QRM Workshop 4

Name: Onni-Pekka Niemela Pranav Prathvikumar

a)

(i) Does the series look stationary?

No, from the graph the series does not look stationary as the mean price has increased over time and the fluctuation has not remained constant.

(ii) What is the test's null hypothesis? Can it be rejected for the exchange rate series? Is the series stationary?

The test's null hypothesis is that Copper has a unit root/not stationary. It cannot be rejected as the p-value > 0.05 and indicates that the series is not stationary.

Augmente	ed Dickey-Fuller Unit Ro	ot Test on CO	PPER
Null Hypothesis: COP Exogenous: None Lag Length: 1 (Autom	PER has a unit root atic - based on SIC, maxla	ng=19)	
		t-Statistic	Prob.*
Augmented Dickey-Fu	uller test statistic	-0.733304	0.3988
Test critical values:	1% level	-2.568242	
	5% level	-1.941272	
	10% level	-1.616398	
*MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: I Method: Least Square Date: 02/15/19 Time Sample (adjusted): 19	uller Test Equation O(COPPER) s : 10:30		

(iii) Include a constant and a trend in the basic Dickey-Fuller test. Does the test indicate stationarity?

Even after accounting for the presence of a trend and intercept, the p-value for the test is still above 0.05. This indicates that the series is not stationary.

Null Hypothesis: D(COPPER) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=19)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1 % level 5% level 10% level	-18.75189 -3.439384 -2.865417 -2.568891	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(COPPER,2) Method: Least Squares Date: 02/15/19 Time: 12:01 Sample (adjusted): 1960M03 2018M12 Included observations: 706 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(COPPER(-1)) C	-0.666399 4.984169	0.035538 8.667712	-18.75189 0.575027	0.0000 0.5655
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.333102 0.332154 230.1901 37303203 -4840.637 351.6332 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.188938 281.6753 13.71852 13.73143 13.72351 1.963070

Including a lagged value of dependent variable yields DF test to be highly statistically significant.

Null Hypothesis: D(COPPER) has a unit root Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=19)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-18.75198 -2.568242 -1.941272 -1.616398	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(COPPER,2) Method: Least Squares Date: 02/15/19 Time: 12:14

Sample (adjusted): 1960M03 2018M12 Included observations: 706 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(COPPER(-1))	-0.665749	0.035503	-18.75198	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.332788 0.332788 230.0808 37320724 -4840.802 1.963378	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	-0.188938 281.6753 13.71615 13.72261 13.71865

Omitting previously non-significant constant results similarly.

Date: 02/15/19 Time: 12:05 Sample: 1960M01 2018M12 Included observations: 706

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı j ı	iji	1	0.018	0.018	0.2359	0.627
ų(i	(1)	2	-0.039	-0.040	1.3359	0.513
ų l	(0	3	-0.035	-0.033	2.1837	0.535
ų(i	(1)	4	-0.042	-0.042	3.4410	0.487
ı jı	1)	5	0.055	0.054	5.6044	0.347
d i	[[]	6	-0.066	-0.073	8.7588	0.188
ψ.	III	7	-0.016	-0.011	8.9335	0.257
	= -	8	-0.185	-0.191	33.554	0.000
ų(i	101	9	-0.046	-0.041	35.045	0.000
1 1	101	10	0.003	-0.025	35.051	0.000
ı 	' =	11	0.171	0.171	55.993	0.000
ı þ i	1	12	0.061	0.033	58.663	0.000
□ '	4'	13	-0.115	-0.092	68.168	0.000
Ψ.	101	14	-0.015	-0.032	68.341	0.000
ıļι	III	15	0.001	0.000	68.342	0.000

Correlogram of residuals suggest no autocorrelation between residuals.

Augmented	Dickey-Fuller Unit R	loot Test on D(CC	OPPER)
Exogenous: None	OPPER) has a unit roo atic - based on SIC, ma		
		t-Statistic	Prob.*
Augmented Dickey-Fu	ıller test statistic	-18.75198	0.0000
Test critical values:	1% level	-2.568242	
	5% level	-1.941272	
	10% level	-1.616398	

Augmented Dickey-Fuller Test Equation Dependent Variable: D(COPPER,2)

Method: Least Squares Date: 02/15/19 Time: 10:41

Sample (adjusted): 1960M03 2018M12 Included observations: 706 after adjustments

The first difference of copper is stationary as evidenced by the p-value < 0.05.

Graph of differenced series.

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 0.333	0.333	78.954	0.000
i þ	Qi	2 0.063	-0.055	81.743	0.000
iĝi	i Q i	3 -0.020	-0.027	82.020	0.000
id i.	i(i	4 -0.037	-0.021	82.987	0.000
ΪĮΙ	1 0	5 0.009	0.033	83.043	0.000
Q (6 -0.081	-0.107	87.696	0.000
□ t	(d)	7 -0.098	-0.045	94.588	0.000
L L		8 -0.205	-0.176	124.70	0.000
	1 1	9 -0.090	0.037	130.57	0.000
i j r	1 10	10 0.025	0.041	131.02	0.000
1	i 🔳	11 0.166	0.160	150.89	0.000
ıþ	Qi	12 0.074	-0.058	154.87	0.000
di.		13 -0.082	-0.104	159.68	0.000
id :	10	14 -0.040	-0.004	160.86	0.000
111	ı l i	15 -0.012	-0.004	160.96	0.000
ijť	(di	16 -0.002	-0.046	160.96	0.000
r j e		17 0.021	0.053	161.29	0.000
d C	(d)	18 -0.039	-0.037	162.37	0.000
d i	i ili	19 -0.066	0.001	165.51	0.000
ηt	i)i	20 -0.007	0.026	165.54	0.000
i þ	(1)	21 0.078	0.041	169.93	0.000
10	l up	22 0.078	-0.015	174.42	0.000
i þ i	10	23 0.045	0.022	175.94	0.000
d c	d i	24 -0.049	-0.058	177.73	0.000
d i	ıı ıı	25 -0.054	-0.004	179.85	0.000
		26 -0.076	-0.092	184.05	0.000
di	101	27 -0.073	-0.024	187.94	0.000
dı.	(di	28 -0.075	-0.057	192.07	0.000
d ·	i ii	29 -0.071	0.007	195.75	0.000
140	1 20	30 -0.026	0.021	196.25	0.000
d)		31 -0.085	-0.104	201.62	0.000
10	101	32 -0.018	-0.027	201.87	0.000
ijί	i i ji	100000000000000000000000000000000000000	-0.014	201.88	0.000
îlc	(fi	34 0.000	-0.040	201.88	0.000

Correlogram of differenced series

b) (iv) Do residuals look random?

- Yes. They fluctuate both sides over zero, some trends can be identified but overall they are random.

Does the correlogram suggest random residuals?

- Yes. The residuals do not have low p-values.

Are any of the Q-statistics significant?

- No. Everything is above 0.05.

Try to find an alternative model which has better or comparable fit, and which also has no residual autocorrelation.

- The best overall performing model is AR(1) AR(2). MA(1) MA(2) has slightly lower AIC and SCI, however only one of the variables is statistically significant.

Dependent Variable: DLOG(GOLD)

Method: ARMA Generalized Least Squares (Gauss-Newton)
Date: 02/13/19 Time: 20:40
Sample: 1985M02 2018M12
Included observations: 407
Convergence achieved after 3 iterations
Coefficient covariance computed using outer product of gradier

Coefficient covariance computed using outer product of gradients d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2)	0.003473 0.151000 -0.106442	0.001795 0.049495 0.049492	1.934889 3.050839 -2.150690	0.0537 0.0024 0.0321
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.029622 0.024818 0.034591 0.483406 793.1887 6.166225 0.002302	Mean dependent var S.D. dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.003484 0.035029 -3.882991 -3.853442 -3.871297 1.993252
Inverted AR Roots	.0832i	.08+.32i		

(iv) Forecasting

Based on static forecasting graphs predicting 2019 gold price performance is difficult. The predictions are within an interval of \$100/troy oz.

Dynamic forecasting graphs instead would indicate gold price increase for 2019.

Why can't you use the Static Forecasting method?

-Since static is only forecasting one step forward, so able to forecast only for January.