TRIGONOMETRY

Chapter 3

Resolución de triángulos rectángulos

5TO SAN MARCOS

TRIGONOMETRY

COLOCANDO SEMÁFOROS:

Se está diseñando la curva para una calle en una intersección de dos carreteras; que se encuentran formando un ángulo ⊕, como se ve en la figura, el trazo entre los puntos A y B se construirá mediante una circunferencia que sea tangente a los ejes rectos de la calle en esos

dos puntos. R/4

¿Crees tú poder calcular la distancia entre los puntos P y Q en términos de R y D, sabiendo que estos puntos son para la colocación de semáforos?

Resolución de Triángulos Rectángulos:

Resolver un triángulo significa hallar la longitud de sus lados y ángulos. Para los casos siguientes, necesitamos como datos un lado y un ángulo agudo.

Regla práctica:

Casos:

Área de una Región Triangular: Siendo S el área de la región triangular ABC.

Se cumple:

$$S = \frac{a.b}{2} sen\alpha$$

Ejemplo:

Calcule el área de la región triangular de lados 10u y 7u, además el ángulo entre ellos mide 53°.

Resolución:

$$S = \frac{7 \times 10}{2} \text{sen} 53^{\circ}$$

$$\mathbf{S} = \frac{7 \times 10}{2} \left(\frac{4}{5} \right)$$

$$\therefore S = 28u^2$$

1. Calcule M en función de b, x e y

A) $b\cos x \cdot \cos y$

B) $b\cos x.\sec y$

C) bsenx.secy

bsecx. secy

RESOLUCIÓN:

$$\therefore$$
 $M = b.\sec x.\sec y$

2. En un triángulo rectángulo la altura relativa a la hipotenusa es h y uno de los ángulos agudos es \theta, expresar la hipotenusa en términos de h y \theta.

B)
$$h(\sec\theta + \csc\theta)$$

D) h(sen ⊕.cos ⊕)

RESOLUCIÓN:

$$x = hcot\theta + htan\theta$$

$$\therefore x = h(tan\theta + cot\theta)$$

◎1

3. En un triángulo rectángulo de hipotenusa 2k el ángulo formado por la altura y mediana relativa a la hipotenusa es θ , la altura viene dada por

C) *k* sen *θ*

D) k cote

4. Calcule x en función de L y θ en RESOLUCIÓN: la figura mostrada a continuación

- **A) 2***L*.sen *θ*
- C) L.cose

- B) *L*.sen ⊖
- 2L.cos⊖

+ se observa en el grafico: x = 2n

$$\frac{n}{L} = \cos\theta$$

$$n = L.\cos\theta$$

$$\therefore x = 2L.\cos\theta$$

5. Del gráfico, halle BD, en términos RESOLUCIÓN: de α , θ y m.

- **⋈** m sena.sen⊖
- C) $m \operatorname{sen} \alpha.\operatorname{csc} \theta$

- B) $m \operatorname{sen} \alpha.\cos\theta$
- **D)** m $\cos\alpha.\cos\theta$

Observamos en el triángulo ABC

$$\frac{x}{(m.sen\theta)} = \mathbf{sen}\alpha$$

 $\therefore x = m \operatorname{sen} \alpha.\operatorname{sen} \theta$

6. Calcule el área de la región sombreada

A) 4 m² **C)** 27/2 m²

B) 6 m² **D) 10** m²

Área región triangular

$$\mathbf{S} = \frac{\mathbf{a.b}}{2} \mathbf{sen}\alpha$$

RESOLUCIÓN:

Del gráfico se observa:

$$A_{total} = \frac{4.15}{2} \cdot \text{sen}37^{\circ}$$
 $S_1 = \frac{3.5}{2} \cdot \text{sen}37^{\circ}$ $S_1 = \frac{9}{2}$

Despejando: $S_2 = A_{total} - S_1$ (+)

$$=18-\frac{9}{2}$$

$$= 18 - \frac{9}{2} \qquad \therefore \quad S_2 = \frac{27}{2} \text{ m}^2$$

7. Halle $tan \alpha$.

A) $3\sqrt{5}/5$

B) 1/8

2) 3/11

D) 8

+ Del ⊾AEC:

$$\tan \alpha = \frac{3sen\theta}{3cos\theta + \sqrt{5}} = \frac{3(\frac{1}{\sqrt{5}})}{3(\frac{2}{\sqrt{5}}) + \sqrt{5}} = \frac{\frac{3}{\sqrt{5}}}{\frac{11}{\sqrt{5}}}$$

$$\therefore tan\alpha = \frac{3}{11}$$

8. Del gráfico, calcule

- **CBD**: BD = m. $tan\theta$
- **ABC**: $AB = m. \cot \theta$
- \Rightarrow m + m. tan θ = m. cot θ
- \Rightarrow 1 + tan θ = cot θ
- $\Rightarrow \tan \theta \cot \theta = -1$

· <mark>P= -1</mark>

C) 18

9. Determine x.

- A) $a(sen \alpha tan \beta)$
- B) $a(\cot \beta \cos \alpha)$
- C) $a(\sec \alpha + \sec \beta)$
- D) $a(tan \alpha + cot \beta)$

RESOLUCIÓN:

• Del gráfico: $x = \alpha . \cot \beta + \alpha . \tan \alpha$

10. Determine *h* de la figura,

$$si tan\theta + cot\theta = \frac{11}{3}$$

RESOLUCIÓN:

• Del gráfico: h.cot + h.tan = 22

$$h(\tan\theta + = 22 \Rightarrow h(\frac{11}{3}) = 22$$
 cotθ)

PREGUNTAS ADICIONALES

En la carpintería del señor José, se ubica una tabla sostenida por un caballete para que uno de los extremos descanse en el piso y el otro se apoye en la pared. Exprese la longitud de la tabla en términos de θ.

► BFE:
$$\frac{BE}{80} = \sec\theta \Rightarrow BE = 80\sec\theta$$

$$ightharpoonup EDA: \frac{EA}{60} = \csc\theta \Rightarrow EA = 60\csc\theta$$

Calculamos:
$$AB = BE + EA$$

 $\Rightarrow AB = 80 \sec \theta + 60 \csc \theta$

$$\therefore AB = (80\sec\theta + 60\csc\theta) m$$

La figura muestra **la vista superior** de la tapa de un depósito que tiene forma cuadrada y se abre girando un ángulo α en sentido antihorario alrededor del vértice P. Si la longitud de su lado es 3u; calcule x.

Del gráfico: $x \cos \alpha + 3 \sin \alpha = 3$ $\Rightarrow x \cos \alpha = 3(1 - \sin \alpha)$

$$\therefore x = \frac{3(1 - \sin \alpha)}{\cos \alpha} u$$

01

La figura representa 2 piezas triangulares de madera, que van a ser unidas para formar una sola pieza triangular. Si α y β son ángulos suplementarios y $\cot \theta = 2\sqrt{2}$; determine el área de esta nueva pieza triangular.

Resolución:

Dato:
$$\cot \theta = \frac{2\sqrt{2}}{1}$$

Unimos las piezas triangulares:

Luego: Área# ABC =
$$\frac{(6)(8)}{2}$$
 sen θ

$$\Rightarrow \text{Área# ABC} = \frac{(6)(8)}{2} \cdot \frac{1}{3}$$

 $Rpta = 8m^2$

En un recorrido por el museo, Miguel se detiene a "x" metros de una estatua sobre un pedestal y observa a la estatua con un ángulo α, tal como muestra la figura. ¿Cuál es el

equivalente de
$$\frac{\sqrt{(x^2+4)(x^2+1)}}{x}$$
?

Calculamos el área \mathbf{S} del ΔCAD :

$$\frac{\sqrt{x^2 + 4\sqrt{x^2 + 1}}}{2} \operatorname{sen}\alpha = \frac{(1)(x)}{2}$$

$$\frac{\sqrt{x^2 + 4\sqrt{x^2 + 1}}}{2} = \frac{\sqrt{x^2 + 4\sqrt{x^2 + 1}}}{2} = \frac{(1)(x)}{2}$$