The LeNet-5 CNN Architecture, developed by Yann LeCun in 1998, is one of the pioneering convolutional neural networks (CNNs).

- The architecture was developed to recognize handwritten and machine-printed characters, a function that showcased the potential of deep learning in practical applications.
- This architecture used backpropagation for training CNNs.
- · Suitable for smaller datasets due to limited capacity.

LeNet-5 has a total of 7 layers, excluding the input layer.

- These layers include convolutional layers, pooling (subsampling) layers, and fully connected layers.
- It uses tanh activation functions (as opposed to ReLU in modern architectures).

Let us know Layer-by-Layer Description:

- 1. **Input Layer**: Accepts a 32x32 grayscale image as input. (Images from datasets like MNIST are padded from 28x28 to 32x32 to fit this architecture.)
- 2. Convolutional Layer 1 (C1):
 - Applies 6 filters of size 5x5.
 - o Produces an output of 6 feature maps each of size 28x28.
- 3. Pooling Layer 1 (S2):
 - Averages values in 2x2 regions with a stride of 2.
 - Reduces the spatial dimensions from 28x28 to 14x14.
- 4. Convolutional Layer 2 (C3):
 - Applies 16 filters of size 5x5.
 - Produces an output of 16 feature maps each of size 10x10.
- 5. Pooling Layer 2 (S4):
 - Averages values in 2x2 regions with a stride of 2.
 - Reduces the spatial dimensions from 10x10 to 5x5.
- 6. Fully Connected Layer 1 (F5): Flattens the feature maps and passes them through a dense layer with 120 units.
- 7. Fully Connected Layer 2 (F6): Passes the output from the previous layer to another dense layer with 84 units.
- 8. Output Layer:
 - \circ Contains 10 units, representing the 10 digit classes (0-9).
 - Uses a softmax function for classification.

Parameter Sharing

LeNet-5 utilizes shared weights in the convolutional layers to reduce the number of trainable parameters.

Here's a more structured representation of the LeNet-5 CNN Architecture in a table format:							
Layer	Туре	Input Size	Output Size	Kernel/Filter Size	Number of Filters	Activation	Remarks
Input Layer		32x32x1	32x32x1				Grayscale image input
C1	Convolutional	32x32x1	28x28x6	5x5	6	Tanh	Extracts features using 6 filters
S2	Average Pooling	28x28x6	14x14x6	2x2		Tanh	Reduces dimensions by half
C3	Convolutional	14x14x6	10x10x16	5x5	16	Tanh	Extracts more complex features
S4	Average Pooling	10x10x16	5x5x16	2x2		Tanh	Further reduces dimensions
F5	Fully Connected	5x5x16 (Flattened)	120			Tanh	Dense layer with 120 neurons
F6	Fully Connected	120	84			Tanh	Dense layer with 84 neurons
Output Layer	Fully Connected	84	10 🕠			Softmax	Produces class probabilities

To know more:

- https://www.datasciencecentral.com/lenet-5-a-classic-cnn-architecture/
- https://medium.com/@siddheshb008/lenet-5-architecture-explained-3b559cb2d52b
- Image Classification with the CIFAR-10 Dataset Using the LeNet-5 CNN Architecture

```
# Step 1: Importing the necessary libraries
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.utils import to_categorical
import matplotlib.pyplot as plt

# Step 2: Loading and pre-processing of the CIFAR-10 dataset

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

# Step 3: Normalizing pixel values to be between 0 and 1

train_images = train_images / 255.0
test_images = test_images / 255.0
```

- One-hot encoding converts categories into a numeric format, enabling models to process them.
- Assigning numeric values (e.g., 1, 2, 3) to categories implies an ordinal relationship that may not exist.
- One-hot encoding removes this unintended relationship by treating each category as independent.
- In classification tasks, the softmax activation function is often used in the output layer.
- One-hot encoding creates a binary vector with a "1" for the true class and "0" elsewhere, which aligns with the softmax output's probability distribution.
- one-hot encoding ensures categorical variables are appropriately represented without introducing unintended relationships or biases, making it an essential preprocessing step for classification tasks.

```
# Step 4: One-hot encode the labels.
# This step is required to use the loss function "categorical_crossentropy"

train_labels = to_categorical(train_labels, 10) # here 10 is for- It ensures the output one-hot encotest_labels = to_categorical(test_labels, 10)

# Step 5: Defining the class names for CIFAR-10 images

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'transport of the class names are provided in the class names."
```

```
12/25/24, 12:34 AM
                                                        LeNet-5_Architecture.ipynb - Colab
   # Step 6: Visualizing a few training images from the CIFAR-10 dataset.
   plt.figure(figsize=(10, 10))
   for i in range(25):
     plt.subplot(5, 5, i + 1)
     plt.xticks([])
     plt.yticks([])
     plt.grid(False)
     plt.imshow(train_images[i])
     plt.xlabel(class_names[train_labels[i].argmax()]) # Using argmax to get the label index
   plt.show()
   ₹
                                               truck
                                                                               automobile
           automobile
                                                                 ship
                                                                                  cat
              deer
                              horse
                                               horse
                                                                 bird
                                                                                 truck
             truck
                              truck
                                                                 bird
                                                cat
                                                                                 froa
                               cat
                                                frog
                                                                 frog
```

```
# Step 7: Building the CNN model (LeNet-5 CNN Architecture)
model = models.Sequential([
     layers.Conv2D(6, (5, 5), activation='tanh', input_shape=(32, 32, 3)),
     layers.AveragePooling2D((2, 2)),
     layers.Conv2D(16, (5, 5), activation='tanh'),
     layers.AveragePooling2D((2, 2)),
     layers.Conv2D(120, (5, 5), activation='tanh'),
     layers.Flatten(),
     layers.Dense(84, activation='tanh'),
layers.Dense(10, activation='softmax')
])
/usr/local/lib/python3.10/dist-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_super().__init__(activity_regularizer=activity_regularizer, **kwargs)
# Step 8: Printing the model summary
model.summary()
```

```
→ Model: "sequential"
```

plt.ylim([0, 2])

plt.grid(True) plt.show()

plt.legend(loc='upper right')

plt.title('Training and Validation Loss')

```
Layer (type)
                                         Output Shape
                                                                                 Param #
conv2d (Conv2D)
                                                                                      456
                                         (None, 28, 28, 6)
```

```
# Step 9: Compiling the CNN model
model.compile(optimizer='adam', # Adam uses a default learning rate of 0.001
loss='categorical_crossentropy',
metrics=['accuracy'])
# Step 10: Training the CNN model.
trained_model = model.fit(train_images, train_labels, epochs=10, batch_size=32, validation_data=(tes
Epoch 1/10
1563/1563
                              – 43s 27ms/step - accuracy: 0.3185 - loss: 1.8989 - val_accuracy: 0.4045 - val_loss: 1.6714
    Epoch 2/10
    1563/1563
                              - 79s 25ms/step - accuracy: 0.4276 - loss: 1.6227 - val accuracy: 0.4657 - val loss: 1.4975
    Epoch 3/10
    1563/1563 Epoch 4/10
                              - 41s 25ms/step - accuracy: 0.4845 - loss: 1.4483 - val accuracy: 0.4910 - val loss: 1.4253
    1563/1563
                              - 40s 24ms/step - accuracy: 0.5204 - loss: 1.3544 - val accuracy: 0.5173 - val loss: 1.3641
    Epoch 5/10
    1563/1563
                              – 38s 25ms/step - accuracy: 0.5399 - loss: 1.2963 - val_accuracy: 0.5255 - val_loss: 1.3505
    Epoch 6/10
    1563/1563
                              - 41s 25ms/step - accuracy: 0.5633 - loss: 1.2382 - val_accuracy: 0.5232 - val_loss: 1.3531
    Fnoch 7/10
    1563/1563
                              - 41s 25ms/step - accuracy: 0.5741 - loss: 1.1992 - val_accuracy: 0.5288 - val_loss: 1.3335
    Epoch 8/10
                              - 41s 25ms/step - accuracy: 0.5936 - loss: 1.1511 - val accuracy: 0.5311 - val loss: 1.3363
    1563/1563
    Epoch 9/10
                              - 40s 26ms/step - accuracy: 0.6034 - loss: 1.1187 - val_accuracy: 0.5293 - val_loss: 1.3479
    1563/1563
    Epoch 10/10
    1563/1563 -
                              — 40s 25ms/step - accuracy: 0.6174 - loss: 1.0918 - val_accuracy: 0.5461 - val_loss: 1.3261
# Step 11: Evaluating the performance of the CNN model
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(f'\nTest accuracy is: {test_acc}')
→ 313/313 - 3s - 9ms/step - accuracy: 0.5461 - loss: 1.3261
    Test accuracy is: 0.5461000204086304
# Plotting training and validation accuracy
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(trained_model.history['accuracy'], label='Training Accuracy')
plt.plot(trained_model.history['val_accuracy'], label='Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.ylim([0, 1])
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.grid(True)
# Plotting training and validation loss
plt.subplot(1, 2, 2)
plt.plot(trained_model.history['loss'], label='Training Loss')
plt.plot(trained_model.history['val_loss'], label='Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
```

 $\overline{2}$ Training and Validation Accuracy Training and Validation Loss 1.0 — 2.00 —