# TSNNic 操作手册 (版本 1.0)

OpenTSN 开源项目组 2019 年 11 月

# 版本历史

| 版本  | 修订时间       | 修订内容 | 修订人 | 文件标识    |
|-----|------------|------|-----|---------|
| 1.0 | 2019.11.27 | 初版编制 |     |         |
|     |            |      |     |         |
|     |            |      |     |         |
|     |            |      |     | O 1703. |
|     |            |      |     | OpenTSN |
|     |            |      |     |         |
|     |            |      |     |         |
|     |            |      |     |         |
|     |            |      |     |         |

# 目录

| 1. | 文档的目的                           | 4  |
|----|---------------------------------|----|
| 2. | 所需设备                            | 4  |
| 3. | 实验场景                            | 4  |
| 4. | TSNNic 的使用                      | 5  |
|    | 4.1 openbox_s4 的各接口介绍           | 5  |
|    | 4.2 openbox_s4 配置成 TSNNic       | 5  |
|    | 4.3 TSNNic 软件的使用                | 6  |
| 附表 | 录 A 文件拷贝进 openbox_s4 的方法        | 13 |
| 附表 | 录 B 使用串口登录 openbox_s4 运行界面的方法   | 13 |
| 附表 | 录 C 使用管理网口登录 openbox_s4 运行界面的方法 | 16 |
|    | 1.windows 系统下登录 openbox_s4      | 16 |
|    | 2. linux 系统下登录 openbox_s4       | 17 |
| 附  | 录 D                             | 17 |

### 1. 文档的目的

TSNNic 是一个流量生成与捕获系统,可对网络进行测试与分析。本文档主要介绍如何在 openbox\_s4 设备上实现用 TSNNic 组建一个流量生成与测试的实验环境。

# 2. 所需设备

1个 openbox\_s4、1 台装有 linux 系统并安装了 Qt5.8 环境的计算机、1 台交换机、被测设备/网络。

# 3. 实验场景

QT 界面包含报文生成、捕获相关参数的配置界面(控制器)和 状态信息实时展示

界面(Insight)。搭建的实验场景如下图 1 所示:



图1 TSNNic 实验场景图

控制器发送控制流经过交换机从 0 号接口进入 TSNNic; TSNNic 生成的状态流从 0 号接口输出,经过交换机给 Insight; TSNNic 生成

的测试流从 1 号接口输出到被测网络,经过被测网络后从 2 号接口回到 TSNNic; TSNNic 对回来的测试流进行封装采样后,从 3 号接口输出,经过交换机给 Insight。

# 4. TSNNic 的使用

4.1 openbox\_s4 的各接口介绍

openbox\_s4 的正面有 4 个数据网口(0、1、2、3)、1 个管理网口(MGMT)、1 个复位按钮(RST)以及 4 个 led 灯,如下图 2 所示:



图2 openbox\_s4 正面图

openbox\_s4 的背面有 JTAG 接口、USB 接口、COM 串口、开关和电源接口,如下图 3 所示:



图3 openbox\_s4 背面图

- 4.2 openbox\_s4 配置成 TSNNic
- ➤ 下载码云上 openTSN/bin/TSNNic/硬件/目录下的 BOOT.bin,如图 4 所示,下载网址为

 $\underline{https://gitee.com/opentsn/openTSN/tree/master/bin/TSNNic/\%E7\%A}$ 

#### 1%AC%E4%BB%B6



图4 下载码云的内容

➤ 将 BOOT.bin 拷贝到 openbox\_s4 中的 TF 卡的 mnt 目录下,如下 图 5 所示。拷贝的具体操作见附录一。



图5 B00T. bin 在 openbox\_s4 中的位置

▶ 重启 openbox\_s4 ,完成对 openbox\_s4 的配置。

#### 4.3 TSNNic 软件的使用

➤ 下载码云上 openTSN/bin/TSNNic/软件/目录下的 gcl.txt 和 tester\_ui,如图 6 所示,拷贝到 linux 电脑上,放在同一个目录下。



图6 下载码云的内容

▶ 进入 gcl.txt 和 tester\_ui 所在的目录。

执行"cd gcl.txt 和 tester\_ui 所在的目录(本例为 tsnnic)",输入命令"ls",可查看当前目录下的所有文件。如图 7 所示。

图7 进入 gcl. txt 和 tester\_ui 所在的目录

▶ 修改门控列表。

输入命令"vi gcl.txt",如图 8 所示。即可进入脚本"gcl.txt"文件,如图 9 所示,默认的门控列表为全 F。

```
❷ ■ □ root@ubuntu:/mnt/hgfs/tsnnic

joejlang@ubuntu:~$ su
密码:
root@ubuntu:/home/joejlang# cd /mnt/hgfs/
root@ubuntu:/mnt/hgfs# cd tsnnic
root@ubuntu:/mnt/hgfs/tsnnic# ls
gcl.txt tester_ui
root@ubuntu:/mnt/hgfs/tsnnic# vi gcl.txt
root@ubuntu:/mnt/hgfs/tsnnic#
```

图8 输入命令 "vi gcl.txt"



图9 进入脚本 "gcl. txt" 文件

按字母"a"键,可对门控列表的值做修改;修改完成后,先按"Esc"键,再同时按"Shift"键和":"键,然后输入"wq",按"Enter"键,回到图 8 所示的界面,即完成对门控列表的修改。

#### ➤ 运行 tester\_ui。

输入命令"./tester\_ui",如图 10 所示。

```
❷●■ root@ubuntu:/mnt/hgfs/tsnnic

joejiang@ubuntu:~$ su
密码:
root@ubuntu:/home/joejiang# cd /mnt/hgfs/
root@ubuntu:/mnt/hgfs# cd tsnnic
root@ubuntu:/mnt/hgfs/tsnnic# ls
gcl.txt tester_ui
root@ubuntu:/mnt/hgfs/tsnnic# vi acl.txt
root@ubuntu:/mnt/hgfs/tsnnic# ./tester_ui
```

图10 运行 tester\_ui

弹出图 11 所示的界面,点击 config\_ui\_1。进入如图 9 所示的 8 种报文头配置界面,每种报文头为 64B(用户只需关注其前 58B,最后 6B 可任意设定)。默认的 8 种报文头带有 VLAN 标签,类型一、类型二、类型三、类型四、类型五、类型六、类型七、类型八报文头的 PCP 值分别为 7、6、5、4、3、2、1、0; 其中 6、7 对应时间敏感流(TSN 流),3、4、5 对应带宽预约流(RC 流),0、1、2 对应尽力转发流(BE 流)。橙色字段为报文头中五元组信息。用户可更改界面上的报文头信息:可在小兵以太网测试仪上生成需发送的报文,然后截取其前 64B 的报文头信息复制到图 9 界面相应的方框中。





图11 运行 tester\_ui 后弹出的界面



图128种报文头配置界面

▶ 点击图 12 中的 config\_ui\_2, 进入报文生成、捕获相关参数配置界面, 如图 13 所示; 界面上参数的含义如表 1 所示。在该界面参数配置完后, 点击 report\_ui。



图13 报文生成、捕获相关参数配置界面表 1 报文生成、捕获相关参数配置界面上参数的含义

| 参数           | 备注                               |
|--------------|----------------------------------|
| 报文序列号        | 该报文的序列号                          |
| 时间槽大小        | 在 8μs~200μs任意设定                  |
| 报文采样频率       | 每隔多少个报文采集一个,其中1表示全部采集。           |
| 类型N报文发送      | 该种报文的生成发送速率,输入值范围为 0~1024_000,不能 |
| 速率           | 输入小数。                            |
| 长度           | 该种报文的长度,输入值范围为64~1466,单位字节。      |
| 五元组          | 需统计的报文的五元组信息,十进制值。默认为类型 N 报文     |
| 11.) U.S.II. | 头中的的五元组,N=1、2、、8。                |
| 掩码           | 十进制值。默认为精确匹配, N=1、2、、8。          |
| 门控列表         | 通过读文件(gcl.txt)的方式来进行设定,最大支持以32个  |
| 1111/11/2    | 时间槽为周期进行配置,默认为全 F。               |

➤ 进入如图 14 所示的状态信息实时展示界面,界面上参数的含义如表 2 所示。点击"开始测试"按钮,TSNNic 开始工作。界面上显示TSNNic 的实时发送/接收个数、发送/接收速率、延时/平均延时等数据。点击 delay\_ui。



图14 状态信息实时展示界面表 2 状态信息实时展示界面上参数的含义

| 参数          | 备注                      |
|-------------|-------------------------|
| 类型N报文发送个数   | 该类型报文从 TSNNic 的生成发送个数   |
| 类型 N 报文接收个数 | 带掩码的五元组匹配命中的个数          |
| 类型N报文发送实时速率 | 该类型报文从 TSNNic 的生成发送速率   |
| 类型N报文接收实时速率 | 带掩码的五元组匹配命中报文的速率        |
| 类型 N 报文延时   | 该类型报文经过被测网络/设备的实时延时数据   |
| 类型 N 报文平均延时 | 该类型报文经过被测网络/设备的延时数据的平均值 |
| 发送/接收报文总个数  | TSNNic 总的发送/接收报文个数。     |
| 发送/接收报文总流量  | TSNNic 总的发送/接收 bit 数。   |
| 发送/接收报文平均速率 | TSNNic 总的发送/接收报文的平均速率。  |

➤ 进入如图 15 所示的延时数据实时展示界面,显示每条流经过 OpenTSN 网络的延时抖动。在"交换节点时间槽"方框中输入 OpenTSN 网络的时间槽值,将显示每条流的实时延时折现;在"跳数"方框中输入该条流经过的 OpenTSN 网络中 TSN 节点数,便显示红色的上下界。



图15 状态信息实时展示界面

➤ 若需要在测试过程中更新 TSNNic 生成发送的报文的报文头信息,则点击图 15 中的 config\_ui\_1,进入图 16 所示的 8 种报文头配置界面;修改相应的报文头信息,然后点击"发送"按钮。



图168种报文头配置界面

➤ 点击图 16 的 report\_ui, 进入图 17 的状态信息实时展示界面; 点击"停止测试"按钮, TSNNic 停止发包, 界面数据 1s 后停止刷新; 界面数据停止刷新后, 将显示每种类型报文的发送/接收/丢包个数,

总的报文发送/接收/丢包个数,总的报文发送/接收平均速率等信息。



图17 状态信息实时展示界面

# 附录 A 文件拷贝进 openbox s4 的方法

- ▶ 步骤一:将 linux 系统设备将 ip 地址设置与 openbox\_s4 处于同一网段,查看 openbox\_s4 的管理网口的 ip 地址的具体操作见附录四。
- ▶ 步骤二:在 linux 系统中使用 scp 进行拷贝文件到 openbox\_s4 中。

# scp BOOT.bin root@192.168.1.18:/mnt/

#### 图 A-1 拷贝命令

其中BOOT.bin 为需要拷贝的文件, root 表示 openbox 中的用户名, 192.168.1.18 表示 openbox 中的管理网口的 IP, /mnt/表示拷贝到 openbox 中的/mnt/目录下。

▶ 步骤三:输入密码"123123"

# 附录 B 使用串口登录 openbox\_s4 运行界面的方法

1)将串口线插入 PC 端以及 openbox\_s4 设备的串口接口,然后打开计算机的设备管理器,如下图:



TSNNic 操作手册



图 B-1 查看设备管理器

2) 点开 putty 软件,如下图:



图 B-2 Putty 上选择使用串口登录

3)点击串口(如上图中红框)选项,然后出现下图,并将串行口改为与图一中设备管理器中的端口名称一致(例:图一中为com6,则下图应改为com6);将速度改为115200:



图 B-3 配置串口信息

4) 然后点击上图左框内的"转换",出现下图: 然后点击"假定接收数据的字符集"选择"UTF-8",点击打开即可。



图 B-4 选择字符集

# 附录 C 使用管理网口登录 openbox\_s4 运行界面的方法

1.windows 系统下登录 openbox\_s4

1) 将 PC 端的 ipv4 地址修改与 openbox\_s4 的管理网口 IP 地址在同一网段下(查看 openbox\_s4 的管理网口 IP 地址见附录四),例如: openbox\_s4 的管理网口 IP 地址为 192.168.1.18,那么将 PC 端的 ipv4 地址修改为同一网段的 192.168.1.98,如下图所示:



图 C-1 修改本地设备 ip 地址

2) 打开 putty 软件,并在下图中的"主机名称(或 IP 地址)"区域输出 openbox\_s4 的 ip 地址,例如上面提到的 192.168.1.18;然后点击打开即可登录到 openbox\_s4 的运行界面上。



图18 图 C-2 登录 openbox\_s4 的 ip 地址

- 2. linux 系统下登录 openbox\_s4
- ▶ 步骤一: 执行一下命令, 必须是在 root 目录下执行

#### root@ubuntu:~# ssh root@192.168.1.18

#### 图19 图 C-3 执行登录命令

▶ 步骤二: 其中 192.168.1.18 为管理网口的 IP, 出现输入密码的界面

root@ubuntu:~# ssh root@192.168.1.18 root@192.168.1.18's password:

图20 图 C-4 输入密码

▶ 步骤三: 输入123123即可。

# 附录 D 查看 openbox\_s4 的 ip 地址

▶ 步骤一:使用串口登录到 openbox\_s4 的运行界面上,具体查看附录 A。



图21 图 D-1 查看 openbox\_s4 管理网口的 ip 地址

▶ 步骤二:输入命令"ifconfic eth0"即可查看管理网口的 IP 地址,例 如上图中的 IP 地址为 202.197.5.21。