Guided Image Filtering

Kaiming He The Chinese University of Hong Kong

Jian Sun Microsoft Research Asia

Xiaoou Tang The Chinese University of Hong Kong

- Edge-preserving filtering
 - An important topic in computer vision
 - Denoising, image smoothing/sharpening, texture decomposition, HDR compression, image abstraction, optical flow estimation, image superresolution, feature smoothing...
 - Existing methods
 - Weighted Least Square [Lagendijk et al. 1988]
 - Anisotropic diffusion [Perona and Malik 1990]
 - Bilateral filter [Aurich and Weule 95], [Tomasi and Manduchi 98]
 - Digital TV (Total Variation) filter [Chan et al. 2001]

Bilateral filter

$$q_i = \sum_{j \in N(i)} W_{ij}(p) p_j$$

guide I

Joint bilateral filter [Petschnigg et al. 2004]

bilateral filter: *I*=*p*

output q

E.g. p: noisy / chrominance channel

I: flash / luminance channel

- Advantages of bilateral filtering
 - Preserve edges in the smoothing process
 - Simple and intuitive
 - Non-iterative

- Problems in bilateral filtering
 - Complexity
 - Brute-force: $O(r^2)$
 - Distributive histogram: O(logr) [Weiss 06]
 - Bilateral grid: band-dependent [Paris and Durand 06], [Chen et al. 07]
 - Integral histogram: O(1) [Porikli 08], [Yang et al. 09]

Approximate (quantized)

- Problems in bilateral filtering
 - Complexity
 - Gradient distortion
 - Preserves edges, but not gradients

Example: detail enhancement

- Our target to design a new filter
 - Edge-preserving filtering
 - Non-iterative
 - O(1) time, fast and non-approximate
 - No gradient distortion

Advantages of bilateral filter

Overcome bilateral filter's problems

Guided filter

$$q_i = p_i - n_i$$

 $\min_{(a,b)} \sum_{i} (aI_i + b - p_i)^2 + \varepsilon a^2$

 n_i - noise / texture

Linear regression

$$\nabla q_i = a \nabla I_i$$

 $q_i = aI_i + b$

$$a = \frac{\text{cov}(I, p)}{\text{var}(I) + \varepsilon}$$

$$b = \overline{p} \quad a\overline{I}$$

$$b = \overline{p} - a\overline{I}$$

guide I

Bilateral/joint bilateral filter does not have this linear model

Guided filter

- Extend to the entire image
 - In all local windows ω_k , compute the linear coefficients
 - Compute the average of $a_kI_i+b_k$ in all ω_k that covers pixel q_i

Definition

$$a_k = \frac{\text{cov}_k(I, p)}{\text{var}_k(I) + \varepsilon}$$
$$b_k = \overline{p}_k - a\overline{I}_k$$

$$q_{i} = \frac{1}{|\omega|} \sum_{k|i \in \omega_{k}} (a_{k} I_{i} + b_{k})$$
$$= \overline{a}_{i} I_{i} + \overline{b}_{i}$$

Guided filter

- Parameters
 - Window radius r
 - Regularization ε

Definition

$$a_{k} = \frac{\text{cov}_{k}(I, p)}{\text{var}_{k}(I) + \varepsilon}$$

$$b_{k} = \overline{p}_{k} - a\overline{I}_{k}$$

$$q_{i} = \frac{1}{|\omega|} \sum_{k|i \in \omega_{k}} (a_{k}I_{i} + b_{k})$$

$$= \overline{a}_{i}I_{i} + \overline{b}_{i}$$

Guided filter: smoothing

a cascade of mean filters

 $var(I) << \varepsilon$ $cov(I, p) << \varepsilon$ $a \approx 0$

 $b \approx \overline{p}$

 $q_i = \overline{a}I_i + \overline{b} \approx \overline{\overline{p}}$

guide I

 $var(I) << \varepsilon$

r : determines band-width (like σ_s in BF)

Guided filter: edge-preserving

$$q_i = \overline{a}I_i + \overline{b} \implies \nabla q_i = \overline{a}\nabla I_i + I_i \nabla \overline{a} + \nabla \overline{b}$$

$$\varepsilon \downarrow \qquad \Longrightarrow \qquad a = \frac{\operatorname{cov}(I, p)}{\operatorname{var}(I) + \varepsilon} \uparrow$$

 ε : degree of edge-preserving (like σ_r in BF)

Example – edge-preserving smoothing

input & guide

guided filter (let I=p)

r=4, $\varepsilon=0.12$

r=4, $\varepsilon=0.2^2$

r=4, $\varepsilon=0.4^2$

bilateral filter

$$\sigma_s$$
=4, σ_r =0.2

 σ_s =4, σ_r =0.4

Our target - to design a new filter

Edge-preserving filtering

Non-iterative

Advantages of bilateral filter

- O(1) time, fast and non-approximate
- No gradient distortion

Overcome bilateral filter's problems

Complexity

- mean, var, cov in all local windows
- Integral images [Franklin 1984]
 - O(1) time independent of r
 - Non-approximate

Definition

$$a_k = \frac{\text{cov}_k(I, p)}{\text{var}_k(I) + \varepsilon}$$

$$b_k = \overline{p}_k - a\overline{I}_k$$

$$q_i = \overline{a}_i I_i + \overline{b}_i$$

O(1) bilateral (32-bin, 40ms/M) [Porikli 08]

O(1) bilateral (64-bin, 80ms/M)

O(1) guided (exact, 80ms/M)

Gradient Preserving

Example – detail enhancement

gradient reversal

input (I=p)

bilateral filter $\sigma_s = 16$, $\sigma_r = 0.1$

guided filter r=16, $\varepsilon=0.1^2$

Example – detail enhancement

gradient reversal

input (*I*=*p*)

bilateral filter $\sigma_s = 16$, $\sigma_r = 0.1$

guided filter r=16, $\varepsilon=0.1^2$

Example – HDR compression

input HDR

bilateral filter

guided filter

bilateral filter σ_s =15, σ_r =0.12

guided filter r=15, $\varepsilon=0.12^2$

Example – flash/no-flash denoising

input *p* (no-flash)

guide *I* (flash)

joint bilateral filter σ_s =8, σ_r =0.02

guided filter r=8, $\varepsilon=0.02^2$

joint bilateral

guided filter

Beyond smoothing

Applications: feathering/matting, haze removal

guide *I* (size 3000x2000)

filter input p (binary segmentation)

filter output q (alpha matte)

Example – haze removal

guide I

filter input p (dark channel prior [He et al. 09])

filter output q

Example – haze removal

guide I

guided filter (<0.1s, 600x400p)

global optimization (10s)

Limitation

"What is an edge" – inherently ambiguous, context-dependent

Input

Bilateral filter $\sigma_s = 16$, $\sigma_r = 0.4$

Guided filter r=16, $\varepsilon=0.4^2$

Conclusion

- We go from "BF" to "GF"
 - Edge-preserving filtering
 - Non-iterative
 - O(1) time, fast, accurate
 - Gradient preserving
 - More generic than "smoothing"

Thank you!