Introduction to Computer Security

Chapter 12: Operating System Security

Chi-Yu Li (2019 Spring)
Computer Science Department
National Chiao Tung University

Outline

- Introduction
- Operating System Hardening
- Application Security
- Security Maintenance
- Linux/Unix Security
- Windows Security
- Virtualization Security

Operating System Security Layers

Operating System Kernel

Physical Hardware

SMM: System Management Mode

Operating System Security

- During the installation process: possible for a system to be compromised
 - Before it can install the latest patches
- Building and deploying a system should be a planned process
 - □ Designed to counter this threat
- Process must
 - ☐ Assess risks and plan the system deployment
 - □ Secure the underlying operating system and then the key applications
 - Ensure any critical content is secured
 - Ensure appropriate network protection mechanisms are used
 - Ensure appropriate processes are used to maintain security

System Security Planning

- The first step in deploying a new system is planning
 - ☐ A wide security assessment of the organization
 - ☐ To maximize security while minimizing costs
 - ☐ To determine security requirements for the system, apps, data, and users
 - □ To identify appropriate personnel and training to install and manage the system

Operating Systems Hardening

- First critical step in securing a system: to secure the base OS
- Basic steps
 - ☐ Install and patch the OS
 - ☐ Harden and configure the OS to adequately address the identified security needs of the system by
 - Removing unnecessary services, apps, and protocols
 - Configuring users, groups, and permissions
 - Configuring resource controls
 - □ Install and configure additional security controls
 - E.g., anti-virus, host-based firewalls, and IDS
 - Test the security of the basic OS to ensure that the steps taken adequately address its security needs

Initial Setup and Patching

- Begin with the installation of the OS
- Ideally, new systems should be constructed on a protected network
- Full installation and hardening process should occur before the system is deployed to its intended location
- Initial installation: install the minimum necessary for the desired system
- Overall boot process must also be secured

Initial Setup and Patching (Cont.)

- Integrity and source of any additional device driver code must be carefully validated
- Critical that the system be kept up to date, with all critical security related patches installed
- Should stage and validate all patches on the test systems before deploying them in production

Remove Unnecessary Services, Apps, and Protocols

- If fewer software packages are available to run, the risk is reduced
 - ☐ Any of the software packages may contain software vulnerabilities
 - System planning process should identify what is actually required
- When performing the initial installation, the supplied defaults should not be used
 - □ Why?
 - □ Default: maximize ease of use and functionality, rather than security
 - ☐ Customized installation: only the required packages are installed

Configure Users, Groups, and Authentication

- Not all users with access to a system will have the same access to all data and resources on that system
- Elevated privileges should be restricted to only those users that require them, and then only when they are needed to perform a task
- System planning
 - ☐ Categories of users on the system
 - □ Privileges they have
 - Types of information they can access
 - How and where they are defined and authenticated

Configure Users, Groups, and Authentication (Cont.)

- Default accounts included as part of the system installation should be secured
 - ☐ Those that are not required should be either removed or disabled
 - Policies that apply to authentication credentials shall be configured
 - E.g., password length, complexity, etc.

Configure Resource Controls

- Once the users and groups are defined, appropriate permissions can be set on data and resources
- Many of the security hardening guides provide lists of recommended changes to the default access configuration

Install Additional Security Controls

 Further security possible by installing and configuring additional security tools

- Anti-virus software (multi-vendor)
- □ Host-based firewalls
- □ IDS or IPS software
- □ App white-listing

Test the System Security

 Final step in the process of initially securing the base OS: security testing

Goal:

- ☐ Ensure the previous security configuration steps are correctly implemented
- □ Identify any possible vulnerabilities
- Should be done following the initial hardening of the system
- Repeated periodically as part of the security maintenance process

Application Security

- Application Configuration
 - May include
 - Creating and specifying appropriate data storage areas for app
 - Making appropriate changes to the app or service default configuration details
 - ☐ Some apps or services may include
 - Default data
 - Scripts
 - User accounts
 - □ Of particular concern with remotely access services
 - Web and file transfer services
 - Risk can be reduced: ensuring that most of the files can only be read, but not written

Application Security (Cont.)

- Encryption technology
 - ☐ A key enabling technology: used to secure data both in transit and when stored
 - Must be configured and appropriate cryptographic keys created, signed, and secured
 - ☐ If secure network services are provided
 - Using TLS or IPSec, suitable public and private keys must be generated for each of them
 - Using SSH, appropriate server and client keys must be created
 - ☐ Cryptographic file systems are another use of encryption

Security Maintenance

- Process of maintaining security is continuous
- NIST SP 800-123 suggests to include
 - Monitoring and analyzing logging information
 - □ Performing regular backups
 - Recovering from security compromises
 - □ Regularly testing system security
 - □ Using appropriate software maintenance processes to patch and update all critical software, and to monitor and revise configuration as needed

Logging

- NIST SP 800-123: Logging is a cornerstone of a sound security posture
 - ☐ Key is to ensure you capture correct data and then appropriately monitor and analyze this data
 - Information can be generated by the system, network, and apps
 - Range of data acquired should be determined during the system planning stage
 - Sufficient space is required for significant volumes of information
 - Automated analysis is preferred
 - □ Can only inform you about bad things that have already happened
 - Can allow administrators to identify what happened

Data Backup and Archive

- Performing regular backups of data is a critical control
 - Maintaining the integrity of the system and user data
- Backup: the process of making copies of data at regular intervals
- Archive: the process of retaining copies of data over extended periods of time to meet legal and operational requirements to access past data
- Needs and policies should be determined during the system planning stage

☐ Key decisions: online or offline, stored locally or transported to a remote site

Outline

- Introduction
- Operating System Hardening
- Application Security
- Security Maintenance
- Linux/Unix Security
- Windows Security
- Virtualization Security

Linux/Unix Security

- Patch management
 - Keeping security patches up to date is a widely recognized
 - □ e.g., Red Hat, Fedora: *up2date* or *yum*; Ubuntu, Debian: *apt-get*
- App and service configuration
 - ☐ Most commonly implemented using separate text files for each app and service
 - ☐ Generally located either in the /etc directory or in the installation tree for a specific app
 - Individual user configurations can override the system defaults: in each user's home directory
 - Assign proper permission to access them
 - ☐ Most important: disabling services and apps that are not required
 - Especially for remotely accessible services

- Users, groups, and permissions
 - Discretionary access control
 - □ Access is specified as granting read, write, and execute permissions to each of owner, group, and others for each resource
 - Set by the chmod command
 - Extended access rights: *getfacl* and *setfacl* commands
 - Information on user accounts and group membership: stored in the /etc/passwd and /etc/group files
 - ☐ Guides recommend changing the access permissions for critical directories and files
 - Key targets for attackers: programs that set user to root or set group to a privileged group
 - Widely accepted: number and size of setuid root programs should be minimized
 - Software vulnerability: local exploit and remote exploit

- Remote access controls
 - ☐ Host firewall programs
 - e.g., using *iptables* to configure the *netfilter* kernel module
 - Network access control mechanisms
 - e.g., TCP Wrappers library and *tcpd* daemon
 - Can use the same policy files: /etc/hosts.allow and /etc/hosts.deny
- Logging and log rotation
 - Most apps can be configured to log which levels of detail: debugging to none
 - Either a dedicated file to write app event data, or a syslog facility to use (/dev/log)
 - □ logrotate can be configured to rotate any logs on the system
 - Work for *syslogd*, *Syslog-NG*, or individual apps

- App security using a chroot jail
 - ☐ Some network accessible services: do not require access to the full file-system, but rather only need a limited set of data files and directories
 - e.g., FTP
 - Running such services in a chroot jail: restricting the server's view of the file system to just a specified portion
 - Using the *chroot* system call
 - e.g., mapping the root / to some other directory /srv/ftp/public
 - Drawback: added complexity
 - Troubleshooting a chrooted app can be difficult

- Security testing
 - ☐ May follow the system hardening guides provided by the NSA
- Some commercial and open-source tools for security scanning and vulnerability testing
 - Nessus: network vulnerability scanner
 - Originally an open-source tool, commercialized in 2005
 - ☐ Tripwire: file integrity checking tool
 - Originally an open-source tool, commercialized later
 - Nmap: network vulnerability scanner
 - Open-source, freeware

Windows Security

- Patch management
 - "Windows Update" and "Windows Server Update Services"
 - ☐ Many third-party apps provide automatic update support
- Users administration and access controls
 - □ Users and groups in Windows systems are defined with a Security ID (SID)
 - Stored in the Security Account Manager (SAM)
 - Information supplied by a central Active Directory (AD) using the LADP protocol
 - Discretionary access controls
 - □ Vista and letter systems include mandatory integrity controls
 - Privileges to user accounts in User Account Control (UAC): backup the computer, change the system time, modifying system configuration, etc.
 - ☐ File access: a combination of share and NTFS permissions

Windows Security (Cont.)

- Application and service configuration
 - ☐ Much of the configuration information is centralized in the Registry
 - Forming a database of keys and values that may be queried and interpreted by apps
 - □ Registry keys can be directly modified using the "Registry Editor"
 - More useful for making bulk changes
- Other security controls
 - Essential: anti-virus, anti-spyware, personal firewall, etc.
 - Important to ensure the set of products in use are compatible
 - □ Current generation Windows: including some basic firewall and malware countermeasure capabilities
 - Encrypting File system (EFS): encrypting files and directories
 - BitLocker: full-disk encryption with AES

Windows Security (Cont.)

- Security testing
 - ☐ "Microsoft Baseline Security Analyzer": a simple, free, easy-to-use tool
 - Helping small- to medium-sized business improve the security of their systems
 - Checking for compliance with Microsoft's security recommendations

Virtualization

- A technology that provides an abstraction of the computing resources used by some software
 - □ Running in a simulated environment called a virtual machine (VM)
- Benefits
 - Better efficiency in the use of the physical system resources
 - □ Support for multiple distinct OS and associated apps on one physical system
- However, it raises additional security concerns

Hypervisor

- The software that sits between the hardware and the VMs
 - ☐ Acting as a resource broker
- Allowing multiple VMs to safely coexist on a single physical server and share the server's resources
- Providing abstraction of all physical resources, such as processor, memory, network, and storage
- Host OS v.s. Guest OS on each VM

Principal Functions for Hypervisor

- Execution management of VMs
- Devices emulation and access control
- Execution of privileged operations by hypervisor for guest VMs
- Management of VMs
- Administration of hypervisor platform and hypervisor software

Two Types of Hypervisors

- Distinguished by whether there is an OS between the hypervisor and the host
 - ☐ Type 1: native virtualization
 - Hypervisor can directly control the physical resources of the host
 - □ Type 2: hosted virtualization
 - Hypervisor exploits the resources and functions of a host OS

(a) Type 1 hypervisor (native virtualization)

(b) Type 2 hypervisor (hosted virtualization)

Two Types of Hypervisors: Key Differences

- Typically, type 1 hypervisors perform better
 - □ Doesn't compete for resources with an OS
 - More virtual machines can be hosted
- Type 1 hypervisors are more secure
 - □ VMs on a Type 1 hypervisor cannot affect other VMs or the hypervisor
 - □ Type 2 hypervisor: a malicious guest could potentially affect more than itself
- Type 2 hypervisors: enabling virtualization without needing to dedicate a server to that function
- Type 1: typically seen in servers; Type 2: more common in clients

New Type: Container/App Virtualization

- Virtualization container runs on top of the host OS kernel and provides an isolated execution environment for apps
 - □ Does not aim to emulate physical servers
 - ☐ All containerized apps on a host share a common OS kernel
 - □ Each container as an isolated instance
- Reducing overhead: no need of resources to run a separate OS for each app
- But, greater security vulnerabilities

(c) Container (application virtualization)

Virtualization Security Issues

- NIST SP 800-125 (Guide to Security for Full Virtualization Technologies, Jan. 2011)
 - ☐ Guest OS isolation: ensure that programs executing within a guest OS may only access and use the resources allocated to it
 - Not covertly interact with programs or data either in other guest OS or in the hypervisor
 - ☐ Guest OS monitoring: with privileged access to the programs and data in each guest OS
 - Must be trusted as secure from subversion and compromised use of this access
 - □ Virtualized environment security
 - Particularly image and snapshot management

Securing Virtualization Systems

- NIST SP 800-125: organizations using virtualization should
 - □ Carefully plan the security of the virtualized system
 - Secure all elements of a full virtualization solution
 - Including the hypervisor, guest OS, and virtualized infrastructure
 - Ensure that the hypervisor is properly secure
 - □ Restrict and protect administrator access to the virtualization solution

Securing Virtualization Systems (Cont.)

- Hypervisor security
 - ☐ Secured using a process similar to securing an OS
 - □ Installed in an isolated environment
 - Configured so that it is updated automatically
 - Monitored for any signs of compromise
 - Accessed only by authorized administration
 - Both local and remote

Virtualized Infrastructure Security

- Access to hardware resources (e.g., disk, network)
 - ☐ Limited to just the appropriate guest OSs that use any resource
- Access to VM images and snapshots
 - Must be carefully controlled
- Traffic should be suitably isolated and protected
 - Management traffic: for hypervisor administration and configuration
 - □ Infrastructure traffic: for migration of VM images, or connections to network storage
 - □ App traffic: between apps running VMs and to external networks
 - May be further separated into many segments

Questions?