Giải bài toán PESP ứng dụng trong lập lịch tàu chạy bằng phương pháp SAT

Sinh viên Phạm Văn Phúc

Giảng viên hướng dẫn TS. Tô Văn Khánh

Lớp K66-CC

Ngành Công nghệ thông tin

Nội dung chính

- 1. Giới thiệu & Đặt vấn đề
- 2. Giải pháp cải tiến
- 3. Thực nghiệm & Đánh giá
- 4. Kết luận

1: Nhật

2: Đức

3: Việt Nam

Hai tàu A và B đều đi qua trạm C

- Tính kết nối
- Thời gian bảo dưỡng cuối trạm
- Thời gian giãn cách tối thiểu
- Thời gian hồi phục

2.1 Mô hình PESP

PESP¹ được giới thiệu bởi Serafini và Ukovich, nhằm giải quyết bài toán lập lịch tuần hoàn.

•
$$\pi_B - \pi_A \in [5, 15]_{60}$$

•
$$\pi_C - \pi_A \in [0, 10]_{60}$$

¹Periodic Event Scheduling Problem

2.1 Mô hình PESP

PESP thuộc lớp bài toán *thỏa mãn* ràng buộc².

Được chứng minh là bài toán NP-hard³

²Constraint satisfaction problem

³M. A. Odijk, Construction of Periodic Timetables. Pt. 1. A Cutting Plane Algorithm. TU Delft, 1994

2.2 Giải pháp hiện tại

Tất cả phương pháp giải *thỏa mãn ràng buộc* đều có thể giải bài toán PESP.

- Thuật toán quay lui
- Local Search
- Quy hoạch số nguyên (Mixed Integer Programming)

2.3 Hạn chế

Độ phức tạp thời gian cao, không thể giải những bài toán đủ khó đáp ứng nhu cầu thực tế.

Số ràng buộc	Thời gian giải (s)
100	50.54
500	219.72
1000	2453.61
2000	>86,400 (24h)
4000	>86,400 (24h)
10,000	>86,400 (24h)

Bảng 1: Thời gian giải PESP sử dụng CBC solver

2.1 Tiến bộ của SAT Solver

SAT Solver hiện tại đã giải được bài toán hàng triệu mệnh đề.

- Social Golfer Problem
- Nurse Scheduling Problem
- Course Scheduling Problem

2.2 Phương pháp giải bài toán PESP sử dụng SAT Solver

2.3 Giải bài toán PESP sử dụng SAT Solver

Mã hóa trực tiếp

Sinh ra mệnh đề loại tất cả điểm không thỏa mãn.

$$a = (A, B, [2, 4]_8)$$

→ Cần chiến lược tốt hơn để loại vùng không thỏa mãn

2.4 Giải bài toán PESP sử dụng SAT Solver

Mã hóa thứ tự

Sinh ra mệnh đề loại tất cả các hình chữ nhật.

$$a = (A, B, [2, 4]_8)$$

→ Hình chữ nhật dễ mô tả trong không gian logic

3.1 Dữ liệu thực nghiệm

PESPlib⁴:

- 22 file dữ liệu được chuẩn hóa từ 4000-12,000 ràng buộc
- Được sử dụng trong nhiều nghiên cứu⁵⁶

⁴https://timpasslib.aalto.fi/

⁵M. Goerigk and A. Schöbel, "An empirical analysis of robustness concepts for timetabling," Erlebach, vol. 14, pp. 100–113, 2010

⁶J.-W. Goossens, "Models and algorithms for railway line planning prob- lems," p. , 2004.

3.2 Kết quả thực nghiệm

Instance	Constraints	Direct (ms)	Order (ms)
R1L1	6,385	3,266	280
R1L1v	6,495	3,055	393
R1L2	6,543	3,101	291
R1L3	7,031	3,287	331
R2L1	7,361	3,442	387
BL2	7,485	2,683	317
R2L2	7,563	3,815	383
BL1	7,985	2,663	327
R2L3	8,286	3,903	633
R1L4	8,528	3,813	446
R3L1	9,145	3,853	475

3.3 Kết quả thực nghiệm

Instance	Constraints	Direct (ms)	Order (ms)
R3L2	9,251	3,809	452
BL3	9,308	3,083	395
R4L1	10,262	4,374	598
R4L2	10,735	4,448	494
R3L3	11,169	4,710	506
R2L4	13,173	7,447	561
R4L3	13,238	6,711	629
BL4	13,499	23,416	437
R3L4	15,657	7,485	702
R4L4	17,754	7,387	638
R4L4v	18,020	8,286	681

Kết luận

- Cùng với sự tiến bộ của SAT Solver, ta có thể giải các bài toán PESP phức tạp trong một khoảng thời gian hợp lý
- Phương pháp vẫn tiếp được cải tiến bởi nhiều nghiên cứu⁷⁸.

⁷Borndörfer, Ralf, Niels Lindner, and Sarah Roth. "A concurrent approach to the periodic event scheduling problem." - 2020

⁸B Masing, N Lindner, C Liebchen 23rd symposium on algorithmic approaches for transportation modelling - 2023

Trân trọng cảm ơn thầy cô đã lắng nghe

github.com/ppvan/pesp-sat/cmd/pesp coverage: 0.0% of statements
ok github.com/ppvan/pesp-sat/internal/encoding (cached) coverage: 95.5% of statements
ok github.com/ppvan/pesp-sat/internal/models (cached) coverage: 96.3% of statements