

The secret weapon: Ensembles

Prof. Galit Shmuéli
Forecasting Analytics

Instead of choosing: combine!

Ensembles

Combine forecasts from different methods

Combine forecasts from multiple series measuring the same phenomenon (weather)

Multi-level models: fit one method to another method's forecast errors

Combine forecasts by (weighted) averaging

Weights proportional to method performance / data reliability

Weights obtained via regression

Dynamic weights

Forecasting experts answer: (forecasting principles.com FAQ)

"What are the disadvantages of combined forecasts?"

- a) Increased costs
- b) Need analysts who are familiar with a number of methods
- c) Need to ensure that a pre-determined rule for combining is agreed upon. Otherwise, people can find a forecast to suit their biases.

"Why isn't it common to use combined forecasts?"

- a) It is counter-intuitive. People think you only get an average forecast and they believe that if they can pick a method, they will do better. (This explanation has been supported by experiments).
- b) This solution is too simple. People like complex approaches.

The scientific truth about ensembles

More robust forecasts

Higher precision

"Consensus Forecasting Using Relative Error Weights" by Lackman & Brandon in *Marketing Intelligence & Planning 1994*

A weighting scheme that assigns greater weight to models that produce smaller errors

$$W_{A,t} = \frac{\text{MSE}_{Bt} \div \text{SD}_{Bt}}{(\text{MSE}_{A,t} \div \text{SD}_{A,t}) \div (\text{MSE}_{Bt} \div \text{SD}_{Bt})}.$$
 (1)

Period	Actual	Model A		noldout sample Model B		Combined	
		Forecast	Square error	Forecast	Square error	Forecast	Square error
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
5	2,064	2,125	3,721	2,272	43,264	2,164	10,000
6	2,386	2,106	78,400	2,464	6,084	2,266	14,400
7	2,432	2,116	99,856	2,517	7,225	2,241	36,481
8	2,542	2,386	24,336	2,722	32,400	2,529	169
9	2,663	2,513	22,500	2,804	19,881	2,655	64
10	2,767	2,597	28,900	2,919	23,104	2,765	4
11	2,896	2,728	28,224	3,017	14,641	2,836	3,600
12	2,014	2,849	2,722	3,032	324	2,984	900
13	3,146	2,964	33,124	3,107	1,521	3,088	3,364
14	3,015	3,135	14,400	3,147	17,424	3,146	<u>17,161</u>
Mean square error			36,069		16,587		8,614