256 × 4-BIT STATIC RAM

GENERAL DESCRIPTION

The PCD5101 is a very low-power 1024-bit static CMOS random access memory, organized as 256 words by 4 bits. It is suitable for low power and high speed applications where battery standby power is required to ensure non-volatility of data. All inputs and outputs are fully TTL compatible and pinning is compatible with 2101-type NMOS static RAMs and 5101-type CMOS static RAMs.

There are two chip enable inputs, $\overline{CE1}$ and $\overline{CE2}$, selection being made when $\overline{CE1}$ is LOW and $\overline{CE2}$ is HIGH. The memory has an output disable function, OD, which allows the inputs/outputs to be used separately, or to be tied together for use in common data I/O systems.

Features

Operating supply voltage range

2,5 to 5,5 V min. 1 V

- Low data retention voltage
- Low power consumption in both operating and standby modes
- Access time 150 ns at V_{DD} = 5 V; 400 ns at V_{DD} = 3 V
- Three-state outputs
- All inputs and outputs directly TTL compatible
- Choice of two package types

Fig. 1 Block diagram: pin numbers in parentheses are for PCD5101T; other pin numbers are applicable to PCD5101P.

PACKAGE OUTLINES

PCD5101P: 22-lead DIL; plastic (SOT116).

PCD5101T: 24-lead mini-pack; plastic (SO24; SOT137A).

July 1984

93

Fig. 2 Pinning diagram for PCD5101P.

Fig. 3 Pinning diagram for PCD5101T.

OPERATING MODES

Table 1 Mode selection

CE1	CE2	R/W	OD	mode of operation	output state
Н	х	х	Х	standby	high impedance
x	L	x	×	standby	high impedance
L	Н	L	Н	write	high impedance
L	н	L	L	write	equal to input data
L	н	н	L	read	data valid
L	Н	н	н	read	high impedance

Separate input/output: write cycle OD = X; read cycle OD = L.

Common input/output: write cycle OD = H; read cycle OD = L.

H = HIGH voltage level L = LOW voltage level

X = don't care

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range	v_{DD}	-0,3 to 8,0 V
Input voltage range (any pin)	v_l	V_{SS} – 0,3 to V_{DD} +0,3 V
Operating temperature range	T_{amb}	$-25 \text{ to } +70 ^{\circ}\text{C}$
Storage temperature range	T_{stg}	-55 to + 125 °C

D.C. CHARACTERISTICS (V_{DD} = 5 V)

 V_{DD} = 5 ± 0,5 V; V_{SS} = 0 V; T_{amb} = -25 to +70 °C

parameter	symbol	min.	typ.	max.	unit
Operating supply voltage	V _{DD}	4,5	5,0	5,5	V
Operating supply current at V _I = V _{DD} or V _{SS} ; f = 1 MHz; outputs open	IDD		10	17	mA
at V _I = 0,8 or 2,0 V; f = 1 MHz; outputs open	IDD	_	10	17	mA
at $V_1 = 0.8$ or 2.0 V; $f = 5$ MHz; outputs open	I _{DD}	_	12	20	mA
Standby supply current at CE2 = V _{SS}	ISB	-	0,02	5,0	μA
Input leakage current at V _I = V _{SS} to V _{DD} Input voltage LOW		- -0,3	_	0,1 +0,8	μ Α V
Input voltage HIGH	V _{IL} ViH	_0,3 2,0	_	V _{DD} +0,3	,
Output leakage current at $V_0 = V_{SS}$ to V_{DD} ;	1111	2,0			•
OD = HIGH or chip disabled	I _{OL}	_	-	0,2	μΑ
Output voltage LOW at $I_{OL} = 4.0 \text{ mA}$	VOL	_	-	0,4	٧
Output voltage HIGH at $-I_{OH} = 2.0 \text{ mA}$	Voн	2,4	-	-	٧

D.C. CHARACTERISTICS (VDD = 3 V)

 V_{DD} = 3 ± 0,5 V; V_{SS} = 0 V; T_{amb} = -25 to +70 °C

parameter	symbol	min.	typ.	max.	unit
Operating supply voltage	V_{DD}	2,5	3,0	3,5	V
Operating supply current at V _I = V _{DD} or V _{SS} ; f = 1 MHz; outputs open	I _{DD}	_	5	8	mA
at V ₁ = 0,4 or 1,6 V; f = 1 MHz; outputs open	l _{DD}	-	5	8	mA
Standby supply current at CE2 = V _{SS}	ISB	_	0,02	5,0	μΑ
Input leakage current at V _I = V _{SS} to V _{DD}	Ոլլ	-	_	0,1	μΑ
Input voltage LOW	VIL	-0,3	_	+0,4	٧
Input voltage HIGH	VIH	1,6	-	V _{DD} +0,3	V
Output leakage current at V _O = V _{SS} to V _{DD} ; OD = HIGH or chip disabled	I _{OL}	_	_	0,2	μА
Output voltage LOW at IOL = 1,0 mA	VOL	_	-	0,3	V
Output voltage HIGH at $-I_{OH} = 1.0 \text{ mA}$	Voн	1,7	_	_	٧

Fig. 4 Test load.

A.C. TEST CONDITIONS (VDD = 5 V)

	• • •	V
Input pulse levels	0,8 V to 2,0 V	V _{DD}
Input rise and fall times	5 ns	960 Ω
Input timing reference levels	1,5 V	data I
Output timing levels	1,5 V	output
Output timing levels for high/low impedance	1,2 V and 2,8 V	510 Ω
Output load (2 TTL inputs and		7777 7777 7287756
load capacitance C _L)	Fig. 4	Fig. 4 Test load

A.C. CHARACTERISTICS ($V_{DD} = 5 \text{ V}$)

 V_{DD} = 5 ± 0,5 V; V_{SS} = 0 V; T_{amb} = -25 to +70 °C; loads as per Fig. 4 with C_L = 100 pF unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Read cycle					1
Read cycle time	tRC	150	_	_	ns
Address access time	tAA	_	-	150	ns
Chip enable CE1 to output	tCO1		_	150	ns
Chip enable CE2 to output	tCO2	_	_	150	ns
Output disable OD to output	tOD	_	_	70	ns
Data output to high impedance state at C _L = 5 pF	^t DF	10	_	70	ns
Previously read data valid with respect to address change	^t OH1	10	_	_	ns
Previously read data valid with respect to chip enable	^t OH2	10	-	_	ns
Write cycle					-
Write cycle time	₹WC	150	_	_	ns
Write delay time	t _{AW}	0	_	_	ns
Chip enable CE1 to write	t _{CW1}	120	_	-	ns
Chip enable CE2 to write	t _{CW2}	120	_	_	ns
Data set-up time	tDW	70	-	_	ns
Data hold time	tDH	0	_	_	ns
Write pulse duration	twp	70	_	_	ns
Write recovery time	twr	0	_	_	ns
Output disable OD set-up time	tDS	70	_	_	ns

A.C. TEST CONDITIONS (VDD = 3 V)

Input pulse levels 0,4 V to 1,6 V

Input rise and fall times 5 ns
Input timing reference levels 1,0 V
Output timing levels 1,0 V

Output timing levels for high/low

impedance 0,7 V and 1,7 V

Output load Fig. 5

Fig. 5 Test load.

A.C. CHARACTERISTICS (VDD = 3 V)

 V_{DD} = 3 ± 0,5 V; V_{SS} = 0 V; T_{amb} = -25 to +70 °C; loads as per Fig. 5 with C_L = 100 pF unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Read cycle					
Read cycle time	tRC	400	_	-	ns
Address access time	†AA	_	-	400	ns
Chip enable CE1 to output	tcO1	_	-	400	ns
Chip enable CE2 to output	t _{CO2}	_	-	400	ns
Output disable OD to output	tOD	_	-	200	ns
Data output to high impedance state at C _L = 5 pF	t _{DF}	10	-	200	ns
Previously read data valid with respect to address change	t _{OH1}	10	_	_	ns
Previously read data valid with respect to chip enable	t _{OH2}	10	_	-	ns
Write cycle			-		
Write cycle time	twc	400	_	-	ns
Write delay time	tAW	0	-		ns
Chip enable CE1 to write	t _{CW1}	300	-	_	ns
Chip enable CE2 to write	t _{CW2}	300	-	_	ns
Data set-up time	t _{DW}	200	-	_	ns
Data hold time	tDH	0	-	-	ns
Write pulse duration	tWP	200	_	-	ns
Write recovery time	twR	0	_	-	ns
Output disable OD set-up time	t _{DS}	200	-	-	ns

WAVEFORMS

Fig. 6 Read cycle timing; $R/\overline{W} = HIGH$.

Fig. 7 Write cycle timing.

LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS

CE2 \leq 0,2 V; $T_{amb} = -25 \text{ to } + 70 \text{ }^{o}\text{C}$.

parameter	symbol	min.	typ.	max.	unit
Supply voltage for data retention	V _{DR}	1,0	_	5,5	٧
Data retention current at V _{DD} = 1,5 V	I _{DR}	_	0,02	2,0	μΑ
Chip deselect to data retention time	tCDR	0	_	-	ns
Operation recovery time	tR	0	-	-	ns

Fig. 8 Low supply voltage data retention characteristics.