

Trigonometry

Important Formulae

1. Right Triangle Definition

Assume that:

$$0 < \theta < \frac{\pi}{2} \text{ or } 0^{\circ} < \theta < 90^{\circ}$$

$$\sin\theta = \frac{opp}{hyp}$$
 $\csc\theta = \frac{hyp}{opp}$

$$\cos\theta = \frac{adj}{hyp}$$
 $\sec\theta = \frac{hyp}{adj}$

$$\cos\theta = \frac{opp}{adj}$$
 $\cot\theta = \frac{adj}{opp}$

2. Tangent cotangent Identities

$$\tan\theta = \frac{\sin\theta}{\cos\theta} \qquad \cot\theta = \frac{\cos\theta}{\sin\theta}$$

3. Reciprocal Identities

$$\sin\theta = \frac{1}{\cos \theta}$$
 $\cos\theta = \frac{1}{\sin \theta}$
 $\cos\theta = \frac{1}{\sec \theta}$
 $\tan\theta = \frac{1}{\cot \theta}$
 $\cot\theta = \frac{1}{\tan \theta}$

4. Pythagorean Identities

$$\sin^2\theta + \cos^2\theta = 1$$
$$\tan^2\theta + 1 = \sec^2\theta$$

$$1 + \cot^2\theta = \csc^2\theta$$

5. Even and Odd Formulas

$$\sin(-\theta) = -\sin\theta$$
 $\csc(-\theta) = -\csc\theta$
 $\cos(-\theta) = \cos\theta$ $\sec(-\theta) = \sec\theta$
 $\tan(-\theta) = -\tan\theta$ $\cot(-\theta) = -\cot\theta$

6. Double Angle Formulas

$$\sin(2\theta) = 2\sin\theta \cos\theta$$
$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$
$$= 2\cos^2\theta - 1$$
$$= 1 - 2\sin^2\theta$$
$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$

7. Half Angle Formulas

$$\sin\theta = \pm \sqrt{\frac{1 - \cos 2\theta}{2}}$$

$$\cos\theta = \pm \sqrt{\frac{1 + \cos 2\theta}{2}}$$

$$\tan\theta = \pm \sqrt{\frac{1 - \cos 2\theta}{1 + \cos 2\theta}}$$

8. Sum and Difference Formulas

$$sin(A \pm B) = sinA cosB \pm cosA sinB$$

 $cos(A \pm B) = cosA cosB \mp sinA sinB$
 $tan(A \pm B) = \frac{tan A \pm tan B}{1 \mp tan A tan B}$

9. Product to Sum Formulas

$$\sin A \sin B = \frac{1}{2} [\cos (A - B) - \cos (A + B)]$$

$$\cos A \cos B = \frac{1}{2} [\cos (A - B) + \cos (A + B)]$$

$$\sin A \cos B = \frac{1}{2} [\sin (A + B) + \sin (A - B)]$$

$$\cos A \sin B = \frac{1}{2} [\sin (A + B) - \sin (A - B)]$$

10. Sum to Product Formulas

$$\sin A + \sin B = 2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$$

$$\sin A - \sin B = 2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$$

$$\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$$

$$\cos A - \cos B = -2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$$

11. Co function Formulas

$$\sin(\frac{\pi}{2} - \theta) = \cos\theta \qquad \cos(\frac{\pi}{2} - \theta) = \sin\theta$$

$$\csc(\frac{\pi}{2} - \theta) = \sec\theta \qquad \sec(\frac{\pi}{2} - \theta) = \csc\theta$$

$$\tan(\frac{\pi}{2} - \theta) = \cot\theta \qquad \cot(\frac{\pi}{2} - \theta) = \tan\theta$$

1. $\sin^2 25^\circ + \sin^2 65^\circ = ?$

2. $\cos^4\theta - \sin^4\theta = \frac{2}{5'} 1 - 2\sin^2\theta = ?$

- 3. If $\sin (60^\circ \theta) = \cos (\Psi 30^\circ)$, then the value of $\tan (\Psi \theta)$ is (assume that θ and Ψ are both positive acute angles with $\theta < 60^\circ$ and $\Psi > 30^\circ$).
- a) $\frac{1}{\sqrt{3}}$ b) 0 c) $\sqrt{3}$ d) 1
 - 4. $\frac{\tan 57^{\circ} + \cot 37^{\circ}}{\tan 33^{\circ} + \cot 53^{\circ}} = ?$
- a) tan33° cot 53° b) tan53° cot 33° c) tan33° cot 57° d) tan57° cot 37°
 - 5. If $\tan\theta + \cot\theta = 2$, then the value of $\tan^n\theta + \cot^n\theta = ? (0^\circ < \theta < 90^\circ, \text{ n is an integer})$ is

- 6. If $\sec\theta + \tan\theta = \sqrt{3}$ (0° ≤ 0 ≤ 90°), then $\tan 3\theta$ is

- a) Undefined b) $\frac{1}{\sqrt{2}}$ c) considered as infinity
- d) $\sqrt{3}$
- 7. If $5\tan\theta = 4$, then the value of $\left(\frac{5\sin\theta 3\cos\theta}{5\sin\theta + 3\cos\theta}\right)$ is_
- a) 1/7
- b) 2/7
- c) 5/7
- d) 2/5
- 8. If $\sec \theta + \tan \theta = 2 + \sqrt{5}$, then the value of $\sin \theta + \cos \theta$ is
- a) $\frac{3}{\sqrt{5}}$

- b) $\sqrt{5}$ c) $\frac{7}{\sqrt{5}}$ d) $\frac{1}{\sqrt{5}}$
- 9. If $\cos \theta + \sin \theta = \sqrt{2} \cos \theta$, then $\cos \theta \sin \theta$ is
- a) $\sqrt{2}$ tan θ
- b) $-\sqrt{2}\cos\theta$ c) $-\sqrt{2}\sin\theta$ d) $\sqrt{2}\sin\theta$

10. The value of $\frac{1}{\csc \theta - \cot \theta} - \frac{1}{\sin \theta}$ is

- a) 1
- b) $\cot \theta$
- c) cosec θ
- d) $\tan \theta$
- 11. If $\tan \alpha = n \tan \beta$ and $\sin \alpha = m \sin \beta$, then $\cos^2 \alpha$ is

- b) $\frac{m^2}{n^2}$ c) $\frac{m^2-1}{n^2-1}$ d) $\frac{m^2+1}{n^2+1}$
- 12. If $x = \csc\theta \sin\theta$ and $y = \sec\theta \cos\theta$ then the value of $x^2y^2(x^2 + y^2 + 3)$ is_

- a) 0
- b) 1
- c) 2
- d) 3
- 13. If $\sin \theta + \sin^2 \theta = 1$, then the value of $\cos^{12} \theta + 3 \cos^{10} \theta + 3\cos^8 \theta + \cos^6 \theta 1$ is_

- a) 0
- b) 1
- c) -1
- d) 2
- 14. The value of 152 $(\sin 30^{\circ} + 2\cos^2 45^{\circ} + 3\sin 30^{\circ} + 4\cos^2 45^{\circ} + \dots + 17\sin 30^{\circ} + 18\cos^2 45^{\circ})$ is

- a) An integer but not a perfect square b) A rational number but not an integer
- c) A perfect square of an integer
- d) Irrational

- 15. Find the value of tan 1° tan 2° tan 3° tan 89°

- b) -1
- c) undefined d) 0
- 16. The value of $\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ}$ $\cos 177^{\circ} \cos 178^{\circ} \cos 179^{\circ}$ is

- b) $\frac{1}{2}$
- c) 1
- 17. Find the minimum value of $2\sin^2\theta + 3\cos^2\theta$

- a) $-\sqrt{13}$
- b) 2
- c) 3
- d) 5
- 18. The least value of $(4 \sec^2\theta + 9 \csc^2\theta)$ is _

- a) 1
- b) 19
- c) 25
- d) 7
- 19. Find the minimum value of $\sin^2\theta + \cos^2\theta + \tan^2\theta + \cot^2\theta + \sec^2\theta + \csc^2\theta$

- a) 1
- b) 3
- c) 5
- d) 7
- 20. If θ is a positive acute angle and $\tan 2\theta$. $\tan 3\theta = 1$, then find the value of $(2\cos^2\frac{5\theta}{2} 1)$

- b) $\frac{1}{2}$
- c) $\frac{1}{2}$
- d) 1
- 21. If $\sin 17^{\circ} = \frac{x}{y}$, then $(\sec 17^{\circ} \sin 73^{\circ}) = ?$

- a) $\frac{x^2}{y\sqrt{x^2-y^2}}$ b) $\frac{y^2}{x\sqrt{x^2-y^2}}$ c) $\frac{y^2}{x\sqrt{y^2-x^2}}$ d) $\frac{x^2}{y\sqrt{y^2-x^2}}$

- 22. If $2\sin\left(\frac{\pi x}{2}\right) = x^2 + \frac{1}{x^2}$, then what is the value of $\left(x \frac{1}{x}\right)$

- b) 0
- c) -1
- d) 2
- 23. If x, y are positive acute angles, $x + y < 90^{\circ}$ and $\sin(2x 20^{\circ}) = \cos(2y + 20^{\circ})$, then the value of $sec(x + y) is_$
 - a) √2
- b) $1/\sqrt{2}$
- c) 1
- d) 0

- 24. If tan(x + y) tan(x y)=1, then the value of $tan(2x/3) is_1$
 - a) $1/\sqrt{3}$
- b) $2/\sqrt{3}$
- c) √3
- d) 1
- 25. If $0 \le \theta \le \pi/2$, $2y \cos \theta = x \sin \theta$ and $2x \sec \theta y \csc \theta = 3$, then the value of $x^2 + 4y^2$ is_
 - a) 1
- b) 2
- c) 3
- d) 4
- 26. If $\tan \theta = 3/4$ and θ is acute, then $\csc \theta$ is
 - a) 4/5
- b) 5/3
- c) 5/4
- d) 4/3
- 27. The value of $\frac{1}{(1 + \tan^2 \theta)} + \frac{1}{(1 + \cot^2 \theta)}$ is
 - a) $\frac{1}{4}$
- b) 1
- c) 2
- d) 1/2
- 28. Evaluate : $3 \cos 80^{\circ} \csc 10^{\circ} + 2 \cos 59^{\circ} \csc 31^{\circ}$
 - a) 1
- b) 3
- c) 2
- d) 5
- 29. If $tan\theta + cot\theta = 2$, then the value of $tan^2\theta + cot^2\theta$ is
 - a) 2
- b) 1
- c) $\sqrt{2}$
- d) 0
- 30. The value of $\left[\frac{\cos^2 A \left(\text{Sin } A + \text{Cos } A\right)}{\csc^2 A \left(\text{Sin } A \text{Cos } A\right)} + \frac{\sin^2 A \left(\text{sin } A \text{Cos } A\right)}{\sec^2 A \left(\text{Sin } A + \text{Cos } A\right)}\right] \left(\sec^2 A \csc^2 A\right) is \frac{\sin^2 A \left(\text{Sin } A + \text{Cos } A\right)}{\sec^2 A \left(\text{Sin } A + \text{Cos } A\right)}$
 - a) 1
- b) 3
- c) 2
- d) 4
- 31. If cosec 39° = x, the value of $\frac{1}{\csc^2 51^\circ} + \sin^2 39^\circ + \tan^2 51^\circ \frac{1}{\sin^2 51^\circ \sec^2 39^\circ}$ is
 - a) $\sqrt{x^2 1}$
- b) $\sqrt{1-x^2}$ c) $x^2 1$
- d) 1 x²
- 32. The value of tan4°. tan43°. tan47°. tan86° is
 - a) 2
- b) 3
- c) 1
- d) 4

- 33. $\frac{\tan \theta + \cot \theta}{\tan \theta \cot \theta} = 2$, $(0 \le \theta \le 90^\circ)$, then the value of $\sin \theta$ is
 - a) $\frac{2}{\sqrt{3}}$ b) $\frac{\sqrt{3}}{2}$ c) $\frac{1}{2}$
- d) 1
- 34. If $\sec^2\theta + \tan^2\theta = \frac{7}{12}$, then $\sec^4\theta \tan^4\theta =$
 - a) $\frac{7}{12}$ b) $\frac{1}{2}$ c) $\frac{5}{12}$
- d) 1
- 35. If $0 < x < \frac{\pi}{2}$ and secx = cosecy, then the value of $\sin(x + y)$ is:
 - a) 0
- b) 1
- c) $\frac{1}{2}$
- d) $\frac{1}{\sqrt{2}}$
- 36. If A, B and C be the angles of a triangle, then of the following the incorrect relation is:
 - a) $\sin\left(\frac{A+B}{2}\right) = \cos\frac{C}{2}$

b) $\sin\left(\frac{A+B}{2}\right) = \sin\frac{C}{2}$

c) $\tan\left(\frac{A+B}{2}\right) = \cot\frac{C}{2}$

- d) cot $\left(\frac{A+B}{2}\right) = \tan\frac{C}{2}$
- 37. The measures of the angles of a triangle are in the ratio 2:7:11. Measures of angles are
 - a) 16°, 56°, 88°

b) 18°, 63°, 99°

c) 20°, 70°, 90°

- d) 25°, 175°, 105°
- 38. If $\sin\alpha + \cos\beta = 2(0^{\circ} \le \beta < \alpha \le 90^{\circ})$, then $\sin\left(\frac{2\alpha + \beta}{3}\right) =$

- a) $\sin \frac{\alpha}{2}$ b) $\cos \frac{\alpha}{3}$ c) $\sin \frac{\alpha}{3}$ d) $\cos \frac{2\alpha}{2}$
- 39. If $\cos^4\theta \sin^4\theta = \frac{2}{3'}$ then the value of $2\cos^2\theta 1$ is
 - a) 0
- b) 1
- c) $\frac{2}{3}$ d) $\frac{1}{\sqrt{2}}$
- 40. If $\sin \alpha \sec (30^\circ + \alpha) = 1(0 < \alpha < 60^\circ)$, then the value of $\sin \alpha + \cos 2\alpha$ is
 - a) 1
- b) $\frac{2+\sqrt{3}}{2\sqrt{3}}$ c) 0
- d) $\sqrt{2}$

- 41. If $\tan\theta = 1$, then the value of $\frac{8\sin\theta + 5\cos\theta}{\sin^3\theta 2\cos^3\theta + 7\cos\theta}$ is
 - a) 2
- b) $2\frac{1}{2}$ c) 3 d) $\frac{4}{5}$
- 42. If θ be a positive acute angle satisfying $\cos^2\theta + \cos^4\theta = 1$, then the value of $\tan^2\theta + \tan^4\theta$ is
 - a) $\frac{3}{2}$
- b) 1
- c) $\frac{1}{2}$
- d) 0
- 43. If $\tan\theta = \frac{4}{3}$, then the value of $\frac{3\sin\theta + 2\cos\theta}{3\sin\theta 2\cos\theta}$ is
 - a) 0.5
- b) -0.5
- c) 3.0
- d) -3.0
- 44. The simplified value of $(\sec A \cos A)^2 + (\csc A \sin A)^2 (\cot A \tan A)^2$
 - a) 0
- b) $\frac{1}{2}$
- c) 1
- d) 2
- 45. The value of $\sin^2 1^\circ + \sin^2 5^\circ + \sin^2 9^\circ + \dots + \sin^2 89^\circ$ is
 - a) $11\frac{1}{2}$
- b) $11\sqrt{2}$ c) 11 d) $\frac{11}{\sqrt{2}}$

- 46. The numerical value of $\cot 18^{\circ}(\cot 72^{\circ}\cos^2 22^{\circ} + \frac{1}{\tan 72^{\circ}\sec^2 68^{\circ}})$ is
 - a) 1
- b) $\sqrt{2}$ c) 3
- 47. If $\sin\theta \cos\theta = \frac{7}{13}$ and $0 < \theta < 90^{\circ}$, then the value of $\sin\theta + \cos\theta$ is

- a) $\frac{17}{13}$ b) $\frac{13}{17}$ c) $\frac{1}{13}$ d) $\frac{1}{17}$
- 48. If $2\cos\theta \sin\theta = \frac{1}{\sqrt{2}}$, $(0^{\circ} < \theta < 90^{\circ})$ the value of $2\sin\theta + \cos\theta$ is

- a) $\frac{1}{\sqrt{2}}$ b) $\sqrt{2}$ c) $\frac{3}{\sqrt{2}}$ d) $\frac{\sqrt{2}}{3}$

49. If $\frac{\sec\theta + \cos\theta}{\sin\theta - \cos\theta} = 3$, then the value of $\sin^4\theta - \cos^4\theta$ is

- a) $\frac{1}{5}$ b) $\frac{2}{5}$ c) $\frac{3}{5}$ d) $\frac{4}{5}$

50. If $\sec^2\theta + \tan^2\theta = 7$, then the value of θ when $0^\circ \le \theta \le 90^\circ$, is

- a) 60°
- b) 30°
- c) 0°
- d) 90°

Answers

1 – b	2 - a	3 - c	4 - b	5 - a	6 - a	7 - a	8 - a	9 - d	10 - b
11 - с	12 - b	13 - a	14 - с	15 - a	16 - a	17 - b	18 - с	19 - d	20 - a
21 - d	22 - b	23 - a	24 - a	25 - d	26 - b	27 - b	28 - d	29 - a	30 - с
31 - с	32 - c	33 - b	34 - a	35 - b	36 - с	37 - b	38 - b	39 - с	40 - a
41 - a	42 - b	43 - с	44 - c	45 - a	46 - a	47 - a	48 - c	49 - с	50 - a

Additional Examples

1. If $1 + \cos^2\theta = 3\sin\theta\cos\theta$, then the integral value of $\cot\theta$ is $(0 < \theta < \frac{\pi}{2})$

- a) 1
- b) 2
- c) 0
- d) 3

2. The value of the following is $3(\sin^4\theta + \cos^4\theta) + 2(\sin^6\theta + \cos^6\theta) + 12\sin^2\theta \cos^2\theta$

- a) 2
- b) 5
- c) 3
- d) 0

3. The value of the following is $\cos 24^{\circ} + \cos 55^{\circ} + \cos 125^{\circ} + \cos 204^{\circ} + \cos 300^{\circ}$

- a) 2

- b) $\frac{1}{2}$ c) 1 d) $-\frac{1}{2}$

4. If $\frac{\sec\theta + \tan\theta}{\sec\theta - \tan\theta} = 2\frac{51}{79}$, then the value of $\sin\theta$ is

- a) $\frac{39}{72}$ b) $\frac{35}{72}$ c) $\frac{65}{144}$ d) $\frac{91}{144}$

- 5. If tanA + cotA = 2, then the value of $tan^{10}A + cot^{10}A$ is
- a) 1
- b) 4
- c) 2^{10}
- d) 2
- 6. The value of $\frac{1-\sin^2(\theta+16^\circ)}{1+\sin^2(\theta+31^\circ)} \times \frac{\cos^2(\theta+46^\circ)+\cos^2(\theta+16^\circ)}{\csc^2(\theta+76^\circ)-\cot^2(\theta+76^\circ)} \div \{\sin(\theta+46^\circ)+\tan(\theta+16^\circ)\}$ for
- $\theta = 14^{\circ}$ is
- a) -1
- b) 0 c) $\frac{1}{2}$ d) 1
- 7. If $x = \frac{\cos\theta}{1 \sin\theta}$, then $\frac{\cos\theta}{1 + \sin\theta}$ is equal to

- a) x 1
- b) $\frac{1}{x}$ c) $\frac{1}{x+1}$ d) $\frac{1}{1-x}$
- 8. If $\sin \frac{\pi x}{2} = x^2 2x + 2$, then the value of x is

- b) 1
- c) -1 d) None of these
- 9. The value of $\frac{\sin 43^{\circ}}{\cos 47^{\circ}} + \frac{\cos 19^{\circ}}{\sin 71^{\circ}} 8\cos^2 60^{\circ}$ is

- c) 2
- d) -1
- 10. Find the minimum Value of $Sec^2\theta + Sin^2\theta . Sin^25\theta + Cot^2\theta + Cos^2\theta + Tan^2\theta$
 - a) 0
- b) 4
- c) 2
- d) 3
- 11. If $0 \le \theta \le \frac{\pi}{2}$, $2y\cos\theta = x\sin\theta$ and $2x\sec\theta y\csc\theta = 3$, then the value of $x^2 + 4y^2$ is

- a) 1
- b) 2
- c) 3
- d) 4
- 12. If $\frac{\cos^4\alpha}{\cos^2\beta} + \frac{\sin^4\alpha}{\sin^2\beta} = 1$, then the value of $\frac{\cos^4\beta}{\cos^2\alpha} + \frac{\sin^4\beta}{\sin^2\alpha}$ is

- b) 0 c) $\frac{1}{8}$
- d) 1

- 13. The value of $\left[\frac{\cos^2 A \left(\sin A + \cos A\right)}{\csc^2 A \left(\sin A \cos A\right)} + \frac{\sin^2 A \left(\sin A \cos A\right)}{\sec^2 A \left(\sin A + \cos A\right)}\right] \left(\sec^2 A \csc^2 A\right)$ is
 - a) 1
- b) 3
- c) 2
- d) 4
- 14. The eliminate of θ from $x\cos\theta y\sin\theta = 2$ and $x\sin\theta + y\cos\theta = 4$ will give

b) $3x^2 + y^2 = 20$

- d) $3x^2 y^2 = 0$
- 15. If $cosec\theta = \frac{13}{12}$, find the value of $\frac{2sin\theta 3cos\theta}{4sin\theta 9cos\theta} = ?$

- d) 9
- 16. The value of $\frac{1}{\sqrt{2}} \sin \frac{\pi}{6} . \cos \frac{\pi}{4} \cot \frac{\pi}{3} . \sec \frac{\pi}{6} + \frac{5 \tan \frac{\pi}{4}}{12 \sin \frac{\pi}{2}}$ is equal to
 - a) 0
- b) 1 c) 2
- 17. Find maximum and minimum values of $11\cos^2 x + 3\sin^2 x + 6\sin x \cdot \cos x + 5$

- a) (0, 7)
- b) (-1, 17) c) (3, 17) d) (7, 17)
- 18. If $u_n = cos^n \alpha + sin^n \alpha$, then the value of $2u_6 3u_4 + 1$ is
 - a) 4
- b) 6
- c) 0
- d)1
- 19. If $sin21^{\circ} = \frac{x}{y}$, then $sec21^{\circ} sin69^{\circ}$ is equal to

- a) $\frac{x^2}{v\sqrt{v^2-x^2}}$ b) $\frac{y^2}{x\sqrt{v^2-x^2}}$ c) $\frac{x^2}{v\sqrt{x^2-y^2}}$ d) $\frac{y^2}{x\sqrt{x^2-y^2}}$
- 20. If $sec\alpha + tan\alpha = 2$, then the value of $sin\alpha$ is (assume that $0 < \alpha < 90^{\circ}$)

- a) 0.4
- b) 0.5
- c) 0.6
- d) 0.8

Answers

1 – a	2 - b	3 - b	4 - c	5 - d	6 - d	7 - b	8 - b	9 - a	10 - b
11 - d	12 - d	13 - с	14 - a	15 - a	16 - a	17 - d	18 - с	19 - a	20 - c

www.talentsprint.com 12