

| Name: |  |  |
|-------|--|--|
|       |  |  |

### An Experiment to investigate Hooke's Law

#### **Objectives:**

During this lab, you will establish Hooke's Law and will find the value for the spring constant for two springs.

Hooke's Law explains the relationship between the force exerted on a spring, the stretch of the string, and the spring constant of the spring. Springs are very special because they have a restoring force, which means that when a force is applied on them, they exert an opposing force to restore their original shape.

#### **Materials:**

- Ring Stand
- Clamps
- Ruler
- Springs
- Set of masses

## Procedure:

For each of two springs:

1. Attach the spring to the ring stand and have on of your group members hold the 0 mark of a ruler up to end of the spring (usually a hook or a loop).

#### For each of 5 masses:

2. Attach the mass to the end of the spring, measure the stretch of the spring by looking at the location of the <u>end of the spring</u>, and record this measurement in the provided table. (Warning: two much weight on a spring can permanently damage it. Only add a little weight at a time!)



## **Data Collection:**

## Spring 1:

| Mass (Kg) | Weight (N) | Stretch (m) |
|-----------|------------|-------------|
|           |            |             |
|           |            |             |
|           |            |             |
|           |            |             |
|           |            |             |

# Spring 2:

| Mass (Kg) | Weight (N) | Stretch (m) |
|-----------|------------|-------------|
|           |            |             |
|           |            |             |
|           |            |             |
|           |            |             |
|           |            |             |

# **Data Analysis:** For each spring:

1. Plot the applied force, F (N), (this is the total weight, m•g, of the masses, m, hanging on the spring) on the y-axis versus the corresponding stretches, x (m), on the x-axis.





| 2  | Draw a | hest-fit line  | e for each | of your   | nlots  | Be sure to | include | (0 0) |   |
|----|--------|----------------|------------|-----------|--------|------------|---------|-------|---|
| ∠. | Diaw a | DCSt-III III I | c ioi caci | i Oi youi | ρισιο. | DC Suic ic | include | (O,O) | / |

3. Do thesw best-fit lines approximate your data well? Yes or No

If so, then you've established Hooke's Law F = kx

- 4. Use the slope of the graph to find the spring constant.
- (a) Spring 1: k = F/x
- (b) Spring 2: k = F/x

#### **Application:**

5. Use the value of k that you found for spring 1 to predict the stretch of spring 1 for two masses that you did not use in your measurements.

6. The end of a spring stretches 0.02 m when a 100 g mass is added to it. How much will the spring stretch when a 500 g mass is placed on it?

7. A spring has a spring constant of 100 N/m. What would be the stretch of the spring a force of 4 N is applied to it?