Practice on MLE (sec 7.2), Evaluating Point Estimators (sec 7.7), and Bayesian Estimator (sec 7.8)

1 Questions

1. Consider the task of performing line fitting to a set of points (x_i, y_i) . For this question, model y_i as having the equation $mx_i + c$ (we do NOT know m and c) but with Gaussian Noise added to it in the form $\mathcal{N}(0, \sigma^2)$. Use the concept of MLE to find the estimate for m, c and σ .

We model our data as

$$y_i = mx_i + c + \epsilon$$

where ϵ is the noise sampled from a Gaussian.

Thus, $y_i \sim \mathcal{N}(mx_i + c, \sigma^2)$

$$P = \sum p(y_i|x_i, m, c) = \sum_{i=1}^{n} \frac{\exp\left(\frac{-(y_i - mx_i - c)^2}{2\sigma^2}\right)}{\sigma\sqrt{2\pi}}$$

Set partial derivative of log P to 0 with respect to both m and c to obtain,

$$c' = \sum_{i=1}^{n} \frac{y_i - m'x_i}{n}$$

$$m' = \frac{\sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{\sum_{i=1}^{n} (x_i - \mu_x)^2}$$

where $\mu_x = (\sum x_i)/n$ and $\mu_y = (\sum y_i)/n$. use the MLE Gaussian estimation on $y_i - m'x_i - c'$ to get the variance,

$${\sigma'}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - m'x_i - c')^2$$

2. Find a MLE estimate for the Geometric Distribution probability p, where $P(x,p)=(1-p)^{x-1}p$.

Solution -
$$p' = \frac{n}{\sum x_i} = \frac{1}{\mu_x}$$

3. Find a MLE estimator for θ for a sample size of n in the two sided exponential family with the pdf

$$f(x) = \frac{1}{2}e^{-|x-\theta|} \quad \forall \ x \in \mathcal{R}$$

Is this unbiased?

Solution- Use basic MLE derivation to obtain that x', the Median of the sample, is a MLE estimator of θ .

Reason using symmetry of the distribution and that we can take another sample mirrored around the true θ that the final bias will be 0.

4. Use MLE for normal distribution to estimate σ^2 while μ is known. What is the expected value of estimator?

Derive a)
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

2 Textbook Problems

Chapter 7, Problems 62, 63, 65 and Examples 7.8b, 7.8c, 7.8d