Express Mail Label #EV582717805US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: MICHAEL WIDEGREN

FOR:

DEVICE FOR SUPPLYING PRECONDITIONED AIR TO AN AIRCRAFT ON

THE GROUND

CLAIM FOR PRIORITY

The Commissioner of Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Applicant hereby claims the benefit of the filing date of 16 September 2002 of Luxembourg Patent Application No. 90 967 under the provisions of 35 U.S.C. 119 and the International Convention for the Protection of Industrial Property.

If any fees are due with regard to this claim for priority, please charge them to Deposit Account No. 06-1130 maintained by Applicant's attorneys.

Respectfully submitted,

CANTOR COLBURN LA

By:

Daniel F. Drexler

Registration No. 47,535

CANTOR COLBURN LLP

55 Griffin Road South

Bloomfield, Connecticut 06002

Telephone: 860-286-2929 Facsimile: 860-286-0115

Customer No. 23413

Date: March 15, 2005

Atty Doc No: ETF-0013

ecø

EPO - DG 1

Direction de la Propriété Intellectuelle

0 1 10. 2003

77

PCT/EP02/50625
Copie Officielle

REC'D 0 3 NOV 2003

Il est certifié par la présente que le document ci-annexé (12 pages de description et 3 feuilles de dessin) est conforme à l'original de la demande de brevet d'invention No. 90 967 déposée le 16.09.2002 auprès de la Direction de la Propriété Intellectuelle à Luxembourg, par IPALCO B.V.,

pour: Device for supplying preconditioned air to an aircraft on the ground.

Luxembourg, le 16.09.2003

Lex KAUFHOLD

Attaché de Gouvernement 1er en rang

Chargé de la Direction de la Propriété Intellectuelle

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1 (a) OR (b)

REVENDICATION DE LA PRIORITE des demandes de brevet Aux Du No.

Mémoire Descriptif

déposé à l'appui d'une demande de

BREVET D'INVENTION

au

Luxembourg

au nom de: IPALCO B.V.

Ohmweg 17

NL-2952 BD Alblasserdam / NL

pour: DEVICE FOR SUPPLYING PRECONDITIONED AIR TO AN

AIRCRAFT ON THE GROUND

10

15

20

DEVICE FOR SUPPLYING PRECONDITIONED AIR TO AN AIRCRAFT ON THE GROUND

FIELD OF THE INVENTION

The present invention generally relates to a device for supplying preconditioned air to an aircraft on the ground.

BACKGROUND OF THE INVENTION

During the time an aircraft is parked on the ground, the on board air conditioning system is generally turned off, whereas the high density of passengers, the interior lighting, the large number of windows, and the heavily insulated fuselage all contribute to raising the temperature of the cabin to uncomfortable levels. Therefore, preconditioned air is conventionally supplied to the aircraft directly into the cabin ventilation system. This may be done by connecting the aircraft either to a remote air conditioning unit, or to a portable air conditioning unit, which is towed close to the aircraft.

When connecting the aircraft to a remote ground-based air conditioning unit, a long hose is used to deliver the preconditioned air to the aircraft. Such a hose may be about 300 mm in diameter and 20 to 30 m in length. The hose is connected at one end to a connector provided on the exterior of the fuselage and communicating with the cabin ventilation system. At its other end, the hose is connected to a preconditioned air outlet of an independent air conditioning unit or of the airport air conditioning system, the preconditioned air outlet being situated about the airport terminal building, e.g. about a boarding gate. Unfortunately, the large dimensions of the hose involves large pressure drops and temperature variations. Furthermore, handling and storage of the hose when not in use is difficult.

The use of portable air conditioning units, as e.g. described in US 5,031,690, that are towed close to the aircraft eliminates the problems

10

15

25

associated with long hoses, since a short hose is then employed. In such a portable air conditioning unit, the cooling function is generally provided by a conventional vapour cycle refrigerant system, wherein the refrigerant compressor is driven by a diesel engine. Ambient air is sucked in the air conditioning unit and caused to flow through the evaporator of the refrigerant system so as to extract heat from this air. A blower is employed to supply the cool, preconditioned air to the aircraft at the desired flow conditions. A disadvantage of such air conditioning units is their relatively complex conception, since they include a refrigerant system and a diesel engine to operate the refrigerant system. Consequently, these units are relatively heavy and need to be either skid or truck mounted. In addition, exhaust gases from the diesel engine may be sucked into the air conditioning unit, which results in unpleasant odours for the passengers. Another disadvantage of such air conditioning units is that conventional vapour cycle refrigerant systems operate with CFCs, which are known for their harmful effect on the environment.

OBJECT OF THE INVENTION

The object of the present invention is to provide a simple and environmentally friendly device for supplying preconditioned air to an aircraft on the ground. This object is achieved by a device as claimed in claim 1.

20 SUMMARY OF THE INVENTION

According to the present invention, a device for supplying preconditioned air to an aircraft on the ground comprises a compressed air inlet and expander means downstream of the compressed air inlet for allowing the compressed air to expand to lower temperature and pressure, thereby obtaining cold air. A mixing chamber, communicating with an ambient air inlet, is situated downstream of the expander means. In the mixing chamber, mixing of ambient air and cold, expanded air is controlled in such a way as to elaborate preconditioned air at the desired temperature. The device further comprises a connection hose, which has a first end in communication with the mixing chamber and

10

15

, 20

25

30

a second end to be connected to a parked aircraft. It will be appreciated that the present device comprises a compressed air hose having a first end connected to the compressed air inlet and an opposite second end for connection to a remote, ground-based, compressed air unit. Hence, the compressed air used for the cooling effect is not produced within the device, but is supplied from a remote compressed air unit.

The present invention thus uses the so-called "air cycle" for producing preconditioned air. The use of air as a refrigerant is based on the principle that when a gas expands isentropically from a given temperature, its final temperature at the new pressure is much lower. In the present device, the resulting cold air is then directly used as a refrigerant in an open system. In other words, the cold air is not passed through a heat exchanger but introduced in the space to be cooled, i.e. the passenger cabin of the aircraft.

The cooling function in the present device is thus carried out by expanding compressed air, which is produced at a remote location. This eliminates the need—in the device itself—for a compressor and engine to drive the compressor. Consequently, the present device is lighter and of simpler conception than conventional portable air conditioning devices, such as e.g. that of US 5,031,690. Furthermore, the present device proves advantageous in that (1) the working fluid is air, which is free, safe and non toxic; (2) the need for environmentally damaging refrigerant such as CFC, HCFC and the like is eliminated; and (3) air cycle equipment is extremely reliable, thereby reducing maintenance costs.

As mentioned, the compressed air used in the present device comes from a remote compressed air unit, e.g. installed in or next to the airport building, and is supplied to the device via the compressed air hose and enters into the device through the compressed air inlet. Compressed air may be supplied to the device at relatively high pressure and e.g. ambient temperature. The hose may have a relatively small diameter, e.g. of about 30 mm. It is to be noted that possible variations in temperature and pressure of the compressed air during to the transfer in the compressed air hose do not affect the preconditioned air

10

15

20

25

30

temperature, as it is possible to compensate for such variations during the expansion and/or mixing process in the device.

The present device preferably comprises a rolling support. Due to its light weight, the device can easily be pulled by a ground technician and does not need to be towed. Alternatively, the device could be truck mounted.

In order to supply preconditioned air to the aircraft with desired flow conditions, namely of pressure and velocity, flow control means are advantageously provided upstream of the connection hose. Such flow control means may e.g. comprise a centrifugal fan or an ejector, installed e.g. on the downstream side of the mixing chamber.

In a preferred embodiment, the expander means is a turbine expander, a rotary screw expander, or a displacement expander. The expansive flow of the compressed air through the expander thus results in a pressure and temperature drop with production of external work. This external work can e.g. be turned into electric energy by coupling the expander to an electric generator. Alternatively, the expander may be coupled to an ambient air compressor to increase the performance of the device by compressing ambient air and introducing it into the expander. This will increase the total airflow through the air caddy and reduce the need for ground based compressor capacity. It will also dry out the incoming air, so that cool dry air is introduced into the aircraft.

The expander means preferably opens into an expansion chamber, through which the expanded, cold air flows before entering the mixing chamber. The expander means and the expansion chamber are advantageously installed in an insulated casing. Depending on the efficiency of the insulation, the air in the expansion chamber may theoretically reach temperatures as low as -90°C to -100°C at atmospheric pressure. In the practice of the present invention, temperatures of -20°C to -40°C are generally obtained.

In the mixing chamber, the air is preferably mixed with a quantity of ambient air required to elaborate preconditioned air at the desired temperature.

In order to facilitate handling of the compressed air hose that connects the

15

20

compressed air inlet to the remote compressed air unit, the device advantageously comprises a rotatable reel, for winding and unwinding the compressed air hose.

In practice, when the device is not in use, it is stored nearby the compressed air unit to which the remote compressed air hose is connected, generally close to the terminal building, with the compressed air hose almost completely wound on the reel. When preconditioned air is to be supplied to a parked aircraft, the device is moved close to the aircraft, while the hose is reeled out.

In a preferred embodiment, the device includes two compressed air hoses, each connected to a compressed air inlet upstream of the expander means. This increases the cooling capacity of the device by increasing the quantities of air that can be supplied to the aircraft. In such a case, the device includes two rotatable reels, one for each compressed air hose.

The device further preferably comprises a gearbox connected to each reel hub and capable of rotating the reel, so as to wind or unwind the compressed air hose. Each gearbox may be coupled to an electric motor. The electric power needed for operating the electric motor shall advantageously be produced by a generator coupled to the rotary screw expander. Alternatively, rotation of the hose reels can be obtained by coupling each reel to a hydraulic or pneumatic motor. The reel movement is thus assisted, which simplifies the work of the ground technician and ensures a proper handling of the hoses.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:

FIG. 1: is a partial vertical section view through a preferred embodiment of a device for supplying preconditioned air according to the present invention;

FIG. 2: is a partial section view of the device of Fig.1.

20

25

30

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

A preferred embodiment of a device for supplying preconditioned air to an aircraft on the ground, generally indicated 10, is shown in Fig.1. The present device 10 is adapted to be brought next to a parked aircraft, in order to supply the latter with preconditioned air, i.e. cool air, to maintain the passenger cabin at comfortable temperature levels. The device 10 therefore advantageously includes a rolling support 11, which comprises four wheels 12. Contrary to known portable air conditioning units, such as e.g. that described in US 5,031,690, the cooling function of the present device 10 does not use a vapour cycle refrigerant system, but operates on the "air cycle" principle. This is based on the fact that when a gas expands isentropically from a given temperature, its final temperature at the new pressure is much lower.

Accordingly, the present device 10 includes an expander means, generally indicated 14, situated downstream of a compressed air inlet 16, through which compressed air is supplied to the device 10. By flowing through the expander means 14 the compressed air expands to lower temperature and pressure. As can be seen in Fig.1, the expander means 14 has an outlet 15, which opens into an expansion chamber 17. In the present case, compressed air enters the expander means 14 at about ambient temperature and at a pressure of e.g. 3 to 10 bars or in the liquid state. The expansion chamber 17 and the expansion means 14 are preferably both mounted in an insulated casing 18. Depending on the quality of the insulation, the air temperature in the expansion chamber 17 may theoretically be as low as –90 to –100°C at atmospheric pressure. In practice, temperatures of –40 to –20°C are produced in the expansion chamber 17.

The cold air then flows from the expansion chamber 17, through a cold duct 20, into a mixing chamber 22 which communicates with a pair of ambient air inlets 24. Air filters 26 are preferably arranged in the ambient air inlets 24 to clean the ambient air entering the device 10. In the mixing chamber 22, the flow of ambient air is controlled in such a way as to mix the cold air with ambient air to elaborate preconditioned air at the desired temperature, generally of about

+5°C.

10

15

20

25

30

A flexible connection hose 28 is associated with the present device 10 in order to deliver the preconditioned air to the parked aircraft. Hence, the connection hose 28 has a first end provided with a connector 30 adapted for connection with a preconditioned air inlet on the aircraft fuselage; and a second end in communication with the mixing chamber 22. The air inlet on the fuselage communicates with the aircraft air ventilation system, so that the preconditioned air may be directly introduced in the passenger cabin. Such a connection hose, shown in it rest position in Fig.1, may e.g. be 2 to 3 m long and have a diameter of 300 mm.

Reference sign 32 indicates blower means, preferably a centrifugal blower, installed in the mixing chamber 22, on its downstream side. The blower means 32 allows to control the flow of preconditioned air in the connection hose 28. By adjusting the centrifugal blower 32 operating conditions it is thus possible to provide the aircraft with preconditioned air having desired pressure and velocity. Although not shown in the Figures, the device 10 shall advantageously comprise an electronic control unit and sensors to monitor and adjust the mixing temperature and blowing conditions according to desired set-points.

It will be noted that the present device advantageously comprises at least one compressed air hose through which compressed air is supplied to the device 10 from a remote compressed air unit. In the present embodiment, the device 10 preferably comprises a pair of flexible compressed air hoses 34 communicating with the compressed air inlet 16. Each of these hoses 34 thus has a first end 36 communicating with the air inlet 16 and an opposite, second end connected to the compressed air unit (not shown), which is e.g. situated next to airport terminal building.

To facilitate handling of the hoses 34, the device 10 advantageously comprises a rotatable reel 36 associated with each hose 34, for winding and unwinding the latter. In the present embodiment, one reel 36 is mounted on each side of the device 10. Each hose 34 is wound on the reel 36 in such a way that it can be unwound from its second end, i.e. the end which is connected to

15

20

25

30

the compressed air unit. As can be seen in the Figures, the first end of the compressed air hose 34 preferably passes through the support drum 38 of the reel 36 and communicates with the compressed air inlet 16 via a compressed air swivel joint 40 and piping 41.

In practice, when the device 10 is not in use, it is stored nearby the compressed air outlet of the compressed air unit to which the compressed air hoses 34 are connected, generally close to the terminal building, with the compressed air hoses 34 almost completely wound on the reels 36. The hoses 34 are thus kept out of the way of aircrafts or other vehicles. When preconditioned air is to be supplied to a parked aircraft, the device 10 is pulled by a ground technician 10 next to the aircraft. As the technician pulls the device 10 towards the aircraft, the compressed air hoses 34 are reeled out. Hence, the hoses 34 are not dragged but laid on the ground as the device 10 is moved towards the aircraft, which avoids damaging the hoses 34 by abrasion.

It is to be noted that in the present embodiment, the expander means 14 preferably is a rotary screw expander, so that the expansion flow of the compressed air also results in the production of external work. This external work is turned into electrical energy by a generator 40 coupled to the turbine expander 14 by means of a belt 42.

The electricity produced by the generator 40 is then e.g. used to power an electric motor 44 coupled to the centrifugal blower 32 by means of a belt 46.

Furthermore, this electricity is advantageously used to assist the rotation of the reels 36. Accordingly, each reel 36 is provided with a gearbox 48 and an electric motor 50 powered by the generator 40. An automatic winding or unwinding of the hoses 34 can thus be effected, which simplifies the work of the ground staff.

Instead of the electric motors 50, it is possible to use compressed air motors, for driving the gearboxes 48 and the centrifugal blower 32.

It remains to be noted that the device may further comprise an ambient air compressor (booster compressor) driven by the rotary screw expander 14, to compress ambient air coming e.g. from the ambient air inlet and inject the compressed ambient air into the rotary screw expander 14. This increases the airflow through the device 10 and has allows to reduce the moisture in ambient air.

5 LIST OF REFERENCE SIGNS

10	device	30	connector
11	rolling support	32	blower means
12	wheel	34	compressed air hose
14	expander means	36	rotatable reel
15	expander outlet	38	support drum
16	compressed air inlet	40	swivel joint
17	expansion chamber	41	piping
18	insulated casing	42	belt
20	cold duct	44	electric motor
22	mixing chamber	46	belt .
24	ambient air inlet	48	gearbox
26	air filter	50	electric motor-
28	connection hose		·

Claims

1. A device for supplying preconditioned air to an aircraft on the ground, comprising:

a compressed air inlet;

a compressed air hose having a first end connected to said compressed air inlet and an opposite second end for connection to a remote, ground-based, compressed air unit;

expander means downstream of said compressed air inlet for allowing said compressed air to expand to lower pressure and temperature;

an ambient air inlet;

15

a mixing chamber downstream of said expander means and communicating with said ambient air inlet, wherein mixing of ambient air with the expanded, cold air is controlled in such a way as to elaborate preconditioned air at the desired temperature;

a connection hose having a first end in communication with said mixing chamber and a second end to be connected to an aircraft on the ground.

- The device according to claim 1, comprising flow control means upstream of said connection hose for providing a desired flow of preconditioned air through said connection hose.
- 3. The device according to claim 2, wherein said flow control means comprisesa centrifugal blower or an ejector.
 - 4. The device according to any one of the preceding claims, wherein said expander means is one of a turbine expander, a rotary screw expander and a displacement expander.
- 5. The device according to the preceding claim, comprising an electric generator or an ambient air compressor coupled to said expander means.
 - The device according to the preceding claim, wherein said ambient air compressor has an outlet connected to said expander means.

- 7. The device according to any one of the preceding claims, wherein said device comprises a rolling support.
- The device according to any one of the preceding claims, comprising
 two compressed air hoses having each a first end connected to a compressed air inlet and an opposite second end for connection to said ground-based, compressed air unit; and

two rotatable reel for winding and unwinding said compressed air hoses.

- 9. The device according to claim 8, comprising an electric, hydraulic or pneumatic motor coupled to each rotatable reel via a gearbox.
- 10 10. The device according to any one of the preceding claims, comprising an air filter downstream of said ambient air inlet.
 - 11. The device according to any one of the preceding claims, wherein said expander means opens into an expansion chamber.
- 12. The device according to the preceding claim, wherein said expander meansand said expansion chamber are mounted in an insulated casing.

Fig.1

Abstract

A device (10) for supplying preconditioned air to an aircraft on the ground, comprises a compressed air inlet (16) and a compressed air hose (34) having a first end connected to the compressed air inlet (16) and an opposite second end for connection to a remote, ground-based, compressed air unit. Expander means (14) are situated downstream of the compressed air inlet (16) for allowing the compressed air to expand to lower pressure and temperature. The device (10) further includes an ambient air inlet (24) and a mixing chamber (22) downstream of the expander means (14) and communicating with the ambient air inlet (24), wherein mixing of ambient air with the expanded, cold air is controlled in such a way as to elaborate preconditioned air at the desired temperature. A connection hose (28) has a first end in communication with said mixing chamber and a second end to be connected to an aircraft on the ground.

(Fig. 1)

10

Fig.1

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

6
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.