Analyse 3 (L2)

Responsable : Emeric Bouin

Année universitaire 2020-2021 Date : 14 janvier 2021

Durée : 3 heures

EXAMEN FINAL

Toutes les réponses doivent être soigneusement justifiées pour être considérées. Il est rappelé que la rédaction comptera de manière importante dans l'évaluation des copies. Le barême est donné à titre indicatif et pourra être modifié. Aucun document n'est autorisé, aucune calculatrice.

In bocca al lupo ...!

Exercice 1. (Cours et proche du cours - 20 points)

Répondre aux questions suivantes en justifiant tout intégralement mais de manière concise.

- 1. Enoncer le théorème d'approximation de Weierstrass.
- 2. Etudier l'absolue convergence, la semi-convergence des séries de terme général

$$u_n = \frac{(-1)^n}{n^{\frac{3}{2}} - n}, \quad v_n = (-1)^n \arcsin\left(\frac{1}{n}\right), \quad w_n = \frac{e^{-(\ln(\ln(n)))^2}}{n}.$$

3. Donner la nature des intégrales suivantes

$$\int_0^{+\infty} \exp(-x^3) \, dx, \qquad \int_0^{+\infty} \frac{\sqrt{x} \sin\left(\frac{1}{x^2}\right)}{\ln(1+x)} \, dx, \qquad \int_0^{+\infty} \frac{|x-1|^4}{x|\ln(x)|^2} e^{-x} \, dx.$$

- 4. Pour chacune des assertions suivantes, dire si elles sont vraies ou fausses, en le justifiant.
 - (a) La limite simple d'une suite de fonctions dérivables est dérivable.
 - (b) La limite uniforme d'une suite de fonctions strictement décroissantes est strictement décroissante.
- 5. On définit la suite de fonctions $f_n: x \mapsto (n+1) \left(\sin(x)\right)^n \cos(x)$ sur $\left[0, \frac{\pi}{2}\right]$.
 - (a) Montrer que la suite de fonctions f_n converge simplement et donner la limite simple.
 - (b) Donner deux arguments distincts pour conclure que la convergence n'est pas uniforme.
- 6. Quel est le rayon de convergence des séries entières suivantes?

$$\sum_{n} \sin\left(\frac{1}{2^{2n}}\right) z^{n} \qquad \sum_{n} \frac{(-1)^{n+1}}{2^{n} n!} z^{n} \qquad \sum_{n} \frac{z^{2^{n}+3^{n}}}{2^{3^{n}}+3^{2^{n}}},$$

Calculer de plus la somme de la deuxième série entière.

7. Développer les fonctions suivantes en série entière et donner le rayon de convergence correspondant :

$$\sinh(x)$$
, $\frac{\ln(1+x)}{1+x}$, $\arctan(1+x)$.

8. Donner les solutions développables en série entière de l'équation différentielle

$$(1+t^2)y''(t) + 4ty'(t) + 2y(t) = \frac{1}{1+t^2},$$

en précisant l'intervalle de résolution.

Exercice 2. (Une série de fonctions ... - 8 points) On considère la fonction

$$f(t) := \sum_{n>1} \frac{e^{-nt}}{1+n^2}.$$

- 1. Montrer que f est définie et continue sur \mathbb{R}^+ .
- 2. Démontrer que f est de classe C^{∞} sur $]0, +\infty[$ et exprimer $f^{(k)}$.
- 3. Déterminer la limite de f en $+\infty$.
- 4. Donner une équation différentielle d'ordre 2 satisfaite par f sur $]0, +\infty[$.
- 5. (a) Montrer l'existence de c > 0 telle que pour tout $u \in [0, 1]$, on ait $1 e^{-u} \ge cu$.
 - (b) Démontrer que f n'est pas dérivable en 0.

Exercice 3. (La fonction zêta alternée ... - 8 points) On considère la fonction

$$\mu(x) = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n^x}.$$

- 1. Quel est le domaine de définition de μ ?
- 2. Montrer que μ est de classe \mathcal{C}^{∞} sur son domaine de définition.
- 3. Démontrer que μ admet une limite en $+\infty$ et la calculer.
- 4. On souhaite démontrer que μ admet une limite en 0.
 - (a) Démontrer que, pour tout x > 0, on a

$$2\mu(x) - 1 = \sum_{n \ge 1} (-1)^{n+1} \left(\frac{1}{n^x} - \frac{1}{(n+1)^x} \right).$$

- (b) En déduire que pour tout x > 0, on a $0 \le 2\mu(x) 1 \le 1 2^{-x}$.
- (c) Conclure.

Exercice 4. (Une suite de fonctions ... - 5 points) Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue. On définit, pour $x \in \mathbb{R}$,

$$F_n(x) := \sum_{i=1}^n \frac{1}{n} f\left(x + \frac{i}{n}\right).$$

- 1. Montrer que F_n converge simplement sur \mathbb{R} vers une limite notée F, que l'on explicitera.
- 2. Montrer que la convergence est uniforme sur tout segment de \mathbb{R} .

Bonus. (Eine confinenigm ... - 1 point)

