Package 'CropWaterBalance'

April 18, 2024

Title Climate Water Balance for Irrigation Purposes

Version 0.2.0

Description Calculates daily climate water balance for irrigation purposes and also calculates the reference evapotranspiration (ET) using three methods, Penman and Monteith (Allen et al. 1998, ISBN:92-5-104219-5); Priestley and Taylor (1972) <doi:10/cr3qwn>; or Hargreaves and Samani (1985) <doi:10.13031/2013.26773>. Users may specify a management allowed depletion (MAD), which is used to suggest when to irrigate. The functionality allows for the use of crop and water stress coefficients as well.

```
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.1
Depends R (>= 3.10)
LazyData true
Suggests knitr, rmarkdown, spelling, testthat (>= 3.0.0)
Config/testthat/edition 3
Config/testthat/parallel true
Imports PowerSDI, lubridate, stats
URL https://github.com/gabrielblain/CropWaterBalance
BugReports https://github.com/gabrielblain/CropWaterBalance/issues
VignetteBuilder knitr
Language en-US
NeedsCompilation no
Author Gabriel Constantino Blain [aut, cre]
        (<https://orcid.org/0000-0001-8832-7734>),
      Graciela R. Sobierajski [aut] (<a href="https://orcid.org/0000-0002-7211-9268">https://orcid.org/0000-0002-7211-9268</a>),
      Regina C. Matos Pires [aut] (<a href="https://orcid.org/0000-0003-4200-7094">https://orcid.org/0000-0003-4200-7094</a>),
      Adam H. Sparks [aut] (<a href="https://orcid.org/0000-0002-0061-8359">https://orcid.org/0000-0002-0061-8359</a>),
      Leticia L. Martins [aut] (<a href="https://orcid.org/0000-0002-0299-3005">https://orcid.org/0000-0002-0299-3005</a>)
```

Maintainer Gabriel Constantino Blain <gabriel.blain@sp.gov.br>

2 Compare

Repository CRAN

Date/Publication 2024-04-18 14:02:55 UTC

R topics documented:

Comp	are Compare Data From Two Samples	
Index		14
	Soil_Heat_Flux	13
	ETO_PT	
	ETO_PM	
	ETO_HS	10
	Dinitial	
	Descriptive	9
	DataForSWC	8
	DataForCWB	7
	DataForAWC	6
	CWB_FixedSchedule	5
	CWB	3
	Compare	2

Description

Calculates measures of accuracy and agreement.

Usage

```
Compare(Sample1, Sample2)
```

Arguments

Sample1 A vector, 1-column matrix or data.frame with evapotranspiration or other

variable.

Sample2 A vector, 1-column matrix or data.frame with evapotranspiration or other

variable.

Value

A data.frame with:

- Absolute mean error (AME),
- square root of the mean squared error (RMSE),
- Willmott's indices of agreement:
 - original (dorig),

CWB 3

```
modified (dmod) and
refined (dref)
, and
Pearson determination coefficient (RQuad).
```

Examples

```
# See `?DataForCWB` for more on this data set
Tavg <- DataForCWB[, 2]</pre>
Tmax <- DataForCWB[, 3]</pre>
Tmin <- DataForCWB[, 4]</pre>
Rn <- DataForCWB[, 6]</pre>
WS <- DataForCWB[, 7]</pre>
RH <- DataForCWB[, 8]
G <- DataForCWB[, 9]</pre>
Sample1 <-
  ET0_PM(
    Tavg = Tavg,
    Tmax = Tmax,
    Tmin = Tmin,
    Rn = Rn
    RH = RH,
    WS = WS,
    G = G,
    Alt = 700)
Sample2 <- ET0_PT(Tavg = Tavg, Rn = Rn, G = G)</pre>
Compare(Sample1 = Sample1, Sample2 = Sample2)
```

CWB

Crop Water Balance Accounting

Description

Calculates several parameters of the crop water balance. It also suggests when to irrigate.

Usage

```
CWB(
  Rain,
  ET0,
  AWC,
  Drz,
  Kc = NULL,
  Irrig = NULL,
  MAD = NULL,
  InitialD = 0,
  start.date
)
```

4 CWB

Arguments

Rain	A vector, 1-column matrix or data.frame with daily rainfall totals in millimetres.
ET0	A vector, 1-column matrix or data. frame with daily reference evapotranspiration in millimetres.
AWC	A vector, 1-column matrix or data.frame with the available water capacity of the soil, that is: the amount of water between field capacity and permanent wilting point in millimetre of water per metres of soil, must be greater than or equal to 0.
Drz	A vector, 1-column matrix or data.frame defining the root zone depth in metres.
Кс	A vector, 1-column matrix or data.frame defining the crop coefficient. If NULL its values are assumed to be 1.
Irrig	A vector, 1-column matrix or data.frame with net irrigation amount infiltrated into the soil for the current day in millimetres.
MAD	A vector, 1-column matrix or data. frame defining the management allowed depletion. Varies between 0 and 1.
InitialD	Single number defining in millimetres, the initial soil water deficit. It is used to start the water balance accounting. Default value is 0, which assumes the root zone is at the field capacity.
start.date	Date at which the accounting should start. Formats: "YYYY-MM-DD", "YYYY/MM/DD".

Value

A data.frame of water balance accounting, including the soil water deficit.

Examples

```
Tavg <- DataForCWB[,2]</pre>
Tmax <- DataForCWB[,3]</pre>
Tmin <- DataForCWB[,4]</pre>
Rn <- DataForCWB[,6]</pre>
WS <- DataForCWB[,7]</pre>
RH <- DataForCWB[,8]
G <- DataForCWB[,9]</pre>
ET0 <- ET0_PM(Tavg, Tmax, Tmin, Rn, RH, WS, G, Alt = 700)
Rain <- DataForCWB[,10]</pre>
Drz <- DataForCWB[,11]</pre>
AWC <- DataForCWB[,12]
MAD <- DataForCWB[,13]
Kc <- DataForCWB[,14]</pre>
Irrig <- DataForCWB[,15]</pre>
CWB(Rain = Rain, ET0 = ET0, AWC = AWC, Drz = Drz,
    Kc = Kc, Irrig = Irrig, MAD = MAD, start.date = "2023-11-23")
```

CWB_FixedSchedule 5

CWB_FixedSchedule	Crop Water Balance Accounting With Fixed Time Periods for Irrigation

Description

Calculates several parameters of the crop water balance. It also suggests how much irrigation to apply.

Usage

```
CWB_FixedSchedule(
  Rain,
  ET0,
  AWC,
  Drz,
  Kc = NULL,
  Irrig = NULL,
  MAD = NULL,
  InitialD = 0,
  Scheduling,
  start.date
)
```

Arguments

Rain Vector, 1-column matrix or data frame with daily rainfall totals in millimetres. Vector, 1-column matrix or data frame with daily reference evapotranspiration in millimetres. Vector, 1-column matrix or data frame with the available water capacity of the soil, that is: the amount of water between field capacity and permanent wilting point in millimetres of water per metres of soil. Drz Vector, 1-column matrix or data frame defining the root zone depth in metres. Kc Vector, 1-column matrix or data frame defining the crop coefficient. If NULL its values are assumed to be 1. Irrig Vector, 1-column matrix or data frame with net irrigation amount infiltrated into the soil for the current day in millimetres. MAD Vector, 1-column matrix or data frame defining the management allowed depletion. Varies between 0 and 1. InitialD Single number defining in millimetre, the initial soil water deficit. It is used to start the water balance accounting. Default value is zero, which assumes the root zone is at the field capacity. Scheduling Single integer number defining the number of days between two consecutive irrigations. start.date Date at which the accounting should start. Formats: "YYYY-MM-DD", "YYYY/-MY-DD", "YYYY-MY-DD", "YYY		
in millimetres. Vector, 1-column matrix or data frame with the available water capacity of the soil, that is: the amount of water between field capacity and permanent wilting point in millimetres of water per metres of soil. Drz Vector, 1-column matrix or data frame defining the root zone depth in metres. Kc Vector, 1-column matrix or data frame defining the crop coefficient. If NULL its values are assumed to be 1. Irrig Vector, 1-column matrix or data frame with net irrigation amount infiltrated into the soil for the current day in millimetres. MAD Vector, 1-column matrix or data frame defining the management allowed depletion. Varies between 0 and 1. InitialD Single number defining in millimetre, the initial soil water deficit. It is used to start the water balance accounting. Default value is zero, which assumes the root zone is at the field capacity. Scheduling Single integer number defining the number of days between two consecutive irrigations.	Rain	Vector, 1-column matrix or data frame with daily rainfall totals in millimetres.
soil, that is: the amount of water between field capacity and permanent wilting point in millimetres of water per metres of soil. Drz Vector, 1-column matrix or data frame defining the root zone depth in metres. Kc Vector, 1-column matrix or data frame defining the crop coefficient. If NULL its values are assumed to be 1. Irrig Vector, 1-column matrix or data frame with net irrigation amount infiltrated into the soil for the current day in millimetres. MAD Vector, 1-column matrix or data frame defining the management allowed depletion. Varies between 0 and 1. InitialD Single number defining in millimetre, the initial soil water deficit. It is used to start the water balance accounting. Default value is zero, which assumes the root zone is at the field capacity. Scheduling Single integer number defining the number of days between two consecutive irrigations.	ET0	•
Vector, 1-column matrix or data frame defining the crop coefficient. If NULL its values are assumed to be 1. Irrig Vector, 1-column matrix or data frame with net irrigation amount infiltrated into the soil for the current day in millimetres. MAD Vector, 1-column matrix or data frame defining the management allowed depletion. Varies between 0 and 1. InitialD Single number defining in millimetre, the initial soil water deficit. It is used to start the water balance accounting. Default value is zero, which assumes the root zone is at the field capacity. Scheduling Single integer number defining the number of days between two consecutive irrigations.	AWC	soil, that is: the amount of water between field capacity and permanent wilting
its values are assumed to be 1. Irrig Vector, 1-column matrix or data frame with net irrigation amount infiltrated into the soil for the current day in millimetres. MAD Vector, 1-column matrix or data frame defining the management allowed depletion. Varies between 0 and 1. InitialD Single number defining in millimetre, the initial soil water deficit. It is used to start the water balance accounting. Default value is zero, which assumes the root zone is at the field capacity. Scheduling Single integer number defining the number of days between two consecutive irrigations.	Drz	Vector, 1-column matrix or data frame defining the root zone depth in metres.
the soil for the current day in millimetres. Vector, 1-column matrix or data frame defining the management allowed depletion. Varies between 0 and 1. InitialD Single number defining in millimetre, the initial soil water deficit. It is used to start the water balance accounting. Default value is zero, which assumes the root zone is at the field capacity. Scheduling Single integer number defining the number of days between two consecutive irrigations.	Кс	
tion. Varies between 0 and 1. InitialD Single number defining in millimetre, the initial soil water deficit. It is used to start the water balance accounting. Default value is zero, which assumes the root zone is at the field capacity. Scheduling Single integer number defining the number of days between two consecutive irrigations.	Irrig	
start the water balance accounting. Default value is zero, which assumes the root zone is at the field capacity. Scheduling Single integer number defining the number of days between two consecutive irrigations.	MAD	
irrigations.	InitialD	start the water balance accounting. Default value is zero, which assumes the
start.date Date at which the accounting should start. Formats: "YYYY-MM-DD", "YYYY/	Scheduling	
	start.date	Date at which the accounting should start. Formats: "YYYY-MM-DD", "YYYY/MM/DD"

6 DataForAWC

Value

Water balance accounting, including the soil water deficit.

Examples

```
Tavg <- DataForCWB[, 2]</pre>
Tmax <- DataForCWB[, 3]</pre>
Tmin <- DataForCWB[, 4]</pre>
Rn <- DataForCWB[, 6]</pre>
WS <- DataForCWB[, 7]</pre>
RH <- DataForCWB[, 8]
G <- DataForCWB[, 9]</pre>
ET0 <- ET0_PM(Tavg, Tmax, Tmin, Rn, RH, WS, G, Alt = 700)
Rain <- DataForCWB[, 10]</pre>
Drz <- DataForCWB[, 11]</pre>
AWC <- DataForCWB[, 12]
MAD <- DataForCWB[, 13]
Kc <- DataForCWB[, 14]</pre>
Irrig <- DataForCWB[, 15]</pre>
Scheduling <- 5
CWB_FixedSchedule(
  Rain = Rain,
  ET0 = ET0,
  AWC = AWC,
  Drz = Drz,
  Kc = Kc,
  Irrig = Irrig,
  MAD = MAD,
  Scheduling = Scheduling,
  start.date = "2023-11-23"
)
```

DataForAWC

Soil Texture and Plant Available Water Capacity (AWC)

Description

AWC is the amount of water between field capacity and permanent wilting point. Given in millimetre of water per metre of soil.

Usage

DataForAWC

DataForCWB 7

Format

A data frame with 4 columns and 12 rows:

Soil.Texture Soil Texture

AWC.Low Available water capacity in millimetre of water per centimetre of soil

AWC.High Available water capacity in millimetre of water per centimetre of soil

AWC.Average Available water capacity in millimetre of water per metre of soil

Source

https://extension.colostate.edu/topic-areas/agriculture/irrigation-scheduling-the-water-balance-app

References

Irrigation Scheduling: The Water Balance Approach Fact Sheet No. 4.707 by A. A. Andales, J. L. Chávez, T. A. Bauder.

DataForCWB

Data for Water Balance Accounting

Description

Daily meteorological data from a weather station in Campinas, Brazil and other parameters required for calculating the crop water balance. The meteorological data belongs to the Agronomic Institute (IAC).

Usage

DataForCWB

Format

An object of class data. frame with 129 rows and 15 columns.

Details

@format ## DataForCWB A data frame with 15 columns and 129 rows:

date date

tmed Average air temperature in Celsius degrees

tmax Maximum air temperature in Celsius degrees

tmin Minimum air temperature in Celsius degrees

Ra Extraterrestrial solar radiation in MJ M-2 DAY-1

Rn Net radiation in MJ M-2 DAY-1

W Wind speed in M S-1

8 DataForSWC

RH Relative Humidity in %

G Soil Heat Flux in MJ M-2 DAY-1

Rain Rain in millimetres

Drz Depth of the root zone in metres

AWC available water capacity (amount of water between field capacity and permanent wilting point) in millimetre of water per metre of soil

MAD management allowed depletion (between 0 and 1)

Kc Crop coefficient (between 0 and 1)

Irrig Applied net irrigation in millimetres

@source http://www.ciiagro.org.br/

DataForSWC

Typical Soil Water Characteristics for Different Soil Types (Teta)

Description

Soil water content at field capacity and at permanent wilting point. Given in M-3 M-3. Extracted from: Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration. In Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300.

Usage

DataForSWC

Format

An object of class data. frame with 9 rows and 5 columns.

Details

@format ## DataForSWC A data frame with 5 columns and 9 rows:

Soil type Soil Type

Teta_FC_Min Minimum values for soil water content at field capacity

Teta_FC_Max Maximum values for soil water content at field capacity

Teta_PWP_Min Minimum values for soil water content at permanent wilting point

Teta_PWP_Max Maximum values for soil water content at permanent wilting point

@source https://www.fao.org/home/en/

Descriptive 9

Descriptive

Descriptive Statistics for Weather Variables

Description

Calculates descriptive statistics for rainfall, evapotranspiration, or other variables.

Usage

```
Descriptive(Sample)
```

Arguments

Sample

A vector, 1-column matrix or data frame with rainfall, evapotranspiration, or other variable.

Value

A dataframe with:

- sample mean (Avg),
- sample median (Med),
- sample standard variation (SD)
- sample standard Error (SE)
- maximum value (MaxValue)
- minimum value (MinValue)
- frequency of zeros (FreqZero%)

Examples

```
Rain <- DataForCWB[, 10]
Descriptive(Sample = Rain)</pre>
```

Dinitial

Soil Water Deficit in the Root Zone

Description

Estimates initial values for soil water deficit. Required to initiate the water balance accounting.

Usage

```
Dinitial(teta_FC, teta_Obs, Drz)
```

10 ETO_HS

Arguments

teta_FC	Soil water content for the effective root zone at the field capacity $m3/m3$
teta_Obs	Soil water content for the effective root zone at the wilting point $m3/m3$
Drz	Vector, 1-column matrix or data frame defining the root zone depth in metres.

Value

Initial soil water deficit in the root zone (millimetres).

Examples

```
teta_FC <- 0.30
teta_Obs <- 0.17
Drz <- 0.3048
Dinitial(teta_FC = teta_FC, teta_Obs = teta_Obs, Drz = Drz)</pre>
```

ET0_HS

Reference Evapotranspiration Using Hargreaves-Samani Method

Description

Calculates daily reference evapotranspiration amounts using the Hargreaves-Samani method.

Usage

```
ETO_HS(Ra, Tavg, Tmax, Tmin)
```

Arguments

Ra	A vector, 1-column matrix or data. frame with extraterrestrial solar radiation in MJ M-2 DAY-1.
Tavg	A vector, 1-column ${\tt matrix}$ or ${\tt data.frame}$ column with daily average air temperature.
Tmax	A vector, 1-column matrix or data. frame with daily maximum air temperature in Celsius degrees.
Tmin	A vector, 1-column matrix or data.frame with daily minimum air temperature in Celsius degrees.

Value

A matrix of 1-column with the same length as 'the input values with the daily potential evapotranspiration values in millimetres.

See Also

```
ET0_PM() ET0_PT()
```

ETO_PM 11

Examples

```
# See `?DataForCWB` for more on this data set
Tavg <- DataForCWB[, 2]
Tmax <- DataForCWB[, 3]
Tmin <- DataForCWB[, 4]
Ra <- DataForCWB[, 5]
ET0_HS(Ra = Ra, Tavg = Tavg, Tmax = Tmax, Tmin = Tmin)</pre>
```

ETO_PM Reference Evapotranspiration Using the Penman and Monteith Method

Description

Calculates daily reference evapotranspiration amounts using the Penman and Monteith method.

Usage

```
ETO_PM(Tavg, Tmax, Tmin, Rn, RH, WS, G = NULL, Alt)
```

Arguments

Tavg	A vector, 1-column matrix or data frame with daily average air temperature.
Tmax	A vector, 1-column matrix or data frame with daily maximum air temperature in Celsius degrees.
Tmin	A vector, 1-column matrix or data frame with daily minimum air temperature in Celsius degrees.
Rn	A vector, 1-column matrix or data frame with daily net radiation in $MJm-2day-1$.
RH	A vector, 1-column matrix or data frame with daily relative Humidity in \%.
WS	A vector, 1-column matrix or data frame with daily wind speed in $ms-1$.
G	Optional. A vector, 1-column matrix or data frame with daily soil heat flux in $MJm-2day-1$. Default is NULL and if NULL it is assumed to be zero. May be provided by Soil_Heat_Flux
Alt	A single number defining the altitude at crop's location in metres.

Value

A matrix of daily reference evapotranspiration amounts in millimetres.

12 ET0_PT

Examples

```
# See `?DataForCWB` for more on this data set
Tavg <- DataForCWB[, 2]</pre>
Tmax <- DataForCWB[, 3]</pre>
Tmin <- DataForCWB[, 4]</pre>
Rn <- DataForCWB[, 6]</pre>
WS <- DataForCWB[, 7]</pre>
RH <- DataForCWB[, 8]
G <- DataForCWB[, 9]</pre>
ET0_PM(Tavg = Tavg,
        Tmax = Tmax,
        Tmin = Tmin,
        Rn = Rn,
        RH = RH,
        WS = WS,
        G = G,
        Alt = 700)
```

ET0_PT

Reference Evapotranspiration Using the Preistley-Taylor Method

Description

Calculates daily reference evapotranspiration amounts using the Priestley-Taylor method.

Usage

```
ETO_PT(Tavg, Rn, G = NULL, Coeff = 1.26)
```

Arguments

Tavg	A vector, 1-column matrix or data frame with daily average air temperature.
Rn	A vector, 1-column matrix or data frame with daily net radiation in $MJm-2day-1$.
G	Optional. A vector, 1-column matrix or data frame with daily soil heat flux in $MJm-2day-1$. May be provided by Soil_Heat_Flux
Coeff	Single number defining the Priestley and Taylor coefficient. Default is 1.26.

Value

A matrix object of the daily potential evapotranspiration values in millimetres.

Soil_Heat_Flux 13

Examples

```
# See `?DataForCWB` for more on this data set
Tavg <- DataForCWB[, 2]
Rn <- DataForCWB[, 6]
G <- DataForCWB[, 9]
ET0_PT(Tavg = Tavg, Rn = Rn, G = G)</pre>
```

Soil_Heat_Flux

Soil Heat Flux

Description

Calculates the daily amounts of soil heat flux.

Usage

```
Soil_Heat_Flux(Tavg)
```

Arguments

Tavg

A vector, 1-column matrix or data frame with daily average air temperature.

Value

Daily amounts of soil heat flux in MJm - 2day - 1.

Examples

```
# See `?DataForCWB` for more on this data set
Tavg <- DataForCWB[, 2]
Soil_Heat_Flux(Tavg)</pre>
```

Index

```
\ast datasets
    DataForAWC, 6
    DataForCWB, 7
    DataForSWC, 8
Compare, 2
CWB, 3
CWB_FixedSchedule, 5
DataForAWC, 6
DataForCWB, 7
DataForSWC, 8
Descriptive, 9
Dinitial, 9
ET0_HS, 10
ET0_PM, 11
ET0_PM(), 10
ET0_PT, 12
ET0_PT(), 10
Soil_Heat_Flux, 11, 12, 13
```