习题课8-第二型曲线、曲面积分

April 26, 2017

一. 选择题

一. 选择题

1. 设f(x)有一阶连续导数,则 $\int_{(0.0)}^{(1,2)} f(x+y) dx + f(x+y) dy =$

(A)
$$\int_0^3 f(x)dx$$
 (B) $\int_0^1 f(x)dx$ (C) $f(3) - f(1)$ (D) 0

(C)
$$f(3) - f(1)$$
 (D) 0

一. 选择题

1. 设
$$f(x)$$
有一阶连续导数,则 $\int_{(0,0)}^{(1,2)} f(x+y) dx + f(x+y) dy =$

(A)
$$\int_{0}^{3} f(x)dx$$
 (B) $\int_{0}^{1} f(x)dx$

(C)
$$f(3) - f(1)$$
 (D) 0

2. 设
$$L$$
 为 $x^2 + y^2 = 2x$ ($y \ge 0$)上从(1,1)到(0,0)一段,则 $\int_L P(x,y)dx + Q(x,y)dy =$

(A)
$$\int_{\underline{L}} (P(x,y) + Q(x,y) \frac{1-x}{y}) ds$$

(B)
$$\int_{L} (-P(x,y) - Q(x,y) \frac{1-x}{y}) ds$$

(C)
$$\int_{1}^{1} (P(x,y)\sqrt{2x-x^2}+Q(x,y)(1-x))ds$$

(D)
$$\int_{1} (-P(x,y)\sqrt{2x-x^2}-Q(x,y)(1-x))ds$$

3. 设 $L: 4x^2 + y^2 = 1$,正向,则 $\oint_L \frac{-ydx + xdy}{4x^2 + y^2} =$ (A) -2π (B) 2π (C) π (D) 0

3. 设
$$L: 4x^2 + y^2 = 1$$
,正向,则 $\oint_L \frac{-ydx + xdy}{4x^2 + y^2} =$

(A)
$$-2\pi$$
 (B) 2π (C) π (D) 0

4. 设在上半平面上,积分
$$\int_{L} \frac{(x-y)dx + (x+y)dy}{(x^2+y^2)^n}$$
 与路径无 关,则 $n =$

(A)
$$-1$$
 (B) 1 (C) $\frac{1}{2}$ (D) 2

1.
$$\oint_L (x + y \cos x) dx + (xy + \sin x) dy$$
, $L: (x - 1)^2 + y^2 = 1$,

2. 设*L*是xy平面上顺时针方向的光滑闭曲线,

且
$$\oint_L (x^2 - 4y) dx + (2x + y^2) dy = -18$$
, 求L围成的区域*D* 的面积

2. 设L是xy平面上顺时针方向的光滑闭曲线,

且
$$\oint_L (x^2 - 4y) dx + (2x + y^2) dy = -18$$
, 求L围成的区域*D* 的面积

3.
$$I = \int_{L} (e^{y} - 12xy)dx + (xe^{y} - \cos y)dy$$
, $L: y = x^{2}$ 上 从 $A(-1,1)$ 到 $B(1,1)$ 一段

2. 设*L*是*xy*平面上顺时针方向的光滑闭曲线,

且
$$\oint_L (x^2 - 4y) dx + (2x + y^2) dy = -18$$
, 求 L 围成的区域 D 的面积

3.
$$I = \int_{L} (e^{y} - 12xy)dx + (xe^{y} - \cos y)dy$$
, $L: y = x^{2}$ 上 从 $A(-1,1)$ 到 $B(1,1)$ 一段

4.
$$\oint_{L} \frac{(x^3y + e^y)dx + (xy^3 + xe^y - 2y)dy}{9x^2 + 4y^2}, L: \frac{x^2}{4} + \frac{y^2}{9} = 1, 顺$$

5. 设f(y), g(y)有二阶连续导数,f(0) = 1, g(0) = -2对任意闭曲线L. 恒有

$$\oint_L 2(xg(y) + f(y))dx + (x^2f(y) + 2xy^2 - 2xg(y))dy = 0,$$

求
$$f(y)$$
, $g(y)$

5. 设f(y), g(y)有二阶连续导数,f(0) = 1, g(0) = -2对任意闭曲线L,恒有

$$\oint_L 2(xg(y) + f(y))dx + (x^2f(y) + 2xy^2 - 2xg(y))dy = 0,$$

求
$$f(y)$$
, $g(y)$

6.
$$\iint_{\Sigma} -ydz \wedge dx + (z+1)dx \wedge dy, \Sigma : x^2 + y^2 = 4$$
 被 $x + z = 2$ 和 $z = 0$ 所截部分外侧

5. 设f(y), g(y)有二阶连续导数,f(0) = 1, g(0) = -2对任意闭曲线L,恒有

$$\oint_L 2(xg(y) + f(y))dx + (x^2f(y) + 2xy^2 - 2xg(y))dy = 0,$$

求
$$f(y)$$
, $g(y)$

6.
$$\iint_{\Sigma} -ydz \wedge dx + (z+1)dx \wedge dy, \Sigma : x^2 + y^2 = 4$$
 被 $x + z = 2$ 和 $z = 0$ 所截部分外侧

7.
$$\iint_{\Sigma} 2(1-x^2)dy \wedge dz + 8xydz \wedge dx - 4zxdx \wedge dy,$$
$$\Sigma : \begin{cases} x = e^y \\ z = 0 \end{cases} (0 \le y \le a) 绕 x 轴旋转而得的曲面,曲面法向量与x轴正向夹角大于 $\frac{\pi}{2}$$$

8. $I = \iint_{\Sigma} (x^3 + az^2) dy \wedge dz + (ax^2 + y^3) dz \wedge dx + (z^3 + ay^2) dx \wedge dy,$ $\Sigma : z = \sqrt{a^2 - x^2 - y^2} 上 側$

8.

$$I = \iint_{\Sigma} (x^3 + az^2) dy \wedge dz + (ax^2 + y^3) dz \wedge dx + (z^3 + ay^2) dx \wedge dy,$$

$$\Sigma : z = \sqrt{a^2 - x^2 - y^2} 上 側$$

9.
$$I = \iint_{\Sigma} x(e^{z^2} + 1)dz \wedge dx + (x + y + z)dx \wedge dy$$
,
 $\Sigma : z = x^2 + y^2 \ (0 \le z \le H)$, 上侧。

8.
$$I = \iint_{\Sigma} (x^3 + az^2) dy \wedge dz + (ax^2 + y^3) dz \wedge dx + (z^3 + ay^2) dx \wedge dy,$$
$$\Sigma : z = \sqrt{a^2 - x^2 - y^2}$$
上側

9.
$$I = \iint_{\Sigma} x(e^{z^2} + 1) dz \wedge dx + (x + y + z) dx \wedge dy$$
,
 $\Sigma : z = x^2 + v^2 \ (0 < z < H)$. 上側。

10.
$$I = \iint_{\Sigma} \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{\sqrt{(x^2 + y^2 + z^2)^3}},$$

 $\Sigma : 1 - \frac{z}{7} = \frac{(x - 2)^2}{25} + \frac{(y - 1)^2}{16}, (z \ge 0),$ \bot

针。

12.
$$I = \oint_C x^2 yz dx + (x^2 + y^2) dy + (x + y + 1) dz$$
,
 $C: \begin{cases} x^2 + y^2 + z^2 = 5 \\ z = x^2 + y^2 + 1, \end{cases}$ 方向为从原点O向z轴正向看去逆时针。

13. 过点O(0,0)和 $A(\pi,0)$ 的曲线族 $y=a\sin x~(a>0)$ 中,求一条曲线L使沿该曲线从O到A的积分 $\int_L (1+y^2)dx+(2x+y)dy$ 的值最小

竞赛

1. 计算第二型曲线积分

$$I = \oint_C \frac{e^y}{x^2 + y^2} ((x \sin x + y \cos x) dx + (y \sin x - x \cos x) dy),$$

其中
$$C: x^2 + y^2 = 1$$
,取逆时针方向。(15'竞赛题)

历年试题

- 1. (05期中) 设L是摆线 $\begin{cases} x = t \sin t \pi \\ y = 1 \cos t \end{cases}$ 上从t = 0到 $t = 2\pi$ 的 弧段,则曲线积分 $\int_{L} \frac{(x y)dx + (x + y)dy}{x^2 + y^2} =$ (A) π (B) $-\pi$ (C) 0 (D) 2π
- 2. (05期末) 已知微分式 $dz = (2xy + 3x^2)dx + (x^2 + 3y^2)dy$,则 其原函数z =
- 3. (07期末) 设C是圆周 $x^2+y^2=x+y$,取逆时针方向,连续函数f(x)>0,证明: $\int_C x f(y) dy \frac{y}{f(x)} dx \ge \pi$

4. (09期末) 计算
$$\int_C \frac{(x-y)dx + (x+y)dy}{x^2 + y^2}$$
, 其中 $C: x^{\frac{2}{3}} + y^{\frac{2}{3}} = (\frac{1}{\pi})^{\frac{2}{3}}$,方向为逆时针

5.
$$(14期末)$$
 当 α = , β = 时,向量 场 $A = (2x + \alpha y)i + (x + 3y)j + (\beta y - z)k$ 为有势场

6. (14期末) 计算第二型曲线积分
$$\int_C \frac{ydx - xdy}{x^2 + 9y^2}$$
, *C*是以 $A(-1,0)$ 为起点, $B(1,0)$ 为终点的下半单位圆周 $y = -\sqrt{1-x^2}$

7. (15期末) 计算
$$\int_{L} \frac{(3y-x)dx+(y-3x)dy}{(x+y)^3}$$
,其中 L 为由 点 $A(\pi,0)$ 沿曲线 $y=\pi\cos\frac{x}{2}$ 到点 $B(0,\pi)$ 的弧段

8. (15期末) 计算第二型曲面积分 $\iint_{\Sigma} y^2 dz \wedge dx + z dx \wedge dy$,其中 Σ 是曲面 $z=x^2+y^2$ 上满足 $z\leq 2x$ 的部分,取下侧