PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12Q 1/68, C12P 19/34, C07H 21/02, 21/04

(11) International Publication Number: WO 98/03683

(43) International Publication Date: 29 January 1998 (29.01.98)

(21) International Application Number: PCT/US97/12606

(22) International Filing Date: 18 Ju

18 July 1997 (18.07.97)

(30) Priority Data: 60/020,998

19 July 1996 (19.07.96)

US

(71) Applicants (for all designated States except US): THE RE-GENTS OF THE UNIVERSITY OF MICHIGAN [US/US]; Technology Management Office, Wolverine Tower, Roon 2071, 3003 South State Street, Ann Arbor, MI 48109-1280 (US). BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIVERSITY [US/US]; East Lansing, MI 48824 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): VENTA, Patrick, J. [US/US]; 9646 Rolling Green, Pinckney, MI 48169 (US). BREWER, George, J. [US/US]; 3820 Gensley, Ann Arbor, MI 48103 (US). YUZBASIYAN-GURKAN, Vilma [US/US]; 3101 Dexter Road, Ann Arbor, MI 48103 (US). SCHALL, William, D. [US/US]; 3150 S. Williamston, Williamston, MI 48895 (US).
- (74) Agents: SMITH, DeAnn, F. et al.; Harness, Dickey & Pierce, P.L.C., P.O. Box 828, Bloomfield Hills, MI 48303 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

. With international search report.

(54) Title: DNA ENCODING CANINE VON WILLEBRAND FACTOR AND METHODS OF USE

(57) Abstract

The complete sequence of the canine von Willebrand Factor cDNA and deduced amino acid sequence is provided. The mutation which causes von Willebrand's Disease in Scottish Terriers, a single base deletion in exon 4, has also been determined. Methods for detecting carriers of the defective vWF gene are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fl	Finland	LT	Lithuania	SK	Slovakia
АT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	1.atvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		•
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation	•	•
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PCT/US97/12606

DNA ENCODING CANINE VON WILLEBRAND FACTOR AND METHODS OF USE

FIELD OF THE INVENTION

This invention relates generally to canine von Willebrand factor (vWF), and more particularly, to the gene encoding vWF as well as a genetic defect that causes canine von Willebrand's disease.

BIOLOGICAL DEPOSITS

SEQUENCE

ACCESSION NO.

Canine von Willebrand Factor

10

15

25 ·

30

BACKGROUND OF THE INVENTION

In both dogs and humans, von Willebrand's disease (vWD) is a bleeding disorder of variable severity that results from a quantitative or qualitative defect in von Willebrand factor (vWF) (Ginsburg, D. et al., Blood 79:2507-2519 (1992); Ruggeri, Z.M., et al., FASEB J 7:308-316 (1993); Dodds, W.J., Mod Vet Pract 681-686 (1984); Johnson, G.S. et al., JAVMA 176:1261-1263 (1988); Brooks, M., Probl In Vet Med 4:636-646 (1992)). This clotting factor has two known functions, stabilization of Factor VIII (hemophilic factor A) in the blood, and aiding the adhesion of platelets to the subendothelium, which allows them to provide hemostasis more effectively. If the factor is missing or defective, the patient, whether human or dog, may bleed severely. 20

The disease is the most common hereditary bleeding disorder in both species, and is genetically and clinically heterogenous. Three clinical types, called 1, 2, and 3 (formerly I, II, and III; see Sadler, J.E. et al., Blood 84:676-679 (1994) for nomenclature changes), have been described. Type 1 vWD is inherited in a dominant, incompletely penetrant fashion. Bleeding appears to be due to the reduced level of vWF rather than a qualitative difference. Although this is the most common form of vWD found in most mammals, and can cause serious bleeding problems, it is generally less severe than the other two types. In addition, a relatively inexpensive vasopressin analog (DDAVP) can help alleviate symptoms (Kraus, K.H. et al., Vet Surg 18:103-109 (1989)).

In Type 2 vWD, patients have essentially normal levels of vWF, but the factor is abnormal as determined by specialized tests (Ruggeri, Z.M., et al., FASEB J 7:308-316 (1993); Brooks, M., Probl In Vet Med 4:636-646 (1992)). This type is also

15

20

30

inherited in a dominant fashion and has only rarely been described in dogs (Turrentine, M.A., et al., Vet Clin North Am Small Anim Pract 18:275 (1988)).

Type 3 vWD is the most severe form of the disease. It is inherited as an autosomal recessive trait, and affected individuals have no detectable vWF in their blood. Serious bleeding episodes require transfusions of blood or cryoprecipitate to supply the missing vWF. Heterozygous carriers have moderately reduced factor concentrations, but generally appear to have normal hemostasis.

Scottish terriers have Type 3 vWD (Dodds, W.J., Mod Vet Pract 681-686 (1984); Johnson, G.S. et al., JAVMA 176:1261-1263 (1988)). Homozygotes have no detectable vWF and have a severe bleeding disorder. Heterozygotes have reduced levels of the factor, and are clinically normal (Brooks, M. et al., JAVMA 200:1123-1127 (1992)). The prevalence of vWD among Scottish terriers including both heterozygotes and homozygotes has been variously estimated from 27-31% (Stokol, T. et al., Res. Vet. Sci. 59:152-155 (1995); Brooks, M., Proc. 9th ACVIM Forum 89-91 (1991)).

Currently, detection of affected and carrier Scottish terrier dogs is done by vWF antigen testing (Benson, R.E. et al., Am J Vet Res 44:399-403 (1983); Stokol, T. et al., Res. Vet. Sci. 59:152-155 (1995)) or by coagulation assays (Rosborough, T.K. et al., J. Lab. Clin. Med. 96:47-56 (1980); Read, M.S. et al., J. Lab. Clin. Med. 101:74-82 (1983)). These procedures yield variable results, as the protein-based tests can be influenced by such things as sample collection, sample handling, estrous, pregnancy, vaccination, age, and hypothyroidism (Strauss, H.S. et al., New Eng J Med 269:1251-1252 (1963); Bloom, A.L., Mayo Clin Proc 66:743-751 (1991); Stirling, Y. et al., Thromb Haemostasis 52:176-182 (1984); Mansell, P.D. et al., Br. 25 Vet. J. 148:329-337 (1992); Avgeris, S. et al., JAVMA 196:921-924 (1990); Panciera, D.P. et al., JAVMA 205:1550-1553 (1994)). Thus, for example, a dog that tests within the normal range on one day, can test within the carrier range on another day. It is therefore difficult for breeders to use this information.

It would thus be desirable to provide the nucleic acid sequence encoding canine vWF. It would also be desirable to provide the genetic defect responsible for canine vWD. It would further be desirable to obtain the amino acid sequence of canine vWF. It would also be desirable to provide a method for detecting carriers of the defective vWF gene based on the nucleic acid sequence of the normal and defective vWF gene.

15

20

25

30

35

SUMMARY OF THE INVENTION

The present invention provides a novel purified and isolated nucleic acid sequence encoding canine vWF. A nucleic acid sequence containing the mutation that causes vWD in Scottish terriers, a single-base deletion in exon 4, is also provided. The nucleic acid sequences of the present invention may be used in methods for detecting carriers of the mutation that causes vWD. Such methods may be used by breeders to reduce the frequency of the disease-causing allele and the incidence of disease. In addition, the nucleic acid sequence of the canine vWF provided herein may be used to determine the genetic defect that causes vWD in other breeds as well as other species.

Additional objects, advantages, and features of the present invention will become apparent from the following description, taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The various advantages of the present invention will become apparent to one skilled in the art by reading the following specification and by referencing the following drawings in which:

Figures 1A-1C is the nucleic acid sequence of the canine von Willebrand factor of the present invention;

Figures 2A-2C is a comparison of the human and canine prepro-von Willebrand factor amino acid sequences;

Figure 3 provides nucleotide sequencing ladders for the von Willebrand's disease mutation region for normal (clear), carrier, and affected Scottish terriers, the sequences being obtained directly from PCR products derived from genomic DNAs in exon 4;

Figure 4 illustrates the results of a method of the present invention used to detect the Scottish terrier vWD mutation; and

Figure 5 shows the Scottish terrier pedigree, which in turn illustrates segregation of the mutant and normal vWF alleles.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The cDNA encoding canine von Willebrand Factor (vWF) has been sequenced, and its sequence is set forth in Figures 1A-1C and SEQ ID NO: 1. The amino acid sequence corresponding to the cDNA of canine vWF has been subsequently deduced and is set forth in Figures 2A-2C and SEQ ID NO: 2. The mutation of the normal vWF gene which causes von Willebrand's Disease (vWD),

15

20

25

30

a deletion at codon 88 of the normal gene resulting in a frameshift, is also provided. The nucleic acid sequences of the present invention may be used in methods for detecting homozygous and heterozygous carriers of the defective vWF gene.

In a preferred method of detecting the presence of the von Willebrand allele in canines, DNA samples are first collected by relatively noninvasive techniques, *i.e.*, DNA samples are obtained with minimal penetration into body tissues of the animals to be tested. Common noninvasive tissue sample collection methods may be used and include withdrawing buccal cells via cheek swabs and withdrawing blood samples. Following isolation of the DNA by standard techniques, PCR is performed on the DNA utilizing pre-designed primers that produce enzyme restriction sites on those DNA samples that harbor the defective gene. Treatment of the amplified DNA with appropriate restriction enzymes such as *BsiE* I thus allows one to analyze for the presence of the defective allele. One skilled in the art will appreciate that this method may be applied not only to Scottish terriers, but to other breeds such as Shetland sheepdogs and Dutch Kooikers.

Overall, the present invention provides breeders with an accurate, definitive test whereby the undesired vWD gene may be eliminated from breeding lines. The current tests used by breeders are protein-based, and as noted previously, the primary difficulty with this type of test is the variability of results due to a variety of factors. The ultimate result of such variability is that an inordinate number of animals fall into an ambiguous grouping whereby carriers and noncarriers cannot be reliably distinguished. The present invention obviates the inherent limitations of protein-based tests by detecting the genetic mutation which causes vWD. As described in Specific Example 1, the methods of the present invention provide an accurate test for distinguishing noncarriers, homozygous carriers and heterozygous carriers of the defective vWF gene.

It will be appreciated that because the vWF cDNA of the present invention is substantially homologous to vWF cDNA throughout the canine species, the nucleic acid sequences of the present invention may be used to detect DNA mutations in other breeds as well. In addition, the canine vWF sequence presented herein potentially in combination with the established human sequence (Genbank Accession No. X04385, Bonthron, D. et al., *Nucleic Acids Res.* 14:7125-7128 (1986); Mancuso, D.J. et al., *Biochemistry* 30:253-269 (1989); Meyer, D. et al., *Throm Haemostasis* 70:99-104 (1993)), may be used to facilitate sequencing of the vWF

15

20

25

30

35

gene and genetic defects causing vWD, in other mammalian species e.g., by using cross-species PCR methods known by those skilled in the art.

It is also within the contemplation of this invention that the isolated and purified nucleic acid sequences of the present invention be incorporated into an appropriate recombinant expression vector, e.g., viral or plasmid, which is capable of transforming an appropriate host cell, either eukaryotic (e.g., mammalian) or prokaryotic (e.g., E. coli). Such DNA may involve alternate nucleic acid forms, such as cDNA, gDNA, and DNA prepared by partial or total chemical synthesis. The DNA may also be accompanied by additional regulatory elements, such as promoters, operators and regulators, which are necessary and/or may enhance the expression of the vWF gene product. In this way, cells may be induced to over-express the vWF gene, thereby generating desired amounts of the target vWF protein. It is further contemplated that the canine vWF polypeptide sequence of the present invention may be utilized to manufacture canine vWF using standard synthetic methods. One skilled in the art will also note that the defective protein encoded by the defective vWF gene of the present invention may also be of use in formulating a complementary diagnostic test for canine vWD that may provide further data in establishing the presence of the defective allele. Thus, production of the defective vWF polypeptide, either through expression in transformed host cells as described above for the active vWF polypeptide or through chemical synthesis, is also contemplated by the present invention.

The term "gene" as to referred herein means a nucleic acid which encodes a protein product. The term "nucleic acid" refers to a linear array of nucleotides and nucleosides, such as genomic DNA, cDNA and DNA prepared by partial or total chemical synthesis from nucleotides. The term "encoding" means that the nucleic acid may be transcribed and translated into the desired polypeptide. "Polypeptide" refers to amino acid sequences which comprise both full-length proteins and fragments thereof. "Mutation" as referred to herein includes any alteration in a nucleic acid sequence including, but not limited to, deletions, substitutions and additions.

As referred to herein, the term "capable of hybridizing under high stringency conditions" means annealing a strand of DNA complementary to the DNA of interest under highly stringent conditions. Likewise, "capable of hybridizing under low stringency conditions" refers to annealing a strand of DNA complementary to the DNA of interest under low stringency conditions. In the present invention, hybridizing

25

30

under either high or low stringency conditions would involve hybridizing a nucleic acid sequence (e.g., the complementary sequence to SEQ ID NO: 1 or portion thereof), with a second target nucleic acid sequence. "High stringency conditions" for the annealing process may involve, for example, high temperature and/or low salt 5 content, which disfavor hydrogen bonding contacts among mismatched base pairs. "Low stringency conditions" would involve lower temperature, and/or lower salt concentration than that of high stringency conditions. Such conditions allow for two DNA strands to anneal if substantial, though not near complete complementarity exists between the two strands, as is the case among DNA strands that code for the same protein but differ in sequence due to the degeneracy of the genetic code. Appropriate stringency conditions which promote DNA hybridization, for example, 6X SSC at about 45 °C, followed by a wash of 2X SSC at 50 °C are known to those skilled in the art or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.31-6.3.6. For example, the salt concentration in the wash step can be selected from a low stringency of about 2X SSC at 50 °C to a high stringency of about 0.2X SSC at 50 °C. In addition, the temperature in the wash step can be increased from low stringency at room temperature, about 22 °C, to high stringency conditions, at about 65 °C. Other stringency parameters are described in Maniatis, T., et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring NY, (1982), at pp. 387-389; see also Sambrook J. et al., Molecular Cloning: A Laboratory Manual, Second Edition, Volume 2, Cold Spring Harbor Laboratory Press, Cold Spring, NY at pp. 8.46-8.47 (1989).

SPECIFIC EXAMPLE 1 Materials And Methods

Isolation of RNA. The source of the RNA was a uterus from a Scottish Terrier affected with vWD (factor level < 0.1% and a clinical bleeder), that was surgically removed because of infection. Spleen tissue was obtained from a Doberman Pinscher affected with vWD that died from dilated cardiomyopathy (factor level 7% and a clinical bleeder). Total RNA was extracted from the tissues using Trizol (Life Technologies, Gaithersburg, MD). The integrity of the RNA was assessed by agarose gel electrophoresis.

Design of PCR primer sets. Primers were designed to a few regions of the gene, where sequences from two species were available (Lavergne, J.M. et al., Biochem Biophys Res Commun 194:1019-1024 (1993); Bakhshi, M.R. et al., Biochem Biophys Acta 1132:325-328 (1992)). These primers were designed using

15

20

30

35

rules for cross-species' amplifications (Venta et al., "Genes-Specific Universal Mammalian Sequence-Tagged Sites: Application To The Canine Genome" *Biochem. Genet.* (1996) in press). Most of the primers had to be designed to other regions of the gene using the human sequence alone (Mancuso, D.J. et al., *Biochemistry* 30:253-269 (1991)). Good amplification conditions were determined by using human and canine genomic DNAs.

Reverse Transcriptase-PCR. Total RNA was reverse transcribed using random primers (Bergenhem, N.C.H. et al., PNAS (USA) 89:8789-8802 (1992)). The cDNA was amplified using the primer sets shown to work on canine genomic DNA.

DNA Sequence Analysis. Amplification products of the predicted sizes were isolated from agarose gels by adsorption onto silica gel particles using the manufacturer's method (Qiagen, Chatsworth, CA). Sequences were determined using ³²P-5′ end-labeled primers and a cycle sequencing kit (United States Biochemical Corp., Cleveland, OH). The sequences of the 5′ and 3′ untranslated regions were determined after amplification using Marathon™ RACE kits (Clontech, Palo Alto, CA). Sequences were aligned using the Eugene software analysis package (Lark Technologies, Houston, TX). The sequence of the canine intron four was determined from PCR-amplified genomic DNA.

Design of a Diagnostic Test. PCR mutagenesis was used to create diagnostic and control BsiE I and Sau96 I restriction enzyme sites for the test. Amplification conditions for the test are: 94°C, 1 min, 61°C, 1 min, and 72°C, 1 min, for 50 cycles using cheek swab DNA (Richards, B. et al., Human Molecular Genetics 2:159-163 (1992)).

Population Survey. DNA was collected from 87 Scottish terriers from 16 pedigrees. DNA was isolated either from blood using standard procedures (Sambrook, J. et al., Cold Harbor Spring Lab, Cold Harbor Spring NY, 2nd Edition, (1989)) or by cheek swab samples (Richards, B. et al., Human Molecular Genetics 2:159-163 (1992)). The genetic status of each animal in the survey was determined using the BsiE I test described above.

Results

Comparison of the canine and human sequences. The alignment of the canine and human prepro-von Willebrand Factor amino acid sequences is shown in Figures 2A-2C. The location of the Scottish terrier vWD mutation is indicated by the Potential N-glycosylation sites are shown in bold type. The known and postulated integrin binding sites are boxed. Amino acid numbers are shown on the

right side of the figure. The human sequence is derived from Genbank accession number X04385 (Bonthron, D. et al., *Nucleic Acids Res.* 14:7125-7128 (1986)).

Overall, 85.1% sequence identity is seen between the prepro-vWF sequences. The pro-region is slightly less conserved than the mature protein (81.4% vs. 87.5%). There were no other noteworthy percentage sequence identity differences seen in other regions of the gene, or between the known repeats contained within the gene (data not shown). Fourteen potential N-linked glycosylation sites are present in the canine sequence, all of which correspond to similar sites contained within the human sequence. The two integrin binding sites identified in the human vWF protein sequence (Lankhof, H. et al., Blood 86:1035-1042 (1995)) are conserved in the canine sequence as well (Figures 2A-2C). The 5' and 3' untranslated regions have diverged to a greater extent than the coding region (data not shown), comparable to that found between the human and bovine sequences derived for the 5' flanking region (Janel, N. et al., Gene 167:291-295 (1995)). Additional insights into the structure and function of the von Willebrand factor can be gained by comparison of the complete human sequence (Mancuso, D.J. et al., Biochemistry 30:253-269 (1989); Meyer, D. et al., Throm Haemostasis 70:99-104 (1993)) and the complete canine sequence reported here.

10

15

20

25

30

The sequence for most of exon 28 was determined (Mancuso, D.J. et al., *Thromb Haemost* 69:980 (1993); Porter, C.A. et al., *Mol Phylogenet Evol* 5:89-101 (1996)). All three sequences are in complete agreement, although two silent variants have been found in other breeds (Table 1, exon 28). Partial sequences of exons 40 and 41 (cDNA nucleotide numbers 6923 to 7155, from the initiation codon) were also determined as part of the development of a polymorphic simple tandem repeat genetic marker (Shibuya, H. et al., *Anim Genet* 24:122 (1994)). There is a single nucleotide sequence difference between this sequence ("T") and the sequence of the present invention, ("C") at nucleotide position 6928.

Scottish Terrier vWD mutation. Figure 3 shows nucleotide sequencing ladders for the von Willebrand's Disease mutation region for normal (clear), carrier, and affected Scottish terriers. The sequences were obtained directly from PCR products derived from genomic DNAs in exon 4. The arrowheads show the location of the C nucleotide that is deleted in the disease-causing allele. Note that in the carrier ladder each base above the point of the mutation has a doublet appearance, as predicted for deletion mutations. The factor levels reported for these animals were: Normal, 54%; Carrier, 34%; Affected, <0.1%.

15

25

30

As a result of the deletion, a frameshift mutation at codon 88 leads to a new stop codon 103 bases downstream. The resulting severely truncated protein of 119 amino acids does not include any of the mature von Willebrand factor region. The identity of the base in the normal allele was determined from an unaffected dog.

Development of a diagnostic test. A PCR primer was designed to produce a BsiE I site in the mutant allele but not in the normal allele (Figure 4). The position of the deleted nucleotide is indicated by an asterisk. The altered nucleotides in each primer are underlined. The normal and mutant allele can also be distinguished using Sau96 I. The naturally occurring Sau96 I sites are shown by double underlines. The highly conserved donor and acceptor dinucleotide splice sequences are shown in bold type.

In order to ensure that the restriction enzyme cut the amplified DNA to completion, an internal control restriction site common to both alleles was designed into the non-diagnostic primer. The test was verified by digestion of the DNA from animals that were affected, obligate carriers, or normal (based on high factor levels [greater than 100% of normal] obtained from commonly used testing labs and reported to us by the owners, and also using breeds in which Type 3 vWD has not been observed). The expected results were obtained (e.g., Figure 5). Five vWD-affected animals from a colony founded from Scottish terriers (Brinkhous, K.M. et al., Ann. New York Acad. Sci. 370:191-203 (1981)) were also shown to be homozygous for this mutation. An additional unaffected animal from this same colony was found to be clear.

It would still be possible to misinterpret the results of the test if restriction enzyme digestion was not complete, and if the rates of cleavage of the cont778rol and diagnostic sites were vastly different. The rates of cleavage of the two BsiE I sites were thus examined by partially digesting the PCR products and running them on capillary electrophoresis. The rates were found to be very nearly equal (the diagnostic site is cut 12% faster than the control site).

The mutagenesis primer was also designed to produce a Sau96 I site into the normal allele but not the mutant allele. This is the reverse relationship compared to the BsiE I-dependent test, with respect to which allele is cut. Natural internal Sau96 I sites serve as digestion control sites (shown in Figure 4). The test using this enzyme produced identical genotypic results compared to the BsiE I for all animals examined (data not shown).

15

20

A possible mutation in the Doberman Pinscher gene. The complete Scottish terrier sequence was compared to the complete Doberman Pinscher sequence. Several nucleotide differences were found and were compared to the nucleotides found in the same position in the human sequence as shown in Table 1 below. Most of these changes were silent. However, of three amino acid changes, one is relatively non-conservative (F905L) and is proposed to be the mutation that causes Doberman Pinscher vWD. Other data strongly suggest that the nucleotide interchange at the end of exon 43 causes a cryptic splice site to be activated reducing the amount of normally processed mRNA, with a concomitant decrease in the amount of vWF produced.

Mendelian inheritance. One test often used to verify the correct identification of a mutant allele is its inheritance according to Mendel's law of segregation. Three pedigrees were examined in which the normal and mutant alleles were segregating, as shown in Figure 5. Exon four of the vWF gene was PCR-amplified from genomic DNA. The PCR products were examined for the presence of the normal and mutant vWF alleles by agarose gel electrophoresis after digestion with BsiE I (see Figure 5). The affected animals are homozygous for the mutant allele (229 bp; lanes 3 and 5). The other animals in this pedigree are heterozygotes (251 bp and 229 bp; lanes 1, 2, 4, and 6), including the obligate carrier parents.

Table 1 - Differences Between Scottie And Doberman Protein And Nucleotide von Willebrand Factor Sequences With Comparison To The Human Sequences

			Amino Acid			Codon	
Exon	A.A.1	Human	Scottie	Doberman	Human	Scottie	Doberma
5' UT²	nuc - 35 ³	N/A ⁴	N/A	N/A	N/A	A	G
4	85	s	S/F.Shift ⁵	s	TCC	TCC/TC_	TCC
- 5	173	М	R	К	ATG	AGG	AAG
11	422	s	Т	T	TCC	ACA	ACC
21	898	C·	С	С	TGC	TGT	TGC
21	905	F	F	Ľ	गा	TTC	TTA
24	1041	s	S	S	TCA	TCA	TCG
24 .	1042	s	<u>.</u> . S	S	TCC	TCC	TCA
28-	1333	D .	D	E	GAC	GAC	GAG
28	1349	Y	Υ.	Υ	TAT	TAT	TAC*
42 -	2381	P	L	. Р	CCC	CTG	CCG
43	2479	s	S	S	TCG	TCG	TCA
45	2555	P	P	Р	ccc	ccc	CCG
47	2591	Р	P	Р	ccc	CCT	ccc
49	2672	D	D	D	GAT	GAT	GAC
51	2744	E	Ē	€ .	GAG	GAG	GAA

¹Amino acid residue position

Boxed residues show amino acid differences between breeds *This site has been shown to be polymorphic in some breeds The mature VWF protein begins in exon 18

The alleles, as typed by both the *Bsi*E I and *Sau*96 I tests, showed no inconsistencies with Mendelian inheritance. One of these pedigrees included two affected animals, two phenotypically normal siblings, and the obligate carrier parents. The two parents were found to be heterozygous by the test, the two affected animals were found to be homozygous for the mutant allele, and the normal siblings were found to be heterozygotes.

²Untranslated region

³Nucleotide position

⁴Not Applicable

²⁵ Frameshift mutation

WO 98/03683 PCT/US97/12606

- 12 -

Population survey for the mutation. Cheek swabs or blood samples were collected from 87 animals in order to determine the incidence of carriers in the U.S. Scottish terrier population. Although we attempted to make the sample as random as possible, these dogs were found to come from 16 pedigrees, several of which are more distantly interconnected. This is due to some ascertainment bias, based on ownership (as opposed to phenotypic ascertainment bias). In these 87 animals four affected and 15 carrier animals were found.

Discussion

10

15

20

30

35

These results establish that the single base deletion found in exon four of the vWF gene causes vWD in the Scottish terrier breed. The protein produced from the mutant allele is extremely short and does not include any of the mature vWF protein. Four Scottish terriers known to be affected with the disease are homozygous for the mutation. Five other mixed-breed dogs descended from Scottish terriers, and affected with vWD, are also homozygous for the mutation. No normal animals are homozygous for the mutation. Unaffected obligate carriers are always heterozygous for the mutation.

The gene frequency, as determined from the population survey, appears to be around 0.13 resulting in a heterozygote frequency of about 23% and expected frequency of affected animals of about 2%. Although the sample size is relatively small and somewhat biased, these data are in general agreement with the protein-based surveys (Stokol, T. et al., Res Vet Sci 59:152-155 (1995); Brooks, M., Probl In Vet Med 4:636-646 (1992)), in that the allele frequency is substantial.

All data collected thus far indicate that this mutation accounts for essentially all of the von Willebrand's disease found in Scottish terriers. This result is consistent with the results found for other genetic diseases, defined at the molecular level, in various domestic animals (Shuster, D.E. et al., *PNAS (USA)* 89:9225-9229 (1992); Rudolph, J.A. et al., *Nat Genet* 2:144-147 (1992); O'Brien, P.J. et al., *JAVMA* 203:842-851 (1993)). A likely explanation may be found in the pronounced founder effect that occurs in domestic animals, compared to most human and wild animal populations.

Published data using the protein-based factor assays have shown that, at least in several instances, obligate carriers have had factor levels that would lead to a diagnosis of "clear" of the disease allele. For example, in one study an obligate carrier had a factor level of 78% (Johnson, G.S. et al., *JAVMA* 176:1261-1263 (1980)). In another study, at least some of the obligate carriers had factor levels of

25

30

65% or greater (Brinkhous, K.M. et al., Ann. New York Acad. Sci. 370:191-203 (1981)). In addition, the number of animals that fall into an equivocal range can be substantial. In one study, 19% of Scottish terriers fell in this range (50-65% of the normal vWF antigen level) (Stokol, T. et al., Res Vet Sci 59:152-155 (1995)). Thus, although the protein-based tests have been useful, the certainty of the DNA-based test described herein should relieve the necessity of repeated testing and the variability associated with the protein-based assays.

The mutation is present in the pre-vWF part of the molecule. This part of the molecule is processed off prior to delivery of the mature protein into the plasma. This pre-portion of the molecule is important for the assembly of the mature vWF protein (Verwiej, L. et al., EBMO J 6:2885-2890 (1987); Wise, R.J. et al., Cell 52:229-236 (1988)). With the Scottish terrier frameshift vWD mutation, neither this pre-portion nor any of the mature factor is ever produced, in keeping with the fact that no factor has ever been detected in the blood of affected dogs.

The determination of the complete canine vWF cDNA sequence will have an impact upon the development of carrier tests for other breeds and other species as well. Currently, Shetland sheepdogs and Dutch Kooikers are known to have a significant amount of Type 3 vWD (Brooks, M. et al., JAVMA 200:1123-1127 (1992); Slappendel, R.J., Vet-Q 17:S21-S22 (1995)). Type 3 vWD has occasionally be seen 20 in other breeds as well (e.g., Johnson, G.S. et al., JAVMA 176:1261-1263 (1980)). All Type 3 vWD mutations described in humans to date have been found within the vWF gene itself. The availability of the canine sequence will make it easier to find the mutations in these breeds. In addition, at least some Type 1 mutations have been found within the human vWF gene, and thus Type 1 mutations may also be found within the vWF gene for breeds affected with that form of the disease. The availability of two divergent mammalian vWF cDNA sequences will also make it much easier to sequence the gene from other mammalian species using crossspecies PCR methods (e.g., Venta et al., Biochem. Genet. (1996) in press).

The test described herein for the detection of the mutation in Scottish terriers may be performed on small amounts of DNA from any tissue. The tissues that are the least invasive to obtain are blood and buccal cells. For maximum convenience, a cheek swab as a source of DNA is preferred.

The foregoing discussion discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings, that various changes, modifications and variations can be made therein without departing from the spirit and scope of the invention.

All patents and other publications cited herein are expressly incorporated by reference.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Venta, Patrick J Yuzbasiyan-Gurkan, Vilma Schall, William D Brewer, George J
- (ii) TITLE OF INVENTION: DNA ENCODING CANINE VON WILLEBRAND FACTOR AND METHODS OF USE
- (iii) NUMBER OF SEQUENCES: 2
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Harness, Dickey & Pierce, P.L.C.
 - (B) STREET: 5445 Corporate Drive
 - (C) CITY: Troy
 - (D) STATE: Michigan
 - (E) COUNTRY: USA
 - (F) ZIP: 48098
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Smith, DeAnn F.
 - (C) REFERENCE/DOCKET NUMBER: 211501226PCA
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 248-641-1600
 - (B) TELEFAX: 248-641-0270
 - (C) TELEX: 287637
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8802 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (ix) FEATURE:

 - (A) NAME/KEY: CDS
 (B) LOCATION: 203..8641
 - (D) OTHER INFORMATION: /function= "Blood Clotting Protein" /product= "Canine von Willebrand Factor" /standard_name= "vWF"

WO 98/03683 PCT/US97/12606

- 16 -

(x) PUBLICATION INFORMATION:

(A) AUTHORS: Venta, Patrick J.

Li, Jianping

Yuzbasiyan-Gurkan, Vilma Schall, William D.

Brewer, George J.

(B) TITLE: Von Willebrand's Disease in the Scottish Terrier is Caused by a Single Base Deletion in Exon Four of the von Willebrand Factor Gene

(C) JOURNAL: Journal of the American Veterinary Medicine Association

(G) DATE: 1996

(K) RELEVANT RESIDUES IN SEQ ID NO:1: FROM 1 TO 8802

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CATTAAAAGG TCCTGGCTGG GAGCTTTTTT TTGGGACCAG CACTCCATGT TCAAGGGCAA	60
ACAGGGGCCA ATTAGGATCA ATCTTTTTC TTTCTTTTTT TAAAAAAAA AATTCTTCCC	120
ACTTTGCACA CGGACAGTAG TACATACCAG TAGCTCTCTG CGAGGACGGT GATCACTAAT	180
CATTTCTCCT GCTTCGTGGC AG ATG AGT CCT ACC AGA CTT GTG AGG GTG CTG Met Ser Pro Thr Arg Leu Val Arg Val Leu 1 5 10	232
CTG GCT CTG GCC CTC ATC TTG CCA GGG AAA CTT TGT ACA AAA GGG ACT Leu Ala Leu Ala Leu Ile Leu Pro Gly Lys Leu Cys Thr Lys Gly Thr 15 20 25	280
GTT GGA AGG TCA TCG ATG GCC CGA TGT AGC CTT CTC GGA GGT GAC TTC Val Gly Arg Ser Ser Met Ala Arg Cys Ser Leu Leu Gly Gly Asp Phe 30 35 40	328
ATC AAC ACC TTT GAT GAG AGC ATG TAC AGC TTT GCG GGA GAT TGC AGT Ile Asn Thr Phe Asp Glu Ser Met Tyr Ser Phe Ala Gly Asp Cys Ser 45 50 55	376
TAC CTC CTG GCT GGG GAC TGC CAG GAA CAC TCC ATC TCA CTT ATC GGG Tyr Leu Leu Ala Gly Asp Cys Gln Glu His Ser Ile Ser Leu Ile Gly 60 65 70	424
GGT TTC CAA AAT GAC AAA AGA GTG AGC CTC TCC GTG TAT CTC GGA GAA Gly Phe Gln Asn Asp Lys Arg Val Ser Leu Ser Val Tyr Leu Gly Glu 75 80 85 90	472
TTT TTC GAC ATT CAT TTG TTT GTC AAT GGT ACC ATG CTG CAG GGG ACC Phe Phe Asp Ile His Leu Phe Val Asn Gly Thr Met Leu Gln Gly Thr 95 100 105	520
CAA AGC ATC TCC ATG CCC TAC GCC TCC AAT GGG CTG TAT CTA GAG GCC Gln Ser Ile Ser Met Pro Tyr Ala Ser Asn Gly Leu Tyr Leu Glu Ala 110 115 120	568
GAG GCT GGC TAC TAC AAG CTG TCC AGT GAG GCC TAC GGC TTT GTG GCC Glu Ala Gly Tyr Tyr Lys Leu Ser Ser Glu Ala Tyr Gly Phe Val Ala 125	616
AGA ATT GAT GGC AAT GGC AAC TTT CAA GTC CTG CTG TCA GAC AGA TAC Arg Ile Asp Gly Asn Gly Asn Phe Gln Val Leu Leu Ser Asp Arg Tyr 140 145 150	664
TTC AAC AAG ACC TGT GGG CTG TGT GGC AAC TTT AAT ATC TTT GCT GAG Phe Asn Lys Thr Cys Gly Leu Cys Gly Asn Phe Asn Ile Phe Ala Glu 155 160 165 170	712

GAT Asp	GAC Asp	TTC Phe	AAG Lys	ACT Thr 175	CAA Gln	GAA Glu	GGG Gly	Thr	TTG Leu 180	ACT Thr	TCG Ser	GAC Asp	PLO	TAT Tyr 185	ASP	760
Phe	Ala	Asn	Ser 190	Trp	Ala	Leu	ser	195	GIY	GIU	GIII	CGG Arg	200	шуз	A. G	808
Val	Ser	Pro 205	Pro	Ser	Ser	Pro	210	ASN	val	ser	per	GAT Asp 215	.:	Val	J	856
Gln	Val 220	Leu	Trp	Glu	Gln	Cys 225	Gin	Leu	Leu	гÀа	230	GCC Ala	261	va,I	riic .	904
Ala 235	Arg	Cys	His	Pro	Leu 240	var	Asp	Pro	GIU	245	PHE	GTC Val		пец	250	952
Glu	Arg	Thr	Leu	Cys 255	Thr	Cys	Val	GIn	260	мес	GIU	TGC Cys	PIO	265	AIG	1000
GTC Val	CTC	CTG Leu	GAG Glu 270	TAC Tyr	GCC Ala	CGG Arg	GCC Ala	TGT Cys 275	GCC Ala	CAG Gln	CAG Gln	GGG Gly	ATT Ile 280	GTC Val	TTG Leu	1048
TAC Tyr	GGC Gly	TGG Trp 285	ACC Thr	GAC Asp	His	AGC Ser	GTC Val 290	TGC Cys	CGA Arg	CCA Pro	GCA Ala	TGC Cys 295	CCT Pro	GCT Ala	GGC Gly	1096
ATG Met	GAG Glu 300	TAC Tyr	AAG Lys	GAG Glu	TGC Cys	GTG Val 305	TCC Ser	CCT Pro	TGC Cys	ACC Thr	AGA Arg 310	ACT	TGC Cys	CAG Gln	AGC Ser	1144
CTT Leu 315	His	GTC Val	AAA Lys	GAA Glu	GTG Val 320	TGT Cys	CAG Gln	GAG Glu	CAA Gln	TGT Cys 325	GTA Val	GAT Asp	GGC Gly	TGC Cys	AGC Ser 330	1192
TGC Cys	CCC	GAG Glu	GGC	CAG Gln 335	CTC Leu	CTG Leu	GAT Asp	GAA Glu	GGC Gly 340	HIS	Cys	GTG Val	GGA Gly	AGT Ser 345	ALG	1240
GAG Glu	TGT Cys	TCC Ser	TGT Cys 350	Val	CAT His	GCT Ala	Gly	CAA Gln 355	Arg	TAC Tyr	CCT	CCG Pro	GGC Gly 360	MI a	TCC Ser	1288
CTC Lev	TTA Leu	CAG Gln 365	Asp	TGC Cys	CAC His	ACC	TGC Cys 370	ille	TGC Cys	CGA Arg	AA Asi	AGC Ser 375	Ten	TGG	ATC Ile	1336
TG(Cys	AGC Ser 380	Asr	GAA Glu	GAA Glu	Cys	CCA Pro , 385	GT?	GAG Glu	TGT Cys	CTG Lev	GT(Val 39	r amr	GGA Gly	CAG Glr	TCC Ser	1384
CA(Hi:	s Phe	AAC Lys	G AGO	TTC Phe	GAC Asp 400	Asr	AGG Arg	TAC TY	TTO Phe	ACC Thi	. PU	C AGT e Sei	r GGC	GTO Val	TGC Cys 410	1432
CA Hi	TAC TY:	C CTO	G CTO	G GCC u Ala 419	Glr	G GA(TG Cy	s Gl	G GAG n Asj 42	D HIS	C AC	A TTO	C TC	r GT' r Va. 42	r GTC l Val 5	1480
AT.	A GA	G AC' u Th	T GT r Va 43	l Gl	TG!	r GCC s Ala	C GA a As	T GA p As 43	b re	G GA' u As	T GC p Al	T GT a Va	C TG 1 Cy 44	3 111	c cgc r Àrg	1528

TCG Ser	GTC Val	ACC Thr 445	GTC Val	CGC Arg	CTG Leu	CCT Pro	GGA Gly 450	CAT His	CAC His	AAC Asn	AGC Ser	CTT Leu 455	GTG Val	AAG Lys	CTG Leu		1576
AAG Lys	AAT Asn 460	GGG Gly	GGA Gly	GGA Gly	GTC Val	TCC Ser 465	ATG Met	GAT Asp	GGC Gly	CAG Gln	GAT Asp 470	ATC Ile	CAG Gln	ATT Ile	CCT Pro		1624
					CTC Leu 480												1672
					GAG Glu												1720
AGG Arg	CTA Leu	CTG Leu	GTG Val 510	ACG Thr	CTG Leu	TAC Tyr	CCC Pro	GCC Ala 515	TAC Tyr	GCG Ala	GGG Gly	AAG Lys	ACG Thr 520	TGC Cys	GGC Gly		1768
					AAC Asn												1816
					CCC Pro												1864
					GAG Glu 560												1912
					CAG Gln												1960
				Lys	TTC Phe												2008
					TGC Cys												2056
					AGC Ser												2104
CGG Arg 635	AGG Arg	GGC Gly	GTG Val	CAC His	ATC Ile 640	GCG Ala	TGG Trp	CGG Arg	GAG Glu	CCG Pro 645	GGC Gly	TTC Phe	TGT Cys	GCG Ala	CTG Leu 650		2152
AGC Ser	TGC Cys	CCC Pro	CAG Gln	GGC Gly 655	CAG Gln	GTG Val	TAC Tyr	CTG Leu	CAG Gln 660	TGT	GGG Gly	ACC Thr	CCC	TGC Cys 665	AAC Asn		2200
					CTC Leu												2248
			Ser					Pro					Asp		AGG Arg	• .	2296
		Cys					Gln					Tyr			GAG Glu		2344

	-																
ATC Ile 715	TTT Phe	CAG Gln	CCC Pro	GAA Glu	GAC Asp 720	ATC Ile	TTC Phe	TCA Ser	GAC Asp	CAT His 725	CAC His	ACC Thr	ATG Met	TGC Cys	TAC Tyr 730		2392
TGT Cys	GAG Glu	GAT Asp	GGC Gly	TTC Phe 735	ATG Met	CAC His	TGT Cys	ACC Thr	ACA Thr 740	AGT Ser	GGA Gly	GGC Gly	CTG Leu	GGA Gly 745	AGC Ser		2440
CTG Leu	CTG Leu	CCC Pro	AAC Asn 750	CCG Pro	GTG Val	CTC Leu	AGC Ser	AGC Ser 755	CCC Pro	CGG Arg	TGT Cys	CAC His	CGC Arg 760	AGC Ser	AAA Lys		2488
AGG Arg	AGC Ser	CTG Leu 765	TCC Ser	TGT Cys	CGG Arg	CCC Pro	CCC Pro 770	ATG Met	GTC Val	AAG Lys	TTG Leu	GTG Val 775	TGT Cys	CCC Pro	GCT Ala	•	2536
GAT Asp	AAC Asn 780	CCG Pro	AGG Arg	GCT Ala	GAA Glu	GGA Gly 785	CTG Leu	GAG Glu	TGT Cys	GCC Ala	AAA Lys 790	ACC Thr	TGC Cys	CAG Gln	AAC Asn		2584.
TAT Tyr 795	GAC Asp	CTG Leu	CAG Gln	TGC Ċys	ATG Met 800	AGC Ser	ACA Thr	GGC Gly	TGT Cys	GTC Val 805	TCC Ser	GGC Gly	TGC Cys	CTC Leu	TGC Cys 810		2632
CCG Pro	CAG Gln	GGC	ATG Met	GTC Val 815	CGG Arg	CAT His	GAA Glu	AAC Asn	AGG Arg 820	Cys	GTG Val	GCG Ala	CTG Leu	GAA Glu 825	AGA Arg		2680
TGT Cys	CCC Pro	TGC Cys	TTC Phe 830	CAC His	CAA Gln	GGC Gly	CAA Gln	GAG Glu 835	TAC Tyr	GCC Ala	CCA Pro	GGA Gly	GAA Glu 840	ACC Thr	GTG Val		2728
AAA Lys	ATT Ile	GAC Asp 845	TGC Cys	AAC Asn	ACT Thr	TGT Cys	GTC Val 850	TGT Cys	CGG Arg	GAC Asp	CGG Arg	AAG Lys 855	TGG Trp	ACC Thr	TGC Cys		2776
ACA Thr	GAC Asp 860	CAT His	GTG Val	TGT Cys	GAT Asp	GCC Ala 865	ACT Thr	TGC Cys	TCT Ser	GCC Ala	ATC Ile 870	GGC Gly	ATG Met	GCG Ala	CAC His		2824
 TAC Tyr 875	CTC Leu	ACC Thr	TTC Phe	GAC Asp	GGA Gly 880	CTC Leu	AAG Lys	TAC Tyr	CTG Leu	TTC Phe 885	CCT Pro	GGG Gly	GAG Glu	TGC Cys	CAG Gln 890		2872
TAT Tyr	GTT Val	CTG Leu	GTG Val	CAG Gln 895	GAT Asp	TAC Tyr	TGC Cys	GGC	AGT Ser 900	AAC Asn	CCT Pro	GGG Gly	ACC Thr	TTA Leu 905	CGG Arg		2920
ATC Ile	CTG Leu	GTG Val	GGG Gly 910	AAC Asn	GAG Glu	GGG	TGC	AGC Ser 915	Tyr	CCC Pro	TCA Ser	GTG Val	AAA Lys 920	Cys	AAG Lys		2968
AAG Lys	CGG	GTC Val 925	ACC Thr	ATC Ile	CTG Leu	GTG Val	GAA Glu 930	Gly	GGA Gly	GAG Glu	ATT Ile	GAA Glu 935	CTG Leu	TTT	GAT Asp		3016
GGG Gly	GAG Glu 940	Val	AAT Asn	GTG Val	AAG Lys	AAA Lys 945	CCC	ATG Met	AAG Lys	GAT	GAG Glu 950	Thr	CAC His	TTT	GAG Glu		3064
GTG Val 955	Val	GAG Glu	TCT Ser	GGT	CAG Gln 960	Tyr	GTC Val	ATT	CTG Leu	CTG Leu 965	Lev	GGC Gly	AAG Lys	GCA Ala	CTC Leu 970		3112
TCT Ser	GTG Val	GTC Val	TGG Trp	GAC Asp 979	His	CGC Arg	CTC Leu	AGC Ser	2 ATC 2 Ile 980	e Ser	GTC Val	ACC Thr	CTG Lev	AAC Lys 985	CGG Arg		3160

ACA TAC CAG	GAG CAG GTG Glu Gln Val 990	TGT GGC Cys Gly	CTG TGT Leu Cys 995	GGG AAT Gly Asn	TTT GAT Phe Asp	Gly Ile	3208
CAG AAC AAT (Gln Asn Asn 1	GAT TTC ACC Asp Phe Thr	AGC AGC Ser Ser 101	Ser Leu	CAA ATA Gln Ile	GAA GAA Glu Glu 1015	GAC CCT Asp Pro	3256
GTG GAC TTT (Val Asp Phe (1020	GGG AAT TCC Gly Asn Ser	TGG AAA Trp Lys 1025	GTG AAC Val Asn	CCG CAG Pro Gln 1030	Cys Ala	GAC ACC Asp Thr	3304
AAG AAA GTA (Lys Lys Val I 1035	Pro Leu Asp 104	Ser Ser	Pro Ala	Val Cys 1045	His Asn	Asn Ile 1050	3352
ATG AAG CAG A	ACG ATG GTG Thr Met Val 1055	GAT TCC Asp Ser	TCC TGC Ser Cys	Arg Ile	CTC ACC Leu Thr	AGT GAT Ser Asp 1065	3400
ATT TTC CAG (GAC TGC AAC Asp Cys Asn 1070	AGG CTG Arg Leu	GTG GAC Val Asp 1075	CCT GAG Pro Glu	CCA TTC Pro Phe 1080	Leu Asp	3448
ATT TGC ATC TILE Cys Ile 1	TAC GAC ACT Tyr Asp Thr	TGC TCC Cys Ser 109	Cys Glu	TCC ATT Ser Ile	GGG GAC Gly Asp 1095	TGC ACC Cys Thr	3496
TGC TTC TGT C Cys Phe Cys A 1100	GAC ACC ATT Asp Thr Ile	GCT GCT Ala Ala 1105	TAC GCC Tyr Ala	CAC GTC His Val	Cys Ala	CAG CAT Gln His	3544
GGC AAG GTG (Gly Lys Val V 1115	GTA GCC TGG Val Ala Trp 112	Arg Thr	GCC ACA Ala Thr	TTC TGT Phe Cys 1125	CCC CAG Pro Gln	AAT TGC Asn Cys 1130	3592
GAG GAG CGG A	AAT CTC CAC Asn Leu His 1135	GAG AAT Glu Asn	GGG TAT Gly Tyr 114	Glu Cys	GAG TGG Glu Trp	CGC TAT Arg Tyr 1145	3640
AAC AGC TGT C Asn Ser Cys A	GCC CCT GCC Ala Pro Ala 1150	TGT CCC Cys Pro	ATC ACG Ile Thr 1155	TGC CAG Cys Gln	CAC CCC His Pro 1160	Glu Pro	3688
CTG GCA TGC C Leu Ala Cys I 1165	CCT GTA CAG Pro Val Gln	TGT GTT Cys Val 117	Glu Gly	TGC CAT Cys His	GCG CAC Ala His 1175	TGC CCT Cys Pro	3736
CCA GGG AAA P Pro Gly Lys : 1180	ATC CTG GAT Ile Leu Asp	GAG CTT Glu Leu 1185	TTG CAG Leu Gln	ACC TGC Thr Cys 1190	Ile Asp	CCT GAA Pro Glu	3784
GAC TGT CCT (Asp Cys Pro 1 1195	GTG TGT GAG Val Cys Glu 120	. Val Ala	GGT CGT Gly Arg	CGC TTG Arg Leu 1205	GCC CCA Ala Pro	GGA AAG Gly Lys 1210	3832
AAA ATC ATC	TTG AAC CCC Leu Asn Pro 1215	AGT GAC Ser Asp	CCT GAG Pro Glu 122	His Cys	CAA ATT Gln Ile	TGT AAT Cys Asn 1225	3880
TGT GAT GGT Cys Asp Gly	GTC AAC TTO Val Asn Phe 1230	ACC TGT Thr Cys	AAG GCC Lys Ala 1235	TGC AGA Cys Arg	GAA CCC Glu Pro 124	Gly Ser	3928
GTT GTG GTG Val Val Val 1245	Pro Pro Thi	A GAT GGC Asp Gly 125	Pro Ile	GGC TCT Gly Ser	ACC ACC Thr Thr 1255	TCG TAT Ser Tyr	3976

GTG Val	GAG Glu 1260	Asp	ACG Thr	TCG Ser	GAG Glu	CCG Pro 1265	Pro	CTC Leu	CAT His	GAC Asp	TTC Phe 1270	CAC His	TGC Cys	AGC Ser	AGG Arg		4024
Leu 1275	Leu	Asp	Leu	Val	Phe 1280	Leu	Leu	Asp	Gly	Ser 1285	Ser	AAG Lys	Leu	ser	1290		4072
GAC Asp	GAG Glu	TTT Phe	Glu	GTG Val 1295	Leu.	AAG Lys	GTC Val	TTT Phe	GTG Val 1300	Val	GGT Gly	ATG Met	ATG Met	GAG Glu 1305	HIS	•	4120
CTG Leu	CAC His	ATC Ile	TCC Ser 1310	Gln	AAG Lys	CGG Arg	Ile	CGC Arg 1315	Val	GCT Ala	GTG Val	GTG Val	GAG Glu 1320	Tyr	CAC His		4168
GAC Asp	Gly	TCC Ser 1325	His	GCC Ala	TAC Tyr	ATC Ile	GAG Glu 1330	Leu	AAG Lys	GAC Asp	CGG Arg	AAG Lys 1335	Arg	CCC Pro	TCA Ser		4216
GAG Glu	CTG Leu 1340	Arg	CGC Arg	ATC Ile	ACC Thr	AGC Ser 1345	Gln	GTG Val	AAG Lys	TAC Tyr	GCG Ala 1350	GGC Gly	AGC Ser	GAG Glu	GTG Val		4264
GCC Ala 1355	Ser	ACC Thr	AGT Ser	GAG Glu	GTC Val 1360	Leu	AAG Lys	TAC Tyr	ACG Thr	CTG Leu 1365	Phe	CAG Gln	ATC Ile	TTT Phe	GGC Gly 1370		4312
AAG Lys	ATC Ile	GAC Asp	CGC Arg	CCG Pro 1375	Glu	GCG Ala	TCT	CGC Arg	ATT Ile 1380	Ala	CTG Leu	CTC Leu	CTG Leu	ATG Met 1385	Ala		4360
AGC Ser	CAG Gln	GAG Glu	CCC Pro 1390	Ser	AGG Arg	CTG Leu	GCC Ala	CGG Arg 139	}. sn	TTG Leu	GTC Val	CGC	TAT Tyr 1400	vaı	CAG Gln	. •	4408
GGC Gly	CTG Leu	AAG Lys 140	Lys	AAG Lys	rys AAA	GTC Val	ATT Ile 141	Val	ATC Ile	CCT Pro	GTG Val	GGC Gly 141	lie	GGG Gly	CCC Pro		4456
CAC His	GCC Ala 1420	Ser	CTT Leu	AAG Lys	CAG Gln	ATC Ile 142	His	CTC	ATA Ile	GAG Glu	AAG Lys 143	CAG Gln O	GCC Ala	CCT	GAG Glu		4504
AAC Asn 143	Lys	GCC Ala	TTT	Val	TTC Phe 144	Ser	GGT Gly	GTG Val	GAT Asp	GAG Glu 144	Leu	GAG Glu	CAG Gln	CGA Arg	AGG Arg 1450		4552
GAT Asp	GAG Glu	ATT Ile	ATC Ile	AAC Asn 145	Tyr	CTC Leu	TGT Cys	GAC Asp	CTT Leu 146	Ala	CCC Pro	GAA Glu	GCA Ala	CCT Pro 146	Ala		4600
Pro	ACT Thr	CAG Gln	CAC His	Pro	CCA Pro	ATG Met	GCC Ala	CAG Gln 147	Val	ACG Thr	GTG Val	GGT	TCG Ser 148	GIU	CTG Leu		4648
TTG Leu	GGG Gly	GTT Val 148	Ser	TCT Ser	CCA Pro	GGA Gly	CCC Pro 149	Lys	AGG Arg	AAC JASN	TCC Ser	ATG Met	_va1	CTG Leu	GAT Asp		4696
Val	Val 150	Phe 0	Val	Lev	ı Glu	150	/ Sea	. Ası) Lys	; Ile	: Gly	y Glu 10	ı Ala	Asn	TTT Phe		4744
AAC Asn 151	Lys	AGC Sei	AGC Arg	GAC Glu	TTC 1 Phe 152	Met	GA(G GAG	GT(3 ATT 1 Ile 152	e Gli	G CGC	ATO	GA(Asp	C GTG Val 1530		4792

GGC CAG GAC AGG Gly Gln Asp Arg	ATC CAC GTC Ile His Val 1535	ACA GTG CTG Thr Val Leu 154	Gln Tyr Ser	TAC ATG Tyr Met 1545	Val
ACC GTG GAG TAC Thr Val Glu Tyr 1550	Thr Phe Ser	Glu Ala Gln 1555	Ser Lys Gly	Glu Val 1560	Leu
CAG CAG GTG CGG Gln Gln Val Arg 1565	Asp Ile Arg	Tyr Arg Gly 1570	Gly Asn Arg 1575	Thr Asn	Thr
GGA CTG GCC CTG Gly Leu Ala Leu 1580	Gln Tyr Leu 158	Ser Glu His	Ser Phe Ser 1590	Val Ser	Gln
GGG GAC CGG GAG Gly Asp Arg Glu 1595	Gln Val Pro 1600	Asn Leu Val	Tyr Met Val 1605	Thr Gly	Asn 1610
CCC GCT TCT GAT Pro Ala Ser Asp	Glu Ile Lys 1615	Arg Met Pro 162	Gly Asp Ile	Gln Val 1625	Val
CCC ATC GGG GTG Pro Ile Gly Val 1630	Gly Pro His	Ala Asn Val 1635	Gln Glu Leu	Glu Lys 1640	Ile
GGC TGG CCC AAT Gly Trp Pro Asn 1645	Ala Pro Ile	Leu Ile His 1650	Asp Phe Glu 1655	Met Leu	Pro
CGA GAG GCT CCT Arg Glu Ala Pro 1660	Asp Leu Val 1665	Leu Gln Arg	Cys Cys Ser 1670	Gly Glu	Gly
CTG CAG ATC CCC Leu Gln Ile Pro 1675	Thr Leu Ser 1680	Pro Thr Pro	Asp Cys Ser 1685	Gln Pro	Leu 1690
GAT GTG GTC CTC Asp Val Val Leu	Leu Leu Asp 1695	Gly Ser Ser 170	Ser Ile Pro	Ala Ser 1705	Tyr
TTT GAT GAA ATG Phe Asp Glu Met 1710	Lys Ser Phe	Thr Lys Ala 1715	Phe Ile Ser	Arg Ala 1720	Asn
ATA GGG CCC CGG Ile Gly Pro Arg 1725	Leu Thr Gln	Val Ser Val 1730	Leu Gln Tyr 1735	Gly Ser	Ile
ACC ACT ATC GAT Thr Thr Ile Asp 1740	Val Pro Trp 174	Asn Val Ala 5	Tyr Glu Lys 1750	Val His	Leu
CTG AGC CTT GTG Leu Ser Leu Val 1755	Asp Leu Met 1760	Gln Gln Glu	Gly Gly Pro 1765	Ser Glu	Ile 1770
GGG GAT GCT TTG Gly Asp Ala Leu	Ser Phe Ala 1775	Val Arg Tyr 178	Val Thr Ser 0	Glu Val 1785	His 5
GGT GCC AGG CCC Gly Ala Arg Pro 1790	Gly Ala Ser	AAA GCG GTG Lys Ala Val 1795	GTT ATC CTA Val Ile Leu	GTC ACA Val Thr 1800	GAT 5608 Asp

GTC Val	TCC Ser	GTG Val 1805	Asp	TCA Ser	GTG Val	GAT Asp	GCT Ala 1810	Ala	GCC Ala	GAG Glu	GCC Ala	GCC Ala 1815	Arg	TCC Ser	AAC Asn		_, 5656
CGA Arg	GTG Val 1820	Thr	GTG Val	TTC Phe	CCC Pro	ATT Ile 1825	Gly	ATC Ile	GGG Gly	GAT Asp	CGG Arg 1830	Tyr	AGT Ser	GAG Glu	GCC Ala		5704
CAG Gln 1835	Leu	AGC Ser	AGC Ser	TTG Leu	GCA Ala 1840	Gly	CCA Pro	AAG Lys	GCT Ala	GGC Gly 1845	ser	AAT Asn	ATG Met	GTA Val	AGG Arg 1850		5752
Leu	Gln	Arg	Ile	Glu 1855	Asp	Leu	Pro	Thr	Val 1860	Ala)	Thr	Leu	GIĄ	1865	,		5800
TTC Phe	TTC Phe	CAC His	AAG Lys 1870	Leu	TGC Cys	TCT Ser	Gly	TTT Phe 1875	Asp	AGA Arg	GTT Val	TGC Cys	GTG Val 1880	Asp	GAG Glu		5848
GAT Asp	GGG Gly	AAT Asn 1885	Glu	AAG Lys	AGG Arg	CCC	GGG Gly 1890	Asp	GTC Val	TGG Trp	ACC Thr	TTG Leu 1895	Pro	GAC Asp	CAG Gln		5896
TGC Cys	CAC His 1900	Thr	GTG Val	ACT Thr	TGC Cys	CTG Leu 1905	Pro	GAT Asp	GGC Gly	CAG Gln	ACC Thr 1910	Leu	CTG Leu	AAG Lys	AGT Ser		5944
CAT His 1915	Arg	GTC Val	AAC Asn	TGT Cys	GAC Asp 1920	Arg	GGG Gly	CCA Pro	AGG Arg	CCT Pro 1925	Ser	TGC Cys	CCC	ASD	GGC Gly 1930		5992
CAG Gln	CCC Pro	CCT Pro	CTC Leu	AGG Arg 193	Val	GAG Glu	GAG Glu	ACC Thr	TGT Cys 1940	Gly	TGC Cys	CGC Arg	TGG Trp	ACC Thr 194	TGT Cys 5		6040
CCC Pro	TGT Cys	Val	TGC Cys 1950	Met	GGC Gly	AGC Ser	TCT Ser	ACC Thr 195	Arg	CAC His	ATC Ile	GTG Val	ACC Thr 196	Phe	GAT Asp	· .	6088
GGG Gly	CAG Gln	AAT Asn 196	Phe	AAG Lys	CTG Leu	ACT Thr	GGC Gly 197	Ser	TGT Cys	TCG Ser	TAT Tyr	GTC Val 197	Leu	TTT Phe	CAA Gln		6136
AAC Asn	AAG Lys 198	Glu	CAG Gln	GAC Asp	CTG Leu	GAG Glu 198	Val	ATT Ile	CTC Leu	CAG Gln	AAT Asn 199	Gly	GCC Ala	TGC Cys	AGC Ser		6184
CCT Pro 199	Gly	GCG Ala	AAG Lys	GAG Glu	ACC Thr 200	Cys	ATG Met	AAA Lys	TCC	ATT Ile 200	Glu	GTG Val	AAG Lys	CAT	GAC Asp 2010		6232
GGC Gly	CTĆ Leu	TCA Ser	GTT Val	GAG Glu 201	Leu	CAC His	AGT Ser	GAC Asp	ATG Met 202	Gln	ATG Met	ACA Thr	GTG Val	AAT Asn 202	GGG Gly 5		6280
AGA Arg	CTA Leu	GTC Val	TCC Ser 203	Ile	CCA Pro	TAT	GTG Val	GGT Gly 203	Gly	GAC Asp	ATG Met	GAA Glu	GTC Val 204	Asn	GTT Val		6328
TAT Tyr	GGG	ACC Thr 204	Ile	ATG Met	TAT	GAG Glu	GTC Val 205	Arg	TTC Phe	AAC Asn	CAT His	CTT Leu 205	Gly	CAC	ATC Ile		6376
TTC Phe	Thr	TTC Phe	ACC Thr	CCC Pro	CAA Gli	AAC Asn 206	Asr	GAG Glu	TTC Phe	CAG Glr	CTO Lev 207	ı Glr	CTO Let	AGC A Sei	CCC Pro		6424

AGG ACC TTT G Arg Thr Phe A 2075	CT TCG AAG AC. la Ser Lys Th 2080	A TAT GGT CTC Tyr Gly Leu	TGT GGG ATC Cys Gly Ile 2085	TGT GAT Cys Asp	GAG 6472 Glu 2090
AAC GGA GCC A Asn Gly Ala A	AT GAC TTC AT sn Asp Phe Ilo 2095	CTG AGG GAT Leu Arg Asp 210	Gly Thr Val	ACC ACA Thr Thr 2105	Asp
TGG AAG GCA C Trp Lys Ala L 2	TC ATC CAG GAI eu Ile Gln Gli 110	TGG ACC GTA Trp Thr Val 2115	CAG CAG CTT Gln Gln Leu	GGG AAG Gly Lys 2120	ACA 6568 Thr
TCC CAG CCT G Ser Gln Pro V 2125	TC CAT GAG GAG al His Glu Glu	CAG TGT CCT Gln Cys Pro 2130	GTC TCC GAA Val Ser Glu 2135	Phe Phe	CAC 6616 His
TGC CAG GTC C Cys Gln Val L 2140	TC CTC TCA GAM eu Leu Ser Glu 214	Leu Phe Ala	GAG TGC CAC Glu Cys His 2150	AAG GTC Lys Val	CTC 6664 Leu
GCT CCA GCC A Ala Pro Ala T 2155	CC TTT TAT GCC hr Phe Tyr Ala 2160	ATG TGC CAG Met Cys Gln	CCC GAC AGT Pro Asp Ser 2165	TGC CAC	CCG 6712 Pro 2170
AAG AAA GTG TO Lys Lys Val C	GT GAG GCG ATT ys Glu Ala Ile 2175	GCC TTG TAT Ala Leu Tyr 218	Ala His Leu	TGT CGG Cys Arg 2185	Thr
AAA GGG GTC TO Lys Gly Val C	GT GTG GAC TGG ys Val Asp Trp 190	AGG AGG GCC Arg Arg Ala 2195	AAT TTC TGT Asn Phe Cys	GCT ATG Ala Met 2200	TCA 6808 Ser
TGT CCA CCA TO Cys Pro Pro So 2205	CC CTG GTG TAC er Leu Val Tyr	AAC CAC TGT Asn His Cys 2210	GAG CAT GGC Glu His Gly 2215	Cys Pro	CGG 6856 Arg
CTC TGT GAA GG Leu Cys Glu G 2220	GC AAT ACA AGO ly Asn Thr Ser 222	Ser Cys Gly	GAC CAA CCC Asp Gln Pro 2230	TCG GAA Ser Glu	GGC 6904 Gly
TGC TTC TGC CC Cys Phe Cys P: 2235	CC CCA AAC CAA ro Pro Asn Glr 2240	GTC ATG CTG Val Met Leu	GAA GGT AGC Glu Gly Ser 2245	TGT GTC Cys Val	CCC 6952 Pro 2250
GAG GAG GCC TO	GT ACC CAG TGG ys Thr Gln Cys 2255	ATC AGC GAG lle Ser Glu 226	Asp Gly Val	CGG CAC Arg His 2265	Gln
TTC CTG GAA A Phe Leu Glu T	CC TGG GTC CCA hr Trp Val Pro 270	GCC CAC CAG Ala His Gln 2275	CCT TGC CAG Pro Cys Gln	ATC TGC Ile Cys 2280	ACG 7048 Thr
TGC CTC AGT G Cys Leu Ser G 2285	GG CGG AAG GTG ly Arg Lys Val	AAC TGT ACG Asn Cys Thr 2290	TTG CAG CCC Leu Gln Pro 2295	Cys Pro	ACA 7096 Thr
GCC AAA GCT C Ala Lys Ala P 2300	CC ACC TGT GGG ro Thr Cys Gly 230	' Pro Cys Glu	GTG GCC CGC Val Ala Arg 2310	CTC CGC Leu Arg	CAG 7144 Gln
AAC GCA GTG C Asn Ala Val G 2315	AG TGC TGC CCC ln Cys Cys Pro 2320	G GAG TAC GAG O Glu Tyr Glu	TGT GTG TGT Cys Val Cys 2325	GAC CTG Asp Leu	GTG 7192 Val 2330
AGC TGT GAC C Ser Cys Asp L	TG CCC CCG GTG eu Pro Pro Val 2335	CCT CCC TGC Pro Pro Cys 234	Glu Asp Gly	CTC CAG Leu Gln 2345	Met

ACC CTG ACC AAT CCT GGC GAG TGC AGA CCC AAC TTC ACC TGT GCC TGC Thr Leu Thr Asn Pro Gly Glu Cys Arg Pro Asn Phe Thr Cys Ala Cys 2350 2350 2360	7288
AGG AAG GAT GAA TGC AGA CGG GAG TCC CCG CCC TCT TGT CCC CCG CAC Arg Lys Asp Glu Cys Arg Arg Glu Ser Pro Pro Ser Cys Pro Pro His 2365 2370 2375	7336
CGG ACG CCG GCC CTT CGG AAG ACT CAG TGC TGT GAT GAG TAT GAG TGT Arg Thr Pro Ala Leu Arg Lys Thr Gln Cys Cys Asp Glu Tyr Glu Cys 2380 2385 2390	7384
GCA TGC AAC TGT GTC AAC TCC ACG GTG AGC TGC CCG CTT GGG TAC CTG Ala Cys Asn Cys Val Asn Ser Thr Val Ser Cys Pro Leu Gly Tyr Leu 2395 2400 2405 2410	7432
GCC TCG GCT GTC ACC AAC GAC TGT GGC TGC ACC ACA ACA ACC TGC TTC Ala Ser Ala Val Thr Asn Asp Cys Gly Cys Thr Thr Thr Thr Cys Phe 2415 2420 2425	7480
CCT GAC AAG GTG TGT GTC CAC CGA GGC ACC ATC TAC CCT GTG GGC CAG Pro Asp Lys Val Cys Val His Arg Gly Thr Ile Tyr Pro Val Gly Gln 2430 2435 2440	7528
TTC TGG GAG GAC TGT GAC GTG TGC ACC TGC ACG GAC TTG GAG GAC Phe Trp Glu Glu Ala Cys Asp Val Cys Thr Cys Thr Asp Leu Glu Asp 2455 2450 2455	7576
TCT GTG ATG GGC CTG CGT GTG GCC CAG TGC TCC CAG AAG CCC TGT GAG Ser Val Met Gly Leu Arg Val Ala Gln Cys Ser Gln Lys Pro Cys Glu 2460 2465 2470	7624
GAC AAC TGC CTG TCA GGC TTC ACT TAT GTC CTT CAT GAA GGC GAG TGC Asp Asn Cys Leu Ser Gly Phe Thr Tyr Val Leu His Glu Gly Glu Cys 2475 2480 2485 2490	7672
TGT GGA AGG TGT CTG CCA TCT GCC TGT GAG GTG GTC ACT GGT TCA CCA Cys Gly Arg Cys Leu Pro Ser Ala Cys Glu Val Val Thr Gly Ser Pro 2495 2500 2505	7720
CGG GGC GAC GCC CAG TCT CAC TGG AAG AAT GTT GGC TCT CAC TGG GCC Arg Gly Asp Ala Gln Ser His Trp Lys Asn Val Gly Ser His Trp Ala 2510 2515 2520	7768
TCC CCT GAC AAC CCC TGC CTC ATC AAT GAG TGT GTC CGA GTG AAG GAA Ser Pro Asp Asn Pro Cys Leu Ile Asn Glu Cys Val Arg Val Lys Glu 2525 2530 2535	_, 7816
GAG GTC TTT GTG CAA CAG AGG AAT GTC TCC TGC CCC CAG CTG AAT GTC Glu Val Phe Val Gln Gln Arg Asn Val Ser Cys Pro Gln Leu Asn Val 2540 2545 2550	7864
CCC ACC TGC CCC ACG GGC TTC CAG CTG AGC TGT AAG ACC TCA GAG TGT Pro Thr Cys Pro Thr Gly Phe Gln Leu Ser Cys Lys Thr Ser Glu Cys 2555 2560 2565 2570	7912
TGT CCC ACC TGT CAC TGC GAG CCC CTG GAG GCC TGC TTG CTC AAT GGT Cys Pro Thr Cys His Cys Glu Pro Leu Glu Ala Cys Leu Leu Asn Gly 2575 2580 2585	7960
ACC ATC ATT GGG CCG GGG AAA AGT CTG ATG ATT GAT GTG TGT ACA ACC Thr Ile Ile Gly Pro Gly Lys Ser Leu Met Ile Asp Val Cys Thr Thr 2590 2595 2600	8008
TGC CGC TGC ACC GTG CCG GTG GGA GTC ATC TCT GGA TTC AAG CTG GAG Cys Arg Cys Thr Val Pro Val Gly Val Ile Ser Gly Phe Lys Leu Glu 2605 2610 2615	8056

- 26 -

GGC AGG AAG ACC ACC TGT GAG GCA TGC CCC CTG GGT TAT AAG GAA GAG Gly Arg Lys Thr Thr Cys Glu Ala Cys Pro Leu Gly Tyr Lys Glu Glu 2620 2625 2630	8104
AAG AAC CAA GGT GAA TGC TGT GGG AGA TGT CTG CCT ATA GCT TGC ACC Lys Asn Gln Gly Glu Cys Cys Gly Arg Cys Leu Pro Ile Ala Cys Thr 2635 2640 2645 2650	8152
ATT CAG CTA AGA GGA GGA CAG ATC ATG ACA CTG AAG CGT GAT GAG ACT Ile Gln Leu Arg Gly Gly Gln Ile Met Thr Leu Lys Arg Asp Glu Thr 2655 2660 2665	8200
ATC CAG GAT GGC TGT GAC AGT CAC TTC TGC AAG GTC AAT GAA AGA GGA Ile Gln Asp Gly Cys Asp Ser His Phe Cys Lys Val Asn Glu Arg Gly 2670 2675 2680	8248
GAG TAC ATC TGG GAG AAG AGA GTC ACG GGT TGC CCA CCT TTC GAT GAA Glu Tyr Ile Trp Glu Lys Arg Val Thr Gly Cys Pro Pro Phe Asp Glu 2685 2690 2695	8296
CAC AAG TGT CTG GCT GAG GGA GGA AAA ATC ATG AAA ATT CCA GGC ACC His Lys Cys Leu Ala Glu Gly Gly Lys Ile Met Lys Ile Pro Gly Thr 2700 2705 2710	8344
TGC TGT GAC ACA TGT GAG GAG CCA GAA TGC AAG GAT ATC ATT GCC AAG Cys Cys Asp Thr Cys Glu Glu Pro Glu Cys Lys Asp Ile Ile Ala Lys 2715 2720 2725 2730	8392
CTG CAG CGT GTC AAA GTG GGA GAC TGT AAG TCT GAA GAG GAA GTG GAC Leu Gln Arg Val Lys Val Gly Asp Cys Lys Ser Glu Glu Glu Val Asp 2735 2740 2745	8440
ATT CAT TAC TGT GAG GGT AAA TGT GCC AGC AAA GCC GTG TAC TCC ATC Ile His Tyr Cys Glu Gly Lys Cys Ala Ser Lys Ala Val Tyr Ser Ile 2750 2760	8488
CAC ATG GAG GAT GTG CAG GAC CAG TGC TCC TGC TGC TCG CCC ACC CAG His Met Glu Asp Val Gln Asp Gln Cys Ser Cys Cys Ser Pro Thr Gln 2765 2770 2775	8536
ACG GAG CCC ATG CAG GTG GCC CTG CGC TGC ACC AAT GGC TCC CTC ATC Thr Glu Pro Met Gln Val Ala Leu Arg Cys Thr Asn Gly Ser Leu Ile 2780 2785 2790	8584
TAC CAT GAG ATC CTC AAT GCC ATC GAA TGC AGG TGT TCC CCC AGG AAG Tyr His Glu Ile Leu Asn Ala Ile Glu Cys Arg Cys Ser Pro Arg Lys 2795 2800 2805 2810	8632
TGC AGC AAG TGAGGCCACT GCCTGGATGC TACTGTCGCC TGCCTTACCC Cys Ser Lys	8681
GACCTCACTG GACTGGCCAG AGTGCTGCTC AGTCCTCCTC CTGCTCTGCT	8741
CTTGTGCTTC CTGATCCCAC AATAAAGGTC AATCTTTCAC CTTGAAAAAA AAAAAAAAAA	8801
A	8802

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2813 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ser Pro Thr Arg Leu Val Arg Val Leu Leu Ala Leu Ala Leu Ile Leu Pro Gly Lys Leu Cys Thr Lys Gly Thr Val Gly Arg Ser Ser Met Ala Arg Cys Ser Leu Leu Gly Gly Asp Phe Ile Asn Thr Phe Asp Glu Ser Met Tyr Ser Phe Ala Gly Asp Cys Ser Tyr Leu Leu Ala Gly Asp Cys Gln Glu His Ser Ile Ser Leu Ile Gly Gly Phe Gln Asn Asp Lys Arg Val Ser Leu Ser Val Tyr Leu Gly Glu Phe Phe Asp Ile His Leu Phe Val Asn Gly Thr Met Leu Gln Gly Thr Gln Ser Ile Ser Met Pro Tyr Ala Ser Asn Gly Leu Tyr Leu Glu Ala Glu Ala Gly Tyr Tyr Lys 120 Leu Ser Ser Glu Ala Tyr Gly Phe Val Ala Arg Ile Asp Gly Asn Gly 135 Asn Phe Gln Val Leu Leu Ser Asp Arg Tyr Phe Asn Lys Thr Cys Gly 155 Leu Cys Gly Asn Phe Asn Ile Phe Ala Glu Asp Asp Phe Lys Thr Gln Glu Gly Thr Leu Thr Ser Asp Pro Tyr Asp Phe Ala Asn Ser Trp Ala Leu Ser Ser Gly Glu Gln Arg Cys Lys Arg Val Ser Pro Pro Ser Ser Pro Cys Asn Val Ser Ser Asp Glu Val Gln Gln Val Leu Trp Glu Gln 215 Cys Gln Leu Leu Lys Ser Ala Ser Val Phe Ala Arg Cys His Pro Leu Val Asp Pro Glu Pro Phe Val Ala Leu Cys Glu Arg Thr Leu Cys Thr Cys Val Gln Gly Met Glu Cys Pro Cys Ala Val Leu Leu Glu Tyr Ala Arg Ala Cys Ala Gln Gln Gly Ile Val Leu Tyr Gly Trp Thr Asp His Ser Val Cys Arg Pro Ala Cys Pro Ala Gly Met Glu Tyr Lys Glu Cys Val Ser Pro Cys Thr Arg Thr Cys Gln Ser Leu His Val Lys Glu Val 315

Leu Asp Glu Gly His Cys Val Gly Ser Ala Glu Cys Ser Cys Val His 340 345

Cys Gln Glu Gln Cys Val Asp Gly Cys Ser Cys Pro Glu Gly Gln Leu

330

Ala Gly Gln Arg Tyr Pro Pro Gly Ala Ser Leu Leu Gln Asp Cys His Thr Cys Ile Cys Arg Asn Ser Leu Trp Ile Cys Ser Asn Glu Glu Cys 375 Pro Gly Glu Cys Leu Val Thr Gly Gln Ser His Phe Lys Ser Phe Asp 395 Asn Arg Tyr Phe Thr Phe Ser Gly Val Cys His Tyr Leu Leu Ala Gln Asp Cys Gln Asp His Thr Phe Ser Val Val Ile Glu Thr Val Gln Cys 425 Ala Asp Asp Leu Asp Ala Val Cys Thr Arg Ser Val Thr Val Arg Leu Pro Gly His His Asn Ser Leu Val Lys Leu Lys Asn Gly Gly Val Ser Met Asp Gly Gln Asp Ile Gln Ile Pro Leu Leu Gln Gly Asp Leu Arg Ile Gln His Thr Val Met Ala Ser Val Arg Leu Ser Tyr Gly Glu Asp Leu Gln Met Asp Ser Asp Val Arg Gly Arg Leu Leu Val Thr Leu Tyr Pro Ala Tyr Ala Gly Lys Thr Cys Gly Arg Gly Gly Asn Tyr Asn Gly Asn Arg Gly Asp Asp Phe Val Thr Pro Ala Gly Leu Ala Glu Pro Leu Val Glu Asp Phe Gly Asn Ala Trp Lys Leu Leu Gly Ala Cys Glu Asn Leu Gln Lys Gln His Arg Asp Pro Cys Ser Leu Asn Pro Arg Gln Ala Arg Phe Ala Glu Glu Ala Cys Ala Leu Leu Thr Ser Ser Lys Phe Glu Pro Cys His Arg Ala Val Gly Pro Gln Pro Tyr Val Gln Asn Cys Leu Tyr Asp Val Cys Ser Cys Ser Asp Gly Arg Asp Cys Leu Cys Ser 615 Ala Val Ala Asn Tyr Ala Ala Ala Val Ala Arg Arg Gly Val His Ile Ala Trp Arg Glu Pro Gly Phe Cys Ala Leu Ser Cys Pro Gln Gly Gln 650 . Val Tyr Leu Gln Cys Gly Thr Pro Cys Asn Met Thr Cys Leu Ser Leu 665 Ser Tyr Pro Glu Glu Asp Cys Asn Glu Val Cys Leu Glu Ser Cys Phe 680 Ser Pro Pro Gly Leu Tyr Leu Asp Glu Arg Gly Asp Cys Val Pro Lys

Ala Gln Cys Pro Cys Tyr Tyr Asp Gly Glu Ile Phe Gln Pro Glu Asp Ile Phe Ser Asp His His Thr Met Cys Tyr Cys Glu Asp Gly Phe Met His Cys Thr Thr Ser Gly Gly Leu Gly Ser Leu Leu Pro Asn Pro Val Leu Ser Ser Pro Arg Cys His Arg Ser Lys Arg Ser Leu Ser Cys Arg Pro Pro Met Val Lys Leu Val Cys Pro Ala Asp Asn Pro Arg Ala Glu Gly Leu Glu Cys Ala Lys Thr Cys Gln Asn Tyr Asp Leu Gln Cys Met Ser Thr Gly Cys Val Ser Gly Cys Leu Cys Pro Gln Gly Met Val Arg His Glu Asn Arg Cys Val Ala Leu Glu Arg Cys Pro Cys Phe His Gln 825 Gly Gln Glu Tyr Ala Pro Gly Glu Thr Val Lys Ile Asp Cys Asn Thr Cys Val Cys Arg Asp Arg Lys Trp Thr Cys Thr Asp His Val Cys Asp Ala Thr Cys Ser Ala Ile Gly Met Ala His Tyr Leu Thr Phe Asp Gly 4 870 Leu Lys Tyr Leu Phe Pro Gly Glu Cys Gln Tyr Val Leu Val Gln Asp Tyr Cys Gly Ser Asn Pro Gly Thr Leu Arg Ile Leu Val Gly Asn Glu Gly Cys Ser Tyr Pro Ser Val Lys Cys Lys Lys Arg Val Thr Ile Leu Val Glu Gly Gly Glu Ile Glu Leu Phe Asp Gly Glu Val Asn Val Lys 935 Lys Pro Met Lys Asp Glu Thr His Phe Glu Val Val Glu Ser Gly Gln 950 Tyr Val Ile Leu Leu Gly Lys Ala Leu Ser Val Val Trp Asp His 965 Arg Leu Ser Ile Ser Val Thr Leu Lys Arg Thr Tyr Gln Glu Gln Val 985 Cys Gly Leu Cys Gly Asn Phe Asp Gly Ile Gln Asn Asn Asp Phe Thr Ser Ser Ser Leu Gln Ile Glu Glu Asp Pro Val Asp Phe Gly Asn Ser 1015 Trp Lys Val Asn Pro Gln Cys Ala Asp Thr Lys Lys Val Pro Leu Asp 1035 Ser Ser Pro Ala Val Cys His Asn Asn Ile Met Lys Gln Thr Met Val

1050

1045

- Asp Ser Ser Cys Arg Ile Leu Thr Ser Asp Ile Phe Gln Asp Cys Asn 1060 1065
- Arg Leu Val Asp Pro Glu Pro Phe Leu Asp Ile Cys Ile Tyr Asp Thr 1080
- Cys Ser Cys Glu Ser Ile Gly Asp Cys Thr Cys Phe Cys Asp Thr Ile 1095 1090
- Ala Ala Tyr Ala His Val Cys Ala Gln His Gly Lys Val Val Ala Trp 1115
- Arg Thr Ala Thr Phe Cys Pro Gln Asn Cys Glu Glu Arg Asn Leu His 1130 1125
- Glu Asn Gly Tyr Glu Cys Glu Trp Arg Tyr Asn Ser Cys Ala Pro Ala 1145
- Cys Pro Ile Thr Cys Gln His Pro Glu Pro Leu Ala Cys Pro Val Gln 1160
- Cys Val Glu Gly Cys His Ala His Cys Pro Pro Gly Lys Ile Leu Asp 1175 1170
- Glu Leu Leu Gln Thr Cys Ile Asp Pro Glu Asp Cys Pro Val Cys Glu 1190 1195
- Val Ala Gly Arg Arg Leu Ala Pro Gly Lys Lys Ile Ile Leu Asn Pro
- Ser Asp Pro Glu His Cys Gln Ile Cys Asn Cys Asp Gly Val Asn Phe
- Thr Cys Lys Ala Cys Arg Glu Pro Gly Ser Val Val Val Pro Pro Thr 1240
- Asp Gly Pro Ile Gly Ser Thr Thr Ser Tyr Val Glu Asp Thr Ser Glu 1255
- Pro Pro Leu His Asp Phe His Cys Ser Arg Leu Leu Asp Leu Val Phe 1270 1265 1275
- Leu Leu Asp Gly Ser Ser Lys Leu Ser Glu Asp Glu Phe Glu Val Leu 1290
- Lys Val Phe Val Val Gly Met Met Glu His Leu His Ile Ser Gln Lys 1300 1305
- Arg Ile Arg Val Ala Val Val Glu Tyr His Asp Gly Ser His Ala Tyr 1320
- Ile Glu Leu Lys Asp Arg Lys Arg Pro Ser Glu Leu Arg Arg Ile Thr
- Ser Gln Val Lys Tyr Ala Gly Ser Glu Val Ala Ser Thr Ser Glu Val 1345
- Leu Lys Tyr Thr Leu Phe Gln Ile Phe Gly Lys Ile Asp Arg Pro Glu 1370
- Ala Ser Arg Ile Ala Leu Leu Met Ala Ser Gln Glu Pro Ser Arg 1380 1385
- Leu Ala Arg Asn Leu Val Arg Tyr Val Gln Gly Leu Lys Lys Lys Lys 1395 1400 1405

- Val Ile Val Ile Pro Val Gly Ile Gly Pro His Ala Ser Leu Lys Gln 1410 1415 1420
- Ile His Leu Ile Glu Lys Gln Ala Pro Glu Asn Lys Ala Phe Val Phe 1425 1430 1435 1440
- Ser Gly Val Asp Glu Leu Glu Gln Arg Arg Asp Glu Ile Ile Asn Tyr 1445 1450 1455
- Leu Cys Asp Leu Ala Pro Glu Ala Pro Ala Pro Thr Gln His Pro Pro 1460 1465 1470
- Met Ala Gln Val Thr Val Gly Ser Glu Leu Leu Gly Val Ser Ser Pro 1475 1480 1485
- Gly Pro Lys Arg Asn Ser Met Val Leu Asp Val Val Phe Val Leu Glu 1490 1495 1500
- Gly Ser Asp Lys Ile Gly Glu Ala Asn Phe Asn Lys Ser Arg Glu Phe 1505 1510 1515 1520
- Met Glu Glu Val Ile Gln Arg Met Asp Val Gly Gln Asp Arg Ile His 1525 1530 1535
- Val Thr Val Leu Gln Tyr Ser Tyr Met Val Thr Val Glu Tyr Thr Phe 1540 1545 1550
- Ser Glu Ala Gln Ser Lys Gly Glu Val Leu Gln Gln Val Arg Asp Ile 1555 1560 1565
- Arg Tyr Arg Gly Gly Asn Arg Thr Asn Thr Gly Leu Ala Leu Gln Tyr 1570 1580
- Leu Ser Glu His Ser Phe Ser Val Ser Gln Gly Asp Arg Glu Gln Val 1585 1590 1595 1600
- Pro Asn Leu Val Tyr Met Val Thr Gly Asn Pro Ala Ser Asp Glu Ile 1605 1610 1615
- Lys Arg Met Pro Gly Asp Ile Gln Val Val Pro Ile Gly Val Gly Pro 1620 1630
- His Ala Asn Val Gln Glu Leu Glu Lys Ile Gly Trp Pro Asn Ala Pro 1635 1640 1645
- Ile Leu Ile His Asp Phe Glu Met Leu Pro Arg Glu Ala Pro Asp Leu 1650 1655 1660
- Val Leu Gln Arg Cys Cys Ser Gly Glu Gly Leu Gln Ile Pro Thr Leu 1665 1670 1675 1680
- Ser Pro Thr Pro Asp Cys Ser Gln Pro Leu Asp Val Val Leu Leu Leu 1685 1690 1695
- Asp Gly Ser Ser Ser Ile Pro Ala Ser Tyr Phe Asp Glu Met Lys Ser 1700 1705 1710
- Phe Thr Lys Ala Phe Ile Ser Arg Ala Asn Ile Gly Pro Arg Leu Thr 1715 1720 1725
- Gln Val Ser Val Leu Gln Tyr Gly Ser Ile Thr Thr Ile Asp Val Pro 1730 1735 1740
- Trp Asn Val Ala Tyr Glu Lys Val His Leu Leu Ser Leu Val Asp Leu 1745 1750 1760

- Met Gln Gln Glu Gly Pro Ser Glu Ile Gly Asp Ala Leu Ser Phe 1765 1770 1775
- Ala Val Arg Tyr Val Thr Ser Glu Val His Gly Ala Arg Pro Gly Ala 1780 1785 1790
- Ser Lys Ala Val Val Ile Leu Val Thr Asp Val Ser Val Asp Ser Val 1795 1800 1805
- Asp Ala Ala Glu Ala Ala Arg Ser Asn Arg Val Thr Val Phe Pro 1810 1815 1820
- Ile Gly Ile Gly Asp Arg Tyr Ser Glu Ala Gln Leu Ser Ser Leu Ala 1825 1830 1835 1840
- Gly Pro Lys Ala Gly Ser Asn Met Val Arg Leu Gln Arg Ile Glu Asp 1845 1850 1855
- Leu Pro Thr Val Ala Thr Leu Gly Asn Ser Phe Phe His Lys Leu Cys 1860 1865 1870
- Ser Gly Phe Asp Arg Val Cys Val Asp Glu Asp Gly Asn Glu Lys Arg 1875 1880 1885
- Pro Gly Asp Val Trp Thr Leu Pro Asp Gln Cys His Thr Val Thr Cys 1890 1895 1900
- Leu Pro Asp Gly Gln Thr Leu Leu Lys Ser His Arg Val Asn Cys Asp 1905 1910 1915 1920
- Arg Gly Pro Arg Pro Ser Cys Pro Asn Gly Gln Pro Pro Leu Arg Val 1925 1930 1935
- Glu Glu Thr Cys Gly Cys Arg Trp Thr Cys Pro Cys Val Cys Met Gly
 1940 1945 1950
- Ser Ser Thr Arg His Ile Val Thr Phe Asp Gly Gln Asn Phe Lys Leu 1955 1960 1965
- Thr Gly Ser Cys Ser Tyr Val Leu Phe Gln Asn Lys Glu Gln Asp Leu 1970 1980
- Glu Val Ile Leu Gln Asn Gly Ala Cys Ser Pro Gly Ala Lys Glu Thr 1985 1990 1995 2000
- Cys Met Lys Ser Ile Glu Val Lys His Asp Gly Leu Ser Val Glu Leu 2005 2010 2015
- His Ser Asp Met Gln Met Thr Val Asn Gly Arg Leu Val Ser Ile Pro 2020 2025 2030
- Tyr Val Gly Gly Asp Met Glu Val Asn Val Tyr Gly Thr Ile Met Tyr 2035 2040 2045
- Glu Val Arg Phe Asn His Leu Gly His Ile Phe Thr Phe Thr Pro Gln 2050 2055 2060
- Asn Asn Glu Phe Gln Leu Gln Leu Ser Pro Arg Thr Phe Ala Ser Lys 2065 2070 2075 2080
- Thr Tyr Gly Leu Cys Gly Ile Cys Asp Glu Asn Gly Ala Asn Asp Phe 2085 2090 2095
- Ile Leu Arg Asp Gly Thr Val Thr Thr Asp Trp Lys Ala Leu Ile Gln 2100 2105 2110

- Glu Trp Thr Val Gln Gln Leu Gly Lys Thr Ser Gln Pro Val His Glu 2115 2120 2125
- Glu Gln Cys Pro Val Ser Glu Phe Phe His Cys Gln Val Leu Leu Ser 2130 2140
- Glu Leu Phe Ala Glu Cys His Lys Val Leu Ala Pro Ala Thr Phe Tyr 2145 2150 2155 2160
- Ala Met Cys Gln Pro Asp Ser Cys His Pro Lys Lys Val Cys Glu Ala 2165 2170 2175
- Ile Ala Leu Tyr Ala His Leu Cys Arg Thr Lys Gly Val Cys Val Asp 2180 2185 2190
- Trp Arg Arg Ala Asn Phe Cys Ala Met Ser Cys Pro Pro Ser Leu Val
- Tyr Asn His Cys Glu His Gly Cys Pro Arg Leu Cys Glu Gly Asn Thr 2210 2215 2220
- Ser Ser Cys Gly Asp Gln Pro Ser Glu Gly Cys Phe Cys Pro Pro Asn 2225 2230 2235 2240
- Gln Val Met Leu Glu Gly Ser Cys Val Pro Glu Glu Ala Cys Thr Gln
 2245 2250 2255
- Cys Ile Ser Glu Asp Gly Val Arg His Gln Phe Leu Glu Thr Trp Val 2260 2265 2270
- Pro Ala His Gln Pro Cys Gln Ile Cys Thr Cys Leu Ser Gly Arg Lys
- Val Asn Cys Thr Leu Gln Pro Cys Pro Thr Ala Lys Ala Pro Thr Cys 2290 2295 2300
- Gly Pro Cys Glu Val Ala Arg Leu Arg Gln Asn Ala Val Gln Cys Cys 2305 2310 2315 2320
- Pro Glu Tyr Glu Cys Val Cys Asp Leu Val Ser Cys Asp Leu Pro Pro 2325 2330 2335
- Val Pro Pro Cys Glu Asp Gly Leu Gln Met Thr Leu Thr Asn Pro Gly 2340 2350
- Glu Cys Arg Pro Asn Phe Thr Cys Ala Cys Arg Lys Asp Glu Cys Arg 2355 2360 2365
- Arg Glu Ser Pro Pro Ser Cys Pro Pro His Arg Thr Pro Ala Leu Arg
- Lys Thr Gln Cys Cys Asp Glu Tyr Glu Cys Ala Cys Asn Cys Val Asn 2385 2390 2395 2400
- Ser Thr Val Ser Cys Pro Leu Gly Tyr Leu Ala Ser Ala Val Thr Asn 2405 2410 2415
- Asp Cys Gly Cys Thr Thr Thr Thr Cys Phe Pro Asp Lys Val Cys Val 2420 2430
- His Arg Gly Thr Ile Tyr Pro Val Gly Gln Phe Trp Glu Glu Ala Cys 2435. 2440 2445
- Asp Val Cys Thr Cys Thr Asp Leu Glu Asp Ser Val Met Gly Leu Arg 2450 2455 2460

- Val Ala Gln Cys Ser Gln Lys Pro Cys Glu Asp Asn Cys Leu Ser Gly 2465 2470 2475 2480
- Phe Thr Tyr Val Leu His Glu Gly Glu Cys Cys Gly Arg Cys Leu Pro 2485 2490 2495
- Ser Ala Cys Glu Val Val Thr Gly Ser Pro Arg Gly Asp Ala Gln Ser 2500 2505 2510
- His Trp Lys Asn Val Gly Ser His Trp Ala Ser Pro Asp Asn Pro Cys 2515 2520 2525
- Leu Ile Asn Glu Cys Val Arg Val Lys Glu Glu Val Phe Val Gln Gln 2530 2535 2540
- Arg Asn Val Ser Cys Pro Gln Leu Asn Val Pro Thr Cys Pro Thr Gly 2545 2550 2555 2560
- Phe Gln Leu Ser Cys Lys Thr Ser Glu Cys Cys Pro Thr Cys His Cys 2565 2570 2575
- Glu Pro Leu Glu Ala Cys Leu Leu Asn Gly Thr Ile Ile Gly Pro Gly
 2580 2585 2590
- Lys Ser Leu Met Ile Asp Val Cys Thr Thr Cys Arg Cys Thr Val Pro 2595 2600 2605
- Val Gly Val Ile Ser Gly Phe Lys Leu Glu Gly Arg Lys Thr Thr Cys 2610 2615 2620
- Glu Ala Cys Pro Leu Gly Tyr Lys Glu Glu Lys Asn Gln Gly Glu Cys 2625 2630 2635 2640
- Cys Gly Arg Cys Leu Pro Ile Ala Cys Thr Ile Gln Leu Arg Gly Gly
 2645 2650 2655
- Gln Ile Met Thr Leu Lys Arg Asp Glu Thr Ile Gln Asp Gly Cys Asp 2660 2665 2670
- Ser His Phe Cys Lys Val Asn Glu Arg Gly Glu Tyr Ile Trp Glu Lys 2675 2680 2685
- Arg Val Thr Gly Cys Pro Pro Phe Asp Glu His Lys Cys Leu Ala Glu 2690 2695 2700
- Gly Gly Lys Ile Met Lys Ile Pro Gly Thr Cys Cys Asp Thr Cys Glu 2705 2710 2715 2720
- Glu Pro Glu Cys Lys Asp Ile Ile Ala Lys Leu Gln Arg Val Lys Val 2725 2730 2735
- Gly Asp Cys Lys Ser Glu Glu Glu Val Asp Ile His Tyr Cys Glu Gly 2740 2745 2750
- Lys Cys Ala Ser Lys Ala Val Tyr Ser Ile His Met Glu Asp Val Gln 2755 2760 2765
- Asp Gln Cys Ser Cys Cys Ser Pro Thr Gln Thr Glu Pro Met Gln Val 2770 2775 2780
- Ala Leu Arg Cys Thr Asn Gly Ser Leu Ile Tyr His Glu Ile Leu Asn 2785 2790 2795 2800
- Ala Ile Glu Cys Arg Cys Ser Pro Arg Lys Cys Ser Lys 2805 2810

WE CLAIM:

20

- 1. An isolated nucleic acid comprising a nucleotide sequence encoding canine von Willebrand Factor polypeptide.
- 2. The isolated nucleic acid of Claim 1, wherein the nucleotide sequence is capable of hybridizing under high stringency conditions to SEQ ID NO. 1.
 - 3. The isolated nucleic acid of Claim 1, wherein the nucleotide sequence encodes the Scottish terrier von Willebrand Factor polypeptide.
 - 4. The isolated nucleic acid of Claim 2, wherein the nucleotide sequence encodes the Scottish terrier von Willebrand Factor polypeptide.
- 10 5. A vector comprising the nucleic acid of Claim 1.
 - 6. A vector comprising the nucleic acid of Claim 2.
 - 7. A cell comprising the vector of Claim 5.
 - 8. A cell comprising the vector of Claim 6.
- 9. An isolated nucleic acid comprising a nucleotide sequence encoding defective canine von Willebrand Factor polypeptide.
 - 10. The isolated nucleic acid of Claim 9, wherein the nucleotide sequence is capable of hybridizing under high stringency conditions to the complement of SEQ ID NO. 1 having a base deletion at codon 88.
 - 11. A vector comprising the nucleic acid of Claim 9.
 - 12. A vector comprising the nucleic acid of Claim 10.
 - 13. A cell comprising the vector of Claim 11.
 - 14. A cell comprising the vector of Claim 12.

10

15

20

- 15. An isolated oligonucleotide sequence consisting of contiguous nucleic acids of the nucleotide sequence of SEQ ID NO. 1 and capable of specifically hybridizing with the canine von Willebrand Factor gene.
- 16. An isolated oligonucleotide sequence consisting of contiguous nucleic acids of the nucleotide sequence that is complementary to the sequence of SEQ ID NO. 1 and capable of specifically hybridizing with the canine von Willebrand Factor gene.
 - 17. A method of detecting a canine von Willebrand Factor gene in a sample comprising the steps of:
 - a) contacting the sample with a oligonucleotide comprising contiguous nucleic acids of the nucleotide sequence of SEQ ID NO. 1 and capable of specifically hybridizing with the canine von Willebrand Factor gene, under conditions favorable for hybridization of the oligonucleotide to any complementary sequences of nucleic acid in the sample; and
 - b) detecting hybridization, thereby detecting a canine von Willebrand Factor gene.
 - 18. The method of Claim 17, further comprising the step of:
 - c) quantifying hybridization of the oligonucleotide to complementary sequence.
 - 19. The method of Claim 17, wherein in SEQ ID NO. 1 there is a base deletion at codon 88.
 - 20. An assay kit for screening for a canine von Willebrand Factor gene comprising:
- a) an oligonucleotide comprising contiguous nucleic acids of the nucleotide sequence of SEQ ID NO. 1 and capable of hybridizing with the canine von Willebrand Factor gene:
 - b) reagents for hybridization of the oligonucleotide to a complementary nucleic acid sequence; and
- c) container means for a)-b).

5

10

20

25

a)

- 21. A method of detecting a canine von Willebrand Factor gene in a sample comprising the steps of:
 - contacting the sample with an oligonucleotide comprising contiguous nucleic acids of the nucleotide sequence that is complementary to the sequence of SEQ ID NO. 1 and capable of specifically hybridizing to the complementary nucleotide sequence, under conditions favorable for hybridization of the oligonucleotide to any complementary sequences of nucleic acid in the sample; and
- b) detecting hybridization, thereby detecting a canine von
 Willebrand Factor gene.
 - 22. The method of Claim 21, further comprising the step of:
 - quantifying hybridization of the oligonucleotide to complementary sequences.
- 15 23. The method of Claim 21, wherein in SEQ ID NO. 1 there is a base deletion at codon 88.
 - 24. An assay kit for screening for a canine von Willebrand Factor gene comprising:
 - an oligonucleotide comprising contiguous acids from the nucleotide sequence that is complementary to the sequence of SEQ ID NO. 1 and capable of specifically hybridizing to the complementary nucleotide sequence;
 - b) reagents for hybridization of the oligonucleotide to a complementary nucleic acid sequence; and
 - c) container means for a)-b).
 - 25. The assay kit of Claim 24, wherein in SEQ ID NO. 1 there is a base deletion at codon 88.

5

10

15

- 26. A method for detecting a mutated canine von Willebrand Factor gene in a canine DNA sample comprising the steps of:
 - amplifying the DNA sample by polymerase chain reaction to produce polymerase chain reaction products, wherein the polymerase chain reaction uses primers that produce a restriction site in a mutant allele but not in a normal allele;
 - b) digesting the polymerase chain reaction products with a restriction enzyme specific to the restriction site of the restriction site primer to produce DNA fragments; and
 - c) detecting the DNA fragments, thereby detecting a mutated canine von Willebrand Factor gene.
 - 27. The method of Claim 26, wherein the primers are those of Figure 4.
- 28. The method of Claim 26, wherein the DNA fragments are detected by gel electrophoresis.
 - 29. The method of Claim 27, wherein the restriction enzyme is BsiEI.
 - 30. The method of Claim 27, wherein the restriction enzyme is Sau96 I.
- 31. An oligonucleotide probe capable of detecting a mutation associated with canine von Willebrand's disease, wherein the mutation is a base deletion at codon 88 of the canine von Willebrand Factor gene.

FIGURE 1A

						mannecethh
1	CATTAANAGG	TCCTGGCTGG	GAGCTTTTTT	TTGGGACCAG	CACTCCATGT	TUARGGGUAR
			الكيليليليليليكي		INAMAMA	WYTTCTTCCC
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TACATACCAG	TAGETETET	COMPRACE	OUT CUCTION
		COMPOSTGGC	AGATGAGTCC	TACCAGACII	GIGNGGGIGC	100100
		mmcccxcccx	AAMTTGTAC	AAAAGGGACT	Clicowwoor	CV1 COV1 COA
		OWN CTCCCAG	CTCACTTCAT	CAACACCTTT	GAIGAGAGCA	101VCVACT.
		TO CALCALLY CO.	TCCTGGCTGG	GGACTGCCAG	GWWCWCICCW	1616461
		ヘッシャンエピングラ	AAACAGTGAG	CCTCTCCGIG	IMICICAGNA	WWYTTTT
		CONTRACTOR AND CO	CTACCATGCT	GCAGGGGACC	CAMAGENICI	CCMTOCCCALL
		CCCCTATC	TAGAGGCCGA	GGCTGGCTAC	INCHAGGIGI	CCVGIOUGG
		CTCCCCACAA	TTGATGGCAA	TGGCAACTTT	CAMBILLIGE	101 CHONCHO
		NACACCTGTG	CCTCTGTGG	CAACTITAAT	WICTIIG CIG	MOGNIONCIA
		CNACCCACCT	TCACTTCGGA	CCCCTATGAC	TITCCCWCI	CCIGGGCCC
	CARCACTCC	CARCARCGI	GCAAACGGGT	GTCCCCTCCC	AGLAGCCCAI	GCARIGICIC
		CTCCACCAGG	TOTTGTGGGA	GCAGTGCCAG	CICCIGARGA	GIGCCICGGI
		TGCCACCGC	TGGTGGACCC	TGAGCCTTTT	GICGCCIGI	GIGAMAGGAC
		TOTOTOCAGG	CCATGGAGTG	CCCTTGTGCG	GICCICCIGG	AGIACOCCCG
		CNCCNCCCCA	TTGTCTTGTA	CGGCTGGACC	GACCACAGCG	ICIGCCGACC
	A CONTOCOCT	CCTCCCATGG	AGTACAAGGA	GTGCGTGTCC	CCTIGCACCA	GAACTIGEEA
	CACCCTTCAT	CTCADAGAAG	TGTGTCAGGA	GCAATGTGTA	GATGGCTGCA	GCIGCCCGA
	CCCCCACCTC	CTGGATGAAG	GCCACTGCGT	GGGAAGTGCT	GAGTGIICCI	GIGIGENIGE
1061	TECECANCEC	TACCCTCCGG	GCGCCTCCCT	CTTACAGGAC	TGCCACACCT	GCATTIGCCG
1221	ANNTAGECTE	TEGATETECA	GCAATGAAGA	ATGCCCAGGC	GAGTGTCTGG	TCACAGGACA
1201	CTCCCACTTC	AAGAGCTTCG	ACAACAGGTA	CTTCACCTTC	AGTGGGGTCT	GCCACIACCI
3 / / 3	CCTCCCCCAG	GACTGCCAGG	ACCACACATT	CTCTGTTGTC	ATAGAGACTG	TCCAGTGTGC
1501	CCATGACCTG	GATGCTGTCT	GCACCCGCTC	GGTCACCGTC	CGCCTGCCTG	GACATCACAA
1561	CACCCTTGTG	AAGCTGAAGA	ATGGGGGAGG	AGTCTCCATG	GATGGLLAGG	WINICCUGAL
1621	- <b>TOCTOTOTO</b>	CAAGGTGACC	TCCGCATCCA	GCACACCGTG	ATGGCCTCCG	TGCGCCTCAG
1601	CTACGGGGAG	GACCTGCAGA	TGGATTCGGA	CGTCCGGGGC	AGGCTACTGG	TGACGCIGIA
1741	CCCCCCCTAC	GCGGGGAAGA	CGTGCGGCCG	TGGCGGGAAC	TACAACGGCA	ACCOGGGGGA
1001	CCACTTCGTG	ACGCCCGCAG	GCCTGGCGGA	GCCCCTGGTG	GAGGACTICG	GCHACGCCIG
1061	CARCCTCCTC	GGGGCCTGCG	AGAACCTGCA	. GAAGCAGCAC	CGCGATCCCT	GCAGCC1 CAA
1021	CCCCCCCAG	GCCAGGTITG	CGGAGGAGGC	GTGCGCGCTG	CTGACGTCCT	CGAAGTICGA
1991	GCCCTGCCAC	CGAGCGGTGG	GTCCTCAGCC	CTACGTGCAG	AACTGCCTCT	ACGACGICIG
2041	CTCCTGCTCC	GACGGCAGAG	ACTGTCTTTG	CAGCGCCGTG	GCCAACTACG	CCGCAGCCGI
2101	GGCCCGGAGG	GGCGTGCACA	TCGCGTGGCG	GGAGCCGGGC	TTCTGTGCGC	1040C10CCC
2161	CCAGGGCCAG	CTGTACCTGC	AGTGTGGGAC	: CCCCTGCAAC	ATGACCTGTC	Triccitie
2221	TTACCCGGAC	GAGGACTGCA	ATGAGGTCTG	; CTTGGAAAGC	TGCTTCTCCC	CCCCAGGGC1
2281	GTACCTGGAT	GAGAGGGGAG	ATTGTGTGCC	: CAAGGCTCAG	TGTCCCTGTT	ACTATGATGG
2341	TGAGATCTTT	CAGCCCGAAG	ACATETTETO	: AGACCATCAC	ACCATGTGCT	ACTGTGAGGA
2401	TGGCTTCATO	CACTGTACCA	CAAGTGGAGG	CCTGGGAAGC	CTGCTGCCCA	ACCCGGTGCT
2461	CAGCAGCCC	CGGTGTCACC	: GCAGCAAAA	GAGCCTGTCC	TGTCGGCCCC	CCATGGTCAA
252	GTTGGTGTG	r cccgctgata	ACCCGAGGG	TGAAGGACTG	GAGTGTGCCA	AAACCTGCCA
2583	GAACTATGA	CTGCAGTGC	TGAGCACAG	CTGTGTCTCC	: GGCTGCCTCT	GCCCGCAGGG
264	1 CATGGTCCG	G CATGAAAAC	GGTGTGTGG	C GCTGGAAAG	A TGTCCCTGCT	TCCACCAAGG
270	CCAAGAGTA	C GCCCEAGGA	S AAACCGTGA	A AATTGACTG	AACACTTGT	TCTGTCGGGA
276	CCGGAAGTG	G ACCTGCACA	3 ACCATGTGT	G TGATGCCAC	r TGCTCTGCC	TCGGCATGGC
282	CCACTACCT	C ACCTTCGAC	GACTCAAGT.	A CCTGTTCCC	r ggggagtgc	AGTATGTTCI
288	1 GGTGCAGGA	T TACTGCGGC	A GTAACCCTG	G GACCTTACG	3 ATCCTGGTG	GGAACGAGGG
294	1 GTGCAGCTA	C CCCTCAGTG	A AATGCAAGA	A GCGGGTCAC	C ATCCTGGTG	G AAGGAGGAGA
300	1 GATTGAACT	G TTTGATGGG	G AGGTGAATG	T GAAGAAACC	C ATGAAGGAT	G AGACTCACTT
306	1 TGAGGTGGT	A GAGTCTGGT	C AGTACGTCA	T TOTECTGOT	g ggcaaggca	e references
312	1 CTGGGACCA	C CGCCTGAGC	A TCTCTGTGA	C CCTGAAGCG	G ACATACCAG	G AGCAGGTGTG

## FIGURE 1B

31	81	TGGCCTGTGT	GGGAATTTTG	ATGGCATCCA	GAACAATGAT	TTCACCAGCA	GCAGCCTCCA
32	41	AATAGAAGAA	GACCCTGTGG	ACTTTGGGAA	TTCCTGGAAA	GTGAACCCGC	AGTGTGCCGA
33	01	CACCAAGAAA	GTACCACTGG	ACTCATCCCC	TGCCGTCTGC	CACAACAACA	TCATGAAGCA
33	61	GACGATGGTG	GATTCCTCCT	GCAGGATCCT	CACCAGTGAT	ATTTTCCAGG	ACTGCAACAG
34	21	GCTGGTGGAC	CCTGAGCCAT	TCCTGGACAT	TTGCATCTAC	GACACTTGCT	CCTGTGAGTC
34	Bl	CATTGGGGAC	TGCACCTGCT	TCTGTGACAC	CATTGCTGCT	TACGCCCACG	TCTGTGCCCA
			GTGGTAGCCT				
			GAGAATGGGT				
			TGCCAGCACC				
			TGCCCTCCAG				
			CCTGTGTGTG				
			AGTGACCCTG				
			TGCAGAGAAC				
			TCGTATGTGG				
			GACCTGGTTT				
			AAGGTCTTTG				
			GCTGTGGTGG				
			CCCTCAGAGC				
			ACCAGTGAGG				
			GCGTCTCGCA				
			TTGGTCCGCT				
			GGGCCCCACG				
			GCCTTTGTGT				
			CTCTGTGACC				
			ACGGTGGGTT				
			CTGGATGTGG				
			AGCAGGGAGT				
			GTCACAGTGC				
			TCCAAGGGCG				
			AACACTGGAC				
			CGGGAGCAGG				
			AAGCGGATGC				
			CAGGAGCTGG				
			CTCCCTCGAG				
			ATCCCCACCC		,		
			GATGGCTCTT				
			TTTATTTCAA				
			AGCATCACCA				
			CTTGTGGACC				
			GCCGTGCGAT				
			GTTATCCTAG				
			TCCAACCGAG				
			AGCAGCTTGG				
			CTCCCCACCG				
							GGGATGTCTG
							CCTTGCTGAA
			•				GCCAGCCCCC
							GCATGGGCAG
							GCAGCTGTTC
							ATGGTGCCTG
							ACGGCCTCTC
62	241	AGTTGAGCT	CACAGTGACA	TGCAGATGAC	AGTGAATGGG	AGACTAGTCT	CCATCCCATA
6:	301	TGTGGGTGG	GACATGGAAG	TCAATGTTTA	TGGGACCATC	ATGTATGAGG	TCAGATTCAA
							TGCAGCTCAG

## FIGURE 1C

		:	NCNCNTNTGG	TCTCTGTGGG	ATCTGTGATG	AGAACGGAGC .
6421	CCCCAGGACC	TTTGCTTCGA	AGACAIAIGG	CACCACAGAC	TGGAAGGCAC	TCATCCAGGA
6481	CAATGACTTC	ATTCTGAGGG	ALGGGACAGI	CCAGCCTGTC	CATGAGGAGC	AGTGTCCTGT
6541	ATGGACCGTA	CAGCAGCTIG	ACCTCCTCCT	CTCAGAATTG	TTTGCCGAGT	GCCACAAGGT
6601	CTCCGAATTC	TTCCACTGCC	AGGICCICCI	CCAGCCCGAC	AGTTGCCACC	CGAAGAAAGT
6661	CCTCGCTCCA	GCCACCTTTT	AIGCCAIGIG	CTGTCGGACC	AAAGGGGTCT	GTGTGGACTG
6721	GTGTGAGGCG	ATTGCCTTGT	CTATCTCATC	TCCACCATCC	CTGGTGTACA	ACCACTGTGA
			CTCAACCCAA	TACARGCTCC	TO TOO GOACE	WYCCCICOON
		MACAAAAAA	* * * * * * * * * * * * * * * * * * *	GCTGGAAGGT	ACCIGICA	CCGYGGYGGC
		macs TC3 CCC	ACCATCCACT.	CCGGCACCAG	TICCIGGAAA	CC10001CCC
		<b>ののですのののこれにな</b>	TOTAL	CCTCAGTGGG	COGWWOOTCW	WCIGINCOIL
			*********	CTCTCCCCCG	TUTUANUTUU	
			CCCCCCACTA	CGAGTGTGTG	TGTGACCIGG	TONOCIGION
7141	CCAGAACGCA	GIGCAGIGCI	CCGARGATGG	CCTCCAGATG	ACCCTGACCA	ATCCTGGCGA
7201	CCTGCCCCCG	GIGCCIC CT	CTCCTCCAG	GAAGGATGAA	TGCAGACGGG	AGTCCCCGCC
7261	GTGCAGACCC	CCCCACCCA	CCCCCCCCC	TCGGAAGACT	CAGTGCTGTG	ATGAGTATGA
7321	CTCTTGTCCC	A N CTCTCTCA	ACTCCACGGT	GAGCTGCCCG	CTTGGGTACC	TGGCCTCGGC
7381	GTGTGCATGC	CACTGIGICA	GCACCACAAC	AACCTGCTTC	CCTGACAAGG	TGTGTGTCCA
7441	TGTCACCAAC	ATCTACCCTG	TGGGCCAGTT	CTGGGAGGAG	GCCTGTGACG	TGTGCACCTG
	CA CCCA CTTC	CACCACTCTC	TGATGGGCCT	GCGTGTGGCC	CAGTGCTCCC	MONAGCECTO
		TOCOTOTORG	CCTTCACTTA	TGTCCTTCAT	GAAGGCGAGT	CC101GGAAG
2001	CTCTCTCCCA	TCTGCCTGTG	AGGTGGTCAC	TGGTTCACCA	CGGGGGGGGACG	CCCMGICICA
41	CTCCNNCNNT	CTTCCCTCTC	<b>ACTGGGCCTC</b>	CCCTGACAAC	CCCTGCCTCA	ICWAIGNOIG
7001	TOTOCONCTO	DACCABCAGG	TCTTTGTGCA	ACAGAGGAAT	GTCTCCTGCC	CCCAGCIGAA
7801	TETECECATO	TGCCCCACGG	GCTTCCAGCT	GAGCTGTAAG	ACCTCAGAGT	GTTGTCCCAC
	CTCTCN CTCC	CARCCCCTGG	AGGCCTGCTT	GCTCAATGGT	ACCATCATTG	GGCCGGGAA
7001	AAGTCTGATG	ATTGATGTGT	GTACAACCTG	CCGCTGCACC	GTGCCGGTGG	GAGTCATCIC
9041	TCCATTCAAG	CTGGAGGGCA	GGAAGACCAC	CTGTGAGGCA	TGCCCCCTGG	GITATAAGGA
9101	ACACAACAAC	CAAGGTGAAT	GCTGTGGGAG	ATGTCTGCCT	ATAGCTTGCA	CCATTCAGCT
9161	AAGAGGAGGA	CAGATCATGA	CACTGAAGCG	TGATGAGACT	ATCCAGGATG	GCTGTGACAG
0221	TCACTTCTCC	AAGGTCAATG	AAAGAGGAGA	GTACATCTGG	GAGAAGAGAG	TCACGGGTTG
8281	CCCACCTTTC	GATGAACACA	AGTGTCTGGC	TGAGGGAGGA	AAAATCATGA	AAATTCCAGG
0241	CACCTGCTGT	GACACATGTG	AGGAGCCAGA	ATGCAAGGAT	ATCATTGCCA	AGCTGCAGCG
DAA1	TOTONDAGTO	GGAGACTGTA	AGTCTGAAGA	GGAAGTGGAC	ATTCATTACT	GTGAGGGTAA
0461	ATCTCCCACC	* AAAGCCGTGT	ACTCCATCCA	CATGGAGGAT	GTGCAGGACC	AGTGCTCCIG
2521	CTGCTCGCCC	: ACCCAGACGG	AGCCCATGCA	, GGTGGCCCTG	CGCTGCACCA	ATGGCTCCCT
8581	CATCTACCAT	GAGATOCTO	ATGCCATCG	. ATGCAGGTGT	TCCCCCAGGA	AGIGLAGLAA
B641	GTGAGGCCAG	TGCCTGGATC	CTACTGTCG	CTGCCTTACC	CGACCICACT	GGACTGGCCA
8701	GAGTGCTGCT	CAGTCCTCC1	CAGTCCTCC1	CCTGCTCTGC	TCTTGTGCTT	CCTGATCCCA
8761	CAATAAAGG:	CAATCTTTC	CCTTGAAAA	аааааа <i>Б</i>	AA	٠

Human Dog	MIPARFAGVLLALALILPGTLCAEGTRGRSSTARCSLFGSDFVNTFDGSMYSFAGYCSYL -S-T-LVRKTKVML-GIED	60
Human Dog	LAGGCQKRSFSIIGDFQNGKRVSLSVYLGEFFDIHLFVNGTVTQGDQRVSMPYASKGLYL	120
Human Dog	ETEAGYYKLSGEAYGFVARIDGSGNFQVLLSDRYFNKTCGLCGNFNIFAEDDFMTQEGTL -AKK	180
Human Dog	TSDPYDFANSWALSSGEQWCERASPPSSSCNISSGEMQKGLWEQCQLLKSTSVFARCHPL	240
Human Dog	VDPEPFVALCEKTLCECAGGLECACPALLEYARTCAQEGMVLYGWTDHSACSPVCPAGMERT-VQ-MP-AVAQ-IV-R-A	300
Human Dog	YRQCVSPCARTCQSLHINEMCQERCVDGCSCPEGQLLDEGLCVESTECPCVHSGKRYPPG -KEHG-ASA-Q	360
Human Dog	TSLSRDCNTCICPNSQWICSNEECPGECLVTGQSHFKSFDNRYFTFSGICQYLLARDCQD ALQHV-HQ	420
Human Dog	HSFSIVIETVQCADDRDAVCTRSVTVRLPGLHNSLVKLKHGAGVAPDGQDVQLPLLKGDL-TVLHN-GSI-IQ	480
Human Dog	RIQHTVTASVRLSYGEDLQMDWDGRGRLLVKLSPVYAGKTCGLCGNYNGNQGDDFLTPSG	540
Human Dog	LAEPRVEDFGNAWKLHGDCQDLQKQHSDPCALNPRMTRFSEEACAVLTSPTFEACHRAVS	600
Human Dog	PLPYLRNCRYDVCSCSDGRECLCGALASYAAACAGRGVRVAWREPGRCELNCPKGQVYLQ-QVQLDS-V-NV-RHIF-A-SQ	660
Human Dog	CGTPCNLTCRSLSYPDEECNEACLEGCFCPPGLYNDERGECVPKAQCPCYYDGEIFQPED	720
Human Dog	IFSDHHTMCYCEDGFMHCTMSGVPGSLLPDAVLSSPLSHRSKRSLSCRPPMVKLVCPADN	780
Human Dog	LRAEGLECTKTCQNYDLECMSMGCVSGCLCPPGMVRHENRCVALERCPCFHQGKEYAPGE PQ	840
Human Dog	TVKIGCNTCVCRDRKWNCTDHVCDATCSTIGMAHYLTFDGLKYLFPGECQYVLVQDYCGS	900
Human Dog	NPGTFRILVGNKGCSHPSVKCKKRVTILVEGGEIELFDGEVNVKRPMKDETHFEVVESGR	960
	YIILLLGKALSVVWDRHLSISVVLKQTYQEKVCGLCGNFDGIQNNDLTSSNLQVEEDPVD-V	1020
Human	FGNSWXVSSQCADTRKVPLDSSPATCHNNIMKQTMVDSSCRILTSDVFQDCNKLVDPEPY	1080

## FIGURE 2A

	Human Dog	LDVCIYDTCSCESIGDCACFCDTIAAYAHVCAQHGKVVTWRTATLCPQSCEERNLRENGY	1140
	Human Dog	ECEWRYNSCAPACQVTCQHPEPLACPVQCVEGCHAHCPPGKILDELLQTCVDPEDCPVCE	1200
	Human Dog	VAGRRFASGKKVTLNPSDPEHCQICHCDVVNLTCEACQEPGGLVVPPTDAPVSPTTLYVE	1260
	Human Dog	DISEPPLHDFYCSRLLDLVFLLDGSSRLSEAEFEVLKAFVVDMMERLRISQKWVRVAVVE	1320
	Human Dog	YHDGSHAYIGLKDRKRPSELRRIASQVKYAGSQVASTSEVLKYTLFQIFSKIDRPEASRI	1380
	Human Dog	ALLLMASQEPQRMSRNFVRYVQGLKKKKVIVIPVGIGPHANLKQIRLIEKQAPENKAFVL	1440
	Human Dog	SSVDELEQORDEIVSYLCDLAPEAPPPTLPPHHAQVTVGPGLLGVSTLGPKRNSMVLDVA -GRINAQH-PSESPV	1500
	Human Dog	FVLEGSDKIGEADFNRSKEFMEEVIQRMDVGQDSIHVTVLQYSYMVTVEYPFSEAQSKGD	1560
	Human Dog	ILQRVREIRYQGGNRTNTGLALRYLSDHSFLVSQGDREQAPNLVYMVTGNPASDEIKRLP VQDRQESVN-	1620
	Human Dog	GDIQVVPIGVGPNANVQELERIGWPNAPILIQDFETLPREAPDLVLQRCCSGEGLQIPTL	1680
	Human Dog	SPAPDCSQPLDVILLLDGSSSFPASYFDEMKSFAKAFISKANIGPRLTQVSVLQYGSITT	1740
-	Human Dog	IDVPWNVVPEKAHLLSLVDVMQREGGPSQIGDALGFAVRYLTSEMHGARPGASKAVVILV	1800
	Human Dog	TDVSVDSVDAAADAARSNRVTVFPIGIGDRYDAAQLRILAGPAGDSNVVKLQRIEDLPTN	1860
	Human Dog	VTLGNSFLHKLCSGFVRICMDEDGNEKRPGDVWTLPDQCHTVTCQPDGQTLLKTHRVNCD	1920
	Human Dog	RGLRPSCPNSQSPVKVEETCGCRWTCPCVCTGSSTRHIVTFDGQNFKLTGSCSYVLFQNK	1980
	Human Dog	EQDLEVILHNGACSPGARQGCMKSIEVKHSALSVELHSDMEVTVNGRLVSVPYVGGNMEV	2040
	Human Dog	NVYGAIMHEVRFNHLGHIFTFTPQNNEFQLQLSPKTFASKTYGLCGICDENGANDFMLRD	2100
	Human Dog	GTVTTDWKTLVQEWTVQRPGQTCQPILEEQCLVPDSSHCQVLLLPLFAECHKVLAPATFY	2160

## FIGURE 2B

luman Oog	AICOODSCHOEOVCEVIASYAHLCRINGVCVDWRTPDFCAMSCPPSLVYNHCEHGCPRHC -MPPKKALKRANL-	2220
Human Dog	DGNVSSCGDHPSEGCFCPPDKVMLEGSCVPEEACTQCIGEDGVQHQFLEAWVPDHQPCQI ETQNQSRX	2280
Human Dog	CTCLSGRKVNCTTQPCPTAKAPTCGLCEVARLRONADQCCPEYECVCDPVSCDLPPVPHC	2340
Human Dog	ERGLOPTLTNPGECRPNFTCACRKEECKRVSPPSCPPHRLPTLRKTQCCDEYECACNCVN -DMDR-ET-A	2400
Human Dog	STVSCPLGYLASTATNDCGCTTTTCLPDKVCVHRSTIYPVGQFWEEGCDVCTCTDMEDAV	2460
Human Dog	MGLRVAQCSQKPCEDSCRSGFTYVLHEGECCGRCLPSACEVVTGSFRGDSQSSWKSVGSQ	2520
Human Dog	WAS PENPCLINECVRVKEEVFIQQRNVSCPQLEVPVCPSGFQLSCKTSACCPSCRCERME	2580
Human Dog	ACMLNGTVIGPGKTVMIDVCTTCRCMVQVGVISGFKLECRKTTCNPCPLGYKEENNTGEC	2640
Human Dog	CGRCLPTACTIOLRGGQIMTLKRDETLQDGCDTHFCKVNERGEYFWEKRVTGCPPFDEHK	2700
Human Dog	CLAEGGKIMKIPGTCCDTCEEPECNDITARLQYVKVGSCKSEVEVDIHYCQGKCASKAMY	2760
Human	SIDINDVQDQCSCCSPTRTEPMQVALHCTNGSVVYHEVLNAMECKCSPRKCSK	2813

## FIGURE 2C



8/9

#### FIGURE 4



#### INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12606

•							
A. CLASSIFICATION OF SUBJECT MATTER							
IPC(6) :C12Q 1/68; C12P 19/34; C07H 21/02, 21 US CL :435/6, 91.2; 536/23.1, 24.3, 24.33							
According to International Patent Classification (IPC) or to both national classification and IPC							
B. FIELDS SEARCHED							
Minimum documentation searched (classification system	n followed by classification symbols)						
U.S. : 435/6, 91.2; 536/23.1, 24.3, 24.33	•						
U.S. : 433/6, 91.2, 330/23.1, 24.3, 24.33							
Documentation searched other than minimum documenta	tion to the extent that such documents are included	in the fields searched					
Electronic data base consulted during the international	search (name of data base and, where practicable	, search terms used)					
Please See Extra Sheet.							
Ficase see take silves.							
C. DOCUMENTS CONSIDERED TO BE RELE	VANT						
Category* Citation of document, with indication,	, where appropriate, of the relevant passages	Relevant to claim No.					
Y SHIBUYA, H. et al. A polymo	orphic (AGGAAT), tandem repeat in	15-22,					
an intron of the canine von Will	ebrand factor gene. Animal Genetics.	24-26, 28, 31					
A April 1994, Volume 25, Numb	er 2, page 122, see entire document.	4 4 4 00 00 00					
		1-14, 23, 27, 29					
	•						
	•						
·							
Further documents are listed in the continuation	n of Box C. See patent family annex.						
Special categories of cited documents:	"T" later document published after the in	ternational filing date or priority					
*A* document defining the general state of the art which is not	date and not in conflict with the app	dication but cited to understand					
to be of particular relevance  *B* earlier document published on or after the international	filing date "X" document of perticular relevance;	he claimed invention cannot be					
"L" document which may throw doubts on priority claim(i)	the standard in taken along	east to madias su masunas areb					
cited to establish the publication date of another citation control reason (as specified)	on or other "Y" document of particular relevance; t	he claimed invention cannot be					
*O* document referring to an oral disclosure, use, exhibition	considered to involve an inventive on or other combined with one or more other subsing obvious to a person skilled in	ch documents, such combination					
*p* document published prior to the international filling date be the priority data claimed	•						
Date of the actual completion of the international sea	rch Date of mailing of the international s	earch report					
28 AUGUST 1997 L 4 NOV 1997							
Name and mailing address of the ISA/US	Authorized officer	<u> </u>					
Commissioner of Patents and Trademarks	Mark !	1					
Box PCT Washington, D.C. 20231	DIANNE REES -1 (WO)	197					
Francisco No. (702) 205-3230	Telephone No. (703) 308-0196	レー					

#### INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12606

B.	FIEL	.DS	SEA	RC	H	ED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, BIOSIS, BIOTECHABS, BIOTECHDS, CABA, DGENE, DRUGU, EMBASE, MEDLINE, EUROPATFULL, JAPIO, WPIDS, USPATFULL, GENBANK

search terms: von Willebrand, sequence, clone, cloning, probes, primers, hybridization, detection, nucleic acids, mutations, canine, dogs, Scottish terriers, primers in Figure 4.

## THIS PAGE BLANK (USPTO)

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

#### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

#### IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

