Clustering: Algoritmos

Clasificación no supervisada

Javier G. Sogo

10 de marzo de 2015

- Introducción
- 2 Algoritmo: K-medias
- 3 Algoritmo: BFR
- 4 Algoritmo: CURE

Introducción

Acotar el problema

Complejidad del algoritmo

- Implementación näive de clustering jerárquico: $O(N^3)$
- ullet Una implementación mejor puede llegar a $O(N^2 log N)$

Tamaño del problema

- ¿Podemos cargar todos los datos en memoria?
- ¿Es crítico el tiempo de ejecución del algoritmo?

Introducción

Medida de distancia

- Depende del número de dimensiones d y de los valores que puedan tomar. Ejs.:
 - Documento como conjunto de palabras -> distancia Jaccard
 - Documento como punto $\mathbf{x} = (x_1, \dots, x_d)$ donde $x_i = 1$ si el documento contiene la palabra $i \rightarrow$ distancia **Euclidea**
 - Documento como vector en un espacio de palabras -> distancia coseno.
- Cuando hay muchas dimensiones *d* todos los puntos están cerca.
- Atención a la escala de las variables (standarizar o distancia Mahalanobis).

Cuándo detener el algoritmo

Clúster jerárquico

- Elegir un número k de clases a priori y detener el algoritmo cuando se alcance ese número.
- Medir la cohesión del cluster:
- Diámetro: máxima distancia entre dos puntos del cluster.
- Radio: máxima distancia de un punto al centroide.
- Basarse en la densidad: número de puntos por unidad de volumen (utilizar radio o diámetro).

Clúster particional

• Criterio de **convergencia**: detener el algoritmos cuando los puntos no se muevan entre clusters y los centroides no cambien.

Introducción

A tener en cuenta

- Cómo tratar attributos no numéricos.
- Cómo tratar valores no disponibles: imputación.

 $Algoritmo\colon\thinspace K\text{-medias}$

K-medias

Inicialización

- Seleccionar una medida de distancia.
- Seleccionar un método para medir la distancia entre clusters (simple, completo, media,...).
- Seleccionar el número de clusters k
- Inicializar los clusters escogiendo un punto para cada uno de ellos.

K-medias

Algoritmo paso a paso

- Para cada punto, calcular la distancia a los clusters y asignarlo a aquél más próximo.
- Una vez que todos los puntos han sido asignados, actualizar los centroides de los k clusters.
- Reasignar todos los puntos al cluster más cercano.
- Repetir los pasos 2 y 3 hasta lograr la convergencia (los puntos no cambian de cluster y los centroides no se mueven).

K-medias: paso a paso

Iteracion #1

K-medias: paso a paso

Iteracion #2

K-medias: paso a paso

Iteracion #3

Cómo seleccionar k

- Sabemos a priori en cuántas clases se dividen los datos.
- Probar diferentes valores de k registrando el cambio de la distancia media a los centroides a medida que se modifica k.

k=2

• Pocos centroides, las distancias son grandes.

k = 3

• Tiene buena pinta, los clusters parecen compactos.

k = 4

ullet Demasiados clusters, hemos mejorado poco con respecto a k=2

Criterio para seleccionar kullet La distancia media a los centroides se estabiliza a medida que aumenta k. Best value of kAverage distance to centroid

K-medias: inicialización de los clusters

Criterio para seleccionar los k puntos iniciales

- Opción 1: Muestreo
 - Ejecutar un clustering jerárquico sobre una muestra de los datos para obtener k clusters.
 - 2 Seleccionar un punto de cada cluster (ej. el más próximo al centroide)
 - (La muestra entra en memoria)
- Opción 2: Dispersión
 - Elegir un punto aleatoriamente.
 - ② Elegir el siguiente punto de tal forma que la mínima distancia a los puntos ya seleccionados sea la máxima posible.
 - 3 Repetir el proceso hasta tener k puntos.

K-medias: complejidad

Complejidad

- En cada iteración examinamos cada punto una vez para encontrar el centroide más próximo.
- Cada iteración es O(kN) con N puntos y k clusters.
- ... pero el número de iteraciones hasta converger puede ser muy elevado.

Algoritmo: BFR

BFR

Algoritmo Bradley-Fayyad-Reina (BFR)

- Es una variante de k-medias para conjuntos de datos muy grandes.
- No es un algoritmo de cluster probabilista puesto que asigna los puntos a un único cluster, aunque puede utilizarse su salida de forma probabilista.
- Asume que cada cluster se distribuye según una normal (gaussian) en torno a un centroide en un espacio euclideo.

Probabilidad de encontrar un punto en un cluster a cierta distancia (según cada dimensión) de un centroide.

BFR: Pros and cons

Limitaciones

- Asume sólo una distribución normal.
- Las distribuciones están alineadas según los ejes definidos por las dimensiones.

Ventajas

• La mayoría de los puntos se resumen estadísticamente (una única lectura de los datos).

BFR: Tipos de puntos

Tipos de puntos

- A medida que se leen los datos estos son incorporados a un conjunto:
 - Discard set (DS): puntos que están suficientemente cerca de un centroide y se incorporar a él.
 - Compression set (CS): grupos de puntos que están próximos entre sí, pero no están cerca de ningún centroide. También se resumen en términos estadísticos.
 - Retained set (RS): puntos aislados a la espera de ser asignados a un compression set.

BFR: Cluster

Cómo resumir un conjunto de puntos

Cada cluster (discard set) se resume utilizando las siguientes variables:

- Número de puntos, N
- Vector SUM cuya i-ésima componente se corresponde con la suma de la i-ésima componente de cada punto.
- Vector SUMSQ, su i-ésima componente es la suma de los cuadrados de la i-ésima componente de cada punto.

A medida que nuevos puntos son incorporados al cluster, se actualizan estos valores.

Estadísticos

Centroide: puede calcular como

$$c_i = \frac{SUM_i}{N}$$
 $i = 1, \ldots, d$

Varianza:

$$var_{i} = \frac{SUMSQ_{i}}{N} - \frac{SUM_{i}}{N}^{2}$$
$$\sigma_{i} = \sqrt{var_{i}}$$

BFR: Paso a paso

Para cada subset de datos

- Los puntos que están "suficientemente cerca" de un centroide:
 - Se añaden al cluster correspondiente.
 - Se descartan.
- El resto de puntos son tratados por un algoritmo en memoria:
 - Los clusters irán al compression set (resumido también por sus estadísticos)
 - Los outliers se mantienen en el retained set (RS)

Última iteración

- Los puntos del retained set son asignados al cluster más cercano.
- Considerar la unión de varios compressed sets.

BFR: Cómo evaluar el "suficientemente cerca".

Mahalanobis distance

- Si el cluster C tiene como centroide (c_1, \ldots, c_d) y desviación estándar $(\sigma_i, \ldots, \sigma_d)$
- Estamos considerando el punto $P = (x_1, \dots, x_d)$
- La distancia normalizada según la dimensión i será:

$$d_i = \frac{x_i - c_i}{\sigma_i}$$

Distancia Mahalanobis:

$$MD = \sqrt{\sum_{i=1}^{d} y_i^2}$$

troducción Algoritmo: K-medias **Algoritmo: BFR** Algoritmo: CURE

BFR: Cómo evaluar el "suficientemente cerca".

Criterio de aceptación Mahalanobis

• Un punto que esté a una desviación estándar del centroide en cada dimensión tendrá $MD=\sqrt{d}$.

- Según la distribución normal:
 - 68% de los puntos tienen $MD \le \sqrt{d}$
 - 95% de los puntos tienen $MD \le 2\sqrt{d}$
 - 99% de los puntos tienen $MD \le 3\sqrt{d}$

Aceptar en un cluster todos los puntos cuya MD sera menor que un umbral seleccionado, p.ej. $3\sqrt{d}$

BFR: Cómo decidir si dos CS deben ser combinados

Combinación de dos clusters del CS

- Calcular la varianza del cluster combinado: ¡muy rápido puesto que tenemos las variables N, SUM y SUMSQ de cada uno!
- Combinarlos si la varianza del cluster combinado está por debajo de un límite.

Algoritmo: CURE

CURE

Algoritmo CURE (Clustering Using REpresentatives)

- Asume distancia euclidea.
- Los clusters pueden adoptar cualquier forma.
- Utiliza un conjunto de puntos representativos de cada cluster.

CURE: Paso a paso

Primera pasada (de dos)

- Obtener una muestra aleatoria de los datos que entre en memoria.
- Utilizar un algoritmo de cluster jerárquico para generar los clusters iniciales
- Escoger los puntos representativos:
 - ullet Dentro de cada cluster escoger r (ej. 4) puntos representativos tan dispersos como sea posible.
 - Mover cada punto un porcentaje (ej. 20%) hacia el centroide del cluster.

CURE: Paso a paso

Segunda pasada (de dos)

- Volver a evaluar cada punto situándolo en el cluster más cercano:
 - Distancia: cluster que tenga un punto representativo más próximo.
- Et voilá.

¡Muchas gracias!

@jgsogo

https://github.com/jgsogo/talks