1

TD 4 : Cinématique du point matériel

Exercice 1:

Déterminer les coordonnées cylindriques puis sphériques du point M $(2, 2\sqrt{3}, 4)$

Exercice 2:

Le point P est déterminé par ses coordonnées cylindriques : $\rho = 3$; $\varphi = -\frac{\pi}{6}$; Z = 2 Déterminer ses coordonnées cartésiennes.

Exercice 3:

Le point P est déterminé par ses coordonnées sphériques : r = 2 ; $\varphi = \frac{\pi}{4}$; $\theta = \frac{\pi}{6}$ Déterminer ses coordonnées cartésiennes.

Exercice 4:

Le point P est déterminé par ses coordonnées cartésiennes : $x=-\sqrt{2}$; $y=\sqrt{2}$; z=1 Déterminer ses coordonnées cylindriques.

Exercice 5:

Le point P est déterminé par ses coordonnées cartésiennes : x = 1 ; y = 1 ; z = 1 Déterminer ses coordonnées sphériques.

Exercice 6:

Soit le vecteur
$$\overrightarrow{OB} = 2t \vec{i} - (t^3 + t) \vec{j} + (t^2 - 2t) \vec{k}$$

Calculer $\frac{d\overrightarrow{OB}}{dt}$ et $\frac{d^2\overrightarrow{OB}}{dt^2}$ pour $t = 3$

Exercice 7:

Les équations paramétriques du mouvement d'un mobile sont en coordonnées cartésiennes planes de base (\vec{i}, \vec{j}) :

$$x = t - 3$$
$$y = 2t^2 + 4t + 1$$

- 1. Trouver l'équation et la nature de la trajectoire.
- 2. Exprimer sur la base (\vec{i}, \vec{j}) , le vecteur vitesse instantanée et le vecteur accélération.

Exercice 8:

Le rayon vecteur $\overrightarrow{OM} = \overrightarrow{r}$ varie en fonction du temps suivant la loi :

$$\vec{r} = a \cos \omega t \vec{i} + a \sin \omega t \vec{j} + ct^2 \vec{k}$$

- 1. Indiquer l'allure de la courbe décrite par M.
- 2. Donner l'expression de l'accélération et sa norme

Exercice 9:

On considère un point matériel M se déplaçant dans un référentiel R (O, x, y, z), muni de la base (\vec{i} , \vec{j} , \vec{k}). Les coordonnées du point M dans le référentiel R sont données par :

$$x(t) = t + 1$$
; $y(t) = t^2 + 1$; $z(t) = 0$

- 1. Donner l'équation de la trajectoire de M dans R.
- 2. En déduire sa nature.
- 3. Calculer la vitesse et l'accélération du point M

2017/2018