

CMPE 258, Deep Learning

Convolutional layer

March 20, 2018

DMH 149A

Taehee Jeong

Ph.D., Data Scientist

Assigiment_4

Deep Neural Network with tensorflow Due day is Sunday, Marth 18th.

There is penalty for late submission or re-submission after due day.

In Assignment_3 and mid-term exam, we used pandas and numpy.

For Assignment_4, we will use Tensorflow.

Please build Deep Neural Network with two hidden layers.

For activation function, please use relu or elu for hidden layers, sigmoid for output layer.

For weight initialization, please use xaiver initialization.

For optimization, please use adam optimization.

For regularization, please use dropout.

As the final output, please plot train accuracy and test accuracy with probability $(0.1 \sim 0.9)$ of dropout.

Today's lesson

- Compare CNN vs. DNN
- 2D image filter
- Convolution calculation
- Convolution on RGB images
- Multiple filters
- Size of matrix in convolution layers

Digital representation of an ımage

- Grayscale image is a matrix of pixels (picture elements)
- Dimensions of this matrix are called image resolution $(e.g. 20 \times 20)$
- Each pixel stores its brightness (or intensity) ranging from 0 to 255, 0 intensity corresponds to black color
- Color images store pixel intensities for 3 channels:

red, green and blue

		0	1	2	3	4	5	6	7	8	9	 391	392	393	394	395	396	397	398	399	y
()	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	5
•		0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	9
:	2	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	7
;	3	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	6
4	1	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	5

Normalize input pixels

$$x_{norm} = \frac{x}{255} - 0.5$$

	0	1	2	3	4	5	6	7	8	9	 391	392	393	394	395	396	397	398	399	y
0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	5
1	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	9
2	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	7
3	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	6
4	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	5

Why not Deep Neural Network?

Why not Deep Neural Network?

CNNs solve this problem using partially connected layers.

= 3 million

Convolutional layer

Inspired by the architecture of visual cortex by David H. Hubel and Torsten wiesel

Hierarchical structure

higher-level features in larger areas

low-level features in small areas

<Hands-On ML, A. Geron>

Convolutional layer

Convolution is a dot product of a **kernel** (or filter) and a patch of an image (**local receptive field**) of the same size

Vertical edge detection

-							
10	10	10	0	0	0		
10	10	10	0	0	0		
10	10	10	0	0/	0		
10	10	10	0	0	0		
10	10	10	0	0	0		
10	10	10	0	0	0		
6 x 6							

0	30	30	0				
0	30	30	0				
0	30	30	0				
0	30	30	0				
14×4							

Vertical edge detection

10	10	10	0	0	0				
10	10	10	0	0	0				
10	10	10	0	0	0				
10	10	10	0	0	0				
10	10	10	0	0	0				
10	10	10	0	0	0				
0	0	0	10	10	10				

0	30	30	0				
0	30	30	0				
0	30	30	0				
0	30	30	0				

0	-30	-30	0
0	-30	-30	0
0	-30	-30	0
0	-30	-30	0

Horizontal edge detection

10	10	10	0	0	0		
10	10	10	0	0	0		
10	10	10	0	0	0		
0	0	0	10	10	10		
0	0	0	10	10	10		
0	0	0	10	10	10		
6x6							

*

1	1	1
0	0	0
-1	-1	-1

_

0	0	0	0	
30	10	-10	-30	
30	10	-10	-30	
0	0	0	0	

Edge detection

Kernel

	-1	-1	-1
*	-1	8	-1
	-1	-1	-1

Edge detection

Original image

Sums up to 0 (black color) when the patch is a solid fill

Sharpening

Edge detection

Original image

Sharpening

Doesn't change an image for solid fills Adds a little intensity on the edges

Blurring

Kernel

	-1	-1	-1
*	-1	8	-1
	-1	-1	-1

Edge detection

Original image

	0	-1	0
*	-1	5	-1
	0	-1	0

Sharpening

Blurring

Kernel (image processing)

Operation	Kernel	Image result
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	

<Wikipedia>

Kernel (image processing)

Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur 3 × 3 (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	
Gaussian blur 5 × 5 (approximation)	$\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$	

<Wikipedia>

Advantages of a CNN over a fully connected DNN for image classification

- CNN has fewer parameters than a fully connected DNN
- CNN can detect a particular feature anywhere on the image instead of detecting only in that particular location.
- CNN's architecture is able to identify pixels' organization (how each pixel is located).

Convolutional layers actually use cross-correlation. <Hands-On ML, A. Geron>

<Wikipedia>

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

<Digital signal processing, J.G., Proakis et al.>

Convolution is a mathematical operation that slides one function over another and measures the integral of their pointwise multiplication. It is heavily used in signal processing.

<Hands-On ML, A. Geron>

Image classification using Convolution Neural Network

<Ralph Wittig, Power-Efficient Machine Learning using FPGAs on Power systems, OpenPOWERSummit>

Types of layer in a convolutional network

- Convolution
- Pooling
- Fully connected

Convolutional layer

What kind of filters should we use?

filter

Input matrix

X ₁	X_2	X_3	X_4
X ₅	X_6	X ₇	X ₈
X ₉	X ₁₀	X ₁₁	X ₁₂
X ₁₃	X ₁₄	X ₁₅	X ₁₆

Size: 4 x 4

convolution

W_1	W ₂	W ₃
W_4	W_5	W_6
W ₇	W ₈	W_9

Size: 3 x 3

Output matrix

What is the size?

Input matrix

X ₁	X_2	X ₃	X_4
X ₅	X_6	X ₇	X ₈
X ₉	X ₁₀	X ₁₁	X ₁₂
X ₁₃	X ₁₄	X ₁₅	X ₁₆

Size: 4 x 4

filter

W_1	W_2	W ₃
W_4	W_5	W_6
W_7	W ₈	W_9

Size: 3 x 3

Output matrix

	Z_1	Z_2
=	Z_3	Z_4

convolution

Size: 2 x 2

Input matrix

X_1	X_2	X ₃	X_4
X ₅	X_6	X ₇	X ₈
X ₉	X ₁₀	X ₁₁	X ₁₂
X ₁₃	X ₁₄	X ₁₅	X ₁₆

Size: 4 x 4

filter

convolution

W_1	W_2	
W_3	W_4	

Size: 2 x 2

Output matrix

What is the size?

Input matrix

X ₁	X_2	X ₃	X_4
X ₅	X_6	X ₇	X ₈
X ₉	X ₁₀	X ₁₁	X ₁₂
X ₁₃	X ₁₄	X ₁₅	X ₁₆

Size: 4 x 4

filter

W_1	W_2	
W_3	W_4	

Size: 2 x 2

Output matrix

=

convolution

Size: 3 x 3

Z_1	Z ₂	Z ₃
Z ₄	Z ₅	Z_6
Z ₇	Z ₈	Z ₉

Convolution calculation

Manie	1 8 4		and the second
Kerne	II IVI	at	rıx

105	102	100	97	96	
103	99	103	101	102	
101	98	104	102	100	
99	101	106	104	99	
104	104	104	100	98	

0	-1	0
-1	5	-1
0	-1	0

Image Matrix

$$105 * 0 + 102 * -1 + 100 * 0$$

+ $103 * -1 + 99 * 5 + 103 * -1$
+ $101 * 0 + 98 * -1 + 104 * 0 = 89$

Output Matrix

<image Convolution>
Machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

Convolution calculation

Kernel Matrix

105	102	100	97	96	
103	99	103	101	102	
101	98	104	102	100	
99	101	106	104	99	
104	104	104	100	98	

0	-1	0
-1	5	-1
0	-1	0

Image Matrix

$$102 * 0 + 100 * -1 + 97 * 0$$

+99 * -1 + 103 * 5 + 101 * -1
+98 * 0 + 104 * -1 + 102 * 0 = 111

Output Matrix

<image Convolution>
Machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

Convolution calculation:preactivation

X ₁	X ₂	X ₃	X ₄
X ₅	X_6	X ₇	X ₈
X ₉	X ₁₀	X ₁₁	X ₁₂
X ₁₃	X ₁₄	X ₁₅	X ₁₆

W_1	W ₂	W_3	
W_4	W_5	W_6	=
W_7	W ₈	W_9	

$$Z_1 = X_1 \times W_1 + X_2 \times W_2 + X_3 \times W_3 + X_5 \times W_4 + X_6 \times W_5 + X_7 \times W_6 + X_9 \times W_7 + X_{10} \times W_8 + X_{11} \times W_9$$

$$Z_2 = X_2 \times W_1 + X_3 \times W_2 + X_4 \times W_3$$

 $+X_6 \times W_4 + X_7 \times W_5 + X_8 \times W_6$
 $+X_{10} \times W_7 + X_{11} \times W_8 + X_{12} \times W_9$

$$Z_3 = X_5 \times W_4 + X_6 \times W_5 + X_7 \times W_6$$

 $+X_9 \times W_7 + X_{10} \times W_8 + X_{11} \times W_9$
 $+X_{13} \times W_{14} + X_{10} \times W_8 + X_{15} \times W_9$

$$Z_4 = X_6 \times W_4 + X_7 \times W_5 + X_8 \times W_6 + X_{10} \times W_7 + X_{11} \times W_8 + X_{12} \times W_9 + X_{14} \times W_7 + X_{15} \times W_8 + X_{16} \times W_9$$

Convolution: activation

Input matrix

X ₁	X_2	X ₃	X_4
X ₅	X_6	X ₇	X ₈
X ₉	X ₁₀	X ₁₁	X ₁₂
X ₁₃	X ₁₄	X ₁₅	X ₁₆

convolution *

filter

W_1	W ₂	W ₃
W_4	W_5	W_6
W_7	W_8	W_9

Size: 3 x 3

Size: 4 x 4

g: activation function

b: bias

$g(Z_1 + b)$	$g(Z_2 + b)$
$g(Z_3 + b)$	$g(Z_4 + b)$

Output matrix

a_1	a ₂
a_3	a_4

Size: 2 x 2

Edge pixels?

C.	
T 1	ITAY
- 11	

W_1	W ₂	W ₃
W_4	W_5	W_6
W_7	W_8	W_9

What about information from edge pixels?

Padding

0	0	0	0	0	0
0	Х ₁	X ₂	χ_3	χ_4	0
0	Х ₅	Х ₆	Х ₇	Χ ₈	0
0	Х ₉	X ₁₀	X ₁₁	X ₁₂	0
0	X ₁₃	X ₁₄	X ₁₅	X ₁₆	0
0	0	0	0	0	0

W_1	W ₂	W_3
W_4	W_5	W_6
W_7	W ₈	W_9

*

Convolution calculation on borders

0	104	104	104	100	98	
0	99	101	106	104	99	
0	101	98	104	102	100	
0	103	99	103	101	102	
0	105	102	100	97	96	
0	0	0	0	0	0	

Image Matrix

$$0 * 0 + 105 * -1 + 102 * 0$$

+0 * -1 + 103 * 5 + 99 * -1
+0 * 0 + 101 * -1 + 98 * 0 = 210

Output Matrix

<image Convolution>
Machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

Convolution calculation on borders

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	
0	101	98	104	102	100	
0	99	101	106	104	99	7
0	104	104	104	100	98	
						1

320				
210	89	111		

Image Matrix

$$0*0+0*-1+0*0$$

$$+0*-1+105*5+102*-1$$

$$+0*0+103*-1+99*0=320$$

Output Matrix

<image Convolution>
Machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

Padding: 1 zero padding

0	0	0	0	0	0
0	Х ₁	Х ₂	Х ₃	Χ ₄	0
0	X ₅	Х ₆	X ₇	Х ₈	0
0	X ₉	X ₁₀	X ₁₁	X ₁₂	0
0	X ₁₃	X ₁₄	X ₁₅	X ₁₆	0
0	0	0	0	0	0

$$Z_1 = 0 \times W_1 + 0 \times W_2 + 0 \times W_3 + 0 \times W_4 + X_1 \times W_5 + X_2 \times W_6 + 0 \times W_7 + X_5 \times W_8 + X_6 \times W_9$$

$$Z_4 = 0 \times W_1 + 0 \times W_2 + 0 \times W_3 + X_3 \times W_4 + X_4 \times W_5 + 0 \times W_6 + X_7 \times W_7 + X_8 \times W_8 + 0 \times W_9$$

Padding: 2 zero padding

<u> </u>				<u> </u>				
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	Х ₁	χ_2	χ_3	χ_4	0	0
	0	0	X_5	X ₆	X ₇	X ₈	0	0
	0	0	Х ₉	X ₁₀	X ₁₁	X ₁₂	0	0
	0	0	X ₁₃	X ₁₄	X ₁₅	X ₁₆	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
							4	

Stride

Input matrix

X ₁	X ₂	X ₃	X ₄	X ₅
X ₆	X ₇	X ₈	X 9	X ₁₀
X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅
X ₁₆	X ₁₇	X ₁₈	X ₁₉	X ₂₀
X ₂₁	X ₂₂	X ₂₃	X ₂₄	X ₂₅

filter

*

Stride 2

W_1	W_2
W_3	W_4

Output matrix

	Z_1	Z ₂
=	Z_3	Z_4

Size: 2 x 2

Convolution calculation with stride 1

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	7
0	101	98	104	102	100	
0	99	101	106	104	99	7
0	104	104	104	100	98	1
				-		

100	- Trici Ivic	
0	-1	0
-1	5	-1
0	-1	0

Kernel Matrix

320	206	198	188	
210	89	111		
	1			

Image Matrix

$$102 * \frac{0}{1} + 100 * -\frac{1}{1} + 97 * \frac{0}{1} + 99 * -\frac{1}{1} + 103 * \frac{5}{1} + 101 * -\frac{1}{1} + 98 * \frac{0}{1} + 104 * -\frac{1}{1} + 102 * \frac{0}{1} = 111$$

Output Matrix

<understanding convolutional layers in convolutional neural networks>
Machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

Convolution calculation with stride 2

Normer mann					
0	-1	0			
-1	5	-1			
0	-1	0			

Kernel Matrix

Image Matrix

$$0*0+0*-1+0*0$$

+97*-1+96*5+99*-1
+101*0+102*-1+101*0=182

Output Matrix

<understanding convolutional layers in convolutional neural networks>
Machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

Summary of convolutions

- n x n image
- f x f filter
- padding p
- stride s

Output size:

$$\left[\frac{n+2p-f}{s}+1\right] \times \left[\frac{n+2p-f}{s}+1\right]$$

Convolutions on RGB images

<understanding convolutional layers in convolutional neural networks>
Machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

Multiple filters (channels)

<deep learning, Andrew Ng>

Multiple filters (channels)

<deep learning, Andrew Ng>

Number of parameters in one layer

If there are 10 filters that have the size of 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?

Number of parameters in one layer

If there are 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?

For 1 filter:

 $3 \times 3 \times 3 = 27$ for W

1 for bias

For 10 filters:

Then, 28 * 10 = 280

Summary of size in matrix

If layer l is a convolution layer:

f[1] = filter size

p^[l] = padding

 $s^{[l]} = stride$

Weights: $f^{[l]} \times f^{[l]} \times n_c^{[l-1]} \times n_c^{[l]}$

bias: $1 \times 1 \times 1 \times n_c^{[l]}$

Input size:
$$n_H^{[l-1]} \times n_W^{[l-1]} \times n_c^{[l-1]}$$

output size:
$$n_H^{[l]} \times n_W^{[l]} \times n_c^{[l]}$$

$$n_H^{[l]} = \frac{n_H^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1$$

$$n_W^{[l]} = \frac{n_W^{[l-1]} + 2p^{[l]} - f^{[l]}}{S^{[l]}} + 1$$

How do convolutions work?

Summary

- Compare CNN vs. DNN
- 2D image filter
- Convolution calculation
- Convolution on RGB images
- Multiple filters
- Size of matrix in convolution layers

