Patent Abstracts of Japan

PUBLICATION NUMBER

: 09077543

PUBLICATION DATE

25-03-97

APPLICATION DATE

08-09-95

APPLICATION NUMBER

: 07256730

APPLICANT:

CHICHIBU ONODA CEMENT CORP;

INVENTOR:

KUSAKA KOJI;

INT.CL.

C04B 18/14 B09B 3/00 C04B 14/04 C04B 18/08

TITLE

ARTIFICIAL LIGHTWEIGHT AGGREGATE AND ITS PRODUCTION

ABSTRACT:

PROBLEM TO BE SOLVED: To obtain an artificial lightweight aggregate having low specific gravity, high strength, low water absorption and stable quality by using a blast furnace stag and a fly ash as main raw materials to effectively utilize an industrial waste.

SOLUTION: This artificial lightweight aggregate is formed by using the blast furnace slag and the fly ash as the main raw materials, adding a clay such as bentonite and, if necessary, silicon carbide thereunto and granulating, molding and firing the mixed raw material. The mixed ratio of the blast furnace slag with the fly ash is usually controlled to 40-60 pts.wt. blast furnace slag and 40-60 pts.wt. fly ash. In the fly ash of 40-60 pts.wt., 5-25 pts.wt. can be replaces with a waste glass to be used. The blast furnace slag having ≤25µm average particle diameter is preferably used. The waste glass by is used pulverizing into ≤20µm. The firing is performed at ≥1000°C.

COPYRIGHT: (C)1997,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-77543

(43)公開日 平成9年(1997)3月25日

(51) Int.Cl. ⁸	識別配号	庁内整理番号	FΙ	•		技術	表示箇所
C 0 4 B 18/14	ZAB	•	C04B	18/14	ZAB	A.	
B 0 9 B 3/00				14/04	ZAB	A.	
C 0 4 B 14/04	ZAB			18/08	ZAB	В.	
18/08	ZAB		B09B	3/00	301	F ·	
		•			301	M	
			審查謝	大 未諸宋	請求項の数 6	FD (全 6 頁)
(21)出願番号	特顯平7-256730		(71)出願	0000002	240		
				秩父小	წ田株式会社		
(22)出顧日	平成7年(1995)9月	38日		東京都洋	些区西新栖二丁 目	314番1号	•
			(72)発明報	子 并 (女夫		
•				千葉県	左合市大作二丁目	34番2号	秩父小
•	•			野田株式	式会社中央研究所	所内	
•.	•		(72)発明和	子大神	初章		
			·		左合市大作二丁目		秩父小
					式会社中央研究所	乔内	
٠.		,	(72)発明者				
	•				左合市大作二丁目		秩父小
		•		野田株式	\$ 会社中央研究的	下内	
		•				最終	页に続く
•			1 '				

(54) 【発明の名称】 人工軽量骨材及びその製造方法

·(57)【要約】

【課題】 製鉄所から排出される高炉スラグと火力発電 所から排出されるフライアッシュとを主要原料とし、高 強度、低吸水率で、品質の安定した人工軽量骨材及びそ の製造方法を提供する。

【解決手段】 高炉スラグ及びフライアッシュを主原料とし、これにベントナイト等の粘土類及び所望により炭化珪素を添加した混合原料を造粒・成形し、焼成してなることを特徴とする。

【特許請求の範囲】

【請求項1】 高炉スラグ及びフライアッシュを主原料 とし、これにベントナイト等の粘土類及び所望により炭 化珪素を添加した混合原料を造粒・成形し、焼成してな ることを特徴とする人工軽量骨材。

【請求項2】 高炉スラグ40~60重量部及びフライアッシュ60~40重量部を主原料とすることを特徴とする請求項1記載の人工軽量骨材。

【請求項3】 廃ガラスをフライアッシュの一部に置換して用いることを特徴とする請求項1若しくは2記載の 人工軽量骨材。

【請求項4】 フライアッシュ60~40重量部のうち、5~25重量部を廃ガラスで置き換えてなることを 特徴とする請求項2記載の人工軽量骨材。

【請求項5】 高炉スラグ40~60重量部、フライアッシュ60~40重量部から成る主原料に、粘結材としてベントナイト等の粘土類及び所望により発泡補助材として炭化珪素を添加、混合して成形し、1100℃以上の温度で焼成することを特徴とする人工軽量骨材の製造方法。

【請求項6】 フライアッシュ60~40<u>軍量</u>部のうち、5~25重量部を廃ガラスで置き換えてなることを特徴とする請求項5記載の人工軽量骨材の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、人工軽量骨材及 びその製造方法、特に、産業廃棄物である高炉スラグと フライアッシュを有効利用して成るコンクリート用の軽 量骨材及びその製造方法に関するものである。

[0002]

【従来の技術】火力発電所のボイラー等で燃料として石炭を用いると、いわゆる産業廃棄物として多量のフライアッシュが発生する。一年間に発生するフライアッシュはおよそ400万トンであり、そのうちの約半分がセメントコンクリート等の建設、土木分野、窯業分野で有効利用されている。しかしながら、近年の動向をみると、フライアッシュの発生量は確実に増加しつつあるにも関わらず、有効利用率は50%以下で推移しており、環境保全の立場からも、フライアッシュの有効利用が更に促進されることが望まる。

【0003】このようなフライアッシュの有効利用の一つとして、フライアッシュを主原料とし、これを造粒、 発泡焼成して得られる人工軽量骨材がある。しかしなが ら、フライアッシュは、化学的・物理的性状のバラッキ が大きいため、一定の製造条件で品質の安定した骨材を 大量に製造することが難しく、得られる骨材は、高吸水 率で強度も低いという問題点があった。

【0004】一方、高炉スラグは、溶鉱炉で銑鉄を製造する際に、1450℃前後で溶融状態で排出されるものであり、その量は銑鉄生産量の約4割といわれている。

その発生量の大半は、路盤材、セメント原料、ロックウール原料等として再利用が図られている。また、セラミックスタイル、煉瓦、人工骨材として再利用しようとする研究もなされており、フライアッシュの場合より、その有効利用率はかなり高いもののさらなる活用が期待される。

【0005】さらに、高炉スラグの使用方法の一つとして、コンクリート粗骨材として使用することが知られている。しかし、高炉スラグは表面に凹凸が多く吸水率が高いので、コンクリート練り混ぜ時に、砕石を使用した時に比べて添加水量が多量に必要なことから、作業条件が不安定になる。かかる問題を回避する手段として、高炉スラグを粉砕し、造粒・焼成する方法も考えられるが、高炉スラグのみを十分に緻密化するためには1300℃以上の高温が必要となるし、焼結してから軟化するまでの温度幅が狭く、製造上の工程管理が難しいという問題がある。

[0006]

【発明が解決しようとする課題】従って、この発明は、 製鉄所から排出される高炉スラグと火力発電所から排出 されるフライアッシュとを主要原料とし、高強度、低吸 水率で、品質の安定した人工軽量骨材及びその製造方法 を提供することを目的とする。

[0007]

【課題を解決するための手段】前記目的を達成するために、この発明の人工骨材によれば、高炉スラグ及びフライアッシュを主原料とし、これにベントナイト等の粘土類及び所望により炭化珪素を添加した混合原料を造粒・成形し、焼成してなること(請求項1)、高炉スラグ40~60重量部及びフライアッシュ60~40重量部を主原料とすること(請求項2)、廃ガラスをフライアッシュの一部に置換して用いること(請求項3)、フライアッシュ60~40重量部のうち、5~25重量部を廃ガラスで置き換えてなること(請求項4)、を特徴とする

【0008】また、この発明の人工骨材の製造方法によれば、高炉スラグ40~60重量部、フライ・ッシュ60~40重量部から成る主原料に、粘結材としてベントナイト等の粘土類及び所望により発泡補助材として炭化珪素を添加、混合して成形し、1100℃以上の温度で焼成すること(請求項5)、フライアッシュ60~40重量部のうち、5~25重量部を廃ガラスで置き換えてなること(請求項6)、を特徴とする。以下、この発明を詳細に説明する。

[0009]

【発明の実施の形態】高炉スラグは製鉄工業の溶鉱炉で 副生する水滓スラグ、あるいは徐冷滓スラグの粉砕品、 好ましくは、平均粒径25μm以下のものを使用する。 高炉スラグ単味で造粒・焼成しても、それ自身発泡成分 を含んでいないので加熱に伴って発泡が起こり難く軽量 骨材とは成らない。また加熱温度のわずかな上昇に伴って急激な粘性の低下を起こし、骨材同士の融若や、形状を維持出来ない等の問題がある。この発明では後述するフライアッシュあるいはフライアッシュと廃ガラス粉末の混合物をシリカ源として高炉スラグに混合することによって、比較的低温での液相形成を可能にし、軽量骨材化を達成する。

14

【0010】フライアッシュは、JISで規定されるフライアッシュは無論、通常原粉と称されるフライアッシュ、及びシンダーアッシュ、あるいは流動床飛灰をも含めた、石炭の燃焼方式如何に拘らず得られる広い意味での石炭灰全般を使用することができ、これらフライアッシュを造粒物の強度を確保するために必要に応じて粉砕し、平均粒径約25μm以下として使用することが望ましい。

【0011】高炉スラグとフライアッシュの混合割合は、高炉スラグ40~60重量部、フライアッシュ40~60重量部とする。フライアッシュの含有量が40重量部未満であると、高炉スラグに対するシリカ源添加量が不足し、低温での液相量が減少するので、良好な軽量骨材を得難く成る。また、フライアッシュの含有量が60重量部を越えると、発泡が顕著と成りすぎて骨材表面に開気孔を形成し、吸水率が大きく骨材強度も小さい骨材しか得られない。

【0012】また、高炉スラグとフライアッシュの混合に当たって、やはり廃棄物である廃ガラスをフライアッシュの一部に置換して用いることができる。すなわち、廃ガラスは低温での液相形成に寄与し、フライアッシュ40~60重量部のうち、5~25重量部を廃ガラスで置き換えて使用することができる。廃ガラスとしては、飲料水の廃ビンガラス、食器用のガラス製品、通常の窓ガラス等各種の廃ガラスを20μm程度以下に粉砕して用いることができる。

【0013】次ぎに、前記高炉スラグとフライアッシュ、あるいはフライアッシュと廃ガラスを加えた主原料

に、ベントナイト等の粘土類および炭化珪素を添加混合 後、水を加えて成形、造粒する。粘土類は、造粒物の強 度を確保するための粘結材として3~7重量%添加する もので、ベントナイトの他、モンモリナイトやカオリン 等を使用することもできる。炭化珪素は、所望により発 泡補助材として0.05~0.30重量%添加するもの で、特に発泡源となる炭質物の含有量が小さいフライア ッシュを用いる場合において、効果的に発泡の不足を補 い、品質の安定した軽量化を達成することができる。 【0014】成形、造粒方法に特に制約はないが、パン ペレタイザーや押し出し成形機等による造粒が、成形の 容易性、工業的量産性の面から好ましい。次いで造粒物 を、ロータリキルン等の焼成炉により1100℃以上、 好ましくは1150~1300℃の比較的低い温度で焼 成、冷却することで、この発明の良質な人工軽量骨材を 得ることが出来る。

[0015]

【実施例】

(実施例1~5) 高炉水滓スラグ (平均粒径約12μm) 50重量部、フライアッシュ (平均粒径約20μm) 50重量部、及び粘結材としてベントナイト3重量部を混合した。この混合粉末に水12重量部を添加し、約4gを天秤で計り取り球状に造粒し、乾燥させたものを焼成用ペレットとした。ペレットを電気炉中、1210~1300℃の温度内の所定の温度で5分保持することにより骨材とした。得られた骨材は、吸水率が1.2%以下、絶乾比重が2未満、引っ張り強度が150kgf/cm²以上の良好なものであった。結果を表1に示す。この骨材は、吸水率が小さいため、構造用コンクリートの軽量骨材として利用することが出来る。また一定品質の骨材を焼成するための焼成温度領域も広いので、製造上工程の管理が容易なものであった。

[0016]

【表1】

			16E, 1	全 (重	金部)		ALL CENTRO	45 M LL-50	吸水率	引張り
		高 ステ ラ グ	アフ ッラ シイ ユ	腕ガラス	ベナイト	炭化 建素	焼成温度 (℃)	絶乾比玉	(%)	強度 (kgf/ cm²)
实施例	1	50	50	-:	3	-	1210	1.85	1. 2	207
突旋例	2	50	50	.`	3	_	1230	1. 75	0. 6	215
宾施例	3	50	50	-	3	_	1260	1.70	0. 0	2 0 4
実施例	4	50	50	_	3	-	1280	1. 56	0.1	173
克庭例	5	50	50	-	3	_	1300	1.55	0. 1	167

【0017】(実施例6~9)発泡補助材として炭化珪 業0.15重量部をさらに混合した以外は、先の実施例 と同様に、ペレットを作成し、1230~1300℃の 温度内の所定の温度で5分保持することにより骨材とした。結果を表2に示す。得られた骨材は、吸水率が0.4%以下、絶乾比重が2未満、引っ張り強度が150k

gf/cm² 以上の良好なものであった。 【0018】 【表2】

			PC 1	(重)	計部)		 	絶乾比重	吸水率	引張り
		· 高 スラ グ	アフ ッラ シイ ュ	脱ガラス	ベ ナン イト ト	炭化 建素	(°C)	REMOJUSE.	(%)	強度 (kgf/ cm²)
実施例	6	5 Ó	50	_	8	0. 15	1230	1. 99	0.4	208
実施例	7	50	50	-	3	0. 15	1250	1. 83	0. 1	2 2 D
実施例	8	50	5 0	-	8	0. 15	1270	1. 79	0.1	269
実施例	9	50	5 O _.	1	3	0. 15	1800	1.50	0. 1	162

【0019】(実施例10~12)高炉水滓スラグ50重量部、フライアッシュ45重量部、廃ガラス粉末(飲料水の廃ビンガラスをボールミルで約5μπに粉砕)5重量部、粘結材としてベントナイト3重量部、及び発泡補助材として炭化珪素0.15重量部を混合した以外は、先の実施例と同様に、ペレットを作成し、1250~1300℃の温度内の所定の温度で5分保持すること

により骨材とした。結果を表3に示す。得られた骨材は、吸水率が0.1%以下、絶乾比重が2未満、引っ張り強度が145 k g f / c m 2 以上の良好なものであった。

【0020】 【表3】

		記 1	· (金)	計部)	线成治度	絶乾比重	吸水率	引張り	
	高 ス タ ク	アフ ッラ シイ ュ	路ガラス	ベ ナ イト ト	炭化 珪素	(°C)	MCYGJG.E	(%)	強度 (kgf/ cm²)
突進例10	50	45	5	8	0. 15	1250	1. 62	0. 0	195
突旋例11	5 0	4.5	5	3	0. 15	1270	1. 52	0. 0	186
実施例12	50	45	5	3	0. 15	1300	1. '8 7	0. 1	1 4 5

【0021】(実施例13~15)高炉水滓スラグ60 重量部、フライアッシュ35重量部、廃ガラス粉末5重 量部、粘結材としてベントナイト3重量部、及び発泡補助材として炭化珪素0.15重量部を混合した以外は、 先の実施例と同様に、ベレットを作成し、1140~1

180℃の温度内の所定の温度で5分保持することにより骨材とした。結果を表4に示す。いずれも良好な骨材であった。

[0022]

【表4】

		配 1	→ (3£)	登部)	•	焼成温度	絶乾比重	吸水率	引張り
	高 ス炉 ラ グ	アフ ッラ シイ ュ	廃ガラス	ベンイト	炭化珪紫	(°C)	ENT.	(%)	發度 (kgf/ co²)
突旋例13	60	3 5	5	3	ų i	1140	1.83	2. 8	218
実施例14	60	8.6	Б	8	5. 15	1160	1. 34	2. 3	107
実施例15	60	3 5	5	3	0. 15	1180	1. 32	0. 7	124

【0023】(実施例16)高炉水滓スラグ40重量部、フライアッシュ55重量部、廃ガラス粉末5重量部、粘結材としてベントナイト3重量部、及びび発泡補助材として炭化珪素0.15重量部を混合した以外は、先の実施例と同様に、ペレットを作成し、1300℃の

温度で5分保持することにより骨材とした。結果を表5 に示す。

[0024]

【表5】

·		82 1	<u> </u>	量部)		始成沮疫	经常比较	吸水率	引張り
	高 ス炉 ラ グ	アフ ッラ シイ ュ	斑ガラス	ベントト	以化珪素	(°C)	NSW2JUSE.	(%)	強度 (kgf/ cm²)
实施例16	40	5 5	5	3 .	0. 15	1300	1.51	0. 3	205

【0025】(比較例1~4)高炉水溶スラグ100重量部、粘結材としてベントナイト3重量部および発泡補助材として炭化珪素0.15重量部を混合した以外は、先の実施例と同様に、ペレットを作成し、1200~1270℃の温度内の所定の温度で5分保持することによ

بنخر

1

り骨材とした。結果を表6に示す。得られた骨材は、吸水率が6%以上もあり、コンクリート用骨材としては不適当なものであった。

[0026]

【表6】

	•		162 f	(定)	(部)		List and the state of the state	连龙 比型	吸水率	引張り 強度 (kgf/ cm²)
		高 ス炉 ラグ	アフ ッラ シイ ュ	遊ガラス	ベ ナン イト ト	炭化珪素	焼成温度 (℃)	絶乾比亚	(%)	
比较例	1	100	-	-	8	0. 15	1200	2. 15	Ĝ. 1	105
比較例	2	100	_	-	8	0. 15	1230	1.84	9. 4	64
比較例	8	100	4.	. —	3	0. 15	1250	1. 83	7. 0	68
比較例	4	100	-		3	0. 15	1270	1.66	6. 4	58

【0027】(比較例5、6)高炉水滓スラグ70重量部、フライアッシュ25重量部、廃ガラス粉末5重量部、粘結材としてベントナイト3重量部および発泡材として炭化珪素0.15重量部を混合した以外は、先の実施例と同様に、ペレットを作成し、1140℃、1160℃の温度で5分保持することにより骨材とした。結果

を表7に示す。得られた骨材は、発泡が顕著と成りすぎたために、吸水率が高く、一般軽量骨材としては使用可能な領域であるが、構造用コンクリート骨材として使用する場合には限界のあるものであった。

[0028]

【表7】

			BC 1	全 (重)	量部)		始成温度	絶乾比重	ID-A-to	引張り
		高 ス炉 ラ グ	アフ ッラ シイ ニ	廃ガラス	ベ ナン イト ト	炭化珪素	(°C)	REWGJG.B.	(%)	強度 (kgf/ cm²)
比較例	5	70	2 6	5.	3	0. 15	1140	1. 58	6. 1	114
比較例	6	70	2 6	5	8	0. 15	1160	1. 14	6. 9	8 3

【0029】(比較例7、8)高炉水滓スラグ30重量部、フライアッシュ65重量部、廃ガラス粉末5重量部、粘結材としてベントナイト3重量部および発泡材として炭化珪素0.15重量部を混合した以外は、先の実施例と同様に、ペレットを作成し、1200℃、1250℃の温度で5分保持することにより骨材とした。結果

を表8に示す。得られた骨材は、吸水率が14%以上と 高く、コンクリート用骨材としては耐久性の面で限界が あるものであった。

[0030]

【表8】

•			I E 1	盆)(量部)		Adv -de-Nill take	454411	W751	מ פופו מ
		高 ス ラ グ	アフ ッラ シイ ュ	磨ガラス	ベ ナン イト ト	炭化珪素	焼成沮皮 (℃)	絶乾比重	吸水率 (%)	引張り 強度 (kgf/ co*)
比較例	7	8 0	65	5	3	0. 15	1200	1.36	20	3 2
比較例	8	3 0	6 5	٤.	. 3	0.15	1250	1.60	14	47

[0031]

【発明の効果】以上説明したこの発明によれば、廃棄物である高炉スラグおよびフライアッシュを有効に再利用でき、環境保全上大いに貢献するもので、しかも、得ら

れる人工軽量骨材は、低比重、低吸水率及び高強度を有しており、コンクリート用骨材として用いた場合、高強度軽量コンクリートとして、土木、建築等の分野において極めて有益に利用することができる。

フロントページの続き

(72)発明者 久坂 浩司

千葉県佐倉市大作二丁目4番2号 秩父小 野田株式会社中央研究所内