

Betriebsoptimierung von Wärmepumpen mittels genetischer Algorithmen

Scheduling of Heat Pumps Using Genetic Algorithms Abschlusspräsentation der Bachelorarbeit

Fabian Neumann | 14. Juli 2016

Agenda

Motivation

Einsatz von Wärmepumpen für Demand-Side Management

Abbildung: Endenergieverbrauch in Deutschland nach Anwendungsfeldern im Jahr 2014 (Statistisches Bundesamt, 2016)

Ein	leitu	ng	
0			
14	Juli	201	6

Aufbau des Wärmepumpensystems

Variabler Leistungskoeffizient: $COP = \frac{Q}{W}$

Problemformulierung (1)

Prinzip: Optimiere Betriebskosten bei variablen Strompreisen, ohne Temperaturrestriktionen zu verletzen.

$$\begin{split} \text{Minimiere} \quad c &= \sum_{t=1}^{\textit{Nslots}} \left(w_t^{\textit{HW}} + w_t^{\textit{HE}} \right) \cdot P_t^{\textit{sym}} \\ \text{s.t.} \quad & T_{\textit{min}}^{\textit{HW}} \leq \vartheta_t^{\textit{HW}} \leq T_{\textit{max}}^{\textit{HW}} \\ & T_{\textit{min}}^{\textit{HE}} \leq \vartheta_t^{\textit{HE}} \leq T_{\textit{max}}^{\textit{HE}} \qquad \forall t \in \{1 \dots \textit{N}^{\textit{slots}}\} \\ & \vartheta_t^{\textit{HW}} \in [36, 60] \quad \text{und} \quad \vartheta_t^{\textit{HE}} \in [28, 50] \quad \text{in } ^{\circ} \text{C} \end{split}$$

Speichertemperaturen sinken durch Wärmeverluste und Verbrauch.

Einleitung

Szenario und Ansatz

Entwurf und Implementieru

Evaluation 000000

Problemformulierung (2)

Betriebszustände der Wärmepumpe:

- Nicht angeschaltet
- 2. Laden des Warmwasserspeichers
- 3. Laden des Heizwasserspeichers

Die Energien berechnen sich $\forall t \in \{1 \dots N^{slots}\}$ durch:

$$\begin{aligned} \mathbf{w}_{t}^{HW} &= \beta_{t} \cdot (\mathbf{1} - \omega_{t}) & \cdot \Delta t \left(C_{0}^{el} + C_{vap}^{el} \cdot T_{t}^{outside} + C_{cond}^{el} \cdot \vartheta_{t-1}^{HW} \right) \\ \mathbf{w}_{t}^{HE} &= \beta_{t} \cdot \omega_{t} & \cdot \Delta t \left(C_{0}^{el} + C_{vap}^{el} \cdot T_{t}^{outside} + C_{cond}^{el} \cdot \vartheta_{t-1}^{HE} \right) \\ \mathbf{q}_{t}^{HW} &= \beta_{t} \cdot (\mathbf{1} - \omega_{t}) & \cdot \Delta t \left(C_{0}^{th} + C_{vap}^{th} \cdot T_{t}^{outside} + C_{cond}^{th} \cdot \vartheta_{t-1}^{HW} \right) \\ \mathbf{q}_{t}^{HE} &= \underbrace{\beta_{t} \cdot \omega_{t}}_{\text{Fahrplan}} & \cdot \Delta t \underbrace{\left(C_{0}^{th} + C_{vap}^{th} \cdot T_{t}^{outside} + C_{cond}^{th} \cdot \vartheta_{t-1}^{HE} \right)}_{\text{Regression}} \end{aligned}$$

Forschungsfragen

- 1. Wie sieht ein genetischer Algorithmus aus, der den Fahrplan einer einzelnen Wärmepumpe bezüglich der Betriebskosten optimiert, sodass ihr Lastverschiebungspotenzial unter der Berücksichtigung ihrer variablen Effizienz ausgenutzt wird?
- 2. Im Speziellen: Welche Stellschrauben existieren, die eine Leistungssteigerung der Optimierung hervorrufen können?
- 3. Wie hoch ist das Potenzial der Betriebsoptimierung von Wärmepumpen hinsichtlich möglicher Kosteneinsparungen?

Gründe für Genetische Algorithmen

Such- und Lösungsprinzip:

 Nach dem Vorbild der natürlichen Evolution werden auf eine sich ändernde Menge von Lösungen (Population) wiederholt Selektions-, Rekombinations- und Mutationsoperatoren angewandt.

Eignung:

- Schnelle zufriedenstellende Lösung trotz komplexer Probleme
- Problem hat viele binäre Entscheidungsvariablen

Herausforderungen:

- Erreichen globaler Optima
- Balance zwischen Exploration und Exploitation durch Wahl der Operatoren und Parameter

Genotyp-Phänotyp Übersetzung

Ansatz: Aneinanderreihung der binären Entscheidungsvariablen

Allgemein:

Slot	1 2		 N ^{slots}			
Bit	0	1	2	3	 $2 \cdot N^{slots} - 2$	$2 \cdot \mathit{N}^{\mathit{slots}} - 1$
Genotyp	β_1	ω_1	β_2	ω_2	 $eta_{ extsf{N}^{ extsf{slots}}}$	$\omega_{N^{slots}}$

Beispiel:

Genotyp	10	00	11	01		11	11	10	00
Fahrplan	HW	OFF	HE	OFF	• • •	HE	HE	HW	OFF

Einleitung 00 Szenario und Ansatz

Entwurf und Implementierung

Evaluation 0000000

Fitnessfunktion

Betriebskosten sind der Hauptindikator für die Lösungsgüte. Ist eine Lösung ungültig, wird ein **Strafterm** auf die Fitness addiert.

Die Fitnessfunktion wurde dabei parameterfrei definiert:

$$F(x) = \begin{cases} c(x) & \text{if } V_{count}(x) = 0\\ c_{max} + V_{temp}(x) & \text{if } V_{count}(x) > 0 \end{cases}$$

V_{count}: Anzahl verletzter Temperaturrestriktionen

 V_{temp} : Summe aller Temperaturdifferenzen der Unter- und

Überschreitungen zu minimalen bzw. maximalen Speichertemperaturen

c_{max}: schlechteste bisher gefundene gültige Lösung

NB: Eine von vielen Techniken des Constraint Handlings

Einleitung

Szenario und Ansatz

Entwurf und Implementierung

Evaluation

Parametrisierung der Operatoren

- Umweltselektion: Die fittesten Individuen überleben
 - Altersbedingte Umweltselektion: deutlich schlechter
- **Elternselektion:** Turnierselektion (k = 3)
 - Fitnessproportionale und rangbasierte Selektion ähnlich gut
- Rekombination: Crossover an 7 Stellen
 - Uniform Crossover und Shuffle Crossover weniger gut
- Mutation: Problemspezifische Mutation (p = 4.17% = 8/192)
 - Leichte Verbesserung gegenüber einfacher Bitflip-Mutation
 - Relativ hohe Mutationsrate

Lösungsverhalten (1)

Abbildung: Lösungsgüte und Lösungszeit bei unterschiedlicher Terminierung (Januar bis April)

Einleitung Szenario und Ansatz

Entwurf und Implementierung

Evaluation 0000000

Lösungsverhalten (2)

Abbildung: Beispielhaftes Lösungsverhalten bei parameterfreier Fitnessfunktion

Einleitung

Szenario und Ansatz

Entwurf und Implementierung

Evaluation

Lokale Suche

Suchoperator: Permutation benachbarter Slots an zufälliger Stelle **Akzeptanzoperator:** Hillclimbing, Threshold und Simulated Annealing

Abbildung: Durchschnittliche tägliche Kosten bei verschiedenen lokalen Suchmethoden (Januar bis April)

Einleitung

Szenario und Ansatz

Entwurf und Implementierung

Evaluation

Parallelität

Abbildung: Lösungszeit und -güte bei unterschiedlichem Einsatz von Parallelität (Januar bis April)

Einleitung 00 Szenario und Ansatz

Entwurf und Implementierung

Evaluation

Referenzfälle

Abbildung: Wärmegeführte Wärmepumpensteuerung (Hysterese bei 4°C)

Heuristische Initialisierung der Startpopulation (1)

Zufällige Startlösungen:

Jeder Betriebszustand ist in jedem Slot gleichwahrscheinlich

Nachfragesensitive zufällige Startlösungen:

- Die Anzahl der Slots, in denen die Wärmepumpe läuft, orientiert sich an der prognostizierten thermischen Last.
- Wahrscheinlichkeiten passen sich entsprechend an.

Heuristische Initialisierung der Startpopulation (2)

Effizienzlösungen: (gültig)

- Wärmepumpe wird einen Slot lang eingeschaltet, wenn die minimale Temperatur unterschritten wird.
- Für Diversität sorgt ein zufälliger Vorzug des Einschaltvorgangs.

Lösungen durch Preisreihung: (ungültig)

- Abhängig von der prognostizierten thermischen Last im Optimierungshorizont wird die Anzahl der zu laufenden Slots geschätzt.
- In aufsteigender Reihenfolge werden die Slots mit den günstigsten Strompreisen belegt.

Vergleich verschiedener Initialisierungsmethoden

Szenario und Ansat

Entwurf und Implementierung

Evaluation 000

Vergleich der optimierten zur wärmegeführten Steuerung (1)

Abbildung: Beispielhafte Temperaturkurve des optimierten Fahrplans (Initialisierung durch Preisreihung)

Einleitung

Szenario und Ansatz

Entwurf und Implementierung

Evaluation 000000

Vergleich der optimierten zur wärmegeführten Steuerung (2)

Überblick über Evaluation

gepunktet: wärmegeführte Steuerung - durchgezogen: optimierende Steuerung

Einleitun

Szenario und Ansat

Entwurf und Implementierung

Evaluation

Zusammenfassung

Faktoren für ein hohes Potenzial der Betriebsoptimierung von Wärmepumpen:

- Parametrisierung und Wahl der Operatoren des Algorithmus
- Gebrauch von lokalen Suchoperatoren
- Einbau von Heuristiken (z.B. zur Bildung der Startpopulation)
- Hohe Güte der Wärmebedarfsprognosen
- Hohe Preisspreizungen (z.B. durch dynamische Preisaufschläge)

Hohes Potenzial...

...wenn Preisspreizungen deutlich höher sind als heutzutage.

Ausblick

- (Selbst-)adaptive Parametersteuerung
- Optimierung im Verbund mit anderen Geräten
- Gleitende Optimierungshorizonte bei zeitabhängiger Prognosegüte
- Erhöhung der Auflösung der Optimierung
- Intelligenter Controller (weicher Fahrplan)
- Vergleich zu anderen Optimierungsmethoden (MILP)

BACKUP

Aufbau einer Wärmepumpe

Abbildung: Basic construction of a simple heat pump

Wärmebedarf für Heizen und Warmwasser

Abbildung: Annual demand for heating (a) and hot water (b)

Merit Order

Abbildung: The principle of a merit order

Strompreis-Zusammensetzung

Abbildung: Composition of electricity price in May 2016

Variable Strompreise

Preisspreizung: $p_{used} = (p_{market} - \bar{p}) \cdot s + \bar{p} + q$

Abbildung: EPEX Intraday Auktion am 1. April 2015 (CET) mit Spreizung (s=5.0) und Preisaufschlag (q=24 ct/kWh)

Evolutionärer Zyklus

Abbildung: Schematic illustration of an evolutionary cycle (adapted from [Weicker.2015])

Simulationsumgebung

Abbildung: Simulation environment of the genetic algorithm (UML)

jMetal

Abbildung: Basic architecture of jMetal library [Durillo.2011]

Operatoren

Abbildung: Depth of inheritance and extensions made to jMetal in this work (UML)

NSGA-II

Abbildung: Comparison of genetic algorithm to NSGA-II

15min-Effekt

Abbildung: Effect of optimisation granularity (red: no operation, green: operation)

Auswirkungen von Flexibilität zwischen Optimierungshorizonten

Sensitivität gegenüber Preisspreizung

Abbildung: Einfluss der Preisspreizung auf Einsparungen durch die Optimierung

Regression

Abbildung: Selected regression functions of heating demand according to outdoor temperature

Regression Resultate

Abbildung: Outdoor temperature / demand combinations of predicted, corrected and actual heating demand

Robustheit gegenüber Unsicherheit (Thermische Last)

Resultate Unsicherheit

Abbildung: Impact of uncertain thermal demand on performance of genetic algorithm

Gleitender Optimierungshorizont

Abbildung: Impact of a moving optimisation horizon on the performance of the developed genetic algorithm (notation: [realised time, overlapping time])