Assignment #3 Due: Oct. 12th, 2023

Parameters & Values

	Roof	2500 sqft
	Wall	1368 sqft
Areas	Window	600 sqft
	Door	32 sqft
	Floor	2500 sqft
T_room		75°F
Total supply Air		1 CMF/sqft
Fresh/Outside/V	entilation Air	20% of total supply air
	Roof	0.034 Btu/hr-sqft-℉
U-value	Wall	0.065 Btu/hr-sqft-℉
	Door	0.320 Btu/hr-sqft-℉
Occupancy Densi	ty	200 sqft/person
People	Sensible heat	255 Btu/hr-person
reopie	Latent heat	155 Btu/hr-person
Light heat gain		2 Btu/hr-sqft
Equipment heat gain		1 Btu/hr-sqft

		Charlotte, NC	Denver, CO	Washington, DC
T_db (°F)		93	91	91
T_wb (°F)		74	59	74
	Roof	42	40	40
DETD (°F) (Table F.5)	Wall	14.3	12.3	12.3
	Door	14	12	12
DCLF	South	36.8	35.6	35.6
(Btu/hr- sqft) (Table F.6)	North	22.8	21.6	21.6
	East & West	71.8	70.6	70.6

1) Cooling Loads

① Sensible Cooling Loads

Charlotte, NC				
q_roof	0.034*2500*42 =	3570 Btu/hr		
q_wall	0.065*1368*14.3 =	1271.56 Btu/hr		
q_door	0.320*32*14 =	143.36 Btu/hr		
q_floor	0	0		
q_window	(30*5*36.8) + (30*5*22.8) + (30*5*71.8)*2 =	30480 Btu/hr		
q_people	(50*50) / 200 * 255 =	3187.5 Btu/hr		
q_light	(50*50)*2 =	5000 Btu/hr		
q_equip	(50*50)*1 =	2500 Btu/hr		
q_vent	1.08*0.2*(50*50)*(93-75) =	9720 Btu/hr		
Q_sens	-	55872.42 Btu/hr		
Denver, CO				
q_roof	0.034*2500*40 =	3400 Btu/hr		
q_wall	0.065*1368*12.3 =	1093.72 Btu/hr		
q_door	0.320*32*12 =	122.88 Btu/hr		
q_floor	0	0		
q_window	(30*5*35.6) + (30*5*21.6) + (30*5*70.6)*2 =	29760 Btu/hr		
q_people	(50*50) / 200 * 255 =	3187.5 Btu/hr		
q_light	(50*50)*2 =	5000 Btu/hr		
q_equip	(50*50)*1 =	2500 Btu/hr		
q_vent	1.08*0.2*(50*50)*(91-75) =	8640 Btu/hr		
Q_sens	-	53704.10 Btu/hr		
Washington, DO				
q_roof	0.034*2500*40 =	3400 Btu/hr		
q_wall	0.065*1368*12.3 =	1093.72 Btu/hr		
q_door	0.320*32*12 =	122.88 Btu/hr		
q_floor	0	0		
q_window	(30*5*35.6) + (30*5*21.6) + (30*5*70.6)*2 =	29760 Btu/hr		
q_people	(50*50) / 200 * 255 =	3187.5 Btu/hr		
q_light	(50*50)*2 =	5000 Btu/hr		
q_equip	(50*50)*1 =	2500 Btu/hr		
q_vent	1.08*0.2*(50*50)*(91-75) =	8640 Btu/hr		
Q_sens	-	53704.10 Btu/hr		

2 Latent Cooling Loads

Charlotte, NC			
Humidity ratio_OA		0.0138	
Humidity ratio_RA	A	0.0092	
q_people	((50*50)/200) * 155 =	1937.5 Btu/hr	
q_vent	4840*(0.2*50*50)*(0.0138-0.0092) =	11132 Btu/hr	
Q_lat	-	13069.5 Btu/hr	
Denver, CO			
Humidity ratio_OA		0.0034	
Humidity ratio_RA		0.0092	
q_people	((50*50)/200) * 155 =	1937.5 Btu/hr	
q_vent	-	-	
Q_lat -		1937.5 Btu/hr	
Washington, DC			
Humidity ratio_OA		0.0142	
Humidity ratio_RA		0.0092	
q_people	((50*50)/200) * 155 =	1937.5 Btu/hr	
q_vent 4840*(0.2*50*50)*(0.0142-0.0092) =		12100 Btu/hr	
Q_lat	-	14037.5 Btu/hr	

3 Total Cooling Loads

	Charlotte, NC	Denver, CO	Washington, DC
Q_total	68941.92 Btu/hr	55641.60 Btu/hr	67741.60 Btu/hr

2) Analyze results

2-1) Charlotte, NC > Washington, DC > Denver, CO

This order is reasonable because each city's rank for Cooling degree hours (CDH) is the same as its rank for total cooling loads. CDH base $74^{\circ}F$ (Table A.1) is the cumulative sum of the difference between the hourly average temperature and the standard temperature for the times when the average hourly temperature in a specific area is higher than the standard temperature. Therefore, it can be said that the larger this value, the larger the cooling load.

	Charlotte, NC	Denver, CO	Washington, DC
Cooling degree hours base 74°F	15159	5908	12389

2-2) Outdoor air humidity ratio is the highest in Washington and the lowest in Denver. Therefore, Washington has the relatively humid climate (low SHF values), and Denver has the relatively dry climate (high SHF values).

	Charlotte, NC	Denver, CO	Washington, DC
Sensible Heat Factor	0.81	0.96	0.79

2-3)

	Charlotte, NC	Denver, CO	Washington, DC
Tons of Cooling	5.74	4.63	5.64

2-4) For the same amount of floor space, Charlotte requires the most tons of cooling, while Denver requires the least. In other words, charlotte requires more tons to cool 2500sqft because the area cooled by one ton is small, and Denver requires less tons because the cooling area covered by one ton is relatively large.

	Charlotte, NC	Denver, CO	Washington, DC
Square feet of area	435.14	539.16	442.85

2-5) ① To reduce the q_window value, decrease the area of the window (especially the east and west sides) ② To reduce the q_light value, turn off the light during the day ③ To reduce q_ventilation for sensible and latent loads, decrease infiltration