TOPOLOGICAL QUANTUM FIELD THEORIES

MARIO L. GUTIERREZ ABED

CATEGORY THEORY

Definition. A category C consists of

- a class of **objects**, denoted Ob(C).
- given two objects $x, y \in C$, a set $\operatorname{Hom}(x, y)$ of **morphisms**. Generalizing from the categories where $\operatorname{Hom}(x, y)$ is a set of functions, we denote $f \in \operatorname{Hom}(x, y)$ by $f \colon x \to y$. Morphisms satisfy the following properties:
 - given morphisms $f: x \to y$ and $g: y \to z$, we can compose them and obtain $g \circ f: x \to z$. When there is no possibility of confusion $g \circ f$ is abbreviated gf.

- for any $x \in \mathcal{C}$, there is an **identity** morphism $1_x : x \to x$ such that, for any $f : x \to y$, we have $f1_x = f = 1_y f$. For example,

*

Examples of categories are:

- Set, where objects are sets and morphisms are functions.
- nCob,where objects are (n-1)-dimensional oriented compact manifolds, and morphisms are n-dimensional cobordisms.

- Vect, where objects are (finite-dimensional, complex) vector spaces, and morphisms are linear operators.
- Hilb, where objects are (finite-dimensional, complex) Hilbert spaces, and morphisms are linear operators.

Quantum mechanics uses Hilb rather than Vect because (among other things)

- given state vectors (i.e. unit vectors) in a Hilbert space, say ϕ and ψ , then $\langle \phi | \psi \rangle$ is the **amplitude** and $|\langle \phi | \psi \rangle|^2$ is the **probability** that a system prepared in state ψ will be found in state ϕ . There is no such structure in Vect.
- given an operator $T: \mathcal{H} \to \mathcal{H}'$, the condition $\langle T^* \phi \mid \psi \rangle = \langle \phi \mid T \psi \rangle$ defines an **adjoint** operator $T^*: \mathcal{H}' \to \mathcal{H}$. In Vect, the best we can get is the dual $T^*: \mathcal{H}'^* \to \mathcal{H}^*$.
- observables in quantum mechanics are represented by self-adjoint operators $A: \mathcal{H} \to \mathcal{H}$, where \mathcal{H} is the space of states of the system and $A = A^*$. Such an operator¹ has associated an orthonormal basis $\{\psi_i\}$ of \mathcal{H} such that $A\psi_i = a_i\psi_i$ with $a_i \in \mathbb{R}$. The interpretation is that ψ_i is a state in which A will always be measured to be a_i .

The fact that in Hilb we have a canonical antiisomorphism $\mathcal{H} \to \mathcal{H}^*$ induced by $\langle \cdot | \cdot \rangle$ is very different from Vect or Set, but a lot like nCob, where the "dual" of a space is the same space with the opposite orientation, and the "adjoint" of an n-cobordism is its time-reversal. Time reversal is of utmost importance in physics.

Definition. Given categories C and D, a functor $F: C \to D$ consists of:

- a) A map sending any object $x \in C$ to an object $F(x) \in D$.
- b) For any pair of objects x and y, a map sending morphisms $f: x \to y$ to morphisms $F(f): F(x) \to F(y)$, such that these laws hold:
 - for any object $x \in \mathcal{C}$, we have $F(1_x) = 1_{F(x)}$.
 - for any pair of morphisms $f: x \to y$ and $g: y \to z$, we have F(gf) = F(g)F(f).

In short: F sends objects to objects, morphisms to morphisms, and preserves sources, targets, identities, and composition.

Definition. We say that a category C has **adjoints** or **duals for morphisms** or is a *-category if there is a contravariant functor *: $C \to C$ which takes objects to themselves and such that $*^2 = 1$ (the identity functor). For any object x or morphism f, the dual is denoted $*(x) = x^*$ or $*(f) = f^*$.

Spelling out the definition, * has to satisfy the following properties:

- $x^* = x$ for any $x \in \mathcal{C}$,
- for any $f: x \to y$ there is a morphism $f^*: y \to x$ (this is what "contravariant" means),
- for any $x \in C$, $(1_x)^* = 1_{x^*} = 1_x$,
- for any morphisms $f: x \to y$ and $g: y \to z$, we have $(gf)^* = f^*g^*$, and
- $(f^*)^* = f$ for any morphism f.

¹More generally, any **normal** operator, i.e. any operator such that $NN^* = N^*N$, has an orthonormal basis of eigenvectors with complex eigenvalues.

Examples of *-categories are:

• nCob, where M^* is obtained by exchanging the roles of input and output. If the cobordism is imbedded, this can be represented as reflection along the "time" direction.

- Hilb, where the adjoint T^* of a linear operator $T: \mathcal{H} \to \mathcal{H}'$ is defined by $\langle T^* \phi \mid \psi \rangle_{\mathcal{H}} = \langle \phi \mid T \psi \rangle_{\mathcal{H}'}$.
- any **groupoid** (a category where every morphism is invertible), as then the inverse has the properties required of *.

Definition. We say that $F: \mathcal{C} \to \mathcal{D}$ is a *-functor if given $f: x \to y$, we have $F(f^*) = F(f)^*: F(x) \to F(y)$.

Definition. A category C is monoidal if it is equipped with an operation \otimes with the following properties:

- for any $x, y \in \mathcal{C}$, there is an object $x \otimes y \in \mathcal{C}$;
- for any $f: x \to x'$ and $g: y \to y'$, there is a morphism $f \otimes g: x \otimes y \to x' \otimes y'$.
- for any objects $x, y, z \in \mathcal{C}$ there is an isomorphism $a_{xyz} : (x \otimes y) \otimes z \to x \otimes (y \otimes z)$ called the associator and satisfying the pentagon identity:

• there is an object 1 such that, for any object $x \in C$, there are isomorphisms $l_x \colon 1 \otimes x \to x$ and $r_x \colon x \otimes 1 \to x$ called units satisfying the other identity:

• finally, given $f: x \to y$, $g: y \to z$, $f': x' \to y'$ and $g': y' \to z'$, we require that $(g \otimes g')(f \otimes f') = (gf) \otimes (g'f')$, which just says that the following diagram is unambiguous:

 \star

MacLane's theorem guarantees that if the above two diagrams commute, then any diagram that can be constructed from the associator and the units commutes.

Examples of monoidal categories are

- Grp: objects are groups, morphisms are group homomorphisms and \otimes is the direct product of groups.
- nCob: the \otimes , both for objects and for morphisms, is the disjoint union of manifolds.
- \bullet Vect or Hilb: the \otimes is the tensor product. This is how, in quantum mechanics, two things are put together.
- Elect: it has just one object, morphisms are electrical circuit elements, composition is serial combination of components, and ⊗ is parallel or shunted combination of components.

Note: An algebra equipped with a nondegenerate trace is called a **Frobenius algebra**. We've just seen that given any TQFT, the Hilbert space $Z(S^1)$ is a commutative Frobenius algebra with multiplication given by

$$Z(m)\colon Z(S^1)\otimes Z(S^1)\to Z(S^1),$$

unit given by

$$Z(i) \colon \mathbb{C} \to Z(S^1),$$

and trace given by

$$Z(i^*)\colon Z(S^1)\to \mathbb{C}.$$

But the cool part is the converse: for any Hilbert space with the structure of a commutative Frobenius algebra, there exists a unique 2d TQFT. Actually, uniqueness isn't hard. The only real work is to figure out a formula for $Z(m^*)$ in terms of the 3 maps just listed.

FAITHFULNESS, FULLNESS, EQUIVALENCES

Definition. A functor $F: C \to D$ is called **faithful** if for each pair of objects $X, Y \in C$, the map $F_{X,Y}: \operatorname{Hom}_C(X,Y) \to \operatorname{Hom}_D(F(X),F(Y))$ is injective. F is called **full** if the maps $F_{X,Y}: \operatorname{Hom}_C(X,Y) \to \operatorname{Hom}_D(F(X),F(Y))$ are all surjective. If C is a subcategory of D, then the inclusion functor is always faithful. If it is full, C is called a **full subcategory**.

Definition. A functor is called **essentially surjective** if every object in D is isomorphic to an image under F of an object of C. A functor is called an **equivalence** if it is faithful, full, and essentially surjective.