愛因斯坦棋之人工智能開發

指導教授:顏士淨

成員:李俊諺 張繼元 林源毅

一、摘要

- 。利用深度學習提升愛因斯坦棋勝率
- 。改良蒙地卡羅樹搜尋之策略
- 。以下會詳細介紹遊戲玩法以及遊戲之策略

二、玩法介紹

規則:

每方回合輪流擲骰子, 然後選擇一枚與骰點同樣數字 的己棋朝右、下或右下方(左、上或左上)移動一格至 任何棋位, 若無同點棋則改移動最接近該數的己棋之 一。當移動目的地有任一方棋子,將該棋移除棋盤。

勝利條件:

- 1.其中一方吃光對面所有棋子
- 2.其中一方任一棋子走到對方的角落

三、深度學習

資料前處理

從Little Golem上取得top 10 players的棋譜, 進行處理後 ,最後得到85226個棋局,總共有1447890筆資料,儲存成 CSV檔。

Feature map (16)

- 1~6各別為紅方編號1~6棋子的所在位置為1, 其他為0
- 7~12各別為藍方編號1~6棋子的所在位置為1, 其他為0
- 13為可動子的所在位置為1, 其他為0
- 14為全1
- 15為全0
- 16為空格(沒放雙方棋子)的位置為1, 其他為0

Label

記錄下一組可動棋子的走步方向

網路層

四、遊戲策略

Progress Bias

 $UCT' = UCT + CP \times Hb/Vn$

修改成此公式後, 讓搜尋樹的深度往下多了1至2層, 同時不影響原有MCTS的廣度。

(注)

- UCT:原UCT公式
- Cp:常數
- Hb:經訓練後的盤面之勝率
- Vn:拜訪次數

模擬策略 Simulation

因愛因斯坦棋有相當高的隨機性, 如改變它原隨機 策略將會影響MCTS的準確性和廣度。因此在這邊只 添加了最後一判斷。

新策略:

當存在其中一個合法步是決勝手,將優先被選 擇。

五、結論

MODEL	賽局一	賽局二	賽局三
	•		
總勝率	50%	64.1%	67. 9%

賽局一:

• 一樣的策略

賽局二:

• 更改選擇階段,增加 深度學習

賽局三:

總勝率值:66.25%+-3 • 更改選擇階段,增加 (4000場)

深度學習並加入模 擬新策略

六、未來與展望

深度學習:

- 提高目前之準確率, 以期更高的勝率
- 加入強化式學習,讓AI可以自我對弈以加強棋力

殘局庫:

- 加速走步的時間
- 利用雙方剩餘棋子來預測結果
- 將預測結果加入殘局庫, 往後在模擬時可直接利用 盤面,便可得知結果