DFA Minimization and Closure Operations

Closure operations

Automata Boolean operatio

Reverse

Star Closure

Automata

Automata Minimization and operations with regular languages.

DSIC - UPV

Closure Operations

DFA Minimization and Closure Operations

Closure operations

Automata
Boolean operations
Reverse
Concatenation
Star Closure

Homomorphisms

- A set C is closed under an operation \cdot iff for any elements $x, y \in C$, $x \cdot y \in C$.
- Examples
 - Let $C = \{L \subseteq \Sigma^* : L \text{ es finite } \}$. The union and the intersection are closed in C, whereas the complement is not.

Automata

DFA Minimization and Closure Operations

Closure operation:

Boolean ope

Concatenation

Star Closure Homomorphism

Automata Minimizatior Automaton A_1 (not complete)

$$L(A_1) = \{(ab)^n : n \ge 0\} = \{ab\}^*$$

Automaton A_2 (complete). Note that $L(A_2) = L(A_1)$

Automata

DFA Minimization and Closure Operations

Closure operation:

Automata

Boolean operations

Concatenation

Star Closure Homomorphism

Automata Minimizatio

Automaton A₃

$$L(A_3) = \{x \in \{a,b\}^* : |x|_a > 0\} = \{a,b\}^*\{a\}\{a,b\}^* = \{b\}^*\{a\}\{a,b\}^*$$

Boolean operations Intersection

DFA Minimization and Closure Operations

Closure operations Automata

Boolean operations Reverse

Star Closure

Homomorphisms

Regular languages are closed under intersection:

Let $L_1, L_2 \in \mathcal{L}_3$, then there exist two automata A_1, A_2 such that $L_1 = L(A_1), L_2 = L(A_2)$, where

$$A_i = (Q_i, \Sigma, \delta_i, q_i, F_i), i = 1, 2$$

We build $A' = (Q, \Sigma, \delta, q_0, F)$ where:

$$\blacksquare Q = Q_1 \times Q_2$$

$$q_0 = [q1, q2]$$

$$\blacksquare F = F_1 \times F_2$$

■
$$\delta([p_1, p_2], a) = [\delta_1(p_1, a), \delta_2(p_2, a)], p_1 \in Q_1, p_2 \in Q_2, a \in \Sigma$$

$$L(A') = L(A_1) \cap L(A_2)$$

Boolean operations Intersection

DFA Minimization and Closure Operations

Closure operation:

Boolean operations

Doolean operation

Concatenation

Star Closure

Automata Minimization Automaton for $L(A_1) \cap L(A_3)$.

Boolean operations

DFA Minimization and Closure Operations

Closure operations Automata

Boolean operations Reverse

Star Closure

Homomorphisms

Regular languages are closed under Union:

Let $L_1, L_2 \in \mathcal{L}_3$, then there exist two *complete* automata

 A_1, A_2 such that $L_1 = L(A_1), L_2 = L(A_2)$, where

$$A_i = (Q_i, \Sigma, \delta_i, q_i, F_i), i = 1, 2$$

We build $A' = (Q, \Sigma, \delta, q_0, F)$ where:

$$\blacksquare Q = Q_1 \times Q_2$$

$$q_0 = [q1, q2]$$

$$\blacksquare F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$$

■
$$\delta([p_1, p_2], a) = [\delta_1(p_1, a), \delta_2(p_2, a)], p_1 \in Q_1, p_2 \in Q_2, a \in \Sigma$$

$$L(A') = L(A_1) \cup L(A_2)$$

Boolean operations Union

DFA Minimization and Closure Operations

Closure operation:

Boolean operations

Payarea

Star Closure

Star Closure Homomorphisms

Automata Minimization Automaton for $L(A_2) \cup L(A_3)$.

Boolean operations Complement (and Difference)

DFA Minimization and Closure Operations

Closure
pperations
Automata
Boolean operations
Reverse
Concatenation
Star Closure
Homomorphisms

- Regular languages are closed under **Complement**. Let $L \in \mathcal{L}_3$, then there exists a complete automaton A such that L = L(A) where $A = (Q, \Sigma, \delta, q_0, F)$. Automaton $A' = (Q, \Sigma, \delta, q_0, Q - F)$ accepts L^c
- Regular languages are closed under **Difference**. Let $L_1, L_2 \in \mathcal{L}_3$. Note that L_1 - $L_2 = L_1 \cap L_2^c$.

Boolean operations Complement

DFA Minimization and Closure Operations

Closure operation:

Boolean operations

Doolean operation

Concatenation

Star Closure Homomorphism

Automata Minimization

Automaton for $L(A_2)^c$.

Reverse

DFA Minimization and Closure Operations

Closure
operations
Automata
Boolean operations
Reverse
Concatenation
Star Closure

Automata Minimization Regular languages are closed under the operation **Reverse**.

Let $L \in \mathcal{L}_3$, then there exists an automaton

 $A = (Q, \Sigma, \delta, q_0, q_f)$ If |F| > 1, A can be modified to have one final state (How?).

We build $A' = (Q, \Sigma, \delta', q_f, q_0)$ where:

$$q \in \delta(p, a) \leftrightarrow p \in \delta'(q, a)$$
.

$$L(A') = L(A^r)$$

Reverse

DFA Minimization and Closure Operations

perations

Automata

Boolean operati

Concatenatio

Star Closure

Automata Minimization

Automaton for $(L(A_2)^c)^r$.

Concatenation

Minimization and Closure Operations

Regular languages are closed under Concatenation. Let $L_1, L_2 \in \mathcal{L}_3$, then there exist two automata A_1, A_2 such

that $L_1 = L(A_1), L_2 = L(A_2)$, where $A_i = (Q_i, \Sigma, \delta_i, q_i, F_i), (i = 1, 2)$ and such that $Q1 \cap Q2 = \emptyset$

We build $A' = (Q, \Sigma, \delta', q_1, F_2)$ donde:

- \square $Q = Q_1 \cup Q_2$
- \bullet $\delta' = \delta_1 \cup \delta_2 \cup \delta''$ where $q_2 \in \delta''(p, \lambda)$, for any $p \in F_1$

$$L(A') = L(A_1) \cdot L(A_2)$$

Concatenation

DFA Minimization and Closure Operations

Closure operations

Automata

Boolean oper

oncatenatic

Star Closure

Automaton for $L(A_1) \cdot L(A_3)$.

Star Closure

DFA Minimization and Closure Operations

Closure
operations
Automata
Boolean operations
Reverse
Concatenation

Star Closure Homomorphisms

Homomorphism Automata Regular languages are closed under Star Closure.

Let $L \in \mathcal{L}_3$, then there exists an automaton A such that L = L(A) where $A = (Q, \Sigma, \delta_0, q_0, F)$ We build $A' = (Q', \Sigma, \delta', q_n, F)$ where:

$$\blacksquare Q' = Q \cup \{q_n\}, q_n \notin Q$$

$$\blacksquare F = F \cup \{q_n\}$$

■
$$\delta'(p, a) = \delta(p, a)$$
, for every $p \in Q$ and every $a \in \Sigma$

$$\blacksquare q_n \in \delta'(p, \lambda), \text{ for every } p \in F$$

$$\delta'(q_n,\lambda) = \{q_0\}$$

Star Closure

DFA Minimization and Closure Operations

Closure operations

operations
Automata

Boolean oper

Concatenation

Homomorphism

Automata Minimization Automaton for $(L(A_2)^c)^*$.

Homomorphisms

DFA Minimization and Closure Operations

Closure
pperations
Automata
Boolean operations
Reverse
Concatenation
Star Closure

Automata Minimization Regular languages are closed under Homomorphisms.

Regular languages are closed under Inverse Homomorphisms.

Let $h: \Sigma \to \Delta^*$ and $L \in \mathcal{L}_3$, there exists an automaton A such that L = L(A), where $A = (Q, \Sigma, \delta, q_0, F)$. We build $A' = (Q, \Sigma, \delta', q_0, F)$ with:

$$\delta'(p, a) = \begin{cases} \delta(p, h(a)) & \text{if } \delta(p, h(a)) \neq \emptyset \\ \emptyset & \text{otherwise} \end{cases}$$

Homomorphism

DFA Minimization and Closure Operations

Closure

operation

Boolean ope

Reverse

Concatenatio

Star Closure

Homomorphism

$$\Sigma = \{a, b\}, \Delta = \{0, 1, 2\}$$

$$h(a) = 0, h(b) = 12$$

Inverse Homomorphism

DFA Minimization and Closure Operations

Closure operations

Automata
Boolean operations

Reverse

Concatenation Star Closure

Homomorphism

Automata Minimization $\Sigma = \{0, 1\}, \Delta = \{a, b\}. \ g(0) = ab, \ h(1) = ba.$ Automaton for $g^{-1}(L(A_2)^c)$.

DFA Minimization and Closure Operations

Closure operations
Automata
Boolean operations
Reverse
Concatenation
Star Closure
Homomorphisms

Homomorphisms
Automata

- A DFA $A = (Q, \Sigma, \delta, q_0, F)$ is reachable if for every $q \in Q$ there exists a word $x \in \Sigma$ such that $\delta(q_0, x) = q$
- Let $A = (Q, \Sigma, \delta, q_0, F)$ be a complete and reachable DFA. The indistinguishability relation \sim en Q is defined $\forall q, q' \in Q$:

$$(q \sim q' \leftrightarrow \forall x \in \Sigma^*(\delta(q, x) \in F \leftrightarrow \delta(q', x) \in F))$$

- Let $A = (Q, \Sigma, \delta, q_0, F)$ be a complete and reachable DFA and let \sim be the indistinguishability relation. We define the quotient automaton $A/\sim=(Q, \Sigma, \delta, q_0, F)$ as:
 - $\mathbb{Q} = [q]_{\sim} : q \in Q$
 - $q_0 = [q_0]_{\sim}$
 - $F = \{[q] : q \in F\}$
 - $\delta([q]_{\sim}, a) = [\delta(q, a)]_{\sim}$

DFA Minimization and Closure Operations

Closure
operations
Automata
Boolean operations
Reverse
Concatenation
Star Closure

- Sea $A = (Q, \Sigma, \delta, q_0, F)$ be a complete and reachable DFA and let \sim be the indistinguishability relation. The automaton A/\sim is the minimum DFA accepting L(A)
- Let $A = (Q, \Sigma, \delta, q_0, F)$ be a complete and reachable DFA and let $k \ge 0$ be an integer. The k-indistinguishability relation \sim_k is defined:

$$\forall q, q' \in Q : (q \sim_k q \leftrightarrow \forall x \in \Sigma^*, |x| \le k, (\delta(q, x) \in F \leftrightarrow \delta(q, x) \in F))$$

- Properties of \sim_k :

 - $\blacksquare \ \forall k \geq 0, p \sim_{k+1} q \leftrightarrow (p \sim_k q \land \forall a \in \Sigma, \delta(p, a) \sim_k \delta(q, a))$

DFA Minimization and Closure Operations

Closure operations

Boolean operation Reverse Concatenation Star Closure

Automata Minimization

Minimization Algorithm:

- 1. $\pi_0 = \{Q F, F\}$
- 2. Obtain π_{k+1} from π_k $B(p, \pi_{k+1}) == B(q, \pi_{k+1})$ if and only if
 - $\blacksquare B(p, \pi_k) == B(q, \pi_k)$
 - y For every $a \in \Sigma$, $B(\delta(p, a), \pi_k) == B(\delta(q, a))$
- 3. If π_{k+1} is different from π_k go to 2

DFA

Minimization and Closure Operations

Closure operation

Automata

Boolean operation

Heverse

Concatenat

Homomorphism

DFA Minimization and Closure Operations

Closure operations

Automata

Boolean ope

Canaatana

Star Closur

Homomorphism

			а	b
	B_0	q_0	B_0	B_1
		q_1	B_0	B_0
π_0 :		q_3	B_1	B_0
		q 5	B_1	B_0
	<i>B</i> ₁	q_2	B_0	B_1
		q_4	B_0	B_0

DFA Minimization and Closure Operations

Closure
operations
Automata
Boolean operation
Reverse

Star Closure Homomorphisms

			а	b
	B_0	q_0	B_1	B_3
•	<i>B</i> 1	q_1	B_0	B_2
π_1 :	<i>B</i> 2	q ₃	<i>B</i> ₃	B_2
		q 5	B_4	B_1
	B_3	q_2	B_2	B_4
,	B_4	q_4	B_2	B_0

DFA Minimization and Closure Operations

Closure
operations
Automata
Boolean operation

Star Closure

			а	b
•	B_0	q_0	<i>B</i> ₁	B_4
•	<i>B</i> 1	q_1	B_0	B_2
π_2 :	<i>B</i> 2	q_3	B_4	B_3
	<i>B</i> 3	q ₅	B_5	B_1
•	B_4	q_2	B_2	B_5
•	B_5	q_4	B_3	B_0

DFA

Minimization and Closure Operations

Closure operation

Automata

Boolean operations

Concatenation

Star Closure Homomorphism:

Automata Minimization

 $\pi_3 = \pi_2$

DFA

Minimizatior and Closure Operations

Closure operation:

Automata

Boolean operation

Concatona

Concatena

Star Closure

DFA Minimization and Closure Operations

Closure operation:

Automata

Boolean ope

Concatena

Star Closur

Homomorphism

			а	b
•	B_0	q_1	B_1	B ₀ B ₀
		q_3	B_1	B_0
π_0 :		q 5	B_1	B_0
•	<i>B</i> ₁	q_0	B_0	B_1
		q_2	B_0	B_1
		q_4	B_0	B_1

DFA .

Minimization and Closure Operations

Closure operations

operation

Boolean o

Reverse

Concatenati

Star Closure

Automata

