EECS 203: Discrete Mathematics Fall 2023 Homework 3

Due **Thursday**, **Sept. 21**, 10:00 pm

No late homework accepted past midnight.

Number of Problems: 6+2 Total Points: 100+30

- Match your pages! Your submission time is when you upload the file, so the time you take to match pages doesn't count against you.
- Submit this assignment (and any regrade requests later) on Gradescope.
- Justify your answers and show your work (unless a question says otherwise).
- By submitting this homework, you agree that you are in compliance with the Engineering Honor Code and the Course Policies for 203, and that you are submitting your own work.
- Check the syllabus for full details.

Individual Portion

1. Division Tradition [18 points]

Let the domain of discourse be positive integers. The notation $a \mid b$ means "a divides b," or more formally: "there exists an integer q such that $b = a \cdot q$." Prove the following statements:

- (a) For all k, n, if $k \mid n$, then $k^2 \mid n^2$.
- (b) For all k, n_1, n_2 , if $k \mid n_1$ and $k \mid n_2$, then $k \text{ divides}(n_1 + n_2)$.
- (c) For all a, b, c, if $a \mid b$ and $b \mid c$, then $a \mid c$.

Solution:

(a) Let k be an arbitrary integer.

Since $k \mid n$, let $n = p \cdot k$, p is an integer. then $n^2 = p^2 \cdot k^2$.

Since p is an integer, p^2 is also an integer.

Therefore we have proved that $k^2 \mid n^2$.

(b) Let k be an arbitrary integer.

Since $k \mid n_1$, let $n_1 = p \cdot k$, p is an integer.

Since $k \mid n_2$, let $n_2 = q \cdot k$, q is an integer.

then $(n_1 + n_2) = (p+q) \cdot k$.

Since p, q are integers, (p+q) is an integer.

Therefore we have proved that $k \mid (n_1 + n_2)$.

(c) Let a be an arbitrary integer.

Since $a \mid b$, let $b = p \cdot a$, p is an integer.

Since $b \mid c$, let $c = q \cdot b$, q is an integer.

then $c = (p \cdot q) \cdot a$.

Since p, q are integers, $(p \cdot q)$ is an integer.

Therefore we have proved that $a \mid c$.

2. Even Stevens Rerun [15 points]

Let n be an integer. Using only the definitions of even and odd, prove that these statements are equivalent:

- (i) n+1 is odd
- (ii) 5n-7 is odd
- (iii) n^2 is even

Hint: You can prove that these three statements are equivalent in a circular way by showing $(i) \rightarrow (ii), (ii) \rightarrow (iii), and (iii) \rightarrow (i).$

Solution:

(a) (i) \rightarrow (ii)

Let (n+1) be an arbitrary odd integer. There exist integer k such that (n+1) = 2k+1.

Then 5n - 7 = 5(n+1) - 12 = 10k - 7 = 2(5k - 4) + 1.

Since k is an integer, 5k-4 is an integer, 5n-7=2(5k-4)+1 is an odd integer. Therefore we have proved that (i) \rightarrow (ii).

(b) (ii) \rightarrow (iii)

Let (5n-7) be an arbitrary odd integer. There exist integer k such that (5n-7) = 2k+1.

Then

$$(5n-7)^2 = 25n^2 - 70n + 49 = 4k^2 + 4k + 1$$
$$25n^2 = 4k^2 + 4k + 70n - 48$$

Since k is an integer, $(2k^2 + 2k + 35 - 24)$ is an integer, and since $(4k^2 + 4k + 70n - 48) = 2(2k^2 + 2k + 35n - 24)$, $25n^2$ is even.

And since n^2 is an integer, for the odd integer 25, n^2 must be an even integer to make their product $25n^2$ an even integer.

Therefore we have proved that (ii) \rightarrow (iii).

(c) (iii) \rightarrow (i)

To prove "If n^2 is even, then n+1 is odd", we can prove its contrapositive, that is, "If n+1 is even, then n^2 is odd."

let n+1 be an arbitrary even integer, then there exist integer k such that n+1=2k. Then $n^2=(2k-1)^2=4k^2-4k+1$.

Since k is an integer, $4k^2 - 4k = 2(2k^2 - 2k)$ is an even integer, and therefore $n^2 = 4k^2 - 4k + 1 = 2(2k^2 - 2k) + 1$ is an odd integer.

Then we have proved (iii) \rightarrow (i) by proving its contrapositive.

(d) Therefore, (i) \rightarrow (ii) \rightarrow (iii) \rightarrow (i)...... We can deduce that (i) \longleftrightarrow (ii) \longleftrightarrow (iii)

3. Even the Odds [15 points]

Prove or disprove: there exists an integer n where n is even and $n^2 + 4$ is odd.

Solution:

We can disprove it by proving its negation: "There does not exists an integer n where n is even and $n^2 + 4$ is odd."

Let n be an arbitrary odd integer. Then there exist an integer k such that n=2k.

Then
$$n^2 + 4 = (2k)^2 + 4 = 4k^2 + 4 = 2(2k^2 + 2)$$
.

since k is an integer, $(2k^2+2)$ is an integer, therefore $2(2k^2+2)$ must be an odd integer. So when n is even, n^2+4 can not be odd.

4. To Prove or Not to Prove [18 points]

Prove or disprove the following statements where the domain of discourse is all integers:

- (a) For all x there exists a y such that $x^2 + y = 2$.
- (b) For all y there exists an x such that 2x y = 8.
- (c) There exists an x such that for all y, $\frac{y}{x} = y$.
- (d) There exists a y such that for all x, $x^2 + y = 2$.

Solution:

(a) Prove it.

Let x be an arbitrary integer.

Since every integer has its square that is an integer, x^2 is an integer.

Let $y = 2 - x^2$. Then y is an integer

Then we have y such that $x^2 + y = 2$.

(b) Disprove it.

We will prove its negation: "Therefore there exists an y that in the domain of all integers, for all x, $2x - y \neq 8$." For all y there exists an x such that 2x - y = 8. Consider y = 1.

If there exists an x such that 2x - y = 8, then $x = \frac{8+y}{2} = 4.5$, which is not an integer.

Therefore there exists an y that in the domain of all integers, for all x, $2x - y \neq 8$.

(c) Prove it.

Consider x = 1. Let y be an arbitrary integer.

Then $\frac{y}{x} = y$.

Therefore when x = 1, for all y, $\frac{y}{x} = y$.

(d) Disprove it.

We will prove its negation: "There does not exist a y such that all x, $x^2 + y = 2$." Seeking a contradiction, assume that for integer y, $x^2 + y = 2$ for all x.

Then when x = 1, y should be $2 - x^2 = 1$.

When x = 2, y should be $2 - x^2 = -2$.

This completes the contradiction since y can not be 1 and -2 at the same time.

Therefore we have proved that there do not exist a y such that all x, $x^2 + y = 2$.

5. What's Your Rationale? [20 points]

Prove that for any rational number and any irrational number, there exists an irrational number between them. You may assume the following without proof:

- The sum of a rational and irrational is irrational.
- The product of a nonzero rational and irrational is irrational.

Solution:

Let x be an arbitrary rational number, and y be an arbitrary irrational number.

Without Loss of Generality (due to symmetry), assume x < y.

We always have $\frac{x+y}{2}$:

$$\frac{x+y}{2} = \frac{x}{2} + \frac{y}{2} < \frac{y}{2} + \frac{y}{2} = y.$$

$$\frac{x+y}{2} = \frac{x}{2} + \frac{y}{2} > \frac{x}{2} + \frac{x}{2} = x.$$
Then we know that $x < \frac{x+y}{2} < y$.

Since x is rational, y is irrational, and the sum of a rational and irrational is irrational,

Therefore we have proved that for any rational number x and any irrational number y, there exists an irrational number between them.

6. Contra > 0 [14 points]

Let x be an integer. Prove that if 6x + 2 is negative, then x is negative using

- (a) a proof by contrapositive.
- (b) a direct proof.

Solution:

(a) We will prove it by proving its contrapositive: "Let x be an integer. If x is not negative, then 6x + 2 is not negative".

Let x be an arbitrary integer in the domain that $x \geq 0$.

Then $6x + 2 \ge 2 > 0$, is not negative.

Therefore we have proved the original proposition by proving its contrapositive.

(b) Let 6x + 2 be an arbitrary integer in the domain that 6x + 2 < 0.

Then 6x < -2, $x < -\frac{1}{3} < 0$.

Therefore we have proved that if 6x + 2 is negative, then x is negative.