

低功耗蓝牙(BLE)模块及标准透传协议

(nRF52832)

深圳市信驰达科技有限公司 更新日期: 2020 年 01 月 10 日

前言

如何快速低成本地开发智能手机新外设

-论低功耗蓝牙技术在智能移动设备中的应用-

USB 协议的产生,让个人电脑的外设如雨后春笋般地涌现。同样,做为智能手机最新开放的低功耗蓝牙(BLE)无线应用技术,也有异曲同工之妙。BLE 技术给电子产品桥接智能手机提供了可能。相对 Wi-Fi,Bluetooth 2.0 等无线技术,有着能耗低、连接迅速、通讯距离更远等优势,让智能手机的外围电子设备有了更开阔的发展前景。

低功耗蓝牙透传模块做为智能手机外设的桥梁,使得主机端应用开发异常简单。在透明传输模式下(串口),用户的现有产品或者方案配合此透传模块,能十分方便地和移动设备(需支持蓝牙 4.0 以上)相互通讯,实现超强的智能化控制和管理。

信驰达低功耗蓝牙模块RF-BM-ND04(I),采用Nordic的nRF52832作为核心处理器,模块运行在 2.4 GHz ISM band,GFSK 调制方式(高斯频移键控),40 频道2 MHz 的通道间隙,3 个固定的广播通道,37 个自适应自动跳频数据通道,物理层可以和经典蓝牙RF组合成双模设备,2 MHz 间隙能更好地防止相邻频道的干扰。宽输出功率调节(-20dBm~4dBm),-96 dBm高增益接收灵敏度。

此模块的设计目的是迅速桥接电子产品和智能移动设备,可广泛应用于有此需求的各种电子设备,如仪器仪表,物流跟踪,健康医疗,智能家居,运动计量,汽车电子,休闲玩具等。随着安卓 4.3 智能设备对 BLE 技术的集成,智能手机标配 BLE 必将成为时尚,手机外设的市场需求将成级数倍增。用户可借此模块,以最短的开发周期整合现有方案或产品,以最快的速度占领市场,同时为企业的发展注入崭新的技术力量。

版本更新记录

版本号	文档日期	更新内容
V1.0	2020/01/10	✔ 第一次发布

注:

- 1、文档会不定期优化更新,在使用此文档前,请确保是最新版本;
- 2、获取最新协议或文档,请到信驰达科技官方网址下载。

目录

版本更新	新记录	2
目录		3
● 概过	₫	5
>	主要特点	5
>	设备模式说明	6
>	Slave 模式默认配置	6
>	Beacon 模式默认配置	6
>	设备状态	6
>	多连接	7
封装		8
	口透传协议说明(桥接模式)	
• BLE	E 协议说明(APP 接口)	12
>	Service UUID	12
>	BLE 数据接收 UUID	12
>	B <mark>LE</mark> 数据发送 UUID	12
>	B <mark>LE</mark> 指令操作 UUID	12
● 串口	□ A <mark>T 指令</mark>	13
АТ	T 命令表	13
>	进入 AT 指令模式	14
>	设备名称	14
>	固件版本	15
>	MAC 地址	15
>	串口回显	15
>	显示设备状态	16
>	从角色广播参数	17
>	连接间隔	17
>	从角色 Service	18
>	主角色扫描	19
>	主角色连接	20
>	断开连接	20
>	自动重连	21
>	主从一体设备角色	22

>	查询已连接设备	22
>	指定传输设备	23
>	删除设备	23
>	Beacon 参数	24
>	设备角色	24
>	发射功率	25
>	休眠模式	26
>	串口波特率	26
>	用户鉴权	27
>	设备重启	28
>	恢复出厂设置	28
>	退出 AT 指令模式	28
• IOS	APP 编程参考	29
用 A	PP 测试透传功能	31
● 用U	SB Dongle 及 BTool 测试	
>	连接 BLE 模块	33
>	测试透传功能	34
● 主机	参 <mark>考代</mark> 码(透传)	37
● 联系	我 <mark>们</mark>	38
附录 A:	BLE 模块应用方案提示	39
附录 B:	SRRC 认证	40
附录 C:	BLE 模块硬件规格说明	41

● 概述

模块可以工作在**桥接模式**(透传传输模式)。桥接模式下,用户 CPU 可以通过模块的通用串口和移动设备进行双向通讯,用户也可以通过特定的串口 AT 指令,对某些通讯参数进行管理控制。用户数据的具体含义由上层应用程序自行定义。移动设备可以通过 APP 对模块进行写操作,写入的数据将通过串口发送给用户的 CPU。模块收到来自用户 CPU 串口的数据包后,将自动转发给移动设备。此模式下的开发,用户必须负责主 CPU 的代码设计,以及智能移动设备端 APP 代码设计。

> 主要特点

- 1、使用简单,无需任何蓝牙协议栈应用经验;
- 2、同时支持 BLE 主角色模式、从角色模式、主从一体模式和 Beacon 模式;
- 3、模块可同时作为主机角色和从机角色,在被其他主机连接的同时也可连接其他从机角色;
- 4、主角色、主从一体时支持多连接,最多可连接3个从角色设备:
- 5、默认 7.5 ms 连接间隔,连接快速,并且 Android 与 IOS 的兼容性好;
- 6、用户接口使用通用串口设计,全双工双向通讯,最低波特率支持 4800 bps,最高支持 460800bps;
- 7、支持AT指令软件复位模块:
- 8、获取 MAC 地址, 支持 AT 指令修改 MAC 地址 (要重新复位后生效);
- 9、支持 AT 指令调整蓝牙连接间隔,控制不同的转发速率(动态功耗调整);
- 10、支持 AT 指令调整发射功率、修改广播间隔、修改串口波特率、修改模块名,详情请查看 AT 指令表:
- 11、支持 AT 指令修改 Service UUID;
- 12、可通过 APP 发送 AT 指令;
- 13、高速透传转发,最快可达 28 KB/S;
- 14、极低工作功耗, 1s广播间隔、0dBm 发射功率的平均功耗为 21µA:

> 设备模式说明

设备一共有以下4种工作模式:

- 1、BLE 从角色模式 (Slave);
- 2、BLE 主角色模式 (Master);
- 3、BLE 主从一体模式 (Slave & Master);
- 4、Beacon 模式。

默认启动角色为从角色模式,可通过 AT 指令 "AT+ROLE" 切换角色调整工作模式,详细查看 AT 指令说明。

> Slave 模式默认配置

- 1、设备名称: RF-STAR-SMMT;
- 2、广播间隔: 200 ms;
- 3、连接间隔: 7.5 ms;
- 4、UUID 默认为 128 位;
- 5、广播为可连接模式;
- 6、设备为透传状态。

➤ Beacon 模式默认配置

- 1. Company ID: 0x0059 (Nordic);
- 2、Major UUID: 0x0102;
- 3、Minor UUID: 0x0304;
- 4、RSSI: -50 dBm:
- 5、UUID: 0x01, 0x02, 0x03, 0x04,0x05, 0x06, 0x07, 0x08,0x09, 0x0A, 0x0B, 0x0C,0x0D, 0x0E, 0x0F, 0x10。

> 设备状态

- 1、DEVICE START: 设备启动;
- 2、S:CONNECTED: BLE 从角色连接成功;
- 3、S:DISCONNECTED: BLE 从角色断开连接;
- 4、B:CONNECTED: Beacon 连接成功:
- 5、B:DISCONNECTED: Beacon 断开连接:
- 6、XX:XX:XX:XX:XX CONNECTED: BLE 主角色连接成功,红色字符为连接的从角色 MAC 地址;

- **7、XX:XX:XX:XX:XX** DISCONNECTED: BLE 主角色断开连接,红色字符为断开的从角色 MAC 地址:
 - 8、DEVICE ERROR!: 设备发生异常错误。

以上状态可通过 AT 指令开启或关闭显示,详情请查看 AT 指令章节。

> 多连接

- 1、主角色、主从一体时支持多连接,最多可连接3个从角色设备。
- 2、AT+CONNECT 指令连接设备失败(提示符 FAIL)请查看存储的设备列表是否已到最大保存数量(AT+DEV DEL=?查看存储列表)。
- 3、多连接指定了多个设备自动重连,当某一个对端设备异常断开连接,设备将启动重连,重连前3次快速扫描周边BLE(20s一次),发现设备则重连,若3次扫描超时后仍未找到,设备将进入慢速扫描状态,即设备5分钟扫描一次周边设备,若发现设备将尝试重连。
- 4、多连接时,指定的数据传输 handle 功能非掉电保存,默认设备与 handle 值为 0 的设备数据传输; 当用户改变 handle 后,若对应 handle 设备断开连接,则 handle 值自切换到下一有效 handle。(handle 查询请用指令 AT+CNT LIST)
- 5、用户使用指令断开设备,设备自动重连本次失效。

建议:

多连接数据传输来源比较复杂,比如主从一体时:数据可能来自以下 4 个设备,所以数据包中应包含数据来源,否则无法辨别数据来自哪个设备。

● 封装尺寸及脚位定义

RF-BM-ND04、RF-BM-ND04I 两款模块尺寸及脚位定义几乎完全一样,可以互相兼容。 ND04I 模块为外置天线的引出方式(IPEX 天线座和邮票半孔两种引出方式)。

RF-BM-ND04 模块尺寸图

RF-BM-ND04I 模块尺寸图

模块引脚图 引脚定义表

引脚序号	名称	功能	备注
1	GND	模块地	模块地
2	VCC	电源正极输入	模块电源,1.7~3.6V,推荐 3.3V
3	P21	I/O	
4	P22	I/O	
5	P23	I/O	
6	P24	I/O	
7	P25	I/O	
8	P28	I/O	
9	P29	I/O	
10	P30	I/O	
11	P26	I/O	
12	P27	I/O	
13	P02	I/O	
14	P03	I/O	
15	P04	I/O	

16	P05	RTS	(Require ToSend,发送请求)为输出信号,用于指示本设 备准备好可接收数据,低电平有效
17	P06	TX	模块串口发送端
18	P07	CTS	(Clear ToSend,发送允许)为输入信号,用于判断是否可以向对方发送数据,低电平有效
19	P08	RX	模块串口接收端
20	P09	I/O	
21	P10	I/O	
22	P11	I/O	
23	P12	I/O	
24	P13	唤醒 IO	当模块处于休眠状态时,可通过此 IO 唤醒模块 下降沿有效
25	P14	I/O	
26	P15	I/O	
27	P16	I/O	S GLOP
28	SWDIO	_	仿真烧录脚 / 复位脚
29	SWCLK		仿真烧录脚
30	P17	广播状态指示	从角色广播状态指示灯:广播闪烁,连接常亮
31	P18	连接状态指示	主角色连接状态指示灯:连接常亮,断开关闭
32	P19	I/O	
33	P20	I/O	

● 串口透传协议说明(桥接模式)

模块的桥接模式是指,通过通用串口和用户 CPU 相连,建立用户 CPU 和移动设备之间的双向通讯。用户可以通过串口,使用指定的 AT 指令对串口波特率,BLE 连接间隔进行重设置(详见后面<u>《串口 AT 指令》</u>章节)。针对不同的串口波特率以及 BLE 连接间隔,以及不同的发包间隔,模块将会有不同的数据吞吐能力。模块默认波特率 115200bps。

串口在任何模式下默认都是开启的,若需要关闭,请使用"AT+SLEEP=1"指令关闭串口。

模块可以根据获取到的已连接设备的 MTU 自定义串口包,模块会根据数据包大小自动分包发送,每个无线包最大载荷为 244 个字节。移动设备方发往模块的数据包,必须自行分包(每包1 个字节到 244 个字节之间)发送。模块收到无线包后,会依次转发到主机串口接收端。

- 1、串口硬件协议: 115200 bps, 8, 无校验位, 1停止位。
- 2、连接成功之后,主机(MCU)如有数据发送至 BLE 模块,需将 BRTS 拉低,主机可在约 50ms 后开始发送数据。发送完毕之后主机应主动抬高 BRTS,让模块退出串口接收模式。要注意的是,数据发送完毕后也要延时一段时间,抬高 BRTS 之前请确认串口数据完全发送完毕,否则会出现数据截尾现象。
- 3、当模块有数据上传请求时,模块会置低 BCTS,最快会在 500µs 之后开始发送,直到数据 发送完毕。
- 4、如若主机的 BRTS 一直保持低电平,则蓝牙模块会一直处于串口接收模式,会有较高的功耗。

● BLE 协议说明(APP 接口)

> Service UUID

6E4000**01**B5A3F393E0A9E50E24DCCA9E

▶ BLE 数据接收 UUID

特征值 UUID	6E4000 02 B5A3F393E0A9E50E24DCCA9E
可执行的操作	Write
说明	蓝牙输入转发到串口输出: APP 通过 BLE API 接口向此通道写操作后,数据将会从串口 TX 输出。

▶ BLE 数据发送 UUID

特征值 UUID	6E4000 03 B5A3F393E0A9E50E24DCCA9E	
可执行的操作	Notify	
说明	串口输入转发到蓝牙输出,从串口 RX 输入的数据将会在此通道产生通知发给 移动设备。	

▶ BLE 指令操作 UUID

特征值 UUID	6E4000 04 B5A3F393E0A9E50E24DCCA9E	
可执行的操作	Write/Notify	
说明	支持全部指令列表的指令,任何数据都会当做指令处理(不用+++进入指令模式),且用户可不用发送回车换行符进行操作,串口是必须要回车换行符作为指令结束。 主角色需要打开 notify 才能收到模块发送的数据。	

●串口 AT 指令

AT 指令可细分为四种类型:

类型	指令格式	描述
测试指令	AT+[x]=?	该命令用于查询设置指令的参数以及取值范围
查询指令	AT+[x]?	该命令用于返回参数的当前值
设置指令	AT+[x]=<>	该命令用于设置用户自定义的参数值
执行指令	AT+[x]	该命令用于执行不可变参数的功能

注意:

- 1、不是每条指令都具备上述 4 种类型的命令。
- 2、AT 命令必须大写,并且以回车换行符结尾(CRLF)。
- 3、AT 命令查询中返回的 <> 表示可选填参数,[]表示必填参数;若命令所有参数都是选填参数,则至少填一个参数,否则也是为指令错误。

例: AT+ADS=<0,1>,<0,1>,<10,10240>,可填写为AT+ADS=,,500。

4、选填参数命令为填写的参数位置**必须保留**,参考上一条举例。

AT 命令表

指令	功能
+++	进入 AT 命令模式
AT+NAME	查询/设置设备名称
AT+VERSION	查询设备固件版本
AT+MAC	查询/设置设备 MAC 地址
AT+ECHO	查询/设置串口是否回显
AT+STATUS	查询/设置是否显示设备状态
AT+ADS	查询/设置 slave 角色广播参数
AT+CON_INTERVAL	查询/设置设备连接间隔
AT+SERVICE	查询/设置 BLE service 相关参数
AT+CONNECT	连接设备(主、主从一体有效)
AT+DISCONNECT	断开已连接设备
AT+SCAN	扫描设备(主、主从一体有效)

AT+AUTO_CNT	自动连接 slave 设备(主、主从一体有效)
AT+TTM_ROLE	指定默认透传角色(仅主从一体有效)
AT+TTM_HANDLE	指定多连接时透传 handle, AT+CNT_LIST 查看已连接设备的 handle(仅主、主从一体有效)
AT+CNT_LIST	获取当前设备已连接从角色列表(仅主、主从一体有效)
AT+DEV_DEL	删除保存的从角色
AT+BEACON	查询/设置 beacon 相关参数
AT+ROLE	查询/设置设备角色
AT+POWER	查询/设置设备功率
AT+SLEEP	查询/设置设备休眠(单次有效)
AT+UART	查询/设置串口波特率
AT+AUTH	查询/设置用户鉴权
AT+RESTART	重启设备
AT+RESET	设备参数恢复出厂设置并重启
AT+EXIT	退出 AT 命令模式
	命令返回值
OK	指令操作成功
FAIL	指令操作失败
ERROR	指令操作错误
BUSY	指令操作忙,请等待上一条操作

▶ 进入 AT 指令模式

	+++
功能	进入 AT 指令
示例	+++
返回值	OK

> 设备名称

AT+NAME?	
功能	查询设备名称
示例	AT+NAME?
返回值	AT+NAME=RF-STAR-SMMT OK
说明	指令正确返回设备名称

AT+NAME=	
功能	设置设备名称
示例	AT+NAME=TEST-NAME
返回值	ОК
说明	设置成功后新的设备名称在重启后生效

▶ 固件版本

AT+VERSION	
功能	查询设备固件版本
示例	AT+VERSION
返回值	AT+VERSION=v1.0.0,Dec 13 2019,17:40:42 OK
说明	获取设备固件版本信息及时间

➤ MAC 地址

AT+MAC?	
功能	查询设备 MAC 地址
示例	AT+MAC?
返回值	AT+MAC=8A:E5:84:7A:E7:C9
	OK
说明	返回的 MAC 地址为 16 进制字符

AT+MAC=	
功能	设置设备 MAC 地址
示例	AT+MAC=F1:F2:F3:F4:F5:F6
返回值	ОК
说明	设置成功后新的 MAC 地址在重启后生效

> 串口回显

AT+ECHO=?	
功能	查询此命令参数范围
示例	AT+ECHO=?
返回值	AT+ECHO=[0,1]
	OK
说明	0, 关闭回显; 1, 打开回显。

AT+ECHO?	
功能	查询串口回显状态
示例	AT+ECHO?
返回值	AT+ECHO=0 OK
说明	0,回显为关闭状态; 1,回显为打开状态。

AT+ECHO=	
功能	设置串口回显状态
示例	AT+ECHO=1
返回值	ОК
说明	0, 关闭回显; 1, 打开回显。

▶ 显示设备状态

AT+STATUS=?	
功能	查询此命令参数范围
示例	AT+STATUS=?
返回值	AT+STATUS=[0,1] OK
说明	0,状态显示功能关闭 1,状态显示功能打开

AT+STATUS?	
功能	查询显示设备状态功能的当前状态
示例	AT+STATUS?
返回值	AT+STATUS=0 OK

AT+STATUS=	
功能	设置设备状态显示功能
示例	AT+STATUS=0
返回值	ОК
说明	关闭设备状态显示功能

▶ 从角色广播参数

AT+ADS=?	
功能	查询此命令参数范围
示例	AT+ADS=?
返回值	AT+ADS=<0,1>,<0,1>,<10,10240> OK
说明	参数 1: 设备广播状态设置(0, 关; 1, 开, 立即生效) 参数 2: 设备广播模式设置(0, 不可连接广播; 1, 可连接广播, 重启后生效) 参数 3: 设备广播间隔设置(单位毫秒, 立即生效)

AT+ADS?	
功能	查询广播参数
示例	AT+ADS?
返回值	AT+ADS=1,1,200 OK
说明	参数 1: 广播状态中 参数 2: 可连接广播 参数 3: 广播间隔为 200 ms

AT+ADS=	
功能	设置广播参数
示例	AT+ADS=1,0,500
返回值	ОК
说明	设置开启不可连接、间隔为 500 ms 的广播

> 连接间隔

AT+CNT_INTERVAL=?	
功能	查询此命令参数范围
示例	AT+CNT_INTERVAL=?
返回值	AT+CNT_INTERVAL=[8-4000] OK
说明	连接间隔参数范围为 8~4000 毫秒
AT+CNT_INTERVAL?	
功能	查询设备当前连接间隔

示例	AT+CNT_INTERVAL?
返回值	AT+CNT_INTERVAL=10 OK
说明	设备当前连接间隔为 10 毫秒

AT+CNT_INTERVAL=	
功能	设置设备连接间隔
示例	AT+CNT_INTERVAL=20
返回值	ОК
说明	设置设备当前连接间隔 20 毫秒

➤ 从角色 Service

AT+SERVICE=?	
功能	查询此命令参数范围
示例	AT+SERVICE=?
返回值	AT+SERVICE=AT+SERVICE=<0,1>,<0-FFFF>,<0-FFFF>,<0-FFFF>, <0-FFFF>,<0-FFF>,
说明	参数 1: 128bit UUID 功能(0:16bit, 1: 128bit, 重启设备生效)

AT+SERVICE?	
功能	查询设备当前 service 配置参数
示例	AT+SERVICE?
返回值	AT+SERVICE=1,0001,0002,0003,0004,9ECADC240EE5A9E093F3A3B50000406E OK

AT+SERVICE=	
功能	设置设备 service 相关属性
示例	AT+SERVICE=0,FFF0,FFF1,FFF2,FFF3

返回值	OK
说明	设置设备为 16bit UUID 模式,UUID 分别为: FFF0,FFF1,FFF2,FFF3

> 主角色扫描

AT+SCAN=?	
功能	查询此命令参数范围
示例	AT+SCAN=?
返回值	AT+SCAN=[0,1],<1-65535> OK
说明	参数 1: 当前扫描状态, 0 停止, 1 正在扫描 参数 2: 扫描超时时间, 单位: 秒

AT+SCAN?	
功能	查询扫描状态和超时设置
示例	AT+SCAN?
返回值	AT+SCAN=0,10 OK
说明	参数 1: 0 表示当前设备扫描状态停止 参数 2: 表示当前扫描超时时间为 10 秒

AT+SCAN	
功能	扫描周围从设备
示例	AT+SCAN
返回值	ок
说明	立刻执行扫描(设备数量到达 20 或者扫描时间到 20 秒停止扫描)

AT+SCAN=	
功能	设置串口回显状态
示例	AT+SCAN=0,10
返回值	ОК
说明	启动扫描并设置扫描超时 10 秒。

> 主角色连接

AT+CONNECT?	
功能	查询当前连接的 slave 设备信息
示例	AT+CONNECT?
返回值	AT+CONNECT=0,F1:F2:F3:F4:F5:F6 OK
说明	此指令可结合 AT+SCAN 使用 参数 1: 当前所连接的 slave 设备在列表中序号 参数 2: 当前所连接的 slave 设备的 MAC 地址

AT+CONNECT=	
功能	连接 AT+SCAN 列表中序列号对应设备
示例	AT+CONNECT=1
返回值	ОК

AT+CONNECT=	
功能	连接指定 MAC 地址设备
示例	AT+CONNECT=,F1:F2:F3:F4:F5:F6
返回值	OK
说明	参数 1 可省略不填,只填写要连接的 MAC 地址

▶ 断开连接

AT+DISCONNECT=?	
功能	查询此命令参数范围
示例	AT+DISCONNECT=?
返回值	AT+DISCONNECT=<0,1,2>,<0-x> OK
说明	参数 1: 0 断开 slave 角色的连接,1 断开 master 角色的连接,2 断开 slave 和 master 的连接。 参数 2: 断开当前和主角色连接的从设备,AT+CNT_LIST 查询设备 handle

AT+DISCONNECT	
功能	断开当前所有连接状态
示例	AT+DISCONNECT
返回值	ОК

> 自动重连

AT+AUTO_CNT=?	
功能	查询此命令参数范围
示例	AT+AUTO_CNT=?
返回值	AT+AUTO_CNT=[0,1], <ff:ff:ff:ff:ff:ff ok<="" td=""></ff:ff:ff:ff:ff:ff>
说明	参数 1: 0 关闭自动重连, 1 开启自动重连。 参数 2: 可选参数,为已添加到连接设备列表中的 MAC 地址;若带有此参数,则对应 MAC 地址设备根据参数 1 的设置值关闭或开启自动重连功能,同时,所有非此 MAC 地址设备的自动重连功能不受此指令影响。 参数 1 和参数 2 相互影响,只有参数 1 时,自动重连功能对所有已连接设备生效;参数 1、2 均有时,参数 2 指定 MAC 地址的设备自动重连指令生效,其它设备维持原来状态。

ATLAUTO ONTO	
	AT+AUTO_CNT?
功能	查询设备当前自动重连状态
示例	AT+AUTO_CNT?
返回值	AT+AUTO_CNT= 1,FF:1C:2B:D1:4C:BD 0,EB:71:5B:DE:08:87 OK
说明	设备 FF:1C:2B:D1:4C:BD 自动重连功能未开启 设备 EB:71:5B:DE:08:87 自动重连已开启(掉电有效)

AT+AUTO_CNT=	
功能	设置设备自动重连功能
示例	AT+AUTO_CNT=1
返回值	OK

AT+AUTO_CNT=	
功能	设置指定 MAC 地址设备自动重连功能
示例	AT+AUTO_CNT=0,EB:71:5B:DE:08:87
返回值	ОК
说明	关闭 MAC 地址为 EB:71:5B:DE:08:87 设备的自动重连功能

> 主从一体设备角色

AT+TTM_ROLE=?	
功能	查询此命令参数范围
示例	AT+TTM_ROLE=?
返回值	AT+TTM_ROLE=[0,1] OK
说明	0: slave 从角色发送数据 1: master 主角色发送数据

AT+TTM_ROLE?	
功能	查询当前发送数据的设备角色
示例	AT+TTM_ROLE?
返回值	AT+TTM_ROLE=0 OK

AT+TTM_ROLE=	
功能	设置主从一体设备角色
示例	AT+TTM_ROLE=0
返回值	ОК
说明	设置设备以从角色发数据

> 查询已连接设备

AT+CNT_LIST	
功能	查询当前已经连接的设备
示例	AT+CNT_LIST
返回值	AT+CNT_LIST= 0 (FF:1C:2B:D1:4C:BD) 1 (EB:71:5B:DE:08:87) OK
说明	红色字符为连接 handle,括号内为对应 handle 的设备 MAC 地址 此指令配合 AT+TTM_HANDLE 使用

> 指定传输设备

AT+TTM_HANDLE=?	
功能	查询可用 handle 值
示例	AT+TTM_HANDLE=?
返回值	AT+TTM_HANDLE=[0,1] OK

AT+TTM_HANDLE?	
功能	查询设备当前数据透传 handle
示例	AT+TTM_HANDLE?
返回值	AT+TTM_HANDLE=0
	OK

AT+TTM_HANDLE=	
功能	指定多连接条件下要进行数据传输的从角色
示例	AT+TTM_HANDLE=0
返回值	ОК
说明	设置 handle 为 0 的从角色设备传输数据
	配合 AT+CNT_LIST 使用

> 删除设备

AT+DEV_DEL=?	
功能	查询可删除设备列表 (已存储)
示例	AT+DEV_DEL=?
返回值	AT+DEV_DEL=
	FF:1C:2B:D1:4C:BD
	EB:71:5B:DE:08:87
	OK
说明	可删除设备 MAC 地址列表

AT+DEV_DEL=	
功能	删除已存储的设备
示例	AT+DEV_DEL=FF:1C:2B:D1:4C:BD
返回值	ОК
说明	删除 MAC 地址为 FF:1C:2B:D1:4C:BD 的设备

> Beacon 参数

AT+BEACON=?	
功能	查询此命令参数范围
示例	AT+BEACON=?
返回值	AT+BEACON=<0-FFFF>,<0-FFFF>,<-90-4>,<0-FF> OK
说明	查询 beacon 参数支持范围。 参数 1: company id 参数 2: major uuid 参数 3: minor uuid 参数 4: 1 米距离参考 rssi 参数 5: 自定义 UUID 数据。

AT+BEACON?	
功能	查询 Beacon 配置参数
示例	AT+BEACON?
返回值	AT+BEACON=0059,0102,0304,-50,0102030405060708090A0B0C0D0E0F10
	OK

AT+BEACON=	
功能	设置串口回显状态
示例	AT+BEACON=F1F2,,,-60,
返回值	ОК
说明	设置 beacon company id: F1F2 设置参考 rssi: -60

▶ 设备角色

AT+ROLE=?	
功能	查询此命令参数范围
示例	AT+ROLE=?
返回值	AT+ROLE=[0,1,2,3] OK
说明	0: slave,从角色(默认角色) 1: master,主角色 2: slave and master,主从一体 3: beacon,不可连接广播

AT+ROLE?	
功能	查询设备当前角色
示例	AT+ROLE?
返回值	AT+ROLE=0 OK
说明	设备当前角色为 slave 从角色

AT+ROLE=	
功能	设置设备当前角色
示例	AT+ROLE=1
返回值	ОК
说明	设置设备当前角色为 master 主角色

> 发射功率

AT+POWER=?	
功能	查询此命令参数范围
示例	AT+POWER=?
返回值	AT+POWER=[-40,-20,-16,-12,-8,-4,0,3,4] OK
说明	设备支持9档发射功率

AT+POWER?	
功能	查询设备当前发射功率
示例	AT+POWER?
返回值	AT+POWER=4 OK
说明	设备当前发射功率为 4 dBm

AT+POWER=	
功能	设置设备发射功率
示例	AT+POWER=-12
返回值	ОК
说明	设置设备发射功率为-12 dBm

> 休眠模式

AT+SLEEP=?	
功能	查询此命令参数范围
示例	AT+SLEEP=?
返回值	AT+SLEEP=<0,1>,<0,1>,<0,1> OK
说明	参数 1: 设备串口功能开关 参数 2: 设备 BLE 功能开关 参数 3: 设备串口唤醒功能开关 0, 打开; 1, 关闭

AT+SLEEP?	
功能	查询设备当前休眠模式
示例	AT+SLEEP?
返回值	AT+SLEEP=1,1,1 OK
说明	参数 1: 设备串口功能开 参数 2: 设备 BLE 功能开 参数 3: 设备串口唤醒功能开,串口收到任意数据均会重新打开串口

AT+SLEEP=	
功能	设置设备休眠模式
示例	AT+SLEEP=0,0,0
返回值	ОК
说明	设置立即生效 关闭 BLE 功能,若设备处于连接状态则会立即断开当前连接

▶ 串口波特率

AT+UART=?	
功能	查询此命令参数范围
示例	AT+UART=?
返回值	AT+UART=[4800,9600,38400,57600,115200,250000,460800] OK
说明	设备支持7种串口波特率

AT+UART?	
功能	查询当前串口波特率
示例	AT+UART?
返回值	AT+UART=115200 OK
说明	当前串口波特率这我 115200 bps

AT+UART=	
功能	设置串口波特率
示例	AT+UART=9600
返回值	ОК
说明	设置串口波特率为 9600 bps,设备重启后生效

▶ 用户鉴权

用户鉴权	
	AT+AUTH=?
功能	查询此命令参数范围
示例	AT+AUTH=?
返回值	AT+AUTH=<0,1>,<*****>,<1-65535> OK
说明	查询参数列表和取值范围 参数 1: 关闭/启用用户鉴权 参数 2: 密匙,最大 16 字节任意可见字符 参数 3: 鉴权有效时间(秒) 备注: 启用鉴权后重启生效,且有效时间内未收到主角色鉴权密匙从角色 会自动断开连接。(数据传输特征值发送鉴权密匙)

AT+AUTH?	
功能	查询用户鉴权功能当前状态
示例	AT+AUTH?
返回值	AT+AUTH=1,12GH**)),15 OK
说明	参数 1: 1,用户鉴权功能已启用 参数 2: 密匙为 12GH**)) 参数 3: 鉴权有效时间为 15 秒

AT+AUTH=				
功能	设置用户鉴权功能			
示例	AT+AUTH=1,12GH**)),10			
返回值	ОК			
说明	启用用户鉴权,设置密匙为"12GH**))",有效时间为 10 秒			

▶ 设备重启

AT+RESTART			
功能	设备重启		
示例	AT+RESTART		
返回值	ОК		
说明	设置成功后设备立即重启		

> 恢复出厂设置

AT+RESET			
功能	恢复设备出厂设置		
示例	AT+RESET		
返回值	OK		
说明	设置成功后设备立即重启		

▶ 退出 AT 指令模式

EXIT			
功能	退出 AT 指令模式		
示例	AT+EXIT		
返回值	ОК		

● IOS APP 编程参考

模块总是以从模式进行广播,等待智能移动设备做为主设备进行扫描,以及连接。这个扫描以及连接通常是由 APP 来完成,由于 BLE 协议的特殊性,在系统设置中的扫描蓝牙连接没有现实意义。智能设备必须负责对 BLE 从设备的连接,通讯,断开等管理事宜,而这一切通常是在 APP 中实现。

有关 BLE 在 IOS 下的编程,最关键的就是对特征值(Characteristic,本文叫通道)的读,写,以及开启通知开关。通过对通道的读写即可实现对模块直驱功能的直接控制,无需额外的CPU。典型函数说明摘抄如下:

/*!

- * @method writeValue:forCharacteristic:withResponse:
- * @param data The value to write.
- * @param characteristic The characteristic on which to perform the write operation.
- * @param type The type of write to be executed.
- * @discussion Write the value of a characteristic.
- * The passed data is copied and can be disposed of after the call finishes.
- * The relevant delegate callback will then be invoked with the status of the request.
- * @see peripheral:didWriteValueForCharacteristic:error:

*/

- (void)writeValue:(NSData *)data forCharacteristic:(CBCharacteristic *)characteristic type:(
 CBCharacteristicWriteType)type;

说明: 对某个特征值进行写操作。

NSData *d = [[NSData alloc] initWithBytes:&data length:mdata.length];

[p writeValue:d

forCharacteristic:c

type:CBCharacteristicWriteWithoutResponse];

/*!

- * @method readValueForCharacteristic:
- * @param characteristic The characteristic for which the value needs to be read.
- * @discussion Fetch the value of a characteristic.
- * The relevant delegate callback will then be invoked with the status of the request.
- * @see peripheral:didUpdateValueForCharacteristic:error:

*/

- (void)readValueForCharacteristic:(CBCharacteristic *)characteristic;

说明: 读取某个特征值。

[p readValueForCharacteristic:c];

/*!

- * @method setNotifyValue:forCharacteristic:
- * @param notifyValue The value to set the client configuration descriptor to.
- * @param characteristic The characteristic containing the client configuration.
- * @discussion Ask to start/stop receiving notifications for a characteristic.
- * The relevant delegate callback will then be invoked with the status of the request.
- * @see peripheral:didUpdateNotificationStateForCharacteristic:error:

*/

(void)setNotifyValue:(BOOL)notifyValue forCharacteristic:(CBCharacteristic *)characteristic
 c:

说明: 打开特征值通知使能开关。

[self setNotifyValue:YES forCharacteristic:c];//打开通知使能开关 [self setNotifyValue:NO forCharacteristic:c]; //关闭通知使能开关

/*

- * @method didUpdateValueForCharacteristic
- * @param peripheral Pheripheral that got updated
- * @param characteristic Characteristic that got updated
- * @error error Error message if something went wrong
- * @discussion didUpdateValueForCharacteristic is called when CoreBluetooth has update d a characteristic for a peripheral. All reads and notifications come here to be processed.

*/

- (void)peripheral:(CBPeripheral *)peripheral didUpdateValueForCharacteristic:(CBCharacteristic *)characteristic error:(NSError *)error

说明:每次执行完读取操作后,会执行到这个回调函数。应用层在此函数内保存读取到的数据。

有关设备的扫描、连接以及其他通讯细节,可以参考信驰达科技提供的基于 IOS 的透传模块测试 APP 源码(Module test)。里面实现了对转发蓝牙数据到串口、转发串口数据到蓝牙两个通道(特征值)的操作(通知和写操作)。只是通道 UUID 以及读写字节数不同。(相关源码请向业务索取)

● 用 APP 测试透传功能

模块 IOS 平台的测试工具(APP)可以在 App Store 下载到。打开操作系统为 IOS6以上设备中的 App Store,搜索 Module Tools,下载安装,进行测试。你有三种方法安装此应用:

- 1. 从 APP Store 上搜索下载安装,需要 App 苹果账户,免费申请;
- 2. 使用源码编译下载到你的苹果设备,需要苹果开发者账户;
- 3. 越狱你的苹果设备,到信驰达官网下载 IPA 文件(相当于 windows 的 exe 文件),使用快用助手,PP 助手,等工具安装。

APP 打开后界面如图1所示,点击右上角处蓝牙图标进行扫描,扫描到的设备会出现在列表中(或许会提示需要打开蓝牙),如图2所示;点击某个设备,会进行连接,连接成功后会跳转到控制主界面,如图3所示。

如果模块串口已经就绪(连接了主 CPU,或者串口终端),即可以开始工作,可进行手动和自动收发测试。如图4所示,Rx 是主机 CPU 或者串口中断发出的数据包,Tx 是 iPhone 发出的数据包。

注:如果使用串口终端进行测试,串口终端的数据要发到手机,必须保持 BRTS 置低, 防止模块进入睡眠。

关于 IOS 编程,根据低功耗蓝牙协议,移动设备发送数据可以通过 **B 通道**(发送)的对应服务(UUID)进行写操作。模块数据到移动设备的数据传送,是通过通知的形式进行,因此在 APP 启动后需要打开 **A 通道**(接收)对应服务(UUID)的通知(Notification)使能,之后模块串口收到的数据包会自动发送到移动设备。相关参考资料可以向业务询问索取。

● 用 USB Dongle 及 BTool 测试

BLE 模块可使用 TI 官方 CC2540 MiniDK 开发套件中的 USB Dongle 模拟手机配合安装目录下的 C:\Texas Instruments\BLE-CC254x-1.3.2\Projects\Btool\BTool.exe 进行蓝牙通讯测试。

这个 USB Dongle 需要使用安装目录下

C:\Texas Instruments\BLE-CC254x-1.3.2\Projects\ble\HostTestApp\CC2540 的工程项目。编译下载到 USB dongle 中。具体的 BTOOL 的使用详情请参考官方说明文档 CC2540 Mini Development Kit User's Guide (Rev. B).pdf。

▶ 连接 BLE 模块

USB Dongle 和模块的连接是通讯的基础,扫描连接的操作步骤如下:

- 1、打开 C:\Texas Instruments\BLE-CC254x-1.3.2\Projects\ble\HostTestApp 目录下的工程文件,编译,下载到 USB Dongle 中;
- 2、将模块上电 (3~3.3V);
- 3、将模块使能脚 EN 下地,模块开始广播;
- 4、将 USB Dongle 插入 PC USB 口,会在硬件管理中出现一个串口设备(如: COM25);
- 5、打开 C:\Texas Instruments\BLE-CC254x-1.3.2\Projects\BTool\BTool.exe;
- 6、菜单 Device -> New Device,选择 4 中发现的串口,选默认设置,点击 OK;

- 7、扫描连接,按照箭头的方向进行扫描,连接,其中 F4:B8:5E:96:8C:81 为模块的物理地址。 连接前请确认是否为目标模块。
- 8、连接成功后,左边会出现已经连接的模块信息 Connection Info。

这样就已经成功连接了,下面就可以开始测试直驱功能以及蓝牙串口转发功能(透传)。

> 测试透传功能

将模块如系统示意图中的桥接模式,连接到串口终端或者单片机,便可以进行蓝牙串口转发测试。注: BRTS 必须被置低,否则串口数据无法被模块 RX 接收。

1、使用 BTool 使 BLE 模块与 USB Dongle 建立连接后(连接过程参考上节说明),通过对 Handle: 0x000F 写入 01:00,来打开串口数据通道的自动通知开关,如下图所示。如果主机将合法数据包发送到 BLE 模块的 RX 端,模块将会自动以通知的形式发到 BTool,左侧的显示栏会显示具体的数据。MCU 发给模块的串口数据可以是 200 字节以内的任意长度。

模块发送至移动设备使用串口数据通道,对应特征值(通道)的 UUID 如下:

名称	无线包数据长度	UUID	Handle	Notification Enable Handle
串口数 据通道	20 Bytes	0xFFE4	0x000E	0x000F

2、通过 BTool 写 1-20 字节数据到模块。当模块收到来自 BTool 的写操作,模块会通过串口发送到 MCU。用户可以通过读取 MCU 检验数据是否正确,也可以通过串口助手显示 BTool 写入模块的数据。

例如: 写 7 个字节的数据到模块,是通过 Handle 0x0013 写入,如下图所示。

注:可写入 1-20 个字节到模块,但不能超过 20 个字节,因此在手机端编程时,必须自行分包发送,每包长度不得超过 20 字节。

移动设备发往模块通过**蓝牙数据通道**,对应特征值(通道)的 UUID 如下:

名称	无线包数据长度	UUID	Handle
蓝牙数据通道	20 Bytes	0xFFE9	0x0013

透传功能的测试,可以通过电平转换模块直连 PC 串口,通过串口终端来测试。 参考截图如下:

1、BTool 收发数据截屏。

2、PC 终端连接透传模块截屏,注 BRTS 必须被置低,否则串口数据无法被模块接收。

{

● 主机参考代码(透传)

逻辑关系:模块间是用 BCTS、BRTS 两个 IO 口进行发送接收的通知和控制。

这两个 IO 常态高位,置低触发,如果模块有数据要发,置低 BCTS 通知单片机接收,如 果单片机有数据要发,置低 BRTS 通知模块接收。示意性代码如下:

```
void main(void)
 EN = 0;
                                     //使能 EN,开始广播
 while(!BLEMoudleAck("TTM:OK\r\n\0"));
                                     //等待手机端扫描,连接
                                     //等待连接成功,也可加入限时等待
                                     //也可判断连接提示信号线的电平
 BRTS = 0;
                                     //BRTS 置低通知模块准备接收
 halMcuWaitMs(50);
                                     //延迟 50ms
 UARTWrite( HAL UART PORT 0,"TTM:CIT-100ms", 14);
                                     //修改连接间隔,从串口得到确认:
                                     //延迟 50ms,确保数据已经发出
 halMcuWaitMs(50);
                                     //RTS 置高,发送完毕
 BRTS = 1;
 while(!BLEMoudleAck("TTM:OK\r\n\0"));
                                     //等待设置成功,也可加入限时等待
                                     //循环收发测试
 while(1){
  while(1){
                                     //检测, 若 BCTS 置低则准备接收
   if(BCTS == 0){
    while(BCTS==0);
                                     //等待发送完毕,也可限时等待
    if(UARTRead(uartBuffer) == SUCCESS)
                                     //串口读取数据
                                     //使用数据
    {.....}
   }
                                     //RTS 置低通知模块准备接收
   BRTS = 0:
   halMcuWaitMs(50);
                                     //延迟 50ms
                                     //发送任意数据(200byte 以内)
   send TX("1234567890");
                                     //延迟 50ms,确保数据已经发出
   halMcuWaitMs(50);
                                     //RTS 置高,发送完毕
   BRTS = 1;
                                     //延迟再发下一个包,延时视包大小而定
   halMcuWaitMs(20);
   }
```

} }

● 联系我们

深圳市信驰达科技有限公司

SHENZHEN RF STAR TECHNOLOGY CO.,LTD.

Tel: 0755-8632 9829 Web: www.szrfstar.com

Fax: 0755-86329413 E-mail: sales@szrfstar.com

地址:深圳市南山区高新园科技南一道创维大厦 C座 601室

Add: Room 601, Block C, Skyworth Building, Nanshan High-Tech Park, Shenzhen.

附录 A: BLE 模块应用方案提示

计数采集(计步器,弹跳球,心率计),86 盒插座改造,遥控开关,调 光照明,环境渲染背景光,医疗检测(血压,血氧,体温),互动遥控玩 具(开关量,模拟量,输入,输出),机器人,直升飞机, 玩具车,防丢寻 物,电量采集,充电管理,外置gps,温湿度计,蓝牙手表,飞镖机, 保龄球等娱乐设备新接口,(智能设备)遥控接口,报警器,门禁考勤 (蓝牙锁),巡逻寻根器,反控(智能设备)应用(紧急拨号,遥控拍摄), 蓝牙打印,空调控制器,机顶盒控制器,物流统计管理,胎压检测,汽 车自动锁,遥控按摩器,车位记录,户外点阵广告,运动计量〔跑步, 自行车,高尔夫〕,定时开关,宠物监管,婴儿儿童护理(实时体温检测, 防丢失),运动健身玩具(手机配合),距离感应触发应用,调速应用, 智能家居(遥控类),仪器仪表无线接口,设备无线配置接口,景点定位,区域软禁控制,定量计时,可穿戴设备,蓝牙读卡器,便携仪表, 设备固件远程升级接口 … …

^{*} 部分可以利用模块透传功能进行开发,部分直接使用直驱功能即可完成设计。

附录 B: SRRC 认证

附录 C: BLE 模块硬件规格说明

一、模块参数

- · 工作电压: 1.7 V~3.6 V, 推荐工作电压: 3.3 V
- ·工作频段: 2402 MHz~2480 MHz
- ·最大发射功率: 4 dBm (-20 dBm~+4 dBm,可编程)
- · 接收灵敏度: -96 dBm
- · 频率误差: ±20 kHz
- 工作温度: -40℃ ~ +85℃
- ・储存温度: -40℃ ~ +125℃

二、注意事项

使用本模块注意事项:

- 1、在运输、使用过程中要注意防静电。
- 2、器件接地要良好,减少寄生电感。
- 3、尽量手工焊接,如需机贴,请控制回流焊温度不要超过 245 摄氏度,如下图所示。
- 4、模块天线下面不要铺铜,最好挖空,以防止阻抗改变。
- 5、天线应远离其他电路,防止辐射效率变低和影响其他电路正常使用。
- 6、模块的接入电源建议使用 2.2uF+0.1uF 滤波电容对地。

部件的焊接耐热性温度曲线(焊接点)

三、天线选择

1、IPEX 天线座的规格下图所示:

2、IPEX线端的规格如下图所示:

3、常用天线:

