M - 118 - 2016

배관제작 및 설치에 관한 기술지침

2016. 12

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 작성자 : 임대식

ㅇ 개정자 : 한국산업안전보건공단 산업안전실

- 제·개정경과
 - 1998년 7월 기계안전분야 기준제정위원회 심의
 - 1998년 9월 총괄기준제정위원회 심의
 - 2006년 11월 기계안전분야 기준제정위원회 심의
 - 2006년 12월 총괄기준제정위원회 심의
 - 2012년 4월 기계안전분야 기준제정위원회 심의(개정)
 - 2016년 12월 기계안전분야 기준제정위원회 심의(개정)
- ㅇ 관련규격 및 자료
 - 미국국가규격협회 규격(ANSI/ASME B 31.3; Chemical plant and petroleum refinery piping)
- o 관련 법규·규칙·고시 등
 - 산업안전보건 기준에 관한 규칙 제2편 제2장 제4절 제255조(화학설비를 설치하는 건축물의 구조)
- 0 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본 이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2016년 12월 27일

제 정 자 : 한국산업안전보건공단 이사장

M - 118 - 2016

배관제작 및 설치에 관한 기술지침

1. 목적

이 지침은 산업안전보건기준에관한 규칙(이하 "안전보건규칙"이라 한다) 제2편 제2장 제4절 제255조(화학설비를 설치하는 건축물의 구조)의 규정에 따라 화학설비 배관의 제작 및설치에 관한 지침을 정함을 목적으로 한다.

2. 적용범위

이 지침은 안전보건규칙 별표 7의 화학설비 및 그 부속설비 중 배관의 제작 및 설치시에 적용한다. 다만, 다음의 배관에는 적용하지 않는다.

- (가) 주철관
- (나) 동관
- (다) 콘크리트 피복관

3. 정의

그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙, 안전보건규칙 및 고용노동부 고시에서 정하는 바에 의한다.

4. 자재보관

- (1) 배관자재는 가능한 옥내에 보관하여야 하며 옥외 보관 시에는 반드시 마개를 설치하여야 한다.
- (2) 배관자재는 종류, 구경 및 재질별로 구분하여 보관하여야 한다.
- (3) 배관 보관 시에는 바닥에 배관이 닿지 않도록 높이 100 ㎜ 이상의 각목 등으로

M - 118 - 2016

만든 받침대 위에 놓아야 하며, 받침대는 배관의 길이가 12 m 인 경우 3개 이상으로 하고 그 위치는 배관의 중앙 및 양단에서 $1.0\sim2.5 \text{ m}$ 정도 떨어진 곳에 설치하도록 한다.

- (4) 배관은 가급적 단층으로 적재하고 다층일 경우는 4층 이하로 한다.
- (5) 받침대 및 배관 사이와 배관과 배관 사이에는 고무 또는 마포 등의 완충재를 넣어 코팅 부분이 직접 접촉되지 않도록 하여야 한다. 이 때 완충재는 배관의 중량을 견딜 수 있어야 한다.
- (6) 조립 배관품은 현장설치 또는 코팅하기 전에 내부와 외부에 있는 이물질을 깨끗이 제거한 후 설치하며, 설치중에도 배관의 개구부 끝은 일시적인 보호 마개로 내부를 보호한다.

5. 절단작업

- (1) 탄소강 배관의 절단은 기계절단 또는 가스절단기를 사용할 경우에는 산화물이 완전히 없어질 때까지 그라인더로 절단면을 마무리 한다
- (2) 스테인리스강관은 연삭할 경우 탄소를 함유한 연삭숫돌을 사용해서는 안되며, 스 테인리스강관 중 오스테나이트 조직의 강관은 프라즈마 절단(Plasma cutting)을 하다.
- (3) 용접부위 형상은 특별한 언급이 없는 한 65 mm 이상의 배관은 맞대기 용접에 따라 가공하고, 50 mm 이하의 배관은 소켓용접에 따라 가공한다.

6. 굽힘작업

(1) 원칙적으로 호칭지름이 50 mm 이상의 배관은 열간굽힘(Hot bending)을 하고 굽힘 작업 후 필요에 따라 열처리를 한다.

M - 118 - 2016

- (2) 냉간굽힘(Cold bending)은 배관 굽힘기계를 이용한다.
- (3) 굽힘에서 굽힘 반지름은 배관 바깥지름의 5배로 한다.

7. 배관 용접부위 가공

용접할 배관의 끝 부분은 다음과 같이 가공한다.

(1) 배관 두께(t)가 22 mm 이하일 경우

<그림 1> t ≤ 22 mm 일 경우

(2) 배관 두께(t)가 22 mm를 초과할 경우

<그림 2> t > 22 mm일 경우

8. 정렬

8.1 맞대기 용접배관

맞대기 용접배관의 안지름은 서로 정확히 정렬하고 연결되는 배관 양끝 부분의 안지름의 어긋남이 2.0 mm를 초과해서는 안된다. 부득이 내부 어긋남이 2.0 mm를 초

M - 118 - 2016

과할 경우에는 <그림 3>과 같이 배관의 튀어나온 안쪽면을 다듬질 하여야 하며, 이 경우 배관의 두께가 최소 요구두께 이상이어야 하고 외형선의 구배 변화가 30°를 초과해서는 안된다.

<그림 3> 맞대기 용접배관의 안쪽 정렬

8.2 소켓 용접배관

8.2.1 플랜지

삽입형 플랜지와 배관은 <그림 4-a>와 같이 정렬하며, 소켓용접형 플랜지와 배관은 <그림 4-b>와 같이 정렬한다.

t_n: 배관의 두께

 $X_{min}\,:\,1.4t_n$

 X_{min} : 1.4 t_n

<그림 4-a> 삽입형 플랜지 정렬 <그림 4-b> 소켓용접형 플랜지 정렬

8.2.2 플랜지 이외의 소켓

소켓용접 배관은 <그림 5>와 같이 배관을 소켓속으로 최대한 깊게 삽입하고 소 켓의 맞닿는 두면 사이에는 2.0 ㎜의 틈새가 있어야 한다.

M - 118 - 2016

t_n: 배관의 두께

Cx : 1.25tn (단, 3.2 m보다 커야함)

<그림 5> 플랜지 이외의 소켓용접 정렬

8.3 분기 용접배관

8.3.1 보강판을 설치하지 않는 경우

보강판을 설치하지 않는 분기배관 용접은 완전용입되는 홈용접을 하여야 하며 용접부의 목두께는 <그림 6>에서 정한 t_c 값 이상으로 정한다.

t_{nb} : 분기배관 두께(mm)

t_{nh} : 주배관 두께(mm)

t_c: 6.4 mm 또는 0.7t_{nb}중 작은 값

<그림 6> 보강판을 설치하지 않는 분기배관 용접 정렬

8.3.2 보강판을 설치하는 경우

- (1) 보강판을 주배관에 용접할 경우
- (가) 보강재 바깥자리 용접부의 목두께는 최소한 <그림 7>에서 정한 0.5t_{nr}가 되어 야 한다.

M - 118 - 2016

(나) 분기배관과 주배관 사이에 용접작업 또는 열처리 작업 중에 통풍이 되도록 배기 구멍을 설치한다.

t_{nb} : 분기배관 두께(mm)

t_{nh} : 주배관 두께(mm)

t_{nr} : 보강재 두께(mm)

t_c: 6.4 mm 또는 0.7t_{nb} 중 작은 값

<그림 7> 보강판이 주배관에 있는 분기배관 용접 정렬

(2) 보강판을 분기배관과 주배관에 각각 용접할 경우

보강재를 분기배관과 주배관에 각각 용접할 경우 <그림 8>에서 분기배관 용접부의 목두께는 0.7t_{min} 이상으로 하여야 하며, 주배관 용접부의 목두께는 최소한 0.5t_{nr} 이상으로 한다.

t_{nb} : 분기배관 두께(mm)

t_{nh} : 주배관 두께(mm)

t_{nr} : 보강재 두께(mm)

t_c: 6.4 mm 또는 0.7t_{nb} 중 작은 값

t_{min} : t_{nb} 또는 t_{nr} 중 작은 값

<그림 8> 보강판이 주배관과 분기배관에 있는 분기관 용접 정렬

8.3.3 커플링을 설치하는 경우

- (1) 나사식 커플링의 분기배관을 용접할 경우는 완전용입되는 홈용접을 하여야 하며 목두께는 5 mm 이상이어야 한다.
- (2) 커플링 용접은 50 mm 이하의 분기배관을 갖는 경우에 사용한다.

M - 118 - 2016

<그림 9> 커플링 분기배관을 갖는 용접 정렬

9. 배관 지지물 설치

- (1) 배관 지지물은 다음과 같은 철구조물을 이용하여 설치한다.
- (가) 건물보
- (나) 건물 기둥
- (다) 기타 보조 철 구조물
- (2) 배관 지지물은 다음과 같은 곳에 연결하지 않는다.
- (가) 층과 층을 관통하는 배관용 슬리브
- (나) 콘크리트 블록벽
- (다) 간이층에 설치되어 있는 철판 등의 발판(Grating & checkered plate)
- (라) 설비지지 구조물
- (3) 기타 배관 지지물 설치 및 유지에 관한 사항을 KOSHA GUIDE M-112-2012 「배관 지지물 설치 및 유지에 관한 기술지침」에 따른다.

10. 용접

(1) 용접할 표면 및 모재 주변의 모든 기름, 녹, 페인트 등 용접에 영향을 주는 유해한 이물질은 용접작업을 행하기 이전에 완전히 제거한다.

M - 118 - 2016

- (2) 별도로 규정하지 않는 한, 호칭지름 65 mm 이상의 배관은 맞대기 용접을 하며 호 칭지름 50 mm 이하의 배관은 소켓용접을 실시한다.
- (3) 용접되는 두 배관의 끝단은 6항에서 규정한 조건에 따라 정확히 정렬되어야 한다.
- (4) 용접작업은 승인된 용접절차 명세서에 따라 실시한다.
- (5) 용접작업은 자격을 갖춘 용접사에 의하여 실시한다.
- (6) 용접작업중 정렬상태를 유지할 수 있도록 본 용접전에 가용접을 하여야 한다. 가 용접은 본용접과 동일한 용접봉을 사용하여야 하며, 본 용접중에 완전히 용해되 어야 한다.
- (7) 용접봉의 선택은 KOSHA GUIDE O-1-2011 「설비보수용 용접재료 선정에 관한 기술지침」에 따른다.

11. 밸브 설치

- (1) 모든 밸브는 운반 전에 밸브내 이물질 유무를 확인하고 입출구에 이물질 유입 방지용 마개를 취부한 후 작업에 임한다.
- (2) 일반적으로 밸브 스템은 아래 방향으로 향하게 설치하지 말아야 하며 밸브와 밸브를 직접 용접하지 말고 단관을 사용하여 설치한다.
- (3) 밸브를 설치할 때는 내부를 청소한 후 반드시 닫은 상태에서 설치하며, 배관 조립 중에 밸브의 개폐를 하여서는 안된다.
- (4) 밸브를 조작할 수 있는 층에서 밸브 손잡이까지의 높이는 1,200~1,400 mm 가 되도록 하며 어떠한 경우에도 2,200 mm를 초과하지 않도록 한다.
- (5) 밸브 설치 시 흐름 방향을 지시하고 있는지 확인 후 지시하는 방향으로 설치한다.

M - 118 - 2016

12. 비파괴검사 및 열처리

용접 전 후의 열처리 및 용접 후 용접부위의 상태를 점검하기 위한 비파괴검사 방법은 KOSHA GUIDE D-10 "화학설비 배관 등의 비파괴검사 및 열처리에 관한기술지침"에 따른다.

13. 조립

13.1 플랜지 연결

- (1) 플랜지에 의한 연결은 볼트를 채우기 전에 볼트구멍을 정확히 맞추고 플랜지의 모든 면이 균일하게 접촉할 수 있도록 설치한다.
- (2) 플랜지의 볼트 체결은 대각선으로 <그림 10>의 순서에 따른다.

<그림 10> 볼트 체결순서

- (3) 플랜지 접촉면에 개스킷이 균일하게 밀착되어야 하며 또한 균일한 조임력으로 체결되도록 한다.
- (4) 개스킷을 조립할 때는 개스킷과 접촉하는 플랜지 부위의 기름·녹·오물 등을 제거하여야 한다. 이때 거친 사포 등으로 과다하게 문지르면 플랜지 표면에 손

M - 118 - 2016

상을 줄 수 있으므로 주의하여야 한다.

- (5) 주철 플랜지와 강재 플랜지의 이음은 주철 플랜지에 손상을 주지 않도록 조립한다.
- (6) 볼트는 너트 또는 나사가 난 부착물을 관통하여 완전한 나사연결을 확인할 수 있도록 한다.
- (7) 다음과 같은 경우에는 플랜지 연결 작업을 하여서는 안된다.
 - (가) 플랜지 면 간 각도 차가 ±3° 이상인 경우
 - (나) 플랜지 중심선과 수평방향의 편차가 3.0 ㎜ 이상인 경우
 - (다) 볼트 구멍의 편차가 1.6 mm 이상인 경우
- (8) 볼트를 조였을 때 나사산이 2~3산 정도 나오도록 한다.

13.2 나사이음

- (1) 나사이음에 사용되는 윤활제는 사용조건에 적합해야 하고 사용 유체와 반응하는 것이어서는 안된다.
- (2) 나사이음에 누설방지용접을 할 경우 이음부에는 윤활제를 제거하여야 한다.
- (3) 나사이음은 심한 침식, 틈새부식, 충격 또는 진동의 발생이 예상되는 곳에 사용해서는 안된다.

13.3 기타

- (1) 펌프, 압축기 등의 주위 배관은 설비의 최종 설치 완료후 행하고 배관의 자중이 설비 노즐에 전달되지 않도록 설치한다.
- (2) 배관이 벽, 천장, 마루를 관통할 경우는 슬리브를 설치하고 필요에 따라서는 밀봉한다.

M - 118 - 2016

14. 내압시험

제작, 조립, 설치가 완료된 배관은 기밀을 확인하기 위하여 내압시험을 하여야 한다.

14.1 내압시험의 준비

(1) 이음부의 노출

용접부를 포함한 모든 이음부는 시험 중에 검사를 수행하기 위하여 보온재를 제거하여 노출시킨다.

(2) 임시 지지물의 추가

증기나 가스용으로 설계된 배관은 시험유체의 무게를 지지하기 위하여 추가로 임시지지물을 설치한다.

(3) 신축관 이음부의 구속 또는 격리

신축관 이음부는 시험 중에 추가되는 축 방향의 하중을 고려하여 임시구속물을 설치하거나 또는 격리시킨다.

(4) 시험유체의 팽창에 대한 주의

내압시험을 일정기간 유지하는 동안 시험유체의 열팽창 등에 의한 응력이 발생되지 않도록 한다.

14.2 수압시험

(1) 배기구설치

시험유체가 채워지는 동안에 공기 주머니를 제거할 수 있도록 높은 지점에 배기구를 설치한다.

M - 118 - 2016

(2) 시험유체

일반적으로 물을 사용한다.

(3) 시험압력 및 유지시간

수압시험 압력은 배관설계압력의 1.5배 이상으로 하고 최소 10분 동안 압력을 계속 유지하여야 한다.

14.3 기압시험

배관에 물을 채울 수 없는 특별한 경우에 한하여 기압시험을 실시할 수 있다.

(1) 시험유체

사용되는 유체는 공기 또는 불활성가스이어야 하며, 독성이 없어야 한다.

(2) 시험압력 및 유지시간

기압시험 압력은 배관설계압력의 1.1배로 한다. 시험압력의 50 %까지는 점진적으로 증가시켜 압력을 올리고, 그 후에는 시험압력에 도달할 때까지 시험압력의 10 %씩 단계적으로 증가시켜야 한다. 최소 10분 동안 압력을 계속 유지하여야한다.

15. 배관의 식별표시

15.1 명세 표시 방법

작업자가 쉽게 알아볼 수 있도록 제품에 직접 표기하거나 이름판을 사용하여 다음 과 같은 명세를 표시한다.

M - 118 - 2016

- (1) 배관 및 이음쇠
- (가) 호칭지름 및 배관두께
- (나) 재질
- (2) 밸브류
- (가) 호칭지름
- (나) 압력등급
- (다) 재질
- (라) 유체 흐름방향(몸체에만 표시)
- (3) 플랜지
- (가) 호칭지름
- (나) 압력등급
- (다) 재질
- (4) 배관지지물
- (가) 설계하중
- (나) 이동량
- 15.2 이송되는 물질을 표시하는 방법
 - (1) 색깔 표시방법
 - (가) 이송 물질을 나타내는 색깔은 사업장의 규정된 물질별 표준색상을 사용하여 일정 간격마다 배관둘레에 도색하여야 한다. 특별히 필요한 경우에는 배관 전 체의 도색도 가능하다.
 - (나) 이송 물질명은 색깔의 표시 부분에 물질명 또는 약어형식으로 표기한다.

M - 118 - 2016

- (다) 흐름의 방향은 색깔 표시 부분 좌우측의 용이한 곳에 화살표를 사용하여 나타 낸다.
- (라) 색깔 표시 부분의 폭, 물질명, 화살표의 크기는 <그림 11>을 참고하여 적용한다.

(단위 : mm)

배관의 크기	색깔표시부분의 폭(A)	물질명의 글자크기(B)	화살표길이(C)
20~30	200	12	100
40~50	200	20	100
65 ~ 150	300	30	100
200~250	600	65	150
300 이상	800	90	200

<그림 11> 배관의 식별표시 방법

(2) 색깔표시 부분의 위치

- (가) 밸브, 펌프, 유량계, 필터 등의 양 끝단으로부터 150~500 ㎜ 거리의 전후단
- (나) 배관 분기점으로부터 150~500 mm의 지점
- (다) 지하배관 인입 또는 인출지점의 경우 지표면에서 500 mm 지점
- (라) 벽체, 건물 등을 통과하는 경우 관통지점 양측으로부터 150~500 mm 지점