

PYTHON-POWERED PROJECT FOR IN-DEPTH DATA ANALYSIS

EXPLORING INSIGHTS.

Data Cleaning
Data Analysis
Data Visualization

CARS DATASET

PYTHON-POWERED PROJECT FOR IN-DEPTH DATA ANALYSIS

- **Objective:** To analyze and visualize trends, patterns, and insights from a comprehensive cars dataset using Python and Pandas.
- **Data Handling:** Efficient preprocessing, cleaning, and manipulation of data for meaningful analysis.
- Visualization: Employing Matplotlib and Seaborn to create
 impactful graphs and charts that depict the data insights visually.
 - Key Insights: Identifying relationships, trends, and actionable insights within the dataset (e.g., price distributions, engine performance).
 - **Skills Demonstrated:** Showcasing proficiency in Python programming, data analysis techniques, and storytelling through data visualization.

Data Analysis & Visualization: Harnessing the Power of Python Libraries

Leveraging robust Python libraries like Pandas for seamless data manipulation [10], Matplotlib for visually compelling graphs and plots [10], and Seaborn for insightful statistical analysis [10], empowering precise and impactful data-driven decision-making.

Importing Libraries and Loading the Dataset 📂 📊

[4]

df.head()

[5] ✓ 0.0s Python

	Make	Model	Year	Engine Fuel Type	Engine HP	Engine Cylinders	Transmission Type	Driven_Wheels	Number of Doors
0	BMW	1 Series M	2011	premium unleaded (required)	335.0	6.0	MANUAL	rear wheel drive	2.0
1	BMW	1 Series	2011	premium unleaded (required)	300.0	6.0	MANUAL	rear wheel drive	2.0
2	BMW	1 Series	2011	premium unleaded (required)	300.0	6.0	MANUAL	rear wheel drive	2.0
3	BMW	1 Series	2011	premium unleaded (required)	230.0	6.0	MANUAL	rear wheel drive	2.0
4	BMW	1 Series	2011	premium unleaded (required)	230.0	6.0	MANUAL	rear wheel drive	2.0

Exploratory Data Analysis 📊

df.describe()

[6]

[7]

✓ 0.0s Python

Year	Engine HP	Engine Cylinders	Number of Doors	highway MPG	city mpg	
11914.000000	11845.00000	11884.000000	11908.000000	11914.000000	11914.000000	119
2010.384338	249.38607	5.628829	3.436093	26.637485	19.733255	15
7.579740	109.19187	1.780559	0.881315	8.863001	8.987798	14
1990.000000	55.00000	0.000000	2.000000	12.000000	7.000000	
2007.000000	170.00000	4.000000	2.000000	22.000000	16.000000	5
2015.000000	227.00000	6.000000	4.000000	26.000000	18.000000	13
2016.000000	300.00000	6.000000	4.000000	30.000000	22.000000	20
2017.000000	1001.00000	16.000000	4.0000 Mini	mize ³ 54.000000	137.000000	5€
	11914.000000 2010.384338 7.579740 1990.000000 2007.000000 2015.000000 2016.000000	11914.000000 11845.00000 2010.384338 249.38607 7.579740 109.19187 1990.000000 55.00000 2007.000000 170.00000 2015.000000 227.00000 2016.000000 300.00000	Year Engine HP Cylinders 11914.000000 11845.00000 11884.000000 2010.384338 249.38607 5.628829 7.579740 109.19187 1.780559 1990.000000 55.00000 0.000000 2007.000000 170.00000 4.000000 2015.000000 227.00000 6.000000 2016.000000 300.00000 6.0000000	Year Engine HP Cylinders Doors 11914.000000 11845.00000 11884.000000 11908.000000 2010.384338 249.38607 5.628829 3.436093 7.579740 109.19187 1.780559 0.881315 1990.000000 55.00000 0.000000 2.000000 2007.000000 170.00000 4.000000 2.000000 2015.000000 227.00000 6.000000 4.000000 2016.000000 300.00000 6.000000 4.000000	Year Engine HP Cylinders Doors MPG 11914.000000 11845.00000 11884.000000 11908.000000 11914.000000 2010.384338 249.38607 5.628829 3.436093 26.637485 7.579740 109.19187 1.780559 0.881315 8.863001 1990.000000 55.00000 0.000000 2.000000 12.000000 2007.000000 170.00000 4.000000 22.000000 26.000000 2015.000000 300.00000 6.000000 4.000000 30.000000	Year Engine HP Cylinders Doors MPG City mpg 11914.000000 11845.00000 11884.000000 11908.000000 11914.000000 11914.000000 2010.384338 249.38607 5.628829 3.436093 26.637485 19.733255 7.579740 109.19187 1.780559 0.881315 8.863001 8.987798 1990.000000 55.00000 0.000000 2.000000 12.000000 7.000000 2007.000000 170.00000 4.000000 22.000000 16.000000 2015.000000 227.00000 6.000000 4.000000 30.000000 22.000000

df.info()

✓ 0.0s Python

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11914 entries, 0 to 11913
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	Make	11914 non-null	object
1	Model	11914 non-null	object
2	Year	11914 non-null	int64
3	Engine Fuel Type	11911 non-null	object
4	Engine HP	11845 non-null	float64
5	Engine Cylinders	11884 non-null	float64
6	Transmission Type	11914 non-null	object
7	Driven_Wheels	11914 non-null	object
8	Number of Doors	11908 non-null	float64
9	Market Category	8172 non-null	object
10	Vehicle Size	11914 non-null	object
11	Vehicle Style	11914 non-null	object
12	highway MPG	11914 non-null	int64
13	city mpg	11914 non-null	int64
14	Popularity	11914 non-null	int64
15	MSRP	11914 non-null	int64
d±n	oo, floot64/2) into	64/E) object(8)	

dtypes: float64(3), int64(5), object(8)

memory usage: 1.5+ MB

```
df.isnull().sum()
      ✓ 0.0s
[8]
                                                                                              Python
    Make
                              0
    Model
                              0
    Year
                              0
    Engine Fuel Type
                              3
    Engine HP
                             69
     Engine Cylinders
                             30
    Transmission Type
                              0
    Driven Wheels
    Number of Doors
                              6
    Market Category
                           3742
    Vehicle Size
                              0
    Vehicle Style
                              0
    highway MPG
                              0
    city mpg
                              0
    Popularity
                              0
    MSRP
    dtype: int64
```

Minimize

Data Cleaning

Handling Missing Data with Median Imputation 🛠 📊

```
eng_cyl_median=df['Engine Cylinders'].median()
        df['Engine Cylinders'].fillna(eng_cyl_median,inplace=True)
        df['Engine HP'].fillna(df['Engine HP'].median(),inplace =True)
        df['Number of Doors'].fillna(df['Number of Doors'].median(),inplace=True)
        print(df.isnull().sum())
[9]
     ✓ 0.0s
                                                                                           Python
    Make
                             0
                             0
    Mode1
                             0
    Year
    Engine Fuel Type
                             3
    Engine HP
                            69
    Engine Cylinders
                            30
    Transmission Type
                             0
    Driven_Wheels
                             0
    Number of Doors
                             6
    Market Category
                          3742
    Vehicle Size
                             0
    Vehicle Style
                             0
    highway MPG
                             0
                             0
    city mpg
    Popularity
                             0
    MSRP
                             0
    dtype: int64
```

	Make	Model	Year	Engine Fuel Type	Engine HP	Engine Cylinders		Driven_Wheels	Numl
11321	Suzuki	Verona	2004	NaN	155.0	6.0	AUTOMATIC	front wheel drive	
11322	Suzuki	Verona	2004	NaN	155.0	6.0	AUTOMATIC	front wheel drive	
11323	Suzuki	Verona	2004	NaN	155.0	6.0	AUTOMATIC	front wheel drive	
11324	Suzuki	Verona	2005	regular unleaded	155.0	6.0	AUTOMATIC	front wheel drive	
11325	Suzuki	Verona	2005	regular unleaded	155.0	6.0	AUTOMATIC	front wheel drive	
11326	Suzuki	Verona	2005	regular unleaded	155.0	6.0	AUTOMATIC	front wheel drive	
11327	Suzuki	Verona	2005	regular unleaded	155.0	6.0	AUTOMATIC	front wheel drive	
11328	Suzuki	Verona	2006	regular unleaded	155.0	6.0	AUTOMATIC	front wheel drive	
11329	Suzuki	Verona	2006	regular unleaded	155.0	6.0	AUTOMATIC	front wheel drive	

Filtering Data and Handling Missing Values 🚙 🦴

```
fuel_na=df[df["Engine Fuel Type"].isnull()]
   df["Engine Fuel Type"].fillna("regular unleaded",inplace=True)
   df.isnull().sum()
                                                                                     Python
                      0
Make
                      0
Model
                      0
Year
Engine Fuel Type
                      0
Engine HP
                     69
Engine Cylinders
                     30
Transmission Type
                      0
Driven_Wheels
                      0
Number of Doors
                      6
Vehicle Size
                      0
Vehicle Style
                      0
highway MPG
                      0
                      0
city mpg
Popularity
                      0
MSRP
                      0
dtype: int64
```

```
df.drop(['Market Category'], axis=1, inplace=True)
        df.isnull().sum()
     ✓ 0.0s
                                                                                          Python
[12]
    Make
                           0
    Model
                           0
                           0
    Year
    Engine Fuel Type
                           3
    Engine HP
                          69
    Engine Cylinders
                          30
                                                                             Minimize
    Transmission Type
                         0
    Driven_Wheels
                           0
    Number of Doors
                          6
    Vehicle Size
                           0
    Vehicle Style
                          0
    highway MPG
                          0
    city mpg
                           0
    Popularity
                           0
    MSRP
                           0
    dtype: int64
        print("Rows before removing duplicates: ",dfreal.shape)
        df[df.duplicated()]
        df.drop_duplicates(inplace=True)
        print("Rows after removing duplicates: ",df.shape)
     ✓ 0.0s
                                                                                          Python
[16]
    Rows before removing duplicates: (11914, 16)
     Rows after removing duplicates: (11194, 15)
```

Top 10 Years by MSRP: Insights into Vehicle Pricing Trends 🛗 💰

A comprehensive analysis of the years with the highest average Manufacturer's Suggested Retail Price (MSRP), showcasing key trends in pricing and significant market dynamics within the automotive industry.

```
yearon_msrp=df.groupby('Year')['MSRP'].sum().sort_values(ascending=False).head(10)
        print(yearon_msrp)
     ✓ 0.0s
[17]
                                                                                       Python
    Year
           99190613
    2016
    2015
           98069201
    2017 68519509
    2014
           36299883
    2012
            21747656
    2009
           18316074
```

Top 10 Years by MSRP: Insights into Vehicle Pricing Trends 🛗 🝈

A comprehensive analysis of the years with the highest average Manufacturer's Suggested Retail Price (MSRP), showcasing key trends in pricing and significant market dynamics within the automotive industry.

```
yearon_msrp=df.groupby('Year')['MSRP'].sum().sort_values(ascending=False).head(10)
        print(yearon_msrp)
      ✓ 0.0s
                                                                                            Python
[17]
    Year
     2016
             99190613
     2015
             98069201
     2017
             68519509
     2014
             36299883
     2012
             21747656
     2009
             18316074
     2008
             18274736
     2013
             16729622
     2011
             16349881
     2010
             14617934
    Name: MSRP, dtype: int64
        yearon_msrp_df = yearon_msrp.reset_index()
        plt.figure(figsize=(8, 4))
        sns.pointplot(x='Year', y='MSRP', data=yearon_msrp_df, color='pink')
        plt.title('Top 10 years with highest MSRP')
        plt.show()
      ✓ 0.2s
                                                                                            Python
[18]
```


Top 10 Most Expensive Cars by MSRP 🚙 📭

Unveiling the most luxurious and high-priced automobiles, ranked by their Manufacturer's Suggested Retail Price (MSRP).

```
> ×
         Makeon_msrp=df.groupby('Make')['MSRP'].sum().sort_values(ascending=False).head(10)
         print(Makeon_msrp)
      ✓ 0.0s
                                                                                             Python
[19]
                                                                                    Minimize
     Make
     Chevrolet
                       31487928
     Mercedes-Benz
                       24575709
     Ford
                       23490684
     Cadillac
                       22321833
     Toyota
                       20646567
     BMW
                       20140669
                       18290530
     Bentley
     Aston Martin
                       18029235
     Audi
                       17518293
     Lamborghini
                       17241500
     Name: MSRP, dtype: int64
        Makeon_msrpdf=Makeon_msrp.reset_index()
```

```
Makeon_msrpdf=Makeon_msrp.reset_index()
   plt.figure(figsize=(8, 4))
   sns.barplot(x='Make', y='MSRP', data=Makeon_msrpdf,hue='Make', palette="rocket")
   plt.xticks(rotation=45)
   plt.show()
[28]  $\square$ 0.2s
```

1.5
1.0
0.5
0.5

Therrolet Lord Codina Coordina Reputer Reputer Lord Lord Codina Reputer Reputer Lord Reputer Reputer

Evolution: Most Popular Car Makers of the 20th & 21st Century 🚙

Exploring historical automotive trends to identify the most dominant and influential car manufacturers across two centuries.

```
cen21df=df[df['Year']>=2000]
        cen20df=df[df['Year']<2000]</pre>
        popular car 20=cen20df.groupby('Make')['Popularity'].sum().sort values(ascending=False).head(3)
        print("Top 3 Maker in 20th Century",popular_car_20)
        popular car 21=cen21df.groupby('Make')['Popularity'].sum().sort values(ascending=False).head(3)
        print("Top 3 Maker in 21th Century",popular car 21)
     ✓ 0.0s
                                                                                                             Pyth
[29]
                                                                                                  Minimize
    Top 3 Maker in 20th Century Make
    Ford
              718439
              198057
    Dodge
              160449
    Toyota
    Name: Popularity, dtype: int64
    Top 3 Maker in 21th Century Make
                 3942929
    Ford
    Chevrolet
                 1342065
                 1293747
    Toyota
    Name: Popularity, dtype: int64
        popular car 20df = popular car 20.reset index()
        popular car 21df = popular car 21.reset index()
        fig, axes = plt.subplots(1, 2, figsize=(12, 6))
        axes[0].pie(popular_car_20df['Popularity'], labels=popular_car_20df['Make'], autopct='%1.1f%')
        axes[0].set_title('Top 3 Makers in 20th Century')
        axes[1].pie(popular car 21df['Popularity'], labels=popular car 21df['Make'], autopct='%1.1f%')
        axes[1].set title('Top 3 Makers in 21st Century')
        plt.show()
```


The Power Behind the Wheels: Most Widely Used Engine Types

A deep dive into the most common and influential engine types that have powered vehicles across generations.

```
engine_type=df.groupby('Engine Fuel Type')['Engine Fuel Type'].count().sort_values(as
        print(engine_type)
      ✓ 0.0s
[30]
                                                                                             Python
     Engine Fuel Type
     regular unleaded
                                                        6656
     premium unleaded (required)
                                                        1956
     premium unleaded (recommended)
                                                        1392
     flex-fuel (unleaded/E85)
                                                         887
     diesel
                                                         150
     electric
                                                          66
     flex-fuel (premium unleaded required/E85)
                                                          53
     flex-fuel (premium unleaded recommended/E85)
                                                          26
     flex-fuel (unleaded/natural gas)
                                                           6
     natural gas
                                                           2
     Name: Engine Fuel Type, dtype: int64
                                                                          t.figure(figsize=(8, 4))
        gine type5=engine type.head()
        s.barplot(y=engine_type5.index, x=engine_type5.values,hue=engine_type5.index, palette
        t.xlabel("Count")
        t.ylabel("Engine Fuel Type")
        t.title("Count of Engine Fuel Types")
        t.xticks(range(0, 8000, 1000))
        t.show()
      ✓ 0.1s
[35]
                                                                                             Python
                                                    Count of Engine Fuel Types
                     regular unleaded
             premium unleaded (required)
       Engine Fuel
        premium unleaded (recommended)
```

flex-fuel (unleaded/E85)

diesel

1000

2000

5000

6000

7000

Transmission Trends: Most Widely Used Automatic & Manual Systems 📴 🚙

A comprehensive analysis of the most prevalent transmission systems, including automatic, manual, CVT, and dualclutch, highlighting their impact on vehicle performance and driving dynamics.


```
transmission_type3=transmission_type.head(3)
  plt.figure(figsize=(8, 4))
  sns.barplot(y=transmission_type3.index,x=transmission_type3.values,hue=transmission_type3.index, palette="
  plt.xlabel("Count")
  plt.ylabel("Transmission Type")
  plt.title("Count of Transmission Types")
  plt.show()
✓ 0.1s
                                                                                                         Python
```


Most Widely Used Drive Systems 🗱 🦴

An insight into the most popular drivetrain configurations that have shaped vehicle performance and handling over the years.

Horsepower Spectrum: Top 5 Most Powerful & Least Powerful Car Models 🌣

An analytical comparison of the highest and lowest horsepower car models, highlighting the extremes of automotive performance and engineering.

```
D ~
        maxhorse_power=df.groupby(['Make'])['Engine HP'].max().sort_values(ascending=False).head(5)
        print(maxhorse power)
        minhorse_power=df.groupby('Make')['Engine HP'].min().sort_values(ascending=True).head(1)
        print(minhorse_power)
     ✓ 0.0s
[43]
                                                                                                           Python
    Make
     Bugatti
                   1001.0
    Lamborghini
                    750.0
     Ferrari
                    731.0
    Dodge
                    707.0
                    662.0
     Ford
    Name: Engine HP, dtype: float64
    Make
     Chevrolet
                 55.0
     Name: Engine HP, dtype: float64
        maxhorse_powerdf = maxhorse_power.reset_index()
        plt.figure(figsize=(8, 4))
        sns.barplot(x='Make',y='Engine HP',data=maxhorse_powerdf,hue='Engine HP',palette="viridis")
        plt.title('Top 5 Makers with Maximum Horse Power')
        plt.yticks(range(600, 1100, 50))
        plt.ylim(600, 1100)
        plt.show()
                                                                                                           Python
                                 Top 5 Makers with Maximum Horse Power
                                                                                   Engine HP
         1050
                                                                                     662.0
```


Engine Efficiency: Average Cylinders by Vehicle Size 🔍 🔩

Examining the correlation between vehicle size and the average number of cylinders, providing insights into engine design and performance trends.

```
avg_cylinders=df.groupby('Vehicle Size')['Engine Cylinders'].mean().sort_values(ascending=False)
        print(avg_cylinders)
[44]
     ✓ 0.0s
                                                                                                                Python
    Vehicle Size
    Large
                7.077152
    Midsize
                5.622541
                4.838909
    Compact
    Name: Engine Cylinders, dtype: float64
        avg_cylindersdf = avg_cylinders.reset_index()
        plt.figure(figsize=(8, 4))
        sns.boxplot(x='Vehicle Size',y='Engine Cylinders',data=df,hue='Vehicle Size',palette="viridis")
        plt.title('Engine Cylinders in Vehicle Size')
        plt.show()
                                                                                                                Python
```


Comparative Analysis of Highway & City MPG Across Vehicle Styles 🚆 📊

A comprehensive evaluation of fuel efficiency variations across different vehicle styles, highlighting performance differences in urban and highway driving conditions.

```
D ~
        print("Average Highway MPG of each Vehicle Style\n")
        avg\_hmpg=df.groupby('Vehicle \ Style')["highway \ MPG"].mean().sort\_values(ascending=False).head(5)
        print(avg_hmpg)
        print("Average city MPG of each Vehicle Style\n")
        avg_cmpg=df.groupby('Vehicle Style')["city mpg"].mean().sort_values(ascending=False).head(5)
        print(avg_cmpg)
      ✓ 0.0s
                                                                                                                                      Python
     Average Highway MPG of each Vehicle Style
     Vehicle Style
     4dr Hatchback
                      37.811463
     2dr Hatchback
                      31.355231
                      30.176761
     Wagon
                      28.402135
                      25.637447
     Coupe
     Name: highway MPG, dtype: float64
     Average city MPG of each Vehicle Style
     Vehicle Style
     4dr Hatchback
                        32.088989
     2dr Hatchback
                        24.051095
                        21.686833
     Wagon
     Sedan
                        21.651056
     Convertible SUV
                        20.178571
     Name: city mpg, dtype: float64
```

```
avg_hmpgdf = avg_hmpg.reset_index()
  avg_cmpgdf = avg_cmpg.reset_index()
  fig, axes = plt.subplots(1, 2, figsize=(12, 6))
  axes[0].bar(avg_hmpgdf['Vehicle Style'],avg_hmpgdf['highway MPG'],color=sns.color_palette('viridis'))
  axes[0].set_title('Average Highway MPG of each Vehicle Style')
axes[0].set_xlabel('Vehicle Style')
  axes[0].tick_params(axis='x', rotation=45)
  axes[0].set_ylabel('Average Highway MPG')
  axes[0].set_ylim(15, 40)
  axes[1].bar(avg_cmpgdf['Vehicle Style'],avg_cmpgdf['city mpg'],color=sns.color_palette('rocket'))
  axes[1].set_title('Average City MPG of each Vehicle Style')
  axes[1].tick_params(axis='x', rotation=45)
  axes[1].set_xlabel('Vehicle Style')
  axes[1].set_ylabel('Average City MPG')
  axes[1].set_ylim(15, 35)
  plt.show()
✓ 0.2s
                                                                                                                                       Python
```


THANK YOU

work.aroraparth@gmail.com

Portfolio

+91 8218135640

