Chapter 20-1 Recurrent Neural Network

- 1. Slot Filling
 - a) 1-of-N Encoding
 - b) Beyond 1-of-N Encoding
 - i) Dimension of "other"
 - ii) Word hashing
- 2. SimpleRNN
 - a) The output of hidden layer are stored in the memory
 - b) Memory can be considered as another input
 - c) Changing the sequence order will change the output
 - d) Elman RNN
 - i) Hidden layer → hidden layer
 - e) Jordan RNN
 - i) Output layer → hidden layer
 - f) Bidirectional RNN
- 3. Long Short-term Memory
 - a) Four Inputs: Input, input gate signal, output gate signal, forget gate signal
 - b) One Cell: Memory Cell
 - c) One Output: Output of output gate
 - d) The activation function of gates usually is sigmoid function
 - e) Usually 4 times of parameters than other neural networks
- 4. Optimize RNN
 - a) Back Propagation Through Time (BPTT)
 - b) RNN-based network is not always easy to learn
 - i) The error surface is tough
 - ii) Surface is either very flat or very steep
 - iii) Clipping (if gradient > threshold => gradient = threshold)
 - c) The reason is that weight of memory to neural is used repeatedly over time
- 5. Helpful Techniques
 - a) LSTM
 - i) Deal with the problem of gradient vanishing (take flat places off)
 - ii) Can't deal with the problem of gradient explode
 - iii) Input are added into memory, not format memory in RNN
 - iv) The influence never disappears unless forget gate is closed
 - b) GRU
 - i) LSTM has 3 gates, whereas GRU only has 2 gates
 - ii) Spirit: Old gone, new come
 - iii) When the input gate is opened, the forget gate is automatically closed
 - iv) Need to clear the value in the memory to put the new value in
 - c) Clockwise RNN
 - d) Structurally Constrained Recurrent Network (SCRN)

Outperform or be comparable with LSTM

e) Hinton's Trick:

Vanilla RNN initialized with Identity Matrix + ReLU

- 6. RNN v.s. Structured Learning
 - a) RNN, LSTM
 - i) Unidirectional RNN does not consider the whole sequence
 - ii) Cost and error not always related
 - iii) Deep
 - b) HMM, CRF, Structured Perception/SVM
 - i) Using Viterbi, so consider the whole sequence
 - ii) Explicitly consider the label dependency
 - iii) Cost is the upper bound of error
 - c) Integrate together: Deep Learning + Structured Learning
 - i) Speech Recognition: CNN/LSTM/DNN + HMM
 - ii) Semantic Tagging: Bi-directional LSTM + CRF/Structured SVM
 - d) GAN
 - i) Problem 1 : Evaluation Function $F(x) \Leftrightarrow Discriminator$
 - ii) Problem 2 : Inference : $x = \operatorname{argmax} F(x) \Leftrightarrow \operatorname{Generator}$
 - iii) Problem 3 : You know how to learn F(x)
 - iv) Conditional GAN