Solution to Exercise 5

Simon A. Broda

1. (a) The returns are constructed using

$$genr r = dlog(sp500)$$

as usual. We then construct the squared residuals via

$$genr r2 = r^2$$

and generate the correlogram, shown below.

Date: 11/24/22 Time: 14:51
Sample (adjusted): 10/30/2012 10/27/2022
Included observations: 2546 after adjustments

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.491	0.491	614.81	0.000
		2	0.541	0.395	1360.4	0.000
	•	3	0.339	-0.025	1653.4	0.000
	l ij	4	0.329	0.031	1930.0	0.000
		5	0.323	0.145	2196.3	0.000
		6	0.380	0.189	2564.3	0.000
	d	7	0.280	-0.065	2764.3	0.000
	ļ þ	8	0.324	0.047	3032.4	0.000
	ļ þ	9	0.256	0.050	3200.3	0.000
	•	10	0.245	-0.011	3354.3	0.000
	l di	11	0.209	-0.032	3465.6	0.000
–	l ¢	12	0.169	-0.047	3538.9	0.000
Þ	•	13	0.159	0.018	3604.0	0.000
–		14	0.154	0.005	3664.4	0.000
–	•	15	0.192	0.078	3758.7	0.000
 	l o	16	0.128	-0.063	3800.8	0.000
 	•	17	0.141	-0.011	3851.9	0.000
Ψ	ψ	18	0.088	-0.002	3871.8	0.000
ф	l di	19	0.062	-0.052	3881.6	0.000
<u> </u>		20	0.108	0.075	3911.7	0.000

Alternatively, we can regress the return on an intercept and inspect the correlogram of the squared residuals (under Residual Diagnostics...). There is clear evidence of autocorrelation in the squared returns (all Q-stats are significant), indicative of the presence of volatility clustering. Since the SPACF seems to more or less drop to zero after 6 lags, we might try an ARCH(6) model. Usually, a simple GARCH(1, 1) will do better though.

(b) The ARCH-LM test is only offered after a regression has been estimated, so we start by regressing the returns on an intercept. The test is then available under View—Residual Diagnostics—Heteroskedasticity Tests. We choose to include 5 lags (one trading week). The result is shown below.

Heteroskedasticity Test: ARCH

F-statistic	302.2045	Prob. F(5,2535)	0.0000
Obs*R-squared	948.9587	Prob. Chi-Square(5)	0.0000

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 11/24/22 Time: 15:11

Sample (adjusted): 11/06/2012 10/27/2022 Included observations: 2541 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1) RESID^2(-2) RESID^2(-3) RESID^2(-4) RESID^2(-5)	3.14E-05 0.299355 0.396998 -0.087729 -0.015277 0.145365	8.68E-06 0.019651 0.020528 0.021921 0.020529 0.019653	3.614959 15.23388 19.33915 -4.001999 -0.744168 7.396390	0.0003 0.0000 0.0000 0.0001 0.4568 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.373459 0.372223 0.000419 0.000444 16162.59 302.2045 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.000120 0.000528 -12.71671 -12.70292 -12.71171 2.054495

The null of no heteroskedasticity is clearly rejected; the p-value is essentially zero, and the test observed test statistic $T \cdot R_{aux}^2$ is much larger than the critical value 11.07.

(c) The historical volatility forecasts can be obtained via

$$genr sigma_hist(1) = @sqrt(@movav(r^2, 250))$$

The (1) on the LHS is there because @movav includes the observation at time t, and we can only include that in our forecast for time t+1. Alternatively, if you don't want to assume a zero mean for the daily returns, you can do

$$genr sigma_hist2(1) = @movstdevp(r, 250)$$

Plotting the historical volatility produces the figure below.

(d) The RiskMetrics volatility with $\lambda = 0.94$ is obtained as follows:

```
scalar lambda = .94
smpl @first+2 @first+2
series sigma_EWMA = r(-1)^2
smpl @first+3 @last
sigma_EWMA = lambda * sigma_EWMA(-1) + (1-lambda) * r(-1)^2
sigma_EWMA = @sqrt(sigma_EWMA)
```

Graphically, it looks as follows.

(e) ARCH models can be estimated by clicking Quick→Estimate Equation... and changing the estimation method to ARCH. To fit an ARCH(6), enter the dependent variable at the top, followed by any regressors (this is called the *mean equation*). We only include an intercept, but it's also possible to include ARMA terms if there is any autocorrelation. Then, specify 6 ARCH lags (this is q), zero GARCH lags (this is p), and a zero threshold order (this is for GJR/TARCH):

You should also select Bollerslev-Wooldridge standard errors in the Options tab, because we will see later that the standardized residuals will not be normally distributed:

The estimated model is

Dependent Variable: R

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 11/25/22 Time: 18:43

Sample (adjusted): 10/30/2012 10/27/2022 Included observations: 2546 after adjustments

Convergence achieved after 23 iterations

Coefficient covariance computed using Bollerslev-Wooldridge QML

sandwich with expected Hessian

Presample variance: backcast (parameter = 0.7)

GARCH = C(2) + C(3)*RESID(-1)*2 + C(4)*RESID(-2)*2 + C(5)*RESID(-3)*2 + C(6)*RESID(-4)*2 + C(7)*RESID(-5)*2 + C(8)*RESID(-6)*2

Variable	Coefficient	Std. Error z-Statistic		Prob.
С	0.000809	0.000142 5.687025		0.0000
	Variance	Equation		
C RESID(-1) ² 2 RESID(-2) ² 2 RESID(-3) ² 2 RESID(-4) ² 2 RESID(-5) ² 2 RESID(-6) ² 2	1.98E-05 0.216152 0.177032 0.178068 0.160963 0.066833 0.064229	2.36E-06 8.385856 0.050172 4.308196 0.036417 4.861280 0.036320 4.902714 0.045330 3.550881 0.031598 2.115088 0.027097 2.370341		0.0000 0.0000 0.0000 0.0000 0.0004 0.0344 0.0178
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.001467 -0.001467 0.010954 0.305352 8581.134 2.287626	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000390 0.010946 -6.734590 -6.716233 -6.727932

To see if the model is adequate, we can look at the correlogram of the squared standardized residuals $(under \qquad \text{View} \rightarrow \text{Residual Diagnostics} \rightarrow$

Correlogram Squared Residuals). It looks as follows.

Date: 11/25/22 Time: 18:47

Sample (adjusted): 10/30/2012 10/27/2022 Included observations: 2546 after adjustments

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
- III	ψ	1	0.005	0.005	0.0673	0.795
ф	ψ	2	0.003	0.003	0.0966	0.953
•	•	3	-0.019	-0.019	1.0342	0.793
ф	ψ	4	-0.005	-0.005	1.0924	0.895
d ı	l (t	5	-0.033	-0.033	3.8858	0.566
•	•	6	-0.018	-0.018	4.7484	0.576
ψ	ψ	7	-0.004	-0.004	4.7962	0.685
ψ		8	-0.003	-0.004	4.8169	0.777
•		9	0.015	0.014	5.3654	0.801
ф	ф	10	0.048	0.046	11.152	0.346
ψ.	ψ	11	0.004	0.002	11.194	0.427
•	•	12	-0.010	-0.011	11.460	0.490
•		13	0.016	0.018	12.111	0.519
•	•	14	-0.015	-0.013	12.654	0.554
ψ		15	0.005	0.009	12.731	0.623
•		16	0.014	0.016	13.204	0.658
ψ	ψ	17	0.005	0.005	13.275	0.718
ų.		18	0.000	0.001	13.276	0.775
ų.		19	0.005	0.004	13.330	0.821
ψ	•	20	0.034	0.032	16.233	0.702

^{*}Probabilities may not be valid for this equation specification.

None of the Q-tests reject, so there is no remaining autocorrelation. Alternatively, we can

try a GARCH(1, 1) model. This produces

Dependent Variable: R

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 11/25/22 Time: 18:50

Sample (adjusted): 10/30/2012 10/27/2022 Included observations: 2546 after adjustments Convergence achieved after 18 iterations

Coefficient covariance computed using Bollerslev-Wooldridge QML

sandwich with expected Hessian

Presample variance: backcast (parameter = 0.7) GARCH = C(2) + C(3)*RESID(-1)*2 + C(4)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.000799	0.000142	5.620743	0.0000
	Variance	Equation		
C RESID(-1)^2 GARCH(-1)	4.50E-06 0.223750 0.741309	1.14E-06 0.030237 0.030859	3.935962 7.399998 24.02285	0.0001 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.001398 -0.001398 0.010953 0.305331 8587.761 2.287783	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin	ent var iterion rion	0.000390 0.010946 -6.742939 -6.733760 -6.739609

The estimated coefficients are $\hat{\beta}=0.74$ and $\hat{\alpha}=0.22$. This is a bit unusual; typically we find $\hat{\beta}$ around 0.9 for daily returns (c.f. $\lambda=0.94$ for the RiskMetrics model). The fact that the estimated model is close to the stationarity border (recall that stationarity requires $\alpha+\beta<1$) is typical, though. The correlogram of the squared standardized residuals looks as follows.

Date: 11/25/22 Time: 18:51 Sample (adjusted): 10/30/2012 10/27/2022 Included observations: 2546 after adjustments

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
ψ.		1	0.001	0.001	0.0011	0.973
ψ		2	-0.000	-0.000	0.0015	0.999
ψ		3	-0.003	-0.003	0.0182	0.999
•	•	4	0.024	0.024	1.4430	0.837
d i	(5	-0.028	-0.028	3.4029	0.638
ψ		6	-0.008	-0.008	3.5668	0.735
•	•	7	-0.021	-0.021	4.6583	0.702
•	•	8	-0.017	-0.017	5.3624	0.718
ψ		9	-0.008	-0.006	5.5064	0.788
ψ	1	10	0.038	0.037	9.1425	0.519
ψ.		11	-0.004	-0.004	9.1864	0.605
•	•	12	-0.017	-0.017	9.8904	0.626
ψ		13	0.000	-0.001	9.8906	0.703
•	•	14	-0.018	-0.020	10.676	0.711
ψ.		15	-0.002	-0.001	10.686	0.774
ψ.		16	0.003	0.004	10.712	0.827
ψ.		17	0.002	0.002	10.720	0.871
ψ.		18	-0.007	-0.005	10.850	0.901
ψ.	•	19	-0.007	-0.009	10.990	0.924
	•	20	0.020	0.017	11.993	0.916

^{*}Probabilities may not be valid for this equation specification.

This looks equally good as the ARCH(6). As usual, we prefer smaller models, so we stick

with the GARCH(1, 1)¹. We can confirm that there is no remaining volatility clustering by running an ARCH-LM test on the standardized residuals (under $View \rightarrow Residual$ Diagnostics $\rightarrow ARCH$ LM Test).

Heteroskedasticity Test: ARCH

0.000020	F-statistic Obs*R-squared		Prob. F(5,2535) Prob. Chi-Square(5)	0.6413 0.6407
----------	------------------------------	--	--	------------------

Test Equation:
Dependent Variable: WGT_RESID^2
Method: Least Squares
Date: 11/25/22 Time: 18:57

Sample (adjusted): 11/06/2012 10/27/2022 Included observations: 2541 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	1.006032	0.060805	0.0000	
WGT_RESID^2(-1)	0.001390	0.019854	0.9442	
WGT_RESID^2(-2)	-0.000122	0.019848	0.9951	
WGT_RESID^2(-3)	-0.002597	0.019846	0.8959	
WGT_RESID^2(-4)	0.023571	0.019845	0.2350	
WGT_RESID^2(-5) R-squared	-0.027765	0.019852	0.1620	
	0.001333	Mean depend	1.000523	
Adjusted R-squared S.E. of regression	-0.000637	S.D. depende	2.101669	
	2.102338	Akaike info cr	4.326336	
Sum squared resid	11204.26	Schwarz crite	4.340126	
Log likelihood	-5490.610	Hannan-Quin	4.331338	
F-statistic	0.676487	Durbin-Watso	2.000405	
Prob(F-statistic)	0.641285	Durbiii Watst	711 Stat	2.000400

The test doesn't reject, so it seems that we have successfully modeled the volatility clustering. We can look at a histogram of the standardized residuals by clicking on View—Residual Diagnostics—Histogram - Normality Test. This produces the following plot.

Normality is clearly rejected, another typical finding. This means that we were right to use Bollerslev-Wooldridge standard errors. Alternatively, we could have specified a different error distribution, but we'll reserve that for next week.

EViews doesn't offer a statistical test for the leverage effect, so we'll just go ahead and estimate a TARCH(1, 1, 1) model. The fitted model is

¹We could also use the BIC to confirm this decision.

Dependent Variable: R

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 11/25/22 Time: 19:03

Sample (adjusted): 10/30/2012 10/27/2022 Included observations: 2546 after adjustments Convergence achieved after 26 iterations

Coefficient covariance computed using Bollerslev-Wooldridge QML

sandwich with expected Hessian

Presample variance: backcast (parameter = 0.7)

GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-1)^2*(RESID(-1)<0) + C(5)*GARCH(-1)

Variable	Coefficient	Std. Error z-Statistic		Prob.
С	0.000472	0.000132 3.560013		0.0004
	Variance	Equation		
C RESID(-1) ² RESID(-1) ² *(RESID(-1)<0) GARCH(-1)	4.18E-06 0.083481 0.257376 0.755584	9.41E-07 4.443218 0.072149 1.157069 0.063931 4.025838 0.041655 18.13929		0.0000 0.2472 0.0001 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000056 -0.000056 0.010946 0.304922 8619.636 2.290853	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000390 0.010946 -6.767193 -6.755719 -6.763031

The asymmetry coefficient $\hat{\gamma} = 0.257$ is clearly significant, so there is clear evidence of leverage. Also note that the ARCH coefficient has become insignificant. This means that volatility shows no significant reaction to good news (positive returns) at all, only to bad news.

(f) The plots can be found under View→GARCH Graphs and look as follows.

(g) As usual, we can use EViews for the forecasts, or do it manually. We'll do the latter. To do that, we need the estimated $\hat{\sigma}_t$ and \hat{u}_t . We can get them via Proc \rightarrow Make GARCH Variance Series... and Proc \rightarrow Make Residual Series.... For the latter, you can specify either the ordinary residuals \hat{u}_t or the standardized residuals \hat{z}_t . We need the former; the latter would be needed for forecastin and EGARCH model. We find that the residual for 27/10 is -0.006573, and the corresponding $\hat{\sigma}_t$ is 0.0001399. This is all we need to produce a forecast, by plugging into our estimated model as follows.

$$\begin{split} \hat{\sigma}_{t+1}^2 &= \hat{\omega} + \hat{\alpha} \hat{u}_t^2 + \hat{\gamma} \hat{u}_t^2 \mathbf{I}_t + \hat{\beta} \hat{\sigma}_t^2 \\ &= 0.00000418 + 0.083 \hat{u}_t^2 + 0.257 \hat{u}_t^2 \cdot 1 + 0.756 \hat{\sigma}_t^2 \\ &= 0.0^5 418 + 0.083 \cdot (-0.006573)^2 + 0.257 \cdot (-0.006573)^2 + 0.756 \cdot 0.0001399 \\ &= 0.0001246; \end{split}$$

note that the indicator function is 1 because \hat{u}_t is negative.

2. (a) Splitting out the first term of the sum immediately yields

$$\widehat{\sigma}_{t+1,EWMA}^{2} = (1 - \lambda) \sum_{j=0}^{\infty} \lambda^{j} r_{t-j}^{2}$$

$$\widehat{\sigma}_{t+1,EWMA}^{2} = (1 - \lambda) \lambda^{0} r_{t-0}^{2} + (1 - \lambda) \sum_{j=1}^{\infty} \lambda^{j} r_{t-j}^{2}$$

$$\widehat{\sigma}_{t+1,EWMA}^{2} = (1 - \lambda) r_{t}^{2} + (1 - \lambda) \sum_{j=0}^{\infty} \lambda^{j+1} r_{t-1-j}^{2}$$

$$\widehat{\sigma}_{t+1,EWMA}^{2} = (1 - \lambda) r_{t}^{2} + \lambda (1 - \lambda) \sum_{j=0}^{\infty} \lambda^{j} r_{t-1-j}^{2}$$

$$= (1 - \lambda) r_{t}^{2} + \lambda \widehat{\sigma}_{t,EWMA}^{2}.$$