PROBLÈMES DU 2^{nd} TOURNOI FRANÇAIS DES JEUNES MATHÉMATICIENNES ET MATHÉMATICIENS

14 - 16 AVRIL 2012, PALAISEAU (FRANCE)

Table des matières

No	otations	1
1.	Nombres plus que parfaits	1
2.	La formule des résidus	2
3.	Triangles isocèles	2
4.	Polygônes stables	4
5.	Suites récurrentes	4

Mots clés: 1. Théorie additive des nombres, équations diophantiennes – 2. Théorie des nombres, congruences – 3. Géometrie plane – 4. Géometrie analytique, centre de gravité – 5. Suites récurrentes, probabilités.

	Notations
$\mathbb{N}^* = \{1, 2, 3, \ldots\}$	ensemble des nombres entiers strictement positifs
$\mathbb{Z},\;\mathbb{Q},\;\mathbb{C}$	ensemble des nombres entiers, rationnels, complexes
$\mathbb{R},\ \mathbb{R}^2$	droite réelle et plan réel
$a \bmod b$	reste de la division euclidienne de a par b
#M	cardinal (nombre d'éléments) d'un ensemble M
$\tau(n)$	nombre de diviseurs positifs de n
$\varphi(n)$	fonction indicatrice d'Euler
$\gcd(x_1,\ldots,x_n)$	plus grand commun diviseur des entiers x_1, \ldots, x_n

1. Nombres plus que parfaits

N'importe quelle fonction $f: \mathbb{N}^* \to \mathbb{C}$ est dite arithmétique. Dans tout ce problème n désigne un nombre entier strictement positif. On rappelle que n est dit parfait s'il est égal à la somme de ses diviseurs positifs stricts (c'est-à-dire différents de n). Par exemple, 6, 28 et 496 sont parfaits. Euler a prouvé que si $k \geq 1$ est un nombre entier tel que 2^k-1 est premier, alors $n=2^k(2^k-1)$ est parfait.

En guise de généralisation, si f une fonction arithmétique, on dira que n est f-parfait si

$$f(n) = \sum_{\substack{d \mid n \\ 1 \le d \le n-1}} f(d).$$

Par exemple, n est parfait si, et seulement, si, n est f-parfait pour f(n) = n; n est f-parfait pour la fonction constante f(n) = 1 si, et seulement si, n est premier.

- **1.** Soit $\tau(n)$ le nombre de diviseurs positifs de n (incluant n).
 - a) Démontrer que n est τ -parfait si, et seulement si, n est le carré d'un nombre premier.

Date: 23 mars 2012.

- b) Trouver tous les nombres entiers n qui sont f-parfaits lorsque $f(n) = \tau(n) 1$. Pour le plus grand nombre possible d'entiers relatifs $k \in \mathbb{Z}$, trouver tous les nombres entiers f-parfaits où $f(n) = \tau(n) + k$.
- **2.** Trouver tous les nombres entiers positifs f-parfaits, où $f(n) = \varphi(n)$ est la fonction indicatrice d'Euler.
- **3.** a) Prouver que si $k \ge 1$ est un nombre entier tel que $2^{k+1} 2k 1$ est premier, alors $n = 2^k(2^{k+1} 2k 1)$ est f-parfait pour f(n) = n 1.
- b) Trouver des conditions suffisantes similaires pour qu'un entier positif soit f-parfait lorsque f un polynôme de degré 1 (par exemple f(n) = n 2 ou f(n) = n + 1).
- **4.** Soit $f(n) = \ln(n)$. Trouver tous les nombres entiers positifs f-parfaits.
- **5.** Soit $f(n) = (-1)^n$. Trouver tous les nombres entiers positifs f-parfaits. Plus généralement, étudiez le cas où $f(n) = \omega^n$, où $\omega \in \mathbb{C}$ est une racine de l'unité.
- **6.** Soit $f(n) = \binom{2012}{n}$. Trouver tous les nombres entiers positifs f-parfaits. Étudiez le cas plus général où 2012 est remplacé par un nombre entier strictement positif c.
- 7. Trouver des conditions nécessaires et/ou suffisantes pour qu'un entier positif soit f-parfait pour d'autres fonctions arithmétiques f.
- 8. Un couple d'entiers strictement positifs (m, n) est dit amical si

$$n = \sum_{\substack{d \mid m \\ 1 \le d \le m-1}} d \quad \text{and} \quad m = \sum_{\substack{d \mid n \\ 1 \le d \le n-1}} d.$$

Par exemple, (220, 284) est amical. Si f est une fonction arithmétique, proposer une définition raisonnable pour qu'un couple d'entiers strictement positifs (m, n) soit f-amical. Pour diverses fonctions arithmétiques f, trouver les couples d'entiers strictement positifs (m, n) f-amicaux ou bien démontrer qu'il n'en existe pas.

2. La formule des résidus

On note $T_k = \frac{k(k+1)}{2}$ le $k^{\text{ème}}$ nombre triangulaire, où $k \in \mathbb{N}^*$. Pour chaque entier strictement positif n, soit u_n le nombre différents de termes $(T_k \mod n)_{k \geq 1}$.

- 1. Trouver une formule pour u_n lorsque n est une puissance de 2.
- 2. Trouver une formule pour u_n lorsque n est la puissance d'un nombre premier.
- **3.** Trouver une formule pour u_n dans le cas général.
- **4.** Soit P(x) un polynôme à coefficients rationnels tels que P(k) soit entier pour tout $k \in \mathbb{Z}$. Trouver le nombre de résidus différents modulo n dans la suite $(P(k))_{k\geq 1}$, où n est une entier strictement positif.
- 5. Proposer et étudier des questions similaires.

3. Triangles isocèles

On considère un triangle $\triangle ABC$ dont les longueurs des côtés sont a, b, c et les longueurs des médianes sont m_a, m_b, m_c (voir Figure 1). Il est connu que $m_a = m_b$ si, et seulement si, a = b (autrement dit ABC est isocèle).

FIGURE 1. Un triangle ABC avec une médiane AA_0 , une bissectrice intérieure AA_1 , une symédiane AA_2 , une ex-médiane AA'_0 , une bissectrice extérieure AA'_1 et une ex-symédiane AA'_2 .

- 1. Montrer que deux bissectrices intérieures d'un triangle ont même longueur si, et seulement si, le triangle est isocèle.
- 2. La symédiane passant par un sommet donné d'un triangle est le symétrique de la médiane par rapport à la bissectrice intérieure issues de ce sommet. Montrer que deux symédianes d'un triangle ont même longueur si, et seulement si, le triangle est isocèle.
- 3. Est-il vrai que deux bissectrices extérieures d'un triangle sont égales si, et seulement si, le triangle est isocèle?
- **4.** Une *ex-médiane* est par définition parallèle à un côté d'un triangle et passe par le sommet opposé. La *ex-symédiane* passant par un sommet d'un triangle est le symétrique de l'ex-médiane par rapport à la bissectrice extérieure passants par ce sommet.

Est-il vrai que deux ex-symédianes d'un triangle ont même longueur si, et seulement si, le triangle est isocèle?

Soit $n \neq 0$ un nombre réel. Un n-segment interne (externe) d'un triangle est un segment passant par un sommet qui coupe intérieurement (extérieurement) le côté opposé dans les proportions des puissances n-ièmes des côtés adjacents. Plus précisément, les segments $[AA_n]$ et $[AA'_n]$ sont respectivement des n-segments internes et externes en A si on a $\frac{BA_n}{A_nC} = \frac{c^n}{b^n}$ et $\frac{BA'_n}{A'_nC} = \frac{c^n}{b^n}$.

- 5. Vérifiez que les bissectrices intérieures et symédianes sont respectivement des 1-segments et 2-segments internes d'un triangle. Vérifiez également que les bissectrices extérieures et les ex-symédianes sont respectivement les 1-segments et 2-segments extérieures d'un triangle.
- **6.** Est-il vrai que deux n-segments internes d'un triangle sont égaux si, et seulement si, le triangle est isocèle?
- 7. Est-il vrai que deux n-segments externes d'un triangle sont égaux si, et seulement si, le triangle est isocèle?
- 8. Proposez et étudiez des directions de recherche additionnelles.

4. Polygônes stables

Soit $n \geq 3$ un entier, et soit P_n l'ensemble des sommets d'un polygône régulier à n sommets. Un sous-ensemble $A \subseteq P_n$ est dit stable si le centre de gravité des points appartenant à A coincide avec le centre du polygône régulier.

FIGURE 2. Le sous-ensemble $A = \{A_1, A_2, A_3\}$ de P_{12} est stable, mais le sous-ensemble $B = \{B_1, \ldots, B_6\}$ ne l'est pas.

- 1. Lorsque n est premier, trouver le nombre de sous-ensembles stables $A \subseteq P_n$ et les décrire.
- 2. Même question lorsque n est le produit de deux nombres premiers différents.
- **3.** Même question lorsque n est une puissance d'un nombre premier.
- 4. Étudier le problème pour un entier n quelconque.
- 5. Proposez et étudiez des directions de recherche additionnelles.

5. Suites récurrentes

1. Soit $(u_n)_{n\geq 1}$ une suite de nombres réels telle que pour tout entier $n\geq 2$:

$$u_{n+1} = \frac{u_1^2 + u_2^2 + \dots + u_n^2}{n}.$$

Étudier les propriétés de la suite $(u_n)_{n\geq 1}$ en fonction de u_1 et u_2 . Par exemple la suite est-elle monotone, bornée, convergente . . . ?

2. Soit $(u_n)_{n\geq 1}$ une suite de nombres réels tels que pour tout entier $n\geq 2$:

$$u_{n+1} = \frac{u_1 u_n + u_2 u_{n-1} + \dots + u_{n-1} u_2 + u_n u_1}{n}.$$

Étudier les propriétés de la suite $(u_n)_{n\geq 1}$ en fonction de u_1 et u_2 .

3. Soient u_1 et u_2 deux nombres réels. On construit une suite aléatoire $(u_n)_{n\geq 1}$ de la manière suivante. Pour chaque $n\geq 2$, si u_1,u_2,\ldots,u_n sont déjà construits, on choisit une permutation σ de l'ensemble $\{1,2,\ldots,n\}$ avec probabilité 1/n! et on pose :

$$u_{n+1} = \frac{u_1 u_{\sigma(1)} + u_2 u_{\sigma(2)} + \dots + u_n u_{\sigma(n)}}{n}.$$

- a) Étudier les propriétés de la suite $(u_n)_{n\geq 1}$ en fonction de u_1 et u_2 .
- b) Même question si σ est une fonction aléatoire $\{1,2,\ldots,n\}\to\{1,2,\ldots,n\}$ au lieu d'une permutation.

PROBLÈMES DU 2^{nd} TOURNOI FRANÇAIS DES JEUNES MATHÉMATICIENNES ET MATHÉMATICIENS 5

4. Soit $(u_n)_{n\geq 1}$ une suite de nombre réels telle que pour $n\geq 4,$

$$u_n = \frac{u_1 u_{n+1} + u_2 u_n + \dots + u_n u_2 + u_{n+1} u_1}{n+1}.$$

- a) Étudier les propriétés de la suite $(u_n)_{n\geq 1}$ en fonction de u_1,u_2,u_3 et u_4 .
- b) On suppose de plus que $u_1=u_2=u_3=1$. Existe-t-il une valeur u_4 telle que $0\leq u_4<1$ et $u_n<1$ pour tout $n\geq 1$?

LABORATOIRE DE MATHÉMATIQUES, UNIVERSITÉ PARIS-SUD, 91400 ORSAY, FRANCE

E-mail address: organisateurs@tfjm.org

 URL : http://www.tfjm.org/