Hw 6 for PDE I Fall 2024 (85 Marks)

1. (15 marks) Consider elliptic equation in the whole \mathbb{R}^n :

$$-\Delta u + u = f(x), \ x \in \mathbb{R}^n, \text{ where } f \in L^2(\mathbb{R}^n).$$
 (1)

- (i) Define weak solutions of (1), which are in $H^1(\mathbb{R}^n)$.
- (ii) Prove the existence and uniqueness of (1).

Hint: The Riesz Representation Theorem.

2. (15 marks) Let Ω be a bounded domain in \mathbb{R}^n and

$$Lu = -\sum_{i,j=1}^{n} (a_{ij}(x)u_{x_i})_{x_j} + \sum_{i=1}^{n} b_i(x)u_{x_i} + c(x)u, \quad x \in \Omega,$$

where a_{ij} , b_i , and $c \in L^{\infty}(\Omega)$ and L is strictly elliptic on Ω . Consider

(DBVP)
$$\begin{cases} Lu = f(x) & \text{in } \Omega, \\ u|_{\partial\Omega} = \varphi|_{\partial\Omega}. \end{cases}$$

(i) (5 marks) Suppose that we have the classical scenario, i.e., everything $(a_{ij}, b_i, c, u, f, \varphi)$ is as smooth as we want (φ is defined on $\bar{\Omega}$). The first step to "solve" (DBVP) is to make the B.C. homogeneous by changing the dependent variable: $v = u - \varphi$. Show that u is a solution of (DBVP) iff v is a solution of

$$\begin{cases} Lv = f - L\varphi & \text{in } \Omega, \\ v|_{\partial\Omega} = 0. \end{cases}$$
 (2)

(ii) (10 marks) Suppose we are still in the scenario of (i) and v is a (classical) solution of (2). Show that $\forall w \in C_0^{\infty}(\Omega)$,

$$\int_{\Omega} \left[\sum_{i,j=1}^{n} a_{ij}(x) v_{x_i} w_{x_j} + \sum_{i=1}^{n} b_i(x) v_{x_i} w + c(x) v_w \right] dx \tag{3}$$

$$= \int_{\Omega} f(x)w \ dx - \int_{\Omega} \left[\sum_{i,j=1}^{n} a_{ij}(x) \varphi_{x_i} w_{x_j} + \sum_{i=1}^{n} b_i(x) \varphi_{x_i} w + c(x) \varphi w \right] dx.$$

Also prove this for $w \in H_0^1(\Omega)$.

Moral of story: u is said to be a weak solution of (DBVP) with $f \in H^{-1}(\Omega)$ and $\varphi \in H^1(\Omega)$, if

- (a) $u \varphi \in H_0^1(\Omega)$ and
- (b) $L(u-\varphi) = f L\varphi$ in H^{-1} —sense.
- 3. (20 marks) Let Ω and L be as given in Problem 2 with $b_i \equiv 0$ on Ω and $c(x) \geq 0$ a.e. on Ω .
 - (i) (10 marks) Prove that the homogeneous DBVP

$$\begin{cases} Lu = 0 & \text{in } \Omega, \\ u|_{\partial\Omega} = 0 \end{cases}$$
 (4)

has no weak solutions other than u = 0 a.e. on Ω .

Hint: Use the definition of weak solution and in it, choose a "smart" v. Warning: you cannot use the classical maximum principle because we are not in the classical scenario!

(ii) (10 marks) Prove that

(DBVP)
$$\begin{cases} Lu = \text{your birthday} & \text{in } \Omega, \\ u|_{\partial\Omega} = 0 \end{cases}$$
 (5)

has one and only one weak solution.

Comment: You may prove (i) and (ii) simultaneously using the Riesz Representation Theorem or the Lax-Milgram Theorem.

4. (35 marks) (Neumann BVP) Let Ω be a bounded domain in \mathbb{R}^n with C^1 -smooth $\partial\Omega$. Let $\nu = (\nu_1, \nu_2, \dots, \nu_n)$ be the unit outer normal of $\partial\Omega$. Let L be given as in Problem 2. Consider

(NBVP)
$$\begin{cases} Lu = f(x) & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu_A} = 0 & \text{on } \partial \Omega, \end{cases}$$

where $A(x) = (a_{ij}(x))_{n \times n}$ and on $\partial \Omega$, $\nu_A = A\nu$, $\frac{\partial u}{\partial \nu_A} = \nabla u \cdot A\nu = A\nabla u \cdot \nu$ (A is symmetric). (ν_A is called "co-normal" of $\partial \Omega$ with respect to the diffusion matrix A. Physically, " $\frac{\partial u}{\partial \nu_A} = 0$ on $\partial \Omega$ " means that the $\partial \Omega$ is well-insulated.)

(i) (10 marks) Suppose everything is smooth. Show that if $u \in C^2(\bar{\Omega})$ is a solution of (NBVP), then $\forall v \in C^1(\bar{\Omega})$,

$$\int_{\Omega} \left[\sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} v_{x_j} + \sum_{i=1}^{n} b_i(x) u_{x_i} v + c(x) uv \right] dx = \int_{\Omega} f(x) v \ dx. \tag{6}$$

Also prove this for $v \in H^1(\Omega)$.

(ii) (10 marks) Suppose everything is smooth. Suppose $u \in C^2(\bar{\Omega})$ satisfies (6). Show that u is a solution of (NBVP).

Hint: Step 1. In (6), take $v \in C_0^{\infty}(\Omega)$ to prove that Lu = f holds pointwise in Ω . Step 2. Use the result obtained in Step 1 and take general $v \in C^1(\overline{\Omega})$ in (6) to show the boundary condition.

Moral of story: $(NBVP) \Rightarrow (6)$ at least in the classical sense. This motivates the following definition of weak solutions of (NBVP).

Definition. Let $f \in (H^1(\Omega))^*$. We say u is a weak solution of (NBVP) if (a) $u \in H^1(\Omega)$, (b) (6) holds for every $v \in H^1(\Omega)$ ($\int_{\Omega} fv \ dx$ replaced by $\langle f, v \rangle_{(H^1(\Omega))^*, H^1(\Omega)}$).

Remark. This is exactly the corresponding definition for the Dirichlet case, except with $H_0^1(\Omega)$ being replaced by $H^1(\Omega)$!

(iii) (15 marks) Define $L: H^1(\Omega) \to (H^1(\Omega))^*$ by

$$< Lu, v>_{(H^1(\Omega))^*, H^1(\Omega)} = \text{LHS of } (6), \forall u, v \in H^1(\Omega).$$

Prove that

- (a) $\forall u \in H^1(\Omega)$, Lu defined above is indeed in $(H^1(\Omega))^*$.
- (b) $L: H^1(\Omega) \to (H^1(\Omega))^*$ is linear and bounded.
- (c) u is a weak solution of (NBVP) $\Leftrightarrow u \in H^1(\Omega), Lu = f$ in the $(H^1(\Omega))^*$ -sense.