GPS Signal Description

1. The baseband signal **transmited** by the satellite is given as

$$S(t) = S_{PPS}(t) + jS_{SPS}(t) \tag{1}$$

- $S_{SPS}(t) = \sum_{i=-\infty}^{\infty} c_{sps}(|i|_{L_sps}).d([i]_{CD_sps}).rect_{T_{c,sps}}(t-iT_{c,sps})$ Standard Positioning Service
- $S_{PPS}(t) = \sum_{i=-\infty}^{\infty} c_{pps}(|i|_{L_{-pps}}).d([i]_{CD_{-pps}}).rect_{T_{c,pps}}(t-iT_{c,pps})$ Precision Positioning Service
- 2. Let $x_{in}[n]$ be the incoming signal at the **receiver** end and is given as

$$x_{in}[n] = A(t)s_T(t - \tau(t))e^{j(2\pi f_D(t)t + \phi(t))}|_{t=nT_s} + n(t)|_{t=nT_s}$$
(2)

where

1.

- A(t) is Amplitude
- $s_T(t)$ is Complex baseband signal
- $\tau(t)$ is code delay(time varying)
- $f_D(t)$ is Doppler shift(time varying)
- $\phi(t)$ is carrier phase shift(time varying)
- n(t) is Random noise with zero mean
- T_s is Sampling period
- f_s is Sampling frequency

Pseudo code for GPS Signal Acquisition

1.1 Functions for computing the PRN codes of GPS satellite

```
(a) g1_lfsr()
            state = 0x3FF
            Declare an array out[1023]
            for i=0 to i=1022
                  \operatorname{out}[\mathbf{i}] = (\operatorname{state} \gg 9) \& 0x1
                  new_bit = ((\text{state} \gg 9) \oplus (\text{state} \gg 2)) \& 0x1
                 state = ((state \ll 1) \mid new\_bit) \& 0x3FF
            end for
            return out
(b) g2\_lfsr(tap0,tap1)
            state = 0x3FF
            Declare an array out[1023]
            tap0 = tap0-1
            tap1 = tap1-1
            for i=0 to i=1022
                  \operatorname{out}[\mathbf{i}] = ((\operatorname{state} \gg \operatorname{tap0}) \oplus (\operatorname{state} \gg \operatorname{tap1})) \& 0x1
                  new_bit = ((state \gg 9) \oplus (state \gg 8) \oplus (state \gg 7) \oplus (state \gg 5) \oplus (state \gg 2) \oplus (state \gg 1)) & 0x1
                  state = ((state \ll 1) \mid new\_bit) \& 0x3FF
            end for
            return out
(c) combine_g1_g2(g1,g2)
            declare out[1023]
            for i=0 to i=1022
                  \operatorname{out}[\mathbf{i}] = \operatorname{g1}[\mathbf{i}] \oplus \operatorname{g2}[\mathbf{i}]
            end for
            return out
```

1.2 Main function

```
PRN Code frequency f_c is 1.023Mhz
 Sampling frequency f_s is 2.048Mhz
The number of samples N for 1ms is 2048
 /* Array to store Phase selector values for 32 satellites - 2 values per satellite*/
SVs[32][2] = \{ \{2, 6\}, \{3, 7\}, \{4, 8\}, \{5, 9\}, \{1, 9\}, \{2, 10\}, \{1, 8\}, \{2, 9\}, \{3, 10\}, \{2, 3\}, \{3, 4\}, \{5, 6\}, \{6, 7\}, \{7, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9,
8}, \{8, 9\}, \{9, 10\}, \{1, 4\}, \{2, 5\}, \{3, 6\}, \{4, 7\}, \{5, 8\}, \{6, 9\}, \{1, 3\}, \{4, 6\}, \{5, 7\}, \{6, 8\}, \{7, 9\}, \{8, 10\}, \{1, 6\}, \{2, 9\}, \{3, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10\}, \{4, 10
7}, {3, 8}, {4, 9} };
Static array g1[1023]
static array g2[1023]
g1 = g1_lfsr() /* Function call */
 visibile\_satellites = 0
 Capture 2ms samples of incoming signal x_{in}[n]
 Calculate received signal power using the formula
 P_x = 0
for i=0 to N-1
                     P_x = P_x + (x_{in}[n] \times x_{in}^*[n])
The power of incoming signal should be P_x> threshold. If true, go to step 13. else, stop the process
Initialize the array \max_{\text{power}}[5] = \{0\}
Initialize the array visible_satellites_withMaxPower[5] = \{0\}
Initialize the array codePhase[5] = \{0\}
Initialize the array PRN_visible_satellites[5][2048] = \{\{0\}\}
 /* Find out the code phase for 5 satellites having maximum power */
 Apply FFT to x_{in}[n] \longrightarrow X[k], for n = 0 to N-1
for \mathbf{s}\mathbf{v}=01 to \mathbf{s}\mathbf{v}=32:
                     k=0
                     tap0 = SVs[sv][k]
                     tap1 = SVs[\mathbf{sv}][k++]
                     g2 = g2 lfsr(tap0,tap1) /* Fucntion call */
                     gold_code = combine_g1_g2(g1,g2) /* Fucntion call */
                     /*BPSK modulation of PRN code */
                     for i = 0 to i = 1022
                                     if gold\_code[i] > 0
                                                      gold\_code[i] = -1
                                     else
                                                      gold\_code[i] = 1
                     /* Upsampling the PRN code */
                     for i = 0 to i = 1022
```

```
c[2i] = gold\_code[i]
           c[2i + 1] = gold\_code[i]
      end for
      c[2046] = 0
      c[2047] = 0
      Initialize max = 0
      Initialize \max_{\cdot} index = 0
      Compute conjugate of FFT of c[n] \longrightarrow C^*[k], for n = 0 to N-1, k = 0 to N-1
      Multiply X[k] and C^*[k].
      Y[k] = X[k] \cdot C^*[k], for k = 0 to N-1
      R[n] = IFFT_k\{Y[k]\}, for n = 0 to N-1, k = 0 to N-1
      for n=0 to n = N-1
           R[\mathbf{n}] = R[\mathbf{n}] \times R^*[\mathbf{n}]
           if R[n] > max:
                \max = R[\mathbf{n}]
                \max_{i=1}^{n} n
           end if
      end for
      /* Update max_power, visible_satellites_withMaxPower and codePhase arrays */
      for \mathbf{i} = 0 to \mathbf{i} = 4
           if \max > \max_{power[i]}
                for \mathbf{j} = 4 to \mathbf{j} = \mathbf{i} - 1
                   \max_{\text{power}}[\mathbf{j}] = \max_{\text{power}}[\mathbf{j}-1]
                   visible\_satellites\_withMaxPower[j] = visible\_satellites\_withMaxPower[j-1]
                   codePhase[\mathbf{j}] = codePhase[\mathbf{j}-1]
                   j = j-1
                end for
                \max_{\text{power}}[\mathbf{i}] = \max
                visible\_satellites\_withMaxPower[i] = sv
                codePhase[i] = max\_index
                for b = 0 to b = 2048
                   PRN_visible_satellites[i][b] = c[b]
                end for
                break the loop
           end if
      end for
end for
/* Finding the Doppler shift for 5 satellites */
for \mathbf{s}\mathbf{v} = 0 to \mathbf{s}\mathbf{v} = 4
      Code phase \hat{\tau} = \text{codePhase}[\mathbf{s}\mathbf{v}]
      Initialize max\_of\_max=0
      Initialize \max_{\cdot} fd = 0
      for f_D = f_{min} to f_D = f_{max} in f_{step} steps:
           Shift the signal x[n] by f_D, for n = 0 to N-1
                                                            x_{sh}[n] = x_{in}[n + \hat{\tau}] \cdot e^{-j2\pi f_D n T_s}
                                                                                                                                                 (3)
```

```
Initialize \mathbf{z} = 0

for \mathbf{i} = 0 to \mathbf{i} = \text{N-1}

\mathbf{z} = \mathbf{z} + x_{sh}[\mathbf{i}] \times \text{PRN\_visible\_satellites}[\mathbf{sv}]][\mathbf{i}]

end for

\mathbf{z} = \text{Re}(\mathbf{z})

if (\mathbf{z} > \text{max\_of\_max})

\text{max\_of\_max} = \mathbf{z}

\text{max\_fd} = f_D

end if

end for

Doppler Frequency offset f_{D_{sv}} = \text{max\_fd}

end for
```