

Lesson 04 - Convolution as Image Editing

Do Now

This week, we've worked with two main convolution kernels (right). With your partner, discuss:

- Why are the weights different for the kernels? What impact might this have in our convolution?
- Can we have convolution weights greater than or equal to 1? What are the effects of this on our image?

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Class practice problem kernel (L3, S3)

1/5	1/7	1/5
1/7	1/9	1/7
1/5	1/7	1/5

Solo practice problem kernel

(L3, S5)

Do Now Discussion

Different Weights

Used to give different levels of importance to surrounding pixels during convolution

1/5	1/7	1/5
1/7	1/9	1/7
1/5	1/7	1/5

Weights >= 1

We can have weights >= 1, but remember our pixel values are bounded (0-255) so then we must normalize afterward.

• What does normalize mean?

Pixel normalization

- <u>normalize</u>: to mathematically map values from one numerical range to another
 - Mapping the values from 0-100 to 0-10 by dividing by 10
- Given 5 values (old_min, old_max, new_min, new_max, value, the formula is:

Kernels as images

 Since kernels are 2D arrays, we can also represent them as images. In kernel images, the brightness of a pixel represents its weight in the convolution. Black pixels to have a weight of 0 and white pixels to have a weight of 1. Gray pixels are in between.

0	0	0	in image form		
0	1	0			
0	0	0			

Kernels can have negative numbers

Sometimes we want to give negative weight for certain pixels, to emphasize the difference

Kernels with negative numbers

Since kernels are just 2D arrays, we can include negative numbers. To represent kernels with negative numbers:

Dark gray: -1 < weight < 0

Gray: weight = 0

Light gray: 0 < weight < 1

White: weight = 1

0	-1	0
-1	5	-1
0	-1	0

Roll for confidence!

This this kerry

• Identity kernel: outputs the original image

• Shift kernel: shifts the image; in this case, down and right

- **Block blur**: blurs the image with a "blocky" effect
 - To prevent over-saturation, the sum of each of the weights should be 1

* this kernel has negative weights!

• Sharpen kernel: emphasizes differences in adjacent pixels

Basic kernels

Identity kernel

Outputs the original image unchanged.

0	0	0
0	1	0
0	0	0

Shift kernel

Shifts the image in the direction of the non-zero pixel.

0	0	0
0	0	0
0	0	1

Basic kernels

Block blur kernel

Blurs the image with some blockiness. The sum of weights should equal 1.

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Sharpen kernel

Shifts the image in the direction of the non-zero pixel. Result needs to be normalized to 0-255 afterward.

0	-1	0
-1	5	-1
0	-1	0

Homework

04_homework on Google Classroom (link)

Using the starter code, perform image-editing convolutions in code.