ИТМО. МатАн. Практика.

11.09.2023

Производная неявно заданной функции

3147

$$xe^y+ye^x-e^{xy}=0, y=y(x), y^{'}=?$$

$$(xe^y-e^{xy})^{'}=0^{'} \text{ тогда } e^y+xy^y*y^{'}+y^{'}x+ye^x-e^{xy}(y+xy^{'})=0. \text{ If } (xe^y+e^x-xe^{xy})y^{'}=-e^y-ye^x+ye^{xy}$$

$$((e^{fg})^{'}=e^{fg}*(fg)^{'}). \text{ Отсюда } y^{'}=\frac{e^y+ye^x-ye^{xy}}{e^x+xe^y-xe^{xy}}.$$

Формула, дающая тот же результат. Представим $xe^y+ye^x-e^{xy}$ как F(x,y)=0, где $\begin{cases} x=t \\ y=y(t) \end{cases}$ формулу $y^{'}(x)=\frac{F_x^{'}(x,y)}{F_y^{'}(x,y)}$. Тогда для исходного уровнения получаем $F_x^{'}=e^y+ye^x-ye^{xy}$ и $F_y^{'}=xe^y+e^x-xe^{xy}$.

Тогда по формуле $y^{'}(x) - \frac{e^{y} + ye^{x} - ye^{xy}}{e^{x} + xe^{y} - xe^{xy}}$.

Согласно следствию
$$z=z(x,y)$$
 и $F(x,y,z)=0 \rightarrow z_{x}^{'}=-\frac{F_{x}^{'}}{F_{z}^{'}}$ и $z_{y}^{'}=-\frac{F_{y}^{'}}{F_{z}^{'}}$.

3163

Условие

$$z^3+3xyz=a^3, a\in\mathbb{R},$$
а - константа. Найти $z_x^{'},z_y^{'}.$

Решение

$$F(x,y,z)=z^{y}+3xyz-a^{3}.\ F_{x}^{'}=3yz, F_{y}^{'}=3xz, F_{z}^{'}=3z^{2}+3xy.\ \text{Тогда}\ z_{x}^{'}=-\frac{3yz}{3z^{2}+3xy}, z_{y}^{'}=-\frac{3xz}{3z^{2}-3xy}$$

3164

Условие

$$e^z - xyz = 0, \frac{\delta z}{\delta x}, \frac{\delta z}{\delta y} = ?$$

Решение

$$\frac{\delta z}{\delta x}=z_{x}^{'}=rac{yz}{e^{z}-xy}$$
 и $rac{\delta z}{\delta y}=z_{y}^{'}=rac{xz}{e^{z}-xy}.$

Частная производная второго и высших порядков

$$y(x),y^{''}(x)=(y_x^{'})^{'}.$$
 Тогда $z=z(x,y),(z_x^{'})_y^{'}=z_{xy}^{''},(z_y^{'})_x^{'}=z_{yx}^{''}=z_{xy}^{''}$

3182

Условие

$$z=x^y$$
, проверить, что $\frac{\delta^2 z}{\delta x \delta y} \stackrel{?}{=} \frac{\delta^2 z}{\delta y \delta x}.$

Решение

$$\frac{\delta^{2}z}{\delta x\delta y}=\left(x^{2}\right)_{xy}^{''}=\left((y)*x^{y-1}\right)_{y}^{'}=x^{y-1}+y*\ln x*x^{y-1}.\\ \frac{\delta^{2}z}{\delta y\delta x}=\left((x^{y})_{y}^{'}\right)^{'}=\left(x^{y}*\ln x\right)_{x}^{'}=yx^{x-1}*\ln x+x^{y-1}.$$

3219

Условие

$$z = xy^2 - x^2y, d^2z = ?$$

Решение

$$d^2z = d(dz) = d(\frac{\delta z}{\delta x}dx + \frac{\delta z}{\delta y}dy) = d(\frac{\delta z}{\delta x}dx) + d(\frac{\delta z}{\delta y}dy) = d(\frac{\delta z}{\delta x})dx + d(\frac{\delta z}{\delta y})dy = (\frac{\delta z^2}{\delta^2 x}dx + \frac{\delta z^2}{\delta x \delta y}dy)dx + (\frac{\delta z^2}{\delta x \delta y}dx + \frac{\delta z^2}{\delta^2 y}dy)dy = d(\frac{\delta z}{\delta x})dx + d(\frac{\delta z}{\delta y})dy = d(\frac{\delta z}{\delta x})dx + d(\frac{\delta z}{\delta y})dx + d(\frac{\delta z}{\delta y})dy = d(\frac{\delta z}{\delta x})dx + d(\frac{\delta z}{\delta y})dx + d($$