

# ELETENG734 – Wireless Power Transfer

2023 – Dr Jackman Lin

Jackman.lin@auckland.ac.nz

#### Wireless Power Transfer (WPT)



- WPT is the technology which enables power to be transferred between two points without the use of a physical connection
- Two broad categories
  - Radiative transmission through far field principals
    - Power transfer through radio frequencies, microwaves, optical (lasers), ultrasonic
    - Start-ups such as uBeam, Energous are in this space
    - Airfuel Alliance have developed standards in this space
  - Non-radiative transmission through near field principals
    - Inductive Power Transfer (IPT) and Capacitive Power Transfer (CPT) technologies
    - Many companies in this space
      - Daifuku, Conductix Wampfler, Power by Proxi (now Apple NZ), WiTricity (US and NZ), Bombadier, WAVE IPT.
      - Wireless Power Consortium (WPC), and Society of Automotive Engineers (SAE) have developed standards in this space

#### Why WPT?



- Removes human interaction from the charging equation
- Convenience
- Safety
- Enabling future technologies
  - Automated fleets

#### **IPT vs CPT**



- UoA has many research groups in near field technologies
- IPT uses magnetic fields to transfer power
  - Main power coupling mechanism is the magnetic coupling (k) between a primary and a secondary coil
    - Coil can be 'track' shapes or lumped shapes'
  - The primary (transmitting) coil produces a time-varying magnetic field
    - Achieved by driving a high frequency current through the coil
  - The magnetic field is intercepted by the receiving coil
    - Induces a voltage which is then processed to derive output power

#### IPT vs CPT



- UoA has many research groups in near field technologies
- CPT uses electric fields to transfer power
  - Power is transmitted between the primary and secondary plates (like a capacitor)
    - Can consist of forward and return plates, or multiple plate
  - A time varying electric field is produced between the plates
    - Produced by driving the transmitter plate with a high frequency voltage
  - The changing electric field causes current flow to the receiver plate
    - Induced current is used to derive power

#### History of IPT at UoA

THE UNIVERSITY OF AUCKLAND
To Wither Wildrage of Brakel Hakkarasi
N E W Z E A L A N D

- Pioneering work in this space has been done at UoA
  - Started and led by Emeritus Professor John T Boys in the late 80's
  - Prof Boys and his team (Prof Grant Covic, Prof Udaya Madawala, Prof Patrick Hu) develop the first commercial IPT systems
    - Partnering with companies such as Daifuku and Conductix Wampfler
    - Clean room automation applications
  - This led to the possibility of EV charging applications
    - In 2011 HaloIPT, a start-up consisting of UoA students was acquired by Qualcomm to develop IPT systems for EV charging
    - In 2018 WiTricity acquired Qualcomm's stake and is now developing stationary wireless charging systems for stationary EV charging
    - In 2017 PowerByProxi (est 2007) was acquired by Apple to develop wireless charging systems for their devices
    - In 2017 Prof Grant Covic secured \$12M NZD from MBIE to do research into dynamic EV charging, renewed in 2022 for another 5 years for the same amount.
- Lots of success in WPT at UoA!





#### **IPT – A summary**



A set of magnetics that are coupled with some coupling factor (k)



Primary inverter needed to convert a dc voltage into an ac waveform.

 Full- bridge, half-bridge, push-pull, multi-level, or matrix converter topologies Primary and secondary compensation networks are needed to ensure efficient power transfer.

- Series
- Parallel
- LCL

Secondary rectifier to convert ac waveform to dc to charge a battery

- Passive
- Full- bridge, half-bridge, push-pull, multi-level, or matrix converter topologies

Secondary controller needed to control output power.

- Buck
- Boost
- Buck boost

#### **IPT – A summary**



- Power ratings from uW to hundreds of kW
- Magnetic designs include tracks, circular , solenoidal , DD, DDQ, Bi/Tri/Quad-polar coils
- With and without ferrites
  - Managing weight
- Large misalignment tolerances
  - Can achieve over 300 mm air gaps (with appropriately sized magnetics)
  - ±200 mm misalignment (with appropriately sizes magnetics)
  - High efficiencies (>80% misaligned, >95% aligned)
  - Operating frequencies ranging from tens of kHz to multi-MHz

#### Wireless Power Transfer (WPT)



- The technology which allows power transfer without the use of a cable
  - Perfect for dirty/hazardous environments
- Power ranges from low (uW to ~20 W)
  - Medical devices
  - Cellphones
  - Roadway/Tunnel/Mine lighting
- Medium (~20 W ~3 kW)
  - Remote charging of drones
  - Laptop chargers
  - Clean factory automation
- High power ( $\sim$ 3 kW 1 MW+)
  - EV charging
  - Truck charging
  - Airplane charging
  - Industrial applications



## Inductive Power Transfer

#### **Learning Outcomes**



- By the end of the magnetics section, students will be able to:
  - Identify important design parameters for IPT magnetics
  - Understand the need for tuning and the impact of mistuning on IPT systems
  - Understand how practical limitations restrict power transfer in IPT systems
- How you will be assessed:
  - Lab 1 task 1 and 2 will cover the IPT compensation taught
  - Test
  - Practical component links up theory to a practical example

### Components of an IPT system



#### Main focus of this course and project



#### **IPT - Assumptions**



- This course focuses on the secondary side of the system, so the following assumptions are made:
- 1. The primary side inverter and tuning topology provides a constant  $I_1$ , regardless of load
- 2. The primary side inverter and tuning topology operates at a constant frequency f, which translates to  $\omega = 2\pi f$



#### Coupling factor in an IPT system



- Two magnetic coils in close proximity with each other will have a coupling factor (k) between them
  - Transformers are designed with extremely high k (~0.999)
  - Incredibly important to minimize leakage fluxes for specific applications (flyback converters)
- In IPT, there is a large air gap between the two magnetic coils
  - *k* is much lower than 0.999
    - Typically, in the range of 0.05 0.35
- In an IPT system, k and the inductances of the two coils ( $L_1$  and  $L_2$ ) determines the mutual inductance (M) between the two coils
  - Can be modelled using the T-model
  - $M = k\sqrt{L_1L_2}$



Jackman Lin, Department of Electrical, Computer, Software, Electronic (2023)

#### $\boldsymbol{V_{oc}}$ and $\boldsymbol{I_{sc}}$ in an IPT system



- Two **critical** parameters which characterizes the performance of an IPT system are:
  - $V_{oc}$  the open circuit voltage induced in the secondary coil
  - $I_{sc}$  the short circuit current induced in the secondary coil
- System assumes that the primary coil with an inductance  $L_1$  is driven at a constant  $I_1$  at a fixed frequency  $f_s$  ( $\omega = 2\pi f_s$ ).  $M = k\sqrt{L_1L_2}$
- $V_{oc}$  is the voltage measured across the pick up coil when there is no load connected to the secondary side
  - Output current is 0 A due to open circuit
  - $V_{oc} = j\omega M I_1$
- $I_{sc}$  is the current flowing through the pick up coil when it is shorted
  - Output voltage is 0 V due to short circuit

$$I_{SC} = \frac{V_{oc}}{j\omega L_2} = \frac{M}{L_2} I_1$$

No output power





#### $\boldsymbol{V_{oc}}$ and $\boldsymbol{I_{sc}}$ in an IPT system



- $V_{oc} = j\omega M I_1$ 
  - Open circuit voltage **leads** primary current by 90 degrees
- $\bullet \quad I_{SC} = \frac{MI_1}{L_2}$ 
  - No Phase shift between primary current and secondary current
  - IF  $I_{sc}$  is defined as shown
    - This may change based on how you analyse circuits in detail later on
    - For the first part of this course, we will define currents as shown for simplicity







#### Uncompensated Volt-amps $(S_U)$ of an IPT system



- $S_u$  is the uncompensated volt-amps coupled to the secondary coil in an IPT system
  - $S_u = V_{oc}I_{sc}$
  - $S_u = |I_{sc}^2 j \omega L_2| = I_{sc} \omega L_2$
  - $S_u = \left| \frac{V_{oc}^2}{j\omega L_2} \right| = \frac{V_{oc}^2}{\omega L_2}$
- $S_u$  is **not** output power
  - The unit for  $S_u$  is volt-amps (VA)
- $S_u$  cannot be physically measured
  - $V_{oc}$  and  $I_{sc}$  cannot be measured at the same time
- $S_u$  is one of the limiting factors for power transfer in an IPT system

#### Q factor in an IPT system



- How does  $S_u$  relate to output power  $(P_{out})$ ?
  - By a mechanism called Q factor (loaded Q)
  - Like taught in filters
- In IPT systems, a simple definition for Q factor exists:

$$Q = \frac{P_{out}}{S_U} = \frac{V_{out}I_{out}}{V_{oc}I_{sc}}$$

- For a given desired output power, and an induced  $S_u$ , the Q factor of the system must be fixed to a certain value
  - If  $S_U$  is too low  $\rightarrow$  Higher Q factor needed  $\rightarrow$  System becomes more sensitive to component tolerances
    - OR *P<sub>out</sub>* must be lower for the same Q factor
  - If  $S_U$  is too high -> Lower Q factor needed -> overdesigned magnetics
    - OR P<sub>out</sub> is higher than expected -> system on fire
- Q factor is limited by: Component sensitivity, Thermal limitations, changes in values due to environmental impacts



#### Q factor in an IPT system - Example



• An IPT system has a coupled  $S_u = 5 VA$ , the required output power is 50 W, what is the Q factor of the system?

• The maximum Q factor that can be achieved is 8, what is the maximum possible output power of the system?

• How is this maximum Q factor determined?

#### **Uncompensated Power**



• If a resistive load  $(R_2)$ , is connected across the secondary coil, a current  $(I_2 \angle \theta)$ , will start flowing through the coil

$$I_2 = \frac{V_{oc}}{R_2 + j\omega L_2} = \frac{j\omega M I_1}{R_2 + j\omega L_2}$$

• The output power is therefore

$$P_{out} = |I_2|^2 R_2$$

$$= \frac{|j\omega M I_1|^2}{|R_2 + j\omega L_2|^2} R_2$$

$$P_{out} = \frac{(\omega M I_1)^2}{R_2^2 + \omega L_2^2} R_2$$

Important note:

To find magnitude of a complex vector (|z|)

1.  $|z| = \sqrt{u\overline{u}}$ , where  $\overline{u}$  is the complex conjugate of u



#### **Uncompensated Power - Example**



- If  $V_{oc} = 5 V_{RMS}$  and  $I_{sc} = 1 A_{RMS}$ , determine the maximum power that can be delivered to the load
  - Hint: differentiate  $P_{out}$  w.r.t.  $R_2$  using the product rule  $(f \cdot g)' = f'g + fg'$  and brush up on other differentiation methods (reciprocal rule/chain rule)
    - Ans: 2.5 W
- Sketch P<sub>out</sub> with respect to R<sub>2</sub>
- What limits the ability of the secondary coil to deliver power?

#### **Uncompensated Power - Summary**



- Uncompensated systems have an upper power limit
  - $P_{out,max} = \frac{1}{2}S_u$
  - Q is limited to 0.5
- The power transfer is limited by the presence of the inductive load in the system
- Maximum power occurs when  $R_2 = |j\omega L_2|$
- How can the system deliver more power?

#### Series Compensation – Ideal scenario



- Power transfer can be improved by compensating (tuning) the inductance,  $L_2$ , of the secondary coil, with a capacitor  $C_2$
- $C_2$  is chosen such that the impedances of the inductor and capacitor cancel each other out at the chosen operating frequency  $\omega$

$$j\omega L_2 = -\frac{1}{j\omega C_2} \to \omega = \frac{1}{\sqrt{L_2 C_2}}$$

- Assuming:
  - System is perfectly tuned (impossible in practice)
  - Secondary behaves as an ideal voltage source (given our previous assumptions)

$$V_{out} = V_{oc}$$
;  $I_2 = \frac{V_{oc}}{R_2}$   
 $\therefore P_{out} = \frac{V_{oc}^2}{R_2} = I_2^2 R_2$ 



#### Series Compensation – Ideal scenario example



• Sketch  $P_{out}$  of an ideal series compensated secondary system with respect to  $R_2$  given a constant  $V_{oc}$ 

• An IPT system is designed with a secondary  $V_{oc} = 5 V_{RMS}$  and  $I_{sc} = 1 A_{RMS}$ . What is the maximum power that can be delivered to an ideally tuned system?

• Can this be achieved in practice? Why or why not?

#### Series Compensation – Ideal scenario



- In an ideal series compensated secondary system:
- $P_{out} = V_{out}I_2 = V_{oc}I_2$ , where  $I_2$  is set by the load  $R_2$
- $S_u = V_{oc}I_{sc}$
- $Q = \frac{P_{out}}{S_u} = \frac{V_{oc}I_2}{V_{oc}I_{sc}} = \frac{I_2}{I_{sc}}$



- In a series tuned system, only the short circuit current is "Q'd up"
- $Q = \frac{V_{out}^2}{R_2} \frac{1}{V_{oc}I_{sc}} = \frac{1}{R_2} \frac{V_{oc}}{I_{sc}} = \frac{\omega L_2}{R_2}$ 
  - Q is also a function of the coil impedance and load resistance
- System is limited by:
  - $V_{oc}$ :  $V_{out}$  cannot be higher than the induced open circuit voltage
  - $I_{sc}$ : A low  $I_{sc}$  means the system needs to operate at a high Q for high output powers

#### Series Compensation – non-ideal case



• 
$$P_{out} = \frac{V_{oc}^2}{R_2} = I_2^2 R_2$$
, as  $R_2 \to 0$ ,  $P_{out} \to \infty$ 

- Practical coils have an equivalent series resistance associated with the coils  $(R_{esr})$
- $I_2$  increases as  $R_2 \rightarrow 0$ 
  - High  $I_2$  will result in increased losses in the coils
  - Dissipated as heat
- Practical capacitors will also have a tolerance



#### Series Compensation – non-ideal example



• An IPT system is designed with a series tuned secondary  $V_{oc} = 5 V_{RMS}$  and  $I_{sc} = 1 A_{RMS}$ . Determine the maximum power that can be delivered to the load if  $C_2$  is 10% **higher** than the ideal value needed to compensate for  $L_2$ . Assume that  $R_{esr}$  is negligible.

• Answer:  $P_{out} = 27.5 W$ 

• What is the maximum Q of a system with this level of mistuning?

Important note 1:

To find magnitude of a complex vector (|z|)

1.  $|z| = \sqrt{u\overline{u}}$ , where  $\overline{u}$  is the complex conjugate of u

Important note 2:

Maximum  $P_{out}$  is solved using the same technique as the uncompensated system

#### Series Compensation – summary



- An ideal series compensated secondary can deliver infinite output power as the load approaches 0
  - Practically limited by thermal constraints
  - Tuning accuracy
  - Consistency of the primary current
- The output voltage of a series tuned secondary can be at best  $V_{oc}$
- The Q factor (maximum output power) of a non-ideally tuned secondary pad is limited by the degree of mistuning

#### Parallel Compensation – Ideal scenario



- Power Transfer can be improved by compensating the inductance,  $L_2$ , of the secondary coil, with a parallel capacitor  $C_2$
- $C_2$  is chosen such that the impedances of the inductor and capacitor cancel each other out at the chosen operating frequency  $\omega$

$$j\omega L_2 = -\frac{1}{j\omega C_2} \rightarrow \omega = \frac{1}{\sqrt{L_2 C_2}}$$

- Assuming:
  - System is perfectly tuned (impossible in practice)
  - Secondary behaves as an ideal current source (Norton equivalent)

$$I_{out} = I_{sc}; V_{out} = I_{sc}R_2$$
  
$$\therefore P_{out} = \frac{V_{out}^2}{R_2} = I_{sc}^2R_2$$

• Note that  $I_2$  and  $I_{out}$  are different (unlike the series and uncompensated systems)



#### Parallel Compensation – Ideal scenario example



• Sketch  $P_{out}$  of an ideal parallel compensated secondary system with respect to  $R_2$  given a constant  $I_{sc}$ 

• An IPT system is designed with a secondary  $V_{oc} = 5 V_{RMS}$  and  $I_{sc} = 1 A_{RMS}$ . What is the maximum power that can be delivered to an ideally tuned system?

• Can this be achieved in practice? Why or why not?

#### Parallel Compensation – Ideal scenario



- In an ideal parallel compensated secondary system:
- $P_{out} = V_{out}I_{out} = V_{out}I_{sc}$ , where  $V_{out}$  is set by the load  $R_2$
- $S_u = V_{oc}I_{sc}$

• 
$$Q = \frac{P_{out}}{S_u} = \frac{V_{out}I_{sc}}{V_{oc}I_{sc}} = \frac{V_{out}}{V_{oc}}$$

• Only the output voltage is "Q'd up"

$$Q = \frac{I_{SC}^2 R_2}{V_{OC} I_{SC}} = \frac{R_2}{\omega L_2}$$



- $V_{oc}$ : A low  $V_{oc}$  means that the system needs to operate at a high Q for higher output powers
  - System can become more sensitive. How?
- $I_{sc}$ : The output current cannot be higher than  $I_{sc}$



#### Parallel Compensation – non-ideal case



- $P_{out} = I_{sc}^2 R_2$ , as  $R_2 \to \infty$ ,  $P_{out} \to \infty$  for an ideal case
- Practical coils have an equivalent series resistance associated with the coils  $(R_{esr})$ 
  - As do practical capacitors and tracks (not included in the diagram below)
- $I_2$  increases as  $R_2 \rightarrow \infty$ 
  - $I_2 = \frac{V_{out}}{j\omega L_2} = \frac{I_{Sc}R_2}{j\omega L_2}$
  - High  $I_2$  will result in increased losses in the coils
  - Dissipated as heat  $I_2^2 R_{esr}$
- $C_2$  also has a tolerance due to practical manufacturing processes



#### Parallel Compensation – non-ideal example



• An IPT system is designed with a parallel tuned secondary  $V_{oc} = 5 V_{RMS}$  and  $I_{sc} = 1 A_{RMS}$ . Determine the maximum power that can be delivered to the load if  $C_2$  is 10% **lower** than the ideal value needed to compensate for  $L_2$ . Assume that  $R_{esr}$  is negligible.

• Answer:  $P_{out,max} = 27.5 W$ 

• What is the maximum Q that a parallel tuned circuit with a 10% mistuning be?

#### Parallel Compensation – summary



- An ideal series compensated secondary can deliver infinite output power as the load approaches infinity
  - Practically limited by thermal constraints
  - Tuning accuracy
  - Consistency of the primary current
- The output voltage of a series tuned secondary can be at best  $I_{sc}$
- The Q factor (maximum output power) of a non-ideally tuned secondary pad is limited by the degree of mistuning

#### Comparison of series and parallel tuning



- What's the difference. Why choose series or parallel?
- In previous examples,  $V_{oc}$  and  $I_{sc}$  are given. In practice, you are given a secondary pad inductance
  - $V_{oc}$  will vary based on position
  - $I_{sc}$  will vary based on the inductance of the coil and the position
- Output is limited by the type of tuning chosen
  - Series tuning limits output voltage
  - Parallel tuning limits output current
- 10% tolerances are practically improbable in a real system
- What can you do if the system cannot meet your specifications?



- Practical systems will always have some physical constraints
  - Coupling factor may be limited
  - Inductance must be a minimum/maximum value
  - System may have voltage/current ratings
  - Magnetics are difficult to wind as opposed to capacitor boards being populated (you will find out personally)
- Practical systems will always have some minimum requirements
  - Voltage output
  - Current output
- Partial series parallel tuning can be used to meet output current requirements





- The secondary inductance  $L_2$  is partially compensated by a series capacitance  $C_{s2}$ .
- This boosts the short circuit current by a factor relative to the amount of partial compensation

$$I_{sc,b} = \frac{V_{oc}}{j\omega L_2 + \frac{1}{j\omega C_{s2}}}$$

The secondary pad branch has an effective inductance  $(L_{2h})$ 

$$L_{2b} = \frac{j\omega L_2 - j\frac{1}{\omega C_{s2}}}{j\omega} = L_2 - \frac{1}{\omega^2 C_{s2}}$$

In the partial series – parallel tuning case,  $C_{p2}$  needs to be tuned to the effective inductance!  $j\omega L_{2b} = \frac{1}{j\omega C_{p2}} \rightarrow \omega = \frac{1}{\sqrt{L_{2b}C_{p2}}}$ 

$$j\omega L_{2b} = \frac{1}{j\omega C_{p2}} \rightarrow \omega = \frac{1}{\sqrt{L_{2b}C_{p2}}}$$





• If all the components are perfectly tuned then the output current  $I_{out}$  is equal to the new boosted short circuit current  $I_{sc,b}$ 

$$I_{out} = \frac{V_{oc}}{j\omega L_{2b}} \rightarrow P_{out} = |I_{out}|^2 R_2 = |I_{sc,b}|^2 R_2$$
$$V_{out} = I_{sc,b} R_2$$
$$P_{out} = I_{sc,b}^2 R_2$$



#### Partial series-parallel compensation example



- An IPT system is designed with a parallel tuned secondary  $V_{oc} = 5 V_{RMS}$  and  $I_{sc} = 1 A_{RMS}$ . The system is partially seriesparallel tuned with a load of  $5\Omega$ . Determine the capacitances required for the series capacitor and the parallel capacitor if there the desired output power is 10 W.
  - 1. Calculate  $L_2$  using  $V_{oc}$  and  $I_{sc}$
  - 2. Determine desired output current by rearranging  $P_{out} = I_{sc,b}^2 R_2$
  - 3. Back calculate for capacitor values using  $I_{sc,b} = \frac{V_{oc}}{j\omega L_2 + \frac{1}{i\omega C_{s2}}}$  and  $\omega = \frac{1}{\sqrt{L_{2b}C_{p2}}}$



- Useful because now the output power can be modified without altering the magnetic design
- Achieves this without using any more capacitors
  - No extra cost
- However
  - More connection points have more points of failure
  - System operates at a higher Q, need better components
- Other ways to boost output power include:
  - Increasing primary current  $I_1$ 
    - Adds cost as larger primary windings are needed
    - System efficiency decreases due to increases  $I^2R$  losses
  - Better magnetic designs
    - Design coils to have higher coupling
    - Design coils to have lower change in coupling over the misalignment range
    - Can lower cost, but needs lots more effort

#### **Summary**



- Basic structure of an IPT system and important design parameters
  - *k* (coupling factor)
  - Q (Q factor)
  - *V<sub>oc</sub>* (Open circuit voltage)
  - *I<sub>sc</sub>* (Short circuit current)
- Different compensation topologies
  - Uncompensated Max Q = 0.5
  - Series compensated
    - Ideal and non ideal cases
  - Parallel compensated
    - Ideal and non ideal cases
- Boosting output power
  - Partial series parallel
  - Other methods
- Practical limitations of power transfer in IPT systems