H09T1A3

Für jedes $E \in \mathbb{C}$ betrachte die Differentialgleichung

$$H'' - 2zH' + (E - 1)H = 0$$

für eine Funktion H, die analytisch in der Variablen z ist.

- a) Bestimme die Lösungen der Form $H(z) = \sum_{n=0}^{\infty} h_n z^n$. Zeige, dass die Koeffizienten eine Rekursionsrelation erfüllen, die angegeben werden soll.
- b) Berechne den Konvergenzradius der Reihe
- c) Gebe die geraden Lösungen an.
- d) Für welche Werte von E ist die Lösung von c) ein Polynom?

Zu a):

Lineare Differentialgleichung mit analytischen Koeffizienten, 2. Ordnung, homogen \Rightarrow Lösungsraum 2-dimensionaler Untervektorraum bestehend aus analytischen Funktionen. Als analytische Funktion hat H lokal um 0 eine Potenzreihenentwicklung

$$H(z) = \sum_{n=0}^{\infty} b_n z^n$$

mit Konvergenzradius $\rho > 0$.

Im Inneren des Konvergenzkreises, d.h. auf $\{z \in \mathbb{C} : |z| < \rho\}$ lässt sich H', H'' durch gliedweises Differenzieren ermitteln; durch Koeffizientenvergleich dann b_n und ρ bestimmen.

Für $|z| < \rho$:

$$H'(z) = \sum_{n=0}^{\infty} n b_n z^{n-1}$$

$$H''(z) = \sum_{n=0}^{\infty} n(n-1)b_n z^{n-2}$$

$$H''(z) - 2zH'(z) + (E-1)H(z) =$$

$$\sum_{n=0}^{\infty} n(n-1)b_n z^{n-2} - 2z \sum_{n=0}^{\infty} nb_n z^{n-1} + (E-1) \sum_{n=0}^{\infty} b_n z^n = 0$$

$$\frac{z^0}{2} : \qquad 2 \cdot 1 \cdot b_2 + (E-1)b_0 \stackrel{!}{=} 0$$

$$\frac{z^1}{2} : \qquad 3 \cdot 2 \cdot b_3 - 2 \cdot 1 \cdot b_1 + (E-1)b_1 \stackrel{!}{=} 0$$

$$\frac{k \ge 1, \ z^k}{2} : \qquad (k+2)(k+1)b_{k+2} - 2kb_k + (E-1)b_k = 0$$

$$(k+2)(k+1)b_{k+2} - (2k-(E-1))b_k \stackrel{!}{=} 0$$

$$\Rightarrow b_2 = -\frac{(E-1)b_0}{2}, \quad b_{k+2} = \frac{2k-(E-1)}{(k+2)(k+1)}b_k \quad (1)$$

Zu b):

Betrachte die Potenzreihe $h(w) := \sum_{l=0}^{\infty} b_{2l} w^{2l}$

Konvergenzradius durch $\left| \frac{a_n}{a_{n+1}} \right|$ bestimmen:

$$\left| \frac{b_{2l}}{b_{2(l+1)}} \right| = \left| \frac{(2l+2)(2l+1)}{4l - (E-1)} \right| \xrightarrow{l \to \infty} \infty$$

$$k(w) := w \sum_{l=0}^{\infty} b_{2l+1} w^{2l}$$

$$\left| \frac{b_{2l+1}}{b_{2(l+1)+1}} \right| = \left| \frac{(2l+3)(2l+2)}{2(2l+1) - (E-1)} \xrightarrow{l \to \infty} \infty$$

$$\Rightarrow H(z) = \sum_{n=0}^{\infty} b_n z^n \text{ konvergiert für alle } z \in \mathbb{C}$$

 $(\Rightarrow$ gliedweises Differenzieren, bzw. Koeffizientenvergleich geht auf $\mathbb{C})$

Alternativ: Aus der rekursiven Definition der Koeffizienten eine explizite Form bestimmen und damit den Konvergenzradius ausrechnen:

(2)
$$b_{2n} = \frac{(-1)^n}{(2n)!} \Big(\prod_{k=0}^{n-1} (E - 1 - 4k) \Big) b_0 \text{ für } n \ge 1 \text{ (Beweis per Induktion)}$$

$$b_{2n+1} = \frac{(-1)^n}{(2n+1)!} \Big(\prod_{k=0}^{n-1} (E-1-2(2k+1)) \Big) b_1 \text{ für } n \ge 1$$

Zu c):

Aufgrund der Rekursionsgleichung (1) verschwinden im Fall $b_1=0$ alle Koeffizienten $b_{2k+1},\ k\in\mathbb{N}$ und $H(z)=\sum_{l=0}^\infty b_{2l}z^{2l}$ spannt zu vorgegebenem b_0 einen eindimensionalen Untervektorraum des Lösungsraums auf. Da gerade und ungerade Funktionen linear unabhängig sind, sind dies alle geraden Lösungen der Differentialgleichung.

Zu d):

Aus (2) folgt für $b_0 \neq 0$ dass $b_{2n} \neq 0$ für alle $n \in \mathbb{N}$, falls $E - 1 \notin 4\mathbb{N}_0$ und $b_{2n} = 0$ für $n \geq 0$ falls $E - 1 \in 4\mathbb{N}_0$.