Cut edge - edge whose deletion increases the number of components

<u>Cut vertex</u> - vertex whose deletion increases the number of components

Proof. Let H be the component of e. It suffices to prove that H-e is connected if and only if e belongs to a cycle.

Proof. Let H be the component of e. It suffices to prove that H-e is connected if and only if e belongs to a cycle.

Proof. Let H be the component of e. It suffices to prove that H-e is connected if and only if e belongs to a cycle.

(i) Assume H - e is connected.

(ii) Assume e lies on a cycle C.

Proof. Let H be the component of e. It suffices to prove that H-e is connected if and only if e belongs to a cycle.

(i) Assume H-e is connected. Let e=xy clet p be an x_1y path in H-e Adding e to p creates any le in H cent any e

Proof. Let H be the component of e. It suffices to prove that H-e is connected if and only if e belongs to a cycle.

(ii) Assume e lies on a cycle $oldsymbol{C}$.

Eulerian Graphs

Circuit - closed trail

Graph G is **Eulerian** if there is a circuit which contains every edge of G.

Such a circuit is called an **Eulerian circuit**.

A trail which contains every edge of graph G is called an **Eulerian trail**.

Eulerian Graphs

Circuit - closed trail

Graph G is **Eulerian** if there is a circuit which contains every edge of G.

Such a circuit is called an **Eulerian circuit**.

A trail which contains every edge of graph G is called an **Eulerian trail**.

Necessary condition for Euler ariant in a connected graph?

Necessary condition for Euler ariant in a

connected graph?

Necessary condition for Euler ariant in a connected graph?

For Euler trail?

Necessary condition for Euler arianit in a connected graph?

Sufficient?

A connected graph G is Eulerian if and only if every vertex has even degree.

 (\Rightarrow) : easy

(⇐): Induction on number of edges.

A connected graph G is Eulerian if and only if every vertex has even degree.

necessity (\Rightarrow) : easy

sufficiency: Induction on number of edges.

A connected graph G is Eulerian if and only if every vertex has even degree.

necessity (\Rightarrow) : easy

sufficiency: Induction on number of edges.

Lemma 1.2.25. If every vertex of a graph G has degree 7,2, then G contains a cycle

(its proof is by extremality, like Prop 1.2.28, but note that Prop 1.2.28 required G to be simple.)

A connected graph G is Eulerian if and only if every vertex has even degree.

Sufficiency: Let G be a connected even graph. Prove G Eulerian.

Induction on # of edges of G.

A connected graph G is Eulerian if and only if every vertex has even degree.

Sufficiency: Let G be a connected even graph. Prove G Eulerian.

Induction on # of edges of G.

Let m = e(G). If m = 0, G is an isolated vertex. Otherwise, every vertex has degree $\gtrsim 2$. Assume that true for < m edges.

A connected graph G is Eulerian if and only if every vertex has even degree.

Sufficiency: Let G be a connected even graph. Prove G Eulerian.

Induction on # of edges of G.

Let m = e(G). If m=0, G is an isolated vertex.

Otherwise, every vertex has degree 72. Assume

thm true for < m edges. By Prop 1.2.28, G has a cycle C.

A connected graph ${m G}$ is Eulerian if and only if every vertex has even degree.

Sufficiency: Let G be a connected even graph. Prove G Eulerian.

Induction on # of edges of G.

Let m = e(G). If m=0, G is an isolated vertex.

Otherwise, every vertex has degree 72. Assume

The true for < m edges. By Prop 1.2.28, G has a cycle C.

Remove the edges of C. Resulting graph is still even.

A connected graph ${m G}$ is Eulerian if and only if every vertex has even degree.

Sufficiency: Let G be a connected even graph. Prove G Eulerian.

Induction on # of edges of G.

Let m = e(G). If m=0, G is an isolated vertex.

Otherwise, every vertex has degree >2. Assume

The true for < m edges. By Prop 1.2.28, G has a cycle C.

Remove the edges of C. Resulting graph is still even. By induction every component has an Euler circuit.

A connected graph ${m G}$ is Eulerian if and only if every vertex has even degree.

Sufficiency: Let G be a connected even graph. Prove G Eulerian.

Induction on # of edges of G.

Let m = e(G). If m=0, G 15 an isolated vertex.

Otherwise, every vertex has degree >2. Assume

The true for < m edges. By Prop 1.2.28, G has a cycle C.

Remove the edges of C. Resulting graph is still even.

By induction every component has an Euler circuit.

Splice each of these into C. (see text)

Directed Graph (Digraph):

 $egin{array}{ll} egin{array}{ll} E(G) \\ egin{array}{ll} egin{array} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll}$

Example:

$$V(G) = \{u, v, w, x, y, z\}$$

$$E(G) = \{e_1, e_2, \dots, e_7\}$$

$$e_1
ightarrow uw, \quad e_2
ightarrow vw, \quad e_3
ightarrow wx,$$

$$e_4
ightarrow wx, \quad e_5
ightarrow yz, \quad e_6
ightarrow zz,$$

$$e_7 o zz$$

Edge e o uv in digraph

- e is an edge $\overline{ ext{from}}\ u$ to v.
- $oldsymbol{u}$ and $oldsymbol{v}$ are the $oldsymbol{\mathsf{endpoints}}$ of $oldsymbol{e}$.
- u is the **tail** of e.
- v is the **head** of e.
- $oldsymbol{u}$ is a predecessor of $oldsymbol{v}$.
- v is a **successor** of u.
- "u
 ightarrow v"

loop:

multiple edges:

loopless digraph: no loops allowed

outdegree: $d^+(v)$

Of Sucresson for

indegree: $d^-(v)$

of predicessons of No

successor set: $N^+(v)$

predecessor set: $N^-(v)$

Nt (M) = {W, M)

N-(M={XN}

2+(5)=3

¿ (N) = 2

Proposition 1.4.18.

$$\sum\limits_{v\in V(G)}d^+(v)=$$

$$\sum\limits_{v\in V(G)}d^-(v)=$$
 e(G)

Given digraph $oldsymbol{G}$ with

$$V(G) = \{v_1, \dots v_n\}$$

Adjacency matrix
$$A(G)$$
 $(n \times n)$

$$A(G)[i,j] = ext{number of edges from} \ v_i ext{ to } v_j$$

Walk of length k in digraph G:

sequence of vertices and edges of G:

$$v_0, e_1, v_1, e_2, \ldots e_k, v_k$$

where $e_i = v_{i-1}v_i$ for all i.

(Can omit edges if simple)

u,v - walk $\,$ if first vertex is u and last is v

<u>trail</u> if no repeated edges

path if no repeated vertex

 $\underline{\mathsf{closed}}$ if $v_0 = v_k$

cycle closed trail of length at least 1, with no repeated vertex, except first = last

circuit closed trail

The $\underline{\text{underlying graph}}$ of digraph D is the graph G obtained from D by regarding the edges of D as unordered pairs.

Vertex u is **connected** to vertex v if there is a u, v-path in G.

Digraph D is **strongly connected** if there is a path from u to v for every pair (u,v) of vertices.

 $oldsymbol{D}$ is $oldsymbol{weakly connected}$ if $oldsymbol{G}$ is connected.

The $\underline{\mathsf{strong}}\ \mathsf{components}$ of D are the maximal strongly connected subgraphs of D.

Orientation D of simple graph G:
digraph obtained by assigning orientation $x \to y$ or $y \to x$ to each edge xy of G.

Tournament: orientation of a complete (simple) graph.

Note: Tournament need not have a "winner".

However:

Proposition 1.4.13. Every tournament has a vertex from which every other vertex can be reached by a path of length at most 2.

Proof. Let z be a vertex of maximum outdegree....

deStrongly runt proof

Strongly runt proof

Strongly runt proof

Example: Every tournament has a directed path which includes every vertex.

Proof.

- another strongly recommendadex.
- use this to practice a proof by extremality

Eulerian Digraphs

Digraph G is **Eulerian** if there is a circuit which contains every edge of G.

Such a circuit is called an **Eulerian circuit**.

A trail which contains every edge of digraph G is called an **Eulerian trail**.

Theorem 1.4.24.

A weakly connected digraph G is Eulerian if and only if ...