PATENT ABSTRACTS OF JAPAN

(11)Publication number: 2002-238580

(43)Date of publication of application: 27.08.2002

(51)IntCl. C12N 15/09 A01H 5/00

> C12N 5/10 C12N 9/10 C12P 21/02

(21)Application number: 2001-044359 (71)Applicant: TANIGUCHINAOYUKI

SEKITATSUJI

FUJIYAMA KAZUHITO

SUNTORY LTD

(22)Date of filing: 20.02.2001 (72)Inventor: TANGUCHINAOYUKI

SEKITATSUJI

FUJIYAMA KAZUHITO

(54) PLANT CELL HAVING ANMAL-TYPE SUGAR CHAIN-ADDING FUNCTION

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a plant cell having an animal-type sugar chain. SOLUTION: A plant cell having an animal-type sugar chain-adding function. The plant cell is prepared by introducing a gene encoding an animal-derived enzyme which can transfer N-acetylglucosam ine into a mannose residue of a sugar chain contained in a sugar protein.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A) (11)特許出願公開番号

特開2002-238580 (P2002-238580A)

(43)公開日 平成14年8月27日(2002.8.27)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコード(参考)
C 1 2 N	15/09	ZNA	A01H	5/00	I	A 2B030
A01H	5/00		C12N 9	9/10		4B024
C 1 2 N	5/10		C12P 2	1/02	(C 4B050
	9/10		C12N 1	5/00	ZNA	A 4B064
C 1 2 P	21/02		!	5/00	(C 4B065
			審查請求	未請求	請求項の数 6	OL (全 32 頁)
(21)出願番号	→	特顧2001-44359(P2001-44359)	(71)出顧人	5921961	01	
				谷口 直	直之	
(22)出顧日		平成13年2月20日(2001.2.20)		大阪府島	費中市上野東2-	-19-32-201
			(71) 出顧人	5981696	86	
				関達	台	
				大阪府第	美面市箕面 5 -1	3-53-209
			(71)出顧人	5981696	97	
				藤山 禾	0仁	
				大阪府外	大田市山田西1-	-28 A18-308
			(74)代理人			
				弁理士	山本 秀策	
						最終頁に続く

(54) 【発明の名称】 動物型糖鎖付加機能を持つ植物細胞

(57) y vae f R[h•Ø`q"\$

.. <u>ā</u>_

N., Pierce, M. Isolation, Characterization, and Expression of a cDNA Encoding N-Acetylglucosaminyltra nsferase V. (1993) J. Biol. Chem. 268, 15381-1538

5)	В	f	,	s	1	u	"	A	-, -	0.50	v	₩
	m	[Х				А	t	C	0	1	離
	Α	m	1	Α	Z	`		0		R	T	8
P	С	U			-	m	1	Α	Z	`		肇
	G	}	•	Ø	₿							
У	0	0	R	M	z	u		^		р	N	4
Х	C			m	1	Α	Z	`		0		#
"	A	С			fi	¤			R			蓋
_	Ü	"	D			>	Α	q	g		R	荔
У	0	0	R	Х	Z	u		^		р	N	4
Х	C			m	1	A	Z	`		0		擊
"	Α	_		У	f		R	[h	•	Ø	盤
`	h	z	æ		р	¢	~	С			fi	R
	A	s						W			~	Æ
>	>>		K				/			~		₿
ß	@	"		Ü		쥞						
У		0	S	0	Z	Æ	f	ı	Α	f		難
"		q	g	A	Ε	V		•		M	ß	9
Œ	~	¢	Ø	В	Z	æ		Ł	‡	Œ	910	養
			Z	æ	¤				Ł	‡	Œ	產
	}	T	a	₿								
У	0	0	S	Ρ	Z	{				-	"	糞
d		"		¢	/	В		`	q		"	蔞
	A	V			[^	[A	Ι	У		奉
["	•		S		Z	æ	媒				
У	0	0	S	Q	Z	u				^		萋
	Œ	Ø	A	¤		¤	¢	~	{		>	婁
/					^		р	N	i		Æ	蘩
	0	J	С		A	R		A		N	`	彝
N	Š	"	•	"				Œ	Ø	В	У	截
У		Ι	L	V	_	[[A	L	i	[壅
i												₿.
1	K		N	g	V	_	[[A	t	В	Ā
	1								_			
			j	Α	g	1	f	1	b		ì	

```
      Y
      O
      O
      S
      V
      Z
      T
      T
      E
      S
      Y
      Z
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
      T
```

(8) J Q Ο 0 13 14 J F g Q Α 0 I i 0 Α S S D U T 6 Α Α 0 n ğ s j 0 k b s ¥ х 0 A 6 0 0 Ρ g F У z Ρ ¥ х g F Q A 6 Z 0 f В G F Ρ 0] g ¥ Х i 0 ¤ Ρ ΤĦ } Ρ U } Ρ f g а F 0 D♥ f Α У t F R 0 🕸] Ø f 🗱 u i Ν F 1 Q 10 J Ø 0 0 U V У z Α E ¤ bj 1 Α Α ¤ u 0 S J F b b Ρ Α Α Τ i U Q Т 0 Æ Α j 0 0 U W У F 0 D Ρ D Α 簠 n 0 р i Р 0 D Q D Ρ D j n g р خ i Ï R Ε Х Q { f 0 В G F 0 D a Q j p g Х i 0 ¢ i g α Т \mathbf{p} S 0.50 F Ρ DŐ 20 [Α W Α [0 F u 1 i Ν F R Q 0 🕸 0 b Ρ Ł Ε J R У 0 0 Х z i Ρ D Q D i V D « Ł j « Х Ρ 0.50 f t f 0 0 2 У У

" A S	8 y ¥ Ø 表 2. 使用菌株	
株	遺伝子型および特徴	参考文献
Escherichia coli JM109		Yanisch-Perron C
	17, supE 44, relAl, Δ (lac-proAB) /F' [traD 36, proAB',	S (*)
·	lacl ^q , lacZ∆M15]	
Agrobacterium	Str , Rif	Jen, G.C.ら (**
tumefaziens LBA4404	バイナリーベクターのT-DNA領域の 移入を容易にするために必要な、)
	トランスに作用する病原性(virul	
	ence)機能を有する	

(*) Yanisch-Perron C, Vieira J. Messing J. Improved MIS phage clonin g vectors and host strains: nucleotide sequences of the Mi3mpl8 and pUC1 9 vectors. (1985) Gene 33, 103 119 (**) Jen, G.C., Chilton, M. D. The right horder region of pTiT37 T-DNA is intrinsically more active than the left border region in promoting T-DNA transformation. (1986) Proc. Natl. Acad. Sci. USA. 83, 3895-3899

0 ₽z Ρ R g p v 0 В ¥₽

В } Ρ U

表3. 使用プラスミド

プラスミド	遺伝子型および特徴	参考文献
pBI121		Ifferson, R.A. 5 (*)
pRK2013	Kmt	Bevan, M. (**)
	3 親交配により、E.col	
	iからA. tumefaciensにバ	
	イナリーベクター中の構	
	築物を移動するために用	
	いた接合プラスミド	

- (*) Ifferson, R. A., Kavanagh, T. A., Bevan, M. W. GUS fusion: β -glucuronidase as a sensitive and versatile gene fusion in higher plants. (1987) EMBO. J. 6, 3901-3907
- (**) Bevan, M. Binary Agrobacterium vectors for plant transformation. (1984) Nucleic Acids. Res. 12, 8711-8721.

```
(11)
                                                                        J
                                                                           Q
                      19
                                                                      20
hia coli JM109
               Α¤
                                   ₩RK2013
                                                    ]
     Escherichia coli
                       A » Œ Œ Omg/l
                                          J į
                                                    0
                                                       O X T z
                                                                     P U
                                                 У
             2 YT | n -
                             R
                               V
                                       Α
                      Χ
                                 ∰0 mg/l A
                                                 i
                                                    Ρ
                                                        U D P D
                                                                     MNeasy Plant Mini Kit (Q
                          g
     s ¥00 mg/l
                   2 YT |
                            ā8
                                   A Q
                                         - 1
                                               IAGEN)
                                                                    s
                                                         р
                                                 ¢
                                                                     a A
% B
                                                                  950
                                                                           >>
                                                           F
    0 0 X 0 z e
                               | { t弹
 У
                                       ~ @ ~
       W (10,000 rpm, 1 min)
                               Α
                                  >>
                                                    0
                                                           Х
                                                              U
                                                                     i P
             Ρ
                           🕱 YT | n
                æ
                                       w 👖 10
               ¢
    В
                         [
                            u
     Ε
                             Ι
                             {
m I\! P}
     Α
                         R
                                   ċ.
        28
                      Ν
                                Ε
        V
 Ł
 Q
            P 🕸
             P z
                    P
                         S
                            D
                                                     2 B
 У
 d
                An, G., Ebert, P. R., Mitra,
                                                        O X V z 💆
                                                 У
A. and Ha, S. B. (1988) Binary vectors. In plant M 20
                                                     {
                                                           Α
                                                              † XI A PFCR
olecular Biology manual, A3, 1-19, AcademicDordrec
                                                 L
                                                           ß
                                                              @
                                                                     ] ¢
                                                                           Α
        1 `
                                                       野 i ENA 2 1, 10 PCR buffer 5 1,
 у О
        O X Q z i P S D P D #
                                               dNTPs(2.5mM) 4 \,^{\circ} 1, primer( 50 pmol ),Taq polymeras
    0
                         С
                                [
                      }
                                   t 🗱 5 ml
                                                e (
           ^ 25 27
                           • x 2022rpm
     Œ.
 х
            {
                  s
                         950
                            В
                               V
                                                (%
                                                            j ₿4
                                                                    5 " A4
                                                                             1 "
                                                                                          % 62
                                                           j 🗗 2 1 "
                                                                           L • 230 T
                                                                                      С
           ΑpB
                                                        Α
           X R z i P S
                                                                  " B "
     0
                                                    Α
                                                        72
                                                               S
                                                                            ¤ A A
        0
                                D
                                       D
 У
     \mathbb{P}
                                                 С
 R
                                                    }
                                         A 30
                                                    0
               Ę
                     a h
                           n
                                      Χ
                                                 У
                                                        0
                                                           Χ
                                                               W
                                                                  z P
        e EBA4044 )100 1 ~
                           Α
                                      S
                                                 i
                                                    Ρ
                                                        W
                                                           D
                                                              Ρ
                                                                  D NA PCR Kit Ver. 2. 1 i
           E fal
                                        025
                                                     ¢
                                                               р
                                                                 zit
                                                                         t fi MgCl<sub>2</sub> 5 m
                           -
                                                        j
               - a ce a A V
                                               M 4 1 RNase Inhibitor(1U/ 1)0.5 1 Reverse Tr
                                   - 1
                                         t
                 $1,000 rpm, 5 min)
                                       Ła
                                               anscriptase(0.25U/ 1) 1 1 \pm 0 ~ RNA PCR buffer 2
 S
           В
                      Œ ‰
                                   b g 🗯
                                                1 A RNase Free 10 8.5 ° 1 ANTPs (1mM) 2 1 RN 1)
                            У
                                Е
                                               1 1 Aligo dT-Adaptor Primer(0.125 °M)1 1 A
        Ø
                    0
                               Ν
                                  е
                                                    †
                                                        MANA1 1
                                                                              Α
 R
             翻
                    1
                       n
                                       産50
        {
        A N
                  f00 kg/l l
                                                ( %
                                                         50
                                                              30 " 99
                                                                          5 "4
 \log/1 1
 V
                                            40
                                                    Т
                                                        C NB
                                                 Ρ
 Т
                 38
                                                        O X X z
                   ab.
                                    J
                                         区
                                                 у о
                                                                     i
                                                                        Ρ
                                                                            W D Q
                                                         n j F ª
                                                                     L P MEDNA 5 1 A0 ~
     Α
           \mathbb{P}
                         fl
                            lŭS f
                                    V
                                       | n
                                                ( %
                  ځ
                      ¢
                         Ø
                                               RNAPCR buffer 4.5 1 ANTPs(2.5mM) 3 1 Arimer(5
     Α
                            N
                                   T 🌉 ]
                                               0 pmol ) \mathbb{A}aq polymerase ( $ 5 units/ 1) 0.5
                        N
                                        ΑN
                             [
                                                1,MgCl_2 (5 mM) 3 1 A ^- 50 1
                                                                                 " ø >
        \mathbf{B}00 \, \log 1 \, 1
                         ĽS t
                                   $5ml
                                                 f 🖺
                                                ( %
                                                                  5 " A4
       OXSzP
                                                                                         M2
                         T D ^ O R R
                                                            j ₿4
                                                                               Ρ
                                                1 "
                                                                    1 "
                                                         А ј 🗘
                                                                4 " B "
                                                        ¤ 72
DNeasy Plant Mini Kit (QIAGEN)
                                 p ¢
                                       B ^
                                                    Α
                                                                                Α
```

1 {

E

t

f

3 50

C }

[

26	

	•															
			90					95					100			
aag	gtg	gac	aat	ctt	gtt	gtc	aat	ggc	acc	gga	aca	aac	tca	acc	aac	509
Lys	Val	Asp	Asn	Leu	Val	Val	Asn	Gly	Thr	Gly	Thr	Asn	Ser	Thr	Asn	
		105					110					115				
tcc	act	aca	gct	gtt	ccc	agc	ttg	gtt	gca	ctt	gag	aaa	att	aat	gtg	557
Ser	Thr	Thr	Ala	Val	Pro	Ser	Leu	Val	Ala	Leu	Glu	Lys	Ile	Asn	Val	
	120					125					130					
gca	gat	atc	att	aac	gga	gct	caa	gaa	aaa	tgt	gta	ttg	cct	cct	atg	605
Ala	Asp	Ile	Ile	Asn	Gly	Ala	Gln	Glu	Lys	Cys	Val	Leu	Pro	Pro	Met	
135	-				140				-	145					150	
gac	gqc	tac	cct	cac	tat	gag	gga	aag	atc	aaq	tga	atq	aaa	gac	atg	653
_					_		Gly			-				_	_	
I-	1	<u>.</u> _	-	155	→		4	<u>.</u> -	160	4	T-	-	<u>.</u> -	165	-	
tan	cat.	tca	gat.		tac	tac	gca	gac		gaa	ata	gat.	gga		acc	701
	-		-		-		Ala	-				-				
1	9		170		- ₁ 5	-1-		175	-1-	<u>1</u>		P	180			
taa	† <i>~</i> +	+++		att	tac	ctc	agt		at t	gaa	aat	taa		cct	cat	749
_							Ser		_	_			_			, 32
⊂y⊃	JCI	185	THE	TTG	тАт	цси	190	JLU	val	GIU	ווכים	195	∪y5	110	1112	
++-	~~+		2072	aa-	277	2 a+	CCC	+-~	ara a	<i>α</i>	~~+		an+	an+	+~-	797
			_	_					_	_	_	-				131
ьeu	200	тъ	мy	ALd	гу	205	Pro	тĀГ	GIU	GIU		ASP	пта	ASH	er.	
++~		~	-++		200		+++	-	-++	at =	210	۔	a+ ==	a+		0.45
-		-		-		-	ttt					_	_	_		845
	А1а	GIU	тте	arg		ASP	Phe	ASN	тте		ıyr	ser	MEC	Mec		
215				 -	220	4	_+-			225	a+ -			a+	230	000
-		-	-				atg	-					_	_	-	893
гÃ2	пlS	GIU	GIU		arg	ırp	Met	arg		arg	тте	arg	arg		Ата	
			- 4	235		_ 1			240					245		0.41
-	-				-		aag		-	-	-	-	_			941
Asp	Ala	Irp		GIn	ALa	Пе	Lys		Leu	Ala	Glu	Lys		Asn	Leu	
			250					255					260			
-	_	-	_		_		gtc		-		_			_		989
Glu	Lys		Lys	Arg	Lys	Lys	Val	Leu	Val	His	Leu		Leu	Leu	Thr	
		265					270					275				
_	_				_		gca			_		_				1037
Lys		Ser	Gly	Phe	Lys	Ile	Ala	Glu	Thr	Ala	Phe	Ser	Gly	Gly	Pro	
	280					285					290					
ctt	ggt	gaa	tta	gtt	caa	tgg	agt	gat	tta	att	aca	tct	ctg	tac	tta	1085
Leu	Gly	Glu	Leu	Val	Gln	Trp	Ser	Asp	Leu	Ile	Thr	Ser	Leu	Tyr	Leu	
295					300					305					310	
ctg	ggc	cat	gac	att	agg	att	tca	gct	tca	ctg	gct	gag	ctc	aag	gaa	1133
Leu	Gly	His	Asp	Ile	Arg	Ile	Ser	Ala	Ser	Leu	Ala	Glu	Leu	Lys	Glu	
				315					320					325		
atc	atg	aag	aag	gtt	gta	gga	aac	cga	tct	ggc	tgc	cca	act	gta	gga	1181
Ile	Met	Lys	Lys	Val	Val	Gly	Asn	Arg	Ser	Gly	Cys	Pro	Thr	Val	Gly	
			330					335					340			
gac	aga	att	gtt	gag	ctc	att	tac	att	gat	att	gta	gga	ctt	gct	caa	1229
Asp	Arg	Ile	Val	Glu	Leu	Ile	Tyr	Ile	Asp	Ile	Val	Gly	Leu	Ala	Gln	
		345					350					355				
ttc	aag	aaa	act	ctt	gga	cca	tcc	tgg	gtt	cat	tac	cag	tgc	atg	ctc	1277
	_								-			_	_	_		

Phe Lys Lys Thr Leu Gly Pro Ser Trp Val His Tyr Gln Cys Met Leu

28

	360	-1-			1	365		r			370		-1-			
cga	gtc	ctt	gat	tca	ttt	ggt	act	gaa	ccc	gaa	ttt	aat	cat	gca	aat	1325
Arg	Val	Leu	Asp	Ser	Phe	Gly	Thr	Glu	Pro	Glu	Phe	Asn	His	Ala	Asn	
375					380					385					390	
tat	gcc	caa	tcg	aaa	ggc	cac	aag	acc	cct	tgg	gga	aaa	tgg	aat	ctg	1373
Tyr	Ala	Gln	Ser		Gly	His	Lys	Thr		Trp	Gly	Lys	Trp		Leu	
				395					400					405		1.401
aac Asn		-	_				-				acc		-		-	1421
ASII	FIO	GIII	410	FIIC	тут	1111	MEC	415	FIO	штэ	1111	FIO	420	ASII	2CT	
ttt	ctg	aaa		ata	gtt	gag	caq		ctq	aac	tcc	agt		atc	cac	1469
Phe	_				_		_					_				
		425					430					435				
cac	att	aat	gaa	atc	aaa	agg	cag	aac	cag	tcc	ctt	gtg	tat	ggc	aaa	1517
His	Ile	Asn	Glu	Ile	Lys	Arg	Gln	Asn	Gln	Ser	Leu	Val	Tyr	Gly	Lys	
	44 0					445					450					
gtg -	-	_			_		-	_			_	-				1565
Val	Asp	Ser	Phe	Trp	_	Asn	Lys	Lys	Ile	-	Leu	Asp	Ile	Ile		
455	+20	ata	~~~	at a	460	aa.	aat	~++	tat	465	taa	200	202	220	470	1613
aca Thr		_	-			-		-			Ser	-		_		1013
1111	171	rice	OIG	475	1113	AIU	1111	Val	480	OLY	DCI	JCI	1111	485	ASII	
att	ccc	agt	tac	gtg	aaa	aac	cat	ggt	atc	ctc	agt	gga	cgg	gac	ctg	1661
Ile	Pro	Ser	Tyr	Val	Lys	Asn	His	Gly	Ile	Leu	Ser	Gly	Arg	Asp	Leu	
			490					495					500			
cag				-	-		-	_		-						1709
Gln	Phe		Leu	Arg	Glu	Thr	_	Leu	Phe	Val	Gly		Gly	Phe	Pro	
+		505	~~~		~~~		510		-+-		+	515				1757
tac Tyr				-		-	-	-		-			-	-		1757
131	520	OLY	110	ma	110	525	OLU	1110	110	1110	530	O _L y	CYD	mu	THE	
ctg		ccc	aag	ttc	aac		ccc	aaa	agc	agc		aac	aca	gac	ttt	1805
Leu																
535					540					545					550	
ttc	att	ggc	aag	cca	act	ctg	aga	gag	ctg	aca	tcc	cag	cat	cct	tac	1853
Phe	Ile	Gly	Lys	Pro	Thr	Leu	Arg	Glu	Leu	Thr	Ser	Gln	His	Pro	Tyr	
				555					560					565		
gct	_	-										-	-			1901
Ala	GIU	vaı	570	шe	GTĀ	Arg	Pro	н1S	vaı	irp	ınr	vaı	580	Leu	Asn	
aat	cac	αaα		σta	gag	αat	aca		aaa	aca	att	tta		cac	aad	1949
Asn	_		-	-		-	-			_				_	_	13 13
		585				T -,	590		_1 =			595			- <u>u</u> -	
att	gag	cca	tac	atg	cca	tat	gaa	ttt	acg	tgc	gag	ggg	atg	cta	cag	1997
Ile	Glu	Pro	Tyr	Met	Pro	Tyr	Glu	Phe	Thr	Cys	Glu	Gly	Met	Leu	Gln	
	600					605					610					
aga	atc	aat	gct	ttc	att	gaa	aaa	cag	gac	ttc	tgc	cat	ggg	caa	gtg	2045

	:	29														30
Arg 615	Ile	Asn	Ala	Phe	Ile 620	Glu	Lys	Gln	Asp	Phe 625	Cys	His	Gly	Gln	Val 630	
atg	tgg	cca	ccc	ctc	agc	gcc	cta	cag	gtc	aag	ctt	gct	gag	ccc	ggg	2093
Met	Trp	Pro	Pro	Leu	Ser	Ala	Leu	Gln	Val	Lys	Leu	Ala	Glu	Pro	Gly	
				635					640					645		
cag	tcc	tgc	aag	cag	gtg	tgc	cag	gag	agc	cag	ctc	atc	tgc	gag	cct	2141
Gln	Ser	Cys	Lys	Gln	Val	Cys	Gln	Glu	Ser	Gln	Leu	Ile	Cys	Glu	Pro	
		_	650			_		655					660			
tct	ttc	ttc	cag	cac	ctc	aac	aag	gac	aag	gac	atg	ctg	aag	tac	aag	2189
Ser	Phe	Phe	Gln	His	Leu	Asn	Lys	Asp	Lys	Asp	Met	Leu	Lys	Tyr	Lys	
		665					670					675				
gtg	acc	tgc	caa	agc	tca	gag	ctg	gcc	aag	gac	atc	ctg	gtg	ccc	tcc	2237
Val	Thr	Cys	Gln	Ser	Ser	Glu	Leu	Ala	Lys	Asp	Ile	Leu	Val	Pro	Ser	
	680					685					690					
ttt	gac	cct	aag	aat	aag	cac	tgt	gtg	ttt	caa	ggt	gac	ctc	ctg	ctc	2285
Phe	Asp	Pro	Lys	Asn	Lys	His	Cys	Val	Phe	Gln	Gly	Asp	Leu	Leu	Leu	
695					700					705					710	
ttc	agc	tgt	gca	ggc	gcc	cac	ccc	agg	cac	cag	agg	gtc	tgc	ccc	tgc	2333
Phe	Ser	Cys	Ala	Gly	Ala	His	Pro	Arg	His	Gln	Arg	Val	Cys	Pro	Cys	
		_		715				_	720		_		_	725	_	
cgg	gac	ttc	atc	aag	ggc	cag	gtg	gct	ctc	tgc	aaa	gac	tgc	cta		2378
	Asp			_				_		_		_	-			
_	_		730	_	_			735		_	_	_	740			
tago	cagct	ac (ctgct	cago	cc ct	gcad	cate	goto	gatgo	gga	agad	cagto	ggc (ccc		2431
<210)> 2															
<21	L> 74	11														
<212	2> PF	RT														
<213	3> hu	ıman														
<400)> 2															
Met	Ala	Leu	Phe	Thr	Pro	Trp	Lys	Leu	Ser	Ser	Gln	Lys	Leu	Gly	Phe	
1				5					10					15		
Phe	Leu	Val	Thr	Phe	Gly	Phe	Ile	Trp	Gly	Met	Met	Leu	Leu	His	Phe	
			20					25					30			
Thr	Ile	Gln	Gln	Arg	Thr	Gln	Pro	Glu	Ser	Ser	Ser	Met	Leu	Arg	Glu	
		35					40					45				
Gln	Ile	Leu	Asp	Leu	Ser	Lys	Arg	Tyr	Ile	Lys	Ala	Leu	Ala	Glu	Glu	
	50					55					60					
Asn	Arg	Asn	Val	Val	Asp	Gly	Pro	Tyr	Ala	Gly	Val	Met	Thr	Ala	Tyr	
65					70					75					80	
Asp	Leu	Lys	Lys	Thr	Leu	Ala	Val	Leu	Leu	Asp	Asn	Ile	Leu	Gln	Arg	
				85					90					95		
Ile	Gly	Lys	Leu	Glu	Ser	Lys	Val	Asp	Asn	Leu	Val	Val	Asn	Gly	Thr	
			100					105					110			
Gly	Thr	Asn	Ser	Thr	Asn	Ser	Thr	Thr	Ala	Val	Pro	Ser	Leu	Val	Ala	
		115					120					125				
Leu	Glu	Lys	Ile	Asn	Val	Ala	Asp	Ile	Ile	Asn	Gly	Ala	Gln	Glu	Lys	
	130					135					140					
Cys	Val	Leu	Pro	Pro	Met	Asp	Gly	Tyr	Pro	His	Cys	Glu	Gly	Lys	Ile	

Lys Trp Met Lys Asp Met Trp Arg Ser Asp Pro Cys Tyr Ala Asp Tyr

				165					170					175	
Gly	Val	Asp	Gly 180	Ser	Thr	Cys	Ser	Phe 185	Phe	Ile	Tyr	Leu	Ser 190	Glu	Val
Glu	Asn	Trp 195	Cys	Pro	His	Leu	Pro 200	Trp	Arg	Ala	Lys	Asn 205	Pro	Tyr	Glu
Glu	Ala 210	Asp	His	Asn	Ser	Leu 215	Ala	Glu	Ile	Arg	Thr 220	Asp	Phe	Asn	Ile
Leu 225	Tyr	Ser	Met	Met	Lys 230	Lys	His	Glu	Glu	Phe 235	Arg	Trp	Met	Arg	Leu 240
Arg	Ile	Arg	Arg	Met 245	Ala	Asp	Ala	Trp	Ile 250	Gln	Ala	Ile	Lys	Ser 255	Leu
Ala	Glu	Lys	Gln 260	Asn	Leu	Glu	Lys	Arg 265	Lys	Arg	Lys	Lys	Val 270	Leu	Val
His	Leu	Gly 275	Leu	Leu	Thr	Lys	Glu 280	Ser	Gly	Phe	Lys	Ile 285	Ala	Glu	Thr
Ala	Phe 290	Ser	Gly	Gly	Pro	Leu 295	Gly	Glu	Leu	Val	Gln 300	Trp	Ser	Asp	Leu
305				_	310		_		_	315			Ser		320
				325				_	330				Asn	335	
_			340			_	_	345					Tyr 350		_
		355					360	-			_	365	Ser	Ī	
	370					375					380		Thr		
G1u 385	Phe	Asn	His	ALa	390	Tyr	Ala	GIn	Ser	Lys 395	GLy	His	Lys	Thr	400
Trp	Gly	Lys	Trp	Asn 405	Leu	Asn	Pro	Gln	Gln 410	Phe	Tyr	Thr	Met	Phe 415	Pro
His	Thr	Pro	Asp 420	Asn	Ser	Phe	Leu	Gly 425	Phe	Val	Val	Glu	Gln 430	His	Leu
		435					440					445	Gln		
	450				_	455				_	460		Lys	_	
465		-			470		_			475			Thr		480
				485					490				His	495	
			500					505					Lys 510		
		515					520					525	Glu		
	530					535					540		Pro		
Ser	Lys	Asn	Thr	Asp	Phe	Phe	Ile	GLy	Lys	Pro	Thr	Leu	Arg	GLu	Leu

545 550 555 560 Thr Ser Gln His Pro Tyr Ala Glu Val Phe Ile Gly Arg Pro His Val 565 570 Trp Thr Val Asp Leu Asn Asn Gln Glu Val Glu Asp Ala Val Lys 585 Ala Ile Leu Asn Gln Lys Ile Glu Pro Tyr Met Pro Tyr Glu Phe Thr Cys Glu Gly Met Leu Gln Arg Ile Asn Ala Phe Ile Glu Lys Gln Asp 615 Phe Cys His Gly Gln Val Met Trp Pro Pro Leu Ser Ala Leu Gln Val 630 635 Lys Leu Ala Glu Pro Gly Gln Ser Cys Lys Gln Val Cys Gln Glu Ser 645 650 Gln Leu Ile Cys Glu Pro Ser Phe Phe Gln His Leu Asn Lys Asp Lys 660 665 Asp Met Leu Lys Tyr Lys Val Thr Cys Gln Ser Ser Glu Leu Ala Lys 680 Asp Ile Leu Val Pro Ser Phe Asp Pro Lys Asn Lys His Cys Val Phe

695

Cys Lys Asp Cys Leu

690

740

Α ${\tt R}$ Х У S У ØВ Т У q Ν Ι f æ Т k Ν q Ι f U z В Ø V У Ø M У Ø У Χ

y } ₽

N-linked chain

1) High mannose type

Man α 1-2 Man α 1- 6 Man α 1 Man α 1-2 Man α 1 Man α 1-2 Man α 1 Man β 1- 4GlcNAc β 1- 4GlcNAc Man α 1-2 Man α 1- 2 Man α 1- 3

2) Complex type

Sia a 2- 6Gal β 1- 4GlcNAc β 1- 2Man a 1— 6 Man β 1- 4GlcNAc β 1- 4GlcNAc Sia a 2- 6Gal β 1- 4GlcNAc β 1-2 Man a 1— 3

3) Hybrid type

у } Ø

1) Mammalian cell type

2) Plant cell Type

y } R

y } 3

y } 🕱

TTTGGCTTCATTTGGGGTATGATGCTTCTGCACTTTACCATCCAGCAGCGAACTCAGCCT PheGlyPheIleTrpGlyMeTmeTLeuLeuHisPheThrIleGlnGlnArqThrGlnPro

GAAAGCAGCTCCATGCTGCGCGAGCAGATCCTGGACCTCAGCAAAAGGTACATCAAGGCA GlusetsetsetnetleuargGluGlnIleleuaspleusetlysatgTytilelysala

CTGGCAGAAGAAACAGGAATGTGGTGGATGGGCCATACGCTGGAGTCATGACAGCTTAT Leualaciugluasnargasnvalvalaspglyprotyralaglyvalmetthralatyr

GATCTGAAGAAAACCCTTGCTGTGTTATTAGATAACATTTTGCAGCGCATTGGCAAGTTG AspleulyslysthxleualavalleuleuaspasnileleuGinargileGlylysleu

ACAGCTGTTCCCAGCTTGCTTGCACTTGAGAAAATTAATGTGGCAGATATCATTAACGGA ThrAlavalProSorLouValAlaLouGluLysIloAsnValAlaAspiloIloAsnGly

GCTCRAGAAAAATGTGTATTGCCTCCTATGGACGCCTACCCTCACTGTGAGGCAAAGATC AlaGluGluLyaCysValLeuProProMETAspGlyTyrProHisCysGluGlyLysIle

TCCACCTGCTCTTTTTTATTTACCTCAGTGAGGTTGAAAATTGGTGTCCTCATTTACCT SerThrCysSerPhePheIleTyrLeuSerGluValGluAsnTrpCysProRisLeuPro

TGGAGAGCARARARTCCCTACGARGRAGCTGATCATRATTCATTGGCGGARATTCGTACA TrpArgAlaLysAsnProTyrGluGluAlaAspHisAsnSerLeuAlaGluIleArgThr

CATTTTAATATTCTCTACAGTATGATGAAAAAGCATGAAGAATTCCGGTGGATGAGACTA AsppheasnileleutyrSernetmetlyslysEisGluGluPheArgTrpMeTArgleu

CGCATCCGGCGAATGGCTGACGCATGGATCCAAGCAATCAAGTCCCTGGCAGAAAAGCAG ArgileargArgMETAlaaspAlaTrplleGlbAlaIleLysSerLeuAlaGluLysGlb

AACCTTGAAAAGAGAAAGCGGAAGAAGTCCTCGTTCACCTGGGACTCCTGACCAAGGAA AsnLeuGluLysArgLysArgLysLysValLeuValHisLeuGlyLeuLeuThrLysGlu

TCTGGATTTAAGATTGCAGAGACAGCTTTCAGTGGTGGCCCTCTTGGTGAATTAGTTCAA SerGlyPhelysIleAlaGluThrAlaPheSerGlyGlyProLeuGlyGluLeuValGln

TGGAGTGATTTAATTACATCTCTGTACTTACTGGGCCATGACATTAGGATTTCAGCTTCA TrpSerAspleuIleThrSerLeuTyrLeuLeuGlyHisAsplleArglleSerAlaSer

CTGGCTGAGCTCAAGGAAATCATGAAGAAGGTTGTAGGAAACCGATCTGGCTGCCCAACT LeuAlaGluLeuLysGluIleMETLysLysValValGlyAsnArgSerGlyCysProThr

GTAGGAGACAGAATTGTTGAGCTCATTTACATTGATATTGTAGGACTTGCTCAATTCAAG ValGlyAspArgileValGluLeuileTyrileAspileValGlyLeuAlaGlnPheLys

AAAACTCTTGGACCATCCTGGGTTCATTACCAGTGCATGCTCCGAGTCCTTGATTCATTT LyaThxLouGlyProSerTxpValRisTyxGlnCysMETLouAxqValLouAspSerPho

GGTACTGAACCCGAATTTAATCATGCAAATTATGCCCAATCGAAAGGCCACAGACCCCT GlythrGluFroGluFheAsnHisAlaAsnTyrAlaGlnSerLysGlyHisLysThrPro

y } **a**t

TGGGGAAAATGGAATCTGAACCCTCAGCAGTTTTTATACCATGTTCCCTCATACCCCAGAC TrpGlyLysTrpAsnLeuAsnProGlnglnPheTyrThrMETPheFroHisThrFroAsp

ARCAGCTTTCTGGGGTTTGTGGTTGAGCAGCACCTGAACTCCAGTGATATCCACCACATT AsnSerPheLeuGlyPheValValGluGlnHisLeuAsnSerSerAspIleBisHisIle

AATGAAATCAAAAGGCAGAACCAGTCCCTTGTGTATGGCAAAGTGGATAGCTTCTGGAAG AsnGluIleLysArgGlnAsnGlnSerLeuValTyrGlyLysValAspSerPheTrpLys

GGCTCCAGCACAAAGAATATTCCCAGTTACGTGAAAAACCATGGTATCCTCAGTGGACGG GlySerSerThrLysAsnIleProSerTyrValLysAsnHigGlyIleLeuSerGlyArg

GACCTGCAGTTCCTTCTTCGAGAACCAAGTTGTTTGTTGGACTTGGGTTCCCTTACGAG AspLeuGlnPheLeuLeuArgGluThrLysLeuPheValGlyLeuGlyPheProTyrGlu

GGCCCAGCTCCCCTGGAAGCTATCGCAAATGGATGTCTTTTCTGAATCCCAAGTTCAAC GlyProAlaProLeuGluAlaIlaAlaAsnGlyCysAlaPheLeuAsnFroLysPheAsn

CCACCCARAGCAGCAAAAACACAGACTTTTTCATTGGCAAGCCAACTCTGAGAGAGCTG ProProLysSerSerLysAsnThrAspPhePheIleGlyLysProThrLeuArgGluLeu

ACATCCCAGCATCCTTACGCTGAAGTTTTCATCGGGCGCCACATGTGTGGACTGTTGAC ThrSexGlnHisProTyxAlaGluValPhelleGlyArgProHisValTrpThrValAsp

CTCAACARTCAGGAGGAGGAGGAGGAGGGAGGGAAGCAATTTTAAATCAGAAGATTGAG LeuAsnAsnGlnGluGluValGluAspAlaValLysAlaIleLeuAsnGlnLysIleGlu

CCATACATGCCATATGAATTTACGTGCGAGGGGATGCTACAGAGAGAATCAATGCTTTCATT ProTyzMETFroTyrGluPbeThrCysGluGlyMETLeuGlnArgIleAsnAlaPheIle

GAAAACAGCACTTCTGCCATGGGCAAGTGATGTGGCCACCCCTCAGGGCCCTACAGGTC
GluLysGlnAspPhaCysHisGlyGlnValMETT:pProProLeuSerAlsLeuGlnVal

AAGCTTGCTGAGCCCGGCCAGTCCTGCAAGCAGGTGTGCCAGGAGCCAGCTCATCTGC LysLeuAlaGluProGlyGlnSerCysLysGlnValCysGlnGluSerGlnLeuIleCys

GAGCCTTCTTCTCCACCACCTCAACAAGGACAAGGACATGCTGAAGTACAAGGTGACC GluProSerPhePheGluHisLeuAsnLysAspLysAspMETLeuLysTyrLysValThr

TGCCAAAGCTCAGAGCTGGCCAAGGACATCCTGGTGCCCTCCTTTGACCCTAAGAATAAG CysGlnSerSerGluLeuAlaLysAspIleLeuValProSerPheAspProLysAsnLys

CACTGTGTGTTTCAAGGTGACCTCCTGCTCTTCAGCTGTGCAGGCGCCCACCCCAGGCAC HisCysValFheGlnGlyAspLeuLeuLeuFheSerCysAlaGlyAlaHisProArgHis

CAGAGGGTCTGCCCCTGCCGGGACTTCATCAAGGGCCCAGGTGGCTCTCTGCAAAGACTGC GlnArgValCysProCysArgAspPhelleLysGlyGlnValAlaLeuCysLysAspCys

CTATAG Leu*** y } 🗷

PA057

Man α 1-6-Man β 1- 4GlcNAc β 1- 4GlcNAc-PA

PA016

Man α 1-6 Man β 1- 4GlcNAc β 1- 4GlcNAc-PA Man α 1-3

PA018

GlenAe β 1- 2Man α 1 6 Man β 1- 4GlenAe β 1- 4GlenAe-PA GlenAe β 1- 4 GlenAe β 1- 4 GlenAe-PA GlenAe β 1- 2

PA014

GlcNAc β 1- 6

Man α 1

GlcNAc β 1- 2

6

Man β 1- 4GlcNAc β 1- 4GlcNAc-PA

GlcNAc β 1- 4

Man α 1

GlcNAc β 1- 2

PA002

Gal-GlcNAc β 1· 2Man α 1

8

Man β 1· 4GlcNAc β 1· 4GlcNAc-PA

3

Man α 1

Gal-GlcNAc β 1· 2

Sugar chain Gal3Gn3M8

Gal-GlcNAc β 1- 2Man α 1 6 Man β 1- 4GlcNAc β 1- 4GlcNAc 3 Man α 1 Gal-GlcNAc β 1-2

PA : Pridylamino(group)

Gal : Galactose

GlcNAc : N-Acetyigulusosamine

Man : Mannnose

у } 🗷

y } 🗶

A

 \mathbf{B}

y } **∄**

A

 \mathbf{B}

BY2-GnT-V (Clone number)

у } 🗷

у } ₽

(反応条件)

GlcNAc β 1—2

120mM Mes バッファー(pH7.0)
300mM N-アセチルグルコサミン
15mM MnCl₂
0.5% TritonX-100
4pmol PA 化結鎖
308mM UDP-N-アセチルグルコサミン
0.1~0.8μg タンパク質試料(ミクロソーム函分)

Glenae \beta 1-2Man \alpha 1

Man \beta 1-4Glenae \beta 1-4Glenae Asn

Glenae \beta 1-2

UDP-Glenae

Glenae \beta 1-6

Man \alpha 1-4Glenae \beta 1-4

Glenae \beta 1-2

Man \alpha 1-4Glenae \beta 1-4Glenae Asn

Glenae \beta 1-4

Man \alpha 1-4Glenae \beta 1-4Glenae Asn

Glenae \beta 1-4

Man \alpha 1

y } **R**

y } **B**

PA014 N-ア セチルヘキソ サミニダーゼ 処理

BY2-GnT-V#91 Product N-アセチル ヘキソサミニダーゼ 処理

BY2-GnT-V#91 Product 酵素未添 加

Standard

0 hour

4 hour

8 hour

20 hour

