

STM32

Training Hands on and Tools overview

4.1.1 ADC Poll lab

Use ADC in polling mode

Objective

- Use the DAC part from previous lab
- Learn how to setup ADC in CubeMX
- How to Generate Code in CubeMX and use HAL functions

Goal

- Configure ADC in poll in CubeMX and Generate Code
- Learn how to start ADC and measure the DAC
- Verify the measured wave in STMStudio
 (http://www.st.com/web/en/catalog/tools/PF251373 require JAVA)

Use ADC in polling mode

Use ADC in polling mode 5

- Hardware connection
 - Connect DAC out2 PA5 and ADC1 IN13 PC3 together

Use ADC in polling mode i

- CubeMX ADC configuration
 - TAB>Configuration>Analog>ADC1>Parametr Settings
 - Set ADC1
 - Set sampling time for CH13
 - Button OK
- DAC from previous example

Use ADC in polling mode

- Now we set the project details for generation
 - Menu > Project > Project Settings
 - Set the project name
 - Project location
 - Type of toolchain
- Now we can Generate Code
 - Menu > Project > Generate Code

Use ADC in polling mode I

- Start process ADC(same for DMA, DAC, TIM)
 - Non blocking start process

Use ADC in polling mode

Open the project in our IDE

- The functions we want to put into main.c
- Between /* USER CODE BEGIN 2 */ and /* USER CODE END 2 */ tags
- and /* USER CODE BEGIN 3 */ and /* USER CODE END 3 */ tags

For DAC start use function

- HAL_DAC_Start(DAC_HandleTypeDef* hdac, uint32_t Channel)
- HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
- HAL ADC GetValue(ADC HandleTypeDef* hadc)

DAC functions

- HAL_DAC_Start(DAC_HandleTypeDef* hdac, uint32_t Channel)
- HAL_DAC_SetValue(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Alignment, uint32_t Data)

Use ADC in polling mode 10

- Solution
 - Variables

```
/* USER CODE BEGIN PV */
uint32 t value adc;
uint32 t value dac=0;
/* USER CODE END PV */
```

DAC setup and start

```
/* USER CODE BEGIN 2 */
HAL DAC Start(&hdac,DAC CHANNEL 2);
HAL DAC SetValue(&hdac, DAC CHANNEL 2, DAC ALIGN 12B R, value dac);
 /* USER CODE END 2 */
```


Use ADC in polling mode

Solution

Main loop with DAC set and ADC set

```
/* USER CODE BEGIN 3 */
/* Infinite loop */
while (1)
   HAL ADC Start(&hadc1);
    HAL ADC PollForConversion(&hadc1,10);
   value adc=HAL ADC GetValue(&hadc1);
    HAL_DAC_SetValue(&hdac, DAC_CHANNEL_2, DAC_ALIGN_12B_R, value_dac);
   value dac++;
    if(value dac>4095){
     value dac=0;
    HAL Delay(1);
/* USER CODE END 3 */
```


Use ADC in polling mode i

- Test the functionality
 - We need the address of variable value_adc
 - This can be found usually in debug mode in watch, my address is 0x2000005C (depends on compilator and optimizations)
- Start the STMStudio
 - Set the ST Link SWD
 - Right click into Display variable settings
 - Select NEW

Use ADC in polling mode

Color

 STM studio settings Display Variables settings Set value adc address my 0x2000005C Address Color Name Type Set 16bit unsigned val D new_0 0x2000005C unsigned 16-bit Right click on this line Select Send To VarViewer1 Display Variables settings Address: Color Name Type α_{n-2} and α_{n-2} unsigned 16-bit D new_0 Delete New Send To VarViewer1 Import ...

Update

Type

Expression

Name

Use ADC in polling mode

STM studio settings

· Viewers settings is on bottom

 Set the correct upper value to 4096(12bit)

Use ADC in polling mode 15

STM studio settings

- Now press green play button
- And you will see content of value_adc

4.1.2 ADC Interrupt lab

Use ADC with interrupt

Objective

- Learn how to setup ADC with interrupt in CubeMX
- How to Generate Code in CubeMX and use HAL functions

Goal

- Configure ADC in interrupt in CubeMX and Generate Code
- Learn how to start ADC
- Verify the measured wave in STMStudio (http://www.st.com/web/en/catalog/tools/PF251373 require JAVA)

- Create project in CubeMX
 - Menu > File > New Project
 - Select STM32F0 > STM32F030 > LQFP64 > STM32F030R8

- CubeMX ADC configuration
 - TAB>Configuration>Analog>ADC1>Parametr Settings
 - Set ADC1
 - Set sampling time for CH13
 - Button OK

- CubeMX ADC configuration
 - TAB>NVIC settings
 - Enable ADC1 interrupt
 - Button OK

Use ADC with interrupt 21

CubeMX NVIC configuration

- Because we want use the Systick for delay in interrupt The ADC interrupt priority must be changed
- TAB>Configuration>System>NVIC
- Change ADC1 preemption priority to 1

- Now we set the project details for generation
 - Menu > Project > Project Settings
 - Set the project name
 - Project location
 - Type of toolchain
- Now we can Generate Code
 - Menu > Project > Generate Code

Use ADC with interrupt 23

HAL Library ADC with IT flow

- Open the project in our IDE
 - The functions we want to put into main.c
 - Between /* USER CODE BEGIN 2 */ and /* USER CODE END 2 */ tags
 - and /* USER CODE BEGIN 4 */ and /* USER CODE END 4 */ tags
- For DAC start use function
 - HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc, uint32_t Channel)
 - HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)
- ADC complete callback function
 - HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)

Use ADC with interrupt 25

- Solution
 - Variables

```
/* USER CODE BEGIN PV */
uint32 t value adc;
/* USER CODE END PV */
```

Start ADC

```
/* USER CODE BEGIN 2 */
HAL_ADC_Start_IT(&hadc1);
  /* USER CODE END 2 */
```


- Solution
 - ADC complete callback routine

```
/* USER CODE BEGIN 4 */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
    value_adc=HAL_ADC_GetValue(&hadc1);
    HAL_Delay(1);
    HAL ADC Start IT(&hadc1);
}
/* USER CODE END 4 */
```


- STM studio settings
 - Check functionality again with STMstudio

Appendix B Documents

CubeMX documentation 29

- CubeMX user manual UM1718
 - http://www.st.com/st-webui/static/active/en/resource/technical/document/user_manual/DM00104712.pdf
- CubeMX release note RN0094
 - http://www.st.com/st-webui/static/active/en/resource/technical/document/user_manual/DM00104712.pdf
- CubeMX technical note TN0072
 - http://www.st.com/st-webui/static/active/en/resource/technical/document/technical_note/CD00214439.pdf

B

STM32F429i-Discovery documentation

- STM32F429i-Discovery page
 - http://www.st.com/web/en/catalog/tools/FM116/SC959/SS1532/LN1848/PF259090?s_searchtyp e=keyword
- STM32F429i-Discovery user manual with discovery schematics
 - http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00093903.pdf

