Machine Learning in Economics (458657)

replication paper

Early Warning System of Fiscal Stress

comparing the traditional logistic regression approach versus a random forest algorithm

Department of Economics University of Bern

Spring Semester 2022

submitted by Bela Koch

Contents

1	Introduction	3
2	Literature Review	3
3	Model Describtion3.1 Performance Metrics3.2 Logit Model with LASSO penalisation3.3 Random Forest	3 3 3
4	Data Describtion 4.1 Dependent Variable	3 3
5	5.2 Interpretability	3 4 4 4 4 4 4
6	Conclusion	4
7	References	5

1 Introduction

DEFINITION OF EWS. This paper aims to design an early warning system which signals increased risk of a fiscal stress event in the near future.

test ob zitierung funktioniert Jarmulska (2020).

2 Literature Review

3 Model Describtion

3.1 Performance Metrics

3.2 Logit Model with LASSO penalisation

Hastie et al. (2009)

$$\hat{\beta}^{lasso} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \quad \text{subject to} \quad \sum_{j=1}^{p} |\beta_j| \le t$$
(1)

Lagrangian form

$$\hat{\beta}^{lasso} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$
 (2)

3.3 Random Forest

Gini index

$$g(w) = \sum_{k \neq j} p_{wk} p_{wj} = \sum_{k} p_{wk} (1 - p_{wk})$$
(3)

4 Data Describtion

4.1 Dependent Variable

definition of a fiscal stress event empirical/historical data about fiscal stress events

4.2 Explanatory Variables

5 Empirical results

5.1 Performance

	Logit LASSO		Random Forest	
	advanced	GDP	advanced	GDP
	dummy	per capita	dummy	per capita
% of correctly	86.71	73.36	88.94	91.02
classified stress episodes				
% of correctly	50.67	72.47	66.62	66.04
classified tranquil episodes	50.07	12.41	00.02	00.04
Average	68.69	72.92	77.78	78.53
AUROC	0.83	0.85	0.88	0.89

Table 1: Average prediction accuracy of early warning models for years 2009-2018 (all observations used)

5.2 Interpretability

5.2.1 Variable Importance

rf.fit.eval

5.2.2 Shapley Values

- 5.2.3 Partial dependence plots
- 5.2.4 Accumulated local effects plots

6 Conclusion

7 References

Hastie, Trevor, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Vol. 2. Springer.

Jarmulska, Barbara. 2020. "Random Forest Versus Logit Models: Which Offers Better Early Warning of Fiscal Stress?" ECB Working Paper Series No 2408 / May 2020.