

Московский Физико-Технический Институт

Отчет о выполнении лабораторной работы

5.5.2

Спектрометрия α -излучения с помощью полупроводникового детектора

Аннотация

Цель работы: С помощью кремниевого поверхностно-барьерного детектора измеряются спектры α -частиц, испускаемых различными радиоактивными ядрами - 226 Ra, 238 U, 241 Am + 230 Th и 239 Pu. Исследуется тонкая структура α — излучения и последовательность радиоактивных распадов в семействе урана.

Содержание

1	Теоретическая справка	3
2	Экспериментальная установка	3
3	Результаты измерений и обработка данных	5
4	Заключение	5

1 Теоретическая справка

К числу радиоактивных процессов относятся α - и β -распады (в том числе и K-захват), γ -излучение, деление ядер, а также испускание запаздывающих нейтронов и протонов. В этой работе изучается α -распад.

Энергию вылетающих из ядра α -частиц легко подсчитать на основе законов сохранения. Если родительское (исходное) ядро имеет массу M_1 , а дочернее (конечное) - M_2 , то законы сохранения энергии и импульса записываются в форме

$$M_2c^2 = M_1c^2 + m_{\alpha}c^2 + T_1 + T_{\alpha},$$

 $p_1 + p_{\alpha} = 0$

где T_1 и p_1 - кинетическая энергия и импульс отдачи дочернего ядра, а T_α и p_α - кинетическая энергия и импульс α -частицы.

Ясно, что вылет α -частицы из ядра возможен лишь в том случае, если разность энергий покоя родительского и дочернего ядра будет больше энергии покоя α -частицы. В силу того, что реально α -распад испытывают лишь тяжелые ядра с A>200, энергия отдачи ядра очень мала и фактически кинетическая энергия α -частицы равна разности энергий покоя исходного и конечного ядер. Именно поэтому вылетающие α -частицы имеют строго определенную энергию.

Однако экспериментально обнаружено, что энергетический спектр α -частиц многих α -активных ядер состоит из нескольких линий, одна из которых преобладающее. Дискретность линий и их относительная интенсивность объяснимы, поскольку, во-первых, α -частицы могут испускаться ядром, находящимися в возбужденном состоянии (длинно-пробежные α -частицы), а во-вторых может происходить α -распад из основного состояния родительского ядра на возбужденные состояния дочернего ядра (короткопробежные α -частицы). Так как период полураспада для α -частиц примерно в 10^5 раз больше периода α -распада, то интенсивность длиннопробежных α -частиц очень мала.

Тяжелые ядра, как правило, в основном состоянии деформированы (исключением являются магические ядра). Это означает, что низколежащими состояниями являются вращательные полосы, и именно на эти состояния обычно и происходит распад родительского ядра, приводящий к появлению группы короткопробежных α -частиц. Как известно, энергия вращательных уровней определяется выражением

$$E_{\rm Bp} = \frac{\hbar^2}{2\mathcal{I}}l(l+1).$$

Тем самым измерение тонкой структуры энергетического спектра α частиц дает возможность определить момент инерции ядра \mathcal{I} .

Периоды полураспада α -активных ядер очень сильно зависят от энергии вылетающих частиц. Экспериментально установленная зависимость (закон Гейгера-Нэттола) имеет вид:

$$\lg T_{1/2} = \frac{a}{\sqrt{E_{\alpha}}} + b. \tag{1}$$

Коэффициенты a и b очень слабо зависят от заряда ядра Z.

2 Экспериментальная установка

В состав экспериментальной установки входят альфа-спектрометр, форвакуумный насос и персональный компьютер:

Форвакуумный насос, соединенный с корпусом альфа-спектрометра вакуум-ным шлангом, откачивает измерительную камеру до давления 0,2 мм рт. ст.

Установка автоматически поддерживает давление в измерительной камере в рабочем диапазоне от 0,2 до 2,0 мм рт. ст. Откачка блокируется при разгерметизации камеры. Соединение и отсоединение измерительной камеры с атмосферой осуществляется с помощью двух электромагнитных клапанов.

Внешний вид альфа-спектромерта изображен рисунке ниже:

Здесь 1 - крышка измерительной камеры, 2 - прижимная ручка, 3 - кнопка разгерметизации (напуска атмосферы), 4 - индикатор давления в камере (показывает давление в мм рт. ст.). Внутри измерительной камеры альфа-спектрометра (рис. 26) располагается полупроводниковый детектор 5, держатель образца 6 вместе с металлической подложкой 7, на которую устанавливают образцы с радиоактивными источниками. Металлическая подложка 7 соединена гибким проводником с источником постоянного напряжения. На подложку 7 подается отрицательный потенциал (относительно корпуса измерительной камеры) для того, чтобы ядра отдачи, получившие импульс, направленный вверх, не попадали на детектор и не загрязняли его. Держатель образца 6 вместе с самим образцом можно располагать на нескольких фиксированных расстояниях от детектора. Электрический сигнал с полупроводникового детектора усиливается, поступает на плату аналоговоцифрового преобразователя (АЦП) и обрабатывается компьютером.

Амплитуда электрического сигнала с полупроводникового детектора пропорциональна энергии а - частицы, и поэтому с помощью компьютера мы регистрируем спектры источников. Осуществляется это с помощью установленной на компьютере программы "Прогресс"

При использовании детектора в спектрометрических целях особое значение приобретает его разрешающая способность, т. е. ширина кривой распределения импульсов по амплитудам при строго постоянной энергии регистрируемых частиц. Форма такой кривой распределения обычно бывает близка к кривой ошибок (гауссовой кривой)

$$W(U)dU = \frac{1}{\sqrt{2\pi}\sigma}e^{-(U-U_0)^2/(2\sigma^2)}dU$$

Распределение (5) имеет вид колокола с максимумом при $U=U_0$. Разрешающую способность спектрометра определяют по величине δ ширине кривой W(U), измеренной на половине высоты. Энергетическим разрешением спектрометра обычно называют величину

$$R = \frac{\delta}{U_0} \cdot 100\%.$$

Нетрудно найти связь между δ и б:

$$\delta = 2\sqrt{2\ln 2}\sigma.$$

Одной из основных причин, вызывающих разброс импульсов по амплитуде, является статистическая флуктуация числа электрондырочных пар, создаваемых падающей частицей. Среднее число пар N равно

$$N = E/E_{\rm cp}$$

где E - энергия, теряемая частицей в детекторе, а $E_{\rm cp}=3.6$ эВ - энергия, необходимая для создания пары электрон-дырка. Среднеквадратичное отклонение σ равно

$$\sigma = \sqrt{N} = \sqrt{E/E_{\rm cp}}$$

Вклад флуктуаций числа пар в энергетическое разрешение

$$R_{\text{флук}} = \frac{\sigma}{N} \cdot 100\% = \sqrt{\frac{E_{\text{cp}}}{E}} \cdot 100\%.$$

3 Результаты измерений и обработка данных

4 Заключение

В заключение, хочу отметить, что с помощью кремниевого поверхностно-барьерного детектора мы измерили спектры α -частиц, испускаемых различными радиоактивными ядрами - 226 Ra, 238 U, 241 Am + 230 Th и 239 Pu. А также исследовали тонкую структуру α -излучения и последовательность радиоактивных распадов в семействе урана.