

Ubiquitous cell-free Massive MIMO Communications

Paper by: Interdonato, et al.

Presented by: Salman Mohebi

WindMill study-group 11 Nov. 2020

Introduction and Motivation

- From 1G to 4G cellular networks, the massive traffic growth has been managed by:
 - Wider bandwidths,
 - Refined radio interfaces,
 - Network densification
 - Increasing the number of antennas per site
 - Deploying smaller and smaller cells

Introduction and Motivation

Inter-cell interference

Network-Centric

Inter-cluster interference & high backhaul

Conventional cellular network:

each UE is connected to only one AP

Network-centric implementation of CoMP-JT:

APs in a cluster cooperate to serve the UEs residing in their joint coverage area

User-centric implementation of CoMP-JT:

each UE communicates with its closest APs

Cell-free Massive MIMO network:

a way to implement a user-centric network

Cell-free vs. Cellular Networks

Data coverage

Cellular network

Cell-free Massive MIMO network

System operation

• Channel coherence interval:

- time-frequency interval during which the channel can be approximately considered as static
 - Determined by: propagation environment, UE mobility, and carrier frequency

• Pilot Contamination

Ngo, Hien Quoc, et al. "Cell-free massive MIMO versus small cells." *IEEE Transactions on Wireless Communications* 16.3 (2017): 1834-1850.

Power Control

- Channel-dependent full power transmission (CD-FPT)
 - All APs transmit with full power
 - Power-control coefficients for a given AP *m* are the same for all *k*
- Max-min fairness (MMF) power control
 - All the APs are involved in coherently serving a given UE
 - Power control coefficients are chosen to maximize the minimum spectral efficiency of the network
- Max-min fairness power control with received-power-based AP selection (MMF-RPB AP selection)
 - Only a subset of APs serves a given UE k
 - \circ The subset consists of the APs that contribute at least α % of the power assigned to UE k
- Max-min fairness power control with channel quality-based AP selection (MMF-CQB AP selection)
 - This method selects the APs with the best channel quality towards UE *k*

Performance of cell-free Massive MIMO

L = 400, K = 20, bandwidth B = 20 MHz, and max per-AP power 200 mW

Performance of cell-free Massive MIMO

L = 400, K = 20, bandwidth B = 20 MHz, and max per-AP power 400 mW

Practical deployment issues

- The cost and complexity of deployment
- Limited capacity of back/front-haul connections
- Network synchronization

Ngo, Hien Quoc, et al. "Cell-free massive MIMO versus small cells." *IEEE Transactions on Wireless Communications* 16.3 (2017): 1834-1850.

Radio stripe system

https://teletime.com.br/01/03/2019/ericsson-lanca-conceito-de-fitocell-no-mwc-2019/

Open challenges

Power control

 New PC algorithms are needed to balance fairness, latency, and network throughput, while permitting a distributed implementation

Distributed signal processing

- In MR precoding/detection and synchronization can be distributed
 - But, data encoding/decoding must be carried out at CPUs

Resource allocation and broadcasting

New scheduling, pilot allocation, random access and ... should be designed for cell-free

What else

Channel modeling, DL channel estimation, Prototype development, ...

THANK YOU!

Beneficiaries

@ItnWindmill

- ITN Windmill
- in ITN Windmill

Partner organisations

