ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

► We recall:

- ▶ We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- ▶ We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

▶ This is commonly known as $\epsilon - \delta$ form of continuity.

- ▶ We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- ▶ This is commonly known as $\epsilon \delta$ form of continuity.
- ▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty} f(x_n) = f(c).$$

- ▶ We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- ▶ This is commonly known as $\epsilon \delta$ form of continuity.
- ▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty} f(x_n) = f(c).$$

▶ This is known as sequential form of continuity.

- ► We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- ▶ This is commonly known as $\epsilon \delta$ form of continuity.
- ▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty} f(x_n) = f(c).$$

- ▶ This is known as sequential form of continuity.
- ▶ Definition 22.7: Let $A \subseteq \mathbb{R}$. Then a function $f : A \to \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.

Suppose $f: A \to \mathbb{R}$ is continuous at every y in A. Then we have for every $\epsilon > 0$, there exists δ , depending on y, such that

$$|f(x)-f(y)|<\epsilon,$$

for all x in A with $|x - y| < \delta$.

▶ Definition 26.1: Let A be a non-empty subset of \mathbb{R} and let $f: A \to \mathbb{R}$ be a function.

Suppose $f: A \to \mathbb{R}$ is continuous at every y in A. Then we have for every $\epsilon > 0$, there exists δ , depending on y, such that

$$|f(x)-f(y)|<\epsilon,$$

for all x in A with $|x - y| < \delta$.

- ▶ Definition 26.1: Let A be a non-empty subset of \mathbb{R} and let $f: A \to \mathbb{R}$ be a function.
- ▶ Then f is said to be uniformly continuous if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(y)| < \epsilon$$

for all $x, y \in A$ with $|x - y| < \delta$.

Suppose $f: A \to \mathbb{R}$ is continuous at every y in A. Then we have for every $\epsilon > 0$, there exists δ , depending on y, such that

$$|f(x)-f(y)|<\epsilon,$$

for all x in A with $|x - y| < \delta$.

- ▶ Definition 26.1: Let A be a non-empty subset of \mathbb{R} and let $f: A \to \mathbb{R}$ be a function.
- ▶ Then f is said to be uniformly continuous if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(y)| < \epsilon$$

for all $x, y \in A$ with $|x - y| < \delta$.

It is important here that the δ here depends only on ϵ and not on x or y.

Example 26.2: Let $g : \mathbb{R} \to \mathbb{R}$, be the function

$$g(x) = 4 + 5x, \quad \forall x \in \mathbb{R}.$$

Then g is uniformly continuous.

Example 26.2: Let $g : \mathbb{R} \to \mathbb{R}$, be the function

$$g(x) = 4 + 5x, \quad \forall x \in \mathbb{R}.$$

Then g is uniformly continuous.

▶ For $\epsilon > 0$, take $\delta = \frac{\epsilon}{5}$.

Example 26.2: Let $g : \mathbb{R} \to \mathbb{R}$, be the function

$$g(x) = 4 + 5x, \quad \forall x \in \mathbb{R}.$$

Then g is uniformly continuous.

- ▶ For $\epsilon > 0$, take $\delta = \frac{\epsilon}{5}$.
- ▶ Then for $|x y| < \delta$, we have

$$|g(x) - g(y)| = |5x - 5y| = 5|x - y| < 5\delta = 5\frac{\epsilon}{5} = \epsilon.$$

Example 26.2: Let $g : \mathbb{R} \to \mathbb{R}$, be the function

$$g(x) = 4 + 5x, \quad \forall x \in \mathbb{R}.$$

Then g is uniformly continuous.

- ▶ For $\epsilon > 0$, take $\delta = \frac{\epsilon}{5}$.
- ▶ Then for $|x y| < \delta$, we have

$$|g(x) - g(y)| = |5x - 5y| = 5|x - y| < 5\delta = 5\frac{\epsilon}{5} = \epsilon.$$

Clearly all uniformly continuous functions are continuous. The converse is not true.

Example 26.2: Let $g : \mathbb{R} \to \mathbb{R}$, be the function

$$g(x) = 4 + 5x, \quad \forall x \in \mathbb{R}.$$

Then g is uniformly continuous.

- ▶ For $\epsilon > 0$, take $\delta = \frac{\epsilon}{5}$.
- ▶ Then for $|x y| < \delta$, we have

$$|g(x) - g(y)| = |5x - 5y| = 5|x - y| < 5\delta = 5\frac{\epsilon}{5} = \epsilon.$$

- Clearly all uniformly continuous functions are continuous. The converse is not true.
- **Example 26.3**: Let $h : \mathbb{R} \to \mathbb{R}$ be the function,

$$h(x) = x^2, \quad \forall x \in \mathbb{R}.$$

Example 26.2: Let $g : \mathbb{R} \to \mathbb{R}$, be the function

$$g(x) = 4 + 5x, \quad \forall x \in \mathbb{R}.$$

Then g is uniformly continuous.

- ▶ For $\epsilon > 0$, take $\delta = \frac{\epsilon}{5}$.
- ▶ Then for $|x y| < \delta$, we have

$$|g(x) - g(y)| = |5x - 5y| = 5|x - y| < 5\delta = 5\frac{\epsilon}{5} = \epsilon.$$

- Clearly all uniformly continuous functions are continuous. The converse is not true.
- **Example 26.3**: Let $h: \mathbb{R} \to \mathbb{R}$ be the function,

$$h(x) = x^2, \forall x \in \mathbb{R}.$$

▶ Then *h* is not uniformly continuous.

▶ Proof: Take $\epsilon = 1$.

- ▶ Proof: Take $\epsilon = 1$.
- ▶ Suppose h is uniformly continuous. Then there exists $\delta > 0$, such that

$$|x^2 - y^2| < 1, \quad \forall |x - y| < \delta.$$

- ▶ Proof: Take $\epsilon = 1$.
- ▶ Suppose h is uniformly continuous. Then there exists $\delta > 0$, such that

$$|x^2 - y^2| < 1, \quad \forall |x - y| < \delta.$$

▶ Take $x = y + \frac{\delta}{2}$. We get

$$|(y+\frac{\delta}{2})^2-y^2|<1$$

for all y.

- ▶ Proof: Take $\epsilon = 1$.
- ▶ Suppose h is uniformly continuous. Then there exists $\delta > 0$, such that

$$|x^2 - y^2| < 1, \quad \forall |x - y| < \delta.$$

► Take $x = y + \frac{\delta}{2}$. We get

$$|(y+\frac{\delta}{2})^2-y^2|<1$$

for all y.

► That is $|y\delta + \frac{\delta^2}{4}| < 1$ for all y. Clearly this is not true, for instance, we can take $y = \frac{2}{\delta}$, and we get 2 < 1, which is a contradiction. \blacksquare

- ▶ Proof: Take $\epsilon = 1$.
- ▶ Suppose h is uniformly continuous. Then there exists $\delta > 0$, such that

$$|x^2 - y^2| < 1, \quad \forall |x - y| < \delta.$$

► Take $x = y + \frac{\delta}{2}$. We get

$$|(y+\frac{\delta}{2})^2-y^2|<1$$

for all y.

- ► That is $|y\delta + \frac{\delta^2}{4}| < 1$ for all y. Clearly this is not true, for instance, we can take $y = \frac{2}{\delta}$, and we get 2 < 1, which is a contradiction. \blacksquare
- **Exercise 26.4**: Show that $f:(0,1)\to(0,1)$ defined by

$$f(x) = \frac{1}{x}, \quad \forall x \in (0,1),$$

is not uniformly continuous.

▶ Theorem 26.5 (uniform continuity): Let $f : [a, b] \to \mathbb{R}$ be a continuous function, where $a, b \in \mathbb{R}$ with a < b. Then f is uniformly continuous.

- ▶ Theorem 26.5 (uniform continuity): Let $f : [a, b] \to \mathbb{R}$ be a continuous function, where $a, b \in \mathbb{R}$ with a < b. Then f is uniformly continuous.
- Proof: Suppose not.

- ▶ Theorem 26.5 (uniform continuity): Let $f : [a, b] \to \mathbb{R}$ be a continuous function, where $a, b \in \mathbb{R}$ with a < b. Then f is uniformly continuous.
- Proof: Suppose not.
- ▶ Then there exists $\epsilon_0 > 0$ such that for no $\delta > 0$,

$$|f(x)-f(y)|<\epsilon_0,\ |x-y|<\delta,\ x,y\in[a,b]$$

holds.

- ▶ Theorem 26.5 (uniform continuity): Let $f : [a, b] \to \mathbb{R}$ be a continuous function, where $a, b \in \mathbb{R}$ with a < b. Then f is uniformly continuous.
- Proof: Suppose not.
- ▶ Then there exists $\epsilon_0 > 0$ such that for no $\delta > 0$,

$$|f(x)-f(y)|<\epsilon_0,\ |x-y|<\delta,\ x,y\in[a,b]$$

holds.

▶ In particular, this inequality does not hold for $\delta = \frac{1}{n}$ for every $n \in \mathbb{N}$.

- ▶ Theorem 26.5 (uniform continuity): Let $f : [a, b] \to \mathbb{R}$ be a continuous function, where $a, b \in \mathbb{R}$ with a < b. Then f is uniformly continuous.
- Proof: Suppose not.
- ▶ Then there exists $\epsilon_0 > 0$ such that for no $\delta > 0$,

$$|f(x)-f(y)|<\epsilon_0,\ |x-y|<\delta,\ x,y\in[a,b]$$

holds.

- ▶ In particular, this inequality does not hold for $\delta = \frac{1}{n}$ for every $n \in \mathbb{N}$.
- ► This means that there exist x_n, y_n in [a, b] such that $|x_n y_n| < \frac{1}{n}$ and

$$|f(x_n)-f(y_n)|\geq \epsilon_0.$$

▶ By Bolzano-Weierstass theorem $\{x_n\}_{n\in\mathbb{N}}$ has a convergent subsequence. Say $\{x_{n_k}\}_{k\in\mathbb{N}}$ converges to some z in [a,b].

- ▶ By Bolzano-Weierstass theorem $\{x_n\}_{n\in\mathbb{N}}$ has a convergent subsequence. Say $\{x_{n_k}\}_{k\in\mathbb{N}}$ converges to some z in [a,b].
- Now $|x_{n_k} y_{n_k}| < \frac{1}{n_k} \le \frac{1}{k}$ as $n_k \ge k$ for every k.

- ▶ By Bolzano-Weierstass theorem $\{x_n\}_{n\in\mathbb{N}}$ has a convergent subsequence. Say $\{x_{n_k}\}_{k\in\mathbb{N}}$ converges to some z in [a,b].
- Now $|x_{n_k} y_{n_k}| < \frac{1}{n_k} \le \frac{1}{k}$ as $n_k \ge k$ for every k.
- ▶ Take $z_k = x_{n_k}$ and $w_k = y_{n_k}$. Then we have

- ▶ By Bolzano-Weierstass theorem $\{x_n\}_{n\in\mathbb{N}}$ has a convergent subsequence. Say $\{x_{n_k}\}_{k\in\mathbb{N}}$ converges to some z in [a,b].
- Now $|x_{n_k} y_{n_k}| < \frac{1}{n_k} \le \frac{1}{k}$ as $n_k \ge k$ for every k.
- ▶ Take $z_k = x_{n_k}$ and $w_k = y_{n_k}$. Then we have
- ▶ (i) $\{z_k\}_{k\in\mathbb{N}}$ converges to z.

- ▶ By Bolzano-Weierstass theorem $\{x_n\}_{n\in\mathbb{N}}$ has a convergent subsequence. Say $\{x_{n_k}\}_{k\in\mathbb{N}}$ converges to some z in [a,b].
- Now $|x_{n_k} y_{n_k}| < \frac{1}{n_k} \le \frac{1}{k}$ as $n_k \ge k$ for every k.
- ▶ Take $z_k = x_{n_k}$ and $w_k = y_{n_k}$. Then we have
- ▶ (i) $\{z_k\}_{k\in\mathbb{N}}$ converges to z.
- ightharpoonup (ii) $|z_k w_k| < \frac{1}{k}$ for every $k \in \mathbb{N}$.

- ▶ By Bolzano-Weierstass theorem $\{x_n\}_{n\in\mathbb{N}}$ has a convergent subsequence. Say $\{x_{n_k}\}_{k\in\mathbb{N}}$ converges to some z in [a,b].
- Now $|x_{n_k} y_{n_k}| < \frac{1}{n_k} \le \frac{1}{k}$ as $n_k \ge k$ for every k.
- ▶ Take $z_k = x_{n_k}$ and $w_k = y_{n_k}$. Then we have
- ▶ (i) $\{z_k\}_{k\in\mathbb{N}}$ converges to z.
- (ii) $|z_k w_k| < \frac{1}{k}$ for every $k \in \mathbb{N}$.
- ▶ (iii) $|f(z_k) f(w_k)| \ge \epsilon_0$ for all $k \in \mathbb{N}$.

From (ii),

$$z_k - \frac{1}{k} \le w_k \le z_k + \frac{1}{k}, \quad \forall k \in \mathbb{N}.$$

From (ii),

$$z_k - \frac{1}{k} \le w_k \le z_k + \frac{1}{k}, \quad \forall k \in \mathbb{N}.$$

▶ Then by (i), $\lim_{k\to\infty}(z_k-\frac{1}{k})=z=\lim_{k\to\infty}(z_k+\frac{1}{k})$, and by squeeze theorem,

$$\lim_{k\to\infty}w_k=z.$$

From (ii),

$$z_k - \frac{1}{k} \le w_k \le z_k + \frac{1}{k}, \quad \forall k \in \mathbb{N}.$$

▶ Then by (i), $\lim_{k\to\infty}(z_k-\frac{1}{k})=z=\lim_{k\to\infty}(z_k+\frac{1}{k})$, and by squeeze theorem,

$$\lim_{k\to\infty}w_k=z.$$

▶ Therefore both $\{z_k\}_{k\in\mathbb{N}}$ and $\{w_k\}_{k\in\mathbb{N}}$ converge to the same real number z in [a,b].

From (ii),

$$z_k - \frac{1}{k} \le w_k \le z_k + \frac{1}{k}, \quad \forall k \in \mathbb{N}.$$

▶ Then by (i), $\lim_{k\to\infty}(z_k-\frac{1}{k})=z=\lim_{k\to\infty}(z_k+\frac{1}{k})$, and by squeeze theorem,

$$\lim_{k\to\infty}w_k=z.$$

- ▶ Therefore both $\{z_k\}_{k\in\mathbb{N}}$ and $\{w_k\}_{k\in\mathbb{N}}$ converge to the same real number z in [a,b].
- ▶ By continuity of f, $\{f(z_k)\}_{k\in\mathbb{N}}$ and $\{f(w_k)\}_{k\in\mathbb{N}}$ converge to the same value f(z).

From (ii),

$$z_k - \frac{1}{k} \le w_k \le z_k + \frac{1}{k}, \quad \forall k \in \mathbb{N}.$$

▶ Then by (i), $\lim_{k\to\infty}(z_k-\frac{1}{k})=z=\lim_{k\to\infty}(z_k+\frac{1}{k})$, and by squeeze theorem,

$$\lim_{k\to\infty}w_k=z.$$

- ▶ Therefore both $\{z_k\}_{k\in\mathbb{N}}$ and $\{w_k\}_{k\in\mathbb{N}}$ converge to the same real number z in [a,b].
- ▶ By continuity of f, $\{f(z_k)\}_{k\in\mathbb{N}}$ and $\{f(w_k)\}_{k\in\mathbb{N}}$ converge to the same value f(z).
- ▶ This contradicts, (iii), as we can choose, K_1 such that

$$|f(z_k)-f(z)|<\frac{\epsilon_0}{2}, \ \forall k\geq K_1.$$

From (ii),

$$z_k - \frac{1}{k} \le w_k \le z_k + \frac{1}{k}, \quad \forall k \in \mathbb{N}.$$

▶ Then by (i), $\lim_{k\to\infty}(z_k-\frac{1}{k})=z=\lim_{k\to\infty}(z_k+\frac{1}{k})$, and by squeeze theorem,

$$\lim_{k\to\infty}w_k=z.$$

- ► Therefore both $\{z_k\}_{k\in\mathbb{N}}$ and $\{w_k\}_{k\in\mathbb{N}}$ converge to the same real number z in [a,b].
- ▶ By continuity of f, $\{f(z_k)\}_{k\in\mathbb{N}}$ and $\{f(w_k)\}_{k\in\mathbb{N}}$ converge to the same value f(z).
- ightharpoonup This contradicts, (iii), as we can choose, K_1 such that

$$|f(z_k)-f(z)|<\frac{\epsilon_0}{2}, \ \forall k\geq K_1.$$

Similarly there exists K₂ such that,

$$|f(w_k)-f(z)|<\frac{\epsilon_0}{2}, \ \forall k\geq K_2.$$

▶ Take $K = \max\{K_1, K_2\}$. Then by triangle inequality we have,

$$|f(z_K)-f(w_K)| \le |f(z_K)-f(z)|+|f(z)-f(w_K)| < \frac{\epsilon_0}{2} + \frac{\epsilon_0}{2} = \epsilon_0$$

▶ Take $K = \max\{K_1, K_2\}$. Then by triangle inequality we have,

$$|f(z_K)-f(w_K)| \le |f(z_K)-f(z)|+|f(z)-f(w_K)| < \frac{\epsilon_0}{2} + \frac{\epsilon_0}{2} = \epsilon_0$$

▶ Hence $|f(z_k) - f(w_K)| < \epsilon_0$, contradicting (iii).

▶ Take $K = \max\{K_1, K_2\}$. Then by triangle inequality we have,

$$|f(z_K)-f(w_K)| \le |f(z_K)-f(z)|+|f(z)-f(w_K)| < \frac{\epsilon_0}{2} + \frac{\epsilon_0}{2} = \epsilon_0$$

- ▶ Hence $|f(z_k) f(w_K)| < \epsilon_0$, contradicting (iii).
- ► Therefore *f* is uniformly continuous.

▶ Definition 26.6: Let A be a non-empty subset of \mathbb{R} and let $f: A \to \mathbb{R}$ be a function.

- ▶ Definition 26.6: Let A be a non-empty subset of \mathbb{R} and let $f: A \to \mathbb{R}$ be a function.
- ► Then (i) f is said to be increasing (or non-decreasing) if $f(x) \le f(y)$ for all $x, y \in A$ with $x \le y$.

- ▶ Definition 26.6: Let A be a non-empty subset of \mathbb{R} and let $f: A \to \mathbb{R}$ be a function.
- ▶ Then (i) f is said to be increasing (or non-decreasing) if $f(x) \le f(y)$ for all $x, y \in A$ with $x \le y$.
- ▶ (ii) f is said to be strictly increasing if f(x) < f(y) for all $x, y \in A$ with x < y.

- ▶ Definition 26.6: Let A be a non-empty subset of \mathbb{R} and let $f: A \to \mathbb{R}$ be a function.
- Then (i) f is said to be increasing (or non-decreasing) if $f(x) \le f(y)$ for all $x, y \in A$ with $x \le y$.
- ▶ (ii) f is said to be strictly increasing if f(x) < f(y) for all $x, y \in A$ with x < y.
- ▶ (iii) f is said to be decreasing (or non-increasing) if $f(x) \ge f(y)$ for all $x, y \in A$ with $x \le y$.

- ▶ Definition 26.6: Let A be a non-empty subset of \mathbb{R} and let $f: A \to \mathbb{R}$ be a function.
- Then (i) f is said to be increasing (or non-decreasing) if $f(x) \le f(y)$ for all $x, y \in A$ with $x \le y$.
- ▶ (ii) f is said to be strictly increasing if f(x) < f(y) for all $x, y \in A$ with x < y.
- ▶ (iii) f is said to be decreasing (or non-increasing) if $f(x) \ge f(y)$ for all $x, y \in A$ with $x \le y$.
- (iv) f is said to be strictly decreasing if f(x) > f(y) for all $x, y \in A$ with x < y.

▶ Theorem 26.7: Let a, b, a', b' be real numbers with a < b and a' < b'. If $f : [a, b] \rightarrow [a', b']$ is a continuous bijection then either f is strictly increasing with f(a) = a' and f(b) = b' or f is strictly decreasing with f(a) = b' and f(b) = a'

- ▶ Theorem 26.7: Let a, b, a', b' be real numbers with a < b and a' < b'. If $f : [a, b] \rightarrow [a', b']$ is a continuous bijection then either f is strictly increasing with f(a) = a' and f(b) = b' or f is strictly decreasing with f(a) = b' and f(b) = a'
- Proof: We know that any continuous function f on [a, b] maps [a, b] onto [s, t] where

$$s = \inf\{f(x) : x \in [a, b]\}$$

and

$$t = \sup\{f(x) : x \in [a, b]\}.$$

- ▶ Theorem 26.7: Let a, b, a', b' be real numbers with a < b and a' < b'. If $f : [a, b] \rightarrow [a', b']$ is a continuous bijection then either f is strictly increasing with f(a) = a' and f(b) = b' or f is strictly decreasing with f(a) = b' and f(b) = a'
- Proof: We know that any continuous function f on [a, b] maps [a, b] onto [s, t] where

$$s = \inf\{f(x) : x \in [a, b]\}$$

and

$$t = \sup\{f(x) : x \in [a, b]\}.$$

▶ Hence we must have s = a' and t = b'.

- ▶ Theorem 26.7: Let a, b, a', b' be real numbers with a < b and a' < b'. If $f : [a, b] \rightarrow [a', b']$ is a continuous bijection then either f is strictly increasing with f(a) = a' and f(b) = b' or f is strictly decreasing with f(a) = b' and f(b) = a'
- ▶ Proof: We know that any continuous function f on [a, b] maps [a, b] onto [s, t] where

$$s = \inf\{f(x) : x \in [a, b]\}$$

and

$$t = \sup\{f(x) : x \in [a, b]\}.$$

- ▶ Hence we must have s = a' and t = b'.
- Also as the infimum and supremum are attained there exist, c, d in [a, b] such that f(c) = s = a' and f(d) = t = b'.

- ▶ Theorem 26.7: Let a, b, a', b' be real numbers with a < b and a' < b'. If $f : [a, b] \rightarrow [a', b']$ is a continuous bijection then either f is strictly increasing with f(a) = a' and f(b) = b' or f is strictly decreasing with f(a) = b' and f(b) = a'
- Proof: We know that any continuous function f on [a, b] maps [a, b] onto [s, t] where

$$s = \inf\{f(x) : x \in [a, b]\}$$

and

$$t = \sup\{f(x) : x \in [a, b]\}.$$

- ▶ Hence we must have s = a' and t = b'.
- Also as the infimum and supremum are attained there exist, c, d in [a, b] such that f(c) = s = a' and f(d) = t = b'.
- We claim that if c < d, then f is strictly increasing. By intermediate value theorem, f([c,d]) = [a',b']. Now the bijectivity of f forces c = a and d = b, so that f(a) = a' and f(b) = b'.

▶ If f is not strictly increasing, there exist x, y in [a, b] such that x < y and f(x) > f(y) (Since f is injective f(x) = f(y) is ruled out.)

- ▶ If f is not strictly increasing, there exist x, y in [a, b] such that x < y and f(x) > f(y) (Since f is injective f(x) = f(y) is ruled out.)
- ▶ Since f(a) = a' and f(x) > f(y), x = a is not possible.

- If f is not strictly increasing, there exist x, y in [a, b] such that x < y and f(x) > f(y) (Since f is injective f(x) = f(y) is ruled out.)
- ▶ Since f(a) = a' and f(x) > f(y), x = a is not possible.
- So we have $a < x < y \le b$ and f(a) = a', and f(x) > f(y) > a'

- If f is not strictly increasing, there exist x, y in [a, b] such that x < y and f(x) > f(y) (Since f is injective f(x) = f(y) is ruled out.)
- ▶ Since f(a) = a' and f(x) > f(y), x = a is not possible.
- So we have $a < x < y \le b$ and f(a) = a', and f(x) > f(y) > a'
- ▶ On applying intermediate value theorem to $f|_{[a,x]}$ there must be some $z \in [a,x]$ such that f(z) = f(y). This contradicts injectivity of f.

- If f is not strictly increasing, there exist x, y in [a, b] such that x < y and f(x) > f(y) (Since f is injective f(x) = f(y) is ruled out.)
- ▶ Since f(a) = a' and f(x) > f(y), x = a is not possible.
- So we have $a < x < y \le b$ and f(a) = a', and f(x) > f(y) > a'
- ▶ On applying intermediate value theorem to $f|_{[a,x]}$ there must be some $z \in [a,x]$ such that f(z) = f(y). This contradicts injectivity of f.
- Therefore if c < d, then f is strictly increasing and f(a) = a', f(b) = b'.

- If f is not strictly increasing, there exist x, y in [a, b] such that x < y and f(x) > f(y) (Since f is injective f(x) = f(y) is ruled out.)
- ▶ Since f(a) = a' and f(x) > f(y), x = a is not possible.
- So we have $a < x < y \le b$ and f(a) = a', and f(x) > f(y) > a'
- ▶ On applying intermediate value theorem to $f|_{[a,x]}$ there must be some $z \in [a,x]$ such that f(z) = f(y). This contradicts injectivity of f.
- Therefore if c < d, then f is strictly increasing and f(a) = a', f(b) = b'.
- Similarly if d < c, f is strictly decreasing and f(a) = b', f(b) = a'.

- If f is not strictly increasing, there exist x, y in [a, b] such that x < y and f(x) > f(y) (Since f is injective f(x) = f(y) is ruled out.)
- ▶ Since f(a) = a' and f(x) > f(y), x = a is not possible.
- So we have $a < x < y \le b$ and f(a) = a', and f(x) > f(y) > a'
- ▶ On applying intermediate value theorem to $f|_{[a,x]}$ there must be some $z \in [a,x]$ such that f(z) = f(y). This contradicts injectivity of f.
- Therefore if c < d, then f is strictly increasing and f(a) = a', f(b) = b'.
- Similarly if d < c, f is strictly decreasing and f(a) = b', f(b) = a'.
- Finally c = d is not possible as f can't be a constant function due to injectivity of f.

- If f is not strictly increasing, there exist x, y in [a, b] such that x < y and f(x) > f(y) (Since f is injective f(x) = f(y) is ruled out.)
- ▶ Since f(a) = a' and f(x) > f(y), x = a is not possible.
- So we have $a < x < y \le b$ and f(a) = a', and f(x) > f(y) > a'
- ▶ On applying intermediate value theorem to $f|_{[a,x]}$ there must be some $z \in [a,x]$ such that f(z) = f(y). This contradicts injectivity of f.
- Therefore if c < d, then f is strictly increasing and f(a) = a', f(b) = b'.
- Similarly if d < c, f is strictly decreasing and f(a) = b', f(b) = a'.
- Finally c = d is not possible as f can't be a constant function due to injectivity of f.

- If f is not strictly increasing, there exist x, y in [a, b] such that x < y and f(x) > f(y) (Since f is injective f(x) = f(y) is ruled out.)
- ▶ Since f(a) = a' and f(x) > f(y), x = a is not possible.
- So we have $a < x < y \le b$ and f(a) = a', and f(x) > f(y) > a'
- On applying intermediate value theorem to $f|_{[a,x]}$ there must be some $z \in [a,x]$ such that f(z) = f(y). This contradicts injectivity of f.
- Therefore if c < d, then f is strictly increasing and f(a) = a', f(b) = b'.
- Similarly if d < c, f is strictly decreasing and f(a) = b', f(b) = a'.
- Finally c = d is not possible as f can't be a constant function due to injectivity of f.
- ► END OF LECTURE 26.

