

# System Level Prognostics Framework for a UAV Powertrain System

Timothy Darrah

Supported in part by





#### Overview

Background
Powertrain System
The Battery
The Motors
Prognostics Architecture
Results
Future Work



Oaxaca, MX Helicopter Crash Feb 17, 2018, 13 dead, 13 injured https://mexiconewsdaily.com/news/oaxaca-chopper-crash-kills-14-injures-13/

Powertrain System

Consists of the motor group, a buck converter, and a 3-cell battery

Buck converter provides constant voltage output

Motors and battery are monitored with UKFs



# The Battery

| Parameter     | Value           |
|---------------|-----------------|
| Q             | 3800 <i>mAh</i> |
| $\eta$        | .9929           |
| γ             | .1199           |
| $M_0$         | $1e^{-4}$       |
| M             | $1e^{-6}$       |
| $R_0*$        | $.0112\Omega$   |
| $R_1$         | $.1\Omega$      |
| $C_1$         | $250\mu$ F      |
| $V_0$         | 4.2v            |
| * Degradation | n parameter     |



$$\begin{split} z[k+1] &= z[k] - \frac{\eta[k]\Delta t}{Q} i[k] \\ i_R[k+1] &= I_{mat} i_R[k] + (1 - I_{mat}) i[k] \\ h[k+1] &= H_{mat} h[k] + (H_{mat} - 1) sign(i[k]) \\ v[k] &= ocv(z[k]) + M_0 sign(i[k]) + Mh[k] - \sum (Ri_R[k]) - R_0 i[k], \end{split}$$

# The Battery

| Parameter               | Value         |
|-------------------------|---------------|
| Q                       | 3800mAh       |
| $\eta$                  | .9929         |
| γ                       | .1199         |
| $M_0$                   | $1e^{-4}$     |
| M                       | $1e^{-6}$     |
| $R_0*$                  | $.0112\Omega$ |
| $R_1$                   | $.1\Omega$    |
| $C_1$                   | $250\mu$ F    |
| $V_0$                   | 4.2v          |
| * Degradation parameter |               |





$$z[k+1] = z[k] - \frac{\eta[k]\Delta t}{Q}i[k]$$

$$i_{R}[k+1] = I_{mat}i_{R}[k] + (1 - I_{mat})i[k]$$

$$h[k+1] = H_{mat}h[k] + (H_{mat} - 1)sign(i[k])$$

$$v[k] = ocv(z[k]) + M_{0}sign(i[k]) + Mh[k] - \sum (Ri_{R}[k]) - R_{0}i[k]$$

# The Battery

| Parameter               | Value         |
|-------------------------|---------------|
| Q                       | 3800mAh       |
| $\eta$                  | .9929         |
| γ                       | .1199         |
| $M_0$                   | $1e^{-4}$     |
| M                       | $1e^{-6}$     |
| $R_0*$                  | $.0112\Omega$ |
| $R_1$                   | $.1\Omega$    |
| $C_1$                   | $250\mu$ F    |
| $V_0$                   | 4.2 <i>v</i>  |
| * Degradation parameter |               |





$$z[k+1] = z[k] - \frac{\eta[k]\Delta t}{Q}i[k]$$

$$i_{R}[k+1] = I_{mat}i_{R}[k] + (1 - I_{mat})i[k]$$

$$h[k+1] = H_{mat}h[k] + (H_{mat} - 1)sign(i[k])$$

$$v[k] = ocv(z[k]) + M_{0}sign(i[k]) + Mh[k] - \sum (Ri_{R}[k]) - R_{0}i[k]$$

## The Motors



$$\bar{v}_{batt_i} = R\bar{i}_{batt_i} + K_E \omega_i, 
\dot{\omega}_i = \frac{1}{J_m} (K_E \bar{i}_{batt_i} - d\omega^2 - D_f \omega_i - T_{fric})$$

## The Motors



| Parameter               | Desc              | Value       |
|-------------------------|-------------------|-------------|
| R                       | coil resistance   | $\Omega 8.$ |
| Ke                      | back EMF          | .0068       |
| Tf*                     | friction torque   | $1e^{-8}$   |
| Df                      | viscous dampening | $1e^{-9}$   |
| d                       | drag constant     | $1.6e^{-8}$ |
| $\dot{J}$               | inertia           | $4.9e^{-6}$ |
| * Degradation parameter |                   |             |

$$\bar{v}_{batt_i} = R\bar{i}_{batt_i} + K_E \omega_i, 
\dot{\omega}_i = \frac{1}{J_m} (K_E \bar{i}_{batt_i} - d\omega^2 - D_f \omega_i - T_{fric})$$

### The Motors



# Prognostics Architecture



# Prognostics Architecture



# Prognostics Architecture



## Results







## Results

#### **Motor Degradation**





#### **Battery Degradation**







## Results

#### **Motor Degradation**





#### **System Degradation**





#### **Battery Degradation**







#### Future Work

The actual prognostics framework!

- Particle Filter
- Monte Carlo simulations
- RUL predictions

Prognostics based decision making

- Knowledge representation (Tree/Graph)
- Solution searching (CSP)
- Communication (NLP)

# Thank You!