AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (currently amended) A <u>compoundSTAT 6 activation inhibitor which comprises a diaminopyrimidinecarboxamide derivative</u> represented by a formula (I) or a salt thereof and a pharmaceutically acceptable carrier,

$$R^{4} \xrightarrow{R^{3}} HN \xrightarrow{Y-B} CO-NR^{1}R^{2}$$

$$A^{1} \xrightarrow{A^{2}} (CH_{2})_{n} \xrightarrow{N} N$$

$$(I)$$

wherein(symbols in the formula have the following meanings:

 A^1 : CR^5 or N,

R⁵: -H, -lower alkyl, -O-lower alkyl or -halogen,

 A^2 : CR^6 or N,

R⁶: -H or -halogen,

R³: -R⁰, -lower alkyl substituted with halogen, -halogen,

-OR⁰, -S-lower alkyl, -CO-lower alkyl, -CO₂-lower alkyl,

-lower alkylene-OH, -hetero ring, -O-hetero ring, -N(R^0)-hetero ring, -lower alkylene-hetero ring, -O-lower alkylene-hetero ring, -S-lower alkylene-hetero

Attorney Docket No.: Q85356

ring, $-SO_2$ -lower alkylene-hetero ring, $-N(R^0)$ -lower alkylene-hetero ring, -lower alkylene-CO-hetero ring, -lower alkylene- $N(R^0)_2$, $-SO_2$ - $N(R^0)$ -lower alkylene-lower alkylene- $N(R^0)$ -CO₂-lower alkylene-phenyl,

R⁰: the same or different from one another, and each is H or a lower alkyl, n: 0 or 2,

 R^4 : (i) when n=2, $-R^0$, -lower alkyl substituted with halogen, $-OR^0$, $-N(R^0)$ -CHO, - $N(R^0)$ -CO-lower alkyl or $-N(R^0)$ -SO₂-lower alkyl,

(ii) when n=0, -H, -lower alkyl substituted with halogen, -OH, -NH-CHO, -CON(R^0)₂, -lower alkylene substituted with halogen-OH, -lower alkylene-NH₂, -lower alkylene-NHCONH₂, -lower alkylene-CO₂H, -lower alkylene-CO₂-lower alkylene-CN, or -CH(lower alkylene-OH)₂, or a group represented by a formula -X^a-R^{4a},

 X^a : single bond, -O-, -CO-, -S-, -SO₂-, -N(R⁰)-, -N(R⁰)CO-, -N(R⁰)SO₂-, -lower alkylene-O-, -lower alkylene-N(R⁰)CO-, -lower alkylene-N(R⁰)SO₂-, -lower alkylene-N(R⁰)CO₂-, -N(CO-R⁰)-, -N(SO₂-lower alkyl)-, -CON(R⁰)-, -lower alkylene-O-CO-, -lower alkenylene-CO-, -lower alkenylene-CO₂-, -O-(CH₂)_k-cycloalkylene-(CH₂)_m-, -N(R⁰)-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CO-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CO-(CH₂)_k-cycloalkylene-(CH₂)_m-, k and m, the same or different from each other, and each is 0, 1, 2, 3 or 4,

R^{4a}: lower alkyl, phenyl, hetero ring, cycloalkyl, lower alkylene-phenyl, lower alkylene-hetero ring, lower alkylene-OH, lower alkenyl, lower alkenylene-phenyl or lower alkenylene-hetero ring,

wherein the hetero rings in R^3 and R^{4a} may be substituted with 1 to 5 of lower alkyl, halogen, $-OR^0$, -S-lower alkyl, -S(O)-lower alkyl, $-SO_2$ -lower alkyl, lower alkylene- OR^0 , -

Attorney Docket No.: Q85356

 $N(R^0)_2$, $-CO_2R^0$, $-CON(R^0)_2$, -CN, -CHO, $-SO_2N(R^0)_2$, $-N(R^0)-SO_2$ -lower alkyl, $-N(R^0)-CO_2$ -N($R^0)_2$, $-N(R^0)-CO_2$ -lower alkyl, $-N(R^0)-CO_2$ -cycloalkyl, -NH-C(=NH)-NH-lower alkyl, -NH-C(=N-CN)-NH-lower alkyl, hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH), -lower alkylene-NH-C(=NN)-NH₂, -O-phenyl, -CO-phenyl, $-N(R^0)-CO$ -lower alkylene-N($R^0)-CO$ -lower alkylene-N($R^0)_2$, -lower alkylene-N($R^0)-CO$ -lower alkylene-N($R^0)_2$, -CO-lower alkylene-N($R^0)_2$, -lower alkylene-N($R^0)_2$, -lower alkylene-N($R^0)_2$, -lower alkylene-N($R^0)_2$, -lower alkylene-N($R^0)-CO_2$ -lower alkylene-N(R

wherein the lower alkylene in R^3 , R^4 , R^{4a} and X^a may be substituted with 1 to 5 of $-OR^0$, $-CO_2R^0$, $-CON(R^0)_2$, $-N(R^0)_2$, $-N(R^0)COR^0$ or hetero ring, or

 R^3 and R^4 may together form *-N(R^7)-(CH₂)₂-, *-(CH₂)₂-N(R^7)-, *-CH₂-N(R^7)-CH₂-, *-N(R^7)-(CH₂)₃-, *-(CH₂)₃-N(R^7)-, *-CH₂-N(R^7)-(CH₂)₂-, *-(CH₂)₂-N(R^7)-CH₂-, *-C(O)-N(R^7)-(CH₂)₂-, *-(CH₂)₂-N(R^7)-C(O)-, *-N(R^7)-CH=CH-, *-CH=CH-N(R^7)-, *-N=CH-CH=CH-, *-CH=CH-N=CH-, *-CH=CH-CH=N-, *-N=CH-CH=N-, *-N=CH-CH=N-, *-CH=N-N=CH-, *-CH=N-N=CH-, *-CH=N-N(R^7)-, *-O-CH₂-O-, *-O-(CH₂)₂-O-, *-O-(CH₂)₃-O-, *-O-(CH₂)₂-N(R^7)-, *-(CH₂)₂-C(O)-, *-CH=CH-C(O)-O- or *-N=C(CF₃)-NH-, wherein * indicates bonding to the position shown by R^3 ,

R⁷: -H, -lower alkyl or -CO-lower alkyl,

B: H, lower alkenyl, lower alkynyl, lower alkyl substituted with halogen, CN, S-lower alkyl, aryl which may have a substituent(s), cycloalkyl which may have a substituent(s) or hetero ring which may have a substituent(s),

Y: single bond; or lower alkylene which may be substituted with 1 to 5 groups selected from halogen, OH, O-lower alkyl, -NH₂, -NH-lower alkyl and -N(lower alkyl)₂, and

R¹ and R²: the same or different from each other, and each represents H, lower alkyl or O-lower alkyl which may have a substituent(s)).

- 2. (canceled).
- 3. (currently amended) A <u>compound</u>diaminopyrimidinecarboxamide derivative represented by a formula (Ia) or a salt thereof,

$$R^{4}$$
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5

wherein(symbols in the formula have the following meanings:

 A^1 : CR^5 or N,

R⁵: -H, -lower alkyl, -O-lower alkyl or -halogen,

R³: -R⁰, -lower alkyl substituted with halogen, -halogen,

-OR⁰, -S-lower alkyl, -CO-lower alkyl, -CO₂-lower alkyl,

-lower alkylene-OH, -saturated hetero ring, $-X^b$ -heteroaryl, $-X^b$ -saturated hetero ring, $-X^b$ -heteroaryl, -lower alkylene-N(R^0)₂, -SO₂-N(R^0)-lower alkylene-N(R^0)-CO₂-lower alkylene-phenyl,

 X^b : -lower alkylene-, -O-lower alkylene-, -S-lower alkylene-, -SO-lower alkylene-, -SO-lower alkylene-, -N(R^0)-lower alkylene- or -lower alkylene-CO-,

R⁰: the same or different from one another, and each represents H or a lower alkyl,

R⁴: -X^a-saturated hetero ring, -lower alkylene-saturated hetero ring or -lower alkenylene-saturated hetero ring,

 X^a : single bond, -O-, -CO-, -S-, -SO₂-, -N(R⁰)-, -N(R⁰)CO-, -N(R⁰)SO₂-, -lower alkylene-O-, -lower alkylene-N(R⁰)CO- or -lower alkylene-N(R⁰)SO₂-, -lower alkylene-N(R⁰)CO₂-, -N(CO-R⁰)-, -N(SO₂-lower alkyl)-, -CON(R⁰)-, -lower alkylene-O-CO-, -lower alkenylene-CO-, -lower alkenylene-CON(R⁰)-, -lower alkenylene-CO₂-, -O-(CH₂)_k-cycloalkylene-(CH₂)_m-, -N(R⁰)-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CO-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CON(R⁰)-(CH₂)_k-cycloalkylene-(CH₂)_m-, or -N(R⁰)CO-(CH₂)_k-cycloalkylene-(CH₂)_m-, k and m: the same or different from each other, and each is 0, 1, 2, 3 or 4,

wherein the saturated hetero rings in R^3 and $R^{4a}\underline{R^4}$ may be substituted with 1 to 5 of lower alkyl, halogen, $-OR^0$, -S-lower alkyl, -S(O)-lower alkyl, $-SO_2$ -lower alkyl, lower alkylene- OR^0 , $-N(R^0)_2$, $-CO_2R^0$, $-CON(R^0)_2$, -CN, -CHO, $-SO_2N(R^0)_2$, $-N(R^0)$ - SO_2 -lower alkyl, $-N(R^0)$ -CO- $N(R^0)_2$, $-N(R^0)$ - CO_2 -lower alkyl, $-N(R^0)$ - CO_2 -cycloalkyl, -NH-C(=NH)-NH-lower alkyl, -NH-C(=N-CN)-NH-lower alkyl, saturated hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, $-N(R^0)$ --CO-lower alkylene- $-N(R^0)$ --CO- $-N(R^0)$ --CO-lower alkylene- $-N(R^0)$ --CO- $-N(R^0)$ --

AMENDMENT UNDER 37 C.F.R. § 1.111

Application No.: 10/518,043

CO-lower alkylene- $N(R^0)_2$, -CO-lower alkylene- CO_2R^0 , -lower alkylene- $N(R^0)_2$, -lower alkylene- $N(R^0)_2$, -lower alkylene- $N(R^0)_2$, -lower alkylene- $N(R^0)_2$ alkylene- $N(R^0)_2$ alkylene- $N(R^0)_2$ alkylene- $N(R^0)_2$ alkylene-hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH),

Attorney Docket No.: Q85356

-lower alkylene-O-lower alkylene-phenyl, =N-O-R 0 or oxo, and phenyl and cycloalkyl may be substituted with 1 to 5 of lower alkyl, OH, O-lower alkyl or N(R 0)₂, and

wherein the lower alkylene in R^3 , R^4 and X^a may be substituted with 1 to 5 of -OR⁰, -CO₂R⁰, -CON(R⁰)₂, -N(R⁰)₂, -N(R⁰)COR⁰ or hetero ring, or

 $R^{3} \text{ and } R^{4} \text{ may together form *-N(R^{7})-(CH_{2})_{2}-, *-(CH_{2})_{2}-N(R^{7})-, *-CH_{2}-N(R^{7})-CH_{2}-, *-N(R^{7})-(CH_{2})_{3}-, *-(CH_{2})_{3}-N(R^{7})-, *-CH_{2}-N(R^{7})-(CH_{2})_{2}-, *-(CH_{2})_{2}-N(R^{7})-CH_{2}-, *-C(O)-N(R^{7})-(CH_{2})_{2}-, *-(CH_{2})_{2}-N(R^{7})-C(O)-, *-N(R^{7})-CH=CH-, *-CH=CH-N(R^{7})-, *-N=CH-CH=CH-, *-CH=CH-N=CH-, *-CH=CH-N=CH-, *-N=CH-CH=N-, *-CH=CH-CH=N-, *-CH=N-N=CH-, *-N(R^{7})-N=CH-, *-CH=N-N(R^{7})-, *-O-CH_{2}-O-, *-O-(CH_{2})_{2}-O-, *-O-(CH_{2})_{3}-O-, *-O-(CH_{2})_{2}-N(R^{7})-, *-(CH_{2})_{2}-C(O)-, *-CH=CH-C(O)-O- or *-N=C(CF_{3})-NH-, wherein * indicates bonding to the position shown by <math>R^{3}$,

R⁷: -H, -lower alkyl or -CO-lower alkyl,

B: aryl which may have a substituent(s) or heteroaryl which may have a substituent(s), and

R¹ and R²: the same or different from each other, and each represents H, lower alkyl or O-lower alkyl which may have a substituent(s).

Application No.: 10/518,043

4. (currently amended) A <u>compound</u>diaminopyrimidinecarboxamide derivative represented by a formula (Ib) or a salt thereof,

$$R^4$$
 R^3
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^4
 R^4
 R^4
 R^5
 R^4
 R^4
 R^5
 R^6
 R^6

wherein(symbols in the formula have the following meanings:

 A^1 : CR^5 or N,

R⁵: -H, -lower alkyl, -O-lower alkyl or -halogen,

R³: -saturated hetero ring or -X^b-saturated hetero ring,

 X^b : -lower alkylene-, -O-, $-N(R^0)$ -, -O-lower alkylene-, -S-lower alkylene-, -SO-lower alkylene-, -N(R^0)-lower alkylene- or -lower alkylene-CO-,

R⁰: the same or different from one another, and each represents H or a lower alkyl,

 R^4 : -H, –lower alkyl substituted with halogen, -OH, -NH-CHO, -CON(R^0)₂, –lower alkylene substituted with halogen-OH, -lower alkylene-NH₂, -lower alkylene-NHCONH₂, -lower alkylene-CO₂H, -lower alkylene-CO₂-lower alkylene-CN, –CH(lower alkylene-OH)₂ or $-X^a$ - R^{4a} ,

 X^a : single bond, -O-, -CO-, -S-, -SO₂-, -N(R⁰)-, -N(R⁰)CO-, -N(R⁰)SO₂-, -lower alkylene-O-, -lower alkylene-N(R⁰)CO- or -lower alkylene-N(R⁰)SO₂-, -lower alkylene-N(R⁰)CO₂-, -N(CO-R⁰)-, -N(SO₂-lower alkyl)-, -CON(R⁰)-, -lower alkylene-O-CO-, -lower alkenylene-CO-, -lower alkenylene-CO₂-, -O-(CH₂)_k-

cycloalkylene- $(CH_2)_m$ -, $-N(R^0)$ - $(CH_2)_k$ -cycloalkylene- $(CH_2)_m$ -, -CO- $(CH_2)_k$ -cycloalkylene- $(CH_2)_m$ -, $-CON(R^0)$ - $(CH_2)_k$ -cycloalkylene- $(CH_2)_m$ - or $-N(R^0)$ CO- $(CH_2)_k$ -cycloalkylene- $(CH_2)_m$ -,

Attorney Docket No.: Q85356

k and m: the same or different from each other, and each is 0, 1, 2, 3 or 4,

R^{4a}: lower alkyl, phenyl, heteroaryl, cycloalkyl, lower alkylene-phenyl, lower alkylene-heteroaryl, lower alkylene-OH, lower alkenyl, lower alkenylene-phenyl or lower alkenylene-heteroaryl,

wherein the saturated hetero ring and heteroaryl in R^3 and R^{4a} may be substituted with 1 to 5 of lower alkyl, halogen, $-OR^0$, -S-lower alkyl, -S(O)-lower alkyl, -SO₂-lower alkyl, lower alkylene- OR^0 , $-N(R^0)_2$, $-CO_2R^0$, $-CON(R^0)_2$, -CN, -CHO, $-SO_2N(R^0)_2$, $-N(R^0)-SO_2$ -lower alkyl, $-N(R^0)-CO_2$ -lower alkyl, $-N(R^0)-CO_2$ -cycloalkyl, -NH-C(=NH)-NH-lower alkyl, -NH-C(=N-CN)-NH-lower alkyl, hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, $-N(R^0)-CO$ -lower alkylene- $-N(R^0)-CO$ -lower alkylene--N

the lower alkylene in R^3 , R^4 , R^{4a} and X^a may be substituted with 1 to 5 of $-OR^0$, $-CO_2R^0$, $-CO_1R^0$, $-N(R^0)_2$, $-N(R^0)_2$, $-N(R^0)_2$ or hetero ring, or

Application No.: 10/518,043

 $R^{3} \text{ and } R^{4} \text{ may together form *-N(R^{7})-(CH_{2})_{2}-, *-(CH_{2})_{2}-N(R^{7})-, *-CH_{2}-N(R^{7})-CH_{2}-, *-N(R^{7})-(CH_{2})_{3}-, *-(CH_{2})_{3}-N(R^{7})-, *-CH_{2}-N(R^{7})-(CH_{2})_{2}-, *-(CH_{2})_{2}-N(R^{7})-CH_{2}-, *-C(O)-N(R^{7})-(CH_{2})_{2}-, *-(CH_{2})_{2}-N(R^{7})-C(O)-, *-N(R^{7})-CH=CH-, *-CH=CH-N(R^{7})-, *-N=CH-CH=CH-, *-CH=CH-N=CH-, *-CH=CH-N=CH-, *-N=CH-CH=N-, *-CH=CH-CH=N-, *-CH=N-N=CH-, *-N(R^{7})-N=CH-, *-CH=N-N(R^{7})-, *-O-CH_{2}-O-, *-O-(CH_{2})_{2}-O-, *-O-(CH_{2})_{3}-O-, *-O-(CH_{2})_{2}-N(R^{7})-, *-(CH_{2})_{2}-C(O)-, *-CH=CH-C(O)-O- or *-N=C(CF_{3})-NH-, wherein * indicates bonding to the position shown by <math>R^{3}$,

R⁷: -H, -lower alkyl or -CO-lower alkyl,

B: aryl which may have a substituent(s) or heteroaryl which may have a substituent(s), and

 R^1 and R^2 : the same or different from each other, and each represents H, lower alkyl or O-lower alkyl which may have a substituent(s).

5. (canceled)

6. (currently amended) A <u>compounddiaminopyrimidinecarboxamide</u> selected from the group consisting of 4-benzylamino-2-[(4-morpholin-4-ylphenyl)amino]pyrimidine-5-carboxamide, 2-[(4-morpholin-4-ylphenyl)amino]-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide, 4-[(2,5-difluorobenzyl)amino]-2-[(4-morpholin-4-ylphenyl)amino]pyrimidine-5-carboxamide, 4-[(2,6-difluorobenzyl)amino]-2-[(4-morpholin-4-ylphenyl)amino]pyrimidine-5-carboxamide, 4-[(2-methoxybenzyl)amino]-2-[(4-morpholin-4-ylphenyl)amino]pyrimidine-5-carboxamide, 4-[(2-fluoro-6-methoxybenzyl)amino]-2-[(4-morpholin-4-ylphenyl)amino]pyrimidine-5-carboxamide, 2-({4-[(1-methylpiperidin-3-yl)oxy]phenyl}amino)-

Application No.: 10/518,043

4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide, 2-{[4-(1-azabicyclo[2.2.2]oct-3-yloxy)phenyl]amino}-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide, 2-[(4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl)amino]-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide, 2-({4-[4-(2-amino-2-oxoethyl)piperazin-1-yl]phenyl}amino)-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide, 2-{[4-(2-morpholin-4-ylethoxy)phenyl]amino}-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide, 2-{[4-(β-D-glucopyranosyloxy)phenyl]amino}-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide, 4-benzylamino-2-{[2-(3-chloro-4-hydroxyphenyl)ethyl]amino}pyrimidine-5-carboxamide, 4-benzylamino-2-{[2-(3,5-dichloro-4-hydroxyphenyl)ethyl]amino}pyrimidine-5-carboxamide, 4-{[(3-chloro-2-thienyl)amino]-4-[(2-thienylmethyl)amino]pyrimidine-5-carboxamide, 4-{[(3-chloro-2-thienyl)methyl]amino}-2-[(4-morpholin-4-ylethyl)phenyl]amino}-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide and 2-{[3-(2-morpholin-4-ylethyl)phenyl]amino}-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide or salts thereof.

- 7. (currently amended) A pharmaceutical-composition comprising a compound of any one of claims 1, 3 or 4, which comprises the diaminopyrimidinecarboxamide derivative or a salt thereof, described in claims 3 to 6 and a pharmaceutically acceptable carrier.
 - 8 (canceled)
- 9. (currently amended) The composition described in claim 8, which is a preventive or therapeutic agent for asthma A method for treating asthma comprising administering an

AMENDMENT UNDER 37 C.F.R. § 1.111

Application No.: 10/518,043

Attorney Docket No.: Q85356

effective amount of a compound or a salt thereof, according to any one of claims 1, 3 or 4, to the

subject, wherein the subject is a mammal.

10. (currently amended) The composition described in claim 8, which is a preventive

or therapeutic agent for a chronic obstructive pulmonary disease A method for treating a chronic

obstructive pulmonary disease (COPD) comprising administering an effective amount of a

compound or a salt thereof, according to any one of claims 1, 3 or 4, to the subject, wherein the

subject is a mammal.

Claims 11-12 (Canceled)

13. (currently amended) A method for inhibitory activity for inhibiting STAT 6

activation in a subject, which comprises administering an effective amount of a

compounddiaminopyrimidinecarboxamide derivative represented by the followinggeneral

formula (I) described in claim 1,

$$R^4$$
 A^2
 $(CH_2)_n$
 N
 N
 $CO-NR^1R^2$
 $(CH_2)_n$
 $(CH_2)_n$

wherein

 A^1 : CR^5 or N,

13

Application No.: 10/518,043

R⁵: -H, -lower alkyl, -O-lower alkyl or -halogen,

 A^2 : CR^6 or N,

R⁶: -H or –halogen,

 R^3 : $-R^0$, —lower alkyl substituted with halogen, -halogen, $-OR^0$, -S-lower alkyl, -CO-lower alkyl, -CO₂-lower alkyl, -lower alkylene-OH, -hetero ring, -O-hetero ring, -N(R^0)-hetero ring, -lower alkylene-hetero ring, -S-lower alkylene-hetero ring, -S-lower alkylene-hetero ring, -SO₂-lower alkylene-hetero ring, -N(R^0)-lower alkylene-hetero ring, -lower alkylene-hetero ring, -lower alkylene-hetero ring, -lower alkylene-N(R^0)-lower alkylene-hetero alkylene-N(R^0)-lower alkylene-hetero ring, -lower alkylene-hetero ring, -SO₂-N(R^0)-lower alkylene-hetero ring, -lower alkylene-hetero ring, -lower alkylene-hetero ring, -SO₂-N(R^0)-lower alkylene-hetero ring, -lower alkylene-hetero ring, -SO₂-N(R^0)-lower alkylene-hetero ring, -lower alkylene-hetero ring, -SO₂-N(R^0)-lower alkylene-hetero ring, -SO₂-N(R^0)-lower

R⁰: the same or different from one another, and each is H or a lower alkyl, n: 0 or 2,

 R^4 : (i) when n = 2, $-R^0$, —lower alkyl substituted with halogen, $-OR^0$, $-N(R^0)$ -CHO, — $N(R^0)$ -CO-lower alkyl or $-N(R^0)$ -SO₂-lower alkyl,

(ii) when n = 0, -H, -lower alkyl substituted with halogen, -OH, -NH-CHO, -CON(R^0)₂, -lower alkylene substituted with halogen-OH, -lower alkylene-NH₂, -lower alkylene-NHCONH₂, -lower alkylene-CO₂H, -lower alkylene-CO₂-lower alkylene-CN, or -CH(lower alkylene-OH)₂, or a group represented by a formula -X^a-R^{4a},

X^a: single bond, -O-, -CO-, -S-, -SO₂-, -N(R⁰)-,

 $-N(R^0)CO-, -N(R^0)SO_2-, -lower alkylene-O-, -lower alkylene-N(R^0)-, -lower alkylene-N(R^0)-, -lower alkylene-N(R^0)CO_2-, -N(CO-R^0)-, -N(SO_2-lower alkylene-N(R^0)-, -lower alkylene-O-CO-, -lower alkenylene-CO-, -lower alke$

Application No.: 10/518,043

 $\frac{\text{CON}(R^0)\text{-, -lower alkenylene-CO}_2\text{-, -O-(CH}_2)_k\text{-cycloalkylene-(CH}_2)_m\text{-, -N}(R^0)\text{-(CH}_2)_k\text{-}}{\text{cycloalkylene-(CH}_2)_m\text{-, -CO-(CH}_2)_k\text{-cycloalkylene-(CH}_2)_m\text{-, -CON}(R^0)\text{-(CH}_2)_k\text{-cycloalkylene-(CH}_2)_m\text{-, -CON}(R^0)\text{-(CH}_2)_k\text{-cycloalkylene-(CH}_2)_k\text{-(CH}_2)_k\text{-cycloalkylene-(CH}_2)_k\text{--CON}(R^0)$

k and m, the same or different from each other, and each is 0, 1, 2, 3 or 4,

R^{4a}: lower alkyl, phenyl, hetero ring, cycloalkyl, lower alkylene-phenyl, lower alkylene-hetero ring, lower alkylene-OH, lower alkenyl, lower alkenylene-phenyl or lower alkenylene-hetero ring,

wherein the hetero rings in R^3 and R^{4a} may be substituted with 1 to 5 of lower alkyl, halogen, $-OR^0$, -S-lower alkyl, -S(O)-lower alkyl, $-SO_2$ -lower alkyl, lower alkylene- OR^0 , $-N(R^0)_2$, $-CO_2R^0$, $-CON(R^0)_2$, -CN, -CHO, $-SO_2N(R^0)_2$, $-N(R^0)$ -SO $_2$ -lower alkyl, $-N(R^0)$ -CO- $N(R^0)_2$, $-N(R^0)$ -CO $_2$ -lower alkyl, $-N(R^0)$ -CO $_2$ -cycloalkyl, -NH-C(=NH)-NH-lower alkyl, -NH-C(=N-CN)-NH-lower alkyl, hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH), -lower alkylene-NH-C(=NN)-NH $_2$, -O-phenyl, -CO-phenyl, $-N(R^0)$ -CO-lower alkyl, $-N(R^0)$ -CO-lower alkylene- $N(R^0)_2$, -lower alkylene- $N(R^0)_2$, -CO-lower alkylene- $N(R^0)_2$, -CO-lower alkylene- $N(R^0)_2$, -lower alkylene-hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH), -lower alkylene-O-lower alkylene-phenyl, =N-O-R 0 or oxo, and phenyl and cycloalkyl may be substituted with 1 to 5 of lower alkyl, OH, O-lower alkyl or $N(R^0)_2$, and

Application No.: 10/518,043

wherein the lower alkylene in R^3 , R^4 , R^{4a} and X^a may be substituted with 1 to 5 of -OR⁰, - CO_2R^0 , - $CON(R^0)_2$, - $N(R^0)_2$, - $N(R^0)COR^0$ or hetero ring, or

wherein * indicates bonding to the position shown by R³,

 R^7 : -H, -lower alkyl or -CO-lower alkyl,

B: H, lower alkenyl, lower alkynyl, lower alkyl substituted with halogen, CN, S-lower alkyl, aryl which may have a substituent(s), cycloalkyl which may have a substituent(s) or hetero ring which may have a substituent(s),

Y: single bond; or lower alkylene which may be substituted with 1 to 5 groups selected from halogen, OH, O-lower alkyl, -NH₂, -NH-lower alkyl and -N(lower alkyl)₂, and

 R^1 and R^2 : the same or different from each other, and each represents H, lower alkyl or O-lower alkyl which may have a substituent(s), or a salt thereof, to a mammal the subject, wherein the subject is a mammal.

14. (currently amended) A method for inhibitory activity for inhibiting Th2 cell differentiation induced by STAT6 activation in a subject, which comprises administering an

Application No.: 10/518,043

effective amount of a <u>compound</u>diaminopyrimidinecarboxamide derivative represented by the followinggeneral formula (I) described in claim 1

$$R^4$$
 A^2
 $(CH_2)_n$
 N
 N
 $CO-NR^1R^2$
 (D)

wherein

 A^1 : CR^5 or N,

R⁵: -H, -lower alkyl, -O-lower alkyl or -halogen,

 A^2 : CR^6 or N,

R⁶: -H or –halogen,

 R^3 : $-R^0$, —lower alkyl substituted with halogen, -halogen, $-OR^0$, -S-lower alkyl, -CO-lower alkyl, -CO₂-lower alkyl, -lower alkylene-OH, -hetero ring, -O-hetero ring, -N(R^0)-hetero ring, -lower alkylene-hetero ring, -S-lower alkylene-hetero ring, -S-lower alkylene-hetero ring, -SO₂-lower alkylene-hetero ring, -N(R^0)-lower alkylene-hetero ring, -lower alkylene-hetero ring, -lower alkylene-N(R^0)-lower alkylene-hetero alkylene-N(R^0)-lower alkylene-hetero ring, -lower alkylene-hetero ring, -SO₂-N(R^0)-lower alkylene-hetero ring, -lower alkylene-hetero

R⁰: the same or different from one another, and each is H or a lower alkyl, n: 0 or 2,

Application No.: 10/518,043

 R^4 : (i) when n = 2, $-R^0$, -lower alkyl substituted with halogen, $-OR^0$, $-N(R^0)$ -CHO, - $N(R^0)$ -CO-lower alkyl or $-N(R^0)$ -SO₂-lower alkyl,

(ii) when n = 0, -H, -lower alkyl substituted with halogen, -OH, -NH-CHO, -CON(R^0)₂, -lower alkylene substituted with halogen-OH, -lower alkylene-NH₂, -lower alkylene-NHCONH₂, -lower alkylene-CO₂H, -lower alkylene-CO₂-lower alkylene-CN, or -CH(lower alkylene-OH)₂, or a group represented by a formula -X^a-R^{4a},

 X^{a} : single bond, -O-, -CO-, -S-, -SO₂-, -N(R^{0})-,

 $-N(R^0)CO_{-}, -N(R^0)SO_{\underline{2}^-}, -lower alkylene_{-}O_{-}, -lower alkylene_{-}N(R^0)_{-}, -lower alkylene_{-}N(R^0)_{-}, -lower alkylene_{-}N(R^0)_{-}, -lower alkylene_{-}N(R^0)_{-}, -N(SO_{\underline{2}^-}lower alkylene_{-}N(R^0)_{-}, -lower alkylene_{-}O_{-}, -lower alkenylene_{-}CO_{-}, -lower alkenylene_{-}CO_{-}, -lower alkenylene_{-}CO_{-}, -lower alkenylene_{-}CO_{-}, -lower alkenylene_{-}CO_{-}, -lower alkenylene_{-}(CH_{\underline{2}})_{\underline{m}^-}, -N(R^0)_{-}(CH_{\underline{2}})_{\underline{k}^-}$ $-CON(R^0)_{-}, -lower alkenylene_{-}CO_{\underline{2}^-}, -O_{-}(CH_{\underline{2}})_{\underline{k}^-} -cycloalkylene_{-}(CH_{\underline{2}})_{\underline{m}^-}, -N(R^0)_{-}(CH_{\underline{2}})_{\underline{k}^-} -cycloalkylene_{-}(CH_{\underline{2}})_{\underline{m}^-}, -CON(R^0)_{-}(CH_{\underline{2}})_{\underline{k}^-} -cycloalkylene_{-}(CH_{\underline{2}})_{\underline{k}^-} -cycloalkylene_{-}(CH_{\underline{2}})_{\underline{k}^-} -cycloalkylene_{-}(CH_{\underline{2}})_{\underline{k}^-} -cycloalkylene_{-}(CH_{\underline{2}})_{\underline{k}^-} -cycloalkylene_{-}(CH_{\underline{2}})_{\underline{k}^-} -cycloalkylene_{-}(CH_{\underline{2}})_{\underline{k}^-} -cycloalkylene_{-}(CH_{\underline{2}})_{\underline{k}^-} -cycloalkylene_{-}(CH_{\underline{2}})_{\underline{k}^-} -cycloalkylene_{-}(CH_{\underline{2}})_{\underline{k}^-} -cycloalkylene_{-}(CH_{\underline{2}})_{\underline$

k and m, the same or different from each other, and each is 0, 1, 2, 3 or 4,

R^{4a}: lower alkyl, phenyl, hetero ring, cycloalkyl, lower alkylene-phenyl, lower alkylene-hetero ring, lower alkylene-OH, lower alkenyl, lower alkenylene-phenyl or lower alkenylene-hetero ring,

wherein the hetero rings in R^3 and R^{4a} may be substituted with 1 to 5 of lower alkyl, halogen, $-OR^0$, -S-lower alkyl, -S(O)-lower alkyl, $-SO_2$ -lower alkyl, lower alkylene- OR^0 , $-N(R^0)_2$, $-CO_2R^0$, $-CON(R^0)_2$, -CN, -CHO, $-SO_2N(R^0)_2$, $-N(R^0)$ - $-SO_2$ -lower alkyl, $-N(R^0)$ - $-CO_2$ -lower alkyl, $-N(R^0)$ - $-CO_2$ -cycloalkyl, -NH--C(=NH)--NH-lower alkyl, -NH--C(=NH)--C(=NH)--C(-NH)--C(=NH)--C(-

Application No.: 10/518,043

C(=N-CN)-NH-lower alkyl, hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH), -lower alkylene-NH-C(=NN)-NH₂, -O-phenyl, -CO-phenyl, -N(R⁰)-CO-lower alkylene-N(R⁰)-CO-lower alkylene-N(R⁰)₂, -CO-N(R⁰)-lower alkylene-N(R⁰)₂, -CO-lower alkylene-N(R⁰)₂, -CO-lower alkylene-N(R⁰)₂, -lower alkylene-N(R⁰)₂, -lower alkylene-N(R⁰)₂, -lower alkylene-N(R⁰)-CO-lower alkylene-N(R⁰)-CO-lower alkylene-N(R⁰)-CO-lower alkylene-hetero alkylene-N(R⁰)-CO₂-lower alkyl, -lower alkylene-N(R⁰)-SO₂-lower alkyl, -lower alkylene-hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH), -lower alkylene-O-lower alkylene-phenyl, =N-O-R⁰ or oxo, and phenyl and cycloalkyl may be substituted with 1 to 5 of lower alkyl, OH, O-lower alkyl or N(R⁰)₂, and wherein the lower alkylene in R³, R⁴, R^{4a} and X^a may be substituted with 1 to 5 of -OR⁰, -

 $\underline{CO_2R^0}$, $-\underline{CON(R^0)_2}$, $-\underline{N(R^0)_2}$, $-\underline{N(R^0)COR^0}$ or hetero ring, or

wherein * indicates bonding to the position shown by R³,

R⁷: -H, -lower alkyl or -CO-lower alkyl,

Application No.: 10/518,043

B: H, lower alkenyl, lower alkynyl, lower alkyl substituted with halogen, CN, S-lower alkyl, aryl which may have a substituent(s), cycloalkyl which may have a substituent(s) or hetero ring which may have a substituent(s),

Y: single bond; or lower alkylene which may be substituted with 1 to 5 groups selected from halogen, OH, O-lower alkyl, -NH₂, -NH-lower alkyl and -N(lower alkyl)₂, and

R¹ and R²: the same or different from each other, and each represents H, lower alkyl or O-lower alkyl which may have a substituent(s),

or a salt thereof, to a mammalthe subject, wherein the subject is a mammal.

- 15. (New) The compound of claim 1 wherein B is a cycloalkyl.
- 16. (New) The compound of claim 15 wherein B is cyclopropyl or cyclobutyl which may have a substituent(s).
 - 17. (New) The compound of claim 16 wherein B is cyclopropyl or cyclobutyl.
 - 18. (New) The compound of claim 15 wherein R¹ and R² are both H.
- 19. (New) The compound of claim 15 wherein A^1 is CR^5 and A^2 is CR^6 , and wherein R^5 and R^6 are both H.

20. (New) The compound of claim 15 wherein R^3 is $-R^0$, -halogen or -hetero ring, and wherein R^0 is H or lower alkyl.

- 21. (New) The compound of claim 20 wherein R^3 is -hetero ring substituted with 1 to 5 of lower alkyl, -OH, -SO₂-lower alkyl, lower alkylene-OR⁰, -CO₂R⁰, -CON(R⁰)₂ or -N(R⁰)-CO-lower alkyl.
 - 22. (New) The compound of claim 15 wherein n is 0.
- 23. (New) The compound of claim 22 wherein R^4 is $-X^a-R^{4a}$, and wherein X^a is a single bond, -CO-, -SO₂-, -N(R^0)CO- or -N(R^0)SO₂-, and R^{4a} is lower alkyl, phenyl, hetero ring, cycloalkyl or lower alkylene-OH.
- 24. (New) The compound of claim 23 wherein R^{4a} is hetero ring substituted with 1 to 5 of lower alkyl, -OH, -SO₂-lower alkyl, lower alkylene-OR⁰, -CO₂R⁰, -CON(R⁰)₂ or -N(R⁰)-CO-lower alkyl.
- 25. (New) The compound of claim 15 wherein R^3 and R^4 taken together form *-N(R^7)-CH=CH-, *-N(R^7)-N=CH- or *-CH=N-N(R^7)-, wherein * indicates bonding to the position shown by R^3 .