Experimentelle Methoden

Vorlesung von Prof. Dr. apl. Horst Fischer im Sommersemester 2019

Markus Österle Damian Lanzenstiel

6. Mai 2019

Inhaltsverzeichnis

0	Ein	führung
	0.1	Wichtige Infos
		Programm der Vorlesung
1	Wee	chselwirkung geladener Teilchen mit Materie
	1.1	Klassische Betrachtung der Rutherfordstreuung
	1.2	Energieverlust von Elektronen e^- und Positronen e^+
		1.2.1 Strahlungslänge
2	Wechselwirkungen von Quanten / Photonen	
	2.1	Photoeffekt
	2.2	Compton Streuung
	2.3	Paarbildung
		2.3.1 Schwellen

Kapitel 0

Einführung

0.1 Wichtige Infos

Vorlesung Montag 14:15 - 15:45

Übungen ILIAS

Kontakt Horst Fischer Physikhochhaus Zi. 609 ★hier fehlt was★ (email usw. Folie 1)

0.2 Programm der Vorlesung

- \bullet Grundlagen moderner Nachweissysteme
- Grundlagen der Statistik und Unsicherheitsbetrachtungen
- Grundlagen der Analogelektronik

Kapitel 1

Wechselwirkung geladener Teilchen mit Materie

Nachweis durch Wirkung des Teilchens auf die Materie

- Ionisation, Szintillation
- Čevenkov-, Übergangsstrahlung
- Rückstoß
- \Rightarrow Teilcheneigenschaften verändert
 - Energieverlust
 - Richtungsänderung
 - Identitätsverlust

1.1 Klassische Betrachtung der Rutherfordstreuung

• stimmt mit QM in niederster Ordnung überein

solange: "schwere Teilchen" $v \gg v_{e \text{ in Hülle}}$ $\Delta E \gg \text{Bindungsenergie von } e^-$

hier fehlt eine Grafik

Typisches Beispiel:

$$\mu^+ + \text{Atom} \rightarrow \mu^+ + (\text{Atom} + e^-)$$

Coulomb-Kraft

$$\begin{split} F_{\parallel}(x) &= F_{\parallel}(-x) \\ F_{\perp} &= \frac{1}{4\pi\varepsilon_0} \frac{z \cdot e \cdot Z \cdot e}{r^2} \frac{b}{|\boldsymbol{r}|} \end{split}$$

Impulsübertrag

$$\Delta \rho_T = \int_{-\infty}^{\infty} F_{\perp} \mathrm{d}f = \frac{e^2}{4\pi\varepsilon_0} \cdot \frac{2Z \cdot z}{\beta cb}$$

 $\beta = \frac{v}{c}$ Mehr zum Thema und die genaue Rechnung findet man im Lehrbuch von Jackson.

Energieübertrag

[Folie: Energieverlust: klassisch nach Bohr]

$$\Delta E = \frac{\Delta \rho_T^2}{2M} = \frac{e^4}{(4\pi\varepsilon_0)^2} \cdot \frac{Z^2 z^2}{M\beta^2 c^2 b^2} \propto \frac{1}{b^2}$$

bei Kohärenter Streuung

$$\frac{\Delta E \text{ Elektronenhülle}}{\Delta E \text{ Kern}} = \frac{2m_p}{m_e} \approx 4000$$

Hülle: $M = Z \cdot m_e$

Kern: $M = A \cdot m_p = 2Z \cdot m_p$

 \Rightarrow Die Streuung am Kern ist vernachlässigbar

Der gesamte (mittlere) Energieverlust ist dann:

$$\langle dE \rangle = \int \Delta E \cdot \underbrace{2\pi b \ db}_{\text{Volumenelement}} \cdot Z \cdot \underbrace{\frac{\rho \cdot N_A}{A}}_{=n_e} dx$$

Bethe-Bloch Beziehung

$$\begin{split} \left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle &= D \cdot \underbrace{\frac{Z \cdot \rho}{A}}_{\mathrm{Medium}} \cdot \underbrace{\left(\frac{z}{\beta}\right)^2}_{\mathrm{Projektil}} \cdot \underbrace{\ln\left(\frac{b_{\mathrm{max}}}{b_{\mathrm{min}}}\right)}_{\frac{1}{2}\ln\left(\frac{2m_ec^2\gamma^2\beta^2}{I}T_{\mathrm{max}}\right)} \\ &= D \cdot \underbrace{\frac{Z \cdot \rho}{A}}_{\mathrm{Medium}} \cdot \underbrace{\left(\frac{z}{\beta}\right)^2}_{\mathrm{Projektil}} \cdot \frac{1}{2}\ln\left(\frac{2m_ec^2\gamma^2\beta^2}{I}T_{\mathrm{max}}\right) \end{split}$$

mit $I=\hbar\omega$: Ionisationspotential des Streuzentrums und $T_{\rm max}$: der Energie des e^- tragen kann

[Folie: Energieverlust]

[Folie: Mittlerer Energieverlust nach Bethe Bloch]

[Folie: Relativistischer Anstieg]

[Folie: Materialabhängigkeit des mittleren Energieverlusts]

[Folie: Minimaler Energieverlust]

[Folie: Abhängigkeit vom Ionisationspotential]

[Folie: Reichweite von Teilchen in Materie]

[Folie: Bragg-Kurve] (Einstrahl-Tiefe in einen Menschen)

[Folie: Anwendung Teilchenidentifizierung]

[Folie: Energieverlust von Teilchen durch Ionisation]

1.2 Energieverlust von Elektronen e^- und Positronen e^+

Bremsstrahlung führt zu zusätzlichem Energieverlust.

$$E_K \approx \frac{600...700}{Z} \, \text{MeV}$$
 kritische Energie

Z des Materials. Unterschiede zwischen fest, flüssig, gasförmig.

$$\left.\frac{\mathrm{d}E}{\mathrm{d}x}\right|_{\mathrm{Brems}} \propto \frac{Z^2}{m^2} \quad \begin{array}{ll} \mathrm{Target} \\ \mathrm{Projektil} \end{array}$$

Bremsstrahlung wichtig für e^{\pm}

$$\frac{m_{\mu}^2}{m_e^2} \left(\frac{100}{0.5}\right)^2 = 40000$$

(Eigentlich 105 statt 100)

Bremsstrahlung führt zu

$$\frac{dE}{dx} = E_e \cdot 4\alpha r_e^2 N_A \frac{\rho Z}{A} \left\{ \ln \frac{183}{Z^{1/3}} + \frac{1}{18} - f(z) \right\}$$
$$f(z) = \alpha Z \left\{ \frac{1}{1 + \alpha^2 Z^2} + 0.2 + \mathcal{O}(\alpha Z^2) \right\}$$

 α : gemessene Konstante $\alpha=5,3$ für H |3 Pb

1.2.1 Strahlungslänge

$$\frac{1}{L_{\rm rad}} = 4\alpha r_e^2 N_A \frac{\rho Z}{A} \left\{ \ln \frac{183}{Z^{1/3}} + \frac{1}{18} - f(z) \right\} = \frac{\mathrm{d}E}{\mathrm{d}x} \cdot \frac{1}{E_e}$$

(Die Formale stammt von Bether Heitler).

Die Strahlungslänge ist die Distanz, in der die e^{\pm} den Bruchteil (1 - 1/e) der Energie durch Bremsstrahlung verlieren.

$$\frac{\mathrm{d}E}{\mathrm{d}x}\Big|_{\mathrm{Brems}} = \frac{E_e}{L_{\mathrm{rad}}}$$

Kapitel 2

Wechselwirkungen von Quanten / Photonen

2.1 Photoeffekt

Photoeffekt = Absorption eines Protons ist gebunden an Hüllenelektron

$$\gamma e^- A \to e^- A^+$$

∗hier fehlt eine Grafik∗

Wichtig $E_{\gamma} \stackrel{\leq}{\approx} E_{\text{bindung}} \approx \mathcal{O}(100 \,\text{keV})$. 10% der WW an e^- der inneren Schalen.

$$\sigma_{
m tot} \propto Z^5 \cdot \left(rac{m_e c}{E_{\gamma}}
ight)^{-7/2}$$

Wichtig: $\sigma_{\text{Photoeffekt}}$ ist pro Atom

2.2 Compton Streuung

[Folie: Wechselwirkung von Photonen mit Materie]

Streuung an quasi-freien e^- :

hier fehlt eine Grafik

Energie & Impulserhaltung

$$E_{\gamma'} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_{\sigma}c^2}(1 - \cos\theta)}$$

$$\lambda_{\gamma'}' = \lambda_{\gamma} + \lambda_C (1 - \cos \theta)$$

Compton Wellenlänge

$$\lambda_C \le \frac{\hbar}{m_e c^2} = \frac{r_e}{\alpha_{\rm em}} = 39 \cdot 10^{-13 \,\mathrm{m}}$$

Wichtig:

$$E_{\gamma'}^{\max}(\theta=0) = E_{\gamma}$$

$$E_{\gamma'}^{\min} = \frac{E_{\gamma}}{1 + 2\frac{E_{\gamma}}{m_e c^2}}$$

Wegen der Impulserhaltung gilt:

$$\theta_e^{\max} \leq \frac{\pi}{2}$$

Wirkungsquerschnitt (aus der Quantenelektrodynamik (QED))

$$\sigma_{
m Compton} \propto rac{1}{E_{\gamma}} \cdot \ln rac{2E_{\gamma}}{m_e c^2}$$

Erzeugung hochenergetischer Photonen durch inverse Compton-Streuung.

2.3 Paarbildung

Paarbildung ist nur möglich in der Nähe eines Kerns (wegen Energie- und Impulserhaltung).

2.3.1 Schwellen

$$E_{\gamma} > 2m_e \approx 1,02\,\mathrm{MeV}$$
 im Kernfeld
$$E_{\gamma} > 4m_e \approx 2,04\,\mathrm{MeV}$$
 im Elektronenfeld
$$\gamma + A \to e^-e^+(A)$$

hier fehlt eine Grafik

$$\gamma + e^- \rightarrow e^- e^+ e^-$$

(Indent-Reaktion)

hier fehlt eine Grafik

$$\sigma_{\mathrm{Paar}} \propto \ln 183 Z^{-1/3} \propto \frac{1}{L_{\mathrm{rad}}}$$

Insgesamt erhalten wir also für den Photoeffekt, die Compton-Streuung und die Paarbildung zusammen:

$$\sigma_{\rm tot} \propto \sigma_{\rm Photo} + \sigma_{\rm Compton} + \sigma_{\rm Paar}$$

$$\sigma_{\gamma} \propto c_1 Z^5 E^{7/2} + c_2 Z \frac{1}{E} \ln E + c_3 Z^2$$

Minimum bei $\mathcal{O}(10 \,\text{MeV})$ \Rightarrow große Reichweite!