Non-parametric Models and Support Vector Machines

- Recommended reading
 - * Textbook: The Elements of Statistical Learning
 - Chapter 2.3: k-nearest neighbour method
 - ❖ Chapter 4.5: Linear support vector machines
 - ❖ Chapter 12.1-12.3: Nonlinear support vector machines

Outline

- > Parametric models vs non-parametric models
- Nearest neighbour methods
- Linear support vector machines: optimal separating hyperplane
- Non-linear support vector machines

Parametric models vs non-parametric models

- Parametric models
 - Modelled with a fixed-dimensional vector of parameters
 - □ Linear models: weights and bias
 - Neural networks: weights and biases for each of many layers
 - Parameters are learnt from training data
 - □ Training data are not used in testing
- Non-parametric models
 - Training data are used in testing
 - □ Use the similarity/distance between a test input and each of the training inputs.
 - □ Often called exemplar-based models, instance-based learning or memory-based learning.)
 - □ Examples: Nearest neighbour methods, kernel methods

Curtin University

Nearest Neighbour Methods

- **⋄**KNN: *k*-nearest neighbour classifier: to classify a new input
 - \diamond we first find the k closest examples to this new input in the training set
 - then use majority voting to classify the new input

Source: Fig 16.1 from *Probabilistic Machine Learning by* Kevin P. Murphy.

Linear Method vs Nearest Neighbour Methods

15-Nearest Neighbor Classifier

Source: Fig. 2.1 of the textbook

Source: Fig. 2.2 of the textbook

1-NN vs 15-NN

1-NN (Fig 2.3 of the texbook)

1-Nearest Neighbor Classifier

15-NN (Fig. 2.2 of the texbook)

15-Nearest Neighbor Classifier

Metrics for Nearest Neighbour Methods

- Source: https://scikit-learn.org/0.24/modules/generated/sklearn.neighbors.DistanceMetric.html
- One can also apply KNN with these metrics in feature space such as CNN features

Metrics intended for real-valued vector spaces:

identifier	class name	args	distance function
"euclidean"	Euclidean Distance	•	$sqrt(sum((x - y)^2))$
"manhattan"	ManhattanDistance	•	sum(x - y)
"chebyshev"	ChebyshevDistance	•	max(x - y)
"minkowski"	MinkowskiDistance	р	$sum(x - y ^p)^(1/p)$
"wminkowski"	WM in kowski Distance	p, w	$sum(w * (x - y) ^p)^(1/p)$
"seuclidean"	SEuclideanDistance	V	$sqrt(sum((x - y)^2 / V))$
"mahalanobis"	Mahalanobis Distance	V or VI	$sqrt((x - y)' V^-1 (x - y))$

Pros and Cons of KNN

- Pros
 - * Simple
 - Memory based: no need to train a mode
 - Can be used with the number of training examples is not very large
- Cons
 - Slow when training size is large
 - Sensitive to local noise/outliers
 - Does not work well for high dimensional data due to curse of dimensionality.

Linear SVM for Optimal Separating Boundary

Linear Support Vector Machine

- Well-known non-probabilistic supervised earning method
- Designed for binary classification (multiclass extension available)
- Based on linear decision boundaries
- Non-linear decision boundaries possible via the kernel trick: mapping input space to high-dimensional space where decision boundaries are linear
- Linear boundaries: separating hyperplane
- Maximum margin classifier

Linear SVM

- Some important concepts
 - Margin: degree of separability of two classes
 - Separable case: no training samples found in the maximal margin
 - Non-separable case: allow training errors
 - Signed distance: orthogonal to the separating hyperplane
- Optimization-based method: separating hyperplane found from solving a convex optimization formulation

Source

Margin as a Function of the Weights

- Training examples $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)$
- Each input x_i is a vector of d dimensions (assume real-valued features, attributes, etc.)
- Each output y_i takes either +1 or -1 (class labels)
- Hyperplane

$$\mathbf{x}: f(\mathbf{x}) = \boldsymbol{\beta}^T \mathbf{x} + \beta_0$$

- $oldsymbol{\circ}$ $oldsymbol{eta}$ normal vector of the hyperplane
- β_0 : bias / offset parameter
- Learning goal: find β , β_0
- What to optimize? maximize the margin (i.e. maximize the separability between two classes)

$$M = \frac{1}{\|\boldsymbol{\beta}\|_2}$$

Margin as a Function of the Weights

FIGURE 12.1. Support vector classifiers. The left panel shows the separable case. The decision boundary is the solid line, while broken lines bound the shaded maximal margin of width $2M = 2/\|\beta\|$. The right panel shows the nonseparable (overlap) case. The points labeled ξ_j^* are on the wrong side of their margin by an amount $\xi_j^* = M\xi_j$; points on the correct side have $\xi_j^* = 0$. The margin is maximized subject to a total budget $\sum \xi_i \leq \text{constant}$. Hence $\sum \xi_j^*$ is the total distance of points on the wrong side of their margin.

Linear SVM Formulation

- How to describe training examples?
 - Positive-class examples above the +ve boundary

$$(\beta^T \mathbf{x}_i + \beta_0) \ge 1, \forall y_i = 1$$

Negative-class examples below the -ve boundary

$$(\beta^T \mathbf{x}_i + \beta_0) \le -1, \forall y_i = -1$$

Combining

$$y_i(\boldsymbol{\beta}^T \mathbf{x}_i + \beta_0) \geq 1$$

• How to allow training errors? Introduce slack variables $\xi_i \geq 0$

$$y_i(\boldsymbol{\beta}^T \mathbf{x}_i + \beta_0) \ge (1 - \xi_i)$$

- $\xi_i = 0$ perfectly positioned, no training error
- $\xi_i > 0$ training error

Linear SVM – Hard Margin

Formulation for linearly separable patterns

- Maximize the margin \iff minimize $\|\beta\|_2^2$
- No training errors

Mathematical expressions

$$\min_{\boldsymbol{\beta}, \beta_0} \quad \frac{1}{2} \|\boldsymbol{\beta}\|_2^2$$

subject to
$$y_i(\boldsymbol{\beta}^T \mathbf{x}_i + \beta_0) \ge 1$$

Observation: quadratic optimization problem with linear inequality constraints.

Linear SVM formulation – Soft Margin

Formulation

- Maximize the margin \iff minimize $\|\beta\|_2^2$
- Minimize the training errors

Mathematical expressions (no need to memorize, just to understand)

$$\min_{\boldsymbol{\beta},\beta_0} \quad \frac{1}{2} \|\boldsymbol{\beta}\|_2^2 + C \sum_{i=1}^N \xi_i$$
 subject to
$$\xi_i \ge 0$$

$$y_i(\boldsymbol{\beta}^T \mathbf{x}_i + \beta_0) \ge (1 - \xi_i)$$

Observation: quadratic optimization problem with inequality constraints \rightarrow specialized algorithms.

SVM - Example

Source [4]

Why "support vector"?

- ullet It can be proved that the $\pm ve$ decision boundaries pass through a number of training samples from each class
- These samples are called support vectors

SVM with Kernels

- Extension to obtain nonlinear decision boundaries
- Reformulation of linear classifiers

$$\beta^T \mathbf{x} + \beta_0 = \sum_{i=1}^{N_{\text{train}}} w_i y_i \mathbf{x}_i^T \mathbf{x} + w_0$$
 (1)

- w_i: weight of the *i*-th training example
- y_i: label of the i-th training example
- **x**_i: the *i*-th training example
- Observation: The right side formulation is very useful for nonlinear feature mapping $\mathbf{x} \mapsto \Phi(\mathbf{x})$. Let $k(\mathbf{x}, \mathbf{z}) = \Phi(\mathbf{x})^T \Phi(\mathbf{z})$, we have

$$\beta^T \Phi(\mathbf{x}) + \beta_0 = \sum_{i=1}^{N_{\text{train}}} w_i y_i k(\mathbf{x}_i, \mathbf{x}) + w_0$$
 (2)

The linear classifier in the feature space can be formulated without $\Phi(\cdot)$. Only the kernel $k(\cdot, \cdot)$ is required.

The Kernel Trick

- The kernel trick
 - SVM solution only requires inner products to be defined
 - Nonlinear decision boundaries in the input space can be mapped to linear decision boundaries in a transformed space with sufficiently large dimensions

$$\mathbf{x} \mapsto \Phi(\mathbf{x})$$

- We do not need to know the actual space of $\Phi(\mathbf{x})$
- However, we need to know the similarity between two input samples \mathbf{x}_1 and \mathbf{x}_2

$$similarity(\mathbf{x}_1, \mathbf{x}_2) = similarity(\Phi(\mathbf{x}_1), \Phi(\mathbf{x}_2))$$

Similarity in the input space is defined through a kernel function

$$similarity(\mathbf{x}_1,\mathbf{x}_2)=k(\mathbf{x}_1,\mathbf{x}_2)$$

- Similarity in the feature mapping space of Φ is defined through an inner product
- Mercer condition: requires k to satisfy certain condition in order for an implicit mapping Φ to exist

SVM with Kernels

• Linear classifier in the space of Φ is equivalent to the nonlinear kernelized binary classifier of the form

$$\hat{y} = \operatorname{sign}\left(\sum_{i=1}^{N_{\text{train}}} w_i y_i k(\mathbf{x}_i, \mathbf{x}) + w_0\right)$$

- w_i: weight of the *i*-th training example
- y_i: label of the i-th training example
- **x**_i: the *i*-th training example
- Training the classifier = finding the weights w_i
- ullet It can be shown the equivalent formulation is a convex optimization problem quadratic in terms of ullet
- Dimension of the weight vector **w** is the number of training examples

SVM with Kernels

- Kernel function $k(\mathbf{x}_1, \mathbf{x}_2)$ defines
 - Inner product in the feature space $k(\mathbf{x}_1, \mathbf{x}_2) = \langle \Phi(\mathbf{x}_1), \Phi(\mathbf{x}_1) \rangle$
 - The similarity in the input space between x_1 and x_2
- Similarity:
- Popular kernel choices
 - Radial basis function (RBF) kernel $k(\mathbf{x}_1, \mathbf{x}_2) = \exp(-\gamma ||\mathbf{x}_1 \mathbf{x}_2||_2^2), \gamma > 0$
 - Polynomial kernel with degree d: $k(\mathbf{x}_1, \mathbf{x}_2) = (1 + \mathbf{x}_1^T \mathbf{x}_2)^d$
 - Linear kernel $k(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{x}_1^T \mathbf{x}_2$
 - Sigmoid/Neural networks kernel $k(\mathbf{x}_1, \mathbf{x}_2) = tanh(\gamma \mathbf{x}_1^T \mathbf{x}_2 + r)$
- Kernel parameters typically selected via cross validation

SVM-Example Revisited

SVM for Multiple Classes

- How to deal with m > 2 classes?
 - \bullet One-versus-all: design m binary SVM classifiers that classify one class versus the rest. At test time, select the result with largest margin
 - One-versus-one: design m(m-1)/2 binary SVM classifier that classify one class versus another. At test time, select the class selected by most of the classifiers (majority voting)
 - \bullet All-versus-all: extend SVM formulation to multivariate labels \to a little more complex
- Pre-processing
 - Categorical attributes \rightarrow binary representation: (red,green,blue) \rightarrow (1,0,0) (0,1,0) (0,0,1)
 - Scaling to the range [-1,+1] or [0,1] to avoid numerical dominance of some attributes
- When to use linear kernel to reduce training cost?
 - Number of features very large (no need for mapping)
 - Number of training examples and number of features are large

SVM for Regression

Linear regression model

$$f(x) = x^T \beta + \beta_0,$$

Labels are real numbers instead of 1 or -1

Loss function

$$H(\beta, \beta_0) = \sum_{i=1}^{N} V(y_i - f(x_i)) + \frac{\lambda}{2} ||\beta||^2,$$

SVM for Regression

epsilon-insensitive loss

$$V_{\epsilon}(r) = \begin{cases} 0 & \text{if } |r| < \epsilon, \\ |r| - \epsilon, & \text{otherwise.} \end{cases}$$

Pros and Cons of SVM

> Pros

- Maximum margin for linear separable data
- Convex optimization: no local minima problem
- Kernels: efficient ways to design nonlinear features
- Small number of hyper-parameters: regularization number and kernel parameters

Cons

 The capacity for nonlinear feature development is very limited due to few parameters of kernels