Linear Causal Disentanglement via Interventions

Chandler Squires*12, Anna Seigal*13, Salil Bhate1,
Caroline Uhler12

¹Broad Institute of MIT and Harvard

²Laboratory for Information and Decision Systems, MIT

³School of Engineering and Applied Science, Harvard

The context...

Ki Ca gi

causally familiar domains

conceptually familiar domains

conceptually novel domains

causally familiar domains

Known
causal
graph? variables?

causally familiar domains

conceptually familiar domains

Ki Ca gi

causally familiar domains

conceptually familiar domains

conceptually novel domains

Causal Disentanglement

Macro-variables

Mixing function

Micro-variables

A central question: *Identifiability*

Identifiability = A unique model explains the data we observe.

Approaches to identifiability the causal disentanglement problem

Identifiability = A unique model explains the data we observe.

Restrict latent DAG *G*

Restrict mixing function *g*

Learning from contexts

Linear ICA (Comon 1994) Nonlinear ICA (Hyvärinen '19) Most work on latent DAG recovery (Silva '06, Halpern '15, Cai '19, Kivva '21, Xie '20, Xie '22)

This work Liu '22, Ahuja '22

Our setting

Single node interventions:

$$T(k) = \{i_k\}$$

Linear latent model:

 $Z = B_k^{-1} \varepsilon$, ε independent, B_k upper triangular

Linear observations:

X = GZ, G full column rank

Our identifiability guarantees

Perfect interventions: One intervention per latent node is sufficient, and in the worst case, necessary for identifying $(T, B_0, B_1, \dots, B_K, G)$.

Soft interventions: One intervention per latent node is sufficient, and in the worst case, necessary for identifying the latent graph up to its transitive closure.

Constructive approach

Key identity:
$$\Theta_k - \Theta_0 = (H^{\mathsf{T}} B_k^{\mathsf{T}} \boldsymbol{e}_{i_k})^{\otimes 2} - (H^{\mathsf{T}} B_0^{\mathsf{T}} \boldsymbol{e}_{i_k})^{\otimes 2}$$

Rank = 1 if i_k is a source node, rank = 2 otherwise. Used to find (scaled) $h_{i_{\nu}}$ when i_{k} is a source node.

General idea: rowspan $(\Theta_k - \Theta_0) \subseteq \{h_i : i \in \mathcal{I}\}$ if and only if $\mathcal{I} = pa(i_k) \cup \{i_k\}$, so we can iteratively recover (1) the partial order over i_k 's and (2) the corresponding rows of H.

arxiv.org/abs/2211.16467