

Documento di specifiche

Klaudio Merja

Mat. 2075538

https://github.com/klamerja/SensorFlowUNIPD

Indice

T	Introduzione	Τ
2	Descrizione del modello	1
3	Polimorfismo	2
4	Persistenza dei dati	2
5	Funzionalità implementate	2
6	Rendicontazione ore	2

SensorFlow

1 Introduzione

SensorFlow è un software di gestione per sensori in ambito domotico. Ogni sensore è identificato tramite un UUID ed è caratterizzato da un nome, dalla tipologia e dalla distribuzione dei dati generati. Le tipologie di sensori per cui l'applicazione fornisce supporto sono:

- Temperatura e umidità: permette di analizzare la temperatura (in °C) e l'umidità (in percentuale)
- Pressione atmosferica (in hPa ettopascal)
- Elettricità: permette di analizzare il consumo istantaneo (in W watt) e la tensione elettrica (in V volt)
- Qualità dell'aria: permette di analizzare i livelli di CO2 (in ppm parti per milione), il PM2.5 ed il PM10 (in $\mu g/m^3$)

Le operazioni principali che l'applicazione permette di svolgere sono:

- aggiunta/rimozione dei sensori
- modifica delle informazioni relative ai singoli sensori
- visualizzazione dei dati generati

Una delle caratteristiche fondamentali del software è quella di poter visualizzare i dati generati dal sensore in tempo reale.

I dati, per fornire una simulazione del sensore, sono generati secondo una tipologia di distribuzione tra le seguenti:

- Casuale
- Uniforme
- Gaussiana

L'utente ha la possibilità di decidere quale distribuzione adottare per ogni singolo sensore e di modificarla in un secondo momento.

2 Descrizione del modello

Il modello logico è strutturato in due parti: la prima parte comprende le classi che descrivono i vari sensori utilizzabili all'interno dell'applicativo, mentre la seconda parte si occupa di creazione, lettura e aggiornamento del file JSON che si occupa del salvataggio dei sensori.

Figura 1: Diagramma delle classi dei sensori

AbstractSensor è la classe base astratta che rappresenta le informazioni comuni a tutti i sensori che possono essere creati, ovvero il nome, il timer, l'identificatore univoco UUID e la tipologia di distribuzione. Oltre ai relativi metodi getter e setter per le varie variabili d'istanza, è presente il metodo onTimerTimeout, che si occupa di effettuare delle azioni ad ogni timeout emesso dal timer: solitamente, le azioni che vengono performate sono quelle di aggiornamento dei valori dei dati che vengono generati dal sensore, oltre a cancellare valori dalle eventuali serie che risultano non necessarie ai fini del funzionamento del software e, in particolare, per la generazione del grafico. Le classi figlie di AbstractSensor sono:

- PressureSensor
- TempHumidity
- AirQualitySensor
- ElectricitySensor

3 Polimorfismo

4 Persistenza dei dati

5 Funzionalità implementate

6 Rendicontazione ore

Attività	Ore Previste	\mid Ore effettive \mid
Studio e progettazione	10	10
Sviluppo del codice del modello	10	10
Studio del framework Qt	10	10
Sviluppo del codice della GUI	10	10
Test e debug	10	10
Stesura della relazione	10	10
Totale	10	10