Ch 1.5 Nested Quantifiers (Week 7)

Introduction

▼ example

 $\forall x\exists y(x+y=0)$ is the same thing as $\forall x\ Q(x)$ is $\exists y\ P(x,y)$ where P(x,y) is x+y=0

Understanding Statements Involving Nested Quantifiers

• Think of Quantification as Loops

The Order of Quantifiers

- $\forall x \forall y \ P(x,y)$ and $\forall y \forall x \ P(x,y)$ have the same meaning
- $\exists y \forall x \ P(x,y)$ and $\forall x \exists y \ P(x,y)$ are not logically equivalent

TABLE 1 Quantifications of Two Variables.		
Statement	When True?	When False?
$\forall x \forall y P(x, y) \forall y \forall x P(x, y)$	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.
$\forall x \exists y P(x, y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y .
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.
$\exists x \exists y P(x, y) \exists y \exists x P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .

Translating Mathematical Statements into Statements Involving Nested Quantifiers

▼ Example 6

"The sum of two positive integers is always positive. " $orall x orall y ((x>0) \wedge (y>0) o (x+y>0))$

Translating from Nested Quantifiers into English

▼ Example 9

 $\forall x (C(x) \lor \exists y (C(y) \land F(x,y)))$

C(x) is "x has a computer" , $\ F(x,y)$ is "x and y are friends" , domain is "all students in your school"

⇒ "Every student in your school has a computer or has a friend who has a computer."

▼ Example 10

 $\exists x orall y orall z \; ((F(x,y) \land (y
eq z))
ightarrow
eg F(y,z))$

F(a,b) means "a and b are friends", domain is "all students in your school"

⇒ "There is a student none of whose friends are also friends with each other."

Translating English Sentences into Logical Expressions

▼ Example 12

"Everyone has exactly one best friend"

 $\Rightarrow \exists y (B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \Rightarrow \forall x \exists y (B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \ \ \text{or} \ \forall x \exists ! y B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \ \ \text{or} \ \forall x \exists ! y B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \ \ \text{or} \ \forall x \exists ! y B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \ \ \text{or} \ \forall x \exists ! y B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \ \ \text{or} \ \ \forall x \exists ! y B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \ \ \text{or} \ \ \forall x \exists ! y B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \ \ \text{or} \ \ \forall x \exists ! y B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \ \ \text{or} \ \ \forall x \exists ! y B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \ \ \text{or} \ \ \forall x \exists ! y B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \ \ \text{or} \ \ \forall x \exists ! y B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \ \ \text{or} \ \ \forall x \exists ! y B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \ \ \text{or} \ \ \forall x \exists ! y B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \ \ \text{or} \ \ \forall x \exists ! y B(x,y) \land \forall z ((z \neq y) \to \neg B(x,z))) \ \ \ \forall x \exists ! y B(x,y) \land \exists x \in A(x,y) \land \exists$

Negating Nested Quantifiers

▼ Example 14

 $\forall x \exists y (xy=1) \Rightarrow \neg \forall x \exists y (xy=1) \Rightarrow \exists x \neg \exists y (xy=1) \Rightarrow \exists x \forall y \neg (xy=1) \Rightarrow \exists x \forall y (xy\neq 1)$