文科概率统计

3.6 抽样分布

3.6.2 总体与样本

数理统计是一个应用极广的数学分支,它以概率论为理论基础,以试验和观测结果为依据,对随机现象的统计规律性作出种种合理的估计和推断.

由于在大量的重复试验下,任何随机现象都会呈现出其确定的统计规律性,而实际中允许的试验又总是有限的,所以从全部研究对象中抽取由一部分个体组成的局部,并通过这个局部的特性去推断总体的特性,便成了数理统计的重要任务之一.

定义 在数理统计中被研究对象的全体称为总体.

定义 组成总体的每个单位称为个体.

例如,在人口普查中,全部人口就是总体,而其中每一个人就是一个个体.

研究某城市中学生的身高分布情况,此时全体中学生的身高是一个总体,而每个中学生的身高则是一个个体.

在实际应用中,人们所关心的不是总体中每个个体的具体性能,而是它的某一数量指标,对于一个确定的由数量指标构成的总体来说,由于每个个体的取值是不同的,从总体中任取一个个体,其取值是不能预先确定的,所以总体的任何一个数量指标都是一个随机变量.因此,通常用随机变量 X 表示总体,即总体是指某个随机变量 X 可能取值的全体.

定义 从总体 X 中抽取一个个体,就是对代表总体的随机变量 X 进行一次试验(或观测),记为 X_i ,其具体的取值记为 x_i . 从总体中抽取若干个个体 X_i ($i=1,2,\cdots,n$)的过程,称为抽样;抽出的这些个体 X_i 所成的集体,称为样本(或子样),记为(X_1,X_2,\cdots,X_n);样本中所含个体的个数 n 称为样本容量;每个抽中的个体 X_i 称为样本点. 其具体的取值 x_i 称为样本观测值.

3.6.3 简单随机样本

由于要从样本来推断总体的分布并进行各种分析,因此要求样本能够很好地反映总体的特征.

定义 如果从总体 X 中进行独立的重复试验,得到容量为 n 的样本(X_1 , X_2 ,…, X_n)满足下面的两个条件:

- (1) X_i ($i=1,2,\dots,n$) 与 X 有相同的分布函数 F(X);
- (2) X_1, X_2, \cdots, X_n 相互独立.

那么样本 (X_1, X_2, \dots, X_n) 称为简单随机样本. 这种抽样称为简单随机抽样. 抽样后,简单随机样本 (X_1, X_2, \dots, X_n) 的样本值(或称为样本观测值)就成为 n个具体的数值 (x_1, x_2, \dots, x_n) (如图 3.34 所示).

今后,凡是不加特别说明的,所提到的抽样与样本,都是指简单随机抽样与简单随机样本.

3.6.5 统计量的概念

样本是总体的代表和反映,也是统计推断的依据.为了对总体的分布或数字特征进行各种统计推断,还需要对样本作加工处理,把样本中应关心的事物和信息集中起来,针对不同的问题构造出样本的不同函数,这种样本的函数称为统计量.

定义 由样本 (X_1, X_2, \dots, X_n) 所确定的函数 $f(X_1, X_2, \dots, X_n)$ 称为统计量.

若 (x_1, x_2, \dots, x_n) 是一个样本观测值,则称 $f(x_1, x_2, \dots, x_n)$ 是统计量 $f(X_1, X_2, \dots, X_n)$ 的一个观测值.

显然,统计量不仅是一个随机变量,而且还不含有未知参数.

例 3.6.2 设 (X_1, X_2, X_3) 是由服从正态分布 $N(\mu, \sigma^2)$ 的总体 X 中抽取的一个容量为 3 的样本,其中 μ 、 σ 是未知参数,因此 $\frac{X_1 + X_2 + X_3}{3} - \mu$, $\frac{X_1 + X_2 + X_3}{\sigma}$ 都不是统计量,而 $X_1 + X_2 + 5$, $X_1^2 + X_2^2$ 都是统计量.

设 (X_1, X_2, \dots, X_n) 是总体 X 中的一个样本,下面是数理统计中常用的几个统计量及其观测值:

(1) 样本均值
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, 它的观测值为 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

(2) 样本方差
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$
, 它的观测值为

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}.$$

(3) 样本标准差
$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$
, 它的观测值为

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}.$$

3.6.6 抽样分布

定义 在数理统计中把统计量的分布称为抽样分布.

- 一般来说,要确定某个统计量的分布是比较困难的,有时甚至是不可能的. 但是对于来自正态总体的几个常用统计量的分布,已得到了一系列重要的结果, 下面不加证明地介绍在统计推断中常用的几个统计量的分布.
- 1. 设总体 $X \sim N(\mu, \sigma^2)$, 且 (X_1, X_2, \dots, X_n) 是 X 中样本容量为 n 的样本,样本均值 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,则
 - (1) $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$.
 - (2) 统计量 $U = \frac{\bar{X} \mu}{\sigma / \sqrt{n}}$ 服从标准正态分布(此统计量称为 U 统计量),即

$$U=\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1).$$

2. 设总体 $X \sim N(\mu, \sigma^2)$, 且 (X_1, X_2, \dots, X_n) 是 X 中样本容量为 n 的样本,样

本均值
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
,样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$,

 $T = \frac{X - X}{S / A}$

则称统计量 T 服从自由度为 n-1 的 t 分布(此统计量亦称为 t 统计量),即

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

其密度曲线如图 3.36 所示(本课程略去了定理的证明).

图 3.36

由 t 分布的密度函数可知, t 分布的密度曲线是关于 y 轴对称的, 当n > 30 时, t 分布近似于标准正态分布,即它们的密度曲线几乎是相同的.

对给定的 $\alpha(0 < \alpha < 1)$ 和 n, 称满足等式

$$P(T \geqslant t_{\alpha}(n)) = \int_{t_{\alpha}(n)}^{+\infty} p_{t}(x) dx = \alpha$$

的 $t_{\alpha}(n)$ 为 t 分布的临界值(图 3.37).

对于不同的 α 和n,临界值 $t_{\alpha}(n)$ 的值可由t分布临界值表(附表 3)查得.

例 3.6.3 设 n = 20, $\alpha = 0.01$, 查自由度为 20 的 t 分布临界值表(附表 3),

则有

$$t_{\alpha}(n) = t_{0.01}(20) = 2.528 0.$$

附表 3 t 分布临界值表

k da a	0, 25	0. 10	0. 05	0. 025	0. 01	0. 005
1	1.0000	3. 077 7	6. 313 8	12. 706 2	31. 820 7	63. 657 4
2	0.8165	1.8856	2.9200	4. 320 7	6.9646	9, 924 8
3	0.7649	1.6377	2. 353 4	3. 182 4	4. 540 7	5. 840 9
4	0.7407	1. 533 2	2. 131 8	2.7764	3.7469	4. 604 1
4 5 6 7	0.7267	1. 475 9	2.0150	2. 570 6	3. 364 9	4. 032 2
6	0.7176	1.4398	1. 943 2	2.4469	3. 142 7	3. 707 4
	0.7111	1.4149	1.8946	2. 364 6	2.9980	3. 499 5
8	0.7064	1. 396 8	1. 859 5	2.3060	2.8965	3. 355 4
9	0.7027	1.3830	1. 833 1	2. 262 2	2. 821 4	3. 249 8
10	0. 699 8	1. 372 2	1.8125	2. 228 1	2.7638	3. 169 3
11	0. 697 4	1. 363 4	1.7959	2. 201 0	2.7181	3. 105 8
12	0. 695 5	1. 356 2	1. 782 3	2. 178 8	2.6810	3. 054 5
13	0. 693 8	1. 350 2	1.7709	2, 160 4	2.6503	3.0123
14	0. 692 4	1. 345 0	1.7613	2. 144 8	2.6245	2. 976 8
15	0.6912	1.3406	1. 753 1	2. 131 5	2.6025	2. 946 7
16	0.6901	1. 336 8	1.7459	2.1199	2. 583 5	2, 902 8
17	0.6892	1. 333 4	1.7396	2. 109 8	2.5669	2. 898 2
18	0.6884	1.3304	1. 734 1	2. 100 9	2. 552 4	2. 878 4
19	0. 687 6	1. 327 7	1. 729 1	2. 093 0	2. 539 5	2. 860 9
20	0.6870	1. 325 3	1.7247	2.0860	2.5280	2. 845 3

3. (中心极限定理) 设总体 X 具有有限的数学期望 $E(X) = \mu$,有限的方差 $D(X) = \sigma^2 > 0$,当样本容量 n 充分大时 $(n \ge 50)$, \bar{X} 近似地服从正态分 $\pi N\left(\mu, \frac{\sigma^2}{n}\right)$,即

 $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$ 近似服从标准正态分布 N(0,1).

4. 设总体 $X \sim N(\mu_1, \sigma_1^2)$, 且 $(X_1, X_2, \dots, X_{n_1})$ 是 X 中样本容量为 n_1 的样本,总体 $Y \sim N(\mu_2, \sigma_2^2)$, 且 $(Y_1, Y_2, \dots, Y_{n_2})$ 是 Y 中样本容量为 n_2 的样本,样本均值

$$\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i, \overline{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i,$$

则统计量 \overline{X} - \overline{Y} 服从正态分布 $N(\mu_1 - \mu_2, \sigma_1^2/n_1 + \sigma_2^2/n_2)$,即

$$U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1).$$

5. 设 $(X_1, X_2, \dots, X_{n_1})$ 来自总体 $X, EX = \mu_1, DX = \sigma_1^2, (Y_1, Y_2, \dots, Y_{n_2})$ 来自总体 $Y, EY = \mu_2, DY = \sigma_2^2$. 样本均值 $\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i, \overline{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$. 当 n_1, n_2 充分大时 $(n_1 \ge 50, n_2 \ge 50)$,则统计量 $U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2} + \sigma_2^2}$ 近似服从 N(0, 1).

例 3.6.4 学生某科成绩 X 服从 N(80,100), 现抽取 n=25 的一个样本, 试问:

- (1) 样本平均成绩大于84分的概率是多少?
- (2) 平均成绩在 78~82 分之间的概率是多少?

解 (1) 由第1条结论

$$X \sim N(80,100)$$
, $n = 25$,
 $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) = N(80, 2^2)$,
 $\frac{\overline{X} - 80}{10/\sqrt{25}} \sim N(0,1)$.

即

故

$$P(\bar{X} > 84) = P\left(\frac{\bar{X} - 80}{10/\sqrt{25}} > 2\right) = 1 - \Phi(2),$$

其中 $\Phi(x)$ 是标准正态分布的分布函数,查标准正态分布函数数值表(附表 2), 就可以得到所求概率 = 1 - 0.977 2 = 0.022 8(图 3.38).

图 3.38

(2)
$$P(78 < \overline{X} < 82) = P\left(-1 < \frac{\overline{X} - 80}{2} < 1\right)$$

= $\Phi(1) - \Phi(-1) = 2\Phi(1) - 1$
= 0. 682 6.

例 3.6.5 设 $X \sim N(150,20^2)$, $Y \sim N(125,25^2)$, 从 $X \setminus Y$ 中各抽取一个样本容量为 5 的样本, 其样本平均值为 \overline{X} 和 \overline{Y} , 试求 $\overline{X} - \overline{Y} \leq 0$ 的概率.

解 已知 $\mu_1 = 150$, $\mu_2 = 125$, $\sigma_1 = 20$, $\sigma_2 = 25$, $n_1 = n_2 = 5$. 由第 4 条结论可知:

$$\overline{X} - \overline{Y} \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right), 即$$

$$\overline{X} - \overline{Y} \sim N\left(150 - 125, \frac{20^2}{5} + \frac{25^2}{5}\right) = N(25, 205).$$
所以
$$P(\overline{X} - \overline{Y} \leqslant 0) = P\left(\frac{(\overline{X} - \overline{Y}) - 25}{\sqrt{\frac{20^2}{5} + \frac{25^2}{5}}} \leqslant \frac{-25}{\sqrt{\frac{20^2}{5} + \frac{25^2}{5}}}\right)$$

$$= \Phi\left(-\frac{25}{\sqrt{205}}\right) = \Phi(-1.746) = 1 - \Phi(1.746)$$

$$= 1 - 0.959 \ 9 = 0.040 \ 1.$$

注 查标准正态分布函数数值表(附表 2)得 Φ(1.746) = 0.959 9

例 3.6.6 根据历史数据,已知顾客在商店 A 所花费的平均时间为 55 min,顾客在商店 B 所花费的平均时间为 49 min,假定每个总体(商店 A,商店 B)的标准差均为 15 min. 现一市场分析员在每个商店各观测了 75 名顾客. 用 X 表示顾客在 A 商店所花费的时间,Y 表示顾客在 B 商店所花费的时间,X 表示顾客在 B 商店所花费的时间,X A

解 由题已知: $EX = \mu_1 = 55$, $EY = \mu_2 = 49$, $\sigma_1^2 = \sigma_2^2 = 15^2$, $n_1 = n_2 = 75$. 由第 5 条结论可知

$$U = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
 近似服从 $N(0,1)$.

$$P(\bar{X} - \bar{Y} \leq 0) = P \left(\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \leq \frac{-(\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \right)$$

$$= \Phi \left(-\frac{55 - 49}{\sqrt{\frac{15^2}{75} + \frac{15^2}{75}}} \right) = \Phi(-2.449)$$

$$=1-\Phi(2.449)=1-0.9929=0.0071$$
,

即

$$P(\bar{X} - \bar{Y} > 0) = 1 - P(\bar{X} - \bar{Y} \leq 0) = 0.9929.$$

标准正态分布表: $\Phi(0) = 0.5$ 、 $\Phi(1) = 0.8413$ 、 $\Phi(1.5) = 0.9332$ 、

$$\Phi(1.65) = 0.95$$
, $\Phi(1.96) = 0.975$, $\Phi(2) = 0.9772$

设总体 X~N(12, 4), 在总体 X中随机取一个样本容量为 4 的样本

 (X_1, X_2, X_3, X_4) , \bar{X} 为样本均值, 试求 $P\{|\bar{X}-12|<1\}$.

标准正态分布表: $\Phi(0) = 0.5$ 、 $\Phi(1) = 0.8413$ 、 $\Phi(1.5) = 0.9332$ 、

$$\Phi(1.65) = 0.95$$
, $\Phi(1.96) = 0.975$, $\Phi(2) = 0.9772$

设总体 X~N(12, 4), 在总体 X 中随机取一个样本容量为 4 的样本

$$(X_1, X_2, X_3, X_4)$$
, \bar{X} 为样本均值, 试求 $P\{|\bar{X}-12|<1\}$.

解:
$$X \sim N(12,4), \overline{X} \sim N(12,\frac{4}{4}) = N(12,1),$$
所以 $\frac{\overline{X}-12}{1} \sim N(0,1)$

$$P\{|\overline{X}-12|<1\}=P\{-1<\frac{\overline{X}-12}{1}<1\}=\Phi(1)-\Phi(-1)=2\Phi(1)-1$$

标准正态分布表: $\Phi(0) = 0.5$ 、 $\Phi(1) = 0.8413$ 、 $\Phi(1.5) = 0.9332$ 、

$$\Phi(1.65) = 0.95$$
, $\Phi(1.96) = 0.975$, $\Phi(2) = 0.9772$

若总体 $X \sim N(2, \sigma^2), (X_1, X_2, X_3, X_4)$ 是来自总体X的简单随机样本,

 \overline{X} 为样本均值,试求 $P\{\overline{X}-2>0.98\sigma\}$.

标准正态分布表: $\Phi(0) = 0.5$ 、 $\Phi(1) = 0.8413$ 、 $\Phi(1.5) = 0.9332$ 、

$$\Phi(1.65) = 0.95$$
, $\Phi(1.96) = 0.975$, $\Phi(2) = 0.9772$

若总体 $X \sim N(2, \sigma^2), (X_1, X_2, X_3, X_4)$ 是来自总体X的简单随机样本,

 \overline{X} 为样本均值,试求 $P\{\overline{X}-2>0.98\sigma\}$.

解:由
$$X \sim N(2, \sigma^2)$$
,知 $\overline{X} \sim N(2, \frac{\sigma^2}{4})$,则

$$P(\overline{X}-2>0.98\sigma) = P(\frac{\overline{X}-2}{\sigma/2}>\frac{0.98\sigma}{\sigma/2}) = P(\frac{\overline{X}-2}{\sigma/2}>1.96) = 1-\Phi(1.96) = 0.025.$$

标准正态分布表: $\Phi(0) = 0.5$ 、 $\Phi(1) = 0.8413$ 、 $\Phi(1.5) = 0.9332$ 、

 $\Phi(1.65) = 0.95$, $\Phi(1.96) = 0.975$, $\Phi(2) = 0.9772$

设总体 $X \sim N(52, 6^2)$,从总体X中抽取一个样本容量为 36 的样本,

 \overline{X} 为样本均值,求 $E(\overline{X})$, $D(\overline{X})$,并计算样本均值落在 50.5 到 53.5 之间的概率.

标准正态分布表: $\Phi(0) = 0.5$ 、 $\Phi(1) = 0.8413$ 、 $\Phi(1.5) = 0.9332$ 、

$$\Phi(1.65) = 0.95$$
, $\Phi(1.96) = 0.975$, $\Phi(2) = 0.9772$

设总体 $X \sim N(52, 6^2)$, 从总体 X中抽取一个样本容量为 36 的样本,

 \overline{X} 为样本均值,求 $E(\overline{X})$, $D(\overline{X})$,并计算样本均值落在 50.5 到 53.5 之间的概率.

解: 因为总体 $X \sim N(52, 6^2)$,

故
$$\overline{X} \sim N(52, \frac{6^2}{36})$$
, 即 $\overline{X} \sim N(52, 1)$,

因此
$$E(\overline{X}) = 52$$
, $D(\overline{X}) = 1$;

同时
$$P{50.5 < \overline{X} < 53.5} = \Phi(\frac{53.5 - 52}{1}) - \Phi(\frac{50.5 - 52}{1})$$

= $\Phi(1.5) - \Phi(-1.5) = 0.8664$.

假设总体 X 服从正态分布 $N(\mu, \sigma^2)$, $X_1, X_2, ..., X_9$ 是取自总体 X 的简单随机样

本, \overline{X} 为样本均值,若 $P(X-\mu < a) = P(\overline{X}-\mu < b)$,则 $\frac{a}{b}$ =

假设总体 X 服从正态分布 $N(\mu, \sigma^2)$, $X_1, X_2, ..., X_9$ 是取自总体 X 的简单随机样

本, \overline{X} 为样本均值,若 $P(X-\mu < a) = P(\overline{X}-\mu < b)$,则 $\frac{a}{b} = \underline{3}$