

Closed-Loop Multi-Sensor SLAM for Fixed-Wing UAVs.

Adam Radomski

Master Thesis Supervised by Timo Hinzmann, Thomas Schneider

Motivation

Develop localization framework which can simultaneously:

- Estimate local navigation solution with minimal latency
- Find optimal solution given all the measurements

COOL MOTIVATING PICTURE GOES HERE!

Approach

Splitting the problem into short and long term problems

Short local navigation solution

Long solution given all data

<It would be a cool slide to explain the loosely-coupled approach that we aim at and could be moved to the beginning.>

Work done so far

Short Term Smoother

- building a full factor graph given sensor data
- estimating position and passing data to LTS

Long Term Smoother

- building a map with the input data
- "translating" the map to a factor graph
- optimizing the factor graph and updating data in the map

Current challenges

- Reading landmarks from the map and translating them into a factor graph
- Inserting "fixed" landmarks into STS

Future work

- 3-stage landmark initialization
 - Stage 1: compute 3D landmark coordinate and initialize the feature as binary factor (state x_k and x_{k+1}).
 - Stage 2: formulate the feature re-projection factors connecting the 3D landmark state and pose.
 - Stage 3: once uncertainty converges marginalize landmark state and switch back to binary factor formulation.
- Sliding-Window STS
 - Reduce the STS problem to a sliding-window factor graph

