

CH32X035 数据手册

V1.0

概述

CH32X035 是基于青稞 RISC-V 内核设计的工业级微控制器。CH32X035 内置 USB 和 PD PHY, 支持 USB Host 主机和 USB Device 设备功能、USB PD 及 type C 快充功能,内置可编程协议 I/O 控制器,提供了 2 组 OPA 运放、3 组 CMP 电压比较器、4 组 USART 串口、I2C、SPI、多组定时器、12 位 ADC、14 路 Touchkey 等丰富外设资源。

产品特性

● 内核 Core:

- 青稞 32 位 RISC-V4C 内核
- 支持 RV321MAC 指令集和自扩展指令
- 快速可编程中断控制器+硬件中断堆栈
- 分支预测、冲突处理机制
- 单周期乘法、硬件除法

● 存储器:

- 20KB 易失数据存储区 SRAM
- 62KB 程序存储区 CodeFlash
- 3328B 系统引导程序存储区 BootLoader
- 256B 系统非易失配置信息存储区
- 256B 用户自定义信息存储区

● 电源管理和低功耗:

- 系统供电 V∞额定电压: 3.3V 或 5V
- 低功耗模式: 睡眠、停止、待机

● 系统时钟和复位:

- 内置 48MHz 时钟振荡器
- 上/下电复位、可编程电压监测器
- 8 路通用 DMA 控制器:
- 8 个通道, 支持环形缓冲区管理
- 支持 TIMx/ADC/USART/I2C/SPI
- 可编程协议 I/0 控制器 PIOC:
- 可编程,支持多种单线接口、两线接口
- 2 组运放 OPA/PGA/电压比较器:
- 多路输入通道, 可选多档增益
- 各 2 路输出通道, 可选 ADC 引脚

● 3组模拟电压比较器 CMP:

- 各 2 路输入通道, 可选公用参考电压引脚
- 输出到 I/0 或者内部直接触发 TIM2
- 12 位模数转换 ADC:
- 模拟输入范围: GND~V₀ ¬
- 14 路外部信号+1 路内部信号通道
- 14 路 TouchKey 通道检测
- 多组定时器:
- 2 个 16 位高级定时器,增加死区控制和紧急 刹车,提供用于电机控制的 PWM 互补输出
- -1 个 16 位通用定时器,提供输入捕获/输出比较/PWM
- 2 个看门狗定时器: 独立和窗口型
- 系统时基定时器: 64 位计数器
- 4组 USART 串口: 支持 LIN 和 IS07816
- 1个 I2C 接口:支持 SMBus/PMBus
- 1 个 SPI 接口
- USB2. 0 全速控制器及 PHY:
- 支持 USB 主机或 USB 设备
- USB PD 和 Type C 控制器及 PHY
- 快速 GPIO 端口:
- 60 个 I/0 口, 支持 24 个外部中断
- 安全特性:芯片唯一 ID
- 调试模式:串行2线调试接口SDI
- 封装形式: LQFP、QFN、QSOP、TSSOP

型号	闪存	RAM	通 用 I/0	高级定时器	通用定时器	串口	看门狗	USB 主 机	设	USB PD typeC	ADC	OPA 运 放		电容 触摸 按键	SPI	PIOC 单线 接口	封準
CH32X035R8T6	62K	20K	60	2	1	4	2	√	√	√	14+1	2组	3组	14 路	√	√	LQFP64M
CH32X035C8T6	62K	20K	46	2	1	4	2	√	√	√	10+1	2组	3组	10路	√	√	LQFP48
CH32X035G8U6	62K	20K	27	2	1	4	2	√	√	√	10+1	2组	1组	10路	√	√	QFN28
CH32X035G8R6	62K	20K	26	2	1	4	2	√	√	√	11+1	2组	2组	11 路	√	√	QSOP28
CH32X035F8U6	62K	20K	19	2	1	3	2	-	√	√	10+1	2组	_	10路	√	√	QFN20
CH32X035F7P6	48K	20K	18	2	1	3	2	-	√	√	11+1	1组	1组	11路	√	√	TSS0P20

第1章 规格信息

1.1 系统架构

微控制器基于 RISC-V 指令集设计,其架构中将青稞微处理器内核、仲裁单元、DMA 模块、SRAM 存储等部件通过多组总线实现交互。集成通用 DMA 控制器以减轻 CPU 负担、提高访问效率,应用多级时钟管理机制降低了外设的运行功耗,同时兼有数据保护机制,时钟自动切换保护等措施增加了系统稳定性。下图是系列芯片内部总体架构框图。

图 1-1 系统框图

1.2 存储器映射表

图 1-2 存储器地址映射

1.3 时钟树

系统时钟源:内部高频 RC 振荡器 (HSI)。

图 1-3 时钟树框图

1.4 功能概述

1.4.1 RISC-V4C 处理器

RISC-V4C 支持 RISC-V 指令集 IMAC 子集。处理器内部以模块化管理,包含快速可编程中断控制器(PFIC)、内存保护、分支预测模式、扩展指令支持等单元。对外多组总线与外部单元模块相连,实现外部功能模块和内核的交互。

处理器以其极简指令集、多种工作模式、模块化定制扩展等特点可以灵活应用不同场景微控制器 设计,例如小面积低功耗嵌入式场景、高性能应用操作系统场景等。

- 支持机器和用户特权模式
- 快速可编程中断控制器 (PFIC)
- 多级硬件中断堆栈
- 串行2线调试接口
- 标准内存保护设计
- 静态或动态分支预测、高效跳转、冲突检测机制
- 自定义扩展指令

1.4.2 可编程协议 I/O 控制器 (PIOC)

可编程协议 I/O 控制器基于单时钟周期的专用精简指令集 RISC 内核,运行于系统主频,具有 2K 指令的程序 ROM 和 49 个 SFR 寄存器及 PWM 定时/计数器,支持 2 个 I/O 引脚的协议控制。

- 复用了 4K 字节的系统 SRAM 作为 2K 字容量的程序 ROM,支持程序暂停和动态加载。
- 提供 33 字节的双向和单向各 1 个寄存器,提供 6 级独立堆栈。
- 通过动态加载不同的协议程序,可以支持多种协议规格的单线接口和两线接口。

1.4.3 片上存储器

内置 20K 字节 SRAM 区,用于存放数据,掉电后数据丢失。其中 4K 可用于 PIOC。 内置 62K 字节程序闪存存储区(Code FLASH),用于用户的应用程序和常量数据存储。 内置 3328 字节系统存储区(System FLASH),用于系统引导程序存储,内置自举加载程序。 256 字节用于系统非易失配置信息存储区,256 字节用于用户选择字存储区。

1.4.4 供电方案

V₁₀ = 2~5.5V: 为 1/0 引脚和内部调压器供电(使用 ADC 时, V₁₀不得小于 2.5V)。

1.4.5 供电监控器

芯片内部集成了上电复位(POR)/掉电复位(PDR)电路,该电路始终处于工作状态,保证系统在供电超过 2V 时工作;当 VDD 低于设定的阀值(Vpox/pox)时,置器件于复位状态,而不必使用外部复位电路。

另外系统设有一个可编程的电压监测器(PVD),需要通过软件开启,用于比较 V_{10} 供电与设定的阀值 V_{PVD} 的电压大小。打开 PVD 相应边沿中断,可在 V_{10} 下降到 PVD 阈值或上升到 PVD 阈值时,收到中断通知。关于 V_{PVD} PVD 的值参考第 3 章。

1.4.6 系统电压调节器 LDO

复位后,系统电压调节器自动开启,根据应用方式有两种操作模式。

- 开启模式:正常的运行操作,提供稳定的内核电源。
- 低功耗模式: 当 CPU 进入待机模式后,调节器低功耗运行。

1.4.7 低功耗模式

系统支持三种低功耗模式,可以针对低功耗、短启动时间和多种唤醒事件等条件下选择达到最佳 的平衡。

● 睡眠模式

在睡眠模式下,只有 CPU 时钟停止,但所有外设时钟供电正常,外设处于工作状态。此模式是最 浅低功耗模式,但可以达到最快唤醒。

退出条件:任意中断或唤醒事件。

● 停止模式

此模式 FLASH 进入低功耗模式,HSI 的 RC 振荡器被关闭。

退出条件:任意外部中断/事件(EXTI信号)、RST上的外部复位信号、IWDG复位,其中EXTI信号包括24个外部I/0口之一、PVD的输出,USB的唤醒信号,USBPD唤醒信号等。

● 待机模式

此模式 FLASH 进入低功耗模式、HSI 的 RC 振荡器被关闭、系统 LDO 进入省电模式。

退出条件:任意外部中断/事件(EXTI信号)、RST上的外部复位信号、IWDG复位,其中EXTI信号包括24个外部I/0口之一、PVD的输出,USB的唤醒信号,USBPD唤醒信号等。

1.4.8 快速可编程中断控制器 (PFIC)

芯片内置快速可编程中断控制器 (PFIC),最多支持 255 个中断向量,以最小的中断延迟提供了灵活的中断管理功能。当前芯片管理了 7 个内核私有中断和 39 个外设中断管理,其他中断源保留。PFIC的寄存器均可以在用户和机器特权模式下访问。

- 2个可单独屏蔽中断
- 提供一个不可屏蔽中断 NMI
- 支持硬件中断堆栈(HPE), 无需指令开销
- 提供 4 路免表中断(VTF), 更快进入中断服务程序
- 向量表支持地址或指令模式
- 中断嵌套深度可配置最高2级
- 支持中断尾部链接功能

1.4.9 外部中断/事件控制器(EXTI)

外部中断/事件控制器总共包含 28 个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置其触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;挂起寄存器维持所有中断请求状态。多达 60 个通用 I/0 口都可选择连接到 24 个外部中断线。

1.4.10 通用 DMA 控制器

系统内置了通用 DMA 控制器,管理 8 个通道,灵活处理存储器到存储器、外设到存储器和存储器 到外设间的高速数据传输,支持环形缓冲区方式。每个通道都有专门的硬件 DMA 请求逻辑,支持一个 或多个外设对存储器的访问请求,可配置访问优先权、传输长度、传输的源地址和目标地址等。

DMA 用于主要的外设包括:通用/高级定时器 TIMx、ADC、USART、I2C、SPI。

USB 和 USB PD 另有专用的独立 DMA 通道。

注: DMA 和 CPU 经过仲裁器仲裁之后对系统 SRAM 进行访问。

1.4.11 时钟和启动

系统时钟源 HSI 默认开启,在没有配置时钟或者复位后,内部 48MHz 的 RC 振荡器 6 分频作为默认的 CPU 时钟。对于关闭时钟的低功耗模式,唤醒后系统将首先开启内部的 RC 振荡器。如果使能了时钟中断,软件可以接收到相应的中断。

1.4.12 ADC(模拟/数字转换器)和触摸按键电容检测(TKey)

芯片内嵌 12 位的模拟/数字转换器(ADC),提供多达 14 个外部通道和 1 个内部通道采样,可编程的通道采样时间,可以实现单次、连续、扫描或间断转换。提供模拟看门狗功能允许非常精准地监视

一路或多路选中的通道,用于监视通道信号电压。支持外部事件触发转换,触发源包括片上定时器的内部信号和外部引脚。支持使用 DMA 操作。

ADC 内部通道为内部参考电源电压采样通道。

触摸按键电容检测单元,提供了多达 14 个检测通道,复用 ADC 模块的外部通道。检测结果通过 ADC 模块转换输出结果,通过触摸检测算法子程序库或用户软件识别触摸按键状态。

注: ADC 的通道 3、通道 7、通道 11、通道 15 功能不适用于批号倒数第 5 位为 0 的产品。

1.4.13 定时器及看门狗

● 高级控制定时器(TIM1、TIM2)

高级控制定时器是一个 16 位的自动装载递加/递减计数器, 具有 16 位可编程的预分频器。除了完整的通用定时器功能外, 可以被看成是分配到 6 个通道的三相 PWM 发生器, 具有带死区插入的互补 PWM 输出功能, 允许在指定数目的计数器周期之后更新定时器进行重复计数周期, 刹车功能等。高级控制定时器的很多功能都与通用定时器相同, 内部结构也相同, 因此高级控制定时器可以通过定时器链接功能与其他 TIM 定时器协同操作, 提供同步或事件链接功能。

● 通用定时器(TIM3)

通用定时器是一个 16 位的自动装载递加计数器,具有一个可编程的 16 位预分频器以及 2 个独立的通道,每个通道都支持输入捕获、输出比较、PWM 生成和单脉冲模式输出。还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结,任意通用定时器都能用于产生 PWM 输出。

● 独立看门狗

独立看门狗是一个自由运行的 12 位递减计数器,支持 7 种分频系数。由(HSI/1024)时钟的分频 提供时钟源。IWDG 在主程序之外,可以完全独立工作,因此,用于在发生问题时复位整个系统,或作 为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在 调试模式下,计数器可以被冻结。

● 窗口看门狗

窗口看门狗是一个7位的递减计数器,并可以设置成自由运行。可以被用于在发生问题时复位整个系统。其由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。

● 系统时基定时器

青稞微处理器内核自带了一个 64 位可选递增或递减的计数器,用于产生 SYSTICK 异常(异常号: 12),可专用于实时操作系统,为系统提供"心跳"节律,也可当成一个标准的 64 位计数器。具有自动重加载功能及可编程的时钟源。

1.4.14 通讯接口

1.4.14.1 通用异步收发器(USART)

芯片提供了 4 组通用同步/异步收发器。支持全双工异步串口通信、同步单向通信以及半双工单线通信,也支持 LIN(局部互连网),兼容 ISO7816 的智能卡协议和 IrDA SIR ENDEC 传输编解码规范,以及调制解调器 (CTS/RTS 硬件流控)操作,还支持多处理器通信。其采用分数波特率发生器系统,并支持 DMA 操作连续通讯。

1.4.14.2 串行外设接口(SPI)

芯片提供 1 个串行外设 SPI 接口,支持主或从操作,动态切换。支持多主模式,全双工或半双工同步传输,支持基本的 SD 卡和 MMC 模式。可编程的时钟极性和相位,数据位宽提供 8 或 16 位选择,

可靠通信的硬件 CRC 产生/校验,支持 DMA 操作连续通讯。

1.4.14.3 I2C 总线

芯片提供 1 个 I 2C 总线接口, 能够工作于多主机模式或从模式, 完成所有 I 2C 总线特定的时序、协议、仲裁等。支持标准和快速两种通讯速度, 同时与 SMBus 2. 0 兼容。

I2C 接口提供 7 位或 10 位寻址, 并且在 7 位从模式时支持双从地址寻址。内置了硬件 CRC 发生器 /校验器。可以使用 DMA 操作并支持 SMBus 总线 2.0 版/PMBus 总线。

注: 12C 功能不适用于批号倒数第 5 位为 0 的产品。

1.4.14.4 通用串行总线 USB2.0 全速主机/设备控制器(USBFS)

USB2.0 全速主机控制器和设备控制器(USBFS),遵循 USB2.0 Full speed 标准,支持 BC 充电协议。提供 8 个可配置的 USB 设备端点及一组主机端点。支持控制/批量/同步/中断传输,双缓冲区机制,USB 总线挂起/恢复操作,并提供待机/唤醒功能。USBFS 模块专用的 48MHz 时钟由内部高速时钟(HSI)直接产生。

1.4.14.5 USB PD 及 type C 控制器(USB PD)

内置 USB Power Delivery 控制器和 PD 收发器 PHY, 支持 USB type-C 主从检测, 自动 BMC 编解码和 CRC, 硬件边沿控制, 支持 USB PD2.0 和 PD3.0 电力传输控制, 支持快充, 支持 PD 受电端和 PD 供电端应用。

1.4.15 通用输入输出接口(GPIO)

系统提供了 3 组 GP10 端口, 共 60 个 GP10 引脚。每个引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉,部分引脚支持下拉)或复用的外设功能端口。

所有 GP10 引脚都支持可控上拉, 仅 PAO-PA15 和 PC16-PC17 支持可控下拉, 其余引脚不支持下拉。 PC14-PC17 支持多种上拉模式, 分别由 PD 和 USB 引脚相对应的专用控制寄存器设置。

多数 GP10 引脚都与数字或模拟的复用外设共用。所有 PA 和 PB 的 GP10 引脚都有较大电流驱动能力。提供锁定机制冻结 10 配置,以避免意外的写入 1/0 寄存器。

系统中大部分 10 引脚电源由 V₁₀提供,通过改变 V₁₀供电将改变 10 引脚输出电平高值来适配外部通讯接口电平。具体引脚请参考引脚描述。

1.4.16 运放/比较器(OPA)

芯片内置 2 组运放(OPA),也可用作电压比较器,其输入可通过更改配置对多个通道进行选择,包括可编程增益运放(PGA)的放大倍数选择,其输出可通过更改配置对 2 个通道进行选择,内部关联到 ADC 通道。支持将外部模拟小信号放大送入 ADC 以实现小信号 ADC 转换。

1.4.17 电压比较器 (CMP)

芯片内置 3 组轨到轨模拟电压比较器,可选迟滞特性,电压比较结果由 GP10 输出或者内部直接接入 TIM2 的 CH1[°]CH3 的输入通道实现触发。

1.4.18 串行 2 线调试接口(2-wire SDI Serial Debug Interface)

内核自带一个串行 2 线调试的接口(SDI),包括 SWDIO 和 SWCLK 引脚。系统上电或复位后默认调试接口引脚功能开启,主程序运行后可以根据需要关闭 SDI。

第2章 引脚信息

2.1 引脚排列

PB12/T1C4_/T2C2N PC19/DCK/T2C1_/T3C1_/I2C_/RX3_/C1P0 PC18/DIO/TX3_/T2C1N_/T3C2_/I2C_/T1ET_ PC14/CC1/T1C3_/T2C2 PC15/CC2/T2C3_/T1ET_ PC17/UDP/TX4_/I2C_/RX4_/T1ET PC3/RST/T1C4_/T2C3N_/C1N0/A13 PC1/T1C2_/T2C1N_/RX2_/A11 PC16/UDM/T1C4/TX4_/I2C_/RX4_ CH32X035F7P6 PA0/T2C1/CTS2/C1P1/A0 GND PA1/RTS2/T2C2/C1O/O2N2/A1 PB1/T1C3N /RX4/O2N1/A9 PA2/TX2/T2C3/O2O1/T2ET_/A2 PA7/MOSI/T3C2/T1C1N_/TX1_/O2P0/A7 PA3/T2C4/T3C1_/RX2/A3 PA4/CS/O2O0/T3C2_/A4 PA6/MISO/T3C1/T1BK_/A6 PA5/SCK/TX4_/O2N0/A5

注: 引脚图中复用功能均为缩写。

示例: A:ADC_ (A10:ADC_IN10)

C:CMP_ (C3NO:CMP3_NO)

 $\texttt{T:TIME}_ \hspace{0.1cm} (\texttt{T2C4:TIM2_CH4},\hspace{0.1cm} \texttt{T2C2N:TIM2_CH2N})$

0:0PA_ (01N2:0PA1_N2, 0200:0PA2_0UT0)

TX2:USART2_TX

CS:SPI_NSS

UDP: USBDP

UDM: USBDM

D10:SWD10

DCK: SWCLK

2.2 引脚描述

表 2-1 引脚定义

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差 异,查看前请先根据产品型号资源表确认是否有此功能。

		引肢	り编号					100x2 11 15 15		
LQFP64M	LQFP48	QFN28	QS0P28	QFN20	TSS0P20	引脚 名称	引脚 类型 ^⑴	主功能(复位后)	默认复用功能	重映射功能 ^②
_	-	0	-	0	_	GND	Р			
31	47	-	7	_	15	GND	Р			
1	1	-	_	_	_	PA15	1/0	PA15		TX2_2/TX2_4
2	2	-	-	_	_	PA16	1/0	PA16		RX2_2/RX2_4
3	3	-	_	_	-	PA17	1/0	PA17		CTS2_2/CTS2_4
4	4	-	-	_	_	PA18	1/0	PA18		TX3_2/T2ET_1/T2ET_3
5	5	-	-	-	-	PA19	1/0	PA19	T2ET	RX2_1/T2ET_2
6	6	-	_	_	_	PA20	1/0	PA20	T2BK	TX2_1/T2BK_2
7	7	-	-	_	_	PA21	1/0	PA21	RST/T2C1N	RTS2_2
8	-	3	-	-	_	PC0	1/0/A	PC0	A10	TX2_3/T2C4_5 /T2C4_6/T1C1_3/T2BK_4
9	-	-	-	_	5	PC1	1/0/A	PC1	A11 ⁽⁴⁾	T1C2_3/T2C1N_4/RX2_3
10	-	_	-	_	-	PC2	1/0/A	PC2	A12	T1C3_3/T2C2N_4/CTS2_3
11	-	4	ı	-	-				C1NO/C2N1/C3N1/A13	RTS2_3/T1C4_3
-	-	-	8	-	4	PC3	1/0/A	PC3	RST/C1N0/C2N1 /C3N1/A13	/T2C3N_4/T2C1N_2/RTS2_4
12	8	1	_	_	_	PA22	1/0/A	PA22	T2C2N/C2NO	CK2_2/T2C2N_2/CK2_4
13	9	-	_	_	_	PA23	1/0/A	PA23	T2C3N/C1N1	CK2_1/T2C3N_2
14	10	5	9	2	6	PA0	1/0/A	PA0	T2C1/CTS2/C1P1/A0	T2C1_2
15	11	6	10	3	7	PA1	1/0/A	PA1	RTS2/T2C2/C10 /01N2/02N2/A1	CTS2_1/T2C2_2
16	12	7	11	4	8	PA2	1/0/A	PA2	TX2/T2C3/O2O1/C3NO /A2	RTS2_1/T2ET_5/T2C3_1/T2ET_6
63	-	-	_	-	-	GND	Р	GND		
32	48	2	6	1	16	$V_{ extsf{DD}}$	Р	VDD		
17	13	8	12	5	9	PA3	1/0/A	PA3	RX2/T2C4/0100/A3 ⁽⁴⁾	T3C1_3/T2C4_1/CTS3_2
18	-	-	-	_	_	PC4	1/0	PC4		CS_3/T1BK_3/T2ET_4
19	_	_	_	_	_	PC5	1/0	PC5		SCK_3/T1C1N_3
20	14	9	15	6	10	PA4	1/0/A	PA4	CS/CK2/0200/A4	RTS3_2/T3C2_3
21	15	10	16	7	11	PA5	1/0/A	PA5	SCK/02N0/A5	TX4_1/CTS4_4
22	16	11	13	8	12	PA6	1/0/A	PA6	MISO/T3C1/01N0/A6	CK4_1/RTS4_4/T1BK_1
23	17	12	17	9	13	PA7	1/0/A	PA7	MOS1/T3C2/02P0/A7 ⁽⁴⁾	T1C1N_1/TX1_3/CTS4_1
24	18	-	-	_	_	PC6	1/0	PC6		MISO_3/T1C2N_3
25	19	_	_	_	_	PC7	1/0	PC7		MOSI_3/T1C3N_3/PIOC_IOO_1

 CH32X035 数据手册
 http://wch.cn

		引肢	7编号	<u>1</u>						
LQFP64M	LQFP48	QFN28	gS0P28	QFN20	TSS0P20	引脚 名称	引脚 类型 ^⑴	主功能(复位后)	默认复用功能	重映射功能 ^②
26	20	13	14	10	ı	PB0	1/0/A	PB0	TX4/01P0/A8	T1C2N_1
27	21	16	20	11	14	PB1	1/0/A	PB1	RX4/02N1/A9	T1C3N_1
28	22	-	-	-	_	PB2	1/0/A	PB2	CK4/C20	RX1_3/CK4_2/CK4_5
29	23	14	18	12	-	PB3	1/0/A	PB3	TX3/C30/02P1	T2C3_2/T2C3N_5/T2C3_3/T2C3N_6
30	24	15	19	-	-	PB4	1/0/A	PB4	RX3/01P2	T2C4_2/T3C1_1/T2BK_5 /T2C4_3/T2BK_6
64	-	-	ı	ı	ı	$V_{ exttt{DD}}$	Р	$V_{ exttt{DD}}$		
33	25	16	20	-	_	PB5	1/0/A	PB5	CK3/0101/T1BK	CK1_2/T3C2_1/CK3_1/T1BK_2
34	26	17	21	-	-	PB6	1/0/A	PB6	T1C1N/CTS3/01N1	T1C1N_2/CTS3_1
35	27	18	22	-	-	PB7	1/0/A	PB7	T1C2N/02P2/RTS3	RTS3_1/T1C2N_2
36	28	19	23	-	-	PB8	1/0/A	PB8	T1C3N/01P1	CK3_2/CK4_3/T1C3N_2
37	-	1	-	-	-	PB16	1/0	PB16		TX3_3/T2C1_4
38	-	-	ı	-	-	PB17	1/0	PB17		T2C2_4/RX3_3
39	-	1	1	-	-	PB18	1/0	PB18		T2C3_4/CTS3_3
40	-	-	-	-		PB19	1/0	PB19		RTS3_3/T2C4_4
41	29	20	24	-	-	PB9	1/0	PB9	CK1/T1C1/MCO	TX4_3/CK1_1/T1C1_1/T1C1_2
42	30	21	25	-	-	PB10	1/0	PB10	TX1/T1C2	T1C2_1/T1C2_2/TX1_2
43	31	22	26	13	_	PB11	1/0	PB11	T1C3/RX1	T1C3_1/T1C3_2/RX1_2/T2C1N_6
44	32	26	2	17	17	PC16	1/0	PC16	UDM/T1C4/CTS1	TX4_2/SCL_2 ⁽⁴⁾ /SDA_4 ⁽⁴⁾ /RX4_5 /CTS1_1/T1C4_1
45	33	27	3	18	18	PC17	1/0	PC17	UDP/RTS1/T1ET	TX4_5/SDA_2 ⁽⁴⁾ /SCL_4 ⁽⁴⁾ /RX4_2 /RTS1_1/T1ET_1
46	34	25	28	14	19	PC18	1/0	PC18	D10/P10C_100	TX3_1/T2C1N_5/SDA_3 ⁽⁴⁾ /SCL_5 ⁽⁴⁾ T1ET_2/T1ET_3/T3C2_2
47	35	23	27	15	1	PB12	1/0	PB12		CK1_3/T1C4_2/T2C2N_5/T2C2N_6
48	36	_	_	-	-	PB13	1/0	PB13		TX4_4
49	37	24	1	16	20	PC19	1/0/A	PC19	DCK/P10C_101/C1P0	T2C1_5/T3C1_2/SCL_3 ⁽⁴⁾ /SDA_5 ⁽⁴⁾ /RX3_1/RX4_4/T2C1_6
50	1	-	-	-	_	PB14	1/0	PB14		RX3_2
51	-	-	-	-	-	PB20	1/0	PB20		CK2_3
52	-	-	ı	-	-	PB21	1/0	PB21		T2C1_1/CS_1/RTS4_1/T2C1_3
53	-	-	-	-	-	PB15	1/0	PB15	CTS4	T2C2_1/SCK_1/T2C2_3/CTS4_2 /CTS4_5
54	38	28	4	19	2	PC14	1/0/A	PC14	CC1	T1C3_4/T2C2_6
55	39	1	5	20	3	PC15	1/0/A	PC15	CC2	T2C3_6/T1ET_4
56	40	-	-	-	-	PA8	1/0	PA8	RTS4	RTS1_2/CK4_4/RTS4_2/RTS4_5 /MTS0_1
57	41	-	-	-	-	PA9	1/0	PA9		MOSI_1/RX4_1/CTS1_2/MISO_2 /T2BK_1/T2BK_3

		引朋	卵编号	1						
LQFP64M	LQFP48	QFN28	QS0P28	QFN20	TSS0P20	引脚 名称	引脚 类型 ^⑴	主功能(复位后)	默认复用功能	重映射功能②
58	42	-	-	-	-	PA10	1/0	PA10	SCL ⁽⁴⁾	TX1_1/MOSI_2/RX4_3
59	43	ı	ı	ı	ı	PA11	1/0/A	PA11	SDA ⁽⁴⁾ /C2P1	SCK_2/RX1_1
60	44	ı	4	1	-	PA12	1/0/A	PA12	C2P0	CS_2/T2C2_5/T2C1N_1/T2C1N_3
61	45		5			PA13	1/0/A	PA13	C3P0	SCL_1 ⁽⁴⁾ /RTS4_3/CTS1_3/T2C3_5
01	45		5			FAIS	17 U/ A	PAIS	6370	/T2C2N_1/T2C2N_3
62	46	ı	ı			PA14	1/0/A	PA14	C3P1	SDA_1 (4) /RTS1_3/T2C3N_1/CTS4_3
02	40					FA14	1/0/A	FA14	USPI	/T2C3N_3

- 注1: 表格缩写解释:
 - I = TTL/CMOS 电平斯密特输入; 0 = CMOS 电平三态输出;
 - A = 模拟信号输入或输出; P = 电源;
- 注2: 重映射功能下划线后的数值表示AFIO寄存器中相对应位的配置值。例如: TX2_2表示AFIO寄存器相应位配置为10b;
- 注3: ADC的通道3、通道7、通道11、通道15和12C功能不适用于批号倒数第5位为0的产品。

2.3 引脚复用功能

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差异,查看前请先根据产品型号资源表确认是否有此功能。

表 2-2 引脚复用和重映射功能

タイプ 复用 引脚	ADC	TIM1/2	TIM3	USART	CMP	SYS	120	SPI	USB	OPA	PIOC
PA0	AO	T2C1 T2C1_2		CTS2	C1P1						
PA1	A1	T2C2 T2C2_2		RTS2 CTS2_1	C10					01N2 02N2	
PA2	A2	T2C3 T2C3_1 T2ET_5 T2ET_6		TX2 RTS2_1	C3NO					0201	
PA3	A3 ⁽¹⁾	T204 T204_1	T3C1_3	RX2 CTS3_2						0100	
PA4	A4		T3C2_3	CK2 RTS3_2				CS		0200	
PA5	A 5			TX4_1 CTS4_4				SCK		02N0	
PA6	A6	TIBK_1	T3C1	CK4_1 RTS4_4				MISO		01N0	
PA7	A7 ⁽¹⁾	TIC1N_1	T3C2	CTS4_1 TX1_3				MOSI		02P0	
PA8				RTS4 RTS1_2 CK4_4 RTS4_2 RTS4_5				MISO_1			
PA9		T2BK_1 T2BK_3		RX4_1 CTS1_2				MOSI_1 MISO_2			
PA10				TX1_1 RX4_3			SCL ⁽¹⁾	MOSI_2			
PA11				RX1_1	C2P1		SDA ⁽¹⁾	SCK_2			
PA12		T2C2_5 T2C1N_1 T2C1N_3			C2P0			CS_2			
PA13		T2C3_5 T2C2N_1 T2C2N_3		RTS4_3 CTS1_3	C3P0		SCL_1 ⁽¹⁾				
PA14		T2C3N_1 T2C3N_3		CTS4_3 RTS1_3	C3P1		SDA_1 (1)				
PA15				TX2_2 TX2_4							
PA16				RX2_2 RX2_4							
PA17				CTS2_2 CTS2_4							
PA18		T2ET_1 T2ET_3		TX3_2							
PA19		T2ET T2ET_2		RX2_1							
PA20		T2BK T2BK_2		TX2_1							
PA21		T2C1N		RTS2_2		RST					
PA22		T2C2N T2C2N_2		CK2_2 CK2_4	C2N0						
PA23		T2C3N T2C3N_2		CK2_1	C1N1						
PB0	A8	T1C2N_1		TX4						01P0	
PB1	A9	T1C3N_1		RX4						02N1	
PB2				RX1_3	C20						

复用 引脚	ADC	TIM1/2	TIM3	USART	CMP	SYS	120	SPI	USB	OPA	PIOC
				CK4							
				CK4_2 CK4_5							
		T2C3_2									
PB3		T203_3		TX3	C30					02P1	
		T2C3N_5 T2C3N_6									
		T2C4_2									
PB4		T2C4_3	T3C1_1	RX3						01P2	
F D4		T2BK_5	1301_1	NA3						UIFZ	
		T2BK_6		CK3							
PB5		T1BK	T3C2_1	CK1_2						0101	
		T1BK_2		CK3_1							
PB6		T1C1N		CTS3						01N1	
1 00		T1C1N_2		CTS3_1						OINI	
PB7		T1C2N T1C2N_2		RTS3						02P2	
		T1C3N		RTS3_1 CK3_2							
PB8		T103N_2		CK4_3						01P1	
		T1C1		CK1							
PB9		T1C1_1		CK1_1		MCO					
		T101_2		TX4_3							
PB10		T1C2 T1C2_1		TX1							
		T1C2_2		TX1_2							
		T1C3									
PB11		T103_1		RX1							
		T1C3_2 T2C1N_6		RX1_2							
		T1C4_2									
PB12		T2C2N_5		CK1_3							
		T2C2N_6									
PB13				TX4_4							
PB14				RX3_2 CTS4							
PB15		T2C2_1		CTS4_2				SCK_1			
		T2C2_3		CTS4_5				00.1_1			
PB16		T2C1_4		TX3_3							
PB17		T2C2_4		RX3_3							
PB18		T2C3_4		CTS3_3							
PB19		T2C4_4		RTS3_3							
PB20				CK2_3							
PB21		T201_1		RTS4_1				CS_1			
		T2C1_3 T1C1_3									
D00		T2C4_5		TV0 0							
PC0	A10	T2C4_6		TX2_3							
		T2BK_4									
PC1	A11 ⁽¹⁾	T1C2_3 T2C1N_4		RX2_3							
		T103_3									
PC2	A12	T2C2N_4		CTS2_3							
		T1C4_3		RTS2_3	C1N0						
PC3	A13	T2C3N_4		RTS2_4	C2N1	RST ⁽²⁾					
		T2C1N_2 T1BK_3			C3N1	-					
PC4		T2ET_4						CS_3			
PC5		T1C1N_3						SCK_3			
PC6		T1C2N_3						MISO_3			
PC7		T1C3N_3						MOS1_3			PI0C_I00_1

复用 引脚	ADC	TIM1/2	TIM3	USART	CMP	SYS	120	SPI	USB	OPA	PIOC
PC14		T1C3_4 T2C2_6							CC1		
PC15		T1ET_4 T2C3_6							CC2		
PC16		T1C4 T1C4_1		CTS1 CTS1_1 TX4_2 RX4_5			SCL_2 ⁽¹⁾ SDA_4 ⁽¹⁾		UDM		
PC17		T1ET T1ET_1		RTS1 RTS1_1 RX4_2 TX4_5			SDA_2 ⁽¹⁾ SCL_4 ⁽¹⁾		UDP		
PC18		T1ET_2 T1ET_3 T2C1N_5	T3C2_2	TX3_1		D10	SDA_3 ⁽¹⁾ SCL_5 ⁽¹⁾				P10C_100
PC19		T2C1_5 T2C1_6	T3C1_2	RX3_1 RX4_4	C1P0	DCK	SCL_3 ⁽¹⁾ SDA_5 ⁽¹⁾				P10C_101

注: 1. ADC的通道3、通道7、通道11、通道15和12C功能不适用于批号倒数第5位为0的产品;

^{2.} PC3引脚的RST功能仅适用于QS0P28封装和TSS0P20封装。

第3章 电气特性

3.1 测试条件

除非特殊说明和标注, 所有电压都以 GND 为基准。

所有最小值和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。典型数值是基于常温 25° C和 V_{00} = 额定 5V 环境下用于设计指导。

对于通过综合评估、设计模拟或工艺特性得到的数据,不会在生产线进行测试。在综合评估的基础上,最小和最大值是通过样本测试后统计得到。除非特殊说明为实测值,否则特性参数以综合评估或设计保证。

供电方案:

图 3-1 常规供电典型电路

3.2 绝对最大值

临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏。

表 3-1 绝对最大值参数表

符号	描述	最小值	最大值	单位
T _A	工作时的环境温度	-40	85	°C
Ts	存储时的环境温度	-40	125	°C
$V_{ exttt{DD}}$	外部主供电引脚 V∞ 上的电压	-0.3	6. 0	٧
VIN	I/O 引脚上的电压	-0.3	V _{DD} +0. 3	٧
$ \triangle V_{DD_x} $	主供电引脚各 V∞之间的电压差		20	mV
△GND_x	公共地引脚各 GND 之间的电压差		20	mV
V	普通 I/O 引脚的 ESD 静电放电电压(HBM)	4K		٧
V _{ESD} (HBM)	USB 引脚的 ESD 静电放电电压(HBM)	4K		٧
I _{VDD}	所有 V∞主供电引脚的合计总电流		150	mA
I _{GND}	所有 GND 公共地引脚的合计总电流		200	mA
I 10	任意 1/0 引脚上的驱动电流		30	mA

3.3 电气参数

3.3.1 工作条件

表 3-2 通用工作条件

符号	参数	条件	最小值	最大值	单位
F _{HCLK}	内部系统总线频率			48	MHz
或 F _{sys}	或微处理器主频			40	WITZ

		未用 USB 和 PD 功能	2. 0	5. 5	V
V	 工作电源电压(额定 5V)	使用 USB 或 PD 功能	3. 0	5. 3	V
$V_{ extsf{DD}}$	工作电源电压(额足 3V) 	未使用 ADC 功能	2. 0	5. 5	V
		使用 ADC 功能	2. 5	5. 5	V

表 3-3 上电和掉电条件

符号	参数	条件	最小值	最大值	单位
_	V∞上升速率		0. 1	8	us/V
LVDD	Vm下降速率		10	8	us/ v

3.3.2 内嵌复位和电源控制模块特性

表 3-4 复位及电压监测 (PDR 选择高阈值档位)

符号	参数	条件	最小值	典型值	最大值	单位
		PLS[1:0] = 00 上升沿		2. 12		٧
		PLS[1:0] = 00 下降沿		2. 1		V
		PLS[1:0] = 01 上升沿		2. 32		٧
V _{PVD} (1)	可编程电压检测器的	PLS[1:0] = 01 下降沿		2. 3		V
V PVD	电平选择	PLS[1:0] = 10 上升沿		3. 02		٧
		PLS[1:0] = 10 下降沿		3		V
		PLS[1:0] = 11 上升沿		4. 02		٧
		PLS[1:0] = 11 下降沿		4		V
$V_{ t PVDhyst}$	PVD 迟滞			20		mV
V	 	上升沿		1.8		٧
V _{POR/PDR}	上电/掉电复位阈值	下降沿		1. 78		V
$V_{PDRhyst}$	PDR 迟滞			20		mV
_	上电复位		4	17	24	ms
t _{rsttempo}	其他复位		6	9	20	us

注: 1. 常温测试值。

3.3.3 内置的参考电压

表 3-5 内置参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REFINT}	内置参考电压	$T_A = -40^{\circ}C \sim 85^{\circ}C$	1. 16	1. 2	1. 24	٧
$T_{S_vrefint}$	当读出内部参考电压时, ADC 的采样时间	建议慢速采样			11	1/f _{ADC}

3.3.4 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/0 引脚的负载、产品的软件配置、工作频率、I/0 脚的翻转速率、程序在存储器中的位置以及执行的代码等。电流消耗测量方法如下图:

图 3-2 电流消耗测量

微控制器处于下列条件:

常温 V_{10} = 3. 3V 情况下,测试时: 所有 10 端口配置上拉输入,HSI = 48M。使能或关闭所有外设时钟的功耗。

表 3-6 运行模式下典型的电流消耗,数据处理代码从内部闪存中运行

符号参数		条件	典型值		ը 일值	
付写	(付写)			使能所有外设	关闭所有外设	単位
		运行于高速内部	$F_{HCLK} = 48MHz$	4. 2	3. 0	
l _{DD} ⁽¹⁾	运行模式下的	RC 振荡器(HSI),	$F_{HCLK} = 24MHz$	3. 2	2. 6	^
I DD	供应电流	使用 AHB 预分频	$F_{HCLK} = 16MHz$	2. 5	2. 1	mA
		以减低频率	$F_{HCLK} = 8MHz$	2. 2	2. 0	

注: 以上为实测参数。

表 3-7 睡眠模式下典型的电流消耗,数据处理代码从内部闪存或 SRAM 中运行

符号	参数	条件		典型	DU 值	苗心
10.25	多奴	新 什	•	使能所有外设	关闭所有外设	单位 mA
	睡眠模式下	运行于高速内部	$F_{HCLK} = 48MHz$	3. 0	1.8	
l _{DD} (1)	的供应电流	RC 振荡器(HSI),	F _{HCLK} = 24MHz	2. 1	1. 5	Л
I DD	(此时外设供	使用 AHB 预分频	$F_{HCLK} = 16MHz$	1.8	1. 4	mA
	电和时钟保持)	以减低频率	$F_{HCLK} = 8MHz$	1.5	1. 3	

注: 以上为实测参数。

表 3-8 停止和待机模式下典型的电流消耗

符号	参数	条件	典型值	单位
	停止模式下的供应电流	高速内部 RC 振荡器处于关闭状态(没有独立看门狗)	72	
I DD	建加带老工的供应由 法	独立看门狗处于开启状态	500	uA
	待机模式下的供应电流 	独立看门狗关闭状态	56	

注:以上为实测参数。

3.3.5 内部时钟源特性

表 3-9 内部高速(HSI)RC振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{HS1}	频率(校准后)			48		MHz

DuTy _{HS1}	占空比		45	50	55	%
400 川口 振芽器的特度(拉)	│ │HSI 振荡器的精度(校准后)	$TA = 0^{\circ}C \sim 70^{\circ}C$	− 1. 5	±0.8	1.4	%
ACC _{HS1}	NSI 旅汤船的角皮(牧准内) 	$TA = -40^{\circ}C \sim 85^{\circ}C$	-2.5	±1.1	2. 0	%
t _{SU(HSI)}	HSI 振荡器启动稳定时间		1. 5		3. 5	us
DD (HSI)	HSI 振荡器功耗			312		uA

3.3.6 从低功耗模式唤醒的时间

表 3-10 低功耗模式唤醒的时间(1)

符号	参数	条件	典型值	单位
twusleep	从睡眠模式唤醒	使用 HSI RC 时钟唤醒	1	us
twustop	从停止模式唤醒	使用 HSI RC 时钟唤醒	10	us
twustdby	从待机模式唤醒	使用 HSI RC 时钟唤醒	10	us

注: 以上为实测参数。

3.3.7 存储器特性

表 3-11 闪存存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
F_{prog}	操作频率				48	MHz
t _{prog_page}	页(256 字节)编程时间			1.5	2. 0	ms
t _{erase_page}	页(256 字节)擦除时间			2. 5	3. 0	ms
t _{erase_sec}	扇区(1K 字节)擦除时间			2. 7	3. 3	ms

注: 1. flash 的操作频率包括读、编程、擦除, 时钟来自于 HCLK。

表 3-12 闪存存储器寿命和数据保存期限

符号	参数	条件	最小值	典型值	最大值	单位
N_{END}	擦写次数	$T_A = 25^{\circ}C$	100K			次
t _{RET}	数据保存期限		10			年

3.3.8 I/O 端口特性

表 3-13 通用 1/0 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
	並送 1/0 31991 (2) 古中亚中耳		(V _{DD} -2)* 0. 36+1. 3		V_{DD}	٧
V _{IH}		$V_{DD} = 5V$	2. 4		V _{DD}	٧
		$V_{DD} = 3.3V$	1. 8		$V_{ exttt{DD}}$	٧
V	並送 1/0 3188 2 / (中東中国		0		(V _{DD} -2)* 0. 24+0. 4	٧
V _{IL}	音地 1/0 引脚制入低电平电压 	$V_{DD} = 5V$	0		1. 1	٧
		$V_{DD} = 3.3V$	0		0. 7	٧
V	並添 1/0 21脚於山言中亚中丘	$I_{10} = 8mA$ $V_{DD} = 3.3V$	V _{DD} -0. 4			٧
V _{он}	普通 I/0 引脚输出高电平电压 	$I_{10} = 15\text{mA}$ $V_{DD} = 5\text{V}$	V _{DD} -0. 5			٧

V	普通 1/0 引脚输出低电平电压	$I_{10} = 12mA$ $V_{DD} = 3.3V$			0. 4	V
V _{OL}	百进 1/0 分 脚制 山 1 似 电 平 电 压 	I ₁₀ = 24mA			0. 5	V
		$V_{DD} = 5V$			0.0	·
V_{hys}	普通 I/0 施密特触发器电压迟滞	$V_{DD} = 5V$	180	350		mV
I Ikg	普通 I/0 引脚输入漏电流		-2		2	uA
	 普通 I/0 引脚弱上拉电流	$V_{DD} = 5V$	25	60	140	uA
l _{PU}	百进 1/0 分脚羽工拉电流	$V_{DD} = 3.3V$	12	30	65	uA
	 PAO-PA15 引脚弱下拉电流	$V_{DD} = 5V$	60	150	350	uA
l _{PD}	FAO_FATO 3 MA33 NV电流	$V_{DD} = 3.3V$	30	75	180	uA
C ₁₀	1/0 引脚电容			5		pF

注: 1. 以上均为设计参数保证;

2. 以上条件中如果多个 10 引脚同时驱动,电流总和不能超过表 3. 2 节给出的绝对最大额定值。另外多个 10 引脚同时驱动时,电源/地线点上的电流很大,会导致压降使内部 10 的电压达不到表中电源电压,从而导致驱动电流小于标称值。

表 3-14 输入输出交流特性

引脚	符号	参数	条件	最小值	最大值	单位
	_	具上版家	CL=50pF, V _{DD} =2.9~4.0V		40	MHz
	F _{max(10)out}	最大频率	CL=50pF, V _{DD} =4.0~5.5V		56	MHz
PA	+	输出高至低电平的	CL=50pF, V _{DD} =2.9~4.0V		6	ns
FA	t _{f(I0)out}	下降时间	CL=50pF, V _{DD} =4.0~5.5V		4. 2	ns
	_	输出低至高电平的	CL=50pF, V _{DD} =2.9~4.0V		8. 4	ns
	t _{r (10) out}	上升时间	CL=50pF, V _{DD} =4.0~5.5V		6	ns
	_	最大频率	CL=50pF, V _{DD} =2.9~4.0V		16	MHz
	F _{max(10)out}	取入则平	CL=50pF, V _{DD} =4.0~5.5V		24	MHz
PB	+	输出高至低电平的	CL=50pF, V _{DD} =2.9~4.0V		6	ns
PD	t _{f(I0)out}	下降时间	CL=50pF, V _{DD} =4.0~5.5V		4. 2	ns
	+	输出低至高电平的	CL=50pF, V _{DD} =2.9~4.0V		18	ns
	t _{r(I0)out}	上升时间	CL=50pF, V _{DD} =4.0~5.5V		13. 2	ns
	F _{max (10) out}	最大频率	CL=50pF, V _{DD} =2.9~4.0V		28	MHz
	■ max(10)out	取入频平	CL=50pF, V _{DD} =4.0∼5.5V		36	MHz
PC	+	输出高至低电平的	CL=50pF, V _{DD} =2.9~4.0V		8. 4	ns
FU	t _{f(I0)out}	下降时间	CL=50pF, V _{DD} =4.0~5.5V		7. 2	ns
	+	输出低至高电平的	CL=50pF, V _{DD} =2.9~4.0V		13. 2	ns
	t _{r (10) out}	上升时间	CL=50pF, V _{DD} =4.0~5.5V		9. 6	ns

注: 以上均为设计参数保证。

3.3.9 RST 引脚特性

表 3-15 外部复位引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{\text{F(RST)}}$	RST 输入信号脉宽		200			ns

电路参考设计及要求:

图 3-3 外部复位引脚典型电路

3.3.10 PD 充电 I/0 端口特性

表 3-16 PD I/O 端口特性 应用: PD 通讯模式

符号	参数	条件	最小值	典型值	最大值	单位
tRise	上升时间	幅度 10%到 90%之间的时间, 最小值为无负载条件下的时间。	300		600	ns
tFall	下降时间	幅度 10%到 90%之间的时间, 最小值为无负载条件下的时间。	300		600	ns
vSwing	输出电压摆幅 (峰-峰值)	低电压输出模式	1. 04	1. 12	1. 20	٧
		$PAD < V_{DD} - 1V, PUCC[1:0] = 11$	64	80	96	uA
lpu	CC 上拉电流	$PAD < V_{DD} - 1V, PUCC[1:0] = 10$	144	180	216	uA
		$PAD < V_{DD} - 1V, PUCC[1:0] = 01$	264	330	396	uA

3.3.11 TIM 定时器特性

表 3-17 TIMx 特性

符号	参数	条件	最小值	最大值	单位
+	 定时器基准时钟		1		t _{TIMxCLK}
t _{res(TIM)}		$f_{TIMxCLK} = 48MHz$	20. 8		ns
F _{EXT} CH1 至 CH4 的定时器外部时钟频率		0	f _{TIMxCLK} /2	MHz	
FEXT	001 主 004 可足的循外的附件频率	$f_{TIMxCLK} = 48MHz$	0	24	MHz
R _{esTIM}	定时器分辨率			16	位
4	当选择了内部时钟时, 16 位计数		1	65536	t _{TIM×CLK}
tcounter	器时钟周期	$f_{TIMxCLK} = 48MHz$	0. 0208	1363	us
_	 最大可能的计数			65535	t _{TIM×CLK}
t _{MAX_COUNT}	取入 HJ 月ピロソル 女X	$f_{TIMxCLK} = 48MHz$		1363	us

3.3.12 120 接口特性

图 3-4 120 总线时序图

表 3-18 I2C 接口特性

<i>ሎ</i> ታ 🗆	↔ ₩-	标准	120	快速	12C	* /÷
符号	参数	最小值	最大值	最小值	最大值	单位
t _{w(SCKL)}	SCL 时钟低电平时间	4. 7		1. 2		us
t _{w(SCKH)}	SCL 时钟高电平时间	4. 0		0.6		us
t _{SU(SDA)}	SDA 数据建立时间	250		100		ns
t _{h(SDA)}	SDA 数据保持时间	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA 和 SCL 上升时间		1000	20		ns
$t_{\text{f(SDA)}}/t_{\text{f(SCL)}}$	SDA 和 SCL 下降时间		300			ns
t _{h(STA)}	开始条件保持时间	4. 0		0.6		us
t _{SU(STA)}	重复的开始条件建立时间	4. 7		0.6		us
t _{SU(STO)}	停止条件建立时间	4. 0		0.6		us
t _{w(STO:STA)}	停止条件至开始条件的时间(总线空闲)	4. 7		1. 2		us
Сь	每条总线的容性负载		400		400	pF

3.3.13 SPI 接口特性

图 3-5 SPI 主模式时序图

图 3-6 SPI 从模式时序图 (CPHA=0)

NSS Input $t_{h(NSS)}$ $t_{r(SCK)}$ $t_{\text{f(SCK)}}$ SCK Input $t_{\text{su(NSS)}} \\$ CPHA=0 CPOL=0 CPHA=0. L CPOL=1 $t_{\mathsf{a}(\mathsf{SO})}$ $t_{V(SO)}$ -t_{h(SO)} t_{dis(SO)} MISO Output-Output highest bit Output 6-1 bit Output lowest bit t_{su(SI)}-

Input 6-1 bit

Input lowest bit

图 3-7 SPI 从模式时序图 (CPHA=1)

表 3-19 SPI 接口特性

Input highest bit

MOSI Input

符号	参数	条件	最小值	最大值	单位
ъ /т	SPI 时钟频率	主模式		24	MHz
f _{sck} /t _{sck}	OPT 的 如 妙 卒	从模式		24	MHz
$t_{r(SCK)}/t_{f(SCK)}$	SPI 时钟上升和下降时间	负载电容: C = 30pF		20	ns
t _{su(NSS)}	NSS 建立时间	从模式	2t _{HCLK}		ns
t _{h (NSS)}	NSS 保持时间	从模式	2t _{HCLK}		ns
	SCK 高电平和低电平时间	主模式,f _{HCLK} = 24MHz,预分频	70	100	
tw(SCKH)/tw(SCKL)	30% 同电干机低电干的间	系数=4	70	100	ns ns
t _{su(MI)}	 数据输入建立时间	主模式	5		ns
t _{su(si)}] 数据制入建立时间	从模式	5		ns
t _{h(MI)}	** 据检》/2 性时间	主模式	5		ns
t _{h(SI)}	数据输入保持时间	从模式	4		ns
t _{a (S0)}	数据输出访问时间	从模式,f _{HCLK} = 20MHz	0	1t _{HCLK}	ns
t _{dis(SO)}	数据输出禁止时间	从模式	0	10	ns
t _{V(S0)}	数据输出有效时间	从模式 (使能边沿之后)		25	ns
t _{V(M0)}	数据制山有双門門	主模式(使能边沿之后)		5	ns
t _{h(S0)}	数据输出保持时间	从模式 (使能边沿之后)	15		ns
t _{h (MO)}	数据制山水竹川	主模式(使能边沿之后)	0		ns

3.3.14 USB 接口特性

表 3-20 USB I/0 端口特性

符号	参数	条件	最小值	最大值	单位
$V_{ exttt{DD}}$	USB 工作电压	根据 V₀₀ 电压选择 USB 参数	3. 0	5. 3	٧
V_{SE}	单端接收器阈值	额定电压	1. 2	1. 9	٧
V_{oL}	静态输出低电平			0. 3	٧
V_{OH}	静态输出高电平		2. 8		٧

3. 3. 15 12 位 ADC 特性

表 3-21 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V	供中中厅	额定性能	3. 0	5	5. 3	٧
$V_{ extsf{DD}}$	供电电压 	性能可能略低	2. 5		5. 5	٧
l _{DD}	供电电流			290	480	uA
ے	f _{ADC} ADC 时钟频率	V _{DD} >= 3.2V	3		10	MHz
I ADC	ADG PJ 种频率 	V _{DD} < 3. 2V	3		6	MHz
$f_{\mathtt{s}}$	 采样速率	V _{DD} >= 3.2V	125		588	KHz
Is	木件述	V _{DD} < 3. 2V	125		353	KHz
VAIN	转换电压范围		0		V_{DD}	٧
R _{ADC}	采样开关电阻		0.5	0.6	1.4	kΩ
\mathbf{C}_{ADC}	内部采样和保持电容			21		pF
t _{lat}	注入触发转换时延			1		1/f _{ADC}
t _{latr}	常规触发转换时延			1		1/f _{ADC}
ts	采样时间			3. 5		1/f _{ADC}
t _{conv}	总的转换时间(包括采样时间)		17		24	1/f _{ADC}

注: 以上均为设计参数保证。

表 3-22 ADC 误差

符号	参数	条件	最小值	典型值	最大值	单位
E0	偏移误差	£ -2 MU- D /10		±4		
ED	微分非线性误差	$f_{ADC} = 3 \text{ MHz}, R_{AIN} < 10$ $k \Omega, V_{DD} = 5V$		±1	±10	LSB
EL	积分非线性误差	K 12, V DD - 3V		±4	±20	

注: 以上均为设计参数保证。

C_o表示 PCB 与焊盘上的寄生电容(大约 5pF),可能与焊盘和 PCB 布局质量有关。较大的 C_o数值将降低转换精度,解决办法是降低 f_{ADO} 值。

图 3-8 ADC 典型连接图

图 3-9 模拟电源及退耦电路参考

3. 3. 16 OPA 特性

表 3-23 OPA 运放特性

符号	参数	条件: V _{DD} = 5V	最小值	典型值	最大值	单位
V_{DD}	供电电压	建议不低于 2.5V	2	5	5. 5	٧
C _{MIR}	共模输入电压		0		$V_{ extsf{DD}}$	٧
VIOFFSET	输入失调电压			3	9	mV
I LOAD	驱动电流	$R_{LOAD} = 5k \Omega$			1	mA
LOAD_PGA	PGA 模式驱动电流				400	uA
I DDOPAMP	消耗电流	无负载,静态模式		210		uA
C _{MRR} ⁽¹⁾	共模抑制比	@1kHz		110		dB
P _{SRR} ⁽¹⁾	电源抑制比	@1kHz		71		dB
Av ⁽¹⁾	开环增益	$C_{LOAD} = 5pF$		110		dB
G _{BW} ⁽¹⁾	单位增益带宽	$C_{LOAD} = 5pF$		13		MHz
P _M ⁽¹⁾	相位裕度	$C_{LOAD} = 5pF$		88		
S _R ⁽¹⁾	压摆率	$C_{LOAD} = 5pF$		5		V/us
twakup (1)	子河到晚醒时间 0.10	输入 V ₀₀ /2,			1	
TWAKUP	关闭到唤醒时间, 0.1%	$C_{LOAD} = 50 pF, R_{LOAD} = 5 k \Omega$			1	us
R _{LOAD}	阻性负载		5			kΩ
\mathbf{C}_{LOAD}	容性负载				50	pF
V _{OHSAT} (2)	 高饱和输出电压	$R_{LOAD} = 5k \Omega$	V _{DD} -300			mV
V OHSAT	同地州制山电压	$R_{LOAD} = 20k \Omega$	V _{DD} -50			IIIV
$V_{\text{OLSAT}}^{(2)}$	 低饱和输出电压	$R_{LOAD} = 5k \Omega$			10	mV
V OLSAT	似地和制山电压	$R_{LOAD} = 20k \Omega$			5	IIIV
	同相 PGA 的输出通道	Gain =16, 10 输出接地	-2		2	%
		Gain = 4	-1		1	%
		$V_{INP} < (V_{DD}/7)$	-1		'	/0
PGA		Gain = 8	-1		1	%
Gain ⁽¹⁾	 内部同相 PGA	$V_{INP} < (V_{DD}/15)$	-		'	/0
uaiii	լ չյենելոյմը Lav	Gain = 16	-1		1	%
		$V_{INP} < (V_{DD}/31)$	•		'	/0
		Gain = 32	-1		1	%
		$V_{INP} < (V_{DD}/63)$	'		'	/0
Delta R	电阻绝对值变化		-15		15	%
EN ⁽¹⁾	 等效输入噪声	$R_{LOAD} = 5k \Omega@1kHz$		100		nV/
LIV	サメ州ハボル	$R_{LOAD} = 20k \Omega@1KHz$		60		sqrt(Hz)

注: 1. 设计参数保证;

2. 负载电流会限制饱和输出电压。

3.3.17 CMP 特性

表 3-24 CMP 电压比较器特性

符号	参数	条件: V _{DD} = 5V	最小值	典型值	最大值	单位
$V_{ extsf{DD}}$	供电电压	建议不低于 2. 5V	2	5	5. 5	V
C _{MIR}	共模输入电压		0		$V_{ exttt{DD}}$	٧

V _{IOFFSET} (1)	输入失调电压		4		mV
I DDOPAMP	消耗电流		75		uA
t _D ⁽¹⁾	比较器延时, V _{INP} 从(V _{INN} -100mV) 到(V _{INN} -100mV)变化	$0 \leqslant VINN \leqslant V_{DD}$	15	50	ns
V. (1)	V _{hys} ⁽¹⁾ 比较器的额定迟滞电压	CMP_HYS = 0	0		mV
V hys		CMP_HYS = 1	15		IIIV

注: 1. 设计参数保证。

第4章 封装及订货信息

芯片封装

订货型号	封装形式	塑体宽度	引脚间距	封装说明	出货料盘
CH32X035R8T6	LQFP64M	10*10mm	0. 5mm	LQFP64M(10*10)贴片	托盘
CH32X035C8T6	LQFP48	7*7mm	0. 5mm	标准 LQFP48 贴片	托盘
CH32X035G8U6	QFN28	4*4mm	0. 4mm	四边无引线 28 脚	托盘
CH32X035G8R6	QSOP28	3. 9*9. 9mm	0. 635mm	1/4 尺寸 28 脚贴片	塑管
CH32X035F8U6	QFN20	3*3mm	0. 4mm	四边无引线 20 脚	卷带
CH32X035F7P6	TSS0P20	4. 4*6. 5mm	0. 65mm	薄小型的 20 脚贴片	塑管

说明: 1. QFP/QFN 一般默认为托盘。

2. 托盘尺寸:托盘大小一般为统一尺寸,322.6*135.9*7.62,不同封装类型限位孔尺寸有区别,塑管不同封装厂有区别,具体与厂家确认。

说明:尺寸标注的单位是 mm(毫米),引脚中心间距总是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm或者±10%两者中的较大值。

图 4-1 LQFP64M 封装

图 4-2 LQFP48 封装

图 4-3 QFN28 封装

图 4-4 QSOP28 封装

系列产品命名规则

产品系列

F = 基于 ARM 内核, 通用 MCU

V = 基于青稞 RISC-V 内核, 通用 MCU

L = 基于青稞 RISC-V 内核, 低功耗 MCU

X = 基于青稞 RISC-V 内核, 专用架构或特殊 10

CH32

产品类型

举例:

0 = 青稞 V2/V4 内核, 主频@48M

1 = M3/青稞 V3/V4 内核, 主频@72M

2 = M3/青稞 V4 非浮点内核, 主频@144M

3 = 青稞 V4F 浮点内核, 主频@144M

产品子系列

03 = 通用型

05 = 连接型(USB 高速、SD10、双 CAN)

07 = 互联型(USB 高速、双 CAN、以太网、SDIO、FSMC)

08 = 无线型(蓝牙 BLE5. X、CAN、USB、以太网)

35 = 连接型(USB、USB PD)

引脚数目

J = 8 脚 A = 16 脚 F = 20 脚

G = 28 脚 K = 32 脚 T = 36 脚

C = 48 脚 R = 64 脚 W = 68 脚

V = 100 脚 Z = 144 脚

闪存存储容量

4 = 16K 闪存存储器

6 = 32K 闪存存储器

7 = 48K 闪存存储器

8 = 64K 闪存存储器

B = 128K 闪存存储器

C = 256K 闪存存储器

封装

T = LQFP U = QFN R = QSOP P = TSSOP M = SOP

温度范围

6 = -40°C~85°C (工业级)

7 = -40℃~105℃ (汽车2级)

3 = -40℃~125℃ (汽车1级)

D = -40°C~150°C (汽车0级)