Section 0.1 = 6

A=BxH, where A is area B is the base . H is the height

6a. [15,25]

B=5, H=35

A. = (5)(35) = 175 Rectangle 1 $+ A_2 = (5)(35) = 175$ Rectangles

A. + A= 175 + 175 = 350

Area from 15 now to 20 nov is 350

66. Bare = S, Height = 35

6c. A, = (5)(35) = 175 Rectangle! Rectange3 $A_{2} = (5)(35) = 175$ $A_{7} = (5)(35) = 175$

Rectangley

251= (25)(35) = PA

A, + A2 + A, + A4 175 + 175 +175 Area Over curve < 700 .

62. Professionals that study weather such as meteorologists.

$$y = -\left(\frac{3}{x}\right)x + 7$$
 Horizontal line

at $y = 4$ for any

value of x

$$\int \frac{g}{3} = g \quad \text{or} \quad G = \frac{g}{3}$$

18 d.
$$Ay = 6x + 1$$
 for $(1,3)$ $(5,13)$
 $m = \frac{13-3}{5-1} = 10 = 5$
 $m = 5/2$

(1,3), $m = 5/2$

(1,3), $m = 5/2$
 $y - y = m(x - x_1)$
 $y - 3 = \frac{5}{2}(x - 1)$
 $y - 3 = \frac{5}{2} \times - \frac{5}{2}$
 $+3$
 $y = \frac{5}{2} \times + \frac{1}{2}$

Equation of line Going Through $(1,3)$ $(5,13)$

Bring Equation in Terms of A and B

 $y = \frac{5}{2} \times + \frac{1}{2}$
 $2y = \frac{1}{2}(\frac{5}{4}x) + \frac{1}{2}(\frac{1}{4}x)$
 $2y = \frac{1}{2}(\frac{5}{4}x) + \frac{1}{2}(\frac{1}{4}x)$
 $3y = \frac{1}{2}(\frac{5}{4}x) + \frac{1}{2}(\frac{1}{4}x)$

-ao.	A=BxH, where	A is area B is base H is height	
A(1)=1.A(A(a) = 2 · A(a)	A(S) = S - A(S)
(ACI) = 2		A(2) = 4	A(s)=10
20b. $P(x) = x \cdot A($		(x)x, where $x = base and$	

Section 0.4 • 8

$$f(x) = \begin{bmatrix} x+1 & x < 1 \\ 1 & 1 & 1 \le x < 3 \\ 2-x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1 & 1 \\ 2x & 1 & 3 \le x \end{bmatrix}$$

$$3(x) = \begin{bmatrix} 1x & 1 & 1$$

8b. g(1) = 2	h(1) = 3	f(1) = 1 $f(2) = 1$ $f(3) = -1$	9(3.5)		
			2(3.5)		
			9(3.5)=>		
+ (g(1))	F(h(1))	K(+(1)) ((2))			
f(2)=1	f(3)=-1	h(1)=3 +(1)=			
1+(g(1))=1)	f(h(1))=-1	$\int h(f(1)) = 3 \int f(f(2))$	=1)		
	9(9(3.5	+			
	9(7)=				
	196963	(2) = 19 (2)			
8c.		10			
		5(x) = 2x			
	h(x)=3	3 / /			
9(x)=1x+11					
		/			
	-5 -5	3 5			
 (x) = x +1	f(x)=2-x			

20a. Validate la+b1 = lal + 1b) 1 ... a=1, b=2 11+21=111+121 131 = 1+2 3 = 3 | True Statement Show la+bl = lal+lbl for all real numbers a and b Proof: Since latel= lal+1bl is true. 1a+b1=1a1+1b1 a+b=a+b.. By Truth Table, | a+bl = a+b is true. 20b. Validate 121 + 161 = la + b1 111-121-11-21 1 + 2 = 131 1+2=3 3 = 3) True Statement Show al + (b) = 6+b) for all real numbers a and b Proof: Since W +lbl = a+b) 101 +1H = 10+b1 i. By Truth Table, last Abl = lated is true

Section 0.5 #20

If f(x) and g(x) are linear functions, then 20c. Validate f(g(x)) is a linear function f(x)= x+1 g(x) = x + 2+(g(x))= (x+2)+1 f(g(x)) = x + 3 Linear Function Show If f(g(x)) is a linear function, then f(x) and g(x) are linear functions Proof: Since f(g(x)) is a linear function is true. y = mx+b 9(x)=mx+b, where 9(x)=y f(g(x)) = m(mx+b)+b f(g(x))= m2x + mb + b is a linear function where m and b are real numbers i. By Truth Table, & (g(x)) is a linear function is true.