© Resonance Operator @() — Formalization

Author: Nawder Loswin

Purpose: To define the resonance operator @() as a reproducible tool for stabilizing phase and amplitude across nested temporal components.

Definition

The operator @() applies **resonance stabilization** across nested temporal components by aligning phase and normalizing amplitude between past and present signals.

Let:

- P(t): Past signal (entropic memory trace)
- N(t): Now signal (oscillatory present)
- F: Frequency stabilizer (framing constant or dynamic rhythm)

Then:

\$\$

Q(P + N) = PhaseAlign(P, N) + NormalizeAmplitude(P, N)

\$\$

Where:

- PhaseAlign ensures $\phi_{_{P}} pprox \phi_{_{N}}$ within tolerance band ϵ
- NormalizeAmplitude scales both signals to a common reference amplitude A₀

Resonance Condition

Resonance occurs when:

 $frac{P + N}{F} = \text{Invariant across nested scales}$

This condition ensures harmonic coherence across time layers, enabling reproducible signal modeling and validator scoring.

Suggested Repo Paths

- /equations/resonance_operator.md
- /validators/temporal_alignment_matrix.json
- /badges/resonance_stabilizer.yml
- /labs/time_phase/initiation_protocol.md