In [1]:

```
import pandas as pd
import numpy as np
from scipy.cluster.hierarchy import dendrogram, linkage
from matplotlib import pyplot as plt
from sklearn.preprocessing import StandardScaler, normalize
```

In [2]:

```
df=pd.read_csv('Downloads/Telegram Desktop/dataset.csv',sep=',',header=None)
```

In [3]:

df

Out[3]:

	0	1
0	76.954460	10.881760
1	76.962920	10.859130
2	76.968980	10.865150
3	76.974120	10.867120
4	76.973840	10.869670
2908	79.131900	12.921410
2909	79.129570	12.921030
2910	76.721080	8.082150
2911	80.320300	13.214610
2912	0.071984	0.102649

2913 rows × 2 columns

In [4]:

```
from scipy.cluster.hierarchy import single, cophenet
from scipy.spatial.distance import pdist, squareform
```

In [5]:

Out[5]:

	Linkage	Cophenet Coeff
0	Single	0.902287
1	Complete	0.899687
2	Average	0.954197
3	Weighted	0.944419
4	Centroid	0.954197

In [30]:

```
K Values Silhouette index
                         0.975861
0
           2
           3
                         0.717708
1
           4
2
                         0.761593
3
           5
                         0.809102
4
                         0.817452
           6
5
           7
                         0.814944
K value 2 is giving the optimum \ensuremath{\mathsf{T}}
```

In [8]:

```
linked = linkage(df, 'average')
plt.figure(figsize=(15, 15))
dendrogram(linked)
plt.title('Hierarchical Clustering Dendrogram (Average)', fontsize=20)
plt.show()
```


In [31]:

Out[31]:

<matplotlib.collections.PathCollection at 0x2821e90d080>

In []: