Prokládání bodů kružnicí

(V.Voráček)

Hledejme kružnici, která 'nejlépe' prokládá dané body $(x_1,y_1),\ldots,(x_n,y_n)\in\mathbb{R}^2$. Všimněte si, že tato úloha není přesně specifikovaná, protože slovem 'nejlépe' může každý myslet něco trochu jiného. Budeme řešit dvě podúlohy, z nichž každá bude odpovídat jiné formalizaci tohoto slova.

Minimalizace algebraické vzdálenosti

V jedné možné formalizaci úlohy hledáme kružnici, která minimalizuje součet čtverců vzdálenosti daných bodů od této kružnice. Kružnice se středem (x_0, y_0) a poloměrem r je popsána rovnicí

$$(x - x_0)^2 + (y - y_0)^2 = r^2. (1)$$

To odpovídá úloze

$$\min_{x_0, y_0, r} \sum_{i=1}^n \operatorname{dist}(x_i, y_i, x_0, y_0, r)^2 \tag{2}$$

kde $\operatorname{dist}(x,y,x_0,y_0,r)$ označuje vzdálenost bodu (x,y) od kružnice (vymyslete, jak se tato vzdálenost spočítá!). Funkce $\underline{(2)}$ má ale obvykle mnoho lokálních minim a budeme ji (lokálně) minimalizovat v příští domácí úloze iteračními metodami. Teď budeme hledat pibližné minimum funkce $\underline{(2)}$.

Za tím účelem popíšeme kružnici trochu jinou rovnicí než (1). Kružnice je speciální případ kuželosečky, která je popsána rovnicí

$$ax^{2} + by^{2} + cxy + dx + ey + f = 0. (3)$$

Pro kružnici máme a=b a můžeme položit c=0, tedy (3) se zjednoduší na

$$ax^2 + ay^2 + dx + ey + f = 0. (4)$$

Protože $a \neq 0$, můžeme rovnici (4) vydělit číslem a, čímž dostaneme

$$x^2 + y^2 + dx + ey + f = 0 (5)$$

(kde tedy d, e, f značí jiná čísla než v (4)). Uvědomte si, že (1) se liší od (4) a (5) doplněním na čtverec (viz kapitola o kvadratických funkcích ve skriptech).

Levá strana rovnice $\underline{(4)}$ příp. $\underline{(5)}$ je nulová právě když bod (x,y) leží na kružnici. Proto můžeme doufat, že neuděláme velkou chybu, když úlohu $\underline{(2)}$ nahradíme úlohou

$$\min_{d,e,f} \sum_{i=1}^{n} (x_i^2 + y_i^2 + dx_i + ey_i + f)^2 \tag{6}$$

nebo úlohou

$$\min_{a,d,e,f} \sum_{i=1}^n (ax_i^2 + ay_i^2 + dx_i + ey_i + f)^2$$
 za podmínky $a^2 + d^2 + e^2 + f^2 = 1.$ (7)

Úloha $\underline{(6)}$ resp. $\underline{(7)}$ je přibližné řešení přeurčené nehomogenní příp. homogenní lineární soustavy, viz skripta. Všimněte si, že podmínku v úloze $\underline{(7)}$ nemůžeme vynechat.

Uvědomte si, že výraz $|x^2+y^2+dx+ey+f|$ příp. $|ax^2+ay^2+dx+ey+f|$ (v počítačovém vidění nazývaný algebraická vzdálenost) není přesně roven (či přímo úměrný) vzdálenosti bodu (x,y) od kružnice, je to jen aproximace této vzdálenosti.

Jako úkoly napište tyto funkce:

- d = dist(X, x0, y0, r), kde řádky matice $\mathbf{X} \in \mathbb{R}^{n \times 2}$ jsou body (x_i, y_i) a $\mathbf{d} \in \mathbb{R}^{1 \times n}$ je řádkový vektor orientovaných (uvnitř kružnice záporné, vně kladné) vzdáleností bodů od kružnice se středem (x_0, y_0) a poloměrem r.
- [x0 y0 r] = quad_to_center(d,e,f) , která přepočítá reprezentaci kružnice rovnicí (5) na reprezentaci rovnicí (1).
- [d e f] = fit_circle_nhom(X), kde \mathbf{X} je matice s body a (d, e, f) je optimální řešení úlohy (6).
- [d e f] = fit_circle_hom(X) , kde $\mathbf X$ je matice s body a (d,e,f) je optimální řešení úlohy (7), ve kterém čísla d,e,f jsou vydělená číslem a ve shodě s rovnicí (5)

Následně experimentálně porovnejte obě metody. To znamená, že pro optimální řešení úloh (6) a (7) spočítáte hodnotu kritéria původní neaproximované úlohy (2). Rozdíl mezi metodami by měl být patrný zejména když body jsou podél optimální kružnice rozmístěny nerovnoměrně.

Robustní prokládání metodou RANSAC

Formulace (2) předpokládá, že pozorované body $(x_1,y_1),\ldots,(x_n,y_n)$ všechny leží na nějaké kružnici, až na (i.i.d. gaussovské) chyby v měření. Může se ale stát, že jen část bodů (tzv. *inliers*) patří kružnici a zbylá část bodů s hledanou kružnicí vůbec nesouvisí (tzv. *outliers*, česky *vychýlené body*). Kdybychom z takových dat chtěli odhadnout kružnici metodami popsanými výše, odhadnutá kružnice by se mohla libovolně lišit od skutečné kružnice. Pro takové případy je třeba použít metody *robustního odhadování*.

V této části se zaměříme na jednoduchou a široce užívanou robustní metodu, známou jako <u>RANSAC</u> [https://en.wikipedia.org/wiki/Random_sample_consensus] (RAndom SAmple Consensus).

Úloha (2) měla tvar

$$\min_{x_0, y_0, r} \sum_{i=1}^{n} \rho(\text{dist}(x_i, y_i, x_0, y_0, r)) \tag{8}$$

kde funkce ρ : $\mathbb{R} \to \mathbb{R}$ byla $\rho(t) = t^2$. Toto je obecný tvar tzv. M-estimátoru [https://en.wikipedia.org/wiki/M-estimator] (estimace = odhad parametrů modelu, zde kružnice). Robustní M-estimátory používají jiné funkce ρ . My použijeme funkci

$$\rho(t) = \begin{cases} -1 & \text{pro } |t| \le \theta \\ 0 & \text{pro } |t| > \theta \end{cases} \tag{9}$$

kde $\theta>0$ je zvolený práh. Vyřešit přesně úlohu (8) pro tuto volbu ρ je ovšem obtížné (účelová funkce je nekonvexní a dokonce nespojitá), proto se uchylujeme k přibližnému řešení algoritmem RANSAC.

Algoritmus předpokládá, že optimální kružnice prochází nějakou trojicí z bodů $(x_1,y_1),\ldots,(x_n,y_n)$ (uvědomte si, že kružnice je jednoznačně definovaná třemi nekolineárními body). Ovšem nezkouší všech $\binom{n}{3}$ trojic, ale jen k náhodně vybraných trojic, kde $k \ll \binom{n}{3}$ je zvolené podle relativního množství inlierů. Přesně, algoritmus opakuje k-krát tuto operaci:

- Vyberte náhodně 3 body z bodů $(x_1,y_1),\ldots,(x_n,y_n)$ a najděte kružnici jimi procházející.
- Spočítejte vzdálenosti všech bodů $(x_1, y_1), \ldots, (x_n, y_n)$ od této kružnice. Pokud je vzdálenost bodu od kružnice menší než θ , prohlašte ho za inlier.

Přibližné optimum úlohy (8) je ta kružnice, která v průběhu algoritmu měla nejvíce inlierů (této množině inlierů říkáme *concensus set*).

Úkol: Implementujte tento algoritmus ve funkci [x0 y0 r] = fit_circle_ransac(X,num_iter,threshold), kde \mathbf{X} je matice s body, (x_0,y_0,r) jsou parametry kružnice s nejvíce inliery, proměnné num_iter a threshold odpovídají v popisu k a θ respektive.

Poznámka: Nalezenou nejlepší množinu inlierů můžeme později použít pro přesnější odhad kružnice nerobustními metodami z prvního podúkolu nebo z příští domácí úlohy.

Templaty

Templaty, včetně skriptu pro testování si stáhněte zde: template pro matlab

[/wiki/_media/courses/b0b33opt/cviceni/hw/kruznice_lin/matlab_template_circlefit.zip], template pro python [/wiki/_media/courses/b0b33opt/cviceni/hw/kruznice_lin/python_template_circlefit.zip]. Pro python spouštějte skript circlefit.py , pro matlab circlefit.m .

Obrázky ukazují výsledky prokládání kružnice správně implementovanými funkcemi

fit_circle_nhom , fit_circle_hom a fit_circle_ransac :

[/wiki/_detail/courses/b0b33opt/cviceni/hw/kruznice_lin/circle-fit-

nhom.svg?id=courses%3Ab0b33opt%3Acviceni%3Ahw%3Akruznice_lin%3Astart]

[/wiki/_detail/courses/b0b33opt/cviceni/hw/kruznice_lin/circle-fit-

hom.svq?id=courses%3Ab0b33opt%3Acviceni%3Ahw%3Akruznice_lin%3Astart]

[/wiki/_detail/courses/b0b33opt/cviceni/hw/kruznice_lin/circle-fit-

ransac.svg?id=courses%3Ab0b33opt%3Acviceni%3Ahw%3Akruznice_lin%3Astart]

courses/b0b33opt/cviceni/hw/kruznice_lin/start.txt · Last modified: 2021/03/27 20:08 by voracva1