

Підготували:

Бортнік В.

Губенко М.

Кравчук О.

Кривонос А.

Пузир Д.

Серіков О.

Data mining

- Витяг, збір даних, видобуток даних (ще використовують Information Retrieval або IR);
- Витяг знань, інтелектуальний аналіз даних (Knowledge Data Discovery або KDD, Business Intelligence).

Завдання, які вирішуються Data Mining:

- 1. Класифікація
- 2. Кластеризація
- 3. Скорочення опису
- 4. Асоціація
- 5. Прогнозування
- 6. Аналіз відхилень
- 7. Візуалізація даних.

Типи даних, шкали

Просторові дані

Тимчасові ряди

Вид:	Приклад:	
Дані класифікації (номінальні)	Особи класифіковані за статтю, національністю	
Ранжировані	Впорядкування регіонів за рейтингом	
Дані вимірювання на інтервальній шкалі	Температура (шкала з довільною нульовою точкою і масштабом)	
Дані вимірювання на відносній шкалі	Вимірювання ваги, висоти, об'єму (шкала з довільним масштабом, але фіксованою нульовою точкою)	

...аналіз 10 000 акторів фільмів для дорослих

Розподіл акторів за кольором волосся

Розподіл акторів за кольором шкіри

Розподіл акторів за наявністю татуювань

Морфінг 10 облич топ-10 актор есс

Facial morphs of 10 of the most popular adult performers

Tori Black & Sunny Leone

Lisa Ann & Nikki Benz

Sasha Grey & Nina Mercedez

Alexis Texas & Puma Swede

Raylene & Jesse Jane

The Average Face of Ten Top Female Pornstars

Посилання: jonmillward.com

Методи аналітичного опрацювання даних

Застосування кластерного аналізу в загальному вигляді зводиться до наступних етапів:

- Відбір вибірки об'єктів для кластеризації.
- Визначення безлічі змінних, за якими будуть оцінюватися об'єкти у вибірці. При необхідності - нормалізація значень змінних.
- Обчислення значень міри схожості між об'єктами.
- Застосування методу кластерного аналізу для створення груп схожих об'єктів (кластерів).
- Представлення результатів аналізу

Нормалізація

- Перед використанням алгоритмів кластеризіції часто виклостовують нормалізацію, щоб всі компоненти давали однаковий вклад при розрахунку «відстані».
- У процесі нормалізації всі значення приводяться до деякого діапазону, наприклад, [-1, -1] або [0, 1]
- Наприклад міні-макс нормалізація:

$$x' = (x - MIN[X])/(MAX[X] - MIN[X])$$

Вимірювання відстані

Евклідова відстань

$$\rho(x, x') = \sqrt{\sum_{i}^{n} (x_{i} - x_{i}')^{2}}$$

• Квадрат евклідової відстані

$$\rho(x, x') = \sum_{i}^{n} (x_i - x_i')^2$$

Відстань між міськими кварталіами (Мангеттенська відстань)

$$\rho(x,x') = \sum_{i}^{n} |x_i - x_i'|$$

• Відстань Чебишева

$$\rho(x, x') = \max(|x_i - x_i'|)$$

• Степеннева відстань

$$2 \rho(x, x') = \sqrt{\sum_{i}^{n} (x_{i} - x_{i}')^{p}} 23$$

16

28

21

35

ш

32

D /

29

1

Алгоритми кластеризації умовно можна розділити на ієрархічні та плоскі.

- Ієрархічні алгоритми (також називають алгоритмами таксономії) будують систему вкладених розбттів.
 Тобто на виході ми отримуємо дерево кластерів, коренем якого є вся вибірка, а листям - найбільш дрібні кластери.
- Плоскі алгоритми будують одне розбиття об'єктів на кластери.

Метод к-середніх

Метод к-середніх створює к-груп з набору об'єктів таким чином, щоб члени групи були найбільш однорідними. Це популярна техніка кластерного аналізу для дослідження набору даних.

Вхідні данні: число кластерів.

Як працює метод к-середніх?

- Метод к-середніх вибирає точки багатовимірного простору, які будуть представляти к-кластери. Ці точки називаються центрами тяжіння. Перший раз, за відсутності припушень, центри тяжіння можна вибирати випадково
- Кожен пацієнт буде розташовуватися найближче до однієї з точок.
- Тепер у нас є к-кластерів, і кожна точка- це член якогось з них.
- Метод к-середніх, враховуючи положення членів кластера, знаходить центр кожного з к-кластерів. Обчислений центр стає новим центром тяжіння кластера.
- Оскільки центр ваги перемістився, точкимогли виявитися ближче до інших центрів тяжіння. Іншими словами, вони могли змінити членство.
- Кроки 2-6 повторюються до тих пір, поки центр ваги не перестануть змінюватися і членство не стабілізується. Це називається збіжністю.

Алгоритм мінімального покривачого дерева

Алгоритм мінімального покриває дерева спочатку будує на графі мінімальне покриває дерево, а потім послідовно видаляє ребра з найбільшою вагою. На малюнку зображено мінімальне покриває дерево, отримане для дев'яти об'єктів.

Також для кластеризації використовують наступні алгоритми:

- с-средніх
- Мінімальне покриваюче дерево
- Пошарова кластеризація
- C4.5
- Метод опорних векторів
- Apriori
- ЕМ-алгоритм
 - PageRank
- AdaBoost
- k-найближчих сусідів

Порівняння деяких алгоритмів кластеризації

 Алгоритм кластеризації
 Обчисювальна складність

 Ієрархічний
 O(n²)

 k-средніх
 O(nkl), где k — число кластерів, I — число ітерацій

 с-средніх
 O(n² log n)

 $O(\max(n, m))$, где m < n(n-1)/2

24 / 23

Пошарова кластеризація

дерево

кластеризаціи			
Ієрархічний	Довільна	Число кластерів или порог відстані для усічення ієрархії	Бінарне дерево кластерів
k-средніх	Гіперсфера	Число кластерів	Центри кластерів
с-средніх	Гіперсфера	Число кластерів, степень нечіткості	Центри кластерів, матриця приналежності
Виділення зв'них компонент	Довільна	Порог відстані R	Деревоподібна структура кластерів
Мінімальне покриваюче дерево	Довільна	Число кластерів ичи порог відстані для видалення	Деревоподібна структура кластерів

Вхідні дані

Полідовність

границь відстані

Результати

Деревоподібна

структура кластерів

з різними рівнями

ребер

Довільна

Форма кластерів

Алгоритм

Пошарова

кластеризація

Статистичні методи аналізу даних. Кореляційний аналіз

- Кореляційний аналіз метод обробки статистичних даних, що полягає у вивченні коефіцієнтів (кореляції).
- При цьому порівнюються коефіцієнти кореляції між однією парою або великою кількістю пар ознак, для встановлення між ними статистичних взаємозв'язків.

Декілька наборів точок (x, y), над кожним з яких вказано коефіцієнт кореляції Пірсона величин x і y

3 теорії ймовіості:

Для системи з двох неперервних випадкових величин (X, Y)їснує поняння коваріації або кореряційного моменту):

$$K_{xy} = \int_{-\infty}^{\infty} (x - m_x) (y - m_y) f(x, y) dx dy.$$

Де f(x,y)-функція густини розподулі вірогідності Для характеристики зв'язку між величинами(X, Y) вводять наступну величну:

$$r_{xy} = \frac{K_{xy}}{\sigma_x \sigma_y},$$

Для дискретних величин кореляційний момент можна знайти наступним чином:

$$K_{xy} = \sum_{i}^{n} \sum_{j}^{n} (x_i - m_x) (y_j - m_y) p_{ij}$$

$$= \frac{1}{n} \sum_{i}^{n} \sum_{j}^{n} (x_i - m_x) (y_j - m_y)$$

Також на практиці зазвичай використовують іншу формалу, яка дає менш точні результати, але потребує менше обчислень:

$$K_{xy} = \frac{1}{n} \sum_{i=0}^{n} (x_i y_i - m_x m_y)$$

Мат. очікування та дисперсія обсислюються за наступними формулами:

$$m_{x} = \frac{1}{n} \sum_{i=0}^{n} x_{i}$$

$$D_x = \frac{1}{n} \sum_{i=0}^n x_i^2 - m_x^2, \, \sigma_x = \sqrt{D_x}$$

$$r_{xy} = \frac{K_{xy}}{\sigma_x \sigma_y}$$

Якщо даний коефіціент рівний нулю, то величини незалежні між собою.

- 1 обсолютно залежні
- -1 також залежні, але збільшення X призводить до зменшення Y і навпаки.

...практична перевірка теорії шести рукостискань

В чому полягає теорія шести рукостискань?

Кожна людина на Землі знайома з будь-якою іншою через ланцюжок з п'яти друзів, тобто, через шість рукостискань

Результати проведеного дослідження

По осі X - довжина найкоротшого ланцюжка друзів, по осі Y - ймовірність її знайти

Посилання: habr.com/post/132558/

Інструменти

Python як основний "шахтарський" інструмент

- опенсорсний
- простий у використанні
- велика спільнота
- легко освоїти нові бібліотеки
- код, зрозумілий навіть "нєпосвящонним"

Основні бібліотеки - "спорядження"

- ScraPy власне, сама кирка, приціл до неї та перемикач на режим "автомат"
- Pandas вагонетка
- NumPy все ще вагонетка
- Matplotlib каменерізний станок

