Problem Set 6

Ryan Coyne

October 16, 2023

1. Let $x, y, z \in \mathbb{Z}$. Prove: If exactly two of x, y, z are even, then 3x+5y+7z is odd.

Case 1: Let x, y be even and let z be odd. Then, x = 2k, y = 2l, and z = 2m + 1, for some $k, l, m \in \mathbb{Z}$. Now,

$$3x + 5y + 7z = 6k + 10l + 14m + 7$$
$$= 6k + 10l + 14m + 6 + 1$$
$$= 2(3k + 5l + 7m + 3) + 1$$

which is odd, by definition.

Case 2: Let x, z be even and let y be odd. Then, x = 2k, y = 2l + 1, and z = 2m, for some $k, l, m \in \mathbb{Z}$. Now,

$$3x + 5y + 7z = 6k + 10l + 5 + 14m$$
$$= 6k + 10l + 14m + 4 + 1$$
$$= 2(3k + 5l + 7m + 2) + 1$$

which is odd, by definition.

Case 3: Let y, z be odd and let x be odd. Then, x = 2k + 1, y = 2l, and z = 2m, for some $k, l, m \in \mathbb{Z}$. Now,

$$3x + 5y + 7z = 6k + 3 + 10l + 14m$$
$$= 6k + 10l + 14m + 2 + 1$$
$$= 2(3k + 5l + 7m + 1) + 1$$

which is odd, by definition.

2. Let $a, b \in \mathbb{Z}$. Prove: If ab = 4, then $(a - b)^3 - 9(a - b) = 0$. Case 1: Let a = 1 and b = 4. Then,

$$(a-b)^3 - 9(a-b) = (1-4)^3 - 9(1-4)$$
$$= -3^3 - 9 \cdot -3$$
$$= -27 + 27$$
$$= 0.$$

Case 2: Let a = 1 and b = 4. Then,

$$(a-b)^3 - 9(a-b) = (-1+4)^3 - 9(-1+4)$$
$$= 3^3 - 9 \cdot 3$$
$$= 27 - 27$$
$$= 0.$$

Case 3: Let a = 2 and b = 2. Then,

$$(a-b)^3 - 9(a-b) = (2-2)^3 - 9(2-2)$$
$$= 0^3 - 9 \cdot 0$$
$$= 0.$$

Case 4: Let a = -2 and b = -2. Then,

$$(a-b)^3 - 9(a-b) = (-2+2)^3 - 9(-2+2)$$
$$= 0^3 - 9 \cdot 0$$
$$= 0.$$

Therefore, by exhaustion, $(a - b)^3 - 9(a - b) = 0$.

- 3. Let $a \in \mathbb{Z}$. Prove: If $3 \mid 2a$, then $3 \mid a$. By Result 4.8 from the textbook, if $3 \mid cd$, then $3 \mid c$ or $3 \mid d$, for some $c, d \in \mathbb{Z}$. Since $3 \mid 2a$ and $3 \nmid 2$, then it must be the case that $3 \mid a$.
- 4. Let $x, y \in \mathbb{Z}$. Prove: If 3 divides neither x or y, then $3 \mid (x^2 y^2)$. Since $(x^2 y^2)$ can be factored into (x + y)(x y), $3 \mid (x^2 y^2)$ exactly when $3 \mid (x + y)$ or $3 \mid (x y)$. Proceeding by cases according to the remainder of 3 divided by x and the remainder of 3 divided by y.
 - (i) Let x = 3k + 1, and y = 3l + 1 for some $k, l \in \mathbb{Z}$. Then,

$$x - y = 3k + 1 - 3l - 1$$

= $3k - 3l$
= $3(k - l)$,

which is divisible by 3.

(ii) Let x = 3k + 2, and y = 3l + 2 for some $k, l \in \mathbb{Z}$. Then,