

Ens: Prof. Marco Picasso Analyse numérique et optimisation - XXX 11 Août 2020 de 08h15 à 11h15 201

SCIPER: FAKE-9

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à **choix multiple** il y a une ou plusieurs réponses correctes. On comptera :
 - +1/N points si vous cochez une réponse correcte, où N est le nombre de réponses correctes,
 - 0 point si vous ne cochez rien,
 - -1/M point si vous cochez une réponse incorrecte, où M est le nombre de réponses incorrectes.
- Pour les questions de type **vrai-faux**, on comptera:
 - +1 point si vous cochez la réponse correcte,
 - 0 point si vous ne cochez rien,
 - -1 point si vous cochez la réponse incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Il y a 33 questions à **choix multiple** ou questions **vrai-faux** et 14 points répartis sur deux questions à **rédiger**.
- Aucune page supplémentaire ne pourra être ajoutée à ce document.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien				
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren		
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte				

Questions à choix multiple et vrai-faux

Pour chaque question mettez une croix dans les cases correspondant à des réponses correctes sans faire de ratures.

Soit n un entier positif. On cherche $\vec{x}^* \in \Omega$ tel que $f(\vec{x}^*) \leq f(\vec{x}) \ \forall \ \vec{x} \in \Omega$ où $f(\vec{x}) = x_1 + x_2 + \dots + x_{n-1} - x_n$ et $\Omega = \{\vec{x} \in \mathbb{R}^n \text{ tel que } x_i \geq 0, i = 1, \dots, n \text{ et } x_1 + x_2 + \dots + x_n = 1\}$. Soit \mathcal{L} le lagrangien défini $\forall \ \vec{x} \in \mathbb{R}^n, \ \forall \ \vec{\lambda} \in \mathbb{R}^n, \ \forall \ \mu \in \mathbb{R}$ par

$$\mathcal{L}(\vec{x}, \vec{\lambda}, \mu) = f(\vec{x}) - (\lambda_1 x_1 + \dots + \lambda_n x_n) - \mu(x_1 + \dots + x_n - 1).$$

Question 1: Soit $\vec{c} \in \mathbb{R}^n$ défini par $c_i = 1, i = 1, \dots, n-1$ et $c_n = -1$. On a pour $i = 1, \dots, n$

Les conditions KKT s'écrivent: trouver $\vec{x}^* \in \mathbb{R}^n$, $\vec{\lambda}^* \in \mathbb{R}^n$, $\mu^* \in \mathbb{R}$ tels que

$$\vec{F}(\vec{x}^*, \vec{\lambda}^*, \mu^*) = \vec{0} \tag{1}$$

$$\vec{\lambda}^* \ge \vec{0} \tag{2}$$

$$\vec{x}^* \ge \vec{0} \tag{3}$$

où \vec{F} est défini pour tout $\vec{x} \in \mathbb{R}^n$, $\vec{\lambda} \in \mathbb{R}^n$, $\mu \in \mathbb{R}$ par

$$\vec{F}(\vec{x}, \vec{\lambda}, \mu) = \begin{pmatrix} ????\\ x_1 + \dots + x_n - 1\\ \lambda_1 x_1\\ \vdots\\ \lambda_n x_n \end{pmatrix}$$

Question 2 : A la place de ??? il faut écrire

$$\vec{c} + \vec{\lambda} + \mu \vec{1}$$

$$\bigcap -\vec{c} + \vec{\lambda} + \mu \vec{1}$$

$$\vec{c} - \vec{\lambda} - \mu \vec{1}$$

$$\vec{c} + \vec{\lambda} - \mu \vec{1}$$

On implémente la méthode des points intérieurs pour approcher la solution de (1) (2) (3). A chaque étape on effectue un pas de la méthode de Newton pour tenir compte de (1). Le fichier exam3.m implémente la méthode.

Fichier exam3.m:

function x_new=exam3(n,eps)
c=ones(n,1);
c(n)=-1;
x_old=max(eps,zeros(n,1));
lambda_old=max(eps,zeros(n,1));
mu_old=0;
for iter=1:10

```
mat1 = horzcat(sparse(n,n),-speye(n,n),-???);
 mat2 = horzcat(ones(1,n),sparse(1,n),sparse(1,1));
 mat3 = horzcat(sparse(1:n,1:n,lambda_old,n,n),???,sparse(n,1));
 mat = vertcat(mat1,mat2,mat3);
 rhs1 = ???;
 rhs2 = ones(1,n)*x_old-1;
 rhs3 = sparse(n,1);
 for i=1:n
  rhs3(i)=???;
 rhs = vertcat(rhs1,rhs2,rhs3);
  sol=mat\rhs;
 x_new=max(eps,x_old-sol(1:n));
 lambda_new=max(eps,lambda_old-sol(n+1:2*n));
 mu_new=mu_old-sol(2*n+1:2*n+1);
 discrep=norm(x_new-x_old)/norm(x_new);
 printf ("iter: %d Discrepancy: %f \n",iter,discrep);
 x_old=x_new;
 lambda_old=lambda_new;
 mu_old=mu_new;
  if (discrep<0.001)
  break
  end
end
end
```

Question 3: A la ligne mat1= il faut remplacer ??? par
ones(1,n)
zeros(1,n)
zeros(n,1)
ones(n,1)
Question 4: A la ligne mat3= il faut remplacer ??? par
speye(n,n)
sparse(1:n,1:n,x_old,n,n)
ones(n,n)
zeros(n,n)
Question 5: A la ligne rhs1=??? il faut remplacer ??? par
c-ones(n,1)*mu_old-lambda_old
c+ones(n,1)*mu_old-lambda_old
-c+ones(n,1)*mu_old+lambda_old
c+ones(n,1)*mu_old+lambda_old
Question 6: A la ligne rhs3(i)=??? il faut remplacer ??? par
-lambda_old(i)
<pre>x_old(i)*lambda_old(i)</pre>
-x_old(i)
<pre>-x_old(i)*lambda_old(i)</pre>

Question 7: On a:

- $AA^T \vec{v}_i = \sigma_i^2 \vec{v}_i \ i = 1, \dots, n$

Question 8 : Le coefficient A_{ij} $i=1,\ldots,m$ $j=1,\ldots,n$ est donné par:

où, étant donné deux vecteurs \vec{a} et \vec{b} , on note $\vec{a}\vec{b}^T$ la matrice de coefficient $i,j:(\vec{a}\vec{b}^T)_{ij}=a_ib_j.$

Question 9 : Soit A la matrice définie par

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array}\right).$$

Sachant que la SVD de A donne $\sigma_1 > 0$ et $\sigma_2 = 0$, on a $A = \sigma_1 \vec{u}_1 \vec{v}_1^T$.

VRAI FAUX

On considère le problème suivant : trouver $\vec{x} \in \mathbb{R}^N$ tel que $\vec{F}(\vec{x}) = \vec{0}$ où $\vec{F} : \mathbb{R}^N \to \mathbb{R}^N$ est définie par

Question 10: La matrice jacobienne est définie $\forall \vec{x} \in \mathbb{R}^N$ par :

avec

Question 11: Si \vec{x} et $\vec{y} \in \mathbb{R}^N$ sont tels que $\vec{F}(\vec{x}) = 0$ et $\vec{F}(\vec{y}) = \vec{0}$ on a:

Le fichier exam1.m implémente la méthode de Newton pour approcher \vec{x} .

Fichier exam1.m:

```
function[x] = exam1(N)
% Methode de Newton : Etant donne x^n, trouver x^{n+1}
% tel que DF(x^n)(x^n - x^{n+1}) = F(x^n)
% En pratique on construit A=DF(x^n), b=F(x^n)
% on resout Ay=b (decomposition LL^T de A) et on pose x^{n+1}=x^n-y
% parametres
%
            : nombre d inconnues du systeme non lineaire
```

: N-vecteur, diagonale de A, puis diagonale de L telle que A=LL^T %

```
: (N-1)-vecteur, sous-diagonale de A, puis sous-diagonale de L
            : N-vecteur, second membre de Ay=b, puis solution de Ay=b
% x
            : N-vecteur, contient x^n puis x^{n+1}
%
for i=1:N
   x(i) = 1;
end
stop=1;
iter=0;
coeff=(N+1)*(N+1);
while stop>1e-10
    iter=iter+1;
    for i=1:N
    a(i) = 2*coeff+???;
    end
    for i=1:N-1
        c(i) = -coeff;
    end
    b(1) = coeff*(2*x(1)-x(2))+???;
    for i=2:N-1
    b(i) = coeff*(2*x(i)-x(i-1)-x(i+1))+???;
    end
    b(N) = coeff*(2*x(N)-x(N-1))+???;
    \% Decomposition de Cholesky de la matrice A
    a(1) = ???;
    for i=1:N-1
        c(i) = c(i)/???;
        a(i+1) = sqrt(a(i+1)-???);
    end
    % Resolution du systeme lineaire Ly = b, puis L^T x = y
    b(1)=???;
    for i=1:N-1
     b(i+1) = (b(i+1)-???)/a(i+1);
    end
    % resolution du systeme lineaire L^T x = y
    b(N)=???;
    for i=N-1:-1:1
     b(i) = (b(i)-???)/a(i);
    x^n+1 = x^n - y
    for i=1:N
    x(i) = x(i) - b(i);
    end
```

```
stop=norm(b)/norm(x);
   fprintf('iter=%i, stop = %e \n',iter,stop)
end
end
Question 12: A la ligne a(i)=2*coeff(i)+???, il faut remplacer ??? par
 3*x(i)*x(i)-1
 3*x(i)*x(i)
 x(i)*x(i)*x(i)
 x(i)*x(i)*x(i)-1
Question 13: A la ligne b(i)=coeff*(2*x(i)-x(i-1)-x(i+1))+???, il faut remplacer ??? par
   x(i)*x(i)*x(i)-1
    x(i)*x(i)*x(i)
  3*x(i)*x(i)-1
    3*x(i)*x(i)
Question 14: A la ligne c(i)=c(i)/???, il faut remplacer ??? par
 a(i+1)
 a(i)
  b(i+1)
 b(i)
Question 15: A la ligne a(i+1)=sqrt(a(i+1)-???), il faut remplacer ??? par
 c(i)*c(i)
    a(i)*c(i)
    a(i)*a(i)
Question 16: A la ligne b(i+1)=(b(i+1)-???)/a(i+1), il faut remplacer ??? par
 a(i)*b(i)
   a(i+1)*b(i)
 \bigcap c(i)*b(i)
Question 17: A la ligne b(i)=(b(i)-???)/a(i), il faut remplacer ??? par
 c(i)*b(i+1)
 c(i)*b(i)
    a(i)*b(i+1)
    a(i)*b(i)
```



```
>> exam1(9);
iter=1, stop = 3.580783e+00
iter=2, stop = 1.274647e+00
iter=3, stop = 1.123099e-02
iter=4, stop = 4.868424e-07
iter=5, stop = 9.555565e-16
>> exam1(19);
iter=1, stop = 3.720121e+00
iter=2, stop = 1.277933e+00
iter=3, stop = 1.123106e-02
iter=4, stop = 4.834302e-07
iter=5, stop = 1.710970e-15
>> exam1(39);
iter=1, stop = 3.791584e+00
iter=2, stop = 1.278749e+00
iter=3, stop = 1.123128e-02
iter=4, stop = 4.825987e-07
iter=5, stop = 6.741537e-16
```

On en déduit

La méthode de Newton conv	verge quadratiquement pour ce point de départ	
La méthode de Newton conv	verge quadratiquement quel que soit le point de dé	part
La méthode de Newton diver	erge pour ce point de départ	

On considère le problème suivant: trouver $u:[0,1]\times[0,+\infty[\to\mathbb{R}$ telle que

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t), & 0 < x < 1, \ t > 0, \\ u(x,0) = \sin(\pi x), & 0 < x < 1, \\ \frac{\partial u}{\partial t}(x,0) = 0, & 0 < x < 1, \\ u(0,t) = 0, \ u(1,t) = 0, \quad t > 0. \end{cases}$$

Question 19: La solution du problème est donnée par

```
u(x,t) = \sin(\pi x)e^{\pi t}
u(x,t) = \sin(\pi x)e^{-\pi t}
u(x,t) = \sin(\pi x)(1 + \sin(\pi t))
u(x,t) = \sin(\pi x)\cos(\pi t)
```

Soit N un entier positif, $h = \frac{1}{N+1}$, $x_i = ih$, $i = 0, \dots, N+1$. Soit $\tau > 0$ le pas de temps, $t_n = n\tau$, $n = 0, 1, \dots$ On note u_i^n une approximation de $u(x_i, t_n)$ obtenue en utilisant des formules de différences finies centrées pour approcher $\frac{\partial^2 u}{\partial t^2}$, $\frac{\partial^2 u}{\partial x^2}$ et $\frac{\partial u}{\partial t}$. Le fichier exam2.m implémente ce schéma.

```
function [u2] = exam2(N,M,tau)
%
  Schema explicite centre pour l'equation des ondes
%
%
%
  parametres
%
% N
            : nombre de points interieurs dans l'intervalle [0,1]
% h
            : pas d'espace
% M
            : nombre de pas de temps
% tau
            : pas de temps
% t
            : temps courant
% u0
          : N-vecteur, u0(i) est une approximation de u(x_i,t_n-1)
          : N-vecteur, u1(i) est une approximation de u(x_i,t_n)
  u1
          : N-vecteur, u2(i) est une approximation de u(x_i,t_n+1)
%
h=1./(N+1);
lambda=???;
% condition initiale u0 et u1
%
for i=1:N
  u0(i)=sin(pi*i*h);
u1(1)=???;
for i=2:N-1
  u1(i)=???;
end
u1(N)=???;
% schema
%
```

```
t=tau;
for n=2:M
  t=t+tau;
  u2(1)=???;
  for i=2:N-1
   u2(i)=???;
  end
  u2(N) = ???;
%
% reactualiser la solution
%
  for i=1:N
    u0(i)=u1(i);
   u1(i)=u2(i);
  end
end
%
% imprimer l'erreur maximum au temps final
err = 0;
for i=1:N
    erri = abs(u2(i)-sin(pi*i*h)*???);
    if (erri>err)
        err = erri;
    end
end
fprintf(' erreur maximum au temps final %e \n',err)
Question 20: A la ligne lambda=??? il faut écrire
    tau/h
    tau^2/h^2
    tau/h^2
    tau^2/h
Question 21: A la ligne u1(i)=??? il faut écrire
 (1-lambda)*u0(i)+lambda*(u0(i-1)+u0(i+1))
 2*(1-lambda)*u0(i)+lambda/2*(u0(i-1)+u0(i+1))
   2*(1-lambda)*u0(i)+lambda*(u0(i-1)+u0(i+1))
 (1-lambda)*u0(i)+lambda/2*(u0(i-1)+u0(i+1))
Question 22: A la ligne u2(i)=??? il faut écrire
 (1-lambda)*u1(i)+lambda/2*(u1(i-1)+u1(i+1))-u0(i)
 (1-lambda)*u1(i)+lambda*(u1(i-1)+u0(i+1))-u0(i)
   2*(1-lambda)*u1(i)+lambda/2*(u1(i-1)+u1(i+1))-u0(i)
    2*(1-lambda)*u1(i)+lambda*(u1(i-1)+u1(i+1))-u0(i)
```

Après avoir complété le fichier on obtient les résultats suivants:

>> u=exam2(9,200,0.1);		
erreur maximum au temps final	1.776357e-15	
>> u=exam2(9,200,0.11);		
erreur maximum au temps final	3.639871e+54	
>> u=exam2(19,200,0.05);		
erreur maximum au temps final	2.775558e-15	
>> u=exam2(19,200,0.051);		
erreur maximum au temps final	8.657832e+15	
Question 23 : On en déduit		
\square Le schéma converge à l'ordre h	$+\tau$.	
Le schéma est stable $\forall h, \tau > 0$.		
\Box Le schéma converge à l'ordre h^2		
	+7.	
\square Le schéma est stable si $\tau \leq h$.		
Après avoir complété le fichier on obt	ient les résultats suivants:	
>> u=exam2(9,10,0.09);		
erreur maximum au temps final	6.903714e-04	
>> u=exam2(19,20,0.045);		
erreur maximum au temps final	1.711472e-04	
>> u=exam2(39,40,0.0225);	4 000004 05	
erreur maximum au temps final	4.269724e-05	
>> u=exam2(79,80,0.01125);	1 0669720 05	
erreur maximum au temps final	1.0000/30-05	
Question 24 : On en déduit		
Le schéma converge à l'ordre $h + \tau$.		
Le schéma converge à l'ordre $h^2 + \tau^2$.		
Le schéma est stable $\forall h, \tau > 0$.		
Le schéma est stable si $\tau \leq h$.		
Ze selicina est stable si / \(\frac{1}{2} \) it.		

On cherche $(\vec{x}^*, \vec{q}^*) \in \Omega$ tel que $f(\vec{x}^*, \vec{q}^*) \leq f(\vec{x}, \vec{q}) \ \forall \ (\vec{x}, \vec{q}) \in \Omega$, où $f(\vec{x}, \vec{q}) = \frac{\alpha}{2} ||\vec{q}||^2 + \frac{1}{2} (x_{n+1} - \beta)^2$ et $\Omega = \{(\vec{x}, \vec{q}) \in \mathbb{R}^{2n+1} \times \mathbb{R}^{2n+1}; A\vec{x} - \vec{b} = \vec{q}\}.$

On introduit le lagrangien défini par $\mathcal{L}(\vec{x}, \vec{q}, \vec{\mu}) = f(\vec{x}, \vec{q}) - \vec{\mu}^T (A\vec{x} - \vec{b} - \vec{q}) \ \forall \ \vec{x}, \vec{q}, \vec{\mu} \in \mathbb{R}^{2n+1}$, les conditions KKT s'écrivent (après avoir éliminé $\vec{\mu}^*$):

$$\left(\begin{array}{cc} A & B \\ C & \alpha A^T \end{array}\right) \left(\begin{array}{c} \vec{x}^* \\ \vec{q}^* \end{array}\right) = \left(\begin{array}{c} \vec{b} \\ \vec{d} \end{array}\right).$$

Question 25 : La matrice B est donnée par

- $B_{n+1,n+1} = -1, B_{i,j} = 0 \text{ si } (i,j) \neq (n+1,n+1) i, j = 1, \dots, 2n+1$
- $\square B = -I$
- $B_{n+1,n+1} = 1, B_{i,j} = 0 \text{ si } (i,j) \neq (n+1,n+1) \ i,j = 1,\ldots,2n+1$
- $\square B = I$

Question 26 : La matrice C est donnée par

- $C_{n+1,n+1} = -1, C_{i,j} = 0 \text{ si } (i,j) \neq (n+1,n+1) i, j = 1, \dots, 2n+1$
- $\bigcap C = I$
- $\bigcap C = -I$
- $C_{n+1,n+1} = 1, C_{i,j} = 0 \text{ si } (i,j) \neq (n+1,n+1) \ i,j=1,\ldots,2n+1$

Question 27 : Le vecteur \vec{d} est donné par

- $\prod \vec{d} = C\vec{b}$
- $\vec{d} = \beta C \vec{b}$
- $\vec{d} = \vec{b}$
- $\prod \vec{d} = -\vec{b}$
- $\vec{d} = -\beta C \vec{b}$

$$\begin{cases}
-u''(x) = f(x), & 0 < x < 1, \\
u(0) = 0, \\
u'(1) = 0.
\end{cases}$$

Question 28 : La formulation faible du problème consiste à trouver $u \in V$ telle que

$$\int_0^1 u'(x)v'(x)dx = \int_0^1 f(x)v(x)dx, \quad \forall \ v \in V,$$

où V est défini par :

$$\square$$
 $V = \{g: [0,1] \to \mathbb{R} \text{ continue, } g' \text{ continue par morceaux, } g(0) = g(1) = 0\}$

$$\square$$
 $V = \{g : [0,1] \to \mathbb{R} \text{ continue, } g' \text{ continue par morceaux, } g(0) = 0\}$

$$V = \{g: [0,1] \to \mathbb{R} \text{ continue, } g' \text{ continue par morceaux, } g(1) = 0 \}$$

Question 29 : Soit N un entier positif, h=1/(N+1), $x_i=ih$, $i=0,1,\ldots,N+1$. On considère les fonctions "chapeaux" $\varphi_i(x)$, $i=0,1,\ldots,N+1$, continues, polynômiales de degré 1 sur chaque intervalle telles que :

$$\varphi_i(x_i) = 1, \ \varphi_i(x_j) = 0 \text{ si } j \neq i, \ j = 0, 1, \dots, N+1.$$

L'approximation des élements finis correspondante consiste à chercher $u_h \in V_h$ telle que

$$\int_{0}^{1} u'_{h}(x)v'_{h}(x)dx = \int_{0}^{1} f(x)v_{h}(x)dx, \quad \forall \ v_{h} \in V_{h},$$

où V_h est défini par :

$$V_h = \operatorname{span}(\varphi_1, \varphi_2, \dots, \varphi_{N+1})$$

 ${\bf Question}~{\bf 30}$: D'autre part, u_h est défini par :

$$J(g) = g(-\alpha) + g(\alpha), \text{ où } 0 < \alpha < 1.$$

Question 31: On a:

Pour
$$\alpha = \frac{1}{\sqrt{3}}$$
, on a $\int_{-1}^{1} p(t) dt = J(p) \quad \forall \ p \in \mathbb{P}_3$.

$$\square$$
 Pour $\alpha = \frac{1}{\sqrt{3}}$, on a $\int_{-1}^{1} p(t) dt = J(p) \quad \forall \ p \in \mathbb{P}_2$.

Question 32 : Soit $f:[0,1]\to\mathbb{R}$ une fonction continue, N un entier positif, $h=1/N,\ x_i=ih,\ i=0,1,\ldots,N.$ On a

$$\int_0^1 f(x) dx = \frac{h}{2} \sum_{i=0}^{N-1} \int_{-1}^1 f(x_i + h \frac{t+1}{2}) dt.$$
 (2)

VRAI FAUX

Question 33 : On approche les intégrales de -1 à 1 dans (2) en utilisant la formule de quadrature (1) avec $\alpha = \frac{1}{\sqrt{3}}$; On obtient ainsi l'approximation $L_h(f)$. On a

$$\left| \int_0^1 f(x) \mathrm{d}x - L_h(f) \right| \le Ch^4.$$

$$\left| \int_0^1 f(x) dx - L_h(f) \right| \le Ch^4.$$

Questions à rédiger

Répondre dans l'espace quadrillé dédié. Votre réponse doit être soigneusement justifiée, toutes les étapes de votre raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher: elles sont réservées au correcteur.

Question ouverte 1: Cette question est notée sur 5 points.

On considère le problème suivant : trouver $u:[0,10]\to\mathbb{R}$ telle que

$$\begin{cases} u'(t) + u(t) = 0, & 0 < t \le 10, \\ u(0) = 1. \end{cases}$$

- (a) Donner une formule pour u(t), $0 < t \le 10$.
- (b) Soit N un entier positif, h = 10/N, $t_n = nh$, n = 0, 1, ..., N. On note u^n l'approximation de $u(t_n)$ obtenue en utilisant une formule de différences finies progressive (schéma d'Euler progressif, explicite). Ecrire le schéma correspondant.
- (c) Montrer que $\forall x > 0$:

$$|e^{-x} - (1-x)| \le \frac{x^2}{2}$$

(d) En déduire que

$$|u(t_N) - u^N| \le \frac{h^2}{2} (1 + |1 - h| + \dots + |1 - h|^{N-1})$$

(e) Montrer que $\forall 0 < h \leq 2$, on a

$$|u(t_N) - u^N| \le 5h.$$

Question ouverte 2: Cette question est notée sur 9 points.

On considère le problème suivant : trouver $u:[0,1]\to\mathbb{R}$ telle que

$$\begin{cases}
-u''(x) = e^x, & 0 < x < 1, \\
u(0) = 0, u(1) = 0.
\end{cases}$$

Soit N un entier positif, h = 1/(N+1), $x_i = ih$, i = 0, 1, ..., N+1. On note u_i l'approximation de $u(x_i)$ obtenue avec l'aide d'une méthode de différences finies centrées.

- (a) Ecrire le schéma permettant de calculer u_i , i = 1, ..., N.
- (b) Ecire le système linéaire correspondant $A\vec{u} = \vec{f}$ où $\vec{u} \in \mathbb{R}^N$ est le vecteur de composantes u_i , A et f sont à définir.
- (c) On suppose dans la suite que $u \in \mathcal{C}^4[0,1]$, montrer que :

$$\frac{-u(x_{i-1}) + 2u(x_i) - u(x_{i+1})}{h^2} = e^{x^i} + r_i, \ i = 1, \dots, N,$$

où r_i est à définir. Montrer $\exists C > 0, \forall 0 < h \le 1, |r_i| \le Ch^2$.

(d) Soit $\vec{w} \in \mathbb{R}^N$ le vecteur de composantes $u(x_i)$. En déduire que

$$A(\vec{w} - \vec{u}) = \vec{r}.$$

(e) On admet le résultat suivant : $\forall \vec{g} \in \mathbb{R}^N$, si \vec{v} est tel que $A\vec{v} = \vec{g}$, alors :

$$\max_{1 \le i \le N} |v_i| \le \frac{1}{8} \max_{1 \le i \le N} |g_i|.$$

En déduire que :

$$\max_{1 \le i \le N} |u(x_i) - u_i| \le \frac{1}{8} Ch^2.$$

(f) Soit $\mathcal{L}: \mathbb{R}^N \to \mathbb{R}$ définie $\forall \ \vec{v} \in \mathbb{R}^N$ par

$$\mathcal{L}(\vec{v}) = \frac{1}{2} \vec{v}^T A \vec{v} - \vec{f}^T \vec{v}.$$

Montrer que

$$\mathcal{L}(\vec{v}) = \mathcal{L}(\vec{u}) + (\vec{v} - \vec{u})^T \left(A \vec{u} - \vec{f} \right) + \frac{1}{2} \left(\vec{v} - \vec{u} \right)^T A \left(\vec{v} - \vec{u} \right) \quad \forall \ \vec{v} \in \mathbb{R}^N.$$

On admet que A est symétrique définie positive. En déduire que $\mathcal{L}(\vec{v}) \geq \mathcal{L}(\vec{u}) \ \forall \ \vec{v} \in \mathbb{R}^N$.

