

Jasmin Kaur and Thomas Kadyk IEK- 13, Forschungszentrum Jülich RWTH Aachen University

Polymer Electrolyte Membrane Fuel Cell (PEMFC) The Challenges

Performance limitations

Material degradation

Diagnosis of state of health

R. Gloukhovski et al. Reviews in Chem. Eng. (2017) 34, 455-479 Tang et al. J Electrochem. Soc. (2006) 153, A2036–43.

Voltage drop caused by charger transfer, membrane and mass transfer resistances at different current densities at 80 °C.

Frequency response analysis

Electrochemical Impedance Spectra

Paganin et al., Electrochim. Acta (1998) 43, 3761.

Nyquist Plot

$$Z = R + \frac{1}{i\omega C}$$

$$Z = \left(\frac{1}{R_{ct}} + i\omega C\right)^{-1}$$
$$R_{ct} = \frac{RT}{nFi_0}$$

$$Z = R_s + \left(\frac{1}{R_{ct}} + i\omega C\right)^{-1}$$

Sensitivity of EIS response and physics based modeling approaches

M. Eikerling and A. Kulikovsky. Polymer Electrolyte Fuel Cells - Physical Principles of Materials and Operation. CRC Press, 2017. ISBN 9781138077447

Transport in porous electrodes

Electrochimica Acta, 1963, Vol. 8, pp. 751 to 780.

ON POROUS ELECTRODES IN ELECTROLYTE SOLUTIONS*

R. DE LEVIE§
Electrochemistry Laboratory, University of
Amsterdam, Holland

the transmission line theory, or be levie theory

Distributed circuit elements

1.0

- Not any random distribution would work.
- Distributed time constant, pore size distribution.

0.5 **Z...' / ohm**

1.5

1.0

0.5

0.0

Song et al. Electrochimica Acta 44 (1999) 3513-3519

M. E. Orazem and Bernard Tribollet. Electrochemical Impedance Spectroscopy. John Wiley \& Sons, 2018. DOI:10.1002/9780470381588

Linear

G(s)

Frequency Response Analysis

Transfer Functions

Assume an initially relaxed linear system excited at t=0 by an input x(t), and assume that y(t) is the corresponding output. Let

$$X(s) = \mathcal{I}[x(t)]$$

$$Y(s) = \mathcal{I}[y(t)]$$

For a linear system

where $G(s) = \frac{Y(s)}{X(s)}$ is called the transfer function of the circuit or

X(s)

system, and it provides a direct mathematical relationship between the input and the output for any arbitrary input.

Transient response function response of a system to a

change from an equilibrium or a steady state

Impedance response probe

Small harmonic perturbation Linear response

M. E. Orazem and Bernard Tribollet. Electrochemical Impedance Spectroscopy, John Wiley \& Sons, 2018. DOI:10.1002/9780470381588

M. Eikerling and A. Kulikovsky, Polymer Electrolyte Fuel Cells - Physical Principles of Materials and Operation, CRC Press, 2017, ISBN 9781138077447 A. A.Kulikovsky, Analytical Modeling of Fuel Cells, Second Edition, Elsevier, 2017, ISBN 978-0-444-64222-6

 $\rightarrow v(t)$

 $\rightarrow Y(s)$

Transform into s-domain (frequency domain)

MODELING METHODOLOGY Conservation equations: Mass, charge, momentum, energy Pore size distribution $\frac{\partial c_{H}^{+}}{\partial t} - D_{H}^{+} \nabla \cdot \left(\nabla c_{H}^{+} + \frac{F c_{H}^{+}}{RT} \nabla \varphi \right) = 0$ Particle size distribution $\frac{\partial c_{O_2}}{\partial t} - D_{O_2}(\nabla c_{O_2}) = 0$ Electrochemical Impedance response of a pore For concentration and potential $Z(\omega) = \frac{1}{2\pi R} \cdot \frac{\delta \phi^{M}(\omega)}{\int_{0}^{L} \delta j(\omega, z) dz}$ For concentration and potential **Boundary conditions:** reaction kinetics. metal charging. surface charge density Linearization in Fourier space M. Eikerling, A.A. Kornyshev, J. Electroanal, Chem. 475 (1999) 107-123 K. Chan, M. Eikerling, J. Electrochem. Soc. 159 (2012) B155-B164 A. Kulikovsky, J. Electrochem, Soc. 164 (2017) F374-F386

