ECE408/CS483/CSE408 Spring 2020

Applied Parallel Programming

Lecture 5: Locality and Tiled Matrix Multiplication

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign

1

```
The Problem: Accesses to Global Memory
 global void MatrixMulKernel(float* d M, float* d N, float* d P, int Width)
 Calculate the row index of the d P element and d M \,
 int Row = blockIdx.y*blockDim.y+threadIdx.y;
 Calculate the column idenx of d_P and d_N
int Col = blockIdx.x*blockDim.x+threadIdx.x;
 if ((Row < Width) && (Col < Width)) {
  float Pvalue = 0;
  each thread computes one element of the block sub-matrix
  for (int k = 0; k < Width; ++k)
                                              accesses
    Pvalue += d M[Row*Width+k]-*
                                              to global
                 d N[k*Width+Col];
   d P[Row*Width+Col] = Pvalue;
                                              memory
      © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
      ECE408/CS483/University of Illinois at Urbana-Champaigr
```

Objective

- To learn to evaluate the performance implications of global memory accesses
- To prepare for MP-3: tiled matrix multiplication
- · To learn to assess the benefit of tiling

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/

2

Review: 4B of Data per FLOP

- · Each threads access global memory
 - -for elements of M and N:
 - -4B each, or 8B per pair.
 - -(And once TOTAL to P per thread—ignore it.)
- · With each pair of elements,
 - -a thread does a single multiply-add,
 - **-2 FLOP**—floating-point operations.
- So for every FLOP,
 - -a thread needs 4B from memory:
 - -4B / FLOP.

© Steven S. Lumetta, 2020 ECE408/CS483/ University of Illinois at Urbana-Champaign

Tiled Matrix-Matrix Multiplication using **Shared Memory**

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign

The Solution? Reuse Memory Accesses!

But 37.5 GFLOPs is a limit.

In an actual execution,

- · memory is not busy all the time, and
- the code runs at about 25 GFLOPs.

To get closer to 1,000 GFLOPs

- we need to drastically cut down
- accesses to global memory.

But ... how?

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/

A Common Programming Strategy

- The dilemma:
 - Matrices M and N are large.
 - They fit easily in global memory, but that's slow.
 - Shared memory is fast, but M and N don't fit.
- The solution:
 - **Break M and N into tiles**
- (called blocks in the much older CPU literature).
- Read a tile into shared memory.
- Use the tile from shared memory.
- Repeat until done.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/

A Common Programming Strategy

- In a GPU, only threads in a block can use shared memory.
- Thus, each block operates on separate tiles:
 - Read tile(s) into shared memory using multiple threads to exploit memory-level parallelism.
 - Compute based on shared memory tiles.
 - Repeat.
 - Write results back to global memory.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign

9

Declaring Shared Memory Arrays [global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) _shared__ float subTileM[TILE_WIDTH][TILE_WIDTH]; _shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];

10

Outline of Technique

- Identify a tile of global data that are accessed by multiple threads
- Load the tile from global memory into on-chip memory
- Have the multiple threads to access their data from the on-chip memory
- · Move on to the next block/tile

ECE408/CS483/University of Illinois at Urbana-Champa

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/

12

Idea: Place global memory data into Shared Memory for reuse • Each input element is used to calculate WIDTH elements of P. • Load each element into Shared Memory and have several threads use the local version to reduce memory bandwidth. • David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign

- All threads in a block participate
 - Each thread loads

13

- one M element and
 - one N element
- in basic tiling code.
- Assign the loaded element to each thread such that the accesses within each warp is coalesced (more later).

Loading a Tile

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/

Tiled Multiply

• Break up the execution of the kernel into phases so that the data accesses in each phase are focused on one subset (tile) of M and N

14

15

15

We're Not There Yet!

- But ...
- How can a thread know
 - That another thread has finished its part of the tile?
 - Or that another thread has finished using the previous tile?

We need to synchronize!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign 25

25

Bulk Synchronous Steps Based on Barriers

- How does it work?
 Use a barrier to wait for thread to 'catch up.'
- A barrier is a synchronization point:
 - each thread calls a function to enter barrier;
 - threads block (sleep) in barrier function until all threads have called;
 - after last thread calls function,
 all threads continue past the barrier.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign 27

Leveraging Parallel Strategies

- Bulk synchronous execution: threads execute roughly in unison
 - 1. Do some work
 - 2. Wait for others to catch up
 - 3. Repeat
- Much easier programming model
 - Threads only parallel within a section
 - Debug lots of little programs
 - Instead of one large one.
- Dominates high-performance applications

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign 26

26

Use __syncthreads for CUDA Blocks

- How does it work in CUDA?
 Only within thread blocks!
- The function: void __syncthreads (void);
- N.B.
 - All threads in block must enter (no subsets).
 - All threads must enter the SAME static call (not the same as all threads calling function!).

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign 29

29

Tiled Matrix Multiplication Kernel

```
global void MatrixMulKernel(float* M, float* N, float* P, int Width)
     shared float subTileM[TILE WIDTH][TILE WIDTH];
    __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];

 int bx = blockIdx.x; int by = blockIdx.y;

4. int tx = threadIdx.x; int ty = threadIdx.y;
    // Identify the row and column of the P element to work on
5. int Row = by * TILE WIDTH + ty; // note: blockDim.x == TILE WIDTH
6. int Col = bx * TILE_WIDTH + tx; // blockDim.y == TILE_WIDTH
7. float Pvalue = 0;
    // Loop over the M and N tiles required to compute the P element
    // The code assumes that the Width is a multiple of TILE WIDTH!
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {</pre>
      // Collaborative loading of M and N tiles into shared memory
     subTileM[ty][tx] = M[Row*Width + m*TILE_WIDTH+tx];

    subTileN[ty][tx] = N[(m*TILE WIDTH+ty)*Width+Col];

       syncthreads();
11.
12. for (int k = 0; k < TILE WIDTH; ++k)
13.
          Pvalue += subTileM[ty][k] * subTileN[k][tx];
       __syncthreads();
14.
15. }
16. P[Row*Width+Col] = Pvalue;
                                                                           31
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
```

Barrier Trauma: What's Actually Done?

- What exactly is guaranteed to have finished?
 - Are shared memory operations before a barrier (e.g., stores) guaranteed to have completed?
 - What about global memory ops?
 - What about atomic ops with no return values?
 - What about I/O operations?
- CUDA manual: all global and shared memory ops (which presumably includes atomic variants) have completed.
- Avoid assumptions about I/O (such as printf).

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign 30

30

Compare with Basic MM Kernel

```
global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)
{
   // Calculate the row index of the P element and M
   int Row = blockIdx.y * blockDim.y + threadIdx.y;
   // Calculate the column index of P and N
   int Col = blockIdx.x * blockDim.x + threadIdx.x;

if ((Row < Width) && (Col < Width)) {
    float Pvalue = 0;

   // each thread computes one element of the block sub-matrix
   for (int k = 0; k < Width; ++k)
        Pvalue += M[Row*Width+k] * N[k*Width+Col];

   P[Row*Width+Col] = Pvalue;
   }
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
   University of Illinois at Urbana-Champaign</pre>
```

Use of Large Tiles Shifts Bottleneck

- Recall our example GPU: 1,000 GFLOP/s, 150 GB/s
- 16x16 tiles use each operand for 16 operations
 - reduce global memory accesses by a factor of 16
 - 150GB/s bandwidth supports (150/4)*16 = 600 GFLOPS!
- 32x32 tiles use each operand for 32 operations
 - reduce global memory accesses by a factor of 32
 - 150 GB/s bandwidth supports (150/4)*32 = 1,200 GFLOPS!
 - Memory bandwidth is no longer the bottleneck!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/

33

33

Another Good Choice: 32x32 Tiles

- Given TILE_WIDTH of 32 (1,024 threads / block),
 - each thread block uses2*1024*4B = 8kB of shared memory,
 - which limits active blocks to 8:
 - max. of 2,048 threads per SM,
 - which limits blocks to 2.
 - Thus up to 2*2,048 = 4,096 pending loads
 (2 per thread, 1,024 threads per block)

(same memory parallelism exposed)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign 35

Also Need Parallel Accesses to Memory

- · Shared memory size
 - implementation dependent
 - 64kB per SM in Maxwell (48kB max per block)
- Given TILE WIDTH of 16 (256 threads / block),
 - each thread block uses2*256*4B = 2kB of shared memory,
 - which limits active blocks to 32;
 - max. of 2048 threads per SM,
 - which limits blocks to 8.
 - Thus up to 8*512 = 4,096 pending loads
 (2 per thread, 256 threads per block)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign 34

34

36

Current GPU? Use Device Query

· Number of devices in the system

```
int dev_count;
cudaGetDeviceCount( &dev_count);
```

Capability of devices

```
cudaDeviceProp dev_prop;
for (i = 0; i < dev_count; i++) {
          cudaGetDeviceProperties( &dev_prop, i);
          // decide if device has sufficient resources and capabilities
}</pre>
```

- cudaDeviceProp is a built-in C structure type
 - $-\ dev_prop.dev_prop.maxThreadsPerBlock$
 - Dev_prop.sharedMemoryPerBlock

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign

ANY MORE QUESTIONS? READ CHAPTER 4!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign