Aufgabe 2

Eine Nachrichtenquelle erzeugt Informationsworte \vec{u} mit den Auftretenswahrscheinlichkeiten $Q(\vec{u})$. Zur Übertragung auf einem binären, symmetrischen Kanal (BSK) mit der Fehlerwahrscheinlichkeit $p \leq 0,5$ soll ein Blockcode verwendet werden, der durch folgende Zuordnung zwischen Informationsworten und Codeworten definiert ist:

u_1u_2	$x_1x_2x_3x_4x_5$	$Q(\vec{u})$
00	10011	0,3
01	$1\ 1\ 0\ 0\ 0$	0,2
10	$1\ 0\ 1\ 0\ 0$	0,2
11	00111	0,3

- a) Wie groß ist die Codedistanz d des Codes?
- b) Wie lautet die mathematische Decodierungsregel, mit der die Fehlerwahrscheinlichkeit nach der Decodierung minimiert wird?

Die empfangene Symbolfolge laute $\vec{y} = 11010$.

c) Wie groß muss die Übergangswahrscheinlichkeit p des BSK sein, wenn nach der Decodierungsregel aus Aufgabenteil b) die Decodierung in $\vec{x}=10011$ auf die minimale Fehlerwahrscheinlichkeit führt?