Solutions to Problem Set 2, Econ 587, Summer 2016

1. Dynamic version of Okun's Law

Source 		231 .7	9189205		Number of obs F(5, 231) Prob > F R-squared Adj R-squared	= 100.23 = 0.0000 = 0.6845 = 0.6777
Total	579.772504	236 2.4	5666315		Root MSE	= .88988
du	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
du L1. L2.		.0660174			.1563355 2227095	.4164821
g L1. L2. cons	0761304	.0213618	-12.48 -3.65 -2.74	0.000 0.000 0.007	2328711 1172014 1007156	169357 0350595 0165379

ii. Okun's law lag-length check

	1 lag	2 lag	3 lag
N	236	236	236
aic	624.4	<mark>621.0</mark>	621.7
bic	638.3	641.8	649.4

AIC is minimized at lag length = 2

ii. Chow break-point test:

Source	SS	df	MS		Number of obs F(11, 225)	
Model Residual	408.746743 171.025761		1587948 0114492		Prob > F R-squared Adj R-squared	= 0.0000 $= 0.7050$
Total	579.772504	236 2.45	5666315		Root MSE	= .87185
du	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
du l						
L1.	.2225014	.07354	3.03	0.003	.0775861	.3674167
L2.	1722662	.0638029	-2.70	0.007	2979938	0465386
į						
g l						
	2057417	.0170749	-12.05	0.000	239389	1720945
L1.	0959639	.0226045	-4.25	0.000	1405075	0514204
L2.	0868909	.0233514	-3.72	0.000	1329062	0408755
per2	8618634	.294395	-2.93	0.004	-1.441987	2817393
LduXp2	.0584787	.1695321	0.34	0.730	2755951	.3925526
L2duXp2	.2482457	.1519251	1.63	0.104	0511324	.5476238
gXp2	.0492162	.050782	0.97	0.334	0508529	.1492853
LgXp2	.0378015	.058165	0.65	0.516	0768164	.1524194
L2gXp2	.0660199	.0599866	1.10	0.272	0521875	.1842273
_cons	1.55166	.1581464	9.81	0.000	1.240022	1.863297

[.] test per2 LduXp2 L2duXp2 gXp2 LgXp2 L2gXp2 // --> reject null of no break!

```
(1) per2 = 0

(2) LduXp2 = 0

(3) L2duXp2 = 0

(4) gXp2 = 0

(5) LgXp2 = 0

(6) L2gXp2 = 0

F(6, 225) = 2.61

Prob > F = 0.0183
```

We therefore reject the null hypothesis of no break.

iv. split-sample estimates:

 * part iv. GDP growth rate consistent with stable unemp (see p. 75 of Knotek paper) . reg du g if !per2

Source	SS	df	MS		Number of obs	
Model Residual	269.732483	1 2 141 1	59.732483 69311792			= 0.0000 = 0.5305
Total					Root MSE	
du	Coef.				[95% Conf.	Interval]
g _cons	283147 1.180762	.022433	-12.62	0.000		2387983 1.451207

. di -_b[_cons]/_b[g] 4.17

. reg du g if per2

	SS	df		MS		Number of obs F(1, 94)		96 45.10
Model Residual	21.6175453 45.0607901	1 94	21.61	175453 370107		Prob > F R-squared Adj R-squared	= =	0.0000 0.3242
	66.6783354			377214		Root MSE		.69237
du	Coef.					[95% Conf.	In	terval]
g l		.0339	643	-6.72 4.48	0.000	2955185 .3258887		1606447 8457065

. di -_b[_cons]/_b[g] 2.56 2. We have $y_t = \varepsilon_t - .3\varepsilon_{t-1} + .17\varepsilon_{t-2}$ where $\varepsilon_t \sim WN(0, \sigma^2)$

(i) Theoretical ACF for lags 1 through 4, provide a sketch of the ACF.

The autocorrelation is the ratio of the autocovariance function to the variance. Therefore, we first derive the variance of y_t which is the same as the autocovariance at lag 0:

$$var(y_{t}) = \gamma(0) = E[\varepsilon_{t} - .3\varepsilon_{t-1} + .17\varepsilon_{t-2}]^{2} = E[\varepsilon_{t}^{2} + .09\varepsilon_{t-1}^{2} + .0289\varepsilon_{t-2}^{2} - .102\varepsilon_{t-1}\varepsilon_{t-2} - .6\varepsilon_{t}\varepsilon_{t-1} + .34\varepsilon_{t}\varepsilon_{t-2}]$$

Because ε_t is zero mean white noise, it follows that:

$$E[\varepsilon_t]^2 = \sigma^2$$
 and $E[\varepsilon_t \varepsilon_{t-i}] = 0$ for all $i \neq 0$.

Therefore:

$$var(y_t) = \sigma^2 \times (1 + .09 + .289) = 1.379 \sigma^2$$

Next we derive the autocovariance at lags 1 through 4:

Lag 1:

$$\gamma(1) = E[\varepsilon_{t} - .3\varepsilon_{t-1} + .17\varepsilon_{t-2}] \times E[\varepsilon_{t-1} + -.3\varepsilon_{t-2} + .17\varepsilon_{t-3}]$$

Ignoring the cross products which disappear (equal zero):

$$\gamma(1) = E[-.3\varepsilon_{t-1}^2 - .051\varepsilon_{t-2}^2] = -.351\sigma^2$$

Lag 2:

$$\gamma(2) = E[\varepsilon_{t} - .3\varepsilon_{t-1} + .17\varepsilon_{t-2}] \times E[\varepsilon_{t-2} - .3\varepsilon_{t-3} + .17\varepsilon_{t-4}] = .17\sigma^{2}$$

Lag 3:

$$\gamma(3) = E[\varepsilon_{t} - .3\varepsilon_{t-1} + .17\varepsilon_{t-2}] \times E[\varepsilon_{t-3} - .3\varepsilon_{t-4} + .17\varepsilon_{t-5}] = 0$$

Lag 4:

$$\gamma(4) = E[\varepsilon_{t} - .3\varepsilon_{t-1} + .17\varepsilon_{t-2}] \times E[\varepsilon_{t-4} - .3\varepsilon_{t-5} + .17\varepsilon_{t-6}] = 0$$

The ACF (autocorrelation function):

$$\rho(i) = \frac{\gamma(i)}{\gamma(0)}$$

$$\rho(1) = \frac{\gamma(1)}{\gamma(0)} = \frac{-.351\sigma^2}{1.379\sigma^2} = -0.25$$

$$\rho(2) = \frac{\gamma(2)}{\gamma(0)} = \frac{.17\sigma^2}{1.379\sigma^2} = 0.12$$

$$\rho(i) = \frac{\gamma(i)}{\gamma(0)} = 0 \quad \text{for } i \ge 3$$

sketch:

(ii) Code in R:

a <- arima.sim(n = 200, list(ma = c(-.3,.17))) acf(a, lag.max=8)

It roughly corresponds: the first lag is negative and significant as predicted. The second lag is positive as predicted. All of the remaining lags are insignificant

iii. Code in R:

arima(a, order=c(0,0,2))

Output in R:

3. We have
$$y_t = .28y_{t-1} + \varepsilon_t$$
 where $\varepsilon_t \sim WN(0, 1.15)$

Recall that an AR(1) can be re-written as an MA(∞):

$$y_t = \sum_{i=0}^{\infty} .28^i \varepsilon_{t-i}$$

$$\operatorname{var}(y_t) = \gamma(0) = E[\sum_{i=0}^{\infty} .28^i \varepsilon_{t-i}]^2$$

Since all of the cross-products cancel out:

$$\operatorname{var}(y_t) = \gamma(0) = E[\sum_{i=0}^{\infty} .28^i \varepsilon_{t-i}]^2 = 1.15 \times [1 + .28^2 + .28^4 + .28^6 + \cdots] = \frac{1.15}{1 - .28^2} = 1.25$$

4. This is an exercise in inspecting ACFs, PACFs, and the estimation results from multiple candidate specifications. Also it had you (unwittingly) model a couple unit root series as ARMA. See my Stata output file for details.

GDP growth: AIC chooses ARMA(2,1), BIC chooses ARMA(1,1).

	(1)	(2)	(3)	(4)	(5)
	g	g	g	g	g
g					
_cons				2.974***	
	(0.394)	(0.498)	(0.513)	(0.508)	(0.550)
ARMA					
L.ma	0.380***			0.448	
	(0.0807)	(0.257)	(0.389)	(0.351)	(0.201)
L2.ma	0.309**	0.147	-0.0206		
	(0.0953)	(0.126)	(0.284)		
L.ar		0.579*	-0.0511	-0.0553	0.756***
2.42		(0.225)	(0.376)	(0.325)	(0.142)
L2.ar			0.451	0.435***	
LZ.ar			(0.335)	(0.131)	
sigma					
_cons				2.203***	
	(0.121)	(0.149)	(0.145)	(0.137)	(0.144)
N	104	104	104	104	104
aic	472.1	471.8	471.9	469.9	470.8
bic	482.7	485.0	487.7	483.1	481.4

T Bill Rate: [We now know that this is probably a unit root time series so we should difference it first. But when the homework was due, we hadn't gotten that far yet.] Without differencing, the model I thought the ARMA(2,2) fit pretty well.

	(1) trate	(2) trate	(3) trate	(4) trate
trate _cons	3.868* (1.789)	3.901 (2.464)	3.847*** (0.544)	3.855*** (0.546)
ARMA				
L.ar	1.469*** (0.0429)	0.995*** (0.0115)	1.956*** (0.0303)	1.951*** (0.0318)
L2.ar	-0.474*** (0.0450)		-0.961*** (0.0303)	-0.957*** (0.0321)
L.ma		0.450*** (0.0482)	-0.566*** (0.0599)	-0.578*** (0.0596)
L2.ma			-0.229*** (0.0570)	-0.298*** (0.0703)
L3.ma				0.109 (0.0583)
sigma				
_cons		0.194*** (0.00634)	0.182*** (0.00580)	0.181*** (0.00607)
N aic bic	232 -96.49 -82.71	232 -88.22 -74.44	232 -113.5 -92.78	232 -114.6 -90.49

^{*} p<0.05, ** p<0.01, *** p<0.001

Labor productivity: [Another unit root!] AIC chose ARMA(1,2).

	(1)	(2)	(3)
	lp	lp	lp
lp	76.14***	79.77***	79.56***
_cons	(1.335)	(20.68)	(20.72)
ARMA	1.616***	0.273**	
L.ma	(0.171)	(0.0857)	
L2.ma	1.000*** (0.213)	0.240** (0.0929)	
L.ar		0.999*** (0.00807)	
sigma	3.753	0.619***	0.679***
_cons		(0.0421)	(0.0474)
N	103	103	103
aic	579.8	210.7	225.4
bic	587.7	223.9	233.3

5. The statistic I started with was the sum of squared residuals (SSR). The SSR however is (weakly) decreasing in the number of lags included. So more lags will never lead to an increase in the SSR. Therefore, I adjusted the information criterion by adding a penalty of .15 for each lag (why .15? I figured out what would make 8 lags have the min!)

Here is a plot of SSR and SSR + .15*(number of lags) which is minimized at lag 8:

