(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

International Bureau

(43) International Publication Date 27 January 2005 (27.01.2005)

PCT

(10) International Publication Number WO 2005/006968 A1

(51) International Patent Classification⁷:

A61B 5/00

(21) International Application Number:

PCT/IB2004/051159

(22) International Filing Date:

8 July 2004 (08.07.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

03077233.9

16 July 2003 (16.07.2003) EP

(71) Applicant (for all designated States except DE, US): KONINKLIJKE PHILIPS ELECTRONICS N.V. [NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).

- (71) Applicant (for DE only): PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH [DE/DE]; Steindamm 94, 20099 Hamburg (DE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): SUCH, Olaf [DE/DE]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven

(NL). LAUTER, Josef [DE/DE]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). REITER, Harald [DE/DE]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). SCHMIDT, Ralf [DE/DE]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). MONTVAY, Andras [DE/DE]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). MUEHLSTEFF, Jens [DE/DE]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).

- (74) Agent: SCHOUTEN, Marcus, M.; Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: A PORTABLE ELECTRONIC DEVICE AND A HEALTH MANAGEMENT SYSTEM ARRANGED FOR MONITORING A PHYSIOLOGICAL CONDITION OF AN INDIVIDUAL

(57) Abstract: The invention relates to a portable electronic device, like a shaver, a toothbrush, a walkman, a telephony unit, etc., said device being arranged to measure a signal representative of a physiological condition of a user during a conventional usage of said device. In an embodiment of the electric shaver (25), it is provided with a first contact surface (26) comprising a plurality of shaving heads (26a, 26b, 26c). The shaving heads are manufactured from an electrically conducting material, usually a metal and are suited to provide a good electrical contact to the individual's skin during shaving, thus constituting a first electrode. The second contact surface (28') is provided on the housing of the shaver, in particular on a grip portion (28) thereof, where a contact to a hand of the individual is enabled. The second contact surface (28') comprises a second electrode (29). Additionally, the second contact surface (28') can comprise a further sensor (29') arranged to provide additional data on the physiological condition of the user. The signal measured from the electrodes is supplied to the input of the amplifier (30), which is preferably a differential amplifier. The signal from the differential amplifier (30) is then supplied to a band-pass filter (32), which is preferably set for the range of 0,02 Hz to 100 Hz. The limited amplified biosignal (33) is then forwarded to the analogue-to-digital converter (34). The digitized signal is then analyzed by the analysis means (35), the results of the analysis, comprising the deduced health-related parameter is being displayed on a display (36) of the electric shaver. Additionally the health-related parameter and/or the raw data are transmitted to a remotely arranged unit by a built-in transmission means (38). Preferably, the transmission means (38) comprises a wire-less transmitter.

2005/006968 A1

WO 2005/006968 A1

FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

with international search report