Topic 9: Measurements

Example 3

Study the diagram below and answer questions that follow.

 a) If the base area of the cylinder is 154cm². Find the radius of the cylinder.

b) Calculate the volume of the cylinder.

Find the height
$$2p - 2 = p + 3$$

$$2p - p - 2 = p - p + 3$$

$$P-2=3$$

 $P-2+2=3+2$

$$h = (p+3) = (5+3)cm$$

$$h = 8cm$$

Volume = Base area × height

Volume = $154cm^2 \times 8cm$

Volume = (154×8) cm³

 $Volume = 1232cm^3$

Activity

- 1. The base area of a cylinder is 38.5cm2 with a height of 10cm.
 - a) Find the radius of the cylinder.
- b) Calculate its volume.
- Given that the base area of a cylinder below is 1386cm².

- a) Workout the radius of the cylinder.
- b) Calculate the volume of the cylinder.
- Calculate the volume of the cylinder below.

- a) Work out the base area of the figure.
- b) Calculate the volume of the cylinder.
- 4. Study the cylinder below and answer questions that follow.

15cm

- a) Find the value of y.
- 10cm b) Calculate the base area of the cylinder.
 - c) Work out the volume of the cylinder.

Activity

- The volume and base area of a cylindrical tank is in the ratio of 5:2 respectively. If the base area of the tank is 154cm².
 - a) Find the radius of the cylindrical tank.
 b) Calculate the volume of the tank.
- The base area and volume of a cylindrical tank is in the ratio of 2:5 respectively. If the area is 88cm². Calculate the volume of the cylinder.
- The base area and volume of a cuboid is in the ratio of 1:3 respectively. Find the volume of the cuboid if the base area is 38.5cm².
- The base area and volume of a rectangular tank is in the ratio of 3:5 respectively.
 If the volume of the tank is 1500cm³. Calculate the base area of the tank.
- Given that the area of a cuboid is 144cm² and the volume is 480cm³. Find the ratio
 of the area and volume of the cuboid.
- The base area and volume of a cylinder is in the ratio of 5:8 respectively. If the base area of the cylinder is 1500cm². Find the volume of the cylinder.

9.59. Application of Ratios on Radius and Height of Cylinders

Example 1

The ratio of the radius and height of a cylinder are in the ratio of 3:10 respectively.

a) Given that the radius is 21cm,
 Find the height of the cylinder.

Radius	Height
3	10
21cm	?

3parts represent 21cm

1part represent $\left(\frac{21}{3}\right) cm$

1part represent 7cm

10parts represent (7×10)cm

10parts represent 70cm

The height is 70cm.

b) Calculate the area of the volume of the cylinder

Volume = $\pi r^2 h$

Volume = $\frac{22}{2} \times 21cm \times 21cm \times 70cm$

Volume = $\frac{22}{2} \times 21^3 \times 21 \times 70$) cm³

Volume = $(22\times3\times21\times70)$ cm³ Volume = (66×1470) cm³

Volume = 97020cm³

Example 2

The ratio of the height and the radius of a cylindrical tank is 5:2 respectively. If the height is 35cm. calculate the capacity of the tank. Volume of the cylinder

neight	Radius	1
5	2	
35cm	?	
5parts re	present 3	35cm
1part rep	resent ($\left(\frac{5}{5}\right)$ cm
1part rep		
2parts re	present (7×2)cm
2parts re	present 1	4cm
Radius =	14cm	

Hoight Dadius

Volume of the cylinder
Volume =
$$\pi r^2 h$$

Volume = $\frac{22}{7} \times 14cm \times 14cm \times 35cm$
Volume = $\frac{22}{7} \times 14^2 \times 14 \times 35)cm^3$
Volume = $(22 \times 2 \times 14 \times 35)cm^3$
Volume = $(44 \times 490)cm^3$
Volume = $21560cm^3$
1000cm³ = 1litre
21560cm3 = $\left(\frac{21560}{1000}\right) litres$
= 21.56litres

Example 3

The tank below contain water of $\frac{3}{7}$ full. If 210litres were added, it became $\frac{9}{10}$ full. What fraction of water was added?

$$\frac{9}{10} - \frac{3}{4} \cdot LCD = 20$$

$$\frac{9}{10_1} \times 20^2 - \frac{3}{4_1} \times 20^5$$

$$\frac{18-15}{20} = \frac{3}{20}$$

Calculate the capacity of the tank when full.

3parts represent 210litres

1part represents $\left(\frac{210}{2}\right)$ litres

1part represents 70litres

20parts represent (70×20)litres

20parts represent 1400litres.

Let the capacity = p

 $\frac{3}{20} \times p = 210 litres$

 $\frac{3p}{20} \times \frac{3p}{20} = (210 \times 20) litres$ $\frac{3p^1}{5_1} = \left(\frac{210^{70} \times 20}{3_1}\right) litres$

 $P = 70 \times 20$ litres

P = 1400litres

Example 4

Tank A $\frac{1}{2}$ full of water and tank B is $\frac{3}{4}$ full of water but they can hold the same amount of water. If there are 24 more litres in tank B than tank A.

- a) Find the volume of water tank B can hold when completely full. Find the difference in the water of the two tanks Volume of water in the tank.

 $\frac{\frac{3}{4} - \frac{1}{2}LCD} = 4$ $\frac{\frac{1\times 3 - 2\times 1}{4}}{\frac{1}{4}} = \frac{\frac{3-2}{4}}{\frac{1}{4}}$ $= \frac{1}{4}$ 1 part represents 24 litres
4 parts represent (24×4) litres
4 parts represent 96 litres
The tank can hold 96 litres

b) How much water is in tank B now? The tank is 3 now

 $\frac{3}{4} \times 96^{24}$ litres (3×24) litres 72 litres

A tank is $\frac{3}{4}$ full of water, when 300 litres of water is removed it becomes $\frac{1}{2}$ full. How many litres of water can the tank hold when completely full?

Fraction of water which was removed $\frac{3}{4} - \frac{1}{3}L.C.D = 12$ $\frac{3\times 3-4\times 1}{12} = \frac{9-4}{12}$

5parts represent 300litres

1part represents $\left(\frac{300}{5}\right)$ litres

1 part represents 60litres

12parts represent (60×12)litres

12parts represent 720litres

The tank can hold 720litres

11.7. Awarding of Marks or Scores

Example 1

A teacher gave a test of 20 questions and awarded 4 marks for every correct question and deducted a mark for every wrong question. If a pupil got 15 correct questions,

a) What marks did the pupil get?

Marks obtained from correct questions =(15 x 4)=60marks He got (60 - 5) marks He got (60 - 5) marks Marks obtained from wrong questions $=(20-15) \times -1$ = (5 x -1) marks = -5 marks

b) If the pupil got 60 marks, how many questions did he get correct?

Let the correct questions = n Wrong questions = (20 - n)

Marks from correct questions | Marks from wrong questions | Total marks 60 -1(20 - n) $(n \times 4)$

$$n \times 4 + -1(20 - n) = 60$$

 $4n - 20 + n = 60$
 $4n + n - 20 = 60$
 $5n - 20 + 20 = 60 + 20$
 $\frac{5n^{1}}{5_{1}} = \frac{80^{16}}{5_{1}}$
 $n = 16$
He got 16 questions correct.

c) How many questions did he fail?

He failed (20 - 16) = 4questions

Example 2

A teacher gave a test of 20 questions to a girl. He awarded 5 marks for every correct answer but deducted 2 marks for every wrong answer. If a pupil got 72 marks, how many questions did he fail?

Let the correct questions = m.

Correct questions	Wrong questions	Total	
m x 5	-2(20 - m)	72	
5m - 40 + 2m = 72	10 2000		

$$5m + 2m - 40 = 72$$
 $7m - 40 + 40 = 72 + 40$
 $7m = 112$
 $7m = 16$
 $7m = 16$
 $7m = 16$
 $7m = 16$

16 were correct questions
Wrong questions = $(20 - m)$
 $= (20 - 16)$ questions
 $= 4$ wrong questions

Activity

- 1. A teacher awards 3 marks for every correct answer and subtracts 2marks for every wrong answer in a test of 30 questions.
 - a) If Joanita answered 25questions correctly, how many marks did she get?
 - b) If joseph failed 8questions, find his final marks.

Topic 5: Fractions

Example 2

Three men Mukasa, Mukiibi and Muqabi contributed money for a business. In the ratio of 3:5:7 respectively. If Mukasa gave sh.360,000 less than Mugabi. How much did Mukiibi distribute?

Mukasa	Mukiibi	Mugabi	Total ratio	
3	5	7	15	
$\frac{7}{15} - \frac{3}{15} = \frac{4}{15}$		7015	P	lukiibi contributed 5 parts
4 parts rep	resent sh.360	,000	if	1 part represents sh.90,000
1 part represents 360,000		5	parts represent sh.90,000 x 5	
1 part represents sh.90,000		5	parts represent sh.450,000	

Activity

1. Water and milk are mixed in the ratio of 3:1 to make tea for a party. How many litres of milk are in 20 litres of tea?

Mukiibi contributed sh.450,000

- 2. Okello divided his money among his daughters; Annet, Babra and Christine in the ratio of 4:5:6 respectively. If Annet got sh.600,000, find the amount of money that Okello had at the beginning.
- 3. In a feeds factory, crushed fish is mixed with maize flour in the ratio of 1:3. The feed are packed in 80kg bags.
 - a) How many kilograms of fish are used in one bag of the feeds?

- b) If one kilogram of maize flour costs sh.4000, how much does it cost to buy maize flour to make feeds weighing 1000kg?
- 4. Okot, Odongo and Okello shared a certain sum of money in the ratio of 3:2:4 respectively. If Okello got sh.48,000 more than Odongo.
 - b) How much did Okot get? a) How much money did they share altogether?
- 5. A, B and C contributed for a business in the ratio of 5:3:4 respectively. C contributed sh80,000 more than B.
 - a) How much did they contribute altogether?
 - b) How much did A contribute?
- Juliet, Grace and Moreen shared a certain amount of money in the ratio 4:3:7 respectively. If Moreen got sh.120,000 more than Juliet,
 - a) Find their total share.
 - b) Express the amount got by Moreen as a percentage of the total share.
- 7. Ann, Barbra and Christine shared money in the ratio of 4:5:6 respectively. If Ann got sh.700,000 less than Christine.
 - a) How much did they share altogether?
 b) How much did Christine get?
- 8. Jolly, Julie and Molly shared in the ratio of 3:2:5 respectively. If molly got sh.18,000 more than Jolly.
 - a) How much did they share altogether?
 - b) How much more money did Jolly get than Julie?

Activity

- After selling a plot of land to Joseph at shs.9,000,000, Josephine made a loss of 10%. How much money did Josephine pay for the plot of land?
- 2. A man sold a plot of land at sh.72,000,000 and made a loss of 20%. How much did he buy the plot?
- The selling price of a cell phone is sh.120,000 a shop keeper gets a loss of 20%. Calculate the cost price of the phone.
- 4. Linda spent 70% of her salary on food, 50% of the remaining on other things. She was left with sh.60,000. How much did she have at the beginning?
- 5. Majidu sold a dozen of books at sh.30,000 making a loss of 40%. How much did Majidu buy a dozen of books?
- 6. Madowadowa's wage was decreased by 10% to sh.108,000. Find his old salary.
- 7. A Mutembeyi sold a phone at sh.43200 making a loss of 40%. How much did the Mutembeyi buy the phone?
- The price of a shirt was reduced by 30% to sh.28000. How much was the price of the shirt before the reduction?
- A bus fare from Kigali to Kampala was decreased by 20% to sh.40,000. Calculate the previous fare of the bus from Kigali to Kampala.
- Miss Birungi paid sh.15,000 from Kampala to Mbale after a reduction of 25%. Work out the previous fare.

5.39. Application of Percentage In Relation To Fractions

Example 1

Odinga spends 20% of his salary on water bills, 10% of the remainder on yaka bills and save the rest. If Odinga saves sh.504,000.

a) Calculate the percentage saved.

Water bills	Reminder	Yaka bills	Savings
20%	100 20 80	80 10 8 - 904	100 (20 8)
	100 - 100 = 100	$\frac{30}{100} \times \frac{10}{100} = \frac{3}{100} = 8\%$	100 100 100 100 100 28 72
			$\overline{100} - \overline{100} = \overline{100}$

b) Calculate Odinga's monthly salary.

Method 1

72% represent sh. 504000

1% represent sh.
$$\left(\frac{504000^{7000}}{72_1}\right)$$

1% represent sh. 7000

100% represent sh.(7000×100)

100% represent sh.700,000

Odinga's salary is sh. 700,000

Method 2

Let his total salary = p

$$\frac{72}{100}$$
 of $p = sh. 504000$

$$100 \times \frac{72}{100} \times p = sh.504000 \times 100$$

$$\frac{72p}{72} = sh. \frac{50400000^{700000}}{72}$$

$$P = sh.700,000$$

Odong's salary is sh.700,000

Topic 8: Time, Distance and Speed

- An Aeroplane flew from Entebbe airport for Newyork at a speed of 120km/hr for 6hours. On its way back due to the bad weather it reduced the speed by 80km/hr.
 - a) Find the distance from Entebbe to Newyork.
 - b) Calculate the average speed for the whole journey.
- A motorist covered 33¹/₃% of the journey in 2hours and he remained with 140km. if the average speed for the whole journey was 45km/h,
 - a) Calculate the time he took to complete the remaining journey.
 - b) Calculate the average speed he used to complete the journey.
- 4. YY bus broke down after covering 210km from Kampala heading to Moroto, this was 30% of the journey. If it took 8hours to cover the whole journey calculate the average speed for the whole journey.

8.9. More About Average Speed

Example 1

A Nile coach bus travelled from Kampala to Arua broke down after covering $\frac{3}{4}$ of the journey. Calculate the distance from Kampala to Arua if it was remaining with 60km to complete the journey.

Fraction of the journey remaining.

$$1 - \frac{3}{4} = \frac{4 - 3}{4}$$

$$= \frac{1}{4}$$

Distance from Kampala to Arua. 1part represents 60km.

4parts represent (60×4)km. 4parts represent 240km.

Its 240km from Kampala to Arua.

Example 2

A Uganda athlete collapsed after covering $\frac{1}{3}$ of the journey. If he was remaining with 24km, what distance was he supposed to cover?

Remaining fraction to complete the journey

$$1 - \frac{1}{3} = \frac{3-1}{3}$$
$$= \frac{2}{3}$$

2parts represent 24km. 1part represent $\left(\frac{24}{2}\right) km$ 1part represent 12km.

3parts represent (12×3)km. 3parts represent 36km

Example 3

A train from Mombasa to Kampala left at 5:00am and broke down in Kisumu after covering $\frac{7}{12}$ of the journey. Repairing took one hour and then continued to Kampala covering a distance of 300km from Kisumu.

By

Topic 9: Measurements

9.15. Application of Ratios on the Diagonals of a Rhombus

Example

The diagonals of a rhombus are as the ratio of 2:3 respectively. The length of the shorter side is 16cm. calculate the area of the rhombus.

Diagonal 1	Diagonal 2
2	3
16cm	?

2parts represent 16cm

1 part represents $\left(\frac{16}{2}\right) cm$

1part represents 8cm.

.. 3parts represent (8×3)cm.

3parts represent 24cm

2nd diagonal = 24cm

Area of the rhombus

Area = $\frac{1}{2} \times d_1 \times d_2$

Area = $\frac{1}{2} \times 16cm \times 24cm$ Area = $\frac{1}{2} \times 18^9 \times 24cm^2$

Area = 9×24 cm²

Area = 216cm²

Example 2

The diagonals of a rhombus are in the ratio of 3:5 respectively. Calculate the area of the rhombus whose longer side is 15cm.

Diagonal 1	Diagonal 2
3	5
?	15cm

5parts represent 15cm

1part represents $\left(\frac{15}{5}\right)$ cm

1part represents 3cm

3parts represents (3×3)cm 3parts represent 9cm $d_1 = 9 \text{cm } d_2 = 15 \text{cm}$ Area = $\frac{1}{2} \times 9 \text{cm} \times 15 \text{cm}$

A = ½×9×15cm

 $A = \left(\frac{135}{2}\right) \text{cm}^2$ $A = 67\% \text{cm}^2$

Activity

- The two diagonals of a rhombus are u=in the ratio of 3:8 respectively. The longer diagonal is 24cm.
 - a) Find the length of the shorter diagonal. b) Calculate the area of the rhombus
- The diagonals of a rhombus are in the ratio of 2:3 respectively. If the larger diagonal is 12cm.
 - a) Find the length of the smaller diagonal. b) Calculate the area of the rhombus.
- Study the rhombus below carefully and answer the questions that follow. Given the diagonals are in the ratio of 3:4.

- a) Find the value of y.
- b) Calculate the area of the rhombus.
- The diagonals of a rhombus are in the ratio of 3:4 respectively. The length of the longer diagonal (D1) is 12cm.
 - a) Find the length of diagonal two. (D2) b) What is the area of the rhombus?

9.17. Application of Ratios on Area and Perimeter of rectangles and Triangles

Example 1

The length and width of a rectangle are in the ratio of 3:2 respectively. If the area of the rectangle is 150cm².

 a) Find the actual length and width of the rectangle.

Let the constant length = p

Length	Width	Area
3×p	2×p	150
3p	2p	150

b) Calculate the perimeter of the rectangle.

P = 2(L+W)

P = 2(15cm + 10cm)

 $P = 2 \times 25 cm$

P = 50cm

$$3p \times 2p = 150$$
 Length $3p = 3 \times 5cm$ = 15cm $\sqrt{p^2} = \sqrt{25}$ Width $2p = 2 \times 5cm$ = 10cm

Example 2

 $L \times W = A$

The ratio of the length and width of a rectangle is 5:3 respectively. The perimeter of the rectangle is 64cm.

 a) Find the actual length and width of the rectangle.

Let the constant length = y.

Length	Width	Perimeter
5×y	3×y	64
5у	3 <i>y</i>	64cm

b) Calculate the area of the rectangle.

Area = Length× Width

Area = $20cm \times 12cm$

Area = (20×12) cm²

Area = 240cm^2

Perimeter =
$$2(L+W)$$

$$2(L+W) = p$$

$$2(5y + 3y) = 64cm$$
$$2 \times 8y = 64cm$$

$$\frac{16y}{16} = \frac{64cm}{16}$$

$$\frac{16}{v} = \frac{16}{4cm}$$

$$\begin{array}{c}
16 & 16 \\
v = 4cm
\end{array}$$

Length
$$5y=(5\times4)$$
cm

$$L = 20cm$$
Width $3y = (3 \times 4)cm$

Example 3

The base and height of a triangle are in the ratio of 2:3 respectively. If the area of triangle is 48cm², find the base and height.

Let their constant length = y.

Base	Height	Area
2×y	3×y	48cm ²
2y	3у	48cm ²

Topic 10: Measurements

9.24. Application of Ratios on diagonals of kites to find the Area

Example 1

The diagonals of a kite are in the ratio of 3:5 respectively, the length of the shorter diagonal is 18cm.

a) Find the length of the second diagonal.

D ₁	D ₂
3	5
18cm	?

3parts represent 18cm 1part represent $\left(\frac{18}{3}\right)$ cm

1part represent 6cm 5parts represent (6×5)cm 5parts represent 30cm Diagonal two 30cm

b) Calculate the area of the kite.

Area = $- \times d^1 \times d^2$ Area = $\frac{1}{2} \times 18cm \times 30cm$ Area = $\frac{1}{2} \times 18^9 \times 30 cm^2$ Area = (9×30) cm²

 $Area = 270cm^2$

Example 2

The two diagonals of a kite are in the ratio of 4:5 respectively. Given that the shorter diagonal is 8cm.

a) Find the length of the second diagonal.

Dı	D ₂
4	5
8cm	?

4part represent 8cm 1part represents (%)cm 1part represents 2cm 5parts represent (2×5)cm 5parts represent 10cm The second diagonal=10cm b) Calculate the area of the kite.

Area = $\frac{1}{2} \times d_1 \times d_2$ Area = $\frac{1}{2} \times 8 \text{cm} \times 10 \text{cm}$ Area = (4×10) cm² $Area = 40cm^2$

Activity

- 1. The two diagonals of a kite are in the ratio of 2:3 respectively. The length of the shorter diagonal is 6cm.
 - a) Find the length of the longer diagonal.
 b) Calculate the area of the kite.
- 2. The diagonals of a kite are in the ratio of 5:2 respectively. If the shorter diagonal is 14cm, find the area of the kite.
- The area of a kite is 180cm². One of the diagonals is 20cm, calculate the length of the second diagonal.
- 4. The ratio of the two diagonals of a kite is 3:7 respectively. If the shorter diagonal is 18cm.
 - a) Find the length of the second diagonal.
 b) Calculate the area of the kite.
- 5. The ratio of two diagonals of kite is 5:8 respectively. Calculate the area of kite if the diagonal of the longer side is 16cm.
- Calculate the area of the kite whose two diagonal are in the ratio of 8:3 respectively. Given the longer side is 24cm.