【Embedding】Metapath2vec: 异构网络表征

原创 阿泽crz 阿泽的学习笔记 2020-06-02

今天学习的是微软的一篇论文《metapath2vec: Scalable Representation Learning for Heterogeneous Networks》,发表于 KDD 2017,目前引用次数超 500 次。

很多网络表征学习主要是针对同构网络的,而本文提出的一种专门用于异构网络表征学习的方法——Metapath2Vec,其能够同时捕捉不同类型节点之间的「结构关系」和「语义关系」。

Metapath2Vec 使用基于元路径的随机游走方法来捕捉节点的异构邻居,然后使用异构 Skip-Gram 模型进行训练,同时建模结构上和语义上相近的节点。

此外,作者还提出了 Metapath2Vec++ 方法,针对每种类型的节点进行单独归一化,即把 异构网络分解成不同的同构网络。

最终实验表明,这两种 Metapath2Vec 方法不仅在异构网络挖掘任务中取得了 SOTA 的成绩,而且还能够识别不同网络对象之间的结构和语义关系。

1.Introduction

目前大部分的工作都集中在同构网络中,但真实场景下异构网络才是最常见的。针对同构网络设计的模型很多都没法应用于异构网络,比如说,对于一个学术网络而言:如何高效根据上下文信息表征不同类型的节点?能否用 Deepwalk 或者 Node2Vec 来学习网络中的节点?能否直接将应用于同构网络的 Embedding 模型直接应用于异构网络?

解决诸如此类的挑战,有利于更好的在异构网络中应用多种网络挖掘任务:

传统的方法都是基于结构特征 (如元路径 meta-path) 来求相似性, 类似的方法有 PathSim、PathSelClus、RankClass 等:

但这种方式挖掘出来的元路径(如 "APCPA")经常会出现相似度为 0 的情况。如果我们能够将 Embedding 的思想应用于异构网络,则不会再出现这种情况。

基于这种观察,作者提出了两个可以应用于异构网络的 Graph Embedding 的算法模型——metapath2vec 以及 metapath2vec++。

2.Metapath2Vec

为了对异构网络节点中的邻居进行建模, metapath2vec 引入了异构 skip-gram 模型。此外, 为了捕获异构网络的结构, 作者还提出了基于元路径的随机游走策略。

先给出流程图:

2.1 Meta-Path-Based Random Walks

Metapath2vec 同构 metapath 来指导随机游走的节点跳转。给出元路径模式 \mathcal{P} :

$$\mathcal{P} = V_1 \stackrel{R_1}{\longrightarrow} V_2 \stackrel{R_2}{\longrightarrow} \cdots V_t \stackrel{R_t}{\longrightarrow} V_{t+1} \cdots \stackrel{R_{l-1}}{\longrightarrow} V_l$$

其中, 节点类型间的关系表示:

$$R = R_1 \circ R_2 \circ \cdots \circ R_{l-1}$$

"APA" 关系表示两位作者(A)在一篇论文(P)上的合著关系; "APVPA" 表示两位作者(A)在同一会议(V)发表过论文(P)。这种元路径有利于异构网络的数据挖掘。

基于元路径模式 \mathcal{P} , 我们给出转移概率:

$$pig(v^{i+1}|v^i_t,\mathcal{P}ig) = egin{cases} rac{1}{|N_{t+1}(v^i_t)|} & ig(v^{i+1},v^i_tig) \in E, \phiig(v^{i+1}ig) = t+1 \ 0 & ig(v^{i+1},v^i_tig) \in E, \phiig(v^{i+1}ig)
eq t+1 \ 0 & ig(v^{i+1},v^i_tig)
otin E \end{cases}$$

其中 $v_t^i \in V_t$, $N_{t+1}(v_t^i)$ 表示节点 v_t^i 的邻居中属于 V_{t+1} 类型的节点集合。

也就是说,游走是在预先设定的 meta-path \mathcal{P} 的条件上。通常 meta-path 一般用在对称 的路径上,第一个节点类型与最后一个节点类型相同,例如 OAPVPAO。

$$pig(v^{i+1}|v_t^iig) = pig(v^{i+1}|v_1^iig) \quad if \ t = l$$

2.2 Heterogeneous skip-gram

对于每个节点 v, 根据其不同类型的上下文最大化其上下文:

$$rg \max_{ heta} \sum_{v \in V} \sum_{t \in T_V} \sum_{c_t \in N_t(v)} \log p(c_t|v; heta) p(c_t|v; heta) = rac{e^{X_{c_t} X_v}}{\sum_{u \in V} e^{X_u X_v}}$$

其中, V 表示网络的节点集合; T_V 表示节点类型的集合; $N_t(v)$ 表示节点 v 的类型为 t 的邻居集合。 X_v 表示节点 v 的 Embedding 向量。

考虑负采样的目标函数:

$$log \ \sigma(X_{c_t} \cdot X_v) + \sum_{m=1}^M \mathbb{E}_{u^m \sim P(u)}[log \ \sigma(-Xu^m \cdot X_v)]$$

其中,P(u) 是负采样中样本的预定义分布;metapath2vec 通过均匀地观察不同类型的节点并绘制(负)节点来维护一个节点频率分布。

相比于考虑负采样的 Skip-gram 的目标函数而言并无本质区别,唯一的区别在于采样的策略上发生了变换。

##2.3 Metapath2Vec++

Metapath2Vec 在计算 Softmax 时不考虑节点的类型。Metapath2Vec++ 在采集负样本时,考虑样本与正样本属于同一个节点类型。也就是「异构负采样 (Heterogeneous negative sampling)」。

考虑条件概率 p 在特定的节点类型 t 上做标准化:

$$p(c_t|v; heta) = rac{e^{X_{c_t}\cdot X_v}}{\sum_{u_t \in V_t} e^{X_{u_t}\cdot X_v}}$$

此时,目标函数为:

$$log \ \sigma(X_{c_t} \cdot X_v) + \sum_{m=1}^M \mathbb{E}_{u_t^m \sim P_t(u_t)}[log \ \sigma(-X_{u_t^m} \cdot X_v)]$$

与 Skip-gram 没有本质区别,但异构网络的「异构」信息不仅仅在采样中体现出来,也在目标函数中被体现出来。

来看下伪代码:

```
Input: The heterogeneous information network G = (V, E, T),
        a meta-path scheme \mathcal{P}, #walks per node w, walk
        length l, embedding dimension d, neighborhood size k
Output: The latent node embeddings \mathbf{X} \in \mathbb{R}^{|V| \times d}
initialize X;
for i = 1 \rightarrow w do
    for v \in V do
        MP = MetaPathRandomWalk(G, \mathcal{P}, v, l);
        X = HeterogeneousSkipGram(X, k, MP);
    end
end
return X;
MetaPathRandomWalk(G, P, v, l)
MP[1] = v;
for i = 1 \rightarrow l-1 do
    draw u according to Eq. 3;
    MP[i+1] = u;
end
return MP;
HeterogeneousSkipGram(X, k, MP)
for i = 1 \rightarrow l do
    v = MP[i];
    for j = max(0, i-k) \rightarrow min(i+k, l) \& j \neq i do
        c_t = MP[j] ;
        X^{new} = X^{old} - \eta \cdot \frac{\partial O(X)}{\partial X} (Eq. 7);
    end
end
   ALGORITHM 1: The metapath2vec++ Algorithm. 的学习笔记
```

3.Experiment

简单看一下实验。

以 Aminer 数据集为例, "会议" 节点节点分类的结果: (百分号为训练的数据集的占比)

Metric	Method	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DeepWalk/node2vec	0.0723	0.1396	0.1905	0.2795	0.3427	0.3911	0.4424	0.4774	0.4955	0.4457
Macro-F1	LINE (1st+2nd)	0.2245	0.4629	0.7011	0.8473	0.8953	0.9203	0.9308	0.9466	0.9410	0.9466
Macro-F1	PTE	0.1702	0.3388	0.6535	0.8304	0.8936	0.9210	0.9352	0.9505	0.9525	0.9489
	metapath2vec	0.3033	0.5247	0.8033	0.8971	0.9406	0.9532	0.9529	0.9701	0.9683	0.9670
	metapath2vec++	0.3090	0.5444	0.8049	0.8995	0.9468	0.9580	0.9561	0.9675	0.9533	0.9503
	DeepWalk/node2vec	0.1701	0.2142	0.2486	0.3266	0.3788	0.4090	0.4630	0.4975	0.5259	0.5286
Missa E1	LINE (1st+2nd)	0.3000	0.5167	0.7159	0.8457	0.8950	0.9209	0.9333	0.9500	0.9556	0.9571
Micro-F1	PTE	0.2512	0.4267	0.6879	0.8372	0.8950	0.9239	0.9352	0.9550	0.9667	0.9571
	metapath2vec	0.4173	0.5975	0.8327	0.9011	0.9400	0.9522	0.9537	0.9725	0.9815	0.9857
	metapath2vec++	0.4331	0.6192	0.8336	0.9032	0.9463	0.9582	0.9574	0.9700	6.9741	0.9786

"作者"节点分类的结果:

Metric	Method	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DeepWalk/node2vec	0.7153	0.7222	0.7256	0.7270	0.7273	0.7274	0.7273	0.7271	0.7275	0.7275
Macro-F1	LINE (1st+2nd)	0.8849	0.8886	0.8911	0.8921	0.8926	0.8929	0.8934	0.8936	0.8938	0.8934
Macro-F1	PTE	0.8898	0.8940	0.897	0.8982	0.8987	0.8990	0.8997	0.8999	0.9002	0.9005
	metapath2vec	0.9216	0.9262	0.9292	0.9303	0.9309	0.9314	0.9315	0.9316	0.9319	0.9320
	metapath2vec++	0.9107	0.9156	0.9186	0.9199	0.9204	0.9207	0.9207	0.9208	0.9211	0.9212
	DeepWalk/node2vec	0.7312	0.7372	0.7402	0.7414	0.7418	0.7420	0.7419	0.7420	0.7425	0.7425
Micro-F1	LINE (1st+2nd)	0.8936	0.8969	0.8993	0.9002	0.9007	0.9010	0.9015	0.9016	0.9018	0.9017
MICTO-F1	PTE	0.8986	0.9023	0.9051	0.9061	0.9066	0.9068	0.9075	0.9077	0.9079	0.9082
	metapath2vec	0.9279	0.9319	0.9346	0.9356	0.9361	0.9365	0.9365	0.9365	0.9367	0 9369
	metapath2vec++	0.9173	0.9217	0.9243	0.9254	0.9259	0.9261	0.9261	0.9262	0.9264	0.9266

参数敏感性实验:

节点分类结果:

methods	venue	author
DeepWalk/node2vec	0.1952	0.2941
LINE (1st+2nd)	0.8967	0.6423
PTE	0.9060	0.6483
metapath2vec	0.9274	0.7470
metapath2vec++	0.9261	0.7354
		2) 阿爾的字2

metapath2vec++ 聚类结果的可视化:

4. Conclusion

总结:本文定义了异构网络中表征学习问题,其存在不同类型的节点和边。为了应对异构网络所带来的挑战,作者提出了 Metapath2Vec 和 Metapath2Vec++ 两种算法。

Metapath2Vec 首先「基于元路径的引导进行随机游走」并采集到相关序列,该能够捕捉到不同类型节点的关系结构和语义相关性。虽然,作者利用异构 Skip-gram 和异构负采样技术来学习节点的表征。Metapath2Vec++ 算法则是在计算 Softmax 时不考虑节点的类型。最终实验表明,这两种算法在异构网络中取得了不错的成绩。