MAD 4204, Homework 4

Problems to turn in:

- 1. For P a finite poset, let J(P) be the set of ideals in P and A(P) be the set of antichains.
 - (a) Find #J(P) and #A(P) for a chain. For an antichain.
 - (b) Find #J(P) and #A(P) for B_3 .
 - (c) Must #J(P) = #A(P)? Why or why not? Explain.
- 2. (a) For P a poset with n elements, prove P contains a chain with at least \sqrt{n} elements or an antichain with at least \sqrt{n} elements.
 - (b) Prove Hall's theorem using Dilworth's theorem.
- 3. For P a finite poset, show the number of elements in a maximum chain equals the number of antichains in the smallest antichain cover.
- 4. Let M(n,k) be the multiset consisting of k copies of each element in [n]. Let P(n,k) be the poset on submultisets of M(n,k) ordered by containment, e.g.

$$\{\{1,1,4\}\} \subseteq \{\{1,1,1,3,3,4,5,5\}\} \quad \text{but} \quad \{\{1,1,4\}\} \not\subseteq \{\{1,3,3,4,4\}\}.$$

Find a general formula for $\mu_{P(n,k)}(x,y)$, and explain how it relates to Example 16.20.

Recommended problems:

- 1. For P a poset, confirm that $(J(P),\subseteq)$ is a partial order. If P=[n], what is it?
- 2. For what poset P is $(J(P), \subseteq)$ isomorphic to B_n ?
- 3. For P a poset, a P-partition of height k is an order-preserving function $f: P \to [k]$. Let $\mathcal{O}_P(k)$ be the number of P-partitions of height k. Find a formula for $\mathcal{O}_P(k)$ where P is
 - (a) an antichain with n elements
 - (b) a chain with n elements
 - (c) the two posets below

- (d) Show $\mathcal{O}_P(k)$ is a polynomial. What is its degree? Find the leading coefficient.
- 4. Find the number of linear extensions for the poset $[2] \times [n]$.
- 5. Find the number of two-element antichains and the number of two-element chains in B_n .