## Лабораторная работа №4

## Детерминированные вычислительные процессы с управлением по аргументу. Численное интегрирование с использованием функции пользователя.

2. Цель:

3. Используемое оборудование: ПК, PascalABC.

## Задание №1

 $\int_{1.2}^{2.0} \frac{\sqrt{2x^2 + 1.6} \, dx}{2x + \sqrt{0.5x^2 + 3}};$ 

4. Реализовать вычисление определённого интеграла ( ) методом трапеций с использованием пользовательской функции.

$$h * \left(\frac{f(a) + f(b)}{2} + \sum_{x=a+h}^{b-h} f(x)\right)$$



9.

| Имя | Смысл                | Тип     |
|-----|----------------------|---------|
| а   | Нижняя граница       | real    |
|     | вычислений (заданное |         |
|     | число)               |         |
| b   | Верхняя граница      | integer |
|     | вычислений (заданное |         |
|     | число)               |         |
| n   | Количество шагов     | integer |
|     | (разбиений)          |         |
| h   | Размер шага          | real    |
| х   | Параметр цикла       | real    |
| S   | Накопитель суммы     | real    |
| I   | Результирующая       | real    |
|     | переменная           |         |

```
program m2;
  var
   b,n: integer;
   a,h,S,x,I,z,y: real;
    function fn(x:real):real;
    begin
    fn:=sqrt(2*x*x-1.6)/(2*x+sqrt(0.5*x*x+3));
    end;
   begin
    write ('Введите количество шагов - ');
    readln (n);
    a:=1.2;
    b:=2;
    S:=0;
    h:=(b-a)/n;
    x:=a+h;
    while x<=b-h do
    begin
     S:=S+fn(x);
     x:=x+h;
    end;
    I:=h*((fn(a)+fn(b))/2+S);
    writeln (I);
     end.
8.
```

Введите количество шагов - 1000 0.279143238985339

10. Для реализации вычисления определённого интеграла методом трапеций на языке pascal ввели функцию, считающую значение подынтегральной функции в любой заданной точке; ввели кол-во разбиений (n); рассчитали шаг (h); рассчитали сумму с помощью цикла с границами вычислений (a+h) и (b-h) и шагом h; использовали ранее созданную функцию для расчёта

значения подынтегральной функции в точке а и в точке b; результировали вычисления в переменной I.

 $\frac{h}{3} * \left( f(a) + f(b) + 4 \sum_{x=a+h}^{b-h} f(x) + 2 \sum_{x=a+2h}^{b-2h} \right)$ 

## Задание №2

$$\int\limits_{1.2}^{2.0} \frac{\sqrt{2x^2+1.6}\,dx}{2x+\sqrt{0.5x^2+3}};$$
 ( ) методом парабол с

4. Реализовать вычисление определённого интеграла ( использованием пользовательской функции.



| Имя | Смысл                      | тип     |
|-----|----------------------------|---------|
| а   | Нижняя граница вычислений  | real    |
|     | (заданное число)           |         |
| b   | Верхняя граница вычислений | integer |
|     | (заланное число)           |         |

(заданное число)

п Количество шагов (разбиений) integer

S1 Накопитель первой суммы real

| S2 | Накопитель второй суммы   | real |
|----|---------------------------|------|
| х  | Параметр цикла            | real |
| h  | Размер шага               | real |
| 1  | Результирующая переменная | real |

```
program m2;
 var
  b,n:integer;
  a,h,S1,x,S2,I:real;
 function fn(x:real):real;
  begin
   fn:=sqrt(2*x*x+1.6)/(2*x+sqrt(0.5*x*x+3));
  end;
  write ('Ведите количиство разбиений - ');
  readln (n);
  a:=1.2;
  b:=2;
  h:=(b-a)/n;
  S1:=0;
  x:=a+h;
  while x<=b-h do
  begin
    S1:=S1+fn(x);
    x:=x+2*h;
   end;
  S2:=0;
  x:=a+2*h;
  while x<=b-2*h do
   begin
    S2:=S2+fn(x);
    x:=x+2*h;
   end;
  I:=h/3*(fn(a)+fn(b)+4*S1+2*S2);
  writeln (I);
 end.
8.
 Ведите количиство разбиений - 1000
 0.393028749561992
9.
```

10. Для реализации вычисления определённого интеграла методом парабол на языке pascal ввели пользовательскую функцию, считающую значение подынтегральной функции в любой заданной точке; ввели кол-во разбиений (n); рассчитали шаг (h); рассчитали первую сумму с помощью цикла с границами вычислений (a+h) и (b-h) и шагом 2h; рассчитали вторую сумму с помощью цикла с границами вычислений (a+2h) и (b-2h) и шагом 2h; использовали ранее созданную функцию для расчёта значения подынтегральной функции в точке а и в точке b; результировали вычисления в переменной l.

$$y=\frac{\sum\limits_{i=1}^n\left(\frac{1}{(i+1)!}*\frac{x^{2i+1}}{2i+1}\right)}{5,5+x^2+(3n)!}$$
 при x=1 ; n=5

4. Вычислить: 
$$3, 3+x^2+(3n)!$$

$$y = \frac{\sum\limits_{i=1}^{n}\left(\frac{1}{(i+1)!}*\frac{x^{2i+1}}{2i+1}\right)}{5, 5+x^2+(3n)!}$$
 при x=1; n=5
$$\frac{1}{x:=1}$$
 п:=5
$$\frac{2}{m:=1} \text{ S:=0}$$
 i:=1
$$\frac{3}{m:=m^*(i+1)}$$





| Имя | Смысл                                      | тип     |
|-----|--------------------------------------------|---------|
| х   | Заданное число                             | integer |
| n   | Заданное число                             | integer |
| m   | Промежуточная переменная, считающая (i+1)! | integer |
| i   | Параметр первого цикла                     | integer |
| d   | Параметр второго цикла                     | integer |
| S   | Накопитель суммы                           | real    |
| R   | Результирующая переменная                  | real    |
| m2  | Промежуточная переменная, считающая (3n)!  | logint  |
| р   | Промежуточная локальная                    | integer |
|     | переменная                                 |         |
|     | пользовательской функции                   |         |

```
program m3;
 x,n,m,i,d: integer;
S,R: real;
 m2: longint;
function fn(i:integer):real;
var p: integer;
begin
 p:=2*i+1;
 fn:=1/m*exp(ln(x)*p)/p;
 end;
begin
 x:=1;
 n:=5;
 m:=1;
 S:=0;
 i:=1;
 for i:=1 to n do
 begin
 m:=m*(i+1);
 S:=S+fn(i);
 end;
 m2:=1;
 d:=1;
 for d:=1 to 3*n do
 m2:=m2*d;
 R:=S/(5.5+x*x+m2);
 writeln (R:2:12);
end.
```

Окно вывода

8.

9.0.000000000103

10. Для расчёта результата этого примера использовали пользовательскую функцию и два цикла. Функция рассчитывала функцию под знаком суммы относительно переменной і. Первый цикл

рассчитывал эту сумму, а так же значения факториала (i+1)!; второй цикл рассчитывал факториал (3n)!; всё это результорвалось в переменной R и выводилось на экран.

11. Вывод: Пользовательские функции могут сильно упрощать работу, особенно когда какие либо вычисления относительно каких-то переменных производятся несколько раз.