0 18-MAR-92	٦ ک	81787	TF13/	14797-55-8	Nitrite, nitrate - nonspecific		317	ner		
							UM05/	100-41-4	Ethylbenzene	ð	5	UGL	œ	
								100-42-5	Styrene / Ethenylbenzene / Styrol /	Q	2	ner	~	
								10041-01-5	Styrolene / Cinnamene *					
								, , , , , , , , , , , , , , , , , , , ,						

* - Analyte Description has been truncated. See Data Dictionary

10061-01-5

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Data Quals																																											
Flag	~	ć	<b>×</b> c	×	~	: 04	· œ		~		œ		œ		œ	œ	~	≃:	~	×	×	<u>~</u>	œ	≃	~	œ	~	~	~	×		×	24	×	~	œ		~		œ	œ	œ	œ
Unit Meas.	UGL	-	000	Uut	131	ngr	nor		UGI.		NGL		Net		NGL	NGL	NCL	NGF	ner	UGL	NGL	ner	ner	ner	ner	ner	ner	UGI.	TUD	NGF		noi.	ner	NCL	UCI,	NGL		NCL		UGL	NGL	Ner	ner
Conc.	5	ı	٠,	2	Ľ	ιco	ιĸ	•	'n		5		2		2	10	10	2	2	5	10	10	10	10	72	5	5	72	5	5		2	5	10	5	2		2		2	2	20	50
Meas. Bool.	QN QN		⊋ :	⊋	Ş	2 5	£	<u>!</u>	Ş		Q		2		Q	ջ	QN	Q	QN	S	QN	Q	QN	S	9	S	윤	2	QN	Q		Q.	Q	Q	QN	Q.		S		Q	QN	QN	용
Analyte Description	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl Ketone /	Tolliene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	cis-1,2-Dichloroethylene / cis-1,2-	Dichloroethene	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*	Tetrachloroethane / 1,1,2,2-	Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1,3-Dichloropropene	4-Nitroaniline	4-Nitrophenol
CAS No.	10061-01-5	0	707-701	1-01-901	108.88.3	108-90-7	124-48-1	?	127-18-4		156-59-2		156-60-5		56-23-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		75-69-4	78-87-5	78-93-3	2-00-62	79-01-6		79-34-5				100-01-6	100-02-7
Meth/ Matrix	UM05/																																									<b>190W</b> 0	
Lab Lab Anly. No.	PC 81787																																										
Sample Depth Date	-																																										
	91821																																										

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

24-001-94

Site Site Type ID .... ....

Dat.i Quats	:																																												
Flag Codes		· œ	~	œ	~	~	~		~	~	: ≃	~	· œ	: 🗠		: ~	: 2	: 0:	: ~	د د	<u>د</u> ع	2 د	× 4	¥		~	œ	œ	~	~	2	~		×		~	~	~		~	~	: ≃	: 2	: 2	× ×
Unit Meas.	 Net	ner	UGL	ner	UGL	ngr	ner		NCL	ner	ner	19N	190	191	190	1 101	<u> </u>	1911	101	101 101	<del>1</del> 51	<b>d</b> 5	חמר	OGL		ner	NGL	NGL	ngr	NCL	ner	UGL		UGL		UGI,	UGL	UGL		NGL	ner	101	191		ner
Conc.	10	10	10	10	10	10	10		10	10	10	10	10	10	10	10	) <del>[</del>	2 0	) <u>(</u>	? <b>(</b>	2 =	2 5	2 5	2	,	10	10	10	10	10	50	10		50		10	10	10		10	10	20	2 5	<u></u>	10
Meas. Bool.	QN	2	S	QN	2	QN	2		Ð	2	2	2	S	S	S	Ş	2	2	Ş	2	<u> </u>	2 5	<u> </u>	Ş		Q	Q	2	QN	QN	QN	S		QN		QN QN	ND	9		Q	Q	Q	S	S	2
Analyte Description	Benzyl alcohol	2,4-Dimethylphenol	p-Cresol / 4-Cresol / 4-Methylphenol	1,4-Dichlorobenzene	4-Chloroaniline	Bis(2-chloroisopropyl) ether	Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe*	Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichlorobenzene	2.4-Dichlorophenol	2.4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzolahilbervlene	Indeno[1 2 3.r Ninyrene	Reprofbl fluorenthene	Reprofilienships	מכולסו נחסו שוווובנוב	Luoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzo[a]pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo[a]anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone
CAS No.	100-51-6	105-67-9	106-44-5	106-46-7	106-47-8	108-60-1	108-95-2		111-44-4	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-00-2	1 // 501		200-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	56-55-3	59-50-7		606-20-2	621-64-7	65-85-0	67-72-1	7-27-22	78-59-1
Meth/ Matrix	/90WN																																												
Lab Anly. No.	PC 81787																																												
Sample Date	18-MAR-92																																												
Depth	10.0																																												
Field Sample No.	91821																																												

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Field Sample No. 1

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: GGW 24-OCT-

Data Quals																																													
flag Codes		~	æ	~	~	~	~	~		~	<b>∝</b>	œ	œ	~	œ	œ	~	~	œ	~	~	×		œ	: c2	: 0	∠																		
Unit Meas.	ner	ner	ner	ner	NGL	ngr	NGL	UGL		ner	NGL	UGL	UGL	UGI.	ner	UGL	NGL	UGT	<b>N</b> GF	19N	ner	UGL		NGL	5	3 5	101	ngr		Ner	NGL		NGL	NGL		NGL		NGL	NGL		NGL	ngr	ner	ner	ngr
Conc.	10	10	10	10	10	10	10	10		20	10	20	10	10	10	50	20	10	10	10	50	10		50	10	2 5	,	.519	i	.321	.653		2.29	1.29		3.2		·9 <del>,</del>	5.02		949.	765.	.517	.319	.338
Meas. Bool.	Q.	Q	QN	QN	QN	S	QN	Q.		Q	윤	S	읒	Q.	QN	Q.	Q	QN	QN	QN	Q.	쥦		Q.	2	9	<u> </u>	5			-1		-1	-1		H		Ľ	ב		ב	Ľ	11	=	ב
Analyte Description	ŧ	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 94-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenot	2,4,5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Rromonhenvi phenvi ether	/-Chlorophonyl phonyl othon	ייינים סטופוואר סוופוואר פרוופו	Z,4,6-Irinitrotoluene / alpha-	irinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PEIN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene
CAS No.	83-32-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	2-85-56	95-50-1	95-57-8	95-95-4	98-95-3		69-09-2	!		4 70 044	118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	99-35-4	0-59-66	0-66-66
Meth/ Matrix	/90MN																										7 32 111	UM35/																	
Lab Anly. No.	PC 81787																																												
Sample Date	18-MAR-92																																												
o. Depth	10.0																																												

* - Analyte Description has been truncated. See Data Dictionary

Data Quals

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

g D	:																																											
Flag Codes																													Ω	٥	۵	<u> </u>												
Unit	UGL	<u>.</u>	OG.	150	Jon .	מפר	ายก	ner	NGL	NGL	NGL	ner	ner	Ner	NOL	NGL	ncr	NOL	NGL	NCF	UGI.	NGL	UGL	UGF.	UGL	Ner	NGL	ner	ner	ner	UGL	NGI.	UGI	UCI	UGI.	UGL	NGL	190	TSD	ner	ner	NGL	NGL	
Conc.	. 74	1.84	2.5	6.01	7.4.	1440	2650	100	33000	89.4	30.9	63.1	1250	12.5	2220	100	37.1	27.2	2.5	2	35.6	25	20	20	1090	90089	75	8.17	1.77	2.5	6.01	14.9	.74	1.62	2.5	6.01	14.9	711	1580	100	8020	102	30.9	
Meas. Bool.	17	•	: : د	_ :	_			Ľ			ב	ב	ב	L		נו	5		-1	LI		17	1	-1			רו	П		-1	<b>L1</b>	-11	17		LŢ	П	П			-				
ription																																												
Analyte Description	Mercury	Lead	inai i ium	Arsenic	set en lum	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cyanide	Lead	Thallium	Arsenic	Selenium	Mercury	Lead	Thallium	Arsenic	Selenium	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	
CAS No.	7439-97-6	7459-92-1	0-92-044/	7-95-044/	7-64-7011	7,20,90-5	7459-89-6	7439-92-1	7439-95-4	7439-96-5	7439-98-7	7440-02-0	2440-09-7	7440-22-4	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	7440-43-9	2440-42-3	7440-48-4	7440-50-8	7440-62-2	9-99-055	7440-70-2	7782-49-2	57-12-5	7439-92-1	7440-28-0	7440-38-2	7782-49-2	7439-97-6	7439-92-1	7440-28-0	7440-38-2	7782-49-2	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5	7459-98-7	77.7.0 - 0.3 - 0
Meth/ Matrix	SB07/					M/CISS																						TY03/					/208S					SS15/W						
Lab Lab Anly. No.	85190	76109																											85197D				87452											
Lab #	S.																																ည											
Sample Date	20-MAR-92																																8.U 24-MAR-92											
Depth	10.0																															6	o. ∵											
Field Sample No.	91821																																91822											
Site	91821																																71822											
Type																																												

^{* -} Analyte Description has been truncated. See Data Dictionary

Site Site Type ID

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

Data Ouats	:																																											
Flag Codes	1 1 2 .																	œ	~		~		œ	~		~	~	~		~		œ		<b>∝</b>		~	~	×	~	~	œ	~	~	<u>~</u>
Unit Meas.	ngr	UGI.	UGL	ner	UGL	NGL	ner	UGL	UGL	NGL	ner	ner	ner	ner	ner	NCL	ner	NGL	NGL		NGL		UGL	UGL		ner	UGL	<b>1</b> 90		ner		NGL		NGL		ner	UGL	NGL	UGL	UGL	UGL	ngr	NGL	חפר
Conc.	1250	12.5	3060	100	37.1	20	2.5	5	15	25	50	20	625	15900	75	68.3	8.17	2	5		2		2	10		υ Σ	2	5		2		5		2		2	10	10	2	5	2	10	10	10
Meas. Bool.		LI		[]	LT	П	רן	11	-1	LT	LI	11			Lī		LI	Q	QN		Q		Q	Q		S	QN ON	QN		Q		Q		Q		Q	Q	QN	Q	9	S.	QN	Q	Q
Analyte Description	Potassium	Silver	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Nitrite, nitrate - nonspecific		Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	cis-1,2-Dichloroethylene / cis-1,2-	Dichloroethene	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane
CAS No.	2-60-0552	7440-22-4	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7-14-0447	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-057	7440-70-2	7782-49-2	14797-55-8	57-12-5	100-41-4	100-42-5		10061-01-5		107-06-2	108-10-1		108-88-3	108-90-7	124-48-1		127-18-4		156-59-2		156-60-5		56-23-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3
Meth/ Matrix	SS15/W															TF13/	TY03/	UM05/W		•																								
Lab Lab Anly. No.	PC 87432																																											
	8.0 24-MAR-92																																											

^{* -} Analyte Description has been truncated. See Data Dictionary

Field Sample No. Depth

Site Site Type ID ---- ----WELL 91822

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

	Sample		Lab				Meas.		Unit	Flag	Data
Depth	Date	Lab	Lab Anly. No.	Matrix	CAS No.	Analyte Description	Bool.	Conc.	Meas.	Codes	Quals
		:	1 1 1 1 1 1 1 1 1 1		;		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	i ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	:
8.0	24-MAR-92	ည	87432		75-01-4	Vinyl chloride / Chloroethene	Q	10	ner	~	
					75-09-2	Methylene chloride / Dichloromethane	QN	2	NGL	×	
					75-15-0	Carbon disulfide	S	. 2	1911	~	
					75-25-2	Bromoform	9	. ~	1911	. ~	
					75-27-4	Bromodichloromethane	2	· ur	101	: 0:	
					75-34-3	1.1-Dichloroethane	£ 5		<u> </u>	: 0	
					75-35-4	1.1-Dichtoroethylene / 1.1-	£ 5	, 10	d =	: 0	
						Dichloroethene	<u>!</u>	•	i i	:	
					75-69-4	Trichlorofluoromethane	QN	2	9	~	
					78-87-5	1.2-Dichtoropropane	£		<u> </u>	: ~	
					78-93-3	Methyl ethyl ketone / 2-Butanone	£	, =	3 5	: 02	
					2-00-6	1.1.2-Trichloroethane	9		100	: 02	
					79-01-6	Trichloroethylene /Trichloroethene /	2	2	l D D	: 0≤	
					79-34-5	Tetrachloroethane / 1,1,2,2-	N Q	2	ner	~	
						Tetrachloroethane / Acetylene *					
						Xylenes, total combined	QN QN	2	ner	~	
						trans-1,3-Dichloropropene	QN QN	5	пGL	œ	
				/90WN	100-01-6	4-Nitroaniline	S	20	190	~	
					100-02-7	4-Nitrophenol	Q	20	9	~	
					100-51-6	Benzyl alcohol	Q	10	lg Ne	~	
					105-67-9	2,4-Dimethylphenol	Q	10	ng.	~	
					106-44-5	p-Cresol / 4-Cresol / 4-Methylphenol	Q	<b>.</b> e	ner	: 2	
					106-46-7	1,4-Dichlorobenzene	2	10	le le	: ~	
					106-47-8	4-Chloroaniline	S	: <del>C</del>	191	: 02	
					108-60-1	Bis(2-chloroisopropyl) ether	2	: £	101	: ~	
					108-95-2	Phenol / Carbolic acid / Phenic acid	2 5	2 (	101	۵ ک	
					•	/ Phenylic acid / Phe*	<u>}</u>	2	į	<u>.</u>	
					111-44-4	Ris(2-chloroethyl) ether	2	10	135	۵	
					111-91-1	Bis(2-chloroethoxv) methane	2 5	2 =	d =	د ۵	
					117-81-7	Bis(2-ethylhexyl) phthalate	<u>}</u>	61	d =	2 (2)	
					117-84-0	Di-n-octyl phthalate	Q	10	ner	~	
					118-74-1	Hexachlorobenzene	QN	10	UGL	~	
					120-12-7	Anthracene	QN	10	UGL	œ	
					120-82-1	1,2,4-Trichlorobenzene	Q.	10	NGL	∝	
					120-83-2	2,4-Dichlorophenol	Q.	10	UGL	~	
					121-14-2	2,4-Dinitrotoluene	Q	10	UGL	~	
					129-00-0	Benzo[def]phenanthrene / Pyrene	QN	10	UGL	~	
					131-11-3	Dimethyl phthalate	Q	10	UGL	~	
					132-64-9	Dibenzofuran	Q	10	UGL	~	
					191-24-2	Benzo[ghi]perylene	Q.	10	NGL	~	
					193-39-5	Indeno[1,2,3-C,D]pyrene	Q	10	UGL	~	
					205-99-2	Benzo[b]fluoranthene / 3,4-	Q	10	UGL	œ	
						Benzofluoranthene					

* - Analyte Description has been truncated. See Data Dictionary

Site Site Type 1D ....

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Data s Quals																																														
Flag Codes	œ	~	œ	~	~	œ	œ		~		~	œ	~		~	œ	~	œ	~	œ	œ	2	: 2		¥ (	¥	~	œ	œ		œ	~	œ	~	œ	~	œ	œ	~	~	~	~	۵ ک	<	~	
Unit Meas.	NGL	ndl	ngr	ngr	ner	UGL	NGL		NGL		NGL	ner	NGL		ner	ner	NGL	ner	UGL	ner	ngr	ner	]   	<del>-</del> = = = = = = = = = = = = = = = = = = =	д .	OGF.	NGL	T9N	ngr		Ngr	NCL	UGL	ner	ign N	ner	Ner	UGL	Ner	ner	ner	<u><u><u> </u></u></u>	100	Jan O	NGL	
Conc.	10	10	10	5	10	20	10		20		9	10	10		10	10	20	10	10	10	10	10	2 €	2 5	2 ;	2	10	10	10		20	10	20	10	10	10	10	20	10	10	10	. C.	3 5	2	50	
Meas. Bool.	Q.	2	읒	웆	S	₽	9		Q.		윤	S	용		용	S	9	õ	ð	9	9	9	2 5	2 4	⊋ :	2	2	9	용		S	읒	2	9	₽	2	Q	ş	9	Ş	9	Ş	2 5	Ş	S	
Analyte Description B		Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzofalpyrene	2.4-Dinitrophenol	Dibenz [ah] anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo [a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Disculy plumatate	מו - וו - סתר או הוויומימיה	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9M-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1.2-Dichlorobenzene	2-Chlorophenol	2 / Satrichlorophonol	Litablemann (England	Nitrobenzene / Essence of mirbane /	3-Nitroaniline	
CAS No.	206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	56-55-3	29-50-7		606-20-2	621-64-7	65-85-0	67-72-1	4-24-22	78-59-1	83-32-9	84-66-2	8/-7/-2	7 7 7 10	82-01-8	7-89-58	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	7-50-50	73-73-4	6-64-94	99-09-2	
Meth/ Matrix	/90MD																																													
Lab Anly. No.	PC 87432																																													
Sample Depth Date	~																																													
	91822																																													

* - Analyte Description has been truncated. See Data Dictionary

24-001-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW

24-0CT-94	
01-JAN-91	
Range:	
Sampling Date	

Data Quats	:			×		×	×		75	£ 54	4	74	:	75	<u> </u>	4	₩	: <b>v</b>	: 54	. 💆	: 3=	4																									
Flag Codes		~ (	¥																																												
Unit Meas.		UGL	750	ngr		ner	NGL		ISU	101	5	191	,	ner	ign	: !	ner	ายก	ner	ner	[2]	101	701	3 3	35	100	100	190	190	UGL	UGI.	ner	UGI.	UGL	UGL	UGL	1911	331	i ci	101	<del>,</del> 5	וני ה	755	7 2	5 5	19 G	Uut
Conc.		<u> </u>	<u> </u>	.519		.321	.653		2.29	1.29		3.2		79.	5.02		979.	.492	.517	.319	338	12.1		6.01	0 %	0400	0404	29000	001	26700	723	30.9	63.1	1490	12.5	1190	100	37.1	5,79	2.5	i r.	a 77	35.5	3 8	07	0.70	47.1
Meas. Bool.		2 5	2	_		רו	-1		=	i =	i			П	17		11	ב	1		<u>_</u>	į	1	<u> </u>	. <u>.</u>	-		}	_			LI	Ľ		17		<u></u>	<u>-</u>	i	<u>-</u>	- t-	ī	<b>-</b>	<u> </u>	-		
Analyte Description	4-Bromonhamy shar	/ prophety prent cries	Tourn object of biletily certified	c,4,0-1finitrotoluene / alpha-		<pre>&lt;,4-Dinitrotoluene</pre>	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N.2.4.6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2.3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PETN / Pentaerythritol tetranitrate /		2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Lead	Thatlium	Arsenic	Selenium	Alimina	1001	0.00	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	reduci	Vacacy	7 inc	; ;
CAS No.	; ; ; ;		1,000,1	1-06-011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7-61-171	121-82-4		2691-41-0	479-45-8		55-63-0		606-20-2	78-11-5		88-72-2	99-08-1	66-35-4	0-69-66	0-66-66	7439-92-1	7440-28-0	7440-38-2	7782-49-2	5-06-6272	7.630-80-6	7/30-02-1	7/20-05-/	4-06-6047	7459-96-5	7439-98-7	7440-02-0	2440-05-7	7440-22-4	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	2440-43-9	7440-47-3	7-87-0772	7440-50-8	2-69-0772	7,440-66-6	,
Meth/ Matrix	190WD	()	111.75 (11)	M / C M C																		SD08/				SS15/W																					
Lab Lab Anly. No.	PC 87432																					PC 87424																									
Sample Date																						6.0 24-MAR-92																									
Depth																						6.0																									
Field Sample No.	91822																					91823																									

91823

* - Analyte Description has been truncated. See Data Dictionary

Field Sample No.

Site Site Type ID ---- ----WELL 91B23

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Data																																									
Flag				œ	~		~	2	⊭ oz	:	~	œ	œ		~	~	:	ď		œ	œ	œ	œ	~	œ	œ	~	~	×	~	œ	<u>~</u>	~	~	~	,	≃ :	× 1	~ (	×	
Unit Meas.	ner	ซี เ กาย	i do	NGL	NGL		- Ner	5	וני וני	j )	ner	UGL	UGL		NGL	SI	;	NGL		ngr	ner	190	ngi.	ngi,	ng;	ner	ner	nei Nei	ner	NGI.	NCF	UGL	NGL	NGL	ner		ng:	ner Ner	ner Ner	OGL	
Conc.	20000	75 200	8.17	2	2		ν.	i	v <u>c</u>	2	2	. 5	- 22		2	ιr	`	5		2	10	10	22	ς	2	10	10	10	10	2	2	2	5	2	5		<b>ι</b> Ο Ι	٠ •	D. 1	Λ	
Meas. Bool.		ב		2	윤		9	ģ	⊋ ⊊	Ì	S	Q	2		용	S	2	Q		2	2	Q	Q	Q	ND	Q	용	Q	9	Q	Q	읒	Q	Q.	S		2	€ :	<b>2</b> !	Q.	
Analyte Description	; ; ;	Selenium Nitrito mitrato - momenacific		Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,Z-Dichloroethane Mothwyl isobutwy betone /	Technyl acetope / 4-Methyl-2-pep*	Tolliene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	Nichlorosthene	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichtoroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	
CAS No.	7440-70-2	7782-49-2	57-12-5	100-41-4	100-42-5		10061-01-5		107-06-2	2	108-88-3	108-90-7	124-48-1		127-18-4	156-50-2	1	156-60-5		56-23-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-5	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		75-69-4	78-87-5	78-93-3	79-00-5 79-01-6	
Meth/ Matrix	SS15/W	TE13/	1703/	UM05/W																																					
Lab Lab Anty. No.																																									
Sample Date Le	35																																								
. Depth	6.0																																								

* - Analyte Description has been truncated. See Data Dictionary

Site Site Type ID ---- ----WELL 91B23

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

		es ouats																																														
		<u>ن</u>	· · · · ·	:	~		œ	2	: oz	· 🗠	۵ ک	2 د	2 د	∠ (	×	œ	œ	~		<u>~</u>	~	∞	~	: 0	د د	<b>∵</b> :	œ	œ	~	~	~	~	~	~	∞		~	~	~	~	~	۵ ک	: ≃	:	~		≃ :	2
	Unit	Meas.	1911		NCL		ngr	ISN	j	light.	101	3 2	מוך	UGI.	UGL	NGL	NGL	ner		NGI.	UGI	Ner	ner	191	i s	USL	NGL	UGL	190	UGL	Ner	NOL	Ner	190	Ton		ner	UGL	UCI.	ner	ner	101	ner ner		ner		ner	=
		Conc.	; ; ;	1	5		2	5	50	7.0	2 (	5 5	5 5	2 ;	<u>⊇</u> :	10	10	10		10	10	10	10	ָרָ בַּי	2 5	0.	10	10	10	10	10	10	10	10	10		10	10	10	10	10	)  - 	10	<u>.</u>	50		10	ς.
	Meas.	Bool.	: 5	<u>}</u>	Q		S	QN	9	9	2	2 5	2 5	2 :	2	2	2	Q		읒	Q	QN	S	9	2 9	2	2	9	2	QN	QN	Q	QN	QN	2		ə	ə	Q	9	9	2	2 2	<u>.</u>	Q		Q	S
16-100-13		Analyte Description	Trichlorosthylene /Trichlorosthene /	Ethinyl trichloride /I*	Tetrachloroethane / 1,1,2,2-	Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1.3-Dichloropropene	4-Nitroaniline	6-Nitronbanal	Repay   a cohol	2 (-) incthal sharel	z,+-pilletilytpiletiot	p-cresor / 4-cresor / 4-mernylphenor	1,4-Dichlorobenzene	4-Chloroaniline	Bis(2-chloroisopropyl) ether	Phenol / Carbolic acid / Phenic acid	/ Phenylic acid / Phe*	Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octvl phthalate	Hexach   Orobenzone	Arthonomo	Anthracene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Dibenzofuran	Benzo[ghi]perylene	Indeno[1,2,3-C,0]pvrene	Benzo[b]fluoranthene / 3.4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzofalbyrene	2 4-Dinitrophenol	Dibenzfahlanthracene / 1.2:5.6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzolalanthracene
Date Ralige: 01-JAN-71	:	CAS No.	79-01-6	)	79-34-5				100-01-6	100-02-7	100-51-6	105-47-0	104-77-5	100-44-7	7-94-901	106-47-8	108-60-1	108-95-2		111-44-4	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	1-71-071	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2		206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	5-55-95
Sundingo	Meth/	Matrix	UM05/W	•					/90WN																																							
	Lab	Lab Anly. No.	PC 87424																																													
	Sample	Date	24-MAR-92																																													
	;	Depth	6.0																																													
	Field	Sample No.	91823																																													

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Date:																																		£.	:	¥.	×		¥	ž <u>e</u>	3-	٤
Flag	œ	~	~	œ	~	~	œ	~	œ	×	×	~	œ	~	ĸ		œ	~	×	œ	œ	~	×	×	œ	~	œ	~	œ		~	~	×									
Unit Meas.	UGE	NGL	NGL	ner	NGL	NGL	NGL	NGL	NGL	NGL	ner	NGL	UGL	ner	NGL		UGL.	ner	ner	ner	NGL	ner	ner	ner Ner	ner	NGL	NGL	UGL	ncr		ner	ner	ner	UGL		ner	ner		NCL	ner	2	Oar
Conc.	10	10	10	50	10	10	10	10	10	10	10	10	10	10	10		50	10	50	10	10	10	10	20	10	10	10	20	10		50	10	10	.319	Š	.321	.653		2.29	1.29	2 2	3.5
Meas. Bool.	9	9	Q	Ş	2	Ş	R	QN	ð	9	QN	욮	ð	ջ	2		2	9	S	웆	2	S	皇	2	윷	R	2	9	Q		9	2	S	L		-	_		11	_	-	3
Analyte Description	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m* 2.6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenol	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol trinitrate
CAS No.	2-05-65	606-20-2	621-64-7	65-85-0	67-72-1	7-47-77	78-59-1	83-32-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3		87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3		2-60-66			118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8	0 27 33	0-60-66
Meth/ Matrix	/90WN																																	NM35/W								
Lab Lab Anly. No.	PC 87424																																									
Sample Date	2																																									
	6.0																																									
Field Sample No.	91823																																									

^{* -} Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

Site Si Type I	Site Field ID Sample No.	o. Depth	Sample n Date	Lab	Lab Lab Anly. No.	Meth/ Matrix	CAS No.	Analyte Description	Meas. Bool.	Conc.	Unit Meas.	Flag Codes	Data Quuts
9			Ň	S S	87424	UW35/W	606-20-2	2,6-Dinitrotoluene		.64	חפר	:	; ×
							78-11-5	PETN / Pentaerythritol tetranitrate /	LŢ	5.02	ner		×
							88-72-2	2.6.bistillitiooxy/mer 2.Nitrotoliopo	=	477	1311		7
							99-08-1	3-Nitrotoluene	: <u>-</u>	.492	de Cer		<u>.</u> ~
							99-35-4	1,3,5-Trinitrobenzene	-	.517	UGL		×
							0-69-66	1,3-Dinitrobenzene	5	.319	ner		¥
							0-66-66	4-Nitrotoluene	Ľ	.338	NGL		×
		8.0	24-MAR-92	ည	87424	SB07/	9-26-6272	Mercury	11	.74	UGL		
91824	24 91824	47.0			77712	<b>^</b>		Total petroleum hydrocarbons	QN	1000	NGL		
						SB07/	7439-97-6	Mercury	LT	.74	NGL		
						SD08/	7439-92-1	Lead		24.7	ner		
							7440-28-0	Thallium	רו	2.5	NGL		
							7440-38-2	Arsenic	רז	6.01	NGL		
							7782-49-2	Selenium	רב	14.9	UGL		
						SS15/	7429-90-5	Aluminum		15800	NGL		
							7439-89-6	Iron		37000	NGL		
							7439-92-1	Lead	רז	100	ner		
							7439-95-4	Magnesium		3760	ner		
							7439-96-5	Manganese		1320	NGL		
							7439-98-7	Molybdenum	Ľ	30.9	NGL		
							7440-02-0	Nickel	רו	63.1	UGL		
							2-60-0552	Potassium		1880	NGL		
							7440-22-4	Silver	-	12.5	NGL		
							7440-23-5	Sodium		1640	NGL		
							7440-28-0	Thallium	11	100	NGL		
							2440-36-0	Antimony	1	37.1	NGF		
							7440-39-3	Barium		73.6	NGL		
							7440-41-7	Beryllium	L	2.5	NGL		
							2440-43-9	Cadmium	5	5	ner.		
							7440-47-3	Chromium		39.7	UGI.		
							7440-48-4	Cobalt		35.5	ner.		
							7440-50-8	Copper		34.1	nci.		
							7-79-044/	Vanadium		54.6	neı.		
							9-99-055/	Zinc		810	<b>n</b> gr		
							7440-70-2	Calcium		13900	ner		
						1	7782-49-2	Selenium	ב	75	UGL		
						TY03/	57-12-5	Cyanide	Ll	8.17	ner		
						UM05/	100-41-4	Ethylbenzene	QN	5	ner.	~	
							100-42-5	Styrene / Ethenylbenzene / Styrol /	െ	5	ner	~	
								Styrolene / Cinnamene *					
							10061-01-5	cis-1,3-Dichloropropylene / cis-1,3-	2	2	JBN	œ	
							107-06-2	John Opropere	9	u	2	5	
							3	't Dicitol Octilale	2	•	OGL	۷.	
* - Analyt	- Analyte Description has been truncated.	been tr		e Data	See Data Dictionary	>							

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Site Site Type ID ....

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

Data Quals																																											
Flag	~	×	~	×		×		≃	c	×		<b>≃</b> i	≃ .	œ	œ	œ	æ	~	œ	~	œ	æ	~	œ	~	~	~		~	œ	œ	œ	œ		œ		œ	~	~	œ	~	~	~
Unit Meas.	חפר	ner	ner	NGL		ner		ngr	3	חמר		חפר	19n	ngr	ner	ner	ner.	ner	ngr	UGL	NGL	UGL	UGL	UGL	NGL	ner	Nar		NGL	ner.	NGL	ner	NGL		ner		ner	NGL	ngr	ner	NGL	ner	NGL
Conc.	10	5	···	5		5	1	<b>.</b>	t	C	ı	ر ک	10	10	2	2	2	10	10	10	10	5	2	2	2	5	2		2	2	10	2	2		5		5.	5	20	20	10	10	10
Meas. Bool.	S	Š	2	ð		ə		2	9	2	!	2	웆	2	욮	윤	2	R	S	9	용	2	윤	Q	윤	Q	QN		읖	₽	S	2	Q		유		2	S	9	ջ	Ð	욷	Q
Analyte Description	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen* Toluene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Chlorodibromomethane	Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen*	cis-1,2-Dichloroethylene / cis-1,2-	Dichloroethene	trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1.1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*	Tetrachloroethane / 1,1,2,2-	Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1,3-Dichloropropene	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol	2,4-Dimethylphenol	p-Cresol / 4-Cresol / 4-Methylphenol
CAS No.	108-10-1	108-88-3	108-90-7	124-48-1		127-18-4		156-59-2		2-09-9¢L	1	56-23-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		75-69-4	78-87-5	78-93-3	2-00-62	79-01-6		79-34-5				100-01-6	100-02-7	100-51-6	105-67-9	106-44-5
Meth/ Matrix	UM05/																																						/90MN				
Lab Anly. No.	PC 77712																																										
Sample Date	15-MAR-92																																										
Depth	47.0																																										
Field Sample No.	91824																																										

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Data Quals	f : : : : : : : : : : : : : : : : : : :																																												
Flag Codes	~	<u>د</u> ا	<u>م</u> د	×	~	: c2	· œ	: ~	: 0	۵ ک	: 0	۵ ک	د ۵	: 0:	: 2	: 0	: 0	< 0	. 02	4	c	× 0	2 د	<b>Y</b> 1	œ	œ	œ	œ		~		~	~	~		~	~	: 0	: 0	د ۵	< 0	<b>×</b> c	< 0	× 0	×
Unit Meas.	ner	ner	19 19 1 10 1	UGL	ISIT	195	190	101	3 3	ופי ופי	) 	ਰ ਵ	ਰ ਤ	1 5	] 	1911	301	j =	<u> </u>	Š	2	100	1 2	OG!	UGL	NGL	ner	NGF		net		UGL	NGL	ngr.		ner	ner	ISI II	1911	3 3	<u> </u>	750 1	3	7 7	UGL
Conc.	10	10	2 5	2	10	10	10	2 0	÷ €	2 5	) <u>(</u>	2 €	2 5	£	. 0	10	÷ ;	2 =	2 5	2	ç	2 5	2 5	2 ;	10	10	20	10		20		10	10	10		10	10	50	10	) <u>[</u>	<u> </u>	2 5	5 5	2 5	2
Meas. Bool.	- - -	<b>9</b>	2 9	2	S	9	2	<b>9</b>	£ 5	€ €	2	2	9 9	9 €	S	£	5	9 €	2	<u>}</u>	9	2 5	2 5	2 :	<u>Q</u>	윤	욷	윤		웆		QN Q	S	Q.		Q	QN	2	Ş	5	9	<b>2</b>	Ş Ş	5 5	Z Z
Analyte Description	zene	4-Chloroaniline	Bis(z-chloroisopropyl) ether	/ Phenylic acid / Phenic acid	Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octvl ohthalate	Hexachlorohenzene	Anthracene	1.2.4-Trichtorohenzene	2.4-Dichlorophenol	2.4-Dinitrotoliene	Benzoldeflohenanthrene / Pyrene	Dimethyl ohthalate	Dibenzofuran	Renzofahilnerviene	Indeno[1,2,3-C.D] byrene	Benzofblfluoranthene / 3.4-	Renzof Lucranthene	Flioranthone	Renzo (V) fluoranthene	Aconord+hutono	Acenaphrinylene	Chrysene	Benzo[a]pyrene	2,4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo[a]anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	I souhorone	4 Cepanh these	Diethyl phthelete	Disaskity shihalate	DI-n-butyt pittiatate
CAS No.	106-46-7	106-47-8	108-60-1	7 22	111-44-4	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	132-64-9	191-24-2	193-39-5	205-99-2	!	0-77-9UC	207-08-9	208-06-8	219 04 0	6-10-912	20-52-8	51-28-5	53-70-3		554-52-1	!	541-73-1	26-55-3	29-50-7		606-20-2	621-64-7	65-85-0	67-72-1	7-27-22	78-59-1	83-32-0	84-66-2	84-74-2	7-11-10
Meth/ Matrix	/90WN																																												
Lab Lab Anly. No.																																													
Sample Depth Date	47.0 15-MAR-92																																												
Field Sample No. De																																													

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

Data Quals	
Codes S S S S S S S S S S S S S S S S S S S	
We as:  We as:  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE  USP VICE	ายก กยาก การก
Conc. 10 10 10 10 10 10 10 10 10 10	.338
Meas. ND ND ND ND ND ND ND ND ND ND ND ND ND N	לכל
Analyte Description Phenanthrene Butylbenzyl phthalate N-Nitrosodiphenylamine Fluorene / 9H-Fluorene Hexachlorobutadiene / Hexachloro-1,3- butadiene Pentachlorophenol 2,4,6-Trichlorophenol 2-Nitrophenol Naphthalene / Tar camphor 2-Nitrophenol Naphthalene / Tar camphor 2-Nitrophenol Naphthalene / Tar camphor 2-Nitrophenol Nitrobenzene / Essence of mirbane / 1,2-Dichlorobenzene 2-Chlorophenol Nitrobenzene / Essence of mirbane / 0il of mirbane 3,3'-Dichlorophenol Nitrobenzene / Essence of mirbane / 0il of mirbane 2-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 5,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,5-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene	1,3-Dinitrobenzene 4-Nitrotoluene Mercury
CAS No.  85-01-8 85-68-7 86-68-7 86-68-7 86-73-7 87-68-3 88-76-6-2 88-76-6-2 88-76-6-2 88-76-6-2 88-76-6-7 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-20-3 91-	99-65-0 99-99-0 7439-97-6
Meth/ Matrix  UMO6/	/208s
Lab Anly. No.	PC 36552
Sample Date 15-MAR-92	25.0 01-FEB-92
47.0 47.0	25.0
Field Sample No	AAD13
Site Site 17ype 1D 10 10 10 10 10 10 10 10 10 10 10 10 10	AAD13

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW

	Data Ouats	:																																								
	Flag Codes	;																														ပ	ن	)								
	Unit Meas.	ner	UGL	NGL	T9N	חפר	Jon :	ner	הפר מפר	ner Ner	ner Hei	j 15	Ter Cer	ner	NGL	NGL	NGL	ner	UGL	ner.	NUT	NCL	UGI.	ner	ner	NGL	ner	UGF	ner	i	ngr.	NGL	33	nC.	!	ner.		UGI.	ner	NGL	ngr	ngr
	Conc.	1.26	2.5	6.01	14.9	236	4890	100	1260	21.2	63.1	1250	12.5	788	100	37.1	20	2.5	2	15	25	20	20	1070	18600	75	271	8.17	.319	, ,	. 521	9.04	86	1.29		3.2		.64	2.02	949.	.492	71.5.
	Meas. Boot.	17	LT	17	Ľ		!	_		<u>-</u>	<u> </u>	; <u>-</u>	<u> </u>		11	17	LT	17		[]	[]	LT	L			LT		L1	Lī	(	-					LT		<b>5</b> !		П	5:	_
File Type: CGW 01-JAN-91 24-OCT-94	Analyte Description	Lead	Thallium	Arsenic	Selenium	Aluminum	- Loo	Momoodium	Manage Comments of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of th	Molybdonim	Nickel	Potassium	Silver	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Z1nc	Calcium		Nitrite, nitrate - nonspecific	Cyanide	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	<pre>KDX / Cyclonite / Hexahydro-1,5,5- trinitro-1,3,5-triazine *</pre>	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	<pre>PEIN / Pentaerytnritol tetranitrate / 2.2-Bis[(nitrooxv)me*</pre>	2-Nitrotoluene	3-Nitrotoluene	', 5, 5 - I r I n I t robenzene
File Ty Date Range: 01-JAN-91	CAS No.	7439-92-1	7440-28-0	7440-38-2	7-64-78//	7.20-90-7	7/20-02-1	7-30-05/2	7/30-06-5	7.439-98-7	7440-02-0	2-60-0552	7440-22-4	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	7440-45-9	7440-47-3	7.40-48-4	7440-50-8	7-79-044/	7,70 70 7	7-07-0447	7782-49-2	14/9/-55-8	57-12-5	118-96-7	6-71-161	171 07 /	4-20-121	2691-41-0	479-45-8		55-63-0	;	606-20-2 78-11-E	6-11-01	88-72-2	99-08-1	4-00-44
Sampling	Meth/ Matrix	sp.08/			00157	/0100																				,	11.13/	1Y05/	UM35/													
		PC 36552																																								
	Sample Date	01-FEB-92																																								
	Depth	25.0																																								
	Field Sample No.	AAD13																																								
	Site	AAD13																																								
	Site Type																																									

* - Analyte Description has been truncated. See Data Dictionary

W2-17

Site Site Type ID ---- ----WELL AAD13

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Data Quals	:																																											
Flag Codes	; ; ;																														œ	œ		~	,	×	œ		œ	~	~	c	۷	
Unit Meas.	UGL	NGL	าย ก	ביים מפר	, io	100	ğ 2	7 10 10 10 10 10 10 10 10 10 10 10 10 10	UGL	ner:	ก็ต	ner	ngr	ner	ner	ngr	ngr	NGL	NGL	NGL	NGL	NCL	UGI.	ner	UGL	UGI.	UGL	UGL	UGL	19N	ner.	ner.		ner		ner	NGL		NGL	NGL	ner	1711	Jon Control	
																												_																
Conc.	.319	.338	.74	2.c	7.7	50	FO. 4.	170	0222	100	3790	695	30.9	63.1	12300	12.5	2770	100	37.1	51.4	2.5	2	15	25	50	50	426	38400	22	8.17	N	72		5	1	2	10		2	5	2	Ľ	٦	
Meas. Bool.	17	ב	-1	1 <del></del>			_			-7			רַ			רַן		17	L1		11	LT	17	L	LT	Ľ				11	Q.	QN		QN		2	ON		Q	9	Q	9	2	
lyte Description	1,3-Dinitrobenzene	4-Nitrotoluene	Mercury	Lead Thollin	Archian Archia	Solonium	Secential III	Aluminum	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cyanide	Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl ketone /	<pre>Isopropylacetone / 4-Methyl-2-pen*</pre>	Toluene	Chlorobenzene / Monochlorobenzene	Dibromochloromethane /	Totocklonocthalone	Tetrachloroethene / Perchloroethylen*	
CAS No.	99-65-0	0-66-66	7439-97-6	77.70-28-0	0-82-044/	7782-70-2	2-44-70//	7,20-90-5	0-60-60-7	7459-92-1	7439-95-4	7439-96-5	7439-98-7	2440-05-0	2440-09-7	7440-22-4	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-057	7440-70-2	7782-49-2	57-12-5	100-41-4	100-42-5		10061-01-5	1	107-06-2	108-10-1		108-88-3	108-90-7	124-48-1	127-18-7	+-01-771	
Meth/ Matrix	UW35/		SB07/	sonos/			11/2/100	M/CI SS																						TY03/	UM05/													
Lab Lab Anly. No.	PC 36552		PC 81760																																									
	01-FEB-92 F		17-MAR-92							•																																		
Depth	25.0		38.0																																									
Field Sample No.	AAD13		2-17																																									

^{* -} Analyte Description has been truncated. See Data Dictionary

24-001-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

Data Qualis																																													
Flag Codes	· ~	~		œ	œ	~	~	œ	~	~	· ~	: ≃	~	~	~	œ	~	: ∝	: 0	ź	٥	∠ :	¥	~	~	~		~		~	œ	œ	~	œ	~	: œ	: c	۵ ک	∠ 5	∠ 5	<b>z</b>	٥	د د	× 6	×
Unit Meas.	uar	ner		ner	ner	ner	UGL	UGL	ner	ner	Ten	ner	NGL	ŊĊſ	UGI.	UGL	190	วีรีก	1 2	5	31	100	UGL	UGL	NGL	NGL		ner		UGL	NGL	NGL	NGL	UGL	neı	ngr	101	j 5	Oak	To lo	חפר	2	3 3	לים ביים ביים	ner
Conc.	5	2	,	2	10	10	2	ī	5	10	10	10	10	5	2	5	2	, ,	· v	'n	Ľ	٦.	c :	10	5	S		5		2	Ŋ	50	50	10	10	10	10	5 5	5 5	5 5	2	7,	2 5	0 6	10
Meas. Bool.		ð		S	2	9	Q	Q	Q	Q	Q	2	ð	R	R	9	Q	2	S	}	Ç	2 4	₹ :	£	₽	£		S		S	욷	Q	Q	Q	Q	2	S	9	<u> </u>	5 5	Ş	Ş	9 9	2 9	S
Analyte Description	cis-1,2-Dichloroethylene / cis-1,2-	Dichloroethene trans-1,2-Dichloroethylene / trans-	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Chloroform	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1.1-Dichloroethylene / 11-	Dichloroethene	Trichlorofluoromethane		i z-bicii or opropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*	Tetrachloroethane / 1,1,2,2-	Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1,3-Dichloropropene	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol	2,4-Dimethylphenol	p-Cresol / 4-Cresol / 4-Methylphenol		4-Chloroaniline	Ric/2-chloroicopropy// other	Phonol / Carbolic acid / Phonic acid	/ Phenylic acid / phe*	Ris(2-chloroethyl) ether	Bis(2-chlorosthoxy) methans	013(£ 5110) OCCIIOAY IICCIIOIC	Bis(Z-etnyinexyi) puthalate
CAS NO.	156-59-2	156-60-5		20-52-5	591-78-6	67-64-1	67-66-3	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		7-69-52	78-87-5	70-07-7	78-95-5	2-00-62	79-01-6		79-34-5				100-01-6	100-02-7	100-51-6	105-67-9	106-44-5	106-46-7	106-47-8	108-60-1	108-95-2	7 (7 )	111-44-4	111-01-1	117-81-7	1-10-111
Meth/ Matrix	UM05/																															/90W0													
Lab Anly. No.	PC 81760																																												
Sample Date	17-MAR-92																																												
Depth	38.0																																												
Field Sample No.	2-17																																												

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Data Quals																																												
Flag Codes	~ 1	× 6	× c	۲ د	× 6	<b>×</b> (	œ	~	∝	~	~	<u>~</u>		<b>∵</b> ∶	œ ;	<b>∵</b> :	≃ (	œ	œ	œ		~	1	<b>∠</b> :	۷ ۱	œ	c	¥ (	× :	<b>~</b> 4	¥	≃ (	× (	<b>×</b> :	¥ :	× 0	~	oc (	×	~	œ	۵	× ×	
Unit Meas.	NOL	UGF.	Jor.	150	חמר.	ner	ner.	חפר	Ner	ner	ner	NGL	;	ng.	ner	ල් :	19 19 19 19	NGL	ng.	ner		79A	;	ng.	190 E	ngr.		TOO!	UGL	ngr ngr	UGL	ner Ner	UGL	UGL	חפד	T9n	ner O	ngr ngr	NGL	ner	ner	101	ner ner	
Conc.	10	10	10	2 ;	J.	10	10	10	10	10	10	10		10	10	10	9	10	50	10		20	:	10	10	10	•	10	10	50	10	10	10	0.	J0	10	10	10	10	10	10	O ii	10	
Meas. Bool.	ON	2	<b>S</b>	2	2	욷	2	ş	£	9	9	2		2	Q	읒	9	읒	2	ş		Q		읃	2	Q		2	2	2	2	2	9	2	S	S	₽	Q	Q	S	Q	9	2 2	! :
Analyte Description	Di-n-octyl phthalate	Hexachlorobenzene	Anthracene	1,2,4-Trichtorobenzene	2,4-Dichlorophenol	2,4-Dinitrotoluene	Benzo[def]phenanthrene / Pyrene	Dimethyl phthalate	Diberzofiran	Benzoldinerviene	Indeno[1 2 3-C D] overene	Benzo[b] fluoranthene / 3,4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzo[a]pyrene	2.4-Dinitrophenol	Dibenz [ah] anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dinitrophenol	1,3-Dichlorobenzene	Benzo[a]anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine	Fluorene / 9H-Fluorene	Hexachlorobutadiene / Hexachloro-1,3-	butadiene	Pentachlorophenol 2 & A-Trichlorophenol	
CAS No.	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-14-2	129-00-0	131-11-3	142-64-9	101-2/-2	3-63-161	205-99-2		206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	56-55-3	59-50-7		606-20-2	621-64-7	65-85-0	67-72-1	77-47-4	78-59-1	83-32-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6	86-73-7	87-68-3	1	87-86-5	3
Meth/ Matrix	190WN																																											
Lab Lab Anly. No.	PC 81760																																											
•	38.0 17-MAR-92																																											
	2-17 38.0	:																																										

* - Analyte Description has been truncated. See Data Dictionary

24-001-94

Site Site
Type ID
....

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File-Type: CGW Sampling Date Range: 01-JAN-91

24-0CT-94

Data Otals																																												
Flag Codes	) ; ; ; ; ;	× 3	<u>د</u> 2	ć	ćoc	د 2	۵ ک	د د	× 0	< 0	۵ ۲	<u> </u>	œ	: 02	: 04	!																		٥	× 0	ć	œ	٤	~	: 22	<b>:</b>	2	~	
Unit Meas.		d 5	100	1101	ner ner	101	100	j 5	3 3	- To - To - To - To - To - To - To - To	101	3	190	ngn	ngr	UGL		NGL	190	)	ngF	1911	1	NGL		1911	ner		1911	5		101		) 	100	i b	3	3	ner	191	1	UGL	ner	
Conc.		10	10	10	20	20	10	21	2 (2	205	10		50	10	10	.319		.321	.653		2.29	1.29		3.2		79.	5.02		979	265	.517	319	338		, L	`	2	1	2	10		5	2	
Meas. Bool.	CN CN	2	QN	QN	QN	QN	S	S	2	Q	2		Q	S	S	Lĭ			Ľ		-	1		LT		רַ	-1		۲,	1	LŢ	L	J	Q	Q.	!	9		2	QN QN		Q.	Q	
Analyte Description	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenot	Nitrobenzene / Essence of mirbane /	Oil of mirbane	5-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	2,4,6-Trinitrotoluene / alpha-	Irinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	<pre>2,6-Dinitrotoluene</pre>	PETN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Ethylbenzene	Styrene / Ethenylbenzene / Styrol /	Styrolene / Cinnamene *	cis-1,3-Dichloropropylene / cis-1,3-	Dichloropropene	1,2-Dichloroethane	Methyl isobutyl ketone /	Isopropylacetone / 4-Methyl-2-pen*	Toluene	Chlorobenzene / Monochlorobenzene	
CAS No.	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3	6	7-60-66		6	1-96-911	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7-51-171	5-78-171		2691-41-0	4/4-42-8	, !	0-59-66	C.0C.203	2-07-000	ر-11-8		88-72-2	99-08-1	99-55-4	99-65-0	0-66-66	100-41-4	100-42-5		10061-01-5		107-06-2	108-10-1	000	108-88-3	106-90-7	- 24
Meth/ Matrix	/90WN														, 136	/CCM0																		UM05/										
Lab Lab Anly. No.	PC 81760																																	PC 49166										
Sample h Date	-																																	14-reb-92										
Field Sample No. Depth																																	MU2-18											

* - Analyte Description has been truncated. See Data Dictionary

W2-18

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Data Ouds																																								
Flag	×	~	~	۵	<b>4</b>	~	۰ ح	× 0	۷ ۲	· œ	~	~	~	~	~	~	~	~	œ	~		œ	≃	~	æ	~		œ		œ	~	~	~	~	~	~	œ	~	œ	
Unit Meas.	UGL	NGL	NGE	2	OGF	ngr	를 음	<u>1</u> 96	를 기	i ign	ner	ngr	ner	NGL	NGL	ner	ner	NGL	NGL	ner		NGL	NGL	ngr.	UGI,	ner		NGL		NGL	NGL	ner	NGL	UGL	ner	NGL	UGL	NGL	ngr	
Conc.	5	5	20	Ľ	1	2	10	<u> </u>	٠ <b>١</b> ٠	. 5	10	10	10	10	2	2	2	2	2	5		5	5	10	2	2		2		2	5	50	50	10	10	10	10	10	10	
Meas. Bool.	QN	QN	Q	ç	⋛	Q	운 :	2 9	2 5	2	Ą	9	ջ	ջ	ջ	R	S	9	S	9		2	Q	S	Q	9		QN		S	9	₽	QN Q	S	2	S	Q	₽	9	
Analyte Description	Dibromochloromethane /	Chlorodibromomethane Tetrachloroethylene /	Tetrachloroethene / Perchloroethylen* cis-1,2-Dichloroethylene / cis-1,2-	Dichloroethene	1,2-Dichloroethene	Carbon tetrachloride	Methyl n-butyl ketone / 2-Hexanone	Acetone	Benzene	1,1,1-Trichloroethane	Bromomethane	Chloromethane	Chloroethane	Vinyl chloride / Chloroethene	Methylene chloride / Dichloromethane	Carbon disulfide	Bromoform	Bromodichloromethane	1,1-Dichloroethane	1,1-Dichloroethylene / 1,1-	Dichloroethene	Trichlorofluoromethane	1,2-Dichloropropane	Methyl ethyl ketone / 2-Butanone	1,1,2-Trichloroethane	Trichloroethylene /Trichloroethene /	Ethinyl trichloride /T*	Tetrachloroethane / 1,1,2,2-	Tetrachloroethane / Acetylene *	Xylenes, total combined	trans-1,3-Dichloropropene	4-Nitroaniline	4-Nitrophenol	Benzyl alcohol	2,4-Dimethylphenol	p-Cresol / 4-Cresol / 4-Methylphenol		4-Chloroaniline	Bis(2-chloroisopropyl) ether	
CAS NO.	124-48-1	127-18-4	156-59-2	156-60-5	3	56-23-5	591-78-6	1-60-70	71-43-2	71-55-6	74-83-9	74-87-3	75-00-3	75-01-4	75-09-2	75-15-0	75-25-2	75-27-4	75-34-3	75-35-4		75-69-4	78-87-5	78-93-3	2-00-62	79-01-6		79-34-5				100-01-6	100-02-7	100-51-6	105-67-9	106-44-5	106-46-7	106-47-8	108-60-1	7-56-801
Meth/ Matrix	UM05/																															/90WN								
Lab Anly. No.	PC 49166																															PC 49166								
Sample Date	12-FEB-92																															13-FEB-92								
Depth	49.0																																							
Field Sample No.	MW2-18																																							,

* - Analyte Description has been truncated. See Data Dictionary

24-0CT-94

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW

24-0C1-94
01-JAN-91
Range:
Date
ing
Sampling

Data Quals	; ; ;																																												
flag Codes			~	~	œ	~	: 0:	: 0:	د ه	× 1	×	۰ ۲	≃ .	~	œ	œ	~	œ		~	~	~	~	: 02	: 🗠	2 ≥	:	~		œ	œ	~		∞.	œ	œ	~	~	· ~	~	~	: œ	· 24	~	: œ
Unit Meas.	ner Odl		NGL	ner	UGL	ner	] <u>=</u>		d :	190	יים מיים	7 OCF	5 5	ng.	Tgn	ner	Tgn	ner		UGL	ner	ner	150	393	191	ner		NGL		ner	ner	UGL		ner	ner	NGL	NGL	ner	190	ner	ner	ner ner	TSA	ner	Ner
Conc.	10		<b>1</b> 0	5	10	10	10	2 €	2 5	2 5	2 5	2 9	2 ;	0 :	10	10	10	10		10	10	10	10	10	- L	10		50		10	10	10		10	10	50	10	10	10	10	10	10	10	10	10
Meas. Bool.			Ş	Q	2	ð	S	9	9	§ 5	2 4	2 2	2 :	2	2	딮	S	QN		2	S	QN	Q	9	CN.	2		QN		Q.	Q	Ş		Q	읒	용	Q	QN QN	2	2	9	9	R	N	Q
Analyte Description	Phenot / Carbolic acid / Phenic acid	/ Phenylic acid / Phe*	Bis(2-chloroethyl) ether	Bis(2-chloroethoxy) methane	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Hexachtorobenzene	Anthracene	1 2 4-Trichlorobenzene	2 /- niphtonophonal		Popus (April to October 1997)	benzolderjpnenantnrene / Pyrene	Dimetnyl phthalate	Dibenzoturan	Benzo[ghi]perylene	Indeno[1,2,3-C,D]pyrene	Benzo[b]fluoranthene / 3,4-	Benzofluoranthene	Fluoranthene	Benzo[k]fluoranthene	Acenaphthylene	Chrysene	Benzo[a]pyrene	2.4-Dinitrophenol	Dibenz[ah]anthracene / 1,2:5,6-	Dibenzanthracene	4,6-Dinitro-2-cresol / 2-Methyl-4,6-	dini trophenol	1,3-Dichlorobenzene	Benzo [a] anthracene	3-Methyl-4-chlorophenol / 4-Chloro-3-	cresol / 4-Chloro-3-m*	2,6-Dinitrotoluene	N-Nitrosodi-n-propylamine	Benzoic acid	Hexachloroethane	Hexachlorocyclopentadiene	Isophorone	Acenaphthene	Diethyl phthalate	Di-n-butyl phthalate	Phenanthrene	Butylbenzyl phthalate	N-Nitrosodiphenylamine
CAS No.	108-95-2		111-44-4	111-91-1	117-81-7	117-84-0	118-74-1	120-12-7	120-82-1	120-83-2	121-1/-2	120-00-0	0-00-631	131-11-3	6-50-201	191-24-2	193-39-5	205-99-2		206-44-0	207-08-9	208-96-8	218-01-9	50-32-8	51-28-5	53-70-3		534-52-1		541-73-1	56-55-3	29-20-7		606-20-2	621-64-7	65-85-0	67-72-1	77-47-4	78-59-1	83-32-9	84-66-2	84-74-2	85-01-8	85-68-7	86-30-6
Meth/ Matrix	/90WN																																												
Lab Lab Anly. No.	PC 49166																																												
Sample Date	13-FEB-92																																												
Depth	49.0																																												
Field Sample No.	MW2-18																																												

* - Analyte Description has been truncated. See Data Dictionary

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW 24-OCT-

Data Quals																																											
Flag	∝ (	¥	~	œ	~	~	œ	~	~	œ	œ	œ	œ	~	œ		~	œ	~	s	s																					~	œ
Unit Meas.	ner	UGL	NGL	ng Ng	'nď	NGL	NGL	NGL	UGL	NGL	UGL	NGL	NGL	ner	ner		ner	NGL	ner	NGL	ncr	NGL		NGL	UGL		ner	UGI.		ncr		ner	NGL		UGL	NGL	NGL	NGL	ner N	NGL	UGL	NGL	NGL
Conc.	. 01	01	50	10	50	10	10	10	10	20	10	10	10	20	10		20	10	10	30	200	.319		.321	.653		2.29	1.29		3.2		<b>.</b> 64	5.02		979.	765.	.517	.319		6.00 E -3	ш	.2	<del>-</del> .
Meas. Bool.	2	2	Ş	웆	Q	웆	웆	2	S	S	Q	₽	2	ş	웆		윤	ş	S			ב		_	5		ב	ב		-		ר	-1		=	-	5	۲	디	=	_	9	9
Analyte Description	Fluorene / 9H-Fluorene	<pre>Hexachlorobutadiene / Hexachloro-1,5- butadiene</pre>	Pentachlorophenol	2,4,6-Trichlorophenol	2-Nitroaniline	2-Nitrophenol	Naphthalene / Tar camphor	2-Methylnaphthalene	2-Chloronaphthalene	3,3'-Dichlorobenzidine	o-Cresol / 2-Cresol / 2-Methylphenol	1,2-Dichlorobenzene	2-Chlorophenol	2,4,5-Trichlorophenot	Nitrobenzene / Essence of mirbane /	Oil of mirbane	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chlorophenyl phenyl ether	Unknown compound 539	Unknown compound 544	2,4,6-Trinitrotoluene / alpha-	Trinitrotoluene	2,4-Dinitrotoluene	RDX / Cyclonite / Hexahydro-1,3,5-	trinitro-1,3,5-triazine *	Cyclotetramethylenetetranitramine	Tetryl / N-Methyl-N,2,4,6-	tetranitroaniline / Nitramine / *	Nitroglycerine / 1,2,3-Propanetriol	trinitrate	2,6-Dinitrotoluene	PEIN / Pentaerythritol tetranitrate /	2,2-Bis[(nitrooxy)me*	2-Nitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	4-Nitrotoluene	Heptachlor epoxide	Endosulfan sulfate	PCB 1221	PCB 1260
CAS No.	86-73-7	87-68-3	87-86-5	88-06-2	88-74-4	88-75-5	91-20-3	91-57-6	91-58-7	91-94-1	95-48-7	95-50-1	95-57-8	95-95-4	98-95-3		69-09-2					118-96-7		121-14-2	121-82-4		2691-41-0	479-45-8		55-63-0		2-02-909	78-11-5		88-72-2	99-08-1	99-35-4	0-59-66	0-66-66	1024-57-3	1031-07-8	1104-28-2	11096-82-5
Meth/ Matrix	/90WN																					UM35/																		/ 66			
Lab Anly. No.	PC 49166																																							PC 50822			
Sample Date	13-FEB-92																																							14-FEB-92			
Depth	0.64																																										
Field Sample No.	MW2-18																																										

* - Analyte Description has been truncated. See Data Dictionary

Site Site Type ID .... .... WELL W2-18

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

Data Quats	;																																										
flag Codes		~ 0	¥ 6	×											~																œ												
Unit Meas.	ngr	ner	5	ונים המו	ก็ต		NGL		UGI.		NGL	NGL		NGL	ner	1911	191	191	;	190	3 3	d =	350	3	od.	HQT		ner	ner		NGL		<b>U</b> CI.	ncr n	3	1 2	3 5	Te c	J 51	<u> </u>	100	ner	ner
Conc.	1	ς,	•		4.34 E -2	1	1.09 E -2		4.88 E -2			3.16 E -2		2.02 E -2		ш	u	4.29 F -2	1	3.21 F -2		1		C- 3 87 8	J	9.46 E -2	!		6.31 E -2		5.		8.56 E -3	7.7.	100	2 2	6.01	0.7	18000	00066	137	3480	2800
Meas. Bool.	- Q	<b>9</b>	2 4	<u> </u>	: 5	i	17		רו		[]	_		11	QX	-	; <u>-</u>	: 1	i	1	<u>-</u>	: <u>-</u>	i	-	-		,	LT			S		L			<u>-</u>	. <u>-</u>	; -	_				
Analyte Description	PCB 1254	PCB 1232 PCP 12/8	rcb 1243	Aldrin	alpha-Hexachlorocyclohexane / alpha-	Benzene hexachloride	beta-Hexachlorocyclohexane / beta-	Benzene hexachloride	delta-Hexachlorocyclohexane / delta-	Benzene hexachloride	Endosulfan II / beta-Endosulfan	2,2-Bis(p-chlorophenyl)-1,1,1-	trichloroethane	alpha-Chlordane	PCB 1242	Endrin ketone	qamma-Chtordane	Lindane / gamma-Benzene hexachtoride	/ gamma-Hexachlorocyc*	Dieldrin	Endrin	Methoxychior / Methoxy-DDI / 11'-	(2.2.2-Trichloroethylide*	mpDDD / 1.1-Dichloro-2 2-bis/p-	chlorophenyl Dethane / Photh*	2,2-Bis(p-chlorophenyl)-1,1-	dichloroethene	Endrin aldehyde	Heptachlor / 1H-1,4,5,6,7,8,8-	Heptachloro-3a,4,7,7a-tetrah*	Toxaphene / Chlorinated camphene /	Camphechlor / Alltox / *	Endosulfan I / alpha-Endosulfan	Mercury	Lead	Thatlium	Arsenic	Selenium	Aluminum	Iron	Lead	Magnesium	Manganese
CAS No.	11097-69-1	11141-16-5	1267/-11-2	309-00-2	319-84-6		319-85-7	:	319-86-8	1	33213-65-9	50-29-3		5103-71-9	53469-21-9	53494-70-5	5566-34-7	58-89-9		60-57-1	72-20-8	72-43-5	!	72-54-8	)	72-55-9		7421-93-4	8-77-92		8001-35-2		959-98-8	2439-97-6	7439-92-1	7440-28-0	7440-38-2	7782-49-2	7429-90-5	7439-89-6	7439-92-1	7439-95-4	7439-96-5
Meth/ Matrix	/ 66																																	SB07/	/80gs				SS15/				
Lab Lab Anly. No.	PC 50822																																										
Sample Date	14-FEB-92																																										
Depth	49.0																																										
Field Sample No.	MW2-18																																										

* - Analyte Description has been truncated. See Data Dictionary

Data Quats

Flag Codes

Final Documentation Appendix Report Installation :Anniston AD, AL (AN) File Type: CGW Sampling Date Range: 01-JAN-91

24-001-94

Sample Depth Date

Site Site Type ID

Unit	Meas.	1	NGL	ner	NGL	NGL	ner	ner	NGL	NGL	NGL	UGI.	NCL	NGL	NGL	ngr	UGL	NGL	UGL	ngr.
	Conc.		30.9	128	3780	12.5	841	100	37.1	157	3.22	30	09	433	109	102	262	8860	75	8.17
Meas.	Bool.		LT			11		ב	ב			7							רו	LT
	Analyte Description	* * * * * * * * * * * * * * * * * * * *	Molybdenum	Nickel	Potassium	Silver	Sodium	Thallium	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Vanadium	Zinc	Calcium	Selenium	Cyanide
	CAS No.		7439-98-7	7440-02-0	2-60-0552	7440-22-4	7440-23-5	7440-28-0	7440-36-0	7440-39-3	7440-41-7	2440-43-9	7440-47-3	7440-48-4	7440-50-8	7440-62-2	9-99-0552	7440-70-2	7782-49-2	57-12-5
Meth/	Matrix	1 1 1 1 1	\$\$15/																	TY03/
Lab Meth	Lab Anly. No.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PC 50822																	

** End of Report - 2328 Records Found **