

What is claimed is:

- 1 1. An equalization system comprising:
 - 2 a first equalizer to process a communication signal received from a
 - 3 communication channel to generate an output;
 - 4 a reduced alphabet determination unit to identify a reduced alphabet based on
 - 5 said output of said first equalizer; and
 - 6 a reduced alphabet MLSE equalizer to detect data in said communication signal
 - 7 received from said communication channel based on said reduced alphabet identified
 - 8 by said reduced alphabet determination unit.

- 1 2. The equalization system of claim 1, wherein:
 - 2 said first equalizer has a length that is less than an anticipated memory length
 - 3 of said communication channel.

- 1 3. The equalization system of claim 1, wherein:
 - 2 said first equalizer includes a reduced length MLSE equalizer.

- 1 4. The equalization system of claim 1, wherein:
 - 2 said first equalizer includes a delayed decision feedback sequence estimation
 - 3 (DDFSE) equalizer.

- 1 5. The equalization system of claim 1, wherein:
 - 2 said first equalizer includes a linear equalizer.

- 1 6. The equalization system of claim 1, wherein:
 - 2 said first equalizer includes an M-Algorithm equalizer.

- 1 7. The equalization system of claim 1, wherein:
 - 2 said first equalizer includes an SA(B,C) detector.

1 8. The equalization system of claim 1, wherein:
2 said reduced alphabet MLSE equalizer is a full-state MLSE equalizer.

1 9. The equalization system of claim 1, wherein:
2 said output of said first equalizer includes a plurality of soft symbols each
3 having a corresponding probability, wherein said reduced alphabet determination unit
4 selects the K highest probability soft symbols from said output as said reduced
5 alphabet, where K is a positive integer.

1 10. The equalization system of claim 1, wherein:
2 said output of said first equalizer includes a single symbol, wherein said reduced
3 alphabet determination unit selects K-1 symbols from a full alphabet that are closest in
4 distance to said single symbol as said reduced alphabet, where K is a positive integer
5 greater than 1.

1 11. The equalization system of claim 1, wherein:
2 said reduced alphabet determination unit identifies a reduced alphabet having
3 K symbols, where K is a positive integer, said equalization system further comprising
4 an alphabet length determination unit for determining a value for K based on an output
5 of said first equalizer.

1 12. The equalization system of claim 11, wherein:
2 said alphabet length determination unit determines a value for K on an input
3 symbol by input symbol basis.

1 13. The equalization system of claim 11, wherein:
2 said alphabet length determination unit determines a value for K based on a
3 probability associated with a highest probability soft symbol output by said first
4 equalizer for a particular input symbol.

1 14. The equalization system of claim 11, wherein:
2 said alphabet length determination unit determines a value for K so that a
3 cumulative probability of the K highest probability soft symbols output by said first
4 equalizer exceeds a threshold value.

1 15. A method for performing equalization within a communication system,
2 comprising:

3 first processing a communication signal using a first equalizer;
4 determining a reduced alphabet based on a result of said first processing; and
5 second processing said communication signal using a reduced alphabet MLSE
6 equalizer, said reduced alphabet MLSE equalizer operating on said communication
7 signal based on said reduced alphabet.

1 16. The method of claim 15, wherein:

2 said first equalizer includes a reduced state MLSE equalizer.

1 17. The method of claim 15, wherein:

2 first processing includes generating a plurality of soft symbols having
3 associated probabilities.

1 18. The method of claim 17, wherein:

2 determining a reduced alphabet includes selecting the K highest probability soft
3 symbols from said plurality of soft symbols as the reduced alphabet, where K is a
4 positive integer.

1 19. The method of claim 15, wherein:

2 first processing includes generating a hard symbol and determining includes
3 selecting the K-1 symbols within a full alphabet that are closest in distance to said hard
4 symbol, where K is a positive integer greater than 1.

1 20. The method of claim 15, wherein:
2 determining a reduced alphabet includes determining an alphabet of size K,
3 where K is a positive integer, said method further comprising redetermining K for
4 successive input symbols within said communication signal.

1 21. The method of claim 15, wherein:
2 second processing includes processing said communication signal in a full-state,
3 reduced alphabet MLSE equalizer.

1 22. A computer readable medium having program instructions stored thereon for
2 implementing, when executed within a digital processing device, a method for
3 performing equalization within a communication system, said method comprising:
4 first processing a communication signal using a first equalizer;
5 determining a reduced alphabet based on a result of said first processing; and
6 second processing said communication signal using a reduced alphabet MLSE
7 equalizer, said reduced alphabet MLSE equalizer operating on said communication
8 signal based on said reduced alphabet.

1 23. The computer readable medium of claim 22, wherein:
2 determining a reduced alphabet includes determining a reduced alphabet for
3 each input symbol within said communication signal.

1 24. The computer readable medium of claim 22, wherein:
2 determining a reduced alphabet includes determining a reduced alphabet having
3 a size that is related to a symbol probability determined during first processing.

1 25. An equalization system comprising:
2 a reduced state, full-alphabet MLSE equalizer to process a communication
3 signal received from a communication channel to generate a plurality of soft symbols

4 for a first input symbol within said communication signal, said plurality of soft symbols
5 having corresponding symbol probabilities;
6 a symbol selection unit to select symbols from said plurality of soft symbols to
7 form a reduced alphabet for said first input symbol; and
8 a full-state, reduced alphabet MLSE equalizer to process said communication
9 signal based on said reduced alphabet.

1 26. The equalization system claimed in claim 25, wherein:
2 said symbol selection unit selects, for said first input symbol, the K highest
3 probability soft symbols output by said reduced state, full-alphabet MLSE equalizer to
4 form said reduced alphabet, where K is an integer greater than 1.

1 27. The equalization system claimed in claim 26, comprising:
2 an alphabet size determination unit to determine a value for K for each input
3 symbol within said communication signal based on symbol probabilities output by said
4 reduced state, full-alphabet MLSE equalizer.

1 28. A communication device, comprising:
2 means for receiving a communication signal from a communication channel,
3 said communication signal including undetected input symbols selected from a full
4 symbol alphabet;
5 means for determining, for individual input symbols within said communication
6 signal, a reduced symbol alphabet having symbols that are more likely to be an actual
7 transmitted symbol than other symbols within said full symbol alphabet; and
8 a full-state MLSE equalizer for processing said communication signal based on
9 said reduced symbol alphabet.

1 29. The communication device of claim 28, wherein:
2 said means for determining includes means for dynamically adjusting a size of
3 said reduced symbol alphabet for successive input symbols within said communication
4 signal.

1 30. The communication device of claim 28, wherein:
2 said means for determining includes a reduced complexity equalizer.