PIER -con SOLUZION(..

Università degli Studi di Brescia Facoltà di Ingegneria

Esercizio 1 (5 PUHTI

Si consideri il codice di Hamming (7,4) caratterizzato dal polinomio generatore $g(D) \ge 0^3 + D + 1$, e si supponga di aggiungere un'ottava cifra di parità complessiva in modo che il numero di bai risulti pari.

1) Determinare le parole del codice e la distanza minima. Quale è il potere correttore e rivelatore?

2) Considerando il codice di Hamming originale, se i bit codificati vengono trasmessi con forme 1 d'onda antipodali in presenza di rumore AWGN, quali sono le prestazioni di un ricevitore in qui si prendessero decisioni binarie prima del decodificatore?

2 3) E quelle del ricevitore ottimo?

Esercizio 2 (5 PUNTI)

gi consideri il codice convoluzionale a due stati con Rate 1/3 e con generatori (ottali) 2, 3, 1.

1) Disegnare lo schema a blocchi del codificatore, il diagramma di stato, il diagramma a traliccio, e la sequenza in uscita quando in ingresso si applichi la sequenza 010101100.

2) Ipotizzando che in ricezione (hard decision) a causa del rumore il bit ricevuto in nona posizioné sia errato e tutti gli altri corretti, determinare, applicando l'algoritmo di Viterbi, la stima a massima verosimiglianza della sequenza trasmessa partendo da quella sequenza ricevuta.

2 3) Stimare la probabilità di errore sul bit che si può ottenere usando tale codice nell'ipotesi di soft

decision in ricezione.

Esercizio 3 (9 PUNTI)

Su di un canale lineare tempo-invariante, in presenza di rumore AWGN indipendente dal segnale, si trasmette una sequenza di simboli indipendenti ed equiprobabili $a_k = \pm 1$ usando la forma d'onda $\dot{s}(t) = \sum_{k} a_{k} g(t-kT)$.

Il canale di trasmissione, non ideale, introduce interferenza intersimbolica. All'uscita dal campionatore in ricezione il canale discreto ha risposta all'impulso: $h(n)=0.5\delta(n+1)+\delta(n)+0.2\delta(n-1)$

1) Si determini la risposta all'impulso dell'equalizzatore Zero-Forcing stabile che inverte il canale (se esiste), stimando la varianza del rumore in uscita dall'equalizzatore (si assuma che i campioni del rumore all'ingresso dell'equalizzatore siano indipendenti e con varianza σ^2).

2) Si disegni la struttura di un equalizzatore con due prese Zero-Forcing ed una Decision-Feedback, e si determinino i relativi coefficienti. Si determini la caratteristica ingresso-uscita del sistema complessivo che include l'equalizzatore.

3) Con i valori dei coefficienti calcolati al punto precedente, quale è la varianza dell'interferenza

intersimbolica residua?

4) Quale è la varianza del rumore in uscita dall'equalizzatore?

Esercizio 4 5 + 3 PUNTT)

Si consideri il codice TCM per modulazione d'ampieza PAM a otto livelli (con mapping naturale) in cui j due bit meno significativi sono codificati usanto un codice convoluzionale a quattro stati con Rate 1/2 e con generatori (ottali) 5, 2.

1) Quale è la struttura del codificatore, del trasmettiore e del ricevitore?

2) Tenendo conto delle transizioni parallele, quanti sono gli eventi errore a distanza minima e quanti bit di informazione errati producono? Che banda viene richiesta per trasmettere 10 Mb/s?

3 3) Si calcoli il guadagno asintotico rispetto ad una modulazione d'ampiezza PAM non codificata di pari efficienza spettrale, ed il valore di E_b/N_0 richiesto per ottenere $P(E) = 10^{-8}$.

13 PUNTI DOMANDE \

- $\mathcal L$ D1. Descrivere la relazione che permette di rendere sistematico un codice lineare a blocco caratterizzato da un polinomio generatore g(D) che usato direttamente darebbe un codice non
- 2 D2. Descrivere, servendosi di un semplice esempio, la differenza tra hard decision e soft decision per la decodifica di codici lineari a blocco.
- 3 D3. Descrivere il significato della funzione "Esponente di Errore" e del "Cut-off Rate".
- D4. Descrivere in dettaglio la tecnica di equalizzazione adattativa MMSE che usa il metodo del gradiente stocastico nel caso di trasmissione di un segnale in banda-passante. Indicare come va scelto il passo di aggiornamento.

Posisono duagra dalle	- Laguert Intell		distanza de 000000
PAROLA DI INFORMAZIONE	Hamnins (7,1)	HAMMING + BIT DI PARITA	
6 0000	0000000	0 0 0 0 0 0 0	0
0001	0001011 3	00010111	4
(2) 0010	00101103	00101101	4
0011	00111014	001.1.010	4
6 0100	01011003	01011001	4
6 0101	01001114	01001110	4
6 0110	01110104	01110100	4
© 0111	01100013	01100011	4
6 1000	10110003	10110001	4
9 1001	10100114	10166710	4
(6)	10011104	10011100	4
6	100013	10001011	4
(B) 1100	11101004	. 1 1 0 1 0 0 0	4
(1)	4		8
© 1,10	11000103	11000101	4
	(1101)0014	11010010	4
		de marcon	

HON SISTEMATICO

