

### ALGORITHMEN UND DATENSTRUKTUREN

## DER DIJKSTRA-ALGORITHMUS

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 03.03.2020

# Algorithmus von DIJKSTRA

## SETTING [3]

# gegeben:

- gerichteter, gewichteter Graph G = (V, E, c) mit
  - $\triangleright$   $V = \{1, \ldots, n\}$
  - $\triangleright$  c(v) ≥ 0 für alle v ∈ V (nichtnegative Kantengewichte)
- ► Startknoten s (Quelle)

#### Ziel:

▶ kürzeste Entfernung von s nach v für alle  $v \in V$ 

#### Idee:

- ► Wir kennen einen kürzesten Weg *p* von *s* nach *v*.
- ▶ Verlängerung von p um eine Kante (v, v')
- Wir erhalten einen kürzesten Weg von s nach v'.

1

## **OPTIMALITÄTSEIGENSCHAFT**

#### **Theorem**

Für jeden kürzesten Weg  $p = (v_0, v_1, ..., v_k)$  von  $v_0$  nach  $v_k$  ist jeder Teilweg  $(v_i, ..., v_j)$  mit  $1 \le i < j \le k$  auch ein kürzester Weg von  $v_i$  nach  $v_j$ .

**Beweis** (nach [1]). Sei p wie oben ein kürzester Weg. Angenommen es gäbe einen Teilweg  $(u,\ldots,v)$ , der kein kürzester Weg ist. Dann gibt es also einen kürzeren Weg  $(u,w_1,\ldots,w_\ell,v)$  von u nach v. Dann wäre aber auch der Weg  $p'=(v_1,\ldots,u,w_1,\ldots,w_\ell,v,\ldots,v_k)$  von  $v_1$  nach  $v_k$  kürzer als p im Widerspruch zur Optimalität von p. Also muss auch der Weg  $(u,\ldots,v)$  optimal sein.



**Abbildung 1:** Teilwege von optimalen Wegen sind wieder optimal. [1]

### **DER ALGORITHMUS [2]**

#### Notation.

- ► *M* . . . Menge der Knoten, zu der ein kürzester Weg bekannt ist
- $p(v_k)$  ... Vorgänger von  $v_k$  auf dem kürzesten Weg nach  $v_k$
- ►  $d(v_k)$  ... Länge des (bisher) kürzesten Weges zu  $v_k$

### Initialisierung.

- $M = \{s\}$
- d(s) = 0
- für v ≠ s setze

$$p(v) \coloneqq \begin{cases} s & \text{für } (s, v) \in E \\ 0 & \text{für } (s, v) \notin E \end{cases} \qquad d(v) \coloneqq \begin{cases} c(s, v) & \text{für } (s, v) \in E \\ +\infty & \text{für } (s, v) \notin E \end{cases}$$

### **DER ALGORITHMUS [2]**

- 1. Bestimme  $u \notin M$  mit  $d(u) = \min \{d(v) : v \notin M\}$ .
  - ▶ Falls  $d(u) = +\infty$ , dann STOP (kein neuer Weg möglich)
  - $\triangleright$  Andernfalls setze  $M := M \cup \{u\}$
- 2. Für alle  $v \notin M$  mit  $(u, v) \in E$ : falls d(v) > d(u) + c(u, v) (also ein kürzerer Weg ist gefunden), dann setze d(v) = d(u) + c(u, v) und p(v) = u
- 3. Falls  $M \neq V$ , gehe zu Schritt 1. Sonst STOP.

#### **BEISPIEL**

Wir notieren die notwendigen Informationen als Tripel

(Knotennummer, Entfernung von der Quelle, Vorgängerknoten) = 
$$\begin{pmatrix} v_k & , & d(v_k) & , & p(v_k) \end{pmatrix}$$



**Abbildung 2:** Graph G = (V, E, c)

# **BEISPIEL**

| gewählt          | Menge der Randknoten                                          |  |  |
|------------------|---------------------------------------------------------------|--|--|
| $(v_1, 0, -)$    | $\left\{\underline{(v_2,3,v_1)},(v_3,5,v_1)\right\}$          |  |  |
| $(v_2,3,v_1)$    | $\left\{\underline{(v_3,5,v_1)},(v_4,9,v_2)\right\}$          |  |  |
| $(v_3,5,v_1)$    | $\left\{ \underline{(v_4, 8, v_3)}, (v_5, 13, v_3) \right\}$  |  |  |
| $(v_4, 8, v_3)$  | $\left\{ \underline{(v_5, 11, v_4)}, (v_6, 18, v_4) \right\}$ |  |  |
| $(v_5,11,v_4)$   | $\left\{ \underline{(v_6, 13, v_5)} \right\}$                 |  |  |
| $(v_6, 13, v_5)$ | Ø                                                             |  |  |

# **REKONSTRUKTION DES KÜRZESTEN WEGES**

Wir betrachten beispielhaft den Weg von  $v_1$  nach  $v_5$ .

- ► Es ist  $d(v_5) = 11$ , d.h. der kürzeste Weg von  $v_1$  zu  $v_5$  ist 11 Einheiten lang.
- ► Es gilt  $p(v_5) = v_4$ . Wir betrachten weiter die Vorgänger-Funktion:

$$p(v_5) = v_4 \leftarrow p(v_4) = v_3 \leftarrow p(v_3) = v_1$$

Somit ist der kürzeste Weg von  $v_1$  zu  $v_5$  also gegeben durch

$$v_1 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5$$

### **EINE ANDERE ART DER DOKUMENTATION**

| <i>p</i> = | 0                     | $v_1$                 | $v_1$      | <i>y</i> ∕2 <i>v</i> <sub>3</sub> | <i>y</i> 3 <i>v</i> 4 | <i>y</i> <sub>4</sub> <i>v</i> <sub>5</sub> |
|------------|-----------------------|-----------------------|------------|-----------------------------------|-----------------------|---------------------------------------------|
|            | <i>v</i> <sub>1</sub> | <i>V</i> <sub>2</sub> | <i>V</i> 3 | <i>V</i> 4                        | <i>V</i> <sub>5</sub> | <i>V</i> <sub>6</sub>                       |
| <i>d</i> = | 0                     | $\infty$              | $\infty$   | $\infty$                          | $\infty$              | $\infty$                                    |
|            |                       | 3                     | 5          | $\infty$                          | $\infty$              | $\infty$                                    |
|            |                       |                       | 5          | 9                                 | $\infty$              | $\infty$                                    |
|            |                       |                       |            | 8                                 | 13                    | $\infty$                                    |
|            |                       |                       |            |                                   | 11                    | 18                                          |
|            |                       |                       |            |                                   |                       | 13                                          |

# **Algorithmus von FORD-MOORE**

## SETTING [2]

# gegeben:

- gerichteter, gewichteter Graph G = (V, E, c) mit
  - $V = \{1, ..., n\}$
  - ightharpoonup beliebiger Funktion c: E →  $\mathbb{R}$  (auch negative Gewichte)
- Startknoten s ∈ V

### gesucht:

► *längste* Wege von  $s \in V$  zu allen anderen Knoten

#### naive Idee:

- ▶ Dijkstra-Algorithmus für G' = (V, E, -c)
- Problem: negative Kantengewichte nicht zulässig
- Ausweg: Algorithmus von Ford & Moore

#### **DER ALGORITHMUS**

### **Algorithmus von FORD/MOORE:**

1. Wähle  $s \in V$  als Startknoten und setze d(s) = 0, sowie

$$p(v) := \begin{cases} s & (s,v) \in E \\ 0 & \text{sonst} \end{cases} \qquad d(v) := \begin{cases} c(s,v) & (s,v) \in E \\ -\infty & \text{sonst} \end{cases}$$

für alle  $s \neq v$ . Definiere außerdem

$$A := \{s\} \cup \{v \in V : (s, v) \in E\}, B := \emptyset \text{ und } k := 1.$$

- 2. Falls  $A = \emptyset$  oder k = |V|, dann STOP.
- 3. Für alle  $u \in A$  und alle  $v \in V$  mit  $(u, v) \in E$ : falls d(v) < d(u) + c(u, v), dann setze d(v) = d(u) + c(u, v) und p(v) = u sowie  $B := B \cup \{v\}$ .
- 4. Setze A = B,  $B = \emptyset$ , k := k + 1 und gehe zu Schritt 1.

#### **LITERATUR**



Graphen- und Netzwerkoptimierung.

Heidelberg: Spektrum Akademischer Verlag, 2010. – ISBN 9783827424228

MARTINOVIC, J.:

Optimierung.

Vorlesungsmitschrift, Januar 2020

VOGLER, H.:

Algorithmen, Datenstrukturen und Programmierung.

Vorlesungsskript, September 2018