

Semestrální práce z AŘ

Ondřej Duspiva, Luděk Müller

Obsah

1. Mo	odel spojených nádob, linearizace a neurčitosti	5
1.1.	Model spojených nádob	5
1.2.	Linearizovaný model	6
1.3.	Neurčitost přenosu	9
1.4.	Numerická skutečná neurčitost	10
2. Reg	gulátor	13
2.1.	Návrh PI regulátoru	13
2.1	l.1. Stabilita systému	15
2.1	1.2. Robustnost ve stabilitě	17
2.1	1.3. Šířka pásma	17
2.1	1.4. Zesílení energie šumu	18
2.2.	Zatížení šumem	18
2.3.	Zesílení externích signálů	19
2.4.	Zesilování externích signálů	19

Zadání

Automatické řízení- zadání referátu

I. Model neurčitosti

- 1. Při konstantním přítoku $Q_{10}=1.5\cdot 10^{-4} {\bf m}^3\cdot {\bf s}^{-1}$ vypočtěte potřebné nastavení přepouštěcího ventilu S_p a výtokového ventilu S_2 tak, aby výšky hladin v nádobách při ustáleném stavu byly $H_{10}={\bf m}$ a $H_{20}={\bf m}$ (tzv. pracovní bod). Hodnoty známých parametrů: $S=25\cdot 10^{-4} {\bf m}^2$ (plocha dna nádob), $c_p=c_2=0.6$.
- 2. Určete linearizovaný stavový model v daném pracovním bodě a v pracovním bodě, který by odpovídal 20% zvýšení přítoku Q_{10} .
 - (A) Nastavení přepouštěcích ventilů S_p a S_2 zůstane stejné, se zvyšujícím se přítokem Q_1 se mění výšky hladin H_1 a H_2 .
 - (B) Spolu se zvyšujícím se přítokem Q_1 se mění nastavení ventilů S_p a S_2 tak, aby výška hladin zůstala konstantní, tedy $H_1(t)=H_{10},\ H_2(t)=H_{20}.$
- 3. Určete přenos systému $Q_1(t) \to H_2(t)$ v závislosti na výšce hladiny H_1 a H_2 (případ 2A) či nastavení ventilu S_p, S_2 (případ 2B). Znázorněte pro oba případy v komplexní rovině neurčitost přenosu za předpokladu, že skutečný pracovní bod je libovolně mezi původním pracovním bodem a pracovním bodem při 20 % zvýšeném přítoku.
 - (a) Určete numericky skutečnou neurčitost danou intervalem pro výšky hladin H_1 , H_2 (resp. S_p , S_2) a přítok Q_1 .
 - (b) Definujte model neurčitosti pomocí vhodně zvoleného modelu perturbací, nominálního modelu P_0 a váhové funkce W(s) tak, aby velikost neurčitosti byla minimální a přesto pokrývala skutečnou neurčitost získanou v bodě (b).

Pro zobrazení neurčitosti použijte 10 frekvencí $\omega_1, \dots, \omega_{10}$, které pokryjí fázové zpoždění $(0, \pi)$ fázové frekvenční charakteristiky procesu.

4. Porovnejte velikosti obou neurčitostí (2A a 2B).

II. Návrh regulátoru

Dále předpokládejte, že přítok $Q_1(t)$ je realizován vodním čerpadlem, které je poháněno stejnosměrným motorem. Chování čerpadla budeme pro jednoduchost aproximovat systémem prvního řádu s časovou konstantou T=0.5s a statickým zesílením $K_s=Q_{10}$. Dále uvažujme PI regulátor, který řídí napětí na kotvě motoru čerpadla s cílem řídit výšku hladiny H_2 . Rovněž předpokládejme, že všechny externí signály regulační smyčky jsou rozumně malé, takže systém není příliš vychýlen ze svého pracovního bodu a může být považován za lineární.

- 1. Navrhněte parametry PI regulátoru s přenosem $C(s) = K(1 + \frac{1}{T_i s})$ tak, aby byly splňeny následující návrhové požadavky pro všechny systémy z modelu neurčitosti získaného v bodě 3(b) pro 2A (mění se výška hladin), tedy pro libovolný pracovní bod, který se nachází mezi původním pracovním bodem a pracovním bodem při zvýšeném přítoku.
 - (a) Vnitřní stabilita uzavřené smyčky ověřte analyticky i graficky (Nyquistovo kritérium).
 - (b) Robustnost ve stabilitě maximální hodnota amplitudy citlivostní funkce $S(j\omega)$ je $M_S < 2$.
 - (c) Předpokládejte, že díky dalším nepřesnostem, šumům a nelinearitám je dostupná šířka pásma omezená na $\Omega_a=10$ [rad/s]. Útlum komplementární citlivostní funkce $T(\mathrm{j}\omega)$ na frekvenci Ω_a musí být alespoň -10 dB.
 - (d) Zajistěte, aby energie libovolného šumu měření n(t) nebyla zesílena více než 1.5 krát.
- 2. Předpokládejte, že měření, tedy senzor hladiny H_2 , je zatíženo harmonickým šumem n(t) s frekvencí 50Hz a výstup soustavy omezenou harmonickou poruchou d(t) s frekvencí 0.1Hz. Ověřte, zda žádný z těchto signálů není na výstupu systému (tedy $H_2(t)$) smyčkou s navrženým PI regulátorem zesílen.
- 3. Předpokládejte, že je systém v rovnovážném stavu a e(t) = 0. Na vstup řízené soustavy začne působit porucha d_i s omezenou energií $||d_i||_2 < 1$. Určet k jakému maximálnímu kolísání hladiny H_2 od požadovaného stavu může dojít.
- 4. Určete signály n(t) a d(t), kde $||n(t)||_{\infty} < 1$, $||d(t)||_{\infty} < 1$, které jsou zpětnovazební smyčkou nejvíce zesíleny ve smyslu
 - (a) maximální hodnoty signálu,
 - (b) energie signálu.

Určete hodnoty těchto zesílení.

Poznámka: K řešení využijte libovolné prostředky Matlabu/Simulinku, Robust Control Toolbox, Symbolic Toolbox, webový applet "PID Control Laboratory".

AŘ 2013/2014

Řešení

1. Model spojených nádob, linearizace a neurčitosti

V této první části semestrální práce popíšeme reálný model spojených nádob, provedeme linearizaci a určíme neurčitost. Tu pak zavedeme do linearizovaného modelu a získáme tak relativně věrohodný výpočetní model reálného chování spojených nádob

1.1. Model spojených nádob

Nyní odvodíme rovnice pro spojené nádoby. Uvažujme tedy konstantní průtok, který je podle zadaní $1,5\cdot 10^{-4}\text{m}^3\text{s}^{-1}$. Výška hladiny v ustáleném stavu je $H_{10} = 0,5\text{m}$ a $H_{20} = 0,3\text{m}$. Válce mají dna o obsahu $S = 25\cdot 10^{-4}\text{m}^2$. Konstanty pro připouštěcí a výtokový ventil jsou $c_p = c_2 = 0,6$.

Cílem je určit nastavení přepouštěcích ventilů S_p a výtokového ventilu S_2 . Toto nastavení by mělo zařídit ustálení hladiny v pracovním bodě.

Časové změny objemu tekutiny ve spojených nádobách:

$$\frac{dV_1(t)}{dt} = S\frac{dH_1(t)}{dt} = Q_1(t) - Q_p(t)$$

$$\frac{dV_2(t)}{dt} = S\frac{dH_2(t)}{dt} = Q_p(t) - Q_2(t)$$

Vyjádření jednotlivých průtoků:

$$Q_p(t) = c_p S_p V_p(t)$$
 $Q_2(t) = c_2 S_2 V_2(t)$

Rychlost proudění:

$$p_0 + \rho g H_1(t) = p_0 + \rho g H_2(t) + \frac{1}{2} \rho V_p^2(t) = V_p(t) = \sqrt{2g(H_1(t) - H_2(t))}$$
$$p_0 + \rho g H_2(t) = p_0 + \frac{1}{2} \rho V_2^2(t) = V_2(t) = \sqrt{2gH_2(t)}$$

Rovnice pro systém tvořený spojenými nádobami

$$\frac{dH_1(t)}{dt} = -\frac{1}{S}c_p S_p \sqrt{2g(H_1(t) - H_2(t))} + \frac{1}{S}Q_1(t)$$

$$\frac{dH_2(t)}{dt} = -\frac{1}{S}c_p S_p \sqrt{2g(H_1(t) - H_2(t))} - \frac{1}{S}c_2 S_2 \sqrt{2gH_2(t)}$$
$$y(t) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} H_1(t) \\ H_2(t) \end{bmatrix}$$

Ustálený stav (pracovní bod)

$$\begin{split} 0 &= -\frac{1}{S}c_p S_p \sqrt{2g\big(H_{10}(t) - H_{20}(t)\big)} + \frac{1}{S}Q_{10}(t) \\ 0 &= -\frac{1}{S}c_p S_p \sqrt{2g\big(H_{10}(t) - H_{20}(t)\big)} - \frac{1}{S}c_2 S_2 \sqrt{2gH_{20}(t)} \end{split}$$

Vztahy pro S_D a S₂

$$S_p = \frac{Q_{10}}{c_p \sqrt{2g(H_{10}(t) - H_{20}(t))}} = 1.2620e - 04m2$$

$$S_2 = \frac{c_p S_p \sqrt{2g(H_{10}(t) - H_{20}(t))}}{c_p \sqrt{2g(H_{20}(t))}} = 1.0305e - 04m2$$

1.2. Linearizovaný model

Linearizovaný model určíme ve dvou pracovních bodech. Nejprve budeme přepokládat konstantní nastavení ventilů a měnící se výšku hladiny (Varianta A) a Q_{10} .

Varianta A – Nastavení ventilů konstantní, proměnná výška hladiny

V této variantě při konstantním nastavení ventilů budeme vycházet z následujících rovnic.

$$\frac{dH_1(t)}{dt} = -\frac{1}{S}c_p S_p \sqrt{2g(H_1(t) - H_2(t))} + \frac{1}{S}Q_1(t)$$

$$\frac{dH_2(t)}{dt} = -\frac{1}{S}c_p S_p \sqrt{2g(H_1(t) - H_2(t))} - \frac{1}{S}c_2 S_2 \sqrt{2gH_2(t)}$$
$$y(t) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} H_1(t) \\ H_2(t) \end{bmatrix}$$

Stavové proměnné budou v tomto případě $[X_1, X_2] = [H_1, H_2]$. Výstupní proměnná u pak v tomto případě bude přítok Q_1 . Pro odvození konkrétních hodnot použijeme výpočet v matlabu, pomocí nějž vypočteme parciální derivace. Ventily nastavíme na hodnoty odvozené výše a přítok Q_1 na hodnotu Q_{10} . Ve druhé variantě potom přítok navýšíme o 20% tj. $1,2\cdot Q_{10}$. Pro výpočet použijeme následující kód v matlabu:

```
%Semestralni prace z AR
Sp0 =1.2620e-04;
S20 = 1.0305e-04;
Qv = 1.5e-04
%linearizce
syms H1 H2 k1 k2 Sp S2 Q S cp c2 g;
g = 9.81;
S = 25*10e-4;
cp = 0.6;
```

```
c2 = 0.6;
```

```
%nelinearni rovnice
f = [-((1/S)*cp*Sp*sqrt(2*g))*sqrt(H1-H2)+1/S*Q;
    ((1/S) *cp*Sp*sqrt(2*g)) *sqrt(H1-H2) - ((1/S) *c2*S2*sqrt(2*g)) *sqrt(H2)];
x = [H1; H2];
u = 0;
%linearizace
A = jacobian(f,x);
B = diff(f,u);
C = [1 \ 0; 0 \ 1];
Sp = Sp0;
S2 = S20;
Q = Qv;
fnum = eval(f);
[H1, H2] = solve(fnum);
H1 = eval(H1);
H2 = eval(H2);
A = eval(A);
B = eval(B);
P = ss(A,B,C,0);
```

Výsledky pro provedení výpočtu v matlabu pro variantu s přítokem $Q_1 = Q_{10}$:

$$\dot{X} = \begin{bmatrix} -0.15 & 0.15 \\ 0.15 & -0.25 \end{bmatrix} X + \begin{bmatrix} 400 \\ 0 \end{bmatrix} u$$
$$y(t) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} X$$

Pro variantu s přítokem $Q_1 = 1,2 \cdot Q_{10}$ potom linearizovaný model vychází:

$$\dot{X} = \begin{bmatrix} -0.125 & 0.125 \\ 0.125 & -0.2083 \end{bmatrix} X + \begin{bmatrix} 400 \\ 0 \end{bmatrix} u$$
$$y(t) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} X$$

Varianta B - Konstantní hladina, proměnné nastavení ventilů

Nyní tedy zafixujeme výšku hladin $[H_1(t), H_2(t)] = [H_{10}, H_{20}]$. Rovnice, ze kterých budeme vycházet se shodují s rovnicemi ve variantě A, nicméně je nezbytné upravit kód v malabu a to následujícím způsobem:

%semestralniPrace02

```
%linearizce2

syms H1 H2 k1 k2 Sp S2 Q S cp c2 g;

g = 9.81;

S = 25*10e-4;
```

```
cp = 0.6;
c2 = 0.6;
H10 = 0.5;
H20 = 0.3;
%nelinearni rovnice
f = [-((1/S)*cp*Sp*sqrt(2*g)) + 1/S*Q;
    ((1/S) *cp*Sp*sqrt(2*g)) *sqrt(H1-H2) - ((1/S) *c2*S2*sqrt(2*g)) *sqrt(H2)];
x = [H1; H2];
u = 0;
%linearizace
A = jacobian(f,x);
B = diff(f,u);
C = [1 \ 0; 0 \ 1];
H1 = H10;
H2 = H20;
Q = Qv;
fnum = eval(f);
[S2, Sp] = solve(fnum);
Sp = eval(Sp);
S2 = eval(S2);
A = eval(A);
B = eval(B);
P = ss(A,B,C,0);
```

Výsledky pro provedení výpočtu v matlabu pro variantu s přítokem $Q_1 = Q_{10}$:

$$S_p = 1,2620e - 04m2 \quad S_2 = 1,0305e - 04m2$$

$$\dot{X} = \begin{bmatrix} -0.15 & 0.15 \\ 0.15 & -0.25 \end{bmatrix} X + \begin{bmatrix} 400 \\ 0 \end{bmatrix} u$$

$$y(t) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} X$$

Pro variantu s přítokem $Q_1 = 1, 2 \cdot Q_{10}$ potom linearizovaný model vychází:

$$S_p = 1,5145e - 04m2 \quad S_2 = 1,2365e - 04m2$$

$$\dot{X} = \begin{bmatrix} -0.18 & 0.18 \\ 0.18 & -0.3 \end{bmatrix} X + \begin{bmatrix} 400 \\ 0 \end{bmatrix} u$$

$$y(t) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} X$$

1.3. Neurčitost přenosu

V této části vyjdeme z přenosů systému spočítaných v předchozí kapitole. Oba případy zobrazíme v komplexní rovině, kde také zobrazíme jejich neurčitost. Uvažujme tedy systém $Q_1(t) \rightarrow H_2(t)$ z variant A a B popsaných výše. Tyto přenosy zobrazíme v komplexní rovině, kde také znázorníme jejich neurčitost. Předpokládejme, že pracovní bod leží libovolně položený mezi pracovním bodem Q_{10} a $Q_{10}\cdot 1,2$.

Přenos pro variantu A

Opět, stejně jako v předchozích případech budeme uvažovat variantu s přítokem Q_{10} a také variantu s 20% nárůstem. Přenosy tedy budou mít následující podobu:

$$P_1(s) = \frac{60}{s^2 + 0.4s + 0.015}$$
 $P_2(s) = \frac{50}{s^2 + 0.333s + 0.01042}$

Vykreslení do komplexní roviny provedeme pomocí funkce nyquist(sys). Výsledek je vidět na následujícím grafu:

Přenos pro variantu B

Nyní to samé co v předchozí variantě provedeme pro variantu B. Tentokrát ovšem budeme vycházet z následujících rovnic:

$$P_1(s) = \frac{60}{s^2 + 0.4s + 0.015}$$
 $P_2(s) = \frac{72}{s^2 + 0.48 + 0.0216}$

Zobrazení v komplexní rovině pak dopadne následujícím způsobem:

1.4. Numerická skutečná neurčitost

V této části semestrální práce určíme skutečnou neurčitost pro obě výše zmíněné varianty.

Varianta A

Nyní tedy určíme model neurčitosti a to pomocí takzvané aditivní neurčitosti. Ta vystupuje v nominativním modelu:

$$P_a(s) = P_{0a}(s) + W_a(s)\Delta$$

 P_a je tedy přenos pro variantu a určený výše. P_{0a} je nominativní model, což je přenos při přítoku 10% a Δ je definovaná $||\Delta||_{\infty} \le 1$. Vyjádřeme teď tedy přenos P_{0a} .

$$P_{0a}(s) = \frac{54,55}{s^2 + 0.3409s + 0.009298}$$

Nyní tedy zbývá vyjádřit aditivní neurčitost W_a(s).

$$W_a(s) = P_{0a}(s) - P_a(s)$$

$$W_a(s) = \frac{5,455 \, s^2 + 3,553e - 15 \, s + 0.05579}{s^4 + 0,7159s^3 + 0,1484s^2 + 0.007322s + 0.0001046}$$

Nyní tedy zobrazíme neurčitost pro deset frekvencí a pro co nejvíce linearizací modelu spojených nádob. Tyto linearizace budou v rozmezí $Q_k = \langle Q_{10}; Q_{10} \cdot 1, 2 \rangle$ Ty pak vykreslíme do komplexní roviny.

Varianta B

Identicky pro druhou variantu:

$$\begin{split} P_b(s) &= P_{0b}(s) + W_b(s) \Delta \\ P_{0b}(s) &= \frac{66}{s^2 + 0.4125s + 0.01361} \\ W_b(s) &= P_{0b}(s) - P_b(s) \\ W_b(s) &= \frac{-6 \ s^2 + 3,553e - 15 \ s + 0.07425}{s^4 + 0,7875s^3 + 0,1796s^2 + 0.009745s + 0.0001531} \end{split}$$

Nyní opět zobrazíme neurčitosti stejně jako ve variantě A:

Porovnání obou variant

Následující graf ještě porovnává Bodeho amplitudové charakteristiky obou neurčitostí. Na tomto grafu můžeme pozorovat že neurčitosti v obou případech jsou téměř totožné, nebo přinejmenším velmi podobné. To ostatně můžeme pozorovat i při porovnání rovnic pro vyjádření neurčitosti. Už na první pohled jsou oba přenosy velmi podobné a ten samý jev můžeme pozorovat na tomto grafu:

2. Regulátor

V této části budeme navrhovat regulátor, který bude vlastně vodním čerpadlem. To budeme reprezentovat jednoduchým systémem prvního řádu s časovou konstantou T=0,5s a statickým zesílením $K_s=Q_{10}$. Dále budeme uvažovat také PI regulátor, který bude řídit napětí na kotvě motoru čerpadla. Cílem bude řídit hladinu H_2 . Předpokládejme rovněž to, že externí signály budou rozumně malé, takže systém není příliš vychýlen ze svého pracovního bodu. Systém budeme tedy považovat za lineární.

2.1. Návrh PI regulátoru

Tento regulátor s přenosem $C(s) = K(1+1/T_i s)$ musí splňovat návrhové požadavky ze zadání. Nejprve tedy rozšíříme přenos systému spojených nádob o výše zmíněný systém aproximovaného vodního čerpadla. Výsledný systém P budeme mít tedy následující podobu:

$$P = Q_{cerp} \cdot P_{0a} = \frac{1.5e - 4}{0.5s + 1} \cdot \frac{54.55}{s^2 + 0.3409s + 0.009298} = \frac{0.008182}{0.5s^3 + 1.17s^2 + 0.3456s + 0.009298}$$

Nyní tedy tento přenos budeme PI regulátorem, který je charakterizován následným přenosem:

$$C_{PI}(s) = K(1 + \frac{1}{T_i s})$$

Nyní tedy nastavíme konstanty K_s a K_i tak aby regulovaný systém tvořený tímto přenosem:

$$C_{PI}(s) = C \cdot Q_{cern} \cdot P_{a}$$

Splňoval všechna návrhová kritéria ze zadání, tedy aby:

- a) Byl systém uzavřené smyčky vnitřně stabilní
- b) Splňoval robustnost ve stabilitě tedy aby maximální hodnota amplitudy citlivostní funkce $S(j\omega)$ byla $M_S < 2$
- c) Útlum komplementární citlivostní funkce po přidání dalších nepřesností, nelinearit a šumů na frekvenci Ω_a = 10rad/s musí být alespoň -10dB
- d) Energie libovolného šumu měření n(t) nebyla zesílena více než 1.5krát

Koeficienty regulátoru budeme hledat prostou metodou pokus-omyl. Přičemž pro jednotlivé varianty vždy zkontrolujeme návrhová kritéria. Těm odpovídají parametry K = 9,5 a Ti = 16. Přenos regulátoru tak je:

$$C_{PI}(s) = \frac{152s + 9.5}{16s}$$

Pro kontrolu návrhových kritérií zavede následující přenosy. Otevřenou smyčku s nominativním přenosem, přenosem čerpadla a regulátorem:

$$L_0(s) = C_{PI}(s) \cdot Q_{cerp} \cdot P_{0a} = \frac{1.244s + 0.07773}{8s^4 + 18.91s^3 + 5.917s^2 + 0.1983s}$$

Nominální citlivostní funkce S₀(s) danou přenosem:

$$S_0(s) = \frac{1}{1 + L_0(s)} = \frac{s^4 + 2.364s^3 + 0.7397s^2 + 0.02479s}{s^4 + 2.364s^3 + 0.7397s^2 + 0.1802s + 0.00971}$$

Komplementární citlivostní funkce T₀(s) s následujícím předpisem:

$$T_0(s) = \frac{L_0(s)}{1 + L_0(s)} = \frac{0.1555s + 0.009716}{s^4 + 2.364s^3 + 0.7397s^2 + 0.1802s + 0.009716}$$

Citlivostní funkce řízení:

$$S_C(s) = \frac{C_{PI}(s)}{1 + L(s)}$$

Vstupní citlivostní funkce:

$$S_{IN}(s) = \frac{P(s)}{1 + L(s)}$$

Dále zavedeme váhové funkce $W_{1,2}$. Funkci W_1 z požadavku na kvalitu řízení dána ½. W_2 odpovídá modelu neurčitosti zmíněnou výše lomenou nominativním přenosem $P_{0a}(s)$.

$$W_2(s) = \frac{0.1s^2 + 7.91e - 17s - 0.001364}{s^2 + 0.4s + 0.015}$$

2.1.1. Stabilita systému

Stabilitu můžeme ověřit například pomocí GMK. Tu vykreslíme pro citlivostní funkci, citlivostní funkci řízení, vstupní citlivostní funkci a komplementární citlivostní funkci.

Citlivostní funkce:

Citlivostní funkce řízení:

Vstupní citlivostní funkce:

Komplementární citlivostní funkce:

Je patrné, že všechny kořeny leží v levé komplexní polorovině a žádný z nich tedy není ani v pravé komplexní polorovině nebo na imaginární ose, tím pádem jsou jednotlivé přenosy stabilní a stabilní je i uzavřený regulační obvod.

Můžeme také použít nyquistovo kritérium stability. Zobrazíme tedy přenos otevřené smičky systému L_0 a také několika perturbovaných přenosů. To že i tento test vede k potvrzení výše zmíněné stability je patrné z následujícího grafu:

2.1.2. Robustnost ve stabilitě

Nyní ověříme zda uzavřená smyčka splňuje návrhové kritérium, tedy že amplituda citlivostní funkce nepřesáhne hodnotu $M_S = 2$. Abychom toto kritérium ověřili. Spočteme nekonečno normu následujícího výrazu.

$$||W_1(s)S_0(s)| + |W_2(s)T_0(s)||_{\infty} < 1$$

Po dosazení:

$$||W_1(s)S_0(s)| + |W_2(s)T_0(s)||_{\infty} = 0.7056$$

Zde je patrné, že regulovaný systém odpovídá požadavkům na robustnost systému.

2.1.3. Šířka pásma

Útlum komplementární citlivostní funkce pro Ω_a =10rad/s má být minimálně -10dB. Pro zjištění, zda systém splňuje toto návrhové kritérium, využijeme následující vztah:

$$20log\left(\left|\frac{Q_{cerp}(s)\cdot P_{0a}(s)\cdot C_{PI}(s)+W_{a}(s)}{1+Q_{cerp}(s)\cdot P_{0a}(s)\cdot C_{PI}(s)+W_{a}(s)}\right|\right)$$

Kde za s dosadíme danou frekvenci. Po dosazení vyjde:

$$20log\left(\left|\frac{Q_{cerp}(s) \cdot P_{0a}(s) \cdot C_{PI}(s) + W_{a}(s)}{1 + Q_{cerp}(s) \cdot P_{0a}(s) \cdot C_{PI}(s) + W_{a}(s)}\right|\right) = -83,0289dB$$

I toto kritérium je tedy splněné.

2.1.4. Zesílení energie šumu

V rámci této části zhodnotíme, zda je splněno i další návrhové kritérium. V tomto případě využijeme nekonečno normu pro následující výraz:

$$\frac{Q_{cerp}(s) \cdot P_{0a}(s) \cdot C_{PI}(s) - W_{a}(s)}{1 + Q_{cerp}(s) \cdot P_{0a}(s) \cdot C_{PI}(s) - W_{a}(s)}$$

Nyní tedy vypočítáme hodnotu této normy:

$$\left| \left| \frac{Q_{cerp}(s) \cdot P_{0a}(s) \cdot C_{PI}(s) - W_{a}(s)}{1 + Q_{cerp}(s) \cdot P_{0a}(s) \cdot C_{PI}(s) - W_{a}(s)} \right| \right|_{\infty} = 1.2454$$

Zesílení je patrně menší než 1.5 a tedy i toto návrhové kritérium je splněno. Dokázali jsme tedy navrhnout regulátor odpovídající všem návrhovým požadavkům.

2.2. Zatížení šumem

Nyní zjistíme, jestli nedochází k zesílení harmonického šumu n(t) s frekvencí 50Hz. Opět použijeme tento vztah.

$$\frac{Q_{cerp}(s) \cdot P_{0a}(s) \cdot C_{PI}(s) - W_{a}(s)}{1 + Q_{cerp}(s) \cdot P_{0a}(s) \cdot C_{PI}(s) - W_{a}(s)}$$

V tomto případě ovšem dosadíme frekvenci simbolizující aditivní harmonický šum s frekvencí 50Hz. Po dosazení a dopočtení normy dostáváme:

$$\left| \frac{Q_{cerp}(s) \cdot P_{0a}(s) \cdot C_{PI}(s) - W_{a}(s)}{1 + Q_{cerp}(s) \cdot P_{0a}(s) \cdot C_{PI}(s) - W_{a}(s)} \right| = 1.8999e - 9$$

Tato hodnota jasně ukazuje, že uzavřená smyčka šum s frekvencí 50Hz naopak tlumí. Kde S = $j2\pi0,1$

Nyní to samé provedeme pro frekvenci 0,1Hz ovlivňující výstup systému. Protože tato porucha působí pouze na výstup daného systému, změní se i normovaná rovnice. A to takto:

$$\left| \frac{1}{1 + Q_{cern}(s) \cdot P_{0a}(s) \cdot C_{PI}(s) - W_a(s)} \right| = 1.0809$$

Zde za S dosadíme s = $j2\pi0,1$. Zde se nám nepodařilo docílit potlačení aditivního šumu na výstupu. K zesílení sice dochází, ale je opravdu mírné. Ani při jiném nastavení konstant regulátoru se nepovedlo dosáhnout lepších výsledků.

2.3. Zesílení externích signálů

Předpokládejme, že systém je v rovnovážném stavu e(t) = 0. Dále uvažujme chybu d_i s omezenou energií danou dvě normou $||d_i||_2 < 1$. Odpovězme tedy otázku k jakému maximálnímu kolísání hladiny dojde. Zobrazme tedy bodeho charakteristiku vstupní citlivostní funkce:

Vyznačený bod je frekvence s nejnižším zeslabením. Právě při této frekvenci dojde k nejvyššímu výkyvu hladiny. Rad·s⁻¹ můžeme převést $f = 0.193 \text{rad·s}^{-1} = 0.0318 \text{Hz}$. Vlastní kolísání hladiny H_2 pak určíme jako dvě normu citlivostní funkce výstupu:

$$||S_{i0}||_2 = 0.0372$$

2.4. Zesilování externích signálů

Nalezneme signály n(t) a d(t), kde $||n(t)|| \infty < 1$, $||d(t)|| \infty < 1$ a to takové, které jsou zpětnovazební smyčkou zesíleny maximálně ve smyslu maximální hodnoty signálu a energie signálu. Frekvenci těchto signálů určíme z Bodeho charakteristiky komplementární citlivostní funkce a citlivostní funkce systému.

Získané mezní frekvence externího signálu $\omega_n(t)=0.193 \text{rad} \cdot \text{s}^{-1}$ a $\omega_d(t)=0.322 \text{rad} \cdot \text{s}^{-1}$. Pro zobrazení odezvy uzavřeného systému využijeme následující model v Simulinku

Maximální hodnota signálu

Ve smyslu maximální hodnoty signálu, bude nejvíce zesilovat obdélníkový signál. Ten můžeme reprezentovat signem impulsní funkce, tedy funkce sgn(h(τ)). Můžeme nyní nasimulovat odezvu signálu pomocí simulinku. Budeme tedy používat generátor obdélníkového signálu s frekvencí určenou v úvodu této části. Pro poruchy měření použijeme signál s frekvencí $\omega_n(t) = 0.193 \text{rad} \cdot \text{s}^{-1}$ a pro poruchy výstupu $\omega_d(t) = 0.322 \text{rad} \cdot \text{s}^{-1}$.

Z těchto grafů můžeme pozorovat, že zesílení chyby výstupu je výrazně větší, než u chyby měření. Zesílení je více než dvojnásobné, zatímco na prvním grafu můžeme pozorovat zesílení zhruba o 50%.

Maximální hodnota ve smyslu energie

Maximálního zesílení je dosaženo s použitím harmonického sinusového signálu. Amplituda bude jako v předchozím případě jednotková a freknvence budou odpovídat zjištěným hodnotám.

Ještě dopočteme normy pro maximální zesílení harmonické sinusové chyby. $||-T|| \infty = 1,307$, $||-S|| \infty = 1,639$. I z výše zobrazených grafů i z tohoto numerického vyjádření norem citlivostních funkcí, je patrné, že i v tomto případě je zesílení výrazně větší u chyby výstupu, než u chyby měření.

Závěr

V první části jsme se věnovali popisu modelu spojených nádob. Reprezentovali jsme tento model série linearizovaných systémů s neurčitostí. Určili jsme také nominální přenosy a váhové funkce. Neurčitost přenosů jsme ukázaly pomocí Nyquistových grafů. Neurčitosti v obou zvolených případech jsou téměř shodné.

Ve druhé části jsme se pak věnovali návrhu regulátoru. Přenos jsme rozšířili o model čerpadla a také se nám podařilo navrhnout PI regulátor, který odpovídá všem návrhovým kritériím ze zadání. Dále jsme zkoumali působení aditivního šumu.