Exploring the challenges

Amaël Le Squin

2024-12-02

Available on Gitlab

This note is available on **\forall gitlab**.

Introduction

In order to test my models, I first run dummy tests, with generated data. I build models slowly, from the simplest to the most complex. The first challenge is related to the model used by Christine Deleuze *et al.* (scripts given on 11 October 2024):

```
Modele_mai2 = nlme(formTotNew ~ a + b*hdn + d*hsurd, data = Grdata.PV, start = c(a = 0.4, 0, b = 1.5, 0, d = 0.0005, 0), fixed = list(a + b + d ~ feuil.res), random = a + d ~ 1|nomessence2)
```

Few things raised a flag in my mind:

- The R package nlme, non-linear mixed effect, is for repeated measured data and is based on Lindstrom and Bates (1990). Here, the repetition occurs within the species level, so I am not sure this package is the best adapted... I feel that lme4 would have been better
- 2. hdn is the hardiness \sqrt{c}/h while hsurd is what I call the 'slenderness', h/c. Therefore, there is a high (negative) correlation between these two explanatory variables!

The model Modele_mai2 should be understood as follows, for an individual of height h and circumference at breast height c, of species j and functional group (conifer or broadleaf) i:

$$\begin{split} \mathcal{F} &\sim \mathcal{N}(\mu, \sigma) \\ \mu_{i,j} &= a_{i,j} + b_i \frac{\sqrt{c}}{h} + d_{i,j} \frac{h}{c} \\ a_{i,j} &\sim \mathcal{N}(\alpha_i, \sigma_\alpha) \\ d_{i,j} &\sim \mathcal{N}(\delta_i, \sigma_\delta), \end{split} \tag{1}$$

where α_i and δ_i are the 'group intercepts' (common values within conifers and broadleaves). Therefore, it seems to be a GLMM, and I am not sure nlme is relevant here. In the next sections, I will try to reproduce their model with generated data. I will do it step-by-step. Before that, I rewrite the equations with new variable names and without the indices i and j, in order to correspond to stan code:

$$\mathcal{F} \sim \mathcal{N}(\mu, \sigma)$$

$$\mu = \beta_0 + b_1 \frac{\sqrt{c}}{h} + \beta_2 \frac{h}{c}$$

$$\beta_0 \sim \mathcal{N}(b_0, \sigma_0)$$

$$\beta_2 \sim \mathcal{N}(b_2, \sigma_2),$$
(2)

Generating data

Packages and helpers

First, I load the necessary packages:

```
#### Clear space and load packages
rm(list = ls())
graphics.off()

options(max.print = 500)

library(data.table)
library(cmdstanr)
    register_knitr_engine(override = TRUE)
library(stringi)
library(gt)

setHook(packageEvent("grDevices", "onLoad"),
function(...) grDevices::X11.options(type='cairo'))
options(device='x11')
```

```
Stan engine
By default, Quarto uses the knitr's built-in stan engine rstan. To override it so that all stan chunks are processed with CmdStanR, I need to specify:
register_knitr_engine(override = TRUE)
```

Then, I define useful functions:

```
#### Tools
source("./toolFunctions.R")

## Generate k integers with constraint they sum to n >= k
generate_random_partition = function(n, k)
{
    if (n < k)
        stop("n should be larger than k")
    parts = c(0, sort(sample(1:(n - 1), k - 1)), n)
    return(diff(parts))
}</pre>
```

Parameters

I define the following parameters, that will be used to generate data according to equation (1):

```
#### Define parameters
set.seed(1969 - 08 - 18) # Woodstock seed

## Fixed effects
b0 = c(conif = 0.2, broad = 5.3)
b1 = c(conif = 0.27, broad = 1.4)
b2 = c(conif = 4, broad = 0.21)

## Variance for random effects and residuals
sigma_beta0 = 4.2
sigma_beta2 = 6.98
sigma = 1.2

## Number of data and species
n = 3e3
S = 30 # Number of species
```

We aim to recover them later with a statiscal model (the values are stored in Table 1).

Data

```
rep_species = generate_random_partition(n, S)
lim_broadleaf = sum(rep_species[1:19]) + 1
n_conif = lim_broadleaf - 1
n_{broad} = n - n_{conif}
fake_dt = data.table(
    species = rep(paste0("sp_", 1:S), times = rep_species),
    type = c(rep("conif", n_conif), rep("broad", n_broad)),
    fake_hdn = runif(n = n, min = -10, max = 50),
   fake\_slenderness = rnorm(n = n, mean = 0, sd = 20),
    b0 = c(rep(b0["conif"], n_conif), rep(b0["broad"], n_broad)),
    b1 = c(rep(b1["conif"], n_conif), rep(b1["broad"], n_broad)),
    b2 = c(rep(b2["conif"], n_conif), rep(b2["broad"], n_broad)))
fake_dt[, beta0 := rnorm(1, unique(b0), sigma_beta0), by = species]
fake_dt[, beta2 := rnorm(1, unique(b2), sigma_beta2), by = species]
b0m = fake_dt[, round(mean(unique(beta0)), 3), by = type]
b0m[, sig := fake_dt[, round(sd(unique(beta0)), 3)]]
setkey(b0m, type)
b2m = fake_dt[, round(mean(unique(beta2)), 3), by = type]
b2m[, sig := fake_dt[, round(sd(unique(beta2)), 3)]]
setkey(b2m, type)
fake_dt[, fake_mu := beta0 + b1*fake_hdn + beta2*fake_slenderness]
fake_dt[, fake_vol := rnorm(.N, fake_mu, sigma)]
fake_dt[, fake_vol_no_randeff := rnorm(.N, b0 + b1*fake_hdn + b2*fake_slenderness, sigma)]
ind_species = fake_dt[, .(start = .I[1], end = .I[.N]), by = .(species)]
ind_species[, n_indiv := end - start + 1, by = species]
ind_species[, sum(n_indiv)] == n
ind species = merge.data.table(ind species, unique(fake_dt[, .(species, type)]))
setorder(ind_species, start)
n_sp = ind_species[, .N, by = type]
setkey(n_sp, type)
temporary = lm(fake_dt[, fake_vol] ~ 0 + fake_dt[, fake_mu])
```

sig_est = round(summary(temporary)\$sigma, 3)

Here is a summary of the parameters value β_0 and β_2 (simulated), and b_0 and b_2 , which are supposed to be the mean of β_0 s and β_2 s:

Table 1: Parameters value for both functional groups

Parameter	Conifer	Broadleaf
b_0	0.2	5.3
β_0 (data)	0.27	6.014
σ_0	4.2	4.2
$\sigma_0 \; ({\rm data})$	5.186	5.186
b_1	0.27	1.4
b_2	4	0.21
$\beta_2 \; (\mathrm{data})$	4.896	-0.16
σ_2	6.98	6.98
$\sigma_2 \; ({\rm data})$	7.974	7.974
σ	1.2	1.2
σ (lm)	1.199	1.199

As can be seen, the data do not necessarily represent the true parameters value very well.

Parameter recovery

Caching execution

To store some results that could be slow to obtain, or to avoid the recompilation of stan code, use the option cache = TRUE.

Simplest model

I first define the simplest possible model, where there is no hierarchy, and I only try to estimate b_0 , b_1 , b_2 , and the residual variance σ :

Prepare the data for Stan,

```
#### Stan data
## Data list
stanData = list(
   N = fake_dt[, .N],
    S = S,
    n_sp_conif = n_sp["conif", N],
    n_sp_broad = n_sp["broad", N],
    ind_start_conif = ind_species[type == "conif", start],
    ind_start_broad = ind_species[type == "broad", start],
    ind_end_conif = ind_species[type == "conif", end],
    ind_end_broad = ind_species[type == "broad", end],
    lim_broadleaf = lim_broadleaf,
    fake_hdn = fake_dt[, fake_hdn],
    fake_slenderness = fake_dt[, fake_slenderness],
    volume_m3 = fake_dt[, fake_vol_no_randeff]
)
## Common variables
n_{chains} = 4
iter_warmup = 500
iter_sampling = 1500
```

and run the simplest model (see Listing 1):

It gives the following results (see Table 1 for real values):

```
info_dt = pretty_summary(fit = fit, params = fit$metadata()$model_params[-1]) # -1 to remove
info_dt |>
    gt() |>
    cols_label(
        params_name = "Parameter",
        mean_params = "Mean",
        sd_params = "Std. dev",
        r_hat_params = "r hat"
    ) |>
   fmt_number(
        n_sigfig = 2
    ) |>
   tab_style(
        style = cell_borders(sides = "all", style = NULL),
        locations = cells_body()
    ) |>
```

Parameter	Mean	Std. dev	r hat
b0[1]	0.25	0.047	1.0
b0[2]	5.3	0.046	1.0
b1[1]	0.27	0.0018	1.0
b1[2]	1.4	0.0017	1.0
b2[1]	4.0	0.0016	1.0
b2[2]	0.21	0.0015	1.0
sigma	1.2	0.015	1.0

```
tab_style(
    style = cell_text(weight = "bold"),
    locations = list(cells_column_labels(), cells_column_spanners())
) |>
tab_style(
    style = cell_text(align = "right"),
    locations = cells_body(columns = params_name)
)
```

Hierarchical model

Quick and dirty way (which does not always work)

Simply adding two priors on σ_0 and σ_2 like bellow does not necessarily work (it does in my case because the data are informative enough):

```
target += inv_gamma_lpdf(sigma_beta0 | 1, 1);
target += inv_gamma_lpdf(sigma_beta2 | 1, 1);
```

When there is not enough groups to describe the population parameters b_0 , σ_0 and b_2 , σ_2 the model can turn unidentifiable. In this case, a solution can be a non-centred parametrisation. Another example is available here. Similarly, when the local data (*i.e.,* within each group) is not 'informative enough', then the individual likelihood functions can degenerate (paragraph 3 of the non-centred parametrisation link).

A slightly more complex model, this time with a group effect (*i.e.,* random effect β_0 s and β_2 s to estimate), and the associated two variances σ_0 and σ_2 :

```
data {
    // Dimensions and indices
```

```
int N; // Number of individuals
    int S; // Number of species
    int<lower = 0, upper = S> n_sp_conif; // number of conifer species
    int<lower = S - n_sp_conif, upper = S - n_sp_conif> n_sp_broad; // number of broadleaf s
    array[n_sp_conif] int ind_start_conif; // Conifer species index start
    array[n_sp_broad] int ind_start_broad; // Broadleaf species index start
    array[n_sp_conif] int ind_end_conif; // Conifer species index end
    array[n_sp_broad] int ind_end_broad; // Broadleaf species index end
    // Predictors
    vector [N] fake_hdn;
    vector [N] fake_slenderness;
    // Response variable
   vector[N] volume_m3;
}
parameters {
    // Fixed effects (population parameters)
   vector[2] b0;
   vector[2] b1;
   vector[2] b2;
    // Random effects (group parameters)
    vector[S] beta0;
    vector[S] beta2;
    // Variances
    real<lower = 0> sigma; // sd residuals
    real<lower = 0> sigma_beta0; // sd random effect beta0
    real<lower = 0> sigma_beta2; // sd random effect beta2
}
model {
    // Priors
    // --- Population parameters
    target += normal_lpdf(b0 | 0, 10);
    target += normal_lpdf(b1 | 0, 10);
   target += normal_lpdf(b2 | 0, 10);
    // --- Residual variance and population variance
    target += inv_gamma_lpdf(sigma | 1, 1); // Uses shape and scale
```

```
target += inv_gamma_lpdf(sigma_beta0 | 1, 1);
target += inv_gamma_lpdf(sigma_beta2 | 1, 1);
// Hierarchy
target += normal_lpdf(beta0[1:n_sp_conif] | b0[1], sigma_beta0);
target += normal_lpdf(beta2[1:n_sp_conif] | b2[1], sigma_beta2);
target += normal_lpdf(beta0[(n_sp_conif + 1):S] | b0[2], sigma_beta0);
target += normal_lpdf(beta2[(n_sp_conif + 1):S] | b2[2], sigma_beta2);
for (i in 1:n_sp_conif)
{
    // Likelihood conifers
    target += normal_lpdf(volume_m3[ind_start_conif[i]:ind_end_conif[i]] | beta0[i] +
        b1[1]*fake_hdn[ind_start_conif[i]:ind_end_conif[i]] +
        beta2[i]*fake_slenderness[ind_start_conif[i]:ind_end_conif[i]], sigma);
}
for (i in 1:n_sp_broad)
    // Likelihood broadleaves
    target += normal_lpdf(volume_m3[ind_start_broad[i]:ind_end_broad[i]] | beta0[n_sp_content
        b1[2]*fake_hdn[ind_start_broad[i]:ind_end_broad[i]] +
        beta2[n_sp_conif + i]*fake_slenderness[ind_start_broad[i]:ind_end_broad[i]], sign
}
```

This time, the model needs the data generated with the random effects:

```
stanData[["volume_m3"]] = fake_dt[, fake_vol]
```

and now run the hierarchical model:

```
fit = hierarchical_model$sample(data = stanData, chains = n_chains, parallel_chains = ifelse
    refresh = 200, iter_warmup = iter_warmup, iter_sampling = iter_sampling)
```

This gives the following results (see Table 1 for real values):

Data with correlations

Now, we consider the same model, but with a correlation between slenderness and hardiness, and we run the same hierarchical model.

Figure 1: Trace plot and posterior of β_0 for the fifth species

(a) Trace plot

Figure 2: Trace plot and posterior of σ_0

Parameter	Mean	Std. dev	r hat
b0[1]	0.26	1.1	1.0
b0[2]	5.9	1.3	1.0
b1[1]	0.27	0.0018	1.0
b1[2]	1.4	0.0017	1.0
b2[1]	4.8	1.7	1.0
b2[2]	-0.15	2.3	1.0
sigma	1.2	0.016	1.0
$sigma_beta0$	4.5	0.60	1.0
$sigma_beta2$	7.8	1.1	1.0

Parameter	Mean	Std. dev	r hat
b0[1]	0.26	1.1	1.0
b0[2]	6.0	1.4	1.0
b1[1]	0.27	0.0021	1.0
b1[2]	1.4	0.0020	1.0
b2[1]	4.7	1.8	1.0
b2[2]	-0.18	2.3	1.0
sigma	1.2	0.015	1.0
sigma_beta0	4.5	0.63	1.0
sigma_beta2	7.8	1.1	1.0

```
set.seed(1969 - 08 - 18) # Woodstock seed
fake_dt[, fake_slenderness_cor := rnorm(n = .N, mean = 1.2 - 0.5*fake_hdn, sd = 15)]
fake_dt[, fake_mu_cor := beta0 + b1*fake_hdn + beta2*fake_slenderness_cor]
fake_dt[, fake_vol_cor := rnorm(.N, fake_mu_cor, sigma)]
stanData[["fake_slenderness"]] = fake_dt[, fake_slenderness_cor]
stanData[["volume_m3"]] = fake_dt[, fake_vol_cor]
fit = hierarchical_model$sample(data = stanData, chains = n_chains, parallel_chains = ifelse refresh = 200, iter_warmup = iter_warmup, iter_sampling = iter_sampling, adapt_delta = 0
```

With a correlation of -0.5 (-0.51 in the real data), we get the following results (see Table 1 for real values):

Which still works in our case...

Figure 3: Trace plot and posterior of β_0 for the fifth species

(a) Trace plot

Figure 4: Trace plot and posterior of σ_0

Note that I made the test with $\sigma = 35$ (instead of $\sigma = 1.2$). In other words, I put the data less informative. It was still working, although the parameters' variance increased a lot (makes sense!). I do not show these results.

Lindstrom, Mary J, and Douglas M Bates. 1990. "Nonlinear Mixed Effects Models for Repeated Measures Data." *Biometrics* 46 (3): 673. https://doi.org/10.2307/2532087.

Listing 1

```
data {
    // Dimensions and indices
    int N; // Number of individuals
    int lim_broadleaf; // Number of individuals
    // Predictors
    vector [N] fake_hdn;
    vector [N] fake_slenderness;
    // Response variable
    vector[N] volume_m3;
}
parameters {
    // Fixed effects
    vector[2] b0;
    vector[2] b1;
    vector[2] b2;
    // Variance
    real<lower = 0> sigma; // sd residuals
model {
    // Priors
    target += normal_lpdf(b0 | 0, 10);
    target += normal_lpdf(b1 | 0, 10);
    target += normal_lpdf(b2 | 0, 10);
    target += inv_gamma_lpdf(sigma | 1, 1);
    target += normal_lpdf(volume_m3[1:(lim_broadleaf - 1)] | b0[1] +
        b1[1]*fake_hdn[1:(lim_broadleaf - 1)] +
        b2[1]*fake_slenderness[1:(lim_broadleaf - 1)], sigma);
    target += normal_lpdf(volume_m3[lim_broadleaf:N] | b0[2] +
        b1[2] *fake_hdn[lim_broadleaf:N] +
        b2[2]*fake_slenderness[lim_broadleaf:N], sigma);
```