

Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук

Свиридов Фёдор, Александр Слободнюк, Владимир Попов

Рабочий протокол и отчёт по лабораторной работе N=3

Цель работы. Вычислить g ускорение свободного падения с помощью математического и обратного маятника

Задачи, решаемые при выполнении работы.

- 1. Нахождение центра масс оборотного маятника
- 2. Измерение T_1 периода колебаний оборотного маятника в первой точке полвеса
- 3. Измерение T_2 периода колебаний оборотного маятника во второй точке подвеса
- 4. Измерение T периода колебаний математического маятника
- 5. Вычисление g ускорение свободного падения
- 6. Сравнение результатов и подведение выводов

Объект исследования. Физическая величина: g ускорение свободного падения

Метод экспериментального исследования. Измерение периода колебаний и расстояния до центра масс

Рабочие формулы и исходные данные.

$$g_2 = 4\pi^2 \frac{l}{T^2} \tag{2}$$

$$g_1 = 4\pi^2 \frac{a_1^2 - a_2^2}{T_1^2 a_1 - T_2^2 a_2} \tag{1}$$

где a_1 и a_2 расстояния от центра масс до 1-го и 2-го подвеса, соответственно Формула (1) для математического маятника, (2) - для оборотного

Таблица 1: Измерительные приборы

Taskinga 1. 125ki opii 1 otibiibi o inpii o opbi				
Наименование	Тип прибора	Используемый	Погрешность	
		диапазон	прибора	
Модуль измери-	Цифровой	0.5 - 1.5 c.	0,005 с.	
тельный				

Рис. 1: Оборотный маятник

Рис. 2: Схема установки

Результаты прямых измерений и их обработки

1. Центр масс

 $a_1 = 8$ cm.

 $a_2 = 14$ cm.

2. Оборотный маятник в первой точке подвеса

№	Число колебаний N	t_1 время N колебаний (с.)
1	5	5,355
2	5	5,357
3	5	5,359

3. Оборотный маятник во второй точке подвеса

Nº	Число колебания N	t_2 время N колебаний (с.)
1	10	10,110
2	10	10,105
3	10	10,115

4. Математический маятник

Nº	Число колебания N	t время N колебаний (с.)
1	10	9,901
2	10	9,921
3	10	9,918

Расчет результатов косвенных измерений

1. Период колебания оборотного маятника в первой точке подвеса

$$T_1 \approx \frac{\langle t_1 \rangle}{N} \approx 1,0714$$
 (c)

2. Период колебания оборотного маятника во второй точке подвеса

$$T_2 \approx \frac{\langle t_2 \rangle}{N} \approx 1,0110$$
 (c)

3. Период колебания математического маятника

$$T \approx \frac{\langle t \rangle}{N} \approx 0.9913$$
 (c)

4. Ускорение свободного падения g_1 По формуле (1):

$$g_1 = 4\pi^2 \frac{0,08^2 - 0,14^2}{0,08 \cdot 1,071^2 - 0,14 \cdot 1,011^2} \approx 10,2 \quad \left(\frac{M}{c^2}\right)$$
$$g_1 \approx 10,2 \quad \left(\frac{M}{c^2}\right)$$

5. Ускорение свободного падения g_2 По формуле (2):

$$g_2 = 4\pi^2 \frac{0,22}{0,9913^2} \approx 8,8 \quad \left(\frac{M}{c^2}\right)$$

$$g_2 \approx 8,8 \quad \left(\frac{M}{c^2}\right)$$

Расчет погрешностей измерений

1. Для оборотного маятника

$$\Delta L_1 = 2 \cdot 10^{-3}$$
 (M)
 $L_1 = 22$ (CM)
 $\Delta t_1 = 0,005$ (C)
 $< T_1 >= 1,041$ (C)

$$\frac{\Delta g_1}{g_1} \approx \sqrt{\left(\frac{\Delta L_1}{L_1}\right)^2 + 4\left(\frac{\Delta t_1}{\langle T_1 \rangle}\right)^2} \approx 0,013$$

$$\Delta g_1 \approx 0,1 \quad \left(\frac{M}{c^2}\right)$$

2. Для математического маятника

$$\Delta L_2 = 5 \cdot 10^{-3}$$
 (M)
 $L_2 = 22$ (cM)
 $\Delta t_2 = 0,005$ (c)
 $< T_2 >= 0,9913$ (c)

$$\frac{\Delta g_2}{g_2} \approx \sqrt{\left(\frac{\Delta L_2}{L_2}\right)^2 + 4\left(\frac{\Delta t_2}{\langle T_2 \rangle}\right)^2} \approx 0,025$$

$$\Delta g_1 \approx 0, 2 \quad \left(\frac{M}{c^2}\right)$$

Окончательные результаты.

$$g_1 = (10, 2 \pm 0, 1) \quad \frac{M}{c^2}$$

$$g_2 = (8, 8 \pm 0, 2)$$
 $\frac{M}{C^2}$

Выводы и анализ результатов Мы вычислили ускорение свободного падения с помощью двух маятников: математического и оборотного. Полученные результаты довольно сильно отличаются, данную ситуацию можно объяснить тем, что, несмотря на довольно точное измерение периода, в первом случае были трудности с измерением центра масс, а во втором - с измерением длины маятника.