Jacob Miller - Homework 3

February 20, 2020

1 Setup

```
[1]: import pandas as pd
import numpy as np
import patsy
import scipy
import statsmodels.api as sm
from astropy.table import Table
from sympy import symbols
```

2 Problem 3.1

```
[4]: title_print('Problem 3.1a')
    y, X = patsy.dmatrices('Games_won ~ Passing_yards + Percent_rushing + \
                          Opponent_rushing_yards', df)
    parens = np.matmul(X.T, X)
    Xs = np.matmul(np.linalg.inv(parens), X.T)
    b_hat = np.round(np.matmul(Xs, y), 4)
    print('y_hat = {} + {} * x_2 + {} * x_7 + {} * x_8'.format(b_hat[0],
                                                             b hat[1],
                                                             b hat[2],
                                                             b hat[3]))
    ################
    | Problem 3.1a |
    ################
    y_{hat} = [-1.8084] + [0.0036] * x_2 + [0.194] * x_7 + [-0.0048] * x_8
[5]: title_print('Problem 3.1b')
    results = sm.OLS(y, X).fit()
    results.model.data.design_info = X.design_info
    # Note statsmodels prints out ANOVA for each individual regressor
    aov_table = sm.stats.anova_lm(results, typ = 1)
    print(results.summary())
    print('\n--- Analysis of Variance table ---\n{}'.format(aov_table))
    print('\nRegression F: {}'.format(round(results.fvalue, 2)))
    print('Regression p: {}'.format(round(results.f_pvalue, 4)))
    print('\n--> Regression is significant <--')</pre>
    #################
    | Problem 3.1b |
    #################
                               OLS Regression Results
    ______
    Dep. Variable:
                               Games_won
                                          R-squared:
                                                                          0.786
    Model:
                                    OLS
                                         Adj. R-squared:
                                                                          0.760
    Method:
                           Least Squares F-statistic:
                                                                          29.44
    Date:
                        Thu, 20 Feb 2020 Prob (F-statistic):
                                                                       3.27e-08
    Time:
                                17:27:18 Log-Likelihood:
                                                                        -52.532
    No. Observations:
                                         AIC:
                                     28
                                                                          113.1
    Df Residuals:
                                      24
                                         BIC:
                                                                          118.4
```

nonrobust

Df Model:

Covariance Type:

0.975]	coef	std err	t	P> t	[0.025
 Intercept 14.498	-1.8084	7.901	-0.229	0.821	-18.115
Passing_yards 0.005	0.0036	0.001	5.177	0.000	0.002
Percent_rushing 0.376	0.1940	0.088	2.198	0.038	0.012
Opponent_rushing_yards -0.002	-0.0048	0.001	-3.771	0.001	-0.007
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0.665 Durbin-Watson: 0.717 Jarque-Bera (JB): 0.321 Prob(JB): 2.712 Cond. No.				1.492 0.578 0.749 7.42e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.42e+04. This might indicate that there are strong multicollinearity or other numerical problems.

--- Analysis of Variance table ---

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
Passing_yards	1.0	76.193400	76.193400	26.172055	3.100132e-05
Percent_rushing	1.0	139.500820	139.500820	47.917840	3.697874e-07
Opponent_rushing_yards	1.0	41.400062	41.400062	14.220716	9.377699e-04
Residual	24.0	69.870004	2.911250	NaN	NaN

Regression F: 29.44 Regression p: 0.0

--> Regression is significant <--

```
print('\n--> abs(t_0) > t-statistic, so all are significant <--')
    ###############
    | Problem 3.1c |
    ###############
    Coef t_0 p-value
      B2 5.177
                   0.0
      B7 2.198
                 0.038
      B8 3.771
               0.001
    t-statistic = 2.056
    --> abs(t_0) > t-statistic, so all are significant <--
[7]: title_print('Problem 3.1d')
     print('R^2 = {}%'.format(round(100 * results.rsquared, 2)))
     print('Adj-R^2 = {}%'.format(round(100 * results.rsquared_adj, 2)))
    ###############
    | Problem 3.1d |
    ################
    R^2 = 78.63\%
    Adj-R^2 = 75.96\%
[8]: title_print('Problem 3.1e')
     y2, X2 = patsy.dmatrices('y ~ Passing_yards + Opponent_rushing_yards', df)
     parens2 = np.matmul(X2.T, X2)
     Xs2 = np.matmul(np.linalg.inv(parens2), X2.T)
     b_hat2 = np.round(np.matmul(Xs2, y2), 4)
     results2 = sm.OLS(y2, X2).fit()
     results2.model.data.design_info = X2.design_info
     partial_F = round((results.ess - results2.ess) / results.mse_resid, 2)
     print('reduced y_hat = {} + {} * x_2 + {} * x_8'.format(b_hat2[0],
                                                              b_hat2[1],
                                                              b_hat2[2]))
     print('partial F = {}'.format(partial_F))
     print('\n--> {} < {}, therefore B7 is significant <--'.format(partial_F,</pre>
           round(results.fvalue, 2)))
```

################

```
| Problem 3.1e |
     #################
     reduced y_hat = [14.7127] + [0.0031] * x_2 + [-0.0068] * x_8
     partial F = 4.83
     --> 4.83 < 29.44, therefore B7 is significant <--
     3 Problem 3.10
 [9]: df = pd.read_excel('Data/data-table-B11.xlsx')
     WARNING *** OLE2 inconsistency: SSCS size is 0 but SSAT size is non-zero
[10]: title_print('Problem 3.10a')
      y, X = patsy.dmatrices('Quality ~ Clarity + Aroma + Body + Flavor + \
                             Oakiness', df)
      parens = np.matmul(X.T, X)
      Xs = np.matmul(np.linalg.inv(parens), X.T)
      b_hat = np.round(np.matmul(Xs, y), 4)
      print('y_hat = {} + {} * x_1 + {} * x_2 + {} * x_3 + {} * x_4 + {} * x_5'.
            format(b_hat[0], b_hat[1], b_hat[2], b_hat[3], b_hat[4], b_hat[5]))
     #################
     | Problem 3.10a |
     ################
     y_{hat} = [3.9969] + [2.3395] * x_1 + [0.4826] * x_2 + [0.2732] * x_3 + [1.1683] *
     x_4 + [-0.684] * x_5
[11]: title_print('Problem 3.10b')
      results = sm.OLS(y, X).fit()
      results.model.data.design_info = X.design_info
      aov table = sm.stats.anova lm(results, typ = 1)
      print(results.summary())
      print('\n--- Analysis of Variance table ---\n{}'.format(aov_table))
      print('\nRegression F: {}'.format(round(results.fvalue, 2)))
      print('Regression p: {}'.format(round(results.f_pvalue, 4)))
      print('\n--> Regression is significant <--')</pre>
```

#################

| Problem 3.10b |

#################

OLS Regression Results

Dep. Variable:	Quality	R-squared:	0.721				
Model:	OLS Adj. R-squared:		0.677				
Method:	Least Squares	F-statistic:	16.51				
Date:	Thu, 20 Feb 2020	Prob (F-statistic)	4.70e-08				
Time:	17:30:51	Log-Likelihood:	-56.378				
No. Observations:	38	AIC:	124.8				
Df Residuals:	32	BIC:	134.6				
Df Model:	5						
Covariance Type:	nonrobust						
=======================================							
coe	f std err	t P> t					
Intercept 3.996	 9 2.232	1.791 0.083					
Clarity 2.339	5 1.735	1.349 0.187	-1.194 5.873				
Aroma 0.482	6 0.272	1.771 0.086	-0.072 1.038				
Body 0.273	2 0.333	0.821 0.418	-0.404 0.951				
Flavor 1.168	3 0.304	3.837 0.001	0.548 1.789				
Oakiness -0.684	0.271	-2.522 0.017	-1.236 -0.132				
Omnibus:	 1.181	Durbin-Watson:	0.837				
Prob(Omnibus):	0.554		1.020				
Skew:	-0.384	-	0.601				
Kurtosis:	2.770	Cond. No.	134.				

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

--- Analysis of Variance table ---

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
Clarity	1.0	0.125210	0.125210	0.092645	7.628120e-01
Aroma	1.0	77.353210	77.353210	57.235072	1.286336e-08
Body	1.0	6.414421	6.414421	4.746149	3.684165e-02
Flavor	1.0	19.049819	19.049819	14.095314	6.945740e-04
Oakiness	1.0	8.597755	8.597755	6.361638	1.683272e-02
Residual	32.0	43.248006	1.351500	NaN	NaN

Regression F: 16.51 Regression p: 0.0

^{--&}gt; Regression is significant <--

```
[12]: title_print('Problem 3.10c')
      t_stat = -scipy.stats.t.ppf(0.025, len(X) - 2)
      t_values = abs(np.round(results.tvalues[1:], 3))
      p_values = np.round(results.pvalues[1:], 3)
      table = Table([['B1', 'B2', 'B3', 'B4', 'B5'], t_values, p_values],
                    names = ('Coef', 't_0', 'p-value'))
      print(table)
      print('\nt-statistic = {}'.format(round(t_stat, 3)))
      print('\n--> B4, B5: abs(t_0) > t-statistic so these are significant <--')</pre>
     #################
     | Problem 3.10c |
     ################
     Coef t_0 p-value
       B1 1.349 0.187
       B2 1.771 0.086
       B3 0.821 0.418
       B4 3.837 0.001
       B5 2.522
                  0.017
     t-statistic = 2.028
     --> B4, B5: abs(t_0) > t-statistic so these are significant <--
[13]: title_print('Problem 3.10d')
     y2, X2 = patsy.dmatrices('Quality ~ Aroma + Flavor', df)
      parens = np.matmul(X2.T, X2)
      Xs2 = np.matmul(np.linalg.inv(parens), X2.T)
      b_hat2 = np.round(np.matmul(Xs2, y2), 4)
      results2 = sm.OLS(y2, X2).fit()
      results2.model.data.design_info = X2.design_info
      table = Table([['R^2', 'Adj-R^2'],
                     [round(100 * results.rsquared, 2),
                     round(100 * results.rsquared_adj, 2)],
                     [round(100 * results2.rsquared, 2),
                      round(100 * results2.rsquared_adj, 2)]],
                     names = (' ', 'Full model', 'Reduced model'))
      print(table)
      print('\n--> Very similar, so models are similar <--')</pre>
```

##################

| Problem 3.10d |

##################

--> Very similar, so models are similar <--

```
[14]: title_print('Problem 3.10e')
    ci_1 = np.round(results.conf_int()[4], 3)
    ci_2 = np.round(results2.conf_int()[2], 3)

print('Full model: {} to {}'.format(ci_1[0], ci_1[1]))
    print('Reduced model: {} to {}'.format(ci_2[0], ci_2[1]))
    print('\n--> Very similar again, so similar models <--')</pre>
```

#################

Full model: 0.548 to 1.789 Reduced model: 0.58 to 1.76

--> Very similar again, so similar models <--

4 Problem 3.25 (Note: This is problem 3.21 in 4th edition of textbook)

```
Therefore: b1 - b2 = 0, b2 - b3 = 0, b3 - b4 = 0
T =
[[0 1-1 0 0]
[0 \ 0 \ 1 \ -1 \ 0]
 [0 \ 0 \ 0 \ 1 \ -1]]
beta =
[[b0]]
 [b1]
 [b2]
 [b3]
 [b4]]
c =
[0]
 [b]
 [b]
 [b]
 [b]]
y = [b0 + b1*x1 + b1*x2 + b1*x3 + b1*x4 + eps]
Where:
gamma_0 = b0
gamma_1 = b
z = x1 + x2 + x3 + x4
--> Reduced model: y = gamma_0 + gamma_1 * z + eps <--
```

```
[16]: title_print('Problem 3.25b')
     beta = np.array([[b0], [b1], [b2], [b3], [b4]])
     X = np.array([1, x1, x2, x3, x4])
     y = np.matmul(X, beta) + eps
     # H0: b1 = b2, b3 = b4
     beta2 = np.array([[b0], [b1], [b1], [b3], [b3]])
     y2 = np.matmul(X, beta2) + eps
     T = np.array([[0, 1, -1, 0, 0],
                    [0, 0, 0, 1, -1]])
     c = np.array([[0], [0]])
     print('y = {}'.format(y))
     print('H0: b1 = b2, b3 = b4')
     print('\nTherefore: b1 - b2 = 0, b3 - b4 = 0')
     print('\nT = \n{}\n\nc = \n{}'.format(T, beta, c))
     print('\ny = {}'.format(y2))
     print('\nWhere:\ngamma_0 = b0\ngamma_1 = b1\ngamma_3 = b3')
     print('z1 = x1 + x2\nz3 = x3 + x4')
     print('\n--> Reduced model: y = gamma_0 + gamma_1 * z1 + gamma_3 * z3 <---')
```

```
#################
| Problem 3.25b |
#################
y = [b0 + b1*x1 + b2*x2 + b3*x3 + b4*x4 + eps]
H0: b1 = b2, b3 = b4
Therefore: b1 - b2 = 0, b3 - b4 = 0
T =
[[0 1-1 0 0]
[0 \ 0 \ 0 \ 1 \ -1]]
beta =
[[b0]
 [b1]
 [b2]
 [b3]
 [b4]]
c =
[[0]]
 [0]]
```

```
y = [b0 + b1*x1 + b1*x2 + b3*x3 + b3*x4 + eps]

Where:
gamma_0 = b0
gamma_1 = b1
gamma_3 = b3
z1 = x1 + x2
z3 = x3 + x4

--> Reduced model: y = gamma_0 + gamma_1 * z1 + gamma_3 * z3 <---</pre>
```