

Vincent Christlein 11.12.2017 Pattern Recognition Lab (CS 5)

Main references:

http://web.stanford.edu/class/cs231a/

https://sites.google.com/site/lsvr13/home/part-i-features-for-large-scale-visual-recognition

What's visual recognition?

A possible definition: recognizing and identifying the key semantic aspects of a scene from images

Classification

Does this image contain a building? [yes/no]

Detection

Does this image contain a car? [where?]

Detection

Which object does this image contain? [where?]

Detection

Estimating object semantic & geometric attributes

Categorization vs. single instance recognition

Which building is this?

Image search & image grouping

Image retrieval

Visual recognition fields

Computational photography

Assistive technologies

Surveillance / Security

Assistive driving

Industrial machine vision

Other sciences

Visual Recognition

Design algorithms that are capable to

- Classify images or videos
- Detect and localize objects
- Estimate semantic and geometrical attributes
- Classify human activities and events

Why is this challenging?

10k-30k object categories if we only consider super-categories (e.g., a "car") → much larger if fine-grain categories are included (e.g. "SUV")

Challenges: viewpoint variation

Michelangelo 1475-1564

Challenges: illumination

Challenges: scale

Challenges: Deformation

Challenges: Occlusion and Background clutter

Magritte 1957

Kilmeny Niland. 1995

Challenges (realistic examples)

Scale

Occlusion

Lighting

Viewpoint

Challenges: intra-class variation

Machine Learning Pipeline

Classification phase

Global vs. Local Feature Descriptors

Global descriptors (of pixel statistics)

- Color Histogram: high invariance but limited discriminative power (Swain, Ballard, "Color indexing", IJCV'91)
- GIST of a scene:
 - Oliva, Torralba, "Modeling the shape of the scene: a holistic representation of the spatial envelope", IJCV'01.
 - Douze, Jegou, Sandhawalia, Amsaleg, Schmid, "Evaluation of GIST descriptors for web-scale image search", CIVR'09
- CENTRIST: CENsus Transform hISTogram
 - Wu, Rehg, "CENTRIST: a visual descriptor for scene categorization", TPAMI'11.

Highly efficient to compute + match → perfect for large scale visual recognition (LSVR)

But robustness vs informativeness tradeoff is hard to set

Local feature descriptors

Motivation

- Image Stitching
- Calibration
- Stereo Vision
- Tracking
- ...
- Image classification

Sampling strategies

Interest operators

Multiple interest operators

Dense, uniformly

Randomly

Properties of a "good" feature detector

- Repeatability
 - The same feature location can be found in several images despite geometric and photometric transformations
- Saliency
 - Each feature is found at an "interesting" region of the image
- Locality
 - A feature occupies a "relatively small" area of the image

Repeatability

Illumination invariance

Scale invariance

Saliency & locality

Saliency

Locality

Properties of a "good" feature descriptor

Highly dependent on the application, a descriptor must incorporate information that is:

- Invariant w.r.t.:
 - Illumination
 - Pose + Scale (affine transformations)
 - Intraclass variability

 Highly distinctive → allows a single feature to find its correct match with good probability in a large database of features

Feature detection & feature description

- (Edge detectors)
 - Sobel
 - Canny
- Corner detectors
 - Harris
 - FAST
 - AGAST
- Blob detectors
 - DoG (difference of Gaussian)

- SIFT (scale invariant feature transformation)
- SURF (speeded up robust features)
- BRIEF (binary robust independent elementary features)
- ORB (oriented FAST and rotated BRIEF)
- FREAK (fast retina keypoint)
- KAZE
- ...

Note: often no separation between detection and description made

SIFT descriptor (David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), 04)

Location and characteristic scale given by DoG detector

- 2. Gaussian center weighting
- 3. NxN spatial bins
- 4. Compute a histogram h_i of M orientations for each bin
- 5. Concatenate h_i for i=1 to N² to form a 1xMN² vector H
 (Typically: M=8, N=4 → H: 1x128d)
- Normalize to unit norm

Image patch

SIFT properties

Robust w.r.t. small variation in:

- Illumination (thanks to gradient & normalization)
- Pose (small affine variation thanks to orientation histogram)
- Scale (scale is fixed by DoG)
- Intra-class variability (small variations thanks to histograms)

HOG – histogram of oriented gradients

Navneet Dalal and Bill Triggs, "Histograms of Oriented Gradients for Human Detection", CVPR 2005

Like SIFT, but...

- Sampled on a dense, regular grid around the object
- Gradients are contrast normalized in overlapping blocks

Bag of (visual) Words

Direct matching: a retrieval example

Assume an image described by m=1000 descriptors (dimension d=128)

→ n*m=1 billion descriptors to index

Database representation in RAM: ~128 GB with 1 byte per dimension Search: **m**² x n x d elementary operations

→ 10¹⁴ computationally intractable

Bag of words: inspired by works on document analysis

- Early "bag of words" models: mostly texture recognition, e.g.
 Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003;
- Hierarchical Bayesian models for documents (pLSA, LDA, etc.)
 Hoffman 1999; Blei, Ng & Jordan, 2004; Teh, Jordan, Beal & Blei,
 2004

BoW: Analogy to documents

Basis Idea: Represent a document as a *distribution* of words (spatial structure that connects the words is lost)

BoW: main principle

Object / Image

Bag of (visual) 'words'

BoW Example

Independent features

face

bike

violin

BoW Example

- Independent features
- Train codebook (codewords dictionary) / background model
- Encoding: e.g. histogram representation: represent each image as a frequency of codewords

dictionary

Encoding

BoW basic encoding: vector quantization

- Local Feature descriptors $\mathbf{x}_i \in \mathbb{R}^D, i = \{1,...,N\}$
- Run k-means to obtain dictionary $C = \{\mu_1, ... \mu_K\}, \, \mu_i \in \mathbb{R}^D$
- Count number of assigned codewords:

$$s_k = \sum_{i=1}^N \gamma(\mathbf{x}_i), \quad \gamma(x) := \begin{cases} 1 \text{ if } NN(x) = \mu_k & NN(x) = \underset{\mu \in C}{\operatorname{arg min}} ||x - \mu||^2 \\ 0 \text{ else} \end{cases}$$

$$\mathbf{s} = (s_1, ..., s_K)^T \in \mathbb{R}^K$$

- Normalization: l_1, l_2
- Sidenote: Often this simplest encoding method is denoted as "bag of (visual) words"

Visual vocabulary size

For LSVR: need image signatures containing **fine-grained information**:

- retrieval: larger dataset → higher probability to find similar but irrelevant image
- classification: more classes → higher probability to find class which is similar to any given class

BoW (with VQ) answer to the problem: increase visual vocabulary size

 practical problem: assignment of descriptors to visual words becomes costly

How to increase amount of information without increasing the visual vocabulary size?

→ higher-order representations

Higher order representations

VQ: **count** the number of local descriptors assigned to each Voronoi region. Why not including **other statistics**? For instance:

- mean of local descriptors x
- (co)variance of local descriptors

VLAD

- Local Feature descriptors $\mathbf{x}_i \in \mathbb{R}^D, i = \{1,...,N\}$
- Run k-means to obtain dictionary $C = \{\mu_1, ... \mu_K\}, \ \mu_i \in \mathbb{R}^D$
- Count number of residuals:

$$\mathbf{s}_k = \sum_{i=1}^N \gamma(\mathbf{x}_i)(\mathbf{x}_i - \mu_k), \quad \gamma(x) := \begin{cases} 1 \text{ if } NN(x) = \mu_k \\ 0 \text{ else} \end{cases}$$
$$\mathbf{s} = (\mathbf{s}_1^T, ..., \mathbf{s}_K^T)^T \in \mathbb{R}^{KD}$$

- Normalization:
 - Intra normalization = component-wise (\mathbf{s}_k) l_2 normalization, followed by global l_2
 - Signed square root (power normalization): $\hat{s}_i = \sqrt{|s_i|}, i = 1, ..., KD$ followed by global l_2

Fisher vectors

- Based on Fisher Kernel
- Local Feature descriptors $\mathbf{x}_i \in \mathbb{R}^D, i = \{1, ..., N\}$
- Train GMM, w. parameters: $\Theta = (\mu_k, \Sigma_k, \pi_k : k = 1, \dots, K)$
 - Likelihood: $p(\mathbf{x} \mid \Theta) = \sum_{k=1}^{K} w_k g_k(\mathbf{x})$,
 - Gaussian density:

$$g_k(\mathbf{x}) = g(\mathbf{x}; \mu_k, \mathbf{\Sigma}_k) = \frac{1}{\sqrt{(2\pi)^D |\mathbf{\Sigma}_k|}} e^{-\frac{1}{2}(\mathbf{x} - \mu_k)^\top \mathbf{\Sigma}_k^{-1}(\mathbf{x} - \mu_k)}.$$

Compute association values (posteriors):

$$q_{ik} = \frac{\pi_k g_k(\mathbf{x}_i)}{\sum_{t=1}^K \pi_t g_t(\mathbf{x}_i)}$$

Fisher vectors (cont.)

Compute first and second order statistics:

$$u_{jk} = \frac{1}{N\sqrt{\pi_k}} \sum_{i=1}^{N} q_{ik} \frac{x_{ji} - \mu_{jk}}{\sigma_{jk}},$$

• Full descriptor:
$$\mathbf{s} := \begin{bmatrix} \vdots \\ \mu_k \\ \vdots \\ \mathbf{v}_k \\ \vdots \end{bmatrix}$$

$$v_{jk} = \frac{1}{N\sqrt{2\pi_k}} \sum_{i=1}^{N} q_{ik} \left[\left(\frac{x_{ji} - \mu_{jk}}{\sigma_{jk}} \right)^2 - 1 \right].$$

Normalization:

Signed square root (power normalization): $\hat{s}_i = \sqrt{|s_i|}, i = 1, ..., 2KD$ followed by global l_2

Classification

Generative vs. discriminative

Generative: Infer function that can generate (explain) your observations

Generative vs. discriminative

Discriminave: Infer a function that can separate (discriminate) your observations

Generative models

- Naïve Bayes classifier
 - Csurka Bray, Dance & Fan, 2004
- Hierarchical Bayesian topic models (e.g. pLSA and LDA)
 - Object categorization: Sivic et al. 2005, Sudderth et al. 2005
 - Natural scene categorization: Fei-Fei et al. 2005
- 2D Part based models
 - Constellation models: Weber et al 2000; Fergus et al 200
 - Star models: ISM (Leibe et al 05)
- 3D part based models:
 - multi-aspects: Sun, et al, 2009

Discriminative models

Berg, Berg, Malik 2005...

Practical example: classification of historical dating lines

Texture classification via BoW

1. Feature detection and extraction

^{*} Lowe, D. G. "Object recognition from local scale-invariant features". Proceedings of the International Conference on Computer Vision, pp. 1150–1157, 1999

Texture classification via BoW

2. Code words dictionary formation

Texture classification via BoW

BoW Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of the object appearance distribution
 - Too large: quantization artifacts, sparse histograms, overfitting
- Computational efficiency
 - Vocabulary trees (Nister & Stewenius, 2006)
 - Product quantization (Jégou 2011)
- Localization
 - Spatial pyramid matching (Lazebnik 2009)

Spatial Pyramid Matching

 $H = [H_0^1 H_1^2 ... H_4^2 H_1^3 ... H_{16}^3]$

Conclusions

- Pros
 - Very simple and effective
 - Still used today for image retrieval problems
- Cons
 - Not ideal for solving detection problems
 - Outperformed by convolutional neural networks (CNNs) but require way less training data

Questions?

