Základy mechaniky

Kinematika

Kinematika - popisuje pohyb telesa pomocou rôznych charakteristík (poloha, posunutie, rýchlosť, zrýchlenie).

Hmotný bod – najjednoduchší objekt, ktorý zastupuje pohybujúce sa teleso

Poloha – určuje sa vždy vzhľadom k nejakému vzťažnému bodu

(najčastejśie k počiatku SS)

Kartézska súradnícová sústava je tvorená pravotočivou sústavou súradníc, určenou navzájom kolmými jednotkovými vektormi.

Jednorozmerný prípad

Posunutie
$$\Delta x = x_2 - x_1$$

Vektorová veličina, závisí len od počiatočnej a konečnej polohy

Zmenšovaním časového intervalu ∆t nad všetky medze, sečnica sa začne približovať k dotyčnici

Jednorozmerný prípad

Priemerná rýchlosť

$$\overline{v}_{x} = \frac{\Delta x}{\Delta t}$$

Okamžitá rýchlosť

$$v_{x} = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

Zmenšovaním intervalu ∆t nad všetky medze, sečnica sa začne približovať k dotyčnici

Využitie geometrického významu

Smernica dotyčnice v gafe x(t) v každom čase určuje veľkosť rýchlosti

Fyzikálny význam derivácie

Okamžitá rýchlosť je limita, ku ktorej sa blíži priemerná rýchlosť pri nekonečnom zmenšovaní časového intervalu ∆t→0.

Zmena rýchlosti častice sa charakterizuje zrýchlením

Veľkosť rýchlosti sa zväčšuje

Veľkosť rýchlosti sa zmenšuje

Jednorozmerný prípad

Priemerná zrýchlenie

$$\overline{a}_{x} = \frac{\Delta v_{x}}{\Delta t}$$

Okamžité zrýchlenie

$$a_{x} = \lim_{\Delta t \to 0} \frac{\Delta v_{x}}{\Delta t} = \frac{dv_{x}}{dt}$$

Zrýchlenie

Okamžité zrýchlenie je limita, ku ktorej sa blíži priemerné zrýchlenie pri nekonečnom zmenšovaní časového intervalu ∆t→0.

Smernica dotyčnice v gafe v(t) v každom čase určuje veľkosť zrýchlenia a

Rovnomerne zrýchlený pohyb v jednom rozmere

Rovnica	Chýbajúca veličina
$v_x = v_{0x} + a_x t$	$x-x_0$
$x - x_0 = v_{0x}t + \frac{1}{2}a_xt^2$	V_{x}
$v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$	t
$x - x_0 = \frac{1}{2} (v_{0x} + v_x) t$	a_{x}
$x - x_0 = v_x t - \frac{1}{2} a_x t^2$	v_{0x}

Rovnomerne zrýchlený pohyb

$$a_x = konst$$

R	O١	/n	ic	а
- 17	U	7 I I	ı	а

Chýbajúca veličina

	Vollollia	
$v_x = v_{0x} + a_x t$	$x-x_0$	
$x - x_0 = v_{0x}t + \frac{1}{2}a_xt^2$	v_x	
$v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$	t	
$x - x_0 = \frac{1}{2} (v_{0x} + v_x) t$	a_{x}	
$x - x_0 = v_x t - \frac{1}{2} a_x t^2$	v_{0x}	

Počiatočné podmienky

(hodnoty v čase t = 0):

v_{0x} – počiatočná rýchlosť

x₀ – počiatočná poloha

Hodnoty veličín v čase t

(hodnoty v čase t):

v_x –rýchlosť v čase t

x – poloha v čase t

POZOR na znamienka !!!!

Rovnomerne zrýchlený pohyb

$$a_x = konst \neq 0$$

$$\begin{vmatrix} v_x = v_{0x} + a_x t \\ x = v_{0x} t + \frac{1}{2} a_x t^2 + x_0 \end{vmatrix}$$

Rovnomerný pohyb

$$v_x = konst$$
 $(a_x = 0)$

$$\begin{vmatrix} v_x = v_{0x} \\ x = v_{0x}t + x_0 \end{vmatrix}$$

Zvislý vrh

Voľný pád v gravitačnom poli zeme

$$g = 9.8 ms^{-2}$$

Zanedbávame odpor prostredia

Zvislý vrh

$$v_{x} = v_{0x} + a_{x}t \qquad x - x_{0}$$

$$x - x_{0} = v_{0x}t + \frac{1}{2}a_{x}t^{2} \qquad v_{x}$$

$$v_{x}^{2} = v_{0x}^{2} + 2a_{x}(x - x_{0}) \qquad t$$

$$x - x_{0} = \frac{1}{2}(v_{0x} + v_{x})t \qquad a_{x}$$

$$x - x_{0} = v_{x}t - \frac{1}{2}a_{x}t^{2} \qquad v_{0x}$$

Chýbajúca veličina

Chýbajúca veličina

 $y - y_0 = v_{0y}t - \frac{1}{2}gt^2 \qquad v_y$ $v_y^2 = v_{0y}^2 - 2g(y - y_0) \qquad t$ $y - y_0 = \frac{1}{2}(v_{0y} + v_y)t \qquad t$ $y - y_0 = v_y t + \frac{1}{2} g t^2$

 Gulička bola vyhodená priamo nahor počiatočnou rýchlosťou 30 m / s a po dosiahnutí maximálnej výšky padá späť na zem, pod útes. Druhykrát bola guľička vyhodená nadol tou istou rýchlosťou. Porovnajte rýchlosti dopadu na Zem v oboch prípadoch.

$$v_{y} = v_{0y} - gt y - y_{0}$$

$$y - y_{0} = v_{0y}t - \frac{1}{2}gt^{2} v_{y}$$

$$v_{y}^{2} = v_{0y}^{2} - 2g(y - y_{0}) t$$

$$y - y_{0} = \frac{1}{2}(v_{0y} + v_{y})t g$$

$$y - y_{0} = v_{y}t + \frac{1}{2}gt^{2} v_{0y}$$

Chýbajúca veličina t

Minca bola vrhnutá smerom nahor a po dosiahnutí maximálnej výšky začala padať nazad. Porovnajte vektory rýchlosti a zrýchlenia v ľubovoľnej výške h

nad zemou.

Veľkosť rýchlosti projektilu v rovnakých výškach je rovnaká, hoci vektory rýchlosti sú rôzne

$$y_0 = 0$$
$$y = h$$

$$v_y^2 = v_{0y}^2 - 2g(y - y_0)$$

$$v_y^2 = v_{0y}^2 - 2g(h)$$
 DVA KORENE

Pohyb vo viacerých rozmeroch

Polohový vektor

Polohový vektor

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$(x; y; z)$$

Súradnice vektora

Priemety (zložky) vektora

$$x\vec{i}$$
, $y\vec{j}$, $z\vec{k}$

Vo všeobecnom prípade sa každý vektor dá rozložiť na tri nekomplanárne zložky (ktoré neležia v jednej rovine).

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k} = (x, y, z)$$

$$\vec{r}_1 = x_1\vec{i} + y_1\vec{j} + z_1\vec{k} = (x_1, y_1, z_1)$$

$$\vec{r}_2 = x_2\vec{i} + y_2\vec{j} + z_2\vec{k} = (x_2, y_2, z_2)$$

$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1 =$$

$$= [x_2 - x_1]\vec{i} + [y_2 - y_1]\vec{j} + [y_2 - y_1]\vec{k}$$

$$= \Delta x\vec{i} + \Delta y\vec{j} + \Delta z\vec{k} = (\Delta x, \Delta y, \Delta z)$$

Vektor posunutia

Postupné zmenšovanie časového intervalu \(\Delta t \)

Okamžitá rýchlosť má smer rovnobežný s trajektóriou, t.j. je dotyčnicou k trajektórie.

Zrýchlenie telesa nie je vo všeobecnosti dotyčnicou k trajektórii. Zrýchlenie je paralelné k dv.

Všeobecná schéma výpočtu kinematických veličín (jednorozmerný prípad)

Všeobecná schéma výpočtu kinematických veličín (všeobecný prípad)

• Teleso sa pohybuje v rovine xy podľa rovnice: $x = \alpha t$

$$y = \alpha t - \alpha \beta t^2$$
 $\alpha > 0$, $\beta > 0$

- Určte trajektóriu pohybu, t.j. y(x).
- Určte veľkosť rýchlosti a zrýchlenia v ľubovoľných časoch.
- Určte čas t₀, v ktorom uhol medzi rýchlosťou a zrýchlením bude kolmý.

Šikmý vrh

Teleso v gravitačnom poli vždy padá s rovnakým zrýchlením, bez ohľadu na počiatočnú rýchlosť

Šikmý vrh

Teleso v gravitačnom poli vždy padá s rovnakým zrýchlením, bez ohľadu na počiatočnú rýchlosť

Počiatočné podmienky:

Zrýchlenie: $a_x = 0$

 $a_{v} = -g$

Rýchlosť: $v_{0x} = v_0 \cos \varphi$

 $v_{0y} = v_0 \sin \varphi$

Poloha:

 $x_0 = 0$

 $y_0 = 0$

V smere osi x – rovnomerný pohyb

$$v_x = v_0 \cos \varphi$$

$$x = v_0 \cos \varphi t$$

V smere osi y – rovnomerne zrýchlený pohyb

$$v_{y} = v_{0} \sin \varphi - gt$$

$$y = v_{0} \sin \varphi t - \frac{1}{2} gt^{2}$$

Rovnomerne zrýchlený pohyb

$$a_x = konst \neq 0$$

$$\begin{vmatrix} v_x = v_{0x} + a_x t \\ x = v_{0x} t + \frac{1}{2} a_x t^2 + x_0 \end{vmatrix}$$

Rovnomerný pohyb

$$v_x = konst$$
 $(a_x = 0)$

$$\begin{vmatrix} v_x = v_{0x} \\ x = v_{0x}t + x_0 \end{vmatrix}$$

Šikmý vrh^{X-ová zožka rýchlosti sa počas}pohybu nemení, na rozdiel od yonovej.

 $v_{y} \mathbf{j}$ $v_{y} \mathbf{j}$ $v_{x0} \mathbf{i}$ $v_{x0} \mathbf{i}$ $v_{y} \mathbf{j}$ $v_{x0} \mathbf{i}$ $v_{x0} \mathbf{i}$ $v_{x0} \mathbf{i}$ $v_{y} \mathbf{j}$ $v_{y} \mathbf{j}$ $v_{x0} \mathbf{i}$ $v_{x0} \mathbf{i}$ $v_{x0} \mathbf{i}$ $v_{y} \mathbf{j} = -v_{y0} \mathbf{j}$

Tvar trajektórie je parabola.

V smere osi x:

$$v_x = v_0 \cos \varphi$$
$$x = v_0 \cos \varphi t$$

V smere osi y

$$v_{y} = v_{0} \sin \varphi - gt$$
$$y = v_{0} \sin \varphi t - \frac{1}{2}gt^{2}$$

Rovnica trajektórie

$$y = xtg\varphi - \frac{g}{2(v_0 \cos \varphi)^2} x^2$$

Dolet

$$y = 0$$

$$R = \frac{v_0^2}{g} \sin(2\varphi)$$

Max. výška

$$v_y = 0$$

$$H_{\text{max}} = \frac{v_0^2 \sin^2(\varphi)}{2g}$$

Dolet

$$R = \frac{v_0^2}{g} \sin(2\varphi)$$

Ak je teleso vrhnuté pod dvoma elevačnými uhlami líšiacimi sa od uhla 45 stupňov o rovnakú hodnotu $\Delta \varphi$, doletia do rovnakej vzdialenosti $\varphi = \pi/4 \pm \Delta \varphi$

Maximálny dolet

Dolet telesa dosiahne maximálnu hodnotu, ak je teleso vrhnuté pod uhlom $\phi=\pi/4$

Otázky

Vysvetlite pojem vektora a definujte základné operácie (sčítanie, odčítanie, násobenie)

Definujte základné kinematické veličiny (posunutie, rýchlosť, zrýchlenie) a objasnite v jednorozmernom prípade geometrický význam priemernej a okamžitej rýchlosti)

Objasnite pojem rovnomerne zrýchlený pohyb a odvoďte dôsledky Zvislý a šikmý vrh

Vzájomný pohyb po priamke

Vzájomný pohyb

Častica má rovnaké zrýchlenie vo všetkých sústavách pohybujúcich sa navzájom konštantnými rýchlosťami

Určte relatívnu rýchlosť muchy vzhľadom na netopiera podľa obrázka. Rýchlosti sú znázornené vzhľadom na zem.

Rovnomerne zrýchlený pohyb v viacerých rozmeroch rozmere

