LITERATURE SURVEY

S.NO	TITLE	AUTHOR	PROPOSED WORK
1.	Crude Oil Price	Nidhi Moitra, Priya Raj,	The objective of predicting the crude oil price,
	Prediction Using	Sanidhya Saxena, Rohit	using LSTM-based recurrent neural networks
	LSTM Networks [1]	Kumar	is discussed. The hidden layer of the
			network's LSTM introduces the memory cell,
			which making them well-suited to grasp the
			changing structure of data with a high
			capacity for prediction.
2.	Crude Oil Price	Nidhi Moitra, Priya Raj,	Recurrent neural networks that are LSTM-
	Prediction Using	Sanidhya Saxena, Rohit	based are used to predict the price of crude
	LSTM [2]	Kumar	oil. The most effective and powerful models
			for processing time-series-based sequential
			data are recurrent neural networks (RNNs).
			In addition to prediction, LSTM variations can
			be utilized for tasks including polyphonic
			modelling, speech recognition, and
			handwriting recognition.
3.	Forecasting crude	Kexian Zhang and Min	An ANN model and a typical ARIMA model
	oil price using	Hong	are taken as the comparable models. The
	LSTM neural		results show that the LSTM model has strong
	networks [3]		generalization ability, with stable applicability
			in forecasting crude oil prices with different
			timescales.
4.	CPPCNDL: Crude	Makumbonori Bristone,	This paper proposed a hybrid model for
	oil price prediction	Rajesh Prasad, Adamu Ali	crude oil price prediction that uses the
	using complex	Abubakar	complex network analysis and LSTM for
	network and deep		deep learning algorithms. The complex
	learning algorithms		network analysis tool called the visibility
	[4]		graph is used to map the dataset on a
			network and K-core centrality was employed
			to extract the non-linearity features of crude
			oil and reconstruct the dataset.
5	Driven Oil Price	Lu-Tao Zhao, Zhi-Yi	Google index- driven decomposition
	Value at-Risk-	Zheng, Ying Fu, Ze-Xi Liu;	ensemble model to forecast crude oil price
	Forecasting: A	Ming-Fang Li	risk by constructing an index of investor
	Decomposition		attention for the market and emergencies
	Ensemble		combined with a bivariate empirical mode
	Approach. [5]		decomposition analyses the impact of
			investor attention on oil price fluctuations.
			<u>I</u>

REFERENCES:

- [1] Gupta, Varun, and Ankit Pandey. "Crude oil price prediction using LSTM networks." *International Journal of Computer and Information Engineering* 12.3 (2018): 226-230.
- [2] Moitra, N., Raj, P., Saxena, S. and Kumar, R., 2020. Crude oil prediction using LSTM. *International Journal of Innovative Science and Research Technology*, *5*(2), pp.900-905.
- [3] Zhang, Kexian, and Min Hong. "Forecasting crude oil price using LSTM neural networks." *Data Science in Finance and Economics* 2.3 (2022): 163-180.
- [4] Bristone, Makumbonori, Rajesh Prasad, and Adamu Ali Abubakar. "CPPCNDL: Crude oil price prediction using complex network and deep learning algorithms." *Petroleum* 6.4 (2020): 353-361.
- [5] L. -T. Zhao, Z. -Y. Zheng, Y. Fu, Z. -X. Liu and M. -F. Li, "Google Index-Driven Oil Price Value-at-Risk Forecasting: A Decomposition Ensemble Approach," in *IEEE Access*, vol. 8, pp. 183351-183366, 2020, doi: 10.1109/ACCESS.2020.3028124.ni