Eigenvalues and Stability Criteria

Experiment 1

Aim:

To comment on stability of system by using given model.

Problem Statement:

Consider a cart pendulum system. State variables include angle of the pendulum θ , angular velocity $\dot{\theta}$, horizontal displacement x, and velocity \dot{x} . Mathematical Model of this system in state space form:

Model

Find eigenvalues of matrix A and comment on behaviour of this system when input u=0.

- i. For $\theta = 0$
- ii. For $\theta=\pi$

Aim:

To find range of K matrix for which system is stable

Problem Statement:

Consider a spring mass system. A variable force F is applied on the mass. Model of this system can be given as

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} F$$

Let a matrix $K = \begin{bmatrix} K_1 & K_2 \end{bmatrix}$. Let F = -Kx.

As $\dot{x} = Ax + Bu$, u = F, and F = -Kx,

$$\dot{x} = Ax + B(-Kx)$$
$$= (A - BK)x$$

Now this new coefficient of x, A - BK, can be considered the new A matrix of this system. To find stability of the system with this input, apply the stability criteria on the new matrix, A' = A - BK.

Find the range of K_1 and K_2 for which the system is stable.