L. Mereu – A. Nanni Serie numeriche

3. Serie di Mengoli – Serie telescopiche

La serie di Mengoli è la serie

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$$

Poiché si può scrivere

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

la serie

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \dots$$

elidendosi i termini intermedi, è convergente e ha somma

$$S = 1$$

Una serie telescopica (generalizzazione della serie di Mengoli) è una serie del tipo

$$\sum_{k=1}^{\infty} a_k$$

dove a_k è del tipo

$$a_k = b_k - b_{k+1}$$

e, annullandosi i termini intermedi, la somma parziale è

$$S_k = b_1 - b_{k+1}$$

Perciò

$$\lim_{k \to \infty} S_k = b_1 - \lim_{k \to \infty} b_{k+1}$$

Risulta:

a) se la successione $\{b_k\}$ è **convergente** e ha limite b anche la serie è **convergente** e ha somma

$$S = b_1 - b \; ;$$

b) se la la successione $\{b_k\}$ è divergente o irregolare anche la serie è divergente o irregolare.

Esempio

a) Studiare il carattere della seguente serie :

$$\sum_{k=1}^{\infty} \frac{1}{k^2 + 7k + 12}$$

Osservato che

$$k^2 + 7k + 12 = (k+3)(k+4)$$

si può scrivere

$$\frac{1}{k^2 + 7k + 12} = \frac{1}{k+3} - \frac{1}{k+4}$$

Pertanto possiamo scrivere:

$$\sum_{k=1}^{\infty} \frac{1}{k^2 + 7k + 12} = \frac{1}{4} - \frac{1}{5} + \frac{1}{5} - \frac{1}{6} + \frac{1}{6} - \frac{1}{7} + \cdots$$

Semplificando i termini adiacenti, osserviamo che la serie telescopica è convergente con somma

$$S = \frac{1}{4}$$

Esercizi

(gli esercizi con asterisco sono avviati)

*1.
$$\sum_{k=1}^{\infty} \frac{1}{k^2 + 3k + 2}$$

*2.
$$\sum_{k=1}^{\infty} \frac{1}{9k^2 + 15k + 4}$$

*3.
$$\sum_{k=0}^{\infty} \frac{4}{4k^2+8k+3}$$

*
$$4.\sum_{k=0}^{\infty} \frac{16}{16k^2 + 24k + 5}$$

$$5. \sum_{k=1}^{\infty} \frac{1}{(4+k)(5+k)}$$

*6.
$$\sum_{k=2}^{\infty} \frac{1}{k^2-1}$$

7.
$$\sum_{k=3}^{\infty} \frac{1}{k^2 + k}$$

8.
$$\sum_{k=2}^{\infty} \frac{1}{4k^2-1}$$

9.
$$\sum_{k=1}^{\infty} \frac{1}{k^2 + 3k}$$

10.
$$\sum_{k=1}^{\infty} \left(\frac{1}{k^3} - \frac{1}{(k+1)^3} \right)$$

*11.
$$\sum_{k=1}^{\infty} \frac{2k+1}{k^2(k+1)^2}$$

12.
$$\sum_{k=1}^{\infty} \left(\frac{1}{k!} - \frac{1}{(k+1)!} \right)$$

*13.
$$\sum_{k=1}^{\infty} \frac{4(k+1)}{k^2(k+2)^2}$$

Soluzioni

- ***1.S.** converge con somma $S = \frac{1}{2}$; $(\frac{1}{k^2 + 3k + 2} = \frac{1}{k + 1} \frac{1}{k + 2})$;
- *2. S. converge con somma $S = \frac{1}{12}$; $\left(\frac{1}{9k^2+15k+4} = \frac{1}{3} \left[\frac{1}{3k+1} \frac{1}{3k+4} \right] \right)$;
- *3. S. converge con somma S=2; $(\frac{4}{4k^2+8k+3}=\frac{1}{k+\frac{1}{2}}-\frac{1}{k+\frac{3}{2}})$;
- ***4. S.** converge con somma S=4; ($\frac{16}{16k^2+24k+5}=\frac{4}{4k+1}-\frac{4}{4k+5}$);
- **5. S.** converge con somma $S = \frac{1}{5}$;
- *6. S. converge con somma $S=\frac{3}{4}$; $(\frac{1}{k^2-1}=\frac{1}{2}(\frac{1}{k-1}-\frac{1}{k+1})$, si scrivano alcuni termini di $S_k...)$;
- **7. S.** converge con somma $S = \frac{1}{3}$; **8. S.** converge $S = \frac{1}{6}$;
- **9. S.** converge con somma $S = \frac{11}{18}$; **10. S.** converge S=1;
- *11. S. converge con somma S= 1; $\left(\frac{2k+1}{k^2(k+1)^2} = \frac{1}{k^2} \frac{1}{(k+1)^2} \dots\right)$;
- 12. S. converge con somma S= 1;
- *13. S. converge con somma $S = \frac{5}{4}$;

(
$$\frac{4(k+1)}{k^2(k+2)^2}=\frac{1}{k^2}-\frac{1}{(k+2)^2}$$
 , scrivere alcuni termini di S_k);