POKHARA UNIVERSITY

Level: Bachelor

Semester: Fall

Year : 2022

Programme: BE Course: Numerical Methods Full Marks: 100 Pass Marks: 45

Time

: 3hrs.

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Attempt all the questions.

- Find the root of the equation $f(x) = x^2-4x-10$ correct to three decimal 7 places by using False Position method.
 - Estimate the root of the equation $f(x) = xe^x$ Cosx using Newton 8 Raphson method correct to three decimal places.
- 2. a) From the following table estimate the number of student who obtained 7 marks between 40 and 45.

Marks	30-40	40-50	50-60	60-70	
No of Students	31	42	51	35	

From the following data given in the table below evaluate f (2.5) by using Lagrange method.

X	1	2	4	5	7
f(x)	1	1.414	1.732	2.00	2.6

- 3. Evaluate $\int_1^5 \frac{1}{x} dx$ by using Gaussian Integration formula for n=3 and compare the value with exact solution.
 - b) Use the Romberg integration to find the solution correct upto three decimal places.

$$I = \int_0^1 \frac{1}{1+x^2} \mathrm{d}x$$

4. a) Find the solution of the given simultaneous linear equation using 7 Gauss Seidel method.

$$6x_1-2x_2+x_3=11$$

$$-2x_1+7x_2+2x_3=5$$

$$x_1 + 2x_2 - 5x_3 = -1$$

by Solve the following system of equations using Crout method.

$$x + y + z = 4, x + 4y + 3z = 8, x + 6y + 2z = 6$$

- 5. a) Using the Euler's (R-K I st order method) find an approximate value of y corresponding to x=1, given that dy/dx = X+Y and y=1. When x=0, h=0.1.
 - b) ApplyEuler's method to approximate value of y(0.3) for the 7 differential equation:

$$\frac{dy}{dx} = y + x, y(0) = 1.$$

- 6. a) Torsion on a square bar of size 15cm* 15cm. If two of the sides are held at 100° C and the other two sides are held at 0°C. Calculate the steady state temperature at interior points. Assume a grid size of 5cm * 5cm.
 - Solve the Poisson equation $\nabla^2 f = 2x^2 + y$, over the square domain $1 \le x \le 4$, $1 \le y \le 4$, with f = 0 on the boundary. Take step size in x and y, h = k = 1.

 2×5

- 7/ Write short notes on: (Any two)
 - a) Ill-conditioned and Well-conditioned systems
 - b) Error in Numerical method
 - c) Cubic Spline.