10-423/10-623 Gen AI Spring 2025 Quiz 2

 02/17/24
 Seat: O11

 Time Limit: 15 minutes
 Exam Number: 211

Instructions:

• Verify your name and Andrew ID above.

- This exam contains 5 pages (including this cover page). The total number of points is 14.
- Clearly mark your answers in the allocated space. If you have made a mistake, cross out the invalid parts of your solution, and circle the ones which should be graded.

Name:

Room: DH - 2210

Andrew ID:

- Look over the exam first to make sure that none of the 5 pages are missing.
- No electronic devices may be used during the exam.
- Please write all answers in pen or darkly in pencil.
- You have 15 minutes to complete the exam. Good luck!

Question	Points
1. Deep Models for Vision	3
2. GANs	4
3. Diffusion Models	4
4. VAEs	3
Total:	14

1 Deep Models for Vision (3 points)

1.1.	. (1 point) True or False: As we go deeper into a CNN, the weights of <i>later</i> of volutional layers learn to detect features of <i>larger</i> patches of the input images.		
		True Crue	
	(I	False	
1.2.	M with C_i double the	Select one: Consider a 2D convolution layer with input image size $M \times n_n$ channels. Let N_W be the original number of weight parameters. If we input image width and height to be $2M \times 2M$ and change nothing else layer, what is total number of weights in this layer?	
	\bigcirc I	$N_W/2$	
	\bigcirc I	$N_W/4$	
	\bigcirc ι	$\sqrt{2}N_W$	
	\bigcirc 2	$2N_W$	
	\bigcirc 4	$4N_W$	
	\bigcirc N	None of the above	
1.3.	` - /	Select all that apply: Which aspects of an encoder-only Transformer d to be substantially changed to convert it to a basic Vision Transformer del?	
	Select as fe	ew options as necessary.	
		Tokenization	
	□ F	Position embedding	
	\Box A	Attention blocks	
		Fransformer blocks	
	□ (Optimization algorithm	
		None of the above	

2 GANs (4 points)

2.1. (1 point) **True or False:** The discriminator's role in a GAN is to determine whether the noise vector was obtained by adding noise to a real image or by sampling noise from the generator model.

○ True

O False

2.2. (2 points) Select all that apply: GANs learn by trying to find a θ and ϕ that optimize a minimax problem for a generator G_{θ} and a discriminator D_{ϕ} :

$$\min_{\theta} \max_{\phi} J(\theta, \phi), \quad \text{where } J(\theta, \phi) = \log \left(D_{\phi}(\mathbf{x}^{(i)}) \right) + \log \left(1 - D_{\phi}(G_{\theta}(\mathbf{z}^{(i)})) \right),$$

 $\mathbf{x}^{(i)}$ is a random training image, and $\mathbf{z}^{(i)}$ is a random noise vector. Which of the following techniques could be used to optimize this learning problem?

- \square Alternate between a step in the direction of $\nabla_{\phi}J(\theta,\phi)$ and a step opposite the gradient of $\nabla_{\theta}J(\theta,\phi)$.
- \square Alternate between a step opposite the direction of $\nabla_{\phi} J(\theta, \phi)$ and a step in the gradient of $\nabla_{\theta} J(\theta, \phi)$.
- \Box Jointly step in the direction $(\nabla_{\phi}J(\theta,\phi), -\nabla_{\theta}J(\theta,\phi))$
- \Box Jointly step in the direction $(-\nabla_{\phi}J(\theta,\phi), \nabla_{\theta}J(\theta,\phi))$
- \square None of the above
- 2.3. (1 point) **Select one:** Which of the following best describes how an image is generated from a trained GAN?
 - A neural network creates the mean and covariance parameters of a Gaussian, and an image is sampled from that Gaussian.
 - O Gaussian noise is repeatedly subtracted away from a randomly sampled noise vector until an image is left remaining.
 - A noise vector is sampled from a Gaussian, then a deterministic neural network transforms the noise vector into an image.
 - A noise vector is constructed by a neural network and then an image is sampled from a nonlinear distribution that conditions on that noise vector.

Diffusion Models (4 points) 3

3.1.	reverse primages, i.	True or False: To train a diffusion model, we find the parameters for the ocess model that maximize the sum of the log-likelihoods of the training e. $\hat{\boldsymbol{\theta}} = \arg \max \sum_{i=1}^{N} \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})$ where $p_{\boldsymbol{\theta}}$ is the reverse process, and are the N training images.
		True
		False
3.2.	. –	True or False: The forward process of a diffusion model and the (learned) ocess are both stochastic.
		True
		False
3.3.	Model (D	Select all that apply: Why does the Denoising Diffusion Probabilistic DPM) use a UNet model? Recall that the structure of the exact reverse $\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0$) is a Gaussian of the form $\mathcal{N}(\tilde{\mu}_q(\mathbf{x}_t, \mathbf{x}_0), \sigma_t^2 \mathbf{I})$.
		Because a UNet is a parameter efficient encoder-only Transformer model.
		Because the inputs and outputs of a UNet can be of the same dimension.
		In order to approximate $\tilde{\mu}_q(\mathbf{x}_t, \mathbf{x}_0)$ through various parameterizations.
		In order to approximate $\sigma_t^2 \mathbf{I}$ through various parameterizations.
		None of the above

4 VAEs (3 points)

- 4.1. (2 points) Select all that apply. Which of the following would we like to minimize when training a variational autoencoder, where $q_{\phi}(\mathbf{z} \mid \mathbf{x})$ is the encoder, $p_{\theta}(\mathbf{x} \mid \mathbf{z})$ is the decoder, $\mathbf{z}^{(i)} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x}^{(i)})$, and $\hat{\mathbf{x}}^{(i)} \sim p_{\theta}(\mathbf{x} \mid \mathbf{z}^{(i)})$.
 - $\Box \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}^{(i)} \hat{\mathbf{x}}^{(i)}\|_{2}^{2} KL\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \mid\mid \mathcal{N}(\mathbf{0}, \mathbf{I})\right)$
 - $\square \ \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})} \left[-\log p_{\theta}(\mathbf{x} \mid \mathbf{z}) \right] KL \left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \mid\mid p_{\theta}(\mathbf{z}) \right)$
 - \Box -ELBO (q_{ϕ})
 - \square None of the above
- 4.2. (1 point) **True or False:** The reparameterization trick is used to avoid having a random function on the computation path between the generator network weights and the objective.
 - True
 - O False