Managing Class Imbalance

BA810: Supervised Machine Learning

Nachiketa Sahoo

Recap

- 1. Load and explore, training-test split
- 2. Consider data cleaning and preparation
 - 1. Imputation, feature selection, ...
- 3. Create pipelines
- 4. Build and evaluate **predictive models**
 - 1. Linear models, k-NN, SVM, DTree, ...
 - 2. Ensembles
- 5. Finetune hyperparameters of the most promising model
 - 1. Grid/Random search w. Halving
- Estimate error on unused test-data

Ensembles

- Train multiple models ("weak learners") and aggregate predictions (mean, mode, etc.)
 - Stabilizes prediction if models are uncorrelated
- Bagging (Bootstrap Aggregating)
 - Learn models from bootstrapped samples
 - Random forest: combine trees, each node considers random subset of columns
- Boosting: learn models sequentially
 - Prioritize records that were poorly predicted
- Voting: mode/mean predicted
 - Stacking: estimated scores/probability to outcome mapping is learnt
 - For some ranges of its score, the strongest model may be weaker than others (alone or combined)

Class Imbalance

What is it?

- Uneven proportion of records from different classes
- Mild:20–40%, Moderate:1–20%, extreme: <1%
- What's the problem?

• Objective functions give each record equal weight -2-

$$\min_{\beta} \sum_{i \in N_{-}} Error(y_i, f(x_i; \beta)) + \sum_{i \in N_{+}} Error(y_i, f(x_i; \beta))$$

where, N_{-} and N_{+} are the sets of negative and positive training records, respectively

- → biases to predict majority class more often
- High accuracy but might predict poorly on the minority class (often of more interest, the positive)
 - Frauds, disease positive cases, etc.

Decision function of LogisticRegression

Based on example from https://imbalanced-learn.org/

Use the right metric

- Accuracy gives each record equal weight (thus much less weight to minority class)
 - $Accuracy = \frac{TN+TP}{TN+TP+FP+FN}$
 - Balanced accuracy gives each class equal weight

$$\bullet \ \frac{1}{2} \left(\frac{TN}{TN + FP} + \frac{TP}{TP + FN} \right)$$

- If you have cost of false negative vs false positive, use that!
 - See our lecture/labs on cost-sensitive evaluations
- These will highlight problems with default objective
 - Low balanced accuracy, high cost due to false negative,

... (though not fix them)

	PREDICTED CLASS		
		Positive	Negative
ACTUAL CLASS	Positive	TP	FN
	Negative	FP	TN

Fix the objective

• If we care about records of minority class more, reflect that in the objective function

$$\sum_{i \in N_{-}} Error(y_{i}, f(x_{i}; \beta)) + w \sum_{i \in N_{+}} Error(y_{i}, f(x_{i}; \beta))$$

- Multiply by a class weight w: 5, 10, ...
 - Could be the cost of False Negative relative to False Positive
 - Or a value that gives both class equal weight in objective: $\left(\frac{|N_-|}{|N_+|}\right)$
- Easy to do; many models naturally support this—little added computational cost
- Generally, reduces accuracy, but improves balanced accuracy

What if the model doesn't support w? Change Data

- Oversample minority class: sample with replacement to make class sizes equal
 - Create duplicate minority records or copies with noise added (learn the model from modified data)

Change Data

 Synthetic Minority Over-sampling Technique: (SMOTE)

- Majority class samples
- Minority class samples
- lacktriangleq Randomly selected minority class sample x_i
- \bigoplus 5 *K*-nearest neighbors of x_i
- Randomly selected sample \hat{x}_i from the 5 neighbors
- Generated synthetic minority instance

 Generate more around those points that are at the decision boundaries (ADASYNC and SMOTE variants)

Particularities of over-sampling with SMOTE and ADASYN

(source: https://rikunert.com/smote_explained)

Based on example from https://imbalanced-learn.org/

Other approaches

- When dataset is very large ... computing time and resource is the constraint
 - Under-sample the majority class
- Learn a standard classifier, but change the decision/probability threshold
 - Pick one that optimizes a desired objective (total cost, net benefit, or balanced accuracy, etc.)
 - Directly changes the location of decision boundary, countering the bias
 - See Lab 4
- Let's apply these in a default prediction problem with extreme class imbalance.
 - Same one used in Lab 4: 3.33% default and 96.67% don't.
 - Open <u>Lab 12</u>.

Topics Recap

(With an eye on the final exam)

- 1. General Machine Learning concepts
 - Supervised/unsupervised, prediction vs causal inference, training/test split
- 2. Basic predictive models
 - Linear regression (R^2 , coefficient, p-value)
 - Classification (models, metrics, cost-based evaluation, ...)
 - Bias/variance, underfitting/overfitting
- 3. Model selection
 - Cross validation, regularization
 - Hyper-parameter search

- 4. End-to-end Machine Learning process
 - Preprocessing, use of pipelines
- 5. Specific predictive models
 - Support Vector Machines, Decision Tree, Ensembles
- 6. Managing imbalanced data in practice
 - Use of appropriate metrics, using class weight, over/under sample to balance

Tips for the Final Exam

- Prioritize lectures and labs, then textbook chapters
 - Don't worry about more complex math, but you should know the conceptual differences between methods and metrics (e.g., decision tree vs logistic regression, cross validation vs bootstrap, etc.)
 - Should know how to compute precision, recall, etc.
- Measurement metrics and interpretations are important
 - E.g., how to interpret logistic regression coefficient, or a confusion matrix
- Be precise in your answers to questions asking to explain (conceptual questions)
 - Stick to specified length limits