DNS for studying entrainment and mixing processes

ZHENG GAO

STONY BROOK UNIVERSITY

Outline

- Background
- Models
- Numerical method
- Simulation
- Results

Background

- Cloud structure in microscale
- Turbulence and interactions
- Studying with DNS
- Entrainment and mixing

Mathematics Models

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla \mathbf{u}) = -\frac{1}{\rho_0} \nabla \mathbf{p} + \mu \Delta \mathbf{u} + f(\mathbf{q}, T)$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{q}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{q} = -C_d + \kappa \Delta \mathbf{q}$$

$$\frac{\partial \mathbf{T}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{T} = \frac{L}{c_p} C_d + \mu_T \Delta \mathbf{T}$$

Vapor mixing ratio

Temperature

Numerical Methods

- Projection method to decouple velocity and pressure (HYPRE and PETSc)
- WENO scheme to evaluate advection (no oscillation, high order)
- Crank-Nicolson for diffusion (stable)
- Totally second order of accuracy

Mathematics Models

$$S(X,t) = \frac{q_v(X,t)}{q_{v,s}} - 1$$

$$\frac{dR_i(t)}{dt} = A_3 \frac{S(x,t)}{R_i(t)}$$

Condensational growth

$$\frac{dX(t)}{dt} = V(t)$$

$$\frac{dV(t)}{dt} = \frac{1}{\tau_p} [u(X, t) - V(t)] + g$$
Droplets motion

Numerical Methods (cont.)

- Implicit Euler scheme for particle motion (stable)
- Explicit Euler scheme for condensation (efficient)
- Two way interaction, water mass conserved.
- S = 0, equilibrium state, no water exchange

$$\frac{dR_i(t)}{dt} = A_3 \frac{S(x,t)}{R_i(t)}$$

Parallel computing

- MPI (MPICH2)
- Parallelization of field (add buffer)
- Parallelization of particles (send and receive)
- Statistics analysis

- Simulation box
- √1m³ domain
- ✓ Periodic boundary condition
- √64³ or 128³ mesh grid
- ✓ Particles are uniformly placed on supersatured region

- Turbulence
- ✓ Energy input only in large wave length
- ✓ Energy cascades to small length automatically
- ✓ Energy dissipate in Kolmogorov length scale

Turbulence initialization

Energy input from large scale Isotropic

Vapor mixing ratio

Interior
[1] Andrejczuk (04 – 09)
Case 1

Boundary
[2] Kumar (12)
Case 2

Top Ours Case 3

Vapor mixing ratio

Vapor mixing ratio changes with time

Supersaturation with time

Vapor mixing ratio at t = 2s

- Particles
- ✓ Initial position: collocated with s > 0
- ✓Initial velocity: 0m/s
- ✓ Initial size: uniform size (10um)
- √ Consider sedimentation and inertial

Preferential Concentration

Enstrophy and number density Enhance collision rates

PDF of number density

Radius and Number density

Radius spectrum

RH = 50%

Radius and supersaturation

Lagrangian tracking of sample particle

Lagrangian tracking of 2000 particles

Supersaturation and vertical velocity

Supersaturation and vertical velocity at final state in Lagrangian (left) and Eulerian view (right)

Future work

- Larger domain and mesh refinement
- Adding external force from larger scale
- Collision and coalescence
- Particle point vs. particle resolved
- Thank you!