Supplementary Materials for

Multiplexed structured illumination super-resolution imaging with

lifetime-engineered upconversion nanoparticles

Baolei Liu^{1,2}, Jiayan Liao¹, Yiliao Song³, Chaohao Chen¹, Lei Ding¹, Jie Lu³, Jiajia Zhou¹*, Fan Wang^{1,2}*

¹Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, NSW 2007, Australia

²School of Electrical and Data Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW 2007, Australia

³Centre for Artificial Intelligence, Faculty of Engineering and IT, University of Technology Sydney, NSW 2007, Australia

*e-mail: jiajia.zhou@uts.edu.au; fan.wang@uts.edu.au

This file includes:

Materials and Methods

Supplementary Figures. S1 to S6

Supplementary Table S1.

Materials and Methods

1. Nanoparticle synthesis

1.1 Synthesis of NaYF4: Yb, Er core nanoparticles

We synthesized the NaYF₄:20%Yb, 2%Er core nanoparticles by coprecipitation method. 1 mmol RECl₃ (YCl₃·6H₂O (0.78 mmol), YbCl₃·6H₂O (0.2 mmol) and ErCl₃·6H₂O (0.02 mmol)) methanol solution together with 6 mL oleic acid (OA) and 15 mL 1-octadecene (ODE) were added to a 50 ml three-neck round-bottom flask under vigorous stirring. The resulting mixture was heated at 150 °C for 40 mins. Then the solution was cooled down to room temperature. A 6 mL methanol solution with 2.5 mmol NaOH and 4 mmol NH₄F was added and stirred for 40 mins, and then the mixture was slowly heated to 150 °C and kept for 40 mins under argon flow to remove methanol and residual water. The solution was quickly heated at 300 °C under an argon flow for 90 mins. The final NaYF₄:Yb,Er nanocrystals were dispersed in cyclohexane after washing with cyclohexane/ethanol/methanol several times.

Another three kinds of core nanoparticles were synthesized with different doping concentrations (NaYF4:20%Yb, 1.5%Er, NaYF4:30%Yb, 2%Er, NaYF4:30%Yb, 8%Er) using the same above method.

1.2 Synthesis of NaYF₄: 5%Yb, NaYF₄: x%Yb, 20%Nd (x= 5, 15, 30) and NaYF₄ pure precursors

The precursors were prepared similar as above process and stopped when the reaction solution was heated to 150 °C after adding NaOH/NH₄F solution and kept for 40 min. The solution was cooled down to room temperature to yield the shell precursors.

1.3 Synthesis of core@NaYF4:5%Yb core-shell nanoparticles

We prepared the core@ NaYbF4:5%Yb core-shell nanoparticles by epitaxial growth method. The pre-synthesized NaYF4: Yb, Er core nanoparticles were used as seeds for shell modification. The core nanocrystals were added to a 50 ml flask with 3 ml OA and 8 ml ODE. The mixture was heated to 160 °C under argon for 30 min, and then further heated to 300 °C. The as-prepared shell precursors were injected into the

reaction mixture about 0.02ml/2 min to get around 3 nm thickness shell. After the reaction, the solution was cooled down to room temperature and washed dispersed in cyclohexane for next step epitaxial growth.

1.4 Synthesis of core@NaYF4:5%Yb@NaYF4:x%Yb, 20%Nd (x=5, 15, 30) core-shell-shell nanoparticles and core @NaYF4:5%Yb @NaYF4: x%Yb, 20%Nd @NaYF4 (x=5, 15, 30) core-shell-shell nanoparticles

The core-shell-shell (core-shell-shell) nanoparticles were also prepared by epitaxial growth method described above and the core-shell samples (core-shell-shell) were used as the seeds.

2. General materials characterization techniques.

The shape of the nanoparticles were performed by transmission electron microscope (TEM), JEOL TEM-1400 at an acceleration voltage of 120 kV. The samples were prepared by dropping onto the carbon-coated copper grids.

3. Preparation of sample slides for single nanoparticle measurements

A coverslip was washed with ethanol by ultrasonication and dried. 10 μ l of the τ^2 -dots (diluted to 0.01 mg/ml in cyclohexane) was dropped onto the surface of cover slip and let it dry naturally. The coverslip was put onto a glass slide and squeezed out air bubbles.

Supplementary Figures

Figure S1. TEM images of core samples. (a) NaYF₄:20%Yb³⁺, 2% Er³⁺ core nanoparticles. (b) NaYF₄:30%Yb³⁺, 8% Er³⁺ core nanoparticles. (c) NaYF₄:30%Yb³⁺, 2% Er³⁺ core nanoparticles. (d) NaYF₄:20%Yb³⁺, 1.5% Er³⁺ core nanoparticles. Scale bar: 200 nm.

Figure S2. TEM images of core-shell nanoparticles. (a) NaYF₄:20%Yb³⁺, 2% Er³⁺ @ NaYF₄:5%Yb³⁺ nanoparticles. (b) NaYF₄:30%Yb³⁺, 8% Er³⁺ @ NaYF₄:5%Yb³⁺ nanoparticles. (c) NaYF₄:30%Yb³⁺, 2% Er³⁺ @ NaYF₄:5%Yb³⁺ nanoparticles. (d) NaYF₄:20%Yb³⁺, 1.5% Er³⁺ @ NaYF₄:5%Yb³⁺ nanoparticles. Scale bar: 200 nm.

Figure S3. TEM images of core-shell-shell nanoparticles.

- (a) NaYF₄:30%Yb³⁺, 8% Er³⁺ @ NaYF₄:5%Yb³⁺@ NaYF₄: 15%Yb³⁺, 20% Nd³⁺ nanoparticles.
- (b) $NaYF_4:30\%Yb^{3+}$, 2% Er^{3+} @ $NaYF_4:5\%Yb^{3+}$ @ $NaYF_4:15\%Yb^{3+}$, 20% Nd^{3+} nanoparticles.
- (c) $NaYF_4:20\%Yb^{3+}$, 1.5% Er^{3+} @ $NaYF_4:5\%Yb^{3+}$ @ $NaYF_4:$ 15% Yb^{3+} , 20% Nd^{3+}

nanoparticles.

- (d) $NaYF_4:20\%Yb^{3+}$, 2% Er^{3+} @ $NaYF_4:5\%Yb^{3+}$ @ $NaYF_4:15\%Yb^{3+}$, 20% Nd^{3+} nanoparticles.
- (e) NaYF₄:20%Yb³⁺, 2% Er³⁺ @ NaYF₄:5%Yb³⁺@ NaYF₄: 15%Yb³⁺, 20% Nd³⁺ nanoparticles.
- (f) $NaYF_4:20\%Yb^{3+}$, 2% Er^{3+} @ $NaYF_4:5\%Yb^{3+}$ @ $NaYF_4:30\%Yb^{3+}$, 20% Nd^{3+} nanoparticles.
- (g) NaYF₄:20%Yb³⁺, 1% Er³⁺ @ NaYF₄:5%Yb³⁺@ NaYF₄: 5%Yb³⁺, 20% Nd³⁺ nanoparticles. Scale bar: 200 nm.

Figure S4. TEM images of core-shell-shell nanoparticles.

- (a) NaYF₄:30%Yb³⁺, 8% Er³⁺ @ NaYF₄:5%Yb³⁺@ NaYF₄: 15%Yb³⁺, 20% Nd³⁺ @ NaYF₄ nanoparticles (τ^2 -1).
- (b) NaYF₄:30%Yb³⁺, 2% Er³⁺ @ NaYF₄:5%Yb³⁺@ NaYF₄: 15%Yb³⁺, 20% Nd³⁺@ NaYF₄ nanoparticles (τ^2 -2).
- (c) NaYF₄:20%Yb³⁺, 1.5% Er³⁺ @ NaYF₄:5%Yb³⁺@ NaYF₄: 15%Yb³⁺, 20% Nd³⁺@ NaYF₄ nanoparticles (τ^2 -3).
- (d) NaYF₄:20%Yb³⁺, 2% Er^{3+} @ NaYF₄:5%Yb³⁺@ NaYF₄: 15%Yb³⁺, 20% Nd³⁺ @

NaYF₄ nanoparticles (τ^2 -4).

- (e) NaYF₄:20%Yb³⁺, 2% Er³⁺ @ NaYF₄:5%Yb³⁺@ NaYF₄: 15%Yb³⁺, 20% Nd³⁺ @ NaYF₄ nanoparticles (τ^2 -5).
- (f) NaYF₄:20%Yb³⁺, 2% Er³⁺ @ NaYF₄:5%Yb³⁺@ NaYF₄: 30%Yb³⁺, 20% Nd³⁺ @ NaYF₄ nanoparticles (τ^2 -6).
- (g) NaYF₄:20%Yb³⁺, 1% Er³⁺ @ NaYF₄:5%Yb³⁺@ NaYF₄: 5%Yb³⁺, 20% Nd³⁺ @ NaYF₄ nanoparticles (τ^2 -7). Scale bar: 200 nm.

Table S1. The average rising, peak and decay time of used lifetime-engineered upconversion nanoparticles (τ^2 dots)

τ^2 -x dots	Rising time (µs)	Peak time (µs)	Decay time (µs)
1	272.0	400.1	942.4
2	302.9	500.2	970.8
3	350.2	580.6	968.2
4	388.4	629.7	1117.0
5	462.9	724.9	1211.4
6	479.2	757.0	1221.0
7	589.3	982.1	1332.9

Figure. S5 The principle for time-gated wide-field imaging. (a) The camera is gated with an exposure time of $100~\mu s$, and in each frame, only a gated image can be detected. The frame interval time is set as 4 ms in order to avoid the effect from the last lifetime circle. The imaging gate will be shifted to the next $100~\mu s$. The lifetime curve/images (b) can be reconstructed by 30 frames. To obtain a better signal-to-noise ratio, we repeat the process for M times (e.g M=7500 for TR-SIM, and M=3000 for TR-WF) and integrate the signal to obtain a series of time-resolved images (c).

Figure S6. Mean classification accuracies of 3 and 7 types of τ^2 -dots with deep learning algorithms, based on 50 times random validation test for each type.