

Over-Training with Mixup May Hurt Generalization

Zixuan Liu 1 Ziqiao Wang 1 Hongyu Guo 1,2 Yongyi Mao 1 University of Ottawa, 2 National Research Council Canada

Summary

Novel Observation

Over-training with Mixup causes U-shaped test error curve.

Explanation

- Mixup induces label noise.
- Overfitting to noise occcurs in over-training.

Observations

As the training loss continuously decays (left), the testing error first decreases then increases (right).

ResNet18 on CIFAR10 (w/o augmentation)

ResNet18 on SVHN (w/o augmentation)

ResNet34 on CIFAR100 (w/o augmentation)

Mixup Induces Label Noises

Theorem 1

For $\widetilde{X}=\lambda X+(1-\lambda)X'$ with a fixed $\lambda\in[0,1]$, the probability of assigning a noisy label is lower bounded by

$$Pr(\widetilde{Y}_{h} \neq \widetilde{Y}_{h}^{*} | \widetilde{X}) \geq \frac{1}{2} \sup_{j \in \mathcal{V}} \left| f_{j}(\widetilde{X}) - [(1 - \lambda)f_{j}(X) + \lambda f_{j}(X')] \right|.$$

Remark:

Mixup induces label noises as long as the ground-truth function f is not target-linear.

Dynamics of Learning

Lemma 1:

Consider a least squares regression problem training random feature model $\theta^T\phi(X)$:

$$\theta_t - \theta^* = (\theta_0 - \theta^*)e^{-\frac{\eta}{m}\widetilde{\Phi}\widetilde{\Phi}^T t} + (\mathbf{I}_d - e^{-\frac{\eta}{m}\widetilde{\Phi}\widetilde{\Phi}^T t})\theta^{\text{noise}},$$

where $\theta^* = \widetilde{\Phi}^\dagger \widetilde{\mathbf{Y}}^*$ and $\theta^{\mathrm{noise}} = \widetilde{\Phi}^\dagger \mathbf{Z}$.

Remarks:

- In the early phase: $\theta_t \to \theta^*$.
- In the latter phase: $\theta_t \to \theta^* + \theta^{\text{noise}}$.

Theorem 2:

Assume $\theta_0 \sim \mathcal{N}(0, \xi^2 I_d)$, $C_1, C_2 > 0$, then:

$$R_t - R^* \le C_1 \sum_{k=1}^d \left[\left(\xi_k^2 + \theta_k^{*2} \right) e^{-2\eta \mu_k t} + \frac{C_2}{\mu_k} \left(1 - e^{-\eta \mu_k t} \right)^2 \right] + 2\sqrt{C_1 R^* \zeta},$$

where $R^* = \mathbb{E}_{X,Y} \left| \left| Y - \theta^{*T} \phi(X) \right| \right|_2^2$, $\zeta = \sum_{k=1}^d \max\{\xi_k^2 + \theta_k^{*2}, \frac{C_2}{\mu_k}\}$ and μ_k is the k^{th} eigenvalue of the matrix $\frac{1}{m} \widetilde{\Phi} \widetilde{\Phi}^T$.

Remark:

• RHS first decreases then increases.

Experimental Verification

- Teacher network: provides ground-truth training targets.
- Student network: be trained as random feature model.

Fixing $\lambda = 0.5$ increases the severity of label noises

Turning point presents earlier

Training Mode Switch (Mixup → **ERM)**

Switch off Mixup at a proper early epoch avoids genralization degradation.

Impact of Data Size on U-shaped Curve

Larger dataset postpones the turning point to present.

Gradient Norm in Mixup Training Does Not Vanish

