Step-1

4764-1.6-43P AID: 124

RID: 232 | 27/1/2012

$$A = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
Given matrix is

We have to find A^{-1} by elimination on $\begin{bmatrix} A & I \end{bmatrix}$.

Step-2

Now consider

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Adding row 2 to row 1 gives

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Step-3

Adding row 3 to row 2 gives

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Step-4

Adding row 4 to row 3 gives

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Therefore, the inverse of the given matrix A is

Step-5

Now we extend A to a 5 by 5 matrix by adding the row, column (0,0,0,0,1).

Therefore,

$$B = \begin{bmatrix} 1 & -1 & 1 & -1 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Now we find the inverse of the new matrix.

Step-6

Consider

$$\begin{bmatrix} B & I \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Adding row 2 to row 1 gives

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Step-7

Adding row 3 to row 2 gives

[1	0	0	0	0	1	1	0	0	0
0	1	0	0	0	0	1	1	0	0
0	0	1	-1	0	0	0	1	0	0
0	0	0	1	0	0	0	0	1	0
0	0	0	0 -1 1 0	1	0	0	0	0	1

Step-8

Adding row 4 to row 3 gives

Step-9

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Hence the inverse of the new 5 by 5 matrix is