Εργασία στη σχεδίαση ψηφιακών συστημάτων

Ονόματα:

ΔΗΜΗΤΡΙΟΣ ΒΛΑΝΤΗΣ ΑΛΕΞΙΟΣ-ΛΑΖΑΡΟΣ ΓΕΩΡΓΙΟΥ ΚΩΤΣΗΣ-ΠΑΝΑΚΑΚΗΣ ΒΑΣΙΛΕΙΟΣ-ΕΚΤΩΡ ΜΠΑΚΑΛΙΔΗΣ ΒΛΑΝΤΙΣΛΑΒ

Αντίστοιχα e-mail:

dvlantis@gmail.com

alexybt1999@gmail.com

ektor162@Hotmail.com

agentvlad2000@gmail.com

Αντίστοιχοι αριθμοί μητρώου :

3180021

3180027

3180094

3180112

ΑΠΑΝΤΗΣΗ ΣΤΟ ΕΡΩΤΗΜΑ 1

α) Για τις f και g ξεχωριστά:

Ο χάρτης Karnaugh της f είναι :

x_1x	2				
X3X4		00	01	11	10
00)	1	0	0	d
01		0	1	1	d
11		0	1	d	0
10)	1	0	0	0

x5=0

X ₁ X ₂				
X ₃ X ₄	00	01	11	10
00	1	0	0	1
01	1	0	0	d
11	1	0	0	d
10	1	0	0	1

x5=1

Αρά ο τύπος της f είναι :

 $f = x_1'x_2'x_4' + x_5'x_2x_4 + x_5x_2'$

Ο χάρτης Karnaugh της g είναι:

	x1x2				
x3x4		00	01	11	10
	00	1	1	1	0
	01	1	d	1	0
	11	d	0	0	0
	10	1	0	0	0
x5=0					

x1x2				
x3x4	00	01	11	10
00	1	d	1	0
01	1	d	d	0
11	1	0	1	0
10	d	0	1	0

x5=1

Επομένως ο τύπος της g είναι:

$$g = x_1'x_2' + x_2x_3' + x_1x_2x_5$$

Τα κόστη τους αντίστοιχα είναι 15 για την f και 14 για την g. Επομένως το συνολικό κόστος της ξεχωριστής τους εφαρμογής είναι 29.

Για την f και τη g σε κοινό κύκλωμα:

Ο τύπος της f θα είναι:

$$f = x_1'x_2'x_4' + x_5'x_2x_4 + x_5x_2'$$

Ενώ ο τύπος της g είναι:

$$g = x_1'x_2' + x_2x_3' + x_1x_2x_5 = x_1'x_2'(x_4 + x_4') + x_2x_3' + x_1x_2x_5$$

$$g = x_1'x_2'x_4' + x_1'x_2'x_4 + x_2x_3' + x_1x_2x_5$$

Με αυτόν τον τρόπο η f και η g έχουν ένα κοινό ορό, τον x₁'x₂' x₄'.

Όσον αφορά το κόστος η f και g σε κοινό implementation έχουν συνολικά κόστος 31 Δ ηλαδή δυο παραπάνω από το να τις υλοποιούσαμε ξεχωριστά .

b) Η κυματομορφή που προκύπτει από την λειτουργική προσομοίωση του κυκλώματος φαίνεται στο **Σχήμα 1.1**

Σχήμα 1.1: Η κυματομορφή της λειτουργικής προσομοίωσης του κυκλώματος

d) Το διάγραμμα RTL του κυκλώματος με κοινό implementation φαίνεται στο **Σχήμα** 1.2

Σχήμα 1.2: Το διάγραμμα RTL του κυκλώματος με κοινό implementation

ΑΠΑΝΤΗΣΗ ΣΤΟ ΕΡΩΤΗΜΑ 2

a) Αρχικά, σχηματίζεται ο πίνακας αλήθειας της συνάρτησης, με μεταβλητές εισόδου τις **x1, x2, x3, x4** και μεταβλητή εξόδου την **f**. Ο πίνακας αλήθειας φαίνεται στο **Σχήμα 2.1**.

x1	x2	х3	х4	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Σχήμα 2.1 :Πινάκας Αλήθειας

Στην συνέχεια σχηματίζουμε τον πίνακα Karnaugh του Σ (3,5,6,7,9,10,11,12,13,14). Ο πίνακας Karnaugh εμφανίζεται στο Σ χήμα 2.2.

x ₁ x ₂				
X ₃ X ₄	00	01	11	10
00	0	0	1	0
01	0	1	1	1
11	1	1	0	1
10	0	1	1	1

Σχήμα 2.2 :Πινάκας Karnaugh για την f

Συνεπώς, αφότου έχουμε κάνει τις ομαδοποιήσεις των μονάδων, προκύπτει ότι το κύκλωμα.

 $f(x_1,x_2,x_3,x_4) = x_1x_2x_3' + x_2x_3'x_4 + x_1x_2'x_4 + x_1x_3x_4' + x_1'x_2x_3 + x_1'x_3x_4$

c) Η κυματομορφή που προκύπτει από την λειτουργική προσομοίωση του project φαίνεται στο **Σχήμα 2.3**.

Σχήμα 2.3: Η κυματομορφή της λειτουργικής προσομοίωσης του κυκλώματος

ΑΠΑΝΤΗΣΗ ΣΤΟ ΕΡΩΤΗΜΑ 3

a)Αρχικά, σχηματίζεται ο πίνακας αλήθειας της συνάρτησης, με μεταβλητές εισόδου τις $\mathbf{x_1}$, $\mathbf{x_2}$, $\mathbf{x_3}$ και μεταβλητή εξόδου την \mathbf{f} . Ο πίνακας αλήθειας φαίνεται στο **Σχήμα 3.1**

<i>x</i> ₁	x_2	<i>x</i> ₃	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Σχήμα 3.1: Πίνακας αλήθειας

Στην συνέχεια σχηματίζουμε τον πίνακα Karnaugh:

$$\sum m(1,2,3,6,7) = (x_1'x_2'x_3) + (x_1'x_2x_3') + (x_1'x_2x_3) + (x_1x_2x_3') + (x_1x_2x_3)$$

Ο πίνακας Karnaugh εμφανίζεται στο **Σχήμα 3.2**.

x_1x_2				
X3	00	01	11	10
0	0	1	0	1
1	1	1	0	1

Σχήμα 3.2: Πίνακας Karnaugh για την f

Συνεπώς, αφότου έχουμε κάνει τις ομαδοποιήσεις των μηδενικών, προκύπτει ότι το κύκλωμα POS με την απλούστερη μορφή είναι το:

$$f = (x_1 + x_2 + x_3) * (x_1' + x_2')$$

b) Η κυματομορφή που προκύπτει από την λειτουργική προσομοίωση του κυκλώματος φαίνεται στο **Σχήμα 3.3**.

Σχήμα 3.3: Η κυματομορφή της λειτουργικής προσομοίωσης του κυκλώματος

c) Το διάγραμμα RTL του κυκλώματος φαίνεται στο Σχήμα 3.4

Σχήμα 3.4: RTL diagram του κυκλώματος