Variable Compleja I Tema 13: Singularidades

1 Series de Laurent

Puntos regulares y singularidades

3 Clasificación de las singularidades

Concepto de serie de Laurent

Definición y notación

Serie de Laurent centrada en $a \in \mathbb{C}$: serie de funciones $\sum_{n \geqslant 0} f_n$ donde, para

 $n\in\mathbb{N}\cup\{0\}\,,\ f_n:\mathbb{C}\setminus\{a\}\to\mathbb{C}$ viene dada, para todo $z\in\mathbb{C}\setminus\{a\}\,,$ por:

$$f_0(z) = c_0$$
 y $f_n(z) = c_n(z-a)^n + \frac{c_{-n}(z-a)^{-n}}{\sqrt{n}} \quad \forall n \in \mathbb{N}$

Si la denotamos por $\{S_n\}$ entonces, para todo $n\in\mathbb{N}$ y $z\in\mathbb{C}\setminus\{a\}$ tenemos:

$$S_{n+1}(z) = \sum_{k=-n}^{n} c_k (z-a)^k$$

La serie de Laurent recién definida se denota por: $\sum_{n\in\mathbb{Z}}c_n(z-a)^n$

y cuando converge en un punto $z \in \mathbb{C} \setminus \{a\}$, su suma es

$$\sum_{n=-\infty}^{+\infty} c_n (z-a)^n \stackrel{\text{def}}{=} \lim_{n\to\infty} \sum_{k=-n}^n c_k (z-a)^k$$

Anillos

Convenios

A partir de ahora:

$$\rho < \infty \quad \forall \rho \in \mathbb{R}_0^+$$

$$\frac{1}{\infty} = 0$$

$$y \qquad \frac{1}{0} = \infty$$

Anillos

$$a \in \mathbb{C}$$
, $0 \leqslant r < R \leqslant \infty$

Anillo de centro a con radios r y R:

$$A(a; r,R) = \{ z \in \mathbb{C} : r < |z-a| < R \}$$

- r = 0, $R \in \mathbb{R}^+$: $A(a; 0, R) = D(a, R) \setminus \{a\}$
- \bullet $r \in \mathbb{R}^+$, $R = \infty$: $A(a; r, \infty) = \mathbb{C} \setminus \overline{D}(a, r)$
- $A(a;0,\infty) = \mathbb{C} \setminus \{a\}$

Anillo de convergencia

Radios de convergencia

Una serie de Laurent $\sum_{n} c_n (z-a)^n$ tiene dos radios de convergencia:

- ullet R^+ = radio de convergencia de la serie de potencias $\sum_{n\geqslant 0} c_n (z-a)^n$
- R^- = radio de convergencia de la serie de potencias $\sum_{n\geqslant 1} c_{-n} w^n$

$$R^{+} = \frac{1}{\limsup \left\{ \sqrt[n]{|c_n|} \right\}} \quad \text{y} \quad R^{-} = \frac{1}{\limsup \left\{ \sqrt[n]{|c_{-n}|} \right\}}$$

Anillo de convergencia

 $\sum_{n\in\mathbb{Z}}c_n(z-a)^n$ es una serie de Laurent no trivial cuando: $\frac{1}{R^-}< R^+,~$ lo que, en particular, implica $R^->0~$ y $R^+>0$

Anillo de convergencia:
$$A\left(a; \frac{1}{R^-}, R^+\right)$$

Construcción de funciones holomorfas en anillos arbitrarios

Convergencia de las series de Laurent

 $\sum_{n\in\mathbb{Z}}c_n(z-a)^n$ serie de Laurent no trivial, Ω su anillo de convergencia

- \bullet La serie converge absoluta y uniformemente en cada subconjunto compacto de Ω
- Por tanto, su suma es una función $f \in \mathcal{H}(\Omega)$:

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n \quad \forall z \in \Omega$$

• De hecho, las series $\sum_{n\geqslant 0} c_n (z-a)^n$ y $\sum_{n\geqslant 1} \frac{c_{-n}}{(z-a)^n}$ convergen absoluta y uniformemente en cada subconjunto compacto de Ω , y se tiene:

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n + \sum_{n=1}^{\infty} \frac{c_{-n}}{(z-a)^n} \qquad \forall z \in \Omega$$

Desarrollo en serie de Laurent

Teorema

$$\Omega = A(a; r, R)$$
 anillo arbitrario, $f \in \mathcal{H}(\Omega)$

• Existe una única serie de Laurent no trivial $\sum_{n\in\mathbb{Z}} c_n (z-a)^n$, cuyo anillo de convergencia contiene a Ω , que verifica:

$$f(z) = \sum_{n = -\infty}^{+\infty} c_n (z - a)^n \qquad \forall z \in \Omega$$
 (*)

• De hecho, para cualquier $\rho \in \mathbb{R}^+$ con $r < \rho < R$, se tiene:

$$c_n = \frac{1}{2\pi i} \int_{C(a,p)} \frac{f(w)}{(w-a)^{n+1}} dw \qquad \forall n \in \mathbb{Z}$$

Desarrollo de Laurent

Se dice que (*) es el desarrollo de Laurent de f en el anillo Ω El teorema anterior generaliza al que nos dió el desarrollo de Taylor

Parte regular y parte singular

Notación para todo lo que sigue

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad a \in \Omega, \quad f \in \mathcal{H}(\Omega \setminus \{a\})$$

Pretendemos saber cómo se comporta f en a, una "posible singularidad"

$$R \in \mathbb{R}^+$$
 con $D(a,R) \subset \Omega$. Como $f \in \mathcal{H}(A(a;0,R))$, tenemos:

$$f(z) = \sum_{n = -\infty}^{+\infty} c_n (z - a)^n \qquad \forall z \in D(a, R) \setminus \{a\}$$

$$R^+ \geqslant R \qquad y \qquad \text{if } R^- = \infty!!$$

Descomposición relativa a una posible singularidad

f tiene una única descomposición: $f(z) = g(z) + h(z) \quad \forall z \in \Omega \setminus \{a\}$, donde:

- $g \in \mathcal{H}(\Omega)$. La llamamos parte regular de f en a
- $h \in \mathcal{H}(\mathbb{C} \setminus \{a\})$ viene dada por:

$$h(z) = \varphi\left(\frac{1}{z-a}\right) \quad \forall z \in \mathbb{C} \setminus \{a\}$$
 con $\varphi \in \mathcal{H}(\mathbb{C}), \ \varphi(0) = 0$

Decimos que h es la parte singular de f en a

Puntos regulares

Definición de punto regular y de singularidad

Cuando $h\equiv 0$, equivalentemente $\phi\equiv 0$, decimos que a es un punto regular de f, o bien, que f tiene un punto regular en a

En otro caso, decimos que a es una singularidad de f, o bien, que f tiene una singularidad en a.

Caracterización de los puntos regulares

Las siguientes afirmaciones son equivalentes:

- (1) a es un punto regular de f
- (2) $c_{-n} = 0$ para todo $n \in \mathbb{N}$
- (3) Existe $g \in \mathcal{H}(\Omega)$ tal que f(z) = g(z) para todo $z \in \Omega \setminus \{a\}$
- (4) f tiene límite en a: $\lim_{z \to a} f(z) = w \in \mathbb{C}$
- (5) Existen $M, \delta \in \mathbb{R}^+$ tales que $D(a, \delta) \subset \Omega$ y $|f(z)| \leq M$ para todo $z \in D(a, \delta) \setminus \{a\}$
- (6) $\lim_{z \to a} (z a) f(z) = 0$

Ejemplos de singularidades

Primeros ejemplos

$$k \in \mathbb{N}$$
 fijo. $f(z) = \frac{1}{z^k} \quad \forall z \in \mathbb{C}^*$

- \bullet f tiene una singularidad en el origen
- Desarrollo de Laurent en \mathbb{C}^* : $c_n = 0 \quad \forall n \in \mathbb{Z} \setminus \{-k\}, \quad c_{-k} = 1$
- $g(z) = 0 \quad \forall z \in \mathbb{C}$ y $h(z) = f(z) \quad \forall z \in \mathbb{C}^*$
- $\varphi(w) = w^k \ \forall w \in \mathbb{C}$, polinomio de grado k

Ejemplo de otro tipo

$$f(z) = e^{1/z} \quad \forall z \in \mathbb{C}^*$$

- \bullet f tiene una singularidad, pero no diverge, en el origen
- Desarrollo de Laurent en \mathbb{C}^* : $e^{1/z} = 1 + \sum_{n=1}^{\infty} \frac{1}{n! \ z^n} \quad \forall z \in \mathbb{C}^*$
- $c_0 = 1$, mientras que $c_n = 0$ y $c_{-n} = \frac{1}{n!}$ para todo $n \in \mathbb{N}$
- $g(z) = 1 \quad \forall z \in \mathbb{C}$ y $h(z) = e^{1/z} 1 \quad \forall z \in \mathbb{C}^*$
- $\varphi(w) = e^w 1 \quad \forall w \in \mathbb{C}$, función entera no polinómica

Clasificación de las singularidades

Polos y singularidades esenciales

• Cuando φ es un polinomio, decimos que a es un polo de f, o que f tiene un polo en a

El orden de dicho polo es, por definición, el grado del polinomio ϕ

Por ejemplo: para cada $k \in \mathbb{N}$, la función

$$f(z) = \frac{1}{z^k} \quad \forall z \in \mathbb{C}^*$$

tiene un polo de orden k en el origen

• Cuando φ es una función entera no polinómica, decimos que a es una singularidad esencial de f, o que f tiene una singularidad esencial en el punto a

Por ejemplo: la función

$$f(z) = e^{1/z} \quad \forall z \in \mathbb{C}^*$$

tiene una singularidad esencial en el origen

Polos

Caracterización de los polos, teniendo en cuenta el orden

Dado $k \in \mathbb{N}$, las siguientes afirmaciones son equivalentes:

- (1) a es un polo de orden k de f
- (2) $c_{-k} \neq 0$ y $c_{-n} = 0$ para n > k
- (3) $\lim_{z \to a} (z a)^k f(z) = \alpha \in \mathbb{C}^*$
- (4) Existe $\psi \in \mathcal{H}(\Omega)$, con $\psi(a) \neq 0$, tal que:

$$f(z) = \frac{\Psi(z)}{(z-a)^k}$$
 $\forall z \in \Omega \setminus \{a\}$

Caracterización de los polos sin tener en cuenta el orden

f tiene un polo en $a \iff f(z) \to \infty \ (z \to a)$

Caracterización de las singularidades esenciales

Teorema de Casorati

Las siguientes afirmaciones son equivalentes:

- (1) La función f tiene una singularidad esencial en el punto a
- (2) Para cada $\delta \in \mathbb{R}^+$ con $D(a,\delta) \subset \Omega$, el conjunto $f(D(a,\delta) \setminus \{a\})$ es denso en \mathbb{C}
- (3) Para cada $w \in \mathbb{C}$, existe una sucesión $\{z_n\}$ de puntos de $\Omega \setminus \{a\}$ tal que $\{z_n\} \to a$ y $\{f(z_n)\} \to w$. También existe una sucesión $\{u_n\}$ de puntos de $\Omega \setminus \{a\}$ tal que $\{u_n\} \to a$ y $\{f(u_n)\} \to \infty$

Corolario

Si ψ es una función entera no polinómica, entonces:

Para todo $r \in \mathbb{R}^+$, el conjunto $\{ \psi(z) : z \in \mathbb{C}, |z| > r \}$ es denso en \mathbb{C}