

AUTONOMOUS SPOT NAVIGATION SYSTEM

Tech Zephyr 3.0 - IIT Bhubaneswar

Aman Jaiswal

Team DeepLearners | Solo Participant

October 26, 2025

PRESENTATION OVERVIEW

- ✓ Problem Statement & Objectives
- ✓ System Architecture
- ✓ Algorithm Design
- ✓ Technical Implementation
- ✓ Key Features & Innovations

- √ Results & Performance
- ✓ Live Demonstration
- √ Challenges & Solutions
- √ Future Enhancements
- ✓ Conclusion

© CHALLENGE: AUTONOMOUS NAVIGATION

OBJECTIVE:

Develop autonomous navigation system for Spot robot to complete sequential waypoint navigation (A \rightarrow B \rightarrow C \rightarrow D)

REQUIREMENTS:

- Sequential waypoint completion
- Real-time obstacle detection
- Collision-free navigation
- Autonomous recovery
- ROS2 Humble + Gazebo platform

CONSTRAINTS:

- √ No GPS/external positioning
- Dynamic obstacle avoidance
- ✓ Zero collision tolerance
- √ Fast completion time

HIGH-LEVEL ARCHITECTURE

ROS2 Humble

Control Framework

Gazebo Ignition
Simulation

Python 3.10 Implementation

GPU LiDAR Sensing

FINITE STATE MACHINE DESIGN

SYSTEM SPECIFICATIONS

NAVIGATION PARAMETERS:

Parameter	Value
Max Linear Speed	1.5 m/s
Min Linear Speed	0.15 m/s
Angular Speed	1.5 rad/s
Control Frequency	20 Hz
Waypoint Tolerance	±0.35 m
Safe Distance	0.6 m
Warning Distance	1.2 m

SENSOR CONFIG:

Type: GPU LiDAR

Range: 0.1 - 10 meters

Samples: 720 (360° coverage)

Update Rate: 10 Hz

Zones: Front, Left, Right

ROBOT SPECS:

Platform: Differential Drive

Mass: 20 kg

Dimensions: 0.8×0.4×0.3 m Wheel Separation: 0.4 m

HONOR OF THE STATUS

1. ADAPTIVE SPEED CONTROL

Dynamic velocity adjustment • Distance-based speed scaling Formula: $v = v_{min} + (d-d_{safe})/(d_{warn}-d_{safe}) \times (v_{max}-v_{min})$

2. MULTI-ZONE OBSTACLE DETECTION

Front Zone: 45%-55% (primary) • Left Zone: 20%-35% • Right Zone: 65%-80%

3. INTELLIGENT RECOVERY SYSTEM

Stuck detection: < 0.05m in 2s • Recovery: Reverse 0.3 m/s + Rotate 1.0 rad/s

4. PROPORTIONAL CONTROL

Smooth trajectory • Gain: 2.5× heading error • Clamped: ±1.5 rad/s

5. ZERO COLLISION

Safe buffer: 0.6m • Warning zone: 1.2m • Fail-safe recovery

CODE IMPLEMENTATION

ARCHITECTURE:

```
tech_zephyr_final/ -- src/spot_navigation/ --
spot navigation/ | | --- spot sequential navigator.py |
L— setup.py L— README.md
```

CORE ALGORITHM:

```
class Navigator(Node): - scan cb() → LiDAR processing -
odom cb() \rightarrow Position tracking - get dist() \rightarrow Waypoint
distance - get angle() \rightarrow Heading error - stuck() \rightarrow Stuck
detection - next wp() → Waypoint progression - control()
→ Main loop (20Hz)
```

KEY LIBRARIES:

rclpy ROS2 Python geometry_msgs Twist commands

sensor_msgs LaserScan data

nav_msgs Odometry

COMPETITION RESULTS

100%

Success Rate

Waypoints

Collisions

~25s

Completion

PERFORMANCE METRICS:

Metric	Value
Mission Success Rate	100%
Total Waypoints	4 (A-D)
Average Speed	0.8 m/s
Total Distance	~12 m
Control Stability	Excellent

ACHIEVEMENTS:

- √ 100% Success Rate
- Zero Collision Guarantee
- Robust Obstacle Avoidance
- ✓ Fast Completion Time
- Autonomous Recovery
- ✓ Production-Ready Code

TESTING: 10+ successful runs with various obstacle configurations

CHALLENGES OVERCOME

1. OBSTACLE AVOIDANCE IN TIGHT SPACES

Challenge: Robot getting stuck near corners

Solution: Multi-zone LiDAR detection + Intelligent left/right decision + Safe distance buffers

2. WAYPOINT PRECISION

Challenge: Overshooting waypoints

Solution: Adaptive speed reduction + 0.35m tolerance threshold + Distance-based velocity scaling

3. STUCK SITUATIONS

Challenge: Robot trapped between obstacles

Solution: Automatic stuck detection + Reverse + rotate recovery + 2-second monitoring window

4. SMOOTH TRAJECTORY

Challenge: Jerky angular motion

Solution: Proportional angular control + Velocity clamping + 20Hz control frequency

DEVELOPMENT TIME: 16+ hours | **SOLO IMPLEMENTATION:** All code, testing, debugging

SYSTEM DEMONSTRATION

DEMO HIGHLIGHTS:

- Gazebo simulation environment
- Sequential waypoint navigation $A \rightarrow B \rightarrow C \rightarrow D$
- Real-time obstacle avoidance
- Terminal output showing progress
- Mission completion confirmation

VIDEO FEATURES:

- Clear robot movement visualization
- LiDAR visualization (green rays)
- Waypoint markers (red spheres)
- Smooth autonomous navigation
- Zero collisions demonstrated

Live Demo Video

Complete demonstration of autonomous navigation system with real-time obstacle avoidance and waypoint completion

GitHub Repository

FUTURE WORK & CONCLUSION

PLANNED ENHANCEMENTS:

1. SLAM Integration

Real-time mapping • Unknown environment navigation

2. Machine Learning

Deep reinforcement learning • Adaptive behavior optimization

3. Multi-Robot Coordination

Swarm navigation • Collaborative task completion

4. Real Hardware Deployment

Physical Spot robot testing • ROS2 bridge implementation

5. Advanced Sensors

Camera + LiDAR fusion • IMU integration

CONCLUSION

Successfully developed autonomous navigation system

100% mission success rate achieved

Zero collision guarantee maintained

Production-ready implementation

Complete documentation provided

THANK YOU!

Aman Jaiswal

Team DeepLearners

Solo Participant

Questions?