Factorial Treatment Stuctures

Definition 1. Consider an experiment involving n factors where factor A_1 has a_1 possibilities, factor A_2 has a_2 possibilities, ..., and factor A_n has a_n possibilities. Such an experiment is called a $a_1 \times a_2 \times ... \times a_n$ factorial experiment.

2ⁿ Factorial Treatment Stuctures

Definition 2. Consider an experiment involving n factors where each factor has two possibilities. Such an experiment is called a $2 \times 2 \times ... \times 2 = 2^n$ experiment.

Examples.

 2×3 2 factors

2² 2 factors

2⁴ 4 factors

 $2^3 \times 3^2$ 5 factors

 $2 \times 3 \times 5$ 3 factors

 $2^3 \times 3 \times 5$ 5 factors

Factors for torque experiment.

Table 1 Factor-Level Combinations for Torque Study

Combination	Shaft	Sleeve	Lubricant
Number	Alloy	Metal	Type
1	Steel	Porous	Lub 1
2	Steel	Porous	Lub 2
3	Steel	Porous	Lub 3
4	Steel	Porous	Lub 4
5	Steel	Nonporous	Lub 1
6	Steel	Nonporous	Lub 2
7	Steel	Nonporous	Lub 3
8	Steel	Nonporous	Lub 4
9	Aluminum	Porous	Lub 1
10	Aluminum	Porous	Lub 2
11	Aluminum	Porous	Lub 3
12	Aluminum	Porous	Lub 4
13	Aluminum	Nonporous	Lub 1
14	Aluminum	Nonporous	Lub 2
15	Aluminum	Nonporous	Lub 3
16	Aluminum	Nonporous	Lub 4

Table 2 Randomized Test Sequence for Torque Study

Run	Combination	Shaft	Sleeve	Lubricant
Number	Number	Alloy	Metal	Type
1	8	Steel	Nonporous	Lub 4
2	13	Aluminum	Nonporous	Lub 1
3	4	Steel	Porous	Lub 4
4	7	Steel	Nonporous	Lub 3
5	5	Steel	Nonporous	Lub 1
6	1	Steel	Porous	Lub 1
7	11	Aluminum	Porous	Lub 3
8	15	Aluminum	Nonporous	Lub 3
9	9	Aluminum	Porous	Lub 1
10	3	Steel	Porous	Lub 3
11	12	Aluminum	Porous	Lub4
12	10	Aluminum	Porous	Lub 2
13	6	Steel	Nonporous	Lub 2
14	14	Aluminum	Nonporous	Lub 2
15	16	Aluminum	Nonporous	Lub 4
16	2	Steel	Porous	Lub 2

Run	Combination	Shaft	Sleeve	Lubricant
Number	Number	Alloy	Metal	Туре
1	4	Steel	Porous	Lub 4
2	2	Steel	Porous	Lub 2
3	7	Steel	Nonporous	Lub 3
4	16	Aluminum	Nonporous	Lub 4
5	10	Aluminum	Porous	Lub 2
6	4	Steel	Porous	Lub 4
7	11	Aluminum	Porous	Lub 3
8	12	Aluminum	Porous	Lub 4
9	8	Steel	Nonporous	Lub 4
10	16	Aluminum	Nonporous	Lub 4
11	7	Steel	Nonporous	Lub 3
12	8	Steel	Nonporous	Lub 4
13	12	Aluminum	Porous	Lub 4
14	3	Steel	Porous	Lub 3
15	5	Steel	Nonporous	Lub 1
16	11	Aluminum	Porous	Lub 3
17	5	Steel	Nonporous	Lub 1
18	1	Steel	Porous	Lub 1
19	10	Aluminum	Porous	Lub 1 Lub 2
20	9	Aluminum	Porous	Lub 1
21	1	Steel	Porous	Lub 1
22	9	Aluminum	Porous	Lub 1
23	15	Aluminum	Nonporous	Lub 3
24	15	Aluminum	Nonporous	Lub 3
25	6	Steel	Nonporous	Lub 2
26	13	Aluminum	Nonporous	Lub 1
27	13	Aluminum	Nonporous	Lub 1
28	6	Steel	Nonporous	Lub 2
29	3	Steel	Porous	Lub 3
30	14	Aluminum	Nonporous	Lub 2
31	2	Steel	Porous	Lub 2
32	14	Aluminum	Nonporous	Lub 2

Advantages of 2^n Experiments

- Great for exploratory purposes
- Allow researchers to consider large numbers of factors in a single experiment
- Much more efficient to study all factors that might influence a process simultaneously than it is to study each factor one-at-a-time
- Allow researchers to identify the factors that are likely to have the biggest impact on a process

Disadvantages of 2^n Experiments

- Usually require some follow-up experiments in order to fine-tune the resulting models
- May require more test runs than one can afford to do

2ⁿ Experiments (Notation)

Consider a 2^3 experiment that involves the factors A, B, & C.

Treatment Design

		0		
_	\boldsymbol{A}	В	$\boldsymbol{\mathcal{C}}$	
	Low	Low	Low	
	High	Low	Low	
	Low	High	Low	
	High	High	Low	
	Low	Low	High	
	High	Low	High	
	Low	High	High	
	High	High	High	S

2ⁿ Experiments (Notation) **Treatment Design**

	\boldsymbol{A}	В	C	Expected Response
	Low	Low	Low	$\mu_{\scriptscriptstyle 000}$
	High	Low	Low	$\mu_{\scriptscriptstyle 100}$
	Low	High	Low	$\mu_{\scriptscriptstyle 010}$
	High	High	Low	$\mu_{_{110}}$
	Low	Low	High	$\mu_{\scriptscriptstyle 001}$
	High	Low	High	$\mu_{_{101}}$
	Low	High	High	$\mu_{\scriptscriptstyle 011}$
,	High	High	High	μ_{111}

	11 catility			
A	В	C	Expected Response (1)	Expected Response (2)
Low	Low	Low	$\mu_{\scriptscriptstyle 000}$	(1)
High	Low	Low	$\mu_{\scriptscriptstyle 100}$	a
Low	High	Low	$\mu_{\scriptscriptstyle 010}$	b
High	High	Low	$\mu_{{}_{110}}$	ab
Low	Low	High	$\mu_{\scriptscriptstyle 001}$	c
High	Low	High	$\mu_{\scriptscriptstyle 101}$	ac
Low	High	High	$\mu_{\scriptscriptstyle 011}$	bc
High	High	High	$\mu_{\scriptscriptstyle{111}}$	abc

2^n Experiments (Other Forms)

Treatment Design

\boldsymbol{C}	\boldsymbol{B}	$oldsymbol{A}$
-	-	-
-	-	+
_	+	-
_	+	+
+	-	-
+	-	+
+	+	-
+	+	+

2^n Experiments (Other Forms)

Treatment Design

A	В	<i>C</i>	
-1	-1	-1	
+1	-1	-1	
-1	+1	-1	
+1	+1	-1	
-1	-1	+1	
+1	-1	+1	
-1	+1	+1	
+1	+1	+1	

2^n Experiments (Other Forms)

Treatment Design

A	В	\boldsymbol{C}	
0	0	0	
1	0	0	
0	1	0	
1	1	0	
0	0	1	
1	0	1	
0	1	1	
1	1	1	

Factorial Effects

Consider a 2^2 factorial experiment with factors A and B.

A B Expected response

0 0

 $(1) = \mu_{00}$

1 0

 $a = \mu_{10}$

0 1

 $b = \mu_{01}$

1 1

 $ab = \mu_{11}$

The Main Effect of A is defined by:

$$A = [-(1) + a - b + ab]/2$$
 and/or
$$A = \left[-\mu_{00} + \mu_{10} - \mu_{01} + \mu_{11} \right]/2$$

The Main Effect of B is defined by:

$$B = [-(1) - a + b + ab]/2$$
 and/or
$$B = \left[-\mu_{00} - \mu_{10} + \mu_{01} + \mu_{11}\right]/2$$

The Interaction between A and B is defined by:

$$A*B = [(1) - a - b + ab]/2$$
 and/or
$$A*B = \left[\mu_{00} - \mu_{10} - \mu_{01} + \mu_{11} \right]/2$$

A Numerical Example

Treatme	Treatment Design			
		Observed		
Α	В	Response		
0	0	70		
1	0	73		
0	1	58		
1	1	62		

A Numerical Example

Treatment Design					
		Observed	Α	В	A*B
Α	В	Response	Contrast	Contrast	Contrast
0	0	70	-	-	+
1	0	73	+	-	-
0	1	58	-	+	-
1	1	62	+	+	+

A Numerical Example

Treatment Design					
		Observed	Α	В	A*B
Α	В	Response	Contrast	Contrast	Contrast
0	0	70	-	-	+
1	0	73	+	-	-
0	1	58	-	+	-
1	1	62	+	+	+
	Contrast	Value	7	-23	1

A Numerical Example

Treatment	Design				
		Observed	Α	В	A*B
Α	В	Response	Contrast	Contrast	Contrast
0	0	70	-	-	+
1	0	73	+	-	-
0	1	58	-	+	-
1	1	62	+	+	+
	Contrast	Value	7	-23	1
		Effect	3.5	-11.5	0.5

A Second Example

Example 2.						
		Treatment Combination				
	Effect	(1)	а	b	ab	
	Total	+	+	+	+	
	Α	-	+	-	+	
	В	-	-	+	+	
	A*B	+	-	-	+	
	у	50	62	44	58	

A Second Example

Example 2							
		Treatment Combination				Contrast	
	Effect	(1)	а	b	ab	Value	
	Total	+	+	+	+	214	
	Α	-	+	-	+	26	
	В	-	-	+	+	-10	
	A*B	+	-	-	+	2	
	у	50	62	44	58		

A Second Example

Example 2							
		Treatment Combination				Contrast	Estimated
	Effect	(1)	а	b	ab	Value	Effect
	Total	+	+	+	+	214	53.5
	Α	-	+	-	+	26	13
	В	-	-	+	+	-10	-5
	A*B	+	-	-	+	2	1
	у	50	62	44	58		

You can now do Assignment 1, please e-mail it to me when you are finished.