LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 5: Change of Coordinates

LECTURE

- **5.1.** Given a basis \mathcal{B} in a linear space X, we can write an element v in X in a unique way as a sum of basis elements. For example, if $v = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ is a vector in $X = \mathbb{R}^2$ and $\mathcal{B} = \{v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 6 \end{bmatrix} \}$, then $v = 2v_1 + v_2$. We say that $\begin{bmatrix} 2 \\ 1 \end{bmatrix}_{\mathcal{B}}$ are the \mathcal{B} coordinates of v. The standard coordinates are $v = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ are assumed if no other basis is specified. This means $v = 3e_1 + 4e_2$.
- **5.2.** If $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ is a basis of \mathbb{R}^n , then the matrix S which contains the vectors v_k as column vectors is called the **coordinate change matrix**.

Theorem: If S is the matrix of \mathcal{B} , then $S^{-1}v$ are the \mathcal{B} coordinates of v.

5.3. In the above example, $S = \begin{bmatrix} 1 & 1 \\ -1 & 6 \end{bmatrix}$ has the inverse $S^{-1} = \begin{bmatrix} 6 & -1 \\ 1 & 1 \end{bmatrix}/7$. We compute $S^{-1}[3,4]^T = [2,1]^T$.

Proof. If $[v]_{\mathcal{B}} = [a_1, \dots, a_n]$ are the new coordinates of v, this means $v = a_1v_1 + \dots + a_nv_n$. But that means $v = S[v]_{\mathcal{B}}$. Since \mathcal{B} is a basis, S is invertible and $[v]_{\mathcal{B}} = S^{-1}v$. \square

Theorem: If T(x) = Ax is a linear map and S is the matrix from a basis change, then $B = S^{-1}AS$ is the matrix of T in the new basis \mathcal{B} .

Proof. Let y = Ax. The statement $[y]_{\mathcal{B}} = B[x]_{\mathcal{B}}$ can be written using the last theorem as $S^{-1}y = BS^{-1}x$ so that $y = SBS^{-1}x$. Combining with y = Ax, this gives $B = S^{-1}AS$.

5.4. If two matrices A, B satisfy $B = S^{-1}AS$ for some invertible S, they are called **similar**. The matrices A and B both implement the transformation T, but they do it from a different perspective. It makes sense to adapt the basis to the situation. For example, here on earth, at a specific location, we use a coordinate system, where v_1

points east, where v_2 points north and where v_3 points straight up. The natural basis here in Boston is different than the basis in Zürich. ¹

FIGURE 1. A good coordinate system is adapted to the situation. When talking about points on the globe, we can use a global coordinate system with e_3 in the earth axes. When working on earth say near Boston, we need another basis.

- **5.5.** Using a suitable basis is one of the main reasons why linear algebra is so powerful. This idea will be a major one throughout the course. We will use "eigen basis" to diagonalize a matrix, we will use good coordinates to solve ordinary and partial differential equations.
- **5.6.** For us, the change of coordinates now is a way to figure out the matrix of a transformation

To find the matrix A of a reflection, projection or rotation matrix, find a good basis for the situation, then look what happens to the new basis vectors. This gives B. Now write down the matrix S and get $A = SBS^{-1}$.

EXAMPLES

5.7. Problem. Find the matrix A which implements the reflection T at the plane $X = \{x + y + 2z = 0\}$. **Solution.** We take a basis adapted to the situation. Take $v_3 = [1, 1, 2]^T$ which is perpendicular to the plane, then choose $v_1 = [1, -1, 0]^T$, $v_2 = [2, 0, -1]^T$ which are in the plane. Now, since $T(v_1) = v_1$, $T(v_2) = v_2$ and $T(v_3) = -v_3$, the transformation is described in that basis with the matrix $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$. The

¹Figure (1) was rendered using creative commons Povray code by Gilles Tran authored 2000-2004.

basis change transformation S is
$$S = \begin{bmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ 2 & 0 & -1 \end{bmatrix}$$
. We can now get $A = SBS^{-1} =$

$$\left[\begin{array}{ccc} -1 & -2 & 2 \\ 1 & 2 & -1 \\ 1 & 1 & 0 \end{array} \right].$$

5.8. Problem. Find the matrix which rotates about the vector $[3, 4, 0]^T$ by 90 degrees counter clockwise when looking from the tip (3,4,0) of the vector to the origin (0,0,0). **Solution.** We build a basis adapted to the situation. Of course, we use $v_1 = [3, 4, 0]^T$. We need now two other vectors which are perpendicular to each other. The vectors $v_2 = [-4, 3, 0]^T$ and $v_3 = [0, 0, 5]$ present themselves. It is good to have the two vectors which are moving to have the same length because then the matrix B is particularly

simple: since
$$v_2 \to -v_3, v_3 \to v_2, v_1 \to v_1$$
, we have $B = \begin{bmatrix} 1 & 0 & 0 \\ x0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$. With

$$S = \begin{bmatrix} 3 & -4 & 0 \\ 4 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \text{ we get } A = SBS^{-1}. \text{ This is now just matrix multiplication and}$$
can be computed
$$\begin{bmatrix} 9 & 12 & -100 \\ 12 & 16 & 75 \\ 4 & -3 & 0 \end{bmatrix} / 25. \text{ It would have been quite hard to find the}$$

can be computed
$$\begin{bmatrix} 9 & 12 & -100 \\ 12 & 16 & 75 \\ 4 & -3 & 0 \end{bmatrix}$$
 /25. It would have been quite hard to find the

column vectors of this matrix by figuring out where each of the standard basis vectors e_k goes. Still, we have used that basic principle when figuring out what B is.

5.9. Find the matrix of the projection on the line perpendicular to the hyperplane x + y + z + w = 0 in \mathbb{R}^4 . Solution: there is a nice basis adapted to that situation. It gives

$$\mathcal{B} = \{v_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, v_2 = \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix} v_3 = \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix} v_4 = \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} \}, S = \begin{bmatrix} 1&1&1&1&1\\1&1&-1&-1\\1&-1&1&-1\\1&-1&-1&1 \end{bmatrix}.$$

S is invertible. In this case $S^{-1} = 4S$. Now, in the new basis, the transformation matrix is very simple. As v_1 goes to v_1 and v_2 and v_3 and v_4 all go to zero, we have

write down the matrix without going to a new coordinate system as the image of the first basis vector is the vector projection of [1, 0, 0, 0] onto [1, 1, 1, 1].

Homework

This homework is due on Tuesday, 2/13/2019.

Problem 5.1: What are the \mathcal{B} -coordinates of \vec{v} in the basis \mathcal{B} .

$$\vec{v} = \begin{bmatrix} 2\\3\\4\\5 \end{bmatrix}, \mathcal{B} = \left\{ \begin{bmatrix} 3\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \right\}?$$

Problem 5.2: What is the matrix B for the transformation $A = \begin{bmatrix} 3 & 1 \\ -1 & 4 \end{bmatrix}$ in the basis $\mathcal{B} = \{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \}$:

Problem 5.3: Chose a suitable basis to solve:

- a) What matrix A implements the reflection at the plane 3x+3y+6z=0?
- b) What matrix A implements the reflection at the line spanned by $[2, 2, 4]^T$?

Problem 5.4: Find the matrix A corresponding to the orthogonal projection onto the plane spanned by the vectors $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$.

Problem 5.5: "Graphene" are hexagonal planar structures. We can work with them when using a good adapted basis. Assume the first is $v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. a) Find w so that $\mathcal{B} = \{v, w\}$ is the basis as seen in the picture.

- b) What are the standard coordinates of $\begin{bmatrix} 3 \\ -1 \end{bmatrix}_{\mathcal{B}}$?
- c) Is $\begin{bmatrix} 23 \\ 72 \end{bmatrix}_{\mathcal{B}}$ a vertex of a hexagon or the center of one?

FIGURE 2. Graphene are single layer hexagonal lattice carbon structures.

OLIVER KNILL, KNILL@MATH.HARVARD.EDU, MATH 22B, HARVARD COLLEGE, SPRING 2019