TD3

Exercice 1. Un train part d'une gare A au temps t=0 et arrive en gare B au temps t=30 (exprimé en minutes). On note v(t) la vitesse instantanée (exprimée en kilomètres par minute) du train à l'instant t. On a

$$v(t) = \begin{cases} \min(4, t) & \text{pour } 0 \le t \le 24 \pmod{a, b} \text{ est le plus petit des deux réels } a \text{ et } b) \\ 28 - t & \text{pour } 24 \le t \le 26 \\ 2 & \text{pour } 26 \le t \le 29 \\ 60 - 2t & \text{pour } 29 \le t \le 30 \end{cases}$$

- a) Tracer la courbe représentative de la fonction vitesse.
- b) Déterminer la distance parcourue par le train entre les gares A et B.
- c) Donner la vitesse moyenne du train sur le parcours en km·mn⁻¹ puis en km·h⁻¹.

Exercice 2. a) Déterminer la primitive sur $\mathbb R$ de la fonction $f:x\mapsto 1-2x+x^2$ qui s'annule en 0, puis celle qui s'annule en 2.

b) Soit $g:]0,+\infty[\to\mathbb{R},$ définie par $g(t)=\frac{2}{t}-t.$ Déterminer la primitive de g qui s'annule en 1, puis celle qui vaut 3 en e.

Exercice 3. On considère la fonction $f: \mathbb{R} \to \mathbb{R}$, définie par $f(x) = \begin{cases} -1 & \text{si } x < 0 \\ 1 & \text{si } x > 0 \end{cases}$

- a) Déterminer toutes les fonctions $g: \mathbb{R} \to \mathbb{R}$, dérivables en tout point de \mathbb{R}^* et continues en 0, telles que $\forall x \in \mathbb{R}^*, g'(x) = f(x)$.
- b) Justifier que les fonctions trouvées en a) ne sont pas dérivables en 0. En déduire que f n'a pas de primitive sur \mathbb{R} .

Exercice 4. Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

a)
$$I = \mathbb{R}, f(x) = (2x+1)^3$$
;

b)
$$I = \mathbb{R}, \ f(t) = e^{\lambda t} \ (\lambda \in \mathbb{R}^*) ;$$

c)
$$I = \mathbb{R}, \ f(x) = b^{4x+1} \ (b \in \mathbb{R}_+^*) \ ;$$

a)
$$I = \mathbb{R}, \ f(x) = (2x+1)^3;$$
 b) $I = \mathbb{R}, \ f(t) = e^{\lambda t} \ (\lambda \in \mathbb{R}^*);$ c) $I = \mathbb{R}, \ f(x) = b^{4x+1} \ (b \in \mathbb{R}_+^*);$ d) $I =]-1, +\infty[, \ f(x) = (x+1)^{-\alpha} \ (\alpha \in \mathbb{R});$

e)
$$I =]-\infty, 3], f(s) = \sqrt{3-s}$$
; f) $I =]-\frac{1}{3}, +\infty[$ ou $I =]-\infty, -\frac{1}{3}[$, $f(t) = \frac{4}{3t+1}$.

Exercice 5. Soient a et b deux réels tels que a < b et soit $f : [a, b] \to \mathbb{R}$ continue. On suppose que $\forall x \in [a,b] \ m \leq f(x) \leq M$. Montrer que la valeur moyenne de f sur l'intervalle [a, b] est comprise entre m et M.

Exercice 6. Calculer les intégrales suivantes.

a)
$$\int_{1}^{4} (x+2)^{2} dx$$
 b) $\int_{1}^{2} \frac{x^{3}-1}{x^{2}} dx$ c) $\int_{a}^{3a} \frac{ds}{s} (a \in \mathbb{R}^{*})$ d) $\int_{1}^{8} x^{1/3} dx$

e)
$$\int_0^1 e^{3t} - e^{-t} dt$$
 f) $\int_0^{\pi/4} \cos(3s) ds$ g) $\int_0^{1/2} \frac{dx}{\sqrt{1 - x^2}}$

Exercice 7. a) Exprimer $\cos(2x)$ en fonction de $\sin^2 x$. En déduire une primitive de \sin^2

b) Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \cos x(\sin x)^n$. En déduire une primitive de la fonction \cos^3 .

c) Calculer
$$\int_0^{\pi/2} (\sin t)^2 - (\cos t)^3 dt$$
.

Exercice 8. Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x \mapsto f(u(x))u'(x)$.

a)
$$\int_{1}^{x} \frac{\cos \sqrt{t}}{2\sqrt{t}} dt \ (x \in \mathbb{R}_{+}^{*})$$
 b) $\int_{0}^{\pi/4} \tan x \, dx$ c) $\int_{1}^{2} \frac{e^{\frac{1}{t}}}{t^{2}} dt$

Exercice 9. a) En utilisant l'identité $x^3 = x(x^2 + 1) - x$, calculer $\int_0^2 \frac{x^3}{1 + x^2} dx$.

b) Calculer $\int_{0}^{2} \frac{x^4}{1+x^2} dx$ par une méthode analogue.

Exercice 10. a) Donner le domaine de définition D de la fonction $f: x \mapsto \frac{1}{r^2 - r - 2}$

b) Trouver deux constantes réelles a et b telles que

$$\forall x \in D, \ f(x) = \frac{a}{x+1} + \frac{b}{x-2}$$

c) Calculer
$$\int_0^1 f(x) dx$$
.

Exercice 11. Calculer $\int_0^{\pi} |\cos t| dt$. Indication: étudier le signe de la fonction cos $sur [0, \pi]$ et utiliser la relation de Chasles.

Exercice 12. Calculer les intégrales suivantes en utilisant un changement de variable.

a)
$$\int_{2}^{e} \frac{(\ln x)^{3}}{x} dx$$
 b) $\int_{0}^{3} x^{2} \sqrt{1+x} dx$ (poser $s = \sqrt{1+x}$)

c) $\int_{0}^{1} \frac{1}{1+\sqrt[3]{t}} dt$ d) $\int_{0}^{2} \frac{1}{2+e^{-t}} dt$ (poser $x = e^{t}$)

Exercice 13. Calculer à l'aide d'une (ou plusieurs) intégration(s) par parties les intégrales suivantes.

a)
$$\int_{1}^{3} \frac{\ln t}{t^{2}} dt$$
 b) $\int_{0}^{2\pi} (x+1) \sin x \, dx$ c) $\int_{0}^{1} x^{2} e^{-2x} \, dx$

Exercice 14. En utilisant $u = \arctan et v(x) = x$ pour une intégration par parties, donner toutes les primitives sur \mathbb{R} de la fonction arctan.

Exercice 15. En utilisant deux intégrations par parties, calculer $\int_0^x e^t \sin t \, dt$, pour tout $x \in \mathbb{R}$.

EXERCICES COMPLEMENTAIRES

Exercice 16. a) Justifier que la fonction $f: t \mapsto \frac{e^t}{t}$ admet une primitive F sur l'intervalle $]0, +\infty[$. On ne cherchera pas à calculer F(t).

b) On considère la fonction $h:]0, +\infty[\to \mathbb{R}$ définie par $h(x) = \int_1^{x^2} \frac{e^t}{t} dt$. Donner une expression de h(x) qui utilise la fonction F. En déduire que h est dérivable sur $]0, +\infty[$ et calculer h'(x).

Exercice 17. On définit une fonction $h:]-\pi/2, 3\pi/2[\to \mathbb{R}$ en posant $h(x) = \frac{\cos x}{1+\sin x}$. Calculer la dérivée de h. Utiliser le résultat obtenu pour calculer $\int_0^{\pi/2} \frac{1}{1+\sin x} dx$ et $\int_0^{\pi/3} \frac{1}{1+\sin x} dx$.

Exercice 18. Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\pi/4} (\tan t)^n dt$.

- a) Calculer I_0 et I_1 .
- b) Pour n quelconque, calculer $I_n + I_{n+2}$ (Indication: mettre $(\tan t)^n$ en facteur dans l'intégrale à calculer).
- c) En déduire I_2, I_3, I_4, I_5 .

Exercice 19. Soit $f: \mathbb{R} \to \mathbb{R}$, une fonction continue et périodique de période T. Soit $a, b \in \mathbb{R}$.

- a) Montrer en utilisant un changement de variable que $\int_a^b f(x) dx = \int_{a+T}^{b+T} f(x) dx$.
- b) En déduire que $\int_a^{a+T} f(x) dx = \int_b^{b+T} f(x) dx$ (utiliser la relation de Chasles).

Exercice 20. Calculer les intégrales suivantes.

a)
$$\int_1^2 \frac{\sqrt{x}}{1+x} dx$$
 (utiliser un changement de variable) b) $\int_1^2 x \ln x dx$ c) $\int_1^2 \frac{\ln x}{x} dx$

Exercice 21. Calculer les intégrales suivantes.

a)
$$\int_0^1 7x(3x^2+1)^4 dx$$
 b) $\int_0^2 s\sqrt{s^2+1} ds$ c) $\int_0^1 \ln(1+x^2) dx$.

Exercice 22. a) En utilisant l'identité $x^2 - 4x + 5 = (x - 2)^2 + 1$, trouver une primitive de la fonction $x \mapsto \frac{1}{x^2 - 4x + 5}$. Calculer $\int_1^3 \frac{dx}{x^2 - 4x + 5}$.

b) Soit a un réel strictement positif. Donner une primitive de la fonction $x \mapsto \frac{1}{1 + (x/a)^2}$. En déduire une primitive de la fonction $x \mapsto \frac{1}{a^2 + x^2}$.

Application : calculer l'intégrale $\int_0^b \frac{dx}{3+x^2}$ et déterminer sa limite lorsque b tend vers $+\infty$.