3GPP SA Satellite Use Cases: Update, Progress, Challenges & Routing Consideration

Tianji Jiang

China Mobile

Sidemeeting @IETF 121 (Nov. 07, 2024) (Dublin, Ireland)

3GPP 'Transparent' Payload (Rel-18, Stage-2 Freeze by June 2023)

- Satellite constellation network being the infrastructure for wireless access and backhaul, it provides the gNB, front haul and back haul transport functionalities.
- Satellite w/ transparent payload
- No Inter-Satellite-Link (ISL), or socalled 'bent-pipe'
- No packet processing, but layer-1 functionalities like RF filtering, frequency conversion, etc.

Field of view of the satellite (or UAS platform)

1. Satellite Network for 3GPP Wireless Access

2. Satellite Network for 3GPP Wireless Backhaul

3GPP 'Regenerative' mode (Rel-19, SA2 projected to complete by Dec. 2024)

- Satellite w/ regenerative payload (gNB on-board)
- Multi-satellites with Inter-Satellite-Links (ISLs)
- High-layer functionalities:
 - Packet processing, L2 or L3 networking, Large scale networking
- Challenges & the criticalness of ISLs
 - Note: ISLs out of 3GPP scope, but matter to IFTF.

gNB on-board

I-UPF on-board

Satellite

Satellite (or UAS platform)

Data

network

Use ISL,

satellites form network

Feeder link (mandatory if no ISL)

* These two scenarios selected from the 3GPP SA2: TR 23.700-29

Geolocation Shifting of Satellite after One-round

- Earth self-rotating at approximately 460 meters/sec at the equator
- Assuming a LEO satellite could rotate the Earth one-round in 95 mins (may depend on the satellite's rotation track):

```
Shift-distance on Earth = Earth-self-rotation-speed * Self-rotation-period
```

- Then, we have, 460 m/s * (95 mins * 60 sec/min) ~ 2600 KM.
- Indicating the geolocation-shifting at the equator (relative to Earth) after one round could be more than 2000 Km.
- This significant shifting is way beyond the coverage of a RAN on-board (i.e., regenerative) a LEO satellite.
- Conclusion:
 - Multi-satellite deployment with inter-satellite links (or ISLs) is the necessary solution

^{* &}quot;Routing Consideration for Satellite Constellation Network", draft-jiang-tvr-sat-routing-consideration.

3GPP Rel-20: Multi-orbit satellite access for service continuity (Stage-1 Study)

SAT-Routing: Restrictions & Challenges

> Restriction#1: The very dynamics of routing topology

- Dynamics between (on-ground) routing nodes and satellites: changing neighborship and varied distance (impacting 'link cost' associated with a routing protocol)
- Dynamics among satellite nodes: Fast-moving satellites, on the same/opposite/angled directions, trigger the intermittent peering relationship.

> Restriction#2: The limited bandwidth of peering links

- links between peering satellites and between satellites and ground-stations or (on-ground) MEs renders fairly limited link bandwidth (BW)
- Data from field case-1: measured UL/DL rate via a GEO satellite only @ 10 Kbps
- Data from field case-2: LEO at the orbit height 550 Km measured rate UL @ 5 Mbps, DL @ 1 Mbps and ISLs @ 230 Mbps.

> Restriction#3: The HW limitation & reduced capabilities

- Harsh & challenging environment: temperature, near-vacuum, radiation, etc.
- Expensive to carry load upon rocket launch
- RedCap HW to fulfill intra- and inter- satellite routing

> Challenges:

• link-quality/cost, routing convergence, LSP exchange, LSDB sync-up, computational load, IGP/BGP advertise/withdraw, etc.

* "Routing Consideration for Satellite Constellation Network", draft-jiang-tvr-sat-routing-consideration.

SAT-Routing: Uniqueness, Design Considerations & Algorithmic Considerations

Uniqueness

- The trajectory and velocity of a satellite ('footprint') are predictable and can be pre-determined
- Ephemeris: height, inclination, azimuth, time-changed track, etc.
- 5G case: 'Predictable' SAT-based QoS probing optimization for dynamic backhaul service

Potential Design Considerations

- No full-set routing intelligence on-board satellites
- 2. Simplified traffic forwarding logics onboard satellites via 'predictable' info.
- 3. Hierarchical routing structure
 - A traditional routing scheme running for the 'overlay' Terrestrial Network or TN, and
 - A novel switching scheme operating exclusively for the 'underlay' Non Terrestrial Network or NTN

Algorithmic Considerations

Example

- Shell
- Track
- index

Summary

- 3GPP scenarios & evolutions:
 - > 3GPP 'transparent' payload (Rel-18)
 - > 3GPP 'regenerative' challenges (Rel-19)
 - > 3GPP 'multi-orbit' satellite access (Rel-20)
- Necessity of ISL: Geolocation Shifting of Satellite after One-round
- SAT-Routing: Restrictions & Challenges
 - Uniqueness 'predictable' via Ephemeris
 - Potential design & Algorithmic Considerations