Lema 1

- a) Si $(c_0,s) ->^* s'$ entonces $(c_0;c_1,s) ->^* (c_1,s')$
- b) Si (c , [s|v:[|e|]s]) ->* s' entonces (newvar v:=e in c , s) ->* [s'|v:sv]
- c) Si (c , [s|v:[|e|]s]) ->* (c',s') entonces (newvar v:=e in c , s) ->* (newvar v:=s'v in c' , [s'|v:sv])

Demostración: a) Supongamos G0 = (c_0,s) , y que la ejecución G0 ->* s' tiene n pasos:

Hacemos inducción en n.

Caso n=1: Se tiene que (c₀,s) -> s', entonces la tesis surge inmediatamente de la regla

<u>Caso recursivo</u>: Suponemos ahora que a) es válido para ejecuciones de tamaño menor que n. Supongamos que tenemos la ejecución G0 -> G1 -> ... -> Gn = s' (de n pasos). Sea G1 = (c_0^1,s^1) . Dado que G1 ->* s', y tal ejecución tiene n-1 pasos, por HI se tiene $(c_0^1;c_1,s^1)$ ->* (c_0^1,s^2) . Luego la conclusión se obtiene desde la segunda regla para el (;):

$$(c_0,s) \rightarrow (c_0^1,s^1)$$

 $(c_0;c_1,s) \rightarrow (c_0^1;c_1,s^1) \rightarrow^* (c_1,s')$

b) Nuevamente por inducción en la longitud de la derivación de (c , [s|v:[|e|]s]) ->* s'. Si la longitud es 1, al igual que el caso a), la conclusión surge de la primera regla del newvar:

Supongamos que la longitud de la de derivación de (c , [s|v:[|e|]s]) ->* s' es mayor que 1, y que (c , [s|v:[|e|]s]) -> (c¹,s¹). Por la segunda regla del newvar se tiene que:

(newvar v:=e in c , s) -> (newvar v:=
$$s^1v$$
 in c^1 , [s^1 |v:sv])

Queremos aplicar la hipótesis inductiva para deducir que

$$(c^1,s^1) -> * s'$$
 implica $(newvar v:=s^1v in c^1, [s^1|v:sv]) -> [s'|v:sv]$

Para esto debemos verificar que si $s_0 = [s^1|v:sv]$, entonces $s^1 = [s_0|v:s^1v]$. Esto se prueba a continuación:

```
Si w = v entonces s<sup>1</sup> v = [s<sub>0</sub>|v:s<sup>1</sup>v] v
Si w /= v entonces s<sup>1</sup> v = [s<sup>1</sup>|v:sv] v = s<sub>0</sub> v = [s<sub>0</sub>|v:s<sup>1</sup>v] v
```

Lema 2

- (1) $(c,s) \rightarrow s' \text{ implica } [|c|]s = s'$
- (2) $(c,s) \rightarrow (c',s')$ implica [|c|]s = [|c'|]s'

Demostración: Tanto (1) como (2) se prueban recurriendo a una inducción sobre la derivación de la relación "->". Para esto debemos recurrir a verificar la tesis para cada una de las reglas cuya conclusión tiene la forma (c,s) -> s' (para la prueba de (1)), y para cada una de las reglas cuya conclusión tiene la forma (c,s) -> (c',s') (para la prueba de (2)). Algunos casos no triviales como ejemplo.

Surge inmediatamente de la propiedad: si \neg [| b |] entonces [| while b do c |]s = s. Para probar esto basta observar que $F^1\bot$ s = s, siempre que \neg [| b |]. Como el dominio Σ_\bot es llano, entonces [| while b do c |]s = $F^1\bot$ s = s.

Lema 3 [|c|]s = s' implica (c,s) -> s'

Demostración: Se utiliza inducción en la estructura de c. Probaremos algunos casos no triviales.

<u>Caso</u> $c = c_0; c_1$: Por la hipótesis [| $c_0; c_1$ |]s = s', podemos suponer que [| c_0 |]s = s_0 , y que [| c_1 |]s₀ = s'. Por hipótesis inductivas se tiene (c_0, s) ->* s_0 , y que (c_1, s_0) ->* s'. Por lema 1, dado que (c_0, s) ->* s_0 , tenemos que ($c_0; c_1, s$) ->* ($c_1 s_0$). Luego, por transitividad de ->*, obtenemos ($c_0; c_1, s$) ->* s'.

Teorema Corrección de la semántica operacional respecto de la denotacional.

Si definimos:

$$\{ | c | \} s = \bot$$
 si $(c,s) \uparrow$
 $\{ | c | \} s = s'$ si existe s' tal que $(c,s) \rightarrow s'$ s'

Entonces $\{ | c | \} = [| c |].$

Demostración: Sea s tal que [|c|]s es un estado. Entonces {|c|}s = [|c|]s por lema 3. Supongamos ahora que [|c|]s = \bot . Entonce demostramos por el absurdo que (c,s) ↑. Supongamos lo contrario, entonces existe s' tal que (c,s) ->* s'. Pero en este caso, aplicando sucesivamente el lema 2 a la ejecución (c,s) ->* s' tendríamos [|c|]s = s'.