Basic properties of probability measure

What can be said about the probability of the empty set?

What can be said about the probability of the empty set?

Identify $A = \Omega$ and $B = \emptyset$.

What can be said about the probability of the empty set?

Identify
$$A = \Omega$$
 and $B = \emptyset$.

* Intersection: $A \cap B = \Omega \cap \emptyset = \emptyset$.

What can be said about the probability of the empty set?

Identify $A = \Omega$ and $B = \emptyset$.

* Intersection: $A \cap B = \Omega \cap \emptyset = \emptyset$.

* Union: $A \cup B = \Omega \cup \emptyset = \Omega$.

What can be said about the probability of the empty set?

Identify $A = \Omega$ and $B = \emptyset$.

* Intersection: $A \cap B = \Omega \cap \emptyset = \emptyset$.

* Union: $A \cup B = \Omega \cup \emptyset = \Omega$.

normalisation

 $1 = \mathbf{P}(\Omega)$

What can be said about the probability of the empty set?

Identify
$$A = \Omega$$
 and $B = \emptyset$.

- * Intersection: $A \cap B = \Omega \cap \emptyset = \emptyset$.
- * Union: $A \cup B = \Omega \cup \emptyset = \Omega$.

normalisation

$$1 = \mathbf{P}(\Omega) = \mathbf{P}(\Omega \cup \varnothing)$$

What can be said about the probability of the empty set?

Identify
$$A = \Omega$$
 and $B = \emptyset$.

* Intersection:
$$A \cap B = \Omega \cap \emptyset = \emptyset$$
.

* Union:
$$A \cup B = \Omega \cup \emptyset = \Omega$$
.

normalisation

additivity

$$1 = \mathbf{P}(\Omega) = \mathbf{P}(\Omega \cup \varnothing) = \mathbf{P}(\Omega) + \mathbf{P}(\varnothing)$$

What can be said about the probability of the empty set?

Identify
$$A = \Omega$$
 and $B = \emptyset$.

* Intersection:
$$A \cap B = \Omega \cap \emptyset = \emptyset$$
.

* Union:
$$A \cup B = \Omega \cup \emptyset = \Omega$$
.

normalisation

additivity normalisation

$$1 = \mathbf{P}(\Omega) = \mathbf{P}(\Omega \cup \varnothing) = \mathbf{P}(\Omega) + \mathbf{P}(\varnothing) = 1 + \mathbf{P}(\varnothing)$$

What can be said about the probability of the empty set?

Identify
$$A = \Omega$$
 and $B = \emptyset$.

* Intersection:
$$A \cap B = \Omega \cap \emptyset = \emptyset$$
.

* Union:
$$A \cup B = \Omega \cup \emptyset = \Omega$$
.

normalisation
$$1 = P(\Omega) = P(\Omega \cup \varnothing) = P(\Omega) + P(\varnothing) = 1 + P(\varnothing)$$

 $\mathbf{P}(\varnothing) = 0$