컴퓨터비전 프로젝트

최종 발표

컴퓨터 비전을 이용한 3쿠션 가이드

2022. 6. 08

컴퓨터공학부 20172864 서정현 컴퓨터공학부 20176342 송민준

당구 3쿠션은 어렵다?

당구에서 3쿠션으로 성공적으로 득점할 수 있는 경로를 아는 방법에는 당구 프로의 경기를 시청하여 비슷한 공의 배치에서 득점하는 방법을 따라하는 것이 있습니다.

[출처: 3쿠션 4대천왕]프레드릭 쿠드롱

혹은 당구 서적을 통해서 여러 가지 득점할 수 있는 경로에 대해 학습을 할 수 있습니다.

[출처: 당구의 정석양귀문 | 대학서림 - 교보문고]

근본적인 문제

눈 앞의 공 배치를 경기 영상이나, 당구 서적에서 보지 못했다면, 3쿠션 입문자의 입장에서는 득점 경로를 알기 어렵습니다.

따라서 입문자를 위해, 당구장에서 사진을 찍어서 즉석에서 경로를 알려주는 프로그램이 있다면 도움이 될 것 입니다.

HOLLYWOOD

당구대 사진 촬영

최적의 득점 경로 표시

2 - 1. 사전 연구 조사

https://github.com/choonguri/dl-3cushion-hint

기존에 당구대와 공을 input으로 입력하면 3쿠션 배치를 치는 방법(옆돌리기 ,제각돌리기 등..) 과 확률을 결과로 보여주는 program이 있다.

2 - 2. 기존 방법의 문제

수구와 적구의 위치를 사용자가 직접 설정해야 하는데, 이는 불편할 뿐
 아니라 정밀한 설정에 어려움이 있다.

 기존 프로그램은 공 3개의 배치를 설정하면 단순히 득점 할 수 있는 경로의 이름(앞돌리기, 제각돌리기 등..)만 알려주어 해당 용어를 모르는 사람은 어떻게 쳐야 될 지 모를 수 있다.

2 - 3. 해결 방법 제안

- 수구와 적구의 위치를 사용자가 직접 설정해야 하는데, 이는 불편할 뿐
 아니라 정밀한 설정에 어려움이 있다.
- => 컨투어 분석 또는 HSV 색 공간 추출을 통해 당구대의 영역을 구한뒤 Perspective Transformation을 통해 당구공들의 위치를 계산한다.
- 기존 프로그램은 공 3개의 배치를 설정하면 단순히 득점 할 수 있는 경로의 이름(앞돌리기, 제각돌리기 등..)만 알려주어 해당 용어를 모르는 사람은 어떻게 쳐야 될 지 모를 수 있다.
- => 수구가 진행될 경로를 같이 학습시켜 시각화해서 보여준다.

2 - 4. 데이터셋

Tensorflow, keras 사용하기 위해 데이터셋 제작

공 3개를 무작위로 찍어주는 프로그램 제작 후 학습 데이터 생성 자동화

각 학습 데이터별로 레이블링 진행(진행 방향, 먼저 쳐야되는 공 등..)

2 - 5. 플로우 차트

당구대와 당구공이 포함된 사진 업로드

당구대의 영역을 2d 직사각형으로 변환

각 당구공을 찿아서 변환시킨 2d 직사각형에 표시

당구공 3개의 위치를 이용해서 경로를 계산하고 확률 표시, 공의 경로 시각화해서 표시

1. 당구대 평면 사진 변환

Source Image

1. 당구대 평면 사진 변환 - HSV 색 공간 변환 후 파란색 영역 추출

Blue area binary image

1. 당구대 평면 사진 변환 - 모폴로지 닫힘 연산

Blue area binary image

Blue area (morphology - close)

1. 당구대 평면 사진 변환 - 컨투어 추출

Blue rectangle area contour

1. 당구대 평면 사진 변환 - 원근 변환(Perspective Transform)

Blue rectangle area contour

1. 당구대 평면 사진 변환 - 공 위치 추출 (HSV, Morphology, Contour)

1. 당구대 평면 사진 변환 - 결과 테이블 그려보면...

2. 데이터셋 학습

공 3개를 자유롭게 혹은 무작위로 배치하고, 해당 공 3개의 좌표와 수동으로 라벨링(직접 라벨 값 입력)해서 csv에 추가하는 프로그램 제작

2. 데이터셋 학습

내 공은 무조건 흰공 기준

라벨링

빨간공 왼쪽 => 0 노란공 왼쪽 => 2 빨간공 오른쪽 => 1 노란공 오른쪽 => 3

빈쿠션 => 4

4	Α	В	С	D	E	F	G
1	x0	y0	x1	y1	x2	y2	label
2	179	131	264	33	91	76	3
3	159	36	120	73	143	115	2
4	104	87	18	95	200	123	1
5	74	29	180	57	223	62	0
6	121	19	158	111	97	100	0
7	142	60	178	4	206	125	1
8	176	109	105	53	188	119	0
9	175	34	102	26	31	115	0
10	164	98	161	117	23	28	1
11	57	27	207	23	187	39	4

2. 데이터셋 학습

라벨링

약 450개의 무작위 데이터 학습

=> 당구대와 당구공은 상하, 좌우, 상하좌우로 뒤집어서 데이터를 총 4배로 만들 수 있습니다.

=> 약 1800개 학습

2. 데이터셋 학습

뉴럴 네트워크 구조

2. 데이터셋 학습

1800개 데이터 학습, epoch = 1000, batch size = 16 train set 정확도 = 0.74


```
116/116 [==
                               ==] - 0s 540us/step - loss: 0.6804 - accuracy: 0.7143
Epoch 993/1000
116/116 [===
Epoch 994/1000
116/116 [==
Epoch 995/1000
116/116 [====
                                =] - 0s 557us/step - loss: 0.6431 - accuracy: 0.7392
Epoch 996/1000
116/116 [=============] - 0s 540us/step - loss: 0.6228 - accuracy: 0.7359
Epoch 997/1000
Epoch 998/1000
116/116 [-----
                              ===] - 0s 540us/step - loss: 0.6302 - accuracy: 0.7289
Epoch 999/1000
                                =] - 0s 540us/step - loss: 0.6410 - accuracy: 0.7284
116/116 [===
Epoch 1000/1000
116/116 [===
                                =] - 0s 531us/step - loss: 0.6280 - accuracy: 0.7462
```

Layer (type)	Output Shape	Param #
lense (Dense)	(None, 8)	56
dense_1 (Dense)	(None, 16)	144
dropout (Dropout)	(None, 16)	0
dense_2 (Dense)	(None, 16)	272
dropout_1 (Dropout)	(None, 16)	0
dense_3 (Dense)	(None, 16)	272
dense_4 (Dense)	(None, 16)	272
dense_5 (Dense)	(None, 5)	85

3. 학습 결과

```
[(0) 0.4818017), (1, 0.42052838), (2, 0.06901206), (3, 0.028657837), (4, 1.3812008e-13)]
[(1) 0.96582806), (0, 0.028184712), (3, 0.0048805713), (2, 0.0011065719), (4, 1.1391485e-15)]
[(0, 0.4340561), (3, 0.22417821), (2) 0.22028854), (1, 0.121477135), (4, 1.377794e-12)]
[(3) 0.65659386), (2, 0.20944707), (1, 0.0808909), (0, 0.051432416), (4, 0.0016357026)]
[(4) 0.75941074), (2, 0.20182724), (0, 0.033423737), (3, 0.0033278833), (1, 0.0020104349)]
[(1) 0.46810305), (2, 0.23652917), (0, 0.17506377), (3, 0.12029992), (4, 4.1790654e-06)]
[(1) 0.5080621), (0) 0.4787458), (3, 0.013047536), (2, 0.00014450558), (4, 1.8389792e-14)]
[(3) 0.8446285), (2) 0.13342248), (0, 0.0119779855), (1, 0.009970956), (4, 4.644401e-16)]
[(2) 0.66057116), (3, 0.2430379), (1, 0.058709327), (0, 0.03768163), (4, 4.646299e-12)]
[(4) 0.99703896), (3, 0.0010476242), (0, 0.0008288765), (2, 0.0005574443), (1, 0.000527063)]
```

4. 결과 표시

예측한 결과를 토대로

흰 공=>빨간 공 (왼쪽 or 오른쪽) 흰 공=>노란 공 (왼쪽 or 오른쪽) 빈 쿠션

 $\sin \theta = r / I$ radian = asin($\sin \theta$)

4. 실제 사용 결과 (1) 뒤돌리기

4. 실제 사용 결과 (1) 뒤돌리기

49%: 노란공 왼쪽 31%: 노란공 오른쪽 14%: 빨간공 왼쪽 7%: 빨간공 오른쪽 0%: 빈 쿠션

4. 실제 사용 결과 (1) 뒤돌리기

4. 실제 사용 결과 (2) 안돌리기

46%: 빨간공 오른쪽 42%: 빨간공 왼쪽

9%: 노란공 왼쪽

2%: 노란공 오른쪽

e%: 빈 쿠션

4. 실제 사용 결과 (2) 안돌리기

46%: 빨간공 오른쪽 42%: 빨간공 왼쪽

9%: 노란공 왼쪽

2%: 노란공 오른쪽

e%: 빈 쿠션

4. 실제 사용 결과 (2) 안돌리기

4. 실제 사용 결과 (3) 빈 쿠션

100%: 빈 쿠션

0%: 빨간공 왼쪽

0%: 빨간공 오른쪽

0%: 노란공 왼쪽

0%: 노란공 오른쪽

 $\overline{}$

4. 실제 사용 결과 (3) 빈 쿠션

100%: 빈 쿠션 0%: 빨간공 왼쪽 0%: 빨간공 오른쪽 0%: 노란공 왼쪽 0%: 노란공 오른쪽

4. 실제 사용 결과 (3) 빈 쿠션

4. 실제 사용 결과 (4) 대회전

59%: 빨간공 오른쪽 31%: 빨간공 왼쪽 7%: 노란공 왼쪽 4%: 노란공 오른쪽

e%: 빈 쿠션

4. 실제 사용 결과 (4) 대회전

59%: 빨간공 오른쪽 31%: 빨간공 왼쪽 7%: 노란공 왼쪽 4%: 노란공 오른쪽 6%: 빈 쿠션

4. 실제 사용 결과 (4) 대회전

4. 개선 내용

기존

개선 결과

5. 결론

- 컨투어 분석과 HSV 색 공간 추출, Perspective Transformation 등에 대해 탐구하고 허프 변환을 활용해서 변환된 이미지에서 당구공을 찾을 수 있다.
- 딥러닝을 활용해 당구대와 당구공 좌표, 수구의 경로를 학습시켜
 적합한 득점 방법과 경로를 획득할 수 있다.
- 신형 당구대에 설치된 디지털 점수판(버드 아이 뷰 카메라가 연동되어 있음)에 이 기술을 접목하면 보다 효용성이 높아질 수 있을 것이다.

6. 역할 분담

- 컴퓨터 비전

컨투어 분석, HSV 색 공간 추출, Perspective Transformation

20172864 서정현

- 머신 러닝

진행 방향, 경로 예측 및 가이드

20176342 송민준

7. 참고문헌

https://github.com/choonguri/dl-3cushion-hint

(dl-3cushion-hint 딥러닝을 이용한 3쿠션 힌트 안드로이드앱)