# 12.4 Exercices du chapitre 4

# 12.4.1 Intégrale sur $\mathcal{M}_+$ et sur $\mathcal{L}^1$

## Corrigé 59 (Sup de mesures)

Soit (E,T) un espace mesurable et  $(m_n)_{n\in\mathbb{N}}$  une suite de mesures sur T. On suppose que  $m_{n+1}(A) \ge m_n(A)$  pour tout  $A \in T$  et tout  $n \in \mathbb{N}$ . On pose  $m(A) = \sup\{m_n(A), n \in \mathbb{N}\}$  pour  $A \in T$ .

1. (Lemme préliminaire) Soit  $(a_{n,p})_{n,p\in\mathbb{N}}\subset\overline{\mathbb{R}}_+$  et  $(a_p)_{p\in\mathbb{N}}\subset\overline{\mathbb{R}}_+$  t.q.  $a_{n+1,p}\geq a_{n,p}$ , pour tout  $n,p\in\mathbb{N}$ , et  $a_{n,p}\to a_p$  quand  $n\to\infty$ , pour tout  $p\in\mathbb{N}$ . Montrer  $\sum_{p=0}^\infty a_{n,p}\to\sum_{p=0}^\infty a_p$  (dans  $\overline{\mathbb{R}}_+$ ) quand  $n\to\infty$ . [On pourra utiliser  $\sum_{p=0}^N a_{n,p}\leq\sum_{p=0}^\infty a_{n,p}\leq\sum_{p=0}^\infty a_p$ .]

# –corrigé

On remarque tout d'abord que la suite  $(\sum_{p=0}^{\infty} a_{n,p})_{n\in\mathbb{N}}$  est croissante, elle admet donc une limite dans  $\overline{\mathbb{R}}_+$ . Pour  $N\in\mathbb{N}$ , on passe à la limite quand  $n\to\infty$  dans les inégalités  $\sum_{p=0}^{N} a_{n,p}\leq\sum_{p=0}^{\infty} a_{n,p}\leq\sum_{p=0}^{\infty} a_{p}$ .

On obtient  $\sum_{p=0}^{N} a_p \le \lim_{n\to\infty} \sum_{p=0}^{\infty} a_{n,p} \le \sum_{p=0}^{\infty} a_p$ .

On passe maintenant à la limite quand  $N \to \infty$  pour obtenir

$$\sum_{p=0}^{\infty} a_p \le \lim_{n \to \infty} \sum_{p=0}^{\infty} a_{n,p} \le \sum_{p=0}^{\infty} a_p.$$

On a donc  $\lim_{n\to\infty} \sum_{p=0}^{\infty} a_{n,p} = \sum_{p=0}^{\infty} a_p$ .

2. Montrer que m est une mesure.

#### -corrigé

- $m(\emptyset) = \sup_{n \in \mathbb{N}} m_n(\emptyset) = 0.$
- Soit  $(A_p)_{p\in\mathbb{N}}\subset T$  t.q.  $A_p\cap A_q=\emptyset$  si  $p\neq q$ . On pose  $A=\cup_{n\in\mathbb{N}}A_n$ . On a :  $m(A)=\sup_{n\in\mathbb{N}}m_n(A)=\lim_{n\to\infty}m_n(A)=\lim_{n\to\infty}\sum_{p=0}^\infty m_n(A_p)$ . En utilisant la question précédente avec  $a_{n,p}=m_n(A_p)$ , on en déduit  $m(A)=\sum_{p=0}^\infty m(A_p)$ .

3. Soit  $f \in \mathcal{E}_+(E,T)$ . (On rappelle que  $\mathcal{E}_+(E,T)$  est l'ensemble des fonctions étagées de E dans  $\mathbb{R}_+$ .) Montrer que  $\int f dm = \sup_{n \in \mathbb{N}} (\int f dm_n)$ .

Soit  $\{a_1,\ldots,a_p\}\subset\mathbb{R}_+^*$  et  $\{A_1,\ldots,A_p\}\subset T$  t.q.  $f=\sum_{i=1}^p a_i 1_{A_i}$ .

On a  $\int f dm_n = \sum_{i=1}^p a_i m_n(A_i)$ , la suite  $(\int f dm_n)_{n \in \mathbb{N}}$  est donc croissante. Puis, en passant à la limite sur n, on obtient :

$$\lim_{n\to\infty}(\sum_{i=1}^p a_i m_n(A_i)) = \sum_{i=1}^p a_i \lim_{n\to\infty}(m_n(A_i)) = \sum_{i=1}^p a_i m(A_i) = \int f dm, \text{ et donc } \int f dm = \lim_{n\to\infty}(\int f dm_n) = \sup_{n\in\mathbb{N}}(\int f dm_n).$$

4. Soit  $f \in \mathcal{M}_+(E,T)$ . (On rappelle que  $\mathcal{M}_+(E,T)$  est l'ensemble des fonctions mesurables de E dans  $\overline{\mathbb{R}}_+$ .)

(a) Montrer que  $(\int f dm_n)_{n \in \mathbb{N}}$  est une suite croissante majorée par  $\int f dm$ .

#### -corrigé

Soit  $f \in \mathcal{M}_+$ . Soit  $(f_p)_{p \in \mathbb{N}} \subset \mathcal{E}_+$  t.q.  $f_p \uparrow f$  quand  $p \to \infty$ . D'après la question précédente, on a (pour tout  $p \in \mathcal{M}_+$ )  $f_p dm_n \leq \int f_p dm_{n+1} \leq \int f_p dm$ .

En passant à la limite sur p (avec n fixé) on en déduit  $\int f dm_n \leq \int f dm_{n+1} \leq \int f dm$ . La suite  $(\int f dm_n)_{n \in \mathbb{N}}$  est donc croissante et majorée par  $\int f dm$ .

(b) Montrer que  $\int f dm_n \to \int f dm$  quand  $n \to \infty$ .

On pose  $A_f = \{g \in \mathcal{E}_+, g \leq f\}$ . On sait que  $\int f dm = \sup_{g \in A_f} \int g dm$  et que  $\int f dm_n = \sup_{g \in A_f} \int g dm_n$  pour tout  $n \in \mathbb{N}$ . La question 2 donne que  $\int g dm = \sup_{n \in \mathbb{N}} \int g dm_n$  pour tout  $g \in \mathcal{E}_+$ . On en déduit :

$$\int f dm = \sup_{g \in A_f} (\sup_{n \in \mathbb{N}} \int g dm_n) = \sup_{n \in \mathbb{N}} (\sup_{g \in A_f} \int g dm_n) = \sup_{n \in \mathbb{N}} \int f dm_n,$$

ce qui, avec la question précéc<br/>dente, donne bien  $\int f dm_n \to \int f dm$  quand  $n \to \infty$ .

5. Soit  $f \in \mathcal{L}^1_{\mathbb{R}}(E,T,m)$ . Montrer que  $f \in \mathcal{L}^1_{\mathbb{R}}(E,T,m_n)$  pour tout  $n \in \mathbb{N}$  et que  $\int f dm_n \to \int f dm$  quand  $n \to \infty$ .

#### –corrigé—

On a  $|f| \in \mathcal{M}_+ \cap \mathcal{L}^1_{\mathbb{R}}(E,T,m)$ . la question 4 donne  $\int |f| dm_n \leq \int |f| dm$ , on en déduit que  $f \in \mathcal{L}^1_{\mathbb{R}}(E,T,m_n)$  pour tout  $n \in \mathbb{N}$ .

la question 4 donne aussi que

$$\int f^+ dm_n \to \int f^+ dm$$
 et

$$\int f^- dm_n \to \int f^- dm$$
.

Ces 2 convergences ayant lieu dans  $\mathbb{R}$ , on en déduit que  $\int f dm_n \to \int f dm$  quand  $n \to \infty$ .

#### Corrigé 60 (Somme de mesures)

Soient  $m_1$  et  $m_2$  deux mesures sur l'espace mesurable (E,T).

1. Montrer que  $m = m_1 + m_2$  est une mesure.

-corrigé

- (a)  $m(\emptyset) = m_1(\emptyset) + m_2(\emptyset) = 0$ ,
- (b) Soit  $(A_n)_{n\in\mathbb{N}}\subset T$  t.q.  $A_n\cap\mathcal{A}_m=\emptyset$  si  $n\neq m$ . On a :

$$m(\cup_{n\in\mathbb{N}}A_n)=m_1(\cup_{n\in\mathbb{N}}A_n)+m_2(\cup_{n\in\mathbb{N}}A_n).$$

Comme  $m_i(\cup_{n\in\mathbb{N}}A_n)=\lim_{n\to\infty}\sum_{p=0}^n m_i(A_p)$  pour i=1,2, on en déduit

$$m(\bigcup_{n\in\mathbb{N}}A_n) = \lim_{n\to\infty}\sum_{p=0}^n (m_1(A_p) + m_2(A_p)) = \lim_{n\to\infty}\sum_{p=0}^n m(A_p),$$

ce qui prouve bien la  $\sigma$ -additivité de m.

Ceci montre bien que m est une mesure.

2. Montrer qu'une application f mesurable de E dans  $\mathbb{R}$  est intégrable pour la mesure m si et seulement si elle est intégrable pour les mesures  $m_1$  et  $m_2$ . Si f est intégrable pour la mesure m, montrer que  $\int f dm = \int f dm_1 + \int f dm_2$ .



Soit  $A \in T$ , on pose  $\varphi = 1_A$ . La définition de m donne immédiatement

$$\int \varphi dm = \int \varphi dm_1 + \int \varphi dm_2. \tag{12.21}$$

Par linérarité de l'intégrale, (12.21) est aussi vrai pour  $\varphi \in \mathcal{E}_+$ .

Soit maintenant  $\varphi \in \mathcal{M}_+$ . Il existe  $(\varphi_n)_{n \in \mathbb{N}} \subset \mathcal{E}_+$  t.q.  $\varphi_n \uparrow \varphi$  quand  $n \to \infty$ . On écrit (12.21) avec  $\varphi_n$  au lieu de  $\varphi$  et on fait tendre n vers l'infini. La définition de l'intégrale sur  $\mathcal{M}_+$  donne alors (12.21).

On a donc montré que (12.21) était vrai pour tout  $\varphi \in \mathcal{M}_+$ .

Soit  $f \in \mathcal{M}$ , en écrivant (12.21) avec  $\varphi = |f|$  on obtient bien que  $f \in \mathcal{L}^1(E, T, m)$  si et seulement si  $f \in \mathcal{L}^1(E, T, m_1) \cap \mathcal{L}^1(E, T, m_2)$ .

Enfin, si  $f \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ , on écrit (12.21) avec  $\varphi = f^+$  et  $\varphi = f^-$ , la différence donne bien  $\int f dm = \int f dm_1 + \int f dm_2$ .

3. Soit  $(m_n)_{n\in\mathbb{N}}$  une famille de mesures (positives) sur (E,T) et  $(\alpha_n)_{n\in\mathbb{N}}\subset\mathbb{R}_+^*$ . On pose, pour  $A\in T$ ,  $m(A)=\sum_{n\in\mathbb{N}}\alpha_nm_n(A)$ . Montrer que m est une mesure sur T; soit f une application mesurable de E dans  $\mathbb{R}$  et intégrable pour la mesure m; montrer que  $\int fdm=\sum_{n\in\mathbb{N}}\alpha_n\int fdm_n$ .

### ---corrigé

Soit  $n \in \mathbb{N}$ . n définit  $\tilde{m}_n$  par  $\tilde{m}_n(A) = \alpha_n m_n(A)$  pour tout  $A \in T$ . Il est facile de voir que  $\tilde{m}_n$  est une mesure sur T, que  $\mathcal{L}^1_{\mathbb{R}}(E,T,m_n) = \mathcal{L}^1_{\mathbb{R}}(E,T,\tilde{m}_n)$  et que  $\int f d\tilde{m}_n = \alpha_n \int f dm_n$  pour tout  $f \in \mathcal{L}^1_{\mathbb{R}}(E,T,m_n)$ .

On pose maintenant , par récurrence sur  $n, \mu_0 = \tilde{m}_0$  et  $\mu_n = \mu_{n-1} + \tilde{m}_n$  pour  $n \in \mathbb{N}^*$ . La question précédente montre, par récurrence sur n, que  $\mu_n$  est une mesure sur T et donne que  $f \in \mathcal{L}^1_{\mathbb{R}}(E,T,\mu_n)$  si et seulement si  $f \in \bigcap_{p \leq n} \mathcal{L}^1_{\mathbb{R}}(E,T,\tilde{m}_n) = \bigcap_{p \leq n} \mathcal{L}^1_{\mathbb{R}}(E,T,m_n)$ . Enfin, la question précédente donne aussi, toujours par récurrence sur n:

$$\int f d\mu_n = \sum_{n=0}^n \int f d\tilde{m}_n = \sum_{n=0}^n \alpha_n \int f dm_n.$$

Pour tout  $A \in T$ , on a  $m(A) = \sum_{n \in \mathbb{N}} \alpha_n m_n(A) = \sup_{n \in \mathbb{N}} \mu_n(A)$ . On peut donc utiliser les résultats de l'exercice précédent. On obtient que m est une mesure sur T et que  $f \in \mathcal{L}^1_R(E,T,m)$  implique  $f \in \mathcal{L}^1_R(E,T,\mu_n)$  pour tout  $n \in \mathbb{N}$  et  $\int f dm = \lim_{n \to \infty} \int f d\mu_n$ . Si  $f \in \mathcal{L}^1_R(E,T,m)$  on a donc  $f \in \mathcal{L}^1_R(E,T,m_n)$  pour tout  $n \in \mathbb{N}$  et  $\int f dm = \lim_{n \to \infty} \sum_{p=0}^n \alpha_p \int f dm_p$ , c'est-à-dire  $\int f dm = \sum_{n \in \mathbb{N}} \alpha_n \int f dm_n$ .

## Corrigé 61 (Mesure de Dirac)

Soit  $\delta_0$  la mesure de Dirac en 0, définie sur  $\mathcal{B}(\mathbb{R})$ . (cf exemple 2.1.) Soit  $f \in \mathcal{M}_+$ , calculer  $\int f d\delta_0$ .

Comme 
$$\delta_0(\{0\}^c) = 0$$
, on a  $f = f(0)1_{\{0\}}$  p.p., on en déduit  $\int f d\delta_0 = f(0)\delta_0(\{0\}) = f(0)$ .

## Corrigé 62 (Restrictions de la mesure de Lebesgue)

Soit A et B deux boréliens de  $\mathbb{R}$  t.q.  $A \subset B$ . On note  $\lambda_A$  [resp.  $\lambda_B$ ] la restriction à  $\mathcal{B}(A)$  [resp.  $\mathcal{B}(B)$ ] de la mesure de Lebesgue sur  $\mathcal{B}(\mathbb{R})$ . Soit  $f \in \mathcal{L}^1_{\mathbb{R}}(B,\mathcal{B}(B),\lambda_B)$ . Montrer que  $f_{|_A} \in \mathcal{L}^1_{\mathbb{R}}(A,\mathcal{B}(A),\lambda_A)$  et que  $\int f_{|_A} d\lambda_A = \int f 1_A d\lambda_B$ . [Considérer d'abord le cas  $f \in \mathcal{E}_+$  puis  $f \in \mathcal{M}_+$  et enfin  $f \in \mathcal{L}^1$ .]

On rappelle que 
$$\mathcal{B}(A) = \{C \in \mathcal{B}(\mathbb{R}); C \subset A\}$$
 et  $\mathcal{B}(B) = \{C \in \mathcal{B}(\mathbb{R}); C \subset B\}$  (voir l'exercice 2.3).

1. Soit  $f \in \mathcal{E}_+(B,\mathcal{B}(B))$ . Il existe donc  $a_1,\ldots,a_p \in \mathbb{R}_+$  et  $A_1,\ldots,A_p \in \mathcal{B}(B) \subset \mathcal{B}(\mathbb{R})$  t.q.  $f = \sum_{i=1}^p a_i 1_{A_i}$ .

La fonction  $f1_A$  appartient donc aussi à  $\mathcal{E}_+(B,\mathcal{B}(B))$  (car  $A_i \cap A \in \mathcal{B}(B)$ ) et elle s'écrit  $f = \sum_{i=1}^p a_i 1_{A_i} 1_A = \sum_{i=1}^p a_i 1_{A_i \cap A}$ , de sorte que

$$\int f 1_A d\lambda_B = \sum_{i=1}^p a_i \lambda(A_i \cap A).$$

La fonction  $f_{|A|}$  (c'est-à-dire la restriction de f à A) est définie sur A, elle s'écrit  $f_{|A|} = \sum_{i=1}^p a_i 1_{A_i \cap A}$ . Cette fonction appartient à  $\mathcal{E}_+(A, \mathcal{B}(A))$  car  $A_i \cap A \in \mathcal{B}(A)$  pour tout i et on a

$$\int f_{|A} d\lambda_A = \sum_{i=1}^p a_i \lambda(A_i \cap A).$$

On a bien montré que

$$\int f 1_A d\lambda_B = \int f_{|A} d\lambda_A, \tag{12.22}$$

pour tout  $f \in \mathcal{E}_+(B, \mathcal{B}(B))$ .

2. Soit  $f \in \mathcal{M}_+(B,\mathcal{B}(B))$ . il existe  $(f_n)_{n \in \mathbb{N}} \subset \mathcal{E}_+(B,\mathcal{B}(B))$  t.q.  $f_n \uparrow f$ , quand  $n \to \infty$ . On a donc aussi  $(f_n 1_A)_{n \in \mathbb{N}} \uparrow f 1_A$  et  $(f_n|_A)_{n \in \mathbb{N}} \uparrow f|_A$ , quand  $n \to \infty$ . Comme  $f_n|_A \in \mathcal{E}_+(A,\mathcal{B}(A))$ , la caractérisation de la mesurabilité positive (proposition 3.3) donne  $f|_A \in \mathcal{M}_+(A,\mathcal{B}(A))$ . On a aussi  $f 1_A \in \mathcal{M}_+(B,\mathcal{B}(B))$ . Puis, en écrivant (12.22) avec  $f_n$  au lieu de f et en passant à la limite quand  $n \to \infty$ , la définition de l'intégrale sur  $\mathcal{M}_+(A,\mathcal{B}(A))$  et sur  $\mathcal{M}_+(B,\mathcal{B}(B))$  donne (12.22).

On a donc montré (12.22) pour tout  $f \in \mathcal{M}_+(B, \mathcal{B}(B))$ .

3. Soit  $f \in \mathcal{L}^1_{\mathbb{R}}(B, \mathcal{B}(B), \lambda_B)$ . On remarque d'abord que  $f_{|_A} \in \mathcal{M}(A, \mathcal{B}(A))$ . En effet, si  $C \in \mathcal{B}(\mathbb{R})$ , on a  $(f_{|_A})^{-1}(C) = f^{-1}(C) \cap A \in \mathcal{B}(A)$ . Puis, on applique (12.22) à |f|, qui appartient à  $\mathcal{M}_+(B, \mathcal{B}(B))$ , pour obtenir

$$\int |f_{|A}| d\lambda_A = \int |f|_{|A} d\lambda_A = \int |f| 1_A d\lambda_B < \int |f| d\lambda_B < \infty,$$

ce qui montre que  $f_{|A} \in \mathcal{L}^1_{\mathbb{R}}(A,\mathcal{B}(A)), \lambda_A)$ .

Enfin, en appliquant (12.22) avec  $f^+$  et  $f^-$  au lieu de f, on obtient

$$\int f^{+} 1_{A} d\lambda_{B} = \int f^{+}_{|A} d\lambda_{A} = \int (f_{|A})^{+} d\lambda_{A} < \infty$$

et

$$\int f^{-}1_{A}d\lambda_{B} = \int f^{-}_{|A}d\lambda_{A} = \int (f_{|A})^{-}d\lambda_{A} < \infty,$$

ce qui donne, en faisant la différence,

$$\int f 1_A d\lambda_B = \int f_{|A} d\lambda_A.$$

## Corrigé 63 (Intégrale de Lebesgue et intégrale des fonctions continues)

Soit  $f \in C([0,1],\mathbb{R})$ . Montrer que  $f \in \mathcal{L}^1_{\mathbb{R}}([0,1],\mathcal{B}([0,1]),\lambda)$  et que  $\int f d\lambda = \int_0^1 f(x) dx$  (cette dernière intégrale est à prendre au sens de "l'intégrale des fonctions continues" vue au Chapitre 1). On rappelle que l'on note (un peu abusivement...) par  $\lambda$  la restriction à  $\mathcal{B}([0,1])$  de la mesure de Lebesgue (aussi notée  $\lambda \ldots$ ) sur  $\mathcal{B}(\mathbb{R})$ .

#### -corrigé

Soit  $g:[0,1]\to\mathbb{R}$  une fonction en escalier. Il existe donc  $p\in\mathbb{N}^*$ , une famille  $(\alpha_i)_{i\in\{0,\dots,p\}}$ , avec :  $\alpha_0=0$ ,  $\alpha_i<\alpha_{i+1}$ , pour tout  $i\in\{0,\dots,p-1\}$ ,  $\alpha_p=1$ , et une famille  $(a_i)_{i\in\{0,\dots,p-1\}}\subset\mathbb{R}$  tels que :

$$g(x) = a_i, \forall x \in ]\alpha_i, \alpha_{i+1}[, \forall i \in \{0, \dots, p-1\}.$$

On sait que

$$\int_0^1 g(x)dx = \sum_{i=0}^{p-1} a_i(\alpha_{i+1} - \alpha_i).$$

D'autre part, cette fonction g est mesurable (c'est-à-dire  $g \in \mathcal{M}([0,1],\mathcal{B}([0,1]))$  car, pour tout  $C \subset \mathbb{R}$ ,  $g^{-1}(C)$  est une réunion (finie) d'intervalles du type  $]\alpha_i,\alpha_{i+1}[$  à laquelle on ajoute éventuellement certains des points  $\alpha_i$ . On a donc  $g^{-1}(C) \in \mathcal{B}([0,1])$ . On a bien montré que  $g \in \mathcal{M}([0,1],\mathcal{B}([0,1]))$ . Enfin, comme les singletons sont de mesure nulle, on a  $|g| = \sum_{i=0}^{p-1} |a_i| 1_{]\alpha_i,\alpha_{i+1}[}$  p.p., et donc

$$\int |g|d\lambda = \sum_{i=0}^{p-1} |a_i|(\alpha_{i+1} - \alpha_i) < \infty.$$

Donc,  $g \in \mathcal{L}^1_{\mathbb{R}}([0,1],\mathcal{B}([0,1]),\lambda)$ . Finalement, puisque  $g = \sum_{i=0}^{p-1} a_i 1_{]\alpha_i,\alpha_{i+1}[}$  p.p., on a aussi

$$\int gd\lambda = \sum_{i=0}^{p-1} a_i(\alpha_{i+1} - \alpha_i).$$

On a donc montré que  $g \in \mathcal{L}^1_{\mathbb{R}}([0,1],\mathcal{B}([0,1]),\lambda)$  et

$$\int gd\lambda = \int_0^1 g(x)dx. \tag{12.23}$$

Soit maintenant  $f \in C([0,1],\mathbb{R})$ . On remarque tout d'abord que f est mesurable (parce que, par exemple, les ouverts de [0,1] engendre  $\mathcal{B}([0,1])$  et que l'image réciproque, par f, d'un ouvert de [0,1] est un ouvert de [0,1], donc un élément de  $\mathcal{B}([0,1])$ . Puis, on remarque que  $f \in \mathcal{L}^1_{\mathbb{R}}([0,1],\mathcal{B}([0,1],\lambda))$  car  $\int |f| d\lambda \leq ||f||_u = \max_{x \in [0,1]} |f(x)| < \infty$ .

On compare maintenant  $\int f d\lambda$  et  $\int_0^1 f(x) dx$ .

Il existe une suite de fonctions en escalier,  $(f_n)_{n\in\mathbb{N}}$ , t.q.  $f_n\to f$  uniformément sur [0,1], c'est-à-dire  $\|f_n-f\|_u\to 0$ , quand  $n\to\infty$ .

La définition de l'intégrale des fonctions continues donne que  $\int_0^1 f_n(x)dx \to \int_0^1 f(x)dx$  quand  $n \to \infty$ .

D'autre part, on a aussi  $\int f_n d\lambda \to \int f d\lambda$ , quand  $n \to \infty$ , car  $|\int f_n d\lambda - \int f d\lambda| \le \int |f_n - f| d\lambda \le \|f_n - f\|_u \to 0$ , quand  $n \to \infty$ . En passant à la limite quand  $n \to \infty$  dans (12.23) avec  $f_n$  au lieu de g, on obtient bien

$$\int f d\lambda = \int_0^1 f(x) dx.$$

#### Corrigé 64 (Fonctions continues et fonctions intégrables)

Soit m une mesure finie sur  $\mathcal{B}([0,1])$ . Montrer que  $C([0,1],\mathbb{R}) \subset \mathcal{L}^1_{\mathbb{R}}([0,1],\mathcal{B}([0,1]),m)$ .

Soit  $f \in C([0,1],\mathbb{R})$ . On montre tout d'abord que f est mesurable.

Soit O un ouvert de  $\mathbb{R}$ . Comme f est continue, l'ensemble  $f^{-1}(O) = \{x \in [0,1], f(x) \in O\}$  est une ouvert de [0,1] et donc  $f^{-1}(O) \in \mathcal{B}([0,1])$ . Les ouverts de  $\mathbb{R}$  engendrant la tribu borélienne de  $\mathbb{R}$ , on en déduit que f est mesurable de [0,1] (muni de sa tribu borélienne) dans  $\mathbb{R}$  (muni de sa tribu borélienne).

On montre maintenant que f est intégrable. Comme la fonction f est continue sur le compact [0,1], elle est bornée. Il existe donc  $M \in \mathbb{R}_+$  t.q.  $|f| \leq M$  sur [0,1]. On a donc, par monotonie de l'intégrale sur  $\mathcal{M}_+$ :

$$\int |f|dm \le Mm([0,1]) < \infty.$$

On a donc  $f \in \mathcal{L}^1_{\mathbb{R}}([0,1],\mathcal{B}([0,1]),m)$ .

# Corrigé 65 (f positive intégrable implique f finie p.p.)

Soit (E, T, m) un espace mesuré et  $f \in \mathcal{M}_+$ . Montrer que si  $\int f dm < +\infty$ , alors  $f < +\infty$  p.p..

Soit  $A = f^{-1}(\{\infty\})$ . On a  $A \in T$  car f est mesurable et  $\{\infty\} \in \mathcal{B}(\overline{\mathbb{R}}_+)$ .

Pour tout  $n \in \mathbb{N}^*$ , on a  $f \geq n1_A$ , donc, par monotonie de l'intégrale,  $\int f dm \geq nm(A)$ , ou encore

$$m(A) \le \frac{1}{n} \int f dm.$$

En passant à la limite quand  $n \to \infty$ , on en déduit m(A) = 0. On a donc  $f < \infty$  p.p. car  $f(x) < \infty$  pour tout  $x \in A^c$ .

## Corrigé 66 (Une caractérisation de l'intégrabilité)

Soient (E, T, m) un espace mesuré fini, u une fonction mesurable de E dans  $\mathbb{R}$ . Pour  $n \in \mathbb{N}$ , on pose  $A_n = \{x \in E, |u(x)| \ge n\}$  et  $B_n = \{x \in E, n < |u(x)| \le n + 1\}$ .

#### 1. Montrer que:

$$\int |u|dm < +\infty \Leftrightarrow \sum_{n=0}^{+\infty} n \, m(B_n) < +\infty \Leftrightarrow \sum_{n=0}^{+\infty} m(A_n) < +\infty.$$
 (12.24)

-corrigé

On remarque tout d'abord que  $B_n, A_n \in T$  pour tout  $n \in \mathbb{N}$  et que :

$$\sum_{n\in\mathbb{N}} n1_{B_n} \le |u| \le \sum_{n\in\mathbb{N}} (n+1)1_{B_n}.$$

On en déduit (en utilisant le théorème de convergence monotone et la monotonie de l'intégrale) que :

$$\sum_{n\in\mathbb{N}} n \, m(B_n) \le \int |u| dm \le \sum_{n\in\mathbb{N}} (n+1) m(B_n). \tag{12.25}$$

Si  $\int |u|dm < +\infty$ , on a donc  $\sum_{n \in \mathbb{N}} n \, m(B_n) < \infty$ .

Réciproquement, si  $\sum_{n\in\mathbb{N}} n \, m(B_n) < \infty$ , on a aussi  $\sum_{n\in\mathbb{N}} (n+1) m(B_n) < \infty$  car  $\sum_{n\in\mathbb{N}} m(B_n) \le m(E) < \infty$  (remarquer que  $B_n \cap B_m = \emptyset$  si  $n \ne m$ ). On déduit donc de (12.25) que  $\int |u| dm < +\infty$ .

On a ainsi montré que :

$$\int |u|dm < +\infty \Leftrightarrow \sum_{n=0}^{+\infty} n \, m(B_n).$$

On peut utiliser le même raisonnement en remplaçant  $B_n$  par  $C_n = \{x \in E, n \le |u(x)| < n+1\}$ . On a donc aussi :

$$\int |u|dm < +\infty \Leftrightarrow \sum_{n=0}^{+\infty} n \, m(C_n). \tag{12.26}$$

Pour terminer la question, il suffit de montrer que :

$$\sum_{n=0}^{+\infty} n \, m(C_n) < +\infty \Leftrightarrow \sum_{n=0}^{+\infty} m(A_n) < +\infty. \tag{12.27}$$

Pour montrer (12.27), on remarque que  $C_n = A_n \setminus A_{n+1}$  pour tout  $n \in \mathbb{N}$  et donc, comme  $A_{n+1} \subset A_n$  et que  $m(A_{n+1}) \leq m(A_n) \leq m(E) < \infty$ :

$$m(C_n) = m(A_n) - m(A_{n+1}).$$

On en déduit que, pour tout  $n \in \mathbb{N}$ , on a :

$$\sum_{p=0}^{n} p \, m(C_p) = \sum_{p=0}^{n} p \, m(A_p) - \sum_{p=0}^{n} p \, m(A_{p+1}) = \sum_{p=0}^{n} p \, m(A_p) - \sum_{p=1}^{n+1} (p-1)m(A_p)$$
$$= \sum_{p=1}^{n} m(A_p) - n \, m(A_{p+1}).$$

On a donc:

$$\sum_{p=0}^{n} p \, m(C_p) \le \sum_{p=1}^{n} m(A_p), \tag{12.28}$$

et:

$$\sum_{p=1}^{n} m(A_p) = \sum_{n=0}^{n} p \, m(C_p) + n \, m(A_{n+1}). \tag{12.29}$$

Si  $\sum_{n=0}^{+\infty} m(A_n) < +\infty$ , on déduit donc de (12.28) que  $\sum_{n=0}^{+\infty} n \, m(C_n) < +\infty$ .

Réciproquement, si  $\sum_{n=0}^{+\infty} n \, m(C_n) < +\infty$ . On a, par (12.26),  $\int |u| dm < \infty$  et donc, comme  $n \, 1_{A_{n+1}} \leq |u|$ , on a aussi  $n \, m(A_{n+1}) \leq \int |u| dm < \infty$ . On déduit donc de (12.29) que  $\sum_{n=1}^{\infty} m(A_n) < \infty$ . Comme  $m(A_0) \leq m(E) < \infty$ , on a bien finalement  $\sum_{n=0}^{\infty} m(A_n) < \infty$ .

On a bien montré (12.27), ce qui termine la question.

2. Soit  $p \in ]1, +\infty[$ , montrer que  $|u|^p$  est une fonction mesurable et que :

$$\int |u|^p dm < +\infty \Leftrightarrow \sum_{n=0}^{+\infty} n^p m(B_n) < +\infty \Leftrightarrow \sum_{n=0}^{+\infty} n^{p-1} m(A_n) < +\infty.$$
 (12.30)

-corrigé-

La fonction  $|u|^p$  est mesurable car composée d'une fonction mesurable et d'une fonction continue.

On reprend maintenant le raisonnement de la question précédente. On remarque que :

$$\sum_{n \in \mathbb{N}} n^p \, m(B_n) \le \int |u|^p dm \le \sum_{n \in \mathbb{N}} (n+1)^p m(B_n). \tag{12.31}$$

Si  $\int |u|^p dm < +\infty$ , on a donc  $\sum_{n \in \mathbb{N}} n^p m(B_n) < \infty$ .

Réciproquement, si  $\sum_{n\in\mathbb{N}} n^p \, m(B_n) < \infty$ , on a aussi  $\sum_{n=1}^{\infty} (n+1)^p m(B_n) \leq \sum_{n=1}^{\infty} 2^p n^p m(B_n) < \infty$  et  $m(B_0) \leq m(E) < \infty$ . On a donc  $\sum_{n=0}^{\infty} (n+1)^p m(B_n) < \infty$ . Ceci donne  $\int |u|^p dm < +\infty$  par (12.31).

On a ainsi montré que :

$$\int |u|^p dm < +\infty \Leftrightarrow \sum_{n=0}^{+\infty} n^p m(B_n) < +\infty.$$

Ici aussi, on peut utiliser le même raisonnement en remplaçant  $B_n$  par  $C_n = \{x \in E, n \le |u(x)| < n+1\}$ . On a donc aussi :

$$\int |u|^p dm < +\infty \Leftrightarrow \sum_{n=0}^{+\infty} n^p \, m(C_n) < +\infty. \tag{12.32}$$

Pour terminer la question, il suffit donc de montrer que :

$$\sum_{n=0}^{+\infty} n^p \, m(C_n) < +\infty \Leftrightarrow \sum_{n=0}^{+\infty} n^{p-1} m(A_n) < +\infty. \tag{12.33}$$

Pour montrer (12.33), on utilise, comme dans la question précédente que  $C_n = A_n \setminus A_{n+1}$  pour tout  $n \in \mathbb{N}$  et donc :

$$m(C_n) = m(A_n) - m(A_{n+1}).$$

On en déduit que, pour tout  $n \in \mathbb{N}$ ,  $\sum_{n=0}^{N} n^p m(C_n) = \sum_{n=0}^{N} n^p m(A_n) - \sum_{n=0}^{N} n^p m(A_{n+1}) = \sum_{n=0}^{N} n^p m(A_n) - \sum_{n=1}^{N+1} (n-1)^p m(A_n) = \sum_{n=1}^{N} (n^p - (n-1)^p) m(A_n) - N^p m(A_{N+1})$ . On a donc :

$$\sum_{n=0}^{N} n^{p} m(C_{n}) \leq \sum_{n=1}^{N} (n^{p} - (n-1)^{p}) m(A_{n}), \tag{12.34}$$

et:

$$\sum_{n=1}^{N} (n^{p} - (n-1)^{p}) m(A_{n}) = \sum_{n=0}^{N} n^{p} m(C_{n}) + N^{p} m(A_{N+1}).$$
(12.35)

Pour conclure, on remarque que  $\frac{n^p-(n-1)^p}{n^{p-1}}\to p$  quand  $n\to\infty$ . Il existe donc  $\alpha,\beta>0$  t.q.  $\alpha n^{p-1}\le n^p-(n-1)^p\le \beta n^{p-1}$  pour tout  $n\in\mathbb{N}^\star$ .

Si  $\sum_{n=0}^{\infty} n^{p-1} m(A_n) < \infty$ , on déduit alors de (12.34) que  $\sum_{n=0}^{+\infty} n \, m(C_n) < +\infty$ .

Réciproquement, si  $\sum_{n=0}^{+\infty} n^p \, m(C_n) < +\infty$ . On a, par (12.32),  $\int |u|^p dm < \infty$  et donc, comme  $N \, 1_{A_{N+1}} \leq |u|$ , on a aussi  $N^p \, m(A_{n+1}) \leq \int |u|^p dm < \infty$ . On déduit alors de (12.35) que  $\sum_{n=0}^{\infty} n^{p-1} m(A_n) < \infty$ .

On a bien montré (12.33), ce qui termine la question.

# Corrigé 67 (Sur l'inégalité de Markov)

Soit (E, T, m) un espace mesuré et  $f \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ .

1. Montrer que pour tout a>0, on a  $a\,m(\{|f|>a\})\leq \int_{\{|f|>a\}}|f|\,dm.$ 

Comme  $|f| \in \mathcal{M}_+$ , la méthode pour faire les questions 1 et 2 a déjà été vue dans le cours (voir l'inégalité (4.8)).

Soit a>0. On remarque que  $|f|1_{\{|f|>a\}}\geq a1_{\{|f|>a\}}$ . Par monotonie de l'intégrale, on en déduit :

$$am(\{|f|>a\})=\int a1_{\{|f|>a\}}dm\leq \int |f|1_{\{|f|>a\}}dm=\int_{\{|f|>a\}}|f|dm.$$

2. Montrer que pour tout a>0, on a  $m(\{|f|>a\})\leq (\int |f|\,dm)/a$ . (Ceci est l'inégalité de Markov.)

——corrigé

Comme  $\int_{\{|f|>a\}} |f|dm \le \int |f|dm$ , cette question découle immédiatement de ma précédente.

3. Montrer que

$$\lim_{a \to \infty} a \, m(\{|f| > a\}) = 0. \tag{12.36}$$

Soit  $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$  t.q.  $a_n\to\infty$ , quand  $n\to\infty$ . On pose  $g_n=|f|1_{\{|f|>a_n\}}$ . On a  $g_n\to0$  p.p. quand  $n \to \infty$  et, pour tout  $n \in \mathbb{N}$ ,  $|g_n| \le |f|$  p.p.. Grâce au théorème de convergence dominée, on en déduit que  $\int g_n dm \to 0$  quand  $n \to \infty$  et donc, avec la question 1,  $a_n m(\{|f| > a_n\}) \to 0$  quand  $n \to \infty$ .

4. Donner des exemples de fonctions non intégrables qui vérifient la propriété (12.36) dans les 2 cas suivants :  $(E, T, m) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$  et  $(E, T, m) = (]0, 1[, \mathcal{B}(]0, 1[), \lambda)$ .

Dans le cas  $(E, T, m) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ , il suffit de prendre  $f = 1_{\mathbb{R}}$ .

Dans le cas  $(E,T,m)=([0,1[,\mathcal{B}(]0,1[),\lambda),$  on peut prendre, par exemple, f définie par  $f(x)=\frac{1}{x|\ln(2x)|}$ pour  $x \in ]0,1[$ . La fonction f est mesurable mais n'est pas intégrable. Pour a>0, on a  $am(\{|f|>a\})=$  $ax_a$  avec  $x_a > 0$  t.q.  $|x_a| \ln(2x_a)| = \frac{1}{a}$ . On a  $x_a \to 0$  quand  $a \to \infty$  et donc  $am(\{|f| > a\}) = ax_a = \frac{1}{|\ln(2x_a)|} \to 0$  quand  $a \to \infty$ .

#### Corrigé 68 (Sur $f \ge 0$ p.p.)

Soit (E,T,m) un espace mesuré et  $f\in\mathcal{L}^1_{\mathbb{R}}(E,T,m)$ . Montrer que les 2 conditions suivantes sont équiva-

- 1.  $f \ge 0$  p.p.,
- 2.  $\int_A f \, dm \ge 0$  pour tout  $A \in T$ .

corrigé

- On suppose d'abord que  $f \geq 0$  p.p.. Soit  $A \in T$ , on a alors  $f1_A \geq 0$  p.p. et donc, par monotonie de l'intégrale sur  $\mathcal{L}^1$  (proposition 4.4 page 84),  $\int_A f dm = \int f1_A dm \geq 0$ .
  - En fait, pour être tout à fait précis, la proposition 4.4 est énoncée avec l'hypothèse " $f \geq g$ " et non seulement " $f \geq g$  p.p.". Toutefois il est clair que cette proposition est aussi vraie avec seulement " $f \geq g$  p.p.". Il suffit de remarquer que, si  $f \geq g$  p.p., il existe  $B \in T$  t.q. m(B) = 0 et  $f \geq g$  sur  $B^c$ . On a donc  $f1_{B^c} \geq g1_{B^c}$ . Si  $f, g \in \mathcal{L}^1$ , la proposition 4.4 donne alors  $\int f1_{B^c}dm \geq \int g1_{B^c}dm$ . On en déduit  $\int fdm \geq \int gdm$  car  $\int fdm = \int f1_{B^c}dm$  et  $\int gdm = \int g1_{B^c}dm$  (voir la proposition 4.5 page 86).
- On suppose maintenant que  $\int_A f \, dm \geq 0$  pour tout  $A \in T$ . Soit  $n \in \mathbb{N}^*$ , on choisit  $A = A_n = \{f \leq -\frac{1}{n}\} = \{x \in E: f(x) \leq -\frac{1}{n}\}$ , de sorte que  $f1_{A_n} \leq -\frac{1}{n}1_{A_n}$ . La monotonie de l'intégrale sur  $\mathcal{L}^1$  (proposition 4.4 page 84) donne alors

$$\int f 1_{A_n} dm \le -\frac{1}{n} m(A_n).$$

Comme  $\int f 1_{A_n} dm \ge 0$  par hypothèse, on a donc nécessairement  $m(A_n) = 0$ .

Par  $\sigma$ -sous additivité de m, on en déduit que  $m(\{f<0\})=m(\cup_{n\in\mathbb{N}^{\star}}\{f\leq-\frac{1}{n}\})=0$ , et donc  $f\geq0$  p.p..

#### Corrigé 69

Soient (E, T, m) un espace mesuré et  $f \in \mathcal{L}^1 (= \mathcal{L}^1_{\mathbb{R}}(E, T, m))$ .

1. Montrer que :  $\forall \varepsilon > 0, \exists \delta > 0 \text{ t.q. } \forall A \in T, m(A) \leq \delta \Rightarrow \int_{A} |f| dm \leq \varepsilon. [Introduire f_n = \inf(|f|, n)].$ 

\_\_\_\_corrigé

On pose  $f_n=\inf(|f|,n)$ . Comme  $|f|-f_n\to 0$  p.p. (et même partout), quand  $n\to\infty$ , et que  $0\le |f|-f_n\le |f|\in\mathcal{L}^1$ , on peut appliquer le théorème de convergence dominée à la suite  $(|f|-f_n)_{n\in\mathbb{N}}$  (ou la proposition 4.6). Il donne que  $\int (|f|-f_n)dm\to 0$  quand  $n\to\infty$ .

Soit  $\varepsilon > 0$ , il existe donc  $n \in \mathbb{N}$  t.q.  $\int (|f| - f_n) dm \le \varepsilon$ . Pour  $A \in T$ , on a donc :

$$\int_{A} |f| dm \leq \int_{A} (|f| - f_n) dm + \int_{A} f_n dm \leq \int (|f| - f_n) dm + \int_{A} f_n dm \leq \varepsilon + nm(A).$$

En prenant  $\delta = \frac{\varepsilon}{n}$ , on en déduit :

$$A \in T, \ m(A) \le \delta \Rightarrow \int_A |f| dm \le 2\varepsilon.$$

NB : Au lieu d'appliquer le théorème de convergence dominée à la suite  $(|f| - f_n)_{n \in \mathbb{N}}$ , on peut aussi faire cet question en appliquant le théorème de convergence monotone à la suite  $(f_n)_{n \in \mathbb{N}}$  et en utilisant le fait que  $f \in \mathcal{L}^1$ .

2. Montrer que :  $\forall \varepsilon > 0, \exists C \in T \text{ t.q.}$  :

- (i)  $m(C) < +\infty$ ,
- (ii)  $\int_{C^c} |f| dm \le \varepsilon$ ,
- (iii)  $\sup_{C} |f| < +\infty$ ,

[Considérer  $C_n = \{x \in E; \frac{1}{n} \le |f(x)| \le n\}$ , et montrer que pour  $n \ge n_0$  où  $n_0$  est bien choisi,  $C_n$  vérifie (i), (ii) et (iii).]

# —corrigé——

Pour  $n \in \mathbb{N}^*$ , on pose  $C_n = \{x \in E : \frac{1}{n} \le |f(x)| \le n\}$ .

Soit  $n \in \mathbb{N}^*$ , on a  $|f| \leq n$  sur  $C_n$  et  $\frac{1}{n}m(C_n) \leq \int |f|dm < \infty$ . Les conditions (i) et (iii) sont donc vérifiées si on prend  $C = C_n$ .

Soit  $\varepsilon > 0$ . On va maintenant montrer qu'on peut choisir n de manière avoir aussi (ii). Pour cela, on pose  $g_n = f1_{C_n^c}$ , de sorte que  $g_n \to 0$  p.p. (et même partout) et  $|g_n| \le |f|$  p.p. (et même partout), pour tout  $n \in \mathbb{N}^*$ . On peut donc appliquer le théorème de convergence dominée à la suite  $(g_n)_{n \in \mathbb{N}}$  (ou la proposition 4.6). Il donne que  $\int |g_n| dm \to 0$  quand  $n \to \infty$ . Il existe donc  $n \in \mathbb{N}^*$  t.q. (ii) soit vérifiée. En prenant  $C = C_n$ , on a donc (i), (ii) et (iii).

# Corrigé 70 (m-mesurabilité)

Soit (E,T,m) un espace mesuré. Soit  $A\in T$  t.q. m(A)=0 et f une application de  $A^c$  dans  $\mathbb{R}$ . Montrer que :

il existe g mesurable de E dans  $\mathbb{R}$  t.q. f = g p.p. si et seulement si il existe  $(f_n)_{n \in \mathbb{N}}$ , suite de fonctions étagées, t.q.  $f_n \to f$  p.p., quand  $n \to \infty$ .

### -corrigé-

• On suppose d'abord qu'il existe g mesurable de E dans  $\mathbb R$  t.q. f=g p.p.. Il existe donc  $B\in T$  t.q. m(B)=0 et f=g sur  $B^c$  (et  $B^c\subset A^c$ , i.e.  $A\subset B$ ).

Comme  $g \in \mathcal{M}$ , la deuxième caractérisation de la mesurabilité (proposition 3.6 page 60) donne l'existence d'une suite  $(f_n)_{n\in\mathbb{N}} \subset \mathcal{E}$  t.q.  $f_n(x) \to g(x)$  pour tout  $x \in E$ . On a donc aussi  $f_n(x) \to f(x)$  pour tout  $x \in B^c$ . Comme m(B) = 0, on a bien  $f_n \to f$  p.p..

• On suppose maintenant qu'il existe  $(f_n)_{n\in\mathbb{N}}\subset\mathcal{E}$  t.q.  $f_n\to f$  p.p.. Il existe donc  $B\in T$  t.q. m(B)=0 et  $f_n(x)\to f(x)$  pour tout  $x\in B^c$  (on a donc aussi  $B^c\subset A^c$ ). On pose  $g_n=f_n1_{B^c}$  et on définit g par g(x)=f(x) si  $x\in B^c$  et g(x)=0 si  $x\in B$ . Avec ces choix de  $g_n$  et g, on a  $(g_n)_{n\in\mathbb{N}}\in\mathcal{E}$  et  $g_n(x)\to g(x)$  pour tout  $x\in E$ . On a donc, par la proposition 3.6,  $g\in\mathcal{M}$ . On a aussi f=g p.p. car f=g sur g et g et g.

#### Corrigé 71 (Mesure complète, suite de l'exercice 2.32)

On reprend les notations de l'exercice 2.32 page 49. On note donc  $(E, \overline{T}, \overline{m})$  le complété de l'espace mesuré (E, T, m).

Montrer que  $\mathcal{L}^1_{\mathbb{R}}(E,T,m) \subset \mathcal{L}^1_{\mathbb{R}}(E,\overline{T},\overline{m})$ . Soit  $f \in \mathcal{L}^1_{\mathbb{R}}(E,\overline{T},\overline{m})$ , montrer qu'il existe  $g \in \mathcal{L}^1_{\mathbb{R}}(E,T,m)$  t.q. f = g p.p. et que  $\int f d\overline{m} = \int g dm$ .

corrigé

1. On commence par montrer que  $\mathcal{L}^1_{\mathbb{R}}(E,T,m) \subset \mathcal{L}^1_{\mathbb{R}}(E,\overline{T},\overline{m})$ .

Comme  $T \subset \overline{T}$ , on a  $\mathcal{M}(E,T) \subset \mathcal{M}(E,\overline{T})$ ,  $\mathcal{M}_{+}(E,T) \subset \mathcal{M}_{+}(E,\overline{T})$ ,  $\mathcal{E}(E,T) \subset \mathcal{E}(E,\overline{T})$  et  $\mathcal{E}_{+}(E,T) \subset \mathcal{E}_{+}(E,\overline{T})$ . Puis, comme  $\overline{m} = m$  sur T, on a  $\int f dm = \int f d\overline{m}$  pour tout  $f \in \mathcal{E}_{+}(E,T)$ . Si  $f \in \mathcal{M}_{+}(E,T)$ , il existe une suite  $(f_{n})_{n \in \mathbb{N}} \subset \mathcal{E}_{+}(E,T)$  t.q.  $f_{n} \uparrow f$  quand  $n \to \infty$ , la définition de l'intégrale sur  $\mathcal{M}_{+}$  donne alors :

$$\int f dm = \int f d\overline{m}, \text{ pour tout } f \in \mathcal{M}_{+}(E, T).$$
(12.37)

Soit  $f \in \mathcal{L}^1_{\mathbb{R}}(E,T,m)$ , on a donc  $f \in \mathcal{M}(E,T) \subset \mathcal{M}(E,\overline{T})$  et (12.37) donne  $\int |f|d\overline{m} = \int |f|dm < \infty$ . Donc,  $f \in \mathcal{L}^1_{\mathbb{R}}(E,\overline{T},\overline{m})$ . En appliquant (12.37) à  $f^{\pm}$ , on montre aussi que  $\int fdm = \int fd\overline{m}$ .

- 2. On va montrer la deuxième partie de la question en raisonnant en 3 étapes :
  - (a) Soit  $C \in \overline{T}$ . Il existe donc  $A \in T$ ,  $N \in \mathcal{N}_m$  t.q.  $C = A \cup N$ . Il existe  $B \in T$  t.q.  $N \subset B$  et m(B) = 0. On a  $\{1_A \neq 1_C\} \subset N \subset B$ . Donc,  $\{1_A \neq 1_C\} \in \mathcal{N}_m = \mathcal{N}_{\overline{m}}$ , c'est-à-dire  $1_A = 1_C$  m-p.p. et  $\overline{m}$ -p.p.. En fait, comme  $\mathcal{N}_m = \mathcal{N}_{\overline{m}}$ , il est identique de dire "m-p.p." et " $\overline{m}$ -p.p.", on dira donc simplement "p.p.".
  - (b) Soit  $f \in \mathcal{E}(E, \overline{T})$ . Il existe  $a_1, \ldots, a_n \in \mathbb{R}$  et  $C_1, \ldots, C_n \in \overline{T}$  t.q.  $f = \sum_{i=1}^n a_i 1_{C_i}$ . D'après (a), on trouve  $A_1, \ldots, A_n \in T$  t.q.  $1_{A_i} = 1_{C_i}$  p.p., pour tout i. On pose alors  $g = \sum_{i=1}^n a_i 1_{A_i}$ , de sorte que  $g \in \mathcal{E}(E, T)$  et g = f p.p..
  - (c) Soit  $f \in \mathcal{L}^1_{\mathbb{R}}(E, \overline{T}, \overline{m})$ . Comme  $f \in \mathcal{M}(E, \overline{T})$ , il existe (d'après la proposition 3.6)  $(f_n)_{n \in \mathbb{N}} \subset \mathcal{E}(E, \overline{T})$  t.q.  $f_n(x) \to f(x)$  pour tout  $x \in E$ . D'après (b), pour tout  $n \in \mathbb{N}$ , il existe  $g_n \in \mathcal{E}(E, T)$  t.q.  $f_n = g_n$  p.p.. Pour tout  $n \in \mathbb{N}$ , il existe  $A_n \in T$  t.q.  $m(A_n) = 0$  et  $f_n = g_n$  sur  $A_n^c$ . On pose  $A = \bigcup_{n \in \mathbb{N}} A_n$ . On a  $A \in T$ , m(A) = 0 et  $f_n = g_n$  sur  $f_n^c$  pour tout  $f_n^c \in \mathbb{N}$ . On définit alors  $f_n^c = g_n$  sur  $g_n^c = g_n^c$  sur  $g_n^c = g_n^c$

Comme  $|f|, |g| \in \mathcal{M}_+(E, \overline{T})$  et |f| = |g| p.p., on a  $\infty > \int |f| d\overline{m} = \int |g| d\overline{m}$ . Puis, comme  $|g| \in \mathcal{M}_+(E, T)$ , (12.37) donne  $\int |g| d\overline{m} = \int |g| dm$ . On en déduit donc que  $g \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ .

Enfin, en utilisant le fait que  $f^+ = g^+$  p.p.,  $f^- = g^-$  p.p. et (12.37) (avec  $g^+$  et  $g^-$ ) on a aussi :

$$\int f d\overline{m} = \int f^+ d\overline{m} - \int f^- d\overline{m} = \int g^+ d\overline{m} - \int g^- d\overline{m} = \int g^+ dm - \int g^- dm = \int g dm.$$

On a bien trouvé  $g \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$  t.q. f = g p.p. et  $\int f d\overline{m} = \int g dm$ .

Corrigé 72 (Petit lemme d'intégration)

Soit (E, T, m) un espace mesuré et  $f \in \mathcal{M}(E, T)$ . (On rappelle que  $\mathcal{M}(E, T)$  est l'ensemble des fonctions mesurables de E dans  $\mathbb{R}$ .)

1. On suppose (dans cette question) que  $f \in \mathcal{L}^1_{\mathbb{R}}(E,T,m)$ . Montrer que

$$(A_n)_{n\in\mathbb{N}}\subset T,\ m(A_n)\to 0 \ \Rightarrow \int f1_{A_n}dm\to 0.$$
 (12.38)

-corrigé-

Comme  $f \in \mathcal{L}^1_{\mathbb{R}}(E,T,m)$ , La question 1 de l'exercice 4.14 page 103 donne :

 $\forall \varepsilon > 0, \exists \eta > 0 \text{ t.q. } (A \in T, m(A) \leq \eta) \Rightarrow \int f 1_A dm \leq \varepsilon.$ 

Ceci donne (12.38)...

2. On prend (dans cette question)  $(E, T, m) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ . Donner un exemple de  $f \in \mathcal{M}(E, T)$  t.q.  $f \geq 0$  (de sorte que  $f \in \mathcal{M}_{+}(E, T)$ ), pour lequel (12.38) est faux.

-----corrigé-

On prend  $f(x) = x1_{\mathbb{R}_+}(x)$  et  $A_n = ]n, n+1/n[$ . On a  $m(A_n) \to 0$  (quand  $n \to \infty$ ) et  $\int f1_{A_n} d\lambda \ge 1$  pour tout  $n \in \mathbb{N}$ . Donc,  $\int f1_{A_n} d\lambda \ne 0$ .

3. On suppose (dans cette question) que  $m(E) < \infty$  et que f > 0 (c'est à dire f(x) > 0 pour tout  $x \in E$ ). Montrer que

$$(A_n)_{n\in\mathbb{N}}\subset T, \ \int f1_{A_n}dm\to 0 \ \Rightarrow m(A_n)\to 0.$$
 (12.39)

On pourra utiliser le fait que, pour  $p \in \mathbb{N}^*$ ,  $A_n \subset \{f < \frac{1}{p}\} \cup \{x \in A_n; f(x) \ge \frac{1}{p}\}$ .

----corrigé-----

On a  $\{f < \frac{1}{p+1}\} \subset \{f < \frac{1}{p}\}, \cap_{p \in \mathbb{N}^*} \{f < \frac{1}{p}\} = \emptyset$  et  $m(\{f < \frac{1}{p}\}) < \infty$ , pour tout  $p \in \mathbb{N}^*$  (car  $m(E) < \infty$ ). La propriété de continuité décroissante de la mesure m donne alors que  $m(\{f < \frac{1}{p}\}) \to 0$  quand  $p \to \infty$ .

Soit  $\varepsilon > 0$ . Il existe donc  $p \in \mathbb{N}^*$  t.q.  $m(\{f < \frac{1}{p}\}) \le \varepsilon$ . On a alors  $m(A_n) \le \varepsilon + m(\{x \in A_n; f(x) \ge \frac{1}{p}\}) \le \varepsilon + p \int f 1_{A_n} dm$ . Comme  $\int f 1_{A_n} dm \to 0$ , il existe donc  $n_0$  t.q.  $m(A_n) \le 2\varepsilon$  pour  $n \ge n_0$ . Ce qui prouve (12.39).

4. On prend (dans cette question)  $(E,T,m)=(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$  (de sorte que  $m(E)=\infty$ ). Montrer que si  $f\in\mathcal{L}^1_{\mathbb{R}}(E,T,m)$  et f>0, alors (12.39) est faux. Donner un exemple de  $f\in\mathcal{L}^1_{\mathbb{R}}(E,T,m)$  t.q. f>0.

-----corrigé------

On prend  $A_n = ]n, n+1[$ . En appliquant la proposition 4.6 page 87 (ou le théorème de convergence dominée) à la suite  $(f1_{A_n})_{n\in\mathbb{N}}$ , on obtient que  $\int f1_{A_n}d\lambda \to 0$  (quand  $n\to\infty$ ). D'autre part  $\lambda(A_n) = 1 \not\to 0$ . La propriété (4.35) est donc fausse.

On obtient un exemple de  $f \in \mathcal{L}^1_{\mathbb{R}}(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$  t.q. f > 0 en prenant  $f(x) = \exp(-|x|)$ .

# Corrigé 73 (Fatou sans positivité)

Soit (E, T, m) un espace mesuré. Soit  $(f_n)_{n \in \mathbb{N}} \subset \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ ,  $f \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$  et  $h \in \mathcal{M}(E, T)$ . (On rappelle que  $\mathcal{M}(E, T)$  est l'ensemble des fonctions mesurables de E dans  $\mathbb{R}$ .)

- 1. On suppose que  $f_n \to h$  p.p. quand  $n \to \infty$ ,  $f_n \ge f$  p.p. pour tout  $n \in \mathbb{N}$ , et on suppose qu'il existe  $C \in \mathbb{R}$  t.q.  $\int f_n dm \le C$  pour tout  $n \in \mathbb{N}$ .
  - (a) Montrer qu'il existe  $(g_n)_{n\in\mathbb{N}}\subset \mathcal{L}^1_{\mathbb{R}}(E,T,m)$  et  $g\in\mathcal{L}^1_{\mathbb{R}}(E,T,m)$  t.q.
    - $f_n = g_n$  p.p., pour tout  $n \in \mathbb{N}$ , f = g p.p.,
    - $g_n(x) \to h(x)$ , quand  $n \to \infty$ , pour tout  $x \in E$ ,
    - $g_n \ge g$  pour tout  $n \in \mathbb{N}$ .

## —corrigé-

Soit  $A \in T$  t.q. m(A) = 0 et  $f_n(x) \to h(x)$  pour tout  $x \in A^c$ .

Pour tout  $n \in \mathbb{N}$ , soit  $A_n \in T$  t.q.  $m(A_n) = 0$  et  $f_n(x) \ge f(x)$  pour tout  $x \in (A_n)^c$ .

On pose  $B = A \cup (\bigcup_{n \in \mathbb{N}} A_n)$ . On a  $B \in T$ , m(B) = 0,  $f_n(x) \to h(x)$  pour tout  $x \in B^c$  et  $f_n(x) \geq f(x)$  pour tout  $x \in B^c$ .

On pose, pour  $n \in \mathbb{N}$ ,  $g_n = f_n 1_{B^c} + h 1_B$  et  $g = f 1_{B^c} + h 1_B$ . On a bien  $(g_n)_{n \in \mathbb{N}} \subset \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ ,  $g \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$  et les 3 conditions demandées sont vérifiées.

(b) Montrer que  $h \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ .

#### -corrigé-

On applique le lemme de Fatou à la suite  $(g_n - g)_{n \in \mathbb{N}} \subset \mathcal{M}_+$  (noter aussi que  $(h - g) \in \mathcal{M}_+$ ). On obtient  $\int (h - g) dm \le \liminf_{n \to \infty} \int (g_n - g) dm \le C - \int g dm < \infty$ .

On en déduit que  $(h-g) \in \mathcal{L}^1_{\mathbb{R}}(E,T,m)$  et donc  $h=h-g+g \in \mathcal{L}^1_{\mathbb{R}}(E,T,m)$ .

2. (question plus difficile) On reprend les hypothèses de la question précédente sauf " $f_n \geq f$  p.p., pour tout  $n \in \mathbb{N}$ " que l'on remplace par l'hypothèse (plus faible) "il existe  $D \in \mathbb{R}$  t.q.  $\int f_n dm \geq D$  pour tout  $n \in \mathbb{N}$ ". Donner un exemple pour lequel  $h \notin \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ . [Prendre  $(E, T, m) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ .]

### —corrigé—

On prend  $f_n = 1_{[1/n, n+1/n]} - n^2 1_{[0, 1/n[}$  et  $h = 1_{\mathbb{R}_+}$ . On a  $f_n \to h$  p.p.,  $\int f_n dm = 0$  et  $h \notin \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ .

## Corrigé 74

Soient T > 0 et  $f \in \mathcal{L}^1 = \mathcal{L}^1([0,T],\mathcal{B}([0,T]),\lambda)$  ( $\lambda$  désigne donc ici la mesure de Lebesgue sur  $\mathcal{B}([0,T])$ ).

1. Soit  $n \in \mathbb{N}$ . Montrer que la fonction  $x \mapsto e^{nx} f(x)$  appartient à  $\mathcal{L}^1$ .

# –corrigé–

La fonction  $x \mapsto e^{nx}$  est continue donc mesurable (de [0,1] dans  $\mathbb{R}$ , tous deux munis de la tribu borélienne). La fonction  $x \mapsto e^{nx} f(x)$  est donc mesurable comme produit de fonctions mesurables.

On remarque ensuite que  $\int |e^{nx}f(x)|d\lambda(x) \leq e^n||f||_1 < \infty$ . On en déduit que la fonction  $x \mapsto e^{nx}f(x)$  appartient à  $\mathcal{L}^1$ .

On suppose, dans la suite de l'exercice, que  $f \geq 0$  p.p. et qu'il existe  $M \in \mathbb{R}_+$  t.q. que  $\int e^{nx} f(x) d\lambda(x) \leq M$  pour tout  $n \in \mathbb{N}$ .

2. Montrer que f=0 p.p.. [Appliquer le théorème de convergence monotone.]

#### —corrigé—

On pose  $A = \{f > 0\} = \{x \in E; f(x) > 0\}$  et  $B = A \setminus \{0\}$ . Comme f est mesurable, on a  $A, B \in \mathcal{B}([0,1])$ .

Pour  $n \in \mathbb{N}$ , on pose  $g_n(x) = e^{nx} |f(x)|$  pour  $x \in [0,1]$ . On a  $g_n \in \mathcal{M}_+$  et  $g_n \uparrow g$  avec g définie par :

$$g(x) = \infty$$
, si  $x \in B$ ,  
 $g(x) = 0$ , si  $x \in ]0, 1] \setminus B$ ,  
 $g(0) = |f(0)|$ .

Le théorème de convergence monotone donne que  $g \in \mathcal{M}_+$  et  $\int g_n dm \to \int g dm$  quand  $n \to \infty$ . Comme  $g_n = e^{n \cdot f}$  p.p., on a  $\int g_n dm = \int e^{nx} f(x) d\lambda(x) \leq M$  et donc, en passant à limite quand  $n \to \infty$ ,  $\int g dm \leq M$ .

On a aussi  $h_n \uparrow g$  avec  $h_n = n1_B + |f(0)|1_{\{0\}}$ . La définition de l'intégrale sur  $\mathcal{M}_+$  donne alors  $\int gdm = \lim_{n\to\infty} n\lambda(B)$  et donc  $\int gdm = \infty$  si  $\lambda(B) > 0$ . Comme  $\int gdm \leq M$ , on a donc  $\lambda(B) = 0$  et donc aussi  $\lambda(A) = 0$ . Ce qui donne f = 0 p.p..

3. On suppose de plus que f est continue. Montrer que f(x) = 0 pour tout  $x \in [0, T]$ .

#### —corrigé

On pose toujours  $A=\{f>0\}=\{x\in E;\, f(x)>0\}.$  Comme f est continue, l'ensemble A est un ouvert de [0,1]. Si  $A\neq\emptyset$ , il existe un intervalle ouvert non vide inclus dans A et donc  $\lambda(A)>0$  en contradiction avec le résultat de la question précédente qui donne  $\lambda(A)=0$ . On a donc  $A=\emptyset$ , c'est-à-dire f=0 sur tout [0,1].

# **12.4.2** Espace $L^1$

# Corrigé 75 (Mesure de densité)

Soit (E,T,m) un espace mesuré et  $f\in\mathcal{M}_+$ . Pour  $A\in T$ , on pose  $\mu(A)=\int_A fdm$ .

1. Montrer que  $\mu$  est une mesure sur T.

On rappelle que, par définition, pour tout  $A \in T$ , on a  $\int_A f dm = \int f 1_A dm$  avec  $f 1_A = 0$  sur  $A^c$  et  $f 1_A = f$  sur A (on a bien  $f 1_A \in \mathcal{M}_+$  et donc  $\int_A f dm$  est bien définie).

On montre maintenant que  $\mu$  est une mesure.

Il est clair que  $\mu(\emptyset) = 0$  car  $f1_A = 0$  (sur tout E) si  $A = \emptyset$ . Pour montrer que  $\mu$  est un mesure, il reste à montrer que  $\mu$  est  $\sigma$ -additive.

Soit  $(A_n)_{n\in\mathbb{N}}\subset T$  t.q.  $A_n\cap A_m=\emptyset$  si  $n\neq m$ . On pose  $A=\bigcup_{n\in\mathbb{N}}A_n$  et on remarque que  $1_A(x)=\sum_{n\in\mathbb{N}}1_{A_n}(x)$  pour tout  $x\in E$  et donc  $f1_A(x)=\sum_{n\in\mathbb{N}}f1_{A_n}(x)$  pour tout  $x\in E$ . Le premier corollaire du théorème de convergence monotone (corollaire 4.1) donne alors

$$\int f 1_A dm = \sum_{n \in \mathbb{N}} \int f 1_{A_n} dm,$$

c'est-à-dire  $\mu(A) = \sum_{n \in \mathbb{N}} \mu(A_n)$ . Ceci prouve que  $\mu$  est  $\sigma$ -additive et donc que  $\mu$  est une mesure.

2. Soit  $g \in \mathcal{M}$ . Montrer que  $g \in \mathcal{L}^1_{\mathbb{R}}(E, T, \mu)$  si et seulement si  $fg \in L^1_{\mathbb{R}}(E, T, m)$  (on pose fg(x) = 0 si  $f(x) = \infty$  et g(x) = 0). Montrer que, pour  $g \in \mathcal{L}^1_{\mathbb{R}}(E, T, \mu)$ ,  $\int g d\mu = \int fg dm$ .

corrig

On raisonne en 3 étapes :

(a) Soit  $g \in \mathcal{E}_+ \setminus \{0\}$ . Il existe donc  $a_1, \ldots, a_p \in \mathbb{R}_+^*$  et  $A_1, \ldots, A_p \in T$  t.q.  $g = \sum_{i=1}^p a_i 1_{A_i}$ . On a alors (en posant fg(x) = 0 si  $f(x) = \infty$  et g(x) = 0)  $fg = \sum_{i=1}^p a_i f 1_{A_i} \in \mathcal{M}_+$  et :

$$\int fgdm = \sum_{i=1}^{p} a_i \int f1_{A_i}dm = \sum_{i=1}^{p} a_i \mu(A_i) = \int gd\mu.$$

(Ce qui, bien sûr, est aussi vrai pour g = 0.)

(b) Soit  $g \in \mathcal{M}_+$ . Il existe alors  $(g_n)_{n \in \mathbb{N}} \subset \mathcal{E}_+$  t.q.  $g_n \uparrow g$ . L'item précédent donne que  $\int fg_n dm = \int g_n d\mu$ . Avec le théorème de convergence monotone (pour  $\mu$  et pour m, puisque  $fg_n \uparrow fg$  en posant toujours fg(x) = 0 si  $f(x) = \infty$  et g(x) = 0), on en déduit que  $fg \in \mathcal{M}_+$  et :

$$\int fgdm = \int gd\mu. \tag{12.40}$$

(c) Soit maintenant  $g \in \mathcal{M}$ . En appliquant (12.40) à  $|g| \in \mathcal{M}_+$ , on a :

$$\int |fg|dm = \int f|g|dm = \int |g|d\mu,$$

et donc:

$$fg \in L^1_{\mathbb{R}}(E, T, m) \Leftrightarrow g \in \mathcal{L}^1_{\mathbb{R}}(E, T, \mu).$$

En fait, on peut ne pas avoir  $fg \in \mathcal{L}^1_{\mathbb{R}}(E,T,m)$  car fg peut prendre les valeurs  $\pm \infty$ . L'assertion " $fg \in L^1_{\mathbb{R}}(E,T,m)$ " est à prendre, comme d'habitude, au sens "il existe  $h \in \mathcal{L}^1_{\mathbb{R}}(E,T,m)$  t.q. fg = h p.p.". Ceci est vérifié car si  $\int |fg|dm < \infty$ , on a  $|fg| < \infty$  p.p.. Il suffit alors de changer fg sur un ensemble de mesure nulle pour avoir une fonction mesurable prenant ses valeurs dans  $\mathbb{R}$ .

Si  $g \in \mathcal{L}^1_{\mathbb{R}}(E, T, \mu)$ , en écrivant (12.40) avec  $g^+$  et  $g^-$  (qui sont bien des éléments de  $\mathcal{M}_+$ ) et en faisant la différence on obtient bien que  $\int fgdm = \int gd\mu$ .

Soit (E,T,m) un espace mesuré. On note  $L^1$  l'espace  $L^1_{\mathbb{R}}(E,T,m)$ . Soit  $(f_n)_{n\in\mathbb{N}}\subset L^1$  et  $f\in L^1$ . On suppose que, pour tout  $n\in\mathbb{N},\,f_n\geq 0$  p.p., que  $f_n\to f$  p.p. et que  $\int f_ndm\to \int fdm$  lorsque  $n\to +\infty$ . Montrer que  $f_n \to f$  dans  $L^1$ . [on pourra examiner la suite  $(f - f_n)^+$ .]

On pose  $h_n = (f - f_n)^+$ . On a donc  $(h_n)_{n \in \mathbb{N}} \subset L^1_{\mathbb{R}}(E, T, m)$  et  $h_n \to 0$  p.p.. De plus, comme  $f_n \geq 0$  p.p., on a  $0 \leq h_n \leq f^+$  p.p.. En effet, soit  $x \in E$  t.q.  $h_n(x) \neq 0$ . On a alors, si  $f_n(x) \geq 0$  (ce qui est vrai pour presque tout x),  $0 < h_n(x) = f(x) - f_n(x) \leq f(x) = f^+(x)$ .

Comme  $f^+ \in L^1_{\mathbb{R}}(E,T,m)$ , on peut appliquer le théorème de convergence dominée à cette suite  $(h_n)_{n\in\mathbb{N}}$ , il donne que  $h_n \to 0$  quand  $n \to \infty$ , c'est-à-dire

$$\int (f - f_n)^+ dm \to 0, \text{ quand } n \to \infty.$$
 (12.41)

On remarque ensuite que

$$\int (f - f_n)^- dm = \int (f - f_n)^+ dm - \int (f - f_n) dm,$$

et donc, comme  $\int f_n dm \to \int f dm$  lorsque  $n \to +\infty$ ,

$$\int (f - f_n)^- dm \to 0, \text{ quand } n \to \infty.$$
 (12.42)

De (12.41) et (12.42), on déduit

$$\int |f - f_n| dm \to 0, \text{ quand } n \to \infty,$$

c'est-à-dire  $f_n \to f$  dans  $L^1_{\mathbb{R}}(E, T, m)$ , quand  $n \to \infty$ .

# Corrigé 77 (Théorème de Beppo-Lévi)

Soient (E,T,m) un espace mesuré,  $(f_n)_{n\in\mathbb{N}}\subset L^1$   $(=L^1_{\mathbb{R}}(E,T,m))$  et  $f\colon E\to\mathbb{R}$ , t.q. :

- (i)  $f_n \to f$  p.p. lorsque  $n \to +\infty$ .
- (ii) La suite  $(f_n)_{n\in\mathbb{N}}$  est monotone, c'est-à-dire :

 $f_{n+1} \geq f_n$  p.p., pour tout  $n \in \mathbb{N}$ ,

 $f_{n+1} \leq f_n$  p.p., pour tout  $n \in \mathbb{N}$ .

1. Construire  $(g_n)_{n\in\mathbb{N}}\subset \mathcal{L}^1(=\mathcal{L}^1_{\mathbb{R}}(E,T,m))$  et  $g\in\mathcal{M}$  t.q.  $f_n=g_n$  p.p., f=g p.p.,  $g_n(x)\to g(x)$  pour tout  $x\in E$ , et  $g_{n+1}\geq g_n$  pour tout  $n\in\mathbb{N}$  (ou  $g_{n+1}\leq g_n$  pour tout  $n\in\mathbb{N}$ ).

-corrigé

Pour tout  $n \in \mathbb{N}$ , on choisit un représentant de  $f_n$ , que l'on note encore  $f_n$ .

L'hypothèse (i) donne qu'il existe  $A \in T$  t.q. m(A) = 0 et  $f_n(x) \to f(x)$  pour tout  $x \in A^c$ .

L'hypothèse (ii) donne que la suite  $(f_n)_{n\in\mathbb{N}}$ est monotone. On suppose que cette suite est monotone croissante (le cas "monotone décroissante" est similaire). Il existe alors, pour tout  $n\in\mathbb{N}$ ,  $A_n\in T$  t.q.  $m(A_n)=0$  et  $f_{n+1}\geq f_n$  sur  $A_n^c$ .

On pose  $B = A \cup (\cup_{n \in \mathbb{N}} A_n)$ . On a donc  $B \in T$  et m(B) = 0. Puis on pose  $g_n = f_n 1_{B^c}$  et on définit g par g(x) = f(x) si  $x \in B^c$  et g(x) = 0 si  $x \in B$ . On a bien f = g p.p.,  $(g_n)_{n \in \mathbb{N}} \subset \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ ,  $f_n = g_n$  p.p. et  $g_{n+1} \geq g_n$  (pour tout  $n \in \mathbb{N}$ ). Enfin  $g_n(x) \to g(x)$  pour tout  $x \in E$ , et  $g \in \mathcal{M}$  car g est limite simple d'éléments de  $\mathcal{M}$  (voir la proposition 3.5 sur la stabilité de  $\mathcal{M}$ ).

On remarque aussi que, pour tout  $n \in \mathbb{N}$ ,  $f_n$  et  $g_n$  sont deux répresentants du même élément de  $L^1_{\mathbb{R}}(E,T,m)$  et  $\int f_n dm = \int g_n dm$ .

2. Montrer que  $f \in L^1 \Leftrightarrow \lim_{n \to +\infty} \int f_n dm \in \mathbb{R}$ .

On reprend la suite  $(g_n)_{n\in\mathbb{N}}$  et la fonction g construites à la question précédente et on distingue maintenant les 2 cas de l'hypothèse (ii).

Cas 1 : La suite  $(g_n)_{n\in\mathbb{N}}$  est supposée monotone croissante.

Dans ce cas, on a  $(g_n - g_0) \uparrow (g - g_0)$  quand  $n \to \infty$  et, comme  $(g_n - g_0) \in \mathcal{M}_+$  pour tout  $n \in \mathbb{N}$ , on peut utiliser le théorème de convergence monotone dans  $\mathcal{M}_+$  (théorème 4.1). Il donne  $((g - g_0) \in \mathcal{M}_+$  et)

$$\int (g_n - g_0)dm \to \int (g - g_0)dm \text{ quand } n \to \infty.$$
 (12.43)

On sait déjà que  $(g - g_0) \in \mathcal{M}$  et que  $\int |g - g_0| dm = \int (g - g_0) dm$  car  $(g - g_0) \in \mathcal{M}_+$ . la propiétée (12.43) donne alors que  $(g - g_0) \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$  si et seulement si la limite de la suite (croissante)  $(\int (g_n - g_0) dm)_{n \in \mathbb{N}}$  est dans  $\mathbb{R}$  (c'est-à-dire différente de  $\infty$ ).

Comme  $g_n, g_0 \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ , on a  $\int (g_n - g_0) dm = \int g_n dm - \int g_0 dm$  et donc  $(g - g_0) \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$  si et seulement si la limite de la suite (croissante)  $(\int g_n dm)_{n \in \mathbb{N}}$  est dans  $\mathbb{R}$ .

Enfin, comme  $g = (g - g_0) + g_0$  et que  $g_0 \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ , on a  $g \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$  si et seulement  $(g - g_0) \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$  et finalement on obtient bien que  $g \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$  si et seulement la limite de la suite (croissante)  $(\int g_n dm)_{n \in \mathbb{N}}$  est dans  $\mathbb{R}$ .

On conclut en remarquant que  $\int f_n dm = \int g_n dm$  pour tout  $n \in \mathbb{N}$  et f = g p.p.. Plus précisement :

- Si la limite de la suite (croissante)  $(\int f_n dm)_{n\in\mathbb{N}}$  est dans  $\mathbb{R}$ , on obtient que  $g\in\mathcal{L}^1$ ) et donc que  $f\in L^1_{\mathbb{R}}(E,T,m)$  au sens "il existe  $g\in\mathcal{L}^1_{\mathbb{R}}(E,T,m)$  t.q. f=g p.p." (on confond donc f et la classe de g, c'est-à-dire  $\{h\in\mathcal{L}^1_{\mathbb{R}}(E,T,m); h=g$  p.p.}).
- Réciproquement, si  $f \in L^1_{\mathbb{R}}(E,T,m)$ , cela signifie qu'il existe  $h \in \mathcal{L}^1_{\mathbb{R}}(E,T,m)$  t.q. f=h p.p. (on a donc confondu f et la classe de h). Comme f=g p.p., on a aussi h=g p.p.. Comme  $g \in \mathcal{M}$ , on obtient donc que  $g \in \mathcal{L}^1_{\mathbb{R}}(E,T,m)$  et donc  $(g-g_0) \in \mathcal{L}^1_{\mathbb{R}}(E,T,m)$  ce qui donne, par (12.43), que la limite de la suite (croissante)  $(\int f_n dm)_{n \in \mathbb{N}}$  est dans  $\mathbb{R}$ .

Cas 2 : La suite  $(g_n)_{n\in\mathbb{N}}$  est supposée monotone décroissante.

La démonstration est très voisine de la précécende. On remarque que  $(g_0 - g_n) \uparrow (g_0 - g)$  quand  $n \to \infty$  et, comme  $(g_0 - g_n) \in \mathcal{M}_+$  pour tout  $n \in \mathbb{N}$ , on peut utiliser le théorème de convergence monotone dans  $\mathcal{M}_+$  (théorème 4.1). Il donne  $((g_0 - g) \in \mathcal{M}_+)$  et)

$$\int (g_0 - g_n)dm \to \int (g_0 - g)dm \text{ quand } n \to \infty.$$
 (12.44)

On sait déjà que  $(g-g_0) \in \mathcal{M}$  et que  $\int |g-g_0|dm = \int (g_0-g)dm$  car  $(g_0-g) \in \mathcal{M}_+$ . La propriétée (12.44) donne alors que  $(g-g_0) \in \mathcal{L}^1_{\mathbb{R}}(E,T,m)$  si et seulement si la limite de la suite (croissante)  $(\int (g_0-g_n)dm)_{n\in\mathbb{N}}$  est dans  $\mathbb{R}$  (c'est-à-dire différente de  $\infty$ ).

Comme  $g_n, g_0 \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ , on a  $\int (g_0 - g_n) dm = \int g_0 dm - \int g_n dm$  et donc  $(g - g_0) \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$  si et seulement si la limite de la suite (décroissante)  $(\int g_n dm)_{n \in \mathbb{N}}$  est dans  $\mathbb{R}$  (c'est-à-dire différente de  $-\infty$ ).

Enfin, comme  $g = (g - g_0) + g_0$  et que  $g_0 \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ , on a  $g \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$  si et seulement  $(g - g_0) \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$  et finalement on obtient bien que  $g \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$  si et seulement la limite de la suite (décroissante)  $(\int g_n dm)_{n \in \mathbb{N}}$  est dans  $\mathbb{R}$ .

On conclut en remarquant que  $\int f_n dm = \int g_n dm$  pour tout  $n \in \mathbb{N}$  et f = g p.p., comme dans le premier cas.

3. On suppose ici que  $f \in L^1$ , montrer que  $f_n \to f$  dans  $L^1$ , lorsque  $n \to +\infty$ .

On utilise toujours la suite  $(g_n)_{n\in\mathbb{N}}$  et la fonction g construites à la première question.

Comme  $f \in L^1_{\mathbb{R}}(E,T,m)$  on a  $g \in \mathcal{L}^1_{\mathbb{R}}(E,T,m)$  et la propriété (12.43) (ou la propriété (12.44)) donne  $\int g_n dm \to \int g dm$  quand  $n \to \infty$  et donc

$$\int |g_n - g| dm \to 0 \text{ quand } n \to \infty.$$

(On a utilisé ici le fait que  $(g_n-g)$  a un signe constant et que  $g\in\mathcal{L}^1_{\mathbb{R}}(E,T,m)$ .)

Comme  $||f_n - f||_1 = \int |g_n - g| dm$ , on en déduit que  $f_n \to f$  dans  $L^1_{\mathbb{R}}(E, T, m)$ , quand  $n \to \infty$ .

# Corrigé 78 (Préliminaire pour le théorème de Vitali)

Soient (E, T, m) un espace mesuré et  $f \in L^1(=L^1_{\mathbb{R}}(E, T, m))$ .

1. Montrer que pour tout  $\varepsilon > 0$ , il existe  $\delta > 0$  t.q. :

$$A \in T, \ m(A) \le \delta \Rightarrow \int_A |f| dm \le \varepsilon.$$

[Choisir un représentant de f et introduire  $f_n = \inf(|f|, n)$ ].

# ----corrigé

En choisissant un représentant de f, cette question est démontrée à la question 1 de l'exsercice 4.14.

2. Soit  $\varepsilon > 0$ , montrer qu'il existe  $C \in T$  t.q.  $m(C) < +\infty$  et  $\int_{C^c} |f| dm \le \varepsilon$ . [Choisir un représentant de f et considérer  $C_n = \{x \in E : \frac{1}{n} \le |f(x)|\}$ .]

# ----corrigé---

On choisit un représentant de f, encore noté f et pose, pour tout  $n \in \mathbb{N}^*$ ,  $C_n = \{|f| \geq \frac{1}{n}\}$ .

Comme  $|f| \geq \frac{1}{n} 1_{C_n}$ , on a, par monotonie de l'intégrale,  $m(C_n) \leq n ||f||_1 < \infty$  pour tout  $n \in \mathbb{N}^*$ .

On pose maintenant  $g_n = |f| 1_{C_n^c}$ . On remarque que  $g_n(x) \to 0$  pour tout  $x \in E$  et que  $|g_n| \le |f|$ . On peut donc appliquer le théorème de convergence dominée à la suite  $(g_n)_{n \in \mathbb{N}}$  (ou la proposition préliminaire 4.6). Il donne que  $\int g_n dm \to 0$  quand  $n \to \infty$ .

Soit  $\varepsilon > 0$ , il existe donc  $n_0 \in \mathbb{N}^*$  t.q.  $\int g_n dm \leq \varepsilon$ . On prend alors  $C = C_{n_0}$ , on a bien  $m(C) < +\infty$  et  $\int_{C_c} |f| dm \leq \varepsilon$ .

# Corrigé 79 (Théorème de Vitali)

Soient (E,T,m) un espace mesuré,  $(f_n)_{n\in\mathbb{N}}\subset L^1(=L^1_\mathbb{R}(E,T,m))$  et  $f\colon E\to\mathbb{R}$  t.q.  $f_n\to f$  p.p..

1. On suppose  $m(E) < +\infty$ . Montrer que :  $f \in L^1$  et  $f_n \to f$  dans  $L^1$  lorsque  $n \to +\infty$  si et seulement si  $(f_n)_{n \in \mathbb{N}}$  est équi-intégrable (i.e. : Pour tout  $\varepsilon > 0$ , il existe  $\delta$  t.q.  $(A \in T, n \in \mathbb{N}, m(A) \le \delta \Rightarrow \int_A |f_n| dm \le \varepsilon$ ). [Pour montrer le sens  $\Rightarrow$ , utiliser la question 1 de l'exercice 4.29. Pour le sens  $\Leftarrow$ , remarquer que  $\int |f_n - f| dm = \int_A |f_n - f| dm + \int_{A^c} |f_n - f| dm$ , utiliser le théorème d'Egorov et le lemme de Fatou...]

**Sens**( $\Rightarrow$ ) Soit  $\varepsilon > 0$ . D'après l'exercice 4.29 (première question), il existe, pour tout  $n \in \mathbb{N}$ ,  $\delta_n > 0$  t.q. :

$$A \in T, \ m(A) \le \delta_n \Rightarrow \int_A |f_n| dm \le \varepsilon.$$
 (12.45)

On ne peut pas déduire de (12.45) l'équi-intégrabilité de  $(f_n)_{n\in\mathbb{N}}$  car on peut avoir  $\min_{n\in\mathbb{N}} \delta_n = 0$ . Comme  $f \in L^1$ , il existe aussi  $\delta > 0$  t.q. :

$$A \in T, \ m(A) \le \delta \Rightarrow \int_{A} |f| dm \le \varepsilon.$$
 (12.46)

On va déduire l'équi-intégrabilité de la suite  $(f_n)_{n\in\mathbb{N}}$  en utilisant (12.45) et (12.46).

Soit  $A \in T$ , on a:

$$\int_{A} |f_{n}| dm \le \int_{A} |f_{n} - f| dm + \int_{A} |f| dm \le \int |f_{n} - f| dm + \int_{A} |f| dm.$$
 (12.47)

Comme  $f_n \to f$  dans  $L^1$  quand  $n \to \infty$ , il existe  $n_0 \in \mathbb{N}$  t.q.  $||f_n - f||_1 \le \varepsilon \sin n > n_0$ . Pour  $n > n_0$  et  $m(A) \le \delta$ , (12.47) et (12.46) donne donc  $\int_A |f_n| dm \le 2\varepsilon$ . On choisit alors  $\overline{\delta} = \min\{\delta_0, \dots, \delta_{n_0}, \delta\} > 0$  et on obtient, avec aussi (12.45) (pour tout  $n \le n_0$ ):

$$n \in \mathbb{N}, A \in T, \ m(A) \le \overline{\delta} \Rightarrow \int_A |f_n| dm \le 2\varepsilon.$$

Ce qui donne l'équi-intégrabilité de la suite  $(f_n)_{n\in\mathbb{N}}$ .

# Sens $(\Leftarrow)$

on veut montrer ici que  $f \in L^1$  et  $||f_n - f||_1 \to 0$  quand  $n \to \infty$ .

Soit  $\varepsilon > 0$ . L'équi-intégrabilité de la suite  $(f_n)_{n \in \mathbb{N}}$  donne l'existence de  $\delta > 0$  t.q. :

$$n \in \mathbb{N}, A \in T, \ m(A) \le \overline{\delta} \Rightarrow \int_{A} |f_n| dm \le 2\varepsilon.$$
 (12.48)

Pour tout  $n \in \mathbb{N}$ , on choisit maintenant un représentant de  $f_n$ , encore noté  $f_n$ . Comme  $f_n \to f$  p.p., il existe  $B \in T$  t.q. m(B) = 0 et  $f_n \to f$  sur  $B^c$ . En remplaçant f par  $f1_{B^c}$  (ce qui ne change f que sur un ensemble de mesure nulle, donc ne change pas les hypothèses du théorème), on a alors  $f \in \mathcal{M}$  car f est limite simple de la suite  $(f_n1_{B^c})_{n \in \mathbb{N}} \subset \mathcal{M}$  (noter que f est bien à valeurs dans  $\mathbb{R}$ ). Comme  $m(E) < \infty$ , on peut utiliser le théorème d'Egorov (théorème 3.2), il donne l'existence de  $A \in T$  t.q.  $f_n \to f$  uniformément sur  $A^c$ , c'est-à-dire sup $_{x \in A^c} |f_n(x) - f(x)| \to 0$  quand  $n \to \infty$ . On a donc aussi, pour ce choix de A,

$$\int_{A^c} |f_n - f| dm \le m(E) \sup_{x \in A^c} |f_n(x) - f(x)| \to 0, \text{ quand } n \to \infty.$$

Il existe donc  $n_0(\varepsilon) \in \mathbb{N}$  t.q.  $\int_{A^c} |f_n - f| dm \le \varepsilon$  pour tout  $n \ge n_0(\varepsilon)$ . Avec (12.48), on en déduit, pour tout  $n \ge n_0(\varepsilon)$ :

$$\int |f_n - f| dm \leq \int_{A^c} |f_n - f| dm + \int_A |f_n| dm + \int_A |f| dm \leq 2\varepsilon + \int_A |f| dm.$$

Pour majorer par  $\varepsilon$  le dernier terme de l'inégalité précédente, on utilise le lemme de Fatou sur la suite  $(|f_n|1_A)_{n\in\mathbb{N}}\subset\mathcal{M}_+$ . Comme  $\liminf_{n\to\infty}|f_n|1_A=|f|1_A$ , il donne avec (12.48),

$$\int_{A} |f| dm \le \liminf_{n \to \infty} \int |f_n| 1_A \le \varepsilon.$$

On a donc, finalement.

$$n \ge n_0(\varepsilon) \Rightarrow \int |f_n - f| dm \le 3\varepsilon.$$
 (12.49)

En choissisant  $n = n_0(1)$ , on déduit de (12.49) que  $f_n - f \in L^1$  et donc que  $f = (f - f_n) + f_n \in L^1$ . Cette appartenance étant, comme d'habitude à prendre au sens "il existe  $g \in \mathcal{L}^1$  t.q. f = g p.p." (en fait, ici, comme nous avons remplacé f par  $f1_{B^c}$  ci dessus, on a même  $f \in \mathcal{L}^1$ ).

Puis, (12.49) étant vraie pour tout  $\varepsilon > 0$ , on a bien montré que  $||f_n - f||_1 \to 0$  quand  $n \to \infty$ .

2. On suppose maintenant  $m(E) = +\infty$ . Montrer que :  $f \in L^1$  et  $f_n \to f$  dans  $L^1$  lorsque  $n \to +\infty$  si et seulement si  $(f_n)_{n\in\mathbb{N}}$  est équi-intégrable et vérifie :  $\forall \varepsilon > 0, \exists C \in T, m(C) < +\infty$  et  $\int_{C^c} |f_n| dm \le \varepsilon$  pour tout n. [Pour montrer le sens  $\Rightarrow$ , utiliser l'exercice 4.29. Pour le sens  $\Leftarrow$ , utiliser l'exercice 4.29, le lemme de Fatou et le résultat de la question 1.]

- (a) L'hypothèse  $m(E) < \infty$  n'a pas été utilisée à la question précédente. La même démonstration donne donc ici l'équi-intégrabilité de la suite  $(f_n)_{n\in\mathbb{N}}$
- (b) On utilise maintenant la deuxième question de l'exercice 4.29.

Soit  $\varepsilon > 0$ . Pour tout  $n \in \mathbb{N}$ , il existe  $C_n \in T$  t.q.  $m(C_n) < \infty$  et  $\int_{C_n^c} f_n dm \leq \varepsilon$ . Comme  $f \in L^1$ , il existe aussi  $D \in T$  t.q.  $m(D) < \infty$  et  $\int_{D^c} f dm \leq \varepsilon$ . Enfin, comme  $f_n \to f$  dans  $L^1$  quand  $n \to \infty$ , il existe  $n_0$  t.q.  $||f_n - f||_1 \leq \varepsilon$  pour tout  $n \geq n_0$ .

On choisit maintenant  $C = D \cup (\bigcup_{n=0}^{n_0} C_n)$ , de sorte que  $m(C) < m(D) + \sum_{n=0}^{n_0} m(C_n) < \infty$ ,  $C^c \subset D^c$  et  $C^c \subset C_n^c$  si  $n \le n_0$ . Ce choix de C nous donne, pour tout  $n \ge n_0$ ,

$$\int_{C^c} |f_n| dm \le \int_{D^c} |f| dm + \int |f_n - f| dm \le 2\varepsilon,$$

et, pour tout  $n \leq n_0$ ,

$$\int_{C^c} |f_n| dm \le \int_{C^c} |f_n| dm \le \varepsilon.$$

On a donc  $m(C) < \infty$  et  $\int_{C^c} |f_n| dm \le 2\varepsilon$  pour tout  $n \in \mathbb{N}$ .

# Sens $(\Leftarrow)$

on veut montrer ici que  $f \in L^1$  et  $||f_n - f||_1 \to 0$  quand  $n \to \infty$ .

Soit  $\varepsilon>0$ . La deuxième hypothèse donne l'existence de  $C\in T$  t.q.  $m(C)<\infty$  et

$$\int_{C^c} |f_n| dm \le \varepsilon \text{ pour tout } n \in \mathbb{N}.$$
 (12.50)

Comme dans la question précédente, on peut supposer (en changeant éventuellement f sur un ensemble de mesure nulle) que  $f \in \mathcal{M}$ . En appliquant le lemme de Fatou à la suite  $(|f_n|1_{C^c})_{n \in \mathbb{N}} \subset \mathcal{M}_+$ , on déduit de (12.50) que

$$\int_{C^c} |f| dm \le \varepsilon. \tag{12.51}$$

La première hypothèse (c'est-à-dire l'équi-intégrabilité de la suite  $(f_n)_{n\in\mathbb{N}}$ ) donne l'existence de  $\delta > 0$  t.q.

$$n \in \mathbb{N}, A \in T, m(A) \le \delta \Rightarrow \int_{A} |f_n| dm \le \varepsilon.$$
 (12.52)

On peut maintenant utiliser le théorème d'Egorov sur la suite  $(f_{n|_C})_{n\in\mathbb{N}}$  (qui converge p.p. vers  $f_{|_C}$ ) dans l'espace mesurable  $(C,T_C)$  où  $T_C$  est la tribu  $\{B\in T;\, B\subset C\}$ . Il donne l'existence de  $A\subset C,\, A\in T,\,$  t.q.  $m(A)\leq \delta$  et  $f_n\to f$  uniformément sur  $A^c\cap C$ . On en déduit que

$$\int_{A^c \cap C} |f_n - f| dm \le m(C) \sup_{x \in A^c \cap C} |f_n(x) - f(x)| \to 0 \text{ quand } n \to \infty.$$

Il existe donc  $n_0$  t.q.

$$n \ge n_0 \Rightarrow \int_{A^c \cap C} |f_n - f| dm \le \varepsilon.$$
 (12.53)

Enfin, en appliquant le lemme de Fatou à la suite  $(|f_n|1_A)_{n\in\mathbb{N}}\subset\mathcal{M}_+$ , on déduit de (12.52) que

$$\int_{A} |f| dm \le \varepsilon. \tag{12.54}$$

Il suffit maintenant de remarquer que

$$\int |f_n - f| dm \le \int_{A^c \cap C} |f_n - f| dm + \int_A |f_n| dm + \int_A |f| dm + \int_{C^c} |f_n| dm + \int_{C^c} |f| dm,$$

pour déduire de (12.53), (12.52), (12.54), (12.50) et (12.51) que

$$n \ge n_0 \Rightarrow \int |f_n - f| dm \le 5\varepsilon.$$

On conclut comme à la question précédente. En prenant d'abord  $\varepsilon = 1$ , on montre que  $f \in L^1$  puis, comme  $\varepsilon > 0$  est arbitraire, on montre que  $f_n \to f$  dans  $L^1$  quand  $f_n \to \infty$ .

3. Montrer que le théorème de convergence dominée de Lebesgue peut être vu comme une conséquence du théorème de Vitali.

Soient  $(f_n)_{n\in\mathbb{N}}\subset L^1$  et  $F\in L^1$  t.q.  $|f_n|\leq F$  p.p., pour tout  $n\in\mathbb{N}$ .

En utilisant l'exercice 4.29 sur F, on montre facilement l'équi-intégrabilité de  $(f_n)_{n\in\mathbb{N}}$  et l'existence, pour tout  $\varepsilon>0$ , de  $C\in T$  t.q.  $m(C)<\infty$  et  $\int_{C^c}|f_n|dm\leq \varepsilon$  pour tout  $n\in\mathbb{N}$  (noter que si  $m(E)<\infty$  cette propriété est immédiate en prenant C=E). Il est alors facile de montrer le théorème de convergence dominée à partir du théorème de Vitali.

# Corrigé 80 (Théorème de "Vitali-moyenne")

Soit (E,T,m) un espace mesuré. On note  $\mathcal{L}^1 = \mathcal{L}^1_{\mathbb{R}}(E,T,m)$ . Soit  $(f_n)_{n\in\mathbb{N}} \subset \mathcal{L}^1$  et  $f \in \mathcal{M}(E,T)$ .

1. On suppose que  $m(E) < \infty$ . On se propose ici de montrer que :

$$\begin{cases}
f \in \mathcal{L}^1 \text{ et} \\
\|f_n - f\|_1 \to 0 \text{ quand } n \to \infty
\end{cases} \Leftrightarrow \begin{cases}
1. \ f_n \to f \text{ en mesure, quand } n \to \infty, \\
2. \ (f_n)_{n \in \mathbb{N}} \text{ équi-intégrable.}
\end{cases} (12.55)$$

(a) Montrer le sens ( $\Rightarrow$ ) de (12.55).

On montre tout d'abord la convergence en mesure. Soit  $\eta > 0$ . On a alors :

$$m(\{|f_n - f| \ge \eta\}) \le \frac{1}{\eta} \int |f_n - f| dm \to 0$$
, quand  $n \to \infty$ .

Ce qui donne que  $f_n \to f$  en mesure, quand  $n \to \infty$ .

Pour montrer l'équi-intégrabilité, il suffit de remarquer que, pour tout  $A \in T$ , on a :

$$\int_{A} |f_n| dm \le \int |f_n - f| dm + \int_{A} |f| dm.$$

Soit  $\varepsilon > 0$ . Comme  $f \in \mathcal{L}^1$ , il existe (voir la proposition 4.9)  $\delta > 0$  t.q.

$$m(A) \le \delta \Rightarrow \int_A |f| dm \le \varepsilon.$$

Comme  $||f_n - f||_1 \to 0$ , quand  $n \to \infty$ , il existe  $n_0$  t.q.

$$n \ge n_0 \Rightarrow \int |f_n - f| dm \le \varepsilon.$$

On en déduit :

$$(n \ge n_0 \text{ et } m(A) \le \delta) \Rightarrow \int_A |f_n| dm \le 2\varepsilon.$$
 (12.56)

Puis, pour tout  $n \in \mathbb{N}$ , il existe (voir la proposition 4.9)  $\delta_n > 0$  t.q.

$$m(A) \le \delta_n \Rightarrow \int_A |f_n| dm \le \varepsilon.$$
 (12.57)

En posant  $\bar{\delta} = \min\{\delta, \delta_0, \dots, \delta_n\}$  on a donc, avec (12.56) et (12.57):

$$(n \in \mathbb{N} \text{ et } m(A) \leq \overline{\delta}) \Rightarrow \int_A |f_n| dm \leq 2\varepsilon.$$

Ce qui montre l'équi-intégrabilité de  $(f_n)_{n\in\mathbb{N}}$ .

- (b) Pour montrer le sens ( $\Leftarrow$ ), on suppose maintenant que  $f_n \to f$  en mesure, quand  $n \to \infty$ , et que  $(f_n)_{n \in \mathbb{N}}$  est équi-intégrable.
  - i. Montrer que pour tout  $\delta > 0$  et  $\eta > 0$ , il existe  $n \in \mathbb{N}$  t.q. :  $p, q \ge n \Rightarrow m(\{|f_p f_q| \ge \eta\} \le \delta$ .

# –corrigé–

On remarque que, pour tout  $p,q\in\mathbb{N}$  et tout  $x\in E, |f_p-f|(x)\leq \frac{\eta}{2}$  et  $|f_q-f|(x)\leq \frac{\eta}{2}$  implique  $|f_p-f_q|(x)\leq \eta$ . On a donc  $\{|f_p-f_q|\geq \eta\}\subset\{|f_p-f|\geq \frac{\eta}{2}\}\cup\{|f_p-f|\geq \frac{\eta}{2}\}$ . Ce qui donne :

$$m(\{|f_p - f_q| \ge \eta\}) \le m(\{|f_p - f| \ge \frac{\eta}{2}\}) + \{|f_q - f| \ge \frac{\eta}{2}\}.$$

Comme  $f_n \to f$  en mesure, il existe  $n \in \mathbb{N}$  t.q. :

$$p \ge n \Rightarrow m(\{|f_p - f| \ge \frac{\eta}{2}\}) \le \frac{\delta}{2},$$

on en déduit :

$$p, q \ge n \Rightarrow m(\{|f_p - f_q| \ge \eta\}) \le \delta.$$

ii. Montrer que la suite  $(f_n)_{n\in\mathbb{N}}$  est de Cauchy dans  $L^1$ .

#### corrigé

Soit  $p,q\in\mathbb{N}$  et  $\eta>0$ , on a :

$$||f_p - f_q||_1 = \int_{\{|f_p - f_q| \ge \eta\}} |f_p| dm + \int_{\{|f_p - f_q| \ge \eta\}} |f_q| dm + \eta m(E).$$
 (12.58)

Soit  $\varepsilon > 0$ . D'après l'équi-intégrabilité de  $(f_n)_{n \in \mathbb{N}}$ , il existe  $\delta > 0$  t.q.

$$(A \in T, m(A) \le \delta \text{ et } n \in \mathbb{N}) \Rightarrow \int_{A} |f_n| \le \varepsilon.$$
 (12.59)

On commence à choisir  $\eta>0$  t.q.  $\eta m(E)\leq \varepsilon$ . Puis, la question précédente donne l'existence de n t.q.  $m(\{|f_p-f_q|\geq \eta\})\leq \delta$  si  $p,q\geq n$ . On a donc, par (12.59) :

$$\int_{\{|f_p-f_q|\geq \eta\}}|f_p|\leq \varepsilon \text{ et } \int_{\{|f_p-f_q|\geq \eta\}}|f_q|\leq \varepsilon \text{ si } p,q\geq n.$$

Finalement, (12.58) donne:

$$p, q \ge n \Rightarrow ||f_p - f_q||_1 \le 3\varepsilon.$$

La suite  $(f_n)_{n\in\mathbb{N}}$  est donc de Cauchy dans  $L^1$ .

iii. Montrer que  $f \in \mathcal{L}^1$  et que  $||f_n - f||_1 \to 0$  quand  $n \to \infty$ .

corrigé

Comme  $L^1$  est complet, il existe  $g \in L^1$  t.q.  $f_n \to g$  dans  $L^1$ , quand  $n \to \infty$ . On peut supposer  $g \in \mathcal{L}^1$  (en confondant g avec l'un de ses représentants). La question (a) donne alors que  $f_n \to g$  en mesure, quand  $n \to \infty$ . Comme  $f_n \to f$  en mesure, on a donc nécessairement f = g p.p.. ce qui donne bien  $f \in \mathcal{L}^1$  et  $||f_n - f||_1 = ||f_n - g||_1 \to 0$ , quand

2. On ne suppose plus que  $m(E) < \infty$ . Montrer que :

$$\begin{cases}
f \in \mathcal{L}^1 \text{ et} \\
\|f_n - f\|_1 \to 0 \text{ quand } n \to \infty
\end{cases} \Leftrightarrow \begin{cases}
1. & f_n \to f \text{ en mesure, quand } n \to \infty, \\
2. & (f_n)_{n \in \mathbb{N}} \text{ équi-intégrable,} \\
3. & \forall \varepsilon > 0, \exists A \in T \text{ t.q. } m(A) < \infty \text{ et ,} \\
\int_{A^c} |f_n| dm \le \varepsilon, \text{ pour tout } n \in \mathbb{N}.
\end{cases} (12.60)$$

**Etape 1** On montre tout d'abord le sens  $(\Rightarrow)$ .

Les propriétés 1 et 2 ont déjà été démontrées dans la question 1-(a) (car l'hypothèse  $m(E) < \infty$ n'avait pas été utilisée).

Pour démontrer la propriété 3, on utilise la proposition 4.9 du cours. Soit  $\varepsilon > 0$ . pour tout  $n \in \mathbb{N}$ , Il existe  $B_n \in T$  t.q.  $m(B_n) < \infty$  et

$$\int_{B_n^c} |f_n| dm \le \varepsilon. \tag{12.61}$$

Il existe aussi  $B \in T$  t.q.  $m(B) < \infty$  et

$$\int_{B^c} |f| dm \le \varepsilon. \tag{12.62}$$

En remarquant que

$$\int_{B^c} |f_n| dm \le \int |f_n - f| dm + \int_{B^c} |f| dm,$$

on obtient, en utilisant le fait que  $||f_n - f||_1 \to 0$ , quand  $n \to \infty$ , et (12.62), l'existence de  $n_0$  t.q.

$$n \ge n_0 \Rightarrow \int_{B^c} |f_n| dm \le 2\varepsilon.$$

En prenant  $A = B \cup (\bigcup_{p=0}^{n_0} B_p)$ , on obtient alors (avec (12.61))  $m(A) < \infty$  et:

$$n \in \mathbb{N} \Rightarrow \int_{A^c} |f_n| dm \le 2\varepsilon.$$

# Etape 1 On montre maintenant le sens $(\Leftarrow)$ .

On reprend la même méthode que dans le cas  $m(E) < \infty$ .

On remarque tout d'abord que pour tout  $\delta > 0$  et  $\eta > 0$ , il existe  $n \in \mathbb{N}$  t.q. :  $p, q \geq n \Rightarrow m(\{|f_p - f_q| \geq \eta\} \leq \delta$ . La démonstration est la même que précédemment (l'hypothèse  $m(E) < \infty$  n'avait pas été utilisée).

On montre maintenant que la suite  $(f_n)_{n\in\mathbb{N}}$  est de Cauchy dans  $L^1$ . Soit  $p,q\in\mathbb{N},\ A\in T$  et  $\eta>0$ , on a :

$$||f_p - f_q||_1 \le \int_{A^c} (|f_p| + |f_q|) dm + \int_{\{|f_p - f_q| \ge \eta\}} (|f_p| + |f_q|) dm + \eta m(A).$$
(12.63)

Soit  $\varepsilon > 0$ . D'après l'équi-intégrabilité de  $(f_n)_{n \in \mathbb{N}}$ , il existe  $\delta > 0$  t.q.

$$(B \in T, m(B) \le \delta \text{ et } n \in \mathbb{N}) \Rightarrow \int_{B} |f_n| \le \varepsilon.$$
 (12.64)

D'après la propriété 3 de (12.60), il existe  $A \in T$  t.q.  $m(A) < \infty$  et

$$n \in \mathbb{N} \Rightarrow \int_{A^c} |f_n| dm \le \varepsilon.$$
 (12.65)

On commence à choisir  $\eta > 0$  t.q.  $\eta m(A) \leq \varepsilon$ . Maintenant que  $\delta$  et  $\eta$  sont fixés, il existe  $n \in \mathbb{N}$  t.q.  $m(\{|f_p - f_q| \geq \eta\}) \leq \delta$  si  $p, q \geq n$ . On a donc, par (12.64),  $\int_{\{|f_p - f_q| \geq \eta\}} |f_p| \leq \varepsilon$  et  $\int_{\{|f_p - f_q| \geq \eta\}} |f_q| \leq \varepsilon$  si  $p, q \geq n$ . Avec (12.63) et (12.65), on obtient alors :

$$p, q \ge n \Rightarrow ||f_n - f_a||_1 \le 5\varepsilon.$$

La suite  $(f_n)_{n\in\mathbb{N}}$  est donc de Cauchy dans  $L^1$ .

On conclut, comme dans le cas  $m(E) < \infty$ , que  $f \in \mathcal{L}^1$  et  $||f_n - f||_1 \to 0$ , quand  $n \to \infty$  (car l'hypothèse  $m(E) < \infty$  n'avait pas été utilisée pour cette partie).

# Corrigé 81 (Continuité de $p \mapsto \|\cdot\|_p$ )

Soient (E, T, m) un espace mesuré et  $f \in \mathcal{M}(E, T)$ .

1. Pour  $p \in [1, +\infty[$ , on pose  $||f||_p = \left(\int |f|^p dm\right)^{\frac{1}{p}}$  (noter que  $|f|^p \in \mathcal{M}_+$ ) et on dit que  $f \in \mathcal{L}^p$  si  $||f||_p < +\infty$ . On pose  $I = \{p \in [1, +\infty[$ ,  $f \in \mathcal{L}^p\}$ .

(a) Soient  $p_1$  et  $p_2 \in [1, +\infty[$ , et  $p \in [p_1, p_2]$ . Montrer que si  $f \in \mathcal{L}^{p_1} \cap \mathcal{L}^{p_2}$ , alors  $f \in \mathcal{L}^p$ . En déduire que I est un intervalle. [On pourra introduire  $A = \{x; |f(x)| \leq 1\}$ .]

Soit  $\alpha \in \mathbb{R}_+^*$ . On remarque que  $\alpha^p \leq \alpha^{p_2}$  si  $1 \leq \alpha$  et  $\alpha^p \leq \alpha^{p_1}$  si  $\alpha \leq 1$ . On en déduit que  $|f|^p \leq |f|^{p_1} + |f|^{p_2}$  (en fait, on a  $|f|^p \leq |f|^{p_1}$  sur  $A = \{|f| \leq 1\}$  et  $|f|^p \leq |f|^{p_2}$  sur  $A^c$ ) et donc que  $f \in \mathcal{L}^p$  si  $f \in \mathcal{L}^{p_1} \cap \mathcal{L}^{p_2}$ .

On suppose que  $I \neq \emptyset$ . On pose  $a = \inf I$  et  $b = \sup I$ . On a donc  $1 \leq a \leq b \leq \infty$  et  $I \subset [a,b]$ . On montre maintenant que  $]a,b[\subset I$  (ce qui donne que I est bien un intervalle dont les bornes sont a et b).

Soit  $p \in ]a, b[$ . La défintion de a et b permet d'affirmer qu'il existe  $p_1 \in I$  t.q.  $p_1 < p$  et qu'il existe  $p_2 \in I$  t.q.  $p_2 > p$ . On a donc  $f \in \mathcal{L}^{p_1} \cap \mathcal{L}^{p_2}$  et  $p \in ]p_1, p_2[$ , d'où l'on déduit que  $p \in I$ . on a donc bien monté que  $[a, b] \subset I$  et donc que  $[a, b] \subset$ 

- (b) On montre sur des exemples que les bornes de I peuvent être ou ne pas être dans I. On prend pour cela:  $(E,T,m)=([2,+\infty[,\mathcal{B}([2,\infty[),\lambda)\ (\lambda \text{ est ici la restriction à } [2,\infty[$  de la mesure de Lebesgue sur  $\mathcal{B}(\mathbb{R})$ ). Calculer I dans les deux cas suivants:
  - i.  $f(x) = \frac{1}{x}, x \in [2, +\infty[$ .
  - ii.  $f(x) = \frac{1}{x(\ln x)^2}, x \in [2, +\infty[$ .

#### –corrigé-

i.  $f(x) = \frac{1}{x}, x \in [2, +\infty[$ . Soit  $1 \le p < \infty$ . Pour savoir si  $f \in \mathcal{L}^p$  ou non, on utilise le théorème de convergence monotone et l'intégrale des fonctions continues sur un intervalle compact de  $\mathbb{R}$ .

Pour  $n \in \mathbb{N}$ , on pose  $f_n = |f|^p 1_{[2,n]}$ . On a donc  $(f_n)_{n \in \mathbb{N}} \subset \mathcal{M}_+$  et  $f_n \uparrow |f|^p$  ce qui donne, grâce au théorème de convergence monotone,

$$\int f_n d\lambda \to \int |f|^p d\lambda$$
, quand  $n \to \infty$ .

Les intégrales ci dessus sont des intégrales sur l'espace mesuré  $([2, +\infty[, \mathcal{B}([2, \infty[), \lambda)$ . La comparaison entre l'intégrale des fonctions continues et l'intégrale de Lebesgue (voir les exercices corrigés 62 et 63) donne que

$$\int f_n d\lambda = \int_2^n \frac{1}{x^p} dx.$$

On distingue maintenant les cas p = 1 et p > 1.

Si p > 1, on a  $\int f_n d\lambda = \frac{1}{p-1} \left( \frac{1}{2^{p-1}} - \frac{1}{n^{p-1}} \right) \to \frac{1}{p-1} \frac{1}{2^{p-1}} < \infty$ , quand  $n \to \infty$ . On a donc  $f \in \mathcal{L}^p$ .

Si p = 1, on a  $\int f_n d\lambda = \ln(n) - \ln(2) \to \infty$  quand  $n \to \infty$ . On a donc  $f \notin \mathcal{L}^1$ .

On a donc  $I = ]1, \infty[$ .

ii.  $f(x) = \frac{1}{x(\ln x)^2}, x \in [2, +\infty[$ . Pour  $1 , on a clairement <math>f \in \mathcal{L}^p$  car la fonction f est positive et majorée par  $\frac{1}{\ln(2)^2}g$  où g est la fonction de l'exemple précédent, c'est-à-dire  $g(x) = \frac{1}{x}$ . Pour p = 1, on utilise la même méthode que pour l'exemple précédent :

Pour  $n \in \mathbb{N}$ , on pose  $f_n = |f|1_{[2,n]}$ , de sorte que  $f_n \uparrow |f| = f$  et donc

$$\int f_n d\lambda \to \int |f| d\lambda$$
, quand  $n \to \infty$ .

On a ici

$$\int f_n d\lambda = \int_2^n \frac{1}{x(\ln x)^2} dx = \ln(2)^{-1} - \ln(n)^{-1} \to \ln(2)^{-1} < \infty, \text{ quand } n \to \infty.$$

On en déduit que  $f \in \mathcal{L}^1$ , donc  $I = [1, \infty[$ .

(c) Soit  $(p_n)_{n\in\mathbb{N}}\subset I$  et  $p\in\overline{I}$ ,  $(\overline{I}$  désigne l'adhérence de I dans  $\mathbb{R}$ ), t.q.  $p_n\uparrow p$  (ou  $p_n\downarrow p$ ). Montrer que  $\int |f|^{p_n}dm\to \int |f|^pdm$  quand  $n\to +\infty$ . [On pourra encore utiliser l'ensemble A].

-corrigé-

On utilise ici  $A = \{|f| \le 1\} \in T$ .

(a) On suppose d'abord que  $p_n \uparrow p$  quand  $n \to \infty$ . On pose  $g_n = |f|^{p_n} 1_A$  et  $h_n = |f|^{p_n} 1_{A^c}$ , de sorte que  $g_n \in \mathcal{L}^1$ ,  $h_n \in \mathcal{L}^1$  et

$$\int g_n dm + \int h_n dm = \int |f|^{p_n} dm.$$

On remarque alors que  $h_n \uparrow h = |f|^p 1_{A^c}$ , quand  $n \to \infty$ . Comme  $(h_n)_{n \in \mathbb{N}} \subset \mathcal{M}_+$ , le théorème de convergence monotone donne

$$\int h_n dm \to \int h dm, \text{ quand } n \to \infty.$$
 (12.66)

Noter que ceci est vrai même si  $p \notin I$  (dans ce cas, on a, en fait,  $\int h dm = \infty$ ).

On remarque maintenant que  $g_n \to g = |f|^p 1_A$  p.p., quand  $n \to \infty$ , et que  $0 \le g_n \le |f|^{p_0}$  car la suite  $(g_n)_{n \in \mathbb{N}}$  est ici décroissante. Comme  $p_0 \in I$ , on a  $|f|^{p_0} \in \mathcal{L}^1$  et on peut appliquer le théorème de convergence dominée (ou la proposition 4.6). Il donne

$$\int g_n dm \to \int g dm, \text{ quand } n \to \infty.$$
 (12.67)

Avec (12.66) et (12.67) on obtient

$$\int |f|^{p_n}dm = \int g_ndm + \int h_ndm \to \int gdm + \int hdm = \int |f|^pdm, \text{ quand } n \to \infty.$$

(b) On suppose maintenant que  $p_n\downarrow p$  quand  $n\to\infty$  et on reprend la même méthode que ci dessus. On pose  $g_n=|f|^{p_n}1_A$  et  $h_n=|f|^{p_n}1_{A^c}$ , de sorte que  $g_n\in\mathcal{L}^1$ ,  $h_n\in\mathcal{L}^1$  et

$$\int g_n dm + \int h_n dm = \int |f|^{p_n} dm.$$

les rôles de  $g_n$  et  $h_n$  sont inversés par rapport au cas précécent : On remarque que  $g_n \uparrow g = |f|^p 1_A$ , quand  $n \to \infty$ . Comme  $(g_n)_{n \in \mathbb{N}} \subset \mathcal{M}_+$ , le théorème de convergence monotone donne

$$\int g_n dm \to \int g dm, \text{ quand } n \to \infty.$$
 (12.68)

Ceci est vrai même si  $p \notin I$  (dans ce cas, on a, en fait,  $\int gdm = \infty$ ).

On remarque que  $h_n \to h = |f|^p 1_{A^c}$  p.p., quand  $n \to \infty$ , et que  $0 \le h_n \le |f|^{p_0}$  car la suite  $(h_n)_{n \in \mathbb{N}}$  est ici décroissante. Comme  $p_0 \in I$ , on a  $|f|^{p_0} \in \mathcal{L}^1$  et on peut appliquer le théorème de convergence dominée (ou la proposition 4.6). Il donne

$$\int h_n dm \to \int h dm, \text{ quand } n \to \infty.$$
 (12.69)

Avec (12.68) et (12.69) on obtient

$$\int |f|^{p_n}dm = \int g_ndm + \int h_ndm \to \int gdm + \int hdm = \int |f|^pdm, \text{ quand } n \to \infty.$$

La conséquence de cette question est que l'application  $p \mapsto ||f||_p$  est continue de  $\overline{I}$  dans  $\overline{\mathbb{R}}_+$ , où  $\overline{I}$  est l'adhérence de I dans  $\mathbb{R}$ . Dans la suite de l'exercice, on va introduire le cas  $p = \infty$  et montrer la continuité de  $p \mapsto ||f||_p$  sur l'adhérence de I dans  $\overline{\mathbb{R}}_+$ .

- 2. On dit que  $f \in \mathcal{L}^{\infty}$  s'il existe  $C \in \mathbb{R}$  t.q. |f| < C p.p.. On note  $||f||_{\infty} = \inf\{C \in \mathbb{R}$  t.q. |f| < C p.p.}. Si  $f \notin \mathcal{L}^{\infty}$ , on pose  $||f||_{\infty} = +\infty$ .
  - (a) Montrer que  $f \leq ||f||_{\infty}$  p.p.. A-t-on  $f < ||f||_{\infty}$  p.p. ?

# ----corrigé-

Si  $||f||_{\infty} = +\infty$ , on a, bien sûr,  $f \leq ||f||_{\infty}$  p.p.. On suppose donc maintenant que  $||f||_{\infty} < +\infty$ . Par définition d'une borne inférieure, il existe  $(C_n)_{n \in \mathbb{N}} \subset \{C \in \mathbb{R} \text{ t.q. } |f| < C \text{ p.p.}\}$  t.q.  $C_n \downarrow ||f||_{\infty}$  quand  $n \to \infty$ . Pour tout  $n \in \mathbb{N}$ , il existe  $A_n \in T$  t.q.  $m(A_n) = 0$  et  $|f| < C_n$  sur  $A_n^c$ .

On pose  $A = \bigcup_{n \in \mathbb{N}} A_n$ . On a donc  $A \in T$ , m(A) = 0 et  $|f(x)| < C_n$  pour tout  $n \in \mathbb{N}$ , si  $x \in A^c$ . Comme  $C_n \downarrow ||f||_{\infty}$  quand  $n \to \infty$ , on en déduit  $|f| \leq ||f||_{\infty}$  sur  $A^c$  et donc que  $|f| \leq ||f||_{\infty}$  p.p..

En prenant  $(E, T, m) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$  et f(x) = 1 pour tout  $x \in \mathbb{R}$ . On a  $||f||_{\infty} = 1$  et l'assertion  $f < ||f||_{\infty}$  p.p. est fausse.

Noter aussi que  $||f||_{\infty} = \inf\{C \in \mathbb{R} \text{ t.q. } |f| \leq C \text{ p.p.}\}.$ 

On pose  $J = \{ p \in [1, +\infty]; f \in \mathcal{L}^p \} \subset \overline{\mathbb{R}}_+.$ 

(b) Remarquer que J = I ou  $J = I \cup \{+\infty\}$ . Montrer que si  $p \in I$  et  $+\infty \in J$ , alors  $[p, +\infty] \subset J$ . En déduire que J est un intervalle de  $\overline{\mathbb{R}}_+$ .

## corrigé

Soit  $p \in I$  et on suppose que  $\infty \in J$ . Soit  $q \in ]p, \infty[$ . Comme  $|f| \leq ||f||_{\infty}$  p.p., On a  $|f|^q \leq ||f||_{\infty}^{q-p}|f|^p$  p.p.. On en déduit que  $f \in \mathcal{L}^q$ , c'est-à-dire  $q \in I$ . On a ainsi montré que  $[p, \infty[ \subset I \text{ et donc } [p, \infty] \subset J.$ 

On raisonne maintenant comme dans la question 1. On pose  $a=\inf J$  et  $b=\sup J$ , de sorte que  $J\subset [a,b]$ . Puis, soit p t.q. a< p< b. On a nécessairement  $a<\infty$  et il existe  $p_1\in I$  t.q.  $p_1< p$ . On a  $b\le \infty$  et il existe  $p_2\in J$  t.q.  $p< p_2$ . Si  $p_2\in I$ , on utilise la question 1 pour montrer que  $p\in I$  et si  $p_2=\infty$  la première partie de cette question donne que  $p\in I$ . On a bien ainsi montré que  $p\in I$  et si  $p_2=\infty$  la première partie de cette question donne que  $p\in I$ . On a bien ainsi montré que  $p\in I$  donc un intervalle dont les bornes sont p0.

Noter aussi que inf  $I = \inf J$  et sup  $I = \sup J$ .

- (c) Soit  $(p_n)_{n\in\mathbb{N}}\subset I$  t.q.  $p_n\uparrow+\infty$ . On suppose que  $||f||_{\infty}>0$  (noter que f=0 p.p.  $\Leftrightarrow ||f||_{\infty}=0$ ).
  - i. Soit  $0 < c < \|f\|_{\infty}$ . Montrer que :  $\liminf_{n \to +\infty} \|f\|_{p_n} \ge c$ . [On pourra remarquer que  $\int |f|^p dm$   $\ge c^p m(\{x; |f(x)| \ge c\}.]$

#### -corrigé-

Comme  $|f|^p \ge c^p 1_{\{|f| \ge c\}}$ , la monotonie de l'intégrale donne bien

$$\int |f|^p dm \ge c^p m(\{|f| \ge c\}),$$

et donc, comme  $\int |f|^p dm \neq 0$ ,

$$||f||_p \ge cm(\{|f| \ge c\})^{\frac{1}{p}}.$$
 (12.70)

Comme  $c < \|f\|_{\infty}$ , on a  $m(\{|f| \ge c\}) > 0$ , d'où l'on déduit que  $m(\{|f| \ge c\})^{\frac{1}{p}} \to 1$  quand  $p \to \infty$   $(p \in [1, \infty[).$ 

En passant à la limite inférieure quand  $n \to \infty$  dans (12.70) pour  $p = p_n$ , on obtient alors

$$\liminf_{n \to \infty} ||f||_{p_n} \ge c.$$

Comme c est arbitrairement proche de  $||f||_{\infty}$ , on en déduit :

$$\liminf_{n \to \infty} ||f||_{p_n} \ge ||f||_{\infty}.$$
(12.71)

ii. On suppose que  $||f||_{\infty} < +\infty$ . Montrer que :  $\limsup_{n \to +\infty} ||f||_{p_n} \le ||f||_{\infty}$ . [On pourra considérer

la suite 
$$g_n = \left(\frac{|f|}{\|f\|_{\infty}}\right)^{p_n}$$
 et noter que  $g_n \leq g_0$  p.p.. ]

# -corrigé—

Comme  $\frac{f}{\|f\|_{\infty}} \leq 1$  p.p. et que  $p_n \geq p_0$  (car la suite  $(p_n)_{n \in \mathbb{N}}$  est croissante), on a  $g_n \leq g_0$  p.p. et donc  $\int g_n dm \leq \int g_0 dm$ , d'où l'on déduit (en notant que toutes les normes de f sont non nulles) :

$$||f_n||_{p_n} \le ||f||_{\infty} (\int g_0 dm)^{\frac{1}{p_n}}.$$

On passe à la limite supérieure dans cette inégalité et, en remarquant que  $\int g_0 dm \neq 0$ , on obtient bien :

$$\limsup_{n \to \infty} \|f\|_{p_n} \le \|f\|_{\infty}. \tag{12.72}$$

iii. Déduire de (a) et (b) que  $||f||_{p_n} \to ||f||_{\infty}$  lorsque  $n \to +\infty$ .

## -corrigé-

On distingue deux cas:

- Cas 1 On suppose ici que  $||f||_{\infty} = \infty$ . (12.71) donne alors que  $||f||_{p_n} \to \infty$  et donc  $||f||_{p_n} \to ||f||_{\infty}$  quand  $n \to \infty$ .
- Cas 2 . On suppose ici que  $||f||_{\infty} < \infty$ , de sorte que  $0 < ||f||_{\infty} < \infty$ . Les assertions (12.71) et (12.72) donnent alors  $\limsup_{n \to \infty} ||f||_{p_n} \le ||f||_{\infty} \le \liminf_{n \to \infty} ||f||_{p_n}$  et donc que  $||f||_{p_n} \to ||f||_{\infty}$  quand  $n \to \infty$ .
- 3. Déduire des deux parties précédentes que  $p \to ||f||_p$  est continue de  $\overline{J}$  dans  $\overline{\mathbb{R}}_+$ , où  $\overline{J}$  désigne l'adhérence de J dans  $\overline{\mathbb{R}}$  (c'est-à-dire  $\overline{J} = [a,b]$  si J = |a,b|, avec  $1 \le a \le b \le +\infty$ , et | désigne ] ou [).

# —corrigé—————

Si f = 0 p.p., on a  $J = \overline{J} = [1, \infty]$  et  $||f||_p = 0$  pour tout  $p \in J$ . Donc,  $p \to ||f||_p$  est continue de  $\overline{J}$  dans  $\overline{\mathbb{R}}_+$ .

On suppose maintenant que f n'est pas "= 0 p.p.". On a donc  $||f||_p > 0$  pour tout  $p \in [1, \infty]$ .

On pose  $\overline{J} = [a, b]$  (si  $J \neq \emptyset$ ). On distingue 3 cas :

- Cas 1 . Soit  $p \in ]a, b[$ , de sorte que  $p \in I$ .
  - (a) Soit  $(p_n)_{n\in\mathbb{N}}\subset I$  t.q.  $p_n\uparrow p$ . La question 1-c donne que  $\|f\|_{p_n}^{p_n}\to \|f\|_p^p$  quand  $n\to +\infty$ . On en déduit que  $\|f\|_{p_n}\to \|f\|_p$  quand  $n\to \infty$  (pour s'en convaincre, on peut remarquer que  $\ln(\|f\|_{p_n})=\frac{1}{p_n}\ln(\|f\|_{p_n}^{p_n})\to \frac{1}{p}\ln(\|f\|_p^p)=\ln(\|f\|_p)$ ). Ceci donne la continuité à gauche de  $q\to \|f\|_q$  au point p.
  - (b) Soit  $(p_n)_{n\in\mathbb{N}}\subset I$  t.q.  $p_n\downarrow p$ . La question 1-c donne aussi  $\|f\|_{p_n}^{p_n}\to \|f\|_p^p$  quand  $n\to +\infty$  et on en déduit, comme précédemment, que  $\|f\|_{p_n}\to \|f\|_p$  quand  $n\to\infty$ . Ceci donne la continuité à droite de  $q\to \|f\|_q$  au point p.
- Cas 2 . On prend ici p=a et on suppose  $a\neq\infty$  (sinon a=b et ce cas est étudié au Cas 3). Soit  $(p_n)_{n\in\mathbb{N}}\subset I$  t.q.  $p_n\downarrow a$ .
  - (a) On suppose d'abord que  $a \in I$ . Ici encore, la question 1-c donne  $||f||_{p_n}^{p_n} \to ||f||_a^a$  quand  $n \to +\infty$  et on en déduit que  $||f||_{p_n} \to ||f||_a$  quand  $n \to \infty$ . Ceci donne la continuité à droite de  $q \to ||f||_q$  au point a.
  - (b) On suppose maintenant que  $a \notin I$ , de sorte que  $||f||_a = \infty$ . La question 1-c donne alors  $||f||_{p_n}^{p_n} \to \infty$  quand  $n \to +\infty$  et donc  $||f||_{p_n} \to \infty$  quand  $n \to \infty$ . Ceci donne la continuité à droite de  $q \to ||f||_q$  au point a.
- Cas 2 . On prend ici p = b. Soit  $(p_n)_{n \in \mathbb{N}} \subset I$  t.q.  $p_n \uparrow a$ .

- (a) On suppose d'abord que  $b \in I$ . Ici encore, la question 1-c donne  $||f||_{p_n}^{p_n} \to ||f||_b^b$  quand  $n \to +\infty$  et on en déduit que  $||f||_{p_n} \to ||f||_b$  quand  $n \to \infty$ . Ceci donne la continuité à gauche de  $q \to ||f||_q$  au point b.
- (b) On suppose maintenant que  $b \notin I$ .

Si  $b \neq \infty$ , on a donc  $||f||_b = \infty$ . La question 1-c donne alors  $||f||_{p_n}^{p_n} \to \infty$  quand  $n \to +\infty$  et donc  $||f||_{p_n} \to \infty$  quand  $n \to \infty$ . Ceci donne la continuité à gauche de  $q \to ||f||_q$  au point b.

Si  $b=\infty$ , la continuité à gauche de  $q\to \|f\|_q$  au point b a été démontré à la question 2-c-iii.

# Corrigé 82 (Continuité d'une application de $L^1$ dans $L^1$ )

Soient (E,T,m) un espace mesuré fini et soit g une fonction continue de  $\mathbb R$  dans  $\mathbb R$  t.q. :

$$\exists C \in \mathbb{R}_{+}^{\star} ; |g(s)| \le C|s| + C, \forall s \in \mathbb{R}.$$
 (12.73)

1. Soit  $u \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ . Montrer que  $g \circ u \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ .

–corrigé-

u est mesurable de E (muni de la tribu T) dans  $\mathbb{R}$  (muni de la tribu  $\mathcal{B}(R)$ ) et g est borélienne (c'est-à-dire mesurable de  $\mathbb{R}$  dans  $\mathbb{R}$ , muni de la tribu  $\mathcal{B}(R)$ ). On en déduit que  $g \circ u$  est mesurable (de E dans  $\mathbb{R}$ ).

Puis, comme  $|g \circ u(x)| = |g(u(x))| \le C|u(x)| + C$  pour tout  $x \in E$ , on a

$$\int |g \circ u| dm \le C||u||_1 + Cm(E).$$

Donc,  $g \circ u \in \mathcal{L}^1_{\mathbb{R}}(E, T, m)$ .

On pose  $L^1 = L^1_{\mathbb{R}}(E, T, m)$ . Pour  $u \in L^1$ , on pose  $G(u) = \{h \in \mathcal{L}^1_{\mathbb{R}}(E, T, m); h = g \circ v \text{ p.p.}\} \in L^1$ , avec  $v \in u$ 

2. Montrer que la définition précédente a bien un sens, c'est à dire que G(u) ne dépend pas du choix de v dans u.

-corrigé

Soient  $v, w \in u$ . Il existe  $A \in T$  t.q. m(A) = 0 et v = w sur  $A^c$ . On a donc aussi  $g \circ v = g \circ w$  sur  $A^c$  et donc  $g \circ v = g \circ w$  p.p.. On en déduit que  $\{h \in \mathcal{L}^1_{\mathbb{R}}(E, T, m); h = g \circ v$  p.p. $\} = \{h \in \mathcal{L}^1_{\mathbb{R}}(E, T, m); h = g \circ w$  p.p. $\}$ .

G(u) ne dépend donc pas du choix de v dans u.

3. Soit  $(u_n)_{n\in\mathbb{N}}\subset L^1$ . On suppose que  $u_n\to u$  p.p. et qu'il existe  $F\in L^1$  t.q.  $|u_n|\leq F$  p.p., pour tout  $n\in\mathbb{N}$ . Montrer que  $G(u_n)\to G(u)$  dans  $L^1$ .

----corrigé

Pour tout  $n \in \mathbb{N}$ , on choisit un représentant de  $u_n$ , encore notée  $u_n$ . On choisit aussi des représentants de u et F, notés toujours u et F. Comme  $u_n \to u$  p.p. quand  $n \to \infty$  et que g est continu, il est facile de voir que  $g \circ u_n \to g \circ u$  p.p.. On a donc  $G(u_n) \to G(u)$  p.p..

On remarque aussi que  $|g \circ u_n| \le C|u_n| + C \le CF + C$  p.p. et donc  $|G(u_n)| \le CF + C$  p.p., pour tout  $n \in \mathbb{N}$ .

Comme  $CF+C \in L^1$ , on peut appliquer le théorème de convergence dominée, il donne que  $G(u_n) \to G(u)$  dans  $L^1$  quand  $n \to \infty$ .

4. Montrer que G est continue de  $L^1$  dans  $L^1$ . [On pourra utiliser la question 3. et le théorème appelé "réciproque partielle de la convergence dominée".]

On raisonne par l'absurde. On suppose que G n'est pas continue de  $L^1$  dans  $L^1$ . Il existe donc  $u \in L^1$  et  $(u_n)_{n \in \mathbb{N}} \subset L^1$  t.q.  $u_n \to u$  dans  $L^1$  et  $G(u_n) \not\to G(u)$  dans  $L^1$  quand  $n \to \infty$ .

Comme  $G(u_n) \not\to G(u)$ , il existe  $\varepsilon > 0$  et  $\varphi : \mathbb{N} \to \mathbb{N}$  t.q.  $\varphi(n) \to \infty$  quand  $n \to \infty$  et :

$$||G(u_{\varphi(n)}) - G(u)||_1 \ge \varepsilon \text{ pour tout } n \in \mathbb{N}.$$
 (12.74)

(La suite  $(G(u_{\varphi(n)}))_{n\in\mathbb{N}}$  est une sous suite de la suite  $(G(u_n))_{n\in\mathbb{N}}$ .)

Comme  $u_{\varphi(n)} \to u$  dans  $L^1$ , on peut appliquer le théorème appelé "réciproque partielle de la convergence dominée" (théorème 4.7). Il donne l'existence de  $\psi: \mathbb{N} \to \mathbb{N}$  et de  $F \in L^1$  t.q.  $\psi(n) \to \infty$  quand  $n \to \infty$ ,  $u_{\varphi \circ \psi(n)} \to u$  p.p. et  $|u_{\varphi \circ \psi(n)}| \le F$  p.p., pour tout  $n \in \mathbb{N}$ . (La suite  $(u_{\varphi \circ \psi(n)})_{n \in \mathbb{N}}$  est une sous suite de la suite  $(u_{\varphi(n)})_{n \in \mathbb{N}}$ ).

On peut maintenant appliquer la question 3 à la suite  $(u_{\varphi \circ \psi(n)})_{n \in \mathbb{N}}$ . Elle donne que  $G(u_{\varphi \circ \psi(n)}) \to G(u)$  dans  $L^1$  quand  $n \to \infty$ . Ce qui est en contradiction avec (12.74).

## 12.4.3 Espérance et moments des variables aléatoires

## Corrigé 83 (Inégalité de Jensen)

Rappel: Une fonction f de  $\mathbb{R}$  dans  $\mathbb{R}$  est convexe si et seulement si pour tout  $a \in \mathbb{R}$  il existe  $c_a$  t.q.  $f(x) - f(a) \ge c_a(x-a)$  pour tout  $x \in \mathbb{R}$ .

Soit f une fonction convexe de  $\mathbb{R}$  dans  $\mathbb{R}$  et X une v.a. sur un espace de probabilité  $(\Omega, \mathcal{A}, P)$ . On suppose que X et f(X) sont intégrables. Montrer l'**inégalité de Jensen**, c'est-à-dire :

$$\int f(X)dP \ge f(\int XdP).$$

[Utiliser le rappel avec a bien choisi.]

On utilise le rappel avec  $a = E(X) = \int XdP$ . On obtient pour tout  $\omega \in \Omega$ 

$$f(X(\omega)) - f(a) \ge X(\omega) - a$$
.

$$\int (f(X) - f(a))dP \ge \int (X - a)dP.$$

Comme  $\int Xdp = a$ , on en déduit  $\int (f(X) - f(a))dP \ge 0$ , ce qui donne le résultat demandé.

## Corrigé 84 (Sur l'équi-intégrabilité )

Soit  $(E, \mathcal{A}, P)$  un espace de probabilité et  $(X_n)_{n \in \mathbb{N}}$  une suite de v.a. (réelles). On rappelle que la suite  $(X_n)_{n \in \mathbb{N}}$  est équi-intégrable si  $\int_A |X_n| dP \to 0$ , quand  $P(A) \to 0$  (avec  $A \in \mathcal{A}$ ), uniformément par rapport à  $n \in \mathbb{N}$ . Montrer l'équivalence entre les deux propriétés suivantes :

1. 
$$\lim_{a \to \infty} \sup_{n \in \mathbb{N}} \int_{\{|X_n| > a\}} |X_n| dP = 0,$$

2. 
$$\sup_{n\in\mathbb{N}}\int |X_n|dP<+\infty$$
 et  $(X_n)_{n\in\mathbb{N}}$  équi-intégrable.

En attente.

# Corrigé 85 (Caractérisation de l'indépendance)

Soit  $(\Omega, \mathcal{A}, P)$  un espace de probabilités,  $n \geq 2$  et  $X_1, X_2, \ldots, X_n$ , n variables aléatoires réelles. Montrer que l'indépendance de  $(X_1, X_2, \ldots, X_n)$  est équivalente à la propriété suivante :

$$\forall (a_1, \dots, a_n) \in ]-\infty, +\infty[^n, P[X_1 \le a_1, \dots, X_n \le a_n] = \prod_{i=1}^n P[X_i \le a_i].$$

(La notation  $P[X \leq a]$  est identique à  $P(\{X \leq a\})$ , elle désigne la probabilité de l'ensemble  $\{\omega \in \Omega, X(\omega) \leq a\}$ .)

En attente.

#### Corrigé 86 (Sign(X) et |X| pour une gaussienne)

Pour  $s \in \mathbb{R}$ , on pose  $\operatorname{sign}(s)=1$  si s>0,  $\operatorname{sign}(s)=-1$  si s<0 et  $\operatorname{sign}(0)=0$ . Soit  $(\Omega,\mathcal{A},P)$  un espace probabilisé et X une v.a.r. gaussienne centrée (c'est-à-dire  $P_X=f\lambda$  avec, pour  $x\in\mathbb{R}$ ,  $f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}}$ , où  $\sigma>0$  est la racine carré de la variance de X). Montrer que  $\operatorname{sign}(X)$  et |X| sont indépendantes et préciser leurs lois. Même question avec  $\operatorname{sign}(X)$  et  $X^2$ .

|             | gomicá   |  |
|-------------|----------|--|
| D 44 4 -    | corrigé- |  |
| En attente. |          |  |
|             |          |  |

Corrigé 87 (V.a. gaussiennes dépendantes)

Soit  $(\Omega, \mathcal{A}, P)$  un espace de probabilités,  $\sigma_1 > 0$ ,  $\sigma_2 > 0$  et  $X_1, X_2$  deux variables aléatoires indépendantes et telles que :

$$X_1 \sim \mathcal{N}(0, \sigma_1^2)$$
 et  $X_2 \sim \mathcal{N}(0, \sigma_2^2)$ .

(le signe " $\sim$ " signifie "a pour loi".) Construire deux v.a.  $Y_1$  et  $Y_2$  t.q.  $X_1 \sim Y_1$ ,  $X_2 \sim Y_2$  et  $Y_1$  et  $Y_2$  soient dépendantes.

corrigé

## Corrigé 88 (V.a. gaussiennes dépendantes, à covariance nulle)

soit  $(\Omega, \mathcal{A}, P)$  est un espace de probabilités et X, S deux v.a. réelles, indépendantes, t.q.  $X \sim \mathcal{N}(0, 1)$  et S a pour loi  $P_S = \frac{1}{2}\delta_1 + \frac{1}{2}\delta_{-1}$ . (Il est possible de construire un espace de probabilités et des v.a. indépendantes ayant des lois prescrites, voir le Chapitre 7.)

1. Montrer que  $SX \sim \mathcal{N}(0,1)$ .

En attente.

—corrigé-

Pour  $x \in \mathbb{R}$ , on pose  $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$  de sorte que la loi de X est de densité f par rapport à la mesure de Lebesgue. Soit  $A \in \mathcal{B}(\mathbb{R})$ , on note  $-A = \{-x, x \in A\}$ . Comme f est paire, on a :

$$P(X \in (-A)) = \int_{-A} f(x)dx = \int_{A} f(-x)dx = \int_{A} f(x)dx = P(X \in A).$$

On remarque maintenant que  $P(SX \in A) = P(S = 1, X \in A) + P(S = -1, X \in (-A))$ . Comme S et X sont indépendantes, on a :

$$P(S = 1, X \in A) = P(S = 1)P(X \in A) = \frac{1}{2}P(X \in A),$$

$$P(S = -1, X \in (-A)) = P(S = -1)P(X \in (-A)) = \frac{1}{2}P(X \in (-A)).$$

Comme  $P(X \in (-A)) = P(X \in A)$ , on en déduit  $P(SX \in A) = P(X \in A)$ . Les v.a.r. SX et X ont donc même loi, et donc  $SX \sim \mathcal{N}(0,1)$ .

2. Montrer que SX et X sont dépendantes.

-corrigé-

On raisonne par l'absurde. On suppose que SX et X sont indépendantes. La proposition 4.10 donne alors E(|SX||X|) = E(|SX|)E(|X|) (noter que la fonction  $s \mapsto |s|$  est borélienne positive). Comme |S| = 1 p.s., on a donc :

$$E(X^2) = E(|SX||X|) = E(|SX|)E(|X|) = E(|X|)^2.$$

Comme  $E(|X|) < +\infty$ , on en déduit que Var(|X|) = 0, ce qui est impossible car |X| n'est pas égale p.s. à sa moyenne (sinon, la loi de |X| serait une masse de Dirac et non pas une loi de densité par rapport à la mesure de Lebesgue).

| 3. Montrer que $Cov(SX, X) = 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| corrigé                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Comme $SX \sim \mathcal{N}(0,1)$ et $X \sim \mathcal{N}(0,1)$ , on a $E(SX) = E(X) = 0$ . Comme $S$ et $X$ sont indéperdantes (et $S$ et $X^2$ intégrables), on a (proposition 4.10) $SX^2$ intégrable et $E(SX^2) = E(S)E(X^2) = 0$ . On en déduit $Cov(SX, X) = E([SX - E(SX)][X - E(X)]) = E(SX^2) = E(S)E(X^2) = 0$ .                                                                                                                                                                                                                                                      |
| 4. (Question subsidiaire.) On ne suppose plus l'existence de $S$ , mais on suppose qu'il existe $Y$ v.a gaussienne indépendante de $X$ . Montrer que si $Y \sim \mathcal{N}(0, \sigma^2)$ , avec $\sigma > 0$ , il est possible d'utilise $Y$ pour construire $S$ , v.a. indépendante de $X$ et telle que $P_S = \frac{1}{2}\delta_1 + \frac{1}{2}\delta_{-1}$ .  — corrigé                                                                                                                                                                                                    |
| Il suffit de prendre $S=\mathrm{sign}(Y)$ avec $\mathrm{sign}(s)=-1$ si $s<0$ , $\mathrm{sign}(s)=1$ si $s>0$ et (pa exemple) $\mathrm{sign}(0)=0$ (la fonction sign est une fonction borélienne de $\mathbb R$ dans $\mathbb R$ ). On a bie $X$ et $S$ indépendantes (par la proposition 3.10, mais la preuve est facile ici car la tribu enger drée par $\varphi(Y)$ est incluse dans celle engendrée par $Y$ dés que $\varphi$ est borélienne). Enfin, on $P(S=1)=P(Y>0)=\frac{1}{2}=P(Y<0)=P(S=-1)$ , ce qui donne bien $P_S=\frac{1}{2}\delta_1+\frac{1}{2}\delta_{-1}$ . |
| Corrigé 89 (Identités de Wald)<br>Soit $(\Omega, \mathcal{A}, P)$ un espace probabilisé, $(X_n)_{n \in \mathbb{N}^*}$ une suite v.a.r.i.i.d. et $N$ une v.a. à valeurs dans $\mathbb{N}^*$ . O pose $S_N = X_1 + \ldots + X_N$ (c'est-à-dire que, pour $\omega \in \Omega$ , $S_N(\omega) = \sum_{n=1}^{N(\omega)} X_n(\omega)$ ).                                                                                                                                                                                                                                             |
| 1. On suppose, dans cette question, que les v.a.r. $N, X_1, \ldots, X_n, \ldots$ sont indépendantes. Pour $n \in \mathbb{N}^n$ on pose $A_n = \{\omega \in \Omega, \ N(w) = n\}$ (on note, en général, $A_n = \{N = n\}$ ), $Y_n = \sum_{p=1}^n X_p \in \mathbb{Z}_n = \sum_{p=1}^n  X_p $ .                                                                                                                                                                                                                                                                                   |
| (a) Soit $n \in \mathbb{N}^*$ . Montrer que $1_{A_n}$ et $Y_n$ sont des v.a.r. indépendantes et que $1_{A_n}$ et $Z_n$ sont de v.a.r. indépendantes.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (b) On suppose que $N$ et $X_1$ sont intégrables . Montrer que $S_N$ est intégrable et calculer $E(S_N)$ en fonction de $E(N)$ et $E(X_1)$ . [On pourra remarquer que $S_N = \sum_{n=1}^{\infty} 1_{A_n} Y_n$ et $ S_N  \le \sum_{n=1}^{\infty} 1_{A_n} Z_n$ .]                                                                                                                                                                                                                                                                                                                |
| (c) On suppose que $N$ et $X_1$ sont de carré intégrable, montrer que $S_N$ est de carré intégrable $\epsilon$ calculer sa variance en utilisant les variances de $N$ et $X_1$ .                                                                                                                                                                                                                                                                                                                                                                                               |
| 2. On suppose maintenant que $\{N=n\} \in \sigma(X_1,\ldots,X_n)$ pour tout $n \in \mathbb{N}^*$ (où $\sigma(X_1,\ldots,X_n)$ est l tribu engendrée par $X_1,\ldots,X_n$ ) et que $E(X_1)=0$ .                                                                                                                                                                                                                                                                                                                                                                                 |

En attente.

(b) Reprendre les questions 1(b) et 1(c). [On pourra écrire  $S_N = \sum_{n \in \mathbb{N}^*} 1_{\{n \leq N\}} X_n$ .]

N.B. : Le cas  $E(X_1) \neq 0$  peut aussi être traité. Il se ramène au cas  $E(X_1) = 0$  en considérant

(a) Montrer que  $1_{\{n \leq N\}}$  et  $X_n$  sont des v.a.r. indépendantes.

Corrigé 90 (Limite p.s. et indépendance)

 $Y_n = X_n - E(X_n).$ 

Soit  $(\Omega, \mathcal{A}, P)$  un espace probabilisé,  $(X_n)_{n \in \mathbb{N}^*}$  une suite v.a.r. et X, Y deux v.a.r.. On suppose que, pour tout  $n \in \mathbb{N}^*$ ,  $X_n$  et Y sont indépendantes et on suppose que  $X_n \to X$  p.s., quand  $n \to \infty$ . Montrer que X et Y sont indépendantes.

–corrigé–

Soit  $\phi$ ,  $\psi \in C_c(\mathbb{R}, \mathbb{R})$ . Comme  $X_n$  et Y sont indépendantes, on a (voir la proposition 4.10), pour tout  $n \in \mathbb{N}^*$ ,

$$E(\varphi(X_n)\psi(Y)) = E(\varphi(X_n))E(\psi(Y)). \tag{12.75}$$

Comme  $\varphi$  est continue, on a  $\varphi(X_n) \to \varphi(X)$  p.s. et  $\varphi(X_n)\psi(Y) \to \varphi(X)\psi(Y)$  p.s.. les convergences sont dominées car  $|\varphi(X_n)| \leq \sup\{\varphi(x), \ x \in \mathbb{R}\}$  (et  $|\psi(Y)| \leq \sup\{\psi(x), \ x \in \mathbb{R}\}$ ). On peut donc utiliser le théprème de convergence dominée, il donne  $\lim_{n \to \infty} E(\varphi(X_n)\psi(Y)) = E(\varphi(X)\psi(Y))$  et  $\lim_{n \to \infty} E(\varphi(X_n)) = E(\varphi(X))$ . En passant à la limite dans (12.75), on en déduit que

$$E(\varphi(X)\psi(Y)) = E(\varphi(X))E(\psi(Y)).$$

La proposition 4.12 permet de conclure que X et Y sont indépendantes.

# 12.5 Exercices du chapitre 5

#### Corrigé 91

Soit  $(f_n)_{n\in\mathbb{N}}\subset C^1(]0,1[,\mathbb{R})$  convergeant simplement vers la fonction  $f:]0,1[\to\mathbb{R};$  on suppose que la suite  $(f'_n)_{n\in\mathbb{N}}$  ( $\subset C(]0,1[,\mathbb{R})$ ) converge simplement vers la fonction constante et égale à 1.

1. A-t-on  $f \in C^1(]0,1[,\mathbb{R})$  et f' = 1?

La réponse est "non". La fonction f peut même ne pas être continue, comme le montre l'exemple suivant :

Pour  $n \in \mathbb{N}$ ,  $n \geq 4$ , on définit  $g_n$  de [0,1] dans  $\mathbb{R}$  par

$$\begin{array}{l} g_n(x) = 1, \text{ si } 0 \leq x \leq \frac{1}{2}, \\ g_n(x) = 1 + n^2(x - \frac{1}{2}), \text{ si } \frac{1}{2} < x \leq \frac{1}{2} + \frac{1}{n}, \\ g_n(x) = 1 - n^2(x - \frac{1}{2} - \frac{2}{n}), \text{ si } \frac{1}{2} + \frac{1}{n} < x \leq \frac{1}{2} + \frac{2}{n}, \\ g_n(x) = 1, \text{ si } \frac{1}{2} + \frac{2}{n} < x \leq 1. \end{array}$$

Il est facile de voir que  $g_n \in C([0,1],\mathbb{R})$  et que  $g_n(x) \to 1$  pour tout  $x \in [0,1]$ .

Pour  $n \geq 4$ , on définit  $f_n$  par :

$$f_n(x) = \int_0^x g_n(t)dt$$
, pour tout  $x \in ]0,1[$ ,

de sorte que  $f_n \in C^1(]0,1[,\mathbb{R})$  et  $f_n' = g_n$  sur ]0,1[. On a donc bien que  $(f_n')_{n\in\mathbb{N}}$  converge simplement vers la fonction constante et égale à 1. (On prend n'importe quelles fonctions  $C^1$  pour  $f_n, 0 \le n \le 3$ ).

On remarque maintenant que, pour  $n \ge 4$ ,  $f_n(x) = x$  pour tout  $x \in ]0, \frac{1}{2}]$  et que  $f_n(x) = x+1$  pour tout  $x \in ]\frac{1}{2} + \frac{2}{n}, 1[$ . On en déduit que  $(f_n)_{n \in \mathbb{N}}$  converge simplement vers la fonction  $f: ]0, 1[ \to \mathbb{R}$  définie par f(x) = x pour tout  $x \in ]0, \frac{1}{2}]$  et  $f_n(x) = x+1$  pour tout  $x \in ]\frac{1}{2}, 1[$ . Cette fonction n'est pas continue en  $\frac{1}{2}$ , donc  $f \notin C^1(]0, 1[, \mathbb{R})$ .

2. On suppose maintenant que la suite  $(f'_n)_{n\in\mathbb{N}}$  converge vers la fonction constante et égale à 1 dans  $L^1_{\mathbb{R}}(]0,1[,\mathcal{B}(]0,1[),\lambda)$ . A-t-on  $f\in C^1(]0,1[,\mathbb{R})$  et f'=1?

La réponse maintenant est "oui". En effet, soit 0 < x < 1. Comme  $f_n \in C^1(]0,1[,\mathbb{R})$ , on a  $f_n(x) = f_n(\frac{1}{2}) + \int_{\frac{1}{2}}^x f_n'(t)dt$ , c'est-à-dire

$$f_n(x) = f_n(\frac{1}{2}) + s_x \int f'_n 1_{I_x} d\lambda,$$
 (12.76)

avec  $s_x = 1$  et  $I_x = ]\frac{1}{2}, x[$  si  $x \ge \frac{1}{2}, s_x = -1$  et  $I_x = ]x, \frac{1}{2}[$  si  $x < \frac{1}{2}.$ 

Quand  $n \to \infty$ , on a

$$\left| \int f'_n 1_{I_x} d\lambda - \int 1_{I_x} d\lambda \right| \le \|f'_n - 1\|_1 \to 0,$$

et  $f_n(x) \to f(x)$  (ainsi que  $f_n(\frac{1}{2}) \to f(\frac{1}{2})$ ). On déduit donc de (12.76), quand  $n \to \infty$ ,

$$f(x) = f(\frac{1}{2}) + s_x \int 1_{I_x} d\lambda,$$

c'est-à-dire  $f(x) = f(\frac{1}{2}) + x - \frac{1}{2}$ .

On a bien montré que  $f \in C^1(]0,1[,\mathbb{R})$  et f'=1.

## Corrigé 92 (Intégrale impropre)

On définit l'application f de  $\mathbb R$  dans  $\mathbb R$  par :

$$f(x) = 0$$
, si  $x \le 0$ ,  
 $f(x) = x^2 \sin \frac{1}{x^2}$ , si  $x > 0$ .

1. Montrer que f est continue et dérivable en tout point de  $\mathbb{R}$ .

#### -corrigé

La fonction f est continue et dérivable en tout point de  $\mathbb{R}^*$  et on a f'(x) = 0 pour x < 0 et  $f'(x) = 2x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x^2}$  si x > 0.

Pour montrer la continuité et la dérivablité de f en 0, il suffit de remarquer que, pour tout x>0, on a  $|f(x)| \le x^2$  et donc  $|\frac{f(x)-f(0)}{x-0}| \le x$ . On en déduit que f est continue et dérivable en 0 et que f'(0)=0.

2. Soit  $0 < a < b < \infty$ . Montrer que  $f'1_{]a,b[} \in \mathcal{L}^1_{\mathbb{R}}(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$ . On pose  $\int_a^b f'(t)dt = \int f'1_{]a,b[}d\lambda$ . Montrer que :

$$f(b) - f(a) = \int_a^b f'(t)dt.$$

#### –corrigé

La fonction f' est continue sur  $]0,\infty[$ . La restriction de f' à [a,b] est donc continue (on utilise ici le fait que a>0). On a donc, voir la proposition 5.1 (ou l'exercice 4.5) :

$$f'_{|[a,b]} \in \mathcal{L}^1([a,b], \mathcal{B}([a,b]), \lambda_{[a,b)}),$$

où  $\lambda_{[a,b)}$  désigne la mesure de Lebesgue sur les boréliens de [a,b] (c'est-à-dire la restriction à  $\mathcal{B}([a,b])$  de la mesure de Lebesgue sur  $\mathcal{B}(\mathbb{R})$ ) et l'intégrale (de Lebesgue) de  $f'_{[a,b]}$  coïncide avec l'intégrale des fonctions continues, c'est-à-dire :

$$\int f'_{|[a,b]} d\lambda_{[a,b)} = \int_a^b f'(x) dx.$$

Le terme de droite de l'égalité précédente est à prendre au sens de l'intégrale des fonctions continues. Comme f est de classe  $C^1$  sur un intervalle ouvert contenant [a,b], il est alors classique que :

$$\int_a^b f'(x)dx = f(b) - f(a).$$

Pour se convaincre de cette dernière égalité, on rappelle que f et  $x \mapsto \int_a^x f'(t)dt$  sont deux primitives de f', leur différence est donc constante sur [a,b].

Enfin, comme  $f'_{[[a,b]} \in \mathcal{L}^1([a,b],\mathcal{B}([a,b]),\lambda_{[a,b)})$ , il est facile d'en déduire que  $f'1_{]a,b[} \in \mathcal{L}^1_{\mathbb{R}}(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$  et que

$$\int f'_{|[a,b]}d\lambda_{[a,b)} = \int f' 1_{]a,b[}d\lambda.$$

Plus précisement, on pose f'=g et on considère d'abord le cas  $g_{|[a,b]} \in \mathcal{E}_+([a,b],\mathcal{B}([a,b])$  puis  $g_{|[a,b]} \in \mathcal{M}_+([a,b],\mathcal{B}([a,b]))$  et enfin  $g_{|[a,b]} \in \mathcal{L}^1([a,b],\mathcal{B}([a,b]),\lambda_{[a,b)})$ , comme dans l'exercice 4.4. Ceci termine la question.

Un autre moyen de montrer  $f'1_{]a,b[} \in \mathcal{L}^1_{\mathbb{R}}(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$  est de procéder de la manière suivante : La fonction f' est la limite simple, quand  $n \to \infty$ , de la suite  $(f_n)_{n \in \mathbb{N}^*}$  où  $f_n$  est défnie, pour  $n \in \mathbb{N}^*$ , par :

$$f_n(x) = \frac{f(x + \frac{1}{n}) - f(x)}{\frac{1}{n}}$$
, pour tout  $x \in \mathbb{R}$ .

La fonction f est mesurable (c'est-à-dire borélienne car  $\mathbb{R}$  est muni de la tribu de Borel). Grâce à la stabilité de l'ensemble des fonctions mesurables (voir la proposition 3.5), on en déduit que  $f_n$  est mesurable pour tout  $n \in \mathbb{N}^*$  et donc que f' est mesurable (comme limite simple de fonctions mesurables). La fonction  $f'1_{]a,b[}$  est donc aussi mesurable (comme produit de fonctions mesurables). La mesurabilité de  $f'1_{]a,b[}$  est donc vraie pour tout  $a,b \in \overline{\mathbb{R}}$  (noter cependant que f' n'est pas continue en 0).

Pour montrer que  $f'1_{]a,b[}$  est intégrable, il suffit de remarquer que f' est bornée sur ]a,b[, car f' est continue sur [a,b] (on utilise ici le fait que a>0) et que  $\lambda(]a,b[)<\infty$ . On a donc bien montré que  $f'1_{]a,b[}\in\mathcal{L}^1_{\mathbb{R}}(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$ .

#### 3. Soit a > 0.

(a) Montrer  $f'1_{]0,a[} \notin \mathcal{L}^1_{\mathbb{R}}(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$ .

-corrigé

La restriction de f' à ]0, a[ est continue, c'est donc une fonction mesurable (c'est-à-dire borélienne) de ]0, a[ dans  $\mathbb{R}$ . On en déduit facilement que  $f'1_{]0,a[}$  est borélienne de  $\mathbb{R}$  dans  $\mathbb{R}$ . (On a aussi vu à la question précédente que f' était borélienne. Ceci montre également que  $f'1_{]0,a[}$  est borélienne.)

On a  $f'1_{[0,a[} = g_11_{[0,a[} - g_21_{[0,a[}, avec :$ 

$$g_1(x) = 2x \sin \frac{1}{x^2}$$
 et  $g_2(x) = \frac{2}{x} \cos \frac{1}{x^2}$  si  $x \in ]0, a[$ .

Il est clair que  $g_11_{]0,a[} \in \mathcal{L}^1_{\mathbb{R}}(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$  (car  $g_1$  est continue et bornée sur ]0,a[). Pour montrer que  $f'1_{]0,a[} \notin \mathcal{L}^1_{\mathbb{R}}(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$ , il suffit donc de montrer que  $g_21_{]0,a[} \notin \mathcal{L}^1_{\mathbb{R}}(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$ . Pour cela, on remarque maintenant que :

$$|g_2(x)| \ge \sqrt{2}\sqrt{n\pi - \frac{\pi}{4}}, \text{ si } \frac{1}{\sqrt{n\pi + \frac{\pi}{4}}} \le x \le \frac{1}{\sqrt{n\pi - \frac{\pi}{4}}}, n \ge n_0,$$
 (12.77)

avec  $n_0 \in \mathbb{N}^*$  t.q.  $\frac{1}{\sqrt{n_0\pi - \frac{\pi}{4}}} \le a$ . On déduit alors de (12.77), par monotonie de l'intégrale, que, pour tout  $N \ge n_0$ :

$$\int |g_2| 1_{]0,a[} d\lambda \ge \sum_{n=n_0}^N \sqrt{2} \sqrt{n\pi - \frac{\pi}{4}} \left( \frac{1}{\sqrt{n\pi - \frac{\pi}{4}}} - \frac{1}{\sqrt{n\pi + \frac{\pi}{4}}} \right) = \sum_{n=n_0}^N \sqrt{2} \frac{\sqrt{n\pi + \frac{\pi}{4}} - \sqrt{n\pi - \frac{\pi}{4}}}{\sqrt{n\pi + \frac{\pi}{4}}},$$

et donc:

$$\int |g_2| 1_{]0,a[} d\lambda \ge \sum_{n=n_0}^N \frac{\sqrt{2}\pi}{2\sqrt{n\pi + \frac{\pi}{4}}(\sqrt{n\pi + \frac{\pi}{4}} + \sqrt{n\pi - \frac{\pi}{4}})} \ge \sum_{n=n_0}^N \frac{\sqrt{2}\pi}{4(n\pi + \frac{\pi}{4})}.$$

En faisant tendre N vers  $\infty$ , on en déduit que  $\int |g_2| 1_{]0,a[} d\lambda = \infty$  et donc que  $g_2 1_{]0,a[} \notin \mathcal{L}^1_{\mathbb{R}}(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$  et  $f' 1_{]0,a[} \notin \mathcal{L}^1_{\mathbb{R}}(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$ .

(b) Pour 0 < x < a, on pose  $g(x) = \int_x^a f'(t)dt$ . Montrer que g(x) a une limite (dans  $\mathbb{R}$ ) quand  $x \to 0$ , avec x > 0, et que cette limite est égale à f(a) - f(0). (Cette limite est aussi notée  $\int_0^a f'(t)dt$ , improprement... car  $f'1_{]0,a[} \notin \mathcal{L}^1_{\mathbb{R}}(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$ , la restriction de f' à ]0,a[ n'est donc pas intégrable pour la mseure de Lebesgue sur ]0,a[.)

#### -corrigé

On a g(x) = f(a) - f(x), pour tout x > 0. Comme f est continue en 0, on en déduit bien que g(x) a une limite (dans  $\mathbb{R}$ ) quand  $x \to 0$ , avec x > 0, et que cette limite est égale à f(a) - f(0).

## Corrigé 93

Soit  $f \in \mathcal{L}^1_{\mathbb{R}}(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ . On définit  $F : \mathbb{R} \to \mathbb{R}$  par:  $F(x) = \int f 1_{[0,x]} d\lambda (= \int_0^x f(t) dt)$ , pour  $x \geq 0$ , et  $F(x) = -\int f 1_{[x,0]} d\lambda (= -\int_x^0 f(t) dt)$  pour x < 0. Montrer que F est uniformément continue.

On remarque que, pour tout  $x, y \in \mathbb{R}, x < y$ ,

$$F(y) - F(x) = \int f 1_{]x,y[} d\lambda = \int_{]x,y[} f d\lambda.$$

Soit  $\varepsilon > 0$ , comme  $f \in \mathcal{L}^1_{\mathbb{R}}(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ , l'exercice 4.14 (ou l'exercice 4.29) montre qu'il existe  $\delta > 0$  t.q.

$$A \in \mathcal{B}(\mathbb{R}), \ \lambda(A) \leq \delta \Rightarrow \int_A |f| d\lambda \leq \varepsilon.$$

Soit  $x, y \in \mathbb{R}$ , x < y. On a donc, comme  $\lambda(]x, y[) = y - x$ ,

$$|y - x| \le \delta \Rightarrow |F(y) - F(x)| \le \int_{]x,y[} |f| d\lambda \le \varepsilon,$$

ce qui montre bien la continuité uniforme de F.

## Corrigé 94 (Intégrabilité et limite à l'infini)

Soit  $f \in \mathcal{L}^1_{\mathbb{R}}(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda) = \mathcal{L}^1$ .

1. On suppose que f(x) admet une limite quand  $x \to \infty$ . Montrer que cette limite est nulle.

## –corrigé—

On pose  $l = \lim_{x \to \infty} f(x)$  et on suppose  $l \neq 0$ . Il existe alors  $a \in \mathbb{R}$  t.q.  $|f(x)| \geq \frac{|l|}{2}$  pour tout x > a. On en déduit, par monotonie de l'intégrale sur  $\mathcal{M}_+$ ,

$$\int |f|d\lambda \ge \int_{]a,\infty[} \frac{|l|}{2} d\lambda = \infty,$$

en contradiction avec l'hypothèse  $f \in \mathcal{L}^1$ .

2. On suppose que  $f \in C(\mathbb{R}, \mathbb{R})$  ; a-t-on :  $\lim_{x \to +\infty} f(x) = 0$  ?

#### –corrigé-

La réponse est "non", comme le montre l'exemple suivant. On définit, pour  $n \in \mathbb{N}, n \geq 2, f_n$  par :

$$\begin{split} f_n(x) &= 0, \text{ si } x \leq n - \frac{1}{n^2}, \\ f_n(x) &= n^2 (x - n + \frac{1}{n^2}), \text{ si } n - \frac{1}{n^2} < x \leq n, \\ f_n(x) &= -n^2 (x - n - \frac{1}{n^2}), \text{ si } n < x \leq n + \frac{1}{n^2}, \\ f_n(x) &= 0, \text{ si } x > n + \frac{1}{n^2}. \end{split}$$

Puis, on pose  $f(x) = \sum_{n \geq 2} f_n(x)$  pour tout  $x \in \mathbb{R}$ . On remarque que, pour tout  $x \in \mathbb{R}$ , la série définissant f(x) a au plus 1 terme non nul. Plus précisément, il existe n (dépendant de x) t.q.  $f = f_n$  dans un voisinage de x. On en déduit que f prend ses valeurs dans  $\mathbb{R}$  et que f est continue (car les  $f_n$  sont continues).

Comme  $f_n \in \mathcal{M}_+$  pour tout n, le premier corollaire du théorème de convergence monotone (corollaire 4.1) donne que  $f \in \mathcal{M}_+$  et

$$\int f dm = \sum_{n \ge 2} \int f_n dm = \sum_{n \ge 2} \frac{1}{n^2} < \infty.$$

On a donc  $f \in C(\mathbb{R}, \mathbb{R}) \cap \mathcal{L}^1_{\mathbb{R}}(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$  et  $f(x) \not\to 0$  quand  $x \to \infty$  car  $f_n(n) = 1$  pour tout  $n \in \mathbb{N}$ ,  $n \ge 2$ .

3. On suppose que f est uniformément continue ; a-t-on :  $\lim_{x\to +\infty} f(x) = 0$  ? [On pourra commencer par montrer que, pour  $\eta > 0$  quelconque et  $(x_n)_{n\in\mathbb{N}} \subset \mathbb{R}$  t.q.  $\lim_{x\to +\infty} x_n = +\infty$ , on a :

$$\lim_{n \to +\infty} \int_{x_n - \eta}^{x_n + \eta} |f(x)| d\lambda(x) = 0.$$
 (12.78)

-corrigé-

On commence par montrer le résultat prélimaire suggéré. Soient  $\eta > 0$  et  $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}$  t.q.  $\lim_{n \to +\infty} x_n = +\infty$ .

On pose  $f_n = |f| 1_{]x_n - \eta, x_n + \eta[}$ . On a, pour tout  $x \in \mathbb{R}$ ,  $f_n(x) \to 0$  quand  $n \to \infty$  (on a même  $f_n(x) = 0$  pour n t.q.  $x_n - \eta > x$ ). On a aussi  $|f_n| \le |f| \in \mathcal{L}^1$ . On peut donc appliquer le théorème de convergence dominée (ou la proposition préliminaire 4.6). Il donne que  $\int f_n dm \to 0$ , c'est-à-dire

 $\int |f| 1_{]x_n - \eta, x_n + \eta[} d\lambda \to 0, \text{ quand } n \to \infty.$  (12.79)

On montre maintenant que  $f(x) \to 0$  quand  $x \to \infty$ .

On raisonne par l'absurde. On suppose que  $f(x) \neq 0$  quand  $x \to \infty$ . Il existe donc  $\varepsilon > 0$  et une suite  $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}$  t.q.  $x_n \to \infty$  quand  $n \to \infty$  et  $|f(x_n)| \ge \varepsilon$  pour tout  $n \in \mathbb{N}$ .

La continuité uniforme de f donne l'existence de  $\eta > 0$  t.q.

$$x, y \in \mathbb{R}, |x - y| \le \eta \Rightarrow |f(x) - f(y)| \le \frac{\varepsilon}{2}.$$

On a donc  $|f(x)| \ge \frac{\varepsilon}{2}$  pour  $x \in ]x_n - \eta, x_n + \eta[$  et tout  $n \in \mathbb{N}$ . On en déduit que  $\int |f| 1_{]x_n - \eta, x_n + \eta[} d\lambda \ge \varepsilon \eta > 0$  pour tout  $n \in \mathbb{N}$ , ce qui est en contradiction avec (12.79).

On a donc bien finalement montré que  $f(x) \to 0$  quand  $x \to \infty$ .

4. On suppose que  $f \in C^1(\mathbb{R}, \mathbb{R})$  et  $f' \in L^1$ ; a-t-on:  $\lim_{x \to +\infty} f(x) = 0$ ?

#### -corrigé-

Comme  $f \in C^1$ , on a, pour y > x,  $f(y) - f(x) = \int_x^y f'(t) dt = \int_{]x,y[} f' d\lambda$ . Comme  $f' \in \mathcal{L}^1$ , l'exercice 5.7 donne que f est uniformément continue. La question précédente donne alors que  $f(x) \to 0$  quand  $x \to \infty$  (c'est seulement pour ce dernier point qu'on utilise  $f \in \mathcal{L}^1$ ).

Une autre démonstration possible est :

Comme  $f \in C^1$ , on a  $f(x) = f(0) + \int_{]0,x[} f' d\lambda$ . Comme  $f' \in \mathcal{L}^1$ , on en déduit que f(x) a une limite (dans  $\mathbb{R}$ ) quand  $x \to \infty$ . En effet, le théorème de convergence dominée donne que  $\int_{]0,x[} f' d\lambda \to \int_{]0,\infty[} f' d\lambda$  (dans  $\mathbb{R}$ ) quand  $x \to \infty$ . Enfin, la première question donne que la limite de f(x) quand  $x \to \infty$  est nécessairement 0 (et ici aussi, c'est seulement pour ce dernier point qu'on utilise  $f \in \mathcal{L}^1$ ).

## Corrigé 95 (Continuité en moyenne)

Pour  $f \in L^1 = L^1_{\mathbb{R}}(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$  et  $h \in \mathbb{R}$ , on définit  $f_h$  ("translatée" de f) par :  $f_h(x) = f(x+h)$ , pour  $x \in \mathbb{R}$ . (noter que  $f_h \in L^1$ ).

1. Soit  $f \in C_c = C_c(\mathbb{R}, \mathbb{R})$ , montrer que  $||f_h - f||_1 \to 0$  lorsque  $h \to 0$ .

Comme  $f \in C_c$ , f est uniformément continue, ce qui donne

$$\sup_{x \in \mathbb{R}} |f(x+h) - f(x)| \to 0 \text{ quand } h \to 0.$$

Soit a > 0 t.q. f = 0 sur  $[-a, a]^c$ . Pour  $h \in \mathbb{R}$  t.q.  $|h| \le 1$ , on a donc, comme f(x + h) - f(x) = 0 si  $x \notin [-a - 1, a + 1]$ ,

$$\int |f(x+h) - f(x)| dx \le (2a+2) \sup_{x \in \mathbb{R}} |f(x+h) - f(x)| \to 0, \text{ quand } h \to 0,$$

et donc que  $||f(\cdot + h) - f||_1 \to 0$  quand  $h \to 0$ .

2. Soit  $f \in L^1$ , montrer que  $||f_h - f||_1 \to 0$  lorsque  $h \to 0$ .

#### -corrigé-

L'invariance par translation de la mesure de Lebesgue donne que  $f(\cdot + h) \in L^1$  pour tout  $h \in \mathbb{R}$ . On veut maintenant montrer que  $||f(\cdot + h) - f||_1 \to 0$  quand  $h \to 0$ .

Soit  $\varepsilon > 0$ . D'après la densité de  $C_c$  dans  $L^1$  (théorème 5.5), il existe  $\varphi \in C_c$  t.q.  $||f - \varphi||_1 \le \varepsilon$ . L'invariance par translation de la mesure de Lebesgue donne  $||f(\cdot + h) - \varphi(\cdot + h)||_1 = ||f - \varphi||_1$ . On a donc, pour tout  $h \in \mathbb{R}$ :

$$||f(\cdot+h)-f||_1 < 2||f-\varphi||_1 + ||\varphi(\cdot+h)-\varphi||_1 < 2\varepsilon + ||\varphi(\cdot+h)-\varphi||_1.$$

D'après la première question, il existe  $\eta > 0$  t.q.

$$|h| \le \eta \Rightarrow \|\varphi(\cdot + h) - \varphi\|_1 \le \varepsilon.$$

Donc.

$$|h| \le \eta \Rightarrow ||f(\cdot + h) - f||_1 \le 3\varepsilon.$$

Ce qui prouve bien que  $f(\cdot + h) \to f$  dans  $L^1$ , quand  $h \to 0$ .

#### Corrigé 96 (Sur la concentration d'un borélien)

Soit  $-\infty \le a < b \le +\infty$ ,  $A \in \mathcal{B}(]a, b[)$  et  $\rho \in ]0, 1[$ . On suppose que  $\lambda(A \cap ]\alpha, \beta[) \le \rho(\beta - \alpha)$  pour tout  $\alpha, \beta$  t.q.  $a \le \alpha < \beta \le b$ . Montrer que  $\lambda(A) = 0$ . [On pourra, par exemple, commencer par montrer que  $\lambda(A \cap O) \le \rho\lambda(O)$  pour tout ouvert O de [a, b[.]]

Conséquence de cet exercice : Soit  $A \in \mathcal{B}(]a,b[)$  t.q.  $\lambda(A) > 0$ . Alors, pour tout  $\rho < 1$ , il existe  $\alpha,\beta$  t.q.  $a \le \alpha < \beta \le b$  et  $\lambda(A \cap ]\alpha,\beta[) \ge \rho(\beta-\alpha)$ .

#### corrigé

Soit O un ouvert de ]a,b[. Comme O est un ouvert de  $\mathbb{R}$ , il peut s'écrire comme une réunion dénombrable d'intervalles ouverts disjoints 2 à 2 (lemme 2.4). On a donc  $O = \bigcup_{n \in \mathbb{N}} I_n$  avec  $I_n \cap I_m = \emptyset$  si  $n \neq m$  et, pour tout  $n \in \mathbb{N}$ ,  $I_n = ]a_n, b_n[$  avec  $a \leq a_n \leq b_n \leq b$ . La  $\sigma$ -additivité de  $\lambda$  et l'hypothèse  $\lambda(A \cap ]\alpha, \beta[) \leq \rho(\beta - \alpha)$  pour tout  $\alpha, \beta$  t.q.  $a \leq \alpha < \beta \leq b$  donne alors :

$$\lambda(A \cap O) = \sum_{n \in \mathbb{N}} \lambda(A \cap ]a_n, b_n[) \le \rho \sum_{n \in \mathbb{N}} (b_n - a_n) = \rho \sum_{n \in \mathbb{N}} \lambda(]a_n, b_n[) = \rho \lambda(O). \tag{12.80}$$

Soit maintenant  $\varepsilon > 0$ . D'après la régularité de  $\lambda$  (et le fait que  $A \in \mathcal{B}(]a,b[) \subset \mathcal{B}(\mathbb{R})$ ), il existe O ouvert de  $\mathbb{R}$  t.q.  $A \subset O$  et  $\lambda(O \setminus A) \leq \varepsilon$ . En remplaçant O par  $O \cap ]a,b[$ , on peut supposer que O est un ouvert de [a,b[. En utilisant (12.80) et l'additivité de  $\lambda$ , on a donc :

$$\lambda(A) = \lambda(A \cap O) \le \rho\lambda(O) = \rho(\lambda(A) + \lambda(O \setminus A)) \le \rho(\lambda(A) + \varepsilon).$$

Comme  $\varepsilon > 0$  est arbitrairement petit, on en déduit  $\lambda(A) \le \rho \lambda(A)$ , ce qui n'est possible (comme  $\rho < 1$ ) que si  $\lambda(A) = 0$  ou si  $\lambda(A) = \infty$ .

Il reste donc à montrer que le cas  $\lambda(A) = \infty$  est impossible. Pour cela, on pose, pour tout  $n \in \mathbb{N}$ ,  $A_n = A \cap [-n, n]$ . Soit  $n \in \mathbb{N}$ , la monotonie de  $\lambda$  donne  $\lambda(A_n \cap ]\alpha, \beta[) \leq \lambda(A \cap ]\alpha, \beta[)$ , on a donc aussi  $\lambda(A_n \cap ]\alpha, \beta[) \leq \rho(\beta - \alpha)$  pour tout  $\alpha, \beta$  t.q.  $a \leq \alpha < \beta \leq b$ . Comme  $\lambda(A_n) < \infty$ , la démonstration précédente, appliquée à  $A_n$  au lieu de A, donne  $\lambda(A_n) = 0$ . Enfin, comme  $A = \bigcup_{n \in \mathbb{N}} A_n$ , on en déduit  $\lambda(A) = 0$ .

# Corrigé 97 (Points de Lebesgue)

On désigne par  $\lambda$  la mesure de Lebesgue sur les boréliens de  $\mathbb{R}$ , par  $L^1$  l'espace  $L^1_{\mathbb{R}}(\mathbb{R}, B(\mathbb{R}), \lambda)$  et par  $\mathcal{L}^1$  l'espace  $\mathcal{L}^1_{\mathbb{R}}(\mathbb{R}, B(\mathbb{R}), \lambda)$ . On note  $dt = d\lambda(t)$ .

1. Soit  $(I_1, \ldots, I_n)$  des intervalles ouverts non vides de  $\mathbb{R}$  t.q. chaque intervalle n'est pas contenu dans la réunion des autres. On pose  $I_k = ]a_k, b_k[$  et on suppose que la suite  $(a_k)_{k=1,\ldots,n}$  est croissante. Montrer que la suite  $(b_k)_{k=1,\ldots,n}$  est croissante et que les intervalles d'indices impairs [resp. pairs] sont disjoints 2 à 2.

----corrigé

Soit  $k \in \{1, ..., n\}$ . Comme  $a_k \le a_{k+1}$ , on a  $b_k < b_{k+1}$  (sinon  $I_{k+1} \subset I_k$ ). La suite  $(b_k)_{k \in \{1, ..., n\}}$  est donc (strictement) croissante.

Soit  $k \in \{1, ..., n\}$ . On a  $b_k \le a_{k+2}$  (sinon  $I_k \cup I_{k+2} = ]a_k, b_{k+2}[$  et donc  $I_{k+1} \subset I_k \cup I_{k+2}$  car  $a_k \le a_{k+1} < b_{k+1} \le b_{k+2})$ . On a donc  $I_k \cap I_{k+2} = \emptyset$ . ceci prouve (avec la croissance de  $(a_k)_{k=1,...,n}$ ) que les intervalles d'indices impairs [resp. pairs] sont disjoints 2 à 2.

2. Soit J une famille finie d'intervalles ouverts non vide de  $\mathbb{R}$  dont la réunion est notée A. Montrer qu'il existe une sous-famille finie de J, notée  $(I_1, \ldots, I_m)$ , formée d'intervalles disjoints 2 à 2 et t.q.

 $\lambda(A) \leq 2 \sum_{k=1}^{m} \lambda(I_k)$ . [Utiliser la question 1.]

corrigé

On commence par montrer la propriété suivante :

Pour toute famille finie, notée J, d'intervalles ouverts non vide de  $\mathbb{R}$ , il existe une sous famille, notée K, t.q. :

- (a) Chaque élément de K n'est pas contenu dans la réunion des autres éléments de K,
- (b) La réunion des éléments de K est égale à la réunion des éléments de J.

Cette propriété se démontre par récurrence sur le nombre d'éléments de J. Elle est immédiate si J a 1 élément (on prend K=J). Soit  $n \in \mathbb{N}^*$ . On suppose que la propriété est vraie pour toutes les familles de n éléments. Soit J une famille de (n+1) éléments. Si chaque élément de J n'est pas contenu dans la réunion des autres éléments de J, on prend K=J. Sinon, on choisit un élément de J, noté I, contenu dans la réunion des autres éléments de J. On applique alors l'hypothèse de récurrence à la famille  $J \setminus \{I\}$ , on obtient une sous famille de  $J \setminus \{I\}$  (et donc de J), notée K, vérifiant bien les assertions (a) et (b) (en effet, La réunion des éléments de  $J \setminus \{I\}$  est égale à la réunion des éléments de J). Ceci termine la démonstration de la propriété désirée.

Soit maintenant J une famille finie d'intervalles ouverts non vide de  $\mathbb{R}$  dont la réunion est notée A (remarquer que  $A \in B(\mathbb{R})$ ). Grâce à la propriété démontrée ci dessus, on peut supposer que chaque élément de J n'est pas contenu dans la réunion des autres éléments de J. On note  $J_1$ , ...  $J_n$  les éléments de J,  $J_i = ]a_i, b_i[$ , i = 1, ..., n. En réordonnant, on peut aussi supposer que la suite  $(a_k)_{k=1,...,n}$  est croissante. On peut alors appliquer la question 1, elle donne, en posant  $P = \{i = 1, ..., n; i \text{ pair}\}$  et  $I = \{i = 1, ..., n; i \text{ impair}\}$  que les familles  $(J_i)_{i \in P}$  et  $(J_i)_{i \in I}$  sont formées d'éléments disjoints 2 à 2, de sorte que :

$$\lambda(\cup_{i\in P} J_i) = \sum_{i\in P} \lambda(J_i), \quad \lambda(\cup_{i\in I} J_i) = \sum_{i\in I} \lambda(J_i).$$

Enfin, comme  $A = \bigcup_{i=1}^n J_i$ , la sous-additivité de  $\lambda$  donne  $\lambda(A) \leq \sum_{i \in P} \lambda(J_i) + \sum_{i \in I} \lambda(J_i)$ . Une sous-famille de J satisfaisant les conditions demandées est alors  $(J_i)_{i \in P}$  si  $\sum_{i \in P} \lambda(J_i) \geq \sum_{i \in I} \lambda(J_i)$  et  $(J_i)_{i \in I}$  si  $\sum_{i \in I} \lambda(J_i) > \sum_{i \in P} \lambda(J_i)$ .

On se donne maintenant  $f \in L^1$  et on suppose qu'il existe a > 0 t.q. f = 0 p.p. sur  $[-a, a]^c$ . Le but de l'exercice est de montrer que :

$$\frac{n}{2} \int_{-\frac{1}{n}}^{\frac{1}{n}} f(x+t)dt \to f(x), \text{ pour presque tout } x \in \mathbb{R}, \text{ quand } n \to \infty.$$
 (12.81)

Pour  $\varepsilon > 0$ , on définit  $f_{\varepsilon}^{\star}$  de  $\mathbb{R}$  dans  $\mathbb{R}$  par :

$$f_{\varepsilon}^{\star}(x) = \sup_{h > \varepsilon} \frac{1}{2h} \int_{-h}^{h} |f(x+t)| dt.$$
 (12.82)

3. (a) Montrer que  $f_{\varepsilon}^{\star}$  est bornée.

—corrigé———

Soit  $x \in \mathbb{R}$ . On a, pour  $h \geq \varepsilon$ ,  $\frac{1}{2h} \int_{-h}^{h} |f(x+t)| dt \leq \frac{1}{2\varepsilon} ||f||_1 \operatorname{donc} f_{\varepsilon}^{\star}(x) \in \mathbb{R} \operatorname{et} |f_{\varepsilon}^{\star}(x)| \leq \frac{1}{2\varepsilon} ||f||_1$ . La fonction  $f_{\varepsilon}^{\star}$  est donc bornée par  $\frac{1}{2\varepsilon} ||f||_1$ .

Soit h > 0. On définit  $f_h$  de  $\mathbb{R}$  dans  $\mathbb{R}$  par  $f_h(x) = \int_{-h}^{h} |f(x+t)| dt$ . La fonction  $f_h$  est continue car

$$|f_h(x+\eta) - f_h(x)| = |\int_{-h}^{h} (|f(x+\eta+t)| - |f(x+t)|) dt| \le \int_{-h}^{h} |f(x+\eta+t) - f(x+t)| dt$$
  
  $\le \int |f(x+\eta+t) - f(x+t)| dt = ||f(\cdot+\eta) - f||_1 \to 0$ , quand  $\eta \to 0$ ,

par le théorème de continuité en moyenne. (Ceci donne même la continuité uniforme.)

On en déduit que  $f_{\varepsilon}^{\star}$  est borélienne comme "sup" de fonctions continues (en effet, si  $\alpha \in \mathbb{R}$ ,  $(f_{\varepsilon}^{\star})^{-1}(]\alpha, \infty[) = \bigcup_{h \geq \varepsilon} (\frac{1}{2h}f_h)^{-1}(]\alpha, \infty[)$  est un ouvert, et donc aussi un borélien).

(c) Montrer que  $f_{\varepsilon}^{\star}(x) \to 0$  quand  $|x| \to \infty$ .

# —corrigé

Soit  $\eta > 0$ . On a (avec la notation de la question précédente), pour tout  $x \in \mathbb{R}$ ,  $\frac{1}{2h}f_h(x) \leq \eta$ si  $h \ge \frac{\|f\|_1}{2\eta}$ . D'autre part, on a  $f_h(x) = 0$  si  $h \le \frac{\|f\|_1}{2\eta}$  et  $|x| \ge a + \frac{\|f\|_1}{2\eta}$ . On en déduit que  $0 \le f_{\varepsilon}^{\star}(x) \le \eta$  si  $|x| \ge a + \frac{\|f\|_1}{2\eta}$ . Ceci prouve que  $f_{\varepsilon}^{\star}(x) \to 0$  quand  $|x| \to \infty$ .

- 4. Pour y > 0, on pose  $B_{y,\varepsilon} = \{x \in \mathbb{R}, f_{\varepsilon}^{\star}(x) > y\}$ .
  - (a) Montrer que tout  $x \in B_{y,\varepsilon}$  est le centre d'un intervalle ouvert I(x) t.q.
    - i.  $\lambda(I(x)) \geq 2\varepsilon$ ,
    - ii.  $\frac{1}{\lambda(I(x))} \int_{I(x)} |f| d\lambda > y$ .

Montrer que parmi les intervalles  $I(x), x \in B_{y,\varepsilon}$ , ainsi obtenus, il en existe un nombre fini  $I(x_1), \ldots I(x_n)$  dont la réunion recouvre  $B_{y,\varepsilon}$ . [On pourra d'abord remarquer que  $B_{y,\varepsilon}$  est borné.]

Si  $x \in B_{y,\varepsilon}$ , il existe  $h \ge \varepsilon$  t.q.  $\frac{1}{2h} \int_{x-h}^{x+h} |f(t)| dt = \frac{1}{2h} \int_{-h}^{h} |f(x+t)| dt > y$ . On choisit alors I(x) = ]x - h, x + h[. On a bien i. et ii..

 $B_{y,\varepsilon}$  est borné car  $f_{\varepsilon}^{\star}(x) \to 0$  quand  $|x| \to \infty$ .  $\overline{B}_{y,\varepsilon}$  est donc fermé et borné (donc compact). De plus, Si  $z \in \overline{B}_{y,\varepsilon}$ , il existe  $x \in B_{y,\varepsilon}$  t.q.  $|x-z| < \varepsilon$ . On a donc  $z \in I(x)$ . Ceci montre que  $\{I(x), x \in B_{y,\varepsilon}\}$  forme un recouvrement ouvert de  $\overline{B}_{y,\varepsilon}$ . Par compacité, on peut donc en extraire un sous recouvrement fini. Il existe donc  $x_1, \ldots, x_n \in B_{y,\varepsilon}$  t.q.  $B_{y,\varepsilon} \subset \bigcup_{i=1}^n I(x_i)$ .

(b) Montrer que  $\lambda(B_{y,\varepsilon}) \leq \frac{2}{y} ||f||_1$ . [Utiliser la question 2.]

## -corrigé

En appliquant la question 2 à la famille  $\{I(x_i), i \in \{1, ..., n\}\}$ , il existe  $E \subset \{1, ..., n\}$ t.q.  $I(x_i) \cap I(x_j) = \emptyset$ , si  $i, j \in E$   $i \neq j$ , et t.q.  $\lambda(B_{y,\varepsilon}) \leq \lambda(\bigcup_{i=1}^n I(x_i)) \leq 2\sum_{i \in E} \lambda(I(x_i))$ . Comme  $\lambda(I(x_i)) < \frac{1}{y} \int_{I(x_i)} |f(t)| dt$  et comme  $I(x_i) \cap I(x_j) = \emptyset$ , si  $i, j \in E$   $i \neq j$ , on a aussi  $\sum_{i \in E} \lambda(I(x_i)) < \frac{1}{y} \int |f(t)| dt$  et donc  $\lambda(B_{y,\varepsilon}) \leq \frac{2}{y} ||f||_1$ 

On définit maintenant  $f^*$  de  $\mathbb{R}$  dans  $\overline{\mathbb{R}}_+$  par :

$$f^{\star}(x) = \sup_{h>0} \frac{1}{2h} \int_{-h}^{h} |f(x+t)| dt.$$
 (12.83)

5. Montrer que  $f^*$  est borélienne et que  $\lambda(\{f^*>y\}) \leq \frac{2}{y} ||f||_1$ , pour tout y>0.

 $f^*$  est borélienne (de  $\mathbb{R}$  dans  $\overline{\mathbb{R}}_+$ ) car c'est le "sup" de fonctions continues de  $\mathbb{R}$  dans  $\mathbb{R}$ .

On remarque ensuite que  $\{f^\star>y\}=\{x\in\mathbb{R},\,f^\star(x)>y\}=\cup_{n\in\mathbb{N}^\star}B_{y,\frac{1}{n}}$  et que  $B_{y,\frac{1}{n}}\subset B_{y,\frac{1}{n+1}}$  (car  $f_{\frac{1}{n}}^{\star} \leq f_{\frac{1}{n+1}}^{\star}$ ). Par continuité croissante de  $\lambda$ , on a donc  $\lambda(\{f^{\star} > y\}) = \lim_{n \to \infty} \lambda(B_{y,\frac{1}{n}}) \leq \frac{2}{y} \|f\|_1$ .

6. Montrer (12.81) si f admet un représentant continu. [cette question n'utilise pas les questions précédentes.]

-corrigé

On confond f (qui est dans  $L^1$ ) avec ce représentant continu. On a alors  $\frac{n}{2} \int_{-\frac{1}{n}}^{\frac{1}{n}} f(x+t)dt \to f(x)$  pour tout  $x \in \mathbb{R}$ , quand  $n \to \infty$ . En effet, pour tout  $x \in \mathbb{R}$  et tout  $n \in \mathbb{N}^*$ , par continuité de f, il existe  $\theta_{x,n} \in ]x - \frac{1}{n}, x + \frac{1}{n}[$  t.q.  $\frac{n}{2} \int_{-\frac{1}{n}}^{\frac{1}{n}} f(x+t)dt = f(\theta_{x,n})$ . Pour tout  $x \in \mathbb{R}$ , on a bien  $f(\theta_{x,n}) \to f(x)$ , quand  $n \to \infty$  (par continuité en x de f).

7. Montrer (12.81). [Approcher f, dans  $L^1$  et p.p., par une suite d'éléments de  $C_c(\mathbb{R}, \mathbb{R})$ , notée  $(f_p)_{p \in \mathbb{N}}$ . On pourra utiliser  $(f - f_p)^*$ .]

corrigé-

On confond f (qui est dans  $L^1$ ) avec l'un de ses représentants (de sorte que  $f \in \mathcal{L}^1$ ). Par densité de  $C_c(\mathbb{R}, \mathbb{R})$  dans  $L^1$ , il existe une suite  $(f_p)_{p \in \mathbb{N}} \subset C_c(\mathbb{R}, \mathbb{R})$  t.q.  $f_p \to f$  dans  $L^1$ . Après extraction éventuelle d'une sous suite, on peut supposer aussi que  $f_p \to f$  p.p..

Pour  $x \in \mathbb{R}$ ,  $n \in \mathbb{N}^*$  et  $p \in \mathbb{N}$ , on a :

$$|f(x) - \frac{n}{2} \int_{-\frac{1}{n}}^{\frac{1}{n}} f(x+t)dt| \le |f(x) - f_p(x)| + |f_p(x) - \frac{n}{2} \int_{-\frac{1}{n}}^{\frac{1}{n}} f_p(x+t)dt| + (f - f_p)^*(x). \quad (12.84)$$

Pour  $m \in \mathbb{N}^*$  et  $p \in \mathbb{N}$ , on pose :

$$A_{m,p} = \{(f - f_p)^* > \frac{1}{m}\}, \ B_{m,p} = \cap_{q \ge p} A_{m,q} \text{ et } B = \bigcup_{m \in \mathbb{N}^*} (\bigcup_{p \in \mathbb{N}} B_{m,p}).$$

On remarque que, par la question 5,  $\lambda(A_{m,p}) \leq 2m\|f - f_p\|_1 \to 0$  quand  $p \to \infty$  (avec m fixé). On a donc  $\lambda(B_{m,p}) \leq \inf_{q \geq p} \lambda(A_{m,q}) = 0$ . On en déduit, par  $\sigma$ -sous-additivité de  $\lambda$ , que  $\lambda(B) = 0$ .

On choisit  $C \in B(\mathbb{R})$  t.q.  $\lambda(C) = 0$  et  $f_p(x) \to f(x)$  pour tout  $x \in C^c$ .

On va maintenant montrer (grâce à (12.84)) que  $(f(x) - \frac{n}{2} \int_{-\frac{1}{n}}^{\frac{1}{n}} f(x+t)dt) \to 0$  pour tout  $x \in (B \cup C)^c$  (ce qui permet de conclure car  $\lambda(B \cup C) = 0$ ).

Soit donc  $x \in (B \cup C)^c$  et soit  $\eta > 0$ . Comme  $x \in C^c$ , il existe  $p_1 \in \mathbb{N}$  t.q.  $|f(x) - f_p(x)| \leq \eta$  pour  $p \geq p_1$ . Comme  $x \in B^c$ ,  $x \in \bigcap_{m \in \mathbb{N}^*} (\bigcap_{p \in \mathbb{N}} B_{m,p}^c)$ . On choisit  $m \in \mathbb{N}^*$  t.q.  $\frac{1}{m} \leq \eta$ . On a  $x \in \bigcap_{p \in \mathbb{N}} B_{m,p}^c = \bigcap_{p \in \mathbb{N}} \bigcup_{q \geq p} A_{m,q}^c \subset \bigcup_{q \geq p_1} A_{m,q}^c$ . Il existe donc  $p \geq p_1$  t.q.  $x \in A_{m,p}^c$ , on en déduit  $(f - f_p)^*(x) \leq \frac{1}{m} \leq \eta$ . Enfin, p étant maintenant fixé, la question 6 donne l'existence de  $n_1 \in \mathbb{N}$  t.q.  $|f_p(x) - \frac{n}{2} \int_{-\frac{1}{n}}^{\frac{1}{n}} f_p(x+t) dt| \leq \eta$  pour  $n \geq n_1$ . On a donc  $|f(x) - \frac{n}{2} \int_{-\frac{1}{n}}^{\frac{1}{n}} f(x+t) dt| \leq 3\eta$  pour  $n \geq n_1$ . Ce qui termine la démonstration.

## Corrigé 98 (Convergence vague et convergence etroite)

Soit  $(m_n)n \in \mathbb{N}$  une suite de mesures (positives) finies sur  $\mathcal{B}(\mathbb{R}^d)$   $(d \ge 1)$  et m une mesure (positive) finies sur  $\mathcal{B}(\mathbb{R}^d)$ . On suppose que :

•  $\int \varphi dm_n \to \int \varphi dm$ , quand  $n \to \infty$ , pour tout  $\varphi \in C_c^{\infty}(\mathbb{R}^d, \mathbb{R})$ .

- $m_n(\mathbb{R}^d) \to m(\mathbb{R}^d)$  quand  $n \to \infty$ .
- 1. Soit  $\varphi \in C_c(\mathbb{R}^d, \mathbb{R})$ . Montrer que  $\int \varphi dm_n \to \int \varphi dm$ , quand  $n \to \infty$ . [On pourra utiliser le fait que  $\varphi$  est limite uniforme d'une suite d'élement de  $C_c^{\infty}(\mathbb{R}^d, \mathbb{R})$ .]

#### -corrigé

Soit  $\rho \in C_c^{\infty}(\mathbb{R}^d, \mathbb{R})$  t.q.  $\rho \geq 0$ ,  $\int_{\mathbb{R}^d} \rho(x) dx = 1$  et  $\rho(x) = 0$  si  $|x| \geq 1$ . Pour  $p \in \mathbb{N}^*$ , on définit  $\rho_p$  par  $\rho_p(x) = p^d \rho(px)$  pour  $x \in \mathbb{R}^d$ , de sorte que  $\int_{\mathbb{R}^d} \rho_p(x) dx = 1$  et  $\rho(x) = 0$  si  $|x| \geq 1/p$ . La suite  $(\rho_p)_{p \in \mathbb{N}^*}$  s'appelle "suite régularisante" (ou "suite de noyaux régularisants").

Soit  $\psi \in C_c(\mathbb{R}^d, \mathbb{R})$ , on définit la suite  $(\psi_p)_{p \in \mathbb{N}^*}$  en posant  $\psi_p(x) = \int \psi(y) \rho_p(x-y) dy$ , pour tout  $x \in \mathbb{R}^d$ . Comme  $\rho_p$  et  $\psi$  sont des fonctions à support compact, il est clair que  $\psi_p$  est aussi une fonction à support compact. Grâce au théorème de dérivabilité sous le signe intégral (théorème 4.10), il est assez facile de voir que  $\psi_p$  est indéfiniment dérivable. On a donc  $(\psi_p)_{p \in \mathbb{N}^*} \subset C_c^{\infty}(\mathbb{R}^p, \mathbb{R})$ . Enfin, du fait que  $\psi$  est uniformément continue, on déduit que  $\psi_p$  converge uniformément (sur  $\mathbb{R}^d$ ) vers  $\psi$  quand  $p \to \infty$ . Plus précisément, en notant  $\|\cdot\|_u$  la norme de la convergence uniforme, on a, pour tout  $p \in \mathbb{N}^*$ ,

$$\|\psi_p - \psi\|_u \le \sup_{z \in \mathbb{R}^d, |z| \le 1/p} \|\psi(\cdot + z) - \psi\|_u,$$

dont on déduit bien  $\|\psi_p - \psi\|_u \to 0$  quand  $p \to \infty$ .

Soit  $\varepsilon > 0$ . On remarque maintenant que, pour  $p \in \mathbb{N}^*$  et tout  $n \in \mathbb{N}$ ,

$$\int \psi dm_n - \int \psi dm = \int (\psi - \psi_p) dm_n + \int \psi_p dm_n - \int \psi_p dm + \int (\psi_p - \psi) dm,$$

on a donc  $|\int \psi dm_n - \int \psi dm| \le \|\psi_p - \psi\|_u (\sup_{n \in \mathbb{N}} m_n(\mathbb{R}^d) + m(\mathbb{R}^d)) + |\int \psi_p dm_n - \int \psi_p dm|$ . Comme  $\sup_{n \in \mathbb{N}} m_n(\mathbb{R}^d) + m(\mathbb{R}^d) < \infty$  (car  $\lim_{n \to \infty} m_n(\mathbb{R}^d) = m(\mathbb{R}^d)$ ), il existe donc  $p_0 \in \mathbb{N}^*$  t.q., pour tout  $n \in \mathbb{N}$ ,

$$|\int \psi dm_n - \int \psi dm| \le \varepsilon + |\int \psi_{p_0} dm_n - \int \psi_{p_0} dm|.$$

Comme  $\psi_{p_0} \in C_c^{\infty}(\mathbb{R}^d, \mathbb{R})$ , la première hypothèse sur la suite  $(m_n)_{n \in \mathbb{N}}$  donne qu'il existe  $n_0$  t.q.  $n \geq n_0$  implique  $|\int \psi_{p_0} dm_n - \int \psi_{p_0} dm| \leq \varepsilon$ . on a donc, finalement,

$$n \ge n_0 \Rightarrow |\int \psi dm_n - \int \psi dm| \le 2\varepsilon.$$

Ce qui prouve bien que  $\int \psi dm_n \to \int \psi dm$ , quand  $n \to \infty$ , pour tout  $\psi \in C_c(\mathbb{R}^d, \mathbb{R})$ .

2. Pour  $p \in \mathbb{N}^*$ , on note  $B_p$  la boule fermée de centre 0 et de rayon p (pour la norme euclidienne de  $\mathbb{R}^d$ ). Montrer qu'il existe une suite  $(\varphi_p)_{p \in \mathbb{N}^*} \subset C_c(\mathbb{R}^d, \mathbb{R})$  t.q., pour tout  $p \in \mathbb{N}^*$ ,  $0 \le \varphi_p \le 1$ ,  $\varphi_p = 1$  sur  $B_p$  et  $\varphi_p \le \varphi_{p+1}$ . On utilise cette suite  $(\varphi_p)_{p \in \mathbb{N}^*}$  dans les questions suivantes.

Il suffit de prendre  $\varphi_p$  définie ainsi :

$$\varphi_p(x) = 1 \text{ si } x \in B_p,$$
  

$$\varphi_p(x) = p + 1 - |x| \text{ si } x \in B_{p+1} \setminus B_p,$$
  

$$\varphi_p(x) = 0 \text{ si } x \notin B_{p+1}.$$

- 3. Soit  $\varepsilon > 0$ .
  - (a) Montrer qu'il existe  $p_0 \in \mathbb{N}^*$  t.q. :  $p \ge p_0 \Rightarrow \int (1 \varphi_p) dm \le \varepsilon$ .

On utilise ici le théorème de convergence dominée, la suite  $(1-\varphi_p)_{p\in\mathbb{N}^{\star}}$  converge p.p. vers 0 et est dominée par la fonction constante et égale à 1 (qui est bien une fonction intégrable pour la mesure m). On a donc  $\lim_{p\to\infty}\int (1-\varphi_p)dm=0$ , ce qui donne le résultat demandé.

(b) Montrer que, pour tout  $p \in \mathbb{N}^*$ ,  $\int (1 - \varphi_p) dm_n \to \int (1 - \varphi_p) dm$  quand  $n \to \infty$ .

On a  $\int (1-\varphi_p)dm_n = m_n(\mathbb{R}^d) - \int \varphi_p dm_n$ . comme  $\varphi_p \in C_c(\mathbb{R}^d, \mathbb{R})$ , on a  $\int \varphi_p dm_n \to \int \varphi_p dm$  (quand  $n \to \infty$ ). D'autre part, on a  $\lim_{n \to \infty} m_n(\mathbb{R}^d) = m(\mathbb{R}^d)$ . On a donc finalement, quand  $n \to \infty$ ,

$$\int (1 - \varphi_p) dm_n \to m(\mathbb{R}^d) - \int \varphi_p dm = \int (1 - \varphi_p) dm.$$

(c) Montrer qu'il existe  $p_1 \in \mathbb{N}^{\star}$  t.q. :  $n \in \mathbb{N}, p \ge p_1 \Rightarrow \int (1 - \varphi_p) dm_n \le \varepsilon$ .

D"après a), il existe  $p_2$  t.q.  $\int (1-\varphi_{p_2})dm \leq \varepsilon/2$ . D'après b), il existe  $n_0$  t.q.

$$n \ge n_0 \Rightarrow \int (1 - \varphi_{p_2}) dm_n \le \int (1 - \varphi_{p_2}) dm + \varepsilon/2.$$

On a donc

$$n \ge n_0 \Rightarrow \int (1 - \varphi_{p_2}) dm_n \le \varepsilon.$$

Comme  $(1 - \varphi_p) \le (1 - \varphi_{p_2})$  si  $p \ge p_2$ , on a aussi

$$n \ge n_0, p \ge p_2 \Rightarrow \int (1 - \varphi_p) dm_n \le \varepsilon.$$

D"autre part, le théorème de convergence dominée donne (comme en a)) que, pour tout  $n \in \mathbb{N}$ ,  $\lim_{p\to\infty} \int (1-\varphi_p) dm_n = 0$ . Pour tout  $n \in \mathbb{N}$ , il existe donc  $p_{2,n}$  t.q.

$$p \ge p_{2,n} \Rightarrow \int (1 - \varphi_p) dm_n \le \varepsilon.$$

On choisit donc  $p_1 = \max\{p_2, \max_{n=0,\dots,n_0} p_{2,n}\}$  et on obtient bien  $p \in \mathbb{N}^{\star}$  et :

$$n \in \mathbb{N}, p \ge p_1 \Rightarrow \int (1 - \varphi_p) dm_n \le \varepsilon.$$

4. Montrer que  $\int \varphi dm_n \to \int \varphi dm$ , quand  $n \to \infty$ , pour tout  $\varphi \in C_b(\mathbb{R}^d, \mathbb{R})$  (on dit alors que la suite  $(m_n)_{n \in \mathbb{N}}$  converge étroitement vers m).

Soit  $\varphi \in C_b[\mathbb{R}^d, \mathbb{R})$  et  $\varepsilon > 0$ . En écrivant que  $\varphi = \varphi \varphi_p + \varphi(1 - \varphi_p)$ , on a, pour tout  $p \in \mathbb{N}^*$ ,

$$|\int \varphi dm_n - \int \varphi dm| \leq |\int \varphi \varphi_p dm_n - \int \varphi \varphi_p dm| + \|\varphi\|_u \int (1 - \varphi_p) dm_n + \|\varphi\|_u \int (1 - \varphi_p) dm.$$

Les questions 2a) et 2c) permettent de trouver  $p_0 \in \mathbb{N}^*$  et  $n_0 \in \mathbb{N}$  t.q. les deux derniers de la précédente inégalité soient inférieurs à  $\varepsilon$  pour  $p = p_0$  et  $n \geq n_0$ . Puis, comme  $\varphi \varphi_{p_0} \in C_c(\mathbb{R}^d, \mathbb{R})$ , il existe  $n_1$  t.q. le premier du membre de droite de la précédente inégalité soit inférieur à  $\varepsilon$  pour  $p = p_0$  et  $n \geq n_1$ . On a donc finalement

$$n \ge \max\{n_0, n_1\} \Rightarrow |\int \varphi dm_n - \int \varphi dm| \le 3\varepsilon.$$

Ce qui prouve la convergence étroite de  $m_n$  vers m (quand  $n \to \infty$ ).

5. Indiquer brièvement comment obtenir le même résultat (c'est-à-dire le résultat de la question 4) si on remplace " $\mathbb{R}^d$ " (dans les hypothèses et dans la question 4) par " $\Omega$  ouvert de  $\mathbb{R}^d$ ".

corrigé

Pour la question 1, on remarque que toute fonction de  $C_c(\Omega, \mathbb{R})$  est limite uniforme de fonctions de  $C_c^{\infty}(\Omega, \mathbb{R})$  (la démonstration, semblable au cas  $\Omega = \mathbb{R}^d$  utilise le fait que, si  $\varphi \in C_c(\Omega, \mathbb{R})$ , la disatnce entre le support de  $\varphi$ , qui est compact, et le complémentaire de  $\Omega$ , qui est ouvert, est strictement positive. On rappelle que le support de  $\varphi$  est l'adhérence de l'ensemble des points où  $\varphi$  est non nulle).

Pour la question 2, on construit (avec la fonction "distance") une suite  $\varphi_p$  comme demandée en remplaçant simplement  $B_p$  par  $B_p \cap \{x \in \Omega, d(x, \Omega^c) \ge 1/p\}$ , avec  $d(x, \Omega^c) = \max\{|x-y|, y \in \Omega^c\}$ .

Pour les questions 3 et 4, on remplace simplement  $\mathbb{R}^d$  par  $\Omega$ .