第51回地盤工学研究発表会 2016年9月15日 岡山大学

水分特性曲線の回帰プログラム

- Fredlund and Xing モデルの実装 -

東洋大学 関 勝寿

SWRC Fit (Seki, 2007) の紹介

- 水分特性曲線 (水分保持曲線) の実測値を モデルに非線形回帰してパラメータを 推定するプログラム
- 簡単に精度良い推定ができる
 - 初期パラメータの設定は自動
 - ウェブからワンクリックで計算
- 多くの利用実績がある
 - <u>論文の被引用件数</u> 86件 (Google Scholar Citations)
 - 様々な土壌に対する汎用性
 - 高い利便性
- プログラムのコードを公開している

SWRC Fit の構成

ウェブインターフェイス

- Perl 言語の CGI スクリプト
- ウェブブラウザから実行

オフライン版

- 数値計算言語 GNU Octave
- ダウンロードして実行
- ・ ウェブ版よりも多様な設定で計算可能

水分特性曲線のモデル

- 4つの単峰性モデル (間隙径分布が1つのピーク)
 - ∘ BCモデル (Brooks and Corey, 1964)
 - ∘ VGモデル (van Genuchten, 1980)
 - ∘ LNモデル (Kosugi, 1996)
 - FXモデル (Fredlund and Xing, 1994) [New]

$$\theta = \theta_r + (\theta_s - \theta_r) \left[\frac{1}{\ln(e + (h/a)^n)} \right]^m$$

- アメリカの地盤工学者からのメールによるリクエスト
- ・修正関数 C(h) はオフライン版で実装
- 2つの二峰性モデル(略)

SWRC Fit

検索

土壌水分特性曲線の非線形回帰プログラム - SWRC Fit -

ウェブインターフェイス

オフライン版

< → C △	i seki.webmasters.gr.jp/swrc/ii	ndex-ja.html	Q #	<i>.</i>	
[English Español Français Deutsche 日本語]					
SWRC Fit - 土壌水分特性曲線の非線形回帰プログラム -					
性パラメータを決	出壌水分特性(水分保持曲線)のデータを 定することができます。 土壌水分特性の 同して下さい。 プルダウンメニューから 。	のデータをテキストボック	スに貼り付けて、	「計算	
	説明 (NS: オ	CREY			
	土壌試料 NS	7.1			
	土性 NS				
	あなたの名前 NS				
	モデル Brooks and Corey van Genuchten Kosugi	土壌水分特性曲線 「サンプルデータから選ぶ ◆ # ここにデータを貼り付ける			
	計算オプション □ θ _r = 0				
	グラフオプション ☑ 最良のモデル1つを表示				
計算する					

使い方はホームページの ユーザーマニュアルを参照

入力画面

モデル

☑ Brooks and Corey

☑ van Genuchten

✓ Kosugi

☑ Fredlund and Xing [New!]

Durner

☐ Seki

計算オブション

 $\Box \theta_r = 0$

グラフオブション ☑ 最良のモデル1つを表示

赤池情報量規準(AIC)

 $AIC = n \ln(RSS/n) + 2k$

n: 標本サイズ

RSS: 残差2乗和

k: パラメータの数

土壌水分特性曲線

サンブルデータから選ぶ ~

10 0.354 16 0.329 50 0.077 100 0.054 158 0.046 500 0.037 15850 0.018

①Excel からデータを コピーペースト

2計算ボタンをクリック

計算する

SWRC Fit - Result -

■ Soil sample: UNSODA 3332

■ Texture: 砂質土

Name: Jacobsen, 1989

Model	Equation	Parameters	R ²	AIC
Brooks and Corey	$S_{e} = \left\{ \left(\frac{h}{h_{b}} \right) (h > h_{b}) \right.$	$\theta_s = 0.35414$ $\theta_r = 0.030030$ $h_b = 15.152$ $\lambda = 1.5172$	0.99775	-62.761
van Genuchten	$S_{e} = \left[\frac{1}{1 + (\alpha h)^{n}}\right]^{m} (m=1-1/n)$	$\theta_s = 0.36220$ $\theta_r = 0.035741$ $\alpha = 0.039292$ $n = 3.8465$	0.99568	-58.197
Kosugi	$S_c = Q \left[\frac{\ln(h/h_m)}{\sigma} \right]$	$\theta_s = 0.35763$ $\theta_r = 0.038106$ $h_m = 29.504$ $\sigma = 0.46086$	0.99460	-56.640
Fredlund and Xing	$S_e = C(h) \left[\frac{1}{\ln[e + (h/a)^n]} \right]^m $ (C(h)=1)	$\theta_s = 0.35460$ $\theta_r = 1.6314e-07$ a = 18.188 m = 0.69726 n = 8.6899	0.99987	-80.574

結果表示②

計算アルゴリズム

初期値を設定しやすいモデルからはじめて、順次複雑なモデルへ

フィッティングカの検証

モデル	θr 変数	$\theta r = 0$
ВС	63.4%	53.3%
VG	80.0%	55.0%
LN	86.6%	49.3%
FX	90.3%	86.1%

表 I. UNSODA データベースの700 個の 土壌水分特性データにおける R²>0.98 となるデータの割合 モデルの優劣比較ではない(自由度が異なる)

モデルの比較

モデル	θr 変数	$\theta r = 0$
ВС	45	46
VG	53	66
LN	56	102
FX	156	176

表2. UNSODA データベースの700 個の 土壌水分特性データのフィッティングで <mark>赤池情報量規準(AIC)</mark>によって最適なモデルと されたデータの数

FXモデルが特に有効な例

図I. デンマークの砂質土 (UNSODA 3332) (Jacobsen, 1989)

結論

- 水分特性曲線の非線形回帰プログラム SWRC Fit (http://swrcfit.sourceforge.net/) に、地盤工学の分野でよく使われる Fredlund and Xing (1994) のモデルを実装 した。
- UNSODAデータベースの700個のデータに対して、全体の半分近くの土壌試料で他の3モデルと比較してFredlund and Xing (1994) のモデルが最適であるとされた。
- ぜひSWRC Fitを使ってみてください。

学会発表後の質疑応答より

(質問)検証に使われた UNSODA データベースは海外の土壌のデータが多い。日本の土壌ではどうなのか?

(回答)日本の火山灰性土壌は、団粒が発達していて間隙径分布が2つのピークを持つことがある。その時には、今回の発表では省略した二峰性モデルを使う。SWRC Fit では、二峰性モデルを使ったフィッティングもできる。

二峰性モデルによる フィッティングの例

Silty Ioam Switzerland Richard et al. (1983) UNSODA 2760

