DM 15

Exercice 1 (Formule de Leibniz). Soit I un intervalle de \mathbb{R} et f une fonction de classe $\mathcal{C}^{\infty}(I)$. On note $f^{(n)}$ la dérivée n-ième de f.

Soient f, g deux fonctions de classe $\mathcal{C}^{\infty}(I)$, montrer que pour tout $n \in \mathbb{N}$, pour tout $x \in I$:

$$(fg)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n-k)}(x)$$

(La preuve se fait par récurrence et suit les mêmes étapes que la preuve du binôme de Newton)

Correction 1. On note P(n) la propriété : " $\forall x \in I, (fg)^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(x) g^{(n-k)}(x)$ "

Initialisation P(0) est vraie : en effet on a d'une part $(fg)^{(0)}(x) = (fg)(x) = f(x)g(x)$ et d'autre part $\sum_{k=0}^{0} {0 \choose k} f^{(k)}(x) g^{(0-k)}(x) = f^{(0)}(x) g^{(0)}(x) = f(x)g(x)$

Hérédité Supposons que la propriété P(n) est vraie pour un certain entier $n \in \mathbb{N}$. On a $(fg)^{(n+1)}(x) = (fg)^{(n)'}(x)$ et donc par hypothèse de récurrence :

$$(fg)^{(n+1)}(x) = \frac{d}{dx} \left(\sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n-k)}(x) \right)$$

$$= \sum_{k=0}^{n} \binom{n}{k} \frac{d}{dx} \left(f^{(k)}(x) g^{(n-k)}(x) \right)$$

$$= \sum_{k=0}^{n} \binom{n}{k} \left(f^{(k+1)}(x) g^{(n-k)}(x) + f^{(k)}(x) g^{(n-k+1)}(x) \right)$$

$$= \sum_{k=0}^{n} \binom{n}{k} \left(f^{(k+1)}(x) g^{(n-k)}(x) \right) + \sum_{k=0}^{n} \binom{n}{k} \left(f^{(k)}(x) g^{(n-k+1)}(x) \right)$$

$$= \sum_{k=1}^{n+1} \binom{n}{k-1} f^{(k)}(x) g^{(n-(k-1))}(x) + \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n-k+1)}(x)$$

On a d'une part :

$$\begin{split} \sum_{k=1}^{n+1} \binom{n}{k-1} f^{(k)}(x) g^{(n-(k-1))}(x) &= \binom{n}{n+1-1} f^{(n+1)}(x) g^{(n-(n+1-1))}(x) + \sum_{k=1}^{n} \binom{n}{k-1} f^{(k)}(x) g^{(n-(k-1))}(x) \\ &= f^{(n+1)}(x) g^{(0)}(x) + \sum_{k=1}^{n} \binom{n}{k-1} f^{(k)}(x) g^{(n+1-k))}(x) \end{split}$$

et d'autre part :

$$\sum_{k=0}^{n} \binom{n}{k} \left(f^{(k)}(x) g^{(n-k+1)}(x) \right) = \sum_{k=1}^{n} \binom{n}{k} \left(f^{(k)}(x) g^{(n+1-k)}(x) \right) + \binom{n}{0} \left(f^{(0)}(x) g^{(n+1-0)}(x) \right)$$

$$= \sum_{k=1}^{n} \binom{n}{k} \left(f^{(k)}(x) g^{(n+1-k)}(x) \right) + f(x) g^{(n+1)}(x)$$

Ainsi:

$$(fg)^{(n+1)}(x) = f^{(n+1)}(x)g^{(0)}(x) + \sum_{k=1}^{n} \left(\binom{n}{k-1} f^{(k)}(x)g^{(n+1-k)}(x) + \binom{n}{k} f^{(k)}(x)g^{(n+1-k)}(x) \right) + f(x)g^{(n+1)}(x)$$

$$= f^{(n+1)}(x)g^{(0)}(x) + \sum_{k=1}^{n} \left(\binom{n}{k-1} + \binom{n}{k} \right) f^{(k)}(x)g^{(n+1-k)}(x) + f(x)g^{(n+1)}(x)$$

$$= f^{(n+1)}(x)g^{(0)}(x) + \sum_{k=1}^{n} \left(\binom{n+1}{k} \right) f^{(k)}(x)g^{(n+1-k)}(x) + f(x)g^{(n+1)}(x)$$

où l'on a utilisé la relation de Pascal : $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$ Finalement

$$(fg)^{(n+1)}(x) = \binom{n+1}{n+1} f^{(n+1)}(x) g^{(0)}(x) + \sum_{k=1}^{n} \left(\binom{n+1}{k} \right) f^{(k)}(x) g^{(n+1-k)}(x) + \binom{n+1}{0} f(x) g^{(n+1)}(x)$$

$$= \sum_{k=0}^{n+1} \left(\binom{n+1}{k} \right) f^{(k)}(x) g^{(n+1-k)}(x)$$

La propriété est donc héréditaire.

Conclusion Pour tout $n \in \mathbb{N}$ la propriété P(n) est vérifiée.

Exercice 2. Déduire de l'exercice précédent la dérivée néme de $f(x) = x^n \ln(x)$

Correction 2. On note $u(x)=x^n$ et $v(x)=\ln(x)$. On a d'après le cours sur les polynômes $u^{(k)}(x)=\frac{n!}{(n-k)!}x^{n-k}$ $v'(x)=\frac{1}{x}=x^{-1}$ Donc pour tout k>0 $v^{(k)}(x)=v'^{(k-1)}(x)=(-1)^{k-1}(k-1)!x^{-k}$

Donc d'après la formule de Liebniz :

$$f^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} u^{(k)}(x) v^{(n-k)}(x)$$

$$= \sum_{k=0}^{n-1} \binom{n}{k} u^{(k)}(x) v^{(n-k)}(x) + \binom{n}{n} u^{(n)}(x) v^{(n-n)}(x)$$

$$= \sum_{k=0}^{n-1} \binom{n}{k} \frac{n!}{(n-k)!} x^{n-k} (-1)^{n-k-1} (n-k-1)! x^{-(n-k)} + n! \ln(x)$$

$$= \sum_{k=0}^{n-1} \binom{n}{k} \frac{n!}{(n-k)!} (-1)^{n-k-1} (n-k-1)! + n! \ln(x)$$

$$= \sum_{k=0}^{n-1} \binom{n}{k} \frac{n!}{(n-k)!} (-1)^{n-k-1} (n-k-1)! + n! \ln(x)$$

Exercice 3. Soit $P_n(X) = (X^2 - 1)^n$ et $L_n = P_n^{(n)}$ la dérivée n-éme de P_n .

- 1. Calculer le degré de L_n .
- 2. A l'aide de la formule de Leibniz, calculer $L_n(1)$.