梅湖 22CS ZO22/02330 Computer Network HW2
1. D We can use Nyquist's theorem due to the assumption is
a noiseless channel: 2Blog2V bits/sec
That is: 2×6M×log28 = 36Mbps
2. This problem is concerned about 2 knowledge:
O signal to noise ratio: 20db -> 10 logio (S/N)=20 => S/N=100
@ Use Shannon's theorem: Blog_(1+S/N) bps
3k×log2(1+100) ≈ 19.974 Kbps
Use Nyquist's theorem: 2Blog, V bps
·
2×3/x/0922 = 6/6ps
2×3kxlog, 2 = 6kbps Since: 6kbps < 19.974 kbps, so maximum achievable date rate
Is 6 Kb ps.
3. 110
(a) Add A.B.C together
(b) Suppose (-1,+1,-3,+1,-1,-3,+1,+1) is C
then: $A \cdot C = 1$
B. ~ = 1 → So: A, D send bit 1
$C \cdot \tilde{C} = 0$ B sends bit = 0
$D \cdot \tilde{c} = 1$ C is silent

Date. Page.
4.
As for NRZ: It's maximum bit rate is 2B bps, so the minimum
bandwidth is B/2 HZ
As for Manchester: Its maximum bit rate is 2 bps, so ~
~ is 2B Hz
J
4B15B encoding using NRZI which will be occur a signal
transition when I & occurs. The principle of 4015B is the
no more than 13 consecutive Os, so the worst case is 3
consecutive "Os then a" ", which is 4 bits.
· · · · · · · · · · · · · · · · · · ·
·

