INFORME FINAL

ALEJANDRA RENTERÍA TENORIO

ING. LUIS ARMANDO AMAYA LIMPIEZA DE DATOS

SERVICIO NACIONAL DE APRENDIZAJE

TÉCNICO EN PROGRAMACIÓN DE ANALÍTICA DE DATOS

SANTIAGO DE CALI, OCTUBRE 2020

CONTENIDO

INTRODUCCIÓN	9
CONSULTAS DEL CAFÉ	10
REPRESENTACION DEMOGRAFICA:	10
HISTOGRAMA DE PRODUCCIÓN EN CAFÉ VERDE EN EL	10
CRECIMIENTO DE LA PLANTA DEL CAFÉ:	11
PRODUCCIÓN DE CAFÉ EN LATINOAMÉRICA Y ESPAÑA:	12
BALANCE CAFETERO:	12
PRODUCCION MENSUAL	13
PRODUCCION / CONSUMO MUNDIAL DEL CAFE	13
PRODUCCIÓN / RENDIMIENTO	14
RENDIMIENTO DEL CAFÉ VERDE EN COLOMBIA ENTRE EL 2007	15
RENDIMIENTO Y PARTICIPACION POR DEPARTAMENTO	16
FACTOR DE	16
EXPORTACIONES	17
PRECIO DE EXPORTACIONES DEL CAFE	18
EXPORTACIONES DE 5 DEPARTAMENTOS	19
DESTINO DE EXPORTACIONES	19
VALOR DE COSECHA DEL GRANO DEL CAFÉ EN COLOMBIA DEL 2000-2018	20
PRECIO DEL CAFÉ EN EL 2020	21
GRAFICA DE LOS PRECIOS DEL CAFÉ COLOMBIANO	22
VIABILIDAD	23
CONSUMO DEL CAFÉ POR ÁREAS	24
ANALISIS DESCRIPTIVO	25
PRECIO EXPORTACION ANUAL DEL CAFÉ	25
PRECIO EXTERNO DURANTE EL AÑO CAFÉ COLOMBIANO	2
PRECIO INDICATIVO DEL CAFÉ ARABICO EN COLOMBIA Y BRASIL	3
PRODUCCIÓN REGISTRADA MENSUAL DEL CAFE	4

VALOR DE LA COSECHA REGISTRADA –ANUAL	5
ANALISIS DATRAFRAME CAFÉ EN COLOMBIA	6
PANDAS PROFILING	37
MODELO PREDICTIVO	58
CONCLUSIÓN	67
BIBLIOGRAFIA	68

GLOSARIO

Análisis: Examen detallado de una cosa para conocer sus características o cualidades, o su estado, y extraer conclusiones, que se realiza separando o considerando por separado las partes que la constituyen.

Big Data: Es un término evolutivo que describe cualquier cantidad voluminosa de datos estructurados, semiestructurados y no estructurados que tienen el potencial de ser extraídos para obtener información.

Calidad de los Datos: Es la cualidad de un conjunto de información recogida en una base de datos, un sistema de información o un data warehouse que reúne entre sus atributos la exactitud, completitud, integridad, actualización, coherencia, relevancia, accesibilidad y confiabilidad.

Ciencia de Datos: Campo interdisciplinario que utiliza métodos, procesos, algoritmos y sistemas científicos para revelar tendencias y generar información que las empresas pueden utilizar para tomar mejores decisiones y crear productos y servicios más innovadores.

Conocimiento: Hechos o información adquiridos por una persona a través de la experiencia o la educación, la comprensión teórica o práctica de un asunto referente a la realidad.

CRISP-DM: Se trata de un modelo estándar abierto del proceso que describe los enfoques comunes que utilizan los expertos en minería de datos.

CRM: Custormer relationship management, es un término que se refiere a las prácticas, estrategias y sistemas que las empresas utilizan para gestionar y analizar las interacciones con los clientes y los datos que se generan.

Cualitativo: Aquello que está relacionado con la cualidad o con la calidad de algo, es decir, con el modo de ser o con las propiedades de un objeto, un individuo, una entidad o un estado.

Cuantitativo: Variables estadísticas que otorgan, como resultado, un valor numérico.

Dato: Cifra, letra o palabra que se suministra a la computadora como entrada y la máquina almacena en un determinado formato.

Deep Data: Una recolección a gran escala de datos que son también de alta calidad y procesables». En otras palabras: mucha información, rápidamente analizable, de alto valor y con un fin claro y definido de antemano.

Descriptiva: Define algún tema, y consiste en representar con palabras el aspecto o apariencia de una persona, animal, objeto, paisaje, lugar, cosa, situación, etc.

Diagnóstico: Alude al análisis que se realiza para determinar cualquier situación y cuáles son las tendencias. Esta determinación se realiza sobre la base de datos y hechos recogidos y ordenados sistemáticamente.

Eficacia: Equilibrio entre eficacia y eficiencia, es decir, se es efectivo si se es eficaz y eficiente. La eficacia es lograr un resultado o efecto.

Eficiencia: es la capacidad de disponer de alguien o algo para conseguir el cumplimiento adecuado de una función.

Enfoque: Manera de ver las cosas o las ideas y en consecuencia también de tratar los problemas relativos a ellas.

Estadística: Ciencia que utiliza conjuntos de datos numéricos para obtener, a partir de ellos, inferencias basadas en el cálculo de probabilidades.

Etapa: Es un período de tiempo delimitado y contrapuesto siempre con un momento anterior y con otro posterior.

ETL: Extract, Transform and Load es el proceso que permite a las organizaciones mover datos desde múltiples fuentes, reformatearlos y limpiarlos, y cargarlos en otra base de datos.

Información: Conjunto organizado de datos procesados que constituyen un mensaje que cambia el estado de conocimiento del sujeto o sistema que recibe dicho mensaje

Informática: Ciencia que administra métodos, técnicas y procesos con el fin de almacenar, procesar y transmitir información y datos en formato digital.

Inteligencia de Negocios: Combinación de tecnología, herramientas y procesos que me permiten transformar mis datos almacenados en información, esta información en conocimiento y este conocimiento dirigido a un plan o una estrategia comercia

Investigación: Es una actividad orientada a la obtención de nuevos conocimientos y su aplicación para la solución a problemas o interrogantes de carácter científico

Jupyter Notebook: Es una organización sin ánimo de lucro creada para "desarrollar software de código abierto, estándares abiertos y servicios para computación interactiva en docenas de lenguajes de programación

KDD: La extracción de conocimiento es la creación de conocimiento a partir de fuentes estructuradas y no estructuradas.

Modelo: Prototipo que sirve de referencia y ejemplo para todos los que diseñan y confeccionan productos de la misma naturaleza.

Negocio: Consiste en un método de formar u obtener dinero a cambio de productos, servicios, o cualquier actividad que se quiera desarrollar.

Predictiva: Agrupa una variedad de técnicas estadísticas de modelización, aprendizaje automático y minería de datos que analiza los datos actuales e históricos reales para hacer predicciones acerca del futuro o acontecimientos no conocidos.

Prescriptiva: Es «lo que debería ser». Se trata de identificar cual es la mejor forma de hacer las cosas. Se establecen leyes, normas, acuerdos psicológicos, etc. de cómo hacer las cosas.

Proceso: Conjunto o encadenamiento de fenómenos, asociados al ser humano o a la naturaleza, que se desarrollan en un periodo de tiempo finito o infinito y cuyas fases sucesivas suelen conducir hacia un fin específico.

Productividad: Se define como la cantidad de producción de una unidad de producto o servicio por insumo de cada factor utilizado por unidad de tiempo.

Python: Es un lenguaje de programación interpretado cuya filosofía hace hincapié en la legibilidad de su código. Se trata de un lenguaje de programación multiparadigma, ya que soporta orientación a objetos, programación imperativa y, en menor medida, programación funcional.

Rendimiento: Hace referencia al resultado deseado efectivamente obtenido por cada unidad que realiza la actividad económica.

Rentabilidad: Relación existente entre los beneficios que proporciona una determinada operación o cosa y la inversión o el esfuerzo que se ha hecho; cuando se trata del rendimiento financiero; se suele expresar en porcentajes.

RStudio: Entorno de desarrollo integrado para el lenguaje de programación R, dedicado a la computación estadística y gráficos.

Síntesis: Exposición breve, escrita u oral, que a modo de resumen contiene un conjunto de ideas fundamentales y relacionadas con un asunto o materia y que estaban dispersas

Sistema Operativo: Es el software principal o conjunto de programas de un sistema informático que gestiona los recursos de hardware y provee servicios a los programas de aplicación de software, ejecutándose en modo privilegiado respecto de los restantes.

Smart Data: Hace referencia a la transformación de largas listas de números y datos en información con valor, con respuesta, útil

Toma de decisiones: Proceso mediante el cual se realiza una elección entre las opciones o formas para resolver diferentes situaciones de la vida en diferentes contextos: a nivel laboral, familiar, personal, sentimental o empresarial (utilizando metodologías cuantitativas que brinda la administración).

Validación: El proceso de revisión que verifica que el sistema de software producido que cumple con las especificaciones y que logra su cometido.

Variable: Característica que puede fluctuar y cuya variación es susceptible a adoptar diferentes valores, los cuales pueden medirse u observarse

INTRODUCCIÓN

El café es uno de los principales productos de exportación del país, y uno por los que se conoce a Colombia internacionalmente. Se cultiva en diferentes regiones a lo largo de todo el territorio, es por su sabor y frescura, resultantes de climas y topografías propias de cada región (Buencafé, 2019). De acuerdo con la Federación Nacional de Cafeteros (FNC) de Colombia, organismo que representa y agrupa a los caficultores de todo el territorio, la cuidadosa selección de los granos de café durante sus etapas de cosecha, y postcosecha (despulpado, lavado, secado y trilla), aseguran una calidad única.

Dada la importancia que este fruto le genera a nuestro país, se vuelve de gran interés para todos los ciudadanos, en especial para los campesinos, que a diario manejan la industria del café.

Por tal motivo genera la necesidad de realizar una previa investigación a través de herramientas de amplia especificación como lo son Jupyter Notebook, Pandas Profiling, Excel, entre otras. Las cuales permiten general informes, datos de gran importancia para recrear el modelo predictivo más óptimo.

Este proceso se logra llevar a cabo con la ayuda de algoritmos e instrucciones que especifiquen soluciones puntuales como el mejor rendimiento, su variabilidad, correlación, etc.

CONSULTAS DEL CAFÉ

REPRESENTACION DEMOGRAFICA:

Promedio 1961 – 2018, de producción del café verde por regiones, donde Europa representa el 0%, seguida de Oceanía con un 0.8% en los porcentajes mas bajos

Enlace:

http://www.fao.org/faostat/e s/#data/qc/visualize

Fuente: Faostat

Oceanía

HISTOGRAMA DE PRODUCCIÓN EN CAFÉ VERDE EN EL MUNDO:

Las denominaciones empleadas en los mapas y la forma en que aparecen presentados los datos implican, por parte de la FAO, en el podemos apreciar que la zona que mas cosecha el café esta ubicada en Suramérica y Centroamérica obteniendo más de 66411.24 toneladas.

Enlace: http://www.fao.org/faostat/es/#data

Fuente: Faostat

CRECIMIENTO DE LA PLANTA DEL CAFÉ:

fertilización, soy fertilizador

El mes en el que la planta alcanza su mayor altura es en junio y julio

Enlace:

http://sintrainduscafe. org/secciones/enque-epoca-aplicar-elfertilizante-en-elcultivo-del-cafe/

Fuente: Curso

PRODUCCIÓN DE CAFÉ EN LATINOAMÉRICA Y ESPAÑA:

La grafica muestra la cantidad de café producido en Latinoamérica y España durante el año 1980 hasta el 2013, arrojando a Brasil como el numero uno y a España como el menor productor.

Enlace: https://www.youtube.com/watch?v=avhblqstHXw

Fuente: Food and Agriculture Organization of the United Nations (FAO)

BALANCE CAFETERO:

La tabla nos permite mostrar la viabilidad del café, donde en el 2016, 2017 y 2018 con una pérdida del 10%

Enlace:

https://cdn.flipsnack.com/widg et/v2/widget.html?hash=dpazs 597t9

Fuente: Federación nacional de cafeteros Colombianos

BALANCE CAFETERO

	2015	2016	2017	2018	2019
Producción e importaciones	14,4	14,5	14,6	14,5	15,7
Producción	14,2	14,2	14,2	13,6	14,8
Importaciones	0,2	0,3	0,4	0,9	1,0
Exportaciones y consumo	14,4	14,6	14,7	14,6	15,5
Exportaciones	12,7	12,9	13,0	12,8	13,7
Consumo interno	1,7	1,7	1,7	1,8	1,8
Balance	0,0	-0,1	- 0,1	-0,1	0,2

Fuente: FNC

PRODUCCION MENSUAL

Producción mensual de café verde en miles de sacos de 60 kg.

Se deduce que el mes que menos producción tuvo fue en abril/20con un 744 millones de saco de 60 kg

Enlace: https://federaciondecafeteros.org/wp/estadisticas-cafeteras/

Fuente: Federación nacional de cafeteros Colombianos

PRODUCCION / CONSUMO MUNDIAL DEL CAFE

La crisis que atraviesa la industria del café obedece a que la producción es mayor que la demanda. Esta situación ha conducido a una disminución notable de la calidad y a la caída de la producción. Con la mas

baja producción fue en 1992 y 1995.

Enlace:

http://www.ico.org/projects/goodhygienepractices/cnt/cnt_sp/sec_1/c03 .coffeecrisis.html

Fuente: Sección 1

PRODUCCIÓN / RENDIMIENTO

Desde el año 1994 al 2018 se ve que el rendimiento del café no genera mucha dispersión; independiente de la producción la cual asciende.

Enlace:

http://www.fao.org/faostat/es/#data/QC/visualize

Fuente: Agronet

RENDIMIENTO DEL CAFÉ VERDE EN COLOMBIA ENTRE EL 2007 Y EL 2008

RENDIMIENTO Y PARTICIPACION POR DEPARTAMENTO

En el área de participación, se podría decir que el departamento Antioquia es el doble del departamento de Casanare

Enlace: http://www.fao.org/faostat/es/#data/QC/visualize

Fuente: Agronet

FACTOR DE RENDIMIENTO

Enlace:

https://federaciondecafet eros.org/wp/servicios-alcaficultor/aprenda-avender-su-cafe/

Fuente: Federación nacional de cafeteros Colombianos

EXPORTACIONES

Exportaciones mensuales de café verde equivalente en miles de sacos de 60 kg.

En la grafica se puede observar una similitud en el las mejores exportación en Enero /17 y Enero /20 con aproximadamente unos 1.447 miles de sacos de 60 kg

Enlace: https://federaciondecafeteros.org/wp/estadisticas-cafeteras/

Fuente: Federación nacional de cafeteros Colombianos

PRECIO DE EXPORTACIONES DEL CAFE

El precio de la exportaciones del café verde tu una gran demanda entre Enero/2015 y Febrero/2018

Enlace: http://www.fao.org/faostat/es/#data/QC/visualize

Fuente: Agronet

EXPORTACIONES DE 5 DEPARTAMENTOS

Aquí apreciamos las exportaciones que realizan siete departamentos de Antioquia, Bogotá, Caldas, Huila, Quindío, Risaralda y Tolima con un eje y en toneladas y un eje x de tiempo, en el que Huila lideró en el año 2017.

Enlace: https://www.youtube.com/watch?v=VEnPtvYNaKo&t=590s

Fuente: Canal Harry Cristhian Torres Moreno

DESTINO DE EXPORTACIONES

El menores exportaciones del café colombiano entre 2019 y 2020 se ven en Bélgica y Canadá, y país potencia para exportar es EE. UU.

Enlace: http://www.fao.org/faostat/es/#data/QC/visualize

Fuente: Agronet

VALOR DE COSECHA DEL GRANO DEL CAFÉ EN COLOMBIA DEL 2000-2018

AÑO	VALOR DE LA COSECHA	•
2000	\$2.279.049	
2001	\$1.959.278	
2002	\$2.120.915	
2003	\$2.244.566	
2004	\$2.668.500	
2005	\$3.457.525	
2006	\$3.606.896	
2007	\$3.818.514	
2008	\$3.825.079	
2009	\$3.400.159	
2010	\$4.365.726	
2011	\$4.923.317	
2012	\$3.404.701	
2013	\$3.375.986	
2014	\$5.197.328	
2015	\$6.242.192	
2016	\$7.109.274	
2017	\$7.512.632	
2018	\$6.235.196	

Vemos que el mayor valor de cosecha fue en 2017 con 7.512.632

Enlace: https://www.misfinanzasparainvertir.com/la-crisis-del-cafe-impacta-en-colombia/

Fuente: Mis finanzas Davivienda

PRECIO DEL CAFÉ EN EL 2020

Lunes 09 de Marzo del 2020	US\$ 1.10	US\$ 1.11	US\$ 1.13	\$ 1,010,000
Domingo 08 de Marzo del 2020				
	US\$ 1.10	US\$ 1.11	US\$ 1.13	\$ 1,010,000
Sábado 07 de Marzo del 2020	US\$ 1.10	US\$ 1.11	US\$ 1.13	\$ 1,010,000
Viernes 08 de Marzo del 2020	055 1.17	US\$ 1.18	US\$ 1.20	\$ 1,043,000
Jueves 05 de Marzo del 2020	US\$ 1.21	JS\$ 1.22	US\$ 1.24	\$ 1,065,000
Miércoles 04 de Marzo del 2020		US\$ 1.16	US\$ 1.18	\$ 1,020,000
Martes 03 de Marzo del 2020	US\$ 1.10	US\$ 1.11	US\$ 1.13	\$ 1,014,000
Lunes 02 de Marzo del 2020	US\$ 1.08	US\$ 1.10	US\$ 1.12	\$ 997,000
Domingo 01 de Marzo del 2020	US\$ 1.08	US\$ 1.10	US\$ 1.12	\$ 997,000
Sábado 29 de Febrero del 2020	US\$ 1.08	US\$ 1.10	US\$ 1.12	\$ 997,000
Viernes 28 de Febrero del 2020	US\$ 1.09	US\$ 1.11	US\$ 1.13	\$ 990,000
Jueves 27 de Febrero del 2020	US\$ 1.07	US\$ 1.09	US\$ 1.11	\$ 968,000
Miércoles 26 de Febrero del 2020	US\$ 1.06	US\$ 1.07	US\$ 1.09	\$ 955,000
Martes 25 de Febrero del 2020	US\$ 1.09	US\$ 1.10	US\$ 1.12	\$ 965,000
Lunes 24 de Febrero del 2020	US\$ 1.04	US\$ 1.05	US\$ 1.07	\$ 907,000
Domingo 23 de Febrero del 2020	US\$ 1.04	US\$ 1.05	US\$ 1.07	\$ 907,000
Sábado 22 de Febrero del 2020	US\$ 1.04	US\$ 1.05	US\$ 1.07	\$ 907,000
Viernes 21 de Febrero del 2020	US\$ 1.07	US\$ 1.09	US\$ 1.11	\$ 930,000
Jueves 20 de Febrero del 2020	US\$ 1.06	US\$ 1.09	US\$ 1.11	\$ 930,000
Miércoles 19 de Febrero del 2020	US\$ 1.09	US\$ 1.11	US\$ 1.13	\$ 942,000
Martes 18 de Febrero del 2020	US\$ 1.09	US\$ 1.11	US\$ 1.13	\$ 942,000
Lunes 17 de Febrero del 2020	US\$ 1.04	US\$ 1.07	US\$ 1.09	\$ 890,000
Domingo 16 de Febrero del 2020	US\$ 1.04	US\$ 1.07	US\$ 1.09	\$ 890,000
Sábado 15 de Febrero del 2020	US\$ 1.04	US\$ 1.07	US\$ 1.09	\$ 890,000
Viernes 14 de Febrero del 2020	1100 4 01	US\$ 1.03	US\$ 1.05	\$ 863,000
Jueves 13 de Febrero del 2020	US\$ 1.01	US\$ 1.03	US\$ 1.05	\$ 870,000
Miércoles 12 de Febrero del 2021	US\$ 1.01	JS\$ 1.03	US\$ 1.05	\$ 870,000
Martes 04 de Febrero del 2020	00000	US\$ 1.05	US\$ 1.07	\$850,000
Lunes 03 de Febrero del 2020	US\$ 1.02	US\$ 1.04	US\$ 1.08	\$ 835,000
Domingo 02 de Febrero del 2020	US\$ 1.02	US\$ 1.04	US\$ 1.06	\$835,000

En lo corrido del años se evidencia que el valor mayor que ha tenido el Café fue el 4 de Mayo con un 1.21 dólares a diferencia del mas bajo el 13 y 12 de Febrero con 1.01 dólares.

Enlace: https://dolar.wilkinsonpc.com.co/cafe.html

Fuente: Dólar web

GRAFICA DE LOS PRECIOS DEL CAFÉ COLOMBIANO

Aquí evidenciamos la grafica de lo visto anteriormente, a diferencia que su rango de selección es del 2006 al 2019, en donde tuvo la cifra mas baja.

Enlace: https://quecafe.info/historia-crisis-cafetera/

Fuente: Quécafe

VIABILIDAD

IMPACTO ECONÓMICO CAFÉ Y COCA 2013

DOLARES USA / TC 2.75

RUBROS/CULTIVOS	CAFÉ	COCA
Hectáreas	425,416	49,800
kilos/ha	612	2,316
Precio/productor (U\$)	1.69	4.3
Ingresos/hectárea (U\$)	1,032.59	9,958.30
Valor Total Millones U\$	439,28	495.95
Resultado	s - -	81.71

Fuente: UNODC-DEVIDA. Informe Junio 2014

Elaboración: JNC

Esta es una triste realidad que observamos en nuestro país ya que a pesar de que se disponen mas hectáreas y se producen mas kilos de café la coca llegue a poseer mayor ganancias en general sin retribuir todo el proceso e inversiones que pasan los caficultores.

Enlace: https://jhenryhamed07.wixsite.com/sistemaproductivovcc

Fuente: Sistemas productivos

CONSUMO DEL CAFÉ POR ÁREAS

Según la grafica se puede apreciar que los mayores vendedores de café en Colombia esta en el Oriente, a pesar de que son los menores vender a precios promedios

Enlace:

https://i.pinimg.com/originals/c8/3d/49/c83d49ba68bdf3b5b4300505ce 1e2f84.jpg

Fuente: Programa toma café

ANALISIS DESCRIPTIVO

PRECIO EXPORTACION ANUAL DEL CAFÉ

Los datos utilizados para realizar el presente Analisis se centra en lo centavos de dólar por libra de 453.6 gr. Excelso producidos entre 1913 y 2019 en Colombia.

Columna1			
Media	77,88613765		
Error típico	6,139421181		
Mediana	57,01416667		
Moda	15,87		
Desviación	63,50666651		
estándar			
Varianza de la	4033,096691		
muestra			
Curtosis	-0,002705977		
Coeficiente de	0,892204052		
asimetría			
Rango	275,9327216		
Mínimo	8,375833333		
Máximo	284,308555		
Suma	8333,816728		
Cuenta	107		

Numero de	
clase	7,696966466
Tamaño de	
clase	34,49159021

Inter	valos	Grupos	Frecuencia
Li	Ls		
	8,4	8,3	0
8,4	42,9	42,8	41
42,9	77,4	77,3	65
77,4	111,9	111,8	69
111,9	146,3	146,3	84
146,3	180,8	180,7	95
180,8	215,3	215,2	98
215,3	249,8	249,7	99
249,8	284,3	284,2	98

PRECIO EXTERNO DURANTE EL AÑO CAFÉ COLOMBIANO

En este apartado se muestran los resultados de la ponderación de los precios centavos de dólar por libra de 453,6 gr. Excelso de los años 1913/14 al 2018/19.

Numero de	6,68350936
clase	
Tamaño de	38,8334524
clase	

Interv	Intervalos		Frecuencia
Li	Ls		
	8,9	8,8	0
8,9	47,7	47,6	45
47,7	86,6	86,5	66
86,6	125,4	125,3	75
125,4	164,2	164,1	91
164,2	203,1	203	97
203,1	241,9	241,8	99
241,9	280,7	280,6	98

Columna1			
Media	78,0864614		
Error típico	6,14360961		
Mediana	57,635		
Moda	15,87		
Desviación estándar	63,2523323		
Varianza de la	4000,85754		
muestra			
Curtosis	-0,06343932		
Coeficiente de	0,8734292		
asimetría			
Rango	271,834167		
Mínimo	8,90583333		
Máximo	280,74		
Suma	8277,16491		
Cuenta	106		

PRECIO INDICATIVO DEL CAFÉ ARABICO EN COLOMBIA Y BRASIL

Vemos una comparación entre los dos mejores países caficultores del mundo hasta el año 2020 vendidos en Estados Unidos y Alemania en centavos de dólar por libra.

PRODUCCIÓN REGISTRADA MENSUAL DEL CAFE

Este muestra las estadísticas de los miles de sacos que contienen 60 Kg de café verde equivalente durante los últimos 64 años en Colombia.

Columna1				
Media	875,591495			
Error típico	13,7358744			
Mediana	821,5			
Moda	644			
Desviación	382,637184			
estándar				
Varianza de la	146411,214			
muestra				
Curtosis	1,25212465			
Coeficiente de	0,85832437			
asimetría				
Rango	2628			
Mínimo	127			
Máximo	2755			
Suma	679459			
Cuenta	776			

Inter	valos	Grupos	Frecuencia
Li	Ls		
	127	126,9	0
127	419	418,9	80
419	711	710,9	274
711	1003	1002,9	511
1003	1295	1294,9	671
1295	1587	1586,9	735
1587	1879	1878,9	755
1879	2171	2170,9	764
2171	2463	2462,9	767
2463	2755	2754,9	766

Numero de	
clase	9,53654368
Tamaño de	
clase	292

VALOR DE LA COSECHA REGISTRADA -ANUAL

Evidenciamos los millones de pesos registrados por cada cosecha durante el año cafetero con relación a los últimos 19 años de cosechas.

inter	vaios	Grupos	Frecuencia
Li	Li Ls		
	1.959.278	1959277,9	0
1.959.278	3.252.741	3252740,9	4
3.252.741	4.546.204	4546203,9	11
4.546.204	5.839.668	5839667,9	12
5.839.668	7.133.131	7133130,9	14
7.133.131	8.426.594	8426593,9	16

Numero de	4,3
clase	
Tamaño de	1.293.463
clase	

Columna1				
Media	4248304,848			
Error típico	399696,1017			
Mediana	3712705,211			
Moda	#N/A			
Desviación	1787495,307			
estándar				
Varianza de la	3,19514E+12			
muestra				
Curtosis	-0,861513046			
Coeficiente de	0,586969758			
asimetría				
Rango	5553353,68			
Mínimo	1959278			
Máximo	7512631,68			
Suma	84966096,97			
Cuenta	20			

ANALISIS DATRAFRAME CAFÉ EN COLOMBIA

In [91]: import pandas as pd

In [92]: # recuerda que se importa la libreria pandas y se le llama pd

In [93]: pd.read_csv("PRODUCCIOn.csv")

Out [93]:

Å	Anio De	epartamento Pro	oducto	Área (ha)	Producción (Ton)	Rendimiento (Ha/ton)	Producción Iacional (ton)	Área Nacional (ha)
0	2007	ANTIOQUIA	CAFE	112,343.60	120,500.80	1.07	14.54	14.66
1	2007	BOLIVAR	CAFE	502.00	446.00	0.89	0.05	0.07
2	2007	BOYACA	CAFE	11,374.50	9,683.10	0.85	1.17	1.48
3	2007	CALDAS	CAFE	78,393.65	92,815.00	1.18	11.20	10.23
4	2007	CAQUETA	CAFE	2,295.00	2,134.00	0.93	0.26	0.30
•••								
261	2018	QUINDIO	CAFE	16,374.73	17,739.03	1.08	2.07	2.21
262	2018	RISARALDA	CAFE	35,874.73	45,918.75	1.28	5.37	4.83
263	2018	SANTANDER	CAFE	42,269.07	55,918.71	1.32	6.53	5.69
264	2018	TOLIMA	CAFE	97,304.04	97,451.31	1.00	11.39	13.11
	VALLE DEL CAUCA		48,305.31	49,667.88	1.03	5.80	6.51	

266 rows x 8 columns

265 2018

In [94]: Produccion_df=pd.read_csv("PRODUCCION.csv")

In [95]:

Produccion_df

Out [95]:

A	nio De	epartamento Proc	ducto	Area (ha)	Producción (ton)	Rendimiento		Área Nacional (ha)
0	2007	ANTIOQUIA	CAFE	112,343.60	120,500.80	1.07	14.54	14.66
1	2007	BOLIVAR	CAFE	502.00	446.00	0.89	0.05	0.07
2	2007	BOYACA	CAFE	11,374.50	9,683.10	0.85	1.17	1.48
3	2007	CALDAS	CAFE	78,393.65	92,815.00	1.18	11.20	10.23
4	2007	CAQUETA	CAFE	2,295.00	2,134.00	0.93	0.26	0.30
261	2018	QUINDIO	CAFE	16,374.73	17,739.03	1.08	2.07	2.21
262	2018	RISARALDA	CAFE	35,874.73	45,918.75	1.28	5.37	4.83
263	2018	SANTANDER	CAFE	42,269.07	55,918.71	1.32	6.53	5.69
264	2018	TOLIMA	CAFE	97,304.04	97,451.31	1.00	11.39	13.11
	VALLE DEL CAUCA CAFE		48,305.31	49,667.88	1.03	5.80	6.51	

266 rows x 8 columns

In [96]:

265 2018

type(Produccion_df)

Out[96]: pandas.core.frame.DataFrame

In [97]:

Produccion_df.dtypes

Out[97]: Anio

nio int64

Departamento object Producto object Area (ha) object

Produccion (ton) object

Rendimiento (ha/ton) float64 Produccion Nacional (ton) float64 Area Nacional (ha) float64

dtype: object

In [98]: Produccion_df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 266 entries, 0 to 265 Data columns (total 8 columns): Column Non-Null Count Dtype 0 Anio 266 non-null int64 1 Departamento 266 non-null object 2 Producto object 266 non-null 3 Area (ha) object 266 non-null 4 Produccion (ton) 266 non-null object 5 Rendimiento (ha/ton) 266 non-null float64 Produccion Nacional (ton) 6 266 non-null float64 Area Nacional (ha) float64 266 non-null dtypes: float64(3), int64(1), object(4) memory usage: 16.8+ KB In [99]: pd.unique(Produccion_df['Anio']) Out[99]: array([2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018], dtype=int64) In [100]: pd.unique(Produccion_df['Departamento']) Out[100]: array(['ANTIOQUIA', 'BOLIVAR', 'BOYACA', 'CALDAS', 'CAQUETA', 'CASANARE', 'CAUCA', 'CESAR', 'CHOCO', 'CUNDINAMARCA', 'HUILA', 'LA GUAJIRA', 'MAGDALENA', 'META', 'NARIÑO', 'NORTE DE SANTANDER', 'PUTUMAYO', 'QUINDIO', 'RISARALDA', 'SANTANDER', 'TOLIMA', 'VALLE DEL CAUCA', 'ARAUCA', 'GUAVIARE'], dtype=object) In [101]: pd.unique(Produccion df['Producto']) Out[101]: array(['CAFE'], dtype=object)

Out[102]: array(['112,343.60', '502.00', '11,374.50', '78,393.65', '2,295.00', '2,605.00', '53,471.00', '23,172.00', '290.00', '43,017.30', '89,661.56', '4,785.00', '17,506.00', '2,048.00', '24,458.50', '30,171.84', '35.00', '19,904.00', '47,689.25', '34,406.67', '91,679.10', '76,667.80', '114,694.00', '572.00', '10,778.50', '74,897.00', '2,735.00', '2,149.00', '56,208.00', '23,198.00', '90.00', '43,633.35', '89,131.20', '4,553.00', '17,521.00', '2,146.00', '25,582.00', '31.00', '19,571.00', '47,227.00', '34,169.37', '86,829.20', '72,419.00', '112,420.20', '770.00', '10,672.50', '73,083.00', '2,332.00', '1,904.00', '57,860.00', '23,420.00', '70.00', '43,475.84', '86,726.78', '4,488.00', '17,036.00', '2,216.00', '26,467.20', '33,552.58', '23.00', '19,052.00', '45,428.00', '37,985.90', '88,667.00', '67,001.30', '111,602.71', '0.00', '850.00', '9,427.00', '72,240.58', '2,536.00', '2,198.00', '55,162.00', '22,489.50', '157.50', '44,264.16', '87,139.53', '4,207.00', '17,000.00', '2,326.00', '23,504.05', '30,731.96', '24.00', '18,159.00', '47,308.00', '39,000.64', '84,658.70', '69,332.10', '106,419.57', '8,441.74', '66,331.61', '2,810.00', '2,081.50', '54,246.42', '22,350.00', '37,478.87', '78,792.21', '4,100.00', '16,577.00', '2,578.00', '24,263.80', '21,520.45', '40.00', '20,139.30', '44,733.64', '37,282.04', '93,145.35', '68,038.40', '112,221.14', '870.00', '6,698.20', '54,871.88', '2,882.50', '2,322.00', '56,825.00', '22,911.00', '37,175.06', '79,809.34', '5,143.00', '17,686.00', '2,783.00', '27,806.40', '19,339.31', '42.00', '21,109.83', '45,588.03', '33,947.15', '90,904.48', '69,456.71', '109,755.50', '659.04', '9,289.05', '60,264.29', '2,905.84', '2,232.94', '74,105.64', '25,106.39', '125.01', '36,189.18', '118,200.88', '5,750.70', '17,016.72', '2,483.43', '32,136.51', '25,332.45', '24.27', '21,203.03', '39,615.60', '38,613.68', '97,308.81', '53,481.02', '110,115.86', '936.34', '9,834.39', '59,757.18', '3,074.92', '2,599.43', '77,068.46', '26,138.58', '136.88', '33,623.54', '128,273.15', '6,078.64', '18,533.11', '2,739.71', '33,608.32', '23,724.20', '101.16', '21,462.81', '40,154.46', '40,733.20', '100,832.91', '56,035.94', '109,649.61', '1,065.07', '10,461.85', '58,376.40', '3,410.56', '2,752.31', '77,405.83', '25,948.50', '137.47', '34,101.49', '130,452.40', '5,631.53', '17,996.31', '2,922.21', '33,490.93', '22,940.64', '128.65', '21,491.21', '41,732.03', '42,679.11', '103,368.73', '54,938.79', '105,666.60', '1,065.97', '10,181.80', '56,022.04', '3,392.22', '2,671.04', '78,421.95', '25,530.59', '134.96', '33,214.17', '126,052.15', '5,531.20', '17,745.80', '2,924.89', '32,750.16', '21,520.64', '20,041.70', '40,472.26', '41,387.79', '100,328.77', '52,648.25', '99,311.53', '1,137.42', '9,598.33', '51,854.59', '3,408.69', '2,436.63', '80,289.56', '25,158.80', '125.67', '30,894.16', '122,575.76', '5,340.80', '18,129.50', '2,926.85', '33,639.55', '21,409.77', '209.29', '17,699.67', '37,334.16', '42,327.26', '96,018.89', '51,470.86', '98,038.15', '1,182.13', '9,653.45', '50,762.22', '3,485.24', '2,360.55', '82,085.54', '23,915.45', '140.33', '29,085.24', '122,002.46', '4,810.97', '17,414.32', '2,761.01', '33,465.54', '20,873.04', '209.93', '16,374.73', '35,874.73', '42,269.07', '97,304.04', '48,305.31'], dtype=object)

Out[103]: array(['120,500.80', '446.00', '9,683.10', '92,815.00', '2,048.40', '51,348.00', '13,278.50', '205.90', '33,729.14', '129,052.51', '2,958.70', '14,005.00', '1,617.20', '31,770.05', '13,593.24', '34.00', '25,426.00', '72,842.55', '29,469.52', '112,322.38', '69,618.24', '113,505.20', '711.00', '9,547.30', '86,884.00', '2,469.00', '1,388.13', '48,073.00', '13,841.45', '68.00', '78,254.77', '131,316.47', '2,328.90', '14,017.00', '1,656.96', '31,262.50', '13,593.25', '35.60', '23,669.00', '60,079.00', '29,016.75', '101,201.88', '65,666.43', '103,703.00', '292.60', '8,567.97', '81,668.22', '2,332.00', '2,079.70', '47,221.00', '12,770.00', '78.75', '37,118.07', '104,609.42', '2,340.40', '13,412.80', '1,672.60', '27,487.71', '10,221.69', '26.70', '21,985.00', '53,648.00', '26,311.61', '88,633.10', '62,711.08', '121,253.38', '0.00', '510.00', '7,083.07', '95,957.90', '2,902.50', '2,564.86', '45,113.00', '13,276.08', '98.00', '37,214.80', '104,336.56', '2,393.00', '13,600.00', '2,221.90', '24,594.10', '22,111.65', '21,065.00', '72,091.00', '27,094.16', '94,230.20', '69,496.65', '115,267.98', '12.00', '5,643.39', '78,805.87', '2,528.40', '2,023.50', '41,645.39', '11,035.85', '32,780.35', '85,150.66', '1,933.00', '13,301.60', '2,533.75', '24,073.95', '12,332.00', '45.80', '20,814.11', '49,042.31', '22,089.82', '53,288.42', '65,475.63', '91,621.30', '652.50', '4,981.59', '54,115.96', '2,446.38', '1,718.25', '50,588.14', '19,994.35', '140.00', '30,786.41', '85,212.64', '3,434.30', '14,096.05', '2,133.10', '28,077.94', '12,214.54', '48.40', '18,030.13', '36,989.43', '23,271.89', '85,027.49', '61,190.55', '102,403.24', '395.07', '5,591.05', '58,634.19', '2,188.92', '1,338.56', '56,303.92', '15,050.27', '105.93', '24,993.74', '115,874.98', '3,447.31', '10,200.84', '1,650.41', '28,606.96', '15,185.79', '16.87', '20,599.27', '39,073.92', '30,227.02', '77,215.36', '42,948.40', '111,452.91', '606.93', '6,364.41', '62,869.38', '2,503.81', '1,688.60', '63,365.76', '16,935.63', '125.42', '25,118.55', '135,971.20', '3,923.80', '12,012.98', '1,950.84', '32,321.56', '15,108.55', '76.04', '22,518.42', '42,719.53', '34,512.79', '86,453.62', '49,799.28', '120,365.77', '1,089.74', '9,501.54', '67,231.37', '3,749.27', '2,626.73', '83,626.44', '22,240.81', '158.20', '31,165.15', '145,168.10', '4,317.50', '16,691.31', '3,206.35', '36,607.56', '20,267.64', '124.67', '24,694.56', '47,215.69', '47,304.16', '105,563.88', '57,583.56', '119,970.68', '1,128.32', '9,583.80', '66,661.14', '3,861.63', '2,638.88', '87,642.49', '22,649.03', '160.62', '31,413.34', '145,154.42', '4,387.19', '17,031.09', '3,322.42', '37,020.90', '19,590.10', '23,791.30', '47,357.02', '47,512.36', '105,976.19', '57,067.08', '140,398.62', '748.97', '7,638.99', '68,668.20', '5,108.33', '1,747.51', '97,922.49', '16,628.14', '158.85', '33,943.39', '133,787.95', '3,516.80', '11,937.90', '4,013.11', '35,004.18', '23,409.44', '282.18', '18,792.05', '46,779.71', '54,908.68', '94,556.71', '51,687.80', '141,898.91', '734.91', '7,780.34', '68,670.96', '5,280.40', '1,629.25', '102,147.00', '14,943.62', '181.42', '32,580.24', '136,161.86', '2,990.91', '10,826.24', '3,877.62', '35,679.42', '23,471.69', '289.50', '17,739.03', '45,918.75', '55,918.71', '97,451.31', '49,667.88'], dtype=object)

```
In [104]:
           pd.unique(Produccion_df['Rendimiento (ha/ton)'])
Out[104]:
            array([1.07, 0.89, 0.85, 1.18, 0.93, 0.79, 0.96, 0.57, 0.71, 0.78, 1.44,
                   0.62, 0.8, 1.3, 0.45, 0.97, 1.28, 1.53, 0.86, 1.23, 0.91, 0.99,
                   1.24, 1.16, 0.9, 0.65, 0.6, 0.76, 1.79, 1.47, 0.51, 0.77, 1.22,
                   1.15, 1.21, 1.27, 1.17, 0.92, 0.38, 1.12, 1. , 1.09, 0.82, 0.55,
                   1.13, 0.52, 0.75, 1.04, 0.3, 0.69, 0.94, 0., 1.33, 1.14, 0.59,
                   0.84, 1.2, 1.05, 0.72, 1.11, 1.52, 1.08, 0.67, 1.19, 0.49, 0.87,
                   0.47, 0.98, 1.03, 1.1, 0.74, 2., 0.83, 1.01, 0.63, 0.81, 0.88,
                   0.66, 0.7, 1.06, 0.64, 1.02, 0.95, 1.41, 1.32, 1.5, 1.26, 1.37,
                   1.35, 1.25, 1.45, 1.29, 1.4, 1.38])
In [105]:
           pd.unique(Produccion df['Produccion Nacional (ton)'])
Out[105]: array([1.454e+01,
                              5.000e-02, 1.170e+00, 1.120e+01, 2.600e-01,
                                                                           2.500e-01,
           6.190e+00.
                              1.600e+00, 2.000e-02, 4.070e+00, 1.557e+01,
                                                                           3.600e-01,
           1.690e+00,
                              2.000e-01, 3.830e+00, 1.640e+00, 0.000e+00, 3.070e+00,
                              3.560e+00, 1.355e+01, 8.400e+00, 1.370e+01, 9.000e-02,
           8.790e+00,
           1.150e+00,
                              1.049e+01, 3.000e-01, 1.700e-01, 5.800e+00, 1.670e+00,
           1.000e-02,
                              9.440e+00, 1.585e+01, 2.800e-01, 3.770e+00, 2.860e+00,
           7.250e+00,
                              3.500e+00, 1.221e+01, 7.930e+00, 1.463e+01,
                                                                           4.000e-02,
                              1.152e+01, 3.300e-01, 2.900e-01, 6.660e+00,
           1.210e+00.
                                                                           1.800e+00.
                              1.476e+01, 1.890e+00, 2.400e-01, 3.880e+00,
           5.240e+00,
                                                                           1.440e+00,
                              7.570e+00, 3.710e+00, 1.250e+01, 8.850e+00,
           3.100e+00,
                                                                           1.556e+01,
           7.000e-02,
                              9.100e-01, 1.231e+01, 3.700e-01, 5.790e+00,
                                                                           1.700e+00,
           4.780e+00,
                              1.339e+01, 3.100e-01, 1.750e+00, 3.160e+00, 2.840e+00,
           2.700e+00,
                              9.250e+00, 3.480e+00, 1.209e+01, 8.920e+00,
                                                                           1.800e+01,
                              8.800e-01, 3.900e-01, 3.200e-01, 6.500e+00,
           8.000e-02.
                                                                           1.720e+00,
                              1.330e+01, 2.080e+00, 4.000e-01, 3.760e+00,
           5.120e+00,
                                                                           1.930e+00,
           3.250e+00,
                              7.660e+00, 3.450e+00, 8.320e+00, 1.022e+01,
                                                                           1.462e+01,
           1.000e-01,
                              7.900e-01, 8.630e+00, 2.700e-01, 8.070e+00,
                                                                           3.190e+00,
           4.910e+00,
                              1.360e+01, 5.500e-01, 2.250e+00, 3.400e-01, 4.480e+00,
           1.950e+00,
                              2.880e+00, 5.900e+00, 1.357e+01, 9.760e+00, 1.570e+01,
                              8.600e-01, 8.990e+00, 2.100e-01, 2.310e+00,
           6.000e-02,
                                                                           1.777e+01,
                              1.560e+00, 4.390e+00, 2.330e+00, 5.990e+00, 4.640e+00,
           5.300e-01,
           1.184e+01,
                              6.590e+00, 1.530e+01, 8.700e-01, 2.300e-01,
                                                                           8.700e+00,
           1.867e+01,
                              5.400e-01, 1.650e+00, 4.440e+00, 2.070e+00, 3.090e+00,
                              4.740e+00, 1.187e+01, 6.840e+00, 1.415e+01,
           5.860e+00,
                                                                           1.300e-01,
           1.120e+00,
                              7.900e+00, 4.400e-01, 9.830e+00, 2.620e+00,
                                                                           3.660e+00,
                              5.100e-01, 1.960e+00, 3.800e-01, 4.300e+00, 2.380e+00,
           1.707e+01,
                              5.550e+00, 5.560e+00, 1.241e+01, 6.770e+00, 1.405e+01,
           2.900e+00,
           7.810e+00,
                              4.500e-01, 1.026e+01, 2.650e+00, 3.680e+00, 1.700e+01,
                                                                           1.649e+01,
           1.990e+00,
                              4.340e+00, 2.290e+00, 2.790e+00, 6.680e+00,
           9.000e-01,
                              8.060e+00, 6.000e-01, 1.150e+01, 3.990e+00, 1.571e+01,
           4.100e-01,
                              1.400e+00, 4.700e-01, 4.110e+00, 2.750e+00, 3.000e-02,
                              5.490e+00, 6.450e+00, 1.110e+01, 6.070e+00, 1.658e+01,
           2.210e+00,
                              6.200e-01, 1.900e-01, 1.194e+01, 3.810e+00, 1.591e+01,
           8.020e+00,
           3.500e-01,
                              1.260e+00, 4.170e+00, 2.740e+00, 5.370e+00, 6.530e+00,
           1.139e+01])
```

```
In [106]:
           pd.unique(Produccion_df['Area Nacional (ha)'])
Out[106]: array([1.466e+01, 7.000e-02, 1.480e+00, 1.023e+01, 3.000e-01, 3.400e-01,
                              3.020e+00, 4.000e-02, 5.610e+00, 1.170e+01, 6.200e-01,
           6.980e+00,
           2.280e+00,
                              2.700e-01, 3.190e+00, 3.940e+00, 0.000e+00, 2.600e+00,
           6.220e+00,
                              4.490e+00, 1.196e+01, 1.000e+01, 1.513e+01, 8.000e-02,
                              9.880e+00, 3.600e-01, 2.800e-01, 7.410e+00, 3.060e+00,
           1.420e+00,
                              5.750e+00, 1.175e+01, 6.000e-01, 2.310e+00, 3.370e+00,
           1.000e-02,
                              2.580e+00, 6.230e+00, 4.510e+00, 1.145e+01, 9.550e+00,
           3.980e+00,
                              1.000e-01, 1.410e+00, 9.680e+00, 3.100e-01, 2.500e-01,
           1.490e+01,
                              3.100e+00, 5.760e+00, 1.149e+01, 5.900e-01, 2.260e+00,
           7.670e+00,
           2.900e-01,
                              3.510e+00, 4.450e+00, 2.520e+00, 6.020e+00, 5.030e+00,
           8.880e+00,
                              1.499e+01, 1.100e-01, 1.270e+00, 9.710e+00, 2.000e-02,
                              1.171e+01, 5.700e-01, 3.160e+00, 4.130e+00, 2.440e+00,
           5.950e+00,
           6.360e+00,
                              5.240e+00, 1.137e+01, 9.310e+00, 1.494e+01, 1.200e-01,
                              3.900e-01, 7.610e+00, 3.140e+00, 5.260e+00, 1.106e+01,
           1.180e+00,
           5.800e-01,
                              2.330e+00, 3.410e+00, 2.830e+00, 6.280e+00, 5.230e+00,
           1.308e+01,
                              1.580e+01, 9.400e-01, 7.720e+00, 4.100e-01, 3.300e-01,
                              3.220e+00, 1.123e+01, 7.200e-01, 2.490e+00, 3.910e+00,
           8.000e+00,
                              2.970e+00, 6.420e+00, 4.780e+00, 1.280e+01, 9.780e+00,
           2.720e+00,
                              9.000e-02, 1.200e+00, 7.810e+00, 3.800e-01,
           1.422e+01,
                                                                           9.600e+00,
           3.250e+00,
                              4.690e+00, 1.531e+01, 7.500e-01, 2.200e+00, 3.200e-01,
           4.160e+00,
                              3.280e+00, 2.750e+00, 5.130e+00, 5.000e+00, 1.261e+01,
                              1.384e+01, 1.240e+00, 7.510e+00, 9.690e+00, 3.290e+00,
           6.930e+00,
           4.230e+00,
                              1.612e+01, 7.600e-01, 4.220e+00, 2.980e+00, 2.700e+00,
                              5.120e+00, 1.267e+01, 7.040e+00, 1.369e+01,
           5.050e+00,
                                                                            1.300e-01,
           1.310e+00,
                              7.290e+00, 4.300e-01, 9.660e+00, 3.240e+00, 4.260e+00,
                              7.000e-01, 2.250e+00, 4.180e+00, 2.860e+00, 2.680e+00,
           1.628e+01,
           5.210e+00,
                              5.330e+00, 1.290e+01, 6.860e+00, 1.359e+01, 1.400e-01,
                              4.400e-01, 1.008e+01, 4.270e+00, 1.621e+01, 7.100e-01,
           7.200e+00,
                              2.770e+00, 5.200e+00, 5.320e+00, 6.770e+00, 1.318e+01,
           4.210e+00,
           1.500e-01,
                              6.880e+00, 4.500e-01, 1.066e+01, 3.340e+00, 4.100e+00,
                              2.410e+00, 4.470e+00, 2.840e+00, 3.000e-02, 2.350e+00,
           1.627e+01,
                              5.620e+00, 1.275e+01, 6.830e+00, 1.321e+01, 1.600e-01,
           4.960e+00,
           1.300e+00,
                              6.840e+00, 4.700e-01, 3.920e+00, 1.643e+01, 6.500e-01,
           3.700e-01,
                              2.810e+00, 2.210e+00, 4.830e+00, 5.690e+00, 1.311e+01,
           6.510e+00])
In [107]:
            Produccion df['Anio'].min()
Out[107]: 2007
           Produccion_df['Anio'].max()
In [108]:
Out[108]: 2018
           Produccion_df['Area (ha)'].min()+" Hectarea"
In [109]:
```

Out[109]: '0.00 Hectarea'

```
In [110]:
            Produccion_df['Area (ha)'].max()+" Hectarea"
Out[110]: '99,311.53 Hectarea'
In [111]:
            Produccion_df['Rendimiento (ha/ton)'].min()
Out[111]: 0.0
In [112]:
            Produccion_df['Rendimiento (ha/ton)'].max()
Out[112]: 2.0
In [113]:
            Produccion_df['Anio'].isnull()
Out[113]: 0
                  False
                  False
           2
                  False
           3
                  False
                  False
           261
                  False
           262
                  False
           263
                  False
           264
                  False
           265
                  False
           Name: Anio, Length: 266, dtype: bool
In [114]:
            Produccion_df['Area (ha)'].isnull()
Out[114]: 0
                  False
                  False
           2
                  False
           3
                  False
                  False
           261
                  False
           262
                  False
           263
                  False
           264
                  False
           265
                  False
```

Name: Area (ha), Length: 266, dtype: bool

```
In [115]:
             Produccion_df['Rendimiento (ha/ton)'].isnull()
Out[115]: 0
                    False
                    False
            2
                    False
            3
                    False
            4
                    False
                    _ _ _
            261
                    False
            262
                    False
            263
                    False
            264
                    False
            265
                    False
            Name: Rendimiento (ha/ton), Length: 266, dtype: bool
In [116]:
             Produccion_df['Rendimiento (ha/ton)'].isnull().sum()
Out[116]: 0
In [117]:
             Produccion_df['Area (ha)'].isnull().sum()
Out[117]: 0
In [118]:
             Produccion_grouped_Anio=Produccion_df.groupby("Anio").sum()
             Produccion_grouped_Anio
Out[118]:
                    Rendimiento (ha/ton) Produccion Nacional (ton) Area Nacional (ha)
              Anio
              2007
                                  20.91
                                                          100.01
                                                                            100.00
              2008
                                  21.62
                                                          100.00
                                                                             99.99
              2009
                                  19.39
                                                          100.00
                                                                             99.98
              2010
                                  20.84
                                                          100.01
                                                                            100.00
              2011
                                  19.65
                                                          100.02
                                                                            100.00
              2012
                                  19.75
                                                           99.99
                                                                            100.00
              2013
                                  16.71
                                                          100.00
                                                                             99.99
              2014
                                  18.09
                                                          100.00
                                                                            100.00
              2015
                                  22.54
                                                           99.98
                                                                            100.00
              2016
                                  22.34
                                                           99.99
                                                                            100.00
              2017
                                  23.50
                                                          100.01
                                                                            100.00
```

100.00

100.02

2018

23.75

In [119]: Produccion_grouped_Anio_Rendimiento=Produccion_df.groupby("Rendimiento (ha/ton)"

Produccion_grouped_Anio_Rendimiento

Out[119]:

	Anio								Produce	ion Naci
count mean			std	min	25%	50%	75%	max	count	mean
Rendimiento (ha/ton)										
0.00	2.0	2011.0	1.414214	2010.0	2010.50	2011.0	2011.50	2012.0	2.0	0.000
0.30	1.0	2009.0	NaN	2009.0	2009.00	2009.0	2009.00	2009.0	1.0	1.440
0.38	1.0	2009.0	NaN	2009.0	2009.00	2009.0	2009.00	2009.0	1.0	0.040
0.45	2.0	2007.5	0.707107	2007.0	2007.25	2007.5	2007.75	2008.0	2.0	1.640
0.47	1.0	2011.0	NaN	2011.0	2011.00	2011.0	2011.00	2011.0	1.0	0.300
1.50	1.0	2017.0	NaN	2017.0	2017.00	2017.0	2017.00	2017.0	1.0	0.600
1.52	2.0	2014.0	5.656854	2010.0	2012.00	2014.0	2016.00	2018.0	2.0	4.935
1.53	1.0	2007.0	NaN	2007.0	2007.00	2007.0	2007.00	2007.0	1.0	8.790
1.79	1.0	2008.0	NaN	2008.0	2008.00	2008.0	2008.00	2008.0	1.0	9.440
2.00	1.0	2012.0	NaN	2012.0	2012.00	2012.0	2012.00	2012.0	1.0	0.020

94 rows × 24 columns

4

In [120]:

 $\label{lem:production_grouped_Departamento} Produccion_df.groupby \textbf{(["Anio","Departamento"]).s} \\ Produccion_grouped_Departamento$

Out[120]:

		Rendimiento (ha/ton)	Produccion Nacional (ton)	Area Nacional (ha)
Anio	Departamento			
2007	ANTIOQUIA	1.07	14.54	14.66
	BOLIVAR	0.89	0.05	0.07
	BOYACA	0.85	1.17	1.48
	CALDAS	1.18	11.20	10.23
	CAQUETA	0.93	0.26	0.30
2018	QUINDIO	1.08	2.07	2.21
	RISARALDA	1.28	5.37	4.83
	SANTANDER	1.32	6.53	5.69
	TOLIMA	1.00	11.39	13.11
	VALLE DEL CAUCA	1.03	5.80	6.51

266 rows x 3 columns

In [121]:

 $\label{lem:produccion_grouped_Departamento_Rendimiento=Produccion_df_group by \textbf{(["Anio", "Depar Produccion_grouped_Departamento_Rendimiento]}. \\$

Out[121]:

			Producto Area (ha)		Produccion (ton)	Produccion	Area Nacional (ha)
Anio	Departamento	Rendimiento (ha/ton)					
200	7 ANTIOQUIA	1.07	CAFE	112,343.60	120,500.80	14.54	14.66
	BOLIVAR	0.89	CAFE	502.00	446.00	0.05	0.07
	BOYACA	0.85	CAFE	11,374.50	9,683.10	1.17	1.48
	CALDAS	1.18	CAFE	78,393.65	92,815.00	11.20	10.23
	CAQUETA	0.93	CAFE	2,295.00	2,134.00	0.26	0.30
2018	B QUINDIO	1.08	CAFE	16,374.73	17,739.03	3 2.07	2.21
	RISARALDA	1.28	CAFE	35,874.73	45,918.75	5.37	4.83
	SANTANDER	1.32	CAFE	42,269.07	55,918.71	6.53	5.69
	TOLIMA	1.00	CAFE	97,304.04	97,451.31	11.39	13.11
	VALLE DEL 1. CAUCA	03	CAFE	48,305.31	49,667.88	5.80	6.51

In [122]: Pro

Produccion_df['Produccion (ton)'].count()

cuenta el numero de registros en el dataframe para el campo de la Producción

Out[122]: 266

In [123]:

Produccion_df['Anio'].count()

cuenta el numero de registros en el dataframe para el campo del año

Out[123]: 266

In [124]:

 $\label{lem:produccion_grouped_Departamento=Produccion_df_groupby (["Anio", "Departamento"]).s$

Produccion_grouped_Departamento

Resume los valores maximo de Anio y Departamento

Out[124]:Rendimiento (ha/ton)2.00Produccion Nacional (ton)18.67Area Nacional (ha)16.43

dtype: float64

In [125]:

 $\label{lem:produccion_group} Produccion_group by \textbf{(["Anio", "Departamento"]).s}$

Produccion_grouped_Departamento

Resume los valores minimos de Anio y Departamento

Out[125]: Rendimiento (ha/ton)0.0Produccion Nacional (ton)0.0Area Nacional (ha)0.0

dtype: float64

In [126]: Produccion_df_groupby('Departamento')['Produccion Nacional (ton)']_sum() # Agrupa los datos por Departamento y describe la suma de la Produccion Nacional

Out[126]: Departamento
ANITIOO	1117

ANTIOQUIA	183.32
ARAUCA	0.00
BOLIVAR	1.01
BOYACA	11.89
CALDAS	115.87
CAQUETA	4.83
CASANARE	3.09
CAUCA	99.87
CESAR	25.29
CHOCO	0.21
CUNDINAMARCA	55.98
GUAVIARE	0.00
HUILA	188.60
LA GUAJIRA	4.98
MAGDALENA	21.17
META	3.88
NARIÑO	48.63
NORTE DE SANTANDER	26.00
PUTUMAYO	0.10
QUINDIO	34.08
RISARALDA	80.23
SANTANDER	54.89
TOLIMA	143.26
VALLE DEL CAUCA	92.83

Name: Produccion Nacional (ton), dtype: float64

In [127]:

 $\label{lem:produccion_grouped_Departamento=Produccion_df_groupby (["Anio", "Departamento"]). departamento and the produccion_grouped_Departamento are consistent or consistent and the production are consistent as a consistent or consistent are consistent as a consistent are con$

Out[127]:

		Rendim	iento (ha	/ton)						Produccion Nacional (ton)			
count	mean std				min	25%	50%	75%	max	count	mean	7	5%
Anio	Departamento												
2007	ANTIOQUIA	1.0	1.07	NaN	1.07	1.07	1.07	1.07	1.07	1.0	14.54		14.54
	BOLIVAR	1.0	0.89	NaN	0.89	0.89	0.89	0.89	0.89	1.0	0.05		0.05
	BOYACA	1.0	0.85	NaN	0.85	0.85	0.85	0.85	0.85	1.0	1.17		1.17
	CALDAS	1.0	1.18	NaN	1.18	1.18	1.18	1.18	1.18	1.0	11.20		11.20
	CAQUETA	1.0	0.93	NaN	0.93	0.93	0.93	0.93	0.93	1.0	0.26		0.26
2018	QUINDIO	1.0	1.08	NaN	1.08	1.08	1.08	1.08	1.08	1.0	2.07		2.07
	RISARALDA	1.0	1.28	NaN	1.28	1.28	1.28	1.28	1.28	1.0	5.37		5.37
	SANTANDER	1.0	1.32	NaN	1.32	1.32	1.32	1.32	1.32	1.0	6.53		6.53
	TOLIMA	1.0	1.00	NaN	1.00	1.00	1.00	1.00	1.00	1.0	11.39		11.39
	VALLE DEL	1.0	1.03	NaN	1.03	1.03	1.03	1.03	1.03	1.0	5.80		5.80
	CAUCA												

In [128]:

Produccion_df.dropna()
Elimina los valores faltantes o NaN de cada columna

Out[128]:

			Anio	Departamento	Producto	Area (ha)	Produccion (ton)	Rendimiento (ha/ton)	Produccion Nacional (ton)	Area Nacional (ha)
		0	2007	ANTIOQUIA	CAFE	112,343.60	120,500.80	1.07	14.54	14.66
		1	2007	BOLIVAR	CAFE	502.00	446.00	0.89	0.05	0.07
		2	2007	BOYACA	CAFE	11,374.50	9,683.10	0.85	1.17	1.48
		3	2007	CALDAS	CAFE	78,393.65	92,815.00	1.18	11.20	10.23
		4	2007	CAQUETA	CAFE	2,295.00	2,134.00	0.93	0.26	0.30
				•••						
		261	2018	QUINDIC	CAFE	16,374.73	17,739.03	1.08	2.07	2.21
		262	2018	RISARALDA	CAFE	35,874.73	45,918.75	1.28	5.37	4.83
		263	2018	SANTANDER	CAFE	42,269.07	55,918.71	1.32	6.53	5.69
		264	2018	TOLIMA	CAFE	97,304.04	97,451.31	1.00	11.39	13.11
265	2018			VALLE DEL CAUCA	(· \rangle F =	48,305.31	49,667.88	1.03	5.80	6.51

266 rows x 8 columns

In [129]:

Produccion_Departamento=Produccion_df_groupby(["Anio","Departamento","Area Nacio Produccion_Departamento

Da una amplia descripcion de los datos numericos de Anio, Departamento y Area

Out[129]: Rendimiento

o (h	a/ton)											Produc	cion Na	acion
	count	mean std					min	25%	50%	75%	max	count	mean	std
	Anio	Departamento	Area Nacional (ha)											
	2007	ANTIOQUIA	14.66	1.0	1.07	NaN	1.07	1.07	1.07	1.07	1.07	1.0	14.54	Na
		BOLIVAR	0.07	1.0	0.89	NaN	0.89	0.89	0.89	0.89	0.89	1.0	0.05	Na
		BOYACA	1.48	1.0	0.85	NaN	0.85	0.85	0.85	0.85	0.85	1.0	1.17	Na
		CALDAS	10.23	1.0	1.18	NaN	1.18	1.18	1.18	1.18	1.18	1.0	11.20	Na
		CAQUETA	0.30	1.0	0.93	NaN	0.93	0.93	0.93	0.93	0.93	1.0	0.26	Na
	2018	QUINDIO	2.21	1.0	1.08	NaN	1.08	1.08	1.08	1.08	1.08	1.0	2.07	Na
		RISARALDA	4.83	1.0	1.28	NaN	1.28	1.28	1.28	1.28	1.28	1.0	5.37	Na
		SANTANDER	5.69	1.0	1.32	NaN	1.32	1.32	1.32	1.32	1.32	1.0	6.53	Na
		TOLIMA	13.11	1.0	1.00	NaN	1.00	1.00	1.00	1.00	1.00	1.0	11.39	Na
				1.0	1.03	NaN	1.03	1.03	1.03	1.03	1.03	1.0	5.80	Na

266 rows × 16 columns

→

In [130]:

Produccion_Anio=Produccion_df.groupby(["Anio"]).describe()
Produccion_Anio

Da una amplia descripcion de los datos numericos de Anio

Out[130]:

R	endimi	ento (ha/ton)						Produccion Nacional (ton)					
		count mean	std	min	25%	50%	75%	max	count mean		75%	m	
	Anio												
	2007	22.0 0.950455	0.279566	0.45	0.7900	0.900	1.1525	1.53	22.0 4.545909		7.8475	1	
	2008	22.0 0.982727	0.322670	0.45	0.7775	0.905	1.2000	1.79	22.0 4.545455		7.7600	1	
	2009	22.0 0.881364	0.264652	0.30	0.7600	0.930	1.1125	1.21	22.0 4.545455		7.3425	1	
	2010	23.0 0.906087	0.324692	0.00	0.7050	0.960	1.1250	1.52	23.0 4.348261		7.3550	1	
	2011	23.0 0.854348	0.238305	0.47	0.6100	0.900	1.0550	1.20	23.0 4.348696		7.0800	1	
	2012	23.0 0.858696	0.329618	0.00	0.7450	0.830	0.9150	2.00	23.0 4.347391		6.9850	1	
	2013	22.0 0.759545	0.145421	0.60	0.6000	0.755	0.8800	0.99	22.0 4.545455		6.4400	1	
	2014	22.0 0.822273	0.157629	0.64	0.6500	0.815	0.9500	1.06	22.0 4.545455		6.5950	1	
	2015	22.0 1.024545	0.110096	0.77	0.9350	1.065	1.1075	1.15	22.0 4.544545		6.4675	1	
	2016	21.0 1.063810	0.116725	0.79	0.9600	1.120	1.1500	1.19	21.0 4.761429		6.6800	1	
	2017	22.0 1.068182	0.272443	0.66	0.8450	1.090	1.2900	1.50	22.0 4.545909		6.3550	1	
	2018	22.0 1.079545	0.296672	0.62	0.8575	1.120	1.3125	1.52	22.0 4.545455		6.3475	1	

12 rows x 24 columns

4

In [131]:

Produccion_Anio_Rendimiento=Produccion_df_groupby(["Rendimiento (ha/ton)"]).desc Produccion_Anio_Rendimiento

Da una amplia descripcion de los datos numericos de Rendimiento (ha/ton)

Out[131]:

Anio										Produc	cion Nacion
count	mean			std	min	25%	50%	75%	max	count	mean
	imiento ha/ton)										
	0.00	2.0	2011.0	1.414214	2010.0	2010.50	2011.0	2011.50	2012.0	2.0	0.000
	0.30	1.0	2009.0	NaN	2009.0	2009.00	2009.0	2009.00	2009.0	1.0	1.440
	0.38	1.0	2009.0	NaN	2009.0	2009.00	2009.0	2009.00	2009.0	1.0	0.040
	0.45	2.0	2007.5	0.707107	2007.0	2007.25	2007.5	2007.75	2008.0	2.0	1.640
	0.47	1.0	2011.0	NaN	2011.0	2011.00	2011.0	2011.00	2011.0	1.0	0.300
	1.50	1.0	2017.0	NaN	2017.0	2017.00	2017.0	2017.00	2017.0	1.0	0.600
	1.52	2.0	2014.0	5.656854	2010.0	2012.00	2014.0	2016.00	2018.0	2.0	4.935
	1.53	1.0	2007.0	NaN	2007.0	2007.00	2007.0	2007.00	2007.0	1.0	8.790
	1.79	1.0	2008.0	NaN	2008.0	2008.00	2008.0	2008.00	2008.0	1.0	9.440
	2.00	1.0	2012.0	NaN	2012.0	2012.00	2012.0	2012.00	2012.0	1.0	0.020

94 rows x 24 columns

In [132]:

Produccion_df.describe()

Indica datos estadísticos generales del dataframe produccion

Out[132]:

	Anio	Rendimiento (ha/ton)	Produccion Nacional (ton)	Area Nacional (ha)
count	266.000000	266.000000	266.000000	266.000000
mean	2012.469925	0.936429	4.511316	4.511203
std	3.443484	0.267129	4.950568	4.565865
min	2007.000000	0.000000	0.000000	0.000000
25%	2010.000000	0.750000	0.352500	0.390000
50%	2012.000000	0.940000	2.720000	3.120000
75%	2015.000000	1.120000	7.147500	6.875000
max	2018.000000	2.000000	18.670000	16.430000

In [133]: Produccion_df.describe()
Produccion_df.mean()

Indica el promedio del dataframe produccion para Rendimiento, Produccion

 Out[133]: Anio
 2012.469925

 Rendimiento (ha/ton)
 0.936429

 A 511316

Produccion Nacional (ton) 4.511316 Area Nacional (ha) 4.511203

dtype: float64

In [136]: Produccion_df["Produccion Nacional (ton)"].describe()

Indica datos estadísticos generales para la Producción nacional del dataframe

Out[136]: count 266.000000 4.511316 mean std 4.950568 min 0.000000 25% 0.352500 50% 2.720000 75% 7.147500 max 18.670000

Name: Produccion Nacional (ton), dtype: float64

In [139]: Produccion_counts=Produccion_df.groupby('Produccion (ton)')['Produccion (ton)'].

creamos una grafica en barras indicando la cantidad de Embarked por Pclass

In [140]: | Produccion_df_duplicated().sum()

#Registros que esten duplicados

Out[140]: 0

In [141]: Produccion_df.groupby('Rendimiento (ha/ton)')['Rendimiento (ha/ton)'].count()

Agrupa los datos por Rendimiento (ha/ton) y describe la cantidad de cada uno

Out[141]: Rendimiento (ha/ton)

0.00 2

0.30 1

0.38 1

0.45 2

0.47 1

1.50 1

1.52 2

1.53 1

1.79 1

2.00 1

Name: Rendimiento (ha/ton), Length: 94, dtype: int64

In [142]: Produccion_df.groupby('Departamento')['Departamento'].count()['VALLE DEL CAUCA']

aAgrupa los datos por Departamento y cuenta los Departamento que sean igual a

Out[142]: 12

In [143]: Produccion_df.groupby('Produccion (ton)')['Produccion (ton)'].count()['17,739.03 # Agrupa los datos por Produccion (ton) y cuenta losProduccion (ton) que sean ig Out[143]: 1 In [144]: Produccion df['Area Nacional (ha)']*5 # Multiplica todos los valores de Area Nacional (ha) por cinco Out[144]: 0 73.30 1 0.35 2 7.40 3 51.15 4 1.50 11.05 261 262 24.15 263 28.45 264 65.55 32.55 265 Name: Area Nacional (ha), Length: 266, dtype: float64 In [145]: Produccion_df.groupby('Anio')['Rendimiento (ha/ton)'].sum() # Agrupa los datos por Anio y describe la suma del Rendimiento (ha/ton) cada uno Out[145]: Anio 2007 20.91 2008 21.62 2009 19.39 2010 20.84 2011 19.65 2012 19.75 2013 16.71 2014 18.09 2015 22.54 2016 22.34 2017 23.50 2018 23.75 Name: Rendimiento (ha/ton), dtype: float64 In [146]: Produccion_df.groupby('Anio')['Produccion (ton)'].sum() # Agrupa los datos por Anio y describe la suma de la Produccion (ton) cada uno Out[146]: Anio 2007 120,500.80446.009,683.1092,815.002,134.002,048... 2008 113,505.20711.009,547.3086,884.002,469.001,388... 2009 103,703.00292.608,567.9781,668.222,332.002,079... 2010 121,253.380.00510.007,083.0795,957.902,902.502... 2011 115,267.9812.00510.005,643.3978,805.872,528.40... 2012 91,621.30652.504,981.5954,115.962,446.381,718.... 2013 102,403.24395.075,591.0558,634.192,188.921,338... 2014 111,452.91606.936,364.4162,869.382,503.811,688... 2015 120,365.771,089.749,501.5467,231.373,749.272,6... 2016 119,970.681,128.329,583.8066,661.143,861.632,6... 2017 140,398.62748.977,638.9968,668.205,108.331,747...

141,898.91734.917,780.3468,670.965,280.401,629...

Name: Produccion (ton), dtype: object

2018

In [147]: total_count = Produccion_df.groupby('Anio')['Produccion Nacional (ton)'].sum() # creamos una grafica en barras indicando la cantidad de Anio por Produccion Nac total_count.plot(kind='pie');

In [148]: Produccion_df['Rendimiento (ha/ton)']-0.49

Disminuye todos los valores del Rendimiento (ha/ton) menos el 49%

Out[148]: 0 0.58

0.40

2 0.36

3 0.69

4 0.44

261 0.59

262 0.79

263 0.83

264 0.51

265 0.54

Name: Rendimiento (ha/ton), Length: 266, dtype: float64

In [149]: | Produccion_df['Rendimiento (ha/ton)']+0.63

Aumenta todos los valores del Rendimiento (ha/ton) más el 63%

Out[149]: 0 1.70

1 1.52

2 1.48

3 1.81

4 1.56

261 1.71

262 1.91

263 1.95

264 1.63

265 1.66

Name: Rendimiento (ha/ton), Length: 266, dtype: float64

In [150]:

Produccion_df[Produccion_df_Departamento=='RISARALDA']
selecciona de la fila Departamento los valores iguales a RISARALDA

Out[150]:

	Anio	Departamento Pro	ducto	Area (ha)	Produccion (ton)	Rendimiento (ha/ton)	Produccion Nacional (ton)	Area Nacional (ha)
18	2007	RISARALDA	CAFE	47,689.25	72,842.55	1.53	8.79	6.22
40	2008	RISARALDA	CAFE	47,227.00	60,079.00	1.27	7.25	6.23
62	2009	RISARALDA	CAFE	45,428.00	53,648.00	1.18	7.57	6.02
85	2010	RISARALDA	CAFE	47,308.00	72,091.00	1.52	9.25	6.36
108	2011	RISARALDA	CAFE	44,733.64	49,042.31	1.10	7.66	6.28
131	2012	RISARALDA	CAFE	45,588.03	36,989.43	0.81	5.90	6.42
153	2013	RISARALDA	CAFE	39,615.60	39,073.92	0.99	5.99	5.13
175	2014	RISARALDA	CAFE	40,154.46	42,719.53	1.06	5.86	5.05
197	2015	RISARALDA	CAFE	41,732.03	47,215.69	1.13	5.55	5.21
218	2016	RISARALDA	CAFE	40,472.26	47,357.02	1.17	5.55	5.20
240	2017	RISARALDA	CAFE	37,334.16	46,779.71	1.25	5.49	4.96
262	2018	RISARALDA	CAFE	35,874.73	45,918.75	1.28	5.37	4.83

In [151]: import numpy as np import re import sys

Out[151]: <matplotlib.axes._subplots.AxesSubplot at 0x94b4c08>

In [152]: # Construcción del gráfico produccion por año tipo lineas import numpy as np import re

Out[152]: <matplotlib.axes._subplots.AxesSubplot at 0x9b94108>

In [153]: # Construcción del gráfico Rendimiento por año tipo lineas

%matplotlib inline

Out[153]: <matplotlib.axes._subplots.AxesSubplot at 0xbc031c8>

Construcción del gráfico produccion por departamento año tipo lineas

%matplotlib inline

Out[154]: <matplotlib.axes._subplots.AxesSubplot at 0xd392508>

In [155]: import numpy as np import re import sys

Out[155]: <matplotlib.axes._subplots.AxesSubplot at 0x1256dfc8>

In [161]:

grouped_data=Produccion_df_groupby("Departamento")
z=grouped_data_describe().mean()
print(z)

Indica datos estadísticos generales del dataframe de la columna Departamento

Anio	count	11.083333
	mean	2012.382576
	std	3.479313
	min	2007.333333
	25%	2009.854167
	50%	2012.375000
	75%	2014.895833
	max	2017.458333
Rendimiento (ha/ton)	count	11.083333
	mean	0.889467
	std	0.216119
	min	0.620833
	25%	0.769167
	50%	0.863750
	75%	0.986771
	max	1.235417
Produccion Nacional (ton)	count	11.083333
	mean	4.166733
	std	0.719931
	min	3.261250
	25%	3.687812
	50%	4.031667
	75%	4.614271
	max	5.387500
Area Nacional (ha)	count	11.083333
	mean	4.166632
	std	0.511340
	min	3.537500
	25%	3.758229
	50%	4.136042
	75%	4.588854
	max	4.838333
dtype: float64		

In [163]:

departamentos_counts=Produccion_df.groupby("Departamento")["Producto"].count() print(departamentos_counts)

Verificar y cuenta cada uno de los Departamentos

Departamento	
ANTIOQUIA	12
ARAUCA	2
BOLIVAR	12
BOYACA	12
CALDAS	12
CAQUETA	12
CASANARE	12
CAUCA	12
CESAR	12
CHOCO	12
CUNDINAMARCA	12
GUAVIARE	1
HUILA	12
LA GUAJIRA	12
MAGDALENA	12
META	12
NARIÑO	12
NORTE DE SANTANDER	12
PUTUMAYO	11
QUINDIO	12
RISARALDA	12
SANTANDER	12
TOLIMA	12
VALLE DEL CAUCA	12
Name: Producto, dtype: int64	

In [165]:

Grupos_Departamentos=Produccion_df_groupby("Anio")["Departamento"].count() print(Grupos_Departamentos)

Indica la cantidad de Departamentos

Name: Departamento, dtype: int64

In [167]: Departamento_Meta=Produccion_df_loc[Produccion_df["Departamento"]=="META"] print(Departamento_Meta)
Indica los resultados estadísticos por año para el Departamento Meta

	Anio	Departamento	Producto	Area (ha)	Produccion	(ton)	\	
13	2007	META	CAFE	2,048.00	1,61	17.20		
35	2008	META	CAFE	2,146.00	1,65	56.96		
57	2009	META	CAFE	2,216.00	1,67	72.60		
80	2010	META	CAFE	2,326.00	2,22	21.90		
103	2011	META	CAFE	2,578.00	2,53	33.75		
126	2012	META	CAFE	2,783.00	2,13	33.10		
148	2013	META	CAFE	2,483.43	1,65	50.41		
170	2014	META	CAFE	2,739.71	1,95	50.84		
192	2015	META	CAFE	2,922.21	3,20	06.35		
214	2016	META	CAFE	2,924.89	3,32	22.42		
235	2017	META	CAFE	2,926.85	4,01	13.11		
257	2018	META	CAFE	2,761.01	3,87	77.62		
			`					
4.0	Rendir	•		ccion Nac	ional (ton)	Area I	Nacional	(ha)
13	Rendir	0.	.79	ccion Nac	0.20	Area I	Nacional	0.27
35	Rendir	0. 0.	.79 .77	ccion Nac	0.20 0.20	Area I	Nacional	0.27 0.28
35 57	Rendir	0. 0. 0.	.79 .77 .75	ccion Nac	0.20 0.20 0.24	Area I	Nacional	0.27 0.28 0.29
35 57 80	Rendir	0. 0. 0. 0.	79 77 75 96	ccion Nac	0.20 0.20 0.24 0.29	Area I	Nacional	0.27 0.28 0.29 0.31
35 57 80 103	Rendir	0. 0. 0. 0.	79 77 75 96 98	ccion Nac	0.20 0.20 0.24 0.29 0.40	Area ∣	Nacional	0.27 0.28 0.29 0.31 0.36
35 57 80 103 126	Rendir	0. 0. 0. 0. 0.	79 77 75 96 98 77	ccion Nac	0.20 0.20 0.24 0.29 0.40 0.34	Area ∣	Nacional	0.27 0.28 0.29 0.31 0.36 0.39
35 57 80 103 126 148	Rendir	0. 0. 0. 0. 0.	79 77 75 96 98 77 66	ccion Nac	0.20 0.20 0.24 0.29 0.40 0.34 0.25	Area ∣	Nacional	0.27 0.28 0.29 0.31 0.36 0.39 0.32
35 57 80 103 126 148 170	Rendir	0. 0. 0. 0. 0. 0.	79 77 75 96 98 77 66 71	ccion Nac	0.20 0.20 0.24 0.29 0.40 0.34 0.25 0.27	Area I	Nacional	0.27 0.28 0.29 0.31 0.36 0.39 0.32 0.34
35 57 80 103 126 148 170 192	Rendir	0. 0. 0. 0. 0. 0. 0.	79 77 75 96 98 77 66 71	ccion Nac	0.20 0.20 0.24 0.29 0.40 0.34 0.25 0.27 0.38	Area I	Nacional	0.27 0.28 0.29 0.31 0.36 0.39 0.32 0.34 0.36
35 57 80 103 126 148 170 192 214	Rendir	0. 0. 0. 0. 0. 0. 0. 1.	79 77 75 96 98 77 66 71 10	ccion Nac	0.20 0.20 0.24 0.29 0.40 0.34 0.25 0.27 0.38 0.39	Area I	Nacional	0.27 0.28 0.29 0.31 0.36 0.39 0.32 0.34 0.36 0.38
35 57 80 103 126 148 170 192	Rendir	0. 0. 0. 0. 0. 0. 1. 1.	79 77 75 96 98 77 66 71	ccion Nac	0.20 0.20 0.24 0.29 0.40 0.34 0.25 0.27 0.38	Area I	Nacional	0.27 0.28 0.29 0.31 0.36 0.39 0.32 0.34 0.36

In [168]:

Departamento_QUINDIO=Produccion_df_loc[Produccion_df["Departamento"]=="QUINDIO"]
print(Departamento_QUINDIO)
Indica los resultados estadísticos por año para el Departamento Quindio

17 39 61	Anio 2007 2008 2009	Departamento QUINDIO QUINDIO QUINDIO)	ducto CAFE CAFE CAFE	19,9 19,5	a (ha) 04.00 71.00 52.00	Pro	25 23	on (tor 5,426.0 3,669.0 ,985.0)Ó)O	
84	2010	QUINDIC		CAFE	-	59.00			,065.0		
107	2011	QUINDIC		CAFE	-	39.30			,814.1		
130	2012	QUINDIC		CAFE		09.83			3,030.1		
152	2013	QUINDIC		CAFE	-	03.03			,599.2		
174	2014	QUINDIC)	CAFE	21,4	62.81		22	2,518.4	12	
196	2015	QUINDIC)	CAFE	21,4	91.21		24	,694.5	66	
217	2016	QUINDIC)	CAFE	20,0	41.70		23	3,791.3	80	
239	2017	QUINDIC		CAFE		99.67			3,792.0		
261	2018	QUINDIC)	CAFE	16,3	74.73		17	7,739.0)3	
	Rendir	niento (ha/t	ton) F	Produc	ccion	Nacio	nal	(ton)	Area	Nacional	(ha)
17		•	1.28					3.07	7 0 0.		2.60
39			1.21					2.86			2.58
61			1.15					3.10			2.52
84			1.16					2.70			2.44
107			1.03					3.25			2.83
130		(0.85					2.88			2.97
152		(0.97					3.16			2.75
174			1.05					3.09			2.70
196			1.15					2.90			2.68
217			1.19					2.79			2.58
239			1.06					2.21			2.35
261			1.08					2.07			2.21

In [170]: Estadística_Anio2015=Produccion_df_loc[Produccion_df["Anio"]==2015] print(Estadística_Anio2015)

Indica los resultados estadísticos por departamento para el año 2015 Anio Departamento Producto Area (ha) Produccion (ton) \ 179 2015 **ANTIOQUIA** CAFE 109,649.61 120,365.77 180 2015 **BOLIVAR** CAFE 1,065.07 1,089.74 2015 CAFE 181 **BOYACA** 10,461.85 9,501.54 **CAFE** 182 2015 CALDAS 58,376.40 67,231.37 183 **CAFE** 2015 **CAQUETA** 3,410.56 3,749.27 184 2015 **CASANARE CAFE** 2,752.31 2,626.73 **CAFE** 185 2015 **CAUCA** 77,405.83 83,626.44 CAFE 186 2015 **CESAR** 25,948.50 22,240.81 2015 CAFE 187 CHOCO 137.47 158.20 **CAFE** 188 2015 **CUNDINAMARCA** 34.101.49 31.165.15 189 2015 CAFE 130,452.40 HUILA 145,168.10 190 2015 LA GUAJIRA CAFE 5,631.53 4,317.50 17,996.31 191 2015 **CAFE** MAGDALENA 16,691.31 192 2015 **META CAFE** 2,922.21 3,206.35 193 CAFE 2015 NARIÑO 33,490.93 36,607.56 194 2015 NORTE DE SANTANDER **CAFE** 22,940.64 20,267.64 CAFE 195 2015 **PUTUMAYO** 128.65 124.67 196 2015 **QUINDIO CAFE** 21,491.21 24,694.56 197 2015 CAFE **RISARALDA** 41,732.03 47,215.69 47,304.16 198 2015 SANTANDER CAFE 42,679.11 199 2015 **TOLIMA** CAFE 103,368.73 105,563.88 200 2015 VALLE DEL CAUCA CAFE 54,938.79 57,583.56 Rendimiento (ha/ton) Produccion Nacional (ton) Area Nacional (ha) 179 1.10 14.15 13.69 180 1.02 0.13 0.13 0.91 1.12 1.31 181 7.90 7.29 182 1.15 183 1.10 0.44 0.43 0.95 0.31 0.34 184 185 1.08 9.83 9.66 186 0.86 2.62 3.24 187 1.15 0.02 0.02 4.26 188 0.91 3.66 1.11 17.07 16.28 189 190 0.77 0.51 0.70 1.96 2.25 191 0.93 192 1.10 0.38 0.36 4.30 4.18 193 1.09 194 0.88 2.38 2.86 195 0.97 0.01 0.02 196 1.15 2.90 2.68 197 1.13 5.55 5.21 198 1.11 5.56 5.33 1.02 12.90 199 12.41

6.77

6.86

200

1.05

In [171]: Estadística_Anio2018=Produccion_df_loc[Produccion_df["Anio"]==2018] print(Estadística_Anio2018)
Indica los resultados estadísticos por departamento para el año 2018

Anio		Denar	tamento Producto	Area	(ha) Produccion	(ton)	\
244		2018	ANTIOQUIA	CAFE	98,038.15	141,898.91	`
245		2018	BOLIVAR	CAFE	1,182.13	734.91	
246		2018	BOYACA	CAFE	9,653.45	7,780.34	
240	247	2018	CALDAS	CAFE		68,670.96	
248	2-11	2018	CAQUETA	CAFE	3,485.24	5,280.40	
249		2018	CASANARE	CAFE	2,360.55	1,629.25	
240	250	2018	CAUCA	CAFE		102,147.00	
	251	2018	CESAR	CAFE	-	14,943.62	
252	201	2018	CHOCO	CAFE	140.33	181.42	
253		2018	CUNDINAMARCA	CAFE	29,085.24	32,580.24	
200	254	2018	HUILA	CAFE	•	136,161.86	
255	_0.	2018	LA GUAJIRA	CAFE	4,810.97	2,990.91	
256		2018	MAGDALENA	CAFE	17,414.32	10,826.24	
	257	2018	META	CAFE	·	3,877.62	
	258	2018	NARIÑO	CAFE		35,679.42	
	259	2018	NORTE DE SANTANDER	CAFE	,	23,471.69	
	260	2018	PUTUMAYO	CAFE	209.93	289.50	
	261	2018	QUINDIO	CAFE	16,374.73	17,739.03	
	262	2018	RISARALDA	CAFE	·	45,918.75	
	263	2018	SANTANDER	CAFE	·	55,918.71	
	264	2018	TOLIMA	CAFE	-	97,451.31	
	265	2018	VALLE DEL CAUCA	CAFE	48,305.31	49,667.88	
Rendimient	o (ha	/ton)	Produ	iccion N	Jacional (ton)	Area Nacional	(ha)
Rendimient	•	/ton)		ccion N		Area Nacional	
Rendimient	244	/ton)	1.45	iccion N	16.58		13.21
Rendimient	244 245	/ton)	1.45 0.62	iccion N	16.58 0.09		13.21 0.16
Rendimient	244 245 246	/ton)	1.45 0.62 0.81	iccion N	16.58 0.09 0.91		13.21 0.16 1.30
Rendimient	244 245 246 247	/ton)	1.45 0.62 0.81 1.35	iccion N	16.58 0.09 0.91 8.02		13.21 0.16 1.30 6.84
Rendimient	244 245 246 247 248	/ton)	1.45 0.62 0.81 1.35 1.52	iccion N	16.58 0.09 0.91 8.02 0.62		13.21 0.16 1.30 6.84 0.47
Rendimient	244 245 246 247 248 249	/ton)	1.45 0.62 0.81 1.35 1.52 0.69	iccion N	16.58 0.09 0.91 8.02 0.62 0.19		13.21 0.16 1.30 6.84 0.47 0.32
Rendimient	244 245 246 247 248 249 250	/ton)	1.45 0.62 0.81 1.35 1.52 0.69 1.24	iccion N	16.58 0.09 0.91 8.02 0.62		13.21 0.16 1.30 6.84 0.47
Rendimient	244 245 246 247 248 249 250 251	/ton)	1.45 0.62 0.81 1.35 1.52 0.69 1.24 0.62	iccion N	16.58 0.09 0.91 8.02 0.62 0.19 11.94 1.75		13.21 0.16 1.30 6.84 0.47 0.32 11.06 3.22
Rendimient	244 245 246 247 248 249 250	/ton)	1.45 0.62 0.81 1.35 1.52 0.69 1.24	iccion N	16.58 0.09 0.91 8.02 0.62 0.19 11.94		13.21 0.16 1.30 6.84 0.47 0.32 11.06
Rendimient	244 245 246 247 248 249 250 251 252	/ton)	1.45 0.62 0.81 1.35 1.52 0.69 1.24 0.62 1.29	iccion N	16.58 0.09 0.91 8.02 0.62 0.19 11.94 1.75 0.02		13.21 0.16 1.30 6.84 0.47 0.32 11.06 3.22 0.02
Rendimient	244 245 246 247 248 249 250 251 252 253	/ton)	1.45 0.62 0.81 1.35 1.52 0.69 1.24 0.62 1.29	iccion N	16.58 0.09 0.91 8.02 0.62 0.19 11.94 1.75 0.02 3.81		13.21 0.16 1.30 6.84 0.47 0.32 11.06 3.22 0.02 3.92
Rendimient	244 245 246 247 248 249 250 251 252 253 254	/ton)	1.45 0.62 0.81 1.35 1.52 0.69 1.24 0.62 1.29 1.12	iccion N	16.58 0.09 0.91 8.02 0.62 0.19 11.94 1.75 0.02 3.81 15.91		13.21 0.16 1.30 6.84 0.47 0.32 11.06 3.22 0.02 3.92 16.43
Rendimient	244 245 246 247 248 249 250 251 252 253 254 255	/ton)	1.45 0.62 0.81 1.35 1.52 0.69 1.24 0.62 1.29 1.12 1.12	iccion N	16.58 0.09 0.91 8.02 0.62 0.19 11.94 1.75 0.02 3.81 15.91 0.35		13.21 0.16 1.30 6.84 0.47 0.32 11.06 3.22 0.02 3.92 16.43 0.65
Rendimient	244 245 246 247 248 249 250 251 252 253 254 255 256	/ton)	1.45 0.62 0.81 1.35 1.52 0.69 1.24 0.62 1.29 1.12 1.12 0.62 0.62	iccion N	16.58 0.09 0.91 8.02 0.62 0.19 11.94 1.75 0.02 3.81 15.91 0.35 1.26		13.21 0.16 1.30 6.84 0.47 0.32 11.06 3.22 0.02 3.92 16.43 0.65 2.35
Rendimient	244 245 246 247 248 249 250 251 252 253 254 255 256 257	/ton)	1.45 0.62 0.81 1.35 1.52 0.69 1.24 0.62 1.29 1.12 1.12 0.62 0.62 0.62 1.40	iccion N	16.58 0.09 0.91 8.02 0.62 0.19 11.94 1.75 0.02 3.81 15.91 0.35 1.26 0.45		13.21 0.16 1.30 6.84 0.47 0.32 11.06 3.22 0.02 3.92 16.43 0.65 2.35 0.37
Rendimient	244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260	/ton)	1.45 0.62 0.81 1.35 1.52 0.69 1.24 0.62 1.29 1.12 1.12 0.62 0.62 0.62 1.40 1.07	iccion N	16.58 0.09 0.91 8.02 0.62 0.19 11.94 1.75 0.02 3.81 15.91 0.35 1.26 0.45 4.17		13.21 0.16 1.30 6.84 0.47 0.32 11.06 3.22 0.02 3.92 16.43 0.65 2.35 0.37 4.51 2.81 0.03
Rendimient	244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261	/ton)	1.45 0.62 0.81 1.35 1.52 0.69 1.24 0.62 1.29 1.12 1.12 0.62 0.62 1.40 1.07 1.12 1.38 1.08	iccion N	16.58 0.09 0.91 8.02 0.62 0.19 11.94 1.75 0.02 3.81 15.91 0.35 1.26 0.45 4.17 2.74 0.03 2.07		13.21 0.16 1.30 6.84 0.47 0.32 11.06 3.22 0.02 3.92 16.43 0.65 2.35 0.37 4.51 2.81 0.03 2.21
Rendimient	244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262	/ton)	1.45 0.62 0.81 1.35 1.52 0.69 1.24 0.62 1.29 1.12 1.12 0.62 0.62 0.62 1.40 1.07 1.12 1.38 1.08 1.28	iccion N	16.58 0.09 0.91 8.02 0.62 0.19 11.94 1.75 0.02 3.81 15.91 0.35 1.26 0.45 4.17 2.74 0.03 2.07 5.37		13.21 0.16 1.30 6.84 0.47 0.32 11.06 3.22 0.02 3.92 16.43 0.65 2.35 0.37 4.51 2.81 0.03 2.21 4.83
Rendimient	244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263	/ton)	1.45 0.62 0.81 1.35 1.52 0.69 1.24 0.62 1.29 1.12 1.12 0.62 0.62 1.40 1.07 1.12 1.38 1.08 1.28 1.32	iccion N	16.58 0.09 0.91 8.02 0.62 0.19 11.94 1.75 0.02 3.81 15.91 0.35 1.26 0.45 4.17 2.74 0.03 2.07 5.37 6.53		13.21 0.16 1.30 6.84 0.47 0.32 11.06 3.22 0.02 3.92 16.43 0.65 2.35 0.37 4.51 2.81 0.03 2.21 4.83 5.69
Rendimient	244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262	/ton)	1.45 0.62 0.81 1.35 1.52 0.69 1.24 0.62 1.29 1.12 1.12 0.62 0.62 0.62 1.40 1.07 1.12 1.38 1.08 1.28	iccion N	16.58 0.09 0.91 8.02 0.62 0.19 11.94 1.75 0.02 3.81 15.91 0.35 1.26 0.45 4.17 2.74 0.03 2.07 5.37		13.21 0.16 1.30 6.84 0.47 0.32 11.06 3.22 0.02 3.92 16.43 0.65 2.35 0.37 4.51 2.81 0.03 2.21 4.83

In [173]:

Produccion_df[0:10]
#lista los primeros 10 elementos del dataframe

Out[173]:

Anio	Departamento	Producto	Area (ha)	Produccion (ton)	Renaimiento	Produccion Nacional (ton)	Area Nacional (ha)
0 2007	ANTIOQUIA	CAFE	112,343.60	120,500.80	1.07	14.54	14.66
1 2007	BOLIVAR	CAFE	502.00	446.00	0.89	0.05	0.07
2 2007	BOYACA	CAFE	11,374.50	9,683.10	0.85	1.17	1.48
3 2007	CALDAS	CAFE	78,393.65	92,815.00	1.18	11.20	10.23
4 2007	CAQUETA	CAFE	2,295.00	2,134.00	0.93	0.26	0.30
5 2007	CASANARE	CAFE	2,605.00	2,048.40	0.79	0.25	0.34
6 2007	CAUCA	CAFE	53,471.00	51,348.00	0.96	6.19	6.98
7 2007	CESAR	CAFE	23,172.00	13,278.50	0.57	1.60	3.02
8 2007	CHOCO	CAFE	290.00	205.90	0.71	0.02	0.04
9 2007	CUNDINAMARCA	CAFE	43,017.30	33,729.14	0.78	4.07	5.61

In [174]:

Produccion_df[11:30]
#lista los elementos desde el 11 al 29, no incluye el 30

Out[174]:

Anio	Departamento	Producto	Area (ha)	Produccion (ton)	Rendimiento (ha/ton)	Produccion Nacional (ton)	Area Nacional (ha)
11 2007	LA GUAJIRA	CAFE	4,785.00	2,958.70	0.62	0.36	0.62
12 2007	MAGDALENA	CAFE	17,506.00	14,005.00	0.80	1.69	2.28
13 2007	META	CAFE	2,048.00	1,617.20	0.79	0.20	0.27
14 2007	NARIÑO	CAFE	24,458.50	31,770.05	1.30	3.83	3.19
15 2007	NORTE DE SANTANDER	CAFE	30,171.84	13,593.24	0.45	1.64	3.94
16 2007	PUTUMAYO	CAFE	35.00	34.00	0.97	0.00	0.00
17 2007	QUINDIO	CAFE	19,904.00	25,426.00	1.28	3.07	2.60
18 2007	RISARALDA	CAFE	47,689.25	72,842.55	1.53	8.79	6.22
19 2007	SANTANDER	CAFE	34,406.67	29,469.52	0.86	3.56	4.49
20 2007	TOLIMA	CAFE	91,679.10	112,322.38	1.23	13.55	11.96
21 2007	VALLE DEL CAUCA	CAFE	76,667.80	69,618.24	0.91	8.40	10.00
22 2008	ANTIOQUIA	CAFE	114,694.00	113,505.20	0.99	13.70	15.13
23 2008	BOLIVAR	CAFE	572.00	711.00	1.24	0.09	0.08
24 2008	BOYACA	CAFE	10,778.50	9,547.30	0.89	1.15	1.42
25 2008	CALDAS	CAFE	74,897.00	86,884.00	1.16	10.49	9.88
26 2008	CAQUETA	CAFE	2,735.00	2,469.00	0.90	0.30	0.36
27 2008	CASANARE	CAFE	2,149.00	1,388.13	0.65	0.17	0.28
28 2008	CAUCA	CAFE	56,208.00	48,073.00	0.86	5.80	7.41
29 2008	CESAR	CAFE	23,198.00	13,841.45	0.60	1.67	3.06

In [182]:

total_count = Produccion_df.groupby('Departamento')['Rendimiento (ha/ton)'].sum(#
creamos una grafica lineal indicando la cantidad de Departamento por Rendimien
total_count.plot(kind='line');

In [184]:

Produccion_df.tail()

#Muestra los ultimos valores del dataframe

Out[184]:

265 2018

	Anio	Departamento	Producto	Area (ha)	Produccion (ton)	Rendimiento (ha/ton)	Produccion Nacional (ton)	Area Nacional (ha)
261	2018	3 QUINDIC) CAFE	16,374.73	17,739.03	1.08	2.07	2.21
262	2018	3 RISARALDA	A CAFE	35,874.73	45,918.75	1.28	5.37	4.83
263	2018	SANTANDEF	R CAFE	42,269.07	55,918.71	1.32	6.53	5.69
264	2018	3 TOLIMA	A CAFE	97,304.04	97,451.31	1.00	11.39	13.11
		VALLE DEL CAUC <i>A</i>	CAFE 48,3	05.31	49,667.88	1.03	5.80	6.51

PANDAS PROFILING

In [176]:

USO DE PANDAS PROFILING

Instructor Ing. Luis Armando Amaya Q.

import pandas as pd

import numpy as np

from pandas_profiling import ProfileReport

profile=ProfileReport(produccion_df, title='CAFE', html ={'style': {'full_width'}
profile

#NOTA IMPORTANTE

LA DOS SIGUIENTES INSTRUCCIONES, CREAN UN INFORME EN FORMATO HTML

DEBE BUSCARLO EN SU COMPUTADOR CON EL NOMBRE:---> ANALISIS EXPLORATORIO CADE_P # LUEGO DE ENCONTRAR LA CARPETA ---> Producción_Cafe <------

PARA ABRIR EL INFORME DEBE HACER CLIC SOBRE EL ARCHIVO LLAMADO -------

Sugar

A Jupyter widget could not be displayed because the widget state could not be found. This could happen if the kernel storing the widget is no longer available, or if the widget state was not saved in the notebook. You may be able to create the widget by running the appropriate cells.

A Jupyter widget could not be displayed because the widget state could not be found. This could happen if the kernel storing the widget is no longer available, or if the widget state was not saved in the notebook. You may be able to create the widget by running the appropriate cells.

A Jupyter widget could not be displayed because the widget state could not be found. This could happen if the kernel storing the widget is no longer available, or if the widget state was not saved in the notebook. You may be able to create the widget by running the appropriate cells.

Overview

Dataset statistics

Number of variables	8	
Number of observations	266	
Missing cells	0	
Missing cells (%)	0.0%	
Duplicate rows	0	
Duplicate rows (%)	0.0%	
Total size in memory	16.8 KiB	
Average record size in memory	64.5 B	
Variable types		
NUM	4	
CAT	4	

Warnings

Producto has constant value "266"	Constant
Area (ha) has a high cardinality: 261 distinct values	High cardinality
Produccion (ton) has a high cardinality: 262 distinct values	High cardinality
Area Nacional (ha) is highly correlated with Produccion	High correlation

Out[176]:

In []: #NOTA IMPORTANTE

LA DOS SIGUIENTES INSTRUCCIONES, CREAN UN INFORME EN FORMATO HTML

DEBE BUSCARLO EN SU COMPUTADOR CON EL NOMBRE:---> ANALISIS EXPLORATORIO CADE_P #LUEGO DE ENCONTRAR LA CARPETA ---> Producción Cafe <------

PARA ABRIR EL INFORME DEBE HACER CLIC SOBRE EL ARCHIVO LLAMADO ----->>your

RECUERDE: ----> LA DOS SIGUIENTES INSTRUCCIONES, CREAN UN INFORME EN FORMATO # TAMBIÉN LE SUBÍ

In []: # En este punto se inicia procedimientos gráficos y estadísticos particulares

Espara que consulte en Internet algunos concentos si tiene dudas o quiere rec

In [160]: import numpy as np # libreria para calculos

import matplotlib.pyplot as plt

#%matplotlib inline

import seaborn as sns #Esta libreria permite construir gráficos muy particulare #si se
requiere se puede Definir un indice para listar la informacion del datafr # por ejemplo -->produccion_df=produccion_df.set_index('Departamento')

Out[160]:

Area (ha) Produccion Nacional (ton) Area Nacional (ha)

Rendimiento (ha/ton)

14.66	14.54	112,343.60	1.07
0.07	0.05	502.00	0.89
1.48	1.17	11,374.50	0.85
10.23	11.20	78,393.65	1.18
0.30	0.26	2,295.00	0.93

In [163]: # Para estar seguros del dataframe original, se vuelve a leer

produccion_df=pd_read_csv("produccionc.csv")

Asianación del nombre del Dataframe

In [164]: produccion_df.describe()

Información estadístico del Dataframe para las variables

Out[164]:

	Anio	Rendimiento (ha/ton)	Produccion Nacional (ton)	Area Nacional (ha)
count	266.000000	266.000000	266.000000	266.000000
mean	2012.469925	0.936429	4.511316	4.511203
std	3.443484	0.267129	4.950568	4.565865
min	2007.000000	0.000000	0.000000	0.000000
25%	2010.000000	0.750000	0.352500	0.390000
50%	2012.000000	0.940000	2.720000	3.120000
75%	2015.000000	1.120000	7.147500	6.875000
max	2018.000000	2.000000	18.670000	16.430000

estas instrucciones aun no las voy a emplear, por eso están con el simbolo # #arreglo=list(produccion_df.columns) #produccion1_df= produccion_df[arreglo[2:len(arreglo)]]

#produccion1_df

#print(produccion1_df)

#arreglo2.describe()

In [165]: # Obtenemos información de los tipos de las variables del Dataframe o DataSet

produccion df info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 266 entries, 0 to 265 Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Anio	266 non-null	int64
1	Departamento	266 non-null	object
2	Producto	266 non-null	object
3	Area (ha)	266 non-null	object
4	Produccion (ton)	266 non-null	object
5	Rendimiento (ha/ton)	266 non-null	float64
6	Produccion Nacional (ton)	266 non-null	float64
7	Area Nacional (ha)	266 non-null	float64

dtypes: float64(3), int64(1), object(4)

memory usage: 16.8+ KB

In [47]: # Gráfico del comportamiento del Area versus Produccion. plt.scatter(produccion_df['Area (ha)'],produccion_df['Produccion (ton)']) plt.title('Area vs Produccion') plt.xlabel('Area (ha)') plt.vlabel("Produccion (ton)")

Out[47]: Text(0, 0.5, 'Produccion (ton)')

In [40]: # Gráfico del comportamiento del Area versus Produccion Nacional

plt.scatter(produccion_df['Area (ha)'],produccion_df['Produccion Nacional (ton)'
plt.title('Area vs Produccion Nacional')
plt.xlabel('Area (ha)')
plt.vlabel("Produccion Nacional (ton)")

Out[40]: Text(0, 0.5, 'Produccion Nacional (ton)')

In [49]: # Gráfico del comportamiento del Area Nacional versus Produccion Nacional

plt.scatter(produccion_df['Area Nacional (ha)'],produccion_df['Produccion Nacion
plt.title('Area Nacional vs Produccion Nacional')
plt.xlabel('Produccion Nacional (ton)")

Out[49]: Text(0, 0.5, 'Produccion Nacional (ton)')

In [41]: # Gráfico del comportamiento del Area versus Produccion Nacional

plt.scatter(produccion_df['Area (ha)'],produccion_df['Produccion Nacional (ton)'
 plt.title('Area vs Produccion Nacional')
 plt.xlabel('Area (ha)')
 plt.vlabel("Produccion Nacional (ton)")

Out[41]: Text(0, 0.5, 'Produccion Nacional (ton)')


```
In [43]: # Gráfico del comportamiento del Area versus Rendimiento

plt.scatter(produccion_df['Area (ha)'],produccion_df['Rendimiento (ha/ton)'])

plt.title('Area vs Rendimiento')

plt.xlabel('Area (ha)')

plt.ylabel("Rendimiento (ton)")

Out[43]: Text(0, 0.5, 'Rendimiento (ton)')
```


In [44]: #Gráfico del comportamiento del Area Nacional versus Rendimiento

plt.scatter(produccion_df['Area Nacional (ha)'],produccion_df['Rendimiento (ha/t plt.title('Area Nacional vs Rendimiento') plt.xlabel('Area Nacional (ha)')

plt.ylabel("Rendimiento (ha/ton)")

Out[44]: Text(0, 0.5, 'Rendimiento (ha/ton)')

In [45]: # Gráfico del comportamiento de la Produccion versus Rendimiento plt.scatter(produccion_df['Produccion (ton)'], produccion_df['Rendimiento (ha/to plt.title('Produccion vs Rendimiento') plt.xlabel('Produccion (ton)') plt.vlabel("Rendimiento (ha/ton)")

Out[45]: Text(0, 0.5, 'Rendimiento (ha/ton)')

In [42]: import seaborn as sns #Esta libreria permite construir gráficos muy particulare

Out[42]: <seaborn.axisgrid.PairGrid at 0x1c3e522c7f0>


```
# Histograma de la Produccion de Café
```

In [170]:

plt_hist(produccion_df['Produccion (ton)'], edgecolor='black', linewidth=1)

```
Out[170]: (array([27., 26., 30., 26., 26., 26., 26., 26., 26., 27.]),
array([ 0. , 26.1, 52.2, 78.3, 104.4, 130.5, 156.6, 182.7, 208.8,
234.9, 261.]),
<a list of 10 Patch objects>)
```


In [126]:

Histograma del Área sembrada

plt_hist(produccion_df['Area (ha)'], edgecolor='black', linewidth=1)

Out[126]: (array([27., 27., 29., 26., 26., 26., 26., 26., 26., 27.]), array([0., 26., 52., 78., 104., 130., 156., 182., 208., 234., 260.]), <a list of 10 Patch objects>)


```
In [127]: # Histograma de la produccion de Café
```

plt_hist(produccion_df['Produccion (ton)'], edgecolor='black', linewidth=1)

Out[127]: (array([27., 26., 30., 26., 26., 26., 26., 26., 26., 27.]), array([0. , 26.1, 52.2, 78.3, 104.4, 130.5, 156.6, 182.7, 208.8, 234.9, 261.]), <a list of 10 Patch objects>)

Histograma del rendimiento del Café

In [171]: plt.hist(produccion_df['Rendimiento (ha/ton)'], edgecolor='black', linewidth=1)

Out[171]: (array([2., 2., 23., 54., 73., 79., 23., 8., 1., 1.]), array([0., 0.2, 0.4, 0.6, 0.8, 1., 1.2, 1.4, 1.6, 1.8, 2.]), <a list of 10 Patch objects>)

In []: # el anterior histograma tiene la forma de la campana de Gauss, lo que indica qu

In [172]: # Además, para corroborar la anterior distribucion normal, podemos construir # el gráfico QUANTILE-QUANTILE NORMAL

si los puntos están muy cerca a la linea recta, indica que los valores tienen

import pylab

import scipy.stats as stats #librerias para construir estos tipos de graficos

In [187]: # importar la liberia shapiro para realizar el TEST DE SHAPIRO WILK,

el test de Shapiro Wilk CONFIRMA EFECTIVAMENTE la correlacion entre las variab

from scipy.stats import shapiro

estadistico,p_value = shapiro(produccion_df['Rendimiento (ha/ton)'])

print('Estadística=%.3f, El Valor de: p_value=%.3f' % (estadistico,p_value))

Si el valor entregado en la variable P_VALUE es MENOR a 0.05 # indica

Estadística=0.983, El Valor de: p_value=0.003

In [177]:

valores correlacion de Spearman

import numpy as np

produccion_correlacion_spearman = produccion_df.corr(method='spearman')
produccion_correlacion_spearman

los valores del COEFICIENTE DE SPEARMAN cercanos a cero o inferiores a (+-)(0. # indica

aue las variables no tienen correlacion

Out[177]:

	Anio	Rendimiento (ha/ton)	Produccion Nacional (ton)	Area Nacional (ha)
Anio	1.000000	0.180205	0.037725	0.023246
Rendimiento (ha/ton)	0.180205	1.000000	0.366952	0.264041
Produccion Nacional (ton)	0.037725	0.366952	1.000000	0.986380
Area Nacional (ha)	0.023246	0.264041	0.986380	1.000000

In [178]:

valores correlacion de Pearson

import numpy as np

produccion correlacion pearson = produccion df_corr(method='pearson')

Out[178]:

	Anio	Rendimiento (ha/ton)	Produccion Nacional (ton)	Area Nacional (ha)
Anio	1.000000	0.173474	0.007957	0.008715
Rendimiento (ha/ton)	0.173474	1.000000	0.385570	0.280677
Produccion Nacional (ton)	0.007957	0.385570	1.000000	0.978409
Area Nacional (ha)	0.008715	0.280677	0.978409	1.000000

In [180]:

valores correlacion de Kendall

import numpy as np

produccion correlacion kendall = produccion df_corr(method='kendall')

Out[180]:

	Anio	Rendimiento (ha/ton)	Produccion Nacional (ton)	Area Nacional (ha)
Anio	1.000000	0.140836	0.026879	0.016567
Rendimiento (ha/ton)	0.140836	1.000000	0.265165	0.186979
Produccion Nacional (ton)	0.026879	0.265165	1.000000	0.909233
Area Nacional (ha)	0.016567	0.186979	0.909233	1.000000

In [186]:

Out[186]: <matplotlib.axes._subplots.AxesSubplot at 0x1e337877130>

MODELO PREDICTIVO

In [33]: # Imports necesarios

import numpy as np import
pandas as pd import
seaborn as sb

import matplotlib.pyplot as plt

%matplotlib inline from mpl_toolkits.mplot3d import Axes3D

from matplotlib import cm

In [35]: produccion_df.shape

#Nos indica un dataframe de 266 registros con 8 variables o

Out[35]: (266, 8)

In [36]: produccion_df.describe()

Out[36]:

	Anio	Rendimiento (ha/ton)	Produccion Nacional (ton)	Area Nacional (ha)
count	266.000000	266.000000	266.000000	266.000000
mean	2012.469925	0.936429	4.511316	4.511203
std	3.443484	0.267129	4.950568	4.565865
min	2007.000000	0.000000	0.000000	0.000000
25%	2010.000000	0.750000	0.352500	0.390000
50%	2012.000000	0.940000	2.720000	3.120000
75%	2015.000000	1.120000	7.147500	6.875000
max	2018.000000	2.000000	18.670000	16.430000

In [88]: # Gráfico de dispersión del comportamiento del Area Nacional versus Produccion N plt.scatter(produccion_df['Area Nacional (ha)'],produccion_df['Produccion Nacion plt.title('Area Nacional vs Produccion Nacional')

plt.xlabel('Area Nacional (ha)')
plt.ylabel("Produccion Nacional (ton)")

Out[88]: Text(0, 0.5, 'Produccion Nacional (ton)')


```
# Iniciamos el proceso para determinar el modelo de regresion lineal, de la anal
# Asignamos a nuestra variable de entrada X (En este caso corresponde al Area Na
# Asignamos a la variable dependiente Y (En este caso corresponde a la Produccio dataX
=produccion_df[["Area Nacional (ha)"]]
X_train = np.array(dataX)
y_train = produccion_df['Produccion Nacional (ton)'].values
```

```
In [90]: #Creamos la función objeto para determinar la Regresión Lineal Y= mX+bo

regr = linear_model.LinearRegression()

#Entrenamos nuestro modelo de regresion lineal, con la siguiente función

regr.fit(X_train, y_train)

# Hacemos las predicciones segun el modelo de regresion lineal

y_pred = regr.predict(X_train)

# Ahora imprimimos los resultados obtenidos

# Vemos el valor de la pendiente, osea la variable m, el coeficiente de la varia

print("Valor de la tangente (m) o Coefficients:=====> ', regr.coef_)

# Ahora el valor de la constante bo, es decir el valor donde la recta corta el e
```

Valor de la tangente (m) o Coefficients:=====> [1.06084584] Valor de la constante o Independent term: ====> -0.2743751434833559 Error cuadrado medio o Mean squared error:====> 1.04 valor de la varianza o Variance score:=====> 0.96

In [91]:

Gráfico de dispersion del comportamiento del Area Nacional versus Produccion N plt.scatter(produccion_df['Area Nacional (ha)'],produccion_df['Produccion Nacion plt.title('Area Nacional vs ProduccionNacional')

plt.xlabel('Area Nacional (ha)')
plt.ylabel("Produccion Nacional (ton)")

A continuación se grafica en colo azul, la funcion lineal obtenida a partir de

In [92]: # Ahora vamos a predecir utilizando la función obtenida, la producción nacional # Queremos predecir cuántos toneladas de producción nacional de Café vamos a obt # según nuestro modelo, hacemos:

produccion_obtenida = regr_predict([[2]]) print('Estimación de la Producción Nacional del Café en toneladas===>%.3f' %prod Estimación de la Producción Nacional del Café en toneladas===>1.847

In [93]: #Ahora vamos a predecir utilizando la función obtenida, la producción nacional #

Queremos predecir cuántos toneladas de producción nacional de Café vamos a obt # según nuestro modelo, hacemos:

produccion_obtenida = regr.predict([[2.5]]) print('Estimación de la Producción Nacional del Café en toneladas===>%.3f' %prod Estimación de la Producción Nacional del Café en toneladas===>2.378 In [94]: # Ahora vamos a predecir utilizando la función obtenida, la producción nacional # Queremos predecir cuántos toneladas de producción nacional de Café vamos a obt # según nuestro modelo, hacemos: produccion_obtenida = regr_predict([[8]]) print('Estimación de la Producción Nacional del Café en toneladas===>%.3f' %prod Estimación de la Producción Nacional del Café en toneladas===>8.212 In [95]: # Ahora vamos a predecir utilizando la función obtenida, la producción nacional # Queremos predecir cuántos toneladas de producción nacional de Café vamos a obt # según nuestro modelo, hacemos: produccion_obtenida = regr.predict([[11]]) print('Estimación de la Producción Nacional del Café en toneladas===>%.3f' %prod Estimación de la Producción Nacional del Café en toneladas===>11.395 In [96]: # Ahora vamos a predecir utilizando la función obtenida, la producción nacional # Queremos predecir cuántos toneladas de producción nacional de Café vamos a obt # según nuestro modelo, hacemos: produccion_obtenida = regr_predict([[15]]) print('Estimación de la Producción Nacional del Café en toneladas===>%.3f' %prod Estimación de la Producción Nacional del Café en toneladas===>15.638 In [97]: # Ahora vamos a predecir utilizando la función obtenida, la producción nacional # Queremos predecir cuántos toneladas de producción nacional de Café vamos a obt # según nuestro modelo, hacemos: produccion_obtenida = regr.predict([[35]]) print('Estimación de la Producción Nacional del Café en toneladas===>%.3f' %prod Estimación de la Producción Nacional del Café en toneladas===>36.855 In [98]: #AHORA, VAMOS A CONSTRUIR NUEVOS MODELOS PREDICTIVOS UTILIZANDO EL METODO DE RE

In [105]: # Así,de esta manera, ya conociendo el proceso de analitica deterministica, pode # Iniciamos el proceso para determinar el modelo de regresion lineal # Asignamos a nuestra variable de entrada X (En este caso corresponde al Area Na # Asignamos a la variable dependiente Y (En este caso corresponde a Rendimiento) dataX =produccion_df[["Area Nacional (ha)"]]

X_train = np.array(dataX)
y_train = produccion_df['Rendimiento (ha/ton)'].values

In [106]: # Gráfico de dispersion del comportamiento del Area Nacional versus Produccion N plt.scatter(produccion_df['Area Nacional (ha)'],produccion_df['Rendimiento (ha/t plt.title('Area Nacional vs Rendimiento')

plt.xlabel('Area Nacional (ha)') plt.ylabel("Rendimiento (ha/ton)")

Out[106]: Text(0, 0.5, 'Rendimiento (ha/ton)')


```
In [107]:
           # Creamos la función objeto para determinar la Regresión Lineal Y= mX+bo
           regr = linear model.LinearRegression()
           # Entrenamos nuestro modelo de regresion lineal, con la siguiente función
           regr.fit(X_train, y_train)
           # Hacemos las predicciones segun el modelo de regresion lineal
           y_pred = regr.predict(X_train)
           # Ahora imprimimos los resultados obtenidos
           # Vemos el valor de la pendiente, osea la variable m, el coeficiente de la varia
           print('Valor de la tangente (m) o Coefficients:=====> ', regr.coef_)
           # Ahora el valor de la constante bo, es decir el valor donde la recta corta el e
           Valor de la tangente (m) o Coefficients:=====>
                                                                 [0.01642121]
           Valor de la constante o Independent term: ====> 0.8623491800082033
           Error cuadrado medio o Mean squared error:====> 0.07
           valor de la varianza o Variance score:=====> 0.08
In [108]:
          # Gráfico de dispersion del comportamiento del Area Nacional versus Produccion N
           plt.scatter(produccion df['Area
                                            Nacional
                                                        (ha)'],produccion df['Rendimiento
                                                                                             (ha/t
           plt.title('Area Nacional vs Produccion Nacional')
           plt.xlabel('Area Nacional (ha)')
           plt.ylabel("Rendimiento (ha/ton)")
           # A continuación se grafica en colo azul, la funcion lineal obtenida a partir de
          nlt_plot(X_train[: 0] v_pred_color='blue' linewidth=3)
       In [110]:
           # Ahora vamos a predecir utilizando la función obtenida, eL RENDIMIENTO
           (ha/ton)
```

Queremos predecir el rendimiento de la producción nacional de Café vamos a obt

rendimiento

Café

en

del

según nuestro modelo, hacemos:

print('Estimación

produccion_obtenida = regr.predict([[2]])

(hectareas/toneladas)===>%.3f' %pr

del

Estimación del rendimiento del Café en (hectareas/toneladas)===>0.895

In [111]

```
# Ahora vamos a predecir utilizando la función obtenida, eL RENDIMIENTO (ha/ton)
# Queremos predecir el rendimiento de la producción nacional de Café vamos a obt
# según nuestro modelo, hacemos:
produccion_obtenida = regr_predict([[6]])
print('Estimación del rendimiento del Café en
(hectareas/toneladas)===>%.3f' %pr
```

Estimación del rendimiento del Café en (hectareas/toneladas)===>0.961

In [112]:

```
# Ahora vamos a predecir utilizando la función obtenida, eL RENDIMIENTO (ha/ton)

# Queremos predecir el rendimiento de la producción nacional de Café vamos a obt

# según nuestro modelo, hacemos:

produccion_obtenida = regr_predict([[11]])

print('Estimación del rendimiento del Café en (hectareas/toneladas)===>%.3f' %pr
```

Estimación del rendimiento del Café en (hectareas/toneladas)===>1.043

In [113]:

#Ahora vamos a predecir utilizando la función obtenida, eL RENDIMIENTO (ha/ton)

#Queremos predecir el rendimiento de la producción nacional de Café vamos a obt

#según nuestro modelo, hacemos:

produccion_obtenida = regr.predict([[26]])

print('Estimación del rendimiento del Café en (hectareas/toneladas)===>%.3f' %pr

Estimación del rendimiento del Café en (hectareas/toneladas)===>1.289

CONCLUSIÓN

Gracias a todos los modelos empleados en el transcurso del proyecto se logra predecir variables importantes en el desarrollo del café a nivel mundial, pero con mayor relevancia en nuestro país, Colombia. Se puede jugar con los datos y moldear sí las soluciones deseadas son o no las indicadas.

A pesar de las grandes rentabilidades que presenta el café Colombiano, se evidencia que por la mala organización hay una disminución en precios, exportaciones, cosechas. Esto se debe a que las plantaciones se enfrentan a plagas, al calentamiento global, el COVID-19, pero más importante a la alta competencia en el mercado, haciendo que sus precios caigan por los pisos durante los últimos años.

BIBLIOGRAFIA

http://www.fao.org/faostat/es/#data

http://sintrainduscafe.org/secciones/en-que-epoca-aplicar-el-fertilizante-en-el-cultivo-del-cafe/

https://federaciondecafeteros.org/wp/estadisticas-cafeteras/

https://cdn.flipsnack.com/widget/v2/widget.html?hash=dpazs597t9

https://www.misfinanzasparainvertir.com/la-crisis-del-cafe-impacta-en-colombia/