Einführuna

Anwendungen

Das Thema «Computer Grafiken» lässt sich in vielen Gebieten antreffen, wie z.B.:

- Videospiele
- Cartoons & Filme
- Datenvisualisierungen
- Berechnungen

Standards

Im Bereich «Computer Grafiken»:

- Treiber APIs: OpenGL, DirectX, Vulkan
- Bare API Wrappers: OpenTK, JOGL, WebGL
- Mid-Level APIs: Three.js, Sharp Gfx
- Rendering Engines: Renderman, Mental Ray
- Modelling Software: Blender, Maya
- Game Engines: Unity, Unreal

Vektorgeometrie

Punkte vs. Vektoren

Grundsätzlich sind alle Punkte Ortsvektoren durch den Ursprung. Es gilt daher:

$$P = \vec{0} + \vec{p} = \vec{p}$$

Operationen

Addition / Subtraktion Skalarmultiplikation
$$\vec{a} + \vec{b} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix} \qquad r \cdot \vec{a} = \begin{pmatrix} r \cdot a_1 \\ r \cdot a_2 \end{pmatrix}$$

Kreuzprodukt

Transponieren $(a_2b_3-a_3b_2)$ $ec{a} imesec{b}=ec{a}_3b_1-a_1b_3$ $=(a_1,a_2,...)$

Euklidische Norm (Länge)

Normalisierung

 $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + ...}$

Skalarprodukt
$$ec{a} \circ ec{b} = \sum_i (a_i \cdot b_i) = \left| ec{a} \right| \cdot \left| ec{b} \right| \cdot \cos lpha$$

 $\stackrel{
ightharpoonup}{=}$ Ist $ec{a} \circ ec{b} = 0$, sind die Vektoren orthogonal. \Rightarrow Orthogonal: Vektoren stehen senkrecht aufeinander

Multiplikation

Allgemein nicht kommutativ:

 $ec{a} \cdot ec{b}
eq ec{b} \cdot ec{a}$ $A \cdot B \neq B \cdot A$

 $AB = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$

Gleichungssysteme

Allgemeine Definition:

$$Ax+b \Leftrightarrow egin{aligned} a_{11}x_1+a_{12}x_2 &= b_1 \ a_{21}x_1+a_{22}x_2 &= b_2 \end{aligned}$$

Gauss-Verfahren

Γ1 0 -2 $[A \mid b]$: 0 1

Orthogonale Projektion

$$ec{u}_p = \left(rac{ec{u} \circ ec{v}}{\left|ec{u}
ight|^2}
ight) \cdot ec{u}$$

$$= \left|ec{v}\right| \cdot \cos \alpha \cdot \widehat{u}$$

3D Geometrien

Bestandteile von 3D-Objekten

3D-Objekte («Meshes») bestehen im Allgemeinen immer aus diesen Elementen:

- Eckpunkte (Vertices): $V \in \mathbb{R}^3$
- Linien (Edges): $E \in (V_1, V_2)$
- Oberflächen (Faces): $F \in (V_1, V_2, V_3)$

⇒ Meist werden Dreiecke für die Faces verwendet. Vorteile: Garantiert flach, eindeutige Definition, einfache Transformation
 ⇒ Eckpunkte können definiert oder berechnet werden.

Indexina

Die Punkte V der Fläche F lassen sich auf verschiedene Arten referenzieren:

- Ohne Indexing:
 - 1 Punkte-Array $(l = 9 \cdot n_F)$
 - 3 Koordinaten pro Punkt
 - 3 Punkte pro Fläche
- Mit Indexing:
- 1 Punkte-Array ($l=3 \cdot n_V$)
- 1 Index-Array $(l = 3 \cdot n_F)$
- 3 Koordinaten pro einzigartigen Punkt
- 3 Indexe pro Fläche
- ⇒ Mit Indexing ist meistens effizienter als ohne Indexing.

Koordinatensysteme

Ein Punkt einer Geometrie kann je nach Ansichtsweise von verschiedenen Koordinatensystemen referenziert werden:

- 1. Modell (3D / Rechtshändig)
- 2. Welt (3D / Rechtshändig)
- 3. Kamera (3D / Linkshändig)
- 4. Sichtbarkeitsbereich (2D)
- 5. Bildschirm (2D)
- ⇒ Bei der Darstellung werden diese Punkte umtransformiert.
- \Rightarrow z.B. P(1,3,2) steht auf dem Bildschirm an P(5,4).

Transformation

Transformationen können sukzessiv oder gemeinsam angewandt werden.

⇒ Die nachfolgenden Beispiele sind alle in 2D. ⇒ Weitere Transformationen sind Spiegelung und Scherung

Translation

Verschiebe alle Punkte einer Geometrie um einen Vektor (Vektoraddition).

$$Tig(ec{x}ig) = ig(egin{matrix} x+d_1 \ y+d_2 \end{pmatrix} = ec{x} + ec{d}$$

Skalierung

Verschiebe alle Punkte einer Geometrie um einen Faktor (Skalarmultiplikation).

$$Sig(ec{x}ig) = ig(egin{array}{c} s \cdot x \ s \cdot y \ \end{pmatrix} = s \cdot ec{x}$$

 \Rightarrow Die Faktoren s können auch unterschiedlich sein (s. Matrix).

Rotation

Rotiere alle Punkte einer Geometrie um einen Winkel θ.

$$R_{ heta}(ec{x}) = egin{pmatrix} x \cdot \cos heta - y \cdot \sin heta \ x \cdot \sin heta + y \cdot \cos heta \end{pmatrix}$$

⇒ Die 3D-Berechnung ist in diesem Modul nicht relevant

Gesamt-Transformation

Aus Effizienzgründen würden wir gerne die Transformationen zuerst zusammenrechnen und dann auf alle Punkte anwenden.

Problem: Die Translation ist keine lineare Abbildung. Das bedeutet:

$$s\cdot\left(ec{d}+ec{x}
ight)
eq\left(s\cdotec{d}
ight)+ec{x}$$

⇒ D.h.: Sukzessive Anwendung ist nicht gleich gemeinsame

Homogene Koordinaten

Um das Problem der Translation zu lösen. werden alle kartesischen Koordinaten P(x,y) auf homogene Koordinaten $P_H(x,y,1)$ abgebildet.

 \Rightarrow Oder Allgemeiner. P(x,y,w) repräsentiert P(x/w,y/w). ⇒ Die Punkte werden so zu Linien im projektiven Raum.

Translation Matrix

$$egin{pmatrix} 1 & d_1 \ 1 & d_2 \ 1 \end{pmatrix} \cdot egin{pmatrix} x \ y \ 1 \end{pmatrix} = egin{pmatrix} x+d_1 \ y+d_2 \ 1 \end{pmatrix}$$

Skalierung Matrix

$$\begin{pmatrix} s_1 & & \\ & s_2 & \\ & & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} s_1 \cdot x \\ s_2 \cdot y \\ 1 \end{pmatrix}$$

Rotation Matrix

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \\ 1 \end{pmatrix}$$

Gesamt-Transformation Matrix

Wir können nun die einzelnen Transformationen miteinander multiplizieren und erhalten so die Gesamt-Transformation:

$$M_{
m R} \cdot ig(M_{
m S} \cdot ec{x} ig) = (M_{
m R} \cdot M_{
m S}) \cdot ec{x}$$

 $^{
ightharpoonup}$ Die Reihenfolge spielt weiterhin eine Rolle: $M_{
m R}M_{
m S}
eq M_{
m S}M_{
m R}$

Proiektionen

Definition

Um ein 3D-Obiekt auf einem 2D-Bildschirm darzustellen, müssen wir es zuerst in diese 2D-Dimension projizieren. Wir unterscheiden dabei:

- Perspektivische Projektion
- Orthogonale Projektion

Berechnung

Projiziere den Punkt P(x, y, z) auf die XY-Ebene (z=0) basierend auf der Kameraposition $E(e_x, e_y, e_z)$.

Gesucht ist die Projektion $C(c_x, c_y)$.

 \Rightarrow Die Dimension wird also um eins reduziert (\mathbb{R}^2 zu \mathbb{R}^2). \Rightarrow Bei 2D einfach eine Komponente (z.B. x) weglassen.

 $^{\diamond}$ Herleitung aus der Formel $y = \Delta y/\Delta z \cdot z + c$

Perspektivisch

$$c_x = rac{e_x z - e_z x}{z - e_z} \qquad c_y = rac{e_y z - e_z y}{z - e_z}$$

Orthogonal

$$c_x = x$$
 $c_y = y$

View Frustum

Bezeichnet die Sichtbarkeit (Clip-Space) bei der perspektivischen Projektion. Es wird definiert durch:

- Öffnungswinkel (Field of View)
- Seitenverhältnis (Aspect Ratio) Near und Far-Plane (Clipping Distance)
- ⇒ Der Öffnungswinkel bestimmt die Grösse von Objekten
 ⇒ Die Brennweite (Kamera) bestimmt die Tiefenschärfe.

GPU-Berechnung

Grafik-Pipeline

Double Frame Buffering

Beschreibt die abwechselnde Verwendung von zwei Framebuffer für die Berechnung und Darstellung eines Frames.

- Frame: Bild auf dem Display
- Framebuffer: Speicherort des Frames
- ⇒ Berechnungen werden nicht auf dem Anzeigebild durchgeführt. ⇒ So können Berechnungsartefakte vermieden werden.

Shader-Programme

Sind auf der GPU laufende Programme für die Berechnung des Bildes. Es gibt:

- Vertex-Shader: Projektion der Modell-Eckpunkte in den Clip-Space.
- Fragment-Shader: Berechnung der Farbe eines Pixels
- ⇒ Arbeiten immer mit einzelnen Primitiven (z.B. ein Eckpunkt).

GLSL Programmiermodell

Kommunikation in den Pipeline-Stages:

- in: Aus vorherigem Stage
- out: An nächsten Stage
- uniform: Für alle Primitiven gleich

⇒ in und out verwenden dabei «matching by name».

Beleuchtung & Texturen

Allgemeines

Die Farbe eines Objekts (bzw. Pixels) setzt sich zusammen aus:

- Den Obiekt-Farben / Texturen
- Der Beleuchtung
- $\stackrel{
 ightharpoonup}{\sim}$ Oftmals verwenden wir dabei RGB-Farben: C=(R,G,B). \Longrightarrow Remission: Beschreibt das Abprallen von Licht auf Objekten.

Farbdarstellung

Subtraktive Farbberechnung

Nur die Farbanteile, welche in Lichtquelle und Obiekt vorkommen, sind sichtbar:

$$C_{ ext{Total}} = egin{pmatrix} R_{ ext{Light}} \cdot R_{ ext{Object}} \ G_{ ext{Light}} \cdot G_{ ext{Object}} \ B_{ ext{Light}} \cdot B_{ ext{Object}} \end{pmatrix}$$

Alternative mit gemittelten Werten:

$$C_{ ext{Total}} = rac{1}{2} \cdot ig(C_{ ext{Light}} + C_{ ext{Object}} ig)$$

Subtraktiv, da die fehlenden Farben nicht remittiert werden

Additive Farbberechnung

Die Farbanteile der Lichtquellen werden zusammengerechnet:

$$C_{ ext{Total}} = ec{1} - egin{pmatrix} (1 - R_{ ext{L1}}) \cdot (1 - R_{ ext{L2}}) \ (1 - G_{ ext{L1}}) \cdot (1 - G_{ ext{L2}}) \ (1 - B_{ ext{L1}}) \cdot (1 - B_{ ext{L2}}) \end{pmatrix}$$

⇒ Die nicht enthaltenen Lichtanteile werden reduziert.

Oberflächennormale

Nicht-triviale Belichtungsmodelle berücksichtigen die Ausrichtung der Oberfläche:

$${
m N}_{V_1} = (V_2 - V_1) imes (V_3 - V_1)$$

- Normale eines Vertex V_1 von einer Fläche $F \in (V_1, V_2, V_3)$ ⇒ Dieser Wert wird nun auf die Fläche F interpoliert.
- ⇒ Kann im voraus oder «on-the-fly» berechnet werden

interpolierte Darstellung

Beleuchtungsmodelle

Ambient Lighting

Belichtung von einem globalen Licht mit Remission in alle Richtungen.

void main() {
 vec3 ambient = strength * lightColor; vec3 color = ambient * objectColor; fragColor = vec4(color, 1.0); - Fragment Shader

Diffuse Lighting

Belichtung von einer Punktguelle mit Remission in alle Richtungen.

void main() { vec3 normDir = norm(normal); vec3 lightDir = norm(lightPos - fragPos) float cosTheta = max(dot(normDir, lightDir), 0.0); vec3 diffuse = cosTheta * lightColor

```
objectColor:
    fragColor = vec4(diffuse, 1.0);
                                                 Fragment Shader
⇒ Wird für matte Oberflächen verwendet.
⇒ Das norm steht für die Funktion normalize.
```

Specular Lighting

Belichtung von einer Punktquelle mit Remission in eine Richtung.


```
void main()
  vec3 normDir = norm(normal);
  vec3 camDir = norm(camPos - fragPos);
  vec3 lightDir = norm(lightPos - fragPos);
  vec3 reflectDir
   = reflect(-lightDir, normDir);
  float cosTheta
    = max(dot(camDir, reflectDir), 0.0);
  float strength = pow(cosTheta, shininess);
 vec3 specular = strength

* lightColor
                   * objectColor;
  fragColor = vec4(specular, 1.0);
                               Fragment Shader
⇒ Wird für spiegelnde Oberflächen verwendet.
```

Kombinationsmodelle

Phong-Shading

Die Belichtung wird aus Ambient-, Diffuseund Specular-Anteilen zusammengesetzt.

$$oxed{C_{ ext{Total}} = rac{1}{3} \cdot \left(C_{ ext{Ambient}} + C_{ ext{Diffuse}} + C_{ ext{Specular}}
ight)}$$

⇒ Problem: Ab 90° gibt es keine Spiegelung mehr.

Blinn-Phong-Shading

Löst das Problem von Phong-Shading durch die Verwendung eines sogenannten «Halfway-Vectors».


```
void main() {
 vec3 halfwayDir = norm(lightDir + camDir)
   = max(dot(normDir, halfwayDir), 0.0);
                              Fragment Shader
```

Texturen

Texturen sind Bilddateien, welche Eigenschaften (wie z.B. die Farbe) einer Oberfläche definieren.

Texture-Mapping

Beschreibt die Abbildung von 3D-Vertex-Koordinaten auf 2D-Textur-Koordinaten.

Auch UV-Mapping genannt

Komplexe Oberflächen

void main(void) {

Grundformen

schreiben:

Kombinationen

Vor- und Nachteile

Funktionen:

Punkte:

Triangulation

⇒ Sampling: Umrechnung von Fragment- in Texturkoordinaten

fragColor = texture(texUnit, texCoord);

3D-Obiekte lassen sich wie bisher durch

Funktionen: Kontinuierlicher Wertebereich

• Explizit: z = -ax + by + ...

• Implizit: $0 = x^2 + 2y^2 + ...$

• Parametrisch: $P = \vec{0} + s\vec{u} + ...$

Explizite Funktionen sind nach einer Variablen aufgelöst.

⇒ Implizite sind nicht aufgelöst (algebraische Oberflächen) ⇒ Algebraische Oberflächen: Sphäre, Torus, Würfel, etc.

Punkte und Funktionen sind die Grund-

bausteine für alle komplexen Formen:

Aus Primitiven: Punktwolke, Meshes

Approximierend: Iso-Surface, Splines

Konstruiert: Subdivision Surfaces, Fraktale

Es gibt keine beste Repräsentationsform

• Vorteile: Wenig Speicherplatz, Schnitt-

Vorteile: Beliebige Geometrie, vielseitig

• Nachteile: Fixe Genauigkeit, hoher Spei-

Beschreibt die Umwandlung einer Punkt-

⇒ Die Oberflächen werden rekonstruiert / approximiert. ⇒ Wird z.B. bei Rohdaten von 3D-Scans angewandt.

punkte mathematisch berechenbar, belie-

Nachteile: Beschränkte Formen, komple-

xe Herleitung, grafische Transformationen

einsetzbar, direkter GPU-Support, einfache

cherbedarf, Rechenzeit abhängig von der

Insert-Strategie

für Obiekte. Vor- und Nachteile sind:

big genaue Auflösung

sind schwieria

Berechnung

Anzahl Primitiven

wolke in ein Polygon-Mesh.

Sween-Strategie

Sweep-Strategie

Punkte: Festgelegter Wertebereich

Punkte, aber auch durch Funktionen be-

Fragment Shader

Laufe von links nach rechts. 2. Für ieden Punkt:

- a. Zeichne eine Linie zu den 2 vorherigen Punkten, für die gilt:
 - Keine Dellen entstehen
 - Keine Überschneidungen entstehen
 - b. Verbinde nun alle weiteren Punkte innerhalb dieser Form.
 - 3. Wiederhole, bis zum Ende.

⇒ Die entstehende Form nennt sich «Konvexe Hülle».

Insert-Strategie

- 1. Zeichne 2 Anfangsdreiecke um alle Punkte.
- 2. Für alle Punkte (zufällige Wahl):
 - a. Bestimme das umfassende Dreieck.
 - b. Unterteile dieses Dreieck in 3 weitere Dreiecke. D.h. Verbinde alle Eckpunkte mit dem gewählten Punkt.
- 3. Wiederhole, bis zum Ende.
- 4. Entferne nun alle künstlichen Anfangspunkte und die damit verbundenen Dreiecke.

Probleme

Beide Strategien können «unschöne», d.h. spitze Dreiecke erzeugen.

⇒ Wir können dies mit «Delaunav» nachträglich verbessern. Teilweise lassen sich spitze Winkel jedoch nicht vermeiden

Delaunay Triangulation

- 1. Rekursiv für alle Dreiecke:
 - a. Wähle ein anliegendes Dreieck
 - **b**. Ersetze die längere der inneren Kanten durch die Kürzere. (Edge-Flip)
- 2. Wiederhole, bis zum Ende.

Approximationen

Marching Squares Algorithmus

Mit diesem Algorithmus lassen sich Isolinien von Heat Maps diskret bestimmen.

- 1. Gitter über die Daten legen.
- 2. Betrachtungshöhe (Potenzial) festlegen.
- 3. Für alle Quadrate im Gitter:
 - a. Eckpunkte beachten.
- b. Nach Schema unten Linien einzeichnen.
- Wiederhole, bis zum Ende.
- «Heat Map»: 2D-Visualisierung von 3D-Landschaften

Weitere Algorithmen

- Marching Cubes (3D-Heat-Maps)
- Interpolation: Punkte «vervollständigen»
- Polynomial: $f = a_0 x^0 + ... + a_n x^n$
- Splines: Stückweise Interpolation der Punkte mit linearen, quadratischen oder kubischen Funktionen.
- NURBS: Approximation von 3D-Flächen

Lindenmayer Systeme

L-Systeme beschreiben beliebig feine, selbstähnliche geometrische Strukturen.

⇒ Sie können rekursiv definiert und aufgebaut werden.

Formale Definition

- Anfangsform (z.B. Strich): f
- Ersetzungsregeln: $f \rightarrow f + f -f + f$
 - Ersetzungsmöglichkeit: f
 - Positive Rotation: +
 - · Negative Rotation:
 - Abzweigung (Kind): [f]
- Kontext: Rotation 60°
- Beispiele: Koch Kurve, Hilbert Kurve, Fraktale, etc.
- ⇒ So lassen sich u.a. Bäume generieren (z.B. mit Zufallszahlen).

Beschreibt ein rekursives Verfahren für

das Verfeinern von Oberflächen. ⇒ Subdivision Curves ist das Äquivalent für Kurven.

Curves: Chaikin's Algorithmus

- 1. Beginne mit einer Kurve
- 2. Markiere die Anfangspunkte (Blau)
- 3. Setze in der Mitte von allen Strecken einen neuen Punkt (Schwarz ohne Füllung)
- 4. Setze nun in der Mitte von allen neuen Strecken einen Punkt (Rot)
- 5. Streiche nun alle schwarzen Punkte und verbinde die Roten und Blauen.
- Wiederhole, solange wie gewünscht.
- Diese Gewichtung kann auch variiert werden.

Surfaces: Algorithmen

Dreiecksbasiert Loop

 $\sqrt{3}$ Subdivision

Rechtecksbasiert

Catmull-Clark Doo-Sabin

Vorteile

Vorteile von Subdivision-Surface, insbesondere im Vergleich zu NURBS:

- Beliebige Oberflächentopologie
- Kompakte Repräsentation
- Level-of-Detail Rendering
- Intuitiv mit einfachen Algorithmen
- ⇒ NURBS-Flächen können nur Scheiben, Zylinder oder Tori sein.

Korrektur & Optimierung

TODO

Qualitätsmerkmale Mesh Smoothing

Mesh Shibothing

Mesh Reduktion / Remeshing

Diese Verfahren haben das Ziel, die Anzahl der Oberflächen zu reduzieren.

Vertex Clustering

- 1. Wähle ein Grösse epsilon (Toleranz)
- 2. Teile den Raum in Quadrate dieser Grösse
- 3. Berechne pro Quadrat einen repräsentativen Eckpunkt (z.B. Mittelpunkt aller Punkte)
- 4. Lösche die originalen Punkte und ersetzte sie durch den neuen Eckpunkt.

Je nach Berechnungsverfahren des repräsentativen Eckpunkts kann sich die Topologie des Meshes stark unterscheiden.

⇒ Das Verfahren spielt also eine starke Rolle für die Qualität

Inkrementelle Reduktion

Resampling / Remeshing

Rasterisierung & Sichtbarkeit

Rasterisierung

Da ein 2D-Bildschirm aus Pixeln besteht, müssen wir nach der Projektion die Linien noch in ein Raster abbilden. Es gibt verschiedene Methoden dazu:

- Vollständig Zusammenhängend
- Minimal Zusammenhängend
- Aliased (Binär)
- Anti-Aliased (Prozentual)

Aliasing

Zeichne ausschliesslich die Pixel eines Dreiecks, für die gilt:

- Das Pixel-Zentrum liegt in dem Dreieck.
- Das Pixel-Zentrum liegt auf der oberen oder linken Seite des Dreiecks.
- ⇒ Achtung: Die obere Seite muss dazu exakt horizontal sein.
- ⇒ Technisch wird das Dreieck zeilenweise gezeichnet.
 ⇒ Dazu wird u.a. der Bresenham Linien-Algorithmus verwendet.
- Bresenham Linien-Algorithmus

Basierend auf zwei Punkten P_{Start} und P_{Ende} , zeichne die Linie nach dem Bresenham Linien-Algorithmus:

- 1. Berechne $\Delta x = x_{
 m Ende} x_{
 m Start}$
- **2**. Berechne $\Delta y = y_{
 m Ende} y_{
 m Start}$
- **3**. Berechne $m=\Delta y/\Delta x$
- 4. Wenn $\Delta x \geq \Delta y$ dann mit i=0:
 - a. $x_i = x_{\mathrm{Start}} + i$
 - b. $y_i = y_{ ext{Start}} + \lfloor m \cdot i + 0.5
 floor$
 - c. Zeichne den Pixel $P(x_i, y_i)$
 - $\mathsf{d.}\ i \leftarrow i+1$
- \Rightarrow Bei $\Delta x < \Delta y$ wird die Berechnung von x_i und y_i vertauscht.

Anti-Aliasing

Zeichne alle Pixel eines Dreiecks unter Beachtung der prozentualen Abdeckung. Das bedeutet:

- Erhöhe das Pixelraster (z.B. 4x)
- Berechne die Abdeckung nach Aliasing
- Reduziere das Pixelraster und zeichne alle Pixel anhand der berechneten Abdeckung.

Varianten davon sind:

- Super-Sampling: Die komplette GPU-Pipeline läuft mit einem erhöhten Pixelraster.
- Multisampling: Nur der Z-Buffer läuft mit einem erhöhten Pixelraster.

⇒ Die Objektränder erhalten also eine «weiche» Transparenz.

Probleme (Aliasing Effekte)

Wenn die Auflösung eines Texturmusters grösser ist als die Auflösung der Anzeigefläche, kann der Moiré-Effekt auftreten.

- ⇔ Dies ist bei beiden Aliasing-Verfahren der Fall.
 ⇔ Problem: Ein Pixel alleine kann kein Muster darsteller
- Problem: Ein Pixel alleine kann kein Muster darstellen.

Mipmaps

Beschreibt eine «Pyramide» von Texturen, bei der die Auflösung anhand der Distanz zur Kamera gewählt wird.

⇒ Je näher das Objekt, desto hochauflösender die Textur. ⇒ Damit kann der Moiré-Effekt verhindert werden.

Sichtbarkeit

Z-Buffer (Depth-Buffer)

Erlaubt das korrekte Zeichnen von überlappenden Objekten.

- Initialisiere den Buffer mit $Z_{
 m B}=\infty$
- Für alle Objekt-Pixel:
- ullet Ermittle die Distanz zur Kamera $Z_{
 m O}$
- $\bullet \quad \text{Wenn } Z_{\mathrm{B}} > Z_{\mathrm{O}} \text{:}$

- lacksquare Zeichne das Pixel und setze $Z_{
 m B} \leftarrow Z_{
 m O}$.
- Wenn $Z_{\rm B} \leq Z_{\rm O}$:
 - Zeichne das Pixel nicht
- ⇒ «Z-Fighting»: Berechnungsartefakt bei identischen Z-Werten.
- \Rightarrow Oftmals wird $Z_{
 m O}=1-1/z$ als Wert verwendet.

Spiegelungen & Schatten

Spiegelungen

Flächen

Berechne die Szene aus Sicht einer virtuellen Spiegelkamera und projiziere das Bild in Form einer Textur auf die Fläche.

⇔ Winkel und Distanz sind dabei äquivalent.

Kugeln

Berechne die Szene für alle Seiten einer umliegenden Bounding-Box und projiziere das Bild dann auf die Kugel.

⇒ Die Spiegelkamera steht dabei in der Kugelmitte. ⇒ Je grösser die Bounding-Box, desto kleiner der Fehler.

Environment Mapping

Beschreiben 360°-Bilder, welche für Spiegelungen und Hintergründe verwendet werden können.

 \Rightarrow z.B. Cube-Maps, Sphere-Maps, Cylinder-Maps, etc

Schatten

Shadow Mapping

Projiziere die Szene aus Sicht der Lichtquelle auf die zu belichtende Oberfläche.

⇒ Zeichne zuerst die Schatten und dann die Objekte. ⇒ Bilde dazu nicht die Farbwerte, sondern die Tiefenwerte ab

рертп-мар

Visualisierung des Z-Buffers.

- Schwarz: $Z_O=0$ (Nahe)
- Weiss: $Z_O = \infty$ (Weit weg)

Ray Tracing Prinzip

Bildgenerierung

Verdeckung

Rekursive Weiterverfolgen

Farbe des Elements (am Schnittpunkt) hängt ab von:

- Farbe & Intensität sichtbarer Lichtquelle in Umgebung
- Richtung Lichtquelle
- Oberflächenfarbe & -beschaffenheit
- Position Beobachter

Zur Berechnung der Objektfarbe, Strahlenbrechung rekursiv weiterführen (Sekundärstrahlen)

Strahlen können beliebig oft reflektiert werden (irgendwann muss abgebrochen werden)

Rückweg aus Rekursion

- Beim Rückweg kann Farbe & Licht-Intensität bestimmt werden
- Baumstruktur: Strahl erzeugt beim auftreffen mehrere Folgestrahlen

Ray Tracing

Von der Kamera aus werden Strahlen durch alle Pixel der Bildebene verfolgt und mit der Szene geschnitten. Bei einem primitiven, einstufigen Ray Tracing bestimmt die Objektfarbe am Schnittpunkt die Pixelfarbe. In der Regel wird beim Aufschlagpunkt einer oder mehrere Reflktionsstrahlen berechnet und diese rekursiv weiterverfolgt. Entsprechend wird die Pixelfarbe auf dem Weg zurück aus der Rekursion zusammengerechnet, in der Regel auch unter Einbezug der Strahlen zu den Lichtquellen.

- Triangle-Meshes: Operation relativ rechenintensiv
- Elemente mit impliziter Darstellung: oft sehr effizient berechnet
 - z.B. für Kugel $(x-c_{\rm x})^2+(y-c_{\rm y})^2-r^2=0 \ {\rm kann}$ für (x,y) der parametrische Strahl $0+t\vec{v}$ eingesetzt und nach t aufgelöst werden \Rightarrow liefert Schnittpunkt

Minimal Ray Tracer (vereinfacht)

Generieren von Primarstrahlen

Kamera im Ursprung & Projektfläche mit Höhe 1 im Abstand z

- $p_{\mathbf{x}}(0) = (w-1)\frac{d}{2}$
- $p_{y}(0) = (h-1)\frac{d}{2} = \frac{1}{2} \frac{1}{2h}$
- Inkrement von $p_{
 m x}, p_{
 m y}:d$
- Strahlen durch Ursprung und $(p_{
 m x},p_{
 m y},z)$:

 $0 + t \cdot n \,\, ext{or} \,\, malize(p_{ ext{x}}, p_{ ext{y}}, z)$

Am einfachsten: * Rudimentären, nicht Performance optimierten Ray Tracer * Kugeln und Ebenen haben einfache implizite Gleichungen

⇒ TODO: Keine Ahnung wie viel man davon noch aufschreiben soll, sind viele Berechnungen die wahrscheinlich nicht kommen

Acceleration Structures

Bounding Volume Hierarchies

Acceleration Structures

Axen-alierte Bounding Box
Bounding Volumes

Bounding Volumes Hierarchy (BVH)

Raumteilende Strukturen

Voxel: Zellen im Raum

Uniform Grid

- Raum in gleich grosse Zellen Aufteilen (Voxels)
- Jede Zelle hat Referenz auf alle Primitiven, welche sich überlappen
- Strahlenschnitt
 - Mit Bresenham (Algorithmus) Voxels in Strahlenrichtung traversieren
 - Mit allen den individuellen Voxels zugeordneten Elementen
 - Abbruch bei ersten geschnittenen Primiti-
- Auflösung Grid
- zu tief: Keine Reduktion der Anzahl
- Schnitt-Tests

 zu hoch: Unnötig hoher Traversierungsaufwand

Uniform Grid Heuristik

- Anzahl Voxel = ca. Anzahl Primitiven
- Funktioniert gut bei uniformer Verteilung der Primitiven

Ouad-Tree

TODO

Advanced Ray Tracing

- Ray-tracing wurde lange als Technik verstanden um fotorealistische Bilder zu berechnen. Das ist aber nicht ganz korrekt
- Fotorealistische, computergenerierte Bilder sind eine Kombination aus "light transport algorithm" und einer Technik, um die Sichtbarkeit zwischen Oberflächen zu berechnen (rasterization, ray-tracing)

Whitted Ray Tracing (1980)

Die Farbe eines Punktes auf einer Oberfläche besteht aus 3 Komponenten:

- Oberflächenfarbe am Schnittpunkt unter Berücksichtigung des Lictes aller direkt sichtbaren Lichtquellen (Phong-Shading)
- Farbe des Lichtes aus der reflektierten Richtung
- Farbe des Lichtes aus Richtung der Lichtbrechung

Cook, 1984

Kamera-Linsen-Effekt

- Objekte nicht in Fokusebene, erscheinen unscharf
- Jeder Punkt wird als runde Scheibe abgebildet
- Verfolge mehrere Strahlen durch jeweils einen zufälligen Punkt auf der Linseu

Bewegungsunschärfe

Emmitierte Strahlen zu verschiedenen Zeitpunkten und berechne das Durchschnittsbild

Globale Beleuchtung

- Alle (nicht komplett schwarzen) Oberflächen (r)emittieren Licht
- Für Belichtung eines Punktes haben alle sichtbaren Oberflächen einen Einfluss
- Light Transport Algorithmus

Light Transport

 Approximation mittels Monte-Carlo Simulation durch Auswahl zufällig gewählten Richtungsvektoren

Monte Carlo Simulation

- Zufall verwenden um komplexe Berechnungen zu vereinfachen
- Für einzelne Punkte kann Lösung einfach berechnet werden
- Einzelne Lösungen können aggregiert werden, dass die exakte Lösung approximiert wird

Realtime ray tracing

TODO

Animation

Eine Folge zeitlich schnell hintereinander gereihten Bildern erscheint als Bewegung.

Explizite Berechnung

- In Computeranimation ist Modell mathematisch repräsentiert
- Die einfachste Möglichkeit ist Eigenschaften wie Position, Rotation oder Farbe explizit aufgrund der "Simulationszeit" zu berechnen

Key Frames und "tweening"

- Animation wird anhand von Schlüsselbildern aufgebaut
- Bilder dazwischen dienen dazu Bewegung
- flüssig und natürlich erscheinen zu lassen Ansatz für handgezeichnete wie auch computergenerierte Animationen

Grundlegende Techniken der Computeranimation

- Vom Künstler orchestiert (kev frames)
- Datat driven (motion capture)
- Procedural (simulation, calculation using physics formulas)
- ⇒ Kommen auch kombiniert zum Einsatz

Animation mittels Key Frames

Kommt bei Handlung zum Zuge, oder wenn sich ein Einfluss von "aussen" ändert

Library für Interpolation: Tween.js

Mathematisch beschriebene Modelle: Szene: Beschrieben durch Modellparameter Tweening: Erreicht durch Interpolation der Parameter

Dafür bieten sich z.B. Splines an

- Gehen per Definition durch die Punkte
- Bilden einen kontinuierlichen Übergang dazwischen ab