1 Type System

The type system is based on an extension of the ML type system with (multi-parameter) type classes and type constructors with monomorphic type kinds.

This is extended by adding a limited form of subtyping. In the new type system, the types are a result of the traditional typing together with added subtype dimensions and their subtype constraints.

Definition 1 (Typing dimension). The typing dimension is a semilattice with type unification serving as the meet operation.

Definition 2 (Subtype dimension). The subtype dimension \mathbb{S} is required to be a bounded lattice independent on the type-inferred program. We then define a transitive and reflective binary relation on types $\leq_S (\tau \leq_S \sigma \iff \tau_S \land \sigma_S = \tau_S \text{ and } \tau_S \lor \sigma_S = \sigma_S, \text{ where } \tau_S \text{ and } \sigma_S \text{ are the types' respective subtype dimensions) which states that one type is less general in the given dimension than another type.$

We extend this definition to other comparison operators as well. Note that $\tau =_S \sigma \not\Rightarrow \tau = \sigma$, but indeed $\tau = \sigma \Rightarrow \tau =_S \sigma$.

We use the operator \leq_S as a type constraint and we allow one of the operands be an element of \mathbb{S} .

In the type system specific to this thesis, we use two subtype dimensions: data kinds \mathbb{K} and constnesses \mathbb{C} .

Observation 1 (Subtype dimension constraint combining). If a type τ is upper-bounded in a subtype dimension by multiple upperbounds: $\tau \leq_S s_1$, $\tau \leq_S s_2$, then we can replace such constraints with a single $\tau \leq_S (s_1 \wedge s_2)$. Similarly for lowerbounds and the join operation.

Note that given multiple upperbounds and lowerbounds, the set of viable types can be empty.

Definition 3 (Types). Let $\mathbb{S}_1, \ldots \mathbb{S}_n$ be all subtype dimensions recognized by the system. Then for two types τ, σ with the same typing: $\tau = \sigma \iff \forall i \in \{1, \ldots n\}, \tau =_{S_n} \sigma$.

We then formally define types as a composition of their dimensions: $\tau = \tau_T + \tau_{S_1} + \cdots + \tau_{S_n}$, where τ_T is the typing of τ .

Definition 4 (Type variables). \mathbb{V} is the space of type variables given as follows, each (sub)type considered by the inference algorithm will be assigned a type variable representing it: $\mathbb{V} \Rightarrow v$ $\mid \mathbb{V}'$

The variables follow the obvious lexical ordering (based on their length), we use this ordering when choosing fresh variables.

Definition 5 (Typings). \mathbb{T} is the space of typings given as follows, they specify that a type follows the same typing as a different type:

$$\begin{array}{ccc} \mathbb{T} \Rightarrow & \text{Typing} \\ \mathbb{V} & \text{Variable} \\ [\mathbb{T}] \to \mathbb{T} & \text{Function} \\ | [\mathbb{T}] & \text{Tuple} \\ | \mathbb{T} \mathbb{T} & \text{Application} \end{array}$$

Definition 6 (Types). Types use the same language as typings and thus the space \mathbb{T} is considered the space of types as well as the space of typings.