DNN_01

Activation Function in NN

3 Layer NN Architecture

$$\begin{aligned} z_1 &= xW_1 + b_1 \\ a_1 &= z_1 \\ z_2 &= a_1W_2 + b_2 \\ a_2 &= \hat{y} &= softmax(z_2) \end{aligned} \quad \begin{aligned} & \frac{\delta_3}{\partial L} &= \hat{y} - y, \delta_2 &= \delta_3 W_2^T \\ & \frac{\partial L}{\partial W_2} &= a_1^T \delta_3 \\ & \frac{\partial L}{\partial b_2} &= \delta_3 \\ & \frac{\partial L}{\partial b_1} &= \delta_3 \end{aligned}$$

Neural Network Training Loop: SGD

• Loop:

- X,Y = Sample batch of data
- loss = forward(X,Y)
- gradient = backward(loss)
- update_param(gradient)

Neuron Model

Each neuron performs a dot product with the input and its weights, adds the bias and applies the non-linearity (or activation function)

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

$$\max(0,x)$$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Why to use Activation Functions.

- To make NN a Universal Function Approximator.
 - By adding Non-Linearity
 - We need a Neural Network Model to learn and represent almost anything and any arbitrary complex function which maps inputs to outputs.
 - It means that they can compute and represent any function.

Properties of Activation

- Non-Linearity
- Range
- Continuously Differentiable
- Monotonic
- Computational Cost

Activation Function: Sigmoid

- Derivative : z(1-z) , z=sigmoid(x)
- Squashes input to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

Problems

- exp() is a bit compute expensive.
- Saturated neurons kills gradient
- Sigmoid output is not zero centered
- Slow convergence

Sigmoid

$$\sigma(x) = 1/(1+e^{-x})$$

Activation Function : Sigmoid

- Saturated neurons kills gradient
- Derivative : z(1-z)

If z=1 or 0, dz = 0

Initial layer learn much slowly compared to end layers.

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?

Activation Function: tanh(x)

- Derivative : z(1-z^2) , z=tanh(x)
- Squashes input to range [-1,1]
- zero centered

Problems

- exp() is a bit compute expensive.
- saturated neurons kills gradient.

Activation Function: ReLU

```
f(x) = \max(0,x)
```

- Derivative : 1, if x>= 0 else 0
- Range : [0,inf]
- Does not saturate (in + region)
- Computationally very efficient
- Converges much faster than sigmoid/tanh (6x)
- Gradient through ReLU unit remain large when active

Problems

- Not zero centered
- Neuron dies sometimes
- Be careful with your learning rates

ReLU (Rectified Linear Unit)

Activation Function: ReLU

Neuron dies sometimes:

ReLU neurons output zero and have zero derivatives for all negative inputs. So, if the weights in your network always lead to negative inputs into a ReLU neuron, that neuron will not activate, hence no updates, it dies forever.

A large learning rate amplifies this problem.

```
if x < 10 : z = 0 , dz = 0
if x = 0 : z = 0 , dz = 1
if x > 10 : z = 10 , dz = 1
```

Activation Function: Leaky ReLU

```
f(x) = \max(0.01x, x)
```

- Derivative : 1, if x > 0 else 0.01
- Does not saturate (in + region)
- Computationally very efficient
- Converges much faster than sigmoid/tanh (6x)
- Will not "die".

Parametric Rectifier (PReLU):

$$F(x) = \max(ax, x)$$

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

Activation Function: Exponential Linear Units (ELU)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime compared with Leaky ReLU adds some robustness to noise

- Computation requires exp()

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

Quick summary

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / ELU
- Try out tanh but don't expect much
- Don't use sigmoid

Softmax

- It converts logits into probabilities values
- Used in multi-class classification problem
- Sum of all output probabilities is 1
- Push one result closer to 1 while another closer to 0.

Reference:

- www.towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f
- www.deeplearningbook.org