MGF1302

LOW NOISE GaAs FET

DESCRIPTION

The MGF1302 is a low-noise GaAs FET with an N-channel Schottky gate, which is designed for use in S to X band amplifiers and oscillators. The hermetically sealed metal-ceramic package assures minimum parasitic losses, and has a configuration suitable for microstrip circuits.

FEATURES

- Low noise figure NF_{min} = 1.4 dB (MAX.) @ f = 4 GHz
- High associated gain G_s = 11 dB (MIN.) @f = 4 GHz
- · High reliability and stability

APPLICATION

S to X band low noise amplifiers and oscillators

QUALITY GRADE

• GG

RECOMMENDED BIAS CONDITIONS

- V_{DS}=3V
- I_D = 10mA
- Refer to Bias Procedure

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Symbol	Parameter	Ratings	Unit
V _{GDO}	Gate to drain voltage	-6	V
V _{GSO}	Gate to source voltage	-6	V
ID	Drain current	100	mA
PT	Total power dissipation *1	360	mW
Toh	Channel temperature	175	°C
Tstg	Storage temperature	-55~+175	°C

*1: Tc=25℃

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Symbol Parameter		Task condisi		1			
Symbol	rarameter	Test conditions		Min	Тур	Max	Unit
V _{(BR)GDO}	Gate to drain breakdown voltage	$I_G = -100 \mu A$	-6	_	_	V	
V(BR)GSO	Gate to source breakdown voltage	$I_G = -100 \mu A$	-6	_	_	٧	
I _{GSS}	Gate to source leakage current	V _{GS} =-3V, V _{DS} =0V	_	_	10	μА	
I _{DSS}	Saturated drain current	V _{GS} =0V, V _{DS} =3V	30	60	100	mA	
V _{GS} (off)	Gate to source cut-off voltage	$V_{DS} = 3V$, $I_D = 100 \mu A$	-0.3		-3.5	V	
g _m	Transconductance	V _{DS} =3V, I _D =10 mA		25	45	_	mS
Gs	Associated gain	V -3V I -10-A	f= 4 GHz	11	_	_	
us 	Associated gain	$V_{DS}=3V$, $I_{D}=10$ mA	f=12GHz	5	_	_	dB
NFmin	Minimum noise figure)/ 2\/ 10 A	f= 4 GHz	_		1.4	1.5
	William Holse figure	V _{DS} =3V, I _D =10mA f=12GHz		_	_	4.0	dB
Rth (ch-a)	Thermal resistance *1	ΔVf method		_		416	°C/W

*1: Channel to ambient

LOW NOISE GaAs FET

TYPICAL CHARACTERISTICS

DRAIN TO SOURCE VOLTAGE VDS (V)

MITSUBISHI

LOW NOISE GaAs FET

S PARAMETERS (Ta=25°C, $V_{DS}=3V$, $I_{D}=10$ mA)

Freq.	S ₁₁		S ₂₁		S ₁₂		s	22	.,	MSG/MAG
(GHz)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	K	(dB)
0.5	0.997	- 13.3	3.809	167.6	0.019	80.1	0.664	- 10.3	0.042	23.0
1.0	0.975	_ 23.1	3.727	158.4	0.026	73.1	0.650	- 17.3	0.180	21.6
1.5	0.952	- 32.8	3.644	149.1	0.033	66.0	0.636	- 24.2	0.271	20.4
2.0	0.929	- 42.5	3.561	139.9	0.040	58.9	0.622	- 31.2	0.341	19.5
2.5	0.906	- 52.2	3.478	130.7	0.047	51.8	0.608	- 38.2	0.398	18.7
3.0	0.884	- 62.0	3.396	121.5	0.054	44.8	0.594	- 45.2	0.449	18.0
3.5	0.861	- 71.7	3.313	112.2	0.061	37.7	0.580	- 52.1	0.494	17.3
4.0	0.838	- 81.4	3.230	103.0	0.068	30.6	0.566	- 59.1	0.537	16.8
4.5	0.811	- 90.9	3.124	94.4	0.071	24.5	0.551	- 66.2	0.604	16.5
5.0	0.783	- 100.3	3.018	85.8	0.074	18.5	0.537	- 73.3	0.674	16.1
5.5	0.756	- 109.8	2.913	77.2	0.076	12.4	0.522	- 80.3	0.746	15.8
6.0	0.729	-119.2	2.807	68.6	0.079	6.3	0.507	- 87.4	0.822	15.5
6.5	0.709	127.0	2.710	61.1	0.078	. 1.1	0.503	- 93.7	0.902	15.4
7.0	0.689	- 134.9	2.614	53.5	0.078	- 4.1	0.499	- 100.1	0.989	15.3
7.5	0.670	142.7	2.517	46.0	0.077	- 9.2	0.494	- 106.4	1.085	13.4
8.0	0.650	- 150.5	2.421	38.4	0.076	- 14.4	0.490	-112.7	1.190	12.4
8.5	0.633	157.6	2.364	31.5	0.075	- 18.1	0.487	-118.2	1.271	11.8
9.0	0.617	164.7	2.308	24.5	0.074	-21.9	0.485	- 123.7	1.357	11.3
9.5	0.600	- 171.8	2.251	17.6	0.074	-25.6	0.482	- 129.2	1.449	10.9
10.0	0.584	178.9	2.194	10.6	0.073	-29.3	0.479	-134.7	1.547	10.4
10.5	0.568	173.3	2.149	3.4	0.072	-33.9	0.483	-140.1	1.641	10.1
11.0	0.551	165.5	2.103	- 3.9	0.071	-38.4	0.487	- 145.5	1.739	9.7
11.5	0.535	157.7	2.058	-11.1	0.069	-43.0	0.491	- 150.8	1.844	9.4
12.0	0.519	149.9	2.012	- 18.3	0.068	-47.5	0.495	- 156.2	1.954	9.1

MGF1302

LOW NOISE GaAs FET

S PARAMETERS (Ta=25°C, $V_{DS}=3V$, $I_D=30$ mA)

Freq.	S ₁₁		S ₂₁		S ₁₂		S	S ₂₂		MSG/MAG
(GHz)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	K	(dB)
0.5	0.995	- 16.4	5.393	164.9	0.017	78.7	0.579	- 11.4	0.067	25.0
1.0	0.966	- 27.1	5.224	155.4	0.022	72.1	0.564	- 18.3	0.233	23.8
1.5	0.936	- 37.7	5.056	145.8	0.027	65.4	0.549	- 25.1	0.350	22.7
2.0	0.906	- 48.3	4.888	136.3	0.032	58.8	0.534	- 32.0	0.442	21.8
2.5	0.876	- 48.9	4.720	126.8	0.037	52.2	0.519	- 38.9	0.520	21.1
3.0	0.847	- 69.6	7.552	117.3	0.042	45.6	0.504	- 45.8	0.589	20.3
3.5	0.817	- 80.2	4.383	107.7	0.047	38.9	0.489	- 52.6	0.652	19.7
4.0	0.787	- 90.8	4.215	98.2	0.052	32.3	0.474	- 59.5	0.713	19.1
4.5	0.758	- 100.6	4,040	89.7	0.054	27.5	0.461	- 66.2	0.800	18.8
5.0	0.729	-110.3	3.865	81.2	0.055	22.6	0.447	- 72.9	0.893	18.5
5.5	0.700	- 120.1	3.690	72.7	0.056	17.8	0.433	- 79.6	0.993	18.2
6.0	0.671	- 129.8	3.515	64.2	0.058	12.9	0.420	- 86.3	1.101	15.9
6.5	0.652	- 137.9	3.378	56.8	0.058	9.4	0.418	- 92.5	1.188	15.0
7.0	0.632	- 146.0	3.241	49.5	0.058	5.9	0.417	- 98.7	1.282	14.3
7.5	0.612	154.0	3.103	42.1	0.058	2.3	0.416	- 104.9	1.386	13.6
8.0	0.593	- 162.1	2.966	34.7	0.058	- 1.2	0.414	-111.1	1.501	12.9
8.5	0.577	- 177.0	2.883	27.8	0.057	- 3.4	0.414	-116.3	1.596	12.5
9.0	0.561	175.6	2.799	20.9	0.057	- 5.5	0.413	-121.5	1.699	12.0
9.5	0.545	168.1	2.716	14.0	0.057	- 7.7	0.413	- 126.7	1.810	11.6
10.0	0.529	160.3	2.633	7.1	0.056	- 9.8	0.413	- 131.9	1.929	11.2
10.5	0.515	152.4	2.571	0.2	0.056	- 12.9	0.419	- 137.0	1.998	10.9
11.0	0.502	144.6	2.508	- 6.8	0.056	- 16.0	0.426	- 142.1	2.070	10.6
11.5	0.488	136.7	2.446	-13.7	0.056	-19.0	0.433	- 147.1	2.145	10.3
12.0	0.475	147.5	2.384	-20.6	0.056	-22.1	0.439	- 152.2	2.223	10.1

MGF1302

LOW NOISE GaAs FET

NOISE PARAMETERS $(V_{DS}=3V, I_D=10mA)$

Freq.		₽opt.	Rn	NFmin. (dB)	
(GHz)	Magn.	Angle (deg.)	(Ω)		
. 1	0.747	5.6	25.7	0.77	
2	0.683	22.4	26.3	0.82	
3	0.638	42.2	26.9	0.89	
4	0.595	63.5	27.5	0.96	
5	0.562	80.2	28.1	1.19	
6	0.530	97.9	28.7	1.41	
7	0.503	115.2	28.3	1.63	
8	0.475	134.5	30.0	1.85	
9	0.450	150.7	26.3	2.08	
10	0.430	167.2	22.6	2.30	
11	0.408	- 174.5	18.8	2.53	
12	0.385	- 155.3	15.0	2.76	

Glp and P1dB (Ta=25 $^{\circ}$ C, V_D=3V)

f = 4	GHz	f = 12GHz		
t _D = 10mA	I _D =30mA	I _D = 10mA	I _D =30mA	

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.