VC-DENSITY IN AN ADDITIVE REDUCT OF p-ADIC NUMBERS

ANTON BOBKOV

ABSTRACT. Aschenbrenner et. al. computed a bound $\operatorname{vc}(n) \leq 2n-1$ for the VC density function in the field of p-adic numbers, but it is not known to be optimal. I investigate a certain P-minimal additive reduct of the field of p-adic numbers and use a cell decomposition result of Leenknegt to compute an optimal bound $\operatorname{vc}(n) = n$ for that structure.

VC density was introduced into model theory in [1] by Aschenbrenner, Dolich, Haskell, MacPherson, and Starchenko as a natural notion of dimension for definable families of sets in NIP theories. In a NIP theory T we can define the vc-function

$$vc_T = vc : \mathbb{N} \longrightarrow \mathbb{N}$$

where vc(n) measures the worst-case complexity of families of definable sets in an n-dimensional space. The simplest possible behavior is vc(n) = n for all n. For $T = Th(\mathbb{Q}_p)$, the paper [1] computes an upper bound for this function to be 2n-1, and it is not known whether it is optimal. This same bound would hold in any reduct of the field of p-adic numbers, so one may expect that the simplified structure of the reduct would allow a better bound. In [2], Leenknegt provides a cell decomposition result for a certain P-minimal additive reduct of the field p-adic numbers. Using this result, in this paper we improve the bound for the VC function, showing that in Leenknegt's structure vc(n) = n.

Explain organization of this paper, notation

1. VC-DIMENSION AND VC-DENSITY

Definition 1.1. Throughout this section we work with a collection \mathcal{F} of subsets of a set X. We call the pair (X, \mathcal{F}) a set system.

- Given a subset A of X, we define the set system $(A, A \cap \mathcal{F})$ where $A \cap \mathcal{F} = \{A \cap F\}_{F \in \mathcal{F}}$.
- For $A \subset X$ we say that \mathcal{F} shatters A if $A \cap \mathcal{F} = \mathcal{P}(A)$.

Definition 1.2. We say (X, \mathcal{F}) has VC-dimension n if the largest subset of X shattered by \mathcal{F} is of size n. If \mathcal{F} shatters arbitrarily large subsets of X, we say that (x, \mathcal{F}) has infinite VC-dimension. We denote the VC-dimension of (X, \mathcal{F}) by $VC(\mathcal{F})$.

Note 1.3. We may drop X from the previous definition, as it VC-dimension doesn't depend on the base set and is determined by $(\bigcup \mathcal{F}, \mathcal{F})$.

This allows us to distinguish between well behaved set systems of finite VC-dimension which tend to have good combinatorial properties and poorly behaved set systems with infinite VC dimension.

Another natural combinatorial notion is that of a dual system:

Definition 1.4. For $a \in X$ define $X_a = \{F \in \mathcal{F} \mid a \in F\}$. Let $\mathcal{F}^* = \{X_a\}_{a \in X}$. We define $(\mathcal{F}, \mathcal{F}^*)$ as the <u>dual system</u> of (X, \mathcal{F}) . The VC-dimension of the dual system of (X, \mathcal{F}) is referred to as the <u>dual VC-dimension</u> of (X, \mathcal{F}) and denoted by $VC^*(\mathcal{F})$. (As before, this notion doesn't depend on X.)

Lemma 1.5. A set system has finite VC-dimension if and only if its dual system has finite VC-dimension. More precisely

$$VC^*(\mathcal{F}) \le 2^{1+VC(\mathcal{F})}.$$

For a more refined notion we look at the traces of our family on finite sets:

Definition 1.6. Define the shatter function $\pi_{\mathcal{F}} \colon \mathbb{N} \longrightarrow \mathbb{N}$ and the <u>dual shatter function</u> $\pi_{\mathcal{F}}^* \colon \mathbb{N} \longrightarrow \mathbb{N}$ of \mathcal{F} by

$$\pi_{\mathcal{F}}(n) = \max\{|A \cap \mathcal{F}| \mid A \subset X \text{ and } |A| = n\}$$

 $\pi_{\mathcal{F}}^*(n) = \max \{ \text{number of atoms in Boolean algebra generated by } B \mid B \subset \mathcal{F}, |B| = n \}$

Note that the dual shatter function is precisely the shatter function of the dual system: $\pi_{\mathcal{F}}^* = \pi_{\mathcal{F}^*}$

A simple upper bound is $\pi_{\mathcal{F}}(n) \leq 2^n$ (same for the dual). If VC-dimension is infinite then clearly $\pi_{\mathcal{F}}(n) = 2^n$ for all n. Conversely we have the following remarkable fact:

Theorem 1.7 (Sauer-Shelah '72). If the set system (X, \mathcal{F}) has finite VC-dimension d then $\pi_{\mathcal{F}}(n) \leq \binom{n}{\leq d}$ where $\binom{n}{\leq d} = \binom{n}{d} + \binom{n}{d-1} + \ldots + \binom{n}{1}$.

Thus the systems with a finite VC-dimension are precisely the systems where the shatter function grows polynomially. Define VC-density to be the degree of that polynomial:

Definition 1.8. Define vc-density and dual vc-density of \mathcal{F} as

$$\operatorname{vc}(\mathcal{F}) = \limsup_{n \to \infty} \frac{\log \pi_{\mathcal{F}}(n)}{\log n} \in \mathbb{R}^{\geq 0} \cup \{+\infty\}$$

$$\mathrm{vc}^*(\mathcal{F}) = \limsup_{n \to \infty} \frac{\log \pi_{\mathcal{F}}^*(n)}{\log n} \in \mathbb{R}^{\geq 0} \cup \{+\infty\}$$

Generally speaking a shatter function that is bounded by a polynomial doesn't itself have to be a polynomial. Proposition 4.12 in [1] gives an example of a shatter function that grows like $n \log n$ (so it has VC-density 1).

So far the notions that we have defined are purely combinatorial. We now adapt VC-dimension and VC-density to the model theoretic context.

Definition 1.9. Work in a structure M. Fix a finite collection of formulas $\Phi(x,y) = \{\phi_i(x,y)\}.$

- For $\phi(x,y) \in \mathcal{L}(M)$ and $b \in M^{|y|}$ let $\phi(M^{|x|},b) = \{a \in M^{|x|} \mid \phi(a,b)\} \subseteq M^{|x|}$.
- Let $\Phi(M^{|x|}, M^{|y|}) = \{\phi_i(M^{|x|}, b) \mid \phi_i \in \Phi, b \in M^{|y|}\} \subseteq \mathcal{P}(M^{|x|}).$
- Let $\mathcal{F}_{\Phi} = \Phi(M^{|x|}, M^{|y|})$ giving a set system $(M^{|x|}, \mathcal{F}_{\Phi})$.
- Define <u>VC-dimension</u> of Φ , VC(Φ) to be the dual VC-dimension of $(M^{|x|}, \mathcal{F}_{\Phi})$.
- Define VC-density of Φ , $vc(\Phi)$ to be the dual VC-density of $(M^{|x|}, \mathcal{F}_{\Phi})$.

We will also refer to the VC-density and VC-dimension of a single formula ϕ viewing it as a one element collection $\{\phi\}$.

Counting atoms of a Boolean algebra in a model theoretic setting corresponds to counting types, so it is instructive to rewrite the shatter function in terms of types.

Definition 1.10.

$$\pi_{\Phi}(n) = \max \{ \text{number of } \Phi \text{-types over } B \mid B \subset M, |B| = n \}$$

Lemma 1.11.

$$\operatorname{vc}(\Phi) = degree \ of \ polynomial \ growth \ of \ \pi_{\Phi}(n) = \limsup_{n \to \infty} \frac{\log \pi_{\Phi}(n)}{\log n}$$

One can check that the shatter function and hence VC-dimension and VC-density of a formula are elementary notions, so they only depend on the first-order theory of the structure.

NIP theories are a natural context for studying VC-density. In fact we can take the following as the definition of NIP:

Definition 1.12. Define ϕ to be NIP if it has finite VC-dimension.

[?] shows that in a general combinatorial context, VC-density can be any real number in $0 \cup [1, \infty)$. Less is known if we restrict our attention to NIP theories. Proposition 4.6 in [1] gives examples of formulas that have non-integer rational VC-density in an NIP theory, however it is open whether one can get an irrational VC-density in this context.

In general, instead of working with a theory formula by formula, we can look for a uniform bound for all formulas:

Definition 1.13. For a given NIP structure M, define the <u>vc-function</u>

$$\operatorname{vc}^{M}(n) = \sup \{ \operatorname{vc}(\phi(x, y)) \mid \phi \in \mathcal{L}(M), |x| = n \}$$

As before this definition is elementary, so it only depends on the theory of M. We omit the superscript M if it is understood from the context. One can easily check the following bounds:

Lemma 1.14 (Lemma 3.22 in [1]).

$$vc(1) \ge 1$$

$$vc(n) \ge n vc(1)$$

However, it is not known whether the second inequality can be strict or even whether $vc(1) < \infty$ implies $vc(n) < \infty$.

2. P-ADIC NUMBERS

The field of p-adic numbers is often studied in the language of Macintyre $\mathcal{L}_{Mac} = \{0, 1, +, -, \cdot, |, P_n\}$. which is a language of fields together with unary predicates $\{P_n\}_{n\in\mathbb{N}}$ interpreted in \mathbb{Q}_p by

$$P_n x \leftrightarrow \exists y \ y^n = x$$

and a divisibility relation where a|b holds when val $a \leq \text{val } b$.

Note that $P_n \setminus \{0\}$ is a multiplicative subgroup of \mathbb{Q}_p with finitely many cosets.

Theorem 2.1 (Macintyre '76). The \mathcal{L}_{Mac} -structure \mathbb{Q}_p has quantifier elimination.

There is also a cell decomposition result.

Definition 2.2. Define <u>n-cell</u> recursively. 0-cells are points in \mathbb{Q}_p . An n+1-cell is a subset of \mathbb{Q}_p^{n+1} of the following form:

$$\{(x,t) \in \mathbb{Q}_p \times D \mid \operatorname{val} a_1(x) \square_1 \operatorname{val}(t-c(x)) \square_2 \operatorname{val} a_2(x), t-c(x) \in \lambda P_n \}$$

where D is an n-cell, $a_1(x), a_2(x), c(x)$ are \emptyset -definable, \square is $<, \le$ or no condition, and $\lambda \in \mathbb{Q}_p$.

Theorem 2.3 (Denef '84). Any subset of \mathbb{Q}_p defined by a \mathcal{L}_{Mac} -formula $\phi(x,t)$ with |t|=1 and |x|=n decomposes into a finite union of n+1-cells.

In [1], Aschenbrenner, Dolich, Haskell, Macpherson, and Starchenko show that this structure has $vc(n) \leq 2n - 1$, however it is not known whether this bound is optimal.

In [2], Leenknegt analyzes the reduct of p-adic numbers to the language

$$\mathcal{L}_{aff} = \left\{0, 1, +, -, \{\bar{c}\}_{c \in \mathbb{Q}_p}, |, \{Q_{m,n}\}_{m,n \in \mathbb{N}}\right\}$$

where \bar{c} is a scalar multiplication by c, a|b stands for val $a \leq \text{val } b$, and $Q_{m,n}$ is a unary predicate

$$Q_{m,n} = \bigcup_{k \in \mathbb{Z}} p^{km} (1 + p^n \mathbb{Z}_p).$$

Note that $Q_{m,n}$ is a subgroup of the multiplicative group of \mathbb{Q}_p with finitely many cosets. One can check that the extra relation symbols are definable in the \mathcal{L}_{Mac} -structure \mathbb{Q}_p . The paper [2] provides a cell decomposition result with the following cells:

Definition 2.4. A 0-cell is a point in \mathbb{Q}_p . An n+1-cell is a subset of \mathbb{Q}_p^{n+1} of the following form:

$$\{(x,t) \in K \times D \mid \operatorname{val} a_1(x) \square_1 \operatorname{val} (t-c(x)) \square_2 \operatorname{val} a_2(x), t-c(x) \in \lambda Q_{m,n} \}$$

where D is an n-cell called the <u>base</u> of the cell, $a_1(x), a_2(x), c(x)$ are linear polynomials, \square is < or no condition, and $\lambda \in \mathbb{Q}_p$.

Theorem 2.5 (Leenknegt '12). Any formula $\phi(x,t)$ in $(\mathbb{Q}_p, \mathcal{L}_{aff})$ with |t| = 1 and |x| = n decomposes into a union of n + 1-cells.

Moreover, [2] shows that $(\mathbb{Q}_p, \mathcal{L}_{aff})$ is a P-minimal reduct, that is the one-dimensional definable sets of $(\mathbb{Q}_p, \mathcal{L}_{aff})$ coincide with the one-dimensional definable sets in the full structure $(\mathbb{Q}_p, \mathcal{L}_{Mac})$.

I am able to compute the vc-function for this structure

Theorem 2.6. Theorem (B.) $(\mathbb{Q}_p, \mathcal{L}_{aff})$ has vc(n) = n.

3. Key Lemmas and Definitions

To show that $\operatorname{vc}(n) = n$ it suffices to bound $\operatorname{vc}(\phi) \leq |x|$ for every formula $\phi(x;y)$. Fix such a formula $\phi(x;y)$. Instead of working with it directly, we simplify it using quantifier elimination. Quantifier elimination result can be easily obtained from cell decomposition:

Lemma 3.1. Any formula $\phi(x;y)$ in $(\mathbb{Q}_p, \mathcal{L}_{aff})$ can be written as a boolean combination of formulas from the following collection

$$\Psi(x;y) = \{ \text{val}(p_i(x) - c_i(y)) < \text{val}(p_j(x) - c_j(y)) \}_{i,j \in I} \cup \{ p_i(x) - c_i(y) \in \lambda_k Q_{m,n} \}_{i \in I, k \in K}$$

where I, K are finite index sets, each p_i is a linear polynomial in x without a constant term, each c_i is a linear polynomial in y, and $\lambda_k \in \mathbb{Q}_p$.

Proof. Let l = |x| + |y|. Apply cell decomposition theorem to $\phi(x; y)$ to obtain \mathscr{D}^l , a collection of l-cells. Let \mathscr{D}^{l-1} be a collection l-1 of bases of cells in \mathscr{D}^l . Similarly, construct by induction \mathscr{D}^i for each $0 \leq j < l$, where \mathscr{D}_j is a collection of j-cells which are the bases of cells in \mathscr{D}_{j+1} . Let $\mathscr{D} = \bigcup \mathscr{D}_j$. Choose n, m large enough to cover all n', m' that come up in the cells for $Q_{n',m'}$. Choose λ_k to go over all the cosets of $Q_{n,m}$. Let $q_i(x,y)$ enumerate all of the polynomials $a_1(\bar{x}), a_2(\bar{x}), t-c(\bar{x})$ that show up in the cells of \mathscr{D} . Those are all polynomials of degree ≤ 1 in variables

x,y. We can split each of them as $q_i(x,y) = p_i(x) - c_j(y)$ where the constant term goes into c_j . This gives us the appropriate finite collection of formulas Ψ . From cell decomposition it is easy to see that when a,a' have the same Ψ -type, then they would have they have the same ϕ -type. Thus ϕ can be written as a boolean combination of formulas from Ψ .

Lemma 3.2. If ϕ can be written as a Boolean combination of formulas from Ψ then

$$\operatorname{vc}(\Psi) \le n \implies \operatorname{vc}(\phi) \le n$$

Proof. If a, a' have the same Ψ -type over B, then they have the same ϕ -type over B, where B is some parameter set. Therefore the number of ϕ -types is bounded by the number of Ψ -types. The bound follows from Lemma 1.11.

Therefore to show that $\operatorname{vc}(\phi) \leq |x|$, it suffices to bound $\operatorname{vc}(\Psi) \leq |x|$. More precisely, it is sufficient to show that if there is a parameter set B of size N then the number of Ψ -types over B is $O(N^{|x|})$. Fix such a parameter set B and work with it from now on. We will compute a bound for the number of Ψ -types over B.

Consider a set $T = \{c_i(b) \mid b \in B, i \in I\} \subset \mathbb{Q}_p$. In this definition B is the parameter set that we fixed and $c_i(b)$ come from collection of formulas Ψ from the quantifier elimination above. View T as a tree as follows:

Definition 3.3. • For $c \in \mathbb{Q}_p$, $\alpha \in \mathbb{Z}$ define a <u>ball</u>

$$B(c,\alpha) = \{c' \in \mathbb{Q}_p \mid \operatorname{val}(c' - c) \le \alpha\}.$$

• Define a collection of balls $\mathscr{B} = \{B(t_1, \operatorname{val}(t_1 - t_2))\}_{t_1, t_2 \in T}$. An <u>interval</u> (B_1, B_2) is a set $B_1 \backslash B_2$ for $B_1, B_2 \in \mathscr{B}$ with $B_1 \supset B_2$ and no balls from \mathscr{B} in between. We also define an interval $(-\infty, B)$ as a set $\mathbb{Q}_p \backslash B$ for a ball $B(c, v) \in \mathscr{B}$ with the smallest valuation v of all the balls in \mathscr{B} . Note that there are at most 2|T| = 2N|I| = O(N) different intervals and they partition \mathbb{Q}_p .

• Define a collection of balls $\mathscr{B}' = \mathscr{B} \cup \{B(c_{i_1}(b), \operatorname{val}(c_{i_2}(b) - c_{i_3}(b)))\}_{i_1, i_2, i_3 \in I, b \in B}$. An <u>sub-interval</u> is defined the same as an interval except using collection \mathscr{B}' instead of \mathscr{B} . Sub-intervals refine intervals, and there are at most $2|T| + |B| \cdot |I|^3 = O(N)$ many of them.

Definition 3.4. Suppose $a \in \mathbb{Q}_p$ lies in an interval $B(t_L, \alpha_L) \setminus B(t_U, \alpha_U)$.

- Define <u>T-valuation</u> of a to be $T-val(a) = val(a t_U)$.
- Define floor of a to be $F(a) = \alpha_L$.

Definition 3.5. Suppose $a_1, a_2 \in \mathbb{Q}_p$ lie in our tree in the same interval $B(t_L, \alpha_L) \setminus B(t_U, \alpha_U)$. We say that a_i is close to boundary if $|\operatorname{T-val}(a_i) - \alpha_L| \le m$ or $|\operatorname{T-val}(a_i) - \alpha_U| \le m$. Otherwise we say that it is far from boundary.

Definition 3.6. We say a_1, a_2 have the same <u>interval type</u> if one of the following holds:

- Both a_1, a_2 are far from boundary and $a_1 t_U, a_2 t_U$ are in the same $Q_{m,n}$ coset.
- Both a_1, a_2 are close to boundary and $val(a_1 a_2) > T-val(a_1) + n = T-val(a_2) + n$.

The following lemma is an adaptation of lemma 7.4 in [1].

Lemma 3.7. For n, m there exists $D = D(n, m) \in \mathbb{Z}$ such that for any $x, y, a \in \mathbb{Q}_p$ if

$$val(x-c) = val(y-c) < val(x-y) - D$$

then x - c, y - c are in the same coset of $Q_{n,m}$.

Proof. Define that $a, b \in \mathbb{Q}_p$ are similar if val a = val b and

$$a \upharpoonright [\operatorname{val} a, \operatorname{val} a + (m+n)] = b \upharpoonright [\operatorname{val} b, \operatorname{val} b + (m+n)]$$

If a, b are similar then

$$a \in Q_{n,m} \leftrightarrow b \in Q_{n,m}$$

Moreover for any $\lambda \in \mathbb{Q}_p$, if a, b are similar we would also have $a/\lambda, b/\lambda$ are similar. Thus if a, b are similar, then they belong in the same coset of $Q_{n,m}$. If we pick D = n + m then conditions of the lemma force x - c, y - c to be similar.

The following construction is along the lines of lemmas 7.3, 7.5 of [1].

Definition 3.8. For two balls $B(a, \alpha)$, $B(b, \beta)$ let $\gamma = \min(\alpha, \beta, \operatorname{val}(a - b))$. Define the distance between those two balls to be $|\alpha - \gamma| + |\beta - \gamma|$. In \mathbb{Q}_p value group is discrete and residue field is finite, so there are finitely many balls at a fixed distance from a given ball. Near balls of $B(a, \alpha)$ are defined to be balls with distance \mathcal{D} from $B(a, \alpha)$. Enumerate those as:

$$B_1(a,\alpha), B_2(c,\alpha), \dots B_{N_D}(a,\alpha)$$

Near balls partition the space

$$\{b \in \mathbb{Q}_p \mid |\operatorname{val}(a-b) - \alpha| \le D\}$$

Lemma 3.9. Suppose $c_1, c_2 \in \mathbb{Q}_p^{|x|}$ satisfy the following three conditions

- For all $i \in I$ $p_i(c_1)$ and $p_i(c_2)$ are in the same sub-interval.
- For all $i \in I$ $p_i(c_1)$ and $p_i(c_2)$ have the same interval type.
- For all $i, j \in I$, $\operatorname{T-val}(p_i(c_1)) > \operatorname{T-val}(p_j(c_1))$ iff $\operatorname{T-val}(p_i(c_2)) > \operatorname{T-val}(p_j(c_2))$.

Then c_1, c_2 have the same Ψ -type over B.

Proof. There are two kinds of formulas in Ψ (see Lemma 3.1). First we show that d_1, d_2 agree on formulas of the form $p_i(x) - c_i(y) \in \lambda_k Q_{m,n}$. It is enough to show that for every $i \in I, b \in B$ we have $p_i(d_1) - c_i(b), p_i(d_2) - c_i(b)$ are in the same $Q_{m,n}$ -coset. Fix such i, b. For brievety let $a = p_i(d_1), a' = p_i(d_2)$ and $Q = Q_{m,n}$. We want to show that $a - c_i(b), a' - c_i(b)$ are in the same Q-coset.

Suppose a is in one of the near balls. As a' has the same interval type, it has to be in the same near ball. By definition of the near ball we then have $val(a - c_i(b)) = val(a' - c_i(b)) < val(a - a') - D$. Thus by Lemma 3.7 we have $a - c_i(b), a' - c_i(b)$ in the same Q-coset.

Now, suppose both a, a' aren't in any near balls. Label their interval as $B(c_L, \alpha_L) \setminus B(c_U, \alpha_U)$. Then we have

$$\alpha_L + D < \text{val}(a - c_U) < \alpha_U - D$$

$$\alpha_L + D < \text{val}(a' - c_U) < \alpha_U - D$$

as otherwise one (both) of them would be in one of the near balls. We have either $\operatorname{val}(c_U - c_i(b)) \geq \alpha_U$ or $\operatorname{val}(c_U - c_i(b)) \leq \alpha_L$ as otherwise it would contradict the definition of an interval.

Suppose it is the first case $val(c_U - c_i(b)) \ge \alpha_U$. Then

$$val(a - c_i(b)) = val(a - c_U) < \alpha_U - D \le val(c_U - c_i(b)) - D$$

so by Lemma 3.7 we have $a-c_i(b)$, $a-c_U$ are in the same Q-coset. By a parallel argument we have $a'-c_i(b)$, $a'-c_U$ are in the same Q-coset. As we are assuming a, a' have the same tree type it implies that $a-c_U, a'-c_U$ are in the same Q-coset. Thus by transitivity we get that $a-c_i(b)$, $a'-c_i(b)$ are in the same Q-coset.

For the second case, suppose $val(c_U - c_i(b)) \leq \alpha_L$. Then

$$\operatorname{val}(a - c_i(b)) = \operatorname{val}(c_U - c_i(b)) \le \alpha_L < \operatorname{val}(a - c_U) - D$$

so by Lemma 3.7 we have $a - c_i(b)$, $c_U - c_i(b)$ are in the same Q-coset. By a parallel argument we have $a' - c_i(b)$, $c_U - c_i(b)$ are in the same Q-coset. Thus by transitivity we get that $a - c_i(b)$, $a' - c_i(b)$ are in the same Q-coset.

Next, we need to show that d_1, d_2 agree on formulas of the form $\operatorname{val}(p_i(x) - c_i(y)) < \operatorname{val}(p_j(x) - c_j(y))$ (see Lemma 3.1).

This gives us an upper bound on the number of types - there are at most |I|! many choices for the order of T-val, O(N) many choices for the interval for each p_i , and K many choices for the interval type for each p_i , giving a total of $O(N^{|I|}) \cdot K^{|I|} \cdot |I|! = O(N^{|I|})$ many types. This implies $\operatorname{vc}(\Psi) \leq |I|$. The biggest contribution to this bound are the choices among the O(N) many intervals for each p_i with $i \in I$. Are all of those choices realized? Intuitively there are |x| many variables and |I| many equations, so once we choose an interval for |x| many p_i 's, the interval for the rest should be determined. This would give the required $\operatorname{vc}(\Psi) \leq |x|$ bound. The next section outlines this proof formally.

4. Main Proof

Lemma 4.1. Suppose we have a finite collection of vectors $\{\vec{p}_i\}_{i\in I}$ with each $\vec{p}_i \in \mathbb{Q}_p^{|x|}$. Suppose $J \subset I$ and $i \in I$ satisfy

$$\vec{p}_i \in \operatorname{span} \left\{ \vec{p}_j \right\}_{j \in J}$$
,

and we have $\vec{x} \in \mathbb{Q}_p^{|x|}, \alpha \in \mathbb{Z}$ with

$$\operatorname{val}(\vec{p_j} \cdot \vec{x}) > \alpha \text{ for all } j \in J$$

Then

$$\operatorname{val}(\vec{p_i} \cdot \vec{x}) > \alpha - \gamma$$

for some $\gamma \in \mathbb{N}$. Moreover γ can be chosen independently from J, j, \vec{x}, α depending only on $\{\vec{p}_i\}_{i \in I}$.

Proof. Fix i, J satisfying the conditions of the lemma. For some $c_j \in \mathbb{Q}_p$ for $j \in J$ we have

$$\vec{p_i} = \sum_{j \in J} c_j \vec{p_j},$$

hence

$$\vec{p}_i \cdot \vec{x} = \sum_{j \in J} c_j \vec{p}_j \cdot \vec{x}.$$

We have

$$\operatorname{val}(c_j \vec{p}_j \cdot \vec{x}) = \operatorname{val}(c_j) + \operatorname{val}(\vec{p}_j \cdot \vec{x}) > \operatorname{val}(c_j) + \alpha.$$

Let $\gamma = \max(0, \min - \operatorname{val}(c_j))$. Then we have

$$\operatorname{val}(c_{j}\vec{p}_{j}\cdot\vec{x}) > \alpha - \gamma \qquad \text{for all } j \in J$$

$$\sum_{j \in J} c_{j}\vec{p}_{j}\cdot\vec{x} > \alpha - \gamma$$

This shows that we can pick such γ for a given choice of i, J, but independent from α, \vec{x} . To get a choice independent from i, J, go over all such eligible choices (i ranges over I and J ranges over subsets of I), pick γ for each, and then take the maximum of those values.

Alternative way to write $p_i(x)$ is $\vec{p}_i \cdot \vec{x}$, where \vec{p}_i and \vec{x} are vectors in $\mathbb{Q}_p^{|x|}$. The lemma above is a general result, but we only use it applied to the vectors \vec{p}_i given by our collection of formulas Ψ .

Definition 4.2. For $c \in \mathbb{Q}_p$ and $\alpha, \beta \in \mathbb{Z}$ define $c \upharpoonright [\alpha, \beta] \in (\mathbb{Z}/p\mathbb{Z})^{\beta - \alpha + 1}$ to be the record of the coefficients of c for the valuations between α, β . More precisely write c in its power series form

$$c = \sum_{\gamma \in \mathbb{Z}} c_{\gamma} p^{\gamma} \text{ with } c_{\gamma} \in \mathbb{Z}/p\mathbb{Z}$$

Then $c \upharpoonright [\alpha, \beta]$ is just $(c_{\alpha}, c_{\alpha+1}, \dots c_{\beta})$.

Fix γ corresponding to $\{\vec{p_i}\}_{i\in I}$ according to Lemma 4.1.

Definition 4.3. Denote $\mathbb{Z}/p\mathbb{Z}^{\gamma}$ as Ct.

Definition 4.4. Let $f: \mathbb{Q}_p^{|x|} \longrightarrow \mathbb{Q}_p^I$ with $f(\bar{c}) = (p_i(\bar{c}))_{i \in I}$. Define the segment space Sg to be the image of f.

Given a tuple $(a_i)_{i\in I}$ in the segment space look at the corresponding floors $\{F(a_i)\}_{i\in I}$. Those are ordered as elements of \mathbb{Z} . Partition the segment space by order type of $\{F(a_i)\}$. Work in a fixed partition Sg'. After relabeling we may assume that

$$F(a_1) \geq F(a_2) \geq \dots$$

Consider the (relabeled) sequence of vectors $\vec{p}_1, \vec{p}_2, \dots, \vec{p}_I$. There is a unique subset $J \subset I$ such that all vectors with indices in J are linearly independent, and all vectors with indices outside of J are a linear combination of preceding vectors. For any index $i \in I$ we call it independent if $i \in J$ and we call it dependent otherwise.

Now, we define the following function

$$g: \operatorname{Sg}' \longrightarrow \operatorname{Bt}^I \times \operatorname{Pt}^J \times \operatorname{Ct}^{I-J}$$

Let $\bar{a} = (a_i)_{i \in I} \in \operatorname{Sg}'$. To define $g(\bar{a})$ we need to specify where it maps \bar{a} in each individual component of the product.

For all a_i record its interval type \in Bt, giving the first component.

For a_j with $j \in J$, record the interval of a_j , giving the second component.

For the third component do the following computation. Pick a_i with i dependent. Let j be the largest independent index with j < i. Record $a_i \upharpoonright [F(a_j) - \gamma, F(a_j)]$.

Lemma 4.5. For $\bar{a}, \bar{a}' \in \operatorname{Sg}'$ if $g(\bar{a}) = g(\bar{a}')$ then a_i, a_i' have the same tree type for all $i \in I$.

Proof. For each i we show that a_i, a_i' are in the same interval and have the same interval type, so the conclusion follows by Lemma ??. Bt records the interval type of each element, so if $g(\bar{a}) = g(\bar{a}')$ then a_i, a_i' have the same interval type for all $i \in I$. Thus it remains to show that a_i, a_i' lie in the same interval for all $i \in I$.

Suppose i is an independent index. Then by construction, Pt records the interval for a_i, a_i' , so those have to belong to the same interval. Now suppose i is dependent. Pick the largest j < i such that j is independent. We have $F(a_i) \leq F(a_j)$ and $F(a_i') \leq F(a_j')$. Moreover $F(a_j) = F(a_j')$ as they are mapped to the same interval (using the earlier part of the argument as j is independent).

Claim 4.6. val
$$(a_i - a_i') > F(a_j) - \gamma$$

Proof. Let $\vec{x}, \vec{x}' \in \mathbb{Q}_p^{|x|}$ be some elements with

$$\vec{p}_k \cdot \vec{x} = a_k$$

$$\vec{p}_k \cdot \vec{x}' = a_k' \text{ for all } k \in I$$

It is always possible to do that as $\bar{a}, \bar{a}' \in Sg'$. Let J' be the set of the independent indices less than i. We have

$$\operatorname{val}(a_k - a_k') > F(a_k) \text{ for all } k \in J'$$

as for the independent indices a_k, a_k' lie in the same interval.

$$\operatorname{val}(a_k - a_k') > F(a_j)$$
 for all $k \in J'$ by monotonicity of $F(a_k)$

$$\operatorname{val}(\vec{p}_k \cdot \vec{x} - \vec{p}_k \cdot \vec{x}') > F(a_j) \text{ for all } k \in J'$$

$$\operatorname{val}(\vec{p}_k \cdot (\vec{x} - \vec{x}')) > F(a_j) \text{ for all } k \in J'$$

J' and i match the requirements of Lemma 4.1 so we conclude

$$\operatorname{val}(\vec{p}_i \cdot (\vec{x} - \vec{x}')) > F(a_j) - \gamma$$

$$\operatorname{val}(\vec{p}_i \cdot \vec{x} - \vec{p}_i \cdot \vec{x}') > F(a_j) - \gamma$$

$$\operatorname{val}(a_i - a_i')) > F(a_j) - \gamma$$

as needed, finishing the proof of the claim.

Additionally a_i, a'_i have the same image in Ct component, so we have

$$\operatorname{val}(a_i - a_i') > F(a_i)$$

As $F(a_i) \leq F(a_j)$, a_i, a'_i have to lie in the same interval.

Corollary 4.7. $\Psi(x,y)$ has VC-density $\leq |x|$

Proof. Suppose we have $c, c' \in \mathbb{Q}_p^{|x|}$ such that f(c), f(c') are in the same partition and g(f(c)) = g(f(c')). Then by the previous lemma $p_i(c)$ has the same tree type as $p_i(c')$ for all $i \in I$. Then by Lemma ?? c, c' have the same Ψ -type. Thus the number of possible Ψ -types is bounded by the size of the range of g times the number of possible partitions

(number of partitions)
$$\cdot |Bt|^{|I|} \cdot |Pt|^{|J|} \cdot |Ct|^{|I-J|}$$

We have

 $|\operatorname{Bt}| = N_D + \text{number of cosets of } Q|\operatorname{Pt}| \leq N \cdot I^2 \text{ (the only component dependent on } N)$

$$|\operatorname{Ct}| = p^{\gamma}$$

and there are at most |I|! many partitions of Sg. This gives us a bound

$$|I|!\cdot|Bt|^{|I|}\cdot(N\cdot{|I|}^2)^{|J|}\cdot p^{\gamma|I-J|}=O(N^{|J|})$$

Every p_i is an element of a |x|-dimensional vector space, so there can be at most |x| many independent vectors. Thus we have $|J| \leq |x|$ and the bound follows. \square

Corollary 4.8. In the language \mathcal{L}_{aff} we have vc(n) = n.

Proof. Previous lemma implies that $\operatorname{vc}(\phi) \leq \operatorname{vc}(\Psi) \leq |x|$. As choice of ϕ was arbitrary, this implies that VC-density of any formula is bounded by the arity of x.

References

- M. Aschenbrenner, A. Dolich, D. Haskell, D. Macpherson, S. Starchenko, Vapnik-Chervonenkis density in some theories without the independence property, I, preprint (2011)
- [2] E. Leenknegt. Reducts of p-adically closed fields, Archive for Mathematical logic, 53(3):285-306, 2014

 $E\text{-}mail\ address{:}\ \mathtt{bobkov@math.ucla.edu}$