

國立成功大學機械工程學系

Dynamics of Machinery

Kinematic Analysis of the Ram Drive with a Spring and a Damper

Homework 1

授課教授: 邱顯堂 教授

學 生: 陳佑典

班 級:機械所一丙

學 號: N16061325

繳交日期: 2017.10.18

Dynamics of Machinery

Kinematic Analysis of the Ram Drive with a Spring and a Damper

Please develop programs on a PC and use the package for the kinematic analysis of the ram drive with a spring and a damper, whose skeleton is as shown in Fig. 1 and the dimensions are given in Table 1. Additionally, $r_3' = 0.17 \text{ m}$, $\theta_3' = 27^\circ$, $\theta_1 = -107.47^\circ$ and $r_5' = 0 \text{ m}$. Between links 2 and 7, there are a pair of gears, both have 22 teeth with 15 mm module and their pressure angles are 20°, to keep ω_2 : $\omega_7 = 1$:-1. When $\theta_2 = 0^\circ$, $\theta_7 = 287.45^\circ$ for the assembly position of the gears. Regarding the locations for the fixed pivots of the spring and damper are $X_s = 0$ m, $Y_s = -0.75$ m, and $X_d = 0.22$ m, $Y_d = 0.44$ m, respectively. Please use the **analytical method** for the displacement analysis. The drive is operated with constant speeds of 10, 60, and 120 rad/sec, respectively. The results, with 1° interval, of **displacement**, **velocity** and **acceleration** of each moving link and its mass center are required, furthermore the spring length and the rate of change of the damper **length** are also needed. Please check the results, by choosing 2 (not particular) positions, with Please investigate the relations between the input velocity and the graphical methods. maximum magnitudes of the velocity and acceleration, respectively, of the ram. (Hints: The derivation and programs should be able to analyze the cases with **non-zero** input acceleration, and kinematic coefficients should be gotten before the velocity and acceleration analysis.)

項目	配分	得分	
結果與討論	70%		
結論與建議	10%		
報告寫作	10%		
報告美觀	10%		
總得分	100%		

表 1 複合驅動伺服沖床之機構尺寸及幾何慣性尺寸

i	(m)	m_i (kg)	ℓ_i (m)	ϕ_i (deg)	I_i (kg×m ²)
1	0.330				
2	0.055	53.00	0.0247	0	0.651
3	0.283	7.10	0.1287	13	0.047
4	0.322	10.59	0.1467	0	0.887
5		47.93	0.0000	0	
6	0.165	50.03	0.0749	0	0.313
7	0.061	60.07	0.0277	0	0.955