Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Разработка средства визуализации и мониторинга криминального контента из туманной вычислительной среды

Выполнила: Рослова Лариса Сергеевна, гр. 9304

Руководитель: Первицкий Александр Юрьевич, к.т.н., доцент

Консультант: Субботин Алексей Николаевич, ГУП "Петербургский

метрополитен"

Санкт-Петербург, 2023

Цель и задачи

Актуальность:

- Количество контента в сети растёт с каждой минутой
- Нехватка человеческого ресурса и человеческий фактор
- Отсутствие доступных аналогов

Цель: разработать расширение для браузера, анализирующего изображения с веб-ресурсов на содержание криминальных элементов (наркотики, оружие, порнография и алкоголь) с применением средств машинного обучения и туманных вычислений.

Задачи:

- Обзор моделей машинного обучения
- Выбор метода обучения модели
- Проектирование архитектуры системы
- Интеграция с облачными технологиями

Задача 1. Обзор моделей машинного обучения

Модель	Размер (мб)	Топ-1 точность (%)	Топ-5 точность (%)	Пара- метры (млн)	Время вывода на СРU (мс)	Время вывода на GPU (мс)
VGG16	528	71.3	90.1	138.4	69.5	4.2
InseptionV3	92	77.9	93.7	23.9	42.2	6.9
ResNet50	98	74.9	92.1	25.6	58.2	4.6
MobileNetV2	14	71.3	90.1	3.5	25.9	3.8
EfficientNet	220	85.3	97.4	54.4	1578.9	61.6

Задача 2. Выбор метода обучения модели

Модель- EfficientNet, свёрточная нейронная сеть на основе составного масштабирования.

Задача – классифицировать изображения в категориях:

- Алкоголь
- Наркотики
- Порнография
- Оружие
- Некриминальное изображение

Датасеты:

Название	Кол-во изображений		
Weapons in Images	4000		
Weapon Detection Dataset	1000		
Pharmaceutical Drugs and Vitamins Synthetic Images	10000		
Alcohol Bottle Images Glass Bottles	141		

Задача 2. Выбор метода обучения модели

Было принято решение собрать свой набор изображений по следующим причинам:

- Необходимо наличие всех категорий в одном наборе
- Количество изображений к группах должно быть равным
- Изображения в категории не должны быть узконаправленными

Для этого был написан скрипт на Python с применением возможностей Selenium.

Затем полученный датасет был использован для трансферного обучения модели EfficientNet.

Результат: на собранном датасете нейронная сеть показала точность в **92%** успешности классификации на тестовых данных.

Задача 3. Проектирование архитектуры системы

Задача 4. Интеграция с облачными технологиями

С самой дорогой конфигурацией вычислительных мощностей можно уменьшить задержки в 10 раз по сравнению с персональным компьютером.

Заключение

- Были изучены технологии машинного обучения для анализа изображений.
- На основе сравнения была выбрана и обучена нейросеть EfficientNet, которая показала 92% точности определения криминального контента на изображениях.
- Спроектирована архитектура расширения для браузера, анализируещего изображения на криминальное содержание.
- Тестирование и оптимизация работы продукта показали, что при использовании мощных конфигураций облачных сервисов можно добиться ускорения анализа контента в 10 раз.

Заключение

Способы развития продукта:

- Будет полезным внедрить возможности анализа текстового контента и мониторинг нескольких изображений за единицу времени.
- Улучшение точности и производительности.
- Расширение поддерживаемых платформ и браузеров.
- Улучшение пользовательского интерфейса.
- Регулярное обновление моделей машинного обучения и базы данных негативного контента поможет улучшить работу расширения и его способность обнаруживать новые типы негативного содержания.

Апробация работы

Исходный код разработанного продукта доступен на GitHub: https://github.com/LRoslova/criminalContent_monitor

В описании репозитория есть подробная инструкция по установке и работе программы.

Запасные слайды

Параметры тестирования

Используемые вычислительные мощности:

- Acer Aspire E5-573, ОЗУ 8 Гб, СРU 4
- Облако на платформе Yandex, ОЗУ 20 Гб, СРU 20
- Облако на платформе Yandex, ОЗУ 12 Гб, СРU 14
- Платформа Google Colab ОЗУ 12.7, GPU Т4

Интерфейс расширения

