La régression Bêta

Une alternative intéressante pour modéliser des proportions

Maxime Lacroix

28 septembre 2018

Mise en contexte

Contexte

- Régression sur une variable réponse tenue entre (0,1)
- Par exemple, un taux ou une proportion
- Régression linéaire "classique" à éviter

Première solution : transformation logit

Première transformation possible

$$\widetilde{y} = log(\frac{y}{1 - y}) \tag{1}$$

4 / 35

- Avantage :
 - Les données ne sont plus bornées, la régression linéaire est envisageable
- Désavantages :
 - Interprétation différente
 - Fort potentiel d'hétéroscédasticité
 - Les données sont souvent asymétrique → problèmes pour les tests d'hypothèses et les intervalles de confiance.

Maxime Lacroix La régression Bêta 28 septembre 2018

Solution: Régression Bêta

Brève présentation

- Présentée pour la première fois en 2004 par Ferrari et Cribari-Neto
- Intérêt majeur :
 - La densité bêta prend différentes formes dépendemment des paramètres
 - Densité généralement hétéroscédastique
 - Interprétation semblable à la régression logistique

METTRE DES GRAPHIQUES QUI PROUVENT LE POINT 1

Présentation mathématique

Densité d'une loi bêta

$$f_Y(y) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha - 1} (1 - y)^{\beta - 1}$$
 (2)

De l'équation 2, Ferrari et Cribari-Neto ont proposé une nouvelle paramétrisation, en posant :

- $\mu = \frac{\alpha}{\alpha + \beta}$
- $\phi = \alpha + \beta$

Nouvelle paramétrisation

Densité sous la nouvelle paramétrisation

$$f_Y(y) = \frac{\Gamma(\mu\phi)}{\Gamma((1-\mu)\phi)} y^{\mu\phi-1} (1-y)^{(1-\mu)(\phi-1)}$$
(3)

On peut donc dire que $y \sim B(\mu, \phi)$. L'équation 3 nous donne les propriétés suivantes :

- $E(y) = \mu$
- $Var(y) = \frac{\mu(1-\mu)}{1+\phi}$

On appelle d'ailleurs ϕ le paramètre de dispersion.

Modèle de régression

Définition du modèle

On peut maintenant définir le modèle pratiquement comme un GLM, c'est à dire :

Modèle de régression bêta simple

$$g(\mu_i) = x_i^t \beta = \eta_i \tag{4}$$

La fonction de lien g() peut être choisie comme pour un GLM classique, soit en utilisant le logit, le log-log, le Cauchy. C'est au choix de l'utilisateur. De base, le package betareg utilise le lien logit.

La variance de y_i est donnée par la formule suivante. On remarque facilement qu'elle dépend de μ_i , donc il y a hétéroscédasticité.

$$VAR(y_i) = \frac{\mu_i(1 - \mu_i)}{1 + \phi} \tag{5}$$

Paramètre de dispersion non-constant

Smithson et Verkuilen, en 2006, ont proposé un modèle où le paramètre de dispersion est non-constant. On se retrouve donc avec un autre paramètre à estimer. La régression est donnée par :

Modèle de régression bêta avec dispersion changeante

$$g_1(\mu_i) = x_i^t \beta = \eta_{1i} \tag{6}$$

$$g_2(\phi_i) = z_i^t \gamma = \eta_{2i} \tag{7}$$

Estimation des paramètres

Les paramètres sont estimés en maximisant la vraisemblance. La fonction log-vraisemblance est aisémant calculable, elle est donnée par :

Fonction du log-vraisemblance

$$l_{i}(\mu_{i}, \phi_{i}) = log\Gamma(\phi_{i}) - log\Gamma(\mu_{i}\phi_{i}) - log\Gamma((1 - \mu_{i})\phi_{i}) + (\mu_{i}\phi_{i} - 1)log(y_{i}) + ((1 - \mu_{i})\phi_{i} - 1)log(1 - y_{i})$$
(8)

Exemple d'utilisation

Jeu de données utilisé

- \bullet Titre : Proportion of seats held by women in national parliaments (%)
- $\bullet \ \, \mathsf{Source}: \ \, \mathsf{https://datahub.io/world-bank/sg.gen.parl.zs\#resource-data} \\$
- Nombre de données : 3917
- Variables :
 - Nom du pays
 - Code ISO du pays
 - Continent*
 - Année
 - Décennie*
 - Proportion

Histogramme des proportions de femmes au parlement

Implémentation en R

Supposons que l'on veut prédire la proportion de femmes en fonction du continent. Comme il s'agit d'une proportion, on peut utiliser la régression bêta. Le package betareg nous permet d'effectuer cette analyse. L'écriture à utiliser est la suivante :

```
betareg(formula, data, subset, na.action, weights, offset,
  link = c("logit", "probit", "cloglog",
           "cauchit", "log", "loglog"),
  link.phi = NULL, type = c("ML", "BC", "BR"),
  control = betareg.control(...), model = TRUE,
  y = TRUE, x = FALSE, ...)
```

Premier modèle : Lien logit et dispersion fixe

Résumé du modèle

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-1.6992958	0.0215978	-78.678997	0
continentAmericas	0.1839680	0.0323398	5.688597	0
continentAsia	-0.1850590	0.0323821	-5.714861	0
continentEurope	0.4418774	0.0296008	14.927878	0
continent Oceania	-0.5225864	0.0625121	-8.359764	0

	Estimate	Std. Error	z value	Pr(> z)
(phi)	12.86361	0.2964138	43.39748	0

Deuxième modèle : Lien logit et dispersion changeante

Résumé du modèle

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-1.6752997	0.0238124	-70.354140	0.00e+00
continent Americas	0.1390195	0.0341478	4.071108	4.68e-05
continentAsia	-0.2175871	0.0357081	-6.093497	0.00e + 00
continentEurope	0.4106906	0.0316832	12.962428	0.00e + 00
continentOceania	-0.4636063	0.0775094	-5.981290	0.00e + 00
	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	2.4364670	0.0432605	56.320765	0.0000000
continentAmericas	0.2537546	0.0676070	3.753376	0.0001745
continentAsia	0.1552511	0.0650542	2.386489	0.0170101
continentEurope	0.1774846	0.0631738	2.809463	0.0049624
continentOceania	-0.1322834	0.1194919	-1.107049	0.2682727

Troisième modèle : Lien log et dispersion constante

Résumé du modèle

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-1.8671906	0.0182597	-102.257294	0
continentAmericas	0.1532282	0.0268729	5.701959	0
continentAsia	-0.1586004	0.0278040	-5.704221	0
continentEurope	0.3594905	0.0240928	14.921048	0
continent Oceania	-0.4576135	0.0560159	-8.169355	0

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	2.554403	0.0230428	110.8546	0

Comparaison des différents modèles

Les différents modèles nous ont montré différentes choses :

- Peu importe le lien choisi, l'estimation de ϕ est la même si on choisi que ϕ est constant.
- Comme on maximise la vraisemblance, il est naturel que les coefficients pour μ ne soient pas les mêmes pour les modèles 1 et 2.

Quel est le meilleur modèle?

Test du maximum de vraisemblance

On pourrait s'intéresser à connaître l'impact d'ajouter les coefficients de dispersion. En posant :

- $H_0 = Modèle simple$
- $H_1 = Modèle complexe$

On peut utiliser le code suivant :

```
library(lmtest)
lrtest(mod1,mod2)
```

Résultat du test

Likelihood ratio test

```
##
## Model 1: Value ~ continent
## Model 2: Value ~ continent | continent
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 6 3750.1
## 2 10 3761.1 4 22.014 0.0001992 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

Choix selon un critère

Tout comme dans les GLM, il est possible de choisir le meilleur en utilisant le critère de notre choix, comme l'AIC par exemple, ou le BIC. Il se peut que le choix du type de lien g() améliore grandement le modèle, dépendemment des données. Le code pour effectuer ce calcul est le suivant :

```
AIC(mod1,mod2,mod3)
```

```
## df AIC
## mod1 6 -7488.227
## mod2 10 -7502.241
## mod3 6 -7488.227
```

Méthodes avancées

Contexte

En 2010, Grün, Kosmidis et Zeilis ont publié l'article *Extended Beta Regression in R: Shaken, Stirred, Mixed and Partitioned*, dans lequel ils expliquent différentes méthodes plus complexes pouvant améliorer le modèle. Trois grois thèmes y ressortent, soient :

- Correction de biais dans l'estimation des paramètres
- Les arbres de régression bêta
- Mixtures ou mélanges de régressions bêta

Correction de biais

Dans l'article, on discute le fait que la méthode du maximum de vraisemblance pour estimer les paramètres de ϕ ont tendance à sous-estimer les écarts-types des paramètres, ce qui amène des problèmes notamment au niveau de l'inférence que l'on peut faire avec le modèle.

Solution:

- Correction du biais (BC)
- Réduction du biais (BR)

Implémentation en R

Rappel : Écriture de la fonction betareg :

Remarquons le type correspond à la mtéhode d'estimation choisie.

Arbres de régression bêta

L'idée derrière cette méthode est de se questionner à savoir s'il n'y aurait pas une autre variable qui permettrait de partitionner le modèle. Après avoir partitionné le modèle, on peut estimer les paramètres dans chacune des partitions. Voici un example simple :

Résultat

On voit que de faire un modèle différent par décennie semble une option

Maxime Lacroix La régression Bêta 28 septembre 2018 32 / 35

Mélange de régressions bêta

On pourrait qu'il y a des différences dans différents sous-groupes de l'échantillon, mais qu'il existe pas de variables discriminante. La solution : utiliser betamix. Voici un example. Ça revient à créer un 3 *clusters* de données et d'estimer un modèle pour chacun des *clusters*.

```
rs_mix <- betamix(accuracy ~ iq, data = ReadingSkills, k = 3,
  nstart = 10, extra_components = extraComponent(type = "uniforcoef = 0.99, delta = 0.01))</pre>
```

Conclusion

34 / 35

Conclusion

- Modèle relativement simple à utiliser
- Possibilité de complexifier les choses rapidement
- Règle beaucoup de problèmes avec la dispersion des données que la régression linéaire n'est pas en mesure de faire.