Úkoly:

Úkol 1:

Název souboru	Délka (s)	Počet vzorků	Nahrávky byly pořízeny pomocí softwaru
q1	0.673	10774	Audacity. Klíčová slova jsou "agency" (q1)
q2	0.940	15046	a "screwdriver" (q2).
sa1	5.585	89360	Nahrávky dovoluji použít pro výzkum a vývoj v rámci řecové skupiny na FIT BUT Speech@FIT, a také pro tvorbu volně dostupné databáze "Czenglish TIMIT".
sa2	5.015	80240	
si753	8.375	134000	
si1383	7.685	122960	
si2013	5.195	83120	
sx123	6.380	102080	
sx213	5.375	86000	
sx303	5.195	83120	
sx33	4.430	70880	
sx393	4.745	85920	

Úkol 2: Querries jsou již obsaženy v tabulce v úkolu číslo 1 (první dva záznamy).

Úkol 3:

Úkol 4:

Parametry jsem spočítal pomocí násobení matice A (lineární banka filtrů) s maticí se spektogramem P. Matice A má rozměry 16x256 a je naplněna následnovně:

Úkol 5:

Výpočet skóre jsem realizoval pomocí Pearsonových korelačních koeficientů.

Korelační koeficienty jsou počítány pro začátek slova query, zvolil jsem prvních 10 parametrů jako referenčních, které "projíždějí" kolem matice parametrů věty F. Referenční parametry se vždy přiloží k matici F, jsou spočítány korelační koeficienty pro úsek 10 parametrů mezi Q a F, výsledek se zprůměruje a je uložen do výsledného pole výsledků. Poté se referenční parametry přiloží k matici o jeden index dále a výpočet je opakován. Na další stránce naleznete kód pro výpočet.

```
result1 = []
 index = 0
⊕# každý index obsahuje parametry věty, kde rozdíl mezi parametry je asi 1ms
⇒while index <= t_data.size - 1:
    # sem se ukládají dočasné hodnoty, které se následně průměrují
     temp_res = []
    # j značí index s parametry v guerry, každá část věty se
        TMP_MATRIX_F = F[:, [index]]
        TMP_MATRIX_Q1 = Q1[:, [j]]
        AF = np.squeeze(np.asarray(TMP_MATRIX_F))
        AQ1 = np.squeeze(np.asarray(TMP_MATRIX_Q1))
         r, p_value = stats.pearsonr(AQ1, AF)
         # budeme brát v potaz pouze "statisticaly significant" hodnoty
         r = abs(r)
         temp_res.append(r)
         index += 1
         if index + 1 >= t_data.size:
     tmp = np.mean(temp_res)
     result1.append(tmp)
```

Úkol 6:

Úkol 7:

Zda query na daném místě je nebo není bych určil tak, že určím práh 0.9 pro query 1 a práh 0.6 pro query 2, přiložím celé Q, tentokrát se všemi parametry do místa, kde je práh přesažen a vypočítal bych nové koeficienty korelace na celém úseku. Podle výsledků bych určil nový práh, který by již rozhodl, zda se v daném místě slovo nachází, či nikoliv. V mém hodnocení jsem testoval pouze prvních 10 parametrů Q, při přiložení všech parametrů (cca 60-70), by byl výsledek mnohem přesnější.

Závěr

Můj pokus o detektor hodnotím jako velmi cennou zkušenost, i když výsledek není zcela uspokojivý. Výkyvy mezi query 1 a query 2 jsou znepokojivě velké, ačkoliv v úsecích, kde je klid, se hodnoty vcelku shodují. Je zcela možné, že se jedná o chybu ve výpočtu, nebo jsou výchylky dané jinou intonací a intenzitou hlasu při nahrávání každé query zvlášť. Celkově byl však projekt velmi přínosný a z mého pohledu i velmi dobře promyšlený.