Spin sectors

Quantum particles have a property called *spin*, which is an intrinsic angular momentum. The spin of a particle is restricted to be a multiple of $\hbar/2$. In units where $\hbar=1$, the spin is either an integer or an odd multiple of one half. Electrons have spin s=1/2.

The total spin S of a collection of electrons is determined by the angular momentum summation rule $\frac{1}{2} \otimes S = (S - \frac{1}{2}) \oplus (S + \frac{1}{2})$. The possible spin sectors for two, three, and four electrons are shown below.

$$\begin{array}{c} \frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1 \\ \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2} \\ \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 2 \\ \vdots \\ \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \cdots \otimes \frac{1}{2} = \prod_{2S=0}^{N} \underbrace{S \oplus S \oplus \cdots \oplus S}_{C_{S}^{(N)} \text{ times}} \end{array}$$

The final line shows the general result for N electrons. The coefficient $C_S^{(N)}$ denotes the number of states in a given spin sector. One can show that the total number of states in the singlet (S = 0) sector is

$$C_0^{(N)} = \frac{1}{N/2 + 1} {N \choose N/2} = \frac{N!}{(N/2)!(N/2 + 1)!}$$

and that the total number of states—counting the (2S + 1)-fold degeracy—is

$$\sum_{2S=0}^{N} (2S+1)C_{S}^{(N)} = 2^{N}.$$

The 2^N result is just the number of ways to orient N electrons either spin-up or spin-down.

Read over the file $_moments.cpp$. It provides the skeleton of a program that computes the coefficients $C_S^{(N)}$ and displays them in a table. Determine how elements of the array $_current$ (indexed by the integer 2S) should be incremented in terms of the values in $_last$. Accumulate the total number of states into the variable $_num_states$. The output of your program should be identical to the following.

Write a function $verify_singlet$ that computes $C_0^{(N)}$ explicitly. Check its result against $verify_singlet$ for each even value of $verify_singlet$ to $verify_singlet$ that computes $verify_singlet$ for each even value of $verify_singlet$ to $verify_singlet$ for $verify_singlet$ for $verify_singlet$ that computes $verify_singlet$ for $verify_singlet$ for v