

greedy algorithm; choosing the best direction based on current state.

Mo:
$$y \sim \overrightarrow{x}$$

 $+x_{K}$
 M_{1} : $y \sim \overrightarrow{x}_{new}(\overrightarrow{x} + x_{K})$. $|ogn>|$.
 $\triangle AIC = nlog(\frac{pss_{new}}{n}) + 2(ptl) - nlog(\frac{pss_{old}}{n}) - 2p = (x) + 2$
 $\triangle BIC = nlog(\frac{pss_{new}}{n}) + 2(ptl) logn - nlog(\frac{pss_{old}}{n}) - 2plogn = (x) + 2logn$
 $|n>|$ $|n>|$

				\sim		\sim	<u> </u>	
variables provide	Model	x1	\sim \star 2)	(x3 ∼	x4)	AIC	BIC	l)
variables provide	1	1	1	1/	小	435.87	440.75	V
extra information	2	x	ı	ı	l	-2199.08	-2189.31	V
extra information	3		X			-2062.80	-2053.03	,,
\Rightarrow	4			х		-2041.97	-2032.20	y
	5				Х	-2337.69	-2327.92	
	6	x	х			-2278.20	-2263.54	ad
	7	х		Х		-3588.43	-3573.78	doe
	8	х			Х	-3673.13	-3658.47	u
$M \cap V_2$	9		Х	X		-3693.95	-3679.30	lo-
y~ x3.	10		Х		X	-3538.22	-3523.57	Įν
	11			х	Х	-2561.82	-2547.17	N
	12	х	X	Х		-3691.95	-3672.41	9 9 9
	13	х	Х		Х	-3685.27	-3665.73	7
	14	x		X	X	-3692.87	-3673.33	J
	15		х	х	х	-3692.48	-3672.94	odd
	16	x	Х	X	Х	-3693.69	-3669.27	

y~ X2. $y \sim x_1$ $\int \sim (\chi_1, \chi_{\nu}).$ dding χ_1 to $Y \sim \chi_2$. pes not improve a ot! ý~×з. $\sim (\times_{\nu}, \times_{\lambda})$. ding X3 to Y-X2.

reights v.s. supplement.

| best/optimal value of amount

Multicollinearity. X is not of full rank. $(XX)^{-1}$ NOT exist. $X = (X_1, X_2, ..., X_p)$.

Span $(X) = Span (X_1, ..., X_p) = Span (X_1, ..., X_p)$. $X \in \mathbb{R}^n$.

 $\beta = (X^T X)^T X^T Y, \qquad \gamma = E[Y | X]. \qquad \text{for Innear}$ $\gamma = Proj_{C(X)}(Y) \qquad \text{basis / base}.$ $\chi_0 = (\chi_1, \dots, \chi_r).$ $\chi_0 = (\chi_0, \dots, \chi_r).$ $\chi_0 = \chi_1 \qquad \chi_1 \qquad \chi_2 \qquad \chi_3 \qquad \chi_4 \qquad \chi_5 \qquad \chi_7 \qquad \chi_8 \qquad \chi$

 $(x_{0}^{T}X_{0})^{T} = x_{0}^{T}X_{0}^{T} = C(X_{0}).$ $Y = Y_{0} = Proj_{C(X_{0})}(Y) = Proj_{C(X_{0})}(Y).$ $Y = X_{0}(X_{0}^{T}X_{0})^{T}X_{0}^{T}Y.$ $Y = X_{0}(X_{0}^{T}X_{0})^{T}X_{0}^{T}Y.$

@ generalized inverse. (may not be unique.)
for A is any Go. such that AGA = A. G= A.

A invertible. $G = A^{-1}$. $AA^{-1}A = A$.

A is symmetric positive semidefinite. | vTAV > 0 |.

 $A = P\begin{pmatrix} \lambda_1 \\ \lambda_n \end{pmatrix} P^T$. P is orthogonal. $PP^T = I$. $P^TP = I$.

 $\gamma_{i} = \begin{cases} \lambda_{i} & \lambda_{i} > 0 \\ 0 & \lambda_{i} = 0.
\end{cases}$ $G = P\begin{pmatrix} V_{i} & V_{2} & V_{n} \end{pmatrix} P^{T},$

 $AGA = P\left(\begin{array}{c} \lambda_{1} \\ \end{array}\right) P^{T} P\left(\begin{array}{c} v_{1} \\ \end{array}\right) V_{N} P^{T} P\left(\begin{array}{c} \lambda_{1} \\ \end{array}\right) P\left(\begin{array}{c} \lambda_{1} \\ \end{array}\right) P^{T} P\left(\begin{array}{c} \lambda_{1} \\ \end{array}\right) P\left(\begin{array}{c} \lambda_{1} \\$ = P (April) PT = A.

is mt muertible. $\nabla^T X^T X V = (X V)^T \cdot X V \ge 0$. $(X_{t}X)$

 $\Upsilon = \times (X^T X) / X^T Y = \times_0 (X_0 / X_0)^{-1} \times_0^T Y.$

Proj_{c(X)} (Y).