ECS 735P/U: THE SEMANTIC WEB FINAL COURSE WORK

NATISHA MALLICK - 220867092

BASIC TASK:

T-Box Creation using Protégé: I created an ontology about Basketball players.

Step1: Creating Class Hierarchy

For this I created the class hierarchy as follows-

BasketballPlayer

League

Position

Team

Keeping in mind the last task of the coursework-SWRL Rules:

I also added two more classes TallPlayer & ShortPlayer

Step2: Adding data & object properties -

Object Properties:

ObjectProperty	Domain	Range	Characteristic
hasPosition	BasketballPlayer	Position	Functional
playsFor	BasketballPlayer	Team	InverseFunctional
playsInLeague	Team	League	Transitive

Data Properties:

The domain and ranges for the different data properties were set as follow:

DataProperty	Domain	Range	Characteristic
age	BasketballPlayer	xsd:decimal	Functional, irreflexive
birthDate	BasketballPlayer	xsd:date	Functional, irreflexive
birthplace	BasketballPlayer	xsd:rdf:Literal	Functional, irreflexive
careerEnd	BasketballPlayer	xsd:date	Functional, irreflexive
careerStart	BasketballPlayer	xsd:date	Functional, irreflexive
height	BasketballPlayer	xsd:integer	Functional, irreflexive
leagueEstablished	League	rdfs:literal	Functional
name	BasketballPlayer	rdfs:literal	Functional, irreflexive
numberOfChampionships	Team	rdfs:Literal	Functional, irreflexive
teamName	Team	rdfs:Literal	Functional, irreflexive
weight	BasketballPlayer	Xsd:integer	Functional, irreflexive

Step3: Data Population from dbpedia: https://dbpedia.org/ontology/

For this I created a python script- basketball-dbpedia.py which contains a sparql query to create an RDF dump for the ontology from dbpedia and creates a new file called- basketballNM_dbpedia_dump.ttl in turtle format.

This .ttl file is used to load data into the ontology- using the direct imports in the Active Ontology tab

Once the data is loaded - The File is now an A-Box

The data loaded can also be viewed from the instances tab to see more details about the players

Step4: Querying the local ontology using sparql

The following code is used to query the local ontology using sparql

BONUS TASK 1: Fusing information from a non-semantic data source

For this task, I used a CSV file containing the following information about the basketball players- name, birthDate, age, height, weight, position, team, league, leagueEstablished, numberofChampionships, careerStart, careerEnd

Another python script- called basketballcsv_dump.py is created to load the data into the existing ontology with the help of csv dump.ttl again using the import tool in the Active ontology tab-

Bonus Query-

```
# Define the name of the BasketballPlayer you want to retrieve the position for BasketballPlayer_name = 'Borgie Hermida'
# Define the SPARQL query to retrieve the player's team
query = prepareQuery(
    initNs=NAMESPACE
# Execute the SPARQL query and print the results
    result in g.query(query):
player = result.player.split('#')[-1]
ShortPlayer = result.bntPlayer
print(f'{BasketballPlayer_name} has height {ShortPlayer} and is a Short Player')
```

BONUS TASK 2: Description Logics to define SWRL rules

TallPlayer: The following logic is created to find all the Tall Players from the A-Box Any player with height > 1.8 meters would be inferred as a tall player.

The SWRL rule would also show up in the player Description-

ShortPlayer: The following logic is created to find all the Short Players from the A-Box Any player with height < 1.8 meters would be inferred as a short player

The SWRL rule would also show up in the player Description-

Files included along with the report:

Folder Name: BasicTask

1. T-Box : BasketballNM.owl

2. A-Box: BasketballNM_basic.owl

3. Pyscript: Basketball-basic.py

4. TurtleFile: BasketballNM_dbpedia_dump.ttl

5. Query: Basketball_basic_query.py

Folder Name: BonusTasks_1_2

1. A Box: BasketballNM_bonus.owl (Data populated from both Basic & Bonus 1&2 Tasks)

2. Pyscript: Basketball_bonus.py

3. CSV File: team.csv

4. TurtleFile: Basketballcsv_dump.ttl

5. Query: Basketball_bonus_query.py

