Lecture 4: Sequences and series

Math 660—Jim Fowler

Thursday, June 23, 2011

$$z^5 - 1 = (z - 1)(z - \omega)(z - \omega^2)(z - \omega^3)(z - \omega^4)$$

$$\omega^3 = \overline{\omega}^2 \text{ and } \omega^4 = \overline{\omega}, \text{ so}$$

$$z^5 - 1 = (z - 1)(z - \omega)(z - \overline{\omega})(z - \omega^2)(z - \overline{\omega}^2)$$

$$= (z - 1)(z^2 - (\omega + \overline{\omega})z + 1)(z^2 - (\omega^2 + \overline{\omega}^2)z)$$

+1)

 $z^5 - 1 = (z - 1)(z - \omega)(z - \omega^2)(z - \omega^3)(z - \omega^4)$

$$z^5 - 1 = (z - 1)(z - \omega)(z - \overline{\omega})(z - \omega^2)(z - \overline{\omega}^2)$$

= $(z - 1)(z^2 - (\omega + \overline{\omega})z + 1)(z^2 - (\omega^2 + \overline{\omega}^2)z + 1)$

 $z^{5}-1=(z-1)(z-\omega)(z-\omega^{2})(z-\omega^{3})(z-\omega^{4})$

 $\omega^3 = \overline{\omega}^2$ and $\omega^4 = \overline{\omega}$, so

+ 1) Can we compute $\omega+\overline{\omega}$ and $\omega^2+\overline{\omega}^2$?

$$z^5 - 1 = (z - 1)(z - \omega)(z - \overline{\omega})(z - \omega^2)(z - \overline{\omega}^2)$$

= $(z - 1)(z^2 - (\omega + \overline{\omega})z + 1)(z^2 - (\omega^2 + \overline{\omega}^2)z + 1)$

 $(z-(\omega+\overline{\omega}))(z-(\omega^2+\overline{\omega}^2))=z^2+z-1,$

 $z^{5}-1=(z-1)(z-\omega)(z-\omega^{2})(z-\omega^{3})(z-\omega^{4})$

Can we compute $\omega + \overline{\omega}$ and $\omega^2 + \overline{\omega}^2$?

 $\omega^3 = \overline{\omega}^2$ and $\omega^4 = \overline{\omega}$, so

$$egin{aligned} z^5-1&=(z-1)(z-\omega)(z-\overline{\omega})(z-\omega^2)(z-\overline{\omega}^2)\ &=(z-1)(z^2-(\omega+\overline{\omega})z+1)(z^2-(\omega^2+\overline{\omega}^2)z\ &+1) \end{aligned}$$

 $z^{5}-1=(z-1)(z-\omega)(z-\omega^{2})(z-\omega^{3})(z-\omega^{4})$

 $\omega^3 = \overline{\omega}^2$ and $\omega^4 = \overline{\omega}$. so

Can we compute
$$\omega + \overline{\omega}$$
 and $\omega^2 + \overline{\omega}^2$?
$$(z - (\omega + \overline{\omega})) (z - (\omega^2 + \overline{\omega}^2)) = z^2 + z - 1,$$

$$-(\omega + \overline{\omega})(z - (\omega^2 + \overline{\omega}^2)) = z^2 + z - 1,$$

$$\omega + \overline{\omega} = \frac{1}{z}(-1 + \sqrt{5}).$$

$$(\omega + \omega)(z - (\omega + \omega)) = z + z - 1,$$
 $\omega + \overline{\omega} = \frac{1}{2}(-1 + \sqrt{5}),$

$$\omega^3 = \overline{\omega}^2 \text{ and } \omega^4 = \overline{\omega}, \text{ so}$$

$$z^5 - 1 = (z - 1)(z - \omega)(z - \overline{\omega})(z - \omega^2)(z - \overline{\omega}^2)$$

$$= (z - 1)(z^2 - (\omega + \overline{\omega})z + 1)(z^2 - (\omega^2 + \overline{\omega}^2)z)$$

 $z^{5}-1=(z-1)(z-\omega)(z-\omega^{2})(z-\omega^{3})(z-\omega^{4})$

$$+1)$$
 Can we compute $\omega+\overline{\omega}$ and $\omega^2+\overline{\omega}^2$?
$$\left(z-(\omega+\overline{\omega})\right)\left(z-(\omega^2+\overline{\omega}^2)\right)=z^2+z-1,$$

$$\omega+\overline{\omega}=\frac{1}{2}\left(-1+\sqrt{5}\right),$$
 So a fifth root of unity is a root of the polynomial

 $z^{2}-(\omega+\overline{\omega})z+1=z^{2}-rac{-1+\sqrt{5}}{2}z+1,$

So by the quadratic equation

$$\omega = rac{-rac{1-\sqrt{5}}{2} + \sqrt{\left(rac{1-\sqrt{5}}{2}
ight)^2 - }}{2}$$

So by the quadratic equation

$$\omega = \frac{-\frac{1-\sqrt{5}}{2} + \sqrt{\left(\frac{1-\sqrt{5}}{2}\right)^2 - 4}}{2}$$

which we can simplify to

$$\omega = \frac{-1 + \sqrt{5}}{4} + i\sqrt{1 - \frac{\left(1 - \sqrt{5}\right)^2}{16}}$$

So by the quadratic equation

$$\omega = \frac{-\frac{1-\sqrt{5}}{2} + \sqrt{\left(\frac{1-\sqrt{5}}{2}\right)^2 - 4}}{2}$$

which we can simplify to

$$\omega = \frac{-1 + \sqrt{5}}{4} + i\sqrt{1 - \frac{\left(1 - \sqrt{5}\right)^2}{16}}$$

and further into

$$\omega = \frac{-1+\sqrt{5}}{4} + i\sqrt{\frac{5+\sqrt{5}}{8}}$$

So we conclude

$$\cos\left(\frac{2\pi}{5}\right) = \frac{-1 + \sqrt{5}}{4}$$

$$\sin\left(\frac{2\pi}{5}\right) = \sqrt{\frac{5 + \sqrt{5}}{8}}$$

So we conclude

$$\cos\left(\frac{2\pi}{5}\right) = \frac{-1 + \sqrt{5}}{4}$$

$$\sin\left(\frac{2\pi}{5}\right) = \sqrt{\frac{5 + \sqrt{5}}{8}}$$

Can we compute

$$\cos\left(\frac{2\pi}{7}\right)$$
 and $\sin\left(\frac{2\pi}{7}\right)$?

Rational Functions

Mational Lanctions

These are quotients of polynomials.

 $r(z) = \frac{p(z)}{q(z)}$, for polynomials p and q.

The zeroes of p are the zeroes of r;

The zeroes of q are the poles of r.

Define $r(\infty) = \tilde{r}(0)$, where $\tilde{r}(z) = r(1/z)$.

We can compute the order of a pole or zero at infinity.

If $\deg p < \deg q$, then r has a zero of order $\deg q - \deg p$ at infinity. If $\deg p > \deg q$, then r has a pole of order $\deg p - \deg q$ at infinity. The number of poles of a rational function (including a pole at infinity) is the same as the number of zeroes of a rational function (including a zero at infinity).

Both are equal to the larger of $\deg p$ and $\deg q$.

Call this common quantity the order of the rational function.

f(z)=z(z+1)

$$ilde{f}(z)=rac{1}{z}(rac{1}{z}+1)$$

f(z) = z(z + 0.9)/(z - 0.8i)

$$\tilde{f}(z) = \frac{1}{z}(\frac{1}{z} + 0.9)/(\frac{1}{z} - 0.8i)$$

Section 2.2.1–2.2.3 of the textbook

sequences and series

Polynomials and rational functions are good. To expand the functions available for consideration, take limits.

Heading towards *Power series* on Friday.

Sequences

Limits

```
\lim_{n\to\infty} a_n = L \text{ means that,} for every \epsilon > 0, there exists N, so that whenever n > N, then |a_n - L| < \epsilon.
```

Usually, we must prove convergence without being able to compute the limit.

Convergent sequence

Not a convergent sequence

A sequence $(a_n)_{n\in\mathbb{N}}$ is **Cauchy** if, for every $\epsilon > 0$, there exists N,

so that whenever n, m > N,

then $|a_n - a_m| < \epsilon$.

A sequence $(a_n)_{n\in\mathbb{N}}$ is **Cauchy** if, for every $\epsilon>0$, there exists N, so that whenever n,m>N,

then $|a_n - a_m| < \epsilon$.

A sequence of real numbers is convergent if and only if it is Cauchy.

Series

To evaluate the series

$$a_1 + a_2 + \cdots + a_n + \cdots$$

we form a sequence $s_k = a_1 + \cdots + a_k$, and define

$$\sum_{k\to\infty}^{\infty}a_n=\lim_{k\to\infty}s_k.$$

To evaluate the series

$$a_1 + a_2 + \cdots + a_n + \cdots$$

we form a sequence $s_k = a_1 + \cdots + a_k$, and define

$$\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} s_k.$$

We call $\sum a_n$ absolutely convergent if $\sum |a_n|$ converges.

To evaluate the series

$$a_1 + a_2 + \cdots + a_n + \cdots$$

we form a sequence $s_k = a_1 + \cdots + a_k$, and define

$$\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} s_k.$$

We call $\sum a_n$ absolutely convergent if $\sum |a_n|$ converges.

Formulate a condition on the a_n so that the sequence s_k is Cauchy.

If a series $\sum a_n$ convergences, then $\lim a_n = 0$. $n \rightarrow \infty$

If a series $\sum a_n$ convergences, then $\lim_{n\to\infty} a_n = 0$.

The converse is false.

Uniform convergence

A sequence of functions $f_n: U \to V$, converges *pointwise* to $f: U \rightarrow V$ if for every $x \in U$,

for every
$$\epsilon > 0$$
,
there is an N ,
so that if $n > N$, then
 $|f_n(x) - f(x)| < \epsilon$.

A sequence of functions $f_n: U \to V$, converges uniformly to $f: U \rightarrow V$ if for every $\epsilon > 0$, there is an N.

$$|f_n(x) - f(x)| < \epsilon$$
.
A sequence of functions $f_n : U \to V$, converges *uniformly* to $f : U \to V$ if for every $\epsilon > 0$,

so that if n > N, then

for every $x \in U$, $|f_n(x)-f(x)|<\epsilon.$ Why care about uniform convergence?

The limit of a uniformly convergent sequence of continuous functions is itself continuous.

Cauchy sequences of functions?

A sequence of functions $f_n: U \to V$ is uniformly Cauchy if for every $\epsilon > 0$, there exists N, so that whenever n, m > N, then for all $x \in U$, $|f_n(x) - f_m(x)| < \epsilon$. Uniform convergence iff uniformly Cauchy.

Weierstrass M-test

The series $\sum a_n$ majorizes a series $\sum f_n(x)$ if there exists M so that for n sufficiently large, $|f_n(x)| \leq Ma_n$.

If $\sum a_n$ converges, then $\sum f_n(x)$ converges uniformly.

Speed of course?

The Goldilocks question: Too fast? Too slow? Just right?