Année Universitaire : 2021/2022

Examen d'Analyse 3 (Session 1)

ECUE : Développement en série Durée : 1 heure

Les calculatrices et les documents sont interdits. Les deux exercices sont indépendants. Une attention particulière devra être apportée à la rédaction qui sera un élément important d'appréciation.

EXERCICE 1:

On considère la série entière réelle $\sum_{n=1}^{+\infty} \frac{1}{n(n+2)} x^n$.

- 1 Déterminer le rayon de convergence R de la série entière ci-dessus. Puis étudier la convergence pour x = R et x = -R.
- 2 Décomposer en éléments simples l'expression $\frac{1}{x(x+2)}$ pour tout $x \in \mathbb{R} \setminus \{-2,0\}$.
 - b Calculer pour tout $x \in]-R, R[$ la somme $f(x) = \sum_{n=1}^{+\infty} \frac{1}{n(n+2)} x^n.$
- (3) En déduire les sommes $\sum_{n=1}^{+\infty} \frac{1}{n(n+2)}$ et $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n(n+2)}$.
- $\widehat{\ \ }$ Posons pour tout entier naturel non nul , $a_n(x)=rac{1}{n(n+2)}.$ On a

$$\lim_{n o +\infty}\left|rac{a_{n+1}}{a_n}
ight|=\lim_{n o +\infty}rac{n(n+2)}{(n+1)(n+3)}=1.$$

Donc le rayon de converge de la série entière $\sum_{n=1}^{+\infty} \frac{x^n}{n(n+2)}$ est R=1.

Pour x=-1 ou x=1, on a $|a_nx^n|=\frac{1}{n(n+2)}\sim \frac{1}{n^2}$ et comme $\sum_{n=1}^{+\infty}\frac{1}{n^2}$ converge, on conclut que la série converge pour x=-1 et pour x=1.

2 Décomposons en éléments simples $\frac{1}{x(x+2)}$:
Il existe a et b tels que pour tout $x \in \mathbb{R} \setminus \{-2, 0\}$,

$$\frac{1}{x(x+2)} = \frac{a}{x} + \frac{b}{x+2}.$$

Par conséquent, $a=\lim_{x\to 0}\frac{1}{x+2}=\frac{1}{2}$ et $b=\lim_{x\to -2}\frac{1}{x}=-\frac{1}{2}$. D'où pour tout $x\in\mathbb{R}\setminus\{-2,0\},$ $\frac{1}{x(x+2)}=\frac{1/2}{x}-\frac{1/2}{x+2}.$

 $lackbox{b}$ Calcul de la somme f:

On a f(0) = 0 et pour tout $x \in]-1,1[\setminus\{0\},$

$$f(x) = \sum_{n=1}^{+\infty} \frac{1}{n(n+2)} x^n$$

$$= \frac{1}{2} \sum_{n=1}^{+\infty} \frac{x^n}{n} - \frac{1}{2} \sum_{n=1}^{+\infty} \frac{x^n}{n+2}$$

$$= \frac{1}{2} \sum_{n=1}^{+\infty} \frac{x^n}{n} - \frac{1}{2x^2} \sum_{n=1}^{+\infty} \frac{x^{n+2}}{n+2}$$

$$= \frac{1}{2} \sum_{n=1}^{+\infty} \frac{x^n}{n} - \frac{1}{2x^2} \left(\sum_{n=1}^{+\infty} \frac{x^n}{n} - x - \frac{x^2}{2} \right)$$

$$f(x) = \frac{-1 + x^2}{2x^2} \sum_{n=1}^{+\infty} \frac{x^n}{n} + \frac{2x + x^2}{4x^2}$$

Pour conclure, calculon $\sum_{n=1}^{+\infty} \frac{x^n}{n}$.

On sait que pour tout $t \in]-1,1[,\frac{1}{1-t}=\sum_{n=0}^{+\infty}t^n]$; par intégration, on obtient,

$$\int_0^x \frac{1}{1-t} dt = \sum_{n=0}^{+\infty} \int_0^x t^n dt$$

$$[\ln(1-t)]_0^x = \sum_{n=0}^{+\infty} \left[\frac{t^{n+1}}{n+1} \right]_0^x$$

$$-\ln(1-x) = \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}$$

$$-\ln(1-x) = \sum_{n=1}^{+\infty} \frac{x^n}{n}.$$

Donc $f(x) = \frac{1-x^2}{2x^2} \ln(1-x) + \frac{2x+x^2}{4x^2}$.

Conclusion $f(x) = \begin{cases} 0 & \text{si } x = 0 \\ \frac{1-x^2}{2x^2} \ln(1-x) + \frac{2x+x^2}{4x^2} & \text{si } x \in]-1, 1[\setminus \{0\}] \end{cases}$

3 Déduisons les sommes $\sum_{n=1}^{+\infty} \frac{1}{n(n+2)}$ et $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n(n+2)}$.

La convergence étant uniforme, on a

$$\bullet \sum_{n=1}^{+\infty} \frac{1}{n(n+2)} = \lim_{x \to 1} f(x) = \lim_{x \to 1} \left(\frac{1-x^2}{2x^2} \ln(1-x) + \frac{2x+x^2}{4x^2} \right) = -\frac{1}{4}$$

$$\bullet \sum_{n=1}^{+\infty} \frac{(-1)^n}{n(n+2)} == \lim_{x \to -1} f(x) = \lim_{x \to -1} \left(\frac{1-x^2}{2x^2} \ln(1-x) + \frac{2x+x^2}{4x^2} \right) = \frac{3}{4}$$

EXERCICE 2:

Soit la fonction $f:\mathbb{R}\longrightarrow\mathbb{R},\,2\pi$ -périodique et paire, telle que :

$$f(x) = egin{cases} 2x & ext{ si } x \in \left[0, rac{\pi}{2}
ight] \ \pi & ext{ si } x \in \left[rac{\pi}{2}, \pi
ight] \end{cases}$$

- (1) Représenter le graphe de f sur $[-3\pi, 3\pi]$.
- $oxed{2}$ Dire pour quoi la série de Fourier SF_f de f converge normalement sur $\mathbb R.$
- 3 Calculer les coefficients de Fourier a_n et b_n pour tout $n \in \mathbb{N}$. Puis écrire la série de Fourier SF_f de f.
- $\boxed{4} \text{ Calculer les sommes } S_1 = \sum_{n=1}^{+\infty} \frac{1-\cos\left(n\frac{\pi}{2}\right)}{n^2} \text{ et } S_2 = \sum_{n=1}^{+\infty} \frac{1-\cos\left(n\frac{\pi}{2}\right)}{n^2} (-1)^n.$
- (5) En déduire les sommes des séries : $S_3=\sum_{n=0}^{+\infty}\frac{1}{(2n+1)^2}$ et $S_4=\sum_{n=1}^{+\infty}\frac{1}{n^2}$.
- (1) Graphe de la fonction f:

D'après le graphe, on constate et on peut démontrer que la fonction f est continue sur \mathbb{R} mais de classe \mathcal{C}^1 par morceaux sur \mathbb{R} .

- 2 Convergence de la série de Fourier de f: La fonction f est continue sur \mathbb{R} et de classe \mathcal{C}^1 par morceaux et 2π -périodique, d'après le théorème de Dirichlet, la série de Fourier de f converge normalement sur \mathbb{R} vers la fonction f sur \mathbb{R} .
- 3 Calcul des coefficients de Fourier de f: La fonction f étant paire, on a pour tout entier $n \in \mathbb{N}$,

$$b_n=0 \quad ext{ et } \quad a_n=rac{2}{\pi}\int_0^\pi f(x)\cos(nx)\mathrm{d}x.$$

• Calcul dans un premier temps a_0 :

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$$

$$= \frac{2}{\pi} \int_0^{\pi/2} 2x dx + \frac{2}{\pi} \int_{\pi/2}^{\pi} \pi dx$$

$$= \frac{2}{\pi} \left[x^2 \right]_0^{\pi/2} + \frac{2}{\pi} \cdot \pi \cdot \left(\pi - \frac{\pi}{2} \right)$$

$$a_0 = \frac{3\pi}{2}$$

• Calcul maintenant a_n pour $n \in \mathbb{N}^*$:

$$egin{aligned} a_n &= &rac{2}{\pi} \int_0^\pi f(x) \cos(nx) \mathrm{d}x \ &= &rac{2}{\pi} \int_0^{\pi/2} 2x \cos(nx) \mathrm{d}x + rac{2}{\pi} \int_{\pi/2}^\pi \pi \cos(nx) \mathrm{d}x \ &= &rac{4}{\pi} \int_0^{\pi/2} x \cos(nx) \mathrm{d}x + 2 \int_{\pi/2}^\pi \cos(nx) \mathrm{d}x \end{aligned}$$

On a:
$$\int_{\pi/2}^{\pi} \cos(nx) \mathrm{d}x = \left[\frac{1}{n}\sin(nx)\right]_{\pi/2}^{\pi} = -\frac{1}{n}\sin\left(n\frac{\pi}{2}\right).$$

On a par une intégration par parties,

$$\int_0^{\pi/2} x \cos(nx) dx = \left[x \frac{\sin(nx)}{n} \right]_0^{\pi/2} - \frac{1}{n} \int_0^{\pi/2} \sin(nx) dx$$
$$= \frac{\pi}{2n} \sin\left(\frac{\pi}{2}n\right) - \frac{1}{n} \left[-\frac{\cos(nx)}{n} \right]_0^{\pi/2}$$
$$\int_0^{\pi/2} x \cos(nx) dx = \frac{\pi}{2n} \sin\left(\frac{\pi}{2}n\right) + \frac{1}{n^2} \left(\cos\left(\frac{\pi}{2}n\right) - 1\right)$$

D'où

$$a_n = \frac{2}{n} \sin \left(\frac{\pi}{2} n \right) + 4 \frac{1}{n^2 \pi} \left(\cos \left(\frac{\pi}{2} n \right) - 1 \right) - \frac{2}{n} \sin \left(\frac{\pi}{2} n \right)$$

Finalement,

$$a_n = rac{4}{n^2\pi} \left(\cos\left(rac{\pi}{2}n
ight) - 1
ight)$$

La série de Fourier SF_f de f s'écrit donc pour tout $x \in \mathbb{R}$,

$$SF_f(x) = rac{3\pi}{4} + rac{4}{\pi} \sum_{n=1}^{+\infty} rac{\cos\left(rac{\pi}{2}n
ight) - 1}{n^2} \cos(nx)$$

 $\overbrace{\mathbf{4}}$ Comme la série de Fourier converge sur $\mathbb R$ vers f, on a pour tout $x \in \mathbb R$,

$$f(x) = \frac{3\pi}{4} + \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{\cos\left(\frac{\pi}{2}n\right) - 1}{n^2} \cos(nx)$$
 (1)

• Calcul de
$$S_1 = \sum_{n=1}^{+\infty} \frac{1 - \cos\left(n\frac{\pi}{2}\right)}{n^2}$$
;

En prenant x = 0 dans (3), on obtient $\frac{3\pi}{4} + \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{\cos\left(\frac{\pi}{2}n\right) - 1}{n^2} = f(o) = 0$, donc

$$S_1=\sum_{n=1}^{+\infty}rac{1-\cos\left(nrac{\pi}{2}
ight)}{n^2}=rac{3\pi^2}{16}$$

•
$$S_2 = \sum_{n=1}^{+\infty} \frac{1 - \cos\left(n\frac{\pi}{2}\right)}{n^2} (-1)^n$$
.

En prenant $x = \pi$ dans (3), on obtient $\frac{3\pi}{4} + \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{\cos(\frac{\pi}{2}n) - 1}{n^2} (-1)^n = f(\pi) = \pi$, donc

$$S_2 = \sum_{n=1}^{+\infty} rac{1-\cos\left(nrac{\pi}{2}
ight)}{n^2} (-1)^n = -rac{\pi^2}{16}.$$

 $\boxed{5}$ Déduisons les sommes des séries : $S_3=\sum_{n=0}^{+\infty}\frac{1}{(2n+1)^2}$ et $S_4=\sum_{n=1}^{+\infty}\frac{1}{n^2}$

On a

$$S_1 - S_2 = \sum_{n=1}^{+\infty} rac{1 - (-1)^n}{n^2} \left(1 - \cos \left(n rac{\pi}{2}
ight)
ight) = rac{\pi^2}{4}$$

En prenant regroupant les termes pairs d'une part et les termes impairs d'autre part, on obtient :

$$\sum_{n=0}^{+\infty}\frac{2}{(2n+1)^2}\left(1-\cos\left(n\pi+\frac{\pi}{2}\right)\right)=\frac{\pi^2}{4}.$$

Comme $\cos\left(n\pi + \frac{\pi}{2}\right) = -\sin(n\pi) = 0$, donc, $S_3 = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$.

En séparant les termes pairs des termes impairs, on a

$$\begin{split} \sum_{n=0}^{+\infty} \frac{1}{n^2} &= \sum_{n=1}^{+\infty} \frac{1}{(2n)^2} + \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} \\ \sum_{n=0}^{+\infty} \frac{1}{n^2} &= \frac{4}{3} \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} \end{split}$$

Donc
$$S_4 = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
.