a. Find:

i.
$$\int \frac{1-2x}{\sqrt{1-x^2}} dx$$

ii.
$$\int x \sqrt{x-3} dx$$

b. Evaluate:

i.
$$\int_{0}^{\frac{\pi}{4}} \theta \cos^{2}\theta \ d\theta$$

ii.
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{5+4\cos x}$$

c. i. Write
$$\frac{40}{(x+1)(x^2+4)}$$
 in the form $\frac{A}{x+1}$ + $\frac{Bx+C}{x^2+4}$

ii. Hence show that

$$\int_0^2 \frac{40 \, dx}{(x+1)(x^2+4)} = \pi - 4 \ln 2 + 8 \ln 3$$

Question 2

a. If
$$y = 0$$
 when $x = 0$ and $(1 - x^2) \frac{dy}{dx} = 2$

show that
$$x = \frac{e-1}{e+1}$$
 when $y = 1$

b. If
$$I_n = \int_0^1 x^n e^x dx$$
, (n positive integer)

show that
$$I_{n+1} = e - (n+1) I_n$$

- c. i. Write expressions for $\sin (x + y)$ and $\sin (x y)$ in terms of $\sin x$, $\sin y$, $\cos x$ and $\cos y$.
 - ii. Show that $\sin (ax + x) \sin (ax x) = 2 \cos ax \sin x$
 - iii. Prove that

$$\cos x + \cos 3x + \cos 5x + ... \cos (2n-1) x = \frac{\sin 2n x}{2 \sin x}$$

a. On separate diagrams draw a neat sketch of the locus specified by each of the following. Include a description to clarify your sketch where necessary.

i.
$$0 \le \text{Arg } (z+1) \le \frac{\pi}{4}$$

ii.
$$\left| \frac{z+1}{z-1} \right| = 1$$

iii. Arg
$$\left(\frac{z+1}{z-1}\right) = \frac{\pi}{4}$$

b. i. Show that
$$\frac{\pi}{6} + \frac{\pi}{4} = \frac{5\pi}{12}$$
 and hence that $\tan \frac{5\pi}{12} = \frac{\sqrt{3}+1}{\sqrt{3}-1}$

Find a similar expression for $\tan \frac{\pi}{12}$

- ii. Express $\sqrt{-6}i$ in the form a + ib where a and b are real.
- iii. Solve $z^2 + (1+i)z + 2i = 0$ expressing the roots in the form x + iy where x and y are real. If these roots are z_1 and z_2 prove that

$$|z_1| = |z_2| = \sqrt{2}$$
 and $\arg z_1 + \arg z_2 = \frac{\pi}{2}$

the second secon

The ellipse E has equation $4x^2 + 9y^2 = 36$

- i. Sketch the ellipse E indicating its foci S, S' and its directrices.
- ii. Show that the point P ($3\cos\theta$, $2\sin\theta$) lies on E.
- iii. Derive the equation of the tangent to the ellipse at P and find the co-ordinates of Q, the point where this tangent cuts the major axis.
- iv. The normal to the ellipse E at point P cuts the major axis at R. Find the co-ordinates of R.
- v. The line through P, parallel to the y axis meets the major axis at T. O is the centre of the ellipse. Show that OQ.RT is a constant.

Question 5

- a. Consider the function $f(x) = \frac{1}{2} (e^x + e^{-x})$
 - i. Find any stationary points and determine their nature.
 - ii. Describe the behaviour of f(x) as $x \to \pm \infty$.
 - iii. Make a neat sketch of y = f(x) (not on graph paper).
 - iv. Given that the length of the curve of y = f(x) from x = a to x = b is given by

Length =
$$\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

find the length of the curve $f(x) = \frac{1}{2}(e^x + e^{-x})$ from

$$x = 0$$
 to $x = \ln 2$.

- b. Through the vertices A, B, C of a given triangle are drawn lines $B^{l}C^{l}$, $C^{l}A^{l}$ and $A^{l}B^{l}$ respectively to form an equilateral triangle $A^{l}B^{l}C^{l}$ which circumscribes the triangle ABC.
 - i. Draw a diagram to represent this information.

ii. If
$$A \stackrel{\wedge}{C} B^{I} = \theta$$
 and $A \stackrel{\wedge}{B} C^{I} = \alpha$
show that $B^{I} C^{I} = \frac{2}{\sqrt{3}}$ ($b \sin \theta + c \sin \alpha$)

- a. The polynomial $P(x) = x^3 + ax^2 + bx + 6$, (a,b real), has (1 i) as one zero. Find a and b and hence factorise P(x) over the complex field C.
- b. If α , β , γ are the roots of $x^3 + 2x^2 2x 4 = 0$

find $\frac{1}{\alpha^2}$ + $\frac{1}{\beta^2}$ + $\frac{1}{\gamma^2}$

- c. i. Write an expression to find the volume when a region bounded by the curve y = f(x) and the x axis, between x = a and x = b is rotated about the y axis, using the Shell method.
 - ii. Using the method of cylindrical shells, find the volume formed when the region (in the first quadrant) between the curves $y = 6x 3x^2$ and y = 3x is rotated about the y-axis.

Question 7

a. A light inextensible string of length 7a units has its end attached to two fixed points A and B with A distant 5a units vertically above B.

A bead C of mass m is threaded onto the string and it rotates in a horizontal circle with constant angular velocity ω . AC = 4a.

The acceleration due to gravity is g.

- i. Show that $\omega^2 = \frac{35g}{12a}$
- ii. Find the time taken by C to complete one revolution.

b.

P is moving in a circle centre O with angular velocity of $\frac{d\beta}{dt}$ about the centre

Its angular velocity about a fixed point Q, is $\frac{d\alpha}{dt}$

i. Show that $\frac{d}{dt}$ (2 α) = $\frac{d}{dt}$ (180° + β)

What conclusion do you make regarding the angular velocities about O and Q?

- a. i In how many ways can 10 students be grouped into two teams of 5 to play a game of basketball?
 - ii. Two of the 10 students are twins. If the teams are formed at random, what is the probability that the twins play on the same team?
- b. i. Write expressions for $\cos 2\theta$ and $\sin 2\theta$ in terms of $\sin \theta$ and $\cos \theta$ and hence find $\cos \frac{2\pi}{n}$ and $\sin \frac{2\pi}{n}$ in terms of $\sin \frac{\pi}{n}$ and $\cos \frac{\pi}{n}$
 - ii. Using the results of (i) and De Moivre's Theorem

 prove that $\left(1 + \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}\right)^n = -2^n \cos^n \frac{\pi}{n}$
- c. Three positive numbers a, b and c satisfy the conditions that $a \ge b \ge c$ and $a + b + c \le 1$. By considering $(a + b + c)^2$, or otherwise, prove that $a^2 + 3b^2 + 5c^2 \le 1$