Лекція 12

Чисельне диференціювання

12.1. Постановка задачі чисельного диференціювання

Чисельне диференціювання застосовується тоді, коли функцію не можна продиференціювати аналітично — наприклад, коли вона задана таблично, або вираз функції такий громіздкий, що користуватися виразом похідної для обчислень дуже важко. У цьому випадку задану функцію f(x) апроксимують функцією $\phi(x,a)$, яка легко обчислюється и приблизно покладають $f'(x) = \phi'(x,a)$.

Нехай функція y = f(x) задана таблично в n+1 точках на інтервалі [a,b]. Необхідно знайти аналітичний вигляд її похідної.

Найпростіша ідея чисельного диференціювання полягає в тому, що функція замінюється інтерполяційним многочленом (Лагранжа, Ньютона) і похідна функції наближеного замінюється відповідною похідною інтерполяційного многочлена.

12.2. Формули чисельного диференціювання

Розглянемо найпростіші формули чисельного диференціювання, які отримуються зазначеним способом.

Будемо вважати, що функція задана в рівновіддалених вузлах

$$x_i = x_0 + ih$$
, $h > 0$, $i = 0, \pm 1, \pm 2, \dots$

Її значення та значення похідних у вузлах будемо позначати

$$f(x_i) = f_i$$
, $f'(x_i) = f_i'$, $f''(x_i) = f_i''$.

Нехай функція задана у двох точках x_0 та $x_1 = x_0 + h$, і її значення f_0 , f_1 . Побудуємо інтерполяційний многочлен першого степеня

$$l_1(x) = f_0 + (x - x_0) f(x_0; x_1).$$

Похідна $l_1'(x)$ дорівнює

$$l_1'(x) = f(x_0; x_1) = \frac{f_1 - f_0}{h}.$$

Похідну функції f(x) в точці x_0 наближено замінюємо похідною інтерполяційного многочлена

$$f_0'(x) \approx \frac{f_1 - f_0}{h}.$$
 (12.1)

Величина $\frac{f_1-f_0}{h}$ - перша різницева похідна.

Нехай f(x) задана в трьох точках x_0 , $x_1 = x_0 + h$, $x_{-1} = x_0 - h$. Інтерполяційний многочлен Ньютона другого степеня має вигляд

$$l_2(x) = f(x_0) + (x - x_0)f(x_0; x_1) + (x - x_0)(x - x_1)f(x_0; x_1; x_{-1}).$$

Беремо похідну

$$l_2'(x) = f(x_0; x_1) + (2x - x_0 - x_1)f(x_0; x_1; x_{-1}).$$

У точці x_0 ця похідна дорівнює

$$l_{2}'(x_{0}) = \frac{f_{1} - f_{0}}{x_{1} - x_{0}} + (x_{0} - x_{1}) \times \left[\frac{f_{0}}{(x_{0} - x_{1})(x_{0} - x_{-1})} + \frac{f_{1}}{(x_{1} - x_{0})(x_{1} - x_{-1})} + \frac{f_{-1}}{(x_{-1} - x_{0})(x_{-1} - x_{1})} \right] = \frac{f_{1} - f_{-1}}{2h}.$$

Отримуємо наближену формулу для центральної різницевої похідної

$$f_0' \approx \frac{f_1 - f_{-1}}{2h}.$$
 (12.2)

Якщо взяти другу похідну

$$f_{2}''(x) = 2f(x_{0}; x_{1}; x_{-1}) = 2\left(\frac{f_{0}}{(x_{0} - x_{1})(x_{0} - x_{-1})} + \frac{f_{1}}{(x_{1} - x_{0})(x_{1} - x_{-1})} + \frac{f_{-1}}{(x_{-1} - x_{0})(x_{-1} - x_{1})}\right) = \frac{f_{1} - 2f_{0} + f_{-1}}{h^{2}},$$

отримуємо наближену формулу для *другої різницевої похідної*

$$f_0'' \approx \frac{f_1 - 2f_0 + f_{-1}}{h^2}.$$
 (12.3)

Формули (12.1) - (12.3) називаються формулами чисельного диференціювання.

12.3. Похибки формул чисельного диференціювання

Вважаючи функцію достатню кількість раз безперервно диференційованою, знайдемо похибки наближених формул (12.1) - (12.3). Для оцінки похибок цих формул використовують нерівності:

$$\left| f_0' - \frac{f_1 - f_0}{h} \right| \le \frac{h}{2} \max_{[x_0, x_1]} |f''(x)|,$$

$$\left| f_0' - \frac{f_1 - f_{-1}}{2h} \right| \le \frac{h^2}{6} \max_{[x_{-1}, x_1]} |f'''(x)|,$$

$$\left| f_0'' - \frac{f_{-1} - 2f_0 + f_1}{h^2} \right| \le \frac{h^2}{12} \max_{[x_{-1}, x_1]} |f^{(4)}(x)|.$$

Кажуть, що формула чисельного диференціювання (12.1) має перший порядок точності відносно h, а формули (12.2) і (12.3) - другий порядок.

Аналогічно можна отримати формули чисельного диференціювання для похідних вищих порядків і для більшої кількості вузлів інтерполяції.

12.4. Наближене диференціювання на основі інтерполяції Ньютона

За апроксимуючу функцію вибираємо інтерполяційний многочлен. Якщо вузли рівновіддалені, тобто $x_i - x_{i-1} = h$, (i = 1,...,n), то використовуємо інтерполяційний многочлен Ньютона (для інтерполяції вперед):

$$L_{n}(x) = y_{0} + q \frac{\Delta y_{0}}{1!} + q(q-1) \frac{\Delta^{2} y_{0}}{2!} + q(q-1)(q-2) \frac{\Delta^{3} y_{0}}{3!} + \dots + q(q-1) \dots (q-n+1) \frac{\Delta^{n} y_{0}}{n!},$$
(12.4)

де $q = (x - x_0)/h$, а отже $x = x_0 + qh$.

Перепишемо, розкриваючи дужки:

$$y \approx L_n(x) = y_0 + q\Delta y_0 + \frac{q^2 - q}{2}\Delta^2 y_0 + \frac{q^3 - 3q^2 + 2q}{6}\Delta^3 y_0 + \frac{q^4 - 6q^3 + 11q^2 - 6q}{24}\Delta^4 y_0 + \dots$$
(12.5)

Враховуючи правило диференціювання складної функції, маємо

$$y'(x) = \frac{dy}{dx} = \frac{dy}{dq} \cdot \frac{dq}{dx} = \frac{1}{h} \cdot \frac{dy}{dq}.$$
 (12.6)

Аналогічно, враховуючи, що

$$y'(x) = \frac{1}{h} \left(\Delta y_0 + \frac{2q - 1}{2} \Delta^2 y_0 + \frac{3q^2 - 6q + 2}{6} \Delta^3 y_0 + \frac{2q^3 - 9q^2 + 11q - 3}{12} \Delta^4 y_0 + \dots \right), \quad (12.7)$$

отримуємо

$$y''(x) = \frac{d(y')}{dx} = \frac{d(y')}{dq} \cdot \frac{dq}{dx} = \frac{1}{h} \cdot \frac{d(y')}{dq}.$$
 (12.8)

Продиференціюємо (12.5), враховуючи (12.7). Отримаємо:

$$y'' \approx \frac{1}{h^2} \left[\Delta^2 y_0 + (q - 1) \Delta^3 y_0 + \frac{6q^2 - 18q + 11}{12} \Delta^4 y_0 + \dots \right]. \tag{12.9}$$

Аналогічно можна визначити похідні будь-якого порядку. Але при цьому необхідно в якості x_0 вибирати найближче зліва вузлове значення аргумента.

Приклад 12.1. Знайти похідну функції y(x) в т. x = 1.2.

X_i	1.2	1.3	1.4	1.5
\mathcal{Y}_i	0.91	0.98	1.05	1.5

Розв'язування. Складемо таблицю скінченних різниць

X_i	$f(x_i)$	$\Delta f(x_i)$	$\Delta^2 f(x_i)$	$\Delta^3 f(x_i)$
1.2	0.91	0.07	0.02	0.34
1.3	0.98	0.09	0.36	
1.4	1.05	0.45		
1.5	1.5			

$$f'(x_0) \approx \frac{1}{0.1}(0.07 - \frac{0.02}{2} + 2\frac{0.34}{6} - \dots) = 10(0.07 - 0.01 + 0.113) = 1.733,$$
$$f''(x_0) \approx \frac{1}{(0.1)^2}(0.02 - 0.34) = -320.$$

Формули для визначення похідних у вузлах інтерполяції значно спрощуються. Оскільки кожне табличне значення можна вибрати за початкове, то, покладаючи $x = x_0$, отримуємо q = 0. Тоді формули (12.7) і (12.9) запишуться:

$$y'(x) = \frac{1}{h} \left(\Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \frac{\Delta^4 y_0}{4} + \dots \right), \tag{12.10}$$

$$y'' \approx \frac{1}{h^2} \left(\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 + \dots \right).$$
 (12.11)

12.5. Похибка при визначенні похідної

$$R'_k(x_0) \approx h^{k+1} \frac{q(q-1)...(q-k)}{(k+1)!} y^{(k+1)}(\xi),$$

де $\xi \in [a,b]$, але не співпадає з вузлами інтерполяції.

Приклад 12.2: Функція задана таблично:

X_i	1	2	3	4
y_i	4	9	26	61

Знайти першу і другу похідні в точці x = 1.

Розв'язування. Складемо таблицю скінченних різниць.

X_i	$f(x_i)$	$\Delta f(x_i)$	$\Delta^2 f(x_i)$	$\Delta^3 f(x_i)$
1	4	5	12	6
2	9	17	18	
3	26	35		
4	61			

Крок h = 1. Згідно (12.7) і (12.9) маємо:

$$y'(x) = \frac{1}{h} \left(\Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \frac{\Delta^4 y_0}{4} + \dots \right),$$
$$y'' \approx \frac{1}{h^2} \left[\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 + \dots \right].$$

Приклад 12.3. За допомогою інтерполяційних формул Ньютона знайти значення першої та другої похідних для функції y = f(x), заданої таблично, в точці x = 0,1.

Розв'язування. Крок таблиці h=0,1. Шукане значення x співпадає з вузлом таблиці $x=x_0=0,1$. Отже, q=0.

Запишемо таблицю скінченних різниць:

X_i	$f(x_i)$	$\Delta f(x_i)$	$\Delta^2 f(x_i)$	$\Delta^3 f(x_i)$	$\Delta^4 f(x_i)$
0	1.2733	0.5274	0.0325	0.0047	0.0002
0.1	1.8007	0.5599	0.0372	0.0049	0.0002
0.2	2.3606	0.5971	0.0421	0.0051	
0.3	2.9577	0.6392	0.0472		
0.4	3.5969	0.6864			
0.5	4.2833				

Обчислення проводимо за формулами (12.7), (12.9):

$$y'(0.1) \approx \frac{1}{0.1} \left(0.5599 - \frac{0.0372}{2} + \frac{0.0049}{3} - \frac{0.0002}{4} \right) = 5.4285,$$

$$y''(x_0) \approx \frac{1}{0.01} \left(0.0372 - 0.0049 + \frac{11}{12} 0.0002 \right) = 3.25.$$

Bidnosids. $y'(0.1) \approx 5.4285$, $y''(x_0) \approx 3.25$.