CS 577: Introduction to Algor					
Out: 03/30/21	Due: 04/06/21				
Name:	Wisc ID:				
Problem 1 [70 points]					
Before Thanos gathered all the infinity stones, Being the very meticulous person he is, Thanocost he has to spend on fuel. Being cursed witinerary with minimal cost. Formally, let c_i be the cost of fuel (per torplanet i . You may assume all the planets are of $ d_i - d_j $ light-years. The spaceship can hold Unfortunately, there is a flat convenience fee p_i , it would cost $p_i + 5c_i$, but if he decides to sk A. [40 points] Give a dynamic programming trip. Thanos starts his trip at planet 1 with an element of the programming trip. Thanos starts his trip at planet 1 with an element of the	there was a time when he had to travel the galaxies via his spaceship. So plans to visit planets $1, 2, \ldots, n$ in order and wants to minimize the with knowledge, he knows the price of fuel at each planet to plan his an at planet i and let d_i be the distance in light-years from planet 1 to not a linear path such that the distance between planet i and j is equal to up to T tons of fuel and can travel one light-year for one ton of fuel, i one has to pay to buy fuel. So if Thanos were to buy 5 tons on planet rip on getting fuel here, it would cost nothing. By recurrence that returns the minimum cost Thanos has to spend on his empty fuel tank. He shouldn't run out of fuel between traveling planets and he may even skip on getting fuel on a planet. You may assume T ough to travel between any two adjacent planets.				

B. [30 points]	D points] Prove the correctness of the recurrence and analyze its runtime in terms of n and T .				

Problem 2 [30 points]

This question is about a reality TV show Random Idol, which runs as follows. The show has two rounds and n contestants. In each of the rounds, the contestants participate in a lottery contest that ranks them from best to worst uniformly at random.¹ A contestant i is declared a random idol if for **every other** contestant j, i beats j (i.e. has a better rank than j) in **at least one** of the two rounds.

Any number of participants can be declared random idols. For example, if n=4 and the first round ordering over participants is 1,2,3,4 in order from best to worst, and the second round ordering is 3,1,4,2, then participants 1 and 3 are declared random idols.² If the orderings in the two rounds are 1,2,3,4 and 4,3,2,1, then all of the participants are declared random idols.

For each of the following parts, choose *one* of the given options.

What is the probabili	ty that a particular con	testant i is ranked best ii	n <i>both</i> of the first two rou	inds?
$\bigcirc 1/(\log n)$	$\bigcirc 1/i$	$\bigcirc 1/n$	$\bigcirc 1/n^2$	$\bigcirc 1/(n!)^2$
Provide a short justifi	ication.			

¹That is, every ranking/permutation is equally likely.

²2 does not beat 1 in any of the rounds, and 4 does not beat 1 or 3.

$\bigcirc 1/n$	$\bigcirc 1/r$	$\bigcirc r/n$	$\bigcirc 1/(r!)$	\bigcirc $(r!)/(n!$
Provide a short ju	ustification.			
	cted number of contesta			
What is the expe $\bigcirc \Theta(1)$	cted number of contesta $\bigcirc \Theta(\log \theta)$		ndom idols? $\bigcirc \ \Theta(\sqrt{n})$	$\bigcirc \Theta(n)$
	\bigcirc $\Theta(\log \theta)$			$\bigcirc \Theta(n)$
$\bigcirc \Theta(1)$	\bigcirc $\Theta(\log \theta)$			$\bigcirc \Theta(n)$
$\bigcirc \Theta(1)$	\bigcirc $\Theta(\log \theta)$			$\bigcirc \Theta(n)$
$\bigcirc \Theta(1)$	\bigcirc $\Theta(\log \theta)$			$\bigcirc \Theta(n$
$\bigcirc \Theta(1)$	\bigcirc $\Theta(\log \theta)$			$\bigcirc \Theta(n$
$\bigcirc \Theta(1)$	\bigcirc $\Theta(\log \theta)$			$\bigcirc \Theta(n$
$\bigcirc \Theta(1)$	\bigcirc $\Theta(\log \theta)$			$\bigcirc \Theta(n$
$\bigcirc \Theta(1)$	\bigcirc $\Theta(\log \theta)$			$\bigcirc \Theta(n)$
$\bigcirc \Theta(1)$	\bigcirc $\Theta(\log \theta)$			$\bigcirc \Theta(n)$