

- Thought Experiment
 - Fact 1: UNC is Better Than Duke at Almost Everything
 - Fact 2: In All Circumstances, P(UNC > Duke) = 95%
 - Fact 3: You Have \$10 Billion
 - Scenario: Competition of UNC vs Duke
 - Decision: How Much Should You Bet on UNC Winning?
 - **\$10**
 - **\$100**
 - **\$1,000**
 - **\$100,000**
 - All In and Ballin'
 - Goal: Choose an Amount For Long Term Gains
- Not "How Much?", But "What Percent?"

- J.L. Kelly, Jr.
 - Scientist at Bell Labs
 - Formulated the Kelly Criterion
 - Methodology Used by Mathematician Ed Thorp to Make Money on Roulette and Blackjack
 - Ideas Used in Financial Investment
- Kelly Criterion = Optimal Percentage of Bankroll to Place on Bet in Order to Maximize Expected Growth of Wealth
- Simplify Ideas to \$1

- Situation: Start with \$1.00
 - C = Starting Capital = 1
 - X = Bankroll After Bet
 - f = Fraction of Capital Placed on Bet (Unit)
 - p = Probability of Winning Bet
 - q = Probability of Losing Bet = 1-p
 - W = Profit Made Per \$1 Bet When Won
 - L = Loss Per \$1 Bet When Lost
- Maximize For Kelly Criterion $E[\log(X)]$

- Typically, for 50-50 Bet,
 - W = 100/110 = 0.91 = 91%
 - L =1

- Suppose Money Line is Bears +220
 - W = 220/100 = 2.2 = 220%
 - L = 1
- Suppose Money Line is Bears -220
 - W = 100/220 = 0.454 = 45.4%
 - L = 1

Expected Value for Maximization

$$E[\log(X)] = p \times \log(1 + fW) + q \times \log(1 - fL)$$

■ Taking the Derivative in Respect to f

$$\frac{d}{df}E[\log(X)] = p \times \frac{W}{1+fW} - q \times \frac{L}{1-fL} \stackrel{\text{Set}}{=} 0$$

Solve Equation for f

$$f = \frac{pW - qL}{W \times L}$$
 Edge Favoring Bettor

Restructuring

$$f = \frac{p}{L} - \frac{q}{W} = \frac{p}{L} - \frac{1-p}{W} = \frac{p}{L} - \frac{1}{W} + \frac{p}{W} = -\frac{1}{W} + (\frac{1}{L} + \frac{1}{W}) \times p$$

Linear Model: y=a+bX

Example 1: Bet on a Spread With 60% Chance of Winning

$$f = \frac{pW - qL}{W \times L} = \frac{0.6 \times 0.909 - 0.4 \times 1}{0.909 \times 1} = 0.16 = 16\%$$

lacktriangle Relationship Between f and p

Figure 44.2. Optimal bet fraction as function of win probability.

■ Relationship Between E[log(X)] and p

Figure 44.3. Average wealth growth per period as a function of win probability.

Example 2: Bet on a Spread With 48% Chance of Winning

$$f = \frac{pW - qL}{W \times L} = \frac{0.48 \times 0.909 - 0.52 \times 1}{0.909 \times 1} = -0.09 = -9\%$$

Don't Be an Idiot

Example 3: Bet on a Spread With 95% Chance of Winning

$$f = \frac{pW - qL}{W \times L} = \frac{0.95 \times 0.909 - 0.05 \times 1}{0.909 \times 1} = 0.89 = 89\% \neq 100\%$$

Don't Be an Idiot

• Recall: $E[\log(X)] = p \times \log(1 + fW) + q \times \log(1 - fL)$

• Effect of Choosing Wrong p

	K	L
2	Fraction	Average growth rate
3	0.05	0.006668091
4	0.03	
5	0.15	0.010628669 0.011796783
6	0.13	0.011790783
7	0.25	0.010038642
8	0.23	-0.003266361
9	0.35	-0.002768628 -0.014287401
10	0.33	-0.014287401
11	0.45	-0.049094515
12		
12	0.5	-0.073298724

Figure 44.4. Average long-term growth rate versus fraction bet.

FINAL INSPIRATION

When I bet on horses,
I never lose. Why?
I bet on all the horses

-Tom Haverford