GenCore version 5.1.9 Copyright (c) 1993 - 2007 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

January 17, 2007, 16:29:19; Search time 6370.22 Seconds Run on:

(without alignments)

10058.575 Million cell updates/sec

Pomc

US-10-814-760A-2 Title:

Perfect score: 1002

Sequence: 1 gcggagggagtggaaggctc.....cagtacatattggagggcg 1002

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

Searched: 6366136 seqs, 31973710525 residues

Total number of hits satisfying chosen parameters: 12732272

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : GenEmbl:*

1: gb env:*

gb_pat:* 2: 3: gb_ph:*

4: gb_pl:*

5: gb_pr:*

6: gb ro:*

7: gb_sts:*

8: gb_sy:*

9: gb un:* 10: gb_vi:*

11: gb_ov:*

12: gb_htg:*

13: gb_in:*

14: gb_om:*

. 15: gb_ba:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		8				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	1002	100.0	1002	14	BOVPOMC7	J00021 Bovine proo
2	840.8	83.9	1083	14	BTBLPH	V00107 Bovine mRNA
3	838.6	83.7	1084	14	BOVACTH	M25587 Bovine cort
4	763.2	76.2	793	14	BOVBLPHP	M23814 Bos taurus
5	722.4	72.1	732	14	BOVPOMCFR	M38606 Bovine proo
6	629.8	62.9	792	14	OAR507201	AJ507201 Ovis arie
7	570.6	56.9	1097	14	SSPOM1	X00135 Porcine pro
8	570	56.9	1042	14	SSPOMCR	X03561 Pig mRNA fo
9	537.4	53.6	995	14	S73519	S73519 pro-opiomel
10	463.4	46.2	8658	5	HSACTH	V01510 H.sapiens g

	11	462.4	46.1	1230	5	HUMPOMC9	J00292 Human proop
C	12	462.4	46.1	95214	5	AC012457	AC012457 Homo sapi
	13	457.8	45.7	1115	5	MACPOMCA	M19658 Macaca neme
	14	457	45.6	1078	5	BC065832	BC065832 Homo sapi
	15	456	45.5	1050	2	CQ720465	CQ720465 Sequence
	16	438.2	43.7	908	5	HUMPOMCZ	M38297 Human proop
	17	432.8	43.2	663	14	AY024339	AY024339 Canis fam
	18	413.4	41.3	804	5	BT019918	BT019918 Homo sapi
	19	413.4	41.3	804	8	AY888671	AY888671 Synthetic
	20	413.2	41.2	936	2	AX534756	AX534756 Sequence
	21	412.4	41.2	804	8	AY893864	AY893864 Synthetic
	22	410.8	41.0	801	5	CR541826	CR541826 Homo sapi
	23	410.8	41.0	804	8	AY893863	AY893863 Synthetic
	24	409	40.8	899	6	S78260	S78260 pro-opiomel
	25	372.6	37.2	1315	2	AX463491	AX463491 Sequence
	26	360.8	36.0	585	14	MVIPOMCA	J03039 M.vison (mi
	27	325	32.4	562	5	AY091991	AY091991 Pan trogl
	28	310.6	31.0	559	5	AY091992	AY091992 Gorilla q
	29	309.8	30.9	237327	12	AC103454	AC103454 Rattus no
C	30	309.8	30.9	250999	12	AC119009	AC119009 Rattus no
	31	309.4	30.9	845	2	AR373945	AR373945 Sequence
	32	309.4	30.9	845	2	AR474303	AR474303 Sequence
	33	309.4	30.9	845	6	MUSPOMC03	J00612 Mouse proop
	34	309.4	30.9	211926	6	AC111092	AC111092 Mus muscu
	35	309	30.8	759	6	MMOPI2	V01529 Mouse gene
	36	308.2	30.8	781	6	RATPOMC3 '	J00759 Rat proopio
•	37	307.2	30.7	1070	6	BC061215	BC061215 Mus muscu
	38	306.8	30.6	967	6	BC058443	BC058443 Rattus no
	39	303	30.2	714	6	AF510391	AF510391 Rattus no
	40	299.4	29.9	301	7	BV104815	BV104815 MARC 6319
	41	297	29.6	708	2	AX534751	AX534751 Sequence
	42	271.6	27.1	496	5	AY091993	AY091993 Pongo pyg
	43	271	27.0	490	5	AY091994	AY091994 Macaca sp
	44	267.8	26.7	490	5	AY091995	AY091995 Saguinus
	45	244.8	24.4	256	14	S57982	S57982 proopiomela
							• •

ALIGNMENTS

RESULT 1

```
BOVPOMC7
LOCUS
            BOVPOMC7
                                     1002 bp
                                                 DNA .
                                                         linear
                                                                  MAM 30-OCT-1994
DEFINITION Bovine proopiomelanocortin (POMC) gene, exon 3.
ACCESSION
            J00021
VERSION
            J00021.1 GI:163568
            adrenocorticotropin; alpha-melanotropin; beta-lipotropin;
KEYWORDS
            beta-melanotropin; corticotropin; enkephalin; gamma-lipotropin;
             lipotropin; melanotropin; met-enkephalin; neuropeptide Y;
            proopiomelanocortin.
SEGMENT
             7 of 7
SOURCE
            Bos taurus (cattle)
  ORGANISM Bos taurus
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Laurasiatheria; Cetartiodactyla; Ruminantia;
            Pecora; Bovidae; Bovinae; Bos.
REFERENCE
                (bases 100 to 936)
            Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A.C.,
  AUTHORS
            Cohen, S.N. and Numa, S.
            Nucleotide sequence of cloned cDNA for bovine
  TITLE
            corticotropin-beta-lipotropin precursor
            Nature 278 (5703), 423-427 (1999)
  JOURNAL
   PUBMED
            221818
                (bases 82 to 140; 889 to 962)
REFERENCE
  AUTHORS
            Nakanishi, S., Teranishi, Y., Noda, M., Notake, M., Watanabe, Y.,
```

```
Kakidani, H., Jingami, H. and Numa, S.
 TITLE
            The protein-coding sequence of the bovine ACTH-beta-LPH precursor
            gene is split near the signal peptide region
            Nature 287 (5784), 752-755 (1980)
 JOURNAL
   PUBMED
            6253815
REFERENCE
            3
               (bases 1 to 1002)
 AUTHORS
            Nakanishi, S., Teranishi, Y., Watanabe, Y., Notake, M., Noda, M.,
            Kakidani, H., Jingami, H. and Numa, S.
 TITLE
            Isolation and characterization of the bovine
            corticotropin/beta-lipotropin precursor gene
            Eur. J. Biochem. 115 (3), 429-438 (1981)
 JOURNAL
   PUBMED
            6263630
COMMENT
            Original source text: Bovine calf thymus DNA [2],[3] and cDNA to
            mRNA [1].
            The POMC gene region is approximately 7.3 kb in length, coding for
            corticotropin (ACTH), beta-lipotropin (beta-LPH) and their
            component peptides which independently possess biological activity.
            The region consists of three exons divided by two large introns.
            Repetitive sequences are found in the 5' flanking segment and in
            each of the introns. Exon 3, according to [2], contains the gene
            sequence for most of the protein structure, including the known
            biologically active component peptides. [1] reports the boundaries
            of the mature peptides.
FEATURES
                     Location/Qualifiers
                     1. .1002
    source
                     /organism="Bos taurus"
                     /mol_type="genomic DNA"
                     /db xref="taxon:9913"
                     join(J00019.1:40. .171,99. .764)
    CDS
                     /codon start=1
                     /product="proopiomelanocortin"
                     /protein id="AAB59262.1"
                     /db xref="GI:163570"
                     /translation="MPRLCSSRSGALLLALLLQASMEVRGWCLESSQCQDLTTESNLL
                     ACIRACKPDLSAETPVFPGNGDEQPLTENPRKYVMGHFRWDRFGRRNGSSSSGVGGAA
                     QKREEEVAVGEGPGPRGDDAETGPREDKRSYSMEHFRWGKPVGKKRRPVKVYPNGAED
                     ESAQAFPLEFKRELTGERLEQARGPEAQAESAAARAELEYGLVAEAEAEAAEKKDSGP
                     YKMEHFRWGSPPKDKRYGGFMTSEKSQTPLVTLFKNAIIKNAHKKGQ"
    mat peptide
                     195. .230
                     /gene="POMC"
                     /product="gamma-melanotropin (gamma-MSH)"
                     360. .476
    mat peptide
                     /gene="POMC"
                     /product="corticotropin (ACTH)"
    mat peptide
                     360. .398
                     /gene="POMC"
                     /product="alpha-melanotropin (alpha-MSH)"
    mat peptide
                     411. .476
                     /gene="POMC"
                     /product="corticotropin-like intermediate peptide (CLIP)"
    mat_peptide
                     483. .761
                     /gene="POMC"
                     /product="beta-lipotropin (beta-LPH)"
    mat peptide
                     483. .662
                     /gene="POMC"
                     /product="gamma-lipotropin (gamma-LPH)"
    mat peptide '
                     606. .662
                     /gene="POMC"
                     /product="beta-melanotropin (beta-MSH)"
    mat_peptide
                     669. .761
                     /gene="POMC"
                     /product="beta-endorphin (beta-EP)"
    mat peptide
                     669. .683
                     /gene="POMC"
                     /product="met-enkephalin (met-EK)"
```

```
<1. .98
    intron
                 /number=2
    conflict
                 83
                 /citation=[2]
                 /replace=""
    conflict
                 93. .94
                 /citation=[2]
                 /replace=""
    gene
                 99. .936
                 /gene="POMC"
                 99. .936
    exon
                 /gene="POMC"
                 /number=3
                 99. .>764
    exon
                 /gene="POMC"
                 /number=3
    conflict
                 674
                 /gene="POMC"
                 /citation=[3]
                 /replace=""
    conflict
                 /gene="POMC"
                 /citation=[3]
                 /replace=""
    conflict
                 /gene="POMC"
                 /citation=[3]
                 /replace=""
    conflict
                 /gene="POMC"
                 /citation=[3]
                 /replace=""
ORIGIN
         about 420 bp after <bovpomc6>; 57 bp upstream of BstNI site.
 Query Match
                     100.0%;
                            Score 1002; DB 14;
                                             Length 1002;
 Best Local Similarity
                     100.0%; Pred. No. 2.4e-249;
 Matches 1002; Conservative
                          0; Mismatches
                                         0;
                                             Indels
                                                        Gaps
                                                               0;
Qy
         1 GCGGAGGGAGTGGAAGGCTCAGGCGGCGCGCTTGAGGGGCCGGTGAACGCCGCGGCCTGG 60
           Db
          1 GCGGAGGGAGTGGAAGGCTCAGGCGCGCGCTTGAGGGGCGGGTGAACGCCGCGGCCTGG 60
         61 AGTGGGCGGGCCTGACGCGCTCTGCCGCTCTCCGCAGGCGTGCATCCGGGCCTGCAAGC 120
Qy
           61 AGTGGGCGGGCCTGACGCGCTCTGCCGCTCTCCGCAGGCGTGCATCCGGGCCTGCAAGC 120
Db
        121 CCGACCTCTCCGCCGAGACGCCGGTGTTCCCCGGCAACGGCGATGAGCAGCCGCTGACTG 180
Qу
           Db
        121 CCGACCTCTCCGCCGAGACGCCGGTGTTCCCCGGCAACGGCGATGAGCAGCCGCTGACTG 180
        181 AGAACCCCGGAAGTACGTCATGGGCCATTTCCGCTGGGACCGCTTCGGCCGTCGGAATG 240
Qу
           181 AGAACCCCCGGAAGTACGTCATGGGCCATTTCCGCTGGGACCGCTTCGGCCGTCGGAATG 240
Db
        \tt 241\ GTAGCAGCAGCAGCAGGTTGGGGGCGCGGGCCCAGAAGCGCGAGGAGGAAGTGGCGGTGG\ 300
Qy
           Db
        241 GTAGCAGCAGCAGCGGAGTTGGGGGCCGCGCCCAGAAGCGCGAGGAGGAAGTGGCGGTGG 300
        301 GCGAAGGCCCCGGGCCCCGCGGCGATGACGCCGAGACGGGTCCGCGCGAGGACAAGCGTT 360
           Db
        301 GCGAAGGCCCCGGGCCCCGCGGCGATGACGCCGAGACGGGTCCGCGCGAGGACAAGCGTT 360
Qy
        361 CTTACTCCATGGAACACTTCCGCTGGGGCAAGCCGGTGGGCAAGAAGCGGCGCCCGGTGA 420
           361 CTTACTCCATGGAACACTTCCGCTGGGGCAAGCCGGTGGGCAAGAAGCGGCGCCCGGTGA 420
```

Qу

Db

Qу	421	AGGTGTACCCCAACGGCGCCGAGGACGAGTCGGCCCAGGCCTTTCCCCTCGAATTCAAGA 480
Db	421	AGGTGTACCCCAACGGCGCCGAGGACGAGTCGGCCCAGGCCTTTCCCCTCGAATTCAAGA 480
Qy	481	GGGAGCTGACCGGGGAGAGGCTCGAGCAGGCGCGCGCGCCCCGAGGCCCAGGCTGAGAGTG 540
Db	481	GGGAGCTGACCGGGGAGAGGCTCGAGCAGGCGCGCGCCCCGAGGCCCAGGCTGAGAGTG 540
Qy	541	CGGCCGCCCGGGCTGAGCTGGAGTATGGCCTGGTGGCGGAGGCGGAGGCTGAGGCGGCCG 600
Db	541	CGGCCGCCCGGGCTGAGCTGGAGTATGGCCTGGTGGCGGAGGCGGAGGCTGAGGCGGCCG 600
Qу	601	AGAAGAAGGACTCGGGGCCCTATAAGATGGAACACTTCCGCTGGGGCAGCCCGCCC
Db	601	AGAAGAAGGACTCGGGGCCCTATAAGATGGAACACTTCCGCTGGGGCAGCCCGCCC
Qу	661	ACAAGCGCTACGGCGGGTTCATGACCTCCGAGAAGAGCCAAACGCCCCTTGTCACGCTGT 720
Db	661	ACAAGCGCTACGGCGGGTTCATGACCTCCGAGAAGAGCCCAAACGCCCCTTGTCACGCTGT 720
Qу	721	TCAAAAACGCCATCATCAAGAACGCCCACAAGAAGGGCCAGTGAGGGCGCAGCGGGCAGG 780
Db	721	TCAAAAACGCCATCATCAAGAACGCCCACAAGAAGGGCCAGTGAGGGCGCAGCGGGCAGC 780
Qу	781	GGCCTCTCTCCGCGGAAAGTTGACCCTGAAGGCCTCTCTTCTGCCCTCCTACCGCCTCGC 840
Db	781	GGCCTCTCTCCGCGGAAAGTTGACCCTGAAGGCCTCTCTTCTGCCCTCCTACCGCCTCGC 840
Qу	841	AGCCTGGGTGAGGATTCGCCCAGGCAGTGATGGCGCCAGGTATCCCGACTCTTAAAGCTG 900
Db	841	AGCCTGGGTGAGGATTCGCCCAGGCAGTGATGGCGCCAGGTATCCCGACTCTTAAAGCTG 900
Qу	901	TCTGTAGTTAAGAAATAAAACCTTTCAAGTTTCACGAATATTGACTGGGTGAATTAAAAA 960
Db	901	TCTGTAGTTAAGAAATAAAACCTTTCAAGTTTCACGAATATTGACTGGGTGAATTAAAAA 960
Qу	961	CGCATTTCCATCAAGTAAAGGGCAGTACATATTGGAGGGGCG 1002
Db	961	CGCATTTCCATCAAGTAAAGGGCAGTACATATTGGAGGGGCG 1002