Corrigé TD 15 - Exercices 9, 10, 13, 18, 19

Exercice 9:

$$\text{Soit } R \in F \text{, } R \text{ s'\'ecrit } R = a \left(\begin{array}{cc} 1 & 2 \\ 0 & -1 \end{array} \right) + b \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \text{ dont on tire que } F = \text{Vect} \left\{ \left(\begin{array}{cc} 1 & 2 \\ 0 & -1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \right\}.$$

De même pour
$$S\in G$$
, S s'écrit $S=c\left(egin{array}{cc}1&3\\0&-2\end{array}
ight)+d\left(egin{array}{cc}0&1\\-1&1\end{array}
ight).$

On en déduit que $G=\operatorname{Vect}\left\{\left(egin{array}{cc}1&3\\0&-2\end{array}
ight),\left(egin{array}{cc}0&1\\-1&1\end{array}
ight)
ight\}.$ Alors F et G sont deux sous-espaces vectoriels de $\mathcal{M}_2(\mathbb{R}).$

Soit $M\in\mathcal{M}_2(\mathbb{R}),\ M=\left(egin{array}{cc} x & y \\ z & t \end{array}
ight)$ et écrivons M=R+S avec $R\in F$ et $S\in G$. On cherche donc a,b,c,d tels que

$$M=a\left(egin{array}{cc}1&2\0&-1\end{array}
ight)+b\left(egin{array}{cc}0&1\-1&0\end{array}
ight)+c\left(egin{array}{cc}1&3\0&-2\end{array}
ight)+d\left(egin{array}{cc}0&1\-1&1\end{array}
ight)=\left(egin{array}{cc}a+c&2a+b+3c+d\-b-d&-a-2c+d\end{array}
ight).$$

On en déduit le système d'équations suivant :

$$\left\{ \begin{array}{lll} x & = & a+c \\ y & = & 2a+b+3c+d \\ z & = & -b-d \\ t & = & -a-2c+d \end{array} \right. \iff \left\{ \begin{array}{lll} x & = & a+c \\ -2x+y & = & b+c+d \\ z & = & -b-d \\ x+t & = & -c+d \end{array} \right. \iff \left\{ \begin{array}{lll} x & = & a+c \\ -2x+y & = & b+c+d \\ -2x+y+z & = & c \\ -x+y+z+t & = & d \end{array} \right.$$

Le système d'inconnues a, b, c, d admet quatre pivots non nuls alors il admet une unique solution. Donc il existe une unique matrice R dans F et une unique matrice S dans F telles que M = R + S.

Alors les sous-espaces F et G sont supplémentaires.

Les matrices $\left(\begin{array}{cc} 1 & 2 \\ 0 & -1 \end{array}\right)$ et $\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$ ne sont pas colinéaires et engendrent F :

elles forment une base de F

Les matrices $\left(\begin{array}{cc} 1 & 3 \\ 0 & -2 \end{array}\right)$ et $\left(\begin{array}{cc} 0 & 1 \\ -1 & 1 \end{array}\right)$ ne sont pas colinéaires et engendrent G :

elles forment une base de G

Exercice 10:

La fonction nulle vérifie 0(x)=0(2a-x)=0 pour tout x, alors $x\in F$. Soit $f\in F$, $g\in F$ et $\alpha\in R$. Soit $x\in \mathbb{R}$, on a $(\alpha f+g)(x)=\alpha f(x)+g(x)=\alpha f(2a-x)+g(2a-x)=(\alpha f+g)(2a-x)$. Alors F est un sous-espace vectoriel de E.

La fonction nulle vérifie 0(x)=3b-0(2a-x) si et seulement si b=0. On a alors $G=\{f\in E| \forall x\in \mathbb{R}, f(x)=-f(2a-x)\}$ et pour $(f,g)\in G^2$ et $\alpha\in \mathbb{R}$, on montre que $\alpha f+g\in G$.

$$oxed{G}$$
 est un sev de E si et seulement si $b=0$.

Soit $h \in E$, on suppose qu'il existe $f \in F$ et $g \in G$ tels que h = f + g,

Alors, on a h(x) = f(x) + g(x) pour tout x et h(2a - x) = f(2a - x) + g(2a - x) pour tout x.

Mais f(x)=f(2a-x) car $f\in F$ et g(2a-x)=-g(x) car $f\in G$. On obtient un système :

$$\left\{egin{array}{lll} f(x)+g(x)&=&h(x)\ f(x)-g(x)&=&h(2a-x) \end{array}
ight. \iff \left\{egin{array}{lll} f(x)&=&rac{1}{2}(h(x)+h(2a-x))\ g(x)&=&rac{1}{2}(h(x)-h(2a-x)) \end{array}
ight.$$

Soit $h \in E$. On pose pour $x \in \mathbb{R}$, $f(x) = \frac{1}{2}(h(x) + h(2a - x))$ et $g(x) = \frac{1}{2}(h(x) - h(2a - x))$. On a alors h(x) = f(x) + g(x) pour tout x, donc h = f + g.

Par ailleurs, pour $x \in \mathbb{R}$,

$$f(2a-x)=rac{1}{2}(h(2a-x)+h(2a-(2a-x)))=rac{1}{2}(h(2a-x)+h(x))=f(x), ext{ donc } f\in F.$$

Pour $x \in \mathbb{R}$,

$$g(x) = rac{1}{2}(h(2a-x)-h(2a-(2a-x))) = rac{1}{2}(h(2a-x)-h(x)) = -g(x)$$
 donc $g \in G$.

On a montré que E = F + G.

Soit $f \in F \cap G$, on a pour tout $x \in \mathbb{R}$, f(x) = f(2a - x) car $f \in F$ et f(2a - x) = -f(x) car $f \in G$, on a donc f(x) = -f(x) d'où f(x) = 0 pour tout x. Alors f = 0. On a montré que $F \cap G \subset \{0\}$. Et réciproquement, $0 \in F$ et $0 \in G$, car ce sont des sev. Donc $\{0\} \subset F \cap G$. Finalement $\{0\} = F \cap G$.

On en déduit que

F et G sont supplémentaires dans E.

Exercice 13:

Un vecteur $\overrightarrow{x}=(x_1,x_2,x_3,x_4)$ appartient à F si et seulement, si il existe α , β tels que $\overrightarrow{x}=\alpha\overrightarrow{u}_1+\beta\overrightarrow{u}_2$ ce

qui donne le système : $\begin{cases} x_1 &= \alpha + \beta \\ x_2 &= \beta \\ x_3 &= 0 \\ x_4 &= 0 \end{cases}$. Les équations de compatibilité du système sont les équations de F

$$F:\left\{ egin{array}{lll} x_3&=&0\ x_4&=&0 \end{array}
ight.$$

De même pour G, on écrit le système $\overrightarrow{x}=lpha\overrightarrow{u}_3+eta\overrightarrow{u}_4$ et on obtient $G=\left\{egin{array}{ccc} x_1-x_2&=&0\ x_1-x_3&=&0 \end{array}
ight.$

Pour trouver la décomposition $\overrightarrow{x} = \overrightarrow{y} + \overrightarrow{z}$ avec $\overrightarrow{y} \in F$ et $\overrightarrow{z} \in G$. On écrit que $\overrightarrow{y} = a \overrightarrow{u}_1 + b \overrightarrow{u}_2$ (car être dans F, c'est être combinaison linéaire de \overrightarrow{u}_1 et \overrightarrow{u}_2) et $\overrightarrow{z} = c \overrightarrow{u}_3 + d \overrightarrow{u}_4$ avec a, b, c, d réels. On obtient le système :

$$\left\{egin{array}{lll} a+b+c+d &=& x_1 \ b+c+d &=& x_2 \ c+d &=& x_3 \ d &=& x_4 \end{array}
ight.$$

Ce système a 4 inconnues, 4 équations et 4 pivots non nuls donc il admet une unique solution (a,b,c,d). Alors comme a et b existent et sont uniques, \overrightarrow{y} existe et est unique, de même pour z. Donc la décomposition $\overrightarrow{x} = \overrightarrow{y} + \overrightarrow{z}$ avec $\overrightarrow{y} \in F$ et $\overrightarrow{z} \in G$ existe et est unique.

 ${\it F}$ et ${\it G}$ sont supplémentaires dans ${\it E}$.

Pour la projection sur F parallèlement à G, on résout le système : $d = x_4$ puis $c = x_3 - x_4$, $b = x_2 - x_3$ et $a = x_1 - x_2$. Le projeté du vecteur \overrightarrow{x} sur F parallèlement à G est $\overrightarrow{y} = a \overrightarrow{u}_1 + b \overrightarrow{u}_2 = (x_1 - x_2) \overrightarrow{u}_1 + (x_2 - x_3) \overrightarrow{u}_2$. On obtient les coordonnées suivantes : $p(x_1, x_2, x_3, x_4) = (x_1 - x_3, x_2 - x_3, 0, 0)$.

Exercice 14:

F et G sont des sev de E. Un vecteur \overrightarrow{y} appartient à F si et seulement si il s'écrit $\overrightarrow{y} = \alpha \overrightarrow{e}_1 + \beta \overrightarrow{e}_2$. De même $\overrightarrow{z} \in G$ si et seulement si il existe γ tel que $\overrightarrow{z} = \gamma e_3$.

Soit $\overrightarrow{x} \in E$. \overrightarrow{x} se décompose de manière unique sur F et G si et seulement si il existe $\overrightarrow{y} \in F$ et $\overrightarrow{z} \in G$ tels que $\overrightarrow{x} = \overrightarrow{y} + \overrightarrow{z}$ si et seulement si il existe $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tels que $\overrightarrow{x} = \alpha \overrightarrow{e}_1 + \beta \overrightarrow{e}_2 + \gamma \overrightarrow{e}_3$. Ce qui est équivalent au système suivant :

$$\left\{egin{array}{lll} x_1&=&lpha+eta+\gamma\ x_2&=η+2\gamma\ x_3&=&-lpha&+3\gamma \end{array}
ight. egin{array}{lll} x_1+x_3&=η+4\gamma\ x_2&=η+2\gamma\ x_3&=&-lpha&+3\gamma \end{array}
ight. egin{array}{lll} rac{1}{2}x_1-rac{1}{2}x_2+rac{1}{2}x_3&=&\gamma\ -x_1+2x_2-x_3&=η\ rac{3}{2}x_1-rac{3}{2}x_2+rac{1}{2}x_3&=&lpha \end{array}
ight.$$

Le système admet une unique solution donc la décomposition existe et est unique. Alors F et G sont supplémentaires dans E.

La projection sur F parallèlement à G s'écrit $p(x_1,x_2,x_3)=lpha \overrightarrow{e}_1+eta \overrightarrow{e}_2$ ce qui donne

$$p(x_1,x_2,x_3)=(lpha+eta,eta,-lpha)=\left(rac{1}{2}x_1+rac{1}{2}x_2-rac{1}{2}x_3,-x_1+2x_2-x_3,-rac{3}{2}x_1+rac{3}{2}x_2-rac{1}{2}x_3
ight)$$

 $\text{Matriciellement, si Y est la matrice de $p(\overrightarrow{x})$ et X la matrice de $\overrightarrow{x}:Y$} = \left(\begin{array}{c} \alpha+\beta\\\beta\\-\alpha\end{array}\right), \ X = \left(\begin{array}{c} x_1\\x_2\\x_3\end{array}\right)$

Ce qui donne en utilisant un produit de matrices : Y = PX avec $P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -1 & 2 & -1 \\ -\frac{3}{2} & \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$

On trouve $q(x_1,x_2,x_3)=\gamma\overrightarrow{e}_3=\left(rac{1}{2}x_1-rac{1}{2}x_2+rac{1}{2}x_3
ight)$.(1,2,3) ce qui donne la matrice suivante

$$Q = \left(egin{array}{ccc} rac{1}{2} & -rac{1}{2} & rac{1}{2} \ 1 & -1 & 1 \ rac{3}{2} & -rac{3}{2} & rac{3}{2} \end{array}
ight).$$

Exercice 18:

- On montre que φ et ψ sont linéaires car (à faire)
- Si $P \in \operatorname{Ker} \varphi$ alors $\varphi(P) = 0$ donc P' = (X 2)P mais si $P \neq 0$, on a $\deg P' < \deg P$ mais $\deg(X 2)P > \deg P$. On obtient $\deg P < \deg P$ ce qui est impossible donc P = 0. Alors $\ker \varphi = \{0\}$.
- Si $P \in \text{Ker } \psi$, alors P = (X-2)P'. On peut écrire $P = aX^2 + bX + c$ ce qui donne $aX^2 + bX + c = (X-2)(2aX+b) = 2aX^2 + (b-4a)X-2b$. Deux polynômes sont égaux si et seulement si leurs coefficients sont égaux, ce qui donne a=2a et b=b-4a et c=-2b. On trouve a=0, $b\in \mathbb{R}$ et c=-2b. Alors P=b(X-2). Alors $\text{Ker } \psi \subset \text{Vect}(X-2)$.

Réciproquement, si $P \in \text{Vect}(X-2)$ alors P s'écrit P = q(X-2) d'où P' = q et (X-2)P' = q(X-2) = P donc $\psi(P) = 0$. On en déduit que $\text{Vect}(X-2) \subset \text{Ker } \psi$.

Finalement,

$$\operatorname{Ker} \psi = \operatorname{Vect}(X-2)$$
 c'est une droite vectorielle.

• Soit $Q \in \mathbb{R}_3[X]$, on cherche P tel que $Q = \varphi(P)$. On écrit $Q = pX^3 + qX^2 + rX + s$ et $P = aX^2 + bX + c$. On a alors $Q = 2aX + b - (X - 2)(aX^2 + bX + c) = -aX^3 + (2a - b)X^2 + (2a + 2b - c)X + b + 2c$. Ce qui donne le système :

La dernière équation est l'équation de $\operatorname{Im} \varphi$ qui est un hyperplan de dimension 3.

$$oxed{ \operatorname{Im} arphi = \left\{ pX^3 + qX^2 + rX - 14p - 5q - 2r | (p,q,r) \in \ \mathbb{R}^3
ight\} = \operatorname{Vect}(X^3 - 14, X^2 - 5, X - 2). }$$

• Soit $Q \in \mathbb{R}_2[X]$, $Q = pX^2 + qX + r$. On cherche $P = aX^2 + bX + c$ tel que $\psi(P) = Q$. $\psi(P) = aX^2 + bX + c - (X-2)(2aX+b) = -aX^2 + 4aX + 2b + c$. On en déduit a = -p et 4a = q et 2b + c = r. Il faut donc -4p = q. Alors $Q = pX^2 - 4pX + r$.

Donc

$$\lceil \operatorname{Im} \psi \text{ a pour équation } 4p+q=0.$$
 C'est un plan de $\mathbb{R}_2[X]$ et $\operatorname{Im} \psi = \operatorname{Vect}(X^2-4X,1).$

ullet $arphi\circ\psi$ est un endomorphisme de $\mathbb{R}_2[X]$ dans $\mathbb{R}_2[X]$ et $arphi\circ\psi(P)=-(X-2)(P''-(X-2)P'+P).$

On trouve, après calculs, $\operatorname{Ker}(\varphi \circ \psi) = \operatorname{Vect}(X-2)$ qui est une droite et $\operatorname{Im}(\varphi \circ \psi) = \operatorname{Vect}(X-2, (-X^2+4X)(X-2))$ qui est un plan.

Exercice 19:

On montre que f est linéaire car d'après les propriétés des matrices $f(\alpha M_1 + M_2) = \alpha f(M_1) + f(M_2)$.

Soit
$$M=\left(egin{array}{cc} x & y \ z & t \end{array}
ight)$$
. L'équation $f(M)=0$ équivaut au système

$$\left\{ \begin{array}{lll} -x+2z&=&0\\ 2x-4z&=&0\\ -y+2t&=&0\\ 2y-4t&=&0 \end{array} \right. \iff \left\{ \begin{array}{lll} x&=&2z\\ y&=&2t \end{array} \right. \iff \left(\begin{array}{l} x\\ y\\ z\\ t \end{array} \right) = \alpha \left(\begin{array}{l} 2\\ 0\\ 1\\ 0 \end{array} \right) + \beta \left(\begin{array}{l} 0\\ 2\\ 0\\ 1 \end{array} \right) \text{ avec } \alpha \in \mathbb{R} \text{ et } \beta \in \mathbb{R}$$

$$egin{aligned} ext{Ce système donne} & ext{Ker } f = ext{Vect} \left\{ \left(egin{array}{cc} 2 & 0 \ 1 & 0 \end{array}
ight), \left(egin{array}{cc} 0 & 2 \ 0 & 1 \end{array}
ight)
ight\}. \end{aligned}$$

On a
$$f(M)=x\left(egin{array}{cc} -1 & 0 \ 2 & 0 \end{array}
ight)+y\left(egin{array}{cc} 0 & -1 \ 0 & 2 \end{array}
ight)+z\left(egin{array}{cc} 2 & 0 \ -4 & 0 \end{array}
ight)+t\left(egin{array}{cc} 0 & 2 \ 0 & -4 \end{array}
ight)$$

$$\text{Alors Im}\, f = \text{Vect}\left(\left(\begin{array}{cc} -1 & 0 \\ 2 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & -1 \\ 0 & 2 \end{array}\right), \left(\begin{array}{cc} 2 & 0 \\ -4 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 2 \\ 0 & -4 \end{array}\right)\right)$$

On constate que
$$\operatorname{Im} f = \operatorname{Vect} \left(\left(egin{array}{cc} -1 & 0 \ 2 & 0 \end{array}
ight), \left(egin{array}{cc} 0 & -1 \ 0 & 2 \end{array}
ight)
ight)$$

$$\text{car les matrices} \left(\begin{array}{cc} 0 & 2 \\ 0 & -4 \end{array} \right) \text{ et } \left(\begin{array}{cc} 0 & -1 \\ 0 & 2 \end{array} \right) \text{ sont colinéaires. De même, pour } \left(\begin{array}{cc} -1 & 0 \\ 2 & 0 \end{array} \right) \text{ et } \left(\begin{array}{cc} 2 & 0 \\ -4 & 0 \end{array} \right).$$