Лекции по предмету **Алгоритмы 2**

Группа лектория ФКН ПМИ 2016-2017 Данила Кутенин

2016/2017 учебный год

Содержание

1	Программа. Орг моменты					
2	Лен	Лекция 01 от 02.09.2016. Матроиды				
	2.1	Матроид	2			
	2.2	Приводимость одной базы к другой	4			
	2.3	Жадный алгоритм на матроиде	4			
3	Лекция 2 от 06.09.2016. Быстрое преобразование Фурье					
	3.1	Применение преобразования Фурье	6			
	3.2	Алгоритм быстрого преобразования Фурье	7			
4	Лекция 3 от 16.09.2016. Алгоритм Карацубы, алгоритм Штрассена					
	4.1	Перемножение 2 длинных чисел с помощью FFT	9			
	4.2	Алгоритм Карацубы	9			
	4.3	Перемножение матриц. Алгоритм Штрассена	10			
	4.4	Эквивалентность асимптотик некоторых алгоритмов	12			
5	Лекция 4 от 20.09.2016. Простейшие теоретико числовые алгоритмы					
	5.1	Алгоритм Евклида	13			
	5.2	Расширенный алгоритм Евклида	13			
	5.3	Алгоритм быстрого возведения в степень по модулю	14			
	5.4	Китайская теорема об остатках и её вычисление	15			
	5.5	Решето Эратосфена	15			
	5.6	Решето Эйлера	16			
	5.7	Наивная факторизация числа за $O(\sqrt{n})$	17			

Программа. Орг моменты

Внимание: программа дополняется после каждой лекции.

- 1. Матроиды.
- 2. Быстрое преобразование Фурье.
- 3. Алгоритм Карацубы, алгоритм Штрассена.
- 4. Теоретико числовые алгоритмы.

Формула такая же, как и в прошлом году:

$$0.3 \cdot O_{\text{контесты}} + 0.25 \cdot O_{\text{семинарские листки}} + 0.15 \cdot O_{\text{кр}} + 0.3 \cdot O_{\text{экзамен}} + Б.$$

Округление вверх.

Лекция 01 от 02.09.2016. Матроиды

Пока чуть отдаленно от матроидов.

У нас есть конечное множество A, которое в будущем мы будем называть *носителем*. Пусть $F \subset 2^A$, и F мы будем называть *допустимыми* множествами.

Также у нас есть весовая функция $c(w) \ \forall w \in A$. Для каждого $B \in F$ мы определим *стоимость* множетсва, как $\sum_{w \in B} c(w)$. Наша задача заключается в том, чтобы найти максимальный вес из всех допустимых множеств.

Пример 1 (Задача о рюкзаке). У каждого предмета есть вес и стоимость. Мы хотим унести как можно больше вещей максимальной стоимости с весом не более k.

Вес не более k нам задает ограничение, то есть множество $F.\ A$ максимизация унесенной суммы нам и задаёт задачу.

Матроид

Множество F теперь будет всегда обозначаться как I.

Матроидом называется множество подмножеств множества A таких, что выполняются следующие 3 свойства:

- 1. $\varnothing \in I$
- **2.** $B \in I \Rightarrow \forall D \subset B \Rightarrow D \in I$
- **3.** Если $B,D\in I$ и $|B|<|D|\Rightarrow \exists w\in D\setminus B$ такой, что $B\cup w\in I$

Дальнейшее обозначение матроидов — $\langle A, I \rangle$.

Определение 1. Базой матроида называют множество всех таких элементов $B \in I$, что **не** существует B', что $B \subset B'$, |B'| > |B| и $B' \in I$. Обозначение \mathfrak{B} .

Свойство 1. Все элементы из базы имеют одну и ту же мощность. И все элементы из I, имеющие эту мощность, будут в базе.

Доказательство очевидно из определения.

Пример 2 (Универсальный матроид). Это все подмножества B множества A такие, что $|B| \leq k$ при $k \geq 0$. Все свойства проверяются непосредственно.

База такого матроида — все множества размера k.

Пример 3 (Цветной матроид). У элементов множества A имеются цвета. Тогда $B \in I$, если все элементы множества B имеют разные цвета. Свойства проверяются непосредственно, в 3 свойстве надо воспользоваться принципом Дирихле.

База такого матроида — множества, где присутствуют все цвета.

Пример 4 (Графовый матроид на n вершинах). $\langle E, I \rangle$. Множеество ребер $T \in I$, если T не содержит циклов.

Докажем 3 свойство:

Доказательство. Пусть у нас есть T_1 и T_2 такие, что $|T_1| < |T_2|$. Разобьём граф, построенный на T_1 на компоненты связности. Так как ребер ровно $|T_1|$ на n вершинах, то компонент связности будет $n - |T_1|$. В другом случае компонент связности будет $n - |T_2| < n - |T_1|$. То есть во 2-ом графе будет меньше компонент связности, а значит по принципу Дирихле найдётся ребро, которое соединяет 2 компоненты связности в 1-ом графе.

r	`						T.7	
-	<i>•</i> TOT :	а проритм	TEM-TO	отпаленно	напоминает	алгори	тм Краскала	4
$\overline{}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JULI O DELLINI	ICM IO	отдажити	Handminiaci	COLL OPEL	IM IXPOOLIONIC	₩.

Базой в таком матроиде являются все остовные деревья.

Пример 5 (Матричный матроид). Носителем здесь будут столбцы любой фиксированной матрицы. I — множество всех подмножеств из линейно независимых столбцов. Все свойства выводятся из линейной алгебры (3-е из метода Гаусса, если быть точным).

Пример 6 (Трансверсальный матроид). $G = \langle X, Y, E \rangle - \partial$ вудольный граф c долями X, Y. Матроид будет $\langle X, I \rangle$ такой, что $B \in I$, если существует паросочетание такое, что множество левых концов этого паросочетания совпадает c B.

Докажем 3 свойство:

Доказательство. Пусть есть 2 паросочетания на $|B_1|$ и $|B_2|$ ($|B_1| < |B_2|$) вершин левой доли. Тогда рассмотрим симметрическую разность этих паросочетаний. Так как во 2-ом паросочетании ребер больше, то существует чередующаяся цепь, а значит при замене ребер на этой чередующейся цепи с новой добавленной вершиной (а она найдётся по принципу Дирихле) получим паросочетание с ещё 1 добавленной вершиной.

Базой в таком матроиде будут вершины левой доли максимального паросочетания.

Приводимость одной базы к другой

Лемма 1. Пусть $B, D \in \mathfrak{B}$. Тогда существует последовательность $B = B_0, B_1, \ldots, B_k = D$ такие, что $|B_i \triangle B_{i+1}| = 2$, где \triangle обозначает симметрическую разность множеств.

Доказательство. Будем действовать по шагам. Если текущее $B_i \neq D$, тогда возьмём произвольный элемент w из $B_i \setminus D$. Тогда по 2-ому пункту определения матроида следует, что $B_i \setminus w \in I$. Так как $|B_i \setminus w| < |D|$, то существует $u \in D$ такой, что $(B_i \setminus w) \cup u \in I$. И теперь $B_{i+1} \leftarrow (B_i \setminus w) \cup u$. Мы сократили количество несовпадающих элементов с D на 1, симметрическая разность B_i и B_{i+1} состоит из 2 элементов — w и u.

Наконец, мы подошли к основной теореме лекции — жадный алгоритм или теорема Радо-Эдмондса.

Жадный алгоритм на матроиде

Доказательство будет в несколько этапов.

Для начала определимся с обозначениями. $M = \langle A, I \rangle, n = |A|, w_i$ — элементы множества A. Решаем обычную задачу на максимизацию необходимого множества.

Теорема 1 (Жадный алгоритм. Теорема Радо-Эдмондса). Если отсортировать все элементы A по невозрастанию стоимостей весовой функции: $c_1 \geqslant c_2 \geqslant \ldots \geqslant c_n$, то такой алгоритм решает исходную задачу о нахождении самого дорогого подмножества:

Algorithm 1 Жадный алгоритм на матроиде.

```
B \leftarrow \varnothing for c_i do if B \cup w_i \in I then B \leftarrow B \cup w_i
```

Доказательство. Теперь поймём, что наш алгоритм в итоге получит какой-то элемент из базы. Пусть B_i — множество, которое мы получим после i шагов цикла нашего алгоритма. Действительно, если это не так, что существует множество из базы, которое его накрывает: формально $\exists D \in I : B_n \subset D$ и $|B_n| < |D|$, так как можно взять любой элемент из базы и добавлять в B_n по 1 элементу из пункта 3 определения матроида. Тогда у нас существует элемент w_i , который мы не взяли нашим алгоритмом, но $B_{i-1} \cup w_i \in I$, так как $B_{i-1} \cup w_i \subset B_n \cup w_i \subset D$, то есть это лежит в I по пункту 2 определения матроида. Значит мы должны были взять w_i , противоречие.

Рассмотрим последовательность d_i из 0 и 1 длины n такую, что $d_i = 1$ только в том случае, если мы взяли алгоритмом i-ый элемент. А оптимальное решение задачи пусть будет e_i — тоже последовательность из 0 и 1. Последовательности будут обозначаться d и e соответственно.

Если на каком-то префиксе последовательности d единиц стало меньше, чем в e, то возьмём все элементы, которые помечены последовательностью e единицами. Пусть это множество будет E. Аналогично на этом префиксе последовательности d определим множество D. $|D| < |E|, D \in I, E \in I$, поэтому мы можем дополнить D каким-то элементом из E, которого не было в D. То есть на этом префиксе у d стоит 0 (пусть это будет место i), но заметим, что на i-ом шаге мы обязаны были брать этот элемент, из-за рассуждений аналогичным рассуждению про базу (2 абзаца вверх).

Получаем, что на каждом префиксе d единиц не меньше, чем на этом же префиксе последовательности e. Значит 1-ая единица в d встретится не позже, чем в e, 2-ая единица в d не позже, чем 2-ая в e и т.д. по рассуждениям по индукции.

На лекции была теория про ранги. В доказательстве можно обойтись без неё, просто приложу то, что сказал Глеб. Может быть понадобиться в задачах.

Рангом множества $B \subset A$ (обозн. r(B)) называют максимальное число k такое, что $\exists C \subset B$ такое, что $|C| = k, C \in I$.

Эта функция обладает таким свойством: для любого элемента $w \in A$ следует, что $r(B \cup w) \le r(B) + r(w)$. Давайте поймём, почему так:

Если $r(B \cup w) = r(B)$, то всё хорошо, так как $r(w) \geqslant 0$. Если $r(B \cup w) = r(B) + 1$ (других вариантов не бывает из определения), то тогда $w \in I$, так как в $B \cup w$ найдётся такое $C \subset (B \cup w)$, что $|C| = r(B \cup w)$, $w \in C$ (иначе C годилось бы для B и $r(B \cup w) = r(B)$), значит r(w) = 1, так как $C \in I$, а $\{w\} \subset C$.

Лекция 2 от 06.09.2016. Быстрое преобразование Фурье

Чтобы быть успешным программистом, надо знать 3 вещи:

- Сортировки;
- Хэширование;
- Преобразование Фурье.

Глеб

В этой лекции будет разобрано дискретное преобразование Фурье (Discrete Fourier Transform).

Применение преобразования Фурье

Допустим, что мы хотим решить такую задачу:

Пример 1. Даны 2 бинарные строки A и B длины n и m соответственно. Мы хотим найти, какая подстрока в A наиболее похожа на B. Наивная реализация решает эту задачу в худшем случае за $O(n^2)$. Преобразование Фурье поможет решить эту задачу за $O(n \log n)$, а именно научимся решать другую задачу:

Цель. Хотим научиться перемножать многочлены одной степени $A(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$ и $B(x) = b_0 + b_1 x + \ldots + b_{n-1} x^{n-1}$ так, что C(x) = A(x)B(x), то есть считать свёртку (найти все коэффициенты, если по-другому) $\sum_{i=0}^{n-1} \sum_{j=0}^{i} a_j b_{i-j} x^i$ за $O(n \log n)$.

Вернёмся к нашему примеру. Поймём как с помощью нашей цели решать задачу про бинарные строки.

Пусть $A = a_0 \dots a_{n-1}, B = b_0 \dots b_{n-1}$. Их можно считать одной длины (просто добавим нулей в конец b при надобности). Теперь задача переформулировывается как нахождение максимального скалярного произведение B и некоторых циклических сдвигов A (до n-m+1).

Инвертируем массив B и припишем в конец n нулей, а κ массиву A припишем самого себя. Посмотрим на все коэффициенты перемножения:

$$c_k = \sum_{i+j=k} a_i b_j$$

Ho $b_i = 0$ при $i \ge n$, поэтому при $k \ge n$:

$$c_k = \sum_{i=0}^{n-1} b_i a_{k-i}$$

Выбрав нужные коэффициенты, мы решили эту задачу.

Алгоритм быстрого преобразования Фурье

Основная идея алгоритма заключается в том, чтобы представить каждый многочлен через набор n точек и значений многочлена в этих точках, быстро (за $O(n \log n)$) вычислить значения в каких-то n точках для обоих многочленов, потом перемножить за O(n) сами значения. Потом применить обратное преобразование Фурье и получить коэффициенты C(x) = A(x)B(x).

Итак, для начала будем считать, что $n=2^k$ (просто добавим нулей до степени двойки).

Рассмотрим циклическую группу корней из $1-W_n=\{\mathrm{e}^{i\frac{2\pi k}{n}}\ \forall\ k=0,\ldots,n-1\}$. Обозначим за $w_n=\mathrm{e}^{i\frac{2\pi}{n}}$. Одно из самых главных свойств, что $w_n^p\cdot w_n^q=w_n^{p+q}$, которым мы будем пользоваться в дальнейшем.

Воспользуемся идеей метода «разделяй и властвуй».

Пусть $A(x) = a_0 + \dots a_{n-1}x^{n-1}$.

Представим $A(x) = A_l(x^2) + xA_r(x^2)$ так, что

$$A_l(x^2) = a_0 + a_2 x^2 + \dots + a_{n-2} x^{n-2}$$
$$A_r(x^2) = a_1 + a_3 x^2 + \dots + a_{n-1} x^{n-2}$$

Определение 1. Назовём *Фурье-образом* многочлена $P(x) = p_0 + \ldots + p_{m-1}x^{m-1}$ вектор из m элементов — $\langle P(1), P(w_m), P(w_m^2), \ldots, P(w_m^{m-1}) \rangle$.

Теперь рекурсивно запускаемся от многочленов меньшей степени. Так как для любого целого неотрицательного k следует, что 2k четное число, то $w_n^{2k} = w_{n/2}^k \in W_{n/2}$, то есть мы можем уже использовать значения Фурье-образа для вычисления A(x).

Если мы сможем за линейное время вычислить сумму $A_l(x^2) + xA_r(x^2)$, то суммарное время работы будет $O(n \log n)$, так как $A_l(x)$, $A_r(x)$ имеют степень в 2 раза меньше, чем A(x).

Действительно это легко сделать из псевдокода, который приведен ниже:

Algorithm 2 FFT

```
1: function FFT(A) \triangleright A — массив из комплексных чисел, функция возвращает Фурье-образ
 2:
          n \leftarrow \operatorname{length}(A)
          if n == 1 then
 3:
               return A
          A_l \leftarrow \langle a_0, a_2, \dots, a_{n-2} \rangle
 5:
          A_r \leftarrow \langle a_1, a_3, \dots, a_{n-1} \rangle
 6:
          A_l \leftarrow \text{FFT}(A_l)
 7:
          A_r \leftarrow \text{FFT}(A_r)
 8:
          for k \leftarrow 0 to \frac{n}{2} - 1 do
 9:
               A[k] \leftarrow \hat{A}_l[k] + e^{i\frac{2\pi k}{n}}\hat{A}_r[k]
10:
               A[k+\frac{n}{2}] \leftarrow \hat{A}_l[k] - \mathrm{e}^{i\frac{2\pi k}{n}}\hat{A}_r[k]  \triangleright Здесь минус перед комплексным числом из-за того,
11:
     что мы должны найти другой угол, удвоенный которого на окружности будет \frac{2\pi(k+n/2)}{r}
12:
          return A
```

Теперь поговорим про обратное FFT. Этого материала не было на лекции на момент написания:

Фактически, мы вычислили такую вещь за $O(n \log n)$:

$$\begin{pmatrix} w_n^0 & w_n^0 & w_n^0 & w_n^0 & \cdots & w_n^0 \\ w_n^0 & w_n^1 & w_n^2 & w_n^3 & \cdots & w_n^{n-1} \\ w_n^0 & w_n^2 & w_n^4 & w_n^6 & \cdots & w_n^{2(n-1)} \\ w_n^0 & w_n^3 & w_n^6 & w_n^9 & \cdots & w_n^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ w_n^0 & w_n^{n-1} & w_n^{2(n-1)} & w_n^{3(n-1)} & \cdots & w_n^{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{pmatrix}$$

где y_i — Фурье-образ многочлена A(x).

Фактически нам надо найти обратное преобразование. Магическим образом обратная матрица к квадратной матрице выглядит почти также:

$$\frac{1}{n} \begin{pmatrix} w_n^0 & w_n^0 & w_n^0 & w_n^0 & \cdots & w_n^0 \\ w_n^0 & w_n^{-1} & w_n^{-2} & w_n^{-3} & \cdots & w_n^{-(n-1)} \\ w_n^0 & w_n^{-2} & w_n^{-4} & w_n^{-6} & \cdots & w_n^{-2(n-1)} \\ w_n^0 & w_n^{-3} & w_n^{-6} & w_n^{-9} & \cdots & w_n^{-3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ w_n^0 & w_n^{-(n-1)} & w_n^{-2(n-1)} & w_n^{-3(n-1)} & \cdots & w_n^{-(n-1)(n-1)} \end{pmatrix}$$

$$\frac{1}{n} \begin{pmatrix} w_n^0 & w_n^0 & w_n^0 & w_n^0 & \cdots & w_n^0 \\ w_n^0 & w_n^{-1} & w_n^{-2} & w_n^{-3} & \cdots & w_n^{-(n-1)} \\ w_n^0 & w_n^{-2} & w_n^{-4} & w_n^{-6} & \cdots & w_n^{-2(n-1)} \\ w_n^0 & w_n^{-3} & w_n^{-6} & w_n^{-9} & \cdots & w_n^{-3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ w_n^0 & w_n^{-(n-1)} & w_n^{-2(n-1)} & w_n^{-3(n-1)} & \cdots & w_n^{-(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{pmatrix} = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{pmatrix}$$

Откуда получаем: $a_k = \frac{1}{n} \sum_{j=0}^{n-1} y_j w_n^{-kj}$.

Теперь напишем псевдокод обратного алгоритма:

Algorithm 3 FFT inverted

```
1: function FFT INVERTED(A) \triangleright A — Фурье-образ, возвращает коэффициенты многочлена
           n \leftarrow \operatorname{length}(A)
 2:
           if n == 1 then
 3:
                 return A
 4:
           A_l \leftarrow \langle a_0, a_2, \dots, a_{n-2} \rangle
 5:
           A_r \leftarrow \langle a_1, a_3, \dots, a_{n-1} \rangle
 6:
           \hat{A}_l \leftarrow \text{FFT\_inverted}(A_l)
 7:
           \hat{A}_r \leftarrow \text{FFT\_inverted}(A_r)
 8:
           for k \leftarrow 0 to \frac{n}{2} - 1 do
 9:
                A[k] \leftarrow \hat{A}_{l}[k] + e^{i\frac{-2\pi k}{n}}\hat{A}_{r}[k]
10:
                                                                                                                ⊳ Здесь угол идёт с минусом
                A[k + \frac{n}{2}] \leftarrow \hat{A}_l[k] - e^{i\frac{-2\pi k}{n}} \hat{A}_r[k]
A[k] \leftarrow A[k]/2 \qquad \triangleright 1
11:
                                                             \triangleright Поделим на 2\log n раз, а значит поделим на n в итоге
12:
                 A[k+\frac{n}{2}] \leftarrow A[k+\frac{n}{2}]/2

    Аналогично строчке выше

13:
           return A
14:
```

Лекция 3 от 16.09.2016. Алгоритм Карацубы, алгоритм Штрассена

Перемножение 2 длинных чисел с помощью FFT

Пусть $x = \overline{x_1 x_2 \dots x_n}$ и $y = \overline{y_1 y_2 \dots y_n}$. Распишем их умножение в столбик:

$$\begin{array}{c} \times \frac{x_1 \, x_2 \dots x_n}{y_1 \, y_2 \dots y_n} \\ z_{11} \, z_{12} \dots z_{1n} \\ + \dots \\ \frac{z_{n1} \, z_{n2} \dots z_{nn}}{z_{1} \, z_{2} \dots \dots z_{2n}} \end{array}$$

Понятно, что наивное умножение 2 длинных чисел будет иметь сложность $O(n^2)$.

Давайте научимся перемножать 2 числа быстрым преобразованием Фурье за $O(n \log n)$.

Пусть
$$a = \overline{a_{n-1} \dots a_0}, b = \overline{b_{n-1} \dots b_0}.$$

Тогда введём многочлены $f(x) = \sum_{i=0}^{n-1} a_i x^i, g(x) = \sum_{i=0}^{n-1} b_i x^i.$

За
$$O(n \log n)$$
 мы можем найти $h(x) = (f(x) \cdot g(x)) = \sum_{i=0}^{2n-2} c_i x^i$.

После этого надо аккуратно провести переносы разрядов таким образом:

Algorithm 4 Умножение 2 длинных чисел.

1: **function** Умножение 2 длинных чисел(h(x))
ightharpoonup h(x) — перемножение 2 многочленов f(x) и g(x).
2: $carry \leftarrow 0$ 3: **for** $i \leftarrow 0$ to 2n-1 **do**4: $h_i \leftarrow h_i + carry$ 5: $carry \leftarrow \left\lfloor \frac{h_i}{10} \right\rfloor$ 6: $h_i \leftarrow h_i$ mod 10

Но этот метод плохо применим на практике из-за того, что быстрое преобразование Фурье имеет очень большую константу.

Алгоритм Карацубы

Какое-то время человечество не знало алгоритмов перемножения быстрее, чем за $O(n^2)$. А.Н. Колмогоров считал, что это вообще невозможно. В один момент собрались математики на мехмате МГУ и решили доказать, что это невозможно. Но один из аспирантов (Анатолий Алексеевич Карацуба) Колмогорова пришёл и сказал, что у него получилось сделать это быстрее. Давайте посмотрим, как:

Будем считать, что $n=2^k$ (если это не так, дополним нулями, сложность вырастет лишь в константу раз).

Для начала просто попробуем воспользоваться стратегией «Разделяй и властвуй». Разобьём числа в разрядной записи пополам. Тогда

$$\times \begin{cases}
x = 10^{n/2}a + b \\
y = 10^{n/2}c + d
\end{cases}$$

$$\downarrow xy = 10^n ac + 10^{n/2}(ad + bc) + bd$$

Как видно, получается 4 умножения чисел размера $\frac{n}{2}$. Так как сложение имеет сложность $\Theta(n)$, то

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n)$$

Чему равно T(n)? Если посмотреть на дерево исходов или воспользоваться индукцией, то получим, что $T(n) = O(n^2)$, что, конечно, неэффективно.

Анатолий Алексеевич проявил недюжие способности и предложил следующее:

Разложим (a+b)(c+d):

$$(a+b)(c+d) = ac + (ad+bc) + bd \implies ad+bc = (a+b)(c+d) - ac - bd$$

Подставим это в начальное выражение для xy:

$$xy = 10^{n}ac + 10^{n/2}((a+b)(c+d) - ac - bd) + bd$$

Отсюда видно, что достаточно посчитать три числа размера $\frac{n}{2}$: (a+b)(c+d), ac и bd. Тогда:

$$T(n) = 3T\left(\frac{n}{2}\right) + \Theta(n)$$

Докажем, что $T(n) = O(n^{\log_2 3})$.

Рассмотрим дерево исходов: в каждой вершине дерева мы выполняем не более Cm действий, где C —какая-то фиксированная константа, а m — размер числа на данном шаге, поэтому

$$T(n) \leqslant Cn\left(1+rac{3}{2}+\ldots+rac{3^{\log_2 n}}{2^{\log_2 n}}
ight),$$
 так как на каждом шаге мы запускаемся 3 раза от задачи в 2 раза

Откуда
$$T(n)\leqslant Cn\cdot \frac{\frac{3}{2}^{\log_2 n}-1}{1/2}=2Cn^{\log_2 3}=O(n^{\log_2 3})\approx O(n^{1.5849})$$

Полученный алгоритм называется алгоритмом Карацубы.

Перемножение матриц. Алгоритм Штрассена

После идеи А.А. Карацубы, появились многие алгоритмы, использующие ту же идею. Одним из этих алгоритмов является алгоритм Штрассена. Будем считать, что $n=2^k$ снова (оставляем читалелю самим подумать, как дополнить матрицы $m \times t, t \times u$, чтобы потом лего восстановить ответ)

Пусть у нас есть квадратные матрицы

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \times B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}$$

Сколько операций нужно для умножения матриц? Умножим их по определению. Матрицу C=AB заполним следующим образом:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Всего в матрице n^2 элементов. На получение каждого элемента уходит O(n) операций (умножение за константное время и сложение n элементов). Тогда умножение требует $n^2O(n) = O(n^3)$ операций.

Попробуем применить аналогичную стратегию «Разделяй и властвуй». Представим матрицы A и B в виде:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
 и $B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$

где каждая матрица имеет размер $\frac{n}{2}$. Тогда матрица C будет иметь вид:

$$C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

Как видно, получаем 8 перемножений матриц порядка $\frac{n}{2}$. Тогда

$$T(n) = 8T\left(\frac{n}{2}\right) + O(n^2)$$

По индукции получаем, что $T(n) = O\left(n^{\log_2 8}\right) = O(n^3)$.

Можно ли уменьшить число умножений до 7? <u>Алгоритм Штрассена</u> утверждает, что можно. Он предлагает ввести следующие матрицы (даже не спрашивайте, как до них дошли):

$$\begin{cases} M_1 = (A_{11} + A_{22})(B_{11} + B_{22}); \\ M_2 = (A_{21} + A_{22})B_{11}; \\ M_3 = A_{11}(B_{12} - B_{22}); \\ M_4 = A_{22}(B_{21} + B_{11}); \\ M_5 = (A_{11} + A_{12})B_{22}; \\ M_6 = (A_{21} - A_{11})(B_{11} + B_{12}); \\ M_7 = (A_{12} - A_{22})(B_{21} + B_{22}); \end{cases}$$

Тогда

$$\begin{cases} C_1 &= M_1 + M_4 - M_5 + M_7; \\ C_2 &= M_3 + M_5; \\ C_3 &= M_2 + M_4; \\ C_4 &= M_1 - M_2 + M_5 + M_6; \end{cases}$$

Можно проверить что всё верно (оставим это как паказание упражнение читателю). Сложность алгоритма:

$$T(n) = 7T\left(\frac{n}{2}\right) + O(n^2) \implies T(n) = O\left(n^{\log_2 7}\right) \approx O(n^{2.8073})$$

Доказательство времени работы такое же, как и в алгоритме Карацубы.

Также существует модификация алгоритма Штрассена, где используется лишь 15 сложений матриц на каждом шаге, вместо 18 предъявленных выше.

Эквивалентность асимптотик некоторых алгоритмов

Этот раздел не войдёт в экзамен.

Здесь мы поговорим об обращении и перемножении 2 матриц. Докажем, что асимптотики этих алгоритмов эквивалентны.

Теорема 1 (Умножение не сложнее обращения). Если можно обратить матрицу размеров $n \times n$ за время T(n), где $T(n) = \Omega(n^2)$, и T(3n) = O(T(n)) (условие регулярности), то две матрицы размером $n \times n$ можно перемножить за время O(T(n))

Доказательство. Пусть A и B матрицы одного порядка размера $n \times n$. Пусть

$$D = \begin{pmatrix} I_n & A & 0 \\ 0 & I_n & B \\ 0 & 0 & I_n \end{pmatrix}$$

Тогда легко понять, что

$$D^{-1} = \begin{pmatrix} I_n & -A & AB \\ 0 & I_n & -B \\ 0 & 0 & I_n \end{pmatrix}$$

Матрицу D мы можем построить за $\Theta(n^2)$, которое является O(T(n)), поэтому с условием регулярности получаем, что M(n) = O(T(n)), где M(n) — асимптотика перемножения 2 матриц.

С обратной теоремой предлагаем ознакомиться в книге Кормена или Ахо, Хопкрофта и Ульмана.

Лекция 4 от 20.09.2016. Простейшие теоретико числовые алгоритмы

Числовые алгоритмы играют огромную роль в криптографии, фактически вся криптография держится на том, что не придуман до сих пор алгоритм, который умеет факторизовать числа за полиномиальное время от размера числа.

Алгоритм Евклида

Начнём, пожалуй, с одного из самых известных алгоритмов нахождения наибольшего общего делителя, а именно— алгоритм Евклида и его расширенную версию.

Algorithm 5 Алгоритм Евклида.

```
1: function gcd(int a, int b)
2: if b = 0 then
3: return a;
4: else
5: return gcd(b, a mod b);
```

Практически очевидно, что данный алгоритм возвращает нужное нам число. Вспомните курс дискретной математики или выпишите на бумаге то, что делает данный алгоритм.

Асимптотика такого алгоритма $O(\log n)$ (где n — максимальное значение числа) — легко проверить, что каждое число уменьшается хотя бы в 2 раза за 2 шага алгоритма.

Расширенный алгоритм Евклида

Пусть даны числа a,b,c, мы хотим найти хотя бы одну пару решений x,y таких, что ax+by=c. Понятно, что $\gcd(a,b)\mid c$, поэтому если это условие не выполняется, то найти решение мы не сможем. Пусть $c=k\gcd(a,b)$. Сейчас мы предъявим хотя бы одну пару чисел x,y, что $ax+by=\gcd(a,b)$ — после этого мы просто домножим x,y на k и получим, что сможем представить c в таком виде.

Algorithm 6 Расширенный алгоритм Евклида.

```
1: function EXTENDED_gcd(int a, int b) 
ightharpoonup - возвращаем тройку чисел (x, y, \gcd(a, b)).
2: if b = 0 then
3: return (1, 0, a);
4: (x', y', d) \leftarrow \text{EXTENDED\_gcd}(b, a \text{ mod } b)
5: return (y', x' - \left\lfloor \frac{a}{b} \right\rfloor y', d)
```

Лемма 1. Для произвольных неотрицательных чисел a u b $(a \geqslant b)$ расширенный алгоритм Евклида возвращает целые числа x, y, d, для которых $\gcd(a, b) = d = ax + by$.

Доказательство. Если не рассматривать x, y в алгоритме, то такой алгоритм полностью повторяет обычный алгоритм Евклида. Поэтому алгоритм 3-им параметром действительно вычислит $\gcd(a,b)$.

Про корректность x,y будет вести индукцию по b. Если b=0, тогда мы действительно вернём верное значение. Шаг индукции: заметим, что алгоритм находит $\gcd(a,b)$, произведя рекурсивный вызов для $(b,a \mod b)$. Поскольку $(a \mod b) < b$, мы можем воспользоваться предположением индукции и заключить, что для возвращаемых рекурсивным вызовом чисел x',y' выполняется равенство:

$$\gcd(b, a \bmod b) = bx' + (a \bmod b)y'$$

Понятно, что $a \mod b = a - \left\lfloor \frac{a}{b} \right\rfloor b$, поэтому

$$d = \gcd(a, b) = \gcd(b, a \mod b) = bx' + (a \mod b)y' = bx' + \left(a - \left\lfloor \frac{a}{b} \right\rfloor b\right)y' = ay' + b\left(x' - \left\lfloor \frac{a}{b} \right\rfloor y'\right)$$

Пример 1. Мы умеем с помощью расширенного алгоритма Евклида вычислять обратные остатки по простому модулю (в поле \mathbb{F}_p). Действительно, если (a,p)=1 то существуют x,y, что ax+py=1, а значит в поле $\mathbb{F}_p-ax=1$, откуда $x=a^{-1}$.

Алгоритм быстрого возведения в степень по модулю

Хотим вычислить $a^b \mod p$. Основная идея в том, чтобы разложить b в двоичную систему и вычислять только $a^{2^i} \mod p$. Здесь будем предполагать, что операции с числами выполняются достаточно быстро. Приведём ниже псевдокод такого алгоритма:

Algorithm 7 Алгоритм быстрого возведения в степень.

```
\triangleright — возвращаем a^b \mod p.
1: function FAST POW(int a, int b, int p)
      if b = 0 then
2:
           return 1;
3:
      if b \mod 2 = 1 then
4:
           return FAST POW(a, b - 1, p) \cdot a \mod p
5:
      else
6:
           c \leftarrow \text{FAST POW}(a, b/2, p)
7:
           return c^2 \mod p
8:
```

Корректность этого алгоритма следует из того, что $a^b = a^{b-1} \cdot a$ для нечетных b и $a^b = a^{b/2} \cdot a^{b/2}$ для четных b. Также мы здесь неявно пользуемся индукцией по b, в которой корректно возвращается база при b=0.

От каждого числа b, если оно четно, мы запускаем наш алгоритм от b/2, а если оно нечетно, то от b-1, откуда получаем, что количество действий, совершенным нашим алгоритмом будет не более, чем $2\log b = O(\log b)$.

Замечание 1. На самом деле быстрое возведение в степень работает на всех ассоциативных операциях. Например, если вы хотите вычислить A^n , где A — квадратная матрица, то это можно сделать тем же самым алгоритмом за $O(T(m)\log n)$, где T(m) асимптотика перемножения матриц $m \times m$.

Китайская теорема об остатках и её вычисление

Китайская теорема об остатках звучит так — пусть даны попарно взаимно простые модули и числа r_1, \ldots, r_n . Тогда существует единственное с точностью по модулю $a_1 \ldots a_n$ решение такой системы:

$$\begin{cases} x \equiv r_1 \pmod{a_1} \\ x \equiv r_2 \pmod{a_2} \\ \vdots \\ x \equiv r_n \pmod{a_n} \end{cases}$$

Доказательство. Докажем и предъявим сразу алгоритм вычисления за $O(n \log \max(a_1, \dots, a_n))$.

Пусть $x = \sum_{i=1}^n r_i M_i M_i^{-1}$, где $M_i = \frac{a_1 \dots a_n}{a_i}$, M_i^{-1} это обратное к M_i по модулю a_i (такое всегда найдётся из попарной взаимной простоты). Прошу заметить, что такое число мы можем вычислить за $O(n \log \max(a_1, \dots, a_n))$ (см. пример в расширенном алгоритме Евклида).

Докажем, что это число подходит по любому модулю a_i .

$$x \equiv \sum_{j=1}^{n} r_j M_j M_j^{-1} \equiv r_i M_i M_i^{-1} \equiv r_i \pmod{a_i}$$

Второе равенство следует из того, что $a_i \mid M_j$ при $j \neq i$ (из построения).

Докажем единственность решения по модулю. Пусть x, x' — различные решения данной системы, тогда $0 < |x - x'| < a_1 \dots a_n$ и |x - x'| делится на $a_1 \dots a_n$, что невозможно, так как ни одно положительное число до $a_1 \dots a_n$ не делится на $a_1 \dots a_n$.

Решето Эратосфена

Решето Эратосфена — это один из первых алгоритмов в истории человечества. Он позволяет найти все простые числа на отрезке от [1;n] за $O(n\log\log n)$, а разложить все числа на простые множители за $O(n\log n)$

В первом случае у нас задача состоит в том, чтобы вернуть 1, если число простое и 0, если непростое.

Предъявим псевдокод такого алгоритма:

 Π емма 2. Алгоритм Sieve_ of_Eratosthenes корректно оставит все простые числа.

Доказательство. Докажем по индукции по n. База n=2 очевидна.

Переход $n \to n+1$. Заметим, что наш алгоритм и корректно завершит для n чисел, потому что мы только расширяем область рассматриваемых чисел.

Если n+1 составное, тогда $n+1=p\cdot m$ для какого-то простого p< n+1. По предположению индукции мы рассмотрим простое число p правильно, то есть удалим из массива все числа, которые кратны p, а значит и n+1 мы правильно уберём.

Если n+1 простое, то если мы его убрали на каком-то шаге, то оно делилось на то простое, которые мы рассматривали до этого, но это противоречит определению простых чисел. \square

Algorithm 8 Решето Эратосфена.

```
1: function Sieve of Eratosthenes(int n)
                                                                       ▶ найти — массив prime<sub>i</sub>, означающий
    характеристическую функцию простых чисел от 1 до n.
 2:
        for i \leftarrow 1 to n do
            prime_i \leftarrow true
 3:
        prime_1 \leftarrow false
 4:
        for i \leftarrow 2 to n do
 5:
            if prime_i = true then
 6:
                 i \leftarrow 2i
 7:
                 while j \leq n \operatorname{do}
 8:
 9:
                     prime_i \leftarrow false
                     j \leftarrow j + i
10:
```

Заметим, что алгоритм будет выполняться за время

$$\sum_{\substack{p\leqslant n,\\ p\,-\,\text{inductoe}}}\frac{n}{p}$$

Потому что для каждого простого числа мы рассматриваем в таблице все числа, кратные p. Можно оценить очень грубо и получим, что

$$\sum_{\substack{p \leqslant n, \\ n \text{-morroe}}} \frac{n}{p} \leqslant \sum_{i=1}^{n} \frac{n}{i} \approx n \ln n + o(n) = O(n \log n)$$

Но используя свойства ряда $\sum_{\substack{p\leqslant n,\\p-\text{простое}}} \frac{n}{p} \approx n \ln \ln n + o(n)$, следует, что алгоритм работает за

 $O(n \log \log n)$, но факт про асимпототику этого ряда мы оставим без доказательства.

Если теперь первый раз, приходя в составное число в алгоритме, хранить его наименьший простой делитель, то рекурсивно мы можем разложить число на простые множители. Всего количество простых делителей у числа не может превышать $O(\log n)$ (так как самый наименьший простой делитель это двойка), поэтому разложение на множители будет выполняться за $O(n\log n)$.

Решето Эйлера

Составим двусвязный список из чисел от 2 до n, а также ещё массив длиной n с указателями на каждый элемент.

Будем идти итеративно: первый непросмотренный номер в списке берётся как простое число, и определяются все произведения с последующими элементами в списке (само на себя тоже умножим), пока не выйдем в произведении за пределы n. После этого удаляются все числа, которые мы вычислили (смотрим в массив укзателей и удаляем по указателю за O(1)) и повторяем процедуру.

Лемма 3. После k шагов алгоритма останется первых k простых чисел в начале и в списке будут только числа взаимно простые c первыми k.

Доказательство. База при k=1 очевидна. Просто убираем все четные числа.

Переход $k \to k+1$.

Докажем, что следующим нерассмотренным элементом списка мы возьмём p_{k+1} . Действительно, простые числа мы не выкидываем, а значит следующим шагом после p_k мы возьмём число, не большее p_{k+1} , но по предположению индукции все числа от (p_k, p_{k+1}) были убраны, так как они составные и содержат в разложении только простые, меньшие p_{k+1} .

Предположим, что после ещё одного шага алгоритма у нас осталось число, кратное p_{k+1} (и большее p_{k+1}) (все числа, делящиеся на предыдущие простые до этого были убраны).

Тогда пусть это будет $m = p_{k+1} \cdot a, a > 1$. Если a содержит в разложении на простые хотя бы одно число, меньшее p_{k+1} , то получим противоречие, так как все числа не взаимно простые с p_1, \ldots, p_k по предположению индукции были убраны.

Значит a содержит в разложении на простые числа, не меньшие p_{k+1} , а значит $a \geqslant p_{k+1}$ и это число ещё было в списке, значит мы это число уберем, противоречие.

Если мы вдруг на шаге алгоритма получили в умножении число, которое мы уже убрали, то значит у этого числа есть меньший простой делитель, чем p_k , но по доказанной лемме у нас все такие числа к k-ому шагу были убраны. Значит каждое составное число мы рассмотрим ровно 1 раз и ровно 1 раз уберем за O(1).

Также по лемме получаем, что в начале списка останутся только простые числа.

Простые числа мы тоже рассматриваем по 1 разу в нашем алгоритме, значит общая сложность решета Эйлера будет O(n).

Наивная факторизация числа за $O(\sqrt{n})$

На данный момент не существует алгоритма факторизации числа за полином от размера числа, а не от значения. Здесь мы рассмотрим наивный алгоритм факторизации числа. На следующей лекции рассмотрим ρ -метод Полларда, который работает за $O(\sqrt[4]{n})$.

Пусть n'=n. Будем перебирать от 2 до $\lceil \sqrt{n'} \rceil$ числа и пока текущее n делится на данное число, делим n на это число.

Легко показать, что делим мы только на простые числа (иначе мы поделили бы на меньшее простое несколькими шагами раньше).

В конце n будет либо 1 (тогда факторизация удалась), либо простым. Составным оно не может быть, иначе n=ab, a, b>1 и $a,b>\left\lceil \sqrt{n'}\right\rceil$, так как на все числа, меньшие корня, мы поделили.

Осталось оценить, сколько операций раз мы обращаемся к циклу while. В нём мы делаем суммарно не более, чем $O(\log n + \sqrt{n})$ действий, так как сумма степеней при разложении числа не более, чем $O(\log n)$ (см. выше). Ну а также обращаемся по 1 разу каждый шаг внешнего цикла.