- 1. Montrer que \mathcal{T}_n est un espace vectoriel.
- 2. Soit $T \in \mathcal{T}_n$. Calculer, pour tout entier k, les intégrales

$$\int_{-\pi}^{\pi} \sin(kx) T(x) dx \text{ et } \int_{-\pi}^{\pi} \cos(kx) T(x) dx.$$

3. Montrer que la famille composée des fonctions $x \mapsto \cos(kx)$ pour $k \in [0, n]$ et des fonctions $x \mapsto \sin(jx)$ pour $j \in [1, n]$ est une base de \mathcal{T}_n . En déduire la dimension de \mathcal{T}_n .

Exercice 7

Soit *E* de dimension finie et u, $v \in \mathcal{L}(E)$ vérifiant $u^2 + u \circ v = \text{Id}$. Montrer que u et v commutent.

• • • Exercice 8

Soit E un espace vectoriel de dimension finie, $u \in \mathcal{L}(E)$ nilpotent d'indice p (tel que $u^p = 0_{\mathcal{L}(E)}$ et $u^{p-1} \neq 0_{\mathcal{L}(E)}$) et $\Phi : v \in \mathcal{L}(E) \mapsto u \circ v - v \circ u$.

1. Montrer que, pour tout $n \in \mathbb{N}$ et tout $v \in \mathcal{L}(E)$,

$$\Phi^{n}(v) = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} u^{n-k} \circ v \circ u^{k}.$$

- 2. Montrer que Φ est nilpotente et majorer son indice de nilpotence.
- 3. Soit $a \in \mathcal{L}(E)$. Montrer qu'il existe $b \in \mathcal{L}(E)$ tel que $a \circ b \circ a = a$.
- 4. En déduire l'indice de nilpotence de Φ .

Exercice 9

Soit E, F deux espaces vectoriels de dimension finie et $u \in \mathcal{L}(E)$. Déterminer la dimension du sousespace

$$\{v \in \mathcal{L}(E,F), \ v \circ u = 0_{\mathcal{L}(E,F)}\}.$$