Quadratic reciprocity

Introducing quadratic reciprocity.

We are going to explore the relationship between $\left(\frac{p}{q}\right)$ and $\left(\frac{q}{p}\right)$. Let's look at an example:

Question 1 We want to know if 3 is a quadratic residue modulo 107. It would be a lot easier to check if 107 is a quadratic residue modulo 3. We know that $107 \equiv \boxed{2} \pmod{3}$, so $\left(\frac{107}{3}\right) = \boxed{-1}$. It would be nice if this also gave us $\left(\frac{3}{107}\right)$.

Question 2 Another example: Find $\left(\frac{p}{5}\right)$ and $\left(\frac{5}{p}\right)$.

p	3	5	7	11	13
$\left(\frac{p}{5}\right)$	-1	0	-1	1	-1
$\left[\begin{array}{c} \left(\frac{5}{p}\right) \end{array}\right]$	-1	0	-1	1	-1

Question 3 Another example: Find $\left(\frac{p}{7}\right)$ and $\left(\frac{7}{p}\right)$.

p	3	5	7	11	13
$\left(\frac{p}{7}\right)$	-1	-1	0	1	-1
$\left(\frac{7}{p}\right)$	1	-1	0	-1	-1

This gives some evidence for our theorem:

Theorem 1. Let p and q be odd primes with $p \neq q$.

• if
$$p \equiv 1 \pmod{4}$$
 or $q \equiv 1 \pmod{4}$, then $\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$

Learning outcomes: Author(s):

Quadratic reciprocity

• if
$$p \equiv q \equiv 3 \pmod{4}$$
, then $\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right)$

Our goal for Friday is to prove this.