SANGHUN JUNG

Email : shjung13@cs.washington.edu Website: https://shjung13.github.io

Last update: 05/16/2024

EDUCATION

University of Washington (UW)

2022 - present

Ph.D. in Computer Science and Engineering

Advisor: Prof. Byron Boots

Korea Advanced Institute of Science and Technology (KAIST)

2020 - 2022

M.S. in Artificial Intelligence Advisor: Prof. Jaegul Choo

GPA: 4.06 / 4.30

Korea University 2013 - 2019

B.S. in Computer Science and Engineering GPA: 3.70 / 4.50; Major GPA: 4.11 / 4.50 Military service during 2015 - 2016

RESEARCH INTEREST

Robot perception, Mobile manipulation, Learning from demonstration, and Autonomous driving

SELECTED PROJECTS

Amazon Lab126 Internship - Visual Affordance Learning for Robot Manipulation

Applied Scientist Intern - Summer

Jun. 2024 - present

Learning visual affordance from VLM/LLMs.

Keywords: Visual affordance, large-language model, robot manipulation

DARPA Robotic Autonomy in Complex Environments with Resiliency (RACER)

UW Perception Team Lead

Sep. 2022 - present

High-speed ground vehicle autonomy in complex off-road terrain. Took a lead since Jan. 2024

Keywords: Geometry estimation, uncertainty estimation, BEV segmentation

Visual Navigation for Mobile Robots in Indoor Environments

Project member

Nov. 2023 - present

Learning to plan from visual information in indoor environments.

Keywords: Mobile manipulation, multi-modal learning, sim-to-real transfer

Image-based Traversability Prediction using Self-supervision

Project Lead

Mar. 2023 - Jan. 2024

Visual traversability learning from self-supervision signals.

Keywords: Contrastive learning, vehicle trajectories, segment-anything

Effective Adaptation of LiDAR Segmentation to Distributional Shifts

Project Member

Oct. 2022 - Mar. 2023

Self-training with ensembling; simulation of beam pattern difference, temporal consistency **Keywords:** Self-training, structural point cloud subsampling, learned aggregation

PUBLICATIONS

* denotes equal contributions

- [7] Sanghun Jung, JoonHo Lee, Xiangyun Meng, Byron Boots, and Alexander Lambert. V-STRONG: Visual Self-Supervised Traversability Learning for Off-road Navigation. *International Conference on Robotics and Automation* (ICRA), 2024. [paper]
- [6] Amirreza Shaban*, Brian JoonHo Lee*, <u>Sanghun Jung</u>*, Xiangyun Meng, and Byron Boots. LiDAR-UDA: Self-ensembling Through Time for Unsupervised LiDAR Domain Adaptation. *International Conference on Computer Vision* (ICCV), 2023. Oral Presentation (1.8% acceptance rate) [paper] [code]

- [5] Sanghun Jung, Jungsoo Lee, Nanhee Kim, Amirreza Shaban, Byron Boots, and Jaegul Choo. CAFA: Class-Aware Feature Alignment for Test-Time Adaptation. International Conference on Computer Vision (**ICCV**), 2023. [paper]
- [4] Kyungmin Jo*, Gyumin Shim*, Sanghun Jung, Soyoung Yang, and Jaegul Choo. CG-NeRF: Conditional Generative Neural Radiance Fields. Winter Conference on Applications of Computer Vision (WACV), 2023. [paper]
- [3] Sanghun Jung*, Jungsoo Lee*, Daehoon Gwak, Sungha Choi, and Jaegul Choo. Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation. International Conference on Computer Vision (ICCV), 2021. Oral Presentation (3.0%) acceptance rate) [paper] [code]
- [2] Sungha Choi*, Sanghun Jung*, Huiwon Yun, Joanne T. Kim, Seungryong Kim, and Jaegul Choo. RobustNet: Improving Domain Generalization in Urban-Scene Segmentation via Instance Selective Whitening. Computer Vision and Pattern Recognition (CVPR), 2021. Oral Presentation (4.1%) acceptance rate) [paper] [code]
- [1] Jinho Choi, Sanghun Jung, Deokgun Park, Jaegul Choo, and Niklas Elmqvist. Visualizing for the Non-Visual: Enabling the Visually Impaired to Use Visualization. Computer Graphics Forum (EuroVIS), 2019. [paper]

Preprints

- [2] Jungsoo Lee, Juyoung Lee, Sanghun Jung, and Jaegul Choo. Improving Evaluation of Debiasing in Image Classification. arXiv preprint: 2206.03680, 2023. [paper]
- [1] Minsoo Lee, Chaeyeon Chung, Hojun Cho, Minjung Kim, Sanghun Jung, Minhyuk Sung, and Jaegul Choo. 3D-GIF: 3D-Controllable Object Generation via Implicit Factorized Representations with Unposed 2D Images. arXiv preprint: 2203.06457, 2022. [paper]

Work Experience	
Bear Robotics Korea	Seoul, South Korea
Robotics Engineer	2019 - 2020
Conducted projects such as safe velocity controller and odometry and localization testing	
Bear Robotics	Redwood City, CA, US
Robotics Engineering Intern	2018 - 2019
Developed robot algorithms such as depth camera extrinsic calibration	
SCHOLARSHIP	
KAIST Support Scholarship, KAIST	2020, 2021
Veritas Program Scholarship, Korea University	2018
Academic Excellence Scholarship for Freshmen, Korea University	2013
Awards	
Best Poster Award - Standardized Max Logits, KAIST AI Workshop	2022
Invited Talks	
Pre-Training for Robot Learning Workshop @ CoRL 2023 (Spotlight Talk) Visual Self-Supervised Traversability Learning for Off-road Navigation	Nov., 2023
IZATOTO AT XV-ul-al-a-	I 0000

Jan., 2022

KAIST AI Workshop

Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles

Hyundai Motor Group AI Research Seminar

Jul., 2021

Domain Generalization in Urban-Scene Segmentation

Naver AI LAB Jul., 2021

RobustNet: Improving Domain Generalization in Segmentation

Programming Skills

Languages: Python, C++, Bash

Technologies: Pytorch, Docker, Linux, Robot Operating System (ROS1)