Importing the dataset

First of all the excel file must be read.

```
In [1]: import pandas as pd

file = pd.read_excel('data.xlsx', engine='openpyxl')
file
```

/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/openpyxl/worksheet/_reader.py:329: UserWarning: Unknown extension is not supported and will be removed warn(msg)

Out[1]:

	date	Time	Ave. wind speed- 40m	Max. wind speed- 40m	Min. wind speed- 40m	SDev. wind speed- 40m	Ave. wind speed- 30m	Max. wind speed- 30m	Min. wind speed- 30m	SDev. wind speed- 30m	 Ma wi spea 10
0	2014- 12-06 00:00:00	06:30:00	1.5	2.0	1.0	0.15	1.0	2.1	0.6	0.36	 (
1	2014- 12-06 00:00:00	07:40:00	1.4	1.6	0.7	0.21	1.1	1.8	0.7	0.22	 (
2	2014- 12-06 00:00:00	07:50:00	1.2	1.6	0.0	0.33	1.3	1.9	0.0	0.28	 (

Cleaning and normalizing the dataset

Wind Speed is the only value that matters. Therefore other extra columns are deleted.

```
In [2]:
    count = 1
    for column in file.columns:
        if "speed" not in column:
            file.drop([column], axis=1, inplace=True)

file
```

Out[2]:

	Ave. wind speed- 40m	Max. wind speed- 40m	Min. wind speed- 40m	SDev. wind speed- 40m	Ave. wind speed- 30m	Max. wind speed- 30m	Min. wind speed- 30m	SDev. wind speed- 30m	Ave. wind speed- 10m	Max. wind speed- 10m	Min. wind speed- 10m	sį
0	1.5	2.0	1.0	0.15	1.0	2.1	0.6	0.36	0.0	0.0	0.0	
1	1.4	1.6	0.7	0.21	1.1	1.8	0.7	0.22	0.0	0.0	0.0	
2	1.2	1.6	0.0	0.33	1.3	1.9	0.0	0.28	0.0	0.0	0.0	
3	0.6	0.9	0.2	0.14	0.8	1.1	0.4	0.16	0.0	0.0	0.0	
4	0.2	0.9	0.0	0.31	0.3	1.2	0.0	0.42	0.0	0.0	0.0	
46617	3.5	4.6	2.4	0.50	3.4	4.4	2.2	0.44	3.3	5.1	2.2	
46618	3.5	5.7	2.0	0.71	3.2	4.7	1.9	0.54	3.0	4.7	1.7	
46619	3.3	4.7	1.9	0.53	3.3	4.7	2.1	0.56	3.1	4.5	1.5	

Providing a properly structured dataframe

Most of the speed values are zero, which should be removed due to causing problems in the algorithm.

Then, a smaller dataframe containing all the non-zero speed values along with the number of repetitions and the probability of each occurrence will result.

```
In [3]:
    speedValues = []
    for i in range(len(file)):
        for column in file.columns:
            speed = round(float(file[column][i]) , 1)
            if speed != 0.0:
                speedValues.append(speed)
```

```
In [4]: newData = {"Speed" : list(set(speedValues)) , "Repetition Number" : [] , "P

for item in newData["Speed"]:
    m = speedValues.count(item)
    newData["Repetition Number"].append(m)
    newData["Probability"].append(m / len(speedValues))

df = pd.DataFrame(newData)
df
```

Out[4]:

	Speed	Repetition Number	Probability
0	0.7	13037	0.034585
1	1.5	8023	0.021284
2	2.0	6407	0.016997
3	2.1	5995	0.015904
4	1.0	10838	0.028751
233	13.1	100	0.000265
234	14.6	61	0.000162
235	14.1	73	0.000194
236	15.1	55	0.000146
237	15.6	40	0.000106

Drawing a graph from experimental data

The discrete probability distribution in terms of speed is plotted below.

```
In [5]: import matplotlib.pyplot as plt

plt.scatter(df["Speed"] , df["Probability"])
plt.title("Probability - Wind speed scatter plot")
plt.xlabel("Speed(m/s)")
plt.ylabel("Probability")
plt.show()
```


Determination of Weibull parameters

The scale parameter c and the shape parameter k in the Weibull function are determined.

```
In [6]: import numpy as np
    averageSpeed = np.mean(df["Speed"])
    std = np.std(df["Speed"])

    c = 1.12 * averageSpeed
    k = (std / averageSpeed) ** (-1.086)

    print(f"The scale parameter is {c} and the shape parameter is {k}")
```

The scale parameter is 12.76304424778761 and the shape parameter is 1.808470123990429

Drawing the Weibull curve along with the graph of experimental data

Finally the Weibull distribution and the discrete probability distribution are plotted.

It can be seen that the two do not coincide.

```
In [7]: u = np.linspace(min(df["Speed"]) , max(df["Speed"]) , 100)
p = ((k / c) * (u / c) ** (k - 1)) * np.exp(-1 * (u / c) ** k)

plt.plot(u , p)
plt.title("Weibull distribution plot")
plt.xlabel("Speed(m/s)")
plt.ylabel("Probability or Density function")
plt.show()
```



```
In [8]: plt.scatter(df["Speed"] , df["Probability"] , label = "Experimental" , colo
plt.title("Probability - Wind speed plot")
plt.plot(u , p , label = "Weibull curve")
plt.xlabel("Speed(m/s)")
plt.ylabel("Probability or Density function")
plt.legend()
plt.show()
```

