IPESUP 2022/2023

Kholle 5 filière MPSI Jean-Louis CORNOU

- 1. Énoncer le théorème fondamental du calcul intégral. Le démontrer lorsque l'intégrande est une fonction monotone à valeurs réelles.
- 2. Rechercher une primitive de $\mathbb{R} \to \mathbb{R}$, $t \mapsto t \arctan(t)$.
- 3. On considère l'équation différentielle $(E):|x|y'(x)+y(x)=x^3$ d'inconnue $y:\mathbb{R}\to\mathbb{R}$ dérivable. La résoudre sur \mathbb{R}^{+*} , sur \mathbb{R}^{-*} , puis sur \mathbb{R} .

IPESUP 2022/2023

Kholle 5 filière MPSI Jean-Louis CORNOU

- 1. Soit I un intervalle de \mathbb{R} , a une fonction continue de I dans \mathbb{C} , et (E) l'équation différentielle y'+ay=0 d'inconnue $y:I\to\mathbb{C}$ dérivable. Donner et démontrer l'ensemble des solutions de (E).
- 2. Déterminer une primitive de $t \mapsto \sin(t)/\cos^3(t)$ sur un intervalle adapté.
- 3. Rechercher une primitive de $t\mapsto 1/\cos(t)$ sur un intervalle adapté contenant 0. En déduire une solution particulière de l'équation différentielle $(E)y'+\cos(y)=0$ qui s'annule en 0.

IPESUP 2022/2023

Kholle 5 filière MPSI Jean-Louis CORNOU

- 1. Soit a et b deux complexes et (E) l'équation différentielle y'' + ay' + by = 0 d'inconnue $y : \mathbb{R} \to \mathbb{C}$ deux fois dérivable. Donner et démontrer l'ensemble des solutions de (E).
- 2. Déterminer une primitive de $\mathbb{R}^{+*} \to \mathbb{R}$, $t \mapsto \sin(\ln(t))$ de deux façons différentes :
 - (a) en passant par les complexes,
 - (b) à l'aide du changement de variables u = ln(t).
- 3. On considère deux réels a et b tels que a < b, le segment I = [a, b], ainsi que $y : I \to \mathbb{C}$ une fonction deux fois dérivable. A quelle condition nécessaire et suffisante y satisfaitelle

$$y'' + y' + y = 0$$
, $y(a) = 0$ et $y(b) = 0$?

Kholle 5 filière MPSI Jean-Louis CORNOU

Exercices supplémentaires et plus corsés pour les gourmands :

- 1. Soit I un intervalle de R, a,b,c continues de I dans \mathbb{R} , x_0 dans I et (E): a(x)y'(x) + b(x)y(x) = c(x). Montrer que les tangentes aux points d'abscisse x_0 des courbes des solutions de (E) sont concourantes ou parallèles.
- 2. Pour tout entier n, on considère la fonction $K_n: x \mapsto (x^2 1)^n$ et $P_n = K_n^{(n)}$. Montrer que pour tous entiers m et n distincts

$$\int_{-1}^{1} P_m(x) P_n(x) dx = 0$$

Que vaut $\int_{-1}^{1} P_n(x)^2 dx$?

