

第10章 带传动和链传动

第1节 带传动概述

第2节 普通V带传动的结构尺寸及尺寸参数

第3节 带传动的工作原理

第4节 普通V带传动的设计计算

第5节 带传动的张紧装置及安装维护

第6节 链传动及其结构

第7节 链传动的运动特性与受力分析

第8节 滚子链传动的设计计算

第9节 链传动的正确使用和维护

带传动和链传动:都是利用挠性元件(带和链)传递运动和动力的机械传动。

带传动和链传动更适用于两轴中心距较大的场合。

一、带传动的组成

带传动主要由主动轮、 从动轮和张紧在两轮上的 封闭环形带组成。

封闭环形带为标准件

二、带传动的类型

按带的截面形状不同

平带传动

V带传动

圆带传动

多楔带传动

同步带传动: 啮合传动

摩擦

传动

按传动原理不同

- (1) 摩擦带传动: 靠传动带与带轮间的摩擦力实现传动,如V带传动、平带传动等。
 - (2) 啮合带传动: 靠带内侧凸齿与带轮外缘上的齿槽相

互啮合实现传动,如同步带传动。

将带张紧在带轮上,使带与带轮互相压紧,主动轮转动时,带与带轮接触弧面间产生<u>摩擦力</u>,将主动轮的运动和动力传动给从动轮。

1. 平带传动

平带:由多层胶帆布构成,横截面为扁平矩形,与带轮表面相接触的内侧面为工作面。平带传动结构简单,带长可根据需要剪截后用接头接成封闭环形。

平带传动的形式:

开口传动: 两带轮轴线平行、转向相同;

交叉传动: 两带轮轴线平行、转向相反;

半交叉传动: 两带轮轴线在空间交错,

交错角通常为90。

2. V带传动

V带横截面为等腰梯形,与带轮轮槽相接触的两侧面为工作面,带与轮槽槽底不接触。

正压力
$$F_{\rm N}=F_{\rm Q}$$
 摩擦力 $F_{\mu}=\mu F_{\rm N}=\mu F_{\rm Q}$

$$2F_N'\sin\frac{\phi}{2} = F_Q$$

$$F'_{\mu} = 2\mu F'_{N} = \frac{\mu}{\sin\frac{\phi}{2}} F_{Q} = \mu_{v} F_{Q}$$

在摩擦因数 μ 及张紧程度等其他条件相同的情况下,V带传动比平带传动产生的摩擦力要大得多。

3. 圆带传动

圆带横截面为圆形,只能用于轻载机械及仪表 等装置中,如缝纫机、仪器等低速小功率的传动。

4. 多楔带传动

多楔带是在平带基体下做出多根纵向楔体而成,楔的侧面为 工作面,兼有平带和V带的特点,适用于传递动力大且要求结

构紧凑的场合。

5. 同步带传动

同步带为内侧有齿的无接头环形带,又称同步齿形带,与 之相配合的带轮上也有相应的齿。工作时靠带齿与轮齿的相 互啮合传递运动和动力,从而保证主动轮和从动轮的圆周速

度始终同步,因而具有 准确的传动比;但对制 造与安装的精度要求较 高,成本较高。

带传动的特点及应用

优点:①适应于两轴中心距较大的传动;②带具有良好的弹性,可以缓冲、吸振,尤其是V带没有接头,传动平稳,噪声小;③当过载时,带与带轮之间会自动打滑,防止其他零件因过载而损坏;④结构简单,制造与维护方便,成本低。

缺点: ①外廓尺寸较大,不紧凑; ②工作时带与带轮接触面间存在滑动,不能保证准确的传动比; ③传动效率较低,带的寿命较短; ④需要张紧装置。

应用:多用于两轴中心距较大,传动比要求不严格的机械中。一般带传动允许的传动比 i_{max} =7,功率 $P \le 50$ kW,带速 $v = 5 \sim 25$ m/s,传动效率 $\eta = 0.90 \sim 0.96$ 。

V带有普通V带、窄V带、宽V带、半宽V带、大楔角V带、齿形V带、联组v带等多种类型,其中普通V带应用最广。

一、普通V带的结构和规格

普通V带:为无接头的环形传动带,由包布、顶胶、抗拉体、底胶等组成。

带所受拉力主要由抗拉体承受,其材料为抗拉强度较高的化学纤维,根据抗拉体的结构不同,分为绳芯V带和帘布芯V带。带弯曲时,顶胶和底胶分别产生拉伸变形和压缩变形。

一、普通V带的结构和规格

当V带在带轮上弯曲时,带中保持原有长度不变的周线称为节线,全部节线组成的面称为节面,带的节面宽度称为节宽,用 b_{p} 表示。带在弯曲时,节宽保持不变。

普通V带已经标准化,根据横截面面积大小的不同,分为Y、 Z、A、B、C、D、E七种型号。

									(mm
V带参数	/帯截型	Y	z	A	В	С	D	Е	$b_{\rm p}$
顶宽	b	6.0	10.0	13.0	17.0	22.0	32.0	38.0	+ WXXXXX
节宽	$b_{\mathtt{p}}$	5.3	8.5	11.0	14.0	19.0	27.0	32.0	z ******
高度	h	4.0	6.0	8.0	11.0	14.0	19.0	25.0	
楔角	α				$\frac{\alpha}{1}$				
单位带长的质量 q/(kg·m ⁻¹)		0.02	0.06	0.10	0.17	0.30	0.63	0.92	V帯截面

普通V带的带高与节宽之比(h/b_p)约为0.7,楔角 $\alpha = 40^\circ$ 。

V带的节线长度称为**基准长度**,用 L_d 表示。每种型号的普通 V带都有系列基准长度,以满足不同中心距的需要。

普通V带的标记:

每种型号的普通V带都有系列基准长度,以满足不同中心距的需要。

. E. R														• •.		
基准长度	带长修正系数 K _L							基准长度	带长修正系数 K _L							
L _d /mm	Y	Z	A	В	С	D	E	L _d /mm	Y	Z	A	В	С	D	E	
								1800		1. 18	1.01	0. 95	0.86			
200	0.81							2000			1.03	0. 98	0.88			
224	0. 82							2240			1.06	1.00	0. 91			
250	0.84							2500			1.09	1.03	0. 93			
280	0.87			此				2800			1. 11	1.05	0. 95	0.83		
315	0.89	011	可即	200				3150			1. 13	1.07	0. 97	0.86		
355	0.92							3550			1. 17	1.09	0. 99	0.89		
400	0. 96	0. 87						4000			1. 19	1. 13	1.02	0. 91		
450	1.00	0. 89						4500				1. 15	1.04	0. 93	0. 90	
500	1.02	0. 91						5000				1. 18	1.07	0. 96	0. 92	
560		0. 94						5600					1.09	0. 98	0. 95	
630		0. 96	0.81					6300					1. 12	1.00	0. 97	
710		0. 99	0.83					7100					1. 15	1.03	1.00	
800		1.00	0.85					8000					1. 18	1.06	1. 02	
900		1. 03	0.87	0. 82				9000					1. 21	1.08	1. 05	
1000		1.06	0.89	0. 84				10000					1. 23	1. 11	1. 07	
1120		1.08	0.91	0.86				11200						1. 14	1. 10	
1250		1. 11	0.93	0. 88				12500						1. 17	1. 12	
1400		1. 14	0.96	0. 90				14000						1. 20	1. 15	
1600		1. 16	0.99	0. 92	0. 83			16000						1. 22	1. 18	

二、V带轮的材料和结构

带轮材料:铸铁、钢、铝合金或工程塑料等,灰铸铁应用最广。

- 1) 带速5<v<25m/s的带传动,一般用HT150;
- 2) 带速 $v=25\sim30$ m/s的带传动,一般用HT200;
- 3) 带速v>30~45m/s, 用球墨铸铁、铸钢或锻钢, 也可用钢板冲压后焊接成;
- 4) 功率较小时,为了减轻带轮的重量,可用铝合金及工程塑料。

V带轮:一般由轮缘、腹板(或轮辐)和轮毂三部分组成。在轮缘处有相应的轮槽。

各种型号普通V带的楔角 α 均为40°,V带在不同直径的带轮上弯曲时,

其截面变形,楔角变小。为使带能有效地紧贴在轮槽的两侧面上,应使带轮的轮槽角 ϕ 等于或尽量接近于变形后的V带楔角,故限定 ϕ 小于40°,且随带轮直径的减小而减小。 "表10-1"

带轮上轮槽宽度等于V带节宽 b_p 的圆周直径,称为v带轮的基准直径 d_d 。国家标准规定了V带轮的基准直径系列。

二、V带轮的材料和结构

V带轮:

基准直径dd

V带轮的结构:实心式、腹板式、轮辐式

实心式: 带轮基准直径 $d_d \leq (2.5~3) d (d)$ 为轴径)

二、V带轮的材料和结构

腹板式: 带轮基准直径 $d_d \leq 300 \text{mm}$, 其中 $d_2 - d_1 \geq 100 \text{mm}$, 腹板

上开孔,便于吊装和减轻重量。

二、V带轮的材料和结构

轮辐式: 带轮基准直径 $d_d > 300$ mm。

一、带传动的受力分析

1. 带的拉力

安装带传动时,传动带以一定的张紧力紧套在两个带轮上,此张紧力称为初拉力。带传动静止时,带两边的拉力相等,均

为初拉力 F_0 。

带传动时,由于带轮给带的摩擦力 F_{μ} 的作用,绕进主动轮1的一侧带被进一步拉紧,称为紧边,其拉力由 F_0 增大到 F_1 ;另一侧带则被放松,称为松边,其拉力由 F_0 减小到 F_2 。

设环形带的总长度不变,则紧边拉力的增量等于松 边拉力的减量,即

$$F_1 - F_0 = F_0 - F_2$$

所以
$$F_1 + F_2 = 2F_0$$

紧边拉力 F_1 与松边拉力 F_2 之差称为有效拉力 F_3 。

有效拉力是工作机对带传动的需求力,是靠带轮与带之间产生的摩擦力驱动的,它等于带与带轮接触弧面上的摩擦力之和,

有效拉力F、带速v与带 传递的功率P之间的关系为

$$P = \frac{Fv}{1000}(kW)$$

式中, P(kW); F(N); v(m/s)

在传动正常工作时,带与轮之间的摩擦力属于静摩擦,并存在一个极限值。当带传动传递的功率 P 增大到使有效拉力 F 超过该极限摩擦力时,带与带轮之间就会产生全面而显著的相对

滑动,这种现象称为打滑。

打滑时,带传动不能正常工作,而且会造成带的严重磨损,打滑是带传动的一种失效形式。

即将打滑的状态,带传动的有效拉力达到最大值。根据挠性体摩擦的欧拉公式,对平带传动,忽略离心力的影响, F_1 和 F_2 之间的关系为: $F_1 = F_2 e^{\mu\alpha}$

e是自然对数的底,e=2.718; α 是包角(带与带轮接触弧所对的中心角)。

带的最大有效拉力为:

$$F_{\text{max}} = F_1 - F_2 = F_1(1 - \frac{1}{e^{\mu\alpha}}) = F_2(e^{\mu\alpha} - 1)$$

因为
$$F_1 + F_2 = 2F_0$$

整理得:

$$F_{\text{max}} = 2F_0 \frac{e^{\mu\alpha} - 1}{e^{\mu\alpha} + 1} = 2F_0 (1 - \frac{2}{e^{\mu\alpha} + 1})$$

一般要求 α_1 ≥120°, 个别情况可小到90°。

□ 带传动的最大有效拉力与 摩擦因数、包角有关,且与 初拉力成正比。

增大摩擦因数、包角和初拉力,都可以提高带传动的承载能力,但 F_0 过大将缩短带的寿命。

V带传动须将上式中的 μ 用 μ_v 代替,便得到相应的计算公式。

2. 离心拉力

传动工作时,带绕在带轮上作圆周运动而产生离心力。虽然离心力只产生在带的圆周运动部分,但由此产生的离心拉力却作用在带的全长上,其大小为: $F_c = mv^2$

式中: F_c 是离心拉力(N); m是单位带长的质量(kg/m); v为带速(m/s)。

离心力使带与带轮之间的正压力及摩擦力减小,降低了带传动的承载能力。"限制带速"

二、带的应力

带传动工作时,带中应力有:

1、紧边和松边拉力产生的拉应力

$$\sigma_1 = F_1 / A$$

$$\sigma_1 = F_1 / A$$
 $\sigma_2 = F_2 / A$

2、离心拉应力
$$\sigma_c = F_c / A = mv^2 / A$$

3、弯曲应力
$$\sigma_b = E \frac{2y}{d}$$

$$\sigma_{\rm b} = E \frac{2y}{d}$$

A: 带的横截面面积, E: 带材料的弹性模量; y: 带的中性 层到最外层的距离; d: 带轮的计算直径, 即带的中性层在 带轮上的圆周直径,对V带传动,d是v带轮的基准直径 d_d 。

二、带的应力

3、弯曲应力

$$\sigma_{\rm b} = E \frac{2y}{d}$$

两带轮直径不同, 带在带轮上的弯曲应 力也不同。小带轮上 带的弯曲应力大于大 带轮上带弯曲应力。 应限制小带轮的直径。

二、带的应力

把三种应力叠加,得到传动带的总应力。最大、最小应力为:

$$\sigma_{\text{max}} = \sigma_1 + \sigma_c + \sigma_{\text{bl}} \qquad \sigma_{\text{min}} = \sigma_2 + \sigma_c$$

$$\sigma_{\min} = \sigma_2 + \sigma_c$$

带处于变应力状况 下工作,将引起带 的疲劳破坏(脱层、 断裂),这是带传 动的另一种失效形 式。

最大应力: 紧边刚绕上主动小带轮的截面

三、带的弹性滑动

带是弹性体,受拉力作用时将产

生弹性变形。当带自A点刚刚绕上主动轮时,带中拉力等于 F_1 ,带速等于主动轮的圆周速度;当带随主动轮运动至B点时,带中拉力已逐渐降为松边拉力 F_2 ,带的拉伸变形量也随之逐渐减小,从而导致带沿带轮轮面向拉力较大的紧边方向产生相对滑动。

主动轮: 当带由 $A \rightarrow B$,拉力由 $F_1 \searrow F_2$,带的伸长量也减小,即带沿带轮一面绕进,一面向后收缩,使 $\nu_{\sharp\sharp} < \nu_1$,带沿轮面滑动。

从动轮: 当带由C \rightarrow D, 拉力由 F_2 / F_1 , 带的伸长量也增大,即带沿带轮一面绕进,一面向前伸长,使 $v_{\sharp\sharp} > v_2$,带沿轮面滑动。

三、带的弹性滑动

定义:由于带的弹性变形而引起的带与带轮间的相对滑动称为弹性滑动,这是带传动固有的特性。

选用弹性模量大的带材料,可降低弹性滑动。

研究表明,在主动轮上,带的弹性滑动发生在靠近松边的部分接触弧上,称为滑动弧(红色区域);靠近紧边的一部分接触弧上不发生弹性滑动,称为静止弧(蓝色区域)。

随着传递功率增加,滑动弧逐渐增大,静止弧逐渐减小。当静止弧减小为零,整个接触弧上都发生弹性滑动时,即产生打滑现象。

 $v_{\sharp \!\!\!/} > v_2$

三、带的弹性滑动

弹性滑动的后果: 1) v_2 <

 v_1 ; 2)引起带的磨损; 3)使带的温度升高; 4)导致传动效率降低。

 v_1 : 主动轮的圆周速度, v_2 : 从动轮的圆周速度;

说明:带的弹性滑动和打滑是两个完全不同的概念。弹性滑动是由于带的弹性以及工作时紧、松两边存在的拉力差引起的,是带传动中不可避免的现象;打滑则是由于过载引起的一种失效,在带传动正常工作时应该避免出现打滑。

三、带的弹性滑动

主动轮: $\nu_{\#} < \nu_{1}$ 从动轮: $\nu_{\#} > \nu_{2}$

$$v_1 = \frac{\pi d_1 n_1}{60 \times 1000}$$

$$v_1 = \frac{\pi d_1 n_1}{60 \times 1000} \qquad v_2 = \frac{\pi d_2 n_2}{60 \times 1000}$$

将从动轮圆周速度的降低率称为<math>滑动率,用 ε 表示。

$$\varepsilon = \frac{v_1 - v_2}{v_1} = 1 - \frac{v_2}{v_1} = 1 - \frac{d_2 n_2}{d_1 n_1}$$

贝儿:
$$i = \frac{n_1}{n_2} = \frac{d_2}{(1-\varepsilon)d_1}$$

则: $i = \frac{n_1}{n_2} = \frac{d_2}{(1-\varepsilon)d_1}$ 通常 $\varepsilon = (1\sim2)\%$,其值很小,在一般计算中可不考虑。

如果忽略弹性滑动,则带传动的传动比为:

$$i = \frac{n_1}{n_2} = \frac{d_2}{d_1}$$

四、带传动的设计准则

$$\begin{cases} \sigma_{\text{max}} = \sigma_{1} + \sigma_{c} + \sigma_{b1} \leq [\sigma] \\ \sigma_{1} \leq [\sigma] - \sigma_{c} - \sigma_{b1} \end{cases}$$

设计准则:保证传动不打滑的前提下,带具有足够的疲劳强度。

 $[\sigma]$ 是在特定条件下根据疲劳寿命实验确定的带的许用拉应力。 单根带既不打滑且具有足够疲劳强度时所能传递的功率P:

$$F_{1} = F_{2}e^{\mu\alpha}$$

$$F = F_{1}(1 - \frac{1}{e^{\mu\alpha}})$$

$$F_{1} = \sigma_{1}A$$

$$P = \frac{Fv}{1000}$$

$$P = \frac{Fv}{1000}$$

$$P = \frac{Fv}{1000}$$

式中量纲, P(kW); $A(mm^2)$; v(m/s); 应力(MPa)。

第4节 普通V带传动的设计计算

☞ 普通V带传动的设计,是在<u>给定的条件</u>下确定带传动 的参数。

给定的条件:

- 1、传动的用途、工作情况及原动机的类型、 起动方式;
-) 2、传递的功率;
 - 3、大、小带轮的转速等。"传动比"
 - 1、选取V带的型号、计算基准长度和根数;
 - 2、确定传动的中心距;

设计内容:

- 3、确定带轮的结构和尺寸;
- 4、计算作用在轴上的载荷;
- 5、设计传动的张紧装置。

一、确定V带的型号和带轮基准直径

1. 计算设计功率

设计功率是根据带传递的功率、载荷性质、连续工作时间等确定,即 $P_d = K_A P$

式中, P_d 是设计功率; K_A 是工况系数;P是带传动的名义功率。

2. 选择V带型号

根据设计功率 P_d 和小带轮转速 n_1 ,由选型图初选带的型号。 选用较小截面的型号,会使带的根数增加;选用较大截面的型 号,会使传动结构尺寸增大,但所需带的根数将相应减少。

普通V带选型图

3. 确定带轮的基准直径

为了减小弯曲应力,应尽可能选用较大的带轮直径。但直径增大会加大传动的外廓尺寸,故应根据实际情况选取适当的带轮直径。

小带轮的基准直径 d_{cl} 根据普通V带选型图确定。选定小带轮的基准直径应符合基准直径系列尺寸。

V带轮的基准直径系列

, T													(n	nm)
28	31.5	35.5	40	45	50	56	63	71	75	80	(85)	90	(95)	100
(106)	112	(118)	125	132	140	150	160	(170)	180	200	(210)	224	(236)	250
(265)	280	(300)	315	(335)	355	(375)	400	(425)	450	(475)	500	(530)	560	(600)
630	(670)	710	(750)	800	(900)	1000	1060	1120	1250	1400	1500	1600	(1800)	2000

注: 括号内的直径尽量不用。

3. 确定带轮的基准直径

大带轮基准直径按下式计算:

$$d_{d2} = i \cdot d_{d1}$$

当要求传动比误差较小时,应考虑滑动率按下式计算:

$$d_{d2} = i \cdot (1 - \varepsilon) d_{d1}$$

选取的大带轮直径也要符合基准直径系列尺寸。

4. 验算带速

$$P = \frac{Fv}{1\ 000}(kW)$$

普通V带质量较大,带速较高,会因惯性离心力过大而降低带与带轮间的正压力,而降低摩擦力和传动能力;带速过低,则在传递相同功率的条件下,有效拉力F增大,要求带的根数较多。

一般应使带速 $v=5\sim25$ m/s, 较适宜的速度 $v=10\sim20$ m/s。

带速的计算式为:

$$v = \frac{\pi d_{d1} n_1}{60 \times 1000}$$

式中量纲: v (m/s); d_{d1} (mm); n_1 (r/min)。

二、确定中心距和V带基准长度

1. 初选中心距

V带传动中心距应适宜。

中心距过大,则带的长度增加,传动中易引起带的振颤。 中心距过小,当带速一定时,单位时间内带绕经带轮的次 数增多,带的应力循环次数增加,易造成带的疲劳损坏。

一般根据传动的需要初选中心距 a_0 ,即

$$0.7(d_{d1} + d_{d2}) \le a_0 \le 2(d_{d1} + d_{d2})$$

2. 确定V带基准长度

根据带传动的几何关系、带轮的基准直径及初选中心距, 计算所需V带基准长度 L_{do} ,

$$L_{d0} = 2a_0 + \frac{\pi}{2}(d_{d1} + d_{d2}) + \frac{1}{4a_0}(d_{d2} - d_{d1})^2$$

然后按基准长度系列选取V带基准长度Ld。

3. 计算实际中心距

根据选定的 L_a ,计算带传动的实际中心距 a,即

$$a \approx a_0 + \frac{L_d - L_{d0}}{2}$$

考虑安装调整和补偿张紧力的需要,通常将带传动设计成中 心距可调的结构, 其调整范围为:

$$a_{\min} = a - 0.015L_{d}$$

$$a_{\max} = a + 0.03L_{d}$$

$$a_{\text{max}} = a + 0.03L_{\text{d}}$$

4. 验算小带轮包角

包角是影响带传动工作能力的主要参数之一。包角大,带的承载能力高;反之则易打滑。

一般要求 $\alpha_1 \ge 120^{\circ}$,个别情况可小到 90° 。

小带轮包角计算式为:

$$\alpha_1 = 180^{\circ} - \frac{d_{d2} - d_{d1}}{a} \times 57.3^{\circ}$$

小带轮包角 α_1 随中心距a的增大及传动比 $i=d_{d2}/d_{d1}$ 的减小而增大,故可通过适当增大中心距或减小传动比来增大小带轮包角。

三、确定V带的根数

1. 单根V带的基本额定功率

单根普通V带的基本额定功率,是指在包角 $\alpha_1 = \alpha_2 = 180^\circ$ (i=1)、 L_d 为某一特定值、载荷平稳条件下,单根V带所能传递的功率。

2. 计算V带根数

V带根数由设计功率 P_d 除以单根V带的基本额定功率 P_1 来确定。实际工作条件与特定条件不同时,应对 P_1 进行修正:

$$z \ge \frac{P_{d}}{(P_{1} + \Delta P_{1})K_{\alpha}K_{L}}$$

2. 计算V带根数

$$z \ge \frac{P_{\rm d}}{(P_1 + \Delta P_1)K_{\alpha}K_L}$$

 ΔP_1 为单根普通V带基本额定功率的增量(kW),是考虑 $i\neq 1$ 时带绕在大带轮上产生的弯曲应力比绕在小带轮上的小,使所能传递的功率有所增加。

 K_{α} 为包角修正系数,考虑 $\alpha \neq 180^{\circ}$ 时,对传动能力的影响。 K_{Γ} 为长度修正系数,考虑带不为特定长度时的修正系数。

带的根数越多,则带轮越宽,越容易导致各根带受载不均,通常控制带的根数 $z \le 10$ 。

四、计算作用在轴上的载荷

1. 计算初拉力

为了保证带传动的正常工作,应使带具有一定的初拉力。

初拉力不足,产生的摩擦力较小,传动易打滑,带的工作能力不能充分发挥;初拉力过大,将降低带的寿命,增大轴与轴承的受力。

较适宜的初拉力: $F_0 = 500 \frac{P_d}{zv} \left(\frac{2.5}{K} - 1 \right) + mv^2$

式中: P_d 计算功率(kW); v为带速(m/s); z为带的根数; K_{α} 为包角修正系数; m是单位带长的质量(kg/m);

2. 计算作用在轴上的载荷

为了设计轴与轴承,需计算带传动作用在轴上的载荷 F_Q ,通常取带两边初拉力的合力作近似计算,即:

$$F_{Q} = 2zF_{0}\sin\frac{\alpha_{1}}{2}$$

五、带轮的尺寸及结构设计

根据设计计算得出的带轮基准直径 的大小和带速的大小,选择带轮材料, 确定带轮结构形式,绘制出带轮零件图。

【例6-1】设计一电动机与减速器之间的普通V带传动。已知:电动机功率P=5kW,转速 n_1 =1460r/min,减速器输入轴转速 n_2 =320r/min,载荷变动最小,负载启动,每天工作16h,要求结构紧凑。

【解】1. 确定V带型号

由表10-4,确定工作情况系数 $K_A=1.2$

设计功率 $P_d = K_A P = 1.2 \times 5 = 6kW$

由图10-13,选择V带型号:A型

说明: 若由 P_d 和 n_l 确定的坐标点靠近选型图中两种型号的交界处,可先取两种型号计算,然后进行分析比较来决定取舍。

2. 确定V带轮直径

由图10-13及表10-3,取小带轮直径 d_{d1} =100mm

验算带速
$$v = \frac{\pi d_{d1} n_1}{60 \times 1000} = \frac{\pi \times 100 \times 1460}{60 \times 1000} = 7.64 m / s$$

在允许范围内

大帶轮直径
$$d_{d2} = d_{d1} \frac{n_1}{n_2} = 100 \times \frac{1460}{320} = 456mm$$

由表10-3,取*d*_{d2}=450mm

传动比
$$i = \frac{d_{d2}}{d_{d1}} = \frac{450}{100} = 4.5$$

3. 确定中心距及V带基准长度

$$由 0.7(dd1 + dd2) ≤ a0 ≤ 2(dd1 + dd2)$$

知
$$385 \le a_0 \le 1100$$

要求结构紧凑,初取 a_0 =600mm 初定V带基准长度

$$L_{d0} = 2a_0 + \frac{\pi}{2}(d_{d1} + d_{d2}) + \frac{1}{4a_0}(d_{d2} - d_{d1})^2$$

$$= 2 \times 600 + \frac{\pi}{2}(100 + 450) + \frac{1}{4 \times 600}(450 - 100)^2$$

$$= 2115mm$$

3. 确定中心距及V带基准长度

由表10-2, 取V带基准长度 L_d =2050mm

传动中心距

$$a \approx a_0 + \frac{L_d - L_0}{2} = 600 + \frac{2050 - 2115}{2} = 567.5 mm$$

小带轮包角

$$\alpha_1 = 180^{\circ} - \frac{d_{d2} - d_{d1}}{a} \times 57.3^{\circ} = 180 - \frac{450 - 100}{567.5} \times 57.3^{\circ} = 144^{\circ}$$

4. 确定V带根数

由表10-5, 单根V带的基本额定功率 P_1 =1.32kW

由表10-6, 额定功率增量 ΔP_1 =0.17kW

由表10-7,包角修正系数 K_{α} =0.90

由表10-2, 带长修正系数 K_L =1.04

V带根数

$$z = \frac{P_{d}}{(P_{1} + \Delta P_{1})K_{\alpha}K_{L}} = \frac{6}{(1.32 + 0.17) \times 0.90 \times 1.04} = 4.30$$

取z=5。

5. 计算作用在轴上的载荷

由表10-1, V带单位长度质量 m=0.1kg/m 初拉力

$$F_0 = 500 \frac{P_d}{zv} \left(\frac{2.5}{K_\alpha} - 1\right) + mv^2 = 500 \frac{6}{5 \times 7.64} \left(\frac{2.5}{0.9} - 1\right) + 0.1 \times 7.64^2$$
$$= 145N$$

作用在轴上的载荷

$$F_{\rm Q} = 2zF_0 \sin\frac{\alpha_1}{2} = 2 \times 5 \times 145 \sin\frac{144}{2} = 1379N$$

6. 带轮结构设计 略

一、带传动的张紧装置

带工作一段时间后会产生塑性伸长,导致初拉力降低,影响正常传动。为了使带产生并保持一定的初拉力,带传动应设置张紧装置。

常用的张紧装置按中心距是否可调,分为两类:

中心距可调的张紧装置

中心距不可调的张紧装置

1. 中心距可调的张紧装置

图a、b为定期调整张紧装置,当带需要张紧时,通过调整螺栓改变电动机的位置,加大传动中心距,使带获得所需的张紧力。图a适用于两轴中心连线水平或倾斜不大的传动,图b适用于两轴中心连线铅垂或近于铅垂方向的传动。

图c为自动张紧装置,电动机固定在摆架上,靠电动机与摆架的 自重实现张紧。自动张紧装置常用于中、小功率的传动。

2. 中心距不可调的张紧装置

中心距不可调时,用张紧轮实现张紧。

图a为定期调整装置,通过定期调整张 紧轮达到使带张紧的目的。张紧轮压在带 的松边内侧,避免了带的反向弯曲;而且 张紧轮应尽量靠近大带轮,防止因张紧而 导致小带轮包角减小过多。

图b为自动张紧装置,重锤使张紧轮自动压在松边的外侧。为了增大小带轮包角,张紧轮应靠近小带轮。这种张紧使带受到反向弯曲,会降低带的寿命。

二、V带传动的安装与维护——注意的问题

- 1)安装时两带轮轴线必须平行,两轮轮槽中线必须对正, 以减轻带的磨损。
- 2)为了保证安全,带传动一般应安装防护罩,并在使用过程中定期检查、调整带的张紧力。
- 3)带不宜与酸、碱、油一类的介质接触,工作温度一般不应超过60°C,以防带的迅速老化。
- 4)多根带并用时,为避免各根带受载不均,带的配组代号应相同。若其中一根带松弛或损坏,应全部同时更换,以免新旧带并用时,新带短、旧带长而加速新带的磨损。

一、概述

1. 链传动的组成

链传动由主动链轮、从动链轮和挠性环形链组成,通过链与链轮轮齿的啮合传递运动和动力,属于具有中间挠性件的啮合传动。

2. 链传动的特点及应用

不同于带的摩擦传动,也不同于齿轮的啮合传动。

优点:

- ① 没有滑动,能保证准确的平均传动比;
- ② 低速时可传递较大的载荷, 传动效率较高;
- ③ 不需要很大的张紧力,作用在轴及轴承上的载荷较小;
- ④ 在油污、温度较高等恶劣环境中仍能正常工作;
- ⑤ 在工作条件相同的情况下,结构比较紧凑。

与齿轮传动相比,链传动结构简单,对制造和安装的精度 要求较低,能适用于中心距较大的传动。

2. 链传动的特点及应用

缺点

①只能用于平行轴之间的传动;②瞬时链速不稳定,瞬时传动比不准确,因此传动平稳性较差,冲击和噪声较大;③不宜在载荷变化很大和急速反向的传动中应用;④制造费用比带传动高。

应用:链传动允许的传动比 i_{max} =7,传递的功率 $P \le 100 \text{kW}$,链速 $v \le 15 \text{m} / \text{s}$,传动效率 $\eta = 0.94 \sim 0.97$,广泛应用于农业、矿山、机床、起重运输等机械中。

WE SCIENCE THE STATE OF SCIENCE THE SCIENCE THE

第6节 链传动及其结构

二、链的结构

传动链按结构不同主要有

滚子链 齿形链

1. 滚子链

滚子链由内链板1、外链板2、销轴3、 套筒4和滚子5组成。内链板与套筒,外 链板与销轴为过盈配合固联在一起;: 销轴与套筒为间隙配合,构成铰链。套 筒与滚子,链节与链轮齿啮合时,滚子 沿链轮齿滚动,减轻链与轮齿的磨损。

链的内、外链板均为 " ∞ "字形,使链板各横截面接近等强度并减轻质量。

1. 滚子链

相邻两销轴中心之间的距离称为 链节距,用*p*表示,它是链的主要参 数。链节距越大,各部尺寸越大,所 能传递的功率也越大。

链的长度用链节数L_p表示。链节数最好为偶数,以便在接头处恰好为内链板与外链板相搭接。接头处可用钢丝锁销、开口锁销或弹簧卡片将销轴与联接链板固定(图a、b、c)。

当链节数为奇数时,需要用过渡链节闭合链条(图d)。过 渡链节在工作中不仅受拉力,而且受附加弯矩的作用,一般 应尽量避免使用。但是,这种链节的弹性较好,可以缓冲和 吸振, 故在重载、有冲击、经常正反转条件下工作时, 可采 用全部由过渡链节组成的弯板链。

1. 滚子链

需要传递较大功率时,可采用多排链,如双排链或三排链。多排链可视为几条单排链用长销轴联接构成。排数越多,承载能力越大,但制造和装配误差也越大,各排链受载不均现象越

严重,故排数一般不超过4。

滚子链已经标准化,分为A、B、C、H系列,常用A系列。

链的标记方法:

链号一排数一链节数 标准号

例: A系列、节距31.75mm、双排、60节的滚子链标记为:

20A—2—60 GB / T1243—2006

滚子链规格和主要参数										
	节距P	排距P1	滚子外径b1		销轴直径 d2	内链板高 度h2	极限拉伸载荷 (单排)Flim	毎米质量 (単排)		
链号			KN	kg/m						
05B	8	5.64	5	3	2. 31	7. 11	4. 4	0.18		
06B	9.525	10.24	6.35	5. 72	3. 28	8. 26	8. 9	0.4		
08B	12.7	13.92	8.51	7. 75	4. 45	11.81	17.8	0.7		
08A	12.7	14.38	7.95	7.85	3.96	12.07	13.8	0.6		
10A	15.875	18.11	10.16	9.4	5.08	15.09	21.8	1		
12A	19.05	22. 78	11.91	12.57	5. 94	18.08	31.1	1.5		
16A	25.4	29. 29	15.88	15.75	7.92	24. 13	55.6	2.6		
20A	31.75	35.76	19.05	18.9	9. 53	30.18	86.7	3.8		
24A	38.1	45.44	22.23	25.22	11.1	36.2	124.6	5.6		
28A	44. 45	48.87	25.4	25. 22	12.7	42. 24	169	7.5		

2. 齿形链

齿形链由成组的<mark>齿形链板</mark>左右交错排列,并用<mark>铰链</mark>联接而成,链板两侧为直边,夹角一般为60°。

与滚子链相比,齿形链传动平稳,承受冲击性能好,噪声小,但价格较贵,结构复杂,较重,多用于高速(链速可达40m

/ s) 和运动精度要求较高的场合。

三、链轮的齿形

三圆弧齿形(3R)

GB/T 1243-2006规定滚子链链轮的端面齿槽形状,是由 r_i 和 r_e 为半径的两段圆弧在滚子链定位圆弧角 α 处光滑连接(相切)而成,故称双圆弧齿形。

实际齿槽的形状必须在 规定的尺寸范围内,即在最 小齿槽形状和最大齿槽形状 之间。

双圆弧齿形用标准刀具加工,在链轮零件图上不必画出轮齿的端面齿形,只需注明"齿形按GB/T1243—2006规定制造"。

链轮的轴向齿形和尺寸也应符合GB/T1243-2006的规定,

且要在链轮的零件图上绘出轴面齿形并标注主要尺寸。

				滚子链锁	麻尺寸 (mm)	
-		4 4.	代号	计 算	公式	Ar 34
	名	称		p≤12.7	p>12.7	备 注
齿	宽	单 排 双排、三排 四排以上	b _{ft}	$0.93b_1 \\ 0.91b_1 \\ 0.88b_1$	$0.95b_1 \\ 0.93b_1 \\ 0.93b_1$	p>12.7时,经制造厂家同意,亦可使用 $p≤12.7$ 时的齿宽。 b_1 为内链节内宽,见
	倒力	角宽	<i>b</i> _a .	$b_{\rm a} = (0.1$	$\sim 0.15)p$	$\begin{array}{c c} & b_{f1} \\ b_{0} & b_{f2}(b_{fn}) \\ \hline \end{array}$
倒角半径			rx	r_{x}	≥p	
齿侧凸缘(或排间槽)圆角半径			ra	$r_a \approx 0.04p$		
50	链轮	齿总宽	b_{fn}	$b_{\rm fn} = (n-1)p_{\rm t} + b_{\rm fl}$		

绕在链轮上的链节销轴中心所 在的圆周称为链轮的分度圆,其 直径用_d表示,链轮的主要尺寸:

分度圆直径 正多边形求解

$$d = \frac{p}{\sin \frac{180^{\circ}}{z}}$$

齿顶圆直径

$$d_{a \max} = d + 1.25 p - d_1$$

$$d_{a\min} = d + p(1 - \frac{1.6}{z}) - d_1$$

 d_1 : 滚子直径

z: 链轮齿数

齿根圆直径

$$d_f = d - d_1$$

四、链轮的结构及材料

1. 链轮的结构

链轮可根据直径大小制成<mark>实心式、腹板式</mark>或组合式等结构 形式。组合式链轮的齿圈磨损后可以更换。

第6节 链传动及其结构

2. 链轮的材料

链轮轮齿应具有足够的强度和耐磨性。其材料通常多为优质碳素钢或合金钢并进行热处理,对于尺寸较大的链轮也可用碳素钢焊接而成。

此外,由于传动中,小链轮的啮合次数比大链轮多,故小链轮的材料应优于大链轮。

第6节 链传动及其结构

2. 链轮的材料

链轮常用材料及应用

材 料	热处理	齿面硬度	应 用		
15、20	滲碳+淬火+回火	50~60HRC	z≤25, 有冲击载荷的链轮		
35	正火	160~200HBS	z>25 的链轮		
45、50、ZG310—570	淬火+回火	40~50HRC	无剧烈振动及冲击载荷的链轮		
15Cr、20Cr		50~60HRC	z<25 的大功率链轮		
40Cr、35SiMn、35CrMo	淬火 + 回火	40~50HRC	重要的、使用A系列滚子链的链轮		
Q235, Q255	焊接后退火	≈140HBS	中低速、中等功率、直径较大的链轮		

一、链速和传动比的不均匀性

链传动中,链与链轮的啮合可以看做链绕在正多边形轮上并随之转动,正多边形的边长等于链的节距p,边数等于链轮齿数z。链轮转动一周,链转过的长度为zp。

链的平均速度:

$$v = \frac{n_1 z_1 p}{60 \times 1000} = \frac{n_2 z_2 p}{60 \times 1000}$$

可得链传动的平均传动比:

$$i = \frac{n_1}{n_2} = \frac{z_2}{z_1}$$

链的平均速度和平均传动比都等于常数。 但事实上,即便主动轮的角速度 ω_1 为常数, 链速 ν 和从动轮的角速度 ω_2 也都是变化的。

一、链速和传动比的不均匀性

图a为主动轮1和从动轮2在 传动中的一个任意位置。为便 于分析,假设链的紧边在传动 中总是处于水平位置。

主动轮1:链的绝对速度等于处在最高位置的销轴A的速度,而销轴A和链轮上的A点具有相同的圆周速度,都等于 $1/2d_1\omega_1$ 。

因此, 链在水平方向上的速度为

 $v = \frac{1}{2} d_1 \omega_1 \cos \beta$

一、链速和传动比的不均匀性

从销轴A啮入链轮到下一销轴B啮入链轮的过程中,A始终处于最高位置,其间

$$-\frac{\varphi_1}{2} \le \beta \le \frac{\varphi_1}{2} (\varphi_1 = \frac{360^\circ}{z})$$

当
$$\beta = 0$$
°时

$$v = v_{\text{max}} = \frac{1}{2} d_1 \omega_1$$

$$v = v_{\min} = \frac{1}{2} d_1 \omega_1 \cos \frac{\varphi_1}{2}$$

上链速由小到大,又由大到小变化,每转过一个链节,就重复一次上述变化,从而导致了链速的不均匀性。 链轮齿数越少,β角变化范围越大,链速的不均匀性就越严重。

一、链速和传动比的不均匀性

在相同周期内,链沿铅垂方

向的分速度为: $v' = \frac{1}{2} d_1 \omega_1 \sin \beta$

链沿铅垂方向的分速度也在作周期性变化,变化趋势为由大到小,再由小到大,从而使链在运动中不断上下抖动。

同理,从动轮2,链的水平速度与从动轮角速度之间的关系为:

$$v = \frac{1}{2} d_2 \omega_2 \cos \gamma \qquad \qquad -\frac{180^\circ}{z} \le \gamma \le \frac{180^\circ}{z}$$

由于链速 ν 和 ν 角的周期性变化,导致了从动轮角速度 ω_2 也作周期性变化。

链速和传动比的不均匀性

链传动的"多边形效应"

由于
$$v = \frac{1}{2} d_1 \omega_1 \cos \beta$$

$$v = \frac{1}{2} d_2 \omega_2 \cos \gamma$$

 $d_1\omega_1\cos\beta = d_2\omega_2\cos\gamma$

链传动瞬时传动比:

$$i' = \frac{\omega_1}{\omega_2} = \frac{d_2 \cos \gamma}{d_1 \cos \beta}$$

链轮分度 圆直径:

$$d = \frac{p}{\sin(180^{\circ}/z)}$$

链传动的瞬时传动比在一般情况下不是恒定值。只有当 $z_1=z_2$, 且链的紧边长度恰为链节距p的整数倍(可保证 γ 与 β 在每个瞬时 都相等)时,才能得到恒定的瞬时传动比。

一、链速和传动比的不均匀性

- 1. 链速和从动轮角速度做周期性变化, 使链传动产生动载荷
- 2. 链轮转速越高,链节距越大,链轮齿数越少,工作时产生的动载荷越大。

链节与链轮轮齿进入啮合时,以一定的相对速度接近,使传动产生冲击载荷。链速在铅垂方向上的变化以及链在起动、制动、反向等情况下出现的惯性冲击,也使传动产生动载荷。

为了减小动载荷,提高传动的平稳性,在链传动设计中应 选用较小的链节距,适当增加链轮的齿数,并限制链轮的最 高转速。

二、链传动的受力分析

链传动在工作中,紧边与松边受力不同。不考虑动载荷,作用在链上的力有:

1、工作拉力
$$F_1 = 1000 \frac{P}{v}$$

只作用在链的紧边上

2、离心拉力
$$F_2 = qv^2$$

离心拉力由链随链轮转动的离心 力产生的,作用在链的全长上。

3、链的垂度拉力
$$F_3 = K_y qga$$

P传递的功率(kW); v链速(m/s); q单排链单位长度上的质量 (kg/m); a中心距(m); g重力加速度 (m/s2); K_v 垂度系数。

二、链传动的受力分析

链的紧边拉力由三部分组成,松边拉力由两部分组成。

紧边拉力总和
$$F = F_1 + F_2 + F_3$$

松边拉力总和
$$F' = F_2 + F_3$$

在一周运转过程中,链承受变载荷的作用。

因为离心力对轴不产生压力,所以作用在轴上的载荷 F_Q 等于紧、松两边拉力之和减去两边的离心拉力,即:

轴上的载荷
$$F_Q = F + F' - 2F_2 = F_1 + 2F_3$$

实际上,垂度拉力比较小,通常近似取 $F_Q = 1.2F_1$

一、链传动的失效形式

链轮的主要失效形式是轮齿磨损。链条强度不如链轮高,所以一般链传动的失效主要是链条的失效,滚子链的失效形式。

- 1、疲劳破坏
- 2、铰链磨损
- 3、冲击破坏 经常起动、反转、制动的链传动,销轴、套筒、滚子等元件常会发生冲击疲劳破坏。
- 4、胶合 润滑不良或转速过高,都会使销轴与套筒的接触表面产生胶合破坏。
- 5、过载拉断 多发生在低速、重载条件下。通常当链速 v < 0.6 m/s时,需要校核链的静强度。

一、链传动的失效形式

1、疲劳破坏

在链传动中,由于松边和紧边的拉力不同,使得链条所受的拉力是变应力,当应力达到一定数值,且经过一定的循环次数后,链板、滚子、套筒等组件会发生疲劳破坏。

疲劳破坏是闭式链传动的主要失效形式。

在正常润滑条件下,链的疲劳破坏是决定链传动承载能力的主要因素。

一、链传动的失效形式

2、铰链磨损

链在进入啮合和退出啮合时, 销轴与套筒接触表面产生相对滑动, 使铰链磨损,链节距加大,从而导 致链节向轮齿齿顶方向移动,磨损 严重时常会出现跳齿和脱链现象。

铰链磨损是开式链传动的主要失效形式。

二、功率曲线与额定功率

1、极限功率曲线

链传动的失效形式限定了传动的承载能力。如图为链在一定使用寿命和具有良好润滑的条件下,各种失效形式限定的<mark>极</mark>

限功率曲线。

- 1—铰链磨损限定的极限功率曲线
- 2—链板疲劳强度限定的极限功率曲线
- 3—冲击疲劳强度限定的极限功率曲线
- 4—胶合破坏限定的极限功率曲线
- 5—实际使用的额定功率曲线
- 6—润滑不良、工作条件恶劣等情况下 的功率曲线

2、额定功率曲线

右图为A系列单排滚子 链的额定功率曲线,是在 特定实验条件下得到的。

特定实验条件:单排滚子链,两轴水平布置,大、小链轮共面,z₁=19、链长Lp=100节,按推荐使用的润滑方式润滑,链的工作寿命为15000h,载荷平稳,链因磨损引起的相对伸长量不超过3%。

2、额定功率曲线

若不能按推荐的方式 润滑,图中 P_0 将降低:

当 $v \le 1.5 \text{m/s}$ 时,降至 $(0.3 \sim 0.6) P_0$;

当1.5m/s<v≤7m/s时, 降至(0.15~0.3)P₀;

当v>7m/s而润滑又不良时,传动不可靠,应避免使用。

推荐使用的润滑方式

Ⅰ—人工定期润滑 Ⅱ—滴油润滑 Ⅲ—油浴或飞溅润滑 Ⅳ—压力喷油润滑

设计中,当 P_0 与 n_1 已知时,可按上图选择所需链的型号。

三、主要参数的选择

1. 传动比

一般取链传动的传动比 $i \leq 7$,最好为3左右。

传动比过大,将会使小链轮包角过小,啮合齿数过少,从而加速轮齿的磨损。但对于载荷平稳的低速传动,传动比可以达到10。

$$i = \frac{n_1}{n_2} = \frac{z_2}{z_1}$$

2. 链轮齿数

链轮齿数对传动的平稳性和使用寿命有直接的影响。齿数过少时,将增大传动的运动不均匀性和动载荷;同时增大链节在进入和退出链轮时的相对转角,增大链的工作拉力,加速链节的磨损。因此,链轮齿数不宜过少。通常根据链速确定小链轮齿数。当链速很低时,允许 z_{min} =9。

小链轮齿数					
链速 v/(m·s-1)	<0.6	0.6~3	3~8	>8	
齿数 z ₁	≥13	≥15~17	≥19~21	≥23	

CHINAL TO SCIENCE THE SOURCE THE STATE OF SCIENCE THE SCIENCE THE

第8节 滚子链传动的设计计算

2. 链轮齿数

大链轮齿数 $z_2=iz_1$,通常取 $z_2\leq 120$ 。这是因为链轮齿数过多时,不但会增大传动尺寸,而且链节磨损后容易产生脱链现象。

为使各链节磨损均匀,链长 L_p 取偶数时,链轮齿数最好取奇数。

链节磨损引起的链节距增量 Δp 与链轮分度圆直径的增量 Δd 的关系为:

$$\Delta d = \frac{\Delta p}{\sin \frac{180^{\circ}}{z}}$$

即当 Δp 一定时,z越多, Δd 越大, 链节越靠近齿顶,越容易导致脱链现象。

4. 链节距

链节距p越大,其承载能力越高,但运动不均匀性、动载荷和噪声也越大。因此,在满足承载能力的前提下,应选取较小的链节距。高速、重载时宜选用小节距多排链。当载荷和传动比较大,中心距较小时,也宜选用小节距多排链。当传动比较小,速度不太高,而中心距较大时,宜选用大节距单排链。

5. 链长和中心距

通常初定中心距,然后确定链长 L_{p} ,一般初选中心距:

$$a_0 = (30 \sim 50)p$$

初定中心距后,按下式计算链长

$$L_p = \frac{1}{2}(z_1 + z_2) + 2\frac{a_0}{p} + \frac{p}{a_0}(\frac{z_2 - z_1}{2\pi})^2$$

计算的链节数应圆整,然后根据圆整的链长计算实际中心距,

$$a = \frac{p}{4} \left[(L_p - \frac{z_1 + z_2}{2}) + \sqrt{(L_p - \frac{z_1 + z_2}{2})^2 - 8(\frac{z_2 - z_1}{2\pi})^2} \right]$$

说明:中心距越小,结构尺寸越小,但同时小轮包角越小,参加啮合的齿数越少,而且当链速一定时,单位时间内链节与链轮的啮合次数增加,从而加速链的磨损,为避免参加啮合的链轮齿数过少,通常小链轮包角不宜小于120°,故应限制最小中心距:

当*i*<4时
$$a_{\min} = \frac{1}{2}(d_{a1} + d_{a2}) + (30 \sim 50)$$

当
$$i \ge 4$$
时 $a_{\min} = \frac{1}{2}(d_{a1} + d_{a2})\frac{9+i}{10}$

中心距过大时,在运转中链容易颤抖,故一般限制:

$$a_{\text{max}} = 80p$$

四、链传动的设计计算步骤

链传动的设计: 在给定原始数据(传递功率, 大、小链轮转速)、 工作状况、外部环境等条件下,确定链轮齿数、链节距、链长、 排数、传动中心距、链轮材料、链轮结构尺寸以及润滑方式等。

当链速 $v \ge 0.6 \text{m} / \text{s}$ 时,设计的一般步骤为:

1、确定链轮齿数

初设链速,根据下表选取小链轮齿数z1。

小链轮齿数					
鮭速 v /(m·s⁻¹)	<0.6	0.6~3	3~8	>8	
齿数 z ₁	≥13	≥15~17	≥19~21	≥23	

用
$$z_2 = iz_1 = \frac{n_1}{n_2} z_1$$

用 $z_2 = iz_1 = \frac{n_1}{2} z_1$ 计算大链轮齿数,并作适当圆整。

2、初定中心距

取
$$a_0 = (30 \sim 50) p$$

3、确定链长

链长 L_p 由下式计算,并作适当圆整

$$L_p = \frac{1}{2}(z_1 + z_2) + 2\frac{a_0}{p} + \frac{p}{a_0}(\frac{z_2 - z_1}{2\pi})^2$$

4、确定额定功率

实际工作中链传动的额定功率应满足

$$K_z K_L K_p P_0 \ge K_A P \qquad \qquad \square \qquad P_0 \ge \frac{K_A P}{K_z K_L K_p}$$

式中,P是传动的名义功率(kW); K_A 是工况系数; K_z 是小链轮齿数系数; K_L 是链长系数; K_p 是多排链系数。

5、确定链节距 链节距根据传动所需额定功率 P_0 和小链轮的转速 n_1 由额定功率曲线图选取。

6、计算实际中心距

$$a = \frac{p}{4} \left[(L_p - \frac{z_1 + z_2}{2}) + \sqrt{(L_p - \frac{z_1 + z_2}{2})^2 - 8(\frac{z_2 - z_1}{2\pi})^2} \right]$$

一般应将链传动设计成中心距可调的结构,以便当链的松边垂度过大时进行调整;中心距不可调整时,应设张紧装置。

7、验算链速

$$v = \frac{n_1 z_1 p}{60 \times 1000} = \frac{n_2 z_2 p}{60 \times 1000}$$

检查链速是否符合选取 z_1 时初设的链速。若不符,应重新选取小链轮齿数再进行计算。

8、计算作用在轴上的载荷

$$F_Q = 1.2F_1$$

9、确定润滑方式和张紧装置

润滑方式根据链速v和链节距p选定。 张紧装置见第九节。

10、选择链轮材料并确定其结构尺寸。

【例6-2】设计一锅炉清渣链传动装置。选用Y系列电动机,已知传动功率P=5.5kW,转速 $n_1=750$ r/min,工作机转速 $n_2=260$ r/min,传动装置倾角 $\alpha=40$ °,中等冲击,要求中心距可调。

【解】1. 选定链轮齿数

设链速 $v = 3 \sim 8 \text{m/s}$,由表10-13取 $z_1 = 21$

传动比
$$i = \frac{n_1}{n_2} = \frac{750}{260} = 2.88$$

大链轮齿数
$$z_2 = iz_1 = 2.88 \times 21 = 60.48$$

取
$$z_2$$
=61

2. 确定链节距和中心距

初定中心距 $a_0 = 40p$

计算链长

$$L_p = \frac{1}{2}(z_1 + z_2) + 2\frac{a_0}{p} + \frac{p}{a_0}(\frac{z_2 - z_1}{2\pi})^2$$

$$= \frac{1}{2}(21 + 63) + 2 \times \frac{40p}{p} + \frac{p}{40p}(\frac{61 - 21}{2\pi})^2 = 122.01$$

取L_P=122节

工况系数,由表10-14, $K_A=1.3$

由表10-15,小链轮齿数系数(设链板疲劳)

$$K_Z = \left(\frac{z_1}{19}\right)^{1.08} = \left(\frac{21}{19}\right)^{1.08} = 1.11$$

2. 确定链节距和中心距

由表10-15, 链长系数

0-15, 链长系数
(设链板疲劳)
$$K_L = \left(\frac{L_P}{100}\right)^{0.26} = \left(\frac{122}{100}\right)^{0.26} = 1.05$$

由表10-16(单排链),取多排链系数 $K_P=1$

额定功率
$$P_0 \ge \frac{K_A P}{K_z K_L K_p} = \frac{1.3 \times 5.5}{1.11 \times 1.05 \times 1} = 6.13 kW$$

根据 P_0 和 n_1 ,由图10-30,选10A滚子链(与假设链板疲劳相 符)**,**链节距 *p*=15.875mm。

2. 确定链节距和中心距

实际中心距

$$a = \frac{p}{4} \left[(L_p - \frac{z_1 + z_2}{2}) + \sqrt{(L_p - \frac{z_1 + z_2}{2})^2 - 8(\frac{z_2 - z_1}{2\pi})^2} \right]$$

$$= \frac{15.875}{4} \left[(122 - \frac{21 + 61}{2}) + \sqrt{(122 - \frac{21 + 61}{2})^2 - 8(\frac{61 - 21}{2\pi})^2} \right] = 635mm$$

3. 验算链速

$$v = \frac{n_1 z_1 p}{60 \times 1000} = \frac{750 \times 21 \times 15.875}{60 \times 1000} = 4.17 \, m/s$$

与假设相符

4. 计算作用在轴上的载荷

工作拉力

$$F_1 = \frac{1000P}{v} = \frac{1000 \times 5.5}{4.17} = 1319N$$

轴上载荷

$$F_Q = 1.2F_1 = 1.2 \times 1319 = 1583N$$

5. 确定润滑方式

由图10-31,选用油浴或飞溅润滑

6. 链轮结构设计 (略)

五、滚子链传动静强度计算

当链速v<0.6m/s时,链的主要失效形式是静力拉断,故应进行静强度校核。链传动的静强度安全系数应满足的条件为:

$$S = \frac{nF_B}{K_A F} \ge 7$$

式中,S是链传动的静强度安全系数;n是链排数; F_B 是单排链极限拉伸载荷;F是链的紧边总拉力。

一、链传动的润滑

良好的润滑可以缓和冲击,减小磨损,延长使用寿命。润滑方式和适用范围如图所示。

润滑油可选用L-AN32、L-AN46或L-AN68全损耗系统用油。

温度高或载荷大时, 宜选用粘度高的润滑 油;反之,则选用粘 度较低的润滑油。

Ⅰ—人工定期润滑 Ⅱ—滴油润滑 Ⅲ—油浴或飞溅润滑 Ⅳ—压力喷油润滑

二链传动的布

置

传动条件	正确布置	不正确布置		
$i = 2 \sim 3$ $a = (30 \sim 50) p$				
i>2				
a<30p	1	X		

两轮轴线在同一水平面上,紧 边在上面较好;必要时,也允 许紧变在下面。 两轮轴线不在同一水平面上, 松边应在下面,否则松边下垂 量增大,链条易与小链轮卡死

置

第9节 链传动的正确使用和维护

两轮轴线在同一水平面上,松边应在下面,否则下垂量增大,松边可能与紧边相碰,需经常调整中心距

两轮轴线在同一铅垂面上,下垂量增大,会减少下链轮的有效啮合齿数,降低传动的工作能力,应采用:中心距可调; 设张紧装置;上下两轮轴线错开,使其不在同一铅垂面内。

三、链传动的张紧

张紧目的:减小链松边的垂度,防止啮合不良和链的抖动。

常用的张紧方法:通过增大两链轮的中心距实现张紧。中心距不可调时,可利用<mark>张紧装置</mark>实现张紧。当两链轮中心连线的倾斜角 $\alpha > 60^{\circ}$ 时,必须增设张紧装置。

三、链传动的张紧

1、<mark>张紧轮</mark>(图a、b),通过定期或自动调整张紧轮的位置使链张紧。一般宜将张紧轮装在链的松边且靠近主动轮的位置, 张紧轮的直径与小链轮的直径接近为好。

三、链传动的张紧

2、托板(图c),通过调整托板的位置使链张紧。托板上最好衬以橡胶、塑料或胶木,以减小链的磨损。

四、链传动的维护

在链传动的使用过程中,应注意保持链与链轮的良好工作状态,定期清洗链与链轮,更换损坏的链节等。

为了保证工作安全,可为链传动设置护罩,护罩同时还可以起到防尘和减小噪声的作用。

THIN THE PROPERTY OF SCIENCE HAND TO SCIENCE H

本章小结

- 带传动的组成、分类、特点
- 带传动的工作原理、受力分析、设计准则
- 带传动的打滑与弹性滑动
- > 带传动的张紧
- 链传动的组成、特点
- > 链传动的运动特性、受力分析
- 链传动的失效、功率曲线
- > 链传动的布置

本章作业

- 1. 什么是带的弹性滑动和打滑? 引起带弹性滑动和打滑的原因是什么? 带的弹性滑动和打滑对带传动性能有什么影响? 带的弹性滑动和打滑的本质有何不同?
- 2. 带传动工作时,带内应力由哪些应力组成,如何变化? 最大应力发生在什么位置?
- 3. 为什么链传动平均传动比是恒定的,而瞬时传动比是变化的,这种变化有无规律?
- 4. 试从工作原理、结构组成、特点和应用方面,对带传动和链传动作比较。