Use Gauss-Jordan Elimination (Augmented Matrix) to solve the following systems of equations

$\int x + y = 5$	(3,2,-1)
$\begin{cases} -2x - y + 2z = -10 \end{cases}$	
3x + 6y + 7z = 14	
$\int x + 2y - z = 3$	(-4,3,-1)
$\begin{cases} 3x + 7y - 5z = 14 \end{cases}$	
$\left \begin{array}{c} -2x - y - 3z = 8 \end{array} \right $	
$\int x - y - z = 1$	$(4-5a,3-6a,a), a \in \Re$
$\begin{cases} 5x - 4y + z = 8 \end{cases}$	
-6x + 8y + 18z = 0	
$\int x - 3y = -7$	$(-3a-1,2-a,a), a \in \Re$
$\begin{cases} -3x + 10y + z = 23 \end{cases}$	
4x - 10y + 2z = -24	
$\int -x - 2y + 3z = -2$	(1, 2, 1)
$\begin{cases} 2x - 5y + z = -7 \end{cases}$	
$\int 5x + 4y - 7z = 6$	
$\int -y - 5z = 5$	(1,0,-1)
$\left\{ -x + 3y - 7z = 6 \right\}$	
4x - 5y + z = 3	
$\int x + 10y - 2z = 2$	$\left(\frac{98}{27}, -\frac{34}{27}, -\frac{148}{27}\right)$
$\begin{cases} 5x - 3y + 4z = 0 \end{cases}$	(27' 27' 27)
2x + y = 6	