Homework 2

MAD4204

Carson Mulvey

2. (a) A graph G = (V, E) is factor critical if G - v has a perfect matching for every $v \in V$. Prove no bipartite graph is factor critical.

Solution. We will prove by contradiction. Suppose that a bipartite graph $G=(A\sqcup B,E)$ is factor critical. Then, for arbitrary $a\in A$ and $b\in B,\,G-a$ and G-b each have perfect matchings. Since a bipartite graph with a perfect matching must have equal cardinality between its disjoint sets, G-a and G-b give |A|-1=|B| and |A|=|B|-1, respectively, which together form a contradiction. Thus, no bipartite graph is factor critical. \square

- (b) Let $G = (A \sqcup B, E)$ be a bipartite graph with $|A| = 10, |B| = 12, d(a) \le 4$ for all $a \in A$ and d(b) = 3 for all $b \in B$. Prove that G has a matching of size at least 9.
- 3. Fix $k, n \in \mathbb{N}$ with k < n/2. Let $G = (A \sqcup B, E)$ be the bipartite graph with

$$A = \binom{[n]}{k}, \quad B = \binom{[n]}{k+1}, \quad E = \{(X,Y) : X \in A, Y \in B, X \subseteq Y\}.$$

Prove that G contains a matching of size $\binom{n}{k} = |A|$.

Bonus point: Construct a perfect matching on G.

Solution. Using the result from Problem 1, we have a matching of |A| elements iff $|N(S)| \ge |S| + |A| - |A| = |S|$ for all subsets $S \subseteq A$. An element $a \in A$ has n - k elements to add to make an element in B, while an element $b \in B$ has k + 1 elements to remove to make an element in A. However, k < n/2 implies $n - k \ge k + 1$, so the degree of a vertex in A is always greater than or equal to one in B. Thus |N(S)| < |S| is impossible for any subset $S \subseteq A$, so we must have $|N(S)| \ge |S|$ as desired.