EXPERIMENT: 2

DATE: 31/07/2024

DATA MANIPULATIONS

Create the following tables with the given structure.

EMPLOYEES TABLE

NAME	NULL?	TYPE
Employee_id	Not null	Number(6)
First_Name		Varchar(20)
Last_Name	Not null	Varchar(25)
Email	Not null	Varchar(25)
Phone_Number		Varchar(20)
Hire_date	Not null	Date
Job_id	Not null	Varchar(10)
Salary		Number(8,2)
Commission_pct		Number(2,2)
Manager_id		Number(6)
Department_id		Number(4)

create table EMPLOYEE(Employee_id Number(6) Not null,First_Name Varchar(20),Last_Name Varchar(25) Not null,Email Varchar(25) Not null,Phone_Number Varchar(20),Hire_date Date Not null,Job_id Varchar(10) not null, Salary Number(8,2),Commission_pct Number(2,2),Manager_id Number(6),Department_id Number(4));

Column Name	Data Type	Nullable	Default	Primary Key
EMPLOYEE_ID	NUMBER(6,0)	No	_	_
FIRST_NAME	VARCHAR2(20)	Yes	_	_
LAST_NAME	VARCHAR2(25)	No	_	_
EMAIL	VARCHAR2(25)	No	_	_
PHONE_NUMBER	VARCHAR2(20)	Yes	_	_
HIRE_DATE	DATE	No	_	_
JOB_ID	VARCHAR2(10)	No	_	_
SALARY	NUMBER(8,2)	Yes	-	_
COMMISSION_PCT	NUMBER(2,2)	Yes	_	_
MANAGER_ID	NUMBER(6,0)	Yes	_	_
DEPARTMENT_ID	NUMBER(4,0)	Yes	_	_
				1 - 11

EDIT	EMPLOYEE_ID	FIRST_NAME	LAST_NAME	EMAIL	PHONE_NUMBER	HIRE_DATE	JOB_ID	SALARY	COMMISSION_PCT	MANAGER_ID	DEPARTMENT_ID
Ø	1	saravana	M.D	231901046@gmail.com	1111111111	06/13/1995	saro_1001	10000	.5	100	60
Ø	2	priyanga	mohan	231901037@gmail.com	2222222222	09/22/1996	priya_1001	20000	.6	456	70
Ø	3	uday	krish	231901057@gmail.com	3333333333	12/22/1995	uday_1001	30000	.5	463	80
Ø	4	Tharun	Н	231901055@gmail.com	444444444	11/22/1995	Thar_1001	35000	.4	100	80
Ø	5	Sandy	AUSTIN	231901045@gmail.com	5555555555	07/17/1964	Aust_1001	35000	.5	100	70
											row(s) 1 - 5 of 5

INSERT INTO employees (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id)

VALUES (1, 'saravana', 'M.D', '231901046@gmail.com', '1111111111', TO_DATE('1995-06-13', 'YYYY-MM-DD'), 'saro 1001', 10000, 0.5, 100, 60);

INSERT INTO employees (employee_id, first_name, last_name, email, phone_number, hire date, job id, salary, commission pct, manager id, department id)

```
VALUES (2, 'priyanga', 'mohan', '231901037@gmail.com', '2222222222', TO_DATE('1996-09-22', 'YYYY-MM-DD'), 'priya_1001', 20000, 0.6, 456, 70);
```

INSERT INTO employees (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id)

VALUES (3, 'uday', 'krish', '231901057@gmail.com', '3333333333', TO_DATE('1995-12-22', 'YYYY-MM-DD'), 'uday 1001', 30000, 0.5, 463, 80);

INSERT INTO employees (employee_id, first_name, last_name, email, phone_number, hire date, job id, salary, commission pct, manager id, department id)

VALUES (4, 'Tharun', 'H', '231901055@gmail.com', '4444444444', TO_DATE('1995-11-22', 'YYYY-MM-DD'), 'Thar 1001', 35000, 0.4, 100, 80);

INSERT INTO employees (employee_id, first_name, last_name, email, phone_number, hire date, job id, salary, commission pct, manager id, department id)

VALUES (5, 'Sandy', 'AUSTIN', '231901045@gmail.com', '555555555', TO_DATE('1964-07-17', 'YYYY-MM-DD'), 'Aust 1001', 35000, 0.5, 100, 70);

(a) Find out the employee id, names, salaries of all the employees

```
SELECT
employee_id,
first_name,
last_name,
salary
FROM
employee;
```

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	SALARY
1	saravana	M.D	10000
2	priyanga	mohan	20000
3	uday	krish	30000
4	Tharun	Н	35000
5	Sandy	AUSTIN	35000

(b) List out the employees who works under manager 100

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	SALARY
1	saravana	M.D	10000
4	Tharun	Н	35000
5	Sandy	AUSTIN	35000

SELECT

employee_id,

first_name,

last_name,

salary

FROM

employee

WHERE

manager_id = 100;

(c) Find the names of the employees who have a salary greater than or equal to 4800

FIRST_NAME	LAST_NAME
saravana	M.D
priyanga	mohan
uday	krish
Tharun	Н
Sandy	AUSTIN

SELECT

first_name,

last_name

FROM

employee

WHERE

salary >= 4800;

(d) List out the employees whose last name is _AUSTIN'

EMP	LOYE	_ID	FIRST_NAME	LAST_NAME	SALARY
4			Sandy	AUSTIN	35000
			0.04	D 1 1	

SELECT

employee_id,

first_name,

last_name,

salary

FROM

employee

WHERE

last_name = 'AUSTIN';

(e) Find the names of the employees who works in departments 60,70 and 80

FIRST_NAME	LAST_NAME
saravana	M.D
priyanga	mohan
uday	krish
Tharun	Н
Sandy	AUSTIN

SELECT

first_name,

last name

FROM

employee

WHERE

department id IN (60, 70, 80);

(f) Display the unique Manager_Id.

SELECT DISTINCT

manager_id

FROM

employees;

Create an Emp table with the following fields: (EmpNo, EmpName, Job,Basic, DA, HRA,PF,

GrossPay, NetPay) (Calculate DA as 30% of Basic and HRA as 40% of Basic)

```
CREATE
TABLE EMP1 (
  EmpNo INT PRIMARY KEY, EmpName
VARCHAR(100), Job VARCHAR(50),
  Basic DECIMAL(10, 2),
  DA DECIMAL(10, 2),
  HRA DECIMAL(10, 2),
  PF DECIMAL(10, 2),
  GrossPay DECIMAL(10, 2),
  NetPay DECIMAL(10, 2)
);
UPDATE
Emp1
SET
  DA = Basic * 0.30,
  HRA = Basic * 0.40,
  GrossPay = Basic + DA + HRA,
  NetPay = GrossPay - PF;
```

Column Name	Data Type	Nullable	Default	Primary Key
EMPNO	NUMBER	No	-	1
EMPNAME	VARCHAR2(100)	Yes	-	-
JOB	VARCHAR2(50)	Yes	-	-
BASIC	NUMBER(10,2)	Yes	-	-
DA	NUMBER(10,2)	Yes	-	-
HRA	NUMBER(10,2)	Yes	-	-
PF	NUMBER(10,2)	Yes	-	-
GROSSPAY	NUMBER(10,2)	Yes	-	-
NETPAY	NUMBER(10,2)	Yes	-	-
				1-9

(a) Insert Five Records and calculate GrossPay and NetPay.

INSERT INTO Emp (EmpNo, EmpName, Job, Basic, PF) VALUES (1, 'vedant', 'Manager', 50000, 2500); INSERT INTO Emp (EmpNo, EmpName, Job, Basic, PF) VALUES (2, 'Tharun', 'Developer', 40000, 2000);

INSERT INTO Emp (EmpNo, EmpName, Job, Basic, PF) VALUES (3, 'priyanga', 'admin', 35000, 1750);

INSERT INTO Emp (EmpNo, EmpName, Job, Basic, PF) VALUES (4, 'viji', 'director', 45000, 2250);

INSERT INTO Emp (EmpNo, EmpName, Job, Basic, PF) VALUES (5, saravana', 'hacker', 55000, 2750);

EDIT	EMPNO	EMPNAME	JOB	BASIC	DA	HRA	PF	GROSSPAY	NETPAY
	1	vedant	manager	50000	15000	20000	2500	37500	35000
Ø	2	Tharun	developer	40000	12000	16000	2000	28000	26000
Z	3	priyanga	admin	35000	10500	14000	1750	24500	22750
Z	4	viji	director	45000	13500	18000	2250	31500	29250
	5	saravana	hacker	55000	16500	22000	2750	38500	35750
								row(s	s) 1 - 5 of 5

(b) Display the employees whose Basic is lowest in each department.

SELECT EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay FROM Emp1 WHERE (Job, Basic) IN (SELECT Job, MIN(Basic) FROM Emp1 GROUP BY Job);

EMPNO	EMPNAME	JOB	BASIC	DA	HRA	PF	GROSSPAY	NETPAY
1	vedant	manager	50000	15000	20000	2500	37500	35000
2	Tharun	developer	40000	12000	16000	2000	28000	26000
3	priyanga	admin	35000	10500	14000	1750	24500	22750
4	viji	director	45000	13500	18000	2250	31500	29250
5	saravana	hacker	55000	16500	22000	2750	38500	35750

(c) If Net Pay is less than

SELECT EmpNo, EmpName,

Job, Basic, DA, HRA, PF, GrossPay, NetPay FROM Emp1 WHERE NetPay < 40000;

EMPNO	EMPNAME	JOB	BASIC	DA	HRA	PF	GROSSPAY	NETPAY
1	vedant	manager	50000	15000	20000	2500	37500	35000
2	Tharun	developer	40000	12000	16000	2000	28000	26000
3	priyanga	admin	35000	10500	14000	1750	24500	22750
4	viji	director	45000	13500	18000	2250	31500	29250
5	saravana	hacker	55000	16500	22000	2750	38500	35750

DEPARTMENT TABLE

NAME	NULL?	ТҮРЕ
Dept_id	Not null	Number(6)
Dept_name	Not null	Varchar(20)
Manager_id		Number(6)
Location_id		Number(4)

```
CREATE TABLE Department (
Dept_id NUMBER(6) NOT NULL,
Dept_name VARCHAR2(20) NOT NULL,
Manager_id NUMBER(6),
Location_id NUMBER(4),
PRIMARY KEY (Dept_id)
);
```

Column Name	Data Type	Nullable	Default	Primary Key
DEPT_ID	NUMBER(6,0)	No	-	1
DEPT_NAME	VARCHAR2(20)	No	-	-
MANAGER_ID	NUMBER(6,0)	Yes	-	-
LOCATION_ID	NUMBER(4,0)	Yes	-	-
				1 - 4

JOB_GRADE TABLE

```
CREATE TABLE JOB_GRADE (
Grade_level VARCHAR2(2),
Lowest_sal NUMBER,
Highest_sal NUMBER
);
```

Column Name	Data Type	Nullable	Default	Primary Key
GRADE_LEVEL	VARCHAR2(2)	Yes	-	-
LOWEST_SAL	NUMBER	Yes	-	-
HIGHEST_SAL	NUMBER	Yes	-	-
				1-3

LOCATION TABLE

CREATE TABLE LOCATION (

Location_id NUMBER(4) NOT NULL,

St_addr VARCHAR2(40),

Postal_code VARCHAR2(12),

City VARCHAR2(30) NOT NULL,

State_province VARCHAR2(25),

Country_id CHAR(2),

PRIMARY KEY (Location_id)

);

Column Name	Data Type	Nullable	Default	Primary Key
LOCATION_ID	NUMBER(4,0)	No	-	1
ST_ADDR	VARCHAR2(40)	Yes	-	-
POSTAL_CODE	VARCHAR2(12)	Yes	-	-
CITY	VARCHAR2(30)	No	-	-
STATE_PROVINCE	VARCHAR2(25)	Yes	-	-
COUNTRY_ID	CHAR(2)	Yes	-	-
				1-6

1. Create the DEPT table based on the DEPARTMENT following the table instance chart below. Confirm that the table is created.

Column name	ID	NAME
Key Type		
Nulls/Unique		
FK table		
FK column		
Data Type	Number	Varchar2
Length	7	25

CREATE TABLE DEPT1 (

ID NUMBER(7) NOT NULL,

NAME VARCHAR2(25) NOT NULL,

PRIMARY KEY (ID)

);

Column Name	Data Type	Nullable	Default	Primary Key
ID	NUMBER(7,0)	No	-	1
NAME	VARCHAR2(25)	No	-	-
				1-2

SELECT table_name

FROM user_tables

WHERE table_name = 'DEPT1';

2. Create the EMP table based on the following instance chart. Confirm that the table is created.

Column name	ID	LAST_NAME	FIRST_NAME	DEPT_ID
Key Type				
Nulls/Unique				
FK table				
FK column				
Data Type	Number	Varchar2	Varchar2	Number
Length	7	25	25	7

CREATE TABLE EMP2 (

ID NUMBER(7) NOT NULL,

LAST NAME VARCHAR2(25) NOT NULL,

FIRST NAME VARCHAR2(25),

DEPT_ID NUMBER(7),

PRIMARY KEY (ID)

);

Column Name	Data Type	Nullable	Default	Primary Key
ID	NUMBER(7,0)	No	-	1
LAST_NAME	VARCHAR2(25)	No	-	-
FIRST_NAME	VARCHAR2(25)	Yes	-	-
DEPT_ID	NUMBER(7,0)	Yes	-	-
				1-4

SELECT table_name

FROM user_tables

WHERE table name = 'EMP';

3 Modify the EMP table to allow for longer employee last names. Confirm the

modification.(Hint: Increase the size to 50)

ALTER TABLE EMP2 MODIFY (LAST_NAME VARCHAR2(50));

SELECT column name, data type, data length

FROM user_tab_columns

WHERE table_name = 'EMP2';

AND column_name = 'LAST_NAME';

COLUMN_NAME	DATA_TYPE	DATA_LENGTH
LAST_NAME	VARCHAR2	50

4 Create the EMPLOYEES2 table based on the structure of EMPLOYEES table. Include

Only the Employee_id, First_name, Last_name, Salary and Dept_id coloumns. Name the

columns Id, First_name, Last_name, salary and Dept_id respectively.

CREATE TABLE EMPLOYEES2 (

Id NUMBER(6) PRIMARY KEY, -- Corresponds to Employee_id

First_name VARCHAR2(20), -- Corresponds to First_Name

Last_name VARCHAR2(25) NOT NULL, -- Corresponds to Last Name

salary NUMBER(8, 2), -- Corresponds to Salary

Dept_id NUMBER(4) -- Corresponds to Department_id

);

Column Name	Data Type	Nullable	Default	Primary Key
ID	NUMBER(6,0)	No	-	1
FIRST_NAME	VARCHAR2(20)	Yes	-	-
LAST_NAME	VARCHAR2(25)	No	-	-
SALARY	NUMBER(8,2)	Yes	-	-
DEPT_ID	NUMBER(4,0)	Yes	-	-
				1-5

5 Drop the EMP table.

DROP TABLE EMP2;\

Table dropped.

6 Rename the EMPLOYEES2 table as EMP.

ALTER TABLE EMPLOYEES2 RENAME TO EMP2;

Table altered.

7 Add a comment on DEPT and EMP tables. Confirm the modification by describing the table.

COMMENT ON TABLE DEPT1 IS ' Department details ';

COMMENT ON TABLE EMP2 IS ' Employee details ';

SELECT table name, comments

FROM user_tab_comments

WHERE table_name IN ('DEPT1','EMP2');

8 Drop the First_name column from the EMP table and confirm it.

ALTER TABLE EMP DROP COLUMN FIRST_NAME;

SELECT column_name

FROM user_tab_columns

WHERE table name = 'EMP2';

