Efficiency of Heuristics in HTN Planning

Automated Planning Class

Daniela Kuinchtner

Introduction

▶ Planning (automation of world-relevant problems)

Approaches to solve planning tasks:

- Classical planning;
- Hierarchical planning → HTNs.

Heuristics:

- basis for the existing solvers;
- techniques in classical planning are more sophisticated.

We measure the efficiency of classical heuristics applied to hierarchical planning using PANDA.

Overview

- Heuristic search;
- Delete-relaxation, critical path, landmark, operator-counting;
- HTN (Hierarchical Task Network);
 - primitive and abstract tasks

Strategies to solve HTN problems:

- decomposition-based search (plan-space);
- progression-search (state-space);

Solvers:

- SHOP2 (progression-search without heu);
- PANDA (progression-search with heu).

▶ PANDA

- Planner (progression search as a search-based algorithm);
- Heuristics:
 - delete- and ordering-relaxation
 - landmark counting
 - additive
 - maximization
 - fast-forward

In order to measure the performance of HTN solvers that use progression search and rely on heuristics, we consider using the heuristic function information of the progression-search-based PANDA solver.

Approach

Measure the efficiency of heuristics in HTNs on PANDA planner.

- Use PANDA solver;
- HDDL language;
- Add, FF, LM heuristics;
- DFS (Depth-First Search).
 - o SHOP2.

Implementation

Weighted A-Star

A-Star

X

GBFS

Greedy Best-First Search

DFS*

Depth-First Search with move-ordering

hadd

Additive heuristic

 h^{FF}

Fast-forward heuristic

h^{LM-cut}

Landmark heuristic

Experiments

Domains	instances		WA*			A*	ner.		GBFS			DFS*		DFS
		$h^{LM^{cut}}$	h^{Add}	h^{FF}										
entertainment	12	11	12	12	9	12	11	12	12	12	10	10	11	5
рср	17	14	14	14	14	14	14	14	14	14	2	2	1	0
rover	20	6	7	7	4	6	4	6	6	5	5	5	4	4
satellite	25	23	23	25	21	21	25	25	24	24	24	24	23	17
smartphone	7	6	5	5	5	5	5	5	5	5	5	5	5	4
transport	30	12	5	12	4	9	11	8	4	7	0	2	3	0
umtranslog	21	21	21	21	21	21	21	21	21	21	21	21	21	21
woodworking	11	10	10	10	8	10	10	10	10	9	9	10	8	6
Total	143	93	97	106	95	98	101	101	98	97	76	79	76	57

Table 1: Solved instances from our results with timeout of 20 seconds.

Domains	instances	WA*			A*			GBFS			DFS
		$h^{LM^{cut}}$	h^{Add}	h^{FF}	$h^{LM^{cut}}$	h^{Add}	h^{FF}	$h^{LM^{cut}}$	h^{Add}	h^{FF}	
entertainment	12	11	11	11	8	11	8	12	12	12	6
рср	17	13	14	13	13	13	13	2	2	2	1
rover	20	4	7	5	0	4	2	4	4	4	3
satellite	25	23	24	25	23	24	24	23	24	24	24
smartphone	7	5	5	5	5	5	4	5	4	5	4
transport	30	13	4	11	3	7	1	1	1	2	0
umtranslog	21	22	22	22	22	22	22	22	22	22	22
woodworking	11	10	10	10	8	10	10	9	9	9	8
Total	144	101	97	102	82	96	84	78	78	80	68

Table 2: Solved instances with timeout of 10 minutes from Holler's et al. paper (Holler et al. 2019).

Figure 1 e 2: Expanded nodes.

Figure 3 e 4: Expanded nodes.

Figure 5: Generated nodes per second between WA* h^FF and DFS* h^Add.

Related Work

▶ Related work

Holler, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2019.

On Guiding Search in HTN Planning with Classical Planning Heuristics. In Proceedings of the 28th International Joint Conference on Artificial Intelligence.

Nau, D.; Munoz Avila, H.; Cao, Y.; Lotem, A.; and Mitchell, S. 2001

Total-Order Planning with Partially Ordered Subtasks. In Proceedings of the 17th International Joint Conference on Artificial Intelligence.

Conclusion

Efficiency of heuristics in HTN planning.

- How PANDA planner works;
- How heuristics in PANDA works;
- How SHOP2 works;
- Implement a novel DFS+heu;
- Results comparison.

Future work:

- Study how good the heu function is;
- How it influences each approach's fringe.

Thank you!

Heuristics in HTN planning

Daniela Kuinchtner