

Data Structure & Algorithms

Nilesh Ghule

Threaded BST - fork morder traversel.

- Typical BST in-order traversal involves recursion or stack. It slows execution and also need more space.
- Threaded BST keep address of in-order successor or predecessor addresses instead of NULL to speed up in-order traversal (using a loop).
- Left threaded BST
- Right threaded BST
- In-threaded BST

Perfect Binary Tree

 Binary tree in which each non-leaf node has exactly two child nodes.

• Binary tree which is full for the given height i.e. contains maximum possible nodes.

Number of Leaf = 2h

Number of Leaf = 2h

• Number of nodes = 2^{n+1}

Complete Binary Tree and Heap

- A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible. → in level.
- Heap is array implementation of complete binary tree.
- Parent child relation is maintained through index calculations
 - parent index = child index / 2
 - left child index = parent index * 2
 - right child index = parent index * 2 + 1

Max Heap & Min Heap

 Max heap is a heap data structure in which each node is greater than both of its child nodes.

W,s

 Max heap is a heap data structure in which each node is smaller than both of its child nodes.

Max Heap – Initialize

Max Heap - Initialize

Max Heap – Initialize

Max Heap

	80	17	35	15	10	20	30	12	2	1
•	1	2	3	4	5	6	7	8	9	10

Max Heap – Delete Element

80 35 30

find 3rd highest eleon of the array. Step1: convent into markep Step2: delete 2 elems one by one. Step3: return most a aroCD;

Heap Sort

B Tree

- A B-Tree of order m can have at most m-1 keys and m children.
- B tree store large number of keys in a single node. This allows storing number of values keeping height minimal.
- Note that in B-Tree all leaf nodes are at same level.
- B-Tree is commonly used for indexing into file systems and databases. It ensures quick data searching and speed up disk access.

B+ Tree

- Extension of B-Tree for efficient insert, delete and search operation.
- Data is stored in leaf nodes only and all leaf nodes are linked together for sequential access.
- Search keys may be redundant.
- Faster searching, simplified deletion (as only from leaf nodes).
- B+Tree is commonly used for indexing into file systems and databases. It ensures quick data searching and speed up disk access.

Merge Sort

Thank you!

Nilesh Ghule <nilesh@sunbeaminfo.com>

