

EEE 51: Second Semester 2017 - 2018 Lecture 3

Two-Port Networks
Single-Stage Amplifiers

Today

- Two-Port Networks
- Single-Stage Amplifiers

Two-Port Network Reduction

Can reduce any <u>linear</u> circuit into 4 parameters

The <u>Bilateral</u> Hybrid-π Two-Port Network

Thevenin equivalent:

Norton equivalent:

Unilateral equivalents?

The <u>Unilateral</u> Hybrid-π Two-Port Network

Requires only 3 parameters

Operating Conditions (1)

No-Load → No power draw at the output

Operating Conditions (2)

• **Zero-Input** → No excitation at the input

Solving for the Hybrid- π Parameters (1)

Circuit Transconductance

Solving for G_m:

$$G_m = \frac{i_{out}}{v_{in}} \bigg|_{\text{no-load}}$$

Solving for the Hybrid- π Parameters (2)

Circuit Voltage Gain

Solving for A_v:

$$A_{v} = \frac{v_{out}}{v_{in}} \bigg|_{\text{no-load}}$$

Solving for the Hybrid- π Parameters (3)

Circuit Output Resistance

Solving for R_o:

$$R_o = \frac{v_{out}}{i_{out}} \bigg|_{\text{zero-input}}$$

Solving for the Hybrid- π Parameters (4)

• Circuit Input Resistance

Solving for R_i:

$$R_i = rac{v_{in}}{i_{in}}igg|_{ ext{no-load}}$$

Cascading Two-Port Networks

Equivalent 2-Port Circuit taking into account loading effects

So Far...

- We can analyze small signals separately from large signals
- We can use 2-port networks to reduce/combine small signal circuits
- Let's look at the small signal behavior of our basic electronic circuit building blocks:
 - Single-stage amplifiers

Choices:

Where do we put in the input?

Where do we get the output?

Where do we start?

Transistor Amplifier Analysis

The Basic Common-Emitter (CE) Amplifier

Full vs. simplified schematics

Common-Emitter DC Analysis

Objective: Determine I_{C,Q}

KVL equations \rightarrow 2 equations, 2 unknowns (assumptions?)

$$V_{CC} - I_{C,Q} R_L - V_{CE,Q} = 0$$

$$I_{C,Q} = I_S \left(e^{\frac{V_{IN}}{V_T}} - 1 \right) \left(1 + \frac{V_{CE,Q}}{V_A} \right)$$

In most cases, we will deal with: V_{OUT} = $V_{CE.O}$ << V_A

Thus,

$$\begin{split} I_{C,\mathcal{Q}} &= I_S \left(e^{\frac{V_{IN}}{V_T}} - 1 \right) \\ &\qquad V_{OUT} = V_{CC} - I_{C,\mathcal{Q}} R_L \\ &= V_{CC} - R_L I_S \left(e^{\frac{V_{IN}}{V_T}} - 1 \right) \end{split}$$

Common-Emitter Amplifier Small Signal Analysis

• Given I_{C,Q}:

What about the other circuit elements?

- Resistors
- Independent voltage/current sources

Linear Two-Terminal Devices

Small signal conductance / resistance:

$$R_{\text{small signal}} = \frac{\partial V}{\partial I}$$

CE Amplifier Small Signal Equivalent Circuit

Define: Intrinsic Transistor Gain (a_o)

Ideal bias circuit:

a₀ → largest voltage gain out of a single transistor

$$a_o = -g_m r_o = -\frac{I_{C,Q}}{V_T} \cdot \frac{V_A}{I_{C,O}} = -\frac{V_A}{V_T} = -\frac{q \cdot V_A}{kT}$$

How do we interpret voltage gain?

• Large signal transfer characteristic:

Small Signal Voltage Gain

$$V_{OUT} = V_{CC} - R_L \cdot I_S \cdot e^{\frac{V_{IN}}{V_T}}$$

Assumptions?

Compare to $A_v = -g_m(r_o \parallel R_L)$

Choosing the Bias Point?

Largest gain? → Point C

	V_{IN} [mAV]	$I_{C,Q} [\mathrm{mA}]$	V_{OUT} [V]	$A_v\left[\frac{\mathrm{V}}{\mathrm{V}}\right]$
Point A	672.5	1	4.5	-21.7
Point B	709.5	5	2.5	-108.7
Point C	718.9	7.5	1.25	-163.0

Transient Response at Point C: Output Swing

$$V_{CC} = 5V$$

$$R_L = 500\Omega$$

	V_{IN} [mAV]	$I_{C,Q} [\mathrm{mA}]$	V_{OUT} [V]	$A_v\left[\frac{\mathrm{V}}{\mathrm{V}}\right]$
Point A	672.5	1	4.5	-21.7
Point B	709.5	5	2.5	-108.7
Point C	718.9	7.5	1.25	-163.0

Transient Response at Point A: Output Swing

$$V_{CC} = 5V$$

$$R_L = 500\Omega$$

	$V_{IN} [\mathrm{mAV}]$	$I_{C,Q}\left[\mathrm{mA}\right]$	V_{OUT} [V]	$A_v\left[\frac{V}{V}\right]$
Point A	672.5	1	4.5	-21.7
Point B	709.5	5	2.5	-108.7
Point C	718.9	7.5	1.25	-163.0

Transient Response at Point B: Output Swing

$$V_{CC} = 5V$$

$$R_L = 500\Omega$$

	$V_{IN} [\mathrm{mAV}]$	$I_{C,Q} [\mathrm{mA}]$	V_{OUT} [V]	$A_v\left[\frac{V}{V}\right]$
Point A	672.5	1	4.5	-21.7
Point B	709.5	5	2.5	-108.7
Point C	718.9	7.5	1.25	-163.0

Choosing the Bias Point -> Swing vs. Distortion

Depends on what you need

	V_{IN} [mAV]	$I_{C,Q} [\mathrm{mA}]$	V_{OUT} [V]	$A_v\left[\frac{\mathrm{V}}{\mathrm{V}}\right]$
Point A	672.5	1	4.5	-21.7
Point B	709.5	5	2.5	-108.7
Point C	718.9	7.5	1.25	-163.0

Quiescent DC Power

Amplification requires <u>power input</u>

Next Meeting

- Single-Stage Amplifiers
 - Common-Emitter Biasing
 - Common-Source Amplifier
 - Common-Base / Common-Gate Amplifier
 - Common-Collector / Common-Drain Amplifier