Machine Learning Notebook

Cong Bao

Contents

1	Intr	roduction										1
	1.1	About this Notebook							 			1
	1.2	Policy of Use				• •			 			1
2	Mat	Mathematics Basics							2			
	2.1	Probability							 			2
		2.1.1 Basic Rules .							 			2
		2.1.2 Common Proba	ability Distributions						 			4
	2.2	Linear Algebra							 			6
	2.3	Calculus							 			6
	2.4	Informatics							 			6
	2.5	Optimization							 			6
3	Mac	chine Learning Basics	${f s}$									7
	3.1	Regularization							 			7
		3.1.1 Under-fitting &	Over-fitting						 			7
		3.1.2 Bias & Variance	e						 			7
		3.1.3 Vector Norm							 			7
		3.1.4 Penalize Compl	lexity						 			8
	3.2	Cross-Validation							 			8
	3.3	Bayesian Learning							 			8
		3.3.1 Bayes' Rule Ter	rminology						 			8
		•	lihood									9
		3.3.3 Maximum a Po	osterior (MAP)						 			9
			oach									9
			ariate Normal Distri									10
		-	gorical Distribution									12
	3 4	Machine Learning Mod										12

CONTENTS

4	Regression		
	4.1 Linear Regression	13	
	4.2 Non-linear Regression	13	
	4.3 Logistic Regression	13	
5	Support Vector Machines	14	
\mathbf{B}^{i}	ibliography	15	
\mathbf{A}	Test	16	

Introduction

- 1.1 About this Notebook
- 1.2 Policy of Use

Mathematics Basics

2.1 Probability

2.1.1 Basic Rules

Three Axioms of Probability Let Ω be a sample space. A probability assigns a real number P(X) to each event $X \subseteq \Omega$ in such a way that

- 1. $P(X) \ge 0, \forall X$
- 2. If $X_1, X_2, ...$ are pairwise disjoint events $(X_1 \cap X_2 = \emptyset, i \neq j, i, j = 1, 2, ...)$, then $P(\bigcup_{i=1}^{\infty} X_i) = \sum_{i=1}^{\infty} P(X_i)$. (This property is called countable additivity.)
- 3. $P(\Omega) = 1$

Joint Probability The probability both event A and B occur. $P(X,Y) = P(X \cap Y)$.

Marginalization The probability distribution of any variable in a joint distribution can be recovered by integrating (or summing) over the other variables.

- 1. For continuous r.v. $P(x) = \int P(x,y) dy$; $P(y) = \int P(x,y) dx$.
- 2. For discrete r.v. $P(x) = \sum_{y} P(x, y)$; $P(y) = \sum_{x} P(x, y)$.
- 3. For mixed r.v. $P(x,y) = \sum_{w} \int P(w,x,y,z) dz$, where w is discrete and z is continuous.

Conditional Probability P(X = x | Y = y) is the probability X = x occurs given the knowledge Y = y occurs. Conditional probability can be extracted from joint probability that

$$P(x|y = y^*) = \frac{P(x, y = y^*)}{\int P(x, y = y^*) dx} = \frac{P(x, y = y^*)}{P(y = y^*)}$$

Usually, the formula is written as $P(x|y) = \frac{P(x,y)}{P(y)}$.

Product Rule The formula can be rearranged as P(x, y) = P(x|y) P(y) = P(y|x) P(x). In case of multiple variables

$$P(w, x, y, z) = P(w, x, y|z) P(z)$$

$$= P(w, x|y, z) P(y|z) P(z)$$

$$= P(w|x, y, z) P(x|y, z) P(y|z) P(z)$$

Independence If two variables x and y are independent, then r.v. x tells nothing about r.v. y (and vice-versa)

$$P(x|y) = P(x)$$

$$P(y|x) = P(y)$$

$$P(x,y) = P(x) P(y)$$

Baye's Rule By rearranging formula in Product Rule, we have

$$P(y|x) = \frac{P(x|y) P(y)}{P(x)}$$

$$= \frac{P(x|y) P(y)}{\int P(x,y) dy}$$

$$= \frac{P(x|y) P(y)}{\int P(x|y) P(y) dy}$$

Expectation Expectation tells us the excepted or average value of some function f(x), taking into account the distribution of x.

$$\mathbf{E}[f(x)] = \sum_{x} f(x)P(x)$$
$$\mathbf{E}[f(x)] = \int f(x)P(x) dx$$

Definition in two dimensions: $\mathbf{E}\left[f(x,y)\right] = \iint f(x,y)P\left(x,y\right)dx\ dy$

Function $f(\bullet)$	Expectation		
x^k	k^{th} moment about zero		
$(x-\mu_x)^k$	k^{th} moment about the mean		

Function $f(\bullet)$	Expectation				
x	mean, μ_x				
$(x-\mu_x)^2$	variance				
$(x-\mu_x)^3$	skew				
$(x-\mu_x)^4$	kurtosis				
$(x-\mu_x)(x-\mu_y)$	covariance of x and y				

Besides, Expectation has the following four rules

- 1. Expected value of a constant is the constant $\mathbf{E}[\kappa] = \kappa$.
- 2. Expected value of constant times function is constant times excepted value of function $\mathbf{E}[kf(x)] = k\mathbf{E}[f(x)].$
- 3. Expectation of sum of functions is sum of expectation of functions $\mathbf{E}[f(x) + g(y)] = \mathbf{E}[f(x)] + \mathbf{E}[g(x)].$

2.1.2 Common Probability Distributions

Bernoulli Bernoulli distribution describes situation where only two possible outcomes y = 0/y = 1 or failure/success.

- 1. $P(x) = \mathbf{Bern}_x[\lambda] = \lambda^x (1 \lambda)^{1-x}$
- 2. univariate, discrete, binary
- 3. $x \in \{0, 1\}; \lambda \in [0, 1]$
- 4. $\mathbf{E}[x] = \lambda$, $\mathbf{Var}[x] = \lambda(1 \lambda)$

Beta Beta distribution is the conjugate distribution to Bernoulli distribution.

- 1. $P(\lambda) = \mathbf{Beta}_{\lambda}[\alpha, \beta] = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \lambda^{\alpha 1} (1 \lambda)^{\beta 1}$
- 2. univariate, continuous, unbounded
- 3. $\lambda \in \mathbb{R}$; $\alpha \in \mathbb{R}_+$, $\beta \in \mathbb{R}_+$
- 4. $\mathbf{E}[\lambda] = \frac{\alpha}{\alpha + \beta}$, $\mathbf{Var}[\lambda] = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$

Categorical Categorical distribution describes situation with K possible outcomes.

1.
$$P(x) = \mathbf{Cat}_x[\lambda], P(x = k) = \lambda_k, P(\mathbf{x} = \mathbf{e}_k) = \prod_{j=1}^K \lambda_j^{x_j} = \lambda_k$$

- 2. univariate, discrete, multi-valued
- 3. $x \in \{1, 2, ..., K\}; \lambda_k \in [0, 1] \text{ where } \sum_k \lambda_k = 1$
- 4. $\mathbf{E}[x_i] = \lambda_i$, $\mathbf{Var}[x_i] = \lambda_i(1 \lambda_i)$, $\mathbf{Cov}[x_i, x_j] = -\lambda_i\lambda_j \ (i \neq j)$

Dirichlet Dirichlet distribution is the conjugate distribution to categorical distribution.

1.
$$P(\lambda) = \mathbf{Dir}_{\lambda}[\alpha] = \frac{\Gamma(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} \lambda_k^{\alpha_k - 1}$$

2. multivariate, continuous, bounded, sums to one

3.
$$\lambda = [\lambda_1, \lambda_2, \dots, \lambda_K]^{\top}, \ \lambda_k \in [0, 1], \ \sum_{k=1}^K \lambda_k = 1; \ \alpha = [\alpha_1, \alpha_2, \dots, \alpha_K], \ \alpha_k \in \mathbb{R}_+$$

4.
$$\mathbf{E}\left[\lambda_{i}\right] = \frac{\alpha_{i}}{\sum_{k} \alpha_{k}}, \, \mathbf{Var}\left[\lambda_{i}\right] = \frac{\alpha_{i}\left(\sum_{k} \alpha_{k} - \alpha_{i}\right)}{\left(\sum_{k} \alpha_{k}\right)^{2}\left(\sum_{k} \alpha_{k} + 1\right)}, \, \mathbf{Cov}\left[\lambda_{i}, \lambda_{j}\right] = \frac{-\alpha_{i}\alpha_{j}}{\left(\sum_{k} \alpha_{k}\right)^{2}\left(\sum_{k} \alpha_{k} + 1\right)} \, \left(i \neq j\right)$$

Univariate Normal Univariate normal distribution describes single continuous variable.

1.
$$P(x) = \mathbf{Norm}_x[\mu, \sigma^2] = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- 2. univariate, continuous, unbounded
- 3. $x \in \mathbb{R}$; $\mu \in \mathbb{R}$, $\sigma^2 \in \mathbb{R}_+$
- 4. $\mathbf{E}[x] = \mu$, $\mathbf{Var}[x] = \sigma^2$

Normal Inverse Gamma Normal inverse gamma distribution is a conjugate distribution to univariate normal distribution.

1.
$$P(\mu, \sigma^2) = \mathbf{NormInvGam}_{\mu, \sigma^2}[\alpha, \beta, \gamma, \delta] = \frac{\sqrt{\gamma}}{\sqrt{2\pi\sigma^2}} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \left(\frac{1}{\sigma^2}\right)^{\alpha+1} exp\left(-\frac{2\beta+\gamma(\delta-\mu)^2}{2\sigma^2}\right)$$

- 2. bivariate, continuous, μ unbounded, σ^2 bounded below
- 3. $\mu \in \mathbb{R}, \ \sigma^2 \in \mathbb{R}_+; \ \alpha \in \mathbb{R}_+, \ \beta \in \mathbb{R}_+, \ \gamma \in \mathbb{R}_+, \ \delta \in \mathbb{R}_+$

4.
$$\mathbf{E}[\mu] = \delta$$
, $\mathbf{E}[\sigma^2] = \frac{\beta}{\alpha - 1} (\alpha > 1)$, $\mathbf{Var}[\mu] = \frac{\beta}{(\alpha - 1)\gamma} (\alpha > 1)$, $\mathbf{Var}[\sigma^2] = \frac{\beta^2}{(\alpha - 1)^2(\alpha - 2)} (\alpha > 2)$, $\mathbf{Cov}[\mu, \sigma^2] = 0 (\alpha > 1)$

Multivariate Normal Multivariate normal distribution describes multiple continuous variables. It takes two parameters: a vector containing mean position μ , and a symmetric positive definite covariance matrix Σ .

1.
$$P(\boldsymbol{x}) = \mathbf{Norm}_{\boldsymbol{x}}[\boldsymbol{\mu}, \boldsymbol{\Sigma}] = \frac{1}{\sqrt{\det(2\pi\boldsymbol{\Sigma})}} exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

- 2. multivariate, continuous, unbounded
- 3. $\boldsymbol{x} \in \mathbb{R}^K$; $\boldsymbol{\mu} \in \mathbb{R}^K$, $\boldsymbol{\Sigma} \in \mathbb{R}^{K \times K}$ (positive semi-definite matrix)
- 4. $\mathbf{E}[x] = \mu$, $\mathrm{Var}[x] = \Sigma$

Normal Inverse Wishart Normal inverse wishart distribution is a conjugate distribution to multivariate normal distribution.

1.
$$P(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathbf{NormInvWis}_{\boldsymbol{\mu}, \boldsymbol{\Sigma}}[\alpha, \boldsymbol{\Psi}, \gamma, \boldsymbol{\delta}]$$

= $\frac{\gamma^{D/2} |\boldsymbol{\Psi}|^{\alpha/2} |\boldsymbol{\Sigma}|^{-\frac{\alpha+D+2}{2}}}{(2\pi)^{D/2} 2^{(\alpha\boldsymbol{\Sigma})/2} \Gamma_D(\alpha/2)} exp\left(-\frac{1}{2}(\text{Tr}(\boldsymbol{\Psi}\boldsymbol{\Sigma}^{-1}) + \gamma(\boldsymbol{\mu} - \boldsymbol{\delta})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu} - \boldsymbol{\delta})\right)$

- 2. multivariate, μ unbounded, Σ square, positive definite
- 3. $\boldsymbol{\mu} \in \mathbb{R}^K$, $\boldsymbol{\Sigma} \in \mathbb{R}^{K \times K}$; $\alpha \in \mathbb{R}_{>D-1}$, $\boldsymbol{\Psi} \in \mathbb{R}^{K \times K}$, $\gamma \in \mathbb{R}_+$, $\boldsymbol{\delta} \in \mathbb{R}^K$

- 2.2 Linear Algebra
- 2.3 Calculus
- 2.4 Informatics
- 2.5 Optimization

Machine Learning Basics

3.1 Regularization

3.1.1 Under-fitting & Over-fitting

Under-fitting If N > D (e.g. 30 data points, 2 dimensions) we have more equations than unknowns: over-determined system. Input-output relations can only hold approximately.

Over-fitting If N < D (e.g. 30points, 15265 dimensions) we have more unknowns than equations: under-determined system. Input-output equations hold exactly, but we are simply memorizing data.

3.1.2 Bias & Variance

High Bias & Low Variance A rigid model's (low complexity) performance is more predictable in the test set but the model may not be good even on the training set.

Low Bias & High Variance A flexible model (high complexity) approximates the target function well in the training set but can "overtrain" and have poor performance on the test set.

3.1.3 Vector Norm

L1, ("Manhattan") norm
$$||\boldsymbol{w}||_1 = \sum_{d=1}^D |w_d|$$

L2, ("Euclidean") norm
$$||\boldsymbol{w}||_2 = \sqrt{\sum_{d=1}^D w_d^2} = \sqrt{\langle \boldsymbol{w}, \boldsymbol{w} \rangle} = \sqrt{\boldsymbol{w}^{\top} \boldsymbol{w}}$$

Lp norm, p>1
$$||\boldsymbol{w}||_p = \left(\sum_{d=1}^D w_d^p\right)^{1/p}$$

3.1.4 Penalize Complexity

In linear regression, the residual vector is $\boldsymbol{\epsilon} = \boldsymbol{y} - \boldsymbol{\Psi} \boldsymbol{w}$. The loss function is $L(\boldsymbol{w}) = \boldsymbol{\epsilon}^{\top} \boldsymbol{\epsilon}$. We add a complexity term $R(\boldsymbol{w}) = ||\boldsymbol{w}||_2 = \boldsymbol{w}^{\top} \boldsymbol{w}$ to the loss function. Hence, the original loss function becomes $L(\boldsymbol{w}) = \boldsymbol{\epsilon}^{\top} \boldsymbol{\epsilon} + \lambda \boldsymbol{w}^{\top} \boldsymbol{w}$.

Without regularization, the loss function is $L(\boldsymbol{w}) = \boldsymbol{\epsilon}^{\top} \boldsymbol{\epsilon}$. Let $\nabla L(\boldsymbol{w}^*) = 0$, we have $\boldsymbol{w}^* = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \boldsymbol{y}$.

With L2-regularization, the loss function is $L(\boldsymbol{w}) = \boldsymbol{\epsilon}^{\top} \boldsymbol{\epsilon} + \lambda \boldsymbol{w}^{\top} \boldsymbol{w}$. Let $\nabla L(\boldsymbol{w}^*) = 0$, we have $\boldsymbol{w}^* = (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{\top} \boldsymbol{y}$. The additional $\lambda \mathbf{I}$ makes the data matrix more robust to calculate inversion.

3.2 Cross-Validation

We can select hyperparameters with (cross-)validation. Cross-validation excludes part of the training data from parameter estimation, and use them only to predict the test error.

K-fold cross validation: split data set into K folds and each time train on (K-1) folds and valid on the remaining fold until all folds have been used as validation fold. The cross-validation error is the average of K validation errors. We pick hyperparameters that minimize cross-validation error.

3.3 Bayesian Learning

3.3.1 Bayes' Rule Terminology

Bayes' Rule:

$$P(y|x) = \frac{P(x|y) P(y)}{\int P(x|y) P(y) dy}$$

Prior P(y) what we know about y before seeing x. In parameters learning we choose prior that is conjugate to likelihood.

Likelihood P(x|y) propensity for observing a certain value of x given a certain value of y.

Posterior P(y|x) what we know about y after seeing x. Posterior must have same form as conjugate prior distribution.

Evidence $\int P(x|y) P(y) dy$ a constant to ensure that the LHS is a valid distribution. Posterior must be a distribution which implies that evidence equals to a constant κ from conjugate relation.

3.3.2 Maximum Likelihood

Fitting As the name suggests we find the parameters under which the data $x_{1...I}$ are most likely. Here, we have assumed that data was independent.

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P\left(\boldsymbol{x}_{1...I} | \boldsymbol{\theta}\right)$$
$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{i=1}^{I} P\left(\boldsymbol{x}_{i} | \boldsymbol{\theta}\right)$$

Predictive Density Evaluate new data point x^* under probability distribution $P\left(x^*|\hat{\theta}\right)$ with best parameters.

3.3.3 Maximum a Posterior (MAP)

Fitting As the name suggests we find the parameters which maximize the posterior probability $P(\theta|\mathbf{x}_{1...I})$. Again we have assumed that data was independent.

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P\left(\boldsymbol{\theta}|\boldsymbol{x}_{1...I}\right)$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \frac{P\left(\boldsymbol{x}_{1...I}|\boldsymbol{\theta}\right) P\left(\boldsymbol{\theta}\right)}{P\left(\boldsymbol{x}_{1...I}\right)}$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \frac{\prod_{i=1}^{I} P\left(\boldsymbol{x}_{i}|\boldsymbol{\theta}\right) P\left(\boldsymbol{\theta}\right)}{P\left(\boldsymbol{x}_{1...I}\right)}$$

Since the denominator does not depend on the parameters we can instead maximize

$$\hat{\boldsymbol{\theta}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1}^{I} P\left(\boldsymbol{x}_{i} | \boldsymbol{\theta}\right) \ P\left(\boldsymbol{\theta}\right)$$

Predictive Density Evaluate new data point x^* under probability distribution with MAP parameters $P\left(x^*|\hat{\theta}\right)$

3.3.4 Bayesian Approach

Fitting Compute the posterior distribution over possible parameter values using Bayes' rule. Principle: There are many values that could have explained the data. Instead of picking one set of parameters, try to capture all of the possibilities.

$$P\left(\boldsymbol{\theta}|\boldsymbol{x}_{1...I}\right) = \frac{\prod_{i=1}^{I} P\left(\boldsymbol{x}_{i}|\boldsymbol{\theta}\right) \ P\left(\boldsymbol{\theta}\right)}{P\left(\boldsymbol{x}_{1...I}\right)}$$

Predictive Density (a) Each possible parameter value makes a prediction. (b) Some parameters more probable than others.

$$P\left(\boldsymbol{x}^{*}|\boldsymbol{x}_{1...I}\right) = \int P\left(\boldsymbol{x}^{*}|\boldsymbol{\theta}\right) P\left(\boldsymbol{\theta}|\boldsymbol{x}_{1...I}\right) d\boldsymbol{\theta}$$

Make a prediction that is an infinite weighted sum (integral) of the predictions for each parameter value $(P(\boldsymbol{x}^*|\boldsymbol{\theta}))$, where weights are the probabilities $(P(\boldsymbol{\theta}|\boldsymbol{x}_{1...I}))$.

3.3.5 Example: Univariate Normal Distribution

Maximum Likelihood

Likelihood given by normal distribution pdf:

$$P(x|\mu,\sigma^2) = \mathbf{Norm}_x[\mu,\sigma^2] = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Apply maximum likelihood:

$$\begin{split} \hat{\mu}, \hat{\sigma}^2 &= \operatorname*{argmax}_{\mu, \sigma^2} P\left(x_{1...I} | \mu, \sigma^2\right) \\ &= \operatorname*{argmax}_{\mu, \sigma^2} \prod_{i=1}^{I} P\left(x_i | \mu, \sigma^2\right) \\ &= \operatorname*{argmax}_{\mu, \sigma^2} \prod_{i=1}^{I} \mathbf{Norm}_{x_i} [\mu, \sigma^2] \\ &= \operatorname*{argmax}_{\mu, \sigma^2} \sum_{i=1}^{I} \log \mathbf{Norm}_{x_i} [\mu, \sigma^2] \\ &= \operatorname*{argmax}_{\mu, \sigma^2} \left(-\frac{I}{2} \log 2\pi - \frac{I}{2} \log \sigma^2 - \frac{1}{2} \sum_{i=1}^{I} \frac{(x_i - \mu)^2}{\sigma^2} \right) \end{split}$$

Let $\nabla L(\hat{\mu}, \hat{\sigma}^2) = 0$, we have the solution:

$$\hat{\mu} = \frac{\sum_{i=1}^{I} x_i}{I}$$

$$\hat{\sigma}^2 = \sum_{i=1}^{I} \frac{(x_i - \hat{\mu})^2}{I}$$

Maximum a Posterior

Likelihood given by normal distribution pdf:

$$P(x|\mu, \sigma^2) = \mathbf{Norm}_x[\mu, \sigma^2] = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Prior given by normal inverse gamma distribution pdf:

$$P\left(\mu,\sigma^{2}\right) = \mathbf{NormInvGam}_{\mu,\sigma^{2}}[\alpha,\beta,\gamma,\delta] = \frac{\sqrt{\gamma}}{\sqrt{2\pi\sigma^{2}}} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \left(\frac{1}{\sigma^{2}}\right)^{\alpha+1} exp\left(-\frac{2\beta + \gamma(\delta - \mu)^{2}}{2\sigma^{2}}\right)$$

Apply maximum a posterior:

$$\begin{split} \hat{\mu}, \hat{\sigma}^2 &= \operatorname*{argmax}_{\mu, \sigma^2} \prod_{i=1}^{I} P\left(x_i | \mu, \sigma^2\right) \ P\left(\mu, \sigma^2\right) \\ &= \operatorname*{argmax}_{\mu, \sigma^2} \prod_{i=1}^{I} \mathbf{Norm}_{x_i} [\mu, \sigma^2] \ \mathbf{NormInvGam}_{\mu, \sigma^2} [\alpha, \beta, \gamma, \delta] \\ &= \operatorname*{argmax}_{\mu, \sigma^2} \left(\sum_{i=1}^{I} \log \mathbf{Norm}_{x_i} [\mu, \sigma^2] + \log \mathbf{NormInvGam}_{\mu, \sigma^2} [\alpha, \beta, \gamma, \delta] \right) \end{split}$$

Let $\nabla L(\hat{\mu}, \hat{\sigma}^2) = 0$, we have the solution:

$$\hat{\mu} = \frac{\sum_{i=1}^{I} x_i + \gamma \delta}{I + \gamma}$$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{I} (x_i - \mu)^2 + 2\beta + \gamma (\delta - \mu)^2}{I + 3 + 2\alpha}$$

Bayesian Approach

Compute the posterior distribution using Bayes' rule:

$$\begin{split} P\left(\mu,\sigma^{2}|x_{1...I}\right) &= \frac{\prod_{i=1}^{I} P\left(x_{i}|\mu,\sigma^{2}\right) \ P\left(\mu,\sigma^{2}\right)}{P\left(x_{1...I}\right)} \\ &= \frac{\prod_{i=1}^{I} \mathbf{Norm}_{x_{i}}[\mu,\sigma^{2}] \ \mathbf{NormInvGam}_{\mu,\sigma^{2}}[\alpha,\beta,\gamma,\delta]}{P\left(x_{1...I}\right)} \\ &= \frac{\kappa(\alpha,\beta,\gamma,\delta,x_{1...I}) \mathbf{NormInvGam}_{\mu,\sigma^{2}}[\tilde{\alpha},\tilde{\beta},\tilde{\gamma},\tilde{\delta}]}{P\left(x_{1...I}\right)} \\ &= \mathbf{NormInvGam}_{\mu,\sigma^{2}}[\tilde{\alpha},\tilde{\beta},\tilde{\gamma},\tilde{\delta}] \end{split}$$

where

$$\begin{split} \tilde{\alpha} &= \alpha + \frac{I}{2} \\ \tilde{\beta} &= \frac{\sum_{i} x_{i}^{2}}{2} + \beta + \frac{\gamma \delta^{2}}{2} - \frac{(\gamma \delta + \sum_{i} x_{i})^{2}}{2(\gamma + I)} \\ \tilde{\gamma} &= \gamma + I \\ \tilde{\delta} &= \frac{\gamma \delta + \sum_{i} x_{i}}{\gamma + I} \end{split}$$

Take weighted sum of predictions from different parameter values:

$$\begin{split} P\left(\boldsymbol{x}^{*}|\boldsymbol{x}_{1...I}\right) &= \int\!\!\!\int P\left(\boldsymbol{x}^{*}|\boldsymbol{\mu},\sigma^{2}\right) P\left(\boldsymbol{\mu},\sigma^{2}|\boldsymbol{x}_{1...I}\right) d\boldsymbol{\mu} d\sigma \\ &= \int\!\!\!\!\int \mathbf{Norm}_{\boldsymbol{x}^{*}}[\boldsymbol{\mu},\sigma^{2}] \mathbf{NormInvGam}_{\boldsymbol{\mu},\sigma^{2}}[\tilde{\alpha},\tilde{\beta},\tilde{\gamma},\tilde{\delta}] d\boldsymbol{\mu} d\sigma \\ &= \int\!\!\!\!\int \kappa(\alpha,\beta,\gamma,\delta,\boldsymbol{x}_{1...I}) \mathbf{NormInvGam}_{\boldsymbol{\mu},\sigma^{2}}[\check{\alpha},\check{\beta},\check{\gamma},\check{\delta}] d\boldsymbol{\mu} d\sigma \\ &= \kappa(\alpha,\beta,\gamma,\delta,\boldsymbol{x}_{1...I}) \int\!\!\!\!\!\int \mathbf{NormInvGam}_{\boldsymbol{\mu},\sigma^{2}}[\check{\alpha},\check{\beta},\check{\gamma},\check{\delta}] d\boldsymbol{\mu} d\sigma \\ &= \kappa(\alpha,\beta,\gamma,\delta,\boldsymbol{x}_{1...I}) \\ &= \frac{1}{\sqrt{2\pi}} \frac{\sqrt{\tilde{\gamma}}\tilde{\beta}^{\tilde{\alpha}}}{\sqrt{\tilde{\gamma}}\tilde{\beta}^{\tilde{\alpha}}} \frac{\Gamma(\check{\alpha})}{\Gamma(\tilde{\alpha})} \end{split}$$

where

3.3.6 Example: Categorical Distribution

3.4 Machine Learning Models

Regression

- 4.1 Linear Regression
- 4.2 Non-linear Regression
- 4.3 Logistic Regression

Support Vector Machines

Bibliography

Appendix A

Test

test