Real Analysis Homework 3

Alexander J. Tusa

September 13, 2018

- 1. Find the infimum and supremum, if they exist.
 - (a) Section 2.3

4) Let
$$S_4 := \{1 - \frac{(-1)^n}{n} : n \in \mathbb{N}\}.$$

inf $S_4 = \frac{1}{2}$, sup $S_4 = 2$

5) a)

$$A := \{x \in \mathbb{R} : 2x + 5 > 0\}$$
$$= \{x \in \mathbb{R} : 2x > -5\}$$
$$= \{x \in \mathbb{R} : x > \frac{-5}{2}\}$$

So inf A exists. So inf $A = \frac{-5}{2}$. But since \nexists an upper bound or the upper bound of $A = \infty$, then either $\sup A = \infty$, or $\sup A = DNE$.

b)

$$B := \{x \in \mathbb{R} : x + 2 \ge x^2\}$$

$$= \{x \in \mathbb{R} : 0 \ge x^2 - x - 2\}$$

$$= \{x \in \mathbb{R} : 0 \ge (x - 2)(x + 1)\}$$

$$= [-1, 0] \cup [0, 2]$$

So the infimum and supremum exist. So inf B = -1, and sup B = 2.

d)

$$D := \{x \in \mathbb{R} : x^2 - 2x - 5 < 0\}$$

$$= \{x \in \mathbb{R} : (x - (1 + \sqrt{6}))(x - (1 - \sqrt{6}))\}$$

$$= \{x \in \mathbb{R} : 1 - \sqrt{6} < x < 1 + \sqrt{6}\}$$

$$= (1 - \sqrt{6}, 1 + \sqrt{6})$$

So both the inf D and sup D exist. So inf $D = 1 - \sqrt{6}$ and sup $D = 1 + \sqrt{6}$.

(b)
$$A = \{x \in \mathbb{R} : x = \frac{1}{n} + (-1)^n \text{ for } n \in \mathbb{N}\}$$

 $\Rightarrow \inf A = -1, \text{ and } \sup A = \frac{3}{2}.$

(c)
$$B = \{x \in \mathbb{R} : x = 2 - \frac{(-1)^n}{n^2} \text{ for } n \in \mathbb{N}\}$$

 $\Rightarrow \inf B = \frac{7}{4}, \sup B = 3$

2. Section 2.3

9) Let $S \subseteq \mathbb{R}$ be nonempty. Show that if $u = \sup S$, then for every number $n \in \mathbb{N}$, the number $\frac{u-1}{n}$ is not an upper bound of S, but the number $\frac{u+1}{n}$ is an upper bound of S. (The converse is also true; see Exercise 2.4.3)

Proof. Let $S \subseteq \mathbb{R}$ be nonempty. We want to show that if $u = \sup S$, then for every number $n \in \mathbb{N}$, the number $\frac{u-1}{n}$ is not an upper bound of S, but the number $\frac{u+1}{n}$ is an upper bound of S.

Let $u = \sup S$. Recall the definition of the supremum:

$$\alpha = \sup S \iff (i) \ x \le \alpha \ \forall x \in S, \ \land (ii) \ \forall \epsilon \in S, \exists x \in S \ \text{s.t.} \ x > \alpha - \epsilon$$

u is by definition an upper bound of S, and thus by the definition of u, $u + \frac{1}{n} > u$, thus $u + \frac{1}{n}$ is also an upper bound of S, since $u + \frac{1}{n} > u \ \forall n \in \mathbb{N}$.

Now, let $\epsilon = \frac{1}{n}$. By Lemma 2.3.4, we have that $\exists s_{\epsilon} \in S$ s.t. $\sup S - \epsilon < s_{\epsilon} < \sup S$, so

$$u - \frac{1}{n} = u - \epsilon < s_{\epsilon}$$

 $\therefore u - \frac{1}{n}$ is not an upper bound of S.

10) Show that if A and B are bounded subsets of \mathbb{R} , then $A \cup B$ is a bounded set. Show that $\sup(A \cup B) = \sup\{\sup A, \sup B\}$.

Proof. Let $A, B \subseteq \mathbb{R}$ such that A, B are bounded. We want to show that $A \cup B$ is a bounded set, and that $\sup(A \cup B) = \sup\{\sup A, \sup B\}$.

Since A is bounded, we have that

$$\inf A \le A \le \sup A,$$

and since B is bounded, we have that

$$\inf B \le B \le \sup B$$

Let $s = \max\{|\inf A|, |\sup A|\}$, and let $t = \max\{|\inf B|, |\sup B|\}$. Let $x \in A \cup B$. Then, by the definition of union, $x \in A$ or $x \in B$.

If $x \in A$, then $|x| \le s$. If $x \in B$, then $|x| \le t$.

Let $r = \max\{s, t\}$.

Then if $x \in A \cup B$, then $|x| \le r$.

 $\therefore A \cup B$ is bounded. \square

Now, we want to show that

$$\sup(A \cup B) = \sup\{\sup A, \sup B\}$$

Since A is bounded, sup A exists by the completeness axiom. Since B is bounded, sup B exists by the completeness axiom.

Let $w = \sup\{\sup A, \sup B\} = \max\{\sup A, \sup B\}$. Then w is an upper bound for $A \cup B$ since $w \ge |\sup A|$ and $w \ge |\sup B|$. By completeness, $\sup(A \cup B)$ exists. And $\sup(A \cup B) \le w = \sup\{\sup A, \sup B\}$.

Let z be any upper bound for $A \cup B$. Then z is an upper bound for A and for B. So $x \le \sup A \le z$, $\forall a \in A$ and $x \le \sup B \le z$, $\forall b \in B$. So $\sup \{\sup A, \sup B\} \le z$.

 $\therefore z$ is an upper bound for $A \cup B$, choose $z = \sup(A \cup B)$. So $\sup\{\sup A, \sup B\} \le \sup(A \cup B)$.

Then
$$\sup\{\sup A, \sup B\} = \sup(A \cup B)$$
.

3. Section 2.4

4a) *Proof.* Let S be a nonempty bounded set in \mathbb{R} . Let a > 0, and let $aS = \{as : s \in S\}$. We want to show that

$$\inf(aS) = a \inf S$$
, and $\sup(aS) = a \sup S$

$$\therefore \inf S \le s, \ \forall s \in S,$$

$$\Rightarrow a \inf S \le aS, \ \forall as \in aS$$

For any $\epsilon > 0, \frac{\epsilon}{s} > 0$. Then we have that $\exists s_0 \in S \text{ s.t. } s_0 \leq \inf S + \frac{\epsilon}{a} \Rightarrow as_0 \leq a \inf S + \epsilon$, where $as_0 \in aS$.

$$\therefore \inf(aS) = a \inf S. \square$$

Now, we want to show that $\sup(aS) = a \sup S$. By the definition of the supremum, we have that $s \leq \sup S$, $\forall s \in S \Rightarrow as \leq a \sup S$, $\forall as \in aS$. So for any $\epsilon > 0$, $\frac{\epsilon}{a} > 0$, we have that $\exists s' \in S$ s.t. $s' = \sup S - \frac{\epsilon}{a}$.

$$\therefore \sup(aS) = a \sup S.$$

5) Let S be a set of nonnegative real numbers that is bounded above, and let $T := \{x^2 : x \in S\}$. Prove that if $u = \sup S$, then $u^2 = \sup T$. Give an example that shows the conclusion may be false if the restriction against negative numbers is removed.

Proof. Let S be a set of nonnegative real numbers that is bounded above, and let $T := \{x^2 : x \in S\}$. We want to show that if $u = \sup S$, then $u^2 = \sup T$.

Suppose $u = \sup S$. Then $s \leq u, \ \forall s \in S$.

$$\Rightarrow 0 \le s \le u$$

$$\Rightarrow 0 \le s^2 \le u^2$$
, because if $a, b \ge 0$ s.t. $a \le b$, then $a^2 \le b^2$.

So
$$s^2 < u^2, \forall s \in S \Rightarrow t < u^2 \ \forall t \in T$$
.

T is bounded above, where u^2 is an upper bound of T. \square

Thus we've satisfied one property of the supremum. Now, for the other, suppose w is an upper bound of T and $w \le u^2$. Then $w \ge 0$, and $\sqrt{w} \le u$, by the definition of T.

Since $u = \sup S$, we have that $\exists s_0 \in S \text{ s.t. } \sqrt{w} \leq s_0$. $\Rightarrow w < s_0^2$, which contradicts the fact that w is an upper bound of T.

$$\therefore \sup T = u^2.$$

Example: Let S := (-2,1). Then $\sup S = 1$. Then T := (1,4), which yields $\sup T = 4$, and $4 \neq 1$.

8) Let X be a nonempty set, and let f and g be defined on X and have bounded ranges in \mathbb{R} . Show that

$$\sup\{f(x) \ + \ g(x) : x \in X\} \le \sup\{f(x) : x \in X\} \ + \ \sup\{g(x) : x \in X\}$$

Proof. Let $A = \{f(x) : x \in X\}$, $B = \{g(x) : x \in X\}$, where A and B are bounded above. Let $C = \{a + b : a \in A, b \in B\}$. Since A and B are bounded, we have that $a \le \sup A \ \forall \ a \in A$, and $b \le \sup B \ \forall \ b \in B$. Thus we have that $a + b \in C$, by the definition of C. So $a + b \le \sup A + \sup B \ \forall a \in A$, and $\forall b \in B$. Thus we also have that $a + b \in C$. Since $a + b \le \sup A + \sup B \Rightarrow \sup A + \sup B$ is an upper bound for C. Thus by completeness and the definition of C, $\sup C \le \sup A + \sup B$.

Example: Let X = [-1, 1] and let f(x) = x and g(x) = -x. Then we have $\sup\{f(x) : x \in X\} = 1$ and $\sup\{g(x) : x \in X\} = 1$. But $\{f(x) + g(x) : x \in X\} = \{x - x : x \in X\} = \{0\}$.

$$\therefore \sup\{f(x) + g(x) : x \in X\} \le \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}$$

$$= 2$$

- 9a) Let $X = Y := \{x \in \mathbb{R} : 0 < x < 1\}$. Define $h : X \times Y \to \mathbb{R}$ by h(x,y) := 2x + y. For each $x \in X$, find $f(x) := \sup\{h(x,y) : y \in Y\}$; then find $\inf\{f(x) : x \in X\}$. If X and Y are between 0 and 1, then the range of f(x) = (0,3), thus $\inf(f(x)) = 0$.
- 14) If y > 0, show that $\exists n \in \mathbb{N}$ such that $\frac{1}{2^n} < y$.

Proof. Let y > 0. By Corollary 2.4.5, $\exists n \in \mathbb{N}$ such that $0 < \frac{1}{n} < y$. Since $n < 2^n$, we have

$$0 < \frac{1}{2^n} < \frac{1}{n} < y$$

4. Section 2.5

2) If $S \subseteq \mathbb{R}$ is nonempty, show that S is bounded if and only if there exists a closed bounded interval I such that $S \subseteq I$.

Proof. Let $S \subseteq \mathbb{R}$ be nonempty. We want to show that S is bounded if and only if there exists a closed, bounded interval I such that $S \subseteq I$. We prove it by cases, one for each direction of the "if and only if" condition.

Case 1: (\Leftarrow) Assume that there exists a closed, bounded interval I such that $S \subseteq I$; that is, define I := [a, b], where $a, b \in \mathbb{R}$.

Then $\min I = a$, and $\max I = b$. Thus we have that $\forall x \in I, a \leq x$, and so a is a lower bound of I. Also, $\forall x \in I, x \leq b$, and so b is an upper bound of I. By completeness, we have that $\inf I$ and $\sup I$ exist. Specifically, we have that $\min I = \inf I = a$, and $\max I = \sup I = b$.

Since $S \subseteq I$, we know that $\forall s \in S, a \leq s \leq b$. Thus by transitivity, we have that $\because \sup I = b \Rightarrow \sup S = b$, and $\because \inf I = a \Rightarrow \inf S = a$.

 \therefore If there exists a closed, bounded interval I such that $S \subseteq I$, then S is bounded. \square

Case 2: (\Rightarrow) Conversely, Assume that S is bounded. Then we have that $\exists x \in S \text{ s.t. } x \leq s, \ \forall s \in S, \ \text{and that } \exists y \in S \text{ s.t. } s \leq y, \ \forall s \in S.$ Thus by completeness, inf S and $\sup S$ exist.

Let inf S = a, and let sup S = b. Since this holds, we can explicitly define S := (a, b).

By the Archimedian property, we have that $\forall s \in S, \exists n \in \mathbb{N}, \text{ s.t. } n \leq s < n+1.$

Define an interval $I := [\lfloor a \rfloor, \lceil b \rceil]$. Thus we now have that $\lfloor a \rfloor \leq \inf S$, and that $\sup S \leq \lceil b \rceil$. Hence $S \subseteq I$.

 \therefore I is a closed, bounded interval by construction, such that $S \subseteq I$.

5

3) If $S \subseteq \mathbb{R}$ is a nonempty bounded set, and $I_s := [\inf S, \sup S]$, show that $S \subseteq I_s$. Moreover, if J is any closed bounded interval containing S, show that $I_s \subseteq J$.

Proof. Let $S \subseteq \mathbb{R}$ be a nonempty, bounded set, and let $I_s := [\inf S, \sup S]$. We want to show that $S \subseteq I_s$, and that if J is any closed, bounded interval that contains S, then $I_s \subseteq J$.

Let $\inf S = a$ and $\sup S = b$.

First, assume that $\nexists \min S, \max S$. Then we have that $I_s \supset S$. Since $\sup \notin S$ and $\inf \notin S$, by the definition of infimum and supremum, respectively. We know this to be the case since the only time $\inf S \in S$ is $\exists \min S$, and also $\sup S \in S$ if $\exists \max S$. But since $\inf S \in I_s$, and $\sup S \in I_s$, by the definition of I_s , we have that $S \subset I_s$.

Now suppose that $\sup S$, $\inf S \in S$. Then $I_s = S$, since the bounds are the same. That is, let $\inf S = \alpha$, and let $\sup S = \beta$. Then $S = I_s \iff S := [\alpha, \beta]$. This is because $\min S = \inf S = \alpha$ and $\max S = \sup S = \beta$.

$$\therefore S \subseteq I_s.$$

Now, let J be a nonempty, bounded, closed set such that $S \subseteq J$. We want to show that $I_s \subseteq J$. Since J is bounded, we can define J := [a, b], where $a, b \in \mathbb{R}$. Similarly as was to be shown above, we know that $\min J = a$, and $\max J = b$. So, we know that $\inf J = \min J = a$, and $\sup J = \max J = b$. Since $S \subseteq J$, we know that if $S \subseteq J$,

- i. inf $S \notin S$ but inf $S \in J$, and
- ii. $\sup S \notin S$ but $\sup S \in J$

Thus since $\inf S$, $\sup S \in J$, $I_s \subseteq J$, since $\inf S$, $\sup S \in I_s$. Also, if $S = I_s$, then clearly $I_s \subseteq J$.

5. Prove that for every $x \in \mathbb{R}$ and for each $n \in \mathbb{N}$, there exists a rational number r_n such that $|x - r_n| < \frac{1}{n}$.

Proof. Let $x \in \mathbb{R}$, and let $n \in \mathbb{N}$. Then we have $x - \frac{1}{n} < x + \frac{1}{n}$. So $x - \frac{1}{n}, x + \frac{1}{n} \in \mathbb{R}$. By Theorem 2.4.8, we have that $\exists r_n \in \mathbb{Q} \text{ s.t. } x - \frac{1}{n} < r_n < \frac{1}{n} \Rightarrow \frac{-1}{n} < r_n - x < \frac{1}{n}$.

So
$$|r_n - x| < \frac{1}{n}$$
 and $|x - r_n| < \frac{1}{n}$.

6. A dyadic rational is a number of the form $\frac{k}{2^n}$ for some $k, n \in \mathbb{Z}$. Prove that if $a, b \in \mathbb{R}$ and a < b, then there exists a dyadic rational q such that a < q < b.

Proof. Let $a, b \in \mathbb{R}$ such that a < b. We want to show that $\exists q = \frac{k}{n}$ s.t. a < q < b.

By question 14 from Section 2.4, we know that $\forall y > 0, \exists n \text{ s.t. } \frac{1}{2^n} < y$. By the Archimedian

property, we have $0 < \frac{1}{2^n} < \frac{1}{n} < y$.

Case 1: Let a > 0. So 0 < a < b. By the Archimedian property again, $\exists n \in \mathbb{N}$ s.t. $0 < \frac{1}{2^n} < \frac{1}{n} < b - a$. So $\frac{1}{2^n} < b - a$. So $1 + a * 2^n < b * 2^n$. By the Archimedian property again, since $a * 2^n > 0$, $\exists m \in \mathbb{N}$ s.t. $m - 1 \le a * 2^n < m$. So $m \le a * 2^n + 1 < m + 1$.

Now, combine $a*2^n < m \le a*2^n + 1 < b*2^n$. So $a < \frac{m}{2^n} < b$, and $q = \frac{m}{2^n}$. \square

Case 2: If
$$a \le 0$$
, choose $p \in \mathbb{Z}$ s.t. $p \ge |a|$. Apply Case 1 to $0 < a + p < b + p$ to get $a + p < \frac{m}{2^n} < b + p$. So $a < \frac{m}{2^n} - p < b$. So $a < q < b$, where $q = \frac{m - 2^n * p}{2^n} = \frac{k}{2^n}$.

- 7. Prove, if true. Provide a counterexample if false.
 - (a) If A and B are nonempty, bounded subsets of \mathbb{R} , then $\sup(A \cap B) \leq \sup A$.

Proof. Let A and B be nonempty, bounded subsets of \mathbb{R} . We want to show that $\sup(A \cap B) \leq \sup A$.

Consider the case where $A \cap B = \emptyset$. Then $\sup(\emptyset) = -\infty$. Since $A, B \subseteq \mathbb{R}$ and $A, B \nsubseteq \overline{\mathbb{R}}$, we have that since A is nonempty, $A \neq \{-\infty\} \Rightarrow \sup A \neq -\infty$. Thus if $A \cap B = \emptyset \Rightarrow \sup(A \cap B) < \sup A$.

Now, consider the case where $A \cap B \neq \emptyset$.

By the definition of intersection, $\sup(A \cap B) = \sup A \iff A \cap B = A$. Also by the definition of intersection, we have that if $A \cap B \neq A$, then $A \cap B \subset A$ and $A \cap B \subset B$. This means that it's impossible to have a set after the intersection that is larger than both A and B. This implies that the resulting set will yield $\sup(A \cap B) < \sup A$, since $\sup(A \cap B) = \sup A \Rightarrow A \cap B = A$.

$$\therefore \sup(A \cap B) \le \sup A.$$

(b) If $A + B = \{a + b : a \in A, b \in B\}$, where A and B are nonempty, bounded subsets of \mathbb{R} , then $\sup(A + B) = \sup A + \sup B$.

Proof. Let A and B be nonempty bounded subsets of \mathbb{R} , and let $A + B = \{a + b : a \in A, b \in B\}$. We want to show that $\sup(A + B) = \sup A + \sup B$.

Since A and B are bounded, we know that $\sup A$ and $\sup B$ exist, and that $x \le \sup A$, $\forall x \in A$, and $y \le \sup B$, $\forall y \in B$. So $x + y \in A + B$ and $x + y \le \sup A + \sup B$, $\forall x \in A, \forall y \in B$. Then by completeness, $\sup(A + B) \le \sup A + \sup B$. \square

Now we must show that $\sup A + \sup B \le \sup (A + B)$.

Let $y \in B$ be fixed. Since $x + y \le \sup(A + B)$, then $x \le \sup(A + B) - y$, $\forall x \in A$.

So $\sup(A+B)-y$ is an upper bound for A. By completeness, we have that $\sup A \leq \sup(A+B)-y$. Then $y \leq \sup(A+B)-\sup A$. This is true for all $y \in B$.

So $\sup(A+B) - \sup A$ is an upper bound for B, and $\sup B \leq \sup(A+B) - \sup A$.

$$\therefore \sup A + \sup B \le \sup (A + B).$$

(c) If $A - B = \{a - b : a \in A, b \in B\}$, where A and B are nonempty, bounded subsets of \mathbb{R} , then $\sup(A - B) = \sup A - \sup B$.

Counterexample: Let A := [-2,0] and let B := [1,4]. Then we have that A - B := [-4,-3]. Then we have the following:

$$\sup(A - B) = \sup A - \sup B$$

$$\sup([-4, -3]) = \sup([-2, 0]) - \sup([1, 4])$$

$$-3 = 0 - 4$$

$$-3 \neq -4$$

Thus $\sup(A - B) \neq \sup A - \sup B$.