

Virtual Arm with Multimodal Biased feedback for Improving EEG Motor Imagery Calibration Training

EEG Stim

Brain waves come in multiple frequencies

MI class

Kuai En Kai Ethan¹, Raghuveer Singh¹, Jordan Low Jun Yi¹, Dr Aung Aung² ¹NUS High School of Mathematics and Science, ²Nanyang Technological University Singapore

1. Introduction

Issue at hand

BCI has potential applications in restoration and rehabilitation of motor functions

However:

- MI training time is often long (BCI illiteracy)
- 2. Robotic arms used in previous experiments are costly
- 3. Subjects are usually unable to visualize the kinesthetic experience

2. Experiment Design & Protocol **Calibration Deep Breathing Flanker Test** 2m 2m

Motor Imagery Classes

- Moving the right arm right
- Moving the right arm left
- Reaching out with the right arm
- Grasping and relaxing right fist
- Resting No Motion (Base line)

Electrode Placement F₇ F₅ F₃ F₁ F₂ F₂ F₄ F₆ F₈ FT₉ FT₇ FC₅ FC₃ FC₁ FC₂ FC₄ FC₆ FT₈ FT₁₀ TP, CP, CP, CP, CP, CP, CP, TP, TP, P₇ P₅ P₃ P₁ P₂ P₂ P₄ P₆ P₈ p PO₇ PO₃ PO₂ O₂ O₂

Legend:

Biased Feedback

[Good]	[Bad]		
Wonderful job!	Just a bit more!		
[Good]	[Neutral]		
Well done!	Don't give up!		

Virtual Arm

4. Results & Limitations

Class	С	X	L	R	F
Accuracy (%)	98.8462	97.6923	98.8462	98.2692	99.8077

2-Sample t-Test: Unequal Variances					
Value	Set 1 + Set 3	Set 2			
Mean	0.6039663	0.54367			
Variance	0.0217393	0.016123			
Sample Size	104	52			
df	117				
t Stat	2.6464932				
P(T<=t) one-tail	0.0046262				
t Critical one-tail	1.6579817				

- Limited trials (20x3) resulted in small training dataset
- Physical robotic arm would be more exciting & interactive
- Only 13 Subjects, 12 male female, all NUSH students

Only offline processing is carried out, after the experiment. Stim Code Processing (A)Sync **PsychoPy** Matching both Timings Code Timings

3. Data Collection & Analysis

timestamps

5. Conclusion

the 4 other MI classes

Our research shows that biased multimodal feedback is extremely effective in boosting MI BCI classification performance

cross-validation

6. Future Work

Use our already trained parameters to predict which class the subject is executing for the MI task in real time

7. References

[1] Van Dokkum, et al. Brain computer interfaces for neurorehabilitation - its current status as a rehabilitation strategy post-stroke. Annals of Physical and Rehabilitation Medicine [2] Guger C, et al. How many people are able to operate an EEG-based brain-computer

interface (BCI)? IEEE Transactions on Neural Systems and Rehabilitation Engineering.