

Recap: Heap allocation interface:

```
void *malloc(size_t size);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);
char *strdup(char *s);
void free(void *ptr);
```

Heap **memory allocation** guarantee:

- NULL on failure, so check with assert
- Memory is contiguous; it is not recycled unless you call free
- realloc preserves existing data
- calloc zero-initializes bytes, malloc and realloc do not

Undefined behavior occurs:

- If you overflow (i.e., you access beyond bytes allocated)
- If you use after free, or if free is called twice on a location.
- If you realloc/free non-heap address

Recap: The Stack vs The Heap

Stack ("local variables")

- Fast
 Fast to allocate/deallocate; okay to oversize
- Convenient.

 Automatic allocation/ deallocation;
 declare/initialize in one step
- Reasonable type safety
 Thanks to the compiler
- Not especially plentiful Total stack size fixed, default 8MB
- Somewhat inflexible
 Cannot add/resize at runtime, scope dictated by control flow in/out of functions

Heap (dynamic memory)

- Plentiful.

 Can provide more memory on demand!
- Very flexible.
 Runtime decisions about how much/when to allocate, can resize easily with realloc
- Scope under programmer control Can precisely determine lifetime
- Lots of opportunity for error
 Low type safety, forget to allocate/free
 before done, allocate wrong size, etc.,
 Memory leaks (much less critical)

COMP201 Topic 5: How can we use our knowledge of memory and data representation to write code that works with any data type?

Learning Goals

- Learn how to write C code that works with any data type.
- Learn about how to use void * and avoid potential pitfalls.

Plan for Today

- Overview: Generics
- Generic Swap
- Generics Pitfalls
- Generic Array Swap

Disclaimer: Slides for this lecture were borrowed from

—Nick Troccoli's Stanford CS107 class

Lecture plan

- Overview: Generics
- Generic Swap
- Generics Pitfalls
- Generic Array Swap

Generics

- We always strive to write code that is as general-purpose as possible.
- Generic code reduces code duplication and means you can make improvements and fix bugs in one place rather than many.
- Generics is used throughout C for functions to sort any array, search any array, free arbitrary memory, and more.
- How can we write generic code in C?

Lecture Plan

- Overview: Generics
- Generic Swap
- Generics Pitfalls
- Generic Array Swap

You're asked to write a function that swaps two numbers.

```
void swap_int(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    int x = 2;
    int y = 5;
    swap_int(&x, &y);
    // want x = 5, y = 2
    printf("x = %d, y = %d\n", x, y);
    return 0;
```

You're asked to write a function that swaps two numbers.

```
void swap_int(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    int x = 2;
    int y = 5;
    swap_int(&x, &y);
   // want x = 5, y = 2
    printf("x = %d, y = %d\n", x, y);
    return 0;
```

```
Address Value

x 0xff14 2
y 0xff10 5
```

You're asked to write a function that swaps two numbers.

```
void swap_int(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    int x = 2;
    int y = 5;
    swap_int(&x, &y);
    // want x = 5, y = 2
    printf("x = %d, y = %d\n", x, y);
    return 0;
```


You're asked to write a function that swaps two numbers.

```
void swap_int(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    int x = 2;
    int y = 5;
    swap_int(&x, &y);
    // want x = 5, y = 2
    printf("x = %d, y = %d\n", x, y);
    return 0;
```


Stack

You're asked to write a function that swaps two numbers.

```
void swap_int(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    int x = 2;
    int y = 5;
    swap_int(&x, &y);
    // want x = 5, y = 2
    printf("x = %d, y = %d\n", x, y);
    return 0;
```


Stack

You're asked to write a function that swaps two numbers.

```
void swap_int(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    int x = 2;
    int y = 5;
    swap_int(&x, &y);
    // want x = 5, y = 2
    printf("x = %d, y = %d\n", x, y);
    return 0;
```


Stack

You're asked to write a function that swaps two numbers.

```
void swap_int(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    int x = 2;
    int y = 5;
    swap_int(&x, &y);
    // want x = 5, y = 2
    printf("x = %d, y = %d\n", x, y);
    return 0;
```

```
Address Value

x 0xff14 5
y 0xff10 2
```

You're asked to write a function that swaps two numbers.

```
void swap_int(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    int x = 2;
    int y = 5;
    swap_int(&x, &y);
    // want x = 5, y = 2
    printf("x = %d, y = %d\n", x, y);
    return 0;
```

```
Address Value

x 0xff14 5
y 0xff10 2
```

You're asked to write a function that swaps two numbers.

```
void swap_int(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    int x = 2;
    int y = 5;
    swap_int(&x, &y);
    // want x = 5, y = 2
    printf("x = %d, y = %d\n", x, y);
    return 0;
```

```
Address Value

x 0xff14 5
y 0xff10 2
```

"Oh, when I said 'numbers' I meant shorts, not ints."


```
void swap short(short *a, short *b) {
    short temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    short x = 2;
    short y = 5;
    swap short(&x, &y);
    // want x = 5, y = 2
    printf("x = %d, y = %d\n", x, y);
    return 0;
```

```
Stack
void swap short(short *a, short *b) {
                                                        Address
                                                                   Value
    short temp = *a;
    *a = *b;
                                                         x 0xff12
                                            main()
    *b = temp;
                                                            0xff10
                                                             0xf18 0xff10
int main(int argc, char *argv[]) {    swap_short()
                                                             0xf10
    short x = 2;
                                                             0xf0e
    short y = 5;
    swap_short(&x, &y);
    // want x = 5, y = 2
    printf("x = %d, y = %d\n", x, y);
    return 0;
```

"You know what, I goofed. We're going to use strings. Could you write something to swap those?"


```
void swap_string(char **a, char **b) {
    char *temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    char *x = "2";
    char *y = "5";
    swap string(&x, &y);
    // want x = 5, y = 2
    printf("x = %s, y = %s \setminus n", x, y);
    return 0;
```

```
void swap_string(char **a, char **b) {
    char *temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    char *x = "2";
    char *y = "5";
    swap string(&x, &y);
    // want x = 5, y = 2
    printf("x = %s, y = %s \setminus n", x, y);
    return 0;
```



```
void swap_string(char **a, char **b) {
                                                         Address
                                                                    Value
    char *temp = *a;
    *a = *b;
                                                            0xff18
                                                                     0xc
                                              main()
    *b = temp;
                                                            0xff10
                                                             0xf18
int main(int argc, char *argv[]) {    swap_string()
                                                             0xf10
    char *x = "2";
    char *y = "5";
                                                                     '\0'
                                                               0xf
    swap string(&x, &y);
                                                                      '5'
                                                               0xe
    // want x = 5, y = 2
                                                                     '\0'
                                                               0xd
    printf("x = %s, y = %s \setminus n", x, y);
                                              DATA SEGMENT
                                                               0xc
    return 0;
```

```
void swap_string(char **a, char **b) {
                                                          Address
                                                                     Value
    char *temp = *a;
    *a = *b;
                                                            0xff18
                                                                      0xc
                                               main()
    *b = temp;
                                                             0xff10
                                                              0xf18
int main(int argc, char *argv[]) {    swap_string()
                                                              0xf10
    char *x = "2";
                                                              0xf08
                                                       temp

→ 0xc

    char *y = "5";
    swap string(&x, &y);
                                                                      '\0'
                                                                0xf
    // want x = 5, y = 2
                                                                      '5'
                                                                0xe
    printf("x = %s, y = %s \setminus n", x, y);
                                              DATA SEGMENT
                                                                0xd
    return 0;
```

```
void swap_string(char **a, char **b) {
                                                         Address
                                                                     Value
    char *temp = *a;
    *a = *b;
                                                            0xff18
                                               main()
    *b = temp;
                                                              0xf18
int main(int argc, char *argv[]) {    swap_string()
                                                              0xf10
                                                                     0xff18
    char *x = "2";
                                                              0xf08
                                                       temp

→ 0xc

    char *y = "5";
    swap string(&x, &y);
                                                                0xf
    // want x = 5, y = 2
                                                                      '5'
                                                                0xe
    printf("x = %s, y = %s \setminus n", x, y);
                                              DATA SEGMENT
                                                                      '\0'
                                                                0xd
    return 0;
                                                                0хс
```

```
void swap_string(char **a, char **b) {
                                                          Address
                                                                     Value
    char *temp = *a;
    *a = *b;
                                                            0xff18
                                                                      0xe
                                               main()
    *b = temp;
                                                              0xf18
int main(int argc, char *argv[]) {    swap_string()
                                                              0xf10
                                                                     0xff18
    char *x = "2";
                                                              0xf08
                                                       temp

→ 0xc

    char *y = "5";
    swap string(&x, &y);
                                                                0xf
    // want x = 5, y = 2
                                                                      '5'
                                                                0xe
    printf("x = %s, y = %s \setminus n", x, y);
                                              DATA SEGMENT
                                                                      '\0'
                                                                0xd
    return 0;
                                                                0хс
```

```
void swap_string(char **a, char **b) {
    char *temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    char *x = "2";
    char *y = "5";
    swap string(&x, &y);
    // want x = 5, y = 2
    printf("x = %s, y = %s \setminus n", x, y);
    return 0;
```



```
void swap_string(char **a, char **b) {
    char *temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    char *x = "2";
    char *y = "5";
    swap string(&x, &y);
    // want x = 5, y = 2
    printf("x = %s, y = %s\n", x, y);
    return 0;
```



```
void swap_string(char **a, char **b) {
    char *temp = *a;
    *a = *b;
    *b = temp;
int main(int argc, char *argv[]) {
    char *x = "2";
    char *y = "5";
    swap string(&x, &y);
    // want x = 5, y = 2
    printf("x = %s, y = %s \setminus n", x, y);
    return 0;
```


"Awesome! Thanks."

"Awesome! Thanks. We also have 20 custom struct types. Could you write swap for those too?"

"Awesome! Thanks. We also have 20 custom struct types. Could you write swap for those too?"

A user-defined structured data type in C (will be covered next week)

Generic Swap

What if we could write *one* function to swap two values of any single type?

```
void swap_int(int *a, int *b) { ... }
void swap_float(float *a, float *b) { ... }
void swap_size_t(size_t *a, size_t *b) { ... }
void swap_double(double *a, double *b) { ... }
void swap_string(char **a, char **b) { ... }
void swap_mystruct(mystruct *a, mystruct *b) { ... }
```

•••

Generic Swap

```
void swap_int(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
void swap_short(short *a, short *b) {
    short temp = *a;
    *a = *b;
    *b = temp;
void swap_string(char **a, char **b) {
    char *temp = *a;
    *a = *b;
    *b = temp;
```

```
void swap_int(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
void swap_short(short *a, short *b) {
    short temp = *a;
    *a = *b;
    *b = temp;
void swap_string(char **a, char **b) {
    char *temp = *a;
    *a = *b;
    *b = temp;
```

All 3:

- Take pointers to values to swap
- Create temporary storage to store one of the values
- Move data at **b** into where **a** points
- Move data in temporary storage into where **b** points

```
void swap(pointer to data1, pointer to data2) {
    store a copy of data1 in temporary storage
    copy data2 to location of data1
    copy data in temporary storage to location of data2
}
```

```
void swap(pointer to data1, pointer to data2) {
   store a copy of data1 in temporary storage
   copy data2 to location of data1
   copy data in temporary storage to location of data2
                 int temp = *data1ptr;
                                                4 bytes
                short temp = *data1ptr;
                                                2 bytes
               char *temp = *data1ptr;
                                                8 bytes
```

Problem: each type may need a different size temp!

```
void swap(pointer to data1, pointer to data2) {
   store a copy of data1 in temporary storage
   copy data2 to location of data1
   copy data in temporary storage to location of data2
                *data1Ptr = *data2ptr;
                                                4 bytes
                *data1Ptr = *data2ptr;
                                                2 bytes
                *data1Ptr = *data2ptr;
                                                8 bytes
```

Problem: each type needs to copy a different amount of data!

```
void swap(pointer to data1, pointer to data2) {
   store a copy of data1 in temporary storage
   copy data2 to location of data1
   copy data in temporary storage to location of data2
                     *data2ptr = temp;
                                                4 bytes
                     *data2ptr = temp;
                                                2 bytes
                     *data2ptr = temp;
                                                8 bytes
```

Problem: each type needs to copy a different amount of data!

C knows the size of temp, and knows how many bytes to copy, because of the variable types.

Is there a way to make a version that doesn't care about the variable types?

```
void swap(pointer to data1, pointer to data2) {
    store a copy of data1 in temporary storage
    copy data2 to location of data1
    copy data in temporary storage to location of data2
}
```

```
void swap(pointer to data1, pointer to data2) {
    store a copy of data1 in temporary storage
    copy data2 to location of data1
    copy data in temporary storage to location of data2
}
```

```
void swap(void *data1ptr, void *data2ptr) {
    store a copy of data1 in temporary storage
    copy data2 to location of data1
    copy data in temporary storage to location of data2
}
```

```
void swap(void *data1ptr, void *data2ptr) {
    // store a copy of data1 in temporary storage
    // copy data2 to location of data1
    // copy data in temporary storage to location of data2
}
```

```
void swap(void *data1ptr, void *data2ptr) {
    // store a copy of data1 in temporary storage
    // copy data2 to location of data1
    // copy data in temporary storage to location of data2
}
```

If we don't know the data type, we don't know how many bytes it is. Let's take that as another parameter.

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    // store a copy of data1 in temporary storage
    // copy data2 to location of data1
    // copy data in temporary storage to location of data2
}
```

If we don't know the data type, we don't know how many bytes it is. Let's take that as another parameter.

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    // store a copy of data1 in temporary storage
    // copy data2 to location of data1
    // copy data in temporary storage to location of data2
}
```

Let's start by making space to store the temporary value. How can we make **nbytes** of temp space?

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    void temp; ???
    // store a copy of data1 in temporary storage
    // copy data2 to location of data1
    // copy data in temporary storage to location of data2
}
```

Let's start by making space to store the temporary value. How can we make **nbytes** of temp space?

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    char temp[nbytes];
    // store a copy of data1 in temporary storage
    // copy data2 to location of data1
    // copy data in temporary storage to location of data2
}
```

temp is nbytes of memory, since each char is 1 byte!

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    char temp[nbytes];
    // store a copy of data1 in temporary storage
    // copy data2 to location of data1
    // copy data in temporary storage to location of data2
}
```

Now, how can we copy in what data1ptr points to into temp?

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    char temp[nbytes];
    // store a copy of data1 in temporary storage
    temp = *data1ptr; ???
    // copy data2 to location of data1
    // copy data in temporary storage to location of data2
}
```

Now, how can we copy in what data1ptr points to into temp?

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    char temp[nbytes];
    // store a copy of data1 in temporary storage
    temp = *data1ptr; ???
    // copy data2 to location of data1
    // copy data in temporary storage to location of data2
}
```

We can't dereference a **void** * (or set an array equal to something). C doesn't know what it points to! Therefore, it doesn't know how many bytes there it should be looking at.

memcpy

memcpy is a function that copies a specified amount of bytes at one address to another address.

void *memcpy(void *dest, const void *src, size_t n);

const is a type qualifier which indicates that the data is read only (will be covered next week)

memcpy

memcpy is a function that copies a specified amount of bytes at one address to another address.

void *memcpy(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to the location contained in dest. (It also returns dest). It does not support regions of memory that overlap.

memcpy must take pointers to the bytes to work with to know where they live and where they should be copied to.

```
int x = 5;
int y = 4;
memcpy(&x, &y, sizeof(x)); // like x = y
```

memmove

memmove is the same as **memcpy**, but supports overlapping regions of memory. (Unlike its name implies, it still "copies").

void *memmove(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to the location contained in dest. (It also returns dest).

memmove

When might memmove be useful?

4 5 6	7 5	6	7
-------	-----	---	---

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    char temp[nbytes];
    // store a copy of data1 in temporary storage
    temp = *data1ptr; ???
    // copy data2 to location of data1
    // copy data in temporary storage to location of data2
}
```

We can't dereference a **void** *. C doesn't know what it points to! Therefore, it doesn't know how many bytes there it should be looking at.

```
void swap(void *data1ptr, void *data2ptr, size t nbytes) {
   char temp[nbytes];
   // store a copy of data1 in temporary storage
   temp = *data1ptr; ???
   // copy data2 to location of data1
   // copy data in temporary storage to location of data2
How can memcpy or memmove help us here?
void *memcpy(void *dest, const void *src, size t n);
void *memmove(void *dest, const void *src, size_t n);
```

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    char temp[nbytes];
    // store a copy of data1 in temporary storage
    memcpy(temp, data1ptr, nbytes);
    // copy data2 to location of data1
    // copy data in temporary storage to location of data2
}
```

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    char temp[nbytes];
    // store a copy of data1 in temporary storage
    memcpy(temp, data1ptr, nbytes);
    // copy data2 to location of data1
    // copy data in temporary storage to location of data2
}
```

We can copy the bytes ourselves into temp! This is equivalent to **temp = *data1ptr** in non-generic versions, but this works for *any* type of *any* size.

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    char temp[nbytes];
    // store a copy of data1 in temporary storage
    memcpy(temp, data1ptr, nbytes);
    // copy data2 to location of data1
    // copy data in temporary storage to location of data2
}
```

How can we copy data2 to the location of data1?

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    char temp[nbytes];
    // store a copy of data1 in temporary storage
    memcpy(temp, data1ptr, nbytes);
    // copy data2 to location of data1
    *data1ptr = *data2ptr; ???
    // copy data in temporary storage to location of data2
}
```

How can we copy data2 to the location of data1?

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    char temp[nbytes];
    // store a copy of data1 in temporary storage
    memcpy(temp, data1ptr, nbytes);
    // copy data2 to location of data1
    memcpy(data1ptr, data2ptr, nbytes);
    // copy data in temporary storage to location of data2
}
```

How can we copy data2 to the location of data1? **memcpy**!

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    char temp[nbytes];
    // store a copy of data1 in temporary storage
    memcpy(temp, data1ptr, nbytes);
    // copy data2 to location of data1
    memcpy(data1ptr, data2ptr, nbytes);
    // copy data in temporary storage to location of data2
}
```

How can we copy temp's data to the location of data?

```
void swap(void *data1ptr, void *data2ptr, size t nbytes) {
    char temp[nbytes];
    // store a copy of data1 in temporary storage
    memcpy(temp, data1ptr, nbytes);
    // copy data2 to location of data1
    memcpy(data1ptr, data2ptr, nbytes);
    // copy data in temporary storage to location of data2
    memcpy(data2ptr, temp, nbytes);
           How can we copy temp's data to the location of
           data2? memcpy!
```

```
void swap(void *data1ptr, void *data2ptr, size t nbytes) {
    char temp[nbytes];
   // store a copy of data1 in temporary storage
   memcpy(temp, data1ptr, nbytes);
   // copy data2 to location of data1
   memcpy(data1ptr, data2ptr, nbytes);
   // copy data in temporary storage to location of data2
   memcpy(data2ptr, temp, nbytes);
           int x = 2;
           int y = 5;
           swap(&x, &y, sizeof(x));
```

```
void swap(void *data1ptr, void *data2ptr, size t nbytes) {
    char temp[nbytes];
   // store a copy of data1 in temporary storage
   memcpy(temp, data1ptr, nbytes);
   // copy data2 to location of data1
   memcpy(data1ptr, data2ptr, nbytes);
   // copy data in temporary storage to location of data2
   memcpy(data2ptr, temp, nbytes);
           short x = 2;
           short y = 5;
           swap(&x, &y, sizeof(x));
```

```
void swap(void *data1ptr, void *data2ptr, size t nbytes) {
    char temp[nbytes];
   // store a copy of data1 in temporary storage
   memcpy(temp, data1ptr, nbytes);
   // copy data2 to location of data1
   memcpy(data1ptr, data2ptr, nbytes);
   // copy data in temporary storage to location of data2
   memcpy(data2ptr, temp, nbytes);
           char *x = "2";
           char *y = "5";
           swap(&x, &y, sizeof(x));
```

```
void swap(void *data1ptr, void *data2ptr, size t nbytes) {
    char temp[nbytes];
    // store a copy of data1 in temporary storage
    memcpy(temp, data1ptr, nbytes);
    // copy data2 to location of data1
    memcpy(data1ptr, data2ptr, nbytes);
    // copy data in temporary storage to location of data2
    memcpy(data2ptr, temp, nbytes);
            mystruct x = \{...\};
            mystruct y = \{...\};
            swap(&x, &y, sizeof(x));
```

C Generics

- We can use void * and memcpy to handle memory as generic bytes.
- If we are given where the data of importance is, and how big it is, we can handle it!

```
void swap(void *data1ptr, void *data2ptr, size_t nbytes)
{
    char temp[nbytes];
    memcpy(temp, data1ptr, nbytes);
    memcpy(data1ptr, data2ptr, nbytes);
    memcpy(data2ptr, temp, nbytes);
}
```

Lecture Plan

- Overview: Generics
- Generic Swap
- Generics Pitfalls
- Generic Array Swap

void * Pitfalls

- void *s are powerful, but dangerous C cannot do as much checking!
- E.g. with int, C would never let you swap half of an int. With void *s, this can happen! (How? Let's find out!)

Demo: void *s Gone Wrong

void * Pitfalls

 void * has more room for error because it manipulates arbitrary bytes without knowing what they represent. This can result in some strange memory Frankensteins!

http://i.ytimg.com/vi/10gPoYjq3EA/hqdefault.jpg

Mid-Lecture Check-In

We can now answer the following questions:

- 1. What variable type represents a "generic pointer"?
- 2. What variable type can we use to create a specific number of bytes of space on the stack?
- 3. How can we copy generic memory from one location to another?
- 4. What is the difference between **memcpy** and **memmove**?
- 5. What are the benefits of generic functions in C? What are the challenges?

Lecture Plan

- Overview: Generics
- Generic Swap
- Generics Pitfalls
- Generic Array Swap

You're asked to write a function that swaps the first and last elements in an array of numbers.

```
void swap_ends_int(int *arr, size_t nelems) {
    int tmp = arr[0];
    arr[0] = arr[nelems - 1];
                                                      Wait – we just wrote a generic
    arr[nelems - 1] = tmp;
                                                      swap function. Let's use that!
int main(int argc, char *argv[]) {
    int nums[] = \{5, 2, 3, 4, 1\};
    size t nelems = sizeof(nums) / sizeof(nums[0]);
    swap ends int(nums, nelems);
    // want nums[0] = 1, nums[4] = 5
    printf("nums[0] = %d, nums[4] = %d\n", nums[0], nums[4]);
    return 0;
```

You're asked to write a function that swaps the first and last elements in an array of numbers.

```
void swap_ends_int(int *arr, size_t nelems) {
    swap(arr, arr + nelems - 1, sizeof(*arr));
                                                   Wait – we just wrote a generic
                                                   swap function. Let's use that!
int main(int argc, char *argv[]) {
    int nums[] = \{5, 2, 3, 4, 1\};
    size_t nelems = sizeof(nums) / sizeof(nums[0]);
    swap_ends_int(nums, nelems);
    // \text{ want nums}[0] = 1, \text{ nums}[4] = 5
    printf("nums[0] = %d, nums[4] = %d\n", nums[0], nums[4]);
    return 0;
```

Let's write out what some other versions would look like (just in case).

```
void swap ends int(int *arr, size t nelems) {
    swap(arr, arr + nelems - 1, sizeof(*arr));
void swap ends short(short *arr, size t nelems) {
    swap(arr, arr + nelems - 1, sizeof(*arr));
void swap_ends_string(char **arr, size_t nelems) {
    swap(arr, arr + nelems - 1, sizeof(*arr));
void swap_ends_float(float *arr, size_t nelems)
    swap(arr, arr + nelems - 1, sizeof(*arr));
```

The code seems to be the same regardless of the type!

Let's write a version of swap_ends that works for any type of array.

```
void swap_ends(void *arr, size_t nelems) {
    swap(arr, arr + nelems - 1, sizeof(*arr));
}
```

Is this generic? Does this work?

Let's write a version of swap_ends that works for any type of array.

```
void swap_ends(void *arr, size_t nelems) {
    swap(arr, arr + nelems - 1, sizeof(*arr));
}
```

Is this generic? Does this work?

Unfortunately, not! First, we no longer know the element size. Second, pointer arithmetic depends on the type of data being pointed to. With a **void** *, we lose that information!

Let's write a version of swap_ends that works for any type of array.

```
void swap_ends(void *arr, size_t nelems) {
    swap(arr, arr + nelems - 1, sizeof(*arr));
}
```

We need to know the element size, so let's add a parameter.

Let's write a version of swap_ends that works for any type of array.

```
void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
    swap(arr, arr + nelems - 1, elem_bytes);
}
```

We need to know the element size, so let's add a parameter.

arr + nelems - 1

Let's say nelems = 4. How many bytes beyond arr is this?

If it's an array of...

int?

arr + nelems - 1

Let's say nelems = 4. How many bytes beyond arr is this?

If it's an array of...

int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

arr + nelems - 1

Let's say nelems = 4. How many bytes beyond arr is this?

If it's an array of...

int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

short?

arr + nelems - 1

Let's say nelems = 4. How many bytes beyond arr is this?

If it's an array of...

int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes

arr + nelems - 1

Let's say nelems = 4. How many bytes beyond arr is this?

If it's an array of...

int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes

char *: adds 3 places to arr, and 3 * sizeof(char *) = 24 bytes

In each case, we need to know the element size to do the arithmetic.

Let's write a version of swap_ends that works for any type of array.

```
void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
    swap(arr, arr + nelems - 1, elem_bytes);
}
```

How many bytes past arr should we go to get to the last element?

```
(nelems - 1) * elem_bytes
```

Let's write a version of swap_ends that works for any type of array.

```
void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
    swap(arr, arr + (nelems - 1) * elem_bytes, elem_bytes);
}
```

How many bytes past arr should we go to get to the last element?

```
(nelems - 1) * elem_bytes
```

Let's write a version of swap_ends that works for any type of array.

```
void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
    swap(arr, arr + (nelems - 1) * elem_bytes, elem_bytes);
}
```

But C still can't do arithmetic with a void*. We need to tell it to not worry about it, and just add bytes. How can we do this?

Let's write a version of swap_ends that works for any type of array.

```
void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
    swap(arr, (char *)arr + (nelems - 1) * elem_bytes, elem_bytes);
}
```

But C still can't do arithmetic with a void*. We need to tell it to not worry about it, and just add bytes. How can we do this?

char * pointers already add bytes!

```
void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
    swap(arr, (char *)arr + (nelems - 1) * elem_bytes, elem_bytes);
}
```

```
void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
    swap(arr, (char *)arr + (nelems - 1) * elem_bytes, elem_bytes);
}
```

```
int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends(nums, nelems, sizeof(nums[0]));
```

```
void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
    swap(arr, (char *)arr + (nelems - 1) * elem_bytes, elem_bytes);
}
```

```
short nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends(nums, nelems, sizeof(nums[0]));
```

```
void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
    swap(arr, (char *)arr + (nelems - 1) * elem_bytes, elem_bytes);
}
```

```
char *strs[] = {"Hi", "Hello", "Howdy"};
size_t nelems = sizeof(strs) / sizeof(strs[0]);
swap_ends(strs, nelems, sizeof(strs[0]));
```

```
void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
    swap(arr, (char *)arr + (nelems - 1) * elem_bytes, elem_bytes);
}
```

```
mystruct structs[] = ...;
size_t nelems = ...;
swap_ends(structs, nelems, sizeof(structs[0]));
```

Demo: Void *s Gone Wrong

swap_ends.c

Void * Pitfalls

- void *s are powerful, but dangerous C cannot do as much checking!
- E.g. with **int**, C would never let you swap *half* of an **int**. With **void *s**, this can happen!

```
int x = 0xffffffff;
int y = 0xeeeeeee;
swap(&x, &y, sizeof(short));
// now x = 0xffffeeee, y = 0xeeeeffff!
printf("x = 0x%x, y = 0x%x\n", x, y);
```

Recap

- **void** * is a variable type that represents a generic pointer "to something".
- We cannot perform pointer arithmetic with or dereference a **void** *.
- We can use **memcpy** or **memmove** to copy data from one memory location to another.
- To do pointer arithmetic with a **void** *, we must first cast it to a **char** *.
- void * and generics are powerful but dangerous because of the lack of type checking, so we must be extra careful when working with generic memory.

Recap

- Overview: Generics
- Generic Swap
- Generics Pitfalls
- Generic Array Swap
- Generic Array Rotation

Next time: Function Pointers