Introduction à la carte à puce

Jean-Pierre Tual 30/04/404

Plan

- Un peu d'Histoire
- Panorama du marché et grandes classes d'applications
- Technologies de base
- Architecture des cartes à puce
- Les standards fondamentaux
- Les normes ISO 7816
- La technologie JavaCard
- La sécurité des cartes à puce
- Exemples fondamentaux
 - Carte GSM/SIM
 - Systèmes de paiement EMV
- Futures tendances de la carte à puce

Cartes à puce: les pionniers

Brevets historiques

La base des cartes à puce: le SPOM:

Octobre 1981: Premier SPOM industriel RAM: 36B, ROM: 1,6 KB, EPROM: 1 KB NMOS 3,5 µ- 42 KTransistors

axalto

Premières expérimentations

1979	Première carte à microprocesseur (Bull)
1980-1981	■ Première carte pour la PayTV (Bull/Philips)
1981-1982	■ Premières expérimentations de paiement
	125 000 cartes bancaires (Bull/Philips/Schlumberger)
1983	Première « Télécarte » (Schlumberger)
1984	Première « Telekarte » (G&D)
1984	■ Première expérience bancaire (Bull)
1988	Première carte multi-application (Bull)
1988	Première carte d'université (Bull)
1988	Première expérimentations bancaires
1989	Première carte « club fidélité »
1989	■ Première expérimentation bancaires
1989	Première carte GSM (Gemplus)

Quelques réalisations industrielles majeures

1985-1992

GIE-CB

Carte bancaire Française
41 M cartes en circulation en 2001

1996-1999

GIE SESAM-Vitale
Carte Nationale de Santé
40 M cartes en circulation en 2001

1996-2000

Porte Monnaie Electronique

80 M de cartes Proton livrées dans 18 pays: Suisse, Belgique, Pays-Bas, Suède, Malaisie

80 M Geldkarte en Allemagne, Luxembourg, Islande...

Téléphonie Mobile

Pénétration sans précédent 1,5 Md de cartes SIM vendues

Quatre marchés en croissance quasi-exponentielle

2003: 1,1 Milliard de cartes à puce pour un potentiel de 3 Milliards Horizon 2006 : 1.8 Milliard de cartes à puce

axalto

Evolution du marché de la carte à puce

En volume (Mu)

Year	2002	2003	2004	2005	2006	CAGR 02/06
Bank	135	190	230	280	300	30%
Telco	470	720	800	850	900	24%
Pay TV	45	38	45	50	55	7%
Government	40	46	58	65	75	23%
Internet + IT security cards	3	5	8	15	20	88%
Transport	43	60	75	85	120	41%
Total	736	1 059	1 216	1 095	1 470	26%

En valeur (Me)

Year	2002	2003	2004	2005	2006	CAGR 03/06
Bank	160	310	380	470	580	23%
Telco	1180	1591	1672	1700	1710	13%
Pay TV	155	135	155	165	180	2%
Government	170	200	230	250	275	14%
Internet + IT security cards	21	30	40	65	80	46%
Transport	70	83	110	125	155	21%
Total Value	1 756	2 349	2 587	2 775	2 583	11%

Marché et compétition en 2003

	TAM en Mu
Microproc.	1130
Memoire	928
Total Cartes	2058

Types de cartes (1/2)

- Carte à mémoire
 - Mémoire simple (sans processeur) accessible en lecture sans protection, mais l'écriture peut être rendue impossible
 - Programmation impossible
 - Carte « porte-jetons » pour applications de prépaiement (carte téléphonique)
- Carte à logique câblée
 - Mémoire accessible via des circuits préprogrammés et figés pour une application particulière
 - □ Carte « sécuritaire » pouvant effectuer des calculs figés (accès à un local …)

Types de cartes (2/2)

- Carte à puce ou SmartCard
 - Microcontrôleur encarté (processeur + mémoires)
 - Carte « programmable » pouvant effectuer tout type de traitements
 - Interface électrique par contacts ou via signaux RF

Fabrication des cartes à puce (1/2)

Fabrication des cartes à puce (2/2)

Architecture d'une carte à puce

L'OS de base ou « Masque »

Le Masque ("Hard Mask") est le système d'exploitation de la carte.

Il est généralement écrit en C ou en langage d'assemblage.

Il est stocké en ROM et ne peut donc être modifié durant la vie de la carte

Que fait le masque ?

- Gère les communications avec le monde extérieur
- Execute les commandes reçues via l'interface I/O
- Supervise l'exécution des programmes exécutables stockés dans la carte
- Gère le SGF et assure un accès sécurisé à l'ensemble des fichiers
- Assure les fonctions de cryptographie (DES, RSA, SHA, ECC,...)
- Sur les cartes les plus modernes, integre une JVM (Java Virtual Machine) pour exécuter des applets

La fonction principale de l' OS est une boucle qui attend l'arrivée de commandes externes.

A l'arrivée d'une commande, elle est exécutée, puis une réponse est émise vers l'extérieur et la boucle redémarre.

Les « Softmasks »

Un "Softt Mask" est une extension du masque.

Il est écrit en général en C, compilé, et lié aux librairies du Masque.

Il peut être chargé en EEPROM tant que la carte n'est pas bloquée.

Quand a t'on besoin d'un "Soft Mask"?

- Quand une nouvelle fonctionnalité doit être ajoutée à une carte pour une application spécifique
- Pour les besoins de "bug fixing" au niveau du masque (cela arrive!)
- Quand l'exécution d'une commande du masque ne satisfait pas les besoins d'un client particulier
- Quand certaines spécifications de clients ne peuvent pas être implémentées en Java
- Quand une applet est trop lente => réécriture!

Principales normes applicables (1/2)

- Normes de base
 - Normes ISO/IEC 7816-x (x=1:16)
 - Normes ISO/IEC 14443 (A,B,C) et 15693 pour cartes sans contact
- Normes génériques inter-domaines
 - PC/SC: API's d'intégration de cartes à puce en environnement Windows
 - OCF: Environnement Java et API pour applications smart-cards
 - JavaCard (2:1 et 2:2) pour programmation des smart-cards
 - PKCS #15: Stockage de clefs cryptographiques
 - ISO/IEC 15408: dérivée des Critères Communs
- Normes spécifiques du domaine bancaire
 - EMV (96 et 2000): spécifications cartes/terminaux multiapplicatifs
 - Visa Open Platform: gestion (sécuritaire) de cartes multiapplicatives
 - CEPS: spécification d'interopérabilité pour les porte-monnaie électroniques
 - EN 1546: Spécifications génériques de porte-monnaie électroniques

Principales normes applicables (2/2)

Téléphonie mobile

- □ GSM 11-11: Spécification de l'interface SIM-ME (3GPP: TS 51.011)
- GSM 11-14: Spécification « SIM Application Toolkit » pour l'interface SIM-ME
- □ GSM 03.19: API JavaCard[™] de programmation pour la carte SIM Phase 2
- GSM 03.40: Réalisation de la fonction Short Message Service (SMS); mode
 Point to Point (PP)
- □ GSM 03.48: Mécanismes de sécurité pour la carte SIM application toolkit Stage 2
- ETSI TS 102 221: Spécifications de la carte UICC et de l'interface UICC terminal
- □ 3GPP: 31.101 V4.0.0, 31.102 V4.0.0 (Release 99)- cartes 3G (W-CDMA)
- 3GPP2-C00-1999-1206-1208: Spécification du module RUIM pout systèmes large-bande (systèmes CDMA 2000)

Signature électronique

- □ ETSI TS 101 333: formats de signature életronique
- □ ETSI TS 101 808: spécification des politiques de gestion des "CA"
- CEN/ISSS: directive européenne pour la signature électronique

- ■Format carte de crédit
- Définition des contraintes physiques supportables (chaleur, humidité...)

La puce

- □ Seule interface de communication avec l'extérieur
- □ Lecteur de cartes = CAD (Card Acceptance Device)
- □ Surface ≤ 25 mm²
- □ Épaisseur ≤ 0,3 mm
- □ Composée de 8 contacts métalliques
- □ I/O: Z état Haut- A état bas: quitte l'état haut seulement en transmission
- □ VCC= 4,75 5,25 V jusqu'à 200 mA
- □ CLK: cap in/out < 30 pF, temps de transition < max(0,5 µs, 9%T)
- □ Activation: RST bas, Vcc haut, VPP repos, I/O Z, CLK entre 1 et 5 MHz
- □ Désactivation: RST bas, CLK bas, VPP inactif, I/O état A, VCC bas

- Caractéristiques électriques
 - ☐ Fréquence d'horloge 1 5 Mhz
 - Vitesse des communications < 115200 bauds:</p>
- Protocole de transmission
 - ☐ TPDU (Transmission Protocol Data Unit)
 - ☐ T=0 Protocole orienté octet
 - ☐ T=1 Protocole orienté paquet
 - Protocoles de communication asynchrones et half-duplex
 - ☐ T=2 Asynchrone, full duplex, orienté bloc => en cours de spécification
- Sélection du type de protocole
 - PTS (Protocol Type Selection Réponse au reset :
- Réponse au reset :
 - □ ATR (Answer To Reset)

Normalisation et protocole de transport

Horloge

- ☐ Freq: 3,579,545 Hz (valeur par défaut des lecteurs de cartes)
- Débit par défaut: 9622 bauds
- Durée d'un bit par défaut: 1 etu= 372 = F/D périodes d'Horloge
- Horloge fournie par le lecteur compris entre 1 et 5 Mhz: F,D négociables

Format des caractères

Un caractère comprend 1 bit start, 8 bits de données, un bit de parité (nombre de 1 pair parmi 8+1 bits). Le nombre de stop bit est égal à 2+N (N= *Guardtime* = 0 lors de la mise en tension).

Conventions

- □ Directes: A=0: 1er caractère= '3B'; b1:b8= A(ZZAZZZAA)Z
- □ Inverses: A=1: 1er caractère= '3F'; b8:b1= A(ZZAAZZZZ)Z

Structure générale d'une ATR

axalto

ATR: réponse carte à la RAZ (1/2)

- Doit intervenir entre 400 et 40,000 cycles d'horloge
- Série d'octets (b8,b7,b6,b5,b4,b3,b2,b1) dont les deux premiers, TS et T0 sont obligatoires
 - TS: Transmission. "3B" pour logique directe (positive), "3F" pour une logique inverse (négative)
 T0: Présence d'octets d'interface (TAi:TDi; I=1:4) et historiques (T1:T15)
 □ B8=1 présence TA1 B7=1 présence TB1
 □ B6=1 présence TC1 B5=1 présence TD1
 □ B4 B3 B2 B0, nombre d'octets historiques (0...15)
 TA1 Valeur des paramètres d'ajustement d'etu F et D
 □ TB1 Paramètres de programmation de l'EPROM (obsolète). "25"=> (Vpp =Vcc)
 □ TC1 Nombre de bits stop excédentaires (N). La valeur par défaut est "00". "FF" fixe la valeur de N à 0 pour T=0 (2 stop bits) et −1 (1 stop bit) pour T=1.
 □ TD1 Indique le type de protocole de transport mis en œuvre
 □ B4 B3 B2 B1, numéro du protocole i= 0...15
 □ B8 B7 B6 B5 indiquent respectivement la présence d'octets TAi+1, TBi+1, TCi+1,

TDi+1 fournissant des informations complémentaire sur le protocole i.

ATR: réponse carte à la RAZ (2/2)

- TA2, indique la possibilité de négocier les paramètres de transfert (PTS)
 - □ B8=1 spécifie l'absence de cette option.

Le numéro du protocole de négociation est renseigné par les bits B4 B3 B2 B1,

- ☐ B5=1 notifie l'usage de paramètres implicites dans les Tai
- □ B5=0 signifie que les paramètres sont explicites
- ☐ TB2, code la valeur de Vpp en dixième de volts.
- TC2, valeur d'un paramètre WI (0...255) permettant de calculer le temps d'attente maximum d'une réponse de la carte par le lecteur;
 - □ WT = WI . 960 . F/f secondes, soit 1 s pour f=3,58 Mz, F=372, WI_{défaut}=10 ("0A").
- □ TAi+1, (i>2) indique la longueur max. du champ d'information reçu par la carte (IFSC)
 - ☐ Défaut 32 B- Plage 1=> 254
- □ TBi (i>2), fournit la valeur (0,15) des paramètres CWI et BWI utilisé dans leprotocole T=1 pour calculer:
 - ☐ Le délai max entre deux caractères d'un même bloc:

$$CWT = (2^{CWI} + 11) \text{ etu } (11 \text{ s avec } CWI=1)$$

☐ Le délai max de réponse de la carte

BWT =
$$(2^{BWI} *960* 372 / f) + 11 \text{ etu } (1,6s BWI=4))$$

□ Tci (I>2) définit le type de méthode pour la correction

■ TCK = XOR de l'ensemble des bytes de l'ATR jusqu'à TCK exclus

Exemple d'ATR

Cas du GSM

- □ TS= '3B' => Convention directe
- T0= '89'= '1000'll'1001' => TD1 suit + 9 caractères historiques
- □ TD1= '40'= '0010'II'0000' => TC2 suit et protocole T=0
- TC2= '14'= '0001'll'1110' => Waiting time 14 (1,4s)
- T1...T9: '47'||'47'||'32'||'34'||'4D'||'35'||'32'||'38'||'30' =>"GG24M5520" (donnée constructeur)

Protocoles

PPS

- Négociation de la vitesse de transfert conditionnée par absence de l'octet
 TA2 (Pas de TA2 => PPS avec F= 372 et D=1)
- Echange d'au plus deux séries de 5 octets
 - Lecteur => carte: PTSS (FF), PTS0 (~TDi), PTS1 ~(~TAi), PTS2 (00), PTS3 (00), PCK= PTSS+PTS0+PTS1+PTS2
 - Carte => lecteur: répétition des 5 octets précédents si acceptation

Protocoles de transport

- □ T=0
 - Transmission série des octets (1 start, 8 bits, 1 parité, 2+N bits stop)
 - Erreur de parité: 0 logique sur la ligne de transmission durant 1 ou 2 etu.
- T=1
 - Orienté bloc: (NAD,PCB, LEN), INF (0:254 octets), LRC (1B) ou CRC (2B)
 NAD: 3 bit adresse source, 3 bit adresse destination
 PCB:

I(#bloc, more): blocs numérotés modulo 2, more=1 => pas dernier bloc R(#bloc, erreur): numérotation modulo 2, n° du prochain bloc attendu (erreur = 0) S notification de commandes diverses (RESYNC, IFS, ABORT,WTX)

- Protocole Asynchrone de type commande réponse
- APDU (Application Programming Data Units)

Command APDU						
Mandatory Header				Conditional Body		
CLA	INS	P1	P2	Lc	Data Field	Le

CLA: 1 octet pour identifier l'application INS: 1 octet pour le code de l'instruction

P1 - P2 : Paramètres de l'instruction Lc : Longueur du champ de données

Le : Longueur maxi du champ de données de la

réponse

Response APDU				
Conditional Body	Mandatory Trailer			
Data Field	SW1	SW2		

SW1 - SW2 : Code d'exécution 90 00 → OK

Types de commandes (1/2)

Cas 1: Pas d'entrée / Pas de sortie

Cas 2: Pas d'entrée / Sortie de longueur connue

Cas 3: Pas d'entrée / Sortie de longueur inconnue

Note: lgth='00' cause un transfert de données de 256 bytes

Types de commandes (2/2)

Cas 4: Entrée / Pas de sortie

Cas 5: Entrée / Sortie de longueur connue ou inconnue

GET RESPONSE

ISO 7816-4

Le système de fichiers des cartes à puce. Système de fichiers hiérarchique qui peut contenir 3 types de fichiers :

"Master File" (Fichier racine)

- "Dedicated File" (Répertoire + qq infos)
- "Elementary File" (Fichier de données)

ISO 7816-4

• 4 structures de données :

Exemples (1/3)

1. READ_BINARY.

CLA B0 P1 P2 Le.

Si P1(b8) = 1, EF est désigné par P1 (b5,b4,b3,b2,b1) et P2 représente l'offset. Sinon l'offset est égal à (256*P1) +P2

Lecture de Le octets à partir de offset dans un fichier transparent.

2. WRITE_BINARY.

CLA D0 P1 P2 Lc [Lc octets]

Si P1(b8) = 1, EF est désigné par P1 (b5,b4,b3,b2,b1) et P2 représente l'offset. Sinon l'offset est égal à (256*P1) +P2

Ecriture de Le octets à partir de offset dans un fichier transparent.

3. UPDATE_BINARY.

CLA D6 P1 P2 Lc [Lc octets].

Si P1(b8) = 1, EF est désigné par P1 (b5,b4,b3,b2,b1) et P2 représente l'offset. Sinon l'offset est égal à (256*P1) +P2

Ecriture de Le octets à partir de offset dans un fichier transparent.

Exemples (2/3)

5. READ_RECORD

CLA B2 P1 P2 Le

Lit un enregistrement dans un fichier

P1, numéro d'enregistrement ou premier enregistrement à lire. P1= 00 indique l'enregistrement courant

P2= 04 lecture de l'enregistrement P1, P2= 05 lecture des enregistrements à partir de P1 jusqu'à la fin du fichier.

6. WRITE_RECORD

CLA D2 P1 P2 Lc [lc octets]

Ecriture d'un enregistrement.

P1 numéro d'enregistrement

P2= 04 enregistrement P1

Exemples (3/3)

13. INTERNAL AUTHENTICATE

CLA 88 P1 P2 Lc [Lc octets] Le

Cette commande réalise un calcul d'authentification relativement à une clé interne en transférant un nombre aléatoire (challenge) délivré par le lecteur.

P1 représente la référence d'un algorithme. P2 est égal à zéro par défaut. Le challenge est contenu dans les Lc octets sortants.

14. EXTERNAL_AUTHENTICATE

CLA 88 P1 P2 Lc[Lc octets] Le

Cette commande met à jour l'état d'une carte en fonction du résultat d'un calcul réalisé par le lecteur à partir d'un nombre aléatoire délivré par la carte (CHALLENGE).

P1, référence d'un algorithme. P2 est égal à zéro par défaut.

15. GET_CHALLENGE

CLA 84 P1 P2 Le

Cette commande produit un nombre aléatoire

Commandes ISO 7816-4 inter-industries

- READ BINARY
- WRITE BINARY
- UPDATE BINARY
- ERASE BINARY
- READ RECORD
- WRITE RECORD
- APPEND RECORD
- UPDATE RECORD

- GET DATA
- PUT DATA
- SELECT_FILE
- VERIFY
- INTERNAL_AUTHENTICATE
- EXTERNAL_AUTHENTICATE
- GET CHALLENGE
- GET_RESPONSE
- ENVELOPE
- MANAGE CHANNEL

ISO 7816-5

- Spécifie des identifiants d'applications (AID ou Application IDentifier)
- Un AID = identification unique d'une application de la carte et de certains types de fichiers.
- AID= chaîne de 16 octets
 - □ R premiers octets (RID) identifient le fournisseur d'application
 - Les 11 octets suivants représentent l'identifiant
- Activation d'une application
 - □ Par exemple par SELECT_FILE (00 A4 04 00 10 [AID])
 - Exemple: ATR stocké dans ET_ATR en /3F00/2F01 est sélectionné par 00 A4 02 00 02 2F01

ISO 7816-6

Spécifie les éléments de données inter-industrie : Nom du porteur de la carte Date d'expiration

. . .

Etiquette Longueur valeur

ISO 7816-7

- Données organisées en tables, avec des colonnes, lignes, ... (Similarité aux bases de données)
- Language spécifique de requêtes : SCQL (Smart Card Query Language)

2000 PicoDBMS: Un SGBD sur carte à puce

ISO 7816-8 à 10

- ISO 7816-8 : Sécurité de l'architecture et des commandes inter-industrie. 2 commandes à options
 - Manage Security environment
 - > Passage d'un template à la carte
 - Perform Security Operations
 - Compute/Verify Cryptographic checksum
 - Encipher/Decipher/Hash
 - Compute/Verify Digital Signature
 - Generate Cryptographic key pairs
- ISO 7816-9 : Commandes inter-industries améliorées
 - Register File (DF or EF)
 - Create, Deactivate, Delete, Rehabilitate
 - Seulement si la carte est en environnement « sûr »!
 - Méthodes d'accès aux ressources Smart-Cards
 - ISO 7816-10 : Spécifiques aux cartes synchrones

Cycle de vie de la carte

- Fabrication
 - Inscription d'un programme en mémoire ROM définissant les fonctionnalités de base de la carte : "masque" figé traitant quelques commandes
- Initialisation
 - Inscription en EEPROM des données de l'application
- Personnalisation
 - Inscription en EEPROM des données relatives à chaque porteur
- Utilisation
 - Echange d'APDU
- Mort
 - Invalidation logique

Développement d'applications

- Le code applicatif de la carte est gravé en ROM au moment de la fabrication
 - carte figée
 - développeurs spécialisés
 - pas d'évolution possible : pas de chargement dynamique de nouveaux programmes en EEPROM

Implication

Si une application requiert de nouvelles fonctions carte => nécessité de re-développer un nouveau masque

Vers des cartes plus ouvertes

Problèmes à résoudre et/ou besoins à satisfaire

- permettre le développement de programmes pour la carte sans avoir besoin de graver un nouveau masque
- faire de la carte un environnement d'exécution de programmes ouvert (chargement dynamique de code)
- faciliter l'intégration des cartes dans les applications

Elément de solution : Java Card

Utiliser le langage orienté objet : Java Utiliser la plate-forme Java pour charger et exécuter des applications dynamiquement

Qu'est ce que la Java Card?

Une carte à puce qui exécute des programmes Java

- Java Card définit un sous-ensemble de Java (2.1 puis 2.2)
 - dédié pour la carte à puce :
 - Sous-ensemble du langage de programmation Java
 - Sous-ensemble du paquetage java.lang
 - Découpage de la machine virtuelle Java
 - Modèle mémoire adapté à la carte
 - APIs spécifiques à la carte

Java Card par rapport à Java (1/4)

- Pas de chargement dynamique de classes
- Objets : Allocation dynamique d'objets supportée (new)

Mais

- Pas de ramasse-miettes (gc)
- □ Pas de désallocation explicite non plus
- ==> mémoire allouée ne peut pas être récupérée
- ☐ Pas de méthode finalize()

Java Card par rapport à Java (2/4)

- Types de base (nombres signés, complément à 2):
 byte, short, boolean (8 bits), int (16 bits)
 - Pas de types char (pas de classe string), double, float et long
 - Pas de classes Boolean, Byte, Class, etc.
- Tableaux à une dimension :
 - Eléments : des types de base

Java Card par rapport à Java (3/4)

- Pas de threads
 - □ Pas de classe Thread, pas de mots-clé synchronized
- Mécanisme d'héritage identique à Java
 - □ Surcharge de méthodes, méthodes abstraites et interfaces
 - Invocation de méthodes virtuelles
 - □ Mots-clés instanceof, super et this
- Sécurité
 - Notion de paquetage et modifieurs <u>public</u>, <u>protected</u> et <u>private</u> identiques à Java
 - □ Pas de classe securityManager : politique de sécurité implémentée dans la machine virtuelle
- Méthodes natives (native)
- Atomicité
 - Mise à jour de champs d'objets doit être atomique
 - Modèle transactionnel : beginTransaction(),
 commitTransaction() et abortTransaction()

Java Card par rapport à Java (4/4)

- Mécanismes d'exception supportés
 - Peuvent être définis (extends Throwable), propagés (throws) et interceptés (catch)
 - Classes Throwable, Exception et Error supportées et certaines de leurs sous-classes (dans java.lang)
 - Throwable { public Throwable(); }
 - -- Exception
 - -- RuntimeException
 - -- ArithmeticException
 - -- ClassCastException
 - -- NullPointerException
 - -- SecurityException
 - -- ArrayStoreException
 - -- NegativeArraySizeException
 - -- IndexOutOfBoundsException
 - -- ArrayIndexOutOfBoundsException

Java Card 2.2: principales extensions

- Gestion des canaux logiques
- Destruction d' Applet
- RMI JavaCard
- Ramasse-miettes
- Extension des classes APDU
- API d'accès aux objets transtoires (tbc)
- API de « Card Management »

Machine virtuelle

- Implémentation en deux parties :
 - La partie on-card (SmartCard)
 - La partie off-card (JavaCard)

Librairies standard

JavaCard.lang

 Classes fondamentales (object, throwable) pour le langage JavaCard

JavaCard.framework

 Classes et interfaces pour les fonctionnalités de base des applets JavaCard (ISO7816, PIN,AID, APDU,JCSystem, Exceptions...)

JavaCard.security

 Classes et interfaces pour l'environnement sécuritaire (DesKey,DASPrivateKey,SecretKey,RandomData,Signature, MessageDigest...)

JavaCardx.crypto

 Classes de sécurité et interfaces pour les fonctionnalités soumises à contrôle d'export (KeyEncryption, Cipher)

Compiler en Java (1/2)

Obtention d'un code JavaCard

Compiler en Java (2/2)

■ Récapitulatif des opérations

Architecture (1/5)

JavaCard

Card Executive

Charge et sélectionne les applications

Communique avec le monde extérieur

Gère le cycle de vie de la carte

Applet 1

Programme

Applet N

Programme

Librairies standard (API)

Interface cachant l'infrastructure de la carte

Machine Virtuelle Java (interpréteur)

Exécute les applets, garantit la sécurité et gère le partage des données

Méthodes Natives

Donnent accès aux ressources physiques telles que la mémoire, les E/S, le coprocesseur cryptographique

Architecture (2/5)

- Méthodes natives
 - Fonctions de bas niveaux gérant
 - Les E/S
 - La mémoire
 - Le coprocesseur cryptographique
- ■Machine virtuelle Java
 - Exécute le bytecode (obtenu après compilation et édition de liens)
 - Offre le support du langage
 - ☐ Gère le partage des données entre applications
 - Implantée au dessus du circuit intégré (OS + méthodes natives)
 - ⇒ Indépendance totale par rapport à la plate-forme de la carte

Architecture (3/5)

- Librairies standard
 - Ensemble d'APIs
 - Cache les détails de l'infrastructure
 - Interface facile à manipuler
 - Définition des conventions utilisées par les applets pour accéder aux méthodes natives
- Applets
 - Programmes écrits en JavaCard puis compilés
 - Exécution en réponse à des demandes du terminal

Architecture (4/5)

Installation d'une applet

- Réalisé lors de la fabrication de la carte ou de sa mise à jour à partir d'un terminal
- Chargement de l'applet en mémoire (ROM ou EEPROM)
- □ Appel automatique de la méthode install () par le JCRE : phase de connaissance
- Applet définitivement connue par le JCRE

Architecture (5/5)

- Sélection, activation et désactivation d'une applet
 - Une Applet est inactive tant qu'elle n'est pas sélectionnée pour être exécutée
 - Identification d'une Applet par une clé unique
 - Sélection réalisée par le terminal
 - Suspension de l'exécution de l'Applet active : deselect()
 - Activation de l'Applet sélectionnée : select()
 - □ Le JCRE redirige tous les APDUs de commande vers cette Applet

Communication avec les applets

■ Le JCRE appelle **process**() lorsqu'il reçoit un APDU de commande pour cette applet

Cartes à puce: architecture moderne

- + Portabilité
- Rapidité de development
- + Plate-forme ouverte
- + Multi-application

Sécurité des cartes à puce

Types d'attaques sur les cartes à puce (1)

- Information transmises
 - Canaux de fuite (courant, paramètres d'algorithmes cryptographiques...)
- Information stockées
 - Données (clés) ou code exécutable
- Mise en défaut du Hardware
 - □ Tension, horloge, mise hors specs de manière générale
- Défauts du Software
 - Chainage de commandes ou erreurs protocoles cryptographiques
- Attaques temporelles
 - Détection de changement de temps d'exécution
- Attaques sur les consommations
 - photographie temps réel des instructions en cours d'exécution
 - Post-traitement statistique des informations

Attaques sur les cartes à puce (2)

- Attaques sur le chemin de test
 - □ Mise en mode test, sondes, reconstruction du design logique
- Ingéniérie inverse
 - Reconstruction du Layout, dump du code ROM, révélation chimique
 - Utilisation de MEB, FIB ou autre pour révélation du contenu EEPROM
- Glissements d'alimentation ou interruption d'horloge
 - □ Corruption de données sur le (les) bus
 - Peuvent affecter un tout petit nombre de cycles CPU
- Attaques Lumière (Laser)
- Mesures de radiations électromagnetique

Exemple: attaque DPA (1/3)

Exemple: attaque DPA (2/3)

Exemple: attaque DPA (3/3)

Cartes à puce: Sécurité Hardware

- Couches actives anti-intrusion
- EEProm non révélable
- Sécurité physique
 - pas de retour mode test
- Détecteurs de rayonnements
 - UV, ionisation, etc...
- Pas de comportement statique
 - fréquence d'horloge minimale
- Contrôle des modes hors specs
- Protection DPA/SPA
- Protections auto-programmées
- Pas d'interférence OS/Interface
 - contrôle du PIN
- Logique asynchrone, faible conso.

Cartes à puce: Sécurité Software

- Masquage des points de synchronisation
 - Timing aléatoires, opérations aléatoires
- Masquage des actions cruciales
 - Duplication, fausses pistes, symétrisation,...
- Cryptographie
- ■Contrôle des droits d'accès
- ■Collaboration avec le MMU HW
- ■Certification commune HW/SW (« Critères Communs »)

Exemple fondamental: La carte GSM/SIM

Rappel: architecture Globale GSM

MS:	Mobile Station	VLR:	Visited Location Register
BSS:	Base Station System	OMC:	Operation and Maintenance Centre
MCC.		TOTO.	E

Equipment Identity Register Mobile Services Switching Centre EIR: HLR: **Home Location Register AUC: Authentication Centre**

Fonctions de sécurité offertes au niveau d'un réseau GSM PLMN

- Confidentialité de l'identité du souscripteur (IMSI)
- Authentification de l'identité du souscripteur (IMSI)
- Confidentialité des données utilisateur lors des connexions physiques
- Confidentialité des données utilisateur en mode « Connectionless »
- Confidentialité des éléments d'information de signalisation

GSM 11.11

- Définit l'interface entre le « Subscriber Identity Module » (SIM) et le terminal mobile (« Mobile Equipment ou ME ») pendant les phases d'opération du réseau GSM
- Definit l'organisation interne de la carte SIM.
- Assure l'interoperabilité entre SIM et ME independemment des différents fabricants et des opérateurs

Items couverts par la norme

- ■Caractéristiques physiques, signaux électriques protocoles de transmission
- ■Modèle pour la conception de la structure logique de la SIM
- ■Caractéristiques sécuritaires
- ■Fonctions d'interface
- ■Description des commandes
- ■Contenu des fichiers requis pour l'application GSM
- ■Protocole applicatif

Carte SIM: organisation interne (1/3)

Carte SIM: organisation interne (2/3)

Carte SIM: organisation interne (2/3)

axalto

Carte SIM: organisation interne (3/3)

Protocole Applicatif GSM

- Message: commande ou réponse.
- Couple commande/réponse GSM : suite de messages consistant en une commande et la réponse associée.
- Procédure GSM: suite de un ou plusieurs couples commande/réponse GSM
- Session GSM: intervalle de temps entre la fin de la procédure d'initialisation et se terminant:
 - Soit au démarrage de procédure de fin de session GSM
 - Soit à l'instant d'interruption du lien SIM-ME

Procedures

■Procédures générales:

0	Lecture d'un EF	ME
0	Mise à jour d'un EF	ME
0	Extension d'un EF	ME

■Procédures de gestion SIM :

	Initialisation SIM	ME
	Fin de session GSM	ME
	Requêtes de codes d'appel d' urgence	ME
	Requêtes d'extension de langage préférentie	IME
	Requêtes de langage préférentiel	ME
0	Requêtes d'information administrative	ME
0	Requêtes sur la table des services SIM	ME
0	Requêtes de phase SIM	ME

Procedures

■Procédures liées à la sécurité GSM :

	Calcul d'algorithme GSM	NET
	Requête d'IMSI	NET
	Requête d'information type contrôle d'accès	NET
	Requête intervalle de recherche HPLMN	NET
	Informations de localisation	NET
	Clé de Chiffrement	NET
	Information canal BCCH	NET
	Information sur PLMN interdits	NET
_		

■Procédures liées au code CHV:

Vérification CHV	MMI
Substitution de valeur CHV	MMI
Déconnexion CHV	MMI
Mise en route CHV	MMI
Déblocage CHV	MM

Procédures

■Procédures de souscription:

Numéros d'appel (ADN, FDN, MSISDN, LND, SDN, BDN)	MMI/ME
Short messages (SMS)	ммі
Indications de facturation (AoC)	MMI
Paramètres sur Capacités de Configuration (CCP)	ММІ
Sélection PLMN	MMI
Cell Broadcast Message Identifier (CBMI)	ММІ
Group Identifier Level 1 (GID1)	MMI/ME
Group Identifier Level 2 (GID2)	MMI/ME

Procedures

■Procédures de souscription (suite.):

	Nom du	fournisseur	r de services	(SPN)) MI
_	140111 44		40 001 V1000	$(\bigcirc \cup \cup \cup)$,

- Voice Group Call Service (VGCS)
 MMI/ME
- Voice Broadcast Service (VBS)
 MMI/ME
- Pré-emption et Priorité Multi-niveau étendue MMI/ME (eMLPP)
- Dé-personnalisation des clés de contrôle

 ME
- Status report sur les SMS (SMSR)MMI
- Indicateurs d'alerte réseau

Commandes SIM

1	SELECT	12	ENABLE CHV
2	STATUS	13	UNBLOCK CHV
3	READ BINARY	14	INVALIDATE
4	UPDATE BINARY	15	REHABILITATE
5	READ RECORD	16	RUN GSM ALGORITHM
6	UPDATE RECORD	17	SLEEP (Obsolete: put SIM in Low Power)
7	SEEK	18	TERMINAL PROFILE
8	INCREASE	19	ENVELOPPE
9	VERIFY CHV	20	FETCH
10	CHANGE CHV	21	TERMINAL RESPONSE
11	DISABLE CHV	22	GET RESPONSE

	File						
Function	MF	DF	EF transparent	EF linear fixed	EF cyclic		
SELECT	*	*	*	*	*		
STATUS	*	*	*	*	*		
READ BINARY			*				
UPDATE BINARY			*				
READ RECORD				*	*		
UPDATE RECORD				*	*		
SEEK				*			
INCREASE					*		
INVALIDATE			*	*	*		
REHABILITATE			*	*	*		

Codage des commandes GSM

COMMAND	INS	P1	P2	P3	S/R
SELECT	'A4'	'00'	'00'	'02'	S/R
STATUS	'F2'	'00'	'00'	lgth	R
READ BINARY	'B0'	offset high	offset low	lgth	R
UPDATE BINARY	'D6'	offset high	offset low	lgth	S
READ RECORD	'B2'	rec No.	mode	lgth	R
UPDATE RECORD	'DC'	rec No.	mode	lgth	S
SEEK	'A2'	'00'	type/mode	lgth	S/R
INCREASE	'32'	'00'	'00'	'03'	S/R
VERIFY CHV	'20'	'00'	CHV No.	'08'	S
CHANGE CHV	'24'	'00'	CHV No.	'10'	S
DISABLE CHV	'26'	'00'	'01'	'08'	S
ENABLE CHV	'28'	'00'	'01'	'08'	S
UNBLOCK CHV	'2C'	'00'	see note	'10'	S
INVALIDATE	'04'	'00'	'00'	'00'	
REHABILITATE	'44'	'00'	'00'	'00'	-/
RUN GSM ALGORITHM	'88'	'00'	'00'	'10'	S/R
SLEEP	'FA'	'00'	'00'	'00'	-
GET RESPONSE	'C0'	'00'	'00'	lgth	R
TERMINAL PROFILE	'10'	'00'	'00'	lgth	S
ENVELOPE	'C2'	'00'	'00'	lgth	S/R
FETCH	'12'	'00'	'00'	lgth	R
TERMINAL RESPONSE	'14'	'00'	'00'	lgth	S

CLA= 'A0' pour l'application GSM

GSM 11.14: vue d'ensemble de l'environnement SIM Application Toolkit

- L'environnement SIM Application Toolkit fournit des mécanismes permettant aux applications présentes dans la carte SIM, d'interagir et d'inter-opérer avec tout terminal mobile (ME) supportant les mécanismes spécifiques requis par ces applications.
- Si \$ (Multiple Card) \$ est supporté une carte SIM supportant les mécanismes SAT doit être capable de communiquer avec des cartes additionnelles et de recevoir de informations des lecteurs additionnels via le ME.
- Les mécanismes SAT sont dépendants des commandes et protocoles relevant de la norme GSM 11.11.
 - Découverts par une fin de procédure en '91 XX' (nécessite Fetch Data de XX)
 - SAT identifié dans le EF_{SST}
 - Capacités du ME identifiées dans la commande terminal profile

Procédures SAT

■Procédures SIM Application Toolkit:

- Téléchargement de données via SMS-CB (CBMID) NET
- □ Téléchargement de données via SMS-PP NET
- Sélection de menu
 MMI
- □ Contrôle d'appel MMI/ME/NET
- □ SIM Proactive MMI/ME/NET
- Contrôle SIM de SMS généré par le ME MMI/ME/NET
- Requête d'image (si §(Image)§ est supportée)MMI/ME

GSM 11.14: Vue d'ensemble de la structure SIM Application Toolkit

■Mécanismes de base

- Profile Download
- Proactive SIM
- Data download to SIM
- Menu Selection
- Call control by SIM
- MO Short Message control by SIM
- Event download
- Security
- Multiple card
- Timer Expiration

Commandes et procédures SIM proactives

DISPLAY TEXT

GET INKEY

GET INPUT

LANGUAGE NOTIF

PLAY TONE

SET UP IDLE MODE TEXT

SELECT ITEM

SET UP MENU

CLOSE CHANNEL

GET CHANNEL STATUS

OPEN CHANNEL

SEND SHORT MESSAGE

SEND USSD

SET UP CALL

SEND DTMF

RUN AT COMMAND

SEND DATA

RECEIVE DATA

SEND SS

POWER OFF CARD

POWER ON CARD

GET READER STATUS

PERFORM CARD APDU

POLL INTERVAL

REFRESH

POLLING OFF

LAUNCH BROWSER

PROVIDE LOCAL INFORMATION

SET UP EVENT LIST

TIMER MANAGEMENT

GSM 11.14: vue d'ensemble de l'environnement SIM Application Toolkit

Support du SIM Application Toolkit par les Equipments Mobiles

	Classe		
Command description	1	2	3
CALL CONTROL		X	X
CELL BROADCAST DOWNLOAD		X	X
DISPLAY TEXT		X	X
EVENT DOWNLOAD			7
. MT call			X
. Call connected			X
. Call disconnected			X
. Location status			X
. User activity			X
. Idle screen available			X
GET INKEY		X	X
GET INPUT		Х	Х
GET READER STATUS (if \$(MultipleCard)\$ is supported)			Lc
MENU SELECTION		Х	X

GSM 11.14: vue d'ensemble de l'environnement SAT

Support du SIM Application Toolkit par les Equipments Mobiles

		Classe	
Command description	1	2	3
MO SHORT MESSAGE CONTROL			X
MORE TIME		X	X
PERFORM CARD APDU (if \$(MultipleCard)\$ is supported)			Lc
PLAY TONE		Х	Х
POLLING OFF		Х	Х
POLL INTERVAL		Х	Х
POWER ON CARD (if \$(MultipleCard)\$ is supported)			Lc
POWER OFF CARD (if \$(MultipleCard)\$ is supported)			Lc
PROVIDE LOCAL INFORMATION		Х	X
REFRESH	Х	Х	Х
SELECT ITEM		Х	X
SEND SHORT MESSAGE		Х	Х
SEND SS		X	X
SEND USSD			X
SET UP CALL		X	X
SET UP EVENT LIST			X
SET UP MENU		Х	X
SMS-PP DOWNLOAD	Χ	Х	Х
TIMER MANAGEMENT (if \$(Timer)\$ is supported)			Lc
TIMER EXPIRATION (if \$(Timer)\$ is supported)			Lc

Architecture GSM Java Card

Vue d'ensemble de l'API SIM basée sur Java Card 2.1:

...... Interface partageable

Le Framework SIM Toolkit

SIM et ME en action (1)

Receive ATR	Initialisation
Execute PPS	
SELECT DF _{GSM}	
GET RESPONSE	
SELECT EF _{Phase}	
READ BINARY	Basic Infos
SELECT E _{LP}	
GET RESPONSE	
READ BINARY	
VERIFY CHV	User Authentification
STATUS	
SELECT EF _{SST}	
GET RESPONSE	Services disponibles
READ BINARY	

SIM et ME en action (2)

- TERMINAL PROFILE
- SELECT MF
- SELECT EF ICCD
- GET RESPONSE
- READ BINARY
- SELECT DF_{GSM}
- SELECT EF_{IMSI}
- GET RESPONSE
- READ BINARY
- SELECT EF_{AD}
- GET RESPONSE
- READ BINARY
- SELECT EF_{LOCI}
- READ BINARY

Identif+ Paramètres com

SIM et ME en action (3)

- SELECT EF_{KC}
- READ BINARY
- SELECT EF_{BCCH}
- READ BINARY
- SELECT EF_{FPLMN}
- READ BINARY
- SELECT EF_{HPLMN}
- READ BINARY
- SELECT DF_{TELECOM}
- SELECT EF_{SMSS}
- GET RESPONSE
- READ BINARY
- SELECT EF_{SMSp}
- GET RESPONSÉ
- READ BINARY
- SELECT EF_{SMS}
- GET RESPONSE
- Nx READ RECORD

SELECT DF GSM

RUN GSM ALGORITHM

GET RESPONSE

COM

SELECT EF_{KC}

UPDATE BINARY

SELECT EFLOCI

UPDATE BINARY

SELECT EF BCCH

UPDATE BINARY

SELECT EFLOCI

UPDATE BINARY

SELECT EF_{BCCH}

UPDATE BINARY

Off

Distribution de la Sécurité dans le réseau GSM

Principe d'authentification dans le réseau GSM

- BS transmet un challenge de 128-bit RAND
- Le MEs retourne une réponse signée de 32-bit SRES via A3
- RAND et K_i sont combinées via A8 pour donner une clé de 64-bit pour l'algorithme
- Les trames de 114-bit sont chiffrées en utilisant la clé et le numéro de trame comme entrée de A5

Sécurité du réseau GSM

- La sécurité du réseau GSM a été cassée en Avril 1998
 - A3/A8= COMP128 V1 est faible, permet d'extraire IMSI et K_i
 - Accès direct au SIM (clonage du téléphone mobile)
 - Requêtes OTA au ME
 - Certains types de cartes ont été modifiées depuis pour limiter le nombre de requêtes COMP 128
- De nombreux pays ont été pourvus d'une version affailblie de l'algorithme A5, dite A5/2:
 - □ Sécurité du A5/1 : Brisable en temps réel avec 2⁴⁰ précalculs
 - Sécurité du A5/2: Aucune (cassable en 5 cycles d'horloge);

Principe de Cryptanalyse du COMP128

Principes

- Nombreuses itérations (5*8)
- L'application de génération des clefs

 $f_k: r \mapsto r'$ est appliquée 8 fois

- Chaque round est peu efficace:
- Les bytes i,i+8,i+16,i+24 à la sortie du second round dependent seulement des bytes i,i+8,i+16,i+24 de l'entrée de COMP128
- Génération de collisions!
 - Tentative: Modification simultanée de r₀ and r₈, et recherche de collisions internes [BGW98]

Deuxième exemple: la norme EMV pour les systèmes de paiement

Agenda

- Pourquoi EMV?
- Un bref rappel sur EMV
- Les apports sécuritaires
- Traitement des données sécuritaires par les Réseaux Cartes VISA/MCI

Pourquoi EMV - Le "Business Case"

- Les objectifs fondamentaux
 - Fraude galopante
 - Interopérabilité
 - Coût des télécoms
 - Dématérialisation des transactions
- Répondre à de nouveaux contextes et créer de la valeur
 - E-commerce
 - Banque en Ligne
 - Services à valeur ajoutée
- Etat de la Technologie:
 - Obsolescence de la technologie piste magnétique (35 ans d'age)
 - Maturité de la technologie puce (25 ans d'existence)

Types de fraude

Volée

Non reçue

Contrefaçon

Usage abusif

Carte-non-présente

Les dimensions de la fraude

- (1) Perdue, Volée, Non Reçue
- (2) Risque Crédit

Une brève introduction à EMV

- EMV specifications globales pour les cartes, terminaux, & applications, developpées par Europay, MasterCard & Visa, pour assurer le bon fonctionnement et l'interopérabilité des transactions puce pour les applications de débit et de crédit.
- Interopérabilité
 - N'importe quel terminal de paiement peut accepter des cartes originaires de n'importe quel Réseau de cartes.
 - Tout carte émise dans un pays peut être utilisée dans d'autres pays.
- Déployée en UK
- Pilotes dans une vingtaine de pays
- Base du prochain système bancaire français

Une brève introduction à EMV (suite)

Ex: Israel: Le terminal est programmé pour éviter le blocage Ex: France: Droit au Rejet de la carte après 3 essais alors que 5 essais sont possibles **Options Nationales / par Emetteux** EUROPAY VISA Mchip/ Mchip Lite VIS 1.4.0 MasterCa **EMV '2000** Standards ISO 7816

Une brève introduction à EMV (suite)

Card Script Processing Method (CSPM)

Card Certification Method (CCM)

Card Risk Management Method (CRMM)

CardHolder Verification Method (CVM)

Card Authentication Method (CAM)

Card Application Selection Method (CASM)

Card Authentication Method

- Objectif
 - Eliminer la contrefaçon carte
 - Rendre la duplication carte difficile voire impossible
- La Méthode
 - Le terminal vérifie les cryptogrammes SDA / DDA / CDA

CAM:

3 niveaux: SDA / DDA / CDA

- 1^{ier} niveau : SDA (EMV 96 et EMV 2000): le terminal contrôle l'authenticité des paramètres de la carte PAN, Date de validité, ... Comme pour B0' (VA / VS).
- 2^{ième} niveau : DDA(EMV 96 and EMV 2000): le terminal contrôle à la fois l'authenticité des paramètres de la carte (PAN, Date de validité, ...) et de la carte elle-même.
- 3^{ième} niveau : CDA (EMV 2000) le terminal contrôle à la fois l'authenticité des paramètres de la carte (PAN, Date de validité, ...) et de la carte elle-même. De plus il contrôle l'authenticité de la décision carte (accord de transaction offline, décision d'aller online)

L'authentification en SDA

La CARTE contient :

Le TERMINAL contient :

Card Issuer Public Key Certificate

PI: Public information

S=F(PI, Issuer Private Key)

Scheme Provider Public Key

- Le terminal lit les différentes informations dans la carte
- Le terminal recouvre la clé publique de l'émetteur
- Le terminal vérifie la signature

L'authentification en DDA

La CARTE contient :

Le TERMINAL contient :

Card Issuer Public Key Certificate

Card Public Key Certificate

Card Private Key

Scheme Provider Public Key

- Le terminal lit les différentes informations dans la carte
- Le terminal recouvre la clé publique de l'émetteur
- Le terminal recouvre la clé publique de la carte
- Le terminal envoie un challenge à la carte
- La carte calcule un cryptogramme d'authentification à l'aide de sa clé privée
- Le terminal vérifie la signature

L'authentification en CDA

La CARTE contient :

Le TERMINAL contient :

Card Issuer Public Key Certificate
Card Public Key Certificate

Card Private Key

Scheme Provider Public Key

- Le terminal lit les différentes informations dans la carte
- Le terminal recouvre la clé publique de l'émetteur
- Le terminal recouvre la clé publique de la carte
- Le terminal commence la transaction de paiement et envoie un challenge à la carte
- La carte calcule un cryptogramme (MAC Triple DES) sur les données de la transaction à l'aide de la clé de transaction et calcule un cryptogramme d'authentification à l'aide de sa clé privée
- Le terminal vérifie la signature et recouvre le cryptogramme de transaction

Cardholder Verification Method

Objectif

 Eliminer la fraude liée aux cartes perdues, volées, non reçues

La Méthode

- Contrôle local du code secret en clair ou chiffré
- Méthodes en vigueur : signature, contrôle distant du code secret
- Techniques biométriques

Card Risk Management

Objectif

 Limiter l'usage abusif de la carte, l'usage frauduleux des cartes perdues, volées, non reçues

La Méthode

- Limiter la fraude par l'analyse du risque par la carte; contrôle de flux en montant et en nombre de transactions, mémorisation de l'activité transactionnelle de la carte pour aide à la décision, etc.
- Transaction acceptée / refusée off-line
- Décision de demande d'autorisation

Card Certification Method

Objectif

- Avoir une preuve de la transaction
- Disposer d'une méthode d'authentification carte / émetteur forte
- Assurer la confidentialité et l'intégrité des commandes de script

La Méthode

- Calculer un crypto-certificat vérifiable par l'Emetteur
- Disposer d'un mécanisme cryptographique d'authentification forte de type « Challenge / Réponse »
- Supporter le mécanisme de Secure Messaging (Chiffrement + Intégrité) pour les commandes de Post-modification

Card Script Processing Method

Objectif

- Pouvoir modifier le comportement de la carte sur le terrain
- Post modification des paramètres de la carte
- La Méthode
 - Commandes de Post-modification émetteur vers la carte

Exemples de commandes EMV (1)

Commande: ReadBinary

		CLA	INS	P1	P2	L_e	Data _{out}
ISO	Read (using SFI)	00	В0	100b SFI	Address	XX	String of bytes
ISO	Read (current EF)	00	В0	Address		XX	Stilling of bytes

Commande: WriteBinary

		CLA	INS	P1	P2	Lc	Data _{in}
ISO	Clear write (using SFI)	00	D0	100b SFI	Address	XX	String of bytes
ISO	Clear write (current EF)	00	D0	Addre	ess	XX	String or bytes
ISO	Secure write (using SFI)	04	D0	100b SFI	Address	XX	String of bytes +
\ iso	Secure write (current EF)	04	D0	Address		XX	MAC (8 bytes)

■ Command: *UpdateBinary*

		CLA	INS	P1	P2	Lc	Data in			
ISO	Clear update (using SFI)	00	D6	100b SFI	Address	XX	String of bytes			
\ Iso	Clear update (current EF)	00	D6	Address		XX	String or bytes			
\ Iso	Secure update (using SFI)	04	D6	100b SFI Address		XX	String of bytes +			
Siso	Secure update (current EF)	04	D6	Address		xx	MAC (8 bytes)			

Exemples de commandes EMV (2)

Commandes transactionnelles

Commande: GetProcessingOptions

EMV		CLA	INS	P1	P2	L _c	Datain	L _e	Data _{out}
LIVIV	Get Processing MCL	80	A8	00	00	02	8300	XX	AIP, AFL*

□ Commande: GenerateAC

			INS	P1	P2	Lc	Data _{in}	Le	Data _{out}
EMV	1st GenerateAC	80	AE	AC type	00	1D ^{EMV2} 20 ^{MCL}	CDOL1 data	14 ^{EMV2} 21 ^{MCL}	CID, ATC, AC, IAD*
EMV	2nd GenerateAC	80	AE	AC type	00	1F ^{EMV2} 11 ^{MCL}	CDOL2 data	14 ^{EMV2} 21 ^{MCL}	CID, ATC, AC, IAD*

* EMV2: template '80' / MCL: template '77'

Commandes de script émetteur

Commandes: BlockAppli, UnblockAppli, BlockCard

,		CLA	INS	P1	P2	L _c	Data _{in}
SEMV	Block application	84	1E	00	00	80	MAC (8 bytes)
SEMV	Unblock application	84	18	00	00	80	MAC (8 bytes)
SEMV	Block card ^{EMV2}	84	16	00	00	80	MAC (8 bytes)

Flot de transaction EMV

axalto

Schéma d'une transaction hors-ligne

Amount - Date - Currency etc... + Card Certificate

Schéma d'une transaction en-ligne

Transaction EMV VS ...

axalto

Transaction piste

axalto

Impact des Méthodes EMV

- (1) Lost, Stolen, Not Received(2) Credit Risk

Les types d'attaques

- Pour l'authentification carte
 - Copie d'une carte
 - Facile pour une authentification SDA : Copie de données accessible en lecture
 - Très difficile en DDA, CDA : Nécessite une attaque sur le composant
 - Fausse carte (générer des cartes associées à différents PAN)
 - Très difficile en SDA, DDA, CDA : Nécessite une crypto-analyse de la clé secrète RSA de l'émetteur
- Pour la génération de certificats de transaction
 - Copie d'une carte :
 - Très difficile : Nécessite une attaque sur le composant (clef de certificats émetteur)
 - Fausse carte :
 - Très, très difficile : Nécessite la connaissance de la clé maître de génération des certificats

Les attaques et les réponses

Mode d'authentification	Attaques	Niveau de l'attaque	Réponses
SDA	Copie de la carte	Très facile	Surveillance par l'émetteur du comportement du porteur
			Vérification des certificats de transaction pour mise à jour de Black List
	Fausse carte	Très difficile	Allongement de la taille de la clé émetteur
DDA	Copie de la carte	Très difficile	Amélioration de la sécurité du chip et de l'OS
	Fausse carte	Très difficile	Allongement de la taille de la clé émetteur
	Substitution de cartes	"Facile" selon conditions	Réponse : CDA
CDA	Copie de la carte	Très difficile	Amélioration de la sécurité du chip et de l'OS
	Fausse carte	Très difficile	Allongement de la taille de la clé émetteur
	Substitution de cartes	Idem copie carte	

La gestion de la sécurité

- Composant sûr et OS évalué
- Gestion des clés secrétes émetteur (renouvellement, revocation, stockage...)
- Contrôle des certificats de transaction
- Gestion de liste noire

Analyse par type de transaction

Type de transaction	Type de terminal	Niveau de risque
Retrait d'espèces	АТМ	Très Faible car transaction On-Line
Paiement de proximité On- Line	POS	Très Faible car transaction On-Line
Paiement de proximité Off- Line	POS	Faible. Le marchand peut être acteur dans le processus de vérification.
Automate (ticket, vidéo, essence) On-Line	POS dédié	Très Faible car transaction On-Line
Automate (ticket, vidéo, essence) Off-Line	POS dédié	Fort
Web On-line	Server	Très Faible car transaction On-Line
Web Off-line	Server	Très fort

Carte à puce Evolution de la technologie

Cartes à puce: nouvelles technologies (1/2)

Hardware

- □ Migration vers le 32 bit vers 2003-2004
 - MMU, Cryptographie intégrée, accélérateurs HW (Java)
 - → Horizon 2003: CMOS 0.18µ, 8K RAM, 512 KB ROM, 128-256KB EEPROM
- Support intégré du mode sans-contact
- □ Nouvelles interfaces I/O: USB,...
- □ Nouvelles technologies de mémoires: Flash, FERAM, Flex

Architecture

- Cartes ouvertes multi-applications avec pare-feux HW et SW
- □ Prise en compte directe au niveau de la carte de nouveaux protocoles : IEEE 802.11, TCP/IP, Bluetooth
- Multi-thread voire multitâche

Cartes à puce: nouvelles technologies (2/2)

Logiciel

- Architectures modulaires de type « PC »
- □ Evolutions de JavaCard: Sécurité, RMI, Convergence vers Java
- □ Téléchargement sécurisé d'applications (modes interprété ET natif)

Sécurité

- Différentiateur essentiel
- □ Importance de la méthodologie Critères Communs
- Approche sécuritaire préventive supportée par des techniques de preuve et modélisation abstraites
- Importance des standards mondiaux
 - □ ETSI/3GPP, EMV/Global Platform, ISO/IEC 15408,...

Cartes à puce: Evolution du Hardware

Taille du chip

25 mm2

Cartes à puce: Evolution du Software

