

双灯显示微型线性电池管理芯片

■ 产品概述

XT2055 是一个完善的单片锂离子电池恒流/恒压线形电源管理芯片。它薄的尺寸和小的外包装使它便于便携应用。 更值得一提的是,XT2055 专门设计适用于 USB 的供电规格。 得益于内部的 MOSFET 结构,在应用上不需要外部电阻和 阻塞二极管。在高能量运行和高外围温度时,热反馈可以控制充电电流以降低芯片温度。

充电电压被限定在 4.2V, 充电电流通过外部电阻调节。 在达到目标充电电压后, 当充电电流降低到设定值的 1/10 时, XT2055 就会自动结束充电过程。当输入端(插头或 USB 提供电源) 拔掉后, XT2055 自动进入低电流状态, 电池漏 电流将降到 2μA 以下。XT2055 还可被设置于停止工作状态, 使电源供电电流降到 25μA。其余特性包括: 充电电流监测, 输入低电压闭锁, 输入高电压闭锁, 自动重新充电和充电已 满及开始充电的标志。

■ 用途

- 手机, PDA, MP3
- 蓝牙应用

■ 订购信息

XT2055 123456

标号	描述	标记	描述
	米刊	X	无涓流充电
1)	类型	Υ	有涓流充电
		40	4.0
23	调整器输出电压的第一部分	41	4.1
		42	4.2
		А	200
4	调整器输出电压的第二部分	В	225
4)		С	250
		D	275
5	封装类型	М	SOT-23-6
(e)	器件方向	R	正面
6	命针刀円	L	反面

■ 产品特点

- 可编程使充电电流可达 500mA
- 不需要 MOSFET, 传感电阻和阻塞二极管
- 小的尺寸实现对锂离子电池的完全线形充电管理
- 恒电流/恒电压运行和热度调节使得电池管理效力最高,没有热度过高的危险
- 从 USB 接口管理单片锂离子电池
- 预设充电电压为 4.2V ±1%
- 充电电流输出监控
- 充电状态指示标志
- 6.2V 输入过压保护
- 1/10 充电电流终止
- 停止工作时提供 25µA 电流
- 2.9V 涓流充电阈值电压
- 软启动限制浪涌电流

■ 封装

SOT-23-6L

■ 引脚分配

引脚号	引脚名称	
SOT-23-6L	31APPCENT	
1	CHRG	
2	GND	
3	BAT	
4	VCC	
5	DONE	
6	PROG	

■ 引脚功能

CHRG(**引脚 1**):漏极开路充电状态输出。当充电时,CHRG端口被一个内置的N沟道MOSFET置于低电位。当充电完成、检测到低电锁定条件、检测到输入过高锁定条件时,CHRG呈现高阻态。

GND (引脚 2): 接地端

BAT(引**期** 3): 充电电流输出端。给电池提供充电电流并控制浮动电压最终达到 4.2V。一个内部精密电阻把这个引脚同停工时自动断电的浮动电压分开。

VCC(引脚 4): 提供正电压输入。为充电器供电。VCC可以为 4.25V到 6.5V并且必须有至少 1μF的旁路电容。如果BAT引脚端电压的VCC降到 30 mV以内时,XT2055 进入停工状态,并使BAT电流降到 2μA以下。

DONE(引脚 5): 充满指示输出。当充满电时,DONE端口被一个内置的N沟道MOSFET置于低点位。在充电过程中、检测到低电锁定条件、检测到输入过高锁定条件时,DONE呈现高阻状态。

PROG (引脚 6): 充电电流编程,充电电流监控和关闭端。充电电流由一个精度为 1%的接到地的电阻控制。在恒定充电电流状态时,此端口提供 1V的电压。在所有状态下,此端口电压都可以用下面的公式测算充电电流: IBAT = (VPROG/RPROG)×1000 PROG端口也可用来关闭充电器。把编程电阻同地端分离可以通过上拉的 3μA电流源拉高PROG端口电压。当达到 1.21V的极限停工电压值时,充当器进入停止工作状态,充电结束,输入电流降至 25μA。此端口夹断电压大约 2.4V。给此端口提供超过夹断电压的电压,将获得 1.5 mA的高电流。再使PROG和地端结合将使充电器回到正常状态。

■ 打印信息

SOT-23-6L

① 表示产品系列

打印符号	产品描述		
2	XT2055 ♦♦♦♦		

② 表示连续充电电压类型

标号	产品名称		
X	XT2055X ♦♦ ♦		
Υ	XT2055Y ◆◆◆		

③ 表示输出电压调整器

符号	电压		
Α	4.0		
В	4.025		
С	4.05		
D	4.075		
E	4.1		
F	4.125		

符号	电压		
Н	4.150		
K	4.175		
L	4.20		
M	4.225		
N	4.250		
Р	4.275		

④ 代表生产批号

数字 0-9, A-Z, 倒写数字 0-9, A-Z, 然后重复(G, I, J, O, Q, W 除外)

■ 典型应用电路

● 基本电路

■ 绝对最大额定值

参数	标号	最大额定值		单位
输入电压	V _{cc}	V _{SS} -0.3∼V _{SS} +10		
PROG 端电压	Vprog	V _{SS} -0.3∼V _{cc} +0.3		V
BAT 端电压	Vbat	Vss-0.3∼7		V
CHAG 端电压	Vchrg	V _{SS} -0.3∼V _{SS} +10		
容许功耗	P _D	SOT-23-6L	250	mW
BAT 端电流	lbat	500		mA
PROG 端电流	Iprog	800		uA
工作外围温度	Тора	-40∼+85		°C
存储温度	Tstr	-65∼+125		

注意: 绝对最大额定值是指在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。

■ 功能框图

■ 电学特性参数

参数	标号	条件	最低	典型	最高	UNIT
输入电压	Vcc		4.25		6.5	V
输入过压	Vovp		6.2			V
过压解除	Vdp		5.8			V
	Icc	Charge mode,Rprog=10K		300	2000	μA
输入电流		Standby mode		200	500	μA
טועם יאי ענמר		Shutdown mode(Rprog not connected, Vcc <vbat or="" td="" vcc<vuv)<=""><td></td><td>25</td><td>50</td><td>μA</td></vbat>		25	50	μA
输出控制电压	Vfloat	0°C <ta<85°c, ibat="40mA</td"><td>4.158</td><td>4.2</td><td>4.342</td><td>V</td></ta<85°c,>	4.158	4.2	4.342	V
		Rprog=10k,Current mode	93	100	107	mA
		Rprog=2k,Current mode	465	500	535	mA
BAT端电流	Ibat	Standby mode,Vbat=4.2V	0	-2.5	-6	μA
		Shutdown mode		1	2	μΑ
		Sleep mode,Vcc=0V		1	2	μΑ
涓流充电电流	ltrikl	Vbat <vtrikl,rprog=2k< td=""><td>20</td><td>45</td><td>70</td><td>mA</td></vtrikl,rprog=2k<>	20	45	70	mA
涓流充电极限电压	Vtrikl	Rprog=10K, Vbat Rising	2.8	2.9	3.0	V
涓流充电迟滞电压	Vtrhys	Rporg=10k	60	80	110	mV
电源低电闭锁阈值电压	Vuv	From Vcc low to high	3.7	3.8	3.93	V
电源低电阈值电压迟滞电压	Vuvhys		150	200	300	mV
手动关闭阈值电压	Vmsd	PROG pin rising	1.15	1.21	1.30	V
于幼犬的肉և电压		PROG pin falling	0.9	1.0	1.1	V
Vcc-Vbat停止工作阈值电压	Vasd	Vcc from low to high	70	100	140	mV
VCC-VDat行业工作网值电压	vasu	Vcc from high to low	5	30	50	mV
C/10 终端阈值电流	Iterm	Rprog=10k	0.085	0.10	0.115	mA/mA
0/10 炎姍兩阻电视	iteiiii	Rprog=2k	0.085	0.10	0.115	mA/mA
PROG端电压	Vprog	Rprog=10k, Current mode	0.93	1.0	1.07	V
CHRG端弱下拉电流	Ichrg	Vchrg=5V	8	20	35	μA
CHRG端最小输出电压	Vchrg	Ichrg=5mA		0.35	0.6	V
电池再充电迟滞电压	∆ Vrecg	VFLOAT - VRECHRG		100	200	mV

■ 特性曲线

PROG Pin Voltage vs Supply Voltage(Constant Current Mode)

PROG Pin Voltage vs Temperature

Charge Current vs PROG Pin Voltage

PROG Pin Pull-Up Current vs Temperature and Supply Voltage

PROG Pin Current vs PROG Pin Voltage (Pull-Up Current)

PROG Pin Current vs PROG Pin Voltage (Clamp Current)

Regulated Output (Float) Voltage vs Charge Current

Regulated Output (Float) Voltage vs Temperature

Regulated Output (Float) Voltage vs Supply Voltage

CHRG Pin I-V Curve (Strong Pull-Down State)

CHRG Pin Current vs Temperature (Strong Pull-Down State)

CHRG Pin I-V Curve (Weak Pull-Down State)

CHRG Pin Current vs Temperature (Weak Pull-Down State)

Trickle Charge Current

Trickle Charge Current vs Supply Voltage

Trickle Charge Threshold vs Temperature

Charge Current vs Battery Voltage

Charge Current vs Supply Voltage

■ 封装信息

• SOT-23-6L

Ch a l	Dimensions In	n Millimeters	Dimensions	s In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°