Name: Hemos ID:

CSE-321 Programming Languages 2007 Midterm

	Prob 1	Prob 2	Prob 3	Prob 4	Prob 5	Prob 6	Prob 7	Total
Score								
Max	13	11	26	5	10	20	15	100

1 SML Programming [13 pts]

Question 1. [3 pts] Give a tail-recursive implementation of fact for the factorial function. Perhaps you will need two lines of code.

fun fact n	=		
let			
-		- :	
in			
fact'	n 1		
end			

Question 2. [5 pts] Exploit mutable references in SML to implement a factorial function of type int \rightarrow int. You may use the fn keyword, but not the fun keyword. That is, do not use the built-in mechanism for building recursive functions in SML. Your program should evaluate to a factorial function that returns n! if its argument n is positive, i.e., n > 0. Perhaps you will need three or four lines of code.

Iet	
_	_
_	-
in	
_	
end	

Question 3. [5 pts] A signature SET for sets is given as follows:

```
signature SET =
sig

   type 'a set
   val empty : ''a set
   val singleton : ''a -> ''a set
   val union : ''a set -> '' a set -> ''a set
   val intersection : ''a set -> '' a set -> ''a set
   val diff : ''a set -> '' a set -> ''a set
end
```

- empty is an empty set.
- singleton x returns a singleton set consisting of x.
- union s s' returns the union of s and s'.
- intersection s s' returns the intersection of s and s'.
- diff s s' returns the difference of s and s': the set of elements in s but not in s'.

Give a functional representation of sets by implementing a structure SetFun of signature SET. You may not use the if/then/else construct. Instead use not, and also, and orelse.

```
structure SetFun : SET where type 'a set = 'a -> bool =
    struct
    type 'a set = 'a -> bool

val empty = _____

fun singleton x = ____

fun union s s' = ____

fun diff s s' = ____
end
```

2 True/false questions [11 pts]

For true/false questions, a wrong answer gives a penalty equal to the points assigned to the question. Given an answer only if you are convinced!

Question 1. [1 pts] A derivable rule is always admissible. True or false?

Question 2. [1 pts] When reducing a closed expression, we may need to use α -conversions. True or false?

Question 3. [1 pts] We can prove $\lambda x. e \equiv_{\alpha} \lambda y. e'$ when $x \neq y$ and $y \in FV(e)$ where FV(e) calculates the set of free variables in e. True or false?

Question 4. [1 pts] Given a function f in the untyped λ -calculus, we write f^n for the function applying f exactly n times, i.e., $f^n = f \circ f \cdots \circ f$ (n times). A fixed point of f is also a fixed point of f^n if $n \geq 1$. True or false?

Question 5. [1 pts] In the presence of an abort expression $abort_A e$, type safety of the simply typed λ -calculus continues to hold. True or false?

Question 6. [2 pts] The fixed point construct fix x:A.e makes every type inhabited in the simply typed λ -calculus. True or false?

Question 7. [1 pts] If an algorithmic typing judgment covers all possible cases of well-typed expressions, it is said to be "sound." True or false?

Question 8. [3 pts] If a language has no static type system, it cannot be a safe language. True or false?

3 Short answers [26 pts]

Question 1. [4 pts] Show the reduction sequence of the following expression under the call-by-name strategy.

Question 2. [2 pts] Suppose that v_1 , v_2 , and v_3 are all values of type A in the simply typed λ -calculus. Assuming the *lazy* reduction strategy, how many steps does it take to fully reduce to a value the following expression?

$$\mathsf{fst} \, \left((\lambda x \colon\! A \times A \cdot \mathsf{fst} \,\, x) \, \left((\lambda x \colon\! A \cdot x) \,\, v_1, v_2 \right), \quad v_3 \right)$$

(Given a reduction sequence $e \mapsto e' \mapsto e'' \mapsto v$, we say that it takes three steps to fully reduce e, for example.)

Question 3. [3 pts] Encode the boolean type bool and its constructs true, false, and if e then e_1 else e_2 using the sum type A+A, the unit type unit, and their constructs.

$$\mathsf{bool} =$$
 ______ $\mathsf{true} =$ _____ $\mathsf{false} =$ _____ $\mathsf{if} \ e \ \mathsf{then} \ e_1 \ \mathsf{else} \ e_2 =$ ______

Question 4. [2 pts] Give an expression in the extended simply typed λ -calculus that denotes a recursive function f of type $A \rightarrow B$ whose formal argument is x and whose body is e.

Question 5. [3 pts] Show the reduction sequence of the expression !ref $(\lambda x : A. x)$ in the simply typed λ -calculus with mutable references. The reduction begins with an empty store and uses a location l when allocating a reference. The reduction judgment has the form $e \mid \psi \mapsto e' \mid \psi'$ where a store ψ is a collection of bindings of the form $l \mapsto v$.

$$!\mathsf{ref}\ (\lambda x\!:\!A.\,x)\mid \cdot \quad \mapsto$$

Question 6. [3 pts] Complete the rule for the store typing judgment $\psi :: \Psi$ in the simply typed λ -calculus with mutable references.

$$\frac{dom(\Psi) = dom(\psi)}{\psi :: \Psi}$$
 Store

Question 7. [6 pts] Consider the environment semantics (using the environment evaluation judgment $\eta \vdash e \hookrightarrow v$) for the simply typed λ -calculus with a base type bool:

$$\begin{array}{lll} \text{type} & A & ::= & P \mid A \mathop{\rightarrow} A \\ \text{base type} & P & ::= & \text{bool} \\ \text{expression} & e & ::= & x \mid \lambda x \colon A.\ e \mid e\ e \mid \text{true} \mid \text{false} \mid \text{if}\ e \ \text{then}\ e \ \text{else}\ e \\ \text{environment} & \eta & ::= & \cdot \mid \eta, x \hookrightarrow v \end{array}$$

Give an inductive definition of values:

Write the environment evaluation rule for applications:

$$\frac{}{\eta \vdash e_1 \ e_2 \hookrightarrow v} \mathbf{App}_{e}$$

Question 8. [3 pts] What is the language construct in C++ that realizes parametric polymorphism, although it is "a terribly hacked and inadequate feature" from our point of view?

4 Inductive definition [5 pts]

Suppose that we use a sequence of digits $\mathbf{0}$ and $\mathbf{1}$ as a binary representation of a natural number. As usual, the rightmost digit corresponds to the least significant bit and the leftmost digit corresponds to the most significant bit. For example, $\mathbf{1101}$ denotes a natural number $2^3 + 2^2 + 2^0 = 13$. A syntactic category bin for such sequences of digits can be inductively defined in several ways, but we use the following definition:

bin
$$b ::= \mathbf{0} \mid \mathbf{1} \mid b\mathbf{0} \mid b\mathbf{1}$$

We wish to inductively define a syntactic category pbin for sequences of digits that denote positive natural numbers and also do not have a leading **0**. For example, **1101** belongs to pbin, but **01101** does not because it has a leading **0**. **0** does not belong to pbin, either, because it does not denote a positive natural number.

Question 1. [3 pts] Give an inductive definition of pbin. You may not introduce auxiliary syntactic categories.

pbin	p	::=			

Question 2. [2 pts] Give an inductive definition of a function num which takes a sequence p belonging to pbin and returns its corresponding decimal number. For example, we have $num(\mathbf{10}) = 2$ and $num(\mathbf{1101}) = 13$.

5 Programming in the λ -calculus [10 pts]

A Church numeral encodes a natural number n as a λ -abstraction \hat{n} which takes a function f and returns $f^n = f \circ f \cdots \circ f$ (n times):

$$\hat{n} = \lambda f. f^n = \lambda f. \lambda x. f f f \cdots f x$$

The goal of this problem is to define a logarithm function log which finds the logarithm in base 2 of a given non-zero natural number (encoded as a Church numeral).

- $\log \hat{k}$ evaluates to \hat{n} if $2^n \le k < 2^{n+1}$.
- log never takes $\hat{0}$ as an argument. Hence the result of evaluating log $\hat{0}$ is unspecified.

Your answers may use the following pre-defined constructs: zero, one, succ, if/then/else, pair, eq, halve, and fix.

• zero and one encode natural numbers zero and one, respectively.

zero =
$$\hat{0} = \lambda f. \lambda x. x$$

one = $\hat{1} = \lambda f. \lambda x. f x$

• succ finds the successor of a given natural number.

succ =
$$\lambda \hat{n} \cdot \lambda f \cdot \lambda x \cdot \hat{n} f (f x)$$

• if e then e_1 else e_2 is a conditional construct.

if
$$e$$
 then e_1 else $e_2 = e e_1 e_2$

• pair creates a pair of two expressions, and fst and snd are projection operators.

$$\begin{array}{lll} \mathsf{pair} &=& \lambda x.\,\lambda y.\,\lambda b.\,b\,\,x\,\,y\\ \mathsf{fst} &=& \lambda p.\,p\,\,(\lambda t.\,\lambda f.\,t)\\ \mathsf{snd} &=& \lambda p.\,p\,\,(\lambda t.\,\lambda f.\,f) \end{array}$$

• eq tests two natural numbers for equality.

eq =
$$\lambda x. \lambda y.$$
 and (isZero (x pred y)) (isZero (y pred x))

• halve 2 * k returns \hat{k} . halve 2 * k + 1 returns \hat{k} .

halve =
$$\lambda \hat{n}$$
. fst $(\hat{n} (\lambda p. pair (snd p) (succ (fst p)))(pair zero zero))$

• fix is the fixed point combinator.

fix =
$$\lambda F. (\lambda f. F \lambda x. (f f x)) (\lambda f. F \lambda x. (f f x))$$

These constructs use the following auxiliary constructs, which you do not need:

```
\begin{array}{rcl} \text{tt} &=& \lambda t.\,\lambda f.\,t\\ \text{ff} &=& \lambda t.\,\lambda f.\,f\\ \text{and} &=& \lambda x.\,\lambda y.\,x\,\,y\,\,\text{ff}\\ \text{isZero} &=& \lambda x.\,x\,\left(\lambda y.\,\text{ff}\right)\,\text{tt}\\ \text{next} &=& \lambda p.\,\text{pair}\,\left(\text{snd}\,\,p\right)\left(\text{succ}\,\left(\text{snd}\,\,p\right)\right)\\ \text{pred} &=& \lambda \widehat{n}.\,\text{fst}\,\left(\widehat{n}\,\,\text{next}\,\left(\text{pair}\,\,\text{zero}\,\,\text{zero}\right)\right) \end{array}
```

Question 1. [3 pts] Use the fixed point combinator to define log. You may use the above pre-defined constructs, but do not expand them into their definitions.

|--|

Question 2. [7 pts] Define log without using the fixed point combinator. You may use the above pre-defined constructs, but do not expand them into their definitions. (You are not allowed to rewrite your answer to the previous question by expanding fix into its definition!)

 $\log = \lambda \widehat{n}.$

6 Complete call-by-name reduction [20 pts]

Consider the following fragment of the simply typed λ -calculus:

$$\begin{array}{lll} \text{type} & A & ::= & P \mid A \mathop{\rightarrow} A \\ \text{base type} & P & \\ \text{expression} & e & ::= & x \mid \lambda x \colon\! A.\, e \mid e \; e \\ \text{value} & v & ::= & \lambda x \colon\! A.\, e \end{array}$$

Under the call-by-name (CBN) strategy, an expression reduces to a value using two reduction rules below:

$$\frac{e_1 \mapsto e_1'}{e_1 \ e_2 \mapsto e_1' \ e_2} \ Lam \quad \frac{(\lambda x : A. \ e) \ e' \mapsto [e'/x]e}{(\lambda x : A. \ e)} \ App$$

Note that the second subexpression in an application $(e.g., e_2 \text{ in } e_1 e_2)$ is not reduced immediately.

In this problem, we will consider a variant of the CBN strategy, called the *complete CBN* strategy, in which we attempt to reduce the expression e in $\lambda x : A.e$ before applying the rule App. As a result, we reduce $(\lambda x : A.e)$ e' to [e'/x]e by the rule App only when the function body e is a normal form. Recall that an expression e is said to be a normal form if no reduction rule is applicable, *i.e.*, if there is no e' such that $e \mapsto e'$. Thus, if a reduction sequence terminates, it must end up with a normal form.

Under the complete CBN strategy, a normal form is not necessarily a value. For example, $\lambda x: A. x \ (\lambda y: B. y)$ is a normal form (because there is no e' such that $\lambda x: A. x \ (\lambda y: B. y) \mapsto e'$) and also a value, whereas x y is a normal form (because there is no e' such that x $y \mapsto e'$) but not a value. Conversely a value is not necessarily a normal form. For example, $\lambda x: A. \ (\lambda y: B. y) \ x$ is a value but not a normal form because its body $(\lambda y: B. y) \ x$ reduces to another expression x, as shown in $\lambda x: A. \ (\lambda y: B. y) \ x \mapsto \lambda x: A. x$. We call a normal form that is a value as a value normal form, and a normal form that is not a value as a non-value normal form.

In order to syntactically distinguish the two kinds of normal forms, we introduce two new syntactic categories:

non-value normal form
$$xnf ::= x \mid xnf \ e$$

normal form $nf ::= xnf \mid \lambda x : A. \ nf$

Examples of non-value normal forms are x (λy : A. y) and x y. Note that a non-value normal form can always be written as x e_1 e_2 \cdots e_n . A normal form nf is either a non-value normal form xnf or a value normal form λx : A. nf'. Note that the body of a value normal form λx : A. nf is just a normal form, not necessarily another value normal form.

Question 1. [6 pts] Give the rules for the reduction judgment $e \mapsto e'$. You need three rules.

Question 2. [4 pts] Give the rules for the evaluation judgment $e \hookrightarrow nf$ which means that an expression e evaluates to a normal form nf. You need three rules and we provide one.

Question 3. [4 pts] Give the definition of evaluation contexts corresponding to the complete CBN strategy.

evaluation context κ ::=

Question 4. [6 pts] Give the definition of frames and the rules for the state transition judgment $s \mapsto_{\mathsf{C}} s'$ for the abstract machine $\mathsf{C}.\ \sigma \blacktriangleright e$ means that the machine is currently reducing $\sigma[\![e]\!]$, but has yet to analyze $e.\ \sigma \blacktriangleleft nf$ means that the machine is currently reducing $\sigma[\![nf]\!]$ and has already analyzed nf; that is, it is returning nf to the top frame of σ . Fill in the blank:

7 Type preservation [15 pts]

In this problem, we use the following fragment of the simply typed λ -calculus. We do not consider base types.

Question 1. [5 pts] Fill in the blank in the next page to complete the proof of the substitution lemma. We assume that a typing context is an unordered set and that variables in a typing context are all distinct.

Question 2. [10 pts] Fill in the blank in the page after to complete the proof of the type preservation theorem. Unlike the proof given in the Course Notes, we apply rule induction to $\Gamma \vdash e : A$ instead of $e \mapsto e'$. You may use Lemmas 7.2 (Substitution) and 7.1 (Inversion).

Lemma 7.1 (Inversion). Suppose $\Gamma \vdash e : C$.

```
If e = x, then x : C \in \Gamma.

If e = \lambda x : A \cdot e', then C = A \rightarrow B and \Gamma, x : A \vdash e' : B for some type B.

If e = e_1 \ e_2, then \Gamma \vdash e_1 : A \rightarrow C and \Gamma \vdash e_2 : A for some type A.
```

Lemma 7.2 (Substitution). If $\Gamma \vdash e : A \text{ and } \Gamma, x : A \vdash e' : C, \text{ then } \Gamma \vdash [e/x]e'$: C
---	-----

Proof. By rule induction on the judgment $\Gamma, x : A \vdash e' : C$. In the third case, we assume (without loss of generality) that y is a fresh variable such that $y \notin FV(e)$ and $y \neq x$. If $y \in FV(e)$ or y = x, we can always choose a different variable by applying an α -conversion to $\lambda y : C_1 \cdot e''$.

Case $\frac{y}{\Gamma}$	$\frac{: C \in \Gamma, x : A}{x \cdot A \vdash y \cdot C} \text{ Var}$	where $e' = y$ and $y : C \in \Gamma$:	
$\Gamma \vdash y : C$ $[e/x]y = g$,		$\text{from } y : C \in \Gamma$ $\text{from } x \neq y$
Case Γ	$\overline{\ ,x:A\vdash x:A}$ Var	where $e' = x$ and $C = A$:	
			assumption
		_	[e/x]x = e
$\mathbf{Case} \overline{\Gamma}$	$\frac{\Gamma, x : A, y : C_1 \vdash e}{, x : A \vdash \lambda y : C_1 \cdot e''}$	$\frac{e'':C_2}{C_1 \to C_2} \to I$ where $e' = \lambda y:C_1.e''$ and $C = C_1 \to C_2$:	:
		by induction	ı hypothesis
		by	the rule \rightarrow l
$[e/x]\lambda y$: ($G_1. e'' = $	from $y \notin FV(e)$	and $x \neq y$
Case $\frac{\Gamma}{}$	$\cfrac{x:A \vdash e_1:B \! ightarrow \! C}{\Gamma,x:A \vdash e_2}$	$\frac{\Gamma, x: A \vdash e_2: B}{1 \ e_2: C} \rightarrow E \text{where } e' = e_1 \ e_2:$ by induction hypothesis on	
		by induction hypothesis on	
		by	the rule $\rightarrow E$
$\Gamma \vdash [e/x]$	$(e_1 \ e_2): C$	from	

Theorem 7.3 (Type preservation). *If* $\Gamma \vdash e : A \text{ and } e \mapsto e', \text{ then } \Gamma \vdash e' : A.$ *Proof.* By rule induction on the judgment $\Gamma \vdash e : A$. Case $\frac{x:A\in\Gamma}{\Gamma\vdash x:A}$ Var where e=x: There is no expression e' such that $x \mapsto e'$, so we do not need to consider this case. $\textbf{Case} \ \ \frac{\Gamma, x: A_1 \vdash e'': A_2}{\Gamma \vdash \lambda x: A_1. e'': A_1 \rightarrow A_2} \rightarrow \textbf{I} \ \ \text{where} \ e = \lambda x: A_1. e'' \ \text{and} \ A = A_1 \rightarrow A_2:$ There is no expression e' such that $\lambda x: A_1. e'' \mapsto e'$, so we do not need to consider this case. $\textbf{Case} \ \ \frac{\Gamma \vdash e_1 : C \rightarrow A \quad \Gamma \vdash e_2 : C}{\Gamma \vdash e_1 \ e_2 : A} \rightarrow \textbf{E} \ \ \text{where} \ e = e_1 \ e_2 :$ There are three subcases depending on the reduction rule used in the derivation of $e \mapsto e'$. Note that if e_1 is a λ -abstraction, it must have the form $\lambda x: C. e''$ by Lemma 7.1 with $\Gamma \vdash e_1: C \to A$. Subcase $\frac{e_1 \mapsto e'_1}{e_1 \ e_2 \mapsto e'_1 \ e_2}$ Lam where $e' = e'_1 \ e_2$: by induction hypothesis on with from $\mathbf{Subcase} \ \ \frac{e_2 \mapsto e_2'}{(\lambda x : C.\,e'') \ e_2 \mapsto (\lambda x : C.\,e'') \ e_2'} \ \mathit{Lam} \ \ \text{where} \ e_1 = \lambda x : C.\,e'' \ \text{and} \ e' = (\lambda x : C.\,e'') \ e_2' :$ by induction hypothesis on _____ with ____ from Subcase $\overline{(\lambda x: C. e'') \ v \mapsto [v/x]e''} \ App$ where $e_1 = \lambda x: C. e''$ and $e_2 = v$ and e' = [v/x]e'': by Lemma 7.1 with

by Lemma 7.2 with _____ and ____