

https://seasawher.github.io/kitamado/

@seasawher

1 Some basics of algebraic number theory

Lemma 1.3

quotation. Recall that $(,)_{\text{Tr}_{K/\mathbb{Q}}}$ is non-degenerate if the Gramm matrix with respect to one (and hence any) basis of L over F is invertible.

Proof. Almost trivial. Try to prove it.

Proposition 1.4

quotation. Let $\{\beta_1, \cdots, \beta_n\}$ be the dual basis of $\{\alpha_1, \cdots, \alpha_n\}$ with respect to $(\ ,\)_{\mathrm{Tr}_{K/\mathbb{Q}}}$. Then, for any $x \in O_K$, we have $x = (x, \alpha_1)_{\mathrm{Tr}_{K/\mathbb{Q}}}\beta_1 + \cdots + (x, \alpha_n)_{\mathrm{Tr}_{K/\mathbb{Q}}}\beta_n$.

Proof. Since the trace form $(\ ,\)_{\operatorname{Tr}_{K/\mathbb{Q}}}$ is degenerate, $(\ ,\alpha_i)_{\operatorname{Tr}_{K/\mathbb{Q}}}$ are linearly independent in $\operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{Q})=K^*$ and form \mathbb{Q} -basis of K^* .

Let $p_i: K \to \mathbb{Q}$ be a projection map such that $p_i(x_1\alpha_1 + \cdots + x_n\alpha_n) = x_i$. There are $\beta_{ij} \in \mathbb{Q}$ such that

$$p_i = \sum_{i=1}^{n} (,\alpha_j)_{\mathrm{Tr}_{K/\mathbb{Q}}} \beta_{ij}.$$

This means $id_K = \sum_i \alpha_i p_i = \sum_j (\ ,\alpha_j)_{\operatorname{Tr}_{K/\mathbb{Q}}} \sum_i \alpha_i \beta_{ij}$, then we get $O_K \subset \mathbb{Z}\beta_1 + \cdots + \mathbb{Z}\beta_n$ for $\beta_j = \sum_i \alpha_i \beta_{ij}$. Since $id_K = \sum_j (\ ,\alpha_j)_{\operatorname{Tr}_{K/\mathbb{Q}}} \beta_j$, β_j are basis of K and $\mathbb{Z}\beta_1 + \cdots + \mathbb{Z}\beta_n$ is a free \mathbb{Z} -module. We set $c_{ij} = (\alpha_i, \alpha_j)_{\operatorname{Tr}_{K/\mathbb{Q}}}$. And we get

$$\delta_{ik} = p_i(\alpha_k) = \sum_j \beta_{ij} c_{jk}.$$

That means $I = \beta c$ by setting $\beta = (\beta_{ij}), c = (c_{ij}),$ so β is symmetric i.e. $\beta_{ij} = \beta_{ji}$. Then, we get

$$\begin{split} (\beta_j, \alpha_k)_{\mathrm{Tr}_{K/\mathbb{Q}}} &= \sum_i \beta_{ij} (\alpha_i, \alpha_k)_{\mathrm{Tr}_{K/\mathbb{Q}}} \\ &= \sum_i \beta_{ji} (\alpha_i, \alpha_k)_{\mathrm{Tr}_{K/\mathbb{Q}}} \\ &= p_j (\alpha_k) \\ &= \delta_{ik}. \end{split}$$

This is suggestive of orthogonality.

Lemma 1.16

quotation. Because $(O_K)_P$ is a principal ideal domain, $(O_{K'})_P$ is a free $(O_K)_P$ -module of rank [K':K].

Proof. See the proof of Prop 1.4. We obtain $O_{K'} \subset O_K \beta_1 + \cdots + O_K \beta_n$ for some $\beta_i \in K'$. Taking a localization, we get $(O_{K'})_P \subset (O_K)_P \beta_1 + \cdots + (O_K)_P \beta_n$. Since $(O_K)_P$ is a PID, $(O_{K'})_P$ is a free $(O_K)_P$ -module. The rank is not lower than [K':K] because integral basis generate K' over K.

Lemma 1.16

quotation. Thus

$$\dim_{O_K/P} O_{K'}/PO_{K'} = \dim_{O_K/P} (O_{K'})_P/P(O_{K'})_P$$

$$= \dim_{O_K/P} ((O_K)_P/P(O_K)_P) \otimes_{(O_K)_P} (O_{K'})_P$$

Proof. We set $A = O_K, A' = O_{K'}$. Then we get

$$A'/PA' \cong A' \otimes_A A/P$$

$$\cong A' \otimes_A \operatorname{Frac} A/P$$

$$\cong A' \otimes_A \operatorname{Coker}(PA_P \to A_P)$$

$$\cong \operatorname{Coker}(A' \otimes_A PA_P \to A' \otimes_A A_P)$$

$$\cong (A')_P/P(A')_P$$

$$(A')_P/P(A')_P \cong A' \otimes_A \operatorname{Coker}(PA_P \to A_P)$$

$$\cong A' \otimes_A A_P/PA_P$$

$$\cong (A' \otimes_A A_P) \otimes_{A_P} A_P/PA_P$$

$$\cong (A')_P \otimes_{A_P} A_P/PA_P.$$

Adjacent to Lemma 1.17

quotation. We take a integral basis $\{\omega_1, \dots, \omega_n\}$ of O_K , we denote by $\{\beta_1, \dots, \beta_n\}$ the dual basis with respect to $(\ ,\)_{\operatorname{Tr}_{K/\mathbb{Q}}}$. Then we have $\mathcal{M} = \mathbb{Z}\beta_1 + \dots + \mathbb{Z}\beta_n$.

Proof. See the note of Prop 1.4.

Adjacent to Lemma 1.17

quotation. The difference of K is defined by $\mathcal{D}_K = \mathcal{M}^{-1}$. Because $O_K \subset \mathcal{M}$, we have $\mathcal{D}_K \subset O_K$, so \mathcal{D}_K is an ideal of O_K .

Proof.
$$O_K = \mathcal{M} \mathcal{M}^{-1} = \mathcal{D}_K \mathcal{M} \supset \mathcal{D}_K O_K \supset \mathcal{D}_K.$$

Lemma 1.17

quotation. Indeed, because $\#(O_K/\mathcal{D}_K) = \#(\mathcal{M}/O_K)$,

Proof. See Yukie[1] Proposition 1.8.6.

Theorem 1.18

 ${\bf quotation.}\ {\rm Lemma}\ 1.17\ (3)\ {\rm gives}$

$$\log_p(\#(((O_K)_P/(\mathcal{D}_K)_P)) = \sum_i \operatorname{ord}_{P_i}(\mathcal{D}_K)_{f_i}$$

Proof. It remains to be solved.

Theorem 1.18

quotation. Because $\#(O_K/\mathcal{D}_K) = \prod_{p \in S} \#(((O_K)_P/(\mathcal{D}_K)_P))$, we obtain the assertion.

Proof. See Yukie[1] Prop1.8.9. \Box

2 Theory of heights

Proposition 2.8

```
quotation. If \phi_1^*(O_{\mathbb{P}^{m_1}}(1)) \cong \phi_2^*(O_{\mathbb{P}^{m_2}}(1)),
```

remark. What is a $O_{\mathbb{P}^{m_1}}(1)$? I think it is a Serre's twisted sheaf. See Bosch[2] 9.2/Definition 3. It remains to be learned.

参考文献

- [1] 雪江明彦『整数論 2 代数的整数論の基礎』(日本評論社, 2013)
- [2] Siegfried Bosch 『Algebraic Geometry and Commutative Algebra』 (Springer, 2013)