Wydział:	Dzień:Poniedziałek 14-17	Zespół:	
Fizyki	Data: 20.03.2017		8
Imiona i nazwiska:	Ocena z przygotowania: Ocena ze sprawozdania:		Ocena końcowa:
Marta Pogorzelska			
Paulina Marikin			
Prowadzący:		Podpis:	

Ćwiczenie 30: Odbicie światła od powierzchni dielektryka

1 Cel badań

Celem doświadczenia było zweryfikowanie poprawności prawa Snella i prawa Malusa oraz wyznaczenie kata granicznego, kata Brusnela i wspówłczynnika załamania badanego dielektryka.

2 Wstęp teoretyczny

2.1 Prawo Snella

Fala elektromagnetyczna na granicy ośrodków ulega dwóm zjawiską: załamaniu i odbiciu, gdzie fala załamana jest częścią fali, która zmieniła ośrodek, zaś fala odbita częścią pozostałą w pierwotnym ośrodku. Kąty pod jakimi rozchodza się te fale (mierzone do normalnej - osi prostopadłej do płaszczyzny odbicia) są ze sobą powiązane przez prawo Snella:

$$n_1 \sin \alpha = n_2 \sin \beta \tag{1}$$

Kąt jest kątem odbicia równym kątowi padania, β to kąt załamania, zaś n_1 i n_2 to współczynniki załamania definiowane $n=\frac{c}{v}$, gdzie v - prędkość fali elektromagnetycznej w danym ośrodku. Po przekształceniu

$$n_2 = n_1 \frac{\sin \alpha}{\sin \beta} \tag{2}$$

można na podstawie prawa Snella wyznaczyć eksperymentalnie współczynnik załamania danego ośrodka.

2.2 Kat Brewstera

Na potrzeby badanego zjawiska fale spolaryzowaną rozważymy jako nałożenie się dwóch fal o prostopadłych polaryzacjach, z wektorem pola elektrycznego prostopadłym(σ) i równoległym(π) do płaszczyzny padania. Fala odbita złożona jest z ułamków obu tych fal zależnych od kąta padania, przy czym składowa polaryzacji σ rośnie monotonicznie wraz ze wzrostem kąta padania, zaś należąca do polaryzacji π początkowo maleje i wzrasta dopiero po osiągnięciu 0. Kąt w którym polaryzacja π fali odbitej nie występuje nosi nazwę kąta Brewstera. Współczynnik tej polaryzacji jest opisany przes wzór Fresnela:

$$R = \frac{\operatorname{tg}^{2}(\alpha - \beta)}{\operatorname{tg}^{2}(\alpha + \beta)} \tag{3}$$

na podstawie którego można powiedzieć, że kąt Brewstera przypada gdy $\alpha + \beta = \frac{\pi}{2}$, więc $\beta = \frac{\pi}{2} - \alpha$, co po podstawieniu do prawa Snella daje:

$$n_1 \sin \alpha_B = n_2 \cos \alpha_B \tag{4}$$

i dalej:

$$n_2 = n_1 \operatorname{tg} \alpha_B \tag{5}$$

2.3 Kat graniczny

Jeżeli w pierwotnym ośrodku światło poruszało się szybciej to dla dużych kątów padania kąt załamania przekroczył by $\frac{\pi}{2}$. W takiej sytuacji zjawisko załamania nie występuje i cała fala jest odbita. Kąt padania dla którego kąt załamania wynosi dokładnie $\frac{\pi}{2}$ jest nazywany kątem granicznym. Co więcej, ponieważ $\sin \frac{\pi}{2} = 1$ dla kąta granicznego zachodzi rówonść:

$$n_1 = \frac{n_2}{\sin \alpha_{gr}} \tag{6}$$

2.4 Prawo Malusa

Jeśli kierunek natężnia pola elektrycznego w fali jest stały, to jest ona spolaryzowana liniowo. Po ponownym spolaryzowaniu takiej fali przepuszczona pozostanie tylko ta jej część, dla której pole elektryczne było współosiowe z osią polaryzatora. Dla θ - kąt między osią polaryzacji i osią polaryzatora - można to zapisać:

$$E = E_0 \cos \theta \tag{7}$$

lub, przekształcając na natężenie wiązki:

$$I = I_0 \cos^2 \theta \tag{8}$$

3 Opis układu i metody pomiarowej

Użyte przyrządy

- laser
- stolik goniometryczny
- fotodetektor z miernikiem
- dwa polaryzatory
- dielektryk w kształcie półwalca

3.1 Prawo Snella i kat Brewstera

Najpierw wykonałyśmy pomiary kątów załamania przy przejściu z powietrza do badanej płytki dla kąta padania równego 10° i kolejnych aż do 80° za każdym razem zwiększając kąt 10°. Kąt padania był zmieniany poprzez poruszanie stolika goniometrycznego, do pomiaru kąta załamania służył fotodetektor z którego położenia (przy padającej nań wiązce) sczytywany był kąt załamania. Następnie między dwoma pomiarami wyznaczyłyśmy przedział występowania kąta Brewstera i zmieniając kąt padania co 1° szukałyśmy kąta dla którego suma kątów padania i załamania była równa 90°.

3.2 Kąt graniczny

Dielektryk został ustawiony tak by początkowo wiązka przechodziła przez niego i przechodziła do powietrza, początkowy kąt padania był równy 0. Następnie zwiększając kąt szukałyśmy takiego, dla którego wiązka załamana propaguje się na powierzchni granicy ośrodków.

3.3 Prawo Malusa

Fotodetektor został ustawiony na drodze wiązki, a między nim i źródłem światła umiejscowiono dwa polaryzatory. Poprzez manipulacje drugim polaryzatorem (dalej nazywanym analizatorem) znaleziono sytuację w której wskazania miernika fotoprądu były najwyższe. Dany kąt analizatora został uznany za zerowy. Kolejne pomiary natężenia wiązki były wykonywane co 15° obrotu analizatora aż do osiągnięcia 90°

4 Wyniki i analiza pomiarów

4.1 Prawo Snella i kąt Brewstera

	$\alpha[^{\circ}]$	β [$^{\circ}$]	$\mathrm{u}(\alpha[^\circ])$	$\mathrm{u}(\beta[^{\circ}])$	$\sin \alpha$	$\sin \beta$	$u(\sin \alpha)$	$u(\sin \beta)$
0	10.0	6.0	1.118	1.118	0.174	0.105	0.019	0.019
1	20.0	13.0	1.118	1.118	0.342	0.225	0.018	0.019
2	30.0	19.5	1.118	1.118	0.500	0.334	0.017	0.018
3	40.0	25.0	1.118	1.118	0.643	0.423	0.015	0.018
4	50.0	31.0	1.118	1.118	0.766	0.515	0.013	0.017
5	60.0	35.0	1.118	1.118	0.866	0.574	0.010	0.016
6	70.0	38.5	1.118	1.118	0.9397	0.6225	0.0067	0.0153
7	80.0	40.0	1.118	1.118	0.9848	0.6428	0.0034	0.0149

Rysunek 1

4.2 Kąt graniczny

Wyznaczony kąt graniczny wynosi: $\alpha_g=44.0(1.1)^\circ$

4.3 Prawo Malusa

	$ heta[^\circ]$	$\mathrm{u}(\theta [^\circ])$	I	z	u(I)
0	0.0	1.118	$0.900[\mathrm{mA}]$	1[mA]	$0.025[\mathrm{mA}]$
1	15.0	1.118	$0.820[\mathrm{mA}]$	1[mA]	$0.025[\mathrm{mA}]$
2	30.0	1.118	$0.620[\mathrm{mA}]$	1[mA]	$0.025[\mathrm{mA}]$
3	45.0	1.118	$0.400[\mathrm{mA}]$	1[mA]	$0.025[\mathrm{mA}]$
4	60.0	1.118	$0.1800[\mathrm{mA}]$	$0.3[\mathrm{mA}]$	$0.0075[\mathrm{mA}]$
5	75.0	1.118	$43.0[\mu\mathrm{A}]$	$100[\mu\mathrm{A}]$	$2.5[\mu A]$
6	90.0	1.118034	$1.4[\mu\mathrm{A}]$	$3[\mu A]$	$0.075[\mu\mathrm{A}]$

4.4 Współczynnik załamania

metoda	współczynnik	niepewność
pomiarowa	załamania	
		•
Prawo Snella	1.498	0.022
Kąt Brewstera		
Kąt graniczny		

5 Analiza niepewności

6 Wnioski

...