# Generating Synthetic Population Data for Testing Record Linkage Procedures

Sepideh Mosaferi

National Cancer Institute (NCI) Presentation University of Maryland College Park

August 25, 2016

#### **OUTLINE**

- Why generate synthetic cancer population data?
- How to generate synthetic cancer population data?
- Evaluating Febrl using generated synthetic cancer population data... This will be shown by running the software.
- Summary and Discussion

## **Background and Motivation**

- Linking the SEER cancer registry data with different administrative or commercial data sources through probabilistic software becomes an interested area within the SRP at NCI
- Variety of free accessible linkage software such as LinkPlus (developed by CDC), BigMatch (developed by Census Bureau) and Febrl (developed by the Austria group) exist
- Challenges arise in choosing a suitable and reliable linkage software and evaluating the linkage quality
- Evaluations using real data have restrictions due to unknown truth, limited data accessibility to the patient health identifiers, and other restrictions related to the divisions and institutes requirements in sharing the data set
- An alternative choice is generating synthetic (artificial) but representative data sets based on information from a real data

└ Motivation

# Background and Motivation (Cont'd)

Using Synthetic data enables researchers to:

- Fully and consistently compare the performance of several record linkage software or other procedures because the truth is known
- Bring the possibility of different research when the unit level information is not available, but the population characteristics are accessible

Lefinition of Synthetic Data

#### What Is Synthetic Data Set?

Any production of data applicable to a given situation which is not obtained by a direct measurement.

#### Characteristics of Generated Data Set:

- depending upon the purpose of researcher
- exhibiting similar statistical characteristics to the real data
- preserving the frequency distributions of attributes, the occurrences and frequencies of typographical and other errors and variations
- preserving the dependencies or relationship among elements of attributes in the real data

# Approaches to Generate Synthetic Data Set for Different **Purposes**

- For protecting confidentiality: Partially or fully replacing sensitive original values with synthetic ones by perturbing the real data through an explicit statistical model and preserving the original statistical inferences. For example, generate synthetic census tracks for SEER to preserve confidentiality.
- For record linkage: Generate data based on a specified distribution (Uniform, Poisson, Zipf) while explicitly considering some appropriate assumptions such as attribute frequencies and possible errors occur in the real data.
  - Attributions need to be generated are mainly patient health identifications such as SSN, first name, last name, date of birth, mail address, phone number, etc.

#### Data Generator Software for the Record Linkage Purpose

 DBGEN (A Database Generator): in C language: This software is reasonably good for the purpose of generating US mailing addresses; it is not appropriate for generating the cancer population.

#### http:

//www.cs.utexas.edu/users/ml/riddle/data.html

 GeCo (A Data Generator and Corruptor): in Python language: A good choice for generating a synthetic data which is capable of receiving frequency tables, dependent attributes, errors, and cancer attributes by adding self-written codes, frequency tables, etc. to mimic a real cancer population. http://dmm.anu.edu.au/geco/

Generated Cancer Population

#### Generated Cancer Population Data Set by (GeCo)

For the NCI synthetic data

N=20,000: number of records

C=10,000: number of original records and duplicates

Duplicates are randomly distributed among original individuals. This does not mean each individual should be necessarily to be repeated one time; some individuals might not be duplicated and some others might just be duplicated one or two times depends upon the maximum value for the number of duplication, which is 3 in our case.

The maximum modifications per attribute is 1, and the number of modifications per record is 5 based on our definition.

Attributes

#### **Generated Attributes**

- First name, Last name, Race, City state, Zip code (based on frequency tables obtained from public website)
- Date of birth, SSN, Phone number (generated using computer code assuming certain distribution)
- Four cancer depend attributes (based on frequency tables from public cancer website):
  - ☐ Cancer site cross by Gender; Cancer site cross by State; Cancer site cross by Ethnicity; Cancer site cross by Age-group

#### Incorporated Errors in the Generated Data set (GeCo)

Usual errors in administrative records are considered:

- ocr-variation error: optical character recognition error;
  e.g.: I (the letter) instead of 1 (the number)
- qwerty-keyboard error: errors during typing by PC
- phonetic-variations error: speech sound disorders over the phone
- given-name misspell and surname misspell
- missing values
- swapping: two fields contents replaced
- insertion, deletion, substitution, and transposition

How to generate synthetic cancer population data?

Schematic Errors

#### **Different Sources of Errors**



#### SIX Different Scenarios Considered as

- 1. Uniform distribution for generating duplication and assigning more errors to the attributes (dirty situation I).
- 2. Uniform distribution for generating duplication and assigning less errors to the attributes (clean situation I).
- 3. Poisson distribution for generating duplication and assigning more errors to the attributes (dirty situation II).
- 4. Poisson distribution for generating duplication and assigning less errors to the attributes (clean situation II).
- 5. Zipf distribution for generating duplication and assigning more errors to the attributes (dirty situation III).
- 6. Zipf distribution for generating duplication and assigning less errors to the attributes (clean situation III).



How to generate synthetic cancer population data?

Illustrating Generated Cancer-Based Data Set (GeCo)

# **Example of the Generated Data**

| A              | 8          | C          | D             | Ε         | F           | G           | Н               |
|----------------|------------|------------|---------------|-----------|-------------|-------------|-----------------|
| rec-id         | first name | last name  | date-of-birth | race      | SSN         | SSN-random  | telephone-numbe |
| rec-0000-dup-0 | kodi       | tinston    | 09-11-1974    | whte      | 012-24-2915 | 824-86-7602 |                 |
| rec-0000-dup-1 | ckody      | tinston    | 09-11-1974    | whiwte    | 012-24-2915 | 824-86-7602 | 718-654-5416    |
| rec-0000-org   | kody       | tinson     | 09-11-1974    | white     | 012-24-2915 | 824-86-7602 | 718-654-5416    |
| rec-0001-org   | jeremy     | carbone    | 19-03-1960    | white     | 293-22-3733 | 435-54-1814 | 215-437-9285    |
| rec-0002-dup-0 | jaco1>     | titoto     | 19-05-1967    | asian     | 384-05-1928 | 745-33-7930 | 562-553-8297    |
| rec-0002-org   | jacob      | tittoto    | 19-05-1967    | asian     | 384-05-1928 | 745-33-7930 | 562-553-8297    |
| rec-0003-org   | andrew     | miles      | 13-03-1937    | black     | 611-12-5291 | 632-14-2699 | 319-718-7249    |
| rec-0004-org   | nicholas   | artym      | 02-11-1964    | white     | 545-89-0908 | 606-89-9051 | 586-378-9768    |
| rec-0005-org   | kelsey     | matthews   | 15-06-2005    | white     | 444-47-5827 | 196-43-9957 | 667-286-7964    |
| rec-0006-dup-0 | emiili     | ber4y      | 04-06-1961    | hite      | 048-24-0157 | 786-83-2493 | 442-486-8297    |
| rec-0006-org   | emiily     | berry      | 04-06-1961    | white     | 048-24-0157 | 786-83-2493 | 442-486-8297    |
| rec-0007-dup-0 | ckadin     | marckotany | 26-10-1992    | hispanuic | 351-69-8344 | 929-66-0602 | 215-710-1653    |
| rec-0007-dup-1 | ckadin     | markotany  | 26-10-1992    | hspanic   | 351-69-8344 | 929-66-0602 |                 |
| rec-0007-dup-2 | ckadin     | maahkotany | 26-10-1992    | hispanbic | 351-69-8344 | 929-66-0602 | 215-710-1653    |
| rec-0007-org   | kadin      | markotany  | 26-10-1992    | hispanic  | 351-69-8344 | 929-66-0602 | 215-710-1653    |
| rec-0008-dup-0 | naomy      | vandevelde | 05-04-1925    | whaite    | 446-70-5217 | 300-85-0009 | 317-813-8066    |
| rec-0008-org   | naomi      | vandevelde | 05-04-1925    | white     | 446-70-5217 | 300-85-0009 | 317-813-8066    |
| rec-0009-dup-0 | kya        | ighet      | 06-05-1920    | white     | 528-30-4661 | 285-85-5340 | 331-135-1601    |
| rec-0009-org   | kyah       | highet     | 06-05-1920    | white     | 528-30-4661 | 285-85-5340 | 331-135-1601    |

☐ Illustrating Generated Cancer-Based Data Set (GeCo)

### **Example of the Generated Data**

| 1                                 |         | K                  | L                    | M           | N                    |
|-----------------------------------|---------|--------------------|----------------------|-------------|----------------------|
| city state                        | zipcode | cancerscen1        | cancerscen2          | cancerscen3 | cancerscen4          |
| Hillsboro city Oregon             | 7619i   | respiratory system | uterine corpus       | prostate    | colon and rectum     |
| Hillsboro city Oregon             | 7t199   | respiratory system | uterine corpuj       | prostate    | colon and rectum     |
| Hillsboro city Oregon             | 76199   | respiratory system | uterine corpus       | prostate    | colon and rectum     |
| Citrus Heights city California    | 79414   | leukemia           | lung and bronchus    | breast      | prostate             |
|                                   | 71069   | genital system     | melanoma of the skin | breawt      | non-hodfkin lymphon  |
| San Diego city California         | 71069   | genital system     | melanoma of the skin | breast      | non-hodgkin lymphor  |
| Tucson city Arizona               | 38634   | respiratory system | prostate             | prostate    | breast               |
| Salinas city California           | 725     | breast             | breast               | prostate    | kidney and renal pel |
| Phoenix city Arizona              | 50036   | breast             | non-hodgkin lymphoma | lung        | thyroid              |
| Aurora cuty Colorado              | 50047   | breast             | colon and rectum     | breast      | leukemia             |
| Aurora city Colorado              | 50046   | breast             | colon and rectum     | breast      | leukemia             |
| Nashua city New Hampshire         | missing |                    | urinary bladder      | lung        | colon and rectum     |
| Nashua city New Hampshire         | 636     | digeztive system   | urinary bladder      | lung        | colon and reftum     |
| Nashua city New Hampshire         | 636     | i                  | urinary bladdeah     | lung        | colon and rectum     |
| Nashua city New Hampshire         |         | digestive system   | urinary bladder      | lung        | colon and rectum     |
| Louisville/Jefferson County metro | 24843   | endocrine system   | projtate             | breazt      | uterind corpus       |
| Louisville/Jefferson County metro | 24843   | endocrine system   | prostate             | breast      | uterine corpus       |
| Chapel Hill town North Carolina   | 316w5   | jkin               | prostate             | breaxt      | breast               |
| Chapel Hill town North Carolina   | 31625   | skin               | prostate             | breast      | breast               |

# **Evaluating Febrl Using Generated Synthetic Cancer Population Data**

- Febri (Freely Extensible Biomedical Record Linkage) is a software for data cleaning, deduplication and record linkage in Python code.
  Since we have created true identifier in the synthesized data.
- ☐ Since we have created true identifier in the synthesized data set, we are able to check the quality of linkage via OptimalThreshold classifier which requires the true match status of all compared record pairs to be known (i.e. it is a supervised classifier). We evaluate both deduplication part and record linkage part of the software.
- ☐ We chose Febrl for this study within the limited time because Febrl has not been explored by the NCI researchers before and it was an often cited software in the record linkage literature.

Evaluating Febrl

#### **Entity Resolution via Febrl**

### Step One: Blocking

We have adopted two standard sequential blocking strategies as follows:

| Last name (Double-Metaphone)                   | Block 1 |
|------------------------------------------------|---------|
| Zip code (without putting any constraints) and | Block 2 |
| First Name (Soundex with three parameters)     |         |

Records are not compared if they disagreed on the first set of blocking item and also disagreed on one or two of the second set of blocking items.

### Entity Resolution via Febrl (Cont'd)

#### Step Two: Field Comparison

We have considered 8 attributes:

- First name and Last name: Winkler method
- Race: Q-gram with parameter length of Q 2 and common divisor of average
- Zip code: Key-diff with maximum difference of 1 between the digits of two fields for pair record
- Date of birth: Date method which compares a pair of dates and we considered the maximum difference of 5 days before and after of two dates for the error tolerance.

# Entity Resolution via Febrl (Cont'd)

Step Two: Field Comparison

The remained attributes:

- City-state: Q-gram with parameter length of Q 2 and common divisor of average.
- Telephone: Key-diff with maximum difference of 2 digits.
- Cancer attribute: Winkler

### Entity Resolution via Febrl (Cont'd)

### Step Three: Classification

For weight vector (or comparison weight) classification of each pair, we have considered the Fellegi-Sunter algorithm which usually has been used by practitioners and in software.

For employing this algorithm, we need to define an upper and lower threshold.

We assigned two values 3 and 5 for the lower and upper thresholds based on the trial-error method.

#### Criteria for Evaluating Linkage Software

linkage quality: Accuracy, Precision, Recall, and F-measure. linkage complexity: Reduction Ratio, Pairs Completeness, and Pairs Quality. Accuracy = (TP+TN)/(TP+FP+TN+FN) Precision = (TP)/(TP+FP) Recall = (TP)/(TP+FN)  $F-measure = 2 \times (precision \times recall)/(precision + recall)$   $Reduction \ Ratio = 1 - \{N_b/|A| \times |B|\}$   $Pairs \ Completeness = N_m/M$   $Pairs \ Quality = TP/(number \ of \ given \ weight \ vectors)$ 

### **Summary and Discussion**

- We have explored different tools to generate synthetic cancer population for record Linkage purpose;
- The GeCo software with modified codes is readily available to adopt for generating synthetic cancer population based on different true information;
- The generated synthetic data can be used to fully evaluate different record linkage software;
- Our evaluation indicates that the linkage quality of Febrl may not be good when we have large data set with complicated fields which exist in reality;
- It could be beneficial to compare the quality of Febrl with other linkage software such BigMatch and LinkPlus.
- For evaluating different linkage software, one needs to consider the same method including blocking, classifying, etc; across the software.

#### Thank You!

 ${\tt Questions:} \ {\tt smosafer@umd.edu}$