Lineare Algebra 2 — Übungsblatt 9

Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Abgabe: Do 02.07.2020 um 9:15 Uhr

32. Aufgabe: (2+2+2 Punkte, Polynome mit speziellen Nullstellen) Seien $A = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \in M_{2,2}(\mathbb{R})$ und $B = \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix} \in M_{2,2}(\mathbb{R})$.

- (a) Man zeige, dass $\sqrt{2}$ ein Eigenwert von *A* und $\sqrt{3}$ ein Eigenwert von *B* ist.
- (b) Man bestimme $C := A \otimes E_2 + E_2 \otimes B \in M_{4,4}(\mathbb{R})$.
- (c) Man berechne $\chi_C^{\text{char}} \in \mathbb{R}[t]$ und folgere aus Aufgabe 31 (c), dass $\chi_C^{\text{char}}(\sqrt{2}+\sqrt{3})=0$.
- **33. Aufgabe:** (2+2+2 *Punkte, Tensorprodukte und Dualräume)* Seien K ein Körper und V ein (nicht notwendig endlich-dimensionaler) K-Vektorraum. Für $n \in \mathbb{N}$ setzen wir

$$V^{\otimes n} := \underbrace{V \otimes \cdots \otimes V}_{n \text{ mal}} \quad \text{und} \quad (V^*)^{\otimes n} := \underbrace{V^* \otimes \cdots \otimes V^*}_{n \text{ mal}}.$$

Man zeige:

- (a) Seien $f_1, \ldots, f_n \in V^*$. Dann gibt es eine eindeutige lineare Abbildung $\varphi_{f_1, \ldots, f_n} \colon V^{\otimes n} \to K$ mit $\varphi_{f_1, \ldots, f_n}(x_1 \otimes \cdots \otimes x_n) = f_1(x_1) \cdot \ldots \cdot f_n(x_n)$ für $x_1, \ldots, x_n \in V$.
- (b) Es gibt eine eindeutige lineare Abbildung $\Phi_n : (V^*)^{\otimes n} \to (V^{\otimes n})^*$ mit

$$\Phi_n(f_1 \otimes \cdots \otimes f_n) = \varphi_{f_1,\dots,f_n}$$
 für $f_1,\dots,f_n \in V^*$.

- (c) Sei n = 2 und V endlich-dimensional. Dann ist Φ_2 ein Isomorphismus (von K-Vektorräumen).
- **34. Aufgabe:** (3+3 *Punkte, Erzeugendensysteme von äußeren Potenzen)* Seien *R* ein Ring und *M* ein endlich erzeugter *R*-Modul.
 - (a) Seien $m \in \mathbb{N}$ und $(x_1, ..., x_m)$ ein Erzeugendensystem von M. Man zeige, dass für $n \in \mathbb{N}$ mit $n \le m$ die Familie

$$(x_{i_1} \wedge \cdots \wedge x_{i_n})_{1 \leq i_1 < \cdots < i_n \leq m}$$

ein Erzeugendensystem von $\bigwedge^n M$ ist.

- (b) Sei nun $R = \mathbb{Z}[\sqrt{-5}] := \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}\$ und $I = (2, 1 + \sqrt{-5}) \subseteq R$. Man zeige, dass $\bigwedge^2 I = 0$ ist.
- **35. Aufgabe:** (3+3 Punkte, Äußere Potenzen und Tensorprodukte) Seien R ein Ring und M ein R-Modul. Man zeige:
 - (a) Es gibt einen eindeutigen R-Modulhomomorphismus $f: \bigwedge^2 M \to M \otimes_R M$ mit $f(a \wedge b) = a \otimes b b \otimes a$ für $a, b \in M$.
 - (b) Ist M endlich erzeugt und frei, so ist die Abbildung f aus (a) injektiv. **Hinweis:** Man verwende Aufgabe 34 (a).

Die Übungsblätter sowie weitere Informationen zur Vorlesung sind über MaMpf abrufbar.