PSI 3432 - Processamento de Áudio e Imagem Mudança de taxa de amostragem

Vítor H. Nascimento

10 de setembro de 2020

1 Introdução

É comum ser necessário trocar a taxa de amostragem de uma sequência. Uma razão é o caso de se ter um sinal gravado em um determinado padrão que precisa ser convertido para outro padrão, por exemplo, um sinal amostrado por um aparelho de áudio profissional, a 48 kHz, precisa ser convertido para a taxa usada em CDs, de 44,1 kHz, ou vice-versa. Como fazer a conversão?

Converter o sinal original para analógico e reamostrar na nova taxa funciona, mas introduz inúmeras distorções, além de ruído, no sinal convertido. Não é uma boa alternativa. É muito melhor fazer a conversão de maneira puramente digital [1, 2]. Vamos ver nessa experiência como isso pode ser feito.

2 Redução da taxa de amostragem por um fator inteiro (decimação)

O problema mais simples é reduzir uma taxa de amostragem por um fator inteiro, por exemplo, reduzir a taxa de um sinal de 48 kHz para 24 kHz. Para isso, em princípio basta jogar fora uma de cada duas amostras — ou não? O sinal amostrado em 48 kHz, em princípio pode conter frequências até 24 kHz. Se a taxa for reduzida para 24 kHz, agora só teremos frequências entre 0 e 12 kHz — ou seja, todas as frequências entre 12 e 24 kHz serão rebatidas sobre a faixa entre 0 e 12 kHz, e o resultado será uma enorme distorção (veja a Fig. 1).

Para ver o que acontece, considere o sinal

$$x(t) = \text{sen}(2\pi t) - \frac{1}{3}\text{sen}(42\pi t), \quad t \text{ em ms},$$

com harmônicas em 1 kHz e 21 kHz. Na figura, à esquerda, o sinal está amostrado a uma taxa $f_a=48$ kHz, resultando na sequência

$$x_1[n] = x(n/48) = \operatorname{sen}(2\pi n/48) - \frac{1}{3}\operatorname{sen}(42\pi n/48).$$

Figura 1: Redução de taxa de amostragem. À esquerda, o sinal $sen(2\pi t) - \frac{1}{3}sen(42\pi t)$ (t em ms) amostrado a 48 kHz. À direita, o sinal subamostrado para uma taxa de 24 kHz.

Quando a taxa é reduzida para $f_a'=f_a/2=24~\mathrm{kHz},$ obtemos o sinal

$$x_2[\ell] = x(\ell/24) = x_1[2\ell] = \operatorname{sen}(2\pi\ell/24) - \frac{1}{3}\operatorname{sen}(42\pi\ell/24).$$

Como a componente a 21 kHz ultrapassa a nova frequência de Nyquist de 12 kHz, o seno de 21 kHz é rebatido para a frequência 24-21=3 kHz (mas com a fase invertida, se você pensar um pouco entende por quê). O resultado é que o sinal $x_2[n]$ fica distorcido: a componente de alta frequência fica parecendo uma componente de baixa frequência (e nesse caso, faz o sinal parecer uma onda quadrada filtrada, confira no lado direito da Fig. 1).

Para evitar o rebatimento, é necessário filtrar o sinal antes da redução da taxa de amostragem, o que se faz com um filtro passa-baixas com frequência de corte na metade da taxa de amostragem de destino.

Importante: Repare que o filtro anti-rebatimento elimina informação do sinal — isso é um problema inerente a reduzir taxa de amostragem. No entanto, é melhor retirar as harmônicas de frequência alta do que permitir que elas sejam rebatidas para frequência baixa. Depois de passar o filtro anti-rebatimento, o sinal a 24 kHz do exemplo fica um único seno, como mostra a Fig. 2.

Primeiro exercício: Projete um filtro passa-baixas para o exemplo acima. Considere que o ganho do filtro deve ficar perto de 1, com oscilação menor que 0,02 na banda passante, e o ganho na banda de rejeição deve ser menor do que 0,01. A banda-passante deve ficar entre 0 e 11 kHz, e a banda de rejeição deve começar a 13 kHz.

1. Projete o filtro inicialmente usando janelas de Kaiser e mínimos quadrados lembre que a resposta ao impulso do filtro ideal é a anti-transformada da resposta ideal, ou seja,

$$h_d[n] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} 1 \cdot e^{-j\omega L} \cdot e^{j\omega n} d\omega,$$

Figura 2: Redução de taxa de amostragem. À esquerda, o sinal $sen(2\pi t) - \frac{1}{3}sen(42\pi t)$ (t em ms) amostrado a 48 kHz. À direita, o sinal é inicialmente filtrado (com frequência de corte a 12 kHz) e em seguida subamostrado para uma taxa de 24 kHz.

em que L é o atraso do filtro. A resposta ao impulso do filtro final é a resposta do filtro ideal multiplicada pela janela, para $0 \le n \le N-1$, em que o comprimento do filtro é N=2L+1. Os parâmetros da janela de Kaiser são

$$A = \max\{-20\log_{10}(\delta_p), -20\log_{10}(\delta_r)\},\$$

$$\beta = \begin{cases} 0.1102(A - 8.7), & \text{se } A > 50,\\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21), & \text{se } 21 \le A \le 50, \\ 0, & \text{se } A < 21, \end{cases}$$

$$\lambda = \begin{cases} 0.1102(A - 8.7), & \text{se } A > 50,\\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21), & \text{se } A < 21, \end{cases}$$

em que $\Delta\omega = \omega_r - \omega_p$ é a diferença entre o limite da banda de rejeição e o limite da banda-passante, δ_p é a oscilação máxima tolerada na banda-passante, e δ_r é a oscilação máxima tolerada na banda de rejeição.

- 2. Passe o sinal x[n] pelo filtro projetado. Forneça os gráficos dos sinais obtidos.
- 3. Compare o ganho do filtro nas frequências do sinal de entrada calculado teoricamente (isto é, H(e^{jω})), com os valores obtidos experimentalmente a partir do espectro dos sinais de entrada e de saída, usando a TDF para estimar estes últimos. Para obter o espectro experimental, você precisa pegar um número inteiro de períodos para calcular a TDF, e não levar em conta o transitório do filtro. Se o seu sinal de saída for y, L for o atraso do filtro e N for um número inteiro de períodos, você pode fazer isso calculando a TDF com o comando fft(y(2*L:2*L+N-1)).
- 4. Reduza a taxa do sinal obtido para 24 kHz, e forneça os gráficos dos sinais obtidos.

3 Aumento da taxa de amostragem por um fator inteiro — interpolação

Imagine agora que você precisa aumentar a taxa de amostragem de um sinal, digamos que de $48~\mathrm{kHz}$ para $48\times3=144~\mathrm{kHz}$. Nesse caso, é necessário achar duas amostras intermediárias entre cada duas amostras do sinal original. Como fazer isso?

Suponha que você tenha um sinal x(t), de tempo contínuo, com transformada $X(j\Omega)$. Imagine que x(t) tem banda limitada, ou seja, o espectro é nulo para $|\Omega| > 2\pi 24$ krad/s. Você amostra o sinal à taxa $f_a = 48$ kHz, obtendo a sequência $x_1[n] = x(n/48.000)$. A transformada de Fourier de $x_1[n]$ é $X_1(e^{j\omega}) = f_a X(j\omega f_a)$, para $-\pi \le \omega \le \pi$, com $\omega = \pi$ rad/amostra correspondendo à frequência $f_a/2 = 24$ kHz.

Considere que o sinal tivesse sido amostrado a $f'_a = 3 \times 48 = 144$ kHz, resultando na sequência $x_2[\ell] = x(\ell/144.000)$. Nesse caso, a transformada de $x_2[\ell]$ será $X_2(e^{j\omega'}) = f'_a X(j\omega' f'_a)$ para $-\pi \leq \omega' \leq \pi$, e agora $\omega' = \pi$ corresponde à frequência $f'_a/2 = 72$ kHz. Lembre que a frequência ω da transformada de tempo discreto é normalizada, ou seja, é relativa à taxa de amostragem (por isso sua unidade é radianos por amostra).

Portanto, $\omega' = \pi/3$ do sinal amostrado a $f'_a = 3f_a$ corresponde a $\omega = \pi$ no sinal amostrado a f_a . A relação vale para as outras frequências também: como $X(j\Omega)$ é nulo para $\Omega > 24.000\pi$ rad/s, $X_2(e^{j\omega'})$ é igual a

$$X_2(e^{j\omega'}) = \begin{cases} 3X_1(e^{j3\omega'}), & \text{para } -\frac{\pi}{3} \le \omega' \le \frac{\pi}{3}, \\ 0, & \text{para } \frac{\pi}{3} < |\omega| \le \pi. \end{cases}$$

Então, o problema de aumentar a taxa de amostragem do sinal $x_1[n]$ é equivalente a achar um sinal $x_2[\ell]$ com a transformada acima. Fazer isso é relativamente simples: considere o sinal

$$y[\ell] = \begin{cases} x_1[n], & \text{se } \ell = 3n, \\ 0, & \text{se } \ell = 3n + 1 \text{ ou } \ell = 3n + 2. \end{cases}$$

A transformada de $y[\ell]$ é

$$Y(e^{j\omega}) = \sum_{\ell=-\infty}^{\infty} y[\ell]e^{-j\omega\ell}.$$

Como $y[\ell] \neq 0$ somente para $\ell = 3n$, vamos fazer uma mudança de variáveis e trocar ℓ por 3n na somatória:

$$Y(e^{j\omega}) = \sum_{n=-\infty}^{\infty} y[3n]e^{-j\omega 3n} = \sum_{n=-\infty}^{\infty} x[n]e^{-j3\omega n} = X(e^{j3\omega}).$$

Vemos que $Y(e^{j\omega})$ tem periodicidade $2\pi/3$ rad/amostra, já que $X_1(e^{j\omega})$ tem (como sempre) período 2π . Agora imagine que $y[\ell]$ passasse por um filtro passa-baixas ideal com ganho 3 e corte em $\omega_c = 2\pi/3$ rad/amostra, e que a saída fosse chamada de $x'[\ell]$. A transformada de $x'[\ell]$, $X'(e^{j\omega})$, satisfaria a seguinte propriedade

$$X'(e^{j\omega}) = \begin{cases} 3X_1(e^{j3\omega}), & \text{se } -\pi/3 \le \omega \le \pi/3, \\ 0, & \text{se } \pi/3 < |\omega| \le \pi. \end{cases}$$

Mas essa é exatamente a transformada de $x_2[\ell]$! Ou seja, para obter um sinal a uma taxa mais alta, basta colocar um número adequado de zeros entre cada par de amostras e passar o sinal resultante por um filtro passa-baixas. Preste atenção apenas que o filtro deve ser implementado na frequência mais alta. Vamos testar isso em um exercício:

Segundo exercício: Considere novamente o sinal x[n], obtido amostrando $x(t) = \text{sen}(2\pi t) - \frac{1}{3} \text{sen}(42\pi t)$ (t em ms), a 48 kHz. Agora queremos achar o sinal $x'[\ell]$, que seria obtido se a frequência de amostragem fosse de 144 kHz.

- 1. Projete um filtro passa-baixas com corte em $\pi/3$ rad/s e ganho 3. Esse filtro deve atenuar as partes indesejadas do espectro de $Y(e^{j\omega})$ por pelo menos 40 dB, mas a banda-passante deve ter um ganho de 3 ± 0.015 .
 - (a) Ache a máscara (as especificações) para o projeto do filtro (frequências-limite da banda-passante e da banda de rejeição).
 - (b) Projete um filtro com as especificações acima usando janelas de Kaiser, como antes.
- 2. Gere o sinal $y[\ell]$ e passe o sinal pelo seu filtro.
- 3. Compare a saída com o sinal ideal, amostrado diretamente de x(t) a 144 kHz.
- 4. Calcule (usando a TDF) o espectro de $x'[\ell]$, e compare os ganhos de cada raia importante com o ganho do filtro que você projetou, como no exercício anterior.

Observações:

- 1. Os métodos acima valem para aumentar o reduzir a taxa de amostragem por um fator inteiro. Para um fator de conversão q = K/M, basta fazer uma interpolação seguida de uma decimação (por que essa é a melhor ordem para as operações, em geral?)
- 2. Se o filtro de interpolação for FIR, como várias amostras do sinal de entrada $y[\ell]$ são nulas, o número de operações pode ser reduzido, evitando-se fazer multiplicações por zero. Por que isso não funciona para filtros IIR?

4 Aumento de taxa de amostragem usando interpolação linear

É possível aumentar a taxa de amostragem usando interpolação linear no sinal $y[\ell]$.

Terceiro exercício: Escreva um programa para resolver o segundo exercício usando um interpolador linear. Compare o resultado com o resultado do exercício anterior.

É possível modelar a interpolação linear como um filtro FIR também. Mostre qual é a resposta ao impulso do filtro, e ache a sua resposta em frequência. Compare com a resposta em frequência do filtro usado no segundo exercício.

5 Conversão A/D com sobreamostragem

Se você for resolver o exercício no Matlab, use a função quantize2.m para criar um sinal sq quantizado com 5 bits. Você pode usar o comando sound(sq, fa) para ouvir o sinal. Se for usar Julia, use

using FixedPointNumbers

e o comando sq = Fixed{Int16,4}.(s) (o comando Fixed{Int16, k} especifica números em ponto fixo usando k bits à direita da vírgula - então se você quer simular operações com números entre -1 e 1 com 5 bits, 1 bit é para o sinal e 4 para a parte fracionária). Para ouvir em Julia na linha de comando é necessário gravar o sinal de áudio usando o pacote WAV e ouvir fora, mas é mais fácil ouvir o som com o comando yq = SampleBuf(sq, fa) do pacote SampledSignals (aparece uma janelinha para tocar o sinal, tanto em um notebook do Jupyter, quanto em um arquivo no Atom).

Gere um sinal da forma

$$x(t) = 0.7\sin((\Omega_0 + 0.5\Delta\Omega t)t) + 0.3\cos(\Omega_1 t),$$

com $\Omega_0=3.000$ rad/s, $\Delta\Omega=3.000$ rad/s², $\Omega_1=2\pi750$ rad/s, e amostre o sinal com uma taxa $f_a=40$ kHz no intervalo de 0 a 2 s.

Gere um sinal $x_q(t)$ quantizado com 5 bits (como explicado acima), e escute os dois sinais. Projete um filtro passa-baixas com as seguintes especificações:

$$\delta_p = 0,0001,$$
 $\delta_r = 0,0001,$ $\omega_p = \frac{6}{40},$ $\Delta \omega = \frac{\pi}{100}.$

Veja que $M \approx \frac{\pi}{\omega_p + \frac{\Delta\omega}{2}}$.

Calcule o valor da potência do ruído de quantização, e a relação sinal/ruído (a potência média de uma senoide é $\frac{A^2}{2}$), de duas maneiras: (a) teoricamente, (b) pela definição de potência média (calculando $\frac{1}{N} \sum_{n=0}^{N-1} x^2[n]$, $\frac{1}{N} \sum_{n=0}^{N-1} \epsilon^2[n]$). Para o ruído, faça $\epsilon[n] = x_Q[n] - x[n]$.

Depois, filtre o sinal quantizado e calcule a potência média do ruído de quantização na saída e a relação sinal/ruído. Repare que para calcular o ruído de quantização, filtre o sinal limpo para fazer a subtração: se $y_Q[n]$ é o sinal $x_Q[n]$ filtrado e y[n] é o sinal x[n] filtrado, o ruído será $y_{\epsilon}[n] = y_Q[n] - y[n]$. Calcule o número de bits equivalente.

Bônus: Dois pontos a mais na nota (a experiência valerá 12) para quem implementar também o conversor A/D com o método $\Sigma - \Delta$ (e fizer as análises de relação sinal/ruído e número equivalente de bits).

Referências

- [1] P. S. Diniz, E. A. Da Silva, e S. L. Netto. *Digital signal processing: system analysis and design*. Cambridge University Press, 2010.
- [2] A. Oppenheim e R. W. Schafer. *Processamento em tempo discreto de sinais*. Pearson, 2013.