Introduction to Categories and Categorical Logic

Vishal Lama

Contents

Chapter 1.	Introduction to Categories and Categorical Logic	5
1. Intro	duction	5

CHAPTER 1

Introduction to Categories and Categorical Logic

1. Introduction

We say that a function $f: X \to Y$ is:

```
injective if \forall x, x' \in X. f(x) = f(x') \implies x = x',
surjective if \forall y \in Y. \exists x \in X. f(x) = y,
```

$$\begin{array}{ll} \textit{monic} & \text{if } \forall g, h.f \circ g = f \circ h \implies g = h & (f \text{ is left cancellative}), \\ \textit{epic} & \text{if } \forall g, h.g \circ f = h \circ f \implies g = h & (f \text{ is right cancellative}). \end{array}$$

Proposition 1. Let $f: X \to Y$. Then,

- (1) f is injective \iff f is monic.
- (2) f is surjective \iff f is epic.

PROOF. We first show (1).

(\iff) Suppose f is monic. Fix a one-element set $\mathbf{1} = \{\bullet\}$. Then, note that elements $x \in X$ are in 1-1 correspondence with functions $\bar{x} : \mathbf{1} \to X$, defined by $\bar{x}(\bullet) := x$. Then, for all $x, x' \in X$, we have

$$f(x) = f(x')$$

$$\implies f(\bar{x}(\bullet)) = f(\bar{x'}(\bullet))$$

$$\implies (f \circ \bar{x})(\bullet) = (f \circ \bar{x'})(\bullet)$$

$$\implies f \circ \bar{x} = f \circ \bar{x'}$$

$$\implies \bar{x} = \bar{x'} \quad (\text{since } f \text{ is monic})$$

$$\implies \bar{x}(\bullet) = \bar{x'}(\bullet)$$

$$\implies x = x'$$

This shows that f is injective.

(\Longrightarrow) Suppose f is injective. Let $f\circ g=f\circ h$ for all $g,h:A\to X.$ Then, for all $a\in A,$

$$(f \circ g)(a) = (f \circ h)(a)$$

$$\implies f(g(a)) = f(h(a))$$

$$\implies g(a) = h(a) \text{ (since } f \text{ is injective)}$$

$$\implies g = h$$

This establishes that f is monic. And, we are done.

Exercise 2

Show that $f: X \to Y$ is surjective iff it is epic.

PROOF. (\Longrightarrow) Suppose $f: X \to Y$ is epic. And, assume, for the sake of contradiction, f is not surjective. Then, there exists some $y_0 \in Y$, such that, for all $x \in X$, $f(x) \neq y_0$. Define mappings $g, h: Y \to Y \cup \{Y\}$ by:

$$g(y) := y$$

$$h(y) := \begin{cases} y & \text{if } y \neq y_0 \\ Y & \text{if } y = y_0 \end{cases}$$

Note that $g \neq h$.

Then, for all $x \in X$, $(g \circ f)(x) = g(f(x)) = h(f(x)) = (h \circ f)(x)$. This implies $g \circ f = h \circ f$, which implies g = h, since f is epic. The last conclusion contradicts the fact that g = h. Thus, we conclude f is surjective.

(\Leftarrow) Suppose $f: X \to Y$ is surjective. Then, for any $y \in Y$, there exists an $x \in X$, such that f(x) = y. Now, assume, for all $g, h: Y \to Z$, $g \circ f = h \circ f$. Then, for all $y \in Y$, $g(y) = g(f(x)) = (g \circ f)(x) = (h \circ f)(x) = h(f(x)) = h(y)$, which implies g = h, showing that f is epic. And, this completes our proof.

Exercise 5

Suppose G and H are groups (and hence monoids), and that $h:G\to H$ is a monoid homomorphism. Prove that h is a group homomorphism.

PROOF. We need only show that h preserves inverses. To that end, suppose g^{-1} is the inverse of $g \in G$. Then, $h(g)h(g^{-1}) = h(gg^{-1}) = h(1_G) = 1_H = h(1_G) = h(g^{-1}g) = h(g^{-1})h(g)$. This establishes h preserves inverses, and we are done. \square

Exercise 6

Check that $Mon, Vect_k, Pos,$ and Top are indeed categories.

PROOF. (Mon) The objects are monoids $(M,\cdot,1_M)$, and morphisms are monoid homomorphisms. Given monoid homomorphisms, $f:(M,\cdot,1_M)\to (N,\cdot,1_N)$ and $g:(N,\cdot,1_N)\to (P,\cdot,1_P)$, the function $g\circ f:(M,\cdot,1_M)\to (P,\cdot,1_P)$ is also a monoid homomorphism, because for all $m,m'\in M$, we have $(g\circ f)(mm')=g(f(mm'))=g(f(m)f(m'))=(g(f(m))(g(f(m')))=((g\circ f)(m))((g\circ f)(m'))$. Also, for each monoid, the identity morphism is the identity function. It is also easy to check that for all monoid homomorphisms f,g and h with the appropriate domains and codomains, $h\circ (g\circ f)=(h\circ g)\circ f$. This establishes that **Mon** is indeed a category.

 (\mathbf{Vect}_k) The objects are vector spaces over a field k, and morphisms are linear maps between vector spaces. Suppose $f:U\to V$ and $g:V\to W$ are linear maps. Then, for all $x,y\in U$, we have $(g\circ f)(x+y)=g(f(x+y))=g(f(x)+f(y))=g(f(x))+g(f(y))=(g\circ f)(x)+(g\circ f)(y)$. Also, for all $\alpha\in k$, we have $(g\circ f)(\alpha x)=g(f(\alpha x))=g(\alpha f(x))=\alpha g(f(x))=\alpha (g\circ f)(x)$. This establishes $g\circ f:U\to W$ is a linear map as well. The identity map 1_U for any vector space U is the identity morphism. The associativity of linear maps and the identity axiom follow from the property of functions. This shows that \mathbf{Vect}_k is also a category.

(**Pos**) The objects are partially ordered sets, and morphisms are monotone functions between these sets. Suppose $h:P\to Q$ and $g:Q\to R$ are monotone

functions. Then, for all $x,y \in P$, $x \le y \implies h(x) \le h(y) \implies g(h(x)) \le g(h(y)) \implies (g \circ h)(x) \le (g \circ h)(y)$, which shows $g \circ h : P \to R$ is a monotone function. The identity map is the identity morphism, and the associativity and identity axioms are satisfied by the property of functions. This establishes **Pos** is a category.

(**Top**) The objects are topological spaces, and morphisms are continuous maps between these spaces. Given continuous maps $f:(X,T_X)\to (Y,T_Y)$ and $g:(Y,T_Y)\to (Z,T_Z)$, we can show that $g\circ f:(X,T_X)\to (Z,T_Z)$ is also a continuous map. First, note that for any $T\subset Z$, $x\in (g\circ f)^{-1}(T)$ iff $(g\circ f)(x)\in T$ iff $g(f(x))\in T$ iff $f(x)\in g^{-1}(T)$ iff $x\in f^{-1}(g^{-1}(T))$. Thus,

for all
$$T \subset Z$$
, $(g \circ f)^{-1}(T) = f^{-1}(g^{-1}(T))$.

Therefore, for any open set $T \in T_Z$, we have $g^{-1}(T) \in T_Y$, which implies $f^{-1}(g^{-1}(T)) \in T_X$, which implies $(g \circ f)^{-1}(T) \in T_X$ (by using the result above.) Hence, $g \circ f : (X, T_X) \to (Z, T_Z)$ is a continuous map. The associativity and identity axioms follow from the associativity and identity laws for functions. This establishes **Top** is a category.

Exercise 7

Check carefully that monoids correspond exactly to one-object categories. Make sure you understand the difference between such a category and **Mon**. (For example: how many objects does **Mon**) have?)

PROOF. (Monoid as a one-object category) Given a monoid $(M,\cdot,1)$, we can construct its corresponding category as follows. We write $\mathbf{B}M$ for the corresponding category with a single object \bullet , where $\mathbf{Hom}_{\mathbf{B}M}(\bullet,\bullet):=M$. We note then that the composition map in $\mathbf{B}M$ is reflected in the binary operation $\cdot \cdot \cdot : M \times M \to M$, where $\mathbf{id}_{\bullet} := 1$. Then, the associative and identity laws for the category $\mathbf{B}M$ follow directly from the associative and identity laws, respectively, satisfied by the monoid $(M,\cdot,1)$. This shows any monoid can be seen or interpreted as a one-object category.

Exercise 8

Check carefully that preorders correspond exactly to categories in which each homset has at most one element. Make sure you understand the difference between such a category and **Pos**. (For example: how big can homsets in **Pos** be?)

PROOF. Let (P, \leq) be a preorder. Then, we define the corresponding category ${\bf C}$ as follows. The objects of ${\bf C}$ are the elements of the set P, and for all $x,y\in P$, we define a morphism $x\to y$ iff $x\le y$. Then, for every object $x\in {\bf C}$, the identity morphism $1_x:x\to x$ corresponds exactly to the reflexive property $x\le x$ for all $x\in P$. Note that each homset in ${\bf C}$ has at most one element. Also, for every $x\to y$ and $y\to z$ in ${\bf C}$, $x\to z$ follows from the fact that $x\le y$ and $y\le z$ and the transitivity of the \le relation on P. This defines a composition map for morphisms in ${\bf C}$. In addition, for all morphisms $x\to y, y\to z$, and $z\to w$, their associativity follows immediately from the transitivity of \le . Lastly, the unit laws also follow from the same transitivity relation. Therefore, we conclude that every

preorder	corresponds	precisely	to a	category	in	which	each	homset	has	at	most	one
element												П

Exercise 10

Show that the inverse, if it exists, is unique.

PROOF. Suppose $i: A \to B$ is an isomorphism, with inverse $j: B \to A$, in a category **C**. Suppose $j': B \to A$ is also an inverse of i. Then, $j = 1_A \circ j = (j' \circ i) \circ j = j' \circ (i \circ j) = j' \circ 1_B = j'$, and we are done.

Exercise 11

Show that \cong is an equivalence relation on the objects of a category.

PROOF. Let C be some category.

(Reflexivity) For any object $X \in \mathbb{C}$, $X \cong X$ follows from the fact that the identity morphism $1_X : X \to X$ is an isomorphism.

(Symmetry) If $X \cong Y$, then there exists an isomorphism $i: X \to Y$. But, the inverse, $i^{-1}: Y \to X$, of i is also an isomorphism. Hence, $Y \cong X$.

(Transitivity) Suppose $X \cong Y$ and $Y \cong Z$. Then, there exist isomorphisms $i: X \to Y$ and $j: Y \to Z$. Then, we claim that $j \circ i: X \to Z$ is also an isomorphism. Indeed, its trivial to show that its inverse is the morphism $i^{-1} \circ j^{-1}: Z \to X$. This implies $X \cong Z$.

We thus conclude that \cong is an equivalence relation on the objects of a category. \square

Exercise 12

Verify the claims that isomorphisms in **Set** correspond exactly to bijections, in **Grp** to group isomorphisms, in **Top** to homeomorphisms, and in **Pos** to isomorphisms.

Proof.		
PDAAF		1