

matrix B₁₀ 10,010 bytes compression 100:1

 $\begin{array}{l} \textbf{matrix} \ B_{20} \\ 20,020 \ bytes \\ \textbf{compression} \ 50:1 \end{array}$

 $\begin{array}{l} \textbf{matrix} \ B_{50} \\ 50,\!050 \ bytes \\ \textbf{compression} \ 20:1 \end{array}$

 $\begin{array}{l} \textbf{matrix} \ B_{100} \\ 100,100 \ bytes \\ \textbf{compression} \ 10:1 \end{array}$

Theorem

Any A an $m \times n$ matrix can be written as a product

$$A = U\Sigma V^T$$

where:

- $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ is an $m \times m$ orthogonal matrix.
- $V = [v_1 \dots v_n]$ is an $n \times n$ orthogonal matrix.
- Σ is an $m \times n$ matrix of the following form:

$$\begin{bmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \sigma_{n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \vdots & \vdots & \ddots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \sigma_{m} & 0 & \cdots & 0 \end{bmatrix}$$

$$(\text{if } n \leq m)$$

$$(\text{if } n \geq m)$$

where $\sigma_1 \geq \sigma_2 \geq \ldots \geq 0$.

Note.

- The numbers $\sigma_1, \sigma_2, \ldots$ are called *singular values* of A.
- The vectors $\mathbf{u}_1, \dots, \mathbf{u}_m$ are called *left singular vectors* of A.
- Then the vectors v_1, \ldots, v_n are called *right singular vectors* of A.
- The formula $A = U\Sigma V^T$ is called a singular value decomposition (SVD) of A.
- ullet The matrix Σ is uniquely determined, but U and V depend on some choices.

Theorem

Let A be a matrix with a singular value decomposition

$$A = U\Sigma V^{T}$$

lf

$$U = [\mathbf{u}_1 \dots \mathbf{u}_m] \qquad V = [\mathbf{v}_1 \dots \mathbf{v}_n]$$

and $\sigma_1, \ldots, \sigma_r$ are singular values of A then then

$$A = \sigma_1(\mathbf{u}_1\mathbf{v}_1^T) + \sigma_2(\mathbf{u}_2\mathbf{v}_2^T) + \ldots + \sigma_r(\mathbf{u}_r\mathbf{v}_r^T)$$

Application: Image compression

- \bullet The size of this image is 800×700 pixels.
- The color of each pixel is represented by an integer between 0 (black) and 255 (white).
- The whole image is described by a matrix A consisting of $800 \times 700 = 560,000$ numbers.
- Each number is stored in 1 byte, so the image file size is 560,000 bytes (≈ 0.53 MB).

How to make the image file smaller:

1) Compute SVD of the matrix *A*:

$$A = U\Sigma V^T$$

where

$$U = [\mathbf{u}_1 \dots \mathbf{u}_m] \qquad V = [\mathbf{v}_1 \dots \mathbf{v}_n]$$

and $\sigma_1, \ldots, \sigma_r$ are singular values of A.

2) Replace A by the matrix

$$B_k = \sigma_1(\mathbf{u}_1\mathbf{v}_1^T) + \ldots + \sigma_k(\mathbf{u}_k\mathbf{v}_k^T)$$

for some $1 \le k \le 700$. This matrix can be stored using $k \cdot (800 + 700 + 1)$ numbers.

Singular values of the matrix \boldsymbol{A}

matrix B₁ 1501 bytes compression 374:1

matrix B₅ 7905 bytes compression 75:1

matrix B_{10} 15,010 bytes compression 37:1

 $\begin{array}{l} \textbf{matrix} \ B_{20} \\ 30,020 \ bytes \\ \textbf{compression} \ 18:1 \end{array}$

matrix B₅₀ 75,050 bytes compression 7:1

matrix B₁₀₀ 150,100 bytes compression 4:1

$\underline{ \text{How to compute SVD of a matrix } A }$

How to compute SVD of a matrix A

1) Compute an orthogonal diagonalization of the symmetric $n \times n$ matrix A^TA :

$$A^T A = Q D Q^T$$

such that eigenvalues on the diagonal of the matrix D are arranged from the largest to the smallest. We set $V=\mathbb{Q}$.

2) If

$$D = \left[\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{array} \right]$$

then $\sigma_i = \sqrt{\lambda_i}$. This gives the matrix Σ .

Note: if n > m then we use only $\lambda_1, \ldots, \lambda_m$. The remaining eigenvalues $\lambda_{m+1}, \ldots, \lambda_n$ of D will be equal to 0 in this case.

3) Let $V = [v_1 \ldots v_n]$, and let $\sigma_1, \ldots, \sigma_r$ be non-zero singular values of A. The first r columns of the matrix $U = [u_1 \ldots u_m]$ are given by

$$\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$$

The remaining columns $\mathbf{u}_{r+1}, \ldots, \mathbf{u}_m$ can be added arbitrarily so that U is an orthogonal matrix (i.e. $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$) is an orthonormal basis of \mathbb{R}^m .