Clustering

20.11.27 Seunghan Lee

Contents

- 1. Intro to Machine Learning
- 2. Intro to Clustering
- 3. Distance
- 4. K-Means Clustering
- 5. Choosing optimal number of clusters
- 6. Other Clustering methods
- 7. Clustering using Scikit-Learn (Python)

Contents

- 1. Intro to Machine Learning
- 2. Intro to Clustering
- 3. Distance
- 4. K-Means Clustering
- 5. Choosing optimal number of clusters
- 6. Other Clustering methods
- 7. K-Means Clustering using Scikit-Learn (Python)

1. Introduction To Machine Learning

Fields of ML

- Supervised Learning (지도 학습)
 - predict "Y" given "X"
- Unsupervised Learning (비지도 학습)
 - only "X"
- Reinforcement Learning (강화 학습)
 - choose "action" that maximizes the "reward"

머신 러닝

문제와정답을모두알려주고 공부시키는방법

비지도 학습 (Unsupervised Learning)

답을가르쳐주지않고 공부시키는방법

바지도학습은 답을 가르쳐주지 않고 공부를 시키는거야.

강화 학습 (Reinforcement Learning)

보상을통해

상은최대화, 벌은최소화하는

방향으로행위를강화하는학습

강화학습은 일종의 게임 같이 보상해주는거야

연관 규칙,

보상

분류

Contents

- 1. Intro to Machine Learning
- 2. Intro to Clustering
- 3. Distance
- 4. K-Means Clustering
- 5. Choosing optimal number of clusters
- 6. Other Clustering methods
- 7. K-Means Clustering using Scikit-Learn (Python)

<u>Purpose of Clustering?</u>

Gather data into groups!

- Maximize "inter-cluster variance"(different group -> different characteristics)
- Minimize "inner-cluster variance"(same group -> similar characteristics)

Hard Clustering

Data 1 : class A

Data 2 : class B

Soft Clustering

• Data 1 : class A 90%, B 10%

• Data 2 : class A 25%, B 75%

Hard clustering

Each observation belongs to exactly one cluster

Soft clustering

An observation can belong to more than one cluster to a certain degree (e.g. likelihood of belonging to the cluster)

• Classification (분류) ? Clustering (군집화) ?

• Classification (분류) ? Clustering (군집화) ?

Does the problem you want to solve has an "Answer"?

- If YES -> Classification
- If No -> Clustering

• Example)

• Example)

$$f(\mathbb{Z}) \rightarrow dog$$
 $f(\mathbb{Z}) \rightarrow cat$

사진	X1	 	X999	X1000	Y
사진1	1.3		2.1	0.9	Dog
사진2	2.1		3.3	2.2	Cat
사진3	0.9		1.0	3.2	Cat
사진4	3.2		0.2	1.5	Dog
사진5	2.3		0.8	1.0	Cat
사진6	4.1		2.4	3.4	Dog
사진7	0.9		3.2	2.2	Cat

It's a "Classification" task, since your problem have an answer!

To train the model, you have to feed both "X" and "Y"

• Example)

CEO: I want to group my customers into several groups!

• Example)

고객	X1	 •••	X999	X1000	Υ
고객1	1.3		2.1	0.9	
고객2	2.1		3.3	2.2	
고객3	0.9		1.0	3.2	X
고객4	3.2		0.2	1.5	
고객5	2.3		0.8	1.0	
고객6	4.1		2.4	3.4	
고객7	0.9		3.2	2.2	

It's a "Clustering" task, since your problem doesn't have an answer!

To train the model, you only feed "X"

Contents

- 1. Intro to Machine Learning
- 2. Intro to Clustering
- 3. Distance
- 4. K-Means Clustering
- 5. Choosing optimal number of clusters
- 6. Other Clustering methods
- 7. K-Means Clustering using Scikit-Learn (Python)

- Clustering = Grouping data with "Similarity"
- Similarity?
- have to measure "dissimilarity" (=distance)

•

- Clustering = Grouping data with "Similarity"
- Similarity?
- have to measure "dissimilarity" (=distance)

How do we define Similarity?

That is, how do we define "distance"?

Widely used "distance" metric

- 1.Euclidean Distance
- 2. Manhattan Distance
- 3. Minkowski Distance
- 4. Hamming Distance

1. Euclidean Distance

Euclidean Distance represents the shortest distance between two points.

So, the Euclidean Distance between these two points A and B will be:

$$D_{e} = \left[\sum_{i=1}^{n} (p_{i} - q_{i})^{2}\right]^{1/2}$$

- n = number of dimensions
- pi, qi = data points

2. Manhattan Distance

Manhattan Distance is the sum of absolute differences between points across all the dimensions.

We can represent Manhattan Distance as:

$$D_{\mathsf{m}} = \sum_{i=1}^{n} |\mathsf{p}_{i} - \mathsf{q}_{i}|$$

- n = number of dimensions
- pi, qi = data points

3. Minkowski Distance

Minkowski Distance is the generalized form of Euclidean and Manhattan Distance.

The formula for Minkowski Distance is given as:

$$D = \left(\sum_{i=1}^{n} |\mathbf{p}_{i} - \mathbf{q}_{i}|^{p}\right)^{1/p}$$

4. Hamming Distance

Hamming Distance measures the similarity between two strings of the same length. The Hamming Distance between two strings of the same length is the number of positions at which the corresponding characters are different.

Let's understand the concept using an example. Let's say we have two strings:

"euclidean" and "manhattan"

Since the length of these strings is equal, we can calculate the Hamming Distance. We will go character by character and match the strings. The first character of both the strings (e and m respectively) is different. Similarly, the second character of both the strings (u and a) is different. and so on.

Look carefully – seven characters are different whereas two characters (the last two characters) are similar:

euclidean and manhattan

Hence, the Hamming Distance here will be 7. Note that larger the Hamming Distance between two strings, more dissimilar will be those strings (and vice versa).

1. Euclidean Distance

Euclidean Distance represents the shortest distance between two points.

Most machine learning algorithms including K-Means use this distance metric to measure the similarity between observations. Let's say we have two points as shown below:

So, the Euclidean Distance between these two points A and B will be:

$$D_{e} = \left(\sum_{i=1}^{n} (\mathbf{p_i} - \mathbf{q_i})^2\right)^{1/2}$$

- n = number of dimensions
- pi, qi = data points

1. Euclidean Distance

Euclidean Distance represents the shortest distance between two points.

Most machine learning algorithms including K-Means use this distance metric to measure the similarity between observations. Let's say we have two points as shown below:

So, the Euclidean Distance between these two points A and B will be:

$$D_{e} = \left(\sum_{i=1}^{n} (\mathbf{p_i} - \mathbf{q_i})^2\right)^{1/2}$$

- n = number of dimensions
- pi, qi = data points

Contents

- 1. Intro to Machine Learning
- 2. Intro to Clustering
- 3. Distance
- 4. K-Means Clustering
- 5. Choosing optimal number of clusters
- 6. Other Clustering methods
- 7. K-Means Clustering using Scikit-Learn (Python)

- The most basic method of Clustering (most widely-known)
- Only for "Numerical" data
- Use "Euclidean" distance
- "K" = number of clusters

Introduction of K-means Algorithm

```
Key 1) partition our data into K groups
```

Key 2) Each group has a 'centroid'

```
( = center of each group )
```

Key 3) Finding 'centroid' & assigning other data into centroid

```
(by reducing SSE(Sum of Square Error))
```

Introduction of K-means Algorithm

```
Key 1) partition our data into K groups
```

Key 2) Each group has a 'centroid'

```
( = center of each group )
```

Key 3) Finding 'centroid' & assigning other data into centroid

(by reducing SSE(Sum of Square Error))

How does it work?

```
K-MEANS(P, k)
   Input: a dataset of points P = \{p_1, \dots, p_n\}, a number of clusters k
   Output: centers \{c_1, \ldots, c_k\} implicitly dividing P into k clusters
    choose k initial centers C = \{c_1, \ldots, c_k\}
    while stopping criterion has not been met
         do ⊳ assignment step:
            for i = 1, ..., N
                 do find closest center c_k \in C to instance p_i
                     assign instance p_i to set C_k
6

    □ update step:

            for i = 1, ..., k
                 do set c_i to be the center of mass of all points in C_i
9
```

1) Choose "K" (number of clusters)

- 1) Choose "K" (number of clusters)
- 2) Initialize "centroid" (randomly)
 - ex) N = 1000, k=7 -> initialize 7 centroids

- 1) Choose "K" (number of clusters)
- 2) Initialize "centroid" (randomly)
 - ex) N = 1000, k=7 -> initialize 7 centroids
- 3) [Assignment] Assign non-centroid data into the closest centroid
 - ex) assign 993 data into its closest centroid (among the 7 centroids)(closest = minimum distance)

- 1) Choose "K" (number of clusters)
- 2) Initialize "centroid" (randomly)
 - ex) N = 1000, k=7 -> initialize 7 centroids
- 3) [Assignment] Assign non-centroid data into the closest centroid
 - ex) assign 993 data into its closest centroid (among the 7 centroids)(closest = minimum distance)
- (change the centroid to the "center of mass of all points" in each cluster (

- Choose "K" (number of clusters)
- 2) Initialize "centroid" (randomly)
 - ex) N = 1000, k=7 -> initialize 7 centroids
- 3) [Assignment] Assign non-centroid data into the closest centroid
 - ex) assign 993 data into its closest centroid (among the 7 centroids) (closest = minimum distance)
- (change the centroid to the "center of mass of all points" in each cluster (
- 5) Repeat 3), 4) until stopping criterion reaches

SSE(Sum of Square Error)

4. K-Means Cluster

- Choose "K" (number of clusters)
- 2) Initialize "centroid" (randomly)
 - ex) N = 1000, k=7 -> initialize 7 centro

```
number of clusters number of cases centroid for cluster j case i cobjective function \leftarrow J = \sum_{j=1}^k \sum_{i=1}^n \left\| x_i^{(j)} - c_j \right\|^2 Distance function
```

- 3) [Assignment] Assign non-centroid data into the closest centroid
 - ex) <u>assign 993 data into its closest centroid</u> (among the 7 centroids) (closest = minimum distance)
- (change the centroid to the "center of mass of all points" in each cluster (
- 5) Repeat 3), 4) until stopping criterion reaches

```
K-MEANS(P, k)
   Input: a dataset of points P = \{p_1, \dots, p_n\}, a number of clusters k
   Output: centers \{c_1, \ldots, c_k\} implicitly dividing P into k clusters
    choose k initial centers C = \{c_1, \ldots, c_k\}
    while stopping criterion has not been met
         do ⊳ assignment step:
            for i = 1, ..., N
                 do find closest center c_k \in C to instance p_i
                     assign instance p_i to set C_k
6

    □ update step:

            for i = 1, ..., k
                 do set c_i to be the center of mass of all points in C_i
9
```


[Pros]

- Scalability can use at large data
- Low Computing Cost
- Easy to understand

[Pros]

- Scalability can use at large data
- Low Computing Cost
- Easy to understand

[Cons]

- Have to choose number of clusters -> Elbow Method
- dependent on initial values -> by running several times with different initial value
- Vulnerable to outliers (use "mean" & "SSE")

Contents

- 1. Intro to Machine Learning
- 2. Intro to Clustering
- 3. Distance
- 4. K-Means Clustering
- 5. Choosing optimal number of clusters
- 6. Other Clustering methods
- 7. K-Means Clustering using Scikit-Learn (Python)

What does it mean by "Clustering is done well!" ?

What does it mean by "Clustering is done well!" ?

- "Close" within a cluster!
- "Far" between different clusters!

Slide 5

2. Intro to Clustering

Purpose of Clustering?

Gather data into groups!

- Maximize "inter-cluster variance"
 (different group -> different characteristics)
- Minimize "inner-cluster variance"
 (same group -> similar characteristics)

Within Cluster Sums of Squares:
$$WSS = \sum_{i=1}^{N_C} \sum_{x \in C_i} d(\mathbf{x}, \bar{\mathbf{x}}_{C_i})^2$$

• Between Cluster Sums of Squares:
$$BSS = \sum_{i=1}^{N_C} |C_i| \cdot d(\mathbf{\bar{x}_{C_i}}, \mathbf{\bar{x}})^2$$

 C_i = Cluster, N_c = # clusters, $\overline{m{x}}_{c_i}$ = Cluster centroid, $\overline{m{x}}$ = Sample Mean

Widely used criterion for choosing optimal "K"

- Within Cluster Sums of Squares : $WSS = \sum_{i=1}^{N_C} \sum_{x \in C_i} d(\mathbf{x}, \bar{\mathbf{x}}_{C_i})^2$
- Between Cluster Sums of Squares: $BSS = \sum_{i=1}^{N_C} |C_i| \cdot d(\bar{\mathbf{x}}_{C_i}, \bar{\mathbf{x}})^2$

Size of C_i = Cluster, N_c = # clusters, $\overline{\boldsymbol{x}}_{c_i}$ = Cluster centroid, $\overline{\boldsymbol{x}}$ = Sample Mean

We have to minimize(?) WSS!

As "K" increases, "WSS" decreases!

1. Elbow Curve

1000 data, 1000 clusters?? No need to do clustering....

As "K" increases, "WSS" decreases!

1. Elbow Curve

1000 data, 1000 clusters?? No need to do clustering....

As "K" increases, "WSS" decreases!

1. Elbow Curve

1000 data, 1000 clusters?? No need to do clustering....

Elbow (still subjective...)

As "K" increases, "WSS" decreases!

1. Elbow Curve

1000 data, 1000 clusters?? No need to do clustering....

Elbow (still subjective...)

2. Silhouette Score

a(i): average of distance of i th data, with same clusters

b(i): min(average of distances of i th data, with other clusters)

(= average of distances of i th data, with closest cluster)

The bigger score, the better clustering

- Best :
$$a(i) = 0 -> s(i) = 1$$

- Worst :
$$b(i) = 0 -> s(i) = -1$$

$$s(i) = \frac{b(i) - a(i)}{\max\left\{a(i), b(i)\right\}}$$

2. Silhouette Score

Which "K" seems to be reasonable?

2. Silhouette Score

2. Silhouette Score

Silhouette analysis for KMeans clustering on sample data with n_c clusters = 3

2. Silhouette Score

Silhouette analysis for KMeans clustering on sample data with n_c clusters = 3

Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

2. Silhouette Score

2. Silhouette Score

Contents

- 1. Intro to Machine Learning
- 2. Intro to Clustering
- 3. Distance
- 4. K-Means Clustering
- 5. Choosing optimal number of clusters
- 6. Other Clustering methods
- 7. K-Means Clustering using Scikit-Learn (Python)

1. DBSCAN (Density Based Spatial Clustering of Application with Noise)

1) if more than 'n' points inside distance 'epsilon' -> cluster (O)

1. DBSCAN (Density Based Spatial Clustering of Application with Noise)

2) If one 'core point' is inside epsilon distance from other 'core point' -> JOIN!

1. DBSCAN (Density Based Spatial Clustering of Application with Noise)

2. Hierarchical Clustering

Do not require to pre-specify # of clusters

- 1) Agglomerative Clustering
 - bottom-up approach
- 2) Divisive hierarchical clustering
 - top-down approach

2. Hierarchical Clustering

Do not require to pre-specify # of clusters

- 1) Agglomerative Clustering
 - bottom-up approach
- 2) Divisive hierarchical clustering
 - top-down approach

2. Hierarchical Clustering

Do not require to pre-specify # of clusters

- 1) Agglomerative Clustering
 - bottom-up approach
- 2) Divisive hierarchical clustering
 - top-down approach

3. K-mode

- For "Categorical" Variable

4. K-Prototypes

- For "Numerical + Categorical" Variable

Contents

- 1. Intro to Machine Learning
- 2. Intro to Clustering
- 3. Distance
- 4. K-Means Clustering
- 5. Choosing optimal number of clusters
- 6. Other Clustering methods
- 7. K-Means Clustering using Scikit-Learn (Python)

7. K-Means Clustering using Scikit-Learn (Python)

- Step 1) Data & Package 불러오기
- Step 2) Data 스케일(단위) 조정
 - (ex. MinMaxScaler(0~1), Standard Scaler(mean=0, var=1)
- Step 2.5) 이상치(outlier) 제거
- Step 3) 차원 축소
- Step 4) Clustering

예시 소개

- 사용할 데이터 : MNIST 손글씨 데이터
- 데이터 크기 : (60000, 784) (28x28 pixel 데이터)
- 실제 MNIST데이터는 Y값(글씨가 0~9 중 어느 숫자에 해당하는지)가 있지만,
 이를 사용하지 않고 오직 X(픽셀 정보)만 사용해서 비슷한 데이터를 군집화할 것이다.

Step 1) Data & Package 불러오기

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

```
import tensorflow as tf
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
```

```
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = pd.DataFrame(x_train.reshape(60000,-1))
y_train = pd.Series(y_train).astype('object')
```

Step 1) Data & Package 불러오기

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

```
import tensorflow as tf
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
```

표준 정규분포화


```
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = pd.DataFrame(x_train.reshape(60000,-1))
y_train = pd.Series(y_train).astype('object')
```

Step 1) Data 불러오기

```
x_train.shape
(60000, 784)
 x_train
                                  9 ... 774 775 776 777 778 779
```


Step 2) Data 스케일(단위) 조정

PCA를 하기전에, 반드시 거쳐야 하는 과정! (특히나, 변수들 간의 Scale에 차이가 큰 경우)

사람ID	7	몸무게	시력 평균	•••	특징 D
사람 1	170	60	2.0		
사람 2	175	65	1.8		
사람 3	168	58	-2.0		
사람 4	180	70	0.6		
사람 999	177	66	0.3		

PCA를 하기전에, 반드시 거쳐야 하는 과정! (특히나, 변수들 간의 Scale에 차이가 큰 경우)

사람ID	7	몸무게	시력 평균	•••	특징 D
사람 1	170	60	2.0		
사람 2	175	65	1.8		
사람 3	168	58	-2.0		
사람 4	180	70	0.6		
사람 999	177	66	0.3		

대표적인 2가지 스케일 조정 방법

1) Standard Scaler

- 각 변수를 표준 정규분포로 만들어줌 (평균이 0, 분산이 1)

(sklearn.preprocessing.StandardScaler)

2) MinMax Scaler

- 각 변수 내에서, 최대값을 1로, 최소값을 0으로 만들어줌

(sklearn.preprocessing.MinMaxScaler)

PCA를 하기전에, 반드시 거쳐야 하는 과정! (특히나, 변수들 간의 Scale에 차이가 큰 경우)

Scaling 이전

사람ID	키	몸무게	시력 평균	 특징 D
사람 1	170	60	2.0	
사람 2	175	65	1.8	
사람 3	168	58	-2.0	
사람 4	180	70	0.6	
사람 999	177	66	0.3	

Scaling 이후

사람ID	키	몸무게	시력 평균	 특징 D
사람 1	0.4	-0.3	1.5	
사람 2	1.1	0.5	1.2	
사람 3	-0.3	-1.2	-1.2	
사람 4	1.3	0.8	0.8	
사람 999	1.2	0.7	0.3	

(Standard Scaler를 사용해서)

차원 축소를 하기에 앞서서, 거의 필수적인 과정!

[TIP]

- 이 뿐만 아니라 많은 ML 문제에서 , 이와 같이 스케일을 조정하면 학습이 더 나아지는 경우가 많음 (해서 나쁠 것은 없음!)
- DL에서는 안정적인 모델 학습을 위해 필수적!

현재 우리 데이터(MNIST)의 Scale은?

x_tra	in.min(axis=1)	x_train.max(axis=1)				
0 1 2 3 4	0 0 0 0	0 255 1 255 2 255 3 255 4 255				
59995 59996 59997 59998 59999	 0 0 0 0 0 0 0 60000, dtype: uint8	59995 255 59996 255 59997 255 59998 255 59999 255 Length: 60000, dtype: uint8				

필수적이라고 보기는 어려우나, 해서 나쁠건 없음!

Standard Scaler를 사용해서

변수들의 단위를 통일시켜줄 것!

```
scaler = StandardScaler()
x_scaled = scaler.fit_transform(x_train)
```



```
x_train.iloc[:1].values
array([[ 0.
                            0.
                                 0,
                                      0.
                                          0,
                                               0.
                                      0.
                                          0.
                            0.
                   0.
                       0.
                                 0.
                                      0.
                                          0.
                                               0.
                       0.
                            0.
                                 0.
                                      0.
                                          0.
                            0.
                                 0.
                                     0,
                                          0,
                                               0,
                            0,
                                 0,
                                      0,
                                          0,
                                      0,
                                          0,
                                      0,
                            0,
                                      0,
                                          0,
       126. 136. 175, 26, 166, 255, 247, 127,
                                         30,
                                              36,
                                                   94, 154, 170, 253,
                                     0.
       253, 253, 253, 253, 225, 172, 253, 242, 195,
                                                   64.
                                              49, 238, 253, 253, 253,
                                    0.
                                         0,
                  0. 0.
                           0.
                               0.
       253, 253, 253, 253, 253, 251,
                                    93,
                                         82,
                                              82,
                                                   56.
                 0, 0, 0, 0,
                                     0.
                                         0.
                                                       18. 219. 253.
       253, 253, 253, 253, 198, 182, 247, 241,
                            0,
                                0,
                                     0,
                                          0,
                                               0,
        80, 156, 107, 253, 253, 205, 11,
                                              43, 154,
                                          Ο,
                       0,
                            0,
                                0,
                                     0,
                                          0,
                            1, 154, 253,
                                         90,
                            0, 0,
                                          0,
                       0,
                                     0,
                                               0,
                                     0, 139, 253, 190,
                            0.
                                          0.
                                     0.
                                                    0.
                            0,
                                0,
                                    0, 0,
                                              0, 11, 190, 253,
```

```
x scaled[0]
```

```
array([ 0.00000000e+00. 0.00000000e+00.
                                         0.00000000e+00.
                                                          0.00000000e+00.
        0.0000000e+00. 0.0000000e+00. 0.0000000e+00. 0.0000000e+00.
        0.00000000e+00.
                        0.00000000e+00.
                                         0.00000000e+00.
                                                          0.00000000e+00.
       -4.41807799e-03, -5.75481961e-03, -4.08251693e-03, -4.08251693e-03,
       0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
        0.0000000e+00. 0.0000000e+00. 0.0000000e+00. 0.0000000e+00.
       0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                                                         0.00000000e+00.
       0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
       -4.08251693e-03, -4.70968827e-03, -8.79934640e-03, -1.15905591e-02,
       -1.47589798e-02. -1.92848546e-02. -2.46717975e-02. -2.90710271e-02.
       -3.05926583e-02, -3.11640127e-02, -3.19628719e-02, -3.02025355e-02,
       -3.13102175e-02, -2.83833960e-02, -2.31191906e-02, -1.91666260e-02,
       -1.67723008e-02, -1.09963601e-02, -8.32486080e-03, -4.38069356e-03,
        0.0000000e+00. 0.0000000e+00. 0.0000000e+00. 0.0000000e+00.
       0.0000000e+00, 0.0000000e+00, -4.08251693e-03, -5.39534598e-03,
       -8.52241235e-03, -1.19850363e-02, -1.76534777e-02, -2.77108989e-02,
       -3.70200943e-02, -5.21512802e-02, -6.70362007e-02, -8.30170484e-02,
       -9.93792978e-02, -1.15184128e-01, -1.29133256e-01, -1.38394677e-01,
       -1.38883631e-01, -1.31843438e-01, -1.20429522e-01, -1.01890795e-01,
       -7.86049044e-02. -5.69956130e-02. -3.96576839e-02. -2.37283861e-02.
       -1.40883463e-02, -7.83084068e-03, 0.00000000e+00, 0.00000000e+00,
       0.0000000e+00, 0.0000000e+00, -5.36837753e-03, -8.87060589e-03,
       -1.40708170e-02, -2.21468098e-02, -3.51801368e-02, -5.50236802e-02,
       -7.90961321e-02. -1.07649012e-01. -1.37169936e-01. -1.67105761e-01.
       -1.96008755e-01, -2.24491114e-01, -2.48655991e-01, -2.62117971e-01,
       -2.62596902e-01, -2.47855903e-01, -2.21947003e-01, -1.87211405e-01,
```

사람 999

177

PCA (Principal Component Analysis, 주성분 분석)를 사용해서 축소할 것

총 D개의 변수

0.3

사람ID	7	몸무게	시력 평균	•••	특징 D
사람 1	170	60	2.0		
사람 2	175	65	1.8		
사람 3	168	58	-2.0		
사람 4	180	70	0.6		

66

총 d개의 변수 (d=2)

사람ID	PC 1	PC 2
사람 1	170	60
사람 2	175	65
사람 3	168	58
사람 4	180	70
사람 999	177	66

주성분 2) 학업능력 지수

Step 3) 차원 축소

주성분 1) 신체 종합 지수

PCA (Principal Component Analysis, 주성분 분석)를 사용해서 축소할 것

총 D개의 변수

사람ID	7	몸무게	시력 평균	•••	특징 D
사람 1	170	60	2.0		
사람 2	175	65	1.8		
사람 3	168	58	-2.0		
사람 4	180	70	0.6		
		•••			
사람 999	177	66	0.3		

사람ID	PC 1	PC 2
사람 1	170	60
사람 2	175	65
사람 3	168	58
사람 4	180	70
	•••	
사람 999	177	66

```
pca = PCA(n_components=X_train.shape[1],random_state=123)
pca.fit(x_scaled) 현재 원본 data의 차원(= 784)

PCA(n_components=784)
```

```
pca = PCA(n_components=X_train.shape[1],random_state=123)
pca.fit(x_scaled) 표현하고 싶은 주성분(PC)의 개수
```

PCA(n_components=784)


```
pca = PCA(n_components=X_train.shape[1],random_state=123)
pca.fit(x_scaled) 표현하고 싶은 주성분(PC)의 개수
```

PCA(n_components=784)

쉽게 말해, "축소된 변수(PC1,PC2...PCd)"가 기존의 데이터를 얼마나 잘 설명하는지!

- 기존 데이터 : 784차원

- 축소 후 데이터 : 100차원

이 100차원의 데이터 만으로도, 기존 데이터가 가지는 정보의 60%이상을 설명한다!

```
pca.explained variance ratio .round(3)
array([0.056, 0.041, 0.037, 0.029, 0.025, 0.022, 0.019, 0.017, 0.015,
      0.014, 0.013, 0.012, 0.011, 0.011, 0.01, 0.01, 0.009, 0.009,
      0.009, 0.009, 0.008, 0.008, 0.008, 0.007, 0.007, 0.007, 0.007,
      0.007, 0.006, 0.006, 0.006, 0.006, 0.006, 0.006, 0.006, 0.005,
      0.005. 0.005. 0.005. 0.005. 0.005. 0.005. 0.005. 0.005. 0.004.
      0.004, 0.004, 0.004, 0.004, 0.004, 0.004, 0.004, 0.004, 0.004,
      0.004. 0.004. 0.004. 0.004. 0.004. 0.004. 0.004. 0.003. 0.003.
      0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003,
      0.003. 0.003. 0.003. 0.003. 0.003. 0.003. 0.003. 0.003. 0.003.
      0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003,
      0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.002,
      0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002,
      0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002,
      0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002,
      0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002
      0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002
      0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002,
      0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
      0.001. 0.001. 0.001. 0.001. 0.001. 0.001. 0.001. 0.001.
      0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
      6.wr, v.wr, v.wr, v.wr, v.wr, v.wr, v.wr, v.wr, v.wr, v.wl,
      0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
      0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
```

```
pca.explained_variance_ratio_.cumsum().round(3)
array([0.056, 0.097, 0.135, 0.163, 0.189, 0.211, 0.23, 0.247, 0.263,
      0.277, 0.29, 0.302, 0.313, 0.324, 0.334, 0.344, 0.354, 0.363,
      0.372, 0.381, 0.389, 0.397, 0.405, 0.412, 0.419, 0.426, 0.433,
      0.44, 0.446, 0.452, 0.458, 0.464, 0.47, 0.475, 0.481, 0.486,
      0.491, 0.497, 0.502, 0.506, 0.511, 0.516, 0.52, 0.525, 0.529,
      0.534, 0.538, 0.543, 0.547, 0.551, 0.555, 0.559, 0.563, 0.567,
      0.571, 0.575, 0.578, 0.582, 0.586, 0.589, 0.593, 0.596, 0.6
      0.603, 0.607, 0.61, 0.613, 0.616, 0.62, 0.623, 0.626, 0.629,
      0.632, 0.635, 0.638, 0.641, 0.644, 0.647, 0.65, 0.653, 0.655,
      0.658, 0.661, 0.664, 0.667, 0.669, 0.672, 0.675, 0.678, 0.68,
      0.683. 0.686. 0.688. 0.691. 0.693. 0.696. 0.699. 0.701. 0.703.
      0.706. 0.708. 0.711. 0.713. 0.716. 0.718. 0.72 . 0.723. 0.725.
      0.727, 0.729, 0.731, 0.734, 0.736, 0.738, 0.74, 0.742, 0.744,
      0.746, 0.748, 0.75 , 0.752, 0.754, 0.756, 0.758, 0.76 , 0.762,
      0.764, 0.766, 0.767, 0.769, 0.771, 0.773, 0.774, 0.776, 0.778,
      0.78 , 0.781, 0.783, 0.785, 0.786, 0.788, 0.79 , 0.791, 0.793
      0.795. 0.796. 0.798. 0.799. 0.801. 0.802, 0.804, 0.806, 0.807,
      0.808. 0.81 . 0.811. 0.813. 0.814. 0.816. 0.817. 0.819. 0.82
      0.821. 0.823. 0.824. 0.826. 0.827. 0.828. 0.83 . 0.831. 0.832
      0.834. 0.835. 0.837. 0.838. 0.839. 0.84 . 0.842. 0.843. 0.844
      0.846 0.847 0.848 0.849 0.85 0.852 0.853 0.854 0.855
     (<mark>누적</mark>)각 PC(주성분)이 데이터를
      0.876, 0.877, 0.877, 0.878, 0.879, 0.88, 0.881, 0.882, 0.883,
      0.884. 0.885. 0.886. 0.887. 0.888. 0.889. 0.889. 0.89 . 0.891.
                    A 001 A 000 A 000 A 000 A 004 A 00E A 00E
```

```
pca.explained variance ratio .round(3)
array([0.056, 0.041, 0.037, 0.029, 0.025, 0.022, 0.019, 0.017, 0.015,
      0.014, 0.013, 0.012, 0.011, 0.011, 0.01, 0.01, 0.009, 0.009,
      0.009, 0.009, 0.008, 0.008, 0.008, 0.007, 0.007, 0.007, 0.007,
      0.007, 0.006, 0.006, 0.006, 0.006, 0.006, 0.006, 0.006, 0.005,
      0.005. 0.005. 0.005. 0.005. 0.005. 0.005. 0.005. 0.005. 0.004.
      0.004, 0.004, 0.004, 0.004, 0.004, 0.004, 0.004, 0.004, 0.004,
      0.004. 0.004. 0.004. 0.004. 0.004. 0.004. 0.004. 0.003. 0.003.
      0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003,
      0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003,
      0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003,
      0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.002,
      0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002,
      0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002,
      0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002,
      0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002
      0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002
      0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002,
      0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
      0.001. 0.001. 0.001. 0.001. 0.001. 0.001. 0.001. 0.001.
      0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
      6.wr, v.wr, v.wr, v.wr, v.wr, v.wr, v.wr, v.wr, v.wr, v.wl,
      0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
      0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
```

```
pca.explained_variance_ratio_.cumsum().round(3)
array([0.056, 0.097, 0.135, 0.163, 0.189, 0.211, 0.23, 0.247, 0.263,
      0.277. 0.29 . 0.302. 0.313. 0.324. 0.334. 0.344. 0.354. 0.363.
      0.372, 0.381, 0.389, 0.397, 0.405, 0.412, 0.419, 0.426, 0.433,
      0.44 , 0.446, 0.452, 0.458, 0.464, 0.47 , 0.475, 0.481, 0.486,
      0.491, 0.497, 0.502, 0.506, 0.511, 0.516, 0.52, 0.525, 0.529,
      0.534, 0.538, 0.543, 0.547, 0.551, 0.555, 0.559, 0.563, 0.567,
      0.571, 0.575, 0.578, 0.582, 0.586, 0.589, 0.593, 0.596, 0.6
      0.603, 0.607, 0.61, 0.613, 0.616, 0.62, 0.623, 0.626, 0.629,
      0.632, 0.635, 0.638, 0.641, 0.644, 0.647, 0.65, 0.653, 0.655,
      0.658, 0.661, 0.664, 0.667, 0.669, 0.672, 0.675, 0.678, 0.68
      0.683, 0.686, 0.688, 0.691, 0.693, 0.696, 0.699, 0.701 0.703,
      0.706. 0.708. 0.711. 0.713. 0.716. 0.718. 0.72 . 0.723 0.725.
      0.727, 0.729, 0.731, 0.734, 0.736, 0.738, 0.74, 0.742, 0.744,
      0.746, 0.748, 0.75, 0.752, 0.754, 0.756, 0.758, 0.76, 0.762,
      0.764, 0.766, 0.767, 0.769, 0.771, 0.773, 0.774, 0.776, 0.778,
      0.78 . 0.781. 0.783. 0.785. 0.786. 0.788. 0.79 . 0.791. 0.793
      0.795. 0.796. 0.798. 0.799. 0.801. 0.802. 0.804. 0.806. 0.807.
      0.808. 0.81 . 0.811. 0.813. 0.814. 0.816. 0.817. 0.819. 0.82
      0.821. 0.823. 0.824. 0.826. 0.827. 0.828. 0.83 . 0.831. 0.832
      0.834. 0.835. 0.837. 0.838. 0.839. 0.84 . 0.842. 0.843. 0.844
      0.846 0.847 0.848 0.849 0.85 0.852 0.853 0.854 0.855
     (<mark>누적)</mark>각 PC(주성분)이 데이터를
      0.876, 0.877, 0.877, 0.878, 0.879, 0.88, 0.881, 0.882, 0.883,
      0.884. 0.885. 0.886. 0.887. 0.888. 0.889. 0.889. 0.89 . 0.891.
                    0 001 0 000 0 000 0 004 0 00E 0 00E
```

확인 해보니, 97개의 주성분만으로도, 전체 데이터의 약 70%의 정보를 설명할 수 있다!

```
sum(pca.explained_variance_ratio_.cumsum()<0.7)
```

97

차원이 97개로 축소된 dataset 완성시키기!

```
pca = PCA(n_components=97,random_state=123)
pca_train = reduced_df(x_scaled,pca,97)
```

pca_train.shape

(48000, 98)

pca_t	ra	in
-------	----	----

PC6	PC7	PC8	PC9	PC10	PC89	PC90	PC91	PC92	PC93	PC94	PC95	PC96	PC97	class
					 F C 0 3	FC90	FC91	F C 9 2	F C 9 3	F C 34	FC90	FC90	FC91	class
23661	0.731478	-4.588279	-1.277387	-2.933083	 1.294534	0.221624	-0.912060	1.562327	0.111095	-0.781710	0.306963	0.866905	1.327027	6
24787	6.527739	-6.235602	-2.740854	0.159801	 0.355361	1.203889	-1.545596	-0.392618	1.048164	1.166933	-1.731404	-2.094692	1.784462	9
06348	0.679898	-0.558096	-3.054449	5.428590	 -2.458996	-0.964208	0.798171	-1.285673	-0.491602	0.495795	2.269164	1.230501	3.294374	2
72786	6.924303	1.507101	8.790931	4.929756	 -1.099995	1.538169	1.340607	-0.321324	-0.581286	-0.577362	-1.118162	0.001926	0.819139	2
36715	-0.991512	3.947057	-0.517048	-0.743257	 1.133107	-1.191510	0.044544	0.349095	1.258287	-0.202208	-0.852502	0.641892	0.865197	0
15298	9.445998	9.753709	1.024191	-5.034912	 3.015123	4.586110	0.790168	3.225173	-1.424063	0.122899	-2.219595	-2.714790	-1.504932	7
92427	-3.605716	3.469337	1.918665	0.516582	 -1.327201	-1.846363	2.289454	-0.440023	-0.080028	-0.625288	-0.465426	2.035575	-0.174587	6
34558	-9.059457	-1.644610	-12.454795	0.742105	 -0.781407	-1.293064	1.910416	1.031061	3.143062	-1.155299	-0.956380	-0.180177	0.114737	5
32269	-2.273831	-3.635215	-0.222992	-5.856522	 0.988241	-0.721381	0.397200	1.022100	1.006050	0.210977	-0.189170	1.038266	-0.425491	2
29819	2.523530	-0.901848	-1.493230	1.355247	 0.280164	0.849469	-0.827197	0.097593	-0.966483	0.676990	-0.547292	-0.759527	-0.112446	8

우리에게 있어서 반드시 필요한 것은 아님

(복습: Clustering은 "비지도"학습(즉 Y값,정답이 필요하지 않음))

Step 4) Clustering

총 3가지 방법을 사용해 볼 것

- K Means
- Hierarchical Clustering
- DBSCAN

```
# Kmeans
from sklearn.cluster import KMeans

# Hierarchical CLustering
import fastcluster
from scipy.cluster.hierarchy import dendrogram,cophenet,fcluster
from scipy.spatial.distance import pdist

# OBSCAN
from sklearn.cluster import DBSCAN
```

1. K-Means

Step 4) Clustering

```
pca_df_kmeans = pca_train.copy()

def kmeans_inertia(start,end,sep,reduced_df):
    k_dict=dict()
    n_clus_list = np.arange(start,end,sep).astype('int')
    iner = pd.DataFrame(data=[],index=n_clus_list,columns=['inertia'])

for n in n_clus_list:
    model = KMeans(n_clusters=n,n_init=5,random_state=123)
    model.fit(reduced_df)
    iner.loc[n] = model.inertia_
    k_dict[n]=model
    return iner,k_dict
```

최적의 "K"를 찾기 위한 함수

- ex. start=4부터 end=20까지, 2를 간격으로 K를 설정하여 fitting 시켜보기
- 매 K마다의 inerti를 함께 저장

Step 4) Clustering

```
pca_df_kmeans = pca_train.copy()

def kmeans_inertia(start,end,sep,reduced_df):
    k_dict=dict()
    n_clus_list = np.arange(start,end,sep).astype('int')
    iner = pd.DataFrame(data=[],index=n_clus_list,columns=['inertia'])

for n in n clus_list:
    model = KMeans(n_clusters=n,n_init=5,random_state=123)
    model.fit(reduced_df)
    iner.loc[n] = model.inertia_
    k_dict[n]=model
    return_iner,k_dict
```

최적의 "K"를 찾기 위한 함수

- ex. start=4부터 end=20까지, 2를 간격으로 K를 설정하여 fitting 시켜보기
- 매 K마다의 inerti를 함께 저장

Step 4) Clustering

```
kmeans_iner, kmeans_dict = kmeans_inertia(4,20,2,pca_df_kmeans)
```

kmeans_iner.plot(style='.-', marker='o', markerfacecolor='black')

<matplotlib.axes._subplots.AxesSubplot at 0x19a3f6dab80>

(확실히 딱 꺾이는 지점이 있다고 보긴 어렵지만...) 그나마 적당해 보이는 K=8로 지정하기!

Step 4) Clustering

```
k8 = kmeans_dict[8]
 pca_df_kmeans['cluster'] = k8.labels_
 pca_df_kmeans['cluster'].value_counts()
     10348
     8332
      7175
     6703
      4743
      4483
3
      3125
      3091
```

Name: cluster, dtype: int64

1. K-Means

```
{4: KMeans(n_clusters=4, n_init=5, random_state=123), 6: KMeans(n_clusters=6, n_init=5, random_state=123), 8: KMeans(n_init=5, random_state=123), 10: KMeans(n_clusters=10, n_init=5, random_state=123), 12: KMeans(n_clusters=12, n_init=5, random_state=123), 14: KMeans(n_clusters=14, n_init=5, random_state=123), 16: KMeans(n_clusters=16, n_init=5, random_state=123), 18: KMeans(n_clusters=18, n_init=5, random_state=123)}
```

최종적으로 Clustering된 결과!

kmeans dict

Step 4) Clustering

```
sns.scatterplot(x='PC1',y='PC2',hue='cluster',legend='full',data=pca_df_kmeans)
```

<matplotlib.axes._subplots.AxesSubplot at 0x19a3f7c0940>

Step 4) Clustering

2. Hierarchical Clustering

2.2 Hierarchical Clustering

```
pca_df_hc = pca_train.copy()
pca_df_hc = pca_df_hc.iloc[0:1000,:]

Z = fastcluster.linkage_vector(pca_df_hc.iloc[:,0:20],method='ward',metric='euclidean')
Z_df = pd.DataFrame(Z, columns=['cl_1','cl_2','dist','new_cl_size'])

dend = dendrogram(Z, above_threshold_color='y',orientation='top')
```


Step 4) Clustering

2. Hierarchical Clustering

```
dist_thres = 160
hclust = fcluster(Z,dist_thres,criterion='distance') # cut tree
hclust_df = pd.DataFrame(hclust, index=pca_df_hc.index, columns=['cluster'])
pca_df_hc['cluster'] = hclust_df['cluster']
print('Number of clusters:', hclust_df['cluster'].nunique())
```

Number of clusters: 4

높이 160선에서 자르기 -> 4개의 Cluster

- 장점 : 상황을 눈으로 보아가면서, 원하는 Cluster의 개수를 바로바로 정할 수 있음
- 단점: 데이터가 많을 경우에 부적합

3. DBSCAN

Step 4) Clustering

2.3 DBSCAN

```
pca_df_dbscan = pca_train.copy()

db = DBSCAN(eps=10,min_samples=6,leaf_size=30)

dbscan = db.fit_predict(pca_df_dbscan.iloc[:,0:30])
 dbscan_df = pd.DataFrame(dbscan, index=X_train.index, columns=['cluster'])
 pca_df_dbscan['cluster'] = dbscan_df['cluster']
```

차원이 크면 적용하기 어려움

(기존 data 784개의 차원 충 앞의 30개만 사용했을 때에도, 다 돌아가지 못하고 멈춤...)

SUMMARY

- Clustering은 ML의 "비지도학습" 방법 중 하나로,
 (Y 없이) X만을 사용하여 데이터를 비슷한 특성끼리 묶는 방법이다.
- 2. 대표적인 3가지 Clustering 방법
 - 1. Kmeans : 거리 기반의 Clustering
 - 2. DBSCAN : 밀도 기반의 Clustering
 - 3. Hierarchical Clustering : 계층적으로 Cluster 형성 (top-down & bottom-up)
- 3. Clustering하기 전에, (변수들 간의 scale을 통일 시킨 후) 차원 축소를 거칠 것!
- 4. (K-means 의 경우) Elbow method를 사용하여 적절한 K 찾기

Thank You!