Supervised vs. Unsupervised Learning (1)

Supervised learning (classification)

- Supervision: The training data such as observations or measurements are accompanied by labels indicating the classes which they belong to
- New data is classified based on the models built from the training set

Supervised vs. Unsupervised Learning (2)

- Unsupervised learning (clustering)
- 1月をはらかいののりかはずのぎっるからりかいといろいい
- ☐ The class labels of training data are unknown
- ☐ Given a set of observations or measurements, establish the possible existence

of classes or clusters in the data

Prediction Problems: Classification vs. Numeric Prediction

Classification

- 9:1874nt Legretion
- Predict categorical class labels (discrete or nominal)
- Construct a model based on the training set and the class labels (the values in a classifying attribute) and use it in classifying new data
- Numeric prediction
 - Model continuous-valued functions (i.e., predict unknown or missing values)
- Typical applications of classification
 - Credit/loan approval
 - ☐ Medical diagnosis: if a tumor is cancerous or benign
 - ☐ Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—Model Construction, Validation and Testing

- □ Model construction เกา ปล่าง สุสุทิสาจอริ เเละ เอาก้าลงบลากานในโลเถลสารโม เดลโดนอนารีสิมุรัสทุ้
 - □ Each sample is assumed to belong to a predefined class (shown by the class label)
 - The set of samples used for model construction is training set
 - □ Model: Represented as decision trees, rules, mathematical formulas, or other forms
- Model Validation and Testing: ผูกไมเดลโปร์ดเผล
 - **Test:** Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy: % of test set samples that are correctly classified by the model
 - ☐ Test set is independent of training set
 - Validation: If the test set is used to select or refine models, it is called validation (or development) (test) set
- **Model Deployment:** If the accuracy is acceptable, use the model to classify new data

Information Gain: An Attribute Selection Measure

- □ Select the attribute with the highest information gain (used in typical decision tree induction algorithm: ID3/C4.5)
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

☐ Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_{A}(D)$$

Decision Tree Induction: An Example

Training data set: Who buys computer?

				<u></u>
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	
<=30	high	no no	excellent	XII
3140	high	no	fair	Y
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Note: The data set is adapted from "Playing Tennis" example of R. Quinlan

Example: Attribute Selection with Information Gain

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

$$\left(+\frac{5}{14}I(3,2) \right) = 0.694$$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly, we can get

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$