Modeling Areal Data: Intro

Spatial Smoothing

Areal Data Models: Disease Mapping

Areal	data	with	counts	is	often	associated	with	disease	mapping,	where	there	are	two	quantities	for	each
areal 1	ınit:															

One way to think about the expected counts is

However note that \bar{r} , and hence, E_i is a not fixed, but is a function of the data.

An alternative is to use some standard rate for a given age group, such that $E_i = \sum_j n_{ij} r_j$.

Traditional Models

Often counts are assumed to follow the Poisson model where

Then the MLE of η_i is $\frac{Y_i}{E_i}$.

Poisson-Gamma Model

~		0 11 .	
Consider	the	following	framework

For the Poisson sampling model, the gamma prior is conjugate. This means that the posterior distribution $p(\eta_i|y_i)$ is also a gamma distribution, and in particular

The mean of this distribution is

$$E(\eta_{i}|\mathbf{y}) = E(\eta_{i}|y_{i}) = \frac{y_{i} + a}{E_{i} + b} = \frac{y_{i} + \frac{\mu^{2}}{\sigma^{2}}}{E_{i} + \frac{\mu}{\sigma^{2}}}$$

$$= \frac{E_{i}(\frac{y_{i}}{E_{i}})}{E_{i} + \frac{\mu}{\sigma^{2}}} + \frac{(\frac{\mu}{\sigma^{2}})\mu}{E_{i} + \frac{\mu}{\sigma^{2}}}$$

$$= w_{i}SMR_{i} + (1 - w_{i})\mu,$$

The model can be written as

$$Y_i | \psi_i \sim Poisson(E_i \exp(\psi_i))$$

 $\psi_i = \boldsymbol{x_i^T} \boldsymbol{\beta} + \theta_i + \phi_i$

Brook's Lemma and Markov Random Fields

To consider areal data from a model-based perspective, it is necessary to obtain the joint distribution of the responses

$$p(y_1,\ldots,y_n).$$

From the joint distribution, the full conditional distribution

$$p(y_i|y_j, j \neq i),$$

is uniquely determined.

When the areal data set is large, working with the full conditional distributions can be preferred to the full joint distribution.

More specifically, the response Y_i should only directly depend on the neighbors,

Markov Random Field

											0 . 1	44 . 44 . 4	
'T'he	idea.	of using	the	local	specification	for	determining	the	σl∩hal	form	of the	distributio	m is

An essential element of a MRF is a *clique*, which is a group of units where each unit is a neighbor of all units in the clique

A potential function is a function that is exchangeable in the arguments. With continuous data a common potential is $(Y_i - Y_j)^2$ if $i \sim j$ (i is a neighbor of j).

Gibbs Distribution

A joint distribution $p(y_1, \ldots, y_n)$ is a Gibbs distribution if it is a function of Y_i only through the potential on cliques.

Mathematically, this can be expressed as:

$$p(y_1, \dots, y_n) \propto \exp \left(\gamma \sum_k \sum_{\alpha \in \mathcal{M}_k} \phi^{(k)}(y_{\alpha_1}, y_{\alpha_2}, \dots, y_{\alpha_k}) \right),$$

where $\phi^{(k)}$ is a potential of order k, \mathcal{M}_k is the collection of all subsets of size k = 1, 2, ... (typically restricted to 2 in spatial settings), α indexes the set in \mathcal{M}_k .

Hammers	ley-C	lifford	Theorem
---------	-------	---------	---------

The Hammersley-Clifford Theorem demonstrates that if we have a MRF that defines a unique joint distribution,

The converse was later proved, showing that a MRF could be sampled from the associated Gibbs distribution.

Model Specification

With continuous data, a common choice for the joint distribution is the pairwise difference

$$p(y_1, \dots, y_n) \propto \exp\left(-\frac{1}{2\tau^2} \sum_{i,j} (y_i - y_j)^2 I(i \sim j)\right)$$

Then the full conditional distributions