Statistique

Laurent Rouvière

Novembre 2020

Présentation

ullet Preé-requis: Bases de ${f R}$, probabilités, statistique et programmation

Présentation

- Preé-requis: Bases de R, probabilités, statistique et programmation
- Objectifs: être capable de mettre en oeuvre une démarche statistique rigoureuse pour répondre à des problèmes standards
 - estimation : ponctuelle et par intervalles
 - tests d'hypothèses
 - modèle linéaire

Présentation

- Preé-requis: Bases de **R**, probabilités, statistique et programmation
- Objectifs: être capable de mettre en oeuvre une démarche statistique rigoureuse pour répondre à des problèmes standards
 - estimation : ponctuelle et par intervalles
 - tests d'hypothèses
 - modèle linéaire
- Enseignant: Laurent Rouvière, laurent.rouviere@univ-rennes2.fr
 - Thèmes de recherche : statistique non-paramétrique et apprentissage statistique
 - Enseignement: probabilités, statistique et logiciels (Universités et écoles)
 - Consulting: energie (ERDF), finance, marketing.

Plan

• Théorie (modélisation statistique) et pratique sur machines (R).

Plan

- Théorie (modélisation statistique) et pratique sur machines (R).
- 1. Introduction à R
 - Environnement Rstudio
 - Objets R
 - Manipulation et visualisation de données
- 2. "Rappels" de probabilités
- 3. Estimation ponctuelle et par intervalle
- 4. Introduction aux tests.

Quelques éléments de probabilité

Quelques éléments de probabilité

Introduction

Une problématique...

Exemple

Les iris de Fisher.

- 1. Quelle est la longueur de pétales moyenne des iris ?
- 2. Peut-on dire que la longueur moyenne est égale à 5.6 ?
- 3. Les Setosa ont-elles des longueurs de pétales plus longues que les autres espèces ? Avec quel niveau de confiance ?

Des données

Collecte de données

- Pour répondre à ces questions on réalise des expériences.
- Exemple : on mesure les longueurs et largeurs de sépales et pétales pour 150 iris (50 de chaque espèce).

```
> data(iris)
> summary(iris)
   Sepal.Length Sepal.Width Petal.Length Petal.Width
##
##
   Min. :4.300 Min. :2.000
                               Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800
                               1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000
                               Median :4.350 Median :1.300
##
   Mean :5.843
                Mean :3.057
                               Mean :3.758
                                             Mean :1.199
   3rd Qu.:6.400
                3rd Qu.:3.300
                               3rd Qu.:5.100
                                              3rd Qu.:1.800
##
   Max. :7.900
                 Max. :4.400
                                             Max. :2.500
##
                               Max. :6.900
##
        Species
   setosa :50
##
##
   versicolor:50
##
   virginica:50
```

Autre exemple

- On considères deux échantillons E1 et E2.
- Question : la moyenne est-elle égale à 5 ?

Autre exemple

- On considères deux échantillons E1 et E2.
- Question : la moyenne est-elle égale à 5 ?

Remarque

Plus difficile de répondre pour **E2** car :

- Moins d'observations ;
- Dispersion plus importante.

Un autre exemple

- Deux candidats se présentent à une élection.
- On effectue un sondage, les résultats sont

```
> summary(election)
## res
## A:488
## B:512
```

Un autre exemple

- Deux candidats se présentent à une élection.
- On effectue un sondage, les résultats sont

```
> summary(election)
## res
## A:488
## B:512
```

- Problématique : qui va gagner ?
- Avec quel niveau de confiance peut-on répondre à cette question ?

Statistiques descriptives et visualisation

Ces approches peuvent donner une intuition pour répondre.

```
> iris %>% summarize(mean(Petal.Length))
## mean(Petal.Length)
                 3.758
## 1
> iris %>% group_by(Species) %>% summarize(mean(Petal.Length))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 3 x 2
## Species `mean(Petal.Length)`
## <fct>
                              <d.b 1.>
## 1 setosa
                               1.46
## 2 versicolor
                               4.26
                               5.55
## 3 virginica
> election %>% mutate(res_A=res=="A") %>%
   summarize(Prop_A=mean(res_A))
##
  Prop_A
## 1 0.488
```


> ggplot(election)+aes(x=res)+geom_bar()

Hasard, aléa...

La réponse à ces questions peut paraître simple.

Première réponse

- Iris: si la longueur moyenne des pétales mesurées est différente de 0.6, on répond non.
- Election : si la proportion de sondés votant pour A est supérieure à 0.5, on répond que A gagne.

Hasard, aléa...

La réponse à ces questions peut paraître simple.

Première réponse

- Iris : si la longueur moyenne des pétales mesurées est différente de 0.6, on répond non.
- Election : si la proportion de sondés votant pour A est supérieure à 0.5, on répond que A gagne.

Problème

- Ces réponses sont très (trop) liées aux données observées.
- Si je recommence l'expérience (sur d'autres iris ou d'autres électeurs), les conclusions peuvent changer.

Hasard, aléa...

• La réponse à ces questions peut paraître simple.

Première réponse

- Iris : si la longueur moyenne des pétales mesurées est différente de 0.6, on répond non.
- Election : si la proportion de sondés votant pour A est supérieure à 0.5, on répond que A gagne.

Problème

- Ces réponses sont très (trop) liées aux données observées.
- Si je recommence l'expérience (sur d'autres iris ou d'autres électeurs), les conclusions peuvent changer.
- Conclusion : il faut prendre en compte cet aléa du au choix des individus ainsi que le nombre d'observations et la dispersion des mesures.

14

• Idée : répondre à ces questions en calculant (estimant) des probabilités.

- Idée : répondre à ces questions en calculant (estimant) des probabilités.
- Notation : x_1, \ldots, x_n n observations.

- Idée : répondre à ces questions en calculant (estimant) des probabilités.
- Notation : x_1, \ldots, x_n n observations.

Hypothèse

Les observations proviennent d'une certaine loi de probabilité (inconnue).

- Idée : répondre à ces questions en calculant (estimant) des probabilités.
- Notation : x_1, \ldots, x_n n observations.

Hypothèse

Les observations proviennent d'une certaine loi de probabilité (inconnue).

Problème

Qu'est-ce qu'une loi de probabilité ?

"Définition"

 Une loi de probabilité est un objet qui permet de mesurer ou quantifier la chance qu'un évènement se produise.

"Définition"

- Une loi de probabilité est un objet qui permet de mesurer ou quantifier la chance qu'un évènement se produise.
- Mathématiquement, il s'agit d'une fonction $\mathbf{P}:\Omega\to[0,1]$ telle que, pour un évènement $\omega\in\Omega$, $\mathbf{P}(\omega)$ mesure la "chance" que l'évènement ω se réalise.

"Définition"

- Une loi de probabilité est un objet qui permet de mesurer ou quantifier la chance qu'un évènement se produise.
- Mathématiquement, il s'agit d'une fonction $\mathbf{P}:\Omega\to[0,1]$ telle que, pour un évènement $\omega\in\Omega$, $\mathbf{P}(\omega)$ mesure la "chance" que l'évènement ω se réalise.

Exemple

- Pile ou face : P(pile) = P(false) = 1/2.
- Dé équilibré : $P(1) = P(2) = \cdots = P(6) = 1/6$.

Quelques éléments de probabilité

Quelques lois de probabilités

- Une loi de probabilité permet de visualiser/caractériser/mesurer les valeurs que peut prendre une variable.
- On distingue deux types de loi de probabilité que l'on caractérise en étudiant les valeurs possibles de la variable (et donc de l'expérience).

- Une loi de probabilité permet de visualiser/caractériser/mesurer les valeurs que peut prendre une variable.
- On distingue deux types de loi de probabilité que l'on caractérise en étudiant les valeurs possibles de la variable (et donc de l'expérience).

Variable discrète

 Si l'ensemble des valeurs que peut prendre la variable est fini ou dénombrable, la variable est discrète.

- Une loi de probabilité permet de visualiser/caractériser/mesurer les valeurs que peut prendre une variable.
- On distingue deux types de loi de probabilité que l'on caractérise en étudiant les valeurs possibles de la variable (et donc de l'expérience).

Variable discrète

- Si l'ensemble des valeurs que peut prendre la variable est fini ou dénombrable, la variable est discrète.
- pile ou face, nombre de voitures à un feu rouge, nombre d'aces dans un match de tennis...

- Une loi de probabilité permet de visualiser/caractériser/mesurer les valeurs que peut prendre une variable.
- On distingue deux types de loi de probabilité que l'on caractérise en étudiant les valeurs possibles de la variable (et donc de l'expérience).

Variable discrète

- Si l'ensemble des valeurs que peut prendre la variable est fini ou dénombrable, la variable est discrète.
- pile ou face, nombre de voitures à un feu rouge, nombre d'aces dans un match de tennis...

Variable continue

- Si l'ensemble des valeurs que peut prendre la variable est infini (\mathbb{R} ou un intervalle de \mathbb{R}) la variable est continue.
- Duret de trajet, taille, vitesse d'un service, longueur d'un saut...

Comment définir une loi discrète ?

Pour caractériser un loi discrète, il faudra donner :

- 1. l'ensemble des valeurs possibles de la variable ;
- 2. la probabilité associée à chacune de ses valeurs.

Comment définir une loi discrète ?

Pour caractériser un loi discrète, il faudra donner :

- 1. l'ensemble des valeurs possibles de la variable ;
- 2. la probabilité associée à chacune de ses valeurs.

Exemple

- Soit X la variable aléatoire qui représente le statut matrimonial d'une personne.
- X peut prendre 4 valeurs : célibataire, marié, divorcé, vœuf (4 valeurs donc loi discrète).
- On caractérise sa loi

$$P(X = cel) = 0.20, P(X = marié) = 0.4, P(X = div) = 0.3, P(X = voeuf) = 0.1.$$

Comment définir une loi discrète ?

Pour caractériser un loi discrète, il faudra donner :

- 1. l'ensemble des valeurs possibles de la variable ;
- 2. la probabilité associée à chacune de ses valeurs.

Exemple

- Soit X la variable aléatoire qui représente le statut matrimonial d'une personne.
- X peut prendre 4 valeurs : célibataire, marié, divorcé, vœuf (4 valeurs donc loi discrète).
- On caractérise sa loi

$$P(X = cel) = 0.20, P(X = marié) = 0.4, P(X = div) = 0.3, P(X = voeuf) = 0.1.$$

Remarque

La somme des probabilités doit toujours être égale à 1.

Bernoulli

Définition

La loi de Bernoulli de paramètre $p \in [0,1]$ est définie par

- Valeurs possibles : 0 (échec) et 1 (succés)
- Proba : P(X = 0) = 1 p et P(X = 1) = p.

Bernoulli

Définition

La loi de Bernoulli de paramètre $p \in [0,1]$ est définie par

- Valeurs possibles : 0 (échec) et 1 (succés)
- Proba : P(X = 0) = 1 p et P(X = 1) = p.

Exemple

- Modélisation de phénomènes à 2 issues.
- Pile ou face, ace/pas ace, acceptation/rejet, oui/non...

Fonction dbinom

```
> dinom(x,1,p)
```

■ Loi de Bernoulli de paramètre 0.5

```
> dbinom(0,1,0.5)
## [1] 0.5
> dbinom(1,1,0.5)
## [1] 0.5
```

■ Loi de Bernoulli de paramètre 0.8

```
> dbinom(0,1,0.8)
## [1] 0.2
> dbinom(1,1,0.8)
## [1] 0.8
```

- On répète n expériences de Bernoulli de paramètres $p \in [0,1]$ de façon indépendante.
- On note X_1, \ldots, X_n les n résultats.

- On répète n expériences de Bernoulli de paramètres $p \in [0,1]$ de façon indépendante.
- On note X_1, \ldots, X_n les n résultats.
- $\sum_{i=1}^{n} X_i$ (qui compte le nombre de 1) suit une loi Binomiale $\mathcal{B}(n,p)$.

- On répète n expériences de Bernoulli de paramètres $p \in [0,1]$ de façon indépendante.
- On note X_1, \ldots, X_n les n résultats.
- $\sum_{i=1}^{n} X_i$ (qui compte le nombre de 1) suit une loi Binomiale $\mathcal{B}(n,p)$.

Loi binomiale

- Valeurs possibles : $\{0, 1, \dots, n\}$.
- Proba :

$$\mathbf{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \quad \text{avec} \quad \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

- On répète n expériences de Bernoulli de paramètres $p \in [0,1]$ de façon indépendante.
- On note X_1, \ldots, X_n les n résultats.
- $\sum_{i=1}^{n} X_i$ (qui compte le nombre de 1) suit une loi Binomiale $\mathcal{B}(n,p)$.

Loi binomiale

- Valeurs possibles : $\{0, 1, \ldots, n\}$.
- Proba :

$$\mathbf{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \quad \text{avec} \quad \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Exemple

Nombre de succès sur n épreuves : nombre de piles, nombre d'aces sur n services.

Fonction dbinom :

```
> dinom(x,n,p)
```

• Loi binomiale $\mathcal{B}(10, 0.5)$

```
> dbinom(0,10,0.5);dbinom(5,10,0.5);dbinom(10,10,0.5)
## [1] 0.0009765625
## [1] 0.2460938
## [1] 0.0009765625
```

■ Loi binomiale **B**(50, 0.8)

```
> dbinom(0,50,0.8);dbinom(25,50,0.8);dbinom(50,50,0.8)
## [1] 1.1259e-35
## [1] 1.602445e-06
## [1] 1.427248e-05
```

Visualisation

Loi de Poisson

Définition

- Valeurs possibles : N.
- Proba:

$$\mathbf{P}(X=k) = \frac{\lambda^k \exp(-\lambda)}{k!}$$

où λ est un paramètre positif. On la note $\mathcal{P}(\lambda)$.

Loi de Poisson

Définition

- Valeurs possibles : N.
- Proba:

$$\mathbf{P}(X=k) = \frac{\lambda^k \exp(-\lambda)}{k!}$$

où λ est un paramètre positif. On la note $\mathcal{P}(\lambda)$.

Exemple

- Données de comptage.
- Nombre de voitures à un feu rouge, nombre de personnes à une caisse, nombre d'admis à une épreuve...

Fonction dpois :

```
> dpois(x,lambda)
```

• Loi de Poisson $\mathcal{P}(1)$

```
> dpois(0,1);dpois(5,1);dpois(10,1)
## [1] 0.3678794
## [1] 0.003065662
## [1] 1.013777e-07
```

• Loi binomiale $\mathcal{P}(10)$

```
> dpois(0,10);dpois(5,10);dpois(10,10)
## [1] 4.539993e-05
## [1] 0.03783327
## [1] 0.12511
```

Visualisation

 Une loi continue prend une infinité de valeurs (sur un intervalle ou sur R tout entier).

- Une loi continue prend une infinité de valeurs (sur un intervalle ou sur R tout entier).
- Pour la caractériser on utilisera une fonction de densité qui permettra de mesurer la probabilité que la variable appartienne à un intervalle.

- Une loi continue prend une infinité de valeurs (sur un intervalle ou sur R tout entier).
- Pour la caractériser on utilisera une fonction de densité qui permettra de mesurer la probabilité que la variable appartienne à un intervalle.
- Cette probabilité se déduit de l'aire sous la densité.

- Une loi continue prend une infinité de valeurs (sur un intervalle ou sur R tout entier).
- Pour la caractériser on utilisera une fonction de densité qui permettra de mesurer la probabilité que la variable appartienne à un intervalle.
- Cette probabilité se déduit de l'aire sous la densité.

Exemple

Si X admet pour densité f, alors

$$\mathbf{P}(X \in [a,b]) = \int_a^b f(x) \, \mathrm{d}x.$$

$$P(X \in [0,2]) = ???$$

Réponse

$$\mathbf{P}(X \in [0,2]) = \int_0^2 f(x) dx \simeq 0.48.$$

Définition

Une densité de probabilité est donc une fonction $f: \mathbb{R} \to \mathbb{R}$ qui doit vérifier les trois propriétés suivantes :

Définition

Une densité de probabilité est donc une fonction $f: \mathbb{R} \to \mathbb{R}$ qui doit vérifier les trois propriétés suivantes :

1. Elle doit être positive : $f(x) \ge 0 \ \forall x \in \mathbb{R}$;

Définition

Une densité de probabilité est donc une fonction $f: \mathbb{R} \to \mathbb{R}$ qui doit vérifier les trois propriétés suivantes :

- 1. Elle doit être positive : $f(x) \ge 0 \ \forall x \in \mathbb{R}$;
- 2. Elle doit être intégrable.

Définition

Une densité de probabilité est donc une fonction $f: \mathbb{R} \to \mathbb{R}$ qui doit vérifier les trois propriétés suivantes :

- 1. Elle doit être positive : $f(x) \ge 0 \ \forall x \in \mathbb{R}$;
- 2. Elle doit être intégrable.
- 3. Son intégrale sur $\mathbb R$ doit être égale à un :

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1.$$

Remarques

• Attention : pour une variable continue X on a toujours

$$\mathbf{P}(X=x) = \int_{x}^{x} f(x) \, \mathrm{d}x = 0.$$

Remarques

• Attention : pour une variable continue X on a toujours

$$\mathbf{P}(X=x) = \int_{x}^{x} f(x) \, \mathrm{d}x = 0.$$

 On s'intéresse à des probabilités pour intervalles ou des réunions d'intervalles.

Remarques

• Attention : pour une variable continue X on a toujours

$$\mathbf{P}(X=x) = \int_{x}^{x} f(x) \, \mathrm{d}x = 0.$$

- On s'intéresse à des probabilités pour intervalles ou des réunions d'intervalles.
- Ces probabilités se déduisent à partir d'aires, et donc d'intégrales.

Loi uniforme

Définition

La loi uniforme sur un intervalle [a, b] admet pour densité

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a, b] \\ 0 & \text{sinon.} \end{cases}$$

On la note $\mathcal{U}_{[a,b]}$.

Interprétation

Les valeurs de X sont réparties uniformément sur l'intervalle [a,b].

• Densité : fonction dunif

```
> dunif(-1,0,1);dunif(0.5,0,1);dunif(2,0,1)
## [1] 0
## [1] 1
## [1] 0
```

Densité : fonction dunif

```
> dunif(-1,0,1);dunif(0.5,0,1);dunif(2,0,1)
## [1] 0
## [1] 1
## [1] 0
```

• Fonction de répartition : $F(x) = P(X \le x)$ avec punif :

```
> punif(0,0,1);punif(0.2,0,1);punif(0.5,0,1)
## [1] 0
## [1] 0.2
## [1] 0.5
```

Densité : fonction dunif

```
> dunif(-1,0,1);dunif(0.5,0,1);dunif(2,0,1)
## [1] 0
## [1] 0
```

• Fonction de répartition : $F(x) = P(X \le x)$ avec punif :

```
> punif(0,0,1);punif(0.2,0,1);punif(0.5,0,1)
## [1] 0
## [1] 0.2
## [1] 0.5
```

Calcul de probabilités :

$$P(X \in [0.1, 0.4]) = P(X \le 0.4) - P(X < 0.1).$$

```
> punif(0.4,0,1)-punif(0.1,0,1)
## [1] 0.3
```

La loi normale

Définition

La loi normale ou loi gaussienne de paramètre $\mu \in \mathbb{R}$ et $\sigma^2 \in \mathbb{R}^+$ admet pour densité

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x-\mu}{2\sigma^2}\right).$$

On la note $\mathcal{N}(\mu, \sigma^2)$.

La loi normale

Définition

La loi normale ou loi gaussienne de paramètre $\mu \in \mathbb{R}$ et $\sigma^2 \in \mathbb{R}^+$ admet pour densité

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x-\mu}{2\sigma^2}\right).$$

On la note $\mathcal{N}(\mu, \sigma^2)$.

Remarque

- μ représente le tendance centrale de la loi, on parle de valeur moyenne.
- σ^2 représente la dispersion de la loi autour de la valeur moyenne, on parle(ra) de variance.

La loi normale

Définition

La loi normale ou loi gaussienne de paramètre $\mu \in \mathbb{R}$ et $\sigma^2 \in \mathbb{R}^+$ admet pour densité

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x-\mu}{2\sigma^2}\right).$$

On la note $\mathcal{N}(\mu, \sigma^2)$.

Remarque

- ullet μ représente le tendance centrale de la loi, on parle de valeur moyenne.
- σ^2 représente la dispersion de la loi autour de la valeur moyenne, on parle(ra) de variance.
- Elle permet de modéliser des phénomènes centrés en une valeur.
- C'est la loi limite du théorème central limite.

Exemples pour différents (μ, σ^2)

Densité : fonction dnorm

```
> dnorm(0,0,1);dnorm(0.05,0,1);dnorm(0.95,0,1)
## [1] 0.3989423
## [1] 0.3984439
## [1] 0.2540591
```

Densité : fonction dnorm

```
> dnorm(0,0,1);dnorm(0.05,0,1);dnorm(0.95,0,1)
## [1] 0.3984439
## [1] 0.2540591
```

■ Fonction de répartition : $F(x) = P(X \le x)$ avec pnorm :

```
> pnorm(0,0,1);pnorm(2,0,1);pnorm(-2,0,1)
## [1] 0.5
## [1] 0.9772499
## [1] 0.02275013
```

Densité : fonction dnorm

```
> dnorm(0,0,1);dnorm(0.05,0,1);dnorm(0.95,0,1)
## [1] 0.3989423
## [1] 0.2540591
```

• Fonction de répartition : $F(x) = P(X \le x)$ avec pnorm :

```
> pnorm(0,0,1);pnorm(2,0,1);pnorm(-2,0,1)
## [1] 0.5
## [1] 0.9772499
## [1] 0.02275013
```

• Calcul de probabilités :

$$P(X \in [0,1]) = P(X \le 1) - P(X < 0).$$

```
> pnorm(1,0,1)-pnorm(0,0,1)
## [1] 0.3413447
```

Loi exponentielle

Définition

La loi exponentielle de paramètre $\lambda>0$ admet pour densité

$$f(x) = \lambda \exp(-\lambda x), \quad x \in \mathbb{R}^+.$$

On la note $\mathcal{E}(\lambda)$.

Loi exponentielle

Définition

La loi exponentielle de paramètre $\lambda>0$ admet pour densité

$$f(x) = \lambda \exp(-\lambda x), \quad x \in \mathbb{R}^+.$$

On la note $\mathcal{E}(\lambda)$.

Exemple

 Cette loi est souvent utilisée pour modéliser des durées de vie (composant électronique, patients atteint d'une pathologie...).

Visualisation

■ Densité : fonction dexp

```
> dexp(1,1);dexp(3,1)
## [1] 0.3678794
## [1] 0.04978707
```

Densité : fonction dexp

```
> dexp(1,1);dexp(3,1)
## [1] 0.3678794
## [1] 0.04978707
```

• Fonction de répartition : $F(x) = P(X \le x)$ avec pexp :

```
> pexp(1,1);pexp(5,1)
## [1] 0.6321206
## [1] 0.9932621
```

Densité : fonction dexp

```
> dexp(1,1);dexp(3,1)
## [1] 0.3678794
## [1] 0.04978707
```

• Fonction de répartition : $F(x) = P(X \le x)$ avec pexp :

```
> pexp(1,1);pexp(5,1)
## [1] 0.6321206
## [1] 0.9932621
```

• Calcul de probabilités :

$$P(X \in [2,4]) = P(X \le 4) - P(X < 2).$$

```
> pexp(4,1)-pexp(2,1)
## [1] 0.1170196
```

Quelques éléments de probabilité

Espérance et variance

Motivations

 Loi de probabilité : pas toujours facile à interpréter d'un point de vue pratique.

Motivations

- Loi de probabilité : pas toujours facile à interpréter d'un point de vue pratique.
- Objectif: définir des indicateurs (des nombres par exemple) qui permettent d'interpréter une loi de probabilité (tendance centrale, dispersion...).

Définition

L'espérance d'une variable aléatoire X est le réel défini par :

$$\mathbf{E}[X] = \int_{\Omega} X(\omega) \, \mathrm{d}\mathbf{P}(\omega).$$

Définition

L'espérance d'une variable aléatoire X est le réel défini par :

$$\mathbf{E}[X] = \int_{\Omega} X(\omega) \, \mathrm{d}\mathbf{P}(\omega).$$

Interprétation

 La formule ci-dessus ne sera d'aucun intérêt pratique, elle permet juste de comprendre l'interprétation de l'espérance.

Définition

L'espérance d'une variable aléatoire X est le réel défini par :

$$\mathbf{E}[X] = \int_{\Omega} X(\omega) \, \mathrm{d}\mathbf{P}(\omega).$$

Interprétation

- La formule ci-dessus ne sera d'aucun intérêt pratique, elle permet juste de comprendre l'interprétation de l'espérance.
- L'espérance revient à intégrer les valeurs de la v.a.r. X pour chaque évènement ω pondéré par la mesure de probabilité de chaque évènement.

Définition

L'espérance d'une variable aléatoire X est le réel défini par :

$$\mathbf{E}[X] = \int_{\Omega} X(\omega) \, \mathrm{d}\mathbf{P}(\omega).$$

Interprétation

- La formule ci-dessus ne sera d'aucun intérêt pratique, elle permet juste de comprendre l'interprétation de l'espérance.
- L'espérance revient à intégrer les valeurs de la v.a.r. X pour chaque évènement ω pondéré par la mesure de probabilité de chaque évènement.
- Elle s'interprète ainsi en terme de valeur moyenne prise par X.

Calculs d'espérance

• Pour les calculs d'espérance, on distingue les cas discrets et continus.

Propriété

Cas discret :

$$\mathbf{E}[X] = \sum_{\text{valeurs possibles de } X} x \mathbf{P}(X = x).$$

Calculs d'espérance

• Pour les calculs d'espérance, on distingue les cas discrets et continus.

Propriété

Cas discret :

$$\mathbf{E}[X] = \sum_{\text{valeurs possibles de } X} x \mathbf{P}(X = x).$$

Cas continu :

$$\mathbf{E}[X] = \int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$$

où f est la densité de X.

Exemples

Loi	Espérance
$\mathcal{B}(p)$	р
$\mathcal{B}(n,p)$	np
$\mathcal{P}(\lambda)$	λ
$\mathcal{U}_{[a,b]}$	$\frac{a+b}{2}$
$\mathcal{N}(\mu, \sigma^2)$	μ

Définition

• La variance de X, notée V[X], est définie par :

$$V[X] = E[X - E[X]]^2 = E[X^2] - (E[X])^2.$$

• Sa racine carrée positive $\sigma[X]$ est appelée écart-type de X.

Définition

■ La variance de X, notée **V**[X], est définie par :

$$V[X] = E[X - E[X]]^2 = E[X^2] - (E[X])^2.$$

• Sa racine carrée positive $\sigma[X]$ est appelée écart-type de X.

Interprétation

- La variance est un réel positif.
- Elle mesure l'écart entre les valeurs prises par X et l'espérance (moyenne) de X

Définition

■ La variance de X, notée **V**[X], est définie par :

$$V[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2.$$

• Sa racine carrée positive $\sigma[X]$ est appelée écart-type de X.

Interprétation

- La variance est un réel positif.
- Elle mesure l'écart entre les valeurs prises par X et l'espérance (moyenne) de X ⇒ interprétation en terme de dispersion.

Définition

• La variance de X, notée V[X], est définie par :

$$V[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2.$$

• Sa racine carrée positive $\sigma[X]$ est appelée écart-type de X.

Interprétation

- La variance est un réel positif.
 - Elle mesure l'écart entre les valeurs prises par X et l'espérance (moyenne) de $X \Longrightarrow$ interprétation en terme de dispersion.

Exemple

- 1. Loi de Bernoulli $\mathcal{B}(p)$: $\mathbf{V}[X] = p(1-p)$;
- 2. Loi uniforme sur [0,1] : V[X] = 1/12;

3 Loi uniforme sur $[1/4, 3/4] \cdot V[X] = 1/48$

47

Espérance et variance de quelques lois classiques

X	$\mathbf{E}[X]$	V [X]
$\mathcal{B}(p)$	р	p(1-p)
$\mathcal{B}(n,p)$	р	np(1-p)
$\mathcal{P}(\lambda)$	λ	λ

Lois discrètes

X	E [X]	V [X]
$\mathcal{U}_{[a,b]}$	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$
$\mathcal{N}(\mu, \sigma^2)$	μ	σ^2
$\mathcal{E}(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Lois continues

Modèle et estimation

 On s'intéresse aux performances de décathloniens au cours de deux épreuves (jeux olympiques et décastar)

Quelques problèmes

1. Quelle est la distribution de la variable vitesse au 100m?

 On s'intéresse aux performances de décathloniens au cours de deux épreuves (jeux olympiques et décastar)

Quelques problèmes

- 1. Quelle est la distribution de la variable vitesse au 100m ?
- 2. Les performances aux decastar et aux jeux olympiques sont-elles identiques ?

 On s'intéresse aux performances de décathloniens au cours de deux épreuves (jeux olympiques et décastar)

Quelques problèmes

- 1. Quelle est la distribution de la variable vitesse au 100m ?
- 2. Les performances aux decastar et aux jeux olympiques sont-elles identiques ?
- 3. Quelles sont les disciplines les plus influentes sur le classement ?

 On s'intéresse aux performances de décathloniens au cours de deux épreuves (jeux olympiques et décastar)

Quelques problèmes

- 1. Quelle est la distribution de la variable vitesse au 100m ?
- 2. Les performances aux decastar et aux jeux olympiques sont-elles identiques ?
- 3. Quelles sont les disciplines les plus influentes sur le classement ?
- 4. Existe t-il un lien entre les performances au 100m et les autres disciplines ?
- 5. Si oui, peut-on le quantifier?

Les données

 Pour tenter de répondre à ces questions, on dispose des performances d'une vingtaine de décathloniens au cours de deux épreuves :

```
> head(decathlon)
      100m Long.jump Shot.put High.jump 400m 110m.hurdle Discus Pole.
##
## SEBRLE
         11.04
                 7.58
                        14.83
                                 2.07 49.81
                                                14.69
                                                     43.75
## CLAY
         10.76 7.40
                        14.26 1.86 49.37
                                                14.05 50.72
              7.30
                        14.77 2.04 48.37
## KARPOV
         11.02
                                                14.09 48.95
## BERNARD 11.02 7.23
                        14.25 1.92 48.93
                                                14.99
                                                     40.87
## YURKOV
         11.34
              7.09
                        15.19 2.10 50.42
                                                15.31
                                                     46.26
## WARNERS 11.11
              7.60
                        14.31
                                 1.98 48.68
                                                      41.10
                                                14.23
##
         Javeline 1500m Rank Points Competition
## SEBRI.E
         63.19 291.7
                           8217
                                  Decastar
## CLAY 60.15 301.5
                          8122
                                 Decastar
## KARPOV 50.31 300.2
                           8099
                                 Decastar
## BERNARD
         62.77 280.1
                          8067
                                 Decastar
## YURKOV
          63.44 276.4
                          8036 Decastar
## WARNERS
           51.77 278.1
                           8030
                                 Decastar
```

Statistiques descriptives (capital)

- > library(gridExtra)
- > grid.arrange(p1,p2,p3,p4,nrow=2)

Modèle et estimation

Modèle statistique

- On s'intéresse d'abord uniquement à la variable 100m.
- On dispose de n = 41 observations x_1, \ldots, x_n

- On s'intéresse d'abord uniquement à la variable 100m.
- On dispose de n = 41 observations x_1, \ldots, x_n

Question

Peut-on dire que le temps moyen au 100m pour les décathloniens est de 10.99 ?

Hazard, aléa...

■ Le résultat de 10.99 dépend des conditions dans lesquelles l'expérience a été réalisée.

Hazard, aléa...

- Le résultat de 10.99 dépend des conditions dans lesquelles l'expérience a été réalisée.
- Si on re-mesure les performances de nouvelles compétitions, il est fort possible qu'on n'obtienne pas la même durée moyenne.

Hazard, aléa...

- Le résultat de 10.99 dépend des conditions dans lesquelles l'expérience a été réalisée.
- Si on re-mesure les performances de nouvelles compétitions, il est fort possible qu'on n'obtienne pas la même durée moyenne.

Remarque

- Nécessité de prendre en compte que le résultat observé dépend des conditions expérimentales.
- Ces conditions expérimentales vont cependant être difficiles à caractériser précisément.
- On dit souvent que le hasard ou l'aléa intervient dans ces conditions.

Hazard, aléa...

- Le résultat de 10.99 dépend des conditions dans lesquelles l'expérience a été réalisée.
- Si on re-mesure les performances de nouvelles compétitions, il est fort possible qu'on n'obtienne pas la même durée moyenne.

Remarque

- Nécessité de prendre en compte que le résultat observé dépend des conditions expérimentales.
- Ces conditions expérimentales vont cependant être difficiles à caractériser précisément.
- On dit souvent que le hasard ou l'aléa intervient dans ces conditions.
- L'approche statistique prend en compte le nombre et la dispersion des observations pour apporter une réponse.

Modèle statistique

• Pour prendre en compte cet aléa, on fait l'hypothèse que les observations x_i sont issues d'une loi de probabilité P_i (inconnue).

Modèle statistique

 Pour prendre en compte cet aléa, on fait l'hypothèse que les observations x_i sont issues d'une loi de probabilité P_i (inconnue).

Echantillon i.i.d

- Si les mesures x_i sont faites de façons indépendantes et dans des conditions identiques, on dit que x₁,...,x_n sont n observations indépendantes et de même loi P.
- On emploi souvent le terme échantillon i.i.d (indépendant et identiquement distribué).

Estimer

- La loi P ainsi que toutes ses quantités dérivées (espérance, variance) est et sera toujours inconnue.
- Le travail du statisticien sera d'essayer de retrouver, ou plutôt d'estimer, cette loi ou les quantités d'intérêt qui dépendent de cette loi.

Modèle et estimation

Quelques exemples

- On souhaite tester l'efficacité d'un nouveau traitement (autorisé) sur les performances d'athlètes.
- On traite n = 100 patients athlètes.
- A l'issue de l'étude, 72 patients ont amélioré leurs performances.

- On souhaite tester l'efficacité d'un nouveau traitement (autorisé) sur les performances d'athlètes.
- On traite n = 100 patients athlètes.
- A l'issue de l'étude, 72 patients ont amélioré leurs performances.

Modélisation

• On note $x_i=1$ si le $i^{
m ème}$ athlète a amélioré, 0 sinon.

- On souhaite tester l'efficacité d'un nouveau traitement (autorisé) sur les performances d'athlètes.
- On traite n = 100 patients athlètes.
- A l'issue de l'étude, 72 patients ont amélioré leurs performances.

Modélisation

- On note $x_i = 1$ si le $i^{\text{ème}}$ athlète a amélioré, 0 sinon.
- Les x_i sont issues d'une loi de Bernoulli de paramètre inconnu $p \in [0, 1]$.

- On souhaite tester l'efficacité d'un nouveau traitement (autorisé) sur les performances d'athlètes.
- On traite n = 100 patients athlètes.
- A l'issue de l'étude, 72 patients ont amélioré leurs performances.

Modélisation

- On note $x_i = 1$ si le $i^{\text{ème}}$ athlète a amélioré, 0 sinon.
- Les x_i sont issues d'une loi de Bernoulli de paramètre inconnu $p \in [0,1]$.
- Si les individus sont choisis de manière indépendante et ont tous la même probabilité de progresser (ce qui peut revenir à dire qu'ils sont au même niveau), il est alors raisonnable de supposer que l'échantillon est i.i.d.

Estimer le paramètre p :

$$p = P(X = 1) = P($$
"Athlète améliore").

Estimer le paramètre p:

$$p = P(X = 1) = P("Athlète améliore").$$

Exemple d'estimateur

 Il parait naturel d'estimer p par la proportion d'athlètes dans l'échantillon qui ont amélioré leur performance.

Estimer le paramètre p :

$$p = P(X = 1) = P("Athlète améliore").$$

Exemple d'estimateur

- Il parait naturel d'estimer p par la proportion d'athlètes dans l'échantillon qui ont amélioré leur performance.
- Cela revient à estimer p par la moyenne (empirique) des x_i :

$$\hat{p} = \bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i.$$

Durée de trajet

• On s'intéresse à la durée de trajet moyenne "domicile/travail".

Durée de trajet

- On s'intéresse à la durée de trajet moyenne "domicile/travail".
- Expérience : je mesure la durée de trajet domicile/travail pendant plusieurs jours.
- Je récolte n = 100 observations :

```
> summary(duree_ht)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 10.62 16.42 18.46 19.37 21.88 30.20
```

Modélisation

Les données sont issues d'une loi inconnue P.

Modélisation

Les données sont issues d'une loi inconnue P.

Le problème statistique

Estimer l'espérance (moyenne) μ de la loi ${\bf P}.$

Modélisation

Les données sont issues d'une loi inconnue P.

Le problème statistique

Estimer l'espérance (moyenne) μ de la loi **P**.

Exemple d'estimateur

Là encore, un estimateur naturel de μ est donné par la moyenne empirique

$$\hat{\mu} = \bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i.$$

Le modèle gaussien

Cadre

- x_1, \ldots, x_n i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$.
- Le problème : estimer $\mu = \mathbf{E}[X]$ et $\sigma^2 = \mathbf{V}[X]$.

Le modèle gaussien

Cadre

- x_1, \ldots, x_n i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$.
- Le problème : estimer $\mu = \mathbf{E}[X]$ et $\sigma^2 = \mathbf{V}[X]$.

Exemple d'estimateurs

Moyenne empirique :

$$\hat{\mu} = \bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i.$$

Le modèle gaussien

Cadre

- x_1, \ldots, x_n i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$.
- Le problème : estimer $\mu = \mathbf{E}[X]$ et $\sigma^2 = \mathbf{V}[X]$.

Exemple d'estimateurs

Moyenne empirique :

$$\hat{\mu} = \bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i.$$

Variance empirique :

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2.$$

Autres exemples

X	Paramètre	Estimateur
$\mathcal{B}(p)$	р	\bar{x}_n
$\mathcal{P}(\lambda)$	λ	\bar{x}_n
$\mathcal{U}_{[0, heta]}$	θ	$2\bar{x}_n$
$\mathcal{E}(\lambda)$	λ	$1/\bar{x}_n$
	μ	\bar{x}_n
$\mathcal{N}(\mu, \sigma^2)$	et	
	σ^2	$\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x}_n)^2$

Autres exemples

X	Paramètre	Estimateur
$\mathcal{B}(p)$	р	\bar{x}_n
$\mathcal{P}(\lambda)$	λ	\bar{x}_n
$\mathcal{U}_{[0, heta]}$	θ	$2\bar{x}_n$
$\mathcal{E}(\lambda)$	λ	$1/\bar{x}_n$
	μ	\bar{x}_n
$\mathcal{N}(\mu, \sigma^2)$	et	
	σ^2	$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x}_n)^2$

Conclusion

De nombreux estimateurs sont construits à partir de la moyenne empirique \bar{x}_n .

La moyenne empirique

Remarque

 De nombreux estimateurs sont construits à partir de la moyenne empirique

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Remarque

 De nombreux estimateurs sont construits à partir de la moyenne empirique

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

La moyenne empirique est une variable aléatoire.

Remarque

 De nombreux estimateurs sont construits à partir de la moyenne empirique

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

- La moyenne empirique est une variable aléatoire.
- Elle va donc posséder une loi, une espérance, une variance...

La moyenne empirique

Cas gaussien

- On se place tout d'abord dans le cas où les observations suivent une loi gaussienne.
- On considère alors X_1, \ldots, X_n un échantillon i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$.

- On se place tout d'abord dans le cas où les observations suivent une loi gaussienne.
- On considère alors X_1, \ldots, X_n un échantillon i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$.

Propriété

- Dans le cas gaussien, la moyenne empirique \bar{X}_n suit une loi normale $\mathcal{N}(\mu, \sigma^2/n)$.
- On a ainsi

$$\mathbf{E}[\bar{X}_n] = \mu \quad \text{et} \quad \mathbf{V}[\bar{X}_n] = \frac{\sigma^2}{n}.$$

- On se place tout d'abord dans le cas où les observations suivent une loi gaussienne.
- On considère alors X_1, \ldots, X_n un échantillon i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$.

Propriété

- Dans le cas gaussien, la moyenne empirique \bar{X}_n suit une loi normale $\mathcal{N}(\mu, \sigma^2/n)$.
- On a ainsi

$$\mathbf{E}[\bar{X}_n] = \mu \quad \text{et} \quad \mathbf{V}[\bar{X}_n] = \frac{\sigma^2}{n}.$$

Conclusion

- X̄_n est centrée autour de μ.
- Sa dispersion dépend de σ^2 et n.

Biais et variance

• \bar{X}_n tombe toujours en moyenne sur μ . On dit que c'est un estimateur sans biais de μ .

Biais et variance

- \bar{X}_n tombe toujours en moyenne sur μ . On dit que c'est un estimateur sans biais de μ .
- Sa précision augmente lorsque :
 - σ^2 diminue (difficile à contrôler);
 - n augmente (lorsqu'on augmente le nombre de mesures).

La moyenne empirique

Cas non gaussien

- On dispose ici d'un échantillon X_1, \ldots, X_n i.i.d. (de même loi).
- La loi est quelconque (discrète, continue...). On note $\mu = \mathbf{E}[X_1]$ et $\sigma^2 = \mathbf{V}[X_1]$.

- On dispose ici d'un échantillon X_1, \ldots, X_n i.i.d. (de même loi).
- La loi est quelconque (discrète, continue...). On note $\mu = \mathbf{E}[X_1]$ et $\sigma^2 = \mathbf{V}[X_1]$.

On a

$$\mathbf{E}[\bar{X}_n] = \mu$$
 et $\mathbf{V}[\bar{X}_n] = \frac{\sigma^2}{n}$.

- On dispose ici d'un échantillon X_1, \ldots, X_n i.i.d. (de même loi).
- La loi est quelconque (discrète, continue...). On note $\mu = \mathbf{E}[X_1]$ et $\sigma^2 = \mathbf{V}[X_1]$.

On a

$$\mathbf{E}[\bar{X}_n] = \mu$$
 et $\mathbf{V}[\bar{X}_n] = \frac{\sigma^2}{n}$.

Commentaires

• L'espérance et la variance de X_n sont identiques au cas gaussien.

- On dispose ici d'un échantillon X_1, \ldots, X_n i.i.d. (de même loi).
- La loi est quelconque (discrète, continue...). On note $\mu = \mathbf{E}[X_1]$ et $\sigma^2 = \mathbf{V}[X_1]$.

On a

$$\mathbf{E}[\bar{X}_n] = \mu$$
 et $\mathbf{V}[\bar{X}_n] = \frac{\sigma^2}{n}$.

Commentaires

- L'espérance et la variance de \bar{X}_n sont identiques au cas gaussien.
- Les remarques faites dans le cas gaussien restent donc valables.

- On dispose ici d'un échantillon X_1, \ldots, X_n i.i.d. (de même loi).
- La loi est quelconque (discrète, continue...). On note $\mu = \mathbf{E}[X_1]$ et $\sigma^2 = \mathbf{V}[X_1]$.

On a

$$\mathbf{E}[\bar{X}_n] = \mu$$
 et $\mathbf{V}[\bar{X}_n] = \frac{\sigma^2}{n}$.

Commentaires

- L'espérance et la variance de \bar{X}_n sont identiques au cas gaussien.
- Les remarques faites dans le cas gaussien restent donc valables.
- Seul changement : on ne connaît pas ici la loi de \bar{X}_n (juste son espérance et sa variance).

- Dans de nombreuses applications (intervalles de confiance, tests statistiques), on a besoin de connaître la loi de \bar{X}_n .
- On rappelle que, dans le cas gaussien,

$$\sqrt{n}\frac{\bar{X}_n-\mu}{\sigma}\sim\mathcal{N}(0,1).$$

- Dans de nombreuses applications (intervalles de confiance, tests statistiques), on a besoin de connaître la loi de \bar{X}_n .
- On rappelle que, dans le cas gaussien,

$$\sqrt{n}\frac{\bar{X}_n - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

• Interprétation : $\mathcal{L}(\bar{X}_n) = \mathcal{N}(\mu, \sigma^2/n)$.

- Dans de nombreuses applications (intervalles de confiance, tests statistiques), on a besoin de connaître la loi de \bar{X}_n .
- On rappelle que, dans le cas gaussien,

$$\sqrt{n}\frac{\bar{X}_n - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

• Interprétation : $\mathcal{L}(\bar{X}_n) = \mathcal{N}(\mu, \sigma^2/n)$.

La puissance du TCL

 Le théorème central limite stipule que, sous des hypothèses très faibles, on peut étendre ce résultat (pour n grand) à "n'importe quelle" suite de variables aléatoires indépendantes.

- Dans de nombreuses applications (intervalles de confiance, tests statistiques), on a besoin de connaître la loi de \bar{X}_n .
- On rappelle que, dans le cas gaussien,

$$\sqrt{n}\frac{\bar{X}_n - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

• Interprétation : $\mathcal{L}(\bar{X}_n) = \mathcal{N}(\mu, \sigma^2/n)$.

La puissance du TCL

- Le théorème central limite stipule que, sous des hypothèses très faibles, on peut étendre ce résultat (pour n grand) à "n'importe quelle" suite de variables aléatoires indépendantes.
- C'est l'un des résultats les plus impressionnants et les plus utilisés en probabilités et statistique.

Théorème Central Limite (TCL)

Soit X_1, \ldots, X_n un *n*-échantillon i.i.d. On note $\mathbf{E}[X_i] = \mu$, $\mathbf{V}[X_i] = \sigma^2$ et $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. On a alors

$$\sqrt{n}\frac{\bar{X}_n-\mu}{\sigma}\stackrel{\mathcal{L}}{ o}\mathcal{N}(0,1) \quad \text{quand } n\to\infty.$$

Théorème Central Limite (TCL)

Soit X_1, \ldots, X_n un n-échantillon i.i.d. On note $\mathbf{E}[X_i] = \mu$, $\mathbf{V}[X_i] = \sigma^2$ et $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. On a alors

$$\sqrt{n}\frac{\bar{X}_n - \mu}{\sigma} \stackrel{\mathcal{L}}{\to} \mathcal{N}(0, 1)$$
 quand $n \to \infty$.

 Les hypothèses sont faibles : on demande juste des v.a.r i.i.d. qui admettent une variance.

Théorème Central Limite (TCL)

Soit X_1, \ldots, X_n un *n*-échantillon i.i.d. On note $\mathbf{E}[X_i] = \mu$, $\mathbf{V}[X_i] = \sigma^2$ et $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. On a alors

$$\sqrt{n}\frac{\bar{X}_n - \mu}{\sigma} \stackrel{\mathcal{L}}{\to} \mathcal{N}(0,1)$$
 quand $n \to \infty$.

- Les hypothèses sont faibles : on demande juste des v.a.r i.i.d. qui admettent une variance.
- Conséquence : si n est suffisamment grand, on pourra approcher la loi de \bar{X}_n par la loi $\mathcal{N}(\mu, \sigma^2/n)$.

Théorème Central Limite (TCL)

Soit X_1, \ldots, X_n un *n*-échantillon i.i.d. On note $\mathbf{E}[X_i] = \mu$, $\mathbf{V}[X_i] = \sigma^2$ et $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. On a alors

$$\sqrt{n}\frac{\bar{X}_n - \mu}{\sigma} \stackrel{\mathcal{L}}{\to} \mathcal{N}(0,1)$$
 quand $n \to \infty$.

- Les hypothèses sont faibles : on demande juste des v.a.r i.i.d. qui admettent une variance.
- Conséquence : si n est suffisamment grand, on pourra approcher la loi de \bar{X}_n par la loi $\mathcal{N}(\mu, \sigma^2/n)$.
- On pourra écrire $\mathcal{L}(\bar{X}_n) pprox \mathcal{N}(\mu, \sigma^2/n)$ mais pas

$$\mathcal{L}(\bar{X}_n) \stackrel{\mathcal{L}}{\to} \mathcal{N}(\mu, \sigma^2/n).$$

TCL pour modèle de Bernoulli

- X_1, \ldots, X_n i.i.d. de loi de Bernoulli de paramètre $p \in [0, 1]$.
- On a donc $\mathbf{E}[X_1] = p$ et $\mathbf{V}[X_1] = p(1-p)$.

TCL pour modèle de Bernoulli

- X_1, \ldots, X_n i.i.d. de loi de Bernoulli de paramètre $p \in [0, 1]$.
- On a donc $\mathbf{E}[X_1] = p$ et $\mathbf{V}[X_1] = p(1-p)$.

TCL

On a d'après le TCL

$$\sqrt{n} \frac{X_n - p}{\sqrt{p(1-p)}} \stackrel{\mathcal{L}}{\to} \mathcal{N}(0,1)$$
 quand $n \to \infty$.

TCL pour modèle de Bernoulli

- X_1, \ldots, X_n i.i.d. de loi de Bernoulli de paramètre $p \in [0, 1]$.
- On a donc $\mathbf{E}[X_1] = p$ et $\mathbf{V}[X_1] = p(1-p)$.

TCL

On a d'après le TCL

$$\sqrt{n} \frac{X_n - p}{\sqrt{p(1-p)}} \stackrel{\mathcal{L}}{\to} \mathcal{N}(0,1) \quad \text{quand } n \to \infty.$$

Conséquence

On peut donc approcher la loi de la moyenne empirique \bar{X}_n par la loi

$$\mathcal{N}\left(p,\frac{p(1-p)}{n}\right).$$

Approximation TCL pour le modèle de Bernoulli $\mathcal{B}(1/2)$ avec n = 50, 100, 200, 500.

Intervalles de confiance

Motivations

 Donner une seule valeur pour estimer un paramètre peut se révéler trop ambitieux.

Motivations

- Donner une seule valeur pour estimer un paramètre peut se révéler trop ambitieux.
- Exemple : la performance est de 72% lorsque on prend le traitement (alors qu'on ne l'a testé que sur 100 athlètes).
- Il peut parfois être plus raisonnable de donner une réponse dans le genre, la performance se trouve dans l'intervalle [70%, 74%] avec une confiance de 90%.

Un exemple

Un exemple

Remarque

- Ces deux échantillons sembelent avoir (à peu près) la même moyenne.
- Cependant,

Un exemple

Remarque

- Ces deux échantillons sembelent avoir (à peu près) la même moyenne.
- Cependant, l'échantillon 2 semble être plus précis pour estimer cette moyenne.

- X_1, \ldots, X_n un échantillon i.i.d. de loi **P** inconnue.
- Soit θ un paramètre inconnu, par exemple $\theta = \mathbf{E}[X]$.

- X_1, \ldots, X_n un échantillon i.i.d. de loi **P** inconnue.
- Soit θ un paramètre inconnu, par exemple $\theta = \mathbf{E}[X]$.

Définition

Soit $\alpha \in]0,1[$. On appelle intervalle de confiance pour θ tout intervalle de la forme $[A_n,B_n]$, où A_n et B_n sont des fonctions telles que :

$$\mathbf{P}(\theta \in [A_n, B_n]) = 1 - \alpha.$$

- X_1, \ldots, X_n un échantillon i.i.d. de loi **P** inconnue.
 - Soit θ un paramètre inconnu, par exemple $\theta = \mathbf{E}[X]$.

Définition

Soit $\alpha \in]0,1[$. On appelle intervalle de confiance pour θ tout intervalle de la forme $[A_n,B_n]$, où A_n et B_n sont des fonctions telles que :

$$\mathbf{P}(\theta \in [A_n, B_n]) = 1 - \alpha.$$

Définition

Si $\lim_{n\to\infty} \mathbf{P}(\theta \in [A_n, B_n]) = 1 - \alpha$, on dit que $[A_n, B_n]$ est un intervalle de confiance asymptotique pour θ au niveau $1 - \alpha$.

Construction d'IC

• Un intervalle de confiance pour un paramètre inconnu θ se construit généralement à partir d'un estimateur de θ dont on connait la loi.

Construction d'IC

- Un intervalle de confiance pour un paramètre inconnu θ se construit généralement à partir d'un estimateur de θ dont on connait la loi.
- A partir de la loi de $\hat{\theta}$, on cherche deux bornes A_n et B_n telle que

$$\mathbf{P}(\theta \in [A_n, B_n]) = 1 - \alpha.$$

Construction d'IC

- Un intervalle de confiance pour un paramètre inconnu θ se construit généralement à partir d'un estimateur de θ dont on connait la loi.
- A partir de la loi de $\hat{\theta}$, on cherche deux bornes A_n et B_n telle que

$$\mathbf{P}(\theta \in [A_n, B_n]) = 1 - \alpha.$$

Remarque

A priori, plus α est petit, plus l'intervalle aura un grande amplitude.

- X_1, \ldots, X_n i.i.d. de loi normale $\mathcal{N}(\mu, 1)$.
- Question: IC de niveau 0.95 pour μ ?

- X_1, \ldots, X_n i.i.d. de loi normale $\mathcal{N}(\mu, 1)$.
- Question: IC de niveau 0.95 pour μ ?

Construction de l'IC

• Estimateur : $\hat{\mu} = \bar{X}_n$.

- X_1, \ldots, X_n i.i.d. de loi normale $\mathcal{N}(\mu, 1)$.
- Question: IC de niveau 0.95 pour μ ?

Construction de l'IC

- Estimateur : $\hat{\mu} = \bar{X}_n$.
- Loi de l'estimateur : $\mathcal{L}(\hat{\mu}) = \mathcal{N}(\mu, 1/n)$.

- X_1, \ldots, X_n i.i.d. de loi normale $\mathcal{N}(\mu, 1)$.
- Question: IC de niveau 0.95 pour μ ?

Construction de l'IC

- Estimateur : $\hat{\mu} = \bar{X}_n$.
- Loi de l'estimateur : $\mathcal{L}(\hat{\mu}) = \mathcal{N}(\mu, 1/n)$.
- On déduit

$$\mathbf{P}\left(\hat{\mu} - q_{1-\alpha/2}\frac{1}{\sqrt{n}} \le \mu \le \hat{\mu} + q_{1-\alpha/2}\frac{1}{\sqrt{n}}\right) = 1 - \alpha.$$

- X_1, \ldots, X_n i.i.d. de loi normale $\mathcal{N}(\mu, 1)$.
- Question: IC de niveau 0.95 pour μ ?

Construction de l'IC

- Estimateur : $\hat{\mu} = \bar{X}_n$.
- Loi de l'estimateur : $\mathcal{L}(\hat{\mu}) = \mathcal{N}(\mu, 1/n)$.
- On déduit

$$\mathbf{P}\left(\hat{\mu}-q_{1-\alpha/2}\frac{1}{\sqrt{n}}\leq \mu\leq \hat{\mu}+q_{1-\alpha/2}\frac{1}{\sqrt{n}}\right)=1-\alpha.$$

• Un intervalle de confiance de niveau $1-\alpha$ est donc donné par

$$\left[\hat{\mu} - q_{1-\alpha/2} \frac{1}{\sqrt{n}}, \hat{\mu} + q_{1-\alpha/2} \frac{1}{\sqrt{n}}\right].$$

Quantiles

• $q_{1-\alpha/2}$ désigne le quantile d'ordre $1-\alpha/2$ de la loi normale $\mathcal{N}(0,1)$.

Quantiles

- $q_{1-\alpha/2}$ désigne le quantile d'ordre $1-\alpha/2$ de la loi normale $\mathcal{N}(0,1)$.
- Il est défini par

$$\mathbf{P}\left(X \le q_{1-\alpha/2}\right) = 1 - \frac{\alpha}{2}.$$

Quantiles

- $q_{1-\alpha/2}$ désigne le quantile d'ordre $1-\alpha/2$ de la loi normale $\mathcal{N}(0,1)$.
- Il est défini par

$$\mathbf{P}\left(X \le q_{1-\alpha/2}\right) = 1 - \frac{\alpha}{2}.$$

Définition

Plus généralement, le quantile d'ordre α d'une variable aléatoire X est défini par le réel q_{α} vérifiant

$$P(X \le q_{\alpha}) \ge \alpha$$
 et $P(X \ge q_{\alpha}) \ge 1 - \alpha$.

Quantiles

- $q_{1-\alpha/2}$ désigne le quantile d'ordre $1-\alpha/2$ de la loi normale $\mathcal{N}(0,1)$.
- Il est défini par

$$\mathbf{P}\left(X \le q_{1-\alpha/2}\right) = 1 - \frac{\alpha}{2}.$$

Définition

Plus généralement, le quantile d'ordre α d'une variable aléatoire X est défini par le réel q_{α} vérifiant

$$P(X \le q_{\alpha}) \ge \alpha$$
 et $P(X \ge q_{\alpha}) \ge 1 - \alpha$.

- Les quantiles sont généralement renvoyés par les logiciels statistique :
- > c(qnorm(0.975),qnorm(0.95),qnorm(0.5))
 ## [1] 1.959964 1.644854 0.000000

Une exemple à la main

• n=50 observation issues d'une loi $\mathcal{N}(\mu,1)$:

```
> head(X)
```

[1] 3.792934 5.277429 6.084441 2.654302 5.429125 5.506056

Une exemple à la main

- n=50 observation issues d'une loi $\mathcal{N}(\mu,1)$: > head(X) ## [1] 3.792934 5.277429 6.084441 2.654302 5.429125 5.506056
 - Estimation de μ :
- > mean(X) ## [1] 4.546947
 - Intervalle de confiance de niveau 95% :
- > binf <- mean(X)-qnorm(0.975)*1/sqrt(50)</pre> > bsup <- mean(X)+qnorm(0.975)*1/sqrt(50)
- > c(binf,bsup)
- ## [1] 4.269766 4.824128

Loi normale (cas réel)

- X_1, \ldots, X_n i.i.d de loi $\mathcal{N}(\mu, \sigma^2)$.
- On a vu qu'un IC pour μ est donné par

$$\left[\hat{\mu}-q_{1-\alpha/2}\frac{\sigma}{\sqrt{n}},\hat{\mu}+q_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right].$$

Loi normale (cas réel)

- X_1, \ldots, X_n i.i.d de loi $\mathcal{N}(\mu, \sigma^2)$.
- On a vu qu'un IC pour μ est donné par

$$\left[\hat{\mu}-q_{1-\alpha/2}\frac{\sigma}{\sqrt{n}},\hat{\mu}+q_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right].$$

Problème

- Dans la vraie vie, σ est inconnu!
- L'intervalle de confiance n'est donc pas calculable.

Idée

1. Estimer σ^2 par

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

Idée

1. Estimer σ^2 par

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

2. Et considérer l'IC:

$$\left[\hat{\mu} - q_{1-\alpha/2} \frac{\widehat{\sigma}}{\sqrt{n}}, \hat{\mu} + q_{1-\alpha/2} \frac{\widehat{\sigma}}{\sqrt{n}}\right]. \tag{1}$$

Idée

1. Estimer σ^2 par

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

2. Et considérer l'IC :

$$\left[\hat{\mu} - q_{1-\alpha/2} \frac{\widehat{\boldsymbol{\sigma}}}{\sqrt{n}}, \hat{\mu} + q_{1-\alpha/2} \frac{\widehat{\boldsymbol{\sigma}}}{\sqrt{n}}\right]. \tag{1}$$

Problème

On a bien

$$\sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

1. Estimer σ^2 par

Idée

2. Et considérer l'IC:

- **Problème**
- On a bien

- mais

 $\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$

 $\left[\hat{\mu}-q_{1-\alpha/2}\frac{\hat{\sigma}}{\sqrt{n}},\hat{\mu}+q_{1-\alpha/2}\frac{\hat{\sigma}}{\sqrt{n}}\right].$

 $\sqrt{n}\frac{\bar{X}_n-\mu}{\bar{x}}\sim \mathcal{N}(0,1)$

87

(1)

Pour avoir la loi de

$$\sqrt{n}\frac{\bar{X}_n-\mu}{\widehat{\sigma}}\neq\mathcal{N}(0,1)$$

avec

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

• il faut définir d'autres lois de probabilité.

La loi normale (Rappel)

Définition

• Une v.a.r X suit une loi normale de paramètres $\mu \in \mathbb{R}$ et $\sigma^2 > 0$ admet pour densité

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

La loi normale (Rappel)

Définition

• Une v.a.r X suit une loi normale de paramètres $\mu \in \mathbb{R}$ et $\sigma^2 > 0$ admet pour densité

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

Propriétés

- $\mathbf{E}[X] = \mu \text{ et } \mathbf{V}[X] = \sigma^2.$
- Si $X \sim N(\mu, \sigma^2)$ alors

$$\frac{X-\mu}{\sigma}\sim\mathcal{N}(0,1).$$

Loi du χ^2

Définition

- Soit X_1, \ldots, X_n n variables aléatoires réelles indépendantes de loi $\mathcal{N}(0,1)$. La variable $Y=X_1^2+\ldots+X_n^2$ suit une loi du Chi-Deux à n degrés de liberté. Elle est notée $\chi^2(n)$.
- E[Y] = n et V[Y] = 2n.

Loi de Student

Définition

• Soient X et Y deux v.a.r. indépendantes de loi $\mathcal{N}(0,1)$ et $\chi^2(n)$. Alors la v.a.r.

$$T = \frac{X}{\sqrt{Y/n}}$$

suit une loi de student à n degrés de liberté. On note $\mathcal{T}(n)$.

Loi de Student

Définition

• Soient X et Y deux v.a.r. indépendantes de loi $\mathcal{N}(0,1)$ et $\chi^2(n)$. Alors la v.a.r.

$$T = \frac{X}{\sqrt{Y/n}}$$

suit une loi de student à n degrés de liberté. On note $\mathcal{T}(n)$.

• $\mathbf{E}[T] = 0$ et $\mathbf{V}[T] = n/(n-2)$.

Loi de Student

Définition

■ Soient X et Y deux v.a.r. indépendantes de loi $\mathcal{N}(0,1)$ et $\chi^2(n)$. Alors la v.a.r.

$$T = \frac{X}{\sqrt{Y/n}}$$

suit une loi de student à n degrés de liberté. On note $\mathcal{T}(n)$.

- $\mathbf{E}[T] = 0$ et $\mathbf{V}[T] = n/(n-2)$.
- Lorsque n est grand la loi de student à n degrés de liberté peut être approchée par la loi $\mathcal{N}(0,1)$.

Légende

Densités des lois de student à 2, 5, 10 et 100 degrés de liberté (bleu) et densité de la loi $\mathcal{N}(0,1)$ (rouge).

Loi de Fisher

Définition

■ Soient X et Y deux v.a.r indépendantes de lois $\chi^2(m)$ et $\chi^2(n)$. Alors la v.a.r

$$F = \frac{X/m}{Y/m}$$

suit une loi de Fisher à m et n degrés de liberté. On note $\mathcal{F}(m,n)$.

Loi de Fisher

Définition

• Soient X et Y deux v.a.r indépendantes de lois $\chi^2(m)$ et $\chi^2(n)$. Alors la v.a.r

$$F = \frac{X/m}{Y/m}$$

suit une loi de Fisher à m et n degrés de liberté. On note $\mathcal{F}(m,n)$.

• Si $F \sim \mathcal{F}(m, n)$ alors $1/F \sim \mathcal{F}(n, m)$.

- X_1, \ldots, X_n i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$.
- On note

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}.$$

Théorème de Cochran

On a alors

1.
$$(n-1)\frac{S^2}{\sigma^2} \sim \chi^2(n-1)$$
.

- X_1, \ldots, X_n i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$.
- On note

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}.$$

Théorème de Cochran

On a alors

- 1. $(n-1)\frac{S^2}{\sigma^2} \sim \chi^2(n-1)$.
- 2. \bar{X}_n et S^2 sont indépendantes.

- X_1, \ldots, X_n i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$.
- On note

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}.$$

Théorème de Cochran

On a alors

- 1. $(n-1)\frac{S^2}{\sigma^2} \sim \chi^2(n-1)$.
- 2. \bar{X}_n et S^2 sont indépendantes.
- 3. On déduit

$$\sqrt{n}\frac{X_n-\mu}{S}\sim \mathcal{T}(n-1).$$

- X_1, \ldots, X_n i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$.
- On note

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}.$$

Théorème de Cochran

On a alors

- 1. $(n-1)\frac{S^2}{\sigma^2} \sim \chi^2(n-1)$.
- 2. \bar{X}_n et S^2 sont indépendantes.
- 3. On déduit

$$\sqrt{n}\frac{\bar{X}_n-\mu}{S}\sim \mathcal{T}(n-1).$$

Remarque

1 et 3 sont très importants pour construire des intervalles de confiance.

IC pour la loi gaussienne

IC pour μ

On déduit du résultat précédent qu'un IC de niveau $1-\alpha$ pour μ est donné par

$$\left[\bar{X}_n - t_{1-\alpha/2} \frac{S}{\sqrt{n}}, \bar{X}_n + t_{1-\alpha/2} \frac{S}{\sqrt{n}}\right],\,$$

où $t_{1-\alpha/2}$ est le quantile d'ordre $1-\alpha/2$ de la loi de Student à n-1 ddl.

IC pour la loi gaussienne

IC pour μ

On déduit du résultat précédent qu'un IC de niveau $1-\alpha$ pour μ est donné par

$$\left[\bar{X}_n - t_{1-\alpha/2} \frac{S}{\sqrt{n}}, \bar{X}_n + t_{1-\alpha/2} \frac{S}{\sqrt{n}}\right],\,$$

où $t_{1-\alpha/2}$ est le quantile d'ordre $1-\alpha/2$ de la loi de Student à n-1 ddl.

IC pour σ^2

Un IC de niveau $1-\alpha$ pour σ^2 est donné par

$$\left[\frac{(n-1)S^2}{\chi_{1-\alpha/2}},\frac{(n-1)S^2}{\chi_{\alpha/2}}\right]$$

où $\chi_{1-\alpha/2}$ et $\chi_{\alpha/2}$ sont les quantiles d'ordre $1-\alpha/2$ et $\alpha/2$ de loi $\chi^2(n-1)$.

Exemple (IC pour μ)

- n=50 observation issues d'une loi $\mathcal{N}(\mu,\sigma^2)$:
- > head(X)
 ## [1] 3.792934 5.277429 6.084441 2.654302 5.429125 5.506056

Exemple (IC pour μ)

• n=50 observation issues d'une loi $\mathcal{N}(\mu,\sigma^2)$: > head(X)

[1] 3.792934 5.277429 6.084441 2.654302 5.429125 5.506056

• Estimation de μ :

```
> mean(X)
## [1] 4.546947
```

Exemple (IC pour μ)

```
• n=50 observation issues d'une loi \mathcal{N}(\mu,\sigma^2) : > head(X) ## [1] 3.792934 5.277429 6.084441 2.654302 5.429125 5.506056
```

• Estimation de μ :

```
> mean(X)
## [1] 4.546947
```

• Estimation de σ^2 :

```
> S <- var(X)
> S
## [1] 0.783302
```

Intervalle de confiance de niveau 95% :

```
> binf <- mean(X)-qt(0.975,49)*sqrt(S)/sqrt(50)
> bsup <- mean(X)+qt(0.975,49)*sqrt(S)/sqrt(50)
> c(binf,bsup)
## [1] 4.295420 4.798474
```

Intervalle de confiance de niveau 95% :

```
> binf <- mean(X)-qt(0.975,49)*sqrt(S)/sqrt(50)
> bsup <- mean(X)+qt(0.975,49)*sqrt(S)/sqrt(50)
> c(binf,bsup)
## [1] 4.295420 4.798474
```

 On peut obtenir directement l'intervalle de confiance à l'aide de la fonction t.test :

```
> t.test(X)$conf.int
## [1] 4.295420 4.798474
## attr(,"conf.level")
## [1] 0.95
```

Autre exemple

```
> t.test(df1$value)$conf.int[1:2]
## [1] 3.990982 6.563659
> t.test(df2$value)$conf.int[1:2]
## [1] 4.887045 5.074667
```

Autre exemple


```
> t.test(df1\$value)\$conf.int[1:2]
```

[1] 3.990982 6.563659

> t.test(df2\$value)\$conf.int[1:2]

[1] 4.887045 5.074667

Conclusion

Sans surprise, on retrouve bien qu'on est plus précis avec l'échantillon 2.

Exemple (IC pour σ^2)

• On obtient l'IC pour σ^2 à l'aide de la formule

$$\left[\frac{(n-1)S^2}{\chi_{1-\alpha/2}},\frac{(n-1)S^2}{\chi_{\alpha/2}}\right]$$

Exemple (IC pour σ^2)

• On obtient l'IC pour σ^2 à l'aide de la formule

$$\left[\frac{(n-1)S^2}{\chi_{1-\alpha/2}},\frac{(n-1)S^2}{\chi_{\alpha/2}}\right]$$

On peut donc le calculer sur R :

```
> binf <- 49*S/qchisq(0.975,49)
> bsup <- 49*S/qchisq(0.025,49)
> c(binf,bsup)
## [1] 0.5465748 1.2163492
```

Application décathlon

■ IC de niveau 95% pour la longueur moyenne en saut en longueur :

```
> t.test(decathlon$Long.jump)$conf.int
## [1] 7.160131 7.359869
## attr(,"conf.level")
## [1] 0.95
```

■ IC de niveau 95% pour la temps moyen au 1500m :

```
> t.test(decathlon$`1500m`)$conf.int
## [1] 275.3403 282.7094
## attr(,"conf.level")
## [1] 0.95
```

■ IC de niveau 90% pour la temps moyen au 1500m :

```
> t.test(decathlon$`1500m`,conf.level=0.90)$conf.int
## [1] 275.9551 282.0946
## attr(,"conf.level")
## [1] 0.9
```

Remarque

L'IC à 95% a une amplitude plus grande que celui à 90% (c'est normal).

Comparer des moyennes

Question (fréquente)

- Peut-on dire que deux populations ont les mêmes catactéristiques ?
- Ou plus simplement que deux caractéristiques ont la même moyenne ?

Observations

- X_1, \ldots, X_{n_1} observations pour la population 1.
- Y_1, \ldots, Y_{n_2} observations pour la population 2.

Exemple

Exemple

Idée

Utiliser des IC pour décider.

Comparer des moyennes.

■ Approche : constuire un IV pour $\mu_X - \mu_Y$ et regarder si 0 est à l'intérieur de l'IC

Comparer des moyennes.

- Approche : constuire un IV pour $\mu_X \mu_Y$ et regarder si 0 est à l'intérieur de l'IC
- Méthode : trouver la loi de $\bar{X} \bar{Y}$.

Comparer des moyennes.

- Approche : constuire un IV pour $\mu_X \mu_Y$ et regarder si 0 est à l'intérieur de l'IC
- Méthode : trouver la loi de $\bar{X} \bar{Y}$.
- Résultat : cette loi est proche d'un loi Gaussienne. On peut montrer plus préciséement que

$$\frac{\bar{X}-\bar{Y}}{\sqrt{\frac{S_X^2}{n_1}+\frac{S_Y^2}{n_2}}}$$

suit un loi de Student à ν degrés de liberté (ν par de forme explicite pour ν).

• On déduit de ces résultats des IC pour $\mu_X - \mu_Y$.

• On reprend les deux échantillons des diapos précédentes.

```
> t.test(df1$value,df2$value)
##
## Welch Two Sample t-test
##
## data: df1$value and df2$value
## t = -55.526, df = 81.644, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.134079 -1.986443
## sample estimates:
## mean of x mean of y
## 2.965286 5.025547
```

• On reprend les deux échantillons des diapos précédentes.

```
> t.test(df1$value,df2$value)
##
## Welch Two Sample t-test
##
## data: df1$value and df2$value
## t = -55.526, df = 81.644, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.134079 -1.986443
## sample estimates:
## mean of x mean of y
## 2.965286 5.025547
```

Conclusion

0 n'étant pas dans l'intervalle de confiance, on peut penser que les moyennes sont proches.

```
> t.test(df3$value,df4$value)
##
## Welch Two Sample t-test
##
## data: df3$value and df4$value
## t = 0.05457, df = 52.455, p-value = 0.9567
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3040912 0.3210965
## sample estimates:
## mean of x mean of y
## 4.015909 4.007406
```

```
##
## Welch Two Sample t-test
##
## data: df3$value and df4$value
## t = 0.05457, df = 52.455, p-value = 0.9567
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3040912 0.3210965
## sample estimates:
## mean of x mean of y
## 4.015909 4.007406
```

Conclusion

> t.test(df3\$value,df4\$value)

0 étant dans l'intervalle de confiance, on peut penser que les moyennes sont proches.

```
> t.test(df3$value,df4$value)
##
## Welch Two Sample t-test
##
## data: df3$value and df4$value
## t = 0.05457, df = 52.455, p-value = 0.9567
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3040912 0.3210965
## sample estimates:
## mean of x mean of y
## 4.015909 4.007406
```

Conclusion

0 étant dans l'intervalle de confiance, on peut penser que les moyennes sont proches.

 Les procédures de test statistique permettront de préciser cette méthodologie.