This assignment is **due on Apr 14**. You are allowed (even encouraged) to discuss these problems with your fellow classmates. All submitted work, must be *written individually* without consulting someone else's solutions.

Problem 1: The maximum submodular coverage (MSC) problem is to find a set S such that $|S| \leq k$ maximizing f(S), where f is a monotone submodular function. Show that GREEDY is a 2-approximation for MSC.

Problem 2: The partial minimum weight set cover (PMWSC) problem is a generalization of minimum subset cover where the objective is to find a minimum weight collection of sets that covers at least an α fraction of the elements, for some given $\alpha \in (0,1)$.

- i) Model PMWSC as a submodular set cover (SSC) problem: define V, f, and Δ .
- ii) Re-state the greedy algorithm for SSC in terms of PMWSC.
- iii) Show that the following "more natural" greedy algorithm for PMWSC has an arbitrarily large approximation ratio.

Algorithm 1 GREEDY-ALT

- 1. $\mathcal{C} \leftarrow \emptyset$
- 2. while $|\cup_{T\in\mathcal{C}} T| < \alpha |\mathcal{U}|$ do
- 3. let S be the set maximizing $\frac{|S \setminus \bigcup_{T \in \mathcal{C}} T|}{w(S)}$.
- 4. add S to \mathcal{C}
- 5. return \mathcal{C}