

2009 Regolith Simulant Workshop
Marshall Space Flight Center
Huntsville, Alabama

Overview of Figure of Merit analyses of
Simulants and the Fit-to-Use Matrix

*Christian M. Schrader
BAE Systems/MSFC*

Figure of merit properties

✓ Primary characteristics

- Particle type
- Particle size distribution
- Particle shape distribution
- Bulk density properties (e.g., maximum, minimum, average)

Developing approaches and routines to compare granular materials

- ✓ Figures of Merit algorithms were developed to quantitatively compare distributions in granular materials
 - Version 1 software released February, 2008
 - Revision 1 software was used in 2008 and will be publicly released early 2009.
 - Mathematics and algorithm documented in Rickman et al. (STAIF 2007); and MSFC-RQMT-3503 (DRAFT)
- ✓ FoM Revision 1 algorithms have been used to compare all simulants to the Apollo 16 reference material for composition and particle size distribution. This is in the *Lunar Regolith Simulant User's Guide* (<http://isru.msfc.nasa.gov>)

Category Properties Listing

Compressive Strength			
Coefficient of friction			
Shear strength			
Hardness			
Rheology			
Angle of repose			
Tensile strength			
Fracture behavior			
Impact resistance			
Particle density			
Bulk density			
Porosity			
Thermal properties			
Surface area			
Friability			
Permeability			
Grain size			
Grain size distribution			
Grain shape			
Grain shape distribution			
Magnetic grain properties			
Electrostatic charging			
Glass composition			
Bulk chemistry			
Reactivity as volatile/soluble minerals			
Surface reactivity			
Mineralogical composition as function of grain size			
Modal mineralogical composition			
Soil texture			
Implanted solar particles			
Agglutinates with nanophase Fe			

32 Characteristics from 2005 Workshop mapped to FoM properties

directly addressed by FoM

derivative of FoM property

partially dependent on environment

Overview of lunar simulants

Simulant(s)	Type	Primary Reported Use	Manufacturer	feedstock
NU-LHT series	Highlands	General	NASA-MSFC and USGS	Stillwater mine (MT), commercial minerals
OB-1	Highlands	Geotechnical	Norcat	Shawmere anorthosite, olivine slag glass
JSC-1 (-1A, -1AF)	Mare, low-Ti	Geotechnical and lesser chemical	Orbitec, Inc.	Basalt ash, San Francisco volcanic field (AZ)
FJS-1	Mare, low-Ti	Geotechnical	Japanese, (JAXA, LETO)	Mt. Fuji area basalt
MLS-1	Mare, high-Ti	Chemical	University of Minnesota	Basalt sill, Duluth complex

Major phase modal comparison between simulants and regolith

These data report volume% of phases (minerals and glass) without regard to their occurrence as free particles, in lithic fragments, in agglutinates, in breccias, etc.

Trace mineral modal comparison between simulants and regolith

These data report volume% of phases (minerals and glass) without regard to their occurrence as free particles, in lithic fragments, in agglutinates, in breccias, etc.

Particle type modal data: regolith and simulants

We use these data for the composition FoM.

It is a useful but incomplete picture of the material composition.

It does not incorporate total mineralogy/glass%, glass composition, or other characteristics.

Particle type composition FoM scores: simulants compared to 64001/2 highlands regolith

simulant	64001/64002 reference
NU-LHT-1M	0.65
NU-LHT-2M	0.55
OB-1	0.28
JSC-1	0.33
JSC-1A	0.35
JSC-1AF	0.43
MLS-1	0.35
FJS-1	0.36

	64001/2 bulk	64001/2 <1 mm	64001/2 <90 µm
Data from image analysis of thin sections			
OB-1	0.23	0.54	
NU-LHT-1M	0.23	0.58	
NU-LHT-2M	0.17	0.48	
JSC-1	0.22	0.53	
JSC-1A	0.25	0.56	
JSC-1AF	0.06	0.23	0.60
MLS-1	0.20	0.29	
FJS-1	0.26	0.45	
Dry sieve data			
OB-1	0.59		
NU-LHT-1M	0.26	0.75	
JSC-1A	0.35	0.74	
Laser diffractometry data			
NU-LHT-2M	0.29	0.82	
NU-LHT-1D			0.54
NU-LHT-1M	0.26	0.64	
JSC-1A	0.28	0.74	

Particle Size Distribution FoM

FoM score is dependent on the portion of the distribution you examine.

Extraction and pourability

NU-LHT-1M

recommended: it has been demonstrated that pseudo-agglutinates affect geomechanical behavior that may be important to excavation

NU-LHT-2M

recommended: it has been demonstrated that pseudo-agglutinates affect geomechanical behavior that may be important to excavation

NU-LHT-1D

not recommended: unrealistically fine PSD

OB-1

recommended: best PSD at coarse end; lack of lithic fragments or pseudo-agglutinates may affect flowability or angle of repose -- this should be examined

JSC-1, -1A

recommended: relatively angular particles, reasonable PSD

JSC-1AF

not recommended: unrealistically fine PSD

FJS-1

recommended: low-g tests show it has a high angle of repose; relatively angular particles, reasonable PSD

MLS-1 (with glass)

not recommended: relatively poor PSD; shape distribution is skewed towards well-rounded particles

Drilling

NU-LHT-1M

recommended: fidelity to mineral and glass% should yield appropriate abrasiveness; presence of pseudo-agglutinates may aid fidelity to regolith

NU-LHT-2M

recommended: fidelity to mineral and glass% should yield appropriate abrasiveness; presence of pseudo-agglutinates may aid fidelity to regolith

NU-LHT-1D

not recommended: unrealistically fine PSD

OB-1

most recommended: fidelity to mineral and glass% should yield appropriate abrasiveness; best PSD for coarse fractions

JSC-1, -1A

recommended with reservations: uncertain but probably reasonable fidelity to highland abrasiveness

JSC-1AF

not recommended: unrealistically fine PSD

FJS-1

recommended with reservations: uncertain but probably reasonable fidelity to highland abrasiveness, low glass

MLS-1 (with glass)

not recommended: high pyroxene/plagioclase may adversely affect particle cleavage behavior; rounded grains

Abrasion and wear

NU-LHT-1M

recommended: fidelity to mineral and glass% should yield appropriate abrasiveness; presence of pseudo-agglutinates may aid fidelity to regolith

NU-LHT-2M

recommended: fidelity to mineral and glass% should yield appropriate abrasiveness; presence of pseudo-agglutinates may aid fidelity to regolith

NU-LHT-1D

recommended with reservations: unrealistically fine PSD for many uses

OB-1

most recommended: fidelity to mineral and glass% should yield appropriate abrasiveness; best PSD for coarse fractions

JSC-1, -1A

recommended with reservations: uncertain but probably reasonable fidelity to highland abrasiveness

JSC-1AF

recommended with reservations: unrealistically fine PSD for many uses

FJS-1

recommended with reservations: uncertain but probably reasonable fidelity to highland abrasiveness, low glass

MLS-1 (with glass)

not recommended: high pyroxene/plagioclase may adversely affect particle cleavage behavior; rounded grains

Oxygen production

NU-LHT-1M

recommended for highlands: chemistry: slightly low FeO relative to lunar reference (~4 vs. 5 wt.%), but significantly closer than other simulants; mineralogy: contains ilmenite; high Fe in silicates relative to reference, which will slow reduction

NU-LHT-2M

most recommended for highlands: chemistry: slightly low FeO relative to lunar reference (~4 vs. 5 wt.%), but significantly closer than other simulants; mineralogy: contains ilmenite, phosphates and sulfides, the presence of which are realistic but possibly hazardous to ISRU processes; high Fe in silicates relative to reference, which will slow reduction

NU-LHT-1D

recommended for highlands: should be similar to NU-LHT-1M, but possibly with lower FeO

OB-1

not recommended: it is expected that the abundance of Fe-rich glass will result in unrealistically high oxygen yields per energy input; no glass analyses are available

JSC-1, -1A

recommended with reservations: chemistry: FeO is significantly high relative to lunar reference (~11 vs. 5 wt.%); mineralogy: contains natural phosphates, Ti-magnetite instead of ilmenite; use will likely result in unrealistically high oxygen yields; may be a good mare simulant (e.g., Apollo 14) for this use

JSC-1AF

recommended with reservations: should be similar to JSC-1A

FJS-1

recommended with reservations: chemistry: FeO is significantly high relative to lunar reference (~11 vs. 5 wt.%); mineralogy: contains natural phosphates, Ti-magnetite instead of ilmenite; use will likely result in unrealistically high oxygen yields; may be a good mare simulant (e.g., Apollo 14) for this use

MLS-1 (with glass)

not recommended for highlands: chemistry: FeO is very high relative to lunar reference (>14 vs. 5 wt.%); mineralogy: contains abundant ilmenite but also hydrous minerals; may result in extremely unrealistically high oxygen yields; may be an acceptable high-Ti (Apollo 11) simulant, but hydrous minerals are still problematic

Human health studies

NU-LHT-1M	suitable composition though it lacks the added phosphates and sulfides of NU-LHT-2M; reasonable PSD but too coarse in fine fraction
NU-LHT-2M	most suitable composition ; reasonable PSD but too coarse in fine fraction
NU-LHT-1D	suitable composition though it lacks the added phosphates and sulfides of NU-LHT-2M; good PSD in fine fraction
OB-1	unsuitable composition due to high Fe-glass; may be acceptable for testing where abrasiveness is of primary importance
JSC-1, -1A	possibly suitable composition ; reasonable PSD but too coarse in fine fraction
JSC-1AF	possibly suitable composition ; good PSD in fine fraction
FJS-1	possibly suitable composition ; poor PSD in fine fraction
MLS-1 (with glass)	unsuitable composition ; unsuitable PSD in fine fraction

Particle type modal data: regolith and simulants

	64001/ 64002	NU-LHT- 1M	NU-LHT- 2M	OB-1	JSC-1	JSC-1A	JSC-1AF	FJS-1	MLS-1
Lithic Fragments	31.11	0.00	0.00	0.00	90.92	90.92	91.93	80.18	52.28
Glass	8.88	22.37	7.17	52.63	0.00	0.00	0.00	0.53	36.57
Agglutinates	32.51	29.02	23.49	0.00	0.00	0.00	0.00	0.00	0.00
Plagioclase (Plag. An%)	23.32	38.78	54.89	43.95	1.54	1.54	3.39	14.11	2.60
Olivine	95	80	80	75	68	70	70	50?	47
Clinopyroxene	0.00	2.88	9.51	0.04	5.63	5.63	4.13	1.13	0.01
Orthopyroxene	0.64	2.04	3.98	0.07	1.33	1.33	0.42	1.20	2.21
Spinel minerals	3.24	4.37	0.20	0.00	0.01	0.01	0.01	0.04	0.03
Fe-sulfide	0.03	0.05	0.01	0.19	0.00	0.04	0.02	0.05	0.03
Ca-phosphates	0.01	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00
Ilmenite	0.12	0.00	0.43	0.00	0.00	0.00	0.00	0.00	0.00
Native Iron	0.13	0.33	0.19	0.00	0.00	0.08	0.00	0.15	1.07
Other (sim. only)	0.01	0.00	0.00	0.00	0.00	0.00	0.09	2.62	5.21
Total	100	100	100	100	100	100	100	100	100

These data report volume% of particles.

Plagioclase compositional data is also included

This data is used in the Figure of Merit for composition.

Particle type modal data

- Particle type data records free minerals, free glass particles, lithic fragments, agglutinates, breccia, etc.
- Our identification routines group breccias with lithic fragments.
- E.g., particle type data record this as an agglutinate. Phase modal data record it as glass and minerals.