

Klausur

W150 Ingenieurmathematik 1 (Q1/2019)

Name des Prüflings:					Matrikelnummer:			Zenturie	•	
Dauer: 90 min					Datum: 11. März 2019					
	e Hilfsmittel: n oder bedruc		Tascher	nrechne	r, 3 Blat	t Forme	elsamm	ung (beidseitig,	be-	
	tte ergänzen S er und Ihre Ze		liesem I	Deckblat	t zunäch	st Ihren	Namer	ı, Ihre Matrikelnı	ım-	
	e Klausuraufg att 6 Seiten. B	•					•	gen aber ohne De	eck-	
	ım Bestehen d		-		-					
				Г	ı	Г	I			
	Aufgabe:	1	2	3	4	5	6	Gesamt:		
	Punktzahl:	16	18	14	16	16	20	100		
	Erreicht:									
Datum:	Note:				Ergänzungsprüfung:					
Jnterschrift:					Unterschrift:					

Aufgabe 1 (16 Punkte)

Gegeben sind die komplexen Zahlen $z_1 = \sqrt{2} + i \cdot \sqrt{2}$ und $z_2 = -\sqrt{2} - i \cdot \sqrt{2}$.

(1.1) (4 Punkte) Berechnen Sie das Produkt $z_3 = z_1 \cdot z_2$ in Normalform.

Lösung:

$$z_3 = (\sqrt{2} + i \cdot \sqrt{2}) \cdot (-\sqrt{2} - i \cdot \sqrt{2}) = -2 - 2i - 2i + 2 = -4i$$

(1.2) (5 Punkte) Stellen Sie z_1 und z_2 in Polarform dar und berechnen Sie anschließend $z_3 = z_1 \cdot z_2$ in Polarform. Überführen Sie das Ergebnis für z_3 in Normalform und überprüfen Sie damit das Ergebnis der vorigen Teilaufgabe.

Hinweis: $\cos(\frac{3}{2}\pi) = 0$, $\sin(\frac{3}{2}\pi) = -1$, $\tan(\frac{\pi}{4}) = 1$

Lösung:

$$z_1 = 2e^{\frac{\pi}{4} \cdot i}$$
, $z_2 = 2e^{\frac{5\pi}{4} \cdot i}$, $z_3 = 4e^{\frac{3\pi}{2} \cdot i}$, also $z_3 = -4i$

(1.3) (3 Punkte) Stellen Sie die komplexen Zahlen z_1 , z_2 und z_3 graphisch dar.

Lösung:

(1.4) (4 Punkte) Gegeben ist z = 2i. Berechnen Sie die 2. Wurzeln aus z.

Lösung:

$$z_1 = \sqrt{2} \cdot e^{\frac{\pi}{4}}, z_2 = \sqrt{2}e^{\frac{5\pi}{4} \cdot i}$$

Aufgabe 2 (18 Punkte)

Gegeben ist das folgende lineare Gleichungssystem:

Hierbei ist $a \in \mathbb{R}$.

(2.1) (2 Punkte) Schreiben Sie das Gleichungssystem in Matrix-Form.

Lösung:

$$Ax = b \text{ mit } A = \begin{pmatrix} 2 & 4 & 2 \\ -4 & -7 & 0 \\ 0 & 1 & a+2 \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ -7 \\ a-5 \end{pmatrix}$$

(2.2) (12 Punkte) Geben Sie für das lineare Gleichungssystem die Lösungsmenge in Abhängigkeit von *a* an. Verwenden Sie zur Lösung das Gauß–Verfahren unter Angabe aller Zwischenschritte.

Lösung:

Gauß-Verfahren:

$$\left(\begin{array}{ccc|c}
2 & 4 & 2 & 2 \\
-4 & -7 & 0 & -7 \\
0 & 1 & a+2 & a-5
\end{array}\right) + 2 \cdot (I)$$

$$\begin{pmatrix}
2 & 4 & 2 & 2 \\
0 & 1 & 4 & -3 \\
0 & 1 & a+2 & a-5
\end{pmatrix} -(II)$$

$$\begin{pmatrix}
2 & 4 & 2 & 2 \\
2 & 4 & 2 & 2
\end{pmatrix}$$

$$\left(\begin{array}{ccc|c}
2 & 4 & 2 & 2 \\
0 & 1 & 4 & -3 \\
0 & 0 & a-2 & a-2
\end{array}\right)$$

<u>1. Fall:</u> a = 2. Dann entsteht eine Nullzeile und es gibt unendlich viele Lösungen. Setze $x_3 = t$, dann ist $x_2 = -3 - 4t$ und $x_1 = 7 + 7t$. Die Lösungsmenge lautet

$$L = \{ x \in \mathbb{R}^3 \mid x = \begin{pmatrix} 7 \\ -3 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 7 \\ -4 \\ 1 \end{pmatrix}, \ t \in \mathbb{R} \}$$

<u>2. Fall:</u> $a \ne 2$. Dann ergibt sich durch Rückwärtseinsetzen die Lösung $x_3 = 1$, $x_2 = -7$ und $x_1 = 14$

(2.3) (4 Punkte) Geben Sie den Rang der Koeffizientenmatrix A und der erweiterten Koeffizientenmatrix (A|b) zu obigem Gleichungssystem an. Sie dürfen dazu die berechnete Stufenform aus dem vorigen Aufgabenteil verwenden.

Lösung:

$$rang(A) = rang(A|b) = 2$$
, falls $a = 2$ und $rang(A) = rang(A|b) = 3$, falls $a \ne 2$.

Aufgabe 3 (14 Punkte)

Gegeben ist die Matrix
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$$
.

(3.1) (6 Punkte) Berechnen Sie die Eigenwerte von A.

Lösung:

$$\begin{vmatrix} 1 - \lambda & 0 \\ 2 & 3 - \lambda \end{vmatrix} = (1 - \lambda)(3 - \lambda) = \lambda^2 - 4\lambda + 3 = 0 \Rightarrow \lambda_1 = 1, \ \lambda_2 = 3.$$

(3.2) (8 Punkte) Berechnen Sie die zugehörigen Eigenvektoren für die berechneten Eigenwerte und geben Sie jeweils auch den normierten Eigenvektor an.

Lösung:

Eigenvektoren zu
$$\lambda_1 = 1$$
: $L = \left\{ x \in \mathbb{R}^2 \mid x = t \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \ t \in \mathbb{R} \setminus \{0\} \right\}$. Normiert: $\frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ Eigenvektoren zu $\lambda_2 = 3$: $L = \left\{ x \in \mathbb{R}^2 \mid x = t \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ t \in \mathbb{R} \setminus \{0\} \right\}$. Normiert: $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Aufgabe 4 (16 Punkte)

Gegeben ist das lineare Gleichungssystem
$$A \cdot x = b \text{ mit } A = \begin{pmatrix} -1 & 2 & 0 \\ 2 & -2 & 1 \\ 0 & -1 & 2 \end{pmatrix} \text{ und } b = \begin{pmatrix} 5 \\ 2 \\ 4 \end{pmatrix}.$$

(4.1) (4 Punkte) Berechnen Sie die Determinante von *A* mit Hilfe des Laplace'schen Entwicklungssatz.

Lösung:

Man entwickelt beispielsweise nach der 1. Zeile oder 1. Spalte (um die Nullen auszunutzen) und erhält det(A) = -5

(4.2) (12 Punkte) Berechnen Sie die Lösung des Gleichungssystems mit Hilfe der Cramerschen Regel.

Lösung:

$$det(A_1) = -15$$
, $det(A_2) = -20$, $det(A_3) = -20$, $x_1 = 3$, $x_2 = 4$, $x_3 = 4$

Aufgabe 5 (16 Punkte)

Gegeben ist die Matrix

$$A = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & -1 & 1 \end{pmatrix}.$$

(5.1) (12 Punkte) Berechnen Sie die inverse Matrix A^{-1} mit Hilfe der Unterdeterminanten.

Lösung:

$$|A| = 1$$

$$|A_{11}| = 1, |A_{12}| = -1, |A_{13}| = -1,$$

$$|A_{21}| = 3, |A_{22}| = -2, |A_{23}| = -4,$$

$$|A_{31}| = 1, |A_{32}| = 0, |A_{33}| = -1$$

$$\Rightarrow A^{-1} = \begin{pmatrix} 1 & -3 & 1 \\ 1 & -2 & 0 \\ -1 & 4 & -1 \end{pmatrix}$$

(5.2) (4 Punkte) Multiplizieren Sie zur Kontrolle die Matrizen A und A^{-1} .

Lösung:

Aufgabe 6 (20 Punkte)

Gegeben ist die Funktion
$$f(x) = \frac{x^3 + 3x^2 + x + 11}{x^2 + 2x - 3}$$
.

(6.1) (3 Punkte) Berechnen Sie die Nullstellen vom Nennerpolynom.

Lösung:

PQ-Formel liefert $x_1 = -3$ und $x_2 = 1$.

(6.2) (3 Punkte) Geben Sie den Definitionsbereich von f(x) an.

Lösung:

$$D = \mathbb{R} \setminus \{-3, 1\}$$

(6.3) (6 Punkte) Führen Sie für f(x) eine Polynomdivision durch.

Lösung:

$$(x^{3} + 3x^{2} + x + 11) : (x^{2} + 2x - 3) = x + 1 + \frac{2x + 14}{x^{2} + 2x - 3}$$

$$\underline{-x^{3} - 2x^{2} + 3x}$$

$$\underline{x^{2} + 4x + 11}$$

$$\underline{-x^{2} - 2x + 3}$$

$$\underline{2x + 14}$$

(6.4) (8 Punkte) Führen Sie für die aus der eben berechneten verbleibenden echt gebrochen rationalen Funktion eine Partialbruchzerlegung durch.

Lösung:

Partialbruchzerlegung von $\frac{2x+14}{x^2+2x-3}$:

1. Nullstellen vom Nenner: x = -3, x = 1

2. Ansatz:
$$\frac{2x+14}{x^2+2x-3} = \frac{A}{x+3} + \frac{B}{x-1} = \frac{A(x-1)}{x^2+2x-3} + \frac{B(x+3)}{x^2+2x-3}$$
$$= \frac{(A+B)x-A+3B}{x^2+2x-3}$$

3. Koeffizientenvergleich (oder durch Einsetzen der Nullstellen):

$$A+B=2$$

$$-A+3B=14$$

$$\Rightarrow A=-2, B=4$$

Also
$$\frac{2x+14}{x^2+2x-3} = \frac{-2}{x+3} + \frac{4}{x-1}$$