CS787 Homework 4

Mikola Lysenko

March 26, 2009

- 1. Let A, B be the two components of the bipartite graph $K_{n,n}$ each containing n elements. Because each vertex in A is connected to all vertices in B by a single edge and likewise back to all vertices in A by a path of length 2, it would be impossible to disconnect A unless all vertices in B were completely removed. A symmetric argument holds in the case of B. Therefore, the only way to disconnect $K_{n,n}$ is to completely remove one of the connected components which would take at least n vertices.
- **2.** Consider G, a $k \times k$ square grid embedded in the plane with unit length edges. The planar separator theorem assures us that we have some separator $S \subset G$ which partitions G into two disconnected components, where each component, $C, C' \subset G$, contains at least $k^2/3 4k$ vertices. Note that due to the embedding of $G, S \cup C$ forms a polygon whose area may be expressed using Pick's theorem:

$$A = I + B - 1$$

Where A is the area of $S \cup C$, I is the number of interior points in $S \cup C$ and B is the number of points on the boundary, $\partial(S \cup C)$. Because $I + B = |S \cup C| \ge |C|$:

$$A \ge k^2/3 - 4k - 1$$

Now suppose that there was some circle with radius r and area A, then:

$$\pi r^{2} = A$$

$$\pi r^{2} \ge k^{2}/3 - 4k - 1$$

$$r \ge \frac{1}{\sqrt{\pi}} \sqrt{k^{2}/3 - 4k - 1}$$

The circumference of this circle, $c = 2\pi r$, satisfies

$$c \ge 2\sqrt{\pi(k^2/3 - 4k - 1)} > (2 + \epsilon)k$$

for all $0 < \epsilon < 2\sqrt{\pi/3} - 2$ and sufficiently large k. Now recall a well-known theorem from the calculus of variations: a circle has maximal area for a given circumference. Combined with the fact that each edge in G is unit length, this implies that the number of edges in $\partial(S \cup C)$ is strictly larger than $(2 + \epsilon)k$. A symmetric argument holds for the other connected component C', and so:

$$|\partial(S \cup C')| + |\partial(S \cup C)| > (4 + 2\epsilon)k$$

Because $|\partial G| = 4k$, $G = S \cup C \cup C'$ and $C \cap C' = \emptyset$, S must contain at least $2\epsilon k$ vertices. Fixing $n = k^2$, we conclude that all 1/3 - 2/3 separators for this family of graphs contain $\Omega(\sqrt{n})$ vertices.

¹Good grief. I hope there was an easier way to prove this lower bound.

3. Without loss of generality, assume that $G = (V, E, \theta, -)$ is connected and triangulated, |V| = n, |E| = m and $v_0 \in V$.

```
Planar-Separator(V, E, \theta, -)
      \begin{array}{c} rank[...] \leftarrow -\inf \\ count[...] \leftarrow 0 \end{array}
       parent[...] \leftarrow \emptyset
       treeedge[...] \leftarrow \mathbf{false}
  4
  5
       tovisit \leftarrow \text{Make-Queue}(v_0)
       rank[v_0] \leftarrow 0
       while Not-Empty(tovisit)
               \mathbf{do} \ v \leftarrow \mathsf{Pop}(tovisit)
                     for each v' \in \text{Neighbors}(v) such that rank[v'] > 0
  9
10
                             \operatorname{do} rank[v'] \leftarrow rank[v] + 1
11
                                 count[rank[v']] \leftarrow count[rank[v']] + 1
12
                                 parent[v'] \leftarrow v
                                  treeedge[(v, v')] \leftarrow \mathbf{true}
13
14
                                 Push(tovisit, v')
     t_1 \leftarrow 0
15
16
       s_1 \leftarrow 0
       \mathbf{for}\ i \leftarrow 1\ \mathbf{to}\ \mathrm{max}_v\ rank
17
               \mathbf{do}\ s' \leftarrow s_1 + count[i]
18
19
                     if s_1 \leq n/2 and s' > n/2
20
                        then t_1 \leftarrow i
21
                                 break
                     s_1 \leftarrow s'
22
      t_0 \leftarrow 0
23
24
       s_0 \leftarrow 0
       \mathbf{for}\ i \leftarrow 1\ \mathbf{to}\ \mathrm{max}_v\ rank
25
26
                \mathbf{do}\ s' \leftarrow s_0 + count[i]
27
                     if s_0 + 2(count[t_1] - count[t_0]) \le 2\sqrt{s_1}
28
                         then t_1 \leftarrow i
29
                     s_0 \leftarrow s'
30
       t_2 \leftarrow 0
31
       for i \leftarrow \max_{v} rank to 1
32
                \mathbf{do}\ s' \leftarrow s_0 - count[i]
33
                     if s_0 + 2(count[t_2] - count[t_1] - 1) \le 2\sqrt{n - s_1}
34
                         then t_2 \leftarrow i
35
                     s_0 \leftarrow s'
36
       A \leftarrow \emptyset
       B \leftarrow \emptyset
37
38
       C \leftarrow \emptyset
39
       for each v \in V
40
                do if rank[v] < t_0
                         then A \leftarrow A \cup \{v\}
41
42.
                                 Remove-Vertex(G, v)
                     elseif rank[v] = t_0
43
                         then rank[v] \leftarrow 0
44
                                 parent[v] \leftarrow x
45
46
                                  Add-Edge(G,(x,v))
                     elseif rank[v] > t_2
then C \leftarrow C \cup \{v\}
47
48
49
                                  Remove-Vertex(G, v)
50
                         else
51
                                 rank[v] \leftarrow rank[v] - t_0
52 B \leftarrow \text{Locate-Cycle-With-Cost} < 2/3 \text{-in-dual}(G)
53
       G \leftarrow G - B
54 A \leftarrow A \cup \text{Connected-To-x}(G)
55 C \leftarrow C \cup (G - A)
56
       go to sleep<sup>a</sup>
57 return (A, B, C)
```

 $^{^{}a}\mathrm{I}$ give up. It's 2am and this is taking forever.

- **4.** Recall that the cycles in G are defined as the orbits of the group generated by $\{\theta, \theta^*, -\}$ acting on E, aka $|E/\{\theta, \theta^*, -\}|$. However, since $\theta^* = \theta \circ -$, this is the same as the group generated by $\{\theta, -\}$. From class, we know that $|E/\{\sigma_i, -\}| = |E/\{\sigma_{i+1}, -\}|$, so by definition the number of cycles under σ_i is the same as those for σ_{i+1} .
- **5.** Given invertible automorphisms $\theta: E \to E, \neg: E \to E$, construct the permutation arrays $P = (p_1, p_2, ...p_n), Q = (q_1, q_2, ...q_n)$ such that $e_{p_i} = \theta(e_i)$ and $e_{q_i} = \neg(e_i)$ for all edges $e_x \in E, 1 \le x \le |E| = n$. By definition, $G^* = (E, \theta^*, \neg)$ where $\theta^* = \theta \circ \neg$, which is equivalent to the permutation:

$$P^* = (p_{q_1}, p_{q_2}, ... p_{q_n})$$

Computing P^* takes O(n) time where n = |E|, therefore the cost of constructing G^* from G using an array representation is in O(|E|).