Assignment-1

- 1. Answer the followings:
 - i) By which property of a vector space V you will explain that 0 + 0 = 0 where 0 is the zero vector of V.
 - ii) Prove that:
 - a) 0.x = 0, where $x, 0 \in V$ and 0 is the zero vector.
 - b) (-a)x = -(ax) = a(-x) for each $a \in F$ and each $x \in V$.
- 2. What is the Parallelogram Law of Vector Addition? Consider the vector space \mathbb{R}^2 , add the vectors (3,1) and (2,1) in \mathbb{R}^2 by this law and explain it by a picture.
- 3. Prove that the set of all $m \times n$ matrices over a field \mathbb{F} denoted by $M_{m \times n}(\mathbb{F})$ is a vector space under usual matrix addition and matrix multiplication.
- 4. Let V denote the set of ordered pairs of real numbers. If (a_1, a_2) and (b_1, b_2) are elements of V and c is an element of F. Define, $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$ and $c(a_1, a_2) = (ca_1, ca_2)$. Is V is a vector space under this operations? Justify your answer.
- 5. Consider the set of all polynomials with coefficients from a field \mathbb{F} with usual polynomial addition and multiplication denoted by $P(\mathbb{F})$. Is $P(\mathbb{F})$ a vector space over \mathbb{F} ? Justify your answer.
- 6. Define the Subspace of a Vector Space. Consider \mathbb{R}^2 , prove that $W = \{(a, a) : a \in \mathbb{R}^2\}$ is a subspace of \mathbb{R}^2 . Draw the subspace in \mathbb{R}^2 . What are the basis and dimension of W?
- 7. Which of the following sets are the subspaces of \mathbb{R}^3 ?
 - (a) $A = \{(\lambda, \lambda + \mu^3, \lambda \mu^3) : \lambda, \mu \in \mathbb{R}^2\}$
 - (b) $B = \{(\lambda^2, -\lambda^3, 0) : \lambda \in \mathbb{R}\}$
 - (c) Let $\gamma \neq 0$ be in \mathbb{R} . $C = \{(\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 : \xi_1 2\xi_2 + 3\xi_3 = \gamma\}$
 - (d) $D = \{(\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 : \xi_2 \in \mathbb{Z}\}$
- 8. Let W_1 and W_2 be subspaces of a vector space V. Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.
- 9. The set of all differentiable real-valued functions f on the interval (0,3) such that f'(2) = b is a subspace of $\mathbb{R}^{(0,3)}$ where $\mathbb{R}^{(0,3)}$ is the set of real-valued functions on the interval (0,3) if and only if b = 0.
- 10. Let V be a vector space and $v, w \in V$. Explain why there exists a unique $x \in V$ such that v + 3x = w.

- 11. Answer the following:
 - (a) What are the standard bases and dimensions for the following vector spaces: $\{0\}$, \mathbb{R}^n , $P_n(\mathbb{R})$, $M_{m \times n}(\mathbb{R})$, $P(\mathbb{R})$, Space of all $n \times n$ symmetric matrices.
 - (b) How do you relate the bases of $M_{m\times n}(\mathbb{R})$ and \mathbb{R}^k for any k? Logically or Computationally find a non-standard basis of the subspace of all the upper triangular matrices W of $M_{m\times n}(\mathbb{R})$. Also find the dimension of W.
- 12. Find the bases and dimensions of the following subspaces of \mathbb{R}^n :
 - (a) $W_1 = \{(a_1, a_2, \dots, a_n) \in \mathbb{R}^n : a_1 + a_2 a_3 = 0\}$
 - (b) $W_2 = \{(a_1, a_2, \dots, a_n) \in \mathbb{R}^n : a_{11} + 2a_{21} = 0, a_{27} = a_4 = a_9\}$
 - (c) $W_3 = \{(a_1, a_2, ..., a_n) \in \mathbb{R}^n : m \text{ constraints are given, } m \leq n\}$. What happens if we assume $m \geq n$?
- 13. Let $S = \{x_1, x_2, \dots, x_n\}$ be a linearly independent subset of a vector space V over the field \mathbb{Z}_2 . How many elements are there in span(S)? Justify your answer.
- 14. If V and W are vector spaces over \mathbb{F} for which |V| = |W| then does it mean that dim(V) = dim(W)?
- 15. Choose $x = (x_1, x_2, x_3, x_4)$ in \mathbb{R}^4 . It has 24 rearrangements like (x_2, x_1, x_3, x_4) and (x_4, x_3, x_1, x_2) . Those 24 vectors, including x itself, span a subspace S. Find specific vectors x so that the dimension of S is: (a) zero, (b) one, (c) three, (d) four.
- 16. Let V be a real vector space of all polynomial functions from \mathbb{R} into \mathbb{R} of degree 2 or less. Let t be a fixed real number and define $g_1(x) = 1$, $g_2(x) = x + t$, $g_3(x) = (x + t)^2$. Prove that $B = \{g_1, g_2, g_3\}$ is a basis for V. If $f(x) = c_0 + c_1 x + c_2 x^2$ then what are the coordinates of f in this ordered basis B?
- 17. Let $v = (x_1, x_2)$ and $w = (y_1, y_2)$ be vectors in \mathbb{R}^2 such that $x_1^2 + x_2^2 = y_1^2 + y_2^2 = 1$ and $x_1y_1 + x_2y_2 = 0$. Prove that $B = \{v, w\}$ is a basis for \mathbb{R}^2 . Find the coordinates of the vector (a, b) in the basis B. Can you interpret the conditions geometrically?
- 18. Let V be the vector space over the complex numbers of all functions from \mathbb{R} into \mathbb{C} , i.e., the space of all complex-valued functions on the real line. Let $f_1(x) = 1$, $f_2(x) = e^{ix}$, $f_3(x) = e^{-ix}$.
 - (a) Prove that f_1, f_2 , and f_3 are linearly independent.
 - (b) Let $g_1(x)=1$, $g_2(x)=\cos x$, $g_3(x)=\sin x$. Find an invertible 3×3 matrix P such that $g_i=\sum_{i=1}^3 P_{ij}f_i$.
- 19. Let W_1 and W_2 be two finite dimensional subspaces of a vector space V. Then prove the following:
 - (a) $W_1 + W_2$ is the smallest subspace of V that contains both W_1 and W_2 .
 - (b) $dim(W_1 + W_2) = dim(W_1) + dim(W_2) dim(W_1 \cap W_2).$
 - (c) If $V = W_1 + W_2$ then $V = W_1 \oplus W_2$ if and only if $dim(V) = dim(W_1) + dim(W_2)$.
- 20. Suppose V is a vector space over \mathbb{R} . Prove that V cannot be written as the set-theoretic union of a finite number of proper subspaces.