A Relativist's Toolkit Problems

Anthony Steel

May 23, 2021

Chapter 1

Fundamentals

- 1. The surface of a two-dimensional cone is embedded in three-dimensional flat space. The cone has an opening angle of 2α . Points on the cone which all have the same distance r from the apex define a circle, and ϕ is the angle that runs along the circle.
 - (a) Write down the metric of the cone, in terms of the coordinates r and ϕ .

The opening angle of the cone relates the height and the raduis of the cone as:

$$2\alpha = 2\tan^{-1}(\frac{r}{h})$$
$$\frac{r}{h} = \tan \alpha$$

- $h = \tan \alpha$
- (b) Find the coordinate transformation $x(r,\phi)$, $y(r,\phi)$ that brings the metric into the form $ds^2=dx^2+dy^2$. Do these coordinates cover the entire two-dimensional plane?
- (c) Prove that any vector parallel transported along a circle of constant r on the surface of the cone ends up rotated by an angle β after a complete trip. Express β in terms of α .