1 Généralités sur les fonctions numériques

1.1 Vocabulaire

- \rightarrow Domaine de définition Notion d'intervalle de \mathbb{R}
- → Sens de variation fonction (strictement) (dé-)croissante, monotone
- \rightarrow Limites En un point, à droite ou à gauche, en $\pm \infty$. Asymptotes horizontales/verticales.
- \rightarrow Notation de Landau On note o(1) pour « quelque chose qui tend vers 0 » (en $x_0, \pm \infty$)

1.2 « Calculus »

- \rightarrow Continuité en un point : $\lim_{x\to x_0} f(x) = f(x_0)$, écriture $f(x_0 + o(1)) = f(x_0) + o(1)$.
- \rightarrow **Dérivabilité**: équation de tangente, écriture $f(x) = f(x_0) + f'(x_0)(x x_0) + o(x x_0)$.
- → Justification de routine : Continuité, dérivation de $\lambda u + \mu v$, uv, $u \circ v$, $u^v = e^{v \ln(u)}$ fonctions usuelles.
- \rightarrow Fonctions de classe C^p : justification, convexité, tangentes d'inflexion.

1.3 Continuité, dérivabilité et variations

- → Théorème des valeurs intermédiaires : Une fonction continue qui change de signe sur un intervalle s'annule.
- → Inégalité des accroissements finis, signe de la dérivée ~ sens de var. sur un intervalle
- → Obtention d'inégalités par études de fonctions
- → Théorème de la bijection

2 Suites numériques

2.1 Généralités

- \rightarrow Sens de variations Critère $u_{n+1}-u_n$ et $\frac{u_{n+1}}{u_n}$ (mais attention aux signes!)
- → Notion de bornes, de limites Formes indéterminées
- → Suites de références Arithmétiques, géométriques, arith-géométriques, leurs limites
- → Théorème du point fixe Pour (u_n) définie par $u_{n+1} = f(u_n)$, avec f continue, $\underline{\mathbf{si}}$ (u_n) converge, c'est vers un point fixe de $f: f(\ell) = \ell$. Étude graphique.

2.2 Les 3 critères de convergence

- → Théorème de la limite monotone : une suite croissante majorée converge. Suites ∕ non majorées.
- \rightarrow Théorème d'encadrement (théorème des gendarmes). Version $|u_n \ell| \leq \epsilon_n \rightarrow 0$.
- \rightarrow Théorème des suites adjacentes. Exemple de l'algorithme de dichotomie : résolution approchée de f(x) = 0.