Concatenación de lenguajes

Objetivo: Resolución del problema numero 10887 del archivo de problemas online del IACM-ICPC para que consiga superar los test de UVa Online Judge, siendo así considerado válido por la organización que provee el problema. Como objetivo secundario se intentará quedar en el top 20 de mejores tiempos de ejecución de dicho problema.

Introducción

La información del problema proporcionada por la IACM-ICPC describe lo siguiente: Un lenguaje es un conjunto de cadenas..Y la concatenación de dos lenguajes es el conjunto resultante de concatenar las cadenas del segundo lenguaje al final de las cadenas del primer lenguaje.

Por ejemplo, si tenemos dos lenguajes A y B tales que:

A = {cat, dog, mouse}

B = {rat, bat}

La concatenación de A y B será:

C = {catrat, catbat, dograt, dogbat, mouserat, mousebat}

Dados dos lenguajes, tu tarea será solamente contar el número de cadenas en la concatenación de dichos lenguajes.

Entrada

Pueden haber muchos casos de pruebas. La primera línea de la entrada debe contener el número de casos de prueba, T ($1 \le T \le 25$). Seguidos, los T casos.La primera linea de cada caso debe contener dos enteros, M y N (M, N < 1500), El número de cadenas de cada lenguaje. Entonces las siguientes M líneas contienen las cadenas del primer lenguaje. Las otras N líneas siguientes te dan el segundo lenguaje. Puedes asumir que esas cadenas están formadas por letras minúsculas ('a' hasta la 'z') solo, y de una longitud menor a 10 caracteres y estarán presentadas en una línea separada sin ningún espacio alrededor. Las cadenas de la entrada pueden no estar ordenadas y no estarán duplicadas.

Ejemplo entrada:

2

32

Cat

Dog

Mouse

Rat

Bat

11

abc cab

Salida

Para cada uno de los casos de prueba se deberá mostrar solo una línea de salida. El salida de cada test comenzará con el número serial de dicho test, seguido por el número de cadenas en la concatenación del segundo lenguaje tras el primero. *Ejemplo salida :*

Case 1: 6 Case 2: 1

Métodos

En el siguiente código podemos observar como se recoge los parámetros de entrada y se van almacenando en un vector para luego realizar la concatenación de los dos lenguajes guardando las cadenas resultantes en un conjunto, para así eliminar los posibles resultados iguales y al finalizar imprimimos la longitud del conjunto que es el número de cadenas resultantes.

```
def main ():
         T = int(input())
 2
        Case = []
        while (T > 0):
 4
             result = set()
 5
             A = []
B = []
 6
 7
             M, N = input().split()
9
             M, N = [int(M), int(N)]
             while (M > 0):
A.append(input())
10
11
                 M -= 1
12
             while (N > 0):
13
                 B.append(input())
14
15
                 N -
             for x in A:
16
17
                 for y in B:
18
                      dummy = x + y
                      result.add(dummy)
19
             Case.append(len(result))
20
21
             T -= 1
22
        for i in Case:
             print("Case " + str(Case.index(i) + 1) + ": " + str(i))
23
24
25
         name
                _ == '__main__':
        main()
26
```

Resultados

La siguiente imagen muestra un test descrito en el problema comprobando que efectivamente, el salida es el correcto.

```
th3ent:~/workspace/concurso-de-programacion-acm-icpc-problema-10887/src (master) $ python3 program.py
2
3 2
cat
dog
mouse
ratt
bat
1 1
abc
cab
Case 1: 6
Case 2: 1
```

La siguiente imagen es una captura de la web Uva Online Judge, con el resultado de las pruebas y el tiempo de ejecución promedio de las mismas(0.400).

#	Problem	Verdict	Language	Run Time	Submission Date
20343513	10887 Concatenation of Languages	Accepted	PYTH3	0.400	2017-11-14 09:58:29

Como se puede observar, el código fue aceptados(es decir, pasó todas las pruebas realizadas)

Uno de los requisitos de la web era que el tiempo de ejecución de tu código fuera inferior a 3.00 segundos.

Total Submissions 10096		Users that tried it 1483		Users that solved it 988	
Ranking	Submission	Run Time	Language	Submission Date	
86	20343513	0.400	PYTH3	2017-11-14 09:58:29	

En la imagen superior, se puede ver nuestra posición final en el ranking (86 de 988), así como el tiempo de ejecución promedio (0.400), el lenguaje seleccionado (PYTH3) y la fecha en la que se subió el programa al sistema (2017-11-14 09:58:29).

Conclusiones

Para la realización de este proyecto decidimos programar usando python3 debido a su facilidad a la hora de escribir el código y la sencillez del mismo. Tras comparar nuestros resultados con los del top del IACM-ICPC, podemos concluir que python, no es el lenguaje más adecuado cuando se quiere optimizar al máximo el tiempo de ejecución de un programa para participar en competiciones de este estilo en las que lo importante es la velocidad, y se compara solo eso y no se hace diferencia por categorías de los diferentes lenguajes. Aunque sencillo, nuestro código es interpretado, y este proceso no puede competir con lenguajes compilados mucho más rápidos a la hora de ejecutar como C o C++, como podemos ver en la siguiente imagen:

		Top 20			
Ranking	Submission	User	Run Time	Language	Submission Date
1	16655956	M4G!C!4N	0.003	ANSI C	2016-01-01 08:35:0
2	8035154	сри	0.008	ANSI C	2010-06-14 10:57:4
3	6613387	Arturo Aguirre Escobar	0.010	C++	2008-08-26 14:05:0
4	11288873	kenethyph	0.012	ANSI C	2013-02-14 15:28:5
5	19857925	黄汉升	0.020	C++11	2017-08-15 05:57:2
6	3814677	Ivan Krasilnikov	0.025	ANSI C	2005-08-08 08:54:1
7	19961978	Zubayet Zaman Zico	0.030	C++11	2017-09-05 10:01:1
8	3819445	Constantin Jucovschi	0.061	C++	2005-08-09 14:34:0
9	3823118	protik mohammad hossain	0.061	C++	2005-08-10 14:57:2
10	5161167	Willebaldo G	0.064	ANSI C	2006-11-26 05:50:0
11	17831058	赵子龙	0.070	C++11	2016-08-13 04:36:5
12	17827758	Jim	0.080	C++	2016-08-12 11:40:2
13	3826386	tumkoepfe 2003	0.082	C++	2005-08-11 14:40:4
14	15934838	Bogdan Ciobanu	0.089	C++	2015-08-14 13:32:3
15	17378546	Sam	0.090	C++11	2016-05-18 07:20:5
16	17961413	bnuvjudge4	0.090	C++	2016-09-06 12:43:4
17	16151171	Tom	0.093	C++11	2015-09-23 13:21:2
18	16151328	关云长	0.106	C++11	2015-09-23 13:47:1
19	3836541	Marcin Wielgus	0.110	C++	2005-08-14 23:45:0
20	4090933	Yi-kwon Hwang - Just for fun :)	0.110	C++	2005-11-01 05:42:2

Referencias

UVa Online Judge url: https://uva.onlinejudge.org/

IACM-ICPC url: https://icpc.baylor.edu/
Python3 url: https://www.python.org/

Github url: https://github.com/

Cloud 9 url (entorno de desarrollo usado): https://c9.io