

Heterogeneity in meta-analysis: What it is and what to do with it

Jaime Peters j.peters@exeter.ac.uk

Weighted average of the results of each study

Fixed effects meta-analysis

- Assumes all studies are estimating the same underlying effect (OR, HR, RR, mean difference)
- The only variation between estimates from studies is due to random error

Fixed effects meta-analysis

Fixed effects inverse-variance weighted model

$$Y = \frac{(\frac{1}{var_1} \times y_1) + (\frac{1}{var_2} \times y_2) + \dots + (\frac{1}{var_{10}} \times y_{10})}{\frac{1}{var_1} + \frac{1}{var_2} + \dots + \frac{1}{var_{10}}}$$

This can be generalised as below where the total number of studies in a meta-analysis is k

$$Y = \frac{\sum_{i=1}^{k} w_i y_i}{\sum_{i=1}^{k} w_i} \qquad \text{where } w_i = \frac{1}{var_i}$$

Fixed effects inverse-variance weighted model

 Each study weighted by the inverse of their variance (precision)

- Which of these studies would you expect to get the
 - least weight in the meta-analysis?
 - most weight in the meta-analysis?

Forest plots

Fixed effects meta-analysis

Heterogeneity (between-study variation)

- Fixed effects model only random error explains differences between studies
- However, rarely is it the case that the only differences between the effects across studies are due to random error
- Instead, there may be more heterogeneity (variability) between studies than is expected by chance
- Why might study results differ?

Heterogeneity (between-study variation)

- Country
- Type of intervention
- How intervention is implementation
- Participant age
- Gender mix
- Improvements in technology, e.g. measuring outcomes
- Study design
- Clinical
- Methodological
- Statistical

Heterogeneity (between-study variation)

- Methods exist to
 - Identify whether heterogeneity exists
 - Account for the heterogeneity
 - Explore the sources of heterogeneity

 Understanding why there is heterogeneity between your study estimates may be more important than estimating some average effect

Identifying heterogeneity

• χ² statistical test

- tests that the true treatment effects are the same in all primary studies versus the alternative that at least one treatment effect differs from the others
- Low statistical power to detect heterogeneity if it exists
- Compare to significance level of 0.10 (rather than 0.5)

• I² (and 95% CI)

- Measure of inconsistency across studies
- Percentage of total variation across studies that is due to heterogeneity rather than chance
- $0\% \le I^2 \le 100\%$; Low ≈ 25%, Moderate ≈ 50%, High ≈ 75%
- Cochrane: 0-40% might not be important

30-60% may represent moderate heterogeneity

50%-90% may represent substantial heterogeneity

75%-100% considerable heterogeneity

Fixed effects meta-analysis

Accounting for heterogeneity

Random error PLUS estimate of between study variability, tau²

Accounting for heterogeneity: Random effects inverse-variance weighted model

- In addition to weighting studies by the inverse of their variance, an estimate of between-study heterogeneity is also accounted for
- Using notation from above

$$Y = \frac{\sum_{i=1}^{k} w *_{i} y_{i}}{\sum_{i=1}^{k} w *_{i}}$$
 where $w *_{i} = \frac{1}{var_{i} + tau^{2}}$

and tau² = estimate of between-study heterogeneity

Random effects meta-analysis

$$\bar{Y} = \frac{\left(\frac{1}{var_1 + tau^2} \times y_1\right) + \dots + \left(\frac{1}{var_{10} + tau^2} \times y_{10}\right)}{\frac{1}{var_1 + tau^2} + \dots + \frac{1}{var_{10} + tau^2}}$$

$$var(\bar{Y}) = \frac{1}{\sum_{i=1}^{k} w_{i}}$$

$$var(\overline{Y}) = \frac{1}{\sum_{i=1}^{k} w_{i}}$$
 where $w_{i} = \frac{1}{var_{i} + tau^{2}}$

$$var(\overline{Y}) = \frac{1}{\frac{1}{var_1 + tau^2} + \dots + \frac{1}{var_{10} + tau^2}}$$

Random effects meta-analysis

Interpretation of random effects model

- How does the random effects result differ to the fixed effects?
- What has happened to the study weights?

Random effects meta-analysis

Fixed vs random effects?

- No rules for when to use fixed vs random effects
- Random effects estimate incorporates the heterogeneity, but does not mean heterogeneity is no longer a problem
- Is the average effect useful?
- If too much heterogeneity, don't do a meta-analysis of all studies
- Understand why heterogeneity exists

Exploring sources of heterogeneity (1)

- Subgroup analyses
 - By country
 - By type of intervention
 - By age group of participants

— ...

	More g		Less glu control		Weight		Heart failure risk ratio (95% CI)
	Events	Total	Events	Total			
PPAR agonists							
2005 PROactive ³⁶	281	2605	198	2633	9.5%		1.43 (1.21-1.71)
2006 ADOPT ³⁷	22	1456	28	2895	3.6%		1.56 (0.90-2.72)
2006 DREAM ³⁸	14	2635	2	2634	0.7%		7.03 (1.60–30.90
2009 BARI2D ⁴¹	248	1183	218	1185	9.7%		1.14 (0.97-1.34)
009 RECORD ⁴²	61	2220	29	2227	4.8%		— 2·10 (1·35–3·27)
014 AleCardio ⁴⁶	122	3616	100	3610	7.7%		1.22 (0.94-1.59)
ubtotal	***	13715	100	15184	35.9%	•	1.42 (1.15-1.76)
leterogeneity: Tau²=0·04; χ²=13·82, df=5; p=0·017; l²=6· est for overall effect: Z=3·29; p=0·0010	4%						
DPP-4 inhibitors							
2013 EXAMINE ^{16,17}	106	2701	89	2679	7.3%	 • 	1.19 (0.90-1.58)
2013 SAVOR-TIMI 5315	289	8280	228	8212	9.5%		1.27 (1.07-1.51)
ubtotal		10981		10891	16.8%	•	1.25 (1.08-1.45)
eterogeneity: Tau²=0·00; χ²=0·15, df=1; p=0·70; <i>l</i> ²=0% est for overall effect: Z=2·94; p=0·0033							
ntensive control							
998 UK Prospective Diabetes Study ³⁵	80	2729	36	1138	5.5%		0.91 (0.62-1.34)
008 ACCORD ³⁹	152	5128	124	5123	8.3%	 • • • • • • • • • • • • • • • • • • •	1.18 (0.93-1.49)
008 ADVANCE ⁴⁰	220	5571	231	5569	9.3%		0.95 (0.79-1.14)
009 VADT ⁴³	76	892	82	899	6.7%		0.91 (0.66–1.25)
ubtotal	70	14320	02	12729	29.8%	-	1.00 (0.88-1.13)
		14320		12/29	29.0%	T	1.00 (0.00-1.13)
eterogeneity: Tau ² =0·00; χ^2 =2·80, df=3; p=0·42; I^2 =0% est for overall effect: Z=0·01; p=0·99							
nsulin glargine							
012 ORIGIN⁴⁴	310	6264	343	6273	9.8%		0.90 (0.77-1.05)
btotal		6264		6273	9.8%	◆	0.90 (0.77–1.05)
eterogeneity: not applicable est for overall effect: Z=1·34; p=0·18							
Weight loss							
2013 Look-AHEAD ⁴⁵	99	2570	119	2575	7.7%		0-80 (0-62-1-04)
ubtotal	,,,	2570		2575	7.7%	*	0.80 (0.62-1.04)
leterogeneity: not applicable est for overall effect: Z=1·67; p=0·10							
Total		47850		47652	100%		1.14 (1.01-1.30)
Heterogeneity: Tau²=0·04; χ²=45·56, df=13; p<0·0001; J²	=71%	3-		5-			
Test for overall effect: Z=2.04; p=0.041				0.2	0.5	i 2	5
Test for subgroup differences: χ²=21·85, df=4; p=0.0002:	1, 1′=81.7%	6			rs glucose-low	ering Favours sta	•

Exploring sources of heterogeneity (2)

- Meta-regression
 - Form of subgroup analysis that allows consideration of continuous variables, e.g. year of publication
 - Still allows more precise studies greater weight
 - Accounting for heterogeneity in terms of study/participant characteristics, but still likely to have unexplained heterogeneity – random effects meta-regression

Subgroup analyses & meta-regression

- Make sure enough studies ~ 10 for meta-regression
- Is there scientific rationale for each characteristics?
- Pre-specify small number of study/participant characteristics
 - Reduces chance of spurious findings
- If not pre-specified be clear analyses are post hoc
- Be aware of aggregation bias (ecological fallacy/bias)

Summary

- Understanding heterogeneity between studies is important
- Fixed or random effects meta-analysis = average effect
- Importance in interpretation and usefulness
- Methods for exploring heterogeneity are not ideal, but can be useful
- Hypothesis-generating rather than definitive