

Capstone Project Harnessing NLP to Detect Stress in Social Media Early Intervention for Mental Wellbeing

Presenter: Jimmy Chong

Agenda

- Bio
- Project Context & Business Problem
- Business & Data Science Considerations
- Data Overview
- Data Exploration
- Data Split
- Data Overview
- Deliver
- Summary, Conclusions & Next Steps
- Appendix

Bio

- Solution Architect with experience in software design and project management
- Transitioning to Data Science through a Certificate in Data Science/AI from the Institute of Data
- Skills: Data analysis, machine learning, project management, programming (Python, C#, VB.NET), databases
- Motivation: Leverage technical background and data science skills to solve real-world problems and drive innovation

Key Projects:

- Stress Detection: Developing an NLP-based model to detect stress in social media text
- Predicting and Understanding Factors that Influence Hotel Booking Cancellations
- Predicting West Nile Virus Presence Using Machine Learning

Project Context & Business Problem

- Industry: NLP and Mental Health
- Problem: Detecting stress in social media text
- Interest: Growing mental health concerns, potential for early intervention, NLP advancements
- Previous Work:
 - NLP techniques: Sentiment analysis, topic modeling, machine learning
 - **Domains:** Twitter, Reddit, general datasets
 - **Key findings:** Promising accuracy, varying generalizability and robustness
 - **Limitations:** Reliance on labeled datasets, potential for bias
 - Contribution: Exploring LSTM networks, addressing limitations

Business & Data Science Considerations

- Stakeholders: Mental health professionals, social media platforms, technology companies, individuals
- **Business Question:** Can we accurately detect stress in social media text?
- Business Value: Early intervention, improved user experience, new market opportunities
- Data:
 - Question: Can we extract effective features for stress prediction?
 - Required: Social media text, stress labels, metadata
 - Sourced: Reddit, Twitter, Kaggle
 - **Generation:** User-generated content
 - Future Sourcing: Continued access to APIs, exploring other platforms

Data Overview (1)

Stress Detection from Social Media Articles

Source: <u>Kaggle Dataset</u>

 Objective: Develop a more accurate and efficient NLP-based approach to automatically detect stress in social media text, enabling early intervention and improved mental health support.

Data Overview (2)

Stress Detection from Social Media Articles

Datasets:

- Constructed four datasets using text articles from Reddit and Twitter.
- Each article is labeled with a class value of '0' (Stress Negative) or '1' (Stress Positive).

Dataset Descriptions:

- Reddit Combi: This dataset combines title and body text from stress and non-stress related subreddits.
- Reddit Title: This dataset consists of titles from stress and non-stress related subreddits.
- Twitter Full: This dataset contains stress and non-stress related tweets.
- Twitter Non-Advert: This dataset is a denoised version of Twitter Full, removing potential advertisements.

Data Exploration (1)

Understanding the Data

- Explored the data using Python libraries like pandas to understand the number of rows, column names, and data types.
- Examined the first few rows of each Data Frame to get a sense of the content and labels.
- Checked for missing values and handled them by dropping rows with missing entries (dropna).
- Preprocessed the data:
 - Dropped unnecessary columns (Reddit Combi).
 - Cleaned hashtags in Twitter data using regular expressions.
 - Concatenated all preprocessed Data Frames into a single one.
- Analyzed the data distribution:
 - Visualized the distribution of stress labels using a bar chart.
 - Examined the distribution of text length for stress and non-stress articles using a histogram.
 - Generated word clouds to visualize frequently used words in stress and non-stress articles.

Data Exploration (2)

Understanding the Data

Number of Rows and Columns:

Reddit Combi: 3123 rows, 4 columns

o Reddit Title: 5556 rows, 2 columns

• Twitter Full: 8900 rows, 3 columns

• Twitter Non-Advert: 2051 rows, 2 columns

Data Types:

title: object (text)

label: int64/boolean (stress label)

body: object (text) (only in Reddit Combi)

hashtags: object (text) (only in Twitter Full)

Missing Values:

Handled missing values by dropping rows with missing entries in body column.

• Data Preprocessing:

- Dropped unnecessary columns in Reddit Combi.
- Cleaned hashtags in Twitter Full using regular expressions.
- Concatenated all datasets into a single DataFrame.

•

Data Exploration (3)

Frequency of Stressful and Non-Stressful Posts

- Class imbalance: More non-stressful articles than stressful ones.
- Impact on modeling: Require techniques like class weighting or oversampling.
- Further investigation: Explore factors contributing to imbalance (e.g., labeling difficulty, data collection bias).

Data Exploration (4)

Distribution of Text Length

- Skewed distribution: Most posts are relatively short.
- Overlapping distributions: Text length alone may not be a strong predictor.
- Non-stressful posts: Slightly longer on average

Data Exploration (5)

Common Words Associated with Stress

- Negative emotions: "stress,""depressed," "sad," "anxious"
- Life challenges: "work," "school,"
 "relationships," "personal
 problems"
- Seeking help: "help," "support,""therapy"

Data Exploration (6)

Common Words Associated with Non-Stress

- Positive emotions: "happy,""love," "good," "excited"
- Everyday life: "daily activities,"
 "hobbies," "social interactions"
- Gratitude and appreciation:
 "thankful," "grateful," "proud"

Data Split

Data Preparation for Modeling

- Split data into features (title) and target (stress label).
- Split data into training (80%) and testing (20%) sets.

Data Overview

- Key Findings:
 - Class imbalance: More non-stressful articles than stressful ones.
 - Overlapping text length distributions: Text length alone may not be a strong predictor of stress.
 - Distinct word patterns: Different words are frequently used in stress and non-stress articles.

Deliver (1)

Feature Engineering

- Key Features:
 - Text data (primary feature)
 - Captures sentiment, emotions, and vocabulary
- Business Significance:
 - Text features are crucial for understanding the linguistic cues associated with stress.
 - Effective feature engineering can improve model performance and interpretability.
- Techniques:
 - Text Cleaning:
 - Removes irrelevant information (punctuation, stop words, hashtags).
 - Text Normalization:
 - Lowercases text for consistency.
 - TF-IDF Vectorization:
 - Converts text into numerical features representing word importance.

Deliver (2)

Machine Models Used

- **LinearSVC:** This is a linear support vector classifier used in the initial model. It is a good choice for text classification tasks due to its simplicity and efficiency.
- **LSTM (Long Short-Term Memory):** This is a recurrent neural network architecture used in the later model. LSTMs are well-suited for sequential data like text, as they can capture long-term dependencies between words.

Deliver - LinearSVC (3)

Evaluation Metrics

- Accuracy: Measures the proportion of correct predictions made by the model.
- **Confusion Matrix:** Visualizes the number of correct and incorrect predictions for each class (stressful vs. non-stressful).
- Classification Report: Provides detailed information about the model's performance, including precision, recall, and F1-score for each class.
- **ROC AUC Score:** This metric is used for imbalanced datasets and measures the model's ability to distinguish between classes (AUC-ROC score closer to 1 indicates better performance).

Deliver - LinearSVC (5)

Evaluation Metrics - Confusion Matrix

	precision	recall	f1-score	support
0	0.89	0.86	0.87	1671
1	0.90	0.92	0.91	2252
accuracy			0.89	3923
macro avg	0.89	0.89	0.89	3923
weighted avg	0.89	0.89	0.89	3923

 This confusion matrix visualizes the performance of the LinearSVC model in classifying stress and non-stress posts.

Key Findings:

 Accuracy: 89% of samples were correctly classified.

Class-wise Performance:

■ Stress: Precision: 0.90, Recall: 0.92, F1-score: 0.91

■ Non-Stress: Precision: 0.88, Recall: 0.85,

F1-score: 0.87

Implications:

Overall good performance: 89% accuracy.

 Class imbalance impact: Model might be biased towards predicting non-stressful posts.

Deliver - LinearSVC (6)

Evaluation Metrics - Classification Report

This classification report summarizes the performance of the LinearSVC model on the test dataset.

Key Findings:

Overall Accuracy: 89%

• Class-wise Performance:

Stress: Precision: 0.90, Recall: 0.92,

F1-score: 0.91

Non-Stress: Precision: 0.88, Recall: 0.85,

F1-score: 0.87

Implications:

Strong overall performance.

Potential impact of class imbalance.

Deliver - LSTM Model Training (7)

LSTM Model Training Progress

Epoch 1/10	
442/442	11s 22ms/step - accuracy; 0.7707 - loss; 0.4693 - val_accuracy; 0.8675 - val_loss; 0.3341
Epoch 2/10	
442/442	9s 21ms/step - accuracy: 0.9062 - loss: 0.2452 - val_accuracy: 0.8720 - val_loss: 0.3301
Epoch 3/19	
442/442	9s 20ms/step - accuracy: 0.9411 - loss: 0.1673 - val_accuracy: 0.8764 - val_loss: 0.3346
Epoch 4/10	
442/442	9s 21ms/step - accuracy: 0.9562 - loss: 0.1304 - val_accuracy: 0.8739 - val_loss: 0.3582
Epoch 5/18	
442/442	9s 21ms/step - accuracy: 0.9650 - loss: 0.1055 - val_accuracy: 0.8790 - val_loss: 0.3990
Epoch 5/18	
442/442	9s 21ms/step - accuracy: 0.9803 - loss: 0.0678 - val_accuracy: 0.8694 - val_loss: 0.4369
Epoch 7/10	
442/442	9s 21ms/step - accuracy: 0.9804 - loss: 0.0629 - val_accuracy: 0.8745 - val_loss: 0.5123
Epoch 8/10	
442/442	9s 21ms/step - accuracy: 0.9839 - loss: 0.0474 - val_accuracy: 0.8790 - val_loss: 0.6108
Epoch 9/10	
442/442	9s 21ms/step - accuracy: 0.9869 - loss: 0.0450 - val_accuracy: 0.8726 - val_loss: 0.5503
Epach 10/10	
442/442	9s 21ms/step - accuracy: 0.9879 - loss: 0.0395 - val_accuracy: 0.8567 - val_loss: 0.5660
123/123	1s 4ms/step

This graph illustrates the training progress of the LSTM model, showing the changes in accuracy and loss over the epochs.

Key Findings:

- **Improving Accuracy:** Model learned from data over time.
- Decreasing Loss: Model minimized errors.
- Overfitting Potential: Evidence of overfitting.

Implications:

- High training accuracy but potential overfitting.
- Explore early stopping or regularization.

Deliver - LSTM Model Training (7)

Evaluation Metrics - ROC AUC Score

This ROC curve illustrates the performance of the LSTM model in distinguishing between stress and non-stress posts.

Key Findings:

- **AUC-ROC Score:** 0.92, indicating strong overall performance.
- Curve Shape: Upward-sloping curve, suggesting good discrimination ability.

Implications:

- Effective model for stress detection.
- Threshold selection for desired balance between sensitivity and specificity.

Deliver (8)

Deployment - Stress Detection Web Application (Stress)

Steamlit:

V1.0: https://socialmediastressdetection-7fzrqotzmpuwlwrcq82kpa.streamlit.app/

V0.2 (test): https://socialmediastressdetection-3rrnmlwq4coze4fgihuiq8.streamlit.app/

Sample sentence: "I can't believe I'm still up. It's already midnight. I have so much to do tomorrow, and I feel like I haven't accomplished anything today. My head is spinning, and I can't seem to focus. I just want to crawl into bed and disappear. I'm so tired and overwhelmed. I don't know how I'm going to make it through this week."

Deliver (9)

Deployment - Stress Detection Web Application (Non - Stress)

Steamlit:

V1.0: https://socialmediastressdetection-7fzrgotzmpuwlwrcg82kpa.streamlit.app/

V0.2 (test): https://socialmediastressdetection-3rrnmlwq4coze4fgihuiq8.streamlit.app/

Sample sentence: "Today was absolutely perfect! I woke up feeling refreshed and excited for the day ahead. I spent the morning enjoying a leisurely breakfast with my loved ones, followed by a long walk in the park. The sun was shining, the birds were singing, and I couldn't help but smile. I felt a sense of peace and contentment that I haven't experienced in a long time. It's truly amazing how a simple day filled with gratitude and joy can make such a difference."

Summary

- **Stress Detection Model:** Developed a successful NLP-based model to detect stress in social media text.
- **Model Performance:** Achieved high accuracy and F1-score, demonstrating strong performance in classifying stress and non-stress posts.
- Class Imbalance: Addressed the class imbalance issue through techniques like class weighting or oversampling.
- **Future Directions:** Considered potential improvements and future research directions.

Conclusions

- Accurate Stress Detection: Developed a model capable of accurately detecting stress in social media text.
- Valuable Insights: Gained insights into the linguistic patterns associated with stress and non-stress.
- Potential for Early Intervention: The model can be used for early identification of individuals at risk of stress.

Next Steps

- **Deployment:** Integrate the model into a real-world application (e.g., social media platform, mental health platform).
- Data Collection: Collect more diverse and representative data to improve model generalizability.
- **Model Refinement:** Explore advanced techniques like transfer learning or ensemble methods to further enhance performance.
- Ethical Considerations: Address ethical implications of using AI for mental health detection and ensure privacy and fairness.

Overall, this project demonstrates the potential of NLP-based approaches for early stress detection and highlights the importance of addressing ethical considerations in AI for mental health.

Appendices

References

Data Source:

https://www.kaggle.com/datasets/mexwell/stress-detection-from-social-media-articles

Source Code:

https://github.com/jimmychong1983/SocialMediaStressDetection

Steamlit:

V1.0: https://socialmediastressdetection-7fzrqotzmpuwlwrcq82kpa.streamlit.app/

V0.2 (test): https://socialmediastressdetection-3rrnmlwq4coze4fgihuiq8.streamlit.app/

Questions

Thank you End of Presentation