CC0288 - Inferência Estatística I

Aula de Exercícios Intervalos de confiança e TH - 05/06/2023.

Prof. Maurício

Exercícios do Navidi.

1. (Seção 5.4- Exercício 14.)

A seguinte saída, a partir do MINITAB, apresenta um intervalo de confiança (CI) para uma média (mean) populacional.

One-Sample T: X

Variable	n	Mean	StDev	SE Mean	95% CI
\overline{X}	10	6.59635	0.11213	0.03546	(6.51613, 6.67656)

- a. Quantos graus de liberdade tem a distribuição t de Student?
- b. Use a informação de saída do computador, juntamente com a tabela t, para calcular um intervalo de confiança de 99%.

2. (Seção 5.4- Exercício 15.)

A saída a seguir do MINITAB mostra um intervalo de confiança para uma média populacional, mas alguns dos números ficaram borrados e agora estão ilegíveis. Complete com os números que faltam (identificados por letras).

One-Sample T: X

Variable	n	Mean	StDev	SE Mean	95% CI
X	20	2.39374	(a)	0.52640	((b), (c))

3. (Seção 6.1- Exercício 14) A saída do MINITAB a seguir mostra os resultados de um teste de hipótese para uma média populacional μ .

One-Sample Z:X

Test of $\mu = 73.5$ vs not = 73.5

The assumed standard deviation = 2.3634.

a. Esse é um teste unilateral ou bilateral?

- b. Qual é a hipótese nula?
- c. Qual é o valor p?
- d. Use esta saída e uma tabela apropriada para calcular o valor p para o teste de

$$H_0: \mu \ge 73, 6$$
 versus $H_1: \mu < 73, 6$.

- e. Use esta saída e uma tabela apropriada para calcular um intervalo de confiança de 99% para μ .
- 4. (Seção 6.1- Exercício 15). A seguinte saída do MINITAB mostra os resultados de um teste de hipótese para uma média populacional μ . Alguns dos números ficaram ilegíveis. Determine-os.

One-Sample Z:X

Test of $\mu = 3.5$ vs $\mu > 3.5$

The assumed standard deviation = 2.00819.

5. (Seção 7.1- Exercício 20.) O seguinte resultado de saída a partir do MINITAB mostra um teste de hipótese para a diferença (difference) $\mu_X - \mu_Y$ entre duas médias (mean) populacionais:

Two -Sample T for X vx Y

	n	Mean	StDev	Mean
X	135	3.94	2.65	0.23
Y	180	4.43	2.38	0.18

Difference=
$$\mu(X) - \mu(Y)$$

Estimate for difference:-0,484442

95% upper bound of difference:-0,007380

T-test of difference=0 (vs <):T-value=-1,68 P-value 0,047 DF=270

- a. O teste é unilateral ou bilateral?
- b. Qual é a hipótese nula?
- c. Ho pode ser rejeitada ao nível de 5
- d. A saída apresenta um teste t de Student. Calcule o valor P usando um teste z. Os dois resultados são similares?
- e. . Use a saída e uma tabela apropriada para calcular um intervalo de confiança de 99% para $\mu_X \mu_Y$ baseado na estatística z.

6. (Seção 7.1- Exercício 21.) O seguinte resultado de saída a partir do MINITAB mostra um teste de hipótese para a diferença (difference) $\mu_X - \mu_Y$ entre duas médias (mean) populacionais. Alguns números estão ilegíveis.

Two -Sample T for X vx Y

	n	Mean	StDev	Mean
Χ	78	23.30	(i)	0.23
Y	63	20.63	3.02	(ii)

Difference= $\mu(X) - \mu(Y)$

Estimate for difference: 2.670

95% CI for difference: (0.05472,5.2853)

T-test of difference=0 (vs not =):T-value=2,03 P-value 0,045 DF=90

- a. a. Defina os números ilegíveis em (i) e (ii).
- b. A saída apresenta um teste de Student. Calcule o valor P usando um teste z. Os dois resultados são similares?
- c. Use a saída e uma tabela apropriada para calcular um intervalo de confiança de 98% para $\mu_X \mu_Y$ baseado na estatística z.
- 7. (Seção 7.1- Exercício 20.) O seguinte resultado de saída a partir do MINITAB mostra o resultado de um teste de hipótese para a diferença $p_1 p_2$ entre duas proporções populacionais.

Test and CI for Two Proportions

Sample	e X	n	Sample p
1	41	97	0.422680
2	37	61	0.606557

Difference = p(1) - p(2)

Estimate for difference: -0.183877

95% CI for difference: (-0.341016, -0.026738)

Test for difference = 0 (vs not 0): Z = -2.25 P-Value = 0.024

- a. Este teste é unilateral ou bilateral?
- b. Qual é a hipótese nula?
- c. H_0 pode ser rejeitada ao nível de 5%? O que você acha?
- 8. (Seção 7.2- Exercício 21.) O seguinte resultado de saída a partir do MINITAB mostra o resultado de um teste de hipótese para a diferença (difference) $p_1 p_2$ entre duas proporções populacionais. Alguns dos números ficaram ilegíveis. Determine-os (a,b,c,d).

Test and CI for Two Proportions

Sample	X	n	Sample p
1	101	153	(a)
2	(b)	90	0.544444

Difference = p(1) - p(2)

Estimate for difference: 0.115686

95% CI for difference: (-0.0116695, 0.243042)

Test for difference = 0 (vs not 0): Z = (c) P-Value = (d)

9. (Seção 7.3- Exercício 22.) A saída do MINITAB a seguir mostra os resultados de um teste de hipótese para a diferença $\mu_1 - \mu_2$ entre duas médias populacionais.

Two Sample T for X vs Y.

Variável	n	Mean	StDev	SE Mean
\overline{X}	10	39.31	8,71	2.8
\overline{Y}	10	29.12	4.79	1.5

Difference $\mu(X) - \mu(Y)$

Estimate for difference:10.1974

95% lower bound for difference:4.6333

T-test of difference =0 vs (>); T-value 3.25 P-value=0.003 DF=13

- a. Este é um teste unilateral ou bilateral?
- b. Qual a hipótese nula?
- c. H_0 pode ser rejeitada ao nível de 1%? Como você sabe?
- 10. (Seção 7.3- Exercício 22.) O seguinte resultado de saída a partir do MINITAB mostra o resultado de um teste de hipótese para a diferença $\mu_X \mu_Y$ entre duas médias populacionais. Alguns dos números estão ilegíveis. Determine-os.

Two Sample T for X vs Y.

Variável	n	Mean	StDev	SE Mean
X	10	39.31	8,71	2.8
Y	10	29.12	4.79	1.5

Difference $\mu(X) - \mu(Y)$

Estimate for difference:10.1974

95% lower bound for difference:4.6333

T-test of difference =0 vs (>); T-value 3.25 P-value=0.003 DF=13

- a. Este é um teste unilateral ou bilateral?
- b. Qual a hipótese nula?
- c. H_0 pode ser rejeitada ao nível de 1%? Como você sabe?

11. (Seção 7.4- Exercício 18.) A saída do MINITAB a seguir mostra os resultados de um teste de hipótese para a diferença $\mu_1 - \mu_2$ entre duas médias populacionais.

Paired T for X - Y.

Variável	n	Mean	StDev	SE Mean
\overline{X}	12	134.233	68.376	19.739
\overline{Y}	12	100.601	94.583	27.304
\overline{D}	12	33.6316	59.5113	17.1794

95% lower bound for difference:2.7793

T-test of mean difference =0 vs (>0); T-value 1.96 P-value=0.038

- a. Este é um teste unilateral ou bilateral?
- b. Qual a hipótese nula?
- c. H_0 pode ser rejeitada ao nível de 1%? O que você acha?
- d. Use esta saída e uma tabela apropriada para um intervalo de confiança de 98% para $\mu_1 \mu_2$.
- 12. (Seção 7.4- Exercício 19.) O seguinte resultado de saída a partir do MINITAB mostra o resultado de um teste de hipótese para a diferença $\mu_X \mu_Y$ entre duas médias populacionais. Alguns dos números estão ilegíveis. Determine os valores que não aparecem.

Paired T for X - Y.

Variável	n	Mean	StDev	SE Mean
X	7	12.4141	2.9235	(a)
\overline{Y}	7	8.3476	(b)	1.0764
D	7	(c)	3.16758	1.19723

95% lower bound for difference:1.74006

T-test of mean difference =0 vs (> 0); T-value (d) P-value=0.007