T88.2

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПИРОМЕТРЫ ТЕРМОЭЛЕКТРИЧЕСКИЕ

МЕТОДЫ И СРЕДСТВА ПОВЕРКИ

FOCT 13881-68

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СТАНДАРТОВ СОВЕТА МИНИСТРОВ СССР Москва

РАЗРАБОТАН И ВНЕСЕН Харьковским государственным научноисследовательским институтом метрологии (ХГНИИМ)

Директор **Кандыба В. В.** Руководитель разработки **Кантор П. Б.** Исполнитель **Голумб И. А.**

ПОДГОТОВЛЕН К УТВЕРЖДЕНИЮ Отделом приборостроения Комитета стандартов, мер и измерительных приборов при Совете Министров СССР

Начальник отдела член Комитета **Ивлев А. И.** Ст. инженер **Горбунов В. Н.** Инженер **Усикова Л. Д.**

Отделом приборов, средств автоматизации и вычислительной техники Всесоюзного научно-исследовательского института по нормализации в машиностроении (ВНИИНМАШ)

Начальник отдела **Кальянская И. А.** Руководитель темы **Линьков В. И.** Ст. инженер **Буданова А. М**.

УТВЕРЖДЕН Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР

Председатель Научно-технической комиссии член Комитета Ивлев А. И. Зам. председателя Научно-технической комиссии Фурсов Н. Д. Члены комиссии — Драгунов Г. Е., Руднев А. П., Москвичев А. М.

ТОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПИРОМЕТРЫ ТЕРМОЭЛЕКТРИЧЕСКИЕ

Методы и средства поверки

Thermoelectric pyrometers.

Methods and means of
verification

ΓΟCT 13881-68

Взамен Инструкции 165—62

Утвержден Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР 25/VII 1968 г. Срок введения установлен с 1/VII 1969 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на термоэлектрические пирометры, предназначенные для измерения температуры в интервале от минус 50 до плюс 2000° С, и устанавливает методы и средства их поверки.

1. ОПЕРАЦИИ, ПРОВОДИМЫЕ ПРИ ПОВЕРКЕ, И ПРИМЕНЯЕМЫЕ СРЕДСТВА

1.1. Операции, проводимые при поверке термоэлектрических комплектов после ремонта и находящихся в эксплуатации, и применяемые средства поверки должны соответствовать указанным в таблице.

, Операции, проводимые при поверке	Номера пунктов настоящего стандарта
1. Внешний осмотр и опробование милливольтметров 2. Внешний осмотр и опробование автоматических потенциометров 3. Внешний осмотр термопар и подготовка комплектов к поверке 4. Определение поправок к показаниям термоэлектрического комплекта	2.1 2.1 2.2–2.12 2.13; 2.14

Для проведения поверок по пп. 2.13, 2.14 применяются следующие средства поверки:

а) образцовые платинородий-платиновые термопары 2-го или 3-го разряда, применяемые в области температур от 300 до 1300°С;

- б) образцовые ртутно-стеклянные термометры 2-го разряда;
- в) образцовый платиновый термометр сопротивления 2-го или 3-го разряда;
 - г) оптический пирометр 2-го разряда;
 - д) термостаты до 300°С;
- е) трубчатые горизонтальные нагревательные печи до температуры 1200—1800° С;
 - ж) потенциометр класса 0,02 или 0,05 по ГОСТ 9245-68;
- з) вспомогательное оборудование (переключатели, реостаты, катушки сопротивления, лабораторные автотрансформаторы, магазины сопротивления, устройства для термостатирования свободных концов термопар).

2. ПОВЕРКА

- 2.1. При внешнем осмотре термоэлектрических комплектов должно быть установлено их соответствие требованиям ГОСТ 9736—68 и ГОСТ 7164—66*.
- 2.2. Термопары из благородных металлов, принятые в поверку, не должны иметь более двух сварок на каждом термоэлектроде. Перед поверкой термопары должны быть отожжены.
- 2.3. Термоэлектроды термопар из неблагородных металлов не должны иметь сварок, поверхность их должна быть чистой и гладкой.
- 2.4. При поверке термоэлектрических пирометров в печи рабочие концы всех термспар должны находиться в тепловом контакте. Для этого их связывают в пучок проволокой, без разрушения выдерживающей максимальную температуру поверки. В середину пучка вводят защитную трубку (из фарфора, кварца или окиси алюминия) с образцовой термопарой.

Число одновременно поверяемых термопар независимо от числа милливольтметров или автоматических потенциометров должно быть не более 6.

- 2.5. При наличии в комплекте вольфрамрениевых термопар для измерения температуры до 2000° С в качестве образцового должен применяться оптический пирометр 2-го разряда.
- 2.6. При поверке термоэлектрических пирометров в термостате и криостате рабочие концы поверяемых термопар опускают в стеклянные пробирки, а затем погружают их в среду термостата или криостата.

Температура среды термостата отсчитывается по образцовому ртутному термометру 2-го разряда, а температура среды криостата — по образцовому платиновому термометру сопротивления.

2.7. Свободные концы образцовой термопары термостатируются при 0°С путем погружения свободных концов вместе с подсо-

^{*} С 1/VII 1972 г. вводится в действие ГОСТ 7164—71.

единенными к ним соединительными проводами в пробирки с маслом, в свою очередь погружаемые в смесь размельченного льда и воды.

- 2.8. Температура свободных концов поверяемых термопар должна измеряться с помощью термометра с ценой деления 0,1°C и заноситься в протокол.
- 2.9. При поверке термоэлектрического пирометра поправка к показаниям милливольтметра при температуре свободных концов термопары, отличной от градуировочной, может быть внесена следующим образом:

а) перед началом работы для милливольтметров с нулевой отметкой стрелку ставят корректором на отметку шкалы, соответствующую температуре свободных концов термопары:

б) для приборов с безнулевой шкалой поправку на температуру холодных концов термопары вводят расчетным путем. При оформлении результатов поверки к показаниям милливольтметра прибавляют или вычитают количество градусов, соответствующее температуре холодных концов (для хромель-копелевых и хромель-алюмелиевых термопар);

для платинородий-платиновых термопар — количество градусов, умноженное на коэффициент 0,5;

для термопар типов НК-СА и ПР-30/6 при изменении температуры холодных концов в пределах от 0 до 300° С поправки не вводятся.

- 2.10. При наличии в термоэлектрическом пирометре автоматического потенциометра поправка на температуру свободных концов термопары вводится автоматически.
- 2.11. При одновременной поверке нескольких термоэлектрических пирометров милливольтметры должны устанавливаться на расстоянии не менее 30 *см* друг от друга ввиду наличия внешних полей.
- 2.12. При поверке пирометров в комплекте с платинородийплатиновыми термопарами в связи со значительным возрастанием сопротивления платины при увеличении температуры в процессе эксплуатации необходимо изменять величину внешнего подгоночного сопротивления. Величина изменения сопротивления термопары может быть определена расчетным путем (см. приложение).
- 2.13. Отклонения устанавливаемых в печи температур, при которых производят отсчеты термоэлектродвижущей силы (т.э.д.с.), допускаются не более чем на $\pm 10^{\circ}$ С.
- 2.14. При приближении стрелки поверяемого прибора к поверяемой отметке ток в нагревательной обмотке печи регулируют так, чтобы температура печи, а следовательно, и температура рабочих концов термопар менялись не более чем на 1°С в минуту.

Отсчеты показаний производят в следующем порядке: сначала производят отсчет т.э.д.с. образцовой термопары, затем — отсчет показаний первого поверяемого прибора, второго и т. д.

Если комплект состоит из милливольтметра и нескольких термопар, то производят отсчеты показаний при последовательном

подключении милливольтметра к каждой из термопар.

После отсчета последнего из поверяемых приборов отсчеты производят в обратном порядке и заканчивают повторным отсчетом т.э.д.с. образцовой термопары. После снятия отсчетов на отметке, соответствующей наивысшей температуре поверки, ток в печи снижают и отсчеты производят при снижающейся температуре на тех же отметках шкалы, на которых производились отсчеты при повышении температуры.

3. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

3.1. По среднему арифметическому значению, полученному из двух отсчетов т.э.д.с. образцовой термопары, на каждой отметке по данным свидетельства на образцовую термопару и градуировочной таблицы определяют поправку термоэлектрического пирометра в поверяемой точке.

При мер. При поверке термоэлектрического пирометра класса 1,0 с платинородий-платиновой термопарой (со шкалой 0—1600°С) при температуре, близкой к 600°С, получены средние отсчеты: по милливольтметру 602°С, по образцовой термопаре 5,190 мв.

Согласно данным свидетельства на образцовую термопару она развивает при 600° С 5,221 мв. Из градуировочной таблицы по ГОСТ 3044—61 для градуировки ПП-1 известно, что 600° С соответствует 5,220 мв. В точке 600° С т.э.д.с. образцовой термопары больше т.э.д.с. стандартной термопары на 5,221—5,220=0,001 мв. Следовательно, для того, чтобы привести градуировочную таблицу образцовой термопары к стандартной, необходимо вычесть из т.э.д.с. образцовой термопары 0,001 мв. Вычитая из 5,190 мв эту величину, получают 5,189 мв. По стандартной таблице находят, что 5,189 мв соответствует температуре 597° С. Следовательно, при показании на милливольтметре 602° С температура рабочего конца термопары равна 597° С, откуда поправка термоэлектрического пирометра в точке 600° С составит минус 5° С.

3.2. Допустимую погрешность комплекта вычисляют следующим образом: к абсолютной величине допустимой погрешности милливольтметра прибавляют абсолютную величину допустимой погреш-

ности термопары.

Пример. Для термоэлектрического пирометра, представленного в п. 3.1, эти погрешности будут равны: для милливольтметра 16° С, для термопары $0.01+2.5\cdot10^{-5}(600-300)=0.0175$ мв, что для точки 600° С составляет 2° С. Полная допустимая погрешность термоэлектрического пирометра составит $16+2=18^{\circ}$ С.

- 3.3 Приборы, удовлетворяющие требованиям настоящего стандарта, подвергают клеймению.
- 3.4. Результаты поверки оформляют в виде свидетельства единой формы, на обороте которого должны быть указаны поправки к показаниям пирометра во всех поверенных отметках шкалы.

Замена

ГОСТ 9245-68 введен взамен ГОСТ 9245-59.

ПРИЛОЖЕНИЕ

Определение величины изменения подгоночного внешнего сопротивления ($\Delta R_{\rm BH}$) для платинородий-платиновых термопар с термоэлектродами диаметром 0,5 мм при разной глубине погружения термопары в эксплуатационных условиях и при поверке производят следующим образом.

Разность (выраженную в M) между глубиной погружения термопары в эксплуатационных условиях и при поверке множат на числа, указанные во второй графе таблицы при соответствующей температуре. Полученная при этом величина и будет равна $\Delta R_{\rm BH}$ в om.

Температура рабочего конца в °C	Увеличение сопротивления 1 м нагретой термопары в <i>ом</i>	Температура рабочего конца в °C	Увеличение сопротивления 1 м нагретой термопары в ом	
100 200 300 400 500 600 700	0,36 0,71 1,04 1,37 1,69 1,99 2,30	800 900 1000 1100 1200 1300	2,58 2,85 3,13 3,38 3,62 3,86	

Примечания:

1. Данные таблицы не распространяются на термопары типа ПР-30/6.

2. При отсутствии указаний о глубине попружения платинородий-платиновой термопары при эксплуатации ее поверяют из расчета погружения на глубину 1 м.

МЕЖДУНАРОДНАЯ СИСТЕМА ЕДИНИЦ (СИ)

	E	диница		
Величина	Наименование	Обозначение		
	Панненование	руссное	международно	
ОСНОВНЬ	Е ЕДИНИЦЫ		•	
длина	метр	l M	m	
MACCA	килограмм	КГ	kg	
ВРЕМЯ	секунда	С	S	
СИЛА ЭЛЕКТРИЧЕСКОГО ТОКА	ампер	i A	l A	
ТЕРМОДИНАМИЧЕСКАЯ ТЕМПЕРА- ТУРА КЕЛЬВИНА	кельвин	К	K	
СИЛА СВЕТА	кандела	і кд	cd	
ДОПОЛНИТЕЛ	ЬНЫЕ ЕДИНИЦЫ			
Плосний угол	радиан	рад	i rad	
Телесный угол	стерадиан	Ср	sr	
TROUGROUP.	1	1 -6	1	
	ЫЕ ЕДИНИЦЫ	1 -	, ,	
Площадь	квадратный метр	M ²	m²	
Объем, вместимость	нубический метр	M ³	m ³	
Плотность	килограмм на кубический метр	KF/M ³	kg/m³	
Скорость	метр в секунду	M/C	m/s	
Угловая скорость	радиан в секунду	рад/с	rad/s	
Сила; сила тяжести (вес)	ньютон	H	N	
Давление; механическое напряжение	паскаль	<u>Π</u> α	Pa	
Работа; энергия; количество теплоты	джоуль	Дж	J	
Мощность; тепловой поток	ватт	Вт	l w	
Количество электричества; электрический варяд	кулон	Кл	С	
Электрическое напряжение, электри-	вольт	В	V	
ческий потенциал, разность электрических потенциалов, электродвижущая			-	
сила Электрическое сопротивление	OM	Ом	0	
Электрическая проводимость	Сименс	C _M	2 S	
Электрическая емкость	фарада	Ф	Ĕ	
Магнитный поток	вебер	Вб	Ŵb	
Индуктивность, взаимная индуктивность	генри	Γ̈́	н	
Удельная теплоемность	джоуль на килограмм-кельвин	Дж/(кг.К)		
Теплопроводность	ватт на метр-кельвин	Bt/(m·H)	W/(m·K)	
Световой поток	люмен	лм	1m	
Яркость	кандела на квадратный метр	КД/М²	cd/m²	
Освещенность	люкс	лк	1x	

Множитель, на который умножается единица		Обозначение		Множитель, на который умножается единица	Приставна	Обозначение	
	русское	между- народное	русское			между- народное	
1012	тера	T	T	10-2	(санти)	С	С
. 109	гига	Г	G	10-3	милли	M	m
10 ⁶	мега	М	M.	10-	микро	MK	1 1
10³	кило	к	k	10-9	нано	Ĥ	n
10°	(генто)	г	h	10712	пико	ń	p
10!	(дена)	да	da	10-15	фемто	ф	l f
10-1	(деци)	д	d	10-18	атто	a a	a

При мечание: В скобиах указаны приставки, которые допусквется применять только в наименованиях кратных и дольмых единиц, уже получивших широкое распространение [например, гектар, декалитр, дециметр, сантиметр].