## HW 3 Posted Monday 2/13/2012 Due Wednesday 2/22/2012 EE40 Maharbiz Spring 2012

If you're taking EE105 next semester, you'll thank me for problems 1 and 2. @

1. The circuit below is a BJT common emitter amplifier. Find  $V_{out}$  as a function of  $V_{in}$ . This may seem hard to parse at first, but it is actually pretty straightforward. Carefully replace the BJT symbol with the model for a BJT we used in class, making sure the base (B), emitter (E), and collector (C) terminals are connected properly, then use any method you want to solve for  $V_{out}$ !



2. The circuit below is a BJT *common collector amplifier*. Find both the voltage gain  $(A_V = V_{out}/V_{in})$  and the current gain  $(A_I = I_{out}/I_{in})$ . As with Problem 1, this may seem hard to parse at first, but it is actually pretty straightforward. Carefully replace the BJT symbol with the model for a BJT we used in class, making sure the base (B), emitter (E), and collector (C) terminals are connected properly, then use any method you want to solve for  $V_{out}$ !

For this problem, you can assume  $V_{in} \gg V_{BE}$ .



- 3. In the circuit shown below, a potentiometer is connected across the load resistor  $R_L$ . The total resistance of the potentiometer is  $R = R_1 + R_2 = 5$  kW.
  - (a) Obtain an expression for the power P<sub>L</sub> dissipated in R<sub>L</sub> for any value of R<sub>1</sub>.
  - (b) Plot P<sub>L</sub> versus R₁ over the full range made possible by the potentiometer's wiper.



4. a) What value of the load resistor R<sub>L</sub> will extract the maximum amount of power from the circuit below? b) How much power will that be?

Hint: you need to use both the concepts of Thevenin equivalent circuits and maximum power transfer.



5. Find the Thevenin equivalent circuit at terminals (a,b) of the circuit below:



6. Find the Norton equivalent circuit of the circuit.

