IERG4300 Fall Tutorial 9

Hongyu DENG

Department of Information Engineering

The Chinese University of Hong Kong

Outline

Minhash & LSH

• TP/TN FP/FN

Q&A

- Minhash Example
 - Consider we have 4 sets: S1, S2, S3 and S4.
 - \blacksquare S1 = {a, b, f, g}
 - \blacksquare S2 = {c, d, e}
 - \blacksquare S3 = {a, d, e, g}
 - \blacksquare S4 = {b, c, f}
 - \circ Tr is a random policy.

Minhash Example

Feature	S1	S2	S3	S4
a	1	0	1	0
b	1	0	0	1
c	0	1	0	1
d	0	1	1	0
е	0	1	1	0
f	1	0	0	1
g	1	0	1	0

Change order

Feature	S1	S2	S3	S4
c	0	1	0	1
e	0	1	1	0
a	1	0	1	0
d	0	1	1	0
b	1	0	0	1
g	1	0	1	0
f	1	0	0	1

Minhash Example

Feature	S1	S2	S3	S4
с	0	1	0	1
e	0	1	1	0
a	1	0	1	0
d	0	1	1	0
b	1	0	0	1
g	1	0	1	0
f	1	0	0	1

S1	S2	S3	S4
1	0	0	1
0	1	1	0
1	0	1	0
0	1	0	1
0	1	1	0
1	0	1	0
1	0	0	1
	1 0 1	1 0 0 1 1 0	1 0 0 0 1 1 1 0 1

Feature	S1	S2	S3	S4
g	1	0	1	0
f	1	0	0	1
c	0	1	0	1
d	0	1	1	0
b	1	0	0	1
a	1	0	1	0
e	0	1	1	0

(a) Policy 1

(b) Policy 2

(c) Policy 3

- Minhash Example
 - We can estimate the similarity

	Feature	S1	S2	S3	S4						
Ĩ	a	1	0	1	0		T	C1	Co	Co	C4
Ī	b	1	0	0	1	Reduce Dim	π	21	S2	53	54
	c	0	1	0	1	Reduce Dilli	Policy1	3	1	2	1
	d	0	1	1	0		Policy2	1	2	2	1
	e	0	1	1	0		Policy3	1	3	1	2
	f	1	0	0	1						
	g	1	0	1	0						
L											

• Prob(
$$h(C_1) = h(C_2)$$
) = $sim(C_1, C_2)$

- Explanation
 - Suppose only two sets: S1 and S2
 - There are 3 types:
 - \blacksquare S1, S2 = 1 (A) with a rows
 - S1 = 1, S2 = 0 or S1 = 0, S2 = 1 (B) with **b** rows
 - \blacksquare S1, S2 = 0 (C) with c rows

• Prob($h(C_1) = h(C_2)$) = $sim(C_1, C_2)$

Explanation

- \circ sim(C1, C2) = a/(a + b +c)
- Prob(h(C1) = h(C2)) means the probability of reaching a type-A row before a type-B or type-C row
- \circ Prob(h(C1) = h(C2)) = a/(a + b +c)

 We want to find the relationship between r, b, similarity and probability in Q1(a).

First, we need to recall the r and b in a Matrix M.

To best understand, we give some specific value to them. Here we suppose r = 5, b = 20, s = 0.7.

- Second, we need to recall how to compute the similarity of two documents(C1 and C2).
 - In one band, we have 5 rows, so it is easy to obtain the probability C1, C2 identical in these bands.

$$(0.7)^5 = 0.1681$$

Considering that we have 20 bands, the probability C1, C2 are not similar in whole bands.

$$(1 - (0.7)^5)^{20} = 0.0252$$

- Similarly, we can also obtain the probability C1, C2 identical in at least one of all bands.
 - $1 (1 (0.7)^5)^{20} = 0.9748$

- Then, we can plot the 2-D picture.
 - However, it is not a suitable method to draw a 2-D plot with similarity and probability.

- Then, we can plot the 2-D picture.
 - You can try to find the relationship between **r** and **b**.
 - Try to draw the graph with **r** being the x-axis and **b** being the y-axis.

TP/TN FP/FN

- Confusion matrix
 - In confusion matrix, there are four part:
 - True Positives(TP) False Negatives(FN)
 - False Positives(FP) True Negatives(TN)

TP/TN FP/FN

Confusion matrix

Q&A for Homework 3