Choice of Implemented Algorithm

- Choice: DQN^[1] (discrete action space)
 - Popular algorithm, can solve Atari games
 - Lots of possible improvements^{[3][4][5]}
 - Agents with discretized actions can solve given problem

DQN Target: $Y_t^{\text{DoubleQ}} \equiv R_{t+1} + \gamma Q(S_{t+1}, \operatorname{argmax} Q(S_{t+1}, a; \boldsymbol{\theta}_t); \boldsymbol{\theta}_t')$

Figure 1: Schematic diagram of DQN Algorithm^[1] with Double Q Learning^[3] and Dueling Networks^[4]

	U
	Ž
	5
	B
J	ш

F	Experiment	K steps	Episodes	Evaluation (1000 ep)	Train score (last 100 ep)		Converged / Total
	Baseline	688.07±161.59	2851.13±714.40	303.42±177.98	191.71±126.34	Eval ≥ 400 (every 20K steps)	
	Best (eval @5K)	189.02±28.41	879.73±80.56	414.96±18.02	59.81±45.44	Eval ≥ 400 (every 5K steps)	
	Best (eval @20K)	197.41±35.29	893.93±110.19	414.85±12.16	81.16±57.91	Eval ≥ 400 (every 20K steps)	
	Best (train score)	512.08±162.60	1521.27±210.33	420.25±3.10	400.42±0.75	Score of last 100 episodes ≥ 400	
	Best (shaped reward)	256.03±54.99	1027.00±163.02	409.688±40.87	13.23K±71.80K	Eval ≥ 400 (every 5K steps)	

Table 1: Quantitative Analysis of 5 selected experiments

- Careful HP optimization improved the results
- Different success metric have their advantages
- High variance, repeated experiments needed
- Highly time efficient
 - ~5min GPU runtime for experiment Best (eval @5K)

References

- [1] Mnih, V. et al (2015), Human Level Control Through Deep Reinforcement Learning https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
- [2] Lillicrap, T. et al (2015), Continuous control with deep reinforcement learning https://arxiv.org/abs/1509.02971
- [3] van Hasselt, H. et al (2016), Deep Reinforcement Learning with Double Q-learning https://arxiv.org/abs/1509.06461
- [4] Wang, Z. et al (2015), Dueling Network Architectures for Deep Reinforcement Learning https://arxiv.org/abs/1511.06581
- [5] Hessel, M. et al (2017), Rainbow: Combining Improvements in Deep Reinforcement Learning https://arxiv.org/abs/1710.02298
- [6] Maroti, A., RBED: Reward Based Epsilon Decay https://arxiv.org/abs/1910.13701