Deterministic Finite Automata

 $L(M) = \{w : w \text{ is a string over } \Sigma \text{ and } M \text{ accepts } w \}, \ \Sigma = \{a. b\}$ All the following examples have same alphabet Σ

 $L(M) = \{ w : w \text{ contains 'a'} \}$

 $L(M) = \{ w : w \text{ ends with 'a'} \}$

L(M) = { w : w starts with 'ab'}

 $L(M) = \{ w : w \text{ contains odd number of 'a'} \}$

 $L(M) = \{ w : w \text{ contains 'ab'} \}$

 $L(M) = \{ w : w \text{ ends with 'ab'} \}$

L(M) = { w : every 'a' should be followed by 'b'}

 $L(M) = \{ w : 'a' \text{ must not followed by 'b'} \}$

 $L(M) = \{ w : w \text{ starts with 'a' and ends with 'b'} \}$

L(M) = { w : start and end with different character}

L(M) = { w : start and end with same character}

L(M) = { w : w contains 'aba' as a substring}

 $L(M) = \{ w : w \text{ ends with 'aa'} \}$

L(M) = { w : w ends with 'b' and doesn't contain 'aa'}

 $L(M) = \{ w : w \text{ contains 'abbaab'} \}$

 $L(M) = \{ w : length of w is exactly 2 \}$

 $L(M) = \{ w : length of w is atmost 2 \}$

L(M) = { w : length of w is at least 2}

L(M) = { w : length is multiple of 2}

L(M) = { w : length is multiple of 3}

 $L(M) = { w : number of a is even}$

L(M) = { w : length is odd}

L(M) = { w : length is not divisible by 3}

$L = \{a^m b^n \text{ where } m, n \ge 1\}$

$L = \{a^mb^n \text{ where } m, n \ge 0\}$

$L = \{a^m b^n c^l \text{ where m, n, l} >= 1\}$

$L = \{a^mb^nc^l \text{ where } m, n, l >= 0\}$

L = $\{ w : w \in \{0, 1\}^* \text{ is a binary number divisible by '2'} \}$

L = { w : w \in {0, 1}^{*} is a binary number divisible by '3'}

Use transition table to easily construct DFA

L = $\{ w : w \in \{0, 1\}^* \text{ is a binary number divisible by '4'} \}$

