Лабораторная работа №3

Модель боевых действий

Аникин Константин Сергеевич

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	14
Список литературы		15

Список иллюстраций

4.1	Обычный случай на Julia	8
4.2	Партизанский случай на Julia	9
4.3	Обычный график на Julia	9
4.4	Партизанский график на Julia	0
4.5	Обычный случай на OpenModelica	1
4.6	Партизанский случай на OpenModelica	1
4.7	Обычный график на OpenModelica	2
4.8	Партизанский график на OpenModelica	13

Список таблиц

1 Цель работы

Смоделировать численность войск в военное время на Julia и OpenModelica.

2 Задание

Постройте графики изменения численности войск армии X и армии У для следующих случаев (вариант 6):

- 1. Модель боевых действий между регулярными войсками
- 2. Модель ведение боевых действий с участием регулярных войск и партизанских отрядов

3 Теоретическое введение

Рассмотрим некоторые простейшие модели боевых действий – модели Ланчестера. В противоборстве могут принимать участие как регулярные войска, так и партизанские отряды. В общем случае главной характеристикой соперников являются численности сторон. Если в какой-то момент времени одна из численностей обращается в нуль, то данная сторона считается проигравшей (при условии, что численность другой стороны в данный момент положительна).

В простейшей модели борьбы двух противников коэффициенты bt() и ct() являются постоянными. Попросту говоря, предполагается, что каждый солдат армии х убивает за единицу времени с солдат армии у (и, соответственно, каждый солдат армии у убивает b солдат армии х). Также не учитываются потери, не связанные с боевыми действиями, и возможность подхода подкрепления. Состояние системы описывается точкой (х,у) положительного квадранта плоскости. Координаты этой точки, х и у - это численности противостоящих армий.

Вывод модели таков: для борьбы с вдвое более многочисленным противником нужно в четыре раза более мощное оружие, с втрое более многочисленным - в девять раз и т. д. (на это указывают квадратные корни в уравнении прямой). Стоит помнить, что эта модель сильно идеализирована и неприменима к реальной ситуации. Но может использоваться для начального анализа.

Подробнее о модели Ланчестера см. в [1]

4 Выполнение лабораторной работы

Код программы на Julia представлен на рис. 4.1 и рис. 4.2 для обычного и партизанских случаев соответственно, а также в папке scripts. В программе реализована система уравнений, решаемых ODEProblem. Callback используется для остановки счёта при уничтожении одной из армий.

```
C: > Users > kosty > Desktop > РУДН > Математическое моделирование2 > matmod > labs > 03 > scripts > & reg.jl

1  using DifferentialEquations

2  using Plots

3  function reg(du,u,p,t)

4  du[1] = -0.34u[1]-0.72u[2]+sin(t+10)

5  du[2] = -0.89u[1]-0.43u[2]+cos(t+20)

6  end

7  condition(u,t,integrator) = u[1]

8  cb = ContinuousCallback(condition,terminate!)

9  u0 = [50000.0, 69000.0]

10  tspan = (0.0,10.0)

11  prob = ODEProblem(reg,u0,tspan, callback = cb)

12  sol = solve(prob)

13  plot(sol)
```

Рис. 4.1: Обычный случай на Julia

Рис. 4.2: Партизанский случай на Julia

Рис. 4.3: Обычный график на Julia

Рис. 4.4: Партизанский график на Julia

Код программы на OpenModelica представлен на рис. 4.5 и рис. 4.6 для обычного и партизанских случаев соответственно, а также в папке scripts. Для ранней остановки используется assert.

```
₩ 🖟 🧧 🕦 Writable Model Text View reg C:/Users/kosty/OpenModelica/reg.mo
  1
     model req
  2
        Real x;
  3
        Real y;
  4
     initial equation
  5
        x = 50000;
        y = 69000;
  6
  7
      equation
        assert(x>0, "Stop");
        der(x) = -0.34*x-0.72*y+sin(time+10);
  9
 10
        der(y) = -0.89*x-0.43*y+cos(time+20);
        annotation(experiment(StartTime=0,StopTime=10));
 11
 12
     end reg;
 13
```

Рис. 4.5: Обычный случай на OpenModelica

```
🖷 🚜 🧧 🕦 | Writable | Model | Text View | par | C:/Users/kosty/OpenModelica/par.mo
  1
      model par
  2
        Real x;
  3
       Real y;
  4
      initial equation
  5
        x = 50000;
  6
        y = 69000;
  7
     equation
        assert(y>0, "Stop");
  9
        der(x) = -0.12*x-0.51*y+sin(20*time);
      der(y) = -0.3*x*y-0.61*y+cos(time*13);
 10
 11
        annotation(experiment(StartTime=0,StopTime=10));
 12
      end par;
 13
```

Рис. 4.6: Партизанский случай на OpenModelica

На рис. 4.7 и рис. 4.8 представлены графики обычного и партизанского случаев.

Рис. 4.7: Обычный график на OpenModelica

Рис. 4.8: Партизанский график на OpenModelica

5 Выводы

В ходе работы были реализованы два случая модели боевых действий на двух программных обеспечениях. Математическая составляющая не должна была пострадать, код тоже выглядит приемлемо.

Список литературы

1. Osipov. Влияние Численности Сражающихся Сторонъ На Ихъ Потери. 1915.