Project Title: Legal Research System: A Deep Learning Approach

Introduction

This project aims to develop a deep learning-based system that can efficiently identify relevant legal cases based on a given case description. The system will be designed to assist legal professionals in their research by automating the process of finding similar cases.

Motivation

Manual legal research can be time-consuming and often involves sifting through vast amounts of case law. A deep learning-based system can streamline this process by automatically identifying relevant cases, saving legal professionals valuable time and effort.

Outcome

The expected outcome of this project is a functional legal research system capable of:

- Case Similarity Identification: Accurately comparing given cases to existing case law and identifying the most relevant ones.
- **Section-Level Analysis:** Analyzing cases at a granular level, considering factors like facts, arguments, statutes, precedents, and judge names.
- **Priority-Based Matching:** Prioritizing case matches based on the similarity of key sections, ensuring that the most relevant cases are presented first.

Tools and Techniques

The following tools and techniques will be employed in the development of the legal research system:

Data Preparation:

Synthetic Dataset Generation: If there is insufficient labeled data,we would consider generating synthetic labelled legal documents using techniques like prompt engineering the large language models or rule-based systems to augment the training dataset. This can help improve the model's generalization capabilities.

Natural Language Processing (NLP): For tasks such as text preprocessing, tokenization, semantic analysis.

Deep Learning Techniques:

- **Bi-LSTM:** A bidirectional Long Short-Term Memory network, suitable for processing sequential data like legal documents and understanding their context.
- Conditional Random Fields (CRFs): For sequence labeling tasks, such as identifying the boundaries of different sections within a legal document.

Document Similarity Algorithm:

- **Cosine Similarity:** A commonly used metric to measure the similarity between two vectors, which can be applied to represent legal documents as numerical vectors.
- TF-IDF (Term Frequency-Inverse Document Frequency): A weighting scheme that assigns higher weights to terms that appear frequently in a specific document but are less common in the overall corpus.