PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-320366

(43)Date of publication of application: 03.12.1993

(51)Int.Cl.

CO8J 5/00 B29C 61/06 CO8G 18/00 CO8L 75/00 // CO8L 75:00

(21)Application number : 03-210942

(71)Applicant: MITSUBISHI HEAVY IND LTD

MITSUBISHI KASEI DOW KK

(22)Date of filing:

22.08.1991

(72)Inventor: KOBAYASHI KAZUYUKI

HAYASHI SHUNICHI SHIBUTA RYUICHI

(54) FORMED SHAPE-MEMORY MATERIAL

(57)Abstract:

PURPOSE: To obtain a formed shape-memory material taking advantage of abrupt change of physical properties at the glass transition temperature or thereabout. CONSTITUTION: The formed shape-memory material contains a urethane elastomer having a glass transition temperature set to a temperature near the working temperature and synthesized from an isocyanate compound, a polyol compound and a chain extender. The material is formed to a desired shape at a temperature above the glass transition temperature of the urethane elastomer, cooled to a temperature below the glass transition temperature while keeping the desired shape to memorize the shape and heated in use at a temperature above the glass transition temperature to restore the memorized shape.

LEGAL STATUS

[Date of request for examination]

07.05.1992

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

1967819

[Date of registration]

[Number of appeal against examiner's decision

Best Available Copy

of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

21.06.2005

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平5-320366

(43)公開日 平成5年(1993)12月3日

(51)Int.Cl. ⁵ C 0 8 J 5/00 B 2 9 C 61/06 C 0 8 G 18/00 C 0 8 L 75/00 // C 0 8 L 75:00	識別記号 CFF NDK NFX	庁内整理番号 9267-4F 7258-4F 8620-4 J 8620-4 J	FI	技術表示箇所
		-		審査請求 有 発明の数1(全 7 頁)
(21)出願番号 (62)分割の表示 (22)出願日	特願平3-210942 特願昭60-1343386 昭和60年(1985) 6 月		(71)出願人	三菱重工業株式会社
	2,200	72.0	(71)出願人	三菱化成ダウ株式会社
<u>.</u>			(72)発明者	名古屋市中村区岩塚町字髙道1番地 三菱
			(72)発明者	重工業株式会社名古屋機器製作所内 林 俊一 名古屋市中村区岩塚町字高道 1 番地 三菱 重工業株式会社名古屋研究所内
			(74)代理人	

(54)【発明の名称】 形状記憶成形体

(57)【要約】

【目的】 ガラス転移点前後における物性の急激な変化を利用した形状記憶成形体に関する。

【構成】 イソシアネート化合物、ポリオール化合物、及び、鎖延長剤を合成した、使用温度付近にガラス転移点を設定したウレタンエラストマーを含有する形状記憶成形体であって、該ウレタンエラストマーのガラス転移点以上の温度で元の形状に成形し、その形状を保持して該ガラス転移点より低い温度に冷却してその形状を記憶させ、使用に際して該ガラス転移点以上の温度に再び加熱することにより、記憶形状を復元することのできる形状記憶成形体である。

【特許請求の範囲】

• •

【請求項1】 イソシアネート化合物、ポリオール化合物、及び、鎖延長剤を合成した、使用温度付近にガラス転移点を設定したウレタンエラストマーを含有する形状記憶成形体であって、該ウレタンエラストマーのガラス転移点以上の温度で元の形状に成形し、その形状を保持して該ガラス転移点より低い温度に冷却してその形状を記憶させ、使用に際して該ガラス転移点以上の温度に再び加熱することにより、記憶形状を復元することのできる形状記憶成形体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ガラス転移点前後における物性の急激な変化を利用した形状記憶成形体に関する。

[0002]

【従来の技術】高分子エラストマーには縦弾性係数等の物性が数倍~数百倍に変化するガラス転移点温度(以下Tgと略す)が存在することが知られ、通常使用温度領域にてTg前後の物性変化を避ける手段として約−40℃前後の極低温にTgを設定して低温時にも通常の天然ゴムや合成ゴムのような低弾性率な特性を生かすようにした靴底、動力伝達ベルト、タイヤ等に利用したり、また約100~110℃の極高温にTgを設定して高温時にも高弾性率、耐摩耗等の特性を生かすようにした人工木材、食器等に利用されていた。

[0003]

【発明が解決しようとする問題点】しかし、概略室温付近にガラス転移点を有するウレタンエラストマーは、従来知られていなかった。そこで、本発明は、通常の使用温度である概略室温付近にガラス転移点を有し、該ガラス転移点前後において弾性率等の物性が急激に変化するウレタンエラストマーを含有する形状記憶成形体を提供しようとするものてある。

[0004]

【問題点を解決するための手段】本発明は、イソシアネート化合物、ポリオール化合物、及び、鎖延長剤を合成した、使用温度付近にガラス転移点を設定したウレタンエラストマーを含有する形状記憶成形体であって、該ウレタンエラストマーのガラス転移点以上の温度で元の形状に成形し、その形状を保持して該ガラス転移点より低い温度に冷却してその形状を記憶させ、使用に際して該ガラス転移点以上の温度に再び加熱することにより、記憶形状を復元することのできる形状記憶成形体である。

【0005】本発明は、ウレタンエラストマーを含有する成形体を一旦実際の使用に必要な形状に成形した後、該ウレタンエラストマーのガラス転移点以上で成形温度未満で変形を加え、その後上記ガラス転移点温度より低温にて変形を冷却固定すればガラス転移点温度より低温の領域ではウレタンエラストマーの高弾性・耐摩耗等の50

特性を生かせると共に、再度ガラス転移点温度以上の温度に加熱することにより変形は自動的に取り除かれ成形当初の記憶形状に回復させることができ、かつガラス転移点以上の温度領域ではエラストマーの低弾性率な特性を生かすことができる。従って、使用温度領域によって異種の物性を備えた成形体を提供することができ、また、形状変化を要するような分野で種々の利用が考えられる。

【0006】次に各種のTgを有するポリウレタンエラストマーの製造例について説明する。ポリウレタンエラストマーを製造するのに使用されるイソシアネート成分としては、通常ポリウレタンに使用されるものであれば特に制限はなく、例えば、ジフエニルメタンジイソシアネート、2,4-又は、2,6-トリレンジイソシアネート、m-又はp-フエニレンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート及びこれらの粗成分あるいは混合物が使用される。

【0007】またポリオール成分としては、1分子中に少なくとも2個以上の水酸基を有するものが用いられ、例えばジオールやトリオールなどの多価アルコール、脂肪族アミン、芳香族アミン等を開始剤とし、これにアルキレンオキサイドを付加して製造されるポリオキシアルキレンポリオール、酸とアルコールの縮合により製造されるポリエステルポリオール、あるいはポリテトラメチレングリコール、ポリブタジエンポリオールなどが使用される。

【0008】鎖延長剤や架橋剤としては、エチレングリコール、ブタンジオール、ジエチレングリコールなどのグリコール、ジエタノールアミン、トリエタノールアミン、トリレンジアミンなどのアミン類、トリメチロールプロパンのTDI(トリレンジイソシアネート)アダクト、トリフエニルメタントリイソシアネートなどのポリイソシアネートなどが挙げられる。

【0009】また必要に応じて反応を促進する為に触媒が使用される。触媒としてはトリエチルアミン、テトラメチルへキサメチレンジアミン、トリレンジアミンなどの第3級アミン類又はスタナスオクトエート、スタナスオレエート、ジブチル錫ジラウレートの如き錫系触媒に代表される金属触媒があり、これらはおのおの単独にあるいは混合して使用される。上記イソシアネート、ポリオール、鎖延長剤、及び必要に応じて触媒を用いてプレポリマー法によりウレタンエラストマーの合成を行う。

【0010】次にプレポリマー法によるウレタンエラストマーの合成方法を説明する。まず、ジイソシアネートとポリオールを特定の配合比A= [NCD] / [OH] モル比で反応させ、プレポリマーを合成する。反応終了後、希望する配合比B= [鎖延長剤] / [プレポリマ

一〕モル比になるよう鎖延長剤を添加し、その後脱泡し

型に流し込み、恒温乾燥器にて温度80℃で1日から2 日間架橋反応を行なわせウレタンエラストマーを合成す る。以上の合成は溶媒系非溶媒系のいずれでも可能であ る。

【0011】Tgや物性に及ぼす要因としては1)イソ シアネートの種類、2) ポリオールの種類、3) 鎖延長 剤の種類、4)配合比A、5)配合比B、6)アニーリ ングなどが考えられるが、これら1)から6)の要因を 変えることにより希望するTg物性をもつウレタンエラ 発明で用いられるウレタンエラストマーについて、本発 明者らが作成した実例を挙げて説明するが、勿論これに 限定されるものではない。

【0012】(製造例)イソシアネート成分として2,

4 TD I [三菱化成(株) 製、商品名TD I 100] と ポリオールとして三洋化成(株)製、商品名PP-10 00を、配合比A (NCO/OHモル比) 3.06にて 無触媒にて反応させプレポリマーを合成した。反応終了 後、鎖延長剤として1, 4ブタンジオールを配合比B [OH/NCO (プレポリマ) モル比] 0. 62となる ように加え、真空下攪拌して反応させる。その後型に流 し込み温度80℃にて1日間キュアして成形体を得た。 該成形体のTgは-5~0℃であった(例No. 2-ストマーを自由に合成することが可能である。以下、本 10 4)。組成と配合比を変えて同様に合成したポリウレタ ンエラストマーとそのTgを表1及び表2にまとめて示 す。

> [0013] 【表1】

20

30

40

4-メチル-2-ペンタノンの50%溶液にて反応 DSC(差動型走査熱量計)にて測定(平均値)

5

`?

				7										
£		31	107	9	15	48	92	89	~122					
	ロー(観覧内色)「ナンボニレー」	3	18	9	12	12	18	12	18			,,		
	鎖延長剤	子当次を同一が	4 @	司上	1 0	中	中	日日	田田		•			
A= (NCO)	(HO) /	0. 62	0.62	0. 77	0. 77	0.82	0.82	0.82	0.82				の50%溶液にて反応	にて測定 (平均値)
2 -	ポリオール	BPX-55 ¹⁾	中區	F15-20 ²⁾	中	BPE-100 ³⁾	1	BPX-334)	千 回	(株) 製ポリオール (株) 製ポリオール	(株) 製ポリ	旭電化工業(株)製ポリオール	ーメチルー2ーペンタノンの5	SC(差動型走査熱量計)にて
ムフキュ	}	インフオロンジイソシアネート		イドンタランジルソシアカインシー	画	インフオロン ジインシアネート		インシデネニトニュメラフカインシアカインシディートニュメラフカ	田田	1) 旭電化工業2) 旭電化工業			5) 4ーメチル	6) DSC (巻
塞	2	1 – 1	1 – 2	1 – 3	1 - 4	1 – 5	1 - 6	1 – 7	1 – 8					

荗

[0014]

【表2】

40

7

T g 2)		гţ	2	20	-5~0		
B = (鎖延長剤)	B = (電路長巻) (プレポリマー) 0.2		0.6	0.6	0.62		
鎖延長剤		1. 4-ブタン ジオール	四十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	回工	中		
A= (NCO)	(HO) /	6	4	5. 2	3.06		
- 2	ポリオール	P-1000	P-1000	P-1000	PP-1000		
プレポコマ	イソシアネート	2. 4ートリレン ジイソシアネート	日	<u>-1</u> }	子		
<u>B</u>	S.	2 - 1	2 - 2	2 – 3	2 - 4		

1) 旭鶴化工業(株)製ポリオール

2) DSCにて倒定(平均値) 3) 三洋化成工業(株)製ポリオール

【0015】表1及び表2から明らかなようにポリウレタンエラストマーのハードセグメント(イソシアネート、鎖延長剤)とソフトセグメント(ポリオール)の組み合わせにより自由にTgを選択することができる。次に上記のようにして得られたウレタンエラストマー成形体の使用方法を具体的に示す。本発明の方法における高分子エラストマーに変形を与える温度は該高分子エラストマーに変形を与える温度は該高分子エラストマーに変形を与える温度は該高分子エラストマーに変形を与える温度は該高分子エラストマーに変形を与える温度は該高分子エラストマーに変形を与える温度は該高分子エラストマーに変形を与える温度は該高分子エラストマーに変形を与える温度は該高分子エラストマーのガラス転移点温度へ成形温度未満であるが、ガラス転移点温度以下では変形が即座に回復し、また成形な光状を与えることになり好ましくない。変形の与え方については特に制限はなく、成形体をガラス転移点温度以上の雰囲気(例えば加熱空 50 は短かくなる。

2

书

気中、加熱液体中、水蒸気中など)に置き、適当な道具もしくは素手で変形を与えることができる。変形を固定するには、変形を与えた直後にガラス転移点以下の温度に冷却するだけで良いがガラス転移点温度以下でクリープ変形を与えることも可能である。本発明の成形体ので変形を取除き、所定の形状もしくは物性に変化させるにはガラス転移点温度以上、成形温度未満の温度に成形はガラス転移点温度以上、成形温度未満の温度に成形はからなると共に物性もエラストマーとしての物性を示す。また上に物性もエラストマーとしての物性を示す。また、形状を回復させるための加熱の時間当り熱量を多くする程、また単に温度を高くする程形状を回復する時間は短かくなる。

[0016]

【実施例】(実施例1)図1に示したギブスについて説 明する。先ずTgを48℃に設定した表1の(1-5) に示したポリウレタンエラストマーからなる成形板1 [図1 (a) 成形段階] を50℃の温水に数分浸した 後、図1(b)のように変形を加え1'のようにする (加熱変形・冷却固定段階)。 変形を加える力はごくわ ずかで良いから保持形状(同図中では腕部2)に密着さ せることは容易である。密着後変形を保持したまま室温 (約35℃以下)に放置しておけば、成形板1′は冷却 され密着形状にて固定される。固定後、Tg以下の温度 では該成形板の縦弾性係数はTg以上の縦弾性係数に比 して充分大きく高弾性となるため、容易には変形せず、 該部位はしっかりと固定される。更に、該成形板による ギブスを脱着するときは、ヘヤードライヤー等でギブス を加熱し、Tg以上の温度にすることにより、成形板は 低弾性になると共に成形時の形状1に回復するため〔図 1 (c)加熱、変形解放段階〕容易に脱着できると共 に、成形板1は繰り返して使用することができる。 【0017】(実施例2)通常使用温度前後の68℃に Tgを設定した表1の(1-7)に示したウレタンエラ ストマーの成形体を用いて、図2(a)~(c)に示す 構造の工作物固定材料3を作成した。図2(a)は成形 時形状を示し実際の使用形状に成形してある。次にガラ ス転移点以上の温度に加熱して、加熱した構造物を保管 運搬等に便利な所望形状3′に変形させ冷却固定する [図2(b)]。使用に際しては再度加熱し成形時の使 用形状まで回復させる。

【0018】(実施例3)通常使用温度前後の92℃に

Tgを設定した表1の(1-6)に示したウレタンエラストマーを用いて図3(a)及び(b)に示す食器4を作成した。図3(a)は成形及び使用形状を示し、これを加熱変形したのち冷却して変形を固定したものが図3(b)に示す未使用時の形状 4' である。再び加熱して変形解放すれば、図3(a)の4の形状に回復される。このような食器は未使用時に保管場所が小さくてすむ利点がある。なお、図4に本発明における高分子エラストマーの温度($^{\circ}$ C) - 縦弾性係数(E)曲線の例を示す。Tgと変形を加える好ましい温度域及び成形温度T3の関係を示している。

[0019]

【発明の効果】本発明は、上記の構成を採用することにより、従来のようにTgを極低温や極高温に設定するのではなく、通常使用温度前後にTgを有し、Tg前後でのウレタンエラストマー成形体の急激な物性変化を利用することにより、使用温度領域にて異種物性を活用するのに適した種々の分野において、種々の有利が可能である。

0 【図面の簡単な説明】

【図1】本発明の実施例1のギブスについて、使用手順を工程に沿って示した説明図である。

【図2】本発明の実施例2の工作物固定材料について、 使用手順を工程に沿って示した説明図である。

【図3】本発明の実施例3の食器について、使用手順を 工程に沿って示した説明図である。

【図4】本発明で使用するウレタンエラストマーの温度 一縦弾性係数(E)曲線と、ガラス転移点温度Tg、成 形温度T3の関係を示したグラフである。

【図1】

【図2】

【図3】

E一大
E1
SPEEDE SPEEDE SPEEDE STATE SEEDE STATE SEEDE STATE SEEDE STATE SEEDE STATE SEEDE STATE SEEDE S

【図4】

フロントページの続き

(72)発明者 渋田 隆一

横浜市緑区鴨志田町1000番地 三菱化成ダ ウ株式会社研究所内