Neural Architecture Optimization

Shen Yu 1901111296 2019.7.11

Motivation

Substantial effort of human experts on discovering architectures

Searching the best architecture within discrete space is inefficient

Contributions

 Propose to optimize network architecture by mapping architectures into a continuous vector space

 Achieve improved efficiency in discovering powerful convolutional and recurrent architectures

Related Work

- Reinforcement learning
 - ENAS
- Evolutionary algorithm
 - AmoebaNet
- SMBO
 - PNAS

Architecture space (CNN)

- 2 cells (Normal and Reduction)
 - B(=5) blocks
 - Input 1 from two previous cells or previous blocks
 - Input 2 from two previous cells or previous blocks
 - Operation applied to input 1
 - Operation applied to input 2
 - Output the concatenation of outputs of unused blocks

Architecture space (RNN)

- An RNN cell
 - B(=12) nodes
 - Input from previous nodes
 - Activation
 - Output the average of the outputs of all the nodes

Overview

Encoder

- Input: A sequence $\{x_1 \ x_2 \ \dots \ x_T\}$
 - $x_{example}$ = "node1 conv 3x3 node2 max-pooling 3x3"
- Output: Architecture embedding e_{χ}
 - $\{h_1 \ h_2 \ ... \ h_T\} \in R^{T \times d}$, h_t is the hidden state at t-th timestep
- ullet Architecture: A single layer LSTM with d hidden units

Performance Predictor

• Input: Mean pooling of embedding e_{χ}

$$\overline{e}_{x} = \frac{1}{T} \sum_{t=1}^{T} h_{t}$$

Output: Performance prediction

• Architecture: FFNN

Decoder

• Input: Architecture embedding $e_{\scriptscriptstyle \chi}$

• Output: Predicted architecture x'

Architecture: LSTM with attention

Loss function

Performance predictor

$$L_{pp} = (s_x - f(E(x)))^2$$

Decoder

$$L_{rec} = -\log P(x|E(x)) = -\sum_{t=1}^{T} \log P(x_t|E(x), x_{< t}) = -\sum_{t=1}^{T} \log \frac{\exp(W_{x_t})}{\sum_{x' \in V_t} \exp(W_{x'})}$$

Final loss

$$L_{final} = \lambda L_{pp} + (1 - \lambda)L_{rec}$$

Algorithm

Algorithm 1 Neural Architecture Optimization

Input: Initial candidate architectures set X to train NAO model. Initial architectures set to be evaluated denoted as $X_{eval} = X$. Performances of architectures $S = \emptyset$. Number of seed architectures K. Step size η . Number of optimization iterations L.

for $l=1,\cdots,L$ do

Train each architecture $x \in X_{eval}$ and evaluate it to obtain the dev set performances $S_{eval} = \{s_x\}, \forall x \in X_{eval}$. Enlarge $S: S = S \bigcup S_{eval}$.

Train encoder E, performance predictor f and decoder D by minimizing Eqn.(1), using X and S.

Pick K architectures with top K performances among X, forming the set of seed architectures X_{seed} .

For $x \in X_{seed}$, obtain a better representation $e_{x'}$ from $e_{x'}$ using Eqn. (2), based on encoder E and performance predictor f. Denote the set of enhanced representations as $E' = \{e_{x'}\}$.

Decode each x' from $e_{x'}$ using decoder, set X_{eval} as the set of new architectures decoded out: $X_{eval} = \{D(e_{x'}), \forall e_{x'} \in E'\}$. Enlarge X as $X = X \bigcup X_{eval}$.

end for

Output: The architecture within X with the best performance

Trick

- Data augmentation
 - For each (x_1, s_x) , add an additional pair (x_2, s_x) where x_2 is symmetrical to x_1 and use both pairs to train the encoder and performance predictor
- $x_{example1}$ ="node1 conv 3x3 node2 max-pooling 3x3"
- $x_{example2}$ = "node2 max-pooling 3x3 node1 conv 3x3"
- $s(x_{example1}) = s(x_{example2})$

Performance on Cifar-10

Model	В	N	F	#op	Error(%)	#params	M	GPU Days
DenseNet-BC [19]		100	40	/	3.46	25.6M	/	/
ResNeXt-29 [43]				/	3.58	68.1M	/	/
NASNet-A [47]	5	6	32	13	3.41	3.3M	20000	2000
NASNet-B [47]	5	4	N/A	13	3.73	2.6M	20000	2000
NASNet-C [47]	5	4	N/A	13	3.59	3.1M	20000	2000
Hier-EA [27]	5	2	64	6	3.75	15.7M	7000	300
AmoebaNet-A [38]	5	6	36	10	3.34	3.2M	20000	3150
AmoebaNet-B [38]	5	6	36	19	3.37	2.8M	27000	3150
AmoebaNet-B [38]	5	6	80	19	3.04	13.7M	27000	3150
AmoebaNet-B [38]	5	6	128	19	2.98	34.9M	27000	3150
AmoebaNet-B + Cutout [38]	5	6	128	19	2.13	34.9M	27000	3150
PNAS [26]	5	3	48	8	3.41	3.2M	1280	225
ENAS [36]	5	5	36	5	3.54	4.6M	/	0.45
Random-WS	5	5	36	5	3.92	3.9M	/	0.25
DARTS + Cutout [28]	5	6	36	7	2.83	4.6M	/	4
NAONet	5	6	36	11	3.18	10.6M	1000	200
NAONet	5	6	64	11	2.98	28.6M	1000	200
NAONet + Cutout	5	6	128	11	2.11	128M	1000	200
NAONet-WS	5	5	36	5	3.53	2.5M	/	0.3

Analysis on NAO

Performance on Cifar-100

Model	В	N	F	#op	Error (%)	#params
DenseNet-BC [19]	/	100	40	/	17.18	25.6M
Shake-shake [15]	/	/	/	/	15.85	34.4M
Shake-shake + Cutout [11]	/	/	/	/	15.20	34.4M
NASNet-A [47]	5	6	32	13	19.70	3.3M
NASNet-A [47] + Cutout	5	6	32	13	16.58	3.3M
NASNet-A [47] + Cutout	5	6	128	13	16.03	50.9M
PNAS [26]	5	3	48	8	19.53	3.2M
PNAS [26] + Cutout	5	3	48	8	17.63	3.2M
PNAS [26] + Cutout	5	6	128	8	16.70	53.0M
ENAS [36]	5	5	36	5	19.43	4.6M
ENAS [36] + Cutout	5	5	36	5	17.27	4.6M
ENAS [36] + Cutout	5	5	36	5	16.44	52.7M
AmoebaNet-B [38]	5	6	128	19	17.66	34.9M
AmoebaNet-B [38] + Cutout	5	6	128	19	15.80	34.9M
NAONet + Cutout	5	6	36	11	15.67	10.8M
NAONet + Cutout	5	6	128	11	14.75	128M

Performance on PTB

Models and Techniques	#params	Test Perplexity	GPU Days
Vanilla LSTM [45]	66M	78.4	/
LSTM + Zoneout [23]	66M	77.4	/
Variational LSTM [14]	19M	73.4	
Pointer Sentinel-LSTM [33]	51M	70.9	/
Variational LSTM + weight tying [20]	51M	68.5	/
Variational Recurrent Highway Network + weight tying [46]	23M	65.4	/
4-layer LSTM + skip connection + averaged weight drop + weight penalty + weight tying [31]	24M	58.3	/
LSTM + averaged weight drop + Mixture of Softmax + weight penalty + weight tying [44]	22M	56.0	/
NAS + weight tying [47]	54M	62.4	1e4 CPU days
ENAS + weight tying + weight penalty [36]	24M	58.6 ⁵	0.5
Random-WS + weight tying + weight penalty	27M	58.81	0.4
DARTS+ weight tying + weight penalty [28]	23M	56.1	1
NAONet + weight tying + weight penalty	27M	56.0	300
NAONet-WS + weight tying + weight penalty	27M	56.6	0.4

Q&A