Alfabetos, cadenas y lenguajes.

De manera muy amplia podría decirse que la computación es la manipulación de secuencias de símbolos. Pero el número de símbolos disponibles en cualquier mecanismo de cómputo es finito y todos los objetos usados como entradas o salidas (inputs/outputs) deben ser identificados en un tiempo finito. Desde el punto de vista teórico esto impone dos restricciones básicas: el conjunto de símbolos (alfabeto) debe ser finito y se deben considerar únicamente cadenas (secuencias de símbolos) de longitud finita. Surgen así los ingredientes esenciales de una teoría abstracta de la computación: *alfabetos* y *cadenas*. Los conjuntos de cadenas (ya sean finitos o infinitos) se denominarán *lenguajes*.

Un **alfabeto** es un conjunto finito no vacío cuyos elementos se llaman **símbolos.** Denotamos un alfabeto arbitrario con la letra Σ .

Una cadena o palabra sobre un alfabeto Σ es cualquier sucesión (o secuencia) finita de elementos de Σ . Admitimos la existencia de una única cadena que no tiene símbolos, la cual se denomina cadena vacía y se denota con λ . La cadena vacía desempeña, en la teoría de la computación, un papel similar al del conjunto vacío \emptyset en la teoría de conjuntos.

Ejemplo.

Sea $\Sigma = \{a, b\}$ el alfabeto que consta de los dos símbolos a y b. Las siguientes son cadenas sobre Σ :

aba

ababaaa

aaaab

Observe que $aba \neq aab$. El orden de los símbolos en una cadena es significativo ya que las cadenas se definen como *sucesiones*, es decir, conjuntos *secuencialmente ordenados*.

Ejemplo.

El alfabeto $\Sigma = \{0, 1\}$ se conoce como *alfabeto binario*. Las cadenas sobre este alfabeto son secuencias finitas de ceros y unos, llamadas *secuencias binarias*, tales como

001 1011

001000001.

Ejemplo.

 $\Sigma = \{a,b,c,...,x,y,z,A,E,C,...,X,Y,Z\}$, el alfabeto del idioma español. Las palabras oficiales del español (las que aparecen en el diccionario DRA) son cadenas sobre Σ .

Ejemplo.

El alfabeto utilizado por muchos de los llamados *lenguajes de programación* (como Pascal o C) es el conjunto de caracteres ASCII (o un subconjunto de él) que incluye, por lo general, las letras mayúsculas y minúsculas, los símbolos de puntuación y los símbolos matemáticos disponibles en los teclados estándares.

Cerradura de Kleene

El conjunto de *todas* las cadenas sobre un alfabeto Σ , incluyendo la cadena vacía, se denota por Σ^* .

Sea $\Sigma = \{a, b, c\}$, entonces $\Sigma^* = \{\lambda, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, abc, baa, ...\}.$

La siguiente tabla presenta la notación mas comúnmente utilizada en la teoría de la computación. De ser necesario, se pueden emplear subíndices.

Notación usada en la teoría de la computación	
Σ,Γ	denotan alfabetos.
Σ^*	denota el conjunto de todas las cadenas que se pueden formar con los símbolos del alfabeto Σ .
a,b,c,d,e,\dots	denotan símbolos de un alfabeto.
$\left egin{array}{l} u,v,w,x,y,z,\ lpha,eta,\gamma,\ \ldots \end{array} \right $	denotan cadenas, es decir, sucesiones finitas de símbolos de un alfabeto.
λ	denota la cadena vacía, es decir, la única cadena que no tiene símbolos.
$A, B, C, \ldots, L, M, N, \ldots$. denotan lenguajes (definidos más adelante).

NOTAS IMPORTANTES:

- Algunos autores denotan la cadena vacía con la letra griega ε. En la medida de lo posible utilizaremos λ para evitar confusión con el símbolo ε usado para la relación de pertenencia.
- La mayor parte de la teoría de la computación se hace con referencia a un alfabeto ∑ fijo (pero arbitrario)
- Algunas características principales del uso con cadenas es que pueden: Concatenarse, Invertirse, obtener su longitude lwl.

Concatenación de Cadenas.

Dado un alfabeto Σ y dos cadenas u, v $\in \Sigma^*$, la concatenación de u y v se denota como $u \cdot v$ o simplemente uv y se define descriptivamente así:

- 1. Si $v = \lambda$, entonces $u \cdot \lambda = \lambda \cdot u = u$. Es decir, la concatenación de cualquier cadena u con la cadena vacía, a izquierda o a derecha, es igual a u.
- 2. Si $u = a1a2 \cdot \cdot \cdot an$, $v = b1b2 \cdot \cdot \cdot bm$, entonces

$$u \cdot v = a1a2 \cdot \cdot \cdot anb1b2 \cdot \cdot \cdot bm$$

Es decir, $u \cdot v$ es la cadena formada escribiendo los símbolos de u y a continuación los símbolos de v.

La concatenación de cadenas se puede definir inductiva o recursivamente de la siguiente manera. Si $u, v \in \Sigma^*$, $a \in E$, entonces

1.
$$\mathbf{u} \cdot \mathbf{\lambda} = \mathbf{\lambda} \cdot \mathbf{u} = \mathbf{u}$$
.

2.
$$u \cdot (va) = (u \cdot v)a$$
.

Propiedad. La concatenación de cadenas es una operación asociativa. Es

decir, si u, v, w $\in \Sigma^*$, entonces

$$(uv)w = u(vw).$$

Potencias de una cadena

Dada $u \in \Sigma^* y \ n \in \mathbb{N}$, se define (descriptivamente) $u^{\wedge} n$ en la siguiente forma

$$u^{\wedge}o=\lambda$$
,

$$u \cdot n = uu \cdot \cdot \cdot u$$
, $n \ veces$

Longitud de una cadena

La **longitud** de una cadena $\mathcal{U} \in \Sigma^*$ se denota $|\mathcal{U}|$ y se define como el número

de símbolos de *u* (contando los símbolos repetidos). Es decir,

$$|u| = \begin{cases} 0, & \text{si } u = \lambda \end{cases}$$

$$n$$
 si $u = a_1 a_2 \cdots a_n$.

Ejemplo

$$|aba| = 3$$
, $|baaa| = 4$.

Reflexión o inversa de una cadena

La **reflexión** o **inversa** de una cadena $u \in \Sigma^*$ se denota u^R y se define descriptivamente así:

$$u^{R} = \begin{cases} \lambda, & \text{si } u = \lambda, \\ a_{n} \cdots a_{2} a_{1}, & \text{si } u = a_{1} a_{2} \cdots a_{n}. \end{cases}$$

De la definición se observa claramente que la reflexión de la reflexión de una cadena es la misma cadena, es decir,

$$(u^R)^R = u, \qquad \text{para } u \in \Sigma^*.$$

Lenguajes.

Un lenguaje L sobre un alfabeto Σ es un subconjunto de Σ^* , es decir $L \subseteq \Sigma^*$.

Casos extremos:

 $L = \varnothing,$ Σ^* lenguaje vacío.

 $L=\Sigma^*$, lenguaje de todas las cadenas sobre Σ .

Todo lenguaje L satisface $\varnothing \subseteq L \subseteq \Sigma^*$, y puede ser finito o infinito. Los lenguajes se denotan con letras mayúsculas $A, B, C, \ldots, L, M, N, \ldots$ En la siguiente gráfica se visualizan dos lenguajes A y B sobre Σ .

Un lenguaje L sobre un alfabeto Σ es un subconjunto de Σ^* , es decir $L \subseteq \Sigma^*$.

Casos extremos:

$$\begin{split} L &= \varnothing, & \text{lenguaje vac\'io.} \\ L &= \Sigma^*, & \text{lenguaje de todas las cadenas sobre } \Sigma. \end{split}$$

Todo lenguaje L satisface $\varnothing \subseteq L \subseteq \Sigma^*$, y puede ser finito o infinito. Los lenguajes se denotan con letras mayúsculas $A, B, C, \ldots, L, M, N, \ldots$ En la siguiente gráfica se visualizan dos lenguajes A y B sobre Σ .

Ejemplos de lenguajes sobre los alfabetos especificados

- $\Sigma = \{a, b, c\}$. $L = \{a, aba, aca\}$.
- $\Sigma = \{a, b, c\}$. $L = \{a, aa, aaa, \ldots\} = \{a^n : n \ge 1\}$.
- $\Sigma = \{a, b, c\}$. $L = \{\lambda, aa, aba, ab^2a, ab^3a, \ldots\} = \{ab^na : n \ge 0\} \cup \{\lambda\}$.
- $\Sigma = \{a, b, c, \dots, x, y, z, A, B, C, \dots, X, Y, Z\}$. $L = \{u \in \Sigma^* : u \text{ aparece}$ en el diccionario español DRA $\}$. L es un lenguaje finito.
- $\Sigma = \{a, b, c\}$. $L = \{u \in \Sigma^* : u \text{ no contiene el símbolo } c\}$. Por ejemplo, $abbaab \in L$ pero $abbcaa \notin L$.
- $\Sigma = \{0, 1\}$. L = conjunto de todas las secuencias binarias que contienen un número impar de unos.
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. El conjunto \mathbb{N} de los números naturales se puede definir como un lenguaje sobre Σ , en la siguiente forma:

$$\mathbb{N} = \{ u \in \Sigma^* : u = 0 \text{ \'o } 0 \text{ no es un prefijo de } u \}.$$