Floyd–Warshall e Dijkstra

Tópicos Avançados em Programação

Instituto de Informática Universidade Federal de Goiás

25 de Abril de 2018

Sumário

- 1 Introdução
- 2 Flody-Warshall
- 3 Dijkstra

Introdução

Caminho mínimo

Menor caminho de A para G. Custo das arestas = 1. BFS!

Introdução

Caminho mínimo

Menor caminho de A para G. Custo das arestas = 1. BFS!

Introdução

Caminho mínimo

Menor caminho de A para G. Custo das arestas = 1. BFS!

Introdução

Caminho mínimo

Menor caminho de A para G. Custo das arestas = 1. BFS!

Introdução

Caminho mínimo

Menor caminho de A para G. Custo das arestas $\neq 1$. BFS?

Introdução

Caminho mínimo

Menor caminho de A para G. Custo das arestas $\neq 1$. BFS?

Introdução

Caminho mínimo

Menor caminho de A para G. Custo das arestas $\neq 1$. BFS?

Introdução

Então como resolver?

- ✓ Dado um grafo G = (V, E)
 - Quais são as menores distâncias entre cada par de vértices v_i e v_j , onde v_i , v_j ∈ V e N ≤ 200 .
 - Quais são as menores distâncias entre um vértice v_i para todos os outros vértices v_j , onde $v_i, v_j \in V$ e $N \leqslant 1000$.

Introdução

Então como resolver?

- ✓ Dado um grafo G = (V, E)
 - Quais são as menores distâncias entre cada par de vértices v_i e v_j , onde v_i , v_j ∈ V e N \leqslant 200.
 - Algoritmo Flody-Warshall
 - \diamond Complexidade $\mathcal{O}(|V|^3)$
 - Quais são as menores distâncias entre um vértice v_i para todos os outros vértices v_i , onde $v_i, v_i \in V$ e $N \leq 1000$.

Flody-Warshall

Rpresentação do grafo - Matriz de adjacência

- ✓ Dado um grafo G=(V,E), a matriz de adjacência M é definida por uma matriz de ordem $|V|\cdot |V|$, de forma que:
 - $M[i,i] = 0, \forall i \in V$
 - M[i,j] = custo(i,j), se existir aresta de i para j
 - lacksquare $M[i,j]=\infty$, se não existir aresta de i para j

Flody-Warshall

Representação do grafo - Matriz de adjacência

	А	В	С				
А	0	1	∞	∞	∞	∞	∞
В	1	0	2	∞	5	∞	20
С	∞	2	0	1	∞	∞	∞
D	∞	∞	1	0	4	∞	∞
Е	∞	5	∞	4	0	3	∞
F	∞	∞	∞	∞	3	0	1
G	∞	20	∞	∞	∞	1	0

Flody-Warshall

Representação do grafo - Matriz de adjacência

			С				
А	0	1	∞	∞	∞	∞	∞
В	1	0	2	∞	5	∞	20
С	∞	2	0	1	∞	∞	∞
D	∞	∞	1	0	4	∞	∞
Е	∞	5	∞	4	0	3	∞
F	∞	∞	∞	∞	3	0	1
G	∞	20	∞	∞	∞	1	0

Flody-Warshall

Representação do grafo - Matriz de adjacência

			С				G
А	0	1	∞	∞	∞	∞	∞
В	1	0	2	∞	5	∞	20
С	∞	2	0	1	∞	∞	∞
D	∞	∞	1	0	4	∞	∞
Е	∞	5	∞	4	0	3	∞
F	∞	∞	∞	∞	3	0	1
G	∞	20	∞	∞	∞	1	0

Flody-Warshall

Vértice intermediário

✓ Um vértice intermediário em um caminho do vértice v_1 até v_n , presentado por $C = \{v_1, v_2, \ldots, v_{n-1}, v_n\}$, é qualquer vértice u que não seja v_1 ou v_n , ou seja, $u \in V$ - $\{v_1, v_2\}$.

Flody-Warshall

Ideia do algoritmo

- ✓ A ideia principal do algoritmo se baseia no principio de que um caminho entre dois vértices v_i e v_j existe se:
 - 0: há uma aresta v_i para v_j , ou
 - 1: há um caminho de v_i para v_j que passa por vértices intermediários do conjunto de vértices $k = \{v_1\}$, ou
 - 2: há um caminho de v_i para v_j que passa por vértices intermediários do conjunto de vértices $k=\{v_1,\,v_2\}$, ou .
 - n: há um caminho de v_i para v_j que passa por vértices intermediários do conjunto de vértices $k=\{v_1,v_2,\ldots,v_{n-1},v_n\}$.

Flody-Warshall

Algoritmo - Inicialização da matriz de adjacência

```
int grafo[n][n];

for(int i = 0; i < n; i++){
    for(int j = 0; j < n; j++){
        grafo[i][j] = 1e9;
    }
    grafo[i][i] = 0;
}</pre>
```


Flody-Warshall

Algoritmo - Preenchimento da matriz de adjacência

```
for(int i = 0; i < m; i++){
    //indexado de 0
    cin >> de >> para >> custo;
    grafo[ de ][ para ] = custo;
    //caso o grafo nao seja orientado
    grafo[ para ][ de ] = custo;
}
```


Flody-Warshall

Algoritmo - Flody-Warshall

```
for(int k = 0; k < n; k++){
    for(int i = 0; i < n; i++){
        for(int j = 0; j < n; j++){
            grafo[i][j] = min( grafo[i][j], grafo[i][k] + grafo[k][j] );
        }
    }
}</pre>
```


Flody-Warshall

Exemplo de execução

grafo[A][G] = min(grafo[A][G], grafo[A][B] + grafo[B][G]);

Floyd-Warshall e Dijkstra

А	0	1	∞	∞	∞	∞	∞
В	1	0	2	∞	5	∞	20
С	∞	2	0	1	∞	∞	∞
D	∞	∞	1	0	4	∞	∞
Е	∞	5	∞	4	0	3	∞
F	∞	∞	∞	∞	3	0	1
G	∞	20	∞	∞	∞	1	0

Flody-Warshall

Exemplo de execução

$$grafo[A][G] = min(1e9, 1 + 20);$$

		В					G
	0	1	∞	∞	∞	∞	∞
	1	0	2	∞	5	∞	20
	∞	2	0	1	∞	∞	∞
	∞	∞	1	0	4	∞	∞
	∞	5	∞	4	0	3	∞
	∞	∞	∞	∞	3	0	1
G	∞	20	∞	∞	∞	1	0

Flody-Warshall

Exemplo de execução

$$grafo[A][G] = 21;$$

А	0	1	∞	∞	∞	∞	21
В	1	0	2	∞	5	∞	20
С	∞	2	0	1	∞	∞	∞
D	∞	∞	1	0	4	∞	∞
Е	∞	5	∞	4	0	3	∞
F	∞	∞	∞	∞	3	0	1
G	∞	20	∞	∞	∞	1	0

Flody-Warshall

Exemplo de execução

grafo[A][E] = min(grafo[A][E], grafo[A][B] + grafo[B][E]);

	Α	В				F	G
А	0	1	∞	∞	∞	∞	21
В	1	0	2	∞	5	∞	20
С	∞	2	0	1	∞	∞	∞
D	∞	∞	1	0	4	∞	∞
Е	∞	5	∞	4	0	3	∞
F	∞	∞	∞	∞	3	0	1
G	∞	20	∞	∞	∞	1	0

Flody-Warshall

Exemplo de execução

$$grafo[A][E] = min(1e9, 1 + 5);$$

	Α	В			Е	F	G
А	0	1	∞	∞	∞	∞	21
В	1	0	2	∞	20	∞	20
С	∞	2	0	1	∞	∞	∞
D	∞	∞	1	0	4	∞	∞
Е	∞	5	∞	4	0	3	∞
F	∞	∞	∞	∞	3	0	1
G	∞	20	∞	∞	∞	1	0

Flody-Warshall

Exemplo de execução

$$grafo[A][E] = 6;$$

А	0	1	∞	∞	6	∞	21
В	1	0	2	∞	5	∞	20
С	∞	2	0	1	∞	∞	∞
D	∞	∞	1	0	4	∞	∞
Е	∞	5	∞	4	0	3	∞
F	∞	∞	∞	∞	3	0	1
G	∞	20	∞	∞	∞	1	0

Flody-Warshall

Exemplo de execução

grafo[A][F] = min(grafo[A][F], grafo[A][E] + grafo[E][F]);

А	В			Е		G
0	1	∞	∞	6	∞	21
1	0	2	∞	5	∞	20
∞	2	0	1	∞	∞	∞
∞	∞	1	0	4	∞	∞
∞	5	∞	4	0	3	∞
∞	∞	∞	∞	3	0	1
∞	20	∞	∞	∞	1	0

Flody-Warshall

Exemplo de execução

$$grafo[A][F] = min(1e9, 6 + 3);$$

	Α	В			Е		
А	0	1	∞	∞	6	∞	21
В	1	0	2	∞	5	∞	20
С	∞	2	0	1	∞	∞	∞
D	∞	∞	1	0	4	∞	∞
Е	∞	5	∞	4	0	3	∞
F	∞	∞	∞	∞	3	0	1
G	∞	20	∞	∞	∞	1	0

Flody-Warshall

Exemplo de execução

	Α	В			Е		G
А	0	1	∞	∞	6	9	21
В	1	0	2	∞	5	∞	20
С	∞	2	0	1	∞	∞	∞
D	∞	∞	1	0	4	∞	∞
Е	∞	5	∞	4	0	3	∞
F	∞	∞	∞	∞	3	0	1
G	∞	20	∞	∞	∞	1	0

Flody-Warshall

Exemplo de execução

grafo[A][G] = min(grafo[A][G], grafo[A][F] + grafo[F][G]);

	Α	В			Е		G
А	0	1	∞	∞	6	9	21
В	1	0	2	∞	5	∞	20
С	∞	2	0	1	∞	∞	∞
D	∞	∞	1	0	4	∞	∞
Е	∞	5	∞	4	0	3	∞
F	∞	∞	∞	∞	3	0	1
G	∞	20	∞	∞	∞	1	0

Flody-Warshall

Exemplo de execução

$$grafo[A][G] = min(21, 9 + 1);$$

	Α	В				F	G
А	0	1	∞	∞	6	9	21
В	1	0	2	∞	5	∞	20
С	∞	2	0	1	∞	∞	∞
D	∞	∞	1	0	4	∞	∞
Е	∞	5	∞	4	0	3	∞
F	∞	∞	∞	∞	3	0	1
G	∞	20	∞	∞	∞	1	0

Flody-Warshall

Exemplo de execução

$$grafo[A][G] = 10;$$

	0	1	∞	∞	6	9	10
	1	0	2	∞	5	∞	20
С	∞	2	0	1	∞	∞	∞
D	∞	∞	1	0	4	∞	∞
	∞	5	∞	4	0	3	∞
	∞	∞	∞	∞	3	0	1
G	∞	20	∞	∞	∞	1	0

Introdução

Então como resolver?

- ✓ Dado um grafo G = (V, E)
 - Quais são as menores distâncias entre cada par de vértices v_i e v_j , onde v_i , v_j ∈ V e $N \le 200$.
 - ♦ Algoritmo Flody-Warshall
 - \diamond Complexidade $\mathcal{O}(|V|^3)$
 - Quais são as menores distâncias entre um vértice v_i para todos os outros vértices v_i , onde $v_i, v_i \in V$ e $N \leq 1000$.

Introdução

Então como resolver?

- ✓ Dado um grafo G = (V, E)
 - Quais são as menores distâncias entre cada par de vértices v_i e v_j , onde v_i , v_j ∈ V e N ≤ 200 .
 - ♦ Algoritmo Flody-Warshall
 - \diamond Complexidade $\mathcal{O}(|V|^3)$
 - Quais são as menores distâncias entre um vértice v_i para todos os outros vértices v_i , onde $v_i, v_i \in V$ e $N \leq 1000$.
 - Algoritmo Dijkstra
 - \diamond Complexidade $\mathcal{O}(|E|\log|V|)$

Dijkstra

Algoritmo - Dijkstra

✓ Exemplo de implementação : Dijkstra C++

Dijkstra

Dijkstra

Dijkstra

Dijkstra

Dúvidas

Dúvidas?

