AL/OE-TR-1996-0169

UNITED STATES AIR FORCE ARMSTRONG LABORATORY

Wastewater Characterization Survey
Atlantic City Air National Guard Base,
New Jersey

Jeffrey C. Gillen, Captain, USAF Doris A. Hemenway, Master Sergeant, USAF

February 1997

19970602 064

Approved for public release; distribution is unlimited.

Occupational and Environmental Health Directorate Bioenvironmental Engineering Division 2402 E Drive Brooks AFB, TX 78235-5114

DTIC QUALITY INSPECTED)

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

Government agencies and their contractors registered with Defense Technical Information Center (DTIC) should direct requests for copies to: DTIC, 8725 John J. Kingham Rd., STE 0944, Ft. Belvoir, VA 22060-6218.

Non-Government agencies may purchase copies of this report from: National Technical Information Services (NTIS), 5285 Port Royal Road, Springfield VA 22161-2103.

FRANZ J. SCHMIDT, Capt, USAF, BSC

Chief, Water Quality Branch

JAMES D. MONTGOMERY, Lt Col, USAF, BSC Chief, Bioenvironmental Engineering Division

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gethering and meintening the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway. Suite 1204. Articaton. VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 22	202-4302, and to the Office of Management an	d Budget, Paperwork Reduction Project (0	704-0188), Washington, DC 20503.	
1. AGENCY USE ONLY (Leave bla	ank) 2. REPORT DATE	3. REPORT TYPE AND DA		
	February 1997		3 September 195	
4. TITLE AND SUBTITLE	At a Signal National	1	UNDING NUMBERS	
	urvey Altantic City Air National	Guard Base, New		
Jersey				
6. AUTHOR(S)				
Jeffrey C. Gillen		i		
Doris A. Hemenway		İ		
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)	8. F	ERFORMING ORGANIZATION	
Armstrong Laboratory (AFMC)		- F	REPORT NUMBER	
Occupational and Environment				
Bioenvironmental Engineering			AL/OE-TR-1996-0169	
	Division			
2402 E Drive	225 5114			
Brooks Air Force Base, TX 782 9. SPONSORING/MONITORING A	(33-3114 GENCY NAME(S) AND ADDRESS(ES	10.	SPONSORING/MONITORING	
9. SPORSORING/MONTORING A	SEITO FILMERO, AND ADDITION	·	AGENCY REPORT NUMBER	
		ı		
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION AVAILABILITY		12b.	DISTRIBUTION CODE	
Approved for public release; di	stribution is unlimited			
		ļ		
		1		
13. ABSTRACT (Maximum 200 wo	ords)	1 Di anno (AL OFDIA)	Decales Air Cores Dago Toyas	
Armstrong Laboratory Occupa	ational and Environmental Healt	n Directorate (AL/OEBW),	Brooks Air Force Base, Texas	
conducted a wastewater charact	terization survey at Atlantic City	Air National Guard Base (ACANGB) from 7-13 September	
	ed in response to March 1995 re	equest made by the ACANG	B Environmental Coordinator,	
Capt John Elwood.				
Wastewater from industrial ac	ctitvities conducted at facilities le	ocated at ACANGB, includi	ng Federal Aviation	
Administration facilities, is disc	charged to the Eg Harbor Towns	ship Municipal Utilities Aut	nority (EHTMUA) wastewater	
treatment plant. Wastewater sa	imples from five sites situated w	ithin the base containment a	rea were collected and analyzed	
for various pollutant parameter	s to determine the source of pote	ential contaminants in the wa	astewater and to determine the	
quality of wastewater discharge	ed to the EHTMUA wastewater	treatment plant.		
Based on analytical results of	samples collected during this su	rvey, potentially hazardous	substances are being discharged	
to the ACANGB sanitary sewer	r system by various industrial ac	tivities occurring on the bas	e. One possible source of	
contamination is the oil/water s	separators. According to Air Fo	rce Instruction (AFI) 32-704	1, wastewaters from operations	
which produce bazardous waste	es, such as aircraft maintenance	operations, are required to r	neet pretreatment standards	
before being discharged to the	wastewater treatment plant, or the	he wastewater should be han	dled as hazardous waste. Also,	
AEI 32-70/1 indicates oil/wate	r separators must be inspected a	nd maintained regularly to e	nsure water quality compliance.	
14. SUBJECT TERMS	i separators must be inspected a	an aminima regularly to e	15. NUMBER OF PAGES	
Wastewater Characterization St	urvey Atlantic City Air National	Guard Base, Chemical Oxy	rgen 82	
Demand, Biological Oxygen Demand, Oil and Grease, Alumium, Barium, Cadmium, Copper, 16. PRICE CODE				
Iron, Mercury, Zinc, Phenols,		,,,,,,,		
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	ON 20. LIMITATION OF ABSTRACT	
OF REPORT	OF THIS PAGE	OF ABSTRACT		
Unclassified	Unclassified	Unclassified	UL	
			Standard Form 298 (Rev. 2-89) (FG)	

TABLE OF CONTENTS

		PAGE
INTRODU	JCTION	1
Discrise	ION	,
	ION	
	ampling Strategy	
	sampling Stategy	
	Quality Assurance/Quality Control	
`	Field Quality Assurance/Quality Control	
	Armstrong Laboratory Internal QA/QC	
	Site Descriptions	
DECLE TO		0
	20noral	
	General Quality Assurance/Quality Control	
	Vastewater Samples	
•	vasiewater Samples	1 1
CONCLU	SIONS AND RECOMMENDATIONS	14
REFEREN	ICES	16
APPENDI	CES	
Α	Request Letter	17
В		
C		
D		
E	Figures	68
	TABLES	
TABLE NO	<u>D.</u>	<u>PAGE</u>
1 E2	g Harbor Township Municipal Utilities Authority (EHTMUA) Quantitat	ive
-	astewater Discharge Limits	
	mpling Site Descriptions	
	alyses Performed	
	pical Composition of Untreated Domestic Wastewater	

TABLES

B-1 Wastewater Analytical and Preservation Methods	20
C-1 Equipment Blank Sample Analytical Results	
C-2 Reagent and Trip Blank Sample Analytical Results	33
C-3 Spike Sample Analytical Results	
C-4 Duplicate Metals and Volatiles Sample Analytical Results	
C-5 Additional Duplicate Sample Analytical Results	40
C-6 Background Potable Water Sample Analytical Results	41
D-1 Metals and Volatile Organics Analytical Results: Site 1, Base Effluent	46
D-2 Additional Analytical Results: Site 1, Base Effluent	
D-3 BNAs, PCBs, Pesticides, and Herbicides Analytical Results: Site 1, Base Effluen	t 50
D-4 Metals and Volatile Organics Analytical Results: Site 2, Maintenance Dock	52
D-5 Additional Analytical Results: Site 2, Maintenance Dock	
D-6 Metals and Volatile Organics Analytical Results: Site 3, Aircraft and	
Maintenance Hangar	56
D-7 Additional Analytical Results: Site 3, Aircraft and Maintenance Hangar	
D-8 Metals and Volatile Organics Analytical Results: Site 4, Aircraft Ground	
Equipment Facility	60
D-9 Additional Analytical Results: Site 4, Aerospace Ground Equipment Facility	
D-10 Metals and Volatile Organics Analytical Results: Site 5, Civil Engineering and	
Motor Pool	64
D-11 Additional Analytical Results: Site 5, Civil Engineering and Motor Pool	67
FIGURES	
Figure No.	Page
B-1 Sanitary Sewer System North Map	22
B-2 Sanitary Sewer System South Map	23
B-3 Site 1 Base Effluent - Manhole #4	24
B-4 Site 2 Building 246 Maintenance Hanger	25
B-5 Site 3 Building 441 Composite Maintenance Operations	26
B-6 Site 4 Building 248 Aerospace Ground Equipment (AGE)	27
B-7 Site 5 Building 402 Civil Engineering and Motor Pool	28
E-1 COD Levels in Wastewater Samples	70
E-2 Oil and Grease Levels in Wastewater Samples	71
E-3 Phenol Levels in Wastewater Samples	72
E-4 pH Levels in Wastewater Samples	73

WASTEWATER CHARACTERIZATION SURVEY ATLANTIC CITY AIR NATIONAL GUARD BASE, ATLANTIC CITY, NEW JERSEY

INTRODUCTION

Armstrong Laboratory Occupational and Environmental Health Directorate (AL/OEBW), Brooks Air Force Base (AFB), Texas conducted a wastewater characterization survey at Atlantic City Air National Guard Base (ACANGB) from 7-13 September 1995. The survey team included Capt Jeff Gillen, MSgt Doris Hemenway, and Sgt David Schultz. The survey was conducted in response to a March 1995 request made by the ACANGB Environmental Coordinator, Capt John Elwood. A copy of the request letter is provided in Appendix A.

Wastewater from industrial activities conducted at facilities located at ACANGB, including Federal Aviation Administration (FAA) facilities, is discharged to the Egg Harbor Township Municipal Utilities Authority (EHTMUA) wastewater treatment plant. Wastewater samples from five sites situated within the base cantonment area were collected and analyzed for various pollutant parameters. Sampling was performed to determine the source of potential contaminants in the wastewater and to determine the quality of wastewater discharged to the EHTMUA wastewater treatment plant.

DISCUSSION

Background

ACANGB is located in southeast New Jersey, approximately 10 miles west of Atlantic City. A site location map is provided as Figure B-1 of Appendix B. The base is home to the 177th Fighter Wing whose mission is to provide F-16 A/B fighter support for the North American Air Defense Command. Approximately 950 active duty guard personnel and 311 civilians are assigned to ACANGB. The Air National Guard also shares the base with the FAA, the number of FAA personnel is unknown. There are approximately 1,000 personnel on this base during the guard reserve training weekend.

To support the mission of the base, several types of industrial facilities are located at the base. These facilities include, but are not limited to: aircraft and vehicle washracks; aircraft maintenance, to include corrosion control, fuel cell repair, and nondestructive repair; aerospace ground equipment (AGE) and motor vehicle maintenance; and mission support facilities, such as the hospital.

Existing wastewater facilities at ACANGB include pump stations, oil/water separators, and a sanitary sewage collection system. The sanitary sewer also receives industrial wastewater from various facilities at the base. The sanitary sewage collection system collects wastewater from activities associated with ACANGB and FAA facilities co-

located at the base. This wastewater collects at a pump station on base and is combined with wastewater from the FAA Technical Training Center, not situated on ACANGB. The combined wastewater then is discharged to the EHTMUA wastewater treatment plant. No permits are known to be maintained by ACANGB. However, EHTMUA prescribes concentration limits for wastewater discharged to their wastewater treatment plant. A summary of the concentration limits is provided in Table 1 (1).

TABLE 1
EHTMUA QUANTITATIVE WASTEWATER DISCHARGE LIMITS

CONTAMINANT	PERMISSIBLE CONCENTRATION	CONTAMINANT	PERMISSIBLE CONCENTRATION
pН	>= to 5 and <=9	Biological Oxygen Demand	<= 300 ppm
Arsenic (as AS)	<4 milligrams/liter (mg/L)	Boron (as Bo)	<1 mg/L
Chromium (total)	<5 mg/L	Chromium (hexavalent)	<2 mg/L
Copper (as Cu)	<1 mg/L	Cyanide (total)	<1 mg/L
Iron (as Fe)	<15 mg/L	Lead (as Pb)	<0.1 mg/L
Nickel (as Ni)	<1 mg/L	Zinc (as Zn)	<5 mg/L
Cadmium (as Cd)	<2 mg/L	Phenol	<0.1 mg/L
Mercury (as Hg)	<0.01 mg/L	Surfactants-MBAS	<10 mg/L
Total Solids	<5000 mg/L	Silver (as Ag)	<0.05 mg/L

Sampling Strategy

A wastewater characterization presurvey was conducted, 7-8 August 1995 by Captain Gillen and 1Lt. Fronapfel at ACANGB. During this presurvey, a sampling strategy was developed with the assistance of ACANGB Bioenvironmental Engineering Services (BES) and Civil Engineering Squadron (CES) personnel (Capt Elwood and MSgt Tyndall). The goals of the sampling plan were to (1) collect wastewater samples from locations around the base which would accurately characterize the base sewage and allow contributing operations to be identified, and (2) determine the quality of wastewater that is discharged to EHTMUA wastewater treatment plant. The sampling activities were conducted during the period 7-13 September 1995. These dates included a unit training assembly (UTA) weekend and thus represent a time of elevated base activity. Five sampling sites and two background sampling sites were selected based on their location relative to industrial facilities supporting the ACANGB and FAA operations. These locations are summarized in Table 2. A site map is in Appendix B.

TABLE 2 SAMPLING SITE DESCRIPTION

SITE	SOURCES OF WASTEWATER
Site 1	Base effluent from the Atlantic City New Jersey Air National Guard Base and co-located FAA facilities
Manhole 4	
Site 2	Photo Lab, FAA facility, Squadron Operations, Clinic, Maintenance Dock, Steam Operating Facility, Fuel Cell
Manhole 6-8	and Maintenance Facility, and Oil/Water Separator. Manhole is located east of building 246
Site 3	Aircraft and Maintenance Hangar, Munitions Systems Release Facility, and Aircraft General Purpose Shop.
Manhole 15	Manhole is located southeast of building 441
Site 4	Aerospace Ground Equipment (AGE) Facility, Oil/Water Separator, and Bulk Storage Facility. East of building
Manhole 13-1	248
Site 5	Facilities at Sites 3 and 4, Portions of Site 2, Civil Engineering and Motor Pool Facility, Petroleum/Oil/Lubricant
	(POL) Tank Farm and Fuels Lab, and FAA Facilities. Manhole was located between manhole 7 and 8, south of
	building 402

Table 3 lists the collection periods and the chemical analyses performed on the collected samples. Table B-1 of Appendix B, lists the United States Environmental Protection Agency (USEPA) Methods used to analyze the samples, holding times, and preservation methods.

TABLE 3 ANALYSES PERFORMED

LOCATION	ANALYTICAL REQUIREMENTS			
	Sample Period: 7 days Sample Type: 24-Hour Composite Sample Parameters: EPA method 200.7 metal screen, EPA methods 601/602 Volatile Organic Compounds			
Site 1	(VOCs), Chemical Oxygen Demand (COD), Oil and Grease (O/G), Total Petro Hydrocarbon (TPH), Total Cyanide, Phenols, Total Residue, Filterable Residue Nonfilterable Residue (TSS), Settleable Residue, Total Volatile Residue, Surfa MBAs, pH, and Temperature.			
	Sample Period: 2 days			
	Sample Type: 24-Hou	r Composite		
	Sample Parameter:	EPA methods 624/625 Base/Neutral Acids, EPA method 608 Pesticides and Polychlorinated Biphenyls (PCBs), and EPA method 615 Herbicides.		
Sample Period: 5 days				
	Sample Type: 24-Hou	r Composite		
Site 2	Sample Parameters:	EPA method 200.7 metal screen, EPA methods 601/602 VOCs, COD, O/G, TPH, Total Cyanide, Phenols, Total Residue, TDS, TSS, Settleable Residue, Total Volatile Residue, Surfactants-MBAs, pH, and Temperature.		
	Sample Period: 5 days			
a: 24 15	Sample Type: 24-Hou			
Sites 3,4 and 5	Sample Parameters:	EPA method 200.7 metal screen, EPA methods 601/602 VOCs, COD, O/G, TPH, Phenols, Total Residue, TDS, TSS, Total Volatile Residue, Surfactants-MBAs, pH, and Temperature.		
	Sample Period: 5 days			
Clinic and Alert Facility	r Composite EPA method 200.7 metal screen, EPA method 502.2 VOCs and Total Trihalomethanes,			
Sample Parameters: Sample Parameters: EFA method 200.7 metal screen, EFA method 302.2 vocs and Total Timal COD, O/G, TPH, Total Cyanide, Phenols, Total Residue, TDS, TSS, Settleal Total Volatile Residue, and Surfactants-MBAs.				

Sampling Methods

Samples collected during the survey were analyzed in accordance with Armstrong Laboratory, Occupational and Environmental Health Directorate, Analytical Services Division, Laboratory Guide. These procedures generally follow guidelines established by the USEPA.

Wastewater characterization samples were collected at each of the five sites for a 24-hour period. This was done daily, for 7 days at Site 1 and for 5 days at Sites 2-5. The samples are time-proportional composite samples (i.e., a composite of 48 samples collected at 30 minute intervals). The automated composite samplers used during the survey contained a 2.5-gallon glass jar. The jar was packed in ice prior to each day of sampling. Each day the pH and temperature were measured at each site during sample collection. Physical characteristics (odor, color, etc.) of the samples also were noted.

At the completion of the 24-hour sampling period, representative samples were transferred from the 2.5-gallon glass jar to appropriate sample containers. The sample containers were placed in iced coolers. The coolers were shipped by overnight package service to Armstrong Laboratory's Analytical Services Division at Brooks AFB. Sample preservation was in accordance with Analytical Services Division Laboratory Sampling Guide sampling procedures.

Grab samples of potable water also were collected from Clinic and Alert Facility which represented background sample stations (see Table 2). Upon completion of sample collection, the grab sample containers were placed in iced coolers and shipped by overnight package service to Armstrong Laboratory's Analytical Services Division at Brooks AFB. These samples were collected and preserved in accordance with the AFOEHL sampling procedures.

The chemical oxygen demand (COD) characterizes the strength of the waste water. COD measurements are commonly utilized to estimate the biological oxygen demand (BOD) strength of a waste stream. BOD correlates the impact a waste stream has on the oxygen demand on the receiving water's ecosystem. High strength (OD) wastes may create an anaerobic environment in the receiving water thus impacting marine life. For instance high BOD loads have caused fish kills or killed microbiological populations in a receiving water. Due to strict holding times and difficulties in shipping, BOD samples are commonly done with local laboratories or estimated from COD results. COD measurements are often correlated as being twice the biological oxygen demand factors of a waste. Therefore, BOD concentrations can be estimated by calculating 50% of the measured COD concentrations.

Quality Assurance/Quality Control

Field Quality Assurance/Quality Control (QA/QC)

A field QA/QC program was instituted during the wastewater characterization survey at ACANGB primarily to ensure that a representative sample is available for analysis. An auxiliary goal of the QA/QC program is to verify the accuracy of field procedures and to determine the accuracy and reproducibility of laboratory results. The field QA/QC program used during the survey included the collection of field equipment blank, reagent blank, spike, duplicate, and background samples. In accordance with USEPA sampling protocol, 5 percent of all samples collected were used for each type of QA/QC procedure. Distilled, deionized water was provided by the Armstrong Laboratory Analytical Services Division for the preparation of QA/QC samples.

The following samples were sent to the analytical laboratory to validate the integrity of the samples collected.

Equipment Blank Samples: Field equipment blank samples were collected and analyzed for those parameters listed in Table C-1 of Appendix C. The first blank sample was collected by pumping distilled, deionized water through the Tygon tubing of a composite sampler and then into the appropriate sample containers. The second equipment blank sample was collected by pouring distilled, deionized water into the composite sampler collection jar and then transferring the water to sample containers. Equipment blank samples help indicate accidental or incidental contamination that may have occurred during the sampling process and serve to verify the effectiveness of decontamination procedures. In particular, field equipment blank samples can detect contaminants that may adhere to the inner wall of the Tygon tubing, polyethylene strainer, or the composite sampler collection jar, and potentially cause cross contamination of the samples.

Reagent and Trip Blank Samples: Reagent blank samples were collected and analyzed for the parameters listed in Table C-2 of Appendix C. These samples were collected by pouring distilled, deionized water into sample containers and preserving the samples with the appropriate preservative. Reagent blank samples were collected to determine whether the preservative method could be a source of sample contamination and to quantify any contamination introduced during sample preparation/analysis. Trip blank samples were prepared on site by pouring reagent grade distilled, deionized water into sample containers. Trip samples are used to detect contamination associated with the travel to and from the lab, sampling media, e.g. filter, sample bottles, etc. These samples were analyzed for purgeable and aromatic VOCs also listed in Table C-2. These samples were placed in the coolers shipped from the laboratory and serve as an indication of potential cross contamination which might occur during transportation.

<u>Spike Samples:</u> Spike samples were prepared for those parameters listed in Table C-3 of Appendix C. Spike samples were prepared by the analytical chemist at Armstrong

Laboratory. Results of spike samples are used to identify field, transportation, and sample matrix effects. In addition, spike samples indicate the accuracy of the laboratory's analytical results relative to a known concentration.

<u>Duplicate Samples:</u> Duplicate samples were collected and analyzed for the parameters listed in Tables C-4 and C-5 of Appendix C. Duplicate samples were collected by pouring wastewater from a composite sampler collection jar through a split funnel into appropriate sample containers. It should be noted that the wastewater in the sample collection jar had been well mixed prior to the transfer to the sample containers. Duplicate samples reflect the overall precision of the sampling or analytical methods used in the analyses.

<u>Background Samples:</u> Background samples were collected in accordance to Armstrong Laboratory, Occupational and Environmental Health Directorate, Analytical Services Division, Laboratory Guide (2) and were analyzed for the parameters listed in Table C-6 of Appendix C. Background samples were collected to determine the quality of potable water that enters the sanitary sewer system at ACANGB.

Armstrong Laboratory Internal QA/QC:

The Armstrong Laboratory Analytical Services Division Quality Assurance Plan establishes the guidelines and regulations necessary to meet the analytical laboratory requirements of 43 states, the USEPA, and private accrediting agencies. Specific QA/QC activities include inserting a minimum of 1 blind sample control for each parameter analyzed on a monthly basis and periodic auditing of the laboratory quality assurance items from each branch. All instruments are calibrated for each day of use, and at least one National Institute Standards and Technology/Standard Reference Materials (NIST/SRM) traceable standard and control sample is included with each analytical run. All quality control samples are plotted and tracked by the individual work sections; Corrective action is documented every time a quality assurance parameter is not met. The laboratory participates in numerous proficiency surveys and interlaboratory quality evaluation programs, including the USEPA's Performance Evaluation Study for wastewater. The study involves analyzing samples provided by the USEPA and reporting the results for review.

Site Descriptions

Five sites in the main cantonment area of ACANGB were selected as sampling stations. Sites were selected to determine the source of contaminants present in the ACANGB sanitary sewer system, and to determine the quality of wastewater discharged to the EHTMUA wastewater treatment plant. In addition, two locations were selected as background sampling stations. The background sampling stations were selected to determine the quality of potable water present in the ACANGB sanitary sewer system. Figures B-1 and B-2 of Appendix B illustrate the ACANGB sanitary sewer system and selected sample locations. The following site descriptions represent the sampling locations selected for this survey.

- Site 1, Base Effluent: Samples obtained from Site 1 (Figure B-3) were collected from Manhole #4, located in the eastern sector of the main cantonment area of the base. Wastewater at this manhole location of the sanitary sewer system represents the confluence of the wastewater generated by facilities at the ACANGB. Daily sampling was performed at this site throughout the survey (7-13 September 1995).
- Site 2, Maintenance Dock: Samples obtained from Site 2 (Figure B-4) were collected from Manhole #6-8, located immediately east of the maintenance dock (Bldg 246). This station receives wastewater from an audiovisual/photo lab (Bldg 137), FAA facility (Bldg 149), squadron operations (Bldg 241), clinic (Bldg 400), maintenance dock, steam operating facility (Bldg 40), fuel cell and maintenance facility (Bldg 242), and an oil/water separator present at this facility. Five 24-hour, time-proportional composite samples were collected at this location over a 6 day period (8-13 September 1995).
- Site 3, Aircraft and Maintenance Hangar: Samples obtained from Site 3 (Figure B-5) were collected from Manhole #15 located immediately southeast of the aircraft and maintenance hangar (Bldg 441). Wastewater samples collected from this location are representative of activities which occur at the aircraft and maintenance hangar, munitions system release facility (Bldg 249), and the aircraft general purpose shop (Bldg 36). Five 24-hour, time-proportional composite samples were collected at this location over a 6 day period (8-13 September 1995).
- Site 4, Aircraft Ground Equipment Facility: Samples obtained from Site 4 (Figure B-6) were collected at Manhole #13-1, located immediately east of the AGE facility (Bldg 248). This station receives wastewater from the AGE facility and an oil/water separator present at this facility, and a bulk storage facility (Bldg 121). Five 24-hour, time-proportional composite samples were collected at this location over a 6 day period (8-13 September 1995).
- Site 5, Civil Engineering and Motor Pool: Samples obtained from Site 5 (Figure B-7) were collected between Manhole # 7 and Manhole #8, both located immediately south of the civil engineering and motor pool facility (Bldg 402). Facilities that discharge to this manhole include those associated with Sites 3 and 4, portions of Site 2, the civil engineering and motor pool facility, POL tank farm and fuels lab (Bldg 470), and an FAA operated facility (Bldg 33). Five 24-hour, time-proportional composite samples were collected at this location over a six day period (8-13 September 1995).

<u>Background Sample Location 1:</u> A drinking water sample was collected from the clinic (Bldg 400) located in the northeast sector of the main cantonment area. This grab sample serves to characterize the potable water discharged to the sanitary sewer system; It was collected on 12 September 1995.

<u>Background Sample Location 2:</u> A drinking water sample was collected from the alert facility. This grab sample serves to characterize the potable water discharged to the sanitary sewer system. It was collected on 12 September 1995.

RESULTS

General

Typical characteristics of the individual constituents found in untreated domestic wastewater are reported in Table 4. Depending on the concentrations of these constituents, wastewater may be classified as strong, medium, or weak (4). These concentrations, along with the maximum permissible concentrations associated with wastewater discharged to the EHTMUA wastewater treatment plant (Table 1), serve as standards by which the quality of wastewater typical of the ACANGB sanitary sewer system may be determined.

Quality Assurance/Quality Control

QA/QC sample results are contained in Appendix C. Table C-1 shows the results of the equipment blank analyses. Analytical results of the first equipment blank, which was prepared by pumping distilled, deionized water through the Tygon tubing of the autosampler, indicate measurable amounts of TPH and solids. Analytical results of the second equipment blank, which was prepared by transferring distilled, deionized water from the composite sampler collection jar to appropriate sample containers, revealed the presence of butylbenzyl phthalate (12.3 ug/l), and diethyl phthalate (10.7 ug/l). Although measurable amounts of constituents were detected in each of the equipment blank samples, overall it appears that field sampling procedures resulted in a minimal amount of accidental or incidental contamination during sample collection.

Table C-2 shows the results of the reagent blank and trip blank samples. Oil and grease represents the only parameter detected in the reagent blank sample and therefore, contamination of samples due to preservation reagents is not suspected. The trip blank sample was analyzed for purgeable VOCs and aromatic VOCs. No detectable levels of purgeable or aromatic VOC's were identified in the sample. However, the laboratory's detection limit of 100 ug/l for VOCs is high. Sample dilution at the laboratory reduced the analytical sensitivity. Therefore, the contribution of low levels (<100 ug/l) of VOCs to the wastewater cannot be evaluated based upon sampling results presented here.

Table C-3 shows the results of the spike sampling performed at Armstrong Laboratory. Performance acceptance limits (PALs) for each parameter are presented in the table. Analytical results of spike sample SS-1 indicate many parameter concentrations do not lie within their applicable PAL. This may be attributed to the fact that the samples arrived at the laboratory at room temperature. Analytical results of spike sample SS-2 indicate that nearly all concentrations were within the PAL. Cyanide, antimony, and surfactants were not recovered within the PAL.

Tables C-4 and C-5 provide results of the duplicate samples collected at Site 1 on 8 September 1995. Duplicate sample analytical results were in good agreement with a cumulative average relative percent difference between duplicate samples of 8.5%. Table

C-4 presents results of the metals and volatile organics analyses. Duplicate results for these parameters were in good agreement. The highest relative percent difference between any duplicate result of these parameters was 9.1% (aluminum). Table C-5 presents the duplicate sample analytical results of other analyses. The duplicate results for COD, oil and grease, total petroleum hydrocarbons (TPH), and cyanide were in good agreement. Duplicate results for phenols and solids, however, were in poor agreement and had a relative percent difference as high as 118% (filterable residue). The high relative percent difference associated with the duplicate solid analyses may be due to the inherent difficulty associated with collecting truly duplicate samples of solids in the field. The suspended and settleable solids tend to settle rapidly once mixing of the sample stops and pouring of the sample begins.

Table C-6 shows the results of the background sampling performed on the potable water collected from the ACANGB clinic and alert facility. Although measurable amounts of various constituents, including oil and grease, TPH, metals, solids, VOCs, and volatile organic hydrocarbons, were detected in the background samples, no concentrations exceeded the maximum contaminant level for drinking water (5).

TABLE 4
TYPICAL COMPOSITION OF UNTREATED
DOMESTIC WASTEWATER*

CONTAMINANTS	UNIT	CONCENTRATION		ON
		WEAK	MEDIUM	STRONG
Solids, total (TS)	mg/l	350	720	1200
Dissolved, total (TDS)	mg/l	250	500	850
Fixed	mg/l	145	300	525
Volatile	mg/l	105	200	325
Suspended solids (SS)	mg/l	100	220	350
Fixed	mg/l	20	55	75
Volatile	mg/l	80	165	275
				,
Settleable solids	mg/l	5	10	20
Biochemical oxygen demand	mg/l	110	220	400
BOD, 20°C				
B0D3, 20 C				
Total organic carbon (TOC)	mg/l	80	160	290
Chemical oxygen demand (COD)	mg/l	250	500	1000
No. 1 (Actal and N)	mg/l	20	40	85
Nitrogen (total as N)	mg/l	8	15	35
Organic Free ammonia	mg/l	12	25	50
Nitrites	mg/l	0	0	0
Nitrates	mg/l	0	0	0
Nitrates	ilig/1	<u> </u>		
Phosphorus (total as P)	mg/l	4	8	15
Organic	mg/l	1	3	5
Inorganic	mg/l	3	5	10
Chlorides	mg/l	30	50	100
Sulfate	mg/l	20	30	50
				200
Alkalinity (as CaCO ₃)	mg/l	50	100	200
Grease	mg/l	50	100	150
Total Coliform	no/100 ml	10 ⁶ - 10 ⁷	107- 108	10 ⁷ - 10 ⁹
Volatile organic compounds (VOCs)	μg/l	<100	100-400	>400

*Metcalf and Eddy, Wastwater Engineering - Treatment, Disposal, Reuse.

Wastewater Samples

This section describes the analytical results of this survey. The sampling sites are discussed individually. Tabular data of wastewater sample are in Appendix D. Graphical representation of data are in Appendix E.

Site 1, Base Effluent: Wastewater samples collected at Site 1 are representative of the quality of water that ACANGB discharges to the EHTMUA wastewater treatment plant. Tables D-1 through D-3 contain the results of samples collected at Site 1 over the period 7-13 September 1995. Concentrations of contaminants detected in samples collected at Site 1 are typical of a weak to moderate domestic wastewater. It should be noted that contaminant concentrations increased at Site 1 during UTA days (9-10 September 1995) and remained relatively high through, the morning of 11 September 1995.

Table D-1 provides results of metals and VOCs analyses. Although trace amounts of various metals were detected including aluminum (1.45 mg/l), barium (0.075 mg/l), cadmium (0.005 mg/l), copper (0.086 mg/l), iron (2.76 mg/l), mercury (0.0003 mg/l), and zinc (0.186 mg/l), no concentrations exceeded EHTMUA's maximum permissible concentrations. Low levels of toluene (3.94 ug/l) and 1,4-dichlorobenzene (1.76 ug/l) also were detected in the samples. However, EHTMUA does not designate a maximum permissible concentration for these parameters.

Table D-2 contains results of other analyses of samples collected at Site 1 including COD, oil and grease, TPH, cyanide, phenols, solids, pH, and temperature. All analytical results, except for phenols, indicate the reported concentrations are below EHTMUA's maximum permissible concentrations. Phenols were detected as high as 291 ug/l (0.291 mg/l). EHTMUA's maximum permissible phenol level is 0.1 ug/l.

Table D-3 provides analytical results for BNAs, pesticides, herbicides, and PCBs. Samples were collected at Site 1 on 7 and 9 September 1995. Only bis(2ethylhexyl)phthalate (34 to 50 ug/l) were reported above detection limits. This constituent is a typical laboratory contaminant and may not be attributable to the collected wastewater sample.

Site 2, Maintenance Dock: Wastewater samples collected at Site 2 are representative of the quality of water that is generated at the audiovisual/photo lab, FAA facility, squadron operations, clinic, maintenance dock, steam operating facility, fuel cell, and maintenance facility (where an oil/water separator is located). Tables D-4 through D-5 contain the results of samples collected at Site 2 over the period 8-13 September 1995. During non-UTA days, concentrations of contaminants detected in samples collected at Site 2 are typical of a weak to moderate domestic wastewater, and moderate to strong domestic wastewater during UTA days.

Table D-4 provides results of metals and VOCs analyses. Although trace amounts of various metals were detected including aluminum (1.35 mg/l), barium (0.139 mg/l),

cadmium (0.017 mg/l), copper (0.335 mg/l), iron (6.43 mg/l), lead (0.026 mg/l), manganese (0.109 mg/l), mercury (0.0004 mg/l), silver (0.046 mg/l) and zinc (0.290 mg/l), no concentrations exceeded EHTMUA's maximum permissible concentrations. Low levels of chloroform (3.58 ug/l), 1,4-dichlorobenzene (3.65 ug/l), and toluene (6.11 ug/l) also were detected in the samples. However, EHTMUA does not have a maximum permissible concentration for these parameters.

Table D-5 contains results of other analyses of samples collected at Site 2, including COD, oil and grease, TPH, cyanide, phenols, solids, pH, and temperature. Concentrations of these contaminants are characteristic of a moderate to strong domestic wastewater. Phenols which were detected as high as 298 mg/l and pH with a level of 4 units, exceeded EHTMUA's permissible concentrations. A biochemical oxygen demand (BOD₅) analyses was not performed. However, the reported COD level of 1660 mg/l exceeds EHTMUA's concentration limit. (A COD level greater than approximately 600 mg/l exceeds the EHTMUA maximum permissible BOD₅ concentration limit of 300 mg/l.)

Additional physical characteristics of the wastewater at Site 2 were noted. Survey personnel noted significant amounts of oil and grease and a red substance, suspected to be hydraulic fluid, in the samples. Contaminant concentrations increased during UTA days (9 and 10 September 1995) at Site 2 and remained relatively high through 11 September 1995.

Site 3, Aircraft and Maintenance Hangar: Wastewater samples collected at Site 3 are representative of aircraft and maintenance hangar, munitions system release facility, and aircraft general purpose shop activities. Tables D-6 through D-7 present the analytical results of samples collected at Site 3 from 8-13 September 1995. Concentrations of contaminants detected in samples collected at Site 3 are typical of a medium to strong domestic wastewater. Contaminant concentrations increased at Site 3 during UTA days (9-10 September 1995) and remained relatively high through 11 September 1995. Metal concentrations were highest in samples collected at Site 3 on 11 September 1995.

Table D-6 provides results of metals and VOCs analyses. Trace amounts of various metals were detected including aluminum (3.88 mg/l), antimony (0.009 mg/l), barium (1.64 mg/l), cadmium (0.058 mg/l), chromium (0.016 mg/l), copper (0.179 mg/l), iron (6.57 mg/l), lead (0.065 mg/l), manganese (0.206 mg/l), mercury (0.0012 mg/l), nickel (0.022 mg/l), titanium (0.067 mg/l), and zinc (1.45 mg/l). No concentrations exceeded EHTMUA's maximum permissible concentrations. Low levels of toluene (2.29 ug/l) and 1,1,2-trichloroethane (1.8 ug/l) also were detected in the samples collected at Site 3. However, EHTMUA does not have a maximum permissible concentration for these parameters.

Table D-7 presents results of other analyses of samples collected at Site 3. Other analyses include COD, oil and grease, TPH, phenols, solids, pH, and temperature. Concentrations of these contaminants were characteristic of a moderate to strong domestic wastewater. The maximum phenol concentration of 650 mg/l exceeds the EHTMUA's

maximum permissible concentration. A BOD₅ analyses was not performed. However, the reported COD levels detected above 600 mg/l on 10 and 11 September exceed EHTMUA's BOD₅ concentration limit of 300 mg/l.

Site 4, Aviation Ground Equipment Facility: Wastewater samples collected at Site 4 are representative of activities associated with the AGE facility, the associated oil/water separator, and the bulk storage facility. Tables D-8 through D-9 present results of samples collected at Site 4 over 8-13 September 1995. Concentrations of contaminants in samples collected at Site 4 are typical of a medium domestic wastewater.

Table D-8 presents results of metals and VOCs analyses. Maximum metal concentrations include aluminum (2.64 mg/l), antimony (0.006 mg/l), barium (0.145 mg/l), cadmium (0.119 mg/l), copper (0.834 mg/l), iron (15.9 mg/l), lead (0.164 mg/l), manganese (0.177 mg/l), mercury (0.001 mg/l), nickel (0.039 mg/l), and zinc (0.828 mg/l). Iron and lead represent the only two metals that exceed EHTMUA's maximum permissible concentrations. Maximum concentrations of VOCs detected in samples collected include chlorobenzene (5.98 ug/l), 1,4-dichlorobenzene (36.8 ug/l), and toluene (6.26 ug/l). However, EHTMUA does not prescribe a maximum permissible concentration for these parameters. Measurable amounts of methylene chloride also were detected. This constituent is a common laboratory contaminant and may not be attributable to the collected wastewater sample.

Table D-9 contains results of other analyses of samples collected at Site 4 including COD, oil and grease, TPH, phenols, solids, pH, and temperature. Concentrations of these contaminants are characteristic of a medium domestic wastewater. Phenol concentrations as high as 425 mg/l are the only parameter which exceeds EHTMUA's maximum permissible concentration level. A BOD, analyses was not performed. The reported COD level above 600 mg/l (8 September 1995) exceeds EHTMUA's BOD, concentration limit of 300 mg/l.

Additional physical characteristics were noted about the wastewater at Site 4. During sampling, survey team noted significant amounts of black, suspended solids in the wastewater. These solids are suspected to be from the oil/water separator at the AGE facility. Contaminant concentrations in samples from Site 4 did not significantly increase during UTA days (9-10 September 1995). However, metal concentrations peaked in samples collected at Site 4 on Monday, 11 September 1995.

Site 5, Civil Engineering and Motor Pool: Wastewater samples collected at Site 5 are representative of activities associated with Sites 3 and 4, portions of Site 2, the civil engineering and motor pool facility, POL tank farm and fuels lab, and an FAA operated facility. Tables D-10 through D-11 contain the results of samples collected at Site 5 over the period 8-13 September 1995. Contaminant concentrations in samples collected at Site 5 are typical of a medium to strong domestic wastewater.

Table D-10 provides results of metals and VOCs analyses. Maximum metal concentrations include aluminum (2.01 mg/l), barium (0.068 mg/l), cadmium (0.008 mg/l), copper (0.188 mg/l), iron (4.96 mg/l), lead (0.043 mg/l), manganese (0.223 mg/l), mercury (0.0014 mg/l), nickel (0.028 mg/l), and zinc (1.03 mg/l). No metals detected in samples collected at Site 5 exceeded EHTMUA's maximum permissible concentrations. VOC analyses of samples collected at Site 5 indicated that the only contaminant detected was toluene with a maximum concentration of greater than 100 mg/l. However, EHTMUA does not have a maximum permissible concentration for toluene.

Table D-11 contains results of other analyses of samples collected at Site 5. Other analyses include: COD, oil and grease, TPH, phenols, solids, pH, and temperature. Concentrations of these contaminants were characteristic of a medium domestic wastewater. Phenols, which were detected as high as 300 mg/l, exceeded EHTMUA's maximum permissible concentration. A BOD₅ analysis was not performed. However, the reported COD levels detected above 600 mg/l on 9 through 13 September 1995 exceeded EHTMUA's BOD₅ concentration limit of 300 mg/l. COD levels were detected above 600 mg/l on 4 of the 5 sampling days, with the maximum concentration (2,000 mg/l) occurring on 11 September 1995.

Contaminant concentrations in samples collected at Site 5 did not significantly increase during UTA days (9-10 September 1995). Many contaminant concentrations, including metals, COD, and solids, peaked in samples collected on Monday, 11 September 1995.

CONCLUSIONS AND RECOMMENDATIONS

Armstrong Laboratory Occupational and Environmental Health Directorate personnel stationed at Brooks Air Force Base (AFB), TX conducted a wastewater characterization survey at Atlantic City Air National Guard Base (ACANGB) from 7-13 September 1995. Sampling was performed to determine the source of potential contaminants in the wastewater, and to determine the quality of wastewater discharged to the EHTMUA wastewater treatment plant. QA/QC samples, background samples of potable water, and wastewater samples from five sites located within the base cantonment area were collected and analyzed for various contaminants. QA/QC samples collected during this survey include duplicate, equipment blanks, reagent blanks, trip blanks, spike samples, and background samples. Analytical results of duplicate samples were in good agreement, with the exception of phenols and solids which had a maximum relative percent difference of 118%. Equipment blank analytical results indicate that field sampling procedures contributed little incidental or accidental contamination during sample collection. Reagent blank analytical results indicate that contamination of samples due to preservation reagents is not suspected. Analytical results of the trip blank sample revealed no detectable levels of purgeable VOCs or aromatic VOCs in the sample. Spike sample SS-1 was not properly preserved and therefore many parameter concentrations did not lie within their respective PAL. Analytical results of spike sample SS-2 indicate that most parameters' concentrations are within their respective PAL. Two background samples of potable water, collected from the ACANGB clinic and alert facility, revealed measurable amounts of

various contaminants. These contaminants include oil and grease, TPH, metals, solids, VOCs, and volatile organic hydrocarbons. No levels exceeded the maximum contaminant level for drinking water.

Based on analytical results discussed in the previous section many analytical parameters are elevated throughout Sites 2-5. Contaminant concentrations decrease (i.e., become diluted) as the wastewater flows to a confluence at Site 1. For example, COD, oil and grease, phenols, and solids all exhibited relatively high concentrations in Sites 2-5 compared to their concentrations at Site 1. Phenols represent the only parameter at Site 1 which remained above EHTMUA's maximum permissible concentration.

Sites 1-3 exhibited an increase in contaminant concentrations during UTA days (9-10 September 1995). These concentrations remained relatively high through Monday, 11 September. Metals detected in samples collected at Site 4, along with metals, COD, and solids detected in samples collected at Site 5, peaked on Monday following the UTA. Initially it was suspected that samples collected on 11 September 1995 would indicate the potential contribution of contaminants to the wastewater by FAA facilities located on base. This conclusion cannot be substantiated with the available data.

Based on analytical results of samples collected during this survey, potentially hazardous substances are being discharged to the ACANGB sanitary sewer system by various industrial activities occur on the base. One possible source of contamination is the oil/water separators. This untreated wastewater from the oil/water separators combines with other effluent and is discharged to the EHTMUA wastewater treatment plant. Most contaminants detected in the wastewater at Site 1, the base effluent, were below EHTMUA's maximum permissible concentration levels. Many parameters detected at Sites 2-5 were above the permissible concentration levels. Therefore, it cannot be concluded that the quality of wastewater being discharged from ACANGB will be within the range of permissible concentrations. According to Air Force Instruction (AFI) 32-1067, wastewaters from operations which produce hazardous wastes such as aircraft maintenance operations, are required to meet pretreatment standards before being discharged to the wastewater treatment plant, or the wastewater should be handled as hazardous waste (6). In addition, AFI 32-7041 indicates that oil/water separators must be inspected and maintained regularly to ensure water quality compliance (7). A review of the operation and maintenance procedures for the base's oil/water separators is recommended.

The results discussed in this report reflect the quality of the wastewater during the period of this survey. Any changes that may have occurred to operations, shop practices, chemical usage, base population, or mission since the completion of this survey will change the nature of future discharges into the sanitary sewer collection system and the EHTMUA wastewater treatment plant.

REFERENCES

- 1. Egg harbor Township Municipal Utilities Authority, *Rules and Regulations Governing Sewer System*. Atlantic County, New Jersey: November 1989.
- 2. Armstrong Laboratory, Occupational and Environmental Health Directorate, Analytical Services Division, *Laboratory Guide*. Brooks AFB, Texas: October 1994.
- 3. Standard Methods for the Examination of Water and Wastewater, 17th Edition, *Methods* 5210B and 5220D. Washington, D.C.: 1989.
- 4. Metcalf and Eddy, Wastewater Engineering-Treatment, Disposal, Reuse. New York: McGraw-Hill, Inc., 1991.
- 5. United States Environmental Protection Agency, *Drinking Water Regulations and Health Advisories*. Washington D.C.: February 1996.
- 6. United States Air Force, Air Force Instruction 32-1067, *Waste Water Management*. Department of Defense: March 1996.
- 7. United States Air Force, Air Force Instruction 32-7041, *Water Quality Compliance*. Secretary of the Air Force: May 1994.

APPENDIX A REQUEST LETTER

NEW JERSEY AIR NATIONAL GUARD HEADQUARTERS 177TH FIGHTER GROUP PLEASANTVILLE NJ

23 March 1995

MEMORANDUM FOR: AL'OEBW

ATTENTION: Captain Franz Schmidt

FROM: 177 FG/EM

400 Langley Road

Pleasantville NJ 08232-9500

SUBJECT: Request for Wastewater Characterization Survey

1. We request that AL/OEBW conduct a wastewater characterization survey at Atlantic City Air National Guard Base.

2. I talked to SSgt Pete Davis today to determine what you will need prior to a pre-survey and cost estimate. I am preparing the following documents to forward to you:

a. A copy of our NPDES storm water permit (individual) not necessary storm of storm sanitary, and septic)

b. A complete set of the Base sewer system plans (storm, sanitary, and septic)

c. Copies of the local utility authority regulations

3. This project has already been validated by the Air National Guard Readiness Center. Funding will be transferred from the current ANG Armstrong Laboratory account.

4. Thanks in advance for your effort. Please call me at DSN: 455-6328 if you have any questions.

JOHN C. ELWOOD, Captain, NJANG

Environmental Coordinator

cc:

177 FG/CC

APPENDIX B

SAMPLE ANALYSES AND SAMPLE LOCATION MAPS

TABLE B-1: WASTEWATER ANALYTICAL AND PRESERVATION METHODS

PARAMETER	EPA METHOD	PRESERVATION	HOLDING TIME (days)
Aluminum	200.7	HNO ₃	180
Antimony	200.7	HNO ₃	180
Arsenic	200.7	HNO ₃	180
Barium	200.7	HNO ₃	180
Beryllium	200.7	HNO ₃	180
Cadmium	200.7	HNO ₃	180
Chromium (Total)	200.7	HNO ₃	180
Cobalt	200.7	HNO ₃	180
Copper	200.7	HNO ₃	180
Iron	200.7	HNO ₃	180
Lead	200.7	HNO ₃	180
Manganese	200.7	HNO ₃	180
Mercury	200.7	HNO ₃	180
Molybdenum	200.7	HNO ₃	180
Nickel	200.7	HNO ₃	180
Selenium	200.7	HNO ₃	180
Silver	200.7	HNO ₃	180
Thallium	200.7	HNO ₃	180
Titanium	200.7	HNO ₃	180
Vanadium	200.7	HNO ₃	180
Zinc	200.7	HNO ₃	180
Cyanide	335.3	NaOH	14
Chemical Oxygen Demand (COD)	410.4	H ₂ SO ₄ ,4°C	28
Phenols	420.2	H ₂ SO ₄ ,4°C	28
Oil and Grease	413	H ₂ SO ₄ ,4°C	28
Total Petroleum Hydrocarbons (TPH)	418.1	H ₂ SO ₄ ,4°C	28
Total Toxic Organics	625	4°C	7

TABLE B-1 (CONTINUED): WASTEWATER ANALYTICAL AND PRESERVATION METHODS

PARAMETER	EPA METHOD	PRESERVATION	HOLDING TIME (days)
Residue, Total	160.3	None	28
Residue, Filterable	160.1	None	28
Residue, Nonfilterable	160.2	None	28
Residue, Settleable	160.5	None	28
Residue, Total Volatile	160.4	None	28
Surfactants-MBAs	425.1	4°C	2
Purgeable Halocarbons	602	4°C	14
Purgeable Aromatic Volatiles	601	4°C	14
Base/Neutral Acids	625	4°C	14
Pesticides/PCBs	608	4°C	14
Herbicides	615	4°C	14

ARMSTRONG LABORATORY
OCCUPATIONAL AND HEALTH
DIRECTORATE/WATER BRANCH

FIGURE B-2

SANITARY SEWER SYSTEM SOUTH MAP

ATLANTIC CITY AIR NATIONAL GUARD BASE ATLANTIC CITY, NEW JERSEY

2"

APPENDIX C QUALITY ASSURANCE/QUALITY CONTROL SAMPLING RESULTS

ATLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY	
--	--

		FOURTH BLANK 1	EQUIPMENT BLANK 2	2		EQUIPMENT BLANK 2
		12-Sep-95	12-Sep-95			12-Sep-95
GROUP A & B ANALYTES	UNITS	Tuesday	Tuesday	BASE/NEUTRAL ACIDS	UNITS	Tuesday
Chemical Oxvoen Demand	Npm	<10	<10	Acenaphthene	l/gu	<5
Oil and Grease	l/gm	NR.	0.8	Acenaphthylene	l/gu	\$
Total Petroleum Hydrocarbon	l/om	NR.	⊽	Anthracene	Vgu	<5
				Aroclor 1260	/gn	<5
GROUP D ANALYTES				Benzidine	l/gu	<5
Cvanide (Totat)	lom.	<0.005	<0.005	Benzo(a)anthracene	l/gu	<5
,				Benzo(b)fluoranthene	l⁄gu	<5
GROUP E ANALYTES				Benzo(k)fluoranthene	√6n	<5
Phenois	l/bn	<10	<10	Benzo(ghi)perylene	l/gu	<5
				Benzyl butyl phthalate	ľ⁄gn	\$
METALS				Bis(2-chloroethyl)ether	∫⁄gn	<5
GROUP F ANALYTES				Bis(2-chloroethoxy)methane	ľôn	\$
Aluminum	νbm	<0.030	<0.030	Bis(2-ethylhexyl)phthalate	νδη	<5
Antimony	Ngm	<0.005	<0.005	Bis(2-chloroisopropyl)ether	√gn	<5
Arsenic	Ngm	<0.005	<0.005	4-Bromophenyl phenyl ether	/gn	<5
Barium	Vem	<0.050	<0.050	Butylbenzyl Phthalate	l⁄gu	12.3
Bervllium	√om Vom	<0.001	<0.001	2-Chloronaphthalene	√gn	<5
Cadmium	₽ Pem	<0.001	<0.001	4-Chlorophenyl phenyl ether	Vôn	<5-
Total Chromium	₩ Voin	<0.010	<0.010	Chrysene	√6n	<5 5
Cobalt	Vom.	<0.050	<0.050	Dibenzo(a,h)anthracene	νδη	<5
Copper	mo/l	<0.020	<0.020	Di-n-butylphthalate	√6n	<5
lion	Jom Jom	<0.030	<0.030	1,2-Dichlorobenzene	√6n	<5
Lead	Pag.	<0.001	<0.001	1,3-Dichlorobenzene	ľgu	<5
Manganese	MQ/	<0.030	<0.030	1,4-Dichlorobenzene	√6n	<5
Merciny	Jour Jour	<0.0002	<0.0002	3,3-Dichlorobenzidine	l/gu	\$
Molydenim	, Jou	<0.030	<0.030	Diethyl phthalate	ľgu	10.7
Nickel	Nom.	<0.020	<0.020	Dimethyl phthalate	l⁄gu	<5
Selenium	L/DIII	<0.005	<0.005	2,4-Dinitrotoluene	ľgu	<5
Silver	₽ F	<0.010	<0.010	2,6-Dinitrotoluene	√gu	\$
Thallium	Vom	<0.001	<0.001	Di-noctyl phthalate	l/gu	< <u>\$</u>
Titanium	√gm	<0.050	<0.050	Fluoranthene	νδη	<5
Vanadium	l/gm	<0.050	<0.050	Fluorene	νδη	<5
Zinc	Nom Nom	<0.050	<0.050	Hexachlorobenzene	√6n	<5

TABLE C-1 (CONTINUED): EQUIPMENT BLANK SAMPLE ANALYTICAL RESULTS ATLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995
--

		EQUIPMENT BLANK 1	EQUIPMENT BLANK 2			EQUIPMENT BLANK 2
		12-Sep-95	12-Sep-95			12-Sep-95
GROUP G		Tuesday	Tuesday	BASE/NEUTRAL ACIDS	STINITS	Tienday
Residue Total	l∕gm	NR	59	Hexachlorobutadiene	Voil	- C5
Residue, Filterable (TDS)	√gm	NR	42	Hexachlorocyclopentadiene	/on	\$ 2
Residue, Nonfilterable (TSS)	√6m	RN	<0.1	Hexachloroethane	Von	5
Residue, Settleable	mg/l	NR	<0.2	Indeno(1,2,3-cd)pvrene	/01	3
Residue, Volatile	l∕gm	NR.	40	Isophorone	/on	3 40
Sulfate	∩g/u	NR	<0.1	Naphthalene	/on	\$ \$
				Nitrobenzene	Non-	\$
VOLATILE ORGANICS				N-Nitrosodimethylamine	/on	55
Benzene	Ngu	NR	\$	N-Nitrosodi-n-propylamine	/on	5
Benzyl Chloride	l/gu	AN.	\$	N-Nitrosodiphenylamine	/011	3
Bromobenzene	l∕gu	AN.	\$	Phenanthrene	, Por	, 4
Bromodichloromethane	\bgu	AN.	\$	Pyrene	Voil	2
Вготогот	ľδn	RN	₽\$	1,2,4-Trichlorobenzene	Von	\$ 5
Bromomethane	l⁄gu	RN	-\$	4-Chloro-3-methylphenol	Von	\$
Carbon tetrachloride	\bn	N.	\$	2-Chlorophanol	Voil	3
Chlorobenzene	l/gu	RN		2.4-Dichlorophenol	you	2 4
Chlorodibromomethane	l/gu	RN		2.4-Dimethylphenol	Voil	2 4
Chloroethane	l/gu	NR.		2.4-Dinitrophenol	2	3 4
Chloroform	√6n	N.		2-Methyl-4.6-dinitrophenol	Voil	, 4
2-Chlorethylvinyl Ether	√6n	NA.		2-Nitrophenol	Void	2
Chloromethane	√gn	N.		4-Nitrophenol	3	7 4
Chlorodibromomethane	ľgu	N.		Pentachlomohanol	3	2 4
Dibromomethane	Ngu	N.	\$	Phenol	, o	, 4
1,2-Dichlorobenzene	Vôn	AN		2.4.6-Trichlomphenol	3	7 4
1,3-Dichlorobenzene	Vôn	RN			, and	
1,4-Dichlorobenzene	Von	NB.	55			

ATLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY TABLE C-1 (CONTINUED): EQUIPMENT BLANK SAMPLE ANALYTICAL RESULTS **07-13 SEPTEMBER 1995**

EQUIPMENT BLANK 2 12-Sep-95 Tuesday <0.03 <0.06 <0.03 <0.12 <0.04 <0.66 <0.06 <0.09 <0.14 <0.11 <0.04 <0.02 <0.14 <0.23 <0.03 <0.83 <0.65 <192 < 0.17 <0.20 <249 ⊽ ⊽ ⊽ 7 ⊽ ⊽ 7 UNITS νgη ωgγ νgη /gn ρg l/gn νĝη Ng₀ ſδη ğ ξģ. **S** νgn Ng Ng ğ 2 νδn /gn /6n 9 **1**60 γgn /gn μĝ νĝη l_Qu νgn **V**gn \₀ Lindane (gamma-BHC) PESTICIDES/PCBs Endosulfan Sulfate Heptachlor Epoxide Endrin Aldehyde Endosulfan II HERBICIDES Aroclor 1242 Aroclor 1248 Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1254 Aroclor 1260 Endosulfan I alpha-BHC Heptachlor Texaphene Chlordane delta-BHC beta-BHC p, p - DDT 4,4' DDD 4,4' DDE Dieldrin Endrin MCPA MCPP 2,4,5-T Aldrin Silvex EQUIPMENT BLANK 1 EQUIPMENT BLANK 2 SEE COMMENT 12-Sep-95 Tuesday <0.27 <0.65 <5.8 <0.0> <1.2 1.2 <0.91 Ŝ ŝ Ş ŝ \$ ŝ ŝ ŝ ŝ ŝ ŝ ŝ \$ ŝ ŝ ŝ \$ ŝ ŝ ŝ Ş 12-Sep-95 Tuesday 띩 R Ä Æ Æ 띩 뜻 R Ë Ä Ë Æ £ £ £ £ £ 罗罗 R UNITS ρ l/gu Ś γôn √6n νgu **S** ğ ng/l νĝη νgn βğ ľβn /gn ľ Ιδη /gn νĝη ğ νδη νgη 5 ğ γĝη 200 ğ rans-1,3-Dichloropropene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane rans-1,2-Dichloroethene Dichlorodifluoromethane Cis-1,3-Dichloropropene **VOLATILE ORGANICS** richlorofluoromethane ,2,3-Trichloropropane ,1,1-Trichloroethane ,1,2-Trichloroethane ,2-Dichloropropane **Tetrachloroethylene** ,1-Dichloroethane .2-Dichloroethane ,1-Dichloroethene ,2-Dichloroethene Methylene Chloride richloroethylene Ethyl Benzene Vinyl Chloride **HERBICIDES** Dichloroprop -Xylene **Dicamba** Dalapon Dinoseb 2,4-DB 2,4-D

Not requested for Trichlorefluoromethane due to contamination from refrigerant leak.

^{**}Not requested for analysis

TABLE C-2: REAGENT AND TRIP BLANK SAMPLE ANALYTICAL RESULTS ATLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995

					The state of the s
		REAGENT BLANK			TRIP BLANK
		12-Sep-95			7-Sep-95
GROUP A & B ANALYTES	UNITS	Tuesday	VOLATILE ORGANICS	UNITS	Thursday
Chemical Oxygen Demand	Гбш	<10	Benzene	l⁄gu	<100
Oil and Grease	l/gm	0.3	Benzyl Chloride	/6n	NA*
Total Petroleum Hydrocarbon	∫gm	₽	Bromobenzene	Von	NA*
			Bromodichloromethane	VGn	NA*
GROUP D ANALYTES		<0.005	Bromoform	l/gu	*AN
Cyanide (Total)	l⁄gm		Bromomethane	Vôn	NA*
			Carbon tetrachloride	√6n	.W
GROUP E ANALYTES			Chlorobenzene	Vôn	<100
Phenois	νδη	<10	Chlorodibromomethane	V6n	NA*
			Chloroethane	l/gu	NA*
METALS			Chloroform	l/gu	.W
GROUP F ANALYTES			2-Chlorethyivinyi Ether	Vôn	NA*
Aluminum	₩ Mg/l	<0.030	Chloromethane	l/gu	.AN
Antimony	₩ Mg/I	<0.005	Chlorodibromomethane	l _Q u	NA*
Arsenic	₩g/I	<0.005	Dibromomethane	VGn	NA.
Barlum	₩ J	<0.001	1,2-Dichlorobenzene	/6n	<100
Beryllium	lgm	<0.001	1,3-Dichlorobenzene	√6n	<100
Cadmium	₩ V	- <0.010	1,4-Dichlorobenzene	Vôn	<100
Total Chromium	₩g⁄l	<0.010	Dichlorodifluoromethane	Ng0	NA*
Cobalt	₩ ₀	<0.050	1,1-Dichloroethane	Vôn	NA*
Copper	mg/l	<0.020	1,2-Dichloroethane	Võn	.AA
lron	₩ Mg/l	<0.030	1,1-Dichloroethene	Von	NA*
Lead	l/gm	<0.001	Trans-1,2-Dichloroethene	l⁄gu	NA*
Manganese	l/gm	<0.030	1,2-Dichloropropane	Vôn	NA*
Мегсигу	l/gm	<0.0002	Cis-1,3-Dichloropropene	Võn	NA.
Molybdenum	₩ Mg/l	<0.030	Trans-1,3-Dichloropropene	Vgn	NA*
Nickel	mg/	<0.020	Ethyl Benzene	Vôn	<100
Selenium	l/gm	<0.005	4-Isopropyftoluene	Van	NA*
Silver	mg/l	<0.010	Methylene Chloride	Vôn	NA.
Thalllum	l/gm	<0.001	1,1,1,2-Tetrachloroethane	Von	NA*
Titanium	mg/l	<0.050	1,1,2,2-Tetrachloroethane	Vôn	•NA•
Vanadium	l/gm	<0.050	Tetrachloroethylene	Von	NA*
Zinc		<0.050	Toluene	Vôn	<100

TABLE C-2 (CONTINUED): REAGENT AND TRIP BLANK SAMPLE ANALYTICAL RESULTS ATLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995

		REAGENT BLANK			TRIP BLANK
		12-Sep-95			7-Sep-95
VOLATILE ORGANICS	UNITS	Tuesday	VOLATILE ORGANICS	UNITS	Thursday
Benzene	l/gn	<5	1,1,1-Trichloroethane	ng/l	NA*
Benzyl Chloride	l/gu	<5	1,1,2-Trichloroethane	νôη	NA*
Bromobenzene	ng/l	<5>	Trichloroethylene	l/gu	NA*
Bromodichloromethane	ng/l	<5>	Trichlorofluoromethane	l⁄gu	NA*
Bromoform	l/gu	<5	1,2,3-Trichloropropane	ľĝn	NA*
Bromomethane	l⁄gu	<5	Vinyl Chloride	l⁄gu	NA*
Carbon tetrachloride	ľgn	<5	m-Xylene	νδη	<100
Chlorobenzene	νδn	<5	o-Xylene	l⁄gu	<100
Chlorodibromomethane	νδη	<5	p-Xylene	νδη	<100
Chloroethane	νδη	<5			
Chloroform	νδη	<5			
2-Chlorethylvinyl Ether	ľgn	<5			
Chloromethane	ľgn	<5			
Chlorodibromomethane	ľôn	<5			
Dibromomethane	ľgn	<5			
1,2-Dichlorobenzene	√6n	<5			
1,3-Dichlorobenzene	ľgu	<5			
1,4-Dichlorobenzene	√gn	<5			
Dichlorodifluoromethane	√ôn	\$			
1,1-Dichloroethane	ľĝn	€5			
1,2-Dichloroethane	ηδη	€5			
1,1-Dichloroethene	√6n	\$			
Trans-1,2-Dichloroethene	l∕gu	<5			
1,2-Dichloropropane	ľgn	<5			
Cis-1,3-Dichloropropene	l⁄gu	<5			
Trans-1,3-Dichloropropene	√gn	<5			
Ethyl Benzene	∫/ôn	<5			
4-isopropyttoluene	ľgn	\$			
Methylene Chloride	l∕gn	\$			
1,1,1,2-Tetrachloroethane	l∕gu	<5			
1,1,2,2-Tetrachloroethane	l∕gu	<5			
Tetrachloroethylene	ľgn	<5			

TABLE C-2 (CON: ATLANTIC CITY AIR	TINUEI R NATI	D): REAGENT AND T ONAL GUARD BASE 07-13 SEPT	TABLE C-2 (CONTINUED): REAGENT AND TRIP BLANK SAMPLE ANALYTICAL RESULTS TLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995	
		REAGENT BLANK		
		12-Sep-95		
VOLATILE ORGANICS	UNITS	Tuesday		
1,1,1-Trichloroethane	√6n	\$		
1,1,2-Trichloroethane	γôn	\$		
Trichloroethylene	ľgn	\sigma		
Trichlorofluoromethane	Vôn	.VA.		
1,2,3-Trichloropropane	√ôn	\$5		
Vinyl Chloride	l∕6n	\$		

ATLANTIC CITY		LE C-3: SAMPLE SPIKE ANALYTIONAL GUARD BASE WASTEWA	TABLE C-3: SAMPLE SPIKE ANALYTICAL RESULTS AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY	S TERIZATION SURVEY
		SS-1 (11-SEP-95)	SS-2 (11-SEP-95)	
GROUP A & B ANALYTES	UNITS	Monday	Monday	Performance Acceptance Limits
Chemical Oxygen Demand	₩ I/gm	145	152	133-181 mg/L
Oil and Grease	l/gm	49.6	44.8	44.5 - 92.6 mg/bottle
GROUP D ANALYTES				
Cyanide (Total)	₩ I	0.325	0.162	0.295 - 0.513 mg/L
GROUP E ANALYTES	l⁄gu			Expressed in ug/i
Phenois		0.082	0.146	0.108 - 0.176
METALS				
GROUP F ANALYTES				
Aluminum	l∕gm	0.223	0.255	0.211 - 0.342
Antimony	₩ Mg/l	0.067	<0.005	0.0536 - 0.0843
Arsenic	l⁄gm	0.06	0.07	0.0482 - 0.0759
Barium	mg/l	0.14	0.164	0.146 - 0.211
Beryllium	l⁄g≡	0.045	0.053	0.0469 - 0.0674
Cadmium	l⁄g≡	0.061	0.072	0.0644 - 0.0927
Total Chromium	l/gm	0.132	0.153	0.135 - 0.194
Cobalt	l∕gm	0.19	0.221	0.193 - 0.278
Copper	l⁄gm	0.162	0.188	0.170 - 0.244
Iron	mg/l	0.309	0.36	0.310 - 0.447
Lead	l/gm	0.137	0.154	0.129 - 0.185
Manganese	mg/l	0.19	0.222	0.199 - 0.287
Mercury	mg/l	0.0034	0.003	0.00214 - 0.00357
Molybdenum	₩g/I	0.21	0.244	0.211 - 0.303
Nickel	l/gm	0.184	0.214	0.187 - 0.270
Selenium	l⁄gm	0.086	0.101	0.0857 - 0.135
Silver	l⁄g≡	0.075	0.089	0.0791 - 0.114
Thallium	ľ⁄gш	0.053	0.064	0.0482 - 0.0759
Vanadium	l⁄g≡	0.119	0.138	0.126 - 0.181
Zinc	l⁄g≡	0.214	0.251	0.217 - 0.312
GROUP G				
Residue Total	₩g/I	52	417	386 - 504
Residue, Filterable (TDS)	mg/l	396	392	359 - 467

TABLE C-4: DUPLICATE	METAL	TABLE C-4: DUPLICATE METALS AND VOLATILES ANALYTICAL RESULTS	FICAL RESULTS
SITE 1, BASE EFFLUENT ATLANTIC CITY AIR NATIONAL GIJARD BASE WASTWATER CHARACTERIZATION SURVEY	SITE 1,	SITE 1, BASE EFFLUENT	TERIZATION SUBVEY
	07-13	07-13 SEPTEMBER 1995	
METALS		8-Sep-95	8-Sep-95
GROUP F ANALYTES	UNITS	Friday	DUPLICATE
Aluminum	mg/l	0.412	0.376
Antimony	mg/l	<0.005	<0.005
Arsenic	mg/l	<0.005	<0.005
Barlum	mg/l	<0.050	<0.050
Beryllium	mg/l	<0.001	<0.001
Cadmium	l/gm	0.004	0.004
Chromium	l/gm	<0.010	<0.010
Cobatt	l/gm	<0.050	<0.050
Copper	l/gm	0.054	0.051
Iron	Mg/I	1.13	1.06
Lead	l⁄gm	<0.020	<0.020
Manganese	₩g/I	<0.030	<0.030
Мексилу	l/gm	0.0002	0.0002
Molybdenum	mg/l	<0.030	<0.030
Nickel	l/gm	<0.030	<0.030
Selenium	₩.	<0.010	<0.010
Silver	l∕gm	<0.010	<0.010
Thallium	l/gm	<0.001	<0.001
Titanium	l⁄gm	<0.050	<0.050
Vanadium	mg/l	<0.050	<0.050
Zinc	l/gm	0.089	60'0

TABLE C-4 (CONTINUED): DUPLICATE METALS AND VOLATILES ANALYTICAL RESULTS	ICATE	CATE METALS AND VOLATILES I	ANALYTICAL RESULTS
ATLANTIC CITY AIR NATIONAL GUARD BASE WASTWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995	GUARD 07-13	UARD BASE EFFECENT UARD BASE WASTWATER CHARAC 07-13 SEPTEMBER 1995	TERIZATION SURVEY
		8-Sep-95	8-Sep-95
VOLATILE ORGANICS	UNITS	Friday	DUPLICATE
Вепzеле	√gn	<1	<1
Benzyi Chloride	√ôn	<1	<1
Bromobenzene	√gn	<1	<1
Bromodichloromethane	√ôn	<1	1>
Bromoform	√gn	<1	
Bromomethane	ľgn	\	1>
Carbon tetrachloride	l∕gu	<1	<1
Chlorobenzene	√gn	<1	1
Chlorodibromomethane	l/gu	<1	<1
Chloroethane	ľgu	<1	<1
Chloroform	√gn	<1	l>
2-Chlorethylvinyl Ether	√6n	<1	₽
Chloromethane	√gn	<1	<1
Chlorodibromomethane	√gn	<1	l>
Dibromomethane	l∕gu	<1	↓>
1,2-Dichlorobenzene	√ôn	<1	<1
1,3-Dichlorobenzene	√ ôn	<1	↓>
1,4-Dichlorobenzene	√gn	<1	- ▶
Dichlorodifluoromethane	ľgu	<1	<1
1,1-Dichloroethane	ľgu	<1	<1
1,2-Dichloroethane	ľgu	<1	<1
1,1-Dichloroethene	ľôn	<1	<1
Trans-1,2-Dichloroethene	ľgn	<1	<1
1,2-Dichloroethene	ľgn	<1	<1
1,2-Dichloropropane	νδη	<1	^ 1
Cls-1,3-Dichloropropene	√gn	<	-<1
Trans-1,3-Dichloropropene	γôn	. <1	-1
Ethyl Benzene	ľgu		
Methylene Chloride	Vân	<1	-<1
1,1,1,2-Tetrachloroethane	ng/	<1	<1

TABLE C-4 (CONTINUED): DUPLICATE METALS AND VOLATILES ANALYTICAL RESULTS	ICATE	METALS AND VOLATILES	ANALYTICAL RESULTS
SITE 1, BASE EFFLUENT ATLANTIC CITY AIR NATIONAL GUARD BASE WASTWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995	SITE 1, GUARD 07-13 9	SITE 1, BASE EFFLUENT GUARD BASE WASTWATER CHARAC 07-13 SEPTEMBER 1995	TERIZATION SURVEY
		8-Sep-95	8-Sep-95
VOLATILE ORGANICS	UNITS	Friday	DUPLICATE
1,1,2,2-Tetrachloroethane	√gu	₽	1>
Tetrachloroethylene	√ôn	<	₽
Toluene	√ 6n	⊽	₽
1,1,1-Trichloroethane	γδn	<1	<1
1,1,2-Trichloroethane	√gu	1 >	₽
Trichloroethylene	l⁄gυ	<1	<1
Trichlorofluoromethane	√ôn	√1	▶
1,2,3-Trichloropropane	γôn	<1	<1
Vinyl Chloride	y 6n	` <1	<1
o-Xylene	√ 6n	<1	<۱
p,m-Xylene	V ON		1>

TABLE C-5: ADDITION	AL DUI SITE 1	TABLE C-5: ADDITIONAL DUPLICATE SAMPLE ANALYTICAL RESULTS SITE 1. BASE EFFLUENT	TICAL RESULTS
ATLANTIC CITY AIR NATIONAL GUARD BASE WASTE WATER CHARACTERIZATION SURVEY 07 - 13 SEPTEMBER 1995	GUARD 07 - 1	UARD BASE WASTE WATER CHARA 07 - 13 SEPTEMBER 1995	CTERIZATION SURVEY
		8-Sep-95	8-Sep-95
GROUP A & B ANALYTES	UNITS	Friday	DUPLICATE
Chemical Oxygen Demand	l∕gm	192	199
Oil and Grease	V6w	60.4	57.2
Total Petroleum Hydrocarbon	l∕gm	11.6	9.2
GROUP D ANALYTES			
Cyanide (Total)	νβω	0.023	0.023
GROUP E ANALYTES			
Phenois	/6n	291	78
GROUP G			
Residue Total	₩g/I	391	312
Residue, Filterable (TDS)	l∕gm	135	35
Residue, Nonfilterable (TSS)	l/gm	45	105
Residue, Settleable	l⁄gm	0.6	1.4
Residue, Total Volatile	l∕gm	242	169
Surfactants-MBAs	l⁄gm	0.2	0.3
ON SITE ANALYSES			•
Hd	units	6	9
Temperature	၁့	23	23

Note: Shaded values exceed EHTMUA's permissible concentrations.

07-13 SEPTEMBER 1995

		CLINIC			CLINIC
		12-Sep-95			12-Sep-95
GROUP A & B ANALYTES	UNITS	Tuesday	VOLATILE ORGANICS	SINO	Tuesday
Chemical Oxygen Demand	l/gm	<10	Benzene	l/gu	<0.5
Oil and Grease	l/gm	6.0	Benzyl Chloride	l/gn	<0.5
Total Petroleum Hydrocarbon	Mg/l	<	Bromobenzene	ng/l	<0.5
			Bromodichloromethane	l/gu	1.13
GROUP D ANALYTES			Bromoform	Vgu	2.38
Cyanide (Total)	Гудт	<0.005	Bromomethane	l/gu	<0.5
			Carbon tetrachloride	l/gn	<0.5
GROUP E ANALYTES			Chlorobenzene	l/gu	<0.5
Phenols	ľgu	<10	Chlorodibromomethane	l/gu	<0.5
			Chloroethane	l/gn	<0.5
METALS			Chloroform	l/gu	2.05
GROUP F ANALYTES			2-Chlorethylvinyl Ether	l/gu	<0.5
Aluminum	l/gm	0.252	Chloromethane	γôn	<0.5
Antimony	l/gm	<0.005	Chlorodibromomethane	/bn	2
Arsenic	l∕gm	<0.005	Dibromomethane	l/gu	<0.5
Barium	ηδιμ	<0.05	1,2-Dichlorobenzene	√ôn	<0.5
Beryllium	mg/l	<0.001	1,3-Dichlorobenzene	l/gu	<0.5
Cadmium	l/gm	<0.001	1,4-Dichlorobenzene	l/gu	<0.5
Total Chromium	l/gm	<0.010	Dichlorodifluoromethane	√gn	<0.5
Cobalt	mg/l	<0.05	1,1-Dichloroethane	l/gu	<0.5
Copper	₩	0.143	1,2-Dichloroethane	l/ôn	<0.5
Iron	√gm	0.194	1,1-Dichloroethene	√gn	<0.5
Lead	√gm	0.005	Trans-1,2-Dichloroethene	l/gu	<0.5
Manganese	μδη	<0.030	1,2-Dichloroethene	_ l⁄gu	<0.5
Mercury	mg/l	<0.0002	1.2-Dichloropropane	√6n	<0.5
Molybdenum	ľgm	<0.030	Cis-1,3-Dichloropropene	\@n	<0.5
Nickel	иду	<0.020	Trans-1,3-Dichloropropene	√ôn	<0.5
Selenium	mg/l	<0.005	Ethyl Benzene	l/gn	<0.5
Silver	mg/l	<0.010	Methylene Chloride	Vôn	<0.5
Thallium	mg/l	<0.001	1,1,1,2-Tetrachloroethane	/bn	<0.5
Titanium	mg/l	<0.050	1,1,2,2-Tetrachloroethane	√ôn	<0.5
Vanadium	l/gm	<0.050	Tetrachloroethylene	l/gu	<0.5
Zinc	V6m	<0.050	Toluene	l/on	<0.5

(0	CLINIC	12-Sep-95	Tuesday	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		1.29	3.16	2.59	2.02	90.6
AL RESULTS															
ATION			UNITS	ľgn	√ Bn	Vôn	/gn	l/gu	/gn		∫⁄6n	l/gu	√ôn	l/gu	√ôn
TABLE C-6 (CONTINUED): BACKGROUND POTABLE WATER SAMPLE ANALYTICAL RESULTS ATLANTIC CITY AIR NATIONAL GUARD WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995			VOLATILE ORGANICS	Trichloroethylene	Trichlorofluoromethane	1,2,3-Trichloropropane	Vinyi Chloride	o-Xylene	p,m-Xylene	TOTAL TRIHALOMETHANES	Bromodichloromethane	Bromoform	Chloroform	Chlorodibromomethane	Total Trihalomethane
SACKGROUND POTABLE WATE TIONAL GUARD WASTEWATE 07-13 SEPTEMBER 1995	CLINIC	12-Sep-95	Tuesday	92	87	<1	<0.2	20	<0.1						
6 (CONTINUED): B			UNITS	mg/l	mg/l	mg/l	mg/l	mg/l	/gm						
TABLE C-{			GROUP G	Residue Total	Residue , Filterable (TDS)	Residue, Nonfilterable (TSS)	Residue, Settleable	Residue, Total Volatile	Surfactants-MBAs						

ABLE C-6 (CONTINUED): BACKGROUND POTABLE WATER SAMPLE ANALYTICAL RESULTS ATLANTIC CITY AIR NATIONAL GUARD WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995

		ALERT FACILITY			ALERT FACILITY
		13-Sep-95			13-Sep-95
GROUP A & B ANALYTES	UNITS	Wednesday	VOLATILE ORGANICS	UNITS	Wednesday
Chemical Oxygen Demand	√gm	<10	Benzene	l/gu	<0.5
Oil and Grease	Mg/l	1.4	Benzyl Chloride	l/gu	<0.5
Total Petroleum Hydrocarbon	√gm	1.4	Bromobenzene	√6n	<0.5
			Bromodichloromethane	l/gu	<0.5
GROUP D ANALYTES			Bromoform	l/gu	<0.5
Cyanide (Total)	Ngm	NR*	Bromomethane	ľgu	<0.5
			Carbon tetrachloride	l/gu	<0.5
GROUP E ANALYTES			Chlorobenzene	l/gu	<0.5
Phenols	ľĝn	<10	Chlorodibromomethane	l⁄gu	<0.5
			Chloroethane	Vôn	<0.5
METALS			Chloroform	ľgu	1.46
GROUP F ANALYTES			2-Chlorethylvinyl Ether	ľón	<0.5
Aluminum	Гуш	<0.030	Chloromethane	l/gu	<0.5
Antimony	mg/l	<0.005	Chlorodibromomethane	l/6n	<0.5
Arsenic	Mg/l	<0.005	Dibromomethane	/gn	<0.5
Barium	l/gm	<0.05	1,2-Dichlorobenzene	l/gu	<0.5
Beryllium	Ngm	<0.001	1,3-Dichlorobenzene	Vôn	<0.5
Cadmium	mg/l	<0.001	1,4-Dichlorobenzene	Vôn	<0.5
Total Chromium	mg/l	<0.010	Dichlorodifluoromethane	Vôn	<0.5
Cobalt	mg/l	<0.05	1,1-Dichloroethane	Vôn	<0.5
Copper	mg/l	<0.020	1,2-Dichloroethane	Von	<0.5
Iron	mg/l	<0.030	1,1-Dichloroethene	ľgu	<0.5
Lead	_ ng∕l	<0.001	Trans-1,2-Dichloroethene	Vôn	<0.5
Manganese	₩ Jøm	<0.030	1,2-Dichloroethene	Vôn	<0.5
Mercury	mg/l	<0.0002	1,2-Dichloropropane	Von	<0.5
Molybdenum	l/gm	<0.030	Cis-1,3-Dichloropropene	Von	<0.5
Nickel	l/gm	<0.020	Trans-1,3-Dichloropropene	l⁄gu	<0.5
Selenium	₩.	<0.005	Ethyl Benzene	Von	<0.5
Silver	ľ/gm	<0.010	Methylene Chloride	Vôn	<0.5
Thallium	ng/l	<0.001	1,1,1,2-Tetrachloroethane	Võn	<0.5
Titanium	l∕gm	<0.050	1,1,2,2-Tetrachloroethane	Vôn	<0.5
Vanadium	√gm	<0.050	Tetrachloroethylene	l/on	<0.5
Zinc	l⁄gm	<0.050	Toluene	l'on	<0.5

TABLE C-6 (CONTINUED): BACKGROUND POTABLE WATER SAMPLE ANALYTICAL RESULTS ATLANTIC CITY AIR NATIONAL GUARD WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995

		ALERT FACILITY			ALERT FACILITY
		13-Sep-95			13-Sep-95
GROUP G	UNITS	Wednesday	VOLATILE ORGANICS	UNITS	Wednesday
Residue Total	l∕gm	41	Trichloroethylene	l/gu	<0.5
Residue, Filterable (TDS)	l/gm	40	Trichlorofluoromethane	Vôn	<0.5
Residue, Nonfilterable (TSS)	mg/l	~	1,2,3-Trichloropropane	l∕gu	<0.5
Residue, Settleable	l/gm	NR*	Vinyl Chloride	l/gu	<0.5
Residue, Total Volatile	l/gm	NR*	o-Xylene	l/gu	<0.5
Surfactants-MBAs	mg/l	<0.1	p,m-Xylene	l/gu	<0.5
			TOTAL TRIHALOMETHANES		
			Bromodichloromethane .	l/gu	1.46
			Bromoform	l/gu	1.46
			Chloroform	l/gu	<0.5
			Chlorodibromomethane	l/gn	<0.5
			Total Trihalomethane	V6n	<0.5
					l

*Not requested for analysis.

APPENDIX D WASTEWATER CHARACTERIZATION SAMPLING RESULTS

TABLE D-1: METALS AND VOLATILE ORGANICS ANALYTICAL RESULTS SITE 1, BASE EFFLUENT

ATLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995

			1	30 0000		1	1		20 00 00
		7-Sep-95	8-Sep-95	ce-dec-8	9-Sep-95	10-Sep-95	11-Sep-95	12-Sep-95	13-Sep-95
METALS	UNITS	Thursday	Friday	DUPLICATE	Saturday	Sunday	Monday	Tuesday	Wednesday
Aluminum	l/gm	0.408	0.412	0.376	0.844	1.45	0.933	0.938	0.612
Antimony	Mg/I	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Arsenic	l/gm	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Barium	l/gm	0.042	<0.050	<0.050	<0.050	0.239	0.075	0.07	0.073
Beryllium	l/gm	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	l/gm	0.005	0.004	0.004	0.003	0.003	0.002	0.002	0.004
Chromium	l/gm	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Cobalt	l/gm	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Copper	l/gm	0.033	0.054	0.051	0.071	0.086	90:0	0.065	0.085
Iron	l/gm	1.14	1.13	1.06	1.5	2.52	1.94	2.76	2.44
Lead	l/gm	<0.020	<0.020	<0.020	<0.020	0.027	<0.020	<0.020	<0.020
Manganese	l/gm	<0.030	<0.030	<0.030	<0.030	0.033	0.034	0.046	0.045
Mercury	l/gm	0.0002	0.0002	0.0002	0.0003	<0.0002	0.0003	0.0003	0.0003
Molybdenum	l/gm	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
Nickel	l/gm	<0.020	<0.030	<0.030	<0.030	<0.030	<0.020	<0.020	<0.020
Selenium	l/gm	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Silver	l/gm	<0.010	<0.010	<0.010	0.041	0.04	<0.010	<0.010	<0.010
Thallium	l/gm	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Titanium	l∕gm	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Vanadium	l/gm	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Zinc	∥gш	0.079	0.089	60:0	0.132	0.186	0.096	0.129	0.179

TABLE D-1 (CONTINUED): METALS AND VOLATILE ORGANICS ANALYTICAL RESULTS SITE 1, BASE EFFLUENT ATLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995

		7-Sep-95	8-Sep-95	8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	12-Sep-95	13-Sep-95
VOLATILE ORGANICS	UNITS	Thursday	Friday	DUPLICATE	Saturday	Sunday	Monday	Tuesday	Wednesday
Benzene	l/bn	<1	۲۷	۲	₹	٧	7	Þ	1>
Benzyl Chloride	l/gn	<1	۲۰	<1	۲	₹	۲	۲>	1>
Bromobenzene	l/gu	<1	<1	<1	۲۶	٧	۲	۲	۲
Bromodichloromethane	l/bn	<1	<1	<1	<1	1	۲	₽	₹
Bromoform	l/bn	<1	<1	<1	۲۶	-<1	۸1	۲۷	⊽
Bromomethane	l/gu	<1	<1	<1	<1	<1	۲	۲>	⊽
Carbon tetrachloride	l/bn	<1	<1	<٠	د1	<1	₹	۲	۲
Chlorobenzene	l/gu	<1	<1	^	۲	₹	۲	۲	۲
Chlorodibromomethane	l/bn	<1	<1	<1	۲۶	۲	۲	₽	۲
Chloroethane	l/gu	<1	<1	<1	<1	<1	۲	₽	٧
Chloroform	l/gn	<1	<1	<1	۲	1>	۲	۲	٧
2-Chlorethylvinyl Ether	l/gn	<1	<1	<1	<1	<1	<1	۲>	⊽
Chloromethane	l/gn	<1	<1	<1	۲۰	<1	۲	۲	۲
Chlorodibromomethane	l/gu	<1	<1	<1	۲۷	<1	۲	۲	۲
Dibromomethane	l/gn	<1	<1	<1	<1	<1	۲	۲	₹
1,2-Dichlorobenzene	l/gn	<1	<1	<1	<1	<1	۸	L>	₹
1,3-Dichlorobenzene	l/gu	<1	<1	<1	<1	<1	₹	₽	٧
1,4-Dichlorobenzene	l/gn	1.2	<1	1>	1	1.12	۲	₹	1.76
Dichlorodifluoromethane	l/gu	<1	<1	<1	<1	Þ	٧	۲	۲
1,1-Dichloroethane	l/bn	<1	<1	<1	4	₹	۲	12	1>
1,2-Dichloroethane	l/gu	<1	<1	<1	<1	٧	₹	۲	1>
1,1-Dichloroethene	l/bn	<1	<1	<1	<1	<١	۷	ŀ	٧
Trans-1,2-Dichloroethene	l/gn	۲	<1	<1	۲	!>	۲	۲	۲
1,2-Dichloroethene	l/bn	<1	<1	<1	<1	<1	۲	۲	٧
1,2-Dichloropropane	l/gn	۲	<1	<1	<1	<1	₹	۲۷	₹
Cis-1,3-Dichloropropene	l/bn	<1	<1	<1	<1	₹	₹	۲	₹
Trans-1,3-Dichloropropene	l/gn	<1	<1	<1	<1	\	₹	۲	⊽
Ethyl Benzene	l/bn	<1	<1	<1	<1	<1	۲	۲	₹
Methylene Chloride	l/gn	<1	<1	<1	. <1		⊽	₹	₹
1,1,1,2-Tetrachloroethane	l/gu	<1	<1	<1	<1	<1	7	₹	٧
1,1,2,2-Tetrachloroethane	l/gn	۲	<1	<1	<1	<1	₹	₹	₹
Tetrachloroethylene	l/gu	V	۲>	۲>	۲	₹	٧	۲>	۲>

TABLE D-1 (CONTINUED): METALS AND VOLATILE ORGANICS ANALYTICAL RESULTS	
--	--

ATLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995

		7 800 05	90 500 05	9 8 5 0 5	30 20 0	40.000	44 0 05	40.00.00	42.00
		ce-dac-/	ce-dac-o	CE-dec-0	3-38h-33	cs-dac-01	11-56p-95	14-569-35	13-Sep-93
VOLATILE ORGANICS	UNITS	Thursday	Friday	DUPLICATE	Saturday	Sunday	Monday	Tuesday	Wednesday
Toluene	l/6n	<1	<1	<1	1.2	1.25	1.61	2	3.94
1,1,1-Trichloroethane	l/gu	<1	<1	<1	<1	۷	<1	<1	<1
1,1,2-Trichloroethane	l/ɓn	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	l/gn	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	l/gn	<1	۲	^ 1	<1	<1	<1	<1	<1
1,2,3-Trichloropropane	l/bn	<1	۲۷	. <1	<1	<1	<1	<1	<1
Vinyl Chloride	l/bn	۲>	<1	1> <1	<1	<1	<1	<1	<1
o-Xylene	l/bn	<1	<1	<1	<1	<1	<1	<1	<1
p,m-Xylene	l/gn	<1	7	۲۷	<1	<1	<1	<1	<1

TABLE D-2: ADDITIONAL ANALYTICAL RESULTS SITE 1, BASE EFFLUENT ATLANTIC CITY AIR NATIONAL GUARD BASE WASTE WATER CHARACTERIZATION SURVEY 07 - 13 SEPTEMBER 1995

		7-Sep-95	8-Sep-95	8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	12-Sep-95	13-Sep-95
GROUP A & B ANALYTES	UNITS	Thursday	Friday	DUPLICATE	Saturday	Sunday	Monday	Tuesday	Wednesday
Chemical Oxygen Demand	l/gm	105	192	199	270	381	431	197	190
Oil and Grease	l/gm	34.4	60.4	57.2	4.4	212	84.8	110.4	32
Total Petroleum Hydrocarbon	l/gm	12.8	11.6	9.2	<1	176	11.2	12.8	11.2
GROUP D ANALYTES									
Cyanide (Total)	l/gm	0.011	0.023	0.023	0.043	0.046	0.035	<0.005	<0.005
GROUP E ANALYTES									
Phenois	l/gn	13	291	82	156	38	25	<10	<10
GROUP G									
Residue Total	l/bu	147	391	312	393	718	209	319	463
Residue, Filterable (TDS)	l/bu	140	135	35	300	180	400	68	258
Residue, Nonfilterable (TSS)	l/gm	12	45	105	100	330	150	44	12
Residue, Settleable	l/gm	6.0	9.0	1.4	2.0	6.2	1.4	1.7	5.3
Residue, Total Volatile	l/gm	54	242	169	200	483	384	163	246
Surfactants-MBAs	l/gm	0.2	0.2	0.3	0.1	<0.1	0.3	-	2
ON SITE ANALYSES									
Н	units	9	9	9	9	5	5.5	5.8	9
Temperature	ာ့	17	23	23	23	25	21	79	23

Note: Shaded values exceed EHTMUA's permissible concentrations.

TABLE D-3: BNAs, PCBs, PESTICIDES, AND HERBICIDES ANALYTICAL RESULTS SITE 1, BASE EFFLUENT ATLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07 - 13 SEPTEMBER 1995

		7-Sep-95	9-Sep-95			7-Sep-95	9-Sep-95
BASE/NEUTRAL ACIDS	UNITS	Thursday	Saturday	PESTICIDES/PCBs	Units	Thursday	Saturday
Acenaphthene	ng/L	<10	<10	Aldrin	ng/L	<0.04	<0.04
Acenaphthylene	ng/L	<10	<10	alpha-BHC	ng/L	<0.03	<0.03
Anthracene	ng/L	<10	<10	beta-BHC	ng/L	>0.06	90.0>
Aroclor 1260	ng/L	<10	<10	delta-BHC	ng/L	<0.09	60'0>
Benzidine	ng/L	<50	<50	Lindane (gamma-BHC)	ng/L	<0.03	<0.03
Benzo(a)anthracene	ng/L	<10	<10	Chlordane	ng/L	<0.14	<0.14
Benzo(b)fluoranthene	ng/L	<10	· <10	4,4' DDD	ng/L	<0.14	<0.14
Benzo(k)fluoranthene	ng/L	<10	<10	4,4' DDE	ng/L	<0.04	<0.04
Benzo(a)pyrene	ng/L	<10	<10	4,4 - DDT	ng/L	<0.12	<0.12
Benzo(ghi)perylene	ng/L	<10	<10	Dieldrin	ng/L	<0.02	<0.02
Benzyl butyl phthalate	ug/L	<10	<10	Endosulfan I	ng/L	<0.14	<0.14
Bis(2-chloroethyl)ether	ng/L	<10	<10	Endosulfan II	ng/L	<0.04	<0.04
Bis(2-chloroethoxy)methane .	ng/L	<10	<10	Endosulfan Sulfate	ng/L	<0.66	99'0>
Bis(2-ethylhexyl)phthalate	ug/L	90	34	Endrin	ng/L	>0.06	90.0>
Bis(2-chloroisopropyl)ether	ng/L	<10	<10	Endrin Aldehyde	ng/L	<0.023	<0.023
4-Bromophenyl phenyl ether	ng/L	<10	<10	Heptachlor	ng/L	<0.03	<0.03
2-Chloronaphthalene	ng/L	<10	<10	Heptachlor Epoxide	ng/L	<0.83	<0.83
4-Chlorophenyl phenyl ether	ng/L	<10	<10	Texaphene	ng/L	<1	<ا
Chrysene	ng/L	<10	<10	Aroclor 1016	ng/L	1>	<ا
Dibenzo(a,h)anthracene	ng/L	<10	<10	Aroclor 1221	ng/L	<1	<۱
Di-n-butylphthalate	ng/L	<10	<10	Aroclor 1232	ng/L	<1	۲,
1,2-Dichlorobenzene	ng/L	<10	<10	Aroclor 1242	ng/L	<0.65	<0.65
1,3-Dichlorobenzene	ng/L	<10	<10	Aroclor 1248	ng/L	<1	۷.
1,4-Dichlorobenzene	ng/L	<10	<10	Aroclor 1254	ng/L	<1	۷
3,3-Dichlorobenzidine	ng/L	<20	<20	Aroclor 1260	ng/L	₽	۲>

		7-Sep-95	9-Sep-95			7-Sep-95	9-Sep-95
BASE/NEUTRAL ACIDS	UNITS	Thursday	Saturday	HERBICIDES		Thursday	Saturday
Diethyl phthalate	ng/L	<10	<10	2,4-D	ng/L	CBC*	<1.2
Dimethyl phthalate	ng/L	<10	<10	2,4-DB	ng/L	CBC*	<0.91
2,4-Dinitrotoluene	ng/L	<10	<10	Dalapon	ug/L	CBC*	<5.8
2,6-Dinitrotoluene	ng/L	<10	<10	Dicamba	ng/L	CBC*	<0.27
Di-noctyl phthalate	ng/L	<10	<10	Dichloroprop	ng/L	CBC.	<0.65
Fluoranthene	ng/L	<10	<10	Dinoseb	ng/L	CBC*	<0.0>
Fluorene	ng/L	<10	<10	MCPA	ug/L	CBC*	<249
Hexachlorobenzene	ng/L	<10	<10	MCPP	ng/L	CBC.	<192
Hexachlorobutadiene	ug/L	<10	<10	Silvex	ug/L	CBC*	<0.17
Hexachlorocyclopentadiene	ng/L	<10	<10	2,4,5-T	ug/L	CBC.	<0.20
Hexachioroethane	ng/L	<10	<10				
Indeno(1,2,3-cd)pyrene	ng/L	<10	<10				
Isophorone	ng/L	<10	c10				
Naphthalene	ng/L	<10	<10				
Nitrobenzene	ng/L	<10	¢10				
N-Nitrosodimethylamine	ng/L	<10	c10				
N-Nitrosodi-n-propylamine	ng/L	<10	c+0				
N-Nitrosodiphenylamine	ng/L	<10	95				
Phenanthrene	ug/L	<10	c10				
Pyrene	ng/L	<10 <10	×10				
1,2,4-Trichlorobenzene	ng/L	<10	<10				
4-Chloro-3-methylphenol	ng/L	<10	<10				
2-Chlorophenol	ng/L	<10	<10				
2,4-Dichlorophenol	ng/L	<10	ر د10				
2,4-Dimethylphenol	ng/L	<10	¢10				
2,4-Dinitrophenol	ng/L	<50	<50				
2-Methyl-4,6-dinitrophenol	ng/L	<50	<50				
2-Nitrophenol	ng/L	<10	<10				
4-Nitrophenol	ng/L	<50	<50				
Pentachlorophenol	ng/L	<50	<50				
Phenol	ng/L	<10	<10				
2,4,6-Trichlorophenol	ng/L	<10	<10				

[&]quot;Sample cancelled by chemist, due to spiking standard carryover contamination. Insufficient sample to re-extract.

TABLE D-4: METALS AND VOLATILE ORGANICS ANALYTICAL RESULTS SITE 2, MAINTENANCE DOCK	ATLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995
---	---

		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-95
METALS	UNITS	Friday	Saturday	Sunday	Monday	Wednesday
Aluminum	l/gm	0.7	1.33	1.08	1.35	0.476
Antimony	l/gm	<0.005	<0.005	<0.005	<0.005	<0.005
Arsenic	l/gm	<0.005	<0.005	<0.005	<0.005	<0.005
Barium	l/gm	0.098	0.058	0.131	0.139	0.071
Beryllium	l/gm	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	l/gm	0.017	0.013	0.003	900.0	0.009
Total Chromium	l/gm	<0.010	<0.010	<0.010	<0.010	<0.010
Cobalt	l/gm	<0.050	<0.050	<0.050	<0.050	<0.050
Copper	l/gm	0.169	0.335	0.141	0.155	0.161
Iron	l/gm	1.93	3.03	2.73	3.87	6.43
Lead	l/gm	0.026	<0.020	<0.020	<0.020	<0.020
Manganese	l/gm	0.059	0.069	0.058	0.109	0.107
Mercury	l/gm	0.0004	0.0004	0.0002	<0.0002	0.0003
Molybdenum	l/gm	<0.030	<0.030	<0.030	<0.030	<0.030
Nickel	l/gm	<0.020	<0.020	<0.020	<0.020	<0.020
Selenium	l/gm	<0.010	<0.010	<0.010	<0.010	<0.005
Silver	l/gm	<0.010	0.033	0.046	0.026	<0.010
Thallium	l/gm	<0.001	<0.001	<0.001	<0.001	<0.001
Titanium	l/gm	<0.050	<0.050	<0.050	<0.050	<0.050
Vanadium	l/gm	<0.050	<0.050	<0.050	<0.050	<0.050
Zinc	∥gm	0.247	0.169	0.2	0.29	0.204

TABLE D-4 (CONT): METALS AND VOLATILE ORGANICS ANALYTICAL RESULTS	ETAL S	S AND VOL	ATILE ORC	SANICS AN	ALYTICAL I	RESULTS
ATLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995	TIONAL	GUARD BAS 07-13 SEP	AL GUARD BASE WASTEWATER CH 07-13 SEPTEMBER 1995	JOCK TER CHARAC 5	TERIZATION	SURVEY
		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-95
VOLATILE ORGANICS	UNITS	Friday	Saturday	Sunday	Monday	Wednesday
Benzene	l/gn	<1	V	۲>	۲>	۲
Benzyl Chloride	l/gn	۲	₹	1>	₽	4
Bromobenzene	l/gn	۲	!	۲۷	4	<1
Bromodichloromethane	l/gn	۲۷	٧	۲	۲۷	<1
Bromoform	l/6n	<1	₹	۲	. 1>	<1
Bromomethane	ug/l	<1	<1	۲۷	I >	12
Carbon tetrachloride	l/gn	<1	<1	<1	<1	۸1
Chlorobenzene	ug/l	<1	1>	1>	<1	۲
Chlorodibromomethane	ng/l	<1	<1	1>	<1	4
Chloroethane	√g/l	<1	<1	1>	<1	۲۷
Chloroform	l/gn	<1	2:92	1>	3.58	۸1
2-Chlorethylvinyl Ether	l/gn	<1	L>	<1	<1	۲
Chloromethane	/bn	<1	<1	<1	ŀ	۲
Chlorodibromomethane	l/gn	<1	<١	<1	۲۷	۸1
Dibromomethane	l/gn	<1	L>	<1	<1	۲
1,2-Dichlorobenzene	l/gn	<1	<1	<1	۲>	۲
1,3-Dichlorobenzene	l/gn.	<1	1>	<1	۲۷	۲
1,4-Dichlorobenzene	/bn	2.7	1.3	3.65	3.42	12
Dichlorodifluoromethane	ng/l	<1	<1	<1	<1	⊽
1,1-Dichloroethane	ng/l	<1	<1	<1	<1	۲
1,2-Dichloroethane	l/gn		<1	<1	1>	۷
1,1-Dichloroethene	l/gn	<1	<1	<1	1>	₹
Trans-1,2-Dichloroethene	l/gn	۲۶	<1	<1	<1	₹
1,2-Dichloroethene	l/gn	۸1	<1	<1	<1	₹
1,2-Dichloropropane	l/gn	₹	<1	<1	<1	۲
Cis-1,3-Dichloropropene	l/gn	<1	<1	<1	<1	₹
Trans-1,3-Dichloropropene	l/gn	حا	<1	<1	<1	⊽
Ethyl Benzene	l/gu	<1	<1	<1	<1	٧
Methylene Chloride	l/gn	<1	<1	<1	۲۷	⊽
1,1,1,2-Tetrachloroethane	l/gn	۲	<1	<1	۲	⊽
1,1,2,2-Tetrachloroethane	l/gn	۲	۲	<1	<1	۲۷
Tetrachloroethylene	l/gn	₹	۸	<1	<1	<1

TABLE D-4 (CONT): METALS AND VOLATILE ORGANICS ANALYTICAL RESULTS
SITE 2, MAINTENANCE DOCK
ATLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY
07-13 SEPTEMBER 1995

		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sen-95
VOLATILE ORGANICS	UNITS	Friday	Saturday	Sunday	Monday	Wednesday
Toluene	l/gu	6.11	4.18	2.98	2.41	3.31
1,1,1-Trichloroethane	l/gu	۲	V	₹	₹	⊽
1,1,2-Trichloroethane	l/gu	۲۷	٧	۲	۲	₹
Trichloroethylene	l/gn	۲	۲۷	۲	₹	⊽
Trichlorofluoromethane	/bn	۲	₹	₹	۲	₹
1,2,3-Trichloropropane	/bn	۲	۲	٠١٠	₹	₹
Vinyl Chloride	l/gu	<1	<1	ح1 .	۲.	۲
o-Xylene	l/bn	<1	<1	<1	<1	۲>
p,m-Xylene	l/gu	<1	<1	<1	<1	<1

TABLI	E D-5:	ADDITION/	AL ANALYT	TABLE D-5: ADDITIONAL ANALYTICAL RESULTS	LTS	
SILE 2, MAIN LENANCE DOCK ATLANTIC CITY AIR NATIONAL GUARD BASE WASTE WATER CHARACTERIZATION SURVEY	TIONAL	IE 2, MAIN GUARD BASI	SI IE 2, MAIN I ENANCE DUCN AL GUARD BASE WASTE WATER CI	JOCK TER CHARAC	TERIZATION	SURVEY
		07 - 13 SEF	07 - 13 SEPTEMBER 1995	2		
GROUP A & B ANALYTES	UNITS	8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-95
Chemical Oxygen Demand	l/gm	570	580	540	1660	399
Oil and Grease	l/gm	120	79.2	246.4	243.2	51.2
Total Petroleum Hydrocarbon	l/gm	20.8	7.2	17.6	44.8	9.6
GROUP D ANALYTES						
Cyanide (Total)	l/bm	0.04	0.011	0.043	0.08	<0.005
		-				
GROUP E ANALYTES						
Phenois	l/gn	92	298	32	12	28
GROUP G						
Residue Total	l/gm	1038	1048	954	1798	477
Residue, Filterable (TDS)	l/6m	415	730	300	460	175
Residue, Nonfilterable (TSS)	l/bm	145	160	470	220	45
Residue, Settleable	l/gm	6.2	0.7	8.1	25.5	0.4
Residue, Total Volatile	l/gm	794	529	269	1367	237
Surfactants-MBAs	l/gm	0.3	0.2	0.1	1.8	3.4
ON SITE ANALYSES						
Н	UNITS	5	5	6.5	5	A 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Temperature	၁့	20	23	24	14	23

Note: Shaded values exceed EHTMUA's permissible concentrations.

		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-95
METALS	UNITS	Friday	Saturday	Sunday	Monday	Wednesday
Aluminum	l/gm	0.454	1.55	1.53	3.88	1.29
Antimony	l/gm	0.008	0.005	0.005	0.009	<0.005
Arsenic	l/gm	<0.005	<0.005	<0.005	<0.005	<0.005
Barium	mg/l	0.098	0.572	0.155	1.64	0.412
Beryllium	l/gm	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	l/6m	0.016	0.033	0.017	0.058	0.044
Total Chromium	l/gm	<0.010	0.015	<0.010	0.016	<0.010
Cobalt	l/6m	<0.050	<0.050	<0.050	<0.050	<0.050
Copper	∥/gw	0.036	0.095	0.075	0.179	0.104
Iron	l/gm	0.883	2.88	2.53	6.57	3.99
Lead	l/gm	<0.020	0.065	0.02	0.051	<0.020
Manganese	l∕gm	0.036	0.092	0.088	0.206	0.132
Mercury	l/g∕u	0.0003	6000'0	0.001	0.007	0.0012
Molybdenum	l/gm	<0.030	<0.030	<0.030	<0.030	<0.030
Nickel	l/gm	<0.020	<0.020	<0.020	0.022	<0.030
Selenium	∥/gш	<0.010	<0.010	<0.010	<0.010	<0.005
Silver	∥gm	<0.010	<0.010	<0.010	<0.010	<0.010
Thallium	l/gm	<0.001	<0.001	<0.001	<0.001	<0.002
Titanium	l/gm	<0.050	<0.050	<0.050	0.067	<0.050
Vanadium	l/gm	<0.050	<0.050	<0.050	<0.050	<0.050
Zinc	l/gm	0.157	0.754	0.327	1.45	0.463

TABLE D-6 (CONT): METALS AND VOLATILE ORGANICS ANALYTICAL RESULTS SITE 3, AIRCRAFT AND MAINTENANCE HANGAR	ATLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995
---	---

	-					
		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-95
VOLATILE ORGANICS	UNITS	Friday	Saturday	Sunday	Monday	Wednesday
Benzene	l/ɓn	<1	7	۲	Þ	₹
Benzyl Chloride	l/gn	<1	<1	۷	₹	₹
Bromobenzene	l/gu	<1	<1	<1	۲>	۲>
Bromodichloromethane	l/gu	<1	<1	1>	۲	۲
Bromoform	l/bn	<1	<1	<1	 >	۲
Bromomethane	l/bn	<1	7	۲>	₽	۲
Carbon tetrachloride	l/gn	۲	₽	۲	! >	₹
Chlorobenzene	l/gu	۲>	۲	۲	۲	₹
Chlorodibromomethane	l/gn	<1	٧	۲	٧	₹
Chloroethane	l/gn	7	₹	٧	۲	₹
Chloroform	l/gu	<1	٧	۲	۲	₹
2-Chlorethylvinyl Ether	l/bn	<1	٧.	۲	₹	₹
Chloromethane	l/gn	<1	۲>	۲	₹	₹
Chlorodibromomethane	l/gu	۲	۲	۲	۲	₹
Dibromomethane	l/6n	۲>	₹	۲	۲	⊽
,2-Dichlorobenzene	l/ɓn	<1	۲>	۶	₽	₹
,3-Dichlorobenzene	l/gn	<1	<1	<1	<1	<1
,4-Dichlorobenzene	l/bn	^	٧	₹	₽	₹
Dichlorodifluoromethane	l/bn	<1	<1	۲۷	<1	₹
1,1-Dichloroethane	l/bn	<1	<1	<1	1>	٧
,2-Dichloroethane	l/bn	<1	<1	<1	L>	۲
,1-Dichloroethene	l/bn	<1	<1	<١	<4	٧
rans-1,2-Dichloroethene	l/gn	<1	<1	<1	1 >	۲
,2-Dichloroethene	l/gn	<1	<1	<1	٠ حا	₹
,2-Dichloropropane	l/gn	<1	<1	<1	L>	4
Cis-1,3-Dichloropropene	l/gn	<1	<1	<1	1>	• <1
Trans-1,3-Dichloropropene	l/gn	<1	۲>	<1	1>	۲
Ethyl Benzene	l/gu	<1	<1	<1	دا	۲
Methylene Chloride	l/gu	<1	<1	<1	۲	₹
I,1,1,2-Tetrachloroethane	l/gu	<1	<1	<1	<1	۲
1,1,2,2-Tetrachloroethane	l/gn	<1	<1	<1	<1	۲
Tetrachloroethylene	1/0/1	V	^	>	,	**

TABLE D-6 (CONT): METALS AND VOLATILE ORGANICS ANALYTICAL RESULTS	SITE 3, AIRCRAFT AND MAINTENANCE HANGAR	ATLANTIC CITY AIR NATIONAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY	07-13 SEPTEMBER 1995
---	---	--	----------------------

		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-95
VOLATILE ORGANICS	UNITS	Friday	Saturday	Sunday	Monday	Wednesday
Toluene	l/6n	1	1.11	· - 1>	<1	2.29
1,1,1-Trichloroethane	l/gu	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	l/bn	<1	1.8	<1	<1	<1
Trichloroethylene	l/bn	<1	<1	<1	<1	<1
Trichlorofluoromethane	l/gn	<1	<1	<1	<1	<1
1,2,3-Trichloropropane	l/bn	<1	<1	<1	<1	<1
Vinyl Chloride	l/gu	<1	1>	.<1	<1	<1
o-Xylene	l∕gu	<1	<1	<1	<1	<1
p,m-Xylene	ng/l	<1	<1	<1	<1	<1

TABI	LE D-7: 3, AIR	CRAFT AN	VAL ANALY ID MAINTEN	TABLE D-7: ADDITIONAL ANALYTICAL RESULTS SITE 3, AIRCRAFT AND MAINTENANCE HANGAR	ULTS GAR	
ATLANTIC CITY AIR NATIONAL GUARD BASE WASTE WATER CHARACTERIZATION SURVEY 07 - 13 SEPTEMBER 1995	ATIONA	L GUARD BA 07 - 13 SE	JARD BASE WASTE WATI 07 - 13 SEPTEMBER 1995	ATER CHARA(195	CTERIZATION	N SURVEY
		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-95
GROUP A & B ANALYTES	UNITS	Friday	Saturday	Sunday	Monday	Wednesday
Chemical Oxygen Demand	l/6m	369	443	710	840	482
Oil and Grease	l/gm	104	200	992	352	185.6
Total Petroleum Hydrocarbon	l/gm	۲	48	160	96	25.6
GROUP E ANALYTES						
Phenois	l/gu	188	510	650	81	55
GROUP G						
Residue Total	l/bm	792	1597	1108	3304	937
Residue, Filterable (TDS)	l/gm	275	180	200	320	450
Residue, Nonfilterable (TSS)	l/gm	205	1405	260	1809	85
Residue, Total Volatile	l/gm	NR*	341	NR*	NR.	NR.
Surfactants-MBAs	l/gm	0.1	0.1	0.2	1.4	2.4
ON SITE ANALYSES						
Hd	UNITS	7	8	6.8	6.8	8
Temperature	(၁့)	23	24	22	19	22.5

"Not requested for analysis.

Note: Shaded values exceed EHTMUA's permissible concentrations.

ATLANTIC CITY AIR NATOINAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995 TABLE D-8: METALS AND VOLATILE ORGANICS ANALYTICAL RESULTS SITE 4, AVIATION GROUND EQUIPMENT FACILITY

		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-95
METALS	UNITS	Friday	Saturday	Sunday	Monday	Wednesday
Aluminum	l/gm	969'0	1.4	1.31	2.64	1.76
Antimony	l/gm	<0.005	900.0	0.005	900.0	<0.005
Arsenic	l/gm	<0.005	<0.005	<0.005	<0.005	<0.005
Barium	l/gm	0.078	690.0	0.098	0.145	0.121
Beryllium	l/bm	<0.001	<0.001	<0.001	0.001	0.001
Cadmium	l/gm	0.119	0.039	0.04	0.053	0.044
Total Chromium	l/gm	0.016	0.016	0.01.7	0.022	0.02
Cobalt	l/gm	<0.050	<0.050	<0.050	<0.050	050'0>
Copper	∥6m	0.651	0.396	0.531	0.834	0.527
iron	mg/l	9.54	9.8	8.31	15.9	10.9
Lead	l/gm	0.081	0.164	0.092	0.15	0.148
Manganese	mg/l	0.1	0.113	0.111	0.177	0.159
Mercury	l/gm	0.0005	0.0006	0.0006	0.001	9000.0
Molybdenum	l/gm	<0.030	<0.030	<0.030	<0.030	<0.030
Nickel	l/gm	0.028	0.02	<0.020	0.039	0.025
Selenium	l/gm	<0.010	<0.010	<0.010	<0.010	<0.005
Silver	mg/l	<0.010	<0.010	<0.010	<0.010	<0.010
Thallium	l/gm	<0.001	<0.001	<0.001	<0.001	<0.001
Titanium	l/gm	<0.050	<0.050	<0.050	<0.050	<0.050
Vanadium	l/gm	<0.050	<0.050	<0.050	<0.050	<0.050
Zinc	l/gm	0.556	0.317	0.427	0.828	0.571

TABLE D-8 (CONT): I	METAL 4, AVIA	METALS AND VOLATILE 4, AVIATION GROUND EC	ATILE OR	NT): METALS AND VOLATILE ORGANICS ANALYT SITE 4, AVIATION GROUND EQUIPMENT FACILITY	ORGANICS ANALYTICAL RESULTS	RESULTS
ATLANTIC CITY AIR NATOINAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995	TOINA	GUARD BAS 07-13 SEF	JARD BASE WASTEWAT 07-13 SEPTEMBER 1995	TER CHARAC	TERIZATION	SURVEY
		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-95
VOLATILE ORGANICS	UNITS	Friday	Saturday	Sunday	Monday	Wednesday
Benzene	l/bn	<100	۲>	₹	₹	۲
Benzyl Chloride	l/gn	NR*	⊽	₽	₹	₹
Bromobenzene	l/gu	NR*	₹	₹	۲>	₽
Bromodichloromethane	l/gn	NR*	⊽	₹	\	1
Bromoform	l/gn	NR*	₽	₽	۲	۲۷
Bromomethane	l/gn	NR*	۲	₹	₹	۲۷
Carbon tetrachloride	l/gn	NR*	<1	<1	V	. <1
Chlorobenzene	l/gn	<100	1.16	5.13	4.37	5.98
Chlorodibromomethane	l/gn	NR*	<1	<۱	۲	۲
Chloroethane	l/gu	NR*	1>	₽	₹	۲>
Chloroform	l/gn	NR*	1>	<1	₹	۲۷
2-Chlorethylvinyl Ether	l/gu	NR*	4>	۲۷	۲	<1
Chloromethane	l/gu	NR*	<١	<1	<1	₹
Chlorodibromomethane	l/gn	NR*	1>	1>	\	<
Dibromomethane	l/gu	NR*	<1	<١	!>	₹
1,2-Dichlorobenzene	l/gn	<100	<١	1>	۲۷	1>
1,3-Dichlorobenzene	l/gu	<100	<١	<1	1 >	7
1,4-Dichlorobenzene	l/gu	<100	11.8	30.99	21.52	36.8
Dichlorodifluoromethane	l/gu	NR*	<1	1>	\	۲۷
1,1-Dichloroethane	l/gn	NR*	<1	<1	<1	۲
1,2-Dichloroethane	l/gn	NR*	<1	<1	<4	⊽
1,1-Dichloroethene	l/gu	NR*	<1	<1	1>	⊽
Trans-1,2-Dichloroethene	l/gn	NR*	<1	<1	<١	₹
1,2-Dichloroethene	l/gu	NR.	<1	<1	<۱	₽
1,2-Dichloropropane	l/gu	NR*	<1	<1	۲	۲
Cis-1,3-Dichloropropene	l/gu	NR*	<1		₹	⊽
Trans-1,3-Dichloropropene	l/gn	NR*	<1	₹	₹	₹
Ethyl Benzene	l/gu	<100	<1	<1	۲۷	
Methylene Chloride	l/gn	NR*	3.57	1.41	⊽	₹
1,1,1,2-Tetrachloroethane	l/gn	NR.	<1	۲>	₹	₽
1, 1, 2, 2-Tetrachloroethane	l/gu	NR*	<1	<1	₹	₹
Tetrachloroethylene	l/gu	NR*	<1	۲-	₽	₽

TABLE D-8 (CONT): METALS AND VOLATILE ORGANICS ANALYTICAL RESULTS SITE 4, AVIATION GROUND EQUIPMENT FACILITY ATLANTIC CITY AIR NATOINAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995

		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-95
VOLATILE ORGANICS	UNITS	Friday	Saturday	Sunday	Monday	Wednesday
Toluene	l/gn	<100	6.26	3.11	1.85	1.19
1,1,1-Trichloroethane	l/bn	NR*	<1	<1	<1	<1
1,1,2-Trichloroethane	l/gu	NR*	<1	<1	<1	<1
Trichloroethylene	l/gn	NR*	<1	<1	<1	<1
Trichlorofluoromethane	l/gu	NR*	<1	۲	۲	<1
1,2,3-Trichloropropane	l/gu	NR*	<1	<1	<1	<1
Vinyl Chloride	l/bn	NR*	<1.	<1	<1	<1
o-Xylene	l/gn	<100	<1	<1	<1	<1
p,m-Xylene	l/bn	<100	<1	<1	<1	<1

*Not requested for analysis.

Note: Shaded values exceed ETHMUA's permissible concentrations.

TABLE D-9: ADDITIONAL ANALYTICAL RESULTS SITE 4, AVIATION GROUND EQUIPMENT FACILITY ATTACHMENT AIR NATIONAL GLIARD RASE WASTE WATER CHARACTERIZATION SLIBVEY	DDDITION G	ONAL ANA ROUND EC	ALYTICAL R	ESULTS ACILITY	VAVGI PA NOID	
	07 - 13	07 - 13 SEPTEMBER 1995	R 1995			
		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-9
GROUP A & B ANALYTES	UNITS	Friday	Saturday	Sunday	Monday	Wednesd
Chemical Oxygen Demand	l/gm	710	405	514	561	200
Oil and Grease	l/gm	248	112.8	480	140.8	236.8
Total Petroleum Hydrocarbon	mg/l	128	49.6	96	51.2	68.8
GROUP E ANALYTES						
Phenols	l/ɓn	425	233	10	42	<10
		:				
GROUP G						
Residue Total	l/gm	792	529	925	865	1179
Residue, Filterable (TDS)	l/gm	280	210	245	330	160
Residue, Nonfilterable (TSS)	l/gm	205	165	435	370	15
Surfactants-MBAs	l/gm	0.4	0.3	0.1	1.2	2.8
ON SITE ANALYSES						
hd	UNITS	7	5	9	9	ဖ
Temperature	၁့	23	24	21	24	24

Note: Shaded values exceed ETHMUA's permissible concentrations

SITE 5, CIVIL ENGINEERING, AND MOTOR POOL ATLANTIC CITY AIR NATOINAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY 07-13 SEPTEMBER 1995 TABLE D-10: METALS AND VOLATILE ORGANICS ANALYTICAL RESULTS

		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-95
METALS	UNITS	Friday	Saturday	Sunday	Monday	Wednesday
Aluminum	l/gm	0.375	0.729	0.862	2.01	0.642
Antimony	l/gm	<0.005	<0.005	<0.005	<0.005	<0.005
Arsenic	l/gm	<0.005	<0.005	<0.005	<0.005	<0.005
Barium	l/gm	<0.050	<0.050	<0.050	0.068	<0.050
Beryllium	l/bw	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	l/gm	0.006	0.004	0.002	0.003	0.008
Total Chromium	l/gm	<0.010	<0.010	<0.010	<0.010	<0.010
Cobalt	l/gm	<0.050	<0.050	<0.050	<0.050	<0.050
Copper	l/gm	0.083	0.148	0.094	0.188	0.144
Iron	mg/I	1.94	1.7	1.89	2.46	4.96
Lead	l/gm	<0.020	<0.020	<0.020	<0.020	0.043
Manganese	l/gm	0.032	0.069	0.117	0.223	0.068
Mercury	l/gm	0.0002	0.0014	<0.0002	0.0007	0.003
Molybdenum	mg/l	<0.030	<0.030	<0.030	<0.030	<0.030
Nickel	mg/l	<0.020	<0.020	<0.020	0.028	<0.020
Selenium	mg/l	<0.010	<0.010	<0.010	<0.010	<0.005
Silver	mg/l	<0.010	<0.010	<0.010	<0.010	<0.010
Thallium	l/gm	<0.001	<0.001	<0.001	<0.001	<0.001
Titanium	mg/l	<0.050	<0.050	<0.050	<0.050	<0.050
Vanadium	mg/l	<0.050	<0.050	<0.050	<0.050	<0.050
Zinc	mg/l	0.19	0.279	0.423	1.03	0.342

		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-95
VOLATILE ORGANICS	UNITS	Friday	Saturday	Sunday	Monday	Wednesday
Benzene	l/gn	<20	Þ	۲>	₹	⊽
Benzyl Chloride	l/gn	<20	۲۷	₹	₽	⊽
Bromobenzene	l/gu	<20	L>	Þ	۲	₹
Bromodichloromethane	l/gn	<20	L>	<1	۲>	₹
Bromoform	l/gu	<20	L>	۷	۲	⊽
Bromomethane	l/bn	<20	L>	٧	₹	۲
Carbon tetrachloride	l/ßn	<20	L>	. <1	۲	⊽
Chlorobenzene	l/gn	<20	۲>	₹	₹	₹
Chlorodibromomethane	l/bn	<20	<1	٧	₹	⊽
Chloroethane	l/gn	<20	L>	<1	۲	٧
Chloroform	l/gu	<20	-<1	۲>	۲	٧
2-Chlorethylvinyl Ether	l/bn	<20	L>	<1	۲۶	<1
Chloromethane	l/gu	<20	L>	- <1	۲۶	₹
Chlorodibromomethane	l/gu	<20	<1	V	₹	⊽
Dibromomethane	l/gn	<20	<1	<1	۲۶	<1
1,2-Dichlorobenzene	l/gn	<20	<1	-<1	<1	<1
1,3-Dichlorobenzene	l/gn	<20	<1	<1	<1	۲
1,4-Dichlorobenzene	l/gn	<20	<1	<1	<1	<1
Dichlorodifluoromethane	l/gn	<20	L>	<1	۲۶	۲>
1,1-Dichloroethane	l/gn	<20	1>	<١	<1	۲
1,2-Dichloroethane	l/gn	<20	1>	1>	<1	٧
1,1-Dichloroethene	l/gn	<20	1>	1>	<1	٧
Trans-1,2-Dichloroethene	l/bn	<20	<1	<1	<1	₹
1,2-Dichloroethene	l/gn	<20	<1	<1	<1	٧,
1,2-Dichloropropane	/bn	<20	<1	<1	<1	<1
Cis-1,3-Dichloropropene	l/gn	<20	<1	<1	<1	<دا
Trans-1,3-Dichloropropene	l/gn	<20	<1	<1	<1	۱>
Ethyl Benzene	l/gn	<20	<1	<١	<1	1>
Methylene Chloride	l/gn	<20	<1	<1	<1	<1
1,1,1,2-Tetrachloroethane	l/gu	<20	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	l/gn	<20	<1	<1	<1	۲>
Tetrachloroethylene	l/gn	<20	<1	<1	<1	L>
Toluene	l/gn	<20	>100	2.18	1.66	۲

TABLE D-10 (CONT): METALS AND VOLATILE ORGANICS ANALYTICAL RESULTS	SITE 5, CIVIL ENGINEERING, AND MOTOR POOL	ATLANTIC CITY AIR NATOINAL GUARD BASE WASTEWATER CHARACTERIZATION SURVEY	07-13 SEPTEMBER 1995
--	---	--	----------------------

		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-95
VOLATILE ORGANICS	UNITS	Friday	Saturday	Sunday	Monday	Wednesday
1,1,2-Trichloroethane	l/6n	<20	<1	<1	۲۷	<1
Trichloroethylene	l/gu	<20	<1	۲۷	<1	1>
Trichlorofluoromethane	l/gu	<20	l>	<1	<1	<ا
1,2,3-Trichloropropane	l/gu	<20	L>	<1	<1	ا<ا
Vinyl Chloride	l/gu	<20	1>	<1	<1	ا<
o-Xylene	l/gu	<20	<٠	<1	<1	1>
p,m-Xylene	√gu	<20	<٠١	<1	<1	<1

NEW JERSEY AIR NATIONAL GUARD BASE WASTE WATER CHARACTERIZATION SURVEY 07 - 13 SEPTEMBER 1995 SITE 5, CIVIL ENGINEERING, VEHICLE MAINTENANCE, FUELS LAB TABLE D-11: ADDITIONAL ANALYTICAL RESULTS

		8-Sep-95	9-Sep-95	10-Sep-95	11-Sep-95	13-Sep-95
GROUP A & B ANALYTES	UNITS	Friday	Saturday	Sunday	Monday	Wednesday
Chemical Oxygen Demand	l/gm	999	880	1330	2000	770
Oil and Grease	l/gm	120	185	224	57.6	153.6
Total Petroleum Hydrocarbon	l/gm	344	32	80	160	57.2
GROUP E ANALYTES						
Phenols	l/bn	300	200	23	74	65
GROUP G						
Residue Total	l/gm	813	1210	1922	2486	1106
Residue, Filterable (TDS)	l/gm	335	800	215	390	605
Residue, Nonfilterable (TSS)	l/gm	175	410	350	450	45
Surfactants-MBAs	l/gm	1.6	0.7	0.3	3	15
ON SITE ANALYSES						
Hd	UNITS	9	5	5.5	8	9
Temperature	၁့	25	17	22		24

Note: Shaded values exceed ETHMUA's permissible concentrations.

APPENDIX E FIGURES

FIGURE E-1: COD Levels In Wastewater Samples

FIGURE E-3: Phenol Levels In Wastewater Samples

FIGURE E-4: pH Levels in Wastewater Samples