Normal Subgroups

Definition

Let $H \leq G$. To say that H is a *normal* subgroup of G, denoted $H \triangleleft G$, means:

$$\forall g \in G, h \in H, ghg^{-1} \in H$$

Theorem

Let $\phi: G \to G'$ be a homomorphism of groups and $K = \ker(\phi)$:

$$K \triangleleft G$$

Proof

Assume
$$g \in G$$
 and $k \in K$
$$\phi(gkg^{-1}) = \phi(gg^{-1}) = \phi(e) = e'$$

$$\therefore gkg^{-1} \in K$$

Theorem

Let $H \leq G$. TFAE:

- 1). $H \triangleleft G$
- 2). $\forall g \in G, gHg^{-1} = H$
- 3). $\forall g \in G, gH = Hg$

Proof

Assume $g \in G$

 $1 \implies 2$: Assume $H \triangleleft G$

Assume
$$a \in gHg^{-1}$$

 $\exists h \in H, a = ghg^{-1} \in H$
 $\therefore a \in H$

 $2 \implies 3$: Assume $gHg^{-1} = H$

Assume
$$g' \in gH$$

 $\exists h' \in H, g' = gh'$
 $gh'g^{-1} \in H$
 $\exists h \in H, gh'g^{-1} = h$
 $gh' = hg$
 $g' = hg$
 $\therefore g' \in Hg$

Assume $a \in H$ $\exists h \in H, h = gag^{-1}$ $a = g^{-1}hg = g^{-1}h(g^{-1})^{-1}$ $\therefore a \in gHg^{-1}$

Assume $g' \in Hg$ $\exists h' \in H, g' = h'g$ $g^{-1}h'g \in H$ $\exists h \in H, g^{-1}h'g = h$ h'g = gh g' = gh $\therefore g' \in gH$

$$3 \implies 1 \text{: Assume } gH = Hg$$

$$\forall \, h \in H, \exists \, h' \in H, gh = h'g$$

$$ghg^{-1} = h'$$

$$ghg^{-1} \in H$$

$$\therefore \, H \triangleleft G$$

Corollary

Let $H \leq G$:

$$G \text{ abelian } \Longrightarrow H \triangleleft G$$

Proof

Assume
$$g \in G$$

Assume $h \in H$
 $ghg^{-1} = gg^{-1}h = eh = h$
 $ghg^{-1} \in H$
 $\therefore H \triangleleft G$

Theorem

Let $H \leq G$:

$$(G:H)=2 \implies H \triangleleft G$$

Proof

Assume
$$(G:H)=2$$

Assume $a\in G, a\notin H$
 H and aH are the two distinct left cosets H and Ha are the two distinct right cosets $aH=Ha$
 $\therefore H\triangleleft G$

Example

$$(S_4:A_4)=2$$

 A_4 elements are even $(12)A_4$ elements are odd $(12)A_4$ = $A_4(12)$ $A_4 \lhd S_4$