Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$ Initialize:

 $\pi(s) \in \mathcal{A}(s)$ (arbitrarily), for all $s \in \mathcal{S}$ $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all $s \in S$, $a \in A(s)$

 $Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, a \in \mathcal{A}(s)$

Loop forever (for each episode):

Append G to $Returns(S_t, A_t)$

 $\pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$

 $Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$

 $G \leftarrow \gamma G + R_{t+1}$

 $G \leftarrow 0$

Choose $S_0 \in \mathcal{S}$, $A_0 \in \mathcal{A}(S_0)$ randomly such that all pairs have probability > 0Generate an episode from S_0, A_0 , following π : $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$

Loop for each step of episode, $t = T-1, T-2, \ldots, 0$:

Unless the pair S_t , A_t appears in S_0 , A_0 , S_1 , A_1 , ..., S_{t-1} , A_{t-1} :