# Class7: Machine Learning 1

Alice Lai (PID:A16799081)

### Clustering

Finding groups/patterns in data, and then dimensionalily deduction.

"k-means" clustering The main function in base R for this is kmeans().

```
# make up some data
hist(rnorm(100000), mean = 3)

Warning in plot.window(xlim, ylim, "", ...): "mean" is not a graphical
parameter

Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...): "mean"
is not a graphical parameter
```

Warning in axis(1,  $\dots$ ): "mean" is not a graphical parameter

Warning in axis(2, at = yt,  $\dots$ ): "mean" is not a graphical parameter

## Histogram of rnorm(1e+05)



```
temp <- c(rnorm(30, -3), rnorm(30, +3))

x \leftarrow cbind(x = temp, y = rev(temp))

plot(x)
```



km = kmeans(x, centers=2)
km

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

x y 1 -2.790322 3.058645 2 3.058645 -2.790322

Clustering vector:

Within cluster sum of squares by cluster:

[1] 54.90491 54.90491 (between\_SS / total\_SS = 90.3 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"

How many points in each cluster?

```
km$size
```

[1] 30 30

What component of your result object details cluster assignment/membership?

km\$cluster

What are centers/mean values of each cluster?

km\$centers

```
x y
1 -2.790322 3.058645
2 3.058645 -2.790322
```

Make a plot of your data showing your clustering results (groupings/clusters and cluster centers)

```
plot(x, col=km$cluster)
points(km$centers, col="green", pch=15, cex=3)
```



Run kmeans() again and cluter into 4 groups and plot the results

```
km4 = kmeans(x, centers=4)
plot(x, col=km4$cluster)
```



#### **Hierarchical Clustering**

This form of clustering aims to reveal the structure in your data by progressively grouping points into a ever smaller number of clusters.

The main function in base R for this is called hclust(). This function does not take our input data directly but wants a "distance matrix" that details how (dis)similar are our input points to one another.

```
hc <- hclust(dist(x))</pre>
```

The print out above is not very useful (unclick that from kmeans) but there is a useful plot() method.

```
plot(hc)
abline(h = 10, col = "red")
```

## **Cluster Dendrogram**



dist(x)
hclust (\*, "complete")

To get my main result (my cluster membership vector) I need to "cut" my tree using the function  ${\tt cutree}(\tt)$ 

```
grps <- cutree(hc, h = 10)
plot(x, col=grps)</pre>
```



## Principal Component Analysis (PCA)

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names=1)
head(x)</pre>
```

|               | England | Wales | ${\tt Scotland}$ | ${\tt N.Ireland}$ |
|---------------|---------|-------|------------------|-------------------|
| Cheese        | 105     | 103   | 103              | 66                |
| Carcass_meat  | 245     | 227   | 242              | 267               |
| Other_meat    | 685     | 803   | 750              | 586               |
| Fish          | 147     | 160   | 122              | 93                |
| Fats_and_oils | 193     | 235   | 184              | 209               |
| Sugars        | 156     | 175   | 147              | 139               |

dim(x)

[1] 17 4



barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))



The so-called "pairs" plot can be useful for small dataset:

```
pairs(x, col=rainbow(nrow(x)), pch=16)
```



So the pairs plot is useful for small datasets but it can be lots of work to interpret and gets intractabke for larger datasets.

So PCA to the rescue. The main function to do PCA in base R is called prcomp()

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

#### Importance of components:

```
        PC1
        PC2
        PC3
        PC4

        Standard deviation
        324.1502
        212.7478
        73.87622
        2.921e-14

        Proportion of Variance
        0.6744
        0.2905
        0.03503
        0.000e+00

        Cumulative Proportion
        0.6744
        0.9650
        1.00000
        1.000e+00
```

```
attributes(pca)
```

#### \$names

[1] "sdev" "rotation" "center" "scale" "x"

#### \$class

[1] "prcomp"

```
PC1
                              PC2
                                         PC3
                                                       PC4
England
          -144.99315
                       -2.532999 105.768945 -9.152022e-15
Wales
          -240.52915 -224.646925 -56.475555
                                              5.560040e-13
Scotland
           -91.86934
                      286.081786 -44.415495 -6.638419e-13
           477.39164
                      -58.901862 -4.877895
N.Ireland
                                              1.329771e-13
```

A major PCA result visualization is called a "PCA plot" (aka a score plot, biplot, PC1 vs PC2 plot, ordination plot)



Another important output from PCA is called the "loadings" vector or the "rotation" component - this tells us how much the original variables (the foods in this case) contribute to the new PCs.

### pca\$rotation

|                    | PC1          | PC2          | PC3         | PC4          |
|--------------------|--------------|--------------|-------------|--------------|
| Cheese             | -0.056955380 | 0.016012850  | 0.02394295  | -0.409382587 |
| Carcass_meat       | 0.047927628  | 0.013915823  | 0.06367111  | 0.729481922  |
| Other_meat         | -0.258916658 | -0.015331138 | -0.55384854 | 0.331001134  |
| Fish               | -0.084414983 | -0.050754947 | 0.03906481  | 0.022375878  |
| Fats_and_oils      | -0.005193623 | -0.095388656 | -0.12522257 | 0.034512161  |
| Sugars             | -0.037620983 | -0.043021699 | -0.03605745 | 0.024943337  |
| Fresh_potatoes     | 0.401402060  | -0.715017078 | -0.20668248 | 0.021396007  |
| Fresh_Veg          | -0.151849942 | -0.144900268 | 0.21382237  | 0.001606882  |
| Other_Veg          | -0.243593729 | -0.225450923 | -0.05332841 | 0.031153231  |
| Processed_potatoes | -0.026886233 | 0.042850761  | -0.07364902 | -0.017379680 |
| Processed_Veg      | -0.036488269 | -0.045451802 | 0.05289191  | 0.021250980  |
| Fresh_fruit        | -0.632640898 | -0.177740743 | 0.40012865  | 0.227657348  |
| Cereals            | -0.047702858 | -0.212599678 | -0.35884921 | 0.100043319  |
| Beverages          | -0.026187756 | -0.030560542 | -0.04135860 | -0.018382072 |
| Soft_drinks        | 0.232244140  | 0.555124311  | -0.16942648 | 0.222319484  |
| Alcoholic_drinks   | -0.463968168 | 0.113536523  | -0.49858320 | -0.273126013 |
| Confectionery      | -0.029650201 | 0.005949921  | -0.05232164 | 0.001890737  |

PCA seems to be super useful method to gain some insight into high dimensional data that is difficult to examine in other ways.