บทที่ 5 สายอากาศแบบบ่วง

็บทที่ 5 สายอากาศแบบบ่วง

วิศวกรรมสายอากาศ

5.1 บทน้ำ

สายอากาศแบบบ่วง (Loop antenna) เป็นสายอากาศอีกประเภทหนึ่งที่มีโครงสร้างง่าย ราคา ไม่แพง และใช้งานได้หลากหลาย สายอากาศบ่วงมีหลายรูปแบบ เช่น สี่เหลี่ยม สามเหลี่ยม วงรี วงกลม หรือโครงสร้างแบบอื่น ๆ นอกจากนี้ยังสามารถวิเคราะห์ง่ายและสร้างได้ง่าย โดยสายอากาศบ่วงวงกลม ได้รับความนิยมและความสนใจมากที่สุด ซึ่งพบว่าบ่วงขนาดเล็ก (วงกลมหรือสี่เหลี่ยม) จะเทียบเท่ากับได โพลแม่เหล็กจิ๋วที่มีแกนอยู่ในแนวตั้งฉากกับระนาบของบ่วง นั่นคือสนามที่ถูกแผ่จากบ่วงวงกลมหรือบ่วง สี่เหลี่ยมที่มีขนาดเล็กมาก ๆ จะมีรูปแบบของสมการทางคณิตศาสตร์เหมือนกับสนามที่ถูกแผ่จากไดโพล แม่เหล็กจิ๋ว

โดยทั่วไปสายอากาศแบบบ่วงสามารถแบ่งได้เป็นสองประเภท ได้แก่ บ่วงที่มีความยาวทางไฟฟ้า ขนาดเล็ก และบ่วงที่มีความยาวทางไฟฟ้าขนาดใหญ่ ซึ่งความยาวทางไฟฟ้าที่สัมพันธ์กับความยาวคลื่น โดยวัดจากเส้นรวบวงของบ่วงจะเป็นตัวกำหนดประเภทของบ่วง โดยบ่วงที่มีความยาวทางไฟฟ้าของเส้น รอบวงน้อยกว่า 0.1 เท่าของความยาวคลื่น ($C<0.1\lambda$) จะถูกเรียกว่า บ่วงเล็ก (Small loop) และ บ่วงที่มีความยาวทางไฟฟ้าของเส้นรอบวงประมาณหนึ่งความยาวคลื่น ($C\sim\lambda$) จะถูกเรียกว่า บ่วงใหญ่ (Large loop) โดยส่วนใหญ่สายอากาศบ่วงมักถูกนิยมนำไปใช้ในย่านความถี่ HF ($3-30~{\rm MHz}$) VHF ($30-300~{\rm MHz}$) และ UHF ($300-3,000~{\rm MHz}$)

5.2 บ่วงวงกลมเล็ก

5.2.1 สนามที่แผ่กระจายออกจากสายอากาศ

ในการวิเคราะห์สายอากาศแบบบ่วงวงกลมเล็ก เพื่อให้ง่ายต่อการวิเคราะห์จึงได้มีการจัดวาง สายอากาศในลักษณะสมมาตรกันในระนาบ x-y ที่ z=0 โดยมีกระแสไหลบนบ่วงวงกลมคือ $\mathbf{I}_e(x',y',z')$ ดังแสดงในรูปที่ 5.1(ก) ซึ่งศักย์เวกเตอร์แม่เหล็กสำหรับแหล่งกำเนิดกระแสไฟฟ้าสามารถ แสดงได้คือ

$$\mathbf{A}(x,y,z) = \frac{\mu}{4\pi} \int_{C} \mathbf{I}_{e}(x',y',z') \frac{e^{-jkR}}{R} dl'$$
(5.1)

(ก) โครงสร้างของบ่วงวงกลม

(ข) โครงสร้างเมื่อจุดสังเกตอยู่ในสนามระยะไกล รูปที่ 5.1 การวางตำแหน่งของสายอากาศแบบบ่วง

ซึ่งสมการ (5.2) เป็นการอินทิเกรตบนเส้นทางของบ่วงวงกลม โดยที่ dl' คือ ส่วนเล็ก ๆ เป็นบ่วงวงกลม R คือ ระยะทางจากจุดใด ๆ บนบ่วง (x',y',z') ไปยังจุดสังเกต (x,y,z) สามารถแสดงได้คือ

$$R = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$$
 (5.2)

โดยทั่วไปตำแหน่งบนบ่วงจะถูกแสดงในระบบพิกัดทรงกระบอกเนื่องจากบ่วงมีโครงสร้างเป็นเส้นโค้ง และ ตำแหน่งจุดสนใจจะถูกแสดงในระบบพิกัดทรงกลม จึงทำการแปลงระบบพิกัดได้คือ

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$

$$z = r \cos \theta$$

$$x^{2} + y^{2} + z^{2} = r^{2}$$

$$x' = a \cos \phi'$$

$$y' = a \sin \phi'$$

$$z' = 0$$
(5.3)

ดังนั้นสมการ (5.2) สามารถลดรูปได้คือ

$$R = \sqrt{r^2 + a^2 - 2ar\sin\theta\cos(\phi - \phi')}$$
 (5.4)

หรือประมาณได้คือ

$$R \simeq r - a\sin\theta\cos(\phi - \phi') \tag{5.5}$$

โดยการประมาณ R ในสมการ (5.5) จะถูกใช้ในเทอมของเฟสของศักย์เวกเตอร์แม่เหล็กในสมการ (5.1) แต่ในเทอมของแอมพลิจูดจะประมาณ R ด้วย r และองค์ประกอบของความยาวบนบ่วงวงกลม สามารถแสดงในระบบพิกัดทรงกระบอกได้คือ

$$dl' = ad\phi' \tag{5.6}$$

สำหรับกรณีที่บ่วงวงกลมมีเส้นรอบวงน้อยมากเมื่อเทียบกับความยาวคลื่น ดังนั้นเราสามารถสมมติให้ กระแสมีค่าคงที่ตลอดความยาวบนบ่วง ซึ่งองค์ประกอบของกระแสบนบ่วงสามารถประมาณได้คือ

$$\mathbf{I}_{e}dl' = \mathbf{a}_{\phi}I_{0}ad\phi' \tag{5.7}$$

และสามารถแสดงให้อยู่ในระบบพิกัดฉากได้คือ

$$\mathbf{I}_{e}dl' = (-\mathbf{a}_{x}I_{0}\sin\phi' + \mathbf{a}_{y}I_{0}\cos\phi')ad\phi' \tag{5.8}$$

เมื่อ $I_{\scriptscriptstyle 0}$ คือ แอมพลิจูดของกระแสที่มีค่าคงที่

เมื่อแทนค่ากระแสและระยะทาง R ในการประมาณย่านสนามระยะไกลในสมการศักย์ เวกเตอร์แม่เหล็กในสมการ (5.1) จะได้

$$\mathbf{A}(x,y,z) = \frac{\mu}{4\pi} I_0 \frac{e^{-jkr}}{r} \int_C (-\mathbf{a}_x I_0 \sin \phi' + \mathbf{a}_y I_0 \cos \phi') e^{jka \sin \theta \cos(\phi - \phi')} a d\phi'$$
 (5.9)

จากนั้นทำการแปลงศักย์เวกเตอร์แม่เหล็กให้อยู่ในระบบพิกัดทรงกลม ซึ่งเวกเตอร์หนึ่งหน่วย ${f a}_x$ และ ${f a}_y$ สามารถแสดงในระบบพิกัดทรงกลมได้คือ

$$\mathbf{a}_{r} = \mathbf{a}_{r} \sin \theta \cos \phi + \mathbf{a}_{\theta} \cos \theta \cos \phi - \mathbf{a}_{\phi} \sin \phi \tag{5.10a}$$

$$\mathbf{a}_{x} = \mathbf{a}_{r} \sin \theta \sin \phi + \mathbf{a}_{\theta} \cos \theta \sin \phi + \mathbf{a}_{\phi} \cos \phi \tag{5.100}$$

แทนเวกเตอร์หนึ่งหน่วยนี้ลงในสมการ (5.9) ซึ่งจะได้องค์ประกอบของศักย์เวกเตอร์แม่เหล็กในระบบพิกัด ทรงกลมคือ

$$A_{r} = \frac{\mu I_{0} e^{-jkr}}{4\pi r} \sin \theta \int_{\phi'=0}^{2\pi} \sin(\phi - \phi') e^{jka \sin \theta \cos(\phi - \phi')} a d\phi'$$
 (5.11)

$$A_{\theta} = \frac{\mu I_0 e^{-jkr}}{4\pi r} \cos \theta \int_{\phi'=0}^{2\pi} \sin(\phi - \phi') e^{jka \sin \theta \cos(\phi - \phi')} a d\phi'$$
 (5.12)

$$A_{\phi} = \frac{\mu I_0 e^{-jkr}}{4\pi r} \int_{\phi'=0}^{2\pi} \cos(\phi - \phi') e^{jka\sin\theta\cos(\phi - \phi')} ad\phi'$$
 (5.13)

เนื่องจากกระแสมีความสมมาตรที่ ϕ ใด ๆ จึงทำให้ศักย์เวกเตอร์แม่เหล็กมีความสมมาตรที่ ϕ ใด ๆ เช่นเดียวกัน ดังนั้นเพื่อความสะดวกจะเลือกค่า ϕ เท่าใดก็ได้ ในที่นี้จึงเลือก $\phi=0$

อันดับแรกได้พิจารณาหา $A_{_{\! \phi}}$ ก่อน โดยแบ่งขอบเขตการอินทิเกรตออกเป็นสองส่วนคือ

$$A_{\phi} = \frac{a\mu I_{0}e^{-jkr}}{4\pi r} \left[\int_{\phi'=0}^{\pi} \cos(\phi') e^{jka\sin\theta\cos\phi'} d\phi' + \int_{\phi'=\pi}^{2\pi} \cos(\phi') e^{jka\sin\theta\cos\phi'} d\phi' \right]$$
(5.14)

โดยแทน $\phi'=\phi''+\pi$ ในอินทิกรัลส่วนที่สอง และใช้ $e^{j\theta}=\cos\theta+j\sin\theta$ ดังนั้นสามารถจัด $A_{_{\! g}}$ ในรูปแบบที่ง่ายได้คือ

$$A_{\phi} = \frac{a\mu I_0 e^{-jkr}}{4\pi r} 2j \int_{\phi'=0}^{\pi} \cos(\phi') \sin(ka\sin\theta\cos\phi') d\phi'$$
 (5.15)

เนื่องจากเส้นรอบวงของบ่วงมีขนาดเล็กมากเมื่อเทียบกับความยาวคลื่นทำให้ $ka\ll 1$ จึงสามารถ ประมาณ $\sin(ka\sin\theta\cos\phi')\simeq ka\sin\theta\cos\phi'$ ดังนั้นจะได้

$$A_{_{\!\phi}} \simeq j \frac{\mu I_{_0} k a^2 \sin \theta e^{-jkr}}{4r} \tag{5.16}$$

ซึ่งเมื่อใช้คุณสมบัติของการอินทิกรัลพบว่า A_r และ $A_{_{\! heta}}=0$ (ดูในตัวอย่างที่ 5.1) เนื่องจากศักย์ เวกเตอร์ ${f A}$ มีเฉพาะองค์ประกอบในทิศทาง ${f a}_{_{\! heta}}$ เท่านั้น จึงทำให้องค์ประกอบของสนาม ${f E}$ และ ${f H}$ ใน ย่านสนามระยะไกลจากสมการ (3.39ก) และ (3.39ข) มีเฉพาะองค์ประกอบของ $E_{_{\!\phi}}$ และ $H_{_{\! heta}}$ คือ

$$E_{_{\phi}}=\eta\,\frac{a^2k^2I_{_0}e^{-jkr}}{4r}\sin\theta \tag{5.17}$$

$$H_{\theta} = -\frac{a^2 k^2 I_0 e^{-jkr}}{4r} \sin \theta \tag{5.18}$$

$$E_{r}=E_{\theta}=H_{r}=H_{_{\phi}}=0 \tag{5.19}$$

โดยแบบรูปการแผ่พลังงานของสายอากาศบ่วงขนาดเล็กจะมีค่าเป็นศูนย์ที่แกนของบ่วง ($\theta=0^\circ$) และมี ค่ามากสุดในระนาบ $\theta=90^\circ$ โดยมีรูปแบบกำลังคล้ายกับเฮิร์ตเซียนไดโพลในรูปที่ 2.3

ตัวอย่างที่ 5.1 จงแสดงว่า A_r ที่หาได้จากสมการ (5.11) มีค่าเท่ากับศูนย์

<u>วิธีทำ</u>

เนื่องจากกระแสไม่ขึ้นอยู่กับมุม ϕ จึงสามารถกำหนดค่าใด ๆ ก็ได้ในสมการ (5.11) ดังนั้นได้เลือก $\phi=0$ จะได้

$$I = \int_{\phi'=0}^{2\pi} \sin(-\phi') e^{jka\sin\theta\cos(-\phi')} d\phi'$$

แทนค่า $\phi' = \psi - \pi$ จะได้

$$I = \int_{\psi = -\pi}^{\pi} \sin(\pi - \psi) e^{jka\sin\theta\cos(\pi - \psi)} d\psi$$

ทำการกระจายเทอมเอ็กโพเนนเชียลโดยใช้สมการของออยเลอร์ (Euler's formula) จะได้

$$I = \int_{\psi = -\pi}^{\pi} \sin(\psi) \cos(ka \sin \theta \cos \psi) d\psi$$

$$- j \int_{\psi=-\pi}^{\pi} \sin(\psi) \sin(ka \sin \theta \cos \psi) d\psi$$

 $\cos(\psi)$ เป็นฟังก์ชันคู่ของ ψ ดังนั้น $\cos(ka\sin\theta\cos\psi)$ จึงเป็นฟังก์ชันคู่ของ ψ ด้วยเช่นกัน และเนื่องจาก $\sin(\psi)$ เป็นฟังก์ชันคี่ของ ψ ดังนั้นอินทิกรัลของเทอมแรกจะเป็นฟังก์ชันคี่ของ ψ ในทำนองเดียวกัน $\sin(ka\sin\theta\cos\psi)$ เป็นฟังก์ชันคู่ ดังนั้นอินทิกรัลของเทอมที่สองจะเป็นฟังก์ชัน คี่ของ ψ เมื่อใช้คุณสมบัติของอินทิกรัลคือ

$$\int\limits_{-a}^{a}f(x)dx=0$$
 เมื่อ $f(x)$ เป็นฟังก์ชันคี่ของ x

ดังนั้นจึงทำให้ $\,I=0\,$ และ $\,A_{\!\scriptscriptstyle r}=0\,$

5.2.2 ความหนาแน่นกำลังงานและความต้านทานการแผ่พลังงาน

เมื่อเราทราบสนามไฟฟ้าและสนามแม่เหล็กจะสามารถหาพารามิเตอร์ต่าง ๆ ได้ดังที่ได้กล่าวใน บทที่ 2 สำหรับกรณีสายอากาศบ่วงขนาดเล็กสามารถหาความหนาแน่นกำลังงานเชิงซ้อนได้คือ

$$\mathbf{W} = \frac{1}{2} \operatorname{Re} \left[\mathbf{E} \times \mathbf{H}^* \right] = \frac{1}{2\eta} \mathbf{a}_r \left| E_{\phi} \right|^2$$
 (5.20)

แทนค่าของ ในสมการ (5.17) ลงในสมการ (5.20) จะได้

$$\mathbf{W} = W_r \mathbf{a}_r = \mathbf{a}_r \frac{\eta}{2} \left(\frac{a^2 k^2 \left| I_0 \right|^2}{4r} \right) \sin^2 \theta \tag{5.21}$$

ดังนั้นความหนาแน่นกำลังงานสามารถหาได้คือ

$$U(\theta,\phi) = r^2 W_r = \frac{\eta}{2} \left(\frac{a^2 k^2 \left| I_0 \right|}{4} \right)^2 \sin^2 \theta \qquad \text{W/sr}$$
 (5.22)

กำลังการแผ่พลังงานทั้งหมด $P_{\scriptscriptstyle rad}$ ในบทที่ 2 สามารถหาดังสมการ

$$P_{rad} = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} U(\theta, \phi) \sin \theta d\theta d\phi$$
 (5.23)

ดังนั้นเมื่อแทน $U(\theta,\phi)$ ในสมการ (5.22) ลงในสมการ (5.23) จะได้กำลังการแผ่พลังงานของสายอากาศ บ่วงขนาดเล็กคือ (ดูวิธีทำในตัวอย่างที่ 5.2)

$$P_{rad} = 10\pi^2 a^4 k^4 \left| I_0 \right|^2 \qquad \text{W}$$
 (5.24)

ความต้านทานการแผ่พลังงานสามารถหาได้จาก $\left|P_{rad}=\left|I_0\right|^2 \left|R_r\right|/2$ ดังนั้นความต้านทานการแผ่ พลังงานแสดงได้คือ

$$R_{\rm rad} = 20\pi^2 a^4 k^4 = 20\pi^2 \left(\frac{C}{\lambda}\right)^4 \simeq 31{,}171 \left(\frac{S^2}{\lambda^4}\right) \eqno(5.25)$$

เมื่อ $S=\pi a^2$ คือ พื้นที่ของบ่วง และ $C=2\pi a$ คือ เส้นรอบวงของบ่วง โดยด้านขวาสุดของสมการ (5.25) สามารถใช้กับบ่วงโครงสร้างใดก็ได้ เช่น สี่เหลี่ยม วงรี หรืออื่น ๆ

สำหรับความต้านทานการแผ่พลังงานในสมการ (5.25) ใช้สำหรับสายอากาศบ่วงที่มีหนึ่งรอบ เท่านั้น ถ้าสายอากาศบ่วงมีจำนวนขดลวด N รอบ ความต้านทานการแผ่พลังงานของบ่วงจะมีค่าเท่ากับ ความต้านทานการแผ่พลังงานของบ่วงหนึ่งรอบคูณด้วย N^2 นั่นคือ

$$R_{\rm rad} = 20\pi^2 a^4 k^4 N^2 = 20\pi^2 \left(\frac{C}{\lambda}\right)^4 N^2 \simeq 31{,}171 \left(\frac{S^2}{\lambda^4}\right) N^2 \eqno(5.25{\,\rm fi})$$

โดยทั่วไปความต้านทานการแผ่พลังงานของบ่วงหนึ่งรอบมีค่าน้อยมากและยากที่จะแมตซ์กับแหล่งจ่าย ซึ่งสามารถเพิ่มความต้านทานการแผ่พลังงานของสายอากาศบ่วงได้โดยการเพิ่มจำนวนรอบของบ่วง

<u>ตัวอย่างที่ 5.2</u> จงพิสูจน์ที่มาของสมการ (5.24)

วิธีทำ

แทน $\,U\,$ จากสมการ (5.22) ลงในสมการ (5.23) จะได้

$$P_{rad} = \int\limits_{\phi=0}^{2\pi} \int\limits_{\theta=0}^{\pi} \frac{\eta}{2} \! \left[\frac{a^2 k^2 \left| I_0 \right|}{4} \right]^{\!2} \sin^2 \theta \sin \theta d\theta d\phi$$

อินทิเกรตเทียบ ϕ จะได้

$$P_{\rm rad} = 2\pi \, \frac{\eta}{2} \Bigg[\frac{a^2 k^2 \, \Big| I_0 \Big|}{4} \Bigg]^2 \int\limits_{\theta=0}^\pi \sin^3 \theta d\theta$$

$$P_{\rm rad} = 2\pi \frac{\eta}{2} \left(\frac{a^2 k^2 \left| I_{\scriptscriptstyle 0} \right|}{4} \right)^2 \int\limits_{\theta=0}^{\pi} \frac{1}{4} \left(3\sin\theta - \sin 3\theta \right) \! d\theta$$

$$P_{rad}=2\pirac{\eta}{2}iggl(rac{a^2k^2\left|I_0
ight|}{4}iggr)^2rac{1}{4}iggl[-3\cos heta+rac{1}{3}\cos3 hetaiggr]_0^\pi$$

เมื่อแทนขอบเขตและจัดรูปแบบอย่างง่ายจะได้

$$P_{\rm rad} = 2\pi \, \frac{120\pi}{2} \Biggl[\frac{a^4 k^4 \left| I_0 \right|^2}{16} \Biggr] \frac{1}{4} \, \frac{16}{3} = 10 \pi^2 a^4 k^4 \left| I_0 \right|^2$$

ตัวอย่างที่ 5.3 จงหากำลังงานที่แผ่ออกไปจากสายอากาศบ่วงขนาดเล็กที่มีรัศมีเท่ากับ 0.5 เมตร มี กระแสไหลในบ่วง 10 A ที่ความถี่ 15 MHz ถ้าบ่วงถูกวางอย่างสมมาตรที่จุดกำเนิดในระนาบ x-y จงคำนวณหาขนาดของความเข้มสนามไฟฟ้าในระนาบ x-y ที่ระยะทาง 10 km

วิธีทำ

ความยาวคลื่นของคลื่นแม่เหล็กไฟฟ้าในอวกาศว่างที่ความถี่ 15 MHz สามารถหาได้คือ

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{15 \times 10^6} = 20 \text{ m}$$

ค่าคงที่การแพร่กระจายคลื่นคือ

$$k = \frac{2\pi}{\lambda} = \frac{2\pi}{20} = \frac{\pi}{10}$$

ดังนั้นกำลังการแผ่พลังงานสามารถหาได้คือ

$$P_{rad} = 10\pi^2 a^4 k^4 \left| I_0 \right|^2 = 10\pi^2 0.5^4 \left(\frac{\pi}{10} \right)^4 \left| 10 \right|^2 = 6.01 \text{ W}$$

ความเข้มสนามไฟฟ้าสามารถหาได้จากสมการ (5.17) คือ

$$\begin{split} \left| E_{\phi} \right|_{\theta = 90^{\circ}} &= \eta \, \frac{a^2 k^2}{4 r} \, I_0 = \frac{120 \pi \times 0.5^2 \times \, \pi \, / \, 10^{-2} \times 10}{4 \times 10 \times 10^3} \\ &= 2.32 \, \, \mathrm{mV/m} \end{split}$$

ตัวอย่างที่ 5.4 จงหาความต้านทานการแผ่พลังงานของบ่วงวงกลมจำนวนหนึ่งรอบและแปดรอบ ถ้า รัศมีของบ่วงเท่ากับ λ / 25 และตัวกลางเป็นอวกาศว่าง

<u>วิธีทำ</u>

$$S=\pi a^2=\piigg(rac{\lambda}{25}igg)^2=rac{\pi\lambda^2}{625}$$
 $R_{_T}$ (1 ຈອບ) $\simeq 31,171igg(rac{S^2}{\lambda^4}igg)=31,171igg(rac{\pi}{625}igg)^2=0.788$ Ω $R_{_T}$ (8 ຈອບ) $=0.788(8)^2=50.43$ Ω

ความต้านทานการแผ่พลังงานและความต้านทานการสูญเสียจะเป็นตัวกำหนดประสิทธิภาพการ แผ่พลังงานของสายอากาศดังแสดงในสมการ (2.84) โดยทั่วไปความต้านทานการสูญเสียของบ่วงขนาด เล็กหนึ่งรอบจะมีค่ามากกว่าความต้านทานการแผ่พลังงาน จึงส่งผลให้ประสิทธิภาพการแผ่พลังงานน้อย ตามไปด้วย ซึ่งประสิทธิภาพการแผ่พลังงานสามารถเพิ่มขึ้นได้ด้วยการเพิ่มจำนวนของบ่วง อย่างไรก็ตาม กระบวนการในการวิเคราะห์สายอากาศบ่วงที่มีจำนวนหลายรอบค่อนข้างขับซ้อน ดังนั้นในการหาประสิทธิภาพการแผ่พลังงานจะใช้กระบวนการที่ได้จากการวัดทดสอบ

โดยทั่วไปจะสมมติให้ความต้านทานการสูญเสียของบ่วงขนาดเล็กมีค่าเท่ากับของเส้นลวดตรงที่ มีความยาวของเส้นลวดเท่ากับเส้นรอบวงของบ่วงและคำนวณได้จากสมการ (2.88) สำหรับกรณีบ่วงที่มี จำนวนขดลวดหลายรอบจะมีการกระจายของกระแสไม่คงที่ รวมทั้งจะมีผลกระทบของผิวและความ ใกล้ชิดกันระหว่างขดลวด

(ก) บ่วงวงกลม N รอบ

รูปที่ 5.2 บ่วงวงกลมจำนวน N รอบ และความต้านทานโอห์มมิกเนื่องจากผลกระทบของ ความใกล้ชิดกันของขดลวด

สำหรับบ่วงวงกลมที่มีจำนวนขดลวดเท่ากับ N รอบ มีรัศมีของบ่วงเท่ากับ a มีรัศมีของเส้น ลวดเท่ากับ b และมีระห่างระหว่างบ่วงเท่ากับ 2c ดังแสดงในรูปที่ 5.2(ก) จะมี**ความต้านทานโอห์มมิก** (Ohmic resistance) คือ

$$R_{ohmic} = \frac{Na}{b} R_S \left(\frac{R_p}{R_0} + 1 \right) \tag{5.26}$$

เมื่อ $R_{\scriptscriptstyle S} = \sqrt{rac{\omega \mu_{\scriptscriptstyle 0}}{2\sigma}} =$ อิมพีแดนซ์บนผิวของตัวนำ

 $R_{_p}=$ ความต้านทานโอห์มมิกต่อหน่วยความยาวเนื่องจากผลกระทบของความใกล้ชิดกันของ ขดลวด

 $R_{_{0}}=rac{NR_{_{S}}}{2\pi b}=$ ความต้านทานจากผลกระทบของผิวโอห์มมิกต่อหน่วยความยาว มีหน่วยเป็นโอห์ม/เมตร

โดยอัตราส่วนของ $R_p \ / \ R_0$ เป็นฟังก์ชันของระยะห่าง $c \ / \ b$ สำหรับบ่วงที่มีจำนวนรอบของ ขดลวดคือ $2 \le N \le 8$ ได้ถูกแสดงในรูปที่ 5.2(ข) ซึ่งพบว่าถ้าระยะห่างระหว่างบ่วงแต่ละรอบมีค่าน้อย ความต้านทานโอห์มมิกจะมีค่าเป็นสองเท่าเมื่อเทียบกับกรณีที่ไม่มีผลกระทบจากความชิดใกล้ของบ่วง

<u>ตัวอย่างที่ 5.5</u> จงหาประสิทธิภาพการแผ่พลังงานของบ่วงวงกลมหนึ่งรอบและแปดรอบที่ $f=100~{
m MHz}$ เมื่อรัศมีของบ่วงเท่ากับ $\lambda\,/\,25$ รัศมีของเส้นลวดเท่ากับ $10^{-4}\lambda$ ระยะห่าง ระหว่างขดลวดแต่ละรอบเท่ากับ $4\times 10^{-4}\lambda$ สมมติให้เส้นลวดทำจากทองแดงที่มีค่าความนำไฟฟ้า เท่ากับ $5.7\times 10^7~{
m S/m}$ และสายอากาศแผ่พลังงานในอวกาศว่าง

วิธีทำ

$$S = \pi a^2 = \pi \left(\frac{\lambda}{25}\right)^2 = \frac{\pi \lambda^2}{625}$$

$$R_{_{r}}$$
(1 รอบ) $\simeq 31,171 iggl(rac{S^2}{\lambda^4}iggr) = 31,171 iggl(rac{\pi}{625}iggr)^2 = 0.788$ Ω

$$R_r$$
 (8 รอบ) $= 0.788(8)^2 = 50.43$ Ω

ความต้านทานการสูญเสียสำหรับบ่วงหนึ่งรอบสามารถหาได้จากสมการ (2.88) คือ

$$R_{_L} = R_{_{h\!f}} = \frac{a}{b} \sqrt{\frac{\pi f \mu_{_0}}{\sigma}} = \frac{1}{25(10^{-4})} \sqrt{\frac{\pi (10^8)(4\pi \times 10^{-7})}{5.7 \times 10^7}} = 1.053 \ \Omega$$

และประสิทธิภาพการแผ่พลังงานสามารถหาได้จากสมการ (2.84) คือ

$$e_{cd} = \frac{R_r}{R_r + R_r} = \frac{0.788}{0.788 + 1.053} = 0.428 = 42.8\%$$

และจากรูปที่ 5.2(ข) จะได้

$$\frac{R_p}{R_0} = 0.38$$

ดังนั้นจากสมการ (5.25) จะได้ความต้านทานสำหรับบ่วงจำนวนแปดรอบคือ

$$R_{\scriptscriptstyle L} = R_{\scriptscriptstyle ohmic} = rac{8}{25(10^{-4})} \sqrt{rac{\pi (10^8)(4\pi imes 10^{-7})}{5.7 imes 10^7}} (1.38) = 11.62 \, \, \Omega$$

ดังนั้น

$$e_{cd} = \frac{R_r}{R_r + R_{_I}} = \frac{50.43}{50.43 + 11.62} = 0.813 = 81.3\%$$

5.2.3 ความหนาแน่นการแผ่พลังงานและสภาพเจาะจงทิศทาง

กำลังงานจริงที่ถูกแผ่พลังงานจากบ่วง (P_{rad}) สามารถหาจากสมการ (2.54) นอกจากนี้กำลัง การแผ่พลังงาน (P_{rad}) ยังสัมพันธ์กับความหนาแน่นการแผ่พลังงานเฉลี่ย (W_{av}) ซึ่งองค์ประกอบของ ความหนาแน่นการแผ่พลังงานจะมีเฉพาะในแนวรัศมีเท่านั้น (W_{r}) และมีความสัมพันธ์กับความเข้มการ แผ่พลังงาน (U) คือ

$$U = r^{2}W_{r} = \frac{\eta}{2} \left(\frac{k^{2}a^{2}}{4}\right)^{2} \left|I_{0}\right|^{2} \sin^{2}\theta = \frac{r^{2}}{2\eta} \left|E_{\phi}(r, \theta, \phi)\right|^{2}$$
 (5.27)

รูปที่ 5.3 แสดงแบบรูปนอร์มอลไลซ์ของบ่วงขนาดเล็กจากสมการ (5.27) ซึ่งพบว่าแบบรูปของบ่วงขนาด เล็กมีลักษณะเหมือนกับสายอากาศไดโพลจิ๋ว โดยมีค่าสูงสุดของแบบรูปอยู่ที่ตำแหน่ง $\theta=\pi/2$ และ แสดงได้คือ

$$U_{\text{max}} = U \Big|_{\theta = \pi/2} = \frac{\eta}{2} \left(\frac{k^2 a^2}{4} \right)^2 \left| I_0 \right|^2$$
 (5.28)

เมื่อใช้สมการ (5.28) และ (5.24) จะสามารถหาสภาพเจาะจงทิศทางของบ่วงขนาดเล็กได้คือ

$$D_{0} = 4\pi \frac{U_{\text{max}}}{P_{rad}} = \frac{3}{2} \tag{5.29}$$

พื้นที่ที่จับคลื่นไถ้

และพื้นที่ประสิทธิผลสูงสุดคือ

$$A_{em} = \left(\frac{\lambda^2}{4\pi}\right) D_0 = \frac{3\lambda^2}{8\pi} \tag{5.30}$$

ซึ่งจะเห็นได้ว่าสภาพเจาะจงทิศทางและพื้นที่ประสิทธิผลสูงสุดของสายอากาศบ่วงขนาดเล็กที่ค่า เหมือนกับสายอากาศไดโพลจิ๋ว โดยสามารถคาดการณ์ได้จากการที่มีแบบรูปการแผ่พลังงานที่เหมือนกัน

ตัวอย่างที่ 5.6 รัศมีของบ่วงขนาดเล็กเท่ากับ $\lambda \, / \, 25\,$ กระแสมีค่าคงที่ จงหาพื้นที่กายภาพของบ่วง และเปรียบเทียบกับพื้นที่ประสิทธิผลสูงสุด

<u>วิธีทำ</u>

$$S$$
 (กายภาพ) $=\pi a^2=\piigg(rac{\lambda}{25}igg)^2=rac{\pi\lambda^2}{625}=5.03 imes10^{-3}\lambda^2$

$$A_{em} = \frac{3\lambda^2}{8\pi} = 0.119\lambda^2$$

$$\frac{A_{em}}{S} = \frac{0.119\lambda^2}{5.03 \times 10^{-3} \lambda^2} = 23.66$$

ความยาวทางไฟฟ้าของบ่วงมีขนาดมากกว่าความยาวทางกายภาพประมาณ 24 เท่า

$$R_{\rm L} = R_{\rm hf} = \frac{a}{b} \sqrt{\frac{\pi f \mu_{\rm 0}}{\sigma}} = \frac{1}{25(10^{-4})} \sqrt{\frac{\pi (10^8)(4\pi \times 10^{-7})}{5.7 \times 10^7}} = 1.053~\Omega$$

5.2.4. วงจรสมมูล

บ่วงขนาดเล็กมีอิมพีแดนซ์แสดงในรูปของความเหนี่ยวนำเป็นส่วนใหญ่ และวงจรสมมูลของ องค์ประกอบแบบก้อน (Lumped element) แสดงในรูปที่ 5.3

ก. โหมดส่ง

วงจรสมมูลสำหรับอิมพีแดนซ์อินพุทเมื่อสายอากาศบ่วงถูกใช้ในโหมดส่งได้ถูกแสดงในรูปที่ 5.3 ซึ่งอิมพีแดนซ์อินพุทแสดงได้คือ

$$Z_{_{in}} = R_{_{in}} + j X_{_{in}} = (R_{_{r}} + R_{_{L}}) + j (X_{_{A}} + X_{_{i}}) \eqno(5.31)$$

เมื่อ

 $R_{_{\perp}}$ คือ ความต้านทานการแผ่พลังงานที่ถูกกำหนดในสมการ (5.25)

 $R_{_L}$ คือ ความต้านทานการสูญเสียของบ่วงตัวนำ

 $X_{\!\scriptscriptstyle A}$ คือ รีแอกแตนซ์ความเหนี่ยวนำภายนอกของสายอากาศบ่วง $=\omega L_{\!\scriptscriptstyle A}$

 X_{i} คือ รีแอกแตนซ์ความถี่สูงที่เกิดภายในบ่วงตัวนำ $=\omega L_{i}$

จากรูปที่ 5.4 พบว่าตัวเก็บประจุ C_r ได้ถูกต่อขนานเข้าไปในวงจรเพื่อให้สายอากาศเกิด เรโซแนนซ์ สำหรับการหาค่าความจุที่ความถี่เรโซแนนซ์นั้น สามารถหาได้จากสมการ (5.31) โดยแสดงใน รูปของแอดมิตแตนซ์ (Admittance) คือ

$$\frac{1}{2} \| \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$$
 $\frac{1}{2} \| \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$
 $\frac{1}{2} \| \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$
 $\frac{1}{2} \| \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$
 $\frac{1}{2} \| \frac{1}{2} + \frac{1}{2} \| \frac{1}{2} \| \frac{1}{2} + \frac{1}{2} \| \frac{1}$

$$Y_{in} = G_{in} + jB_{in} = \frac{1}{Z_{in}} = \frac{1}{R_{in} + jX_{in}}$$

$$Admittent \theta$$

$$(5.32)$$

เมื่อ

$$G_{in} = \frac{R_{in}}{R^2 + X^2} \tag{5.32n}$$

$$B_{in} = -\frac{X_{in}}{R_{in}^2 + X_{in}^2} \qquad (5.320)$$

เพื่อให้เกิดเรโซแนนซ์ ซัสเซฟแตนซ์ (Susceptance) B_r ของตัวเก็บประจุ C_r จะต้องหักล้างกับส่วน จินตภาพคือ B_m ในสมการ (5.32) ซึ่งถูกแสดงในสมการ (5.32ข) ดังนั้นสามารถทำได้โดยการเลือก C_r ได้คือ

$$C_r = \frac{B_r}{2\pi f} = -\frac{B_{in}}{2\pi f} = \frac{1}{2\pi f} \frac{X_{in}}{R_{in}^2 + X_{in}^2}$$
 (5.33)

ซึ่งอิมพีแดนซ์อินพุทที่เรโซแนนซ์มีค่าเป็น

$$Z'_{in} = R'_{in} = \frac{1}{G_{in}} = \frac{R_{in}^2 + X_{in}^2}{R_{in}} = R_{in} + \frac{X_{in}^2}{R_{in}}$$
(5.34)

รูปที่ 5.3 วงจรสมมูลของสายอากาศบ่วงในโหมดการส่ง

ความต้านทานการสูญเสีย $R_{\!\scriptscriptstyle L}$ ของบ่วงตัวนำสามารถคำนวณหาได้ตามตัวอย่างที่ 5.5 สำหรับ รีแอกแตนซ์ความเหนี่ยวนำ $L_{\!\scriptscriptstyle A}$ ของบ่วงสามารถหาได้คือ

บ่วงวงกลมรัศมี a และเส้นลวดรัศมี b

$$L_{\scriptscriptstyle A} = \mu_{\scriptscriptstyle 0} a \left[\ln \left(\frac{8a}{b} \right) - 2 \right] \tag{5.35n}$$

บ่วงสี่เหลี่ยมที่แต่ละด้านยาว a และเส้นลวดรัศมี b

$$L_{\scriptscriptstyle A} = 2\mu_{\scriptscriptstyle 0} \, \frac{a}{\pi} \bigg[\ln \bigg(\frac{a}{b} \bigg) - 0.774 \bigg] \tag{5.350}$$

รีแอกแตนซ์ภายในของบ่วงตัวนำ X_i หาได้จากความเหนี่ยวนำภายใน สำหรับบ่วงหนึ่งรอบสามารถ ประมาณได้คือ

$$L_{i} = \frac{l}{\omega P} \sqrt{\frac{\omega \mu_{0}}{2\sigma}} = \frac{a}{\omega b} \sqrt{\frac{\omega \mu_{0}}{2\sigma}} \tag{5.36}$$

เมื่อ l คือ ความยาว และ P คือ เส้นรอบวงของบ่วง

ข. โหมดรับ

สายอากาศบ่วงมักถูกใช้เป็นสายอากาศรับหรือเป็นโพรบสำหรับวัดความหนาแน่นฟลักซ์ แม่เหล็ก รูปที่ 5.4(ก) แสดงคลื่นระนาบที่เดินทางมาตกกระทบบ่วงและเหนี่ยวนำให้เกิดแรงดันตกคร่อมที่ ขั้วต่อ ซึ่งแรงดันนี้สัมพันธ์กับความยาวประสิทธิผลเวกเตอร์และสนามไฟฟ้าตกกระทบสายอากาศ รวมทั้ง ยังเป็นสัดส่วนโดยตรงกับความหนาแน่นฟลักซ์ไฟฟ้าที่ตกกระทบสายอากาศ (B_z^i) ที่อยู่ในแนวตั้งฉากกับ ระนาบของบ่วง โดยแรงดันวงจรเปิดสำหรับบ่วงหนึ่งรอบสามารถเขียนได้คือ

$$V_{oc} = j\omega\pi a^2 B_z^i \tag{5.37}$$

แรงดันวงจรเปิดจากสมการ (5.37) สัมพันธ์กับขนาดของสนามแม่เหล็กและสนามไฟฟ้าตกกระทบคือ

$$V_{ac} = j\omega\pi a^2\mu_0 H^i\cos\psi_i\sin\theta_i = jk_0\pi a^2 E^i\cos\psi_i\sin\theta_i \tag{5.37a}$$

รูปที่ 5.4 สายอากาศบ่วงและวงจรสมมูลในโหมดรับ

เมื่อ ψ_i คือ มุมระหว่างทิศทางของสนามแม่เหล็กในระนาบของคลื่นตกกระทบและระนาบของการตก กระทบดังแสดงในรูปที่ 5.4(ก)

เนื่องจากแรงดันวงจรเปิดสัมพันธ์กับความยาวประสิทธิผลเวกเตอร์ ซึ่งความยาวประสิทธิผล สำหรับบ่วงหนึ่งรอบสามารถเทียนได้คือ

$$\mathbf{l}_{e} = \hat{\mathbf{a}}_{\phi} l_{e} = \hat{\mathbf{a}}_{\phi} j k_{0} \pi a^{2} E^{i} \cos \psi_{i} \sin \theta_{i} = \hat{\mathbf{a}}_{\phi} j k_{0} S E^{i} \cos \psi_{i} \sin \theta_{i}$$
 (5.38)

เมื่อ S คือ พื้นที่ของบ่วง

เมื่ออิมพีแดนซ์ของโหลด Z_L เชื่อมต่อกับขั้วต่อเอาต์พุตของบ่วงดังแสดงในรูปที่ 5.4(v) แรงดัน ที่ตกคร่อมอิมพีแดนซ์ของโหลดซึ่งสัมพันธ์กับอิมพีแดนซ์อินพุทและแรงดันวงจรเปิดในสมการ (5.37ก) คือ

$$V_{L} = V_{oc} \frac{Z_{L}}{Z_{in}' + Z_{L}} \tag{5.39}$$

5.3 บ่วงวงกลมกระแสคงที่

สายอากาศบ่วงวงกลมในรูปที่ 5.1(ข) ไม่จำเป็นที่รัศมีต้องมีขนาดเล็ก โดยยังคงพิจารณาให้ กระแสบนบ่วงมีค่าคงที่ดังแสดงในสมการ (5.7) และศักย์เวกเตอร์แม่เหล็กได้ถูกกำหนดในสมการ (5.1)

อย่างไรก็ตามการอินทิเกรตของสมการ (5.1) มีความซับซ้อน จึงจำกัดขอบเขตการอินทิเกรตในย่านสนาม $z \in \mathbb{R}$

การกระจายของกระแสที่มีค่าคงที่ตามแนวของเส้นรอบวงจะเป็นจริงสำหรับเส้นรอบวงของบ่วง ที่มีค่าน้อยกว่า 0.1λ (รัศมีมีค่าน้อยกว่า 0.016λ) ซึ่งกระบวนในการหาสนามที่ถูกแผ่ออกจาก สายอากาศบ่วงในหัวข้อนี้จะเป็นการหาที่ย่านสนามระยะไกลสำหรับบ่วงที่มีขนาดใด ๆ ก็ได้และการ กระจายของกระแสไม่จำเป็นต้องมีค่าคงที่

5.3.1 สนามที่แผ่กระจายออกจากสายอากาศ

ในการหาสนามในย่านสนามระยะไกล ระยะทาง R สามารถประมาณได้คือ

$$R=\sqrt{r^2+a^2-2ar\sin\theta\cos(\phi')}\simeq\sqrt{r^2-2ar\sin\theta\cos(\phi')}$$
 สำหรับ $r\gg a$ (5.40)

ซึ่งสามารถลดรูปโดยใช้การขยายแบบไบโนเมียล (Binomial expansion) ได้คือ

$$R\simeq r\sqrt{1-rac{2a}{r}\sin\theta\cos\phi'}=r-a\sin\theta\cos\phi'=r-a\cos\psi_0$$
 ในเทอมของเฟส (5.41ก)

$$R \simeq r$$
 ในเทอมของแอมพลิจูด (5.41ข)

เนื่องจาก

$$\cos \psi_0 = \hat{\mathbf{a}}_{\rho} \cdot \hat{\mathbf{a}}_r \Big|_{\phi=0} = \hat{\mathbf{a}}_x \cos \phi' + \hat{\mathbf{a}}_y \sin \phi'$$

$$\cdot \hat{\mathbf{a}}_x \sin \theta \cos \phi + \hat{\mathbf{a}}_y \sin \theta \sin \phi + \hat{\mathbf{a}}_z \cos \theta$$

$$= \sin \theta \cos \phi'$$
(5.42)

โดยความสัมพันธ์ระหว่าง R และ r สำหรับจุดสังเกตที่มุม ϕ ใด ๆ ในย่านสนามระยะไกลได้ถูกแสดง ในรูปที่ 5.1(ข) สำหรับจุดสังเกตที่ $\phi=0$ แสดงในรูปที่ 5.5 ดังนั้นศักย์เวกเตอร์แม่เหล็กสำหรับ องค์ประกอบในทิศทาง ϕ ในสมการ (5.13) สามารถแสดงในรูปแบบอย่างง่ายคือ

$$A_{\phi} = \frac{a\mu I_{0}e^{-jkr}}{4\pi r} \left[\int_{\phi'=0}^{\pi} \cos(\phi') e^{jka\sin\theta\cos\phi'} d\phi' + \int_{\phi'=\pi}^{2\pi} \cos(\phi') e^{jka\sin\theta\cos\phi'} d\phi' \right]$$
 (5.43)

รูปที่ 5.5 โครงสร้างของสายอากาศบ่วงสำหรับการวิเคราะห์ในย่านสนามระยะไกล

เทอมที่สองในวงเล็บสามารถเขียนได้ด้วยการเปลี่ยนตัวแปรให้อยู่ในรูป

$$\phi' = \phi'' + \pi \tag{5.44}$$

ดังนั้นสมการ (5.43) สามารถเขียนใหม่ได้คือ

$$A_{\phi} = \frac{a\mu I_{0}e^{-jkr}}{4\pi r} \left[\int_{\phi'=0}^{\pi} \cos(\phi') e^{jka\sin\theta\cos\phi'} d\phi' - \int_{\phi''=0}^{\pi} \cos(\phi'') e^{jka\sin\theta\cos\phi''} d\phi'' \right]$$
(5.45)

การอินทิกรัลของสมการ (5.45) สามารถถูกอินทิเกรตได้คือ (ดูได้ที่ภาคผนวก 4 ของหนังสือ Antenna Theory: Analysis and Design ของ Balanis)

$$\int_{0}^{\pi} \cos(n\phi) e^{+jz\cos\phi} d\phi = \pi j J_{n}(z)$$
(5.46)

เมื่อ $J_n(z)$ คือ ฟังก์ชันเบสเซล (Bessel function) ชนิดที่หนึ่งลำดับที่ n ดังนั้นเมื่อใช้สมการ (5.46) สามารถลดรูปสมการ (5.45) ได้คือ

$$A_{\!\scriptscriptstyle\phi} \simeq \frac{a\mu I_{\!\scriptscriptstyle 0} e^{-jkr}}{4\pi r} \Big[\pi j J_{\!\scriptscriptstyle 1}(ka\sin\theta) - \pi j J_{\!\scriptscriptstyle 1}(-ka\sin\theta)\Big] \eqno(5.47)$$

เบสเซลชนิดที่หนึ่งและลำดับที่ n ได้ถูกกำหนดโดยอนุกรมไม่จำกัด (ดูได้ที่ภาคผนวก 4 ของ หนังสือ Antenna Theory: Analysis and Design ของ Balanis) คือ

$$J_n(z) = \sum_{m=0}^{\infty} \frac{(-1)^m (z/2)^{n+2m}}{m!(m+n)!}$$
 (5.48)

โดยที่

$$J_{n}(-z) = (-1)^{n} J_{n}(z)$$
(5.49)

สำหรับ n=1 จะได้

$$J_{n}(-z) = -J_{n}(z) \tag{5.50}$$

จากสมการ (5.50) สามารถเขียนสมการ (5.47) ได้เป็น

$$A_{\!\scriptscriptstyle \phi} \simeq j \, \frac{a \mu I_{\scriptscriptstyle 0} e^{-jkr}}{2r} J_{\scriptscriptstyle 1}(ka \sin \theta) \tag{5.51} \label{eq:5.51}$$

ต่อมาสามารถหาสนาม **E** และ **H** ที่สัมพันธ์กับศักย์เวกเตอร์แม่เหล็กในสมการ (5.51) เนื่องจากสมการ (5.51) ใช้ได้เฉพาะกับย่านสนามระยะไกลเท่านั้น โดยกระบวนในการหาสนามแม่เหล็ก ไฟฟ้าโดยใช้ศักย์เวกเตอร์ในย่านสนามระยะไกลได้ถูกกล่าวในหัวข้อที่ 3.4 จากการใช้สมการ (3.39ก) และ (3.39ข) ซึ่งจะได้

$$E_{_{r}}\simeq E_{_{\theta}}=0 \tag{5.52n}$$

$$E_{_{\phi}}\simeq rac{ak\eta I_{_{0}}e^{-jkr}}{2r}J_{_{1}}(ka\sin heta)$$
 (5.521)

$$H_r \simeq H_\phi = 0 \tag{5.52A}$$

$$H_{ heta}\simeq -rac{E_{\phi}}{\eta}=-rac{akI_{0}e^{-jkr}}{2r}J_{1}(ka\sin heta)$$
 (5.524)

5.3.2 ความหนาแน่นกำลังงาน ความเข้มการแผ่พลังงาน ความต้านทานการแผ่พลังงาน และสภาพเจาะจงทิศทาง

จากความหนาแน่นกำลังเฉลี่ยทางเวลาคือ

$$\mathbf{W}_{av} = \frac{1}{2} \operatorname{Re} \left[\mathbf{E} \times \mathbf{H}^* \right] = \frac{1}{2} \operatorname{Re} \left[\hat{\mathbf{a}}_{\phi} E_{\phi} + \hat{\mathbf{a}}_{\theta} H_{\theta}^* \right] = \hat{\mathbf{a}}_{r} \frac{1}{2\eta} \left| E_{\phi} \right|^2$$
 (5.53)

เมื่อแทนสมการ (5.52ข) ลงในสมการ (5.53) จะได้

$$\mathbf{W}_{av} = \hat{\mathbf{a}}_r \frac{(a\omega\mu)^2 \left|I_0\right|^2}{8nr^2} J_1^2(ka\sin\theta)$$
 (5.54)

ซึ่งสามารถหาความเข้มการแผ่พลังงานได้คือ

$$U = r^{2}W_{r} = \frac{(a\omega\mu)^{2} \left|I_{0}\right|^{2}}{8\eta} J_{1}^{2}(ka\sin\theta)$$
 (5.55)

แบบรูปการแผ่พลังงานสำหรับรัศมีของบ่วงคือ $a=\lambda/10,\,\lambda/5$ และ $\lambda/2$ ได้ถูกแสดง ในรูปที่ 5.6 จากรูปแสดงให้เห็นว่าสนามที่ได้ถูกแผ่ออกจากบ่วงในทิศทางแนวแกนของบ่วง ($\theta=0^\circ$) มี ค่าเป็นศูนย์ โดยรูปร่างของแบบรูปจะมีลักษณะคล้ายกับสายอากาศไดโพลที่มีความยาว $l\leq\lambda$ (มีรูปร่าง เป็นเลขแปด) ซึ่งถ้ารัศมีของบ่วงมีค่ามากกว่า 0.5λ ความเข้มสนามบนระนาบของบ่วง ($\theta=90^\circ$) จะมี ค่าลดลงและในที่สุดจะกลายเป็นศูนย์เมื่อ $a\simeq0.61\lambda$ แต่เมื่อ $a>0.61\lambda$ แบบรูปบนระนาบของบ่วง จะเริ่มชัดเจนขึ้นและเริ่มมีหลายพู

รูปที่ 5.6 แบบรูปแอมพลิจูดในระนาบมุมยกสำหรับบ่วงวงกลมที่มีการกระจายของกระแสคงที่

แบบรูปสามมิติของสายอากาศบ่วงที่มีเส้นรอบวงคือ $C=0.1\lambda$ และ 5λ เมื่อสมมติให้การ กระจายของกระแสบนบ่วงมีค่าคงที่ได้ถูกแสดงในรูปที่ 5.7 ซึ่งจากรูปจะเห็นได้ว่าสำหรับบ่วงที่มีเส้นรอบ วง 0.1λ จะมีแบบรูปเป็นรูปเลขแปด $(\sin\theta)$ ในขณะที่บ่วงที่มีเส้นรอบวง 5λ แบบรูปจะมีหลายพู ซึ่ง แบบรูปที่มีลักษณะเป็นหลายพูนี้จะเกิดกับบ่วงขนาดใหญ่ที่มีเส้นรอบวงมากกว่า 3.83λ (รัศมีมากกว่า 0.61λ)

นอกจากนี้ยังพบว่าถ้าบ่วงมีเส้นรอบวงประมาณหนึ่งความยาวคลื่น ($C\simeq\lambda$) การแผ่พลังงาน สูงสุดของบ่วงเมื่อการกระจายของกระแสบนบ่วงไม่คงที่จะอยู่ในแนวแกนของบ่วง ($\theta=0^\circ,\,180^\circ$) นั่น คือการแผ่พลังงานสูงสุดจะอยู่ในแนวตั้งฉากกับระนาบของบ่วง จากการแผ่พลังงานในรูปแบบนี้ บ่วง วงกลมจึงถูกนำไปใช้ในออกแบบเป็นองค์ประกอบหนึ่งของสายอากาศยากิ-อูดะ แบบอาร์เรย์ เช่น ตัวป้อน สัญญาณ ไดเร็กเตอร์ และตัวสะท้อน นอกจากนี้บ่วงวงกลมที่มีเส้นรอบวงหนึ่งความยาวคลื่นยังถูกนำไป ประยุกต์ใช้งานในหลายด้านและยังเป็นสายอากาศบ่วงพื้นฐานเช่นเดียวกับสายอากาศไดโพลความยาว ครึ่งความยาวคลื่น

(n) $C=0.1\lambda$

รูปที่ 5.7 แบบรูปแอมพลิจูดสามมิติของบ่วงวงกลมที่มีการกระจายของกระแสคงที่

ความหนาแน่นการแผ่พลังงานสามารถเขียนได้คือ

$$P_{rad} = \iint_{S} \mathbf{W}_{av} \cdot d\mathbf{S} = \frac{\pi (a\omega\mu)^2 \left| I_0 \right|^2}{4\eta} \int_{0}^{\pi} J_1^2(ka\sin\theta)\sin\theta d\theta \tag{5.56}$$

การอินทิกรัลสมการ (5.56) สามารถเขียนได้คือ

$$\int_{0}^{\pi} J_{1}^{2}(ka\sin\theta)\sin\theta d\theta = \frac{1}{ka} \int_{0}^{2ka} J_{2}(x)dx$$
 (5.57)

(ก) การประมาณสำหรับบ่วงขนาดใหญ่ ($a \geq \lambda \ / \ 2$)

การหาคำตอบของสมการ (5.56) จะใช้การประมาณสำหรับบ่วงขนาดใหญ่ ($a \geq \lambda \mathbin{/} 2$)

ซึ่งประมาณได้คือ

$$\int_{0}^{\pi} J_1^2(ka\sin\theta)\sin\theta d\theta = \frac{1}{ka}\int_{0}^{2ka} J_2(x)dx \simeq \frac{1}{ka}$$
 (5.58)

จะได้ความหนาแน่นการแผ่พลังงานคือ

$$P_{rad} \simeq rac{\pi (a\omega\mu)^2 \left|I_0\right|^2}{4\eta(ka)}$$
 (5.59)

ความเข้มการแผ่พลังงานสูงสุดเกิดขึ้นเมื่อ $ka\sin\theta=1.84$ นั่นคือ

$$U\Big|_{\max} = \frac{(a\omega\mu)^2 \left|I_0\right|^2}{8\eta} J_1^2(ka\sin\theta)\Big|_{ka\sin\theta=1.84} = \frac{(a\omega\mu)^2 \left|I_0\right|^2}{8\eta} (0.582)^2$$
 (5.60)

ดังนั้น

$$R_{\rm rad} = \frac{2P_{\rm rad}}{\left|I_{\rm o}\right|^2} = \frac{2\pi(a\omega\mu)^2}{4\eta(ka)} = \eta\!\left(\frac{\pi}{2}\right)\!ka = 60\pi^2(ka) = 60\pi^2\left(\frac{C}{\lambda}\right) \tag{5.61}$$

$$D_0 = 4\pi \frac{U_{\text{max}}}{P_{\text{rad}}} = 4\pi \frac{ka(0.582)^2}{2\pi} = 2ka(0.582)^2 = 0.677 \left(\frac{C}{\lambda}\right)$$
 (5.62)

$$A_{em} = \frac{\lambda^2}{4\pi} D_0 = \frac{\lambda^2}{4\pi} 0.677 \left(\frac{C}{\lambda} \right) = 5.39 \times 10^2 \lambda C \tag{5.63}$$

เมื่อ C (เส้นรอบวง) $=2\pi a$ และ $\eta \simeq 120\pi$

(ข) การประมาณสำหรับบ่วงขนาดกลาง ($\lambda \ / \ 6\pi \le a \le \lambda \ / \ 2$)

ถ้ารัศมีของบ่วงคือ $\lambda \, / \, (6\pi) = 0.053 \lambda \leq a < \lambda \, / \, 2$ สามารถประมาณความ ต้านทานการแผ่พลังงานและสภาพเจาะจงทิศทางได้คือ

$$R_{rad} = \frac{2P_{rad}}{\left|I_0\right|^2} = \eta \pi(ka)^2 Q_{11}^{(1)}(ka)$$
 (5.64a)

$$D_{0} = \frac{4\pi U_{\text{max}}}{P_{\text{rad}}} = \frac{F_{\text{m}}(ka)}{Q_{11}^{(1)}(ka)} \tag{5.659}$$

เมื่อ

$$F_{\scriptscriptstyle m}(ka) = J_{\scriptscriptstyle 1}^2(ka\sin\theta)\Big|_{\rm max} = \begin{cases} J_{\scriptscriptstyle 1}^2(1.840) = (0.582)^2 = 0.339 \\ ka > 1.840 \ (a > 0.293\lambda) \\ J_{\scriptscriptstyle 1}^2(ka) \\ ka < 1.840 \ (a < 0.293\lambda) \end{cases} \tag{5.66A}$$

(ค) การประมาณสำหรับบ่วงขนาดเล็ก ($a < \lambda \ / \ 6\pi$)

ถ้ารัศมีของบ่วงน้อย ($a<\lambda$ / 6π) สนามแม่เหล็กไฟฟ้าสามารถหาได้จากสมการ (5.52n) – (5.52v) โดยฟังก์ชันเบสเซล $J_1(ka\sin\theta)$ สามารถแสดงในรูปของอนุกรมไม่จำกัดคือ

$$J_{\scriptscriptstyle 1}(ka\sin\theta) = \frac{1}{2}(ka\sin\theta) - \frac{1}{16}(ka\sin\theta)^3 + \dots \eqno(5.67)$$

ถ้า ka มีค่าน้อย ($ka < \frac{1}{3}$) สมการ (5.56) สามารถประมาณได้คือ

$$J_{\scriptscriptstyle 1}(ka\sin\theta)\simeq\frac{1}{2}(ka\sin\theta) \tag{5.67a}$$

ดังนั้นสมการ (5.52ก) - (5.52ง) สามารถเขียนใหม่ได้คือ

$$E_{x} \simeq E_{a} = 0 \tag{5.68n}$$

$$E_{\phi}\simeq rac{a^2\omega\mu kI_0e^{-jkr}}{4r}\sin heta=\etarac{a^2k^2I_0e^{-jkr}}{4r}\sin heta$$
 (5.68খ)

$$H_r \simeq H_\phi = 0 \tag{5.68A}$$

$$H_{_\phi}\simeq -rac{a^2\omega\mu kI_{_0}e^{-jkr}}{4\eta r}\sin heta=-rac{a^2k^2I_{_0}e^{-jkr}}{4r}\sin heta$$
 (5.684)

โดยความต้านทานการแผ่พลังงาน ความเข้มการแผ่พลังงาน สภาพเจาะจงทิศทาง และพื้นที่ประสิทธิผล สูงสุดยังคงใช้สมการ (5.25) (5.26) (5.29) และ (5.30) ตามลำดับ

รูปที่ 5.8 แสดงการเปลี่ยนแปลงของความต้านทานการแผ่พลังงานที่เป็นฟังก์ชันกับรัศมีของบ่วง ที่มีค่าอยู่ระหว่าง $\lambda / 100 \leq a \leq \lambda / 30$ โดยใช้การประมาณจากสมการ (5.67ก) ซึ่งจะเห็นได้ว่าค่า ความต้านทานการแผ่พลังงานมีค่าน้อยมาก (น้อยกว่า 1 โอห์ม) และโดยทั่วไปจะมีค่าน้อยกว่าความ ต้านทานการสูญเสียของเส้นลวด ดังนั้นเมื่อนำสายอากาศบ่วงที่มีค่าความต้านทานการแผ่พลังงานต่ำไป ต่อกับสายนำสัญญาณในทางปฏิบัติที่มีค่าอิมพีแดนซ์คุณลักษณะเท่ากับ 50 โอห์ม หรือ 75 โอห์ม จะเกิด ความไม่แมตซ์เป็นอย่างมากระหว่างสายอากาศบ่วงและสายนำสัญญาณ แต่จะสามารถเพิ่มค่าความ ต้านทานการแผ่พลังงานได้โดยการเพิ่มจำนวนรอบของบ่วงดังแสดงในสมการ (5.25) อย่างไรก็ตามการ เพิ่มจำนวนรอบของบ่วงส่งผลให้ค่าความต้านทานการสูญเสียมีค่าสูงขึ้นจึงทำให้สายอากาศมีประสิทธิภาพ ลดลง รูปที่ 5.9 แสดงการพล็อตค่าความต้านทานการแผ่พลังงานสำหรับ $0 < ka = C / \lambda < 20$ จากสมการ (5.57) โดยใช้การคำนวณด้วยเทคนิคเชิงตัวเลข เมื่อเส้นประแสดงค่าความต้านทานการแผ่ พลังงานจากการประมาณของบ่วงขนาดใหญ่ในสมการ (5.58) และเส้นแบบจุดแสดงค่าความต้านทานการ แผ่พลังงานจากการประมาณของบ่วงขนาดใหญ่ในสมการ (5.67ก)

เนื่องจากอิมพีแดนซ์อินพุทจะมีทั้งส่วนจริงและส่วนจินตภาพ สายอากาศจะมีการแมตซ์ อิมพีแดนซ์ที่ดีกับสายนำสัญญาณถ้าส่วนจริงของสายอากาศมีค่าเท่ากับส่วนจริงของอิมพีแดนซ์ คุณลักษณะของสายนำสัญญาณที่ไม่มีการสูญเสีย ดังนั้นส่วนจินตภาพจะทำให้เกิดความไม่แมตซ์เกิดขึ้น อย่างไรก็ตามสามารถลดส่วนจินตภาพลงได้ด้วยการต่อองค์ประกอบรีแอคทีฟ (ตัวเหนี่ยวนำหรือตัวเก็บ ประจุ) คร่อมที่ขั้วของบ่วงเพื่อให้สายอากาศเกิดเรโซแนนซ์ที่ความถี่ที่ต้องการ

ร**ูปที่ 5.8** ความต้านทานการแผ่พลังงานของบ่วงวงกลมที่มีกระแสคงที่โดยใช้การประมาณ จากสมการ (5.67ก) (ภาพจาก C. A. Balanis, Antenna Theory: Analysis and Design)

(ก) ความต้านทานการแผ่พลังงานสำหรับบ่วงวงกลม

ร**ูปที่ 5.9** ความต้านทานการแผ่พลังงานและสภาพเจาะจงทิศทางของบ่วงวงกลมที่มีกระแสคงที่ (ภาพจาก C. A. Balanis, Antenna Theory: Analysis and Design)

(ข) สภาพเจาะจงทิศทางของบ่วงวงกลม

รูปที่ 5.9 ต่อ

5.4 บ่วงวงกลมกระแสไม่คงที่

การวิเคราะห์สายอากาศบ่วงในหัวข้อที่ผ่านมาอยู่บนพื้นฐานของการกระจายกระแสบนบ่วงมี ค่าคงที่ ซึ่งการประมาณนี้จะมีความถูกต้องก็ต่อเมื่อรัศมีของบ่วงมีความยาวทางไฟฟ้าน้อยมาก (โดยทั่วไป $a < 0.016\lambda$) ดังนั้นถ้าขนาดของบ่วงเพิ่มขึ้น ควรพิจารณาการกระจายของกระแสบนเส้นรอบวงของ บ่วงให้เหมาะสม ซึ่งการประมาณการกระจายของกระแสบนบ่วงที่ดีสามารถแสดงอยู่รูปอนุกรมฟูเรียร์คือ

$$I(\phi') = I_0 + 2\sum_{n=1}^{M} I_n \cos(n\phi')$$
 (5.69)

เมื่อ ϕ' คือ ตำแหน่งที่ถูกวัดจากจุดป้อนสัญญาณบนเส้นรอบวงของบ่วงดังแสดงในรูปที่ 5.8

อย่างไรก็ตามการวิเคราะห์สนามที่แผ่ออกจากบ่วงสำหรับกรณีกระแสไม่คงที่จะมีความซับซ้อน ค่อนข้างสูง ซึ่งมีหลายงานวิจัยที่ได้แสดงข้อมูลอยู่ในรูปของกราฟเชิงตัวเลขและผลจากการวัดทดสอบ โดยข้อมูลจากกราฟเหล่านี้สามารถนำไปใช้ในการออกแบบสายอากาศได้ รูปที่ 5.10 เป็นกราฟแสดง ขนาดและเฟสของกระแสบนบ่วงเส้นลวดเมื่อกระแสไม่คงที่โดยเป็นฟังก์ชันของ ϕ' (ในหน่วยองศา) เส้น รอบวงของบ่วง (C) คือ $ka=C/\lambda=0.1,\ 0.2,\ 0.3$ และ 0.4 และขนาดของเส้นลวดได้ถูกเลือก ให้เป็น $\Omega=2\ln(2\pi a/b)=10$ ซึ่งจากรูปจะเห็นว่าเมื่อ ka=0.1 กระแสจะค่อนข้างคงที่ แต่ เมื่อ ka=0.2 การเปลี่ยนแปลงของกระแสจะเริ่มมากขึ้นและเพิ่มขึ้นเมื่อ ka เพิ่มขึ้น ดังนั้นจากผลที่ ได้นี้ บ่วงที่มี ka>0.1 (รัศมีมากกว่า 0.016λ) จะไม่สามารถพิจารณาให้มีกระแสเหมือนบ่วงขนาด เล็กได้

เมื่อเส้นรอบวงของบ่วงมีค่าเข้าใกล้หนึ่งความยาวคลื่นซึ่งได้สมมติให้กระแสมีการเปลี่ยนแปลง จากแบบคงที่เป็นแบบไม่คงที่พบว่า ค่ามากที่สุดของแบบรูปสำหรับสายอากาศบ่วงจะมีการเลื่อนจาก ระนาบของบ่วง ($\theta=90^\circ$) ไปอยู่ในแนวแกนของบ่วง ($\theta=0^\circ,180^\circ$) รูปที่ 5.11 แสดงสภาพเจาะจง ทิศทางของบ่วงในทิศทาง $\theta=0^\circ$ เทียบกับเส้นรอบวงของบ่วงจากการใช้การประมาณการกระจายของ กระแสในสมการ (5.69) จากรูปจะเห็นได้ว่าสภาพเจาะจงสูงสุดของบ่วงมีค่าเท่ากับ 4.5 dB ที่เส้นรอบวง ประมาณ 1.4λ สำหรับบ่วงที่มีเส้นรอบวงเท่ากับหนึ่งความยาวคลื่นมักถูกนำไปใช้ในการออกแบบ สายอากาศแบบเกลียวจะมีสภาพเจาะจงสูงสุดเท่ากับ 3.4 dB นอกจากนี้ยังพบว่าสภาพเจาะจงทิศทางไม่ ขึ้นอยู่กับรัศมีของเส้นลวดถ้าเส้นรอบวงของบ่วงเท่ากับหรือเส้นรอบวงน้อยกว่า 1.3λ แต่จะมีความ แตกต่างของสภาพเจาะจงทิศทางที่เป็นฟังก์ซันกับรัศมีของเส้นลวดก็ต่อเมื่อเส้นรอบวงของบ่วงมีขนาด ใหญ่มาก

รูปที่ 5.10 ขนาดและเฟสของการกระจายกระแสบนสายอากาศบ่วงวงกลมขนาดเล็ก (ภาพจาก C. A. Balanis, Antenna Theory: Analysis and Design)

ร**ูปที่ 5.11** สภาพเจาะจงทิศทางของสายอากาศบ่วงวงกลมที่ $\theta=0^\circ$ เทียบกับขนาดทางไฟฟ้า (ภาพจาก C. A. Balanis, Antenna Theory: Analysis and Design)

อิมพีแดนซ์ของบ่วงที่คำนวณจากการใช้การประมาณกระแสในรูปของอนุกรมพูเรียร์ได้ถูก แสดงในรูปที่ 5.12 โดยความต้านทานอินพุทและรีแอคแตนซ์อินพุทได้ถูกพล็อตเป็นฟังก์ชั่นกับเส้นรอบวง ของบ่วง (ในหน่วยความยาวคลื่น) มีค่าอยู่ระหว่าง $0 \leq ka = C \ / \ \lambda \leq 2.5$ ซึ่งเส้นผ่าศูนย์กลางของ เส้นลวดได้ถูกเลือกเป็น $\Omega = 2\ln(2\pi a \ / b) = 8,9,10,11$ และ 12 จากรูปจะเห็นได้ว่าแอนติ เรโซแนนซ์แรกจะเกิดที่เส้นรอบวงของบ่วงประมาณ $\lambda \ / \ 2$ นอกจากนี้ยังพบว่าถ้าความหนาของเส้นลวด เพิ่มขึ้นจะทำให้ความถี่เรโซแนนซ์หายไป สำหรับ $\Omega < 9$ จะเกิดแอนติเรโซแนนซ์เพียงหนึ่งจุดเท่านั้น โดยสายอากาศบ่วงมีค่าความจุ ($130\ \Omega$) มากกว่าสายอากาศไดโพล และยังพบว่าบ่วงขนาดเล็กจะความ เป็นตัวเหนี่ยวนำ (มีค่าความนำ) ในขณะที่ไดโพลขนาดเล็กจะมีความเป็นตัวเก็บประจุ (มีค่าความจุ) แต่ค่า ความต้านทานของสายอากาศบ่วงและสายอากาศไดโพลจะใกล้เคียงกันมาก รูปที่ 5.13 แสดงการ เปรียบเทียบความต้านทานการแผ่พลังงานและสภาพเจาะจงทิศทางระหว่างสายอากาศบ่วงที่มีการ กระจายของกระแสแบบโคไซน์ $I_{\phi}(\phi) = I_{\phi}\cos\phi$ และสายอากาศบ่วงที่มีกระแสคงที่

รูปที่ 5.12 อิมพีแดนซ์อินพุทของบ่วงวงกลม (ภาพจาก C. A. Balanis, Antenna Theory: Analysis and Design)

ร**ูปที่ 5.13** ความต้านทานการแผ่พลังงาน (R_r) และสภาพเจาะจงทิศทาง (D_0) ของบ่วงวงกลมที่มี กระแสคงที่และกระแสที่กระจายแบบโคไซน์ (ภาพจาก C. A. Balanis, Antenna Theory: Analysis and Design)

5.4.1 กระบวนการในการออกแบบสายอากาศบ่วง

ในการออกแบบสายอากาศบ่วงอยู่บนพื้นฐานของสมการความต้านทานการแผ่พลังงาน (5.25) และ (5.25ก) สมการสภาพเจาะจงทิศทาง (5.28) พื้นที่ประสิทธิผลสูงสุด (5.30) ค่าความจุที่ทำให้เกิด เรโซแนนซ์ (5.33) อิมพีแดนซ์อินพุทที่ทำให้เกิดเรโซแนนซ์ (5.34) และค่าความเหนี่ยวนำ (5.35ก)- (5.35ข) เพื่อให้สายอากาศบ่วงเกิดเรโซแนนซ์ องค์ประกอบตัวเก็บประจุ C_r ในรูปที่ 5.3 จะต้องถูกเลือก ให้เหมาะสมตามสมการ (5.33) จึงจะหักล้างกับส่วนจินตภาพของอิมพีแดนซ์อินพุท Z_m

สำหรับบ่วงขนาดใหญ่ที่มีการกระจายของกระแสไม่คงที่ ในการออกแบบจะใช้กราฟในรูปที่ 5.11 เพื่อเลือกสภาพเจาะจงทิศทางในแนวแกนและรูปที่ 5.12 สำหรับอิมพีแดนซ์อินพุท โดยทั่วไปบ่วงที่ เกิดเรโซแนนซ์จะต่อตัวเก็บประจุจะถูกเข้าไปขนานหรือตัวเหนี่ยวนำเข้าไปอนุกรมกับบ่วง ทั้งนี้ขึ้นอยู่กับ รัศมีของบ่วงและรัศมีของเส้นลวด

ตัวอย่างที่ 5.7 ออกแบบบ่วงเพื่อให้เกิดเรโซแนนซ์ที่ความถี่ 100 MHz เพื่อให้แบบรูปมีสภาพเจาะจง สูงสุดอยู่ในแนวแกนของบ่วง จงหารัศมีของบ่วงและรัศมีของเส้นลวด (ในหน่วยเมตร) สภาพเจาะจงใน แนวแกน (ในหน่วย dB) และองค์ประกอบที่ต้องต่อเข้าไปเพิ่ม (ตัวเก็บประจุต่อขนานหรือตัวเหนี่ยวนำ ต่ออนุกรม) เพื่อให้สายอากาศบ่วงเกิดเรโซแนนซ์

วิธีทำ

การที่แบบรูปจะมีค่าสูงสุดในแนวแกนของบ่วง เส้นรอบวงของบ่วงจะต้องใหญ่เมื่อเทียบกับความยาว คลื่น ดังนั้นการกระจายของกระแสจะไม่คงที่ ซึ่งในสามารถออกแบบสายอากาศได้หลายวิธีเพื่อให้ได้ คุณสมบัติของสายอากาศตามที่ต้องการ โดยจะใช้รูปที่ 5.12 ช่วยในการออกแบบสายอากาศ

ยกตัวอย่างในการออกแบบอย่างง่าย ได้เลือกเส้นรอบวงของบ่วงเพื่อให้เกิดเรโซแนนซ์ได้เอง จึง ไม่จำเป็นต้องต่อตัวเก็บประจุเข้าไปเพิ่มเพื่อให้เกิดเรโซแนนซ์ ดังนั้นจากรูปที่ 5.12(ข) และเลือก $\Omega=12$ เส้นรอบวงของบ่วงจะมีค่าใกล้เคียงกับ 1.125λ เนื่องจากความยาวคลื่นในอวกาศว่างที่ 3 พะโพร ความถี่ $100~{\rm MHz}$ คือ $100~{\rm MHz}$ ความถี่ $100~{\rm MHz}$ คือ $100~{\rm MHz}$ ความถี่ $100~{\rm MHz}$ ความถี่ $100~{\rm MHz}$ คือ $100~{\rm MHz}$ ความถี่ $100~{\rm MHz}$

เส้นรอบวงของบ่วง $\simeq 1.125(3) = 3.375\,$ เมตร

โดยรัศมีของเส้นลวดหาได้คือ

яйт **ОМО**.

$$a=rac{3.375}{2\pi}=0.5371$$
 เมตร

รัศมีของเส้นลวดสามารถหาได้จาก

$$\Omega = 12 = 2\ln\left(\frac{2\pi a}{b}\right)$$

หรือ

$$\frac{a}{b} = 64.2077$$

ดังนั้นรัศมีของเส้นลวดคือ

$$b = \frac{a}{64.2077} = \frac{0.5371}{64.2077} = 0.8365 \text{ cm} = 8.365 \times 10^{-3} \text{ m}$$

จากรูป 5.11 สภาพเจาะจงทิศทางในแนวแกนที่ได้จากการออกแบบนี้มีค่าประมาณ 3.6 dB และจาก รูปที่ 5.12(ก) อิมพีแดนซ์อินพุทประมาณได้คือ

$$Z_{in} = Z'_{in} \simeq 840 \ \Omega$$

เนื่องจากสายอากาศได้ถูกออกแบบให้เกิดเรโซแนนซ์ได้เอง จึงไม่จำเป็นต้องต่อองค์ประกอบอื่น ๆ เข้า ไปเพิ่มกับบ่วงที่ทำหน้าที่เป็นตัวแผ่พลังงาน

5.4.2 ผลกระทบของกราวน์และความโค้งของผิวโลกต่อบ่วงวงกลม

เมื่อสายอากาศบ่วงอยู่ในบริเวณตัวกลางที่มีการสูญเสียจะส่งผลกระทบต่อประสิทธิภาพของ สายอากาศ ซึ่งพารามิเตอร์ของสายอากาศที่มีผลกระทบคือ แบบรูป สภาพเจาะจงทิศทาง อิมพีแดนซ์ อินพุท และประสิทธิภาพของสายอากาศ ซึ่งปริมาณของพลังงานความร้อนจากตัวกลางจะส่งผลโดยตรง ต่อประสิทธิภาพของสายอากาศ

เมื่อวางสายอากาศบ่วงบนตัวสะท้อนจะทำให้แบบรูปของสายอากาศบ่วงเป็นแบบชี้ทิศทางและ มีอัตราขยายเพิ่มขึ้น เริ่มต้นได้ทดสอบการวางสายอากาศบ่วงวงกลมที่มีเส้นรอบวงเท่ากับหนึ่งความยาว คลื่น (ka=1) วางแนวนอนที่ความสูง $\,h\,$ เหนือตัวนำไฟฟ้าสมบูรณ์ขนาดอนันต์ รูปที่ $5.14\,$ แสดง

ความสัมพันธ์ระหว่างระยะความสูงของบ่วงจากระนาบตัวนำไฟฟ้าสมบูรณ์กับสภาพเจาะจงทิศทาง สำหรับ $10 < \Omega < 20$ ซึ่งจากรูปจะเห็นได้ว่าสภาพเจาะจงทิศทางจะไม่ขึ้นอยู่กับรัศมีเส้นลวดของบ่วง แต่จะเป็นฟังก์ชันกับระยะความสูง h เท่านั้น โดย $0.05\lambda < h < 0.2\lambda$ และ $0.65\lambda < h < 0.75\lambda$ จะมีค่าสภาพเจาะจงทิศทางประมาณ 9 dB รูปที่ 5.15 แสดงอิมพุทอิมพีแดนซ์ของบ่วงวงกลมที่มีเส้นรอบ วงเท่ากับหนึ่งความยาวคลื่นที่เป็นฟังก์ชันกับความสูง h จากตัวสะท้อน ซึ่งจะเห็นรัศมีเส้นลวดของบ่วง เมื่อ $10 < \Omega < 20$ ไม่ได้ส่งผลต่อสภาพเจาะจงทิศทางแต่จะส่งผลต่ออิมพีแดนซ์อินพุทของสายอากาศ นอกจากนี้ยังพบว่าเมื่อใช้สายอากาศบ่วงที่เรโซแนนซ์ได้ด้วยตัวเองวางใกล้กับรอยต่อของตัวกลางจะทำให้ เกิดการเปลี่ยนแปลงของค่าแอดมิตแตนซ์อินพุทโดยเป็นฟังก์ชันกับความสูงของสายอากาศและคุณสมบัติ ทางไฟฟ้าของตัวกลาง สิ่งนี้ชี้ให้เห็นว่าสายอากาศบ่วงที่เรโซแนนซ์ได้ด้วยตัวเองสามารถนำไปใช้เป็น เซ็นเซอร์ได้อย่างมีประสิทธิภาพและยังสามารถใช้ในการช่วยหาคุณสมบัติทางไฟฟ้าของโครงสร้างทาง ธรณีวิทยาที่ไม่ทราบคุณสมบัติได้อีกด้วย

รูปที่ 5.14 สภาพเจาะจงทิศทางของสายอากาศบ่วงวงกลม C=ka=1 ที่มุม $\theta=0^\circ$ เทียบกับ ระยะห่างจากตัวสะท้อน $h \ / \ \lambda$ เป็นกราฟเชิงทฤษฎีเมื่อตัวสะท้อนเป็นระนาบอนันต์ (ภาพจาก C. A. Balanis, Antenna Theory: Analysis and Design)

ร**ูปที่ 5.15** อิมพีแดนซ์อินพุทของสายอากาศบ่วงวงกลม C=ka=1 เทียบกับระยะห่างจาก ตัวสะท้อน $h \ / \ \lambda$ เป็นกราฟเชิงทฤษฎีเมื่อตัวสะท้อนเป็นระนาบอนันต์ (ภาพจาก C. A. Balanis, Antenna Theory: Analysis and Design)

คำถามท้ายบทที่ 5

5.1 จงหาความต้านทานการแผ่พลังงานของบ่วงจำนวน 20 รอบ เส้นผ่าศูนย์กลางของบ่วงเท่ากับ 1 เมตร ดำเนินงานที่ความถี่ 10 MHz เมื่อกำหนดให้ความต้านทานการสูญเสียของบ่วงหนึ่งรอบเท่ากับ 1 โอห์ม และคำนวณหาประสิทธิภาพการแผ่พลังงานของสายอากาศ สมมติให้การกระจายกระแสบนบ่วงมีค่าคงที่ เฉลย 32.16%

5.2 บ่วงวงกลมมีรัศมีของบ่วงเท่ากับ $\lambda \, / \, 30\,$ และรัศมีของเส้นลวดเท่ากับ $\lambda \, / \, 1000\,$ ถูกใช้เป็น สายอากาศสำหรับรับ-ส่งสัญญาณระบบวิทยุที่ความถี่ 10 MHz เส้นลวดของบ่วงทำจากทองแดงที่มีค่า สภาพนำไฟฟ้าเท่ากับ $5.7 \times 10^7\,$ S/m สมมติให้สายอากาศแผ่พลังงานในอวกาศว่าง จงหา

- (ก) ความต้านทานการแผ่พลังงานของบ่วง
- (ข) ความต้านทานการสูญเสียของบ่วง (สมมติให้มีค่าเหมือนกับเส้นลวดตรง)
- (ค) ความต้านทานอินพุท

- (ง) อิมพีแดนซ์อินพุท
- (จ) ประสิทธิภาพการแผ่พลังงาน

5.3 บ่วงวงกลมเรโซแนนซ์จำนวน N รอบ มีการกระจายของกระแสคงที่และมีเส้นรอบวงเท่ากับ $\lambda / 4$ ได้ถูกป้อนสัญญาณด้วยสายนำสัญญาณเส้นคู่ที่ไม่มีการสูญเสียและมีอิมพีแดนซ์คุณลักษณะของสาย เท่ากับ $300~\Omega$ โดยไม่คิดผลกระทบเนื่องจากความใกล้ชิดกันของบ่วงแต่ละรอบ จงหา

- (ก) จงหาจำนวนรอบที่เป็นเลขจำนวนเต็มที่ทำให้อิมพีแดนซ์อินพุทของสายอากาศบ่วง ใกล้เคียง $300~\Omega$ มากที่สุด
 - (ข) อิมพีแดนซ์อินพุทของสายอากาศ
 - (ค) สัมประสิทธิ์การสะท้อน
 - (ง) VSWR ในสายนำสัญญาณ

5.4 จงหาประสิทธิภาพการแผ่พลังงานของบ่วงวงกลมหนึ่งรอบและสี่รอบที่มีรัศมีของบ่วงเท่ากับ $\lambda \, / \, (10\pi)$ ดำเนินงานที่ย่านความถี่ 10 MHz รัศมีของเส้นลวดเท่ากับ $10^{-3}\lambda$ ระยะห่างระหว่าง ขดลวดเท่ากับ $3 \times 10^{-3}\lambda$ สมมติให้บ่วงทำจากเส้นลวดทองแดงที่มีค่าสภาพนำไฟฟ้าเท่ากับ $5.7 \times 10^7~{
m S/m}$ และสายอากาศแผ่พลังงานในอวกาศว่าง

5.5 บ่วงวงกลมเรโซแนนซ์จำนวนหนึ่งรอบมีรัศมีของบ่วงเท่ากับ $\lambda / 8\pi$ ทำจากเส้นลวดทองแดงที่มี รัศมีของเส้นลวดเท่ากับ $10^{-4}\lambda / 2\pi$ และมีค่าสภาพนำไฟฟ้าเท่ากับ $5.7 \times 10^7~{
m S/m}$ ดำเนินงานที่ความถี่ 100 MHz ถ้าสมมติให้การกระจายกระแสบนบ่วงคงที่ จงหา

- (ก) ประสิทธิภาพการแผ่พลังงาน (สมมติให้เส้นลวดตรง)
- (ข) อัตราขยายสูงสุดของสายอากาศ (ไม่มีหน่วยและหน่วย dB)

5.6 บ่วงวงกลมเรโซแนนซ์จำนวนหกรอบที่มีระยะห่างระหว่างบ่วงใกล้ชิดกันมาก สายอากาศดำเนินงานที่ ความถี่ 50 MHz มีรัศมีของบ่วงเท่ากับ λ / 30 และได้เชื่อมต่อกับสายนำสัญญาณที่มีอิมพีแดนซ์ คุณลักษณะเท่ากับ $50~\Omega$ โดยรัศมีของเส้นลวดเท่ากับ λ / 300 มีค่าสภาพนำไฟฟ้าคือ $\sigma=5.7\times10^7~{
m S/m}$ และมีระยะห่างระหว่างบ่วงแต่ละรอบเท่ากับ λ / 100 จงหา

(ก) สภาพเจาะจงทิศทางของสายอากาศ (ในหน่วย dB)

(ข) ประสิทธิภาพการแผ่พลังงานเมื่อคิดผลกระทบเนื่องจากความใกล้ชิดของขดลวด

- (ค) ประสิทธิภาพการสะท้อน
- (ง) อัตราขยายของสายอากาศ (ในหน่วย dB)

5.7 จงหาประสิทธิภาพการแผ่พลังงาน (เปอร์เซ็นต์) ของสายอากาศบ่วงวงกลมแปดรอบดำเนินงานที่ ความถี่ 30 MHz รัศมีของบ่วงแต่ละรอบคือ a=15 ซม. รัศมีของเส้นลวดคือ b=1 มม. และ ระยะห่างระหว่างขดลวดคือ 2c=3.6 มม. สมมติให้เส้นลวดทำจากทองแดง ($\sigma=5.7\times10^7~{
m S/m}$) สายอากาศแผ่พลังงานในอวกาศว่าง โดยพิจารณาผลกระทบจากความใกล้ชิดกันของขดลวดด้วย

5.8 ออกแบบบ่วงวงกลมที่มีกระแสคงที่ เพื่อให้ความเข้มสนามไฟฟ้าหายไปที่มุม $\, \theta = 0^\circ \; (\theta = 180^\circ) \,$ และ $\, \theta = 90^\circ \;$ เท่านั้น จงหา

- (ก) รัศมีของบ่วง
- (ข) ความต้านทานการแผ่พลังงาน
- (ค) สภาพเจาะจงทิศทาง

5.9 บ่วงวงกลมเล็กจำนวนหนึ่งรอบมีรัศมี $a=0.05\lambda$ ดำเนินงานที่ความถี่ 300 MHz สมมติให้รัศมีของ เส้นลวดเท่ากับ $10^{-4}\lambda$ จงหา

- (ก) ความต้านทานการสูญเสีย
- (ข) ความต้านทานการแผ่พลังงาน
- (ค) ค่าความเหนี่ยวนำของบ่วง

จงแสดงให้เห็นว่ารีแอกแตนซ์ความเหนี่ยวนำของบ่วงมีค่ามากกว่าความต้านทานการสูญเสีย และความต้านทานการแผ่พลังงาน เมื่อบ่วงมีขนาดเล็กจนเหมือนกับเป็นตัวเหนี่ยวนำ

5.10 บ่วงวงกลมจำนวนหนึ่งรอบได้ถูกใช้เป็นองค์ประกอบในการแผ่พลังงานในย่านความถี่ VHF ($f=100~{
m MHz}$) ในระบบสื่อสาร บ่วงได้ถูกสร้างขึ้นจากตัวนำไฟฟ้าสมบูรณ์ มีเส้นรอบวงของบ่วงคือ $C=\lambda\ /\ 20~$ รัศมีของเส้นลวดคือ $\lambda\ /\ 400~$ เมื่อกำหนดให้ $\sigma=5.7 imes10^7~{
m S/m}~$ จงหา

- (ก) ความต้านทานอินพุทของเส้นลวดหนึ่งรอบ
- (ข) รีแอกแตนซ์อินพุทของบ่วง (ความเหนี่ยวนำหรือความจุ)

- (ค) ค่าความเหนี่ยว (หน่วยเฮนรี่) หรือค่าความจุ (หน่วยฟารัด) ควรเป็นเท่าใด ถ้าองค์ประกอบ ของตัวเหนี่ยวนำหรือตัวเก็บประจุได้ถูกนำไปต่ออนุกรมเข้ากับบ่วงที่ตำแหน่งจุดป้อนสัญญาณเพื่อให้ เกิดเรโซแนนซ์ที่ความถี่ 100 MHz
- 5.11 บ่วงวงกลมที่มีการกระจายของกระแสไม่คงที่ มีเส้นรอบวงของบ่วงเท่ากับ 1.4λ ถูกต่อกับสายที่มี อิมพีแดนซ์เท่ากับ $300~\Omega$ สมมติให้รัศมีของเส้นลวดเท่ากับ $1.555 \times 10^{-2} \lambda$ จงหา
 - (ก) อิมพีแดนซ์อินพุทของบ่วง
 - (ข) VSWR ของระบบ
- (ค) จะต้องต่อตัวเหนี่ยวนำหรือตัวเก็บประจุ (พร้อมหาค่าความเหนี่ยวนำหรือค่าความจุ) คร่อม กับตำแหน่งจุดป้อนสัญญาณเพื่อให้บ่วงเกิดเรโซแนนซ์ที่ความถี่ 100 MHz