1. Problema

El circuito de la figura procesa la señal del generador i(t) cuyo espectro se muestra (unidades en mA). El circuito está formado por un filtro RC (con $C=4.8\,\mu{\rm F}$) y un amplificador de corriente-tensión. La ganancia del amplificador es $K=30\,{\rm V/mA}$ y sus resistencias de entrada y salida se muestran en la figura. **Nota:** $1\,\mu{\rm F}=10^{-6}\,{\rm F}$.

- 1. ¿Es un circuito paso alto o paso bajo? ¿Por qué?
- 2. Determine la frecuencia de corte f_0 del circuito. **Sugerencia:** Dibuje el circuito equivalente del amplificador.
- 3. Dibuje la ganancia del circuito v_0/i en función de la frecuencia (diagrama de Bode de amplitudes). Señale las cotas relevantes.
- 4. Dibuje de forma aproximada el **espectro de amplitudes** de la corriente de entrada del amplificador i_1 . Señale las amplitudes de todos los armónicos e ignore las fases.
- 5. Dibuje de forma aproximada el **espectro de amplitudes** de la señal de salida v_0 . Señale las amplitudes de todos los armónicos e ignore las fases.

2. Problema

El circuito de la figura debe suministrar una tensión de salida v_0 proporcional a la temperatura del sensor IC. Este sensor es modelado como una fuente de tensión V_T con resistencia de salida de $200\,\Omega$. Es lineal en el margen de $T\in[0,100]\,\mathrm{C}$, donde T es la temperatura del sensor; su sensibilidad es $0.05\,\mathrm{V/C}$. Además, $V_T=1\,\mathrm{V}$ a $T=0\,\mathrm{C}$.

El amplificador de tensión es ideal y tiene ganancia A. Tanto el sensor IC como el amplificador están conectados a una fuente de alimentación no mostrada en la figura.

Queremos determinar los valores de R y A para que la tensión de salida v_0 sea proporcional a la temperatura del sensor IC en el margen de $T \in [0, 100]$ C con una sensibilidad de $0.1\,\mathrm{V/C}$. Además, queremos que $v_0 = 0\,\mathrm{V}$ cuando $T = 0\,\mathrm{C}$.

- 1. Dibuje la tensión V_T del sensor en función de la temperatura en el intervalo $T \in [0, 100]$ C.
- 2. Dibuje v_0 en función de la temperatura en el intervalo $T \in [0, 100]$ C.
- 3. ¿Cuánto debe valer v_x si T=0 C? Explique el motivo.
- 4. ¿Para qué sirve R? Determine su valor.
- 5. Con el valor de R calculado en el apartado anterior, dibuje la tensión v_x en función de la temperatura en el intervalo $T \in [0, 100]$ C.
- 6. ¿Para qué sirve el amplificador de salida del circuito? Determine su ganancia.
- 7. Diseñe la etapa amplificadora usando amplificadores operacionales. Suponga que usamos amplificadores operacionales que se alimentan a $\pm 15\,\mathrm{V}$ y que su corriente de salida está limitada a $\pm 20\,\mathrm{mA}$. Especifique el valor de los componentes para que el amplificador operacional no sature. Demuestre que el amplificador operacional no satura con los valores elegidos.

electrónica, marzo 2021

Solución 1

1. Es un circuito paso bajo. A altas frecuencias el condensador se cortocircuita, por lo que $i_1(t) = 0$ y $v_0 = 0$. A bajas frecuencias C es un circuito abierto e $i_1 = (2/3)i$ y, por tanto, $v_0 \neq 0$.

- 2. La frecuencia de corte es $f_0 = 1/(2\pi\tau)$, donde τ es la constante de tiempo del circuito. La constante de tiempo es $\tau = (1\,\mathrm{k}||500)\,C = (1/3)\,\mathrm{k}\Omega\times4.8\,\mu\mathrm{F} \approx 1.7\,\mathrm{ms}$. Por tanto, $f_0 \approx 100\,\mathrm{Hz}$.
- 3. La respuesta en frecuencia del circuito corresponde a la de una **red paso-bajo de primer orden** con ganancia G a bajas frecuencias $G_{\text{max}} = (20/3) \text{ V/mA}$ y frecuencia de corte $f_0 = 100 \text{ Hz}$.

- 4. El espectro de la corriente de entrada del amplificador está formado por un nivel medio de 0.67 mA, un armónico en 50 Hz de 0.13 mA de amplitud y otro armónico en 1000 Hz de 0.013 mA de amplitud.
- 5. El espectro de salida está formado por un nivel medio de $6.7\,\mathrm{V}$, un armónico en $50\,\mathrm{Hz}$ de $1.3\,\mathrm{V}$ de amplitud y otro armónico en $1000\,\mathrm{Hz}$ de $0.13\,\mathrm{V}$ de amplitud. Este espectro es el de la corriente i_1 del apartado anterior convertido a tensión por el factor $30\,\mathrm{V/mA} \times 1/3 = 10\,\mathrm{V/mA}$.

Solución 2

Este circuito debe producir una tensión de salida proporcional a la temperatura del sensor en el margen de $T \in [0, 100]$ °C. Consta de dos etapas. (1) **Sumador**. El sensor suministra 1 V a T = 0 °C. Como queremos que a esa temperatura $v_0 = 0$, el circuito sumador debe eliminar el offset del sensor. (2) **Amplificador**. Aumenta la sensibilidad del circuito al valor deseado.

- 1. La tensión del sensor es lineal en el margen de $T \in [0, 100]$ °C, $V_T \in [1, 6]$ V.
- 2. La tensión de salida es lineal en el margen de $T \in [0, 100]$ °C, $v_0 \in [0, 10]$ V.
- 3. La tensión de salida debe ser $v_0 = 0$ en T = 0 °C. Es decir, $v_x = 0$.
- 4. El divisor resistivo se usa para que $v_x=0$ cuando $T=0\,^{\rm o}{\rm C}$, eliminando el offset del sensor. Para ello, $R=2\,{\rm k}\Omega$.
- 5. La tensión de entrada del amplificador v_x es lineal en el margen de $T \in [0, 100]$ °C, $v_x \in [0, 4.5]$ V.
- 6. El amplificador se usa para ajustar la sensibilidad del circuito al valor deseado. Como $v_0 = A v_x$, A = 2.2 V/V.
- 7. Usamos un amplificador no inversor de ganancia $1+R_2/R_1$. Para evitar la saturación en corriente del operacional, $i_{0,\max}=15/(R_1+R_2)<20\,\mathrm{mA}$. Si $R_1=1\,\mathrm{k}\Omega$ y $R_2=1.2\,\mathrm{k}\Omega$, conseguimos $A=2.2\,\mathrm{y}$ garantizamos que el OP-AMP no sature en corriente.