

Hierarchical Clustering

Use distance matrix as clustering criteria. This method does not require the number of clusters
 k as an input, but needs a termination condition

Single-link vs. Complete-link

- difference: the way to characterize the similarity between a pair of clusters
 - single link: minimum of the distances between all pairs of patterns drawn from the two clusters
 - complete link: maximum of the distances between all pairs of patterns drawn from the two clusters
 - Complete link: average of the distances between all pairs off
- Both use agglomerative clustering control structure

Agglomerative clustering

- Step 1: place each pattern in its own cluster construct a list of inter-pattern distances for all distinct unordered pairs of patterns, and sort this list in ascending order
- Step through the sorted list of distances, forming for each distinct dissimilarity value d_k, a graph on the patterns where pairs of patterns closer than d_k are connected by a graph edge.

If all patterns are members of a completely connected graph, stop.

Dendrogram

A *Dendrogram* Shows How the Clusters are Merged Hierarchically:

- Decompose data objects into a several levels of nested partitioning (<u>tree</u> of clusters), called a <u>dendrogram</u>.
- A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected component</u> forms a cluster.

Practice question

Cluster the following six objects, using single-link and complete link agglomerative clustering methods:

	Gender	Age	time	Fever	cough
Obj1:	F	23	2	Υ	N
Obj2:	M	2	0.5	N	N
Obj3:	F	15	3	Υ	Υ
Obj4:	F	18	0.5	Υ	N
Obj5:	M	58	4	N	Υ
Obj6:	F	44	14	N	Υ

AGNES (Agglomerative Nesting)

- Implemented in statistical analysis packages, e.g., Splus
- Use the Single-Link method and the dissimilarity matrix.
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

DIANA (Divisive Analysis)

- Inverse order of AGNES
- Eventually each node forms a cluster on its own

More on Hierarchical Clustering Methods

- Major weakness of agglomerative clustering methods
 - do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects
 - can never undo what was done previously
- Integration of hierarchical with distance-based clustering
 - BIRCH (1996): uses CF-tree and incrementally adjusts the quality of sub-clusters
 - CURE (1998): selects well-scattered points from the cluster and then shrinks them towards the center of the cluster by a specified fraction

. . . .

Introduction to BIRCH

- Only works with "metric" attributes
 - Must have Euclidean coordinates
- Designed for very large data sets
 - Time and memory constraints are explicit
 - Treats dense regions of data points as subclusters
 - Not all data points are important for clustering
 - Only one scan of data is necessary

Introduction to BIRCH

- Incremental, distance-based approach
 - Does not need the whole data set in advance
 - Unique approach: distance based algorithms generally need all the data points to work
- Does not assume that the probability distributions on attributes is independent

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)

- Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure for multiphase clustering
 - Phase 1: scan DB to build an initial in-memory CF tree (a multi-level compression of the data that tries to preserve the inherent clustering structure of the data)
 - Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree
- Scales linearly: finds a good clustering with a single scan and improves the quality with a few additional scans
- Weakness: handles only numeric data, and sensitive to the order of the data record.

Clustering Feature Vector

Clustering Feature: CF = (N, LS, SS)

N: Number of data points

LS:
$$\sum_{i=1}^{N} = \overrightarrow{X_i}$$

SS:
$$\sum_{i=1}^{N} = \overrightarrow{X_i}^2$$

1

The algorithm: background

Given a cluster of instances $\{\vec{X}_i\}$, we define the **centroid**, the **radius**, and the **diameter**:

$$\vec{X0} = \frac{\sum_{i=1}^{N} \vec{X_i}}{N}$$

$$R = (\frac{\sum_{i=1}^{N} (\vec{X}_i - \vec{X}_i 0)^2}{N})^{\frac{1}{2}}$$

$$D = (\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} (\vec{X}_i - \vec{X}_j)^2}{N(N-1)})^{\frac{1}{2}}$$

1

The algorithm: background

We define the **Euclidean** and **Manhattan** distance between any two clusters as:

$$D0 = ((\vec{X0}_1 - \vec{X0}_2)^2)^{\frac{1}{2}}$$

$$D1 = |ec{X0}_1 - ec{X0}_2| = \sum_{i=1}^d |ec{X0}_1^{(i)} - ec{X0}_1^{(i)}|$$

-

The algorithm: background

We define the average inter-cluster, the average intra-cluster, and the variance increase distances as:

$$D2 = (rac{\sum_{i=1}^{N_1} \sum_{j=N_1+1}^{N_1+N_2} (ec{X_i} - ec{X_j})^2}{N_1 N_2})^{rac{1}{2}}$$

$$D3 = \left(\frac{\sum_{i=1}^{N_1 + N_2} \sum_{j=1}^{N_1 + N_2} (\vec{X}_i - \vec{X}_j)^2}{(N_1 + N_2)(N_1 + N_2 - 1)}\right)^{\frac{1}{2}}$$

$$D4 = \frac{\left(\sum_{k=1}^{N_1+N_2} (\vec{X_k} - \frac{\sum_{l=1}^{N_1+N_2} \vec{X_l}}{N_1+N_2})^2 - \sum_{i=1}^{N_1} (\vec{X_i} - \frac{\sum_{l=1}^{N_1} \vec{X_l}}{N_1})^2 - \sum_{j=N_1+1}^{N_1+N_2} (\vec{X_j} - \frac{\sum_{l=N_1+1}^{N_1+N_2} \vec{X_l}}{N_2})^2\right)^{\frac{1}{2}}}$$

The algorithm: background

- Preprocessing data is optional
- Can not affect relative placement
 - If point A is left of B, then after preprocessing
 A must still be to the left of B
- Avoids bias caused by dimensions with a large spread
- Large spread may naturally describe data

The algorithm: CF

A Clustering Feature (CF) summarizes a sub-cluster of data points.

Given a cluster $\{\vec{X_1}, \vec{X_2}, \dots, \vec{X_N}\}$

$$\mathbf{CF} = (N, \vec{LS}, SS)$$

N is the number of data points

$$ec{LS} = \sum_{i=1}^{N} ec{X_i}$$
 $SS = \sum_{i=1}^{N} ec{X_i}^2$

$$\mathbf{CF_1} + \mathbf{CF_2} = (N_1 + N_2, \vec{LS}_1 + \vec{LS}_2, SS_1 + SS_2)$$

The algorithm: CF

- CF entry is more compact
 - Stores significantly less then all of the data points in the sub-cluster
- A CF entry has enough information to calculate D0-D4
- Additivity theorem allows us to incrementally merge sub-clusters

The algorithm: CF-tree

The algorithm: CF-tree

Each non-leaf node has at most B entries

Each leaf node has at most L
 CF entries which each satisfy threshold T

 Node size is determined by dimensionality of data points and input parameter P (page size)

The algorithm: CF-tree insert

- Recurse down from root
 - Choose the "closest" CF and go to that node
- Modify the leaf
 - If the closest CF in the leaf can not absorb, make a new CF entry. If there is no room, split the node
- Traverse back up
 - Modifying CFs or splitting nodes

4

The algorithm: CF-tree rebuild

- If we run out of space, increase T
 - By increasing the threshold, CFs absorb more data
- Rebuilding "pushes" CFs over
 - The larger T allows different CFs to group together
- Reducibility theorem
 - Increasing T will result in a CF-tree as small or smaller then the original

- Phase 1: Load data into memory
 - Build a CF-tree with the data
- Phase 2: Condense data
 - Rebuild the CF-tree with a larger T
 - Condensing is optional

- Phase 3: Global clustering
 - Use existing clustering algorithm on CF entries
 - Helps fix problem where natural clusters span nodes
- Phase 4: Cluster refining
 - Do additional passes over the data set and reassign data points to the closest centroid from phase 3
 - Refining is optional

- Why have optional phases?
 - Phase 2 allows us to resize the data set so Phase 3 runs on an optimally sized data set
 - Phase 4 fixes a problem with CF-trees where some data points may be assigned to different leaf entries
 - Phase 4 will always converge to a minimum
 - Phase 4 allows us to discard outliers

- Rebuild CF-tree with smallest T
 - Start with T=0 and try rebuilding the tree
- Get rid of outliers
 - Write outliers to special place outside of the tree
- Delayed split
 - Treat data points that force a split like outliers

1

- Input parameters:
 - Memory (M): 5% of data set
 - Disk space (R): 20% of M
 - Distance equation: D2
 - Quality equation: weighted average diameter
 (D)
 - Initial threshold (T): 0.0
 - Page size (P): 1024 bytes

- The Phase 3 algorithm used is called an agglomerative Hierarchical Clustering (HC) algorithm
- One refinement pass
 - Outlier discarding off
- Delay-split is on
 - This is what we use disk space R for

- Create 3 synthetic data sets for testing
 - Also create an ordered copy for testing input order
- KMEANS and CLARANS require entire data set to be in memory
 - Initial scan is from disk, subsequent scans are in memory

Intended clustering

KMEANS clustering

DS	Time	D	# Scan	DS	Time	D	# Scan
1	43.9	2.09	289	10	33.8	1.97	197
2	13.2	4.43	51	20	12.7	4.20	29
3	32.9	3.66	187	30	36.0	4.35	241

CLARANS clustering

DS	Time	D	# Scan	DS	Time	D	# Scan
1	932	2.10	3307	10	794	2.11	2854
2	758	2.63	2661	20	816	2.31	2933
3	835	3.39	2959	30	924	3.28	3369

BIRCH clustering

DS	Time	D	# Scan	DS	Time	D	# Scan
1	11.5	1.87	2	10	13.6	1.87	2
2	10.7	1.99	2	20	12.1	1.99	2
3	11.4	3.95	2	30	12.2	3.99	2

- Page size
 - When using Phase 4 P can vary from 256 to 4096 with out much effect on the final results
- Memory vs. Time
 - Results generated with low memory can be compensated for by multiple iterations of Phase 4
- Scalability

Conclusions and practical use

- Pixel classification in images
- From top to bottom:
 - BIRCH classification
 - Visible wavelength band
 - Near-infrared band

Conclusions and practical use

- Image compression using vector quantization
- Generate codebook for frequently occurring patterns
- BIRCH performs faster then CLARANS or LBG, while getting better compression and nearly as good quality

Conclusions and practical use

- BIRCH works with very large data sets
- Explicitly bounded by computational resources
 - Runs with specified amount of memory (P)
- Superior to CLARANS and KMEANS
 - Quality, speed, stability and scalability

CF tree

- CF tree is height balanced tree CF (B,T)
 - Branching factor (B)
 - Threshold (T)
 - Node (leaf node and non-leaf node) represents a cluster made up of all the subclusters represented by its entries
 - Non-leaf node contains at most B entries of the form [CFi, childi]
 - Leaf node contains at most L entries(objects), each entry represents a sub-cluster, which absorbs many data points with diameter (or radius) under the specified threshold value.

Insertion into a CF tree

- To insert an object into a CF tree:
 - Identifying the appropriate leaf
 - 2. Modifying the leaf
 - Absorb by a leaf entry
 - 2. Create a new leaf entry
 - No leaf splitting
 - Leaf splitting
 - 3. Modifying the path to the leaf
 - No leaf/node split
 - Leaf/node split
 - 4. Merging refinement
 - No resplitting
 - resplitting