

All Russian mathematical portal

V. I. Arnol'd, On functions of three variables, $Dokl.\ Akad.\ Nauk\ SSSR,\ 1957,\ Volume\ 114,\ Number\ 4,\ 679–681$

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details: IP: 143.233.246.3

November 4, 2024, 17:02:14

MATEMATUKA

В. И. АРНОЛЬД

О ФУНКЦИЯХ ТРЕХ ПЕРЕМЕННЫХ

(Представлено академиком А. Н. Колмогоровым 10 IV 1957)

Далее вкратце указывается способ доказательства теоремы, которая доставляет полное решение 13-й проблемы Гильберта (в смысле опровержения высказанной Гильбертом гипотезы).

T е о р е м а 1. Любая заданная на единичном кубе E^3 действительная непрерывная функция $f(x_1, x_2, x_3)$ трех переменных может быть представлена в виде

$$f(x_1, x_2, x_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} h_{ij} [\varphi_{ij}(x_1, x_2), x_3], \qquad (1)$$

еде функции двух переменных h_{ij} и φ_{ij} действительны и непрерывны. А. Н. Колмогоровым недавно (1) было получено представление

$$f(x_1, x_2, x_3) = \sum_{i=1}^{3} h_i [\varphi_i(x_1, x_2), x_3],$$
 (2)

где функции h_i и φ_i непрерывны, причем функции h_i действительны, а функции φ_i принимают значения, принадлежащие некоторому дереву Ξ . Дерево Ξ в конструкции A. Н. Колмогорова (для случая функции трех переменных) может быть взято не универсальным, а таким, что все его точки имеют индекс ветвления не превосходящий 3. Для этого функции u_{km}^{r} основной леммы $(^1)$ (для n=2) следует выбрать так, чтобы они, кроме указанных там пяти свойств, обладали еще свойствами:

- 6) Граница каждого множества уровня каждой функции u'_{km} делит плоскость не более чем на 3 части.
 - 7) При любом r $G'_{11} \supseteq E^2$.

В силу этого замечания теорема 1 является следствием существования представления (2) и следующей теоремы:

мейства F может быть представлена в виде

$$f(\xi) = \sum_{k=1}^{3} f_k(x_k),$$

еде $x=(x_1, x_2, x_3)$ есть образ $\xi \in \Xi$ в дереве X; $f_k(x_k)$ — непрерывные действительные функции одного переменного, причем f_k непрерывно зависят от f (в смысле равномерной сходимости).

Введем некоторые вспомогательные понятия. Пусть K — конечный отрезочный комплекс, расположенный в E^3 и состоящий из отрезков, не параллельных ни одной из координатных плоскостей.

Определение 1. Система принадлежащих К точек

$$a_0 \neq a_1 \neq \ldots \neq a_{n-1} \neq a_n$$

называется молнией, если отрезки $\overline{a_{i-1}a_i}$ перпендикулярны, соответственно, осям X_{α_i} и

$$\alpha_1 \neq \alpha_2 \neq \ldots \neq \alpha_{n-1} \neq \alpha_n$$
.

Конечная система попарно различных точек $a_{i_1i_2...i_n}$, занумерованных кортежами индексов $i_1i_2...i_n$, называется ветвящейся схемой, если: 1) существует только одна точка a_0 , занумерованная одним индексом; 2) вместе с $a_{i_1i_2...i_{n-1}i_n}$ в систему входит $a_{i_1...i_{n-1}}$. Определение 2. Ветвящаяся система точек $a_{i_1...i_n}$, расположенных

Определение 2. Ветвящаяся система точек $a_{i_1...i_n}$, расположенных на K, называется выводящей схемой, если при фиксированном кортеже $i_1...i_n$ совокупность точек вида $a_{i_1...i_n}i_{n+1}$ лежит на плоскости, проходящей через $a_{i_1...i_n}$, перпендикулярной некоторой оси координат $x_{\alpha_{i_1...i_n}}$, и исчерпывает собою все точки пересечения этой плоскости с K, отличные от $a_{i_1...i_n}$.

Дерево Е может быть представлено в виде

$$\Xi = \bigcup_{n=1}^{\infty} D_n, \quad D_s \subset D_{n+1},$$

где D_n — конечные деревья, D_1 — простая дуга и D_{n+1} получается из D_n приклеиванием в некоторой точке p_n , не являющейся для D_n ни точкой ветвления, ни концевой точкой, отрезка S_n (2).

Обозначим через ω_n верхнюю грань колебаний функций $f \in F$ на компонентах разности $\Xi \setminus D_n$. Легко видеть, что

$$\omega_n \to 0$$
 при $n \to \infty$.

Поэтому можно выбрать такую последовательность

$$n_1 < n_2 < \ldots < n_r < \ldots,$$

OTP

$$\omega_n \leqslant \frac{1}{r^2}$$
 при $n \geqslant n_r$.

Реализация X дерева Ξ в E^3 строится в виде:

$$X = \overline{\bigcup_{n=1}^{\infty} D'_n},$$

где $D_n^{'}$ — отрезочные комплексы, реализующие D_n так, то образы $S_n^{'}$ дуг S_n являются отрезками, не перпендикулярными осям координат.

Индуктивное построение D_n' производится так, чтобы $\bigcup_{n=1}^{\infty} D_n'$ было деревом (2) и с соблюдением следующих условий:

1) Любая функция $f \in F$ представляется на D_n в виде

$$f(\xi) = \sum_{k=1}^{3} f_k^n(x_k),$$
 (3)

где $f_h^n(x_h)$ непрерывно зависят от f.

- 2) Дерево D_n из любой точки a_0 имеет выводящую схему, в которой первое направление α_0 может быть выбрано произвольно.
- 3) Пусть A_n множество точек D_n' , являющихся образами точек ветвления Ξ . Существует такое счетное множество $B_n \subseteq D_n'$, $B_n \cap A_n = 0$, что молнии $a_0 \dots a_m$, начинающиеся в $a_0 \in D_n' \setminus B_n$, не имеют общих точек с A_n и совпадающих точек $a_i = a_j$, $i \neq j$.
 - 4) Если $n_r < n \le n_{r+1}$, то

$$|f_k^n(x_k) - f_k^{n_r}(x_k)| \le \left(3 + \frac{n - n_r}{n_{r+1} - n_r}\right) \frac{1}{r^2}.$$
 (4)

Доказательство возможности индуктивного построения деревьев D_n' и функций f_k^n с сохранением свойств 1)—4) слишком сложно, чтобы быть здесь изложенным. Грубо говоря, на каждом шагу приклеиваемый отрезок S_{n+1}' выбирается очень коротким, его направление и способ отображения S_{n+1} на S_{n+1}' выбираются так, чтобы обеспечить выполнение свойств 2) и 3) у D_{n+1}' . Сохранение равенства (3) при переходе от n к n+1 на вновь приклефином отрезке S_{n+1} требует введения поправки $f_k^{n+1} - f_k^n$ к хотя бы одной из функций f_k^n на проекции S_{n+1}' на ось x_k . Для сохранения же равенства (3) на ранее построенном дереве D_n' приходится эту поправку компенсировать новыми поправками к функциям f_k^n на ряде других отрезков. Точный способ введения этих поправок мы здесь не излагаем. Заметим только следующее: поправки эти должны быть таковы, чтобы при n'=n+1 сохранилось неравенство (4); при достаточной малости и надлежащем расположении S_{n+1}' их удается произвести для каждой функции f_k^n на конечной системе попарно не пересекающихся отрезков оси x_k ; в доказательстве такой возможности существенно используется то обстоятельство, что дерево D_n' обладает свойствами 2) и 3).

Доказательство существования непрерывной функции

$$f_k(x_k) = \lim_{n \to \infty} f_k^n(x_k)$$

и соблюдения равенства

$$f(\xi) = \sum_{k=1}^{3} f_k(x_k)$$

на всем X несложно.

Я очень благодарен А. Н. Колмогорову за помощь и советы при выполнении этой работы.

Московский государственный университет им. М. В. Ломоносова

Поступило 6 IV 1957

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Н. Қолмогоров, ДАН, **108**, № 2, 179 (1956). ² К. Мепдег, Kurventheorie, X, Berlin — Leipzig, 1932.