Parte 2

Espaços vetoriais reais

Introduziremos o conceito de espaço vetorial real, com ênfase em espaços vetoriais finitamente gerados, e estudaremos as suas propriedades. Apresentaremos os conceitos de subespaços vetoriais, subespaços finitamente gerados, interseção de subespaços, combinação linear, espaços vetoriais reais finitamente gerados, conjuntos linearmente independentes ou linearmente dependentes, base e dimensão de espaços vetoriais reais finitamente gerados, coordenadas numa base e soma e soma direta de subespaços vetoriais reais.

Estudaremos transformações lineares entre espaços vetoriais reais de dimensão finita, núcleo e imagem de transformações lineares, teorema do núcleo e da imagem, representação matricial de transformações lineares entre espaços vetoriais reais de dimensão finita e suas propriedades; funcionais lineares e suas propriedades.

Finalizaremos com a álgebra das transformações lineares em espaços vetoriais reais de dimensão finita, apresentando as operações de adição, multiplicação por escalar e composição de transformações lineares; transformações lineares invertíveis, isomorfismo e automorfismo de espaços vetoriais.

Espaços vetoriais e subespaços

Definição 1 (Espaço vetorial real)

Um espaço vetorial real é um conjunto não vazio V munido com operações de adição e multiplicação por escalar

$$+: \mathbf{V} \times \mathbf{V} \longrightarrow \mathbf{V}$$
 $(\mathbf{v}, \mathbf{w}) \longmapsto \mathbf{v} + \mathbf{w}$ $e \qquad \cdot: \mathbb{R} \times \mathbf{V} \longrightarrow \mathbf{V}$ $(\mathbf{a}, \mathbf{v}) \longmapsto \mathbf{a} \cdot \mathbf{v},$

tendo as seguintes propriedades, para quaisquer $a, b \in \mathbb{R}$ e $u, v, w \in V$:

A1 (Associativa):
$$u + (v + w) = (u + v) = w$$
;

A2 (Comutativa):
$$u + v = v + u$$
;

A3 (Existência de elemento neutro aditivo):

Existe
$$\theta \in V$$
, tal que $\nu + \theta = \nu$, para todo $\nu \in V$;

A4 (Existência de simétrico):

Para cada
$$v \in V$$
, existe $u \in V$, tal que $u + v = \theta$;

Me1:
$$1 \cdot v = v$$
;

Me2 (Associativa):
$$a \cdot (b \cdot v) = (a \cdot b) \cdot v$$
;

AMe1 (Distributiva):
$$\mathbf{a} \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{a} \cdot \mathbf{u} + \mathbf{a} \cdot \mathbf{v}$$
;

AMe2 (Distributiva):
$$(a + b) \cdot v = a \cdot v + b \cdot v$$
.

Os elementos de V são chamados de vetores.

Exemplo 1

 $V=\mathbb{R}$ é um espaço vetorial real com as operações usuais de adição e multiplicação de números reais.

Exemplo 2

 $\mathbb{C} = \{a + bi ; a, b \in \mathbb{R}\}$ com as operações usuais de adição de números complexos e a multiplicação de um número real por um número complexo, a saber,

$$(a+bi)+(c+di)=(a+c)+(b+d)i$$
 e $a\cdot(c+di)=(a\cdot c)+(a\cdot d)i$, onde $a,b,c,d\in\mathbb{R}$, é um espaço vetorial real.

Exemplo 3

 $V=M_{m\times n}(\mathbb{R})$, com as operações usuais de adição de matrizes e multiplicação de um número real por uma matriz, é um espaço vetorial real.

De fato, já mostramos a validade de A1, A2, A3, Me1, Me2, AMe1 e AMe2. Só falta verificar A4. Seja $A=(\mathfrak{a}_{ij})\in M_{m\times n}(\mathbb{R})$. Definindo $B=(\mathfrak{b}_{ij})$ por $\mathfrak{b}_{ij}=-\mathfrak{a}_{ij},$ para $i=1,\ldots,m$ e $j=1,\ldots,n,$ temos que

$$(A+B)_{ij} = a_{ij} + b_{ij} = a_{ij} + (-a_{ij}) = 0,$$

Terminologia:

Espaços vetoriais reais são também chamados de \mathbb{R} -espaços vetoriais ou espaços vetoriais sobre \mathbb{R} . Aqui diremos simplesmente espaços vetoriais.

para $i=1,\ldots,m$ e $j=1,\ldots,n$. Logo, $A+B=0_{m\times n}$.

Verifique as oito propriedades das operações.

Exemplo 4

 $\mathbb{R}^2 = \{(x,y) \; ; \; x,y \in \mathbb{R}\} \text{ com as operações:}$

$$(x,y)+(x',y')=(x+x',y+y') \,\,\mathrm{e}\,\,\alpha\cdot(x,y)=(\alpha\cdot x,\alpha\cdot y),$$

onde $x, y, x', y' \in \mathbb{R}$, é um espaço vetorial real.

Exemplo 5

 $\mathbb{R}^3 = \{(x, y, z) ; x, y, z \in \mathbb{R}\}, \text{ com as operações:}$

$$(x, y, z) + (x', y', z') = (x + x', y + y', z + z') e$$

$$a \cdot (x, y, z) = (a \cdot x, a \cdot y, a \cdot z),$$

onde $x, y, z, x', y', z' \in \mathbb{R}$, é um espaço vetorial real.

Exemplo 6

Inspirados nos Exemplos 1, 4 e 5, para cada natural $n \ge 1$, vamos mostrar que

$$\mathbb{R}^{n} = \{(x_{1}, \dots, x_{n}) ; x_{1}, \dots, x_{n} \in \mathbb{R}\},\$$

munido com as operações:

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n) e$$

$$a \cdot (x_1, \dots, x_n) = (a \cdot x_1, \dots, a \cdot x_n),$$

para quaisquer $x_1, \ldots, x_n, y_1, \ldots, y_n, a \in \mathbb{R}$, é um espaço vetorial.

De fato, sejam $\mathfrak{u}=(x_1,\ldots,x_n),\ \mathfrak{v}=(y_1,\ldots,y_n)$ e $w=(z_1,\ldots,z_n)$ e $\mathfrak{a},\mathfrak{b}\in\mathbb{R},$ então:

A1 (Associativa):

$$u + (v + w) \stackrel{(1)}{=} u + (y_1 + z_1, \dots, y_n + z_n)$$

$$\stackrel{(2)}{=} (x_1 + (y_1 + z_1), \dots, x_n + (y_n + z_n))$$

$$\stackrel{(3)}{=} ((x_1 + y_1) + z_1, \dots, (x_n + y_n) + z_n)$$

$$\stackrel{(4)}{=} (x_1 + y_1, \dots, x_n + y_n) + (z_1, \dots, z_n)$$

$$\stackrel{(5)}{=} (u + v) + w$$

A2 (Comutativa):

$$u + v \stackrel{\text{(1)}}{=} (x_1 + y_1, \dots, x_n + y_n)$$

$$\stackrel{\text{(2)}}{=} (y_1 + x_1, \dots, y_n + x_n)$$

$$\stackrel{\text{(3)}}{=} v + w$$

A3 (Existência de elemento neutro aditivo): A \mathfrak{n} -upla $\mathfrak{o}=(\mathfrak{0},\ldots,\mathfrak{0})$ é o elemento neutro, pois para todo $\mathfrak{u}=(x_1,\ldots,x_n)$ temos que

$$u + o = (x_1 + 0, ..., x_n + 0) = (x_1, ..., x_n) = u.$$

Verifique as oito propriedades das operações.

A adição é feita coordenada a coordenada e a multiplicação por escalar é feita em cada coordenada.

Em (1) usamos a definição da adição de v + w; em (2), a definição da adição de u e v + w; em (3), em cada coordenada, a associatividade da adição em \mathbb{R} ; em (4) e (5), a definição da adição no \mathbb{R}^n .

Em (1) e (3) usamos a definição da adição no \mathbb{R}^n e em (2), em cada coordenada, a comutatividade da adição em \mathbb{R} .

0 é elemento neutro da adição em \mathbb{R} .

A4 (Existência de simétrico): O simétrico de $\mathfrak{u}=(x_1,\ldots,x_n)$ é o elemento $\mathfrak{v}=(-x_1,\ldots,-x_n),$ pois

$$u + v = (x_1 + (-x_1), \dots, x_n + (-x_n)) = (0, \dots, 0) = 0.$$

Me2 (Associativa):

$$\begin{array}{ccc} \boldsymbol{a} \cdot (\boldsymbol{b} \cdot \boldsymbol{v}) & \stackrel{(1)}{=} & \boldsymbol{a} \cdot (\boldsymbol{b} \cdot \boldsymbol{y}_1, \dots, \boldsymbol{b} \cdot \boldsymbol{y}_n) \\ & \stackrel{(2)}{=} & \left(\boldsymbol{a} \cdot (\boldsymbol{b} \cdot \boldsymbol{y}_1), \dots, \boldsymbol{a} \cdot (\boldsymbol{b} \cdot \boldsymbol{y}_n)\right) \\ & \stackrel{(3)}{=} & \left((\boldsymbol{a} \cdot \boldsymbol{b}) \cdot \boldsymbol{y}_1, \dots, (\boldsymbol{a} \cdot \boldsymbol{b}) \cdot \boldsymbol{y}_n\right) \\ & \stackrel{(4)}{=} & (\boldsymbol{a} \cdot \boldsymbol{b}) \cdot (\boldsymbol{y}_1, \dots, \boldsymbol{y}_n) \\ & \stackrel{(5)}{=} & (\boldsymbol{a} \cdot \boldsymbol{b}) \cdot \boldsymbol{v} \end{array}$$

AMe1 (Distributiva):

$$a \cdot (u + v) \stackrel{(1)}{=} a \cdot (x_1 + y_1, \dots, x_n + y_n)$$

$$\stackrel{(2)}{=} (a \cdot (x_1 + y_1), \dots, a \cdot (x_n + y_n))$$

$$\stackrel{(3)}{=} (a \cdot x_1 + a \cdot y_1, \dots, a \cdot x_n + a \cdot y_n)$$

$$\stackrel{(4)}{=} (a \cdot x_1, \dots, a \cdot x_n) + (a \cdot y_1, \dots, a \cdot y_n)$$

$$\stackrel{(5)}{=} a \cdot u + a \cdot v$$

Deixamos como Exercício mostrar:

Me1: $1 \cdot v = v$ e

AMe2 (Distributiva): $(a + b) \cdot v = a \cdot v + b \cdot v$.

Antes de darmos outros Exemplos de espaços vetoriais reais vamos mostrar mais algumas propriedades importantes.

Proposição 1 (Propriedades adicionais)

Seja V um espaço vetorial real. Valem as seguintes propriedades:

- (a) o elemento neutro é único.
- (b) o simétrico é único.

Demonstração:

(a) Sejam θ e θ' em V elementos neutros da adição. Então,

$$\theta \stackrel{(1)}{=} \theta + \theta' \stackrel{(2)}{=} \theta'$$

(b) Sejam $u, u' \in V$ simétricos de $v \in V$. Então, u + v = 0, u' + v = 0 e u = 0 + u = (u' + v) + u = u' + (v + u) = u' + 0 = u'.

Daqui por diante, denotamos o elemento neutro aditivo de um espaço vetorial V por 0_V e o simétrico de ν por $-\nu$.

Exemplo 7

Seja $n \in \mathbb{N}$ fixado e t uma indeterminada. Definimos

O simétrico de $x \in \mathbb{R}$ é -x, pois x + (-x) = 0.

Em (1) usamos a definição de $b \cdot v$; em (2), a definição da multiplicação pelo escalar a; em (3), em cada coordenada, a associatividade da multiplicação em \mathbb{R} ; em (4), a definição da multiplicação pelo escalar $a \cdot b$; em (5), a definição de v.

Em (1) usamos a definição de adição no \mathbb{R}^n ; em (2), a definição de multiplicação por escalar no \mathbb{R}^n ; em (3), em cada coordenada a distributividade em \mathbb{R} ; em (4), a definição de adição no \mathbb{R}^n ; em (5), novamente, a definição de multiplicação por escalar no \mathbb{R}^n .

Em (1) usamos que θ' é elemento neutro e em (2), que θ é elemento neutro.

$$\mathcal{P}_n(\mathbb{R}) = \{f(t) = \alpha_0 + \alpha_1 t + \dots + \alpha_n t^n \; ; \; \alpha_j \in \mathbb{R}, \; \mathrm{para \; cada} \; j = 0, \dots, n \}.$$

Para $f(t) = a_0 + a_1 t + \dots + a_n t^n \in g(t) = b_0 + b_1 t + \dots + b_n t^n \text{ em } \mathcal{P}_n(\mathbb{R})$ e $k \in \mathbb{R}$ definimos

$$f(t) + g(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n e$$

$$k \cdot f(t) = (k \cdot \alpha_0) + (k \cdot \alpha_1)t + \dots + (k \cdot \alpha_n)t^n.$$

Com essas operações, $\mathcal{P}_{n}(\mathbb{R})$ é um espaço vetorial.

Exemplo 8

Seja t uma indeterminada. Definimos o conjunto dos polinômios com coeficientes reais como

$$\mathcal{P}(\mathbb{R}) = \{a_0 + a_1 t + \dots + a_n t^n ; n \in \mathbb{N} \text{ e } a_j \in \mathbb{R}, \text{ para cada } j = 0, \dots, n\}.$$

 $\mathcal{P}(\mathbb{R})$ é um espaço vetorial com as operações usuais de adição de polinômios e multiplicação de um número real por um polinômio.

Observamos que
$$\mathcal{P}(\mathbb{R}) = \bigcup_{n \geq 0} \mathcal{P}_n(\mathbb{R})$$
, além disso, $\mathcal{P}_0(\mathbb{R}) = \mathbb{R}$ e
$$\mathcal{P}_0(\mathbb{R}) \subset \mathcal{P}_1(\mathbb{R}) \subset \cdots \subset \mathcal{P}_n(\mathbb{R}) \subset \mathcal{P}_{n+1}(\mathbb{R}) \subset \cdots.$$

Exemplo 9

Seja I $\subset \mathbb{R}$ um intervalo. Definimos

$$\mathcal{F}(I) = \{f : I \longrightarrow \mathbb{R} ; f \text{ \'e função } \}.$$

 $\mathcal{F}(I)$ é um espaço vetorial, com as operações usuais de adição e multiplicação por um número real, a saber, para $f, g \in \mathcal{F}(I)$ e $k \in \mathbb{R}$,

$$(f+g)(x)=f(x)+g(x),$$
 para todo $x\in I$ e

$$(k \cdot f)(x) = k \cdot f(x)$$
, para todo $x \in I$.

De fato, para quaisquer $f,g,h\in\mathcal{F}(I)$ e $k,\ell\in\mathbb{R},$ temos:

A1 (Associativa): Para todo $x \in I$,

$$(f + (g + h))(x) \stackrel{(1)}{=} f(x) + (g + h)(x)$$

$$\stackrel{(2)}{=} f(x) + (g(x) + h(x))$$

$$\stackrel{(3)}{=} (f(x) + g(x)) + h(x)$$

$$\stackrel{(4)}{=} (f + g)(x) + h(x)$$

$$\stackrel{(5)}{=} ((f + g) + h)(x),$$

logo
$$f + (g + h) = (f + g) + h$$
.

A2 (Comutativa): Para todo $x \in \mathbb{R}$, temos

$$(f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x).$$

$$\mathrm{Logo},\, f+g=g+f.$$

A3 (Existência de elemento neutro aditivo): A função $\mathbf{o}:\mathbf{I}\longrightarrow\mathbb{R}$ definida

Em (1), (2), (4) e (5) usamos a definição de adição de funções e em (3), a associatividade da adição em \mathbb{R} .

por o(x) = 0, para todo $x \in \mathbb{R}$, é o elemento neutro, pois o + f = f, para todo $f \in \mathcal{F}(I)$.

A4 (Existência de simétrico): Dada $f \in \mathcal{F}(I)$ tomamos $g : I \longrightarrow \mathbb{R}$ definida por g(x) = -f(x), para cada $x \in I$. Então, f + g = o.

Me2 (Associativa): Para todo $x \in I$, temos

$$(k \cdot (\ell \cdot f))(x) \stackrel{\text{(1)}}{=} k \cdot (\ell \cdot f)(x)$$

$$\stackrel{\text{(2)}}{=} k \cdot (\ell \cdot f(x))$$

$$\stackrel{\text{(3)}}{=} (k \cdot \ell) \cdot f(x)$$

$$\stackrel{\text{(4)}}{=} ((k \cdot \ell) \cdot f)(x),$$

$$\log_{0}, k \cdot (\ell \cdot f) = (k \cdot \ell) \cdot f.$$

Deixamos as propriedades Me1, AMe1 e AMe2 como exercício.

Os subconjuntos de um espaço vetorial que interessam são os subespaços vetoriais.

Definição 2 (Subespaço vetorial)

Seja V um espaço vetorial real. Um subconjunto não vazio W de V é chamado um subespaço vetorial de V se, e somente se, W é um espaço vetorial com as operações de V.

Exemplo 10

 $\{0_V\}$ e V são subespaços de V, chamados de subespaços triviais.

Quais condições $W\subset V$ deve satisfazer para ser um subespaço? A resposta está a seguir.

Proposição 2

Seja V um espaço vetorial. Um subconjunto não vazio W de V é um subespaço de V se, e somente se,

- (a) $0_V \in W$;
- (b) se $u, w \in W$, então $u + w \in W$;
- (c) se $w \in W$ e $k \in \mathbb{R}$, então $k \cdot w \in W$.

Demonstração:

(\Longrightarrow :) Suponhamos que $W \neq \emptyset$ seja um subespaço de V. Então, pela definição de subespaço, W está munido com as operações de V e valem (b) e (c). Como existe $w \in W$ e $-w = (-1) \cdot w \in W$, logo $\emptyset_v = w + (-w) \in W$. (: \Longleftrightarrow) Suponhamos que $W \subset V$ tenha as propriedades (a), (b) e (c). De (a) segue que $W \neq \emptyset$. De (b) e (c) segue que as operações de V estão fechadas em W. As propriedades A1, A2, Me1, AMe1, AMe2 valem em W pois valem

Em (1), (2) e (4) usamos a definição da multiplicação de uma função por um número real e em (3), a associatividade da multiplicação de números reais.

Fez o Exercício 1b?

em qualquer subconjunto de V. Vale A3, pois $0_V \in W$ é o elemento neutro da adição. Para cada $w \in W$, $-w = (-1) \cdot w \in W$, valendo A4. Portanto, W é um espaco vetorial.

Geometricamente, planos que passam pela origem são subespaços vetoriais do \mathbb{R}^3 .

Em (1) usamos a distributividade em \mathbb{R} ; em (2), a comutatividade e associatividade da adição em \mathbb{R} e em (3), que $\mathfrak{u}, \mathfrak{w} \in W$.

Em (4) usamos a comutatividade da multiplicação e a distributividade em $\mathbb R$ e em (5), que $\mathfrak{u} \in W$.

Geometricamente, retas no plano que não passam pela origem não são subespaços do \mathbb{R}^2 , enquanto retas no plano passando pela origem são subespaços do \mathbb{R}^2 .

Exemplo 11

 $W = \{(x, y, z) \in \mathbb{R}^3 ; x - 2y + 3z = 0\}$ é um subespaço do \mathbb{R}^3 .

De fato:

(a)
$$0 - 2 \cdot 0 + 3 \cdot 0 = 0$$
, logo, $(0, 0, 0) \in W$.

(b) Sejam u = (x, y, z), w = (x', y', z') em W. Então, x - 2y + 3z = 0, x' - 2y' + 3z' = 0. Como u + w = (x + x', y + y', z + z'), temos

$$(x + x') - 2(y + y') + 3(z + z') \stackrel{\text{(1)}}{=} x + x' - 2y - 2y' + 3z + 3z'$$

$$\stackrel{\text{(2)}}{=} (x - 2y + 3z) + (x' - 2y' + 3z')$$

$$\stackrel{\text{(3)}}{=} 0 + 0 = 0,$$

 $logo u + w \in W$.

(c) Sejam $u = (x, y, z) \in W \in a \in \mathbb{R}$.

Então,
$$x - 2y + 3z = 0$$
, $a \cdot u = (a \cdot x, a \cdot y, a \cdot z)$ e
$$(a \cdot x) - 2(a \cdot y) + 3(a \cdot z) \stackrel{(4)}{=} a \cdot (x - 2y + 3z) \stackrel{(5)}{=} a \cdot 0 = 0.$$

Logo, $a \cdot u \in W$.

Exemplo 12

 $U = \{(x, y) \in \mathbb{R}^2 : 2x - y = 3\}$ não é subespaço do \mathbb{R}^2 , pois $(0, 0) \notin U$. $W = \{(x, y) \in \mathbb{R}^2 ; 2x - y = 0\}$ é subespaço do \mathbb{R}^2 .

Exemplo 13

Vamos mostrar que W é um subespaço de $M_{2\times 2}(\mathbb{R})$, onde

$$W = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in M_{2 \times 2}(\mathbb{R}) \; ; \; a+b+c = 0 \; \mathrm{e} \; 2a-b+d = 0 \right\}.$$

Primeiramente, escrevemos $A \in W$ como $A = \begin{pmatrix} a & b \\ -a-b & -2a+b \end{pmatrix}$, onde

(a) É claro que tomando
$$a = b = 0$$
, temos $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in W$.

(b) Sejam
$$A = \begin{pmatrix} a & b \\ -a-b & -2a+b \end{pmatrix}$$
 e $A' = \begin{pmatrix} a' & b' \\ -a'-b' & -2a'+b' \end{pmatrix}$ em W . Então,

$$\begin{array}{ll} A + A' & = & \left(\begin{array}{ccc} a + a' & b + b' \\ (-a - b) + (-a' - b') & -2a + b + (-2a' + b') \end{array} \right) \\ & = & \left(\begin{array}{ccc} a + a' & b + b' \\ -(a + a') - (b + b') & -2(a + a') + (b + b') \end{array} \right) \\ & = & \left(\begin{array}{ccc} a'' & b'' \\ -a'' - b'' & -2a'' + b'' \end{array} \right) \in W, \text{ onde tomamos } a'' = a + a' \end{array}$$

e b'' = b + b'.

(c) Seja $k \in \mathbb{R}$ e A como em (b). Então

$$\begin{array}{lll} k \cdot A & = & \left(\begin{array}{ccc} k \cdot \alpha & k \cdot b \\ k \cdot (-\alpha - b) & k \cdot (-2\alpha + b) \end{array} \right) \\ & = & \left(\begin{array}{ccc} k \cdot \alpha & k \cdot b \\ -(k \cdot \alpha) - (k \cdot b) & -2(k \cdot \alpha) + (k \cdot b) \end{array} \right) \\ & = & \left(\begin{array}{ccc} \alpha' & b' \\ -\alpha' - b' & -2\alpha' + b' \end{array} \right) \text{ est\'{a} em W, onde} \end{array}$$

tomamos $a' = k \cdot a \in b' = k \cdot b$.

Usamos a distributividade e a comutatividade da multiplicação em \mathbb{R} .

Exercícios

- 1. Seja V um espaço vetorial real. Mostre que:
 - (a) Para todo $v \in V$, temos $0 \cdot v = 0_V$.
 - (b) Para cada $v \in V$, o simétrico de $v \in (-1) \cdot v$.
- 2. Mostre que os seguintes conjuntos são espaços vetoriais reais, com as operações usuais de adição e multiplicação por um número real:
 - (a) $\mathbb{R}^2 = \{(x, y) ; x, y \in \mathbb{R}\}.$
 - (b) $\mathbb{R}^3 = \{(x, y, z) ; x, y, z \in \mathbb{R}\}.$
 - (c) $M_{2\times 2}(\mathbb{R})$.
 - $(\mathrm{d})\ \mathcal{P}_n(\mathbb{R}),\,\mathrm{onde}\ n\in\mathbb{N}.$
 - (e) $\mathcal{P}(\mathbb{R})$.
- 3. Seja $V = \{x \in \mathbb{R} ; x > 0\}$. Para $x, y \in V$ e $k \in \mathbb{R}$, definimos:

 $\mathbf{x} \oplus \mathbf{y} = \mathbf{x} \cdot \mathbf{y},$ onde \cdot é a multiplicação de números reais, e

 $k\odot x=x^k,$ a k-ésima potência de x.

Mostre que V é um espaço vetorial real com as operações \oplus e \odot .

- 4. Determine, em cada item, se o subconjunto W de V é um subespaço vetorial de V:
 - (a) $V = \mathbb{R}^2 \in W = \{(x, y) \in \mathbb{R}^2 : x 3y = 1\}$
 - (b) $V = \mathbb{R}^2 \in W = \{ (x, y) \in \mathbb{R}^2 : x 3y = 0 \}$
 - (c) $V = \mathbb{R}^3 \in W = \{(x, 2x, -3x) : x \in \mathbb{R}\}.$
 - (d) $V = \mathbb{R}^3 \in W = \{ (x, y, z) \in \mathbb{R}^3 : 2x + y z = 2 \}.$
 - (e) $V = \mathbb{R}^3 \in W = \{(x, y, z) \in \mathbb{R}^3 : 2x + y z = 0\}.$
 - (f) $V = \mathcal{P}_2(\mathbb{R}) \in W = \{ a + bt + ct^2 \in \mathcal{P}_2(\mathbb{R}) : 2a + b c = 0 \}.$
 - (g) $V = \mathcal{F}(\mathbb{R}) = \{f : \mathbb{R} \longrightarrow \mathbb{R} ; f \in \text{função}\} e$ $W = \{f \in V : f \in \text{função impar}\}.$
 - (h) $V = \mathcal{F}(\mathbb{R})$ e $W = \{ f \in V ; f \notin \text{função par } \}.$
 - (i) $V = \mathcal{F}(\mathbb{R})$ e $W = \mathcal{C}(\mathbb{R}) = \{ f \in V ; f \text{ \'e contínua } \}.$
 - (j) $V = \mathcal{F}(\mathbb{R})$ e $W = \mathcal{D}(\mathbb{R}) = \{ f \in V ; f \text{ \'e deriv\'avel } \}.$
 - (k) $V = \mathbb{R}^4 \in W = \{ (x, y, z, w) \in \mathbb{R}^4 ; 2x y + 3z w = 0 \}.$
 - (1) $V = M_{n \times 1}(\mathbb{R}) \in W = \{X \in V ; AX = 0\}, \text{ onde } A \in M_{m \times n}(\mathbb{R}) \notin A$ uma matriz dada.
 - $(\mathrm{m}) \ V = M_{2\times 2}(\mathbb{R}) \ \mathrm{e} \ W = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in V \ ; \ a+d=0, \ b-2d=0 \ \right\}.$
 - (n) $V = \mathbb{R}^n \in W = \{ (x_1, \dots, x_n) \in \mathbb{R}^n ; a_1x_1 + \dots + a_nx_n = 0 \}, \text{ onde }$ a_1, \ldots, a_n são números reais fixados nem todos nulos, isto é, tais que $(a_1, ..., a_n) \neq (0, ..., 0)$.
 - (o) $V = M_{n \times n}(\mathbb{R}) \in W = \{ A \in V : A^t = -A \}.$
 - (p) $V = M_{n \times n}(\mathbb{R}) \in W = \{ A \in V ; A^t = A \}.$
- 5. Sejam V um espaço vetorial e U e W subespaços de V. Mostre que:
 - (a) $U \cap W$ é um subespaço de V;
 - (b) $U \cup W$ é um subespaço de V se, e somente se, $U \subset W$ ou $W \subset U$;
 - (c) $U + W = \{u + w : u \in U, w \in W\}$ é um subespaço de V.
- 6. Determine $U \cap W$ e interprete geometricamente $U, W \in U \cap W$, onde $U = \{(x, y, z) \in \mathbb{R}^3 : 2x + y - z = 0\} e$ $W = \{ (x, y, z) \in \mathbb{R}^3 : x + y + 2z = 0 \}.$
- 7. Determine $U \cap W$, onde $U = \{(x, y, z, w) \in \mathbb{R}^4 : x w = 0\}$ e $W = \{ (x, y, z, w) \in \mathbb{R}^4 ; x + y + z = 0, y - w = 0 \}.$

 \boldsymbol{W} é chamado um hiperplanodo \mathbb{R}^n .

Combinação linear, dependência e independência linear

Vamos aprender a construir subespaços de um espaço vetorial real. Para isto introduzimos o seguinte conceito.

Definição 3 (Combinação linear)

Seja V um espaço vetorial. Sejam v_1, \ldots, v_m em V e a_1, \ldots, a_m em \mathbb{R} . Dizemos que $v = a_1 v_1 + \cdots + a_m v_m$ é uma combinação linear de v_1, \ldots, v_m .

Exemplo 14

Se $V = \mathbb{R}$ e $v_1 = 1$, então para todo $v = a \in \mathbb{R}$ temos $v = a \cdot 1 = av_1$ é combinação linear de v_1 .

Exemplo 15

 $V=\mathbb{R}^2,\, \nu_1=(1,1)$ e $\nu=(3,3)=3\nu_1$ é uma combinação linear de $\nu_1.$

Exemplo 16

Sejam $v_1=(1,1)$ e $v_2=(1,-1)$ em \mathbb{R}^2 . Observamos que dado $(x,y)\in\mathbb{R}^2$ existem $a,b\in\mathbb{R}$ tais que

$$(x,y)=\alpha\nu_1+b\nu_2=\alpha(1,1)+b(1,-1)=(\alpha+b,\alpha-b), \ \mathrm{pois} \left\{ \begin{array}{l} \alpha+b=x\\ \alpha-b=y \end{array} \right.$$

é um sistema possível e determinado, cujas soluções são $a = \frac{x+y}{2}$ e $b = \frac{x-y}{2}$. Portanto, qualquer vetor do \mathbb{R}^2 é combinação linear de v_1 e v_2 , a saber,

() Y±11(4 4) Y=11(4 4)

$$(x,y) = \frac{x+y}{2}(1,1) + \frac{x-y}{2}(1,-1).$$

Exemplo 17

Sejam $e_1=(1,0,0),\,e_2=(0,1,0)$ e $e_3=(0,0,1).$ Para todo $(x,y,z)\in\mathbb{R}^3,$ temos

$$(x,y,z) = (x,0,0) + (0,y,0) + (0,0,z)$$

= $x(1,0,0) + y(0,1,0) + z(0,0,1)$
= $xe_1 + ye_2 + ze_3$.

Exemplo 18

Sejam $e_1 = (1,0,\ldots,0), \; e_2 = (0,1,0\ldots,0), \; \ldots, \; e_n = (0,0,\ldots,1) \; \mathrm{em} \; \mathbb{R}^n$

Para todo $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$, temos

$$(x_1, x_2, ..., x_n) = (x_1, 0, ..., 0) + (0, x_2, ..., 0) + ... + (0, ..., 0, x_n)$$

= $x_1(1, 0, ..., 0) + x_2(0, 1, 0, ..., 0) + ... + x_n(0, 0, ..., 1)$
= $x_1e_1 + x_2e_2 + ... + x_ne_n$.

Definição 4 (Subespaço gerado)

Seja V um espaço vetorial real e sejam v_1, \ldots, v_m em V. O conjunto W de todas as combinações lineares de v_1, \ldots, v_m é um subespaço de V chamado de subespaço gerado por v_1, \ldots, v_m e é denotado por $W = [v_1, \ldots, v_m]$. Assim,

$$W = [v_1, ..., v_m]$$

= $\{a_1v_1 + \cdots + a_mv_m; a_1, ..., a_m \in \mathbb{R}\},\$

e dizemos que v_1, \ldots, v_m são geradores ou geram W.

Precisamos mostrar que, efetivamente, $W = [v_1, \dots, v_m]$ é um subespaço de V. De fato,

- (a) Tomando $a_1 = \cdots = a_m = 0 \in \mathbb{R}$, temos $0_V = 0v_1 + \cdots + 0v_m \in W$.
- (b) Sejam $u = a_1v_1 + \cdots + a_mv_m e w = b_1v_1 + \cdots + b_mv_m em W$. Então,

$$\begin{array}{rcl} u+w & = & (a_1\nu_1+\cdots+a_m\nu_m)+(b_1\nu_1+\cdots+b_m\nu_m) \\ & \stackrel{(1)}{=} & (a_1\nu_1+b_1\nu_1)+\cdots+(a_m\nu_m+b_m\nu_m) \\ & \stackrel{(2)}{=} & (a_1+b_1)\cdot\nu_1+\cdots+(a_m+b_m)\cdot\nu_m \in W, \end{array}$$

pois $a_i + b_i \in \mathbb{R}$, para todo j = 1, ..., n.

(c) Sejam $\mathfrak{u}=\mathfrak{a}_1\mathfrak{v}_1+\cdots+\mathfrak{a}_m\mathfrak{v}_m$ em $W\in k\in\mathbb{R}$. Então, da distributividade e da associatividade da multiplicação por escalar, temos

$$\begin{aligned} k \cdot u &= k \cdot (\alpha_1 \nu_1 + \dots + \alpha_m \nu_m) = (k \cdot \alpha_1) \nu_1 + \dots + (k \cdot \alpha_m) \nu_m \in W, \\ \text{pois } k \cdot \alpha_j \in \mathbb{R}, \text{ para todo } j = 1, \dots, n. \end{aligned}$$

Exemplo 19

Seja
$$v_1 = (1, 1) \in \mathbb{R}^2$$
. Então,
 $[v_1] = \{a(1, 1) ; a \in \mathbb{R}\}$
 $= \{(a, a) ; a \in \mathbb{R}\}$
 $= \{(x, y) \in \mathbb{R}^2 ; x = y\}$.

Exemplo 20

Vamos determinar o subespaço W do \mathbb{R}^3 gerado pelos vetores $\nu_1=(1,-1,0),$ $v_2 = (1, 0, -1) e v_3 = (-1, 2, -1).$

 $v \in W = [v_1, v_2, v_3]$ se, e somente se, existem $a_1, a_2, a_3 \in \mathbb{R}$ tais que $v = a_1v_1 + a_2v_2 + a_3v_3$. Assim,

$$v = (x, y, z) = a_1(1, -1, 0) + a_2(1, 0, -1) + a_3(-1, 2, -1)$$

= $(a_1 + a_2 - a_3, -a_1 + 2a_3, -a_2 - a_3)$

Determinar o subespaço W é equivalente a determinar quais as condições sobre x, y, z para que o sistema

Em (1) usamos a comutatividade e associatividade da adição em V e em (2), a distributividade da multiplicação por escalar em

$$\begin{cases} a_1 + a_2 - a_3 = x \\ -a_1 + 2a_3 = y \\ -a_2 - a_3 = z \end{cases}$$

tenha solução.

Reduzindo por linhas a matriz ampliada associada ao sistema, obtemos:

$$\begin{pmatrix}
1 & 1 & -1 & x \\
-1 & 0 & 2 & y \\
0 & -1 & -1 & z
\end{pmatrix}
\sim_{1}
\begin{pmatrix}
1 & 1 & -1 & x \\
0 & 1 & 1 & x \\
0 & -1 & -1 & z
\end{pmatrix}
\sim_{2}
\begin{pmatrix}
1 & 1 & -1 & x \\
0 & 1 & 1 & x + y \\
0 & 0 & 0 & x + y + z
\end{pmatrix}$$

Fizemos a seguinte sequência de operações elementares:

em
$$\sim_1$$
: $L_2 \rightarrow L_2 + L_1$;

em
$$\sim_2$$
: $L_3 \rightarrow L_3 + L_2$.

O sistema tem solução se, e somente se, x + y + z = 0. Logo,

$$W = [v_1, v_2, v_3] = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 0\}.$$

Exemplo 21

Vamos determinar equações para o subespaço W de $M_{2\times 2}(\mathbb{R})$ gerado por

$$\nu_1=\left(\begin{array}{cc}1&1\\1&1\end{array}\right),\,\nu_2=\left(\begin{array}{cc}1&1\\0&1\end{array}\right)\,\mathrm{e}\,\,\nu_3=\left(\begin{array}{cc}1&1\\0&0\end{array}\right).$$

Temos que $v=\left(egin{array}{cc} x & y \\ z & w \end{array}\right)\in W$ se, e somente se, existem $\mathfrak{a},\mathfrak{b},\mathfrak{c}\in\mathbb{R}$ tais

que
$$v = av_1 + bv_2 + cv_3$$
. Assim,

$$\begin{pmatrix} x & y \\ z & w \end{pmatrix} = a \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} a+b+c & a+b+c \\ a+b & a \end{pmatrix}.$$

Logo,
$$v = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \in W$$
 se, e somente se, o sistema
$$\begin{cases} a + b + c = x \\ a + b + c = y \\ a + b = z \\ a = w \end{cases}$$

tem solução.

Reduzindo por linhas a matriz ampliada associada ao sistema, obtemos

$$\begin{pmatrix} 1 & 1 & 1 & | & x \\ 1 & 1 & 1 & | & y \\ 1 & 1 & 0 & | & z \\ 1 & 0 & 0 & | & w \end{pmatrix} \sim_1 \begin{pmatrix} 1 & 1 & 1 & | & x \\ 0 & 0 & 0 & | & y - x \\ 1 & 1 & 0 & | & z \\ 1 & 0 & 0 & | & w \end{pmatrix} \sim_2 \begin{pmatrix} 0 & 0 & 1 & | & x - z \\ 0 & 0 & 0 & | & y - x \\ 0 & 1 & 0 & | & z - w \\ 1 & 0 & 0 & | & w \end{pmatrix}.$$

Fizemos a seguinte sequência de operações elementares:

em
$$\sim_1$$
: $L_2 \rightarrow L_2 - L_1$; e em \sim_2 : $L_1 \rightarrow L_1 - L_3$; $L_3 \rightarrow L_3 - L_4$.

Portanto.

$$W = \left\{ \begin{pmatrix} x & y \\ z & w \end{pmatrix} \in M_{2 \times 2}(\mathbb{R}) ; y - x = 0 \right\}$$

$$= \left\{ \begin{pmatrix} x & x \\ z & w \end{pmatrix} ; x, z, w \in \mathbb{R} \right\}$$

$$= \left\{ x \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + z \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + w \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} ; x, z, w \in \mathbb{R} \right\}.$$

Exemplo 22

Vamos determinar equações para W = [(1, 1, 1, 1), (2, 1, 0, 0), (3, 2, 1, 1)],subespaço do \mathbb{R}^4 . Temos que

$$(x, y, z, w) = a(1, 1, 1, 1) + b(2, 1, 0, 0) + c(3, 2, 1, 1),$$

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + c \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

Reduzindo por linhas a matriz ampliada associada ao sistema, obtemos:

$$\begin{pmatrix}
1 & 2 & 3 & x \\
1 & 1 & 2 & y \\
1 & 0 & 1 & z \\
1 & 0 & 1 & w
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 2 & 3 & x \\
0 & -1 & -1 & y - x \\
0 & -2 & -2 & z - x \\
0 & -2 & -2 & w - x
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 2 & 3 & x \\
0 & -1 & -1 & y - x \\
0 & 0 & 0 & z - 2y + x \\
0 & 0 & 0 & w - 2y + x
\end{pmatrix}$$

Logo,
$$W = \{(x, y, z, w) \in \mathbb{R}^4 ; x - 2y + z = 0 \text{ e } x - 2y + w = 0\}.$$

Definição 5 (Vetores linearmente independentes ou dependentes)

Seja V um espaço vetorial real. Dizemos que os vetores v_1, \ldots, v_n em V são linearmente independentes se, e somente se,

se
$$a_1v_1 + \cdots + a_nv_n = 0_V$$
, então $a_1 = \cdots = a_n = 0$.

Caso contrário, existem a_1, \ldots, a_n em \mathbb{R} , nem todos nulos, tais que $a_1v_1 + \cdots + a_nv_n = 0_V$ e dizemos que v_1, \ldots, v_n são linearmente dependentes.

Exemplo 23

 0_V é linearmente dependente em qualquer espaço vetorial V, pois $1 \cdot 0_V = 0_V$.

Exemplo 24

 $0_V, v_1, \ldots, v_n$ são linearmente dependentes em qualquer espaço vetorial V, pois $1 \cdot 0_V + 0 \cdot v_1 + \cdots + 0 \cdot v_n = 0_V$.

Exemplo 25

Se $\nu \neq 0_V$, então ν é linearmente independente.

De fato, suponhamos por absurdo que exista $a \in \mathbb{R}$, $a \neq 0$ tal que $a \cdot v = 0_V$. Então,

$$0_V = \alpha^{-1} \cdot 0_V = \alpha^{-1}(\alpha \cdot \nu) = (\alpha^{-1} \cdot \alpha) \cdot \nu = 1 \cdot \nu = \nu,$$

contradizendo o fato de $\nu \neq 0_V$.

Exemplo 26

Os vetores $v_1=(1,2)$ e $v_2=(2,4)$ em \mathbb{R}^2 são linearmente dependentes, pois como $v_2=2v_1$, temos $2\cdot v_1-1\cdot v_2=(0,0)$.

Proposição 3

Seja V um espaço vetorial real. Os vetores ν_1, \ldots, ν_n em V, com n > 1, são linearmente dependentes se, e somente se, um deles é combinação linear dos outros. Equivalentemente, os vetores ν_1, \ldots, ν_n em V, com n > 1, são linearmente independentes se, e somente se, nenhum deles é combinação linear dos outros.

Demonstração: Faremos a demonstração da primeira afirmação.

 (\Longrightarrow) Suponhamos que v_1, \ldots, v_n são linearmente dependentes. Então, existem a_1, \ldots, a_n em $\mathbb R$ nem todos nulos, tais que $a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0_V$. Sem perda de generalidade, podemos supor que $a_1 \neq 0$. Logo,

$$a_1v_1 = -a_2v_2 - \cdots - a_nv_n$$

 $\nu_1=-(\alpha_1^{-1}\cdot\alpha_2)\nu_2-\cdots-(\alpha_1^{-1}\cdot\alpha_n)\nu_n \ \mathrm{e}\ \nu_1\ \mathrm{\acute{e}}\ \mathrm{combina\~{c}\~{a}\~{o}}\ \mathrm{linear}\ \mathrm{de}$ $\nu_2,\ldots,\nu_n.$

(\Leftarrow :) Suponhamos, sem perda de generalidade, que ν_1 seja combinação linear de ν_2, \ldots, ν_n . Então, existem $a_2, \ldots, a_n \in \mathbb{R}$, tais que $\nu_1 = a_2\nu_2 + \cdots + a_n\nu_n$. Logo, $1 \cdot \nu_1 - a_2\nu_2 - \cdots - a_n\nu_n = 0_V$ é uma combinção linear nula com nem todos os coeficientes nulos. Portanto, os vetores ν_1, \ldots, ν_n são linearmente dependentes.

Exemplo 27

Dados dois vetores em qualquer espaço vetorial, para determinar se são linearmente independentes ou dependentes não é preciso fazer cálculos, basta olhar para os vetores.

 $v_1=(1,2,3)$ e $v_2=(1,1,-1)$ são linearmente independentes no $\mathbb{R}^3.$

 $f_1(t)=1 \ \mathrm{e} \ f_2(t)=1+t \ \mathrm{s\tilde{a}o} \ \mathrm{linearmente} \ \mathrm{independentes} \ \mathrm{em} \ \mathcal{P}_1(\mathbb{R}).$

$$A_1 = \left(\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array}\right) \mathrm{e} \ A_2 = \left(\begin{array}{cc} 3 & 0 \\ 6 & 3 \end{array}\right) \mathrm{s\tilde{a}o} \ \mathrm{linearmente} \ \mathrm{dependentes} \ \mathrm{em} \ M_{2\times 2}(\mathbb{R}).$$

Exemplo 28

Vamos verificar se $v_1 = (1, 1, 1, 1), v_2 = (1, 1, 2, 1), v_3 = (3, 3, 4, 3), v_4 =$

Caso necessário, reenumeramos os vetores. (-1,1,-1,1) e $v_5=(-1,3,0,3)$ são linearmente dependentes ou independentes. Sejam $a_1, a_2, a_3, a_4, a_5 \in \mathbb{R}$ tais que $a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 + a_5v_5 =$ (0,0,0,0). Então,

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = a_1 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + a_2 \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix} + a_3 \begin{pmatrix} 3 \\ 3 \\ 4 \\ 3 \end{pmatrix} + a_4 \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix} + a_5 \begin{pmatrix} -1 \\ 3 \\ 0 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 3 & -1 & -1 \\ 1 & 1 & 3 & 1 & 3 \\ 1 & 2 & 4 & -1 & 0 \\ 1 & 1 & 3 & 1 & 3 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{pmatrix}$$

Vemos que obtemos um sistema linear homogêneo de m = 4 equações com n = 5 incógnitas. Logo, o número r de linhas não nulas da reduzida por linhas da matriz associada ao sistema tem a propriedade

$$r \le m = 4 < 5 = n$$
.

Portanto, esse sistema tem solução não nula. Assim, os vetores são linearmente dependentes.

Exemplo 29

Os polinômios $f_1(t) = 1 + t$, $f_2(t) = t$ e $f_3(t) = 1 + t + t^2$ são linearmente dependentes ou independentes em $\mathcal{P}_2(\mathbb{R})$?

Fazemos a combinação linear nula $a_1f_1(t) + a_2f_2(t) + a_3f_3(t) = 0$. Assim,

$$0 = \alpha_1(1+t) + \alpha_2t + \alpha_3(1+t+t^2) = (\alpha_1+\alpha_3) + (\alpha_1+\alpha_2+\alpha_3)t + \alpha_3t^2.$$
 Logo,
$$\begin{cases} \alpha_1+\alpha_3 = 0 \\ \alpha_1+\alpha_2+\alpha_3 = 0 \\ \alpha_3 = 0 \end{cases}$$

Resolvendo o sistema, obtemos $a_3 = 0$, $a_1 = -a_3 = 0$ e $a_2 = -a_1 - a_3 = 0$. Portanto, os polinômios são linearmente independentes.

Proposição 4 (Propriedade da independência linear)

Sejam V um espaço vetorial e ν_1, \ldots, ν_m vetores em V linearmente independentes. Então, cada $v \in [v_1, \dots, v_m]$ se escreve de uma única maneira como combinação linear de ν_1, \ldots, ν_m .

Demonstração: Sejam $a_1, \ldots, a_m \in b_1, \ldots, b_m \in \mathbb{R}$, tais que

$$a_1v_1 + \cdots + a_mv_m = b_1v_1 + \cdots + b_mv_m$$
.

Então, $(a_1 - b_1)v_1 + \cdots + (a_m - b_m)v_m = 0_V$. Como esses vetores são linearmente independentes, temos que $a_j - b_j = 0$, para todo $j = 1, \dots, m$. Portanto, $a_i = b_i$, para todo i = 1, ..., m.

Veja no Exercício 8 uma generalização desse resultado.

Mais uma propriedade interessante.

Proposição 5

Seja V um espaço vetorial real e sejam v_1, \ldots, v_m vetores em V tais que $v_m = a_1 v_1 + \cdots + a_{m-1} v_{m-1}$. Então, $[v_1, \ldots, v_{m-1}] = [v_1, \ldots, v_m]$.

Demonstração:

(\subset :) Como $b_1v_1 + \cdots + b_{m-1}v_{m-1} = b_1v_1 + \cdots + b_{m-1}v_{m-1} + 0v_m$, para quaisquer $b_1, \ldots, b_m \in \mathbb{R}$, segue que $[v_1, \ldots, v_{m-1}] \subset [v_1, \ldots, v_m]$.

 $(\supset:)$ Seja $\nu \in [\nu_1, \dots, \nu_m]$. Então, existem números reais b_1, \dots, b_m , tais que $\nu = b_1\nu_1 + \dots + b_{m-1}\nu_{m-1} + b_m\nu_m$. Substituindo $\nu_m = a_1\nu_1 + \dots + a_{m-1}\nu_{m-1}$, obtemos:

$$\begin{array}{lll} \nu &=& b_1\nu_1+\dots+b_{m-1}\nu_{m-1}+b_m(a_1\nu_1+\dots+a_{m-1}\nu_{m-1})\\ &=& (b_1+b_ma_1)\nu_1+\dots+(b_{m-1}+b_ma_{m-1})\nu_{m-1}.\\ \\ \mathrm{Logo},\, \nu \in [\nu_1,\dots,\nu_m]. \ \mathrm{Portanto},\, [\nu_1,\dots,\nu_m] \subset [\nu_1,\dots,\nu_{m-1}]. \end{array}$$

Usando os nossos conhecimentos de vetores no plano e no espaço, vamos determinar os subespaços do \mathbb{R}^2 e do \mathbb{R}^3 .

Exemplo 30

Vamos mostrar que os subespaços do \mathbb{R}^2 são $\{(0,0)\}$, retas que passam pela origem ou \mathbb{R}^2 .

De fato, é claro que $\{(0,0)\}$ é um subespaço do \mathbb{R}^2 .

Seja $W \neq \{(0,0)\}$ um subespaço do \mathbb{R}^2 . Então, existe $v_1 \neq (0,0)$, tal que $v_1 \in W$. Assim, $[v_1] = \{kv_1 ; k \in \mathbb{R}\} \subset W$. Se $W = [v_1]$, então W é a reta que passa pela origem O na direção de v_1 .

Caso contrário, $[v_1] \subsetneq W$ e existe $v_2 \in W$ tal que $v_2 \not\in [v_1]$. Nesse caso, v_1 e v_2 são linearmente independentes e $[v_1, v_2] \subset W$.

Cada $v \in \mathbb{R}^2$ pode ser escrito como combinação linear de v_1 e v_2 . Por quê?

Essa inclusão independe do vetor $\nu_{\rm m}$.

Dado $v \in \mathbb{R}^2$, a reta paralela a v_1 passando pelo ponto v intersecta a reta passando pela origem O paralela a v_2 no ponto \mathfrak{a}_2v_2 ; assim como, a reta paralela a v_2 passando pelo ponto v intersecta a reta passando pela origem O paralela a v_1 no ponto \mathfrak{a}_1v_1 . Pela regra do paralelogramo, $v = \mathfrak{a}_1v_1 + \mathfrak{a}_2v_2$. Assim, $\mathbb{R}^2 = [v_1, v_2] \subset W$. Logo, $W = \mathbb{R}^2$.

Exemplo 31

Vamos mostrar que os subespaços do \mathbb{R}^3 são $\{(0,0,0)\}$, retas que passam pela origem, panos que passam pela origem ou \mathbb{R}^3 .

De fato, é claro que $\{(0,0,0)\}$ é um subespaço do \mathbb{R}^3 .

Seja $W \neq \{(0,0,0)\}$ um subespaço do \mathbb{R}^3 . Então, existe $v_1 \neq (0,0,0)$, tal que $v_1 \in W$. Assim, $[v_1] = \{kv_1 ; k \in \mathbb{R}\} \subset W$. Se $W = [v_1]$, então W é a reta que passa pela origem O na direção de v_1 .

Caso contrário, $[v_1] \subsetneq W$ e existe $v_2 \in W$ tal que $v_2 \notin [v_1]$. Nesse caso, v_1 e v_2 são linearmente independentes e $[v_1, v_2] \subset W$.

Se $W=[\nu_1,\nu_2]$, então W é o plano Π que passa pela origem O paralelo às direções de ν_1 e ν_2 .

Caso contrário, $\Pi = [v_1, v_2] \subsetneq W$ e existe $v_3 \in W$ tal que $v_3 \notin [v_1, v_2]$ e, nesse caso, $[v_1, v_2, v_3] \subset W$.

Cada $v \in \mathbb{R}^3$ pode ser escrito como uma combinação linear de v_1, v_2, v_3 . Por quê?

A reta paralela a v_3 passando por v intersecta o plano $\Pi = [v_1, v_2]$ no ponto u. Assim, $v - u = a_3v_3$, para algum $a_3 \in \mathbb{R}$. Como $u = a_1v_1 + a_2v_2$, então $v = a_1v_1 + a_2v_2 + a_3v_3$.

Portanto, $\mathbb{R}^3 = [\nu_1, \nu_2, \nu_3] \subset W$, logo $W = \mathbb{R}^3$.

Exercícios

- 1. Escreva (1,1,2) como combinação linear de $\nu_1=(1,0,1)$ e $\nu_2=(0,1,1)$.
- 2. Escreva (1,2,3,4) como combinação linear de $v_1=(1,1,1,1), v_2=(1,1,1,0), v_3=(1,1,0,0)$ e $v_4=(1,0,0,0).$

Mostre que todo $v \in \mathbb{R}^4$ se escreve de uma única maneira como combinação linear de v_1, v_2, v_3, v_4 .

- 3. Mostre que $\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}$ é linearmente dependente.
- 4. Mostre que $\{1,1+t,(1+t)^2\}$ é linearmente independente em $\mathcal{P}_2(\mathbb{R}).$
- 5. Mostre que $\{(1,1,1),(0,1,1),(0,1,-1)\}$ gera $\mathbb{R}^3.$
- 6. Sejam u, v, w vetores não-nulos de um espaço vetorial real V.

- (a) Mostre que $\{u, v\}$ é linearmente dependente se, e somente se, u =av, para algum $a \in \mathbb{R}$ e $a \neq 0$.
- (b) Mostre que se $\{u, v\}$ é linearmente independente e $\{u, v, w\}$ é linearmente dependente, então w é combinação linear de u, v.
- 7. Seja V um espaço vetorial real e ν_1, \ldots, ν_m vetores de V. Mostre que:
 - (a) Se v_1, \ldots, v_m são linearmente independentes e $v \notin [v_1, \ldots, v_m]$, então v_1, \ldots, v_m, v são linearmente independentes.
 - (b) Se v_m é uma combinação linear de v_1, \ldots, v_{m-1} , então temos que $[v_1, \ldots, v_{m-1}] = [v_1, \ldots, v_m].$
- 8. Mostre que qualquer subconjunto do \mathbb{R}^m com ν_1, \ldots, ν_n vetores tal que n > m é linearmente dependente.
- 9. Determine equações para $W = [v_1, v_2, v_3, v_4]$, onde $v_1 = (1, 1, 1, 1), v_2 = (1, 1, 1, 1)$ $(1, 1, -1, 1), \nu_3 = (1, 1, 0, 1) e \nu_4 = (1, -1, 2, 1).$
- 10. Determine equações para $W = [v_1, v_2, v_3]$, onde $v_1 = (1, 0, 1), v_2 = (1, 0, 1)$ $(0,1,1) e \nu_3 = (2,-1,1).$
- 11. Mostre que em $\mathcal{F}(\mathbb{R})$:
 - (a) $\{ \sin x, \cos x \}$ é linearmente independente;
 - (b) $\{1, \sin^2 x, \cos^2 x\}$ é linearmente dependente;
 - (c) $\{e^x, e^{2x}, e^{3x}\}$ é linearmente independente.
- 12. Mostre que $\{2, \operatorname{tg}^2 x, \sec^2 x\}$ é linearmente dependente em $\mathcal{F}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- 13. Encontre um sistema linear homogêneo cujo conjunto das soluções Wseja gerado por (1, -2, 0, 3), (1, -1, -1, 4) e (1, 0, -2, 5).

Generalização do Exemplo

Base e dimensão

Vamos estudar mais detalhadamente apenas os espaços vetoriais finitamente gerados.

Definição 6 (Espaço vetorial finitamente gerado)

Dizemos que um espaço vetorial real V é finitamente gerado se, e somente se, existem v_1, \ldots, v_m em V tais que $V = [v_1, \ldots, v_m]$.

Exemplo 32

 \mathbb{R}^n é espaço vetorial finitamente gerado, pois $\mathbb{R}^n = [e_1, \dots, e_n]$.

Exemplo 33

Para cada $n \geq 0$, $\mathcal{P}_n(\mathbb{R})$ é espaço vetorial finitamente gerado, pois

$$f(t) \in \mathcal{P}_n(\mathbb{R})$$
 se, e somente se, $f(t) = a_0 + a_1 t + \cdots + a_n t^n$,

para $a_0, \ldots, a_n \in \mathbb{R}$. Logo, f(t) é uma combinação linear de $1, t, \ldots, t^n$ e assim, $\mathcal{P}_n(\mathbb{R}) = [1, t, \ldots, t^n]$.

Exemplo 34

O espaço vetorial $\mathcal{P}(\mathbb{R})$ de todos os polinômios com coeficientes reais não é finitamente gerado. Não há subconjunto finito de polinômios com coeficientes reais que gere $\mathcal{P}(\mathbb{R})$. Um possível conjunto de geradores é $1, t, \ldots, t^n, \ldots$, para todo $n \geq 0$.

Definição 7 (Base)

Seja $V \neq \{0\}$ um espaço vetorial real finitamente gerado. Um subconjunto $\alpha = \{\nu_1, \dots, \nu_n\} \subset V$ é chamado uma base de V se, e somente se,

- (i) $V = [v_1, \ldots, v_n];$
- (ii) $\{\nu_1, \dots, \nu_n\}$ é linearmente independente.

A propriedade (i) significa que α gera V, assim cada elemento $\nu \in V$ é uma combinação linear dos vetores de α . A propriedade (ii) significa que a combinação linear é única.

Exemplo 35

 $\alpha = \{e_1, \dots, e_n\}$ é uma base do \mathbb{R}^n . Com efeito, já mostramos que $\nu = (x_1, \dots, x_n) = x_1 e_1 + \dots + x_n e_n$,

logo α gera \mathbb{R}^n .

Falta verificar que α é linearmente independente.

De fato,
$$(0,\ldots,0)=x_1e_1+\cdots+x_ne_n=(x_1,\ldots,x_n)$$
 se, e somente se, $x_1=\cdots=x_n=0$.

 α é chamada de base canônica do \mathbb{R}^n .

 α é chamada de base canônica de $\mathcal{P}_n(\mathbb{R})$.

Exemplo 36

 $\alpha=\{1,t,\ldots,t^n\}$ é uma base de $\mathcal{P}_n(\mathbb{R}).$ Já mostramos que α gera $\mathcal{P}_n(\mathbb{R}).$ Agora,

 $0 = a_0 + a_1 t + \dots + a_n t^n$ se, e somente se, $a_0 = a_1 = \dots = a_n = 0$, mostrando que α é linearmente independente.

Proposição 6

Todo espaço vetorial $V \neq \{0\}$ finitamente gerado tem uma base.

Demonstração: Como V é finitamente gerado existe um conjunto finito de geradores para V. Entre todos os conjuntos finitos de geradores consideremos um que tenha o menor número de geradores, digamos $\alpha = \{\nu_1, \dots, \nu_n\} \subset V$. Então, $V = [\nu_1, \dots, \nu_n]$. Afirmamos que α é linearmente independente.

De fato, se $\mathfrak{n}=1$, então $V=[\nu_1]\neq\{0\}$, logo $\nu_1\neq 0$ e $\alpha=\{\nu_1\}$ é linearmente independente. Podemos supor que $\mathfrak{n}\geq 2$. Suponhamos, por absurdo, que α seja linearmente dependente. Pela Proposição 3, um dos vetores de α é combinação linear dos outros. Sem perda de generalidade, podemos supor que $\nu_{\mathfrak{n}}=\mathfrak{a}_1\nu_1+\cdots+\mathfrak{a}_{\mathfrak{n}-1}\nu_{\mathfrak{n}-1}$. Pela Proposição 5, $[\nu_1,\ldots,\nu_{\mathfrak{n}-1}]=[\nu_1,\ldots,\nu_{\mathfrak{n}}]=V$, contradizendo o fato de o número mínimo de geradores ser \mathfrak{n} . Portanto, α é uma base de V.

Observação: Outra demonstração da Proposição acima pode ser feita. Como $V \neq \{0\}$, todo conjunto com um vetor não nulo é linearmente independente. Escolhemos entre todos os subconjuntos finitos linearmente independentes um que tenha o maior número de elementos. Basta mostrar agora que esse conjunto, forçosamente, gera V.

Portanto, uma base de um espaço vetorial não nulo finitamente gerado tem o mínimo de geradores e o máximo de vetores linearmente independentes.

Teorema 1

Seja $V \neq \{0\}$ um espaço vetorial real finitamente gerado. Então, todas as bases de V têm o mesmo número de elementos.

Demonstração: Sejam α e β bases de V com, respectivamente, m e n elementos. Como α é base V e β gera V, então m = mínimo de geradores $\leq n$. Como α é base V e β é linearmente independente, então m = máximo de vetores li $\geq n$. Portanto, m = n.

Definição 8 (Dimensão)

Seja $V \neq \{0\}$ um espaço vetorial real finitamente gerado. Chamamos de $dimens\tilde{ao}$ de V ao número de elementos de uma base de V e denotamos por $\dim_{\mathbb{R}}(V)$. Quando $V = \{0\}$ definimos $\dim_{\mathbb{R}}(V) = 0$.

É claro que $V = \{0\}$ é um espaço vetorial real finitamente gerado.

Exemplo 37

 $\dim_{\mathbb{R}}(\mathbb{R}^n) = n$, pois $\{e_1, \ldots, e_n\}$ é uma base do \mathbb{R}^n .

Exemplo 38

 $\dim_{\mathbb{R}}(\mathcal{P}_n(\mathbb{R}))=n+1, \text{ pois } \{1,t\ldots,t^n\} \text{ \'e uma base de } \mathcal{P}_n(\mathbb{R}).$

Exemplo 39

Seja V um espaço vetorial real com $\dim_{\mathbb{R}}(V) = n \geq 1$. Todo subespaço W de V é finitamente gerado e $\dim_{\mathbb{R}}(W) \leq n$. Vale que:

$$W = V \iff \dim_{\mathbb{R}}(W) = \dim_{\mathbb{R}}(V)$$

$$W \subsetneq V \iff \dim_{\mathbb{R}}(W) < \dim_{\mathbb{R}}(V)$$

Exemplo 40

Seja
$$W = \{(x, y, z) \in \mathbb{R}^3 ; x + y - 2z = 0 \text{ e } 2x - y + 2z = 0\}.$$

W é um subespaço do \mathbb{R}^3 . Vamos determinar a dimensão de W. Para isto, vamos determinar uma base de W. Reduzindo por linhas a matriz associada ao sistema homogêneo, obtemos:

$$\left(\begin{array}{cccc} 1 & 1 & -2 \\ 2 & -1 & 2 \end{array}\right) \sim_1 \left(\begin{array}{cccc} 1 & 1 & -2 \\ 0 & -3 & 6 \end{array}\right) \sim_2 \left(\begin{array}{cccc} 1 & 1 & -2 \\ 0 & 1 & -2 \end{array}\right) \sim_3 \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & -2 \end{array}\right).$$

Temos n = 3 incógnitas e posto r = 2. Logo, o grau de liberdade é n - r = 3 - 2 = 1. As incógnitas $x \in y$ podem ser dadas em função da incógnita z.

Logo,
$$x = 0$$
 e $y - 2z = 0$. Portanto,
 $W = \{(x, y, z) \in \mathbb{R}^3 ; x = 0 \text{ e } y - 2z = 0\}$
 $= \{(0, 2z, z) ; z \in \mathbb{R}\}$
 $= \{(0, 2, 1)z ; z \in \mathbb{R}\}, \text{ mostrando que } W = [(0, 2, 1)]$

Como $\{(0,2,1)\}$ é l.i., então é uma base de W e $\dim_{\mathbb{R}}(W)=1$.

Exemplo 41

Seja $f(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \in \mathcal{P}_3(\mathbb{R})$. Definimos o subespaço W por

$$W = \left\{ \begin{array}{l} f(t) \in \mathcal{P}_3(\mathbb{R}) \; ; \; \alpha_0 - \alpha_1 + \alpha_2 - \alpha_3 = 0, \, \alpha_0 + \alpha_1 + 3\alpha_2 - 3\alpha_3 = 0, \\ 3\alpha_0 + \alpha_1 + 7\alpha_2 - 7\alpha_3 = 0 \end{array} \right\}$$

Vamos determinar a dimensão de W.

Reduzindo por linhas a matriz associada ao sistema linear homogêneo nas incógnitas a_0, a_1, a_2, a_3 , temos:

$$\begin{pmatrix} 1 & -1 & 1 & -1 \\ 1 & 1 & 3 & -3 \\ 3 & 1 & 7 & -7 \end{pmatrix} \sim_1 \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 2 & 2 & -2 \\ 0 & 4 & 4 & -4 \end{pmatrix} \sim_2 \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 4 & 4 & -4 \end{pmatrix} \sim_3$$
$$\begin{pmatrix} 1 & 0 & 2 & -2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\begin{split} & \text{Fizemos a sequência de} \\ & \text{operações elementares:} \\ & \text{em \sim_1: } L_2 \to L_2 - 2L_1; \\ & \text{em \sim_2: } L_2 \to -\frac{1}{3}\,L_2 \text{ e} \\ & \text{em \sim_3: } L_1 \to L_1 - L_2. \end{split}$$

Geometricamente, W é a reta de interseção de dois planos que passam pela origem.

Fizemos a sequência de operações elementares: em \sim_1 : $L_2 \rightarrow L_2 - 2L_1$, $L_3 \rightarrow L_3 - 3L_1$; em \sim_2 : $L_2 \rightarrow \frac{1}{2}L_2$; em \sim_3 : $L_1 \rightarrow L_1 + L_2$, $L_3 \rightarrow L_3 - 4L_2$.

Álgebra Linear I

Temos n = 4 incógnitas e posto r = 2. Logo, o grau de liberdade é n - r =4-2=2. As incógnitas a_0 e a_1 podem ser dadas em função das r=2incógnitas a_2 e a_3 . Temos que

$$f(t) \in W \iff a_0 + 2a_2 - 2a_3 = 0 e a_1 + a_2 - a_3 = 0$$

 $\iff a_0 = -2a_2 + 2a_3 e a_1 = -a_2 + a_3.$

Logo, $f(t) \in W$ se, e somente se,

$$\begin{split} f(t) &= (-2\alpha_2 + 2\alpha_3) + (-\alpha_2 + \alpha_3)t + \alpha_2 t^2 + \alpha_3 t^3 \\ &= (-2\alpha_2 - \alpha_2 t + \alpha_2 t^2) + (2\alpha_3 + \alpha_3 t + \alpha_3 t^3) \\ &= \alpha_2 (-2 - t + t^2) + \alpha_3 (2 + t + t^3), \end{split}$$

mostrando que $\{-2-t+t^2,2+t+t^3\}$ gera W. Esse conjunto é linearmente independente, pois fazendo a sua combinação linear igual a 0, com os coeficientes $a_2, a_3 \in \mathbb{R}$, obtemos

$$0 = a_2(-2 - t + t^2) + a_3(2 + t + t^3)$$

= $(-2a_2 + 2a_3) + (-a_2 + a_3)t + a_2t^2 + a_3t^3$

logo, $a_2 = 0 e a_3 = 0$.

Exemplo 42

Vamos determinar uma base e a dimensão de

$$W = \{(x, y, z, w) \in \mathbb{R}^4; x - y + z - w = 0 \text{ e } -2x + 3y + 4z - w = 0\}.$$

Reduzindo por linhas a matriz associada ao sistema, obtemos:

$$\left(\begin{array}{ccccc} 1 & -1 & 1 & -1 \\ -2 & 3 & 4 & -1 \end{array} \right) \sim_1 \left(\begin{array}{ccccc} 1 & -1 & 1 & -1 \\ 0 & 1 & 6 & -3 \end{array} \right) \sim_2 \left(\begin{array}{ccccc} 1 & 0 & 7 & -4 \\ 0 & 1 & 6 & -3 \end{array} \right).$$

Logo, x + 7z - 4w = 0 e y + 6z - 3w = 0.

Portanto, $v = (x, y, z, w) \in W$ se, e somente se,

$$v = (-7z + 4w, -6z + 3w, z, w)$$

= $(-7z, -6z, z, 0) + (4w, 3w, 0, w)$
= $z(-7, -6, 1, 0) + w(4, 3, 0, 1),$

mostrando que $\{v_1 = (-7, -6, 1, 0), v_2 = (4, 3, 0, 1)\}$ gera W. Esse conjunto é linearmente independente, pois

$$(0,0,0,0) = zv_1 + wv_2 = (-7z + 4w, -6z + 3w, z, w) \iff z = w = 0.$$

Portanto, $\{v_1, v_2\}$ é uma base W e a dimensão de W é 2.

Proposição 7

Todo subconjunto de vetores linearmente independentes de um espaço vetorial real V de dimensão finita $n \geq 1$ pode ser completado a uma base de V.

Leia de trás para a frente as igualdades acima e faça f(t) = 0.

Fizemos a seguinte sequência de operações elementares: em $\sim_1 : L_2 \rightarrow L_2 + 2L_1$ e $\mathrm{em}\,\sim_2\colon L_1\,\to\,L_1\,+\,L_2\,.$

Demonstração: Sejam $\dim_{\mathbb{R}}(V) = n \geq 1$ e $\alpha = \{\nu_1, \ldots, \nu_r\} \subset V$ um conjunto linearmente independente com $r \leq n$. Seja $W = [\nu_1, \ldots, \nu_r]$. Se W = V, então α é uma base de V, r = n e nada há a fazer. Suponhamos que $W \subsetneq V$. Então, $r = \dim_{\mathbb{R}}(W) < \dim_{\mathbb{R}}(V) = n$ e existe $\nu_{r+1} \in V$ tal que $\nu_{r+1} \notin [\nu_1, \ldots, \nu_r]$. Portanto, $\{\nu_1, \ldots, \nu_r, \nu_{r+1}\}$ é linearmente independente. Se $V = [\nu_1, \ldots, \nu_{r+1}]$ acabamos. Caso contrário, existe $\nu_{r+2} \in V$ tal que $\nu_{r+2} \notin [\nu_1, \ldots, \nu_{r+1}]$. Continuando, esse processo tem de parar, pois não podemos ter mais de n vetores linearmente independentes.

Exemplo 43

Determine uma base de W que contenha $v_1=(0,1,-1,-1),$ onde

$$W = \{(x, y, z, w) \in \mathbb{R}^4 ; x + 2y - z + 3w = 0\}.$$

Como W é o espaço das soluções de um sistema linear homogêneo de posto r=1 com n=4 incógnitas, então o grau de liberdade é n-r=4-1=3. Portanto, $\dim_{\mathbb{R}}(W)=3$.

Logo, uma base de W tem três vetores de W linearmente independentes. Vamos escolher $v_2 \in W$ tal que $v_2 \notin [v_1] = \{a(0, 1, -1, -1) ; a \in \mathbb{R}\}$. Assim, $\{v_1, v_2\}$ é linearmente independente. Por exemplo, $v_2 = (0, 3, 0, -2)$. Agora, devemos selecionar $v_3 \in W$ tal que $v_3 \notin [v_1, v_2]$. Temos que

$$[\nu_1,\nu_2] = \{a\nu_1 + b\nu_2 = (0,a+3b,-a,-a-2b) \; ; \; a,b \in \mathbb{R}\}.$$

Como toda combinação linear de v_1 e v_2 tem a primeira coordenada nula, escolhemos $v_3=(1,1,0,-1)$. Portanto, $\alpha=\{v_1,v_2,v_3\}\subset W$ é linearmente independente e é uma base de W.

Definição 9 (Vetor coordenada)

Sejam V um espaço vetorial real de dimensão $n \geq 1$ e $\alpha = \{v_1, \ldots, v_n\}$ uma base de V. Para cada $v \in V$, existem a_1, \ldots, a_n em \mathbb{R} unicamente determinados tais que $v = a_1v_1 + \cdots + a_nv_n$. O vetor coordenada de v na base α , denotado por $v]_{\alpha}$, é a matriz $M_{n\times 1}(\mathbb{R})$ definida por

$$v]_{\alpha} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

Daqui por diante, as bases serão bases ordenadas, com a ordem em que escrevemos os vetores da base. Por exemplo, na base $\alpha = \{\nu_1, \nu_2, \dots, \nu_n\}, \nu_1$ é o primeiro elemento, ν_2 , o segundo, ..., ν_n , o n-ésimo.

Dando valores à primeira, segunda e terceira coordenadas, obtemos a quarta coordenada dos vetores de W.

Tomamos x = 1, y = 1 e z = 0. Logo, w = -1.

Exemplo 44

Sejam $V=\mathbb{R}^n$ e $\alpha=\{e_1,\ldots,e_n\}$ a base canônica. Então, para cada vetor

$$\nu = (x_1, \dots, x_n) \text{ temos que } \nu]_\alpha = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right).$$

Exemplo 45

Sejam $V = P_3(\mathbb{R})$ e $\alpha = \{1, t, t^2, t^3\}$ a base canônica.

Dados $f(t) = 2 + 3t - t^2 + t^3$ e $g(t) = -1 + t^2 - 2t^3$, temos que

$$f(t)]_{\alpha} = \begin{pmatrix} 2 \\ 3 \\ -1 \\ 1 \end{pmatrix} e g(t)]_{\alpha} = \begin{pmatrix} -1 \\ 0 \\ 1 \\ -2 \end{pmatrix}.$$

Exemplo 46

Vamos determinar o vetor coordenada de $v = (x, y, z) \in \mathbb{R}^3$ na seguinte base $\alpha = \{\nu_1 = (1, 0, 0), \nu_2 = (1, 1, 0), \nu_3 = (1, 1, 1)\} \text{ do } \mathbb{R}^3.$

Escrevendo ν como combinação linear de ν_1, ν_2, ν_3 , temos:

$$(x,y,z) = a(1,0,0) + b(1,1,0) + c(1,1,1) = (a+b+c,b+c,c),$$

$$\log \begin{cases} a+b+c = x \\ b+c = y \\ c = z \end{cases}$$

Reduzindo por linhas a matriz ampliada associada ao sistema, obtemos:

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & x \\ 0 & 1 & 1 & y \\ 0 & 0 & 1 & z \end{array}\right) \sim_1 \left(\begin{array}{ccc|c} 1 & 0 & 0 & x - y \\ 0 & 1 & 1 & y \\ 0 & 0 & 1 & z \end{array}\right) \sim_2 \left(\begin{array}{ccc|c} 1 & 0 & 0 & x - y \\ 0 & 1 & 0 & y - z \\ 0 & 0 & 1 & z \end{array}\right).$$

$$\operatorname{Logo},\ \mathfrak{a}=\mathsf{x}-\mathsf{y},\ \mathfrak{b}=\mathsf{y}-\mathsf{z}\ \mathrm{e}\ \mathsf{c}=\mathsf{z}\ \mathrm{e}\ (\mathsf{x},\mathsf{y},\mathsf{z})]_{\alpha}=\left(\begin{array}{c}\mathsf{x}-\mathsf{y}\\\mathsf{y}-\mathsf{z}\\\mathsf{z}\end{array}\right).$$

Fizemos a sequência de operações elementares: $\;\;\mathrm{em}\;\sim_1\colon L_1\,\to\,L_1\,-\,L_2;$ $\mathrm{em}\, \sim_2 \colon L_2 \to L_2 - L_3 \,.$

Proposição 8 (Propriedades do vetor coordenada)

Sejam V um espaço vetorial real de dimensão n > 1 e $\alpha = \{v_1, \dots, v_n\}$ uma base de V. Valem as seguintes propriedades, para quaisquer $v, w \in V$ e $a \in \mathbb{R}$:

(a)
$$(v + w)]_{\alpha} = v]_{\alpha} + w]_{\alpha}$$
;

(b)
$$(\mathbf{a} \cdot \mathbf{v})_{\alpha} = \mathbf{a} \cdot (\mathbf{v})_{\alpha}$$
.

Demonstração: Sejam $\nu = a_1\nu_1 + \cdots + a_n\nu_n$, $w = b_1\nu_1 + \cdots + b_n\nu_n$ e $a \in \mathbb{R}$. Então,

$$v + w = (a_{1}v_{1} + \cdots + a_{n}v_{n}) + (b_{1}v_{1} + \cdots + b_{n}v_{n})$$

$$= (a_{1} + b_{1})v_{1} + \cdots + (a_{n} + b_{n})v_{n}$$

$$e \ a \cdot v = a \cdot (a_{1}v_{1} + \cdots + a_{n}v_{n}) = (a \cdot a_{1}) \cdot v_{1} + \cdots + (a \cdot a_{n}) \cdot v_{n}. \text{ Logo,}$$

$$(v + w)]_{\alpha} = \begin{pmatrix} a_{1} + b_{1} \\ \vdots \\ a_{n} + b_{n} \end{pmatrix} = \begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} + \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix} = v]_{\alpha} + w]_{\alpha}$$

$$e \ (a \cdot v)]_{\alpha} = \begin{pmatrix} a \cdot a_{1} \\ \vdots \\ a \cdot a_{n} \end{pmatrix} = a \cdot \begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} = a \cdot (v)_{\alpha}. \quad \blacksquare$$

Usamos as definições da adição de matrizes e da multiplicação de um número real por uma matriz.

Exercícios

- 1. Encontre uma base e a dimensão do espaço W das matrizes simétricas dois por dois com coeficientes reais.
- 2. Encontre uma base α e dê a dimensão do espaço das matrizes diagonais três por três com coeficientes reais. Complete α a uma base β de $M_{3\times 3}(\mathbb{R})$.
- 3. No Exercício 4 da Seção 1 (exceto itens (g), (h), (i) e (j)) dê a dimensão de V e determine uma base e a dimensão de cada subespaço W.
- 4. Seja $W = \{(x, y, z) \in \mathbb{R}^3 ; 2x + y 3z = 0\}$. Escolha $v_1 \in W$ tal que $v_1 \neq (0, 0, 0)$. Determine $v_2 \in W$ tal que $\alpha = \{v_1, v_2\}$ é uma base de W, justificando a sua construção.
- 5. Complete $\{(1,0,1),(1,0,2)\}$ a uma base α do \mathbb{R}^3 , justificando a sua resposta.
- 6. Diga quais das afirmações são falsas ou verdadeiras, justificando a sua resposta:
 - (a) $W = \{(x, y, z) \in \mathbb{R}^3 ; yz = 0\}$ é um subespaço do \mathbb{R}^3 .
 - (b) (1,-1,2) pertence ao subespaço gerado por $\mathfrak{u}=(1,2,3)$ e $\mathfrak{v}=(3,2,1).$
 - (c) $W = \{(x, y, z, w) \in \mathbb{R}^4 ; x = y\}$ tem dimensão 2.
 - (d) Sejam $\mathfrak{u}, \mathfrak{v}, \mathfrak{w}$ vetores do espaço vetorial V. Se $\{\mathfrak{u}, \mathfrak{v}\}$ é linearmente independente e $\mathfrak{w} \neq 0$, então $\{\mathfrak{u}, \mathfrak{v}, \mathfrak{w}\}$ é linearmente independente.

- (e) Sejam u, v, w vetores do espaço vetorial V. Se $\{u, v\}$ é linearmente independente e $w \notin [u, v]$ então $\{u, v, w\}$ é linearmente independente.
- (f) Se $\{v_1, \ldots, v_n\} \subset V$ é linearmente independente e $\dim(V) = n$, então $\{v_1, \ldots, v_n w\}$ é linearmente dependente, para todo $w \in V$.
- 7. Determine as coordenadas do vetor $(4,-5,3) \in \mathbb{R}^3$ em relação às seguintes bases do \mathbb{R}^3 :
 - (a) $\alpha = \{(1,0,0), (0,1,0), (0,0,1)\}$, a base canônica.
 - (b) $\beta = \{(1, 1, 1), (1, 2, 0), (3, 1, 0)\}.$
 - (c) $\gamma = \{(1,2,1), (0,3,2), (1,1,4)\}.$
- 8. Determine as coordenadas do polinômio $f(t) = 4 5t + 3t^2 \in \mathcal{P}_2(\mathbb{R})$ em relação às seguintes bases de $\mathcal{P}_2(\mathbb{R})$:
 - (a) $\alpha = \{1, t, t^2\}$, a base canônica de $\mathcal{P}_2(\mathbb{R})$.
 - (b) $\beta = \{1 + t + t^2, 1 + 2t, 3 + t\}$
 - (c) $\gamma = \{1 + 2t + t^2, 3t + 2t^2, 1 + t + 4t^2\}.$
- 9. Seja $W = \{(x, y, z, w) \in \mathbb{R}^4 ; 2x y + z + 3w = 0\}.$
 - (a) Mostre que $\alpha = \{(1, 2, 0, 0), (0, 1, 1, 0), (0, 0, 3, -1)\}$ é uma base de
 - (b) Determine v_{α} , para cada $v = (x, y, z, w) \in W$.
- 10. Seja V um \mathbb{R} -espaço vetorial e $\alpha = \{v_1, v_2, \dots, v_n\}$ uma base de V. Mostre que para todo $m \geq 1$, para todo $a_1, \ldots, a_m \in \mathbb{R}$ e para todo $w_1, \ldots, w_m \in V$:

$$(a_1w_1 + \cdots + a_mw_m)]_{\alpha} = a_1 \cdot (w_1]_{\alpha} + \cdots + a_m \cdot (w_m]_{\alpha}.$$

Soma e soma direta de subespaços

A partir de subespaços U e W de um espaço vetorial real V, podemos construir subespaços de V. Por exemplo, já vimos que $U \cap W$ é um subespaço, tal que $U \cap W \subset U$ e $U \cap W \subset W$. Observamos que $U \cap W$ é o maior subespaço de V contido em U e em W.

Agora vamos construir o menor subespaço de V que contém $U \cup W$.

Definição 10 (Soma de subespaços)

Sejam V um espaço vetorial real e U e W subespaços de V. A soma dos subespaços U e W é definida por

$$U + W = \{v \in V ; v = u + w, \text{ tal que } u \in U \in w \in W\}.$$

De fato, U + W é um subespaço de V, pois

- (a) $0_{V} \in U \in 0_{V} \in W \in 0_{V} = 0_{V} + 0_{V}$.
- (b) Se v = u + w e v' = u' + w', com $u, u' \in U$ e $w, w' \in W$, então $v + v' = (u + w) + (u' + v') = (u + u') + (w + w') \in U + W$,

em virtude de $u + u' \in U$ e $w + w' \in W$.

(c) Se v = u + w com $u \in U$ e $w \in W$ e $a \in \mathbb{R}$, então $a \cdot v = a \cdot (u + v) = a \cdot u + a \cdot w \in U + W,$

pois $a \cdot u \in U \in a \cdot w \in W$.

Exemplo 47

Sejam U = [(1,1)] e W = [(1,-1)] subespaços do \mathbb{R}^2 . Então, $U \cap W = \{(0,0)\}$ e

$$U + W = \{a(1,1) + b(1,-1) ; a, b \in \mathbb{R}\} = \mathbb{R}^2.$$

Exemplo 48

Sejam U = [(1,1,1)] e $W = \{(x,y,z) \in \mathbb{R}^3 ; x+y+z=0\}$ subespaços do \mathbb{R}^3 . Geometricamente, U é a reta pela origem ortogonal ao plano W que passa pela origem e $U \cap W = \{(0,0,0)\}$.

Sabemos que $\dim_{\mathbb{R}}(W) = 2$. Tomando $w_1 = (1, -1, 0)$ e $w_2 = (0, 1, -1)$ em W temos uma base de W e $u_1 = (1, 1, 1)$ é uma base de U. Logo,

$$U+W=\{a(1,1,1)+b(1,-1,0)+c(0,1,-1)\;;\;a,b,c\in\mathbb{R}\}=\mathbb{R}^3,$$
 pois $\alpha=\{u_1,w_1,w_2\}$ é uma base do $\mathbb{R}^3.$

Exemplo 49

Sejam $U = \{(x, y, z) \in \mathbb{R}^3; x+y-z=0\} \text{ e } W = \{(x, y, z) \in \mathbb{R}^3; x+y+z=0\}.$ Geometricamente, $U \in W$ são planos pela origem concorrentes, pois seus vetores normais $\eta_1 = (1, 1, -1) \text{ e } \eta_2 = (1, 1, 1)$ são linearmente independentes.

Lembramos que a união de subespaços nem sempre é um subespaço. Faca o Exercício 1.

Usamos a comutatividade e associatividade da adição em ${\sf V}.$

Como a dimensão do \mathbb{R}^3 é 3, qualquer conjunto com três vetores linearmente independentes do \mathbb{R}^3 é uma base.

Nesse caso, $U \cap W = [(1,-1,0)]$ é a reta pela origem, interseção dos planos. Faça um desenho para visualizar que a soma de quaisquer dois planos concorrentes pela origem é \mathbb{R}^3 . Logo, $U + W = \mathbb{R}^3$.

Vamos mostrar que há uma relação entre as dimensões dos subespaços $U, W, U \cap W$ e U + W, sempre que U e W têm dimensões finitas.

Proposição 9

Sejam U e W subespaços de dimensão finita de um espaço vetorial real V. Então,

$$\dim_{\mathbb{R}}(U+W) = \dim_{\mathbb{R}}(U) + \dim_{\mathbb{R}}(W) - \dim_{\mathbb{R}}(U \cap W).$$

Demonstração: Suponhamos que $U \cap W \neq \{0_V\}$. Seja $\alpha = \{v_1, \dots, v_\ell\}$ uma base de $U \cap W$. Então, $\alpha \subset U \cap W$ é um subconjunto linearmente independente de $U \cap W$, $U \in W$. Podemos completar α a uma base β de U e a uma base γ de W. Escolhemos $\{u_1, \ldots, u_r\} \subset U$ e $\{w_1, \ldots, w_s\} \subset W$, tais que $\beta = \{v_1, \dots, v_\ell, u_1, \dots, u_r\}$ é uma base de $U \in \gamma = \{v_1, \dots, v_\ell, w_1, \dots, w_s\}$ é uma base de W.

Vamos mostrar que $\delta = \{v_1, \dots, v_\ell, u_1, \dots, u_r, w_1, \dots, w_s\}$ é uma base de U + W, obtendo a fórmula proposta para as dimensões,

$$\begin{split} \dim_{\mathbb{R}}(\mathsf{U}+\mathsf{W}) &= \ell+r+s \\ &= (\ell+r)+(\ell+s)-\ell \\ &= \dim_{\mathbb{R}}(\mathsf{U})+\dim_{\mathbb{R}}(\mathsf{W})-\dim_{\mathbb{R}}(\mathsf{U}\cap \mathsf{W}). \end{split}$$

(i) δ gera U + W:

Seja v = u + w, com $u \in U$ e $w \in W$. Como β é uma base de U e γ é uma base de W, então, existem $a_1, \ldots a_\ell, b_1, \ldots, b_r \in \mathbb{R}$ e $c_1, \ldots, c_\ell, d_1, \ldots, d_s \in \mathbb{R}$ tais que

$$u=\alpha_1\nu_1+\dots+\alpha_\ell\nu_\ell+b_1u_1+\dots+b_ru_r \ \mathrm{e}$$

$$w = c_1 v_1 + \dots + c_{\ell} v_{\ell} + d_1 w_1 + \dots + d_s w_s.$$

Portanto,

$$u+w = (a_1+c_1)v_1+\cdots+(a_{\ell}+c_{\ell})v_{\ell}+b_1u_1+\cdots+b_ru_r+d_1w_1+\cdots+d_sw_s.$$

(ii) δ é linearmente independente:

Sejam
$$a_1, \ldots a_\ell, b_1, \ldots, b_r, c_1, \ldots, c_s \in \mathbb{R}$$
, tais que
$$a_1 v_1 + \cdots + a_\ell v_\ell + b_1 u_1 + \cdots + b_r u_r + c_1 w_1 + \cdots + c_s w_s = 0_v. \ (\star)$$
 Então,

$$\begin{aligned} a_1v_1+\cdots+a_\ell v_\ell+b_1u_1+\cdots+b_ru_r&=-c_1w_1-\cdots-c_sw_s\in U\cap W. \\ \text{Portanto, existem } d_1,\ldots,d_\ell\in\mathbb{R}, \text{ tais que} \end{aligned}$$

$$-c_1w_1-\cdots-c_sw_s=d_1v_1+\cdots+d_\ell v_1,$$

IIFF

logo $d_1v_1+\cdots+d_\ell v_\ell+c_1w_1+\cdots+c_sw_s=0_V$. Como γ é linearmente independente, então $d_1=\cdots=d_\ell=c_1=\cdots=c_s=0$. Substituindo em (\star) , obtemos $a_1v_1+\cdots+a_\ell v_\ell+b_1u_1+\cdots+b_ru_r=0_v$. Como β é linearmente independente concluímos que $a_1=\cdots=a_\ell=b_1=\cdots=b_r=0$. Logo, δ é linearmente independente.

Quando $U \cap W = \{0_V\}$, temos $\ell = \dim_{\mathbb{R}}(U \cap W) = 0$, começamos com $\beta = \{u_1, \ldots, u_r\}$ e $\gamma = \{w_1, \ldots, w_s\}$ bases de U e W, respectivamente, e mostramos que $\delta = \beta \cup \gamma$ é uma base de U + W. Nesse caso,

$$\dim_{\mathbb{R}}(U+W) = \dim_{\mathbb{R}}(U) + \dim_{\mathbb{R}}(W).$$

Definição 11 (Soma direta)

Sejam U e W subespaços do espaço vetorial V. Dizemos que a soma U+W é uma $soma\ direta$ se, e somente se, $U\cap W=\{0_V\}$. Nesse caso, escrevemos $U\oplus W$.

Exemplo 50

Verifique que no Exemplo 47 temos $U \oplus W = \mathbb{R}^2$ e no Exemplo 48 temos $U \oplus W = \mathbb{R}^3$ pois, em ambos os casos, $U \cap W = 0_V$. Enquanto, no Exemplo 49 a soma $U + W = \mathbb{R}^3$ não é uma soma direta, pois $\dim_{\mathbb{R}}(U \cap W) = 1 \neq 0$.

Exemplo 51

Vamos determinar o subespaço U + W do \mathbb{R}^4 , onde

$$U = [u_1 = (1, 1, 2, 1), u_2 = (1, 2, 1, 0)] e$$

$$W = [w_1 = (1, -1, 1, 1), w_2 = (1, 1, 2, 0)].$$

Primeiramente, observamos que

$$\begin{array}{cccc} \nu \in U + W & \Longleftrightarrow & \nu = \mathfrak{u} + w, \text{ onde } \mathfrak{u} \in U \text{ e } w \in W, \\ & \Longleftrightarrow & \nu = \mathfrak{a}_1 \mathfrak{u}_1 + \mathfrak{a}_2 \mathfrak{u}_2 + \mathfrak{b}_1 w_1 + \mathfrak{b}_2 w_2, \\ & & \operatorname{com} \ \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{b}_1, \mathfrak{b}_2 \in \mathbb{R}, \\ & \Longleftrightarrow & \nu \in [\mathfrak{u}_1, \mathfrak{u}_2, w_1, w_2]. \end{array}$$

Logo,
$$U + W = [u_1, u_2, w_1, w_2].$$

Quando fazemos operações elementares nas linhas de um matriz A, na prática fazemos combinações lineares com as linhas de A e o espaço gerado pelas linhas de A é o mesmo espaço gerado pelas linhas não nulas (são linearmente independentes) da reduzida R à forma em escada equivalente a A.

Vamos reduzir por linhas a matriz cujas linhas são u_1, u_2, w_1, w_2 .

$$\begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 0 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & 2 & 0 \end{pmatrix} \sim_1 \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & -2 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \sim_2 \begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & -3 & -2 \\ 0 & 0 & 0 & -1 \end{pmatrix} \sim_3$$

Fizemos a sequência de operações elementares: em \sim_1 : $L_2 \rightarrow L_2 - L_1$, $L_3 \rightarrow L_3 - L_1$, $L_4 \rightarrow L_4 - L_1$; em \sim_2 : $L_1 \rightarrow L_1 - L_2$, $L_3 \rightarrow L_3 + 2L_2$;

```
\mathrm{em}\, \sim_3 \colon L_4 \to -L_4;
\mathrm{em}\, \sim_{\!\! 4} : L_1 \, \rightarrow \, L_1 \, - \, 2L_4 \, ,
L_2 \to L_2 + L_4 \,, L_3 \to L_3 + 2L_4 \,;
em \sim_5: L_3 \to -\frac{1}{3}L_3;
\mathrm{em}\, \sim_6 : L_2 \to L_2 + L_3 \,,
L_1 \, \rightarrow \, L_1 \, - \, 3L_3 \, .
```

$$\begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & -3 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \sim_4 \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \sim_5 \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \sim_6 \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Portanto, $U + W = [e_1, e_2, e_3, e_4] = \mathbb{R}^4$. Como $\dim_{\mathbb{R}}(U) = 2$, $\dim_{\mathbb{R}}(W) = 2$ e $\dim_{\mathbb{R}}(U+W) = 4$, então $\dim_{\mathbb{R}}(U \cap W) = 0$, logo $U \cap W = \{(0,0,0,0)\}$ e a soma é uma soma direta.

Exemplo 52

Vamos determinar o subespaço U + W de \mathbb{R}^4 , onde

$$U = \{(x, y, z, w) ; x + y - z + w = 0\} e$$

$$W = [(1, 1, 0, 0), (1, 0, -1, 0), (0, 1, 0, 1)].$$

Primeiramente, determinamos geradores para U.

Temos que $v = (x, y, z, w) \in U$ se, e somente se,

$$v = (x, y, z, w) = (-y + z - w, y, z, w)$$

= $y(-1, 1, 0, 0) + z(1, 0, 1, 0) + w(-1, 0, 0, 1).$

se, e somente se, $v \in [(-1, 1, 0, 0), (1, 0, 1, 0), (-1, 0, 0, 1)].$

$$\operatorname{Logo},\, U=[(-1,1,0,0),(1,0,1,0),(-1,0,0,1)].$$

Reduzimos por linhas a matriz cujas linhas são os geradores de U e de W.

$$\begin{split} \text{Fizemos a seguinte sequência} \\ \text{de operações elementares:} \\ \text{em \sim_1: $L_2 \rightarrow L_2 + L_1$,} \\ L_3 \rightarrow L_3 + L_1, L_4 \rightarrow L_4 - L_1, \\ L_5 \rightarrow L_5 - L_1; \\ \text{em \sim_2: $L_4 \rightarrow L_4 - L_2$,} \\ L_6 \rightarrow L_6 - L_2; \\ \text{em \sim_3: $L_4 \rightarrow L_4 + 2L_3$,} \\ L_5 \rightarrow L_5 + 2L_3, \\ L_6 \rightarrow L_6 + L_3; \\ \text{em \sim_4: $L_5 \rightarrow L_5 - L_4$,} \\ L_6 \rightarrow L_6 - L_4; \\ \text{em \sim_5: $L_4 \rightarrow \frac{1}{2}L_4$;} \\ \text{em \sim_6: $L_1 \rightarrow L_1 + L_4$,} \\ L_2 \rightarrow L_2 + L_4, L_3 \rightarrow L_3 - L_4. \end{split}$$

$$\begin{pmatrix}
-1 & 1 & 0 & 0 \\
-1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 1
\end{pmatrix}$$

$$\sim_{1}
\begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & -2 & 0 \\
0 & 1 & 0 & 1
\end{pmatrix}$$

$$\sim_{2}
\begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -2 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}$$

$$\sim_{3}$$

$$\begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\sim_{4}
\begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\sim_{6}$$

$$\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right).$$

Logo, $U+W=[e_1,e_2,e_3,e_4]=\mathbb{R}^4$. Como $\dim_{\mathbb{R}}(U)=3$ e $\dim_{\mathbb{R}}(W)=3$, então $\dim_{\mathbb{R}}(U\cap W)=2$. Nesse caso, a soma não é soma direta.

Exercícios

- 1. Sejam V um espaço vetorial real e U e W subespaços de V.
 - (a) Mostre que $U \cap W$ é o maior subespaço de V contendo $U \in W$.
 - (b) Mostre U + W é o menor subespaço de V contendo $U \cup W$.
- 2. Considere os seguintes subespaços do \mathbb{R}^3 :

$$\begin{split} \mathbf{U} &= \{ (x, y, z) \in \mathbb{R}^3 \; ; \; x = 0 \}, \\ \mathbf{W} &= \{ (x, y, z) \in \mathbb{R}^3 \; ; \; y - 2z = 0 \} \; \mathrm{e} \\ \mathbf{V} &= \{ (x, y, z) \in \mathbb{R}^3 \; ; \; x = y = z \}. \end{split}$$

(a) Determine uma base e a dimensão de cada um dos subespaços

$$U, V, W, U \cap V, U \cap W, V \cap W, U + V, U + W, V + W.$$

- (b) Entre as somas de subespaços U + V, U + W, V + W quais são somas diretas?
- 3. Seja V um espaço vetorial real e U e W subespaços de V tais que $U \cap W = \{0_V\}$. Mostre que se v = u + w = u' + w', com $u, u' \in U$ e $w, w' \in W$, então u = u' e w = w'.
- 4. Considere o espaço vetorial real $V=M_{2\times 2}(\mathbb{R})$ e os subespaços

$$U = \left\{ \left(\begin{array}{cc} x & -x \\ y & z \end{array} \right) \; ; x,y,z \in \mathbb{R} \right\} \; \mathrm{e} \; W = \left\{ \left(\begin{array}{cc} a & b \\ -a & c \end{array} \right) \; ; a,b,c \in \mathbb{R} \right\}.$$

- (a) Determine as dimensões de $U, W, U \cap W \in U + W$.
- (b) Mostre que U + W = V.

5. Consideremos os subespaços de $M_{n\times n}(\mathbb{R})$,

$$U = \{A \in M_{n \times n}(\mathbb{R}) \; ; \; A^t = A \} \; \mathrm{e} \; W = \{A \in M_{n \times n}(\mathbb{R}) \; ; \; A^t = -A \}.$$

- (a) Mostre que $U \cap W = \{0\}$.
- (b) $D\hat{e} \dim_{\mathbb{R}}(U)$, $\dim_{\mathbb{R}}(W)$ $e \dim_{\mathbb{R}}(U+W)$.
- (c) Seja $A \in M_{n \times n}(\mathbb{R})$.
 - i. Mostre que se $A\,=\,B\,+\,C,$ onde $B\,\in\,U$ e $C\,\in\,W,$ então $A^{t} = B - C$.
 - ii. Mostre que $B = \frac{A + A^t}{2}$ e $C = \frac{A A^t}{2}$.
 - iii. Mostre que $M_{n\times n}(\mathbb{R})=U\oplus W.$