MLDL: INTERMEDIATE

Graph Neural Networks

최민동

A Table of Contents

- 1 Introduction
- 2 High-Level Overview
- **3** Building Blocks
- 4 Reference

Part1 Introduction

What are Graphs?

- Vertex (or node) attributese.g., node identity, number of neighbors
- E Edge (or link) attributes and directions e.g., edge identity, edge weight
- U Global (or master node) attributes e.g., number of nodes, longest path

Embedding of Graphs

Information in the form of scalars or embeddings can be stored at each graph node (left) or edge (right).

Example of Graphs

Molecular Representation

Social Network Representaiton

Transport Network Representation

Visual Scene Graph

Part2 High-Level Overview

State

The bigger picture that all graph learning methods share. A "Deep Graph Network" takes an input graph and produces node representations. Such representations can be aggregated to form a single graph representation.

States: Represent Each Node as a Vector!

Adjacency Matrix

	0	1	2	3	4
0	0	1	1	0	0
1	0	0	1	0	1
2	0	0	0	1	0
3	0	0	0	0	1
4	0	0	0	0	0

Isomorphic Graphs

Permutation Invariant Fuction

Aggregate information from adjacent edges

Aggregation using PIF

Sum

Mean

Max

MLP

Self-Attention

Message Passing

Message Dispatching

A message is computed for each n ode, using its current state and (p ossibly) edge information. Then, th e message is sent to neighboring n odes according to the graph struct ure

State Update

The incoming node messages, and possibly its state, are collected and used to update the node state.

Processing

Convolutionally or Recurrently

Context Diffusion

Part3 Building Blocks

Pooling (Edges → Nodes)

pooling function
$$\rho$$
 final classification c = \bullet , ...

Pooling (Nodes → Edges)

Pooling (Nodes → Global)

Combining (Weaving)

update function
$$f$$
 = ρ , ...

Combining

pooling function ho

Schematic of a Graph Nets architecture leveraging global representations.

In General

Linear Layer and Add,

FiLM Layer..

Result

Update

Some Techniques : Pooling

Some Techniques : Sampling

Recurrence VS Convolution

Generative Purpose

Playground!

Edit the molecule to see how the prediction changes, or change the model params to load a different model. Select a different molecule in the scatter plot.

Part4 Reference

Reference

- 1. Bacciu, Davide, et al. "A gentle introduction to deep learning for graphs." *Neural Netw orks* 129 (2020): 203–2
- 2. Sanchez-Lengeling, Benjamin, et al. "A gentle introduction to graph neural networks." *Distill* 6.9 (2021): e33.
- 3. Allamanis, Miltos. "An Introduction to Graph Neural Networks: Models and Applications." *YouTube*, uploaded by Microsoft Research, 9 May 2020, https://www.youtube.com/watch?v=zCEYiCxrL_0