

Outline

- My own line of research
- Papers:
 - Fast Dropout training, ICML, 2013
 - Distributional Semantics Beyond Words: Supervised Learning of Analogy and Paraphrase, TACL, 2013.

Outline

- My own line of research
- Papers:
 - Fast Dropout training, ICML, 2013
 - Distributional Semantics Beyond Words: Supervised Learning of Analogy and Paraphrase, TACL, 2013.

- Developing tools for word-similarity
- Useful in many applications

1

- Developing tools for word-similarity
- Useful in many applications
 - For example paraphrase detection:

- Developing tools for word-similarity
- Useful in many applications
 - ▶ For example paraphrase detection:

The Iraqi foreign minister warned of disastrous consequences if Turkey launched an invasion.

- Developing tools for word-similarity
- Useful in many applications
 - For example paraphrase detection:

The Iraqi foreign minister warned of disastrous consequences if Turkey launched an invasion.

Iraq has warned that a Turkish incursion would have disastrous results.

- Developing tools for word-similarity
- Useful in many applications
 - For example paraphrase detection:

The Iraqi foreign minister warned of disastrous consequences if Turkey launched an invasion.

Iraq has warned that a Turkish incursion would have disastrous results.

- Developing tools for word-similarity
- Useful in many applications
 - ▶ For example paraphrase detection:

The Iraqi foreign minister warned of disastrous consequences if Turkey launched an invasion.

1

Iraq has warned that a Turkish incursion would have disastrous results.

I can be there on time.

- Developing tools for word-similarity
- Useful in many applications
 - ▶ For example paraphrase detection:

The Iraqi foreign minister warned of disastrous consequences if Turkey launched an invasion.

1

Iraq has warned that a Turkish incursion would have disastrous results.

I can be there on time.

I can't be there on time.

- Developing tools for word-similarity
- Useful in many applications
 - For example paraphrase detection:

The Iraqi foreign minister warned of disastrous consequences if Turkey launched an invasion.

Iraq has warned that a Turkish incursion would have disastrous results.

I can't be there on time.

Developing tools for word-similarity

1

+

- Developing tools for word-similarity
- We need to solve easier problem

1

+

- Developing tools for word-similarity
- We need to solve easier problem
 - For example, **SAT** test:

Stem:		word:language
Choices:	(1)	paint:portrait
	(2)	poetry:rhythm
	(3)	note:music
	(4)	tale:story
	(5)	week:year
Solution:	(3)	note:music

Very important for understanding hierarchies of word semantics

- Developing tools for word-similarity
- We need to solve easier problem

1

- Developing tools for word-similarity
- We need to solve easier problem
 - Compositional behavior of the word semantics

- Developing tools for word-similarity
- We need to solve easier problem
 - Compositional behavior of the word semantics

Search

- Developing tools for word-similarity
- We need to solve easier problem
 - Compositional behavior of the word semantics

Search

- Developing tools for word-similarity
- We need to solve easier problem
 - Compositional behavior of the word semantics

Search

Engine

- Developing tools for word-similarity
- We need to solve easier problem
 - Compositional behavior of the word semantics

Search

Engine

- Developing tools for word-similarity
- We need to solve easier problem
 - Compositional behavior of the word semantics

- Developing tools for word-similarity
- We need to solve easier problem
 - Compositional behavior of the word semantics

- Developing tools for word-similarity
- We need to solve easier problem
 - Compositional behavior of the word semantics

1

- Developing tools for word-similarity
- We need to solve easier problem
 - Compositional behavior of the word semantics
 - ▶ For example: understanding noun-modifier questions

Stem:		fantasy world
Choices:	(1)	fairyland
	(2)	fantasy
	(3)	world
	(4)	phantasy
	(5)	universe
	(6)	ranter
	(7)	souring
Solution:	(1)	fairyland

- Feature engineering
 - An important step in semantic modeling of words
- 1
- 1

- 1
- 1

- Feature engineering
 - ▶ An important step in semantic modeling of words
- ▶ The rest is just learning the task in a fully supervised fashion

-

- Feature engineering
 - An important step in semantic modeling of words
- ▶ The rest is just learning the task in a fully supervised fashion
- ▶ Type of the features:

```
Log-Frequency LF(x_i) = \log(freq(x_i) + 1)

\downarrow
```

- Feature engineering
 - An important step in semantic modeling of words
- ▶ The rest is just learning the task in a fully supervised fashion
- Type of the features:
 - Log-Frequency $LF(x_i) = \log(freq(x_i) + 1)$
 - PPMI (Positive Pointwise Mutual Information)

- Feature engineering
 - An important step in semantic modeling of words
- ▶ The rest is just learning the task in a fully supervised fashion
- Type of the features:
 - Log-Frequency $LF(x_i) = \log(freq(x_i) + 1)$
 - PPMI (Positive Pointwise Mutual Information)
 - Semantic Similarity
 - Functional Similarity

Features

- Log-Frequency
- PPMI (Positive Pointwise Mutual Information)
- Semantic Similarity
- Functional Similarity

- Features
 - Log-Frequency
 - PPMI (Positive Pointwise Mutual Information)
 - Semantic Similarity
 - Functional Similarity
- ▶ All features are generated on a collection of documents
 - Of size 5×10^{10} words

- Features
 - Log-Frequency
 - PPMI (Positive Pointwise Mutual Information)
 - Semantic Similarity
 - Functional Similarity
- ▶ All features are generated on a collection of documents
 - \rightarrow Of size 5×10^{10} words
- Definition

Word-Context:

(Left) Context

Word

(Right) Context

+

1

1

- Features
 - Log-Frequency
 - PPMI (Positive Pointwise Mutual Information)
 - Semantic Similarity
 - Functional Similarity
- ▶ All features are generated on a collection of documents
 - Of size 5×10^{10} words
- Definition

(Left) Context

Word

(Right) Context

- Word-Context:
- Three word-context matrices
 - Rows correspond to words/phrases in Wordnet

Pointwise Mutual Information

1

1

+

Pointwise Mutual Information

▶ PMI (Pointwise Mutual Information):

$$PMI(a,b) = \log \frac{p(a,b)}{p(a)p(b)}$$

▶ PMI (Pointwise Mutual Information):

$$PMI(a,b) = \log \frac{p(a,b)}{p(a)p(b)}$$

▶ PPMI(Positive PPMI)

$$PPMI(a,b) = \max(0, PMI(a,b))$$

▶ PMI (Pointwise Mutual Information):

$$PMI(a,b) = \log \frac{p(a,b)}{p(a)p(b)}$$

▶ PPMI(Positive PPMI)

$$PPMI(a,b) = \max(0, PMI(a,b))$$

- One useful definition for probabilities
 - The ratio of the times a context appears with a words

Only the words or phrases that exist in the Wordnet

- Only the words or phrases that exist in the Wordnet
- And appear with frequency more than 100 in the corpus

1

1

- ▶ Only the words or phrases that exist in the Wordnet
- And appear with frequency more than 100 in the corpus
- Find words to the left and right of the word (context) in phrases:

Table shows forty paradigm words

- Only the words or phrases that exist in the Wordnet
- And appear with frequency more than 100 in the corpus
- Find words to the left and right of the word (context) in phrases:

Table shows forty paradigm words

Create word-context frequency matrix F:

- Only the words or phrases that exist in the Wordnet
- And appear with frequency more than 100 in the corpus
- Find words to the left and right of the word (context) in phrases:

Table shows forty paradigm words

• Create word-context frequency matrix *F*:

 $\downarrow f_{ij}$ is the number of times w_i appear in context c_j .

• Create word-context frequency matrix *F*:

• Create word-context frequency matrix *F*:

Create PPMI matrix:

• Create word-context frequency matrix *F*:

Create PPMI matrix:

- Create word-context frequency matrix *F*:
- Create PPMI matrix:

$$p_{ij} = f_{ij} / \sum_{j=1}^{n_r} \sum_{i=1}^{n_c} f_{ij}$$

- Create word-context frequency matrix *F*:
- Create PPMI matrix:

$$p_{ij} = f_{ij} / \sum_{j=1}^{n_r} \sum_{i=1}^{n_c} f_{ij}$$
 $p_{*j} = \sum_{i=1}^{n_c} f_{ij} / \sum_{i=1}^{n_r} \sum_{j=1}^{n_c} f_{ij}$

- Create word-context frequency matrix *F*:
- Create PPMI matrix:

$$p_{ij} = f_{ij} / \sum_{j=1}^{n_r} \sum_{i=1}^{n_c} f_{ij}$$
 $p_{*j} = \sum_{i=1}^{n_c} f_{ij} / \sum_{j=1}^{n_r} \sum_{i=1}^{n_c} f_{ij}$
 $p_{i*} = \sum_{j=1}^{n_c} f_{ij} / \sum_{j=1}^{n_r} \sum_{i=1}^{n_c} f_{ij}$

- Create word-context frequency matrix *F*:
- Create PPMI matrix:

$$p_{ij} = f_{ij} / \sum_{j=1}^{n_r} \sum_{i=1}^{n_c} f_{ij}$$

$$p_{*j} = \sum_{i=1}^{n_c} f_{ij} / \sum_{j=1}^{n_r} \sum_{i=1}^{n_c} f_{ij}$$

$$p_{i*} = \sum_{j=1}^{n_c} f_{ij} / \sum_{j=1}^{n_r} \sum_{i=1}^{n_c} f_{ij}$$

$$x_{ij} = \max \left(\log(\frac{p_{ij}}{p_{i*}p_{*j}}), 0 \right)$$

- ▶ Given PPMI matrix:
- Word W_i in the *i*-th **row**

- Given PPMI matrix:
- Word W_i in the *i*-th **row**
- Word W_j in the <u>j</u>-th column

- Given PPMI matrix:
- Word W_i in the *i*-th **row**
- Word W_j in the <u>j</u>-th column

- ▶ Given PPMI matrix:
- Word W_i in the *i*-th **row**
- Word W_j in the *j*-th **column**

```
PPMI(w_i, w_j, left) = x_{ij}^{left}
PPMI(w_i, w_j, right) = x_{ij}^{right}
```


- ▶ Given PPMI matrix:
- Word W_i in the *i*-th **row**
- Word W_j in the <u>j</u>-th column

$$\begin{cases}
PPMI(w_i, w_j, left) = x_{ij}^{left} \\
PPMI(w_i, w_j, right) = x_{ij}^{right} \\
PPMI(w_j, w_i, left) = x_{ji}^{left}
\end{cases}$$

- Given PPMI matrix:
- Word W_i in the *i*-th **row**
- Word W_j in the <u>j</u>-th column

- Given PPMI matrix:
- Word W_i in the *i*-th **row**
- Word W_j in the <u>j</u>-th column

$$\begin{cases} \text{PPMI}(w_i, w_j, left) = x_{ij}^{left} \\ \text{PPMI}(w_i, w_j, right) = x_{ij}^{right} \\ \text{PPMI}(w_j, w_i, left) = x_{ji}^{left} \\ \text{PPMI}(w_j, w_i, right) = x_{ji}^{right} \end{cases}$$

For an *n*-tuple one can generate 2n(n-1) PPMI features

† † † †

Designed to capture the topic of a word.

- Designed to capture the topic of a word.
- Construct a frequency matrix:
 - Rows: correspond to words in Wordnet
 - Columns: Nearby nouns

- Designed to capture the topic of a word.
- Construct a frequency matrix:
 - ▶ Rows: correspond to words in Wordnet
 - Columns: Nearby nouns

• Given a term x_i search the corpus for it

1

- Designed to capture the topic of a word.
- Construct a frequency matrix:
 - Rows: correspond to words in Wordnet
 - Columns: Nearby nouns

- Given a term x_i search the corpus for it
- ▶ Choose x_i a "noun" closest to the right/left of

- Designed to capture the topic of a word.
- Construct a frequency matrix:
 - Rows: correspond to words in Wordnet
 - Columns: Nearby nouns

- Given a term x_i search the corpus for it
- ▶ Choose x_i a "noun" closest to the right/left of
- And increment d_{ij} by one.

- ▶ Exactly the same as the domain similarity measures
 - Except that it is made using the "verbal" context

- ▶ Exactly the same as the domain similarity measures
 - Except that it is made using the "verbal" context
- Construct a frequency matrix:

1

1

Nearby verbs

S

1

1

- Exactly the same as the domain similarity measures
 - Except that it is made using the "verbal" context
- Construct a frequency matrix:
 - ▶ Rows: correspond to terms in Wordnet
 - Columns: Nearby verbs

- Exactly the same as the domain similarity measures
 - Except that it is made using the "verbal" context
- Construct a frequency matrix:
 - ▶ Rows: correspond to terms in Wordnet
 - Columns: Nearby verbs

• Given a term x_i search the corpus for it

- Exactly the same as the domain similarity measures
 - Except that it is made using the "verbal" context
- Construct a frequency matrix:
 - ▶ Rows: correspond to terms in Wordnet
 - Columns: Nearby verbs

- Given a term x_i search the corpus for it
- ▶ Choose x_i a "verbs" closest to the right/left of

A vector space for functional similarity

- ▶ Exactly the same as the domain similarity measures
 - Except that it is made using the "verbal" context
- Construct a frequency matrix:
 - ▶ Rows: correspond to terms in Wordnet
 - Columns: Nearby verbs

- Given a term x_i search the corpus for it
- ▶ Choose x_i a "verbs" closest to the right/left of
- And increment d_{ij} by one.

• Given the frequency matrix:

Nearby verbs

•

- Given the frequency matrix:
- ▶ Keep the lower-dimensional representation

$$F = U\Sigma V$$

- Given the frequency matrix:
- ▶ Keep the lower-dimensional representation

$$F = U\Sigma V$$

Keep the values corresponding to the k biggest eigenvalues $F \approx U_k \Sigma_k V_k$

- Given the frequency matrix:
- ▶ Keep the lower-dimensional representation

$$F = U\Sigma V$$

Keep the values corresponding to the k biggest eigenvalues $F \approx U_k \sum_k V_k$

• Given word w_i , $U_k \Sigma_k^p$ is the corresponding vector

1

1

1

T

- Given the frequency matrix:
- ▶ Keep the lower-dimensional representation

$$F = U\Sigma V$$

▶ Keep the values corresponding to the *k* biggest eigenvalues

$$F \approx U_k \Sigma_k V_k$$

- Given word w_i , $U_k \Sigma_k^p$ is the corresponding vector
- ↓ $p \in [0,1]$ is used to tune sensitivity with respect to eigenvalues

- Given the frequency matrix:
- ▶ Keep the lower-dimensional representation

$$F = U\Sigma V$$

 \blacktriangleright Keep the values corresponding to the k biggest eigenvalues

$$F \approx U_k \Sigma_k V_k$$

- Given word w_i , $U_k \Sigma_k^p$ is the corresponding vector
- ↓ $p \in [0,1]$ is used to tune sensitivity with respect to eigenvalues
 - Given w_i and w_j to find: $Dom(w_i, w_j, k, p)$

- Given the frequency matrix:
- ▶ Keep the lower-dimensional representation

$$F = U\Sigma V$$

▶ Keep the values corresponding to the *k* biggest eigenvalues

$$F \approx U_k \Sigma_k V_k$$

- Given word w_i , $U_k \Sigma_k^p$ is the corresponding vector
- ↓ $p \in [0,1]$ is used to tune sensitivity with respect to eigenvalues
 - Given w_i and w_j to find: $Dom(w_i, w_j, k, p)$
 - find corresponding vectors

- Given the frequency matrix:
- ▶ Keep the lower-dimensional representation

$$F = U\Sigma V$$

 \blacktriangleright Keep the values corresponding to the k biggest eigenvalues

$$F \approx U_k \Sigma_k V_k$$

- Given word w_i , $U_k \Sigma_k^p$ is the corresponding vector
- ↓ $p \in [0,1]$ is used to tune sensitivity with respect to eigenvalues
 - Given w_i and w_j to find: $Dom(w_i, w_j, k, p)$
 - find corresponding vectors
 - find cosine distance between the vectors

▶ 374 five-choice SAT questions

Stem:		word:language
Choices:	(1) paint:portrait	
	(2)	poetry:rhythm
	(3)	note:music
	(4)	tale:story
	(5)	week:year
Solution:	(3)	note:music

▶ 374 five-choice SAT questions

Stem:		word:language
Choices:	(1)	paint:portrait
	(2)	poetry:rhythm
	(3)	note:music
	(4)	tale:story
	(5)	week:year
Solution:	(3)	note:music

► Could be converted into 5 4-tuples: ⟨word, language, note, music⟩

▶ 374 five-choice SAT questions

Stem:		word:language
Choices:	(1)	paint:portrait
	(2)	poetry:rhythm
	(3)	note:music
	(4)	tale:story
	(5)	week:year
Solution:	(3)	note:music

- ► Could be converted into 5 4-tuples: ⟨word, language, note, music⟩
- Each positive 4-tuple $\langle a, b, c, d \rangle$ could be converted to:

▶ 374 five-choice SAT questions

Stem:		word:language
Choices:	(1)	paint:portrait
	(2)	poetry:rhythm
	(3)	note:music
	(4)	tale:story
	(5)	week:year
Solution:	(3)	note:music

- ► Could be converted into 5 4-tuples: ⟨word, language, note, music⟩
- Each positive 4-tuple $\langle a,b,c,d \rangle$ could be converted to: $\langle b,a,d,c \rangle$, $\langle c,d,a,b \rangle$, $\langle d,c,b,a \rangle$

Results on 5-choice SAT

▶ The top ten results with the SAT analogy questions.

Algorithm	Reference	Correct
Know-Best	Veale (2004)	43.0
k-means	Biçici & Yuret (2006)	44.0
BagPack	Herdağdelen & Baroni (2009)	44.1
VSM	Turney & Littman (2005)	47.1
Dual-Space	Turney (2012)	51.1
BMI	Bollegala et al. (2009)	51.1
PairClass	Turney (2008b)	52.1
PERT	Turney (2006a)	53.5
SuperSim		54.8
LRA	Turney (2006b)	56.1
Human	Average college applicant	57.0

Results on 5-choice SAT

▶ The top ten results with the SAT analogy questions.

Algorithm	Reference	Correct
Know-Best	Veale (2004)	43.0
k-means	Biçici & Yuret (2006)	44.0
BagPack	Herdağdelen & Baroni (2009)	44.1
VSM	Turney & Littman (2005)	47.1
Dual-Space	Turney (2012)	51.1
BMI	Bollegala et al. (2009)	51.1
PairClass	Turney (2008b)	52.1
PERT	Turney (2006a)	53.5
SuperSim	_	54.8
LRA	Turney (2006b)	56.1
Human	Average college applicant	57.0

not significantly different according to Fisher's exact test at the 95% confidence level

Results on 5-choice SAT

▶ The top ten results with the SAT analogy questions.

Algorithm	Reference	Correct
Know-Best	Veale (2004)	43.0
k-means	Biçici & Yuret (2006)	44.0
BagPack	Herdağdelen & Baroni (2009)	44.1
VSM	Turney & Littman (2005)	47.1
Dual-Space	Turney (2012)	51.1
BMI	Bollegala et al. (2009)	51.1
PairClass	Turney (2008b)	52.1
PERT	Turney (2006a)	53.5
SuperSim		54.8
LRA	Turney (2006b)	56.1
Human	Average college applicant	57.0

not significantly different according to Fisher's exact test at the 95% confidence level

- SuperSim answers the SAT questions in a few minutes
- LRA requires nine days

Adding more negative instances

- Adding more negative instances
- In general if $\langle a, b, c, d \rangle$ is positive $\langle a, d, c, b \rangle$ is negative

1

1

- Adding more negative instances
- In general if $\langle a, b, c, d \rangle$ is positive $\langle a, d, c, b \rangle$ is negative
- For example: Positive: $\langle word, language, note, music \rangle$

1

- Adding more negative instances
- In general if $\langle a, b, c, d \rangle$ is positive $\langle a, d, c, b \rangle$ is negative
- For example: Positive: $\langle word, language, note, music \rangle$

Negative: \(\language\) music, note, language\\

- Adding more negative instances
- In general if $\langle a, b, c, d \rangle$ is positive $\langle a, d, c, b \rangle$ is negative
- ► For example: Positive: ⟨word, language, note, music⟩

 Negative: ⟨word, music, note, language⟩
- ▶ This generates 5 more negative instances

- Adding more negative instances
- In general if $\langle a, b, c, d \rangle$ is positive $\langle a, d, c, b \rangle$ is negative
- ▶ For example: Positive: $\langle word, language, note, music \rangle$

Negative: \(\language \) music, note, language \(\rangle \)

▶ This generates 5 more negative instances

	Features				
Algorithm	LF	PPMI	Dom	Fun	Correct
Dual-Space	0	0	1	1	47.9
SuperSim	1	1	1	1	52.7
SuperSim	0	1	1	1	52.7
SuperSim	1	0	1	1	52.7
SuperSim	1	1	0	1	45.7
SuperSim	1	1	1	0	41.7
SuperSim	1	0	0	0	5.6
SuperSim	0	1	0	0	32.4
SuperSim	0	0	1	0	39.6
SuperSim	0	0	0	1	39.3

SemEval-2012 Task 2

Class and subclasses labels + examples

```
CLASS-INCLUSION, Taxonomic
50.0 "weapon:spear"
...
34.7 "vegetable:carrot"
...
-1.9 "mammal:porpoise"
...
-29.8 "pen:ballpoint"
...
-55.1 "wheat:bread"
```

- Gather using Mechanical Turk:
- ▶ 75 subcategories
- Average of 41 word-pairs per subcategories

SemEval-2012 Task 2

- SuperSim Trained on 5-choice SAT and tested on SemEval data
- ▶ It gives the best correlation coefficient

Algorithm	Reference	Spearman
BUAP	Tovar et al. (2012)	0.014
Duluth-V2	Pedersen (2012)	0.038
Duluth-V1	Pedersen (2012)	0.039
Duluth-V0	Pedersen (2012)	0.050
UTD-SVM	Rink & Harabagiu (2012)	0.116
UTD-NB	Rink & Harabagiu (2012)	0.229
RNN-1600	Mikolov et al. (2013)	0.275
UTD-LDA	Rink & Harabagiu (2013)	0.334
Com	Zhila et al. (2013)	0.353
SuperSim		0.408

▶ Noun-modifier question based on WordNet

Stem:		fantasy world
Choices:	(1)	fairyland
	(2)	fantasy
	(3)	world
	(4)	phantasy
	(5)	universe
	(6)	ranter
	(7)	souring
Solution:	(1)	fairyland

▶ Noun-modifier question based on WordNet

	fantasy world
(1)	fairyland
(2)	fantasy
(3)	world
(4)	phantasy
(5)	universe
(6)	ranter
(7)	souring
(1)	fairyland
	(2) (3) (4) (5) (6) (7)

• Create tuples of the form: $\langle a, b, c \rangle$

Noun-modifier question based on WordNet

Stem:		fantasy world
Choices:	(1)	fairyland
	(2)	fantasy
	(3)	world
	(4)	phantasy
	(5)	universe
	(6)	ranter
	(7)	souring
Solution:	(1)	fairyland

- Create tuples of the form: $\langle a, b, c \rangle$
 - Example: \(\fantasy\), world, fairyland\\(\)

Noun-modifier question based on WordNet

	fantasy world
(1)	fairyland
(2)	fantasy
(3)	world
(4)	phantasy
(5)	universe
(6)	ranter
(7)	souring
(1)	fairyland
	(2) (3) (4) (5) (6) (7)

- Create tuples of the form: $\langle a, b, c \rangle$
 - **Example:** \(\(\fantasy, world, fairyland \)
- ▶ Any question gives one positive instance and six negative instance

- ▶ 680 questions for training
- ▶ 1,500 questions for testing

Total of 2,180 questions

- ▶ 680 questions for training
- ▶ 1,500 questions for testing

Total of 2,180 questions

Any question gives one positive instance and six negative instance

- ▶ 680 questions for training
- ▶ 1,500 questions for testing

Total of 2,180 questions

- Any question gives one positive instance and six negative instance
- And train a classifier given the tuple for probabilities

+

- ▶ 680 questions for training
- ▶ 1,500 questions for testing

Total of 2,180 questions

- Any question gives one positive instance and six negative instance
- And train a classifier given the tuple for probabilities

Algorithm	7-choices
Vector addition	50.1
Element-wise multiplication	57.5
Dual-Space model	58.3
SuperSim	75.9
Holistic model	81.6

▶ 680 questions for training

- Total of 2,180 questions
- ▶ 1,500 questions for testing
- Any question gives one positive instance and six negative instance
- And train a classifier given the tuple for probabilities

Algorithm	7-choices
Vector addition	50.1
Element-wise multiplication	57.5
Dual-Space model	58.3
SuperSim	75.9
Holistic model	81.6

- ▶ The holistic approach is noncompositional.
 - The stem bigram is represented by a single context vector
 - As if it were a unigram.

1

1

+

Compositional similarity:14-choices questions

Any question gives one positive instance and six negative instance

1

1

+

Compositional similarity: 14-choices questions

- Any question gives one positive instance and six negative instance
- Positive instance: $\langle a, b, c \rangle$

1

Compositional similarity:14-choices questions

- Any question gives one positive instance and six negative instance
- Positive instance: $\langle a, b, c \rangle$
- ▶ Negative instance: $\langle b, a, c \rangle$ e.g. word fantasy ≠ wonderland

Compositional similarity: 14-choices questions

- Any question gives one positive instance and six negative instance
- **Positive** instance: $\langle a, b, c \rangle$
- ▶ Negative instance: $\langle b, a, c \rangle$ e.g. word fantasy \neq wonderland
- ▶ This gives 7 more negative instances (14-choices)

Compositional similarity: 14-choices questions

- Any question gives one positive instance and six negative instance
- Positive instance: $\langle a, b, c \rangle$
- ▶ Negative instance: $\langle b, a, c \rangle$ e.g. word fantasy ≠ wonderland
- ▶ This gives 7 more negative instances (14-choices)

	Correct		
Algorithm	7-choices	14-choices	
Vector addition	50.1	22.5	
Element-wise multiplication	57.5	27.4	
Dual-Space model	58.3	41.5	
SuperSim	75.9	68.0	
Holistic model	81.6		

Compositional similarity: ablation experiment

▶ Analyzing effect of each feature type on the 14-choice test

Features					
Algorithm	LF	PPMI	Dom	Fun	Correct
Dual-Space	0	0	1	1	41.5
SuperSim	1	1	1	1	68.0
SuperSim	0	1	1	1	66.6
SuperSim	1	0	1	1	52.3
SuperSim	1	1	0	1	69.3
SuperSim	1	1	1	0	65.9
SuperSim	1	0	0	0	14.1
SuperSim	0	1	0	0	59.7
SuperSim	0	0	1	0	34.6
SuperSim	0	0	0	1	32.9

▶ PPMI features are the most important

▶ PPMI features for $\langle a, b, c \rangle$ into three subsets:

$$\langle a, b \rangle, \langle a, c \rangle, \langle b, c \rangle$$

+

▶ PPMI features for $\langle a, b, c \rangle$ into three subsets:

$$\langle a, b \rangle, \langle a, c \rangle, \langle b, c \rangle$$

For example for $\langle a, b \rangle$: $\begin{array}{c} \text{PPMI}(a, b, left), \ \text{PPMI}(a, b, right) \\ \text{PPMI}(b, a, left), \ \text{PPMI}(b, a, right) \end{array}$

PPMI features for $\langle a, b, c \rangle$ into three subsets:

$$\langle a, b \rangle, \langle a, c \rangle, \langle b, c \rangle$$

For example for $\langle a, b \rangle$: $\begin{array}{c} \text{PPMI}(a, b, left), \ \text{PPMI}(a, b, right) \\ \text{PPMI}(b, a, left), \ \text{PPMI}(b, a, right) \end{array}$

PPMI feature subsets			
$\langle a,b \rangle$	$\langle a,c \rangle$	$\langle b,c \rangle$	Correct
1	1	1	68.0
0	1	1	59.9
1	0	1	65.4
1	1	0	67.5
1	0	0	62.6
0	1	0	58.1
0	0	1	55.6
0	0	0	52.3

PPMI features for $\langle a, b, c \rangle$ into three subsets:

$$\langle a, b \rangle, \langle a, c \rangle, \langle b, c \rangle$$

For example for
$$\langle a, b \rangle$$
: $\begin{array}{c} \text{PPMI}(a, b, left), \ \text{PPMI}(a, b, right) \\ \text{PPMI}(b, a, left), \ \text{PPMI}(b, a, right) \end{array}$

 $\downarrow \langle a, b \rangle$ subset are more important.

PPMI			
$\langle a,b \rangle$	$\langle a,c \rangle$	$\langle b,c \rangle$	Correct
1	1	1	68.0
0	1	1	59.9
1	0	1	65.4
1	1	0	67.5
1	0	0	62.6
0	1	0	58.1
0	0	1	55.6
0	0	0	52.3

▶ A holistic training data

▶ A holistic training data

	i	
	ļ	
7	7	

	i			
	ı			
٦	ı	þ	,	
	ч	,		

1

Stem:		search engine
Choices:	(1)	search_engine
	(2)	search
	(3)	engine
	(4)	search_language
	(5)	search_warrant
	(6)	diesel_engine
	(7)	steam_engine
Solution:	(1)	search_engine

- ▶ A holistic training data
- Extract noun-modifier pairs from WordNet

	trom	WordN	et	
ţ				
ţ				
ļ				
				

Stem:		search engine
Choices:	(1)	search_engine
	(2)	search
	(3)	engine
	(4)	search_language
	(5)	search_warrant
	(6)	diesel_engine
	(7)	steam_engine
Solution:	(1)	search_engine

- ▶ A holistic training data
- Extract noun-modifier pairs from WordNet
- Call a_b a pseudo-unigram and treat it as unigram

Stem:		search engine
Choices:	(1)	search_engine
	(2)	search
	(3)	engine
	(4)	search_language
	(5)	search_warrant
	(6)	diesel_engine
	(7)	steam_engine
Solution:	(1)	search_engine

- A holistic training data
- Extract noun-modifier pairs from WordNet
- ▶ Call a_b a pseudo-unigram and treat it as unigram
- Use the components as distracters

Stem:		search engine
Choices:	(1)	search_engine
	(2)	search
	(3)	engine
	(4)	search_language
	(5)	search_warrant
	(6)	diesel_engine
	(7)	steam_engine
Solution:	(1)	search_engine

- ▶ Training on the holistic questions: "Holistic"
- Compared with the standard training
- ▶ Test is the standard testing

	Correct			
Training	7-choices	14-choices		
Holistic	61.8	54.4		
Standard	75.9	68.0		

- ▶ There is a drop when training with the holistic samples
- Not very clear, but seems to be because of the nature of the

References

- Some figures from:
 http://nlp.cs.berkeley.edu/tutorials/variational-tutorial-slides.pdf
- Hinton, Geoffrey E., et al. "Improving neural networks by preventing coadaptation of feature detectors." arXiv preprint arXiv:1207.0580 (2012).

SVM

Primal form:

$$\begin{cases}
\min_{\beta} \frac{1}{2} \|\beta\|^2 \\
y_i(\beta.\mathbf{x}_i) - 1 \ge 0
\end{cases}$$

• Relaxed form:

$$\begin{cases}
\min_{\beta} \frac{1}{2} \|\beta\|^2 + C \sum_{i} \varepsilon_{i} \\
y_{i} (\beta.\mathbf{x}_{i}) - 1 \ge -\varepsilon_{i}
\end{cases}$$

Dual form:

$$\begin{cases}
\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \left(\mathbf{x}_{i} \cdot \mathbf{x}_{j} \right) \\
\sum_{i} \alpha_{i} y_{i} = 0, \quad 0 \le \alpha_{i} \le C
\end{cases}$$

Proof: Hinge regression closed form

Suppose we want to minimize:

$$||Ax-b||^2 + ||\Gamma x||^2$$

$$x = \left(A^T A + \Gamma^T \Gamma\right)^{-1} A^T b$$

Proof: Hinge regression closed form

Proof:

$$L = \frac{1}{2} (Ax - b)^{T} (Ax - b)$$
$$\frac{dL}{dx} = A^{T} (Ax - b) = 0$$
$$x = (A^{T} A)^{-1} A^{T} b$$

Proof: Hinge regression closed form

Proof:

$$L = \frac{1}{2} (Ax - b)^{T} (Ax - b) + \frac{1}{2} (\Gamma x)^{T} (\Gamma x)$$
$$\frac{dL}{dx} = A^{T} (Ax - b) + \Gamma^{T} (\Gamma x) = 0$$
$$x = (A^{T} A + \Gamma^{T} \Gamma)^{-1} A^{T} b$$