第六章 微生物生长与环境条件

第一节 微生物纯培养

第二节 微生物培养的群体生长规律

第三节 微生物的生活环境

第一节 微生物纯培养

> 单细胞挑取法

常用于真菌单孢子分离

将样品充分稀释 === 毛细吸管吸取单孢子 (单细胞) === 培养

第一节 微生物纯培养

原理

根据微生物生理生化特性,人为创造低温、干燥、缺氧、缺乏营养 等环境条件,使微生物的代谢活动和生长繁殖处于受抑制的休眠状态, 但又不致使微生物死亡,从而达到保藏的目的。

保藏原则

挑选优良纯种

选择生长期为幼龄的培养物

浓菌液保存

保藏要求

长期保存后菌种能正常存活,表型、基因型不变,代谢产物及高产 能力不变。

- ▶ 微生物生长:细胞从环境中吸取营养物质,经代谢作用合成新的细胞成分,细胞各组分有规律地增长,导致细胞体积增大和重量增加。
- 》 微生物繁殖: 产生新一代的过程,导致细胞数目增多。
- ▶ 生长是量变的过程,是繁殖的基础;而繁殖是个质变的过程, 是生长的结果。

从<mark>群体水平</mark>上衡量 微生物生长量指标 细胞群体数量 (间接的测定方法) 微生物生长量指标 细胞群体总重量

第二节 微生物培养群体生长规律 微生物群体的测量 《微生物群体的测量 《微生物群体的测定 《微生物数量的测定 《微生物生长量的测定 《微生物重量的测定 《微生物重量的测定 《微生物重量的测定法 ATP含量测定法 代谢活性法

为牛物群体的测量

- (二) 微生物重量的测定
 - 1、称重法

离心或过滤将菌体从培养基中分离、冼净, 称湿重或干重。

- 优点:简单可靠
 - 2、含氮量测定法

根据样品中菌体蛋白质含量计算微生物重量的方法。

- 原理: (1) 微生物细胞蛋白质含量稳定。
 - (2) 氮是蛋白质中稳定的主要成分。 (蛋白质量=6.25×总含N量)■

优点: 测定准确

散生物分批培养

分批培养: 将少量的细菌接种到一定体积的液体培养基中,在适宜的条件下培养,最后一次性收获的过程。

生长曲线:细菌在新的适宜的环境中生长、繁殖、衰老、死亡的动态变化。

微生物的典型生长曲线

第二节 微生物培养群体生长规律

为生物分批培养

延滯期、滯留适应期(延迟期、迟滯期、调整期)

特点: 分裂迟缓、代谢活跃。

产生原因:

- 1、接种时的机械损伤
- 2、细胞分裂必需因子的缺乏

影响滞留适应期长短的因素

- 1、培养基成分
- 2、接种物菌龄
- 3、接种量 ■
- 4、菌株的遗传性

微生物分批培养

对数生长期 (指数生长期)细胞数目表示公式:

特点:

- (1) 代谢活性强
- (2) 世代时短而稳定
- (3) 细胞数量成倍增长

20 minutes

 $N_t=2^n N_0$

 $n=3.33(lgN_t-lgN_0)$

 $G=t/n=0.301t/(lgN_t-lgN_0)$

n——繁殖代数

G——世代时(每繁殖一代所需的时间)

 N_0 ——对数生长期开始微生物数量

N_t——对数生长期经过时间t后微生物数量

研究微生物基本代谢的良好材料; 常在生产上用作种子,可使微生物发酵 的迟滞期缩短,提高经济效益。

第二节 微生物培养群体生长规律

为生物分批培养

稳定期、最高生长量期

特点:细菌数量增加率为0

部分细菌大量积累代谢产物

稳定期到来的原因:

营养物(生长限制因子)的耗尽;

营养物的比例失调;

酸、醇、毒素等有害代谢产物的累积;

pH等物化条件越来越不适宜。

衰亡期

特点: 菌体大量死亡

细菌的代谢活性降低,出现细胞自溶现象

形态发生畸变

革兰氏染色反应不稳定 ■

微生物分批	比培养	
	小 结	
	什么时期细菌细胞生长速度最快 ■	对数生长期
_	什么时期世代时间短而稳定	对数生长期
	十么时期细菌细胞代谢活性最强	对数生长期
什么时候细菌细胞总数最多		稳定期
什么时期	稳定期	

第三节 微生物的生活环境 温度 高温: 使蛋白质变性、酶失活、核糖体解体 温度对微生物 致死时间、致死温度 生长的影响 低温:酶活性下降、新陈代谢缓慢 各种细菌的芽孢在湿热中的致死温度和致死时间 致死时间(分) 菌种 **100°**C **105°**C 110°C **121°**C **115°**C 炭疽芽孢杆菌 5-10 枯草芽孢杆菌 6-17 嗜热脂肪芽孢杆菌 12 肉毒梭状芽孢杆菌 330 100 32 10 4 破伤风梭状芽孢杆菌 5-15 5-10

第三节 微生物的生活环境 干热灭菌: 干燥条件,160℃维持1-2h。 高温 灭菌 高温 灭菌 高压蒸汽灭菌法: 密闭条件下,水加热蒸发形成高压的同时产生高温。利用高温杀死菌。 间歇灭菌法: 100℃(蒸煮),30-60min 冷却,37℃培养1d 反复三次 巴斯德消毒法: 采用60-70℃的温度处理15-30min 的消毒方法。 低温保藏 【 菌种保存(试管斜面等) 食品保藏

第三节 微生物的生活环境 氧气与微生物的生长 需氧性微生物 厌氧性微生物 兼性微生物 氧化还原电位与微生物生长 好氧微生物: +0.3~+0.4V 厌氧微生物: <+0.1V 兼性厌氧微生物: >+0.1V 进行好氧呼吸、<+0.1V 进行发酵

水分

1、水分对微生物生长的影响:

细菌最适水活度值: 0.93-0.99

酵母菌最适水活度值: 0.88-0.91

霉菌最适水活度值: 0.80

水的活度小于0.60-0.70时

多数微生物:休眠、部分出现细胞脱水、蛋白质变性■

2、应用:干燥法保存物品 食品的冷冻干燥

第三节 微生物的生活环境

pН

不同微生物对pH值的要求不尽相同

pH对微生物的作用机制

- 1、影响细胞膜的电荷
- 2、影响酶的活性(蛋白质变性)
- 3、改变环境中养料的有效性 一些微生物生长的pH值范围
- 4、有害物质的毒性

微生物种类	最低pH	最适pH	最高pH
大肠杆菌	4.3	6.0—8.0	9.5
枯草芽孢杆菌	4.5	6.0—7.5	8.5
金黄色葡萄球菌	4.2	7.0—7.5	9.3
黑曲霉	1.5	5.0—6.0	9.0
一般放线菌	5.0	7.0—8.0	10
一般酵母菌	3.0	5.0—6.0	8.0

辐射

辐射: 能量通过空间传递的一种物理现象。

1、可见光: (400nm—800nm)

对微生物的作用:(1)能源

- (2) 刺激担子菌子实体形成
- (3) 光氧化作用:有氧条件下,光线被胞内色素吸收,使酶或其它敏感成分失活引起的微生物死亡。
- 2、紫外线: (200nm—400nm)

杀菌波长范围: 240—300nm 杀菌力最强范围: 255—265nm

杀菌特点:穿透力弱,用作表面消毒或空气灭菌

第三节 微生物的生活环境

辐射

3、电离辐射

特点:波长短、能量大、穿透力强 作用机理:高能电离辐射 (X射线、γ射线等)使细胞内水分发生电 离作用产生游离基,使酶蛋白失活。

电离辐射对微生物的作用:

低剂量(500伦琴): 促进生长、诱发变异 高剂量(10万伦琴): 杀菌作用

实际应用:

粮食、果蔬、畜禽产品、饮料以及卫生材料杀菌处理

化学药物

控制或消灭有害微生物的化学制剂。

杀菌剂: 杀死一切微生物的化学物质;

消毒剂: 杀死或消除病原微生物的化学物质;

抑制剂: 抑制微生物的生长的化学物质。

第三节 微生物的生活环境

化学药物

1、有机化合物(醇、醛、酚等)

杀菌机理: 损伤细胞壁和膜

抑制或破坏某些酶系统(脱氢酶、氧化酶等)

蛋白质变性

70%~75%酒精; 福尔马林(35%~40%甲醛水溶液)等

2、表面活性剂(新洁尔灭、消毒宁等)

具有降低表面张力的效应。

杀菌机理:与<mark>膜蛋白</mark>发生相互作用,改变<mark>细胞膜</mark>的稳定性和通 透性,导致细胞内的物质溢出。

化学药物

3、卤素 (CI、I 等)

漂白粉[$Ca(OCI)_2$ 、 $CaCI_2$ 、 $Ca(OH)_2$]及氣气 (CI_2 、HOCI、OCI、CI、H*)。强氧化剂,能破坏细胞膜的结构;与酶蛋白中- NH_2 、-SH反应使蛋白质变性。

碘(I): 与酶蛋白分子中的酪氨酸结合,使蛋白质变性。

4、重金属盐类

杀菌机理:与带负电荷的菌体蛋白质结合,导致蛋白质变性。 (0.2%Hg盐,与细菌酶蛋白的巯基结合)

第三节 微生物的生活环境

化学药物

5、强氧化剂(高锰酸钾、过氧化氢、过氧乙酸等) 杀菌机理:能使菌体酶蛋白质中的巯基氧化成二硫基,使酶失活 2R—SH+2X → R—S—S—R+2XH

6、化学治疗剂

杀菌机理:

抑制叶酸合成 如:磺胺类药物等。

抑制肽聚糖合成 如:青霉素,万古霉素等。

抑制蛋白质合成 如:链霉素,红霉素、四环素、氯霉素等

第三节	微生物	的生活环境	竟		
化学药物	类别	实例	常用浓度	应用范围	
一些常用的表面消毒剂	醇	乙醇	70-75%	皮肤	
	酸	食醋	$3-5 \text{ mL/m}^3$	熏蒸空气	
	碱	石灰水	1-3%	粪便	
	酚	石炭酸	5%	空气(喷雾)	
	醛	福尔马林(原液)	6-10 mL/m ³	接种箱、厂房熏蒸	
	重金属盐	升汞	0.1%	植物组织等外表面	
		AgNO ₃	0.1-1%	新生儿眼药水等	
		红溴汞	2%	皮肤小创伤	
	氧化剂	KMnO ₄	0.1-3%	皮肤、水果、茶杯	
		H_2O_2	3%	清洗伤口	
		氯气	0.2-1 μg/L	自来水	
	表面活性剂	新洁尔灭	0.25%	皮肤	
	染料	龙胆紫(紫药水)	2-4%	外用药水	1
THE REAL					1