STATS 2107

Statistical Modelling and Inference II Solutions

Workshop 2: Bias, MSE, and BLUE

Matt Ryan

Semester 2 2022

Contents

њ г	\mathbf{me}	ar	K	egr	es	SIC	on	E	stı	ma	ate	$\mathbf{e}\mathbf{s}$																	
as of	$\hat{\beta}_1$																												
		\hat{eta}_1 as of \hat{eta}_1	as of $\hat{\beta}_1$	as of \hat{eta}_1	as of $\hat{\beta}_1$	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1	as of \hat{eta}_1 .	as of \hat{eta}_1					

Bias and MSE of Simple Linear Regression Estimates

The model

For data $(x_1, Y_1), (x_2, Y_2), \dots, (x_n, Y_n), x_i, Y_i \in \mathbb{R}$, consider the simple linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \,,$$

where $\varepsilon_i \sim N(0, \sigma^2)$

The model estimates

Recall that the estimates for β_0 and β_1 are given by

$$\hat{\beta}_1 = \frac{S_{XY}}{S_{XX}}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$$

where

$$S_{XY} = \sum_{i=1}^{n} (x_i - \bar{x})(Y_i - \bar{Y})$$
$$S_{XX} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Question

• What is the bias and MSE of $\hat{\beta}_1$?

First note that $\hat{\beta}_1$ is a linear estimator of β_1 .

$\hat{\beta}_1$ is linear

You can write:

$$\hat{\beta}_1 = \sum_{i=1}^n a_i Y_i \,,$$

where
$$a_i = \frac{(x_i - \bar{x})}{S_{XX}}$$
.

PROOF:

Expected value and bias of $\hat{\beta}_1$

- $E\left[\hat{\beta}_1\right] = \beta_1$ Hence $b_{\hat{\beta}_1}(\beta_1) = 0$

i.e. $\hat{\beta}_1$ is an unbiased estimator of β_1 .

PROOF:

The MSE of $\hat{\beta}_1$

Recall that:

$$\mathrm{MSE}_{\hat{\beta}_1}(\beta_1) = \mathrm{Var}(\hat{\beta}_1) + b_{\hat{\beta}_1}(\beta_1)^2 = \mathrm{Var}(\hat{\beta}_1)$$

so

$$MSE_{\hat{\beta}_1}(\beta_1) = \frac{\sigma^2}{S_{XX}}$$

Your turn

What to do

1. Show that $Var(\hat{\beta}_1) = \frac{\sigma^2}{S_{XX}}$.

Solutions:

$$\operatorname{Var}(\hat{\beta}_1) = \operatorname{Var}\left(\sum_{i=1}^n a_i Y_i\right)$$

$$= \sum_{i=1}^n a_i^2 \operatorname{Var}(Y_i), \quad \text{(independence)}$$

$$= \sigma^2 \sum_{i=1}^n a_i^2.$$

Now look at $\sum_{i=1}^{n} a_i^2$. Subbing in a_i we get

$$\sum_{i=1}^{n} a_i^2 = \sum_{i=1}^{n} \left(\frac{(x_i - \bar{x})}{S_{XX}} \right)^2$$

$$= \frac{1}{S_{XX}^2} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$= \frac{S_{XX}}{S_{XX}^2}$$

$$= \frac{1}{S_{XX}}.$$

Hence, $\operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{S_{XX}}$.

2. Show that $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$ is a linear estimator, that is, You can write $\hat{\beta}_0 = \sum_{i=1}^n b_i Y_i$ for some constants b_i .

Solutions:

Similar to $\hat{\beta}_1$ we have:

$$\begin{split} \hat{\beta}_0 &= \bar{Y} - \hat{\beta}_1 \bar{x} \\ &= \frac{1}{n} \sum_{i=1} Y_i - \sum_{i=1} a_i \bar{x} Y_i \\ &= \sum_{i=1}^n \left(\frac{1}{n} - \frac{(x_i - \bar{x})\bar{x}}{S_{XX}} \right) Y_i \\ &= \sum_{i=1}^n b_i Y_i \,. \end{split}$$

3. Derive the bias and MSE of $\hat{\beta}_0$.

Solutions:

Similar to $\hat{\beta}_1$ we have:

$$\begin{split} & \mathbf{E}\left[\hat{\beta}_{0}\right] = \mathbf{E}\left[\sum_{i=1}^{n}b_{i}Y_{i}\right] \\ & = \sum_{i=1}^{n}b_{i}\mathbf{E}\left[Y_{i}\right] \\ & = \sum_{i=1}^{n}b_{i}\left(\beta_{0} + \beta_{1}x_{i}\right) \\ & = \sum_{i=1}^{n}\left(\frac{1}{n} - \frac{(x_{i} - \bar{x})\bar{x}}{S_{XX}}\right)\left(\beta_{0} + \beta_{1}x_{i}\right) \\ & = \frac{1}{n}\sum_{i=1}^{n}\beta_{0} - \beta_{0}\sum_{i=1}^{n}\frac{(x_{i} - \bar{x})\bar{x}}{S_{XX}} + \frac{1}{n}\sum_{i=1}^{n}\beta_{1}x_{i} - \beta_{1}\bar{x}\sum_{i=1}^{n}\frac{(x_{i} - \bar{x})x_{i}}{S_{XX}} \\ & = \beta_{0} - \beta_{0}\frac{\bar{x}}{S_{XX}}\sum_{i=1}^{n}(x_{i} - \bar{x}) + \beta_{1}\bar{x} - \beta_{1}\frac{\bar{x}}{S_{XX}}\sum_{i=1}^{n}\frac{(x_{i} - \bar{x})x_{i}}{S_{XX}} \\ & = \beta_{0} - 0 + \beta_{1}\bar{x} - \beta_{1}\bar{x} \\ & = \beta_{0} \,. \end{split}$$

Hence $\hat{\beta}_0$ is unbiased for β_0 . Thus we have

$$\begin{aligned} \operatorname{MSE}_{\hat{\beta}_0}(\beta_0) &= \operatorname{Var}\left(\hat{\beta}_0\right) \\ &= \operatorname{Var}\left(\sum_{i=1}^n b_i Y_i\right) \\ &= \sum_{i=1}^n b_i^2 \operatorname{Var}\left(Y_i\right), \qquad \text{(independence)} \\ &= \sigma^2 \sum_{i=1}^n \left(\frac{1}{n} - \frac{(x_i - \bar{x})\bar{x}}{S_{XX}}\right)^2 \\ &= \sigma^2 \left(\sum_{i=1}^n \frac{1}{n^2} - 2\frac{\bar{x}}{nS_{XX}} \sum_{i=1}^n (x_i - \bar{x}) + \frac{\bar{x}^2}{S_{XX}^2} \sum_{i=1}^n (x_i - \bar{x})^2\right) \\ &= \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{XX}}\right). \end{aligned}$$

BLUE

A Theorem

Consider the simple linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \,,$$

where $\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$. Then $\hat{\beta}_1$ is the BLUE for β_1 .

What does this mean?

Recall what BLUE stands for:

- \bullet **B**est
- Linear
- Unbiased
- Estimator

What does this mean?

- We have already shown that β̂₁ is a linear, unbiased estimator of β₁.
 By "Best", we mean that for ANY other linear unbiased estimator β̃₁ of β₁, we must have

$$\operatorname{Var}\left(\tilde{\beta}_{1}\right) \geq \operatorname{Var}\left(\hat{\beta}_{1}\right)$$

How do we show this:

We break the proof into 3 parts:

- 1. Use the fact that $\tilde{\beta}_1$ is linear and unbiased to derive some properties.
- 3. Show the cross term (covariance) is 0.

$\tilde{\beta}_1$ is unbiased

Let
$$\tilde{\beta}_1 = \sum_{i=1}^n c_i Y_i$$
. Then:

$$\sum_{i=1}^{n} c_i = 0,$$

$$\sum_{i=1}^{n} c_i x_i = 1.$$

PROOF:

Add 0

Let's look at the variance of $\tilde{\beta}_1$:

$$\begin{aligned} \operatorname{Var}\left(\tilde{\beta}_{1}\right) &= \operatorname{Var}\left(\tilde{\beta}_{1} - \hat{\beta}_{1} + \hat{\beta}_{1}\right) \\ &= \operatorname{Var}\left(\hat{\beta}_{1}\right) + \operatorname{Var}\left(\tilde{\beta}_{1} - \hat{\beta}_{1}\right) + 2\operatorname{cov}\left(\tilde{\beta}_{1} - \hat{\beta}_{1}, \hat{\beta}_{1}\right) \,. \end{aligned}$$

The cross term is 0

We can show that

$$\operatorname{cov}\left(\tilde{\beta}_{1}-\hat{\beta}_{1},\hat{\beta}_{1}\right)=0.$$

PROOF:

Putting it all together

Using these results, we have that

$$\operatorname{Var}\left(\tilde{\beta}_{1}\right) = \operatorname{Var}\left(\hat{\beta}_{1}\right) + \operatorname{Var}\left(\tilde{\beta}_{1} - \hat{\beta}_{1}\right) \geq \operatorname{Var}\left(\hat{\beta}_{1}\right).$$

Your turn

What to do

1. Show that $\hat{\beta}_0$ is the BLUE for β_0 .

Solutions:

Using very similar methods:

Let $\tilde{\beta}_0 = \sum_{i=1}^n d_i Y_i$ be a linear, unbiased estimator of β_0 . What does this tell us about the d_i ?

$$\beta_0 = \mathbf{E} \left[\tilde{\beta}_0 \right]$$

$$= \mathbf{E} \left[\sum_{i=1}^n d_i Y_i \right]$$

$$= \sum_{i=1}^n d_i \mathbf{E} \left[Y_i \right]$$

$$= \sum_{i=1}^n d_i \left(\beta_0 + \beta_1 x_i \right)$$

$$= \beta_0 \sum_{i=1}^n d_i + \beta_1 \sum_{i=1}^n d_i x_i.$$

Equating coefficients gives

$$\sum_{i=1}^{n} d_i = 1,$$

$$\sum_{i=1}^{n} d_i x_i = 0.$$

These will be useful later. Now consider the variance of $\tilde{\beta}_0$.

$$Var\left(\tilde{\beta}_{0}\right) = Var\left(\tilde{\beta}_{0} - \hat{\beta}_{0} + \hat{\beta}_{0}\right)$$
$$= Var\left(\hat{\beta}_{0}\right) + Var\left(\tilde{\beta}_{0} - \hat{\beta}_{0}\right) + 2cov\left(\tilde{\beta}_{0} - \hat{\beta}_{0}, \hat{\beta}_{0}\right).$$

Let's look at the covariance:

$$\operatorname{cov}\left(\tilde{\beta}_{0} - \hat{\beta}_{0}, \hat{\beta}_{0}\right) = \operatorname{cov}\left(\sum_{i=1}^{n} (d_{i} - b_{i})Y_{i}, \sum_{j=1}^{n} b_{j}Y_{j}\right)$$

$$= \sum_{ij} (d_{i} - b_{i})b_{j}\operatorname{cov}\left(Y_{i}, Y_{j}\right)$$

$$= \sum_{i=1}^{n} (d_{i} - b_{i})b_{i}\sigma^{2}, \qquad \text{(independence)}$$

$$= \sigma^{2}\left(\sum_{i=1}^{n} d_{i}b_{i} - \sum_{i=1}^{n} b_{i}^{2}\right).$$

Now, $\sum_{i=1}^n b_i^2 = \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{XX}}\right)$ which you can easily check. Let's look at

$$\sum_{i=1}^{n} d_i b_i = \sum_{i=1}^{n} d_i \left(\frac{1}{n} - \frac{(x_i - \bar{x})\bar{x}}{S_{XX}} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} d_i - \frac{\bar{x}}{S_{XX}} \sum_{i=1}^{n} d_i x_i + \frac{\bar{x}^2}{S_{XX}} \sum_{i=1}^{n} d_i$$

$$= \frac{1}{n} + \frac{\bar{x}^2}{S_{XX}}.$$

Thus

$$\operatorname{cov}\left(\tilde{\beta}_0 - \hat{\beta}_0, \hat{\beta}_0\right) = 0.$$

Returning to our variance, this gives that:

$$Var\left(\tilde{\beta}_{0}\right) = Var\left(\hat{\beta}_{0}\right) + Var\left(\tilde{\beta}_{0} - \hat{\beta}_{0}\right) + 2cov\left(\tilde{\beta}_{0} - \hat{\beta}_{0}, \hat{\beta}_{0}\right)$$
$$= Var\left(\hat{\beta}_{0}\right) + Var\left(\tilde{\beta}_{0} - \hat{\beta}_{0}\right)$$
$$\geq Var\left(\hat{\beta}_{0}\right),$$

proving the result.