PREDICTING DATA SCIENCE JOB SALARIES

Ву

Abhay Aanabathula

OVERVIEW

- Problem statement
- Background
- My goal
- Data
- EDA
- Modeling and predictions

PROBLEM STATEMENT

- Salary varies
 - By state
 - By job level/ position/ entailments
 - On average, range of \$87-130,000
- With any job, it's hard to answer this question:
 - What should we pay you?
- Getting a salary estimate based on your skills would make it a lot easier!

WHAT IS DATA SCIENCE?

- Organizing and analyzing massive amounts of data
- Successful data scientists can:
 - Identify relevant questions
 - Collect data from a multitude of different data sources
 - Organize the information
 - Translate results into solutions
 - Communicate the findings in a way that positively affects decisions
- Needed in all industries

LIFE CYCLE OF A DATA SCIENTIST

From https://ischoolonline.berkeley.edu/data-science/what-is-data-science/

"The ability to take data — to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it — that's going to be a hugely important skill in the next decades."

 Hal Varian, chief economist at Google and UC Berkeley professor of information sciences business, and economics

MY GOAL

- Create models that accurately predict the average salary of a job based on experience, the job description, the job title, location, and key skills
- Create an interactive application (streamlit) for individuals to input their skills and be given a salary estimate
- Stretch goals:
 - Webscrape from job searching webpages like LinkedIn, Indeed, and Glassdoor
 - Apply same logic to other job titles and in other sectors of the job market

THE DATA

- From a Kaggle challenge
 - https://www.kaggle.com/ankitkalauni/predict-the-data-scientists-salary-in-india
- Variables: experience, job_description, job_desig, job_type, key_skills, location, and salary_range
- Transformations/ restructuring/ reformatting:
 - Dropped job_type
 - NLP for job_description (tokenize, lemmatize, stop_words)
 - Experience → min_experience and max_experience
 - Salary_range → average_salary
 - Count Vectorize all string data together

EDA

MIN AND MAX EXPERIENCE DISTRIBUTION

AVERAGE_SALARY DISTRIBUTION

EXPERIENCE VS. AVERAGE_SALARY

TOP 25 SKILLS OVERALL

TOP SKILLS IN MOST POPULATED CITIES

HARD SKILLS IN CITIES

TOP 25 JOB DESIGNATIONS/TITLES

TOP JOB DESIGNATIONS IN MOST POPULATED CITIES

JOB DESIGNATIONS IN CITIES

TOP 25 JOB DESCRIPTION KEY WORDS

JOB DESCRIPTIONS IN MOST POPULATED CITIES

MODELING AND PREDICTIONS

QUANTITATIVE VARIABLE ANALYSIS

	Model	train_score	test_score
0	LinearRegression	0.445193	0.451798
1	KNeighborsRegressor	0.369007	0.366716
2	LassoCV	0.445192	0.451788
3	RandomForestRegressor	0.475433	0.468939
4	AdaBoostRegressor	0.396738	0.398346

NLP ANALYSIS

	Model	train_score	test_score
0	LinearRegression	0.925134	-1.202297
1	KNeighborsRegressor	0.495197	0.220202
2	RandomForestRegressor	0.871168	0.434896
3	AdaBoostRegressor	0.076430	0.058372

FULL ANALYSIS (ALL VARIABLES INCLUDED)

	Model	train_score	test_score
0	LinearRegression	0.973473	-2.575613e+26
1	KNeighborsRegressor	0.375949	-2.280558e-02
2	RandomForestRegressor	0.921717	5.281310e-01
3	AdaBoostRegressor	0.410893	3.792792e-01

NOW THINGS FELL APART

PROBLEMS WITH FULL ANALYSIS

- Dataframe created too large
- Session kept crashing
- Used all available RAM

```
[(base) MacBook-Pro:capstone_project abhayaanabathula$ git push
Enumerating objects: 60, done.
Counting objects: 100% (60/60), done.
Delta compression using up to 8 threads
Compressing objects: 100% (50/50), done.
Writing objects: 100% (51/51), 4.85 MiB | 434.00 KiB/s, done.
Total 51 (delta 15), reused 1 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (15/15), completed with 4 local objects.
remote: error: GH001: Large files detected. You may want to try Git Large File S
torage - https://git-lfs.github.com.
remote: error: File datasets/.ipynb_checkpoints/quantified_data-checkpoint.csv i
s 384.37 MB; this exceeds GitHub Enterprise's file size limit of 100.00 MB
remote: error: File datasets/quantified_data.csv is 942.63 MB; this exceeds GitH
ub Enterprise's file size limit of 100.00 MB
To https://git.generalassemb.ly/abhayaanabathula/capstone_project.git
 ! [remote rejected] master -> master (pre-receive hook declined)
error: failed to push some refs to 'https://git.generalassemb.ly/abhayaanabathul
a/capstone_project.git'
(base) MacBook-Pro:capstone_project abhayaanabathula$
```


WHAT'S NEXT?

DEALING WITH LARGE DATASETS

- Allocate more memory
- Work with a smaller sample
- Use a computer with more memory
- Change the data format
- Stream data or use progressive loading
- Use a relational database
- Use a big data platform

MY PLAN

- Figure out sampling
- Look into other data formats maybe
 - Pickle stream data
 - Parquet- column storage
 - Feather memory allocation
- Relational database mySQL, SQLite
- Big Data Platform AWS
- Achieve my stretch goals

Row storage	
	1
Row 1	US
	Free
	2
Row 2	UK
	Paid
	3
Row 3	ES
	Paid

Column storage		
	1	
user_id	2	
	3	
	US	
country	UK	
	ES	
	Free	
subscription_type	Paid	
	Paid	

THE END BUT NOT THE END