Unicidad de la realización geométrica

Rafael Villarroel

2021-01-26 15:00 -0500

Homeomorfismo

Dos espacios métricos X, Y son homeomorfos si existen funciones $f: X \to Y$, $g: Y \to X$ continuas, tales que $g \circ f = 1_X$ y $f \circ g = 1_Y$. Esto se denota como $X \cong Y$.

Lema

Sea $A \subseteq \mathbb{R}^n$ un conjunto afínmente independiente. Para $v \in A$, definimos la función $t_v \colon |A| \to \mathbb{R}$, donde $t_v(\alpha)$ es la coordenada baricéntrica correspondiente a v de α (es decir, $\alpha = t_v(\alpha)v + \sum_{w \in A - \{v\}} t_w w$ y $\sum_{w \in A} t_w = 1$). Entonces t_v es continua.

Lema del pegado

Sean X, Y dos espacios topológicos, y sean F_1 , $F_2 \subseteq X$ conjuntos cerrados tales que $X = F_1 \cup F_2$. Sean $f_1 : F_1 \to Y$ y $f_2 : F_2 \to Y$ funciones continuas. Supongamos que $f_1(x) = f_2(x)$ si $x \in F_1 \cap F_2$. Entonces la función $f : X \to Y$ definida como:

$$f(x) = \begin{cases} f_1(x) & \text{si } x \in F_1, \\ f_2(x) & \text{si } x \in F_2 \end{cases}$$
 (1)

es continua.

Observación

El lema del pegado puede extenderse por inducción al caso en el que X es igual a la unión de una cantidad finita de conjuntos cerrados.

Observación

Sea Δ un complejo simplicial, y sea $\phi \colon \Delta_0 \to \mathbb{R}^n$ un encaje afín. Supongamos $\alpha \in |\sigma|_{\phi} \cap |\tau|_{\phi}$. Para cada $v \in \phi(\sigma)$ existe una función t_v^{σ} como en el lema 3. Si además $v \in \phi(\tau)$, entonces existe una función t_v^{τ} . Como ϕ es un encaje afín, existe $\rho \in \Delta$ tal que $|\rho|_{\phi} = |\sigma|_{\phi} \cap |\tau|_{\phi}$,

Teorema

Sea Δ un complejo simplicial. Sean $\phi \colon \Delta_0 \to \mathbb{R}^n$ y $\psi \colon \Delta_0 \to \mathbb{R}^m$ dos encajes afines. Entonces $|\Delta|_{\phi}$ es homeomorfo a $|\Delta|_{\psi}$.

Demostración

Sea $\Delta_0 = \{x_0, x_1, \ldots, x_k\}$. Sea $\alpha \in |\Delta|_{\phi}$. Entonces $\alpha \in |\sigma|_{\phi}$ para algún $\sigma \in \Delta$. Supongamos que $\sigma = \{x_{i_0}, x_{i_1}, \ldots, x_{i_s}\}$. Supongamos $\alpha = \sum_{j=0}^s t_{i_j} \phi(x_{i_j})$. Definimos $f(\alpha)$ como $f(\alpha) = \sum_{j=0}^s t_{i_j} \psi(x_{i_j})$. Para demostrar que la función $f: |\Delta|_{\phi} \to |\Delta|_{\psi} \subseteq \mathbb{R}^m$ es continua, basta con demostrar que para cada simplejo $\sigma \in \Delta$ se tiene que la función que extrae las coordenadas baricéntricas de $|\sigma|_{\phi}$ es continua.