14TSTST6

HIMADRI MANDAL

November 15, 2021

§1 Solution

Solution. Could not solve it but found it instructive. Let α be the first integer such that $p|ca^{\alpha}-db^{\alpha}$, λ is the order of a/b.

$$\nu_p \left(ca^{\alpha + n\lambda} - db^{\alpha + n\lambda} \right) = \nu_p \left(\left(\frac{a^{\lambda}}{b^{\lambda}} \right)^n - \frac{da^{\alpha}}{cb^{\alpha}} \right)$$

to be constant.

Proposition

 $x \equiv y \equiv 1 \pmod{p}$. If the sequence $\nu_p\left(x^n-y\right)$ of positive integers is nonconstant, then it is unbounded.

Claim — Suppose m and n are positive integers such that

$$d = \nu_p(x^n - y) < \nu_p(x^m - y) = e.$$

Then there exists ℓ such that $\nu_p(x^{\ell} - y) \ge e + 1$.

Proof.
$$\nu_p(x^m - x^n) = \nu_p((x^m - y) - (x^n - y)) = d$$

$$\nu_n(x^k - 1) = e$$

for $k=p^{e-d}|m-n|$. Now we set $x^k=p^eu+1$ and $x^m=p^ev+y$. Thus we get for $1\leq r\leq p-1$

$$x^{kr+m} - y = (p^{e}u + 1)^{r} \cdot (p^{e}v + y) - y$$
$$= p^{e}(v + yu \cdot r) + p^{2e}(\dots).$$

Choosing r with $r \equiv -\frac{v}{u} \pmod{p}$, we have $p^{e+1} \mid x^{kr+m} - y$, hence $\ell = kr + m$ proves the claim.

This proves the proposition but as it was equivalent to the problem, we are done. \Box