Palabras sugeridas: efecto Early, el doble, mayor, exponencial, voltaje, corriente, lineal, transresistencia, inversa, huecos, efecto cuerpo, positiva, la mitad, minoritarios, constante, unitaria, dependiente, variable, transconductancia, directa, efecto avalancha, arrastre, colector, electrones, mayoritarios, difusión, independiente, emisor, negativa, menor, cuadrática

- 1) corriente, voltaje.
- 2) transconductancia.
- 3) directa
- 4) difusión
- 5) mayor
- 6) colector, inversa
- 7) electrones, huecos
- 8) minoritarios
- 9) el doble
- 10) independiente
- 11) negativa
- 12) constante
- 13) exponencial
- 14) efecto Early

¿Portadores mayoritarios, portadores minoritarios? Porque depende del tipo de transistor (no se aclara en la pregunta que es un NPN)

1)
$$\alpha F = \frac{\beta F}{\beta F + 1} = \frac{180}{181} = 0.994475$$

$$\alpha R = \frac{\beta R}{\beta R + 1} = \frac{0.899552}{0.899552 + 1} = 0.473560$$

2. El modelo simplificado en Activa pirecta:

5) se resulve la ecuación;

IF = IES [e
$$(VCC - (I - \alpha F)IFRB)/VE$$

La solución numérica es
 $X = 10^{-14} [e^{(3.3 - (I - 0.994475)X \cdot 200K)/26 mV} - I]$
IF = 2.37 × 10⁻³ A \Rightarrow FC = $\alpha FIF = 2.35$

$$IF = 2.37 \times 10^{-3} A$$

$$\Rightarrow FC = 0.37 \times 10^{-3} A$$

$$IE = -2.37016 \text{ mA}$$

$$IB = 13.0951 \text{ MA}$$

Ope	rating Point -		
V(c):	2.222 0.676591	voltage	
V(b):		voltage	
V(vcc):	3.3	voltage	
Ic(Q1):	0.00229365	device_current	
Ib(Q1):	1.31172e-005	device current	
Ie(Q1):	-0.00230677	device current	
I(Rb):	1.3117e-005	device current	
I(Rc):	0.00229362	device current	
I(V1):	-0.00230674	device_current	

Problema 2 [V_{be}] = 1 Kn O | ib | = [hie hre] | ib | ic | 250 3×10 s | V_{ce}] = [hfe hoe] | V_{ce}] 1) Circuito resultante con modelo TT (leg. Sexul) + Vout

| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout
| Vout 2) Se sabe que $g_{m} = I_{c}$ Λ $A_{v} = V_{out}$ V_{t} V_{t} V.: Av = -gm Noe · RL = - Ic · RL / 3) R_L para $A_V = -20$ e $T_C = 10 \text{ mA}$ $R_L = \frac{A_V \cdot V_T}{I_C} = \frac{20 \cdot 26 \text{ nV}}{10 \text{ mA}} = \frac{52 \text{ A}}{10 \text{ mA}}$

Con = C ii + (1 + gmRi) CM
Covi = [1+(gmRi)] CM & CM

$$V_{\text{in}} = V_{\text{II}}$$

$$V_{\text{our}} = -g_{\text{m}}V_{\text{II}} \left(\frac{R_{\text{L}}}{s_{\text{CM}}}\right)$$

$$= -g_{\text{m}}V_{\text{in}} \frac{R_{\text{L}}/s_{\text{CM}}}{R_{\text{L}} + \frac{1}{s_{\text{CM}}}}$$

$$V_{\text{our}}(s) = s_{\text{m}}R_{\text{L}}$$

$$\frac{v_{bur}(s) = \int m RL}{v_{im}(s)} = \frac{1}{1 + 5 RLCM}$$
(b) para $W = \frac{1}{R_L CM}$, $|A(jw)| = ?$

$$|A(j\omega)| = \frac{5mRL}{\sqrt{1 + \omega^2 R_L^2 G_L^2}}$$

$$= \frac{9mRL}{\sqrt{1 + \frac{R^2 G_L^2}{(R_L E_L \omega^2)^2}}} = \frac{9mRL}{\sqrt{2}}$$

Pruebe que

De la frecuencia a la cual la guest = 1 es cut = gm

C.M.

$$|A(j\omega)| = \frac{5mRL}{\sqrt{1 + \omega^2 R_L^2 C_M^2}} = 1$$

gmRL = VI + w2 R2 Cu2 2 V W2 R2 Cu2