Задача

Когда разложение Холецкого совпадает с LU-разложением?

Решение

Пусть $A\in S^n_{++}$, A=LU, где L - нижнетреугольная с единицами на диагонали, U - верхнетреугольная. Тогда обозначим через D такую диагональную матрицу, что $U=D\hat{L}^{\top}$, причём \hat{L} - нижнетреугольная с единицами на диагонали. Тогда $A=LD\hat{L}^{\top}$. Так как A - симметричная, $A=\hat{L}DL^{\top}$, причём это LU- разложение A. Из единственности LU-разложения матрицы следует, что $L=\hat{L}$.

Следовательно $A=LDL^{\top}$. Отсюда получаем разложение Холецкого матрицы A с матрицей $(LD^{1/2})$.

Разложение Холецкого совпадает с LU- разложением, если

- $\bullet \quad L=LD^{1/2} \Rightarrow D^{1/2}=I$
- $\bullet \quad U = D^{1/2}L^\top \Rightarrow U = L^\top$

Получили необходимое условие вида матрицы U совпадения разложения Холецкого с LU-разложением. С другой стороны, очевидно, что оно и достаточное.

Далее можно получить вид матрицы A, при котором это выполнено.

Пусть $A = LL^{\top}$, где L - нижнетр. с единицами на диагонали.

$$a_{ij} = \langle l_i, l_j
angle = \sum_{k=1}^{i-1} a_{ik} a_{jk} + l_{ji}$$
 при $i < j$ (l_i - i строка матрицы L)

Тогда
$$l_{ji} = a_{ij} - \sum_{k=1}^{i-1} a_{ik} a_{jk}$$
 при $i < j$.

$$a_{ii} = 1 + \sum_{k=1}^{i-1} (a_{ik} - \sum_{t=1}^{k-1} a_{kt} a_{it})^2 \ \forall i = 1..n$$
 (1)

Итак, показано, что если , $A=LL^{\top}$, где L - нижнетреугольная с единицами на диагонали, то диагональный элемент A a_{ii} выражается через элементы A с индексами не больше i по формуле (1).

Заметим также , что в произведении $LL^{ op}$ диагональный элемент $LL^{ op}$ a_{ii} выражается через элементы L с индексами не больше i.

Пусть
$$A \in S^n_{++}, \; a_{ii} = 1 + \sum_{k=1}^{i-1} (a_{ik} - \sum_{t=1}^{k-1} a_{kt} a_{it})^2 \; \; orall i = 1..n.$$

Произведём LU-разложение или разложение Холецкого матрицы A и рассмотрим диагональные элементы нижнетреугольной матрицы L из разложения. Пусть $\exists j: L_{jj} \neq 1$. Выберем наименьший из таких j. Теперь заметим, что при замене L_{jj} на 1 свойство матрицы A должно сохраниться для диагональных элементов с индексами 1..j (ключевой переход), но этого быть не может, так как при такой замене должен измениться элемент a_{jj} . Получили противоречие, значит предположение не верно.

Таким образом разложение Холецкого совпадает с LU разложением $A \in S^n_{++}$ тогда и только тогда, когда $a_{ii} = 1 + \sum_{k=1}^{i-1} (a_{ik} - \sum_{t=1}^{k-1} a_{kt} a_{it})^2 \ \ \forall i=1..n.$