ETEC3702 – Concurrency Midterm Study Guide

Topics

You are responsible for **everything** covered in class through Tuesday, 25 February 2020.

Some of the major (but not necessarily all) topics included will be:

DeadlockLivelock

Starvation

O Introduction to Concurrency
□ Definition
☐ Concurrent Versus Sequential
☐ Formal notation
• "For all"
• "There exists"
• "It is true that"
"Concurrent with" ()
• "Precedes" (\rightarrow)
 Formal definition of sequential
 Formal definition of concurrent
☐ Non-deterministic execution
O Dangers of Concurrency
☐ Effective orderings – how to compute
☐ Problematic orderings
☐ Safety Property Violations
 Concurrent update problem (turnstiles problem, bank account
problem)
Critical Sections
Mutual Exclusion
 Software Solutions
Dekker's Algorithm
Peterson's Algorithm
☐ Liveness Properties Violations

□ Difficulty in Testing O Motivation for Concurrent Solutions □ Organization Natural Solutions • Relax over-specification • Multiple separate tasks □ Speed-up • Moore's Law and the Historic Trend of CPU Clock Speeds Multiple Core CPUs • Distributed Computing / "Cloud" Computing • Specialty Parallel Processors / GPU Computing Computing Speedup to compare sequential versus concurrent solutions. Computing Maximum speedup of a program with sequential and parallelizable parts. ☐ Unavoidable / Inherent Network / Communication Systems Database Systems • Distributed Systems • Event-driven Systems • Physical Systems. O Synchronization mechanisms □ Locks • acquire() • release () • with lock syntax. • Optional arguments (blocking, timeout) • The "Monitor" object design pattern concept. □ Rlocks motivation for / versus normal locks. • acquire() • release() • with rlock syntax • Optional arguments (blocking, timeout) □ Semaphores

- As a data-type
- Set of values
- Set of permissible operations
 - Definition of P() or acquire()
 - Definition of V() or release()
- Types of Semaphores
 - Binary
 - Counting
- In Python
 - Semaphore objects
 - BoundedSemaphore objects

□ Conditional Sections

- Producer / Consumer design patterns.
- The need for conditional synchronization
- Condition objects
 - acquire()
 - release()
 - wait()
 - notify()
 - notify_all()
 - Use to implement a "Monitor" design pattern

□ Events

- Concept and function
- As a synchronization mechanism
- As a communication mechanism
- Event objects
 - set()
 - clear()
 - is set()
 - wait()

□ Barriers

- Concept and function
- Uses
- Barrier objects
 - wait()

• parties
• n_waiting
O Communication Mechanisms
☐ Global variables
□ Events
□ Queues
 Queue(), LifoQueue(), PriorityQueue()
 Optional args: maxsize
• put()
• get()
• empty()
• full()
task_done()
• join()
O Multiprocessing
□ Differences from threading
☐ Advantages over threading
☐ Disadvantages related to threading
□ Potential for speedup
□ Need for thename=="main" check
□ cpu_count()
☐ Inter-process communication using queues.
☐ Using queues with processes to "return" values.
☐ Support for other synchronization and communication mechanisms
• Lock
• Rlock
 Condition
 Semaphore / BoundedSemaphore
Barriers Event

abort()reset()broken

• Queue

Reminders/Advice:

- The entire exam will be open-notes.
- You cannot use the internet or any other electronics for the duration of the written portion of the exam. There may be a programming portion of the exam. You can use a computer for that portion, but you may not communicate with others during that portion. (no discord, no stack-exchange, no reddit, no facebook chat, no email, no communicating whatsoever.)
- You should complete and understand all of the assigned labs.
- You may have to write ad submit code. Come prepared to do that.
- Open notes, but don't assume open-book == no preparation/study.