Appariement entre données hospitalières et certificats de décès en combinant moteur de recherche et apprentissage automatique

<u>Sébastien Cossin^{1,2}, Sérigne Diouf^{1,2}, Romain Griffier ^{1,2}, Philippine Le Barrois d'Orgeval², Gayo Diallo¹, Vianney Jouhet^{1,2}</u>

¹Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Equipe ERIAS, UMR 1219.

²Unité IAM, Service d'information médicale. CHU de Bordeaux

4ème Journée Dataquitaine - 25 février 2021

Auteurs

<u>Sébastien Cossin^{1,2}</u>, Sérigne Diouf^{1,2}, Romain Griffier^{1,2}, Philippine Le Barrois d'Orgeval², Gayo Diallo¹, Vianney Jouhet^{1,2}

Trias: Equipe de recherche en informatique appliquée à la santé. Centre INSERM U1219

2 IAM: unité hospitalière mettant en oeuvre l'entrepôt de données biomédicales du CHU de Bordeaux en étroite collaboration avec la DSI

- 1 Introduction
- 2 Etat de l'art
- **3** Méthodes
- 4 Résultats
- 5 Discussion

Importance de connaître le statut vital

- Recherche clinique
 - Identification de patients éligibles
 - Etudes de cohorte
- Gestion des archives
 - Papier
 - Electronique

Circuit des certificats de décès1

¹ https://www.cepidc.inserm.fr/le-circuit-administratif-du-certificat-de-deces

Statut vital au CHU de Bordeaux

- 2,2 millions de patients venus au CHU de Bordeaux
- 58,000 décès

Les hôpitaux enregistrent les décès intra-hospitaliers mais ne recoivent aucune information sur les décès extra-hospitaliers.

Aucune solution simple pour connaître les décès extra-hospitaliers jusqu'au 5 décembre 2019

Fichier des personnes décédées¹

25 millions certificats de décès (>01/01/1970):

- nom de famille
- prénoms
- sexe
- date de naissance
- code du lieu de naissance
- lieu de naissance
- pays de naissance en clair
- date du décès
- code du lieu de décès

¹ https://www.data.gouv.fr/en/datasets/fichier-des-personnes-decedees/

Objectif

Identifier les décès extra-hospitaliers en rapprochant les identités de la base de données patients du CHU de Bordeaux et la base de données open data de l'INSEE

Record Linkage

Processus visant à identifier si des enregistrements concernent la même entité (patient) en utilisant des identifiants communs entre les jeux de données.1

Base CHU

- Nom: Chlimac
- Prenom: Jacques
- DDN: 29/11/1932
- Sexe: M LastVisit: 20/01/2002

Base INSEE

- Nom: Chirac
- Prenom: lacques René
- DDN: 29/11/1932
- Sexe: M
- Deces: 26/09/2019

Research Datalink to other health-related patient data: overview and implications. Eur J Epidemiol. 2019;34(1):91-9.

Définition

- Appariement (= alignement): le fait de relier une entité de la base A à une entité de la base B
 - Mauvais appariement (faux positif): quand l'entité de la base A n'est pas la même que celle de la base B
 - Bon appariement (vrai positif): quand l'entité de la base A est la même que celle de la base B
 - Appariement raté (faux négatif): quand aucun appariement n'a été réalisé alors que l'entité de la base A est la même que celle de la base B
- Identifiant: une caractéristique d'une entité (nom, prénom, sexe, lieu de naissance...)

Méthodes

3 principales approches:

- Déterministe
- Probabiliste
- Machine Learning

Déterministe

Approche consistant à fixer les règles d'appariement. Par exemple:

- Nom (identique)
- Prénom (identique)
- Date de naissance (+/- 1 jour)
- Sexe (identique)
- règles/conditions:
 - Les faux positifs
 - Les faux négatifs

 Transport
 <li

Probabiliste

Modèle de Fellegi-Sunter (1969) reposant sur 2 probabilités:

- u: probabilité de valeur identique par chance (sexe: 1/2; mois de naissance: 1/12)
- m: probabilité de valeur identique pour les mêmes entités (1 - taux d'erreurs)

Estimation des probabilités par un gold standard ou par algorithme espérance-maximisation(EM)

Machine Learning

Apprendre à pondérer l'importance de chaque identifiant (nom, prenom, sexe...) à partir d'exemples (**gold standard**)

- bons appariements
- mauvais appariements

Algorithmes de classification:

- Forêts aléatoires
- Régression logistique
- SVM
- ...

Blocking stratégie

Le nombre d'appariements possibles est $n_A \times n_B$

Blocking stratégie: toute stratégie visant à diminuer le nombre de comparaison.

Exemple: "on compare une entité A avec une identité B si au moins 3 identifiants identiques"

Seuils

Traditionnellement 2 seuils sont choisis1:

- Seuil haut qui maximise la valeur prédictive positive (précision)
- Seuil bas qui maximise la sensibilité (rappel)

Les appariements au-dessus du seuil haut n'ont pas besoin d'être revus par un humain.

¹Grannis SJ, Overhage JM, Hui S, McDonald CJ. Analysis of a Probabilistic Record Linkage Technique without Human Review. AMIA Annu Symp Proc. 2003;2003:259-63.

Pipeline

Blocking stratégie avec Elasticsearch¹

Limiter le nombre de comparaison aux N premiers certificats retournés par Elasticsearch, ordonnés par leur score basé sur le TF-IDF:

- Nombre d'identifiants en commun
- Valeurs rares (nom, prénom ...)

¹ https://matchid.io/

Pipeline

Gold standard: bons appariements

Création par approche déterministe avec les décès

intra-hospitaliers 2005-2018

Rase CHU décès

- Nom: Chirac
- Prenom: Jacques
- DDN: 29/11/1932 Sexe: M
- LastVisit: 20/01/2002
- Date de décès: 26/09/2019

- Departement de décès • ...

Rase INSEE

- Nom: Chirac
- Prenom: lacques René
- DDN: 29/11/1932
- Sexe: M
- Date de décès: 26/09/2019
- Departement de décès

Blocking stratégie:

- Date de décès (+/- 2 jours)
- Département de décès (Nouvelle-Aguitaine)
- 4 identifiants identiques parmi 5:
 - Nom
 - Prenom
 - Sexe
 - DDN
 - Departement de naissance

Gold standard: bons appariements

44,127 décès alignés. 89% identiques sur les 7 identifiants.

11% avaient un identifiant différent:

- 3,7% le nom de famille est différent
- 2,7% le département de naissance est différent
- 2,5% le prénom est différent
- 0.7% la date de naissance est différente
- 0.1% le sexe est différent

Gold standard: faux appariements

Choisir des faux appariements en "zone grise"¹.

	Vrai	Faux n°1	Faux n°x
Nom	Chirac	Aupetit	Pompidou
Prénoms	Jacques Rene	Jacques	Georges
Date de naissance	1932-11-29	1932-11-29	05/07/1911
Sexe	Homme	Homme	Homme
Lieu de naissance	Paris 5	Paris 12	Montboudif
Pays de naissance	France	France	France

¹Capuani L, Bierrenbach AL, Abreu F, et al. Accuracy of a probabilistic record-linkage methodology

ROSPITALIER
UNIVERSTRAIRE**
BORDEAUX
*

Gold standard: faux appariements

On utilise les bons alignements pour rechercher des faux alignements. On sélectionne le faux alignement qui a le score le plus élevé.

Etape1: Elasticsearch Etape2: marchine learning Evaluation

Création des features

Une feature:

$$f:(identifiant_{chu}, identifiant_{insee}) \rightarrow \mathbb{R}$$

Ex: soundex_nom("Chirac","Chirak") -> 1

Au total 40 features ont été créées pour l'ensemble des variables:

- Similarité de chaînes de charactères
- Comparaisons de valeurs (0 ou 1)
- Différence de dates: dernière visite date de décès

Création de la matrice

- 1 ligne: un couple (entité_{chu}, entité_{insee}) (bon ou faux)
- 1 colonne: une feature

Ce bon alignement:

	nom	prenom	sexe	DDN	Dep
entité _{chu}	Chirac	Jacques	M	29/11/1932	75
entité _{insee}	Chirak	Jacques Rene	М	30/11/1932	92

Est transformé en:

LSI II ali Sioi II							
exact_nom	son_nom	sexe	DDN	Annee	Dep	Region	target
0	1	1	0	1	0	1	1

Algorithmes de classification

Préparation du jeu de données:

- Sous-échantillonnage (Downsampling) (imbalanced dataset 89% / 11% -> 50% / 50%)
- Normalisation des variables
- Jeu de développement / validation / test (60:20:20)

"Fine-tuner" 2 modèles non linéaires:

- Forêts aléatoires
- Réseau de neurones "fully connected"

Pipeline

Evaluation de la pipeline complète

L'année 2019 a été utilisée pour évaluer la pipeline complète:

- Décès intra-hospitaliers 2019: évaluer la sensibilité
- Personnes non décédées en 2019: évaluer la précision

Détermination de 2 seuils:

- Seuil haut: minimiser le nombre de faux positifs
- Seuil bas: maximiser la sensibilité

Nombre N = 10

Parmi les décès intra-hospitaliers liés à un certificat de décès (N=44,127), le certificat de décès apparait dans 99.8% des cas dans les 10 premiers résultats d'Elasticsearch.

Machine Learning

Jeu de test de 3294 couples (*record_{chu}*, *record_{insee}*)

- Forêts aléatoires¹ réalise 34 erreurs³ (17FP-17FN)
- Réseau de neurones² réalise 35 erreurs (21FP-14FN)

^{11.39%} OOB, ntrees=2500, mtrv=6

²3 hidden layers, 40:10:20 nodes per layer, 0.2:0.4:0.1 drop out rate

³ seuil à 0.5. FP; faux positif, FN; faux négatif

Pipeline

Parmi 3.565 décès intra-hospitaliers en 2019 et 15.000 patients non décédés en 2019.

Seuil haut: probabilités > 0.95
 Sensibilité: 97.5%, VPP: 99.97%, 1 faux positif¹

Seuil bas: probabilités > 0.4
 Sensibilité: 99.4%, VPP: 98.9%

¹ jumeau décédé avec le même premier prénom

Parmi 2,2 millions de patients venus au CHU de Bordeaux:

- 207.507 appariements > seuil haut
 - dont 159.640 (75%) décès extra-hospitaliers
- 29.152 entre les 2 seuils

Performances: 4'30 pour 10³ patients soit 3 jours pour 10⁶

Méthode déterministe (baseline)

200.824 alignements sur les critères suivants:

Nom, Prénom, Date de naissance, Sexe

- 195.465 appariements en commun avec le seuil haut (Sensibilité = **91.8%**)
- 3.885 entre les 2 seuils
- 1.474 faux alignements (homonymes)

La pipeline proposée a une sensibilité supérieure à la méthode déterministe et une meilleure spécificité

Principaux résultats

- Bonne sensibilité de la pipeline (97.5%) pour un faible taux de faux positif
- 159.640 décès extra-hospitaliers non connus du CHU de Bordeaux, dont 40.000 survenus avant 2011

Limites:

- Francisation des prénoms (Maria => Marie)
- Inversion nom/prénom
- Etude monocentrique
 - Qualité des données du CHU ?
 - Reproductibilité dans un autre établissement ?

Merci de votre attention

- https://github.com/scossin/record_linkage_insee
- Cossin S, Diouf S, Griffier R, Le Barrois d'Orgeval P, Diallo G, Jouhet V. Linkage of Hospital Records and Death Certificates by a Search Engine and Machine Learning. JAMIA Open. doi:10.1093/jamiaopen/ooab005 (accepté).
- Contact: sebastien.cossin@chu-bordeaux.fr

