ITMO

Разработка модели машинного обучения для оценки способности молекул проникать через гематоэнцефалический барьер

Выполнил Пронин Михаил Васильевич МОУ «СОШ №3» г.Всеволожска 11 математический класс budkarw@gmail.com

Научный руководитель: Исакова Анастасия Михайловна магистрант 2-ого года обучения НОЦ инфохимии 1

Проблематика

- Гематоэнцефалический барьер (ГЭБ) это полупроницаемый барьер между кровью и нервной тканью.
- Способность проникать через ГЭБ является одной из важнейших характеристик молекул в фармакологии.

Методы анализа

Экспериментально *in vivo*

Модель in silico


```
nn.Linear(in_features=n_input_layer, out_features=n_inner_layer),
            #nn.Dropout(0.5),
            nn.LeakyReLU(),
            nn.Linear(in_features=n_inner_layer, out_features=1)
   def forward(self, x):
     return self.regressor(x)
# initiate model
def initiate model():
 logBB_net = logBB_Net(n_input_features=397, n_input_layer=350, n_inner_layer=350)
 # define some other parameters
 n epochs = 100
 criterion = nn.MSELoss() # criterion for training
 optimizer = torch.optim.Adam(logBB_net.parameters(), lr=3e-4) # define optimizer with lr
 return logBB_net, n_epochs, criterion, optimizer
```

Лабораторное оборудование, стерильность, ткани/животные

VS Интернет, компьютер

Вывод: использовать модели выгодно

Этапы создания модели

Предсказание значения logBB

ITMO

Проблема 1: модели обучены на небольших наборах данных/искусственных данных -> результаты недостаточно надежны.

Проблема 2: модели для предсказания logBB изменяются и совершенствуются, не все перспективные варианты исследованы

Radchenko et. al (2020) 529 молекул

Sakiyama, Motoki, Okuno et al. (2023) 1957 молекул

Feng, Edros, Ghani, *Mokhtar, Dong et. al(2024)* 7236 молекул

Цели и задачи

Создать ML-модель для предсказания logBB, обученную на большом количестве достоверных данных. Проверить эффективность различных алгоритмов машинного обучения и разных параметров молекул в качестве входных данных.

Сбор и предобработка данных

iTMO

- Источник данных: база данных **B3DB**, статья *Tevosyan et. al*
- Bce SMILES переведены в канонический вид
- Удалены дубликаты и отсутствующие значения
- Удалены неорганические молекулы
- Удалены выбросы

B3DB

После обработки осталось 1130 молекул

Tevosyan et al.

CN1CCN2C3=CC=CC=C3CC3=CC=CC=C3C2C1 mianserin logBB=0,99

Создание параметров молекул

iTMO

По данным молекул были сгенерированы дескрипторы RDKit, фингерпринты Avalon и PubChem. Сравнивались результаты для различных комбинаций признаков.

Использование разного количества данных

- Для обучения отбирались 25%, 50%, 75%, 100% лучших признаков. Отбор происходил по критерию взаимной информации
- Проведена кросс-валидация. На 80% данных модели обучались, 20% были оставлены для тестирования

Алгоритмы машинного обучения

Метка класса

Добавление информации о классе, предсказанном с помощью модели классификации

Решающие деревья

Нейронная сеть

Результаты

- Лучшие показатели без использования метки класса у нейронной сети.
- Использование метки класса улучшает показания метрик Q^2 и $RMSE_{cv}$ на 8% и 14% соответственно.
- Использование параметров PubChem даёт результаты значительно хуже, чем параметры Avalon.
- Лучшие показатели получаются при использовании 75% признаков.

Модель		Значение		
		метрики		
	RMSE	Q2	R2	
k-nearest neighbours Avalon 50%	0,49	0,44	0,78	
decision tree Avalon 25%	0,50	0,40	0,93	
random forest Avalon 75%	0,39	0,64	0,95	
light gradient boosting Avalon 75%	0,38	0,65	0,98	
neural network Avalon 75%	0,33	0,70	0,98	
light gradient boosting PubChem 25%	0,64	0,01	0,94	
neural network PubChem 75%	0,35	0,04	0,05	

Заключение

iTMO

- Созданы надежные модели для предсказания logBB (см.Github)
- Лучшие результаты были получены с использованием модели neural network regression
- Использование pubchem не эффективно для этой задачи по сравнению с Avalon
- При отборе признаков по критерию взаимной информации оптимально использовать 75% лучших параметров

Github-репозиторий

График предсказанных и реальных значений logBB молекул с использованием оптимальной модели

Спасибо за внимание

Метрики качества модели

Среднеквадратичная ошибка (RMSE)

$$RMSE = \sqrt{\sum_{i=1}^{N} rac{\left(y_i - \hat{y}_i
ight)^2}{N}}$$

$$R^2 = 1 - \frac{\Sigma (y_{pred} - y_{mean})^2}{\Sigma (y_{actual} - y_{mean})^2}$$

Разница между предсказанными значениями и экспериментально проверенными. Идеальное значение среднеквадратичной ошибки — 0

Насколько хорошо модель работает на разных наборах данных. Лучшее значение метрики – 1. Q² – R², но при обучении и проверке на полном датасете

Задача регрессии: предсказание значения logBB

Mensch et. al (2010)

- $R^2 = 0.774, Q^2 = 0.635$
- **В** закрытом доступе
- № Очень маленький набор данных(88 молекул)

*идеальные

значения R^2 , Q^2 и

 $RMSE_{cv}$: 1, 1 и 0 соответственно

Zhu et. al (2018)

- $R^2=0.938$, $Q^2=0.788$, $RMSE_{cv}=0.324*$
- В закрытом доступе
- Маленький набор данных (287 молекул)

Radchenko et. al (2020)

- $Q^2 = 0.816$, $RMSE_{cv} = 0.318$
- ✓ Публично доступно
 - Маленький набор данных (529 молекул)

2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- B		936,3	
-2	,	ъ.		3

	Значение		
	метрики		
Модель	RMSE	Q2	R2
k-nearest neighbours Avalon 50%	0,49	0,44	0,78
k-nearest neighbours Pubchem 25%	0,65	0,10	0,19
decision tree Avalon 25%	0,50	0,40	0,93
decision tree Pubchem 50%	0,81	0,11	0,24
random forest Avalon 75%	0,39	0,64	0,95
random forest Pubchem 75%	0,61	0,08	0,87
light gradient boosting Avalon 75%	0,35	0,71	0,98
light gradient boosting Pubchem 25%	0,64	0,01	0,94
neural network Pubchem 75%	0,35	0,04	0,05
neural network Avalon 75%	0,33	0,70	0,98