Exercise Sheet 3

Probability Density Estimation

Till Rohrmann Jens Krenzin

Problem 3.1 Data

Problem 3.1 Data

Input Image:

Output Image

Output Image

Values:

 $\sigma = 0.1$

P = 500

Used Samples:

Values:

 $\sigma = 0.1$

P = 500

Histogramm version:

Values:

 $\sigma = 0.1$

P = 500

Gaussian kernel version: (h = 2)

Values:

 $\sigma = 0.1$

P = 500

Gaussian kernel version: (h = 4)

Values:

 $\sigma = 0.1$

P = 500

Gaussian kernel version: (h = 6)

Values:

 $\sigma = 0.1$

P = 500

Gaussian kernel version: (h = 8)

Values:

 $\sigma = 0.1$

P = 500

Gaussian kernel version: (h = 10)

Values:

 $\sigma = 0.1$

P = 500

Gaussian kernel version: (h = 15)

Values:

 $\sigma = 0.1$

P = 500

Gaussian kernel version: (h = 20)

Values:

 $\sigma = 0.1$

P = 500

Minumum at:

h = 9 ... 12

Values:

 $\sigma = 0.1$

P = 100

Minumum at:

h = 17 ... 19

Values:

 $\sigma = 0.05$

P = 500

Minumum at:

h = 6 ... 8

Values:

 $\sigma = 0.05$

P = 100

Minumum at:

h = 10 ... 14

