Maths 101 : Préparation du test 1

Anatole DEDECKER

29 septembre 2019

1 Vrai

Soient f et g définies par :

$$f: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ x \mapsto |x-1| \end{array} \right. \text{ et } g: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ x \mapsto |x+1| \end{array} \right.$$

f et g sont définies sur \mathbb{R} , donc leur composée $g \circ f$ est définie sur \mathbb{R} , et on a :

$$\forall x \in \mathbb{R} \quad (g \circ f)(x) = ||x - 1| + 1| = |x - 1| + 1 \quad \text{car } |x - 1| + 1 \ge 0 \text{ toujours}$$

Si x > 1, on a:

$$(g \circ f)(x) = |x - 1| + 1 = x - 1 + 1 = x$$

Si $x \leq 1$, on a:

$$(g \circ f)(x) = |x - 1| + 1 = 1 - x + 1 = 2 - x$$

On a donc bien:

$$\forall x \in \mathbb{R} \quad (g \circ f)(x) = \left\{ \begin{array}{ll} 2 - x & \text{si } x \leq 1 \\ x & \text{si } x > 1 \end{array} \right.$$

2 Vrai

Montrons que $f: x \mapsto \sqrt{(x^3-1)(x-1)}$ est bien définie sur \mathbb{R} , et à valeurs réelles. Par stricte croissance de $x \mapsto x^3$ sur \mathbb{R} , on a :

$$x^{3} - 1 \ge 0 \iff x^{3} \ge 1$$
$$\iff x \ge \sqrt[3]{1} = 1$$
$$\iff x - 1 \ge 0$$

On a donc, $\forall x \in \mathbb{R}, \operatorname{sgn}(x^3 - 1) = \operatorname{sgn}(x - 1)$, où $\operatorname{sgn}(x)$ est le signe de x. Il vient finalement :

$$\forall x \in \mathbb{R}, (x^3 - 1)(x - 1) \ge 0$$

La fonction racine carrée étant définie sur \mathbb{R}_+ , à valeurs dans \mathbb{R} , la fonction f est bien une fonction de \mathbb{R} dans \mathbb{R} .

3 Faux

On remarque que $\forall n \in \mathbb{N}$, f(n) peut s'écrire comme un quotient de nombres entiers. On a donc $f(\mathbb{N}) \subset \mathbb{Q}$.

Or, on a $\sqrt{2} \in \mathbb{R}$, mais $\sqrt{2} \notin \mathbb{Q}$, donc $\forall n \in \mathbb{N}$, $f(n) \neq \sqrt{2}$.

Cette fonction $f:\mathbb{N}\to\mathbb{R}$ n'est donc pas surjective. Elle ne peut donc être bijective.

4 Vrai

Soit $f: \mathbb{N} \to \mathbb{Z}$ définie par :

$$f(n) := \begin{cases} \frac{n}{2} & \text{si } n \text{ pair} \\ -\frac{n+1}{2} & \text{sinon} \end{cases}$$

Montrons d'abord que f est bien définie et à valeurs dans \mathbb{Z} .

Soit $n \in \mathbb{N}$. Montrons que $f(n) \in \mathbb{Z}$

— Si n est pair, $\exists k \in \mathbb{N}$ t.q n=2k. On a alors :

$$f(n) = f(2k) = \frac{2k}{2} = k \in \mathbb{Z}_+ \subset \mathbb{Z}$$

$$(4.1)$$

— Si n est imppair, $\exists k \in \mathbb{N} \text{ t.q } n = 2k + 1$. On a alors :

$$f(n) = f(2k+1) = -\frac{2k+2}{2} = -(k+1) \in \mathbb{Z}_{-}^{*} \subset \mathbb{Z}$$
 (4.2)

Donc f est bien définie sur \mathbb{N} , à valeurs dans \mathbb{Z} .

Montrons maintenant que f est bijective.

Cela revient à montrer que, $\forall y \in \mathbb{Z}$, l'équation y = f(n), d'inconnue n, admet une unique solution. Résolvons donc cette équation.

D'après (4.1) et (4.2), on a les équivalences suivantes :

$$\begin{cases} y \in \mathbb{Z}_+ \iff n \text{ pair} \\ y \in \mathbb{Z}_-^* \iff n \text{ impair} \end{cases}$$
 (4.3)

— Si $y \ge 0$, d'après (4.3), l'équation s'écrit :

$$y = f(n) \iff y = \frac{n}{2}$$
$$\iff n = 2y$$

Donc l'équation y = f(n) admet bien une unique solution pour $y \in \mathbb{Z}_+$ — Si y < 0, d'après (4.3), l'équation s'écrit :

$$y = f(n) \iff y = -\frac{n+1}{2}$$

 $\iff n = -2y - 1$

Donc l'équation y = f(n) admet bien une unique solution pour $y \in \mathbb{Z}_{-}^*$

On a donc bien que, $\forall y \in \mathbb{Z}$, l'équation y = f(n), d'inconnue n, admet une unique solution.

f est donc bijective.

5 Faux

Soit $\left(u_n := e^{n^3} - e^n\right)_{n \in \mathbb{N}^*}$. Montrons que $\lim_{n \to +\infty} u_n = +\infty$.

$$u_n = e^{n^3} - e^n$$

$$= e^n \left(\frac{e^{n^3}}{e^n} - 1 \right)$$

$$u_n = e^n \left(e^{n^3 - n} - 1 \right)$$

Donc, on trouve, par composition, différence et produit des limites :

$$\lim_{n \to +\infty} u_n = \left(\lim_{n \to +\infty} e^n\right) \times \left(\lim_{n \to +\infty} \left(e^{n^3 - n} - 1\right)\right) = +\infty$$

D'où, par unicité de la limite, $\lim_{n\to+\infty} e^{n^3} - e^n \neq 0$.

6 Vrai

Soit $\left(u_n:=\frac{3\ln^2(n)}{\mathrm{e}^{\frac{1}{n}}+(1+\ln(n))^2}\right)_{n\in\mathbb{N}^*}$. On veut montrer que (u_n) converge, et que $\lim_{n\to+\infty}u_n=3$. On remarque qu'à partir du rang n=2, (u_n) est à termes non nuls. On s'intéresse donc au comportement en l'infini de la suite $\left(v_n:=\frac{1}{u_n}\right)_{n\geq 2}$. On a $\forall n\in [\![2;+\infty]\!]$:

$$v_n = \frac{1}{u_n}$$

$$= \frac{e^{\frac{1}{n}} + (1 + \ln(n))^2}{3 \ln^2(n)}$$

$$= \frac{1}{3} \times \frac{e^{\frac{1}{n}} + 1 + 2 \ln(n) + \ln^2(n)}{\ln^2(n)}$$

$$= \frac{1}{3} \left(\frac{e^{\frac{1}{n}}}{\ln^2(n)} + \frac{1}{\ln^2(n)} + \frac{2}{\ln(n)} + 1 \right)$$

Or, on a $\lim_{n\to+\infty}\ln(n)=\lim_{n\to+\infty}\ln^2(n)=+\infty$ et $\lim_{n\to+\infty}\mathrm{e}^{\frac{1}{n}}=0$. D'où, par somme et produit des limites, (v_n) converge, et :

$$\lim_{n \to +\infty} v_n = \frac{1}{3}$$

Or, par définition de (v_n) , on a $\forall n \in [2; +\infty]$:

$$u_n = \frac{1}{v_n}$$

D'où, par composition des limites :

$$\lim_{n\to +\infty} u_n = \frac{1}{\lim_{n\to +\infty} v_n} = 3$$

L'affirmation est donc vraie.

7 Faux

Soit $\left(u_n := \frac{n^2 + n \ln(n)}{n^3}\right)_{n \in \mathbb{N}^*}$. Montrons d'abord que (u_n) tend vers 0. On a $\forall n \in \mathbb{N}^*$:

$$u_n = \frac{n^2 + n \ln(n)}{n^3}$$
$$= \frac{n^2}{n^3} + \frac{n \ln(n)}{n^3}$$
$$= \frac{1}{n} + \frac{\ln(n)}{n^2}$$

Par croissances comparées, $\lim_{n\to+\infty}\frac{\ln(n)}{n^2}=0$. D'où, par somme des limites, (u_n) converge, et :

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1}{n} + \lim_{n \to +\infty} \frac{\ln(n)}{n^2} = 0$$

On a donc, par définition de la convergence d'une suite :

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}^* \text{ t.q } \forall n \geq N_{\varepsilon}, |u_n| < \varepsilon$$

En particulier, en prenant $\varepsilon = \frac{1}{2}$, il vient :

$$\exists N_{\frac{1}{2}} \in \mathbb{N}^* \text{ t.q } \forall n \ge N_{\frac{1}{2}}, |u_n| < \frac{1}{2}$$
 (7.1)

Prouvons alors, par l'absurde, que l'affirmation 7 est fausse. Supposons qu'elle soit vraie, c'est à dire :

$$\exists M \in \mathbb{N}^* \text{ t.q } \forall n \ge M, u_n > \frac{1}{2}$$
 (7.2)

On pose $N = \max(N_{\frac{1}{2}}, M)$. D'après (7.1) et (7.2), on a $\forall n \geq N$:

$$\begin{cases} |u_n| < \frac{1}{2} \\ u_n > \frac{1}{2} \end{cases}$$

Ce qui est impossible. L'affirmation est donc fausse.

8 Faux

Soit $(u_n := (1 + \frac{1}{n})^n)_{n \in \mathbb{N}^*}$. Montrons que $\lim_{n \to +\infty} u_n = e$. On s'intéressera à la suite $(v_n := \ln(u_n))_{n \in \mathbb{N}^*}$, bien définie car $\forall n \in \mathbb{N}^*, u_n > 0$ On a $\forall n \in \mathbb{N}^*$:

$$v_n = \ln(u_n)$$

$$= \ln\left(\left(1 + \frac{1}{n}\right)^n\right)$$

$$= n\ln\left(1 + \frac{1}{n}\right)$$

$$= \frac{\ln\left(1 + \frac{1}{n}\right) - \ln(1)}{\frac{1}{n}}$$

On pose $h = \frac{1}{n}$. On remarque que $\lim_{n \to +\infty} h = 0$. De plus, par dérivabilité de ln en 1, et par définition de la dérivée, on a :

$$\lim_{h \to 0} \frac{\ln(1+h) - \ln(1)}{h} = \ln'(1) = \frac{1}{1} = 1$$

Par composition des limites, il vient que (v_n) converge, et :

$$\lim_{n\to+\infty}v_n=\lim_{n\to+\infty}\frac{\ln\left(1+\frac{1}{n}\right)-\ln(1)}{\frac{1}{n}}=\lim_{h\to0}\frac{\ln\left(1+h\right)-\ln(1)}{h}=1$$

Or, on a par définition, on a $\forall n \in \mathbb{N}^*$:

$$u_n = \exp(\ln(u_n)) = \exp(v_n)$$

D'où, par composition des limites, (u_n) converge, et :

$$\lim_{n \to +\infty} u_n = \exp\left(\lim_{n \to +\infty} v_n\right) = \exp(1) = e$$

D'où, par unicité de la limite, $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n \neq 1$.

9 Vrai

Soit $(u_n := \sum_{k=1}^n \frac{1}{k})_{n \in \mathbb{N}^*}$. On a $\forall n \in \mathbb{N}^*$:

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= \frac{1}{n+1}$$
$$u_{n+1} - u_n > 0$$

Donc (u_n) est croissante.

10 Vrai

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite croissante. Posons : $(v_n)_{n\in\mathbb{N}^*}:=\left(\frac{\sum_{k=1}^n u_n}{n}\right)_{n\in\mathbb{N}^*}$ On veut montrer que (v_n) est croissante, c'est à dire :

$$\forall n \in \mathbb{N}^* \quad v_{n+1} \ge v_n$$

— Montrons dans un premier temps que (v_n) est majorée par (u_n) . Soit n un entier naturel non nul fixé. Par croissance de (u_n) , on a :

$$\forall k \in [1; n] \quad u_k \le u_n$$

En sommant sur [1; n], il vient :

$$\sum_{k=1}^{n} u_k \leq \sum_{k=1}^{n} u_n$$

$$\sum_{k=1}^{n} u_k \leq nu_n$$

$$v_n \leq u_n$$

On a donc bien:

$$\forall n \in \mathbb{N}^* \quad v_n \le u_n \tag{10.1}$$

— Montrons alors la croissance de v_n . On remarque dans un premier temps la relation de récurrence suivante pour (v_n) :

$$\forall n \in \mathbb{N}^* \quad v_{n+1} = \frac{\sum_{k=1}^{n+1} u_k}{n+1}$$

$$= \frac{\sum_{k=1}^{n} u_k + u_{n+1}}{n+1}$$

$$v_{n+1} = \frac{nv_n + u_{n+1}}{n+1}$$
(10.2)

En combinant (10.1) avec la croissance de (u_n) , on trouve $\forall n \in \mathbb{N}^*$:

$$\begin{array}{rcl} v_n & \leq & u_{n+1} \\ nv_n + v_n & \leq & nv_n + u_{n+1} \\ \frac{(n+1)v_n}{n+1} & \leq & \frac{nv_n + u_{n+1}}{n+1} \\ v_n & \leq & v_{n+1} \end{array}$$

Ce qui prouve la croissance de (v_n) .

11 Vrai

On note $E:=\{2-2^{-n},n\in\mathbb{N}^*\}$. Montrons que $\sup(E)=2$. Premièrement, on a $\forall n\in\mathbb{N}^*$:

$$2^{-n} = \frac{1}{2^n} > 0$$
$$2 - 2^{-n} < 2$$

2 est donc un majorant de E. De plus, on a :

$$\lim_{n \to +\infty} 2 - 2^{-n} = 2$$

2 est un majorant de E, ainsi que la limite de la suite $(2-2^{-n})_{n\in\mathbb{N}^*}$ à valeurs dans E.

On a donc bien $\sup(E) = 2$.

12 Faux

Soit $(u_n := (-1)^n)_{n \in \mathbb{N}^*}$. Montrons que (u_n) est un contre-exemple à l'affirmation 12.

On a:

$$\forall n \in \mathbb{N}^* \quad \frac{u_{n+1}}{u_n} = -1$$

On a donc bien $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=-1$ Cependant, (u_n) n'est pas convergente. L'affirmation est donc fausse.

13 Vrai

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de réels non nuls telle que $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\frac{1}{2}$. Montrons que (u_n) converge.

On a, par définition de la convergence d'une suite :

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}^* \text{ t.q } \forall n \geq N_{\varepsilon}, \frac{1}{2} - \varepsilon < \frac{u_{n+1}}{u_n} < \frac{1}{2} + \varepsilon$$

En particulier, en posant $\varepsilon = \frac{1}{2}$, on trouve :

$$\exists N_{\frac{1}{2}} \in \mathbb{N}^* \text{ t.q } \forall n \ge N_{\frac{1}{2}}, 0 < \frac{u_{n+1}}{u_n} < 1$$
 (13.1)

On remarque notamment qu'à partir du rang $N_{\frac{1}{2}}$, la suite quotient $\left(\frac{u_{n+1}}{u_n}\right)$ est à termes positifs, ce qui implique que (u_n) est de signe constant à partir du rang $N_{\frac{1}{2}}$.

(13.1) s'écrit alors $\forall n \geq N_{\frac{1}{2}}$:

$$0 < \left| \frac{u_{n+1}}{u_n} \right| < 1$$
$$0 < \frac{|u_{n+1}|}{|u_n|} < 1$$
$$0 < |u_{n+1}| < |u_n|$$

À partir du rang $N_{\frac{1}{2}}$, la suite $(|u_n|)_{n\in\mathbb{N}^*}$ est donc décroissante et minorée par 0. Elle est donc convergente.

Or, (u_n) est non nulle et de signe constant à partir du rang $N_{\frac{1}{2}}$. Donc la convergence de $(|u_n|)$ implique la convergence de (u_n) .

L'affirmation est donc vraie.

14 Faux

On a $\forall n \in \mathbb{N}$:

$$-1 \le \sin(n) \le 1$$

La suite $(\sin(n))_{n\in\mathbb{N}}$ est donc bornée. D'après le théorème de Bolzano-Weirstrass, elle admet donc au moins une valeur d'adhérence dans [-1;1]. Par définition, cela signifie que $(\sin(n))_{n\in\mathbb{N}}$ admet une suite extraite qui converge vers cette valeur d'adhérence.

L'affirmation est donc fausse.

15 Vrai

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy. Par définition :

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N} \text{ t.q } \forall (p,q) \in [N_{\varepsilon}; +\infty]^2, |u_p - u_q| < \varepsilon$$

Où on peut, quitte à ajouter 2, prendre $N_{\varepsilon} > 1$.

En particulier, en posant $\varepsilon = 1$, puis $q = N_1$ on trouve :

$$\exists N_1 \in \mathbb{N} \text{ t.q } \forall p \geq N_1, |u_p - u_{N_1}| < 1$$

En appliquant l'inégalité triangulaire, on a alors $\forall n \geq N_1$:

$$|u_n - u_{N_1} + u_{N_1}| \le |u_n - u_{N_1}| + |u_{N_1}| < |u_{N_1}| + 1$$

 $|u_n| < |u_{N_1}| + 1$ (15.1)

De plus, l'ensemble $\{|u_n|, n \in \llbracket 0; N_1 - 1 \rrbracket \}$ étant non-vide $(u_0$ lui appartient car $N_{\varepsilon} > 1)$ et de cardinal N_1 fini, il admet un maximum, et on a $\forall n \in \llbracket 0; N_1 - 1 \rrbracket$:

$$|u_n| \le \max\left(\{|u_n|, n \in [0; N_1 - 1]\}\right)$$
 (15.2)

En combinant (15.1) et (15.2), il vient :

$$\forall n \in \mathbb{N}, |u_n| \le \max\left(\{|u_n|, n \in [0; N_1 - 1]\}\right) \cup \{|u_{N_1}| + 1\}\right)$$

 $(|u_n|)$ est majorée, donc (u_n) est bornée.