

Marketing Campaign Optimization with Predictive Modeling

Group 9

Steve Phillips | Harman Singh | Faithan To | Archita Vaje | Yi Hsiang Yen

Problem Statement

- XYZ's main goal is to maximize revenue by:
 - Increasing their number of premium subscribers
 - Minimizing marketing cost

Business Challenge:

- XYZ's current marketing strategy is to randomly target current free users and hope they convert to premium subscribers.
- Unfortunately, the previous marketing campaign had a success rate of 3.7%, an inefficient use of resources.
- Our Solution: A predictive model that identifies potential adopters more efficiently.
 - Marketing campaigns are expensive and ideally, you want to target only individuals who have the highest probability of upgrading to premium.
 - By creating a predictive model, we can identify those individuals and only market to them, thereby saving money and time.

Predictive Modeling Process

- Using the results from the previous marketing campaign, we have constructed a
 <u>predictive model</u> that highlights which of XYZs free users are most likely to
 subscribe to the premium version.
- We would then use our model to predict and target the people who are most likely to upgrade.

Predictive Model Impact

Let's assume marketing to a new user costs \$1 and each premium user yields \$60/year in revenue

Campaign **without** a predictive model:

- Total User Count: 41,540
- Users who upgraded: 1,540

Campaign Conversion Rate <u>without</u> a predictive model:

Cost to acquire new premium user:

Net revenue per premium user after 1 year:

Campaign with a predictive model:

- Total "Targeted" Count: 1912
- Users who upgraded: 180

Campaign Conversion Rate <u>with</u> a predictive model:

Cost to acquire new premium user:

Net revenue per premium users after 1 year:

Using a predictive model would:

- 1. Lower XYZ's cost to acquire each premium user by 60.7%
- 2. Increase conversion rate by 6%

Main Takeaways | Decision Tree w/ 2 Features

- Adopter's Trend:
 - Users that increased the numbers of songs they listened to by at least 10 in the 3 months leading up to the marketing campaign and also "liked" at least 105 songs were most likely to upgrade their membership to a premium subscription.

Visualized Decision Tree

ROC Curve (ROC curve evaluates the effectiveness of a model in distinguishing between adopters vs. non-adopters)

Model Selection

- What types of predictive model were explored?
 - Decision Tree
 - o k-NN
 - Naïve
 - Random Forest
 - Logistic Regression
- How do we decide on which model to use?
 - AUC score*
 - A measure of how well a model can distinguish between customers who are likely to upgrade and those who are not.
- Model Selection Conclusion
 - Considering interpretability, simplicity and efficiency, we selected Decision Tree.

Feature Selection

- What is feature selection, and why do we need it?
 - It selects only the best/most predictive features
 - It minimizes overfitting and noise; and it's more computationally efficient
- What was our process?
 - First, used Filter Approach to rank all 25 features based on information gain*
 - Information Gain helps us determine which features are most informative about whether a user will upgrade.
 - Second, used Forward Selection to incrementally add each of the features to the model
 - The results of each combination (k1, k1+k2, k1+k2+k3, ... k1+...+k25) were evaluated based on AUC score

Feature Selection Conclusion

- We noted minimal improvement beyond the first 2 features ("lovedTracks", "delta_songsListened").
 - "lovedTracks" is the total number of different songs that the user "liked"
 - "delta_songsListened" is the change in the number of songs a user listened to over the 3-month period before the marketing campaign

Benchmarking Comparison with All Models

Model	Positive Class Precision	F1	AUC
Naïve Bayes	0.0375	0.0720	0.5134
Naïve Bayes w/ Feature Selection	0.0514	0.0938	0.5319
k-NN, k = 5	0.0387	0.0683	0.5752
K-NN, k = 5 w/ Feature Selection	0.0652	0.1157	0.6255
Decision Tree	0.1121	0.1697	0.7098
Decision Tree w/ Feature Selection	0.0941	0.1516	0.7007

Final Model Conclusion

 To balance performance and complexity, we opted for a Decision Tree with feature selection, using only the top 2 most important features - "lovedTracks" and "delta_songsListened".

Thank you

