Geometria analítica

Anotações Práticas

Vinicius Faria

January 25, 2022

Contents

1	Esp	aços vetoriais e subvetoriais	1	
	1.1	Espaços vetoriais	1	
	1.2	Subespaços vetoriais	2	
		1.2.1 Definições	2	
		1.2.2 Teoremas	3	
2 Combinação linear			3	
1	1 Espaços vetoriais e subvetoriais			
1.	1 F	Espaços vetoriais		
	Dado um conjunto V, V é um espaço vetorial real caso satisfazer as condições DBS: Nas equações abaixo, $\forall x,y,z\in V$ e $\forall \alpha,\beta\in R$			

- 1. x + y = y + x (Associatividade)
- 2. (x+y)+z=x+(y+z) (Comutatividade)
- 3. $\exists \theta \in V \ / \ x + \theta = \theta + x = x$ (Existencia do vetor nulo)
- 4. $-x \in V \ / \ x + (-x) = \theta$ (Elemento simétrico da soma)
- 5. $\alpha(x+y) = \alpha x + \alpha y$ (Distribuitividade)
- 6. $(\alpha + \beta)x = \alpha x + \beta x$ (Distruibitividade)
- 7. $(\alpha \beta)x = \alpha(\beta x)$ (Associatividade)
- 8. 1x = x (Elemento neutro).

Um espaço vetorial que contém os numeros complexos é denominado **espaço** vetorial complexo

A partir das expressões acima, é possivel extrair as afirmações:

- 1. $\alpha\theta = \theta$
- $2. 0x = \theta$
- 3. $\alpha x = \theta$, então $\alpha = 0$ ou $x = \theta$
- 4. $(-\alpha)x = \alpha(-x)$

Alguns exemplos de espaços vetoriais, considerando operações normais:

- $V = K_n(x) = P_r(x)/r \le n$
- V = C[a, b] **OBS:** (f + g)(x) = f(x) + g(x) e $(\alpha f)(x) = f(x)$
- $V = \mathbb{R}^n$
- $V = M_{mrn}$

Não são espaços vetoriais:

- V = Z
- V = Conjunto de polinômios de grau 3
- Alguns conjuntos com operações diferentes do normal. Ex: $\alpha x = \alpha(x_1, x_2) = (\alpha^2 x_1, \alpha x_2)$

1.2 Subespaços vetoriais

1.2.1 Definições

Dentro de um espaço vetorial V, há subconjuntos W que são espaços vetoriais menores, contidos em V. **Todo espaço vetorial possui 2 subsespaços triviais:** Sub. nulo e ele mesmo. Critérios para subespaços vetoriais:

- 1. $\theta \in W$
- 2. $\forall x, y \in W \to x + y \in W$
- 3. $\forall \alpha \in R, \forall x \in W \rightarrow \alpha x \in W$

São subespaços:

- Soluções lineares homogêneas
- Qualquer sistema que adote multiplicações/adições usual com a presença do vetor nulo

Não são subespaços:

- Geralmente sistemas com alguma multiplicação/adição fora do comum ou muito específicas (ex. Conjunto de polinomios de terceiro grau)
- $u + v = (u_1, u_1^2) + (v_1, v_1^2)$

1.2.2 Teoremas

Intersecção de subespaços. Dado W_1 e W_2 subespaços vetorias de V, $W_1 \cap W_2$ também é subconjunto de V. Ex - Matriz triangulares inferiores e superiores.

Soma de subespaços. Dado W_1 e W_2 subespaços vetoriais de V, $W_1 + W_2$ também é subconjunto de V. Caso $W_1 \cap W_2 = \theta$, a soma é chamada de **soma direta**, denotada por $W_1 \oplus W_2$

2 Combinação linear

Dado um espaço vetorial V, o vetor $v \in V$ é considerado a combinação linear de $v_1 + v_2 + ... v_n$ caso houver escalares $\alpha_1 ... \alpha_n$ tais que:

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n$$

Em exercícios envolvendo combinação linear, dado v e $v_1...v_n$, colocar tudo em um sistema e resolver (escalonando ou manualmente). Caso o sistema for possível e determinado, é uma combinação linear, caso contrário (por desigualdades depois de substituir valores, por exemplo) não é uma combinação linear.

Como exemplo, utilizando os vetores $v_1 = (1, -1, 3)$ e $v_2 = (2, 3, 0)$ para a combinação linear, verificar se podem ser combinados para formar: u = (3, 3, 3) e v = (-2, -8, 6).

- u não pode ser formado, pois, dependo da maneira que o sistema for resolvido $\alpha_2 = 1$ ao mesmo tempo que $\alpha_2 = \frac{4}{3}$, classificando o sistema como impossível.
- Agora, v é totalmente possível, pois ao escalonar ou tentar resolver o sistema claramente chegamos em $\alpha_1 = 2$ e $\alpha_2 = -2$.