Stochastics

1. Measure-Theoretic Probability

In this chapter, measure-theoretic probability thoery is presented simply.

1.1 Events and Probability

Definition 1.1 $(\sigma - algebra)$

Let Ω be an non-empty set. A σ -algebra \mathcal{F} on Ω is a family of subsets of Ω such that:

- 1. The empty set \emptyset belongs to \mathcal{F} .
- 2. if $A \in \mathcal{F}$, then $\Omega \setminus A \in \mathcal{F}$.
- 3. if A_1, A_2, \ldots is a sequence of sets in \mathcal{F} , then their union $\bigcup_{i=1}^{\infty} A_i$ belongs to \mathcal{F} .

Definition 1.2 (probability measure)

Let (Ω, \mathcal{F}) be a measureable space. Then a probability measure P on (Ω, \mathcal{F}) is a function

$$P:\mathcal{F} o [0,1]$$

such that:

- 1. $P(\Omega) = 1$;
- 2. if A_1, A_2, \ldots is a pairwise disjoint sets belonging to \mathcal{F} , then

$$P\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}P(A_i)$$

The triple (Ω, \mathcal{F}, P) is called a *probability space*.

Theorem 1.1 (increasing and decreasing sequence of sets)

Let (Ω, \mathcal{F}, P) be a probability space. Let

$$A_1 \subset A_2 \subset A_3 \ldots$$

be an increasing sequence of sets that belongs to \mathcal{F} . Then,

$$P\left(igcup_{i=1}^{\infty}A_{i}
ight)=\lim_{n
ightarrow\infty}P\left(A_{n}
ight)$$

Similary, let

$$A_1\supset A_2\supset \dots$$

be an decreasing sequnce of sets that belongs to \mathcal{F} . Then,

$$P\left(igcap_{i=1}^{\infty}A_i
ight)=\lim_{n o\infty}P\left(A_n
ight)$$

[1]

1.2 Random Variables

Definition 1.3 (random variable)

Let (Ω, \mathcal{F}, P) be a probability space. Then a \mathcal{F} -measureable function $\xi : \Omega \to \mathbb{R}$ is called a random variable.

Definition 1.4 (σ -algebra generated by a random variable)

- Let (Ω, \mathcal{F}, P) be a probability space, and let $\xi : \Omega \to \mathbb{R}$ be a random variable. Then, a σ -algebra generated by a random variable ξ is defined to be a familiy of sets containing all sets of the form $\xi^{-1}(B)$, where B is a Borel set in \mathbb{R} .
- Furthermore, let $\{\xi_i : i \in I\}$ be a familiy of random variables. Then a σ -algebra generated by $\{\xi_i : i \in I\}$ is defined to be a smallest σ -algebra that contains all sets of the form $\xi_i^{-1}(B)$, where $i \in I$ and B is a Borel set in \mathbb{R} .

1. pf) try to use the definition of measure. \rightleftharpoons			