2. Редици от реални числа. Сходящи редици. Основни свойства на сходящите редици. Редици, клонящи към безкрайност

Редици от реални числа — дефиниция

Дефиниция 1

<u>Безкрайна редици от реални числа</u> или, накратко, <u>редица</u> наричаме всяко съответствие, което на всяко естествено число съпоставя някое реално число.

Ако на 1 се съпоставя $a_1 \in \mathbb{R}$, на 2 се съпоставя $a_2 \in \mathbb{R}$, на 3 се съпоставя $a_3 \in \mathbb{R}$ и изобщо на $n \in \mathbb{N}$ се съпоставя $a_n \in \mathbb{R}$, то накратко редицата се обозначава по следните два начина:

$$a_1, a_2, a_3, \dots, a_n, \dots$$
 (1)

или

$$\{a_n\}_{n=1}^{\infty}.\tag{2}$$

Числата a_n , където $n=1,2,\ldots$, се наричат членове на редицата; a_1 е първи член, a_2 е втори член, изобщо a_n се нарича n-ти член или още общ член на редицата, особено когато той се дава чрез формула, която показва как се определя неговата стойност чрез $n_{\text{одо}}$

Примери

3)
$$1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots$$

- 4) Редицата S_4 , S_8 , S_{16} , ..., S_{2^n} , ... от лица на вписани правилни 2^n -ъгълници в единичния кръг
- 5) Редицата $\{a_0.\overline{a_1}a_2...a_n\}_{n=1}^{\infty}$ от крайни десетични дроби, чиито членове са все по-близо до дадена точка върху права, отговаряща на ирационално число (Тема 1)

Ограничени редици

Дефиниция 2

Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ е:

- (а) <u>ограничена отгоре</u>, ако множеството от нейните членове $\{a_n:n\in\mathbb{N}\}$ е ограничено отгоре, т.е. ако съществува $c_1\in\mathbb{R}$ такова, че $a_n\leq c_1$ за всяко $n\in\mathbb{N}$. Всяко реално число c_1 с това свойство се нарича горна граница на редицата.
- (б) <u>ограничена отдолу,</u> ако множеството от нейните членове $\{a_n:n\in\mathbb{N}\}$ е ограничено отдолу, т.е. ако съществува $c_2\in\mathbb{R}$ такова, че $a_n\geq c_2$ за всяко $n\in\mathbb{N}$. Всяко реално число c_2 с това свойство се нарича долна граница на редицата.
- (в) ограничена, ако множеството от нейните членове $\{a_n: n \in \mathbb{N}\}$ е ограничено, т.е. ако съществуват $c_1, c_2 \in \mathbb{R}$ такива, че $c_2 \leq a_n \leq c_1$ за всяко $n \in \mathbb{N}$ или, еквиваленто, съществува $c \in \mathbb{R}$ такова, че $|a_n| \leq c$ за всяко $n \in \mathbb{N}$. С други думи, една редица е ограничена точно тогава, когато всичките ѝ членове попадат в някакъв краен интервал.

Сходящи редици. Граница на редица

Дефиниция 3

Казваме, че редицата $\{a_n\}_{n=1}^\infty$ е <u>сходяща</u> и $\ell \in \mathbb{R}$ е нейна <u>граница,</u> ако

$$orall arepsilon > 0$$
 $\exists
u \in \mathbb{R}: \quad |a_n - \ell| < arepsilon$ за всяко $n >
u.$

В такъв случай пишем $\lim a_n = \ell$ или още $a_n \longrightarrow \ell$. Още казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ клони към ℓ .

Редица, която не е сходяща, наричаме разходяща.

Геометрична интерпретация:

Бележка

Околност на реалното число ℓ наричаме всеки краен (отворен) интервал с център/среда ℓ и ненулева дължина.

Свойството, въведено в Дефиниция 3, може да се изкаже еквивалентно и по следния начин:

Редицата $\{a_n\}_{n=1}^{\infty}$ е сходяща и $\ell \in \mathbb{R}$ е нейна граница точно тогава, когато каквато и околност на ℓ да вземем (колкото и малка да е тя) всички членове на редицата от някое място нататък, т.е. от някой номер нататък, попадат в нея (което от своя страна се случва точно тогава, когато извън околността остават само краен брой членове).

Геометрична интерпретация:

Пример

Разглеждаме редицата

$$1,\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{n},\ldots$$

Ще докажем, че $\lim \frac{1}{n} = 0$.

Нека $\varepsilon>0$ е произволно. Ще покажем, че съществува $\nu\in\mathbb{R}$ такова, че ако $n>\nu$, то $\left|\frac{1}{n}-0\right|<\varepsilon$, т.е. $\frac{1}{n}<\varepsilon$.

Имаме

$$\frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}; \tag{3}$$

следователно можем да вземем $\nu:=rac{1}{arepsilon}.$

Основни свойства на сходящите редици

Твърдение 1

Всяка редица може да има най-много една граница, т.е. всяка сходяща редица има точно една граница.

Д-во: за самостоятелно упражнение (чрез допускане на противното и достигане до противоречие).

Твърдение 2

Ако премахнем краен брой членове на сходяща редица или добавим краен брой членове към нея, тя остава сходяща към същата граница.

Д-во: за самостоятелно упражнение (чрез Дефиниция 3 и по-точно бележката след нея).

Твърдение 3

Всяка сходяща редица е ограничена.

Бележка

Съществуват ограничени редици, които не са сходящи. Например, $0,1,0,1,\ldots,0,1,\ldots$

Д-во на Тв. 3: Нека $\{a_n\}_{n=1}^{\infty}$ е сходяща. Да означим с $\ell \in \mathbb{R}$ нейната граница. Тогава, каквото и $\varepsilon > 0$ да фиксираме (за целите на доказателството можем да вземем например $\varepsilon = 1$), от някой номер нататък всички членове на редицата попадат в интервала $(\ell - \varepsilon, \ell + \varepsilon)$. Следователно извън този интервал остават само краен брой членове на редицата. Ако те са поне един, то сред тях има най-малък и най-голям. Следователно съществува краен интервал, който съдържа всички членове на редицата, а това означава, че тя е ограничена.

Сума, разлика, произведение и частно на сходящи редици

Теорема 1

Нека $\{a_n\}_{n=1}^\infty$ и $\{b_n\}_{n=1}^\infty$ са две сходящи редици. Тогава:

- (a) $\{a_n+b_n\}_{n=1}^\infty$ е също сходяща, като $\lim(a_n+b_n)=\lim a_n+\lim b_n;$
- (б) $\{a_n.b_n\}_{n=1}^{\infty}$ е също сходяща, като $\lim(a_n.b_n)=(\lim a_n).(\lim b_n);$
- (в) $\left\{\frac{a_n}{b_n}\right\}_{n=1}^{\infty}$ е също сходяща, като $\lim \frac{a_n}{b_n} = \frac{\lim a_n}{\lim b_n}$, стига $b_n \neq 0$ за всяко n и $\lim b_n \neq 0$.

Следствие

От (а) и (б) следва и че $\{a_n - b_n\}_{n=1}^{\infty}$ е също сходяща, като $\lim (a_n - b_n) = \lim a_n - \lim b_n$.

Доказателство на Теорема 1

(а) Нека $a:=\lim a_n$ и $b:=\lim b_n$. Ще покажем, че можем да направим $|(a_n+b_n)-(a+b)|$ колкото искаме малко за всички достатъчно големи n. Оттук ще следва, че $\{a_n+b_n\}_{n=1}^\infty$ е сходяща и границата ѝ е a+b. Използваме, че

$$|(a_n+b_n)-(a+b)|=|(a_n-a)+(b_n-b)|\leq |a_n-a|+|b_n-b|.$$
 (4)

Понеже $\lim a_n = a$, то можем да направим $|a_n - a|$ колкото искаме малко за всички достатъчно големи n; аналогично и $|b_n - b|$. По-подробно, нека $\varepsilon > 0$ е произволно фиксирано. Тогава

$$\lim a_n = a \implies \exists \nu_1 \in \mathbb{R} : |a_n - a| < \varepsilon$$
 за всяко $n > \nu_1$, (5)

$$\lim b_n = b \implies \exists \nu_2 \in \mathbb{R} : |b_n - b| < \varepsilon$$
 за всяко $n > \nu_2$. (6)

Да положим $\nu:=\max\{\nu_1,\nu_2\}$. Тогава при $n>\nu$, благодарение на (4)-(6), имаме

$$|(a_n+b_n)-(a+b)|<2\varepsilon, \tag{7}$$

което показва, че можем да направим $|(a_n+b_n)-(a+b)|$ колкото искаме малко за всички достатъчно големи n_{n}

(б) Използваме въведените в (а) означения.

Тук трябва да покажем, че можем да направим $|a_nb_n-ab|$ колкото искаме малко за всички достатъчно големи n.

Използваме, че

$$|a_{n}b_{n}-ab| = |(a_{n}-a)b_{n}+a(b_{n}-b)|$$

$$\leq \underbrace{|b_{n}|}_{\text{Tb. }3} .|a_{n}-a|+|a|.|b_{n}-b|.$$

$$\leq c \forall n$$
(8)

Тогава при $n > \nu$, благодарение на (8), (5) и (6), получаваме

$$|a_nb_n - ab| < c\varepsilon + |a|\varepsilon = (c + |a|)\varepsilon.$$
 (9)

(в) остава за самостоятелно упражнение.

Неравенства между сходящи редици

Теорема 2

Нека $\{a_n\}_{n=1}^{\infty}$ и $\{b_n\}_{n=1}^{\infty}$ са две сходящи редици и $a_n \leq b_n$ за всяко n. Тогава $\lim a_n \leq \lim b_n$.

Д-во: Нека $a:=\lim a_n$ и $b:=\lim b_n$. Допускаме противното: b< a. Да фиксираме $\varepsilon>0$ толкова малко, че $b+\varepsilon\leq a-\varepsilon$.

Тогава

$$\lim a_n = a \implies \exists \nu_1 \in \mathbb{R} : |a_n - a| < \varepsilon$$
 за всяко $n > \nu_1$, (10) $\lim b_n = b \implies \exists \nu_2 \in \mathbb{R} : |b_n - b| < \varepsilon$ за всяко $n > \nu_2$. (11)

Да вземем едно $n_0 \in \mathbb{N}$ такова, че $n_0 > \nu_{1,2}$. Тогава

$$b_{n_0} \stackrel{(11)}{<} b + \varepsilon \leq a - \varepsilon \stackrel{(10)}{<} a_{n_0},$$
 (12)

което противоречи на $a_{n_0} \leq b_{n_0}$.

ㅁㅏ 《畵ㅏ 《돌ㅏ 《돌ㅏ 그들

Неравенства между сходящи редици

Теорема 3

Нека редиците $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ и $\{c_n\}_{n=1}^{\infty}$ удовлетворяват условията:

- (i) $a_n \le c_n \le b_n$ за всяко n;
- (ii) $\{a_n\}_{n=1}^\infty$ и $\{b_n\}_{n=1}^\infty$ са сходящи, като $\lim a_n = \lim b_n = \ell$.

Тогава $\{c_n\}_{n=1}^{\infty}$ също е сходяща и $\lim c_n = \ell$.

Геометрична интерпретация:

Доказателство на Теорема 3

Нека $\varepsilon > 0$ е произволно фиксирано. Тогава

$$\lim a_n = \ell \implies \exists \nu_1 \in \mathbb{R} : |a_n - \ell| < \varepsilon$$
 за всяко $n > \nu_1$, (13) $\lim b_n = \ell \implies \exists \nu_2 \in \mathbb{R} : |b_n - \ell| < \varepsilon$ за всяко $n > \nu_2$. (14)

Да положим $\nu:=\max\{\nu_1,\nu_2\}$. Тогава при $n>\nu$, благодарение на (i) и (13)-(14), имаме

$$\ell - \varepsilon \stackrel{\text{(13)}}{<} \mathbf{a}_n \stackrel{\text{(i)}}{\leq} \mathbf{c}_n \stackrel{\text{(i)}}{\leq} \mathbf{b}_n \stackrel{\text{(14)}}{<} \ell + \varepsilon. \tag{15}$$

Следователно

$$|\boldsymbol{c}_{\boldsymbol{n}} - \ell| < \varepsilon$$
 за всяко $\boldsymbol{n} > \nu$, (16)

което според дефиницията за сходмост на редица означава, че $\{c_n\}_{n=1}^{\infty}$ е сходяща и $\lim c_n = \ell$.

Следствие

Ako $|c_n - \ell| \le b_n \longrightarrow 0$, to $c_n \longrightarrow \ell$.

Редици, клонящи към безкрайност

Дефиниция 4

Казваме, че редицата $\{a_n\}_{n=1}^\infty$ клони към $+\infty$, ако

$$\forall A \in \mathbb{R} \quad \exists \nu \in \mathbb{R} : \quad a_n > A \quad$$
за всяко $\quad n > \nu$.

Пишем
$$\lim a_n = +\infty$$
 или $a_n \longrightarrow +\infty$.

Пример: $1, 2, 3, \ldots, n, \ldots$

Дефиниция 5

Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ клони към $-\infty$, ако

$$\forall B \in \mathbb{R} \quad \exists \nu \in \mathbb{R} : \quad a_n < B \quad$$
за всяко $n > \nu$.

Пишем $\lim a_n = -\infty$ или $a_n \longrightarrow -\infty$.

Твърдение 4

Нека $\{a_n\}$ е редица. Тогава:

- (a) ако $\lim a_n = 0$ и $a_n > 0$, $n \in \mathbb{N}$, то $\lim \frac{1}{a_n} = +\infty$;
- (б) ако $\lim a_n = +\infty$ и $a_n > 0, \ n \in \mathbb{N}, \ \mathrm{To} \ \lim \frac{1}{a_n} = 0.$