UNIVERSIDAD DE CONCEPCIÓN

FACULTAD DE CIENCIAS

FÍSICAS Y MATEMÁTICAS

DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

Ejercicio 8.8 (Listado 2) MATEMÁTICA I (529103-1)

Determine para qué valores de $x \in \mathbb{R}$ se satisface la siguiente inecuación:

$$\sqrt{x^2 + 4x} < 5x - 1$$

Solución: Procedemos mediante una cadena de equivalencias, pero antes observamos lo siguiente:

■ Para que la raíz esté bien definida se requiere que $x^2 + 4x \ge 0$, es decir, que $x \in$ $]-\infty,-4] \cup [0,+\infty[$. Para deducir lo anterior usamos la siguiente tabla de signos:

		x = -4		x = 0	
\overline{x}	_	_	_	0	+
x+4	_	0	+	+	+
$x^2 + 4x = x(x+4)$	+	0	_	0	+

 \bullet Como $\sqrt{x^2+4x} \geq 0$, se requiere que 0 < 5x-1, pues en caso contrario

$$\sqrt{x^2 + 4x} < 5x - 1 \le 0,$$

es decir, $\sqrt{x^2+4x}<0$, contradiciendo que $\sqrt{x^2+4x}\geq 0$. Así, $x\in]1/5,+\infty[$.

De lo anterior, los valores de x que estén en el conjunto solución debe satisfacer las dos condiciones anteriores, esto es

$$x\in \]-\infty,-4]\cup [0,+\infty[\quad \wedge \quad x\in \]1/5,+\infty[,$$

que es equivalente a que $x \in (]-\infty, -4] \cup [0, +\infty[) \cap]1/5, +\infty[=]1/5, +\infty[$.

Ahora, teniendo en cuenta lo anterior, notamos que

$$\sqrt{x^2 + 4x} < 5x - 1 \iff x^2 + 4x < (5x - 1)^2$$

$$\iff x^2 + 4x < 25x^2 - 10x + 1$$

$$\iff 0 < 24x^2 - 14x + 1$$

$$\iff 0 < x^2 - \frac{7}{12}x + \frac{1}{24}$$

$$\iff 0 < x^2 - 2\left(\frac{7}{24}\right)x + \left(\frac{7}{24}\right)^2 - \left(\frac{7}{24}\right)^2 + \frac{1}{24}$$

$$\iff 0 < x^2 - 2\left(\frac{7}{24}\right)x + \left(\frac{7}{24}\right)^2 - \left(\frac{7}{24}\right)^2 + \frac{1}{24}$$

$$\iff 0 < \left(x - \frac{7}{24}\right)^2 - \frac{49}{24^2} + \frac{1}{24}$$

$$\iff 0 < \left(x - \frac{7}{24}\right)^2 - \frac{25}{24^2}$$

$$\iff 0 < \left(x - \frac{7}{24}\right)^2 - \frac{5^2}{24^2}$$

$$\iff 0 < \left(x - \frac{7}{24} + \frac{5}{24}\right)\left(x - \frac{7}{24} - \frac{5}{24}\right)$$

$$\iff 0 < \left(x - \frac{1}{12}\right)\left(x - \frac{1}{2}\right),$$

es decir, gracias a la tabla de signos:

		x = 1/12		x = 1/2	
x - 1/2	_	_	_	0	+
x - 1/12	_	0	+	+	+
$(x - \frac{1}{12}) \left(x - \frac{1}{2}\right)$	+	0	_	0	+

podemos concluir que $x \in]-\infty, 1/12[\cup]1/2, +\infty[$. Lo anterior, junto al hecho que $x \in]1/5, +\infty[$ (comentario del comienzo), nos permite concluir que

$$x\in \]-\infty,1/12[\ \cup\]1/2,+\infty[\quad \wedge\quad x\in \]1/5,+\infty[,$$

es decir, que el conjunto solución es

$$S = (]-\infty, 1/12[\ \cup\]1/2, +\infty[)\cap\]1/5, +\infty[\ =\]1/2, +\infty[$$

.