МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М. В. ЛОМОНОСОВА МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

ОТЧЁТ ПО ПРАКТИКУМУ НА ЭВМ

«КОНЕЧНО-РАЗНОСТНЫЕ МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ»

Задача № 15

Работу выполнил:

Вавилкин Андрей Дмитриевич (группа 422)

Преподаватель:

Самохин Александр Сергеевич

Содержание

1.	Пос	танові	ка задачи	3
2.	Ана	литич	еское решение	3
	21	Линей	іный случай	3
	22	Нелин	ейный случай	4
3.	Pac	чет и	теоретическое исследование линейной задачи	6
	31	Явная	схема	6
		31.1	Таблицы и графики	7
		31.2	Аппроксимация	8
		31.3	Дифференциальное приближение	9
		31.4	Устойчивость	10
	32	Неявн	ая схема	11
		32.1	Таблицы и графики	12
		32.2	Аппроксимация	13
		32.3	Дифференциальное приближение	14
		32.4	Устойчивость	15
4.	Pac	чет и ′	теоретическое исследование нелинейной задачи	16
	41	Явная	и схема	16
		41.1	Таблицы и графики	16
		41.2	Аппроксимация	20
	42	Неявн	ая схема	20
		42.1	Таблицы и графики	20
		42.2	Аппроксимация	23
5.	Спи	ісок лі	итературы	24

1. Постановка задачи

Необходимо найти численное решение уравнения переноса.

$$\frac{\partial u}{\partial t} + \frac{\partial F(u)}{\partial x} = 0$$

$$u_0(x) = \begin{cases} 0, & \text{если } x \leq 0; \\ 1, & \text{если } x > 0. \end{cases}$$

 $F(u) = \frac{1}{2}u$ — линейный случай.

 $F(u) = \frac{1}{2}u^2$ — нелинейный случай.

Используются явная и неявная схемы.

$$\begin{cases} v_m^{(1)} = v - \frac{\tau}{h} \left(F_{m+1}^n - F_m^n \right) \\ \hat{v} = \frac{1}{2} \left(v + v_m^{(1)} - \frac{\tau}{h} \left(F(v_m^{(1)}) - F(v_{m-1}^{(1)}) \right) \right) \end{cases}$$
 (1)

$$v_t + 0.5(F(\hat{v}))_x + 0.5(F(\hat{v}))_{\overline{x}} = 0$$
(2)

2. Аналитическое решение

2..1 Линейный случай

Уравнение:

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u}{\partial x} = 0$$

Начальные услвоия:

$$u_0(x,0) = \begin{cases} 0, & \text{если } x \leq 0; \\ 1, & \text{если } x > 0. \end{cases}$$

Сделаем замену:

$$\xi = x + \frac{1}{2}t$$
$$\eta = x - \frac{1}{2}t$$

Тогда справедливо:

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial t} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial t} = \frac{1}{2} \left(\frac{\partial u}{\partial \xi} - \frac{\partial u}{\partial \eta} \right)$$
$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta}$$

Подставим результат в исходное уравнение:

$$\frac{1}{2} \left(\frac{\partial u}{\partial \xi} - \frac{\partial u}{\partial \eta} \right) + \frac{1}{2} \left(\frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta} \right) = 0$$

После раскрытия скобок:

$$\frac{\partial u}{\partial \xi} = 0$$

Следовательно, искомая функция не зависит от ξ . То есть:

$$u = f(\eta) = f\left(x - \frac{1}{2}t\right).$$

Используем начальные условия:

$$u_0(x,0) = f(x) = \begin{cases} 0, & \text{если } x \leq 0; \\ 1, & \text{если } x > 0. \end{cases}$$

Следовательно:

$$u(x,t) = f\left(x - \frac{1}{2}t\right) = \begin{cases} 0, & \text{если } x - \frac{1}{2}t \leqslant 0; \\ 1, & \text{если } x - \frac{1}{2}t > 0. \end{cases}$$

Это и есть аналитическое решение для линейного случая. Начальный профиль движется влево со скоростью $\frac{1}{2}$.

2..2 Нелинейный случай

Решаем уравнение:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

Начальные условия:

$$u_0(x,0) = \begin{cases} 0, & \text{если } x \leq 0; \\ 1, & \text{если } x > 0. \end{cases}$$

Заметим, что если мы сделаем замену: $x \to kx, t \to kt$, то исходное уравнение не изменится, а если коэффициент k > 0, то начальные условия тоже перейдут в себя.

Это означаетс, что u(x,t) остается постоянной на всех лучах $x=\xi t$, выходящих из начала координат, а, значит, является функцией от $\xi=\frac{x}{t}$. Время будем считать положительным, t>0:

$$u(x,t) = u\left(\frac{x}{t}\right).$$

Подставим в наше уравнение этот результат. С учетом замены, справедливо:

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial t} = -\frac{x}{t^2} \frac{\partial u}{\partial \xi}$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} = \frac{1}{t} \frac{\partial u}{\partial \xi}$$

$$-\frac{x}{t^2} u'\left(\frac{x}{t}\right) + \frac{1}{t} u u'\left(\frac{x}{t}\right) = -\frac{1}{t} u'\left(\frac{x}{t}\right) \left(\frac{x}{t} - u\left(\frac{x}{t}\right)\right) = 0$$

Следовательно, либо u'=0, то есть u=const, либо $u=-\frac{x}{t}$. Необходимо соединить решения так, чтобы удовлетворялся закон неубывания энтропии, условия Ранкина-Гюгонио и выполнялись начальные условия. Две постоянные функции $u(t,x)\equiv u_1$ и $u(t,x)\equiv u_2,\ u_i=const$ как следует из условия Ранкина-Гюгонио, стыкуются по прямой:

$$x = \frac{F(u_2) - F(u_1)}{u_2 - u_1}t = \frac{1}{2}\frac{u_2^2 - u_1^2}{u_2 - u_1}t = -\frac{u_2 + u_1}{2}t$$

Причем скачок (из условия допустимпости разрыва) возможен только в сторону уменьшения u при росте x. Тогла если $u_2 > u_1$, то

$$u(x,t) = \begin{cases} u_2, & \text{если } x < -\frac{u_2 + u_1}{2}t; \\ u_1, & \text{если } x > -\frac{u_2 + u_1}{2}t. \end{cases}$$

Состыкуем константу и функцию $-\frac{x}{t}$. Они стыкуются по некоторому лучу $x=\xi t,$ тогда из условия Ранкина-Гюгонио:

$$\xi = \frac{dx}{dt} = \frac{F(u_3) - F(\xi)}{u_3 - \xi}t = \frac{1}{2}\frac{u_3^2 - \xi^2}{u_3 - \xi}t = \frac{u_3 + \xi}{2}t$$

Из этого равенства следует: $\xi = u_3$. Это означает, что полученная функция непрерывна на луче стыковки. Решение нельзя строить в виде ударной волны в силу условия неубывания энтропии. Искомое решение:

$$u(x,t) = \begin{cases} 1, & \text{если } x \geqslant t; \\ \frac{x}{t}, & \text{если } 0 < x < t; \\ 0, & \text{если } x < 0. \end{cases}$$

3. Расчет и теоретическое исследование линейной задачи

Рассматриваются явная и неявная схемы:

$$\begin{cases} v_m^{(1)} = v - \frac{\tau}{h} \left(F_{m+1}^n - F_m^n \right) \\ \hat{v} = \frac{1}{2} \left(v + v_m^{(1)} - \frac{\tau}{h} \left(F(v_m^{(1)}) - F(v_{m-1}^{(1)}) \right) \right) \end{cases}$$
(3)

$$v_t + 0.5(F(\hat{v}))_x + 0.5(F(\hat{v}))_{\overline{x}} = 0 \tag{4}$$

для численного решения уравнения переноса $\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u}{\partial x} = 0$ в области $Q_T = [(t,x): 0 < t < 1, -1 < x < 1].$

Здесь используются обозначения разностных операторов:

$$g_t = \frac{g_m^{n+1} - g_m^n}{\tau}$$
 $g_x = \frac{v_{m+1}^n - v_m^n}{h}$ $g_x^\circ = \frac{v_{m+1}^n - v_{m-1}^n}{2h}$

и обозначение

$$g_m^{n+1} = \hat{g}$$

Начальные условия: на прямой t=0 (при -1 < x < 1) определена функция

$$u_0(x) = \begin{cases} 0, & x \le 0, \\ 1, & x > 0 \end{cases}$$

Граничные условия: ввиду постоянства решения на характеристиках - прямых вида t=2x+C, при $0\leq t\leq 1$, для обеих схем u(t,-1)=0, u(t,1)=1.

3..1 Явная схема

Явная схема примет следующий вид:

$$\hat{v} = v + \frac{1}{4} \frac{\tau}{h} \left(v_{m-1}^n - v_{m+1}^n \right) - \frac{1}{8} \frac{\tau^2}{h^2} \left(2v - v_{m-1}^n - v_{m+1}^n \right) \tag{5}$$

Далее, $||v||_{C_h} = \max_{x_i \in \omega_h} |v_i|$, $||v||_{L_{1,h}} = h \sum_{x_i \in \omega_h} |v_i|$, $\Delta(v)_{\alpha} = ||v - u||_{\alpha}$, $\delta(v)_{\alpha} = \frac{||v - u||_{\alpha}}{||v||_{\alpha}}$.

3..1.1 Таблицы и графики

Таблица 1: Нормы погрешности расчетов явной схемы.

	1	риві погрен			
τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_{1,h}}$	$\delta(v)_{C_h}$	$\delta(v)_{L_{1,h}}$
0.1	0.1	0.456	0.117	0.456	0.209
0.01	0.1	0.524	0.223	0.524	0.339
0.001	0.1	0.528	0.252	0.528	0.366
0.1	0.01	$7.08e{+15}$	3.99e+14	1	1
0.01	0.01	0.576	0.0299	0.576	0.0578
0.001	0.01	0.602	0.055	0.602	0.102
0.1	0.001	8.67e + 35	4.87e + 33	1	1
0.01	0.001	$2.95\mathrm{e}{+167}$	$5.23e{+}165$	1	1

Пусть $\tau_k = \frac{\tau}{2^k}, h_k = \frac{h}{2^k}$. Для $k = 1, \dots, 4$ и $v^k = u$ вычислим $\Delta(v, v^k)_{\alpha} = ||v - v^k||_{\alpha}$, $\delta(v, v^k)_{\alpha} = \frac{||v - v^k||_{\alpha}}{||v||_{\alpha}}$.

Таблица 2: Оценки погрешности расчетов явной схемы на сетке

Таблица 3: Оценки погрешности расчетов явной схемы на сетке

	$\tau = 0.01, h = 0.01$						
	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_{1,h}}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_{1,h}}$			
v^1	0.28727	0.0101918	0.28727	0.0394757			
v^2	1	0.12909	1	1			
v^3	1	0.0645449	1	1			
v^4	1	0.0322725	1	1			

Рис.1. Явная линейная схема при $\tau = 0.01, h = 0.01$. График v(x), u(x)

Рис.2. Явная линейная схема при $\tau = 0.01, h = 0.01$. График u(x) - v(x)

3..1.2 Аппроксимация

Рассматривается уравнение переноса:

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u}{\partial x} = 0.$$

Посчитаем аппроксимацию явной схемы:

$$v_m^{n+1} - v_m^n + \frac{1}{4} \frac{\tau}{h} \left(v_{m+1}^n - v_{m-1}^n \right) + \frac{1}{8} \frac{\tau^2}{h^2} \left(2v_m^n - v_{m-1}^n - v_{m+1}^n \right) = 0$$

$$v_m^{n+1} = v + \tau \dot{v} + \frac{\tau^2}{2} \ddot{v} + O(\tau^3)$$
$$v_{m+1}^n = v + hv' + \frac{h^2}{2} v'' + O(h^3)$$
$$v_{m-1}^n = v - hv' + \frac{h^2}{2} v'' + O(h^3)$$

Тогда:

$$\tau \dot{v} + \frac{\tau^2}{2} \ddot{v} + O(\tau^3) + \frac{1}{4} \frac{\tau}{h} \left(2hv' + O(h^3) \right) + \frac{1}{8} \frac{\tau^2}{h^2} \left(-h^2 v'' + O(h^3) \right) = 0$$

$$\tau \dot{v} + \frac{\tau^2}{2} \ddot{v} + O(\tau^3) + \frac{\tau}{2} v' + \tau O(h^2) - \frac{1}{8} \tau^2 v'' + \tau^2 O(h) = O(\tau^3 + \tau h^2 + \tau^2 h)$$

3..1.3 Дифференциальное приближение

$$\begin{split} \frac{v_m^{n+1}-v_m^n}{\tau} + \frac{1}{2}\frac{v_{m+1}^n-v_{m-1}^n}{2h} - \frac{\tau}{8}\frac{v_{m+1}^n-2v_m^n+v_{m-1}^n}{h^2} &= 0 \\ \\ v_m^{n+1} &= v + \tau \dot{v} + \frac{\tau^2}{2} \ddot{v} + \frac{\tau^3}{6} \dddot{v} + O(\tau^4) \\ \\ v_{m+1}^n &= v + hv' + \frac{h^2}{2}v'' + \frac{h^3}{6}v''' + O(h^4) \\ \\ v_{m-1}^n &= v - hv' + \frac{h^2}{2}v'' - \frac{h^3}{6}v''' + O(h^4) \end{split}$$

Подставляем:

$$\begin{split} \dot{v} + \frac{\tau}{2} \ddot{v} + \frac{\tau^2}{6} \dddot{v} + O(\tau^3) + \frac{1}{2} v' + \frac{h^2}{12} v''' + O(h^3) - \frac{\tau}{8} v'' + O(\tau h^2) &= 0 \\ \\ \dot{v} + \frac{1}{2} v' - \frac{\tau}{8} v'' &= -\frac{\tau}{2} \ddot{v} - \frac{\tau^2}{6} \dddot{v} - \frac{h^2}{12} v''' + O(\tau^3 + h^3 + \tau h^2) \\ \\ \ddot{v} + \frac{1}{2} \dot{v}' - \frac{\tau}{8} \dot{v}'' &= -\frac{\tau}{2} \dddot{v} + O(\tau^2 + h^2) \\ \\ \dot{v}' + \frac{1}{2} v'' - \frac{\tau}{8} \dot{v}''' &= -\frac{\tau}{2} \ddot{v}' + O(\tau^2 + h^2) \\ \\ \ddot{v}' + \frac{1}{2} \ddot{v}' - \frac{\tau}{8} \dot{v}''' &= O(\tau + h^2) \end{split}$$

$$\dot{v''} + \frac{1}{2}v''' = O(\tau^2 + h)$$

$$\ddot{v'} + \frac{1}{2}\dot{v''} = O(\tau + h^2)$$

$$\dot{v''} = -\frac{1}{2}v''' = O(\tau^2 + h)$$

$$\ddot{v'} = \frac{1}{4}v''' + O(\tau^2 + h^2)$$

$$\ddot{v} = -\frac{1}{8}v''' + O(\tau^2 + h^2)$$

$$\dot{v}' = -\frac{1}{2}v'' + \frac{\tau}{8}v''' - \frac{\tau}{8}v''' + O(\tau^2 + h^2) = -\frac{1}{2}v'' + O(\tau^2 + h^2)$$

$$\ddot{v} = -\frac{1}{4}v'' - \frac{\tau}{8}v''' + O(\tau^2 + h^2)$$

Получаем:

$$\ddot{v} + \frac{1}{2}\dot{v}' - \frac{\tau}{8}v'' = -\frac{\tau}{8}v'' + v'''(\frac{\tau^2}{12} - \frac{h^2}{12}) + O(\tau^3 + h^3 + \tau h^2)$$

Введём $\nu=\frac{\tau}{2h},$ тогда:

$$\ddot{v} + \frac{1}{2}\dot{v}' - \frac{\tau}{8}v'' = -\frac{h\nu}{4}v'' + \frac{h^2}{12}(4\nu^2 - 1)v''' + O(\tau^3 + h^3 + \tau h^2)$$

3..1.4 Устойчивость

Пусть $v_m^n = (\lambda(\varphi))^n e^{im\varphi}$. Вычислим $\lambda = \lambda(\tau, h, \varphi)$.

Сократив на $(\lambda(\varphi))^n e^{im\varphi}$ имеем:

$$1 - \lambda + \frac{\tau}{4h} \left(e^{-i\varphi} - e^{i\varphi} \right) - \frac{\tau^2}{8h^2} \left(2 - e^{i\varphi} - e^{-i\varphi} \right) = 0$$

$$\lambda = 1 - \frac{\tau^2}{4h^2} - \frac{\tau}{2h}i\sin\varphi + \frac{\tau^2}{4h^2}\cos\varphi$$

Пусть $\nu = \frac{\tau}{2h}$

$$\lambda = 1 + \nu^2(\cos\varphi - 1) - i\nu\sin\varphi$$

$$|\lambda| = \sqrt{1 + \nu^2 (\cos \varphi - 1)^2 (\nu^2 - 1)}$$

Необходимое условие устойчивости: $|\lambda| \leq 1$

В нашем случае это аналогично условию $\nu \leq 1$.

Значит, $\frac{\tau}{2h} \leq 1$

3..2 Неявная схема

Неявная схема примет вид

$$\frac{1}{\tau}(\hat{v}-v) + \frac{1}{4h}\left(v_{m+1}^{n+1} - \hat{v} + v - v_{m-1}^n\right) = 0 \tag{3..6}$$

Расчет по неявным схемам реализуется следующим образом. Точки на n+1 слое образуют вектор $\hat{v}=(v_1^{n+1},v_2^{n+1},\ldots,v_m^{n+1})^T$, и он находится как решение следующей системы.

$$\begin{cases} \frac{1}{\tau} \left(\hat{v} - v \right) + \frac{1}{4h} \left(v_3^{n+1} - \hat{v} + v - v_1^n \right) = 0 \\ \frac{1}{\tau} \left(\hat{v} - v \right) + \frac{1}{4h} \left(v_4^{n+1} - \hat{v} + v - v_2^n \right) = 0 \\ \vdots \\ \frac{1}{\tau} \left(\hat{v} - v \right) + \frac{1}{4h} \left(v_m^{n+1} - \hat{v} + v - v_{m-2}^n \right) = 0 \end{cases}$$

Или, учитывая граничные условия $v_1^n=0$ и $v_m^n=1$ $\forall n$

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{mg+hk}{ml} & -\frac{kh}{ml} & -\frac{lR_1+hR}{ml} & 0 \\ -\frac{kh}{ml} & -\frac{mg+hk}{ml} & 0 & \frac{hR-lR_1}{ml} \end{pmatrix}$$

3..2.1 Таблицы и графики

Таблица 4: Нормы погрешности расчетов неявной схемы.

τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_{1,h}}$	$\delta(v)_{C_h}$	$\delta(v)_{L_{1,h}}$
0.1	0.1	0.455606	0.216059	0.455606	0.322517
0.01	0.1	0.52355	0.256411	0.52355	0.369818
0.001	0.1	0.528104	0.255816	0.528104	0.370026
0.1	0.01	7.75248e + 37	1.86716e + 36	1	1
0.01	0.01	0.575368	0.0787558	0.575368	0.138642
0.001	0.01	0.602473	0.0885658	0.602473	0.154283
0.1	0.001	1.62168e + 30	3.56294e + 28	1	1
0.001	0.001	0.62603	0.0270086	0.62603	0.0514776

Таблица 5: Оценки погрешности расчетов неявной схемы на сетке

$$\tau = 0.01, h = 0.01$$

	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_{1,h}}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_{1,h}}$
v^1	0.43357	0.0396647	0.43357	0.139652
v^2	0.367263	0.0195777	0.367263	0.137859
v^3	0.591917	0.00964576	0.591917	0.135843
v^4	0.450572	0.00473788	0.450572	0.133449

Таблица 6: Оценки погрешности расчетов неявной схемы на сетке

$$\tau = 0.1, h = 0.1$$

$r = 0.1, r_{\ell} = 0.1$							
	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_{1,h}}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_{1,h}}$			
v^1	0.340362	0.0883233	0.340362	0.263685			
v^2	0.276851	0.0464735	0.276851	0.277489			
v^3	0.251331	0.0273653	0.251331	0.326791			
v^4	0.344099	0.0120354	0.344099	0.287449			

Рис.3. Неявная линейная схема при $\tau = 0.01, h = 0.01.$ График v(x), u(x)

Рис.4. Неявная линейная схема при $\tau = 0.01, h = 0.01$. График u(x) - v(x)

3..2.2 Аппроксимация

Рассматривается уравнение переноса:

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u}{\partial x} = 0.$$

Посчитаем аппроксимацию неявной схемы:

$$F = \frac{v_m^{n+1} - v_m^n}{\tau} + \frac{v_{m+1}^{n+1} - v_m^{n+1} + v_m^n - v_{m-1}^n}{4h}$$

$$v_m^{n+1} = v + \tau \dot{v} + \frac{\tau^2}{2} \ddot{v} + O(\tau^3)$$

$$v_{m-1}^{n} = v - hv' + \frac{h^{2}}{2}v'' + O(h^{3})$$

$$v_{m+1}^{n+1} = v + \tau \dot{v} + hv' + \frac{\tau^2}{2}\ddot{v} + \frac{h^2}{2}v'' + \tau h\dot{v}' + O(h^3 + \tau^3)$$

Тогда F примет вид:

$$F = \dot{v} + \frac{\tau}{2}\ddot{v} + O(\tau^2) + \frac{v'}{2} + \frac{\tau}{2}\dot{v'} + O(h^2 + \frac{\tau^3}{h}) = O(\tau^2 + h^2 + \frac{\tau^3}{h})$$

3..2.3 Дифференциальное приближение

$$v_m^{n+1} = v + \tau \dot{v} + \frac{\tau^2}{2} \ddot{v} + \frac{\tau^3}{6} \ddot{v} + O(\tau^4)$$

$$v_{m+1}^{n} = v + hv' + \frac{h^{2}}{2}v'' + \frac{h^{3}}{6}v''' + O(h^{4})$$

$$v_{m-1}^{n} = v - hv' + \frac{h^{2}}{2}v'' - \frac{h^{3}}{6}v''' + O(h^{4})$$

$$v_{m+1}^{n+1} = v + \tau \dot{v} + hv' + \frac{\tau^2}{2} \ddot{v} + \frac{h^2}{2} v'' + \tau h \dot{v'} + \frac{h^3}{6} v''' + \frac{\tau^3}{6} \ddot{v} + \frac{\tau^2 h}{2} \ddot{v'} + \frac{\tau h^2}{2} \dot{v''} + O(h^4 + \tau^4)$$

$$v_{m-1}^{n+1} = v + \tau \dot{v} - hv' + \frac{\tau^2}{2} \ddot{v} + \frac{h^2}{2} v'' - \tau h \dot{v'} + \frac{h^3}{6} v''' + \frac{\tau^3}{6} \ddot{v} - \frac{\tau^2 h}{2} \ddot{v'} + \frac{\tau h^2}{2} \dot{v''} + O(h^4 + \tau^4)$$

Подставляем эти выражения в схему и после переноса:

$$\dot{v} + \frac{1}{2}v' = -\frac{\tau}{2}\ddot{v} - \frac{\tau^2}{6}\ddot{v} - \frac{h^2}{12}v''' + \frac{\tau^2}{4}\ddot{v}'' + \frac{\tau}{8}v'' + \frac{\tau^2}{8}\dot{v}' + O(\tau^3 + h^3)(*)$$

Продифференцируем (*) дважды по x, дважды по t и по x, t:

$$\ddot{v} + \frac{1}{2}\ddot{v'} = O(\tau + h)$$

$$\ddot{\ddot{v}} + \frac{1}{2}\dot{\dot{v}}'' = O(\tau + h)$$

$$\dot{v''} + \frac{1}{2}v''' = O(\tau + h)$$

$$\dot{v''} = -\frac{1}{2}v''' + O(\tau + h)$$

$$\ddot{v'} = \frac{1}{4}v''' + O(\tau + h)$$

$$\ddot{v} = -\frac{1}{8}v''' + O(\tau + h)$$

Тогда:

$$\dot{v'} = -\frac{1}{2}v'' - \frac{\tau}{4}v''' + O(\tau^2 + h^2)$$

$$\ddot{v} = \frac{1}{4}v'' - \frac{\tau}{4}v''' + O(\tau^2 + h^2)$$

Окончательно получаем:

$$\dot{v} + \frac{1}{2}v' = \frac{\tau}{4}v'' - (\frac{5\tau^2}{48} - \frac{h^2}{12})v''' + O(\tau 3 + h^3)$$

3..2.4 Устойчивость

Пусть $v_m^n = (\lambda(\varphi))^n e^{im\varphi}$. Вычислим $\lambda = \lambda(\tau, h, \varphi)$.

Сократив на $(\lambda(\varphi))^n e^{im\varphi}$ имеем:

$$\frac{\lambda - 1}{\tau} + \lambda \frac{\lambda e^{i\varphi} - \lambda + 1 - e^{-i\varphi}}{4h} = 0$$

$$\lambda = \frac{\frac{1}{\tau} - \frac{1}{4h} + \frac{e^{-i\varphi}}{4h}}{\frac{1}{\tau} - \frac{1}{4h} + \frac{e^{i\varphi}}{4h}}$$

$$\lambda = \frac{2 - \nu + \nu e^{-i\varphi}}{2 - \nu + \nu e^{i\varphi}}$$

$$\lambda = \frac{2 - \nu + \nu \cos \varphi - \nu i \sin \varphi}{2 - \nu + \nu \cos \varphi + \nu i \sin \varphi} = \frac{(2 - \nu + \nu \cos \varphi)^2 - \nu^2 \sin^2 \varphi - i2\nu \sin \varphi (2 - \nu + \nu \cos \varphi)}{(2 - \nu + \nu \cos \varphi)^2 + \nu^2 \sin^2 \varphi}$$
$$|\lambda| = \sqrt{((2 - \nu + \nu \cos \varphi)^2 - \nu^2 \sin^2 \varphi)^2 + (2\nu \sin \varphi (2 - \nu + \nu \cos \varphi))^2} =$$
$$= (2 - \nu + \nu \cos \varphi)^2 + \nu^2 \sin^2 \varphi = 2 - 4\nu + 2\nu^2 + 2\nu (2 - \nu) \cos \varphi =$$

$$= 2(1 - \nu)^2 + 2\nu(2 - \nu)\cos\varphi \ge 1$$

$$0 < \nu < 2$$

4. Расчет и теоретическое исследование нелинейной задачи

Рассматриваются явная и неявная схемы:

$$\begin{cases} v_m^{(1)} = v - \frac{\tau}{h} \left(F_{m+1}^n - F_m^n \right) \\ \hat{v} = \frac{1}{2} \left(v + v_m^{(1)} - \frac{\tau}{h} \left(F(v_m^{(1)}) - F(v_{m-1}^{(1)}) \right) \right) \end{cases}$$
(4..1)

$$v_t + 0.5(F(\hat{v}))_x + 0.5(F(\hat{v}))_{\overline{x}} = 0 \tag{4..2}$$

для численного решения уравнения переноса $\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u^2}{\partial x} = 0$ в области $Q_T = [(t,x): 0 < t < 1, -0.5 < x < 1.5].$

Начальные условия: на прямой t = 0 (при -0.5 < x < 1.5) определена функция

$$u_0(x) = \begin{cases} 0, & x \le 0, \\ 1, & x > 0 \end{cases}$$

Граничные условия: ввиду постоянства решения на характеристиках - прямых вида t=2x+C, при $0\leq t\leq 1$, для обеих схем $u(t,-0.5)=0,\ u(t,1.5)=1.$

4..1 Явная схема

Явная схема примет следующий вид:

$$\hat{v} = v - \frac{\tau}{4h} \left(\left(\left((v_{m-1}^n)^2 - v^2 \right) + \left(v - v_{m-1}^n + \frac{\tau}{2h} \left(2v^2 - (v_{m+1}^n)^2 - (v_{m-1}^n)^2 \right) \right) \cdot \left(v + v_{m-1}^n - \frac{\tau}{2h} \left((v_{m+1}^n)^2 - (v_{m-1}^n)^2 \right) \right) \right)$$

$$(4..4)$$

Далее, $||v||_{C_h} = \max_{x_i \in \omega_h} |v_i|$, $||v||_{L_{1,h}} = h \sum_{x_i \in \omega_h} |v_i|$, $\Delta(v)_\alpha = ||v-u||_\alpha$, $\delta(v)_\alpha = \frac{||v-u||_\alpha}{||v||_\alpha}$.

4..1.1 Таблицы и графики

Таблица 7: Нормы погрешности расчетов явной схемы.

au	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_{1,h}}$	$\delta(v)_{C_h}$	$\delta(v)_{L_{1,h}}$
0.05	0.1	0.80379	0.340655	0.80379	0.247752
0.005	0.1	0.578239	0.236347	0.578239	0.18978
0.0005	0.1	0.567154	0.228853	0.567154	0.185312
0.00005	0.1	0.566028	0.228126	0.566028	0.184876
0.0005	0.01	0.80643	0.263756	0.80643	0.208478
0.00005	0.01	0.801703	0.250814	0.801703	0.200398
0.00005	0.001	1.22162	0.32252	1	0.243833
0.001	0.1	0.568401	0.229665	0.568401	0.185799
0.0001	0.1	0.566154	0.228207	0.566154	0.184924

Пусть $\tau_k = \frac{\tau}{2^k}, h_k = \frac{h}{2^k}$. Для $k = 1, \dots, 4$ и $v^k = u$ вычислим $\Delta(v, v^k)_{\alpha} = ||v - v^k||_{\alpha}, \quad \delta(v, v^k)_{\alpha} = \frac{||v - v^k||_{\alpha}}{||v||_{\alpha}}.$

Таблица: Оценки погрешности расчетов явной схемы на сетке

	$\tau = 0.0001, h = 0.1$						
	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_{1,h}}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_{1,h}}$			
v^1	0.210862	0.0409134	0.210862	0.0663073			
v^2	0.516367	0.0320939	0.516367	0.104027			
v^3	0.677603	0.0194298	0.677603	0.125957			
v^4	0.385332	0.0072543	0.385332	0.0940548			

Таблица: Оценки погрешности расчетов явной схемы на сетке

	$\tau = 0.001, h = 0.1$						
	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_{1,h}}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_{1,h}}$			
v^1	0.220633	0.0409558	0.220633	0.0662664			
v^2	0.492735	0.0313368	0.492735	0.101406			
v^3	0.678037	0.0199836	0.678037	0.129334			
v^4	0.374081	0.00830233	0.374081	0.107465			

Таблица 8: Оценки погрешности расчетов явной схемы на сетке $\tau = 0.00005, h = 0.1$

	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_{1,h}}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_{1,h}}$
v^1	0.210327	0.0409108	0.210327	0.0663092
v^2	0.517636	0.0321335	0.517636	0.104165
v^3	0.677236	0.0193916	0.677236	0.125721
v^4	0.38383	0.00718564	0.38383	0.0931732

Таблица 9: Оценки погрешности расчетов явной схемы на сетке

$$\tau = 0.005, h = 0.1$$

	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_{1,h}}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_{1,h}}$
v^1	0.267216	0.0410647	0.267216	0.0659474
v^2	0.372664	0.0270655	0.372664	0.086931
v^3	0.534924	0.0190098	0.534924	0.122114
v^4	0.616093	0.00925665	0.616093	0.118925

Таблица 10: Оценки погрешности расчетов явной схемы на сетке

$$\tau = 0.0005, h = 0.01$$

	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_{1,h}}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_{1,h}}$
v^1	0.703037	0.0520714	0.703037	0.0823165
v^2	0.836918	0.0309377	0.836918	0.097815
v^3	1.05175	0.0164479	1.05175	0.104006
v^4	1.92274	0.0174819	1.92274	0.221089

Рис.5. Явная нелинейная схема при $\tau = 0.00005, h = 0.1.$ График v(x), u(x)

Рис.6. Явная нелинейная схема при $\tau = 0.00005, h = 0.1.$ График u(x) - v(x)

4..1.2 Аппроксимация

$$\hat{v} = v - \frac{\tau}{4h} \left(\left(\left((v_{m-1}^n)^2 - v^2 \right) + (v - v_{m-1}^n + \frac{\tau}{2h} \left(2v^2 - (v_{m+1}^n)^2 - (v_{m-1}^n)^2 \right) \right) \cdot \left(v + v_{m-1}^n - \frac{\tau}{2h} \left((v_{m+1}^n)^2 - (v_{m-1}^n)^2 \right) \right)$$

$$v_m^{n+1} = v + \tau \dot{v} + \frac{\tau^2}{2} \ddot{v} + O(\tau^3)$$

$$v_{m-1}^{n} = v - hv' + \frac{h^{2}}{2}v'' + O(h^{3})$$

$$v_{m+1}^{n} = v + hv' + \frac{h^2}{2}v'' + O(h^3)$$

Введём $g(t,x)=v^2(t,x)$

$$g_{m+1}^n = g + hg' + \frac{h^2}{2}g'' + O(h^3)$$

$$g_{m-1}^n = g - hg' + \frac{h^2}{2}g'' + O(h^3)$$

Тогда после подстановки и упрощений:

$$F = \tau \dot{v} + \frac{\tau^2}{2} \ddot{v} + O(\tau^3) - \frac{\tau}{4} g' + \frac{\tau h}{8} g'' + O(\tau h^2) + \frac{\tau}{2} v' v - \frac{\tau h}{4} v'^2 + O(\tau h^2) - \frac{\tau^2}{4} v' g' - \frac{\tau h}{4} v v'' + O(\tau^2 h) - \frac{\tau^2}{4} v g'' + O(\tau^3) = O(\tau^3 + \tau h^2 + \tau^2 h)$$

4..2 Неявная схема

Неявная схема примет следующий вид:

$$\frac{1}{\tau}(\hat{v}-v) + \frac{1}{4h}\left((v_{m+1}^{n+1})^2 - (v_{m-1}^{n+1})^2\right) = 0 \tag{4..5}$$

4..2.1 Таблицы и графики

Таблица 11: Нормы погрешности расчетов неявной схемы.

au	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_{1,h}}$	$\delta(v)_{C_h}$	$\delta(v)_{L_{1,h}}$
0.05	0.1	0.42466	0.178941	0.42466	0.151686
0.005	0.1	0.551315	0.221806	0.551315	0.180717
0.0005	0.1	0.56444	0.227413	0.56444	0.184413
0.00005	0.1	0.565757	0.227982	0.565757	0.184786
0.005	0.01	0.573367	0.175048	0.573367	0.14962
0.0005	0.01	0.771944	0.248115	0.771944	0.198782
0.00005	0.01	0.771944	0.248115	0.771944	0.198782

Таблица 12: Оценки погрешности расчетов неявной схемы на сетке

 $\tau = 0.05, h = 0.1$ $\Delta(v,\cdot)_{L_{1,h}}$ $\delta(v,\cdot)_{C_h}$ $\Delta(v,\cdot)_{C_h}$ $\delta(v,\cdot)_{L_{1,h}}$ v^1 0.2509770.03514290.05958020.250977 v^2 0.09941430.01796180.09941430.0609037 v^3 0.5481190.01688050.5481190.114475 v^4 0.3501240.007045640.3501240.0955596

Таблица 13: Оценки погрешности расчетов неявной схемы на сетке

 $\tau = 0.005, h = 0.1,$ $\Delta(v,\cdot)_{L_{1,h}}$ $\delta(v,\cdot)_{C_h}$ $\delta(v,\cdot)_{L_{1,h}}$ $\Delta(v,\cdot)_{C_h}$ v^1 0.1701220.06269580.03847540.170122 v^2 0.592807 0.03324290.5928070.108339 v^3 0.6162040.01690870.6162040.110211 v^4 0.1606310.005169950.1606310.0673955

Рис.7. Неявная нелинейная схема при $\tau=0.005, h=0.1.$ График v(x), u(x)

Рис.8. Неявная нелинейная схема при $\tau=0.05, h=0.1.$ График u(x)-v(x)

4..2.2 Аппроксимация

$$\frac{1}{\tau} \left(\hat{v} - v \right) + \frac{1}{4h} \left((v_{m+1}^{n+1})^2 - (v_{m-1}^{n+1})^2 \right) = 0$$

$$v_m^{n+1} = v + \tau \dot{v} + \frac{\tau^2}{2} \ddot{v} + O(\tau^3)$$

Введём $g(t,x) = v^2(t,x)$

$$g_{m+1}^{n+1} = g + hg' + \tau \dot{g} + \frac{h^2}{2}g'' + \frac{\tau^2}{2}\ddot{g} + \tau h\dot{g'} + O(h^3 + \tau^3)$$

$$g_{m-1}^{n+1} = g - hg' + \tau \dot{g} + \frac{h^2}{2}g'' + \frac{\tau^2}{2}\ddot{g} - \tau h\dot{g'} + O(h^3 + \tau^3)$$

Тогда после подстановки и упрощений:

$$F = \dot{v} + \frac{\tau}{2}\ddot{v} + O(\tau^2) + \frac{g'}{2} + \frac{\dot{g}'}{2} + O(h^2 + \frac{\tau^3}{h}) = O(\tau^2 + h^2 + \frac{\tau^3}{h})$$

5. Список литературы

 $A.\ B.\ \Pi$ опов «Практикум на ЭВМ: разностные методы решения квазилинейных уравнений первого порядка. Часть I»