Anneaux et arithmétique

1 Compléments sur les anneaux

1.1 Produit d'anneaux

Proposition 1.1 Produit d'anneaux

Soient $(A_i, +_i, \times_i)_{1 \le i \le n}$ une famille finie d'anneaux. Alors on peut munir $\prod_{i=1}^n A_i$ d'une structure d'anneaux en posant :

$$\forall (a,b) \in \left(\prod_{i=1}^{n} A_{i}\right)^{2}, \ a+b = (a_{i} +_{i} b_{i})_{1 \leq i \leq n} \qquad \forall (a,b) \in \left(\prod_{i=1}^{n} A_{i}\right)^{2}, \ a \times b = (a_{i} \times_{i} b_{i})_{1 \leq i \leq n}$$

On a alors $0_A = (0_{A_i})_{1 \le i \le n}$ et $1_A = (1_{A_i})_{1 \le i \le n}$.

1.2 Idéaux d'un anneau commutatif

Définition 1.1 Idéal d'un anneau commutatif

Soit (A, +, ×) un anneau commutatif. On dit qu'une partie I de A est un idéal de A si

- (i) I est un sous-groupe de (A, +);
- (ii) I est **absorbant**: pour tout $(a, x) \in A \times I$, $a \times x \in I$.

Exemple 1.1

 $\{0_A\}$ et A sont des idéaux de I.

Remarque. Si $1_A \in I$, alors I = A.

ATTENTION! Un idéal n'est pas forcément un sous-anneau. Par exemple, $2\mathbb{Z}$ est un idéal de \mathbb{Z} mais n'est pas un sous-anneau de \mathbb{Z} .

Un sous-anneau n'est pas forcément un idéal. Par exemple, $\mathbb R$ est un sous-anneau de $\mathbb C$ mais n'est pas un idéal de $\mathbb C$. En fait, la seule partie d'un anneau qui est à la fois un sous-anneau et un idéal est l'anneau lui-même.

Proposition 1.2

Soit (A, +, ×) un anneau commutatif. Une partie I de A est un idéal de A si et seulement si

- (i) $0_A \in I$;
- (ii) $\forall (x, y) \in I^2, x + y \in I$;
- (iii) $\forall (a, x) \in A \times I, a \times x \in I.$

Exercice 1.1

Montrer que si I et J sont des idéaux d'un anneau commutatif A, alors $I \cap J$ et I + J sont également des idéaux de A.

Définition 1.2 Idéal engendré par une partie

Soit $(A, +, \times)$ un anneau commutatif. On appelle **idéal engendré** par une partie X de A le plus petit idéal contenant X.

Proposition 1.3

Soient $(A, +, \times)$ un anneau commutatif et X une partie de A. L'idéal engendré par X est l'ensemble des combinaisons linéaires d'éléments de \mathcal{P} , c'est-à-dire d'éléments de la forme $\sum_{x \in X} a_x x$ où $(a_x)_{x \in X}$ est une famille presque nulle d'éléments de A.

Remarque. En particulier, l'idéal engendré par un unique élément $x \in A$ est xA.

REMARQUE. On dit qu'un idéal I d'un anneau commutatif A est **principal** s'il existe $x \in A$ tel que I = xA. On dit qu'un anneau commutatif A est **principal** si tous ses idéaux sont principaux.

Proposition 1.4

Soit $f: A \to B$ un morphisme d'anneaux commutatifs. Alors Ker f est un idéal de A.

1.3 Divisibilité

Définition 1.3 Divisibilité

Soient $(A, +, \times)$ un anneau commutatif et $(a, b) \in A^2$. On dit que a divise b ou que b est un **multiple** de a s'il existe $c \in A$ tel que b = ca.

Proposition 1.5

La relation de divisibilité est réflexive et transitive.

Exercice 1.2

Soient a et b deux éléments d'un anneau commutatif **intègre** A. Montrer que si a divise b et b divise A, alors il existe $u \in A^{\times}$ (groupe des éléments inversibles de A) tel que b = au.

Proposition 1.6 Divisibilité et idéaux

Soient $(A, +, \times)$ un anneau commutatif et $(a, b) \in A^2$. Alors a divise b si et seulement si $bA \subset aA$.

Idéaux et éléments premiers entre eux

Soit $(A, +, \times)$ un anneau commutatif.

- On dit que deux idéaux I et J de A sont **premiers entre eux** si I + J = A.
- On dit que deux éléments a et b de A sont **premiers entre eux** si aA + bA = A, ce qui équivaut à dire que les diviseurs communs de a et b sont les inversibles de A (c'est une version générale du théorème de Bézout).

On peut étendre ces notions à plus de deux idéaux ou plus de deux éléments.

- On dit que des idéaux I_1, \dots, I_n de A sont **premiers entre eux dans leur ensemble** si $\sum_{i=1}^n I_i = A$.
- On dit que des éléments a_1, \ldots, a_n de A sont **premiers entre eux dans leur ensemble** si $\sum_{i=1}^n a_i A = A$, ce qui équivaut à dire que les diviseurs communs de a_1, \ldots, a_n sont les inversibles de A (c'est à nouveau une version générale du théorème de Bézout).

Idéaux et éléments premiers -

Soit $(A, +, \times)$ un anneau commutatif.

- On dit qu'un idéal I de A est **premier** si $I \neq A$ et $\forall (a, b) \in A^2, ab \in I \implies (a \in I \text{ ou } b \in I)$.
- Un élément a de A est dit **premier** si l'idéal aA est premier et non nul.

2 Anneaux usuels

2.1 L'anneau ℤ

Proposition 2.1

 $(\mathbb{Z}, +, \times)$ est un anneau commutatif intègre.

Proposition 2.2

Le groupe des éléments inversibles de l'anneau $(\mathbb{Z}, +, \times)$ est $(\{-1, +1\}, \times)$.

Proposition 2.3 Idéaux de \mathbb{Z}

Les idéaux de l'anneau $(\mathbb{Z}, +, \times)$ sont les $a\mathbb{Z}$ avec $a \in \mathbb{Z}$.

Remarque. En d'autres termes, \mathbb{Z} est un anneau principal.

Remarque. Les idéaux de l'anneau $(\mathbb{Z}, +, \times)$ sont également les sous-groupes de $(\mathbb{Z}, +)$.

Définition 2.1 PGCD de deux entiers

Soit $(a, b) \in \mathbb{Z}^2$. On appelle PGCD de a et b tout entier $d \in \mathbb{Z}$ tel que $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$. Il existe un unique PGCD positif de a et b noté $a \wedge b$.

Remarque. Cette définition du PGCD est équivalente à la définition du PGCD vue en première année. Le théorème de Bézout découle alors directement de cette nouvelle définition.

Définition 2.2 PPCM de deux entiers

Soit $(a, b) \in \mathbb{Z}^2$. On appelle PPCM de a et b tout entier $m \in \mathbb{Z}$ tel que $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$. Il existe un unique PPCM positif de a et b noté $a \lor b$.

REMARQUE. Cette définition du PPCM est équivalente à la définition du PGCD vue en première année.

Définition 2.3 PGCD de plusieurs entiers

Soit $(a_1, \dots, a_n) \in \mathbb{Z}^n$. On appelle PGCD de a_1, \dots, a_n tout entier $d \in \mathbb{Z}$ tel que $\sum_{i=1}^n a_i \mathbb{Z} = d\mathbb{Z}$. Il existe un unique PGCD positif de a_1, \dots, a_n noté $a_1 \wedge \dots \wedge a_n$.

Théorème 2.1 Bézout

Soit $(a_1, \dots, a_r) \in \mathbb{Z}^r$. Alors $a_1 \wedge \dots \wedge a_r = 1$ si et seulement si il existe $(u_1, \dots, u_r) \in \mathbb{Z}^r$ tel que $\sum_{i=1}^r a_i u_i = 1$.

Définition 2.4 PPCM de plusieurs entiers

Soit $(a_1, \dots, a_n) \in \mathbb{Z}^n$. On appelle PPCM de a_1, \dots, a_n tout entier $m \in \mathbb{Z}$ tel que $\bigcap_{i=1}^n a_i \mathbb{Z} = m \mathbb{Z}$. Il existe un unique PPCM positif de a_1, \dots, a_n noté $a_1 \vee \dots \vee a_n$.

2.2 L'anneau $\mathbb{K}[X]$

Dans ce chapitre, K désigne un corps.

Proposition 2.4

 $(\mathbb{K}[X], +, \times)$ est un anneau commutatif intègre.

Proposition 2.5

Le groupe des éléments inversibles de l'anneau ($\mathbb{K}[X], +, \times$) est \mathbb{K}^* .

Proposition 2.6 Idéaux de \mathbb{Z}

Les idéaux de l'anneau ($\mathbb{K}[X], +, \times$) sont les $P\mathbb{K}[X]$ avec $P \in \mathbb{K}[X]$.

Remarque. En d'autres termes, $\mathbb{K}[X]$ est un anneau principal.

Définition 2.5 PGCD de deux polynômes

Soit $(P, Q) \in \mathbb{K}[X]^2$. On appelle PGCD de P et Q tout polynôme $D \in \mathbb{K}[X]$ tel que $P\mathbb{K}[X] + Q\mathbb{K}[X] = D\mathbb{K}[X]$. Il existe un unique PGCD unitaire ou nul de P et Q noté $P \wedge Q$.

Remarque. Cette définition du PGCD est équivalente à la définition du PGCD vue en première année. Le théorème de Bézout découle alors directement de cette nouvelle définition.

Définition 2.6 PPCM de deux polynômes

Soit $(P, Q) \in \mathbb{K}[X]^2$. On appelle PPCM de P et Q tout polynôme $M \in \mathbb{Z}$ tel que $P\mathbb{K}[X] \cap Q\mathbb{K}[X] = M\mathbb{K}[X]$. Il existe un unique PPCM unitaire ou nul de P et Q noté $P \vee Q$.

REMARQUE. Cette définition du PPCM est équivalente à la définition du PGCD vue en première année.

Définition 2.7 PGCD de plusieurs polynômes

Soit $(P_1, ..., P_n) \in \mathbb{K}[X]^n$. On appelle PGCD de $P_1, ..., P_n$ tout polynôme $D \in \mathbb{K}[X]$ tel que $\sum_{i=1}^n P_i \mathbb{K}[X] = D\mathbb{K}[X]$. Il existe un unique PGCD unitaire ou nul de $P_1, ..., P_n$ noté $P_1 \wedge ... \wedge P_n$.

Théorème 2.2 Bézout

Soit $(P_1, \dots, P_r) \in \mathbb{K}[X]^r$. Il existe $(U_1, \dots, U_r) \in \mathbb{K}[X]^r$ tel que $\sum_{i=1}^r U_i P_i = P_1 \wedge \dots \wedge P_r$.

Définition 2.8 PPCM de plusieurs polynômes

Soit $(P_1, ..., P_n) \in \mathbb{K}[X]^n$. On appelle PPCM de $P_1, ..., P_n$ tout polynôme $M \in \mathbb{K}[X]$ tel que $\bigcap_{i=1}^n P_i \mathbb{K}[X] = M \mathbb{K}[X]$. Il existe un unique PPCM unitaire ou nul de $P_1, ..., P_n$ noté $P_1 \vee ... \vee P_n$.

2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$

Proposition 2.7 Multiplication sur $\mathbb{Z}/n\mathbb{Z}$

Soit $n \in \mathbb{N}^*$. On définit une multiplication sur $\mathbb{Z}/n\mathbb{Z}$ en posant

$$\forall (k,l) \in \mathbb{Z}^2, \ \overline{k} \times \overline{l} = \overline{k \times l}$$

Remarque. k désigne la classe de congruence de k dans $\mathbb{Z}/n\mathbb{Z}$.

Remarque. Il faut vérifier que la classe de congruence de $k \times l$ modulo n ne dépend que des classes de congruence de k et l modulo n.

Exemple 2.1

Dans $\mathbb{Z}/4\mathbb{Z}$, $\overline{7} \times \overline{2} = \overline{14} = \overline{2}$.

Proposition 2.8 Structure d'anneau de $\mathbb{Z}/n\mathbb{Z}$

Soit $n \in \mathbb{N}^*$. $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau commutatif d'unité $\overline{1}$.

ATTENTION! L'anneau $\mathbb{Z}/n\mathbb{Z}$ n'est en général pas intègre. Par exemple, dans $\mathbb{Z}/10\mathbb{Z}$, $\overline{2} \times \overline{5} = \overline{0}$.

Proposition 2.9 Inversibles de l'anneau $\mathbb{Z}/n\mathbb{Z}$

Soit $(n, k) \in \mathbb{N}^* \times \mathbb{Z}$. Alors \overline{k} est inversible dans $\mathbb{Z}/n\mathbb{Z}$ si et seulement si $k \wedge n = 1$.

Idéaux de $\mathbb{Z}/n\mathbb{Z}$ -

Tout idéal de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un sous-groupe de $(\mathbb{Z}/n\mathbb{Z}, +)$. Mais comme pour $(d, k) \in \mathbb{Z}^2$, $\overline{d} \times \overline{k} = d\overline{k}$, un sous-groupe de $(\mathbb{Z}/n\mathbb{Z}, +)$ est également un idéal de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$. Les idéaux de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ sont donc exactement les sous-groupes de $(\mathbb{Z}/n\mathbb{Z}, +)$.

On montre par ailleurs classiquement que les sous-groupes de $(\mathbb{Z}/n\mathbb{Z})$ sont tous cycliques. On en déduit que l'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est principal.

Théorème 2.3

Soit $p \in \mathbb{N}^*$. $\mathbb{Z}/p\mathbb{Z}$ est un corps si et seulement si p est premier.

REMARQUE. Notamment, si p est premier, $\mathbb{Z}/p\mathbb{Z}$ est intègre. On retrouve alors le lemme d'Euclide. En effet, soit $(a,b) \in \mathbb{Z}^2$ tel que p divise ab. Alors $\overline{ab} = \overline{0}$ dans $\mathbb{Z}/p\mathbb{Z}$. Comme $\mathbb{Z}/p\mathbb{Z}$ est intègre, $\overline{a} = \overline{0}$ ou $\overline{b} = \overline{0}$ i.e. p divise a ou p divise b.

REMARQUE. Si p est premier, on retrouve également le petit théorème de Fermat. En effet, $((\mathbb{Z}/p\mathbb{Z})^{\times}, \times)$ est un groupe d'ordre p-1 car seul $\overline{0}$ n'est pas inversible dans le corps $\mathbb{Z}/p\mathbb{Z}$. On en déduit que pour tout $n \in \mathbb{Z}$ non multiple de p, $(\overline{n})^{p-1} = \overline{1}$ puisque l'ordre de \overline{n} divise p-1. Ainsi $n^{p-1} \equiv 1[p]$. On en déduit que $n^p \equiv n[p]$, ce qui est encore valable si n est mutiple de p, puisque dans ce cas, $n^p \equiv n \equiv 0[p]$.

Proposition 2.10 Théorème des restes chinois

Soit $(m, n) \in (\mathbb{N}^*)^2$ un couple d'entiers premiers entre eux. Alors l'application

$$\left\{ \begin{array}{ccc} \mathbb{Z}/mn\mathbb{Z} & \longrightarrow & \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \\ \overline{k} & \longmapsto & (\hat{k}, \tilde{k}) \end{array} \right.$$

est bien définie et est un isomorphisme d'anneaux.

Remarque. \overline{k} , \hat{k} et \tilde{k} désignent respectivement les classes de congruences de k dans $\mathbb{Z}/mn\mathbb{Z}$, $\mathbb{Z}/m\mathbb{Z}$ et $\mathbb{Z}/n\mathbb{Z}$.

Remarque. Cet isomorphisme d'anneaux induit également un isomorphisme de groupes de $(\mathbb{Z}/mn\mathbb{Z})^{\times}$ sur $(\mathbb{Z}/m\mathbb{Z})^{\times}$ \times $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Système de congruences -

Soient $(m,n) \in (\mathbb{N}^*)^2$ un couple d'entiers premiers entre eux et $(a,b) \in \mathbb{Z}^2$. Le système $\begin{cases} x \equiv a[m] \\ x \equiv b[n] \end{cases}$ d'inconnue $x \in \mathbb{Z}$ admet une infinité de solutions. Plus précisément, si x_0 est une solution particulière, l'ensemble des solutions est $\{x_0 + kmn, k \in \mathbb{Z}\}$.

Une relation de Bézout entre m et n permet de déterminer une solution particulière du système. Puisque $m \wedge n = 1$, il existe $(u, v) \in \mathbb{Z}^2$ tel que um + vn = 1. Alors bum + avn est une solution particulière.

Exemple 2.2

Considérons le système de congruences (S) : $\begin{cases} x \equiv 12[21] \\ x \equiv 3[16] \end{cases}$. Puisque $4 \times 16 - 3 \times 21 = 1$, $12 \times 4 \times 16 - 3 \times 3 \times 21 = 579$ est une solution particulière de (S). L'ensemble des solutions de (S) est donc

$$\{579 + k \times 21 \times 16, k \in \mathbb{Z}\} = \{579 + 336k, k \in \mathbb{Z}\}\$$

Proposition 2.11 Théorème des restes chinois (extension)

Soit $(n_1, ..., n_r) \in (\mathbb{N}^*)^r$ tels que les n_i soient **premiers entre eux deux à deux**. On pose $n = \prod_{i=1}^r n_i$. Alors l'application

$$\begin{cases}
\mathbb{Z}/n\mathbb{Z} & \longrightarrow & \prod_{i=1}^{r} \mathbb{Z}/n_{i}\mathbb{Z} \\
\overline{k}^{n} & \longmapsto & (\overline{k}^{n_{1}}, \dots, \overline{k}^{n_{r}})
\end{cases}$$

est bien définie et est un isomorphisme d'anneaux.

Définition 2.9 Indicatrice d'Euler

Soit $n \in \mathbb{N}^*$. On note $\varphi(n)$ le nombre d'éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$ i.e. le cardinal de $(\mathbb{Z}/n\mathbb{Z})^*$.

C'est également le nombre d'entiers de [0, n-1] premiers avec n.

L'application $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ est appelée indicatrice d'Euler.

Remarque. $\varphi(n)$ est aussi le nombre d'entiers de [1, n] premiers avec n ou, de manière plus général, le nombre d'entiers premiers avec n dans un ensemble de n entiers **consécutifs**.

Exemple 2.3

$$\varphi(1) = 1, \, \varphi(2) = 1, \, \varphi(3) = 2, \, \varphi(4) = 2, \, \varphi(5) = 4, \, \varphi(6) = 2, \, \dots$$

Exercice 2.1

Soit $n \in \mathbb{N}^*$. Montrer que $\sum_{d|n} \varphi(d) = n$ où la somme est prise sur l'ensemble des diviseurs positifs de n.

Proposition 2.12 Indicatrice d'Euler d'une puissance de nombre premier

Soient p un nombre premier et $\alpha \in \mathbb{N}^*$. Alors $\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$.

Proposition 2.13

Soit $(m, n) \in (\mathbb{N}^*)^2$ un couple d'entiers premiers entre eux. Alors $\varphi(mn) = \varphi(m)\varphi(n)$.

REMARQUE. On dit que l'indicatrice d'Euler est une fonction arithmétique.

REMARQUE. Le résultat se généralise à un uplet d'entiers naturels non nuls premiers entre eux deux à deux.

Proposition 2.14 Décomposition en facteurs premiers et indicatrice d'Euler

Soient p_1, \ldots, p_r des nombres premiers deux à deux distincts et $(\alpha_1, \ldots, \alpha_r) \in (\mathbb{N}^*)^r$. Alors

$$\varphi\left(\prod_{i=1}^{r} p_i^{\alpha_i}\right) = \prod_{i=1}^{r} \left(p_i^{\alpha_i} - p_i^{\alpha_i - 1}\right) = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right)$$

où
$$n = \prod_{i=1}^r p_i^{\alpha_i}$$
.

Proposition 2.15 Théorème d'Euler

Soit $(n, a) \in \mathbb{N}^* \times \mathbb{Z}$ tel que $a \wedge n = 1$. Alors $a^{\varphi(n)} \equiv 1[n]$.

REMARQUE. Ceci est donc une généralisation du petit théorème de Fermat.

3 Structure d'algèbre

Définition 3.1

Soient $\mathbb K$ un corps et E un ensemble muni de deux lois internes + et \times ainsi que d'une loi externe . i.e. d'une application :

$$\left\{ \begin{array}{ccc} \mathbb{K} \times \mathbb{E} & \longrightarrow & \mathbb{E} \\ (\lambda, x) & \longmapsto & \lambda.x \end{array} \right.$$

On dit que $(E, +, \times, .)$ est une \mathbb{K} -algèbre si

- (i) (E, +, .) est un \mathbb{K} -espace vectoriel;
- (ii) $(E, +, \times)$ est un anneau;
- (iii) $\forall (\lambda, x, y) \in \mathbb{K} \times E^2$, $\lambda \cdot (x \times y) = (\lambda \cdot x) \times y = x \times (\lambda \cdot y)$.

Remarque. Si la loi × est commutative, on dit que E est une algèbre commutative.

Exemple 3.1

- Si E est un \mathbb{K} -espace vectoriel, $(\mathcal{L}(E), +, \circ, .)$ est une \mathbb{K} -algèbre. Elle est non commutative dès que dim $E \geq 2$.
- $(\mathcal{M}_n(\mathbb{K}), +, \times, .)$ est une \mathbb{K} -algèbre. Elle est non commutative dès que $n \ge 2$.
- $\mathbb{K}[X]$ est une \mathbb{K} -algèbre commutative.
- Si X est un ensemble, $(\mathbb{K}^X, +, \times, .)$ est une \mathbb{K} -algèbre commutative.

Définition 3.2 Sous-algèbre

Soit (E, +, ×, .) une K-algèbre et F un ensemble. On dit que F est une sous-algèbre de E si

- (i) $F \subset E$;
- (ii) F est un sous-espace vectoriel de E;
- (iii) F est un sous-anneau de E.

Proposition 3.1

Une sous-algèbre d'une K-algèbre est une K-algèbre.

Proposition 3.2 Caractérisation des sous-algèbres

Soit $(E, +, \times, .)$ une \mathbb{K} -algèbre et F un ensmble. On dit que F est une **sous-algèbre** de E si et seulement si

- (i) $F \subset E$;
- (ii) $1_E \in F$;
- (iii) $\forall (\lambda, \mu) \in \mathbb{K}^2$, $\forall (x, y) \in F^2$, $\lambda . x + \mu . y \in F$;
- (iv) $\forall (x, y) \in F^2$, $x \times y \in F$.

Exemple 3.2

- Soit E un espace vectoriel. Alors l'ensemble $\mathbb{K} \operatorname{Id}_E$ des homothéties de E est une sous-algèbre commutative de $\mathcal{L}(E)$.
- L'ensemble $\mathbb{K}I_n$ des matrices scalaires de $\mathcal{M}_n(\mathbb{K})$ est une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{K})$.
- L'ensemble des matrices diagonales de $\mathcal{M}_n(\mathbb{K})$ est une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{K})$.
- L'ensemble des matrices triangulaires supérieures/inférieures de $\mathcal{M}_n(\mathbb{K})$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$.
- Si I est un intervalle de \mathbb{R} , pour tout $k \in \mathbb{N} \cup \{+\infty\}$, $(\mathcal{C}^k(I, \mathbb{K}), +, \times, .)$ est une sous-algèbre de \mathbb{K}^I .
- Soit I est un intervalle de \mathbb{R} et $(k, p) \in (\mathbb{N} \cup \{+\infty\})^2$. Si $k \geq p$, alors $\mathcal{C}^k(I, \mathbb{K})$ est une sous-algèbre de $\mathcal{C}^p(I, \mathbb{K})$.

Définition 3.3 Morphisme d'algèbres

Soient $(E, +, \times, .)$ et $(F, +, \times, .)$ deux \mathbb{K} -algèbres. On appelle **morphisme de** \mathbb{K} -algèbres de E dans F toute application $f: E \to F$ telle que :

- (i) $f(1_{\rm E}) = 1_{\rm F}$,
- (ii) $\forall (\lambda, \mu) \in \mathbb{K}^2$, $\forall (x, y) \in \mathbb{E}^2$, $f(\lambda \cdot x + \mu \cdot y) = \lambda \cdot f(x) + \mu \cdot f(y)$,
- (iii) $\forall (x, y) \in E^2$, $f(x \times y) = f(x) \times f(y)$,

Remarque. Une application est donc un morphisme d'algèbres si et seulement si elle est à la fois un morphisme d'espaces vectoriels i.e. une application linéaire et un morphisme d'anneaux.

REMARQUE. On peut également définir des notions d'endomorphisme, d'isomorphisme et d'automorphisme d'algèbres.

Proposition 3.3 Images directe et réciproque d'une sous-algèbre par un morphisme d'algèbres

Soit $f : E \to F$ un morphisme de \mathbb{K} -algèbres.

- (i) Si G est une sous-algèbre de E, alors f(G) est une sous-algèbre de F.
- (ii) Si H est une sous-algèbre de F, alors $f^{-1}(H)$ est une sous-algèbre de E.

Proposition 3.4

Soit $f: E \to F$ un morphisme de K-algèbres. Alors Im f est une sous-algèbre de F.

ATTENTION! De manière générale, Ker f n'est pas une sous-algèbre de E. En effet, $1_E \notin \text{Ker } f$ à moins que F soit l'algèbre nulle (i.e. $0_F = 1_F$).