WEST Search History

Hide Items Restore Clear Cancel

DATE: Friday, August 11, 2006

Hide? Set Name Query						
DB=PGPB, USPT, USOC, EPAB, JPAB, DWPI; PLUR=YES; OP=AND						
	L6	Fusarium near venenatum with promoter with (mutant or variant)	30			
	L4	L3 with (mutant or variant)	123			
	L3	L1 with promoter	400			
	L2	L1 near promoter	11			
	L1	fusarium	12741			

END OF SEARCH HISTORY

Day : Friday Date: 8/11/2006 Time: 14:09:05

Inventor Name Search

Enter the **first few letters** of the Inventor's Last Name. Additionally, enter the **first few letters** of the Inventor's First name.

Last Name	First Name	
Yaver	Debbie	Search

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

Day: Friday Date: 8/11/2006 Time: 14:09:05

Inventor Name Search

Enter the **first few letters** of the Inventor's Last Name. Additionally, enter the **first few letters** of the Inventor's First name.

Last Name	First Name	
Nham	Peter	Search

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

SCORE Search Results Details for Application 10716793 and Search Result us-10-716-793a-5.rge.

Score Home Page **Retrieve Application**

List

SCORE System Overview SCORE FAQ Comments / Suggestions

This page gives you Search Results detail for the Application 10716793 and Search Result us-10-716-793a-5.rge.

<u>start</u>

Go Back to previous page

```
GenCore version 5.1.9
Copyright (c) 1993 - 2006 Biocceleration Ltd.
```

OM nucleic - nucleic search, using sw model

Run on: July 17, 2006, 11:03:40; Search time 7915 Seconds (without alignments)

17063.418 Million cell updates/sec

Title: US-10-716-793A-5

Perfect score: 2112

Sequence: 1 cctcacccatctcaacacct.....tcactgctatcaccaacatg 2112

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 6366136 seqs, 31973710525 residues

Total number of hits satisfying chosen parameters: 12732272

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : GenEmbl:*

1: gb_env:*
2: gb_pat:*
3: gb_ph:*
4: gb_pl:*
5: gb_pr:*
6: gb_ro:*
7: gb_sts:*
8: gb_sy:*

9: gb_un:*
10: gb_vi:*
11: gb_ov:*

12: gb_htg:*
13: gb_in:*
14: gb_om:*
15: gb_ba:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

_			8				
ке	sult No.	Score	Query	Length	nn	ID	Description
_							
	1	2083.2	98.6	6050	2	BD269017	BD269017 Promoters
	2	2083.2	98.6	6050	2	AR202147	AR202147 Sequence
	3	2083.2	98.6	6050	2	AR280166	AR280166 Sequence
	4	2083.2	98.6	6050	2	AR475302	AR475302 Sequence
	5	603	28.6	715	2	AR677809	AR677809 Sequence
С	6	68.4	3.2	77690	4	NC18A7	AL670542 Neurospor
С	7	68.2		154038	4	NCB8G12	BX294027 Neurospor
С	8	68	3.2	55380	4	NC21D9	AL807373 Neurospor
	9	68		102165	4	NC62D11	AL807368 Neurospor
С	10	67.4	3.2	41750	4	NCB7N4	AL390218 Neurospor
	11	67.4	3.2	77690	4	NC18A7	AL670542 Neurospor
	12	67.2	3.2	87435	4	NC103E1	BX294028 Neurospor
С	13	57.8	2.7	151	4	PASU4	X05226 Podospora a
	14	54	2.6	1141	2	AR579680	AR579680 Sequence
	15	54	2.6	1141	2	AX083744	AX083744 Sequence
С	16	53.8	2.5	40611	13	AC116987	AC116987 Dictyoste
С	17	53	2.5	455	13	DDSER1UGA	X59584 D. discoide
С	18	52.6	2.5	138	13	DDSER2UGA	X59585 D. discoide
	19	52	2.5	6777	13	AF491005	AF491005 Dictyoste
	20	50.8	2.4	88549	13	AC116924	AC116924 Dictyoste
	21	50.6	2.4	2000	2	AX655393	AX655393 Sequence
_	22 23	50.6		110000	13	CP000080_08	Continuation (9 of
С	24	50.4 50.4	2.4	7218 110000	2 13	166494	I66494 Sequence 14
	25			331039	13	AC116957_2	Continuation (3 of
_	26	50.4 49.8	2.4	725	13	AC116979 DDSER1AGA	AC116979 Dictyoste X59582 D. discoide
С	27	49.8	2.4	22368	13	AY293825	AY293825 Dictyoste
С	28	49.2		170126	11	BX664605	BX664605 Zebrafish
C	29	49.2		204526	12	CR392030	CR392030 Danio rer
С	30	49.2		206239	12	CT025940	CT025940 Danio rer
Ŭ	31	48.4		163931	12	CR931762	CR931762 Danio rer
	32	48.4		180961	11	CR388066	CR388066 Zebrafish
	33	48.4		220183	12	AC167267	AC167267 Bos tauru
С	34	48.4		258185	12	CR854912	CR854912 Danio rer
c	35	47.6	2.3	44006	5	AL135913	AL135913 Human DNA
_	36	47.6		160660	12	AC148182	AC148182 Macaca mu
	37	47.6		177132	12	AC146491	AC146491 Macaca mu
	38	47.4		190901	. 6	AC138330	AC138330 Mus muscu
	39	47.2	2.2	25943	13	CEC38C6	Z93375 Caenorhabdi
	40	47		163323	6	AC091395	AC091395 Mus muscu
	41	46.8		174723	11	BX321871	BX321871 Zebrafish
	42	46.8		191576	12	CR450780	CR450780 Danio rer
	43	46.8		198019	11	BX469910	BX469910 Zebrafish
	44	46.8		216616	12	BX927135	BX927135 Danio rer
С	45	46.8	2.2	216616	12	BX927135	BX927135 Danio rer

ALIGNMENTS

RESULT 1 BD269017

LOCUS BD269017 6050 bp DNA linear PAT 17-JUL-2003 DEFINITION Promoters for expressing genes in a fungal cell.

SCORE Search Results Details for Application 10716793 and Search Result us-10-716-793a-3then-5.rni.

Score Home Page

Retrieve Application

List

SCORE System <u>Overview</u>

SCORE FAQ

Comments / Suggestions

This page gives you Search Results detail for the Application 10716793 and Search Result us-10-716-793a-3-then-5.rni.

start

Go Back to previous page

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on:

August 8, 2006, 21:15:48; Search time 739.2 Seconds

(without alignments)

10692.050 Million cell updates/sec

Title:

US-10-716-793A-3-THEN-5

Perfect score: 4224

Sequence:

1 cctcacccatctcaacacct.....tcactgctatcaccaacatg 4224

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 0.1

Searched:

1403666 seqs, 935554401 residues

Total number of hits satisfying chosen parameters:

2807332

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100%

Listing first 45 summaries

Database :

Issued Patents_NA:*

1: /EMC Celerra SIDS3/ptodata/2/ina/1 COMB.seq:* 2: /EMC Celerra SIDS3/ptodata/2/ina/5 COMB.seq:*

3: /EMC Celerra SIDS3/ptodata/2/ina/6A_COMB.seq:*

4: /EMC Celerra SIDS3/ptodata/2/ina/6B_COMB.seq:*

5: /EMC Celerra SIDS3/ptodata/2/ina/7_COMB.seq:*

6: /EMC_Celerra_SIDS3/ptodata/2/ina/H_COMB.seq:*

7: /EMC_Celerra_SIDS3/ptodata/2/ina/PCTUS_COMB.seq:*

8: /EMC_Celerra_SIDS3/ptodata/2/ina/PP_COMB.seq:*

9: /EMC_Celerra_SIDS3/ptodata/2/ina/RE_COMB.seq:*

10: /EMC Celerra SIDS3/ptodata/2/ina/backfiles1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

			8				
	ult		Query				
	No.	Score	Match	Length	DB	ID	Description
	1	2105.4	49.8	6050	3	US-09-534-407-1	Sequence 1, Appli
	2	2105.4	49.8	6050	3	US-09-999-201B-1	Sequence 1, Appli
	3	2105.4	49.8	6050	3	US-10-281-673A-1	Sequence 1, Appli
	4	603.9	14.3	715	3	US-09-533-559-7310	Sequence 7310, Ap
	5	63.5	1.5	1141	3	US-09-806-708B-22	Sequence 22, Appl
С	6	57	1.3	1141	3	US-09-806-708B-22	Sequence 22, Appl
С	7	50.4	1.2	7218	2	US-08-232-463-14	Sequence 14, Appl
С	, 8	48.5	1.1	832	3	US-09-621-976-2813	Sequence 2813, Ap
	9	46.4	1.1	832	3	US-09-621-976-2813	Sequence 2813, Ap
	10	41.4	1.0	169334	3	US-09-949-016-15999	Sequence 15999, A
С	11	41.3	1.0	387902	3	US-09-949-016-14543	Sequence 14543, A
С	12	41.3	1.0	421883	3	US-09-949-016-12557	Sequence 12557, A
С	13	40.3	1.0	267482	3	US-09-949-002-659	Sequence 659, App
С	14	40.3	1.0	267505	3	US-09-949-002-783	Sequence 783, App
С	15	39.8	0.9	107941	3	US-09-949-016-14206	Sequence 14206, A
С	16	39.8	0.9	109378	3	US-09-949-016-12391	Sequence 12391, A
С	17	39.6	0.9	73519	3	US-09-949-016-16344	Sequence 16344, A
С	18	39.6	0.9	105919	3	US-09-949-016-11769	Sequence 11769, A
С	19	39.6		187136	3	US-09-949-016-17231	Sequence 17231, A
c	20	39.2		119153	3	US-09-949-016-12378	Sequence 12378, A
c	21	38.9		784019	3	US-09-949-016-14033	Sequence 14033, A
c	22	38.9		828152	3	US-09-949-016-12777	Sequence 12777, A
•	23	38.6		128779	3	US-09-497-855A-38	Sequence 38, Appl
	24	38.2	0.9	97221	3	US-09-949-016-12755	Sequence 12755, A
С	25	38	0.9	505	3	US-09-621-976-15639	Sequence 15639, A
C	26	37.9	0.9	399	3	US-09-621-976-8976	Sequence 8976, Ap
Ŭ	27	37.8	0.9	1082	3	US-09-902-540-119	Sequence 119, App
	28	37.7	0.9	946	3	US-08-777-147-1	Sequence 1, Appli
	29	37.7	0.9	2715	3	US-08-777-147-2	Sequence 2, Appli
С	30	37.7		129899	3	US-09-949-016-14684	Sequence 14684, A
С	31	37.7		148156	3	US-09-949-016-11776	Sequence 11776, A
	32	37.6	0.9	327	3	US-08-956-171E-4330	Sequence 4330, Ap
	. 33	37.6	0.9	327	3	US-08-781-986A-4330	Sequence 4330, Ap
	34	37.4		462589	3	US-09-949-016-12900	Sequence 12900, A
	35	37.4		476044	3	US-09-949-016-12412	Sequence 12412, A
-	36	37.3	0.9	601	3	US-09-949-016-105621	Sequence 105621,
С	37	37.3		192302	3	US-09-949-016-103021	Sequence 15270, A
_							Sequence 63251, A
С	38 39	37.1 37.1	0.9 0.9	601 80355	3 3	US-09-949-016-63251 US-09-949-016-12735	Sequence 12735, A
							<u>-</u>
	40	37.1	0.9	80357	3	US-09-949-016-13572	Sequence 13572, A
	41	37	0.9	490	3	US-09-270-767-10524	Sequence 10524, A
	42	37	0.9	902	3	US-08-924-747-5	Sequence 5, Appli
	43	37	0.9	902	3	US-09-247-373B-5	Sequence 5, Appli
	44	37	0.9	902	3	US-09-296-715-5	Sequence 5, Appli
С	45	37	0.9	992	3	US-09-270-767-14599	Sequence 14599, A

ALIGNMENTS

```
RESULT 1
US-09-534-407-1
; Sequence 1, Application US/09534407
; Patent No. 6361973
; GENERAL INFORMATION:
; APPLICANT: Randy M. Berka
; APPLICANT: Michael W. Rey
```

```
APPLICANT: Kimberly Brown
   TITLE OF INVENTION: Promoters For Expressing Genes In A
   TITLE OF INVENTION: Fungal Cell
   FILE REFERENCE: 5611.200-US
   CURRENT APPLICATION NUMBER: US/09/534,407
   CURRENT FILING DATE: 2000-03-22
   EARLIER APPLICATION NUMBER: 09/274,449
   EARLIER FILING DATE: 1999-03-22
   NUMBER OF SEQ ID NOS: 40
   SOFTWARE: FastSEQ for Windows Version 4.0
  SEQ ID NO 1
   LENGTH: 6050
   TYPE: DNA
   ORGANISM: Fusarium
US-09-534-407-1
  Query Match
                    49.8%;
                         Score 2105.4;
                                    DB 3;
                                         Length 6050;
                    99.7%;
  Best Local Similarity
                         Pred. No. 0;
  Matches 2109; Conservative
                         0; Mismatches
                                                         0;
                                      6;
                                         Indels
                                                0;
                                                   Gaps
Qу
         1 CCTCACCCATCTCAACACCTGTCGTGTGCTCACTTGACTACTTCTTTGAACCAGCTCGCC 60
           Db
       1841 CCTCACCCATCTCAACACCTGTCGTGTGCTCACTTGACTACTTCTTTGAACCAGCTCGCC 1900
         Qу
           Db
        121 TGATCAGCCTGAACCGAGCATAACTCGAGTGCCGAGACTCCTCTGATGTATATCGAGATG 180
Qу
           1961 TGATCAGCCTGAACCGAGCATAACTCGAGTGCCGAGACTCCTCTGATGTATATCGAGATG 2020
Db
        181 AATGACAAACCTACGGGTCCGTTCTTGAGAAGTGGCCTGAGATTTCTCACTTGGTGAGAA 240
Qу
           Db
       2021 AATGACAAACCTACGGGTCCGTTCTTGAGAAGTGGCCTGAGATTTCTCACTTGGTGAGAA 2080
        241 AAAGGACGGGCGAGCCTGAGTCAGAAGAAATACCTGTCTCCTTGGATCTCACAT 300
Qу
           Db
       2081 AAAGGACGGGCGAGCGGGAGCCTGAGTCAGAAGAAATACCTGTCTCCTTGGATCTCACAT 2140
        301 GACGGTGTTGTGGAAGAGTGCATCTATTGTCATTGCTGGAGTGACGGCAGAGTAGGGGTC 360
Qу
           2141 GACGGTGTTGTGGAAGAGTGCATCTATTGTCATTGCTGGAGTGACGGCAGAGTAGGGGTC 2200
Db
        361 TAAAGAAACCCATACTGAGTAGAGATGGAGAAGACAACAAAAGCCCCAAGACGACAGAGAC 420
Qу
           Db
       2201 TAAAGAAACCCATACTGAGTAGAGATGGAGAAGACAACAAAAGCCCAAGACGACAGAGAC 2260
        421 GACAGAAGATTAAAGCTATCAGAGCGAGACTATATCACTATTCGAAACCTGCGAGTAATT 480
Qу
           Db
       2261 GACAGAAGATTAAAGCTATCAGAGCGAGACTATATCACTATTCGAAACCTGCGAGTAATT 2320
Qу
        481 TAACAAGAAGTACACATCATCATTGTTATCAATTCGACGAAGACATGGTCGAAAAATTCTT 540
           2321 TAACAAGAAGTACACATCATCATTGTTATCAATTCGACGAAGACATGGTCGAAAAATTCTT 2380
Db
        541 GCGGTGTATATGTCTGTTGTATATGGGCCTGGGCATTGTTATTTTTCGCCGTCTTTATGT 600
. Qy
           2381 GCGGTGTATATGTCTGTTGTATATGGGCCTGGGCATTGTTATTTTTCGCCGTCTTTATGT 2440
Db
        601 GTACTAACACTTCCATTGATACCCCAGAACAAAAGATGAACGCTTAAACAGCACCAAAAT 660
Qy
```

Db	2441		2500
Qy	661	CAGGAGAAGAATGGCGCTGCTCTAGGTATGCTTCTGGGATAAAAAGCGATGTTGATACCT	720
Db	2501		2560
Qy	721	CTCAGAAAAGAAGTGATTTGAAGTTGAATCAAACAAATAGCCGATGGAGCGATCTGAAGG	780
Db	2561		2620
Qy	781	GGTGGCAGACCTGCTACGCGCATTTAGGCAAGGCATCAACTCGGCAGATGATTAAGAAAG	840
Db	2621	GGTGGCAGACCTGCTACGCGCATTTAGGCAAGGCATCAACTCGGCAGATGATTAAGAAAG	2680
Qy	841	GTTTTGTAGGTTCACGTGTTGTGTTGTGTTCCATTATAAGTTTATAACCTTGCTAAGATG	900
Db	2681	GTTTTGTAGGTTCACGTGTTGTGTTGTTCCATTATAAGTTTATAACCTTGCTAAGATG	2740
Qy	901	CAACGACTCTGACCTCAGGGTGTTAGAAAAATTGACCACTAGGAGCATAAGTGACGAAAT	960
Db	2741	CAACGACTCTGACCTCAGGGTGTTAGAAAAATTGACCACTAGGAGCATAAGTGACGAAAT	2800
Qy	961	TCGGGGATCAAGACAATAGATAGTTTCATTTCATGTGCTCCTACGTCTTTTCACGTAAT	1020
Db	2801	TCGGGGATCAAGACAATAGATAGTTTCATTTTCATGTGCTCCTACGTCTTTTCACGTAAT	2860
Qу	1021	GTTTCTTATAAAAAAAAGATAGCATTGTCTCTTTGGTGAAAAGAGAAAAAAAA	1080
Db	2861	GTTTCTTATAAAAAAAAGATAGCATTGTCTCTTTTGGTGAAAAGAGAAAAAAAA	2920
Qу	1081	CGACGTGGGCCTGATTCGAACAGACGCCTCCGAAGAGAATAGATTTCTAGTCTATCGCGT	1140
Db	2921	CGACGTGGCCTTGATTCGAACAGACGCCTCCGAAGAGAATAGATTTCTAGTCTATCGCGT	2980
Qу	1141	TAGACCACTCCGCCACCACGCCTTACGTAATCTGTGATTGTTGAAAGTTACTCTCGTGTT	1200
Db	2981	TAGACCACTCCGCCACCACGCCTTACGTAATCTGTGATTGTTGAAAGTTACTCTCGTGTT	3040
Qу	1201	ACGGTCTATACGTGAAGAATCTACACTTGACGAGTCTCGAGGTCTGGGGTCAGTTAGACG	1260
Db	3041	ACGGTCTATACGTGAAGAATCTACACTTGACGAGTCTCGAGGTCTGGGGTCAGTTAGACG	3100
Qy	1261	GAAATGGGAGAACAAAGAGACTTGGTGACATTGCAGGCAACCGGGTAGATGTTGAGGTCA	1320
Db	3101	GAAATGGGAGAACAAAGAGACTTGGTGACATTGCAGGCAACCGGGTAGATGTTGAGGTCA	3160
Qy	1321	TTGATCGGACAAGATTGTTGCTTCAAAAGTAACAGGTATTCTTTTTTTAATCAACAGAA	1380
Db	3161	TTGATCGGACAAGATTGTTGCTTCAAAAGTAACAGGTATTCTTTTTTTT	3220
Qy	1381	ACGTTCCATGTTCATTTGTTAATCCAATCTATTTGTGATAGCGTTTGATGACAAACAA	1440
Db	3221	ACGTTCCATGTTCATTTGTTAATCCAATCTATTTGTGATAGCGTTTGATGACAAACAA	3280
Qy	1441	ATAATGATGGTCTGGCGGCTAGTGATCGTTTGTAATGACGTCGTCATATATCCTATCACT	1500
Db	3281	ATAATGATGGTCTGGCGGCTAGTGATCGTTTGTAATGACGTCGTCATATATCCTATCACT	3340
Qу	1501	ATACAGTTGCTTTGCACACGCACTCACGTCCTTCATTCGTTGTCTTCACTATTTGATGGT	1560

```
3341 ATACAGTTGCTTTGCACACGCACTCACGTCCTTCATTCGTTGTCTTCACTATTTGATGGT 3400
Db
      1561 GATTTGGTTCAACAACCTACAGAAATAATGACCTGTGGTGTTCTCCGAATATGGCTAGAC 1620
Qу
          3401 GATTTGGTTCAACAACCTACAGAAATAATGACCTGTGGTGTTCTCCGAATATGGCTAGAC 3460
Db
      1621 CAACACAAGCTTGTACCGCGGCATTCAAATCACCATGTGATGCCCATCATCAGATCATCC 1680
Qу
          Db
      3461 CAACACAAGCTTGTACCGCGGCATTCAAATCACCATGTGATGCCCATCATCAGATCATCC 3520
      1681 ACCAACCCAAAAACAGACCAACTACTCACAAAAAAGGCATCTCATCAAGAAAAAACGGCCA 1740
Qу
          3521 ACCAACCCAAAAACAGACCAACTACTCACAAAAAGGCATCTCATCAAGAAAAAACGGCCA 3580
Db
      1741 ACTAACGTCCAAAAGGCCCGAAAAACGTCCATCACGCCGCAGCCGAGACTTCAATAGACT 1800
Qу
          3581 ACTAACGTCCAAAAGGCCCGAAAAACGTCCATCACGCCGCAGCCGAGACTTCAATAGACT 3640
Db
      1801 GCACAAGAAGGACCGATGAGATCGACCAGACTAAACCCGGGAGAGTGTCAAATATGCGGG 1860
Qу
          3641 GCACAAGAAGGACCGATGAGATCGACCAGACTAAACCCGGGAGAGTGTCAAATATGCGGG 3700
Db
      1861 GGATTGGGGAACTTACCCCAGAAAAGAGAGGAGGATAAATTCCATGTCTGGGGTTGACG 1920
Qу
          3701 GGATTGGGGAACTTACCCCAGAAAAGAGAAGGAGGATAAATTCCATGTCTGGGGTTGACG 3760
Db
      1921 TCTCTATTGGTTAGACACGAACGCCTGCTCTCGGCGTAATTTCGGCCATAGCGCCAATGA 1980
Qу
          3761 TCTCTATTGGTTAGACACGAACGCCTGCTCTCGGCGTAATTTATACCATAGCGCCAATGA 3820
Db
      Qy
          Db
      2041 TAGGTATCCGTCTTGGTGATTGACCAGACATATCGCTCATCACAGATCAACATCACTGCT 2100
Qу
          3881 TAGGTATCCGTCTTGGTGATTGACCAGACATATCGCTCATCACAGATCAACATCACTGCT 3940
Db
      2101 ATCACCAACATGCCT 2115
Qу
          111111111111
Db
      3941 ATCACCAACATGCTT 3955
RESULT 2
US-09-999-201B-1
; Sequence 1, Application US/09999201B
; Patent No. 6518044
; GENERAL INFORMATION:
 APPLICANT: Berka, Randy
 APPLICANT: Rey, Michael
 APPLICANT: Brown, Kimberly
  TITLE OF INVENTION: Promoters For Expressing Genes In A
  TITLE OF INVENTION: Fungal Cell
  FILE REFERENCE: 5611.210-US
  CURRENT APPLICATION NUMBER: US/09/999,201B
  CURRENT FILING DATE: 2001-10-30
  PRIOR APPLICATION NUMBER: 09/534,407
  PRIOR FILING DATE: 2000-03-22
  PRIOR APPLICATION NUMBER: 09/274,449
  PRIOR FILING DATE: 1999-03-22
  NUMBER OF SEQ ID NOS: 40
```

INDEX 'ADISCTI, ADISINSIGHT, ADISNEWS, AGRICOLA, ANABSTR, ANTE, AQUALINE, AQUASCI, BIOENG, BIOSIS, BIOTECHABS, BIOTECHDS, BIOTECHNO, CABA, CAPLUS, CEABA-VTB, CIN, CONFSCI, CROPB, CROPU, DDFB, DDFU, DGENE, DISSABS, DRUGB, DRUGMONOG2, DRUGU, EMBAL, EMBASE, ...' ENTERED AT 14:23:11 ON 11 AUG 2006 SEA FUSARIUM (N) PROMOTER

```
FILE CAPLUS
               5
                   FILE DGENE
                   FILE USPATFULL
L1
                QUE FUSARIUM (N) PROMOTER
               _____
                SEA FUSARIUM (S) PROMOTER
              54
                   FILE AGRICOLA
               3 .
                   FILE AQUASCI
              39
                   FILE BIOENG
              35
                   FILE BIOSIS
             134
                   FILE BIOTECHABS
             134
                   FILE BIOTECHDS
                   FILE BIOTECHNO
              67
              82
                   FILE CABA
              92
                   FILE CAPLUS
               9
                   FILE CEABA-VTB
                   FILE CROPU
               Я
               1
                   FILE DDFU
            2692
                   FILE DGENE
                   FILE DISSABS
               9
                   FILE DRUGU
               1
                   FILE EMBAL
               1
              23
                   FILE EMBASE
              83
                   FILE ESBIOBASE
              12
                   FILE FROSTI
              25
                   FILE FSTA
              70
                   FILE GENBANK
               2
                   FILE HEALSAFE
              22
                   FILE IFIPAT
               9
                   FILE JICST-EPLUS
              88
                   FILE LIFESCI
              23
                   FILE MEDLINE
              53
                   FILE PASCAL
               1
                   FILE PHIN
                   FILE PROMT
               1
              29
                   FILE SCISEARCH
                   FILE TOXCENTER
              13
             394
                   FILE USPATFULL
              57
                   FILE USPAT2
              68
                   FILE WPIDS
                   FILE WPINDEX
L2
              OUE FUSARIUM (S) PROMOTER
     FILE 'DGENE, CAPLUS, LIFESCI' ENTERED AT 14:24:59 ON 11 AUG 2006
L3
             67 S FUSARIUM (S) PROMOTER (N) (MUTANT OR VARIANT)
L4
             67 DUP REM L3 (0 DUPLICATES REMOVED)
     FILE 'CAPLUS, LIFESCI' ENTERED AT 14:25:55 ON 11 AUG 2006
              O S FUSARIUM (S) PROMOTER (N) (MUTANT OR VARIANT)
L5
     FILE 'DGENE' ENTERED AT 14:26:25 ON 11 AUG 2006
              O S FUSARIUM (N) PROMOTER (N) (MUTANT OR VARIANT)
L6
             67 S FUSARIUM (S) PROMOTER (N) (MUTANT OR VARIANT)
L7
```