节或 10000 字节的呢?如果没有 dup, 定义部分的程序就变得太长了, 有了 dup 就可以轻松解决。如下:

stack segment
 db 200 dup (0)
stack ends

实验 7 寻址方式在结构化数据访问中的应用

Power idea 公司从 1975 年成立一直到 1995 年的基本情况如下:

年份	收入(千美元)	雇员(人)	人均收入(千美元)
1975	16	3	?
1976	22	7	?
1977	382	9	?
1978	1356	13	?
1979	2390	28	?
1980	8000	38	?
:			
:			
:			
1995	5937000	17800	?

下面的程序中,已经定义好了这些数据:

```
assume cs:codesg
```

```
data segment
```

```
db '1975', '1976', '1977', '1978', '1979', '1980', '1981', '1982', '1983'
```

db '1984', '1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992'

db '1993', '1994', '1995'

;以上是表示 21 年的 21 个字符串

dd 16,22,382,1356,2390,8000,16000,24486,50065,97479,140417,197514 dd 345980,590827,803530,1183000,1843000,2759000,3753000,4649000,5937000;以上是表示 21 年公司总收入的 21 个 dword 型数据

dw 3,7,9,13,28,38,130,220,476,778,1001,1442,2258,2793,4037,5635,8226 dw 11542,14430,15257,17800

;以上是表示 21 年公司雇员人数的 21 个 word 型数据

data ends

table segment

db 21 dup ('year summ ne ?? ')

table ends

编程:将 data 段中的数据按如下格式写入到 table 段中,并计算 21 年中的人均收入(取整),结果也按照表 8.3 所示的格式保存在 table 段中。

	年	分(4'7	"节)		 空 格	收入	\(4'子	节)		空 格	雇员 (2字		空格	人均 (2字	7收入 节)	空 格
行内地址	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
1年 占1行, 每行的 起始地址								:								
Table:0	'1	9	7 5	i¹	16			<u> </u>	3		<u> </u>	?				
Table:10H	'1	9	7 6	<u>i'</u>				22			7				?	
table:20H	11	9	7 7	,				382			9				?]
table:30H	'1	9	7_ 8	31			13	356			13	ı			?	
table:40H	'1	9	7 9)†			23	390			28				?	
table:50H	'1	9	8 0)'			80	000			38				?	
:	·					•				•	• ···. <u></u> ·		•			
table:140H	'1	9	9 5	,		5	93700	00		1	1780	0	Ī		?	

表 8.3 Data 段的数据格式

提示:

可将 data 段中的数据看成是多个数组,而将 table 中的数据看成是一个结构型数据的数组,每个结构型数据中包含多个数据项。可用 bx 定位每个结构型数据,用 idata 定位数据项,用 si 定位数组项中每个元素,对于 table 中的数据的访问可采用[bx].idata 和[bx].idata[si]的寻址方式。

注意: 这个程序是到目前为止最复杂的程序,它几乎用到了我们以前学过的所有知识和编程技巧。所以,这个程序是对我们从前学习的最好的实践总结。请认真完成。