Curs 3

- 1. Snatjin topologie
- 2. Multime deschirá/ indirá/ compactá, vecinatate
- 3. Punt interior / advent / de acumulare / frontierà / ipolat
- 4. Limita umi zir într-un m. ton.
- s. Spatin topologic separat (Housdorff)
- 6. Distanța / metrică
- 7. Spatin metric
 - 8. Bilā deschirā / în chirā
 - 9. Adaptarea dej. interiornelini / advenței / etc. în m. metrice
 - 10. Limita umi zir într-un zz. metric

Jordogie

Fix $X \neq \emptyset$. O multime $Z \in P(X)$ on numerte topologie pe X dava a) \emptyset , $X \in Z$ topologie $pe \times daca$ a) ϕ , $\times \in \mathbb{Z}$ b) $\forall D_1, D_2 \in \mathbb{Z}$, over $D_1 \cap D_2 \subset \mathbb{Z}$ c) $\forall (D_i)_{i \in J} \subset \mathbb{Z}$, over $\bigcup_{i \in J} \in \mathbb{Z}$ $(J \neq \phi)$

Def Fix $X \neq 0$ n_i $Z \in P(X)$ o topologie pe X.

Perecha (X, Z) s. m. matin topologie

Fix $X \neq \emptyset$ of Z = P(X). Poudia (X, Z) este matin topologie

Fix $x \neq \phi$ is $Z = \{\phi, \chi\}$. Purchea $\{\chi, Z\}$ esti natin topologie

Fix X=R n; Z=1 p, R) U 1 (- 0, a) 1 a E R) Pendra (x, Z) este matin topologie.

Justifiane pt es 3

- a) \emptyset , $\mathbb{R} \in \mathbb{Z}$ (wident)
- l) Fi D, , D, E Z

Aratom à D, n D, E Z

Dorā $\Delta_1 = \phi$ nou $\Delta_2 = \phi$, atunci $\Delta_1 \cap \Delta_2 = \phi \in \mathbb{Z}$

Does $D_1 = \mathbb{R}$ rom $D_2 = \mathbb{R}$, atumi $D_1 \cap D_2 = D_1 \in \mathbb{Z}$

nous by A by = by & B

c) Fix (Di) is c C. Aratam ca UDi & C

 $Pora b_i = \phi$, atunci $\bigcup_{i \in I} b_i = \phi \in Z$

Dora Jio e Jan. Dio = R, atumi UDi = ReZ

Fara a restrânge generalitatea, presymem ca

Di=(-o, ai), aiem, Viej

Aven U D; = (-00, sup a;) & Z

my (0,2) = 2

mp (0,2] = 2

Dei (x, Z) este spotin topologic

24

Fie (x, Z) un matin topologie

- 1) U multime BCX s.n. multime deschisa
- 2) 0 multime $F \subset X$ s.n. multime inchisa dava $X/F = CF \in Z$
- 3) O multime KCX s.m. multime comportà

 docà din vive anoperire un multimi deschire

 a ra re poste extrage o subanoperire firità

 (i.e. V(Di)iei CZ a.i. KC UDi, I J E J,

 J finità a.i. KE UDi)

 iej

Analiza topologica a

DJ

Fix (X, Z) un m. ton., $A \subset X$ x_i $x_0 \in X$.

I purem ia x_0 est:

- 1) punct interior al lui A docă A este verinătate a lui x.
- 2) punt oderent (som de oderență) al lui A dava pentru orice vernatate V al lui x_0 , ovem $V \cap A \neq \emptyset$

- 3) punct de aumulare al lui A docă purtur orice verinatate V al lui x_0 , ovem $V \cap (A \setminus \{x_0\}) \neq \emptyset$
- 4) punct de frontierà al lui A davà xo este

 punct aderent al lui vi un este punct interior al lui A

 5) punct izalat al lui A davà xo este

 punct aderent al lui A vi un este punct de aurunlare
 al lui A

Notation

În contextul def. precedente, notam:

- (interioral line A)

 (interioral line A)
- 2) $\overline{A} = 1 \times E \times 1 \times_0$ punct oderent al lui A \int (in diduce now adverte lui A)
- 3) A' = 1 x E x 1 xo punct de oumelore al lui A 5

 (multimea punctelor de oumelore al lui A

 ron multimea derivata a lui A)
- 5) $J_{20}(A) = {A = 1 \times E \times 1 \times E \times E}$ and its all limit $A = A \times A$ (multimea punctelor ipolate all limit A)

Fix (x, z) in m. ton. $x \in X$ $0 \stackrel{\text{def}}{=} 1 \ V \in X \ 1 \ V \text{ virinatate a line } x \ 3$

Fix (X, Z) un m ton., $(x_m)_m \in X$ $n_i \quad x \in X$.

I pume is x ester limited a simular $(x_m)_m$ in report un topologica Z n_i moreon $\lim_{m\to\infty} x_m = x$ non $x_m = \frac{Z}{m\to +\infty}$, x = 0 do is $\forall V \in V_X$, $\exists m_V \in iN$ a.s. $\forall m \geq m_V$, sown $x_m \in V$

 \underbrace{Obs} Jintagma " in report en topologia Z" poate

fi inhomita en sintagna " in m. ton (x, z)"

Fix $x \neq \phi$ of $Z = \{\phi, x\}$. Penton once $x_0 \in X$, oven bx = 1 x }

Fie our $x \in X$, $y \in X$ $x_i (x_m)_m \in X$ (x + y)

A ven $\lim_{n\to+\infty} x_n = x$ $\lim_{n\to+\infty} x_n = y$

Obs În general, într-un m ton. un mi poate avea mai multe limite.

```
Fig. (x, z) in m. ton.

I fine (x, z) is the in matter top. reported (non Houndarff) does \forall x, y \in X, x \neq y,

\exists \ U \in \mathcal{V}_X, \ \exists \ V \in \mathcal{V}_Y \ \text{a.s.} \ U \cap V = \emptyset

[Promotite In once m. ton. report, once means one or singural limita.]
```

Fix
$$x \neq \emptyset$$
.

O function $d: X \times X \rightarrow i\mathbb{R}$ s. n. distantia non metrical proof X do call

1) $d(x,y) \geqslant 0$, $\forall x,y \in X$

2) $d(x,y) = 0$ (=> $x = y$, $\forall x,y \in X$

3) $d(x,y) = d(y,x)$ $\forall x,y \in X$

4) $d(x,y) \leq d(x,y) + d(y,z)$ $\forall x,y \in X$

(inequitation trianglishing)

Exemple de matii metrice

$$d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$

Puedra (x, d) este matin metrica.

3) Fix
$$n \in \mathbb{N}^{4}$$
, $X = \mathbb{R}^{m}$ n_{1}^{2} $d_{1}: X \times X \rightarrow \mathbb{R}$

$$d_{1}(x_{1}, y_{1}) = |x_{1} - y_{1}| + |x_{2} - y_{2}| + ... + |x_{m} - y_{m}| = \sum_{i=1}^{m} |x_{i} - y_{i}|$$

$$Purchia (X, d_{1}) \text{ estimation metrica}.$$

h) Fix
$$m \in \mathbb{N}^+$$
, $X = \mathbb{R}^m$ of $d_2 : X \times X \to \mathbb{R}$

$$d_2(x,y) = \left(\sum_{i=1}^m (x_i - y_i)^2\right)^{\frac{1}{2}}$$
Purchea (X, d_2) est matin metrica.

5) Fix
$$n \in \mathbb{N}^*$$
, $X = \mathbb{R}^n$ of $d_{\infty} : X \times X \to \mathbb{R}$, $d_{\infty} (x, y) = \max \{ || |x_i - y_i|| || |i = 1, n| \}$
Purchea (X, d_{∞}) este matin metrica.

Fig.
$$(x, d)$$
 un m. metric, $x \in X$ x_i $x > 0$.

1) $B(x, x) = 1$ $y \in X$ $A(x, y) \in X$

(bilà dischisà di untim x x_i rapa x)

2) $B[x, x] = \overline{B}(x, y) = 1$ $y \in X$ $A(x, y) \in X$

(bilà indisa di untim x x_i rapa x)

Jurinia

Fix (X, d) in m. metric η ; $Z_d = \{\phi\} \cup \{A \in X \mid \forall x \in A, \exists x > 0 \text{ n.i. } B(x, x) \in A\}$ Atumi: (X, Z_d) ext. η . top.

Demonstratie:

- a) $\phi \in Z_d$ (wident) Fix x & X Ponton once x >0 over B(x, x) c X Den X & Zd
- b) Fix D, E Zd m D, E Zd Aratam on D, A Dz & Zd Dona D, n D2 = Ø, atmi D, n D2 & Zd

Presignen is D, 1 D, # \$. Fie x e D, n D, Dei, x e D, n; x e D, $x \in b_1 \in Z_d \Rightarrow \exists x_1 > 0 \text{ a.i. } B(x_1, x_1) \in b_1$ $\alpha \in \mathcal{S}_1 \in \mathcal{T}_d \Rightarrow \exists n_2 > 0 \text{ a.r. } \mathcal{B}(\alpha, n_2) \in \mathcal{S}_2$ Alegem r= min 1 r., r. 5 Aven $B(x, n) \in B(x, n_1) \cap B(x, n_2) \in B_1 \cap B_2$ Arodon, D, n D, E Zd c) Fie (Di) c Zd Aratan a US; EZa Dora UD: = Ø, atma UD: EZa Pr. on UDi + P Fix x e U Di Dei, 3 io e J a.s. $x \in D_{i_0} \in Z_d \Rightarrow \exists x > 0 \text{ a.i. } B(x, x) \in D_{i_0}$

 $B(x,n) \in D_{\hat{A}_0} \subset \bigcup_{i \in J} D_{\hat{A}_i} = \bigcup_{i \in J} D_{\hat{A}_i} \in Z_{\mathbf{A}_i}$

Prim womane, (x, t) este y. ton

Def Jopologia Zd din def. preudenta s.n. topologia notusa de metrica d

Dåndu-se um m. metnie (X, d), juntem austrui maturel topologie (X, Zd).

l'a atare, au sens sà vorbin despre multimi deschise, multimi inchise, verinatati, multimi compacte etc într-un spațin metric (referindu-ne la topologia indusă de metrica resp.)

Det Adaptarea définitéei interiornelui, aderentei etc

in mati metrice

Fix (X, d) un x_0 metric., $A \in X$ $x_0 \in X$ f_{runum} is x_0 exte

1) punet interior of lui - 1 (i.e. x. c.A)

dava Iro a.s. B(zor) cA

- 2) punt odernt (ron de odernto) al lui A (i.e. $x_0 \in \bar{A}$) da ca $\forall x > 0$, over $B(x_0, x) \cap A \neq \emptyset$
 - 3) punct de acumulare al lui A (i.e. $x_o \in A'$)

davà $\forall r>0$, ovem $B(x_0, r) \cap (A \setminus \{x_0\}) \neq \emptyset$

4) punet de prontiera (i.e. 20 E Fr (A) = dA)

do so x_0 este punct oderent od lui A x_i x_0 nu este punct interior od lui A.

5) punct i volat al lui A (i.e. $x_0 \in J_{\mathcal{V}}(A) = {}^{1}A$)

da a x_0 este punt advent al lui A x_i me este punct all a annulare al lui A

24

Fix (X, d) un sq. metric, $(x_m)_m \in X$ si $x \in X$.

I purem is small $(x_m)_m$ one limits x in report

on metrics d si micm $\lim_{n\to+\infty} x_n = x$ roun $x_m \xrightarrow{d} x$ does $\lim_{n\to+\infty} d(x_n, x) = 0$ (i.e. $\forall \ \epsilon > 0$, $\exists \ m_{\epsilon} \in IN$ s.s. $\forall \ m \ge m_{\epsilon}$ order $d(x_m - x) \in \mathcal{E}$)

Pronopitie

Fix (X, d) un m. metric.

Aturci (X, Zd) este matin topologic reparat

(ran Houndorff)

Obs În vice m. metric, vice și ore o singură limită.

Jumin ologie

In contextul def. precedente, data $\lim_{n\to +\infty} x_n \stackrel{d}{=} x$, numer ca $(x_n)_n$ converge vatre x in raport on metrica d.

<u>Ob</u>

Jintagma " in raport en metrica d" poate fi înformità en sintagma " in mațiul metric (x, d)"