Problem 1. 2-1

What target isotope must be used for forming the compound nucleus $^{24}_{11}$ Na when the incident projectile is:

- (a) a neutron
- (b) a proton
- (c) an alpha particle?

Solution

Part (a)

A neutron will increase the mass number, A, by one, but leave the element number, Z, unchanged. Therefore, the answer is a lighter isotope of Neon: $^{23}_{11}$ Na

Part (b)

Capturing a proton increases both the mass number and element number by one: $^{23}_{10}$ Ne

Part (c)

Capturing an α particle increases the mass number by four and the element number by two: $^{20}_{8}{\rm O}$

Problem 2. 2-4

A fission product of very considerable importance in thermal reactor operation is 135 Xe, which has an enormous thermal absorption cross section of $2 * 10^6 b$. This nuclide can be produced either directly as a fission product or by beta decay of 135 I, as indicated by the radioactive chains below:

Write the rate equations describing the concentration of 135 I and 135 Xe in a nuclear reactor. Then assuming a constant production rate of these isotopes from fission and transmutation rate by neutron capture, determine the steady-state or saturated concentration of 135 Xe.

Solution

¹³⁵I has one production path (production as a fission daughter) and one decay path (β decay into ¹³⁵I). The rate equation is:

$$\dot{N}_{^{135}\mathrm{I}} = \phi \Sigma_{fission} \gamma_{^{135}\mathrm{I}} - \lambda_{^{135}\mathrm{I}} N_{^{135}\mathrm{I}}$$

 $^{135}{\rm Xe}$ is also produced by fission, as well as by the β decay of $^{135}{\rm I.}$ It is removed by β decay as well as by neutron absorption:

$$\dot{N}_{^{135}\rm{Xe}} = \phi \Sigma_{fission} \gamma_{^{135}\rm{Xe}} + \lambda_{^{135}\rm{I}} N_{^{135}\rm{I}} - \lambda_{^{135}\rm{Xe}} N_{^{135}\rm{Xe}} - \sigma_a \phi N_{^{135}\rm{Xe}}$$

In steady state, set $\dot{N} = 0$: Iodine:

$$\dot{N}_{^{135}I} = 0 \rightarrow$$

$$\lambda_I N_I = \phi \Sigma_f \gamma_I$$

$$N_{^{135}I} = \frac{\phi \Sigma_f \gamma_I}{\lambda_I}$$

Xenon:

$$\dot{N}_{Xe} = 0 \rightarrow$$

$$N_{Xe} (\lambda_{Xe} + \sigma_{Xe}\phi) = \phi \Sigma_f \gamma_{Xe} + \lambda_I N_I$$

$$N_{Xe} = \frac{\phi \Sigma_f \gamma_{Xe} + \lambda_I N_I}{\lambda_X e + \sigma_{Xe}\phi}$$

$$= \frac{\phi \Sigma_f \gamma_{Xe} + \phi \Sigma_f \gamma_I}{\lambda_{Xe} + \sigma_{Xe}\phi}$$

$$N_{135}_{54} = \frac{\phi \Sigma_f (\gamma_{Xe} + \gamma_I)}{\lambda_{Xe} + \sigma_{Xe}\phi}$$

Problem 3. 2-6

Boron is a common material used to shield against thermal neutrons. Estimate the thickness of boron required to attenuate an incident thermal neutron beam to 0.1% of its intensity. (Use the thermal cross section data in Appendix A.)

Solution

From Duderstadt Appendix A, $\Sigma_t = 104cm^{-1}$ for Boron.

$$\left(\frac{1}{e}\right)^n = \frac{1}{1000}$$

$$e^{-n} = 1000^{-1}$$

$$e^n = 1000$$

$$n = \ln(1000)$$

Dividing this by the macroscopic cross section Σ_t gives:

$$\frac{n}{\Sigma_t} = \frac{ln(1000)}{\Sigma_t}$$
$$= 0.0664cm$$

Problem 4. 2-8

A free neutron is unstable against beta decay with a half-life of 11.7m. Determine the relative probability that a neutron will undergo beta-decay before being absorbed in an infinite medium. Estimate this probability for a thermal neutron in H_2O .

Solution

To determine the relative probability, we take a ratio of the mean free path for neutron absorption and divide it by the distance travelled by a thermal neutron before decaying:

$$\frac{x_{absorption}}{x_{decay}} = \frac{\Sigma_a^{-1}}{\dot{x}t_{1/2}}$$
$$= (\Sigma_a \dot{x}t_{1/2})^{-1}$$

Substituting the values for a thermal $(\dot{x}=2.2*10^5cm/s)$ neutron in water $(\Sigma_a=0.022cm^{-1})$:

$$\left(\left(0.022cm^{-1} \right) \left(2.2 * 10^5 \frac{cm}{s} \right) \left(11.7minutes * \frac{60s}{minute} \right) \right)^{-1} = 2.94 * 10^{-7}$$

It is much more likely that the neutron will decay rather than be absorbed in water (once thermalized).

Problem 5. 2-10

How many mean free paths thick must a shield be designed in order to attenuate an incident neutron beam by a factor of 1000?

Solution

We know that for every mean free path, Σ , travelled, the incident beam attenuates by a factor of $\frac{1}{e}$. Therefore:

$$\left(\frac{1}{e}\right)^{n} = \frac{1}{1000}$$

$$e^{-n} = 1000^{-1}$$

$$e^{n} = 1000$$

$$n = \ln(1000)$$

$$= 6.91$$