

PHM320 MCU 用户手册

目录

1. 概述	3
2. 产品特性	3
3. 功能框图	4
4. 功能简介	4
4.1 LDO 功能模块	4
4.2 POR, LVR 功能模块	4
4.3 OSC16M 功能模块	4
4.4 PGA&ADC 功能模块	4
4.5 目标检测功能模块	5
4.6 CPU	5
4.7 内置 ROM	5
4.8 内置 RAM	5
4.9 IR 红外接收模块	5
4.10 TIMER	5
4.11 PWM	5
4.12 GPIO	5
5. 引脚定义及使用说明	6
5.1 引脚定义	6
5.2 Pinshare	7
5.3 引脚使用说明	7
6.寄存器说明	8
6.1 LDO 功能寄存器	8
6.2 OSC16M 功能寄存器	9
6.3 PGA&ADC 功能寄存器	9
6.4 FDAC 功能寄存器	10
6.5 目标检测功能寄存器	11
6.6 IR 控制寄存器	13
6.7 TIMER 控制寄存器	13
6.8 PWM 控制寄存器	14
6.9 GPIO 功能寄存器	15
7 参考设计	17

1. 概述

PHM320是一款基于RISC-V内核的32位通用微控制器,主要针对低成本、低功耗的MCU应用领域。

2. 产品特性

- 内置32位RISC-V核,工作频率可到16MHz 或 24MHz
- 内置4K字节的MTP ROM和64字节的EEPROM
- 内置2K字节的XRAM
- 集成了5路32位定时器, 其中含有1路看门狗定时器
- 集成了1路12位SAR ADC,最高能达到1Mbps的采样率,搭配芯片内3选1的多路开关,可以外接3个通道的模拟源输入
- 最多支持8个GPIO
- 最多支持5路24位频率可调,脉宽可调的PWM输出
- 集成了红外遥控IR接收器
- 内置雷达中频信号数字处理和检测功能模块
- 内置了高精度的16MHz振荡器
- 内置了POR, LVR, LDOs, FDAC模块
- 内含2总线JTAG调试接口
- 2.97-3.63V的供电电压
- 工作温度范围: -40℃ to 105℃
- 封装: QFN24,4mm x 4mm

3. 功能框图

4. 功能简介

4.1 LD0 功能模块

芯片内共有 LDO-LNA,LDO-VCO,LDO-PA,LDO-D,LDO-A 5 个 LDO,其中 LDO-LNA,LDO-VCO,LDO-PA 3 个 LDO 是给外部的雷达芯片供电用,输出典型值 1.2V,可以通过寄存器微调。LDO-D 是给芯片内部的数字部分电路用,输出典型值 1.2V,可以通过寄存器微调。LDO-A 是给芯片内部的模拟部分电路用,输出典型值 1.2V。

4.2 POR, LVR 功能模块

芯片上电,掉电复位电路,POR 电路能够很好的完成上电时序要求。LVR 防止掉电和突发电压下降时导致的 CPU 死机或跑飞的问题。

4.3 OSC16M 功能模块

内部高精度时钟震荡电路,给 CPU,总线等数字模块提供时钟。典型的输出频率是 16MHz,可以通过寄存器调整输出频率,不同的芯片具有一定的差异性。

4.4 PGA&ADC 功能模块

芯片内的 PGA 模块介于中频 IF 输入和 ADC 之间,起到放大输入信号的作用,通过寄存器配置可以选择 bypass PGA 或者不同的放大倍数。ADC 模块最高能达到 **1Mbps** 的采样率,可以同寄存器修改相关参数,把 **IF** 信号转换成数字信号,进行目标检测。

4.5 目标检测功能模块

功能模块集成了移动目标检测的算法,通过寄存器配置,可以设置不同的参数来完成移动目标的检测,并产生相应的触发信号。

4.6 CPU

PHM320 集成了平头哥的 E902 CPU, **32** 位 **RISC-V** 核,支持精简指令集,低功耗,工作频率典型为 **16MHz**

4.7 内置 ROM

PHM320 内部集成了 4K 字节的 MTP ROM 和 64 字节的 EEPROM, CPU 通过 MTP Control 对 MTP 进行指令操作和对 EEPROM 进行相关数据的操作。

4.8 内置 RAM

PHM320 内部集成了 2K 字节的 XRAM,跟 CPU 同频,可以进行快速的数据交互。

4.9 IR 红外接收模块

PHM320 内部集成了 IR 红外接收模块, 能够解码从遥控接收头过来的信号, 减少了 CPU 的占用时间, 提升效率。

4. 10 TIMER

芯片内置了 5 个 TIMER,其中一个看门狗 TIMER,4 个通用 TIMER,每个 TIMER 都有 32bit 来设置定时时间。每个 TIMER 都具有中断功能。

4. 11 PWM

芯片内含有 5 路 PWM 控制器, 通过 32bit 寄存器可以控制 PWM 输出不同的频率和占空比, 能够实现脉宽调制功能。

4. 12 GPIO

芯片一共支持 8 路 GPIO,分别是 P1_0 到 P1_7。这些 GPIO 具有 PINshare 功能,通过配置不同寄存器可以设置成不同功能的输入输出。

5. 引脚定义及使用说明

5.1 引脚定义

引脚	名称	类型	描述
1	TRST_N		JTAG 调试口复位信号
2	TCK	1	JTAG 调试口时钟信号
3	TMS	I/O	JTAG 调试口数据信号
4	P1_0	I/O	通用数字 IO
5	P1_1	I/O	通用数字 IO
6	P1_2	I/O	通用数字 IO
7	P1_3	I/O	通用数字 IO
8	VDDIO	V	数字 IO 模块 3.3V 电源输入
9	P1_4	I/O	通用数字 IO
10	P1_5	I/O	通用数字 IO
11	P1_6	I/O	通用数字 IO
12	P1_7	I/O	通用数字 IO
13	VDD33	V	内部 LDO 模块 3.3V 电源输
13	VDD33		入
14	LDO4	0	1.2V LDO 电压输出
15	FDAC	0	0.8-1.2V DAC 电压输出
16	LDO2	0	1.2V LDO 电压输出
17	LDO1	0	1.2V LDO 电压输出
18	ADC1	I	ADC 通道 1 输入
19	VCAP	I	VCAP 电压,外接电容到地
20	AVDD33	V	3.3V 模拟电源输入
21	BG	1	BG 电压,外接电容到地

22	ADC2	1	ADC 通道 2 输入
23	ADC3		ADC 通道 3 输入
24	TEST_EN	I	测试模式使能输入
25	GND	V	EPAD 引脚

5.2 Pinshare

PIN No.	PIN Name	Function 1	Function 2	Function 3	Function 4
4	P1_0	GPIO	PWM1		
5	P1_1	GPIO	PWM2		
6	P1_2	GPIO	PWM3		
7	P1_3	GPIO	PWM4		
9	P1_4	GPIO	PWM5		
10	P1_5	GPIO	IR	adc_done	osc_16m
11	P1_6	GPIO	adc_sample		

5.3 引脚使用说明

TRST N/TCK/TMS

2 线 JTAG 调试口,可以通过这个接口给 PHM320 下载程序,也可以通过这个口调试软件。3.3V 电平,配套专门的下载器一起工作。如果为了省对外的引脚,可以不连 TRST_N 这个 PIN,悬空。

● P1_0 到 P1_7

通用输入输出 IO 口,内部没有上下拉电路,3.3V 电平。其中 P1_0 到 P1_4 还可以设置成 PWM 输出。P1_5 可以设置成 IR 的输入信号,adc_done 和 osc_16m 的输出信号。P1_6 可以设置成 adc_sample 的输出信号。

LDO1,LDO2,LDO4

是 3 路 1.2VLDO 输出引脚,每一路的输出电流最大不超过 30mA,可以直接跟 816, 816C 的电源管脚连接,给它们供电。支持脉冲供电模式,其中频率受 ADC 采样频率控制,供电的脉冲宽度可以通过寄存器调整。

FDAC

是电压可以调节的 DAC 输出,输出范围 0.8V-1.2V。直接接 816C 的 16 脚,通过设置不同电压微调 816C 的 RF 频率。

● ADC1 到 ADC3

模数转换输入, 可以作为雷达芯片的 IF 信号输入, 光敏传感器输入, 温度传感器输入

等,输入电压范围根据芯片内部设置的不同参数而不同,最大支持到 3.3V 输入。

VDDIO,VDD33,AVDD33,VCAP,BG

VDDIO:IO 模块的供电电压, 3.3V 输入, 靠近管脚加 1uF 电容到地; VDD33:LDO1,LDO2,LDO4 的输入电压, 3.3V 输入, 靠近管脚加 1uF 电容到地; AVDD33:内部 LDO-D,LDO-A 的输入电压, 3.3V 输入, 靠近管脚加 1uF 电容到地; VCAP:VCAP 电压, 管脚加 1uF 电容到地; BG: BG 电压, 管脚加 1uF 电容到地;

TEST EN

测试模式选择输入脚, 正常模式直接接地。

6.寄存器说明

6.1 LD0 功能寄存器

			rf4_en	[31]	rf Ido4 enable
			rfldo4 trim	[30:28]	rf Ido4 trim, rf Ido4 can't be
			111004_(11111	[30.26]	controled by adc_sample
			rf3_en	[27]	rf Ido3 enable
		B R/W	rfldo3_trim	[26:24]	rf Ido3 trim
0x1f000010	0xC48		rf2_en	[23]	rf Ido2 enable
			rfldo2_trim	[22:20]	rf Ido2 trim
			rf1_en	[19]	rf Ido1 enable
			rfldo1_trim	[18:16]	rf Ido1 trim
			ldo_dig_trim	[12:11]	1.2V Ido trim
			iref_trim	[10:8]	ireference trim

bit【31】, bit【27】, bit【23】, bit【19】是 LDO4-LDO1 的开关使能位, 1 为使能开;

bit【30: 28】, bit【26: 24】, bit【22: 20】, bit【18: 16】是 LDO4-LDO1 输出电压微调位;

bit【12: 11】是数字部分 LDO 的输出电压微调位;

其中 LDO4 是不受 ADC 采样控制的,在脉冲供电的时候输出电压是一直存在的。其他 LDO3-LDO1 是受 ADC 采样控制,输出脉冲电压。

bit【10:8】是内部模块所使用的参考电流的调整位,可以微调参考电流的大小;

0x1f000014	0.010101	DAM	rf3_delay	[22:16]	rf Ido3 startup delay (after delay count, RF will work) , PA ctrl
0x11000014	14 0x010101 R.	R/W	rf2_delay	[14:8]	rf Ido2 startup delay (after delay count, RF will work), VCO ctrl

8

	rf_en_sel	[7]	rf Ido enable select, 0->adc sample enable Ido, 1->by reg rfx_en12 setting
	rf1_delay	[6:0]	rf Ido1 startup delay (after delay count, RF will work), LNA ctrl

bit【22: 16】, bit【14: 8】, bit【6: 0】, 是 LDO3-LDO1 开启输出延时, 意思是在脉冲供电输出时, adc 过来的开启 LDO 的控制信号需要延时一段时间才能真正的开启 LDO, 保证 ADC 已经准备完毕。影响脉冲宽度, 具体是: 供电脉宽=adc_sample_cnt-rf_delay; bit【7】是脉冲和正常供电的选择位, 1是正常供电, 0是脉冲供电;

6.2 OSC16M 功能寄存器

0x1f000010 0xC48 R/W	osc16m_trim [7:0]	rc osc frequency trim
----------------------	-------------------	-----------------------

bit【7: 0】是调整内部 16MHz 频率,一共有 8 个 bit 来设置,可以调整频率从 7MHz 左右 到 26MHz 左右;

6.3 PGA&ADC 功能寄存器

PGA 部分:

111.72							
			pga_en	[31]	PGA enable		
0x1f000014	0x010101	R/W	pga_bypass	[30]	PGA bypass(1-bypass)		
			pga_dc_trim	[29:24]	PGA output dc level setting		

bit 【31】: PGA 功能开关使能位, 1 使能, 0 关闭;

bit【30】: PGA bypass 开关使能位, 1 bypass PGA;

bit【29: 24】: PGA 输出的直流电平的调整位,一共有 8 个 bit 来调整,根据 PGA 输入信号

的不同,调节 PGA 的直流电平输出来满足应用需求;

0v1f000018	0x80088200	₽/M	nga gain	[27:24]	PGA gain ctrl(0~7
0.000010	0x00000200	11/ / /	pga_gaiii	[27.24]	->X1/X1.5/X2/X3/X4/X6/X8/X12)

bit【27: 24】: PGA 放大倍数的控制位, 一共有 8 个档位可以调整;

ADC 部分:

0x1f000018	0x80088200	R/W	adc_sample_cnt	[23:16]	adc sample time(base on 16M osc clock count, RF work time = adc_sample_cnt - rfX delay)

	adc_vref_trim	[15:12]	adc reference trim
	adc_vcm_trim	[11:10]	adc vcom trim
			adc reference select,
	adc_vref_sel	[9:8]	00->2V, 01->2.5V,
			10->3V, 11->VDD
	adc_clk_sel	[7]	adc clock select, 0-> from
	auc_cik_sei	[/]	digital clk, 1-> analog
	adc_clk_div	[6]	adc clock divide from
			analog clk
	adc_data_clrn	[5]	adc date clear, 0 ->clear
			adc mode, 0-> trigger
	adc_mode	[4]	mode, 1-> continues
			sample mode
	adc_en	[3]	ADC enable
			adc input channel select,
			(000-ADC1(IF), 001~100:
	adc_ch_mux	[2:0]	ADC2~ADC5, 101-
			VDD/2, 110-VCM, 111-
			pulse)

bit【23:16】:ADC 采样脉冲宽度的设置位,不能设置太小,在脉冲供电时和 RF_DELAY 一起确定脉冲供电的脉冲宽度;

bit【15: 12】: ADC ref 电压的微调位,可以调整 ref 电压的精准度;

bit【11: 10】: ADC vcom 电压的微调位,可以调整 vcom 电压的精准度;

bit 【9:8】: ADC ref 电压的档位选择位, 一共有 4 个档位可以选择;

bit【7】: ADC 模块的时钟选择位;

bit【6】: ADC 模块的时钟分频选择位;

bit【5】:ADC 数据清除开关位;

bit 【4】: ADC 工作模式选择位, 0 为触发模式, 1 为连续采样模式;

bit【3】: ADC 模块的开关使能位, 1 为打开 ADC;

bit [2: 0]: ADC 输入通道选择位, 001-100 选择不同通道, 其他测试用;

0x1f000014	0x010101 R/\	adc_save_pow	[15]	power down after adc_done
------------	--------------	--------------	------	---------------------------

bit【15】: ADC 采样完成后关闭功能,为了节省功耗使用,1 为使能此功能;

6.4 FDAC 功能寄存器

0x1f000018 0x80088200	R/W	freq	[31:28]	VCO freq trim
-----------------------	-----	------	---------	---------------

bit【31: 28】: 调整 FDAC 的输出电压, 范围为: 0.8V-1.2V,可以用这个电压来校正 816C 的 频率;

6.5 目标检测功能寄存器

● 设置 ADC 的采样频率

0x1f00001C 0x1F4 R/W top_ctl4	[11:0] adc smaple clk divider
-------------------------------	-------------------------------

bit【11:0】:设置 ADC 采样频率的第一级分频,是从 16MHz 频率分下来,比如现在默认设置的是 0x1F4,十进制是 500,第一级分频后的频率是: 16000K/500=32K;

0x1f000024 0x18402 R/W	bb_time_ctl [7:0]	sample rate divider,minimum 2
------------------------	-------------------	-------------------------------

bit【7:0】:设置 ADC 采样频率的第二级分频,是从第一级频率分下来,比如现在默认设置的是 0x02,十进制是 2,第二级分频后的频率是: 32K/2=16K;

0x1f000020 0x0	R/W top_ctl5	[17:16] adc_triger select 1x: bit 16 0x : adc_triger_bb
----------------	--------------	---

bit【17:16】: adc 触发源的选择,在默认状态下选用的是目标检测模块过来的触发信号;

● 设置门限

				[31:12]	Reserved
0x1f000028	0x26C	R/W	bb_adc_dc_init	[11:0]	adc dc initial value for manual
				. ,	mode

bit【11:0】: 设置手动模式下的直流电平的初始值, 一共有 12 个 bit;

0x1f00002C	0x20000	DΛΛ		[31:26]	Reserved
0x1100002C	0.0000	IN/VV	bb_adc_thresh	[25:0]	threshold for ac detection

bit【25:0】:设置目标检测的门限,高于这个门限,触发有效,一共有26个bit;

0x1f000030	0v10000	R/W		[31:26]	Reserved
0X11000030	UX 10000	FC/VV	bb_adc_noise	[25:0]	noise level

bit 【25: 0】: 设置噪声更新的门限, 一共有 26 个 bit;

● 设置触发延时和保护时间

				[31:24]	Reserved
0x1f000034	0xEA600	R/W	t1_value	[23:0]	t1 value, io output high cnt @32KHz

bit【23:0】:触发输出的延时,也就是从触发输出开始经过多长时间后关闭触发输出,一共有 24 个 bit、用的是第一级 adc 分频后的时钟来计算;

				[31:24]	Reserved
0x1f000038	0x17700	R/W	t2 volue	[23:0]	t2 value, io output low cnt
			t2_value	[23.0]	@32KHz

bit【23:0】:触发输出的保护延时,也就是从关闭触发输出后开始经过多长时间后才能再触发输出有效,一共有24个bit,用的是第一级adc分频后的时钟来计算;

● 设置目标检测其他参数

				[31:19]	Reserved
					dc average dynamic caculate
				[18:17]	time select 00:4 cycle 01:8
					cycle 10:16 cycle 11:32 cycle
					dc average initial caculate
				[16:15]	time select 00:4 cycle 01:8
					cycle 10:16 cycle 11:32 cycle
			[14]	bb proc enable 1:enable	
0x1f000024	0x18402	R/W	bb_time_ctl	[13]	dc average select 0:auto
0.000024	0.0402	17/ / /	DD_time_cti	[13]	1:manual
				[12]	bb wakeup output enable
				[12]	1:enable
				[11]	bb wakeup select 1:io triger
				ניין	0:update_en
					total sum samples setting
				[40.0]	0:1x256 1:2x256 2:4x256
				[10:8]	3:8x256 4:16x256 5:32x256
					6&7:64x256

bit【18: 17】: 平均直流电平动态更新计算的时间选择,有4个时间周期可以选择;

bit【16: 15】: 平均直流电平初始值计算的时间选择, 有 4 个时间周期可以选择;

bit【14】: 目标检测功能开关使能位, 1, 打开目标检测功能;

bit【13】: 平均直流电平的选择位: 1, 自动更新。2, 手动设置;

bit【12】: 目标检测到后唤醒输出的使能位: 1, 使能有效;

bit 【11】: 目标检测唤醒方式选择: 1, 选择 IO 触发, 2, 选择 updata_en 触发

bit【10:8】: 采样积分周期的选择: 一共有7个选项可以选择;

6.6 IR 控制寄存器

0x1f03000c 0x0 RO ir_	_data [31:0]	ir read data
-----------------------	--------------	--------------

读到的 IR 的数据,一共 4 个 byte, 其中高 2 个 BYTE 是地址码,低 2 个 BYTE 是命令码;

0x1f030000	0x0	RO	ir_repeat	[1]	ir get a repeat command
	0x0	RO	ir_int	[0]	ir get a data or repeat signal

读到的是单次按键还是重复键, bit【0】: 只要接收到遥控按键就置 1, 不管是单次还是重复, bit【1】: 重复键置为 1, 通过 bit【0】和 bit【1】组合来判断是什么键;

0x1f030008	0x0 WC	rf_int_clr	[0]	write to this bit can clear int signal	1
------------	--------	------------	-----	--	---

清除接收到的按键中断标志; 其它寄存器就使用默认的设置;

6.7 TIMER 控制寄存器

	0x0	R/W	timer_rel[3]	[11]	timer 3 int clear, write clear
	0x0	R/W	timer_rel[2]	[10]	timer 2 int clear, write clear
	0x0	R/W	timer_rel[1]	[9]	timer 1 int clear, write clear
	0x0	R/W	timer_rel[0]	[8]	timer 0 int clear, write clear
0×15020000	0x0	R/W	timer_en[3]	[7]	timer 3 enable
0x1f020000	0x0	R/W	timer_en[2]	[6]	timer 2 enable
	0x0	R/W	timer_en[1]	[5]	timer 1 enable
	0x0	R/W	timer_en[0]	[4]	timer 0 enable
	0x0	R/W	wdg_rst_en	[2]	watch dog reset enable
	0x0	R/W	wdg_en	[1]	watch dog counter enable

bit【11】, bit【10】, bit【9】, bit【8】: TIMER 3-TIMER 0 清中断位, 置 1 清掉中断状态;

bit【7】, bit【6】, bit【5】, bit【4】: TIMER 3-TIMER 0 使能位, 置 1 使能 TIMER

bit【2】:看门狗定时器复位使能;置1使能; bit【1】:看门狗定时器计数使能;置1使能;

0x1f020008	0xFFFFF	R/W	Timer0_reg	[31:0]	timer 0 initial value, decrease count
------------	---------	-----	------------	--------	--

0x1f02000C	0xFFFFF	R/W	Timer1_reg	[31:0]	timer 1 initial value, decrease count
0x1f020010	0xFFFFF	R/W	Timer2_reg	[31:0]	timer 2 initial value, decrease count
0x1f020014	0xFFFFF	R/W	Timer3_reg	[31:0]	timer 3 initial value, decrease count

TIMER 0-TIMER 3 初始状态计数值的设置,向下计数,每个通道有 32 个 bit 可以设置,以 16MHz 作为计数时钟;

0x1f020004	0x0	R/W	wdg_cnt_reg	[31:0]	watch dog counter initial value
------------	-----	-----	-------------	--------	---------------------------------

看门狗定时器的初始状态计数值的设置,向下计数, 32 个 bit 可以设置, 以 16MHz 作为计数时钟;

0x1f020018	0x0	RO	Timer0_cnt	[31:0]	timer 0 counter value
0x1f02001C	0x0	RO	Timer1_cnt	[31:0]	timer 1 counter value
0x1f020020	0x0	RO	Timer2_cnt	[31:0]	timer 2 counter value
0x1f020024	0x0	RO	Timer3_cnt	[31:0]	timer 3 counter value

TIMER 0-TIMER 3 读到的当前计数值

6.8 PWM 控制寄存器

	0x0	R/W	pwm_en[4]	[16]	PWM 4 counter enable
	0x0	R/W	pwm_en[3]	[15]	PWM 3 counter enable
0x1f020000	0x0	R/W	pwm_en[2]	[14]	PWM 2 counter enable
	0x0	R/W	pwm_en[1]	[13]	PWM 1 counter enable
	0x0	R/W	pwm_en[0]	[12]	PWM 0 counter enable

bit【16】, bit【15】, bit【14】, bit【13】, bit【12】: PWM 4-PWM 0 计数器使能位, 置 1 使能 PWM 功能;

0x1f020040				[31:24]	Reserved
0x11020040	0x0	R/W	pwm_freq_ctrl1	[23:0]	PWM 0 frequency setting
0x1f020044				[31:24]	Reserved
0x11020044	0x0	R/W	pwm_freq_ctrl2	[23:0]	PWM 1 frequency setting
0x1f020048				[31:24]	Reserved
0x11020046	0x0	R/W	pwm_freq_ctrl3	[23:0]	PWM 2 frequency setting
0x1f02004C				[31:24]	Reserved
0x1102004C	0x0	R/W	pwm_freq_ctrl4	[23:0]	PWM 3 frequency setting
0x1f020050				[31:24]	Reserved
UX11020030	0x0	R/W	pwm_freq_ctrl5	[23:0]	PWM 4 frequency setting

PWM 0-PWM 4 的输出频率的设定, 一共有 24 个 bit 来设置, 以 16MHz 作为计数时钟;

0x1f020054				[31:24]	Reserved
0.00004	0x0	R/W	pwm_freq_duty1	[23:0]	PWM 0 duty setting
0x1f020058				[31:24]	Reserved
0.00000	0x0	R/W	pwm_freq_duty2	[23:0]	PWM 1 duty setting
0x1f02005C				[31:24]	Reserved
0x1102005C	0x0	R/W	pwm_freq_duty3	[23:0]	PWM 2 duty setting
0x1f020060				[31:24]	Reserved
0x11020060	0x0	R/W	pwm_freq_duty4	[23:0]	PWM 3 duty setting
0x1f020064				[31:24]	Reserved
0X11020064	0x0	R/W	pwm_freq_duty5	[23:0]	PWM 4 duty setting

PWM 0-PWM 4 的输出占空比的设定,一共有 24 个 bit 来设置,以 16MHz 作为计数时钟;

6.9 GPIO 功能寄存器

				[23]	P1_6 control 1:adc_sample 0:GPIO
				[22:21]	P1_5 control 11:osc_16m 10:adc done 01:IR 00:GPIO
					P1_4 control 1:PWM4_IO
				[20]	output 0:GPIO
0.44000040	0.454	D 444		[19]	P1_3 control 1:PWM3_IO
0x1f00001C	0x1F4	R/W	top_ctl4		output 0:GPIO
				[18]	P1_2 control 1:PWM2_IO
				[10]	output 0:GPIO
				[17]	P1_1 control 1:PWM1_IO
				[17]	output 0:GPIO
				[16]	P1_0 control 1:PWM0_IO
				[16]	output 0:GPIO

bit 【23】: P1_6 管脚的功能选择: 1, adc 采样信号的输出; 0, GPIO 口功能;

bit【22:21】: P1_5 管脚的功能选择: 11, osc_16m 信号的输出; 10, adc done 信号的输出;

01, IR 红外遥控信号输入; 00, GPIO 口功能;

bit 【20】: P1_4 管脚的功能选择: 1, PWM4_IO 信号的输出; 0, GPIO 口功能;

bit 【19】: P1_3 管脚的功能选择: 1, PWM3_IO 信号的输出; 0, GPIO 口功能;

bit 【18】: P1_2 管脚的功能选择: 1, PWM2_IO 信号的输出; 0, GPIO 口功能;

bit【17】: P1_1 管脚的功能选择: 1, PWM1_IO 信号的输出; 0, GPIO 口功能;

bit【16】: P1_0 管脚的功能选择: 1, PWM0_IO 信号的输出; 0, GPIO 口功能;

				[13:12]	PWM4_IO output select 10:io_value 11:io_value inv 0x:PWM4
				[11:10]	PWM3_IO output select 10:io_value 11:io_value inv 0x:PWM3
0x1f000020	0x0	R/W	top_ctl5	[9:8]	PWM2_IO output select 10:io_value 11:io_value inv 0x:PWM2
		[7:6]	PWM1_IO output select 10:io_value 11:io_value inv 0x:PWM1		
				[5:4]	PWM0_IO output select 10:io_value 11:io_value inv 0x:PWM0

bit【13:12】: PWM4_IO 输出功能选择: 10, 目标检测触发信号信号高电平输出; 11, 目标检测触发信号信号低电平输出; 0x, PWM4 功能输出;

bit【11: 10】: PWM4_IO 输出功能选择: 10, 目标检测触发信号信号高电平输出; 11, 目标检测触发信号信号低电平输出; 0x, PWM4 功能输出;

bit 【9:8】: PWM4_IO 输出功能选择: 10, 目标检测触发信号信号高电平输出; 11, 目标检测触发信号信号低电平输出; 0x, PWM4 功能输出;

bit【7:6】: PWM4_IO 输出功能选择: 10, 目标检测触发信号信号高电平输出; 11, 目标检测触发信号信号低电平输出; 0x, PWM4 功能输出;

bit【5:4】: PWM4_IO 输出功能选择: 10, 目标检测触发信号信号高电平输出; 11, 目标检测触发信号信号低电平输出; 0x, PWM4 功能输出;

0x1f0000C0				[31:8]	Reserved
	0x0	R/W	gpio_out	[7:0]	write:p1_out read:p1_in

bit【7: 0】: GPIO P1_0-P1_7 输入输出时的数据, 1 为输出或输入高电平; 0 为输出或输入 低电平;

0x1f0000C4				[31:24]	Reserved
	0xFF	R/W	gpio_oen	[7:0]	p1_oen

bit 【7:0】: GPIO P1_0-P1_7 输出使能设置, 1 为输入使能, 作为输入模式; 0 为输出使能, 作为输出模式;

7 参考设计

