Abstract Data Types CMPT 145

Data Types

- A data type is:
 - A set of values
 - Operations that can be performed on those values.
- Some data types are provided by a language.
- New data types can be added to any language!

Data Type Examples

Integers

- Values: $\{..., -2, -1, 0, 1, 2, ...\}$
 - In Python, the integer data type has infinite range of values.
 - In many other languages, integers have finite range!
- Operations:
 - Addition (+)
 - Multiplication (*)
 - Modulo Division (%)
 - (and many more...)

Data Type Examples

- Booleans
 - Values: {True, False}
 - Operations:
 - OR
 - AND
 - NOT
- Some (old) languages do not have a Boolean data type, so they pretend that 0 means False and any other number is True)

Data Structures

A data structure is a data type whose values are compound values, organized in some way.

- Compound means multiple values are grouped together as part of a single collection.
- The organization gives the data type its structure.
- A data structure also has a set of operations on its values.

Data Structures Example

Strings

- Values: The set of all character sequences.
 - e.g. "dog", "Open 24/7"
- Operations:
 - len()
 - Method isdigit()
 - Method find()
 - Method replace()

0	1	2	3	4	5	6	7	8
'O'	'p'	'e'	'n'	, ,	'2'	'4'	'/'	'7'

Data Structures Examples

- Lists
 - Values: The set of all value sequences (any kind of value!)
 - e.g. ["behemoth", 10, 100]
 - Operations:
 - len()
 - Method append()
 - Method insert()
 - Method reverse()

Other Data Structure Examples

- Tuples
- Complex numbers
- Student records, employee records, Guinness World Book Records, ...
- A significant proportion of software design is choosing or designing data structures!

Abstract Data Types

- An Abstract Data Type (ADT) is a data type that
 - Hides the data values.
 Can only change values through its operations
 - 2. Hides the operation implementation.
 Only the interface is known.
 - 3. Hides the details about the organizational structure. Using the operations means you do not need to know the details!
- Described in terms of their:
 - 1. Purpose
 - 2. Operations
 - 3. Organization

How ADTs are used

ADT Examples: Python Lists

- Purpose:
 - Manage linear sequences of data values.
- Implementations:
 - Data:
 - Linked Nodes
 - Fixed Length Data Arrays
 - Operations:
 - Access a value by index
 - Remove, append, insert, reverse, ...

ADT Examples: Python Dictionary

- Purpose:
 - Manage pairs of associated data items
- Implementations:
 - Data:
 - Hash Tables
 - Binary Search Trees
 - Operations:
 - Look up a value by key
 - Add/Remove a key-value pair

ADT Example: Registry

- Purpose:
 - Manage a collection of indexed Boolean values
- Implementation:
 - Data structure:
 - List of Booleans
 - Operations:
 - Create a registry
 - Set a value to True
 - Set a value to False
 - Check a given value

Demo 1

Use the Registry ADT to improve our code solution to the Sieve of Eratosthenes problem

- How does the ADT support our design goals?
- How does the ADT support our implementation goals?

Demo 2

Use the Registry ADT to improve our code solution to the Coupon Collector problem

- How does the ADT support our design goals?
- How does the ADT support our implementation goals?

Statistics ADT

- Purpose:
 - Computes statistics of a numerical data set
- Implementation:
 - Data Structure:
 - Record (dictionary)
 - Operations:
 - Create an empty data set
 - Add number to data set
 - Compute statistic

Demo 3

Use the Statistics ADT to enhance our code solution to the Gambler's Ruin problem

- How does the ADT support our design goals?
- How does the ADT support our implementation goals?