Supervised vs Unsupervised Learning

By Francisco Mendoza

mentofran@gmail.com

Type of problems, data types

Unsupervised

ID	x_1	 x_n	Category	ID	
1	3.532	А	Catx	1	
2	7.234	Н	Caty	2	
:	:	:	:	÷	

Supervised Vs Unsupervised learning

Unsupervised learning

- Clustering
 - K-means
 - **OBSCAN**
 - Hierarchical Cluster Analysis

- Visualization and dimensionality reduction
 - Principal Component Analysis (PCA)
 - Locally-Linear Embedding (LLE)
 - \circ t-distributed Stochastic Neighbor Embedding (t-SNE)

K-means

K-means

Assumptions

- *K* –clusters
- *n* instances

1.
$$C_1 \cup C_2 \cup \cdots \cup C_K = \{1, ..., n\}$$

$$2. \quad C_i \cap C_j = \emptyset \ \forall \ i \neq j$$

Requirements

Similarity or Dissimilarity (Distance) measure

Similarity vs Dissimilarity

- The **similarity** between two objects is a numeral measure of the degree to which the two objects are alike. Consequently, similarities are higher for pairs of objects that are more alike. Similarities are usually non-negative and are often between 0 (no similarity) and 1(complete similarity).
- The **dissimilarity** between two objects is the numerical measure of the degree to which the two objects are different. Dissimilarity is lower for more similar pairs of objects.
- Frequently, the term **distance** is used as a synonym for dissimilarity. Dissimilarities sometimes fall in the interval [0,1], but it is also common for them to range from 0 to ∞.

Exercise

Data

	\boldsymbol{x}	y
a	1	1
b	3	2
С	7	1

Initial Centroids

	x	y
c_1	5	3
c_2	5	1

Homework assignment

• Generate a dataset with 3 groups and then use sklearn.cluster.KMeans() to get clusters of the dataset.