Métodos Numéricos

1er Cuatrimestre 2024

Práctica 4

Matrices ortogonales Factorización QR

\checkmark 1. Sean $x, y \in \mathbb{R}^n$.

- a) ¿Qué quiere decir que x sea ortogonal a y?
- b) Probar que $x \perp y \ (x, y \text{ no nulos}) \Rightarrow \{x, y\}$ es l.i.
- c) Dar un ejemplo de 2 vectores en \mathbb{R}^3 que sean ortogonales, y 2 que no lo sean.
- d) ¿Es cierto que \perp define una relación transitiva en \mathbb{R}^n ?
- $\sqrt{2}$. Sea $Q \in \mathbb{R}^{n \times n}$. Probar que son equivalentes:
 - a) $Q^{-1} = Q^t$
 - b) Las columnas de Q forman un conjunto ortonormal¹.
 - c) Las filas de Q forman un conjunto ortonormal¹.
 - d) $||Qx||_2 = ||x||_2$

Interpretar (d) geométricamente.

Sugerencia: para demostrar la implicación $(d \Rightarrow b)$ usar que $x^t y = \frac{1}{4}(\|x+y\|_2^2 - \|x-y\|_2^2)$.

- $\sqrt{ }$ 3. Sean $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}$ ortogonales. Probar que $A \cdot B$ es ortogonal.
- \checkmark 4. Sea $Q \in \mathbb{R}^{n \times n}$ ortogonal. Probar que:
 - a) $det(Q) = 1 \circ -1$
 - b) $\kappa_2(Q) = 1$
- \mathcal{J} (5. Sea u_1, \ldots, u_n una base ortonormal de vectores de \mathbb{R}^n . Demostrar que para cualquier vector $x \in \mathbb{R}^n$, la coordenada de x respecto de u_k es igual a $u_k^t x$, para cualquier $k = 1, \ldots, n$.
 - √6. ¿Cuáles de las siguientes matrices es necesariamente ortogonal?
 - ✓a) Permutación
 - × b) Simétrica definida positiva
 - × c) No singular
 - 🗶 d) Diagonal
 - 7. Hallar la descomposición QR de la matriz A según los métodos de Givens y Householder, siendo

$$A = \begin{bmatrix} 12 & -51 & 4 \\ 6 & 167 & -68 \\ -4 & 24 & -41 \end{bmatrix}$$

 $^{\{}v_1, \dots, v_n\}$ con $v_i \in \mathbb{R}^n$ se dice ortonormal si $v_i^t v_j = 0 \ (\forall i \neq j)$ y $v_i^t v_i = 1 \ (\forall i : 1 \leqslant i \leqslant n)$.

- $\sqrt{8}$. Verificar que si $A \in \mathbb{R}^{n \times n}$ es no singular y tiene descomposición QR, entonces R es no singular.
- \checkmark (9. a) Sea $C \in \mathbb{R}^{n \times n}$ una matriz ortogonal y triangular superior. Demostrar que $\forall j = 1, \ldots, n$, $col_j(C) = \pm e_j$, donde e_j es el j-ésimo canónico de \mathbb{R}^n .
 - $\int \int$ b) Demostrar que si A es no singular, entonces la factorización A = QR es única si los elementos de la diagonal de R son positivos.
- \int 10. Sea $Q \in \mathbb{R}^{2\times 2}$ una matriz ortogonal tal que:

$$Q\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} \alpha\\ 0 \end{array}\right)$$

¿cuál debería ser el valor de α ?

 $\sqrt{ }$ (11. Sea $b \neq 0$ y la matriz A definida de la siguiente manera. Mostrar que si A es ortogonal, entonces sus elementos se pueden tomar como senos y cosenos de un ángulo θ .

$$A = \left(\begin{array}{cc} a & b \\ -b & c \end{array}\right)$$

12. Dadas dos matrices de Givens de $\mathbb{R}^{2\times 2}$, G_1 y G_2 , con ángulos θ y ω respectivamente, calcular e interpretar geométricamente G_1^2 , G_1G_2 y $G_1^tG_1$. Pista: recordar las relaciones trigonométricas:

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

Para G_1 , determinar el ángulo θ tal que

$$G_1\left(\begin{array}{cc}\sqrt{3} & 1\\1 & \sqrt{3}\end{array}\right) = \left(\begin{array}{cc} * & *\\0 & *\end{array}\right)$$

- $\sqrt{ }$ (13. Sea $G \in \mathbb{R}^n$ una matriz de rotación de Givens con un ángulo asociado $\theta \in [-\pi, \pi)$. Demostrar que G es definida positiva si y sólo si $|\theta| < \pi/2$.
- \checkmark (14. Considerar la transformación de Householder $P := I 2uu^t$ con $u = e_i$. Calcular explícitamente P e interpretar geométricamente Px con $x \in \mathbb{R}^n$.
 - $\int \int 15$. Sea $u \in \mathbb{R}^n$ tal que $||u||_2 = 1$. Demostrar que la matriz $Q := I 2uu^t$ es ortogonal y simétrica.
- 16. Sean x, y dos vectores de \mathbb{R}^n tales que $||x||_2 = ||y||_2$. Demostrar que la elección v := x y conduce a una transformación de Householder $H := I \frac{2vv^t}{||v||^2}$ tal que Hx = y y Hy = x.
 - $\int \left(17. \text{ Sea } U = I 2uu^t \text{ un reflector ortogonal. Sea } x \text{ tal que } x = v + w \text{ con } v \text{ múltiplo de } u \text{ y } w \text{ ortogonal a } u. \text{ Mostrar que } Ux = -v + w. \text{ Interpretar geométricamente en } \mathbb{R}^n.$
- 18. Sea $H_v = I 2(vv^t)/(v^tv)$ la transformación de Housholder asociada al vector $v \in \mathbb{R}^n$.
 - \int a) Sean dos matrices $V, W \in \mathbb{R}^{n \times k}$, y sea $G = I + VW^t$. Mostrar que $H_vG = I + VW^t + vw^t$, con $w = \frac{-2(v + WV^tv)}{v^tv}$.

- \bigvee (b) Demostrar que el producto de k reflectores de Householder puede escribirse como $I + VW^t$, con $V, W \in \mathbb{R}^{n \times k}$.
- 19. Demostrar que cualquier matriz $A \in \mathbb{R}^{n \times n}$ puede factorizarse como A = QL, con Q ortogonal y L triangular inferior.

Sugerencia: considerar la factorización QR de la matriz A con las columnas de A en orden inverso, es decir, de AP, con P una matriz de permutación conveniente.

✓ (20. Se desea hallar la factorización A = RQ de $A \in \mathbb{R}^{n \times n}$, con R triangular superior y Q ortogonal. Sea $\widetilde{Q} \in \mathbb{R}^{n \times n}$ una matriz ortogonal y $\widetilde{R} \in \mathbb{R}^{n \times n}$ una matriz triangular superior tal que $R = P\widetilde{R}^t P$ y $Q = P\widetilde{Q}^t$, donde $P \in \mathbb{R}^{n \times n}$ es una matriz de permutación definida como:

$$P_{ij} = \begin{cases} 1 & \text{si } i+j=n+1\\ 0 & \text{en otro caso} \end{cases}$$

- // a) Probar que R es triangular superior y Q es ortogonal.
- \checkmark (b) Probar que A=RQ si y sólo si $(PA)^t=\widetilde{Q}\widetilde{R}$ es la factorización QR de $(PA)^t$.
- ✓ (c) Describir un algoritmo para realizar la factorización RQ asumiendo disponible una función que calcula la factorización QR.

Resolver en computadora

i Sea el sistema lineal Ax = b:

$$\begin{bmatrix} 4 & 2 & 0 & 1 \\ -2 & 1 & -2 & 4 \\ 2 & 0 & 2 & 2 \\ 1 & 2 & 1 & -2 \end{bmatrix} x = \begin{bmatrix} 1 \\ -2 \\ 3 \\ -1 \end{bmatrix}$$

Usando los métodos de Householder y Givens, se pide:

- a) Resolver el sistema
- b) Calcular explícitamente la factorización QR de A
- c) Calcular la cantidad de operaciones realizadas
- ii Para cada una de las siguientes matrices en $\mathbb{R}^{6\times 4}$, calcular el rango de cada matriz y su factorización QR. Observar la forma de la matriz R para cada caso.

$$A = \begin{bmatrix} 4 & 2 & 0 & 1 \\ -2 & 1 & -2 & 4 \\ 2 & 0 & 2 & 2 \\ 1 & 2 & 1 & -2 \\ 3 & 1 & 0 & 5 \\ 1 & 0 & 4 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 2 & 0 & -4 \\ -2 & 1 & -2 & 2 \\ 2 & 0 & 2 & -2 \\ 1 & 2 & 1 & -1 \\ 3 & 1 & 0 & -3 \\ 1 & 0 & 4 & -1 \end{bmatrix}$$

Funciones útiles

Tanto $Matlab^1$ como $Numpy^2$ proveen funciones para calcular la descomposición QR de una matriz.

• En Matlab:

$$[Q,R] = qr(A)$$

• En Python, usando Numpy:

```
from numpy import *
from numpy.linalg import *
A = matrix([[8,2],[2,4],[5,3]], float)
Q, R = qr(A)
```

Notar que si $A \in \mathbb{R}^{m \times n}$ no es cuadrada, como en el ejemplo, la matriz R retornada es de $k \times n$ donde $k = \min(m, n)$.

Referencias

- [1] C. Meyer. *Matrix Analysis and Applied Linear Algebra*. Society for Industrial and Applied Mathematics, 2000.
- [2] D.S. Watkins. Fundamentals of Matrix Computations. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 2010.

¹http://www.mathworks.com/help/matlab/ref/qr.html

²http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.qr.html