04/05/08 SAT 13:19 FAX

12/19/2007 16:03 5088310592

sheets.

XING F WANG

PAGE 03

Appl. No. 10/810,296 Dated 1/2/2008 Reply to Office Communication of 12/27/ 2007

page 2 of this paper consisting of a total of 17

RECEIVED CENTRAL FAX CENTER

JAN 0 2 2008

Remarks begin on page 17 of this paper.

The proposed amendments to the claims 1-2 will replace all prior versions of the claims 1-2 in said application.

The proposed amendments to the claim 1 to be sent to Primary examiner Dr. Lori A. Clown by the fax of December 12, 2007 comprising:

Claim 1 (currently amended): A multiparameter method of screening for the diagnosis, the prevention or the treatment evaluating disease risk, disease cause; therapeutic target, and therapeutic efficiency of atherosclerosis-related coronary heart disease (CHD) or stroke comprising;

defining the disease as atherosclerosis-related

CHD or stroke; er other cardiovaccular disease;

defining the normal as free from said disease;

defining the following parameters as atherosclerotic parameters consisting of c =

Page 2 of 17

PAGE 3/11 * RCVD AT 1/2/2008 11:44:47 AM [Eastern Standard Time] * SVR:USPTO-EFXRF-4/2 * DNIS:2738300 * CSID:5088310592 * DURATION (mmi-ss):03-14

04/05/08 SAT 13:20 FAX

12/19/2007 16:03 5088310592

XING F WANG

PAGE 04

Appl. No. 10/810,296 Dated 1/2/2008 Reply to Office Communication of 12/27/2007

the Low-density lipoprotein (LDL) concentration parameter in mg/dL or c = the C-reactive protein (CRP) concentration parameter in mg/L, p = the blood systolic pressure parameter in mmHg or p = the blood diastolic pressure parameter in mmHg, f = the heart rate parameter in s^{-1} , a = the radius parameter along arterial radius in cm, T = the temperature parameter of blood plasma in °C, α = the angle parameter between gravity and the mean velocity of blood fluid in arterial vessels in degree and z = the axial position parameter of diffusion flux along the inner wall in the axial direction of arterial vessels in cm, called the diffusion length parameter;

values of values—of disease, said atherosclerotic

parameters of the following expressions: for an individual

$$J = A c^{\frac{11}{6}} (v^3 D^{16})^{\frac{1}{27}} \left(\frac{g \cos \alpha + f u}{z} \right)^{\frac{7}{9}}$$
 (1.1)

or

$$J = Bc^{\frac{11}{9}} p^{\frac{1}{3}} T^{\frac{16}{27}} a^{\frac{3}{5}} f^{\frac{2}{9}} z^{-\frac{2}{9}}$$
 (1.2)

and

$$J = E_{c} c^{\frac{11}{9}} D^{\frac{16}{17}} z^{-\frac{2}{9}} (\cos \alpha)^{\frac{2}{9}}$$
 (1.3)

wherein J = the mass transfer flux in 10^{-5}

Page 3 of 17

PAGE 4/11 * RCVD AT 1/2/2008 11:44:47 AM (Eastern Standard Time) * SVR:USPTO-EFXRF-4/2 * DHIS:2738300 * CSID:5088310592 * DURATION (min-ss):03-14

04/05/08 SAT 13:20 FAX

12/19/2007 15:03 5088310592

. XING F WANG

PAGE 85

Appl. No. 10/810,296 Dated 1/2/2008 Reply to Office Communication of 12/27/2007

 $g/(cm^2s)$, A, B and E = the constants of conversion factors, v = the eddy velocity of blood fluid in arterial vessels in cm/s, u = the mean velocity of the blood fluid in cm/s, D = the diffusion coefficient in cm²/s, and g = the gravitational acceleration in cm/s²;

the measuring, for an individual not having the Oldisesse, the normal values of said not the Aire atherosclerotic parameters;

determining the disease risks yielded by the difference between said measured values and said normal values of said atherosclerotic parameters;

adding all said disease risks together yields containing a total risk of said disease;

determining a disease risk level containing said total risk of said disease;

selecting an atherosclerotic risk factor related to an atherosclerotic parameter that is the greatest contribution to said total risk of said disease so as to result in said risk

Page 4 of 17

PAGE 5/11 * RCVD AT 1/Z/2008 11:44:47 AM (Eastern Standard Time) * SVR:USPTO-EFXRF 4/Z * DMS:Z738300 * CSID:5088310592 * DURATION (mm-ss):03-14

04/05/08 SAT 13:20 FAX

17/19/2007 15:03 5088310592

XING F WANG

PAGE 06

Appl. No. 10/810,296 Dated 1/2/2008 Reply to Office Communication of 12/27/2007

factor as a primary therapy target of said disease;

selecting a greater flux between the LDL mass transfer flux and the monocyte mass transfer flux so as to result in said greater flux as a primary cause in said disease;

selecting a greater concentration level between the LDL level in serum and the CRP level in blood plasma so as to result in said greater level as a secondary therapy target of said disease;

determining a relative ratio between currently said total risk and previously said total risk so as to yield said relative ratio as a therapeutic efficacy of said disease;

repeating above-mentioned said methods until said disease risk level is reduced to a normal level for said individual who requires the therapy to prevent or to treat atherosclerosis-related CHD or stroke;

above-mentioned said methods are written as an executable computer program named the MMA.exe,

Page 5 of 17

PAGE 5/11 * RCVD AT 1/2/2008 11:44:47 AM [Eastern Standard Time] * SVR:USPTO-EFXRF-4/2 * DNIS:2738380 * CSID:5088310592 * DURATION (mm/ss):03-14

12/19/2007 16:03 5080310592

XING F WANG

PAGE 07

Appl. No. 10/810,296 Dated 1/2/2008 Reply to Office Communication of 12/27/2007

or another name, to be installed into a general purpose digital computer device to accomplish said methods; and

said total disease risk, disease cause,

therapoutic target and therapeutic efficiency

to a display or a memory or another computer on
a network, or to a user or a display.

The proposed amendments to the claim 2 to be sent to Examiner Mr. Jason M. Sims by the fax of December 10, 2007 comprising:

Claim 2 (Currently amended): A method as in claim

1, wherein the nine disease risks are yielded by the

differences between the measured values and the

normal values of the nine atherosclerotic parameters, wherein

said method comprising the steps of:

Substiting a measured value, c_m in mg/dL, of the individual's LDL concentration in human serum which is determined using a medical technique for measuring the concentration of blood constituents or said c_m is determined by the physician, into eq. 1.1 yields T_m = H_{cm}, where

A Cy30'6, 1/17 (2000 a 1 for 2/4)

Page 6 of 17

PAGE 7/11 * RCVD AT 1/2/2008 11:44:47 AM [Eastern Standard Time] * SVR:USPTO-EFXRF 4/2 * DNIS:27J8300 * CSED:5088310592 * DURATION (mm-ss):03-14

12/19/2007 16:03 5088310592

XING F WANG

PAGE 08

Appl. No. 10/810,296 Dated 1/2/2008 Reply to Office Communication of 12/27/ 2007

solution a normal value, c_0 in mg/dL, of said LDL concentration is determined by the physician or said $c_0 = 100$ mg/dL for adult, into 1.1 yield, $T_n = Hc_n$, and A

calculating $J_m - J_n$, where J_m yielded by

substituting said c_m into said equation (1.1)

and J_n yielded by substituting said C_n into

said equation (1.1), yields: $R_1 = \begin{pmatrix} c_m \\ T_n \end{pmatrix} \begin{pmatrix} c_m \\ T_$

calculating (1) yields the disease risk R₁ caused by the LDL concentration parameter related to the atherosclerotic risk factors being an elevated LDL concentration in human serum, high-fat diet, hypercholesterolemia or other risk factors that increase said LDL concentration;

a measured value, Cm in mg/L, of the individual's CRP concentration in human blood plasma, is determined using a medical technique for measuring the concentration of blood

Page 7 of 17

PAGE 8/11 * RCVD AT 1/2/2008 11:44:47 AM [Eastern Standard Time] * SVR:USPTO-EFXRT 4/2 * DNIS:2738300 * CSED:5088310592 * DURATION (mm-ss):03-14

12/19/2807 16:03 5088310592

XING F WANG

PAGE 09

Appl. No. 10/810,296 Dated 1/2/2008 Reply to Office Communication of 12/27/ 2007

constituents or said C_{m_2} is determined by the physician, into 1.1 yields $T_{m_2} = H C_{m_2}^{1/2} H \text{ where } H = A C_v^3 D^{16} I^{1/2} \left(\frac{30 \cdot 4 + E_v^3}{2} \right)^{1/2}$

D_c = the CRF diffusion coefficient and D_c = the LDL diffusion coefficient or said $c_n = 1.0$ mg/L-for adult and said F = 0.66, into $c_1(l,1)$ yields $\mathcal{T}_{n_2} : Hc_{n_2}^{-1/k}$ and

calculating $\frac{J_m - J_n}{\sqrt{J_n}}$, where J_m yielded by

substituting said C_m into said equation (1.1) and J_n yielded by substituting said C_n into said equation (1.1), yields:

$$R_{2} = F\left(\frac{Q_{m}}{C_{m}}\right)^{\frac{1}{p}} - 1) \qquad \frac{T_{m_{1}} - T_{m_{1}}}{T_{m_{1}}}$$
 (2)

substituting earld C_m , said C_m and said E into the following expression (2) where $c_m \ge c_n$ and

calculating (2) yields the disease risk R_2 caused by the CRP concentration parameter related to the atherosclerotic risk factors being an elevated CRP level in human blood

Page 8 of .17

PAGE 9/11* RCVD AT 1/2/2008 11:44:47 AM [Eastern Standard Time] * SVR:USPTO-EFXRF-4/2 * DNIS:2738300* CSID:5088310592* DURATION (mm-ss):03-14