

Faculty of Engineering & Technology Electrical & Computer Engineering Department

Digital Integrated Circuits- ENCS3330

Assignment #2

Prepared by:

Maha Maher Mali 1200746

Instructor: Dr. Khader Mohammad

Section: 1

Date: 5-1-2024

Table of Contents

N-Latch]
P-Latch	3
Rising Edge Flip-Flop	
Falling Edge Flip-Flop	

Table of Figures

Figure 1: N-Latch Schematic	1
Figure 1: N-Latch SchematicFigure 2:N-Latch Schematic SimulationFigure 3:N-Latch Layout	1
Figure 3:N-Latch Layout	2
Figure 4: N-Latch Layout Simulation	2
Figure 5: N-latch Measurement	
Figure 6:P-Latch Schematic	3
Figure 7: P-Latch Simulation	3
Figure 8: P-Latch Layout	4
Figure 9: P-Latch Layout Simulation	4
Figure 7: P-Latch Simulation Figure 8: P-Latch Layout Figure 9: P-Latch Layout Simulation Figure 10: P-latch Measurement	5
Figure 11: Rising Edge Flip-Flop Schematic	5
Figure 12: Rising Edge Flip-Flop Schematic Simulation	6
Figure 13: Rising Edge Flip-Flop Layout	6
Figure 14: Rising Edge Flip-Flop Layout Simulation	
Figure 15: Rising Edge Flip-Flop Measurement	7
Figure 16: Falling Edge Flip-Flop schematic	8
Figure 17: Falling Edge Flip-Flop schematic simulation	8
Figure 18: Falling Edge Flip-Flop Layout	
Figure 19: Falling Edge Flip-Flop Layout Simulation	9
Figure 19: Falling Edge Flip-Flop Layout Simulation	9

N-Latch

Figure 1: N-Latch Schematic

Figure 2:N-Latch Schematic Simulation

Figure 3:N-Latch Layout

Figure 4: N-Latch Layout Simulation

```
Measurement "vin1_delay" FAIL'ed

Measurement "vout_delay" FAIL'ed

ckout_delay=1.285e-007 FROM 2.15e-008 TO 1.5e-007

Measurement "dout_delay" FAIL'ed
```

Figure 5: N-latch Measurement

Show cases when simulations failed when missing setup/hold window.

Ans: The failing case was shown on the third clock cycle when the clock it was changed from zero to one. The output should be one but it appears as zero.

P-Latch

Figure 6:P-Latch Schematic

Figure 7: P-Latch Simulation

Figure 8: P-Latch Layout

Figure 9: P-Latch Layout Simulation

```
Measurement "vin1_delay" FAIL'ed

Measurement "vout_delay" FAIL'ed

ckout_delay=1.285e-007 FROM 2.15e-008 TO 1.5e-007

Measurement "dout_delay" FAIL'ed
```

Figure 10: P-latch Measurement

Rising Edge Flip-Flop

In rising edge flip-flop, I connect p-latch then n-latch.

Figure 11: Rising Edge Flip-Flop Schematic

Figure 12: Rising Edge Flip-Flop Schematic Simulation

Figure 13: Rising Edge Flip-Flop Layout

Figure 14: Rising Edge Flip-Flop Layout Simulation

```
Measurement "vin1_delay" FAIL'ed

Measurement "vout_delay" FAIL'ed
ckout_delay=1.285e-007 FROM 2.15e-008 TO 1.5e-007

Measurement "dout_delay" FAIL'ed
```

Figure 15: Rising Edge Flip-Flop Measurement

Falling Edge Flip-Flop

In falling edge flip-flop, I connect n-latch then p-latch.

Figure 16: Falling Edge Flip-Flop schematic

Figure 17: Falling Edge Flip-Flop schematic simulation

Figure 18: Falling Edge Flip-Flop Layout

Figure 19: Falling Edge Flip-Flop Layout Simulation

```
Measurement "vin1_delay" FAIL'ed

Measurement "vout_delay" FAIL'ed
ckout_delay=1.285e-007 FROM 2.15e-008 TO 1.5e-007

Measurement "dout_delay" FAIL'ed
```

Figure 20: Falling Edge Flip-Flop Measurement