Task 1

List of symbols can be found on page 5.

a)
$$\theta = 90^{\circ} \pm n180^{\circ}$$

$$\sin \theta = \pm 1$$

$$v_{\text{max}} = \omega A |\sin \theta| = \omega A |\pm 1| = \sqrt{\frac{k}{m}} A$$

b)
$$T = \frac{1}{f} = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$$

Task 2

Spring constant:

$$k = 410.84 \frac{N}{m}$$

Length of the unstrained spring:

$$\frac{31.502 \text{ N}}{410.84 \text{ N/m}} = 7.6677 \dots \text{cm}$$

Task 3

List of symbols can be found on page 5.

$$x = A\sin\theta = \frac{A}{2}$$

$$\sin \theta = \frac{1}{2}$$

$$(\sin\theta)^2 + (\cos\theta)^2 = 1$$

$$\cos\theta = \frac{\sqrt{3}}{2}$$

$$\omega = 2\pi f$$

(1)
$$|v| = |\omega A \cos \theta| = |2\pi f A \cos \theta| = \left|\frac{\sqrt{3}}{2} 2\pi f A\right| = \sqrt{3}\pi f A$$

(2)
$$|a| = |-\omega^2 A \sin \theta| = \left| \frac{(2\pi f)^2 A}{2} \right| = 2A(\pi f)^2$$

(2)
$$|a| = |-\omega^2 A \sin \theta| = \left| \frac{(2\pi f)^2 A}{2} \right| = 2A(\pi f)^2$$

(3) $\frac{1}{2} m v^2 = \frac{1}{2} m \left(\sqrt{3} \pi f A \right)^2 = \frac{3}{2} m (\pi f A)^2$

Task 4

Mass of the Benji jumper	m	[kg]
Height from the water that the jumper reaches	Н	[m]
Height of the bridge from the water	$H_{ m bridge}$	[m]
Length of the unstretched rope	$l_{ m rope,0}$	[m]
Length of the stretched rope when the jumper is at H	$l_{ m rope}$	[m]
Length that the rope has stretched when the jumper is at ${\cal H}$	$\Delta l_{ m rope}$	[m]
Spring constant of the rope	k	[N/m]
Gravitational acceleration	g	$[m/s^2]$
Acceleration of the jumper at H	а	$[m/s^2]$

Formulas:

Energy stored in the stretched rope when height of the jumper is \boldsymbol{H}

$$\frac{1}{2}k\Delta l_{\text{rope}}^2$$

Gravitational potential energy lost by the jumper when moving from $H_{\rm bridge}$ to H

$$mg(H_{\text{bridge}} - H)$$

$$\frac{1}{2}k\Delta l_{\text{rope}}^2 = mg(H_{\text{bridge}} - H)$$

$$\Delta l_{\text{rope}} = l_{\text{rope}} - l_{\text{rope},0}$$

$$l_{\text{rope}} = H_{\text{bridge}} - H$$

$$k\Delta l_{\text{rope}} - mg = ma$$

Solution

Spring constant:

$$\Delta l_{\text{rope}} = H_{\text{bridge}} - H - l_{\text{rope},0}$$

$$k = \frac{2mg(H_{\text{bridge}} - H)}{\Delta l_{\text{rope}}^2} = \frac{2mg(H_{\text{bridge}} - H)}{(H_{\text{bridge}} - H - l_{\text{rope},0})^2}$$

Acceleration as the jumper starts to rise:

$$k\Delta l_{\text{rope}} - mg = ma$$

$$a = \frac{k(H_{\text{bridge}} - H - l_{\text{rope},0})}{m} - g$$

Mass of the jumper if H = 0:

$$\frac{1}{2}k(H_{\text{bridge}} - H - l_{\text{rope,0}})^2 = mg(H_{\text{bridge}} - H)$$

$$\frac{1}{2}k(H_{\text{bridge}} - l_{\text{rope,0}})^2 = mgH_{\text{bridge}}$$

$$m = \frac{k(H_{\rm bridge} - l_{\rm rope,0})^2}{2gH_{\rm bridge}}$$

Task 5

Effective spring constant of the system of two springs and a mass	k	[N/m]
Spring constants of the two springs in the system	k_{1}, k_{2}	[N/m]
Steady acceleration of the car	a_1	$[m/s^2]$
Steady acceleration of the car in the sudden braking	a_2	$[m/s^2]$
Velocity during the sudden braking	v_2	[m/s]
Position of the object	\boldsymbol{x}	[m]
Mass of the object	m	[kg]
Initial velocity of the driver's head towards the steering wheel	v_0	[m/s]
in the sudden braking		
Distance between the steering wheel and the driver's head before	D	[m]
the sudden braking		
Time at which the sudden breaking starts	t_0	[s]
Time at which the drivers head hits the steering wheel	t_1	[s]
contact of driver's head to the steering wheel		
Time	t	[s]
Time it takes that the object reaches its peripheral position	$T_{ m p}$	[s]
from the opposite peripheral position		

Formulas:

$$k = k_1 + k_2$$

$$v = \int_{t_0}^{t} a_2 dt = a_2 t + v_0$$

$$D = \int_{t_0}^{t_1} v dt = \frac{1}{2} a_2 t^2 + v_0 t$$

$$T_p = \frac{T}{2}$$

When the car steadily accelerates:

$$F = ma_1 = kx$$
$$x = \frac{ma_1}{k} = \frac{ma_1}{k_1 + k_2}$$

When the car decelerates at the constant rate a_2 :

$$D = \frac{1}{2}a_2t^2 + v_0t$$

$$v_0 = 0$$

$$D = \frac{1}{2}a_2t^2$$

$$t = \sqrt{\frac{2D}{a_2}}$$

The object moves half a period of oscillation:

$$T_{\mathbf{p}} = \frac{T}{2} = \pi \sqrt{\frac{m}{k}} = \pi \sqrt{\frac{m}{k_1 + k_2}}$$

Assignment 5

Harmonic oscillator theory review sheet:

Point-like mass	m	[kg]
Spring constant	k	[N/m]
Displacement of the point-like mass from the unstrained position	\boldsymbol{x}	[m]
Amplitude of oscillation	\boldsymbol{A}	[m]
Period of oscillation	T	[s]
Force acting on the point-like mass	F	[N]
Acceleration of the point-like mass	а	$[m/s^2]$
Position of the point-like mass expressed as an angle	heta	[degrees]
Angular velocity of the point-like mass	ω	[degrees/s]
Velocity of the point-like mass	v	[m/s]
Time elapsed	t	[s]
Frequency of the oscillation	f	[1/s]

$$F = ma = -kx$$

$$x(t = 0) = 0$$
 $x(\theta = 90^{\circ}) = A$

see solution of the differential equation

$$x = A \sin \theta$$

$$v = \frac{dx}{dt} = \omega A \cos \theta$$

$$a = \frac{d^2x}{dt^2} = -\omega^2 A \sin \theta$$

$$\theta = \omega t \quad \omega = \sqrt{\frac{k}{m}} \quad \omega = 2\pi f \quad T = \frac{1}{f}$$

Solution of the differential equation

Constants in the general solution of the differential equation

 C_1, C_2 [m]

Differential equation to be solved:

$$ma(t) = -kx(t)$$

Initial conditions:

$$x(t=0)=0$$

$$x(\theta = 90^\circ) = A$$

Rearrange:

$$ma + kx = 0$$

$$a + \frac{k}{m}x = 0$$

Ordinary homogeneous differential equation with constant coefficients

Characteristic polynomial

$$r^2 + \frac{k}{m} = 0$$

$$r = \sqrt{-\frac{k}{m}} = \pm \sqrt{\frac{k}{m}}i$$

Form of the solution is

$$x = C_1 \cos\left(\sqrt{\frac{k}{m}}t\right) + C_2 \sin\left(\sqrt{\frac{k}{m}}t\right)$$

Initial condition x(t = 0) = 0:

$$x(t = 0) = C_1 \cos(0) + C_2 \sin(0) = C_1 = 0$$

Initial condition $x(\theta = 90^{\circ}) = A$:

$$x(\theta = 90^{\circ}) = C_2 \sin 90^{\circ} = C_2 = A$$

Final solution:

$$x = A \sin\left(\sqrt{\frac{k}{m}}t\right)$$

where
$$\sqrt{\frac{k}{m}} = \omega$$