

- 1.实验报告如有雷同,雷同各方当次实验成绩均以0分计。
- 2. 当次小组成员成绩只计学号、姓名登录在下表中的。
- 3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0分计。
- 4.实验报告文件以 PDF 格式提交。

专业	软作	牛工程	班 级	19 级软	件工程	组长	冼子婷
学号	学号 <u>18338072</u>		183460	<u>19</u>	18322043		
学生	生 洗子婷		胡文浩		廖雨轩		
实验分工							
冼子婷	Ţ,	进行实验,截图,编写	<u>和分析</u> 9	实验报告	廖雨轩	进行实验,截图,组	扁写和分析实验报
胡文浩	İ	进行实验,截图,编写	和分析等	实验报告			

【实验题目】生成树协议

【实验目的】理解快速生成树协议的配置及原理。使网络在有冗余链路的情况下避免环路的产生,避免广播风暴等。

【实验内容】

- (1) 完成实验教程实例 6-8 的实验,回答实验提出的问题及实验思考。(P204)
- (2) 抓取生成树协议数据包,分析桥协议数据单元 (BPDU)。
- (3) 在实验设备上查看 VLAN 生成树, 并学会查看其它相关重要信息。

【实验要求】

一些重要信息信息需给出截图。注意实验步骤的前后对比!

【实验记录】(如有实验拓扑请自行画出,要求自行画出拓扑图)

实验 6-8 快速生成树协议配置

【实验目的】

理解快速生成树协议 RSTP 的配置及原理。RSTP 使网络在有冗余链路的情况下避免环路的产生,停止广播风暴等。

【技术原理】

生成树协议的作用是在交换网络中提供冗余备份链路,并且解决交换网络中的环路问题。

生成树协议利用 SPA 算法 (生成树算法), 在有交换环路的网络中生成一个没有环路的树形网络。运用该算法将交换网络冗余的备份链路在逻辑上断开, 当主要链路出现故障时, 能够自动切换到备份链路以保证数据的正常转发。

生成树协议的特点是收敛时间长,从主要链路出现故障到切换到备份链路需要 50s。快速生成树协议在生成树协议的基础上增加了两种端口角色:替换端口和备份端口,分别作为根端口和指定端口的冗余端口。当根端口或指定端口出现故障时,冗余端口不需要经过 50s 的收敛时间,而是可以直接切换到替换端口或备份端口,从而实现 RSTP 协议的快速收敛 (小于1s)。

【实验设备】

交换机2台, 计算机2台。

【实验拓扑】

图 6-33 快速生成树实验拓扑

【实验步骤】

分析:本实验的预期是在拓扑结构存在环路的情况下,通过启用快速生成树协议,消除广播风暴,同时环路兼有冗余作用。对实验而言,必须有能直接观察风暴形成与消亡的工具。

步骤 1:为 PC1、PC2 配置 IP 地址和掩码,按照网络拓扑结构将设别连接起来,在 PC1 上启动 Wireshark 抓包软件,观察包数量的变化。

(1) 查看两台交换机生成树的配置信息 show spanning-tree, 并记录

此时两台交换机中没有生成树。

(2) 除保持实验网卡连通外,切断其他网络链路,在没有主动通信的情况下,观察 1~2 分钟,会有广播风暴产生吗?

启动 Wireshark 监控软件, 在 Statics->IO graphs 打开监控页面:

可以发现没有主动通信的情况下,在1~2分钟内也会产生广播风暴。

- (3) 观察下列两种情况,那种情况下包增长得更快?
 - 1) 用 PC1 ping PC2 (带参数-t)
 - 2) 在 PC1 或 PC2 上 ping 一个非 PC1 与 PC2 的 IP (用参数-t)

判断交换机是否产生广播风暴以及有无导致计算机死锁。此时若终止 ping 命令,广播风暴仍存在吗?

在差不多同样 100 秒内,用 PC1 ping PC2 的包增长速度明显要比 PC1 ping 非 PC2 的包增长速度要快很多。此时交换机产生了广播风暴,PC 发生死锁,当终止 ping 命令后,广播风暴会停止。

(4) 在进行(3)的两种操作时,在交换机上不时查看 MAC 地址表 show mac-address-table 结果如何?这是什么现象?

```
0088.9900.0ad1
                                          DYNAMIC
                                                     GigabitEthernet 0/2
                                          DYNAMIC
DYNAMIC
               4433.4c0e.be66
5869.6c15.553a
                                                     GigabitEthernet 0/1
                                                     GigabitEthernet 0/1
12-S5750-1(config)#show mac-address table
Vlan MAC Address Type
Vlan
                                          Type
                                                      Interface
                                          DYNAMIC
                                                     GigabitEthernet 0/2
               0088.9900.0ad1
1 4433.4c0e.be66 DYNAMIC
1 5869.6c15.553a DYNAMIC
12-55750-1(config)#show mac-address-table
Vlan MAC Address Type
                                                     GigabitEthernet 0/1
                                                     GigabitEthernet 0/1
                                                      Interface
               0088.9900.0ad1
                                          DYNAMIC
                                                     GigabitEthernet 0/2
               4433.4c0e.be66
5869.6c15.553a
                                          DYNAMIC
                                                     GigabitEthernet 0/1
                                          DYNAMIC
                                                     GigabitEthernet 0/1
12-S5750-1(config)#show mac-
                                         ess-table
Vlan
               MAC Address
                                          Type
                                                      Interface
               0088.9900.0ad1
                                          DYNAMIC
                                                     GigabitEthernet 0/2
                                          DYNAMIC
                                                     GigabitEthernet 0/1
               4433.4c0e.be66
1 5869.6c15.553a DYNAMIC
12-55750-1(config)#show mac-address-table
Vlan MAC Address Type
                                                     GigabitEthernet 0/1
                                                      Interface
               0088.9900.0ad1
                                          DYNAMIC
                                                     GigabitEthernet 0/2
               4433.4c0e.be66
5869.6c15.553a
                                          DYNAMIC
                                                     GigabitEthernet 0/1
                                          DYNAMIC
                                                     GigabitEthernet 0/1
12-S5750-1(config)#show mac-address-table
```

```
12-S5750-1(config)#show mac-address-table
Vlan
              MAC Address
                                        Type
                                                  Interface
              0088.9900.0ad1
                                                  GigabitEthernet 0/1
              4433.4c0e.be66
5869.6c15.553a
                                       DYNAMIC
                                                  GigabitEthernet 0/1
                                       DYNAMIC
                                                  GigabitEthernet 0/1
12-S5750-1(config)#show mac-address-table
Vlan MAC Address Type
                                                   Interface
                                                  GigabitEthernet 0/1
GigabitEthernet 0/1
              0088.9900.0ad1
                                       DYNAMIC
                                       DYNAMIC
              4433.4c0e.be66
              5869.6c15.553a
                                       DYNAMIC
                                                  GigabitEthernet 0/1
                                 address-table
12-S5750-1(config)#show mac-
Vlan
              MAC Address
                                        Type
                                                  Interface
              0088.9900.0ad1
                                        DYNAMIC
                                                  GigabitEthernet 0/1
              4433.4c0e.be66
                                        DYNAMIC
                                                  GigabitEthernet 0/2
                                                  GigabitEthernet 0/1
              5869.6c15.553a
                                       DYNAMIC
12-S5750-1(config)#show mac-address-table
Vlan MAC Address Type
Vlan
                                                   Interface
                                                  GigabitEthernet 0/1
GigabitEthernet 0/2
              0088.9900.0ad1
                                       DYNAMIC
                                       DYNAMIC
              4433.4c0e.be66
              5869.6c15.553a
                                       DYNAMIC
                                                  GigabitEthernet 0/1
12-3
Vlan
              MAC Address
                                       Type
                                                   Interface
              0088.9900.0ad1
                                        DYNAMIC
                                                  GigabitEthernet 0/1
              4433.4c0e.be66
5869.6c15.553a
                                        DYNAMIC
                                                  GigabitEthernet 0/2
                                       DYNAMIC
                                                  GigabitEthernet 0/1
12-S5750-1(config)#show mac-address-table
Vlan MAC Address Type
                                                  Interface
```

交换机会修改 mac address 表,形成 mac 地址表的翻摆。占用交换机资源,如果大量广播帧进入的话,会严重影响交换机的处理速度,导致网络拥堵或断开。

拔下端口2的跳线,继续进行以下实验:

步骤 2:交换机 A 的基本配置。

```
Switch#configure terminal
Switch(config)#hostname switchA
switchA(config)#vlan 10
switchA(config-vlan)#name sales
switchA(config-vlan)#exit
switchA(config)#interface gigabitethernet 0/3
```


switchA(config-if) # switchport access vlan 10
switchA(config-if) # exit
switchA(config) # interface range gigabitethernet 0/1-2
switchA(config-if-range) # switchport mode trunk

步骤 3:交换机 B 的基本配置。

Switch#configure terminal
Switch(config)#hostname switchB
switchB(config)#vlan 10
switchB(config-vlan)#name sales
switchB(config-vlan)#exit
switchB(config)#interface gigabitethernet 0/3
switchB(config-if)#switchport access vlan 10
switchB(config-if)#exit
switchB(config-if)#exit
switchB(config)#interface range gigabitethernet 0/1-2
switchB(config-if-range)#switchport mode trunk

步骤 4: 配置快速生成树协议。

交换机 A:

SwitchA(config) # spanning-tree
SwitchA(config) # spanning-tree mode rstp

!开启生成树协议

!指定生成树协议的类型为 RSTP

交换机 B:

SwitchB(config)#spanning-tree

!开启生成树协议

SwitchB(config) # spanning-tree mode rstp

!指定生成树协议的类型为 RSTP

测试:用两根跳线将2台交换机按照网络拓扑结构连接起来,将步骤1再做一遍,比较配置前后的实验效果,生成树协议起到什么作用?

```
switchA(config)#show spanning-tree
StpVersion: RSTP
SysStpStatus : ENABLED
MaxAge : 20
HelloTime : 2
ForwardDelay : 15
BridgeMaxAge : 20
BridgeHelloTime : 2
BridgeForwardDelay : 15
MaxHops: 20
TxHoldCount : 3
PathCostMethod : Long
BPDUGuard : Disabled
BPDUFilter : Disabled
LoopGuardDef
              : Disabled
BridgeAddr : 5869.6c15.5522
Priority: 32768
TimeSinceTopologyChange : 0d:0h:0m:8s
TopologyChanges : 2
DesignatedRoot: 32768.5869.6c15.5522
RootCost: 0
RootPort: 0
switchA(config)#
```

开启快速生成树协议后,按照步骤 1 重复实验,发现不论是 PC1 ping PC2 还是 PC1 ping 非 PC2 IP. 都不会产生广播风暴.

生成树协议使用生成树算法,在具有冗余路径的容错网络中计算出一个无环路的路径,使得一部分端口处于转发状态,而另一部分端口处于阻塞状态,以保证 PC1 到 PC2 之间的路径有且仅有一条,避免回环带来的不利影响,但同时又具有容错能力。

步骤 5:验证测试。在一台非根交换机上执行上述命令后过 5s,使用 show spanning-tree interface gigabitethernet 0/1 命令和 show spanning-tree

interface gigabitethernet 0/2 命令查看, 判断哪一个端口的 StpPortState 处于 丢弃状态? 哪一个端口的 StpPortState 处于转发状态?

SwitchA#show spanning-tree

!查看交换机 A 生成树的配置信息

SwitchB#show spanning-tree

!查看交换机 B 生成树的配置信息

根据以上信息,判断根交换机是交换机 A 还是交换机 B? 根端口是哪一个端口?

```
switchA(config)#show spanning-tree
StpVersion: RSTP
SysStpStatus: ENABLED
MaxAge: 20
HelloTime: 2
ForwardDelay: 15
BridgeMaxAge: 20
BridgeHelloTime: 2
BridgeForwardDelay: 15
MaxHops: 20
TXHoldCount: 3
PathCostMethod: Long
BPDUGuard: Disabled
BPDUFilter: Disabled
BPDUFilter: Disabled
BridgeAddr: 5869.6c15.5522
Priority: 32768
TimeSinceTopologyChange: 0d:0h:0m:8s
TopologyChanges: 2
DesignatedRoot: 32768.5869.6c15.5522
RootCost: 0
RootPort: 0
switchA(config)#
```

```
PathCostMethod : Long
BPDUGUard : Disabled
BPDUFILET : Disabled
ConpCuardDef : Disabled
BPDUFILET : Disabled
BridgsAddr : S089.6c15.553a
TimeSinceTopologyChange : 0d:0h:0m:12s
TapologyChanges : 2
DesignateGRoot : 4096.5899.6c15.5522
ROOLGOST : 20809
RootPart : GigabitEthernet 9/1
SWITCHSCONTIGNEROW Spanning-tree interface gigabitEthernet 0/1
PortAdminPortFast : Disabled
PortOperPortFast : Disabled
PortOperPortFast : Disabled
PortOperAutoEdge : Disabled
PortOperAutoEdge : Disabled
PortOperLinkType : point-to-point
PortBOWDIFILet : Disabled
PortOperLinkType : point-to-point
PortBOWDIFILet : Disabled
PortDesignateGRoot : 4096.5869.6c15.5522
PortDesignateGRoot : 4096.5869.6c15.5522
PortDesignateGRoot : 4096.5869.6c15.5522
PortDesignateGRoot : 4096.5869.6c15.5522
PortDesignateGRoot : 20000
PortOperLinkType : point-to-point
PortPortPort : 128
PortDesignateGRoot : 20000
PortOperPathCost : 20000
PortDesignateGRoot : Sosabled
PortCaurdmode : None
PortBPDUGuard : Disabled
PortCaurdmode : None
PortSperitity : 128
PortDesignateGRoot : Sose9.6c15.5522
PortDesignateGroot : 20000
PortOperPathCost : 20000
PortDesignateGroot : 20000
PortOperPathCost : 2000
```

由截图可以看出,根交换机为交换机 A, 交换机 B 的根端口是 interface gigabitethernet 0/1。interface gigabitethernet 0/2 处于丢弃状态, interface gigabitethernet 0/1 处于转发状态。

步骤 6: 设置交换机的优先级

SwitchA(config) # spanning-tree priority 4096

!设置交换机 A 的优先级为 4096

实验结果显示,当有2个端口都连在1个共享介质上时,交换机会选择高优先级(数值小)的端口进入转发状态,而低优先级(数值大)的端口进入丢弃状态。如果两个端口的优先级相同,则端口号较小的端口进入转发状态。

SwitchB#show spanning-tree

!查看交换机 B 生成树的配置信息

比较与步骤1中(1)的查询结果有什么区别。

由于交换机的优先级为 4096 的倍数, 其中 4096 为最高优先级。设置完优先级后, 交换机 A 为根交换机。通过查看交换机 B 中的生成树协议可得:

```
switchB(config)#show spanning-tree
StpVersion: RSTP
SysStpStatus : ENABLED
MaxAge: 20
HelloTime : 2
ForwardDelay: 15
BridgeMaxAge : 20
BridgeHelloTime : 2
BridgeForwardDelay: 15
MaxHops: 20
TxHoldCount : 3
PathCostMethod : Long
BPDUGuard : Disabled
BPDUFilter : Disabled
LoopGuardDef : Disabled
BridgeAddr : 5869.6c15.553a
Priority: 32768
TimeSinceTopologyChange : 0d:0h:1m:50s
TopologyChanges : 1
DesignatedRoot : 32768.5869.6c15.5522
RootCost : 20000
RootPort : GigabitEthernet 0/1
```

步骤 8: 验证交换机 B的端口 0/1 和 0/2 的状态。

SwitchB#show spanning-tree interface gigabitethernet 0/1

!显示交换机 B端口 0/1 的状态

```
switchB(config)#show spanning-tree interface gigabitEthernet 0/1
PortAdminPortFast : Disabled
PortOperPortFast : Disabled
PortAdminAutoEdge : Enabled
PortOperAutoEdge : Disabled
PortAdminLinkType : auto
PortOperLinkType : point-to-point
PortBPDUGuard : Disabled
PortBPDUFilter : Disabled PortGuardmode : None
PortGuardmode
PortState : forwarding
PortPriority : 128
PortDesignatedRoot: 4096.5869.6c15.5522
PortDesignatedCost: 0
PortDesignatedBridge: 4096.5869.6c15.5522
PortDesignatedPortPriority: 128
PortDesignatedPort : 1
PortForwardTransitions : 3
PortAdminPathCost: 20000
PortOperPathCost : 20000
Inconsistent states : normal
PortRole : rootPort
```


请回答:

- (1) 交换机 B 的端口 0/1 处于什么状态?
- (2) 端口角色是什么端口?

SwitchB#show spanning-tree interface gigabitethernet 0/2

!显示交换机 B端口 0/2 的状态

交换机B的端口 0/1 处于转发状态,端口角色是根端口。

请回答:

- (1) 交换机 B 的端口 0/2 处于什么状态?
- (2) 交换机B的端口 0/2 角色是什么端口?

```
switchB(config)#show spanning-tree interface gigabitEthernet 0/2
PortAdminPortFast : Disabled
PortOperPortFast : Disabled
PortAdminAutoEdge : Enabled
PortOperAutoEdge : Disabled
PortAdminLinkType : auto
PortOperLinkType : point-to-point
PortBPDUGuard : Disabled
PortBPDUFilter : Disabled
PortGuardmode : None
PortState : discarding
PortPriority : 128
PortDesignatedRoot : 4096.5869.6c15.5522
PortDesignatedCost : 0
PortDesignatedBridge :4096.5869.6c15.5522
PortDesignatedPortPriority: 128
PortDesignatedPort : 2
PortForwardTransitions : 3
PortAdminPathCost: 20000
PortOperPathCost: 20000
Inconsistent states : normal
PortRole : alternatePort
switchB(config)#
```

交换机B的端口0/2处于阻塞状态,端口角色是替换端口。

步骤 9: 实验分析

(1) 记录经过步骤 7 后每台交换机的 BridgeAddr、Priority、DesignatedRoot、RootCost以及RootPort并填入填入表格:

	交换机 A	交换机 B
Priority(网桥优先权)	4096	32768
BridgeAddr(网桥 MAC 地址)	5869. 6c15. 5522	5869. 6c15. 583a
DesignatedRoot(根网桥 ID)	4096. 5869. 6c15. 5522	4096. 5869. 6c15. 5522
RootCost(到根的距离)	0	20000
RootPort (根端口)	0	4096. 5869. 6c15. 5522
Alternate (替换端口)	GigabitEthernet 0/1	GigabitEthernet 0/2
	GigabitEthernet 0/2	

(2) 如果交换机 A 与交换机 B 的端口 0/1 之间的链路 down 掉(使用配置命令 shutdown 或拔掉网线),验证交换机 B 的端口 0/2 的状态,并观察状态转换时间。

端口 0/1 链路 down 掉后查看交换机 B 的端口 0/2:

SwitchB#show spanning-tree interface gigabitethernet 0/2

```
PortAdminPortFast : Disabled
PortOperPortFast : Disabled
PortOperPortFast : Disabled
PortOperPortFast : Disabled
PortOperPortFast : Disabled
PortAdminLankDege : Enabled
PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to PortOperLinkType : point to P
```

拔掉 0/1 端口的网线后,交换机 B 的端口 0/2 端口变为转发状态,状态转换时间约为 2 秒。 说明交换机 B 的端口 0/2 从阻塞状态转换到转发状态,说明生成树协议此时 启用了原先处于阻塞状态的冗余链路。状态转换时间大约为 2s。 以上结论是正确的。

(3) 记录此时每台交换机的 BridgeAddr、BridgeAddr、Priority、DesignatedRoot、RootCost以及RootPort并与(1)比较,分析发生的变化:

	交换机 A	交换机 B
Priority (网桥优先权)	4096	32768
BridgeAddr(网桥 MAC 地址)	5869. 6c15. 5522	5869. 6c15. 583a
DesignatedRoot(根网桥 ID)	4096. 5869. 6c15. 5522	4096. 5869. 6c15. 5522
RootCost(到根的距离)	0	20000
RootPort(根端口)	0	4096. 5869. 6c15. 5522
Alternate (替换端口)	GigabitEthernet 0/1	GigabitEthernet 0/2
	GigabitEthernet 0/2	

(4) 当交换机 A 与交换机 B 之间的一条链路 down 掉时,验证 PC1 和 PC2 仍能 互相 ping 通,并观察 ping 的丢包情况。 以下为从 PC1 ping PC2 的结果:

拔掉交换机 A 和交换机 B 的端口 0/1 (或 0/2) 之间的连线,观察丢包情况,请拔线前确定哪个是根端口、那个是阻塞端口,解析拔线后的丢包情况。

```
switchB(config)#show spanning-tree
StpVersion : RSTP
SystStpStatus : EMBLED
MaxAge : 20
MaxAge : 20
HellOTime : 2
ForwardDelay : 15
BridgeMaxAge : 20
BridgeHellOTime : 2
BridgeHowardDelay : 15
MaxHops: 20
TxHoldCount : 3
PathCostMethod : Long
BBDUGuard : Disabled
BBDUFilter : Disabled
BFUGUard : Signabled
BridgeAddr : Sa60.6c15.553a
Friority: 32768
TimeSinceTopologyChange : 0d:0h:1m:23s
TopologyChanges : 2
Designate Robert : 03600
BridgeAddr : Sa60.6c15.5522
*Apr : 10 5:19:48: %SPANTREE-5-ROOTCHANGE: Root Changed: New Root Port is GigabitEthernee
2. New Root Max Address is Sa60.6c15.5522
*Apr : 11 05:19:50: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet 0/1, changed state to down.
*Apr : 11 05:19:50: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet 0/1, changed state to n.

switchB(config)#show spanning-tree interface gigabitEthernet 0/2

PortAdminPortFast : Disabled
PortOperPortFast : Disabled
PortOperPortFast : Disabled
PortOperAutoEdge : Enabled
PortOperAutoEdge : Enabled
PortOperAutoEdge : Enabled
PortOperLinkType : point-to-point
PortRabitClaural : Disabled
PortOperLinkType : point-to-point
PortRabitClaural : Disabled
PortOperLater : Disabled
PortOp
```

拔线前,交换机B的端口0/1是根端口,0/2是阻塞端口。 拔线后,交换机B的端口0/2是根端口。 拔线后有出现丢包的情况,但又很快恢复正常。

(5) 记录此时每台交换机的 BridgeAddr、BridgeAddr、Priority、DesignatedRoot、RootCost 以及RootPort,填入表格并与(1)比较,分析发生的变化。

	交换机 A	交换机 B
Priority(网桥优先权)	4096	32768
BridgeAddr(网桥 MAC 地址)	5869. 6c15. 5522	5869. 6c15. 583a
DesignatedRoot(根网桥 ID)	4096. 5869. 6c15. 5522	4096. 5869. 6c15. 5522
RootCost(到根的距离)	0	20000
RootPort(根端口)	0	4096. 5869. 6c15. 5522
Alternate (替换端口)	GigabitEthernet 0/1	GigabitEthernet 0/2
	GigabitEthernet 0/2	

(6) 启动监控软件 Wireshark, 捕获 BPDU 并进行协议分析。

```
> Source: RuijieNe_15:58:ce (58:69:6c:15:58:ce)
    Length: 39
  > Trailer: 000f000020302f
    Frame check sequence: 0xaad0e503 [unverified]
    [FCS Status: Unverified]

✓ Logical-Link Control

  > DSAP: Spanning Tree BPDU (0x42)
  > SSAP: Spanning Tree BPDU (0x42)
  > Control field: U, func=UI (0x03)

→ Spanning Tree Protocol

    Protocol Identifier: Spanning Tree Protocol (0x0000)
    Protocol Version Identifier: Rapid Spanning Tree (2)
    BPDU Type: Rapid/Multiple Spanning Tree (0x02)

→ BPDU flags: 0x7c, Agreement, Forwarding, Learning, Port Role: Designated

      0... - Topology Change Acknowledgment: No
      .1.. .... = Agreement: Yes
      ..1. .... = Forwarding: Yes
      ...1 .... = Learning: Yes
      .... 11.. = Port Role: Designated (3)
       .... ..0. = Proposal: No
       .... 0 = Topology Change: No

∨ Root Identifier: 4096 / 0 / 58:69:6c:15:55:54
       Root Bridge Priority: 4096
      Root Bridge System ID Extension: 0
       Root Bridge System ID: RuijieNe_15:55:54 (58:69:6c:15:55:54)
    Root Path Cost: 20000
  Bridge Identifier: 32768 / 0 / 58:69:6c:15:58:ce
      Bridge Priority: 32768
      Bridge System ID Extension: 0
      Bridge System ID: RuijieNe_15:58:ce (58:69:6c:15:58:ce)
    Port identifier: 0x8003
    Message Age: 1
    Max Age: 20
    Hello Time: 2
    Forward Delay: 15
    Version 1 Length: 0
```

BPDU 格式为: DMA SMA L/T LLC Header Payload, 分别为目的 MAC 地址,源 MAC 地址,帧长,配置消息固定的链路头和 BPDU 数据,其主要内容包括根网桥的 Identifier (RootID),从指定网桥到根网桥的最小路径开销(RootPathCost),指定网桥的 ID,指定网桥的指定端口 ID。

在 Spinning Tree Protocol 中可以得到:

协议号: 0x0000;

版本号: 2;

报文类型: 0x02;

标记信息 (BPDU flags): 0x7c;

根网桥号: 4096 / 0 / 58:69:6c:15:55:54;

优先级: 4096;

根路径消耗: 20000;

发送网桥 ID: 32768 / 0 / 58:69:6c:15:58:ce;

端口 ID: 0x8003;

呼叫时间; 2s;

转发延时: 15

【实验思考】

(1) 请问该实验中有无环路?请说明判断的理由,如果存在,说明交换机是如何避免 环路的。

实验开始时,由于网络拓扑结构图中交换机 A 和交换机 B 间存在冗余链路,即存在环路,所以导致广播风暴,也即实验设备中存在环路。

后续实验中,交换机 A 和交换机 B 开启生成树协议后,确保网络中有环路时候自动切断环路,消除环路带来的影响如广播风暴。

(2) 冗余链路会不会出现 MAC 地址表不稳定和多帧复制的问题?请举例说明。

当 PC1 ping PC2 时,交换机 A 和交换机 B 中没有 PC2 的地址,在交换机收到数据包后,会以广播形式向其他端口转发,又因为网络中环路的存在,交换机 A 中也没有 PC2 的地址,数据又会向其他端口转发,数据会经过环路,反复广播导致广播风暴的发生,此时交换机 MAC 表也会不断变化,产生翻摆的不稳定现象。

当 PC1 ping PC2 发送数据包时,由于交换机 A 中没有 PC2 的 MAC 地址,此时交换机 A 会将这个单播帧从端口 0/1 和 0/2 泛洪,因为交换机 B 就会从两个端口分别收到两个单播帧,如果交换机 B 的 MAC 地址表中已经有了 PC2 的地址,它就会将这两个帧分别转发给 PC2, PC2 就收到多个同样的数据包,导致多帧复制。

(3) 将实验改用 STP 协议, 重点观察状态转换时间。

改用 STP 协议后,状态转换的时间变慢,冗余端口转换大概需要 50s 的收敛时间。

(4) 在本实验中,开始时首先在两台交换机之间只连接一根跳线,发现可以正常 ping 通。此时在两台交换机之间多接一根跳线,发现还是可以继续正常 ping 通,请问

此时有广播风暴吗?

开始时首先在两台交换机之间只连接一根跳线,发现可以正常 ping 通。此时在两台交换机之间多接一根跳线,在能正常 ping 通的情况下,如果交换机中未开启生成树协议,仍会产生广播风暴。

学号	学生	自评分
18338072	冼子婷	<u>98</u>
<u>18322043</u>	廖雨轩	<u>98</u>
<u>18346019</u>	胡文浩	<u>98</u>

本次实验完成后,请根据组员在实验中的贡献,请实事求是,自评在实验中应得的分数。(按百分制)

【交实验报告】

上传实验报告: ftp://172.18.178.1/

截止日期(不迟于):1周之内

上传包括两个文件:

- (1) 小组实验报告。上传文件名格式: 小组号_Ftp 协议分析实验.pdf (由组长负责上传) 例如: 文件名"10_Ftp 协议分析实验.pdf"表示第 10 组的 Ftp 协议分析实验报告
- (2) 小组成员实验体会。每个同学单独交一份只填写了实验体会的实验报告。只需填写自己的学号和姓名。

文件名格式: 小组号_学号_姓名_ Ftp 协议分析实验.pdf (由组员自行上传)

例如: 文件名 "10_05373092_张三_ Ftp 协议分析实验.pdf"表示第 10 组的 Ftp 协议分析实验报告。

注意:不要打包上传!