1.

a. Define half adder.

The half adder is a type of combinational logic circuit that adds two of the 1-bit binary digits. It generates carry and sum of both the inputs. The full adder is also a type of combinational logic that adds three of the 1-bit binary digits for performing an addition operation.

b. Draw a truth table for the sum and carry of half adder.

Truth table

-Input A	-input B	-S(Sum)
0	0	0
0	1	1
1	0	1
1	1	0

- c. Write the sop expression from the truth table.
- -SOP expresssion sum=AB'+A'B
- -SOP expressioin carry=A'B
 - d. Draw the circuit using logsim.

2.

- a. Draw the truth table for the outputs of the full adder
 - e. Write the corresponding sop expression for sum and carry of full adder and simplify the expression

-A full adder circuit is central to most digital circuit that perform addition or subtraction. It is so called because it adds together two binary digits, plus a carry-in digit to produce a sum and carry-out digit. 1. It therefore has three inputs and two outputs. Truth Table for full Adder:

А	В	С	Sum	Carry Out	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	0	0	
0	1	1	1	1	
1	0	0	0	0	
1	0	1	1	1	
1	1	0	0	1	
1	1	1	1	1	

Draw full adder using two half adder and an OR gate

3. Using the three stages of design, construct the circuits for the following input /output values. Here A, B and C are the inputs whereas D, E, F, G, H and I are outputs. *Note: Draw circuit diagram using logsim corresponding to the simplified expression of outputs D, E, F, G, H and I.*

Α	В	С	D	E	F	G	Н	1
0	0	0	1	0	1	0	1	1
0	0	1	1	0	1	1	0	1
0	1	0	1	0	1	1	1	1
1	0	0	1	0	0	1	0	1
1	1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	0	1
1	0	1	1	1	1	1	1	0
0	1	1	0	0	0	1	1	1

1)
$$D=A+B'+C'$$

Prepared by:Aman Kumar Sah

=ABC+ABC'+ABC+AB'C

=AB+AC

=A(B+C)

Prepared By:Aman Kumar Sah

3)F=A'BC'+AB'C=A'BC'+AB'C

=A'C'(B'+B)+B'C(A'+A)+ABC

=A'C'+B'C+ABC

=A'C'+C'(B+AB)

$$=A'C'+C(B'+A)(B'+B)$$

=A'C'+(B'+A)

Prepared By: Aman Kumar Sah

4)G=A+B+C

Prepared By:Aman Kumar Sah

=A'C'+A

6)I=A'+B+C'

Prepared By:Aman Kumar Sah