IN THE CLAIMS:

Please amend claims 3-6, 8, 11-14, and 16 as follows.

- 1. (Cancelled).
- 2. (Previously Presented) A receiving method in a direct conversion receiver, the method comprising:

receiving a signal comprising multiple components at different receiving frequencies belonging to a frequency band;

mixing at least one of the received signal components into a corresponding base band signal comprising I- and Q branches;

converting the analog base band signal into a digital signal;

measuring power levels of the signal components in the digital signal in pairs, where a first component in a pair belongs to an upper sideband of the frequency band and a second component in the pair belongs to a lower sideband of the frequency band;

estimating, when either the upper sideband component or the lower sideband component dominates in power over another component in the pair, a frequency-independent phase imbalance, a frequency-dependent phase imbalance and a gain imbalance;

compensating the estimated frequency-independent phase imbalance, the frequency-dependent phase imbalance and the gain imbalance to at least one of the I- and Q-branch signals

wherein the estimating further comprises

transforming the I- and Q-signals into frequency domain using a discrete Fourier transform or a fast Fourier transform to provide signals X(f) and Y(f); and estimating the frequency-dependent phase imbalance and the frequency-independent phase imbalance from the phase of the cross-spectrum $(X(f)Y^*(f))$, wherein X(f) and Y(f) denote the corresponding base band signals.

3. (Currently Amended) The method of claim 2, A receiving method in a direct
conversion receiver, the method comprising:
receiving a signal comprising multiple components at different receiving
frequencies belonging to a frequency band;
mixing at least one of the received signal components into a corresponding base
band signal comprising I- and Q branches;
converting the analog base band signal into a digital signal;
measuring power levels of the signal components in the digital signal in pairs,
where a first component in a pair belongs to an upper sideband of the frequency band and
a second component in the pair belongs to a lower sideband of the frequency band;

estimating, when either the upper sideband component or the lower sideband
component dominates in power over another component in the pair, a frequency-
independent phase imbalance, a frequency-dependent phase imbalance and a gain
imbalance;
compensating the estimated frequency-independent phase imbalance, the
frequency-dependent phase imbalance and the gain imbalance to at least one of the I- and
Q-branch signals
wherein the estimating further comprises
transforming the I- and Q-signals into frequency domain using a discrete
Fourier transform or a fast Fourier transform to provide signals X(f) and Y(f); and
estimating the frequency-dependent phase imbalance and the frequency-
independent phase imbalance from the phase of the cross-spectrum (X(f)Y*(f)),
wherein X(f) and Y(f) denote the corresponding base band signals,
wherein the estimating comprises estimating the frequency-dependent phase
imbalance and the frequency-independent phase imbalance from the phase of the
averaged cross-spectrum $\langle X(f)Y^*(f) \rangle$.
·
4. (Currently Amended) The method of claim 2, A receiving method in a direct
conversion receiver, the method comprising:
receiving a signal comprising multiple components at different receiving
frequencies belonging to a frequency band;

mixing at least one of the received signal components into a corresponding base
band signal comprising I- and Q branches;
converting the analog base band signal into a digital signal;
measuring power levels of the signal components in the digital signal in pairs,
where a first component in a pair belongs to an upper sideband of the frequency band and
a second component in the pair belongs to a lower sideband of the frequency band;
estimating, when either the upper sideband component or the lower sideband
component dominates in power over another component in the pair, a frequency-
independent phase imbalance, a frequency-dependent phase imbalance and a gain
imbalance;
compensating the estimated frequency-independent phase imbalance, the
frequency-dependent phase imbalance and the gain imbalance to at least one of the I- and
Q-branch signals,

wherein the estimating comprises estimating signal component-specific frequencydependent phase imbalances when either the upper or the lower sideband signal
component present in the pair dominates in power over the another component, and
estimating the frequency-independent phase imbalance as an average over the
component-specific frequency-dependent phase imbalances.

5. (Currently Amended) The method of claim 2, A receiving method in a direct conversion receiver, the method comprising:

receiving a signal comprising multiple components at different receiving
frequencies belonging to a frequency band;
mixing at least one of the received signal components into a corresponding base
band signal comprising I- and Q branches;
converting the analog base band signal into a digital signal;
measuring power levels of the signal components in the digital signal in pairs,
where a first component in a pair belongs to an upper sideband of the frequency band and
a second component in the pair belongs to a lower sideband of the frequency band;
estimating, when either the upper sideband component or the lower sideband
component dominates in power over another component in the pair, a frequency-
independent phase imbalance, a frequency-dependent phase imbalance and a gain
imbalance;
compensating the estimated frequency-independent phase imbalance, the
frequency-dependent phase imbalance and the gain imbalance to at least one of the I- and
Q-branch signals,

wherein the estimating comprises estimating signal component-specific frequencydependent phase imbalance factors when either the upper or the lower sideband signal component in the pair dominates in power over the another component; and

estimating the frequency-dependent phase imbalance as half of a difference between the component-specific frequency-dependent phase imbalance factors.

6. (Currently Amended) The method of claim 2, A receiving method in a direct
conversion receiver, the method comprising:
receiving a signal comprising multiple components at different receiving
frequencies belonging to a frequency band;
mixing at least one of the received signal components into a corresponding base
band signal comprising I- and Q branches;
converting the analog base band signal into a digital signal;
measuring power levels of the signal components in the digital signal in pairs,
where a first component in a pair belongs to an upper sideband of the frequency band and
a second component in the pair belongs to a lower sideband of the frequency band;
estimating, when either the upper sideband component or the lower sideband
component dominates in power over another component in the pair, a frequency-
independent phase imbalance, a frequency-dependent phase imbalance and a gain
imbalance;
compensating the estimated frequency-independent phase imbalance, the
frequency-dependent phase imbalance and the gain imbalance to at least one of the I- and
Q-branch signals,

wherein the estimating comprises estimating signal component-specific frequencydependent phase imbalances when either the upper or the lower sideband signal component of the pair dominates in power over the another component; and estimating the frequency-independent phase imbalance from one or several of the component-specific frequency-dependent phase-imbalances by fitting techniques.

- 7. (Previously Presented) The method of claim 2, wherein the compensating comprises compensating for the frequency-dependent phase imbalance and for the gain imbalance by digital filtering.
- 8. (Currently Amended) The method of claim 7, A receiving method in a <u>direct conversion receiver</u>, the method comprising: receiving a signal comprising multiple components at different receiving frequencies belonging to a frequency band; mixing at least one of the received signal components into a corresponding base band signal comprising I- and Q branches; converting the analog base band signal into a digital signal; measuring power levels of the signal components in the digital signal in pairs, where a first component in a pair belongs to an upper sideband of the frequency band and a second component in the pair belongs to a lower sideband of the frequency band: estimating, when either the upper sideband component or the lower sideband component dominates in power over another component in the pair, a frequencyindependent phase imbalance, a frequency-dependent phase imbalance and a gain imbalance;

compensating the estimated frequency-independent phase imbalance, the frequency-dependent phase imbalance and the gain imbalance to at least one of the I- and Q-branch signals,

wherein the compensating comprises compensating for the frequency-dependent phase imbalance and for the gain imbalance by digital filtering,

wherein the compensating comprises compensating for the frequency-independent phase imbalance by subtracting the frequency independent phase imbalance from the outcome of the digital filtering.

- 9. (Cancelled).
- 10. (Previously Presented) A direct conversion receiver, comprising:
 receiving means for receiving a signal comprising multiple components at
 different receiving frequencies belonging to a frequency band;

mixing means for mixing at least one of the received signal components into a corresponding base band signal comprising I- and Q branches;

converting means for converting the analog base band signal into a digital signal; measuring means for measuring power levels of the signal components in the digital signal in pairs, where a first component in a pair belongs to an upper sideband of the frequency band and a second component in the pair belongs to a lower sideband of the frequency band;

estimating means for estimating, when either the upper sideband component or the lower sideband component dominates in power over another component in the pair, a frequency-independent phase imbalance, a frequency-dependent phase imbalance and a gain imbalance; and

compensating means for compensating the estimated frequency-independent phase imbalance, the frequency-dependent phase imbalance and the gain imbalance to at least one of the I- and Q-branch signals

wherein the estimating means is configured to

transform the I- and Q-signals into frequency domain using discrete Fourier transform or fast Fourier transform to provide signals X(f) and Y(f); and estimate the frequency-dependent phase imbalance and the frequency-independent phase imbalance from the phase of the cross-spectrum $(X(f)Y^*(f))$, wherein X(f) and Y(f) denote the corresponding base band signals.

11. (Currently Amended) The direct conversion receiver of claim 10, A direct conversion receiver, comprising:

a receiver configured to receive a signal comprising multiple components at different receiving frequencies belonging to a frequency band;

a mixer configured to mix at least one of the received signal components into a corresponding base band signal comprising I- and Q branches;

a converter configured to convert the analog base band signal into a digital signal;

a measuring unit configured to measure power levels of the signal components in
the digital signal in pairs, where a first component in a pair belongs to an upper sideband
of the frequency band and a second component in the pair belongs to a lower sideband of
the frequency band;
an estimator configured to estimate, when either the upper sideband component or
the lower sideband component dominates in power over another component in the pair, a
frequency-independent phase imbalance, a frequency-dependent phase imbalance and a
gain imbalance; and
a compensator configured to compensate the estimated frequency-independent
phase imbalance, the frequency-dependent phase imbalance and the gain imbalance to at
least one of the I- and Q-branch signals
wherein the estimator is configured to
transform the I- and Q-signals into frequency domain using discrete Fourier
transform or fast Fourier transform to provide signals X(f) and Y(f); and
estimate the frequency-dependent phase imbalance and the frequency-
independent phase imbalance from the phase of the cross-spectrum (X(f)Y*(f)),
wherein X(f) and Y(f) denote the corresponding base band signals,
wherein the estimating means estimator is configured to estimate the frequency-
dependent phase imbalance and the frequency-independent phase imbalance from the
phase of the averaged cross-spectrum $\langle X(f)Y^*(f) \rangle$.

12. (Currently Amended) The direct conversion receiver of claim 10, A direct
conversion receiver, comprising:
a receiver configured to receive a signal comprising multiple components at
different receiving frequencies belonging to a frequency band;
a mixer configured to mix at least one of the received signal components into a
corresponding base band signal comprising I- and Q branches;
a converter configured to convert the analog base band signal into a digital signal;
a measuring unit configured to measure power levels of the signal components in
the digital signal in pairs, where a first component in a pair belongs to an upper sideband
of the frequency band and a second component in the pair belongs to a lower sideband of
the frequency band;
an estimator configured to estimate, when either the upper sideband component or
the lower sideband component dominates in power over another component in the pair, a
frequency-independent phase imbalance, a frequency-dependent phase imbalance and a
gain imbalance; and
a compensator configured to compensate the estimated frequency-independent
phase imbalance, the frequency-dependent phase imbalance and the gain imbalance to at
least one of the I- and Q-branch signals,
wherein the estimator estimating means is configured to[[:]]

estimate signal component-specific frequency-dependent phase imbalances when either upper- or lower sideband signal component present in the pair dominates in power over the another component; and

estimate the frequency-independent phase imbalance as an average over the component-specific frequency-dependent phase imbalances.

13. (Currently Amended) The direct conversion receiver of claim 10, A direct
conversion receiver, comprising:
a receiver configured to receive a signal comprising multiple components at
different receiving frequencies belonging to a frequency band;
a mixer configured to mix at least one of the received signal components into a
corresponding base band signal comprising I- and Q branches;
a converter configured to convert the analog base band signal into a digital signal;
a measuring unit configured to measure power levels of the signal components in
the digital signal in pairs, where a first component in a pair belongs to an upper sideband
of the frequency band and a second component in the pair belongs to a lower sideband of
the frequency band;
an estimator configured to estimate, when either the upper sideband component or
the lower sideband component dominates in power over another component in the pair, a
frequency-independent phase imbalance, a frequency-dependent phase imbalance and a
gain imbalance; and

a compensator configured to compensate the estimated frequency-independent
phase imbalance, the frequency-dependent phase imbalance and the gain imbalance to at
least one of the I- and Q-branch signals,
wherein the estimator estimating means is configured to[[:]]
estimate signal component-specific frequency-dependent phase imbalance
factors when either the upper- or the lower sideband signal component in the pair
dominates in power over the another component; and
estimate the frequency-dependent phase imbalance as a half of the
difference between the component-specific frequency-dependent phase imbalance
factors.
14. (Currently Amended) The direct conversion receiver of claim 10, A direct
conversion receiver, comprising:
a receiver configured to receive a signal comprising multiple components at
different receiving frequencies belonging to a frequency band;
a mixer configured to mix at least one of the received signal components into a
corresponding base band signal comprising I- and Q branches;
a converter configured to convert the analog base band signal into a digital signal;

the digital signal in pairs, where a first component in a pair belongs to an upper sideband

a measuring unit configured to measure power levels of the signal components in

of the frequency band and a second component in the pair belongs to a lower sideband of the frequency band;

an estimator configured to estimate, when either the upper sideband component or the lower sideband component dominates in power over another component in the pair, a frequency-independent phase imbalance, a frequency-dependent phase imbalance and a gain imbalance; and

a compensator configured to compensate the estimated frequency-independent phase imbalance, the frequency-dependent phase imbalance and the gain imbalance to at

wherein the estimator estimating means is configured to [[:]]

least one of the I- and Q-branch signals,

estimate signal component-specific frequency-dependent phase imbalances when either the upper- or the lower sideband signal component of the pair dominates in power over the another component; and

estimate the frequency-independent phase imbalance from one or several of the component-specific frequency-dependent phase-imbalances by fitting techniques.

15. (Previously Presented) The direct conversion receiver of claim 10, wherein the compensating means is configured to:

compensate for the frequency-dependent phase imbalance and for the gain imbalance by digital filtering.

16. (Currently Amended) The direct conversion receiver of claim 15, A direct
conversion receiver, comprising:
a receiver configured to receive a signal comprising multiple components at
different receiving frequencies belonging to a frequency band;
a mixer configured to mix at least one of the received signal components into a
corresponding base band signal comprising I- and Q branches;
a converter configured to convert the analog base band signal into a digital signal;
a measuring unit configured to measure power levels of the signal components in
the digital signal in pairs, where a first component in a pair belongs to an upper sideband
of the frequency band and a second component in the pair belongs to a lower sideband of
the frequency band;
an estimator configured to estimate, when either the upper sideband component or
the lower sideband component dominates in power over another component in the pair, a
frequency-independent phase imbalance, a frequency-dependent phase imbalance and a
gain imbalance; and
a compensator configured to compensate the estimated frequency-independent
phase imbalance, the frequency-dependent phase imbalance and the gain imbalance to at
least one of the I- and Q-branch signals,
wherein the compensator is configured to compensate for the frequency-dependent
phase imbalance and for the gain imbalance by digital filtering,

wherein the compensating means compensator is if configured to [[:]] compensate for the frequency-independent phase imbalance by subtracting the frequency independent phase imbalance from the outcome of the digital filtering.

17. (Previously Presented) A direct conversion receiver, comprising:

a receiver configured to receive a signal comprising multiple components at different receiving frequencies belonging to a frequency band;

a mixer configured to mix at least one of the received signal components into a corresponding base band signal comprising I- and Q branches;

an analog-to-digital converter configured to convert the analog base band signal into a digital signal;

wherein the receiver comprises

a measuring unit configured to measure power levels of the signal components in the digital signal in pairs, where a first component in the pair belongs to an upper sideband of the frequency band and a second component in the pair belongs to a lower sideband of the frequency band;

an estimator configured to estimate, when either the upper sideband component or the lower sideband component dominates in power over another component in the pair, a frequency-independent phase imbalance, a frequency-dependent phase imbalance and a gain imbalance; and a compensator configured to compensate the estimated frequency-independent phase imbalance, the frequency-dependent phase imbalance and the gain imbalance to at least one of the I- and Q-branch signals;

wherein the estimator further comprises

a transformer configured to transform the I- and Q-signals into frequency domain using a discrete Fourier transform or a fast Fourier transform to provide signals X(f) and Y(f); and

an estimator configured to estimate the frequency-dependent phase imbalance and the frequency-independent phase imbalance from the phase of the cross-spectrum (X(f)Y*(f)),

wherein X(f) and Y(f) denote the corresponding base band signals.