Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

PATIENT	
Identifier: 宋建成	Patient ID: 11963896
Date of Birth: Mar 30, 1933	Gender: Male
Diagnosis: Colon cancer	
ORDERING PHYSICIAN	
Name: 陳志學醫師	Tel: 886-228712121
Facility: 臺北榮總	
Address: 臺北市北投區石牌路二段 201 號	
SPECIMEN	
Specimen ID: S11116920D Collection site: Colon	Type: FFPE tissue
Date received: Dec 16, 2022 Lab ID: AA-22-07699	D/ID: NA

ABOUT ACTORCO®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS

VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in Patient's Cancer Type		Probable Sensitive in Other
Alterations/Biomarkers	Sensitive	Resistant	Cancer Types
KRAS G12D	-	Cetuximab, Panitumumab	-

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
KRAS G12D	-	Afatinib, Dacomitinib, Erlotinib, Gefitinib, Osimertinib
PTEN Y27C	Olaparib, Rucaparib	Erlotinib, Gefitinib, Cetuximab, Panitumumab, Trastuzumab
PTEN Heterozygous deletion	Olaparib, Rucaparib	Erlotinib, Gefitinib, Cetuximab, Panitumumab, Trastuzumab

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 1 of 37

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
APC	R876*	44.4%
KRAS	G12D	29.3%
PTEN	Y27C	58.7%
TP53	R306*	45.3%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr10	PTEN	Heterozygous deletion	1
Chr17	BRCA1, FLCN, RAD51C, TP53	Heterozygous deletion	1
Chr18	SMAD4	Heterozygous deletion	1
Chr22	CHEK2, NF2	Heterozygous deletion	1
Chr5	APC, RAD50	Heterozygous deletion	1

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	1.3 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Variant(s) enlisted in the SNV table may currently exhibit no relevance to treatment response prediction. Please refer to INTERPRETATION for more biological information and/or potential clinical impacts of the variants.
- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 61% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **2** of **37**

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect
Level 1		
KRAS G12D	Cetuximab, Panitumumab	resistant
Level 3A		
KRAS G12D	Afatinib, Dacomitinib, Erlotinib, Gefitinib, Osimertinib	resistant
Level 3B		
PTEN Y27C	Olaparib, Rucaparib	sensitive
PTEN Heterozygous deletion	Olaparib, Rucaparib	sensitive
Level 4		
PTEN Y27C	Erlotinib, Gefitinib, Cetuximab, Panitumumab, Trastuzumab	resistant
PTEN Heterozygous deletion	Erlotinib, Gefitinib, Cetuximab, Panitumumab, Trastuzumab	resistant

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
ЗА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **3** of **37**

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
	Not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

Pharmacogenomic implication

Gene	Detection Site	Genotype	Drug Impact	Level of Evidence*
UGT1A1	rs4148323	AG	Irinotecan-based regimens	Level 1B

Clinical Interpretation:

Patients with the AG genotype and cancer who are treated with irinotecan-based regimens may have an increased risk of diarrhea and neutropenia as compared to patients with the GG genotype, or a decreased risk of diarrhea and neutropenia compared to patients with the AA genotype. Other genetic and clinical factors may also influence a patient's risk of diarrhea and neutropenia.

Level 1A: Clinical annotations describe variant-drug combinations that have variant-specific prescribing guidance available in a current clinical guideline annotation or an FDA-approved drug label annotation.

Level 1B: Clinical annotations describe variant-drug combinations with a high level of evidence supporting the association but no variant-specific prescribing guidance in an annotated clinical guideline or FDA drug label.

Level 2A: Variants in Level 2A clinical annotations are found in PharmGKB's Tier 1 Very Important Pharmacogenes (VIPs). These variants are in known pharmacogenes, implying causation of drug phenotype is more likely.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **4** of **37**

^{*} Level of evidence was defined by PharmGKB (https://www.pharmgkb.org/page/clinAnnLevels)

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

VARIANT INTERPRETATION

APC R876*, Heterozygous deletion

Biological Impact

APC (adenomatous polyposis coli) gene encodes a negative regulator of the WNT/ β -catenin signaling pathway. It binds to β -catenin, leading to its degradation and subsequently inhibits transcriptional activation^[1]. APC is also associated with cell migration and adhesion, apoptosis, and DNA repair^{[2][3]}. APC mutations are commonly observed in colorectal cancer and are also reported in lung, breast, prostate, uterine, skin, bladder, stomach and head and neck cancers (cBioPortal, MSKCC, April 2015).

R876* mutation results in a premature truncation of the APC protein at amino acid 876 (UniProtKB). This mutation is predicted to lead to a loss of APC function, despite not having characterized in the literature. Loss of the second wild-type allele resulted in the biallelic inactivation of the gene.

Therapeutic and prognostic relevance

A study of colorectal cancer patients (n= 468) indicated that MSS tumors without any APC mutation carry a worse prognosis than single APC mutation tumors. However, tumors with two APC, KRAS, and TP53 mutations confer the poorest survival among all the subgroups examined^[4].

KRAS G12D

Biological Impact

The V-Ki-Ras2 Kirsten Rat Sarcoma 2 Viral Oncogene Homolog (KRAS) gene encodes a small GTPase protein, a member of the RAS family of small GTPases, which catalyze the hydrolysis of GTP to GDP. RAS proteins cycle between an active (GTP-bound) and an inactive (GDP-bound) state, to activate the downstream oncogenic pathways, including the PI3K/AKT/mTOR and MAPK pathways^[5]. KRAS mutations occur primarily in three hotspots G12, G13 and Q61, and less frequently in codon A146^{[5][6]}. These are activating mutations that lead to constitutive activation and persistent stimulation of the downstream signaling pathways^{[7][8]}. Mutations in KRAS have been reported in a diverse spectrum of human malignancies, including pancreatic carcinomas (>80%)^{[5][9]}, colon carcinomas (40-50%)^{[10][11]}, and lung carcinomas (30-50%)^{[12][13]}, but are also present in biliary tract malignancies, endometrial cancer, cervical cancer, bladder cancer, liver cancer, myeloid leukemia and breast cancer^[6].

G12D is a hotspot mutation located in the GTP binding region of the KRAS protein (UniProtKB). This mutation results in decreased KRAS GTPase activity, increased activation of downstream signaling, and promotes tumor formation in preclinical studies^{[14][15][16]}.

Therapeutic and prognostic relevance

Except for KRAS G12C, other KRAS mutants are not currently targetable, but the downstream MEK serves as a potential target^[17]. MEK inhibitors trametinib, cobimetinib, and binimetinib were approved by the U.S. FDA for patients with advanced metastatic melanoma whose tumors harbor BRAF V600 mutations^{[18][19][20][21]}.

There are case reports indicated that patients harboring a KRAS mutation may benefit from MEK inhibitor treatment. A patient with small cell neuroendocrine carcinoma (SCNEC) of the cervix harboring a KRAS G12D mutation showed significant response with trametinib^[22]. Another low-grade serous carcinoma case with KRAS G12D also has sustained response to trametinib (Am J Clin Exp Obstet Gynecol 2015;2(3):140-143). In addition, a low-grade serous ovarian cancer patient harboring KRAS G12V mutation showed stable disease after 8 weeks of binimetinib treatment, and demonstrated a partial response after another 26 weeks of treatment^[23]. However, trametinib did not demonstrate superiority to docetaxel in KRAS-mutant non-small cell lung cancer (NSCLC) patients, based on results from a randomized Phase II study^[24].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **5** of **37**

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

Both clinical and preclinical studies demonstrated a limited response to monotherapy using MEK inhibitors^[25]. Moreover, several clinical trials are in progress to evaluate the combination of MEK and mTOR inhibition as a new potential therapeutic strategy in CRC^[26], and in patient-derived xenografts of RAS-mutant CRC, inhibition of MEK and mTOR suppressed tumor growth, but not tumor regression^[27]. A study using the CRC patient-derived xenograft (PDX) model showed that the combination of trametinib, a MEK inhibitor, and palbociclib, a CDK4/6 inhibitor, was well tolerated and resulted in objective responses in all KRAS mutant models^[28].

KRAS mutation has been determined as an inclusion criterion for the trials evaluating MEK inhibitors efficacies in various types of solid tumors (NCT03704688, NCT02399943, NCT02285439, NCT03637491, NCT04214418).

Cetuximab and panitumumab are two EGFR-specific antibodies approved by the U.S. FDA for patients with KRAS wild-type metastatic colorectal cancer (NCT00154102, NCT00079066, NCT01412957, NCT00364013). Results from the PRIME and FIRE-3 trials indicated that panitumumab and cetuximab did not benefit patients with KRAS or NRAS mutations and may even have a detrimental effect in these patients^[29]. Taken together, the National Comprehensive Cancer Network (NCCN) recommended that, cetuximab and panitumumab should only be used if both KRAS and NRAS genes are normal (NCCN guidelines)^{[30][31]}. Numerous studies have demonstrated the presence of KRAS or NRAS mutations at exon 2, 3 or 4 as a predictor of resistance to anti-EGFR therapies^{[32][33][34][35][36][37][38]}.

Sorafenib, a multi-kinase inhibitor, has been shown to be beneficial in KRAS-mutant CRC^[39], KRAS-mutant NSCLC^[40], and KRAS-amplified melanoma^[41].

There has been conflicting data on the effect of KRAS mutation on the efficacy of bevacizumab in metastatic CRC patients(J Clin Oncol 34, 2016 (suppl; abstr 3525))^{[42][43]}.

In NCCN guidelines for NSCLC, KRAS mutations have been suggested as an emerging biomarker for EGFR TKIs in NSCLC patients. KRAS mutations are associated with a lack of efficacy of EGFR TKIs, including erlotinib, gefitinib, afatinib, and osimertinib, in NSCLC patients^{[44][45][46]}.

Studies have shown that KRAS mutation, especially those occurs in exon 2 (codon 12 or 13) and codon 61 indicated a poor prognosis for patients with CRC^[47].

In low-grade serous carcinoma of the ovary or peritoneum, patients with KRAS or BRAF mutations (n=21) had a significantly better OS than those with wild-type KRAS or BRAF (n=58) (106.7 months vs 66.8 months), respectively^[48]. In ovarian serous borderline tumor with recurrent low-grade serous carcinoma, patient harboring KRAS G12V mutation appeared to have shorter survival time^[49].

PTEN Y27C, Heterozygous deletion

Biological Impact

The phosphatase and tensin homolog deleted on chromosome ten (PTEN) gene encodes a lipid/protein phosphatase that is important for the regulation of cell proliferation, survival, homologous recombination and maintenance of genomic integrity^{[50][51]}. PTEN acts as an essential tumor suppressor by antagonizing the PI3K/AKT/mTOR signaling pathway^[52]. PTEN is a haploinsufficient tumor suppressor gene, in which having only one copy of the wild-type allele does not produce enough protein product to execute wild-type functions^{[53][54][55]}. Germline loss-of-function PTEN mutations are found in approximately 80% of patients with Cowden syndrome, a disorder that is associated with high-penetrance breast and thyroid cancer^{[56][57][58]}. Somatic mutations or monoallelic loss of PTEN is regularly observed in a significant fraction of human cancers, including sporadic breast cancer, colon cancer, endometrial cancer, prostate cancer, and glioblastoma^{[59][60][61][62][63]}.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **6** of **37**

Project ID: C22-M001-03816 Report No.: AA-22-07699 ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

PTEN Y27C lies within the phosphatase tensin-type domain of the PTEN protein (UniProtKB). Y27C confers a loss of function to the PTEN protein as demonstrated by reduced PTEN protein stability and failure to suppress AKT phosphorylation in vitro^[64]. Loss of the second wild-type allele resulted in the biallelic inactivation of the gene.

Therapeutic and prognostic relevance

Somatic loss of PTEN results in aberrant activation of PI3K/AKT/mTOR signaling pathway and provides a mechanistic rationale for PI3K pathway inhibitors treatment[65][66]. Preclinical studies demonstrated that PTEN deficiency was associated with increased sensitivity to PI3K pathway inhibitors in selected cancer subtypes [67][68][69][70][71][72]. Although early clinical data indicated that PTEN loss was associated with improved response and survival in solid tumor patients treated with mTORC1 inhibitor, everolimus[73][74][75], several phase II trials showed no clinical benefit of everolimus or temsirolimus treatment in patients with advanced solid tumors harboring PTEN loss[76][77][78].

Several groups found that PTEN loss was generally associated with poor response to trastuzumab therapy, whether this agent was administered in the neoadjuvant, adjuvant, or metastatic settings[79][80][81][82][83]. Also, loss of PTEN expression in advanced colorectal cancer (CRC) has been linked with resistance to anti-EGFR mAbs like cetuximab and panitumumab[84][85][86][87][88][35]. Preclinical studies showed that loss of PTEN expression in EGFR mutant cells was associated with decreased sensitivity to EGFR TKIs, erlotinib and gefitinib[89][90]. Inhibition of the PI3K/AKT/mTOR signal pathway has been shown to be an effective strategy to radiosensitize NSCLC cells harboring the EGFR activating mutation that acquires resistance to both TKIs due to PTEN loss or inactivation mutations[91].Loss or biallelic inactivation of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapies, including pembrolizumab and nivolumab in melanoma and leiomyosarcoma patients[92][93][94].

PTEN loss of function mutation has been determined as an inclusion criterion for the trial evaluating olaparib efficacy in metastatic biliary tract cancer (NCT04042831); talazoparib efficacy in HER2-negative solid tumors (NCT02401347); rucaparib efficacy in prostate cancer (NCT02952534, NCT03533946), and niraparib efficacy in breast cancer (NCT04508803) or any malignancy (except prostate) cancer (NCT03207347). Clinical data also suggested that PTEN deficient cancers may be sensitive to olaparib[95]. However, in a phase II trial (NCT02286687), 13 patients with advanced solid tumors harboring PTEN mutation or loss (by IHC) had limited response to talazoparib treatment; only one patient with PTEN mutation had prolonged SD (Mol Cancer Ther 2018;17(1 Suppl):Abstract nr A096; NCT02286687). Besides, in a phase I trial (NCT00749502), no association between loss of PTEN expression and the efficacy of niraparib was identified in patients with castration-resistant prostate cancer^[96].

In a preclinical study, PTEN null cancer cells were sensitive to rucaparib treatment in vitro[97].

In a clinical study, a melanoma patient harboring BRAF V600E and PTEN Y27C had a partial response with a short TTP (time to progression) of 2.3 months by vemurafenib treatment^[98].

TP53 R306*, Heterozygous deletion

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis[99]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation[53].

R306* mutation results in a premature truncation of the p53 protein at amino acid 306 (UniProtKB). This mutation is predicted to lead to a loss of p53 function, despite not having characterized in the literature. Loss of the second wildtype allele resulted in the biallelic inactivation of the gene.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 7 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)[100].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib^[101]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat^[102].

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53^{[103][104][105]}. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)^[106]. TP53 mutations were correlated with poor survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy^{[107][108]}. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53^[109].

BRCA1 Heterozygous deletion

Biological Impact

The breast cancer 1, early onset (BRCA1) gene encodes for a multifunctional ubiquitin E3 ligase, a tumor suppressor that has diverse cellular functions, including transcription, protein ubiquitination, cell cycle regulation and DNA damage response, with a particularly important role in homologous recombination, a DNA double-strand break repair pathway. BRCA1 germline mutations confer an increased lifetime risk of developing breast, ovarian and prostate cancer^{[110][1111]}. BRCA1 is also a Fanconi anemia susceptibility gene in FANCS, a rare Fanconi anemia subtype^[112]. Prevalence of BRCA1 somatic mutation is in non-small cell lung cancer (NSCLC), pancreatic cancer, and colon cancer^[113]. Deletion of BRCA1 gene has been correlated to significantly lower expression levels of the BRCA1 mRNA and reduced BRCA1 protein dosage, leading to a reduction in the efficiency of homologous recombination repair of DNA double-strand breaks^{[114][115][116]}. Deleterious BRCA1 mutations have been detected in 8.5% of patients with triple-negative breast cancer (TNBC) (n=1824) unselected for family history and TNBC patients with mutations in BRCA1/2 and genes involved in homologous recombination (including PALB2, BARD1, RAD51D, RAD51C and BRIP1) were diagnosed at an earlier age and had higher-grade tumors than those without mutations^[117].

Therapeutic and prognostic relevance

The U.S. FDA has approved olaparib in advanced ovarian cancer under several settings including (1) first-line maintenance treatment for patients with deleterious or suspected deleterious germline or somatic BRCA mutation who are in complete or partial response to first-line platinum-based chemotherapy^[118]; (2) in combination with bevacizumab as first-line maintenance treatment for patients who are in complete or partial response to first-line platinum-based chemotherapy and whose cancer is associated with homologous recombination deficiency (HRD)-positive status^[119]; (3) maintenance treatment for patients with recurrent ovarian cancer who are in complete or partial response to platinum-based chemotherapy^{[120][121]}. In addition, olaparib has also been approved in patients with deleterious or suspected deleterious germline BRCA-mutated, HER2-negative breast cancer who have been treated with chemotherapy in either neoadjuvant, adjuvant, or metastatic setting^[122] and germline BRCA-mutated metastatic pancreatic cancer^[123].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **8** of **37**

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

Of note, in May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate(NCT02987543)^[124].

Rucaparib has been approved for the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to platinum-based chemotherapy^[125]. NCCN guidelines recommend rucaparib as recurrence therapy for patients with BRCA-mutated ovarian cancer, who have been treated with two or more lines of chemotherapies^[126]. In May 2020, the U.S. FDA also approved rucaparib to treat adult patients with a deleterious BRCA mutation-associated metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor-directed therapy and a taxane-based chemotherapy (TRITON2, NCT02952534). Moreover, NCCN guidelines recommend rucaparib as maintenance therapy following prior platinum-based therapy for patients with metastatic pancreatic cancer harboring germline or somatic BRCA mutation.

The U.S. FDA has approved niraparib for the maintenance treatment of patients with advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in response to first-line platinum-based chemotherapy and patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in response to platinum-based chemotherapy^{[127][128]}. Besides, NCCN guidelines recommend niraparib as maintenance therapy for ovarian cancer patients with BRCA mutations. The U.S. FDA also approved talazoparib for patients with deleterious or suspected deleterious germline BRCA-mutated, HER2 negative locally advanced or metastatic breast cancer^[129].

CHEK2 Heterozygous deletion

Biological Impact

The checkpoint kinase 2 (CHEK2 or CHK2) gene encodes a serine/threonine protein kinase involved in transducing DNA damage signals that are required for both the intra-S phase and G2/M checkpoints^[130]. CHEK2 heterozygosity has been shown to cause haploinsufficient phenotypes that can contribute to tumorigenesis through inappropriate S phase entry, accumulation of DNA damage during replication, and failure to restrain mitotic entry^{[131][132]}. CHEK2 aberrations are associated with glioblastoma, breast, ovarian, prostate, colorectal, gastric, thyroid, and lung cancers^{[133][134][135][136][137]}.

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate (NCT02987543)^[124].

In a phase II trial (TBCRC 048; NCT03344965), 7 metastatic breast cancer patients harboring only germline mutations in CHEK2 were not responded to olaparib treatment (SD: n=3, PD: n=4) $^{[138]}$. Furthermore, in another phase II trial (TRITON2; NCT02952534), 12 mCRPC patients harboring CHEK2 alteration had limited response to rucaparib treatment. One patient with co-occurring ATM alteration had a radiographic partial response (n=1/9 evaluable patients). The prostate-specific antigen response rate was 16.7% (n=2/12), and the 6-month clinical benefit rate was 37.5% (n=3/8) $^{[139]}$.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **9** of **37**

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

In addition, CHEK2 has been determined as an inclusion criterion for the trials evaluating olaparib efficacy in advanced solid tumors (NCT03297606; CAPTUR trial), rucaparib efficacy in ovarian cancer (NCT01968213)^[125], and prostate cancer (NCT02952534, NCT03533946)^[139], niraparib efficacy in metastatic esophageal/gastroesophageal junction (GEJ)/proximal gastric adenocarcinoma (NCT03840967), melanoma (NCT03925350), pancreatic cancer (NCT03553004, NCT03601923), prostate cancer (NCT02854436), and any malignancy, except prostate (NCT03207347), and talazoparib efficacy in HER2-negative solid tumors (NCT02401347), prostate cancer (NCT03148795), and lung cancer (NCT03377556), respectively.

FLCN Heterozygous deletion

Biological Impact

The FLCN gene encodes the tumor suppressor, Folliculin, a GTPase activating protein (GAP) for RagC/D GTPase proteins involved in amino acid sensing and signaling to mTORC1^[140]. FLCN has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[141][142]}. Inactivation of the FLCN gene by mutation or deletion results in the activation of the mTOR pathway and AKT signaling^{[143][144]}. Germline mutation of the FLCN gene causes the Birt-Hogg-Dubé syndrome, a rare disorder that is characterized by benign hamartomatous skin lesions and an increased risk of pneumothorax and renal tumors^[145].

Therapeutic and prognostic relevance

In a prospective Phase 2 study, four anaplastic thyroid cancer (ATC)/ poorly differentiated thyroid cancer (PDTC) patients who had PI3K/mTOR/AKT alterations, including TSC2, FLCN or NF1, showed impressive progression-free survival (PFS) of 15.2 months after receiving everolimus^[146]. mTOR inhibition via rapamycin also demonstrated potential in inhibiting the growth of renal cells deficient in FLCN in the preclinical setting^[147].

NF2 Heterozygous deletion

Biological Impact

The neurofibromin (NF2) gene encodes the protein Merlin, a tumor suppressor that functions as a negative regulator of the PI3K/AKT/mTOR pathway^{[148][149][150]}. NF2 is a haploinsufficient tumor suppressor gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[151]. Inactivation germline mutations in the NF2 are associated with the hereditary neurofibromatosis type 2, a disorder characterized by the growth of noncancerous tumors in the nervous system^{[148][152]}. Somatic mutations or deletion of NF2 are frequently observed in human cancers, including 20-50% of pleural mesotheliomas^[153], 6% papillary renal cell carcinoma, 5% pancreas cancer, and 4% melanoma (cbioPortal; June 2015), and less frequently in other cancers^[154].

Therapeutic and prognostic relevance

Genomic alterations with activating effects on the mTOR signaling pathway have been identified to confer sensitivity to everolimus across multiple cancer types^{[73][155][156][157]}. There are at least two case studies indicating the clinical efficacy of everolimus in bladder cancer and urothelial carcinoma^{[158][159]}, both harboring NF2 truncating mutations. Preclinical evidence has shown the efficacy of MEK1/2 inhibitor selumetinib in KRAS-mutant thyroid cancer model with NF2 loss^[160].

Analysis of afatinib-plus-cetuximab-resistant biopsy specimens revealed a loss-of-function alteration in genes that modulate mTOR signaling pathway, including NF2 and TSC1^[161].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 10 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

RAD50 Heterozygous deletion

Biological Impact

The RAD50 gene encodes a highly-conserved DNA double-strand break (DSB) repair factor. It forms MRN complex with NBS1 and MRE11 protein and is involved in sensing and early processing of DSB, cell cycle checkpoints, DNA recombination and maintenance of telomeres^{[162][163]}. Mutations in the components of the MRN complex could increase susceptibility to familial breast cancer^{[164][165]}, gastric cancer^[166], colorectal cancer^[167], and urothelial cancer^[168]. RAD50 has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[169]. Besides, RAD50 deletion was also suggested as a marker of BRCAness, a phenotype shared between non-BRCA1/2-mutated ovarian cancers and BRCA1/2-mutated ovarian cancers^[170].

Therapeutic and prognostic relevance

Preclinical data showed that knockdown of the RAD50 gene in ovarian cancer cell lines was significantly associated with better responses to two PARP inhibitors, olaparib and rucaparib^[170]. RAD50 has been selected as an inclusion criterion for the trials examining talazoparib efficacy in HER2-negative breast cancer, olaparib efficacy in breast cancer, rucaparib efficacy in metastatic prostate cancer and niraparib efficacy in any malignancy (except prostate) (NCT02401347, NCT03207347, NCT03344965, NCT03413995).

RAD51C Heterozygous deletion

Biological Impact

The RAD51C (RAD51 paralog C) encodes a member of the RAD51 protein family involved in the late phase of homologous recombination DNA repair. Germline mutations in RAD51C have been shown to confer increased susceptibility to ovarian cancer and head and neck squamous cell carcinoma (HNSCC)^{[171][172][173][174][175]}. Amplification of RAD51C has been implicated in tumor progression^{[176][177]}. RAD51C is a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological function^[178].

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[124].

A preclinical study using gastric cancer xenograft model showed that RAD51C deficiency caused sensitivity to PARP inhibitor olaparib^[179].

RAD51C loss of function mutation has been determined as an inclusion criterion for the trials evaluating rucaparib efficacy in ovarian cancer or prostate cancer^{[125][139]}; talazoparib efficacy in HER2-negative breast cancer (NCT02401347) or prostate cancer (NCT03148795), and niraparib efficacies in pancreatic cancer (NCT03553004).

SMAD4 Heterozygous deletion

Biological Impact

The SMAD family member 4 (SMAD4) gene encodes a transcription factor that acts as a downstream effector in the TGF- β signaling pathway. Upon phosphorylated and activated by serine-threonine receptor kinase, Smad4 is the Co-Smad which recruits other activated R-Smad proteins to the Smad transcriptional complex and regulate TGF- β -targeted genes^[180]. Smad4 has been identified as a haploinsufficient gene with one copy loss may lead to a weak protein expression and is insufficient to execute its original physiological function^[181].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 11 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

SMAD4 germline mutations are associated with juvenile polyposis syndrome (JPS)^{[182][183][184][185]}. Somatic mutations of SMAD4 are commonly observed in pancreatic cancer^[186], colorectal cancer (CRC)^{[184][187][188]}, and less frequently seen in other cancers such as lung adenocarcinoma^[189], head and neck cancer^{[190][191]}, and cutaneous squamous cell carcinoma^[192].

Therapeutic and prognostic relevance

In Chinese patients with metastatic colorectal cancer, SMAD4 or NF1 mutations are suggested as a potential biomarker for poor prognosis to cetuximab-based therapy^[193]. Preclinical data demonstrated that depletion of SMAD4 by shRNA knockdown increased clonogenic survival and cetuximab resistance in HPV-negative head and neck squamous cell carcinoma cells^[194].

SMAD4 is also suggested as a predictive marker for 5-fluorouracil-based chemotherapy in colorectal cancer (CRC)^{[195][196]}. CRC patients with normal SMAD4 diploidy exhibited three-fold higher benefit of 5-FU/mitomycin-based adjuvant therapy when compared with those with SMAD4 deletion^[197].

Results from clinical and meta-analyses showed that loss of SMAD4 in CRC, pancreatic cancer was correlated with poor prognosis^{[198][199][200][201][202][203][204][205]}. In cervical cancer patients, weak cytoplasmic SMAD4 expression and absent nuclear SMAD4 expression were shown to be significantly associated with poor disease-free and overall 5-year survival^[206].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 12 of 37

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

- FDA Approval Summary of Everolimus (AFINITOR)

RADIANT-4 ^[207]	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)
NCT01524783	
NC101324763	Everolimus vs. Placebo [PFS(M): 11 vs. 3.9]
BOLERO-2 ^[208]	Breast cancer (Approved on 2012/07/20)
NCT00863655	ER+/HER2-
110100000000000000000000000000000000000	Everolimus + exemestane vs. Placebo + exemestane [PFS(M): 7.8 vs. 3.2]
EXIST-2	Tuberous sclerosis complex (tsc)-associated renal angiomyolipoma (Approved on 2012/04/26)
NCT00790400	-
	Everolimus vs. Placebo [ORR(%): 41.8 vs. 0]
DADIANT 2[74]	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)
RADIANT-3 ^[74] NCT00510068	-
NC 1005 10066	Everolimus vs. Placebo [PFS(M): 11 vs. 4.6]
EXIST-1 ^[209]	Subependymal giant cell astrocytoma (Approved on 2010/10/29)
NCT00789828	
NC100709020	Everolimus vs. Placebo [ORR(%): 35.0]
RECORD-1 ^[210]	Renal cell carcinoma (Approved on 2009/05/30)
NCT00410124	-
NC100410124	Everolimus vs. Placebo [PFS(M): 4.9 vs. 1.9]

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

DDIMA	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)
PRIMA NCT02655016	-
	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]
NOVA ^[128]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
NCT01847274	-
	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 13 of 37

ACTOnco® + Report

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

OhamaiA	HER2-negative high-risk early breast cancer (Approved on 2022/03/11)					
OlympiA NCT02032823	HER2-/gBRCA mutation					
NC102032023	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]					
DDO5	Prostate cancer (Approved on 2020/05/19)					
PROfound ^[124]	HRR genes mutation					
NCT02987543	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]					
DAGLA 4[110]	Ovarian cancer (Approved on 2020/05/08)					
PAOLA-1 ^[119]	HRD+					
NCT02477644	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]					
DOL 0[123]	Pancreatic adenocarcinoma (Approved on 2019/12/27)					
POLO ^[123]	gBRCA mutation					
NCT02184195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]					
001 0 4[118]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)					
SOLO-1 ^[118]	gBRCA mutation or sBRCA mutation					
NCT01844986	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]					
OI :4 D[122]	Breast cancer (Approved on 2018/02/06)					
OlympiAD ^[122]	HER2-/gBRCA mutation					
NCT02000622	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]					
201 0 0/ENOOT 0: 04/2111	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)					
SOLO-2/ENGOT-Ov21 ^[211] NCT01874353	gBRCA mutation					
NC101074333	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]					
C4d. d 0[212]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)					
Study19 ^[212]	-					
NCT00753545	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]					

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITON2	Prostate cancer (Approved on 2020/05/15)
	gBRCA mutation or sBRCA mutation
NCT02952534	Rucaparib [ORR(%): 44.0, DOR(M): NE]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
ARIEL3 [125]	
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS
	(tBRCA)(M): 16.6 vs. 5.4]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **14** of **37**

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

EMBRACA ^[129]	Breast cancer (Approved on 2018/10/16)
NCT01945775	HER2-/gBRCA mutation
NC101945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

Temsirolimus (TORISEL)

Temsirolimus is a soluble ester of sirolimus (rapamycin, brand-name drug Rapamune) and functions as an inhibitor of mammalian target of rapamycin complex (mTORC). The inhibitory molecular mechanism is similar to Everolimus. Temsirolimus is developed by Wyeth Pharmaceuticals and marketed by Pfizer under the trade name TORISEL.

- FDA Approval Summary of Temsirolimus (TORISEL)

[213]	Renal cell carcinoma (Approved on 2007/05/30)
NCT00065468	-
NC10005466	Temsirolimus vs. IFN-α [OS(M): 10.9 vs. 7.3]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 15 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **16** of **37**

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
APC	R876*	16	c.2626C>T	NM_000038	COSM18852	44.4%	495
KRAS	G12D	2	c.35G>A	NM_004985	COSM521	29.3%	1911
PTEN	Y27C	2	c.80A>G	NM_000314	COSM5134	58.7%	143
TP53	R306*	8	c.916C>T	NM_000546	COSM10663	45.3%	918

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 17 of 37

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ALK	R292H	3	c.875G>A	NM_004304	-	51.2%	1665
CTLA4	K188R	3	c.563A>G	NM_005214	COSM6991106	50.2%	1286
PAX8	F305L	9	c.915C>G	NM_003466	-	50.1%	1069
SMARCB1	D282V	7	c.845A>T	NM_003073	-	30.8%	863
SYNE1	V61I	5	c.181G>A	NM_182961	COSM9354692	27.5%	1300
UBR5	I2604V	55	c.7810A>G	NM_015902	-	35.6%	118

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 18 of 37

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

- Collection date: Apr 23, 2022
- Facility retrieved: 臺北榮總
- H&E-stained section No.: S11116920D
- Collection site: Colon
- Examined by: Dr. Chien-Ta Chiang
 - 1. The percentage of viable tumor cells in total cells in the whole slide (%): 15%
 - 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 35%
 - 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
 - 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
 - 5. Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco®+

DNA test

- Mean Depth: 944x
- Target Base Coverage at 100x: 94%

RNA test

- Average unique RNA Start Sites per control GSP2: 144

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 19 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699 ONC

Date Reported: Dec 29, 2022

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 20, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at 100x ≥ 85% with a mean coverage ≥ 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 20 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or lon S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師黃靖婷 博士 Ching-Ting Huang Ph.D. 檢字第 016511 號 CTHUANG

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

COLLEGE J ANERICON PRINCIPOGGISS Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **21** of **37**

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	ВТК	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	ЕРНА7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA1
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	КМТ2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	МАРЗК7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	МИТҮН	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	РІКЗСЗ
PIK3CA	РІКЗСВ	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

4111			FCFD4									
	BRAF	ECED	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1
		EGFK										

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 22 of 37

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect
FLCN	Everolimus, Temsirolimus	sensitive
NF2	Everolimus, Temsirolimus	sensitive
BRCA1	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
CHEK2	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
RAD50	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
RAD51C	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
SMAD4	Cetuximab	resistant

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Olaparib, Niraparib, Rucaparib, Talazoparib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 23 of 37

ACTOnco® + Report

1: Everolimus, Temsirolimus

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **24** of **37**

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29. 2022

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報 告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 25 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699 ONC

Date Reported: Dec 29, 2022

ACTOnco® + Report

REFERENCE

- PMID: 24200292; 2014, Curr Drug Targets;15(1):90-102 1. Exploiting APC function as a novel cancer therapy.
- PMID: 18848448; 2008, Trends Cell Biol;18(12):587-96 APC shuttling to the membrane, nucleus and beyond.
- PMID: 18662849; 2008, Cancer Lett;271(2):272-80 A novel function of adenomatous polyposis coli (APC) in regulating DNA repair.
- PMID: 27302369; 2016, Nat Commun;7():11743 A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC.
- PMID: 2453289; 1988, Cell;53(4):549-54 Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.
- PMID: 2114981; 1990, Eur J Clin Invest;20(3):225-35 ras oncogenes: their role in neoplasia.
- PMID: 20617134; 2010, J Biomed Biotechnol;2010():150960 Clinical relevance of KRAS in human cancers.
- PMID: 21993244; 2011, Nat Rev Cancer;11(11):761-74 RAS oncogenes: weaving a tumorigenic web.
- PMID: 3047672; 1988, Nucleic Acids Res;16(16):7773-82 KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas.
- PMID: 3587348; 1987, Nature;327(6120):293-7 10. Prevalence of ras gene mutations in human colorectal cancers.
- PMID: 1942608; 1991, Nihon Shokakibyo Gakkai Zasshi;88(8):1539-44 11. [Prevalence of K-ras gene mutations in human colorectal cancers].
- PMID: 2252272; 1990, Am Rev Respir Dis;142(6 Pt 2):S27-30 The ras oncogenes in human lung cancer.
- PMID: 1486840; 1992, Environ Health Perspect;98():13-24 13. Role of proto-oncogene activation in carcinogenesis.
- PMID: 16474405; 2006, Nat Genet;38(3):331-6 14. Germline KRAS mutations cause Noonan syndrome.
- PMID: 26037647; 2015, Mol Cancer Res;13(9):1325-35 Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations.
- 16. PMID: 22871572; 2012, Mol Cancer Res;10(9):1228-39 KRAS(G12D)- and BRAF(V600E)-induced transformation of murine pancreatic epithelial cells requires MEK/ERK-stimulated IGF1R signaling.
- PMID: 25414119: 2014. Drugs:74(18):2111-28 17. The biology and clinical development of MEK inhibitors for cancer.
- PMID: 25265492; 2014, N Engl J Med;371(20):1877-88 Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma.
- 19 PMID: 22663011; 2012, N Engl J Med;367(2):107-14 Improved survival with MEK inhibition in BRAF-mutated melanoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 26 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

- PMID: 25265494; 2014, N Engl J Med;371(20):1867-76
 Combined vemurafenib and cobimetinib in BRAF-mutated melanoma.
- 21. PMID: 29573941; 2018, Lancet Oncol;19(5):603-615
 Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial.
- PMID: 26075998; 2014, Gynecol Oncol Rep;10():28-9
 Response to MEK inhibitor in small cell neuroendocrine carcinoma of the cervix with a KRAS mutation.
- PMID: 29946554; 2018, Gynecol Oncol Rep;25():41-44
 Binimetinib (MEK162) in recurrent low-grade serous ovarian cancer resistant to chemotherapy and hormonal treatment.
- 24. PMID: 25722381; 2015, Ann Oncol;26(5):894-901 A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)†.
- 25. PMID: 24947927; 2014, Clin Cancer Res;20(16):4251-61
 Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations.
- PMID: 27340376; 2016, Curr Colorectal Cancer Rep;12():141-150
 Molecular Subtypes and Personalized Therapy in Metastatic Colorectal Cancer.
- 27. PMID: 22392911; 2012, Clin Cancer Res;18(9):2515-25
 Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas.
- PMID: 26369631; 2016, Clin Cancer Res;22(2):405-14
 Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy That Cotargets MEK and CDK4/6.
- PMID: 25937522; 2015, Eur J Cancer;51(10):1243-52
 FOLFOX4 plus cetuximab treatment and RAS mutations in colorectal cancer
- 30. PMID: 19188670; 2009, J Clin Oncol;27(12):2091-6
 American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy.
- 31. PMID: 18802721; 2008, Virchows Arch;453(5):417-31 KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program.
- PMID: 25605843; 2015, J Clin Oncol;33(7):692-700
 Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer.
- PMID: 27422777; 2016, Tumour Biol;37(9):11645-11655
 Potential biomarkers for anti-EGFR therapy in metastatic colorectal cancer.
- PMID: 24024839; 2013, N Engl J Med;369(11):1023-34
 Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer.
- 35. PMID: 24666267; 2014, Acta Oncol;53(7):852-64
 The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis.
- 36. PMID: 27722750; 2017, JAMA Oncol;3(2):194-201 Prognostic and Predictive Relevance of Primary Tumor Location in Patients With RAS Wild-Type Metastatic Colorectal Cancer: Retrospective Analyses of the CRYSTAL and FIRE-3 Trials.
- 37. PMID: 27736842; 2016, Br J Cancer;115(10):1206-1214

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 27 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

A phase 3 trial evaluating panitumumab plus best supportive care vs best supportive care in chemorefractory wild-type KRAS or RAS metastatic colorectal cancer.

- 38. PMID: 20921465; 2010, J Clin Oncol;28(31):4697-705
 - Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study.
- 39. PMID: 24407191; 2014, Br J Cancer;110(5):1148-54
 - Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours: a multicentre Phase I/II trial.
- 40. PMID: 23224737; 2013, Clin Cancer Res;19(3):743-51
 - A phase II study of sorafenib in patients with platinum-pretreated, advanced (Stage IIIb or IV) non-small cell lung cancer with a KRAS mutation.
- 41. PMID: 26307133; 2016, Clin Cancer Res;22(2):374-82
 Copy Number Changes Are Associated with Response to Treatment with Carboplatin, Paclitaxel, and Sorafenib in Melanoma.
- 42. PMID: 23828442; 2013, Med Oncol;30(3):650
 - KRAS as prognostic biomarker in metastatic colorectal cancer patients treated with bevacizumab: a pooled analysis of 12 published trials.
- 43. PMID: 28632865; 2017, JAMA;317(23):2392-2401
 - Effect of First-Line Chemotherapy Combined With Cetuximab or Bevacizumab on Overall Survival in Patients With KRAS Wild-Type Advanced or Metastatic Colorectal Cancer: A Randomized Clinical Trial.
- 44. PMID: 18349398; 2008, J Clin Oncol;26(9):1472-8
 - Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib.
- 45. PMID: 23401440; 2013, J Clin Oncol;31(8):1112-21
 - KRAS mutation: should we test for it, and does it matter?
- 46. PMID: 18024870; 2007, J Clin Oncol;25(33):5240-7
 - $Prognostic \ and \ predictive \ importance \ of \ p53 \ and \ RAS \ for \ adjuvant \ chemotherapy \ in \ non \ small-cell \ lung \ cancer.$
- 47. PMID: 15923428; 2005, Ann Oncol;16 Suppl 4():iv44-49
 - Prognostic and predictive factors in colorectal cancer: Kirsten Ras in CRC (RASCAL) and TP53CRC collaborative studies.
- 48. PMID: 26484411; 2015, Br J Cancer;113(9):1254-8
 - Impact of mutational status on survival in low-grade serous carcinoma of the ovary or peritoneum.
- 49. PMID: 24549645; 2013, J Pathol;231(4):449-56
 - KRAS (but not BRAF) mutations in ovarian serous borderline tumour are associated with recurrent low-grade serous carcinoma.
- 50. PMID: 17218262; 2007, Cell;128(1):157-70
 - Essential role for nuclear PTEN in maintaining chromosomal integrity.
- 51. PMID: 18794879; 2008, Oncogene;27(41):5443-53
 - PTEN: a new guardian of the genome.
- 52. PMID: 18767981; 2009, Annu Rev Pathol;4():127-50
 - PTEN and the PI3-kinase pathway in cancer.
- 53. PMID: 21125671; 2011, J Pathol;223(2):137-46
 - Haplo-insufficiency: a driving force in cancer.
- PMID: 11553783; 2001, Proc Natl Acad Sci U S A;98(20):11563-8
 Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression.
- 55. PMID: 20400965; 2010, Nat Genet;42(5):454-8
 - Subtle variations in Pten dose determine cancer susceptibility.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 28 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

56. PMID: 9467011; 1998, Hum Mol Genet;7(3):507-15

Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation.

57. PMID: 24136893; 2013, J Natl Cancer Inst;105(21):1607-16

Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria.

58. PMID: 21430697; 2011, Nat Rev Cancer;11(4):289-301

PTEN loss in the continuum of common cancers, rare syndromes and mouse models.

59. PMID: 18455982; 2008, Cell;133(3):403-14

Tenets of PTEN tumor suppression.

60. PMID: 9393738; 1997, Cancer Res;57(23):5221-5

MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines.

61. PMID: 9829719; 1998, Clin Cancer Res;4(11):2577-83

Loss of heterozygosity and mutational analysis of the PTEN/MMAC1 gene in synchronous endometrial and ovarian carcinomas.

62. PMID: 9582022; 1998, Oncogene;16(13):1743-8

Analysis of PTEN and the 10q23 region in primary prostate carcinomas.

63. PMID: 9671321; 1998, Oncogene; 17(1):123-7

Allelic loss of chromosome 10q23 is associated with tumor progression in breast carcinomas.

64. PMID: 32350270; 2020, Nat Commun;11(1):2073

Multi-model functionalization of disease-associated PTEN missense mutations identifies multiple molecular mechanisms underlying protein dysfunction.

65. PMID: 11504908; 2001, Proc Natl Acad Sci U S A;98(18):10314-9

Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR.

66. PMID: 23714559; 2013, Am Soc Clin Oncol Educ Book;():

Targeting the PI3K/AKT/mTOR pathway: biomarkers of success and tribulation.

67. PMID: 20231295; 2010, J Biol Chem;285(20):14980-9

Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110beta and p110delta catalytic subunits.

68. PMID: 23287563; 2013, Clin Cancer Res;19(7):1760-72

Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models.

69. PMID: 17047067; 2006, Cancer Res;66(20):10040-7

Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells.

70. PMID: 22422409; 2012, Clin Cancer Res;18(6):1777-89

PIK3CA/PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitors.

71. PMID: 22662154; 2012, PLoS One;7(5):e37431

Genotype-dependent efficacy of a dual PI3K/mTOR inhibitor, NVP-BEZ235, and an mTOR inhibitor, RAD001, in endometrial carcinomas.

72. PMID: 23136191; 2012, Clin Cancer Res;18(24):6771-83

Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models.

73. PMID: 27091708; 2016, J Clin Oncol;34(18):2115-24

Molecular Alterations and Everolimus Efficacy in Human Epidermal Growth Factor Receptor 2-Overexpressing Metastatic Breast Cancers: Combined Exploratory Biomarker Analysis From BOLERO-1 and BOLERO-3.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 29 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

- PMID: 21306238; 2011, N Engl J Med;364(6):514-23
 Everolimus for advanced pancreatic neuroendocrine tumors.
- 75. PMID: 23582881; 2013, Eur Urol;64(1):150-8
 Phase 2 trial of single-agent everolimus in chemotherapy-naive patients with castration-resistant prostate cancer (SAKK 08/08).
- 76. PMID: 28330462; 2017, BMC Cancer;17(1):211
 Prospective phase II trial of everolimus in PIK3CA amplification/mutation and/or PTEN loss patients with advanced solid tumors refractory to standard therapy.
- 77. PMID: 27016228; 2016, Gynecol Oncol;141(1):43-8 Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study.
- 78. PMID: 26951309; 2016, J Clin Oncol;34(14):1660-8
 Randomized Open-Label Phase II Trial of Apitolisib (GDC-0980), a Novel Inhibitor of the PI3K/Mammalian Target of Rapamycin Pathway,
 Versus Everolimus in Patients With Metastatic Renal Cell Carcinoma.
- PMID: 15324695; 2004, Cancer Cell;6(2):117-27
 PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients.
- 80. PMID: 20813970; 2010, Am J Pathol;177(4):1647-56 PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer.
- 81. PMID: 21135276; 2011, J Clin Oncol;29(2):166-73
 Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers.
- 82. PMID: 21594665; 2011, Breast Cancer Res Treat;128(2):447-56
 Evaluation of the association of PIK3CA mutations and PTEN loss with efficacy of trastuzumab therapy in metastatic breast cancer.
- 83. PMID: 17936563; 2007, Cancer Cell;12(4):395-402
 A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer.
- PMID: 18700047; 2008, BMC Cancer;8():234
 Potential value of PTEN in predicting cetuximab response in colorectal cancer: an exploratory study.
- PMID: 17940504; 2007, Br J Cancer;97(8):1139-45
 PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients.
- 86. PMID: 19398573; 2009, J Clin Oncol;27(16):2622-9 PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer.
- PMID: 19953097; 2010, Br J Cancer;102(1):162-4
 PTEN status in advanced colorectal cancer treated with cetuximab.
- PMID: 27605871; 2016, World J Gastroenterol;22(28):6345-61
 Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer.
- PMID: 19351834; 2009, Cancer Res;69(8):3256-61
 PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR.
- PMID: 23133538; 2012, PLoS One;7(10):e48004
 Modeling of tumor progression in NSCLC and intrinsic resistance to TKI in loss of PTEN expression.
- 91. PMID: 23592446; 2013, J Cell Biochem;114(6):1248-56 mTOR inhibitors radiosensitize PTEN-deficient non-small-cell lung cancer cells harboring an EGFR activating mutation by inducing autophagy.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 30 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

- PMID: 26645196; 2016, Cancer Discov;6(2):202-16
 Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy.
- 93. PMID: 28228279; 2017, Immunity;46(2):197-204
 Loss of PTEN Is Associated with Resistance to Anti-PD-1 Checkpoint Blockade Therapy in Metastatic Uterine Leiomyosarcoma.
- PMID: 30150660; 2018, Nat Genet;50(9):1271-1281
 Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors.
- PMID: 21468130; 2011, Nat Rev Clin Oncol;8(5):302-6
 Treatment with olaparib in a patient with PTEN-deficient endometrioid endometrial cancer.
- 96. PMID: 23810788; 2013, Lancet Oncol;14(9):882-92
 The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial.
- 97. PMID: 23565244; 2013, PLoS One;8(4):e60408
 PARP inhibition sensitizes to low dose-rate radiation TMPRSS2-ERG fusion gene-expressing and PTEN-deficient prostate cancer cells.
- PMID: 31980996; 2020, Target Oncol;15(1):101-113
 Genetic Profiling of Advanced Melanoma: Candidate Mutations for Predicting Sensitivity and Resistance to Targeted Therapy.
- PMID: 24739573; 2014, Nat Rev Cancer;14(5):359-70
 Unravelling mechanisms of p53-mediated tumour suppression.
- 100. PMID: 27998224; 2016, J Clin Oncol;34(36):4354-4361
 Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.
- 101. PMID: 26646755; 2016, Ann Oncol;27(3):539-43
 TP53 mutational status is predictive of pazopanib response in advanced sarcomas.
- 102. PMID: 25669829; 2015, Ann Oncol;26(5):1012-8
 Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation.
- 103. PMID: 27466356; 2016, Mol Cancer Ther;15(10):2475-2485
 TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.
- 104. PMID: 23670029; 2013, Oncotarget;4(5):705-14
 P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy.
- PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14
 Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.
- 106. PMID: 21399868; 2011, Int J Oncol;38(5):1445-52 p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.
- 107. PMID: 20549698; 2011, Int J Cancer;128(8):1813-21 p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.
- 108. PMID: 10786679; 2000, Cancer Res;60(8):2155-62 Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.
- 109. PMID: 25672981; 2015, Cancer Res;75(7):1187-90
 VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.
- PMID: 21285145; 2011, Ann Oncol;22 Suppl 1():i11-7
 Genetic modifiers of cancer risk for BRCA1 and BRCA2 mutation carriers.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 31 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

- 111. PMID: 22193408; 2011, Nat Rev Cancer;12(1):68-78 BRCA1 and BRCA2: different roles in a common pathway of genome protection.
- 112. PMID: 25472942; 2015, Cancer Discov;5(2):135-42
 Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype
- 113. PMID: 27283171; 2016, J Natl Compr Canc Netw;14(6):795-806
 The Relevance of Hereditary Cancer Risks to Precision Oncology: What Should Providers Consider When Conducting Tumor Genomic Profiling?
- 114. PMID: 12941823; 2003, Cancer Res;63(16):4978-83 Haplo-insufficiency of BRCA1 in sporadic breast cancer.
- 115. PMID: 21987798; 2011, Proc Natl Acad Sci U S A;108(43):17773-8

 Mutation of a single allele of the cancer susceptibility gene BRCA1 leads to genomic instability in human breast epithelial cells.
- 116. PMID: 17404506; 2007, Cell Cycle;6(8):962-71
 BRCA1 haploinsufficiency, but not heterozygosity for a BRCA1-truncating mutation, deregulates homologous recombination.
- 117. PMID: 25452441; 2015, J Clin Oncol;33(4):304-11
 Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer.
- PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.
- PMID: 28884698; 2017, Lancet Oncol;18(9):e510
 Correction to Lancet Oncol 2017; 18: 1274-84.
- PMID: 22452356; 2012, N Engl J Med;366(15):1382-92
 Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer.
- PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- 125. PMID: 28916367; 2017, Lancet;390(10106):1949-1961 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 126. PMID: 28882436; 2017, Gynecol Oncol;147(2):267-275
 Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: Integrated analysis of data from Study 10 and ARIEL2.
- PMID: 31562799; 2019, N Engl J Med;381(25):2391-2402
 Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- 129. PMID: 30110579; 2018, N Engl J Med;379(8):753-763

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 32 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.

- PMID: 21088254; 2011, Clin Cancer Res;17(3):401-5
 Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability.
- PMID: 15261141; 2004, Cancer Cell;6(1):45-59
 Chk1 is haploinsufficient for multiple functions critical to tumor suppression.
- PMID: 15539958; 2005, Cell Cycle;4(1):131-9
 Chk1 is essential for tumor cell viability following activation of the replication checkpoint.
- PMID: 23296741; 2013, Fam Cancer;12(3):473-8
 The risk of gastric cancer in carriers of CHEK2 mutations.
- 134. PMID: 24713400; 2014, Hered Cancer Clin Pract;12(1):10
 A risk of breast cancer in women carriers of constitutional CHEK2 gene mutations, originating from the North Central Poland.
- 135. PMID: 25583358; 2015, Int J Cancer;137(3):548-52
 CHEK2 mutations and the risk of papillary thyroid cancer.
- PMID: 12052256; 2002, Breast Cancer Res;4(3):R4
 Mutation analysis of the CHK2 gene in breast carcinoma and other cancers.
- 137. PMID: 15125777; 2004, Mol Cancer;3():14
 CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer.
- 138. PMID: 33119476; 2020, J Clin Oncol;38(36):4274-4282
 TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes.
- 139. PMID: 32086346; 2020, Clin Cancer Res;26(11):2487-2496
 Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate Cancer: Analysis From the Phase II TRITON2 Study.
- 140. PMID: 24095279; 2013, Mol Cell;52(4):495-505
 The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1.
- 141. PMID: 26342594; 2016, Fam Cancer;15(1):127-32
 Birt-Hogg-Dubé syndrome: novel FLCN frameshift deletion in daughter and father with renal cell carcinomas.
- PMID: 23223565; 2013, J Clin Pathol;66(3):178-86
 Birt-Hogg-Dube syndrome: clinicopathological features of the lung.
- 143. PMID: 19850877; 2009, Proc Natl Acad Sci U S A;106(44):18722-7 Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2.
- 144. PMID: 24908670; 2014, Hum Mol Genet; 23(21):5706-19
 Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation.
- 145. PMID: 15956655; 2005, J Natl Cancer Inst;97(12):931-5
 High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dubé-associated renal tumors.
- 146. PMID: 29301825; 2018, Clin Cancer Res;24(7):1546-1553
 Genomic Correlates of Response to Everolimus in Aggressive Radioiodine-refractory Thyroid Cancer: A Phase II Study.
- 147. PMID: 26418749; 2015, Oncotarget;6(32):32761-73
 Flon-deficient renal cells are tumorigenic and sensitive to mTOR suppression.
- 148. PMID: 25893302; 2016, Oncogene;35(5):537-48 Role of Merlin/NF2 inactivation in tumor biology.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 33 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

out

ACTOnco® + Report

- 149. PMID: 19451229; 2009, Mol Cell Biol;29(15):4235-49
 Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling.
- 150. PMID: 19451225; 2009, Mol Cell Biol;29(15):4250-61
 NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth.
- PMID: 17655741; 2007, Brain Pathol;17(4):371-6
 Role of NF2 haploinsufficiency in NF2-associated polyneuropathy.
- PMID: 19545378; 2009, Orphanet J Rare Dis;4():16
 Neurofibromatosis type 2 (NF2): a clinical and molecular review.
- 153. PMID: 21642991; 2011, Nat Genet;43(7):668-72
 The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma.
- 154. PMID: 24393766; 2014, Oncotarget;5(1):67-77
 NF2/merlin in hereditary neurofibromatosis 2 versus cancer: biologic mechanisms and clinical associations.
- 155. PMID: 26503204; 2016, J Clin Oncol;34(5):419-26 Correlative Analysis of Genetic Alterations and Everolimus Benefit in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Results From BOLERO-2.
- 156. PMID: 24833916; 2014, Breast Cancer (Dove Med Press);6():43-57
 Use of mTOR inhibitors in the treatment of breast cancer: an evaluation of factors that influence patient outcomes.
- 157. PMID: 26859683; 2016, Oncotarget;7(9):10547-56
 Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus.
- 158. PMID: 22923433; 2012, Science;338(6104):221 Genome sequencing identifies a basis for everolimus sensitivity.
- 159. PMID: 25630452; 2015, Eur Urol;67(6):1195-1196
 Exceptional Response on Addition of Everolimus to Taxane in Urothelial Carcinoma Bearing an NF2 Mutation.
- 160. PMID: 26359368; 2015, Cancer Discov;5(11):1178-93
 NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition.
- 161. PMID: 24813888; 2014, Cell Rep;7(4):999-1008
 Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1.
- 162. PMID: 9315668; 1997, Mol Cell Biol;17(10):6087-96 hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks.
- 163. PMID: 16467875; 2006, Cell Res;16(1):45-54
 The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control.
- 164. PMID: 16385572; 2006, Int J Cancer;118(11):2911-6 Evaluation of RAD50 in familial breast cancer predisposition.
- 165. PMID: 24894818; 2014, Breast Cancer Res;16(3):R58
 Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study.
- 166. PMID: 18440592; 2008, Hum Pathol;39(6):925-32
 Gastric cancer with high-level microsatellite instability: target gene mutations, clinicopathologic features, and long-term survival.
- 167. PMID: 11196187; 2001, Cancer Res;61(1):36-8 Frameshift mutations at coding mononucleotide repeats of the hRAD50 gene in gastrointestinal carcinomas with microsatellite instability.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 34 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

- 168. PMID: 24934408; 2014, Cancer Discov;4(9):1014-21 Synthetic lethality in ATM-deficient RAD50-mutant tumors underlies outlier response to cancer therapy.
- 169. PMID: 16474176; 2006, Carcinogenesis;27(8):1593-9 RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability.
- 170. PMID: 27016230; 2016, Gynecol Oncol;141(1):57-64

 Copy number deletion of RAD50 as predictive marker of BRCAness and PARP inhibitor response in BRCA wild type ovarian cancer.
- 171. PMID: 20400964; 2010, Nat Genet; 42(5): 410-4
 Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene.
- 172. PMID: 21990120; 2012, Hum Mutat;33(1):95-9
 Analysis of RAD51C germline mutations in high-risk breast and ovarian cancer families and ovarian cancer patients.
- 173. PMID: 21616938; 2011, Hum Mol Genet;20(16):3278-88 RAD51C is a susceptibility gene for ovarian cancer.
- 174. PMID: 22538716; 2012, Nat Genet;44(5):475-6; author reply 476
 Germline RAD51C mutations confer susceptibility to ovarian cancer.
- 175. PMID: 24315737; 2014, Oral Oncol;50(3):196-9 RAD51C--a new human cancer susceptibility gene for sporadic squamous cell carcinoma of the head and neck (HNSCC).
- PMID: 11034073; 2000, Cancer Res;60(19):5371-5
 17q23 amplifications in breast cancer involve the PAT1, RAD51C, PS6K, and SIGma1B genes.
- PMID: 11034067; 2000, Cancer Res;60(19):5340-4
 Multiple genes at 17q23 undergo amplification and overexpression in breast cancer.
- 178. PMID: 20471405; 2010, Mutat Res;689(1-2):50-8
 Rad51C is essential for embryonic development and haploinsufficiency causes increased DNA damage sensitivity and genomic instability.
- 179. PMID: 23512992; 2013, Mol Cancer Ther;12(6):865-77 RAD51C-deficient cancer cells are highly sensitive to the PARP inhibitor olaparib.
- 180. PMID: 25935112; 2015, Trends Biochem Sci;40(6):296-308 Structural determinants of Smad function in TGF-β signaling.
- 181. PMID: 19014666; 2008, Pathogenetics;1(1):2 Smad4 haploinsufficiency: a matter of dosage.
- 182. PMID: 9545410; 1998, Am J Hum Genet;62(5):1129-36 A gene for familial juvenile polyposis maps to chromosome 18q21.1.
- 183. PMID: 8553070; 1996, Science;271(5247):350-3
 DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.
- 184. PMID: 8673134; 1996, Nat Genet;13(3):343-6 Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers.
- 185. PMID: 18662538; 2008, Cell;134(2):215-30 TGFbeta in Cancer.
- PMID: 9135016; 1997, Cancer Res;57(9):1731-4
 Tumor-suppressive pathways in pancreatic carcinoma.
- PMID: 23139211; 2013, Cancer Res;73(2):725-35
 SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 35 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

- PMID: 22810696; 2012, Nature;487(7407):330-7
 Comprehensive molecular characterization of human colon and rectal cancer.
- 189. PMID: 25890228; 2015, World J Surg Oncol;13():128
 Clinical outcome and expression of mutant P53, P16, and Smad4 in lung adenocarcinoma: a prospective study.
- PMID: 19841540; 2009, J Clin Invest;119(11):3208-11
 Smad4: gatekeeper gene in head and neck squamous cell carcinoma.
- 191. PMID: 15867212; 2005, Clin Cancer Res;11(9):3191-7
 Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma.
- PMID: 25589618; 2015, Clin Cancer Res;21(6):1447-56
 Genomic analysis of metastatic cutaneous squamous cell carcinoma.
- 193. PMID: 29703253; 2018, BMC Cancer;18(1):479 SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients.
- 194. PMID: 28522603; 2017, Clin Cancer Res;23(17):5162-5175
 SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells.
- PMID: 16144935; 2005, Clin Cancer Res;11(17):6311-6
 SMAD4 levels and response to 5-fluorouracil in colorectal cancer.
- 196. PMID: 24384683; 2014, Br J Cancer;110(4):946-57 Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.
- PMID: 12237773; 2002, Br J Cancer;87(6):630-4
 SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer.
- 198. PMID: 25749173; 2015, Transl Oncol;8(1):18-24
 A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer.
- 199. PMID: 19478385; 2009, Cell Oncol;31(3):169-78
 Presence of a high amount of stroma and downregulation of SMAD4 predict for worse survival for stage I-II colon cancer patients.
- PMID: 25681512; 2015, J Clin Pathol;68(5):341-5
 Smad4 inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer.
- PMID: 26861460; 2016, Clin Cancer Res;22(12):3037-47
 Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer.
- 202. PMID: 26947875; 2016, Transl Oncol;9(1):1-7 Prognostic Value of SMAD4 in Pancreatic Cancer: A Meta-Analysis.
- PMID: 25760429; 2015, Pancreas;44(4):660-4
 SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer.
- 204. PMID: 22504380; 2012, Pancreas;41(4):541-6 SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma.
- 205. PMID: 19584151; 2009, Clin Cancer Res;15(14):4674-9
 SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer.
- 206. PMID: 18425078; 2008, Mod Pathol;21(7):866-75
 Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 36 of 37

Project ID: C22-M001-03816 Report No.: AA-22-07699_ONC Date Reported: Dec 29, 2022

ACTOnco® + Report

- 207. PMID: 26703889; 2016, Lancet;387(10022):968-977
 Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.
- PMID: 22149876; 2012, N Engl J Med;366(6):520-9
 Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.
- 209. PMID: 23158522; 2013, Lancet;381(9861):125-32 Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.
- 210. PMID: 18653228; 2008, Lancet;372(9637):449-56 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- 211. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 212. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- PMID: 17538086; 2007, N Engl J Med;356(22):2271-81
 Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 37 of 37