

Standard Rectifier

3~ Rectifier				
V_{RRM}	=	1200 V		
I_{DAV}	=	40 A		
I_{FSM}	=	370 A		

3~ Rectifier Bridge

Part number

GUO40-12NO1

Backside: isolated

Features / Advantages:

- Low forward voltage drop
- Planar passivated chips
- Easy to mount with one screw
- Space and weight savings

Applications:

- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: GUFP

- Isolation Voltage: 2500 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Base plate: Plastic overmolded tab
- Reduced weight

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Rectifier					Ratings	S	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	cking voltage	$T_{VJ} = 25^{\circ}C$			1300	V
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1200	V
I _R	reverse current	V _R = 1200 V	$T_{VJ} = 25^{\circ}C$			40	μΑ
		$V_R = 1200 \text{ V}$	$T_{VJ} = 150$ °C			1.5	mΑ
V _F	forward voltage drop	I _F = 10 A	$T_{VJ} = 25^{\circ}C$			1.06	٧
		$I_F = 30 \text{ A}$				1.28	٧
		I _F = 10 A	T _{VJ} = 150 °C			0.92	V
		$I_F = 30 \text{ A}$				1.23	٧
IDAV	bridge output current	T _C = 90°C	$T_{VJ} = 175$ °C			40	Α
		rectangular d = ⅓					
V _{F0}	threshold voltage		T _{vJ} = 175°C			0.74	V
r _F	slope resistance } for power	loss calculation only				16.3	mΩ
R _{thJC}	thermal resistance junction to ca	ase				4.3	K/W
R _{thCH}	thermal resistance case to heats	sink			0.5		K/W
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			35	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			370	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			400	Α
		t = 10 ms; (50 Hz), sine	T _{VJ} = 150°C			315	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			340	Α
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			685	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			665	A²s
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			495	A ² s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			480	A²s
C,	junction capacitance	$V_{R} = 400 \text{ V}; f = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		10		pF

Package	GUFP				F	Ratings	3	
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					70	Α
T _{VJ}	virtual junction temperature				-40		175	°C
T _{op}	operation temperature				-40		150	°C
T _{stg}	storage temperature				-40		150	°C
Weight						8.5		g
M _D	mounting torque				0.8		1.2	Nm
F _c	mounting force with clip				20		120	N
d _{Spp/App}	creepage distance on surface striking di	istance through air	terminal to terminal	6.7	5.4			mm
$d_{Spb/Apb}$	creepage distance on surface striking di	stance through an	terminal to backside	10.0	8.0			mm
V	isolation voltage	t = 1 second	50/0011 5040 1 44 4		2500			٧
		t = 1 minute	50/60 Hz, RMS; IISOL ≤ 1 mA		2100			٧
R _{thJA}	thermal resistance junction to ambient					50		K/W

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	GUO40-12NO1	GUO40-12NO1	Tube	14	514892

Similar Part	Package	Voltage class
DNA40U2200GU	GUFP	2200
DMA40U1800GU	GUFP	1800
GUO40-16NO1	GUFP	1600
GUO40-08NO1	GUFP	800

Equiva	alent Circuits for	Simulation	* on die level	$T_{VJ} = 175^{\circ}C$
$I \rightarrow V_0$	R_0	Rectifier		
V _{0 max}	threshold voltage	0.74		V
R_{0max}	slope resistance *	13.7		$m\Omega$

Outlines GUFP

Dim.	Millimeter		Inches			
DIIII.	min	typ.	max	min	typ.	max
Α	5.40	5.50	5.60	0.213	0.217	0.221
A2	3.90	4.00	4.10	0.154	0.158	0.162
A3	0.95	1.00	1.10	0.037	0.039	0.043
A4	0.95	1.00	1.05	0.037	0.039	0.041
A5	1.60	1.70	1.80	0.063	0.067	0.071
A6	1.25	1.30	1.35	0.049	0.051	0.053
b	0.95	1.00	1.05	0.037	0.039	0.041
b2	1.95	2.00	2.05	0.077	0.079	0.081
С	0.45	0.50	0.55	0.018	0.020	0.022
D	24.80	25.00	25.20	0.977	0.985	0.993
E	34.70	35.00	35.30	1.367	1.379	1.391
е	BSC 7.50		BSC 0.296			
F	2.40	2.50	2.60	0.095	0.099	0.102
L	20.30	20.40	20.50	0.800	0.804	0.808
L1	3.70	3.75	3.80	0.146	0.148	0.150
0	17.40	17.50	17.60	0.686	0.690	0.693
ØΡ	4.10	4.20	4.30	0.162	0.165	0.169
Q	9.20	9.30	9.40	0.362	0.366	0.370
$^{\odot}$ / ₂ R		1.77			0.070	
s1	3.45	3.50	3.55	0.136	0.138	0.140
s2	1.45	1.50	1.55	0.057	0.059	0.061
t1	0.95	1.00	1.05	0.037	0.039	0.041
t2	0.95	1.00	1.05	0.037	0.039	0.041
x1	3.20	3.30	3.40	0.126	0.130	0.134
x2	1.90	2.00	2.10	0.075	0.079	0.083
y1	1.60	1.65	1.70	0.063	0.065	0.067
y2	4.65	4.70	4.75	0.183	0.185	0.187
z1	2.80	2.90	3.00	0.110	0.114	0.118

Rectifier

Fig. 2 Surge overload current vs. time per diode

Fig. 3 I²t vs. time per diode

Fig. 4 Power dissipation vs. forward current and ambient temperature per diode

Fig. 5 Max. forward current vs. case temperature per diode

Fig. 6 Transient thermal impedance junction to case vs. time per diode

Constants for Z_{thJC} calculation:

i	$R_{th}^{}$ (K/W)	t _i (s)
1	0.302	0.002
2	1.252	0.032
3	1.582	0.227
4	1.164	0.820