Factorisation including Quadratics and other expressions KS4 Higher Tier **Non-Calculator**

(A) Factorise completely:

1.
$$2x - 4$$

$$2. 4x + 8$$

3.
$$6x - 8$$

4.
$$10x - 15$$

5.
$$12 - 6x$$

1.
$$2x-4$$
 2. $4x+8$ 3. $6x-8$ 4. $10x-15$ 5. $12-6x$ 6. $28-14x$

$$7.2x - 4y$$

8.
$$4x + 8y$$

9.
$$6x - 8y$$

10.
$$10x - 15y$$

$$7.2x - 4y$$
 8. $4x + 8y$ 9. $6x - 8y$ 10. $10x - 15y$ 11. $6a - 2ab - 12ac$

12.
$$6xy - 3x$$

13.
$$9xy - 6y$$

14.
$$x^2 - x^2$$

15.
$$x^3 - x^2$$

12.
$$6xy - 3x$$
 13. $9xy - 6y$ 14. $x^2 - x$ 15. $x^3 - x^2$ 16. $5x^2y + 10xy$

17.
$$6x^3y^2 - 30x^2y$$

17.
$$6x^3y^2 - 30x^2y$$
 18. $10a^2bc + 20abc^2 + 30ab^2c$ 19. $x^2y^2 - 3xy$

19.
$$x^2y^2 - 3xy$$

20.
$$x^2y^2 - xy$$

Quadratics and higher powers:

Factorise completely: (B)

1.
$$x^2 - 4x + 4$$

2.
$$x^2 - 3x + 2$$

1.
$$x^2 - 4x + 4$$
 2. $x^2 - 3x + 2$ 3. $x^2 - 4x + 3$ 4. $x^2 + 5x + 6$

4.
$$x^2 + 5x + 6$$

5.
$$2x^2 - 8x + 8$$

$$6.\ 2x^2 - 6x + 4$$

5.
$$2x^2 - 8x + 8$$
 6. $2x^2 - 6x + 4$ 7. $3x^2 - 12x + 9$ 8. $4x^2 + 20x + 24$

8.
$$4x^2 + 20x + 24$$

9.
$$x^2 + 4x + 4$$

10.
$$2x^2 + 8x + 8$$

11.
$$x^2 + 3x + 2$$

9.
$$x^2 + 4x + 4$$
 10. $2x^2 + 8x + 8$ 11. $x^2 + 3x + 2$ 12. $x^2 - 11x + 10$

13
$$x^2 - x - 2$$

14.
$$x^2 + x - 2$$

15.
$$x^2 + 2x - 3$$

13.
$$x^2 - x - 2$$
 14. $x^2 + x - 2$ 15. $x^2 + 2x - 3$ 16. $x^2 + 3x - 10$

17.
$$2x^2 - 9x + 4$$

$$18 \ 2x^2 + 9x + 4$$

17.
$$2x^2 - 9x + 4$$
 18. $2x^2 + 9x + 4$ 19. $3x^2 - 16x + 5$ 20. $3x^2 + 16x + 5$

20.
$$3x^2 + 16x + 5$$

$$21.3x^2 - 14x + 15$$

$$21. 3x^2 - 14x + 15$$
 $22. 3x^2 + 14x + 15$ $23. 4x^2 + 20x + 25$

$$23.4x^2 + 20x + 25$$

$$24. 4x^2 - 20x + 25$$

24.
$$4x^2 - 20x + 25$$
 25. $6x^2 + 11x + 3$ 26. $6x^2 - 11x + 3$

26.
$$6x^2 - 11x + 3$$

27.
$$6x^2 + 17x + 5$$
 28. $6x^2 - 13x + 6$ 29. $3x^2 - 3x - 6$

28.
$$6x^2 - 13x + 6$$

29.
$$3x^2 - 3x - 6$$

30.
$$4x^2 + 4x - 8$$

$$31.2x^2 + 4x - 6$$

30.
$$4x^2 + 4x - 8$$
 31. $2x^2 + 4x - 6$ 32. $4x^2 + 12x - 40$

33.
$$6x^2 - 3x - 30$$

33.
$$6x^2 - 3x - 30$$
 34. $8x^2 + 2x - 15$ 35. $8x^2 - 14x - 15$

35.
$$8x^2 - 14x - 15$$

36.
$$6x^2 - 7x - 3$$

37.
$$6x^4 - 7x^2 - 3$$

36.
$$6x^2 - 7x - 3$$
 37. $6x^4 - 7x^2 - 3$ 38. $6x^4 - 13x^2 + 6$

39.
$$8x^2 + 2xy - 15y^2$$
 40. $6x^2 - 11xy + 3y^2$ 41. $a^2 + ab + ac + bc$

40.
$$6x^2 - 11xy + 3y^2$$

$$41. a^2 + ab + ac + bc$$

$$42. mn + mc + an + ac$$

42.
$$mn + mc + an + ac$$
 43. $a^2 + ab - ac - bc$ 44. $mn + mc - an - ac$

$$44. mn + mc - an - ac$$

$$45. mn - mc - an + ac$$

45.
$$mn - mc - an + ac$$
 46. $n^3 + 9n^2 + 18n$ 47. $6n^3 + 7n^2 - 5n$

$$47.6n^3 + 7n^2 - 5n$$

48.
$$6n^3 - 19n^2 + 15n^2$$

49.
$$8n^3 - 2n^2 - 21n$$

48.
$$6n^3 - 19n^2 + 15n$$
 49. $8n^3 - 2n^2 - 21n$ 50. $3n^3 + 46n^2 - 32n$

Difference of two squares and more challenging factorization:

(c) Factorise completely:

1.
$$x^2 - 1$$

2.
$$x^2 - 4$$

3.
$$x^2 - 49$$

4.
$$n^2 - 9$$

1.
$$x^2 - 1$$
 2. $x^2 - 4$ 3. $x^2 - 49$ 4. $n^2 - 9$ 5. $a^2 - b^2$

6.
$$n^2 - 25$$

7.
$$25 - n^2$$

8.
$$2n^2 - 50$$

6.
$$n^2 - 25$$
 7. $25 - n^2$ 8. $2n^2 - 50$ 9. $4x^2 - 25$ 10. $8x^2 - 50$

10.
$$8x^2 - 50$$

11.
$$4x^2 - 49$$

12.
$$9x^2 - 16$$

11.
$$4x^2 - 49$$
 12. $9x^2 - 16$ 13. $25 - 4x^2$ 14. $9n^2 - 25$ 15. $4 - 9n^2$

14.
$$9n^2 - 25$$

15.
$$4 - 9n^2$$

16.
$$9n^2 - 25m^2$$

17.
$$x^2 - \frac{1}{4}$$

18.
$$x^2 - 2\frac{1}{4}$$

16.
$$9n^2 - 25m^2$$
 17. $x^2 - \frac{1}{4}$ 18. $x^2 - 2\frac{1}{4}$ 19. $\frac{4}{25}x^2 - 1$

* 20.
$$n^4 - 1$$

$$*22. n^4 - m^4$$

$$*23. x^4 - 16n^4$$

$$*24.81x^4 - 16$$

* 26.
$$x^4 - 81$$

* 27.
$$x^8 - 256$$

* 28.
$$64n^4 - 4$$

* 29.
$$x^6 - x^2$$

*31.
$$x^2 - \frac{1}{x^2}$$

Applications:

Use factorisation to find the value of each of the following:

1.
$$29^2 - 19^2$$

$$2.49^2 - 9^2$$

1.
$$29^2 - 19^2$$
 2. $49^2 - 9^2$ 3. $2012^2 - 2011^2$ 4. $(\frac{9}{16})^2 - (\frac{7}{16})^2$

4.
$$(\frac{9}{16})^2 - (\frac{7}{16})^2$$

5.
$$\frac{71^2-29^2}{55^2-45^2}$$

5.
$$\frac{71^2 - 29^2}{55^2 - 45^2}$$
 6. $\sqrt{(39^2 - 36^2)}$ 7. $\sqrt{(35^2 - 28^2)}$

7.
$$\sqrt{(35^2-28^2)}$$

$$8.\sqrt{(45^2-27^2)}$$

9.
$$\frac{3(71^2-29^2)}{45^2-15^2}$$

*10.
$$10^2 - 9^2 + 8^2 - 7^2 + 6^2 - 5^2 + 4^2 - 3^2 + 2^2 - 1^2 =$$

*11. Repeat Q10, from 20^2 down to 1^2 and show that the answers is 210..

Beyond GCSE

(D) Factorise completely

1.
$$x^3 - 1$$

2.
$$x^3 + 1$$

3.
$$x^3 - 8$$

4.
$$x^3 + 8$$

5.
$$27x^3 - 64$$

6.
$$x^6 - 1$$

7.
$$x^6 + 1$$

8.
$$x^3 + \frac{1}{x^3}$$

9.
$$x^3 - \frac{1}{x^3}$$

10.
$$x^3y^3 - x^3$$

ANSWERS/SOLUTIONS

(A) Factorise completely:

1.
$$2x-4$$
 2. $4x+8$ 3. $6x-8$ 4. $10x-15$ 5. $12-6x$ 6. $28-14x$

$$= 2(x-2) = 4(x+2) = 2(3x-4) = 5(2x-3) = 6(2-x) = 14(2-x)$$

7.2x - 4y 8. 4x + 8y 9. 6x - 8y 10.
$$10x - 15y$$
 11. $6a - 2ab - 12ac$
= $2(x-y)$ = $4(x+y)$ = $2(3x-4y)$ = $5(2x-3y)$ = $2a(3-2b-6c)$

12.
$$6xy - 3x$$
 13. $9xy - 6y$ 14. $x^2 - x$ 15. $x^3 - x^2$ 16. $5x^2y + 10xy$

$$= 35(2y - 1) = 3y(3x - 2) = x(x - 1) = x^2(x - 1) = 5xy(x + 2)$$

17.
$$6x^3y^2 - 30x^2y$$
 18. $10a^2bc + 20abc^2 + 30ab^2c$ 19. $x^2y^2 - 3xy$
= $6x^2y(xy-5)$ = $10abc(a+2c+3b)$ = $xy(xy-3)$
20. $x^2y^2 - xy = xy(xy-1)$

Quadratics and higher powers:

(B) Factorise completely:

1.
$$x^2 - 4x + 4$$
 2. $x^2 - 3x + 2$ 3. $x^2 - 4x + 3$ 4. $x^2 + 5x + 6$

$$= (x-2)(x-2) = (x-1)(x-2) = (x-3)(x-1) = (x+2)(x+3)$$

$$5. 2x^2 - 8x + 8$$
 6. $2x^2 - 6x + 4$ 7. $3x^2 - 12x + 9$ 8. $4x^2 + 20x + 24$

$$= 2(x^2 + 4x + 4) = 2(x^2 - 3x + 2) = 3(x^2 + 4x + 3) = 4(x^2 + 5x + 6)$$

$$= 2(x^2 - 4x + 4) = 2(x^2 - 3x + 2) = 3(x - 1)(x - 3) = 4(x + 2)(x + 3)$$

$$6x = 2(x-2)^2$$

$$6x = 2(x-2)^2$$

9.
$$x^{2} + 4x + 4$$

= $(x+2)(x+2)$
 $= (x+2)^{2}$

10.
$$2x^2 + 8x + 8$$
 13
= $2(x^2 + 4x + 4)$
= $2(x+2)(x+2)$

11.
$$x^2 + 3x + 2$$

= $(x+1)(x+2)$

1.
$$x^2 + 3x + 2$$
 12. $x^2 - 11x + 10$
= $(x-1)(x+2)$ = $(x-1)(x-10)$

$$13. x^{2} - x - 2 14. x^{2} + x - 2 15. x^{2} + 2x - 3 16. x^{2} + 5x - 10$$

$$= (x + 1)(x - 2) = (x - 1)(x + 2) = (x - 1)(x + 3) = (x - 2)(x + 5)$$

14.
$$x^2 + x - 2$$

= $(x-1)(x+2)$

OR 2 (x+2)2

15.
$$x^2 + 2x - 3$$

= $(x-1)(x+3)$

Companion in the Companion of the Compan

$$13. x^{2} - x - 2 14. x^{2} + x - 2 15. x^{2} + 2x - 3 16. x^{2} + 3x - 10$$

$$= (x+1)(x-2) = (x-1)(x+2) = (x-1)(x+3) = (x-2)(x+5)$$

$$17. 2x^{2} - 9x + 4 18. 2x^{2} + 9x + 4 19. 3x^{2} - 16x + 5 20. 3x^{2} + 16x + 5$$

$$= (2x - 1)(x - 4) = (2x + 1)(x + 4) = (3x - 1)(x - 5) = (3x + 1)(x + 5)$$

18.
$$2x^2 + 9x + 4$$

= $(2x+1)(x+4)$

$$19.3x^2 - 16x + 5$$

= $(3x-1)(x-5)$

$$17. 2x^{2} - 9x + 4 18. 2x^{2} + 9x + 4 19. 3x^{2} - 16x + 5 20. 3x^{2} + 16x + 5$$

$$= (2x - 1)(x - 4) = (2x + 1)(x + 4) = (3x - 1)(x - 5) = (3x + 1)(x + 5)$$

$$21.3x^2 - 14x + 15 = (3x - 5)(x - 3)$$

$$21. 3x^{2} - 14x + 15 = (3x - 5)(x - 3)$$

$$22. 3x^{2} + 14x + 15 = (3x + 5)(x + 3)$$

$$23.4x^{2} + 20x + 25$$

$$= (2x+5)(2x+5)$$
or $(2x+5)^{2}$

$$24. \ 4x^2 - 20x + 25 \qquad 25. \ 6x^2 + 11x + 3 \qquad 26. \ 6x^2 - 11x + 3 = (2x - 5)(2x - 5) = (3x + 1)(2x + 3) = (3x - 1)(2x - 3)$$

$$\begin{array}{rcl}
26. & 6x^2 - 11x + 3 \\
& = (3x - 1)(2x - 3)
\end{array}$$

27.
$$6x^2 + 17x + 5$$
 28. $6x^2 - 13x + 6$ 29. $3x^2 - 3x - 6$ = $3(x^2 - x)$ = $3(x^2 - x)$

28.
$$6x^2 - 13x + 6$$

 $(3x - 2)(3x - 3)$

30.
$$4x^2 + 4x - 8$$

= $4(x^2 + x - 2)$
= $4(x - 1)(x + 2)$

$$31.2x^{2} + 4x - 6$$

$$= 2(x + 2x - 3)$$

$$= 2(x - 1)(x + 3)$$

30.
$$4x^{2} + 4x - 8$$
 31. $2x^{2} + 4x - 6$ 32. $4x^{2} + 12x - 40$
= $4(x^{2} + x - 2)$ = $2(x^{2} + 2x - 3)$ = $4(x^{2} + 3x - 10)$
= $4(x - 1)(x + 2)$ = $2(x - 1)(x + 3)$ = $4(x - 2)(x + 5)$

33.
$$6x^2 - 3x - 30$$

= $3(2x^2 - x - 10)$
= $3(2x - 5)(x + 2)$

33.
$$6x^2 - 3x - 30$$
 34. $8x^2 + 2x - 15$ 35. $8x^2 - 14x - 15$ = $(4x - 5)(2x + 3)$ = $(4x + 3)(2x - 5)$

33.
$$6x^2 - 3x - 30$$
 34. $8x^2 + 2x - 15$ 35. $8x^2 - 14x - 15$ = $(4x - 5)(2x + 3)$ = $(4x + 3)(2x - 5)$

36.
$$6x^2 - 7x - 3$$

= $(3x + 1)(2x - 3)$

36.
$$6x^2 - 7x - 3$$
 37. $6x^4 - 7x^2 - 3$
 $= (3x + 1)(2x - 3)$ $= (3x^2 + 1)(2x^2 - 3)$

$$38. 6x^4 - 13x^2 + 6$$

$$= (3x^2 - 2)(2x^2 - 3)$$

$$39. 8x^{2} + 2xy - 15y^{2}$$

$$= (4x - 5y)(2x + 3y)$$

40.
$$6x^2 - 11xy + 3y^2$$

 $(3x - y)(2x - 3y)$

$$40. 6x^{2} - 11xy + 3y^{2} (3x - y)(2x - 3y) = a(a+b) + c(a+b) = (a+b)(a+c)$$

42.
$$mn + mc + an + ac$$

= $m(n+c) + a(n+c)$
= $(n+c)(m+a)$

$$43. a^{2} + ab - ac - bc 44. mn$$

$$= a(a+b) - c(a+b) = m(a+b)(a-c) = (a+b)(a-c)$$

$$44. mn + mc - an - ac$$

$$= m(n+c) - a(n+c)$$

$$= (n+c)(m-a)$$

45.
$$mn - mc - an + ac$$

= $m(n-c) + a(n-c)$
= $(n-c)(m-a)$

$$45. mn - mc - an + ac
= m(n-c) + a(n-c) = n(n^2 + 9n + 18) = n(6n^2 + 7n - 5)
= (n-c)(m-a) = n(n+3)(n+6) = n(3n+5)(2n-c)
= n(3n+5)(2n-c) = n(3n+5)(2n-$$

45.
$$mn - mc - an + ac$$
 46. $n^3 + 9n^2 + 18n$ 47. $6n^3 + 7n^2 - 5n$

$$= m(n-c) + a(n-c) = n(n^2 + 9n + 18) = n(6n^2 + 7n - 5)$$

$$= (n-c)(m-a) = n(n+3)(n+6) = n(3n+5)(2n-1)$$

48.
$$6n^3 - 19n^2 + 15n$$
 49. $8n^3 - 2n^2 - 21n$ 50. $3n^3 + 46n^2 - 32n$
= $n(6n^2 - 19n + 15)$ = $n(8n^2 - 2n - 21)$ = $n(3n^2 + 46n - 32)$

$$49.8n^3 - 2n^2 - 21n$$

$$= 0.8n^2 - 20 - 21$$

$$48. 6n^{3} - 19n^{2} + 15n 49. 8n^{3} - 2n^{2} - 21n 50. 3n^{3} + 46n^{2} - 32n$$

$$= n(6n^{2} - 19n + 15) = n(8n^{2} - 2n - 21) = n(3n^{2} + 46n - 32)$$

$$= n(3n-5)(2n-3) = n(4x-7)(2x+3) = n(3n-2)(n+16)$$

$$= n (4x - 7)(2x + 3)$$

$$= n(3n-2)(n+16)$$

Difference of two squares and more challenging factorization:

(c) Factorise completely:

1.
$$x^2 - 1$$
 2. $x^2 - 4$ 3. $x^2 - 49$ 4. $n^2 - 9$ 5. $a^2 - b^2$

$$= (x+1)(x-1) = (x+2)(x-2) = (x+7)(x-7) = (x+3)(x-3) = (a+b)(a-b)$$

6.
$$n^2 - 25$$
 7. $25 - n^2$ 8. $2n^2 - 50$ 9. $4x^2 - 25$ 10. $8x^2 - 50$

$$= (n+5)(n-5) = (5+n)(5-n) = 2(n^2 - 25) = (2x+5)(2x-5) = 2(4x^2 - 25)$$

$$= 2(n+5)(n-5) = -2(2x+5)(2x-5)$$

11.
$$4x^2 - 49$$
 12. $9x^2 - 16$ 13. $25 - 4x^2$ 14. $9n^2 - 25$ 15. $4 - 9n^2$

$$= (2x+7)(2x-7) \quad (3x+4)(3x-4) \quad = (5+2x)(5-2x) \quad = (3n+5)(3n-5) \quad (2+3n)(2-3n)$$

16.
$$9n^2 - 25m^2$$
 17. $x^2 - \frac{1}{4}$ 18. $x^2 - 2\frac{1}{4}$ 19. $\frac{4}{25}x^2 - 1$

$$= (3n + 5m)(3n - 5m) = (x + \frac{1}{2})(x - \frac{1}{2}) = x^2 - \frac{q}{4} = (\frac{2}{5}x + 1)(\frac{2}{5}x - 1)$$

$$= (x + \frac{3}{2})(x - \frac{3}{2})$$

*23.
$$x^{4} - 16n^{4}$$
 *24. $81x^{4} - 16$ *25. $x^{4} - y^{4}$ *26. $x^{4} - 81$

$$= (y^{2} + 4y^{2})(y^{2} - 4y^{2}) = (qx^{2} + 4)(qx^{2} + 4) = (x^{2} + q)(x^{2} - q)$$

$$= (x^{2} + 4y^{2})(x + 2y)(x - 2y) = (x^{2} + q)(x + 3)(x - 3)$$

$$= (x^{2} + y^{2})(x + y)(x - y)$$

$$\begin{array}{lll}
 & *27. \, x^{8} - 256 & *28.64n^{4} - 4 & *29. \, x^{6} - x^{2} & *30. \, x^{4} - \frac{16}{81} \\
 & = x^{8} - 2^{8} & = 4(16n^{4} - 1) \\
 & = (x^{4} + 2^{4})(x^{2} - 2^{4}) & = 4(4n^{2} + 1)(4n^{2} - 1) \\
 & = (x^{4} + 16)(x^{2} + 2^{2})(x^{2} - 2^{2}) & = 4(4n^{2} + 1)(2n + 1)(2n - 1) \\
 & = (x^{4} + 16)(x^{2} + 4)(x + 2)(x - 2) & = x^{2}(x^{4} + 1) \\
 & = (x^{4} + 16)(x^{2} + 4)(x + 2)(x - 2) & = x^{2}(x^{2} + 1)(x + 1)(x - 1) \\
 & = x^{2}(x^{2} + 1)(x + 1)(x - 1) & = x^{2}(x^{2} + 1)(x + 1)(x - 1) \\
 & = (x^{2} + \frac{1}{4})(x^{2} - \frac{1}{4}) & = (x^{2} + \frac{1}{4})(x^{2} - \frac{1}{4}) \\
 & = (x^{2} + \frac{1}{4})(x^{2} - \frac{1}{4}) & = (x^{2} + \frac{1}{4})(x^{2} - \frac{1}{4})
\end{array}$$

Applications:

Use factorisation to find the value of each of the following:

1.
$$29^{2} - 19^{2}$$
 2. $49^{2} - 9^{2}$ 3. $2012^{2} - 2011^{2}$ 4. $(\frac{9}{16})^{2} - (\frac{7}{16})^{2}$ = $(49 + 1)(49 - 4)$ = $(48)(10)$ = $(58)(40)$ = $(48)(10)$ = $(58)(40)$ = $(4023)(1)$ = $(480)^{2}$ $(480)^{2}$ $(490$

Beyond GCSE

(D) Factorise completely

1.
$$x^3 - 1 = (\alpha - 1)(x^2 + x + 1)$$

$$2 r^3 + 1 = (x+1)(x-x+1)$$

1.
$$x^{3} - 1$$
 = $(x + 1)(x^{2} - x + 1)$
2. $x^{3} + 1$ = $(x + 1)(x^{2} - x + 1)$
3. $x^{3} - 8$ = $(x - 2)(x^{2} + 2x + 4)$

$$4. x^3 + 8 = (x+2)(x^2 - 2x + 4)$$

5.
$$27x^3 - 64 = (3x - 4)(9x^2 + 12x + 16)$$

6.
$$x^{6}-1 = (x^{2}+1)(x^{3}-1)$$

$$= (x+1)(x^{2}-x+1)(x-1)(x^{2}+x-1)$$

$$= (x+1)(x-1)(x^{2}-x+1)(x^{2}+x-1)$$

7.
$$x^{6} + 1$$

$$= (x^{2} + 1) + (x^{2} + 1)(x^{2} + 1) = (x + 1)(x - 1)(x^{2} + x^{2} + 1)$$

8.
$$x^3 + \frac{1}{x^3} = (\chi + \frac{1}{\chi})(\chi^2 + 1 + \frac{1}{\chi^2})$$

9.
$$x^3 = \frac{1}{x^3} = (x - \frac{1}{x})(x^2 + 1 + \frac{1}{x^2})$$

10.
$$x^3y^3 - x^3$$

= $2c^3(y^3 - 1)$
= $2c^3(y^3 - 1)(y^2 + y + 1)$

I hope you find this useful and challenging. Please check all answers and let me know if you find any errors. If you would prefer the word version, send me a message and I will upload it. Thank you.