Procedure: Creep Test at SNL

Version Date:

June 24, 2015

June 30, 2015

Form Completed By:

1 Test Description

Parameters	Value		
Test Name	UNM-WF-HY-90-04		
Salt Provenance (Circle One)	Avery Island /WIPD		
Test Type (Circle One)	Hydrostaticy Shear		
Salt Can Label	1A + 0.2265 kg for av.		
Water Added to Salt (Circle One)	yes) no		
If Water Added, What Percent by Mass [%]	192		
Temperature: [°C / ° F]	90°C		
Pressure [MPa / psi]	20 MPa		
Jacketing Components (Circle All)	Outer Lead - Outer Viton - Inner Lead - Inner Copper		
Tested In (Circle One)	Frame 2 Frame 3		

Table 1: Description of Test

2 Pre-Test Measurements

2.1 Height of components:

Components	Count	Component Label	Recorded Height [mm]
D.	1	C5	37.14
Platens	2	C3	37.07
Chamfer Discs	1	CP3	8.38
	2	CP4	8.53
	1	NA	0.60
Mesh Discs	2	NA	0.60
Cumulative Height	of Components	92.34	mm

- 110 screv

Table 2: Itemized List of Components for Height Measurements (No Salt).

2.2 Jacket Dimensions

If the test is performed at:

- A temperature above 100 °C (high temp.) -> one outer lead jacket and one or more inner copper jackets will be used;
- A temperature below 100 °C (low temp.) -> one outer Viton jacket, one inner lead jacket, and one inner copper jacket.
 Spatially, from outer to inner, the jacket order will be Viton, lead, and copper; with the salt being in contact with copper.

2.2.1 Height of Outer Jacket

This value will vary depending on which platens (steel or aluminium) and chamfer pieces are used, in general:

Outer Jacket: 10.125 inches (257.17 mm) to 11.0 inches (279.4 mm);

add height meas.

- 2. Inner Shell: 12.0 inches (304.8 mm) -> this is for both A1 and A2;
- Specimen Clearance: 1.875 inches (47.62 mm) to 1.0 inches (25.4 mm);

NOTE: the maximum height inside Frame 2 and 3 is 12 inches (304.8 mm) - If the upper internal port of the shell is plugged, the available height is decreased to 11.75 inches (298.45 mm)

Jacket Description	Height	No. of Jackets Used
Outer Lead Jacket (mm)	261	1
Outer Viton Jacket (mm)		0
Inner Lead Jacket (mm)		0
Inner Copper Jacket (mm)	165-	7

Table 3: Height of Jacketing Components (if jacket not used, write "NA")

Checklist of Jacketing Materials: 2.2.2

Components	Count	Verification Checkmark (and Component Label is Applicable)
Til	1	C5-
Platens	2	13
	1	
Plata O da	2	
Platen O-rings	3	/
	4	~
Platen Screws (0.25 inch 20 rnd)	1	
Flaten Screws (0.25 mcn 20 flid)	2	
Screw-In Nipples	1	
Screw-in Nippies	2	
	1	
Nipple O-rings	2	V
Nippie O-rings	3	
	4	
Nipple Adapter (HIP HF4 connection)	1	
Nippie Adapter (IIII III 4 connection)	2	
Nipple Plugs (HIP HF4 plugs)	1	
ruppie i luga (iiii iii 4 piuga)	2	
Chamfer Discs	1	CP3
Chamier Disco	2	C F 4
Mesh Discs	1	
3.0000000000000000000000000000000000000	2	
Inner Copper Jacket (indicate No. used)	2	
Outer Lead Jacket	1	
Inner Lead Jacket	-1	
Outer Viton Jacket	-1	
	-1	
Wire Ties - Wrapped Around Viton Jacket	-2	
whe ries - wrapped around viton sacket	-3	
	-4	

Table 4: Itemized List of Components for Mass and Volume Measurements (No Salt).

7	Measured Value	Values
BCL (7/7/15)	Prior to Dunk: Water Level Reading on Burette	67.6
	After Dunk: Water Level Reading on Burette	54.2
950.33 ml	Volume of Components (No Salt)	1522.8
7	Mass of Components (No Salt)	3.9414
Volume of	Table 5: Measurements of All Cor	mponents (No Sa

Sulfact 11:45 mL (C.1 burette) from Vedume

Units

mL (burette) mL (burette) mLkg

Salt)

Measured Mass of Salt 2.3

2.3.1 Date:

		3. 4429	Manuscolle.
easured Mass of Salt	0.	07/-4	Previous Wethers Somple
Parameters	Value		sample.
Salt Can Label	1A +	0.26	5 he fain
Before Making Sample: Mass of Salt and Can (with lid)	1.8794	kg	UNM JAN 40-63
After Sample is Made: Remaining Mass of Salt and Can with he	d) 0.022	kg	
Mass of Salt Used for Sample	1.9288	kg	
Cumulative Mass of Components and Salt	5.8696	kg	ru/ Plas

Table 6: Mass of Salt

Pre-consolidation Measurements

3.0.2 Date: 7/1/15

3.0.3 Data Sample Rate: No Data Logsing

Volume Displayed on ISCO Pump	Volume [mL]	Pressure [psi]	Time [hh:mm]
Initial Reading: prior to consolidation	507.60	23	12:257/2
Reading: When at pre-consolidation pressure	63.69	2820	12:323
Final Reading: after pre consolidation	+2 1523	2 2526	12:40.

Table 7: Pre-consolidation Details

Components	Volume [mL]	Mass [kg]
Preconsolidated Specimen (all components listed above plus salt)		5,8702
Preconsolidated Salt (Salt Only)	1099,)	19288

Table 8: Pre-consolidation Measurments

-> Mersure Sample Height Here

Nipple 67.8

Pre-Creep Test Measurements (After Specimen Has Been Preconsolidated)

3.1.1 Date:

Parameter	Values	Units	
Prior to Dunk: Mass of Specimen (with all components)	5.8071	kg	
Prior to Dunk: Water Level Reading on Burette	67-8	mL (burette)	2049
After Dunk: Water Level Reading on Burette	49.9	mL (burette)	[
After Dunk: Mass of Specimen (with all components)	5 9,096	kg	
Measured Volume Change of Salt Caused by Pre consolidation		mL	
Measured Volume of Salt Prior to Creep Test		mL	

Table 9: Measurements Made During Seconds Dunk of Specimen (after pre consolidation).

Application of Heat to Obtain Test Temperature

Heat will be applied to the specimen until the desired test temperature is obtained, this will be done under quasi-atmospheric pressure.

4.0.2 Date: 7/2/15 \rightarrow 90 °C 4.0.3 Data Sample Rate: / min

Event	Date	Time	Confining Pressure [psi]	Comments
Start Temperature Increase	7/2/15	1:28 PM	0,9 (di/a)	Vert. to Afm
End Temperature Increase	7/2/15	3:30 PM	0.9	Isco vol. soz. ml

Table 10: Dates of Details of Temperature Increase Sch #1 = 7 - 0.29 Sch #1 = 7 - 0.14 Sch #1 = 7 - 0.14

Begin Creep Test

Date:

Data Sample Rate:

Event	Value	Comment
ISCO Pump Volume (Pre Pressure Increase)	480	90al: 201 ml
ISCO Pump Pressure (Pre Pressure Increase)	10	7
Begin Pressure Increase	Time: 3.42 /M	
End Pressure Increase	Time: 3:47 PM	
ISCO Pump Volume (Post to Pressure Increase)	280	
ISCO Pump Pressure (Post Pressure Increase)	2900	
ISCO Pump Flow Rate (Post Pressure Increase)	4.2 min	

Table 11: Details of Test Initiation

Final Dank details (7/7/15) BCL

Push fluid from t3 (12:03)

Total Mess of Sample = 3.8070 kg

Initial dank tenk value = 69.2 3 114.

final dank tenk value = 52.5 3 114.

Volume of sample = 1912.11326 mL

Mass After Dank =

Take Pictures

Mass of self: 1.9288 kg

59/4 Valume = 1912.11 ml -> sample

389.37 ml -> components = 950.33 ml

389.37 ml of salt (final valume)

= 389.37 10 m³

961.78 ml

final salt density = 2005. 4 /cg/m3