Digital IC Design

Exercise 2 Combinational circuits

Professor Po-Tsang Huang

International College of Semiconductor Technology National Yang Ming Chiao Tung University

2-1: 1-bit Full Adder standard cell [20%]

- Implement 1-bit FA by XOR and MAJ gates in the cell library (asapt_75t_R_24.cdl)
- Settings:
 - ◆ Inputs: A, B, Cin
 - > The driving ability of inputs is one unit size of INV.
 - Specify all-case switching patterns
 - Outputs
 - Output: carry_out, sum
 - > The output loading of each output is **5fF.**
 - ◆ Using 7nm FinFET model.
- Measure the power, delay of a 1-bit FA
 - Delay: worst case delay

Α	В	С	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

2-2: Different logic family of 1-bit Full Adders [30%]

- Analyze and compare the power, performance and area (PPA) of 1-bit FA by different logic families
 - ◆ CMOS logic family
 - ◆ CPL-type logic family
 - ◆ DCVS-type logic family
- Settings:
 - ◆ Inputs
 - > A, B, Cin (Specify all-case switching patterns)
 - Outputs
 - Output: carry_out, sum
 - > The output loading of each output is **5fF.**
- PPA measurement: transistor counts for area
- Compare and analyze these three logic families

2-3: Design a 4-Bit Adder [30%]

- Design a 4-bit adder in Verilog
 - ◆ Input: a[3:0], b[3:0]
 - Output: {carry_out, sum[3:0]}
 - ◆ The sampling rate of inputs is 5GHz
- Synthesis using ASAP 7nm Technology
 - **♦** Find out the critical paths
- Verify your design in gate-level simulation
 - Used the pattern provided by TA

2-4: CMOS Logics for 4-Bit Adder [20%]

- Covert the Verilog gate-level netlist to HSPICE netlist
 - ◆ Adder_4bit_SYN.v to Adder_4bit_SYN.sp.
- Measure the delay and power of the 4-bit adder in HSPICE
 - ◆ The tested patterns (vectors) should cover the worstcase delay and power consumption.
 - Please indicate which pattern covered the worst-case delay.

Vector for HSPICE

Use high level language (C, python, script) to generate vector files for HSPICE

```
radix
    vname clk reset wen_in ren_in cen_in wl_in[[7:0]] data_in[[127:0]]
   tunit ns
slope 0.1
tdelay 0.1
vih 1.0
vil 0
0.00
             1.20
             2.00
             4.00
           0 10 ffe6dba4adae6b963e23751c19c40236
6.00
           0 10 ffe6dba4adae6b963e23751c19c40236
8.00
        0 0 1 0 0 20 9afde6d8e5c528b5e9dc22300da2fe6a
10,00
```

.vec test.vec .vec test.txt

Submission on e3 platform

Please compress your report & source codes in a single compressed file (.zip) and upload this single file on E3 platform

■ Due date: 10/30 PM 23:55