Word embeddings

Victor Kitov

v.v.kitov@yandex.ru

Standard word representations

- Denote *V*=vocabulary size.
- Standard document representations use sparse vectors $x \in \mathbb{R}^V$
 - $x_w = \mathbb{I}[w \text{ occured in the document}]$
 - $x_w = TF_w = \#[w \text{ occured in the document}]$
 - $x_w = TF_w IDF_w$, $IDF_w = \frac{N}{N_w}$
 - N number of all documents
 - N_w number of documents, containing w at least once.
- TF and TF*IDF models rely on sparse one-hot word representations [0,0,...0,1,0,...,0]
- V is large, so we want dense word representations (word embeddings) $w \to \mathbb{R}^K$, K << V
 - less inputs=>less parameters=>less overfitting, especially for multi-layer perceptron
 - handle synonyms, like "car" and "automobile"

Interpretable word embeddings

- $x \in \mathbb{R}^K$, where x^i is some *i*-th interpretable feature, e.g.
 - x^1 : part of speech
 - x^2 : gender (for nouns)
 - x^3 : tense (for verbs)
 - x⁴: starts from capital letter
 - *x*⁵: #[letters]
 - x^6 : category: machine learning, physics, biology, ...
 - x⁷: subcategory: supervised, unsupervised, semi-supervised learning
 - ...
- Need to invent features for each task and extract them.
- Want this to be done automatically!

Uninterpretable word embeddings

- Clustering words with similar meaning to similar representations.
- Distributional hypothesis:
 words have similar meaning <=> they co-occur together frequently.
- "accuracy of SVM", "SVM gave accuracy", "lower accuracy, compared to SVM"
 - "SVM" and "accuracy" are connected!
- Typical dimensionality of embedding \in [300, 500].

Table of Contents

- Word2vec
 - Models

Word embeddings - Victor Kitov Word2vec Models

- Word2vec
 - Models

Word2vec

- Proposed in 2013¹.
- Computationally efficient:
 - Remove computationally expensive hidden layer.
 - Omit expensive denominator calculation.
- Thus can be trained on much bigger datasets.
 - better embeddings, especially for rare words.
- Comments: for each w models evaluate:
 - target word embedding v_w
 - ullet context word embedding $ilde{v}_w$
- Target&context embeddings may be averaged or concatenated later.

¹Mikolov et al. (2013), Mikolov et al. (2013)

Models

Continious bag of words (CBOW)

Continuous bag of words (CBOW)

CBOW: predict current word given context.

$$\frac{1}{T} \sum_{t=1}^{T} \ln p(w_t | w_{t-c}, ...w_{t-1}, w_{t+1}, ...w_{t+c}) \to \max_{\theta}$$

where $v_{context} = \sum_{-c \leq i \leq c, \, i \neq 0} v_{w_{t+i}}$ and

$$p(w_{t}|w_{t-c},..w_{t-1},w_{t+1},...w_{t+c}) = \frac{\exp(v_{context}^{T}\tilde{v}_{w_{t}})}{\sum_{w=1}^{V}\exp(v_{context}^{T}\tilde{v}_{w})}$$

Skip-gram model

Skip-gram model

Skip-gram: predict context, given current word:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq i \leq c, i \neq 0} \ln p(w_{t+i}|w_t) \rightarrow \max_{\theta}$$

$$p(w_{t+i}|w_t) = \frac{\exp\left(v_{w_t}^T \tilde{v}_{w_{t+i}}\right)}{\sum_{w=1}^V \exp\left(v_{w_t}^T \tilde{v}_w\right)}$$