Interpolación: Interpolación con incrementos constantes

Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán *

2011

Resumen

Introducción. Tablas de diferencias finitas. Interpolación con incrementos constantes: polinomios interpolantes. Diagrama de rombos. Ejemplos de aplicación. Consideraciones sobre el error. Conclusiones.

1. Introducción

La práctica de la Ingeniería involucra directamente procesos que implican la captura de información obtenida a través de sistemas de instrumentación y control; estos sistemas monitorean diferentes fenómenos físicos y en consecuencia, la información recolectada corresponde directamente al comportamiento del fenómeno. La información consiste en datos numéricos obtenidos por muestreos normalmente referidos a una base temporal, pero en todo caso, son números que deben procesarse de acuerdo a modelos teóricos matemáticos. Esto implica que se dispone de funciones matemáticas en forma tabular; la pregunta es: ¿cómo se deriva o integra una función en forma tabular?

La respuesta más sencilla es utilizar recursos muy simples que permitan obtener, a partir de estas funciones tabulares, modelos analíticos, tales como el método de los *mínimos cuadrados* que es un modelo de correlación que aproxima cierta cantidad de puntos a la forma de una línea recta, de tal forma que la diferencia entre los puntos y la recta es mínima. Este modelo es válido, siempre y cuando el fenómeno físico arroje datos que tengan un comportamiento muy similar a una línea recta, lo cual, como puede percibirse, es poco común.

Los métodos de interpolación permiten procesar a las funciones tabulares sin la necesidad de contar con su modelo analítico, aunque también permiten la obtención del modelo analítico a partir de dichas funciones, tomando en cuenta el comportamiento natural del fenómeno y por lo tanto, permitiendo conocer una aproximación al error cometido.

Para el análisis numérico, la interpolación consiste en construcción de nuevos puntos partiendo de un conjunto de puntos en forma de función tabular; la interpolación es un proceso propio de la matemática discreta.

^{*}Facultad de Ingeniería, UNAM. Profesores de tiempo completo del Departamento de Matemáticas Aplicadas de la División de Ciencias Básicas

Otro problema estrechamente ligado con el de la interpolación [?] es la aproximación de una función complicada por una más simple. Si tenemos una función cuyo cálculo resulta complicado, podemos partir de un cierto número de sus valores e interpolar dichos datos construyendo una función más simple. En general, por supuesto, no obtendremos los mismos valores evaluando la función obtenida que si evaluásemos la función original, si bien, dependiendo de las características del problema y del método de interpolación usado, la ganancia en eficiencia puede compensar el error cometido.

Las herramientas para interpolación originan a su vez instrumentos que permiten la derivación e integración numéricas que tampoco requieren de una función analítica.

Las aplicaciones de estas herramientas tienen una fuerte presencia en los procesos computacionales de simulación y graficación de fenómenos físicos.

2. Tablas de diferencias finitas

Sea una función Y = f(X) definida en forma tabular [3]. Esta función tabular debe tener a su variable independiente X equiespaciada, es decir, la diferencia entre cada valor consecutivo debe ser constante: X_0 , $X_1 = X_0 + h$, $X_2 = X_0 + 2h$, $X_3 = X_0 + 3h$, ..., $X_n = X_0 + nh$, donde h es el espacio, comúnmente denominado paso y en todo caso, h = cte. Para cada uno de los puntos X_i se conoce el correspondiente valor de la variable independiente Y_i , de acuerdo al arreglo tabular mostrado en el cuadro 1.

Cuadro 1: función tabular con incrementos constantes (equiespaciada)

X	Y
X_0	Y_0
$X_1 = X_0 + h$	Y_1
$X_2 = X_0 + 2h$	Y_2
$X_3 = X_0 + 3h$	Y_3
$X_4 = X_0 + 4h$	Y_4
÷	:
$X_n = X_0 + nh$	Y_n

Se les llama primeras diferencias hacia adelante a las diferencias entre dos valores consecutivos de Y y se denotan genéricamente por ΔY . Utilizando el cuadro 1 se generan las primeras diferencias indicadas en el cuadro 2.

A las diferencias de las primeras diferencias se les denomina segundas diferencias hacia adelante y se denotan genéricamente por $\Delta^2 Y$, como se muestra en el cuadro 3.

Análogamente, a las diferencias de las segundas diferencias se les denomina terceras diferencias hacia adelante y se denotan por $\Delta^3 Y$ en el cuadro 4.

Siguiendo el mismo procedimiento se pueden calcular para los n puntos las n-1 diferencias hacia adelante. Al número de la diferencia se le denomina orden de la diferencia. Al arreglo de la función tabular y de sus diferencias se le llama tabla de diferencias.

Cuadro 2: Cálculo de las primeras diferencias hacia adelante

X	Y	ΔY
$\overline{X_0}$	Y_0	-
$X_1 = X_0 + h$	Y_1	$a_0 = Y_1 - Y_0$
$X_2 = X_0 + 2h$	Y_2	$a_1 = Y_2 - Y_1$
$X_3 = X_0 + 3h$	Y_3	$a_2 = Y_3 - Y_2$
$X_4 = X_0 + 4h$	Y_4	$a_3 = Y_4 - Y_3$
:	:	:
$X_n = X_0 + nh$	Y_n	$a_{n-1} = Y_n - Y_{n-1}$

Cuadro 3: Cálculo de las segundas diferencias hacia adelante

X	Y	ΔY	$\Delta^2 Y$
$\overline{X_0}$	Y_0	-	-
$X_1 = X_0 + h$	Y_1	$a_0 = Y_1 - Y_0$	-
$X_2 = X_0 + 2h$	Y_2	$a_1 = Y_2 - Y_1$	$b_0 = a_1 - a_0$
$X_3 = X_0 + 3h$	Y_3	$a_2 = Y_3 - Y_2$	$b_1 = a_2 - a_1$
$X_4 = X_0 + 4h$	Y_4	$a_3 = Y_4 - Y_3$	$b_2 = a_3 - a_2$
:	:	:	:
$X_n = X_0 + nh$	Y_n	$a_{n-1} = Y_n - Y_{n-1}$	$b_{n-2} = a_{n-1} - a_{n-2}$

Cuadro 4: Cálculo de las terceras diferencias hacia adelante

X	$\mid Y \mid$	ΔY	$\Delta^2 Y$	$\Delta^3 Y$
$\overline{X_0}$	Y_0	-	-	-
$X_1 = X_0 + h$	Y_1	$a_0 = Y_1 - Y_0$	-	-
$X_2 = X_0 + 2h$	Y_2	$a_1 = Y_2 - Y_1$	$b_0 = a_1 - a_0$	-
$X_3 = X_0 + 3h$	Y_3	$a_2 = Y_3 - Y_2$	$b_1 = a_2 - a_1$	$c_0 = b_0 - b_1$
$X_4 = X_0 + 4h$	Y_4	$a_3 = Y_4 - Y_3$	$b_2 = a_3 - a_2$	$c_1 = b_2 - b_1$
:	:	<u>:</u>	:	:
$X_n = X_0 + nh$	Y_n	$a_{n-1} = Y_n - Y_{n-1}$	$b_{n-2} = a_{n-1} - a_{n-2}$	$c_{n-3} = b_{n-2} - b_{n-3}$

3. Interpolación con incrementos constantes: polinomios interpolantes

La interpolación consiste en encontrar el valor de la función Y = f(X) para un valor ubicado entre dos valores consecutivos de X. Una manera de realizar la interpolación es admitir que f(X) se aproxima a un polinomio que pasa por todos los puntos de la función tabular. En consecuencia, el grado máximo del polinomio que pasa por n puntos es siempre n-1.

De acuerdo con lo anterior, a partir de la tabla de diferencias hacia adelante podemos definir lo

siguiente:

$$Y_1 = Y_0 + a_0 (1)$$

$$Y_2 = Y_1 + a_1$$

sustituyendo los valores para Y_1 de la ecuación (1) y de $b_0 = a_1 - a_0$:

$$Y_2 = Y_0 + a_0 + a_0 + b_0$$

$$Y_2 = Y_0 + 2a_0 + b_0$$

$$Y_3 = Y_2 + a_2$$
(2)

sustituyendo en esta última expresión el resultado de la ecuación (2) y de $b_1 = a_2 - a_1$, $c_0 = b_1 - b_0$ y $b_0 = a_1 - a_0$:

$$Y_3 = Y_0 + 2a_0 + b_0 + b_1 + a_1$$

$$Y_3 = Y_0 + 2a_0 + b_0 + c_0 + b_0 + a_0$$

$$Y_3 = Y_0 + 3a_0 + 3b_0 + c_0$$
(3)

Repitiendo el proceso:

$$Y_4 = Y_0 + 4a_0 + 6b_0 + 4c_0 + d_0 \tag{4}$$

Se observa en las ecuaciones (1) a (4) cómo aparecen las primeras diferencias de órdenes sucesivos afectadas por los coeficientes del desarrollo del binomio de Newton, por lo que para el valor de Y_k :

$$Y_k = Y_0 + \binom{k}{1}a_0 + \binom{k}{2}b_0 + \binom{k}{3}c_0 + \binom{k}{4}d_0 + \dots$$
 (5)

Donde: $a_0 = \Delta Y_0$, $b_0 = \Delta^2 Y_0$, $c_0 = \Delta^3 Y_0$ y así consecutivamente, y donde por definición:

$$\binom{k}{i} = \frac{k!}{(k-i)!i!} = \frac{k(k-1)(k-2)...(k-i+1)}{i!}$$
 (6)

Resultando entonces:

$$Y_k = Y_0 + k\Delta Y_0 + \frac{k(k-1)}{2!}\Delta^2 Y_0 + \frac{k(k-1)(k-2)}{3!}\Delta^3 Y_0 + \dots$$
 (7)

Las ecuaciones (5) y (6) son conocidas como el Polinomio interpolante (o fórmula de avance) de Newton-Gregory. El valor de Y_k es un valor aproximado de la función valuada en X_k ; Y_0 es el valor inicial considerado el inmediato anterior a donde se estima está el valor a interpolar; ΔY_0 , $\Delta^2 Y_0$, $\Delta^3 Y_0$, etc. son las diferencias hacia adelante correspondientes al valor Y_0 seleccionado de la tabla de diferencias.

Resta obtener el valor de la variable k. Para ello se analizará la función tabular únicamente en sus dos puntos iniciales, de acuerdo al cuadro 5 la cual se ilustra en la figura 1.

El proceso de interpolación consiste en encontrar el valor de Y_k para un valor X_k ubicado entre los dos puntos anteriores, como se muestra en el cuadro 6, ahora ilustrado en la figura 2.

Cuadro 5: Primeros dos puntos de la función tabular

$$\begin{array}{c|c} X & Y \\ \hline X_0 & Y_0 \\ X_1 = X_0 + h & Y_1 \end{array}$$

Figura 1: Primeros dos puntos de la función tabular

Cuadro 6: Interpolación entre los primeros dos puntos de la función tabular

$$\begin{array}{c|cccc} X & Y \\ \hline X_0 & Y_0 \\ X_k = X_0 + kh & Y_k = ? \\ X_1 = X_0 + h & Y_1 \\ \end{array}$$

Considerando estos dos puntos, la única forma geométrica que puede formarse con ellos es una línea recta que se obtiene de la ecuación (6) truncándola a la primera diferencia, como se observa en la figura 3:

$$Y_k = Y_0 + k\Delta Y_0 \tag{8}$$

Del cuadro 6 se obtiene:

$$X_k = X_0 + kh$$

Finalmente, despejando a k:

$$k = \frac{X_k - X_0}{h} \tag{9}$$

Figura 2: Interpolación entre los dos primeros puntos de la función tabular

Figura 3: Línea recta entre los dos primeros puntos de la función tabular

Donde X_k es el valor de X para el que se desea interpolar, X_0 el el valor de X correspondiente a Y_0 y h es el paso que siempre es constante.

Siguiendo procedimientos similares, pero considerando incluso alternativas tales como definir diferencias hacia atrás, pueden definirse polinomios interpolantes similares. Citando algunos ejemplos [3]:

Fórmula de avance de Newton-Gregory (intervalo de X_0 a X_n)

$$Y_k = Y_0 + \binom{k}{1} \Delta Y_0 + \binom{k}{2} \Delta^2 Y_0 + \binom{k}{3} \Delta^3 Y_0 + \binom{k}{4} \Delta^4 Y_0 + \dots$$
 (10)

Fórmula de retroceso de Newton-Gregory (intervalo de X_n a X_0)

$$Y_k = Y_0 + \binom{k}{1} \Delta Y_{-1} + \binom{k+1}{2} \Delta^2 Y_{-2} + \binom{k+2}{3} \Delta^3 Y_{-3} + \dots + \binom{s+n-1}{n} \Delta^n Y_{-n}$$
 (11)

Fórmula de avance de Gauss (intervalo de $X_{-\frac{n}{2}}$ a $X_{\frac{n+1}{2}})$

$$Y_k = Y_0 + \binom{k}{1} \Delta Y_0 + \binom{k}{2} \Delta^2 Y_{-1} + \binom{k+1}{3} \Delta^3 Y_{-1} + \binom{k+1}{4} \Delta Y_{-2} + \ldots + \binom{s + \frac{n-1}{2}}{n} \Delta^n Y_{-\frac{n}{2}}$$
 (12)

Es posible que después de la revisión de los conceptos antes expuestos surja la siguiente duda: ¿cuántas diferencias puedo obtener de una función tabular? Tanto para las diferencias hacia adelante como hacia atrás, debido a que la variable independiente X es equiespaciada, es decir, el paso h es constante, podría pensarse que el número de diferencias que pueden obtenerse depende del número de puntos disponibles en la función tabular. En realidad, no es así.

Supóngase que se dispone de la siguiente función tabular:

Cuadro 7: Función tabular con espaciamiento constante

X	Y
0	0
1	1
2	4
3	9
4	16
5	25

El lector puede observar que la función tabular mostrada en el cuadro 7 proviene de la función $Y = x^2$; definitivamente esta situación será poco común en ejemplos de aplicación en la práctica de la Ingeniería. A partir de ella, obtengamos la tabla de diferencias hasta donde resulte posible.

Durante el desarrollo de la tabla de diferencias, la diferencia de orden 2 presentó valores constantes; en consecuencia, la diferencia siguiente tendrá valor 0. Se puede concluir con toda certeza, que el orden de la diferencia que presenta valores constantes (o aproximadamente constantes) es igual al orden del polinomio del cual proviene la función tabular.

Cuando se presenta esta situación, a partir de la diferencia de valor constante, es posible aumentar el número de puntos (hacia adelante o hacia atrás, según sea el caso) que conforman a la función tabular. Por otra parte, cuando en el desarrollo de una tabla de diferencias no se presenta ninguna diferencia de valor constante (o aproximadamente constante de acuerdo con algún criterio de error preestablecido) significa que la función tabular proviene de una función matemática trascendente y que, de acuerdo al polinomio de Taylor, puede expresarse como un polinomio de grado n, donde

X	$\mid Y \mid$	ΔY	ΔY^2	ΔY^3
0	0	-	-	-
1	1	1	_	_
2	4	3	2	_
$\frac{2}{3}$	9	5	2	0
4	16	7	2	0
5	25	9	$\frac{1}{2}$	0

Cuadro 8: Tabla de diferencias

 $n \to \infty$. Ante estas situaciones, resulta muy conveniente contar con un criterio preestablecido sobre el orden de la diferencia que debe considerarse que, al igual de lo que ocurre con el polinomio de Taylor, consiste en seleccionar el orden del polinomio interpolante que resulta conveniente utilizar en función del orden de error que pueda cometerse o de los recursos de cómputo disponibles.

4. Diagrama de rombos

Estos ejemplos de diferentes polinomios interpolantes (que no son los únicos) se construyen a partir de la misma tabla de diferencias e incluyen los coeficientes del binomio de Newton. Dado lo anterior, se construyó un arreglo denominado *Diagrama de rombos*. Este diagrama no es otra cosa que un arreglo de los coeficientes del binomio de Newton y la tabla de diferencias hacia adelante y hacia atrás. Para obtener de él un polinomio deseado, debe seguirse una secuencia indicada al pie del mismo. Este arreglo permite incluso inventar polinomios interpolantes propios.

La versión que se presenta en la figura 4 difiere en la notación que se ha utilizado en este trabajo. El valor de k equivale a la s del diagrama de rombos. De la misma forma, la notación Y_i equivale a f_i .

En el uso del diagrama de rombos deben seguirse ciertas reglas:

- 1. Se comienza en la columna de las f(Y) por defecto en f_0 , aunque no necesariamente debe ser siempre así. No obstante, el subíndice 0 marca el punto de comienzo; si se inicia en otro punto, el subíndice de las diferencias debe ser consistente.
- 2. Se recorre el diagrama de izquierda a derecha, diagonalmente hacia arriba o abajo, o en forma alternada. Se suma un término por cada columna cruzada.
- 3. El término que se suma es el elemento del rombo que se ha cruzado, multiplicado por el elemento de arriba si el último paso fue diagonalmente hacia abajo, o por el elemento de abajo si el último paso fue diagonalmente hacia arriba. Si el movimiento fue horizontal se multiplica por el promedio de los elementos de arriba y abajo. El coeficiente de f siempre es la unidad.

El polinomio interpolante que nos ocupa, se obtiene de la trayectoria que inicia en f_0 diagonalmente hacia abajo. Por cada columna cruzada, se suma el término en la parte de arriba de la diagonal.

Figura 4: Diagrama de rombos para polinomios interpolantes [3]

5. Ejemplos de aplicación

1. Dada la función tabular. Determinar lo siguiente:

Cuadro 9: Función tabular para utilizarse en el ejemplo de aplicación

X	Y
$\overline{-3}$	-51
-1	-11
1	-11
3	-3
5	61

• La tabla de diferencias de la función tabular. Al verificar que la variable independiente es equiespaciada con h=2 se obtiene: De acuerdo a la ecuación (6), para esta función

Cuadro 10: Tabla de diferencias del ejemplo de aplicación

X	Y	ΔY	ΔY^2	ΔY^3
$\overline{-3}$	-51	-	_	_
-1	-11	40	_	_
1	-11	0	-40	_
3	-3	8	8	48
5	61	64	56	48

tabular el polinomio interpolante tendrá la forma:

$$Y_k = Y_0 + k\Delta Y_0 + \frac{k(k-1)}{2!}\Delta^2 Y_0 + \frac{k(k-1)(k-2)}{3!}\Delta^3 Y_0$$
 (13)

El valor de Y para X=0,5. La obtención del valor de la función interpolando para el valor seleccionado, en este caso de X=0,5. En la tabla de diferencias debe ubicarse la posición donde se encuentra el valor de X=0,5, en este caso entre -1 y 1. Posteriormente, deben seleccionarse los valores de X, Y y de las diferencias ubicadas en la misma referencia. En este caso, el valor de X_0 es el inmediato anterior a X=0,5, es decir, $X_0=-1$; en consecuencia, $Y_0=-11$. Las diferencias correspondientes se ubican en una trayectoria que conserva la posición de los datos: X_0 y Y_0 que son la segunda pareja de datos de arriba hacia abajo en la tabla; en consecuencia, deben tomarse las diferencias que se encuentran en la misma posición a partir del primer dato de cada columna, resultando: $\Delta Y_0=0, \ \Delta^2 Y_0=8$ y $\Delta^3 Y_0=48$.

Por otra parte, el valor de k de la ecuación (7) para el valor $X_k = 0.5$ es:

$$k = \frac{X_k - X_0}{h} = \frac{0.5 - (-1)}{2} = 0.75$$

Sustituyendo todos estos datos en la ecuación (8) y realizando las operaciones resulta:

$$Y_{x=0,5} = -11 + (0,75)(0) + \frac{0,75(0,75-1)}{2!}(8) + \frac{0,75(0,75-1)(0,75-2)}{3!}(48) = -9,875$$

■ El valor de Y para X=4. Siguiendo el mismo procedimiento que en el inciso anterior, la referencia serán los puntos $X_0=3$ y $Y_0=-3$. Sin embargo, al extraer de la tabla las diferencias correspondientes a la misma referencia se obtiene de inmediato únicamente $\Delta Y_0=64$. Sin embargo No es posible excluir las dos diferencias faltantes ya que el cálculo no sería completo. No obstante, es posible aumentar información a partir de que se dispone de una diferencia de valor constante de acuerdo al siguiente cuadro:

Cuadro 11: Tabla de diferencias ampliada

X	Y	ΔY	ΔY^2	ΔY^3
$\overline{-3}$	-51	-	_	_
-1	-11	40	-	_
1	-11	0	-40	_
3	-3	8	8	48
5	61	64	56	48
			104	48
				48

Dado lo anterior, se conoce ahora a $\Delta^2 Y_0 = 104$ y a $\Delta^3 Y_0 = 48$. Resta obtener el nuevo valor de k:

$$k = \frac{4-3}{2} = 0.5$$

Sustituyendo en (6)

$$Y_{x=4} = -3 + (0.5)(64) + \frac{0.5(0.5 - 1)}{2!}(104) + \frac{0.5(0.5 - 1)(0.5 - 2)}{3!}(48) = 19$$
 (14)

■ . El valor de Y para X=-3,4. Este caso permitirá plantear un alternativa de solución más práctica que la utilizada en las dos interpolaciones anteriores. El valor a interpolar solicitado se encuentra fuera de la función tabular; a estas peticiones se les denomina extrapolaciones. Una manera sencilla de resolver esta extrapolación es invertir la tabla, completar los puntos necesarios y realizar los cálculos ya mencionados, con la precaución de considerar ahora al paso h=-2.

Cuadro 12: Tabla de diferencias invertida

X	$\mid Y \mid$	ΔY	ΔY^2	ΔY^3
5	61	-	-	_
3	-3	-64	_	-
1	-11	-8	56	-
-1	-11	0	8	-48
-3	-51	-40	-40	-48
			-88	-48
				-48

$$k = \frac{-3.4 - (-3)}{-2} = 0.2$$

$$Y_{X=-3,4} = -51 + (0,2)(-40) + \frac{(0,2)(0,2-1)}{2!}(-88) + \frac{(0,2)(0,2-1)(0,2-2)}{3!}(-48) = -68,024$$
(15)

Sin embargo, este procedimiento no es necesario. Partiendo del hecho de que las funciones tabulares en las cuales se alcanzan diferencias constantes (o aproximadamente constantes) provienen de polinomios de grado finito que por definición tienen por dominio el conjunto de los números reales, la función tabular sólo presente una pequeña ventana de valores de la función valuada en el intervalo de la variable independiente presente en la tabla. De tal forma, la función existe antes y después del intervalo tabulado. En virtud de lo anterior, puede utilizarse cualquier referencia dentro de la función tabular con el consecuente y necesario cálculo específico de k. Dado lo anterior, resulta lo más práctico elegir la referencia en el cual existan más valores 0 para minimizar los cálculos.

Retomando el cuadro 10 y la ecuación 8 se propone utilizar la única referencia en donde existe un valor 0, de tal forma: $X_0 = -1, Y_0 = -11, \Delta Y_0 = 0, \ \Delta^2 Y_0 = 8$ y $\Delta^3 Y_0 = 48; h = 2$. El valor de k será:

$$k = \frac{-3.4 - (-1)}{2} = -1.2$$

$$Y_{X=-3,4} = -11 + (-1,2)(0) + \frac{(-1,2)(-1,2-1)}{2!}(8) + \frac{(-1,2)(-1,2-1)(-1,2-2)}{3!}(48) = -68,024$$
(16)

■ La forma analítica de la función tabular. La salvedad para obtener esta petición es realizar la interpolación para cualquier valor de X. En este cálculo se recomienda de nuevo la elección de la referencia que proporcione la mayor simplicidad en las operaciones. Entonces, se utilizará la última referencia.

El cambio sustancial es el cálculo de k:

$$k = \frac{x - (-1)}{2} = \frac{x + 1}{2}$$

$$Y_X = -11 + \left(\frac{x+1}{2}\right)(0) + \left(\frac{\left(\frac{x+1}{2}\right)\left(\frac{x+1}{2} - 1\right)}{2!}\right)(8) + \left(\frac{\left(\frac{x+1}{2}\right)\left(\frac{x+1}{2} - 1\right)\left(\frac{x+1}{2} - 2\right)}{3!}\right)(48)$$

De la que resulta:

$$Y_X = X^3 - 2X^2 - X - 9 (17)$$

2. Dada la siguiente función tabular, encuentre el valor de Y para X=-0.75 variando el orden de la máxima diferencia utilizada 1 .

Cuadro 13: Tabla de diferencias para h = 0.2

X	Y
-1	0,367879
-0.8	0,449329
-0,6	0,548812
-0,4	0,670320
-0,2	0,818731
0	1,000000
0,2	1,221403
0,4	1,491825
0,6	1,822119
0,8	$2,\!225541$
1	2,718282

Esta función tabular proviene de la función trascendente $Y = e^X$ que como es conocido, tiene como representación, por medio del polinomio de Taylor, una serie con un número infinito de términos. La tabla de diferencias, utilizando una aproximación de cinco cifras, se cita en el cuadro 14, utilizando un paso h = 0.2.

Puede observarse que en función del número de cifras de aproximación utilizadas podrá obtenerse alguna diferencia cuyo valor sea cero, lo cual no implica que el grado del polinomio que representa a la función de origen sea de orden finito n.

Para cumplir con los motivos de este ejercicio se propone obtener las aproximaciones al valor de la función Y = f(-0.75) para polinomios interpolantes de grado 1, 2, 3, 4, 5, y 6 de tal manera que pueda hacerse un análisis del error cometido. La forma del polinomio interpolante se muestra en la ecuación (7) aumentando términos hasta utilizar la diferencia de orden 6. Por otra parte, en el cuadro 15 se presentan los valores de cada término del polinomio, la suma parcial y el error absoluto cometido tomando como valor de referencia a $Y = e^{-0.75} = 0.4723665527$ obtenido directamente de la calculadora con 10 cifras decimales de aproximación.

¹Ejemplo desarrollado por Miguel Ángel Muñoz González, diciembre 2006

X	Y	ΔY	ΔY^2	ΔY^3	$\Delta^4 Y$	$\Delta^5 Y$	$\Delta^6 Y$
$\overline{-1}$	0,367879						
-0.8	0,449329	0,081450					
-0,6	0,548812	0,099483	0,018033				
-0,4	0,670320	0,121508	0,022026	0,003993			
-0,2	0,818731	0,148411	0,026902	0,004877	0,000884		
0	1,000000	0,181269	0,032859	0,005956	0,001080	0,000196	
0,2	1,221403	0,221403	0,040134	0,007275	0,001319	0,000239	0,000043
0,4	1,491825	0,270422	0,049019	0,008886	0,001611	0,000292	0,000053
0,6	1,822119	0,330294	0,059872	0,010853	0,001967	0,000357	0,000065
0,8	2,225541	0,403422	0,073128	0,013256	0,002403	0,000436	0,000079
1	2,718282	0,492741	0,089319	0,016191	0,002935	0,000532	0,000096

Cuadro 14: Tabla de diferencias

Los valores de referencia son:

$$X_0 = -0.8$$

$$Y_0 = 0.449329$$

$$\Delta Y_0 = 0.099483$$

$$\Delta^2 Y_0 = 0.022026$$

$$\Delta^3 Y_0 = 0.004877$$

$$\Delta^4 Y_0 = 0.001080$$

$$\Delta^5 Y_0 = 0.000239$$

$$\Delta^6 Y_0 = 0.000053$$

El valor de k es:

$$k = \frac{-0.75 - (-0.8)}{0.2} = 0.25$$

Como se mencionó, en el siguiente cuadro se muestran los resultados parciales aproximando a la función tabular por medio de polinomios de orden 0 a 6:

Cuadro 15: Resultados de acuerdo al orden del polinomio

n	$Y_{-0,75}$	Error absoluto
0	0,449329	0,0230375886
1	0,474200	0,0018330794
2	0,472135	0,0002318336
3	0,472401	0,0000348533
4	0,472361	0,0000057403
5	0,472373	0,0000063929
6	0,472371	0,0000042662

Puede observarse como conforme aumenta el orden n de la diferencia utilizada, en consecuencia, el orden del polinomio interpolante, el resultado es más cercano al valor considerado real lo que se demuestra en la disminución del error.

6. Consideraciones sobre el error

El cálculo de error en el ejercicio anterior resulta sencillo debido a que se conoce la función que da origen a la función tabular, lo cual es muy poco probable que ocurra en un ejercicio de la vida real.

Para estos casos se propone utilizar el denominado criterio del término siguiente [1]. El cálculo de los resultados citados en el cuadro 15 provienen de la suma de cada uno de los términos citados en el polinomio detallado en la ecuación 6. El cuadro 16 muestra los valores de cada uno de esos términos.

$\Delta^n Y_0$	Valor del término	Suma parcial	Error absoluto
0	0,4493289641	0,4493289641	0,0230375886
1	0,0248706680	$0,\!4741996321$	0,0018330794
2	-0,0020649129	$0,\!4721347192$	0,0002318336
3	0,0002666868	$0,\!4724014060$	0,0000348533
4	-0,0000405936	$0,\!4723608124$	0,0000057403
5	0,0000121332	$0,\!4723729456$	0,0000063929
6	-0,0000021267	0,4723708189	0,0000042662

Cuadro 16: Valores para cada término del polinomio interpolante

Si se conviniera una interpolación de orden 3, el resultado sería Y = 0.4724014060. Posteriormente, si se desea aumentar el orden de interpolación a 4, deberá sumarse el siguiente término de valor -0.0000405936, resultando Y = 0.4723608124. Bien, si se regresa al polinomio de interpolación de orden 3, el criterio del término siguiente implica que el error aproximado de dicho polinomio será el valor del siguiente término que se sumaría si se aumentara en uno el orden de interpolación. En conclusión, el valor de Y = f(-0.75) con un orden de interpolación n = 3 es Y = 0.4724014060 con un error aproximado de 0.0000405936^2 .

Si comparamos el error obtenido a partir del criterio del término siguiente con el error absoluto obtenido a partir del conocimiento de un valor real de la función (en el cuadro 17), puede reconocerse una semejanza razonable, sobre todo conforme crece el orden de interpolación n.

$\Delta^n Y_0$	Valor del término	Error absoluto
0	0,4493289641	0,0230375886
1	$0,\!0248706680$	0,0018330794
2	-0,0020649129	0,0002318336
3	0,0002666868	0,0000348533
4	-0,0000405936	0,0000057403
5	0,0000121332	0,0000063929

-0.0000021267 0.0000042662

Cuadro 17: Comparación de errores

²Aplicando el valor absoluto

7. Conclusiones

El manejo de polinomios interpolantes constituye una importantísima herramienta para utilizar funciones tabulares prácticamente igual, obteniendo resultados muy aceptables, que si se utilizaran funciones analíticas, teniendo las primeras la ventaja del uso del cómputo de una forma más natural que las funciones analíticas.

Referencias

[1] Patrick O. Gerald, Curtis F. Wheatley. *Análisis numérico con aplicaciones*. 6a edición edition, 2000.

- [2] Raymond. Chapra, Steven. Canale. Métodos Numéricos para Ingenieros. 1990.
- [3] Curtis F. Gerald. Análisis Numérico. Segunda edición edition, 1991.

3

 $^{^3{\}rm Editado}$ por Juan Carlos Marín Helú. Junio 2011