

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 1 ปีการศึกษา 2550

วิชา MEE 234 Thermal Engineering สอบวันอังการที่ 7 สิงหาคม พ.ศ.2550 ภาควิชา CVE 2, ENV 2, CVE 2(inter.), ENV2(Bil.) เวลา 13.00 – 16.00 น.

		.	
۰.		١_	L.
ค"	นต	Ð	น

- 1. ข้อสอบแบ่งออกเป็น 3 PART มีทั้งหมคมี 5 ข้อ, 13 หน้า (รวมกระคาษเปล่า 2 หน้า) (รวม 100 คะแนน)
- 2. อนุญาตให้ใช้เครื่องคำนวณตามที่มหาวิทยาลัยฯ กำหนคได้
- 3. ไม่อนุญาตให้นำตำราเข้าห้องสอบ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระคาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

นายสุรชัย บวรเศรษฐนันท์ นายเลิศศักดิ์ เหมยากร นายวันชัย อัศวภูษิตกุล (ผู้ออกข้อสอบ)

Name		No
1	Answer the following question P_{∞}	rt I
What	t is the meaning of pure substance in term of	Thermodynamics?
What	t is the difference between Heat and Work in	term of Thermodynamics?
•		•
What	at is the expression of the first law of Thermod	lynamics?
AALICAL	it is the expression of the matrix of Themio	yriai iios:
	· .	
Show	w the energy equation for state change of clo	sed system & opened system by means
of The	hermodynamics.	

Name	·····		No	
What is the K	elvin-Planck expre	ssion of the sec	ond law of Ther	modynamics?
	•			
What is the C	clausius expressior	of the second l	aw of Thermody	namics?
	•	• •		
				· · · · · · · · · · · · · · · · · · ·
	•			
\A/bat is the d	iffaranaa bakusan	Unak anaina		0
vviiat is the u	ifference between	rieat engine a	ino rieat pump	
į.				
-				
		•		
What are the	four processes that	at make up the C	Carnot cycle ?	
			,	

What are the two statements known as the Carnot principles ?

NameNo	Name	NoNo
--------	------	------

2 Complete the following table for water:

Temperature ° C	Pressure kPa	Enthalpy kJ/kg	Quality (X)	Phase Description
	200		0.7	
140		1800		
	950		0.0	
80	500			
	800	1361.7		

What is the meaning of saturated water and saturated steam?

What is the meaning of superheated vapor?

What is the difference of subcooled liquid and compressed liquid?

Show the phase change of water on T-v diagram for any pressure to critical pressure.

Name	Student No Department	
	(Mr.Lertsak Hemya	korn)

PART II

at 200 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such that a pressure of 300 kPa is required to move it. Heat is now – slowly transferred to the steam until the volcume doubles. Show the process on a P-v diagram with respect to saturation lines and determine (a) the final temperature, (b) the work done during this process, and (c) the total heat transfer. (20 marks)

Name	Student No Department
	(Mr.Lertsak Hemyakorn)

An adiabatic air compressor is to be powered by a direct coupled adiabatic steam turbine that is also driving a generator. Steam enter the turbine at 12.5 MPa and 500 °C at a rate of 25 kg/s and exits at 10 kPa and a quality of 0.92. Air enter the compressor at 98 kPa and 295 K at a rate of 10 kg/s and exits at 1 MPa and 620 K. Determine the net power delivered to the generator by the turbine.

Thermodynamics

LE P	\ <u>_</u> 4											
ıratı	ed water	Temperatu	re table									1000
			fic volume, m³/kg		nternal e kJ/kg			Enthalp kJ/kg	y, 		Entropy, kJ/kg · K	(q)
p., ;	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u,	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h,	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s _f	Evap., s_{fg}	Sat. valvapor
01	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	8.9487 8.7488 8.5559	9.1556 9.0249 8.8999 8.7803 8.6661
	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7.8466 7.6832	8.5567 8.4520 8.3517 8.2556 8.1633
	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.5355 6.4089 6.2853	7.6812 7.6111 7.5435 7.4782 7.4151
	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5.9319 5.8193 5.7092	7.3542 7.2952 7.2382 7.1829 7.1292
;	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.3919 5.2901 5.1901	7.0771 7.0265 6.9773 6.9294 6.8827
1	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9002 4.8066 4.7143	6.8371 6.7927 6.7492 6.7067 6.6650
;	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.4448 4.3572 4.2705 4.1847	6.6242 6.5841 6.5447 6.5059 6.4678 6.4302

TABLE

nna kangaring salangga palangganggang palanggangan bel

Satura

Thermodynamics

١

_												
EΑ	-5											
ate	d water-	-Pressure ta	ble	· · · · · · · · · · · · · · · · · · ·								
			¢ volume, ³/kg		Internal ei kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/kg · K	
, 3	Sat. temp., T _{sat} °C	Sat. liquid, v,	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s _f	Evap.,	Sat. vapor s _R
) 5 0 5 0	6.97 13.02 17.50 21.08 24.08		129.19 87.964 66.990 54.242 45.654	29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2484.4 2470.1 2459.5 2451.0 2443.9	2513.7 2524.7 2532.9 2539.4 2544.8	0.1059 0.1956 0.2606 0.3118 0.3543	8.8690 8.6314 8.4621 8.3302 8.2222	8.97 8.82 8.72 8.64
0 5	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2553.7 2560.7 2574.0 2583.9 2598.3	0.4224 0.4762 0.5763 0.6492 0.7549	8.0510 7.9176 7.6738 7.4996 7.2522	8.39 8.25 8.14
	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2345.5 2335.3 2318.4 2304.7	2608.9 2617.5 2624.6 2636.1 2645.2	0.8320 0.8932 0.9441 1.0261 1.0912	7.0752 6.9370 6.8234 6.6430 6.5019	7.83 7.76 7.66
325	91.76 99.61 99.97 105.97 111.35	0.001037 0.001043 0.001043 0.001048 0.001053	2.2172 1.6941 1.6734 1.3750 1.1594	384.36 417.40 418.95 444.23 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2278.0 2257.5 2256.5 2240.6 2226.0	2662.4 2675.0 2675.6 2684.9 2693.1	1.2132 1.3028 1.3069 1.3741 1.4337	6.2426 6.0562 6.0476 5.9100 5.7894	7.35 7.35 7.28
	116.04 120.21 123.97 127.41 130.58	0.001057 0.001061 0.001064 0.001067 0.001070	1.0037 0.88578 0.79329 0.71873 0.65732	486.82 504.50 520.47 535.08 548.57	2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2213.1 2201.6 2191.0 2181.2 2172.0	2700.2 2706.3 2711.7 2716.5 2720.9	1.5706 1.6072	5.6865 5.5968 5.5171 5.4453 5.3800	7.12 7.08 7.05
	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	583.89 594.32	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2155.4 2147.7 2140.4 2133.4	2724.9 2728.6 2732.0 2735.1 2738.1	1.7274	5.3200 5.2645 5.2128 5.1645 5.1191	6.9¢ 6.9½ 6.91
	147.90 151.83 155.46 158.83 161.98	0.001088 0.001093 0.001097 0.001101 0.001104	0.41392 0.37483 0.34261 0.31560 0.29260	639.54 655.16 669.72	1934.5 1921.2 1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2120.3 2108.0 2096.6 2085.8 2075.5	2743.4 2748.1 2752.4 2756.2 2759.6	1.8604 1.8970 1.9308	4.8916 4.8285	6.82 6.78 6.79 6.79
1 1	164.95 167.75	0.001108 0.001111	0.27278 0.25552	696.23 708.40	1875.6 1865.6	2571.8 2574.0	697.00 709.24	2065.8 2056.4	2762.8 2765.7	1.9918 2.0195		

TΔ	R	F	Λ.	_5

Saturate	d water-	-Pressure tal	ole (Continu	ied)								
			Specific volume, m³/kg		Internal energy, kJ/kg			Enthalpy, kJ/kg			Entropy, J/kg · K	
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v,	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s _g
800 850 900 950 1000	170.41 172.94 175.35 177.66 179.88	0.001115 0.001118 0.001121 0.001124 0.001127	0.24035 0.22690 0.21489 0.20411 0.19436	741.55 751.67	1846.9 1838.1	2576.0 2577.9 2579.6 2581.3 2582.8	720.87 731.95 742.56 752.74 762.51	2047.5 2038.8 2030.5 2022.4 2014.6	2773.0	2.0457 2.0705 2.0941 2.1166 2.1381	4.6160 4.5705 4.5273 4.4862 4.4470	6.6616 6.6409 6.6213 6.6027 6.5850
1100 1200 1300 1400 1500	184.06 187.96 191.60 195.04 198.29	0.001133 0.001138 0.001144 0.001149 0.001154	0.17745 0.16326 0.15119 0.14078 0.13171	813.10 828.35	1805.7 1790.9 1776.8 1763.4 1750.6	2585.5 2587.8 2589.9 2591.8 2593.4	781.03 798.33 814.59 829.96 844.55	1999.6 1985.4 1971.9 1958.9 1946.4	2780.7 2783.8 2786.5 2788.9 2791.0	2.1785 2.2159 2.2508 2.2835 2.3143	4.3735 4.3058 4.2428 4.1840 4.1287	6.5520 6.5217 6.4936 6.4675 6.4430
1750 2000 2250 2500 3000	205.72 212.38 218.41 223.95 233.85	0.001166 0.001177 0.001187 0.001197 0.001217	0.11344 0.099587 0.088717 0.079952 0.066667	906.12 933.54	1720.6 1693.0 1667.3 1643.2 1598.5	2596.7 2599.1 2600.9 2602.1 2603.2		1917.1 1889.8 1864.3 1840.1 1794.9		2.3844 2.4467 2.5029 2.5542 2.6454	4.0033 3.8923 3.7926 3.7016 3.5402	6.3877 6.3390 6.2954 6.2558 6.1856
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352	0.057061 0.049779 0.039448 0.032449 0.027378	1045.4 1082.4 1148.1 1205.8 1258.0	1557.6 1519.3 1448.9 1384.1 1323.0	2603.0 2601.7 2597.0 2589.9 2581.0	1087.4 1154.5 1213.8	1753.0 1713.5 1639.7 1570.9 1505.2	2802.7 2800.8 2794.2 2784.6 2772.6	2.7253 2.7966 2.9207 3.0275 3.1220	3.3991 3.2731 3.0530 2.8627 2.6927	6.1244 6.0696 5.9737 5.8902 5.8148
8000 9000 10,000 11,000 12,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.023525 0.020489 0.018028 0.015988 0.014264	1306.0 1350.9 1393.3 1433.9 1473.0	1264.5 1207.6 1151.8 1096.6 1041.3	2570.5 2558.5 2545.2 2530.4 2514.3	1363.7 1407.8 1450.2	1441.6 1379.3 1317.6 1256.1 1194.1	2758.7 2742.9 2725.5 2706.3 2685.4	3.2866 3.3603	2.5373 2.3925 2.2556 2.1245 1.9975	5.7450 5.6791 5.6159 5.5544 5.4939
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1585.5	985.5 928.7 870.3 809.4 745.1		1571.0 1610.3 1649.9	1131.3 1067.0 1000.5 931.1 857.4	2662.7 2637.9 2610.8 2581.0 2547.7	3.6848 3.7461	1.8730 1.7497 1.6261 1.5005 1.3709	5.4336 5.3728 5.3108 5.2466 5.1791
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.006677 0.005862 0.004994	1841.6 1951.7	675.9 598.9 509.0 391.9 140.8 0	2339.2 2294.8 2233.5 2092.4	1732.2 1776.8 1826.6 1888.0 2011.1 2084.3	777.8 689.2 585.5 450.4 161.5	2338.4 2172.6	3.8720 3.9396 4.0146 4.1071 4.2942 4.4070	1.0860 0.9164 0.7005 0.2496	5.1064 5.0256 4.9310 4.8076 4.5439 4.4070

Thermodynamics

perh	eated water											_
	V	u	h	s	, v	и	h	s	V	и	h	s
;	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	k.
	P =	0.01 MP	a (45.81°	C)*	P =	0.05 MP	(81.32°	C)	P =	0.10 MF	a (99. 6 1°	С
t.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	
50	14.867	2443.3	2592.0	8.1741								
.00	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8	
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367	2582.9	2776.6	•
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724	2658.2	2875.5	
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062	2733.9	2974.5	Į
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389	2810.7	3074.5	8
100	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027	2968.3	3278.6	٤
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	3
500	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279	3302.8	3705.6	ć
700	44.911	3480.8	3929.9	10.4056	8.9813	3480.6	3929.7	9.6626	4.4900	3480.4	3929.4	ç
300	49.527	3665.4	4160.6	10.6312	9.9047	3665.2	4160.4	9.8883	4.9519	3665.0	4160.2	ç
900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8	4398.2	10.1000	5.4137	3856.7	4398.0	9
000	58.758	4055.3	4642.8	11.0429	11.7513	4055.2	4642.7	10.3000	5.8755	4055.0	4642.6	9
100	63.373	4260.0	4893.8	11.2326	12.6745	4259.9	4893.7	10.4897	6.3372	4259.8	4893.6	10
200	67.989	4470.9	5150.8	11.4132	13.5977	4470.8	5150.7	10.6704	6.7988	4470.7	5150.6	10
300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10
	P = 0.20 MPa (120.21°C)				P ==	0.30 MPa	(133.52	°C)	<i>P</i> ==	0.40 MP	a (143.61	°C)
Sat.	0.88578	2529 1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6
150	0.95986		2769.1	7.2810	0.63402		2761.2	7.0792		3 2564.4	2752.8	6
200	1.08049			7.5081	0.71643		2865.9	7.3132		2647.2	2860.9	7
250	1.19890			7.7100	0.79645		2967.9	7.5180		2726.4	2964.5	. 7
300	1.31623			7.8941	0.87535		3069.6	7.7037		2805.1	3067.1	7
400	1.54934			8.2236	1.03155		3275.5			2964.9	3273.9	7
500	1.78142			8.5153	1.18672		3486.6			3129.8	3485.5	
600	2.01302			8.7793	1.34139		3704.0			3301.0	3703.3	
700	2.24434			9.0221	1.49580		3928.2			2 3479.0	3927.6	8
800	2.47550			9.2479	1.65004		4159.3			3663.9	4158.9	
900	2.70656			9.4598	1.80417		4397.3			3855.7	4396.9	
1000				9.6599	1.95824		4642.0			9 4054.3	4641.7	
1100		4259.6		9.8497		4259.4	4893.1			4 4259.2	4892.9	
1200				10.0304		4470.3	5150.2			5 4470.2	5150.0	
1300			5413.1	10.2029	2.42019			10.0157		6 4686.7	5412.8	
			Pa (151.8			0.60 MP					Pa (170.4	
Sat.	0.37483			6.8207		2566.8		6.7593		5 2576.0		
200	0.42503		2855.8	7.0610		2639.4	2850.6			8 2631.1	2839.8	ϵ
250				7.2725		2721.2	2957.6			1 2715.9		
300		2803.3		7.4614	ſ	2801.4	3062.0			6 2797.5	3056.9	7
350				7.6346		2881.6	3166.1			2 2878.6	3162.2	7
400		2963.7		7.7956		2962.5	3270.8			9 2960.2		7
500		3129.0		8.0893		3128.2	3483.4			2 3126.6	3481.3	
600		3300.4		8.3544		3299.8	3701.7		0.5018	6 3298.7		
700		3478.6		8.5978		3478.1	3926.4		0.5601	1 3477.2		
800		3663.6		8.8240	1	3663.2	4157.9		0.6182	0 3662.5		
900				9.0362	I .	3855.1	4396.2		0.6761	9 3854.5		
1000	1.17480	4054.0	4641.4	9.2364	0.97893	4053.8	4641.1			1 4053.3		
1100	1.26728	4259.0	4892.6	9.4263		4258.8	4892.4		1	7 4258.3		
1200		4470.0	5149.8	9.6071	1	4469.8	5149.6		1 -	0 4469.4		
		4686.6	5412.6	9.7797	1 1 0 1 0 1 0	4686.4	5412.5	9.6955		1 4686.1	5412.2	

he temperature in parentheses is the saturation temperature at the specified pressure.

^{&#}x27;roperties of saturated vapor at the specified pressure.

	A-6											
perheated water (Continued)												
	V 2.0	u	þ	S	V	u	h	S	V 3"	u	h	S
	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg
	P	= 4.0 MF	Pa (250.35	5°C)	Р	= 4.5 MF	a (257.44°	°C)	P = 5.0 MPa (263.94°C)			
	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	2 5.97
75	0.05461	2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3	2839.5	6.05
00	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0	2925.7	6.21
50	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3	6.45
OC	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5	3196.7	6.64
50	0.08004	3011.0	3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6	3317.2	6.82
OC	0.08644	3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8	3434.7	6.97
00	0.09886	3279.4	3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3	3666.9	7.26
00	0.11098		3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7	3900.3	
00	0.12292	3650.6	4142.3	7.8523	0.10916	3648.8	4140.0	7.7962	0.09816	3646.9	4137.7	7 7.74
00	0.13476	3844.8	4383.9	8.0675	0.11972	3843.3	4382.1	8.0118	0.10769	3841.8	4380.2	7.96
00	0.14653	4045.1	4631.2	8.2698	0.13020	4043.9	4629.8	8.2144	0.11715	4042.6		8.16
00	0.15824		4884.4	8.4612	0.14064	4250.4	4883.2	8.4060	0.12655	4249.3	4882.1	8.35
ОС	0.16992	4463.5	5143.2	8.6430	0.15103	4462.6	5142.2	8.5880	0.13592	4461.6		8.53
00	0.18157		5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3		7 8.71
	F	° = 6.0 Mi	Pa (275.59	9°C)	F	P = 7.0 MF	Pa (285.83	P = 8.0 MPa (295.01°C)				
:.	0.03245	2589.9	2784.6	5.8902	0.027378 2581.0 2772.6 5.8148			0.023525 2570.5 2758.7 5.74				
00	0.03619		2885.6	6.0703		2 2633.5	2839.9	5.9337	0.024279			5 5.79:
50	0.04225		3043.9	6.3357	0.03526		3016.9	6.2305	0.029975			1 6.13:
00	0.04742		3178.3	6.5432	1	3 2879.5	3159.2	6.4502	0.034344			4 6.36!
50	0.05217		3302.9	6.7219		7 2979.0	3288.3	6.6353	0.038194			3 6.55
00	0.05667		3423.1	6.8826		7 3074.3	3411.4	6.8000	0.041767			5 6.720
50	0.06102		3541.3	7.0308		5 3167.9	3531.6	6.9507	0.045172			8 6.880
00	0.06527		3658.8	7.1693		3261.0	3650.6	7.0910	0.048463			4 7.022
00	0.07355		3894.3	7.4247		3448.3	3888.3	7.3487	0.054829			2 7.282
20	0.08165		4133.1	7.6582	i .	5 3639.5	4128.5	7.5836	0.061011			8 7.518
00	0.08964		4376.6	7.8751	1	3835.7	4373.0	7.8014	0.067082			3 7.737
20	0.09756		4625.4	8.0786		1 4037.5	4622.5	8.0055	0.073079			6 7.94:
20	0.10543		4879.7	8.2709	1	1 4245.0	4877.4	8.1982	0.079025			0 8.13
20	0.11326		5139.4	8.4534		5 4457.9	5137.4	8.3810	0.084934			5 8.318
20	0.12107		5404.1	8.6273		1 4676.1	5402.6	8.5551	0.090817			0 8.492
	$P = 9.0 \text{ MPa } (303.35^{\circ}\text{C})$ $P = 10.0 \text{ MPa } (311.00^{\circ}\text{C})$ $P = 12.5 \text{ MPa } (327.81^{\circ}\text{C})$											
									0.013496 2505.6 2674.3 5.463			
:. 3E			2742.9	5.6791			2725.5	5.6159	0.013496	2505.6	20/4.	3 3.460
25		4 2647.6	2857.1	5.8738	•	7 2611.6	2810.3	5.7596	0.016100	00040	2020	C 5 711
50		6 2725.0	2957.3	6.0380		0 2699.6	2924.0	5.9460	0.016138			6 5.713
00		0 2849.2	3118.8	6.2876		6 2833.1	3097.5	6.2141	0.020030			0 6.043
50		4 2956.3	3258.0	6.4872		2 2944.5	3242.4	6.4219	0.023019			5 6.274
00		3 3056.3	3387.4	6.6603		1 3047.0	3375.1	6.5995	0.025630			6 6.465
50		5 3153.0	3512.0	6.8164	1	5 3145.4	3502.0	6.7585	0.028033			5 6.631
00		1 3248.4	3634.1	6.9605		8 3242.0	3625.8	6.9045	0.030306			6 6.782
50		5 3343.4	3755.2	7.0954		8 3338.0	3748.1	7.0408	0.032491	3324.1		2 6.922
00		9 3438.8	3876.1	7.2229		7 3434.0	3870.0	7.1693	0.034612			6 7.054
00		2 3632.0	4119.2	7.4606		9 3628.2	4114.5	7.4085	0.038724			8 7.296
00		2 3829.6	4365.7	7.6802		7 3826.5	4362.0	7.6290	0.042720			9 7.519
20		9 4032.4	4616.7	7.8855		1 4029.9	4613.8	7.8349	0.046641			5 7.726
20		4 4240.7	4872.7	8.0791		3 4238.5	4870.3	8.0289	0.050510			5 7.922
20		2 4454.2	5133.6	8.2625		8 4452.4	5131.7	8.2126	0.054342			0 8.106 1 8.281
00	0.08073	3 4672.9	5399 .5	8.4371	0.07266	7 4671.3	5398.0	8.3874	0.058147	4007.3	5554.	1 0.201

.

LE A-17										
al-gas proper	ties of air									
<i>h</i> kJ/kg	D	u kJ/kg	14	s° kJ/kg ⋅ K	<i>Т</i> К	<i>h</i> kJ/kg	Р,	и kJ/kg	v _r	<i>s</i> ° kJ/kg
	Р,		V _r							
199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37:
209.97 219.97	0.3987 0.4690	149.69 156.82	1512.0 1346.0	1.34444 1.39105	590 600	596.52 607.02	15.31 16.28	427.15 434.78	110.6 105.8	2.39
219.97	0.4690	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42
240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.443
250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.460
260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.47
270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.493
280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.509
285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81 496.62	78.61 75.50	2.54
290.16 295.17	1.2311 1.3068	206.91 210.49	676.1 647.9	1.66802 1.68515	680 690	691.82 702.52	25.85 27.29	504.45	72.56	2.55
3 298.18	1.3543	212.64	631.9	1.69528	700	713.27	28.80	512.33	69.76	2.57
300.19	1.3860	214.07	621.2	1.70203	710	724.04	30.38	520.23	67.07	2.58
5 305.22	1.4686	217.67	596.0	1.71865	720	734.82	32.02	528.14	64.53	2.60
310.24	1.5546	221.25	572.3	1.73498	730	745.62	33.72	536.07	62.13	2.61
5 315.27	1.6442	224.85	549.8	1.75106	740	756.44	35.50	544.02	59.82	2.63
320.29	1.7375	228.42	528.6	1.76690	750	767.29	37.35	551.99	57.63	2.64
5 325.31 0 330.34	1.8345 1.9352	232.02 235.61	508.4 489.4	1.78249 1.79783	760 780	778.18 800.03	39.27 43.35	560.01 576.12	55.54 51.64	2.66 2.69
	2.149	242.82	454.1	1.79763	800	821.95	47.75	592.30	48.08	2.71
340.42 350.49	2.149	250.02	422.2	1.85708	820	843.98	52.59	608.59	44.84	2.74
360.58	2.626	257.24	393.4	1.88543	840	866.08	57.60	624.95	41.85	2.77
370.67	2.892	264.46	367.2	1.91313	860	888.27	63.09	641.40	39.12	2.79
380.77	3.176	271.69	343.4	1.94001	880	910.56	68.98	657.95	36.61	2.82
390.88	3.481	278.93	321.5	1.96633	900	932.93	75.29	674.58	34.31	2.84
0 400.98 0 411.12	3.806 4.153	286.16	301.6	1.99194	920	955.38 977.92	82.05 89.28	691.28 708.08	32.18 30.22	2.87 2.89
3 411.123 421.26	4.153	293.43 300.69	283.3 266.6	2.01699 2.04142	940 960	1000.55	97.00	725.02	28.40	2.92
J 431.43	4.915	307.99	251.1	2.06533	980	1023.25	105.2	741.98	26.73	2.94
O 441.61	5.332	315.30	236.8	2.08870	1000	1046.04	114.0	758.94	25.17	2.96
J 451.80	5.775	322.62	223.6	2.11161	1020	1068.89	123.4	776.10	23.72	2.99
J 462.02	6.245	329.97		2.13407		1091.85		793.36		3.01
3 472.24	6.742	337.32		2.15604			143.9	810.62		3.03
O 482.49	7.268	344.70		2.17760	1080	1137.89	155.2	827.88		3.05
) 492.74	7.824 8.411	352.08	179.7	2.19876 2.21952	1100	1161.07	167.1 179.7	845.33 862.79		3.07 3.09
503.02513.32	8.411 9.031	.359.49 366.92			1120	1184.28 1207.57	179.7	880.35		
3 523.63	9.684	374.36		2.25997	1160	1230.92	207.2	897.91	16.064	
3 533.98	10.37	381.84		2.27967	1180	1254.34	222.2	915.57		3.15
O 544.35	11.10	389.34		2.29906	1200	1277.79	238.0	933.33		
0 555.74	11.86	396.86		2.31809	1220	1301.31	254.7	951.09		
565.17575.59	12.66 13.50	404.42 411.97		2.33685 2.35531	1240	1324.93	2/2.3	968.95	13.069	3.21
3 3/3.39	10.00	711.37	121.2	2.00001						

Name .	 Student ID.						
	Part III						

5.1 A household refrigerator runs one-fourth of the time and removes heat from the food compartment at an average rate of 800 kJ/h. If the COP of the refrigerator is 2.2, determine the power the refrigerator draws when running.

5.2 A Carnot heat engine receives 650 kJ of heat from a source of unknown temperature and rejects 250 kJ of it to a sink at 24°C. Determine (a) the temperature of the source and (b) the thermal efficiency of the heat engine.

Basic Principle Formulations

Simple Compressible Closed System:

Conservation of mass:

Conservation of energy:

 $Q = U_2 - U_1 + W$

Mechanical work of simple compressible system: $W = \int p \, dV$

Open system, Steady Flow: one inlet, one outlet

Conservation of mass:

$$\vec{m_i} = \vec{m_e} = \rho_i A_i \ \vec{v_i} = \rho_e A_e \vec{v_e}$$

Conservation of energy:
$$q - w = h_e - h_i + \left(\frac{v_e - v_i}{2}\right) + g(z_e - z_i)$$

Properties of pure substances:

Specific heats:

$$c_v = \left(\frac{\partial u}{\partial T}\right)_v \text{ and } c_p = \left(\frac{\partial h}{\partial T}\right)_p$$

for ideal gases:
$$c_p - c_v = R$$
 and $k = \frac{c_p}{c_v}$

An ideal gas law:

 $p \forall = mRT$

The specific volume of the mixture (liquid and vapor): $v = v_f + x (v_g - v_f)$

An ideal gas equation of state:

$$\frac{p_1 v_1}{T_1} = \frac{p_2 v_2}{T_2}$$

Polytropic processes of an ideal gas:

$$pv^n = constant$$

Enthalpy

$$h = u + p v$$

$$du = c_v dT$$
, $dh = c_p dT$