

返回复习

设A、B是两个随机事件

一般 $P(B|A) \neq P(B)$, 即 A 的发生对 B 发生有影响, 若这种影响不存在,则 P(B|A) = P(B)

独立的定义

对于随机事件A、B,若有 P(AB) = P(A)P(B),

则称A与B相互独立。否则A与B相互不独立。

独立性的另一种定义

$$P(B \mid A) = P(B)$$

注意:

若P(A)P(B) > 0,则"A、B互不相容"与"A、B相互独立"不能同时成立。

("A、B互不相容"
$$\Rightarrow P(AB) = P(\emptyset) = 0$$
,
"A、B相互独立" $\Rightarrow P(AB) = P(A)P(B) > 0$.)

達意区别

性质: \overline{A} 与 \overline{B} 相互独立,则 \overline{A} 与 \overline{B} 、 \overline{A} 与 \overline{B} 也相互独立。

证明A与B相互独立

证明:
$$P(A\overline{B}) = P(A - AB)$$

$$= P(A) - P(AB)$$

$$= P(A) - P(A)P(B)$$

$$= P(A)(1 - P(B))$$

$$= P(A)P(\overline{B})$$
即 $A \subseteq \overline{B}$ 相互独立.

- 例 1. 设有甲、乙两名射手,他们命中目标的概率分别为 0.8 和 0.7, 现两人同时向该目标射击一次, 试求:
 - (1)目标被击中的概率; (2)若已知目标被击中,问它是甲命中的概率是多少?

(1)
$$P(C) = P(A \cup B) = P(A) + P(B) - P(A)P(B) = 0.94$$
.
也可用对立事件计算,

$$P(C) = 1 - P(C) = 1 - P(AB)$$

= $1 - P(\overline{A})P(\overline{B}) = 0.94$

(2) 所求为条件概率 P(A|C),

$$P(A \mid C) = \frac{P(AC)}{P(C)} = \frac{P(A)}{P(C)} = \frac{0.8}{0.94} = \frac{40}{47}$$

推广:

(1)三个事件 A,B,C 两两独立:

若满足
$$P(AB) = P(A)P(B)$$

 $P(BC) = P(B)P(C)$
 $P(AC) = P(A)P(C)$

(2) A, B, C相互独立:

若满足
$$P(AB) = P(A)P(B)$$

 $P(BC) = P(B)P(C)$
 $P(AC) = P(A)P(C)$
 $P(ABC) = P(A)P(B)P(C)$

注意: 两两独立≠相互独立.

例 2.有四个球,其中一个红,一个白,一个黑,还有一个是红白黑三色球,任取一球,设A,B,C分别表示取到的球上有红、白、黑色,问A,B,C是否相互独立。

解:
$$P(A) = P(B) = P(C) = \frac{1}{2};$$
$$\therefore P(AB) = P(AC) = P(BC) = \frac{1}{4}$$
$$P(AB) = P(A)P(B)$$
$$P(AC) = P(A)P(C)$$
$$P(BC) = P(B)P(C)$$

 $\therefore A, B, C$ 是两两独立的。

$$\therefore P(ABC) = \frac{1}{4} \neq P(AP(B)P(C) = \frac{1}{8}$$

:. A, B, C 不是相互独立的。

推广: A_1, A_2, \dots, A_n 相互独立:

如果对任意的m, $2 \le m \le n$, 任取 $1 \le i_1 < i_2 < \dots < i_m \le n$ 有 $P(A_{i_1}A_{i_2} \cdots A_{i_m}) = P(A_{i_1})P(A_{i_2}) \cdots P(A_{i_m})$

(共有等式
$$C_n^2 + C_n^3 + \cdots + C_n^n = (1+1)^n - C_n^0 - C_n^1$$

= $2^n - 1 - n$ 个)

例 3.加工零件要三道工序,三道工序的次品率分别为 2%、3%和 5%,各道工序互不影响,问加工出来的零件的次品率是多少?

解:设 A_i 表示第i道工序出次品,则 A_1,A_2,A_3 相互独立, $P(A_1)=2\%$, $P(A_2)=3\%$, $P(A_3)=5\%$

三道工序中只要有一道工序出次品,加工出来的零件就是次品,

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3)$$

$$-P(A_1A_2) - P(A_2A_3) - P(A_1A_3) + P(A_1A_2A_3)$$

$$= P(A_1) + P(A_2) + P(A_3) - P(A_1)P(A_2) - P(A_2)P(A_3)$$

$$-P(A_1)P(A_3) + P(A_1)P(A_2)P(A_3)$$

= 0.09693

或者,
$$P(A_1 \cup A_2 \cup A_3) = 1 - P(\overline{A_1} \cup \overline{A_2} \cup \overline{A_3}) = 1 - P(\overline{A_1} \overline{A_2} \overline{A_3})$$

 $= 1 - P(\overline{A_1}) P(\overline{A_2}) P(\overline{A_3})$
 $= 1 - (1 - 2\%) \times (1 - 3\%) \times (1 - 5\%)$
 $= 1 - 0.90307 = 0.09693$

加工出来的零件的次品率是0.09693。

试验的独立性

设有两个试验 E_1 和 E_2 ,试验 E_1 的任一结果(事件 A)与试验 E_2 的任一结果(事件 B)都是独立时,称这两个试验是独立的。

推广到多个试验的相互独立性。对试验 E_1 , E_2 , ..., E_n 而言,如果 E_1 的任一结果, E_2 的任一结果, \cdots E_n 的任一结果都是相互独立的,则称这n个试验相互独立。

如果这n个独立试验是同一种试验,称为n 重复独立试验。进一步,若每次试验的结果只有两个,则这种试验称为n 重伯努利试验。

返

回

复一

1. 样本空间的划分:

 Ω 为试验 E 的样本空间,

 B_1, B_2, \dots, B_n 为 \mathbf{E} 一组事件,若

(1)
$$B_i B_j = \emptyset, i, j = 1, 2, \dots, n; i \neq j$$
;

$$(2) B_1 \cup B_2 \cup \cdots \cup B_n = \Omega$$

则称 B_1, B_2, \dots, B_n 为 Ω 的一个划分。

即:将Ω划分成一组互不相容的事件。

例 1.掷一骰子,观察其点数。

解: 样本空间 $\Omega = \{1,2,3,4,5,6\}$

$$B_1 = \{1,2,3\}$$
, $B_2 = \{4,5\}$, $B_3 = \{6\}$ 是 Ω 的一个划分

$$C_1 = \{1,2,3\}$$
, $C_2 = \{3,4\}$, $C_3 = \{5,6\}$ 不是 Ω 的划分。

2. 全概率公式

$$A$$
 为一事件, B_1, B_2, \dots, B_n 为 Ω 的一个划分,
且 $P(B_i) > 0$, 则
$$P(A) = \sum_{i=1}^n P(A|B_i)P(B_i)$$
 证明: $P(A) = P(A\Omega) = P(A(B_1 + B_2 + \dots + B_n))$
$$= P(AB_1 + AB_2 + \dots + AB_n)$$

$$= P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + \dots + P(A|B_n)P(B_n)$$

$$= \sum_{i=1}^n P(A|B_i)P(B_i)$$

例4.有十个袋子,装球情况如左图所示。任选一个袋子,并从中任取两球. 求取出的两球都是白球

的概率。

解:设A表示取出的2个球都是白球,

 B_i 表示所选的袋子中装球的情况属于第i 种 (i=1,2,3) 。

$$P(B_{1}) = \frac{2}{10}, \qquad P(A|B_{1}) = \frac{C_{2}^{2}}{C_{6}^{2}} = \frac{1}{15};$$

$$P(B_{2}) = \frac{3}{10}, \qquad P(A|B_{2}) = \frac{C_{3}^{2}}{C_{6}^{2}} = \frac{3}{15};$$

$$P(B_{3}) = \frac{5}{10}, \qquad P(A|B_{3}) = \frac{C_{4}^{2}}{C_{6}^{2}} = \frac{6}{15}.$$

$$\therefore P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3)$$

$$= \frac{2}{10} \cdot \frac{1}{15} + \frac{3}{10} \cdot \frac{3}{15} + \frac{5}{10} \cdot \frac{6}{15} = \frac{41}{150} = 0.273$$

例 5.某工厂生产的产品以 100 个为一批。在进行抽样调查时,只从每批中抽取 10 个来检查,如果发现其中有次品,则认为这批产品是不合格的。假定每一批产品中的次品最多不超过 4 个,并且其中恰有 *i*(*i* = 0,1,2,3,4) 个次品的概率如下:

一批产品中	中有次品数	(0	1	2 3	4
概	率	0.1	0.2	0.4 0.2	0.1

求各批产品通过检查的概率。

解:设事件 B_i 表示一批产品中有i个次品(i=0,1,2,3,4),

则
$$P(B_0) = 0.1, P(B_1) = 0.2, P(B_2) = 0.4,$$

$$P(B_3) = 0.2, P(B_4) = 0.1.$$

设事件A表示这批产品通过检查,即抽样检查的 10 个产品都是合格品,则 $P(A|B_0) = 1$,

$$P(A|B_1) = \frac{C_{99}^{10}}{C_{100}^{10}} = 0.900, \quad P(A|B_2) = \frac{C_{98}^{10}}{C_{100}^{10}} = 0.809,$$

$$P(A|B_3) = \frac{C_{97}^{10}}{C_{100}^{10}} = 0.727, \quad P(A|B_4) = \frac{C_{96}^{10}}{C_{100}^{10}} = 0.652$$

$$\therefore P(A) = \sum_{i=0}^{4} P(A|B_i) P(B_i) = 0.8142$$

全概率公式 $P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$

 $P(B_i)$ — 试验前的假设概率。(i = 0,1,2,...,n) 如果进行一次试验,事件 A 确实发生了,则应当重新估计事件的概率,即求 $P(B_i|A)$ 。

 $P(B_i|A)$ ——试验后的假设概率。 $(i=0,1,2,\dots,n)$

3. 贝叶斯公式:

A 为一事件, B_1, B_2, \dots, B_n 为 Ω 的一个划分, 且 P(A) > 0, $P(B_i) > 0, i = 1, 2, \dots, n$

$$\boxed{\text{III}} \quad P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{i=1}^{n} P(A|B_i)P(B_i)}, i = 1, 2, \dots, n$$

例6. 商店论箱出售玻璃杯,每箱20只,其中每箱含0,1,2只次品的概率分别为0.8,0.1,0.1,某顾客选中一箱,从中任选4只检查,结果都是好的,便买下了这一箱.问这一箱含有一个次品的概率是多少?

解:设A:从一箱中任取4只检查,结果都是好的.

B₀, B₁, B₂分别表示事件每箱含0, 1, 2只次品

已知: $P(B_0)=0.8$, $P(B_1)=0.1$, $P(B_2)=0.1$ $P(A \mid B_0)=1$

曲Bayes公式:
$$P(A \mid B_1) = \frac{C_{19}^4}{C_{20}^4} = \frac{4}{5} P(A \mid B_2) = \frac{C_{18}^4}{C_{20}^4} = \frac{12}{19}$$

$$P(B_1 \mid A) = \frac{P(B_1)P(A \mid B_1)}{\sum_{i=0}^{2} P(B_i)P(A \mid B_i)} = \frac{0.1 \times \frac{4}{5}}{0.8 \times 1 + 0.1 \times \frac{4}{5} + 0.1 \times \frac{12}{19}} \approx 0.0848$$

例7. 数字通讯过程中,信源发射0、1两种状态信号,其中发0的概率为0.55,发1的概率为0.45。由于信道中存在干扰,在发0的时候,接收端分别以概率0.9、0.05和0.05接收为0、1和"不清"。在发1的时候,接收端分别以概率0.85、0.05和0.1接收为1、0和"不清"。现接收端接收到一个"1"的信号。问发端发的是0的概率是多少?

解:设A---发射端发射0,

B---接收端接收到一个"1"的信号.

$$P(A | B) = \frac{P(B | A)P(A)}{P(B | A)P(A) + P(B | A)P(A)} = \frac{0.05 \times 0.55}{0.05 \times 0.55 + 0.85 \times 0.45} = 0.067$$

例 8.临床诊断记录表明,利用某种试验坚持检 查癌症具有如下的效果: 对癌症患者进行 试验结果呈阳性反应者占95%,对非癌症 患者进行试验呈阴性反应者占96%。现在 用这种试验对某市居民进行癌症普查,如 果该市癌症患者数约占居民总数的 4‰, 求: (1) 试验结果呈阳性反应的被检查者 确实患有癌症的概率: (2) 试验结果呈阴 性反应的被检查者确实未患癌症的概率。

解:设事件A表示试验结果呈阳性反应,事件B表示被检查者患有癌症,

则据题意:

$$P(B) = 0.004, \quad P(A|B) = 0.95, \quad P(\overline{A}|\overline{B}) = 0.96$$

$$\therefore P(\overline{B}) = 0.996, \quad P(\overline{A}|B) = 0.05, \quad P(A|\overline{B}) = 0.04$$

$$(1)P(B|A) = \frac{P(B)P(A|B)}{P(B)P(A|B) + P(\overline{B})P(A|\overline{B})}$$

$$= \frac{0.004 \times 0.95}{0.004 \times 0.95 + 0.996 \times 0.04} = 0.0871$$

说明:试验结果呈阳性反应的被检查者确实患有癌症的可能性并不大,还需要通过进一步的检查才能确诊。

$$(2)P(\overline{B}|\overline{A}) = \frac{P(\overline{B})P(\overline{A}|\overline{B})}{P(B)P(\overline{A}|B) + P(\overline{B})P(\overline{A}|\overline{B})}$$
$$= \frac{0.996 \times 0.96}{0.004 \times 0.05 + 0.996 \times 0.96} = 0.9998$$

说明:试验结果呈阴性反应的被检查者未患有癌症的可能性极大。

例 9.某工厂生产的产品以 100 个为一批。在进行抽样调查时,只从每批中抽取 10 个来检查,如果发现其中有次品,则认为这批产品是不合格的。假定每一批产品中的次品最多不超过 4 个,并且其中恰有 *i*(*i* = 0,1,2,3,4) 个次品的概率如下:

一批产品中	可有次品数	0	<u> </u>	2 3	4
概	率	0.1	0.2	0.4 0.2	0.1

求通过检查的各批产品中恰有i(i=0,1,2,3,4)个次品的概率。

解:设事件 A 表示这批产品通过检查,即抽样检查的 10 个产品都是合格品,则

$$P(A) = 0.8142$$

设事件 B_i 表示一批产品中有 i 个次品 (i = 0,1,2,3,4),

$$P(B_0) = 0.1, P(B_1) = 0.2, P(B_2) = 0.4,$$

$$P(B_3) = 0.2, P(B_4) = 0.1.$$

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{P(A)}, i = 0,1,2,3,4$$

一批产品中有次品数	0	1	2	3	4
概 率 $P(B_i A)$	0.123	0.221	0.397	0.179	0.080

比较 $P(B_i | A)$ 与 $P(B_i)$

一批产品中有次品数	0	1	2	3	4
概 率 P(B _i)	0.1	0.2	0.4	0.2	0.1

比较:
$$P(B_0|A) > P(B_0)$$
, $P(B_1|A) > P(B_1)$, $P(B_2|A) < P(B_2)$, $P(B_3|A) < P(B_3)$, $P(B_4|A) < P(B_4)$.

结论:没有次品的必然通过检查,较少次品的较易通过检查;次品较多的较难通过检查。 检查前后的次品数的概率分布是有所不同的。 例 10.验收一批(100件)乐器, 验收方案如下: 自该批乐 器中随机地取 3 件测试 (设3件乐器的测试是相 互独立的),如果3件中 至少有一件在测试中被认 为音色不纯,则这批乐器 就被拒绝接受。设一件音 色不纯的乐器经测试查出 其为音色不纯的概率为 0.95; 而一件音色纯的乐 器经测试被误认为不纯的 概率为 0.01。如果已知这 100 件乐器中恰有 4 件是 音色不纯的, 试问: 这批 乐器被接受的概率是多 1>?

解:设A表示乐器被接受,各件乐器彼此独立。设 H_i 表示三件中恰有i 件音色不纯,i = 0,1,2,3,这批乐器被接受,可能是三件中有i (i = 0,1,2,3)件音色不纯但被误认为音色纯,即

$$A = \sum_{i=0}^{3} AH_i,$$

- 一件音色不纯的经测试被误认为音色纯的概率为0.05,
- 一件音色纯的经测试被认为纯的概率为0.99,

$$P(A \mid H_i) = (0.99)^{3-i} (0.05)^i, \quad P(H_i) = \frac{C_4^i C_{96}^{3-i}}{C_{100}^3}, i = 0,1,2,3$$

$$\therefore P(A) = \sum_{i=0}^{3} P(A|H_i)P(H_i) = \sum_{i=0}^{3} (0.99)^{3-i} (0.05)^i \frac{C_4^i C_{96}^{3-i}}{C_{100}^3}$$

$$= 0.8574 + 0.0055 + 0 + 0 = 0.8629$$

例 11.考察由 *n* 个相互独立的元件构成的系统的可靠性, 1) 串联系统; 2) 并联系统。

(元件的可靠性是指一个电子元件能正常工作的概率;系统的可靠性是指由若干个电子元件构成的系统能正常工作的概率。)

解:设 A_i 表示第i个元件可靠, $P(A_i) = p_i$ $i = 1, 2, \dots, n$

1) 串联情况下只有当每个元件都可靠时,系统 才会可靠,所以串联系统可靠性为:

$$P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2) \cdots P(A_n) = p_1 p_2 \cdots p_n$$

2) 并联情况下,只要有一个元件是可靠的,系统就是可靠的,所以并联系统的可靠性为: $P(A_1 \cup A_2 \cup \cdots \cup A_n) = 1 - P(\overline{A_1} \overline{A_2} \cdots \overline{A_n})$

$$=1-P(\overline{A}_1)P(\overline{A}_2)\cdots P(\overline{A}_n)$$

$$=1-(1-p_1)(1-p_2)\cdots(1-p_n)$$

若这n个元件(相互独立)相同, $P(A_i) = p$ $i = 1, 2, \dots, n$

则 串联: $P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2) \cdots P(A_n) = p^n$ 并联: $P(A_1 \cup A_2 \cup \cdots \cup A_n) = 1 - (1 - p)^n$ 例 12.将三个字母 A,B,C 之一输入信道,输出为原字母 的概率为 α ,而输出为其它字母的概率都是 $1-\alpha$ ____。今将字母串 AAAA, BBBB, CCCC 之一 输入信道,输入 AAAA, BBBB, CCCC 的概率分 别为 $p_1, p_2, p_3(p_1 + p_2 + p_3 = 1)$ 。已知输出为 ABCA, 问输入的是 AAAA 的概率是多少? (设信

解: 设A表示输入 AAAA,B表示输入 BBBB,C表示输入 CCCC,D表示输出 ABCA,

已知
$$P(A) = p_1, P(B) = p_2, P(C) = p_3$$

$$P(D|A) = \alpha^{2} \cdot \left(\frac{1-\alpha}{2}\right)^{2}, \quad P(D|B) = \alpha \cdot \left(\frac{1-\alpha}{2}\right)^{3},$$

$$P(D|C) = \alpha \cdot \left(\frac{1-\alpha}{2}\right)^{3}$$

$$P(D) = P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)$$

$$P(A \mid D) = \frac{P(AD)}{P(D)} = \frac{P(D \mid A)P(A)}{P(D)}$$
$$= \frac{2p_1\alpha}{3\alpha p_1 - p_1 + 1 - \alpha}$$

独立性

事件A、B称为相互独立,如果A、B满足下面三个等式之一:

$$P(A \mid B) = P(A)$$

$$P(B \mid A) = P(B)$$

$$P(AB) = P(A)P(B)$$

定理 若A与B相互独立,则A与 \overline{B} 、 \overline{A} 与B、 \overline{A} 与 \overline{B} 也相互独立。

注意: 两两独立 \neq 相互独立. A_1, A_2, \dots, A_n 相互独立

全概率公式 $P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$

 $P(B_i)$ ——试验前的假设概率。($i = 0,1,2,\dots,n$)

 $P(B_i|A)$ ——试验后的假设概率。 ($i = 0,1,2,\dots,n$)

贝叶斯公式

A 为一事件, B_1, B_2, \dots, B_n 为 Ω 的一个划分,且 P(A) > 0,

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{i=1}^{n} P(A|B_i)P(B_i)}, i = 1, 2, \dots, n$$