Confidence Intervals for Medians

Statistics and data analysis

Zohar Yakhini

IDC, Herzeliya

These slides follow DeGroot

Setting up

- Let X be a random variable with median(X) = m.
- Take n samples from $X: x_1, ..., x_n$.

Order them and denote: $a_1 \leq \cdots \leq a_n$

- Let $c = \frac{n+1}{2}$. Our estimate of the median will be $\widehat{m} = a_c$
- Let $k \geq 1$. We want to estimate

$$P(m \in [a_{c-k}, a_{c+k}]) = P((a_1, ..., a_{c-k} \le m) \land (a_{c+k}, ..., a_n \ge m))$$

Confidence interval

- Denote $A_k = (a_1, ..., a_{c-k} \le m) \land (a_{c+k}, ..., a_n \ge m)$
- Let J_i be a RV such that $\begin{cases} 1, & x_i \leq m \\ 0, & else \end{cases}$. Note: $J_i \sim Bernoulli(0.5)$.
- $a_1, \dots, a_{c-k} \le m \iff \sum_{i=1}^{n+1} J_i \ge c k$
- $P(A_k) = P(c k \le \sum_{i=1}^{n+1} J_i \le c + k)$
- Note that $\sum_{i=1}^{n+1} J_i \sim Binom(n+1,0.5)$
- Given $\alpha > 0$, find k that is the smallest to satisfy:
 - $1 \alpha \le P(c k \le B \le c + k)$, where $B \sim Binom(n + 1, 0.5)$
- Then, $P(m \in [a_{c-k}, a_{c+k}]) \ge 1 \alpha$, and k is minimal withis property

Confidence interval

We just computed an interval of values: $[a_{c-k}, a_{c+k}]$, which is the

$1-\alpha$ confidence interval

for the mean of the sampled distribution.