1 Predicate Logic & Correctness

- Propositional operators
 - not (\neg) , and (\land) , or (\lor)
 - implication (\Rightarrow) $P \Rightarrow Q \equiv \neg P \lor Q$
 - equivalence (\Leftrightarrow) $P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$
- Operator precedence (tightest-binding first): \neg , \wedge , \vee , \Rightarrow
- Quantifiers
 - for all (\forall)
 - there exists (\exists)
 - Example: $\forall x \in \mathbb{N} \cdot x \ge 0$
 - The type of the bound variable may be implicit, e.g. $\forall x \cdot x \geq 0$
- Entailment
 - If $P \Rightarrow Q$ is a tautology (always true) then P is stronger than Q
 - Equivalently: P entails Q ($P \Rightarrow Q$)
- Substitution
 - $-P[x \mid a]$ Substitute all occurrences of x by a in P
 - $-P[x,y\backslash a,b]$ Substitute a and b for x and y simultaneously
- Hoare triples $-\{P\} S\{Q\}$
 - -P is the precondition, S is the program and Q is the postcondition
 - If P is true before S executes, then S will terminate and Q will be true when it does
 - The program must terminate if started in States, (total correctness)
- ullet Weakest preconditions
 - For a program S and postcondition Q, wp(S,Q) is the unique weakest possible precondition such that the triple $\{P\}$ S $\{Q\}$ will be true
 - $\forall P \cdot (\{P\} S \{Q\}) \Rightarrow (P \Rightarrow wp(S, Q))$

2 Guarded Command Language

- skip Empty Command
 - $wp(\mathbf{skip}, Q) \equiv Q$
 - Hence $\{Q\}$ skip $\{Q\} \equiv$ true for any Q
 - $-\{P\}$ skip $\{Q\}$ is false if and only if P is strictly weaker than Q
- abort Chaotic Command
 - $wp(\mathbf{abort}, Q) \equiv \text{false}$
 - No precondition can guarantee a postcondition
 - Represents 'chaotic/undefined behaviour'
- $\bullet := Assignment$
 - $wp(x := E, Q) \equiv Q[x \backslash E]$
 - So $\{Q[x \setminus E]\} x := E\{Q\}$ is true
 - Generalises to multiple assignment: $wp((x, y := E, F), Q) \equiv Q[x, y \setminus E, F]$
- ; Composition/Concatenation
 - $wp(S_1; S_2, Q) \equiv wp(S_1, wp(S_2, Q))$
 - There exists some 'middle' predicate true after S_1 and before S_2
 - If $\{P\} S_1 \{M\} \land \{M\} S_2 \{Q\} \text{ then } \{P\} S_1; S_2 \{Q\}$
- if Selection
 - $\begin{array}{ccc} & \mathbf{if} & G_1 \to S_1 \\ \parallel & G_2 \to S_2 \\ & \ddots \\ \parallel & G_n \to S_n \end{array}$
 - Evaluate all guards $G_1 \dots G_n$, choose a true guard G_i nondeterministically, and execute S_i
 - if all guards evaluate to false then **abort** is executed
 - $wp(\mathbf{if}, Q) \equiv \bigvee_{i=1}^{n} G_i \wedge \bigwedge_{i=1}^{n} (G_i \Rightarrow wp(S_i), Q)$
 - The disjunction of the guards must be true
- do Repetition
 - $\begin{array}{ccc} \ \mathbf{do} \ G_1 \to S_1 \\ \llbracket \ G_2 \to S_2 \\ \dots \\ \llbracket \ G_n \to S_n \\ \mathbf{od} \end{array}$
 - Evaluate all guards, choose a true guard nondeterministically, execute S_i and repeat
 - If all G_i are false, the loop ends and the program continues
 - Weakest precondition rule is complex, so *loop invariants* are used instead
 - Predicate I is a loop invariant if $\{I \wedge G_i\} S_i \{I\}$ for all $1 \leq i \leq n$
 - There are usually many possible invariants for a loop

CSSE3100 Course Notes Joseph Spearritt

3 Refinement & Verification

- Specification statement: w:[P,Q]
- P is the precondition, Q is the postcondition, w is the 'frame' of variables that may be modified
- A program C satisfies w:[P,Q] if and only if
 - $-\{P\} C\{Q\}$
 - C only changes variables in w
- If P is not true when C is executed it may do anything, and it need not terminate
- Mixing specification statements with GCL forms a 'wide-spectrum language'
- Refinement (\sqsubseteq) a partial ordering on programs (similar to \leq for reals)
 - $-S \sqsubseteq S'$ means a user expecting program S would be satisfied with S'
 - $-S \sqsubseteq S' \Leftrightarrow \forall \ Q \cdot wp(S, Q) \Rightarrow wp(S', Q)$
 - For a specification: $wp(x:[P,Q],Q') \stackrel{\frown}{=} P \wedge (\forall x \cdot Q \Rightarrow Q')[v_0 \backslash v]$
- General approach to refining a program
 - Start with a specification S = w : [P, Q]
 - Use rules to replace S with S' mixing specifications with GCL
 - Each rule must preserve correctness i.e. every program C that satisfies S' must satisfy S
 - Eventually arrive at a pure GCL program C such that $\{P\}$ C $\{Q\}$ \equiv true

3.1 Refinement Rules

- Rule 1: Strengthen Postcondition
 - If $P[w \setminus w_0] \land Q' \Rightarrow Q$ then $w : [P, Q] \sqsubseteq w : [P, Q'] (P[w \setminus w_0])$ usually not needed)
- Rule 2: Weaken Precondition
 - If $P \Rightarrow P'$ then $w : [P, Q] \sqsubseteq w : [P', Q]$
- Rule 3: Skip
 - If $P \Rightarrow Q$ then $w : [P, Q] \sqsubseteq \mathbf{skip}$
- Rule 4: Assignment
 - If $P \Rightarrow Q[x \setminus E]$ then $x : [P, Q] \sqsubseteq x := E$
- Rule 5: Composition
 - $-w:[P,Q] \sqsubseteq w:[P,M]; \ w:[M,Q]$ (no side condition)
- Rule 6: Following Assignment (combined assignment and composition)
 - $-w, x: [P, Q] \sqsubseteq w, x: [P, Q[x \setminus E]]; x := E$
- Rule 7: Selection
- Rule 8: Repetition
 - For repetition, a loop invariant I and loop variant (an integer expression) V are required
 - * Let V_0 be the value of V at the start of each iteration
 - * Then $0 \le V < V_0$ is true at the end of each iteration
 - * (i.e. V is strictly decreasing on every iteration, and won't be negative before loop termination)
 - To apply the repetition rule
 - * Strengthen postcondition to $I \land \neg G$ (side condition: $I \land \neg G \Rrightarrow Q$)
 - * Use composition to perform $w:[P,I \land \neg G] \sqsubseteq w:[P,I]; \ w:[I,I \land \neg G]$
 - * Refine the first half into initialisation (e.g. an assignment)
 - * Refine the second half using the repetition rule (no side conditions!)
- Rule 9: Contract frame
 - $-w, x: [P, Q] \sqsubseteq w: [P, Q[x_0 \backslash x]]$
- Rule 10: Remove invariant
 - If w does not occur in I then $w: [P \land I, Q \land I] \sqsubseteq w: [P, Q]$

4 Derivation

5 Procedures

6 Recursion

7 Modules