- Aprendizaje supervisado
- Clasificadores binarios
- Aspectos teóricos:
 - ¿Es una red neuronal?
 - ¿Es un sistema lineal o no lineal?
 - ¿Que clase de problemas podemos encarar?

La red neuronal mas simple posible: el perceptrón

Si la entrada es el vector \mathbf{x}_i y la salida deseada es \mathbf{y}_i :

$$\mathbf{w} \cdot \mathbf{x}_{i} + \mathbf{b} \ge 0$$
 para $\mathbf{y}_{i} = 1$

$$\mathbf{w} \cdot \mathbf{x}_{i} + \mathbf{b} < 0 \text{ para } \mathbf{y}_{i} = -1$$

O

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b}) \ge 0$$

Este sistema resuelve problemas de clasificación que son *linealmente separables*

Problemas linealmente separables

Si el problema es linealmente separable hay un algoritmo (algoritmo del perceptrón) que encuentra una solución en tiempo finito

Problemas linealmente separables: p entradas en N dimensiones

¿Cual es el número total de problemas que se pueden definir si tengo p entradas?

Problemas linealmente separables:

¿Cual es el número total de problemas que se pueden definir si tengo p entradas? \rightarrow 2^p

Si estoy p entradas en dimensión N, el número de problemas linealmente separables es denotado por C(p,N)

La fracción de problemas linealmente separables es C(p,N)/2^p

Esta cantidad se puede calcular con métodos de geometría combinatoria (para puntos en posición general)

Problemas linealmente separables:

Esta cantidad se puede calcular con métodos de geometría combinatoria (Hertz p. 112):

FIGURE 5.11 The function $C(p, N)/2^p$ given by (5.67) plotted versus p/N for N = 5, 20, and 100.

Problemas linealmente separables:

Para dimensión grande TODO problema es linealmente separable si p<2N

Si un problema no es linealmente separable se lo puede transformar en uno mapeándolo a dimensión alta

$$\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$$

 $\phi: \mathbb{R}^{N} \to \mathbb{R}^{N'}$ transformación no lineal, N' > N (quizás N' >> N)

Una vez que le problema es *linealmente separable* se puede utilizar algún método de aprendizaje tipo algoritmo del perceptrón

El número de parámetros es tan grande que voy a tener una situación de *overfitting*

La solución no es única

¿Que solución tendrá menor error de generalización?

Es la que tiene el mayor margen de separación:

Supongamos que los hiperplanos están definidos por

$$\mathbf{\hat{w} \cdot x} + \beta = c \qquad \mathbf{\hat{w} \cdot \Delta x} = 2 c$$

$$\mathbf{\hat{w} \cdot x} + \beta = -c$$

O equivalentemente:

$$\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 1$$
 $\mathbf{w} \cdot \Delta \mathbf{x} = 2$
 $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = -1$ donde $\mathbf{w} = \mathbf{\hat{w}}/\mathbf{c}$, $\mathbf{b} = \mathbf{\beta}/\mathbf{c}$

La distancia entre los hiperplanos es $2 \rho_0 = 2/|\mathbf{w}|$

Es decir que el mejor hiperplano es el que minimiza |w|

En este contexto el clasificador óptimo es que se obtiene de mimimizar $|\mathbf{w}|$ (o $|\mathbf{w}|^2$) con los constraints

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$$
 (o $y_i(\mathbf{w} \cdot \phi(\mathbf{x}_i) + b) \ge 1$) para i=1,...,p

Problema de programación cuadrática.

Los constraints definen un poliedro irregular

La solución involucra una búsqueda por las aristas de este objeto

Se puede pasar al problema *dual* introduciendo multiplicadores de Lagrange α_i ($1 \le i \le p$) (ver libro Haykin p. 345-346).

El vector w puede ser escrito como

$$\mathbf{w} = \mathbf{\Sigma}_{1 \le i \le p} \ \alpha_i \mathbf{y}_i \mathbf{x}_i \ (o \ \mathbf{w} = \mathbf{\Sigma}_{1 \le i \le p} \ \alpha_i \mathbf{y}_i \mathbf{\phi}(\mathbf{x}_i))$$

Donde los a maximizan la función

$$Q(\{\alpha_i\}) = \sum_{1 \le i \le p} \alpha_i - \frac{1}{2} \sum_{1 \le i, j \le p} \alpha_i \alpha_j y_i y_j \phi(x_i) \cdot \phi(x_j)$$

Con los constraints $\alpha_i \ge 0$, $\sum_{1 \le i \le p} \alpha_i y_i = 0$ (Haykin, p. 344-346)

Notar que la función $Q(\{\alpha_i\})$ solo depende de los datos de entrenamiento a través de pxp productos escalares $\mathbf{x}_i \cdot \mathbf{x}_j$ (o $\phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)$) $(1 \le i, j \le p)$

Se define el $kernel k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)$

El vector de peso óptimo es una combinación lineal de los x para los cuales los α son no nulos — vectores de apoyo

 $k(\mathbf{X}_i, \mathbf{X}_j)$ es el kernel

Kernels usuales:

- Polynomial (homogeneous): $k(\overrightarrow{x_i}, \overrightarrow{x_j}) = (\overrightarrow{x_i} \cdot \overrightarrow{x_j})^d$.
- Polynomial (inhomogeneous): $k(\overrightarrow{x_i}, \overrightarrow{x_j}) = (\overrightarrow{x_i} \cdot \overrightarrow{x_j} + 1)^d$.
- ullet Gaussian <u>radial basis function</u>: $k(\overrightarrow{x_i},\overrightarrow{x_j}) = \exp(-\gamma \|\overrightarrow{x_i}-\overrightarrow{x_j}\|^2)$ for $\gamma>0$. Sometimes parametrized using $\gamma=1/(2\sigma^2)$.
- ullet Hyperbolic tangent: $k(\overrightarrow{x_i},\overrightarrow{x_j})= anh(\kappa\overrightarrow{x_i}\cdot\overrightarrow{x_j}+c)$ for some (not every) $\kappa>0$ and c<0.

Una vez que los coeficientes α_i han sido evaluados la predicción de la red en el punto \mathbf{x} esta dada por

$$\mathbf{w} \cdot \phi(\mathbf{x}) + \mathbf{b} = \mathbf{\Sigma}_{1 \le i \le p} \ \alpha_i \ \mathbf{y}_i \ \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}) + \mathbf{b} = \mathbf{\Sigma}_{1 \le i \le p} \ \alpha_i \ \mathbf{y}_i \ \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + \mathbf{b}$$

Observar que:

- -α son no nulos SOLO para los vectores de apoyo: predicción eficiente
- -NO es necesario dar una forma explícita de la transformación no-lineal φ. La dimensionalidad N' es potencialmente infinita (ver teorema de Mercer, Haykin p. 354)

A veces queremos tolerarar tener cierto número de errores, si eso mejora el error de generalización

Podemos buscar cual es la solución que minimiza el número de errores:

Soft-margin SVM linear (o ni linear)

Término de error:

$$E_{i} = \max(0, 1-y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b))$$

$$(o \max(0,1-y_i(\mathbf{w}\cdot\boldsymbol{\phi}(\mathbf{x}_i)+b)))$$

Soft-margin SVM linear (o no linear)

Queremos minimizar

$$E = 1/p \sum_{1 \le i \le p} E_i + \lambda |\mathbf{w}|^2$$

El parámetro λ controla cuan fuertemente controlamos el tamaño de los pesos

Soft-margin SVM linear (o no linear)

Pasando al problema dual tenemos:

$$\mathbf{w} = \mathbf{\Sigma}_{1 \le i \le p} \ \alpha_i \ \mathbf{y}_i \ \mathbf{x}_i \ (o \ \mathbf{w} = \mathbf{\Sigma}_{1 \le i \le p} \ \alpha_i \ \mathbf{y}_i \ \mathbf{\phi}(\mathbf{x}_i))$$

Donde a maximizan la función

$$Q(\{\alpha_i\}) = \sum_{1 \le i \le p} \alpha_i - \frac{1}{2} \sum_{1 \le i, j \le p} \alpha_i \alpha_j y_i y_j \phi(x_i) \cdot \phi(x_j)$$

Con los constraints $(2p\lambda)^{-1} \ge \alpha_i \ge 0$, $\sum_{1 \le i \le p} \alpha_i y_i = 0$

Comparación SVM vs. redes multicapa

C	7	N	1
0	V	1	1

Funcion a optimizar cuadrática (t=O(p³))

Generalización óptima garantizada

Requiere memoria $O(p^2)$

Redes Multicapa

Función a optimizar extremadamente complicada, múltiples mínimos locales

Generalización óptima determinada empíricamente

Requiere memoria O(batch size)

Implementación: scikit-learn

https://scikit-learn.org/stable/modules/svm.html#svm-mathematical-formulation

https://www.datacamp.com/community/tutorials/svm-classification-scikit-learn-python

- -Que kernel utilizar
- -Parámetros del kernel: γ, κ, c, etc
- -Parámetro de regularización: $C = (p\lambda)^{-1}$
- -Optativo: clases desbalanceadas