Estuarine Circulation Modeling Framework

Core Components and Initialization

The model represents an estuary with a length $L=10,000\,\mathrm{m}$ and depth $H=10\,\mathrm{m}$, discretized into N=100 grid points with a spatial step $\Delta x=L/N$. The time step is $\Delta t=10\,\mathrm{s}$. Key parameters include:

• River inflow: $Q_r = 0.1 \,\mathrm{m}^3/\mathrm{s}$

• Tidal amplitude: $A = 1.0 \,\mathrm{m}$

• Tidal period: $T = 43,200 \, \text{s}$ (12 hours)

• Ocean salinity: $S_o = 35 \text{ PSU}$

• Ocean temperature: $T_o = 20 \, ^{\circ}\text{C}$

The model initializes salinity and temperature profiles (salinityProfile, temperaturePro across the grid. The salinity profile starts at zero (freshwater), and the temperature is set to the ocean temperature. A HydrodynamicSolver object handles velocity and eddy viscosity calculations, with options for a Reynolds-Averaged Navier-Stokes (RANS) solver or a simplified velocity model.

Functioning Logic

The Update method advances the simulation by one time step:

- 1. Updates the current time: $t \leftarrow t + \Delta t$.
- 2. Computes tidal velocity: $u_t = A \cos\left(\frac{2\pi t}{T}\right)$.
- 3. Computes water level: $\eta = A \sin\left(\frac{2\pi t}{T}\right)$.
- 4. Determines effective velocity, either via the RANS solver or a simplified model: $u_{\rm eff}=u_t-\frac{Q_r}{H\cdot\Delta x}$.
- 5. Updates the salt wedge position: $x_s \leftarrow x_s + u_{\text{eff}} \Delta t$.
- 6. Updates salinity and temperature profiles using advection-diffusion equations.

Salt Wedge Dynamics

The salt wedge position x_s marks the boundary between freshwater and saline water, updated as:

$$x_s(t + \Delta t) = x_s(t) + u_{\text{eff}} \Delta t \tag{1}$$

The position is constrained within [0, L].

Salinity and Temperature Profiles

The salinity S(x,t) and temperature T(x,t) profiles are updated using an advectiondiffusion model:

$$\frac{\partial S}{\partial t} = -u_{\text{eff}} \frac{\partial S}{\partial x} + K \frac{\partial^2 S}{\partial x^2}$$
 (2)

$$\frac{\partial T}{\partial t} = -u_{\text{eff}} \frac{\partial T}{\partial x} + K \frac{\partial^2 T}{\partial x^2}$$
(3)

where K is the diffusion coefficient (eddy viscosity from the RANS solver or a default $0.1 \,\mathrm{m}^2/\mathrm{s}$). These are discretized using finite differences:

Advection:
$$\frac{S_{i+1} - S_{i-1}}{2\Delta x}$$
 (4) Diffusion:
$$K \frac{S_{i+1} - 2S_i + S_{i-1}}{\Delta x^2}$$
 (5)

Diffusion:
$$K \frac{S_{i+1} - 2S_i + S_{i-1}}{\Lambda x^2}$$
 (5)

The profiles are constrained: $0 \le S \le S_o$, $0 \le T \le T_o$.

Hydrodynamic Solver

The Hydrodynamic Solver computes velocity and eddy viscosity. When UseRANSSolver is enabled, it employs a RANS model, optionally with non-hydrostatic corrections. Otherwise, a simplified velocity is used. The solver provides velocity profiles and eddy viscosity at specific points, influencing mixing processes.

Key Outputs

The model provides:

- Salinity at a point: S(x), interpolated from the profile.
- Temperature at a point: T(x).
- Maximum salinity: $\max(S_i)$.
- Velocity and salinity/temperature profiles.
- Eddy viscosity and non-hydrostatic status.

Physical and Mathematical Models

The model simulates estuarine circulation driven by tidal forcing and river inflow. The tidal velocity and water level follow harmonic functions:

$$u_t = A\cos\left(\frac{2\pi t}{T}\right) \tag{6}$$

$$\eta = A \sin\left(\frac{2\pi t}{T}\right) \tag{7}$$

The salt wedge dynamics reflect the balance between river outflow and tidal inflow, while salinity and temperature evolve via advection-diffusion, capturing mixing processes. The RANS solver enhances realism by modeling turbulent mixing.