Rank-69 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_0^2 X_1 + X_0^2 X_2 = 0$$

(1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 633

General information

Number of lines	5
Number of points	21
Number of singular points	1
Number of Eckardt points	0
Number of double points	0
Number of single points	20
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{5}
Type of lines on points	$5, 1^{20}$

Singular Points

The surface has 1 singular points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_{13}$$

$$\ell_{1} = \begin{bmatrix} 0 & 1 & \omega^{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{355} = \begin{bmatrix} 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{355} = \mathbf{Pl}(0, 3, 0, 1, 0, 0)_{15}$$

$$\ell_{2} = \begin{bmatrix} 1 & \omega^{2} & \omega & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{251} = \begin{bmatrix} 1 & 3 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{251} = \mathbf{Pl}(0, 2, 0, 3, 1, 0)_{72}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & \omega & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{350} = \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{350} = \mathbf{Pl}(0, 2, 0, 1, 0, 0)_{14}$$

$$\ell_{4} = \begin{bmatrix} 1 & \omega & \omega^{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{314} = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{314} = \mathbf{Pl}(0, 3, 0, 2, 1, 0)_{66}$$

Rank of lines: (345, 355, 251, 350, 314)

Rank of points on Klein quadric: (13, 15, 72, 14, 66)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 20 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_{11} = (0,1,1,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_{15} = (0,2,1,0) \ \text{lies on line} \ \ell_1 \\ 2: \ P_{18} = (3,2,1,0) \ \text{lies on line} \ \ell_2 \\ 3: \ P_{19} = (0,3,1,0) \ \text{lies on line} \ \ell_3 \\ 4: \ P_{21} = (2,3,1,0) \ \text{lies on line} \ \ell_4 \\ 5: \ P_{42} = (0,1,1,1) \ \text{lies on line} \ \ell_0 \\ 6: \ P_{45} = (0,2,1,1) \ \text{lies on line} \ \ell_1 \\ 7: \ P_{48} = (3,2,1,1) \ \text{lies on line} \ \ell_2 \\ 8: \ P_{49} = (0,3,1,1) \ \text{lies on line} \ \ell_3 \\ 9: \ P_{51} = (2,3,1,1) \ \text{lies on line} \ \ell_4 \\ 10: \ P_{57} = (0,1,2,1) \ \text{lies on line} \ \ell_3 \end{array}$

The single points on the surface are:

$\begin{array}{l} 11: \ P_{60} = (3,1,2,1) \ \text{lies on line} \ \ell_4 \\ 12: \ P_{61} = (0,2,2,1) \ \text{lies on line} \ \ell_0 \\ 13: \ P_{65} = (0,3,2,1) \ \text{lies on line} \ \ell_1 \\ 14: \ P_{66} = (1,3,2,1) \ \text{lies on line} \ \ell_2 \\ 15: \ P_{73} = (0,1,3,1) \ \text{lies on line} \ \ell_1 \\ 16: \ P_{75} = (2,1,3,1) \ \text{lies on line} \ \ell_2 \\ 17: \ P_{77} = (0,2,3,1) \ \text{lies on line} \ \ell_3 \\ 18: \ P_{78} = (1,2,3,1) \ \text{lies on line} \ \ell_4 \\ 19: \ P_{81} = (0,3,3,1) \ \text{lies on line} \ \ell_0 \end{array}$

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

$0 \\ 1 \\ 2 \\ 3 \\ 4$	0	1	2	3	4
0	0	1	1	1	1
1	1	0	1	1	1
2	1	1	0	1	1
3	1	1	1	0	1
4	1	1	1	1	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4
in point	P_3	P_3	P_3	P_3

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4
in point	P_3	P_3	P_3	P_3

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4
in point	P_3	P_3	P_3	P_3

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_4
in point	P_3	P_3	P_3	P_3

Line 4 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3
in point	P_3	P_3	P_3	P_3

 $\begin{aligned} &16: \ P_{73} = (0,1,3,1) \\ &17: \ P_{75} = (2,1,3,1) \\ &18: \ P_{77} = (0,2,3,1) \\ &19: \ P_{78} = (1,2,3,1) \\ &20: \ P_{81} = (0,3,3,1) \end{aligned}$

The surface has 21 points:

The points on the surface are:

$0: P_3 = (0,0,0,1)$	$8: P_{48} = (3, 2, 1, 1)$
$1: P_{11} = (0, 1, 1, 0)$	$9: P_{49} = (0,3,1,1)$
$2: P_{15} = (0, 2, 1, 0)$	$10: P_{51} = (2, 3, 1, 1)$
$3: P_{18} = (3, 2, 1, 0)$	11: $P_{57} = (0, 1, 2, 1)$
$4: P_{19} = (0, 3, 1, 0)$	$12: P_{60} = (3, 1, 2, 1)$
$5: P_{21} = (2, 3, 1, 0)$	13: $P_{61} = (0, 2, 2, 1)$
$6: P_{42} = (0, 1, 1, 1)$	$14: P_{65} = (0, 3, 2, 1)$
$7: P_{45} = (0, 2, 1, 1)$	15: $P_{66} = (1, 3, 2, 1)$