MATH 417 Lec06-15

Wenxiao Yang *

 $^*\mbox{Department}$ of Mathematics, University of Illinois at Urbana-Champaign

2021

目录

1	Inte	\mathbf{egers}		6
	1.1	Propo	sition 1.4.1: Properties of integers \mathbb{Z}	6
	1.2	Defini	tion: Divide	6
	1.3	Propo	sition 1.4.2: properties of integer division	6
	1.4	Defini	tions: Prime, The Greatest common divisor $gcd(a,b)$	6
	1.5	Euclid	ean Algorithm	7
	1.6	Propo	sition: $gcd(a,b)$ exists and is the smallest positive integer in the set $M = \{ma + a\}$	
		nb m,	$n\in\mathbb{Z}\}$	7
	1.7	Well-C	Ordering Principle (Least Integer Axiom)	8
	1.8	Propo	sition 1.4.10: $gcd(b,c)$, $b ac \Rightarrow b a$	8
		1.8.1	Corollary: $p ab \Rightarrow p a \text{ or } p b \dots \dots \dots \dots \dots \dots \dots \dots \dots$	8
	1.9	Funda	mental Theorem of Arithmetic: Any integer $a \geq 2$ has a unique prime factorization	8
		1.9.1	Existence	8
		1.9.2	Uniqueness	8
2	Mo	dular a	arithmetic	9
	2.1	Congr	uences	9
		2.1.1	Congruent modulo m : $a \equiv b \mod m$	9
		2.1.2	Proposition: For fixed $m \geq 2$, the relation " $a \sim b \Leftrightarrow a \equiv b \mod m$ " is an	
			equivalence relation	10
		2.1.3	Theorem: the equivalence relation " $a \sim b \Leftrightarrow a \equiv b \mod m$ " partitions the	
			integers into m disjoint sets $\Omega_i = \{a a \sim i\}, i = 0, 1,, m-1 \dots \dots$	10
		2.1.4	Proposition: Addition and Mutiplication of Congruences	10
	2.2	Solvin	g Linear Equations on Modular m	11
		2.2.1	Theorm: unique solution of $aX \equiv b \mod m$ if $gcd(a, m) = 1 \dots \dots$	11

	2.3	Congr	uence Classes: $[a]_n = \{a + kn k \in \mathbb{Z}\}$	11
		2.3.1	Set of congruence classes of mod n : $\mathbb{Z}_n = \{[a]_n a \in \mathbb{Z}\} = \{[0], [1],, [n-1]\}$	11
		2.3.2	Proposition 1.5.5: Addition and Multiplication on Congruence Classes	12
		2.3.3	Units(i.e. invertible) in Congruence Classes	12
		2.3.4	Proposition 1.5.6: Set of units in congruence classes: $\mathbb{Z}_n^{\times} = \{[a] \in \mathbb{Z}_n [a] \text{ is a unit}\}$	=
			$\{[a] \in \mathbb{Z}_n gcd(a,n) = 1\}$	12
		2.3.5	Corollary 1.5.7: if <i>p</i> is prime, $\varphi(p) = \mathbb{Z}_p^{\times} = \{[1], [2],, [p-1]\}$	13
	2.4	Euler	phi-function: $\varphi(n) = \mathbb{Z}_n^{\times} \dots$	13
		2.4.1		13
	2.5	Theore	em 1.5.8(Chinese Remainder Theorem): $n = mk, gcd(m, k) = 1, F([a]_n) =$	
		$(\pi_{m,n}($	$[a]_n$, $\pi_{k,n}([a]_n)$ = $([a]_m, [a]_k)$	13
		2.5.1	Proposition 1.5.9+Corollary 1.5.10: $m, n, k > 0, n = mk, gcd(m, k) = 1$, then	
			$F(\mathbb{Z}_n^{\times}) = \mathbb{Z}_m^{\times} \times \mathbb{Z}_k^{\times}$, then $\varphi(n) = \varphi(m)\varphi(k)$	14
	2.6	prime	factorization: $n = p_1^{r_1} p_k^{r_k}$, then $\varphi(n) = (p_1 - 1) p_1^{r_1 - 1} (p_k - 1) p_k^{r_k - 1}$	
3	Con	nplex 1	numbers	14
	3.1	Geome	etric Meaning of Addition and Multiplication	14
	3.2	Theore	em 2.1.1: $f(x) = a_0 + a_1 x + + a_n x^n$ with coefficients $a_0, a_1,, a_n \in \mathbb{C}$. Then	
		f has	a root in \mathbb{C} : $\exists \alpha \in \mathbb{C}$ s.t. $f(\alpha) = 0$	15
		3.2.1	Corollary 2.1.2: $f(x) = a_n \prod_{i=1}^n (x - k_i) = a_n (x - k_1)(x - k_2)(x - k_n)$, where	
			$k_1, k_2,, k_n$ are roots of $f(x)$	16
		3.2.2	Corollary 2.1.3: $a_i \in \mathbb{R}$, f can be expresses as a product of linear and quadratic	
			polynomials	16
4	Fiel	$\mathbf{d} \ (\mathbb{F}, +$,·) (close, associative, commutative, distributive (M over A), identity $\&$	
	inve	erse(M		16
	4.1	Subfie	ld $(\mathbb{K}, +, \cdot)$: $\mathbb{K} \subseteq \mathbb{F}$, closed under $+, \cdot$ and inverse	17
		4.1.1	Proposition 2.2.3: Subfield 继承 operations 自成一 field	17
5	Poly	ynomia	als	17
	5.1	$\mathbb{F}[x]$: I	Polynomial ring 在一个 field 上形成的所有多项式 (方程) 的集合	18
		5.1.1	Proposition 2.3.2: Polynomial ring (close, associative, commutative, distribu-	
			$tive(M\ over\ A),\ identity(M,A),\ inverse(only\ A))\ .\ .\ .\ .\ .\ .\ .\ .\ .$	18
	5.2	Degree	e of a Polynomial: $deg(f)$	18
		5.2.1	Lemma 2.3.3: $deg(fg) = deg(f) + deg(g), \ deg(f+g) \le \max\{deg(f), deg(g)\}$.	18
	5.3	Corolla	ary 2.3.5: Unit(invertible) in $\mathbb{F}[x]$: constant $\neq 0$ iff $deg(f) = 0 \dots \dots \dots$	19
	5.4	Irredu	<u>cible</u> Polynomials: "无法分解为两个 $degree \ge 1$ 的多项式积"的多项式: 至少一	
		个是 c	onstant (i.e. $degree = 0$)	19
	5.5	Theore	em 2.3.6: nonconstant polynomials 可以被唯一地分解	19

	5.6	Divisibility of Polynomials	20
		common divisor as $gcd(f,g)$	20
		5.6.2 Proposition 2.3.9: Euclidean Algorithm of polynomials	
		5.6.3 Proposition 2.3.10: $gcd(f,g)$ 是 degree 最小的 f,g 的线性组合	
		5.6.4 Proposition 2.3.12: $gcd(f,g) = 1, f gh \Rightarrow f h$	
		5.6.5 Corollary 2.3.13: irreducible f , $f gh \Rightarrow f g$ or $f h$	
	5.7	Roots	
	• • •	5.7.1 Corollary 2.3.16(of Euclidean Algorithm): f 可被分为 $(x-\alpha)q+f(\alpha)$ i.e. if α	
		is a root, then $(x-\alpha) f$	22
	5.8	Multiplicity	
		5.8.1 Sum of multiplicity $\leq deg(f)$	
	5.9	Roots in a filed may not in its subfield	
6			22
	6.1	Vector Space $(V, +, \times)$ (over a field \mathbb{F})	
		6.1.1 A field is a vector space over its subfield	
		6.1.2 Vector subspace	
	6.2	Linear independent, Linear combination	
	6.3	span V, basis, dimension, Proposition 2.4.10	
		6.3.1 Standard basis vectors	
	6.4	Linear transformation	
		6.4.1 Corollary 2.4.16: 一个线性变换对应一个矩阵 bijection $\mathcal{L}(V,M) \to M_{m \times n}(\mathbb{F})$	
		6.4.2 Proposition 2.4.19: 线性变换矩阵相乘仍为线性变换矩阵	
	6.5	$\operatorname{GL}(V)$: invertible(bijective) linear transformations $V \to V$	24
7	Euc	clidean geometry basics	24
	7.1	Euclidean distance, inner product	24
	7.2	Isometry of \mathbb{R}^n : a bijection $\mathbb{R}^n \to \mathbb{R}^n$ preserves distance	25
		7.2.1 $Isom(\mathbb{R}^n)$: set of all isometries of \mathbb{R}^n	25
		7.2.2 $Isom(\mathbb{R}^n)$ is closed under \circ and inverse	25
	7.3	$A \in GL(n, \mathbb{R}), T_A(v) = Av: A^t A = I \Leftrightarrow T_A \in Isom(\mathbb{R}^n) \dots \dots \dots \dots \dots$	25
	7.4	Linear isometries i.e. orthogonal group $O(n) = \{A \in GL(n, \mathbb{R}) A^t A = I\}$	
		7.4.1 Special orthogonal group $SO(n) = \{A \in O(n) det(A) = 1\}$: orthogonal group	
		with $det(A) = 1 \dots \dots \dots \dots$	25
	7.5	translation: $\tau_v(x) = x + v$	26
		7.5.1 translation is an isometry	26
	7.6	The composition of a translation and an orthogonal transformation is an isometry	
		$\Phi_{A,v}(x) = \tau_v(T_A(x)) = Ax + v \dots \dots$	26

		7.6.1	Theorem 2.5.3: All isometries can be represented by a composition of a trans-	
			lation and an orthogonal transformation, $Isom(\mathbb{R}^n) = \{\Phi_{A,v} A \in O(n), v \in \mathbb{R}^n\}$	26
8	Gro	$\mathbf{up}\ (G,$	*): a set with an operation(associative, identity, inverse)	26
	8.1	(Sym($(X), \circ)$ symmetric/permutation group of X	26
	8.2		of a group $(G,*)$	27
	8.3		n group (group that * satisfies commutative)	27
	8.4	H: Su	bgroup of $(G, *)$ $(H \neq \emptyset \subset G \text{ closed under } *; \text{ inverse } g^{-1} \in H)$, written as $H < G$	27
		8.4.1	Proposition 2.6.8: $H < G$, $(H, *)$ is a group: A group's operation with its any	
			subgroup is also a group	27
9 Ring $(R, +, \cdot)$: + is associative, commutative, identity, inverse $\in R$; · is			$,\cdot)$: + is associative, commutative, identity, inverse $\in R$; · is associative,	
	dist		s over +	28
	9.1		utative ring: ring's · is commutative	28
	9.2	Ring v	with 1: exists multiplication identity $1 \in R$	28
	9.3	Field I	F is a commutative ring with 1; $\mathbb{F}[x]$ is also a commutative ring with 1	28
	9.4	$S \subset R$: Subring (closed under $+$ and \cdot ; addictive inverse $-a \in S$)	28
		9.4.1	Proposition 2.6.27: $(S, +, \cdot)$ is a ring	28
10	Gro	up the	eory	29
	10.1	Proper	rties of Group Operation	29
		10.1.1	Proposition 3.1.1: $g * h = h$ or $h * g = h$, then $g = e$; $g * h = e$ then $g = h^{-1}$ and $h = g^{-1} \dots \dots$	29
		10.1.2	Corollary 3.1.: $e^{-1} = e$, $(g^{-1})^{-1} = g$, $(g * h)^{-1} = h^{-1} * g^{-1}$	29
			Proposition 3.1.3: $g * h = k * h$ or $h * g = h * k$, then $g = k$	29
			Proposition 3.1.4: $g * x = h$ and $x * g = h$ have unique solutions $x \in G$	29
	10.2		of an Element	29
			Proposition 3.1.5: $g^n * g^m = g^{n+m}, (g^n)^m = g^{nm} \dots \dots \dots \dots \dots$	29
	10.3		H,\circledast): Direct Product of G and H	29
			Proposition 3.1.7: $(G \times H, \circledast)$ is a group	29
	10.4		oups and cyclic groups	30
			Proposition 3.2.2: Intersection of a Collection of Subgroups is a group	30
		10.4.2	Subgroup Generated by A: $\langle A \rangle = \bigcap_{H < G; A \subset H} H$	30
		10.4.3	Cyclic Subgroup generated by $a: \langle a \rangle = \bigcap_{H < G; a \in H} H$ (G is cyclic if exists g,	
			$\overline{\langle g \rangle} = G) \ldots $	30
		10.4.4	Proposition 3.2.3: $\langle g \rangle = \{g^n n \in \mathbb{Z}\}$	30
			Corollary 3.2.4: G is a cyclic group $\Rightarrow G$ is abelian	30
		10.4.6	Equivalent properties of order of g : $ g = \langle g \rangle < \infty$	30

10.4.7	$(\mathbb{Z},+)$ Theorem 3.2.9: $H < \mathbb{Z}$ is a subgroup $\Rightarrow H = \{0\}$ or $H = \langle d \rangle$; $\langle a \rangle < \langle b \rangle$	
	if and only if $b a$	31
10.4.8	$(\mathbb{Z}_n,+)$ Theorem 3.2.10: $H<\mathbb{Z}_n$ is a subgroup $\Rightarrow H=\langle [d]\rangle; \langle [d]\rangle < \langle [d']\rangle$ if	
	and only if $d' d$	31
10.4.9	Subgroup Lattice	31

1 Integers

1.1 Proposition 1.4.1: Properties of integers \mathbb{Z}

Proposition 1 (Proposition 1.4.1.). The following hold in the integers \mathbb{Z} :

- (i) Addition and multiplication are commutative and associative operations in \mathbb{Z} .
- (ii) $0 \in \mathbb{Z}$ is an identity element for addition; that is, $\forall a \in \mathbb{Z}, 0+a=a$.
- (iii) Every $a \in \mathbb{Z}$ has an additive inverse, denoted -a and given by -a = (-1)a, satisfying a + (-a) = 0.
- (iv) $1 \in \mathbb{Z}$ is an identity element for multiplication; that is, for all $a \in \mathbb{Z}$, 1a = a.
- (v) The distributive law holds: $\forall a, b, c \in \mathbb{Z}, a(b+c) = ab + ac$.
- (vi) Both $\mathbb{N} = \{x \in \mathbb{Z} | x \geq 0\}$ and $\mathbb{Z}_+ = \{x \in \mathbb{Z} | x > 0\}$ are closed under addition and multiplication. That is, if x and y are in one of these sets, then x + y and xy are also in that set.
- (vii) For any two nonzero integers $a, b \in \mathbb{Z}$, $|ab| \ge \max\{|a|, |b|\}$. Strict inequality holds if |a| > 1 and |b| > 1.

From this we get cancellation.

$$ab = ac \Rightarrow b = c \text{ or } a = 0$$

1.2 Definition: Divide

Suppose $a, b \in \mathbb{Z}, b \neq 0$, <u>b</u> divides <u>a</u> if $\exists m \in \mathbb{Z}$, so that a = bm, b|a. Otherwise, write $b \nmid a$.

1.3 Proposition 1.4.2: properties of integer division

Proposition 2 (Proposition 1.4.2). $\forall a, b \in \mathbb{Z}$

- (i) if $a \neq 0$, then a|0
- (ii) if a|1, then $a=\pm 1$
- (iii) if a|b & b|a, then $a = \pm b$
- (iv) if a|b & b|c, then a|c
- (v) if a|b & a|c, then $a|(mc+nb)\forall m, n \in \mathbb{Z}$

1.4 Definitions: Prime, The Greatest common divisor gcd(a,b)

 $p > 1, p \in \mathbb{Z}$ is called *prime* if the only divisors are $\pm 1, \pm p$.

Given $a, b \in \mathbb{Z}, a, b \neq 0$, the greatest common divisor of a and b is $c \in \mathbb{Z}, c > 0$ s.t.

(1) c|a and c|b; (2) if d|a, d|b, then d|c

The c is unique, we write it gcd(a, b).

1.5 Euclidean Algorithm

Proposition 3 (Proposition 1.4.7(Euclidean Algorithm)). Given $a, b \in \mathbb{Z}, b \neq 0$, then $\exists q, r \in \mathbb{Z}$ s.t. $a = qb + r, 0 \leq r \leq |b|$.

Example 1 (Exercise 1.4.3). For the pair (a,b) = (130,95), find gcd(a,b) using the Euclidean Algorithm and express it in the form gcd(a,b) = sa + tb for $s,t \in \mathbb{Z}$.

$$130 = 95 + 35; \quad 95 = 2 \times 35 + 25$$

$$35 = 25 + 10; \quad 25 = 2 \times 10 + 5$$

$$10 = 2 \times 5 + 0$$

$$5 = 25 - 2 \times 10 = 25 - 2 \times (35 - 25) = 3 \times 25 - 2 \times 35 = 3 \times (95 - 2 \times 35) - 2 \times 35$$

$$= 3 \times 95 - 8 \times 35 = 3 \times 95 - 8 \times (130 - 95) = 11 \times 95 - 8 \times 130$$

$$\gcd(130, 95) = \gcd(95, 35) = \gcd(35, 25) = \gcd(25, 10) = \gcd(10, 5) = \gcd(5, 0) = 5$$

We can also express it by matrix

	q	r	s	t
-1		130	1	0
0	1	95	0	1
1	2	35	1	-1
2	1	25	-2	3
3	2	10	3	-4
4	2	5	-8	11

Hence $gcd(130, 95) = 5 = -8 \cdot 130 + 11 \cdot 95$

1.6 Proposition: gcd(a,b) exists and is the smallest positive integer in the set $M = \{ma + nb | m, n \in \mathbb{Z}\}$

Theorem 1. d = gcd(a, b) is of the form sa + tb

证明. We may assume $0 \le a \le b$

For a = 0, $d = b = 0 \cdot a + 1 \cdot b$.

For a > 0, let $b = q \cdot a + r$ with $0 \le r < a \le b$. Then

$$\{sa+tb: s,t \in \mathbb{Z}\} = \{sa+t(q \cdot a + r): s,t \in \mathbb{Z}\} = \{tr+ua: t,u \in \mathbb{Z}\}$$

$$= \dots \{x \cdot 0 + y \cdot d: x,y \in \mathbb{Z}\} = \{\dots, -2d, -d, 0, d, 2d, \dots\}$$

Proposition 4 (第二种表示,第二种证明). $\forall a,b \in \mathbb{Z}$, not both 0, gcd(a,b) exists and is the smallest positive integer in the set $M = \{ma + nb | m, n \in \mathbb{Z}\}$. i.e. $\exists m_0, n_0 \in \mathbb{Z}$ s.t. $gcd(a,b) = m_0a + n_0b$.

延明. Let c be the smallest positive integer in the set $M = \{ma + nb | m, n \in \mathbb{Z}\}$. $c = m_0 a + n_0 b > 0$. Let $d = ma + nb \in M$, d = qc + r where $0 \le r < c$ (by Euclidean Algorithm).

$$r = d - qc = (m - qm_0)a + (n - qn_0)b \in M$$

Since c is the smallest integer in M and $r \in [0, c)$, so r = 0. $\Rightarrow d = qc$. So c|d. $a = 1a + 0b \in M \Rightarrow c|a$, $b = 0a + 1b \in M \Rightarrow c|b$. If t|a, t|b then $t|m_0a + n_0b$ i.e. $t|c. \Rightarrow c = gcd(a, b)$.

1.7 Well-Ordering Principle (Least Integer Axiom)

There is a smallest integer in every nonempty subset S of the natural numbers $\mathbb{N} = \{0, 1, 2, ...\}$

1.8 Proposition 1.4.10: gcd(b,c), $b|ac \Rightarrow b|a$

Proposition 5 (Proposition 1.4.10). Suppose $a, b, c \in \mathbb{Z}$. If b, c are relatively prime i.e. gcd(b, c) = 1 and b|ac, then b|a.

证明. $gcd(b,c)=1\Rightarrow \exists m,n\in\mathbb{Z} \text{ s.t. } 1=mb+nc\Rightarrow a=amb+anc. \text{ Since } b|nac,b|amb\Rightarrow b|a.$

1.8.1 Corollary: $p|ab \Rightarrow p|a$ or p|b

Corollary 1 (Corollary of Prop 1.4.10). $a, b, p \in \mathbb{Z}, p > 1$ prime. If p|ab, then p|a or p|b.

证明. If p|b, done. Otherwise, gcd(p,b)=1. By Prop 1.4.10, p|a.

1.9 Fundamental Theorem of Arithmetic: Any integer $a \ge 2$ has a unique prime factorization

1.9.1 Existence

Lemma 1. Any integer $a \geq 2$ is either a prime or a product of primes.

证明. Set $S \subset \mathbb{N}$ be the set of all n without the given property.

Assume that S in nonempty and m is the least element in S.

Since m is not a prime, it can be written as m = ab with 1 < a, b < m. Since m is the least element in $S, a, b \notin S$. Then m is a product of primes. Contradiction. Thus, $S = \emptyset$.

1.9.2 Uniqueness

Theorem 2 (Fundamental Theorem of Arithmetic).

Any integer a > 1 has a unique prime factorization: $a = p_1^{k_1} \cdot p_2^{k_2} \cdot ... p_n^{k_n}$ where $p_i > 1$ is prime, $k_i \in \mathbb{Z}_+, \forall i = 1, ..., n, p_i \neq p_j, \forall i \neq j$.

证明.

a) Existence: (Previous Lemma)

b) Uniqueness:

1) Method 1:

Suppose $a = p_1^{n_1} \cdot p_2^{n_2} \cdot ... p_k^{n_k} = q_1^{r_1} \cdot q_2^{r_2} \cdot ... q_j^{r_j}$. Where $p_1 > p_2 > ... > p_k, q_1 > q_2 > ... > q_j, n_i, r_i \ge 1$.

 $p_1|a \Rightarrow \exists q_i \text{ s.t. } p_1|q_i. \text{ Similarly, } \exists q_i \text{ s.t. } q_1|p_{i'}.$

$$q_1 \le p_{i'} \le p_1 \le q_i \Rightarrow q_1 = p_{i'} = p_1 = q_i$$

We can also know $n_1 = r_1$, otherwise we would have two prime factorization of the quotient where the largest primes are different by dividing $p_1^{\min\{n_1,r_1\}}$.

Then we can get $b=p_2^{n_2}\cdot...p_k^{n_k}=q_2^{r_2}\cdot...q_j^{r_j}$. Then prove it by induction.

2) Method 2:

Suppose $a = p_1 \cdot p_2 \cdot ... p_k = q_1 \cdot q_2 \cdot ... q_t$. For a p_i , there must exist a q_j s.t. $p_i = q_j$:

Assume that $p_i \neq q_t$, $gcd(p_i, q_t) = 1$. Then $\exists a, b$ such that $1 = ap_i + bq_t$. Multiplying both sides by $q_1 \cdot q_2 \cdot ... \cdot q_{t-1}$:

$$q_1 \cdot q_2 \cdot ... q_{t-1} = ap_i q_1 \cdot q_2 \cdot ... q_{t-1} + bq_1 \cdot q_2 \cdot ... q_t$$

Since $p_i|q_1 \cdot q_2 \cdot ...q_t$, we can conclude that $p_i|(ap_iq_1 \cdot q_2 \cdot ...q_{t-1} + bq_1 \cdot q_2 \cdot ...q_t)$

i.e.
$$p_i|q_1 \cdot q_2 \cdot ... q_{t-1}$$
 if $p_i \neq q_t$

Then prove by induction.

2 Modular arithmetic

2.1 Congruences

2.1.1 Congruent modulo m: $a \equiv b \mod m$

Given $m \in \mathbb{Z}_+$, define a relation on \mathbb{Z} : congruence modulo m

$$a \equiv b \mod m$$
, if $m | (a - b)$

Read as "a is congruent to b mod n"; Notation: $a \equiv b \mod m$.

Equivalent to: a, b have the same remainder after division by m.

2.1.2 Proposition: For fixed $m \geq 2$, the relation " $a \sim b \Leftrightarrow a \equiv b \mod m$ " is an equivalence relation

Proposition 6 (Proposition 1.5.1). For fixed $m \geq 2$, the relation " $a \sim b \Leftrightarrow a \equiv b \mod m$ " is an equivalence relation

证明.

- 1) Reflexive: $\forall a \in \mathbb{Z}, m | 0 = (a a), \text{ so } a \equiv a \mod m \text{ i.e. } a \sim a.$
- 2) Symmetric: $\forall a, b \in \mathbb{Z}, \ a \equiv b \mod m$, then $m|(a-b) \Rightarrow m|(b-a) \Rightarrow b \equiv a \mod m$. i.e. $a \sim b \Rightarrow b \sim a$.
- 3) <u>Transitive</u>: $\forall a, b, c \in \mathbb{Z}$, $a \equiv b \mod m$, $b \equiv c \mod m$. Then $m|(a-b), m|(b-c) \Rightarrow m|(a-b) + (b-c) = (a-c) \Rightarrow a \equiv c \mod m$.

2.1.3 Theorem: the equivalence relation " $a \sim b \Leftrightarrow a \equiv b \mod m$ " partitions the integers into m disjoint sets $\Omega_i = \{a | a \sim i\}, i = 0, 1, ..., m-1$

Theorem 3. the equivalence relation " $a \sim b \Leftrightarrow a \equiv b \mod m$ " partitions the integers into m disjoint sets $\Omega_i = \{a | a \sim i\}, i = 0, 1, ..., m-1$

证明. Prove any $a \in \mathbb{Z}$ belongs to a unique Ω_i .

- a) Existence: Division Algorithm $\Rightarrow a = qm + r, 0 \le r < m. \ a \in \Omega_r.$
- b) Uniqueness: Assume a in two sets, $a \in \Omega_r \cap \Omega_{r^1}$, $0 \le r^1 < r < m$. Then m|a-r and $m|a-r^1 \Rightarrow m|r-r^1$, which is impossible because $0 < r-r^1 < m$. Contradiction.

2.1.4 Proposition: Addition and Mutiplication of Congruences

Proposition 7. Fix integer $m \geq 2$. If $a \equiv r \mod m$ and $b \equiv s \mod m$, then $a + b \equiv r + s \mod m$ and $ab \equiv rs \mod m$

证明.

- a) Addition: $m|(a-r), m|(b-s) \Rightarrow m|(a-c) + (b-d) \Rightarrow m|(a+b) (c-d)$.
- b) Mutiplication: $m|(a-r)b+r(b-s) \Rightarrow m|ab-rs$.

2.2 Solving Linear Equations on Modular m

2.2.1 Theorm: unique solution of $aX \equiv b \mod m$ if gcd(a, m) = 1

Theorem 4. If gcd(a, m) = 1, then $\forall b \in \mathbb{Z}$ the congruence $aX \equiv b \mod m$ has a unique solution. 证明.

1) Existence: Since $gcd(a, m) = 1, \exists s, t \text{ such that}$

$$1 = sa + tm$$

$$(\text{Version 1})$$

$$(\text{Mutiplying } X)$$

$$X = saX + tmX$$

$$aX \equiv b \mod m \Leftrightarrow aX = km + b$$

$$\Leftrightarrow X \equiv sb \mod m$$

$$(\text{Version 2})$$

$$(\text{Mutiplying } s)$$

$$saX \equiv sb \mod m$$

$$(1 - tm)X \equiv sb \mod m$$

$$X \equiv sb \mod m$$

 $X \equiv sb \mod m$ is the solution to $aX \equiv b \mod m$.

2) Uniqueness: Assume x, y are two solutions,

$$ax \equiv b \mod$$
, $ay \equiv b \mod m \Rightarrow a(x-y) \equiv 0 \mod m$

Since
$$gcd(a, m) = 1$$
, $m|(x - y) \Rightarrow x = y$, $(x, y \in \{0, 1, ..., m - 1\})$

Example 2. Solve $3X \equiv 5 \mod 11$.

$$gcd(3,11) = 1, 1 = 4 * 3 - 1 * 11,$$

$$X \equiv 9$$

2.3 Congruence Classes: $[a]_n = \{a + kn | k \in \mathbb{Z}\}$

将给定 n,相同余数的数分为一组

Fix $n \in \mathbb{Z}_+$, we call $[a]_n = [a]$ the **congruence class** of a modulo n.

$$[a] = \{b \in \mathbb{Z} | b \equiv a \mod n\} = \{a + kn | k \in \mathbb{Z}\}\$$

2.3.1 Set of congruence classes of mod n: $\mathbb{Z}_n = \{[a]_n | a \in \mathbb{Z}\} = \{[0], [1], ..., [n-1]\}$

The set of congruence classes of mod n is denoted $\mathbb{Z}_n = \{[a]_n | a \in \mathbb{Z}\}$

Proposition 8 (Proposition 1.5.2.). For any $n \ge 1$ there are exactly n congruences classes modulo n, which we may write as

$$\mathbb{Z}_n = \{[0], [1], ..., [n-1]\}$$

证明.

For any $a \in \mathbb{Z}$. By Euclidean algorithm, a = qn + r, $q, r \in \mathbb{Z}$, $0 \le r < n \Rightarrow a \in [r]$. So, $\mathbb{Z}_n = \{[0], [1], ..., [n-1]\}$.

When $0 \le a < b \le n-1$, $n \nmid (b-a)$, so $[a] \ne [b]$ the *n* congruence classes listed are all distinct. Hence, there are exactly *n* congruence classes.

2.3.2 Proposition 1.5.5: Addition and Multiplication on Congruence Classes

Fix $n \in \mathbb{Z}$, we define addition+ and multiplication on \mathbb{Z}_n :

$$[a] + [b] = [a+b] = \{a+b+(k+j)n|k, j \in \mathbb{Z}\}$$
$$[a] \cdot [b] = [ab] = \{ab+(aj+bk+kjn)n|k, j \in \mathbb{Z}\}$$

This is well defined, follows Lemma 1.5.3.

Proposition 9 (Proposition 1.5.5.). Let $a, b, c, d, n \in \mathbb{Z}, n \geq 1$, then

- (i) Addition and multiplication are commutative and associative operations in \mathbb{Z}_n .
- (ii) [a] + [0] = [a].
- (iii) [-a] + [a] = [0].
- (iv) [1][a] = [a].
- (v) [a]([b] + [c]) = [a][b] + [a][c].

证明.

2.3.3 Units(i.e. invertible) in Congruence Classes

将与 n 互质的数分为一组

Say $[a] \in \mathbb{Z}_n$ is a **unit** or is **invertible** if $\exists [b] \in \mathbb{Z}_n$ so that [a][b] = [1].

2.3.4 Proposition 1.5.6: Set of units in congruence classes: $\mathbb{Z}_n^{\times} = \{[a] \in \mathbb{Z}_n | [a] \text{ is a unit}\} = \{[a] \in \mathbb{Z}_n | gcd(a, n) = 1\}$

The set of **invertible** elements in \mathbb{Z}_n will be denoted $\mathbb{Z}_n^{\times} = \{[a] \in \mathbb{Z}_n | [a] \text{ is a unit}\}.$

Proposition 10 (Proposition 1.5.6.). For all $n \ge 1$, we have $\mathbb{Z}_n^{\times} = \{[a] \in \mathbb{Z}_n | gcd(a, n) = 1\}$.

证明.

By Proposition 1.4.8, we know there exists b, c s.t. ab + cn = 1. So, $ab \equiv 1 \mod n$, [1] = [ab] = [a][b]. So, $\{[a] \in \mathbb{Z}_n | gcd(a, n) = 1\} \subset \mathbb{Z}_n^{\times}$

[a] is a unit
$$\Rightarrow \exists [b] \in \mathbb{Z}_n$$
 so that $[a][b] = [ab] = [1] \Rightarrow ab = 1 + kn, k \in \mathbb{Z} \Rightarrow ab - kn = 1, k \in \mathbb{Z} \Rightarrow gcd(a, n) = 1$. So, $\mathbb{Z}_n^{\times} \subset \{[a] \in \mathbb{Z}_n | gcd(a, n) = 1\}$.

Note 1. Inverse of [a] is unique, i.e. $[b] = [a]^{-1}$ is unique.

$$[a][b] = 1, [a][b'] = 1 \Rightarrow [b] = [b][1] = [b][a][b'] = [b']$$

2.3.5 Corollary 1.5.7: if p is prime, $\varphi(p) = \mathbb{Z}_p^{\times} = \{[1], [2], ..., [p-1]\}$

Corollary 2 (Corollary 1.5.7). *If* $p \ge 2$ *is prime*, $\mathbb{Z}_p^{\times} = \{[1], [2], ..., [p-1]\}.$

2.4 Euler phi-function: $\varphi(n) = |\mathbb{Z}_n^{\times}|$

Euler phi-function: $\varphi(n) = |\mathbb{Z}_n^{\times}|$.

p prime, $\varphi(p) = p - 1$.

2.4.1 $m|n, \pi_{m,n}([a]_n) = [a]_m$

Example 3 (Exercise 1.5.4). If m|n, we can define $\pi_{m,n}: \mathbb{Z}_n \to \mathbb{Z}_m$ by $\pi_{m,n}([a]_n) = [a]_m$. Prove it is well-defined.

证明.

We write $[a]_n = [c]_n$, verify that $[a]_m = [c]_m$.

Since m|n, there exists $k \in \mathbb{Z}$ s.t. n = km.

$$[a]_n = [c]_n \Rightarrow \exists j \in \mathbb{Z} \text{ s.t. } c = a + jn.$$

$$[c]_m = [a+jn]_m = [a+jkm]_m = [a]_m$$

2.5 Theorem 1.5.8(Chinese Remainder Theorem): $n = mk, gcd(m, k) = 1, F([a]_n) = (\pi_{m,n}([a]_n), \pi_{k,n}([a]_n)) = ([a]_m, [a]_k)$

Theorem 5 (Theorem 1.5.8(Chinese Remainder Theorem)). If m, n, k > 0, n = mk, gcd(m, k) = 1, then $F : \mathbb{Z}_n \to \mathbb{Z}_m \times \mathbb{Z}_k$ which is given by $F([a]_n) = (\pi_{m,n}([a]_n), \pi_{k,n}([a]_n)) = ([a]_m, [a]_k)$, then F is a bijection.

证明.

- (1)Injective: $F([a]_n) = F([b]_n) \Rightarrow [a]_m = [b]_m, [a]_k = [b]_k$ i.e. $a \equiv b \mod m, a \equiv b \mod n$. $\exists i, j \in \mathbb{Z}$ s.t. $b = a + im = a + jk \Rightarrow k|im$. Since gcd(m, k) = 1, $k|i \Rightarrow n = mk|im$. Then $[b]_n = [a]_n + [im]_n = [a]_n$.
- (2) Surjective: prove $\forall u, v \in \mathbb{Z}, \exists a \mathbb{Z} \text{ s.t. } [a]_m = [u]_m, [a]_k = [v]_k.$

Since gcd(m, k) = 1, $\exists s, t \in \mathbb{Z}$ so that 1 = sm + tk.

Let
$$a = (1 - tk)u + (1 - sm)v$$
, $[a]_m = [(u - v)sm + v]_m = [v]_m$, $[a]_k = [(v - u)tk + u]_k = [u]_k$.

Note 2.
$$F([a]_n[b]_n) = F([ab]_n) = ([ab]_m, [ab]_k) = ([a]_m[b]_m, [a]_k[b]_k)$$

Since F is a bijection, $[ab]_n = [1]_n$ iff $([a]_m[b]_m, [a]_k[b]_k) = ([1]_m, [1]_k)$.

2.5.1 Proposition 1.5.9+Corollary 1.5.10: m, n, k > 0, n = mk, gcd(m, k) = 1, then $F(\mathbb{Z}_n^{\times}) = \mathbb{Z}_m^{\times} \times \mathbb{Z}_k^{\times}$, then $\varphi(n) = \varphi(m)\varphi(k)$

Proposition 11 (Proposition 1.5.9+Corollary 1.5.10). If m, n, k > 0, n = mk, gcd(m, k) = 1, then $F(\mathbb{Z}_n^{\times}) = \mathbb{Z}_m^{\times} \times \mathbb{Z}_k^{\times}$, then $\varphi(n) = \varphi(m)\varphi(k)$.

2.6 prime factorization: $n = p_1^{r_1}...p_k^{r_k}$, then $\varphi(n) = (p_1 - 1)p_1^{r_1 - 1}...(p_k - 1)p_k^{r_k - 1}$

Proposition 12. If $n \in \mathbb{Z}$ is positive integre with prime factorization $n = p_1^{r_1}...p_k^{r_k}$, then $\varphi(n) = (p_1 - 1)p_1^{r_1-1}...(p_k - 1)p_k^{r_k-1}$

证明.

 $\mathbb{Z}_{p^r} = \{[0], [1], ..., [p^r - 1]\},$ the number of multiples of p is $\frac{p^r}{p} = p^{r-1}$. Then $\varphi(p^r) = |\mathbb{Z}_{p^r}^{\times}| = p^r - p^{r-1} = (p-1)p^{r-1}$. So,

$$\varphi(n) = \varphi(p_1^{r_1})...\varphi(p_k^{r_k}) = (p_1 - 1)p_1^{r_1 - 1}...(p_k - 1)p_k^{r_k - 1}$$

3 Complex numbers

 $\mathbb{C} = \{a + bi | a, b \in \mathbb{R}\}, \ \mathbb{R} = \{a + 0i | a \in \mathbb{R}\} \subset \mathbb{C}$

Addition & multiplication

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$
$$(a+bi)(c+di) = ac + bci + adi + bdi^{2}$$
$$= (ac - bd) + (bc + ad)i$$

Complex conjugation: $z = a + bi, \bar{z} = a - bi, \overline{zw} = \bar{z}\bar{w}$

Absolute value: $|z| = \sqrt{a^2 + b^2}$, $|z|^2 = z\bar{z}$

Additive inverse: -z = -a - bi

<u>Multiplicative inverse</u>: $z^{-1} = \frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a^2+b^2} = \frac{\bar{z}}{|z|^2}$

$$z \in \mathbb{C}, \overline{z + \overline{z}} = \overline{z} + \overline{\overline{z}} = z + \overline{z}$$

Real part:
$$Re(z) = \frac{z + \bar{z}}{2}$$

Imaginary part: $Im(z) = \frac{z - \bar{z}}{2i}$

3.1 Geometric Meaning of Addition and Multiplication

Addition: parallelogram law

Multiplication:

$$z = a + bi \neq 0$$

$$= r \cos \theta + r \sin \theta i$$

$$= r(\cos \theta + i \sin \theta)$$

$$|z|^2 = a^2 + b^2 = r^2$$

$$z = r(\cos \theta + i \sin \theta)$$

$$w = s(\cos \phi + i \sin \phi)$$

$$zw = rs[\cos \theta \cos \phi - \sin \theta \sin \phi + i(\cos \theta \sin \phi + \cos \phi \sin \theta)]$$

$$= rs[\cos(\theta + \phi) + i \sin(\theta + \phi)]$$

$$= |z||w|[\cos(\theta + \phi) + i \sin(\theta + \phi)]$$

We will write,

$$\cos \theta + i \sin \theta = e^{i\theta}$$
$$e^{i\theta}e^{i\phi} = e^{i(\theta + \phi)}$$
$$z = |z|e^{i\theta}$$

3.2 Theorem **2.1.1:** $f(x) = a_0 + a_1 x + ... + a_n x^n$ with coefficients $a_0, a_1, ..., a_n \in \mathbb{C}$. Then f has a <u>root</u> in \mathbb{C} : $\exists \alpha \in \mathbb{C}$ s.t. $f(\alpha) = 0$

Theorem 6 (Theorem 2.1.1). Supose a nonconstant polynomial $f(x) = a_0 + a_1x + ... + a_nx^n$ with coefficients $a_0, a_1, ..., a_n \in \mathbb{C}$. Then f has a <u>root</u> in \mathbb{C} : $\exists \alpha \in \mathbb{C}$ s.t. $f(\alpha) = 0$.

3.2.1 Corollary 2.1.2: $f(x) = a_n \prod_{i=1}^n (x - k_i) = a_n (x - k_1)(x - k_2)...(x - k_n)$, where $k_1, k_2, ..., k_n$ are roots of f(x)

Corollary 3 (Corollary 2.1.2). Every nonconstant polynomial with coefficients $a_0, a_1, ..., a_n \in \mathbb{C}$ can be factored as $f(x) = a_n \prod_{i=1}^n (x - k_i) = a_n (x - k_1)(x - k_2)...(x - k_n)$, where $k_1, k_2, ..., k_n$ are roots of f(x).

3.2.2 Corollary 2.1.3: $a_i \in \mathbb{R}$, f can be expresses as a product of linear and quadratic polynomials

Corollary 4 (Corollary 2.1.3). If $f(x) = a_0 + a_1 x + ... + a_n x^n$ is a nonconstant polynomial $a_0, a_1, ..., a_n \in \mathbb{R}$, $a_n \neq 0$. Then f can be expresses as a product of linear and quadratic polynomials.

这里 $a_0, a_1, ..., a_n$ 是实数!

证明.

- (1)Obviously, the corollary holds at n = 1 and n = 2.
- (2) Suppose the corollary holds for all situations that n < k.

When n = k, $f(x) = a_0 + a_1 x + ... + a_k x^k$, $a_k \neq 0$.

By F.T.A., f has a root α in \mathbb{C} .

If $\alpha \in \mathbb{R}$, long division $f(x) = q(x)(x - \alpha)$. q has real coefficients, degree of q = k - 1. Since the corollary holds at n = k - 1, q(x) is a product of linear and quadratics. Then, the corollary also holds at n = k.

If $\alpha \notin \mathbb{R}$

$$0 = f(\alpha) = a_0 + a_1 \alpha + \dots + a_k \alpha^k$$
$$0 = \overline{f(\alpha)} = a_0 + a_1 \overline{\alpha} + \dots + a_n \overline{\alpha}^n = f(\overline{\alpha})$$

Since $\bar{\alpha} \neq \alpha$, $(x - \alpha)(x - \bar{\alpha})|f$.

 $(x - \alpha)(x - \bar{\alpha}) = x^2 - (\alpha + \bar{\alpha})x + |\alpha|^2$ is a polynomial with coefficients in \mathbb{R} . So $f(x) = q(x)(x^2 - (\alpha + \bar{\alpha})x + |\alpha|^2)$, q has real coefficients with degree k - 2. The corollary also holds at n = k - 2, q(x) is a product of linear and quadratics. Then, the corollary also holds at n = k.

4 Field $(\mathbb{F}, +, \cdot)$ (close, associative, commutative, distributive (M over A), identity & inverse (M,A))

<u>Definition</u>: A field is a nonempty set \mathbb{F} with two operations:

- 1. addition, written $a + b, \forall a, b \in \mathbb{F}$;
- 2. multiplication, written $a \cdot b = ab, \forall a, b \in \mathbb{F}$.

such that:

- (i) addition and multiplication are associative and commutative
- (ii) multiplication distributes over addition: $a(b+c) = ab + ac, \forall a, b, c \in \mathbb{F}$
- (iii) \exists an additive identity $0 \in \mathbb{F}$ s.t. $0 + a = a, \forall a \in \mathbb{F}$.
- (iv) $\forall a \in \mathbb{F}, \exists$ an additive inverse -a s.t. $a + (-a) = 0, \forall a \in \mathbb{F}.$
- (v) \exists a multiplicative identity: $1 \in \mathbb{F}$ s.t. $1a = a, \forall a \in \mathbb{F}, 1 \neq 0$.
- (vi) $\forall a \in \mathbb{F}, a \neq 0, a$ has a multiplicative inverse $a^{-1} = \frac{1}{a} \in \mathbb{F} : a \cdot \frac{1}{a} = 1.$

Proposition 13 (Proposition 2.2.2). \mathbb{F} a field, $a, b \in \mathbb{F}$, then

- (i) If a + b = b then a = 0
- (ii) If ab = b and $b \neq 0$, then a = 1
- (iii) 0a = 0
- (iv) If a + b = 0, then b = -a
- (v) If $a \neq 0$ and ab = 1, then $b = a^{-1}$

Example 4. \mathbb{Z}_4 is not a field. Because $[2]_4$ doesn't have multiplicative inverse in \mathbb{Z}_4 .

4.1 Subfield $(\mathbb{K}, +, \cdot)$: $\mathbb{K} \subseteq \mathbb{F}$, closed under $+, \cdot$ and inverse

Definition:Suppose \mathbb{F} is a field and $\mathbb{K} \subseteq \mathbb{F}$ s.t.

$$0.1 \in \mathbb{K}$$

$$\forall a, b \in \mathbb{K}, a+b, ab, -a, a^{-1} (if \ a \neq 0) \in \mathbb{K}$$

We call \mathbb{K} a <u>subfield</u> of \mathbb{F} .

Example 5. $\mathbb{Q} \subseteq \mathbb{R}, \mathbb{R} \subseteq \mathbb{C}, \mathbb{Q} \subseteq \mathbb{C}$

Example 6. $\mathbb{K} \subseteq \mathbb{Z}_p$ a subfield $\Rightarrow \mathbb{K} = \mathbb{Z}_p$. Prove by induction.

4.1.1 Proposition 2.2.3: Subfield 继承 operations 自成一 field

Proposition 14 (Proposition 2.2.3). Suppose $\mathbb{K} \subset \mathbb{F}$ is a subfield of a field \mathbb{F} Then the operations of \mathbb{F} make \mathbb{K} into a field.

⇒We can prove a set is a field by proving it is a subfield of a known field.

5 Polynomials

Let \mathbb{F} be any field. A polynomial over \mathbb{F} in variable x is a formal sum:

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \sum_{i=0}^n a_i x^i$$

where $n \geq 0$ is an integer, $a_1, a_1, ..., a_n \in \mathbb{F}$.

Polynomial is a squence $\{a_k\}_{k=0}^{\infty}$ with $a_m = 0, \forall m > n$.

5.1 $\mathbb{F}[x]$: Polynomial ring 在一个 field 上形成的所有多项式 (方程) 的集合

Let $\mathbb{F}[x]$ denote the set of all polynomials with coefficients in the field \mathbb{F} .

$$\mathbb{F}[x] = \{ \sum_{i=0}^{n} a_i x^i | n \ge 0, n \in \mathbb{Z}, a_0, ..., a_n \in \mathbb{F} \}$$

We call the $\mathbb{F}[x]$ polynomial ring over the field \mathbb{F} .

$$f = \sum_{i=0}^{n} a_i x^i, g = \sum_{j=0}^{n} a_j x^j \in \mathbb{F}[x]$$

$$f + g = \sum_{i=0}^{n} (a_i + b_i)x^i \in \mathbb{F}[x]$$

$$fg(\sum_{i=0}^{n} a_i x^i)(\sum_{j=0}^{n} a_j x^j) = \sum_{i=0}^{2n} (\sum_{j=0}^{i} a_j b_{i-j}) x^i$$

5.1.1 Proposition 2.3.2: Polynomial ring (close, associative, commutative, distributive(M over A), identity(M,A), inverse(only A))

Proposition 15 (Proposition 2.3.2). Suppose \mathbb{F} is any field. Then,

- (i) Addition and multiplication are commutative & associative operations on $\mathbb{F}[x]$
- (ii) Multiplication distributes over addition
- (iii) $0 \in \mathbb{F}$, is additive identity in $F[x] : \forall f \in \mathbb{F}[x], f + 0 = 0$
- (iv) $\forall f \in \mathbb{F}[x], f = (-1)f$ is the additive inverse: f + (-1)f = 0.
- (v) $1 \in \mathbb{F}$, is the multiplicative identity in $\mathbb{F}[x]$: 1f = f, $\forall f \in \mathbb{F}[x]$

5.2 Degree of a Polynomial: deg(f)

 $f = \sum_{i=0}^{n} a_i x^i$, deg(f) = degree of f is,

$$deg(f) = \begin{cases} 0 & \text{if } f \text{ is constant, } f \neq 0 \\ n & \text{if } a_n \neq 0 \text{ in above } (a_n = \text{leading coefficient}) \\ -\infty & \text{if } f = 0 \end{cases}$$

Define
$$-\infty + a = a + (-\infty) = -\infty \ \forall a \in \mathbb{Z} \cup \{-\infty\}$$

5.2.1 Lemma 2.3.3: $deg(fg) = deg(f) + deg(g), deg(f+g) \le \max\{deg(f), deg(g)\}\$

Lemma 2 (Lemma 2.3.3). For any field \mathbb{F} and f, $g \in \mathbb{F}[x]$,

$$deg(fg) = deg(f) + deg(g)$$
$$deg(f+g) \le \max\{deg(f), deg(g)\}$$

5.3 Corollary 2.3.5: Unit(invertible) in $\mathbb{F}[x]$: constant $\neq 0$ iff deg(f) = 0

Corollary 5 (Corollary 2.3.5). For any field \mathbb{F} and $f \in \mathbb{F}[x]$, Then f is a <u>unit</u>(i.e. invertible) in $\mathbb{F}[x]$ iff deg(f) = 0.

证明.

Obviously, $deg(f) = 0 \Rightarrow f$ is a unit.

Suppose f is a unit, i.e. $\exists g \in \mathbb{F}[x]$ s.t. fg = 1.

$$0 = deg(fg) = deg(f) + deg(g) \Rightarrow deg(f), deg(g) \ge 0 \Rightarrow deg(f) = 0, deg(g) = 0.$$

5.4 <u>Irreducible</u> Polynomials: "无法分解为两个 degree ≥ 1 的多项式积"的多项式: 至少一个是 constant (i.e. degree = 0)

A nonconstant polynomial f is <u>irreducible</u> if f = uv, $u, v \in \mathbb{F}[x]$, then either u or v is a unit(i.e., constant $\neq 0$)

5.5 Theorem 2.3.6: nonconstant polynomials 可以被唯一地分解

Theorem 7 (Theorem 2.3.6). Suppose \mathbb{F} is a field and $f \in \mathbb{F}[x]$ is any nonconstant. Then $f = ap_1p_2 \dots p_k$ where $a \in \mathbb{F}$, $p_1, \dots p_k \in \mathbb{F}[x]$ are irreducible monic polynomials (monic = i.e. leading coeff. 1). If $f = bq_1q_2 \dots q_r$ with $b \in \mathbb{F}$ and $q_1, q_2, \dots, q_r \in \mathbb{F}[x]$ monic irreducible, then a = b, k = r, and after reindexing $p_i = q_i$, $\forall i$

Lemma 3 (Lemma 2.3.7). Suppose \mathbb{F} is a field and $f \in \mathbb{F}[x]$ is nonconstant monic polynomial. Then $f = p_1 p_2 \dots p_k$ where each p_i is monic irreducible.

证明.

Prove it by induction. When deg(f) = 1, f = uv, $u, v \in \mathbb{F}[x]$, $deg(f) = deg(u) + deg(v) \Rightarrow$ one of these is 0.

Suppose the lemma holds for all degree < n. When deg(f) = n,

Either f is irreducible, done.

Suppose
$$f = uv$$
 with $deg(u), deg(v) \ge 1$

$$\Rightarrow deg(u), deg(v) < n \Rightarrow u = p_1 p_2 \dots p_k, v = q_1 q_2 \dots q_j \text{ So, } f = p_1 p_2 \dots p_k q_1 q_2 \dots q_j.$$

Example 7. $x^2 - 1 \in \mathbb{Q}[x]$ reducible

$$x-1, x+1 \in \mathbb{Q}[x]$$
 irreducible

 $x^2 + 1 \in \mathbb{Q}[x]$ irreducible

$$x^2 + 1 \in \mathbb{C}[x]$$
 reducible
$$x^2 - 1 = x^2 + 1 = [1]x^2 + [1] \in \mathbb{Z}_2[x]$$
 reducible

5.6 Divisibility of Polynomials

 $f, g \in \mathbb{F}[x], f \neq 0, f \text{ divides } g, f | g \text{ means } \exists u \in \mathbb{F}[x] \text{ s.t. } g = fu.$

Proposition 16 (Proposition 2.3.8). $f, h, g \in \mathbb{F}[x]$, then

- (i) If $f \neq 0, f | 0$
- (ii) If f|1, f is nonzero constant
- (iii) If f|g and g|f, then f = cg for some $c \in \mathbb{F}$
- (iv) If f|g and g|h, then f|h
- (v) If f|g and f|h, then f|(ug+vh) for all $u,v \in \mathbb{F}[x]$.

5.6.1 Greatest common divisor of f and g: is not unique, we denote monic Greatest common divisor as gcd(f,g)

If $f, g \in \mathbb{F}[x]$ are nonzero polynomials, a greatest common divisor of f and g is a polynomial $h \in \mathbb{F}[x]$ such that

- (i) h|f and h|g, and
- (ii) if $k \in \mathbb{F}[x]$ and k|f and k|g, then k|h.

the gcd is not unique, but the monic gcd is unique. We call it **the monic greatest common divisor**, denote it gcd(f,g).

Example 8.

$$x^{2} - 1, x^{2} - 2x + 1 \in \mathbb{Q}[x]$$
$$(x - 1)(x + 1), (x - 1)^{2} \in \mathbb{Q}[x]$$
$$x - 1 = acd(x^{2} - 1, x^{2} - 2x + 1)$$

5.6.2 Proposition 2.3.9: Euclidean Algorithm of polynomials

Proposition 17 (Proposition 2.3.9). Given $f, g \in \mathbb{F}[x]$, $g \neq 0$, then $\exists q, r \in \mathbb{F}[x]$ s.t. deg(r) < deg(g) and f = qg + r

Example 9.

$$f = 3x^3 - 5x^2 - 3x + 5, g = x^3 - 2x^2 + 1 \in \mathbb{Q}[x]$$

$$f = 3g + x^2 - 3x + 2$$

5.6.3 Proposition 2.3.10: gcd(f,g) 是 degree 最小的 f,g 的线性组合

Proposition 18 (Proposition 2.3.10). Any 2 nonzero polynomials $f, g \in \mathbb{F}[x]$ have a gcd in $\mathbb{F}[x]$. In fact among all polynomials in the set $M = \{uf + vg | u, v \in \mathbb{F}[x]\}$ any nonconstant of minimal degree are gcds.

证明.

 $h \in M$, deg(h) = d minimal. Let k|f and $k|g \Rightarrow k|uf + vg$, $\forall u, v \Rightarrow k|h$. Suppose $h' \in M$ is any nonzero element. $deg(h') \ge deg(h) \Rightarrow \exists q, r \in \mathbb{F}, deg(r) < deg(h) \ h' = qh + r$. $r = h' - qh \in M$. Since deg(h) = d is nonconstant minimal degree, $r = 0 \Rightarrow h' = qh$. So

 $\exists q_1, q_2 \in \mathbb{F}[x], \ 1f + 0g = q_1h, 0f + 1g = q_2h \Rightarrow h|g, h|f.$

Example 10.

$$f = 3x^3 - 5x^2 - 3x + 5, g = x^3 - 2x^2 + 1 \in \mathbb{Q}[x]$$

$$f = 3g + x^2 - 3x + 2$$

$$g = (x+1)(x^2 - 3x + 2) + x - 1$$

$$x^2 - 3x + 2 = (x-2)(x-1)$$

$$\Rightarrow gcd(f,g) = x - 1$$

$$x - 1 = g - (x+1)(x^2 - 3x + 2) = g - (x+1)(f - 3g) = (3x+4)g - (x+1)f$$

Example 11. Find a greatest common divisor of $f = x^3 - x^2 - x + 1$ and $g = x^2 - 3x + 2$ in $\mathbb{Q}[x]$, and express it in form uf + vg, $u, v \in \mathbb{Q}[x]$.

$$f = (x+2)g + 3x - 3$$
$$g = \frac{1}{3}(x-2)(3x-3)$$
$$gcd(f,g) = 3x - 3$$
$$3x - 3 = f - (x+2)g$$

5.6.4 Proposition 2.3.12: $gcd(f,g) = 1, f|gh \Rightarrow f|h$

Proposition 19 (Proposition 2.3.12). If $f, g, h \in \mathbb{F}[x]$, gcd(f, g) = 1, and f|gh, then f|h.

5.6.5 Corollary **2.3.13**: irreducible f, $f|gh \Rightarrow f|g$ or f|h

Corollary 6 (Corollary 2.3.13). If $f \in \mathbb{F}[x]$ is irreducible, and f|gh, then f|g or f|h.

Since f is irreducible, we have two possible situations:

- 1. gcd(f,g) = f, i.e. f|g done.
- 2. gcd(f,g) = 1, then according to Prop 2.3.12, we can know f|h.

5.7 Roots

Root: $\alpha \in \mathbb{F}$ is a root of f if $f(\alpha) = 0$.

5.7.1 Corollary 2.3.16(of Euclidean Algorithm): f 可被分为 $(x - \alpha)q + f(\alpha)$ i.e. if α is a root, then $(x - \alpha)|f$

Corollary 7 (Corollary 2.3.16(of Euclidean Algorithm)). $\forall f \in \mathbb{F}[x]$ and $\alpha \in \mathbb{F}$, there exists a polynomial $q \in \mathbb{F}[x]$ s.t. $f = (x - \alpha)q + f(\alpha)$. In particular, if α is a root, then $(x - \alpha)|f$.

5.8 Multiplicity

If α is a root of f, say its multiplicity is m, if $x - \alpha$ appears m times in irreducible factorization.

5.8.1 Sum of multiplicity $\leq deg(f)$

Proposition 20 (Proposition 2.3.17). Given a nonconstant polynomial $f \in \mathbb{F}[x]$, the number of roots of f, counted with multiplicity, is at most deg(f).

5.9 Roots in a filed may not in its subfield

Note if $\mathbb{F} \subset \mathbb{K}$, then $\mathbb{F}[x] \subset \mathbb{K}$. $f \in \mathbb{F}[x]$ may have no roots in \mathbb{F} , but could have roots in \mathbb{K}

Example 12. $x^n - 1 \in \mathbb{Q}[x]$ has a root in \mathbb{Q} : 1; has 2 roots if n even: ± 1 roots in \mathbb{C} : $\zeta_n = e^{\frac{2\pi i}{n}}$, then $\zeta_n^n = e^{2\pi i} = 1$; $(\zeta_n^k)^n = e^{2\pi ki} = 1$ So, the roots: $\{e^{\frac{2\pi ki}{n}}|k=0,...,n-1\}$ The roots of $x^n - d$: $\{e^{\frac{2\pi ki}{n}}\sqrt{d}|k=0,...,n-1\}$

6 Linear Algebra

6.1 Vector Space $(V, +, \times)$ (over a field \mathbb{F})

A vector space over a field \mathbb{F} is a set V w/ an operation addition $+: V \times V \to V$ and an operation scalar multiplication $\mathbb{F} \times V \to V$

- (1) Addition is associative & commutative
- (2) $\exists 0 \in V$, additive identity: $0 + v = v \forall v \in V$
- (3) $1v = v \forall v \in V \text{ (where } 1 \in \mathbb{F} \text{ is multi. id. in } \mathbb{F} \text{)}$
- (4) $\forall \alpha, \beta \in \mathbb{F}, \ v \in V, \ \alpha(\beta v) = (\alpha \beta)v$
- (5) $\forall v \in V$, (-1)v = -v we have v + (-v) = 0
- (6) $\forall \alpha \in \mathbb{F}, \ v, u \in V, \ \alpha(v+u) = \alpha v + \alpha u$
- (7) $\forall \alpha, \beta \in \mathbb{F}, \ v \in V, \ (\alpha + \beta)v = \alpha v + \beta v$

6.1.1 A field is a vector space over its subfield

Example 13. $\mathbb{K} \subset \mathbb{F}$ is a subfield of a field \mathbb{F} . Then \mathbb{F} is a vector space over \mathbb{K} . (Since $\mathbb{F} \subset \mathbb{F}[x]$, then $\mathbb{F}[x]$ is a vector space over \mathbb{F} .)

6.1.2 Vector subspace

Suppose that V is a vector space over \mathbb{F} . A vector subspace or just subspace is a nonempty subset $W \subset V$ closed under addition and scalar multiplication. i.e. $v + w \in W$, $av \in W$, $\forall v, w \in W$, $a \in \mathbb{F}$.

Example 14. $\mathbb{K} \subset \mathbb{L} \subset \mathbb{F}$, then \mathbb{L} is a subspace of \mathbb{F} over \mathbb{K} .

6.2 Linear independent, Linear combination

6.3 span V, basis, dimension, Proposition 2.4.10

A set of elements $v_1, ..., v_n \in V$ is said to **span** V if every vector $v \in V$ can be expressed as a linear combination of $v_1, ..., v_n$. If $v_1, ..., v_n$ spans and is linearly independent, then we call the set a **basis** for V.

Proposition 21 (Proposition 2.4.10.). Suppose V is a vector space over a field \mathbb{F} having a basis $\{v_1, ..., v_n\}$ with $n \geq 1$.

- (i) For all $v \in V$, $v = a_1v_1 + ... + a_nv_n$ for exactly one $(a_1, ..., a_n) \in \mathbb{F}^n$.
- (ii) If $w_1, ..., w_n$ span V , then they are linearly independent.
- (iii) If $w_1, ..., w_n$ are linearly independent, then they span V.

If a vector space V over \mathbb{F} has a basis with n vectors, then V is said to be n-dimensional (over \mathbb{F}) or is said to have **dimension** n.

6.3.1 Standard basis vectors

$$e_1 = (1, 0, ..., 0), e_2 = (0, 1, 0, ..., 0), ..., e_n = (0, 0, ..., 0, 1) \in \mathbb{F}^n$$

are a basis for \mathbb{F}^n called the **standard basis vectors**.

6.4 Linear transformation

Given two vector spaces V and W over \mathbb{F} a linear transformation is a function $T:V\to W$ such that for all $a\in\mathbb{F}$ and $v,w\in V$, we have

$$T(av) = aT(v)$$
 and $T(v + w) = T(v) + T(w)$

Proposition 22 (Proposition 2.4.15.). If V and W are vector spaces and $v_1, ..., v_n$ is a basis for V then any function from $\{v_1, ..., v_n\} \to W$ extends uniquely to a linear transformation $V \to W$.

Any $v \in V$, $\exists (a_1, ..., a_n)$ s.t. $v = a_1v_1 + ... + a_nv_n$. Then $T(v) = T(a_1v_1 + ... + a_nv_n) = a_1T(v_1) + ... + a_nT(v_n)$

6.4.1 Corollary 2.4.16: 一个线性变换对应一个矩阵 bijection $\mathcal{L}(V,M) \to M_{m \times n}(\mathbb{F})$

Corollary 8 (Corollary 2.4.16.). If $v_1, ..., v_n$ is a basis for a vector space V and $w_1, ..., w_n$ is a basis for a vector space W (both over \mathbb{F}), then any linear transformation $T: V \to W$ determines (and is determined by) the $m \times n$ matrix:

$$A = A(T) = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \dots & \vdots \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{bmatrix}$$

$$\begin{bmatrix} w_1 & \cdots & w_m \end{bmatrix}^T = A \quad \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}^T$$

 $\mathcal{L}(V, M)$ denotes the set of all linear transformations from V to W; $M_{m \times n}(\mathbb{F})$ the set of $m \times n$ matrix with entries in \mathbb{F} . $T \to A(T)$ defines a bijection $\mathcal{L}(V, M) \to M_{m \times n}(\mathbb{F})$. A(T) represents the linear transformation T.

6.4.2 Proposition 2.4.19: 线性变换矩阵相乘仍为线性变换矩阵

Proposition 23 (Proposition 2.4.19). Suppose that V, W, and U are vector spaces over \mathbb{F} , with fixed chosen bases. If $T: V \to W$ and $S: W \to U$ are linear transformations represented by matrices A = A(T) and B = B(S), then $ST = S \circ T: V \to U$ is a linear transformation represented by the matrix BA = B(S)A(T).

6.5 GL(V): invertible(bijective) linear transformations $V \to V$

Given a vector space V over F, we let $GL(V) \subset \mathcal{L}(V,V)$ denote the subset of **invertible linear** transformations.

$$GL(V) = \{T \in \mathcal{L}(V, V) | T \text{ is a bijection}\} = \mathcal{L}(V, V) \cap Sym(V)$$

7 Euclidean geometry basics

7.1 Euclidean distance, inner product

Euclidean distance on \mathbb{R}^n :

$$|x-y| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Euclidean inner product:

$$x \cdot y = x_1 y_1 + \dots + x_n y_n = x^T y$$

7.2 Isometry of \mathbb{R}^n : a bijection $\mathbb{R}^n \to \mathbb{R}^n$ preserves distance

An **isometry** of \mathbb{R}^n is a bijection $\Phi: \mathbb{R}^n \to \mathbb{R}^n$ that preserves distance, which means,

$$|\Phi(x) - \Phi(y)| = |x - y|, \ \forall x, y \in \mathbb{R}^n$$

7.2.1 $Isom(\mathbb{R}^n)$: set of all isometries of \mathbb{R}^n

We use $Isom(\mathbb{R}^n)$ denotes the set of all isometries of \mathbb{R}^n ,

$$Isom(\mathbb{R}^n) = \{ \Phi : \mathbb{R}^n \to \mathbb{R}^n | |\Phi(x) - \Phi(y)| = |x - y|, \ \forall x, y \in \mathbb{R}^n \}$$

7.2.2 $Isom(\mathbb{R}^n)$ is closed under \circ and inverse

Proposition 24. $\Phi, \Psi \in Isom(\mathbb{R}^n)$, then $\Phi \circ \Psi, \Phi^{-1} \in Isom(\mathbb{R}^n)$

证明.

Since Φ, Ψ are bijections, so is $\Phi \circ \Psi$. Moreover,

$$|\varPhi\circ\varPsi(x)-\varPhi\circ\varPsi(y)|=|\varPhi(\varPsi(x))-\varPhi(\varPsi(y))|=|\varPsi(x)-\varPsi(y)|=|x-y|$$

Since $id \in Isom(\mathbb{R}^n)$,

$$|x - y| = |id(x) - id(y)| = |\Phi \circ \Phi^{-1}(x) - \Phi \circ \Phi^{-1}(y)| = |\Phi^{-1}(x) - \Phi^{-1}(y)|$$

7.3 $A \in GL(n, \mathbb{R}), T_A(v) = Av: A^tA = I \Leftrightarrow T_A \in Isom(\mathbb{R}^n)$

There is a matrix $A \in GL(n, \mathbb{R})$ i.e. a invertible linear transffrmations $T_A : \mathbb{R}^n \to \mathbb{R}^n$ is given by $T_A(v) = Av$.

$$T_A(v) \cdot T_A(w) = (Av) \cdot (Aw) = (Av)^t (Aw) = v^t A^t A w$$
$$A^t A = I \Leftrightarrow T_A(v) \cdot T_A(w) = v \cdot w \Leftrightarrow_{(HW4)} T_A \in Isom(\mathbb{R}^n)$$

7.4 Linear isometries i.e. orthogonal group $O(n) = \{A \in GL(n, \mathbb{R}) | A^t A = I\}$

We define the all isometries in invertible linear transfrrmations $\mathbb{R}^n \to \mathbb{R}^n$ as **orthogonal group**

$$O(n) = \{ A \in GL(n, \mathbb{R}) | A^t A = I \} \subset GL(n, \mathbb{R})$$

7.4.1 Special orthogonal group $SO(n) = \{A \in O(n) | det(A) = 1\}$: orthogonal group with det(A) = 1

O(n) are the matrices representing linear isometries of \mathbb{R}^n . $1 = det(I) = det(A^tA) = det(A^t)det(A) = det(A)^2 \Rightarrow det(A) = 1$ or det(A) = -1. We use **special orthogonal group** represents A with det(A) = 1,

$$SO(n) = \{ A \in O(n) | det(A) = 1 \}$$

7.5 translation: $\tau_v(x) = x + v$

Define a translation by $v \in \mathbb{R}^n$,

$$\tau_v : \mathbb{R}^n \to \mathbb{R}^n, \ \tau_v(x) = x + v$$

7.5.1 translation is an isometry

Note 3 (Exercise 2.5.3). $\forall v \in \mathbb{R}^n, \tau_v \text{ is an isometry.}$

证明.
$$|\tau_v(x) - \tau_v(y)| = |(x+v) - (y+v)| = |x-y|$$

7.6 The composition of a translation and an orthogonal transformation is an isometry $\Phi_{A,v}(x) = \tau_v(T_A(x)) = Ax + v$

Since the composition of isometries is an isometry, $\forall A \in O(n)$ and $v \in \mathbb{R}^n$, the composition

$$\Phi_{A,v}(x) = \tau_v(T_A(x)) = Ax + v$$

is an isometry. which could account for all isometries.

7.6.1 Theorem 2.5.3: All isometries can be represented by a composition of a translation and an orthogonal transformation, $Isom(\mathbb{R}^n) = \{\Phi_{A,v} | A \in O(n), v \in \mathbb{R}^n\}$

Theorem 8 (Theorem 2.5.3). $Isom(\mathbb{R}^n) = \{\Phi_{A,v} | A \in O(n), v \in \mathbb{R}^n\}$

8 Group (G,*): a set with an operation (associative, identity, inverse)

A group is a nonempty set G with an operation $*: G \times G \to G$ s.t. the following holds

- (1) * is associative
- (2) $\exists e \in G$ an identity element $e * g = g * e = g \ \forall g \in G$
- (3) $\forall g \in G, \exists g^{-1} \in G \text{ s.t. } g * g^{-1} = g^{-1} * g = e$

8.1 $(Sym(X), \circ)$ symmetric/permutation group of X

Example 15. If X is any nonempty set, permutation group of $X : \{\sigma : X \to X | \sigma \text{ is a bijection}\}$, then

- 1. \circ is associative;
- 2. $id: X \to X$, $id(x) = x \ \forall x \in X$ is the idenity;
- 3. $\sigma \in Sym(X), \sigma^{-1} \in Sym(X)$ is the inverse function.

 $(Sym(X), \circ)$ is a group called the symmetric group of X

8.2 Order of a group (G, *)

|G| = Order of a group (G, *)

8.3 Abelian group (group that * satisfies commutative)

 $(\mathbb{Z},+)$ is a group and + is commutative, we call this kind of groups(statify commutative) *abelian* group.

Example 16. If \mathbb{F} is a field, then $(\mathbb{F}, +)$ and $(\mathbb{F}^{\times}, \cdot)$ are abelian group.

Example 17. If V is a vector space over \mathbb{F} , then (V, +) abelian group.

As we know a V is a vector space over \mathbb{F} means V is a field whose subfields include \mathbb{F} .

8.4 *H*: Subgroup of (G, *) $(H \neq \emptyset \subset G \text{ closed under } *; \text{ inverse } g^{-1} \in H)$, written as H < G

 $H \neq \emptyset \subset G$ is a subgroup of (G, *) if,

1. $\forall g, h \in H, g * h \in H$.

2. $\forall g \in H, g^{-1} \in H$.

write H < G if H is a subgroup of (G, *).

8.4.1 Proposition 2.6.8: H < G, (H,*) is a group: A group's operation with its any subgroup is also a group

Proposition 25 (Proposition 2.6.8). If (G,*) is a group, $H \subset G$ is a subgroup, then (H,*) is a group.

Example 18. (G, *) is a group, then e < G, G < G.

Example 19. $\mathbb{K} \subset \mathbb{F}$ is a subfield, then $\mathbb{K} < \mathbb{F}$, $\mathbb{K}^{\times} < \mathbb{F}^{\times}$.

Example 20. $W \subset V$ is a vector subspace, W < V.

Example 21. $1 \in S^1 \subset \mathbb{C}^{\times}$, $S^1 = \{z \in \mathbb{C} | |z| = 1\}$. S^1 is a subgroup.

证明.

$$S^1 = \{e^{i\theta} | \theta \in \mathbb{R}\}.$$
 For any $e^{i\theta}$, $e^{i\psi} \in S^1$, $e^{i\theta}e^{i\psi} = e^{i(\theta+\psi)} \in S^1$, $e^{-i\theta} \in S^1$.

Example 22. $Isom(\mathbb{R}^n) < Sym(\mathbb{R}^n)$

Example 23. If \mathbb{F} is a field, $Aut(\mathbb{F}) = \{ \sigma : \mathbb{F} \to \mathbb{F} \in Sym(\mathbb{F}) | \sigma(a+b) = \sigma(a) + \sigma(b), \sigma(ab) = \sigma(a)\sigma(b) \} < Sym(\mathbb{F})$

Example 24. Dihedral Groups:

保留多边形

Let $P_n \subset \mathbb{R}^2$ be a regular n - gon

 $D_n < Isom(\mathbb{R}^2), D_n = \{\Phi \in Isom(\mathbb{R}^2) | \Phi(P_n) = P_n\}$

9 Ring $(R, +, \cdot)$: + is associative, commutative, identity, inverse $\in R$; \cdot is associative, distributes over +

Definition 1. A ring is a nonempty set with two operations, called addition and multiplication, $(R, +, \cdot)$ such that

- (1): (R, +) is an ablian group: i.e. + is associative and commutative. $0, -a \in R$
- (2): \cdot is associative.
- (3): distributes over +: $\forall a, b, c \in R, a \cdot (b+c) = a \cdot b + a \cdot c \text{ and } (b+c) \cdot a = b \cdot a + c \cdot a$

9.1 Commutative ring: ring's · is commutative

If " \cdot " is commutative, we call $(R, +, \cdot)$ a commutative ring.

9.2 Ring with 1: exists multiplication identity $1 \in R$

If there exists an element $1 \in R \setminus \{0\}$ such that a1 = 1a = a, $\forall a \in R$, then we say that R is a ring with 1.

9.3 Field \mathbb{F} is a commutative ring with 1; $\mathbb{F}[x]$ is also a commutative ring with 1

Field $(\mathbb{F}, +, \cdot)$ (close, associative, commutative, distributive(M over A), identity & inverse(M,A)) Proposition 2.3.2: Polynomial ring (close, associative, commutative, distributive(M over A), identity(M,A), inverse(only A))

9.4 $S \subset R$: Subring (closed under + and ·; addictive inverse $-a \in S$)

9.4.1 Proposition 2.6.27: $(S, +, \cdot)$ is a ring

Proposition 26 (Proposition 2.6.27). If $S \subset R$ is a subring, then $+, \cdot$ make S into a ring.

10 Group theory

10.1 Properties of Group Operation

10.1.1 Proposition 3.1.1: g * h = h or h * g = h, then g = e; g * h = e then $g = h^{-1}$ and $h = g^{-1}$

Proposition 27 (Proposition 3.1.1). Let (G,*) be a group with identity $e \in G$, then

- (1) if $g, h \in G$ and either g * h = h or h * g = h, then g = e
- (2) if $g, h \in G$ and g * h = e then $g = h^{-1}$ and $h = g^{-1}$

10.1.2 Corollary 3.1.:
$$e^{-1} = e$$
, $(g^{-1})^{-1} = g$, $(g * h)^{-1} = h^{-1} * g^{-1}$

Corollary 9 (Corollary 3.1.2). $e^{-1} = e$, $(g^{-1})^{-1} = g$, $(g * h)^{-1} = h^{-1} * g^{-1}$

10.1.3 Proposition 3.1.3: g * h = k * h or h * g = h * k, then g = k

Proposition 28 (Proposition 3.1.3). If g * h = k * h or h * g = h * k, then g = k.

10.1.4 Proposition 3.1.4: g * x = h and x * g = h have unique solutions $x \in G$.

Proposition 29 (Proposition 3.1.4). g * x = h and x * g = h have unique solutions $x \in G$.

10.2 Power of an Element

We define g^n recursively for $n \ge 0$ by setting $g^0 = e$ and for $n \ge 1$, we set $g^n = g^{n-1} * g$. For $n \le 0$, we define $g^n = (g^{-1})^{-n}$.

10.2.1 Proposition 3.1.5: $g^n * g^m = g^{n+m}, (g^n)^m = g^{nm}$

Proposition 30 (Proposition 3.1.5). (1) $q^n * q^m = q^{n+m}$; (2) $(q^n)^m = q^{nm}$

10.3 $(G \times H, \circledast)$: Direct Product of G and H

(G,*) a group (H,*) a group. Define an operation on $G \times H$, \circledast :

$$(h,k) \circledast (h',k') = (h*h',k*k')$$

10.3.1 Proposition 3.1.7: $(G \times H, \circledast)$ is a group

Proposition 31 (Proposition 3.1.7). $(G \times H, \circledast)$ is a group. The identity is (e_G, e_H) , inverse is (g^{-1}, h^{-1})

usually written as

$$(h,k)(h',k') = (hh',kk')$$

10.4 Subgroups and cyclic groups

10.4.1 Proposition 3.2.2: Intersection of a Collection of Subgroups is a group

Proposition 32 (Proposition 3.2.2). Let G be a group and suppose \mathcal{H} is any collection of subgroups of G. Then $K = \bigcap_{H \in \mathcal{H}} H < G$ is a subgroup of G.

10.4.2 Subgroup Generated by $A: \langle A \rangle = \cap_{H < G; A \subset H} H$

We define **Subgroup Generated by** A:

$$\langle A \rangle = \cap_{H \in \mathcal{H}(A)} H$$

where $\mathcal{H}(A)$ is the set of all subgroups of G containing the set A:

$$\mathcal{H}(A) = \{ H < G | A \subset H \text{ and } H \text{ is a subgroup of } G \}$$

10.4.3 Cyclic Subgroup generated by $a: \langle a \rangle = \cap_{H < G; a \in H} H$ (G is cyclic if exists $g, \langle g \rangle = G$)

If $A = \{a\}$, then $\langle a \rangle (= \langle \{a\} \rangle) =$ the <u>cyclic subgroup</u> generated by aSay G is cyclic if $\exists g \in G$, s.t. $G = \langle g \rangle$; g is called a generator for G in this case.

10.4.4 Proposition 3.2.3: $\langle g \rangle = \{g^n | n \in \mathbb{Z}\}$

Proposition 33 (Proposition 3.2.3). Let G be a group, $g \in G$. Then

$$\langle g \rangle = \{ g^n | n \in \mathbb{Z} \}$$

10.4.5 Corollary 3.2.4: G is a cyclic group \Rightarrow G is abelian

Corollary 10 (Corollary 3.2.4). If G is a cyclic group (i.e. exits $g \in G$ s.t. $\langle g \rangle = G$), then G is abelian (i.e. commutative).

10.4.6 Equivalent properties of order of g: $|g| = |\langle g \rangle| < \infty$

Proposition 34 (Proposition 3.2.6). Let G be a group for $g \in G$, the following are equivalent:

- (i) $|g| < \infty$
- (ii) $\exists n \neq m \text{ in } \mathbb{Z} \text{ so that } g^n = g^m$
- (iii) $\exists n \in \mathbb{Z}, \ n \neq 0 \text{ so that } g^n = e$
- (iv) $\exists n \in \mathbb{Z}_+$ so that $g^n = e$

If $|g| < \infty$, then $|g| = \text{smallest } n \in \mathbb{Z}_+$ so that $g^n = e$, and $\langle g \rangle = \{e, g, g^2, \dots, g^{n-1}\} = \{g^n \mid n = 0, \dots, n-1\}$

10.4.7 (\mathbb{Z} , +) Theorem 3.2.9: $H < \mathbb{Z}$ is a subgroup $\Rightarrow H = \{0\}$ or $H = \langle d \rangle$; $\langle a \rangle < \langle b \rangle$ if and only if b|a

Theorem 9 (Theorem 3.2.9). If $H < \mathbb{Z}$ is a subgroup, then either $H = \{0\}$, or else $H = \langle d \rangle$, where

$$d = \min\{h \in H | h > 0\}$$

Consequently, $a \to \langle a \rangle$ defines a **bijection** from $N = \{0, 1, 2, ...\}$ to the set of subgroups of \mathbb{Z} . Furthermore, for $a, b \in \mathbb{Z}_+$, we have $\langle a \rangle < \langle b \rangle$ if and only if b | a.

10.4.8 $(\mathbb{Z}_n, +)$ Theorem 3.2.10: $H < \mathbb{Z}_n$ is a subgroup $\Rightarrow H = \langle [d] \rangle$; $\langle [d] \rangle < \langle [d'] \rangle$ if and only if d'|d

Theorem 10 (Theorem 3.2.10). For any $n \geq 2$, if $H < \mathbb{Z}_n$ is a subgroup, then there is a positive divisor d of n so that

$$H = \langle [d] \rangle$$

Furthermore, this defines a bijection between divisors of H and subgroups of \mathbb{Z}_n . Furthermore, if d, d' > 0 are two divisors of n, then $\langle [d] \rangle < \langle [d'] \rangle$ if and only if d'|d.

If $H = \langle [d] \rangle$ is a subgroup of H, then $[n] \in H$, so d|n. And $|H| = |\langle [d] \rangle| = \frac{n}{d}$, so |H||d

10.4.9 Subgroup Lattice

The set of all subgroups of a group of G, together with the data of which subgroups contain which others is called the **subgroup lattice**. We often picture the subgroup lattice in a diagram with the entire group at the top, the trivial subgroup $\{e\}$ at the bottom, and the intermediate subgroups in the middle, with lines drawn from subgroups up to larger groups.

参考文献

[1] Christopher J Leininger Introduction to Abstract Algebra (Draft) 2017.

Writing down the subgroup lattice is as easy as writing down the divisibility lattice in which n is placed at the bottom, 1 at the top, and all intermediate divisors in between, connected by edges when there is divisibility. The congruence class of the divisor generates the corresponding subgroup in the subgroup lattice.

图 1: