八、麦克斯韦方程组

$$(\vec{D} = \varepsilon \vec{E})$$
$$(\vec{H} = \frac{\vec{B}}{u})$$

1. 静电场、稳恒磁场的普遍规律及推广

麦克斯韦完成了此推广,得到了麦克斯韦方程组。那么,如何做?

2. 位移电流

以L为边界作曲面 s_1 、 s_2 ,对回路L,由安培环路定理得

麦克斯韦大胆假设:

矛盾不复存在。 问题是: I_D 到底是什么?

安培环路定理

$$\oint \vec{H} \cdot d\vec{l} = \sum I_i$$

在电容的充放电过程中,考虑左极板。 如图取高斯面,

$$\boldsymbol{\Phi}_{D} = \oint \vec{\boldsymbol{D}} \cdot d\vec{\boldsymbol{S}} = \sum q_{i}$$

$$\oint \vec{D} \cdot d\vec{S} = \int_{S_1} \vec{D} \cdot d\vec{S} + \int_{S_2} \vec{D} \cdot d\vec{S} = \Phi_{S_2} = q_{\text{Wto}}$$

$$I = \int \vec{j} \cdot d\vec{S}$$

而穿过
$$S_1$$
的电流: $I = \frac{\mathrm{d}q}{\mathrm{d}t} = \frac{\mathrm{d}q_{\mathrm{Wff}}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{s_2} \vec{D} \cdot \mathrm{d}\vec{S} \right)$

若 S_2 面不随时间t变化: $I = \int_{S_2} \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S} = \frac{d \Phi_{S_2}}{dt}$

定义:
$$I_D = \frac{\mathrm{d}\boldsymbol{\Phi}_D}{\mathrm{d}t} = \int \frac{\partial \boldsymbol{D}}{\partial t} \cdot \mathrm{d}\boldsymbol{S}$$

位移电流

有电流的量纲

$$\vec{j}_D = \frac{\partial \vec{D}}{\partial t}$$

显然, $I_D=I$.

定义位移电流:
$$I_D = \frac{\mathrm{d}\boldsymbol{\Phi}_D}{\mathrm{d}t} = \int \frac{\partial \vec{D}}{\partial t} \cdot \mathrm{d}\vec{S}$$

位移电流密度:
$$\vec{j}_D = \frac{\partial \vec{D}}{\partial t} = \varepsilon \frac{\partial \vec{E}}{\partial t}$$

$$q \uparrow D \uparrow$$

$$\frac{\partial \vec{D}}{\partial t} / / \vec{D}$$

$$ec{j}_{\scriptscriptstyle D} /\!/ ec{D} /\!/ I$$

$$q \downarrow D$$

$$\frac{\partial \vec{D}}{\partial t} \uparrow \downarrow \vec{D}$$

电容充电:
$$q \uparrow D \uparrow \frac{\partial \vec{D}}{\partial t} / |\vec{D}| \vec{j}_D / |\vec{D}| / |\vec{D}|$$
 电容放电: $q \downarrow D \downarrow \frac{\partial \vec{D}}{\partial t} \uparrow \downarrow \vec{D} \vec{j}_D \uparrow \downarrow \vec{D} \uparrow \downarrow I$

结论:在电容器中, $I_{D^{ch}}=I$,极板中断的电流由 I_{D} 接替,

保持电流的连续性。

- 1) I_n 的实质是变化的电场, I_n 不产生焦耳热
- 2) I_D 在激发磁场方面与 I 等效 在极板间没有传导电流,但有 I_D : $\oint \vec{H} \cdot d\vec{l} = I_D$

3) I_D 激发的磁场 \vec{B} 与其成右手螺旋关系:

3. 全电流定理

传导电流+位移电流=全电流

在非稳恒情况,往往是传导电流I与位移电流同时存在,两者之和的总的电流总是闭合的。

一般情况下的安培定律:

$$\oint \vec{H} \cdot d\vec{l} = I + \int \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S}$$
全电流定理

或: $\oint \vec{H} \cdot d\vec{l} = I + I_D$

即:磁场强度并沿任意闭合环路的积分等于穿过此环路的 传导电流与位移电流的代数和。

չ

例:一空气平行板电容器,略去边缘效应。

- 1) 充电完毕后,断开电源,然后拉开两极板。 此过程中两极板间是否有 j_{D} ? —— $j_{D}=0$
- 2) 充电完毕后,仍接通电源,然后拉开两极板。 此过程中两极板间是否有 j_n? 为什么?

 $j_D \neq 0$:: $V = E \cdot d$ V不变, $d \uparrow$, $E \downarrow D$ 改变

$$I_{D} = \frac{\mathrm{d}\boldsymbol{\Phi}_{D}}{\mathrm{d}t} = \int \frac{\partial \vec{D}}{\partial t} \cdot \mathrm{d}\vec{S}$$
$$\vec{j}_{D} = \frac{\partial \vec{D}}{\partial t} = \varepsilon \frac{\partial \vec{E}}{\partial t}$$

例:一圆形平行板电容器,两极板的半径为a。设其正在 充放电,电荷按规律 $Q=Q_0\sin\omega$ 变化,忽略边缘效应

求: 两极板间任意点的 j_D 和B?

解: (1)平行板之间的电场为: $D=\sigma=\frac{Q}{S}$ $j_D=\frac{\partial D}{\partial t}=\frac{1}{S}\frac{\partial Q}{\partial t}=\frac{\omega Q_0}{S}\cos\omega t$

jn均匀分布在横截面上,与传导电流同向。

(2) 在极板间取半径为r的同心圆环为积分回路

根据全电流定理:
$$\oint \vec{H} \cdot d\vec{l} = I + I_D$$

$$B = \mu_0 H = \frac{\mu_0 \omega Q_0}{2\pi a^2} r \cos \omega t$$

$$r > a$$
时 $I + I_D = \int \vec{j}_D \cdot d\vec{S} = \vec{j}_D \cdot \pi a^2$ $H = \frac{a^2}{2r} \vec{j}_D$

$$B = \frac{\mu_0 \omega Q_0}{2\pi r} \cos \omega t$$

$$\vec{j}_D = \frac{\partial \vec{D}}{\partial t}$$

$$\begin{cases} B = \frac{\mu_0 j_D}{2} r & (r < a) \\ B = \frac{\mu_0 a^2 j_D}{2r} & (r > a) \end{cases} j_D = \frac{\omega Q_0}{\pi a^2} \cos \omega t$$

如:
$$a=5$$
cm, $\frac{\partial D}{\partial t} = \varepsilon_0 \frac{\partial E}{\partial t}$, $\frac{\partial E}{\partial t} = 10^{12} \text{ V/ms}$

$$B_{max}$$
=3×10-7 T 地球表面地磁场的大小约5×10-5 T

例:加在平行板电容器极板上的电压变化率为1.0×10⁶v/s.在电容器内产生1.0A的位移电流,则该电容器的电容是多少?

解:
$$I_D = \int \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S}$$

$$= S\varepsilon \frac{\partial E}{\partial t}$$

$$E = V/d$$

$$\therefore I_D = \frac{\varepsilon S}{d} \frac{\partial V}{\partial t}$$

$$C = \frac{\varepsilon S}{d}$$

$$\therefore I_D = C \frac{\partial V}{\partial t}$$

$$\therefore C = 1uF$$

例:如图,平行板电容器(忽略边缘效应)充电时,沿环路 L_1 、 L_2 的磁场强度的环流中,正确的是(\mathbb{C})。

$$(\mathbf{A}) \oint_{L_1} \vec{H} \cdot d\vec{l} > \oint_{L_2} \vec{H} \cdot d\vec{l}$$

$$\mathbf{(B)} \oint_{L_1} \vec{H} \cdot d\vec{l} = \oint_{L_2} \vec{H} \cdot d\vec{l}$$

$$(\mathbf{C}) \oint_{L_1} \vec{H} \cdot d\vec{l} < \oint_{L_2} \vec{H} \cdot d\vec{l}$$

$$\mathbf{(D)} \oint_{L_1} \vec{H} \cdot d\vec{l} = \mathbf{0}$$

4、麦克斯韦方程组

★静电场和稳恒磁场的基本实验规律

 $(1) \oint \vec{D}_1 \cdot d\vec{S} = \sum q_i$

 $(2) \oint \vec{E}_1 \cdot d\vec{l} = 0$

 $(3) \oint \vec{B}_1 \cdot d\vec{S} = 0$

 $(4) \oint \vec{H}_1 \cdot d\vec{l} = I$

★感应电场的新理论

(5)
$$\oint \vec{E}_2 \cdot d\vec{l} = -\frac{d\phi_m}{dt} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$

★位移电流的新思想

(6)
$$\oint \vec{H}_{2} \cdot d\vec{l} = I_{D} = \frac{d \phi_{D}}{dt} = \int \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S}$$

麦克斯韦

14

麦克斯韦方程组:

a. 各方程的物理意义:

- (1)在任何电场中,通过任何闭合曲面的电通量等于该闭合曲面内自由电荷的代数和。——有源场
- (2)在任何磁场中,通过任何闭合曲面的磁通量恒等于0。
- (3)在一般电场中,电场强度 \vec{E} 沿任意闭合环路的积分,等于穿过该环路磁通量随时间变化率的负值。
- (4)磁场强度H沿任意闭合环路的积分,等于穿过该环路 传导电流和位移电流的代数和。——有旋场

麦克斯韦方程组是电磁场理论的基础,其正确性已被大量实验所证实。麦克斯韦方程组已成为现代电子学、无线电学等学科的理论基础。

麦克斯韦预言了电磁波的存在,并计算出电磁波在真空的速度大小为:

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \approx 3 \times 10^8 \,\mathrm{m/s}$$

b. 麦克斯韦方程组的微分形式(自学)

$$\nabla \cdot \vec{D} = \rho$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}$$

讨论:

麦克斯韦方程并非完全对称。

$$(1) \oint \vec{D} \cdot d\vec{S} = \sum q_i$$

(2)
$$\oint \vec{E} \cdot d\vec{l} = \oint \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$

(3)
$$\oint \vec{B} \cdot d\vec{S} = 0$$
 (4) $\oint \vec{H} \cdot d\vec{l} = I + \int \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S}$ 磁荷

 $q_{\rm m}$?

磁单极存在否?

英国物理学家狄拉克(Paul Dirac)早在1931年就利用数学公式预言磁单极存在于携带磁场的管(所谓的狄拉克弦)的末端。当时他认为既然带有基本电荷的电子在宇宙中存在,那么理应带有基本"磁荷"的粒子存在,从而启发了许多物理学家开始寻找磁单极的工作。

磁单极存在与否尚无定论,找寻磁单极可以说是21世纪物理学 重要的研究主题之一。

17

例. 反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:

$$\iint_{S} \vec{D} \cdot d\vec{S} = \sum_{i} q_{i} \quad \text{(1)} \qquad \qquad \iint_{L} \vec{E} \cdot d\vec{l} = -\frac{d\Phi_{m}}{dt} \quad \text{(2)}$$

$$\iint_{S} \vec{B} \cdot d\vec{S} = 0 \quad \text{(3)} \qquad \qquad \iint_{L} \vec{H} \cdot d\vec{l} = \sum_{i} I_{i} + \frac{d\Phi_{e}}{dt} \quad \text{(4)}$$

试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的,将你确定的方程式用代号填在相应结论后的空白处。

- 1. 变化的磁场一定伴随有电场_____;
- 3. 电荷总伴随有电场______;

九. 电磁场的物质性

实验证实: 电磁场——客观存在的一种物质形态

- 一切物质具有基本属性:能量、质量、动量。
- 1) 电磁场能量(随时间变化的电磁场)

$$W = W_e + W_m = \int_V w dV$$
 非稳恒情况下是空间和时间的函数

$$w = w_e + w_m = \frac{1}{2} \vec{D} \cdot \vec{E} + \frac{1}{2} \vec{B} \cdot \vec{H}$$

2) 能流密度矢量

定义:单位时间内通过与传播方向垂直的单位面积的 能量. 指向能量传播的方向.

理论证明:

$$\vec{S} = \vec{E} \times \vec{H}$$

——又称坡印廷矢量

注: S不仅适用于变化的电磁场,也适用于稳恒场。 在稳恒场中,电磁能也是场传播的。

例: 直流电路中的能量传递。

负载:

结论:

- (1)电源的能量是通过电磁场 从电源的侧面传出。
- (2)电阻消耗的能量是通过电磁场从电阻的侧面传入。 导线起引导场能的作用。

例:圆柱形导体,长*l*半径为*a*,电阻为*R*,载电流*I*,求证从导体侧表面输入导体的电磁能量,正好等于同时间内导体上产生的焦耳热.

解:单位时间从导体表面输入导体的电磁能量为

$$A=2\pi a \cdot l$$

$$\frac{dW}{dt} = \frac{IR}{l} \cdot \frac{I}{2\pi a} \cdot 2\pi a l$$

$$= I^{2}R$$
得证.

2. 电磁场质量

电磁场具有有限的运动速度c,则其具有一定的质量M。由相对论质能关系: $E=Mc^2$

设单位体积中,电磁场质量为m,能量为w: $w = mc^2$

$$m=\frac{w}{c^2}=\frac{1}{2c^2}(\vec{D}\cdot\vec{E}+\vec{B}\cdot\vec{H})$$
 ——质量密度

- 3. 电磁场物质性的特点
 - (1) 没有静止质量: $M_0=0$ 实验精度: 10^{-50} 左右
 - (2) 电磁场以波的形式传播, 以粒子的形式与实物相互作用;
 - (3) 电磁场可相互迭加,同时占据同一空间;
 - (4) 电磁波的波速与参考系无关。

第8章 电磁感应总结

一、电磁感应定律

$$\boldsymbol{\varepsilon}_i = -\frac{\mathrm{d}\boldsymbol{\Phi}}{\mathrm{d}t}$$

能同时反映电动势的大小和方向。

二、楞次定律

快捷判断感应电流的方向。

三、动生电动势

$$\boldsymbol{\varepsilon} = \int (\vec{\boldsymbol{v}} \times \vec{\boldsymbol{B}}) \cdot d\vec{\boldsymbol{l}}$$

方向:右手定则

导体中动生电动势的方向由电势低指向电势高。

四、感生电动势 感应电场

1.
$$\hat{E}_i$$
 的环路定理

1.
$$\vec{E}_i$$
 的环路定理
$$\varepsilon_i = \iint_{\mathcal{L}} \vec{E}_i \cdot d\vec{l} = -\int_{\mathcal{S}} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$

- 2. 感应电场的方向 \bar{E}_i 与 $\frac{\partial \bar{B}}{\partial t}$ 成左螺旋关系或楞次定律。
- 3. 感应电场的计算
- 4. 圆柱形变化磁场中导体上的感生电动势的计算
- 五、自感与互感
- 1. 自感系数、互感系数的计算
- 2. 借助互感系数计算互感电动势

六、磁场的能量

1. 自感磁能
$$W_m = \frac{1}{2}LI^2$$

2. 磁场的能量
$$W_m = \int \frac{B^2}{2u} dV$$

七、麦克斯韦方程组

1. 位移电流及其计算

$$ec{j}_D = rac{\partial ec{D}}{\partial t}$$
 方向即 $rac{\partial ec{D}}{\partial t}$ 的方向。
$$I_D = \int ec{j}_D \cdot \mathrm{d} ec{S} = rac{\mathrm{d} \Phi_D}{\mathrm{d} t}$$

2. 麦克斯韦方程组中各方程的物理意义