Selbststudium/Übung

Aufgabe 6.1. Gegeben seien die sechs Abbildungen $h_i : \mathbb{R} \setminus \{0,1\} \to \mathbb{R}$

$$h_1(x) = x, h_2(x) = 1 - x, h_3(x) = \frac{1}{x}, h_4(x) = \frac{x}{x - 1}$$

 $h_5(x) = \frac{1}{1 - x}, h_6(x) = 1 - \frac{1}{x}.$

- (i) Zeigen Sie, dass $G := \{h_1, h_2, h_3, h_4, h_5, h_6\}$ bezüglich der Komposition \circ von Abbildungen eine Gruppe ist.
- (ii) Bestimmen Sie alle Untergruppen von (G, \circ) .

Aufgabe 6.2. (a) Zeigen Sie, dass in einem Körper 1+1=0 genau dann gilt, wenn 1+1+1=0 ist.

(b) Sei p die kleinste Zahl in einem Körper K, falls es sie gibt, so dass $\underbrace{1+1+\cdots+1}_p=0$. Zeigen Sie, dass p dann eine Primzahl ist. Diese Zahl heißt Charakteristik des Körpers. Gibt es dieses p nicht, so sagt man, der Körper hat Charakteristik 0.

Aufgabe 6.3. Ist (R, +, *) ein Ring mit Eins, so bezeichnen wir mit R^{\times} die Menge aller invertierbaren Elemente von R bezüglich *.

- (a) Zeigen Sie, dass $(R^{\times}, *)$ eine Gruppe ist (die sogenannte Einheitengruppe von R).
- (b) Bestimmen Sie die Mengen \mathbb{Z}^{\times} sowie K^{\times} und $K[t]^{\times}$, wobei K ein Körper ist.

Aufgabe 6.4. (a) Berechnen Sie für die komplexen Zahlen $z=(2,1)\in\mathbb{C}$ und $u=(1,-3)\in\mathbb{C}$ die Terme $-z,\ -u,\ z+u,\ zu,\ z^{-1}u$ und $z^{-1}z$.

(b) Beweisen Sie: $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$ und $\operatorname{Im}(z) = \frac{1}{2\mathrm{i}}(z - \overline{z})$ mit $\mathrm{i} = (0, 1)$. **Hinweis**: Die Komplex-Konjugierte $\overline{z} \in \mathbb{C}$ von einer komplexen Zahl z = (x, y) ist gegeben durch $\overline{z} = (x, -y)$.

Einzeln abgeben bis zum 28. November 2022, 12:00 Uhr

Aufgabe 6.5. Sei (R, +, *) ein kommutativer Ring mit $1 \neq 0$, der keine nicht-trivialen Nullteiler enthält, d. h. aus a * b = 0 für $a, b \in R$ folgt a = 0 oder b = 0. (Ein solcher Ring heißt Integritätsbereich.)

(a) Auf $M = R \times R \setminus \{0\}$ sei eine Relation definiert durch

$$(x,y) \sim (u,v) \Leftrightarrow x * v = y * u.$$

Zeigen Sie, dass dies eine Äquivalenzrelation ist.

(b) Die Äquivalenzklasse [(x,y)] sei mit $\frac{x}{y}$ bezeichnet. Zeigen Sie, dass die beiden folgenden Abbildungen wohldefiniert sind:

wobei M/\sim die Quotientenmenge bezüglich \sim ist.

- (c) Zeigen Sie, dass $(M/\sim,\oplus,\odot)$ ein Körper ist. (Dieser heißt der zu R gehörende Quotientenkörper.)
- (d) Welcher Körper ist $(M/\sim, \oplus, \odot)$ für $R=\mathbb{Z}$?

Aufgabe 6.6. Betrachten Sie den in Aufgabe 6.5 konstruierten Quotientenkörper zum Ring der Polynome R = K[t] über einem Körper K, für den $1 + 1 \neq 0$ ist. Seien $p = t^2 + (1+1)t + 1$ und $q = t^2 - t$. Bestimmen Sie $p^{-1}q$ und q^2p^{-1} .

Aufgabe 6.7. Beweisen Sie die folgenden Rechenregeln für komplexe Zahlen:

(a) Konjugieren ist ein bijektiver Körperhomomorphismus, d. h., für alle $z_1, z_2 \in \mathbb{C}$ gilt

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$
 und $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$ und $\overline{z_1^{-1}} = \overline{z_1}^{-1}$.

(b) $\operatorname{Re}(z^{-1}) = \frac{1}{|z|^2} \operatorname{Re}(z)$ für alle $z \in \mathbb{C} \setminus \{0\}$.