BAB 6

BARISAN DAN DERET

CATATAN:

Untuk Pendalaman Materi, silahkan buka kembali pada materi BARIS DAN DERET kelompok TKPA Matematika Dasar. Khusus pada bagian ini hanya akan diberikan beberapa materi yang sifatnya pengulangan saia.

	DERET	
	ARITMATIKA	GEOMETRI
	a = suku pertama b = beda	a = suku pertama r = rasio
Suku ke – n (U _n)	$U_n = a + (n - 1)b$	$U_n = ar^{n-1}$
Jumlahan suku ke – n (S _n)	$S_n = \frac{n}{2}(a + U_n)$	$Sn = \frac{a(1-r^n)}{1-r}, r < 1$
	$S_n = \frac{n}{2} \{2a + (n-1)b\}$	$Sn = \frac{a(r^n - 1)}{r - 1}, r > 1$
Jumlahan tak hingga		Divergen: $r \ge 1$ atau $r \le -1$ Konvergen/ punya jumlah Syarat: $-1 < r < 1$ $S_{\infty} = \frac{a}{1-r}$
Di antara dua bilangan disisipkan k bilangan.	$b_{\text{baru}} = \frac{b_{\text{lama}}}{k+1}$	$r_{baru} = \sqrt[k+1]{r_{lama}}$
Suku Tengah (U _t)	$U_{t} = \frac{U_{1} + U_{n}}{2}$	$U_t = \sqrt{U_1 \times U_n}$
K e d u a n y a berlaku	$U_n = S_n - S_{n-1}$	

Deret Aritmatika

Harus hafal!

a = suku pertama b = beda = U _n – U _{n-1}	
Suku ke – n (U _n)	$U_n = a + (n - 1)b$
Jumlahan suku ke – n (S _n)	$S_n = \frac{n}{2}(a + U_n)$ $S_n = \frac{n}{2}\{2a + (n-1)b\}$

Trik Praktis!

Jika jumlah n suku pertama deret aritmatika adalah

$$S_n = an^2 + bn$$
, maka

$$U_n = S'_n - a = (2an + b) - a$$

 $b = turunan kedua S_n$

 $=S''_n$

=2a

Trik Praktis!

Jika sebuah segitiga siku-siku panjang isinya membentuk barisan aritmatika, maka perbandingan ketiga sisinya adalah

3:4:5

C Deret Geometri

a = suku pertama	
$r = rasio = \frac{U^n}{U_{n-1}}$	
Suku ke – n (U _n)	$U_n = ar^{n-1}$
Jumlahan suku ke – n (S _n)	$Sn = \frac{a(1-r^n)}{1-r}, r < 1$
	$Sn = \frac{a(r^n - 1)}{r - 1}, r > 1$

Deret Geometri Tak Hingga

Suatu deret tak hingga dikatakan konvergen atau punya jumlah jika berlaku

Syarat:
$$-1 < r < 1$$

$$S_{\infty} = \frac{a}{1 - r}$$

Contoh:

- 1. Nilai-nilai x yang memenuhi $3-3x+3x^2-3x^3+\cdots<6$

 - A. x > -1 D. $-\frac{1}{2} < x < 0$ atau $0 < x < \frac{1}{2}$

 - B. $x > -\frac{1}{2}$ E. $-\frac{1}{2} < x < 0$ atau 0 < x < 1
 - C. $-\frac{1}{2} < x < 1$

Pembahasan:

Diketahui: $3-3x+3x^2-3x^3+\cdots < 6$

Artinya S. < 6

Deret di atas merupakan deret geometri tak hingga dengan

$$a = 3, r = -x.$$

Ingat!
$$S_{\infty} = \frac{a}{1-r}$$

$$S_{\infty} < 6 \Rightarrow \frac{3}{1+x} < 6 \Rightarrow \frac{3}{1+x} - 6 < 0$$

$$\Rightarrow \frac{3 - 6(1+x)}{1+x} < 0 \Rightarrow \frac{-6x - 3}{1+x} < 0$$

$$\Rightarrow -\frac{1}{2} < x < 1$$

...(1)

Syarat deret konvergen (punya jumlahan tak hingga)

$$-1 < r < 1 \Rightarrow -1 < -x < 1 \Rightarrow -1 < x < 1$$

Dari (1) dan (2) diperoleh $-\frac{1}{2} < x < 1$.

Jawaban: C

Contoh:

- 2. Sebuah bola jatuh dari ketinggian 10 m dan memantul kembali dengan ketinggian ¾ kali tinggi sebelumnya, begitu seterusnya hingga bola berhenti. Jumlah seluruh lintasan bola adalah ...

- A. 65 m B. 70 m C. 75 m D. 77 m E. 80 m

Pembahasan:

Keterangan soal seperti di gambar. Total panjang lintasan sampai berhenti untuk gerak naik-turun adalah:

$$a=10, r=\frac{3}{4}$$

$$2s_{\infty} = 2\left(\frac{a}{1-r}\right) = 2\left(\frac{10}{1-\frac{3}{4}}\right) = 80$$

Karena pada gerakan paling awal hanya berupa gerakan turun, maka panjang lintasan yang ditempuh bola 80-10 $= 70 \, \text{m}.$

Cara cepat:

Tinggi awal Ho = 10m

Rasio =
$$\frac{a}{b} = \frac{3}{4}$$
 (artinya, a = 3 dan b = 4)

Panjang Lintasan =
$$\frac{b+a}{b-a} \times H_o = \frac{4+3}{4-3} \times 10 = 70$$

Jawaban: D

Trik Praktis!

Jika dalam sebuah bujur sangkar dibuat lagi bujur sangkar di dalamnya seperti gambar di samping, maka

- Rasio deret luas = $\frac{1}{3}$
- Rasio deret keliling = $\frac{1}{2}\sqrt{2}$

Jika dalam segitiga sama sisi dibuat lagi segitiga sama sisi di dalamnya seperti gambar di samping, maka

- Rasio deret luas = $\frac{1}{4}$
- Rasio deret keliling = $\frac{1}{2}$

CONTOH SOAL DAN PEMBAHASAN

Jumlah n suku pertama suatu deret aritmetika dinotasikan dengan Sn. Jika suku pertama deret tersebut tak nol dan S4, S8 dan S16 membentuk

barisan geometri, maka $\frac{S_8}{S_{\star}} =$

- A. 2 B. 4

Pembahasan SMART:

•
$$S_4 = \frac{1}{2} \cdot 4 \cdot (2a + 3b) = 2(2a + 3b)$$

$$S_8 = \frac{1}{2}.8.(2a+7b) = 4(2a+7b)$$

$$S_{16} = \frac{1}{2}.16.(2a+15b) = 8(2a+15b)$$

• S₄, S₈, S₁₆ membentuk barisan geometri.

Berlaku:
$$S_8^2 = S_4 \cdot S_{16}$$

$$[4(2a+7b)]^2 = 2.(2a+3b).8(2a+15b)$$

$$16(2a+7b)^2 = 16(2a+7b-4b)(2a+7b+8b)$$

$$(2a+7b)^2 = ((2a+7b)-4b)((2a+7b)+8b)$$

$$(2a+7b)^2 = (2a+7b)^2 + 8b(2a+7b) - 4b(2a+7b) - 32b^2$$

$$8ab + 28b^2 + 32b^2 = 16ab + 56b^2$$

$$4b^2 - 8ab = 0$$

$$4b(b-2a)=0$$

$$b = 0$$
 atau $b = 2a$

Untuk b = 2a, maka

$$\frac{S_8}{S_4} = \frac{4(2a+7.2a)}{2(2a+3.2a)} = \frac{4.16a}{2.8a} = 4$$

Jawaban: B

- 2. Diketahui barisan bilangan real a₁, a₂, a₃, ..., a_n merupakan barisan geometri. Jika $a_1 + a_4 = 20$ maka
 - nilai minimum dari jumlah 6 suku pertama deret ini adalah

Pembahasan SMART:

Diketahui $a_1 + a_2 = 20 \Rightarrow a + ar^3 = 20$

Jumlah 6 suku pertama deret ini

$$= a + ar + ar^{2} + ar^{3} + ar^{4} + ar^{5}$$

$$= a + ar^3 + ar + ar^4 + ar^2 + ar^5$$

$$=(a+ar^3)+r(a+ar^3)+r^2(a+ar^3)$$

$$=20+20r+20r^{2}$$

$$=f(r)$$

Bernilai minimum jika f'(r) = 0

$$f'(r) = 40r + 20 = 0 \Rightarrow r = -\frac{1}{2}$$

Selanjutnya diketahui

$$a + ar^3 = 20 \Rightarrow a(1+r^3) = 20$$

$$\Rightarrow a \left(1 + \left(-\frac{1}{2}\right)^3\right) = 20$$

$$\Rightarrow a \left(\frac{7}{8}\right) = 20 \Rightarrow a = \frac{160}{7}$$

Maka, dari jumlah 6 suku pertama

$$S_{n} = \frac{a(1-r^{n})}{1-r} = \frac{\frac{160}{7}\left(1-\left(-\frac{1}{2}\right)^{6}\right)}{1-\left(-\frac{1}{2}\right)}$$

$$=\frac{\frac{160}{7}\left(1-\left(\frac{1}{64}\right)\right)}{\frac{3}{2}}=\frac{160}{7}\left(\frac{63}{64}\right)\times\frac{2}{3}=15$$

Jawaban: A

Diketahui $x^2 - (k^2 - k - 4)x + 4k - 1 = 0$

mempunyai akar-akar bulat positif a dan b. Apabila nilai (3a - b), (k + 3), (2b - 2a + 6) merupakan tiga suku pertama deret aritmetika dengan nilai k positif, maka jumlah n suku pertama dapat dituliskan sebagai

A.
$$\frac{3n^2 + 5r}{2}$$

A.
$$\frac{3n^2 + 5n}{2}$$
 D. $\frac{3n^2 + 2n}{2}$ B. $\frac{2n^2 + 5n}{2}$ E. $\frac{n^2 + 3n}{2}$

3.
$$\frac{2n^2+5}{2}$$

E.
$$\frac{n^2 + 3n}{2}$$

$$C. \quad \frac{n^2 + 5n}{2}$$

Pembahasan SMART:

 $p,q,r \Rightarrow tiga suku aritmetika$

 \Rightarrow berlaku: 2q = p + r

- 1) Untuk k positif:
 - (3a b), (k + 3), (2b 2a + 6)

merupakan tiga suku pertama deret aritmetika. Maka berlaku:

$$2(k+3)=(3a-b)+(2b-2a+6)$$

$$\Rightarrow$$
 2k+6=a+b+6 \Rightarrow a+b=2k(1)

2) Diketahui $x^2 - (k^2 - k - 4)x + 4k - 1 = 0$ mempunyai akar-akar bulat positif

a dan b.

Hasil penjumlahan akar-akarnya:

$$a+b=\frac{(k^2-k-4)}{1}$$
 (lihat (1))

$$\Rightarrow (k^2 - k - 4) = 2k$$

$$\Rightarrow$$
 k² - 3k - 4 = 0

$$\Rightarrow$$
 $(k-4)(k+1)=0$

$$\Rightarrow$$
 k = 4 atau k = -1

Karena k positif, kita ambil k = 4. Selanjutnya jika kita subtitusikan ke persamaan, maka akan diperoleh:

$$x^{2}-(k^{2}-k-4)x+4k-1=0$$

$$\Rightarrow$$
 $x^2 - (4^2 - 4 - 4)x + 4.4 - 1 = 0$

$$\Rightarrow$$
 $x^2 - 8x + 15 = 0$

$$\Rightarrow (x-3)(x-5)=0$$

$$\Rightarrow$$
 x = 3 atau x = 5

Artinya, akar-akarnya adalah a = 3 dan b = 5

Selanjutnya kita subtitusikan ke

(3a - b), (k + 3), (2b - 2a + 6), diperoleh barisan aritmetika 4, 7, 10; yaitu barisan dengan beda = 3 dan suku pertama = 4.

Jumlah n suku pertamanya adalah:

$$\begin{split} S_n &= \frac{n}{2} \big(2a + (n-1)b \big) \\ &= \frac{n}{2} \big(2.4 + (n-1)3 \big) \\ &= \frac{n}{2} \big(8 + 3n - 3 \big) \\ &= \frac{3n^2 + 5n}{2} \end{split}$$

Jawaban: A

- Jika U₁, U₂, U₃, adalah barisan geometri yang memenuhi $U_2 - U_5 = x$ dan $U_3 - U_5 = 2y$, maka $\frac{y}{y} = \dots$
 - A. $\frac{r(1+r)}{(1+r+r^2)}$ D. $\frac{2(1+r+r^2)}{r+r^2}$
 - B. $\frac{r+r^2}{2(1+r+r^2)}$ E. $\frac{(1+r+r^2)}{2r+2r^2}$
 - $C. \quad \frac{r+r^2}{2(1+r-r^2)}$

Pembahasan SMART:

ingat! ingat!

U_n adalah suku ke-n barisan geometri, dengan:

 $U_n = ar^{n-1}$

$$x = u_2 - u_3 \Rightarrow x = ar - ar^4$$

$$x = ar(1-r^3)$$

$$2y = u_3 - u_5 \Rightarrow 2y = ar^2 - ar^4$$

$$2y = ar^2(1-r^2)$$

Sehingga:

$$\frac{2y}{x} = \frac{ar^2(1-r^2)}{ar(1-r^3)} \Leftrightarrow \frac{2y}{x} = \frac{r(1-r)(1+r)}{(1-r)(1+r+r^2)}$$

$$\frac{2y}{x} = \frac{r(1+r)}{(1+r+r^2)} (dikalikan \frac{1}{2})$$

$$\frac{y}{x} = \frac{r+r^2}{2(1+r+r^2)}$$

Jawaban: B

- Jumlah tak hingga dari deret geometri adalah 64 dan suku pertamanya adalah 16. Jumlah semua suku bernomor genap deret tersebut adalah

Pembahasan SMART:

Rasio dari deret tak hingga tersebut dapat ditentukan dari jumlah tak hingganya, yaitu:

$$S = \frac{a}{1-r} \Rightarrow 64 = \frac{16}{1-r}$$

$$64 - 64r = 16$$

$$-64r = -48$$

$$r = \frac{48}{64}$$

$$r = \frac{3}{4}$$

Deret geometri dengan suku genap adalah:

Sehingga, suku pertamanya menjadi ar dan rasionya menjadi r2.

Jumlah semua suku bernomor genap deret tersebut adalah:

$$S = \frac{ar}{1 - r^2} = \frac{16\left(\frac{3}{4}\right)}{1 - \left(\frac{3}{4}\right)^2} = \frac{12}{\frac{7}{16}} = \frac{192}{7}$$

Jawaban: C