

UPPMAX

- Uppsala Multidisciplinary Center for Advanced Computational Science
- http://www.uppmax.uu.se/
- "UPPMAX provides resources and a common environment for an extensive community of researchers in a wide range of high performance computing (HPC) research fields."

December 13, 200

UPPMAX

- Director Sverker Holmgren
- Application experts:
 - Quantum Chemistry: Hans Karlsson
 - Algorithm & Code Development: Jarmo Rantakokko
 - · Scientific Visualization: Ingela Nyström
 - Molecular Dynamics: Daniel Spångberg
 - Bioinformatics: Ann-Charlotte Sonnhammer
- System experts

December 13, 200

UPPMAX

- Interdisciplinary resource for projects in
 - Astronomy
 - Bioscience
 - Chemistry
 - Geoscience
 - Mathematics
 - Physics
 - Computer Science
 - and others

December 13, 2005

Dictionary

- vi⋅su⋅al⋅ize
 - To form a mental image of; envisage: tried to visualize the scene as it was described
 - To make visible

"Visualization offers a way to see the unseen"

December 13, 2005

Interpreting data in visual terms

- When data is complex: Collected/Computed
- When numerous data
- Visualization is not a substitute to, but in addition to, statistical analysis and other quantitative methods
- Visualization takes advantage of human sensory abilities
 - Pattern recognition, Trend discovery, etc.

Scientific Visualization

- Scientific visualization is the process of exploring, transforming, and viewing data as images
- The dimensionality of the data is generally larger than or equal to 3
- Visualization is often interactive
- We are not trying to create realistic images, but to visualize the data in an informative way
- Dependent on the task given

December 13, 2005

Visualization serves many purposes

- "Pretty pictures"
- For further analysis
- Debugging
- **,** . . .

Visualization can be used in every step of most processes

- Problem formulation
- Mathematical modelling
- Software/Hardware
- Simulation
- Result
- Interpretation

December 13, 200

General development of visualization

- Rather new discipline that still is developing into sub-areas
- Tool users vs tool developers
- Collaboration among computer scientists and computational scientists
- Faster computers, high-speed networks, new user-interfaces

December 13, 200

VTK - The Visualization ToolKit

- What is VTK?
- What can VTK be used for?
- How to actually use VTK?

December 13, 200

VTK - The Visualization ToolKit

- Open source, freely available software for
 - 3D computer graphics
 - image processing
 - visualization
- Managed by Kitware, Inc.
- Object-oriented design (C++)
- High-level of abstraction
- Use C++, Tcl/Tk, Python, Java

ecember 13, 2005

True visualization system

- Visualization techniques for visualizing
 - scalar fields
 - vector fields
 - tensor fields
- Polygon reduction
- Mesh smoothing
- Image processing
- Your own algorithms

December 13, 2005

Additional features

- Parallel support
 - message passing
 - multi-threading
- Stereo support
- Integrates with Motif, Qt, TcI/Tk, Python/Tk, X11, Windows, ...
- Event handling
- 3D widgets

3D graphics

- Surface rendering
- Volume rendering
- Ray casting
 - Texture mapping (2D)
 - Volume pro support
- Lights and cameras
- Textures
- Save render window to .png, .jpg, ...
 (useful for movie creation)

Data Representation

- Cells & Points
- Topology
 - Shape such as triangle, tetrahedron
- Geometry
 - Point coordinates assigned to a topology
- Data attributes
 - Data associated with topology or geometry

December 13, 200

Meshes consist of Cells Cells can have different shapes and sizes 2D: Triangles, Quadrilaterals, etc. 3D: Tetrahedra, Hexahedra, Pyramids, etc. Meshes can consist of one or more types of cells Ouadrilateral Prism Hexahedron Prism Mesh

VTK Dataset Types

- vtkStructuredPoints, vtkImageData
- vtkRectilinearGrid
- vtkStructuredGrid
- vtkPolyData
- vtkUnstructuredGrid
- Methods for reading and writing

How are unstructured meshes different than regular grids?

- Regular Grids
 - mesh info accessed implicitly using grid point indices
 - efficient in both computation and storage
 - typically use finite difference (FD) discretization
 - Cartesian grids or logically rectangular grids

How are unstructured meshes different than regular grids?

- Unstructured Meshes
 - mesh connectivity information must be stored
 - handles complex geometries and grid adaptivity
 - typically use finite volume or finite element (FE) discretization
 - mesh quality becomes a concern

Data attributes assigned to points or cells

- Scalar
- Vector
 - magnitude and direction
- Normal
 - a vector of magnitude 1
 - used for lighting
- Texture coordinate
 - mapping data points into a texture space
- Tensor

December 13, 200

Visualization of attributes

- Scalar
 - Color Mapping
 - Contouring
 - 3D isosurface

Contour value of 5

Visualization continued Scalar algorithms Iso-contouring Colour mapping Vector algorithms Hedgehogs Streamlines / streamtubes Tensor algorithms

Tensor ellipsoids

Summary + • Free and open source • Create graphics/visualization applications fairly fast • Object oriented - easy to derive new classes • Build applications using "interpretive" languages Tcl, Python, and Java • Many (state-of-the-art) algorithms • Heavily tested in real-world applications • Large user base provides decent support • Commercial support and consulting available

Summary • Not a super-fast graphics engine due to portability and C++ dynamic binding - you need a decent workstation • Very large class hierarchy → learning threshold might be steep

Example continued create a legend from the data and a lookup table scalarBar = vtk.vtk\$calarBarActor() scalarBar.\$ctTitle('Iso value') # rendere and render window ren = vtk.vtkRender() ren.\$ctBackground(.8, .8, .8) renWin = vtk.vtkRenderWindow() renWin.\$ctSize(400, 400) renWin.\$ctSize(400, 400) renWin.AddRenderer(ren)

User interaction • vtkRenderWindowInteractor • allows the user to interact with the objects • Try the following key presses w wireframe mode j joystick mode t trackball mode button1 rotate button2 translate button3 scale r reset camera view e, q exit

VTK and C++ Build with CMake and your favorite compiler CMake generates makefiles or project files for your environment Use the resulting file(s) to build your executable With C++ you have full control and can derive

own classes, but you need to write many lines

of code...

