Kurs administrowania systemem Linux Zajecia nr 6: Podstawowe czynności administracyjne w Linuksie (2)

Instytut Informatyki Uniwersytetu Wrocławskiego

5 kwietnia 2022

Ważne opcje montowania

- ro read only (uwaga na księgowanie!)
- discard wysyłaj polecenia TRIM do dysku (SSD). Dawniej polecano fstrim(8) jako alternatywę.
- noatime, nodiratime nie zapisywać czasu ostatniego odczytu (uwaga na programy mutt i podobne).
- user wolno montować zwykłemu użytkownikowi (zwykle CDROM, pendrive itp.). Por. UDisks2 i PolicyKit.
- mode, umask, fmask, dmask nadaj odpowiednie prawa dostępu (plikom, katalogom): bardzo przydatne w przypadku FAT (np. fmask=0177, dmask=0077).
- noexec zabraniaj uruchamiania programów z tego systemu.
- nosuid zabraniaj uruchamiania programów z SUID.
- noauto nie montować automatycznie w czasie rozruchu (fstab)
- defaults w razie braku opcji (fstab)

Moje rozwiązanie

- Każdy dysk zewnętrzny, pendrive, karta SD itp. dysk, ma własny podkatalog /media/dysk/.
- Domyślne prawa dostępu do /media/dysk/ to 000 (zabezpiecza przed omyłkowym pisaniem do katalogu bez zamontowanego urządzenia).
- ullet Dysk dysk ma własny wpis w pliku fstab bazujący na UUID lub LABEL, jeśli trzeba, to z opcją user.
- Zawsze wiadomo, gdzie dany dysk się znajduje i czy jest zamontowany.
- Jak sprawdzić automatycznie, czy dysk dysk jest zamontowany?

Przykład: montowanie /tmp

ręcznie

mount -t tmpfs none /tmp -o size=2000m,mode=1777,strictatime

/etc/fstab

none /tmp tmpfs size=2000m,mode=1777,strictatime 0 0

systemd: jednostka tmp.mount

```
[Unit]
Description=Temporary Directory
ConditionPathIsSymbolicLink=!/tmp
DefaultDependencies=no
Conflicts=umount.target
Before=local-fs.target umount.target
```

```
[Mount]
What=tmpfs
Where=/tmp
Type=tmpfs
Options=mode=1777,size=2000m,strictatime
```

[Install]
WantedBy=local-fs.target

Praca z jądrem obcym

- Zamontowany system plików może być podwiązany w innych punktach montowania.
- Ważne w przypadku chroot proces chrootowany potrzebuje dostępu do /sys, /proc i /dev.
- Często przydatne podczas ratowania systemu: jądro systemu ratunkowego użyczone dla *userlandu* systemu ratowanego.

W-chroot-owanie w system ratowany

- # mkdir /target
 # mount /dev/rootfs-ratowanego /target
- # mount /dev/rootjs-ratowanego /target
 # for FS in proc sys dev; do \
- mount -o bind /\$FS /target/\$FS; done
- # chroot /target
- # jesteśmy w systemie ratowanym

Loopback

losetup(8)

- Tworzy urządzenie blokowe z obrazu w pliku.
- Opcja -f: znajdź wolny numer n urządzenia /dev/loopn.
- Opcja --show: wypisz nazwę utworzonego urządzenia.

Montowanie obrazu płyty ISO

mount \$(losetup -f --show plyta.iso) /mnt

Skrót: opcja loop programu mount

mount -o loop plyta.iso /mnt

Partycje zaszyfrowane

- W Linuksie przeważnie dm-crypt z nagłówkiem LUKS.
- Narzędzie: cryptsetup.
- Idea: partycja zaszyfrowana jest mapowana na partycję wirtualną w /dev/mapper/.
- Konfiguracja: /etc/crypttab.

Montowanie systemu zaszyfrowanego

```
\# cryptsetup open /dev/dysk nazwa
```

Pytanie o hasło

mount /dev/mapper/nazwa /punkt_montażowy

Odmontowywanie systemu zaszyfrowanego

- # umount /punkt_montażowy
- # cryptsetup close nazwa

Rodzaje kontroli dostępu

- Mandatory: scentralizowana, prawa przydziela aministrator.
- Discretionary: rozproszona. Obiekty mają właścicieli. Prawa przydziela właściciel obiektu.
- W Uniksie stosuje się oba modele.

Kontrola dostępu do plików

- Każdy plik ma właściciela i grupę.
- Każdy plik ma access mode: 12 flag określających możliwe rodzaje dostępu.
- Niektóre systemy plików wspierają też extended attributes i ACL (Access Control Lists).

Tryb dostępu

12 bitów zapisywanych zwykle ósemkowo

04000	set user ID	
02000	set group ID	
01000	sticky bit	
00400	read by owner	
00200	write by owner	
00100	execute program / search directory by owner	
00040	read by group	
00020	write by group	
00010	execute/search by group	
00004	read by others	
00002	write by others	
00001	execute/search by others	

Szczególne tryby dostępu

- SETUID dla plików wykonywalnych.
- SETGID dla plików wykonywalnych i katalogów (zob. np. grupa staff i prawa drwxrwsr-x dla /usr/local/).
- Sticky bit (dla katalogów, dawniej też zwykłych plików).
- Prawa dostępu do dowiązań symbolicznych są ignorowane i nie można ich zmienić za pomocą polecenia chmod.
- Faktycznie tryb pliku jest przechowywany w jednym słowie razem z typem pliku.

Tryb dostępu — zapis literowy rwx

Podczas ujawniania informacji

- Ciąg 10 symboli ze zbioru -dlbcprwxsStT.
- Stosowany przez programy 1s, stat itp.
- Dodatkowo informacja o typie pliku (-dlbcps): pierwszy symbol.
- SUID: s zamiast x w pierwszej trójce (S jeśli brak x).
- SGID: s lub S zamiast x w drugiej trójce.
- sticky bit: t lub T zamiast x w trzeciej trójce.
- Przykłady: -rws--S---, drwxrwxrwt.

W programie chmod

- Składnia: [ugoa]*([-+=]([rwxXst]*|[ugo]))+|[-+=][0-7]+
- Bardziej elastyczne, niż zapis ósemkowy, szczególnie w połączeniu z opcją -R.
- X oznacza x tylko dla katalogu lub jeśli już był.
- Przykład: chmod -R go-wx,go+rX *

Extended attributes

a	append only
Α	no atime updates
С	compressed
С	no copy on write
d	no dump
D	synchronous directory updates
е	extent format
i	immutable
j	data journalling
s	secure deletion
S	synchronous updates

t	no tail-merging
Т	top of directory hierarchy
u	undeletable

Read-only attributes				
E	compression error			
h	huge file			
Ι	indexed directory			
N	inline data			
Х	compression raw access			
Z	compressed dirty file			

Narzędzia: lsattr, chattr.

Dostęp użytkownika nieuprzywilejowanego do katalogów

Zapis możliwy tylko do:

- /home/user/
- /tmp/, /var/tmp/
- /var/mail/user
- I niewiele więcej, ale uwaga na drobiazgi, np.: drwx-wx--T root crontab /var/spool/cron/crontab

Odczyt

- Katalogi systemowe /usr/, /var/ itp.
- Uwaga: domyślenie drwxr-xr-x dla katalogu /home/user/
- Domyślnie każdy użytkownik ma swoją grupę. Możliwość tworzenia dodatkowych working groups.
- Dobra izolacja danych różnych użytkowników, ale uwaga na dane spoza /home/user/.
- Warto zakładać dla siebie wiele kont w celu separacji danych.

Nazwy symboliczne i odpowiadające im numery

- Komputery posługują się wyłącznie liczbami (przeważnie 16- lub 32-bitowymi bez znaku).
- Ludzie wolą nazwy symboliczne (napisy).
- Popularne przestrzenie nazw:
 - Nazwy hostów (np. www.ii.uni.wroc.pl).
 - Nazwy protokołów sieciowych (różnych warstw, np. ip, icmp, udp).
 - Nazwy serwisów (portów, np. ssh, domain, http).
 - Nazwy użytkowników (np. root).
 - Grupy użytkowników (np. staff, adm).
- Różne rodzaje serwisów określają relacje między nazwami symbolicznymi i numerami.
- W Linuksie dostępem do nich zarządza Name Service Switch (GNU C Library).

Rodzaje serwisów

files Pliki tekstowe, zwykle w katalogu /etc.

db Bazy danych Berkeley DB, zwykle w /var/db. Szyszy dostęp, niż do plików testowych.

nis Network Information Service.

nisplus NIS+.

dns Domain Name Service (tylko dla nazw hostów).

Jest też kilka innych, zależnie od konfiguracji, np. compat lub ldap.

Name Service Switch (NSS)

serwis	zawartość	funkcja	plik w /etc
hosts	nazwy hostów i adresy IP	gethostbyname(3)	hosts
services	nazwy i numery portów sieciowych	getservent(3)	services
protocols	nazwy i numery protokołów sieciowych	getprotoent(3)	protocols
networks	nazwy sieci	getnetent(3)	networks
ethers	adresy MAC		ethers
aliases	aliasy pocztowe	getaliasent(3)	aliases
publickey	Secure RPC dla NFS i NIS+		publickey
rpc	nazwy i numery RPC	getrpcbyname(3)	rpc
passwd	informacje o użytkownikach	getpwent(3)	passwd
shadow	hasła użytkowników	getspnam(3)	shadow
group	grupy podstawowe użytkowników	getgrent(3)	group
initgroups	grupy dodatkowe użytkowników	getgrouplist(3)	group
netgroup	grupy użytkowników w sieci		netgroup

Plik nsswitch.conf(5)

nsswitch.conf

passwd: compat nisplus group: compat nisplus shadow: compat nisplus gshadow: files nisplus hosts: files dns

networks: files

protocols: db files services: db files rpc: db files

rpc: db files

netgroup: nis

- Zob. też nss(5).
- \bullet Wiele programów ma opcję $\neg n$, która wyłącza usługę NSS.
- Odpytywanie: getent(1). Por. getent hosts localhost oraz np. dig localhost.

Użytkownicy i grupy

- Baza informacji o użytkownikach (lokalnych): /etc/passwd
- Baza haseł: /etc/shadow (tylko dla roota)
- Baza informacji o grupach użytkowników: /etc/group
- Programy whoami(1), groups(1)
- Wiele grup zezwalających na dostęp do urządzeń: cdrom, floppy, dialout, bluetooth, audio, video, wireshark, kvm, plugdev, netdev i in.
- ... i wykonywanie czynności: staff, operator, adm itd.
- Zwykle instalator traktuje pierwszego konfigurowanego użytkownika jako szczególnie uprawnionego.
- System weryfikacji uprawnień jest dosyć szczelny. Warto tworzyć i używać konta w celu separacji dostępu do danych (por. 1p, mail, irc, nobody itd.). Oczywiście piaskownice są lepsze.

Plik /etc/passwd (zob. passwd(5))

Każdy wpis zajmuje jeden wiersz, 7 pól oddzielonych znakiem ":"

- nazwa użytkownika (login name)
- zaszyfrowane hasło, znak x (por. /etc/shadow) lub puste
- numer użytkownika (w Linuksie ≥ 1000 dla zwykłych użytkowników)
- numer grupy głównej użytkownika (por. /etc/group)
- pole GECOS (komentarz)
- katalog domowy użytkownika
- opowłoka startowa użytkownika (opcjonalnie, por. chsh(1))

Pole GECOS (General Electric Comprehensive Operating Supervisor 1962), 5 pól oddzielonych przecinkami (por. chfn(1) i login.defs(5)).

- 1 imię i nazwisko lub nazwa programu (f)
- numer pokoju (r)
- numer służbowego telefonu (w)
- numer prywatnego telefonu (h)
- dodatkowe informacje kontaktowe (o)

/etc/shadow, zob. shadow(5)

- 9 pól w formacie /etc/passwd. Czasy w sekundach epoki Uniksa.
 - nazwa użytkownika (login name)
 - 2 zaszyfrowane hasło (ew. poprzedzone ! lub *) lub puste
 - data ostatniej zmiany hasła
 - minimalny wiek hasła do zmiany
 - maksymalny wiek hasła do zmiany (< poprz., zmiana zablokowana)</p>
 - okres ostrzegania o konieczności zmiany hasła
 - okres możliwości zalogowania z wymuszeniem zmiany hasła po wygaśnięciu jego ważności
 - odata wygaśnięcia konta (jeśli 0, tj. 1/1/1970, konto zablokowane)
 - pole zarezerwowane

Dodatkowo pliki:

- /etc/{passwd-,shadow-,group-,gshadow-,subuid-,subgid-} zawartość plików sprzed ostatniej zmiany
- /var/backups/{passwd,shadow,group,gshadow}.bak
 - periodyczne kopie zapasowe (zob. /etc/cron.daily/passwd)

20 / 29

Grupy, podużytkownicy i podgrupy

Grupy

- Plik /etc/group 3 pola: nazwa grupy, hasło, lista użytkowników.
- Hasła do grup zwykle w /etc/gshadow. Wówczas także możliwość zdefiniowania administratorów grup.
- Można być członkiem grupy lub mieć hasło do grupy.
- Polecenie newgrp(1).
- Polecenia su(1) i sg(1).

Podużytkownicy i podgrupy

- Pliki /etc/{subuid,subgid}
- Potrzebne np. przy uruchamianiu kontenerów nieuprzywilejowanych.

Jak zmienić zapomniane hasło roota?

Zwykle działa

- Uruchom system ratunkowy, np. z pendrive'a.
- Zamontuj rootfs systemu ratowanego np. w /target/.
- Pierwszy wiersz /target/etc/passwd zmień na root::0:0:root:/root:/bin/bash
- Uruchom system ratowany.
- Zaloguj się na konto root podając puste hasło.
- Ustaw nowe hasło roota polecenień passwd(1).

Warianty

- Usunąć hasło z /etc/shadow.
- W-chroot-ować się w system ratowany i wykonać polecenie passwd(1).

Morał

- W razie fizycznego dostępu do komputera hasło roota nie jest zabezpieczeniem.
- Rootfs powinien się znajdować na zaszyfrowanej partycji.

Narzędzia do zarządzania użytkownikami

- Zamiast ręcznie edytować /etc/passwd itd. specjalne programy.
- W Debianie pakiety: passwd, shadow-utils i adduser.
- Niskopoziomowe narzędzia useradd(8), userdel(8), usermod(8), vipw(8), vigr(8).
- Zakładanie wielu użytkowników na raz: newuser(8).
- Narzędzia Debiana: adduser(8), deluser(8), addgroup(8), delgroup(8). Konfiguracja w adduser(5), deluser(5).

Zarządzanie użytkownikami

- Dodanie użytkownika: adduser user
- Dodanie użytkownika do grupy: adduser user group
 Uwaga: użytkownik będzie należał do tej grupy w sesji logowania rozpoczętej po wykonaniu tego polecenia trzeba się wylogować i zalogować.
- Zablokowanie użytkownika: usermod -e 1970-01-01 user.
- Odblokowanie użytkownika: usermod -e user
- Zablokowanie/odblokowanie *hasła* użytkownika: passwd [-1 | -u] user
- Zmiana hasła użytkownika: passwd user
- Zmiana czasów ważności hasła: chage(1)
- Wykonanie powłoki jako użytkownik: su user
- Wykonanie programu w podanej grupie: sg grupa program

/etc/sudoers

- sudo selektywne nadawanie uprawnień do wykonywania jako root pojedynczych programów.
- W Debianie pakiet sudo.
- Baza danych: plik /etc/sudoers, zob. sudoers(5).
- Nie modyfikować zwykłym edytorem! Program visudo(8): brak hazardów czasowych
 (zakłada locka) i pozostawiania kopii zapasowych. Sprawdza poprawność składniową pliku
 przy zapisie.
- Także sudoedit, sudo -e edycja plików zamiast wykonywania.

Składnia w skrócie

 $kto\ skad = (jako-kto: z-jaka-grupa)\ co-wykonać$

- ALL oznacza wzorzec pasujący do wszystkiego.
- Przykład: jan localhost=(root:staff) /bin/ip
 - jan może uruchomić ip(8) jako root w grupie staff.
- Używać bezwzględnych ścieżek do programów!

Program sudo

- Wykonanie pojedynczego polecenia jako root: su - -c polecenie wymaga podania hasła roota.
- Wykonanie pojedynczego polecenia jako root: sudo polecenie wymaga podania hasła użytkownika.
- Użytkownik nie musi znać hasła roota.
- Hasło roota może w ogóle nie być dostępne.
- sudo [-u user] -i uruchomienie powłoki jako użytkownik user. Lepsze niż sudo su lub sudo /bin/bash.
- Uwaga: sudo w skyptach.
- Pamiętać o opcji -k.
- W Ubuntu był exploit na sudo -k.
- Nie używać bez potrzeby opcji :NOPASSWD!

Hasło roota?

Czy blokować?

- Wszystko, co nie jest używane, powinno być zablokowane.
- W niektórych dystrybucjach domyślnie hasło roota jest wyłączone.
- Instalator Debiana pyta, choć sugeruje, żeby pozostawić włączone.
- Można zablokować: sudo passwd -1 root, a jak się nie spodoba odblokować sudo passwd -u root.
- Zawsze można zresetować, jeśli nawet się zapomni.
- Uwaga: jedyne hasła, których *absolutnie nie wolno* zapomnieć, to hasła do kryptografii (zaszyfrowane partycje itp.).

Krytyka sudo

- Program bardzo duży i skomplikowany.
- Skomplikowany plik konfiguracyjny łatwo błednie skonfigurować.
- Wykryto poważne podatności, zob. np. Animesh Jain: CVE-2021-3156: Heap-Based Buffer Overflow in Sudo (Baron Samedit).
- $\bullet \ \ W \ Open BSD \ do as (1), \ zob. \ Ted \ Unangst: \ https://flak.tedunangst.com/post/doas.$

Logi systemowe

- Kopalnia wiedzy o systemie.
- Warto je stale przeglądać i analizować.
- Katalog /var/log/.
- Większość plików do odczytu dla grupy adm warto dodać siebie do tej grupy, by móc przeglądać logi jako zwykły użytkownik.
- Klasycznie: demon (r)syslog, zob. rsyslog.conf(5), rsyslogd(8).
- W systemd: journalctl(1).
- Polecenie logger(1).
- Automatyczne usuwanie starych logów: logrotate(8).
- Warto wydłużyć "czas życia" logów w /etc/logrotate.conf, /etc/logrotate.d/.
- Programy ccze(1), clog(1), colortail(1), lwatch(1) itp.