11. Documentation:

Data Exploration:

The initial step involves loading the dataset and inspecting its structure. The code below demonstrates how the data is loaded into a pandas DataFrame.

```
# Data Exploration import pandas as pd column_names = ['target','ids','date','flag','user','text'] df = pd.read_csv("training.1600000.processed.noemoticon.csv", names=column_names, encoding='ISO-8859-1')
```

Data Cleaning:

Data cleaning is crucial to ensure the dataset's quality. In this project, irrelevant columns are dropped, missing values are handled, and duplicate entries are removed.

```
# Data Cleaning
# (i) Dropping irrelevant columns
# df = df[['target', 'text']]
```

(i) Handling missing values df.dropna(inplace=True)

(ii) Dropping duplicate entries df.drop_duplicates(inplace=True)

Exploratory Data Analysis (EDA):

EDA provides preliminary insights into the dataset. Visualization of the sentiment distribution is showcased using seaborn and matplotlib.

Exploratory Data Analysis (EDA) import matplotlib.pyplot as plt import seaborn as sns

Visualizing sentiment distribution sns.countplot(x='target', data=df) plt.title('Sentiment Distribution') plt.show()

Sentiment Distribution:

Further analysis includes visualizing the distribution of sentiment labels and exploring the balance of sentiment classes.

```
# Sentiment Distribution

# Visualizing the distribution of sentiment labels
sns.countplot(x='target', data=df)
plt.title('Sentiment Distribution')
plt.show()

# Analyzing the balance of sentiment classes
sentiment_counts = df['target'].value_counts()
print(sentiment_counts)
```

Word Frequency Analysis:

Word frequency analysis involves creating word clouds for both positive and negative sentiments.

```
# Word Frequency Analysis
from wordcloud import WordCloud
# Analyzing word frequency in tweets
positive tweets = df[df['target'] == 4]['text']
negative_tweets = df[df['target'] == 0]['text']
# Creating word clouds for positive and negative sentiments
positive_wordcloud = WordCloud().generate(' '.join(positive_tweets))
negative_wordcloud = WordCloud().generate(' '.join(negative_tweets))
# Displaying the word clouds
plt.imshow(positive wordcloud, interpolation='bilinear')
plt.title('Positive Word Cloud')
plt.axis('off')
plt.show()
plt.imshow(negative_wordcloud, interpolation='bilinear')
plt.title('Negative Word Cloud')
plt.axis('off')
plt.show()
```

Temporal Analysis:

Temporal analysis explores how sentiment varies over the pseudo-time index, assuming the index represents the order of tweets.

```
# Temporal Analysis
# Converting the index to datetime
df.index = pd.to_datetime(df.index, unit='s')

# Exploring how sentiment varies over the "pseudo-time" index
plt.figure(figsize=(12, 6))
sns.lineplot(x=df.index, y='target', data=df)
plt.title('Temporal Analysis of Sentiment (Based on Tweet Order)')
plt.show()
```

Text Preprocessing:

Text preprocessing involves cleaning and preparing the tweet text for analysis, including tasks such as removing URLs, special characters, and stopwords.

```
# Text Preprocessing
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()

def preprocess_text(text):
    # Text preprocessing steps
    text = re.sub(r'http\S+', ", text) # Remove URLs
    text = re.sub(r'[^a-zA-Z\s]', ", text) # Remove special characters and numbers
    tokens = word_tokenize(text)
    tokens = [lemmatizer.lemmatize(token.lower()) for token in tokens if token.lower() not in
stop_words]
    return ''.join(tokens)

df2 = df.head(15000)
df2['processed_text'] = df2['text'].apply(preprocess_text)
```

Sentiment Prediction Model:

Building a sentiment prediction model involves splitting the data into training and testing sets, vectorizing the text, and training a RandomForestClassifier.

```
# Sentiment Prediction Model

X_train, X_test, y_train, y_test = train_test_split(df2['processed_text'], df2['target'], test_size=0.2, random state=42)
```

```
vectorizer = TfidfVectorizer(max_features=5000)
X train tfidf = vectorizer.fit transform(X train)
X_test_tfidf = vectorizer.transform(X_test)
model = RandomForestClassifier(n estimators=100, random state=42)
model.fit(X train tfidf, y train)
# Evaluate the model
y pred = model.predict(X test tfidf)
accuracy = accuracy_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred, average='weighted')
print(f'Accuracy: {accuracy:.2f}')
print(f'F1 Score: {f1:.2f}')
Feature Importance:
Analyzing feature importance helps identify the most influential words in sentiment
prediction.
# Feature Importance
feature names = vectorizer.get feature names out()
feature_importance = model.feature_importances_
# Creating a DataFrame to store feature names and their importance scores
feature df = pd.DataFrame({'Feature': feature names, 'Importance': feature importance})
top features = feature df.nlargest(20, 'Importance')
# Visualizing feature importance
plt.figure(figsize=(10, 6))
plt.bar(top_features['Feature'], top_features['Importance'])
plt.xticks(rotation=45, ha='right')
plt.xlabel('Feature')
plt.ylabel('Importance')
```

plt.title('Top 20 Features Importance')

plt.show()

12. Insights and Recommendations:

Key Insights:

Sentiment Distribution:

• The sentiment distribution indicates that there is a balance between positive and negative sentiments in the dataset.

Word Frequency Analysis:

 Word clouds provide a visual representation of frequently occurring words in positive and negative tweets.

Temporal Analysis:

• Temporal analysis shows the trend of sentiment over the dataset's pseudo-time index.

Feature Importance:

• The top features indicate the most influential words in sentiment prediction.

Recommendations:

Engagement Strategies:

- Engage with users expressing positive sentiments to enhance brand loyalty.
- Address concerns raised in negative sentiments to improve overall sentiment.

Content Optimization:

- Optimize content creation based on frequently occurring words in positive sentiments.
- Consider adjusting strategies for words influencing negative sentiments.

Temporal Insights:

• Explore the temporal trend of sentiments to align marketing campaigns with periods of positive sentiment.

Feature Importance:

 Consider the top features in content creation to enhance the effectiveness of sentiment prediction.