Name: Key

You must show your work to get full credit.

A species of fish in a lake has a life history is partly summarized by the Leslie matrix

If the lake is without the fish and ten stage one fish are introduced, that is

$$\vec{n}(0) = \begin{bmatrix} 10\\0\\0 \end{bmatrix}$$

1. Find $\vec{n}(50)$ and $\vec{n}(51)$ to four decimal places.

ces.
$$\vec{n}(50) = \frac{\begin{bmatrix} 13.3756 \\ 1.9576 \\ .7640 \end{bmatrix}}{\begin{bmatrix} 13.3756 \\ .7640 \end{bmatrix}}$$

$$\vec{n}(51) = \frac{\begin{bmatrix} 3.7087 \\ 2.0063 \\ .7830 \end{bmatrix}}{\begin{bmatrix} .7830 \end{bmatrix}}$$

λ= 1.0249

2. Is there a λ such that $\vec{n}(51) = \lambda \vec{n}(50)$. If so find λ .

$$\lambda = \frac{13.7087}{13.3756} = 1.0249$$

$$\lambda = \frac{2.0063}{1.9576} = 1.0249$$

$$\lambda = \frac{.7830}{.7640} = 1.0249$$

3. What is the stable age distribution?

3. What is the stable age distribution?

Using
$$\sqrt[4]{50}$$
 Percent in stage 1 is $\frac{|3.3756|}{|6.0972|} = 83.09\%$
 $+040! = 13.3756$
 $+1.9576$
 $+1.9576$
Percent in stage 2 is $\frac{1.9576}{|6.0972|} = 12.16\%$

Percent in stage 3 is $\frac{.7640}{|6.0972|} = 4.75\%$