SBML Model Report

Model name: "Calzone2007_CellCycle"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following three authors: Nicolas Le Novre¹, Enuo He² and Laurence Calzone³ at June eighth 2007 at 8:29 a.m. and last time modified at July fifth 2012 at 4:48 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	18
events	1	constraints	0
reactions	54	function definitions	0
global parameters	46	unit definitions	1
rules	3	initial assignments	0

Model Notes

This is the Dynamical model of nuclear division cycles during early embryogenesis of Drosophila, without StringT regulation. so ksstg=kdstg=0. Figure1B has been simulated by MathSBML. Curator changed model from only one compartment into two compartments according to the paper. Detail explaination of the models are in the supplement information of the paper.The

¹EMBL-EBI, lenov@ebi.ac.uk

²BNMC, enuo@caltech.edu

³Institut Curie, laurence.calzone@curie.fr

author didn't specify which compartment Xm, Stgm, Xp are located, we assume that they locate in cytoplasm.

Some of the parameter values for the equations are dimensionless parameters.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of six unit definitions of which five are predefined by SBML and not mentioned in the model.

2.1 Unit time 1

Name min

Definition 60 s

2.2 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.6 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

1.1	Nome	CDO	Cnatial	Ciro	I Init	Constant	Outsida
Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
nuclei			3	1	litre		
cytoplasm			3	1	litre		

3.1 Compartment nuclei

This is a three dimensional compartment with a constant size of one litre.

3.2 Compartment cytoplasm

This is a three dimensional compartment with a constant size of one litre.

4 Species

This model contains 18 species. The boundary condition of one of these species is set to true so that this species' amount cannot be changed by any reaction. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
MPFc	MPFc	cytoplasm	$\text{mol} \cdot l^{-1}$		\Box
preMPFc	preMPFc	${ t cytoplasm}$	$\text{mol} \cdot 1^{-1}$		
StgPc	StgPc	${ t cytoplasm}$	$\operatorname{mol} \cdot 1^{-1}$		
Wee1c	Wee1c	cytoplasm	$\text{mol} \cdot 1^{-1}$		
Wee1Pc	Wee1Pc	cytoplasm	$\text{mol} \cdot 1^{-1}$		\square
Stgm	Stgm	cytoplasm	$\operatorname{mol} \cdot 1^{-1}$		
Хр	Xp	cytoplasm	$\operatorname{mol} \cdot 1^{-1}$		\Box
Stgc	Stgc	cytoplasm	$\operatorname{mol} \cdot 1^{-1}$		
Xm	Xm	cytoplasm	$\text{mol} \cdot l^{-1}$		\Box
MPFn	MPFn	nuclei	$\text{mol} \cdot 1^{-1}$		
preMPFn	preMPFn	nuclei	$\operatorname{mol} \cdot 1^{-1}$		\Box
Wee1Pn	Wee1Pn	nuclei	$\operatorname{mol} \cdot 1^{-1}$		\Box
Wee1n	Wee1n	nuclei	$\operatorname{mol} \cdot 1^{-1}$		
StgPn	StgPn	nuclei	$\operatorname{mol} \cdot 1^{-1}$		
Stgn	Stgn	nuclei	$\operatorname{mol} \cdot 1^{-1}$		\Box
FZYa	FZYa	nuclei	$\text{mol} \cdot 1^{-1}$		\Box
IEa_1		nuclei	$\text{mol} \cdot 1^{-1}$		
N	N	nuclei	$\text{mol} \cdot l^{-1}$		

5 Parameters

This model contains 46 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
ksc	ksc	(0.010		
kdc	kdcp		0.010		$\overline{\mathbf{Z}}$
kdnp	kdnp		0.010		$\overline{\checkmark}$
kdn	kdnpp		1.500		$\overline{\checkmark}$
kaie	kaie		1.000		$ \overline{\mathscr{A}} $
kiie	kiie	(0.400		
kafzy	kafzy		1.000		\square
kifzy	kifzy		0.200		
kweep	kweep	(0.005		$ \overline{\checkmark} $
kwee	kweepp		1.000		\square
kstgp	kstgp	(0.200		\square
kstg	kstgpp	:	2.000		
ksstg	ksstg	(0.000		\square
kdstg	kdstg	(0.000		\square
kastgp	kastgp	(0.000		\square
kastg	kastgpp		1.000		\square
kistg	kistg	(0.300		\square
kawee	kawee	(0.300		
kiweep	kiweep	(0.010		
kiwee	kiweepp		1.000		\square
kt	kin	(0.150		\square
Jaie	Jaie	(0.010		\square
Jiie	Jiie	(0.010		\square
Jafzy	Jafzy	(0.010		\square
Jifzy	Jifzy	(0.010		
Jastg	Jastg	(0.050		
Jistg	Jistg	(0.050		\square
Jawee	Jawee	(0.050		
Jiwee	Jiwee	(0.050		\square
Jm	Jm	(0.050		
kdmp	kdmp	(0.002		
kdm	kdmpp	(0.200		
$\mathtt{koutw}_{-}1$	koutw	(0.010		$ \overline{\mathscr{A}} $
$\mathtt{kinw}_{-}1$	kinw	(0.040		
$\mathtt{kouts}_{\mathtt{-}}1$	kouts	(0.020		$ \overline{\mathscr{A}} $
$\mathtt{kins}_{-}1$	kins	(0.080		$\overline{\checkmark}$
$kez_{-}1$	kez	(0.500		$\overline{\mathbf{Z}}$

Id	Name	SBO Value Unit	Constant
factor_1	factor	1.950	\checkmark
E_1	E	$7 \cdot 10^{-5}$	
$ksxp_{-}1$	ksxp	0.001	\square
$ksxm_1$	ksxm	$5 \cdot 10^{-4}$	\square
$\mathtt{kout}_{-}1$	kout	0.000	\square
СусВТ		0.000	
StringT		0.800	\square
Wee1T		0.800	\square
StgPT		0.000	

6 Rules

This is an overview of three rules.

6.1 Rule CycBT

Rule CycBT is an assignment rule for parameter CycBT:

$$CycBT = (1 - [N] \cdot E_{-1}) \cdot ([MPFc] + [preMPFc]) + [N] \cdot E_{-1} \cdot ([MPFn] + [preMPFn]) \quad (1)$$

6.2 Rule StgPT

Rule StgPT is an assignment rule for parameter StgPT:

$$StgPT = (1 - [N] \cdot E_{-1}) \cdot [StgPc] + [N] \cdot E_{-1} \cdot [StgPn]$$
(2)

6.3 Rule Wee1Pc

Rule Wee1Pc is an assignment rule for species Wee1Pc:

Wee1Pc =
$$\frac{\text{Wee1T} - [N] \cdot \text{E}_{-1} \cdot ([\text{Wee1n}] + [\text{Wee1Pn}])}{1 - [N] \cdot \text{E}_{-1}} - [\text{Wee1c}]$$
(3)

7 Event

This is an overview of one event. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

7.1 Event event_0

Notes When Fzy=Kez(increasing), then the following changes are made instantaneously (for X=MPF,preMPF,Wee1,Wee1P, Stg, and StgP):

$$Xc -> (1-N*E)*Xc/(1-1.95*N*E)$$

Xn->Xn/1.95

N->1.95N

Trigger condition

$$[FZYa] \ge kez_1$$
 (4)

Assignments

$$N = factor_{-1} \cdot [N]$$
 (5)

$$MPFn = \frac{[MPFn]}{1.95} \tag{6}$$

$$MPFn = \frac{[MPFn]}{1.95}$$

$$preMPFn = \frac{[preMPFn]}{1.95}$$
(6)
$$(7)$$

$$Wee1n = \frac{[Wee1n]}{1.95} \tag{8}$$

$$Wee1n = \frac{[Wee1n]}{1.95}$$

$$Wee1Pn = \frac{[Wee1Pn]}{1.95}$$
(8)
(9)

Wee1c = [Wee1c]
$$\cdot \frac{1 - [N] \cdot E_{-1}}{1 - 1.95 \cdot [N] \cdot E_{-1}}$$
 (10)

$$Stgn = \frac{[Stgn]}{1.95} \tag{11}$$

$$StgPc = [StgPc] \cdot \frac{1 - [N] \cdot E_{-1}}{1 - 1.95 \cdot [N] \cdot E_{-1}}$$

$$(12)$$

$$Stgc = [Stgc] \cdot \frac{1 - [N] \cdot E_{-1}}{1 - 1.95 \cdot [N] \cdot E_{-1}}$$

$$(13)$$

$$StgPn = \frac{[StgPn]}{1.95}$$
 (14)

MPFc = [MPFc]
$$\cdot \frac{1 - [N] \cdot E_{-1}}{1 - 1.95 \cdot [N] \cdot E_{-1}}$$
 (15)

8 Reactions

This model contains 54 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

No	Id	Name	Reaction Equation	SBO
1	R_1	Synthesis of MPFc	$\emptyset \longrightarrow MPFc$	
2	R_2	Activation of MPFc	$preMPFc \xrightarrow{StgPc} MPFc$	
3	R_3	Inactivation of MPFc	$MPFc \xrightarrow{Wee1c} preMPFc$	
4	R_6	Degradation of cyclin	$preMPFc \longrightarrow \emptyset$	
5	R_7	degradation of cyclin	$MPFc \longrightarrow \emptyset$	
6	R_8	Inactivation of Wee1c	Wee1c $\xrightarrow{\text{MPFc}}$ Wee1Pc	
7	R_9	Activation of Wee1c	Wee1Pc $\xrightarrow{\text{Wee1Pc}}$ Wee1c	
8	R_10	mRNA of Stg	$\operatorname{Stgm} \xrightarrow{Xp} \emptyset$	
9	R_12	Synthesis of Stg	$\emptyset \xrightarrow{\operatorname{Stgm}} \operatorname{Stgc}$	
10	R_13	activation of Stgc	$Stgc \xrightarrow{MPFc} StgPc$	
11	$R_{-}14$	inactivation of Stgc	$StgPc \longrightarrow Stgc$	
12	R_15	degradation of Stgc	$\operatorname{Stgc} \longrightarrow \emptyset$	
13	R_16	degradation of active Stgc	$StgPc \longrightarrow \emptyset$	
14	R_19	export of MPF from cytoplasm	$MPFc \xrightarrow{N} \emptyset$	
15	importofMPFin	tocy impdizism f-MPF into cytoplasm	$\emptyset \xrightarrow{N, MPFn} MPFc$	
	_1	2 2		
16	_16	import of MPF into nucleus	$\emptyset \xrightarrow{\mathrm{MPFc}} \mathrm{MPFn}$	
17	exportofMPFfr	omnu expors of MPF from nucleus	$MPFn \longrightarrow \emptyset$	
	_1			

N⁰	Id	Name	Reaction Equation	SBO
18	importofpre	MPFint inponpalas hMPF into cytoplasm	$\emptyset \xrightarrow{\text{preMPFn, N}} \text{preMPFc}$	
10		C MDE C 1	$preMPFc \xrightarrow{N} \emptyset$	
19	R_20	export of preMPF from cytoplasm		
20	_18	import of preMPF into nucleus	$\emptyset \xrightarrow{\text{preMPFc}} \text{preMPFn}$	
21	exportofpre_1	MPFnfr export be useMPFn from nucleus	$preMPFn \longrightarrow \emptyset$	
22	R_21	export of Wee1P from nucleus	Wee1Pn $\longrightarrow \emptyset$	
23	_182_1	import of Wee1P into cytoplasm	$\emptyset \xrightarrow{\text{Wee1Pn, N}} \text{Wee1Pc}$	
24	R_22	export of Wee1P from cytoplasm	Wee1Pc $\xrightarrow{\mathbf{N}} \emptyset$	
25	_20	import of Wee1P into nucleus	$\emptyset \xrightarrow{\text{Wee1Pc}} \text{Wee1Pn}$	
26	R_23	export of Wee1 from nucleus	Weeln $\longrightarrow \emptyset$	
27	_22	import of Wee1 into cytoplasm	$\emptyset \xrightarrow{\text{Wee1n, N}} \text{Wee1c}$	
28	R_24	export of Wee1c from cytoplasm	Wee1c $\xrightarrow{\mathbf{N}} \emptyset$	
29	_24	import of Wee1 into nucleus	$\emptyset \xrightarrow{\text{Wee1c}} \text{Wee1n}$	
30	R_25	export of StgP from nucleus	$StgPn \longrightarrow \emptyset$	
31	_26	import of StgP into cytoplasm	$\emptyset \xrightarrow{StgPn, \ N} StgPc$	
32	R_26	export of StgP from cytoplasm	$StgPc \xrightarrow{N} \emptyset$	
33	_28	import of StgP into nucleus	$\emptyset \xrightarrow{\operatorname{StgPc}} \operatorname{StgPn}$	
34	$R_{-}27$	export of Stg from nucleus	$Stgn \longrightarrow \emptyset$	
35	_30	import of Stg into cytoplasm	$\emptyset \xrightarrow{\mathbf{Stgn}, \ \mathbf{N}} \mathbf{Stgc}$	
36	R_28	export of Stg from cytoplasm	$\operatorname{Stgc} \xrightarrow{N} \emptyset$	
37	_32	import of Stg into nucleus	$\emptyset \xrightarrow{\mathbf{Stgc}} \mathbf{Stgn}$	

$N_{\bar{0}}$	Id	Name	Reaction Equation	SBO
38	R_29	activation of MPFn	$preMPFn \xrightarrow{StgPn} MPFn$	
39	R_30	inactivation of MPFn	$MPFn \xrightarrow{\text{Wee1n}} preMPFn$	
40	R_33	degradation of preMPFn	$\operatorname{preMPFn} \xrightarrow{\operatorname{FZYa}} \emptyset$	
41	R_34	degradation of MPFn	$MPFn \xrightarrow{FZYa} \emptyset$	
42	R_37	activation of intermediary enzyme	$IEa_{-}1 \longrightarrow \emptyset$	
43	R_38	inactivation of intermediary enzyme	$\emptyset \xrightarrow{\mathbf{MPFn}} \mathrm{IEa}_{-1}$	
44	R_39	activation of FZY	$\emptyset \xrightarrow{\text{IEa_1}} \text{FZYa}$	
45	R_40	inactivation of FZY	$FZYa \longrightarrow \emptyset$	
46	R_41	inactivation of Wee1n	Wee1n $\xrightarrow{\text{MPFn}}$ Wee1Pn	
47	R_42	activation of Wee1n	$Wee1Pn \longrightarrow Wee1n$	
48	R_43	activation of StgPn	$Stgn \xrightarrow{MPFn} StgPn$	
49	R_44	inactivation of StgPn	$StgPn \longrightarrow Stgn$	
50	R_45	degradation of Stgn	$\operatorname{Stgn} \longrightarrow \emptyset$	
51	R_46	degradation of StgPn	$StgPn \longrightarrow \emptyset$	
52	$Nuclei_{-}1$	Nuclei	$\emptyset \longrightarrow N$	
53	_50	Zygotic mRNA	$\emptyset \xrightarrow{N} Xm$	
54	_51	Zygotic proteins	$\emptyset \xrightarrow{Xm} Xp$	

8.1 Reaction R_1

This is an irreversible reaction of no reactant forming one product.

Name Synthesis of MPFc

Reaction equation

$$\emptyset \longrightarrow MPFc$$
 (16)

Product

Table 6: Properties of each product.

Id	Name	SBO
MPFc	MPFc	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{ksc} \cdot \text{vol} (\text{cytoplasm})$$
 (17)

8.2 Reaction R_2

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Activation of MPFc

Reaction equation

$$preMPFc \xrightarrow{StgPc} MPFc \tag{18}$$

Reactant

Table 7: Properties of each reactant.

Id	Name	SBO
preMPFc	preMPFc	

Modifier

Table 8: Properties of each modifier.

Id	Name	SBO
StgPc	StgPc	

Product

Table 9: Properties of each product.

Id	Name	SBO
MPFc	MPFc	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(\text{cytoplasm}) \cdot (\text{kstgp} + \text{kstg} \cdot [\text{StgPc}]) \cdot [\text{preMPFc}]$$
 (19)

8.3 Reaction R_3

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Inactivation of MPFc

Reaction equation

$$MPFc \xrightarrow{Wee1c} preMPFc \tag{20}$$

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
MPFc	MPFc	

Modifier

Table 11: Properties of each modifier.

Id	Name	SBO
Wee1c	Wee1c	

Product

Table 12: Properties of each product.

Id	Name	SBO
preMPFc	preMPFc	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{cytoplasm}) \cdot (\text{kweep} + \text{kwee} \cdot [\text{Wee1c}]) \cdot [\text{MPFc}]$$
 (21)

8.4 Reaction R_6

This is an irreversible reaction of one reactant forming no product.

Name Degradation of cyclin

Reaction equation

$$preMPFc \longrightarrow \emptyset$$
 (22)

Reactant

Table 13: Properties of each reactant.

Id	Name	SBO
preMPFc	preMPFc	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{kdc} \cdot \left[\text{preMPFc}\right]$$
 (23)

8.5 Reaction R_7

This is an irreversible reaction of one reactant forming no product.

Name degradation of cyclin

Reaction equation

$$MPFc \longrightarrow \emptyset \tag{24}$$

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
MPFc	MPFc	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{kdc} \cdot [\text{MPFc}]$$
 (25)

8.6 Reaction R_8

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Inactivation of Wee1c

Reaction equation

Wee1c
$$\xrightarrow{\text{MPFc}}$$
 Wee1Pc (26)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
Wee1c	Wee1c	

Modifier

Table 16: Properties of each modifier.

Id	Name	SBO
MPFc	MPFc	

Product

Table 17: Properties of each product.

Id	Name	SBO
Wee1Pc	Wee1Pc	

Derived unit contains undeclared units

$$v_6 = \text{vol}\left(\text{cytoplasm}\right) \cdot \frac{\left(\text{kiweep} + \text{kiwee} \cdot [\text{MPFc}]\right) \cdot \left[\text{Wee1c}\right]}{\text{Jiwee} + \left[\text{Wee1c}\right]}$$
 (27)

8.7 Reaction R_9

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Activation of Wee1c

Reaction equation

Wee1Pc
$$\xrightarrow{\text{Wee1Pc}}$$
 Wee1c (28)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
Wee1Pc	Wee1Pc	

Modifier

Table 19: Properties of each modifier.

Id	Name	SBO
Wee1Pc	Wee1Pc	

Product

Table 20: Properties of each product.

Id	[Name	SBO
We	ee1c	Wee1c	

Id	Name	SBO

Derived unit contains undeclared units

$$v_7 = \text{vol}\left(\text{cytoplasm}\right) \cdot \frac{\text{kawee} \cdot [\text{Wee1Pc}]}{\text{Jawee} + [\text{Wee1Pc}]}$$
 (29)

8.8 Reaction R_10

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name mRNA of Stg

Reaction equation

$$\operatorname{Stgm} \xrightarrow{Xp} \emptyset \tag{30}$$

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
Stgm	Stgm	

Modifier

Table 22: Properties of each modifier.

Kinetic Law

Derived unit contains undeclared units

$$\nu_8 = vol\left(nuclei\right) \cdot \left(\frac{kdmp \cdot [Stgm]}{Jm + [Stgm]} + kdm \cdot [Xp] \cdot [Stgm]\right) \tag{31}$$

8.9 Reaction R_12

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name Synthesis of Stg

Reaction equation

$$\emptyset \xrightarrow{\text{Stgm}} \text{Stgc} \tag{32}$$

Modifier

Table 23: Properties of each modifier.

Id	Name	SBO
Stgm	Stgm	

Product

Table 24: Properties of each product.

Id	Name	SBO
Stgc	Stgc	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol}(\text{cytoplasm}) \cdot \text{ksstg} \cdot [\text{Stgm}]$$
 (33)

8.10 Reaction R_13

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name activation of Stgc

Reaction equation

$$Stgc \xrightarrow{MPFc} StgPc \tag{34}$$

Reactant

Table 25: Properties of each reactant.

Id	Name	SBO
Stgc	Stgc	

Modifier

Table 26: Properties of each modifier.

Id	Name	SBO
MPFc	MPFc	

Product

Table 27: Properties of each product.

Id	Name	SBO
StgPc	StgPc	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}\left(\text{cytoplasm}\right) \cdot \frac{\left(\text{kastgp} + \text{kastg} \cdot [\text{MPFc}]\right) \cdot [\text{Stgc}]}{\text{Jastg} + [\text{Stgc}]}$$
(35)

8.11 Reaction R_14

This is an irreversible reaction of one reactant forming one product.

Name inactivation of Stgc

Reaction equation

$$StgPc \longrightarrow Stgc \tag{36}$$

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
StgPc	StgPc	

Product

Table 29: Properties of each product.

Id	Name	SBO
Stgc	Stgc	

Derived unit contains undeclared units

$$v_{11} = \text{vol}\left(\text{cytoplasm}\right) \cdot \frac{\text{kistg} \cdot [\text{StgPc}]}{\text{Jistg} + [\text{StgPc}]}$$
 (37)

8.12 Reaction R_15

This is an irreversible reaction of one reactant forming no product.

Name degradation of Stgc

Reaction equation

$$Stgc \longrightarrow \emptyset \tag{38}$$

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
Stgc	Stgc	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}(\text{cytoplasm}) \cdot \text{kdstg} \cdot [\text{Stgc}]$$
 (39)

8.13 Reaction R_16

This is an irreversible reaction of one reactant forming no product.

Name degradation of active Stgc

Reaction equation

$$StgPc \longrightarrow \emptyset \tag{40}$$

Reactant

Table 31: Properties of each reactant.

Id	Name	SBO
StgPc	StgPc	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{kdstg} \cdot [\text{StgPc}]$$
 (41)

8.14 Reaction R_19

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name export of MPF from cytoplasm

Reaction equation

$$MPFc \xrightarrow{N} \emptyset$$
 (42)

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
MPFc	MPFc	

Modifier

Table 33: Properties of each modifier.

Id	Name	SBO
N	N	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}\left(\text{cytoplasm}\right) \cdot \frac{\text{kt} \cdot [\text{MPFc}] \cdot \text{E}_{-}1 \cdot [\text{N}]}{1 - [\text{N}] \cdot \text{E}_{-}1} \tag{43}$$

8.15 Reaction importofMPFintocytoplasm_1

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name import of MPF into cytoplasm

Reaction equation

$$\emptyset \xrightarrow{\text{N, MPFn}} \text{MPFc} \tag{44}$$

Modifiers

Table 34: Properties of each modifier.

Id	Name	SBO
N	N	
${\tt MPFn}$	MPFn	

Product

Table 35: Properties of each product.

Id	Name	SBO
MPFc	MPFc	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol}\left(\text{nuclei}\right) \cdot \frac{\text{kout_1} \cdot [\text{MPFn}] \cdot \text{E_1} \cdot [\text{N}]}{1 - [\text{N}] \cdot \text{E_1}} \tag{45}$$

8.16 Reaction _16

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name import of MPF into nucleus

Reaction equation

$$\emptyset \xrightarrow{\text{MPFc}} \text{MPFn} \tag{46}$$

Modifier

Table 36: Properties of each modifier.

Id	Name	SBO
MPFc	MPFc	

Product

Table 37: Properties of each product.

Id	Name	SBO
MPFn	MPFn	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}(\text{cytoplasm}) \cdot \text{kt} \cdot [\text{MPFc}]$$
 (47)

8.17 Reaction exportofMPFfromnucleus_1

This is an irreversible reaction of one reactant forming no product.

Name export of MPF from nucleus

Reaction equation

$$MPFn \longrightarrow \emptyset \tag{48}$$

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
MPFn	MPFn	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}(\text{nuclei}) \cdot \text{kout}_{-1} \cdot [\text{MPFn}]$$
 (49)

8.18 Reaction importofpreMPFintocytoplaslm_1

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name import of preMPF into cytoplasm

Reaction equation

$$\emptyset \xrightarrow{\text{preMPFn, N}} \text{preMPFc}$$
 (50)

Modifiers

Table 39: Properties of each modifier.

Id	Name	SBO
preMPFn N	preMPFn N	

Product

Table 40: Properties of each product.

Id	Name	SBO
preMPFc	preMPFc	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = vol\left(nuclei\right) \cdot \frac{kout_1 \cdot [preMPFn] \cdot [N] \cdot E_1}{1 - [N] \cdot E_1} \tag{51}$$

8.19 Reaction R_20

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name export of preMPF from cytoplasm

Reaction equation

$$preMPFc \xrightarrow{N} \emptyset$$
 (52)

Reactant

Table 41: Properties of each reactant.

Id	Name	SBO
preMPFc	preMPFc	

Modifier

Table 42: Properties of each modifier.

Id	Name	SBO
N	N	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{vol}\left(\text{cytoplasm}\right) \cdot \frac{\text{kt} \cdot [\text{preMPFc}] \cdot \text{E}_{-}1 \cdot [\text{N}]}{1 - [\text{N}] \cdot \text{E}_{-}1}$$
(53)

8.20 Reaction _18

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name import of preMPF into nucleus

Reaction equation

$$\emptyset \xrightarrow{\text{preMPFc}} \text{preMPFn} \tag{54}$$

Modifier

Table 43: Properties of each modifier.

Id	Name	SBO
preMPFc	preMPFc	

Product

Table 44: Properties of each product.

Id	Name	SBO
preMPFn	preMPFn	

Derived unit contains undeclared units

$$v_{20} = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{kt} \cdot \left[\text{preMPFc}\right]$$
 (55)

8.21 Reaction exportofpreMPFnfromnucleus_1

This is an irreversible reaction of one reactant forming no product.

Name export of preMPFn from nucleus

Reaction equation

$$preMPFn \longrightarrow \emptyset$$
 (56)

Reactant

Table 45: Properties of each reactant.

Id	Name	SBO
preMPFn	preMPFn	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}(\text{nuclei}) \cdot \text{kout_1} \cdot [\text{preMPFn}]$$
 (57)

8.22 Reaction R_21

This is an irreversible reaction of one reactant forming no product.

Name export of Wee1P from nucleus

Reaction equation

Wee1Pn
$$\longrightarrow \emptyset$$
 (58)

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
Wee1Pn	Wee1Pn	

Derived unit contains undeclared units

$$v_{22} = \text{vol}(\text{nuclei}) \cdot \text{koutw}_{-1} \cdot [\text{Wee1Pn}]$$
 (59)

8.23 Reaction _182_1

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name import of Wee1P into cytoplasm

Reaction equation

$$\emptyset \xrightarrow{\text{Wee1Pn, N}} \text{Wee1Pc} \tag{60}$$

Modifiers

Table 47: Properties of each modifier.

Id	Name	SBO
Wee1Pn	Wee1Pn	
N	N	

Product

Table 48: Properties of each product.

Id	Name	SBO
Wee1Pc	Wee1Pc	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = vol(nuclei) \cdot \frac{koutw_{-}1 \cdot [Wee1Pn] \cdot [N] \cdot E_{-}1}{1 - [N] \cdot E_{-}1}$$

$$(61)$$

8.24 Reaction R_22

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name export of Wee1P from cytoplasm

Reaction equation

Wee1Pc
$$\xrightarrow{N} \emptyset$$
 (62)

Reactant

Table 49: Properties of each reactant.

Id	Name	SBO
Wee1Pc	Wee1Pc	

Modifier

Table 50: Properties of each modifier.

Id	Name	SBO
N	N	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}\left(\text{cytoplasm}\right) \cdot \frac{\text{kinw}_{1} \cdot [\text{Wee1Pc}] \cdot \text{E}_{1} \cdot [\text{N}]}{1 - [\text{N}] \cdot \text{E}_{1}}$$
(63)

8.25 Reaction _20

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name import of Wee1P into nucleus

Reaction equation

$$\emptyset \xrightarrow{\text{Wee1Pc}} \text{Wee1Pn} \tag{64}$$

Modifier

Table 51: Properties of each modifier.

Id	Name	SBO
Wee1Pc	Wee1Pc	

Product

Table 52: Properties of each product.

Id	Name	SBO
Wee1Pn	Wee1Pn	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{vol}(\text{cytoplasm}) \cdot \text{kinw}_{-1} \cdot [\text{Wee1Pc}]$$
 (65)

8.26 Reaction R_23

This is an irreversible reaction of one reactant forming no product.

Name export of Wee1 from nucleus

Reaction equation

Weeln
$$\longrightarrow \emptyset$$
 (66)

Reactant

Table 53: Properties of each reactant.

Id	Name	SBO
Wee1n	Wee1n	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{vol}(\text{nuclei}) \cdot \text{koutw}_{-1} \cdot [\text{Wee1n}]$$
 (67)

8.27 Reaction _22

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name import of Wee1 into cytoplasm

Reaction equation

$$\emptyset \xrightarrow{\text{Wee1n, N}} \text{Wee1c} \tag{68}$$

Modifiers

Table 54: Properties of each modifier.

Id	Name	SBO
Wee1n	Wee1n	
N	N	

Product

Table 55: Properties of each product.

Id	Name	SBO
Wee1c	Wee1c	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \text{vol}(\text{nuclei}) \cdot \frac{\text{koutw}_{-}1 \cdot [\text{Wee1n}] \cdot [\text{N}] \cdot \text{E}_{-}1}{1 - [\text{N}] \cdot \text{E}_{-}1}$$
(69)

8.28 Reaction R_24

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name export of Wee1c from cytoplasm

Reaction equation

Wee1c
$$\xrightarrow{N} \emptyset$$
 (70)

Reactant

Table 56: Properties of each reactant.

Id	Name	SBO
Wee1c	Wee1c	

Modifier

Table 57: Properties of each modifier.

Id	Name	SBO
N	N	

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = vol\left(cytoplasm\right) \cdot \frac{kinw_1 \cdot [Wee1c] \cdot E_1 \cdot [N]}{1 - [N] \cdot E_1} \tag{71}$$

8.29 Reaction _24

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name import of Wee1 into nucleus

Reaction equation

$$\emptyset \xrightarrow{\text{Wee1c}} \text{Wee1n} \tag{72}$$

Modifier

Table 58: Properties of each modifier.

Id	Name	SBO
Wee1c	Wee1c	

Product

Table 59: Properties of each product.

Id	Name	SBO
Wee1n	Wee1n	

Id	Name	SBO

Derived unit contains undeclared units

$$v_{29} = \text{vol}(\text{cytoplasm}) \cdot \text{kinw}_1 \cdot [\text{Wee1c}]$$
 (73)

8.30 Reaction R_25

This is an irreversible reaction of one reactant forming no product.

Name export of StgP from nucleus

Reaction equation

$$StgPn \longrightarrow \emptyset \tag{74}$$

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
StgPn	StgPn	

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = \text{vol}(\text{nuclei}) \cdot \text{kouts}_{-1} \cdot [\text{StgPn}]$$
 (75)

8.31 Reaction _26

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name import of StgP into cytoplasm

Reaction equation

$$\emptyset \xrightarrow{\text{StgPn, N}} \text{StgPc} \tag{76}$$

Modifiers

Table 61: Properties of each modifier.

Id	Name	SBO
StgPn N	StgPn N	

Product

Table 62: Properties of each product.

Id	Name	SBO
StgPc	StgPc	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \text{vol}(\text{nuclei}) \cdot \frac{\text{kouts}_{-1} \cdot [\text{StgPn}] \cdot \text{E}_{-1} \cdot [\text{N}]}{1 - [\text{N}] \cdot \text{E}_{-1}}$$

$$(77)$$

8.32 Reaction R_26

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name export of StgP from cytoplasm

Reaction equation

$$StgPc \xrightarrow{N} \emptyset$$
 (78)

Reactant

Table 63: Properties of each reactant.

Id	Name	SBO
StgPc	StgPc	

Modifier

Table 64: Properties of each modifier.

Id	Name	SBO
N	N	

Derived unit contains undeclared units

$$v_{32} = \text{vol}\left(\text{cytoplasm}\right) \cdot \frac{\text{kins}_{1} \cdot [\text{StgPc}] \cdot \text{E}_{1} \cdot [\text{N}]}{1 - [\text{N}] \cdot \text{E}_{1}}$$
(79)

8.33 Reaction _28

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name import of StgP into nucleus

Reaction equation

$$\emptyset \xrightarrow{StgPc} StgPn \tag{80}$$

Modifier

Table 65: Properties of each modifier.

Id	Name	SBO
StgPc	StgPc	

Product

Table 66: Properties of each product.

Id	Name	SBO
StgPn	StgPn	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \text{vol}(\text{cytoplasm}) \cdot \text{kins}_{-1} \cdot [\text{StgPc}]$$
 (81)

8.34 Reaction R_27

This is an irreversible reaction of one reactant forming no product.

Name export of Stg from nucleus

Reaction equation

$$Stgn \longrightarrow \emptyset \tag{82}$$

Reactant

Table 67: Properties of each reactant.

Id	Name	SBO
Stgn	Stgn	

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = \text{vol}(\text{nuclei}) \cdot \text{kouts_1} \cdot [\text{Stgn}]$$
 (83)

8.35 Reaction _30

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name import of Stg into cytoplasm

Reaction equation

$$\emptyset \xrightarrow{\text{Stgn, N}} \text{Stgc} \tag{84}$$

Modifiers

Table 68: Properties of each modifier.

Id	Name	SBO
Stgn N	Stgn N	
	- '	

Product

Table 69: Properties of each product.

Id	Name	SBO
Stgc	Stgc	

Derived unit contains undeclared units

$$v_{35} = \text{vol}(\text{nuclei}) \cdot \frac{\text{kouts}_{-1} \cdot [\text{Stgn}] \cdot \text{E}_{-1} \cdot [\text{N}]}{1 - [\text{N}] \cdot \text{E}_{-1}}$$
(85)

8.36 Reaction R_28

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name export of Stg from cytoplasm

Reaction equation

$$\operatorname{Stgc} \xrightarrow{\mathbf{N}} \emptyset \tag{86}$$

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
Stgc	Stgc	

Modifier

Table 71: Properties of each modifier.

Id	Name	SBO
N	N	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{vol}\left(\text{cytoplasm}\right) \cdot \frac{\text{kins}_{-}1 \cdot [\text{Stgc}] \cdot \text{E}_{-}1 \cdot [\text{N}]}{1 - [\text{N}] \cdot \text{E}_{-}1}$$
(87)

8.37 Reaction _32

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name import of Stg into nucleus

Reaction equation

$$\emptyset \xrightarrow{Stgc} Stgn$$
 (88)

Modifier

Table 72: Properties of each modifier.

Id	Name	SBO
Stgc	Stgc	

Product

Table 73: Properties of each product.

Id	Name	SBO
Stgn	Stgn	

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \text{vol}(\text{cytoplasm}) \cdot \text{kins}_{-1} \cdot [\text{Stgc}]$$
 (89)

8.38 Reaction R_29

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name activation of MPFn

Reaction equation

$$preMPFn \xrightarrow{StgPn} MPFn \tag{90}$$

Reactant

Table 74: Properties of each reactant.

Id	Name	SBO
preMPFn	preMPFn	

Modifier

Table 75: Properties of each modifier.

Id	Name	SBO
StgPn	StgPn	

Product

Table 76: Properties of each product.

Id	Name	SBO
MPFn	MPFn	

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = \text{vol}(\text{nuclei}) \cdot (\text{kstgp} + \text{kstg} \cdot [\text{StgPn}]) \cdot [\text{preMPFn}]$$
 (91)

8.39 **Reaction R_30**

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name inactivation of MPFn

Reaction equation

$$MPFn \xrightarrow{Wee1n} preMPFn \tag{92}$$

Reactant

Table 77: Properties of each reactant.

Id	Name	SBO
MPFn	MPFn	

Modifier

Table 78: Properties of each modifier.

Id	Name	SBO
Wee1n	Wee1n	

Product

Table 79: Properties of each product.

Id	Name	SBO
preMPFn	preMPFn	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{vol}(\text{nuclei}) \cdot (\text{kweep} + \text{kwee} \cdot [\text{Wee1n}]) \cdot [\text{MPFn}]$$
 (93)

8.40 Reaction R_33

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name degradation of preMPFn

Reaction equation

$$preMPFn \xrightarrow{FZYa} \emptyset$$
 (94)

Reactant

Table 80: Properties of each reactant.

Id	Name	SBO
preMPFn	preMPFn	

Modifier

Table 81: Properties of each modifier.

Id	Name	SBO
FZYa	FZYa	

Derived unit contains undeclared units

$$v_{40} = \text{vol}(\text{nuclei}) \cdot (\text{kdnp} + \text{kdn} \cdot [\text{FZYa}]) \cdot [\text{preMPFn}]$$
(95)

8.41 Reaction R_34

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name degradation of MPFn

Reaction equation

$$MPFn \xrightarrow{FZYa} \emptyset \tag{96}$$

Reactant

Table 82: Properties of each reactant.

Id	Name	SBO
MPFn	MPFn	

Modifier

Table 83: Properties of each modifier.

Id	Name	SBO
FZYa	FZYa	

Kinetic Law

Derived unit contains undeclared units

$$v_{41} = \text{vol}(\text{nuclei}) \cdot (\text{kdnp} + \text{kdn} \cdot [\text{FZYa}]) \cdot [\text{MPFn}]$$
(97)

8.42 Reaction R_37

This is an irreversible reaction of one reactant forming no product.

Name activation of intermediary enzyme

Reaction equation

$$IEa_{-}1 \longrightarrow \emptyset$$
 (98)

Reactant

Table 84: Properties of each reactant.

Id	Name	SBO
IEa_1		

Kinetic Law

Derived unit contains undeclared units

$$v_{42} = \text{vol} \left(\text{nuclei} \right) \cdot \frac{\text{kiie} \cdot [\text{IEa}_1]}{\text{Jiie} + [\text{IEa}_1]}$$
 (99)

8.43 Reaction R_38

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name inactivation of intermediary enzyme

Reaction equation

$$\emptyset \xrightarrow{\text{MPFn}} \text{IEa}_{-1} \tag{100}$$

Modifier

Table 85: Properties of each modifier.

Id	Name	SBO
MPFn	MPFn	

Table 86: Properties of each product.

Id	Name	SBO
IEa_1		

Derived unit contains undeclared units

$$v_{43} = vol(nuclei) \cdot \frac{kaie \cdot (1 - [IEa_1]) \cdot [MPFn]}{Jaie + 1 - [IEa_1]}$$
(101)

8.44 Reaction R_39

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name activation of FZY

Reaction equation

$$\emptyset \xrightarrow{\text{IEa}_1} \text{FZYa} \tag{102}$$

Modifier

Table 87: Properties of each modifier.

Id	Name	SBO
IEa_1		

Product

Table 88: Properties of each product.

Id	Name	SBO
FZYa	FZYa	

Kinetic Law

Derived unit contains undeclared units

$$v_{44} = \text{vol}\left(\text{nuclei}\right) \cdot \frac{\text{kafzy} \cdot [\text{IEa}_{-}1] \cdot (1 - [\text{FZYa}])}{\text{Jafzy} + 1 - [\text{FZYa}]}$$
(103)

8.45 Reaction R_40

This is an irreversible reaction of one reactant forming no product.

Name inactivation of FZY

Reaction equation

$$FZYa \longrightarrow \emptyset \tag{104}$$

Reactant

Table 89: Properties of each reactant.

Id	Name	SBO
FZYa	FZYa	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = \text{vol}\left(\text{nuclei}\right) \cdot \frac{\text{kifzy} \cdot [\text{FZYa}]}{\text{Jifzy} + [\text{FZYa}]}$$
 (105)

8.46 Reaction R_41

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name inactivation of Wee1n

Reaction equation

Wee1n
$$\xrightarrow{\text{MPFn}}$$
 Wee1Pn (106)

Reactant

Table 90: Properties of each reactant.

Id	Name	SBO
Wee1n	Wee1n	

Modifier

Table 91: Properties of each modifier.

Id	Name	SBO
MPFn	MPFn	

Product

Table 92: Properties of each product.

Id	Name	SBO
Wee1Pn	Wee1Pn	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{46} = vol\left(nuclei\right) \cdot \frac{\left(kiweep + kiwee \cdot [MPFn]\right) \cdot [Wee1n]}{Jiwee + [Wee1n]} \tag{107}$$

8.47 Reaction R_42

This is an irreversible reaction of one reactant forming one product.

Name activation of Wee1n

Reaction equation

$$Wee1Pn \longrightarrow Wee1n \tag{108}$$

Reactant

Table 93: Properties of each reactant.

Id	Name	SBO
Wee1Pn	Wee1Pn	

Table 94: Properties of each product.

Id	Name	SBO
Wee1n	Wee1n	

Id	Name	SBO

Derived unit contains undeclared units

$$v_{47} = vol(nuclei) \cdot \frac{kawee \cdot [Wee1Pn]}{Jawee + [Wee1Pn]}$$
 (109)

8.48 Reaction R_43

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name activation of StgPn

Reaction equation

$$Stgn \xrightarrow{MPFn} StgPn \tag{110}$$

Reactant

Table 95: Properties of each reactant.

Id	Name	SBO
Stgn	Stgn	

Modifier

Table 96: Properties of each modifier.

Id	Name	SBO
MPFn	MPFn	

Table 97: Properties of each product.

Id	Name	SBO
StgPn	StgPn	

Derived unit contains undeclared units

$$v_{48} = vol(nuclei) \cdot \frac{(kastgp + kastg \cdot [MPFn]) \cdot [Stgn]}{Jastg + [Stgn]}$$
(111)

8.49 Reaction R_44

This is an irreversible reaction of one reactant forming one product.

Name inactivation of StgPn

Reaction equation

$$StgPn \longrightarrow Stgn \tag{112}$$

Reactant

Table 98: Properties of each reactant.

Id	Name	SBO
StgPn	StgPn	

Product

Table 99: Properties of each product.

Id	Name	SBO
Stgn	Stgn	

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = vol(nuclei) \cdot \frac{kistg \cdot [StgPn]}{Jistg + [StgPn]}$$
(113)

8.50 Reaction R_45

This is an irreversible reaction of one reactant forming no product.

Name degradation of Stgn

Reaction equation

$$Stgn \longrightarrow \emptyset \tag{114}$$

Reactant

Table 100: Properties of each reactant.

Id	Name	SBO
Stgn	Stgn	

Kinetic Law

Derived unit contains undeclared units

$$v_{50} = \text{vol} \left(\text{nuclei} \right) \cdot \text{kdstg} \cdot \left[\text{Stgn} \right]$$
 (115)

8.51 Reaction R_46

This is an irreversible reaction of one reactant forming no product.

Name degradation of StgPn

Reaction equation

$$StgPn \longrightarrow \emptyset \tag{116}$$

Reactant

Table 101: Properties of each reactant.

Id	Name	SBO
StgPn	StgPn	

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = \text{vol}(\text{nuclei}) \cdot \text{kdstg} \cdot [\text{StgPn}]$$
 (117)

8.52 Reaction Nuclei_1

This is an irreversible reaction of no reactant forming one product.

Name Nuclei

Reaction equation

$$\emptyset \longrightarrow N$$
 (118)

Product

Table 102: Properties of each product.

Id	Name	SBO
N	N	

Kinetic Law

Derived unit not available

$$v_{52} = 0 (119)$$

8.53 Reaction _50

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name Zygotic mRNA

Reaction equation

$$\emptyset \xrightarrow{N} Xm$$
 (120)

Modifier

Table 103: Properties of each modifier.

Id	Name	SBO
N	N	

Table 104: Properties of each product.

Id	Name	SBO
Xm	Xm	·

Derived unit contains undeclared units

$$v_{53} = \text{vol}(\text{nuclei}) \cdot \text{ksxm}_{-1} \cdot [N]$$
 (121)

8.54 Reaction _51

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name Zygotic proteins

Reaction equation

$$\emptyset \xrightarrow{\text{Xm}} \text{Xp} \tag{122}$$

Modifier

Table 105: Properties of each modifier.

Id	Name	SBO
Xm	Xm	

Product

Table 106: Properties of each product.

Id	Name	SBO
Хр	Xp	

Kinetic Law

Derived unit contains undeclared units

$$v_{54} = \text{vol}(\text{cytoplasm}) \cdot \text{ksxp}_{-1} \cdot [\text{Xm}]$$
 (123)

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

9.1 Species MPFc

Name MPFc

Initial concentration $1 \text{ mol} \cdot l^{-1}$

Involved in event event 0

This species takes part in nine reactions (as a reactant in R_3, R_7, R_19 and as a product in R_1, R_2, importofMPFintocytoplasm_1 and as a modifier in R_8, R_13, _16).

$$\frac{d}{dt}MPFc = |v_1| + |v_2| + |v_{15}| - |v_3| - |v_5| - |v_{14}|$$
(124)

Furthermore, one event influences this species' rate of change.

9.2 Species preMPFc

Name preMPFc

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R₂, R₆, R₂₀ and as a product in R₃, importofpreMPFintocytoplaslm₁ and as a modifier in ₁₈).

$$\frac{d}{dt} \text{preMPFc} = |v_3| + |v_{18}| - |v_2| - |v_4| - |v_{19}|$$
(125)

9.3 Species StgPc

Name StgPc

Initial concentration $0.8 \text{ mol} \cdot l^{-1}$

Involved in event event_0

This species takes part in seven reactions (as a reactant in R_14, R_16, R_26 and as a product in R_13, _26 and as a modifier in R_2, _28).

$$\frac{d}{dt}StgPc = |v_{10}| + |v_{31}| - |v_{11}| - |v_{13}| - |v_{32}|$$
(126)

Furthermore, one event influences this species' rate of change.

9.4 Species Wee1c

Name Wee1c

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in event event_0

This species takes part in six reactions (as a reactant in R_8, R_24 and as a product in R_9, _22 and as a modifier in R_3, _24).

$$\frac{d}{dt} \text{Wee1c} = |v_7| + |v_{27}| - |v_6| - |v_{28}|$$
 (127)

Furthermore, one event influences this species' rate of change.

9.5 Species Wee1Pc

Name Wee1Pc

Notes Wee1Pc has been defined as boundarycondition, only change with the assignment rule.

Initial concentration $0.8 \text{ mol} \cdot l^{-1}$

Involved in rule Wee1Pc

This species takes part in six reactions (as a reactant in R_9, R_22 and as a product in R_8, _182_1 and as a modifier in R_9, _20). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

9.6 Species Stgm

Name Stgm

Initial concentration $1 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R_10 and as a modifier in R_12).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Stgm} = -\nu_8 \tag{128}$$

9.7 Species Xp

Name Xp

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in _51 and as a modifier in R_10).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Xp} = v_{54} \tag{129}$$

9.8 Species Stgc

Name Stgc

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in event event_0

This species takes part in seven reactions (as a reactant in R_13 , R_15 , R_28 and as a product in R_12 , R_14 , R_30 and as a modifier in R_32).

$$\frac{d}{dt}Stgc = |v_9| + |v_{11}| + |v_{35}| - |v_{10}| - |v_{12}| - |v_{36}|$$
(130)

Furthermore, one event influences this species' rate of change.

9.9 Species Xm

Name Xm

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in _50 and as a modifier in _51).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Xm} = v_{53} \tag{131}$$

9.10 Species MPFn

Name MPFn

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

Involved in event event_0

This species takes part in nine reactions (as a reactant in exportofMPFfromnucleus_1, R_30, R_34 and as a product in _16, R_29 and as a modifier in importofMPFintocytoplasm_1, R_38, R_41, R_43).

Produced by SBML2LATEX

$$\frac{d}{dt}MPFn = |v_{16}| + |v_{38}| - |v_{17}| - |v_{39}| - |v_{41}|$$
(132)

Furthermore, one event influences this species' rate of change.

9.11 Species preMPFn

Name preMPFn

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in event event_0

This species takes part in six reactions (as a reactant in exportofpreMPFnfromnucleus_1, R-_29, R_33 and as a product in _18, R_30 and as a modifier in importofpreMPFintocytoplaslm-_1).

$$\frac{d}{dt} \text{preMPFn} = |v_{20}| + |v_{39}| - |v_{21}| - |v_{38}| - |v_{40}|$$
(133)

Furthermore, one event influences this species' rate of change.

9.12 Species Wee1Pn

Name Wee1Pn

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in event event_0

This species takes part in five reactions (as a reactant in R_21, R_42 and as a product in _20, R_41 and as a modifier in _182_1).

$$\frac{d}{dt} \text{Wee1Pn} = |v_{25}| + |v_{46}| - |v_{22}| - |v_{47}|$$
(134)

Furthermore, one event influences this species' rate of change.

9.13 Species Weeln

Name Wee1n

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in event event_0

This species takes part in six reactions (as a reactant in R_23, R_41 and as a product in _24, R_42 and as a modifier in _22, R_30).

$$\frac{d}{dt} \text{Wee1n} = |v_{29}| + |v_{47}| - |v_{26}| - |v_{46}|$$
(135)

Furthermore, one event influences this species' rate of change.

9.14 Species StgPn

Name StgPn

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in event event_0

This species takes part in seven reactions (as a reactant in R_25, R_44, R_46 and as a product in _28, R_43 and as a modifier in _26, R_29).

$$\frac{d}{dt}StgPn = |v_{33}| + |v_{48}| - |v_{30}| - |v_{49}| - |v_{51}|$$
(136)

Furthermore, one event influences this species' rate of change.

9.15 Species Stgn

Name Stgn

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in event event_0

This species takes part in six reactions (as a reactant in R_27, R_43, R_45 and as a product in _32, R_44 and as a modifier in _30).

$$\frac{d}{dt}Stgn = |v_{37}| + |v_{49}| - |v_{34}| - |v_{48}| - |v_{50}|$$
(137)

Furthermore, one event influences this species' rate of change.

9.16 Species FZYa

Name FZYa

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in R_40 and as a product in R_39 and as a modifier in R_33, R_34).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{FZYa} = |v_{44}| - |v_{45}| \tag{138}$$

9.17 Species IEa_1

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R_37 and as a product in R_38 and as a modifier in R_39).

$$\frac{d}{dt}IEa_{-}1 = |v_{43}| - |v_{42}| \tag{139}$$

9.18 Species N

Name N

Initial concentration $1 \text{ mol} \cdot l^{-1}$

Involved in event event_0

This species takes part in 14 reactions (as a product in Nuclei_1 and as a modifier in R_19, importofMPFintocytoplasm_1, importofpreMPFintocytoplaslm_1, R_20, _182_1, R_22, _22, R_24, _26, R_26, _30, R_28, _50).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{N} = v_{52} \tag{140}$$

Furthermore, one event influences this species' rate of change.

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany