

# LightGBM: A Highly Efficient Gradient Boosting Decision Tree

Prepared by:

Dursun Karaca ERDEMİR

irem BiGAT

#### **Topics**

- ➤ Gradient Boosting Decision Tree
- **≻**LightGBM
- ➤ Gradient-based One-side Sampling
- ➤ Exclusive Feature Bundling
- **Experiments**
- **≻**Conclusion

## Gradient Boosting Decision Tree (GBDT)

- a powerful machine learning algorithm
- used for regression, classification, ranking
- finds split points of each feature
  - Gradient Boosting = Gradient + Boosting
  - many adaptations (XGBoost, SGB etc.)
    - ensemble of weak learners (decision trees)
    - performs excellent with small data
    - > performs poorly with big data and high dimensions

## LightGBM

- ➤ improved GBDT
- reduced computing cost -> same
  - accuracy
- > less data & features
- > two novel algorithms (GOSS & EFB)

### **Gradient-based One-side Sampling (GOSS)**

- 1) Calculate error gradient
- 2) Sort descending order
- 3) Keep N largest
- 4) Random sample from the rest
- 5) Assign weight for balance
- 6) Reduced data size but same accuracy

#### **Gradient array**



#### **Exclusive Feature Bundling (EFB)**

- Made for sparse high-dimensional data
- Near-lossless
- Bundles (merges) mutually exclusive features
- Significantly speeds up training

#### **Greedy bundling**

> Two steps involved:

- Optimal bundling problem
- Reduced to graph coloring
- NP-hard problems
- Bundles features with small conflict

#### Merge exclusive features

- Merges each bundle
- Add offsets for value separation
- Many sparse features -> few dense features

#### **Experiments**



| Table 1: Datasets used in the experiments. |       |          |             |                       |        |  |  |  |
|--------------------------------------------|-------|----------|-------------|-----------------------|--------|--|--|--|
| Name                                       | #data | #feature | Description | Task                  | Metric |  |  |  |
| Allstate                                   | 12 M  | 4228     | Sparse      | Binary classification | AUC    |  |  |  |
| Flight Delay                               | 10 M  | 700      | Sparse      | Binary classification | AUC    |  |  |  |
| LETOR                                      | 2M    | 136      | Dense       | Ranking               | NDCG   |  |  |  |

| Table 2: Average time cost per iteration |         |         |              |          |          |  |  |  |
|------------------------------------------|---------|---------|--------------|----------|----------|--|--|--|
|                                          | xgb_exa | xgb_his | lgb_baseline | EFB_only | LightGBM |  |  |  |
| Allstate                                 | 10.85   | 2.63    | 6.07         | 0.71     | 0.28     |  |  |  |
| Flight Delay                             | 5.94    | 1.05    | 1.39         | 0.27     | 0.22     |  |  |  |
| LETOR                                    | 5.55    | 0.63    | 0.49         | 0.46     | 0.31     |  |  |  |

| Table 3: Overall accuracy comparison |         |         |              |                   |                          |  |  |  |
|--------------------------------------|---------|---------|--------------|-------------------|--------------------------|--|--|--|
|                                      | xgb_exa | xgb_his | lgb_baseline | SGB               | LightGBM                 |  |  |  |
| Allstate                             | 0.6070  | 0.6089  | 0.6093       | $0.6064 \pm 7e-4$ | $0.6093 \pm 9e-5$        |  |  |  |
| Flight Delay                         | 0.7601  | 0.7840  | 0.7847       | $0.7780 \pm 8e-4$ | $0.7846 \pm 4e-5$        |  |  |  |
| LETOR                                | 0.4977  | 0.4982  | 0.5277       | $0.5239 \pm 6e-4$ | $0.5275 \pm 5\text{e-4}$ |  |  |  |

#### Conclusion

- GBDT -> very costly with large-scale data
- LightGBM -> faster computing, less data, same accuracy
- Downsampling (GOSS)
- Dimension reduction (EFB)
- Less space and time complexity than SGB & XGBoost

## THE END Thanks for your time