Sentiment Analysis Online Movie Reviews

Al Applications

© Kenneth Foo. All rights reserved

Al Applications Student | NLP Graded Assignment

Honor Pledge for Graded Assignments

"I affirm that I have not given or received any unauthorized help on this assignment, and that this work is my own."

Signature:

Summary

Data Pre-Processing

Model Creation

Prediction Results

 Difficulties Encountered & Learning Points

Process Text

Perform Tokenization

from nltk.tokenize import sent_tokenize, word_tokenize

• Remove Punctuation

stop = nltk.corpus.stopwords.words('english')

Lemmatize

from nltk.stem import WordNetLemmatizer

Train Test Split

• 80% Training

• 20% Testing

from sklearn.model_selection import train_test_split

Training & Testing Size Comparison

- Vectorization
- TF-IDF

$$w_{i,j} = t f_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

- TfidVectorizer
- Build TF-IDF function

Term Frequency: TF of a term or word is the number of times the term appears in a document compared to the total number of words in the document.

$$TF = \frac{\text{number of times the term appears in the document}}{\text{total number of terms in the document}}$$

Inverse Document Frequency: IDF of a term reflects the proportion of documents in the corpus that contain the term. Words unique to a small percentage of documents (e.g., technical jargon terms) receive higher importance values than words common across all documents (e.g., a, the, and).

$$IDF = log(\frac{\text{number of the documents in the corpus}}{\text{number of documents in the corpus contain the term}})$$

The TF-IDF of a term is calculated by multiplying TF and IDF scores.

$$TF$$
- $IDF = TF * IDF$

- Visualization using Altair
- Heatmap

0 -	detail	emotional	alone	told	complete	e njo y	art	oscar	forced	taken
1-	turned	actress	screenwriter	white	plan	form	quickly	the	single	robert
2-	hilarious	twist	girlfriend	oh	alone	leave	saw	whether	chance	age
3-	detail	near	hold	premise	in	working	release	guess	eventually	forced
4-	important	twist	earth	serious	oh	deep	recent	million	giving	future
5-	hilarious	surprisingly	deep	expect	o sc ar	eventually	dream	peter	whether	success
6-	motion	expect	told	appears	leave	chance	white	particularly	beautiful	dark
7-	whether	tale	mr	worse	quality	version	number	fine	beginning	light
8-	hell	project	appears	team	daughter	sometimes	taking	obviously	truly	thriller
9-	important	motion	easily	easy	recent	tale	across	CO	daughter	quality
10 –	premise	among	oh	alone	told	age	dark	light	drama	WO
11 -	emotional	read	actress	CO	daughter	flick	form	five	possible	number
12-	earth	10	oh	premise	taken	bo <mark>fi</mark> ng	type	bring	talk	single
13-	hilarious	emotional	turned	among	whether	across	white	particularly	involving	the
14-	deep	in	complete	screenwriter	enjoy	middle	taken	yes	type	late
15-	killer	in	involved	taking	particularly	none	type	quickly	robert	five
16-	surprisingly	premise	project	release	in	future	stay	forced	worse	break
17-	surprisingly	oh	read	among	score	in	mr	co	white	plan
18-	in	middle	tale	present	strong	break	room	upon	coming	son
19-	detail	10	alone	complete	town	return	surprise	heart	school	son
20 –	hilarious	10	premise	working	stay	appears	peter	saw	whether	extremely

- TF_IDF Concentration Clusters
- Scatter Plots
- Majority of terms appeared in the range of 0.1 to 0.2, rarely above 0.3. Total range is 0 to 1.
- This shows that there are a lot of repetitive terms that appeared in multiple documents.

Model Creation

- Neural Network
- 2 Dense Layers
- Optimizers = Adam Optimizer
- Loss = binary_crossentropy
- Metrics = accuracy
- Callbacks = [
 EarlyStopping,
 ModelCheckpoint,
 LearningRateScheduler
]

- Evaluation acc = 80%
- Precision label 0 = 0.80
- Precision label 1 = 0.81

Classification Report:

precision recall f1-score support 0.80 0.81 0.81 201 0.81 0.80 0.80 199 0.81 400 accuracy 0.81 0.80 0.80 400 macro avg weighted avg 0.81 0.81 0.80 400

Test for Unseen Text

Positive text

"This is going to go down as one of 2022's most entertaining motion pictures"

Predicted Sentiment: POSITIVE

Negative text

"Just when you think you've seen the worst movie ever made, along comes this pile of toxic waste."

100%| 100/100 [00:01<00:00, 97.20it/s]
Predicted Sentiment: NEGATIVE

Apply Cosine Similarity to Find Similar Text

- Compute cosine similarity for each word in unseen texts against each word in training dataset.
- Sort values from descending order and display the relevant word for the top cosine similarity values.

Apply Cosine Similarity to Find Similar Text

from sklearn.metrics.pairwise import cosine_similarity

Similar words for positive text:

	Similar words	Cosine Similarity
0	several	0.26121273222675995
1	nice	0.17099611612487206
2	beginning	0.16436803502996014
3	mean	0.16434677982006513
4	show	0.16399003084068903
5	taken	0.16192629754923127

Similar words for negative text:

	Similar words	Cosine Similarity
0	come	0.2535885476337849
1	turn	0.22630730810113545
2	screenwriter	0.2120569879127968
3	think	0.2087952832181084
4	violence	0.19622243100038428
5	involving	0.18709544095036856

Difficulties Encountered & Learning Points

Dr Chang | PhD, Computational Biology, Bioinformatics

"Friend of mine, Dr Chang, gave advices on how to build the tfidfvectorizer. He corrected my mistake specifically on how I used the fit_transform method. I had to be careful when building the vectorizer. Should only **fit transform** on the **X train** then use transform on **X_test**. The reason for not using fit_transform on **X_test** is because *fit transform* chooses the best words you provide. So even though you may have equal amount of vocabs in both sets, using *fit transform* may result in the mis-alignment in the arrays(because the vocabs are different). It would render your validation set useless because your model is validating against nonsense. He also used an analogy of describing the TF-IDF function like a mother function, it gave birth to the vectorizer, then you can use it subsequently."

End of Presentation