65 Deep learning for text and sequences

"default mode network"

OOO This chapter covers OOO

- Preprocessing text data into useful representations – tokens to vectors
- Working with recurrent neural networks
- Using 1D convnets for sequence processing

000 This chapter covers 000

- > sequences of word, timeseries, and sequence data in general
- recurrent neural networks and 1D convnets
- Applications of these algorithms include the following:
 - Document classification identifying the topic of an article or the author of a book
 - Sequence-to-sequence learning English sentence into French
 - Sentiment analysis classifying the sentiment of tweets or movie reviews as positive or negative
 - Timeseries forecasting predicting the future weather given recent weather data
 - 1. **sentiment** analysis on the IMDB dataset
 - 2. temperature forecasting.

- 000
- natural-language understanding document classification(topic), sentiment analysis, author identification, and even question-answering (QA)
- Deep learning for natural-language processing is pattern recognition applied to words, sentences, and paragraphs
- Vectorizing text is the process of transforming text into numeric tensors.
 - Segment text into words, and transform each word into a vector.
 - Segment text into characters, and transform each character into a vector.
- Extract n-grams of words or characters, and transform each n-gram into a vector.
- N-grams are overlapping groups of multiple consecutive words or characters.
- tokens break down text (words, characters, or n-grams)
- **tokenization** breaking text into such tokens
- two major ones: one-hot encoding of tokens, and token embedding

Figure 6.1 From text to tokens to vectors

Understanding n-grams and bag-of-words (BoW)

- \blacktriangleright Word n-grams are groups of N (or fewer) consecutive words that you can extract from a sentence.
- "The cat sat on the mat." set of 2-grams:

```
{"The", "The cat", "cat", "cat sat", "sat",
"sat on", "on", "on the", "the", "the mat", "mat"} bag-of-2-grams
```

It may also be decomposed into the following set of 3-grams:

```
{"The", "The cat", "cat", "cat sat", "The cat sat", "sat", "sat", "sat on", "on", "cat sat on", "on the", "the", "sat on the", "the mat", "mat", "on the mat"} bag-of-3-grams
```

- Because bag-of-words isn't an order-preserving tokenization method (the tokens generated are understood as a set, not a sequence, and the general structure of the sentences is lost)
- unavoidable feature-engineering tool when using lightweight, shallow textprocessing models such as logistic regression and random forests.

6.1.1 One-hot encoding of words and characters

- One-hot encoding turn a token into a vector
- ▶ IMDB and Reuters examples done with words
- ▶ a unique integer index with every word binary vector of size N (the size of the vocabulary)
- one-hot encoding can be done at the character level

Listing 6.1 Word-level one-hot encoding (toy example)

```
import numpy as np
samples = ['The cat sat on the mat.', 'The dog ate my homework.']
# 데이터에 있는 모든 토큰의 인덱스를 구축합니다
token index = {} # dictionary - {key:value}; {'The':1 }
for sample in samples:
     # split() 메서드를 사용해 샘플을 토큰으로 나눕니다.
     for word in sample.split(): # key - word
          if word not in token index :
               token index[word] = len(token index) + 1
               # 인덱스 0은 사용하지 않습니다.
# {'The': 1, 'cat': 2, 'sat': 3, 'on': 4, 'the': 5, 'mat.': 6, 'dog': 7, 'ate': 8, 'my': 9, 'homework.': 10}
# 샘플을 벡터로 변환
max length = 10
results = np.zeros((len(samples), max length, max(token index.values())+1))#(2,10,11)
for i, sample in enumerate(samples):
     for j, word in list(enumerate(sample.split()))[:max length]:
          index = token index.get(word)
         results[i, j, index] = 1.
[[[0.1.0.0.0.0.0.0.0.0.0.] The
                                  [[0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] The
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] cat
                                   [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] dog
 [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] sat
                                   [0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.] ate
 [0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] on
                                   [0. 0. 0. 0. 0. 0. 0. 0. 1. 0.] my
 [0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.] the
                                   [0.0.0.0.0.0.0.0.0.1.] homework.
 [0.0.0.0.0.0.1.0.0.0.0.] mat.
                                   [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
                                   [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 [o. o. o. o. o. o. o. o. o. o. o.
                                   [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
                                   [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
                                   [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]]
```


Listing 6.2 Character-level one-hot encoding (toy example)

```
import string
samples = ['The cat sat on the mat.', 'The dog ate my homework.']
characters = string.printable # 출력 가능한 모든 ASCII 문자, 100개
token index = dict(zip(characters, range(1, len(characters) + 1)))
max length = 50
results = np.zeros((len(samples), max length,
     max(token index.values())+1))
for i, sample in enumerate (samples):
     for j, character in enumerate(sample[:max length]):
           index = token index.get(character)
           results[i, j, index] = 1.
token index = {'0': 1, '1': 2, '2': 3, '3': 4, '4': 5, '5': 6, '6': 7, '7': 8, '8': 9, '9': 10, 'a': 11, 'b': 12, 'c': 13, 'd': 14, 'e': 15, 'f': 16, 'g': 17, 'h': 18, 'i': 19, 'j': 20, 'k': 21, ..., 'A': 37, 'B': 38, ..., '\xoc': 100}
[[[0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 1. ... 0. 0. 0.] ... [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.]
0.0.... 0.0.0.]] 'The cat sat on the mat.'
[[0. 0. 0. ... <u>0</u>. 0. 0.] [0. 0. 0. ... 1. ... 0. 0.] [0. 0. 0. ... 0. 0. 0.] ... [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0.] [0. 0. 0. ... 0. 0.]
o....o.o.o.]]] 'The dog ate my homework.'
```

000

6.1 Working with text data

Listing 6.3 Using Keras for word-level one-hot encoding

```
from keras.preprocessing.text import Tokenizer
samples = ['The cat sat on the mat.', 'The dog ate my homework.']
# 가장 빈도가 높은 1,000개의 단어만 선택하도록 Tokenizer 객체를 만듭니다.
tokenizer = Tokenizer(num words=1000)
# Turns strings into lists of integer indices by word index
tokenizer.fit on texts(samples) # 입력에 맞게 내부의 word index를 중복 없이 만드는 함수
# tokenizer.word index = {'the': 1, 'cat': 2, 'sat': 3, 'on': 4, 'mat': 5, 'dog': 6, 'ate': 7, 'my': 8, 'homework': 9}
# Turns strings into lists of integer indices
sequences = tokenizer.texts to sequences(samples)
# Sequences = [[1, 2, 3, 4, 1, 5], [1, 6, 7, 8, 9]]
# directly get the one-hot binary representations.
# Vectorization modes other than one-hot encoding are supported by this tokenizer!
one hot results = tokenizer.texts to matrix(samples, mode='binary')
# one hot results = [[0. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. ... 0. 0. 0.]
                 [0. 1. 0. 0. 0. 0. 1. 1. 1. 1. 0. ... 0. 0. 0.]]
word index = tokenizer.word index
print('Found %s unique tokens.' % len(word index))
# Found 9 unique tokens.
```

- one-hot hashing vocabulary is too large to handle explicitly
- hash words into vectors of fixed size with a very lightweight hashing function
- > saves memory and allows online encoding of the data
- hash collisions: two different words may end up with the same hash

```
Listing 6.4 Using Keras for word-level one-hot encoding
```

```
samples = ['The cat sat on the mat.', 'The dog ate my homework.']
# 1,000개 이상의 단어가 있다면 hash collisions
dimensionality = 1000
max length = 10
results = np.zeros((len(samples), max length, dimensionality))
for i, sample in enumerate(samples):
  for j, word in list(enumerate(sample.split()))[:max length]:
    # Hashes the word into a random integer index between 0 and 1,000
     index = abs(hash(word)) % dimensionality
     results[i, j, index] = 1.
# in case of dimensionality = 20 \rightarrow
results[0] =
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
```


6.1.2 Using word embeddings

- one-hot encoding are binary, sparse, very high-dimensional (20,000-dimensional or greater)
- dimensional floating-point vectors in 256-, 512-, or 1,024-dimensional when dealing with very large vocabularies
- pack more information into far fewer dimensions

- There are two ways to obtain word embeddings:
 - Learn word embeddings jointly with the main task you care about (such as document classification or sentiment prediction → weights in a neural network).
 - pretrained word embeddings Load into your model word embeddings
- Let's look at both.

000

6.1 Working with text data

000

LEARNING WORD EMBEDDINGS WITH THE EMBEDDING LAYER

- choose the vector at random embedding space has no structure: the interchangeable words *accurate* and *exact* end up with completely different embeddings
- synonyms to be embedded into similar word vectors
- geometric distance (such as L2 distance) between any two word vectors to relate to the semantic distance between the associated words

LEARNING WORD EMBEDDINGS WITH THE EMBEDDING LAYER

- ▶ cat, dog, wolf, and tiger semantic relationships between these words can be encoded as geometric transformations.
- "from pet to wild animal" from cat to tiger and from dog to wolf
- "from canine to feline" vector from dog to cat and from wolf to tiger
- b "gender" and "plural" vectors "female" vector + vector "king" → vector "queen," "plural" vector + vector "king" → "kings."
- Word-embedding spaces interpretable and potentially useful vectors.

	Dimensions						
	dog	-0.4	0.37	0.02	-0.34	animal	
Word vectors	cat	-0.15	-0.02	-0.23	-0.23	domesticated	
	lion	0.19	-0.4	0.35	-0.48	pet	
	tiger	-0.08	0.31	0.56	0.07	fluffy	
	elephant	-0.04	-0.09	0.11	-0.06		
	cheetah	0.27	-0.28	-0.2	-0.43		
	monkey	-0.02	-0.67	-0.21	-0.48		
	rabbit	-0.04	-0.3	-0.18	-0.47		
	mouse	0.09	-0.46	-0.35	-0.24		
	rat	0.21	-0.48	-0.56	-0.37		

Figure 6.3 A toy example of a word-embedding space

learning the weights of a layer: the Embedding layer

Listing 6.5 Instantiating an Embedding layer

```
from keras.layers import Embedding
embedding_layer = Embedding(1000, 64)
#(batch, input_length)
```

- The Embedding layer is best understood as a dictionary that maps integer indices (which stand for specific words) to dense vectors.
- It takes integers as input, it looks up these integers in an internal dictionary, and it returns the associated vectors. It's effectively a dictionary lookup.

Word index → Embedding layer → Corresponding word vector

- 000
- The Embedding layer takes as input a 2D tensor of integers, of shape (samples, sequence_length), where each entry is a sequence of integers.
- It can embed sequences of variable lengths: (32, 10) (batch of 32 sequences of length 10) or (64, 15) (batch of 64 sequences of length 15).
- All sequences in a batch must have the same length, though (because you need to pack them into a single tensor), so sequences that are shorter than others should be padded with 0s, and sequences that are longer should be truncated.

- 000
- This layer returns a 3D floating-point tensor of shape (samples, sequence_length, embedding_dimensionality).
- Such a 3D tensor can then be processed by an RNN layer or a 1D convolution layer (both will be introduced in the following sections).
- ▶ Embedding layer its weights (its internal dictionary of token vectors) are initially random → gradually adjusted via backpropagation → embedding space (specialized for the specific problem)
- ▶ IMDB movie-review sentiment-prediction the top 10,000 most common words and cut off the reviews after only 20 words.
- ▶ input integer sequences (2D integer tensor) \rightarrow embedded sequences (3D float tensor) \rightarrow flatten the tensor to 2D \rightarrow train a single Dense layer on top for classification \rightarrow 8-dimensional embeddings for each of the 10,000 words

Listing 6.6 Loading the IMDB data for use with an Embedding layer

000

6.1 Working with text data

Listing 6.7 Using an Embedding layer and classifier on the IMDB data

```
from keras.models import Sequential
from keras.layers import Flatten, Dense
model = Sequential()
model.add(Embedding(10000, 8, input length=maxlen))
# Specifies the maximum input length to the Embedding layer
# so you can later flatten the embedded inputs.
# Output of the activations have shape (samples, maxlen, 8) of 3D with 8 Output.
model.add(Flatten())
# Flattens the 3D tensor of embeddings into a 2D tensor of shape (samples, maxlen * 8)
model.add(Dense(1, activation='sigmoid')) # Adds the classifier on top
model.compile(optimizer='rmsprop', loss='binary crossentropy', metrics=['acc'])
model.summary()
history = model.fit(x train, y train,
         epochs=10, batch size=32, validation split=0.2)
         # training dataset-80007#, test dataset-20007#
```

Layer (type)	Output Shape	Param #	
embedding_2 (Embedding)	(None, 20, 8)	80000	
flatten_1 (Flatten)	(None, 160)	0	
dense_1 (Dense)	(None, 1)	161	

- You get to a validation accuracy of ~76%, which is pretty good considering that you're only looking at the first 20 words in every review.
- ▶ no inter-word relationships and sentence structure (for example, this model would likely treat both "this movie is a bomb" and "this movie is the bomb-♡" as being negative reviews).
- It's much better to add recurrent layers or 1D convolutional layers on top of the embedded sequences to learn features.

USING PRETRAINED WORD EMBEDDINGS

- little training data?
- precomputed embedding space highly structured and exhibits useful properties by using word-occurrence statistics, using a variety of techniques, some involving neural networks.
- ▶ Word2vec algorithm (https://code.google.com/archive/p/word2vec), developed by Tomas Mikolov at Google in 2013.
 - Word2vec dimensions capture specific semantic properties, such as genders

(Mikolov et al., NAACL HLT, 2013)

USING PRETRAINED WORD EMBEDDINGS

- ▶ GloVe, https://nlp.stanford.edu/projects/glove, by Stanford researchers in 2014.
 - factorizing a matrix of word co-occurrence statistics obtained from millions of English tokens, Wikipedia data and Common Crawl data.

Window based co-occurrence matrix

- Example corpus:
 - I like deep learning.
 - I like NLP.
 - I enjoy flying.

counts	1	like	enjoy	deep	learning	NLP	flying	
1	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

