ゼロからできる MCMC 正誤表

2刷での修正、変更

ページ等	修正前	修正後
	<u> </u>	<u>k</u> 回目までに
p.47, 問題 3.1 の解答		
89 ページ、問題 5-1	nステップをまとめたあとでは	問題4-2の時と同じ意味で詳細
の解答	詳細釣り合いが壊れてしまいま	釣り合いは成り立っていません
	すが	が
p.134, 問題 6.3 の解答	$x(\tau)$ の時間発展 $x(\tau + \Delta \tau) + \Delta \tau$ ・	$x(\tau)$ の時間発展 $x(\tau) + \Delta \tau$ ・
	$p\left(\tau + \frac{\Delta\tau}{2}\right)$	$p\left(\tau + \frac{\Delta\tau}{2}\right)$
p.121	このやり方でマルコフ連鎖モン	「yを固定してxを更新」と「x
	テカルロ法の条件が満たされて	を固定して y を更新」をまと
	いることを確認しましょう.マ	めて1ステップと思うことにし
	ルコフ連鎖であることと既約性	ましょう. このやり方でマルコ
	はほとんど自明でしょう. 非周	フ連鎖モンテカルロ法の条件が
	期性は「yを固定してxを更新」	満たされていることを確認しま
	と「xを固定してyを更新」をま	す. マルコフ連鎖であることと
	とめて1ステップと思えば成立	既約性、非周期性はほとんど自
	しています. 最後に詳細釣り合	明でしょう. 以下, 詳細釣り合い
	い条件を慎重 に調べましょう.	条件を慎重 に調べます.
p.140	これを μ と σ の関数と考えて	これを μ と σ の関数と考えて
	「{x _i } が実現されるもっともらし	「 $\{x_i\}$ がパラメーター μ と σ か
	さ」と解釈するのが尤度なので	ら実現されるという仮定のもっ
	した.	ともらしさ」と解釈するのが尤
		度なのでした.
p.149–p.150,	$P(p n,k) \cdot P(p n',k')$	$P(p n,k) \cdot P(p n',k')$
Eq. (7.29)	$=p^{k}(1-p)^{n-k}\cdot p^{k'}(1-p)^{n'-k'}$	$\propto p^k (1-p)^{n-k} \cdot p^{k'} (1-p)^{n'-k'}$
1 (/	$= p^{k+k'}(1-p)^{(n+n')-(k+k')}$	$= p^{k+k'} (1-p)^{(n+n')-(k+k')}$
	=P(p n+n',k+k')	$\propto P(p n+n',k+k')$
p.150	$P(p k)=p^{35}(1-p)^{35}$	$P(p k) \propto p^{35} (1-p)^{35}$
p.153	N_p は確率 p のコインの総数で	N_p は確率 p のコイン <mark>が選ばれ</mark>
	す.	た回数です.
p.153, Eq.(7.34)	$P(k) = \lim_{N \to \infty} \frac{\sum_{p} n_{k,p}}{N} = \frac{N_k}{N}$	$P(k) = \lim_{N \to \infty} \frac{\sum_{p} n_{k,p}}{N}$
	1	$=\lim_{N\to\infty}\frac{N_k}{N}$

ページ等	修正前	修正後
p.153, Eq.(7.34)	$P(p) = \lim_{N \to \infty} \frac{\sum_{k} n_{k,p}}{N} = \frac{N_p}{N}$	$P(p) = \lim_{N \to \infty} \frac{\sum_{k} n_{k,p}}{N}$
		$=\lim_{N\to\infty}\frac{N_p}{N}$
p.160	E_{\pm} を計算するには点 i と隣接す	<i>E</i> ₊ と <i>E</i> ₋ の差を計算するには点
	る点のスピンとの相互作用だけ	iと隣接する点のスピンとの相
	考えれば良いので	互作用だけ考えれば良いので
p.173	移動 <mark>時間</mark> の合計が決まります.	移動 <mark>距離</mark> の合計が決まります.
p.181, Fig. 7.18	真ん中	中央
p.206	nskip はメトロポリス法のサン	nskip はサンプル採取頻度です.
	プル採取頻度です.	
p.201	https://github.com/	C, C++で書かれたサンプル
	masanorihanada/	コードを https://github.
	MCMC-Sample-Codes から	com/masanorihanada/
	ダウンロードできます. ライブ	MCMC-Sample-Codes から
	ラリ等は使用していないので,	ダウンロードできます. ライブ
	通常の C あるいは C++のコン	ラリ等は使用していないので,
	パイラーだけでコンパイル可	通常の C あるいは C++のコン
	能です.	パイラーだけでコンパイル可
		能です. Python3 のコードも同
		じ GitHub アカウントで提供し
		ます.
Appendix A, コード	Bayse	Bayes
名のところで4箇所		

p.75, 問題 4.2 の解答

そこで、 $\gamma = 0 \rightarrow 1 \rightarrow 0$ という2つのステップをまとめて1ステップと思うことにしてみま

す. こうするとマルコフ連鎖であることと既約性、非周期性が成り立つことは明らかでしょう. このようにしても詳細釣り合い条件は一般には成り立ちません. [以下略]

4刷での修正

ページ等	修正前	修正後
p.133, 問題 6.3 の解答	$x(\tau + \Delta \tau) = x(\tau) + \Delta \tau \cdot \frac{dx}{d\tau}(\tau) +$	
	$\frac{(\Delta \tau)^2}{2} \cdot \frac{dx^2}{d\tau^2}(\tau) + O((\Delta \tau)^3)$	$\frac{(\Delta\tau)^2}{2} \cdot \frac{d^2x}{d\tau^2}(\tau) + O((\Delta\tau)^3)$
p.191	$D\Phi = F を解いて F を求める。$	$D\Phi = F$ を用いて F を求める。

5刷での変更

Chapter 4 に練習問題を追加

<問題 4.7> 連続変数の分布に対して詳細釣り合いを示すとき、ヤコビアンと呼ばれる量が1であることを暗黙のうちに用いました。 $x \to x'$ という変換で無限小区間 [x,x+dx] が [x',x',+dx'] に変化する場合には、幅の変化の割合 $\frac{dx'}{dx}$ がヤコビアンです。この本で扱う例では、特に断りのない限り、ヤコビアンが1であることが簡単に示せます。(少々非自明な例に HMC 法があります。問題 6.5 を参照して下さい。)もしヤコビアンが1でない場合にはどのような問題が生じ得るでしょうか?

<解答>確率密度から確率を得るためには、無限小区間 dx を掛ける必要があります。従って、詳細釣り合いの証明に出てきた式には dx や dx' が掛かっていることが暗黙の了解でした。ヤコビアンが1であれば、これらは共通の因子であり、無視できました。ヤコビアンが1でない場合にはこれらを真面目に取り扱う必要があり、 Δx の選び方によっては詳細釣り合いが破れてしまうかもしれません。

Chapter 6 に練習問題を追加

<問題 6.5> リープフロッグ法ではヤコビアンが1であることを示してください.

<解答> 表記を簡単にするため、1 変数の場合を考えます.多変数の場合もほとんど同じです.

一般に, $(x,p) \rightarrow (x',p')$ という変換に伴うヤコビアン J は次のような行列式です:

$$J = \det \begin{pmatrix} \frac{\partial x'}{\partial x} & \frac{\partial p'}{\partial x} \\ \frac{\partial x'}{\partial p} & \frac{\partial p'}{\partial p} \end{pmatrix} = \frac{\partial x'}{\partial x} \frac{\partial p'}{\partial p} - \frac{\partial p'}{\partial x} \frac{\partial x'}{\partial p}.$$
 (1)

この行列式がリープフロッグ法の各ステップで 1 になっていることは簡単に分かります. $(x,p) \to (x',p') = (x+p\Delta\tau,p)$ というステップでは $J=1\cdot 1-0\cdot \Delta\tau=1$ ですし, $(x,p) \to (x',p')=(x,p-\frac{\partial S}{\partial x}\Delta\tau)$ というステップでは $J=1\cdot 1+\frac{\partial^2 S}{\partial x^2}\Delta\tau\cdot 0=1$ です. リープフロッグ法による時間発展全体のヤコビアンは各ステップのヤコビアンの積なので, これもまた 1 です.

<問題 6.6> 本文中で、HMC法で $\tau_{\rm fin}=N_{\rm T}\Delta \tau$ を固定したときに N_{τ} と $\Delta \tau$ の値を調節して効率を上げる方法を説明しました. $\tau_{\rm fin}$ も最適な値に調節するにはどうしたらよいでしょうか? <解答> N_{τ} と $\tau_{\rm fin}$ の値を指定すると,自己相関長 $w(N_{\tau},\tau_{\rm fin})$ が評価できます. 独立な配位を一つ得るために必要な計算コストは $N_{\tau} \times w(N_{\tau},\tau_{\rm fin})$ に比例するので、この量が小さくなるように N_{τ} と $\tau_{\rm fin}$ の値を選びます.

6.1.3 節にコメントを追加

詳細釣り合いの証明の最後、(「他の条件が満たされていることも確認しておきましょう」の直前)に次の2文を追加:

上の証明では、ヤコビアンが1であることを暗黙のうちに用いています (問題 4.7 参照). リープフロッグ法でヤコビアンが1であることは少し計算すれば分かりますので、確認してみてください (問題 6.5).

6刷での修正、変更

ページ等	修正前	修正後
p.11	2012 年に運用が開始された当	2012 年に運用が開始された当
1	時世界最先端のスーパーコンピ	時世界最先端のスーパーコンピ
	ューター「京」は1秒間に1ペ	ューター「京」は 1 秒間に <mark>10</mark> ペ
	タフロップス = 10 ¹⁵ 回の浮動小	タフロップス = 10 ¹⁶ 回の浮動小
	数点計算ができましたが, 単純	数点計算ができましたが, 単純
	に足し算だけで良いとしても、	に足し算だけで良いとしても、
	n = 10 だとすでに 100 ⁿ /10 ¹⁵ =	n = 10 だとすでに 100 ⁿ /10 ¹⁶ =
	10 ⁵ = 10 万秒, 丸一日以上か	10 ⁴ = 1 万秒, <mark>約 3 時間</mark> かかりま
	かります. $n=12$ だとすでに	す. これを $n=12$ とするだけで,
	100 ⁿ /10 ¹⁵ = 10 ⁹ = 10 億秒,約 32	100 ⁿ /10 ¹⁶ = 10 ⁸ = 1 億秒,約 3 年
	年です. 実際には各点での関数	です。実際には各点での関数の
	の値を計算したりしなければな	値を計算したりしなければなら
	らないのでこの何倍もかかりま	ないのでこの何倍もかかります.
	す.	3
p.15, Eq. (2.2)	$P_{\sigma}(x) = \frac{e^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}$	$P_{\sigma,\mu}(x) = \frac{e^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}$
p.131, Eq. (6.61)	$S(x, y) = y^2 f(x) + g(x)$	$S(x,y) = \frac{y^2}{2}f(x) + g(x)$
p.132	すなわち、ガウス乱数zを生成	すなわち、 <mark>分散が1のガ</mark> ウス乱
	L	数zを生成し
p.137, 脚注 1	組み合わせの数 $\binom{n}{k}$ は日本の高	組み合わせの数 $\binom{n}{k}$ は日本の高
	校数学では $_nC_k$ と書かれるのが	校数学では $_nC_k$ と書かれるのが
	普通です.具体的な値は $\binom{n}{k}$ =	普通です.具体的な値は $\binom{n}{k}$ =
	$\frac{n!}{(n-k)!k!}$ で与えられます.	$\frac{n!}{(n-k)!k!}$ で与えられます. <mark>表と裏</mark>
		の出る順番も指定した場合には
		この因子は無くなります. いず
		れにせよ、pには依存しない定
		数なので、以下では無視します.
p.149	P(p 13,7)	P(p 20,13)
p.151	-	•
p.156, p.203, p.204,	$\frac{\prod_{i=1}^{n} \mathbf{P}(x_i \mu, \sigma)}{e^{-\frac{1}{2} \sum_{i \neq j} A_{ij} ^2 - \frac{1}{2} \sum_{i} \mu_i ^2}}$	$\frac{\prod_{i=1}^{n} \boldsymbol{\rho}(x_i \boldsymbol{\mu}, \boldsymbol{\sigma})}{e^{-\frac{1}{2} \sum_{i,j} A_{ij} ^2 - \frac{1}{2} \sum_{i} \mu_i ^2}}$
p.206		
p.156	$\Delta S = \frac{1}{2} \sum_{i \neq j} A_{ij} ^2 + \frac{1}{2} \sum_{i} \mu_i ^2$	$\Delta S = \frac{1}{2} \sum_{i,j} A_{ij} ^2 + \frac{1}{2} \sum_{i} \mu_i ^2$
p.157, Fig.7.6	$A_{12} = A_{21}$	$A_{12} = A_{21}$

ページ等	修正前	修正後
p.157	$\frac{1}{2}\sum_{i}^{d}\mu_{i}^{2}$	$\frac{1}{2}\sum_{i=1}^{d}\mu_i^2$
p.157	$\frac{1}{2}\sum_{j}^{d}\mu_{j}^{2}$	$\frac{1}{2}\sum_{j=1}^{d}\mu_{j}^{2}$
p.159	$\Delta E = E(\{s^{(k)}\}) - E(\{s'\})$	$\Delta E = E(\{s'\}) - E(\{s^{(k)}\})$
p.170	$n_{ m cluster}$ の値を 1 だけ増やし,	$i_{n_{ m cluster}}$ に追加した格子点の番号
	$i_{n_{ m cluster}}$ に追加した格子点の番号	を格納し, $n_{ m cluster}$ の値を 1 だけ
	を格納する.	増やす. 最後に, <i>k</i> を 1 だけ増や
		す.
p.179	$P_1(X) = e^{-f(X)/T_1}$	$P_1(X) \propto e^{-f(X)/T_1}$
p.179	$P_2(X) = e^{-f(X)/T_2}$	$P_2(X) \propto e^{-f(X)/T_2}$
p.180	$\sum_{m=1}^{M} \frac{f[X_m]}{T_m}$	$\sum_{m=1}^{M} \frac{f(X_m)}{T_m}$
p.181, Fig. 7.18	右:T=0.001	右: T = 0.01
p.190, Eq. (7.61)	$P(G) = \det(D(G) \cdot D^{\dagger}(G)) \cdot e^{-S(G)}$	$P(G) \propto \det(D(G) \cdot D^{\dagger}(G)) \cdot e^{-S(G)}$
p.191	計算の大部分は D Φ = F を	計算の大部分は (DD^{\dagger}) $\chi = F$ を
	解いて F を求めるところと	解いてχを求めるところに費や
	$(DD^{\dagger})\chi = F$ を解いて χ を求め	されます.
	るところに費やされます.	
p.212, Eq. (B.26)	$\frac{e^{-\frac{1}{2}\sum_{i,j=1}^{d} A_{ij}(x_i - \mu_i)(x_j - \mu_j)}}{\sqrt{(2\pi)^d \det A}}$	$\sqrt{\frac{\det A}{(2\pi)^d}}e^{-\frac{1}{2}\sum_{i,j=1}^d A_{ij}(x_i-\mu_i)(x_j-\mu_j)}$

図 2.5 の修正

図 2.5 の下側がおかしなものになっている. 正しくは図1のようになる.

図1:これが正しい図.