1. For a given transistor circuit, the value of V_o is approximately given by _____ Volts.

Ans: Any value in the range of 0 and 0.4

2. In the circuit shown below, the input waveform V_I is given by a square pulse of amplitude 3V and zero mean value, that is the input oscillates between +3V and -3V. The mean value of the output V_0 in that case is given by ______ Volts

Ans: 7.5

Ans: Any value in the range of 1.85 and 2

4. In the Fig. below, v_s and V_{CC} are DC voltage sources. If $V_{CC} = 20V$, $v_s = 5V$, $R_1 = R_2 = R_E = R_C = 2K\Omega$ and $\beta = 50$, then the value of V_{CEQ} is given by ______ Volts

Ans: Any value in the range of 11 and 12

5. If the following circuit on the left has the input-output voltage graph on the right, then the value of R_C/R_B is _____

Ans: 1

6. For the following circuit in the left and the load line on the right, the value of V_{CC} is ______ Volts

7. For the following circuit in the left and the load line on the right, the value of R_C is $k\Omega$

Ans: 2

- 8. If β =4 for a transistor and the base current in the forward active mode is $I_B = 20\mu A$, then the emitter current is given by 100 _____ μA
- 9. For a BJT, β =1. If β is doubled, then the emitter current will increase by a factor of ___1.5____
- 10. For common emitter circuit with a fixed bias, $R_B=220~k\Omega$, $R_c=2k\Omega$, $V_{CC}=10~V$, V_{BE} (on)= 0.7V, and β =200. If the input voltage applied at the base terminal is 4 V, then the power dissipated in the transistor is ______ mW.

Ans: Any value between 12 to 13

11. For common emitter circuit with a fixed bias, $R_B = 220 \text{ k}\Omega$, $R_c = 2\text{k}\Omega$, $V_{CC} = 10 \text{ V}$, V_{BE} (on)= 0.7V, If the input voltage applied at the base terminal is 8 V and V_{CE} (sat) =0.2 V, then value of common-emitter current gain, β is **74**___ so that the transistor is now set into the forward active region.

12. For the given circuit, the output voltage (V_{CE}) is _____V

Ans: Any value between 13.9 and 14.2

13. For the circuit given below, V_{CC} = 10 V, R_1 =56 k Ω , R_2 =12.2 k Ω , R_C =2 k Ω , R_E =0.4 k Ω , V_{BE} (on) =0.7 V, and β =100. If the V_{CEQ} =0.5 V_{CC} , the collector current at the Q-point will be _____mA.

Ans: Any value in the range of 2.0 and 2.1

14. For the given circuit, the transistor goes into saturation mode if the input voltage is greater than $_1.9$ V. Assume $\beta = 120$, V_{BE} (on) =0.7 V and V_{CE} (sat) =0.2 V and the Early voltage is infinite.

15. For the given circuit, the transistor will be in forward active mode if the input voltage is less than $_{1.9}$ V. Assume β = 120, V_{BE} (on) =0.7 V and V_{CE} (sat) =0.2 V and the Early voltage is infinite.

