AMENDMENTS TO THE SPECIFICATION

Please amend the paragraph on page 50, line 1, to line 5, as follows:

(iii) A selection range I[A] for each search vector is assigned in the space [0, 1] according to Equations 13 below, for example.

(Eqs. 13)

Ih[0]=0

$$Ih[A] = \sum_{j=0}^{A} h[j]$$

 $\frac{I[A] - [Ih[A-1], Ih[A])}{I[A-1] - [Ih[A-1], Ih[A])}$ (A=1, . . ., Nch)

Please amend the paragraph on page 50, line 9, to line 12, as follows:

Also, a set Num = (num[0], num[1], ..., num[Nch-1]) in <u>is found</u>. Each element of Num, num[B] (B=0, 1, ..., Nch-1), is defined as the selection range I[A] which satisfies Equation 14 <u>below</u>. num[B] = I[A] that satisfies Equation 14 below is found for the random numbers ra[B] in the set RR. In this way the set of Nch number of search vectors corresponding to the set Num is selected.

Please amend the paragraph on page 74, line 11, to line 15, as follows:

The correction coefficient can be given according to Equation 20 using the average value ave_ed of the edge data ed(i, j) for each pixel of the pre-processed input image.

[Eqs. 20]

 $dAr=dAg=dAb=dAcen-dAdev \times (ed(i, j)-ave_ed)$

 $Rr(i, j) = r(i, j)/(dAr \times Ar(i, j))$

 $Rg(i, j) = g(i, j)/(dAg \times Ag(i, j))$

 $Rb(i, j) = b(i, j)/(dAb \times Ab(i, j))$