

PROIECT SISTEME DE CODUCERE A ROBOȚILOR					
Nume student	Călugăr Radu Silviu	GRUPA:	30144/1	Nota	

Brat robotic controlat prin bluetooth

Autori: Călugăr Radu-Silviu

Grupa: 30144

AN UNIVERSITAR: 2021-2022

PROIECT SISTEME DE CONDUCERE A ROBOȚILOR					
Nume student	Nume student Călugăr Radu-Silviu GRUPA 30144/1 Nota				
		:			

Cuprins

1.	Scopul proiectului	3
	a.Obiective	
k	b.Specificații	3-5
	Detalii proiect și schema de montaj	
3.	Braţul robotic	7
4.	Codul sursă	
5	Concluzii	c

PROIECT SISTEME DE CONDUCERE A ROBOȚILOR					
Nume student Călugăr Radu-Silviu GRUPA 30144/1 Nota					
		:			

1. Scopul proiectului

Scopul proiectului este de a reproduce un braț robotic controlat prin bluetooth cu ajutorul kit-ului Arduino MEGA și a aplicației RemoteXY.

a.Obiective

Pasii parcursi pentru realizarea proiectului sunt:

- 1. Conectarea firelor de alimentare și de semnal a servomotoarelor;
- 2. Construirea bratului robotic din 2 servomotoare si 2 piese de legătură;
- 3. Construirea griperului din 2 servomotoare si alte 2 piese;
- 4. Conectarea firelor de alimentare si semnal pentru modului bluetooth HC-06;
- 5. Implementarea unei aplicatii pentru controlul bratului in editorul RemoteXY;
- 6. Crearea unui cod pentru controlul brațului printr-o aplicatie mobile.

b.Specificații

Pentru partea hardware a acestui proiect au fost necesare urmatoarele componente:

Arduino Mega 2560– placă de dezvoltare bazată pe microcontrollerul Atmel AVR ATMega2560, pe 8 biti.

PROIECT SISTEME DE CONDUCERE A ROBOȚILOR					
Nume student	Nume student Călugăr Radu-Silviu GRUPA 30144/1 Nota				
		:			

> Jumpere

> Servomotor arduino SG90 9G mini micro

> Servomotor MG90S

➤ Modul bluetooh HC-06

> Breadboard

PROIECT SISTEME DE CONDUCERE A ROBOȚILOR					
Nume student Călugăr Radu-Silviu GRUPA 30144/1 Nota					
		:			

Pentru partea software a fost folosit editorul RemoteXY:

> Interfața aplicației mobile

PROIECT SISTEME DE CONDUCERE A ROBOȚILOR					
Nume student	Nume student Călugăr Radu-Silviu GRUPA 30144/1 Nota				
		:			

2. Detalii proiect și schema de montaj

a) Detalii:

Proiectul este bazat pe acționarea servomotoarelor în poziții exacte pentru: rotirea întregului braț și orientarea spre o piesă, aplecarea spre aceasta prin mișcare de translație, prinderea în griper si ridicare si mutare în locul dorit.

b) Schema de Montaj:

PROIECT SISTEME DE CONDUCERE A ROBOȚILOR					
Nume student Călugăr Radu-Silviu GRUPA 30144/1 Nota					
		:			

3. Brațul robotic:

F	PROIECT SISTEME DE CONDUCERE A ROBOȚILOR					
1	Nume student	Călugăr Radu-Silviu	GRUPA	30144/1	Nota	
			:			

4. Codul sursa

```
#include <RemoteXY.h>
#include <Servo.h>
   // RemoteXY connection settings
   #define REMOTEXY_SERIAL Serial
#define REMOTEXY_SERIAL_SPEED 115200
   #define REMOTEXY_WIFI_SSID "RemoteXY"
#define REMOTEXY_WIFI_PASSWORD "12345678"
   #define REMOTEXY_SERVER_PORT 6277
   #pragma pack(push, 1)
uint8_t RemoteXY_CONF[] =
   { 255,3,0,0,0,76,0,13,24,1,
      4,128,11,80,41,8,31,31,4,0,
      26,38,8,40,31,31,4,128,11,31,
      40,8,31,31,129,0,21,22,18,6,
     31,71,114,105,112,101,114,0,129,0,
1,54,26,5,31,84,114,97,110,115,
      108,97,116,105,111,110,0,129,0,20,
90,24,6,31,82,111,116,97,116,105,
     truct {
int8_t rotaion; // =0..100 slider position
int8_t translation; // =0..100 slider position
int8_t griper; // =0..100 slider position
uint8_t connect_flag; // =1 if wire connected, else =0
   } RemoteXY;
#pragma pack(pop)
      Servo rotation_servo;
      Servo translation servo;
      Servo griperl_servo;
     Servo griper2_servo;
  RemoteXY_Init ();
  rotation_servo.attach(7);
  translation_servo.attach(5);
griperl_servo.attach(6);
  griper2_servo.attach(4);
void loop()
 RemoteXY_Handler ();
int grp=RemoteXY.griper;
int i=5;
  int j=180;
  while (grp>=5)
     griperl_servo.write(j);
griper2_servo.write(i);
     grp--;
i++;
     j--;
  int trans=RemoteXY.translation;
  while(trans>=0)
     translation_servo.write(il);
     trans--;
 rotation_servo.write(RemoteXY.rotaion);
```

PROIECT SISTEME DE CONDUCERE A ROBOȚILOR					
Nume student	Nume student Călugăr Radu-Silviu GRUPA 30144/1 Nota				
		:			

5. Concluzii

În concluzie, prin implementare brațului robotic s-a reusit reproducerea la o scara redusă a unui braț robotic industrial de manipulare a pieselor controlat cu ajutorul unui telefon.

Ca suport didactic a fost utilizat îndrumătorul Arduino, youtube și site-uri de specialitate.