Bestimmung der Fluchtgeschwindigkeit und der Hubble-Konstanten

Astronomisches Praktikum Sommersemester 2024

Guilherme Schmid

Zielsetzung

Ziel des Versuches war es, die Spektren von Galaxien zu analysieren, um deren Fluchtgeschwindigkeiten und Entfernungen zu bestimmen. Darüber hinaus sollte die Hubble-Konstante ermittelt und das Weltalter sowie der Weltradius abgeschätzt werden.

Durchführung

Die Untersuchung basiert auf den Ca II H&K-Absorptionslinien in den Galaxienspektren und den Vergleichsspektren der He I-Lampe. Die folgenden Schritte wurden durchgeführt:

- 1. **Messung der Abstände**: Die Abstände der H&K-Linien zu den He I-Linien wurden in Millimetern gemessen.
- 2. Berechnung der Dispersion: Die Dispersion des Spektrums in Å/mm wurde berechnet, um die gemessenen Abstände in Wellenlängen umzurechnen.
- 3. **Bestimmung der Fluchtgeschwindigkeit**: Mit den umgerechneten Wellenlängen und den Ruhewellenlängen wurden die Fluchtgeschwindigkeiten berechnet.
- 4. **Berechnung der Entfernungen**: Die Entfernungen zu den Galaxien wurden aus den gemessenen Winkeldurchmessern und einem angenommenen tatsächlichen Durchmesser berechnet.
- 5. **Hubble-Diagramm**: Die berechneten Fluchtgeschwindigkeiten und Entfernungen wurden in einem Hubble-Diagramm dargestellt, um die Hubble-Konstante zu bestimmen.

Auswertung

Galaxie	Abstand K (mm)	Abstand H (mm)	Fluchtgeschwindigkeit (km/s)
Virgo	4	5	6085.47
Ursa Major	14	17	20962.37
Corona Borealis	21	24	30433.29
Bootes	33	36	46669.14
Hydra	51	53	70349.41

Tabelle 1: Abstände der Ca II H&K-Linien und berechnete Fluchtgeschwindigkeiten.

Berechnung der Dispersion

Die Dispersion wurde mittels der gemessenen Abstände der He I-Linien zur Linie a berechnet:

Dispersion (b - a) =
$$19.00 \text{ Å/mm}$$

Dispersion (c - a) = 19.643 Å/mm
Dispersion (d - a) = 18.221 Å/mm
Dispersion (e - a) = 16.651 Å/mm
Dispersion (f - a) = 16.824 Å/mm
Dispersion (g - a) = 16.574 Å/mm
Mittlere Dispersion = 17.819 Å/mm

Berechnung der Fluchtgeschwindigkeit

Die beobachteten Wellenlängen der H&K-Linien wurden mit der mittleren Dispersion umgerechnet. Die Fluchtgeschwindigkeiten wurden nach Gleichung (5.2) berechnet.

Entfernungen der Galaxien

Die Entfernungen der Galaxien wurden aus den gemessenen Winkeldurchmessern und dem angenommenen tatsächlichen Durchmesser von $s=0.02\,\mathrm{Mpc}$ berechnet.

Galaxie	Entfernung d (Mpc)	
Virgo	31.84	
Ursa Major	121.01	
Corona Borealis	201.68	
Bootes	605.04	
Hydra	605.04	

Tabelle 2: Entfernungen der Galaxien.

Abbildung 1: Hubble-Diagramm der berechneten Entfernungen und Fluchtgeschwindigkeiten.

Fazit

Die Hubble-Konstante wurde aus der Steigung der Ausgleichsgeraden im Hubble-Diagramm berechnet:

$$H = 83.86 \,\mathrm{km/s/Mpc}$$

Weltalter und Weltradius

Das Weltalter T und der Weltradius D wurden nach den Gleichungen (5.3) und (5.4) bestimmt:

$$T = \frac{1}{H} = 0.0119 \,\text{Gyr}$$

 $D = \frac{c}{H} = 3577.35 \,\text{Mpc}$

Anhang

Die Berechnungen wurden mit Hilfe eines Python-Skripts durchgeführt, welches die erforderlichen Messdaten und Berechnungen automatisiert hat.