

SUBJECT INDEX

- Abbotsford aquifer, Fraser Lowlands, SW British Columbia, Canada 391
- Acid mine drainage, 237, 285
 - electrochemical amelioration 705
- Adsorption, 715
 - by colloidal (hydr)oxides 197
 - by peat 207
- Actinides
 - carbonate complexes 565, 573
 - hydroxyl complexes, 573
 - humic acid complexes 573
 - in ground water 565
- Ag
 - in ochre 237
 - in Paleozoic rocks 581
- Al
 - in colloids 119
 - in groundwater 1
 - in lake water 45
 - in stream water 45
- Alberta, Canada 357
- Alberta Basin, Canada 357
- Albite, dissolution, effect of malonate on 17
- Alwyn South, U.K. North Sea 531
- Ar, in groundwater 505
- Arkansas River, Colorado, U.S.A. 133, 285
- As
 - in acid mine drainage 285
 - in Arkansas river 285
 - in ochre 237
 - in soils 307
 - in waters 517
- Au
 - exploration for 517
 - in pelagic marine sediments 35
 - in terrigenous derived marine sediments 35
 - in waters 517
 - mineralization 517
 - organo-complexes 35
- Au/Cu ratios, in marine sediments 35
- Australia, Queensland 329
- B
 - in groundwater 1
 - in waters 133
- Ba
 - in brines 447
 - in colloids 119
 - in lower Paleozoic rocks 581
- Baltic Sea, 477
- Basalt, hydrothermally altered, geochemistry and mineralogy 621
- Be, in groundwater 1
- Bi
 - in groundwater 1
 - in ochre 237
- Bois Madame, Gard, France 419
- Book Review
 - European Coal Geology 599
 - Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins 251
- BP-Wolf Lake, Alberta, Canada 65
- British Columbia, Canada 591
- Bronze cannon, corrosion of 477
- ¹³C
 - in carbonates 373, 407
 - in CH₄ 407
 - in chlorinated organic solvents 547
 - in CO₂ 407
 - in gas field waters 407
 - in groundwaters around crude oil spill 605
 - in organics 373
 - in waters produced during *in situ* combustion 65
- Ca
 - exchange by K in smectite 347
 - in colloids 119
 - in geothermal waters 337
 - in groundwater 1
 - in hydrothermally altered basalt 621
 - in lake water 45
 - in stream water 45
 - in tooth enamel 145
 - in waters 133
 - in waters produced during *in situ* combustion 65
- California, U.S.A. 533
- Canada
 - Alberta 65, 357
 - British Columbia 391
 - Manitoba 477, 657
 - Nova Scotia 175
 - Ontario 705
- Carson River, California/Nevada, U.S.A. 553
- Carson River Basin, U.S.A. 491
- Cd
 - in acid mine drainage 285, 705
 - in Arkansas River 285
 - in groundwater 1
 - in ochre 237
- Ce, in Paleozoic rocks 581
- Central Pacific Basin, 35
- CH₄, from a crude oil spill 505
- Chihuahua, Mexico 685

China 643
 sedimentary basins of 643

Chlorinated organic solvents
 ^{13}C in 547
 ^{37}Cl in 547
 in groundwaters 547

Cl
 in acid mine drainage 705
 in coal field brines 447
 in gas field waters 407
 in geothermal waters 337
 in groundwater 1
 in lake waters 45
 in stream waters 45
 in tooth enamel 145
 in waters 133
 in waters produced during *in situ* combustion 65
 ^{37}Cl , in chlorinated organic solvents 547

Contamination
 evaluation of, using overbank sediments 97
 from mining activity 97
 from smelting 307
 of harbour sediments 175
 of lake sediments 229

Co
 in acid mine drainage 237, 705
 in lake sediments 229
 in ochre 237

CO₂
 disposal on sea floor 461
 interaction with seawater 461
 reduction 461

CO₂ hydrate, stability 461

CO₃²⁻, in tooth enamel 145

Colima volcano, Mexico 215

Colloids, influence on metal transport 285

Colorado, U.S.A. 133, 285

Corrigendum, 369

Cr, in lake sediments 229

Crude oil, spillage 505

Cs
 in groundwater 1
 radioactive 715
 sorption, in soils 715

Cu
 behaviour of, during corrosion of bronze 477
 in acid mine drainage 237, 285, 705
 in Arkansas River 285
 in colloids 119
 in groundwater 1
 in harbour sediments 175
 in lake sediments 229
 in marine sediments 35
 in ochre 237
 in Paleozoic rocks 581

Denitrification, 207

Diagenesis
 bacterial activity during 419
 behaviour of Au during 35
 cements 531
 in reservoirs 531
 in harbour sediments 175
 SO₄ reduction during 373

Diamonds
 euhedral micro 725
 stability 725

Dry River South, Queensland, Australia 329

El Berrocal pluton, Toledo, Spain 119

El Chichón volcano, Mexico 215

England
 Exmoor National Park, Devon 85
 Levant Mine, Cornwall 237

Erratum, 115

Etruscan Swell, Italy 337

Exmoor National Park, Devon, SW England, U.K. 85

F
 in acid mine drainage 705
 in formation waters 357
 in geothermal waters 337
 in groundwater 1
 in lake water 45
 in stream water 45
 in tooth enamel 145

Fe
 in acid mine drainage 237, 285, 705
 in Arkansas River 285
 in colloids 119
 in groundwater 1
 in hydrothermally altered basalt 621
 in lake sediments 229
 in waters produced during *in situ* combustion 65
 reaction with Cu during weathering of bronze 477

Fe ochre, geochemistry 237

Finland 45, 209

Floodplain sediments, geochemistry 97

Formation Waters
 F in 357
 V in 357

France
 Gard 419
 Nice 145

Gard, France 419

Germany 161

Geochemical exploration
 for Au 517
 for diamonds 725
 for massive sulphide deposits 329

Geochemical mapping
 using overbank sediments 97
 using stream sediments 97
 using waters 45

Geochemical modelling	
around low level radioactive waste sites	673
of K exchange	347
of radionuclide transport	573
Geothermometry	
of fluid inclusions	531
of geothermal waters	337
Groundwater	
actinides	in 565
brine chemistry	447
chemistry, influence on nuclear waste vault design	657
chlorinated organic solvents	in 547
contamination by oil	505
gross-beta activity	in 491
Nd	in 565
NO ₃	in 391
Norwegian bedrock	1
quality	1
transport of actinides	in 573
H ⁺	
in lake waters	45
in stream waters	45
² H	
in brines	447
in groundwaters around crude oil spill	505
in reservoir cements	531
in waters produced during <i>in situ</i> combustion	65
Halifax	harbour, Nova Scotia, Canada 175
HCO ₃	
in geothermal waters	337
in lake water	45
in stream water	45
³ He/ ⁴ He	in oil-field gases, China 643
⁴ He/ ²⁰ Ne	in oil-field gases, China 643
Hg	
in harbour sediments	175
in lake sediments	229
Hokuroko district	Honshu, Japan 621
Honshu, Japan	621
Hvaler archipelago	Norway 1
Hydrogeochemical maps	45
Hydrogeochemistry	
for volcanic eruption prediction	215
of acid mine drainage	705
of actinides	565
of Au	517
of bedrock groundwaters	1
of coalfield brines	447
of formation waters	357
of geothermal waters	337
of groundwaters	391, 505, 565, 657, 673
of lakes	45
of mine waters	237
of Nd	565
I	
deficiency disorders in livestock	85
in topsoils	85
in shallow groundwater	85
in stream waters	85
Isotopes	
C	65, 373, 407, 505, 547
Cl	547
H	65, 447, 505
He	643
N	391
O	65, 111, 161, 373, 391, 407, 447, 531
Pb	437
S	65, 161, 373
Italy	
Etruscan Swell	337
N Latium	581
Sardinia	517
S Tuscany	581
Japan	
Central	437
Hokuroko District, Honshu	621
Kii Strait, S of	35
Kiso	111
Lake Jinzai	229
Obama Bay	35
Suruga Bay	35
Japan Trench	35
K	
in lake water	45
in stream water	45
in waters produced during <i>in situ</i> combustion	65
ion exchange in smectite	347
⁴⁰ K	in groundwater 491
Kii Strait, NE Japan	35
Kiso, central Japan	111
La	
in gels, nuclear waste simulation	269
in groundwater	1
in Paleozoic rocks	581
Lac du Bonnet batholith, SE Manitoba, Canada	477, 657
Lake Jinzai, Shimane District, W Japan	229
Lazaret cave, Nice, France	145
Leadville, Colorado, U.S.A.	285
Levant mine, Cornwall, England, U.K.	237
Li	
in Paleozoic rocks	581
in waters	133
in waters produced during <i>in situ</i> combustion	65

Linear discriminant analysis, on geochemical data for Paleozoic formations 581
Louisiana, U.S.A. 407

Manitoba, Canada 477, 657
Mexico
central 97
Colima volcano 215
El Chichón volcano 215
Peña Blanca District, Chihuahua 685
Tacaná volcano 215

Mg
exchange by K in smectite 347
in colloids 119
in geothermal waters 337
in groundwater 1
in hydrothermally altered basalt 621
in lake water 45
in stream water 45
in tooth enamel 145
in waters 133
in waters produced during *in situ* combustion 65

Microcline, dissolution, effect of malonate on 17

Mineralization
Au 517
Fe 705
massive sulphide 329
Pb/Zn 419
U 685
Zn 329
Zr 603

Mn
in acid mine drainage 237, 285, 705
in harbour sediments 175
in lake sediments 229
in ochre 237
leach mining of 253

Mn oxide minerals, dissolution by SO₂ 253

Mo, in groundwater 1

Monti Romani, S Tuscany/N Latium, Italy 581

Moore-Sams gas field, Louisiana, U.S.A. 407

Morganza gas field, Louisiana, U.S.A. 407

Munich, Germany 161

N₂, in groundwater 505
¹⁵N
in groundwater 391
in NH₄-based fertilizers 391
in NO₃ 391
in poultry manure 391

Na
exchange by K in smectite 347
in hydrothermally altered basalt 621
in geothermal waters 337
in groundwater 1
in lake water 45

in stream water 45
in tooth enamel 145
in waters 133
in waters produced during *in situ* combustion 65

Nb, in Paleozoic rocks 581

Nd
complexes with CO₃ 565
in groundwaters 565

Nevada, U.S.A. 553, 565, 685

New Jersey, U.S.A. 491

NH₄, adsorption on peat 207

Ni
in acid mine drainage 705
in harbour sediments 175
in lake sediments 229
in ochre 237
in Paleozoic rocks 581

Nice, France 145

Nitrification, 207

NO₃
in groundwater 391
in lake water 45
in stream water 45

Nopal 1 U deposit, Peña Blanca District, Chihuahua 685

Nord Trøndelag, Norway 1
Norway
Hvaler archipelego 1
Nord Trøndelag 1
Oslofjord 1

Nova Scotia, Canada 175

Nuclear waste glass, corrosion of 269

¹⁸O
in authigenic carbonates 373
in brines 447
in formation water 407
in gas field water 407
in groundwater 391
in NO₃ 391
in precipitation 161
in seepage water 161
in soils 161
in soil quartz 111
in waters produced during *in situ* combustion 65

Oak Ridge, Tennessee, U.S.A. 673

Obama Bay, Japan 35

OH⁻, in tooth enamel 145

Oklahoma, U.S.A. 491

Ontario, Canada 705

Organic acids, in waters produced during *in situ* combustion 65

Organic anions
in lake water 45
in stream water 45

Organic complexing agents,
in transport of radionuclides 573, 673
in transport of heavy metals 673

Osilo, N Sardinia, Italy 517
 Oslofjord, Norway 1

²³⁴Pa, in stored groundwater samples 491
 Pb
 in acid mine drainage 285
 in Arkansas River 285
 in groundwater 1
 in harbour sediments 175
 in lake sediments 229
 in ochre 237
 in Paleozoic rocks 581
 isotopes in fault gouges 437
 mineralization 419
 PO₄, in tooth enamel 145
 Poland, Upper Silesia 447
 Puerco River Basin, U.S.A. 491

Quartz, dissolution, effect of malonate 17
 Queensland, Australia 329

²²⁶Ra, in brines 447
²²⁸Ra, in groundwater 491
 Radioactive waste disposal
 bentonite as barrier 347
 corrosion of Cu waste containers 477
 geochemistry of groundwaters in vicinity of 565
 in salt 317
 leaching of nuclear glass 269
 modelling of actinide transport around 573
 natural analogue 477, 685
 radionuclide and heavy metal sorption around 675
 simulation 269, 477
 vault design 657

Radiometric dating of faults, use of Pb isotopes 437
 Rb
 in groundwater 1
 in Paleozoic rocks 581

Rn, in groundwater 1
 Rock salt, water content 317
 Rönnskärsviken smelter, N Sweden 307

S
 in colloids 119
 residence time in forest soils 161

³⁴S
 in organics 373
 in precipitation 161
 in seepage water 161
 in soils 161
 in waters produced during *in situ* combustion 65

variations in SO₄ reduction products 373
 Sardinia, Italy 517
 Sb
 in ochre 237
 in waters 517

Se
 in biomethylation of 553
 in eastern Sierra Nevada rivers 553
 in precipitation 553
 in surface waters 553
 in waters 133
 Se/Cl ratio, in surface waters 553
 Secondary minerals, Levant Mine 237
 Sherman Fe ore mine, Temagami, Ontario, Canada 705

Si
 in groundwater 1
 in hydrothermally altered basalt 621
 in waters produced during *in situ* combustion 65

Sierra Nevada, U.S.A. 553
 Sn, in ochre 237
 SO₂, reductive dissolution 253
 SO₄
 in acid mine drainage 705
 in brines 447
 in geothermal waters 337
 in groundwater 1
 in lake water 45
 in precipitation 161
 in seepage water 161
 in soils 161
 in stream water 45
 in waters 133
 in waters produced during *in situ* combustion 65

SO₄ reduction
 bacterial 373, 419
 thermochemical 373

Sorption
 of heavy metals 673
 of radionuclides 673

Spain, 317
 Toledo 119

Sr
 in groundwater 1
 in Paleozoic rocks 581
 in waters 133
 in waters produced during *in situ* combustion 65

Suruga Bay, Japan 35
 Sweden, 307

Tacana volcano, Mexico 215
 Tennessee, U.S.A. 672

Th
 in fault gouges 437
 in groundwater 1

²³⁴Th, in stored groundwater samples 491

Ti	Tennessee 673
in colloids 119	
in groundwater 1	
in staurolite 329	
Toledo, Spain 119	
Tooth enamels, geochemistry of 145	
Truckee River, California/Nevada, U.S.A.	
547	
Tuscany, Italy 581	
 U	
in brines 447	
in fault gouges 437	
in groundwater 1	
in irrigation waters 133	
in spring waters 133	
in surface waters 133	
mineralization 685	
transport through rocks 685	
²³⁸ U, in groundwater samples 491	
United Kingdom	
England 85, 237	
Wales 715	
Upper Silesia, Poland 447	
Upper Silesian Coal Basin, Poland 447	
U.S.A.	
California 553	
Carson River Basin 491	
Colorado 133, 285	
Louisiana 407	
Nevada 553, 565, 685	
New Jersey 491	
Oklahoma 491	
Puerco River Basin 491	
V, in formation waters 357	
Volcanic eruption prediction,	
hydrogeochemical 215	
Wales, U.K. 715	
Walker River, California/Nevada, U.S.A. 547	
 Y	
in groundwater 1	
in Paleozoic rocks 581	
Yucca Mountain nuclear waste repository,	
Nevada, U.S.A. 565, 685	
Zn	
adsorption 197	
in acid mine drainage 285, 237, 705	
in Arkansas River 285	
in groundwater 1	
in harbour sediments 175	
in lake sediments 229	
in ochre 237	
in Paleozoic rocks 581	
in staurolite 329	
mineralization 329, 419	
Zr	
aqueous geochemistry 603	
complexation 603	
hydrothermal mineralization 603	
in groundwater 1	
in Paleozoic rocks 581	
mobility in geological systems 603	
speciation in waters 603	
Zr-bearing minerals, solubility 603	

AUTHOR INDEX

(Book Review—BR; Corrigendum—C; Erratum—E)

Allard B. 197
Aja S. U. 603
Aravana R. 547
Armienta M. A. 215
Asher-Bolinder S. 133
Axtmann E. V. 285
Banks D. 1
Baedecker M. J. 505
Beaufort D. 115 (E)
Bowell R. J. 237
Bruce I. 237
Buckley D. E. 175
Callender E. 285
Campbell L. S. 715
Chandrajith R. L. R. 229
Cherry J. A. 547
Chesworth W. 705
Chiodini G. 337
Cidu R. 517
Copenhaver S. A. 17
Coplen T. B. 505
Creach M. 269
Cuadros J. 347
Davies B. E. 715
De la Cruz-Reyna 215
De las Cuevas 317
Disnar J. R. 419
Donaldson S. G. 553
Doyle G. A. 553
Drimmie R. J. 547
Duker A. 197
Edmunds W. M. 517
Fallick A. E. 531
Fanfani L. 517
Flatt H. 547
Flight D. M. A. 97
Fraps S. K. 547
Fritz P. 161
Frondini F. 337
Gascoyne M. 657
Gijbels R. 517
Gin S. 115 (E)
Glynn P. D. 505
Godon N. 115 (E)
Gómez P. 119
Gomez-Caballero A. 97
Greally K. 97
Gustafsson J. P. 307
Hamilton P. J. 531
Harrison W. J. 461
Hashitani H. 229
Heikkinen K. 207
Hitchon B. 357
Hodge V. F. 565
Hogg A. J. C. 531
Huertas F. J. 347
Hult M. 505
Huston D. L. 329
Hutcheon I. 65
Ihme R. 207
Ildefonse P. 145, 369 (C)
Inouchi Y. 35
Jacks G. 307
Joanny V. 269
Johannesson K. H. 565
Karlsson S. 197
Kimball B. A. 285
King F. 477
Knauss K. G. 17
Krouse H. R. 65, 161, 373
Lahermo P. 45
Lakso E. 207
Ledin A. 197
Leslie B. W. 685
Levinson A. A. 725
Lidiard H. M. 85
Linares J. 347
Lyons W. B. 553
Machel H. G. 373
Macias-Romo C. 97
Magne Saether O. 1
Magonthier M.-C. 119, 269
Mannio J. 45
Marini L. 337
Martiny B. 97
Masuda A. 437
Mayer B. 161
Meier A. L. 133
Menager M. T. 119
Mestre J. P. 115
Michel V. 145, 369 (C)
Miller G. C. 553
Ming-An H. 419
Minissale A. 581
Mita N. 35
Mizota C. 111
Morin G. 145, 369 (C)
Moulin C. 573
Moulin V. 119, 573
Mullin A. H. 491
Nahnybida C. 65
Nakai S. 643
Nakao S. 35
Nishimura A. 35
Ohmoto H. 407
Okumura M. 229
Parkhurst D. L. 491
Patterson D. J. 329
Pattison D. R. M. 725
Pearcy E. C. 685
Pearson M. J. 531
Pérez del Villar L. 119
Petrie L. M. 253
Pluta I. 447
Poulson S. R. 407
Prietzl J. 161
Prikryl J. D. 685
Pueyo J. J. 317
Reimann C. 1
Revesz K. 505
Ridgeway J. 97
Ross T. P. 407
Royset O. 1
Sargent F. P. 657
Sassen R. 373
Saunders J. A. 673
Shand P. 517
Shelp G. S. 705
Shevalier M. 65
Shikazono N. 621
Shimizu M. 621
Skarphagen H. 1
Sloan E. D. 461
Small J. S. 251 (BR)
Smith J. N. 175
Spiers G. 705
Stetzenbach K. J. 565
Stroes-Gascoyne S. 657
Sugino K. 437
Sureau J.-F. 419
Szabo Z. 491
Tarpainen T. 45
Terashima S. 35
Toran L. E. 673
Toyoda K. 437
Turrero M.-J. 119
Utada M. 621
Van Metre P. C. 491
Van't Dack L. 517
Van Warmerdam E. M. 547
Vernaz E. Y. 115
Verrucchi C. 581
Vidal O. 269
Wakita H. 643
Wang X. 643
Wassenaar L. I. 391
Welch A. H. 491
Wendlandt R. F. 461
Williams-Jones A. E. 603
Winters G. V. 175
Wood S. A. 603
Wyatt A. R. 599 (BR)
Xu S. 643
Xu Y. 643
Zielinski R. A. 133
Zuber A. 447