markdown.md

Velkommen til TDT4120 - Algoritmer og datastrukturer

Her er alle mine øvinger og noen av notatene mine fra faget.

Forelesningsplan

Med notater fra forelesninger og eksamensperiode

Forelesning 1 - Problemer og algoritmer

- Kunne definere problem, instans og problemstørrelse
 - o Problem:
 - Relasjon mellom input og output.
 - o Instans av et problem:
 - En sub-klasse av problemet.
 - En bestemt input.
 - o Problemstørrelse:
 - Lagringsplass som trengs for en instans.
- Forstå løkkeinvarianter og naturlig induksjon
 - Løkkeinvarianter
 - Brukes til bevis for løkker.
 - Init: Før start.
 - Vedlikehold: Holder den før/etter en iterasjon.
 - Terminering: Løkken sier noe nyttig.
- Forstå bokas pseudokode-konvensjoner
 - En måte å spesifisere algoritmer på, uavhengig av programmeringsspråk.
- ✓ Forstå Insertion-Sort
- Kunne definere best-case, average-case og worst-case
 - Kjøretid: Funksjon av problemstørrelse -> f(problemstørrelse)
 - o Best-case: Beste mulige kjøretid for en gitt størrelse.
 - Average-case: Forventet, gitt en sannsynlighetsfordeling.
 - o Worst-case: Verste mulige. Brukes mest
- Forstå ideen bak divide-or-conquer
 - o Splitt og hersk: Del opp i mindre problemer, så få kontroll.
- Forstå Merge-Sort
 - \circ Kjøretid: $\Theta(n \mid g(n))$ -> Både best, avg. og worst!
 - o Tar å deler opp i 2 for hver bit. Så når hver bit er 2 i størrelse (eller 1)
 - Så sorterer man de små bitene. Så {7,2} => {2,7}. Trengs bare en gang.
 - Merger de 2 og to, så det går fra f.eks. 8 til 4 biter, så 4 til 2.
 - De sorteres når de merges.
- \checkmark Kunne definere asymptotisk notasjon, O, Ω , Θ , o og ω .
 - o Huskeregel:

```
\omega > \theta(f(n)) (Small Omega)

\Omega \ge \theta(f(n)) (Big Omega)

\theta = \theta(f(n)) (Big Theta)

0 \le \theta(f(n)) (Big O)

0 < \theta(f(n)) (Small O)
```

Kompleksitetsregler:

```
1 < ln(n) < n < n^k < k^n < n! < n^n | k = en konstant
```

Forelesning 2 - Datastrukturer

- Forstå hvordan stakker og køer fungerer
 - Stakker:
 - Som elementer i en boks. Øverste først inn, og elementer kan bare legges øverst.
 - Push: Legge til element på toppen.
 - Pop: Fjerne øverste elementet.
 - Køer:
 - Putter elementer inn og henter ut elementer i andre enden.
 - Enqueue: Legge til element i starten.
 - Dequeue: Hente ut element fra slutten.
- Forstå hvordan lenkede lister fungerer
 - Elementer som har elementer i seg. (Peker til neste element)

```
\circ x = (1,(2,(3,...))) => x[1][1][0] = 3
```

- Forstå hvordan pekere og objekter kan implementeres
 - o Omtrent som lenkede lister. Peker mot en addresse i minnet som om det var et annet objekt i den addressen.
- Forstå hvordan rotfaste trær kan implementeres
 - Binære (binær = 2):
 - Tre med maks 2 armer per gren.
 - Kan ha 2 pekere til hver sin grennode.
 - Generelt om trær:
 - En toppnode med masse barn som har barn osv.
 - En node kan ikke nå et barnebarn.
- Forstå hvordan direkte adressering og hashtabeller fungerer
 - o Direkte adressering:
 - Bruke nøkkel direkte som indeks. Triviell form for hashing.
 - Hashtabeller:
 - Genererer en indeks fra nøkkelverdien.
 - Enveisfunksjon! Går ikke tilbake.
 - Lengde kan være en funksjon. Da er:

```
1 = 1
2 = 1
10 = 2
...
n = len(n)
```

- Forstå konfliktløsing ved kjeding (chaining)
 - $\circ~$ Kan brukes i hashing. Bare en bedre system for å bruke det.
 - o Som bucket sort. Plasserer alle i samme "bøtte" om de får samme genererte indeks.
 - Kolliderer de, som at lengden (forrige eksempel) er lik, plasseres de i samme kjede.
 - Dette blir en lenket liste for hver av indeksene (lengdene).
- Kjenne til grunnleggende hashfunksjoner
 - Lengde, ASCII-verdier <- Sortering.
 - RSA, DSA <- Kryptografi.
- $\ensuremath{ \mathbb{Z} }$ Vite at man for statiske datasett kan ha worst-case O(1) for søk
 - o Bare å lage en hashfunksjon selv og se.
 - o Enklere for en datamaskin å hente ut en hashverdi fra et sted den vet hvor er i minnet.
- ✓ Kunne definere amortisert analyse
- Forstå hvordan dynamiske tabeller fungerer
 - o Brukes blant annet i python:
 - objekt.attr = objekt[attr]
 - o Ikke effektivt, men fleksibelt.

Forelesning 3 - Splitt og hersk

✓ Forstå strukturell induksjon *

0 + 2

```
o + 2 x 2
o + ...
o + 2 x ... x 2
o = 2 x ... x 2 x 2 - 2
o + 2 x ... x 2 x 2
o = 2 x ... x 2 x 2 - 2
o sum^ln(n)_{i=1} 2^i = 2n - 1
```

Forstå designmetoden divide-and-conquer (splitt og hersk)

```
    len(2 x 2 x 2 x ... x 2) = m
    lg(2 x 2 x 2 x ... x 2) = m
    lg(3 x 3 x 3 x ... x 3) = m
    lg(k x k x k x ... x k) = m
```

✓ Kunne løse rekurrenser med substitusjon, rekursjonstrær og masterteoremet

```
o f(x) = 1 + f(x)
o [f(x)] = [1 + [f(x)]]
o [f(x)] = [1 + [1 + [f(x)]]]
o [f(x)] = [1 + [1 + [1 + [...]]]]
o f(x) = 1 + f(x - 1)
o [f(x)] = [1 + f(x - 1)]
o [f(x)] = [1 + f(x - 1)]
```

- Forstå hvordan variabelskifte fungerer
- Forstå Quicksort og Randomized-Quicksort
 - o Quicksort starter på siste element.
 - Randomized starter på et tilfeldig element.
 - Worst case er ferdig sortert. O(n2).
- Forstå binærsøk
 - i. Sortèr utvalget.
 - ii. Dele i 2.
 - iii. Velg den biten som inneholder søket.
 - iv. Fortsett punkt 2 og 3 til elementet er funnet.
- · Notater:
 - o Merge sort:

- · Litt grunnleggende:
 - $log(x^{(\log(y))}) = log(y^{(\log(x))})$
 - $2^{\log_3(n)} = n^{\log_3(2)}$

Forelesning 4 - Rangering i lineær tid

- $\ensuremath{\mathscr{C}}$ Forstå hvorfor sammenligningsbasert sortering har en worst-case på $\Omega(n \lg n)$
 - De sammenligner to og to elementer.
- ✓ Vite hva en stabil sorteringsalgoritme er
 - o Det er en algoritme som bevarer rekkefølgen basert på et sorteringskriterie.
 - o Fks:
 - { (B, 2), (C, 2), (A, 1), (B, 1) }
 - => (sorterer på første nøkkel-verdi)
 - { (A, 1), (B, 2), (B, 1), (C, 2) }
- Forstå Counting-Sort, og hvorfor den er stabil
 - · Eksempel:

```
■ list = [ 0a, 4a, 1a, 2a, 4b, 1b ]
```

- Lager først en liste fra max til min verdier som forekommer.
- \blacksquare min = 0, max = 4
- countings = [0] * (max min)
- Så teller den forekomster i den nye listen. Indeksen er tallene.
- countings = [1, 2, 1, 0, 2]
- Denne listen med countings viser nå plasseringer relativt til hverandre.
- Vi vil ha absolutt verdier, så vi ikke er avhengig av tidligere, så vi oppdaterer den slik:
- countings = [1, 3, 4, 4, 6]
- Lager en liste med lik lengde som list . Her skal den ferdige listen lages.
- new_list = [null] * (max min)
- Så for hvert element i list , går vi enkelt i countings og finner posisjonen:
- 1b ligger i countings[1]. countings[1] = 3 ergo er 1b i posisjon 3
- countings[1] -= 1
- 4b ligger i countings[4]. countings[4] = 6 ergo er 1b i posisjon 3
- countings[3] -= 1
- Etter å legge inn de 2 bakerste elementene er countings listen slik:
- countings = [1, 2, 4, 4, 5]
- Vi itererer gjennom hele og ender opp med:
- list = [0a, 4a, 1a, 2a, 4b, 1b]
 new_list = [0a, 1a, 1b, 2a, 4a, 4b]
 countings = [0, 1, 3, 4, 4]
- Eksempelet viser også at algoritmen er stabil.
 - Viktig å gå bakover når man skal plukke ut elementer til den nye listen, eller blir den ustabil.
- Forstå Radix-Sort, og hvorfor den trenger en stabil subrutine
 - o Den sorterer på f.eks. først enere, så tiere osv.
 - o Den sorterer like mange ganger som det er nøkler å basere seg på.
 - Altså er det tall, som det i dette faget er, blir dette antall siffere på det høyeste tallet.
 - o Om den ikke er stabil vil alle de tidligere sorteringene feile. Den er avhengig av tidligere sorteringer.
- Forstå Bucket-Sort
 - Eksempel:
 - Du har 10 bøtter.
 - Du vet du skal sortere tall mellom 1 og 10.
 - Du kan så putte elementene i hver sin bøtte
 - Så bygge opp resultatet ved å ta ut tallene fra bøttene i riktig rekkeføge.
 - Vil ikke sortere grunntigere enn bøttene.
 - o Krever en del RAM (Minne), pga antall bøtter kan bli ganske mange.
 - $\circ~$ Er stabil. Den bygger en stack i hver bøtte. Så først inn sist ut.
- Forstå Randomized-Select
 - Velger heller en random pivot for å unngå worst-case O(n²).
 - $\circ~$ En hybrid av Quicksort og binærsøk.
- Forstå Select
 - Notater:

Rekursjon:

```
Time:
1 if n > 1
2         t = Time(n - 1)
3         return t + n
4 else return 1
```

Rec-Ins-Sort:

```
1 if j > 1
2    Rec-Ins-Sort(A, j - 1)
3    key = A[j]
4    i = j - 1
```

Forelesning 5 - Rotfaste trestrukturer

- Forstå hvordan heaps fungerer, og hvordan de kan brukes som prioritetskøer
 - o Trestruktur slik at man kan akksessere elementene i O(lg(n)) tid.
- Forstå Heapsort
 - Steg
 - Build-max-heap O(n)
 - Extract-max O(log(n)) fordi trestrukturen.
 - Max-heapify O(log(n))
 - Max-heap-insert O(log(n))
 - Heap-increase-key O(log(n))
 - Heap-maximum Θ(1) Velger bare den første noden (rotnoden, som også er først i stacken).
- Forstå hvordan binære søketrær fungerer
 - Fungerer ofte rekursivt mtp. hvordan trærene kan enkelt deles opp i to.

```
Successor(x)
1 if x.right != NIL
2    return Min(x.right)
3 y = x.p
4 while y != NIL and x == y.right
5    x = y
6    y = y.p
7    return y
```

Traversering

- Forstå flere ulike operasjoner på binære søketrær, ut over bare søk
 - Insetting

```
Tree-Insert(T, z)
1 y = NIL
2 x = T.root
3 while x != NIL
     y = x
5
     if z.key < x.key</pre>
6
         x = x.left
     else x = x.right
8 z.p = y
9 if y == NIL
10
    T.root = z
11 else if z.key < y.key
y.left = z
13 else y.right = z
```

Transplant - brukes ved sletting

```
o Tree-Transplant(T, u, v)
1 if u.p == NIL
2     T.root = v
3 elseif u == u.p.left
4     u.p.left = v
5 else u.p.right = v
6 if v != NIL
7     v.p = u.p
```

Sletting

```
Tree-Delete(T,z)
   1 if z.left == NIL
        Transp(T, z, z.right)
   3 elseif z.right == NIL
   4 Transp(T, z, z.left)
   5 else y = Minimum(z.right)
   6
       if y.p != z
   7
            Transp(T, y, y.right)
           y.right = z.right
   8
   9
            y.right.p = y
   10 Transp(T, z, y)
   11 y.left = z.left
       y.left.p = y
```

- ✓ Vite at forventet høyde for et tilfeldig binært søketre er Θ(lg n)
- ✓ Vite at det finnes søketrær med garantert høyde på Θ(lg n)
- · Kjøretider for binære søketre:

•	Algoritme	Kjøretid
	Inorder-Tree-Walk	Θ(n)
	Tree-Search	0(h)
	Tree-Minimum	0(h)
	Tree-Successor	0(h)
	Tree-Insert	0(h)
	Tree-Delete	0(h)

Forelesning 6 - Dynamisk programmering

- Forstå ideen om en delproblemrelasjon eller delproblemgraf
 - o DP er nytting om man har overlappende delproblemer.
 - o Korrekt om man har optimal substruktur.
- Forstå induksjon over velfunderte relasjoner *
- Forstå designmetoden dynamisk programmering
 - Hva er DP?
 - a. Karakterisere strukturen av en optimal løsning.
 - b. Rekursivt definere verdi av den optimale løsningen.
 - c. Kalkuler verdien av en optimal løsning.
 - d. Konstruer en optimal løsning fra beregnet informasjon.
 - o Oppskrift, Sniedivich
 - a. **Embed** your problem in a family of related problems.
 - b. Derive a relationship between the solutions to these problems.
 - c. Solve this relationship.
 - d. **Recover** a solution to your problem from this relationship.
- Forstå løsning ved memoisering (top-down)
 - o Nyttig når vi har overlappende løsninger.
 - o Korrekt når vi har optimal substruktur.
- Forstå løsning ved iterasjon (bottom-up)
- Forstå hvordan man rekonstruerer en løsning fra lagrede beslutninger
- Forstå hva optimal delstruktur er
- Forstå hva overlappende delproblemer er
- ✓ Vite forskjellen på et segment og en underfølge (subsequence)
- Forstå eksemplene stavkutting, matrisekjede-multiplikasjon og LCS
 - o Stavkutting. Denne er eksponentiell:

```
cut(p, n)
1 if n == 0
2    return 0
3 q = -\infty
4 for i = 1 to n
5    t = p[i] + Cut(p, n - i)
6    q = max(q, t)
7 return q
```

```
q, t = -\infty, - > 6.6 > -, -
```

• En annen metode med 2 prosedyrer som er kvadratisk O(n²):

```
Memoized-Cut-Rod(p, n)

1 let r[0 ..n] be a new array

2 for i = 0 to n

3 r[i] = -\infty

4 return Aux(p, n, r)
```

o Selve prosedyren:

```
Aux(p, n, r)
1 if r[n] ≥ 0
2 return r[n]
3 if n == 0
4 q = 0
5 else q = -∞
6 for i = 1 to n
7 t = p[i] + Aux(p, n - i, r)
8 q = max(q, t)
9 r[n] = q
10 return q
```

• LCS

- Mye brukt i bioinformatikk.
- Eksempel 1:

```
1 klapper takpapp
2 kapp akpapp
3 kapp kapp
```

■ Eksempel 2:

```
1234567 1234567`
klapper takpapp
```

Endelig eksempel:

Observasjon 1:

Observasjon 2:

						S	t	0	r	m	k	a	S	t
				0		1	2	3	4	5	6	7	8	9
	-													
		0		0		0	0	0	0	0	0	0	0	0
	-													
a		1		0		1	1	1	1	1	1	1	←	←
t		2		0		1	-	←	←	←	←	1	1	ς,
0		3		0		1	1	4	←	←	←	←	←	1
m		4		0		1	1	1	1	4	←	←	←	←
m		5		0		1	1	1	1	ς,	1	1	1	1
а		6		0		1	1	1	1	1	1	4	←	←
k		7		0		1	1	1	1	1	ς,	1	1	1
t	Ι	8	Τ	0	Ι	1	ς.	1	1	1	1	1	1	-

- Forstå løsningen på 0-1-ryggsekkproblemet
- Eksempler på DP-problemer:
 - · Stavkutting.
 - · LCS (Longest Common Subsequence).
 - o Ryggsekk.
 - o Matrisekjede.

Forelesning 7 - Grådige algoritmer

- Forstå designmetoden grådighet
 - o Løs det mest lovende delproblemet rekursivt.
 - o Bygg løsningen på denne delløsningen.
- Forstå grådighetsegenskapen (the greedy-choice property)
 - o Grådighetsegenskapen:
 - Vi kan velge det som ser best ut, her og nå.
 - Vi kan finne en global optimal løsning ved å ta lokalt optimale valg.
 - o Optimal substruktur:
 - En optimal løsning bygges av optimale delløsninger.
 - o Grådig valg + optimal delløsning => optimal løsning
 - o Trinn for å identifisere.
 - a. Globalt opmalitetskriterium.
 - b. Lokalt opmalitetskriterium.
 - c. Kontruksjontrinn. Ny lokalt optimum i hvert trinn. Det skal lede til et globalt et.
- ✓ Forstå eksemplene aktivitet-utvelgelse og det fraksjonelle ryggsekkproblemet
- Forstå Huffman og Huffman-koder
 - o abbabcad i bits
 - a=000, b=001, c=01, d=1
 - 000 001 001 000 001 01 001 1 (uten mellomrom)
 - Prefix hindrer lesing fra å kunne kombineres med andre tegn.
- Forstå bevismetoden bevis ved fortrinn (exchange arguments) *
 - Exchange arguments.
 - o Betrakt en vilkårlig løsning og gradvis tranformer den til en gårdig enn, uten å miste kvaliteten.
 - Den grådige blir nå minst like god som alle andre.
 - o Prøv selv med aktiviteter med varighet og dealine hvor du alltid velger den som slutter tidligst.
 - Eksempel i "Notater" (2 linjer under denne).
- Forstå bevismetoden bevis ved forsprang (staying ahead) *
- Notater:
 - Aktivitetsutvalg (tabell), start på første slutt (her: 0-2):

	0	1	2	3		4	5	6	7		8	9	10	1	1	1	L2	1	L3	1	L4	1	L5	1	.6
. 	←	 	 •																						
		←	 	 			 -																		
						←	 	 	 •																
. 													-						-		-				-
. 																									
					٠					٠		+	 		•										

Aktivitetsutvalg (etter algoritme):

o Grådig Algoritme:

```
Recursive-Activity-Selector(s, f, m, n)
1 m = k + 1
2 while m ≤ n and s[m] < f[k]
3     m = m + 1
4 if m ≤ n
5     S = Recursive-Activity-Selector(s, f, m, n)
6     return {am} U S
7 else return Ø</pre>
```

o Iterativ Algoritme:

```
Greedy-Activity-Selector(s, f) 

1 n = s.length 

2 A = \{a_1\} 

3 for m = 2 to n 

4 if s[m] \ge f[k] 

5 A = A U \{a_m\} 

6 k = m 

7 return A
```

Forelesning 8 - Traversering av grafer

- Forstå hvordan grafer kan implementeres
 - \circ Defineres som G = (V, E) | V = |noder|, E = |kanter|
 - o Nabolister, som beskriver grafen
 - A -> B*
 - B -> D -> E*
 - C -> A -> E*
 - Nabomatrise

```
A | 0 1 0 0 0
B | 0 1 0 0 1
C | 1 0 0 0
D | 0 0 0 0 0
```

Tegning:

- Graftraversering
 - British Museum Algorithm
 - Gå en tilfeldig vei. Vil å evig fordi den ikke husker.
- Forstå BFS, også for å finne korteste vei uten vekter

- o Breadth-first search:
 - Går til hvert naboelement. Fra de igjen velg naboene som ikke er valgt.
- o Breadth-first search, algoritme:

```
BFS(s, Adj)
1 level = { s: ø }
2 parent = { s: None }
3 i = 0
4 frontier = [s] \leftarrow level i - 1
5 while frontier:
     next = [] ← level i
7
     for u in frontier:
8
         for v in Adj[u]:
              if v not in level: # Unngå duplikater
9
                  level[v] = i
10
                  parent[v] = u
11
12
                  next.append(v)
13
      frontier = next
14
       i = i + 1
```

- Forstå DFS og parentesteoremet (parantes)
 - o Depth-first search.
 - Går helt inn til en kant før den traverserer en annen vei.
 - o DFS. Algoritme:

```
DFS(G)

1 for each vertex u \in G.V

2     u.color = white

3     u.\pi = NIL

4 time = 0 # global

5 for each vertex u \in G.V

6     if u.color == white

7     DFS-Visit(G, u)
```

o DFS-Visit funksjon:

```
DFS-Visit(G, u)
1 time = time + 1
2 u.d = time
3 u.color = gray
4 for each v ∈ V.Adj[u]
5     if v.color == white
6         v.π = u
7         DFS-Visit(G, v)
8 u.color = black
9 time = time + 1
10 u.f = time
```

- Forstå hvordan DFS klassifiserer kanter
 - o 3 statuser:
 - Før oppdagelse.
 - Er i stacken. Har naboer som er i stack eller ikke oppdaget.
 - Tatt ut av stack.
 - o 4 cases:
 - Three edges: Første oppdagelse. → Ref. Forelesning 9.
 - Back edges: En sykel.
 - Forward edges: Ikke en three edge. Hvis u er forgjenger av v.
 - Cross edges: Alle andre kanter.
- Forstå Topological-Sort
 - o Def.: Hvilken rekkefølge som er lov.
 - Eks: Grunnmur.
 - Vegger.
 - Tak.
 - Interiør.
 - Vinduer.
 - Interiør.

- Vann.
 - Interiør.
- Gir nodene en rekkefølge.
- o Foreldre før barn.
- Evt.: Alle kommer etter avhengigheter.
- o Krevevr DAG (dvs. velfundert)! (Directed Acyclic Graph)
- Ex:

- ✓ Forstå hvordan DFS kan implementeres med en stakk *
 - Stack <=> Rekursjon. Implementeres med en callstack.
- Forstå hva traverseringstrær (som bredde-først- og dybde-først-trær) er
- Forstå traversering med vilkårlig prioritetskø *

Forelesning 9 - Minimale spenntrær

- Forstå skog-implementasjonen av disjunkte mengder
- Vite hva spenntrær og minimale spenntrær er
 - Backlog
 - Kantklassifisering, DFS
 - Parentesteoremet
 - Topologisk sortering
 - o Minimale:
 - Disjunkte mengder
 - Generisk MST (Minimal Spanning Tree)
 - Kruskals algoritme
 - Prims algoritme
 - o Spenntrær:
 - Sammenhengene spennskog.
 - Spennskog: Dekkende skog eller asyklisk spenngraf.
 - o Disjunkte mengder:
 - Union by rank-keuristikk
 - Rang er øvre grense for node høyde.
 - m operasjoner: O(m*a(n))
 - Sette varablene

```
Make-Set(x)
1 x.p = x
2 x.rank = 0
```

Sette varablene

```
Union(x, y)
1 Link(Find-Set(x), Find-Set(y))
```

Sette varablene

```
Link(x, y)
1 if x.rank > y.rank
2     y.p = x
3 else x.p = y
4     if x.rank == y.rank
5     y.rank = y.rank + 1
```

```
Find-Set(x)
1 if x != x.p
2     x.p = Find-Set(x.p)
3 return x.p
```

Forstå Generic-MST

- o Knytter sammen nodene i en graf på billigs mulig måte.
- Kan ha negative kanter, men krever at "MST" blir asyklisk.
- [z] Forstå hvorfor lette kanter er trygge kanter
 - o Kantklassifiseringer:
 - Tre-kanter
 - Konter i dybde-først-"skogen".
 - Bakoverkanter
 - Kanter til en forgjenger i DF-"skogen".
 - Foroverkanter
 - Kanter utenfor DF-skogen to en etterkommer i DF-skogen.
 - Krysskanter
 - Alle andre kanter.
 - Hvordan definere klassene
 - o Møter en hvit node
 - Tre-kant
 - o Møter en grå node
 - Bakoverkant
 - o Møter en svart node:
 - Forover- eller krysskant
- Forstå MST-Kruskal
 - En kant med minimal vekt blant de gjenværende er trygg så lenge den ikke danner sykler.
 - o Algoritme:

```
MST-Kruskal(G, w)
1 A = Ø
2 for each vertex v ∈ G.V
3    Make-Set(v)
4 sort G.E by w
5 for each edge (u, v) ∈ G.E
6    if Find-Set(u) != Find-Set(v)
7         A = A U {(u, v)}
8         Union(u, v)
9 return A
```

Kjøretid:

Forstå MST-Prim

- Bygger et tre gradvis; en lett kant over snittet rundt treet er alltid trygg.
- o Hva det er:
 - Kan implementeres vha. traversering
 - Der BFS bruker FIFO og DFS bruker LIFO, så bruker Prim en min-prioritets-kø
 - Prioriteten er vekten på den letteste kanten mellom noden til treet
 - For enkelhets skyld: Legg alle noder inn fra starten, med uendelig dårlig prioritet
- o Algoritme:

```
MST-Prim(G, w, r)

1 for each u \in G.V

2 u.key = \infty

3 u.pi = NIL
```

Kjøretid:

```
Operasjon Antall Kjøretid

**Build-Min-Heap** 1 0(V)

**Extract-Min** V 0(lg V)

**Decrease-Key** E 0(lg V)

**Totalt**: O(E lgV)

**Dette gjelder om vi bruker en binærhaug**

**Kan forbedres til O(E + V lgV) med Fibonacci-haug**
```

- o I det følgende: Farging som for BFS
- Kanter mellom svarte noder er endelige
- Beste kanter for grå noder også uthevet
- o Boka uthever bare kantene i spenntreet

Forelesning 10 - Korteste vei fra én til alle

- Forstå ulike varianter av korteste-vei- eller korteste-sti-problemet
 - o En enkel sti er en sti uten sykler
 - o En kortest vei vil aldri inneholde en positiv sykel
 - o Om vi ikke kan nå noen negative sykler så er «korteste sti» det samme som «korteste enkle sti»
 - o Om en sti til v har en negativ sykel, så finnes det alltid en kortere sti ingen er kortest!
 - o Det vil likevel finnes en kortest enkel sti til v, men vi kjenner ingen generelle algoritmer for å finne den
- Forstå strukturen til korteste-vei-problemet
- ✓ Forstå at negative sykler gir mening for korteste enkle vei (simple path) *
- ✓ Forstå at korteste enkle vei er ekvivalent med lengste enkle vei *
- Forstå hvordan man kan representere et korteste-vei-tre
- Forstå kant-slakking (edge relaxation) og Relax
- Forstå ulike egenskaper ved korteste veier og slakking
- Forstå Bellman-Ford
 - o Gå gjennom alle kanter en gang.
 - o Vi vet da at vi må ha vært innom en av nodene en gang.
 - o Hvis vi har slakket alle alle kantene k ganger.
 - V 1 antall ganger.
 - o Algoritme:

```
Bellman-Ford(G, w, s)
1 Initialize-Single-Source(G, s)
2 for i = 1 to |G.V| - 1
3    for each edge (u, v) ∈ G.E
4         Relax(u, v, w)
5 for each edge (u, v) ∈ G.E
6    if v.d > u.d + w(u, v)
7    return false
8 return true
```

- Forstå Dag-Shortest-Path
 - o Algoritme:

```
Dag-Shortest-Path(G, w, s)

1 topologically sort the vertices of G

2 Initialize-Single-Source(G, s)

3 for each vertex u, in topsort order

4 for each vertex v 2 G.Adj[u]

5 Relax(u, v, w)
```

Kjøretid:

```
Operasjon Antall Kjøretid Topologisk sortering 1 \theta(V + E) Initialisering 1 \theta(V) Relax \theta(V) Totalt: \theta(V + E)
```

- Forstå kobling mellom Dag-Shortest-Path og dynamisk programmering*
- Forstå Dijkstra
 - Forklaring:
 - Om vi har sykler, kan vi ikke få til topologisk sortering
 - Alternativ: Besøke nodene i stigende avstandsrekkefølge
 - Alle korteste stier får da fortsatt sine kanter slakket i riktig rekkefølge
 - Men vi kjenner jo ikke avstandsrekkefølgen!
- Notater
 - Sti-slakkings-egenskapen:
 - Om p er en kortest vei fra s til v og vi slakker
 - kantene til p i rekkefølge, så vil v få riktig avstandsestimat.
 - Det gjelder uavhengig av om
 - andre slakkinger forekommer, selv om de kommer
 - innimellom.
 - o Slakkingsalgoritme, init:

```
Initialize-Single-Source(G, s)

1 for each vertex v 2 G.V

2 v.d = 1

3 v.\pi = nil

4 s.d = 0
```

o Slakkingsalgoritme, init:

```
Relax(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.π = u
```

Forelesning 11 - Korteste vei fra alle til alle

- Forstå forgjengerstrukturen for alle-til-alle-varianten av korteste vei-problemet
 - o Fungerer oftest ikke med negative sykler.
 - o BFS:
 - Kjøretid = O(V² + VE)
 - Dijkstra:
 - Kjøretid:
 - Min-prioritets kø: O(V² + VE) = O(V³)
 - Binær "min-heap": O(VE lg V)
 - Fibonacci heap: O(V² lg V + VE)
 - o DAG:
 - Kjøretid = Θ(V² + VE)
 - Rettet asyklisk graf. Kan ha negative sykler.
 - o Bellman Ford:
 - Kjøretid = Θ(V²E)
- Forstå Floyd-Warshall
 - Kjøretid: Θ(n³)
 - o Den oppdager negative sykler.
 - o Eksempel (med rettet graf):

```
W =
D^(0) =
[0 i 6 4]
[2 0 3 i]
```

```
[i-2 0 i]
[i-2 4 0]
D^{(1)} =
[0 i 6 4]
[2 0 3 6]
[i-2 0 i]
[i-2 4 0]
\pi \land (0) =
[- - 1 1]
[2 - 2 -]
[-3--]
[-44-]
\pi^{(4)} =
[-421]
[2 - 2 1]
[2 2 - 1]
[2 4 2 -]
```

- Forstå Transitive-Closure
 - o Du har en graf som ...
- Noteter
 - o Intermediate vertex:
 - xvvvvx Alle nodene utenom start og slutt i en sti.

Forelesning 12 - Maksimal flyt

- Kunne definere flytnettverk, flyt og maks-flyt-problemet
 - Flyt:
 - Som en strøm. Kirchoffs lover må fylles fullt ut.

```
f(u, v) \ll c(u, v) for alle u, v \in V

\sum_{v \in V} f(u, v) = 0 for alle u, v \in V - \{s, t\}
```

- Kapasitet:
 - c(u, v)
- o Residualkapasitet:
 - $c_a(u, v) = c(c, v) a(u, v)$
- Flytforøkende sti (augmented path):
 - Sti fra s til t der residualkapasiteten til alle kantene er større enn 0.
- Maks flyt:
 - Maksimer flyt fra s til t!
- Kunne håndtere antiparallelle kanter og flere kilder og sluk
- Kunne definere residualnettverket til et nettverk med en gitt flyt
 - o Residualnettverket:
 - Fremoverkant ved ledig kapasitet.
 - Bakoverlent ved flyt.
- Forstå hvordan man kan oppheve (cancel) flyt
 - o Vi kan sende flyt baklengs langs kanter der det alt går flyt.
 - o Vi opphever da flyten, så den omdirigeres til et annet sted.
 - o Det er dette bakoverkantene i residualnettverket representerer.
- Forstå hva en forøkende sti (augmenting path) er
 - o Flytforøkende sti er når det er mer flyt igjen i nettverket.
 - $\circ~$ Hetland def: En sti i residualnettverket der vi kan sende mer flyt.
- Forstå hva snitt, snitt-kapasitet og minimalt snitt er
 - o Deler opp nettverket. Gjerne for å se hvor flaskehalsene ligger.
 - o Summen av alle kanter som går fra S til T er kapasiteten til nettverket hittil.
 - o Netto flyt i nettverket i et snitt er S til T flyt minus T til S flyt.
- Forstå maks-flyt/min-snitt-teoremet
- Forstå Ford-Fulkerson
 - Finn økende stier så lenge det går.

http://localhost:6419/

15/23

- o Kan ikke ha negative sykler.
- o Deretter er flyten maksimal.
- o Generell metode, ikke en algoritme.
- o Om vi bruker BFS: «Edmonds-Karp» som ikke kan ha negative kanter.
- Normalt implementasjon:
 - Finn økende sti først
 - Finn så flaskehalsen i stien
 - Oppdater flyt langs stien med denne verdien
- Algoritmer:
 - Metode:

```
Ford-Fulkerson-Method(G, s, t)

1 initialize flow f to 0

2 while there is an augm. path p in Gf

3 augment flow f along p

4 return f
```

Dypere:

```
Ford-Fulkerson(G, s, t)

1 for each edge (u, v) 2 G.E

2   (u, v).f = 0

3 while there is a path p from s to t in Gf

4   cf (p) = min {cf (u, v):(u, v) is in p}

5   for each edge (u, v) in p

6   if (u, v) 2 E

7   (u, v).f = (u, v).f + cf (p)

8   else (v, u).f = (v, u).f " cf (p)
```

Kjøretid:

```
\begin{array}{lll} \textbf{Operasjon} & \textbf{Antall} & \textbf{Kjøretid} \\ \textbf{Finn økende sti} & \textbf{O(|f^*|)} & \textbf{O(E)} \\ \textbf{Totalt: O(E|f|)} & \end{array}
```

- ✓ Vite at Ford-Fulkerson med BFS kalles Edmonds-Karp-algoritmen
 - o Alternativ: «Flett inn» BFS
 - Finn flaskehalser underveis!
 - Hold styr på hvor mye flyt vi får frem til hver node
 - Traverser bare noder vi ikke har nådd frem til ennå
 - o Denne «implementasjonen» står ikke i boka
 - o Edmnfs-Karp algoritme:

```
Edmonds-Karp(G, s, t)
1 for each edge (u, v) \in G.E
     (u, v).f = 0
2
3 repeat
      for each vertex u \in G.V
4
5
       u.f' = 0 # residual flow reaching u
6
          u.\pi = NIL
     s.f' = 1
7
8
      Q = \emptyset
      Enqueue(Q, s)
9
      while t.f' == 0 and Q != \emptyset
10
11
          u = Dequeue(Q)
          for all edges (u, v), (v, u) \in G.E
12
13
              if (u, v) \in G.E
                  c_f(u, v) = c(u, v) % (u, v).f
14
15
              else c_f(u, v)=(v, u).f
              if c_f(u, v) > 0 and v.f' == 0
16
                  v.f' = min(u.f', c_f(u, v))
17
18
                  v.\pi = u
19
     Enqueue(Q, v)
20
     u, v = t.\pi, t # at this point, <math>t.f' = c_f(p)
21
      while u != NIL
        if (u, v) \in G.E
22
              (u, v).f = (u, v).f + t.f'
          else (v, u).f = (v, u).f - t.f'
```

Kjøretid:

 $\begin{array}{lll} \textbf{Operasjon} & \textbf{Antall} & \textbf{Kjøretid} \\ \textbf{Finn økende sti} & \textbf{O(VE)} & \textbf{O(E)} \\ \textbf{Totalt: O(VE^2)} & \end{array}$

- Forstå hvordan maks-flyt kan finne en maksimum bipartitt matching
 - Matching: Delmengde $M \subseteq E$ for en urettet graf G = (V, E)
 - Ingen av kantene i M deler noder.
 - Bipartitt matching: M matcher partisjonene.
- Forstå heltallsteoremet
 - For heltallskapasiteter gir Ford-Fulkerson heltallsflyt.
 - o Anvendelse i bipartitt matching:
 - Nyreeksempel.
 - Kanter for kapasitet 1.
 - Donoer er kilder og resipienter er sluk.

Forelesning 13 - NP-kompletthet

- Forstå sammenhengen mellom optimerings- og beslutnings-problemer
 - Selv om L er språket som aksepteres av A, så trenger ikke A avgjøre L, siden den kan la være a svare for neiinstanser (ved å aldri terminere)
 - Den avviser x dersom A(x) = 0
 - o Den avgjør et språk L dersom:
 - $x \in L \to A(x) = 1$
 - $x \notin L \rightarrow A(x) = 1$
- Forstå koding (encoding) av en instans
- Forstå hvorfor løsningen vår på 0-1-ryggsekkproblemet ikke er polynomisk
 - DP-løsning har kjøretid $T(n, T) = \Theta(nW)$
 - Encoding:
 - For enkelthetskyld, la oss si vi bruker $\Theta(n)$ bits på objektene. En rimelig encoding vil bruke $\Theta(m)$ bits på kapasiteten, der m = lgW
 - Polynomisk? **Nei!** Den må kunne skrives som $T(n, m) = \Theta(n2^m)$
- Forstå forskjellen på konkrete og abstrakte problemer
- Forstå representasjonen av beslutningsproblemer som formelle språk
- Forstå definisjonen av klassen P
 - o Dette er språkene som kan avgøres i polynomisk tid.
 - $\circ~$ Det er disse problemene vi kan løse i praksis. (Cobham's tese.)
- Forstå definisjonen av klassene NP og co-NP
 - Nondeterministic Polynomial Time
 - NP: Språkene som kan verifiseres i polynomisk tid.
 - HAM-CYCLE:
 - Språket for Hamilton-sykel-problemet.
 - HAM-CYCLE ∈ NP
 - Lett å verifisere i polynomisk tid. Ikke alltid like lett å falsifisere.
 - o co-NP: Språkene som kan falsifiseres i polynomisk tid.
 - $L \in \text{co-NP} \leftrightarrow L(\text{overline}) \in \text{NP}$
 - Tautologi!
- ✓ Forstå redusibilitets-relasjonen ≤p
 - Pensum ser på many-one-reduksjoner (Karp-reduksjoner).
 - Hvis A kan reduseres til B, skriver vi: A ≤p B
 - ≤p er en preordning.
 - Hardhetsbevis:
 - Vise at B er vanskelig => Reduser fra et vanskelig prblem A => etabler $A \leq_p B$.
- Forstå definisjonen av NP-hardhet og NP-kompletthet

- o Kompletthet:
 - Et problem er komplett for en gitt klasse og en gitt type reduksjoner dersom det er maksimalt for redusibilitetsrelasjonen.
 - Dette er altså de vanskeligste i klassen NP.
- Maksimalitet:
 - Et element er maksimalt dersom alle andre mindre eller lik.
 - For reduksjoner: Q er maksimalt dersom alle problemer i klassen kan reduserer til Q.
- NPC:
 - De komplette språkene i NP, under polynomiske reduksjoner.
- NP-hardhet:
 - Et problem Q er NP-hardt dersom alle problemer i NP kan reduseres til det.
 - Alle i NP-hard er altså way over alle i NP og er ikke i NP.
 - NP-komplett (NPC) er samme problemer, men som finnes i NP.
- Forstå den konvensjonelle hypotesen om forholdet mellom P, NP og NPC
- Forstå hvorfor CIRCUIT-SAT er NP-komplett
 - Notater:
 - Problem:
 - Generelt. Ex: Korstete vei.
 - Problemistans:
 - Instans av korsteste veien i Google Maps.
 - Hva er et beslutningsproblem:
 - Ja/Nei-svar.
 - Ex:
 - Spenntrær: Finnes det et spenntr i en gitt gra G som har vekt mindre enn eller like et gitt heltall K?
 - Korsteste vei: Finnes det en korsteste vei mellom to gitte node i en graf G som har vekt/avstand mindre enn eller like et gitt heltall K?
 - Travellting Salesman: Gitt en vektet graf G og et heltall K. Finnes det en sukel som besøker alle noder en gang og har total vekt mindre enn ...
 - o Problemklasser:
 - Beslutningsproblemer som kan løses i polynomisk tid sier vi at tilhører P.
 - Polynomisk tid: O(n2^m)
 - Beslutningsproblemer hvor en gikk løsning kan verifiseres i polynomisk tid sier vi at tilhører NP:
 - Verifisere: A sjekke om en gitt lønsning på et problem er en gyldig løsning av problemet.
 - Det store spm: Er elle problemene i NP også i P?
 - NP eksempel:
 - Vertex Cover
 - Uformelt sier vi at et gitt problem A er i klassen NPC hvis vi ved å løse A også kan løse alle andre problem i NP, samtidig som A selv er i NP.
 - Gitt et problem A i NP. Hvordan kan vi vise at A er i NPC?
 - Se fordet at vi har et annet problem B som vi **vet** er i NPC. Hvis vi klarer å vise at A er like vanskelig eller vanskeligere enn B, så vet vi at A også er i NPC.
 - Formelt betyr dette at om vi finner en polynomisk tid reduksjon fra B til A så har vi vist at A er i NPC
 - Problemet er i NP
 - o Alle andre problem i NP kan reduseres til disse problemene i polynomisk tid.
 - o Fra Clique til Independent Set.
 - Clique: Gitt en graf G og et heltall K. Finnes det en delmengde med noder i G av størrelse K hvor alle nodene er nahoer?
 - Independent Set: Gitt en graf G og et heltall K. Finnes det en delmende med noder i G av størrelse K hvor ingen av nodene er naboer?
 - Vi vet: Clique er i NPC
 - Vi ønsker å finne ut: Er Independent Set i NPC?
 - Er Independent Set i NP?
 - Kan vi redusere Clique til Independent Set i polynomisk tid?

Forelesning 14 - NP-komplette problemer

- Forstå hvordan NP-kompletthet kan bevises ved én reduksjon
- Kjenne de NP-komplette problemene CIRCUIT-SAT, SAT, 3-CNF-SAT, CLIQUE, VERTEX-COVER, HAM-CYCLE, TSP og SUBSET-SUM
 - SUBSET SUM
 - CIRCUIT-SAT
 - Instans: En krets med logiske porter og én utverdi
 - Spørsmål: Kan utverdien bli 1?
 - Vi har et vilkårlig språk/problem L ∈ NP
 - Vi vil redusere dette til CIRCUIT-SAT
 - Det eneste vi vet er at $x \in L$ kan verifiseres i polynomisk tid
 - Vi simulerer trinnene i verifikasjonsalgoritmen A med kretser!
 - Spørsmålet blir: Kan A (for et eller annet sertifikat) svare/få en output på 1?
 - Eksempel:

- SAT
 - Instans: En logisk formel
 - Spørsmål: Kan formelen være sann?
 - Direkte oversettelse av logisk krets?
 - Kan gi eksponentielt stor formel!
 - Eksempel:

```
x1-\cdots-x5--|
x2-\cdots-| . . . | --x8--|
. . . . . | -x6>0-| . . . |
. . . . . | . . . | --x9--| -x10-...
x3-x4>0-|--x7--|-----|
.

\emptyset = x10 \land (x4 \Leftrightarrow \neg x3)
. . . . \land (x5 \Leftrightarrow (x1 \lor x2))
. . . . \land (x6 \Leftrightarrow \neg x4)
. . . . \land (x7 \Leftrightarrow (x1 \land x2 \land x4))
. . . . \land (x8 \Leftrightarrow (x5 \lor x6))
. . . . \land (x9 \Leftrightarrow (x6 \lor x7))
. . . . \land (x10 \Leftrightarrow (x7 \land x8 \land x9))
.

Kan utverdien bli 1? Kan \emptyset være sann?
```

o 3-CNF-SAT

- Instans: En logisk formel på 3-CNF-form
- F.eks.: $\emptyset = (x1 \text{ v} \neg x2 \text{ v} x4) \land \cdots \land (\neg x7 \text{ v} x8 \text{ v} x9)$
- Spørsmål: Kan formelen være sann?
- Vi kan bruke ca. samme reduksjon, på syntakstreet til Ø!
- Vi får da en formel Ø' av pol. størrelse
- Ø' er en konjunksjon av termer, hver med maks 3 literaler
- Dvs.: de to argumentene, samt resultatet av operatoren
- Hver term gjøres om til CNF vha. en sannhetstabell
- $(x \lor y)$ gjøres om til $(x \lor y \lor z) \land (x \lor y \lor \neg z)$
- Tilsv. blir (x) til fire nye termer
- Eksempel:

```
\emptyset' = y1 \land (y1 \Leftrightarrow (y2 \land \negx2))
. . . \land (y2 \Leftrightarrow (y3 v y4))
```

```
... ^{^{^{^{\prime}}}} (y3 \oplus (x1 ! x2))
... ^{^{^{\prime}}} (y4 \ominus \negy5)
... ^{^{\prime}} (y5 \ominus (y6 v x4))
... ^{^{\prime}} (y6 \ominus (\negx1 \ominus x3))
\emptyset'' = CNF, vha. sannhetstabeller
\emptyset''' = 3-CNF, vha. dummy-variable
.
Kan \emptyset være sann? Kan \emptyset''' være sann?
```

• CLIQUE

- Instans: En urettet graf G og et heltall k
- Spørsmål: Har G en en komplett delgraf med k noder?
- Vi vil redusere fra 3-CNF-SAT
- Lag én node i G for hver literal i formelen
- Ingen kanter mellom noder fra samme term
- Ellers: Kanter mellom literaler som kan være sanne samtidig
- La k være antall termer
- Eksempel:

```
Ø = ( x1 v¬x2 v¬x3 ) ^
. . (¬x1 v x2 v x3 ) ^
. . ( x1 v x2 v x3 )
.
Tilsvarer: x1, x2, x3 = -, 0, 1
.
Kan Ø være sann? Finnes en k-klikk?
```

VERTEX-COVER

- Instans: En urettet graf G og et heltall k
- Spørsmål: Har G en et nodedekke med k noder? Dvs., k noder som tilsammen ligger inntil alle kantene
- En klikk er en komplett delgraf
- Tilsvarer en uavhengig mengde (kantfri delgraf) i komplementet !G = (V, !E)
- Nodene utenfor en uavhengig mengde utgjør et nodedekke
- Hvis G har en k-klikk . . .
- . . . så har !G = (V, !E) en uavh. mengde med k noder ...
- . . . og dermed også et (|V| k)-nodedekke
- Samme resonnement holder i motsatt retning

• HAM-CYCLE

- Vi reduserer VERTEX-COVER ≤p HAM-CYCLE.
- VERTEX-COVER dekker problemene HAM-CYCLE møter på da den skal bestemme den ene veien gjennom alle nodene.
- TSP
 - Vi kan redusere HAM-CYCLE ≤p TSP.
 - TSP er? korteste HAM-CYCLE.
- Forstå NP-kompletthetsbevisene for disse problemene
- ✓ Forstå at 0-1-ryggsekkproblemet er NP-hardt
- Forstå at lengste enkle-vei-problemet er NP-hardt
- ✓ Være i stand til å konstruere enkle NP-kompletthetsbevis
- Notater:
 - $\circ \ \ Q \in \mathsf{NPC} \Leftrightarrow$
 - a. \forall L \in NP \Rightarrow **NP-hard (NPH)**
 - b. Q ∈ NP

Appendix A

- Setningslogikk
 - o And, or, not
- Predikatslogikk
 - ∘ Forhold mellom de induviduelle x, y, x... og kvantifikatorene "for alle x" og "det eksisterer en x"

- Inferensregler
 - o Introduksjon og eliminasjon
 - Formelle systemer
 - Regler
 - |P|Q|
 - **|**0|0|
 - **0** | 0 | 1 |
 - **1** | 1 | 0 |
 - **1** | 1 | 1 |
 - Implikasjon P ⇒ Q
 - Modus Ponens $P \Rightarrow Q, P \mid Q$
 - $P \Rightarrow Q$
 - P^- vs. ¬P
 - $P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$
 - \blacksquare P \Rightarrow Q, Q \Rightarrow P | P \Leftrightarrow Q
 - $\blacksquare \ \mathsf{P} \Leftrightarrow \mathsf{Q} \ | \ \mathsf{P} \Rightarrow \mathsf{Q}, \ \mathsf{Q} \Rightarrow \mathsf{P}$
 - $\blacksquare \ \ P \Leftrightarrow Q \Leftrightarrow R \equiv P \Rightarrow Q \Rightarrow R \Rightarrow P$
 - Negasjon, Reductio ad Absurdum
 - Q,¬Q | ⊥
 - o Andre bevis for at P eller Q er sant
 - P, Q | P ∧ Q
 - P ∧ Q | P, Q
 - o Proof by Cases
 - P | P V Q
 - P v Q, P...R, Q...R | R
 - o Annet bevis for eller
 - $P \lor Q \equiv \neg P \Rightarrow Q$
 - Kvantifikatorer
 - Alle
 - P(a) | ∀xP(x)
 - ∀xP(x) | P(a)
 - Element
 - P(a) | ∃xP(x)
 - ∃xP(x) | P(y)
 - E!xP(x):
 - $xP(x) \forall x \forall y ((P(x) \land P(y)) \Rightarrow x = y)$

Sorteringsalgoritmer i pensum

Sammenligningsbasert: Sammenligner to elementer for å se hvem som skal stå først i sekvensen. Her er algoritmene begrenset av $\Omega(nlgn)$ som nedre kjøretid.

Split og hersk: Deler opp sekvensen i mindre biter for å få kontroll over listen.

In-place: Bruker eksisterende struktur uten å lage en ny kopi.

Stabil: Like elementer blir "samlet" i samme rekkefølge som før sortering.

Bubble sort

- Sammenligningsbasert.
- Split og hersk.
- ✓ In-place.
- Stabil.

Insertion sort

Sammenlig	ningsbasert.
Split og her	sk.
✓ In-place.	
Bytter	på to og to elementer.
✓ Stabil.	
∘ Vil ald	ri flytte to like elementer forbi hverandre, uansett om man starter foran eller bak.
Merge sort	
Sammenlig	ningsbasert.
✓ Split og her	sk.
☐ In-place.	
	ım diskuterer ikke hvordan man kan gjøre den in-place.
Stabil.	avia dan alliid valgar alament fra vanatra babudal am alamentana ar lika
o Bare r	nvis den alltid velger element fra venstre halvdel om elementene er like.
Quicksort	
Sammenlig	ningsbasert.
Split og her	sk.
✓ In-place.	
	r rekursiv og "møblerer" om på elementene i returneringsfasen av algoritmen.
Stabil.	igrae etabil man may effektiv utan
• Kangj	jøres stabil, men mer effektiv uten.
Selection s	ort
Sammenlig	ningsbasert.
Split og her	sk.
✓ In-place.	
✓ Stabil.	
Bucket sort	t e e e e e e e e e e e e e e e e e e e
Sammenlig	ningsbasert.
Split og her	
o Den e	r ikke rekursiv og splittes bare opp til to nivåer.
✓ In-place.	
 Må lag 	ge nye "bøtter" som blir en ny datastruktur i minnet.
Stabil.	
-	æ, både og, ikke opplagt. Øvingsfoiler sier ja. Kan basere oss på det siden boka også sier den bruker on-sort på hver bøtte - som også er stabil. En del YouTube-videoer sier også at den er stabil.
Counting so	
Sammenlig	
Split og her	SK.
In-place.	ager en ny tabell med linker til de nye elementene som "injectes" på riktig plass i telle-tanke-systemet.
✓ Stabil.	iger en ny taben med iniker til de nye elementene som injectes på nktig plass i telle-talike-systemet.
	boka, som også er pensum. Må være stabil for å brukes i radix-sort.
Heapsort	
Sammenlig	ningsbasert.
✓ Split og her	
✓ In-place.	
	r eksisterende tre til å swappe elementer.
Stabil.	
 Tar ikk 	ke hensyn til rekkefølge ettersom den baserer seg på en heap.

Radix sort

Antar den bruker counting-sort eller merge-sort. Så den bruker counting-sort/merge-sort-algoritmen like mange ganger som siffer. Tar inn n elementer med d siffer innenfor et k intervall.

- Sammenligningsbasert.
- Split og hersk.
- In-place.
 - o Bruker counting-sort.
- Stabil.
 - o Fordi counting-sort og merge-sort er stabil. Feiler om counting-sort eller merge-sort ikke er stabil.

Kjøretider