Aufgabe 1:

Erstelle für die Funktion $f = x^2 - 3$ eine Wertetabelle und zeichne den dazugehörigen Graphen im Bereich von x = -3 bis x = 3 in ein Koordinatensystem.

Aufgabe 2:

Gib für die folgenden Parabeln den Scheitelpunkt, die Symmetrieachse, sowie die Nullstellen an.

	Scheitelpunkt	Symmetrieachse	Nullstellen
f_1	S(-1 -1)	x = -1	$x_1 = -2 x_2 = 0$
f_2	S(1 1)	x = 1	Keine Nullstelle
f_3	S(0 2)	x = 0	Keine Nullstelle
f_4	S(-1 0)	x = -1	x = -1
f_5	S(-1 -1)	x = -1	$x_1 = -2 x_2 = 0$

Aufgabe 3:

Stelle für die Graphen der vorherigen Aufgaben die zugehörigen Funktionsterme auf.

a)
$$f_1 = (x+1)^2 - 1$$

c)
$$f_3 = x^2 + 2$$

e)
$$f_5 = (x+1)^2 - 1$$

b)
$$f_2 = (x-1)^2 + 1$$

d)
$$f_4 = (x+1)^2$$

Aufgabe 4:

Zeichne die Graphen der folgenden Funktionen in ein gemeinsames Koordinatensystem. Verwende dabei die Schablone.

a)
$$f_1(x) = (x-1)^2$$

c)
$$f_3(x) = (x-1)^2 + 1$$
 e) $f_5(x) = (x-2)^2 - 1$

e)
$$f_5(x) = (x-2)^2 - 1$$

b)
$$f_2(x) = x^2$$

d)
$$f_4(x) = (x+2)^2$$

f)
$$f_6(x) = x^2$$

