

Faculdade de Ciências Exatas e da Engenharia

Licenciatura em Engenharia Eletrónica e de Telecomunicações (LEET) Licenciatura em Engenharia de Computadores (LEC) Licenciatura em Engenharia Informática (LEI)

Sistemas Digitais

Preparação do Trabalho 2 – Conversor Binário - Excesso 3

Esta folha deve ser preenchida antes da aula e entregue no início da mesma. Os grupos que não entregarem a folha devidamente preenchida terão 0 valores nesta componente do trabalho.

	Turma (ex: PL1)		
	Data de entrega:		
Nome:		N°:	
Nome:		N°:	•

1. Objetivos

Neste trabalho pretende-se aplicar os conhecimentos adquiridos, nas aulas teóricas e teórico-práticas, sobre Álgebra de Boole e Códigos.

O trabalho consiste na implementação de um circuito lógico que faça a conversão de um número binário de 3 bits, num número no código Excesso 3.

2. Introdução

Há diversas soluções para se codificar a informação. Alguns dos códigos existentes têm um peso associado a cada bit. Noutros isso não acontece, sendo por isso chamados códigos não ponderados. Um destes exemplos é o código Excesso 3, onde se adiciona ao valor "normal" em BCD o valor 3 para representar um dado número.

3. Projeto do circuito lógico

a) Obtenha uma tabela de verdade, representando do lado esquerdo as co	ombinações para o
número binário de 3 bits que se pretende converter (entradas), e do lado d	lireito o código em
Excesso 3 (saídas).	

esso 3, na sua forma canónica. Utilize a álgebra de Boole para simplificar as funçõe						

4. Simulação do circuito conversor

Tendo-se obtido as expressões algébricas do circuito de conversão e o diagrama lógico que as implementa, deverá agora testar o circuito utilizando o *software* ISE do Xilinx.

- a) Seguindo um procedimento análogo ao apresentado no manual, que está disponível no Moodle da disciplina, teste o circuito lógico que acabou de desenhar;
- b) Apresente em anexo a esta folha os diagramas temporais e o próprio circuito desenhado no ISE do Xilinx. Para obter a página do circuito selecione a janela com o esquema (ficheiro *.sch) e imprima diretamente do ISE do Xilinx. Para obter o diagrama temporal imprima diretamente do ModelSim;

c) No sentido de verificar a utilização do software por parte dos alunos, indique

en	em seguida os principais passos da simulação que realizou.						

<u>Nota</u>: Deverão levar para a aula laboratorial uma cópia dos resultados de forma a poderem compará-los com os resultados experimentais.