Recitation #12

Irina Espejo (iem244@nyu.edu)

Center for Data Science

DS-GA 1014: Optimization and Computational Linear Algebra for Data Science

Exercise 4, 2018 review

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_1,..,\lambda_n$. Prove that $(|Ax|) \leq \max(|\widehat{\lambda_i}| |x|)$ for any $x \in \mathbb{R}^n$.

$$A v_1 = \lambda_1 V_1 \quad \text{by spectral+h. } v_1, ..., v_n \quad \text{orthonormal boxis}$$

$$X = \lambda_1 V_1 + ... + \lambda_n V_n$$

$$A x = A \left(\lambda_1 V_1 + ... + \lambda_n V_n \right)$$

Exercise 4, 2018 review

Exercise 8, 2018 review

Suppose
$$A \in \mathbb{R}^{m \times n}$$
 has rank m . Prove AA^T is invertible

Show $\operatorname{Comk}(AA^T) = \operatorname{com}(A) = \operatorname{comk}(E) = \operatorname{com$

Exercise 8, 2018 review

Exercise 9, 2018 review

Consider the optimization problem

minimize
$$x \|x\|^2$$
 subject to $Ax = b$
$$\begin{cases} (x) = \|x\|^2 \\ h(x) = \|x\|^2 \end{cases}$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ are fixed and $b \in Im(A)$.

- **1** Prove that any minimizer x^* must belong to Im(A)
- **①** Give a formula for the minimizer x^* and show it is unique

Exercise 9, 2018 review

$$\nabla f(x) = A^{T} = 0$$

$$2x^{*} + \lambda A^{T} = 0$$

$$x^{*} = -\frac{1}{2} \lambda A^{T} = 0$$

Exercise 9, 2018 review

Exercise 10, 2018 review

mxm

Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times k}$, we define the block matrix $C \in \mathbb{R}^{n \times (m+k)}$ by

$$C = [A \ B]$$

Either prove the following statement or give a counterexample

$$rank(C) = rank(A) + rank(B)$$

False, counter example:
$$A=(1)$$
 $B=(1)$ ronk(A)=1 ronk(B)=1 $C=(11)$ ronk(C)= $1\pm1+1$

Exercise 10, 2018 review

Exercise 20, 2018 review

Let $A \in \mathbb{R}^{n \times n}$ have the unsual property that the image space (column space) Im(A) is equal to its kernel.

- ① What can we say about A^2 ?
- \odot Give an example of such an A

a)
$$Ker(A) = Irm(A)$$

 $Av = 0 \iff v = Aw$ $v \in \mathbb{R}^n$
 $Av = 0 \implies Av = 0$
 $Aw = 0 \implies Aw = 0$

Exercise 20, 2018 review

b)
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$dim(\pm m(A)) + dim(ken(A)) = n$$

$$dim(\pm m(A)) = dim(ken(A)) = \frac{n}{2}$$
 $n = 2$

Exercise 25, 2018 review

Let $A \in \mathbb{R}^{n \times n}$ and consider its SVD decomposition $A = U \Sigma V^T$. Let $A' = U \Sigma' V^T$ where Σ' is obtained from Σ by replacing every entry by zero except for the entry corresponding to the largets singular value.

- **3** Show that A' is the best rank 1 approximation of A in the Forbenius norm, meaning that A' is the solution to $\min_{B:rank(B)=1} \|B-A\|_F$
- **③** Show that A' is the best rank 1 approximation of A in the spectral norm, meaning that A' is the solution to $\min_{B:rank(B)=1} \|B-A\|_{\#}$

Exercise 25, 2018 review

Exercise 25, 2018 review

Exercise 0.9, 2019 review

For each of the following statement, say if they are true or false and justify your answer

- ① If a continuous function $f: \mathbb{R} \to \mathbb{R}$ has a unique minimizer then f is convex
- If a continuous function $f: \mathbb{R} \to \mathbb{R}$ is such that f is decreasing on $(-\infty, x_0]$ and increasing on $(x_0, +\infty]$ is convex
- **•** A twixe differentiable function $f: \mathbb{R} \to \mathbb{R}$ whose derivative f' is non-decreasing is convex

Exercise 0.9, 2019 review

