

Better representation learning via improving operations of Capsule Networks

조민수 교수님 20130394 주동욱

1. Background & Motivation

- Importance of efficiency of representation learning
- Capsule Networks

Scale and thickness	6	6	6	6	6	6	6	6	6	9	6
Localized part	0	6	6	6	6	6	6	6	6	6	6
Stroke thickness	5	5	5	5	5	5	5	5	5	5	5
Localized skew	4	4	4	4	4	4	4	4	4	4	4
Width and translation	7	5	3	3	3	3	3	3	3	3	3
Localized part	2	2	2	2	2	2	2	2	2	2	2

2. Experiments & Results

Dataset

MNIST

CIFAR-10

Model Architecture

 Baseline model from 'Dynamic Routing Between capsules' Input [1,28,28] \rightarrow Convolution Layer [20,20,256] \rightarrow

 $PrimaryCaps~[32,6,6,8] \rightarrow DigiCaps~[16,10] \rightarrow Prediction[10]$

Restricted model for performance comparison Input [1,28,28] \rightarrow Convolution Layer [20,20,64] \rightarrow

PrimaryCaps $[8,6,6,8] \rightarrow DigiCaps [16,10] \rightarrow Prediction[10]$

• MNIST dataset is too simple, so CIFAR-10 is also used for performance comparison.

Experiments & Results

- Number of Dynamic Routing and Performance
 - There is no strong correlation between # routing and performance.
 - # routing can be adjusted as a hyper parameter for slight improvement of performance.
 - Increasing number of routing destabilizes the training procedure.

#Routing	1	2	3	4	5	10	20
Restricted MNIST	98.92	98.52	98.72	98.85	98.98	97.43	96.99
Restricted CIFAR	52.92	52.29	51.88	53.43	52.88	51.83	51.24

Routing Coefficient Normalization Direction

Proposed	Direction
----------	-----------

# Routing	1	2
Restricted CIFAR Proposed Direction	52.92	52.29
Restricted CIFAR Opposite Direction	55.82	54.12

Accumulated Routing

- Instead of dynamic routing, which initializes routing coefficient uniformly at every iteration, accumulated routing is applied, which accumulates all interactions between capsules.
- Performance is decreased. The cause seems too much focus on a few points.

#Accumulated Routing	1	3
Restricted MNIST	98.92	98.52
Restricted accumulated MNIST	94.50	93.35

Replace Dynamic Routing with Parameter & Backpropagtion

- Replacing routing with trainable parameters does not seriously change the performance.
- Normalization is important for better performance.
- Parameter & Backpropagation is faster than Dynamic Routing, especially when the number of routing increases.

Model	Restricted MNIST Routing #1			Restricted MNIST Routing #3			Restricted MNIST BP		
Performance		98	.92	98.72				98.91	
Model			ricted CIFAR Routing #3		Re	stricted (CIF.	AR BP	
Performance		51.88			51.22				
Model			Restricted	MNIST		Restrict	ed	CIFAR	
With Normal	ith Normalization			8.91 51.22				2	
Without Norm	alizati	cation		3.43		40.0			
Model		Parameter & Backpropagati		Rou #	0	Routin #3	g	Routing #5	
Computation T Ratio	ime	1		1.0	09	1.69		2.42	

Reconstruction

- DigiCaps outputs are utilized as features for reconstruction.
- For the case of MNIST which has relatively simple data, decoder successes to synthesize relevant images.
- For the case of CIFAR-10 which has more complex data, decoder fails to generate detailed images. It only captures the hue of each class.

3. Conclusion & Future Works

- Dynamic routing can be replaced with trainable parameters without dramatic change of performance.
- Normalization and its direction affects the performance of Capsule Networks.
- This replacement needs to be tested on more complex settings like 'Capsules for Object Segmentation'.