Chapter 2. Bounded Linear Operators

問題 **2.1.** $X = \{ f \in C[0,1] \mid f(0) = 0 \}$ に sup ノルムを入れる. $T: X \to \mathbb{R}$ を

$$T(f) = \int_0^1 f(x)dx$$

で定める. ||T|| = 1 を示せ.

問題 2.2. A 倍写像 $f_A: \mathbb{R}^n \to \mathbb{R}^m; x \mapsto Ax$ に対し, 次の場合の $||f_A||$ を計算せよ.

- (1) \mathbb{R}^n に l^1 ノルムを、 \mathbb{R}^m に l^∞ ノルムを入れる.
- (2) \mathbb{R}^n に l^{∞} ノルムを、 \mathbb{R}^m に l^1 ノルムを入れる.

問題 2.3. X を無限次元ノルム空間とする. $T: X \to Y$ で有界でない線形写像を構成せよ.

問題 **2.4.** X = C[-1,1]) に sup ノルムを入れる. $\varphi: X \to \mathbb{R}$ を

$$\varphi(f) = \int_0^1 f(t)dt - \int_{-1}^0 f(t)dt$$

で定める.

- $(1) \varphi \in \mathcal{L}(X,\mathbb{R})$ かつ $||\varphi|| = 2$ を示せ.
- (2) $f \in X$ で ||f|| = 1, $|\varphi(f)| = 2$ なるものは存在しないことを示せ.

問題 2.5. $C_c = \{(x_n) \in l^{\infty} \mid \exists N \text{s.t.} n \geqslant N \implies x_n = 0\}$, $T: C_c \to C_c$ を $T((x_n)) = (nx_n)$ で 定める.

- (1) T は連続でないことを示せ.
- (2) 連続線形汎関数 $T_m: C_c \to C_c$ で $T_m x \to T x$ $(\forall x \in C_c)$ なるものを構成せよ.

問題 2.6. X をノルム空間 , Y を Banach 空間とする. 線形汎関数 $T: X \to Y$ は連続で単射であるとする. このとき, $T(\overline{B_X})$ が閉集合ならば, X は完備であることを示せ. $(\overline{B_X}$ は X の閉単位球である)

問題 2.7. X,Y をノルム空間, $T:X\to Y$ を線形汎関数とする. $\widetilde{T}:X/Ker(T)\to Y$ を $\widetilde{T}([x])=T(x)$ で定める.

- (1) \widetilde{T} は well-defined であり、単射かつ線形であることを示せ、また T が全射ならば \widetilde{T} も全射であることを示せ、
- (2) T が連続ならば, \widetilde{T} も連続で, $||\widetilde{T}|| = ||T||$ なることを示せ.

問題 **2.8.** X = C[a, b] に sup ノルムを入れる. $k(x, y) \in C([a, b] \times [a, b])$ が与えられたとき,

$$(Ku)(x) = \int_{a}^{b} k(x, y)u(y)dy$$

によって $K:X\to X$ を定めると K は有界線形作用素で, $||K||=\max_{x\in[a,b]}\int_a^b|k(x,y)|dy$ を示せ.

問題 2.9. $\Omega_1 \subset \mathbb{R}^m$, $\Omega_2 \subset \mathbb{R}^n$ ともに可測集合とし, $\Omega_1 \times \Omega_2$ 上の可測関数 k(x,y) が

$$\int_{\Omega_2} |k(x,y)| dy \leqslant M_1 \quad , \quad \int_{\Omega_1} |k(x,y)| dx \leqslant M_2$$

を満たすならば、作用素 K を

$$(Ku)(x) = \int_{\Omega_2} k(x, y)u(y)dy$$

で定めると、任意の p $(1\leqslant p\leqslant \infty)$ に対し、 $K\in\mathcal{L}(L^p(\Omega_2),L^p(\Omega_1))$ であり、 $||K||\leqslant M_1^{1-1/p}M_2^{1/p}$ を示せ、

問題 2.10. (X, \mathcal{M}, μ) は σ -有限な測度空間とする. $f \in L^\infty(X)$ が与えられたとき, $(T_f u)(x) = f(x)u(x)$ によって $T_f: L^p(X) \to L^p(X)$ を定めると T_f は有界線形作用素で, $||T_f|| = ||f||_\infty$ を示せ.

問題 2.11. $1 \leq p < \infty$, $T_n \in \mathcal{L}(l^p)$ を $T_n(u_1,u_2,\cdots) = (u_n,u_{n+1},\cdots)$ と定める. T_n は 0 に強収束するがノルム収束はしないことを示せ.

問題 **2.12.** $h \in \mathbb{R}$ が与えられたとき, $u \in L^1(\mathbb{R})$ に対し, $(T_h u)(x) = u(x+h)$ と定める.

- $(1) T_h \in \mathcal{L}(L^1(\mathbb{R})), ||T_h|| = 1$ を示せ.
- (2) $h \to 0$ としたとき, T_h は 恒等写像 I に強収束するか. またノルム収束するか.

問題 2.13. $X=\{p(x)=a_0+a_1x+\cdots+a_dx^d\mid a_i\in\mathbb{R}, d\in\mathbb{N}\}\;,\,||p||=\max|a_i|\;$ と定めると $(X,||\cdot||)$ は Banach 空間でないことを示せ.

問題 **2.14.** $C^1[0,1]$ に sup ノルムを入れても Banach 空間でないことを示せ.

問題 **2.15.** $f \in C[0,\infty)$ が任意の $t \in [0,\infty)$ に対し $\lim_{n \to \infty} f(nt) = 0$ なるとき, $\lim_{t \to \infty} f(t) = 0$ を示せ. (ヒント:ベールのカテゴリー定理)

問題 **2.16.** (X,d) を距離空間とし, $A,B \subset X$ とする.

- (1) B が第 1 類集合で, $A \subset B$ ならば A も第 1 類であることを示せ.
- (2) A が第 2 類集合で、 $A \subset B$ ならば B も第 2 類であることを示せ.
- (3) (A_n) が第 1 類集合族ならば $\bigcup_{n=1}^\infty A_n$ も第 1 類であることを示せ.第 2 類集合ならば $\bigcap_{n=1}^\infty A_n$ も第 2 類であることを示せ.
- (4) A が residual であることと, A が X 上のある稠密な開集合族の可算個の共通部分を含むことを示せ.

問題 2.17. $X \neq \emptyset$, (X, d) を完備距離空間とする. 以下は同値であることを示せ.

- (1) 任意の residual subsets は稠密.
- (2) 任意の residual subsets は第2類.
- (2) 空でない開集合は第2類.
- (3) $(A_n) \subset X$ を内部が空でない閉集合族とすると, $\operatorname{int} \bigcup_{n=1}^{\infty} A_n = \emptyset$.
- (4) (U_n) $\subset X$ を稠密な開集合族とすると, $\bigcap_{n=1}^{\infty} U_n$ も稠密.
- 問題 2.18. p,q を共役指数とし、点列 $a=(a_1,a_2,\cdots)$ は任意の $x=(x_1,x_2,\cdots)\in l^p$ に対し、 $\sum_{n=1}^\infty a_nx_n$ が収束するとする. このとき $a\in l^q$ を示せ.

問題 2.19. $(X, ||\cdot||)$ をノルム空間とし、 $X = E \otimes F$ なる閉部分空間 E, F が存在するとする. $x \in X$ に対し $||x||_1 := ||u|| + ||v||$ $(x = u + v, u \in E, v \in F)$ で X 上に新しいノルムを定める. $X_1 = (X, ||\cdot||_1)$ とおき, $T: E \to X_1/F$ を T(x) = [x] で定める.

- (1) T は有界で同型であることを示せ.
- (2) T^{-1} も有界であることを示せ.

- 問題 2.20. $f: \mathbb{R} \to \mathbb{R}$ は有界とする. f が連続であることと, $\Gamma(f)$ が閉なることは同値であることを示せ. また f が有界でないときはどうか.
- 問題 2.21. X,Y,Z をノルム空間とする. $X\times Y$ にノルムを $||(x,y)||_{X\times Y}=||x||_X+||y||_Y$ で定める. $B:X\times Y\to Z$ を bilinear とする.
- (1) ある定数 C>0 が存在し、任意の $(x,y)\in X\times Y$ に対し $||B(x,y)||_Z\leqslant C||x||_X||y||_Y$ が成立するとき、B は連続であることを示せ.
- (2) X は完備とする. $X \to Z; x \mapsto B(x,y')$, $Y \to Z; y \mapsto B(x',y)$ が任意の $x' \in X, y' \in Y$ に対して連続ならば、B は連続であることを示せ.
- 問題 2.22. X,Y を Banach 空間, $T:X\to Y$ を有界線形汎関数とする. R(T) が Y 上 complemented, つまりある閉部分空間 $B\subset Y$ が存在し, $Y=R(T)\oplus B$ が成立するとき, R(T) は閉であることを示せ.