91 A 725 Differentra Geomety, I.

· We will assume familiarity of the thing of smooth manifolds. [So, for example, the textbook of Lee].

Differential geometry is the study of smooth manifolds equipped w/ additional structure: a Riemannian metre.

mepts of length, angt, volum...

Ifn: An inver product on a real vector space V

is a symmetric bilinear map

(-,-): V × V — R

such that:

• $\langle v, v \rangle \rangle$, o for all $v \in V$ and if $\langle v, v \rangle = 0$ then v = 0. (non-depende).

Ex: Let $\{e; \}$ be a basis for J.

Define $\{-1-7\}$ on basis elements by $\{e; \{e; \}\} = \{i\} = \{i\}.$

This is the "Standard inner product" or "dot product" associated to a basis.

Len: If $\langle -, - \rangle$ is on inner product on V only $V \subset V$ is a subspace, then $\langle -, - \rangle \mid_{W \times W} : W \times W \to \mathbb{R}$

is an inver product on li

· Inner products and matrices.

Again, let {e;} be a basis for V.

The innur product (-,-) is determined by

its which or pairs of dosis elements.

Sps
$$\langle e_i, e_j \rangle =: b_{ij} \in \mathbb{R}$$
.

Then the case think of $B = (b_{ij})$

There we can think of B = (bij) as a $n \times n$ matrix. By assumption bij = bij, so B is symmetric, $B^T = B$.

Prop: The motion B = (bij = (ei, ej)) is positive definite, in the sense

2TB2) O for all 2 ER", Zo?

In fact, there is a bijection

H: Easy.

· The &- Hom adjunction formula gius Hombilinar (1x1) B (-,-) Hom (V&V, R) = Hom(V, V) The condition that /-,-? is nondependente is equivalent to the condition that the correspondiy liver map 1 - 1 V is on isomorphism.

Going further, we see that (-,-) defins a vector in $V \otimes V$. A bosts for this vector space is $\{e^i \otimes e^j\}$ where $\{e^i\}$ is the dock bosts to $\{e_i\}$. Therefore $\{-,-\}$ = $\{e^i\}$ if $\{e^i\}$ is $\{e^i\}$ if $\{e^i\}$ if

where bij = (ei,ej).

Sps (V, L-,-7) is on inner product. space.

Some additional consepts:

(i) A linear boundary
$$F: (V, \langle -, -7 \rangle) \rightarrow (W, \langle -, -7 \rangle)$$
is a linear up s.t.

$$(F(v), F(w))_{w} = (v, w)_{v}$$

fu all v, we V.

The set of bijective line isometres
$$V \rightarrow V$$

from a group that is denoted
 $O(V) = \text{"orthogonal group"}.$

3 If
$$W \subset V$$
 is a subspace. Let
$$W^{\perp} = \frac{2}{3} \times \epsilon V / (v, w) = 0 \quad \forall w \in W^{2}.$$

"the perpendruler space".

* Manifolds. Let H be a smooth manifold and TH is its tangent bundle. A Riemannian metric will be the data of an inverproduct on TpM for each peM.

The technical thing is that we require that $(-1)^2 p$ vary smoothly as a function of p.

Dfn: A Riemannian Hebric on H is an inverse product (-,-) p on T_pH for each p, such that for all C^{ab} -vector fields X_1Y the function (X_p, Y_p) $\in \mathbb{R}$ is smooth (C^{ab}) .

Rmk: We will go back and forth between the notations (-,-) and g

for a Riem. website.

Exercise: A Rien. netric determines a smooth section of TH & T2H.

• In book worknotes we can expuss: $9 = 9ij dx^{i} dx^{j}$

where: - { xi} is a bound coordinate.

- { oil, {docil are the corresponding local frames for TM, Tan respectably.

- gij = g(3i,3j).

Ex: The "cononical" metric on R" is

 $g_{con} = \delta_{ij} dx^i dx^j = \sum_i dx^i dx^i$

We are using Einstein sumation convention of repeated indices. So, this is $\sum_{i,j} S_{ij} dx^i dx^j = \sum_i dx^i dx^i$

 $M = R^2 - \{\theta = \pi\}$ 7 = 7 cos 8 we have polar workinster $y = r'sin\theta$. In polar coordinates, the constral/flot metric is dr² + r² d 9°. That 75: 9 - - 1 3 9 - - 9 - - 0 900 = m². 2x = cos 8 dr - rsin8 d8

1 = sin 9 dr + rcos 8 d8 To see this, note: 22 = cos 20 22 + 22 22/0 90 - 2020 22/0 1-90 12 = 22 g qu' + 2 cos 0 70 + 2 cos 0 24 q q q q

· Let (M,9) be a Riemannian nomfol (= a montole equipped w/ a Ren netriz.)

If H is another manifold, onel

F: H -> H

is a smooth nup, we get new netre Fig on I defind by:

 $(F^*g)(v,\omega) = g(JF(v),JF(\omega))$.

· A Riemanieur map is a smooth up $f: (M, g_M) \longrightarrow (N, g_N)$

S.t. 9H = F 9N.

· A diffeomorphism $F: M \rightarrow M$ for which $F^*g = g$ is collect an isometry.

Dh: Defire the group of isometries

Isom (H,g) = {F:H-M| F=g=g|.

A Romannian innersion is an innersion $Y: M \longrightarrow N$ $S.t. Y^2 JJ = JM.$

Ex: What are the Riemannian immersions $\gamma: \mathbb{R}^2 \to \mathbb{R}^2$?

where we use the flot nature for both \mathbb{R}^2 .

- lines, of course...

- γ come of constant speed $|\gamma'(t)| = 1$.

 $\mathcal{T}(t) = (\cos t, \sin t), \quad t \in \mathbb{N}$ for example.

For a Riemannian embedding
$$\gamma: \mathbb{R} \hookrightarrow \mathbb{R}^2$$

$$\gamma: \mathbb{R} \hookrightarrow \mathbb{R}^2$$

$$\gamma(t) = \left(\log \left(t + \sqrt{1+t^2} \right), \sqrt{1+t^2} \right)$$

$$\frac{d}{dt} \log \left(t + \sqrt{1+t^2}\right) = \frac{1+\sqrt{1+t^2}}{t + \sqrt{1+t^2}} = \frac{1}{\sqrt{1+t^2}}$$

$$\left(\begin{array}{c} \chi^{\alpha} \\ \end{array} \right) \left(t \right) = \left(\frac{1}{1+t^{2}} + \frac{t^{2}}{1+t^{2}} \right) dt^{2}$$

$$= d^2.$$

So y preserves the standard metres.

Riemannian submersion is a submersion

OF : (ker DFp) TF(p) N

is linear isomety.

Ex: Consider the embedding: $i: S^n \longrightarrow \mathbb{R}^{n+1}.$ $i \times \in \mathbb{R}^{n+1} \mid ||x|| = 1$ Then, from $g_{s+d} = \sum_{i} (dx^i)^2$, we get a metric is

 $i^{2}g_{SHd}$ on S^{n} .

Ex: Use complex coordinates to write $R^{H} = R^{2} \times R^{2} = \mathbb{C} \times \mathbb{C} = \mathbb{C}^{2}$

Note that $\|z\|^2 = |2|^2 + |2|^2 = 2|2| + 2|2|^2$.

 $S^{3}(1) = \begin{cases} ||x||^{2} = 1 \end{cases} \subset \mathbb{R}^{4}$ $||x||^{2} = 1 \end{cases} \subset \mathbb{R}^{4}$ $||x||^{2} + ||x||^{2} = 1 \end{cases} \subset \mathbb{C}^{2}.$

$$S^{2}(\frac{1}{2}) = \begin{cases} x^{2} + 2\overline{2} = 1 \end{cases} \subset \mathbb{R}^{3}$$

$$\mathbb{R} \times \mathbb{C}.$$

Define
$$F: S^{3}(1) \longrightarrow S^{2}(\frac{1}{2})$$

$$F(2_1,2_2) = \left(\frac{1}{2}(|2_1|^2 - |2_2|^2), 2_1^2\right).$$

We will shortly prove that this F is a Riem. Submission.