Hausaufgabe 2

Aufgabe 1

a)

Es sei f eine gegebene Funktion. Da $\forall n \in \mathbb{N}_0 : 1 \cdot f(n) = f(n)$ existiert eine konstante $0 < c = 1 < \infty$ und ein $n_0 = 0$ sodass gilt:

$$\forall n \in \mathbb{N}_0, n \ge n_0 : f(n) \le c \cdot f(n)$$

Damit haben wir nach Definition $f \in \mathcal{O}(f) \iff f \sqsubseteq f$. Also ist \sqsubseteq reflexiv.

Ferner seien nun weiter Funktionen g, h gegeben. Es gilt nach Definition:

$$(f \sqsubseteq g) \land (g \sqsubseteq h) \implies (f \in \mathcal{O}(g)) \land (g \in \mathcal{O}(h))$$

$$\implies (\exists c, n_0 : \forall n \ge n_0 : f(n) \le c \cdot g(n)) \land (\exists c', n'_0 : \forall n \ge n_0 : g(n) \le c \cdot h(n))$$

Sei nun $n' := \max\{n_0, n'_0\}$. Dann folgt weiter:

$$\exists c, c' : \forall n \ge n' : f(n) \le c \cdot g(n) \quad \land \quad g(n) \le c' \cdot h(n)$$

$$\implies \exists c, c' : \forall n \ge n' : f(n) \le c \cdot g(n) \le c(c' \cdot h(n))$$

$$\implies \exists c, c' : \forall n \ge n' : f(n) \le (c \cdot c') \cdot h(n))$$

$$\implies f \in \mathcal{O}(h) \iff f \sqsubseteq h$$

Wir haben also gezeigt, dass für beliebige Funktionen f, g, h gilt:

$$f \sqsubseteq g \land g \sqsubseteq h \implies f \sqsubseteq h$$

Damit ist ⊑ reflexiv und transitiv, also eine Quasiordnung

b)

Es gilt:

$$0 \sqsubseteq 4 \sqsubseteq 2^{9000} \sqsubseteq \log(n) \sqsubseteq n \cdot \log(n) \sqsubseteq n \cdot \sqrt{n} \sqsubseteq n^2 \sqsubseteq \sum_{i=0}^n \frac{14i^2}{1+i} \sqsubseteq n^2 \cdot \log(n) \sqsubseteq \frac{n^3}{2} \sqsubseteq n^3 \sqsubseteq 2^n \sqsubseteq n! \sqsubseteq n^n$$

Aufgabe 2

TODO

Aufgabe 3

a)

Es sei eine Funktion g(n) gegeben. Wir notieren im Sinne der Lesbarkeit

$$o_1 := o(g(n))$$
 $\mathcal{O}_1 := \mathcal{O}(g(n))$ $\Theta_1 := \Theta(g(n))$

Behauptung: Es gilt $o_1 = \mathcal{O}_1 \setminus \Theta_1$ (1) Beweis:

$$o_{1} := \{ f \mid \forall c > 0 : \exists n_{0} : \forall n \geq n_{0} : 0 \leq f(n) < c \cdot g(n) \}$$

$$= \{ f \mid \forall c > 0 : \exists n_{0} : \forall n \geq n_{0} : 0 \leq f(n) < cg(n) \}$$

$$\land \neg (\exists c_{1}, c_{2} > 0, n_{0} : \forall n \geq n_{0} : c_{1}f(n) \leq g(n) \leq c_{2}f(n)) \}$$

$$= \mathcal{O}_{1} \setminus \Theta_{1}$$

Nun folgt direkt:

$$o_1 \cap \Theta_1 \stackrel{\scriptscriptstyle (1)}{=} (\mathcal{O}_1 \setminus \Theta_1) \cap \Theta_1 = \varnothing$$

b) Wir geben ein Gegenbeispiel. Es seien

$$g(n) = 0 \qquad f(n) = n \qquad h(n) = n^2$$

Damit gilt $f(n) \in \Omega(g(n))$, da für c = 1 > 0 und $n_0 = 1$ stets $c \cdot g(n) = 0 \le f(n)$ gilt. Weiter ist auch $f(n) \in \mathcal{O}(h(n))$, da für c = 1 und $n_0 = 1$ stets $f(n) \le c \cdot h(n)$ gilt.

Wir nehmen nun an, es gelte $g(n) \in \Theta(h(n))$. Also auch $g(n) \in \Omega(h(n))$. Daraus folgt, dass eine Konstante c > 0 existiert, sodass ab einem beliebigem Punkt stets $c \cdot h(n) = cn^2 \le 0 = g(n)$ gilt. Dies kann offensichtlich nur für c = 0 gelten, jedoch muss c > 0 erfüllt sein. Damit haben wir einen Widerspruch. Also kann die Aussage nicht stimmen.

Aufgabe 4