WHAT IS CLAIMED IS:

1. A compound comprising the formula:

$$R_{1} = \left\{ \begin{array}{c} R_{2} \\ C \\ R_{3} \end{array} \right\}_{m} \left\{ \begin{array}{c} Y_{1} \\ M_{a} \end{array} \right\}_{a} \left\{ \begin{array}{c} E_{1} \\ C \\ C \end{array} \right\}_{a} \left\{ \begin{array}{c} E_{1} \\ C \end{array} \right\}_{a} \left\{ \begin{array}{c} E_{1} \\ C \end{array} \right\}_{a} \left\{ \begin{array}{c} C \\ C \end{array} \right\}_{a}$$

wherein:

(I)

R₁ is a polymeric residue;

Y₁ is O, S or NR₄;

M is O, S or NR₅;

 E_{2-4} are independently $H,\,E_1$ or

- (a) is zero or one;
- (m) is zero or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

Y₂₋₃ are independently O, S or NR₁₀;

 $R_{2\text{-}10} \ are \ independently \ selected \ from \ the \ group \ consisting \ of \ hydrogen,$ $C_{1\text{-}6} \ alkyls, \ C_{3\text{-}12} \ branched \ alkyls, \ C_{3\text{-}8} \ cycloalkyls, \ C_{1\text{-}6} \ substituted \ alkyls, \ C_{3\text{-}8} \ substituted \ cycloalkyls, \ aryls, \ substituted \ aryls, \ aralkyls, \ C_{1\text{-}6} \ heteroalkyls, \ substituted \ C_{1\text{-}6} \ heteroalkyls, \ cycloalkyls, \ cycloalkyls, \ aryls, \ substituted \ aryls, \ aralkyls, \ cycloalkyls, \ betteroalkyls, \ substituted \ cycloalkyls, \ aryls, \ aralkyls, \ cycloalkyls, \ cycloalkyls, \ aryls, \ aralkyls, \ cycloalkyls, \ aryls, \ ary$

D₁ and D₂ are independently OH,

or a terminal branching group;

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

(q) is zero or a positive integer;

L₁ and L₂ are independently selected bifunctional linkers;

 Y_{4-7} are independently selected from the group consisting of O, S and NR_{14} ;

 $R_{11\text{-}14} \ are \ independently \ selected \ from \ the \ group \ consisting \ of \ hydrogen, \ C_{1\text{-}6}$ alkyls, $C_{3\text{-}12}$ branched alkyls, $C_{3\text{-}8}$ cycloalkyls, $C_{1\text{-}6}$ substituted alkyls, $C_{3\text{-}8}$ substituted cycloalkyls, aryls, substituted aryls, aralkyls, $C_{1\text{-}6}$ heteroalkyls, substituted $C_{1\text{-}6}$ heteroalkyls, $C_{1\text{-}6}$ alkoxy, phenoxy and $C_{1\text{-}6}$ heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

 $\rm B_1$ and $\rm B_2$ are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties.

2. The compound of claim 1, wherein R_1 further comprises a capping group A, selected from the group consisting of hydrogen, NH_2 , OH, CO_2H , C_{1-6} moieties and

$$E_{2} \xrightarrow{C} C \xrightarrow{N} C \xrightarrow{Y_{1}} C \xrightarrow{R_{2}} C \xrightarrow{R_{2}} C \xrightarrow{R_{3}} m$$

3. A compound of claim 2, comprising the formula:

$$E_2 = \begin{bmatrix} E_1 & Y_1 & \\ C & N & C \end{bmatrix}$$

$$E_2 = \begin{bmatrix} C & N & C \\ C & M \end{bmatrix}$$

$$E_3 = \begin{bmatrix} C & N & C \\ R_3 & M & C \end{bmatrix}$$

$$E_4 = \begin{bmatrix} C & N & C \\ R_3 & M & C \end{bmatrix}$$

$$E_4 = \begin{bmatrix} C & N & C \\ R_3 & M & C \end{bmatrix}$$

4. The compound of claim 1, wherein said terminal branching group comprises the formula:

$$E_{35}$$
 $C - E_{36}$
 E_{38}
 E_{37}

wherein

$$E_{35}$$
 is
$$\begin{array}{c} \begin{array}{c} \begin{array}{c} R_7 \\ \\ C \end{array} \end{array} \begin{array}{c} Y_2 \\ C \end{array} \end{array} \begin{array}{c} C \\ D'_1 \end{array}$$

 E_{36-38} are independently H, E_{35} or

(n) and (p) are independently 0 or a positive integer;

Y₂₋₃ are independently O, S or NR₁₀;

 $R_{6\text{--}10} \ \text{are independently selected from the group consisting of hydrogen},$ $C_{1\text{--}6} \ \text{alkyls}, \ C_{3\text{--}12} \ \text{branched alkyls}, \ C_{3\text{--}8} \ \text{cycloalkyls}, \ C_{1\text{--}6} \ \text{substituted alkyls}, \ C_{3\text{--}8} \ \text{substituted}$ $cycloalkyls, \ \text{aryls}, \ \text{substituted aryls}, \ \text{aralkyls}, \ C_{1\text{--}6} \ \text{heteroalkyls}, \ \text{substituted} \ C_{1\text{--}6} \ \text{heteroalkyls},$ $c_{1\text{--}6} \ \text{heteroalkyls}, \ c_{1\text{--}6} \ \text{heteroalkoxy};$

D'1 and D'2 are independently OH,

or

$$\begin{array}{c|cccc}
(VII) & E_{45} \\
 & & \\
--N & --C & ---E_{46} \\
 & & \\
E_{48} & E_{47}
\end{array}$$

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

(q) is zero or a positive integer;

L₁ and L₂ are independently selected bifunctional linkers;

 Y_{4-7} are independently selected from the group consisting of O, S and NR_{14} ;

 $R_{11\text{-}14} \ are \ independently \ selected \ from \ the \ group \ consisting \ of \ hydrogen,$ $C_{1\text{-}6} \ alkyls, \ C_{3\text{-}12} \ branched \ alkyls, \ C_{3\text{-}8} \ cycloalkyls, \ C_{1\text{-}6} \ substituted \ alkyls, \ C_{3\text{-}8} \ substituted \ cycloalkyls, \ aryls, \ substituted \ aryls, \ aralkyls, \ C_{1\text{-}6} \ heteroalkyls, \ substituted \ C_{1\text{-}6} \ heteroalkyls, \ cycloalkyls, \ aryls, \ substituted \ cycloalkyls, \ aryls, \ aralkyls, \ C_{1\text{-}6} \ heteroalkyls, \ substituted \ cycloalkyls, \ aryls, \ aryls, \ aryls, \ aralkyls, \ cycloalkyls, \ aryls, \ ar$

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

 B_1 and B_2 are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties;

$$E_{45}$$
 is

$$\begin{array}{c|c}
 & Y_2 \\
 & C \\
 & C
\end{array}$$

$$\begin{array}{c|c}
 & C \\
 & R_6
\end{array}$$

$$\begin{array}{c|c}
 & C \\
 & D''_1
\end{array}$$

 E_{46-48} are independently H, E_{45} or

$$\begin{array}{c|c}
 & & Y_3 \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

wherein

 D''_1 and D''_2 are independently OH,

or
$$\begin{array}{c|c}
(IV) & Y_4 & Y_5 \\
\hline
N & L_1 & C \\
(V)^{R_{13}} & C & Y_5 \\
\hline
N & L_1 & C \\
\hline
N_{R_{13}} & C & Y_5 \\
\hline
N_{R_{13}} & C & Y_5 \\
\hline
N_{R_{13}} & C & Y_5 \\
\hline
N_{R_{12}} & Q & C \\
\hline
N_{R_{13}} & C & C \\
\hline
N_{R_{12}} & Q & C \\
\hline
N_{R_{13}} & C & C \\
\hline
N_{R_{13}} & C & C \\
\hline
N_{R_{14}} & C & C \\
\hline
N_{R_{15}} & C &$$

- 5. The compound of claim 3, Y_1 is O.
- 6. The compound of claim 1, wherein R_1 comprises a polyalkylene oxide residue.
- 7. The compound of claim 6, wherein R_1 comprises a polyethylene glycol residue.
- 8. The compound of claim 3, wherein R₁ comprises a polyethylene glycol residue.
- 9. The compound of claim 6, wherein R₁ is selected from the group consisting of

$$-C(=Y_8)-(CH_2)_{f^*}O-(CH_2CH_2O)_{x^*}-A$$
, $-C(=Y_8)-Y_9-(CH_2)_{f^*}O-(CH_2CH_2O)_{x^*}-A$,

$$-C(=Y_8)-NR_{20}-(CH_2)_f-O-(CH_2CH_2O)_x-A$$
, $-(CR_{21}R_{22})_e-O-(CH_2)_f-O-(CH_2CH_2O)_x-A$,

$$-NR_{20}$$
- $(CH_2)_f$ - O - $(CH_2CH_2O)_y$ - A , $-C$ (= Y_8)- $(CH_2)_f$ - O - $(CH_2CH_2O)_x$ - $(CH_2)_f$ - C (= Y_8)-,

$$-C(=Y_8)-Y_9-(CH_2)_{f}-O-(CH_2CH_2O)_{x}-(CH_2)_{f}-Y_9-C(=Y_8)-$$

$$-C(=Y_8)-NR_{20}-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-NR_{20}-C(=Y_8)-$$

$$-(CR_{21}R_{22})_e$$
-O- $(CH_2)_f$ -O- $(CH_2CH_2O)_x$ - $(CH_2)_f$ -O- $(CR_{21}R_{22})_e$ -, and

$$-NR_{20}$$
- $(CH_2)_f$ - O - $(CH_2CH_2O)_x$ - $(CH_2)_f$ - NR_{20} -

wherein:

Y₈ and Y₉ are independently O, S or NR₂₀;

x is the degree of polymerization;

 R_{20} , R_{21} and R_{22} are independently selected from among H, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls,

 C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

e and f are independently zero, one or two; and

A is a capping group.

- 10. The compound of claim 9, wherein R_1 comprises -O-(CH_2CH_2O)_x and x is a positive integer so that the weight average molecular weight is at least about 20,000.
- 11. The compound of claim 3, wherein R_1 has a weight average molecular weight of from about 20,000 to about 100,000.
- 12. The compound of claim 3, wherein R_1 has a weight average molecular weight of from about 25,000 to about 60,000.
- 13. A compound of claim 3, comprising the formula

14. The compound of claim 13, wherein D_1 is

$$\begin{array}{c|c}
(IV) & Y_4 & F_{11} \\
\hline
 & X_1 & Y_5 \\
\hline
 & X_{13} & Y_6 \\
\hline
 & X_{12} & Y_6
\end{array}$$

$$\begin{array}{c|c}
X_1 & Y_7 \\
\hline
 & X_1 & Y_6 \\
\hline
 & X_1 & Y_$$

15. The compound of claim 13, wherein D_1 is

$$-N$$
 $-C$
 E_{36}
 E_{38}
 E_{37}

- 16. The compound of claim 1, wherein L_1 is $(CH_2CH_2O)_2$.
- 17. The compound of claim 1, wherein L_2 is selected from the group consisting of -CH₂-, CH(CH₃)-, -CH₂C(O)NHCH(CH₃)-, -(CH₂)₂-, -CH₂C(O)NHCH₂-, -(CH₂)₂-NH-, -(CH₂)₂-NH-C(O)(CH₂)₂NH- and -CH₂C(O)NHCH(CH₂CH(CH₃)₂)-.
- 18. A compound of claim 1, selected from the group consisting of:

wherein R_1 is a PEG residue and D is selected from the group comprising:

where B is a residue of an amine or a hydroxyl- containing drug.

- 19. A compound of claim 18, wherein B is a residue of a member of the group consisting of: daunorubicin, doxorubicin; *p*-aminoaniline mustard, melphalan, Ara-C (cytosine arabinoside), leucine-Ara-C, and gemcitabine
- 20. A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 1, wherein D_1 is a residue of a biologically active moiety.
- 21. A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 18.

22. A method of preparing a polymer conjugate, comprising: reacting a compound of the formula (VIII):

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

 L_1 and L_2 are independently selected bifunctional linkers;

 Y_{4-7} are independently selected from the group consisting of O, S and NR_{14} ;

 R_{11-14} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group; and

B'₁ is a residue of a hydroxyl- or an amine-containing moiety; with a compound of the formula (IX):

wherein

$$E_5$$
 is
$$\begin{array}{c} \left(\begin{array}{c} R_7 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right) \begin{array}{c} Y_2 \\ \\ \\ C \end{array} \longrightarrow D_3$$

 E_{6-8} are independently H, E_5 or

$$\begin{array}{c|c}
 & & & Y_3 \\
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

wherein

 D_3 and D_4 are independently OH, a leaving group which is capable of reacting with an unprotected amine or hydroxyl or a terminal branching group;

 R_1 is a polymeric residue;

 Y_1 is O, S or NR_4 ;

M is O, S or NR₅;

(n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ; and

 $R_{2\text{-}10} \ are \ independently \ selected \ from \ the \ group \ consisting \ of \ hydrogen,$ $C_{1\text{-}6} \ alkyls, \ C_{3\text{-}12} \ branched \ alkyls, \ C_{3\text{-}8} \ cycloalkyls, \ C_{1\text{-}6} \ substituted \ alkyls, \ C_{3\text{-}8} \ substituted \ cycloalkyls, \ aryls, \ substituted \ aryls, \ aralkyls, \ C_{1\text{-}6} \ heteroalkyls, \ substituted \ C_{1\text{-}6} \ heteroalkyls, \ cycloalkyls, \ aryls, \ substituted \ cycloalkyls, \ aryls, \ a$

under conditions sufficient to cause a polymeric conjugate to be formed.