Quantitative evaluation of energy distribution of interface trap density at MoS₂ MOS interfaces by the Terman method

M. Takenaka^{1,2}, Y. Ozawa¹, J. Han^{1,2}, and S. Takagi^{1,2}

¹Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan, email: takenaka@mosfet.t.u-tokyo.ac.jp

²CREST, Japan Science and Technology Agency, Tokyo, Japan

Abstract—We have evaluated interfacial properties of exfoliated MoS₂ MOS interfaces with HfO₂, Al₂O₃, and SiO₂ by C-V measurements of thick-body MoS₂ MOS capacitors. The Terman method have revealed that most of the MoS₂ MOS interfaces exhibit a $D_{\rm it}$ peak of approximately 1×10^{13} cm⁻²eV⁻¹ at an energy level of around 0.35-0.4 eV from the midgap regardless of the gate dielectrics, which is attributable to the sulfur vacancies of MoS₂. We have also revealed that some MoS₂ MOS interfaces have a nearly constant $D_{\rm it}$ of around 1×10^{12} cm⁻²eV⁻¹ when there seems to be no sulfur vacancies. The analysis of the subthreshold swings in the MoS₂ MOSFETs and TCAD simulation support the same energy distribution of $D_{\rm it}$. Thus, we have successfully grasped the energy distribution of $D_{\rm it}$ at the native MoS₂ MOS interfaces which is not strongly dependent on the gate dielectrics.

I. INTRODUCTION

After the emergence of graphene by exfoliation [1], 2D materials have attracted considerable attention due to their unique materials properties. Among 2D materials, atomicallythin MoS₂ exhibits semiconductor properties with a sizable bandgap, high mobility, and low permittivity, suitable for deeply-scaled MOSFETs beyond Si [2] as shown in Fig. 1. Moreover, there seems to be no dangling bonds on the surfaces of MoS₂, which may allow us to obtain superior MOS interfaces. However, the MoS₂ MOS interfacial properties have not been well understood yet. There are some reports tying to reveal the interface properties of MoS₂ by measuring a capacitance and conductance in a FET or capacitor with a thin MoS₂ layer as shown in Fig. 2(a). However, the large series resistance caused by the thin MoS₂ channel results in the large frequency dispersion in the measured capacitance, making it difficult to extract the interface trap density (Dit) in a straightforward manner [3]. Moreover, the thin MoS₂ compared with the maximum depletion-layer width results in no capacitance change according to the depletion-layer width change in C-V measurements, which prevents us from determining the energy distribution of D_{it} [4]. Therefore, it is indispensable to evaluate the MoS₂ MOS interfacial properties by using the well-established method.

In this paper, we have examined properties of MoS₂ MOS interface by C-V measurements of thick-body MoS₂ MOS capacitors with HfO₂, Al₂O₃, and SiO₂ as a gate dielectric

shown in Fig. 2(b). Since the MoS_2 thickness is large enough for achieving full depletion, the Terman method is applicable to extract the energy distribution of D_{it} . In conjunction with the subthreshold swing analyses in the MoS_2 MOSFETs, we have successfully grasped the universal D_{it} distribution model of the native MoS_2 MOS interface regardless of the gate dielectrics.

II. FABRICATION OF MOS₂ MOS CAPACITOR

To extract the D_{it} distribution by the Terman method, the MoS₂ thickness must be greater than its maximum depletionlayer width. As shown in Fig. 3, when the doping concentration is more than 1×10¹⁵ cm⁻³, the MoS₂ thickness of more than 1 um is sufficient for achieving the maximum depletion-layer width in C-V measurements. Fig. 4 is the fabrication procedure of MoS₂ MOS capacitors. First, a thick MoS₂ layer is exfoliated from a MoS₂ bulk crystal. Then, a part of the top MoS₂ layer is exfoliated and transferred on an n+-Si substrate by using a tweezer. Prior to the transfer, a gate dielectric of HfO₂, Al₂O₃, and SiO₂ is formed on each Si substrate. After the transfer, metal electrodes for back contact to the MoS2 are deposited on the sample through a shadow mask. Then, the MoS₂ layer is isolated by dry etching with SF₆ and Ar. We use the metal electrode as a mask for dry etching. Finally, an Al electrode is deposited on the back side of the Si substrate to apply a gate voltage. Fig. 5 is a plan-view photo and surface profile of the fabricated MoS₂ MOS capacitor. We confirm that the thickness of the capacitor exceeds 1 µm. Fig. 6 shows the Raman spectrum of the exfoliated MoS₂ layer. First, we examine the metal contact to the back of the MoS₂ layer. We deposit Al, W, Ti. Ni. Pt. and Au electrodes on the MoS₂ directly transferred on an n⁺-Si substrate. The I-V measurements in Fig. 7 shows that the Au electrode provides us the best Ohmic contact to MoS₂ among the tested metals. In the following experiments, we use the Au electrodes in all the samples.

III. DIT EVALUATION BY THE TERMAN METHOD

First, we perform C-V measurements for the MoS₂ MOS capacitors with 10-nm-thick HfO₂, Al₂O₃, or 20-nm-thick SiO₂ gate dielectric. Fig. 8 show C-V curves of the HfO₂/MoS₂ MOS capacitor. We observe the clear capacitance change according to an increase in the depletion-layer width by applying a gate voltage owing to the sufficiently thick MoS₂ layer. We also find no frequency dispersion from 1 kHz to 1 MHz. One of the most distinct features in the C-V curves is a hump observed at a bias

voltage of around -0.3 V, which can be attributed to the interface trap response. We observe similar C-V curves with a hump in the Al_2O_3/MoS_2 and SiO_2/MoS_2 MOS capacitors as shown in Figs. 9 and 10. It is worth noting that the capacitance change in the SiO_2/MoS_2 capacitor looks small due to the relatively thick SiO_2 and its low permittivity as compared with Al_2O_3 and HfO_2 .

We apply the Terman method for the C-V curves in Figs. 8-10 to obtain the D_{it} and its energy level. Fig. 11 is the extracted energy distribution of D_{it} at the HfO₂/MoS₂ MOS interface. In the Terman method, the accurate impurity concentration N_D of the MoS₂ layer is required especially to determine the D_{it} close to the midgap. However, there is uncertainty in the extraction of $N_{\rm D}$ from the capacitance minimum value because of the existence of slow traps in the valence band side discussed later. Therefore, we extract the D_{it} spectrum by assuming N_D of 3.0×10^{16} , 3.5×10^{16} , and 4.0×10^{16} cm⁻³. The Terman method reveals the significant D_{it} peak at an energy level of around 0.35 -0.4 eV regardless of the assumed N_D values, corresponding to the hump in the C-V curve in Fig. 8. The peak value reaches around 1×10^{13} cm⁻²eV⁻¹. We find similar D_{it} peaks at the Al₂O₃/MoS₂ and SiO₂/MoS₂ interfaces as shown in Figs. 12 and 13. Thus, we can conclude that the discovered D_{it} peak reflects the nature of MoS₂ which does not depend on the type of a gate dielectric. Recently, H. Qiu et al. reported that the sulfur vacancies at a MoS2 interface induce localized states at an energy level of approximately 0.35 eV above the midgap [5]. Since the energy level of this localized state is close to the energy level of the D_{it} peak in Fig. 11-13, the observed D_{it} peak might originate from the sulfur vacancies in MoS₂. As shown in Figs. 11-13, we have uncertainty in the D_{it} at an energy level below 0.25 eV. However, the D_{it} at this energy range is likely to be around 1×10¹² cm⁻²eV⁻¹, which can be estimated from the subthreshold swing in the MoS₂ MOSFETs as discussed later.

We find some of the MoS_2 MOS capacitors exhibit no hump in the C-V curves as shown in Fig. 14. It is found in Fig. 15 that there is no D_{it} peak related to the sulfur vacancies. This result suggests that the pristine MoS_2 interface, which is not exposed to high-temperature processes, has a nearly constant D_{it} of around 1×10^{12} cm⁻²eV⁻¹ in the conduction band side. We also examine the impact of slow traps on the hysteresis in the C-V curves. When the HfO_2/MoS_2 capacitor shown in Fig. 14 is measured in the range from -1V to 1V, there is no hysteresis in the C-V curves. However, we observe the significant V_{fb} shift when the C-V curves measured from -2V to 1V as shown in Fig. 16, resulting in the large hysteresis. This V_{fb} shift indicates the existence of slow traps in the valence band side.

IV. ANALYSIS OF S.S. IN MOS₂ MOSFETS

To verify the energy distribution of $D_{\rm it}$, we analyze subthreshold swing (S.S.) in MoS₂ MOSFETs. Fig. 17 shows a schematic and plan-view photo of the fabricated MoS₂ MOSFETs with a back-gate configuration. First, we deposit 10-nm-thick HfO₂ or Al₂O₃ on an n⁺-Si substrate by ALD. Then, an exfoliated MoS₂ layer is transferred on the substrate. The thickness of the MoS₂ layer is around 7 – 8 nm. Finally, EB-

evaporated Au S/D electrodes are formed by lift-off. The I_d - V_d characteristics of the MoS₂ MOSFET with the Al₂O₃ gate dielectric is shown in Fig. 18. Owing to the thin gate dielectric, we achieve the excellent transfer characteristic. The effective mobility is approximately 16 cm²/Vs. Fig. 19 is the S.S. of the Al_2O_3/MoS_2 MOSFET measured with V_d of 0.05 V. We find a nearly flat S.S. at V_g from -0.7 V to -0.5 V with a minimum S.S. of approximately 70 mV/dec. From the measured S.S., the energy distribution of D_{it} is extracted as shown in Fig. 20. To determine the energy level of Dit, we perform TCAD simulation. The simulated I_d - V_d curve in Fig. 18 is in agreement with the experiment by assuming a constant D_{it} of 1×10^{12} cm⁻ $^{2}\text{eV}^{-1}$. As shown in Fig. 20, we find D_{it} of around 1×10^{12} cm⁻ ²eV⁻¹ at an energy level from 0.15 eV to 0.3 eV, corresponding to the D_{it} distribution which we have discussed in the Terman method analyses. Fig. 21 shows the I_d - V_d of the HfO₂/MoS₂ MOSFET, in which we observe a kink in the subthreshold slope at V_d of 0.05 V. To estimate the D_{it} distribution, TCAD simulation is performed again. When we assume a constant D_{it} of 2×10^{12} cm⁻²eV⁻¹ and a Gaussian distribution of D_{it} with a peak $D_{\rm it}$ of 8×10^{12} cm⁻²eV⁻¹ and a standard deviation of 0.05 eV as shown in Fig. 22, which is similar to the D_{it} distribution obtained from the Terman method, we obtain the excellent fitting to the experimental result as shown in Fig. 21. Thus, the $D_{\rm it}$ distribution model extracted from the S.S. analyses in Fig. 22 strongly supports the energy distribution of D_{it} obtained from the C-V measurements.

V. CONCLUSION

We have discussed the energy distributions of D_{it} at the MoS₂ MOS interfaces with HfO₂, Al₂O₃, and SiO₂ by applying the Terman method to the thick-body MoS₂ MOS capacitors. We have found the distinct D_{it} peak of 1×10^{13} cm⁻²eV⁻¹ regardless of the gate dielectric, which is attributable to the defect traps induced by the sulfur vacancies in MoS₂. We have also revealed that the native MoS₂ interface exhibits a nearly constant D_{it} of around 1×10^{12} cm⁻²eV⁻¹ when there seems to be no sulfur vacancies. In conjunction with the S.S. analyses of the MoS₂ MOSFETs, we have successfully clarified the energy distribution of D_{it} at MoS₂ MOS interfaces.

REFERENCES

- K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," *Science*, vol. 306, no. 5696, pp. 666, 2004.
- [2] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS₂ transistors," *Nat. Nanotechnol.*, vol. 6, pp. 147, 2011.
- [3] W. Zhu, T. Low, Y.-H. Lee, H. Wang, D. B. Farmer, J. Kong, F. Xia, and P. Avouris, "Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition," *Nat. Commun.*, vol. 5, pp. 1–8, 2014.
- [4] X. Chen, Z. Wu, S. Xu, L. Wang, R. Huang, Y. Han, W. Ye, W. Xiong, T. Han, G. Long, Y. Wang, Y. He, Y. Cai, P. Sheng, and N. Wang, "Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures," *Nat. Commun.*, vol. 6, p. 6088, 2015.
- [5] H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, and X. Wang, "Hopping transport through defect-induced localized states in molybdenum disulphide," *Nat. Commun.*, vol. 4, p. 2642, 2013.

Fig. 1: Schematic of monolayer MoS₂ which has fundamental advantages for deeply-scaled MOSFETs such as atomically thin body, high mobility, low permittivity, and no dangling bonds on its surface. However, MoS₂ MOS interface properties have been not well understood yet.

Fig. 2: (a) Conventional device structure for evaluation of MOS interface properties by C-V measurement and (b) MoS₂ MOS capacitors with a thick body proposed in this work.

Fig. 3: Maximum depletion-layer width in MoS₂ MOS capacitor.

Fig. 4: Fabrication procedure of MoS₂ MOS capacitor: (a) exfoliation of thick MoS₂ film from a bulk crystal by scotch tape, (b) transfer a part of the top MoS₂ layer on an n⁺-Si substrate with a gate dielectric such as HfO₂, Al₂O₃, and SiO₂ by tweezer, (c) Au electrode deposition through a shadow mask to make an electrode for back contact to MoS₂ film, and (d) dry etching of MoS₂ film to isolate each capacitor through Au electrode as a hard mask.

Fig. 5: Plan-view and surface profile of the fabricated MoS₂ MOS capacitor.

Fig. 6: Raman spectrum of MoS_2 sample exfoliated and transferred on the Si substrate.

Fig. 7: I-V characteristics of Metal/MoS₂/n⁺-Si samples.

Fig. 8: C-V curves of MoS₂ MOS capacitor with 10-nm-thick HfO₂ gate dielectric.

Fig. 9: C-V curves of MoS₂ MOS capacitor with 10-nm-thick Al₂O₃ gate dielectric.

Fig. 10: C-V curves of MoS₂ MOS capacitor with 20-nm-thick SiO₂ gate dielectric.

Fig. 11: D_{it} distributions at the HfO₂/MoS₂ interface extracted by the Terman method.

Fig. 12: D_{it} distributions at the Al₂O₃/MoS₂ interface extracted by the Terman method.

Fig. 13: D_{it} distributions at the SiO₂/MoS₂ interface extracted by the Terman method.

Fig. 14: C-V curves of HfO₂/MoS₂ MOS capacitor with no hump.

Fig. 15: Comparison of D_{it} distributions at HfO₂/MoS₂ interfaces in Fig. 8 and Fig. 14.

Fig. 16: V_{fb} shift in C-V curve of HfO₂/MoS₂ MOS capacitor caused by slow traps.

Fig. 17: Schematic and Plan-view photo of MoS₂ MOSFET with a back gate.

Fig. 18: I_d-V_g of Al₂O₃/MoS₂ MOSFET.

Fig. 19: S.S. of Al₂O₃/MoS₂ MOSFET.

Fig. 20: *D*_{it} distribution Al₂O₃/MoS₂ interface extracted from S.S.

Fig. 21: I_d - V_g of HfO₂/MoS₂ MOSFET and TCAD simulation with the assumed D_{it} model.

Fig. 22: *D*_{it} distribution model of MoS₂ MOS interface obtained from TCAD simulation.