UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO - UFES

Dionatas Santos Brito

PRÁTICAS DE SIMULAÇÃO COM O QUCS (Quite Universal Circuit Simulator)

Vitória, 21 de setembro de 2020

1- OBJETIVO

Utilizar o software Ques para realizar simulações em corrente contínua e em sinais variantes no domínio do tempo e da frequência.

3.1.3 - Criando no simulador o circuito do Roteiro;

3.1.2- Simulando a corrente na série e a tensão no R2

number	Corrente.I	TensaoR2.V
1	-0.00667	13.3

Para a captura da tensão no resistor R2 foi usado um Ohm e para a corrente, como se trata de um circuito em série, optei por utilizar o valor de corrente da fonte, entretanto, quando foi gerado a tabela resultou em um valor negativo, caso fosse utilizado a equação de de Ohm (U=R.I) para demonstrar o valor da corrente do circuito, resultaria no mesmo valor em módulo.

3.1.4- Simulando a corrente na série usando amperímetro e a tensão no resistor R2 usando o voltímetro.

3.1.5- tabela gerada quando foi simulado;

number	Pr1.V	Pr2.I
1	6.67	0.00667

3.2.1- Tabela com os valores da corrente na série e da tensão em R2, para R1 variando de 1 K Ω até 4 K Ω , em passos de 0,5 K Ω gerados pelo simulador.

Corrente na Série (A)	R1(Ω)	Tensão em R2 (V)
0.00667	1000	13.3
0.00571	1500	11.4
0.005	2000	10
0.00444	2500	8.89
0.004	3000	8
0.00364	3500	7.27
0.00333	4000	6.67

3.2.2- Circuito simulado no item 3.2.1, variando o valor de R1 em passos de $0.5 K\Omega$. (O Circuito é o mesmo nos 7 passos, apenas varia o valor do Resistor 1);

3.2.3- Calculando os valores coletados no item 3.2.1 e comparando com os valores simulados.

Corrente na Série (A) (Simulado)	Corrente na Série (A) (Calculado)	Tensão em R2 (V) (Simulado)	Tensão em R2 (V) (Calculado)
0.00667	0.0067	13.3	13.4
0.00571	0.006	11.4	12
0.005	0.005	10	10
0.00444	0.004	8.89	8
0.004	0.004	8	8
0.00364	0.004	7.27	8
0.00333	0.003	6.67	6

Usando a lei de Ohm (U=R.I) para a realização do cálculo, foi obtido variações entre os valores simulados e calculados por conta de arredondamento;

3.2.4- Gráfico entre os valores de R_1 e da tensão em R_2 .

3.3- Circuito com fonte de corrente alternada

3.3.1- Circuito de fonte alternada no simulador;

3.3.3- Simulando em forma gráfica a onda dá tensão na fonte e no resistor de $\, 2 \text{K}\Omega \,$

