CS 460/560 Introduction to Computational Robotics Fall 2019, Rutgers University

Lecture 20 Aspects of Control

Instructor: Jingjin Yu

Outline

Feedback (closed-loop) control

- ⇒ Mathematical models of dynamical systems
- ⇒Concept: open-loop v.s. closed-loop control
- ⇒Ubiquity of feedback control systems
- ⇒ History of modern feedback control system: Watt's flyball governor
- ⇒PID control

 - ⇒ Behavior of individual terms
 - **⇒** Tuning
- ⇒Pure pursuit for controlling differential drive robots (DDR)

⇒Optimal control

- ⇒The Hamilton-Jacobi-Bellman equation, dynamic programming
- ⇒The maximum principle
- ⇒Time optimal trajectory of Dubin's car and DDR, bang-bang control

Modeling Dynamical Systems

A dynamical system (e.g., a car) is often modeled as

$$\dot{x} = f(x, u)$$

 \Rightarrow E.g., for a car, $x(t) = (x_1(t), x_2(t), \theta(t))$

 $\Rightarrow \dot{x} = \frac{dx(t)}{dt}$ is the time derivative, i.e., the velocity of the system

 \Rightarrow For a car, $\dot{x} = (\dot{x_1}, \dot{x_2}, \dot{\theta})$

$\Rightarrow u$: the **control input**

 \Rightarrow E.g., for a real car, approximately, $u = (\theta, v)$

 $\Rightarrow \theta$ is the front wheel bearing

 $\Rightarrow v$ is the forward speed (for a 2-wheel drive, assuming no slippage)

 $\Rightarrow u$ may be speed, acceleration, and so on...

\Rightarrow f: system **evolution** function

 \Rightarrow How do x, u determine \dot{x}

In **discrete** settings, often written as $x_t = f(x_{t-1}, u_{t-1})$

 \Rightarrow May view this as integration of the continuous model: $x_t = x_{t-1} + \int_{t-1}^t \dot{x} dt$

 \Rightarrow Often written as $x_k = f(x_{k-1}, u_{k-1})$

Modeling Dynamical Systems, Continued

Examples

- \Rightarrow A car going at fixed speed along x_1 -axis: $\dot{x_1}=1$
 - \Rightarrow In this case, f(x, u) = 1 is a constant
- \Rightarrow An accelerating car along x_1 -axis with acceleration $a: \dot{x_1} = at$
 - $\Rightarrow u = a$, the acceleration, f(x, u) = at, does not depend on x
- ⇒A car going clockwise along the unit circle around the origin at unit speed

$$\Rightarrow \dot{x} = (\dot{x}_1, \dot{x}_2, \dot{\theta}) = (x_2, -x_1, -1)$$

- \Rightarrow Initial condition: $x_1 = 1, x_2 = 0$
- ⇒ The car will keep circling the unit circle at unit speed
- \Rightarrow So it takes 2π time to go one round

Linear and non-linear systems

- \Rightarrow Linear systems: f is a linear function, e.g., $\dot{x} = Ax + Bu$
- \Rightarrow Non-linear systems: f is non-linear

What to grasp from the last two slides?

- ⇒Dynamical systems may be modeled as we have described
- \Rightarrow In particular, given x_{k-1} , u_{k-1} , and f(x, u), we can **predict** x_k

Open-Loop versus Closed-Loop Control

Open-loop control: the control input does not consider the current state of the system

- \Rightarrow Roughly speaking, this is saying u is independent of x in $\dot{x} = f(x, u)$
- \Rightarrow Example: $u = \dot{x} = 0$
- \Rightarrow Example: $u = (\dot{x_1}, \dot{x_2}) = (1,1)$
 - ⇒ For the car we work with, give constant input signals to the two wheels

Feedback (closed-loop) control: the control input takes into account the (observed) system state \tilde{x}

- \Rightarrow Example: damping $u = \dot{x} = -\widetilde{x}$
 - ⇒ What does this system do in one dimension?
 - \Rightarrow If \tilde{x} is positive, \dot{x} is then negative, causing x to decrease. So it takes the system to the origin
- \Rightarrow Example: regulator $u = \dot{x} = c (\tilde{x} ct)$
 - ⇒ What does this system do in one dimension?
 - \Rightarrow If $\tilde{x}-ct$ is positive, meaning we have gone too fast, the system will slow down
 - ⇒ Otherwise, the system will speed up
 - \Rightarrow Overall, system goes at a speed of c

System Block Diagram

Open-loop control

Feedback (closed-loop) control

Real World Examples

Is a cannon open-loop or feedback-based?

⇒Open-loop: we do not maintain control after shooting the shell

What about a missile?

⇒Closed-loop: it tracks a target and is a form of PID control

In general, open-loop systems are cheaper than feedback-based system

Image sources: www.army.mil, wikipedia.org

Ubiquity of Feedback Control Systems

Feedback control systems are everywhere!

Example: ourselves

⇒Walking with eyes open or closed

⇒ Reaction to electrical shock

⇒ Regulation of glucose (blood sugar) level with insulin (pancreas) and glycogen

⇒ Sugar crash happens if you overload the system

Example: room temperature control (thermostat)

Example: driving a car

A Little History on Modern Feedback Control

After steam engine was invented, how to control its running speed is a problem of major interest

A successful design was Watt's flyball governor

PID Controller

PID controller stands for **proportional-integral-derivative controller**

- ⇒There are many different "theoretical" feedback controllers
- ⇒ However, the final implementation often uses some form of PID control General form:

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$

Block diagram

Image source: wikipedia.org

PID Controller Breakdown

The error term e(t)

$$\Rightarrow e(t) = Set\ Point\ - Current\ Location$$

$$\Rightarrow$$
 E.g., if we want to go to the origin, may set $e(t) = (0,0) - (x_1(t), x_2(t))$

The proportional term, $K_p e(t)$

- ⇒Adjust control based on instant position error
- $\Rightarrow K_p$: proportional gain, usually a positive constant
- $\Rightarrow e(t)$ large, then u(t) is large

The integral term, $K_i \int_0^t e(\tau) d\tau$

- ⇒Adjust system behavior based on **cumulative error**, slow response
- ⇒Accelerates convergence to set point
- $\Rightarrow K_i$: integral gain

The derivative term, $K_d \frac{de(t)}{dt}$

- ⇒Adjust system behavior based on **differential error**, fast response (predictive)
- ⇒Generally provides damping (preventing overshot), improves stability
- $\Rightarrow K_d$: derivative gain

PID Controller Breakdown Example

Effects of varying the gains in a 1D system

Image source: wikipedia.org

PID Controller Tuning

PID control applies easily to many systems since e(t) can often be computed easily

However, the process of tuning a PID controller can be tricky

General (manual) method

 \Rightarrow Set $K_i = K_d = 0$ and tune K_p until the output oscillates

 \Rightarrow Adjust K_i so that the system converges to set point

 \Rightarrow Adjust K_d to remove oscillation until acceptable

Controlling a Quadcopter

How does a quadcopter work?

Up/down

Yaw change

Pitch/roll change

Quadcopter control

- ⇒Hover
- ⇒Basic trajectory following
 - ⇒ Doing a sequence of "hovering" with new set points

Pure Pursuit for Differential Drive Robots

Most two wheeled robots can be viewed as a differentially driven robot (DDR)

 \Rightarrow Two wheel inputs in the range of [-1, 1]

Pure pursuit path following algorithm

- \Rightarrow From the current location of car, locate a waypoint of distance ℓ (some constant) on the desired trajectory
- ⇒Compute the required curvature to the waypoint
- ⇒Adjust wheel speeds to follow the computed arc
- ⇒Note: the car's direction is tangential to the computed arc

Value Function and Principle of Optimality

Cost of trajectories can be captured with the functional

$$J(t, x, u) = \int_{t}^{t_1} L(s, x(s), u(s)) ds + K(x(t_1))$$

The **value function** is defined as the infimum of J over control u

$$V(t,x) := \inf_{u_{[t,t_1]}} J(t,x,u)$$

Principle of optimality states: For every $(t, x) \in [t_0, t_1) \times \mathbb{R}^n$ and every $\Delta t \in (0, t_1 - t]$, the value function satisfies

$$V(t,x) = \inf_{u_{[t,t+\Delta t]}} \left\{ \int_{t}^{t+\Delta t} L(s,x(s),u(s))ds + V(t+\Delta t,x(t+\Delta t)) \right\}$$

Intuitive (provable)

But important

Yes, related to dynamic programming in CS

The Hamilton-Jacobi-Bellman (HJB) equation

From the principle of optimality, HJB equation can be derived

$$-\widehat{V}_t(t,x) = \inf_{u \in U} \left\{ L(t,x,u) + \langle \widehat{V}_x(t,x), f(t,x,u) \rangle \right\}$$

- \Rightarrow A PDE providing **necessary** and **sufficient** conditions for optimal control u^*
- \Rightarrow From u^* one can also obtain the optimal trajectory x^*
- ⇒From HJB, can derive conditions for optimal solutions

E.g., a simple integrator $\dot{x} = u$ with $L(x, u) = x^2 + u^3$. HJB

$$-V_t(t,x) = \inf_{u \in \mathbb{R}} \{ x^2 + u^3 + V_x(t,x)u \}$$

Optimal control:

$$u^*(t) = -\sqrt{\frac{1}{3}}V_{x}(t,x)$$

PDE:
$$-V_t(t,x) = x^2 - 2\left(\frac{1}{3}V_x(t,x)\right)^{\frac{3}{2}}$$

In general, closed form solutions for HJB are difficult to come by

Pontryagin's Maximum Principle

HJB provides necessary and sufficient conditions for optimality

- \Rightarrow But does so requiring the value function V(t,x) be C^1
- ⇒That is, first order partial derivatives must be continuous

Pontryagin's maximum principle address this.

- \Rightarrow The (fixed end point problem) setup: $J(u) = \int_{t_0}^{t_f} L(x,u) dt + K(t_f,x_f)$ and $\dot{x} = f(x,u)$
- \Rightarrow Hamiltonian: $H(x, u, p, p_0) := \langle p, f(x, u) \rangle + p_0 L(x, u)$
- ⇒ Maximum principle says that
 - \Rightarrow There exist $(p^*, p_0) \neq (0,0)$ such that $\dot{x}^* = H_p(x^*, u^*, p^*, p_0^*), \dot{x}^* = H_p(x^*, u^*, p^*, p_0^*)$
 - \Rightarrow There exists global maximum $H(x^*(t), u^*(t), p^*(t), p^*_0) \ge H(x^*(t), u(t), p^*(t), p^*_0)$
 - $\Rightarrow H(x^*(t), u^*(t), p^*(t), p_0^*) = 0 \text{ for all } t \in [t_0, t_f]$

A bit of history

- ⇒HJB equation: 1957, from US
- ⇒ Maximum principle: 1956, from USSR
- ⇒The cold war era...

Optimal Trajectories for Dubins Car, DDR

Bang-bang control

- ⇒Both HJB and the maximum principle lead to **bang-bang** control
- ⇒In general, optimal trajectory uses extreme control inputs

E.g., moving from x = 0 to x = 1 with $\dot{x} = u \in [-1, 1]$

- ⇒What is the time optimal strategy?
- \Rightarrow Move with $\dot{x}=1$
- \Rightarrow What if $\ddot{x} = u \in [-1, 1]$?
- \Rightarrow Move with $\ddot{x}=1$ halfway, then $\ddot{x}=-1$

E.g. Dubins car

- \Rightarrow Three types of moves: L, S, R
- ⇒ A distance optimal solution uses at most a sequence of three
- ⇒Similar results applies to DDR, e.g. extremal

