Name:

MATH 321: In-Class 2

- 1. Suppose $X_1, X_2 \stackrel{iid}{\sim} f(x) = 3x^2 \quad 0 < x < 1$.
 - (a) Find the survival function of $X_{(1)} = \min(X_1, X_2)$.

- (b) Find the cdf of $X_{(1)} = min(X_1, X_2)$.
- (c) Find the cdf of $X_{(2)} = max(X_1, X_2)$.

- 2. Let X_1, X_2, X_3 be a random sample from Exponential $(\lambda = 2)$.
 - (a) Find the cdf of $X_{(3)} = max(X_1, X_2, X_3)$.

(b) Find the pdf of $X_{(3)} = max(X_1, X_2, X_3)$ by taking the derivative of part (a).

(c) Find the pdf of $X_{(3)} = max(X_1, X_2, X_3)$ using the pdf theorem (answer should match (b)).

(d)	Find the cdf of $X_{(1)} = min(X_1, X_2, X_3)$.	HINT: Can s	tart with	the cdf written a	us a probability
	statement and then think about it with log	gic to continue	(and use of	$a\ complement).$	

(e) Find
$$P(X_{(1)} < 1.5)$$
 and $P(X_{(3)} < 1.5)$.

(f) Find the cdf and the pdf of the sample median $X_{(2)}$ using the theorems.

- 3. Use R to create a qqplot using the following steps:
 - (a) Generate (and save) a random sample of size n=100 from $X\sim t\left(2\right)$.
 - (b) Run the following two lines:

- (c) Roughly sketch the result, which is visually testing whether a t distribution matches the characteristics of a normal distribution.
 - Is there a pattern? Draw / trace it. What does this pattern tell you about the t-distribution?