Z80 Microprocessor Kit User's manual

Z80 MICROPROCESSOR KIT USER'S MANUAL

CONTENTS

OVERVIEW	3
FUNCTIONAL BLOCK DIAGARM	3
HARDWARE LAYOUT	4
KEYBOARD LAYOUT	5
HARDWARE FEATURES	6
MEMORY AND I/O MAPS	6
GPIO1 LED	7
CONNECTING Z80 KIT TO TERMINAL	8
EXPANSION BUS HEADER	9
10ms TICK GENERATOR	10
RS232C PORT	11
DATA FRAME for UART COMMUNICATION	11
CONNECTING LCD MODULE	12
LOGIC PROBE POWER SUPPLY	12
HARDWARE SCHEMATIC, BOM, AND PCB LAYOUT	13

OVERVIEW

The Z80 microprocessor kit is a single board microcomputer designed for self learning. Students will learn how to build the computer using the 1976, Z80 microprocessor with memory and simple I/O chips. The kit can be assembled at home without the need of special tools. The kit itself is the real microcomputer. Students will learn how to program the Z80 microprocessor in machine language with instruction hex code. The hex code can be entered to memory and tested it directly. Results of CPU operations can be checked in the memory or user registers display easily.

The kit manuals are 1) user's manual for hardware details, 2) programming lab book and 3) construction guide for kit assemble steps.

RS232C AC adapter 2400 Bit/s 32kB User RAM +5VDC **UART** power PLD supply decoder 4kB Monitor ROM 10ms tick 1.79MHz Interfacing Z80 generator Oscillator bus **←** Microprocessor expansion 6-digit 7-segment display 16x2 Text LCD module 8-bit debugging LED Keyboard, hex key, functions key and CPU Logic speake control key Probe +5V supply r

Z80 KIT FUNCTIONAL BLOCK DIAGRAM

Notes

- 1. UART is software control for low speed asynchronous communication.
- 2. LCD module is optional, the kit provides a 16-pin header.
- 3. 10ms Tick generator is for a maskable interrupt source. NMI is used by single stepping circuit.

HARDWARE LAYOUT

Important Notes

- 1. Plugging or removing the LCD module must be done when the kit is powered off!
- 2. AC adapter should provide approx. +9VDC, higher voltage will cause the voltage regulator chip, U9 becomes hot.
- 3. The kit has diode protection for wrong polarity of adapter jack. If the center pin is not the positive (+), the diode will reverse bias, preventing wrong polarity to feed to voltage regulator.

KEYBOARD LAYOUT

COPY	SZxH	xPNC	SZxH'	xPNC'	PC	SBR	INS	RESET
	C	D	E	F				
REL	IX	IY	SP	IxIF	REG	CBR	DEL	MON
	8	9	Α	В				
SEND	AF'	BC'	DE'	HĽ	DATA	-	STEP	INTR
	4	5	6	7				
LOAD	AF	ВС	DE	HL	ADDR	+	GO	USER
	0	1	2	3				

HEX keys Hexadecimal number 0 to F with associated user registers and flag bits when press REG

CPU control keys

RESET	Reset the CPU.	Z80 will begin	fetch the code fr	om location 0000

MON Force CPU to jump back to monitor program

INTR Make INT pin to logic low, used for experimenting with interrupt process

USER User key for lab test, active low

Monitor function keys

INS Insert byte to memory, current byte will be shifting down.

DEL Delete current byte, the next byte will be shifting up.

STEP Execute user code only single instruction and return to save CPU registers

GO Jump from monitor program to user code

SBR Set break address

CBR Clear break address

PC Set current display address with user Program Counter

REG Display user registers or flags with HEX key for a given register.

DATA Set entry mode of hex keys to Data field **ADDR** Set entry mode of hex keys to Address field

COPY Copy block of memory, used with key + for Start, End, Destination and key

GO

REL Compute relative byte, used with key + for Start, Destination and key GO

SEND Send Intel hex file at 2400 bit/s using serial port

LOAD Load Intel hex file at 2400 bit/s using serial port

HARDWARE FEATURES

• Microprocessor: Zilog Z80 @1.79MHz, 40-pin DIP package

• Memory: 4kB monitor ROM, 32KB user RAM

Memory& I/O Decoder logic: GAL16V8

System tick: 10ms produced by AT89C2051 microcontroller

• GPIO: 8-bit LED display

• DISPLAY: 6-digit super bright 7-segment display

Keypad: 36-key

Serial port: 2400 Bit/s RS232C using software controlled UART

• Expansion slot: 40-pin header

• LCD bus: 16x2 text display direct bus interface

MEMORY AND I/O MAP

The Z80 kit has separated memory and I/O space. Memory space is selected with MREQ signal, I/O space with IORQ signal. The bank areas for both memory and I/O are available for experimenting.

	64kB Memory		256 bytes I/O
0000H	4kB Monitor ROM	00H	PORT0
0FFFH	4KD MONITO ROW	01H	PORT1
1000H	001 D DAM	02H	PORT2
	32kB RAM		
055511		40H	GPI01
8FFFH			
		80H	LCD command WR
		81H	LCD data WR
FFFFH		82H	LCD command RD
	<u> </u>	83H	LCD data RD
		C0H- C3H	User
		••••	

GPIO1 LED

The Z80 kit provides a useful 8-bit binary display. It can be used to debug the program or code running demonstration. The I/O address is 40H. U16 is 8-bit data latch. Logic 1 at the output will make LED lit.

The GPIO1 LED can be used to display accumulator register easily. Let us take a look the sample code below.

Address	Hex code	Label	Instruction	comment
1800	3E 01	MAIN	LD A,1	Load register A with 1
1802	D3 40		OUT (40H),A	Write A to GPIO1@ 40H

The test code has only two instructions. Each instruction has machine code of two bytes. Enter the hex code to memory from 1800 to 1803. Then press PC, and execute the instruction with single step by pressing key STEP. The 2nd pressed STEP key that executes instruction out (40H),A will make the GPIO1 LED showing the content of register A.

Another sample is with JUMP instruction. The JUMP instruction will change the Program Counter to 1800, to repeat program running.

Address	Hex code	Label	Instruction	comment
1800	3C	MAIN	INC A	Increment register A
1801	D3 40		OUT (40H),A	Write A to GPIO1@ 40H
1803	C3 00 18		JP MAIN	Jump back to main

Again enter the hex code to memory and test it with single step. Every time when instruction out(40H), A was executed, did you see the LED display changed?

We will learn more the use of GPIO1 with Z80 Programming Lab Book.

CONNECTING Z80 KIT TO TERMINAL

All of monitor commands are compatible with MPF-1, except SEND and LOAD keys. For LOAD key, we can connect the Z80 kit to a terminal by RS232C cross cable. You may download free terminal program, teraterm from this URL, http://ttssh2.sourceforge.jp/index.html.en

The example shows connecting laptop with COM1 port to the RS232C port of the Z80 kit.

To download Intel hex file that generated from the assembler or c compiler, set serial port speed to 2400 bit/s, 8-data bit, no parity, no flow control, one stop bit.

Tera Term: Serial port setup					
Port:	COM1	~	OK		
Baud rate:	2400	~			
Data:	8 bit	~	Cancel		
Parity:	none	~			
Stop:	1 bit	~	Help		
Flow control:	none	~			
Transmit delay 1 msec/char 0 msec/line					

Press key LOAD, then key GO. The kit will wait for the data stream from terminal. On PC, Click file>Send File>LED.HEX. The kit will read the hex file, write to memory, when completed the start message will be displayed.

SEND key will need Start, End address then press GO, the kit will send Intel hex file to terminal.

EXPANSION BUS HEADER

JP1, 40-pin header provides CPU bus signals for expansion or I/O interfacing. Students may learn how to make the simple I/O port, interfacing to Analog-to-Digital Converter, interfacing to stepper motor or AC power circuits.

USER KEY

User key, S19 is one bit active low key switch connected to bit 6 of Port 0. To test the logic of S19, we can use IN A,(0) and check bit 6 of the accumulator with test bit instruction.

9

10ms TICK GENERATOR

SW4 is a selector for interrupt source between key INTR or 10ms tick produced by 89C2051 microcontroller. Tick generator is software controlled using timer0 interrupt in the 89C2051 chip. The active low tick signal is sent to P3.7. For tick running indicator, P1.7 drives D15 LED.

Tick is a 10ms periodic signal for triggering the Z80 interrupt pin. When select SW4 to Tick, the Z80 CPU can be triggered by a maskable interrupt. The 100Hz tick or 10ms tick can be used to produce tasks that executed with multiple of tick. The Z80 kit lab look will show how to use 10ms tick to make a digital timer.

RS232C PORT

The RS232C port is for serial communication. We can use a cross cable or null MODEM cable to connect between the kit and terminal, or kit #1 to kit #2 for sending or receiving hex file. The connector for both sides are DB9 female. We may build it or buying from computer stores.

DATA FRAME for UART COMMUNICATION

Serial data that communicated between kit and terminal is asynchronous format. The Z80 kit has no UART chip, instead it uses software controlled to produce bit rate of 2400 bit/s. The data frame is composed of start bit, 8-data bit and stop bit. For our kit, period = 1/2400 = 417 microseconds.

Since bit period is provided by machine cycle delay. Thus to send/receive serial data correctly, all interrupts must be disabled.

CONNECTING LCD MODULE

JR1 is 20-pin header for connecting the LCD module. The example shows connecting the 16x2 lines text LCD module. R17 is a current limit resistor for back-light. R18 is trimmer POT for contrast adjustment. The LCD module is interfaced to the Z80 bus directly. The command and data registers are located in I/O space having address from 80H to 83H.

Be advised that plugging or removing the LCD module must be done when the kit is powered off.

Text LCD module accepts ASCII codes for displaying the message on screen.

Without settings the LCD by software, no characters will be displayed. The first line

will be black line by adjusting the R18 for contrast adjustment.

LOGIC PROBE POWER SUPPLY

The kit provides test points TP1(+5V) and TP2(GND) for using the logic probe. Students may learn digital logic signals with logic probe easily. The important signals are RESET (TP4) and CPU clock (TP3). Tick signal, however indicated by D15 LED blinking. Logic probe can test it at P3.7 of the 89C2051 microcontroller directly. Red clip is for +5V and Black clip for GND.

HARDWARE SCHEMATIC, PARTS LIST AND PCB LAYOUT

PARTS LIST

			Capa	citors		
Semi	conduct	tors				
			C1	100pF ceramic		
U1	Z80 4	0-pin DIP microprocessor	C2,C3	3,C15,C16,C17 10uF electrolytic		
U2	27C64	4 or 27C256 EPROM	C4	100uF electrolytic		
U3	HM62	2256B 32kB SRAM	C5	10uF 16V electrolytic		
U4	74LS	14 inverter	C6 1000uF 16V electrolytic			
U5	74HC	74 Dual D-type flip-flop	C7,C8	3,C9,C10,C11 0.1uF multi layer		
U6	GAL1	6V8B programmable logic device	C12,C	0.1uF multilayer		
U7	74LS	90 decade counter	C14	10uF 10V electrolytic		
U8	AT89	C2051 20-pin microcontroller	C18	0.1uF multilayer		
U9	LM78	805/TO voltage regulator		•		
U11,U	J10 LTC	C-4727JR 4-digit 7-segment LED	Addit	ional parts		
		6 74HC573 8-bit latch		•		
U13	CD40	01 quad NOR gate	JP1	HEADER 20X2		
U15	74HC	541 tri-state buffer	JR1	CONN RECT 16 pins		
U17	MAX	232A rs232 converter	J1	DC input JACK		
D1,D0	6,D7,D8	8,D9,D10,D11, 3mm LED	J2 HEADER 3 pins			
D12,I	D13,D1:	5	LS1	LS1 8 Ohms SPEAKER		
D2	TVS5	V_SOD123 transient voltage				
	suppressor		SW1	RESET 12mm tact switch		
D4	1N40	07 rectifying diode	SW2	SW2 INTR 12mm tact switch		
D14	1N52	26A +3.3V zener 500mW	SW3	W3 MONITOR 12mm tact switch		
Q2,Q1 BC557 PNP transistor		SW4	slide switch-SPDT			
D3 POWER 3mm LED						
D5	TONE	E 3mm LED	S1,S2	,S3,S4,S5,S6,S7,S8, 12mm TACT switch		
			S9,S1	0,S11,S12,S13,S14,		
Resist	tors (al	l resistors are 1/8W +/-5%)	S15,S16,S17,S18,S19,S20,			
			S21,S	22,S23,S24,S25,S26,		
R1,R2,R9 1k		S27,S28,S29,S30,S31,S32,				
R3,R4,R5,R6,R8,R1810K		S33				
R7,R1	19	680 Ohms				
R10		2k	VB1	DB 9, Male connector		
R16,F	R12	10k RESISTOR SIP 9	Y1	XTAL 3.579MHz		
R13		4.7k	PCB	double side plate through hole		
R14			LED cover Clear RED color acrylic plastic			
R17,F	R15	10 Ohms		pard sticker printable SVG file		
-			-	<u>*</u>		

Capacitors

SILK SCREEN TOP LAYER

TOP LAYER

BOTTOM LAYER

NOTE