

$$\Rightarrow \vec{l} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} + 2\hat{j} - 5\hat{k})$$

Question 8:

Find the equation of the plane passing through (a, b, c) and parallel to the plane

$$\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 2$$

Answer

Any plane parallel to the plane, $\vec{r_i}\cdot \left(\hat{l}+\hat{j}+\hat{k}\right)=2$, is of the form

$$\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = \lambda$$
 ...(1

The plane passes through the point (a, b, c). Therefore, the position vector \vec{r} of this

point is
$$\vec{r} = a\hat{i} + b\hat{j} + c\hat{k}$$

Therefore, equation (1) becomes

$$(a\hat{i} + b\hat{j} + c\hat{k}) \cdot (\hat{i} + \hat{j} + \hat{k}) = \lambda$$

$$\Rightarrow a+b+c=2$$

Substituting $\lambda = a + b + c$ in equation (1), we obtain

$$\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = a + b + c \qquad \dots (2)$$

This is the vector equation of the required plane.

Substituting $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ in equation (2), we obtain

$$(x\hat{i} + y\hat{j} + z\hat{k})\cdot(\hat{i} + \hat{j} + \hat{k}) = a + b + c$$

$$\Rightarrow x + y + z = a + b + c$$

Question 9:

Find the shortest distance between lines $\vec{r}=6\hat{i}+2\hat{j}+2\hat{k}+\lambda\left(\hat{i}-2\hat{j}+2\hat{k}\right)$

and
$$\vec{r} = -4\hat{i} - \hat{k} + \mu \Big(3\hat{i} - 2\hat{j} - 2\hat{k}\Big)$$

Answer

The given lines are

$$\vec{r} = 6\hat{i} + 2\hat{j} + 2\hat{k} + \lambda(\hat{i} - 2\hat{j} + 2\hat{k})$$
 ...(1)

$$\vec{r} = -4\hat{i} - \hat{k} + \mu(3\hat{i} - 2\hat{j} - 2\hat{k})$$
 ...(2)

It is known that the shortest distance between two lines, $\vec{r}=\vec{a}_{\rm l}+\lambda\vec{b}_{\rm l}$ and $\vec{r}=\vec{a}_{\rm 2}+\lambda\vec{b}_{\rm 2}$, is given by

$$d = \frac{\left| (\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1) \right|}{\left| \vec{b}_1 \times \vec{b}_2 \right|} \dots (3)$$

Comparing $\vec{r}=\vec{a}_{\rm l}+\lambda\vec{b}_{\rm l}$ and $\vec{r}=\vec{a}_{\rm 2}+\lambda\vec{b}_{\rm 2}$ to equations (1) and (2), we obtain

$$\vec{a}_1 = 6\hat{i} + 2\hat{j} + 2\hat{k}$$

$$\vec{b}_i = \hat{i} - 2\hat{j} + 2\hat{k}$$

$$\vec{a}_2 = -4\hat{i} - \hat{k}$$

$$\vec{b}_2 = 3\hat{i} - 2\hat{j} - 2\hat{k}$$

$$\Rightarrow \vec{a}_2 - \vec{a}_1 = \left(-4\hat{i} - \hat{k}\right) - \left(6\hat{i} + 2\hat{j} + 2\hat{k}\right) = -10\hat{i} - 2\hat{j} - 3\hat{k}$$

$$\Rightarrow \vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 3 & -2 & -2 \end{vmatrix} = (4+4)\hat{i} - (-2-6)\hat{j} + (-2+6)\hat{k} = 8\hat{i} + 8\hat{j} + 4\hat{k}$$

$$|\vec{b}_1 \times \vec{b}_2| = \sqrt{(8)^2 + (8)^2 + (4)^2} = 12$$

$$(\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1) = (8\hat{i} + 8\hat{j} + 4\hat{k}) \cdot (-10\hat{i} - 2\hat{j} - 3\hat{k}) = -80 - 16 - 12 = -108$$

Substituting all the values in equation (1), we obtain

$$d = \left| \frac{-108}{12} \right| = 9$$

Thomas and all all and a distance between the time and time is a contra

Inererore, the shortest distance between the two given lines is 9 units.

Question 10:

Find the coordinates of the point where the line through (5, 1, 6) and

(3, 4, 1) crosses the YZ-plane

It is known that the equation of the line passing through the points, (x_1, y_1, z_1) and (x_2, y_1, z_2)

$$y_2, z_2$$
, is $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$

The line passing through the points, (5, 1, 6) and (3, 4, 1), is given by,

$$\frac{x-5}{3-5} = \frac{y-1}{4-1} = \frac{z-6}{1-6}$$

$$\Rightarrow \frac{x-5}{-2} = \frac{y-1}{3} = \frac{z-6}{-5} = k \text{ (say)}$$

$$\Rightarrow x = 5 - 2k, \ y = 3k + 1, \ z = 6 - 5k$$

Any point on the line is of the form (5 - 2k, 3k + 1, 6 - 5k).

The equation of YZ-plane is x = 0

Since the line passes through YZ-plane,

$$5 - 2k = 0$$

$$\Rightarrow k = \frac{5}{2}$$

$$\Rightarrow 3k+1 = 3 \times \frac{5}{2} + 1 = \frac{17}{2}$$

$$6 - 5k = 6 - 5 \times \frac{5}{2} = \frac{-13}{2}$$

Therefore, the required point is $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$

Find the coordinates of the point where the line through (5, 1, 6) and

(3, 4, 1) crosses the ZX - plane.

Answer

It is known that the equation of the line passing through the points, (x_1, y_1, z_1) and (x_2, y_1, z_2)

$$\frac{x-x_{\rm l}}{y_{\rm 2},\;z_{\rm 2}),\;{\rm is}}\;\frac{x-x_{\rm l}}{x_{\rm 2}-x_{\rm l}}=\frac{y-y_{\rm l}}{y_{\rm 2}-y_{\rm l}}=\frac{z-z_{\rm l}}{z_{\rm 2}-z_{\rm l}}$$

The line passing through the points, (5, 1, 6) and (3, 4, 1), is given by,

$$\frac{x-5}{3-5} = \frac{y-1}{4-1} = \frac{z-6}{1-6}$$

$$\Rightarrow \frac{x-5}{-2} = \frac{y-1}{3} = \frac{z-6}{-5} = k \text{ (say)}$$

$$\Rightarrow x = 5 - 2k, \ y = 3k + 1, \ z = 6 - 5k$$

Any point on the line is of the form (5 - 2k, 3k + 1, 6 - 5k).

Since the line passes through ZX-plane,

$$3k + 1 = 0$$

$$\Rightarrow k = -\frac{1}{3}$$

$$\Rightarrow 5 - 2k = 5 - 2\left(-\frac{1}{3}\right) = \frac{17}{3}$$

$$6-5k = 6-5\left(-\frac{1}{3}\right) = \frac{23}{3}$$

Therefore, the required point is $\left(\frac{17}{3}, 0, \frac{23}{3}\right)$

Find the coordinates of the point where the line through (3, -4, -5) and (2, -3, 1)

crosses the plane 2x + y + z = 7).

 $\Rightarrow k = 2$

It is known that the equation of the line through the points, (x_1, y_1, z_1) and (x_2, y_2, z_2) , is

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

Since the line passes through the points, (3, -4, -5) and (2, -3, 1), its equation is given by,

$$\frac{x-3}{2-3} = \frac{y+4}{-3+4} = \frac{z+5}{1+5}$$

$$\Rightarrow \frac{x-3}{-1} = \frac{y+4}{1} = \frac{z+5}{6} = k \text{ (say)}$$

$$\Rightarrow x = 3-k, \ y = k-4, \ z = 6k-5$$

Therefore, any point on the line is of the form (3 - k, k - 4, 6k - 5).

This point lies on the plane, 2x + y + z = 7

$$\therefore 2 (3 - k) + (k - 4) + (6k - 5) = 7$$
$$\Rightarrow 5k - 3 = 7$$

- - -

Hence, the coordinates of the required point are (3 - 2, 2 - 4, 6 \times 2 - 5) i.e., (1, -2, 7).

Question 13:

Find the equation of the plane passing through the point (-1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

Answei

The equation of the plane passing through the point (-1, 3, 2) is

$$a(x + 1) + b(y - 3) + c(z - 2) = 0 ... (1)$$

where, a, b, c are the direction ratios of normal to the plane.

It is known that two planes, $a_1x+b_1y+c_1z+d_1=0$ and $a_2x+b_2y+c_2z+d_2=0$, are

perpendicular, if
$$a_1a_2+b_1b_2+c_1c_2=0$$

Plane (1) is perpendicular to the plane, x + 2y + 3z = 5

$$\therefore a \cdot 1 + b \cdot 2 + c \cdot 3 = 0$$

$$\Rightarrow a + 2b + 3c = 0 \qquad \dots (2)$$

Also, plane (1) is perpendicular to the plane, 3x + 3y + z = 0

$$\therefore a \cdot 3 + b \cdot 3 + c \cdot 1 = 0$$

$$\Rightarrow 3a + 3b + c = 0 \qquad ...(3)$$

From equations (2) and (3), we obtain

$$\frac{a}{2\times 1 - 3\times 3} = \frac{b}{3\times 3 - 1\times 1} = \frac{c}{1\times 3 - 2\times 3}$$
$$\Rightarrow \frac{a}{-7} = \frac{b}{8} = \frac{c}{-3} = k \text{ (say)}$$

********* END ********