# Matemática Discreta I Clase 12 - Máximo común divisor (1)

FAMAF / UNC

3 de mayo de 2022

## Definición de MCD

### Definición

Si a y b son enteros algunos de ellos no nulo, decimos que un entero positivo d es un máximo común divisor, o mcd, de a y b si

- a) d a y d b;
- b) si c|a y c|b entonces c|d.

## Definición de MCD

### Definición

Si a y b son enteros algunos de ellos no nulo, decimos que un entero positivo d es un máximo común divisor, o mcd, de a y b si

- a) d|a y d|b;
- b) si c|a y c|b entonces c|d.
  - La condición (a) nos dice que d es un común divisor de a y b.

## Definición de MCD

### Definición

Si a y b son enteros algunos de ellos no nulo, decimos que un entero positivo d es un  $m\'{a}ximo$   $com\'{u}n$  divisor, o mcd, de a y b si

- a) d|ayd|b;
- b) si c|a y c|b entonces c|d.
  - La condición (a) nos dice que d es un común divisor de a y b.
  - La condición (b) nos dice que cualquier divisor común de *a* y *b* es también divisor de *d*.

¿Cuál es el mcd entre 60 y 84?

¿Cuál es el mcd entre 60 y 84?

## Solución

¿Cuál es el mcd entre 60 y 84?

## Solución

- 6 es un divisor común de 60 y 84, pero no es el mayor divisor común, porque 12|60 y 12|84 pero 12 /6.
- Los divisores positivos comunes de 60 y 84 son 1, 2, 3, 6 y 12, luego aunque 6 es un divisor común, no satisface (2) de la definición.
- En este caso, 12 claramente es el máximo común divisor.

• Dados  $a, b \in \mathbb{Z}$  arbitrarios, alguno de ellos no nulo ¿existe el máximo común divisor?

• Dados  $a, b \in \mathbb{Z}$  arbitrarios, alguno de ellos no nulo ¿existe el máximo común divisor? Rta: Sí.

- Dados a, b ∈ Z arbitrarios, alguno de ellos no nulo ¿existe el máximo común divisor?
   Rta: Sí.
- Si existe, ¿hay una forma eficiente de calcularlo?

- Dados a, b ∈ Z arbitrarios, alguno de ellos no nulo ¿existe el máximo común divisor?
   Rta: Sí.
- Si existe, ¿hay una forma eficiente de calcularlo?
   Rta: Sí.

- Dados a, b ∈ Z arbitrarios, alguno de ellos no nulo ¿existe el máximo común divisor?
   Rta: Sí.
- Si existe, ¿hay una forma eficiente de calcularlo?
   Rta: Sí.
- ¿Cuántos máximos común divisores puede tener un par de enteros?

- Dados a, b ∈ Z arbitrarios, alguno de ellos no nulo ¿existe el máximo común divisor?
   Rta: Sí.
- Si existe, ¿hay una forma eficiente de calcularlo?
   Rta: Sí.
- ¿Cuántos máximos común divisores puede tener un par de enteros? Rta: 1.

#### Teorema

Dados  $a, b \in \mathbb{Z}$ , alguno de ellos no nulo, existe un único  $d \in \mathbb{Z}$  que es el máximo común divisor.

#### Teorema

Dados  $a, b \in \mathbb{Z}$ , alguno de ellos no nulo, existe un único  $d \in \mathbb{Z}$  que es el máximo común divisor.

Idea de la demostración

#### Teorema

Dados a,  $b \in \mathbb{Z}$ , alguno de ellos no nulo, existe un único  $d \in \mathbb{Z}$  que es el máximo común divisor.

Idea de la demostración

$$S = \{ma + nb : m, n \in \mathbb{Z}, ma + nb > 0\} \subset \mathbb{N}.$$

El mínimo de S es el mcd.



#### Teorema

Dados  $a, b \in \mathbb{Z}$ , alguno de ellos no nulo, existe un único  $d \in \mathbb{Z}$  que es el máximo común divisor.

Idea de la demostración

$$S = \{ma + nb : m, n \in \mathbb{Z}, ma + nb > 0\} \subset \mathbb{N}.$$

El mínimo de S es el mcd.

#### Notación

Sean  $a, b \in \mathbb{Z}$ , alguno de ellos no nulo, denotamos mcd(a, b) o (a, b) al máximo común divisor entre a y b.

 $\mathsf{Hallar}\ \mathsf{mcd} (174,72).$ 

Hallar mcd(174, 72).

## Solución

Hallar mcd(174, 72).

## Solución

Divisores de 174: 1, 2, 3, 6, 29, 58, 87, 174

Hallar mcd(174,72).

## Solución

Divisores de 174: 1, 2, 3, 6, 29, 58, 87, 174

Divisores de 72: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72

Hallar mcd(174, 72).

## Solución

Divisores de 174: 1, 2, 3, 6, 29, 58, 87, 174

Divisores de 72: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72

Luego, 6 es divisor común de 174 y 72, y todos los demás divisores comunes (1, 2 y 3) dividen a 6.

Por lo tanto mcd(174,72) = 6.

Sean a,  $b \in \mathbb{Z}$ , alguno de ellos no nulo. Entonces existen s,  $t \in \mathbb{Z}$  tal que

$$(a,b)=sa+tb.$$

#### Demostración

Es consecuencia inmediata de la demostración del teorema de la p. 5.



Sean  $a,b\in\mathbb{Z}$ , alguno de ellos no nulo. Entonces existen  $s,t\in\mathbb{Z}$  tal que

$$(a,b)=sa+tb.$$

#### Demostración

Es consecuencia inmediata de la demostración del teorema de la p. 5.

### Corolario

Sean a y b enteros, b no nulo, entonces

$$(a,b)=1 \Leftrightarrow \text{existen } s,t\in\mathbb{Z} \text{ tales que } 1=sa+tb.$$

Sean  $a,b\in\mathbb{Z}$ , alguno de ellos no nulo. Entonces existen  $s,t\in\mathbb{Z}$  tal que

$$(a,b)=sa+tb.$$

#### Demostración

Es consecuencia inmediata de la demostración del teorema de la p. 5.

### Corolario

Sean a y b enteros, b no nulo, entonces

$$(a,b)=1 \Leftrightarrow \text{existen } s,t\in\mathbb{Z} \text{ tales que } 1=sa+tb.$$

#### Definición

Si (a, b) = 1 entonces decimos que a y b son coprimos.

#### Observación

Por el corolario de la página anterior

a,b coprimos  $\Leftrightarrow$  existen  $s,t\in\mathbb{Z}$  tales que 1=sa+tb.

#### Observación

NO es cierto que si existen  $s,t\in\mathbb{Z}$  tales que  $d=sa+tb\Rightarrow d=(a,b)$ .

Por ejemplo,  $4 = 2 \cdot 6 + (-2) \cdot 4$  y (6, 4) = 2.



Clase 12 - MCD (1)

03/05/2022

Sean a,b enteros con  $a \neq 0$ , entonces

1. 
$$mcd(b, a) = mcd(a, b) = mcd(\pm a, \pm b)$$
,

Sean a, b enteros con  $a \neq 0$ , entonces

- 1.  $mcd(b, a) = mcd(a, b) = mcd(\pm a, \pm b)$ ,
- 2.  $si \ a > 0$ ,  $mcd(a, 0) = a \ y \ mcd(a, a) = a$ ,

Sean a, b enteros con  $a \neq 0$ , entonces

- 1.  $mcd(b, a) = mcd(a, b) = mcd(\pm a, \pm b)$ ,
- 2.  $si \ a > 0$ ,  $mcd(a, 0) = a \ y \ mcd(a, a) = a$ ,
- 3. mcd(1, b) = 1.

Sean a, b enteros con  $a \neq 0$ , entonces

- 1.  $mcd(b, a) = mcd(a, b) = mcd(\pm a, \pm b)$ ,
- 2.  $si \ a > 0$ ,  $mcd(a, 0) = a \ y \ mcd(a, a) = a$ ,
- 3. mcd(1, b) = 1.

#### Demostración

Estas propiedades son de demostración casi trivial, por ejemplo para demostrar que  $\mathrm{mcd}(1,b)=1$  comprobamos que 1 cumple con la definición:

- (a) 1|1 y 1|b;
- (b) si c|1 y c|b entonces c|1,

propiedades que son obviamente verdaderas.

1. y 2. se dejan a cargo del lector.



## Propiedad

Si  $a \neq 0, b \in \mathbb{Z}$ , entonces mcd(a, b) = mcd(a, b - a).

## Propiedad

Si  $a \neq 0, b \in \mathbb{Z}$ , entonces mcd(a, b) = mcd(a, b - a).

### Demostración

Sea d = mcd(a, b), luego

(a)  $d|a \ y \ d|b$  y (b) si  $c|a \ y \ c|b$  entonces c|d.

## Propiedad

Si  $a \neq 0, b \in \mathbb{Z}$ , entonces mcd(a, b) = mcd(a, b - a).

#### Demostración

Sea d = mcd(a, b), luego

(a)  $d|a \ y \ d|b$  y (b) si  $c|a \ y \ c|b$  entonces c|d.

Debemos probar que

(a') d|a y d|b - a y (b') si c|a y c|b - a entonces c|d.

## Propiedad

Si  $a \neq 0, b \in \mathbb{Z}$ , entonces mcd(a, b) = mcd(a, b - a).

#### Demostración

Sea d = mcd(a, b), luego

(a) d|a y d|b y (b) si c|a y c|b entonces c|d.

Debemos probar que

(a') d|a y d|b - a y (b') si c|a y c|b - a entonces c|d.

Por (a),  $d|a y d|b \Rightarrow d|b - a \Rightarrow$  (a').

## Propiedad

Si  $a \neq 0, b \in \mathbb{Z}$ , entonces mcd(a, b) = mcd(a, b - a).

### Demostración

Sea d = mcd(a, b), luego

(a)  $d|a \ y \ d|b$  y (b) si  $c|a \ y \ c|b$  entonces c|d.

Debemos probar que

(a')  $d|a \ y \ d|b-a \ y$  (b') si  $c|a \ y \ c|b-a$  entonces c|d.

Por (a),  $d|a \text{ y } d|b \Rightarrow d|b-a \Rightarrow$  (a').

Si  $c|a \text{ y } c|b-a \Rightarrow c|a+(b-a)=b \stackrel{(b)}{\Rightarrow} c|d \Rightarrow (b').$ 

Encontrar el mcd entre 72 y 174.

Encontrar el mcd entre 72 y 174.

Solución: 
$$(72, 174) = (72, 174 - 72) = (72, 102)$$
  
 $= (72, 102 - 72) = (72, 30)$   
 $= (30, 72)$   
 $= (30, 42)$   
 $= (30, 42 - 30) = (30, 12)$   
 $= (12, 30)$   
 $= (12, 30 - 12) = (12, 18)$   
 $= (12, 18 - 12) = (12, 6)$   
 $= (6, 12)$   
 $= (6, 12 - 6) = (6, 6)$   
 $= (6, 6 - 6) = (6, 0) = 6$ 

- En general no es sencillo encontrar todos los divisores de un número entero grande.
- No es factible calcular el mcd de números grandes revisando todos los divisores comunes.
- El algoritmo anterior nos da un método práctico y relativamente eficiente para calcular el mcd.

- En general no es sencillo encontrar todos los divisores de un número entero grande.
- No es factible calcular el mcd de números grandes revisando todos los divisores comunes.
- El algoritmo anterior nos da un método práctico y relativamente eficiente para calcular el mcd.

La próxima proposición nos provee una herramienta aún mejor para calcular el mcd.

- En general no es sencillo encontrar todos los divisores de un número entero grande.
- No es factible calcular el mcd de números grandes revisando todos los divisores comunes.
- El algoritmo anterior nos da un método práctico y relativamente eficiente para calcular el mcd.

La próxima proposición nos provee una herramienta aún mejor para calcular el mcd.

## Proposición

Sean a, b enteros no negativos con  $b \neq 0$ , entonces

$$a = bq + r \Rightarrow \operatorname{mcd}(a, b) = \operatorname{mcd}(b, r).$$
 (1)

Encuentre el mcd de 174 y 72.

Encuentre el mcd de 174 y 72.

Solución

Encuentre el mcd de 174 y 72.

### Solución

Con el uso repetido de la proposición anterior, obtenemos

$$174 = 72 \cdot 2 + 30$$
, entonces  $(174, 72) = (72, 30)$   
 $72 = 30 \cdot 2 + 12$ , entonces  $(72, 30) = (30, 12)$   
 $30 = 12 \cdot 2 + 6$ , entonces  $(30, 12) = (12, 6)$   
 $12 = 6 \cdot 2 + 0$ , entonces  $(12, 6) = (6, 0) = 6$ .

Por lo tanto (174, 72) = 6.