

1 Introduction

Determination of the pH optimum of PFOMT with different substrates (caffeic acid, eriodictyol and iso-ferulic acid) and in low and high magnesium conditions. Measure progresscurve using six (6) timepoints (0, 3, 6, 9, 30 min and 2 h). Two different Mg²⁺-concentrations (0 and 10 mM), as well as five pH-points (5.5, 6.5, 7.5, 8.5, 9.5). For each substrate this amounts to $6 \times 5 \times 2 = 60$ measurements.

2 Methods

2.1 Assays

The standard reaction conditions for a total volume of 50 μ l are 50 mM MMT-buffer, 0.4 mM caffeic acid, 2.5 μ M GSH, 0.5 mM SAM, \pm **10 mM MgCl₂** and 20 μ g PFOMT, plus 0.1 mM flavon as ITSD.

OMT-Reaction (50 μ l):

volun	ne compound	final concent	tration		
25μ l	100 mM buffer	50 mM			
2μ l	10 mM caffeic acid	0.4 mM			
1.25	ıl 0.1 M GSH	$2.5\mu{ m M}$			
6.13	ul 81% 5 mM SAM (4.05 mM)	0.5 mM	to 5 ml	winds	Plane
10μ l	1 mg/ml PFOMT	$0.2~\mu\mathrm{g}/\mu\mathrm{l}$	10.3 1000		(
ad to	50 μl H ₂ O (5.62 μl)				

A standard substrate mastermix was prepared first. This mastermix was then added to an appropriate amount of buffer. 40 μ l of this resulting reaction buffer was pipetted into an 1.5 mL centrifuge tube and the reaction was started by addition of PFOMT.

substrate mastermix A (40 \times 15 μ l):

on	final concentration	compound	volume
	1.33 mM	10 mM caffeic acid	80 <i>μ</i> Ι
~	$8.33\mu\mathrm{M}$	0.1 M GSH	50 μ l
	1.655 mM	81% 5 mM SAM	245.25μ ا
~	0.33 mM	10 mM flavone	20μ l
$ \vee$	\vee	μ l H ₂ O (204.75 μ l)	ad to 600
	0.33 mM 🗸	10 mM flavone	_20 μΙ

substrate mastermix B (40 \times 15 μ l):

volume	compound	final concentration	
80 μI	10 mM caffeic acid	1.33 mM /	_ /
50 μ l	0.1 M GSH	8.33 μ M	/
245.25μ ا	81% 5 mM SAM	1.655 mM	~
20μ l	1 M MgCl ₂	33.3 mM 🗸	/
20μ l	10 mM flavone	0.33 mM 🗸	
ad to 600	μ I H ₂ O (184.75 μ I)	/	- V

PH 5x. Mt Zx. substrate (x (3x) 7,63 ml + College acid 1,703 6 ED (iso-femble acid) time poissals 6 0369 # # 170 (180) 50/l 80x 75 pl but + would sintstrack him 8 x75 20 pl

substrate mastermix ℓ (40 \times 15 μ l):

volume	compound	final concen	tration		
80 μl	10 mM eriodictyol	1.33 mM			
50μ l	0.1 M GSH	$8.33\mu\mathrm{M}$			
245.25μ ا	81% 5 mM SAM	1.655 mM			
20μ l	10 mM flavone	0.33 mM			
ad to 600 ul H O (204 75 ul)					

substrate mastermix \cancel{D} (40 \times 15 μ l):

volume	compound	final concentration
80 μl	10 mM eriodictyol	1.33 mM
50μ l	0.1 M GSH	$8.33\mu\mathrm{M}$
245.25μ ا	81% 5 mM SAM	1.655 mM
20μ l	1 M MgCl ₂	33.3 mM
20μ l	10 mM flavone	0.33 mM
1	1110 (101 == 1)	

ad to $600 \,\mu$ l H₂O (184.75 μ l)

reaction buffer preparation:

1. add 105 μl (7 \times 15) substrate-MM to 175 μl (7 \times 25) of 100mM of each 100 mM

Reaction:

- 1. 40 μ l of reaction buffer (2.1) is pipetted into a 1.5 mL centrifuge tube, set at room temperature
- 2. reaction is started by addition of 10 μ l 1 mg/mL PFOMT
- 3. incubate at 30 °C, 100 rpm
- 4. stop reaction by addition of 15 μ l stop solution (10% TCA in 50% ACN)

Table 1: Sample times for activity test.

		tubic in cumpic control in the contr		
		sample time	addition of PFOMT	stop time
1 0		t_i (min)	$(t_0+\dots min)$	(min)
dal	erlyne.	$t_0 = 0$		
Star		3		
1		6		
1		9		
1.		30		
V		120		

bull > fake samples 3

		((
	Nat	3	6		8030	120
A1	d	3	6	9	30	120
AZ	30	330	6.30	9.3	30.3	2920.3
13	1	4 300	7	to	3/1	127
A 4	130	4 36	7/30	103	31.3	777.3 be
AT	2	5-	A	11	3/2	30°C Stalk Fis
A6	2.30				220 0.450-0140-0150-0150-0150-0150-0150-0150-0	dan,
ß 1	1/2	15/1	8	th 1	\$ 2	132 En/
BZ	12.3	15.3 72	P.3 -	27.3	\$7.7	137.3
33	73 /	6 1	5 / 7	2/	43	133
1		13 19	1		\$3.3	177.3
85	14 / 1.	7 / 20) / 1	3	4	134
		(/	, /		1
- V (10	ach 1	Ph 50				
100	h 1	9/6	`			

BC - noh 196 50 mi

wone Substrate un 21t f (pH9) ml PH) 0.75 0-)-1 15 pl substrate MM

(0,3 mm Placem

(1.3 mm substrate 0.41 082 5.13 0.58 1.16 6 0.75 7,19 0.9L 1.84 10.09 1 (10ml) 8.7 pm grit 1. Tuch SAM

Eppis @ 30°C / Shbshoh @ RT