BST 140.752 Problem Set 2

Due: November 16, 2017

1 Inference

- 1. There are three frequently occurring test statistics, the likelihood ratio test statistic, the Wald test, and the score test. If \mathbf{Y} has the probability density function $f(\mathbf{y}; \boldsymbol{\beta})$ at $\mathbf{Y} = \mathbf{y}$, where $\boldsymbol{\beta}$ is $p \times 1$, then hypothesis of interest are often of the form $H_0 : \mathbf{L}'\boldsymbol{\beta} = \boldsymbol{\xi}$ versus $H_1 : \mathbf{L}'\boldsymbol{\beta} \neq \boldsymbol{\xi}$, where \mathbf{L}' is $s \times p$ of rank $s \leq p$. Let
 - ullet denote the maximum likelihood estimate of eta under the full model,
 - ullet denote the maximum likelihood estimate of eta under the model assuming the null hypothesis is true,
 - $\ell(\beta) = \log[f(y; \beta)]$ denote the log likelihood function,
 - $s(\beta)$ be the vector of scores with j^{th} component

$$s_j(\boldsymbol{\beta}) = \frac{\delta \ell(\boldsymbol{\beta})}{\delta \beta_j},$$

• $\Im(\beta)$ be Fisher's information matrix which has j,k element equal to

$$-E\left[\frac{\delta^2\ell(\boldsymbol{\beta})}{\delta\beta_j\delta\beta_k}\right].$$

The three test statistics in this case are the likelihood ratio test statistic, given by

$$-2[\ell(\tilde{\boldsymbol{\beta}}) - \ell(\hat{\boldsymbol{\beta}})],$$

the Wald test statistic, given by

$$(\mathbf{L}'\hat{\boldsymbol{\beta}} - \mathbf{x}\mathbf{i})'[\mathbf{L}'\Im(\hat{\boldsymbol{\beta}})^{-1}\mathbf{L}]^{-1}(\mathbf{L}'\hat{\boldsymbol{\beta}} - \mathbf{x}\mathbf{i}),$$

and the score test, given by

$$\mathbf{s}'(\tilde{\boldsymbol{\beta}})\Im(\tilde{\boldsymbol{\beta}})^{-1}\mathbf{s}(\tilde{\boldsymbol{\beta}}).$$

For the linear model $\mathbf{Y} \sim \mathsf{N}_p(\mathbf{X}_1\boldsymbol{\beta}_1 + \mathbf{X}_2\boldsymbol{\beta}_2, \sigma^2\mathbf{I})$, where \mathbf{X}_1 is $n \times q$ of rank q, \mathbf{X}_2 is $n \times (p-q)$ of rank p-q, $\mathbf{X} = [\mathbf{X}_1, \mathbf{X}_2]$ is $n \times p$ of rank p, and σ^2 is known, derive the three test statistics for testing $H_0: \boldsymbol{\beta}_2 = \mathbf{0}$ versus $H_1: \boldsymbol{\beta}_2 \neq \mathbf{0}$. Comment.

2 Residuals

- 1. Consider a linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \delta\Delta + \boldsymbol{\varepsilon}$ where δ is a vector with a 1 at position i_0 and 0 elsewhere. Argue the following:
 - A. The residual corresponding to i_0 is 0 for this model.
 - B. The fitted value for β using this model and all of the data is equivalent to the least-squares estimate using only the data with the i_0 observation deleted.
 - C. Argue that the standardized PRESS residuals are a test statistic for $\Delta=0$.
- 2. Show that the internally and externally studentized residuals (denoted r_i and t_i , respectively) are monotonically related as follows:

$$t_i = r_i \sqrt{\frac{n-p-1}{n-p-r_i^2}}.$$

3 Inference under incorrectly specified models

1. Suppose the true model is given by $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ and we fit the model $y_i = \tilde{\beta}_1 x_i + \tilde{\epsilon}_i$. Compute the bias of $\tilde{\beta}_1$.

4 Multiple Comparisons

Recall the family-wise error rate (FWER) and false detection rate (FDR).

- 1. Show that if all null hypothesis are true, the FDR is equivalent to the FWER.
- 2. Show that any procedure that controls the FWER also controls the FDR.

5 Coding and data analysis exercises

1. Extend the R function mylm() you created in a previous homework to return the nternally and externally studentized residuals, the PRESS residuals, and the Cook's distance. Find a dataset to try out your function (you can simulate one if you like).