Exploiting expert domain knowledge for automatic symbolic music analysis

Johanna Devaney, The Ohio State University

Introduction Motivations. Phrase model Hierarchical analysis. **Preliminary work** Modeling Roman numerals and function labels. **Current work** Extending analysis to symbolic musical surface. **Conclusions** Summary and future directions.

About me

Background and research interests

- Master's degrees in music composition and music theory and a PhD music technology
- Research in the areas of music information retrieval, music cognition, and music theory
- Music performance analysis
 - Automatically extracting perceptually-meaningful performance data from audio recordings
 - Developing models of how musicians perform
 - Generalizing across different pieces
 - Understanding listener reception

And would it be useful to teach this to a computer?

Mozarts Werke.

12 VARIATIONEN

über "Ah vous dirais-je, Maman" für das Pianoforte

Serie 21. Nº 6.

W. A. MOZART.

Köch. Verz. Nº 265.

And would it be useful to teach this to a computer?

And would it be useful to teach this to a computer?

And would it be useful to teach this to a computer?

Introduction Motivations. **Hierarchical music analysis** Phrase model of harmonic function. **Preliminary work** Modeling Roman numerals and function labels. **Current work** Extending analysis to symbolic musical surface. **Conclusions** Future directions and summary.

Hierarchical music analysis

Phrase Model

Phrases are complete musical statements

- Tonic function (T)
 - at the beginning of a phrase it serves to establish the tonal center
 - at the end of a phrase it provides closure
- Pre-dominant function (PD)
 - prepares for the arrival of the dominant function
 - may not be present in short phrases
- Dominant function (D)
 - creates a sense of tension that is resolved by the return of the tonic function

Phrase model

Simple example

Haydn, String Quartet in D major, "The Frog," op. 50, no. 6, Hob 111.49, Menuetto

Stephen Laitz. The Complete Musician, p 201

Phrase model

Complex example

Mozart, Piano Sonata in D major, K. 576, Allegro

Phrase model

Back to Mozart

Introduction Motivations. Phrase model Hierarchical analysis. **Preliminary work** Modeling Roman numerals and function labels. **Current work** Extending analysis to symbolic musical surface. **Conclusions** Future directions and summary.

Rule-based Model

Roman Numeral- and Phrase-level Rules

- ▶ 18 Roman numeral-level rules were derived from the Laitz chapters on diatonic harmony (Ch. 7–14)
 - Example
 - "I6 is an ideal choice for a passing chord between ii and ii6.

 The I6 chord is subordinate to the prevailing pre-dominant"
 - IF currentChord == I6 AND previousChord == ii AND nextChord == ii6
 - THEN currentFunction = predominant
- 3 phrase-level rules to ensure that the phrase model was adhered to

Rule-based Model

Direct

Labels

Roman numeral-level rules

	noman numeral-level rules		
	I Chords		
,1	Opening and closing I chords		
2	I ⁶⁴ followed by a V chord	D	
3	I ⁶ chords between a ii and a ii ⁶	PD	
4	I ⁶⁴ chords between a IV and a IV ⁶	PD	
	ii Chords		
5	ii chords	PD	
6	ii ⁶⁵ chords before or after a I chord	T	
	iii Chords		
7	iii chords	Т	
	IV Chords		
8	IV chords	PD	
9	IV chords before or after a I chord		
10	IV ⁶ chords between I and I ⁶ chords		
11	IV ⁶ chords between V and V ⁶ chords	D	
	V Chords		
12	V and V ⁷ chords	D	
13	V ⁶ between two I chords	Т	
	vi chords		
14	vi chords		
15	vi chords between two V chords	D	
	vii ^o Chords		
16	vii ^o chords	D	
17	vii ^{o 6} between two I chords	T	
	Second Inversion Chords		
18	Any remaining second inversion chords are assigned the function of the previous sonority		

Multipleprogressions

Rule-based Model

Phrase-level Rules		
1	No P or D between two Ts	
2	No T or D between two PDs	
3	No T or P between two Ds	

Exemplar Model

Hidden-Markov model

- Observations: chord labels
 - With and without duration information
- Predictions: function labels
- State space:

Combined Model

Rule-based + Exemplar-based

 Output of rules-based model used as prior the exemplar-based model's HMM

Textbook (85 phrases)

Workbook (51 phrases)

Textbook

Phrase rules Duration information

Pre-Dominant

Dominant

Tonic

Summary

Rules versus exemplar-based systems

- There is unique information captured by both the Rule- and Exemplar-based models
 - phrase-level rules may be overzealous in re-assigning pre-dominant function labels
 - duration modeling is useful for the exemplar-based model

Introduction Motivations. Phrase model Hierarchical analysis. **Preliminary work** Modeling Roman numerals and function labels. **Current work** Extending analysis to symbolic musical surface. **Conclusions** Future directions and summary.

Analyzing the music surface

Using Conditional Random Fields

partition function

potential function

$$p(y|x;\theta) = \frac{1}{Z(x,\theta)} \prod_{i=1}^{n} \left(\exp\left(\sum_{j=1}^{D_1} \theta_j f_j(y_{i-1}, y_i, x, i)\right) \prod_{j=1}^{D_2} \phi_j(y_{i-1}, y_i, x, i) \right)$$

feature functions

potentials

 $\it i$ - each position in sequence output

x - sequence of observations

bass note intervals above the bass note length metrical position y_{i-1} - previous output label

y_i - current output labeljoint estimates of Romannumeral and function label

Transition feature functions used to incorporate rules

Potentials defined in order to restrict function order

Theme and Variation Data set

Expert annotated

- Who: Mozart and Beethoven
- What: 27 Theme and Variation for piano sets
 - 10 by Mozart and 17 by Beethoven
- When: ~1765–1810
- How: Each piece annotated with Roman numeral and function labels by two music theory PhD students

Classification

Matching variations to their themes

Introduction Motivations. Phrase model Hierarchical analysis. **Preliminary work** Modeling Roman numerals and function labels. **Current work** Extending analysis to symbolic musical surface. **Conclusions** Future directions and summary.

Learning audio features

Using MIDI-audio alignment

Summary

Take away messages

- There is a learnable relationship between Roman numeral labels and function labels but certain heuristics are useful for refining the learned model
- The relationship between Roman numeral and functions is potentially useful for parsing the musical surface
- The ability to determine what is structurally significant in the symbolic musical surface is potentially useful for learning audio features

Thank you!