確率論まとめ

2024年7月15日

1 確率空間

1.1 標本空間と事象

1.1.1 導入

はじめに言葉を定義する。ある試行を行ったときの事象を<mark>標本点</mark>と呼ぶ。標本点全体を<mark>標本空間</mark>と呼ぶ。ここで標本空間を Ω で示す。試行を行った時の発生する事象をAで表す。A は標本空間の部分集合であり、 $A=\Omega$ の時 A を全事象、A が標本点を持たないとき A は空事象と呼ばれる。なお空事象は \emptyset で表される。事象 A が起きない事象を補事象と呼び、 A^C で表される。

さらに 2 つ以上の事象を考えてみる。 2 つの事象 A と B において少なくとも一方が起きるという事象を A と B の<mark>和事象</mark>と呼ばれる。これは $A \cup B$ で表される。また A、B の両方が起こる事象について<mark>積事象</mark>と呼び、 $A \cap B$ で表される。A、B が同時に起こりえないことを<mark>排反</mark>と呼ぶ。

実例を示してみよう。サイコロを 1 回振ったときに結果は 1,2,3,4,5,6 のいずれかである。このときの結果 1 つ 1 つが標本点である。標本空間は

$$\Omega = \{1, 2, 3, 4, 5, 6\} \tag{1,1}$$

サイコロを振った時に 6 以下の自然数が出るという事象は Ω のため全事象、7 以上の自然数が出るという事象は空事象となる。サイコロを振った時に奇数が出る事象を A とすると、補事象 A^C は偶数が出る事象となる。サイコロを振った時に 3 以下が出る事象を B とすると、A と B の和事象は $\{1,2,3,5\}$, 積事象は $\{1,3\}$ となる。サイコロを振った時に 5 が出る事象を C とすると、A と C は排反である。

1.1.2 ド・モルガンの法則

和事象と積事象の補集合に関する法則である。具体的には次式で表される。

$$(A \cup B)^C = A^C \cap B^C \tag{1,2}$$

$$(A \cap B)^C = A^C \cup B^C \tag{1,3}$$

ここで導入のサイコロの例をもとに実例を挙げてみよう。A はサイコロを振った時に奇数が出る事象、B はサイコロを振った時に 3 以下が出る事象である。

$$(A \cup B)^C = \{1, 2, 3, 5\}^C = \{4, 6\} \tag{1.4}$$

$$A^{C} \cap B^{C} = \{1, 3, 5\}^{C} \cap \{1, 2, 3\}^{C} = \{2, 4, 6\} \cap \{4, 5, 6\} = \{4, 6\}$$

$$(1,5)$$

$$(A \cap B)^C = \{1, 3\}^C = \{2, 4, 5, 6\} \tag{1.6}$$

$$A^C \cup B^C = \{1, 3, 5\}^C \cap \{1, 2, 3\}^C = \{2, 4, 6\} \cap \{4, 5, 6\} = \{2, 4, 5, 6\}$$

$$\tag{1.7}$$

1.1.3 結合法則及び分配法則

確率の事象にも結合法則及び分配法則が適応可能。具体的には次式で表される。

$$(A \cup B) \cup C = A \cup B \cup C \tag{1,8}$$

$$(A \cap B) \cap C = A \cap B \cap C \tag{1,9}$$

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C) \tag{1.10}$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C) \tag{1,11}$$

1.2 確率の定義

確率とは事象の起きやすさを表す量である。事象 A が起きる確率を P(A) と表す。具体的には以下に示す<mark>確率の公理</mark>を満たす写像 P(A) を確立と呼ぶ。

- 事象 A に対して P(A) は実数である。 そして $0 \le P(A) \le 1$
- $P(\Omega) = 1$
- 互いに排反な事象 A_1, \dots, A_n に対して、 $P(A_1 \cup \dots \cup A_N) = P(A_1) + \dots + P(A_n)$

1.3 確率の性質

確率の公理より簡単に導くことができる性質を以下に示す。

$$P(\emptyset) = 0 \tag{1.12}$$

$$P(A^C) = 1 - P(A) (1,13)$$

$$A \subset B \Longrightarrow P(A) \le P(B) \tag{1.14}$$

1.3.1 加法定理

さらに確率の公理より次の等式が成立する。

$$P(A \cup B) = P(A \cap B^{C}) + P(A \cap B) + P(A^{C} \cap B)$$
(1,15)

$$P(A) = P(A \cap B^C) + P(A \cap B) \tag{1.16}$$

$$P(A) = P(A^C \cap B) + P(A \cap B) \tag{1.17}$$

これら3式を足すことで加法定理が得られる。

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
(1.18)

1.4 条件付確率

2 つの事象 A と B に対して、事象 A が起きたという条件の下で事象 B が起きるといった確率を条件付確率と呼び P(B|A) と表す。条件付確率は次式で求めることができる。

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \tag{1.19}$$

また次式を変形すると

$$P(A \cap B) = P(A)P(B|A) \tag{1,20}$$

なおこの式を乗法定理と呼ぶ。

具体例を考えてみる。袋 X が 1 つと袋 Y が 2 つ存在し、袋 X には赤玉 3 個白玉 1 個、袋 Y には赤玉 2 個白玉 1 個あるとする。袋 X を引いたときに白玉を引く確率を考える。袋 X を引く事象を A、白玉を引く事象を B とする。 $P(A) = \frac{1}{3}$ であり、 $P(A \cap B) = \frac{1}{12}$ よって条件付確率 $P(B|A) = \frac{1}{4}$ である。

また袋 Y を引く事象を C、赤玉を引く事象を D とすると、 $P(C)=\frac{2}{3}$ 、 $P(D|C)=\frac{1}{2}$ のため、乗法定理より $P(C\cap D)=\frac{1}{3}$ となる。もしこの具体例がわからない場合は図示して考えてみるとよい。

1.5 独立性

2 つの事象 A と B に対して、P(B|A) = P(B) となるとき、事象 A と事象 B は独立という。独立である条件は A が B に依存しないことである。このとき乗法定理は次のように変形できる。

$$P(A \cap B) = P(A)P(B) \tag{1.21}$$

実例としてサイコロを 2 回振った時の出目の組み合わせを考えてみる。1 回目に振り奇数が出る事象を A、2 回目に振り奇数が出る事象を B とすると、A と B はお互い依存していない。よって $P(A\cap B)=P(A)P(B)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$ となる。

1.6 ベイズの定理

事象 A が事象 B_1, \dots, B_k の事象が発生したときのみに起こりうるということを考える。そして B_1, \dots, B_k 以外の事象が発生したときに A は起こらないこととする。つまり事象 B_i が発生し、事象 A が起こるような条件を考える。このとき事象 A が起きたときにそれが B_i という事象であったという条件付確率を求める。この時求める確率は $P(B_i|A)$ となる。(1,19) 式より、

$$P(B_i|A) = \frac{P(B_i \cap A)}{P(A)} \tag{1,22}$$

ここで A というのは条件 B, \dots, B_k が起こった上で発生するため、

$$P(A) = \sum_{j=1}^{k} P(A \cap B_j) = \sum_{j=1}^{k} P(B_j) P(A|B_j)$$
 (1.23)

よって次式が成立する。

$$P(B_i|A) = \frac{P(B_i \cap A)}{\sum_{j=1}^k P(B_j)P(A|B_j)}$$
(1,23)

なおこの式をベイズの定理と呼ぶ。

やはり式だけ見てもわかりずらいため実例を出してみる。袋 B_1 に赤玉 3 つ白玉 1 つ、袋 B_2 に赤玉 2 つ白玉 2 つ、袋 B_3 に赤玉 3 つ白玉 2 つあるとする。この時袋 B_i を選ぶ事象を B_i とし、白玉を選ぶ事象を A とする。ここで白玉を引いたときにそれが袋 B_2 から引いたものである確率をベイズの定理を用いて計算する。まず B_i だが 3 種類の袋を偏りなく選ぶため確率は $\frac{1}{3}$ 。ここで $P(A|B_1)=\frac{1}{3}, P(A|B_2)=\frac{1}{2}, P(A|B_3)=\frac{2}{5}$ よってベイズの定理より、

$$P(B_2|A) = \frac{\frac{1}{3} \cdot \frac{1}{2}}{\frac{1}{3} \cdot \frac{1}{4} + \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{2}{5}} = \frac{10}{23}$$
 (1,24)

2 確率変数と確率分布