Математическая логика

Михайлов Максим

19 февраля 2021 г.

Оглавление

Лекци	ия 1	12 февраля	2
0.	Мот	ивация	2
	0.1.	Математикам	2
		Программистам	
1.	Исч	исление высказываний	3
	1.1.	Язык	3
	1.2.	Метаязык и предметный язык	3
		Сокращения записи	
	1.4.	Теория моделей	4
	1.5.	Теория доказательств	5
	1.6.	Правило Modus Ponens и доказательство	5
Лекция 2		19 февраля	6
2.	Инт	уиционистская логика	8
	2.1.	ВНК-интерпретация	8

Лекция 1

12 февраля

0. Мотивация

0.1. Математикам

Аксиома 1 (Архимеда). Для любого k > 0 найдётся n, такое что kn > 1.

Под эту аксиому не подходят бесконечно малые числа и это является проблемой. Например, $\lim_{x\to +\infty} \frac{1}{x} = 0 = \lim_{x\to +\infty} \frac{1}{x^2}$, но мы хотим уметь различать эти два числа. Ньютон предложил идею бесконечно малых чисел, откуда пошли последовательности. Возникает вопрос — что такое последовательность и что такое число?

Общепринятое определение целых чисел $\mathbb N$ происходит из теории множеств. Однако эта теория содержит в себе множество фундаментальных парадоксов, от которых нельзя избавиться.

Возникает вопрос — а что такое множество? Посмотрим на некоторое множество $A=\{x\mid x\not\in x\}$. Содержит ли оно себя, $A\in A$? На этот вопрос нельзя ответить, это называется парадокс Рассела. Есть простой способ его разрешить — запретить ставить такой вопрос. Нет вопроса — нет парадокса. Существование такого парадокса ставит под вопрос существование любого множества — а существует ли \mathbb{N} ? Может быть его существование парадоксально, просто мы не нашли этот парадокс. Пришло чуть более умное решение парадокса — запретим множества, содержащие себя. Таким образом вывели аксиоматику теории множеств (Цермело — Френкеля).

Пример. Рассмотрим множество всех чисел, которые можно задать в ≤ 1000 слов русского языка. Фраза "наименьшее число, которое нельзя задать в ≤ 1000 слов" содержит ≤ 1000 слов, т.е. такое число принадлежит искомому множеству — парадокс.

Возникает идея — человеческий язык порождает парадоксы, поэтому нужно задать новый язык, который их не порождает. Этот язык и является математической логикой.

0.2. Программистам

Математическая логика применяется в двух областях (для программистов):

- 1. Языки программирования
- 2. Формальные доказательства

Для языков программирования матлогика применима как теория типов (переменных).

Формальные доказательства нужны например для smart-контрактов, где корректность программы критически важна, т.к. если в нём есть ошибка, у вас злоумышленник заберет все деньги, а вы не сможете этот контракт откатить.

1. Исчисление высказываний

1.1. Язык

Определение. Язык содержит в себе:

1. Пропозициональные переменные

 A_i' — большая буква начала латинского алфавита, возможно с индексом и/или штрихом.

2. Связки

Пусть α, β — высказывания. Тогда $(\alpha \to \beta), (\alpha \& \beta), (\alpha \lor \beta), (\neg \alpha)$ — высказывания. α, β называются метапеременными.

Примечание. Математическая логика алгеброподобна (а не анализоподобна), т.к. в ней много определений и мало доказательств.

1.2. Метаязык и предметный язык

У нас есть два различных языка — предметный язык и метаязык. Метаязык — русский, предметный язык мы определили выше.

Пример. $\alpha \to \beta$ — метавыражение; $A \to (A \to A)$ — предметное выражение.

Обозначение. Метапеременные обозначаются различными способами в зависимости от того, что они обозначают:

- Буквы греческого алфавита $(\alpha, \beta, \gamma, ..., \varphi, \psi)$ выражения
- Заглавные буквы конца латинского алфавита (X,Y,Z) произвольные переменные

 $\mbox{\it Пример.}\ X \to Y \Rightarrow A \to B$ — подстановка переменных. Этот синтаксис не формален, мы будем записывать так:

$$(X \to Y)[X := A, Y := B] \equiv A \to B$$

Соглашение. символы логических операций не пишутся в метаязыке.

Пример.

$$(\alpha \to (A \to X))[\alpha := A, X := B] \equiv A \to (A \to B)$$
$$(\alpha \to (A \to X))[\alpha := (A \to P), X := B] \equiv (A \to P) \to (A \to B)$$

1.3. Сокращения записи

- \lor , &, \lnot скобки слева направо (лево-ассоциативные операции) (не коммутативные)
- \rightarrow правоассоциативная.

Примечание. Здесь операторы записаны в порядке их приоритета

Пример. Расставим скобки в следующем выражении:

$$A \rightarrow B \& C \rightarrow D$$

$$A \rightarrow ((B \& C) \rightarrow D)$$

1.4. Теория моделей

Модель состоит из:

Обозначение.

- P некоторое множество предметных переменных
- au множество высказываний предметного языка
- V множество истинных значений. Классическое $\{\Pi, \Pi\}$
- $[\![\,]\!]: au o V$ оценка высказывания (высказывание ставится в скобки).
- 1. $[\![x]\!]: P \to V$ задается при оценке.
- 2. $[\![\alpha\star\beta]\!]=[\![\alpha]\!]\star[\![\beta]\!]$, где \star есть логическая операция (\vee , &, \neg , \rightarrow), а \star определено естественным образом как элемент метаязыка.

1.5. Теория доказательств

Определение. Схема высказывания — строка, соответствующая определению высказывания + метапеременные.

Пример.

$$(\alpha \to (\beta \to (A \to \alpha)))$$

10 схем аксиом:

- 1. $\alpha \to \beta \to \alpha$
- 2. $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$
- 3. $\alpha \rightarrow \beta \rightarrow \alpha \& \beta$
- 4. $\alpha \& \beta \rightarrow \alpha$
- 5. $\alpha \& \beta \rightarrow \beta$
- 6. $\alpha \to \alpha \vee \beta$
- 7. $\beta \rightarrow \alpha \vee \beta$
- 8. $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$
- 9. $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$
- 10. $\neg \neg \alpha \rightarrow \alpha$

1.6. Правило Modus Ponens и доказательство

Определение. Доказательство (вывод) есть конечная последовательность высказываний $\alpha_1 \dots \alpha_n$, где α_i — либо аксиома, либо $\exists k, l < i : \alpha_k \equiv \alpha_l \to \alpha_i$ (правило Modus Ponens)

Пример. $\vdash A \rightarrow A$

- 1. $A \rightarrow A \rightarrow A$ cx. akc. 1
- 2. $A \rightarrow (A \rightarrow A) \rightarrow A$ cx. akc. 1
- 3. $(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow (A \rightarrow A) \rightarrow A) \rightarrow (A \rightarrow A)$ cx. akc. 2
- 4. $(A \rightarrow (A \rightarrow A) \rightarrow A) \rightarrow (A \rightarrow A)$ M.P. 1, 3
- 5. $A \rightarrow A$ M.P. 2, 4

Определение. Доказательство $\alpha_1 \dots \alpha_n$ доказывает выражение β , если $\alpha_n \equiv \beta$

Лекция 2

19 февраля

Обозначение. Большая греческая буква середины греческого алфавита (Γ, Δ, Σ) — список высказываний.

Определение (следование). α следует из Γ (обозначается $\Gamma \models \alpha$), если $\Gamma = \gamma_1 \dots \gamma_n$ и всегда, когда все $[\![\gamma_i]\!] = \mathsf{U}$, то $[\![\alpha]\!] = \mathsf{U}$.

Пример. $\models \alpha - \alpha$ общезначимо.

Определение. Теория Исчисление высказываний корректно, если при любом α из $\vdash \alpha$ следует $\models \alpha$.

Определение. Исчисление **полно**, если при любом α из $\models \alpha$ следует $\vdash \alpha$.

Теорема 1 (о дедукции).

$$\Gamma, \alpha \vdash \beta \Leftrightarrow \Gamma \vdash \alpha \to \beta$$

Доказательство.

- \Leftarrow Пусть $\Gamma \vdash \alpha \to \beta$, т.е. существует доказательство $\delta_1 \dots \delta_n$, где $\delta_n \equiv \alpha \to \beta$ Построим новое доказательство: $\delta_1 \dots \delta_n$, α (гипотеза) , β (М.Р.). Эта новая последовательность доказательство Γ , $\alpha \vdash \beta$
- \Rightarrow Рассмотрим $\delta_1 \dots \delta_n, \Gamma, \alpha \vdash \beta$. Рассмотрим последовательность $\sigma_1 = \alpha \to \delta_1 \dots \sigma_n = \alpha \to \delta_n$. Это не доказательство.

Но эту последовательность можно дополнить до доказательства, так что каждый σ_i есть аксиома, гипотеза или получается через М.Р. Докажем это.

Доказательство. База: n = 0 — очевидно.

Переход: пусть $\sigma_0 \dots \sigma_n$ — доказательство. Покажем, что между σ_n и σ_{n+1} можно добавить формулы так, что σ_{n+1} будет доказуемо.

У нас есть 3 варианта обоснования δ_{n+1}

1. δ_{n+1} — аксиома или гипотеза, $\not\equiv \alpha$

Будем нумеровать дробными числами, потому что нам ничто это не запрещает, т.к. нам нужна только упорядоченность.

$$n + 0.2$$
 δ_{n+1} — верно, т.к. это аксиома или гипотеза

$$n+0.4$$
 $\delta_{n+1} \to \alpha \to \delta_{n+1}$ (аксиома 1)

$$n+1$$
 $\alpha \to \delta_{n+1}$ (M.P. $n+0.2, n+0.4$)

2.
$$\delta_{n+1} \equiv \alpha$$

$$n+0.2, 0.4, 0.6, 0.8, 1$$
 — доказательство $lpha o lpha$

3.
$$\delta_k \equiv \delta_l \rightarrow \delta_{n+1}, \ k, l \leq n$$

$$k \quad \alpha \to (\delta_l \to \delta_{n+1})$$

$$l \quad \alpha \to \sigma_l$$

$$n+0.2 \quad (\alpha \to \sigma_l) \to (\alpha \to (\sigma_l \to \sigma_{n+1})) \to (\alpha \to \sigma_{n+1})$$
 (аксиома 2)

$$n+0.4 \quad (\alpha \to \sigma_l \to \sigma_{n+1}) \to (\sigma \to \sigma_{n+1}) \text{ (M.P. } n+2, l)$$

$$n+1 \quad \alpha \to \sigma_{n+1} \text{ (M.P. } n+0.4, k)$$

Теорема 2. Пусть $\vdash \alpha$. Тогда $\models \alpha$.

Доказательство. Индукция по длине доказательства: каждая $[\![\delta_i]\!]=$ И, если $\delta_1\ldots\delta_n$ — доказательство α

Рассмотрим n и пусть $\llbracket \delta_1 \rrbracket = \mathsf{U}, \dots \llbracket \delta_n \rrbracket = \mathsf{U}.$

Тогда осн. δ_{n+1}

1. δ_{n+1} — аксиома. Это упражнение.

Пример. $\delta_{n+1} \equiv \alpha \rightarrow \beta \rightarrow \alpha$????

Теорема 3 (о полноте). Пусть $\models \alpha$. Тогда $\vdash \alpha$.

Фиксируем набор переменных из α : $P_1 \dots P_n$.

Рассмотрим $[\![\alpha]\!]^{P_1:=x_1...P_n:=x_n}=\mathcal{U}$

Обозначение.
$$[\beta]\alpha \equiv \begin{cases} \alpha, & \llbracket\beta\rrbracket = \mathbf{H} \\ \neg\alpha, & \llbracket\beta\rrbracket = \mathbf{\Pi} \end{cases} \mathbf{H}_{[x]}\alpha \equiv \begin{cases} \alpha, & x = \mathbf{H} \\ \neg\alpha, & x = \mathbf{\Pi} \end{cases}$$

Докажем, что
$$\underbrace{_{[x_1]}P_1,\ldots_{[x_n]}P_n}_{\Pi} \vdash {}_{[\alpha]}\alpha$$

Доказательство. По индукции по длине формулы:

База: $\alpha = P_{i} P_{i} \vdash P_{i} P_{i}$, значит $\Pi \vdash P_{i} P_{i}$

Переход: пусть $\eta, \zeta : \Pi \vdash_{[\eta]} \eta, \Pi \vdash_{[\zeta]} \zeta$ (по индукционному предположению). Покажем, что $\Pi \vdash_{[\eta\star\zeta]} \eta \star \zeta$, где \star — все ???

Это упражнение.

Лемма 1. $\Gamma, \eta \vdash \zeta, \Gamma, \neg \eta \vdash \zeta$. Тогда $\Gamma \vdash \zeta$.

Доказательство. Было в ДЗ.

Доказательство теоремы о полноте. $\models \alpha$, т.е. $_{[x_1]}P_1\dots _{[x_n]}P_n \vdash _{[\alpha]}\alpha$. Но $[\![\alpha]\!] = \Pi$ при любой оценке. Тогда $_{[x_1]}P_1\dots _{[x_n]}P_n \vdash \alpha$ при все x_i .

Лемма 2 (об исключении допущения). Если $_{[x_1]}P_1\dots _{[x_n]}P_n\vdash \alpha$, то $_{[x_1]}P_1\dots _{[x_{n-1}]}P_{n-1}\vdash \alpha$

$$\frac{[x_1]P_1 \dots [x_{n-1}]P_{n-1}, P_n \vdash \alpha}{[x_1]P_1 \dots [x_{n-1}]P_{n-1}, \neg P_n \vdash \alpha} \right\} \xrightarrow{\text{mo } \text{ memme}} [x_1]P_1 \dots [x_{n-1}]P_{n-1} \vdash \alpha$$

2. Интуиционистская логика

2.1. ВНК-интерпретация

Определим выражения:

- $\alpha \& \beta$ есть α и β
- $\alpha \vee \beta$ есть α либо β и мы знаем, какое
- $\alpha \to \beta$ есть способ перестроить α в β
- \perp конструкция без построения (bottom)
- $\neg \alpha \equiv \alpha \rightarrow \perp$

Теория доказательств есть классическая логика без десятой схемы аксиомы, вместо нее $\alpha \to \neq \alpha \to \beta$

Теория моделей — теория, в которой $[\![\alpha]\!]$ — открытое множество в Ω — топологическом пространстве.

В ней определено следующее:

$$\begin{bmatrix} \alpha & \beta \end{bmatrix} = [\alpha] \cap [\beta] \\
 [\alpha \lor \beta] = [\alpha] \cup [\beta] \\
 [\alpha \to \beta] = ([\alpha] \setminus [\beta])^{\circ} \\
 [\bot] = \varnothing \\
 [\neg \alpha] = (X \setminus [\alpha])^{\circ}$$