Задание

Дана исследуемая область (номер согласно варианту) с граничными условиями (Тереды или Тер равносильно теплообмену со средой). Геометрические параметры области *ширина, длина, тараметры вырезов* в [см] задаются самостоятельно. Воздействие теплового потока принять равным $q = |150| \left[Bm/c M^2 \right]$, считая его положительным если тепло отводится от тела, коэффициент теплоотдачи от стенки к среде $\alpha_g = 10 \left[Bm/(c M^2) \cdot {}^{\circ}C \right]$; T = 3аданная температура стенки, $150 \left[{}^{\circ}C \right]$; $T_{cpedul} = 25 \left[{}^{\circ}C \right]$ - температура окружающей среды, $\lambda = 75 \left[Bm/(c M) \cdot {}^{\circ}C \right]$ - коэффициент теплопроводности материала.

Требуется найти распределение температуры, используя для дискретизации четырехузловой тетраэдр.

Для этого:

- 1. Составить вариационные формулировки задачи в интегральном виде и в виде функционала, в соответствии с вариантом. Выписать алгоритмы приведения вариационных формулировок к численному решению.
- 2. Выписать общий вид локальной матрицы теплопроводности и вектора правых частей для поставленной задачи.
- 3. Провести дискретизацию области в программе Netgen. Данные хранить в формате .neu.
- 4. Составить программу на языке программирования С++ для численного решения задачи методом конечных элементов, используя симплексный тетраэдральный элемент. Для этого можно использовать методы и классы для хранения матриц в *CSlR* формате и последующем решение СЛАУ для разреженных матриц в этом формате.
- 5. Найти распределение температуры в исследуемой области, решив полученное СЛАУ.
- 6. Вывести полученные результаты в узлах и с использованием градиентной заливки на сетке треугольников с помощью графической библиотеки OpenGL.

Иллюстрация к условию задачи

Теплоизоляция

Вывод уравнений

Доказывается, что решение задачи теплопроводности эквивалентно задаче минимизации функционала

$$X = \frac{1}{2} \cdot \iiint \lambda \cdot \left(\left(\frac{\partial}{\partial x} T \right)^2 + \left(\frac{\partial}{\partial y} T \right)^2 + \left(\frac{\partial}{\partial z} T \right)^2 \right) \mathrm{d}V + \iint_S \frac{1}{2} \cdot h \cdot \left(T - T_g \right)^2 \mathrm{d}S + \iint_S q \cdot T \, \mathrm{d}S \, , \, \Gamma \mathrm{d}e$$

 S_i - граница, на которой задано граничное условие теплообмена с окружающей средой, S_i - граница, на которой задан тепловой поток.

Введем обозначения

$$g = \begin{bmatrix} \frac{\partial}{\partial x} & T \\ \frac{\partial}{\partial y} & T \\ \frac{\partial}{\partial z} & T \end{bmatrix}, \mathbf{D} = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}.$$

Тогда функционал примет вид

$$X = \frac{1}{2} \cdot \iiint_{S} g^{T} \cdot \mathbf{D} \cdot g \, dV + \iiint_{S_{i}} \frac{1}{2} \cdot h \cdot (T - T_{g})^{2} \, dS + \iiint_{S_{j}} q \cdot T \, dS \quad .$$

Рассмотрим теперь отдельный симплекс элемент в форме тетраэдра. Введем обозначения

$$\Phi = egin{bmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \\ \Phi_4 \end{pmatrix}$$
 - температура в узлах тетраэдра,

Тогда температура внутри КЭ равна $\mathit{T} = \mathit{N}_1 \, \Phi_1 + \mathit{N}_2 \, \Phi_2 + \mathit{N}_3 \, \Phi_3 + \mathit{N}_4 \, \Phi_4$. И тогда

$$g = \begin{bmatrix} \frac{\partial}{\partial x} \left(N_1 \, \boldsymbol{\Phi}_1 + N_2 \, \boldsymbol{\Phi}_2 + N_3 \, \boldsymbol{\Phi}_3 + N_4 \, \boldsymbol{\Phi}_4 \right) \\ \frac{\partial}{\partial y} \left(N_1 \, \boldsymbol{\Phi}_1 + N_2 \, \boldsymbol{\Phi}_2 + N_3 \, \boldsymbol{\Phi}_3 + N_4 \, \boldsymbol{\Phi}_4 \right) \\ \frac{\partial}{\partial z} \left(N_1 \, \boldsymbol{\Phi}_1 + N_2 \, \boldsymbol{\Phi}_2 + N_3 \, \boldsymbol{\Phi}_3 + N_4 \, \boldsymbol{\Phi}_4 \right) \end{bmatrix}$$

Или $g = B \cdot \Phi$, где

$$B = \begin{bmatrix} \frac{\partial}{\partial x} N_1 & \frac{\partial}{\partial x} N_2 & \frac{\partial}{\partial x} N_3 & \frac{\partial}{\partial x} N_4 \\ \frac{\partial}{\partial y} N_1 & \frac{\partial}{\partial y} N_2 & \frac{\partial}{\partial y} N_3 & \frac{\partial}{\partial y} N_4 \\ \frac{\partial}{\partial z} N_1 & \frac{\partial}{\partial z} N_2 & \frac{\partial}{\partial z} N_3 & \frac{\partial}{\partial z} N_4 \end{bmatrix}.$$

Тогда функционал для отдельного КЭ можно записать в виде

$$X = \frac{1}{2} \cdot \iiint \Phi^{T} \cdot BT \cdot D \cdot B \cdot \Phi \, dV + \iiint \frac{1}{2} \cdot h \cdot \left(N \cdot \Phi - T_{g} \right)^{2} \, dS + \int_{S} q \cdot N \cdot \Phi \, d\tau =$$

$$= \frac{1}{2} \cdot \iiint \Phi^{T} \cdot BT \cdot D \cdot B \cdot \Phi \, dS + \int_{S} \frac{1}{2} \cdot h \cdot NT \, \Phi^{T} \cdot N \cdot \Phi \, d\tau - \int_{S} h \cdot T_{g} \cdot N \cdot \Phi \, d\tau + \int_{S} \frac{1}{2} \cdot h \cdot T_{g}^{2} \, d\tau + \int_{S} q \cdot N \cdot \Phi \, d\tau$$

Необходимым условием существования экстремума этого функционала является равенство $\frac{\partial}{\partial \Phi} X = 0$. Продифференцируем каждое слагаемое отдельно

$$\frac{\partial}{\partial \Phi} \left(\frac{1}{2} \cdot \iiint \Phi^T \cdot B^T \cdot D \cdot B \cdot \Phi \, dV \right) = \iiint B^T \cdot D \cdot B \cdot \Phi \, dV ,$$

$$\frac{\partial}{\partial \Phi} \left(\iint_{S_i} \frac{1}{2} \cdot h \cdot N^T \Phi^T \cdot N \cdot \Phi \, dS \right) = \iint_{S_i} h \cdot N^T N \cdot \Phi \, dS ,$$

$$\frac{\partial}{\partial \Phi} \left(\iint_{S_i} h \cdot T_g \cdot N \cdot \Phi \, dS \right) = \iint_{S_i} h \cdot T_g \cdot N^T \, dS ,$$

$$\frac{\partial}{\partial \Phi} \left(\iint_{S_i} \frac{1}{2} \cdot h \cdot T_g^2 \, dS \right) = 0 ,$$

$$\frac{\partial}{\partial \Phi} \left(\iint_{S_i} q \cdot N \cdot \Phi \, dS \right) = \iint_{S_i} q \cdot N^T \, dS .$$

Тогда условие минимума функционала можно записать в виде

$$\left(\iiint B^T \cdot \mathbf{D} \cdot B \, dV + \iint_{S_i} h \cdot N^T N \, dS\right) \cdot \Phi = \iint_{S_i} h \cdot T_g \cdot N^T \, dS - \iint_{S_i} q \cdot N^T \, dS$$

То есть, решение трехмерной задачи теплопроводности методом конечных элементов сводится к разбиению объёма на конечные элементы, для каждого из которых справедлива система уравнений

$$k \cdot \Phi = f$$
, где

$$k = \iiint B^T \cdot \mathbf{D} \cdot B dV + \iint_{S_i} h \cdot N^T N dS,$$

$$f = \iint_{S_i} h \cdot T_g \cdot N^T dS - \iint_{S_j} q \cdot N^T dS,$$

 S_{i} - граница, на которой задано граничное условие теплообмена с окружающей средой,

 S_i - граница, на которой задан тепловой поток,

N – вектор-строка, составленная из функций формы КЭ,

В – вектор-строка, составленная из производных от функций формы КЭ по координатам,

D – матрица теплопроводности КЭ [Вт/(см)×С],

h – коэффициент теплообмена со средой [Bт/(см²)×C],

 T_g - температура среды [С],

q — поток тепла, который подводится к телу или отводится от него (считается, что если тепло подводится к телу, то q<0, если отводится, то q>0) [Bt/cm²].

При решении задачи мы используем трехмерные симплекс элементы, то есть тетраэдры с четырьмя узлами, расположенными в вершинах. В этом случае границами КЭ будут треугольные грани, функции формы имеют вид

 $N_i(x,y,z)=a_i+b_i\cdot x+c_i\cdot y+d_i\cdot z$, где коэффициенты можно найти, решая методом

Крамера системы уравнений

$$a_i + b_i \cdot x_i + c_i \cdot y_i + d_i \cdot z_i = 1,$$

$$a_i + b_i \cdot x_j + c_i \cdot y_j + d_i \cdot z_j = 0$$
,

$$a_i + b_i \cdot x_k + c_i \cdot y_k + d_i \cdot z_k = 0,$$

$$a_i + b_i \cdot x_l + c_i \cdot y_l + d_i \cdot z_l = 0$$
 , где $i = 0 ...4$.

Тогда

$$N = \left[\begin{array}{cccc} N1 & N2 & N3 & N4 \end{array} \right] ,$$

$$B = \left[\begin{array}{cccc} b1 & b2 & b3 & b4 \\ c1 & c2 & c3 & c4 \\ d1 & d2 & d3 & d4 \end{array} \right],$$

$$\mathbf{D} = \left[\begin{array}{ccc} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{array} \right] \, .$$

Можно видеть, что в этом случае $B^T \cdot D \cdot B$ это матрица, составленная из констант, и для вычисления объёмного интеграла достаточно умножить элементы этой матрицы на объём КЭ.

Также можно видеть, что $h \cdot T_g \cdot N^T$ и $q \cdot N^T$ являются столбцами, составленными из линейных функций от x, y и z. Чтобы проинтегрировать этот вектор по грани KЭ, достаточно вычислить значения функций в центре грани и умножить это число на площадь грани.

Легко вычислить и интеграл от матрицы $h \cdot N^T N$, элементами которой будут квадратичные функции от x, y и z. Здесь достаточно вычислить значение функций на серединах ребер грани, взять от этих значений среднее арифметическое и умножить на площадь грани.

Восполнение	Ячейка	Погреш- ность Точки	Треугольные координаты	Весовые множители 2 W _k
Линейное		$R=O(h^2)$ a	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	1
Квадратичное		R=O(h ³) b c	$\begin{array}{c} \frac{1}{2}, \frac{1}{2}, 0 \\ 0, \frac{1}{2}, \frac{1}{2} \\ \frac{1}{2}, 0, \frac{1}{2} \end{array}$	1/3 1/3 1/3

Схемы численного интегрирования для треугольников

Таким образом, можно получить локальную матрицу КЭ

$$\begin{split} k &= V_{K\Im} \cdot \lambda \cdot \left(\, p_{ij} \right) \, + \sum_{\textit{грани c теплообменом}} h \cdot S_{\textit{грани}} \! \left(g_{ij} \right) \, , \, \text{где} \\ \\ p_{ij} &= b_i \cdot b_j + c_i \cdot c_j + d_i \cdot d_j \, \, , \\ \\ g_{ij} &= \frac{\textit{Ni}(a) \, + \textit{Ni}(b) \, + \textit{Ni}(c)}{3} \cdot \frac{\textit{Nj}(a) \, + \textit{Nj}(b) \, + \textit{Nj}(c)}{3} \, \, , \end{split}$$

а, с, d – точки, лежащие на серединах ребер грани. И локальный вектор КЭ

$$f = \sum_{\textit{грани с теплообменом}} h \cdot T_g \cdot S_{\textit{грани}} \cdot \begin{bmatrix} NI \\ N2 \\ N3 \\ N4 \end{bmatrix}_{\text{в центре грани}} - \sum_{\textit{грани с потоком тепла}} q \cdot \begin{bmatrix} NI \\ N2 \\ N3 \\ N4 \end{bmatrix}_{\text{в центре грани}}$$

Затем локальные матрицы и локальные векторы объединяются в глобальную матрицу и глобальный вектор. Решение получившейся системы и будет решением задачи о распределении тепла.

Численное решение задачи

Была создан STEP файл с моделью детали, затем с помощью программы Netgen была сгенерирована сетка высокого качества (328 вершин) в формате Neutral Format. Затем сетка была передана в программу для решения задачи распределения тепла методом конечных элементов. Заметим, что минимальная температура равна -84.0019 градусов Цельсия, а максимальная - 150 градусов Цельсия.

3D модель детали

Сетка высокого качества

С учетом граничных условий получаем следующее распределение температуры

Распределение температуры по телу для сетки высокого качества

Распределение температуры по телу для сетки высокого качества (показаны только узлы сетки)

Также была испробована более грубая сетка (37 вершин). Результаты для этой сетки представлены ниже. В этом случае минимальная температура равна 12.4679 градусов Цельсия, а максимальная - 150 градусов Цельсия

Сетка низкого качества

Распределение тепла по телу для сетки низкого качества

Распределение температуры по телу для сетки низкого качества (показаны только узлы сетки)

Информация о температуре во всех узлах обеих сеток представлена в приложении.

Приложение 1 «Температура в узлах сетки высокого качества»

0	150	46	49.7799	92	150	138	32.0493
1	150	4 0	31.2638	93	150	139	34.7402
2	150	48	28.631	94	150	140	33.9808
3	150	49	27.1485	95	150	141	38.3971
4	150	50	26.7759	96	150	142	42.7955
5	150	51	29.4903	90 97	150	143	49.332
6	150	52	28.3201	98	150	143	39.836
7	150	53	51.938	99	150	144	38.18
8	150	54	51.4627	100	150	145	35.442
9	150	55	54.1157	100	150	147	43.366
	47.5493		61.6184	101	150	147	31.7983
10 11	48.139	56 57	150	102	150	149	
	46.139 150			103	60.8815	149	31.2688 37.5149
12		58 50	150				
13	150	59 60	150	105	64.7147	151	76.4749
14 15	47.6127	60 61	150	106	68.4972	152	90.7441
15	50.6913	61	150	107	64.7245	153	55.6494
16	150	62	150	108	84.7097	154	56.1281
17	150	63	150	109	77.0997	155	57.4249
18	150	64	150	110	69.6813	156	66.7239
19	150	65	50.8866	111	80.5231	157	62.3784
20	150	66	50.4779	112	63.9365	158	62.3096
21	150	67	56.5733	113	45.3141	159	30.4859
22	150	68	54.3749	114	39.8957	160	35.5974
23	150	69 5 0	28.7588	115	29.2248	161	41.6758
24	150	70	28.2778	116	29.1995	162	30.1339
25	150	71	27.0355	117	29.0551	163	29.0754
26	150	72	26.9651	118	28.7562	164	29.7224
27	150	73	28.6799	119	29.8071	165	29.5879
28	150	74	30.8753	120	35.156	166	43.9609
29	150	75	70.2347	121	37.5552	167	38.8418
30	150	76	56.2225	122	41.6567	168	35.8633
31	150	77	52.3827	123	54.2071	169	69.7415
32	150	78	47.5225	124	54.7028	170	61.4454
33	150	79	68.5087	125	61.2933	171	45.8454
34	150	80	71.7122	126	78.624	172	76.5505
35	150	81	70.9521	127	47.8732	173	56.2379
36	150	82	68.6875	128	56.2829	174	55.0283
37	150	83	150	129	33.3049	175	49.6494
38	150	84	150	130	32.5161	176	39.2649
39	150	85	150	131	31.6969	177	44.3931
40	150	86	150	132	47.5655	178	33.9829
41	150	87	150	133	47.3713	179	34.3342
42	150	88	150	134	56.1662	180	34.5841
43	65.719	89	150	135	48.1843	181	40.8902
44	55.2242	90	150	136	39.4545	182	51.6741
45	52.1747	91	150	137	44.878	183	53.1825

184	40.5639	221	150	258	40.0977	295	66.1227
185	34.0317	222	150	259	38.9406	296	74.6601
186	33.8106	223	150	260	49.9495	297	115.283
187	41.8235	224	150	261	87.8456	298	100.492
188	47.861	225	150	262	63.4852	299	110.189
189	41.1768	226	150	263	49.0173	300	73.26
190	94.9207	227	150	264	39.0353	301	104.567
191	81.1408	228	45.3399	265	41.7905	302	65.6847
192	72.1538	229	44.2364	266	44.8043	303	65.1923
193	66.7432	230	47.4	267	48.352	304	56.2374
194	74.4792	231	74.6774	268	50.3853	305	72.5815
195	89.6689	232	95.7057	269	56.7884	306	106.259
196	83.027	233	93.6855	270	64.8908	307	83.7158
197	75.7986	234	80.5635	271	83.4378	308	104.813
198	122.628	235	68.3501	272	87.7726	309	86.9254
199	37.06	236	92.6691	273	54.7787	310	102.106
200	35.0708	237	76.1315	274	36.3083	311	118.699
201	34.2468	238	59.9628	275	46.8406	312	62.299
202	34.9465	239	65.1112	276	56.2174	313	60.0263
203	41.1274	240	51.2603	277	96.7866	314	76.6506
204	46.5259	241	37.7937	278	50.8864	315	78.0408
205	38.4336	242	48.0924	279	99.2928	316	92.4675
206	50.6553	243	37.83	280	60.5616	317	56.7388
207	71.9734	244	39.1587	281	80.6337	318	50.6609
208	84.4377	245	100.74	282	50.086	319	42.3754
209	97.8734	246	72.7181	283	103.406	320	59.1755
210	116.751	247	73.9506	284	107.987	321	131.419
211	76.1115	248	58.8143	285	115.104	322	125.038
212	77.3909	249	49.6085	286	95.0182	323	99.1418
213	92.1416	250	52.8215	287	71.9739	324	101.359
214	74.5623	251	45.3901	288	114.154	325	102.768
215	150	252	65.7095	289	85.5734	326	74.0773
216	150	253	92.3279	290	113.731	327	119.787
217	150	254	77.3411	291	74.3947		
218	150	255	99.5265	292	59.0068		
219	150	256	47.3504	293	62.8141		
220	150	257	35.3974	294	43.0315		

Приложение 2 «Температура в узлах сетки низкого качества»

- 52.457
- 54.966

- 47.6079
- 51.1314

- 16.0735
- 23.0157
- 20.4613
- 29.3649
- 40.3828
- 12.4679
- 19.2464
- 28.1845

- 25.9383
- 24.6046
- 39.403
- 60.2545
- 34.721
- 36.2875
- 52.5021