Exercises for Group, field and finite field 6^{th} January, 2006

- 1. Write the addition and multiplication tables for $GF(5) = \{0, 1, 2, 3, 4\}$
- **2**. Find the principal remainder when $83 \cdot 54$ is divided by 7.
- **3**. Determine whether (3^{18}) (13^{35}) + 1 is divisible by 17
- 4. Prove that $1 + x + x^3$ and $1 + x^2 + x^3$ are the only irreducible polynomials of degree 3 over \mathbf{F}_2 .
- **5**. Is GF(4) a subfield of GF(8)? Explain.
- **6**. Construct the addition and multiplication tables for the rings \mathbb{Z}_8 .
- 7. Find the multiplicative inverse of 3, 6, 10 in \mathbf{Z}_{11} .
- 8. Show that the polynomials $1 + x^2$ and $2 + 2x + x^2$ over \mathbf{F}_3 are irreducible.
- **9**. Factorise the polynomials $x^7 1$ over \mathbf{F}_3 , $x^{20} 1$ over \mathbf{F}_7 and $x^{11} 1$ over \mathbf{F}_5 .
- 10. Determine the number of primitive elements in the fields \mathbf{F}_{10} , \mathbf{F}_{11} and \mathbf{F}_{30} .
- 11. Find the number of monic irreducible cubic polynomials over \mathbf{F}_q .
- 12. Find all the cyclotomic cosets of 2 modulo 33.
- **13**. Let

$$f(x) = (2 + 2x^2) (1 + x^2 + x^3)^2 (-1 + x^5)$$

in $\mathbf{F}_3[x]$ and

$$g(x) = (1+x^2)(-2+2x^2)(1+x^2+x^3)$$

in $\mathbf{F}_3[x]$. Find $\gcd(f(x),g(x))$ and $\operatorname{lcm}(f(x),g(x))$.

14. Find two polynomials u(x) and v(x) in $\mathbf{F}_2[x]$ such that $\deg(u(x)) < 5$, $\deg(v(x)) < 4$ and

$$u(x) (1 + x + x^3) + v(x) (1 + x + x^2 + x^3 + x^4) = 1$$

- 15. Construct the addition and multiplication tables for the ring $\mathbf{F}_3[x]/(x^2+1)$.
- 16. Determine all the subfields in $\mathbf{F}_{2^{13}}$.

Reference

Raymond Hill. A first course in coding theory. Clarendon, 1986
San Ling and Chaoping Xing. Coding theory, a first course. Cambridge University Press, 2004
L R Vermani. Elements of algebraic coding theory. Chapman & Hall, 1996