

D 14

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer: **0 689 373 A2**

⑫

EUROPÄISCHE PATENTANMELDUNG

⑬ Anmeldenummer: 95114483.1

⑮ Int. Cl. 5: **H05B 41/392, H05B 41/29,
H05B 37/02**

⑭ Anmeldetag: 09.12.91

Diese Anmeldung ist am 14 - 09 - 1995 als Teilanmeldung zu der unter INID-Kode 60 erwähnten Anmeldung eingereicht worden.

⑯ Priorität: 07.12.90 DE 4039161

⑰ Veröffentlichungstag der Anmeldung:
27.12.95 Patentblatt 95/52

⑱ Veröffentlichungsnummer der früheren Anmeldung nach Art. 76 EPÜ: 0 490 329

⑲ Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB IT LI LU NL SE

⑳ Anmelder: Tridonic Bauelemente GmbH
Schmelzhütterstrasse 34
A-6850 Dornbirn (AT)

㉑ Erfinder: Luger, Siegfried
Steinacker 21A
A-6850 Dornbirn (AT)

㉒ Vertreter: Schmidt-Evers, Jürgen, Dipl.-Ing. et al
Patentanwälte Mitscherlich & Partner,
Sonnenstrasse 33
D-80331 München (DE)

㉓ Schaltungsanordnungen zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen

㉔ Schaltungsanordnung zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen (LA1, LA2), mit einer an ein Wechselstromnetz anschließbaren Gleichrichterschaltung (20), einem von der Gleichrichterschaltung (20) gespeisten und in seiner Ausgangsfrequenz (U_{HF}) variierbaren Wechselspannungsgenerator (30), einem Lastkreis (40), der mindestens einen Reihenschwingkreis und mindestens eine Gasentladungslampe (LA1, LA2) enthält und von dem Wechselspannungsgenerator (30) mit dessen variierbarer Ausgangsfrequenz (U_{HF}) gespeist wird.

Die Schaltungsanordnung umfaßt des weiteren eine als Sende- und Empfangseinrichtung ausgebildete digitale Schnittstelle (10) zum Empfang digitaler Steuersignale für den Betriebszustand sowie die Lampenhelligkeit und/oder Lampenleistung und zum Absenden digitaler Fehlermeldungen und/oder digitaler Betriebszustandsinformationen, sowie eine mit der digitalen Schnittstelle (10) verbundenen Steuer- und Regeleinrichtung (17), welche die ihr von der digitalen Schnittstelle (10) übermittelten digitalen Steuersignale auswertet und welche in der Schaltungsanordnung aufgenommene Meßwertsignale auswertet und daraus die digitalen Fehlermeldungen

und Betriebszustandsinformationen erzeugt und an die digitale Schnittstelle (10) überträgt.

System

FIG. 1

EP 0 689 373 A2

Die Erfindung betrifft allgemein ein elektronisches Vorschaltgerät (EVG) für Leuchtstofflampen. Insbesondere betrifft sie Schaltungsanordnungen innerhalb des elektronischen Vorschaltgerätes zur Steuerung der Helligkeit und des Betriebsverhaltens von Leuchtstofflampen.

Elektronische Vorschaltgeräte moderner Bauweise dienen der Ansteuerung von Leuchtstofflampen. Dabei werden die Leuchtstofflampen zum einen schonender betrieben und zum anderen kann der Wirkungsgrad derartiger Lampentypen heraufgesetzt werden. Ein elektronisches Vorschaltgerät weist dabei regelmäßig die im Oberbegriff des Anspruchs 1 angegebenen Merkmale auf.

Über einen NetzeingangsfILTER wird eine Versorgungsspannung, die eine Gleich- oder Wechselspannung sein kann, einem Gleichrichter und einem Zwischenkreiskondensator zugeführt. Soweit das Gerät ausschließlich mit Gleichspannung betrieben wird, kann letzterer Gleichrichter entfallen. Auf dem Zwischenkreiskondensator wird eine hohe Zwischenkreisspannung U_0 gebildet, die bei üblicher Netzspannungsversorgung von 220 V in der Größenordnung von ca. 300 V liegt. An den Zwischenkreis schließt sich ein Wechselspannungsgenerator an, dieser wird von einem Halbbrücken- oder Vollbrückenwechselrichter gebildet. Er gibt eine frequenzvariable Ausgangsspannung an einen Ausgangs-Lastkreis ab, der, sofern keine Halbbrückensehrtung mit künstlichem Spannungsmittelabgriff vorgesehen ist, einen Serienresonanzkreis aufweist. In Reihe zu dem Serienresonanzkreis liegt die Entladungsstrecke der zu steuernden Gasentladungslampe oder Leuchtstofflampe.

Die Ausgangsfrequenz des Wechselrichters beträgt in etwa 10 kHz - 50 kHz.

Bei den genannten Frequenzen wird der Wirkungsgrad der angeschlossenen Leuchtstofflampen gegenüber einem Betrieb an dem 50 Hz-Versorgungsnetz erhöht. Eine erhöhte Lichtausbeute wird bei gleicher elektrischer Leistungsaufnahme erzielt. Weiterhin kann aufgrund der hohen Frequenz die wechselrichter-ausgangsseitige Induktivität des Serienresonanzkreises klein gehalten werden. Schließlich erlaubt die variable Frequenzsteuerung eine Helligkeitsregelung der - am normalen Netz nur schwer helligkeitsregelbaren (dimmbaren) - Leuchtstofflampe. Hinzu kommt schließlich, daß über die Frequenzsteuerung auch eine Zündung der Leuchtstofflampe vorbereitet und initiiert werden kann.

Zu dem vorgenannten Zündvorgang gehört zur Schonung der Leuchtstofflampen auch ein sog. Warmstart, bei dem die Heizwendeln der Leuchtstofflampe vorgeheizt werden, bevor die Lampe aufgrund von Resonanzerscheinungen mit einer hohen Zündspannung beaufschlagt wird, die zur Zündung und damit zum Betrieb der Gasentladungslampe führt. Die Variation der Frequenz, welche die

Zündung kontrolliert, erlaubt auch im Betrieb der Gasentladungslampe durch Frequenzverschiebung eine nahezu stufenlose Helligkeitsregelung in weiteren Grenzen. Eine solche stufenlose und kontinuierliche Steuerung der Helligkeit erfordert aufgrund des negativen Innenwiderstandes der in Betrieb befindlichen Leuchtstofflampe besondere Maßnahmen.

Wesentlicher Gesichtspunkt für die Entwicklung eines modernen EVG bildet daher zum einen eine möglichst vielseitige Steuerungsmöglichkeit insbes. eine Helligkeitsregelung. Dies im Hinblick auf das Betriebsverhalten sowie die Helligkeitsregelung der an einem jeweiligen EVG angeschlossenen Leuchtstofflampen.

Neben einer vielseitigen Steuerung und Regelung ist es ein anderes Anliegen moderner EVGs eine komfortable Handhabung und Bedienung vieler dezentral angeordneter Lichtquellen zu gewährleisten. Dies insbesondere im Hinblick auf Großprojekte, bei denen weitläufige Beleuchtungssysteme mit einer großen Anzahl von Lichtquellen zu installieren sind.

Schließlich ist es ein wesentlicher **Zweck der Erfindung**, erhöhte Sicherheit für die angeschlossenen Leuchtstofflampen sowie eine verbesserte Überwachungsmöglichkeit dieser zu schaffen. Sicherheit nicht zuletzt auch für das Betriebspersonal, was ausgefallene Lampen zu wechseln hat und hierbei darauf angewiesen ist, daß die beim Lampenwechsel an dem Steckfassungen und im Gerät entstehenden Spannungen für sie ungefährlich sind. Dies aus dem Grunde, da bei weitläufigen Beleuchtungssystemen die einzelnen Lampen nicht individuell abschaltbar sind, sodaß ein Lampenwechsel im Betrieb notwendig wird.

Die zuvor genannten technischen Probleme werden erfindungsgemäß durch die in Anspruch 1 angegebenen Merkmale gelöst.

Die erfindungsgemäße Schaltungsanordnung ermöglichen es, die Steuerfunktionen und die Helligkeitsregelung besonders genau und komfortabel zu handhaben. Hierzu ist eine Steuer- und Regeleinrichtung vorgesehen, die alle wesentlichen Steuer-, Regel- und Überwachungsfunktionen für ein dezentrales EVG übernimmt. Ihr ist eine Sende- und Empfangseinrichtung zugeordnet, die als Schnittstelle nach außen dient: Hier können Steuerbefehle und Helligkeitsbefehle zugeführt werden, die von der Steuer- und Regeleinrichtung, abhängig von den derzeit gültigen Prozeßgrößen (Meßgrößen) des jeweiligen dezentralen EVG, ausgeführt wird. Die Sende- und Empfangseinrichtung dient zum Empfang digitaler Steuersignale für den Betriebszustand, wie z.B. Not-, Sleep-, Zünd-, Aus- oder Einzustand, sowie die Lampenhelligkeit und/oder Lampenleistung und zum Absenden digitaler Fehlermeldungen und/oder digitaler Betriebs-

zustandsinformationen. Die Steuer- und Regeleinrichtung wertet die ihr von der Sende- und Empfangseinrichtung übermittelten digitalen Steuersignale sowie in der Schaltungsanordnung aufgenommene Meßwertsignale aus und erzeugt daraus digitale Fehlermeldungen und Betriebszustandsinformationen, die sie an die digitale Schnittstelle überträgt.

Vorteilhaft werden in einem jeweiligen dezentralen EVG ein Paar von Leuchtstofflampen an einem Wechselspannungsgenerator betrieben. Dies entspricht einem sog. zweiflammigen EVG.

Neben der komfortablen Helligkeitsregelung erlaubt die Steuer- und Regeleinrichtung zielerichtet eine Erhöhung der Lebensdauer der Leuchtstofflampen und eine Gewährung von Sicherheitsinteressen. Mittels der vorgenannten Steuer- und Regeleinrichtung kann das Betriebsverhalten und der jeweilige Betriebszustand der von einem EVG versorgten Leuchtstofflampen genauestens gesteuert und überwacht werden. So werden Warmstart-, Zünd-, Dimm- und Abschaltvorgang (ZÜND,DIMM,AUS,EIN) mit hoher Präzision und lampenschonend aneinander gereiht. Unzulässige Betriebsbedingungen werden vermieden, vor einer jeweiligen Zündung wird für eine ausreichende Vorwärmung der Heizwendeln gesorgt. Neben einem helligkeitsgeregelten Dimmbetrieb (DIMM) kann auch das gesamte EVG, wenn längere Zeit keine Helligkeit gewünscht wird, stillgelegt werden (SLE-EP). In diesem Zustand nimmt das EVG nur eine minimale Leistung auf. Vermeidbare Verluste werden tatsächlich vermieden.

Neben dem regelmäßigen Dimmbetrieb, in welchem die Helligkeit der Leuchtstofflampen zwischen einem Minimalwert (MIN) und einem Maximalwert (MAX) beliebig variierbar ist (DIMM) ist auch ein Notbetrieb (NOT) möglich, bei dem die Lampe einen Notbeleuchtungs-Lichtpegel einnimmt. Dieser ist dezentral am jeweiligen Gerät vorgebbar. Bei bestimmten Gefahrenbedingungen wird er automatisch aktiviert.

Vorteilhaft ist die Sende- und Empfangseinrichtung über eine bidirektionale Busleitung mit einem zentralen Steuergerät verbunden. Ein solches erlaubt es, von einer zentralen Stelle aus eine Vielzahl von dezentral angeordneten EVGs fernzusteuern. Neben der Fernsteuerung bietet das Steuergerät auch eine Betriebszustandsinformation. Es werden im Beleuchtungssystem aufgetretene Fehler aufgrund von Fehlermeldungen erkannt und angezeigt, die von den dezentralen EVGs über die bidirektionale Busleitung an das zentrale Steuergerät gesandt worden sind. Wartungsarbeiten werden hierdurch vereinfacht und beschleunigt. Vielfältige Überwachungsfunktionen werden bereits dezentral vorgesehen, so die Über- und Unterspannungsüberwachung. Durch sie wird die Lebensdauer der

Leuchtstofflampen spürbar erhöht.

Die über die Busleitung gesteuerte Helligkeitsregelung der dezentralen EVGs geschieht über serielle digitale Steuerworte, die Steuerbefehle oder Helligkeits-Dateninformationen darstellen. Besonders vorteilhaft ist die Organisation in Funktionsgruppen, in welchen eine Mehrzahl von EVGs, die beispielsweise in einem Raum angeordnet sind, gleichzeitig und mit einem einzelnen Befehl ansteuerbar sind.

Die Ankopplung der Sende- und Empfangseinrichtungen an die Busleitung wird vorteilhaft durch ein Differenzierglied bewirkt. Sie gewährt eine starke Dämpfung der 50 Hz-Netzfrequenzen und arbeitet mit sehr geringen Eingangsströmen. Die Dämpfung der Netzfrequenzen geht soweit, daß auch ein Verpolungsschutz gewährt wird, das Anlegen von 220 V an der Busleitung bleibt ohne Schadensfolge.

Wenn die Leuchtstofflampen nach einem Zündvorgang in den gedimmten Betrieb gesteuert werden, kann es dazu kommen, daß kurze Lichtpulse auftreten. Sie haben ihre Ursache in der im Ausgangskreis gespeicherten Energie des Zündvorganges, der sich anschließend unerwünscht als Lichtpuls im gedimmten Betrieb äußert. Hier kann durch Verlängern der - eigentlich lebensdauerverkürzenden - Glimmphase zwischen Zünd- und stationärem Betrieb Abhilfe geschaffen werden. Eine tatsächliche Lebensdauerverkürzung wird aber dadurch vermieden, daß der Glimmbereich nur bei geringen Helligkeitswerten verlängert wird. Je größer die Helligkeit, desto kürzer demnach die Glimmphase und desto schneller der Übergang vom Zündbetrieb zum Normalbetrieb.

Werden erfundungsgemäß der Steuer- und Regeleinrichtung eine Mehrzahl m von Meßgrößen aus dem EVG zugeführt, so können hieraus eine Vielzahl von Betriebszuständen und ggf. Gefahrenzustände erkannt und vermieden werden. Weiterhin wird eine echte Leistungsregelung möglich, die lampentypunabhängig beispielsweise Argon-Lampen oder Krypton-Lampen) arbeitet. Vorteilhaft wird die Lampenhelligkeitsregelung durch eine Frequenzmodulation oder durch eine Kombination von Frequenzmodulation und Tastverhältnisänderung erzielt.

Zum Aspekt der Überwachung zählt auch die Kontrolle der Heizwendelströme der Leuchtstofflampen. Sie erlauben eine präzise Ermittlung, ob bestimmte Lampen defekt sind oder ggf. gar nicht eingebaut wurden.

Die bei starken Dimmbetrieb auftretenden "laufenden Schichten" werden vorteilhaft dann vermieden, wenn dem hochfrequenten Lampenwechselstrom eine geringe Gleichkomponente überlagert wird.

Werden pro EVG ein Paar von Leuchtstofflampen eingesetzt, die von einem gemeinsamen Wechselspannungsgenerator gespeist werden, so bewirkt das erfindungsgemäße induktive Symmetrieelement einen symmetrischen Betrieb beider Leuchtstofflampen. Eine spannungsgesteuerte Wendelbeheizung ermöglichen die lampenindividuellen Heizübertrager, welche mit ihrer Primärwicklung am Wechselspannungs-Ausgangskreis angeschlossen sind. Über eine Primärstromerfassung kann die Steuer- und Regeleinrichtung jederzeit Rückschlüsse auf die Heizwendelbeschaffenheit ziehen und so bereits beschädigte Leuchtstofflampen oder in Kürze austallende Leuchtstofflampen identifizieren.

Weitere vorteilhafte Aspekte und Ausführungsformen des erfindungsgemäßen EVG sind in den Unteransprüchen näher ausgeführt. Gestützt auf die Zeichnung werden nachfolgend Ausführungsbeispiele der Erfindung näher erläutert. Es zeigen

Fig. 1 ein Blockschaltbild eines erfindungsgemäßen EVG,

Fig. 2 ein Blockschaltbild eines erfindungsgemäßen Systemgedankens, bei dem mehrere dezentrale EVGs mit einem zentralen Steuergerät über eine Busleitung 12 verbunden sind,

Fig. 3 ein Blockschaltbild eines Ausführungsbeispiels der erfindungsgemäßen Steuer- und Regeleinrichtung als integrierte Schaltung 17,

Fig. 4 ein Prinzipschaltbild eines Eingangskreises 20 mit zwei Meßwerterfassungen,

Fig. 5 ein Ausführungsbeispiel der transformatorgekoppelten Wendelbeheizung einer Leuchtstofflampe mit drei Meßfühlern,

Fig. 6 ein Ausführungsbeispiel eines erfindungsgemäßen Ausgangskreises 40 mit Symmetrieelement TR1 für zwei Leuchtstofflampen,

Fig. 7 ein Prinzipschaltbild des Wechselspannungsgenerators mit ihn ansteuernder Treiberschaltung 31,

Fig. 8a-c jeweils ein Blockschaltbild der Sende- und Empfangseinrichtung 10 mit verschiedenen ausgestalteten Koppelschaltungen zur Busleitung 12,

Fig. 9 ein Helligkeits-Zeitdiagramm zur Erläuterung des Abschalt- und des Notbeleuchtungsbetriebes,

Fig. 10 ein Helligkeits-Zeitdiagramm zur Erläuterung der Softstart- bzw. Softstop-Funktion bei einer Systemkonfiguration gem. Fig. 2.

Fig. 1 zeigt zunächst ein Blockschaltbild eines Ausführungsbeispiels eines erfindungsgemäßen EVGs. Die Netzspannung U_N wird - ggf. über einen Schale S1 - dem Eingangsschaltkreis 20 (Gleichrichterschaltkreis) zugeführt. Dieser erzeugt die Zwi-schenkreisspannung U_b , U_{dc} , die dem Wechselspannungsgenerator 30 (Wechselrichter) zugeführt wird. Der Wechselspannungsgenerator 30 gibt sei-

ne hochfrequente Ausgangsspannung U_{HF} an einen Ausgangs-Lastkreis 40 ab, der eine oder mehrere Leuchtstofflampen LA1,LA2 enthält. Sowohl dem Wechselspannungsgenerator 30 als auch dem

- 5 Lastkreis 40 sind eine Mehrzahl von System-Meßwerten (Prozeßgrößen) entnehmbar. Gemeinsam werden die Meßwerte einer Steuer- und Regelschaltung 17 zugeführt, die ihrerseits die digitalen Ansteuersignale für den Wechselrichter 30 erzeugt.
- 10 Diese werden über eine Treiberschaltung 31 potentialverschoben und den Ausgangs-MOS-FETs des Wechselrichters zugeführt. Der Steuer- und Regeleinrichtung 17 ist außerdem eine Sende- und Empfangseinrichtung 10 zugeordnet, die über eine Busleitung 12 mit anderen EVGs und/oder mit einem zentralen Steuergerät 50 verbunden ist.
- 15

Letzteres wird von **Fig. 2** gezeigt. Dort sind eine Mehrzahl von EVGs 60-1,60-2,60-3,...,60-i an einer gemeinsamen Busleitung 12 angeschlossen.

- 20 Alle EVGs sind über diese Busleitung mit dem zentralen Steuergerät 50 verbunden, dem eine Anzeigeeinheit 51 zugeordnet ist. Über die Busleitung 12 wird es nun möglich, einzelne oder mehrere der genannten EVGs anzusteuern und ihnen Befehle zu übertragen, wie Ausschalten, Einschalten, Zünden o. ä. Auch können Helligkeitswerte voreingestellt werden und im Gegenzug Fehlerinformationen von den einzelnen Geräten abgefragt werden. So ist das Steuergerät 50 jederzeit über den Gesamt-Systemzustand informiert, wodurch ein hohes Maß an Betriebssicherheit gewährte werden kann und eine beschleunigte Wartung der dezentralen EVGs, bzw. für deren Leuchtstofflampen, möglich wird.
- 25

- 30 Die in **Fig. 1** gezeigten Funktionsblöcke 20,30,40,10,17 werden anhand der folgenden Figuren nun näher erläutert.
- 35

Fig. 3 zeigt hierzu die Steuer- und Regeleinrichtung 17 als integrierte Schaltung. Ihr werden die Vielzahl von Meßwerten m, welche den Prozeß-

- 40 signalen der **Fig. 1** entsprechen, zugeführt. Sie gibt zwei digitale Ansteuersignale für die Endstufen-Transistoren des Wechselrichters 30 ab, die über eine Treiberschaltung 31 noch verstärkt und potentialverschoben werden.
- 45

Neben den m Meßwerten werden der Steuer- und Regeleinrichtung 17 auch n Sollwerte zugeführt. Diese beeinflussen das vorgebbare Steuer- und Regelverhalten. Weiterhin ist als Teil der Steuer- und Regelschaltung 17 oder separat eine Sende- und Empfangseinrichtung 10 vorgesehen,

- 50 die direkt oder mittels eines Koppelschaltkreises mit der Busleitung 12 verbunden ist. Sie bildet die serielle Schnittstelle, die es der Steuer- und Regelschaltung 17 ermöglicht, Fehler- und Betriebszu-
- 55 standsinformationen dem zentralen Steuergerät 50 zu übermitteln.

Die zuvor genannten n Sollwerte können auch dieser Sende- und Empfangseinrichtung 10 zuge-

führt werden, die sie nach entsprechender Aufbereitung an die Steuer- und Regelschaltung 17 weitergibt. Sollwerte können beispielsweise sein der Notbeleuchtungspegel (NOT), der minimale Helligkeitspegel (MIN) und der maximale Helligkeitspegel (MAX), innerhalb letzterer beider kann sich der vorgebbare Helligkeitspegel (DIMM) im Betrieb bewegen.

Als Befehls- und Datenworte werden serielle digitale Datenworte verwendet, deren Länge 8 bit ist. Andere Wertlängen sind möglich. Jedem dezentralen EVG wird eine Adresse zugeordnet, die es ermöglicht, einzelne EVGs über die Adresse der Sende- und Empfangseinrichtung 10 anzusprechen und Informationen von ihnen abzufragen oder ihnen Befehle zu erteilen. Die bidirektionelle Arbeitsweise der Busleitung 12 ermöglicht ein problemloses und aufwandsarmes Verkabeln einer Vielzahl von dezentralen EVGs mit einem zentralen Steuergesetz (50).

Fig. 4 zeigt ein Prinzipschaltbild eines Eingangskreises, wie er zur Speisung des Wechselspannungsgenerators 30 aus einem Versorgungsnetz mit der Spannung U_N verwendbar ist. Der Eingangskreis besteht aus kapazitiven Eingangsfilters sowie ggf. aus einer Oberwellendrossel. Die Kondensatoren in Y-Schaltung dienen der Funkentstörung. Ihnen ist ein Überspannungsableiter oder ein VDR parallel geschaltet. Es schließt sich ein Vollwellengleichrichter an, der dann entfallen kann, wenn das Gerät betriebsmäßig mit Gleichspannung betrieben wird. Dem Gleichrichter nachgeschaltet ist ein Zwischenkreiskondensator C4, der sich bei 220 V Netzspannung auf ca. 300 V mit einer Restwelligkeit von ca. 10 % auflädt.

Aufgrund eines niedrig zu haltenden Crestfaktors sollte die Zwischenkreisspannung U_0 gut geglättet sein.

Parallel zum Zwischenkreiskondensator C4 liegt ein Spannungsteiler R18,R28, an dem ein der Zwischenkreis-Spannung proportionales Meßsignal abgreifbar ist. An einem Tiefpaß R21,C25 wird ein der Versorgungsspannung proportionales Signal erfaßt und ebenso, wie das zwischenkreisspannungs-abhängige Meßsignal der Steuer- und Regelschaltung 17 zugeführt. Beide Meßsignale dienen der Versorgungsspannungs-Überwachung und damit der Betriebssicherheit des EVG.

Fig. 5 zeigt ein Ausführungsbeispiel eines erfundungsgemäßen Lastkreises 40 mit einem Heizübertrager L5 für die Vorheizung der Wendelin der Leuchtstofflampe LA1. In Fig. 5 ist lediglich einer von einem Paar von Lampenkreisen gezeigt. Das Ausführungsbeispiel der Erfindung weist ein Paar dieser Zweige auf, d. h. zwei Leuchtstofflampen LA1,LA2 an einem Wechselspannungsgenerator-Ausgang, der die hochfrequente Wechselspannung

U_{HF} zwischen den in Serie geschalteten Leistungsschalttransistoren V21 und V28 abgibt. Der Wechselspannungsgenerator wird aus der in Fig. 4 gezeigten Eingangsschaltung 20 mit einer Zwischenkreisspannung U_{dc} versorgt. Da die Leuchtstofflampen einen negativen Innenwiderstand bei Betrieb besitzen, müssen sie beim Zündvorgang (ZÜND) mit hohen Spannungsspitzen und beim Heizen der Wendelin mit entsprechender Heizenergie versorgt werden. Ausgehend von dem Ausgangsanschluß des Wechselrichters 30 führt ein Serienresonanzkreis L2,C15 über ein Symmetrierelement TR1, welches später erläutert wird, auf die Entladungsstrecke H2,H4 der Leuchtstofflampe. Weiterhin ist zu der Leuchtstoffröhre ein Meßwiderstand R32 in Serie geschaltet, an welchem eine dem Lampenstrom I_L proportionale Spannung abgegriffen und der Steuer- und Regelschaltung 17 zugeführt wird. Zwischen Spule L2 und Kondensator C15 ist ein Zündkondensator C17 gegen Erde (NULL) geschaltet. Mit Hilfe dieser Anordnung kann die Dimmernennlinie der Entladungslampe vergleichmäßig werden, da bei steigender Frequenz der Widerstand des Kondensators C15 abnimmt und der Widerstand der Entladungslampe zunimmt. Parallel zu dem Zündkondensator C17 liegt auch die Primärwicklung des Heizübertragers L5 sowie in Serie zu dieser weiterhin eine Zenerdiode V15 und ein Meßwiderstand R10. An letzterem wird eine dem Heizwendelstrom I_{W1} proportionale Spannung abgegriffen und dem Steuer- und Regelschaltkreis 17 als weitere Systemmeßgröße zugeführt. Da der Wechselrichter 30 eine Ausgangsspannung einprägt und der Heizübertrager im wesentlichen parallel zur Leuchtstofflampe LA1 liegt, wird über den Heizübertrager auf seine Sekundärwicklungen eine Spannung eingeprägt. Die beiden Sekundärwicklungen versorgen je potentialfrei eine der beiden Heizwendeln H1,H2 und H3,H4. An dem primärseitigen Meßwiderstand R10 wird so die Summe der Heizwendelstrome I_{W1} gemessen.

Die weiterhin in Serie geschaltete Zenerdiode V15 erzeugt in der Primärwicklung von L5 eine Gleichstromkomponente, die aber nicht übertragen wird, sondern im Lampenstrom I_L fehlt und damit die Entladung der Lampe mit einem zusätzlichen Gleichstromanteil in der Größenordnung von ca. 1 % des tatsächlichen Entladungsstromes versorgt. Dies verhindert den Effekt der "laufenden Schichten", die bei Dimmung der Lampen auftreten. Die "laufenden Schichten" bestehen aus insbesondere beim Dimmen auftretenden Hell-/Dunkelzonen, die mit einer vorgegebenen Geschwindigkeit längs der Röhre laufen. Ein Überlagern von geringem Gleichstrom beschleunigt diesen Laufeffekt derart, daß er nicht mehr störend wirkt.

Zum Heizen wird der Wechselrichter 30 mit einer hohen Frequenz f_{max} betrieben, so daß an

C17 eine Wechselspannung auftritt, die nicht zum Zünden der Lampe LA1 geeignet ist. Über L5 werden in diesem Betriebszustand die Wendeln der Lampe beheizt, wobei, bedingt durch den Kaltleitereffekt der Wendeln, die Lampe zuerst einen hohen und dann einen geringeren Heizstrom aufnimmt. Nach ca. 750 msec Vorheizzeit wird die Zündung (ZÜND) der Lampe eingeleitet.

Beim Zünden der Leuchtstofflampe wird die Frequenz f des Wechselrichters 30 reduziert, sodaß sie näher an die Resonanzfrequenz f des Ausgangs-Serienresonanzkreises L2,C15 herankommt. Dadurch entsteht an C17 eine Spannungsüberhöhung, die in der Größenordnung von ca. 750 V (Spitze) liegt. Hierdurch wird eine funktionsfähige Lampe gezündet.

Sobald die Lampe LA1 oder LA2 gezündet hat, wird der Serienresonanzkreis L2,C15 oder L3,C16 stark gedämpft. Dies bewirkt einerseits eine Verschiebung der Resonanzfrequenzen f_0 und andererseits ein sofortiges Absinken der an der jeweiligen Lampe liegenden Wechselspannung. Das Absinken wird über den parallel zur Lampe geschalteten Spannungsteiler R27,R25 von dem Steuer- und Regelschaltkreis 17 erkannt. Dieser leitet daraufhin die eigentliche Betriebsphase (DIMM) der Lampen ein.

Zum effektiven Betrieb der Lampe wird die Frequenz f des Wechselrichters 30 so geregelt, daß die Leistung der Lampe dem vorgegebenen Sollwert, d. h. dem gewünschten Helligkeitsniveau, entspricht. Je höher die Frequenz im Betriebszustand wird, desto geringer wird die Lampenhelligkeit. Die Betriebsfrequenz des Wechselspannungsgenerators 30 kann dabei durchaus auch auf Werte verschoben werden, die in der Größenordnung der Heizfrequenz oder darüber liegen. Auch kann bei einer maximalen Leistung (MAX) eine Ausgangsfrequenz eingestellt werden, die unterhalb der Zündfrequenz, aber noch oberhalb der Resonanzfrequenz des Serienresonanzkreises L2,C15 liegt. Der Betriebszustand des Lampenkreises 14 kann abhängig von der eingesetzten Lampe, beispielsweise Argon-, Krypton-Lampe, oder abhängig von der gewählten Lampenleistung, stark variieren.

Die Kombination aus dem Kondensator C24 und den Dioden V30, V31 bewirkt eine frequenzabhängige Bedämpfung des Ausgangskreises bei Spannungsüberhöhung. Sie ist vor allem dann wichtig, wenn hohe Frequenzen und hohe Impedanzen vorkommen, also z.B. bei fehlender Lampe oder beim Vorheizen bei bereits warmer Wendel. Die Beschaltung dieser Art hilft, die Spannungsüberhöhung bei nicht gezündeter oder fehlender Lampe dann zu begrenzen, wenn sie unerwünscht ist. C24 ist so gewählt, daß die Bedämpfung zum Zündzeitpunkt klein genug bleibt.

Fig. 6 zeigt den Ausgangskreis der Fig. 5 für den zweiflammigen - zwei Leuchtstofflampen an einem Wechselrichter - Betrieb. Hier ist auch der Symmetrievertrager TR1 vollständig eingezeichnet. Jede Wicklung wird von einem der beiden Lampenströme durchflossen. Dies geschieht gegenseitig, so daß bei Stromamplituden-Abweichung eine resultierende Magnetisierung entsteht, die in dem induktiven Element eine Spannung induziert, welche symmetrierend wirkt. Ein solcher Übertrager ist vorteilhaft, wenn durch Bauteiltoleranzen und Lampentoleranzen sowie unterschiedlichen Temperaturbedingungen die beiden Lampen im gedimmten Zustand unterschiedlich hell brennen würden.

Durch das Symmetrieelement TR1 wird dies bei zweilampigen Leuchten vermieden. Werden mehrere Paare von Lampen an einem Wechselspannungsgenerator-Ausgang betrieben, so ist für jeweils ein Paar ein solches Symmetrieelement TR1 vorzusehen.

Aus Fig. 6 ist weiterhin ersichtlich, daß jeder Leuchtstofflampe ein individueller Serienresonanzkreis vorgeschaltet ist sowie ein individueller Zündkondensator C17,C18 parallelgeschaltet ist. Dies ermöglicht eine relativ unabhängige Zündphase sowie einem Gleichlauf im Dimmbetrieb. Parallel zu den Zündkondensatoren C17,C18 liegt jeweils ein Spannungsteiler R25-R28, die ein der Ausgangs-Wechselspannung proportionales Signal an die Steuer- und Regeleinrichtung 17 führen. In gleicher Weise ist es auch möglich, die Spannungsteiler direkt parallel zur Leuchtstofflampe zu schalten, d. h. hinter das Symmetrieelemente TR1. In Serie zu den Lampen, dies war anhand von Fig. 5 bereits für einen Lampenkreis erläutert, findet sich je ein Strommeß-Shunt R31,R32. An ihnen wird ein dem Lampenstrom proportionales Signal gewonnen, welches im Steuer- und Regelschaltkreis 17 mit dem vorgenannten Lampenspannungssignal multiplizierbar ist. Auf diese Weise wird sichergestellt, daß jederzeit ein der tatsächlichen Lampenleistung P_{ist} bzw. der Helligkeit E proportionales Signal zur Verfügung steht, das einer genauen Helligkeitsregelung als Istwert vorgebbar ist.

Fig. 7 zeigt detaillierter den Wechselrichter 30 mit seinen Ausgangs-Leistungstransistoren V28, V21. Zwischen ihnen wird die hochfrequente Wechselspannung U_{HF} an den zuvor erläuterten Lastkreis 40 abgeben. Angesteuert werden die beiden Leistungstransistoren über einen Ansteuer-Schaltkreis 31, der seine Steuersignale von dem Steuer- und Regelschaltkreis 17 erhält. Ggf. kommen unsymmetrische Abschalt-/Einschaltverzögerungen für die jeweiligen Transistoren in Betracht, so daß ein gemeinsames Leiten beider Transistoren V21, V28 grundsätzlich vermieden werden kann. Der obere Transistor wird über eine (nicht eingezeichnete) Bootstrap-Schaltung versorgt, der untere Transistor

und die Systemsteuerung 10,17,31 erhalten ihre Ansteuerspannung über einen Vorwiderstand und einen Glättungskondensator C5 aus der Zwischenkreisspannung U_0 . Neben der genannten Stromversorgung aus dem Zwischenkreis findet auch eine verlustarme Wechselspannungskopplung aus dem schwingenden Wechselrichter 30 über einen Kopplkondensator C21, die Dioden V12, V7 und die Induktivität L7 in die Speicherkapazität C5 statt.

Der durch den Vorwiderstand oder eine Stromquelle I_q dem Glättungskondensator C5 zuführbare Strom ist ausreichend, um das IC31 und die Steuer- und Regelschaltung 17 im abgeschalteten Betrieb (SLEEP) zu versorgen.

Bei Betrieb des Wechselrichters reicht die über einen Kondensator C21 ausgekoppelte, über die genannten Bauteile V12, V7,L7 gleichgerichtete und über C5 geglättete lasteingekoppelte Versorgung aus. Diese Versorgungsspannungsgewinnung ist nahezu verlustfrei, da lediglich reaktive Elemente zur Strombegrenzung eingesetzt werden. Mittels der in den unteren Wechselrichter-Halbzweig des Transistors V21 eingeschalteten antiparallelen Dioden V14,V15 und dem diesen parallel geschalteten Widerstand R34 wird eine dem Zweigstrom I_{max} proportionales Spannungssignal U_{kap} gewonnen. Dieses wird, wie die anderen Prozeßsignale dem Steuer- und Regelschaltkreis 17 zugeführt. Er kann hieraus die Stromrichtung des durch den Wechselrichter im Moment vor dem Öffnen von V21 fließenden Stromes feststellen. Ist dieser Strom negativ, so befindet sich der Lastkreis 40 des Wechselrichters 30 in einem unzulässigen kapazitiven Bereich. Er stellt hierbei eine Gefahr für den steuern den Wechselrichter dar. Neben der reinen Amplitudendetektion kann auch eine Phasenlagen-Betrachtung herangezogen werden, bei der der Laststrom I_{L1} in Bezug zum Wechselrichter-Zweigstrom I_{max} gesetzt wird und hieraus die relative Phase beider Ströme zur Detektion des Betriebszustandes herangezogen wird.

Eine Erkennung eines unzulässigen kapazitiven Betriebsverhaltens wird von der Steuerschaltung 17 mit einer Erhöhung der Betriebsfrequenz f des Wechselrichters 30 beantwortet, womit der Lastkreis 40 wieder induktiv betrieben wird. Die vorgenannte kapazitive Betriebsweise tritt vorwiegend bei geringer Versorgungsspannung auf. Mit der Zweigstromerfassung kann ein Zerstören von Bauelementen sicher vermieden werden.

Fig. 8 zeigt die Sende- und Empfangseinrichtung 10 sowie das ihr vorgeschaltete Koppelfilter, mit dem die Busankopplung zu der Steuerleitung 12 erfolgt. Der Digitalschnittstelle 10 sind in diesem Beispiel die Sollwerte für minimale-, maximale- und Notbeleuchtungshelligkeit ($U_{NOT}, U_{MIN}, U_{MAX}$) vorgegeben. Weiterhin ist ein Digitaleingang DAT vorgesehen, über den sowohl die Steuersignale von ei-

nem zentralen Steuergerät zum dezentralen EVG gelangen, als auch die Fehlersignale von dem dezentralen EVG zu dem zentralen Steuergerät übermittelt werden. Das serielle Interface ermöglicht die Fernsteuerung des elektronischen Vorschaltgerätes durch ein digitales Befehlssignal oder Befehlswort. Als solches digitales Signal ist ein 8 bit-Datenwort vorgesehen. Es wird von den beiden Kondensatoren C22,C23 differenziert, sodann um die Hälfte

5 der Versorgungsspannung des Regelschaltkreises 17 bzw. des Sende- und Empfangsschaltkreises 10 potentialverschoben und dann über einen Dämpfungskondensator C12 dem Digitaleingang DAT der Schnittstelle 10 zugeführt. Hierdurch können sowohl die 50 Hz-Netzfrequenz unterdrückt, als auch die Eingangsströme jeder Schnittstelle geringgehalten werden. Fig. 8b zeigt eine weitere Ausgestaltung der Busankopplung. Hierbei sind die beiden Busleitungen 12 mit dem Dateneingang der Digitalschnittstelle induktiv gekoppelt. Werden EVGs mit dem in Fig. 8a dargestellten Koppelfilter an verschiedenen Phasen des Drehstromnetzes betrieben, können Ausgleichsströme fließen, die die Datenübertragung störend beeinflussen. Diese Ausgleichsströme können zwar in der Schaltung gemäß Fig. 8b ebenfalls fließen, sie heben sich allerdings auf, da keine primärseitige Masseverbindung existiert. Eine vorteilhafte Weiterbildung dieser Schaltung zeigt Fig. 8c. Durch die Verwendung einer Sekundärwicklung mit Mittelanzapfung wird die Schaltung verpolungssicher. Anwendbar ist auch eine optische Kopplung, jedoch weist diese einen erhöhten Stromverbrauch auf.

Als Stellsignale werden 255 (entsprechend 8 bit) Helligkeitswerte vorgesehen. Auch das Steuersignal "AUS", dargestellt durch das binäre Wort "Null" ist möglich. Durch das vorgenannte Signal AUS versetzt sich das Gesamt-EVG sofort oder nach einer geringen Zeitspanne in einen stromsparenden Abschaltmodus (SLEEP). In ihm wird der Meßstromverbrauch des gesamten Vorschaltgerätes minimal. Der Wechselrichter 30 und die Ansteuerschaltung 31 werden stillgelegt und ggf. nach geringer weiterer Zeitverzögerung auch die wesentlichen Baugruppen des Steuer- und Regelschaltkreises 17. Lediglich die Empfangsschaltung der Sende- und Empfangseinrichtung 10 und die Überwachungsschaltung für die Erkennung eines Notbetriebes (NOT) bleiben aktiviert. Die Gesamtkreisleistung sinkt damit unter 1 W. Trifft jedoch in einem solchen Zustand ein neues Stellsignal ein, so nimmt die Steuer- und Regelschaltung 17 sofort die Einschaltsequenz vor, die mit Vorheizen und Zündvorgang (ZÜND) in den stationären Betrieb überleitet und dort wird für eine sofortige Einstellung des gewünschten Helligkeitswertes (DIMM) gesorgt.

Neben der Steuerung der Helligkeit und des Notbeleuchtungsmodus sowie des Abschalt-Modus (SLEEP-Mode) obliegt dem Steuer- und Regelschaltkreis 17 auch die Aufgabe, sämtlichen vorgenannten Prozeßgrößen die Informationen zu entnehmen, die zur Überwachung und Steuerung des EVG von Wichtigkeit sind.

Dies sind die Spannungsüberwachung, die Notbetriebs-Aufrechterhaltung und die Überwachung der Leuchtstofflampen hinsichtlich Wendelbruch oder Gasdefekt. Auch werden durch die Meßgrößen die verschiedenen Betriebszustände der Leuchtstoffröhre, wie Zünden, Vorheizen und stationärer Betrieb unterscheidbar. Nachfolgend sollen die gemessenen und zur Überprüfung herangezogenen Prozeßgrößen zusammengefaßt werden:

Versorgungsspannung U_{ac} , U_N ,

Unter-Überspannung U_{Nmin} , U_{Nmax} ,

Batteriespannung U_B ,

Zwischenkreisspannung U_0 , U_{dc} ,

Lampenstrom/Betriebsstrom I_{L1} , I_{L2} ,

Lampenspannung U_{L1} , U_{L2} ,

Ausgangsspannung U_{HF} ,

Ausgangsstrom I_{HF} ,

Wendelstrom I_{W1} , I_{W2} ,

Wechselspannungsgenerator-Zweigstrom I_{Kap} .

Anhand der aufgeführten Größen werden Überspannung und Unterspannung im Zwischenkreis und im Versorgungskreis erfaßt. Die Steuer- und Regelschaltung 17 schaltet dabei alle Funktionen ab, wenn die Spannung zu hoch wird, und kann erst wieder in Funktion gehen, wenn die Spannung einmal ab- und wieder zugeschaltet wurde.

Das Auftreten von Unterspannung - welches zu einem gefährdenden kapazitiven Betrieb des Wechselrichters führt - wird damit beantwortet, daß die Ansteuerschaltung 31 gesperrt wird. Solange die Netzversorgung nicht die notwendige Spannung hat, um den Heizvorgang der Wendeln zu garantierten und den kapazitiven Betrieb zu vermeiden, nimmt die Steuer- und Regeleinrichtung 17 keine Zündung vor. Erst nach Überschreiten eines vorgebaren Schwellenwertes wird der Zündvorgang ausgelöst. Dieses geschieht automatisch.

Eine Notbetriebsumschaltung auf eine vorgebare Notbeleuchtungs-Helligkeit erfolgt beispielsweise dann, wenn über den üblichen Wechselspannungs-Versorgungseingang des Einschaltkreises 20 und über den Meßfühler R21,C25 (Fig. 4) eine Gleichspannung U_N von dem Regelschaltkreis 17 erkannt wird. Hierzu dient eine Zähllogik, die bei Ausbleiben der Über- oder Unterschreitung eines vorgegebenen Schwellenwertes den Notbetrieb einleitet. Dies kann nach einer vorgegebenen Totzeit geschehen, die einzelne, möglicherweise fehlende, Halbwellen, überbrückt.

Fällt in einem Leuchtsystem die normal speisende Wechselspannung U_{ac} , U_N aus, so wird eine

Notspannungsversorgung U_B , die aus Batterien oder einem Generator gewonnen wird, auf die Netzspannungsleitung gelegt. Dies erkennen die EVGs automatisch.

5 im Notbetrieb wird die Helligkeit der Leuchtstofflampen nicht mehr durch den digital vorgegebenen Helligkeitswert DIMM vorgegeben, sondern durch einen dezentral am Gerät vorgebbaren Trimmwert, der über den Eingang U_{NOT} vorgebar ist.

10 Solte sich das EVG beim Eintreten dieses Notbetriebes im Abschalt-Modus (SLEEP) befinden, d. h. Lampe und Wechselrichter abgeschaltet, so führt es zuerst den normalen Zündvorgang (ZÜND) durch, um nachher auf die Notbetriebshelligkeit zu stellen.

Bei erkanntem Ende des Notbetriebszustandes geht das EVG in den vorherigen Zustand zurück, dies kann der AUS-Zustand sein, wenn sich das EVG vorher dort befand. Dies kann jedoch auch der ursprüngliche Helligkeitswert (DIMM) sein, sofern dieser vor Anforderung des Notbetriebes vorlag.

Über die Erfassung des Wendelstromes erfolgt eine Erkennung, ob entweder eine Lampe nicht eingesetzt ist oder eine der beiden Wendeln gebrochen ist. In einem dieser Fehler-Fälle wird der Wechselrichter 30 an seiner maximalen Frequenz f_{max} betrieben, was einerseits einen nach wie vor fließenden Heizstrom zur Folge hat, wenn die defekte Lampe ausgetauscht worden ist und andererseits die Spannung an der defekten Lampe auf das kleinstmögliche Maß heruntergesetzt. Dies ist zur Einhaltung der Sicherheitsbestimmung nach VDE wichtig. Der induktive Teil des Serienresonanzkreises im Ausgang wird bei der genannten hohen Frequenz f_{max} gegenüber dem kapazitiven Widerstand des Zündkondensators C17 so hoch, daß die Spannung am Ausgang auf ungefährliche Werte beschränkt wird und keine Gefahr für das Wartungspersonal besteht.

35 Bei Einsetzen einer funktionsfähigen Lampe wird ohne weitere Maßnahmen nach Abwarten der Vorheizdauer der Zündvorgang (ZÜND) eingeleitet. Die interne Ablaufsteuerung im Steuer- und

45 Regelschaltkreis 17 begrenzt weiterhin auch die Anzahl der Startversuche auf zwei und setzt (sendet) immer dann, wenn ein Fehlerfall vorliegt, wenn z. B. die Lampe fehlt, wenn ein Wendelbruch oder ein Gasdefekt vorliegt, ein Fehlersignal über die Sende- und Empfangseinrichtung 10 auf dem bidirektionalen Bus 12 ab. Dies gilt auch im Notbetrieb, da beim Defekt der Lampe der Notbetrieb nicht eingehalten werden kann.

55 Verdrahtungsfehler, die zu einem Kurzschluß der Entladungsstrecke der Lampe führen, können aufgrund der Prozeßsignale dann erfaßt werden, wenn die Lampenspannungen auf einen vorgegebenen minimalen Wert hin überwacht werden. Da-

bei führt eine Unterschreitung dieses vorgegebenen Wertes, wie bei der Netzüberspannungs-Überwachung zu einem Abschalten des gesamten EVG.

Auch die Zündunwilligkeit der Lampe, z. B. durch Gasdefekt, wird von dem Steuer- und Regelschaltkreis 17 erkannt. Wenn die Lampe innerhalb einer vorgegebenen Zündvorgabezeit nicht gezündet werden kann, d. h. wenn ein Abfallen der Spannung an dem Zündkondensator C17 innerhalb dieser Zeitspanne nicht eintritt, greift die genannte Sperre ein.

Neben einem vollständigen Abschalten und einer Fehlermeldung kann auch eine Wiederholzeit abgewartet werden, nach der ein erneuter Zünd- und Starversuch unternommen wird. Wird auch hierbei kein Zündereignis bewirkt, so reagiert die Steuer- und Regelschaltung 17 wie bei Heizwendelbruch und setzt die Frequenz des Wechselrichters 30 auf maximalen Wert f_{max} .

Bei Austauschen der Lampe, was der Steuer- und Regelschaltkreis 17 an einem Ansteigen der Lampenspannung oder an einem Verändern des Heizwendelstromes erkennt, erfolgt nach Wiedereinsetzen einer neuen Lampe neuerlich ein Zündversuch.

Zur Helligkeitsregelung der Leuchtstofflampen sei folgendes erläutert. Es findet eine echte Helligkeitsregelung Anwendung, da diese lampentypunabhängig gleiche Lampenleistungen - bei im wesentlichen gleichem Lampenwirkungsgrad - gewährleistet. Die istwertbestimmenden Maßgrößen Lampenstrom, Lampenspannung werden multipliziert und analog oder digital mit den über die Sende- und Empfangseinrichtung 10 ferngesteuert vorgegebenen Sollwerten verglichen. Das Vergleichsergebnis steuert unmittelbar oder über einen Regler die Frequenz f des Wechselspannungsgenerators 30. Wird eine genauere Helligkeitsabstufung gewünscht, so kann eine logarithmische Sollwertanpassung erfolgen. Auf gleiche Weise kann eine exponentielle Istwertgewichtung durchgeführt werden. Neben der Lampentypunabhängigkeit wird auch eine Kompensation von Lampenalter, von der bestehenden Betriebstemperatur und auch von der möglicherweise schwankenden Netzspannung U_N erreicht.

Mit der prozeßsignalgesteuerten Betriebszustandsüberwachung wird es auch möglich, das Zünden der Lampen auf kleine Helligkeitswerte durchzuführen, wobei der normalerweise auftretende Lichtimpuls vermieden werden kann. Letzterer ist bedingt durch die sich im Ausgangskreis durch den Zündvorgang speichernde Energie, die dann nach Zünden schlagartig in die Lampe entladen wird. Zur Unterdrückung bzw. Beseitigung wird eine schnelle Zünderkennung - über die Änderung der Lampenbrennspannung U_{L1}, U_{L2} - vorgesehen, sowie eine schnelle Reduktion des Lampenstroms

nach dem Zünden ausgeführt. Letzteres durch augenblickliche Verschiebung der Wechselrichter-Ausgangsfrequenz in Richtung zu höheren Frequenzen hin. Hierdurch wird der Glimmbereich zwischen dem Zünden und der stationären Gasentladung künstlich verlängert. Hierdurch würde unter normalen Umständen eine Reduktion der Lampenlebensdauer auftreten. Dies wird gem. dem Ausführungsbeispiel jedoch vermieden, da die Verlängerung der Glimmphase nur für die kritischen niedrigen Helligkeitswerte eingesetzt wird. Für große Helligkeitswerte wird der Strom auf einem höheren Pegel gehalten, wodurch die Glimmphase verkürzt wird. Dies kann über digitale Steuerworte und die Sende- und Empfangseinrichtung 10 per Software eingestellt werden.

In Fig. 9 ist ein Helligkeits-Zeitdiagramm dargestellt, in welchem die Helligkeit der von dem EVG gemäß Fig. 1 gesteuerten Lampe zeitabhängig variiert wird. Zunächst ist maximale Helligkeit vorgesehen, es folgt ein Über die Busleitung 12 und die Digitalschnittstelle 10 vorgegebener Abschalt-Zyklus. Die Helligkeit wird gem. einer vorgegebenen Steigung bis auf Null reduziert, sodann schalten sich der Wechselrichter 30, seine Treiberschaltung 31 und wesentliche Teile des Steuer-ICs 17 zur Stromersparnis ab. Ein daraufhin folgender Notbeleuchtungs-Zustand führt - trotz abgeschaltetem System - zu einem gesteuerten Zünden sowie einem Aufbau der Helligkeit der Lampe auf die voreingestellte Notbeleuchtungshelligkeit (NOT). Diese ist über die Sollwert-Vorgabe U_{NOT} für jedes dezentrale EVG veränderbar. Ebenso ist der in Fig. 9 eingezeichnete maximale und minimale Helligkeitswert (MIN, MAX) über eine entsprechende Sollwertvorgabe einstellbar oder abgleichbar.

In Fig. 10 ist ein programmtechnisch gesteuerter "Softstart" als Helligkeits-Zeitdiagramm schematisch dargestellt. Das EVG 60 befindet sich zunächst in abgeschaltetem Zustand (AUS). Der Befehl "Softstart" führt nun entweder auf ein automatisches steigungsgeregelter Ansteigen der Lampenhelligkeit - nach deren Zündung - oder zu einem programmgesteuerten inkrementalen Anwachsen der Lampenhelligkeitsstufen. Im letzteren Fall werden von dem zentralen Steuergerät 50 aus in bestimmten Zeitabschnitten inkremental wachsende Helligkeitswerte gesendet. Die dezentralen EVGs folgen den Anforderungen nahezu verzögungsfrei. Hierdurch wird ein änderungsgeschwindigkeits-gesteuertes (geregeltes) Ansteigen und Abfallen der dezentralen Lichtquellen möglich.

Patentansprüche

1. Schaltungsanordnung zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen (LA1, LA2),

- mit einer an ein Wechselstromnetz (Netz) anschließbaren Gleichrichterschaltung (GR, 20), mit einem von der Gleichrichterschaltung (GR, 20) gespeisten und in seiner Ausgangsfrequenz (U_{HF}) variierten Wechselspannungsgenerator (30, WR), mit einem Lastkreis (40), der mindestens einen Reihenschwingkreis (L3, C18; L2, C17) und mindestens eine Gasentladungslampe (LA1, LA2) enthält und von dem Wechselspannungsgenerator (30) mit dessen variiertem Ausgangsfrequenz (U_{HF}) gespeist wird, mit einer als Sende- und Empfangseinrichtung ausgebildete digitale Schnittstelle (10) zum Empfang digitaler Steuersignale für den Betriebszustand, wie z.B. Not-, Sleep-, Zünd-, Aus- oder Einzustand, sowie die Lampenhelligkeit (E_{sol}) und/oder Lampenleistung (P_{sol}) und zum Absenden digitaler Fehlermeldungen und/oder digitaler Betriebszustandsinformationen, mit einer mit der digitalen Schnittstelle (10) verbundenen Steuer- und/oder Regeleinrichtung (17), welche die ihr von der digitalen Schnittstelle (10) übermittelten digitalen Steuersignale auswertet und welche in der Schaltungsanordnung aufgenommene Meßwertsignale ($U_{L1}, U_{L2}, I_{w1}, I_{w2}, U_{dc}, U_{ac}$) auswertet und daraus die digitalen Fehlermeldungen und Betriebszustandsinformationen erzeugt und an die digitale Schnittstelle (10) überträgt.
2. Schaltungsanordnung nach Anspruch 1, **dadurch gekennzeichnet**, daß die Steuer- und/oder Regeleinrichtung (17) eine Mehrzahl (m) von Meßwertsignalen, wie Lampenstrom (I_{L1}, I_{L2}), Lampenwechselspannung (U_{L1}, U_{L2}), Heizwendelstrom (I_{w1}, I_{w2}), Wechselspannungsgenerator-Zweigstrom (i_{Kap}), Wechselrichter-Ausgangsspannung (U_{HF}), Zwischenkreis-Gleichspannung (U_{dc}, U_0), unmittelbar dezentral und eine Mehrzahl (n) von System-Sollwerten, wie Notbeleuchtungspegel (NOT), oberer und unterer Helligkeitsgrenzwert (MIN, MAX), Betriebshelligkeitspegel (E_{sol}, P_{sol}), entweder unmittelbar dezentral oder über die Sende- und Empfangseinrichtung (10) mittelbar zentral zuführbar sind bzw. zugeführt werden.
3. Schaltungsanordnung nach Anspruch 1 oder 2, **dadurch gekennzeichnet**, daß die Steuer- und/oder Regeleinrichtung (17) aus den Meßwertsignalen Lampenstrom (I_{L1}, I_{L2}) und Lampenspannung (U_{L1}, U_{L2}) die tatsächliche Lampenleistung (P_{lst}) bzw. die dieser entsprechende Helligkeit (E_{lst}) ermittelt und mit einem vorgegebenen Helligkeitswert (P_{soll} , E_{soll}) vergleicht und auf der Basis des Differenzsignals eine Frequenzänderung des Wechselspannungsgenerators (30) vornimmt.
5. Schaltungsanordnung nach einem der Ansprüche 1 - 3, **dadurch gekennzeichnet**, daß die Steuer- und/oder Regeleinrichtung (17) aus den Meßwertsignalen Lampenstrom (I_{L1}, I_{L2}) und Wechselspannungsgenerator-Ausgangsspannung (U_{HF}) durch Vergleich der Null-durchgänge beider bzw. der relativen Phasen zwischen beiden Meßwertsignalen einen kapazitiven Betrieb des Lastkreises (40) erfaßt und bei Erfassen einer solchen Betriebsweise die Frequenz (f) des Wechselspannungsgenerators (30) aufwärts verschiebt.
10. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, daß die Steuer- und/oder Regeleinrichtung (17) das Meßwertsignal Heizwendelstrom (I_{w1}, I_{w2}) daraufhin überwacht, ob es einen vorgegebenen Schwellenwert überschreitet, und daß die Steuer- und/oder Regeleinrichtung (17) bei Absinken des Heizwendelstroms unter den Schwellenwert die Frequenz (f) des Wechselspannungsgenerators (30) zu seiner maximalen Frequenz (f_{max}) verschiebt, und über die digitale Schnittstelle (10) ein entsprechendes digitales Fehlersignal abgibt.
15. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, daß die Steuer- und/oder Regeleinrichtung (17) das Meßwertsignal Heizwendelstrom (I_{w1}, I_{w2}) daraufhin überwacht, ob es einen vorgegebenen Schwellenwert überschreitet, und daß die Steuer- und/oder Regeleinrichtung (17) bei Absinken des Heizwendelstroms unter den Schwellenwert die Frequenz (f) des Wechselspannungsgenerators (30) zu seiner maximalen Frequenz (f_{max}) verschiebt, und über die digitale Schnittstelle (10) ein entsprechendes digitales Fehlersignal abgibt.
20. Schaltungsanordnung nach Anspruch 5, **dadurch gekennzeichnet**, daß die Steuer- und/oder Regeleinrichtung (17) das Meßwertsignal Heizwendelstrom (I_{w1}, I_{w2}) daraufhin überwacht, ob es einen vorgegebenen Schwellenwert überschreitet, und daß die Steuer- und/oder Regeleinrichtung (17) bei Absinken des Heizwendelstroms unter den Schwellenwert die Frequenz (f) des Wechselspannungsgenerators (30) zu seiner maximalen Frequenz (f_{max}) verschiebt, und über die digitale Schnittstelle (10) ein entsprechendes digitales Fehlersignal abgibt.
25. Schaltungsanordnung nach Anspruch 5, **dadurch gekennzeichnet**, daß die Steuer- und/oder Regeleinrichtung (17) das Meßwertsignal Heizwendelstrom (I_{w1}, I_{w2}) auch überwacht während der Wechselspannungsgenerator (30) mit max. Frequenz arbeitet, um einen Neustart beim Erkennen einer neueingesetzten Lampe zu initiieren.
30. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, daß dem Lampenstrom (I_{L1}, I_{L2}) eine unwesentliche Gleichstromkomponente überlagerbar ist, welcher vorzugsweise im Bereich geringer Helligkeitswerte der GE-Lampe (LA1, LA2) anwendbar ist, und welche insbesondere 1 % des Lampenstroms beträgt.
35. Schaltungsanordnung nach Anspruch 5, **dadurch gekennzeichnet**, daß die Steuer- und/oder Regeleinrichtung (17) das Meßwertsignal Heizwendelstrom (I_{w1}, I_{w2}) auch überwacht während der Wechselspannungsgenerator (30) mit max. Frequenz arbeitet, um einen Neustart beim Erkennen einer neuen eingesetzten Lampe zu initiieren.
40. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, daß die Steuer- und/oder Regeleinrichtung (17) das Meßwertsignal Heizwendelstrom (I_{w1}, I_{w2}) auch überwacht während der Wechselspannungsgenerator (30) mit max. Frequenz arbeitet, um einen Neustart beim Erkennen einer neuen eingesetzten Lampe zu initiieren.
45. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, daß dem Lampenstrom (I_{L1}, I_{L2}) eine unwesentliche Gleichstromkomponente überlagerbar ist, welcher vorzugsweise im Bereich geringer Helligkeitswerte der GE-Lampe (LA1, LA2) anwendbar ist, und welche insbesondere 1 % des Lampenstroms beträgt.
50. Schaltungsanordnung nach einem der Ansprüche 2 - 7, **dadurch gekennzeichnet**, daß die Veränderung der Frequenz (f) des Wechselspannungsgenerators (30) mittels eines in der Steureinrichtung (17) vorgesehe-
55. Schaltungsanordnung nach einem der Ansprüche 2 - 7, **dadurch gekennzeichnet**, daß die Veränderung der Frequenz (f) des Wechselspannungsgenerators (30) mittels eines in der Steureinrichtung (17) vorgesehe-

nen spannungsgesteuerten Oszillators (VCO)
bewirkt wird.

9. Schaltungsanordnung nach Anspruch 2 oder 3,
dadurch gekennzeichnet,
daß im Falle des Notbetriebes (NOT) der zentral
vorgegebene Helligkeitswert (P_{soll} , E_{soll})
durch den dezentral an der Steuer- und/oder
Regeleinrichtung (17) vorgebbaren voreinge-
stellten Notbeleuchtungspegel ersetzt wird. 10
10. Schaltungsanordnung nach einem der vorher-
gehenden Ansprüche,
dadurch gekennzeichnet,
daß die Steuer- und/oder Regeleinrichtung (17) 15
die Meßwertsignal und Fehlerermittlung dezen-
tral und lampenindividuell durchführt, und
daß die Steuer- und/oder Regeleinrichtung (17)
über die digitale Schnittstelle (10) die Betriebs-
zustandsinformationen und lampenindividuellen
Fehlermeldungen auf ein bidirektional arbeiten-
des Busleitungspaar (12) in digital kodierter
Form überträgt.

25

30

35

40

45

50

55

System

FIG. 1

FIG. 2

Steuerung, Regelung, Überwachung , 17

FIG. 3

GR. 20

FIG. 4

Vorheizung, Lastkreis 40

Lastkreis, 40

FIG. 7

FIG. 8a

FIG. 8b

FIG. 8c

FIG. 9

FIG. 10

