

Capstone Project-II

TED Talk Views Prediction

By-Prasad Khedkar (Individual Project)

Points of Discussion:

- 1. Problem Statement
- 2. Data Info
- 3. Data Cleaning
- 4. Data Processing
- 5. EDA and Visualization
- 6. Outlier Treatment
- 7. Heatmap Co-relation
- 8. Feature Selection
 - & Data Preparation

- 9. Model Implementation
- 10. Final Model Selection
- 11. Hyper-Parameter Tuning

Problem Statement:

TED is devoted to spreading powerful ideas on just about any topic. These datasets contain over 4,000 TED talks including transcripts in many languages. Founded in 1984 by Richard Salman as a nonprofit organization that aimed at bringing experts from the fields of Technology, Entertainment, and Design together, TED Conferences have gone on to become the Mecca of ideas from virtually all walks of life. As of 2015, TED and its sister TEDx chapters have published more than 2000 talks for free consumption by the masses and its speaker list boasts of the likes of Al Gore, Jimmy Wales, Shahrukh Khan, and Bill Gates. The main objective is to build a predictive model, which could help in predicting the views of the videos uploaded on the TEDx website.

Data Info:

As can be seen from the image, we have total 19 features or columns.

Among them, 4 are numerical columns- 3 (int64) + 1 (float64) and 15 category columns (object)

And shape of our Dataset i.e., rows x columns is (4005,19)

#	Column	Non-Null Count	Dtype
0	talk_id	4005 non-null	int64
1	title	4005 non-null	object
2	speaker_1	4005 non-null	object
3	all speakers	4001 non-null	object
4	occupations	3483 non-null	object
5	about_speakers	3502 non-null	object
6	views	4005 non-null	int64
7	recorded_date	4004 non-null	object
8	published_date	4005 non-null	object
9	event	4005 non-null	object
10	native_lang	4005 non-null	object
11	available_lang	4005 non-null	object
12	comments	3350 non-null	float64
13	duration	4005 non-null	int64
14	topics	4005 non-null	object
15	related talks	4005 non-null	object
16	url	4005 non-null	object
17	description	4005 non-null	object
18	transcript	4005 non-null	object
dtyp	es: float64(1),	int64(3), object	(15)

Data Cleaning:

'isnull()' method in pandas is used to get total null values in each column.

And by using dropna method all null values are dropped from each column.

Each row is unique and no duplicates found

title	0
speaker_1	0
all_speakers	4
occupations	522
about_speakers	503
views	0
recorded_date	1
published_date	0
event	0
native_lang	0
available_lang	0
comments	655
duration	0
topics	0
related_talks	0
url	0
description	0
transcript	0
dtype: int64	

Data Processing:

Added new columns

- daily_views
- time_since_published
- speaker_avg_views
- event_avg_views
- number_of_lang_avail
- Total_topics

local_copies	insuer_or_rang_sverr	event_avg_vzens	speaker_avg_views	udily_views	the since passished
9	270	782.47619	699.75	697	5054 days
11	303	782.47619	1099.10	2868	5054 days
9	165	782.47619	687.75	379	5054 days
9	219	782.47619	453.00	527	5054 days

time since published daily views speaker avg views event avg views number of lang avail Total topics

EDA and Visualization:

daily_views distplot (positively skewed)

EDA and Visualization:

Outlier Treatment:

Removing outliers in 'duration' feature

Outlier Treatment:

Removing outliers from 'number_of_lan_avail' feature

Heatmap Co-relation:

As per the heatmap, 'daily_views' is highly co-related to –

1)'speaker_avg_views'
2)'event_avg_views'

-0.4

-0.2

- 0.0

--0.2

-0.4

Feature Selection:

Now, important features have to be selected for training our models based on different algorithms.

<u>Independent features:-</u>

duration, speaker_avg_views, event_avg_views, number_of_lang_avail, Total_topics, published_year

<u>Dependent feature :-</u>

daily_views

Data Splitting and Feature Scaling:

Data is splited into - 70% - Training set

& - **30% - Test set**

StandardScaler is used for scaling the data.

Different Model Implementations:

Different models implemented-

- Simple Linear
- Lasso
- Ridge
- Decision Tree
- SVR
- KNN
- Extra Tree Regressor
- Gradient Boosting
- XGBoost
- Random Forest

Out of these only few performed well-

	Test_R2	Train_R2	Test_RMSE	Train_RMSE	Test_MAE	Train_MAE
Simple Linear	0.80	0.86	-3692.55	-4837.72	-1267.46	-1395.12
Lasso	0.83	0.86	-3412.01	-4855.09	-1201.25	-1350.74
Ridge	0.83	0.86	-3400.79	-4883.25	-1143.85	-1307.40
Random_Forest	0.88	0.89	-1829.71	-4423.59	-501.81	-379.70

Clearly, Random Forest gave top notch scores

Hyper-Parameter Tuning:

After selecting Random Forest as final algorithm to train our model, hyper-parameter tuning (GridSearchCV) is performed to further influence the overall score.

Tuning influenced the

Train score from 89% to 93% and

	Test_R2	Train_R2	Test_RMSE	Train_RMSE	Test_MAE	Train_MAE
Random_Forest_without_hyper_para	0.88	0.89	-1829.71	-4423.59	-501.81	-379.70
Random_Forest_with_hyper_para	0.89	0.93	-1272.03	-3414.26	-433.15	-342.16

Final Conclusions:

- Random Forest gave the best scores than others and is finalized for model training
- It also gave low RMSE and MAE errors
- With hyper parameter tuning the score increased further from 89% to 93% for training dataset & from 88% to 89% for test dataset