Probability Primer

Juho Lee

The graduate school of AI, KAIST

Disclaimer

This lecture note depends heavily on the following materials:

- https://ben-br.github.io/stat-547c-fall-2019/ assets/notes/lecture-notes.pdf.
- · Çinlar, E. Probability and Stochastics. Springer New York, 2011

Measure-theoretic probability

Why measure theory?

- Recommended thread: https://math.stackexchange.com/questions/ 393712/why-measure-theory-for-probability.
- In short: more principled (and natural) way of dealing with
 - Mixture of continuous and discrete random variables. (e.g., $X \sim \mathcal{N}(0,1)$ and $Y \sim \text{Ber}(0.5)$, then Z = (X,Y)?).
 - Infinite dimensional random variables (stochastic processes, random probability measures, ...).
 - · Non-trivial objects cannot be defined with Lebesgue measure.

σ -algebra

Definition 1.1 (σ -algebra)

A collection $\mathcal E$ of subsets of a set E is a σ -algebra on E if it is closed under countable unions and complements.

- 1. $A \in \mathcal{E} \to E \setminus A \in \mathcal{E}$.
- 2. $A_1, A_2, \dots \in \mathcal{E} \to \bigcup_{n>1} A_n \in \mathcal{E}$.

Corollary

A σ -algebra $\mathcal E$ on E is closed under countable intersections.

$$\bigcap_{n\geq 1} A_n = E \setminus \bigcup_{n\geq 1} (E \setminus A_n). \tag{1}$$

3

Definition 1.2 (Topological space)

A topology τ_E of a set E is a colleciton of subsets such that

- 1. \varnothing , $E \in \tau_E$.
- 2. τ_E is closed under finite intersections.
- 3. τ_E is closed under any (finite, countable, uncountable) unions.

A nonemtpy set with its topology is called a topological space (E, τ_E) . Subsets in τ_E are called open sets.

Think of a set of open intervals (a, b) on \mathbb{R} .

Definition 1.3 (Generated σ -algebra)

Let $\mathcal E$ be a collection of subsets of E. A σ -algebra generated from $\mathcal E$, denoted as $\sigma(\mathcal E)$, is the interaction of all σ -algebras containing $\mathcal E$.

Corollary

 $\sigma(\mathcal{E})$ is the smallest σ -algebra containing \mathcal{E} .

Definition 1.4 (Borel σ -algebra)

Let (E, τ_E) be a topological space. Then, the σ -algebra generated from τ_E is called the Borel σ -algebra (i.e., the smallest σ -algebra containing all open sets in E), and denoted as $\mathcal{B}(E)$. The sets in $\mathcal{B}(E)$ are called the Borel sets.

Take an example: $\mathcal{B}(\mathbb{R})$.

- Definition: the smallest σ -algebra containing all open sets in $\mathbb R$.
- Does it contain all open intervals (a,b) yes, by definition.
- Does it contain all semi-open intervals (a,b]? yes, $(a,b] = \bigcap_{n \geq 1} (a,b+1/n)$.
- Does it contain all singleton sets $\{a\}$? yes, $\{a\} = \bigcap_{n>1} (a 1/n, a + 1/n)$.
- Does it contain all closed intervals [a,b]? yes, $[a,b] = (a,b] \cup \{b\}$.

6

- We want to have the most generic subsets as our σ -algebra.
- Why not consider $2^{\mathbb{R}}$ the powerset of \mathbb{R} ? some subsets are not measurable (w.r.t. Lebesgue measure)!
- $\mathcal{B}(\mathbb{R})$ is the most generic collections of subsets that we can comfortably work with Lebesgue measure.

Measurable space, measures, and measurable mappings.

Definition 1.5 (Measurable space)

Let E be a set and \mathcal{E} be its σ -algebra on E. A pair (E,\mathcal{E}) is called measurable space, and the elements in \mathcal{E} are called measurable sets.

Definition 1.6 (Measures and measure spaces)

Let (E,\mathcal{E}) be a measurable space. A measure on (E,\mathcal{E}) is a mapping $\mu:\mathcal{E}\to\mathbb{R}^+$ such that

- 1. $\mu(\varnothing) = 0$.
- 2. $\mu(\bigcup_{n\geq 1} A_n) = \sum_{n\geq 1} \mu(A_n)$ for every disjoint $(A_n)_{n\geq 1}$.

The triplet (E, \mathcal{E}, μ) is called measure space.

Measurable mappings

Definition 1.7 (Measurable mappings)

Let (E, \mathcal{E}) and (F, \mathcal{F}) be measurable spaces. A mapping $f: E \to F$ is measurable if for any inverse image of $B \in \mathcal{F}$ is measurable.

$$f^{-1}(B) := \{x \in E | f(x) \in B\} \in \mathcal{E}.$$
 (2)

In such case, we write f is \mathcal{E}/\mathcal{F} -measurable. If (F,\mathcal{F}) is obvious (e.g., $(\mathbb{R},\mathcal{B}(\mathbb{R}))$), we say that f is \mathcal{E} -measurable.

Probability space

Definition 1.8 (Probability space)

Let (Ω,\mathcal{H}) be a measurable space. A probability measure \mathbb{P} a measure on (Ω,\mathcal{H}) such that $\mathbb{P}(\Omega)=1$. A probability space is a triplet $(\Omega,\mathcal{H},\mathbb{P})$. Ω is called the sample space, and the elements ω are called outcomes. A subset of outcomes $A\in\mathcal{H}$ are called events.

Random variables

Definition 1.9 (Random variables)

Let $(\Omega, \mathcal{H}, \mathbb{P})$ be a probability space and (E, \mathcal{E}) be a measurable space. A $\mathcal{H}/\mathcal{E}-$ measurable mapping is a random variable, satisfying

$$\forall A \in \mathcal{E}, \quad X^{-1}(A) := \{ \omega \in \Omega | X(\omega) \in A \} \in \mathcal{H}. \tag{3}$$

We say X is a E-valued random variable.

Definition 1.10 (Distribution)

Let X be a random variable on (E, \mathcal{E}) . The distribution or law of X is

$$\forall A \in \mathcal{E}, \quad \mu(A) = \mathbb{P}(X^{-1}(A)) := \mathbb{P}\{X \in A\}. \tag{4}$$

The probability space $(\Omega, \mathcal{H}, \mathbb{P})$ is often called as the background probability space, and the measure space (E, \mathcal{E}, μ) defined with X is called the induced probability space.

Random variables - examples

- Consider flipping two coins. The background probability space is
 - Sample space is {HH, HT, TH, TT},
 - Set of events \mathcal{H} (e.g., {HH, HT, TH}).
 - · Probability measure ${\mathbb P}$
- Define a random variable X as $X(\omega) = \text{number of heads in } \omega$.

$$X(HH) = 2, \ X(HT) = 1, \ X(TH) = 1, \ X(TT) = 0.$$
 (5)

The distribution is then defined as

$$\mu(\{2\}) = \mathbb{P}(X^{-1}(\{2\})) = \mathbb{P}(\{\mathsf{HH}\}),$$
 (6)

$$\mu(\{1\}) = \mathbb{P}(X^{-1}(\{1\})) = \mathbb{P}(\{\mathsf{HT}, \mathsf{TH}\}),$$
 (7)

$$\mu(\{0\}) = \mathbb{P}(X^{-1}(\{0\})) = \mathbb{P}(\{\mathsf{TT}\}). \tag{8}$$

Random variables

Definition 1.11 (Distribution function)

Let X be a random variable on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. The distribution function (a.k.a. Cumulative Distribution Function (CDF)) of X is defined as

$$F(x) := \mu((-\infty, x]) = \mathbb{P}\{X \le x\}. \tag{9}$$

Definition 1.12 (Probability density function)

If F(x) can be written as

$$F(x) = \int_{-\infty}^{x} f(x)\lambda(\mathrm{d}x),\tag{10}$$

where $\lambda(\mathrm{d}x)$ is a Lebesgue measure, f(x) is called the density or Probability Density Function (PDF) of X.

Random variables

Definition 1.13 (Probability mass function)

Let X be a random variable on a measure space (E,\mathcal{E},μ) with \mathcal{E} being discrete (\mathcal{E} contains only singleton sets, i.e., $\{x\}$ for $x\in E$). The Probability Mass Function (PMF) is the density of X with respect to the counting measure ν (i.e., $\nu(A)=$ number of elements in A).

$$\mu(A) = \int_A f(x)\nu(\mathrm{d}x) = \sum_{x \in A} f(x).$$
 (11)

See supplementary for more rigorous definition of PDF and PMF.

Expectation

Definition 1.14 (Expectation)

Let X be a random variable on (E,\mathcal{E}) with distribution μ . Then, expectation of X is defined as

$$\mathbb{E}[X] = \int_{\Omega} X(\omega) \mathbb{P}(d\omega) = \int_{\Omega} X(\omega) d\mathbb{P}(\omega) = \int_{\Omega} X(\omega) d\mathbb{P}. \tag{12}$$

Theorem 1.1 (Law of the unconscious statistician (LOTUS))

$$\mathbb{E}[X] = \int_{\Omega} X(\omega) \mathbb{P}(d\omega) = \int_{E} x \mu(\mathrm{d}x). \tag{13}$$

If there exists a density f(x) w.r.t. the Lebesgue measure,

$$\mathbb{E}[X] = \int_{E} x f(x) dx. \tag{14}$$

Convergence of random variables

Sequence of random variables

• We often encounter with sequences of random variables $(X_n)_{n\geq 1}$; for example, for i.i.d. random variables X_1,\ldots,X_n ,

$$\bar{X}_n := \frac{X_1 + X_2 + \dots + X_n}{n},$$
 (15)

What does it mean for such sequence to converge to something?

Almost sure convergence

Definition 2.1 (Almost sure convergence)

Let $(\Omega, \mathcal{H}, \mathbb{P})$ be a probability space and $(X_n)_{n \geq 1}$ be a sequence of random variables, and X be a random variable defined on it. $(X_n)_{n \geq 1}$ is said to be almost surely convergent to X if

$$\mathbb{P}\Big\{\lim_{n\to\infty} X_n = X\Big\} = \mathbb{P}\Big(\Big\{\omega \,\Big|\, \lim_{n\to\infty} X_n(\omega) = X(\omega)\Big\}\Big) = 1, \tag{16}$$

and denoted as $X_n \stackrel{\text{a.s.}}{\to} X$.

Convergence in probability

Definition 2.2 (Convergence in probability)

A sequence of \mathbb{R} -valued random variables $(X_n)_{n\geq 1}$ is said to converge in probability to X if for every $\varepsilon>0$,

$$\lim_{n \to \infty} \mathbb{P}\{|X_n - X| > \varepsilon\} = 0,\tag{17}$$

and denoted as $X_n \stackrel{\mathrm{p}}{\to} X$.

Convergence in distribution

Definition 2.3 (Convergence in distribution)

Let $(X_n)_{n\geq 1}$ be a sequence of $\mathbb R$ -valued random variables with distribution functions $(F_n)_{n\geq 1}$. Let X be a $\mathbb R$ -valued random variable with distribution F. $(X_n)_{n\geq 1}$ is said to converge in distribution to X if for all $x\in \mathbb R$,

$$\lim_{n \to \infty} F_n(x) = F(x) \tag{18}$$

and denoted as $X_n \stackrel{\mathrm{d}}{\to} X$.

Relationship between different types of convergence

Proposition 2.1

$$X_n \stackrel{\text{a.s.}}{\to} X \text{ implies } X_n \stackrel{\text{p}}{\to} X.$$

Proposition 2.2

$$X_n \stackrel{\mathrm{p}}{\to} X \text{ implies } X_n \stackrel{\mathrm{d}}{\to} X.$$

See the supplementary for the counter-examples of converse statements.

Theorem 2.3 (Arithemetic operations)

If
$$X_n \stackrel{\text{a.s.}}{\to} X$$
 and $Y_n \stackrel{\text{a.s.}}{\to} Y$,

- 1. $X_n + Y_n \stackrel{\text{a.s.}}{\to} X + Y$.
- $2. X_n Y_n \stackrel{\text{a.s.}}{\to} X Y.$
- 3. $X_n Y_n \stackrel{\text{a.s.}}{\to} XY$.
- 4. $X_n/Y_n \stackrel{\text{a.s.}}{\to} X/Y$ provided that Y_n and Y are nonzero almost surely.

These also hold for convergence in probability.

Theorem 2.4 (Continuous mapping theorem)

Let $(X_n)_{n\geq 1}$ be a sequence of \mathbb{R} -valued random variables and $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Then,

- 1. $X_n \stackrel{\text{a.s.}}{\to} X \implies f(X_n) \stackrel{\text{a.s.}}{\to} f(X)$.
- 2. $X_n \stackrel{p}{\to} X \implies f(X_n) \stackrel{p}{\to} f(X)$.
- 3. $X_n \stackrel{\mathrm{d}}{\to} X \implies f(X_n) \stackrel{\mathrm{d}}{\to} f(X)$.

Theorem 2.5 (Slutsky's theorem)

Let $(X_n)_{n\geq 1}$ and $(Y_n)_{n\geq 1}$ be a sequence of random variables such that $X_n\stackrel{\mathrm{d}}{\to} X$ and $Y_n\stackrel{\mathrm{p}}{\to} c$ for some constant c. Then,

- 1. $X_n + Y_n \stackrel{\mathrm{d}}{\to} X + c$.
- $2. X_n Y_n \stackrel{\mathrm{d}}{\to} X c.$
- 3. $X_n Y_n \stackrel{\mathrm{d}}{\to} cX$.
- 4. $X_n/Y_n \stackrel{\mathrm{d}}{\to} X/c$ provided that Y_n and c are nonzero almost surely.

Theorem 2.6 (Weak law of large numbers)

Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}[|X|] = \mu < \infty$. Then,

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \stackrel{\mathbf{p}}{\to} \mu. \tag{19}$$

Theorem 2.7 (Strong law of large numbers)

Let $(X_n)_{n\geq 1}$ be as above.

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \stackrel{\text{a.s.}}{\to} \mu. \tag{20}$$

Theorem 2.8 (Central limit theorem)

Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. random variables with finite mean μ and variance σ^2 . Then

$$\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \stackrel{d}{\to} \mathcal{N}(0, 1). \tag{21}$$

Exponential families and

conjugate priors

Before we proceed - about notations

In classical statistical context, we write

- A random variable is uppercase X.
- \cdot A realization of a random variable is written with lowercase x.
- A probability is written with \mathbb{P} (or \Pr or \mathbf{P} , ...).
- A distribution is written as μ , and its PDF is written as f (or other notations for functions).

However, in modern ML context (and for the rest of our course), we will write

- A random variable and its realization are written as lowercase x.
- A PDF (or PMF) is simply written as p(x).

Exponential families

Definition 3.1 (Exponential families)

A random variable X belongs to exponential families if its PDF (or PMF) is written as

$$p(x|\eta) = \exp(T(x)^{\top} \eta - \mathbb{1}^{\top} A(\eta) - B(x)), \tag{22}$$

where T(x) is sufficient statistics, η is a natural parameter, and B(x) is a base measure.

Exponential families - Bernoulli distribution

A Bernoulli distribution on $\{0,1\}$ with probability θ has a PMF

$$p(x|\theta) = \theta^x (1-\theta)^{1-x} = \exp\left(x \log \frac{\theta}{1-\theta} + \log(1-\theta)\right).$$
 (23)

Hence, Bernoulli distributoin is an exponential family with

$$T(x) = x, (24)$$

$$\eta = \log \frac{\theta}{1 - \theta} \tag{25}$$

$$A(\eta) = -\log(1 - \theta) = \log(1 + e^{\eta}),$$
 (26)

$$B(x) = 0. (27)$$

Exponential families - Gamma distribution

A gamma distribution on $(0,\infty)$ with parameters a>0,b>0 has a PDF

$$p(x|a,b) = \frac{b^a x^{a-1} e^{-bx}}{\Gamma(a)},$$
(28)

where $\Gamma(\cdot)$ is a Gamma function,

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt.$$
 (29)

Gamma distribution is an exponential family because

$$p(x|a,b) = \exp\left(\begin{bmatrix} \log x \\ x \end{bmatrix}^{\top} \begin{bmatrix} a-1 \\ -b \end{bmatrix} - \log \Gamma(a) + a \log b\right). \tag{30}$$

Exponential families - Gamma distribution

$$T(x) = [\log x, x]^{\top}$$

$$\eta = [a - 1, -b]^{\top}$$

$$A(\eta) = \log \Gamma(a) - a \log b$$
(31)
(32)

$$= \log \Gamma(\eta_1 + 1) - (\eta_1 + 1) \log(-\eta_2) \tag{34}$$

Exponential families - Gaussian distribution

A multivariate Gaussian distribution on \mathbb{R}^d with mean μ and covariance Σ has a PDF

$$p(x|\mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right\}.$$
 (35)

This can be written as

$$\exp\left(\begin{bmatrix} x \\ xx^{\top} \end{bmatrix}^{\top} \begin{bmatrix} \Sigma^{-1}\mu \\ -\frac{1}{2}\Sigma^{-1} \end{bmatrix} - \mathbb{1}^{\top} \begin{bmatrix} \frac{1}{2}\mu^{\top}\Sigma^{-1}\mu \\ \frac{1}{2}\log|\Sigma| \end{bmatrix} - \frac{d}{2}\log 2\pi\right), \quad (36)$$

where the matrices inside vectors are implicitly vectorized.

Exponential families - Gaussian distribution

$$T(x) = [x, xx^{\top}]^{\top},\tag{37}$$

$$\eta = \left[\Sigma^{-1}\mu, -\frac{1}{2}\Sigma^{-1}\right]^{\top} \tag{38}$$

$$A(\eta) = \left[\frac{1}{2}\mu^{\top} \Sigma^{-1} \mu, \frac{1}{2} \log |\Sigma|\right]^{\top}$$
(39)

$$= \left[-\frac{1}{4} \eta_1^{\mathsf{T}} \eta_2^{-1} \eta_1, -\frac{1}{2} \log|-2\eta_2| \right] \tag{40}$$

$$B(x) = \frac{d}{2}\log 2\pi. \tag{41}$$

Nice properties of exponential families

Note that

$$\int f(x|\eta) dx = \int \exp(T(x)^{\top} \eta - \mathbb{1}^{\top} A(\eta) - B(x)) dx$$
$$= \int \frac{\exp(T(x)^{\top} \eta - B(x))}{\exp(\mathbb{1}^{\top} A(\eta))} dx = 1. \tag{42}$$

Hence we have

$$\exp(\mathbb{1}^{\top} A(\eta)) = \int \exp(T(x)^{\top} \eta - B(x)) dx. \tag{43}$$

Taking the derivative w.r.t. η on both sides gives (check by yourself)

$$\mathbb{E}[T(x)] = \frac{\partial \mathbb{1}^{\top} A(\eta)}{\partial \eta}.$$
 (44)

Nice properties of exponential families

Taking the derivative again gives (check by yourself)

$$Cov(T(x_i), T(x_j)) = \frac{\partial^2 \mathbb{1}^\top A(\eta)}{\partial \eta_i \partial \eta_j}.$$
 (45)

Example: gamma distribution:

$$\mathbb{E}[T(x)] = \mathbb{E}[[\log x, x]^{\top}] = [\psi(a) - \log b, a/b] \tag{46}$$

$$Var(T(x)) = [Var(\log x), Var(x)] = [\psi'(a), a/b^2], \tag{47}$$

where $\psi(z)=rac{\mathrm{d}\log\Gamma(z)}{\mathrm{d}z}$ is the digamma function.

Conjugate priors for exponential famillies

- Given a likelihood $p(x|\theta)$, we choose a prior $p(\theta)$. Then, for some specific choice of priors, $p(\theta|x)$ remains the same distribution as $p(\theta)$. Such $p(\theta)$ is called to be a conjugate prior of $p(x|\theta)$.
- List of conjugate priors: https://en.wikipedia.org/wiki/Conjugate_prior.

Conjugate priors example: Beta-Bernoulli

Bernoulli likelihood:

$$p(x|\theta) = \theta^x (1-\theta)^{1-x}.$$
 (48)

Prior on θ as beta distribution with parameter a, b > 0:

$$p(\theta) = \text{Beta}(\theta|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}.$$
 (49)

Conjugate priors example: Beta-Bernoulli

Assume we have observed $X=\{x_1,\ldots,x_n\}$. By Bayes' rule, the posterior is written as

$$p(\theta|X) \propto p(X,\theta) = \theta^{n_1+a-1} (1-\theta)^{n_0+b-1},$$
 (50)

where $n_1 = \sum_{i=1}^n \mathbb{1}_{\{x=1\}}$ and $n_0 = n - n_1$. Hence, we can see that

$$p(\theta|X) = \text{Beta}(\theta|a+n_1, b+n_0). \tag{51}$$

Conjugate priors for exponential families

Exponential families have conjugate priors which are also in exponential families. A conjugate prior for a likelihood

$$p(x|\eta) = \exp(T(x)^{\top} \eta - \mathbb{1}^{\top} A(\eta) - B(x))$$
(52)

has a form

$$p(\eta; \chi, \nu) = \exp(\eta^{\top} \chi - \nu^{\top} A(\eta) - \mathbb{1}^{\top} C(\chi, \nu))$$
$$= \exp\left(\begin{bmatrix} \eta \\ -A(\eta) \end{bmatrix}^{\top} \begin{bmatrix} \chi \\ \nu \end{bmatrix} - \mathbb{1}^{\top} C(\chi, \nu)\right). \tag{53}$$

 $[\eta, -A(\eta)]^{\top}$ is the sufficient statistics (corresponds to T(x)), $[\chi, \nu]^{\top}$ is the natural parameter (corresponds to η), and $C(\chi, \nu)$ is the log-partition function (corresponds to $A(\eta)$).

Conjugate priors for exponential families

Assume we have data $X = \{x_i\}_{i=1}^n$.

$$p(X, \eta) = p(\eta) \prod_{i=1}^{n} p(x_i | \eta)$$

$$= \exp\left(\begin{bmatrix} \eta \\ -A(\eta) \end{bmatrix}^{\top} \begin{bmatrix} \chi + \sum_{i=1}^{n} T(x_i) \\ \nu + n \mathbb{1} \end{bmatrix} - \mathbb{1}^{\top} C(\chi, \nu) - \sum_{i=1}^{n} B(x_i) \right).$$
(54)

Can you recognize the posterior (and the marginal likelihood p(X)?)

Conjugate priors for exponential families

$$p(\eta|X) = \exp\left(\begin{bmatrix} \eta \\ -A(\eta) \end{bmatrix}^{\top} \begin{bmatrix} \chi + \sum_{i=1}^{n} T(x_i) \\ \nu + n\mathbb{1} \end{bmatrix} - \mathbb{1}^{\top} C\left(\chi + \sum_{i=1}^{n} T(x_i), \nu + n\mathbb{1} \right) \right)$$
 (55)

$$p(X) = \exp\left(\mathbb{1}^{\top} C\left(\chi + \sum_{i=1}^{n} T(x_i), \nu + n\mathbb{1}\right) - \mathbb{1}^{\top} C(\chi, \nu) - \sum_{i=1}^{n} B(x_i)\right).$$

$$(56)$$

Example - Beta-Bernoulli

Bernoulii likelihood:

$$p(x|\eta) = \exp\left(x\log\frac{\theta}{1-\theta} + \log(1-\theta)\right). \tag{57}$$

Beta prior:

$$p(\eta) = \exp\left(\begin{bmatrix} \log \frac{\theta}{1-\theta} \\ \log(1-\theta) \end{bmatrix}^{\top} \begin{bmatrix} a-1 \\ a+b-2 \end{bmatrix} + \log \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}, \right)$$
(58)

with

$$\chi = a - 1,\tag{59}$$

$$\nu = a + b - 2,\tag{60}$$

$$C(\chi, \nu) = \log \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}.$$
 (61)

Example - Beta-Bernoulli

The posterior and marginal are

$$p(\eta|X) \propto \exp\left(\begin{bmatrix} \log \frac{\theta}{1-\theta} \\ \log(1-\theta) \end{bmatrix}^{\top} \begin{bmatrix} a + \sum_{i=1}^{n} x_i - 1 \\ a+b+n-2 \end{bmatrix}\right)$$
$$= \operatorname{Beta}(x|a+n_1, b+n_0). \tag{62}$$

$$p(X) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \frac{\Gamma(a+n_1)\Gamma(b+n_0)}{\Gamma(a+b+n)}.$$
 (63)

Supplementary

Definition 4.1 (σ -finite measure)

Let (E,\mathcal{E},μ) be a measure space. μ is said to be σ -finite if E can covered with countable unions of measure finite sets, i.e., there exists $(A_n)_{n\geq 1}$ such that

$$\bigcup_{n\geq 1} A_n = X \text{ and } \mu(A_n) < \infty \text{ for } n \geq 1. \tag{64}$$

A measure space with σ -finite measure is said to be a σ -finite measure space.

Examples of σ -finite measures include

- Lebesgue measures.
- · Counting measures.

Definition 4.2 (Absolute continuity)

Let μ and λ be a measure on a measurable space (E,\mathcal{E}) . μ is said to be absolute continuous w.r.t. ν if for any $A \in \mathcal{E}$,

$$\lambda(A) = 0 \Longrightarrow \mu(A) = 0, \tag{65}$$

and denote as $\mu \ll \lambda$.

Theorem 4.1 (Radon-Nikodym)

Let μ and λ be two measures on (E,\mathcal{E}) and assume λ is σ -finite. If $\mu \ll \lambda$, there exists a nonnegative measurable function $f:E \to [0,\infty)$ satisfying

$$\mu(A) = \int_{A} f(x)\lambda(\mathrm{d}x). \tag{66}$$

The function f is unique, and called the Radon-Nikodym derivative of μ w.r.t. ν , and denoted as $\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}$.

- The PDF of a \mathbb{R} -valued random variable is the Radon-Nikodym derivative of the CDF w.r.t. the Lebesgue measure.
- The PMF of a discrete random variable is the Radon-Nikodym derivative of the distribution (measure μ) w.r.t. the counting measure.
- In general, the density of a random variable on a measure space with Borel sets is the Radon-Nikodym derivative of the distribution μ w.r.t. the reference measure λ .

Sequence of sets

Let $(A_n)_{n\geq 1}$ be a sequence of sets. Define

$$\limsup_{n} A_n := \bigcap_{n \ge 1} \bigcup_{m \ge n} A_m, \tag{67}$$

$$\liminf_{n} A_n := \bigcup_{n \ge 1} \bigcap_{m \ge n} A_m.$$
(68)

Interpretation (check it by yourself):

- $x \in \limsup_n A_n$ means that x belongs to infinitely many of $(A_n)_{n \geq 1}$.
- $x \in \liminf_n A_n$ means that x belongs to all but finitely many of $(A_n)_{n \geq 1}$.

Borel-Cantelli lemma

Lemma 1 (Borel-Cantelli)

Let $(A_n)_{n\geq 1}$ be a sequence of events in a probability space. Then,

$$\sum_{n\geq 1} \mathbb{P}(A_n) < \infty \implies \mathbb{P}\left(\limsup_{n} A_n\right) = 0.$$
 (69)

Lemma 2 (Second Borel-Cantelli)

Let $(A_n)_{ngeq1}$ be a sequence of independent events in a probability space. Then,

$$\sum_{n\geq 1} \mathbb{P}(A_n) = \infty \implies \mathbb{P}\left(\limsup_{n} A_n\right) = 1. \tag{70}$$

Checking almost-sure convergence

Theorem 4.2 (Borel-Cantelli for proving almost-sure convergence)

Let $(X_n)_{n\geq 1}$ be a sequence of random variables and X be a random variable on a common probability space. Then,

$$\forall \varepsilon > 0, \ \sum_{n \ge 1} \mathbb{P}(|X_n - X| > \varepsilon) < \infty \implies X_n \stackrel{\text{a.s.}}{\to} X. \tag{71}$$

Proof.

Define an event $A_n(\varepsilon)=\{\omega\mid |X_n(\omega)-X(\omega)|>\varepsilon\}$. By Borel-Cantelli lemma, for any $\varepsilon>0$,

$$\mathbb{P}\Big(\limsup_{n} A_n(\varepsilon)\Big) = 0. \tag{72}$$

Checking almost-sure convergence

Proof Cont.

Now consider the event $A=\{\omega\mid \lim_n X_n(\omega)=X_n(\omega)\}$. We have to show that $\mathbb{P}(A)=1$. $\omega\in A$ implies that for any $\varepsilon>0$ there exists n such that $\omega\in A_m^c(\varepsilon)$ for all $m\geq n$, i.e.,

$$\omega \in \bigcap_{\varepsilon > 0} \bigcup_{n \ge 1} \bigcap_{m \ge n} A_m^c(\varepsilon) = \left(\bigcup_{\varepsilon > 0} \limsup_n A_n(\varepsilon) \right)^c.$$
 (73)

Hence, we have

$$\mathbb{P}(A) = 1 - \mathbb{P}\left(\bigcup_{\varepsilon > 0} \limsup_{n} A_n(\varepsilon)\right)$$

$$\geq 1 - \sum_{\varepsilon > 0} \mathbb{P}\left(\limsup_{n} A_n(\varepsilon)\right) = 1,$$
(74)

as desired.

Checking almost-sure convergence

Theorem 4.3 (Borel-Cantelli to disproving almost-sure convergence)

Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables and X be a random variable on a common probability space. Then,

$$\forall \varepsilon > 0, \sum_{n \ge 1} \mathbb{P}(|X_n - X| > \varepsilon) = \infty \implies X_n \stackrel{\text{a.s.}}{\nrightarrow} X. \tag{75}$$

Prove it by yourself!

Converge in probability but not almost surely

Let $(X_n)_{n\geq 1}$ be a sequence of random variables with distribution

$$\mathbb{P}(X_n = n) = \frac{1}{n}, \quad \mathbb{P}(X_n = 0) = 0. \tag{76}$$

Then $X_n \stackrel{\mathrm{p}}{\to} 0$ but not $X_n \stackrel{\mathrm{a.s.}}{\to} 0$. Show it by yourself (Hint: use Theorem 4.3).

Converge in distribution but not in probability

Let $\Omega=\{0,1\}$ be a sample space with probability measure $\mathbb{P}(\{0\})=1/2$ and $\mathbb{P}(\{1\})=1/2$. Define a sequence of random variables $(X_n)_{n\geq 1}$ as $X_n(0)=0$ and $X_n(1)=1$ for all $n\geq 1$. Define also X as X(0)=1 and X(1)=0. Then, it is easy to check that $F_n=F$, but $|X_n(0)-X_n(0)|=1$ for all n so does not converge in probability.