TA: Itziar Ochoa de Alaiza

Fall 2017

Sections: BDJ/BDK

Table of integrals

$$\int x^n dx = \int \frac{1}{x} dx =$$

$$\int e^x dx = \int \int a^x dx =$$

$$\int \sin x dx = \int \cos x dx =$$

$$\int \sec^2 x dx = \int \csc^2 x dx =$$

$$\int \sec x \tan x dx = \int \csc x \cot x dx =$$

$$\int \cot x dx =$$

$$\int \cot x dx =$$

$$\int \frac{1}{x^2 + a^2} dx =$$

$$\int \frac{1}{\sqrt{1 - x^2}} dx =$$

Integration by parts

$$\int_{a}^{b} u dv =$$

What does LIATE stand for? It may help you choose u.

${\bf Trigonometric\ Integrals}$

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\tan^2 \theta + 1 = \sec^2 \theta$$

$$\cos^2 \theta = \frac{1}{2} [1 + \cos(2\theta)]$$

$$\sin^2 \theta = \frac{1}{2} [1 - \cos(2\theta)]$$

$$\sin(2\theta) = 2\sin \theta \cos \theta$$

Case 1: $\int \sin^m x \cos^n x dx$

- (a) If n odd:
 - save a copy of:
 - use itentity:
 - u- substitution:
- (b) If m odd:
 - save a copy of:
 - use itentity:
 - u- substitution:
- (c) If both n and m are even:
 - use itentities:
 - Sometimes useful to use: $\sin(2\theta) = 2\sin\theta\cos\theta$

Case 2: $\int \tan^m x \sec^n x dx$

- (a) If n even
 - save a copy of:
 - use itentity:
 - u- substitution:
- (b) If m odd:
 - save a copy of:
 - use itentity:
 - u- substitution:

Trigonometric Substitutions

Expression	Substitution	Identity	Restriction
$\sqrt{a^2-x^2}$			
$\sqrt{a^2 + x^2}$			
$\sqrt{x^2 - a^2}$			

What substitution would you use in the following examples?

1.
$$\sqrt{9-x^2}$$

2.
$$\sqrt{x^2 + 4x}$$

Common mistakes Comments:

- 1. Don't forget to replace dx by the corresponding expression. It is not just $d\theta$.
- 2. Give the solution in term of x, not θ . Use the triangle to do that.
- 3. Remember to use the expression $\sin(2\theta) = 2\sin\theta\cos\theta$ when necessary.
- 4. Complete the square if necessary!

Integration of Rational Functions by Partial Fractions

1. CASE I: The denominator is a product of distinct linear factors

Example:
$$\frac{x^2 + 2x - 1}{2x^3 - 5x^2 + 2x} =$$

2. CASE II: The denominator is a product of linear factors, some of which are repeated

Example:
$$\frac{x^2 + 2x - 1}{2x^4 - 5x^3 + 2x^2} =$$

3. CASE III: The denominator contains *irreducible* quadratic factors, none of which is repeated

Example:
$$\frac{x^2 + x - 5}{x^3 + 5x} =$$

4. CASE IV: The denominator contains a repeated *irreducible* quadratic factor

Example:
$$\frac{x^2 - 3}{x(x^2 + 3)^2} =$$

Improper Integrals

1. Type 1: Infinite Intervals

(a) If $\int_a^t f(x)dx$ exists for every number $t \geq a$, then

$$\int_{a}^{\infty} f(x)dx =$$

provided this limit exists (as a finite number).

(b) If $\int_t^b f(x)dx$ exists for every number $t \leq b$, then

$$\int_{-\infty}^{b} f(x)dx =$$

provided this limit exists (as a finite number).

The improper integrals and are called **convergent** if the corresponding limit exists and **divergent** if the limit does not exist.

(a) If both and are convergent, then

$$\int_{-\infty}^{\infty} f(x)dx =$$

2. Type 2: Discontinuous Integrands

(a) If f is continuous on [a,b) and is discontinuous at b, then

$$\int_{a}^{b} f(x)dx =$$

if this limit exists (as a finite number).

(b) If f is continuoun on (a, b] and is discontinuoun at a, then

$$\int_{a}^{b} f(x)dx =$$

if this limit exists (as a finite number).

The improper integral is called **convergent** if the corresponding limit exists and **divergent** if the limit does not exist.

(a) If f has a discontinuity at c, where a < c < b, and both and are convergent, then

$$\int_{a}^{b} f(x)dx =$$

Comparison theorem

Suppose that f and g are continuous functions with $\geq \geq 0$ for $x \geq a$.

(a) If is convergent, then

(b) If is divergent, then

Remark: The comparison theorem only tells you whether the integral diverges or converges. If it converges, it does not tell you to which number!

p-test

- (a) $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converges/diverges for p > 1 and converges/diverges for $p \le 1$.
- (b) $\int_0^1 \frac{1}{x^p} dx$ converges/diverges for $p \ge 1$ and converges/diverges for p < 1.