课程: 极小曲面

draft version

修改日期: 2022 年 10 月 1 日

目录

第一章	Plateau 问题	2
附录 A	附录	4
A.1	复分析基础	4
A.2	黎曼几何基础	5
附录 B	习题	7

第一章 Plateau 问题

设 $\gamma \subset \mathbb{R}^3$ 是简单闭曲线. 记 \mathcal{F}_{γ} 是满足下列条件的函数的集合:

- 1. $u: \overline{D} \to \mathbb{R}^3, u \in C(\overline{D}) \cap W^{1,2}_{loc}(D)$.
- 2. $u|_{\partial D}$ 是到其像的同胚.

定理 1.1. 设 $\gamma \subset \mathbb{R}^3$ 是可求长的 Jordan 曲线. 则存在映射 $u \in D_\gamma$ 使得 $\forall v \in \mathcal{F}_\gamma$,

$$Area(u(D)) \le Area(v(D)).$$
 (1.1)

对于任意 $u \in \mathcal{F}_{\gamma}$, 其面积与能量分别定义为

$$Area(u) = \int_{\mathbb{D}} |u_x \wedge u_y| \tag{1.2}$$

$$E(u) = \frac{1}{2} \int_{\mathbb{D}} |u_x|^2 + |u_y|^2$$
 (1.3)

简单计算可知

Area
$$(u) = \int_{\mathbb{D}} \sqrt{|u_x|^2 |u_y|^2 - \langle u_x, u_y \rangle^2} \le \frac{1}{2} \int_{\mathbb{D}} |u_x|^2 + |u_y|^2 \le E(u).$$
 (1.4)

并且等号成立,当且仅当 $|u_x| = |u_y|, \langle u_x, u_y \rangle = 0.$

记

$$A_{\gamma} = \inf\{\text{Area}(v) \mid v \in \mathcal{F}_{\gamma}\}. \tag{1.5}$$

$$\mathbb{E}_{\gamma} = \inf\{E(v) \mid v \in \mathcal{F}_{\gamma}\}. \tag{1.6}$$

引理 1.2. $\mathbb{A}_{\gamma} = \mathbb{E}_{\gamma}$.

证明. 由不等式(1.4)可知, $\mathbb{A}_{\gamma} \leq \mathbb{E}_{\gamma}$.

对于反方向的, 设 $u \in \mathcal{F}_{\gamma}$ 且 $E(u) \leq \mathbb{E}_{\gamma} + \varepsilon$. 首先设 u 是浸入, 即 du 处处非退化. 设 (\mathbb{D}, g) 为 u 作用下的拉回度量, 即 $g = du^*dx^2$, 由等温坐标

的存在性可知, 存在光滑同胚 $\varphi: \mathbb{D} \to \mathbb{D}$ 使得 φ 是 $\mathbb{D} \to (\mathbb{D}, g)$ 之间的共形映射, 即 $d\varphi^*g = \lambda^2 dx^2$. 而 $u \circ \varphi$ 是共形浸入, 则有

$$Area(u) = Area(u \circ \varphi) = E(u \circ \varphi) \ge E(u) - \varepsilon. \tag{1.7}$$

如果 du 有奇点, 那么我们定义 $u^s: \mathbb{D} \to \mathbb{R}^5$, $u^s(x,y) = (u,sx,sy) \in \mathbb{R}^5$. 则 du^s 是非退化的. 像上面一样, 通过 u^s 拉回的度量为 $du^*g_{\mathbb{R}^3} + s^2(dx^2 + dy^2)$. 显然地,

$$\operatorname{Area}(u^s) = \int_{\mathbb{D}} \det(du^* g_{\mathbb{R}^3} + s^2 I) \ge \operatorname{Area}(u). \tag{1.8}$$

$$E(u^s \circ \varphi) = \int_{\mathbb{D}} |(u^s \circ \varphi)_x|^2 + |(u^s \circ \varphi)_y|^2 = E(u \circ \varphi) + s^2 E(\varphi).$$
 (1.9)

因此, 当 s 足够小时, 我们有

$$\operatorname{Area}(u) \le \operatorname{Area}(u^s \circ \varphi) = E(u^s \circ \varphi) = E(u \circ \varphi) + s^2 E(\varphi) \le E(u) - \frac{1}{2}\varepsilon \quad (1.10)$$

附录 A 附录

A.1 复分析基础

定理 A.1. 设 (M^2, g) 是二维黎曼流形,则存在 M^2 上的一组坐标卡 $\{z = x + iy\}$,使得在这组坐标下, $g = \lambda^2 |dz|^2 = \lambda^2 (dx^2 + dy^2)$,并且这组坐标下的坐标变换是全纯的.

证明. 固定点 $p \in \mathcal{M}$. 取 p 点的足够小的邻域 Ω , 在 Ω 中, 取函数 u 使得

$$\Delta_q u = \Delta u + \Gamma_{ii}^j u_i = 0. \tag{A.1}$$

根据椭圆方程的理论,这个方程总是局部可解的,并且可以选取 u 使得 $\nabla u(p) \neq 0$. 令 $\omega = \sqrt{\det g} dx$ 为 M 上的体积形式. 定义 1- 形式

$$\alpha = \operatorname{Tr}(\nabla u \otimes \omega) = i_{\nabla_u}^* \omega \tag{A.2}$$

则 $d\alpha = \operatorname{div}(\nabla u)\omega = 0$. 即, α 是闭的 1- 形式. 由 Poincare 引理可知, 存在函数 v 使得 $\alpha = dv$. 现在, 我们证明函数 u, v 具有如下关系:

- 1. $\langle \nabla u, \nabla v \rangle = 0$.
- 2. $|\nabla u| = |\nabla v|$.

对于性质(1),我们有

$$\langle \nabla u, \nabla v \rangle = dv(\nabla u) = \alpha(\nabla u) = (i_{\nabla u}^* w) \nabla u = 0 \tag{A.3}$$

对于性质(2),我们有

$$\langle \nabla v, \nabla v \rangle = \langle dv, dv \rangle = \langle i_{\nabla u}^* \omega, i_{\nabla u}^* \omega \rangle = \langle \nabla u, \nabla u \rangle. \tag{A.4}$$

上面的最后一个等式在测地坐标下是容易验证的.

现在,设 F(x,y)=(u,v). 在点 p 处,由性质 (1) 可知, $\det dF(p)\neq 0$. 由反函数定理可知,(u,v) 可以作为一组局部坐标. 在这组坐标下,度量 g 的局部表示为

$$g = g_{uu}du^2 + 2g_{uv}dudv + g_{vv}dv^2 (A.5)$$

由于

$$g_{uu} = |\nabla u|^2 = |\nabla v|^2 = g_{vv}$$
 (A.6)

$$g_{uv} = \langle \nabla u, \nabla v \rangle = 0.$$
 (A.7)

只需要取 z = u + iv, $\lambda = |\nabla u|$ 即可.

命题 A.2. 设 Ω 是单连通区域. $u:\Omega\to\mathbb{R}$ 是调和函数. 则存在全纯函数 F 使得 $u=\Re eF$.

证明. 由 Riemann 映射定理, 不妨设 $\Omega = (0,1) \times (0,1)$ 或者 $\Omega = \mathbb{C}$. 定义

$$\tilde{v}(x,y) = \int_0^y u_x(x,t)dt. \tag{A.8}$$

那么

$$\tilde{v}_x = \int_0^y u_{xx}(x,t)dt = -\int_0^y u_{tt}(x,t)dt$$

$$= -u_y(x,y) + u_y(x,0)$$
(A.9)

取 $v(x,y)=\tilde{v}(x,y)-\int_0^x u_y(t,0)dt$,则 F(x,y)=u+iv 满足 Cauchy-Riemann 方程.

定理 A.3 (单值化定理). 每一个单连通的黎曼曲面必定同构于 $\mathbb{D}, \mathbb{C}, \mathbb{S}^2$ 中的三者之一.

A.2 黎曼几何基础

我们按照约定 $\nabla^2_{X,Y}T=\nabla^2T(Y,X)$. 这样做是为了与欧氏空间的求导记号一致. 设 $f\in C^\infty(\mathbb{R}^n)$, 则

$$\nabla^2 f(\partial_i, \partial_j) = f_{ij} = \partial_j \partial_i f = \nabla^2_{\partial_j, \partial_i} f. \tag{A.10}$$

注 A.4. 总是先对离 f 近的记号求导.

定义 A.5. 对于任意张量场 S, 定义其曲率张量

$$R(X,Y)S = \nabla_{XY}^2 S - \nabla_{YX}^2 S \tag{A.11}$$

命题 A.6. 设 $f \in C^{\infty}(\mathcal{M})$, 则

$$\nabla^3 f(X, Y, Z) = \nabla^3 f(X, Z, Y) + R(Z, Y, \nabla f, X) \tag{A.12}$$

证明.

$$\nabla^{3} f(X, Y, Z) - \nabla^{3} f(X, Z, Y) = (\nabla_{Z, Y}^{2} \nabla f)(X) - (\nabla_{Y, Z}^{2} \nabla f)(X)$$

$$= R(Z, Y, \nabla f, X)$$
(A.13)

附录 B 习题

- 1. 设 $\Omega \subset \mathbb{R}^n$ 是有界区域. 设 $u \in W^{1,1}(\Omega)$. 设 $\operatorname{Area}(u) = \int_{\Omega} \sqrt{1 + |Du|^2}$. 证明: $\operatorname{Area}(u)$ 在 $W^{1,1}(\Omega)$ 上是严格凸的.
- 2. 证明: \mathbb{R}^n 中不存在紧致无边的极小曲面.
- 3. 设 $\Sigma \subset \mathbb{R}^3$ 是极小曲面. 设存在平面 P 使得 $\Sigma \perp P$. 设 Σ 关于平面 P 的反射后的像为 Σ' . 证明: $\Sigma \cup \Sigma'$ 是极小曲面.
- 4. 设 $f:\Omega\to\mathbb{C}$ 是光滑函数. 证明:
 - (a) f 全纯当且仅当 $\bar{\partial} f = 0$.
 - (b) f 调和当且仅当 $\partial \bar{\partial} f = 0$.
- 5. 设 Σ 为 Catenoid. $\Gamma_a = \Sigma \cap \{z = \pm a\}$. 试比较以下三个以 Γ_a 为边界的曲面的面积大小.
 - (a) Γ_a 所围的两个圆盘之并.

$$\Sigma_1 = \{(x, y, z) \mid \sqrt{x^2 + y^2} \le \cosh a, z = \pm a\}.$$

(b) Γ_a 的两个分支之间的柱面.

$$\Sigma_2 = \{(x, y, z) \mid \sqrt{x^2 + y^2} = \cosh a, |z| \le a\}.$$

(c) Γ_a 之间 Catenoid 的部分.

$$\Sigma_3 = \{(x, y, z) \mid \sqrt{x^2 + y^2} = \cosh z, |z| \le a\}.$$

6. 设 $\gamma \subset \mathbb{R}^3$ 是 xz 平面上的曲线. $\gamma = \{(x,0,z) \mid x = f(z) > 0\}$. 由 γ 绕 z 轴旋转所得到的曲面记为 Σ . 若 Σ 是极小曲面, 试求 f 的表达式.

- 7. 设 $\Sigma^{n-1} \subset \mathcal{M}^n$ 是极小曲面. $F(x,t): \Sigma \times (-\varepsilon,\varepsilon) \to \mathcal{M}$ 是固定边界的变分. 设 H_t 为 Σ_t 的平均曲率. 计算 $\frac{d}{dt}H_t\mid_{t=0}$.
- 8. 设 u 是 Catenoid 上的有界调和函数, 证明 u 是常数.
- 9. 设 \mathcal{M}^3 可定向且 $\Sigma^2\subset\mathcal{M}^3$ 是定向的稳定极小曲面. 设 $\tilde{\Sigma}$ 是 Σ 的覆盖空间. 则覆盖映射 $f:\tilde{\Sigma}\to\Sigma\hookrightarrow\mathcal{M}$ 是稳定极小曲面.
- 10. 设 $\Sigma^{n-1} \subset \mathcal{M}^n$ 是极小曲面. 证明: $\forall p \in \Sigma$, 存在 p 点的足够小的邻域 Ω 使得 $\Omega \cap \Sigma$ 是稳定的.