- ► Intro.
- ► Machine Learning.
- Regression and classification.
- Hyper-parameters.
- Overfitting and datasets.
- Perceptron.
- Gradient descent.

Outline

•00000

Stochastic Gradient Descent

Stochastic Gradient Descent

Stochastic Gradient Descent

000000

- Random initialization.
- Forward pass.
- Error estimation.
- Gradient computation.
- Backward pass.

Q: remember the notion of "taking a step in the direction of steepest descent"?

A: The direction of the step is computed considering all of the parameters at once, i.e., we compute first the gradient (all partial derivatives), and then update all the weights.

サイグト・ミト・ミト・ミーシ(© Deep Learning DL

Stochastic Gradient Descent

Algorithm 1 Gradient Descent

- 1: Initialize Ω randomly.
- 2: for each epoch do
- 3: for each sample do
- 4: $\hat{y}_i = f(x_i; \Omega)$
- 5: $E_i = l(y_i, \hat{y}_i)$
- 6: $\Omega = \Omega \eta \nabla_{\Omega} E_i$
- 7: end for
- 8: end for

where, $\Omega = \{\omega_i\}$, $l(\cdot)$ is a loss function, and $\nabla_{\Omega} E_i$ is the gradient of the error with respect to the set Ω of parameters.

Q: can you imagine a drawback of this approach?

A: The model will end up being biased towards the last seen

= > ((

Stochastic Gradient Descent

000000

Stochastic GD (SGD) tries to compensate for the bias of the last seen training samples.

Each epoch, randomly shuffle the order of samples.

Algorithm 2 Stochastic Gradient Descent

- 1: Initialize Ω randomly.
- 2: for each epoch do
- $\{X,y\} = shuffle(\{X,y\})$ 3:
- for each sample do 4.
- $\hat{y}_i = f(x_i; \Omega)$ 5:
- $E_i = l(y_i, \hat{y}_i)$ 6:
- $\Omega = \Omega \eta \nabla_{\Omega} E_i$ 7:
- end for 8.
- 9: end for

Batch GD

Algorithm 3 Batch Gradient Descent

- 1: Initialize Ω randomly.
- 2: Define a number of batches.
- 3: for each epoch do

4:
$$\{X,y\} = shuffle(\{X,y\})$$

- 5: for each batch do
- 6: $\{X_B, y_B\} = \text{next } N \text{ training pairs}$

7:
$$\hat{y}_B = f(X_B; \Omega)$$

8:
$$E_B = \frac{1}{N} \sum_{n=1}^{N} l(y_{B_n}, \hat{y}_{B_n})$$

9:
$$\Omega = \Omega - \eta \nabla_{\Omega} E_B$$

- 10: end for
- 11: end for

Q: What advantage would it have to use BGD instead of SGD?

BGD

000000

Stochastic Gradient Descent

- a.k.a., mini-batch gradient descent.
 - ightharpoonup Approximates E with the average error of a batch of samples.
 - ► Fewer updates, i.e., faster optimization process.
 - ▶ Batch size bs = 1 boils down to regular GD.
 - ► Common batch sizes: 16, 32, 64, 128, 256.

Outline

Stochastic Gradient Descen

Multi-layer Perceptron

Backpropagation

Multiple outputs

Activation Functions

Non-linear Separability

Most real-world problems are non-linearly separable.

Q: How do we do in these cases in machine learning?

Non-linear transformations

$$\chi_{4} = \chi_{1}^{2} + \chi_{1}^{2} + \chi_{1} + \chi_{2}$$

$$\chi_{c} = \chi_{1}^{3} + \chi_{1}^{3} + \chi_{3} \times 4$$

Feature engineering.

Examples:

- New feature, $x_2 = (x_1)^2$.
- New feature, $x_3 = x_2 * x_1$.
- ► Feature selection: use only a subset of features.

Example I

Logical AND: can be solved with a single perceptron.

Solved using:

Joived using.			
ω_0	ω_1	ω_2	
-1.5	1	1	

Example II

$$s = W^{T} x = \sum_{i=1}^{n} W_{i}(x_{i})^{2}$$

 $a = O(s) = \frac{1}{1 + e^{2s}}$

Logical XOR: not solved with a single perceptron. Let's cascade non-linear activation functions: multi-layer perceptron (MLP).

x_0	x_1	x_2	$\mid y \mid$
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Solved using:

b_1	b_2	b_3	ω_1	ω_2	ω_3	ω_4	ω_5	ω_6
-10	30	-30	20	-20	20	20	-20	20

Q: What if we omit the non-linearity activation functions?

Consecutive linear operations are equivalent to a single linear operations, i.e., DL is enable by the use of non-linear activation functions.

- ▶ We end up with: input, hidden, and output layers.
- Intermediate representations correspond feature engineering.
- However, features are learned rather than engineered.
- ► End-to-end process.
- ▶ Information abstraction increases with depth.
- ► Inspired on human brain?

In general, the more difficult the problem looks, the more chances are it is non-linearly separable. Therefore, the deeper the model must be.

Q: But how do we do it?

Outline

Stochastic Gradient Descen

Multi-laver Perceptron

Backpropagation

Multiple outputs

Activation Functions

GD and depth

Q: How do we perform GD on deep networks?

A: Use backpropagation (backprop): gradient descent + chain rule.

Common notation

Simplified notation

Let's also use:

- $s = \sum_{i} \omega_i x_i + b$, linear combination.
- $ightharpoonup a = \sigma(s)$, non-linear activation.

(ロ) (部) (意) (意) (意) の(で)

Example

1 training pair $\{\mathbf{x} = [0.05, 0.1], \quad y = 1\}.$

Initialize with:

111111111111111111111111111111111111111	C VVILI								
ω_1	ω_2	ω_3	ω_4	ω_5	ω_6	l	b_1	b_2	b_3
0.15	0.20	0.25	0.30	0.50	0.55	0.	.35	0.35	0.60

And let's use $\eta = 0.1$.

4 □ ▶ 4 □ ▶ 4 Ē ▶ 4 Ē ▶ 4 Ē ▶ 4 Ē

Example cont.

$$\hat{y}(0) = 0.773.$$

After one update:

ω_1	ω_2	ω_3	ω_4	ω_5	ω_6
0.15002	0.20003	0.25005	0.30005	0.50237	0.55238

b_1	b_2	b_3
0.35048	0.35053	0.60398

$$\hat{y}(1) = 0.7742.$$

Notice: The impact of backprop is proportional to the depth of the layer: weights in shallow layers are update more softly with respect to those in deeper layers.

$$\frac{\partial E}{\partial \omega_5} = \frac{\partial E}{\partial a_5} \frac{\partial a_5}{\partial s_5} \frac{\partial s_5}{\partial a_3} \frac{\partial a_3}{\partial s_3} \frac{\partial s_3}{\partial \omega_5}$$

$$\frac{\partial E}{\partial \omega_1} = \frac{\partial E}{\partial a_5} \frac{\partial a_5}{\partial s_5} \frac{\partial s_5}{\partial a_3} \frac{\partial a_3}{\partial s_3} \frac{\partial s_3}{\partial a_1} \frac{\partial a_1}{\partial s_1} \frac{\partial s_1}{\partial \omega_1} + \frac{\partial E}{\partial a_5} \frac{\partial a_5}{\partial s_5} \frac{\partial s_5}{\partial a_4} \frac{\partial a_4}{\partial s_4} \frac{\partial s_4}{\partial a_1} \frac{\partial s_1}{\partial \omega_1} \frac{\partial s_1}{\partial \omega_1}.$$

Outline

Stochastic Gradient Descen

Multi-laver Perceptron

Backpropagation

Multiple outputs

Activation Functions

- One output perceptron works well for uni-variate regression, i.e., \hat{y} is a scalar.
- More perceptrons can be used for a multi-variate problem, i.e., \hat{y} is a vector.

Multi-class classification

- One output perceptron works well for binary classification problems, i.e., \hat{y} is a scalar indicating the probability of the input belonging to the positive class.
- More perceptrons can be used for a multi-class classification problem, i.e., \hat{y} is a vector indicating the probability of belonging to each possible class.
- In this case, the ground-truth is a one-hot encoding vector. E.g., $\mathbf{y} = [0, 0, 1, 0, 0]$. $\hat{\mathbf{y}} = [0.001, 0.001, 0.001, 0.001]$

Outline

Stochastic Gradient Descen

Multi-laver Perceptron

Backpropagation

Multiple outputs

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

$$a = \sum_{n=0}^{N} x_n \omega_n.$$

Derivative:

$$\frac{\partial a}{\partial \omega_i} = x_i.$$

Sigmoid

$$a = \sigma(s) = \frac{1}{1 + e^{-s}}.$$

Derivative:

$$\sigma'(s) = \sigma(s)(1 - \sigma(s)).$$

Tanh

$$a = \frac{e^s - e^{-s}}{e^s + e^{-s}}.$$

Derivative:

$$a' = 1 - a^2$$
.

ReLU

Logistic functions suffer of the so-called *vanishing gradient* issue. Rectified Linear Units (ReLU) are an alternative:

$$a = \begin{cases} 0, & s < 0, \\ s, & s \ge 0. \end{cases}$$

Derivative:

$$a' = \begin{cases} 0, & s < 0, \\ 1, & s \ge 0. \end{cases}$$

They are also more efficient computationally speaking.

$$a = \begin{cases} \alpha s, & s < 0, \\ s, & s \ge 0, \end{cases}$$

with $0 < \alpha < 1$.

Derivative:

$$a' = \begin{cases} \alpha, & s < 0, \\ 1, & s \ge 0. \end{cases}$$

$$a = \begin{cases} \alpha(e^s - 1), & s < 0, \\ s, & s \ge 0, \end{cases}$$

with $0 < \alpha < 1$.

Derivative:

$$a' = \begin{cases} a + \alpha, & s < 0, \\ 1, & s \ge 0. \end{cases}$$

Softmax

All previous functions are element-wise operations. Softmax is a vector normalizer.

$$a_i = \frac{e^{s_i}}{\sum_j e^{s_j}}.$$

Derivative:

$$a_i' = a_i(1 - a_i).$$

Used to exaggerate the most probable of the elements of the vector. Useful in output layers for multi-class classification problems.

4□ → 4□ → 4□ → □ → 900

Common use scenarios

Activation	Use
ReLU (or variants)	All hidden layers in all scenarios.
Sigmoid (tanh)	Output layer for binary classification.
Sigmoid	Output layer for regression with $0 \le y \le 1$.
Tanh	Output layer for regression with $-1 \le y \le 1$.
Linear	Output layer for unbounded regression.
Softmax	Output layer for multi-class classification.

Activation Functions