中国人民大学《高等代数 II》期末样题

(考试时间:)

班级______ 姓名_____ 学号_____

→,	单选题 (共 10 小题, 每题	[3分,共30	0分).
1.	在一元多项式环 $P[x]$ 中能整除任意多项式的多项式是().		
	A. 零多项式	B. 零次多项式	s. N
	C. 本原多项式	D. 不可约多项	式
2.	设 $g(x) = x + 1$ 是 $f(x) = x^6 - k^2 x^4 + 4k x^2 + x - 4$ 的一个因式,则 $k = ($).		
	A. 1 B. 2	C. 3	D. 4
3.	整系数多项式 $f(x)$ 在整数环 Z 上不可约是 $f(x)$ 在有理数域 Q 上不可约的().		
	A. 充分条件	B. 充分必要条	件
	C. 必要条件	D. 既不充分也	2.不必要条件
4.	设 V 是数域 P 上的 n 维线性空间, V 中的两组向量 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,而 $\alpha_1,\alpha_2,\alpha_4$ 线性相关,则().		
	A. α_1 必可由 $\alpha_2, \alpha_3, \alpha_4$ 线性表出		
	B. α_1 必不能由 $\alpha_2, \alpha_3, \alpha_4$ 线性表出		
	C. α_4 必可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表 D. α_4 必不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性		

- 5. 下列选项中的 $\alpha = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$, 那么下列哪个集合 一定可以构成 R^n 的线性子空间().
 - A. $\{\alpha | x_n > 0\}$
- B. $\{\alpha | x_1 = 1\}$
- C. $\{\alpha | \sum_{i=1}^{n} x_i = 0\}$ D. $\{\alpha | \sum_{i=1}^{n} x_i = 2\}$
- 6. 设 $\alpha_1, \alpha_2, \alpha_3$ 和 $\beta_1, \beta_2, \beta_3$ 都是三维线性空间 V 的基,且 β_1 = $\alpha_1, \beta_2 = \alpha_1 + \alpha_2, \beta_3 = \alpha_1 + \alpha_2 + \alpha_3,$ 则矩阵 $\begin{pmatrix}
 1 & 1 & 1 \\
 1 & 0 & 1 \\
 0 & 0 & 1
 \end{pmatrix}$ 是由 基 $\alpha_1, \alpha_2, \alpha_3$ 到以下哪一组基的过渡矩阵(
 - A. $\beta_2, \beta_1, \beta_3$ B. $\beta_1, \beta_2, \beta_3$ C. $\beta_2, \beta_3, \beta_1$ D. $\beta_3, \beta_2, \beta_1$

- 7. 设三阶方阵 A 的特征值是 -1,1,3, 矩阵 B 与 A 相似, 则 B 的 伴随矩阵 B^* 的特征值是().

 - A. $-3, 3, \frac{1}{3}$ B. $-1, 1, -\frac{1}{3}$ C. -3, 3, -1 D. -3, 3, 1
- 8. 设 V 是数域 P 上的 n 维线性空间, A 是 V 上的任意线性变 换, 矩阵 $A \in A$ 在 V 的某组基下的矩阵. 则以下结论中正确的 是().
 - A. A 在数域 P 上一定有 n 个特征值, 重根按照重数计算
 - B. A 的最小多项式的次数一定小于 n
 - C. 若 |E A| = 0, 则一定存在非零向量 $\alpha \in V$ 使得 $\mathcal{A}\alpha = \alpha$
 - D. 以上都不对
- 9. 在线性空间 R^3 中定义内积运算 $(\alpha, \beta) = \sum_{i=1}^3 i x_i y_i$, 其中 $\alpha =$ $(x_1, x_2, x_3), \beta = (y_1, y_2, y_3),$ 形成欧氏空间 R_1^3 . 则下列说法中正 确的是().
 - A. 向量 (1,-1,0) 与 (1,1,0) 在 R_1^3 中正交
 - B. 在 R_1^3 中, 向量 (2,1,0) 到 (1,0,1) 的距离等于 $\sqrt{3}$

- C. 几何空间 R^3 的任意一组标准正交基也是 R^3 的标准正交基 D. 在 R_1^3 中, $|(1,1,1)| = \sqrt{6}$
- 10. $A \in n$ 阶实方阵,则 A 是正交矩阵的充要条件是().

A. $AA^{-1} = E$ B. $A = A^{T}$ C. $A^{-1} = A^{T}$ D. $A^{2} = E$

参考答案: BBBCC, ACCDC.

二、填空题 (共 5 题, 每题 4 分, 共 20 分.)

- 11. 两个多项式 $f(x) = x^4 2x^3 4x^2 + 4x 3$, $g(x) = 2x^3 5x^2 4x + 3$ 的最大公因式 (f(x), g(x)) = .
- 12. 多项式 x^5-1 在有理数域上的标准分解式为 _________, 在实 数域上的标准分解式为
- 13. 集合 $V = \{(x_1, x_2 + x_3\sqrt{2}, x_2 x_3\sqrt{2}, -x_1)^T | x_1, x_2, x_3 \in Q\}$ 对 于向量的加法和数乘构成有理数域 Q 上的线性空间, 写出 V的一组基
- 14. 设 3 阶方阵 $A = \begin{pmatrix} 4 & 2 & -1 \\ a & -2 & 2 \\ 3 & b & -1 \end{pmatrix}$ 有一个特征向量 $x = (2, -1, 2)^T$, 则 x 对应的特征值分
- 15. 在 $R[x]_3$ 中定义内积 $(f(x), g(x)) = \int_{-1}^1 f(x)g(x)dx$, 则与 $1, x, x^2$ 等价的标准正交基是 参考答案:x-3; $(x-1)(x^4+x^3+x^2+x+1)$, $(x-1)(x^2-2\cos\frac{2\pi}{5}x+$

1) $(x^2-2\cos\frac{4\pi}{5}x+1); (1,0,0,-1)^T, (0,1,1,0)^T, (0,\sqrt{2},-\sqrt{2},0)^T;$ $2, -4, 0; \frac{1}{\sqrt{2}}, \frac{\sqrt{6}}{2}x, \frac{3\sqrt{10}}{4}(x^2 - \frac{1}{2})$

三、计算和证明题,要求写出详细的解题或证明过程.(共4题,共50分.)

- 16. (10 分) 设 $f(x), g(x) \in P[x]$, 证明 (f(x), g(x)) = 1 的充分必要条件是 (f(x)g(x), f(x) + g(x)) = 1.
- 17. (15 分) 设 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 是四维线性空间 V 的一组基,线性变换 A 在这组基下的矩阵为

$$A = \left(\begin{array}{rrrr} 1 & 0 & 2 & 1 \\ -1 & 2 & 1 & 3 \\ 1 & 2 & 5 & 5 \\ 2 & -2 & 1 & -2 \end{array}\right)$$

- (1) 求 \mathcal{A} 在基 $\eta_1 = \varepsilon_1 2\varepsilon_2 + \varepsilon_4, \eta_2 = 3\varepsilon_2 \varepsilon_3 \varepsilon_4, \eta_3 = \varepsilon_3 + \varepsilon_4, \eta_4 = 2\varepsilon_4$ 下的矩阵; (2) 求 \mathcal{A} 的值域与核.
- 18. (15 分) 设 n 阶矩阵 A 和 B 满足 A+B=AB, 且 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是 A 的特征值. 证明: (1) $\lambda_i \neq 1 (i=1,2,...,n)$; (2) 若 A 是实对称矩阵,则存在正交矩阵 P,使得

$$P^{-1}BP = diag\left(\frac{\lambda_1}{\lambda_1 - 1}, \frac{\lambda_2}{\lambda_2 - 1}, \cdots, \frac{\lambda_n}{\lambda_n - 1}\right).$$

19. (10 分) 设实二次型 $f(x_1,x_2,x_3,x_4)=x_1^2+x_2^2+x_3^2+x_4^2+2ax_1x_2+2ax_1x_3+2ax_1x_4+2ax_2x_3+2ax_2x_4+2ax_3x_4$. 已知 f(x) 可通过正交替换化为标准形 $3y_1^2+3y_2^2+3y_3^2-5y_4^2$,求 a 的值和所作的正交替换.

参考答案: 略