Lab00-Proof

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2019.

* Name: 史天尧 Student ID:517021910623 Email: sthowling@sjtu.edu.cn

1. Prove that for any integer n > 2, there is a prime p satisfying n . (Hint: consider a prime factor <math>p of n! - 1 and prove by contradiction)

Proof.

Lemma 1. Two adjacent natural numbers are co-prime.

Proof. Consider that the two adjacent natural numbers are n and n + 1. If they are not co-prime, then they must have a common divisor other than 1, say a postive integer a. Therefore we have

$$n = ap$$
, $n + 1 = aq$,

where p and q are intergers, and since $n+1>n, \ a>0$, we have that q>p, which is equivalent as $q-p\geq 1$. Consequently,

$$n+1-n = aq - ap,$$

$$1 = a(q-p),$$

where $q - p \ge 1$. Therefore we derive that a equals 1, which is in contradiction with the assumption. We can conclude that the original assumption is false. \square

With Lemma (1), we know that n! and n! - 1 are co-prime. Except for 1, they do not have any common divisor.

Assume that for any integer n > 2, there is not a prime p satisfying n , i.e. no integer between <math>n and n! is a prime. Thus n! - 1 has at least one prime factor, which is not itself in this case. Moreover, all natural numbers that are not larger than n are divisors of n!, and none of them is divisor of n! - 1, since n! and n! - 1 are co-prime. Therefore a prime factor of n! - 1 must be larger than n, which means there is a prime p satisfying $n . We have derived a contradiction, which allows us to conclude that our original assumption is false. <math>\square$

2. Use the minimal counterexample principle to prove that for any integer n > 17, there exist integers $i_n \ge 0$ and $j_n \ge 0$, such that $n = i_n \times 4 + j_n \times 7$.

Proof. Define P(n) be the statement that "there exist integers $i_n \geq 0$ and $j_n \geq 0$, such that $n = i_n \times 4 + j_n \times 7$ ". If P(n) is not true for every n > 17, then there are values for which P(n) is false, and there must be a smallest value, say n = k.

Since $18 = 1 \times 4 + 2 \times 7$, i.e. P(18) is true, we have $k \ge 19$ and $k - 1 \ge 18$.

Since k is the smallest value for which P(k) is false, P(k-1) is true, i.e. $k-1 = i_k \times 4 + j_k \times 7$, where $i_k, j_k \in \mathbb{N}$. We can derive that

$$k = k - 1 + 1 = i_k \times 4 + j_k \times 7 + 1$$

= $i_k \times 4 + j_k \times 7 + (2 \times 4 - 1 \times 7)$
= $(i_k + 2) \times 4 + (j_k - 1) \times 7$.

1

When $j_k \ge 1$, $j_k - 1 \ge 0$, we have that P(k) is true.

When $j_k = 0$, since $k - 1 \ge 18$, we have $i_k \ge 5$, as k - 1 now is divisible by 4, and the smallest possible value of k - 1 is 20.

Therefore in this case,

$$k = k - 1 + 1 = i_k \times 4 + (3 \times 7 - 5 \times 4)$$
$$= (i_k - 5) \times 4 + 3 \times 7.$$

Since $i_k \geq 5$, $i_k - 5 \geq 0$. This means that P(k) is true.

In conclusion, we have derived a contradiction, which allows us to conclude that our original assumption is false. \Box

3. Suppose $a_0 = 1$, $a_1 = 2$, $a_2 = 3$, and $a_k = a_{k-1} + a_{k-2} + a_{k-3}$ for $k \ge 3$. Use the strong principle of mathematical induction to prove that $a_n \le 2^n$ for any integer $n \ge 0$.

Proof. Define P(n) be the statement that $a_n \leq 2^n$.

Basis step: When n = 0, $a_0 = 1 \le 2^0$. P(0) is true.

When n = 1, $a_1 = 2 \le 2^1$. P(1) is true.

When n = 2, $a_2 = 3 \le 2^2$. P(2) is true.

Induction hypothesis: Assume that for some $k \geq 2$ and for any n satisfying $2 \leq n \leq k$, P(n) is true.

Proof of induction step: Now let us prove P(k+1).

When n = k+1, $a_{k+1} = a_k + a_{k-1} + a_{k-2}$. From the hypothesis, we know that $a_k \leq 2^k$, $a_{k-1} \leq 2^{k-1}$, and $a_{k-2} \leq 2^{k-2}$. Therefore we have

$$\begin{aligned} a_{k+1} &= a_k + a_{k-1} + a_{k-2} \\ &\leq 2^k + 2^{k-1} + 2^{k-2} \\ &\leq 2^k + 2^{k-1} + 2^{k-1} = 2^k + 2^k = 2^{k+1}. \end{aligned}$$

4. Prove, by mathematical induction, that

$$(n+1)^2 + (n+2)^2 + (n+3)^2 + \dots + (2n)^2 = \frac{n(2n+1)(7n+1)}{6}$$

is true for any integer $n \geq 1$.

Proof. Define P(n) be the statement that

$$(n+1)^2 + (n+2)^2 + (n+3)^2 + \dots + (2n)^2 = \frac{n(2n+1)(7n+1)}{6}.$$

We will try to prove that P(n) is true for every $n \ge 1$.

Basis step: When n equals 1, $1+1=2\times 1=2$. We have

$$2^{2} = 4 = 1 \times (2 \times 1 + 1) \times (7 \times 1 + 1) \div 6,$$

so P(1) is true.

Induction hypothesis: Assume that P(k) is true for some $k \ge 1$. Then we have $(k+1)^2 + (k+2)^2 + (k+3)^2 + \cdots + (2k)^2 = k(2k+1)(7k+1)/6$.

Proof of induction step: Now let us prove that P(k+1) is true.

$$(k+1+1)^{2} + (k+1+2)^{2} + (k+1+3)^{2} + \dots + (2k)^{2} + (2k+1)^{2} + (2(k+1))^{2}$$

$$= (k+1)^{2} + (k+2)^{2} + (k+3)^{2} + \dots + (2k)^{2} + (2k+1)^{2} + (2k+2)^{2} - (k+1)^{2}$$

$$= \frac{k(2k+1)(7k+1)}{6} + (2k+1)^{2} + 3(k+1)^{2}$$

$$= \frac{k(2k+1)(7k+1) + 6(2k+1)^{2} + 18(k+1)^{2}}{6}$$

$$= \frac{(2k+1)(7k^{2} + k + 12k + 6) + 18(k+1)^{2}}{6}$$

$$= \frac{(2k+1)(7k+6)(k+1) + 18(k+1)^{2}}{6}$$

$$= \frac{(k+1)(14k^{2} + 21k + 6 + 18k + 18)}{6}$$

$$= \frac{(k+1)(2k+3)(7k+8)}{6}$$

$$= \frac{(k+1)(2(k+1)+1)(7(k+1)+1)}{6}$$