Deep Generative Models Lecture 7

Roman Isachenko

Ozon Masters

Spring, 2021

Dequantization

- ▶ Images are discrete data, pixels lie in the $\{0, 255\}$ integer domain (the model is $P(\mathbf{x}|\boldsymbol{\theta}) = \text{Categorical}(\boldsymbol{\pi}(\boldsymbol{\theta}))$).
- ▶ Flow is a continuous model (it works with continuous data x).

By fitting a continuous density model to discrete data, one can produce a degenerate solution with all probability mass on discrete values.

How to convert a discrete data distribution to a continuous one?

Uniform dequantization

 $\mathbf{x} \sim \mathsf{Categorical}(\boldsymbol{\pi})$

 $\mathbf{u} \sim U[0,1]$

 $\mathbf{y} = \mathbf{x} + \mathbf{u} \sim \mathsf{Continuous}$

Theis L., Oord A., Bethge M. A note on the evaluation of generative models. 2015

Uniform dequantization

Statement

Fitting continuous model $p(\mathbf{y}|\boldsymbol{\theta})$ on uniformly dequantized data $\mathbf{y} = \mathbf{x} + \mathbf{u}$, $\mathbf{u} \sim U[0,1]$ is equivalent to maximization of a lower bound on log-likelihood for a discrete model:

$$P(\mathbf{x}|\boldsymbol{\theta}) = \int_{U[0.1]} p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u}$$

Proof

$$\begin{split} \mathbb{E}_{\pi} \log p(\mathbf{y}|\boldsymbol{\theta}) &= \int \pi(\mathbf{y}) \log p(\mathbf{y}|\boldsymbol{\theta}) d\mathbf{y} = \\ &= \sum \pi(\mathbf{x}) \int_{U[0,1]} \log p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u} \leq \\ &\leq \sum \pi(\mathbf{x}) \log \int_{U[0,1]} p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u} = \\ &= \sum \pi(\mathbf{x}) \log P(\mathbf{x}|\boldsymbol{\theta}) = \mathbb{E}_{\pi} \log P(\mathbf{x}|\boldsymbol{\theta}). \end{split}$$

Variational dequantization

- ▶ $p(\mathbf{y}|\theta)$ assign unifrom density to unit hypercubes $\mathbf{x} + U[0,1]$ (left fig).
- Neural network density models are smooth function approximators (right fig).
- Smooth dequantization is more natural.

How to perform the smooth dequantization?

Variational dequantization

Introduce variational dequantization noise distribution $q(\mathbf{u}|\mathbf{x})$ and treat it as an approximate posterior.

Variational lower bound

$$\begin{split} \log P(\mathbf{x}|\boldsymbol{\theta}) &= \left[\log \int q(\mathbf{u}|\mathbf{x}) \frac{p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta})}{q(\mathbf{u}|\mathbf{x})} d\mathbf{u}\right] \geq \\ &\geq \int q(\mathbf{u}|\mathbf{x}) \log \frac{p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta})}{q(\mathbf{u}|\mathbf{x})} d\mathbf{u} = \mathcal{L}(q, \boldsymbol{\theta}). \end{split}$$

Uniform dequantization bound

$$\log P(\mathbf{x}|\boldsymbol{\theta}) = \log \int_{U[0,1]} p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u} \ge \int_{U[0,1]} \log p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u}.$$

Ho J. et al. Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design, 2019

Variational lower bound

$$\mathcal{L}(q, \theta) = \int q(\mathbf{u}|\mathbf{x}) \log \frac{p(\mathbf{x} + \mathbf{u}|\theta)}{q(\mathbf{u}|\mathbf{x})} d\mathbf{u}.$$

Let $\mathbf{u} = h(\epsilon, \phi)$ is a flow model with base distribution $\epsilon \sim p(\epsilon) = \mathcal{N}(0, \mathbf{I})$:

$$q(\mathbf{u}|\mathbf{x}) = p(h^{-1}(\mathbf{u}, \phi)) \cdot \left| \det \frac{\partial h^{-1}(\mathbf{u}, \phi)}{\partial \mathbf{u}} \right|.$$

Then

$$\log P(\mathbf{x}|oldsymbol{ heta}) \geq \mathcal{L}(oldsymbol{\phi},oldsymbol{ heta}) = \int p(oldsymbol{\epsilon}) \log \left(rac{p(\mathbf{x} + h(oldsymbol{\epsilon},oldsymbol{\phi})|oldsymbol{ heta})}{p(oldsymbol{\epsilon}) \cdot \left|\det rac{\partial h(oldsymbol{\epsilon},oldsymbol{\phi})}{\partial oldsymbol{\epsilon}}
ight|^{-1}}
ight) doldsymbol{\epsilon}.$$

Ho J. et al. Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design, 2019

Variational lower

$$\log P(\mathbf{x}|oldsymbol{ heta}) \geq \int p(oldsymbol{\epsilon}) \log \left(rac{p(\mathbf{x} + h(oldsymbol{\epsilon}, oldsymbol{\phi}))}{p(oldsymbol{\epsilon}) \cdot \left| \det rac{\partial h(oldsymbol{\epsilon}, oldsymbol{\phi})}{\partial oldsymbol{\epsilon}}
ight|^{-1}}
ight) doldsymbol{\epsilon}.$$

- ▶ If $p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta})$ is also a flow model, it is straightforward to calculate stochastic gradient of this ELBO.
- ▶ Uniform dequantization is a special case of variational dequantization $(q(\mathbf{u}|\mathbf{x}) = U[0,1])$. The gap between $\log P(\mathbf{x}|\theta)$ and the derived ELBO is $KL(q(\mathbf{u}|\mathbf{x})||p(\mathbf{u}|\mathbf{x}))$.
- ▶ In the case of uniform dequantization the model unnaturally places uniform density over each hypercube $\mathbf{x} + U[0,1]$ due to inexpressive distribution q.

Ho J. et al. Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design, 2019

Model family	Model	CIFAR10	ImageNet 32x32	ImageNet 64x64
Non-autoregressive	RealNVP (Dinh et al., 2016)	3.49	4.28	-
	Glow (Kingma & Dhariwal, 2018)	3.35	4.09	3.81
	IAF-VAE (Kingma et al., 2016)	3.11	-	-
	Flow++ (ours)	3.08	3.86	3.69
Autoregressive	Multiscale PixelCNN (Reed et al., 2017)	_	3,95	3,70
	PixelCNN (van den Oord et al., 2016b)	3.14	_	_
	PixelRNN (van den Oord et al., 2016b)	3.00	3.86	3.63
	Gated PixelCNN (van den Oord et al., 2016c)	3.03	3.83	3.57
	PixelCNN++ (Salimans et al., 2017)	2.92	-	_
	Image Transformer (Parmar et al., 2018)	2.90	3.77	-
	PixelSNAIL (Chen et al., 2017)	2.85	3.80	3.52

Ho J. et al. Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design, 2019

VAE limitations

Poor variational posterior distribution (encoder)

$$q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor probabilistic model (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma_{\boldsymbol{\theta}}^2(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Importance Sampling

Generative model

$$p(\mathbf{x}|\theta) = \int p(\mathbf{x}, \mathbf{z}|\theta) d\mathbf{z} = \int \left[\frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] q(\mathbf{z}|\mathbf{x}) d\mathbf{z}$$
$$= \int f(\mathbf{x}, \mathbf{z}) q(\mathbf{z}|\mathbf{x}) d\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z})$$

Here
$$f(\mathbf{x}, \mathbf{z}) = \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})}$$
.

ELBO

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z}) \geq \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \log f(\mathbf{x}, \mathbf{z}) = \\ &= \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})} = \mathcal{L}(q, \boldsymbol{\theta}). \end{split}$$

Could we choose better $f(\mathbf{x}, \mathbf{z})$?

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int \left[\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})} \right] q(\mathbf{z}|\mathbf{x}) d\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z})$$

Let define

$$f(\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_K) = \frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k | \boldsymbol{\theta})}{q(\mathbf{z}_k | \mathbf{x})}$$
$$\mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z} | \mathbf{x})} f(\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_K) = p(\mathbf{x} | \boldsymbol{\theta})$$

ELBO

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log \mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z}, \dots, \mathbf{z}_K) \geq \\ &\geq \mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} \log f(\mathbf{x}, \mathbf{z}, \dots, \mathbf{z}_K) = \\ &= \mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} \log \left[\frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k|\boldsymbol{\theta})}{q(\mathbf{z}_k|\mathbf{x})} \right] = \mathcal{L}_K(q, \boldsymbol{\theta}). \end{split}$$

VAE objective

$$\log p(\mathbf{x}|oldsymbol{ heta}) \geq \mathcal{L}(q,oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log rac{p(\mathbf{x},\mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x})}
ightarrow \max_{q,oldsymbol{ heta}}$$

$$\mathcal{L}(q, \theta) = \mathbb{E}_{\mathsf{z}_1, ..., \mathsf{z}_K \sim q(\mathsf{z}|\mathsf{x})} \left(\frac{1}{K} \sum_{k=1}^K \log \frac{p(\mathsf{x}, \mathsf{z}_k|\theta)}{q(\mathsf{z}_k|\mathsf{x})} \right) o \max_{q, \theta}.$$

IWAE objective

$$\mathcal{L}_{K}(q, \boldsymbol{\theta}) = \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{K} \sim q(\mathbf{z} | \mathbf{x})} \log \left(\frac{1}{K} \sum_{k=1}^{K} \frac{p(\mathbf{x}, \mathbf{z}_{k} | \boldsymbol{\theta})}{q(\mathbf{z}_{k} | \mathbf{x})} \right) \rightarrow \max_{q, \boldsymbol{\theta}}.$$

If K = 1, these objectives coincide.

Theorem

- 1. $\log p(\mathbf{x}|\boldsymbol{\theta}) \geq \mathcal{L}_K(q,\boldsymbol{\theta}) \geq \mathcal{L}_M(q,\boldsymbol{\theta})$, for $K \geq M$;
- 2. $\log p(\mathbf{x}|\theta) = \lim_{K \to \infty} \mathcal{L}_K(q,\theta)$ if $\frac{p(\mathbf{x},\mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})}$ is bounded.

Proof of 1.

$$\begin{split} \mathcal{L}_{K}(q, \boldsymbol{\theta}) &= \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{K}} \log \left(\frac{1}{K} \sum_{k=1}^{K} \frac{p(\mathbf{x}, \mathbf{z}_{k} | \boldsymbol{\theta})}{q(\mathbf{z}_{k} | \mathbf{x})} \right) = \\ &= \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{K}} \log \mathbb{E}_{k_{1}, \dots, k_{M}} \left(\frac{1}{M} \sum_{m=1}^{M} \frac{p(\mathbf{x}, \mathbf{z}_{k_{m}} | \boldsymbol{\theta})}{q(\mathbf{z}_{k_{m}} | \mathbf{x})} \right) \geq \\ &\geq \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{K}} \mathbb{E}_{k_{1}, \dots, k_{m}} \log \left(\frac{1}{M} \sum_{m=1}^{M} \frac{p(\mathbf{x}, \mathbf{z}_{k_{m}} | \boldsymbol{\theta})}{q(\mathbf{z}_{k_{m}} | \mathbf{x})} \right) = \\ &= \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{M}} \log \left(\frac{1}{M} \sum_{m=1}^{M} \frac{p(\mathbf{x}, \mathbf{z}_{m} | \boldsymbol{\theta})}{q(\mathbf{z}_{m} | \mathbf{x})} \right) = \mathcal{L}_{M}(q, \boldsymbol{\theta}) \end{split}$$

$$\frac{a_1+\cdots+a_K}{\mathcal{K}}=\mathbb{E}_{k_1,\ldots,k_M}\frac{a_{k_1}+\cdots+a_{k_M}}{\mathcal{M}},\quad k_1,\ldots,k_M\sim U[1,K]$$

Theorem

- 1. $\log p(\mathbf{x}|\boldsymbol{\theta}) \geq \mathcal{L}_K(q,\boldsymbol{\theta}) \geq \mathcal{L}_M(q,\boldsymbol{\theta})$, for $K \geq M$;
- 2. $\log p(\mathbf{x}|\boldsymbol{\theta}) = \lim_{K \to \infty} \mathcal{L}_K(q, \boldsymbol{\theta})$ if $\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})}$ is bounded.

Proof of 2.

Consider r.v.
$$\xi_K = \frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k | \boldsymbol{\theta})}{q(\mathbf{z}_k | \mathbf{x})}$$
.

If summands are bounded, then (from the strong law of large numbers)

$$\xi_K \xrightarrow[K \to \infty]{a.s.} \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})} = p(\mathbf{x}|\boldsymbol{\theta}).$$

Hence $\mathcal{L}_K(q, \theta) = \mathbb{E} \log \xi_K$ converges to $\log p(\mathbf{x}|\theta)$ as $K \to \infty$.

$$\log p(\mathbf{x}|oldsymbol{ heta}) \geq \mathcal{L}_{\mathcal{K}}(q,oldsymbol{ heta}) \geq \mathcal{L}(q,oldsymbol{ heta})$$

If K > 1 the bound could be tighter.

$$egin{aligned} \mathcal{L}(q, oldsymbol{ heta}) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log rac{p(\mathbf{x}, \mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x})}; \ \mathcal{L}_K(q, oldsymbol{ heta}) &= \mathbb{E}_{\mathbf{z}_1, ..., \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} \log \left(rac{1}{K} \sum_{k=1}^K rac{p(\mathbf{x}, \mathbf{z}_k|oldsymbol{ heta})}{q(\mathbf{z}_k|\mathbf{x})}
ight). \end{aligned}$$

- $\blacktriangleright \mathcal{L}_1(q,\theta) = \mathcal{L}(q,\theta);$
- $\qquad \qquad \mathcal{L}_{\infty}(q,\theta) = \log p(\mathbf{x}|\theta).$
- ▶ Which $q^*(\mathbf{z}|\mathbf{x})$ gives $\mathcal{L}(q^*, \theta) = \log p(\mathbf{x}|\theta)$?
- ▶ Which $q^*(\mathbf{z}|\mathbf{x})$ gives $\mathcal{L}(q^*, \theta) = \mathcal{L}_{\mathcal{K}}(q, \theta)$?

Theorem

The VAE objective is equal to IWAE objective

$$\mathcal{L}(q_{EW}, \theta) = \mathcal{L}_K(q, \theta)$$

for the following variational distribution

$$q_{EW}(\mathbf{z}|\mathbf{x}) = \mathbb{E}_{\mathbf{z}_2,...,\mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} q_{IW}(\mathbf{z}|\mathbf{x},\mathbf{z}_{2:K}),$$

where

$$q_{IW}(\mathbf{z}|\mathbf{x},\mathbf{z}_{2:K}) = \frac{\frac{p(\mathbf{x},\mathbf{z})}{q(\mathbf{z}|\mathbf{x})}}{\frac{1}{K}\sum_{k=1}^{K}\frac{p(\mathbf{x},\mathbf{z}_{k})}{q(\mathbf{z}_{k}|\mathbf{x})}}q(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{x},\mathbf{z})}{\frac{1}{K}\left(\frac{p(\mathbf{x},\mathbf{z})}{q(\mathbf{z}|\mathbf{x})} + \sum_{k=2}^{K}\frac{p(\mathbf{x},\mathbf{z}_{k})}{q(\mathbf{z}_{k}|\mathbf{x})}\right)}.$$

Cremer C., Morris Q., Duvenaud D. Reinterpreting Importance-Weighted Autoencoders, 2017

IWAE posterior

IWAE samples

Cremer C., Morris Q., Duvenaud D. Reinterpreting Importance-Weighted Autoencoders, 2017

IWAF

Objective

$$\mathcal{L}_{\mathcal{K}}(q, oldsymbol{ heta}) = \mathbb{E}_{\mathsf{z}_1, ..., \mathsf{z}_K \sim q(\mathsf{z}|\mathsf{x}, oldsymbol{\phi})} \log \left(rac{1}{K} \sum_{k=1}^K rac{p(\mathsf{x}, \mathsf{z}_k | oldsymbol{ heta})}{q(\mathsf{z}_k | \mathsf{x}, oldsymbol{\phi})}
ight)
ightarrow \max_{oldsymbol{\phi}, oldsymbol{ heta}}.$$

Gradient

$$\Delta_{\mathcal{K}} =
abla_{oldsymbol{ heta}, oldsymbol{\phi}} \log \left(rac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} rac{p(\mathbf{x}, \mathbf{z}_k | oldsymbol{ heta})}{q(\mathbf{z}_k | \mathbf{x}, oldsymbol{\phi})}
ight), \quad \mathbf{z}_k \sim q(\mathbf{z} | \mathbf{x}, oldsymbol{\phi}).$$

Theorem

$$\mathsf{SNR}_{\mathcal{K}} = rac{\mathbb{E}[\Delta_{\mathcal{K}}]}{\sigma(\Delta_{\mathcal{K}})}; \quad \mathsf{SNR}_{\mathcal{K}}(oldsymbol{ heta}) = O(\sqrt{\mathcal{K}}); \quad \mathsf{SNR}_{\mathcal{K}}(\phi) = O\left(\sqrt{rac{1}{\mathcal{K}}}
ight).$$

Hence, increasing K vanishes gradient signal of inference network $q(\mathbf{z}|\mathbf{x},\phi)$.

Theorem

$$\mathsf{SNR}_{K} = \frac{\mathbb{E}[\Delta_{K}]}{\sigma(\Delta_{K})}; \quad \mathsf{SNR}_{K}(\boldsymbol{\theta}) = O(\sqrt{K}); \quad \mathsf{SNR}_{K}(\boldsymbol{\phi}) = O\left(\sqrt{\frac{1}{K}}\right).$$

- IWAE makes the variational bound tighter and extends the class of variational distributions.
- Gradient signal becomes really small, training is complicated.
- IWAE is very popular technique as a quality measure for VAE models.

VAE limitations

Poor variational posterior distribution (encoder)

$$q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor probabilistic model (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma_{\boldsymbol{\theta}}^2(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

ELBO interpretations

$$egin{aligned} \log p(\mathbf{x}|oldsymbol{ heta}) &= \mathcal{L}(\phi,oldsymbol{ heta}) + \mathit{KL}(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z}|\mathbf{x},oldsymbol{ heta})) \geq \mathcal{L}(\phi,oldsymbol{ heta}). \ \mathcal{L}(\phi,oldsymbol{ heta}) &= \int q(\mathbf{z}|\mathbf{x},\phi)\lograc{p(\mathbf{x},\mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x},\phi)}d\mathbf{z}. \end{aligned}$$

Evidence minus posterior KL

$$\mathcal{L}(q, \theta) = \log p(\mathbf{x}|\theta) - KL(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}|\mathbf{x}, \theta)).$$

Average negative energy plus entropy

$$egin{aligned} \mathcal{L}(q, oldsymbol{ heta}) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \left[\log p(\mathbf{x}, \mathbf{z}|oldsymbol{ heta}) - \log q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})
ight] \ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \log p(\mathbf{x}, \mathbf{z}|oldsymbol{ heta}) + \mathbb{H} \left[q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})
ight]. \end{aligned}$$

Average reconstruction minus KL to prior

$$egin{aligned} \mathcal{L}(q, oldsymbol{ heta}) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) + \log p(\mathbf{z}) - \log q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})
ight] \ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) - \mathit{KL}(q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi}) || p(\mathbf{z})). \end{aligned}$$

ELBO surgery

$$\frac{1}{n}\sum_{i=1}^{n}\mathcal{L}_{i}(q,\theta) = \frac{1}{n}\sum_{i=1}^{n}\left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})}\log p(\mathbf{x}_{i}|\mathbf{z},\theta) - \mathit{KL}(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z}))\right].$$

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_i)||p(\mathbf{z})) = KL(q(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_q[\mathbf{x},\mathbf{z}],$$

- ▶ $q(z) = \frac{1}{n} \sum_{i=1}^{n} q(z|x_i)$ aggregated posterior distribution.
- ▶ $\mathbb{I}_q[\mathbf{x}, \mathbf{z}]$ mutual information between \mathbf{x} and \mathbf{z} under empirical data distribution and distribution $q(\mathbf{z}|\mathbf{x})$.
- ▶ First term pushes $q(\mathbf{z})$ towards the prior $p(\mathbf{z})$.
- Second term reduces the amount of information about x stored in z.

ELBO surgery

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_i)||p(\mathbf{z})) = KL(q(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_q[\mathbf{x},\mathbf{z}].$$

Proof

$$\frac{1}{n} \sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) = \frac{1}{n} \sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q(\mathbf{z}|\mathbf{x}_{i})}{p(\mathbf{z})} d\mathbf{z} =
= \frac{1}{n} \sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q(\mathbf{z})q(\mathbf{z}|\mathbf{x}_{i})}{p(\mathbf{z})q(\mathbf{z})} d\mathbf{z} = \int \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q(\mathbf{z})}{p(\mathbf{z})} d\mathbf{z} +
+ \frac{1}{n} \sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q(\mathbf{z}|\mathbf{x}_{i})}{q(\mathbf{z})} d\mathbf{z} = KL(q(\mathbf{z})||p(\mathbf{z})) + \frac{1}{n} \sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i})||q(\mathbf{z}))$$

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound, 2016

ELBO surgery

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) = KL(q(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_{q}[\mathbf{x},\mathbf{z}],$$

Proof (continued)

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_i)||p(\mathbf{z}_i)) = KL(q(\mathbf{z})||p(\mathbf{z})) + \frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_i)||q(\mathbf{z}))$$

It could be shown (exercise):

$$\mathbb{I}_q[\mathbf{x},\mathbf{z}] = \frac{1}{n} \sum_{i=1}^n KL(q(\mathbf{z}|\mathbf{x}_i)||q(\mathbf{z})) \in [0,\log n].$$

Summary

- Uniform dequantization is the simplest form of dequantization.
- Variational dequantization is a more natural type that was proposed in Flow++ model.
- ► The IWAE could get the tighter lower bound to the likelihood, but the training of such model becomes more difficult.
- ► The ELBO surgery reveals insights about a prior distribution in VAE. The optimal prior is the aggregated posterior.