Measuring Similarity of Educational Items Using Data on Learners' Performance

Jiří Řihák, Radek Pelánek

Masaryk University Brno

Adaptive learning

Adaptive practice systems

- **items** simple questions
- practice rapid sequence of items

Large pool of items

- How to organize these items?
- What knowledge components should be used?
- Are there some anomalies?
- . . .

Large pool of items

- clustering
- visualization
- outlier detection

• . . .

Large pool of items

- clustering
- visualization
- outlier detection

...

Large pool of items

- clustering
- visualization
- outlier detection

• . . .

General approach

Research questions

- What similarity measures is suitable for EDM?
- How much data we need?
- How to combine more types of learner data?

Similarity measures

Similarity measures

binary data

- 1 correct
- 0 incorrect
- input can be simplified:

		item <i>i</i>		
		incorrect	correct	
item <i>j</i>	incorrect	а	b	
	correct	С	d	

Similarity measures

Yule
$$S_y = (ad - bc)/(ad + bc)$$

Pearson $S_p = (ad - bc)/\sqrt{(a + b)(a + c)(b + d)(c + d)}$
Cohen $S_c = (P_o - P_e)/(1 - P_e)$
 $P_o = (a + d)/n$
 $P_e = ((a + b)(a + c) + (b + d)(c + d))/n^2$
Sokal $S_s = (a + d)/(a + b + c + d)$
Jaccard $S_j = a/(a + b + c)$
Ochiai $S_o = a/\sqrt{(a + b)(a + c)}$

Second level of similarity

Second level of similarity

- 2 items are similar if they are *similarly* similar to other items
- more information used
- noise reduction
- necessary for some follow up algorithms

Evaluation - correlation of measures

- Cohen Pearson
- Ochiai Jaccard
- Yule
- Sokal the most different

Czech 1 (adjectives)

Cohen Pearson	1	0.99	0.95	0.84	0.85	0.55
Cohen	0.99	1	0.93	0.84	0.86	0.55
Yule	0.95	0.93	1	0.68	0.68	0.68
Ochiai	0.84	0.84	0.68	1	0.98	0.034
Jaccard	0.85	0.86	0.68	0.98	1	0.14
Sokal	0.55	0.55	0.68	0.034	0.14	1
	_					

Pearson Cohen Yule Ochiai Jaccard Sokal

Evaluation - correlation of measures

- Cohen Pearson
- Ochiai Jaccard
- Yule
- Sokal the most different

Second level of similarity

- brings change
- larger for smaller datasets

Pearson Euclid ming

Simulated data

Simulated data

- we know right answer
- logistic model
 - learners have skills
 - items have difficulty
- typical setting
 - 100 learners
 - 5 knowledge components
 - 20 items per KC

Evaluation

Evaluation

Evaluation - clustering

	Czech adjectives	100L 5KC	200L 5KC
Pearson	0.32 ± 0.02	0.48 ± 0.05	$\textbf{0.84} \pm \textbf{0.05}$
Jaccard	0.31 ± 0.03	0.15 ± 0.04	0.29 ± 0.08
Yule	0.31 ± 0.03	0.43 ± 0.05	0.77 ± 0.07
Sokal	$\textbf{0.15} \pm \textbf{0.06}$	0.18 ± 0.03	0.25 ± 0.05
$Pearson \to Euclid$	$\textbf{0.43} \pm 0.01$	$\textbf{0.80} \pm 0.06$	$\textbf{0.98} \pm 0.01$
$Yule \to Euclid$	0.32 ± 0.02	0.65 ± 0.07	$\textbf{0.94} \pm \textbf{0.04}$
$Pearson \to Pearson$	$\textbf{0.41} \pm \textbf{0.03}$	0.73 ± 0.06	0.96 ± 0.02
$Yule \to Pearson$	0.32 ± 0.03	0.72 ± 0.06	0.97 ± 0.02

Do We Have Enough Data?

- stability of results
- split data to two halves
- how similarity measures correlate on these halves?

Do We Have Enough Data?

Response times

- additional information
- correctness and response time to one measure of success
- ullet response: 0/1
 ightarrow [0,1]

Respose times - Math Garden

- ullet Math Garden large datasets: $\sim 1M$ of answer on 30 items
- ullet small impact of time information correlation > 0.9
- but what with smaller datasets?

Respose times - MathGarden

Conclusion

- Pearson metric is a good default
- Pearson, Cohen and Yule are good
- second level improve results
- we should check that we have sufficient data
- response time can help with small datasets

