UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA

VICERRECTORADO ACADÉMICO

FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVICIOS DEPARTAMENTO ACADÉMICO DE INGENIERIA DE SISTEMAS E INFORMATICA

SÍLABO 2024 - B ASIGNATURA: ESTRUCTURAS DISCRETAS II

1. INFORMACIÓN ACADÉMICA

Periodo académico:	2024 P		
rendud academico.	ZU24 - D		
Escuela Profesional:	CIENCIA DE LA COMPUTACIÓN		
Código de la asignatura:	1701208		
Nombre de la asignatura:	ESTRUCTURAS DISCRETAS II		
Semestre:	II (segundo)		
Duración:	17 semanas		
Número de horas (Semestral)	Teóricas:	2.00	
	Prácticas:	2.00	
	Seminarios:	0.00	
	Laboratorio:	4.00	
	Teórico-prácticas:	0.00	
Número de créditos:	5		
Prorrequisites	FUNDAMENTOS DE COMPUTACION (1701106)		
Prerrequisitos:	ESTRUCTURAS DISCRETAS I (1701107)		

2. INFORMACIÓN DEL DOCENTE, INSTRUCTOR, COORDINADOR

DOCENTE	GRADO ACADÉMICO	DPTO. ACADÉMICO	HORAS	HORARIO
FLORES QUISPE, ROXANA	Doctora	INGENIERIA DE SISTEMAS E INFORMATICA	4	Mar: 10:40-12:20
TEORES QUISFE, ROZANA	Doctora		4	Mié: 10:40-12:20
VELAZCO PAREDES. YUBER ELMER	Doctor	INGENIERIA DE SISTEMAS E INFORMATICA	0	Mar: 10:40-12:20
VELAZOO FAREDES, TOBER ELIVIER	Doctor	INGENIERIA DE SISTEMAS E INI ORMATICA		Mié: 10:40-12:20
FLORES QUISPE, ROXANA	Doctora	Doctora INGENIERIA DE SISTEMAS E INFORMATIC	4	Mar: 12:20-14:00
FLORES QUISFE, ROXAINA	Doctora	INGENIERIA DE SISTEMAS E INFORMATICA		Mié: 12:20-14:00
VELAZCO PAREDES, YUBER ELMER	Doctor	INGENIERIA DE SISTEMAS E INFORMATICA	0	Mar: 12:20-14:00
VELAZOO FAREDES, YUBER ELMER	Doctor	INGENIERIA DE 313 I EMAS E INFORMATICA		Mié: 12:20-14:00

3. INFORMACIÓN ESPECIFICA DEL CURSO (FUNDAMENTACIÓN, JUSTIFICACIÓN)

El curso de Estructuras Discretas II corresponde al segundo semestre del primer año de la formación profesional de la Escuela Profesional de Ciencia de la Computación. La materia tiene como objetivo que el estudiante conozca y comprenda los conceptos y técnicas de las diversas estructuras discretas y algebraicas, estructuras que serán implementadas y en algunos casos aplicadas en el campo de la criptografía.

4. COMPETENCIAS/OBJETIVOS DE LA ASIGNATURA

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar).
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución.
- c) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- d) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)
- e) Desarrollar principios de investigación en el área de computación con niveles de competitividad internacional.

5. CONTENIDO TEMATICO

PRIMERA UNIDAD

Capítulo I: Grafos

Tema 01: Definiciones Básicas de los Grafos **Tema 02:** Representación numérica de grafos

Tema 03: Relaciones de adyacencia **Tema 04:** Vecindades de conexiones

Tema 05: Trayectorias de un grafo

Tema 06: Grafos conexos - componentes conexas

Tema 07: Caminos Eulerianos y hamiltonianos

Tema 08: Isomorfismos de grafos

Tema 09: Grafos planos

SEGUNDA UNIDAD

Capítulo II: Árboles

Tema 10: Árboles y su clasificación

Tema 11: Árboles ponderados y códigos de recorrido

Tema 12: Árboles binarios

Tema 13: Árboles de decisión y tiempo mínimo para ordenar

Tema 14: Isomorfismo de árboles

Tema 15: Árboles de juegos

TERCERA UNIDAD

Capítulo III: Optimización y emparejamiento

Tema 16: Algoritmos de para hallar el camino más corto - Dijkstra

Tema 17: Árboles generadores minimales : Prim - Kruskal

Tema 18: Redes de transporte : teoremas de flujo máximo y corte mínimo

Tema 19: Teoría de emparejamiento

CUARTA UNIDAD

Capítulo IV: Albebra abstracta

Tema 20: Teória de números

Tema 21: Anillos y aritmética modular

Tema 22: Grupos y semigrupos

Tema 23: Probabilidad discreta y combinatoria

QUINTA UNIDAD

Capítulo V: Critografía

Tema 24: Introducción a la criptografía

Tema 25: Criptografíad de clave privada

Tema 26: Algoritmo de Cesar

Tema 27: Criptografía de clave pública

Tema 28: RSA, El Gamal

Tema 29: Firmas digitales y protocolos

Tema 30: Presentación de proyectos finales

6. ESTRATEGIAS DE ENSEÑANZA APRENDIZAJE

6.1. Métodos

El profesor del curso presentará clases teóricas a través de conferencias de los temas señalados en el programa propiciando la intervención de los alumnos.

El profesor del curso presentará guías de práctica para el desarrollo de las sesiones de laboratorio que permitan afianzar lo desarrollado en las clases teóricas

6.2. Medios

Conferencia en clase y uso del aula virtual DUTIC para la difusión de material y revisión de trabajos, videos, etc

6.3. Formas de organización

Clases Teóricas: exposición de clase magistral

Prácticas y exposiciones: trabajo en grupo o de manera individual

6.4. Programación de actividades de investigación formativa y responsabilidad social

Investigar sobre la aplicación de la teoría de grafos y/o algoritmos de criptografía en la solución de problemas.

Generar material de apoyo para el desarrollo del pensamiento computacional en la región, de acuerdo al plan de trabajo y conforme a los lineamientos de la Escuela Profesional.

7. CRONOGRAMA ACADÉMICO

;	SEMANA	TEMA	DOCENTE	%	ACUM.
	1	Definiciones Básicas de los Grafos	R. Flores	3	3.00
	1	Representación numérica de grafos	R. Flores	2	5.00

2	Relaciones de adyacencia	R. Flores	2	7.00
2	Vecindades de conexiones	R. Flores	3	10.00
3	Trayectorias de un grafo	R. Flores	2	12.00
4	Grafos conexos - componentes conexas	R. Flores	3	15.00
4	Caminos Eulerianos y hamiltonianos	R. Flores	2	17.00
5	Isomorfismos de grafos	R. Flores	2	19.00
5	Grafos planos	R. Flores	3	22.00
6	Árboles y su clasificación	R. Flores	2	24.00
6	Árboles ponderados y códigos de recorrido	R. Flores	3	27.00
7	Árboles binarios	R. Flores	3	30.00
7	Árboles de decisión y tiempo mínimo para ordenar	R. Flores	3	33.00
8	Isomorfismo de árboles	R. Flores	3	36.00
8	Árboles de juegos	R. Flores	3	39.00
9	Algoritmos de para hallar el camino más corto - Dijkstra	R. Flores	5	44.00
9	Árboles generadores minimales : Prim - Kruskal	R. Flores	5	49.00
10	Redes de transporte : teoremas de flujo máximo y corte mínimo	R. Flores	5	54.00
10	Teoría de emparejamiento	R. Flores	5	59.00
11	Teória de números	R. Flores	5	64.00
11	Anillos y aritmética modular	R. Flores	5	69.00
12	Grupos y semigrupos	R. Flores	5	74.00
12	Probabilidad discreta y combinatoria	R. Flores	5	79.00
13	Introducción a la criptografía	R. Flores	2	81.00
13	Criptografíad de clave privada	R. Flores	3	84.00
14	Algoritmo de Cesar	R. Flores	3	87.00
14	Criptografía de clave pública	R. Flores	3	90.00
15	RSA, El Gamal	R. Flores	3	93.00
15	Firmas digitales y protocolos	R. Flores	3	96.00
16	Presentación de proyectos finales	R. Flores	4	100.00
	-	-	•	

8. ESTRATEGIAS DE EVALUACIÓN

8.1. Evaluación del aprendizaje

Evaluación Continua.

- Primer consolidado de Trabajos encargados y participación: 18%

- Segundo consolidado de Trabajos encargados y participación: 18%

- Tercer consolidado de Trabajos encargados y participación: 24%

Evaluación Teórica

- Primer Examen:12%
- Segundo Examen: 12%

- Tercer Examen: 16%

8.2. Cronograma de evaluación

EVALUACIÓN	FECHA DE EVALUACIÓN	EXAMEN TEORÍA	EVAL. CONTINUA	TOTAL (%)
Primera Evaluación Parcial	02-10-2024	12%	18%	30%
Segunda Evaluación Parcial	13-11-2024	12%	18%	30%

Tercera Evaluación Parcial	19-12-2024	16%	24%	40%
			TOTAL	100%

9. REQUISITOS DE APROBACIÓN DE LA ASIGNATURA

- a) Tener notas en todas las evaluaciones programadas.
- b) Para aprobar se precisa tener una Nota Final mayor que 10.5

10. BIBLIOGRAFIA: AUTOR, TÍTULO, AÑO, EDITORIAL

10.1. Bibliografía básica obligatoria

Kolman Bernard, Busby Robert C., R. Matemáticas Discretas (1997). Pearson Educación.

Kolman Bernard, Busby Robert C., R. S. Discrete Mathematical Structures (2017). Pearson Education.

Richard Johnsonbaugh. Matemáticas Discretas. Sexta edición. (2005) - Pearson Prentice Hall.

Villalpando Becerra, José Francisco, Matemáticas discretas: aplicaciones y ejercicios (2014) Ed. Patria.-México D.F.

10.2. Bibliografía de consulta

Rafael Caballero Rodam, Teresa Hortalá Gonzales, N. M. O. Matemática Discreta para Informáticos (2007) - Ejercicios Resueltos. Pearson Prentice Hall

Arequipa, 13 de Octubre del 2024

FLORES QUISPE, ROXANA

VELAZCO PAREDES, YUBER ELMER