الدورة الإستثنائية للعام 2011	امتحانات الشهادة الثانوية العامة	وزارة التربية والتعليم العالي
	الفرع: علوم الحياة	المديرية العامة للتربية
		دائرة الامتحانات
الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: اربع
الرقم:	المدة:ساعتان	

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانك. -يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالقزام بترتيب المسائل الوارد في المسابقة).

I-(4 points)

Dans le tableau suivant une des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner en justifiant la réponse correspondante.

N°	Question	Réponses		
IN		a	b	С
1	La forme exponentielle de $z = -\sin\theta + i\cos\theta$ est	$e^{i\left(\frac{\pi}{2}-\theta\right)}$	$e^{i\left(\theta-\frac{\pi}{2}\right)}$	$e^{i\left(\frac{\pi}{2}+\theta\right)}$
2	Si $z = \frac{\cos \theta - i \sin \theta}{\cos \theta + i \sin \theta}$ alors $\overline{z} =$	$e^{2i\theta}$	$e^{-2i\theta}$	1
3	Si $z_A = 1 - 2i$, $z_B = 2 + 3i$ et $z_C = 4$ alors le triangle ABC est	rectangle et non isocèle	isocèle et non rectangle	rectangle et isocèle
4	$\lim_{x \to 0} \frac{\int_{0}^{x} \ln(t+1)dt}{e^{x} - 1} =$	1	0	+∞
5	$\int \cos^2 x dx =$	$\frac{x}{2} - \frac{\sin 2x}{4} + c$	$\frac{\cos^3 x}{3} + c$	$\frac{x}{2} + \frac{\sin 2x}{4} + c$

II- (4 points)

Dans l'espace rapporté au repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$, on considère les points A (4; 0; 0),

B (0; 6; 0), C (0; 0; 4) et E (2; 3; 0).

- 1) Montrer que le point E appartient à la droite (AB).
- 2) Soit (P) le plan passant par E et parallèle aux deux droites (OB) et (AC). Montrer qu'une équation de (P) est x + z 2 = 0.
- 3) Ecrire un système d'équations paramétriques de la droite (BC).
- 4) Le plan (P) coupe les droites (BC), (OC) et (OA) respectivement en F, G et H. Montrer que F a pour coordonnées (0; 3; 2) et préciser les coordonnées respectives de G et H.
- 5) a-Démontrer que EFGH est un rectangle.
 - b- Soit Γ le cercle circonscrit au rectangle EFGH et (T) la droite du plan (P) tangente en E à Γ . Déterminer un système d'équations paramétriques de (T).

III- (4 points)

Une urne contient 8 boules:

- 4 boules blanches portant chacune le nombre 0;
- 3 boules rouges portant chacune le nombre 5 ;
- 1 boule blanche portant le nombre 2.

On tire simultanément et au hasard 3 boules de l'urne.

Soit les évènements suivants :

- A : « les trois boules tirées portent des nombres pouvant former le nombre 200».
- B: « les trois boules tirées portent des nombres identiques».
- C : « les trois boules tirées sont blanches».
- D : « les trois boules tirées sont de même couleur.
- 1) Montrer que la probabilité p(A) est égale à $\frac{3}{28}$ et calculer p(B), p(C) et p(D).
- 2) Déterminer la probabilité pour que parmi les trois boules tirées une seule porte le nombre 0.
- 3) Les trois boules tirées sont blanches ; calculer la probabilité que les nombres portés par ces boules peuvent former le nombre 200.
- 4) Soit X la variable aléatoire égale au produit des trois nombres portés par les trois boules tirées.
 - a- Donner les trois valeurs possibles de X.
 - b- Déterminer la loi de probabilité de X.

IV-(8 points)

- A- Soit g la fonction définie sur $]0; +\infty[$ par $g(x) = x + \ln x$.
 - 1) Calculer $\lim_{x\to 0} g(x)$ et $\lim_{x\to +\infty} g(x)$.
 - 2) Dresser le tableau de variations de g.
 - 3) Démontrer que l'équation g(x) = 0 admet une solution unique α et vérifier que $0, 5 < \alpha < 0, 6$.
 - 4) Déterminer suivant les valeurs de x le signe de g(x).
- B- On considère la fonction f définie sur $]0;+\infty[$ par $f(x)=x(2\ln x+x-2)$.

On désigne par (C) la courbe représentative de f dans un repère orthonormé (O; \vec{i} , \vec{j}).

- 1) Calculer $\lim_{x\to 0} f(x)$, $\lim_{x\to +\infty} f(x)$ et déterminer f(e).
- 2) Démontrer que $f(\alpha) = -\alpha(\alpha+2)$.
- 3) Vérifier que f'(x) = 2g(x) et dresser le tableau de variations de f.
- 4) Tracer (C). (0n prendra $\alpha = 0.55$).
- 5) Utiliser une intégration par parties pour calculer $\int_{0.5}^{1} x \ln x dx$ et déduire l'aire du domaine limité par la courbe (C), l'axe des abscisses et les deux droites d'équations x = 0.5 et x = 1.
- 6) La courbe (C) coupe l'axe des abscisses en un point d'abscisse 1,37. On désigne par F une primitive de f sur]0;+∞[, déterminer suivant les valeurs de x, les variations de F.