Filière : SMI-S4

2021-2022

Contrôle d'Analyse numérique (Durée 1h30)

Les documents et téléphones portables ne sont pas autorisés. On attachera une grande importance à la rédaction

Exercice 1 : On considère le système linéaire (S) : Ax = b, avec

$$A = \begin{pmatrix} 3 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}, \qquad b = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \qquad \text{et} \qquad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

On cherche à résoudre le système (S) par les méthodes directes.

- 1. Calculer les valeurs propres de A et en déduire qu'elle est définie positive.
- 2. Choisir la bonne méthode (Gauss ou factorisation LU ou factorisation de Cholesky) pour résoudre le système linéaire (S).

On cherche à résoudre le système (S) par les méthodes indirectes de type : $x_{k+1} = Mx_k + N$.

- 3. Expliquer le principe des méthodes indirectes pour résoudre un système linéaire Ax = b.
- 4. Ecrire la matrice d'itération B_J de la méthode de Jacobi associée à la matrice A.
- 5. Ecrire la matrice d'itération B_{GS} de la méthode de Gauss-Seidel associée à la matrice A.
- 6. Que peut on dire sur la convergence des méthode itératives de Jacobi et de Gauss-Seidel pour la résolution de Ax = b.

Exercice 2 : On se propose de résoudre numériquement l'équation (E) : $f(x) = x^5 + x^4 - 3 = 0$.

- 1. Montrer que l'équation (E) admet une solution unique $\alpha \in [1, 2]$.
- 2. En utilisant la méthode de Dichotomie sur l'intervalle [1, 2], estimer le nombre d'itérations nécessaires pour calculer le zéro α de la fonction f avec une tolérance $\varepsilon = 10^{-100}$.
- 3. Déterminer la suite des premiers 3 itérés de la méthode de Dichotomie dans l'intervalle [1,2] pour l'approximation du zéro de la fonction f.
- 4. Ecrire la méthode de Newton pour résoudre (E). Montrer que la méthode de Newton converge quadratiquement vers α pour $x_0 = 1$ près de α .
- 5. En partant de $x_0 = 1$, calculer les deux premières itérations de la méthode de Newton pour l'approximation du zéro de la fonction f.

- 6. Calculer les deux premières itérations par la méthode de la Sécante avec $x_0 = 1, x_1 = 2$.
- 7. Pour chaque fonction g ci-dessous, $\alpha_1 = 0$ et $\alpha_2 = \pi$ sont des points fixes.

a)
$$g(x) = x + sin(x)$$
, b) $g(x) = x + 3sin(x)$, c) $g(x) = x + \frac{1}{2}sin(x)$.

Etudier dans chacun des trois cas, la convergence de la méthode du point fixe $(x_{k+1} = g(x_k))$, pour la recherche de $\alpha_1 = 0$ et $\alpha_2 = \pi$ et déterminer leur ordre de convergence le cas échéant.

Exercise 3: Soit $f(x) = \sqrt{x}$, pour i = 0, 1 et 2, on a $x_0 = 1, x_1 = 2, 25, x_2 = 4$ et $f(x_i) = y_i$.

- 1. Quelle est l'avantage de la méthode d'interpolation par les différences divisées de Newton par rapport à celle de Lagrange?
- 2. Déterminer par la méthode de Lagrange, le polynôme d'interpolation P_2 de degré 2 tel que $P(x_i) = y_i, i = 0, 1, 2.$
- 3. Déterminer par la méthode de Newton côtes, le polynôme d'interpolation P_2 de degré 2 tel que $P(x_i) = y_i, i = 0, 1, 2$.
- 4. Déterminer une borne de l'erreur d'interpolation polynomiale.
- 5. Évaluer $P_2(2)$ puis calculer l'erreur réelle et comparer avec l'estimation trouvée dans la question précédente.