Radzimiński Jan #35

Numerical Methods (ENUME 2019) – Project Assignment A: Solving linear algebraic equations

1. Design a procedure for generation of the following matrices:

J	$\int_{0}^{1} x^{2}$	$\frac{2x}{3}$	$-\frac{2x}{3}$	$\frac{2x}{3}$		$\frac{2x}{(-1)^{N-1}\cdot 3}$	$\frac{2x}{(-1)^N \cdot 3}$
	$\frac{2x}{3}$	$\frac{8}{9}$	$-\frac{8}{9}$	$\frac{8}{9}$	•••	$\frac{8}{(-1)^{N-1}\cdot 9}$	$\frac{8}{(-1)^N \cdot 9}$
	$-\frac{2x}{3}$	$-\frac{8}{9}$	$\frac{12}{9}$	$-\frac{12}{9}$		$\frac{12}{(-1)^{N-4}\cdot 9}$	$\frac{12}{(-1)^{N-3}\cdot 9}$
$\mathbf{A}_{N,x} =$	$\frac{2x}{3}$	$\frac{8}{9}$	$-\frac{12}{9}$	$\frac{16}{9}$		$\frac{16}{\left(-1\right)^{N-5}\cdot 9}$	$\frac{16}{(-1)^{N-4}\cdot 9}$
	$-\frac{2x}{3}$	$-\frac{8}{9}$	$\frac{12}{9}$	$-\frac{16}{9}$		÷	i l
	:	:	:	:		$\frac{(N-1)\cdot 4}{9}$	$-\frac{(N-1)\cdot 4}{9}$
	$\frac{2x}{(-1)^N \cdot 3}$	$\frac{8}{\left(-1\right)^{N}\cdot 9}$	$\frac{12}{\left(-1\right)^{N-3}\cdot 9}$	$\frac{16}{\left(-1\right)^{N-4}\cdot 9}$		$-\frac{(N-1)\cdot 4}{9}$	$\frac{N\cdot 4}{9}$

- 2. For each matrix $\mathbf{A}_{N,x}$, generated for $N \in \{3, 10, 20\}$ and $x = \ln(\alpha)$:
 - determine the smallest positive value α_N of α which yields $\det(\mathbf{A}_{N,x}) = 0$;
 - draw the dependence of $\det(\mathbf{A}_{N,x})$ on α for $\alpha \in [\alpha_N 0.01, \alpha_N + 0.01]$;
 - draw the dependence of cond $(\mathbf{A}_{N,x})$ on α for $\alpha \in [\alpha_N 0.01, \alpha_N + 0.01]$.
- 3. Design a procedure for inverting the matrix $\mathbf{A}_{N,x}$ according to the scheme presented on the lecture slide #3-16 in two versions: (a) based on the LU factorisation, (b) based on the LLT factorisation. Check the correctness of this procedure using several low-dimensional positive definite matrices.
- 4. Apply the above procedure for finding the estimates $\hat{\mathbf{A}}_{N,x}^{-1}$ of the matrices $\mathbf{A}_{N,x}$ generated for $N \in \{3, 10, 20\}$ and $x = \frac{2^k}{300}$ with $k \in \{0, 1, 2, ..., 21\}$.
- 5. For each estimate $\hat{\mathbf{A}}_{N,x}^{-1}$ determine the following indicators of its uncertainty:

$$\delta_2 = \left\| \mathbf{A}_{N,x} \cdot \hat{\mathbf{A}}_{N,x}^{-1} - \mathbf{I}_N \right\|_2$$
 (the root-mean-square error)

$$\delta_{\infty} = \left\| \mathbf{A}_{N,x} \cdot \hat{\mathbf{A}}_{N,x}^{-1} - \mathbf{I}_{N} \right\|_{\infty} \text{(the maximum error)}$$

Compute the norms of the matrices according to the formulae presented on the lecture slide #1-15 (compare the norms obtained in this way with the corresponding norms computed by means of the operator *norm* implemented in MATLAB). Compare the estimates $\hat{\mathbf{A}}_{N,x}^{-1}$, obtained by means of the procedure defined in Section 3, with the estimates obtained by means of the operator of matrix inversion *inv* implemented in MATLAB. Draw the dependence of δ_2 and δ_∞ on x.