AD-A273 557

WL-TR-93-4091

THE MECHANICAL PROPERTY DATA BASE FROM AN AIR FORCE/INDUSTRY COOPERATIVE TEST PROGRAM ON ADVANCED ALUMINUM ALLOYS (8090-T8771 PLATE)

MARYANN PHILLIPS and STEVEN R. THOMPSON Materials Engineering Branch Systems Support Division

August 1993

Interim Report for Period May 1991 - January 1993

Approved for public release; distribution is unlimited.

Materials Directorate
Wright Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, Ohio 45433-7734

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This Technical report has been reviewed and is approved for publication.

MARY ANN PHILLIPS, Project Engineer

Engineering and Design Data Materials Engineering Branch STEVEN R. THOMPSON, Project Engineer

Engineering and Besign Data Materials Engineering Branch

THEODORE J. REINHART, Chief

Materials Engineering Branch Systems Support Division

Materials Directorate

THOMAS D. COOPER, Chief

Systems Support Division Materials Directorate

Wright Laboratory

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify WL/MLSE, WPAFB, OH 45433-7718 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to scerage. Thour per response, including the time for reviewing instructions, searthing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarte is Services, Directorate for information Operations and Reports, 1215 cefferson Davis Highway, Suite 1204, Arlington, ZAI 22202-4302, and to the Office of Management and audget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE August 1993	3. REPORT TYPE AN Interim 5/9	
4. TITLE AND SUBTITLE The Mechanical Property Industry Cooperative To Alloys (8090-T8771 Plan	y Data Base from an . est Program on Advan	Air Force/	5. FUNDING NUMBERS PE 62102F PR 2418 TA 07
6. AUTHOR(S)		****	WU 03
Mary Ann Phillips and S (513) 255-5063	Steven R. Thompson		
7. PERFORMING ORGANIZATION NAME Materials Directorate			8. PERFORMING ORGANIZATION REPORT NUMBER
Wright Laboratory (WL/N Air Force Materiel Comm Wright Patterson Air Fo	mand	734	WL-TR-93-4091
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
Materials Directorate			AGENCY REPORT NUMBER
Wright Laboratory (WL/N Air Force Materiel Comm			WL-TR-93-4091
Wright Patterson Air Fo		734	
11. SUPPLEMENTARY NOTES			
		•	
12a. DISTRIBUTION/AVAILABILITY STAT	TEMENT		12b. DISTRIBUTION CODE
Approved for Public Rel	Lease; distribution	is unlimited.	
13. ABSTRACT (Maximum 200 words)			
A mechanical prope 8090 plate was develope compression, bearing, s fatigue crack growth an	ed. Mechanical properties, and fracture	erty data cons: toughness prope	erties. Fatigue,

14.	SUBJECT TERMS	Bearing	2091	Fatigue Crack Growth	15. NUMBER OF PAGES
	Tensile	Shear	AL905XL	Weldalite TM049	
1	8090	Compression	IN905XL	Spectrum	16. PRICE CODE
1	Aluminum-Lithium	Toughness		_	
17.	SECURITY CLASSIFICATION OF REPORT	18. SECURITY CL	ASSIFICATION GE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
	Unclassified	Unclassi	fied	Unclassified	UL.

TABLE OF CONTENTS

1.	INTRODUCTION	<u>PAGI</u> 1
2.	MATERIALS AND TESTS	2
3.	PRESENTATION	3
4.	RESULTS AND DISCUSSION	4
5.	CONCLUSIONS	5

Accesion	on For						
DTIC	ounced	A					
By							
Α	vailability	Codes					
Dist	Avail a						
A-1							

DTIC QUALITY INSPECTED 3

LIST OF FIGURES

FIGURE		<u>PAGE</u>
F1	Fatigue Results for 8090-T8771 Plate (Longitudinal Orientation). Air Force.	15
F2	Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation). Martin Marietta.	16
F3	Fatigue Crack Growth Rate Data for 8090-T8771 Plate (T-L Orientation). Martin Marietta.	22
F4	Fatigue Crack Growth Rate Data for 8090-T8771 Plate (S-T Orientation). Martin Marietta.	25
F5	Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation and $R = 0.1$). Air Force.	27
F6	Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation and $R = 0.33$). Air Force.	29
F7	Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation, R = 0.1 and High Humidity). Air Force.	31
F8	Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation, R = 0.33 and High Humidity). Air Force.	34
F9	Mini-TWIST Spectrum Crack Length vs Flights Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress = 16.9 ksi). Air Force.	35
F10	Mini-TWIST Spectrum Crack Growth Rate vs Delta K Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress = 16.9 ksi). Air Force.	37
F11	FALSTAFF Spectrum Crack Length vs Total Flights Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress = 20 ksi). Air Force.	38
F12	FALSTAFF Spectrum Crack Growth Rate vs Delta K Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab	39

LIST OF TABLES

TABLE		<u>PAGE</u>
F1	Tensile Results at t/2 Location for Alcan 8090-T8771 Plate, Longitudinal Orientation	6
F2	Tensile Results at t/2 Location for Alcan 8090-T8771 Plate, 45 Degree Orientation	6
F3	Tensile Results at t/2 Location for Alcan 8090-T8771 Plate, Long Transverse Orientation	7
F4	Tensile Results at t/2 Location for Alcan 8090-T8771 Plate, Short Transverse Orientation	7
F5	Compression Results at t/2 Location for Alcan 8090-T8771 Plate, Longitudinal Orientation	8
F6	Compression Results at t/2 Location for Alcan 8090-T8771 Plate, Long Transverse Orientation	8
F7	Compression Results at t/2 Location for Alcan 8090-T8771 Plate, Short Transverse Orientation	9
F8	Amsler Double Shear Results at t/2 Location for Alcan 8090-T8771 Plate, T-L Orientation	10
F9	Bearing Results at $t/2$ Location for Alcan 8090-T8771 Plate, Longitudinal Orientation and $e/D = 1.5$	11
F10	Bearing Results at $t/2$ Location for Alcan 8090-T8771 Plate, Long Transverse Orientation and $e/D = 1.5$	11
F11	Fracture Toughness Results for Alcan 8090-T8771 Plate, L-T Orientation	12
F12	Fracture Toughness Results for Alcan 8090-T8771 Plate, S-L Orientation	12
F13	Fracture Toughness Results for Alcan 8090-T8771 Plate, T-L Orientation	13
F14	Fracture Toughness Results for Alcan 8090-T8771 Plate, S-T Orientation	13
F15	Fatigue Results with $R = 0.1$ and $Kt = 1.0$ for Alcan 8090-T8771 Plate, Longitudinal Orientation	14
F16	Fatigue Results with R = 0.1 and Kt = 3.0 for Alcan 8090-T8771	14

LIST OF TABLES CONTINUED

<u>TABLE</u>		<u>PAGE</u>
F17	Fatigue Crack Growth Rate Data Associated with Figure F2 (Specimen CG-LT-1)	17
F18	Fatigue Crack Growth Rate Data Associated with Figure F2 (Specimen CG-LT-2)	19
F19	Fatigue Crack Growth Rate Data Associated with Figure F3 (Specimen CG-TL-1)	23
F20	Fatigue Crack Growth Rate Data Associated with Figure F3 (Specimen CG-TL-2)	24
F21	Fatigue Crack Growth Rate Data Associated with Figure F4 (Specimen CG-ST-2)	26
F22	Fatigue Crack Growth Rate Data Associated with Figure F5	28
F23	Fatigue Crack Growth Rate Data Associated with Figure F6	30
F24	Fatigue Crack Growth Rate Data Associated with Figure F7	32
F25	Fatigue Crack Growth Rate Data Associated with Figure F8	33

PREFACE

This report was prepared by the Materials Engineering Branch (WL/MLSE), Systems Support Division, Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, Ohio, under Project 2418, "Metallic Structural Materials," Task 241807, "Systems Support," Work Unit 24180703, "Engineering and Design Data."

The authors would like to thank the participants Martin Marietta LA and the Air Force.

INTRODUCTION

High performance aerospace systems are dependent on materials that are lighter, have improved mechanical properties, and/or offer a cost savings. Aluminum alloys that mct these criteria were the newly developed aluminum-lithium alloys and the second generation powder metallurgy alloys.

In 1985, the Air Force along with the aerospace community found it important to investigate the potential of these promising aluminum alloys. A cooperative program was formed by the Wright Laboratory Materials Directorate, Systems Support Division and a number of aerospace industries. The Air Force would obtain the test material from the producers, compile the test data, and submit reports to the participants. The participants agreed to support the program by pe forming mechanical property tests which includes tension, compression, bearing, shear, fracture toughness, and fatigue related properties (S/N, da/dn). The Air Force elected to perform spectrum fatigue crack growth testing on most alloys. A list of participants is shown in the following table.

This Interim report contains the aluminum-lithium alloy 8090-T8771 1.75-inch plate produced by Alcan. Comparisons to other materials and ranking of materials are generally avoided since each potential application may be based on different evaluation criteria.

TABLE

Participants and Advanced Aluminum Alloys
in the Cooperative Test Program

					ALL	/A	i MA	лн	,84	AL	ij)YS	•	PAM ALUMINUM ALLOYS				48		
	1	EC	ж	NE	IAL	CAN	i Inci	****	1	1	co	A	REYNOLDS	KAIS	SER 	1	rc	04		
PARTICIPANTS	2091 - T3 States (0.063*T)	2091 - 1351 Plate 10 420 T)		6090 - 1651 T Extrusion	8090-T651 Entrusion	8090-T8771 Plate (1.75T)	PIA M905XL Forging	PM ALBOSXI, Forging	ı	2091-T3 Sheet (0 144°T)		Extrusion	Weldelte 049 RX615 Plate (0 ST)	7064 - 174511 Extrusion	7064-T74 Forging	CW67 Sheet (0 063°T)	CW67 Plate (0 40T)	CW67 Entrusion	CW67 Forging	
Air Force WPAFB, OH		*	-		*	×		z	×	×	×	×		×	×			ĸ	*	
Army, MA			ļ		!	 						×	я							
AVCO, TN	1	ì	ì		1	Ì			×	į	1		Ì				; ;		:	
Boeing, WA		×	×		,	į					1		[į			i	i	
Douglas Aircraft, CA	1		Ì	1	:	:			×	×	iz	×	*		!	l			i	
General Dynamics, CA	į	N.		1	ļ	Ì	}		1	2	*	1	*		1)	:	
General Dynamics, TX	×	#	*	×			*		×	×	×	×	1		-	١.				
Grumman Aerospace, NY	*		i	ļ			×	ĺ					}	F	×	1		×	×	
Jet Propulsion, CA	-		1	į	1			×					T.	1	ĺ		1	. :	;	
Lockheed, CA	×	į		×	: !			7	×		*			ļ		ŀ	,		1	
LOCKheed. GA		ļ	*	į !	*				A	×	i	i		ĺ	×	:			x ;	
LTV. TX	×			×			×		×		į	*		×	×			¥ :	;	
Martin Manetta, LA	*	×	×		*	×	*	×	×	*	: X	1		*	×	×		×	x ;	
McDonnell Douglas Astro, CA	!				!					×			×	į	ļ				!	
McDannel Douglas Helicopter, AR	l	ĺ	İ		:	!		×	ĺ				l L	i I	İ				1	
McDonnell Douglas Missile Sys. MO				1	ĺ				Ì				ı x	}	ĺ	l I	i		•	
McDonned Aircraft, MO	×						*	, x	*		i				*	×	i)	# ·	
NASA, VA					×		*		ĺ				1	}		Ì	ı	1	1	
Naval Air Development Center				×	l			*			•			1			i		# !	
Northrop, CA	*	x [×		*		×		*	×	×	×	, x			l			:	
Sikorsky, CT	ĺ	-	1		i		×		*)				*	i	*		# !	
Sundstrand, fL	ļ	1		!	J	•			!	i	i		*	}	1	!	!		•	
Wyman Gordon	1		'		!			R	1	1			·	i	:	:				

MATERIALS AND TESTS

The Alcan aluminum-lithium alloy 8090-T8771 1.75-inch plate was received May 1991. The 8090 was tested in the as-received condition by Martin Marietta and the Air Force.

Mechanical properties (tension, compression, bearing shear and fracture toughness), fatigue and constant amplitude fatigue crack growth tests were performed according to ASTM standards, unless otherwise specified. Spectrum fatigue crack growth tests were performed by the Air Force using FALSTAFF (a severe fatigue environment) and Mini-TWIST (a moderately intense fatigue environment) spectrums.

PRESENTATION

Each participant compiled a data package which contained the data they generated. Some of these data packages contain discussion, and in other cases, only the data were provided. The tensile, compression, bearing, shear and fracture toughness data are put in tabular form. Fatigue, fatigue crack growth and spectrum fatigue crack growth data were put in tabular and graphical form.

RESULTS AND DISCUSSION

The data generated by the participants on the 8090 plate are shown in Tables F1 thru F25 and Figures F1 thru F12.

CONCLUSIONS

Two aerospace laboratories participated in generating data on the Alcan 8090-T8771 Plate for the cooperative test program. These data combined with previous interim reports on the Air Force/Industry Cooperative Test Program on Advanced Aluminum Alloys provide an extensive data base on aluminum-lithium alloys.

TABLE F1

TENSILE RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	TEST TEMP (DEGREES F)	ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
MARTIN	RT	LONG	79.1	71.0	5.0	3.9	
MARIETTA			79.1	71.2	5.0	9.6	
			79.3		5.0	3.5	
AIR FORCE	RT	LONG	76.7	65.7	8.1	9.2	
			80.2	72.6	5.5	5.2	
			76.7	66.0	7.9	11.6	
		AVERAGE	78.5	69.3	6.1	7.2	
	STANDARD I	EVIATION	1.5	3.2	1.5	3.4	

TABLE F2

TENSILE RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	TEST TEMP (DEGREES F	ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
AIR FORCE	RT	45	72.3	54.7	11.5	17.6	
			72.4 72.5	58.0 55.5	8.9 9.8	14.5 15.4	
		AVERAGE	72.4	56.1	10.0	15.8	
	STANDARD I	DEVIATION	0.1	1.7	1.3	1.6	

TABLE F3

TENSILE RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG	RA (%)	E (MSI)
MARTIN MARIETTA	RT	L TRANS	78.2 78.1 78.5	66.9 66.8 67.1	6.0 6.0 6.0	8.1 8.9 8.5	
AIR FORCE	RT	L TRANS	73.3 79.5 73.8	56.9 68.4 57.3	10.4 6.5 10.5	10.3 9.7 11.2	
		AVERAGE	76.9	63.9	7.6	9.4	
	STANDARD D	EVIATION	2.7	5.3	2.2	1.2	

TABLE F4

TENSILE RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	TEST TEMP (DEGREES F)	ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
AIR FORCE	RT	S TRANS	75.6 75.0 75.8	61.4 61.0 62.0	1.7 3.5 5.4	2.4 2.4 5.1	
		AVERAGE	75.4	61.5	3.5	3.3	
	STANDARD D	EVIATION	0.4	0.5	1.8	1.6	

TABLE F5

COMPRESSION RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (KSI)
MARTIN MARIETTA	RT	LONG	70.3 67.0 68.1	12.1 12.1 12.1
AIR FORCE	RT	LONG	62.5 63.9 60.5	11.8 12.0 10.1
		AVERAGE	65.4	11.7
	STAN	DARD DEVIATION	3.7	0.8

TABLE F6

COMPRESSION RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (KSI)
MARTIN MARIETTA	RT	L TRANS	72.6 73.6 73.1	12.2 12.0 12.1
AIR FORCE	RT	L TRANS	62.5 70.9 67.5	11.8 12.0 11.9
		AVERAGE	70.0	12.0
	STAN	DARD DEVIATION	4.3	0.1

TABLE F7

COMPRESSION RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (KSI)
MARTIN MARIETTA	RT	S TRANS	69.6 68.8 68.5	12.1 12.0 12.0
		AVERAGE	69.0	12.0
	STAND	ARD DEVIATION	0.6	0.1

AMSLER DOUBLE SHEAR RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	ORIENTATION	SHEAR STRENGTH (KSI)
AIR FORCE	T-L	41.1 41.8 43.4 44.4 43.6 41.4
	AV STANDARD DEVI	ERAGE 42.6 ATION 1.4

TABLE F9

BEARING RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
AIR FORCE	LONG	1.5	112.1 112.8 106.9	90.6 91.5 83.7
		AVERAGE	110.6	88.6
	STANDAR	D DEVIATION	3.2	4.3

TABLE F10

BEARING RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
AIR FORCE	L TRANS	1.5	109.9 112.7 105.7	89.6 90.6 87.3
		AVERAGE	109.4	89.2
	STANDAR	D DEVIATION	3.5	1.7

TABLE F11 FRACTURE TOUGHNESS RESULTS FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	ORIENTATION	KIC (KSI in^0.5)	Kq (KSI in^0.5)	COMMENT
MARTIN MARIETTA	L-T		29.9 27.9 28.3	(1) (1) (1)
AIR FORCE	L-T	27.0	24.7 23.7	(2) (2)
	AVERAGE	27.0	26.9	
STAND	ARD DEVIATION	0.0	2.6	

(1): INVALID DUE TO a/W < 0.45 (2): INVALID DUE TO Pmax/Pq > 1.1

TABLE F12

FRACTURE TOUGHNESS RESULTS FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	ORIENTATION	KIC (KSI in^0.5)	Kq (KSI in^0.5)	COMMENT
MARTIN MARIETTA	S-L		11.1 11.0	(1) (1)
AIR FORCE	S-L		12.1 12.8 9.9	(1) (1) (1),(2)
	AVERAGE		11.8	
STAND	ARD DEVIATION		0.9	

(1): INVALID DUE TO Kfat/Kq > 0.6
(2): INVALID DUE TO a,B < 2.5(Kq/YS)^2</pre>

TABLE F13

FRACTURE TOUGHNESS RESULTS FOR
ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	ORIENTATION	KIC (KSI in^0.5)	Kq (KSI in^0.5)	COMMENT
MARTIN MARIETTA	T-L		21.0 20.1	(1) (1)
AIR FORCE	T-L	25.0 24.3 22.7		
	AVERAGE	24.0	20.6	
STAND	ARD DEVIATION	1.2	0.6	

(1): INVALID DUE TO Kfat/Kq > 0.6

TABLE F14

FRACTURE TOUGHNESS RESULTS FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	ORIENTATION	KIC (KSI in^0.5)	Kq (KSI in^0.5)	COMMENT
MARTIN MARIETTA	S-T	, , , , , , , , , , , , , , , ,	13.1	(1)
	AVERAGE		13.1	
STAND	ARD DEVIATION		0.0	

(1): INVALID DUE TO Kfat/Kq > 0.6

TABLE F15

FATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	ORIENTATION	STRESS (KSI)	CYCLES
AIR FORCE	LONG	73.5	5,016
		69.0	15,020
		66.0	16,366
		60.0	36,998
		57.0	93,383
•		50.8	280,000
		48.0	95,642
		43.5	2,946,918
		37.5	17,000,000 *
		29.0	10,000,000 *

(*): RUN OUT

TABLE F16

FATIGUE RESULTS WITH R=0.1 AND Kt=3.0 FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

COMPANY	ORIENTATION	STRESS (KSI)	CYCLES
AIR FORCE	LONG	50.0	3,822
	230.3	40.0	7,994
		30.0	32,103
		28.0	39,796
		26.0	74,224
		24.0	64,517
		22.0	135,951
		21.0	648,867
		20.5	103,502
		20.0	10,000,000 *

(*): RUN OUT

FIGURE F1. Fatigue Results for 8090-T8771 Plate (Longitudinal Orientation). Air Force.

FIGURE F2. Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation). Martin Marietta.

Fatigue Crack Growth Rate Data Associated with Figure F2 (Specimen CG-LT-1)

Tests were performed with the "CGR Crack Growth Program" from Interlaken Version 1.0B.

Strengths are in PSI. Loads in pounds. Dimensions in inches. Temperature in Degrees Fahrenheit. dK in psi sqrt inch.

The crack lengths were corrected based on the final measurments. The data was averaged using the 7 pt. polynomial method.

The precrack Pmax load of 2875 lbs. was 6.8% higher than the initial Pmax test load of 2446 lbs.

Operator:	cpm
Sample date:	09-24-91
Material:	8090 Al-Li
ID #:	CG-LT-1
Yield Strength:	71110
Modulus of Elast:	11100000
COD Pos:	2
Crack Plane:	L-T
Geometry:	1
Width:	2.0035
Thickness:	1.001
Half span (MT):	.1
Env:	AIR
Temp:	70
Humidity:	50
Waveform:	1
Test Frequency:	10
Test Type:	ī
K Gradient:	-2
Min Load:	270
Max Load:	2700
Test Mode:	1
Data Pt Intvl:	.01
Min Growth Rate:	.00001
Compl Slope:	2
Pts/Cycle:	200
Upper Slope Limit:	85
Lower Slope Limit:	15
No of Slopes Ave:	5
Compliance Cor.:	1.01186
Notch Length:	.804
Precrack Length:	.892
Precrack Cycles:	95360
Precrack Max Load:	2874.94
Precrack Min Load:	283.341
#Points:	40
·	

TABLE F17 Continued

4Dtar		40		
/Points:	crack length	dA/dN	ďΚ	Delta Load
cycle	.81807	0	0	2446.02
76	.827839	Ŏ	ō.	2431.85
7687	.837417	ō	Õ	2429.41
11622	.847308	2.73482e-6	13341.6	2430.87
16621	.857309	2.749448-6	13378.2	2428.92
17016	.867043	2.678e-6	13622.4	2430.39
21521	.876509	2.55124e-6	13808.4	2430.39
25456	.886573	2.40983e-6	13993.8	2429.41
29962	.896374	2.67777e-6	14239.5	2431.36
34874		2.99468e-6	14373.	2430.39
37578	.905701	3.49581e-6	14580.9	2430.87
40855	.915003	3.89369e-6	14815.8	2431.36
43805	.924823	4.03748e-6	14983.	2429.9
45858	.934519	4.21119e-6	15198.9	2429.9
48074	.944946	4.33896e-6	15428.7	2430.39
50372	.954235	4.38178e-6	15659.4	2429.9
52833	.964569	4.67815e-6	15910.7	2430.87
55293	.974571	5.17769e-6	16146.	2429.9
57427	.984776	5.80673e-6	16382.4	2450.39
59238	.994184	6.16529e-6	16634.7	2431.85
60801	1.00372	6.59573e-6	16884.2	2429.9
62365	1.01396	7.22593e-6	17103.3	2429.9
63602	1.02362	7.22593 e- 6	17438.7	2430.39
65247	1.03348		17729.2	2431.36
66486	1.04331	8.4522e-6	17958.	2432,34
6 7396	1.05402	9.04237e-6	18294.9	2432.83
68552	1.0638	1.00304e-5		2431.85
69626	1.07315	1.10796e-5	18619.3	2429.9
70374	1.08258	1.22187e-5	18850.5	2429.9
71203	1.09293	1.35224e-5	19194.1	2431.36
71869	1.10246	1.47645e-5	19525.2	2431.35
72454	1.112	1.58668e-5	19824.3	2428.92
73120	1.12168	1.75657e-5	20185.2	2432.34
73623	1.13112	1.96805 e ~5	20523.9	2432.34
74126	1.1409	2.26089e-5	20831.3	
74548	1.15039	2.67701e-5	21254.3	2431.36
74970	1.16217	3.40151 e- 5	21720.9	2433.32
75310	1.17278	4.57042e-5	22056.1	2432.34
75569	1.18441	0	0	2431.36
75828	1.19962	0	O	2433.32
76005	1.2165	Q	0	2434.29
/6003				

Fatigue Crack Growth Rate Data Associated with Figure F2 (Specimen CG-LT-2)

Tests were performed with the "CGR Crack Growth Program" from Interlaken Version 1.0B.
Strengths are in PSI. Loads in pounds. Dimensions in inches. Temperature in Degrees Fahrenheit. dK in psi sqrt inch.
The crack lengths were corrected based on the final measurments. The data was averaged using the 7 pt. polynomial method.
The precrack Pmax load of 2875 lbs. was 6.8% higher than the initial Pmax test load of 1936 lbs.

```
cpm
Operator:
                                            09-24-91
Sample date:
                                            8090 Al-Li
Material:
                                           CG-LT-2
ID #:
                                             71110
Yield Strength:
                                             11100000
Modulus of Élast:
COD Pos:
                                            L-T
Track Plane:
                                             1
Geometry:
                                             2.003
Width:
                                             1
Thickness:
Half span (MT):
                                            AIR
Env:
                                             70
Temp:
                                             50
Humidity:
                                             1
Waveform:
                                             10
Test Frequency:
Test Type:
                                             1
                                            -2
K Gradient:
                                             810
Min Load: Max Load:
                                             2700
                                             1
Test Mode:
                                             .01
Data Pt Intvl:
                                             .00001
Min Growth Rate:
                                             2
Compl Slope:
                                             200
Pts/Cycle:
Upper Slope Limit:
                                             85
                                             15
Lower Slope Limit:
No of Slopes Ave:
                                             1.06142
Compliance Cor.:
                                             .8035
Notch Length:
                                             .897
Precrack Length:
                                             66865
Precrack Cycles:
                                             2874.94
Precrack Max Load:
                                             862.237
Precrack Min Load:
                                             36
 #Points:
```

TABLE F18 Continued

cycle crack length dA/dN dK Detta Load 76 .891065 0 1936.49 169 .90337 0 0 1896.43 13388 .914341 0 0 1891.55 22926 .925698 1.38423e-6 11527.9 1891.06 31815 .93633 1.62176e-6 11725.2 1890.08 38017 .946829 1.95346e-6 11894.8 1889.11 42836 .957324 2.30119e-6 12063.3 1889.59 47326 .967997 2.64268e-6 12276.8 1892.04 51251 .978596 2.99747e-6 12477.5 1892.04 54847 .990381 3.27357e-6 12675.3 1889.59 58281 1.00171 3.58152e-6 12920. 1891.55 60900 1.01242 3.85038e-6 13124.9 1893.01 64382 1.03392 4.64784e-6 13594.2 1892.53 68676 1.04479 5.08078e-6	#Points:		36		
76		crack length		ďK	Delta Load
169 .90337 0 0 1896.43 13388 .914341 0 0 1891.55 22926 .925698 1.38423e-6 11527.9 1891.06 31815 .93633 1.62176e-6 11725.2 1890.08 38017 .946829 1.95346e-6 11894.8 1889.11 42836 .957324 2.30119e-6 12063.3 1889.59 47326 .967997 2.64268e-6 12276.8 1892.04 51251 .978596 2.99747e-6 12477.5 1892.04 54847 .990381 3.27357e-6 12675.3 1889.59 58281 1.00171 3.58152e-6 12920. 1891.55 60900 1.01242 3.85038e-6 13124.9 1893.01 64008 1.02339 4.29105e-6 13355.5 1890.08 66382 1.03392 4.64784e-6 13594.2 1892.53 70644 1.05635 5.44453e-6 14064.9 1891.55 72776 1.06732 5.85194e-6 14341.3 1891.06 77419 1.07			•	0	
13388				0	
22926 .925698 1.38423e-6 11527.9 1891.06 31815 .93633 1.62176e-6 11725.2 1890.08 38017 .946829 1.95346e-6 11894.8 1889.11 42836 .957324 2.30119e-6 12063.3 1889.59 47326 .967997 2.64268e-6 12276.8 1892.04 51251 .978596 2.99747e-6 12477.5 1892.04 54847 .990381 3.27357e-6 12675.3 1889.59 58281 1.00171 3.58152e-6 12920. 1891.55 60900 1.01242 3.85038e-6 13124.9 1893.01 64008 1.02339 4.29105e-6 13355.5 1890.08 66382 1.03392 4.64784e-6 13594.2 1892.53 68676 1.0479 5.08078e-6 13838.6 1893.5 70644 1.05635 5.44453e-6 14064.9 1891.55 72776 1.06732 5.85194e-6 14341.3 1891.06 74419 1.0784 6.16975e-6 14577.6 1891.06				0	
31815 .93633 1.62176e-6 11725.2 1890.08 38017 .946829 1.95346e-6 11894.8 1889.11 42836 .957324 2.30119e-6 12063.3 1889.59 47326 .967997 2.64268e-6 12276.8 1892.04 51251 .978596 2.99747e-6 12477.5 1892.04 54847 .990381 3.27357e-6 12675.3 1889.59 58281 1.00171 3.58152e-6 12920. 1891.55 60900 1.01242 3.85038e-6 13124.9 1893.01 64008 1.02339 4.29105e-6 13355.5 1890.08 66382 1.03392 4.64784e-6 13594.2 1892.53 68676 1.04479 5.08078e-6 13838.6 1893.5 70644 1.05635 5.44453e-6 14064.9 1891.55 72776 1.06732 5.85194e-6 14341.3 1891.06 74419 1.0784 6.16975e-6 14577.6 1891.06 79346 1.1034 7.45266e-6 15419.6 1892.04			1.38423e-6	11527.9	
38017 .946829 1.95346e-6 11894.8 1889.11 42836 .957324 2.30119e-6 12063.3 1889.59 47326 .967997 2.64268e-6 12276.8 1892.04 51251 .978596 2.99747e-6 12477.5 1892.04 54847 .990381 3.27357e-6 12675.3 1889.59 58281 1.00171 3.58152e-6 12920. 1891.55 60900 1.01242 3.85038e-6 13124.9 1893.01 6408 1.02339 4.29105e-6 13355.5 1890.08 66382 1.03392 4.64784e-6 13594.2 1892.53 68676 1.04479 5.08078e-6 13838.6 1893.5 70644 1.05635 5.44453e-6 14064.9 1891.55 72776 1.06732 5.85194e-6 14341.3 1891.06 74419 1.07784 6.16975e-6 14577.6 1891.06 77784 1.09948 7.08273e-6 15124.8 1891.06 79346 1.11034 7.45266e-6 15419.6 1890.57			1.62176e-6	11725.2	
42836 .957324 2.30119e-6 12063.3 1889.59 47326 .967997 2.64268e-6 12276.8 1892.04 51251 .978596 2.99747e-6 12477.5 1892.04 54847 .990381 3.27357e-6 12675.3 1889.59 58281 1.00171 3.58152e-6 12920. 1891.55 60900 1.01242 3.85038e-6 13124.9 1893.01 6408 1.02339 4.29105e-6 13355.5 1890.08 66382 1.03392 4.64784e-6 13594.2 1892.53 68676 1.04479 5.08078e-6 13838.6 1893.5 70644 1.05635 5.44453e-6 14064.9 1891.55 72776 1.06732 5.85194e-6 14341.3 1891.06 74419 1.07784 6.16975e-6 14577.6 1891.06 77784 1.09948 7.08273e-6 15124.8 1891.06 79346 1.11034 7.45266e-6 15419.6 1892.53 80663 1.12107 7.86935e-6 15709.6 1892.53			1.95346e-6	11894.8	
47326 .967997 2.64268e-6 12276.8 1892.04 51251 .978596 2.99747e-6 12477.5 1892.04 54847 .990381 3.27357e-6 12675.3 1889.59 58281 1.00171 3.58152e-6 12920. 1891.55 60900 1.01242 3.85038e-6 13124.9 1893.01 64008 1.02339 4.29105e-6 13355.5 1890.08 66382 1.03392 4.64784e-6 13594.2 1892.53 68676 1.04479 5.08078e-6 13838.6 1893.5 70644 1.05635 5.44453e-6 14064.9 1891.55 72776 1.06732 5.85194e-6 14341.3 1891.06 74419 1.07784 6.16975e-6 14577.6 1891.06 76223 1.08847 6.60149e-6 14861. 1892.04 77784 1.09948 7.08273e-6 15124.8 1891.06 79346 1.11034 7.4526e-6 15419.6 1890.57 80663 1.12107 7.86935e-6 15709.6 1892.53			2.30119e-6	12063.3	
51251 .978596 2.99747e-6 12477.5 1892.04 54847 .990381 3.27357e-6 12675.3 1889.59 58281 1.00171 3.58152e-6 12920. 1891.55 60900 1.01242 3.85038e-6 13124.9 1893.01 64008 1.02339 4.29105e-6 13355.5 1890.08 66382 1.03392 4.64784e-6 13594.2 1892.53 68676 1.04479 5.08078e-6 13838.6 1893.5 70644 1.05635 5.44453e-6 14064.9 1891.55 72776 1.06732 5.85194e-6 14341.3 1891.06 74419 1.07784 6.16975e-6 14577.6 1891.06 76223 1.08847 6.60149e-6 14861. 1892.04 77784 1.09948 7.08273e-6 15124.8 1891.06 79346 1.11034 7.45266e-6 15419.6 1892.53 81979 1.13184 8.25386e-6 16009.4 1892.53			2.64268e-6		
54847 .990381 3.27357e-6 12675.3 1889.59 58281 1.00171 3.58152e-6 12920. 1891.55 60900 1.01242 3.85038e-6 13124.9 1893.01 64008 1.02339 4.29105e-6 13355.5 1890.08 66382 1.03392 4.64784e-6 13594.2 1892.53 68676 1.04479 5.08078e-6 13838.6 1893.5 70644 1.05635 5.44453e-6 14064.9 1891.55 72776 1.06732 5.85194e-6 14341.3 1891.06 74419 1.07784 6.16975e-6 14577.6 1891.06 76223 1.08847 6.60149e-6 14861. 1892.04 77784 1.09948 7.08273e-6 15124.8 1891.06 79346 1.11034 7.45266e-6 15419.6 1892.04 80663 1.12107 7.86935e-6 15709.6 1892.04 81979 1.13184 8.25386e-6 16351.3 1892.53	• • • • •		2.99747e-6	12477 -5	
58281 1.00171 3.58152e-6 12920. 1891.55 60900 1.01242 3.85038e-6 13124.9 1893.01 64008 1.02339 4.29105e-6 13355.5 1890.08 66382 1.03392 4.64784e-6 13594.2 1892.53 68676 1.04479 5.08078e-6 13838.6 1893.5 70644 1.05635 5.44453e-6 14064.9 1891.55 72776 1.06732 5.85194e-6 14341.3 1891.06 74419 1.07784 6.16975e-6 14577.6 1891.06 76223 1.08847 6.60149e-6 14861. 1892.04 77784 1.09948 7.08273e-6 15124.8 1891.06 79346 1.11034 7.45266e-6 15419.6 1890.57 80663 1.12107 7.86935e-6 15709.6 1892.04 81979 1.13184 8.25386e-6 16009.4 1892.53 83377 1.14275 8.83869e-6 16351.3 1892.53 84531 1.15341 9.46722e-6 16655.9 1892.53			3.27357e-6	12675.3	
60900 1.01242 3.85038e-6 13124.9 1893.01 64008 1.02339 4.29105e-6 13355.5 1890.08 66382 1.03392 4.64784e-6 13594.2 1892.53 68676 1.04479 5.08078e-6 13838.6 1893.5 70644 1.05635 5.44453e-6 14064.9 1891.55 72776 1.06732 5.85194e-6 14341.3 1891.06 74419 1.07784 6.16975e-6 14577.6 1891.06 76223 1.08847 6.60149e-6 14861. 1892.04 77784 1.09948 7.08273e-6 15124.8 1891.06 79346 1.11034 7.45266e-6 15419.6 1890.57 80663 1.12107 7.86935e-6 15709.6 1892.04 81979 1.13184 8.25386e-6 16009.4 1892.53 83377 1.14275 8.83869e-6 16351.3 1892.53 84531 1.15341 9.46722e-6 16655.9 1892.53 85685 1.16417 1.0335e-5 16991.7 1891.55			3.58152e-6	12920.	
64008 1.02339 4.29105e-6 13355.5 1890.08 66382 1.03392 4.64784e-6 13594.2 1892.53 68676 1.04479 5.08078e-6 13838.6 1893.5 70644 1.05635 5.44453e-6 14064.9 1891.55 72776 1.06732 5.85194e-6 14341.3 1891.06 74419 1.07784 6.16975e-6 14577.6 1891.06 76223 1.08847 6.60149e-6 14861. 1892.04 77784 1.09948 7.08273e-6 15124.8 1891.06 79346 1.11034 7.45266e-6 15419.6 1890.57 80663 1.12107 7.86935e-6 15709.6 1892.04 81979 1.13184 8.25386e-6 16009.4 1892.53 83377 1.14275 8.83869e-6 16351.3 1892.53 84531 1.15341 9.46722e-6 16655.9 1892.53 85685 1.16417 1.0335e-5 16991.7 1891.55 86676 1.17499 1.15143e-5 17354.6 1894.48			3.85038e-6	13124.9	
66382 1.03392 4.64784e-6 13594.2 1892.53 68676 1.04479 5.08078e-6 13838.6 1893.5 70644 1.05635 5.44453e-6 14064.9 1891.55 72776 1.06732 5.85194e-6 14341.3 1891.06 74419 1.07784 6.16975e-6 14577.6 1891.06 76223 1.08847 6.60149e-6 14861. 1892.04 77784 1.09948 7.08273e-6 15124.8 1891.06 79346 1.11034 7.45266e-6 15419.6 1890.57 80663 1.12107 7.86935e-6 15709.6 1892.04 81979 1.13184 8.25386e-6 16009.4 1892.53 83377 1.14275 8.83869e-6 16351.3 1892.53 84531 1.15341 9.46722e-6 16655.9 1892.53 85685 1.16417 1.0335e-5 16991.7 1891.55 86676 1.17499 1.15143e-5 17354.6 1894.48 87667 1.18639 1.32648e-5 17722.9 1892.53	• • • •		4.29105e-6	13355.5	
68676 1.04479 5.08078e-6 13838.6 1893.5 70644 1.05635 5.44453e-6 14064.9 1891.55 72776 1.06732 5.85194e-6 14341.3 1891.06 74419 1.07784 6.16975e-6 14577.6 1891.06 76223 1.08847 6.60149e-6 14861. 1892.04 77784 1.09948 7.08273e-6 15124.8 1891.06 79346 1.11034 7.45266e-6 15419.6 1890.57 79346 1.12107 7.86935e-6 15709.6 1892.04 81979 1.13184 8.25386e-6 16009.4 1892.53 83377 1.14275 8.83869e-6 16351.3 1892.53 84531 1.15341 9.46722e-6 16655.9 1892.53 85685 1.16417 1.0335e-5 16991.7 1891.55 86676 1.17499 1.15143e-5 17354.6 1894.48 87667 1.18639 1.32648e-5 17722.9 1892.53 88496 1.19695 1.53373e-5 18106.9 1892.04 <			4.64784e-6	13594.2	
70644 1.05635 5.44453e-6 14064.9 1891.55 72776 1.06732 5.85194e-6 14341.3 1891.06 74419 1.07784 6.16975e-6 14577.6 1891.06 76223 1.08847 6.60149e-6 14861. 1892.04 77784 1.09948 7.08273e-6 15124.8 1891.06 79346 1.11034 7.45266e-6 15419.6 1890.57 80663 1.12107 7.86935e-6 15709.6 1892.04 81979 1.13184 8.25386e-6 16009.4 1892.53 83377 1.14275 8.83869e-6 16351.3 1892.53 84531 1.15341 9.46722e-6 16655.9 1892.53 85685 1.16417 1.0335e-5 16991.7 1891.55 85686 1.17499 1.15143e-5 17354.6 1894.48 87667 1.18639 1.32648e-5 17722.9 1892.53 87667 1.18639 1.32648e-5 17722.9 1892.53			5.08078e-6	13838.6	
72776 1.06732 5.85194e-6 14341.3 1891.06 74419 1.07784 6.16975e-6 14577.6 1891.06 76223 1.08847 6.60149e-6 14861. 1892.04 77784 1.09948 7.08273e-6 15124.8 1891.06 79346 1.11034 7.45266e-6 15419.6 1890.57 80663 1.12107 7.86935e-6 15709.6 1892.04 81979 1.13184 8.25386e-6 16009.4 1892.53 83377 1.14275 8.83869e-6 16351.3 1892.53 84531 1.15341 9.46722e-6 16655.9 1892.53 85685 1.16417 1.0335e-5 16991.7 1891.55 86676 1.17499 1.15143e-5 17354.6 1894.48 87667 1.18639 1.32648e-5 17722.9 1892.53 88496 1.19695 1.53373e-5 18106.9 1892.04			5.44453e-6	14064.9	
74419 76223 1.08847 6.60149e-6 14861. 1892.04 1891.06 77784 1.09948 7.08273e-6 15124.8 1891.06 79346 1.11034 7.45266e-6 15419.6 1890.57 80663 1.12107 7.86935e-6 15709.6 1892.04 81979 1.13184 8.25386e-6 16009.4 1892.53 18377 1.14275 8.83869e-6 16351.3 1892.53 84531 1.15341 9.46722e-6 16655.9 1892.53 85685 1.16417 1.0335e-5 16991.7 1891.55 86676 1.17499 1.15143e-5 17354.6 1894.48 87667 1.18639 1.32648e-5 17722.9 1892.53 1892.53			5.85194e-6	14341.3	
76223 1.08847 6.60149e-6 14861. 1892.04 77784 1.09948 7.08273e-6 15124.8 1891.06 79346 1.11034 7.45266e-6 15419.6 1890.57 80663 1.12107 7.86935e-6 15709.6 1892.04 81979 1.13184 8.25386e-6 16009.4 1892.53 83377 1.14275 8.83869e-6 16351.3 1892.53 84531 1.15341 9.46722e-6 16655.9 1892.53 85685 1.16417 1.0335e-5 16991.7 1891.55 86676 1.17499 1.15143e-5 17354.6 1894.48 87667 1.18639 1.32648e-5 17722.9 1892.53 88496 1.19695 1.53373e-5 18106.9 1892.04			6.16975e-6	14577.6	
77784 77784 79346 79346 1.1034 7.45265e-6 15419.6 1890.57 80663 1.12107 7.86935e-6 15709.6 1892.04 81979 1.13184 8.25386e-6 16009.4 1892.53 83377 1.14275 8.83869e-6 16351.3 1892.53 84531 1.15341 9.46722e-6 16655.9 1892.53 85685 1.16417 1.0335e-5 16991.7 1891.55 86676 1.17499 1.15143e-5 17354.6 1894.48 87667 1.18639 1.32648e-5 17722.9 1892.53 1892.53			6.60149e-6	14861.	
79346 1.11034 7.45265e-6 15419.6 1890.57 80663 1.12107 7.86935e-6 15709.6 1892.04 81979 1.13184 8.25386e-6 16009.4 1892.53 83377 1.14275 8.83869e-6 16351.3 1892.53 84531 1.15341 9.46722e-6 16655.9 1892.53 85685 1.16417 1.0335e-5 16991.7 1891.55 86676 1.17499 1.15143e-5 17354.6 1894.48 87667 1.18639 1.32648e-5 17722.9 1892.53 87667 1.19695 1.53373e-5 18106.9			7.08273e-6		
80663 1.12107 7.86935e-6 15709.6 1892.04 81979 1.13184 8.25386e-6 16009.4 1892.53 83377 1.14275 8.83869e-6 16351.3 1892.53 84531 1.15341 9.46722e-6 16655.9 1892.53 85685 1.16417 1.0335e-5 16991.7 1891.55 86676 1.17499 1.15143e-5 17354.6 1894.48 87667 1.18639 1.32648e-5 17722.9 1892.53 88496 1.19695 1.53373e-5 18106.9 1892.04			7.45265e-6	15419.6	
81979 1.13184 8.25386e-6 16009.4 1892.53 83377 1.14275 8.83869e-6 16351.3 1892.53 84531 1.15341 9.46722e-6 16655.9 1892.53 85685 1.16417 1.0335e-5 16991.7 1891.55 86676 1.17499 1.15143e-5 17354.6 1894.48 87667 1.18639 1.32648e-5 17722.9 1892.53 88496 1.19695 1.53373e-5 18106.9 1892.04			7.86935e-6		_
83377 1.14275 8.83869e-6 16351.3 1892.53 84531 1.15341 9.46722e-6 16655.9 1892.53 85685 1.16417 1.0335e-5 16991.7 1891.55 86676 1.17499 1.15143e-5 17354.6 1894.48 87667 1.18639 1.32648e-5 17722.9 1892.53 88496 1.19695 1.53373e-5 18106.9 1892.04			8.25386e-6		-
84531 1.15341 9.46722e-6 16655.9 1892.53 85685 1.16417 1.0335e-5 16991.7 1891.55 86676 1.17499 1.15143e-5 17354.6 1894.48 87667 1.18639 1.32648e-5 17722.9 1892.53 88496 1.19695 1.53373e-5 18106.9 1892.04			8.83869e-6		
85685 1.16417 1.0335e-5 16991.7 1891.55 86676 1.17499 1.15143e-5 17354.6 1894.48 87667 1.18639 1.32648e-5 17722.9 1892.53 88496 1.19695 1.53373e-5 18106.9 1892.04			9.46722e-6	16655.9	-
86676 1.17499 1.15143e-5 17354.6 1894.48 87667 1.18639 1.32648e-5 17722.9 1892.53 88496 1.19695 1.53373e-5 18106.9 1892.04			1.0335e-5	16991.7	
87667 1.18639 1.32648e-5 17722.9 1892.53 88496 1.19695 1.53373e-5 18106.9 1892.04			1.15143e-5	17354.6	
88496 1.19695 1.53373e-5 18106.9 1892.04		-	1.32648e-5		
			1.53373e-5	18106.9	
1.78032e-5 18478.7 1892.04			1.78032e-5	18478.7	1892.04
90745 1 21887 2.09292e-5 18887.2 1894.48			2.09292e-5	18887.2	
90329 1.2306 2.56765e-5 19370.7 1894.97			2.56765e-5		
90832 1.24363 3.3126e-5 19961.9 1894.48					
91172 1,25502 0 0 1898.39			0		
91430 1.26608 0 0 1897.9			0	0	
91430 1.28000 0 1896.43 91688 1.28			0	0	1896.43

TABLE F18 Continued

		36		
#Points:	crack length	dA/dN	ďК	Delta Load
cycle	.891065	0	0	1936.49
76	.90337	Ŏ	Ö	1896.43
169		Ŏ	0	1891.55
13388	.914341 .925698	1.38423e-6	11527.9	1891.06
22926	.925676	1.62176e-6	11725.2	1890.08
31815	.93633	1.95346e-6	11894.8	1889.11
38017	.946829 .957324	2.30119e-6	12063.3	1889.59
42836	.95/324	2.64268e-6	12276.8	1892.04
47326	.967997	2.99747e-6	12477.5	1892.04
51251	.978596	3.27357e-6	12675.3	1889.59
54847	.990381	3.58152e-6	12920.	1891.55
58281	1.00171	3.85038e-6	13124.9	1893.01
60900	1.01242	4.29105e-6	13355.5	1890.08
64008	1.02339	4.64784e-6	13594.2	1892.53
66382	1.03392	5.08078 e -6	13838.6	1893.5
68676	1.04479	5.44453e-6	14064.9	1891.55
70644	1.05635	5.85194e-6	14341.3	1891.06
72776	1.06732	6.16975 e -6	14577.6	1891.06
74419	1.07784	6.60149 e -6	14861.	1892.04
76223	1.08847	7.08273e-6	15124.8	1891.06
77784	1.09948	7.45266 e -6	15419.6	1890.57
79346	1.11034	7.86935e-6	15709.6	1892.04
80663	1.12107	8.25386e-6	16009.4	1892.53
81979	1.13184	8.83869e-6	16351.3	1892.53
83377	1.14275	9.46722e-6	16655.9	1892.53
84531	1.15341	1.0335e-5	16991.7	1891.55
85685	1.16417	1.15143e-5	17354.6	1894.48
86676	1.17499	1.32648e-5	17722.9	1892.53
87667	1.18639	1.533736-5	18106.9	1892.04
88496	1.19695	1.78032e-5	18478.7	1892.04
89162	1.20782		18887.2	1894.48
89745	1.21887	2.09292e-5	19370.7	1894.97
90329	1.2306	2.56765e-5 3.3126e-5	19961.9	1894.48
90832	1.24363		0	1898.39
91172	1.25502	0	ŏ	1897.9
91430	1.26608	0	Ö	1896.43
91688	1.28	0	•	-

FIGURE F3. Fatigue Crack Growth Rate Data for 8090-T8771 Plate (T-L Orientation). Martin Marietta.

Fatigue Crack Growth Rate Data Associated with Figure F3 (Specimen CG-TL-1)

Tests were performed with the "CGR Crack Growth Program" from Interlaken Version 1.0B.

Strengths are in PSI. Loads in pounds. Dimensions in inches. Temperature in Degrees Fahrenheit. dK in psi sqrt inch.

The crack lengths were corrected based on the final measurments. The data was averaged using the 7 pt. polynomial method.

The precrack Pmax load of 2875 lbs. was 6.8% higher than the initial Pmax test load of 2702 lbs.

Operator:		cpm/nc		
Sample date:		09-24-		
Material:		8090 A		
ID #:		CG-T1-	1	
Yield Strengt!		66350		
Modulus of Ela	ast:	112500	000	
COD Pos:		2		
Crack Plane:		T-L		
Geometry:		1		
Width:		2.0033	3	
Thickness:		1		
Half span (MT)) :	.1		
Env:		AIR		
Temp:		70		
Humidity:		50		
Waveform:		1		
Test Frequency	7 :	10		
Test Type:		1		
K Gradient:		-2		
Min Load:		270		
Max Load:		2700		
Test Mode:		1		
Data Pt Intvl:		.01		
Min Growth Rat	:e:	.0000		
Compl Slope:		2		
Pts/Cycle:		200		
Upper Slope Li		85		
Lower Slope Li		15		
No of Slopes A		5		
Compliance Cor	· · :	1.0836	52	
Notch Length:		.8053		
Precrack Lengt		.9004		
Precrack Cycle		138379		
Precrack Max L		2674.9		
Precrack Min L	.oad:	283.34	1	
#Points:		23		
cycle	crack length	da/dn	ďК	Delta Load
76	.900405	0	0	2450.42
12579	.911	0	0	2430.39
23676	.859997	0	0	2430.39
33367	.870441	3.17097e-7	13797.2	2429.9
40247	.879966	7.94854e-7	13771.6	2430.39
47432	.88989	1.53814e-6	14070.7	2427.94
54616	.900886	1.82145e-6	14304.	2429.41
60905	.911076	2.20956e-6	14545.	2429.9
64912	.921716	2.53571e-6	14730.1	2429.9
68511	.93140	2.84312e-6	14937.3	2430.87
72030	.941803	3.26489e-6	15168.5	2430.39
75385	.952745	3.77042e-6	15407.3	2429.41
78412	.963555	4.46241e-6	15685.3	2430.87
80544	.974279	5.08879e-6	15911.2	2430.87
82757	.985828	5.85625e-6	16195.5	2430.87
84644	.997562	6.75067e-6	16470.5	2428.92
86450	1.00981	7.77325e-6	16791.7	2428.92
87348	1.02061	8.72143e-6	17090.7	2429.41
89165	1.03342	1.03738e-5	17412.8	2429.41
90237	1.0442	1.32296e-5	17748.	2431.35
91146	1.05395	0	0	2431.36
91731	1.0653	0	0	2430.87
92151	1.0773	0	0	2431.85

Fatigue Crack Growth Rate Data Associated with Figure F3 (Specimen CG-TL-2)

Tests were performed with the "CGR Crack Growth Program" from Interlaken Version 1.0B.

Strengths are in PSI. Loads in pounds. Dimensions in inches. Temperature in Degrees Fahrenheit. dK in psi sqrt inch.

The crack lengths were corrected based on the final measurments. The data was averaged using the 7 pt. polynomial method.

The precrack Pmax load of 2875 lbs. was 6.8% higher than the initial Pmax test load of 2702 lbs.

test load of 27	02 IDS.			
Operator:		сръ		
Sample date:		09-24-91		
Material:		8090 Al-1	Li	
ID #:		CG-TL-2		
Yield Strength:		66850	_	
Modulus of Elas	t:	11250000)	
COD Pos:		2		
Crack Plane:		T-L		
Geometry:		1		
Width:		2.003		
Thickness:		1.001		
Half span (MT):		.1		
Env: Temp:		. AIR 70		
Humidity:		50		
Waveform:		1		
Test Frequency:		10		
Test Type:		i		
K Gradient:		-2		
Min Load:		810		
Max Load:		2700		
Test Mode:		i		
Data Pt Intvl:		.01		
Min Growth Rate	:	.00001		
Compl Slope:		2		
Pts/Cycle:		200		
Upper Slope Lim	it:	85		
Lower Slope Lim	it:	15		
No of Slopes Ave	e;	5		
Compliance Cor.	•	1.07341		
Notch Length:		.8035		
Precrack Length:	•	.9215		
Precrack Cycles:		123206		
Precrack Max Los		2874.94		
Precrack Min Los	ad:	862.237		
#Points:		19	***	A
cycle	crack length	dA/dN	gĸ	Delta Load
76	.909805	0	0	1962.38
10687	.920906	0	0	1889.11
17714	.931758	0		1891.55 1891.55
22701	.94231	2.37086e-6 2.85092e-6	11807.6 12007.1	1892.04
27281	.953011 .964681	3.3215e~6	12208.7	1693.01
30963 34320	.97642	3.74497e-6	12420.5	1892.53
37024	.986889	4.03343e-6	12628.5	1893.01
39483	.997977	4.28854e-6	12811.9	1890.57
42187	1.00979	4.45745e-6	13055.4	1890.57
44645	1.02063	4.52734e-6	13280.8	1889.59
46697	1.031	4.49661e-6	13493.4	1891.55
49075	1.04121	4.52118e-6	13715.1	1890.08
51372	1.05164	4.71378e-6	13954.5	1892.53
53828	1.06194	5.30214e-6	14194.	1890.57
56122	1.0731	7.0252e-6	14493.7	1891.55
57764	1.08461	0	0	1892.04
58917	1.09475	0	0	1891.06
59582	1.107	0	0	1894.48

FIGURE F4. Fatigue Crack Growth Rate Data for 8090-T8771 Plate (S-T Orientation). Martin Marietta.

Fatigue Crack Growth Rate Data Associated with Figure F4 (Specimen CG-ST-2)

Tests were performed with the "CGR Crack Growth Program" from Interlaken Version 1.0B.
Strengths are in PSI. Loads in pounds. Dimensions in inches. Temperature in Degrees Fanrenheit. dK in psi sqrt inch.
The crack lengths were corrected based on the final measurments. The data was averaged using the 7 pt. polynomial method.

Operator:		Chris M	iller	
Sample date:		08-18-93	1	
Material:		8090-T81	771	
ID #:		CG-ST-2		
Yield Strength:		71000		
Modulus of Elas	+•	1120000	30	
COD Pos:		2	30	
Crack Plane:		ST		
Geometry:		1		
Width:		1.4035		
Thickness:		.701		
Half span (MT):		.1		
Env:		Air		
Temp:		72		
Humidity:		51		
Waveform:		i		
Test Frequency:		10		
Test Type:		1		
K Gradient:		-2		
Min Load:		150		
Max Load:		500		
Test Mode:		1		
Data Pt Intvl:		.01		
Min Growth Rate	:	.000001	L	
Compl Slope:		3		
Pts/Cycle:		200		
Upper Slope Lim	it:	85		
Lower Slope Lim		15		
No of Slopes Av		5		
		.985189	1	
Compliance Cor.	•		•	
Notch Length:		.563		
Precrack Length		.72		
Precrack Cycles	:	118121		
Precrack Max Lo	ad:	500		
Precrack Min Lo	ad:	150		
#Points:		13		
cycle	crack length	dA/dN	dK	Delta Load
119	.719281	0	0	355.642
16867	.736786	Ŏ	Ö	354.079
29310	.754402	ŏ	Ö	355.642
		1.86994e~6	4866.63	355.642
39292	.772179	_	5093.44	
48502	.790093	2.15482e-6		355.642
56445	.80808	2.47499e-6	5354.75	357.206
63860	.825916	2.96648e-6	5644.28	358.183
69901	.843877	3.64302e-6	5973.53	360.528
74887	.861517	4.52111e-6	6328.71	362.286
78421	.879265	5.58259e-6	6617.91	361.114
81529	.8968	0	0	362.677
84214	.914419	Ö	0	365.217
85986	.932	Ŏ	Ö	368.539
03700		-	-	344.505

FIGURE F5. Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation and R=0.1).
Air Force.

Fatigue Crack Growth Rate Data Associated with Figure F5

MATERIAL: ALUMINUM

ALLOY: 8090

CONDITION/HT: T8771 FORM: 1.75 IN. PLATE .2% YIELD STRENGTH (KSI): 68

ULT. STRENGTH (KSI): 77 MODULUS: 11.0

SPECIMEN TYPE: CT ORIENTATION: L-T SPECIMEN I.D LT1

SPECIMEN WIDTH: 2.005 SPECIMEN THK .: . 249

MAX. LOAD (LBS): 222 MIN. LOAD (LBS): 22

STRESS RATIO: 0.1 TEST FREQUENCY hz: 30

CYCLIC WAVE FORM: SINE TEST PROCEDURE: K-INCREASING

ENVIRONMENT: LAB AIR **TEST TEMPERATURE F: 73F** RELATIVE HUMIDITY: 10-30%

MEASUREMENT INTERVAL (IN.): .020

CRACK MEASUREMENT METHOD: COMPLIA : E

a (in)	kilocycles	da/dN (in/cyc)	Del K (KSI – in ↑ 0.5)
0.566	32.00	3.17E-07	6.52
0.576	77.70	2.21E-07	6.08
0.587	132.50	1.87E - 07	5.71
0.597	191.60	1.71E-07	5.43
0.607	263.20	1.41E-07	5.10
0.617	325.60	1.64E-07	4.77
0.627	399.30	1. 39E - 07	4.47
0.637	478.50	1.28E-07	4.19
0.647	584.40	9.65E-08	3.92
0.658	695.80	9.08E - 08	3.76
0.668	845.20	6.76E-08	3.52
0.678	1079.10	4.31E-08	3.32
0.688	1456.30	2.68E-08	3.10
0.710	2807.30	6.65E-08	3.62
0.730	2988.00	1.11E-07	3.69
0.750	3160.70	1.16E-07	3.79
0.770	3298.50	1.45E-07	3.89
0.790	3439.10	1.44E-07	3.98
0.810	3571.20	1.52E-07	4.09
0.830	3694.10	1.63E-07	4.19
0.850	3801.40	1.87E-07	4.30
0.871	3910.60	1.85E-07	4.42
0.891	4009.70	2.02E-07	4.54
0.911	4086.10	2.62E-07	4.65
0.931	4162.90	2.61E-07	4.78
0.951	4224.10	3.32E-07	4.89
0.971	4276.80	3.80E-07	5.06
0.991	4329.70	3.79E-07	5.19
1.011	4370.10	4.96E~07	5.33
1.031	4408.40	5.26E-07	5.46
1.051	4443.50	5.72E~07	5.62
1.072	4476.10	6.19E-07	5.98
1.092	4507.40	6.40E~07	6.12
1.112	4534.90	7.30E~07	6.29
1.132	4564.50	6.77E-07	6.42
1.152	4594.20	6.75E-07	6.79
1.172	4625.50	6.44E-07	6.94
1.192	4847.80	9.07E-07	7.13
1.212	4871.50	8.51E-07	7.64
1.233	4693.10	9.31E-07	7.88
1.253	4709.20	1.26E-06	80.8
1.273	4729.20	1.03E-06	8.53
1.273	4753.40	8.29E-07	8.84
1.314	4762.30	2.27E-08	9.43
1.334	4765.20	6.87E-06	9.76
1.368	4766.80	2.25E-05	9.99
1.300	7/00.00	£-202 V4	3.33

FIGURE F6. Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation and R=0.33).

Air Force.

Fatigue Crack Growth Rate Data Associated with Figure F6

MATERIAL: ALUMINUM ALLOY: 8090 CONDITION/HT: T8771 FORM: 1.75 IN. PLATE 2% YIELD STRENGTH (KSI): 68

ULT. STRENGTH (KSI): 77

CYCLIC WAVE FORM: SINE
TEST PROCEDURE: K-INCF MODULUS: 11.0 SPECIMEN TYPE: CT ORIENTATION: L-T SPECIMEN I.D LT28 SPECIMEN WIDTH: 2.003 SPECIMEN THK.: .248

MAX.LOAD(LBS): 289 MIN. LOAD (LBS): 95 STRESS RATIO: 0.33 TEST FREQUENCY hz: 15 TEST PROCEDURE: K-INCREASING ENVIRONMENT: LAB AIR TEST TEMPERATURE F: 74 RELATIVE HUMIDITY: 36-44% MEASUREMENT INTERVAL (IN.): .020 CRACK MEASUREMENT METHOD: COMPLIANCE

		'de/dN (in/cyc)	Del K (KSI-in ^ 0.5
a (in)	cycles	7.74E-08	4.13
0.651	1081720.00	7.74E-08 5.17E-08	3.74
0.672	1487480.00		3.57
0.683	1703550.00	4.97E-08	3.40
0.693	1932910.00	4.43E-08	4.33
0.894	3297950.00	1.57E-07	4.46
0.914	3429750.00	1.52E-07	4.60
0.935	3544860.00	1.80E-07	4.74
0.956	3655400.00	1.92E-07	4.90
0.977	3754060.00	2.10€-07	5.22
1.018	3923630.00	2.22E-07	5.36
1.038	3989040.00	3.13E-07	5.53
1.058	4051680.00	3.22E-07	5.70
1.078	4108720.00	3.55E-07	5.88
1.099	4168270.00	3.44E-07	6.43
1 119	4219330.00	3.95E-07	6.65
1.139	4264410.00	4.44E-07	6.89
1.159	4306060.00	4.82E-07	7.11
1.179	4342560.00	5.50E-07	7.41
1.199	4378020.00	5.66E-07	7.68
1.220	4402510.00	8.35E-07	7.99
1,240	4421030.00	1.08E-06	8.28
1.260	4438650.00	1.14E-06	8.61
1.281	4453290.00	1.41E~06	9.00
1.301	4466100.00	1.59E-06	9.35
1.321	4475020.00	2.25E~06	9.72
1.341	4484810.00	2.07E-06	*
1.362	4493080.00	2.50E-06	10.12
1.383		3.76E-06	11.04
1.403		4.29E-06	11.52
1.423		5.56E-06	11.96
1,444		7.16E~06	12.94
1.466		9.10E~06	13.13
1.489		2.41E-05	14.43
1.403			

FIGURE F7. Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation and R=0.1 and High Humidity).

Air Force.

Fatigue Crack Growth Rate Data Associated with Figure F7

MATERIAL: ALUMINUM ALLOY: 8090 CONDITION/HT: T8771 FORM: 1.75 IN. PLATE .2% YIELD STRENGTH (KSI): 68 ULT. STRENGTH (KSI): 77 MODULUS: 11.0 SPECIMEN TYPE: CT ORIENTATION: L-T

MAX. LOAD (LBS): 329 MIN. LOAD (LBS): 33 STRESS RATIO: 0.1 TEST FREQUENCY hz: 5 CYCLIC WAVE FORM: SINE TEST PROCEDURE: K-INCREASING ENVIRONMENT: HIGH HUMIDITY
TEST TEMPERATURE F: 70F RELATIVE HUMIDITY: >95% MEASUREMENT INTERVAL (IN): .020

SPECIMEN LD LT4 SPECIMEN WIDTH: 2.004

SPECIMEN THK.: .250

CRACK MEASUREMENT METHOD: COMPLIANCE

'a (in)	'cycles	'da/dN (in/cyc)	Del K (K\$! - in ^ 0.5)
0.806	790683.00	3.32E - 07	6.13
0.816	827331.00	2.80E-07	6.21
0.836	893108.00	3.05E-07	6.34
0.856	943212.00	4.04E-07	6.51
0.876	961320.00	5.27E-07	6.69
0.896	1011050.00	6.78E-07	6.88
0.917	1040110.00	6.98E-07	7.07
0.937	1064010.00	8.52E-07	7.28
0.957	1082430.00	1.09E-06	7.50
0.978	1096220.00	1.48E-06	7.73
0.998	1106990.00	1.87E-06	7.97
1.018	1115150.00	2.47E-06	8.22
1.038	1121650.00	3.12E-06	8.49
1.058	1127710.00	3.31E-06	8.75
1.079	1133480.00	3.52E-06	9.05
1.099	1138400.00	4.18E-06	9.37
1.119	1143100.00	4.28E~06	9.70
1.139	1147140.00	4.96E-06	10.04
1.160	1150590.00	5.85E-06	10.44
1.180	1153600.00	6.82E-06	10.83
1.200	1156140.00	7.94E-06	11.26
1.220	1158450.00	8.67E-06	11.71
1.240	1160020.00	1.28E - 05	12.20
1.261	1161490.00	1.37E-05	12.71
1.281	1162770.00	1.61E-05	13.28
1.302	1163760.00	2.11E-05	13.89
1.323	1164570.00	2.60E-05	14 57
1.344	1165150.00	3.52E-05	15.27
1.365	1135660.00	4.13E-05	16.05
1.386	1166060.00	5.42E-05	16.93

Fatigue Crack Growth Rate Data Associated with Figure F8

MATERIAL ALUMINUM ALLOY: 8090 CONDITION/HT: T8771 FORM: 1.75 IN. PLATE 2% YIELD STRENGTH (KSI): 68

ULT. STRENGTH (KSI): 77 MODULUS: 11.0 SPECIMEN TYPE: CT ORIENTATION: L-T SPECIMEN I.D LT27 SPECIMEN WIDTH: 2.004

SPECIMEN THK.: .248

MAX.LQAD(LBS): 249 MIN. LOAD (LBS): 82 STRESS RATIO: 0.33 TEST FREQUENCY hz: 15 CYCLIC WAVE FORM: SINE TEST PROCEDURE: K-INCREASING ENVIRONMENT: HIGH HUMIDITY TEST TEMPERATURE F: 76

RELATIVE HUMIDITY: >95% MEASUREMENT INTERVAL (IN.): .020

CRACK MEASUREMENT METHOD: COMPLIANCE

		. A-cabl (indown)	Del K (KSI-in ^ 0.5)
`a (in)	'cycles	'de/dN (in/cyc)	4.87
0.624	132833.00	2.79E-07	4.60
0.634	177724.00	2.26E-07	4.40
0.644	232883.00	1.83E-07	
0.655	313581.00	1.37E-07	(4.11
0.666	397311.00	1.27E-07	3.85
0.676	508427.00	9.35E-08	3.62
0.686	641947.00	7.51E-08	3.41
0.696	760663.00	8.59E-08	3.27
0.707	983856.00	4.98E-08	3.05
0.729	1320890.00	1.11E-07	3.17
0.739	1414070.00	1.11E-07	3.21
0.750	1514790.00	1.09E-07	3.25
0.760	1601580.00	1.15E-07	3.30
0.780	1748260.00	1.37E-07	3.35
0.800	1889030.00	1.43E-07	3.44
0.821	2034240.00	1.42E-07	3.54
0.842	2179440.00	1.46E-07	3.64
0.862	2325920.00	1.38E-07	3.75
0.882	2467230.00	1.42E-07	3.84
0.902	2590830.00	1.62E-07	3.95
0.923	2714700.00	1.63E-07	4.08
0.943	2819900.00	1.91E-07	4.18
0.963	2918330.00	2.06E-07	4.31
0.983	3012330.00	2.17E-07	4.45
1.004	3101480.00	2.34E-07	4.59
1.026	3181830.00	2.67E-07	4.75
1.046	3254410.00	2.76E-07	4.90
1.066	3315480.00	3.30E-07	5.07
	3378050.00	1.21E-07	5.24
1.086	3436150.00	3.52E-07	5.42
1.106	3485720.00	4.13E-07	5.61
1.127	3530230.00	4.58E-07	5.82
1.147		6.47E-07	6.04
1.168	3562070.00	7.04E-07	6.28
1.188	3591080.00	8.06E-07	6.53
1.208	3616030.00	1.01E-05	6.79
1.228	3635920.00	1.42E-06	7.03
1.249	3650250.00	1.83E-06	7.34
1.269	3661430.00		7.54 7.54
1.290	3671310.00	2.08E-06	
1.310	3680800.00	2.18E-06	7.98
1.331	3688050.00	2.79E-06	8.34
1.352	3694990.00	3.05E-06	8.70
1.372	3700960.00	3.37E-06	9.10
1.392	3706060.00	4.01E-08	9.52
1,414	3710530.00	4.97E-06	9.97
1.435	3714260.00	5.59E-06	19.47
1.457	3717390.00	6.96E-06	10.95
1.479	3719930.00	8.65E-06	11,45
1,502	1722000.00	1.13E-05	11.99
1.531	3723200.00	2.41E-05	12.61

FIGURE F8. Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation and R=0.33 and High Humidity).

Air Force.

Mini-TWIST Spectrum Crack Length vs Flights Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress = 16.9 Ksi). Air Force.

FIGURE F9.

CRACK LENGTH (2d in.)

Mini-TWIST Spectrum Crack Length vs Flights Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress = 16.9 Ksi). Air Force.

FIGURE F9.

CRACK LENGTH (2d in.)

FIGURE F10. Mini-TWIST Spectrum Crack Growth Rate vs Delta K Data for 8090-T8771
Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress
= 16.9 KSU).
Air Force.

FALSTAFF Spectrum Crack Length vs Total Flights Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress = 20 Ksi). Air Force. FIGURE F11.

CRACK LENGTH (2d in.)

FIGURE F12. FALSTAFF Spectrum Crack Growth Rate vs Delta K Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress = 20 Ksi).

Air Force.