Bartosz Antczak Instructor: Luke Postle January 18, 2017

Review of last lecture

Let X be a subset of V(G). The **cut** induced by X, denoted by $\delta(X)$, is the set of edges with one end in X and the other not in X.

We also studied a **theorem** relating connectivity with $\delta(X)$:

Graph G is disconnected if and only if there exists a proper, non-empty subset of X of V(G) such that $\delta(X)$ is empty

We also mentioned three concepts of algorithm analysis:

- P: polynomial time to answer/decide
- NP: polynomial time to convince there exists a solution
- Co-NP: polynomial time to convince there does not exists a solution

We also learned about trees and forests:

- Tree: a connected graph containing no cycle
- Forest: a graph (can be either connected or disconnected) containing no cycle

Example 7.0.1. Some examples of trees

The question we'll focus on today is how can I convince you that a tree doesn't contain a cycle?

7.1 More on Trees and Forests

7.1.1 Leaves

A **leaf** is a vertex of degree one.

Theorem 7.1.1:

If T is a tree with at least two vertices, then T has a leaf

Proof of Theorem 7.1.1: to prove this theorem, we'll instead prove the following (it will end up proving that T will have at least two leaves):

If G has a minimum degree of at least 2, then G contains a cycle

Proof: Let $P = v_0 v_1 \cdots v_k$ be a longest path in G. Since G has minimum degree of at least 2, then v_0 has at least two neighbours (one of which is v_1). Thus, there exists a neighbour u of v_0 distinct from v_1 .

If $u \in V(P)$, say $u = v_i$, then $C = v_0 v_1, \dots, v_i v_0$ is a cycle of G, as desired.

Now suppose $u \notin V(P)$, but then $P' = uv_0v_1 \cdots v_k$ is a path that is longer than P, a contradiction. Now, let's prove

If T is a tree with at least two vertices, then T has at least two leaves

Proof: Let $P = v_0 v_1 \cdots v_k$ be a longest path. Note that $k \geq 1$ because T is connected with at lesst two vertices. Now v_0 does not have a neighbour $u \neq v_i$, for if $u \notin V(P)$, then $p' - u v_0 v_1 \cdots v_k$ is a longer path, a contradiction.

If $u \in V(P)$, say $u = v_i$, $C = v_0 v_1, \dots, v_1 v_0$ is a cycle, contradicting that it's a tree.

So v_0 has degree one (i.e., is a leaf). But by symmetry, v_k is also a leaf, and since $k \ge 1$, $v_0 \ne v_k$, so T has at least two leaves, as desired.

Theorem 7.1.2:

If T is a tree and v is a leaf of T, then
$$T - v$$
 is a tree

Proof of Theorem 7.1.2: T - v is a forest, because T - v is a subgraph of T, and every subgraph of a forest is a forest (T is a tree, but by definition, it's a forest too).

Now we want to claim T - v is connected and hence a tree. To see this, let $x, y \in V(T) - v$. Since T is connected, there exists a path P from x to y in T. Note that v is <u>not</u> in P because v has degree one and is not an end of P. But then P s a path from x to y in T - v, so T - v is connected, as desired.

Corollary

T is a tree if and only if there exists a sequence of vertices
$$v_1, v_2, \dots, v_{n-1}$$
 such that if $T_i = T - \{v_1, v_2, \dots, v_{n-1}\}, \text{ then } T_i \text{ is a tree}$

This shows that deciding if G is a tree is in NP.

Algorithm for Deciding if G is a Tree

From the proven theorems shown above, we can create an algorithm for determining if G is a tree:

- If |V(G)| = 1, then yes!
- If |V(G)| > 1, determine if G has a leaf:
 - If yes, delete the leaf v and recurse on G-v
 - If no, then no!

This means that deciding if G is a tree is in polynomial time.

Theorem 7.1.3:

If T is a tree, then
$$|E(G)| = |V(G)| - 1$$

Proof of Theorem 7.1.3: Proceed by induction on |V(T)|:

Base case: If |V(T)| = 1, then |E(G)| = 0, as desired.

Inductive case: If $|V(G)| \ge 2$, then T has a leaf v, by our earlier theorem. by previous theorem, T-v is a tree. By induction, |E(T-v)| = |V(T-v)|-1. However, |V(T)| = |V(T-v)|+1, and |E(T)| = |E(T-v)|+1, since v has degree one. Thus, |E(G)| = |V(G)|-1, as desired.