The Data Science Process

Tony Jiang January 12, 2017

Contents

The data science process
The roles in a data science project
Stages of a data science project
Setting expectations
Loading data into R
Working with data from files
Working with relational databases
Exploring Data
Using summary statistics to spot problems
Spotting problems using graphics and visualization
Summary
This is study notes for "Practical Data Science with R" by Nina Zumel and John Mount, Manning 2014.

This is study notes for "Practical Data Science with R" by Nina Zumel and John Mount, Manning 2014. - The book: "Practical Data Science with R" by Nina Zumel and John Mount, Manning 2014 (book copyright Manning Publications Co., all rights reserved) - The support site: GitHub WinVector/zmPDSwR

The data science process

The roles in a data science project

Project roles

A few recurring roles in a data science project

Role	Responsibilites
Project sponsor Client	Represents the business interest; champions the project Represents end users' interests; domain expert

Stages of a data science project

- Define the goal
- Collect and manage data
- Build the model
- Evaluate and critique model

- Present results and document
- Deploy the model to solve the problem in the real world
- Define the goal ### Defining the goal ### Data collection and management ### Modeling

Model evaluation and critique

Presentation and documentation

Model deployment and maintenance

Setting expectations

Determining lower and upper boudns on model performance

- The null model: A lowe rbound on performance
- THe Bayes Rate: An upper bound on model performance ## Summary The data science process involves a lot of back-and-forth between the data scientist and other project stakeholders, and between the different stages of the process.

Loading data into R

high :432

low :432

med :432

vhigh:432

rating

high :432

med :432

vhigh:432

low

:432

2

3

4

:432

:432

:432

5more:432

2

##

##

##

##

##

Working with data from files

Workign with well-structured data from files or URLs

```
uciCar <- read.csv("data/car.data.csv",sep=",",header= TRUE)</pre>
head(uciCar) #display first 6 rows
##
     buying maint doors persons lug_boot safety rating
## 1 vhigh vhigh
                      2
                              2
                                   small
                                            low
                                                 unacc
## 2 vhigh vhigh
                      2
                              2
                                   small
                                            med
                                                 unacc
                      2
                              2
## 3 vhigh vhigh
                                   small
                                           high
                                                 unacc
## 4 vhigh vhigh
                      2
                              2
                                     med
                                            low
                                                 unacc
                      2
                              2
## 5 vhigh vhigh
                                     med
                                            med unacc
## 6 vhigh vhigh
                              2
                                     med
                                           high unacc
class(uciCar)
## [1] "data.frame"
summary(uciCar)
                              doors
      buying
                  maint
                                        persons
                                                     lug_boot
                                                                 safety
```

:576

:576

more:576

big

med

:576

:576

small:576

high:576

low :576

med:576

```
## acc : 384
## good : 69
## unacc:1210
## vgood: 65

dim(uciCar)
## [1] 1728 7
```

Using R on less-structured data

• Transforming data in R you need "schema documentation" or "data dictionary" to decrypt troublesome data.

Read a data fro mGerman bank credit dataset

```
## V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17
## 1 A11 6 A34 A43 1169 A65 A75 4 A93 A101 4 A121 67 A143 A152 2 A173
## 2 A12 48 A32 A43 5951 A61 A73 2 A92 A101 2 A121 22 A143 A152 1 A173
## 3 A14 12 A34 A46 2096 A61 A74 2 A93 A101 3 A121 49 A143 A152 1 A172
## V18 V19 V20 V21
## 1 1 A192 A201 1
## 2 1 A191 A201 2
## 3 2 A191 A201 1
```

Change the column names to something meaningful

```
colnames(d) <- c('Status.of.existing.checking.account',
    'Duration.in.month', 'Credit.history', 'Purpose',
    'Credit.amount', 'Savings account/bonds',
    'Present.employment.since',
    'Installment.rate.in.percentage.of.disposable.income',
    'Personal.status.and.sex', 'Other.debtors/guarantors',
    'Present.residence.since', 'Property', 'Age.in.years',
    'Other.installment.plans', 'Housing',
    'Number.of.existing.credits.at.this.bank', 'Job',
    'Number.of.people.being.liable.to.provide.maintenance.for',
    'Telephone', 'foreign.worker', 'Good.Loan')
d$Good.Loan <- as.factor(ifelse(d$Good.Loan==1,'GoodLoan','BadLoan'))
print(d[1:3,])</pre>
```

```
## 1
         A43
                      1169
                                              A65
                                                                        A75
## 2
         A43
                      5951
                                              A61
                                                                        A73
## 3
                      2096
         A46
                                              A61
                                                                        A74
     Installment.rate.in.percentage.of.disposable.income
## 1
                                                         4
## 2
                                                         2
## 3
                                                         2
##
    Personal.status.and.sex Other.debtors/guarantors Present.residence.since
## 1
                                                   A101
## 2
                         A92
                                                   A101
                                                                               2
## 3
                         A93
                                                  A101
                                                                               3
##
     Property Age.in.years Other.installment.plans Housing
                        67
## 1
         A121
                                               A143
## 2
                        22
         A121
                                               A143
                                                       A152
## 3
         A121
                        49
                                               A143
                                                        A152
     Number.of.existing.credits.at.this.bank Job
## 1
                                            2 A173
## 2
                                            1 A173
## 3
                                            1 A172
    Number.of.people.being.liable.to.provide.maintenance.for Telephone
## 1
                                                                     A192
## 2
                                                                     A191
## 3
                                                              2
                                                                     A191
   foreign.worker Good.Loan
## 1
               A201 GoodLoan
## 2
               A201
                      BadLoan
## 3
               A201 GoodLoan
```

Building a map to interprest loan use codes

```
mapping <- list(
   'A40'='car (new)',
   'A41'='car (used)',
   'A42'='furniture/equipment',
   'A43'='radio/television',
   'A44'='domestic appliances' # note that other codes are not defiend here.
)</pre>
```

Transform the data

```
for(i in 1:(dim(d))[2]) {  # Note: 1
  if(class(d[,i])=='character') {
    d[,i] <- as.factor(as.character(mapping[d[,i]]))  # Note: 2
  }
}
table(d$Purpose,d$Good.Loan)</pre>
```

```
##
##
                          BadLoan GoodLoan
##
     car (new)
                               89
                                        145
##
     car (used)
                               17
                                         86
##
     domestic appliances
                                4
                                          8
##
     furniture/equipment
                                        123
                               58
```

```
## NULL 70 120
## radio/television 62 218
```

Working with relational databases

The right way to work with data found in databases is to connect R directly to the database.

A production-size example

- $\bullet \quad \text{United States Census 2011 national PLUMS American Communicty Survey data (www.census.gov/acs/www/data_docum_acs/www.dat$
- Millions of rows
- a few gigabytes when zipped
- This size is the sweet spot for relational datbase or SQL databse. we are not forced to move into a MapReduce or database cluster to do our work.

Curating the data Staging the data into a database - H2 - SQL Screwdriver SQuirrel SQL

Exploring Data

Resist the temptation to dive into the modelig step without looking at the dataset first.

Using summary statistics to spot problems

```
custdata<- read.csv('data/custdata.tsv',header=T,sep='\t')
summary(custdata)</pre>
```

```
income
        custid
                      sex
                              is.employed
               2068
##
   Min.
          :
                      F:440
                              Mode :logical
                                              Min.
                                                      : -8700
##
   1st Qu.: 345667
                      M:560
                              FALSE:73
                                              1st Qu.: 14600
                              TRUE :599
##
  Median : 693403
                                              Median: 35000
                              NA's :328
  Mean
          : 698500
                                              Mean
                                                      : 53505
   3rd Qu.:1044606
##
                                               3rd Qu.: 67000
##
   Max.
          :1414286
                                              Max.
                                                    :615000
##
##
                marital.stat health.ins
  Divorced/Separated:155
##
                             Mode :logical
##
   Married
                             FALSE: 159
                      :516
##
   Never Married
                      :233
                             TRUE: 841
   Widowed
                      : 96
                             NA's :0
##
##
##
##
##
                          housing.type recent.move
                                                        num.vehicles
   Homeowner free and clear
                                       Mode :logical
                                                               :0.000
##
                                :157
                                                        Min.
##
   Homeowner with mortgage/loan:412
                                       FALSE:820
                                                        1st Qu.:1.000
## Occupied with no rent
                                       TRUE :124
                                                        Median :2.000
                               : 11
## Rented
                                       NA's :56
                                :364
                                                        Mean
                                                               :1.916
```

```
##
    NA's
                                 : 56
                                                         3rd Qu.:2.000
##
                                                         Max.
                                                                :6.000
##
                                                         NA's
                                                                :56
##
                          state.of.res
         age
##
    Min.
          : 0.0
                    California :100
    1st Qu.: 38.0
                    New York
                                 : 71
##
   Median: 50.0
                    Pennsylvania: 70
##
##
   Mean
           : 51.7
                    Texas
                                 : 56
                                 : 52
##
    3rd Qu.: 64.0
                    Michigan
##
  Max.
         :146.7
                    Ohio
                                 : 51
##
                     (Other)
                                 :600
```

Typical problems revealed by data summaries

- Missing values
- Invalid values and outliers
- Data range: relative because of units. (babies age in weeks vs years)
- Units

Spotting problems using graphics and visualization

We cannot expect a small number of numerical values to consistntly convey the wealth of information that

The use of graphics to examine data is called visualization.

Visually checking distributions for a single variable

what is the peak value? How many peaks? How normal is the data? How much does the data vary?

• Histogram

```
library(ggplot2)
ggplot(custdata)+geom_histogram(aes(x=age),binwidth=5,fill="gray")
```

• Density plots

```
library(scales)
ggplot(custdata)+geom_density(aes(x=income))+scale_x_continuous(labels=dollar)
```


Figure 1: A histogram tells you where your data is concentrated

ggplot(custdata)+geom_density(aes(x=income))+scale_x_log10(breaks=c(100,1000,10000,100000),labels=dolla

- ## Warning in scale\$trans\$trans(x): NaNs produced
- ## Warning: Removed 79 rows containing non-finite values (stat_density).

• Bar charts

ggplot(custdata)+geom_bar(aes(x=marital.stat),fill="gray")

horizontal bar chart can be easier to read when there are several categories with long names.

ggplot(custdata)+geom_bar(aes(x=state.of.res),fill="gray")+coord_flip()+theme(axis.text.y=element_text(

A

Cleveland recommends that the data in a bar chart be sorted, to more efficiently extract insight from the data.

```
statesums<-table(custdata$state.of.res)
statef<-as.data.frame(statesums)
colnames(statef)<-c("state.of.res","count")
statef<-transform(statef,state.of.res=reorder(state.of.res,count))
ggplot(statef)+geom_bar(aes(x=state.of.res,y=count),stat="identity",fill="gray")+coord_flip()+theme(axi</pre>
```


Visually checking relationships between two variables

• Line Plots

```
x<-runif(100)
y<-x^2+0.2*x
ggplot(data.frame(x=x,y=y),aes(x=x,y=y))+geom_line()+geom_point()</pre>
```


Scatter Plots and smoothing curves

custdata2<-subset(custdata,(custdata\$age>0 & custdata\$age<100 & custdata\$income>0))
cor(custdata2\$age,custdata2\$income)

[1] -0.02240845

ggplot(custdata2,aes(x=age,y=income))+geom_point()+ylim(0,200000)

Warning: Removed 32 rows containing missing values (geom_point).

Linear fit

ggplot(custdata2,aes(x=age,y=income))+geom_point()+geom_smooth(method="lm")+ylim(0,200000)

- ## Warning: Removed 32 rows containing missing values (stat_smooth).
- ## Warning: Removed 32 rows containing missing values (geom_point).

Smoothing Curve

```
ggplot(custdata2,aes(x=age,y=income))+geom_point()+geom_smooth()+ylim(0,200000)
```

- ## geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = x' to c
- ## Warning: Removed 32 rows containing missing values (stat_smooth).
- ## Warning: Removed 32 rows containing missing values (geom_point).

Distribution of customers with health insurance, as a function of age

ggplot(custdata2,aes(x=age,y=as.numeric(health.ins)))+geom_point(position=position_jitter(w=0.05,h=0.05)

geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = x' to compare the size of largest group is <1000.

• Hexbin Plots

```
library(hexbin)
ggplot(custdata2,aes(x=age,y=income))+geom_hex(binwidth=c(5,10000))+geom_smooth(color="white",se=F)+ylin
## Warning: Removed 32 rows containing missing values (stat_hexbin).
## geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = x' to cl
## Warning: Removed 32 rows containing missing values (stat_smooth).</pre>
```


• Bar charts for two categorical variables

Relationship between marital status and the probability of health insurance coverage.

```
# bar chart
ggplot(custdata)+geom_bar(aes(x=marital.stat,fill=health.ins))
```


ggplot(custdata)+geom_bar(aes(x=marital.stat,fill=health.ins),position="dodge")

ggplot(custdata)+geom_bar(aes(x=marital.stat,fill=health.ins),position="fill")

add a rug

ggplot(custdata,aes(x=marital.stat))+geom_bar(aes(fill=health.ins),position="fill")+geom_point(aes(y=-0)

Facetd

ggplot(custdata2)+geom_bar(aes(x=housing.type,fill=marital.stat),position="dodge")+theme(axis.text.x=el

 $\verb|ggplot(subset(custdata2,housing.type!="NA"))+geom_bar(aes(x=marital.stat,fill=marital.stat),position="data | fill=marital.stat)|$

Summary

- Take the time to examine your data before diving into the modeling
- The summary command helps you spot issues with data range, units, data type, and missing or invalid values
- Visualization additionally gives you a sense of data distribution and relationships among variables
- Visualization is an iterative process and helps answer questions about the data. Time spent here is time not wasted during the modeling process.