# 5月4月5日 5月8日 5日日8

ଦ୍ୱିତୀୟ ଭାଗ ଦଶମ ଶ୍ରେଣୀ





ପ୍ରକାଶକ ମାଧ୍ୟମିକ ଶିକ୍ଷା ପରିଷଦ, ଓଡ଼ିଶା

## ମାଧ୍ୟମିକ ଗଣିତ

ଦ୍ୱିତୀୟ ଭାଗ

ଦଶମ ଶ୍ରେଣୀ



ପ୍ରକାଶକ ମାଧ୍ୟମିକ ଶିକ୍ଷା ପରିଷଦ, ଓଡ଼ିଶା ମାଧ୍ୟମିକ ଗଣିତ (ଦ୍ୱିତୀୟ ଭାଗ) ଦଶମ ଶ୍ରେଣୀ ନିମତେ ଓଡ଼ିଶା ମାଧ୍ୟମିକ ଶିକ୍ଷା ପରିଷଦଦ୍ୱାରା ଅନୁମୋଦିତ ଓ ପ୍ରକାଶିତ © ମାଧ୍ୟମିକ ଶିକ୍ଷା ପରିଷଦ, ଓଡ଼ିଶା

ସମ୍ପାଦନା ମଣ୍ଡଳୀ ପ୍ରଫେସର ବିଷୁ ପ୍ରସନ୍ନ ଆଚାର୍ଯ୍ୟ (ଲେଖକ ଓ ସମୀକ୍ଷକ) ଡକ୍ଲର ପ୍ରସନ୍ନ କୁମାର ଶତପଥୀ (ଲେଖକ) ଡକ୍ଟର ଜଗନ୍ନାଥ ପ୍ରସାଦ ଦେବତା (ଲେଖକ) ଶ୍ରୀ ରଘୁନାଥ ମହାପାତ୍ର (ଲେଖକ) ଡକୁର ନଳିନୀକାନ୍ତ ମିଶ୍ର (ଲେଖକ ଓ ସଂଯୋଜକ) ପ୍ରଥମ ସଂୟରଣ : ୨୦୦୭ / ୪,୦୦,୦୦୦ ବ୍ୱିତୀୟ ମୁଦ୍ରଣ : ୨୦୦୮ / ୧,୫୦,୦୦୦ ତୃତୀୟ ମୁଦ୍ରଣ : ୨୦୦୯ / ୧,୦୦,୦୦୦ ଚତୁର୍ଥ ମୁଦ୍ରଣ : ୨୦୧୦ / ୧,୩୦,୦୦୦ ପଞ୍ଚମ ମୁଦ୍ରଣ: ୨୦୧୦/୧,୨୦,୦୦୦ ଷଷ ମୁଦ୍ରଣ : ୨୦୧୧/୧,୦୦,୦୦୦ ଆର୍ଟଫୁଲ : କମ୍ୟୁପ୍ରିୟ, ଲିଙ୍କରୋଡ, କଟକ-୧୨ ମୁଦ୍ରଣ : ମହିମା ଅଫସେଟ୍, କଟକ ସୁଦର୍ଶନ ୟାନରସ୍ ପ୍ରା: ଲିମିଟେଡ, କଟକ ଜଗନ୍ନାଥ ପ୍ରୋସେସ୍ ପ୍ରା: ଲିମିଟେଡ୍, କଟକ

ମୂଲ୍ୟ: ଟ.୬୭.୦୦(ସତଷଠି ଟଙ୍କା ମାତ୍ର)

### ମୁଖବନ୍ଧ

ଆକିର ବିଜ୍ଞାନ ଓ ପ୍ରଯୁକ୍ତି ବିଦ୍ୟାର ଯୁଗରେ ଗଣିତ ମଣିଷ ଜୀବନଧାରାକୁ ବିବିଧ ଭାବରେ ନିୟନ୍ତଣ କରୁଛି । କାରଣ ତାତ୍ତ୍ୱିକ ଓ ପ୍ରୟୋଗାତ୍ସକ - ଏ ଉଭୟ ଦିଗରେ ବିଜ୍ଞାନର ଅଗ୍ରଗତି ନିମନ୍ତେ ଗଣିତ ଶାସ୍ତର ବଳିଷ ଭୂମିକା ରହିଛି । ଅଧିକରୁ ଅଧିକ ବିଶ୍ଳେଷଣ ଓ ଗବେଷଣା ଜନିତ ଜ୍ଞାନ ଗଣିତକୁ ନୂଆ ମୋଡ଼ ଦେବାରେ ଲାଗିଛି । ଏହି ପରିପ୍ରେକ୍ଷୀରେ ମାଧ୍ୟମିକ ସରରେ ମଧ୍ୟ ଗଣିତ ଶିକ୍ଷାଦାନର ବିଷୟବସ୍ତୁ ତଥା ଉପଛାପନା ଶୈଳୀରେ ପରିବର୍ତ୍ତନ ଆସିବା ସ୍ୱାଭାବିକ ।

ସାରା ବିଶ୍ୱରେ ଅନ୍ୟାନ୍ୟ ବିକାଶଶୀଳ ଦେଶମାନଙ୍କ ଭଳି ଭାରତ ମଧ୍ୟ ଏ କ୍ଷେତ୍ରରେ ଉଲ୍ଲେଖନୀୟ ଭୂମିକା ଗ୍ରହଣ କରିଛି । ମାଧ୍ୟମିକ ଶିକ୍ଷା ଓର ପାଇଁ କାତୀୟ ଓରରେ ପ୍ରଞ୍ଚୁତ ପାଠ୍ୟକ୍ରମ ୍ବ୍ରୁ 2000 ଏବଂ 2005 (National Curriculum Frame Work - 2000 and 2005) ରେ ଗଣିତ ଶିକ୍ଷାକୁ ଅଧିକ ଗୁରୁତ୍ୱ ଦିଆଯାଇଛି । ତଦକୁଯାୟୀ କାତୀୟ ଶିକ୍ଷା ଗବେଷଣା ଓ ତାଲିମ ପରିଷଦ (NCERT) ପାଠ୍ୟଖସଡ଼ା ପ୍ରଣୟନ କରିଛନ୍ତି । କାତୀୟ ଶିକ୍ଷାସ୍ରୋଡକୁ ଦୃଷ୍ଟିରେ ରଖି ଓଡ଼ିଶା ମାଧ୍ୟମିକ ଶିକ୍ଷା ପରିଷଦ, ମାଧ୍ୟମିକ ଶିକ୍ଷା ଓରେ ବେମ ଓ ଦଶମ ଶ୍ରେଣୀ) ପାଇଁ ପାଠ୍ୟଖସଡ଼ା ପ୍ରସ୍ତୁତ କରିଛନ୍ତି ଏବଂ ତଦକୁଯାୟୀ 2006-2007 ଶିକ୍ଷା ବର୍ଷରେ ନବମ ଶ୍ରେଣୀ ନିମନ୍ତେ ନୃତନ ଭାବେ ମାଧ୍ୟମିକ ଗଣିଡ଼ ପ୍ରକାଶ କରିସାରିଛନ୍ତି । ଅଧିନା ପାଠ୍ୟଖସଡ଼ା ଅନୁଯାୟୀ 2007-2008 ଏବଂ ତତ୍ ପରବର୍ତ୍ତୀ ଶିକ୍ଷାବର୍ଷମାନଙ୍କ ପାଇଁ ବଶମ ଶ୍ରେଣୀ ନିମନ୍ତେ ମଧ୍ୟ ମାଧ୍ୟମିକ ଗଣିଡ ପ୍ରକାଶ କରିଛନ୍ତି । ପୁଞ୍ଚକର ଏହି ନୃତନ ସଂୟରଣରେ ତ୍ରିକୋଣମିଡି ପାଠ ପାଇଁ ଏକ ଅଧ୍ୟାୟ (ଏକାଦଶ ଅଧ୍ୟାୟ)କୁ ସନିବେଶିତ କରାଯାଇଛି ।

ଅଭିଜ୍ଞ ଲେଖକମାନଙ୍କ ଦ୍ୱାରା ପାଠ୍ୟପୁଞ୍ଚକ ରଚନା କରାଯାଇ ପୁଞ୍ଚକର ପାଞ୍ଚୁଲିପିକୁ ରାଜ୍ୟନ୍ତରୀୟ ଏକ କର୍ମଶାଳାରେ କାର୍ଯ୍ୟରତ ଗଣିତ ଶିକ୍ଷକ ଶିକ୍ଷୟିତ୍ରୀଙ୍କ ଦ୍ୱାରା ପୂଞ୍ଜାନୁପୂଞ୍ଜ ଆଲୋଚନା କରାଯାଇଛି । ସିଲାବସ୍ କମିଟିରେ ମଧ୍ୟ ପାଣ୍ଡୁଲିପିଟି ପଠିତ ଓ ଆଲୋଚିତ ହୋଇଛି । ଆଲୋଚନା ଲହ ପରାମର୍ଶକୁ ଦୃଷିରେ ରଖି ଉକ୍ତ ପୁଞ୍ଚକ ପୁଞ୍ଚୁଡ କରାଯାଇଛି ।

ଏହି ପୁଞ୍ଚକ ପ୍ରଞ୍ଚୁତିରେ ଆନ୍ତରିକ ସହଯୋଗ କରିଥିବାରୁ ମୁଁ ଲେଖକମଣ୍ଡଳୀ, ସମୀକ୍ଷକ ଓ ସଂଯୋଜକଙ୍କୁ ଧନ୍ୟବାଦ ଜଣାଉଛି । ଆଶା କରୁଛି, ପୁଞ୍ଚକଟି ଛାତ୍ରଛାତ୍ରୀ ତଥା ଶିକ୍ଷକ-ଶିକ୍ଷୟିତ୍ରୀଙ୍କ ଦ୍ୱାରା ଆଦୃତ ହେବ ।

ସଭାପତି

ମାଧ୍ୟମିକ ଶିକ୍ଷା ପରିଷଦ, ଓଡ଼ିଶା

### ପ୍ରୟାବନା

କାତୀୟ ଶିକ୍ଷା ଗବେଷଣା ଓ ତାଲିମ ପରିଷଦ (NCERT) ଙ୍କ ଦ୍ୱାରା ପ୍ରୟୁତ National Curriculum Frame Work - 2000 ଏବଂ 2005 ତଥା ପାଠ୍ୟଖସଡ଼ା (Syllabus)କୁ ଭିଭି କରି ଓଡ଼ିଶା ମାଧ୍ୟମିକ ଶିକ୍ଷା ପରିଷଦ, ଗଣିତ ପାଠ୍ୟଖସଡ଼ାର ସମୟୋପଯୋଗୀ ନବୀକରଣ ସହିତ ଗଣିତ ପାଇଁ ଏକ ପାଠ୍ୟଖସଡ଼ାର ପ୍ରବର୍ତ୍ତନ କରିଛନ୍ତି । ଏହି ନୂତନ ପାଠ୍ୟଖସଡ଼ା ଅନୁଯାୟୀ ଦଶମ ଶ୍ରେଣୀପାଇଁ ମାଧ୍ୟମିକ ଗଣିତ ପୁଷକ ରଚନା କରିଛନ୍ତି । ଗଣିତ ପ୍ରତି ଆଗ୍ରହୀ ଛାତ୍ରଛାତ୍ରୀଙ୍କ ଉଦ୍ଦେଶ୍ୟରେ ଏହି ଗଣିତ ପୁଷକ ରଚନା କରିବା ସମୟରେ ସେମାନଙ୍କର ବୟସ ଓ ବୌଦ୍ଧିକ ବିକାଶକୁ ମଧ୍ୟ ଧାନ ଦିଆଯାଇଛି । ପୁଷକଟିର ରଚନା ସମୟରେ ଭାଷା, ବିଷୟ, ଉପୟାପନା ଶୈଳୀ ତଥା ଚିତ୍ରଗୁଡ଼ିକୁ ସଂସୁଗଠିତ କରାଯାଇ ଅଭ୍ୟାସ ନିମିଭ ଅଧିକ ସଂଖ୍ୟକ ସମାହିତ ପ୍ରଶ୍ନାବଳୀକୁ ସନିବେଶିତ କରାଯିବାର ପ୍ରୟାସ କରାଯାଇଛି ।

ଗଣିତ ଶିକ୍ଷାଦାନ ଦ୍ୱାରା ଛାତ୍ରଛାତ୍ରୀଙ୍କ ମନରେ କେତେକ ତଥ୍ୟଗତ ଧାରଣା ସୃଷ୍ଟି ହୁଏ ସତ, ମାତ୍ର ଗଣିତ ଶିକ୍ଷାର ଅନ୍ୟ ଏକ ଉଦ୍ଦେଶ୍ୟ ହେଲା, ପିଲାମାନଙ୍କ ମଧ୍ୟରେ ବିଶ୍ଲେଷଣାତ୍ମକ ଚିଡ଼ାଧାରା (Analytical thinking) ଓ ଯୋଜନା ଭିଭିକ ତଥା ସୁଶୃଙ୍ଖଳିତ କାର୍ଯ୍ୟଧାରାର ବିକାଶ ସାଧନ କରିବା । ପ୍ରଥମ ଲକ୍ଷ୍ୟ ଲାଗି କେତେକ ସୂତ୍ର ଓ ସମାଧାନ ପ୍ରଣାଳୀ ଯଥେଷ ହୋଇପାରେ; ମାତ୍ର ଦ୍ୱିତୀୟ ଲକ୍ଷ୍ୟ ସାଧନ କେବଳ ଉପଛାପନା ଶୈଳୀର ସୁସଂଯୋଜନାଦ୍ୱାରା ସ୍ୱୟବ । ପାଠ୍ୟପୁଞ୍ଜଟିରେ ଅଭ୍ୟାସ ନିମିର ଅଧିକ ସୁଯୋଗ ସୃଷ୍ଟି କରିବା ଲାଗି ବହୁସଂଖ୍ୟକ ସମାହିତ ପ୍ରଶ୍ନାବଳୀ ଦିଆଯିବା ସଙ୍ଗେ ସଙ୍ଗେ ଆବଶ୍ୟକ ଛଳେ ଐତିହାସିକ ପୃଷ୍ଡୁମି ଓ ଗଣିତଜ୍ଞମାନଙ୍କର କୃତି ସୟନ୍ଧରେ ସୂଚନାପ୍ରଦାନପୂର୍ବକ ଏହାର ପ୍ରୟୋଗାତ୍ସକ ଦିଗ ପ୍ରତି ଦୃଷ୍ଟି ଦିଆଯାଇଛି । ନୂତନ ଭାବେ ତ୍ରିକୋଣମିତି ପାଠକୁ ପୃଞ୍ଚକରେ ସନ୍ଧିବେଶିତ କରାଯାଇଛି ।

ପୁଞକଟିକୁ ହୁଟିଶୂନ୍ୟ କରିବାର ସମଷ ଉଦ୍ୟମ କରାଯାଇଥିବା ସତ୍ତ୍ୱେ, ଯଦି ଏଥିରେ କୌଣସି ମୁଦ୍ରଣଜନିତ, ଭାଷାଗତ ବା ତଥ୍ୟଗତ ତୁଟି ପରିଲକ୍ଷିତ ହୁଏ, ସେଥିପ୍ରତି କର୍ତ୍ୱପକ୍ଷଙ୍କ ଦୃଷ୍ଟି ଆକର୍ଷଣ କରାଗଲେ ପରବର୍ତ୍ତୀ ସଂୟରଣରେ ଡାହାର ସଂଶୋଧନ କରାଯିବ ।

ଆଶା କରୁ ପୁଷକଟି ଶିକ୍ଷକ-ଶିକ୍ଷୟିତ୍ରୀଙ୍କ ଶିକ୍ଷାଦାନ କାର୍ଯ୍ୟରେ ସହାୟକ ହେବ ।

| 10 | - | 1     | -   | a  |
|----|---|-------|-----|----|
| 88 | a | C.    |     | Ħ  |
| 2  | ш | a.    | o)i | 8  |
|    | 7 | alle. | •   | u. |

| ବିଷୟ ପୃ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ୍ଦ<br>ଷା   ବିଷୟ ପୃଷା                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ପ୍ରଥମ ଅଧ୍ୟାୟ (ବୁଇ ଅଜ୍ଞାତ ରାଶି ବିଶିଷ୍ଟ ଏକଘ ସହସମୀକରଣ) 1. ଜପକ୍ରମ ସହସମୀକରଣଦ୍ୱୟର ବୀଜଗାଣିତିକ ସମାଧାନ ସହସମୀକରଣର ସମାଧାନ ପାଇଁ ସର୍ଭ ଅଣସରଳରେଖୀୟ ସହସମୀକରଣର ସମାଧାନ ପାରିଗଣିତ ପ୍ରଶ୍ମର ସମାଧାନରେ ପ୍ରୟୋଗ ବିଶିଷ ପରଣତ କରି ସମାଧାନ ପ୍ରଣାଳୀ ବିଘାତ ସମୀକରଣ ବୂପରେ ବୂପାନ୍ତରଣ ପାଟିଗଣିତ ପ୍ରଶ୍ମମାନଙ୍କର ସମାଧାନ ବୃଦ୍ଧୀୟ ଅଧ୍ୟାୟ (ଦ୍ୱିପାତ ସମୀକରଣ ପ୍ରଣାଳୀ ବିଘାତ ସମୀକରଣ ବୂପରେ ବୂପାନ୍ତରଣ ପାଟିଗଣିତ ପ୍ରଶ୍ମମାନଙ୍କର ସମାଧାନ ବୃତୀୟ ଅଧ୍ୟାୟ (ପାତରାଶି ଓ ଲଗାରିବମ୍) 35 ପାତ ରାଶି ପରିମେୟସଂଖ୍ୟା ଘାତାଙ୍କ ବିଶିଷ୍ଟ ଘାତରାଶି ସାତାଙ୍କୀୟ ସମୀକରଣର ସମାଧାନ ଲଗାରିବମ୍ ସୟବୀୟ ନିୟମ ଆଧାର ପରିବର୍ତନ ସାଧାରଣ କରାରିବମ୍ ସୟବୀୟ ନିୟମ ଆଧାର ପରିବର୍ତ୍ତନ | 1001 ଷଷ ଅଧାୟ (ବ୍ୟବସାୟିକ ଗଣିତ) 125-138 -20 ବ୍ୟାଙ୍ କାରବାର ସଞ୍ୟୟ ବ୍ୟାଙ୍ ଆକାଉଣ ପାଇଁ ସୁଧ ହିସାବ ଅଂଶ ଓ ତମସୁକ ସପ୍ତମ ଅଧାୟ (ବୃର) 139-174 ମୌଳିକ ଧାରଣା ବୃରେ ଅଞଜେଶ ଓ ବହିର୍ଦ୍ଦେଶ ଇ୍ୟା ଓ କେନ୍ଦ୍ରୟ କୋଣ ଚାପ, କେନ୍ଦ୍ରୟ କୋଣ ବୃରାଷର୍ଲିଖିତ ଚତୁର୍ଭୁକ ଅଷ୍ୟମ ଅଧାୟ (ବୃରର ସର୍ଶକ) 175-191 ବୃରର ସର୍ଶକ ଓ ସର୍ଶବିନ୍ଦ୍ର ବହିଃୟ ବିହୁରୁ ବୃରପ୍ରତି ସର୍ଶକ ଏକାରର ଚାପ, ଏକାରର ବୃର୍ଣ୍ଣଣ ସାଧାରଣ ସର୍ଶକ ଓ ସର୍ଶକ ବୃର ନବମ ଅଧାୟ (ବୃରର ଚାପର ଦୈର୍ଘ୍ୟ ଓ ପରିଧ୍ର ବୃରକଳା) 192-225 ଦୈର୍ଘ୍ୟ ମାପ ଏକମାତ୍ରିକ ବୃର୍ଣ ଓ ବୃରକଳାର କ୍ଷେତ୍ରଫଳ ସୁଷମଣନ ପଦାର୍ଥର ପୃଷ୍ଟର ସଂଜ୍ଞା ପ୍ରିଳିମ୍, ଆୟଡଣନ, ସମଗନ ଓ ବୃର୍ଭୁମିକ ସିଲିଶରଣ ପୃଷ୍ଟର କର କେତେକ ଘନପଦାର୍ଥର ସୃଷ୍ଟର ସଂଜ୍ଞା ପ୍ରିଳିମ୍, ଆୟଡଣନ, ସମଗନ ଓ ବୃର୍ଭୁମିକ ସିଲିଶରଣ ପୃଷ୍ଟର ପଳ ବ୍ୟୁଷ୍ଟର ସଂଜ୍ଞା |
| ପଥ୍ୟ ପଧ୍ୟୟ (କମୁକରେ) ୨୬-୮                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ବୃତ୍ତର ବହିଃୟ ଏକ ବିନ୍ଦୁରୁ ବୃତ୍ତ ପ୍ରତି ସର୍ଶକ ଅଙ୍କନ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ପ୍ରୟାବନା                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ଦର ବୃତ୍ତରେ ସମବାହୁ ତ୍ରିଭୁଳ, ବର୍ଗଚିତ୍ର ଓ ସୁଷମ ଷଡ଼ଭୁଳ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| କମ୍ପ୍ୟୁଟରର ଗଠନଶୈଳୀ ଏବଂ ସଙ୍ଗଠିତ କାର୍ଯ୍ୟପ୍ରଣାଳୀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ଅନ୍ତର୍ଲିଖନ ଓ ପରିଲିଖନ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ଦ୍ୱିକ ସଂଖ୍ୟା ପଦ୍ଧତି ଓ ଦ୍ୱିକ ପାଟୀଗଣିତ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ବର୍ଗଚିତ୍ରର ପରିବୃତ୍ତ ଓ ଅନ୍ତଃବୃତ୍ତ ଅଙ୍କନ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ଆଲ୍ଗୋରିବର୍ମ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ଏକାଦଶ ଅଧ୍ୟାୟ - (ତ୍ରିକୋଣମିତି) 242 - 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ପ୍ରବାହ ଚିତ୍ର                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ଉତ୍ତରମାଳା 265 - 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

### ଭାରତର ସମ୍ବିଧାନ

#### ପ୍ରସାବନା

ଆୟେ ଭାରତବାସୀ ଭାରତକୁ ଏକ ସାର୍ବଭୌମ, ସମାଜବାଦୀ, ଧର୍ମନିରପେକ୍ଷ, ଗଣତାନ୍ତିକ ସାଧାରଣତନ୍ତରେ ପରିଣତ କରିବାର ଦୃଢ଼ ସଂକଳ୍ପ ନେଇ ଓ ଏହାର ନାଗରିକମାନଙ୍କୁ

ସାମାକ୍ରିକ, ଅର୍ଥନୈତିକ ଓ ରାଜନୈତିକ ନ୍ୟାୟ;

ଚିନ୍ତା, ଅଭିବ୍ୟକ୍ତି, ବିଶ୍ୱାସ, ଧର୍ମରେ ସ୍ୱାଧୀନତା;

ଅବସ୍ଥା ଓ ସୁଯୋଗର ସମାନତା ପ୍ରଦାନ କରି ଓ ସେମାନଙ୍କ ମଧ୍ୟରେ ବ୍ୟକ୍ତିର ସନ୍ନାନ ସହ ଭ୍ରାତୃତ୍ୱ ଏବଂ ଦେଶର ଏକତା ଓ ସଂହତି ରକ୍ଷା କରି

ଆମର ଏହି ସମ୍ବିଧାନ ପ୍ରଶୟନ ସଭାରେ ୧୯୪୯ ମସିହା ନଭେୟର ୨୬ ତାରିଖ ଦିନ ଏହି ସମ୍ବିଧାନକୁ ପରିଗ୍ରହଣ ଓ ପ୍ରଶୟନ କରି ନିଳଠାରେ ସମର୍ପଣ କଲୁ।

#### ଚତୁର୍ଥି ଅଧ୍ୟାୟ (କ)

#### ୫୧(କ) ଧାରା ମୌଳିକ କର୍ଭବ୍ୟ —

ଭାରତର ପ୍ରତ୍ୟେକ ନାଗରିକର ନିମ୍ନଲିଖିତ କର୍ତ୍ତବ୍ୟ ହେବ —

- (କ) ସୟିଧାନ ମାନି ଚଳିବା ଓ ଏହାର ଆଦର୍ଶ ଏବଂ ଜାତୀୟ ପତାକା, ଜାତୀୟ ସଙ୍ଗୀତ ଓ ଅନୁଷାନମାନଙ୍କୁ ସମ୍ମାନ ପ୍ରଦର୍ଶନ କରିବା;
- (ଖ) ଯେଉଁସବୁ ମହନୀୟ ଆଦର୍ଶ ଆମ ଜାତୀୟ ସ୍ୱାଧୀନତା ସଂଗ୍ରାମକୁ ଅନୁପ୍ରାଣିତ କରିଥିଲା, ତାହାକୁ ସ୍କରଣ ଓ ଅନୁସରଣ କରିବା;
- (ଗ) ଭାରତର ସାର୍ବଭୌମ, ଏକତା ଓ ସଂହତିର ସୁରକ୍ଷା କରିବା;
- (ଘ) ଦେଶର ପ୍ରତିରକ୍ଷା କରିବା ଓ ଆବଶ୍ୟକ ପଡ଼ିଲେ ଜାତୀୟ ସେବା ପ୍ରଦାନ କରିବା;
- (ଙ) ଧର୍ମନୈତିକ, ଭାଷାଗତ, ଆଞ୍ଚଳିକ କିୟା ଗୋଷୀଗତ ଭିନ୍ନତାକୁ ଅତିକ୍ରମ କରି ଭାରତର ସବୂ ଅଧିବାସୀମାନଙ୍କ ମଧ୍ୟରେ ସହମତିତା ଓ ଭ୍ରାତୃଭାବ ପ୍ରତିଷା କରିବା ଏବଂ ନାରୀମାନଙ୍କର ସମ୍ମାନରେ ଆଞ୍ଚ ଆସିବା ଭଳି କାର୍ଯ୍ୟରୁ ନିବୃଭ ରହିବା;
- (ଚ) ଆମର ବିବିଧ ସଂଷ୍କୃତିର ମୂଲ୍ୟବାନ ଐତିହ୍ୟକୁ ଯଥାର୍ଥ ମୂଲ୍ୟ ଦେବା ଓ ସାଇତି ରଖିବା;
- (ଛ) ଅରଣ୍ୟ, ହ୍ରଦ, ନଦୀ, ପଶୁପକ୍ଷୀ ସୟଳିତ ପ୍ରାକୃତିକ ପରିବେଷନୀର ସୁରକ୍ଷା ଓ ଉନ୍ନତି କରିବା ଓ ଜୀବମାନଙ୍କ ପତି ସଦୟ ହେବା:
- (କ) ବୈଜ୍ଞାନିକ ମୂଲ୍ୟବୋଧ, ମାନବିକତା ଓ ଅନୁସନ୍ଧିତ୍ୟା ତଥା ସଂସ୍କାର ମନୋଭାବ ଧାରଣ କରିବା;
- (ଝ) ସର୍ବସାଧାରଣ ସମ୍ପତ୍ତିର ସୁରକ୍ଷା କରିବା ଓ ହିଂସା ତ୍ୟାଗ କରିବା;
- (ଞ) ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ରରେ ବ୍ୟକ୍ତିଗତ ଓ ସମଷ୍ଟିଗତ ଉତ୍କର୍ଷ ପାଇଁ ଚେଷ୍ଟା କରିବା ଯାହା ଫଳରେ ଦେଶ ସର୍ବଦା ଉଚ୍ଚତର ଚେଷ୍ଟା ଓ କୃତିତ୍ୱ ଦିଗରେ ଆଗେଇ ଯିବ;
- (ଟ) ମାତା ପିତା ହୁଅନ୍ତୁ ବା ଅଭିଭାବକ, ସେ ତାଙ୍କର ଛଅ ବର୍ଷରୁ ଚଉଦ ବର୍ଷ ବୟସ ମଧ୍ୟରେ ଥିବା ସନ୍ତାନ ବା ପ୍ରତିପାଳିତଙ୍କୁ ଶିକ୍ଷାଲାଭର ସୁଯୋଗ ଯୋଗାଇଦେବେ।

## ଦୁଇ ଅଜ୍ଞାତ ରାଶି ବିଶିଷ୍ଟ ଏକଘାତୀ ସହ ସମୀକରଣ (SIMULTANEOUS LINEAR EQUATIONS IN TWO UNKNOWNS)

#### 1.1. ଉପକ୍ରମ :

ନବମ ଶ୍ରେଣୀର ଗଣିତ ପୁଞକର ତୃତୀୟ ଅଧ୍ୟାୟରେ y=mx+c (1)

ଫଳନର ଲେଖଚିତ୍ର ସମ୍ପର୍କରେ ଆଲୋଚନା କରାଯାଇଥିଲା। ଆମେ ଜାଣିଛେ ଯେ ଏହି ଫଳନଟିର xy-ସମତଳରେ ଲେଖଚିତ୍ର ଏକ ସରଳରେଖା। (1)କୁ x ଓ y ଅଜ୍ଜାତ ରାଶିରେ ଏକ ସମୀକରଣ ମଧ୍ୟ କୁହାଯାଏ ଓ (1) ସମୀକରଣର ଲେଖଚିତ୍ର ଏକ ସରଳରେଖା ହେତୁ ଏହି ସମୀକରଣକୁ ସରଳରେଖୀୟ ସମୀକରଣ (Linear Equation) ବୋଲି କହୁ। ମାତ୍ରx ଓ y ରେ ସରଳରେଖୀୟ ସମୀକରଣ (କିୟା ଏକଘାତୀ ସମୀକରଣ)ର ସାଧାରଣ ରୂପ ହେଉଛି ax + by + c = 0

ଯେଉଁଠାରେ a, b ଓ c ସଂଖ୍ୟାତ୍ରୟ ଧ୍ରବକ ରାଶି ଅଟନ୍ତି । b  $\neq$  0 ହେଲେ (2) କୁ (1) ରୂପରେ ପ୍ରକାଶ କରାଯାଇ ପାରିବ ଏବଂ ତାହାହେଲା  $y=-\frac{a}{b}$  x  $-\frac{c}{b}$  (3)

ଆମକୁ ଗୋଟିଏ ଅଜ୍ଞାତ ରାଶି x ରେ ଏକଘାତୀ ସମୀକରଣ Ax + B = 0 (4)

ଦିଆଯାଇଥିଲେ ଆମେ ଜାଣିଛେ ଯେ ସମୀକରଣ (4)ର ବାମପାର୍ଶ୍ୱରେ  $x=\alpha$  ଲେଖାଯିବା ଦ୍ୱାରା ଯଦି ଏହା ଶୂନ ହୋଇଯାଏ, ତେବେ  $x=\alpha$  ସମୀକରଣ (4)ର ସମାଧାନ ହେବ ଏବଂ ଏଠାରେ  $\alpha=-\frac{B}{A}$  ହେବ ।

ସେହିପରି ସମୀକରଣ (2)ର ବାମପାର୍ଶ୍ୱରେ  $x=\alpha$  ଓ  $y=\beta$  ଲେଖିଲେ  $a\alpha+b\beta+c=0$  ହୁଏ, ତେବେ ଆମେ କହିବା ଯେ  $x=\alpha$ ,  $y=\beta$  ସମୀକରଣ (2)ର ଏକ ସମାଧାନ । ଏଠାରେ ଆମେ ସମାଧାନଟିକୁ ଏକ କ୍ରମିତ ଯୋଡ଼ି  $(\alpha,\beta)$  ରୂପେ ଲେଖିଥାଉ । ମାତ୍ର xy-ସମତଳରେ  $(\alpha,\beta)$  କ୍ରମିତ ଯୋଡ଼ି ଗୋଟିଏ ବିନ୍ଦୁକୁ ସୂଚାଏ ଯାହା ବିନ୍ଦୁଟିର ସ୍ଥାନାଙ୍କ (Co-ordinate) ହୋଇଥାଏ । ବର୍ତ୍ତମାନ (2) ସମୀକରଣଟିକୁ xy-ସମତଳରେ ଗୋଟିଏ ସରଳରେଖା L ରୂପେ ବିଚାର କରାଯାଉ । Y  $\uparrow$ 

ସମୀକରଣ (2)ର ସମାଧାନ (α, β) ଯାହାକି P ବିନ୍ଦୁର ସ୍ଥାନାଙ୍କ ଯାହା L ସରଳରେଖା ଉପରିସ୍ଥ ହେବ । ପକ୍ଷାନ୍ତରେ ଯଦି ଅନ୍ୟ ଏକ ବିନ୍ଦୁ Q (γ, δ) ନେଇ  $x = \gamma$ ,  $y = \delta$  ସମୀକରଣ (2)ରେ ଲେଖିଲେ

$$a\gamma + b\delta + c \neq 0$$
 ହେବା



ଅର୍ଥାତ୍  $x=\gamma$ ,  $y=\delta$  ସମୀକରଣ (2)କୁ ସିଦ୍ଧ କରିବ ନାହିଁ ତେବେ  $(\gamma,\delta)$  ସମୀକରଣ (2)ର ସମାଧାନ ହେବ ନାହିଁ। ଏହି ଆଲୋଚନାରୁ ଏହା ସୁସ୍ପଷ୍ଟ ଯେ ସମୀକରଣ (2)ର  $(\alpha,\beta)$  ଏକ ସମାଧାନ ହେବ ଯଦି ଓ କେବଳ ଯଦି  $(\alpha,\beta)$  ବିନ୍ଦୁଟି L ସରଳରେଖା [ସମୀକରଣ (2)ର ଲେଖଚିତ୍ର] ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ ହେବ। ପରୀକ୍ଷା କରି ଦେଖିପାରିବ ଯେ, x ଓ y ରେ ଗୋଟିଏ ଏକଘାତୀ ସମୀକରଣର ଅସଂଖ୍ୟ ସମାଧାନ ସୟବ ଓ ପ୍ରତ୍ୟେକ ସମାଧାନ ଦଉ ସମୀକରଣଦ୍ୱାରା ସୂଚିତ ସରଳରେଖା ଉପରିସ୍ଥ ଏକ ଏକ ବିନ୍ଦୁକୁ ସୂଚାଇବ।

ଆମେ କାଣିଛେ ଯେ xy-ସମତଳରେ ଦୁଇଟି ସରକରେଖା ଦିଆଯାଇଥିଲେ ସେମାନେ ଯଦି ପରସ୍ପରକୂ ଛେଦ କରିବେ ତେବେ ସେମାନଙ୍କର କେବଳ ଗୋଟିଏ ମାତ୍ର ଛେଦବିନ୍ଦୁ ସମ୍ଭବ । ମନେକର ଦର ସମୀକରଣ ଦ୍ୱୟ

$$a_1 x + b_1 y + c_1 = 0$$
 (5)

$$a_{2}x + b_{2}y + c_{2} = 0$$
 (6)

ଓ ସମୀକରଣ (5) ଓ (6) ଦ୍ୱାରା ସୂଚିତ ସର୍ଳରେଖାଦ୍ୟ ଯଥାକୁମେ  $L_1$  ଓ  $L_2$  । ଏହି ସମୀକରଣଦ୍ୟଙ୍କୁ ଏକତ୍ରିତ ଭାବେ ବିଚାର କଲେ ଆମେ ସେମାନଙ୍କୁ ସହସମୀକରଣ ବୋଲି କହୁ ।  $L_1$  ଓ  $L_2$  ପରସ୍ପର ଛେଦୀ ଏବଂ  $P(\alpha,\beta)$  ବିନ୍ଦୁଟି ସେମାନଙ୍କ ଛେଦବିନ୍ଦୁ ।  $(\alpha>0,\ \beta>0)$  (ଚିତ୍ର 1.2) ।



ଏଠାରେ ସେହେତୁ  $P(\alpha, \beta)$  ବିନ୍ଦୁଟି ଉଭୟ  $L_1$  ଓ  $L_2$  ଉପରେ ଅବସ୍ଥିତ  $x=\alpha, y=\beta$  ଦ୍ୱାରା ଉଭୟ ସମୀକରଣ (5) ଓ (6) ସିଦ୍ଧ ହେବେ । ଏ ଷେତ୍ରରେ ବର ସମୀକରଣଦ୍ୱୟକୁ ସମାଧାନ କଲେ ଆମକୁ ଗୋଟିଏ ଓ କେବଳ ଗୋଟିଏ ସମାଧାନ ( $\alpha, \beta$ ) ମିଳିବ । ତେଣୁ ଆମେ କହିବା ଯେ ଏକଘାତୀ ସହ ସମୀକରଣ (5) ଏବଂ (6) ର ଏକ ଅନନ୍ୟ ସମାଧାନ ସୟବ । ସୂତରାଂ ସହ ସମୀକରଣଦ୍ୱୟ ଦ୍ୱାରା ସୂଚିତ ସରଳରେଖାବ୍ୟ ପରସ୍ପରହେବୀ ହେଉଥିଲେ ସେମାନଙ୍କର ଏକ ଅନନ୍ୟ ସମାଧାନ ସୟବ । ଏ ଷେତ୍ରରେ ସହ ସମୀକରଣଦ୍ୱୟ ସଙ୍ଗତ ଓ ସ୍ୱତଷ (consistent and independent).

ଯଦି ସହସମୀକରଣଦ୍ୱୟ ଦ୍ୱାରା ସୂଚିତ ସରଳରେଖାଦ୍ୟ ପରସ୍ପର ମିଳିତ [ଏକ ଓ ଅଭିନ୍ନ (coincident) ହୁଅନ୍ତି] (ଚିତ୍ର 1.3 ଦେଖ), ତେବେ ସେମାନଙ୍କର ଅସଂଖ୍ୟ ସାଧାରଣ ବିନ୍ଦୁ ରହିବ। ଅର୍ଥାତ୍ ଦଉ ସହ ସମୀକରଣ ଦ୍ୱୟଙ୍କର ଅସଂଖ୍ୟ ସମାଧାନ ସଞ୍ଜବ। ଏ କ୍ଷେତ୍ରରେ ଦଉ ସହ ସମୀକରଣଦ୍ୱୟ ସଙ୍ଗତ ଏବଂ ନିର୍ଭରଶୀଳ (consistent and dependent).

ଯଦି  $L_{_1}$  ଓ  $L_{_2}$  ସରଳରେଖାଦ୍ୱୟ ପରସ୍ପର ସହ ସମାନ୍ତର (ଚିତ୍ର 1.4 ଦେଖ) ହୁଅନ୍ତି ତେବେ ସେମାନଙ୍କର କୌଣସି ସାଧାରଣ ବିନ୍ଦୁ ରହିବ ନାହିଁ ଅର୍ଥାତ୍



ସହ ସମୀକରଣ ଦ୍ୱୟର କୌଣସି ସମାଧାନ ନାହିଁ। ଏ କ୍ଷେତ୍ରରେ ସହ ସମୀକରଣଦ୍ୱୟ ଅସଙ୍ଗତ (inconsistent) । ପ୍ରଥମେ ଆମେ କେତେଗୋଟି ବୀକଗାଣିତିକ ପ୍ରଣାଳୀ ସମ୍ପର୍କରେ ଆଲୋଚନା କରିବା ଯେଉଁଗୁଡ଼ିକର ବ୍ୟବହାର କରି ସଙ୍ଗତ ଓ ସ୍କୃତନ୍ତ ସହସମୀକରଣ (5) ଓ (6) ସମାଧାନ କରାଯାଇ ପାରିବ।



ସହ ସମୀକରଣଦ୍ୱୟର ବୀକଗାଣିତିକ ସମାଧାନ :
 ମନେକର ବଉ ସହ ସମୀକରଣଦ୍ୱୟ ସଙ୍ଗତ ଓ ସ୍ୱତବ୍ତ ।

$$a_1x + b_1y + c_1 = 0$$
 .....(1)  
 $a_2x + b_2y + c_2 = 0$  ....(2)

୍ଏ ଦୂଇ ସମୀକରଣର ସମାଧାନ ବୀଜଗାଣିତିକ ପ୍ରଣାଳୀ କିୟା ଲେଖଚିତ୍ର ପ୍ରଣାଳୀରେ କରାଯାଇ ପାରିବ । ପ୍ରଥମେ ବୀଜଗାଣିତିକ ପ୍ରଣାଳୀର ଆଲୋଚନା କରିବା ।

(i) ପ୍ରତିକଳ୍ପନ ପଦ୍ଧତି (Method of Substitution) : ଏହି ପ୍ରଣାଳୀରେ ଦଉ ସମୀକରଣ (1) ଓ (2) ରୁ ଯେକୌଣସିଟିକୁ ନେଇ ସେଥିରେ x କୁ y ମାଧ୍ୟମରେ କିୟା y କୁ x ମାଧ୍ୟମରେ ପ୍ରକାଶ କରାଯାଏ । ମନେକର ସମୀକରଣ (1) କୁ ବିଚାର କରାଯାଇ y କୁ x ମାଧ୍ୟମରେ ପ୍ରକାଶ କରିବା । ଉଦାହରଣ ସ୍ୱରୂପ ସମୀକରଣ (1)ରେ ଯଦି  $b_1 \neq 0$  ତେବେ  $b_1 y = -c_1 - a_1 x \Rightarrow y = \frac{1}{b_1} (-c_1 - a_1 x)$  (3)

(3) ଦ୍ୱାରା ପ୍ରଦର y ର ମାନ  $\frac{1}{b_1}(-c_1-a_1x)$  କୁ ସମୀକରଣ (2)ରେ ବ୍ୟବହାର କଲେ ଗୋଟିଏ ଏକଘାତୀ ସମୀକରଣ ମିଳିବ ଓ ଏହା

$$a_{2}x + \frac{b_{2}}{b_{1}} \{-c_{1} - a_{1}x\} + c_{2} = 0 \implies (a_{2}b_{1} - a_{1}b_{2})x + (c_{2}b_{1} - c_{1}b_{2}) = 0$$

$$\Rightarrow x = \frac{-(c_{2}b_{1} - c_{1}b_{2})}{a_{2}b_{1} - a_{1}b_{2}} \implies x = \frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}}$$
(4)

(4) ଦ୍ୱାରା ପ୍ରଦର x ର ମାନକୁ (1) କିୟା (2) ସମୀକରଣରେ ବ୍ୟବହାର କଲେ ପାଇବା

$$a_{1} \left( \frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}} \right) + b_{1}y + c_{1} = 0 \implies y = \frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}} , \quad (5)$$

ଅତଏବ ଆବଶ୍ୟକୀୟ ସମାଧାନ (α, β) ହେଲେ

$$\alpha = \frac{b_1 c_2 - b_2 c_1}{a_1 b_2 - a_2 b_1}, \ \beta = \frac{c_1 a_2 - c_2 a_1}{a_1 b_2 - a_2 b_1}$$
 (6)

ଦ୍ରଷ୍ଟବ୍ୟ : ଯଦି  $a_{_{\parallel}} \neq 0$  ହୁଏ ତେବେ ଅନୁରୂପ ଭାବେ x କୁ y ମାଧ୍ୟମରେ ପ୍ରକାଶ କରି ଅଗ୍ରସର ହେଲେ  $\alpha$  ଓ  $\beta$  ଲହ ହୋଇପାରିବ ।

#### ଉଦାହରଣ - 1

ସମାଧାନ କର : 5x + 2y + 2 = 0, 3x + 4y - 10 = 0

ସମାଧାନ : ଏଠାରେ ଦର ସହ ସମାକରଣଦ୍ୟ

$$5x + 2y + 2 = 0$$
 .....(i)

$$3x + 4y - 10 = 0 (ii)$$

ସମୀକରଣ (i)କୁ ବିଚାର କରି y କୁ x ମାଧ୍ୟମରେ ପ୍ରକାଶ କରାଯାଉ ।

$$\therefore 2y = -5x - 2 \implies y = \frac{1}{2} (-5x - 2)$$
 (iii)

(ii) 3 (iii) 3 
$$3x + \frac{4}{2}(-5x - 2) - 10 = 0 \Rightarrow 6x + 4(-5x - 2) - 20 = 0$$
  

$$\Rightarrow 6x - 20x - 8 - 20 = 0 \Rightarrow -14x - 28 = 0 \Rightarrow x = -2$$

ସମୀକରଣ (i)ରେ x=-2 ସ୍ଥାପନକଲେ ପାଇବା 5(-2)+2y+2=0

$$\Rightarrow$$
 2y - 8 = 0  $\Rightarrow$  y = 4

ଦ୍ରଷ୍ଟବ୍ୟ :

ଦର ସମୀକରଣଦ୍ୱୟରେ  $x=-2,\ y=4$  ନେଇ ପରୀକ୍ଷା କରି ଦେଖିବା ଉଚିତ୍ ଯେ ସମୀକରଣଦ୍ୱୟ  $(-2,\ 4)$  ଦ୍ୱାରା ସିଦ୍ଧ ହେଉଛନ୍ତି ।

#### (II) ଅପସାରଣ ପଦ୍ଧତି (Method of Elimination) :

ଏହି ପଦ୍ଧତିରେ ପ୍ରଦର ସହସମୀକରଣ (1) ଓ (2)ରୁ x କୁ କିୟା y କୁ ଅପସାରଣ କରାଯାଇଥାଏ । ମନେକର ଆମେ x କୁ ଅପସାରଣ କରିବା । ସମୀକରଣ (1)ରେ xର ସହଗ  $a_1$  କୁ ସମୀକରଣ (2)ର ଉଭୟ ପାର୍ଶ୍ୱରେ ଗୁଣନକଲେ ଏବଂ ସମୀକରଣ (2)ରେ xର ସହଗ  $a_2$  କୁ ସମୀକରଣ (1)ର ଉଭୟ ପାର୍ଶ୍ୱରେ ଗୁଣନ କଲେ ପାଇବା

$$a_2 \times (1) \Rightarrow a_1 a_2 x + a_2 b_1 y + a_2 c_1 = 0$$
 ....(7)

$$a_1 \times (2) \Rightarrow a_1 a_2 x + a_1 b_2 y + a_1 c_2 = 0$$
 (8)

ସମୀକରଣ (7) ଓ (8)ରେ xର ସହଗ ସମାନ । (7) ରୁ (8)କୁ ବିୟୋଗ କଲେ ପାଇବା

$$(a_2b_1 - a_1b_2) y + (a_2c_1 - a_1c_2) = 0$$

$$\Rightarrow y = \frac{-(a_2c_1 - a_1c_2)}{a_2b_1 - a_1b_2} \Rightarrow y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$$

ପରିଶେଷରେ yର ମାନକୁ ସମୀକରଣ (1) [କିୟା ସମୀକରଣ (2)]ରେ ବ୍ୟବହାର କଲେ

$$\mathbf{x} = \frac{\mathbf{b_1 c_2} - \mathbf{b_2 c_1}}{\mathbf{a_1 b_2} - \mathbf{a_2 b_1}}$$
 ଲପ ହେବ |  $\mathbf{b_1 c_2} - \mathbf{b_2 c_1}$  ନ  $\mathbf{c_1 a_2 c_2}$ 

 $\alpha$  ଓ  $\beta$  ନିର୍ଦ୍ଧେୟ ସମାଧାନ ହେଲେ,  $\alpha=\frac{b_1c_2-b_2c_1}{a_1b_2-a_2b_1}$ ,  $\beta=\frac{c_1a_2-c_2a_1}{a_1b_2-a_2b_1}$  ହେବ ।

#### ଉଦାହରଣ - 2 :

ସମାଧାନ କର : 2x + 3y - 8 = 0, 3x + y - 5 = 0

ସମାଧାନ: ଦର ସହ ସମୀକରଣଦ୍ୱୟ

$$2x + 3y - 8 = 0$$
 .....(i)

$$3x + y - 5 = 0$$
 (ii)

$$3 \times (i) \implies 6x + 9y - 24 = 0$$
 .....(iii)

$$2 \times (ii) \Rightarrow 6x + 2y - 10 = 0$$
 .....(iv)

$$(iii)$$
 -  $(iv)$   $\Rightarrow$   $7y$  -  $14$  =  $0$   $\Rightarrow$   $y$  =  $2$ 

ସମୀକରଣ (i) ରେ y = 2 ସ୍ଥାପନକଲେ ପାଇବା

$$2x + 6 - 8 = 0 \Rightarrow 2x - 2 = 0 \Rightarrow x = 1$$

: ନିର୍ଦ୍ଧେୟ ସମାଧାନ (1, 2).

(ଉଉର)

#### (iii) ବକ୍ର ଗୁଣନ (Cross Multiplication) :

ଆମର ପୂର୍ବ ଆଲୋଚନାରୁ ଆମେ ଦେଖିଛେ ଯେ ଦର ସହ ସମୀକରଣଦ୍ୱୟର ସମାଧାନ

$$a_1x + b_1y + c_1 = 0$$
 (1)

$$a_2x + b_2y + c_2 = 0$$
 .....(2)

$$x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}, y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$$
 2661

ସମାଧାନରୁ ଆମକୁ ମିଳିବ

$$\frac{x}{\frac{x}{b_1c_2 - b_2c_1}} = \frac{1}{\frac{1}{a_1b_2 - a_2b_1}} \\
\frac{y}{c_1a_2 - c_2a_1} = \frac{1}{\frac{1}{a_1b_2 - a_2b_1}}$$
.....(3)

ଉପରେ (3)ରେ ଦିଆଯାଇଥିବା ଦୁଇଟି ସମାନତାର ଦକ୍ଷିଣ ପାର୍ଶ୍ୱ ସମାନ ହେତୁ (3)କୁ

$$\frac{x}{b_1c_2 - b_2c_1} = \frac{y}{c_1a_2 - c_2a_1} = \frac{1}{a_1b_2 - a_2b_1}$$
 (4)

ରୂପରେ ଲେଖିହେବ । ଏଠାରେ ସ୍ମରଣ ରଖିବା ଉଚିତ ଯେ  $a_1b_2-a_2b_1\neq 0$  ଅର୍ଥାତ୍  $\frac{a_1}{a_2}\neq \frac{b_1}{b_2}$  ।

ସମୀକରଣ (4)ରେ ପ୍ରବର ଉକ୍ତିକୁ ବନ୍ଧଗୁଣନ କୁହାଯାଏ । ଏହାକୁ ସହକରେ ମନେ ରଖିବା ପାଇଁ ନିମ୍ନଲିଖିତ ପଦ୍ଧତି ଅବଲୟନ କରାଯାଇଥାଏ ।

$$\frac{x}{b_1} = \frac{y}{c_1} = \frac{1}{a_1} = \frac{1}{a_1} = \frac{1}{a_2} = \frac{1}{b_1}$$

ଲକ୍ଷ୍ୟକର ଯେ x ଲବ ଥିବା ପଦର ହରରେ (b, ଗୁଣନ c<sub>2</sub>) ଫେଡ଼ାଣ (c<sub>1</sub> ଗୁଣନ b<sub>2</sub>) ହୁଏ । ସେହିପରି y ଲବ ଥିବା ପଦର ହର ଓ । ଲବ ଥିବା ପଦର ହର ନିର୍ତ୍ତିତ ହୋଇଥାଏ ।

#### ଦ୍ୟବ୍ୟ :

- (1)  $c_1 = c_2 = 0$  ଓ  $a_1b_2 a_2b_1 \neq 0$  ହେଲେ,  $a_1x + b_1y = 0$ ,  $a_2x + b_2y = 0$  ସମୀକରଣଦ୍ୱୟର ସମାଧାନଟି (0,0) ଅଟେ । ଏଠାରେ ସମୀକରଣଦ୍ୱୟକୁ ସମ ସହସମୀକରଣ (Homogeneous Simultaneous equation) କୁହାଯାଏ ।  $a_1b_2 a_2b_1 = 0$  ହେଲେ, ସରଳରେଖାଦ୍ୟ ଏକ ଓ ଅଭିନ୍ନ ହେବେ ଓ ଦର ସହସମୀକରଣଦ୍ୱୟର ଅସଂଖ୍ୟ ସମାଧାନ ରହିବ ।
- (2) ଦୁଇଗୋଟି ସହସମୀକରଣ ସମାଧାନ କରିବାକୁ ଦିଆଯାଇଥିଲେ ପ୍ରଥମେ  $a_1b_2-a_2b_1 \neq 0$  ସର୍ତ୍ତଟି ସତ୍ୟ ବୋଲି ପରୀକ୍ଷା କରିବା ଆବଶ୍ୟକ ।

#### ଉଦାହରଣ - 3:

ସମାଧାନ କର : 2x - 3y - 1 = 0, 4x + y - 9 = 0

ସମାଧାନ : ଦର ସହସମୀକରଣ ଦ୍ୟ, 2x - 3y - 1 = 0, 4x + y - 9 = 0

ଏଠାରେ ଲକ୍ଷ୍ୟକର  $2 \times 1 - 4(-3) = 2 + 12 = 14 \neq 0$  ତେଣୁ ସମାଧାନ ସମ୍ଭବ । ବଳ୍ଚ ଗୁଣନ ପ୍ରଣାଳୀ ଅବଲୟନରେ,

$$\frac{x}{-3} = \frac{y}{-1} = \frac{1}{2}$$

$$\Rightarrow \frac{x}{(-3)(-9) - 1(-1)} = \frac{y}{(-1)4 - (-9)2} = \frac{1}{2 \times 1 - 4(-3)}$$

$$\Rightarrow \frac{x}{27 + 1} = \frac{y}{-4 + 18} = \frac{1}{2 + 12} \Rightarrow \frac{x}{28} = \frac{y}{14} = \frac{1}{14} \Rightarrow x = \frac{28}{14} = 2, \quad y = \frac{14}{14} = 1$$

$$\therefore \text{ ନିର୍ଗେୟ ସମାଧାନ } (2, 1) \text{ (ଉଉର)}$$

#### 1.3. ସହ ସମୀକରଣର ସମାଧାନ ପାଇଁ ସର୍ଭ (Condition for Solvability) :

ଅନୁଚ୍ଛେଦ 1.1ରେ ସହ ସମୀକରଣଦ୍ୱୟ

$$a_i x + b_i y + c_i = 0$$
 (1)

$$a_2x + b_2y + c_2 = 0 (2)$$

ର ସମାଧାନ କରିବା ବେଳେ ତିନିଗୋଟି ପରିସ୍ଥିତି ଉପୁକିପାରେ ବୋଲି ସୂଚନା ଦିଆଯାଇଥିଲା । ଏଗୁଡ଼ିକୂ ଚିତ୍ର (1.2), (1.3), (1.4)ରେ ଦର୍ଶାଯାଇଥିଲା । ପୂର୍ବ ଅନୁହ୍ଳେଦ 1.2(iii)ରେ ବଳ୍ପଗୁଣନ କରିବା ବେଳେ ଆମେ ଦେଖିଥିଲେ ଯେ (1) ଓ (2) ସହ ସମୀକରଣଦ୍ୱୟର ସମାଧାନ ପାଇଁ

$$a_1b_2 - a_2b_1 \neq 0$$
 লিমা,  $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$  (3)

ହେବା ଆବଶ୍ୟକ। ବଞ୍ଚୁତଃ ସର୍ଭ (3) ସତ୍ୟ ହେଲେ ଆମକୁ ଗୋଟିଏ ଓ କେବଳ ଗୋଟିଏ ସମାଧାନ (ଅନନ୍ୟ ସମାଧାନ) ଲହ ହେବ। ଏହି ସର୍ଭ ସତ୍ୟ ହେଲେ 1.1 ଅନୁદ୍ભେଦରେ ଆଲୋଚିତ ପ୍ରଥମ ପରିସ୍ଥିତି ହିଁ ଉପୁଳେ ଓ ଆମେ କହୁ ଯେ ଦଉ ସମୀକରଣଦ୍ୱୟ ସଙ୍ଗତ ଓ ସ୍ୱତନ୍ତ (consistent and independent)।

ମାତ୍ର (3) ସର୍ଭ ଅସତ୍ୟ ହେଲେ  $\mathbf{a_1}\mathbf{b_2}-\mathbf{a_2}\mathbf{b_1}=0$  ହେବ । ବର୍ତ୍ତମାନ  $\mathbf{a_1}\mathbf{b_2}-\mathbf{a_2}\mathbf{b_1}=0$  ଅର୍ଥାତ୍ତ  $\frac{\mathbf{a_1}}{\mathbf{a_2}}=\frac{\mathbf{b_1}}{\mathbf{b_2}}$  ହେଲେ କ'ଣ ହେବ ବର୍ତ୍ତମାନ ବିଚାର କରିବା ।

ମନେକର 
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = k \implies a_1 = ka_2, b_1 = kb_2$$

ଏଠାରେ ଦୁଇ ପ୍ରକାରର ପରିସ୍ଥିତି ଉପୂଳିପାରେ । ଯଥା-  $\frac{c_1}{c_2} = k$  କିୟା,  $\frac{c_1}{c_2} \neq k$ 

ଯଦି  $\frac{c_1}{c_2}=k$  ତେବେ,  $c_1=c_2k$  । ସୂତରାଂ ପ୍ରଥମ ସମୀକରଣଟି  $a_1x+b_1y+c_1=0$   $ka_2x+kb_2y+kc_2=0$  ହେବ ।

ଅର୍ଥାତ  $k(a_2x + b_2y + c_2) = 0$ 

ସେହେତୁ  $k \neq 0$ ,  $a_2x + b_2y + c_2 = 0$  ହେବ, ଯାହାକି ଦ୍ୱିତୀୟ ସମୀକରଣ ଅଟେ । ଅର୍ଥାତ୍ ପ୍ରଥମ ଓ ଦ୍ୱିତୀୟ ସମୀକରଣଦ୍ୱୟ ଏକ ଓ ଅଭିନ୍ନ । ଏହା ଯୋଗୁ ଅନୁଚ୍ଛେଦ 1.1ରେ ଆଲୋଚିତ ଦ୍ୱିତୀୟ ପରିସ୍ଥିତି ଉପୁକିଥାଏ । ସୁତରା $^{\circ} \frac{c_1}{c_2} = k$  ହେଲେ ଆମେ ଯାହା ପାଇବା ତାହା ହେଲା—

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \tag{4}$$

ହେଲେ ଆମକୁ ଅନନ୍ୟ ସମାଧାନ ନମିଳି ଅସଂଖ୍ୟ ସମାଧାନ ମିଳିବ । ଏହି କ୍ଷେତ୍ରରେ ଆମେ କହୁ ଯେ ପ୍ରଦତ୍ତ ସମୀକରଣଦ୍ୱୟ ସଙ୍ଗତ ଓ ପରସ୍ପର ନିର୍ଭରଶୀଳ (Consistent and dependent) ।

ଅବଶେଷରେ  $\frac{c_1}{c_2} \neq k$  ହେଲେ ଆମେ ଯାହା ପାଉଛେ ତାହା ହେଲା  $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$  (5) ଏ କ୍ଷେତ୍ରରେ ଆମକୁ ଦଉ ସହସମୀକରଣଦ୍ୱୟର କୌଣସି ସମାଧାନ ମିଳିବ ନାହିଁ କାରଣ ଏଠାରେ  $a_1b_2 = a_2b_1$  ଅର୍ଥାତ୍  $a_1b_2 - a_2b_1 = 0$  ହେବ । ଏହାହିଁ ଅନୁଚ୍ଛେଦ 1.1ରେ ଆଲୋଚିତ ତୃତୀୟ ପରିସ୍ଥିତି । ଏଠାରେ ସମୀକରଣଦ୍ୱୟ ଅସଙ୍ଗତ (inconsistent) ।

ଏହି ଆଲୋଚନାରୁ ଆମେ ଯାହା ଜାଣିଲେ ତାହାର ସାରାଂଶ ନିମ୍ନରେ ଦିଆଗଲା ।  $a_1x+b_1y+c_1=0 \ 3 \ a_2x+b_2y+c_2=0$ 

- (1)  $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$  ହେଲେ ସମୀକରଣଦ୍ୱୟ ସଙ୍ଗତ ଓ ସ୍ୱତନ୍ତ ଏବଂ ଅନନ୍ୟ ସମାଧାନ ସମ୍ଭବ ।
- (H)  $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$  ହେଲେ ସମୀକରଣଦ୍ୱୟ ସଙ୍ଗତ ଓ ନିର୍ଭିରଶୀଳ ଏବଂ ଅସଂଖ୍ୟ ସମାଧାନ ସନ୍ତବ୍ୟ
- (III)  $rac{a_1}{a_2} = rac{b_1}{b_2} 
  eq rac{c_1}{c_2}$  ହେଲେ ସମୀକରଣଦ୍ୱୟ ଅସଙ୍ଗତ ଓ କୌଣସି ସମାଧାନ ସମ୍ଭବ ନୁହେଁ।

ଦ୍ରଷ୍ଟବ୍ୟ : ସହସମୀକରଣ  $a_1x+b_1y=0$  ଓ  $a_2x+b_2y=0$  ଦ୍ୱୟର ଅନନ୍ୟ ସମାଧାନ୍ତି (0, 0) ଯଦି  $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$  ଓ ଅସଂଖ୍ୟ ସମାଧାନ ସମ୍ଭବ ଯଦି  $\frac{a_1}{a_2} = \frac{b_1}{b_2}$  । ଏ କ୍ଷେତ୍ରରେ ସମୀକରଣଦ୍ୱୟ ସହିଦା ସଙ୍ଗତ ଅଟନ୍ତି । ଭଦାହରଣ - 4 :

3x + my - 2 = 0, 6x - 4y + 5 = 0 ସହ ସମାକରଣଦ୍ୱୟର (i) ସମାଧାନ ଅନନ୍ୟ ହେବା ପାଇଁ (ii) ସମାଧାନ ସୟବ ନ ହେବାପାଇଁ (iii) ଅସଂଖ୍ୟ ସମାଧାନ ରହିବା ପାଇଁ, ଲର ଆନୁସଙ୍ଗିକ ମୂଲ୍ୟ ନିରୂପଣ କର ।

ସମାଧାନ : ଏଠାରେ ଦର ସମାକରଣଦ୍ୱୟ 3x + my - 2 = 0, 6x - 4y + 5 = 0 ଏବଂ  $a_1 = 3$ ,  $b_1 = m$ ,  $c_1 = -2$ ,  $a_2 = 6$ ,  $b_2 = -4$  ଓ  $c_2 = 5$  ।  $\vdots \qquad \frac{a_1}{a_2} = \frac{3}{6} = \frac{1}{2} \text{ , } \qquad \frac{b_1}{b_2} = \frac{m}{-4} = -\frac{m}{4} \text{ , } \qquad \frac{c_1}{c_2} = \frac{-2}{5} = -\frac{2}{5}$ 

(i) ଦର ସମୀକରଣଦ୍ୱୟର ଅନନ୍ୟ ସମାଧାନ ରହିବା ପାଇଁ ଆବଶ୍ୟକ ସର୍ଉଟି

$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \Rightarrow \frac{1}{2} \neq -\frac{m}{4} \Rightarrow m \neq -2$$

: mia ମୂଲ୍ୟ –2ରୁ ଭିନ୍ନ ଯେ କୌଣସି ରାଶି ହେଲେ ସହ ସମୀକରଣଦ୍ୱୟର ଅନନ୍ୟ ସମାଧାନ ସର୍ୟତ ।

- (iii) ଏ କ୍ଷେତ୍ରରେ ଆବଶ୍ୟକ ସର୍ତ୍ତିଟି  $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

ମାତ୍ର ଏଠାରେ  $\frac{a_1}{a_2} = \frac{1}{2}$  ଓ  $\frac{c_1}{c_2} = \frac{-2}{5}$  ସୁତରାଂ ଉପରଲିଖିତ ସର୍ଭ ସିଦ୍ଧ ହେବା ଅସୟବ । ଅତଏବ ଦଉ ସହ ସମୀକରଣଦ୍ୱୟର ଅସଂଖ୍ୟ ସମାଧାନ ରହିବା ସୟବ ନୂହେଁ । ଅର୍ଥାତ୍ mର ଏପରି କୌଣସି ମୂଲ୍ୟ ନାହିଁ ଯେପରିକି ଦଉ ସହ ସମୀକରଣଦ୍ୱୟ ସଙ୍ଗତ ଓ ନିର୍ଭରଶୀଳ ହେବେ । (ଉତ୍ତର)

#### ଉଦାହରଣ - 5 :

kର ମୂଲ୍ୟ ନିରୂପଣ କର ଯେପରି କି 5x-3y=0 ଓ 2x+ky=0 ସମ ସହସମୀକରଣଦ୍ୱୟର ଅସଂଖ୍ୟ ସମାଧାନ ସୟବ ।

ସମାଧାନ : ଏଠାରେ  $a_1 = 5$ ,  $b_1 = -3$ ,  $a_2 = 2$ ,  $b_2 = k$ 

ଦର ସମୀକରଣଦ୍ୱୟ ସମ ସହସମୀକରଣ ହୋଇଥିବାରୁ, ଏମାନଙ୍କର ଅସଂଖ୍ୟ ସମାଧାନ ରହିବା ପାଇଁ ଆବଶ୍ୟକୀୟ ସର୍ଭଟି  $\frac{a_1}{a_2} = \frac{b_1}{b_2} \Rightarrow \frac{5}{2} = \frac{-3}{k}$  ଅର୍ଥାତ୍  $k = -\frac{6}{5}$ 

 $\therefore k = -\frac{6}{5}$  ହେଲେ ଦଉ ସମ ସହସମୀକରଣଦ୍ୱୟର ଅସଂଖ୍ୟ ସମାଧାନ ରହିବ । (ଉତ୍କର)

#### 1.4. ଅଣ ସରଳରେଖିୟ ସହସମୀକରଣ :

ଏ ପର୍ଯ୍ୟନ୍ତ ଆମେ ସରଳରେଖିୟ ସହସମୀକରଣ  $a_r x + b_r y + c_r = 0$ , r = 1, 2 (1) ର ସମାଧାନ ସମ୍ପର୍କରେ ଆଲୋଚନା କରିଛେ। ଅନେକ ସହ ସମୀକରଣ ଯାହାକି ଏକଘାତୀ ନୂହେଁ, ସେମାନଙ୍କୁ ଆବଶ୍ୟକୀୟ ପରିବର୍ତ୍ତନ କରି ଏକଘାତୀ ରୂପକୁ ଅଣାଯାଇ ପାରିବ ଓ ଉପରେ ଆଲୋଚିତ ବୀକଗାଣିତିକ ପ୍ରଣାଳୀର ଅବଲୟନରେ ସମାଧାନ କରିହେବ। ମାତ୍ର ଏପରି ଆମେ ସମୟ କ୍ଷେତ୍ରରେ କରି ପାରିବା ନାହିଁ। କେତେଗୁଡ଼ିଏ ନିର୍ଦ୍ଦିଷ କ୍ଷେତ୍ରରେ ଏପରି କରାଯାଇ ପାରିବ।

#### ଉଦାହରଣ - 6:

ସମାଧାନ କର : 6x + 3y = 7xy, 3x + 9y = 11xy

ସମାଧାନ : ଲକ୍ଷ୍ୟ କର ଯେ ଦଉ ସହସମୀକରଣଦ୍ୱୟ ଏକଘାତୀ ନୁହଁନ୍ତି । କିନ୍ତୁ ଉଭୟ ସମୀକରଣର ଦୂଇ ପାର୍ଶ୍ୱକୁ xy ଦ୍ୱାରା ଭାଗକଲେ (ଏଥିପାଇଁ ମନେକର ଯେ,  $x \neq 0$  ଓ  $y \neq 0$  ତେବେ  $xy \neq 0$ )

$$\frac{6}{y} + \frac{3}{x} = 7$$
,  $\frac{3}{y} + \frac{9}{x} = 11$ 

ଏଠାରେ  $\frac{1}{x} = v$  ଓ  $\frac{1}{y} = v$  ଲେଖିଲେ ଦନ୍ଧ ସମୀକରଣଦ୍ୱୟର ପରିବର୍ତ୍ତୀତ ରୂପ 3v + 6v - 7 = 0 ଏବଂ 9v + 3v - 11 = 0

ବ୍ରକ୍ରଗୁଣନ ଦ୍ୱାରା 
$$\frac{\upsilon}{6} = \frac{v}{-7} = \frac{v}{-7} = \frac{1}{3}$$

$$3 -11 -11 -9 -9 -3$$

$$\Rightarrow \frac{\upsilon}{-66 + 21} = \frac{v}{-63 + 33} = \frac{1}{9 - 54} \Rightarrow \frac{\upsilon}{-45} = \frac{v}{-30} = \frac{1}{-45}$$

$$\Rightarrow \upsilon = \frac{-45}{-45} = 1 \ \Im \ \ v = \frac{-30}{-45} = \frac{2}{3} \Rightarrow \frac{1}{x} = 1 \ \Im \ \frac{1}{y} = \frac{2}{3} \Rightarrow x = 1 \ \Im \ y = \frac{3}{2}$$

$$\therefore \ \widehat{\cap} \text{ 6 d } \widehat{\cup} \text{ QRIO } \text{ QRIO }$$

ଉଦାହରଣ - 7:

ସମାଧାନ କର : 
$$\frac{1}{2(2x+3y)} + \frac{12}{7(3x-2y)} = \frac{1}{2}$$
,  $\frac{7}{2x+3y} + \frac{4}{3x-2y} = 2$ 

ସମାଧାନ :

ମନେକର 
$$v = \frac{1}{2x + 3y}$$
 ଓ  $v = \frac{1}{3x - 2y}$ 

. ଦଉ ସହ ସମୀକରଣଦ୍ୱୟର ପରିବର୍ତ୍ତିତ ରୂପ 
$$\frac{1}{2} \upsilon + \frac{12}{7} \upsilon = \frac{1}{2}$$
,  $7\upsilon + 4\upsilon = 2$ 

ଅର୍ଥାତ୍ 
$$7v + 24v - 7 = 0$$
 (ii)

$$7v + 4v - 2 = 0$$
 (iii)

$$(ii) - (iii) \Rightarrow 20 \text{ v} - 5 = 0 \Rightarrow \text{ v} = \frac{1}{4}$$

$$\therefore 3x - 2y = 4 \tag{iv}$$

(iii)ରେ 
$$v = \frac{1}{4}$$
 ଲେଖିଲେ ପାଇବା  $7 \upsilon + 1 - 2 = 0 \Rightarrow \upsilon = \frac{1}{7}$   
∴  $2x + 3y = 7$ 

$$2(iv) - 3(v) \implies 2(3x - 2y) - 3(2x + 3y) = 8 - 21$$
  
 $\Rightarrow -13y = -13 \implies y = 1$ 

(iv) ରେ 
$$y = 1$$
 ଲେଖିଲେ ପାଇବା  $3x - 2 = 4 \Rightarrow x = 2$ 

ः ବର ସହ ସମାକରଣଦ୍ୱୟର ନିର୍ଦ୍ଧେୟ ସମାଧାନ (2, 1) ଅଟେ। (ଉତ୍ତର)

#### ଅନୁଶୀଳନୀ - 1(a)

1. ବନ୍ଧନୀ ମଧ୍ୟରୁ ଠିକ୍ ଉତ୍ତରଟି ବାଛି ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର ।

- (i) x + y = 0 ସମୀକରଣର ଅନ୍ୟତମ ସମାଧାନ \_\_\_\_\_ [ (4, 5), (-4, 4), (-4, 5), (5, 5)]
- (ii) 2x+y+2 = 0 ସମୀକରଣର ଅନ୍ୟତମ ସମାଧାନ\_\_\_\_\_| [(0, 2), (2, 0), (-2, 0), (0, -2)]

(iii) 
$$3x - 4y + 1 = 0 \Rightarrow x =$$
 (4y-1,  $\frac{1}{3}(4y-1), -\frac{1}{3}(4y-1), -(4y-1)$ ]

(iv) 
$$2x - y + 2 = 0 \Rightarrow y =$$
 [(2x+2), (-2x+2), (2x-2), -(2x+2)]

(v) 2x + 1 = 0 ଓ y - 1 = 0ର ସମାଧାନ \_\_\_\_\_

$$\left[\left(-\frac{1}{2}, 1\right), \left(-\frac{1}{2}, -1\right), \left(\frac{1}{2}, -1\right), \left(\frac{1}{2}, 1\right)\right]$$

(v)

(vi) ax + by + c = 0 ସମୀକରଣର ବ୍ୟବହାର କରି xକୁ y ମାଧ୍ୟମରେ ପ୍ରକାଶ କରିବା ପାଇଁ ଆବଶ୍ୟକୀୟ ସର୍ତ୍ତ \_\_\_\_\_। [ $a \neq 0, b \neq 0, c \neq 0, b + c \neq 0$ ]

$$(vii)$$
  $x + y + 2 = 0$ ,  $2x + 2y - 5 = 0$  ସହ ସମୀକରଣଦ୍ୟ \_\_\_\_\_ା

[ସଙ୍ଗତ ଓ ସ୍ୱତନ୍ତ, ସଙ୍ଗତ ଓ ନିର୍ଭରଶୀଳ, ଅସଙ୍ଗତ]

[ସଙ୍ଗତ ଓ ସ୍ୱତନ୍ତ, ସଙ୍ଗତ ଓ ନିର୍ଭରଶୀଳ; ଅସଙ୍ଗତ]

(ix) x + y + 2 = 0, 2x - y - 1 = 0 ସମୀକରଣଦ୍ୟ \_\_\_\_\_

[ସଙ୍ଗତ ଓ ସ୍ୱତନ୍ତ, ସଙ୍ଗତ ଓ ନିର୍ଭରଶୀଳ, ଅସଙ୍ଗତ]

- (x) 2002 x y = 0 ଓ x + 1000y = 0 ସମୀକରଣବ୍ୟର ସମାଧାନଟି \_\_\_\_\_ [(2002, 1000), (2002, 0), (0, 1000), (0, 0)]
- 2. (i) ଦୁଇଗୋଟି ସହସମୀକରଣର ଉଦାହରଣ ଦିଅ ଯେପରିକି ସେମାନଙ୍କର କୌଣସି ସମାଧାନ ସମ୍ଭବ ନୂହେଁ।
  - (ii) ଦୁଇଗୋଟି ସହସମୀକରଣର ଉଦାହରଣ ଦିଅ ଯାହାର ଅନନ୍ୟ ସମାଧାନ ସୟବ।
  - (iii) ଦୁଇଗୋଟି ସହସମୀକରଣର ଉଦାହରଣ ଦିଅ ଯାହାର ଅସଂଖ୍ୟ ସମାଧାନ ସୟବ।
  - ୍ (iv) kର କେଉଁ ମୂଲ୍ୟ ପାଇଁ kx+y+2=0 ଓ 2x+y+1=0 ସମୀକରଣଦ୍ୱୟ ଅସଙ୍ଗତ ହେବେ ?
    - (v) kx + my + 4 = 0 ଓ <math>2x + y + 1 = 0 ସହସମୀକରଣଦ୍ୱୟ ଅସଙ୍ଗତ ହେଲେ k : m କେତେ?
    - (vi) 2x + 3y 5 = 0 ଓ 7x 6y 1 = 0 ସହସମୀକରଣଟିର (1, β) ସମାଧାନ ହେଲେ βର ମୂଲ୍ୟ କେତେ ?
    - (vii) x ଓ y ର କେଉଁ ମୂଲ୍ୟ ପାଇଁ ଉଭୟ x + y + c ଓ ax + by + 1 ପରିପ୍ରକାଶଦ୍ୱୟର ମୂଲ୍ୟ ଶୂନ ହେବ ?
    - (viii) xy- ସମତଳରେ ଦୁଇଟି ସରଳରେଖା  $L_1$  ଓ  $L_2$ ର ସମୀକରଣ ଯଥାକୁମେ  $a_1x+b_1y+c_1=0$  ଓ  $a_2x+b_2y+c_2=0$  । ଯଦି  $L_1$  ଓ  $L_2$  ପରସ୍ପରକୁ (2, 3) ବିନ୍ଦୁରେ ଛେଦକରଡି ତେବେ  $2a_1+3b_1+c_1$  ଓ  $2a_2+3b_2+c_2$  ପ୍ରତ୍ୟେକର ମୂଲ୍ୟ କେତେ ?
    - (ix)  $a_1x + b_1y + c_1 = 0$  ସମୀକରଣର ଅନ୍ୟତମ ମୂଳ (0, 0) ହେଲେ  $c_1$ ର ମୂଲ୍ୟ କେତେ ?
    - (x) ax + by = 0 ସମୀକରଣର ତିନିଗୋଟି ସମାଧାନ (0, p), (1, q), (2, r) ହେଲେ p, q ଓ rର ମୂଲ୍ୟ ନିରୂପଣ କର ।
- ନିମୁଲିଖିତ ପ୍ରଶ୍ରମାନଙ୍କର ଉତ୍ତର ସଂକ୍ଷେପରେ ଦିଅ।
  - (i) x y = 0 ଓ x + y 2 = 0 ସମୀକରଣଦ୍ୱୟର ସମାଧାନ ନିର୍ଦ୍ଧିୟ କର ।
  - (ii) x-1=0 ଓ x+y-2=0 ସମୀକରଣଦ୍ୱୟର ସମାଧାନ ନିର୍ତ୍ତୟ କର ।
  - (iii) x + y 3 = 0 ଓ y 2 = 0 ସମୀକରଣଦ୍ୱୟର ସମାଧାନ ନିର୍ଦ୍ଧିୟ କର ।
  - (iv) x + y = 0 ଓ x y = 0 ସମୀକରଣଦ୍ୱୟର ଅନନ୍ୟ ସମାଧାନ ସମ୍ଭବ କି ନୁହେଁ ପରୀକ୍ଷା କର ।
  - (v) x + y = 0 ଓ x y = 0 ସମୀକରଣଦ୍ୱୟର ସମାଧାନ ପାଇଁ ବଳ୍ପଗୁଣନ ପଦ୍ଧତିଟି ଲେଖ ।
  - (vi) x+y+1=0 ସମୀକରଣର ଯେକୌଣସି ତିକିଗୋଟି ସମାଧାନ  $(\alpha_r,\ \beta_r),\ r=1,\ 2,\ 3$  ଲେଖ ଯେପରିକି  $\alpha_r,\ \beta_r\in\{0,\pm1,\pm2,.....\}$  ।
  - (vii) 2x-y=0 ସମୀକରଣର ଚାରିଗୋଟି ,ସମାଧାନ  $(\alpha_r,\ \beta_r),\ r=1,\ 2,\ 3,\ 4$  ଲେଖ ଯେପରିକି  $\alpha_r,\ \beta_r,\ \in \{1,\ 2,\ 3,...\}$  ।

- (viii) x -2y+1=0 ସମାକରଣର ଯେକୌଣସି ଡିନିଗୋଟି ସମାଧାନ  $(\alpha_r,\ \beta_r),\ r=1,\,2,\,3$  ଲେଖ ଯେପରିକି α, ଓ β, ଉଇୟେ ଭଗାଂଶ ସଂଖ୍ୟା।
- (ix) ନିମ୍ନଲିଖିତ ମଧ୍ୟରୁ କେଉଁଗୁଡ଼ିକ 2x-3y+2=0 ସମୀକରଣର ସମାଧାନ ସେଗୁଡ଼ିକ ବାଛ : (a) (1, 2), (b) (2, 2), (c) (5, 4), (d) (0, 4), (e) (1, 0), (f) (3, 2)
- (x) t ର କେଉଁ ମୂଲ୍ୟ ପାଇଁ (1, 1) ସମୀକରଣ 3x + ty 6 = 0 ର ଅନ୍ୟତମ ସମାଧାନ ହେବ?
- (xi) t ର କେଉଁ ମୂଲ୍ୟ ପାଇଁ (1, 1) ସମୀକରଣ tx 2y 10 = 0 ର ଅନ୍ୟତମ ସମାଧାନ ହେବ ?
- (xii) t ର କେଉଁ ମୂଲ୍ୟ ପାଇଁ  $(1,\ 1)$  ସମାକରଣ 5x+3y-t=0 ର ଅନ୍ୟତମ ସମାଧାନ ହେବ ?
- (xiii) a, b, c, r=1,2 ମଧ୍ୟରେ କେଉଁ କେଉଁ ସମ୍ପର୍କ ପାଇଁ  $a_ix+b_iy+c_i=0$  ଓ  $a_{,x} + b_{,x} + c_{,} = 0$  ସମୀକରଣଦ୍ୱୟ ସଙ୍ଗତ ହେବେ ?
- (xiv) a, b, c, r=1, 2 ମଧ୍ୟରେ କେଉଁ ସମ୍ପର୍କ ପାଇଁ a, x+b, y+c, =0 ଓ a, x+b, y+c, =0ସମୀକରଣଦ୍ୱୟ ଅସଙ୍ଗତ ହେବେ ?
- (xv) t ର କେଉଁ ମୂଲ୍ୟ ପାଇଁ tx+2y=0 ଓ 3x+ty=0 ସମୀକରଣଦ୍ୱୟର ଅସଂଖ୍ୟ ସମାଧାନ ସୟବ ? ପ୍ରତିକଳ୍ପନ ପ୍ରଣାଳୀରେ ନିମ୍ନଲିଖିତ ସମୀକରଣମାନଙ୍କ ସମାଧାନ କର ।

(i) 
$$x + y - 7 = 0$$
 (ii)  $3x + y - 11 = 0$  (iii)  $x - y - 1 = 0$   $x + 3y - 9 = 0$ 

(i) 
$$x + y - 7 = 0$$
 (ii)  $3x + y - 11 = 0$ 

(iii) 
$$2x + 3y - 2 = 0$$
  
 $10x - 6y - 3 = 0$ 

(iv) 
$$3x + 2y - 5 = 0$$
 (v)  $8x - 3y - 1 = 0$  (vi)  $x + y - a = 0$   
 $x - 3y - 9 = 0$   $24x - 3y - 14 = 0$   $ax+by-b^2 = 0$ 

(v) 
$$8x - 3y - 1 = 0$$

$$6x - 3y - 1 = 0$$
 (vi)  $x + y - a = 0$   
 $24x - 3y - 14 = 0$   $ax + by - b^2 = 0 (a \ne b)$ 

ଅପସାରଣ ପ୍ରଣାଳୀରେ ନିମୁଲିଖିତ ସମୀକରଣମାନଙ୍କର ସମାଧାନ କର।

(i) 
$$x + y - 1 = 0$$
 (ii)  $2x - y - 5 = 0$  (iii)  $4x - y - 7 = 0$ 

(ii) 
$$2x - y - 5 = 0$$

$$(111) 4x - y - 7 = 0$$

$$x - y - 3 = 0$$

$$x + 2y - 10 = 0$$
  $3x + 4y - 29 = 0$ 

$$3x + 4y - 29 = 0$$

(iv) 
$$5x - 7y + 6 = 0$$
 (v)  $\frac{x}{2} + \frac{y}{3} - 4 = 0$  (vi)  $ax - by = 0$ 

(v) 
$$\frac{x}{2} + \frac{y}{3} - 4 = 0$$

$$(vi) ax - by = 0$$

$$3x + 2y - 15 = 0$$

$$\frac{x}{12} + \frac{y}{6} - 1 = 0$$

$$\frac{x}{12} + \frac{y}{6} - 1 = 0$$
  $x + y - c = 0(a + b \neq 0)$ 

ବଳ୍ପଗ୍ରଣନ କରି ନିମ୍ନଲିଖିତ ସମୀକରଣମାନଙ୍କ ସମାଧାନ କର ।

(i) 
$$3x - 4y + 1 = 0$$
 (ii)  $7x + 2y - 8 = 0$  (iii)  $2x + 3y - 2 = 0$ 

(ii) 
$$7x + 2y - 8 = 0$$

(iii) 
$$2x + 3y - 2 = 0$$

$$5x + 2y - 7 = 0$$

$$2x - 3y - 13 = 0$$
  $6x + 6y - 5 = 0$ 

$$6x + 6y - 5 = 0$$

(iv) 
$$x + 6y + 1 = 0$$

(iv) 
$$x + 6y + 1 = 0$$
 (v)  $\frac{x}{6} + \frac{y}{15} - 4 = 0$  (vi)  $4x - 9y = 0$ 

(vi) 
$$4x - 9y = 0$$

$$2x + 3y + 8 = 0$$

$$2x + 3y + 8 = 0$$
  $\frac{x}{3} - \frac{y}{12} - \frac{19}{4} = 0$ 

$$3x + 2y - 35 = 0$$

ନିମ୍ନଲିଖିତ ସମୀକରଣମାନଙ୍କୁ ସମାଧାନ କର ।

(i) 
$$\frac{2}{x} + \frac{3}{y} = 17$$
,  $\frac{1}{x} + \frac{1}{y} = 7$  (ii)  $\frac{5}{x} + 6y = 13$ ,  $\frac{3}{x} + 20y = 35$  (x \neq 0, y \neq 0) (x \neq 0)

(iii) 
$$2x - \frac{3}{y} = 9$$
,  $3x + \frac{7}{y} = 2$  (iv)  $4x + 6y = 3xy$ ,  $8x + 9y = 5xy$  ( $y \neq 0$ ) ( $x \neq 0$ ,  $y \neq 0$ )

(v) 
$$(a-b) x + (a+b) y = a^2-2ab-b^2$$
 (vi)  $\frac{x}{a} + \frac{y}{b} = 2$ ,  $ax - by = a^2 - b^2$   
 $(a+b) x + (a+b)y = a^2 + b^2$ 

(vii) 
$$\frac{5}{x+y} - \frac{2}{x-y} + 1 = 0$$
 (viii)  $\frac{xy}{x+y} = \frac{6}{5}$ ,  $\frac{xy}{y-x} = 6$    
  $\frac{15}{x+y} + \frac{7}{x-y} - 10 = 0$  (x + y \neq 0, x - y \neq 0)

(ix) 
$$6x + 5y = 7x + 3y + 1 = 2(x + 6y - 1)$$

(x) 
$$\frac{x+y-8}{2} = \frac{x+2y-14}{3} = \frac{3x+y-12}{11}$$
 (xi)  $\frac{x+y}{2} - \frac{x-y}{3} = 8$ ,  $\frac{x+y}{3} + \frac{x-y}{4} = 11$ 

(xii) 
$$\frac{x}{a} = \frac{y}{b}$$
, ax + by =  $a^2 + b^2$ 

- 8. k ର ମୂଲ୍ୟ ନିରୂପଣ କର ଯେପରିକି 7x-y=5 ଓ 21x-3y=k ସମୀକରଣଦ୍ୱୟ ସଙ୍ଗତ ହେବେ ।
- 9. k ର ମୂଲ୍ୟ ନିରୂପଣ କର ଯେପରିକି ନିମ୍ନଲିଖିତ ସମୀକରଣଦ୍ୱୟର ଅନନ୍ୟ ସମାଧାନ ରହିବ ।

(i) 
$$x - 2y = 3$$
 (ii)  $2x + 3y = 5$  (iii)  $x - ky = 2$   $3x + ky = 1$   $kx - 6y = 8$   $3x + 2y = -5$ 

ka ମୂଲ୍ୟ ନିରୂପଣ କର ଯେପରିକି ନିମ୍ନଲିଖିତ ସମୀକରଣଦ୍ୱୟ ଅସଙ୍ଗତ ହେବେ ।

(i) 
$$3x - 4y + 7 = 0$$
 (ii)  $2x + ky - 11 = 0$  (iii)  $kx - 5y - 2 = 0$   
 $kx + 3y - 5 = 0$   $5x - 7y - 5 = 0$   $6x + 2y - 7 = 0$ 

1.5. ଲେଖଚିତ୍ରଦ୍ୱାରା ସହସମୀକରଣର ସମାଧାନ :

ନବମ ଶ୍ରେଣୀର ଗଣିତ ପୂଞ୍ଚକରେ ଆମେ ଅଧ୍ୟୟନ କରିଛେ ଯେ ଏକଘାତୀ ସମୀକରଣର ଲେଖଚିତ୍ର ଏକ ସରଳରେଖା । ଆମକୁ ପ୍ରଦତ୍ତ ଦୁଇଗୋଟି ଏକଘାତୀ ସମୀକରଣ

$$a_1 x + b_1 y + c_1 = 0$$
 (1)

$$a_{y}x + b_{y}y + c_{y} = 0$$
 (2)

ର ଲେଖଚିତ୍ର ଅଙ୍କନ କରି ସେମାନଙ୍କ ଛେଦ ବିନ୍ଦୁ (୍ଦ, β) ନିର୍ଷିୟ କଲେ ଦଉ ସହସମୀକରଣଦ୍ୱୟର ସମାଧାନ ଜାଣି ହୋଇଥାଏ । ଲେଖଚିତ୍ରଦ୍ୱାରା ସହସମୀକରଣଦ୍ୱୟର ସମାଧାନ ପ୍ରଣାଳୀର ଆଲୋଚନା କରାଯାଇଛି ।

#### ଲେଖଚିତ୍ର ପ୍ରଣାଳୀ :

- (i) ପ୍ରତ୍ୟେକ ସମୀକରଣ ପାଇଁ ଦୁଇଗୋଟି ସମାଧାନ ନିର୍ଶୟ କର।
- ୁ (ii) ଉପଯୁକ୍ତଭାବେ  $\overrightarrow{OX}$  ଓ  $\overrightarrow{OY}$  ଅଙ୍କନ କର ଓ (i)ରେ (1) ସମୀକରଣର ନିରୂପିତ ସମାଧାନ  $P(x_1,y_1)$ . ଓ  $P_2(x_2,\ y_2)$ କୁ ବିନ୍ଦୁରୂପେ ଲେଖଚିତ୍ର କାଗକରେ ସ୍ଥାପନ କର । ସେହିପରି (2) ସମୀକରଣ ପାଇଁ ନିରୂପିତ ସମାଧାନଦ୍ୱୟ  $P_1'(x_1',\ y_1')$  ଓ  $P_2'(x_2',\ y_2')$  କ୍ଲୁ ବିନ୍ଦୁରୂପେ ସ୍ଥାପନ କର ।
  - (iii)  $P_1$  ଓ  $P_2$  ବିନ୍ଦୁଦ୍ୱୟଙ୍କୁ ସଂଯୋଗ କରି L ସରଳରେଖା  $P_1'$  ଓ  $P_2'$  ବିନ୍ଦୁଦ୍ୱୟଙ୍କୁ ସଂଯୋଗ କରି L' ସରଳରେଖା ଅଙ୍କନ କର ଓ ସେମାନଙ୍କ ଛେଦ ବିନ୍ଦୁ  $P(\alpha, \beta)$  ନିର୍ତ୍ତୟ କର ।
  - (iv). (α, β) ଆବଶ୍ୟକୀୟ ସମାଧାନ ଅଟେ।

#### ଉଦାହରଣ - 8:

ଲେଖଚିତ୍ର ଅଙ୍କନ କରି ସମାଧାନ କର : x+y-3=0, x-y-1=0

#### ସମାଧାନ:

x+y-3=0 ର ସମାଧାନ ନିମ୍ନ ଟେବୂଲ୍ରେ ଦିଆଯାଇଛି । ଏଠାରେ ଦତ୍ତ ସମୀକରଣଟିକୁ y=3-x ରୂପେ ଲେଖି x=0 ଓ x=3 ପାଇଁ y ର ଆନୁସଙ୍ଗିକ ମାନ ନିଆଯାଇଛି ।

| х | 0 | 3 |  |
|---|---|---|--|
| у | 3 | 0 |  |

:. P ଓ P ବିନ୍ଦୁଦ୍ୟର ସ୍ଥାନାଙ୍କ ଯଥାକୁମେ (0, 3) ଓ (3, 0) l

ସେହିପରି x-y-1=0 କୁ y=x-1 ରୂପେ ଲେଖି x=0 ଓ x=1 ପାଇଁ yର ଆନୁସଙ୍ଗିକ ମାନ ନିର୍ଷିୟ କରାଯାଇଛି ଓ ଏହାର ଦୁଇଟି ସମାଧାନକୁ ନିମ୍ନ ଟେବୁଲରେ ଦିଆଯାଇଛି ।

| х | 0  | 1 |  |
|---|----|---|--|
| У | -1 | 0 |  |

 $\cdot$ :  $P_1'$  ଓ  $P_2'$  ବିନ୍ଦୁଦ୍ୱୟର ସ୍ଥାନାଙ୍କ ଯଥାକୁମେ (0,-1) ଓ (1,0) ଅଟନ୍ତି ।

ଲେଖ କାଗକରେ  $\overrightarrow{OX}$  ଓ  $\overrightarrow{OY}$  ଅକ୍ଷଦ୍ୱୟ ଏପରିଭାବେ ଅଙ୍କନ କରାଯିବା ଉଚିତ ଯେପରିକି ନିରୂପିତ ବିନ୍ଦୁ  $P_1$ ,  $P_2$  ଓ  $P_1'$ ,  $P_2'$  ମାନଙ୍କୁ ଲେଖଚିତ୍ର କାଗକରେ ସ୍ଥାପନ କରାଯାଇପାରିବ । ଏଥିପାଇଁ ଅକ୍ଷଦ୍ୱୟ ଉପରେ 0,  $\pm 1$ ,  $\pm 2$ .....ସଂଖ୍ୟାମାନଙ୍କୁ ଉପଯୁକ୍ତ ଭାବେ ସ୍ଥାପନ କରାଯିବା ଆବଶ୍ୟକ ।  $L \subset \Upsilon$ 

ଏହାପରେ  $P_1$  ଓ  $P_2$ ର ସଂଯୋଗକାରୀ ସରଳରେଖା L ଓ  $P_1'$  ଓ  $P_2'$  ର ସଂଯୋଗକାରୀ ସରଳରେଖା L' ଅଙ୍କନ କରାଯାଇ ସେମାନଙ୍କ ଛେଦବିନ୍ଦୁ  $P(\alpha,\beta)$  କୁ ଚିହ୍ନଟ କରାଗଲା । P ବିନ୍ଦୂର x–ସ୍ଥାନାଙ୍କ  $\alpha$  ଓ y–ସ୍ଥାନାଙ୍କ  $\beta$  ହେଲେ  $(\alpha,\beta)$  ଦଉ ସମୀକରଣଦ୍ୱୟର ସମାଧାନ । ଏହି ଉଦାହରଣରେ  $\alpha=2$   $\longleftrightarrow$   $\beta=1$  |

∴ ଆବଶ୍ୟକୀୟ ସମାଧାନଟି (2, 1) ।



ମନେରଖଯେ ଅକ୍ଷଦ୍ୱୟ ଉପରିସ୍ଥ ସଂଖ୍ୟା 0, ±1, ±2....., ଏପରିଭାବେ ଚିହ୍ନିତ ହେବା ଆବଶ୍ୟକ ଯେପରିକି ଛେଦବିନ୍ଦୂ P ଲେଖଚିତ୍ର କାଗକ ଉପରେ ରହୁଥିବ । ବିନ୍ଦୁଟି ଲେଖଚିତ୍ର କାଗକ ବାହାରକୁ ଚାଲିଗଲେ ଏହାର ସମାଧାନ ପାଇବାରେ ବାଧା ସୃଷ୍ଟି କରିଥାଏ। ଉଦାହରଣ – 9 :

ଲେଖଚିତ୍ର ଅଙ୍କନ କରି ସମାଧାନ କର : 2x - 3y = 1, 3x - 4y = 1

ସମାଧାନ : ଦର ସମୀକରଣ (i) ଓ (ii)ରୁ 
$$2x-3y=1 \Rightarrow y=\frac{1}{3} (2x-1)$$
 (i)

$$3x - 4y = 1 \implies y = \frac{1}{4} (3x - 1)$$
 (ii)

(i) ରେ xର ଦୁଇଗୋଟି ମାନ ପାଇଁ yର ଆନୁସଙ୍ଗିକ ମାନ ସ୍ଥିର କରି ଦୁଇଟି କ୍ରମିକ ଯୋଡ଼ି ପାଇବା ।

| х | 2 | 5 |  |
|---|---|---|--|
| у | 1 | 3 |  |

ସେହିପରି (ii) ପାଇଁ ଦୂଇଟି ବିନ୍ଦୁର କ୍ରମିକ ଯୋଡ଼ି ସ୍ଥିର କର ।

| х | -1 | 3 |
|---|----|---|
| у | -1 | 2 |

$$P_1'(-1,-1)$$
 '19°  $P_2'(3,2)$ 

୍. ପ୍ରଥମ ସମୀକରଣର ସମାଧାନଦ୍ୟ (2,1) ଓ (5,3) ଓ ଏମାନେ  $P_1(2,1)$ ,  $P_2(5,3)$  ବିନ୍ଦୁଦ୍ୟଙ୍କୁ ସୂଚାନ୍ତି । ସେହିପରି ଦ୍ୱିତୀୟ ସମୀକରଣର ସମାଧାନଦ୍ୟ (3,2), (-1,-1) ଓ ଏମାନେ  $P_1'(3,2)$ ,  $P_2'(-1,-1)$  ବିନ୍ଦୁଦ୍ୟଙ୍କୁ ସୂଚାନ୍ତି । ଉପଯୁକ୍ତ ଭାବେ ଲେଖଚିତ୍ର କାଗକରେ  $\overrightarrow{OX}$  ଓ  $\overrightarrow{OY}$  ଅଷ ନେଇ  $P_1$ ,  $P_2$  ଏବଂ  $P_1'$ ,  $P_2'$  ବିନ୍ଦୁମାନଙ୍କୁ ସ୍ଥାପନ କରିବା ପରେ  $P_1$  ଓ  $P_2$ ର ସଂଯୋଗକାରୀ ସରକରେଖା L ଓ  $P_1'$ ,  $P_2'$ 



ବିନ୍ଦୁଦ୍ୱୟର ସଂଯୋଗକାରୀ ସରଳରେଖା L/ ଅଙ୍କନ କରାଗଲା (ଚିତ୍ର 1.6)। L ଓ L/ ସରଳରେଖାଦ୍ୱୟର ଛେଦବିନ୍ଦୁ ଆବଶ୍ୟକୀୟ ସମାଧାନ ପ୍ରଦାନ କରିବ। ଲେଖଚିତ୍ରରୁ ଏହା ସୁସ୍ମୃଷ୍ଟ ଯେ (–1, –1) ଦଉ ସମୀକରଣଦ୍ୱୟର ସମାଧାନ ଅଟେ। (ଉତ୍ତର)

#### ଅନୁଶୀଳନୀ - 1(b)

ଲେଖଚିତ୍ର ଅଙ୍କନ କରି (1 ରୁ ୨ ପର୍ଯ୍ୟନ୍ତ) ସମାଧାନ କର :

1. 
$$x - y = 0$$
  
 $x + y - 2 = 0$ 

2. 
$$x + y - 3 = 0$$
  
 $2x + 3y - 12 = 0$ 

3. 
$$3x + 2y - 8 = 0$$

$$5x - 2y - 8 = 0$$

4. 
$$\frac{x}{2} + \frac{y}{3} = 2$$
  
 $2x - y = 1$   
5.  $3x + 2y = 14$   
 $-3x + 4y = 10$   
6.  $2x + y - 4 = 0$   
 $3x + 2y - 7 = 0$   
7.  $2x + y - 3 = 0$   
 $2x - 3y - 7 = 0$   
8.  $2x - y = 5$   
 $2x - 3y - 7 = 0$   
 $5x + 2y + 1 = 0$   
 $x = 6$ 

- 10. 5x + 6y = 30 ସମୀକରଣର ଲେଖଚିତ୍ର ଅଙ୍କନ କରି ଉକ୍ତ ଲେଖଚିତ୍ରଟି x-ଅକ୍ଷ, y- ଅକ୍ଷକୁ କେଉଁ କେଉଁ ବିନ୍ଦୁରେ ଛେଦ କରୁଛି ତାହା ନିରୂପଣ କର।
- 11. ନିମ୍ନଲିଖିତ ଟେବୂଲ୍ଟି ବ୍ୟବହାର କରି ଲେଖଚିତ୍ର ଅଙ୍କନ କର ଓ a, bର ମୂଲ୍ୟ ନିରୂପଣ କର ।

| х | 1 | -1 | 2 | b  | 5  |
|---|---|----|---|----|----|
| у | 3 | a  | 1 | -3 | -5 |

#### 1.6. ପାଟୀଗଣିତ ପ୍ରଶ୍ନର ସମାଧାନରେ ପ୍ରୟୋଗ :

ସମୀକରଣମାନଙ୍କ ସମାଧାନ କରି ଆମେ ଅନେକ ପାଟୀଗଣିତର କଟିକ ପ୍ରଶ୍ନମାନଙ୍କ ସମାଧାନ ସହକରେ କରିପାରିବା । ଗୋଟିଏ ଅଜ୍ଞାତ ରାଶି ଥାଇ ଏକଘାତୀ ସମୀକରଣର ସମାଧାନ କିପରି କରାଯାଏ, ତାହା ଅଷ୍ଟମ ତଥା ନବମ ଶ୍ରେଣୀ ଗଣିତ ପୂଞ୍ଚକରେ ଆଲୋଚନା କରାଯାଇଛି । ଏଠାରେ ପୂର୍ବରୁ ଆଲୋଚିତ ଦୁଇଗୋଟି ଏକଘାତୀ ସହସମୀକରଣର ସମାଧାନ କିପରି ପାଟୀଗଣିତର ପ୍ରଶ୍ନମାନଙ୍କ ସମାଧାନରେ ପ୍ରୟୋଗ କରାଯାଇପାରିବ ତାହା ଆଲୋଚନା କରିବା ।

#### ଉଦାହରଣ - 10 :

ପିତାଙ୍କ ବୟସର ଦୁଇଗୁଣ ଓ ପୁତ୍ରର ବୟସର ସମଷି 105 ବର୍ଷ। ମାତ୍ର ପିତାଙ୍କ ବୟସ ଓ ପୁତ୍ରର ବୟସର ଦୁଇଗୁଣର ସମଷି 75 ବର୍ଷ। ତେବେ ପିତା ଓ ପୁତ୍ରଙ୍କ ବୟସ ନିରୂପଣ କର। ସମାଧାନ :

ମନେକର ପିତାଙ୍କ ବୟସ = 
$$x$$
 ବର୍ଷ ଓ ପୁତ୍ରର ବୟସ =  $y$  ବର୍ଷ । ପ୍ରଶ୍ନାନୁଯାୟୀ  $2x + y - 105 = 0$ ,  $x + 2y - 75 = 0$  ବଲୁଗୁଣନ କଲେ  $\frac{x}{1 \times (-75) - 2 \times (-105)} = \frac{y}{-105 \times 1 - (-75) \times 2} = \frac{1}{2 \times 2 - 1 \times 1}$   $\Rightarrow \frac{x}{135} = \frac{y}{45} = \frac{1}{3} \Rightarrow x = \frac{135}{3} = 45$  ଓ  $y = \frac{45}{3} = 15$   $\therefore$  ପିତାଙ୍କ ବୟସ =  $45$  ବର୍ଷ ଓ ପୁତ୍ରର ବୟସ =  $15$  ବର୍ଷ । (ଭରର)

#### ଉଦାହରଣ - 11 :

ଏକ ଆୟତକ୍ଷେତ୍ରର ଦୈର୍ଘ୍ୟକୁ 5 ସେ.ମି. କମାଇ ପ୍ରସ୍ଥକୁ 3 ସେ.ମି. ବଡ଼ାଇବା ଦ୍ୱାରା ଏହାର କ୍ଷେତ୍ର ଫଳ 9 ବର୍ଗ ସେ.ମି. କମିଯାଏ । ଆୟତକ୍ଷେତ୍ରର ୍ଦିର୍ଘ୍ୟକୁ 3 ସେ.ମି. ଓ ପ୍ରସ୍ଥକୁ 2 ସେ.ମି. ବଡ଼ାଇବା ଦ୍ୱାରା ଷେତ୍ରଫଳ 67 ବର୍ଗ ସେ.ମି. ବଡ଼ିଯାଏ । ଆୟତକ୍ଷେତ୍ରର ଦୈର୍ଘ୍ୟ ଓ ପ୍ରସ୍ଥ ନିର୍ଣ୍ଣୟ କର । ସମାଧାନ : ମନେକର ଆୟତକ୍ଷେତ୍ରର ଦୈର୍ଘ୍ୟ = x ସେ.ମି. ଓ ପ୍ରସ୍ଥ = y ସେ.ମି.

:. ଆୟତକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ = xy ବର୍ଗ ସେ.ମି.

ପ୍ରଶ୍ନାନୁଯାୟୀ 
$$(x - 5) (y + 3) = xy - 9 \Rightarrow 3x - 5y - 6 = 0$$

ପୁନଶ 
$$(x + 3) (y + 2) = xy + 67 \Rightarrow 2x + 3y - 61 = 0$$

ସହସମୀକରଣବ୍ୱୟରୁ ବଳ୍ପଗୁଣନ ପଦ୍ଧତିରେ ପାଇଁବା

$$\frac{x}{(-5)(-61) - (3)(-6)} = \frac{y}{(-6)(2) - (-61)(3)} = \frac{1}{(3)(3) - (2)(-5)}$$

$$\Rightarrow \frac{x}{323} = \frac{y}{171} = \frac{1}{19} \implies x = \frac{323}{19} = 17 \quad \text{AP} \quad y = \frac{171}{19} = 9$$

∴ ଆୟତ କ୍ଷେତ୍ରର ଦୈର୍ଘ୍ୟ 17 ସେ.ମି. ଓ ପ୍ରସ୍ଥ ୨ ସେ.ମି.

(ଉଉର)

#### ଉଦାହରଣ - 12 :

8 କଣ ପୂରୁଷ ଓ 12 କଣ ସୀଲୋକ ଗୋଟିଏ କାର୍ଯ୍ୟକୁ 10 ଦିନରେ ଶେଷକରି ପାରନ୍ତି। 6 କଣ ପୁରୁଷ ଓ 8 କଣ ସୀଲୋକ ଉକ୍ତ କାର୍ଯ୍ୟକୁ 14 ଦିନରେ ଶେଷକରି ପାରିଲେ, କଣେ ସୀଲୋକ ସେହି କାର୍ଯ୍ୟକୁ କେତେ ଦିନରେ ଶେଷ କରିପାରିବ ?

#### ସମାଧାନ :

ମନେକର କଣେ ପୁରୁଷ x ଦିନରେ ଓ କଣେ ହୀଲୋକ y ଦିନରେ କାର୍ଯ୍ୟଟିକୁ ଶେଷକରି ପାରିବେ । ତେବେ କଣେ ପୁରୁଷ ଗୋଟିଏ ଦିନରେ କାର୍ଯ୍ୟର  $\frac{1}{x}$  ଅଂଶ କରିପାରେ ଓ କଣେ ହୀଲୋକ ଗୋଟିଏ ଦିନରେ କାର୍ଯ୍ୟର  $\frac{1}{y}$  ଅଂଶ କରିପାରେ । ମାତ୍ର ୪ଜଣ ପୁରୁଷ ଓ 12 ଜଣ ହୀଲୋକ ଗୋଟିଏ ଦିନରେ କାର୍ଯ୍ୟର  $\frac{1}{10}$  ଅଂଶ ଏବଂ 6 ଜଣ ପୁରୁଷ ଓ ୪ ଜଣ ହୀଲୋକ ଗୋଟିଏ ଦିନରେ କାର୍ଯ୍ୟର  $\frac{1}{14}$  ଅଂଶ କରନ୍ତି ।

ସୁତରା° ପ୍ରଶ୍ନାନୁଯାୟୀ 
$$\frac{8}{x} + \frac{12}{y} = \frac{1}{10}$$
,  $\frac{6}{x} + \frac{8}{y} = \frac{1}{14}$ 

$$\frac{1}{x} = v$$
 ଓ  $\frac{1}{y} = v$  ଲେଖିଲେ ସମୀକରଣଦ୍ୱୟର ପରିବର୍ତ୍ତିତ ରୂପ ପାଇବା—  $80v + 120v - 1 = 0$  ଏବଂ  $84v + 112v - 1 = 0$ 

ସମୀକରଣଦ୍ୟର ସମାଧାନ ପାଇଁ ବଳ୍ପଗୁଣନ ପଦ୍ଧତି ଅବଲୟନ କଲେ

$$\frac{\upsilon}{120(-1) - 112(-1)} = \frac{\upsilon}{84(-1) - 80(-1)} = \frac{1}{80 \times 112 - 120 \times 84}$$

$$\Rightarrow \frac{\upsilon}{-8} = \frac{\upsilon}{-4} = \frac{1}{-1120} \Rightarrow \upsilon = \frac{8}{1120} = \frac{1}{140} \quad \Im \quad \upsilon = \frac{4}{1120} = \frac{1}{280}$$

$$\Rightarrow x = 140 \quad \Im \quad y = 280_{14}$$

ି । ଜଣେ ସା ଲୋକ କାର୍ଯ୍ୟଟିକୁ 280 ଦିନରେ ସମାପ୍ତ କରିପାରିବ । (ଉତ୍ତର)

#### ଉଦାହରଣ - 13:

ଦୁଇଟି ସଂଖ୍ୟାର ଯୋଗଫଳ 15 ଓ ସେମାନଙ୍କ ବ୍ୟୁତ୍କ୍ରମ ରାଶିଦ୍ୱୟର ଯୋଗଫଳ  $\frac{3}{10}$  ହେଲେ ସଂଖ୍ୟାଦ୍ୱୟ ନିରୂପଣ କର ।

ସମାଧାନ : ମନେକର ସଂଖ୍ୟା ଦ୍ୟ x ଓ y l

(i) ଓ (iii)କୁ ସମାଧାନ କଲେ  $x=10,\ y=5$  କିୟା (i) ଓ (iv)କୁ ସମାଧାନ କଲେ x=5 ଓ y=10 ପାଇବା। ଅତଏବ ସଂଖ୍ୟାଦ୍ୟ 10 ଓ 5। (ଉଉର)

#### ଅନୁଶୀଳନୀ - 1(c)

- ରାମ ଓ ଶ୍ୟାମର ବୟସର ଯୋଗଫଳ ଓ ବିୟୋଗଫଳ ଯଥାକ୍ରମେ 60 ବର୍ଷ ଓ 30 ବର୍ଷ ହେଲେ କାହାର ବୟସ କେତେ?
- 2. ଏପରି ଦୂଇଟି ସଂଖ୍ୟା ନିର୍ଦ୍ଧିୟ କର ମେପରିକି ପ୍ରଥମଟିର 3 ଗୁଣରୁ ଦ୍ୱିତୀୟଟିର 2 ଗୁଣ ବିୟୋଗକଲେ ବିୟୋଗଫଳ 2 ହେବ ଏବଂ ଦ୍ୱିତୀୟଟିରେ 7 ଯୋଗକଲେ ଯୋଗଫଳ ପ୍ରଥମଟିର 2ଗୁଣ ହେବ।
- 3. ଗୋଟିଏ ସମବାହୁ ତ୍ରିଭୁଳର ବାହୁତ୍ରୟର ଦୈର୍ଘ୍ୟ ସେ.ମି. ରେ x + 4, 4x + y ଓ y + 2 ହେଲେ ବାହୁର ଦୈର୍ଘ୍ୟ ସ୍ଥିର କର ।
- 4. ABCD ଆୟଡକ୍ଷେତ୍ରର AB = 3x + y ସେ.ମି., BC = 3x + 2 ସେ.ମି., CD = 3y 2x ସେ.ମି. ଓ DA = y + 3 ସେ.ମି. ହେଲେ ଆୟଡକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ ନିରୂପଣ କର ।
- 5. ଦୁଇ ଅଙ୍କ ବିଶିଷ ଗୋଟିଏ ସଂଖ୍ୟା, ତାହାର ଅଙ୍କଦ୍ୱୟର ଯୋଗଫଳର 4 ଗୁଣ । କିନ୍ତୁ ସଂଖ୍ୟାଟିରେ 36 ଯୋଗକଲେ ଅଙ୍କଦ୍ୱୟର ସ୍ଥାନ ବଦଳିଯାଏ । ତେବେ ସଂଖ୍ୟାଟି କେତେ ?
- ଦୁଇ ଅଙ୍କ ବିଶିଷ ଗୋଟିଏ ସଂଖ୍ୟା ଓ ତାହାର ଅଙ୍କଦ୍ୱୟର ସ୍ଥାନ ବଦଳାଇ ଲେଖିଲେ ଯେଉଁ ସଂଖ୍ୟା । ମିଳିବ, ସେ ଦୁହିଁଙ୍କର ଯୋଗଫଳ 121 ଓ ଅଙ୍କଦ୍ୱୟର ଅନ୍ତର 3 ହେଲେ ସଂଖ୍ୟାଟି କେତେ?
- ମ. ଗୋଟିଏ ଭଗ୍ନ ସଂଖ୍ୟାର ଲବ ଓ ହରକୁ ଯୋଗକରି ଯୋଗଫଳର ଏକ ତୃତୀୟାଂଶ ନେଲେ, ତାହା ହରଠାରୁ 4 ଉଣା ହୁଏ ଓ ହରରେ । ଯୋଗକରି ଭଗ୍ନସଂଖ୍ୟାକୁ ଲଘିଷ ଆକାରେ ଲେଖିଲେ ତାହା 1/4 ହୁଏ । ଭଗ୍ନ ସଂଖ୍ୟାଟି କେତେ ?

PM 01/07#11

- ି । ଏକ ଶହ ଅପେକ୍ଷା କ୍ଷୁଦ୍ରତର ଗୋଟିଏ ସଂଖ୍ୟାର ଅଙ୍କମାନଙ୍କ ସମଷ୍ଟି 10; କିନ୍ତୁ ଅଙ୍କଗୁଡ଼ିକର ସ୍ଥାନ ବଦଳାଇଲେ ଉତ୍ପନ୍ନ ସଂଖ୍ୟାଟି ମୂଳ ସଂଖ୍ୟାର 2 ଗୁଣରୁ 1 ଉଣା ହୁଏ । ସଂଖ୍ୟାଟି ସ୍ଥିର କର ।
- ୨. ଗୋଟିଏ ଆୟତକ୍ଷେତ୍ରରେ ଦୈର୍ଘ୍ୟ 2 ମି. ଅଧିକ ଓ ପ୍ରସ୍ଥ 2 ମି. କମ୍ ହେଲେ କ୍ଷେତ୍ରଫଳ 28 ବର୍ଗ ମି. କମିଯାଏ; ମାତ୍ର ଦୈର୍ଘ୍ୟ 1ମି. କମ୍ ଓ ପ୍ରସ୍ଥ 2 ମି. ଅଧିକ ହେଲେ କ୍ଷେତ୍ରଫଳ 33 ବର୍ଗ ମି. ବଢ଼ିଯାଏ। ମୂଳ ଆୟତକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ ନିରୂପଣ କର ।
- 10. 2 କଣ ପୁରୁଷ ଓ 3 କଣ ସୀ ଲୋକ ଏକତ୍ର ଗୋଟିଏ କାର୍ଯ୍ୟକୁ 5 ଦିନରେ ଶେଷକରି ପାରଡି। ସେହି କାର୍ଯ୍ୟକୁ 4କଣ ପୁରୁଷ ଓ 9 ଜଣ ସୀ ଲୋକ ଏକତ୍ର 2 ଦିନରେ ଶେଷ କରି ପାରଡି। ତେବେ କଣେ ସୀ କିମ୍ଭା ଜଣେ ପୁରୁଷ ସେହି କାର୍ଯ୍ୟକୁ କେତେ ଦିନରେ ଶେଷ କରିପାରିବେ ?
- 11. A ଓ B ଏକତ୍ର କାମ କରି ଗୋଟିଏ କାର୍ଯ୍ୟକୁ 8 ଦିନରେ ଶେଷକରି ପାରନ୍ତି । ସେମାନେ ଏକତ୍ର କାର୍ଯ୍ୟ ଆରୟ କରି 3 ଦିନ କାର୍ଯ୍ୟ କରିବା ପରେ A ଚାଲିଗଲା ଓ ଅବଶିଷ୍ଟ କାର୍ଯ୍ୟକୁ B ଏକା ଆଉ 15 ଦିନରେ ଶେଷକଲା । ପ୍ରତ୍ୟେକ ଏକାକୀ କାମକଲେ କେତେ ଦିନରେ କାର୍ଯ୍ୟଟିକୁ ଶେଷକରି ପାରିବେ ?
- 12. ଗୋଟିଏ ନୌକା ସ୍ରୋତର ଅନୁକୂଳରେ 25 କି.ମି. ଓ ପ୍ରତିକୂଳରେ 15 କି.ମି. ବାଟ୍ ଯିବାକୁ 10 ଘଣ୍ଟା ସମୟ ନେଲା । ସେହିପରି ସ୍ରୋତର ଅନୁକୂଳ ଓ ପ୍ରତିକୂଳରେ ସଥାକ୍ରମେ 30 କି.ମି. ଓ 20 କି.ମି. ଦୂରତା ଯିବାକୁ 13 ଘଣ୍ଟା ସମୟ ନିଏ । ସ୍ରୋତର ବେଗ ଓ ସ୍ଥିର ଜଳରେ ନୌକାର ବେଗ ନିର୍ଣ୍ଣୟ କର ।
- 13. A ଓ Bର ଆୟର ଅନୁପାତ 8 : 7 ଓ ବ୍ୟୟର ଅନୁପାତ 19 : 16 । ଯଦି ଉତ୍ତୟେ 1250 ଟଙ୍କା ସଂଚୟ କରିପାରତ୍ତି ତେବେ ସେମାନଙ୍କର ଆୟ ନିର୍ଶ୍ୱୟ କର ।
- 14. ଗୋଟିଏ ସାମଗ୍ରୀ A କୁ 5% କ୍ଷତିରେ ଓ ଅନ୍ୟ ଏକ ସାମଗ୍ରୀ B କୁ 15% ଲାଭରେ ବିକ୍ରୟ କରିବାରୁ କଣେ ଦୋକାନୀ ମୋଟ 7 ଟଙ୍କା ଲାଭ କଲେ । ଯଦି A କୁ 5% ଲାଭରେ ଓ B କୁ 10% ଲାଭରେ ବିକ୍ରୟ କରିଥାତ୍ତେ ତେବେ ମୋଟ 13 ଟଙ୍କା ଲାଭ କରିଥାତେ । ତେବେ A ଓ B ସାମଗ୍ରୀଦ୍ୟର କ୍ରୟମୂଲ୍ୟ କେତେ ?
- 15. 30 କି.ମି. ଯିବାକୁ A, B ଅପେକ୍ଷା 3 ଘଣା ଅଧିକ ସମୟ ନିଏ । ଯଦି A ତା'ର ବେଗକୁ 2 ଗୁଣ କରେ ତେବେ ସେହି 30 କି.ମି. ଯିବାକୁ A, B ଅପେକ୍ଷା  $1\frac{1}{2}$  ଘଣା କମ୍ ସମୟ ନିଏ । A ଓ Bର ଘଣାପ୍ରତି ବେଗ ନିର୍ଣୟ କର ।
- 16. ଗୋଟିଏ ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରରେ 1 ଯୋଗକଲେ ଭଗ୍ନାଂଶଟି  $\frac{4}{5}$  ହୋଇଥାଏ ଓ ଉଭୟ ଲବ ଓ ହରରୁ 5 ବିୟୋଗକଲେ ଏହା  $\frac{1}{2}$ ରେ ପରିଣତ ହୁଏ । ଭଗ୍ନାଂଶଟି ନିରୂପଣ କର ।
- 17. 5 ବର୍ଷ ପରେ ପିତାର ବୟସ ପୁତ୍ରର ବୟସର ତିନିଗୁଣ ହେବ ଓ 5 ବର୍ଷ ପୂର୍ବେ ପିତାର ବୟସ ପୁତ୍ର ବୟସର ସାତଗୁଣ ଥିଲା । ତେବେ ସେମାନଙ୍କର ବର୍ତ୍ତମାନ ବୟସ ସ୍ଥିର କର ।
- 18. ଦୁଇଟି ବିନ୍ଦୁ P ଓ Q ମଧ୍ୟରେ ଦୂରତା ୨୦ କି.ମି.। ଦୁଇଟି କାର୍ ଏକା ସମୟରେ P ଓ Qରୁ ଯାତ୍ରା ଆରୟ କଲେ। ସେମାନେ ଏକା ଦିଗରେ ଯାତ୍ରା କରୁଥିଲେ ପରସ୍ପରକୁ ୨ ଘଣ୍ଟା ପରେ ଓ ବିପରୀତ ଦିଗକୁ ଯାତ୍ରା କଲେ  $\frac{9}{7}$ ଘଣ୍ଟା ପରେ ପରସ୍ପର ସହ ମିଳିତ ହୁଅନ୍ତି । କାର ଦୁଇଟିର ବେଗ ନିର୍ଣ୍ଣୟ କର । (ସୂଚନା : ବେଗ ଘଣ୍ଟାପ୍ରତି x ଓ y କି.ମି. ହେଲେ 9x 9y = 90 [ଯଦି ଏକା ଦିଗକୁ ଗତି କରନ୍ତି],  $\frac{9}{7}x + \frac{9}{7}y = 90$  [ଯଦି ପରସ୍ପର ଆଡ଼କୁ ଗତି କରନ୍ତି])

- 19. ଏକ ଦୂଇ ଅଙ୍କ ବିଶିଷ ସଂଖ୍ୟା ଓ ସଂଖ୍ୟାଟିରେ ଅଙ୍କଦ୍ୱୟର କ୍ରମ ବଦଳାଇଲେ ଲବ୍ଧ ସଂଖ୍ୟାଟିର ସମଷ୍ଟି 187, ଯଦି ସଂଖ୍ୟାଟିରେ ଥିବା ଅଙ୍କଦ୍ୱୟର ଅନ୍ତର 1 ହୁଏ ତେବେ ସଂଖ୍ୟାଟି କେତେ ?
- 20. 50କୁ ଦୁଇଟି ସଂଖ୍ୟାର ସମଷି ରୂପେ ପ୍ରକାଶ କର ଯେପରିକି ସଂଖ୍ୟାଦ୍ୱୟର ବ୍ୟୁତ୍କୁମ ସଂଖ୍ୟା (Reciprocal)ର ସମଷି  $\frac{1}{12}$  ହେବ ।
- 21. ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ରରେ ABC ତ୍ରିଭୁକର ∠A , ∠B ଓ ∠Cର ପରିମାଣ ନିର୍ବୟ କର ।
  - (i)  $m \angle A + m \angle B = m \angle C \otimes m \angle A m \angle B = 30^{\circ}$
  - (ii)  $m \angle A = 3m \angle B$ ,  $2m \angle C = 5(m \angle A m \angle B)$
- 22. ଦୁଇକଣ ବ୍ୟକ୍ତି A ଓ B ମାସିକ ଆୟର ଅନୁପାତ 9 : 7 ଓ ସେମାନଙ୍କ ବ୍ୟୟର ଅନୁପାତ 4 : 3 । ଯଦି ଉଭୟଙ୍କ ମାସିକ ସଂଚୟ 200 ଟଙ୍କା ତେବେ ସେମାନଙ୍କ ମାସିକ ଆୟ କେତେ ?

000