

Enabling Uncertainty Measurement in Multi-subregion Tumor Segmentation: BraTS 2025 Pediatrics

Khashayar Namdar, Saeidehsadat Mirjalili, Sangwook Kim, Dominik Deniffel, Keith Brunt, Leo Anthony Celi, Michael Cusimano, Pascal N. Tyrrell

Introduction

- Pediatric gliomas are the most common CNS tumors in children.
- MRI segmentation is key for diagnosis, treatment planning, and follow-up.
- Manual segmentation is slow and inconsistent. Thus, there is a need for
- 2025 BraTS-PED challenge enables pediatric-specific model development.
- The goal is to implement a robust, reproducible, uncertainty-aware pipeline for clinical use.

Methods

Experiment 1 Baseline

Standard nnU-Net v2 pipeline with no modifications.

Experiment 2 Masking Brain Subregions

 Used SynthSeg to segment atlas-based brain subregions and masked low/no-tumor regions, focusing model training on relevant anatomy.

Experiment 3 Skull Stripping

 Applied SynthStrip to remove non-brain tissues, reducing irrelevant anatomical variation and testing its effect on segmentation performance.

Experiment 4 Synthetic Channels

 Expanded input to 15 channels by adding voxel-wise combinations (pairwise, triple, all-four) of MRI sequences to encourage earlier feature integration.

Experiment 5 Skull Stripping as Auxiliary Task

 Incorporated skull stripping as an auxiliary prediction task (multi-task) learning) to guide feature learning and improve tumor segmentation.

Experiment 6 WT Segmentation

 Simplified model to predict WT as a single binary mask, creating a robust WT detector for downstream steps.

Experiment 7 Cropping + Ensemble

 Cropped inputs around WT region (with margin) and trained four singlechannel models (ET, NET, CC, ED). Merged predictions using a sequential overwrite strategy to create final masks.

Set

Validation

Fig. 6. Uncertainty-enabled brain tumor segmentation: a) cropped WT region, b) subregion contours, c) ensembled segmentation mask with uncertain regions

Conclusion

We deliver the first uncertainty-enabled baseline for pediatric brain tumor segmentation on BraTS-PEDs 2025. Skull stripping and atlas-based subregion masking yield consistent performance gains with minimal cost, while syntheticchannel augmentation shows little benefit. Our region-focused ensemble achieves the strongest ET and NET results and provides voxel-wise uncertainty maps to support clinical review.

Abbreviations

CC – Cystic Component **CV** – Cross-validation **CNS** – Central Nervous System **EDA** – Exploratory Data Analysis

ED – Peritumoral edema **ET** – Enhancing Tumor **MRI** – Magnetic Resonance Imaging **NET** – Non-Enhancing Tumor **T1N** – pre-contrast native T1-weighted MRI Sequence WT - Whole Tumor

Contributions

- o EDA: First characterization of BraTS-PED 2025, revealing subregion imbalance and intensity variation.
- Baseline: Established nnU-Net benchmarks pediatric tumor tor segmentation.
- Modules: Evaluated preprocessing and modeling steps (skull stripping, cascading, synthetic channels).
- Uncertainty: Introduced voxel-wise ensemble method for uncertainty identification.

250

Results

Fig. 1. Distribution of minimum intensity values in the T1N sequence across all cohorts.

Fig. 2. Presence of tumor subregions in the BraTS-PEDs 2025 training set.

Fig. 3. Distribution of the number of disconnected islands in the WT masks.

Fig. 4. Distribution of WT volumes in the BraTS-PEDs 2025 training set.

Fig. 5. Distribution of WT volumes in the BraTS-PEDs 2025 training set.

Table 1. CV Dice scores for WT and subregion segmentation across all experiments.

						-
Experiment	WT Dice	ET Dice	NET Dice	CC Dice	ED Dice	Running Time per-epoch (s)
Experiment 1	*	0.7012	0.9083	0.4956	0.4639	66
Experiment 2	*	0.7083	0.9144	0.5683	0.5017	57
Experiment 3	*	0.7426	0.9182	0.5792	0.5131	51
Experiment 4	*	0.7176	0.8950	0.4941	0.4254	151
Experiment 5	*	0.7007	0.9199	0.4922	0.4834	67
Experiment 6	0.9609	NA	NA	NA	NA	48
Experiment 7	*	0.7763	0.9603	0.4571	0.4316	180

Table 2. Validation Dice scores for WT and subregion segmentation across all experiments.

			3 3 3 3		
Experiment	WT Dice	ET Dice	NET Dice	CC Dice	ED Dice
Experiment 1	0.9370	0.6081	0.9068	0.6846	0.9011
Experiment 2	0.8895	0.6104	0.8679	0.6969	0.8352
Experiment 3	0.9238	0.6582	0.8926	0.7029	0.9341
Experiment 4	0.9239	0.6968	0.8957	0.7133	0.9560
Experiment 5	0.9357	0.6328	0.9060	0.7109	0.8901
Experiment 6	0.9305	NA	NA	NA	NA
Experiment 7	0.9252	0.6644	0.8711	0.5845	0.9670