

Facultad de Ingeniería Universidad de Cuenca Grado en Ingeniería de Sistemas Curso 2020

Calidad de Software

Capítulo 3: Modelos de Calidad de Software

Departamento de Ciencias de la Computación Universidad de Cuenca, Ecuador email: priscila.cedillo@ucuenca.edu.ec

- Introducción
- · Que es un modelo de calidad del software
- · Estructura de los modelos de calidad del software
- · Tipos de modelos de calidad
- · Estándares de modelos de calidad del software
- Aplicaciones de los modelos de calidad del software

Introducción

- Los modelos de calidad han sido un tópico de investigación durante algunas décadas.
- Los modelos de calidad son medios aceptados para soportar el control de calidad de los sistemas de software.
- El ISO/IEC 25010 es usado principalmente para definir la calidad, utilizado para evaluar la calidad de un sistema dado.

Ventajas de los Modelos de Calidad

- Corregir los procesos de software.
- Certificar la competitividad internacional requerida para competir en los mercados.
- Cambiar la actitud del personal de la empresa.
- Desarrollar y mejorar el nivel del personal.
- Lograr competitividad en una empresa de software.
- Reducir los costos en los procesos.
- Asegurar la satisfacción de los clientes.
- Tener productos de software con un valor agregado.
- Tener aceptación de los clientes.

- Introducción
- · Que es un modelo de calidad del software
- · Estructura de los modelos de calidad del software
- · Tipos de modelos de calidad
- · Estándares de modelos de calidad del software
- Aplicaciones de los modelos de calidad del software

Definición

- Un modelo de calidad es:
 - "El conjunto de características y las relaciones entre ellas que proveen la base para la especificación de los requisitos de calidad y la evaluación de la calidad."

ISO/IEC 8402.

- Los modelos de calidad permiten:
 - Definición estructurada de criterios de evaluación
 - Especificación de requisitos con relación a ellos
 - Descripción de componentes en un marco común
 - Definición de métricas y prioridades

- Las **métricas** del producto se dividen en dos clases:
 - Las <u>métricas dinámicas</u>, que son recogidas por las mediciones hechas en un programa en ejecución.
 - Las <u>métricas estáticas</u>, que son recogidas por las mediciones hechas en las representaciones del sistema como el diseño, el programa o la documentación.
- Las métricas del software se pueden clasificar en MEDIDAS DIRECTAS e INDIRECTAS.
 - **<u>Directas</u>**: Una métrica de un atributo que no depende de ninguna métrica de otro atributo.
 - Indirecta: Se deriva de una o más métricas de otros atributos.

- Longitud del Texto del Cuerpo de una Página
 - Medido por cantidad de palabras, etc.
- Cantidad de Enlaces Rotos Internos
 - Medidos por la presencia de errores del tipo 404, (410 ?)
- Cantidad de Imágenes con Texto Alternativo
 - Medido por la presencia de la etiqueta ALT (con texto no nulo) en cada una de las imágenes vinculadas a las páginas de un sitio Web

Ejemplo de métricas indirectas

♠ Porcentaje de Enlaces Rotos de un Sitio

$$Porcentaje Presencia ALT = \frac{Cantidad Imágenes ALT}{Cantidad Total Imágenes} \times 100$$

- Introducción
- · Que es un modelo de calidad del software
- Estructura de los modelos de calidad del software
- · Tipos de modelos de calidad
- Estándares de modelos de calidad del software
- Aplicaciones de los modelos de calidad del software

- Todos los modelos de calidad comparten:
 - Un catalogo de factores de calidad (fijo? desechable?)
 - Diferentes niveles de abstracción (Numero de capas? jerarquía? grafo?)
- Algunos autores recomiendan su descripción en forma de un modelo conceptual que describa:
 - La forma del modelo
 - Propiedades de las métricas
 - Elementos medibles
 - Aspectos de formalización (definiciones)

- Introducción
- Que es un modelo de calidad del software
- · Estructura de los modelos de calidad del software
- Tipos de modelos de calidad
- Estándares de modelos de calidad del software
- Aplicaciones de los modelos de calidad del software

Tipos de Modelos de Calidad

Existen algunos tipos de modelos de calidad:

- Modelos de Calidad Jerárquicos
- Modelos de Calidad Basados en Meta-Modelos
- Modelos de Calidad Implícitos

- El primero publicado fue en 1970.
- Usan una descomposición Jerárquica en factores de calidad (Mantenibilidad, Confiablidad)
- Uno de los más populares es el modelo FURPS
 - Funcionalidad Functionality
 - Usabilidad Usability
 - Confiabilidad Reliability
 - Rendimiento Performance
 - Soporte Supportability
- La principal idea es que se pueda descomponer la calidad a un nivel donde ésta pueda ser medida y de ahí evaluada.

- ո Esta clase de modelos trajeron las bases para el estándar ISO / IEC 9126 en 1991.
- Define un estándar de descomposición en características de calidad y sugiere un pequeño número de métricas para medirlas.
- Le sigue el ISO/IEC 25010, mantiene una nueva clasificación pero guarda la descomposición jerárquica general.

Modelo de Calidad FURPS

FORS WITAE PRODUCTION PROSEDENTS

- FURPS es un modelo de definición jerárquica.
- Los primeros cuatro factores de calidad son dirigidos al operador y al usuario del software.
- Los últimos son más dirigidos a los desarrolladores, testers y gente de mantenimiento.
- El principal objetivo de FURPS es una descomposición y checklist para requisitos de calidad.
- Ayuda a definir la calidad como base para los requisitos.

FURPS se descompone en:

- Functionality
 - Feature set
 - Capabilities
 - Generality
 - Security
- Usability
 - Human factors
 - Aesthetics
 - Consistency
 - Documentation
- Reliability
 - Frecuency/severity of failure
 - Recoverability
 - Predictability
 - Accuracy
 - Mean time to failure

Performance

- Speed
- Efficiency
- Resource consumption
- Throughput
- Response time
- Supportability
 - Testability
 - Extensibility
 - Adaptability
 - Maintainability
 - Compatibility
 - Configurability
 - Serviceability
 - Installability
 - Localisability
 - Portability

- Inicios de los 90's, los investigadores han propuesto modos más elaborados de descomponer las características de calidad.
- Describen cómo modelos de calidad válidos son estructurados.
- Incluyen mediciones y evaluaciones.
- Los modelos de calidad basados en meta-modelos muestran el concepto complejo de las necesidades de calidad más estructuras en modelos de calidad que abstraen características y métricas.

- Capturan las propiedades del producto, proceso u organización.
- Estiman y predicen esos factores de calidad.
- Un ejemplo de esos modelos son los *reliability growth models* o los *maintainability index (MI)*, un modelo de regresión desde las métricas de código o *Vulture*, un modelo de aprendizaje de máquina basado en bases de datos de vulnerabilidad y archivos de versión.

Tipos de modelos de calidad

Modelos fijos:

- Existe un catalogo de partida del cual se elige un subset de características de calidad
- Pros: reutilizable, comparable, rápido de utilizar
- Contras: inflexible
- Ejm: Modelo de McCall, Boehm, FURPS

Modelos a la medida :

- Determinación de factores de calidad basada en necesidades del contexto
- Pros, contras: Lo contrario del caso anterior
- IEEE 1061(1998), Goal Question Metric (GQM)

Modelos mixtos:

- Un modelo de alto nivel que puede ser refinado
- Pros, contras: balanceados

- Son usados en varias fases de un proceso de desarrollo de software.
 - <u>Durante la Ingeniería de Requisitos</u>: Definen factores de calidad y requisitos para sistemas de software. Constituyen un método para acordar con el cliente la calidad.
 - <u>Durante la Implementación</u>: Sirven como base para modelar y codificar. Proveen recomendaciones directas sobre la implementación y constituyen enfoques constructivos para conseguir alta calidad de software.
- Enfoques constructivos para conseguir alta calidad en el software.
- Los defectos de calidad que son encontrados durante el aseguramiento de la calidad son clasificados usando el modelo de calidad.

- Extienden los modelos de definición.
- Evalúa la calidad del modelo de definición
- Los modelos de evaluación pueden ser usados durante la ingeniería de requisitos para especificar y controlar los requisitos de calidad.
- Durante la implementación este modelo de calidad puede ser la base para las mediciones (medición de producto, actividades y ambiente).
- Constituyen la piedra angular para las certificaciones de calidad.
- Ejemplo: EMISQ (modelo basado en el estándar 14598 para evaluación de producto).

- Sirven para predecir el número de defectos de un sistema o módulos específicos, tiempos medios entre fallos, tiempo de reparación y esfuerzos de mantenimiento.
- Ejemplo: Modelo RGMs emplean detección de defectos desde las fases de prueba y operación para predecir la futura confiablidad de los sistemas de software.

- Modelos de calidad que integran los 3 propósitos.
- Su ventaja es que se evalúa y predice en el mismo modelo los requisitos de calidad.
- Asegura una alta consitencia.
- Ejemplo: COQUAMO

- Introducción
- · Que es un modelo de calidad del software
- · Estructura de los modelos de calidad del software
- · Tipos de modelos de calidad
- · Estándares de modelos de calidad del software
- Aplicaciones de los modelos de calidad del software

Nivel de Calidad	Modelo de Calidad	Estándar de Calidad
Proceso	CMMi, TickIT, Bootstrap, Personal SW Process (PSP), Team SW Process (TSP), Practical SW Measurement (PSM), Six Sigma for Software	ISO 90003, ISO 12207, ISO 15504 (SPICE), IEEE/EIA 12207, ISO 20000, ITIL, Cobit 4.0
Producto	Gilb, GQM, McCall, Furps, Bohem, SATC, Dromey, C-QM, Metodología SQA, Web EQM	ISO 9126-1, ISO 25000 (SQuaRE), IEEE Std 1061-1998

- Modelo mixto con un catalogo de partida mas elaborado:
 - 6 características, 27 subcaracteristicas...
 - ... descomponibles en atributos (jerarquía multi-nivel)
 - Grupo de métricas propuestas
- Antiguamente un estándar único:
 - ISO/IEC 9126, 1991
- Actualmente un estándar multiparte:
 - ISO/IEC 9126: Software quality (part1 1, 2001; 2&3, 2003; 4: 2004)
 - ISO/IEC 14598: Software Product Evaluation (6 partes)
- Recientemente remplazado:
 - ISO/IEC CD 25000, SQuaRE (Software Quality Requirements and Evaluation)

ISO / IEC 9126 y 14598

ISO IEC 9126-1

ISO IEC 9126 - 1

Calidad en uso modelada

ISO / IEC 9126-2

Describe las métricas externas que son utilizadas para especificar o evaluar el comportamiento del software cuando es operado por el usuario

ISO / IEC 9126-3

Esta parte describe las métricas internas que se pueden utilizar para crear describir propiedades internas, que puede ser evaluadas por la inspección sin poner en funcionamiento el software.

ISO / IEC 9126-4

Esta parte describe las métricas de calidad en uso que se pueden utilizar para especificar o evaluar el efecto del producto software cuando son operados por el usuario en determinados contextos de uso.

ISO/IEC 14598-1	Visión general de todo el estándar y explicación de las diferencias entre la evaluación del producto software y el modelo de calidad definido en la ISO / IEC 9126.	
ISO/IEC 14598-2	Requisitos y guías para las funciones de planificación y gestión de la evaluación del producto.	
ISO/IEC 14598-3	Requisitos y guías para la evaluación del producto software cuando la evaluación se lleva a cabo en paralelo al desarrollo del mismo.	
ISO/IEC 14598-4	Requisitos y guías para la evaluación del producto software cuando este ha sido adquirido y se requiere reutilizar un producto existente o pre-desarrollado.	
ISO/IEC 14598-5	Requisitos y guías para la evaluación del producto cuando esta es llevada a cabo por evaluadores independientes.	
ISO/IEC 14598-6	Provee las guías para la documentación del módulo de evaluación.	

Analizar y entender la propuesta conceptual de ISO / IEC 9126

Revisa el ISO / IEC 9126 e incorpora las mismas características de calidad con algunas enmiendas.

Ejercicio

Realizar un breve análisis de cada una de las partes del estándar ISO 25000

- Introducción
- · Que es un modelo de calidad del software
- · Estructura de los modelos de calidad del software
- Tipos de modelos de calidad
- Estándares de modelos de calidad del software
- Aplicaciones de los modelos de calidad del software

- Aplicaciones exploradas por diversos autores:
 - Especificaciones de software
 - Diseño arquitectónico del software
 - Soporte a la implementación del software
 - Soporte a la evaluación del software
 - Soporte para la certificación del software
 - Identificación de riesgos
 - Otros:
 - Soporte a decisiones económicas en relación al rendimiento del software

- Galin D., Software Quality Assurance From theory to implementation, 2004
- Chappell, D. (2012). THE THREE ASPECTS OF SOFTWARE QUALITY: FUNCTIONAL, STRUCTURAL, AND PROCESS Sponsored by Microsoft Corporation. *David Chappel & Associates*, 1.0. Retrieved from http://www.davidchappell.com/writing/white_papers/The_Three_Aspects_of_Software_Quality_v1.0-Chappell.pdf
- O'Regan, G. (2014). *Introduction to Software Quality*. http://doi.org/10.1007/978-3-319-06106-1
- Software, D., Rosa, V., & Zepeda, V. (2012). Metodología para el Aseguramiento de la Calidad en la Adquisición del Software (proceso y producto) y servicios.
- Wagner, S. (2013). Software Product Quality Control. http://doi.org/10.1007/978-3-642-38571-1
- Carvallo J. P., Presentaciones, 2014-2015.