TA Session for Econometrics II 2025

3: Qualitive Dependent Variable

Jukina HATAKEYAMA

The University of Osaka, Department of Economics

September 21, 2025

TA Session for Econometrics II 2025

Jukina HATAKFYAMA

Introduction

Discrete Cho

Model

Binary Choice Model: Bernoulli Example

Choice Model

Utility Function Model

Binary Response Models Orderd Probit / Logit

Multinomial Logit Mode

Introduction

2 Discrete Choice Model

Binary Choice Model
Binary Choice Model: Bernoulli Example
Interpretation of Binary Choice Model
Utility Function Model
Binary Response Models
Orderd Probit / Logit Model
Multinomial Logit Model
Nested Logit Model

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Cho

Model

Binary Choice Model: Bernoulli Example

Interpretation of Binary Choice Model

Utility Function Mode

Orderd Probit / Logit

lodel

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete C

Binary Choice Model
Binary Choice Model:

Interpretation of Binary
Choice Model

Utility Function Model

Binary Response Models
Orderd Probit / Logit

Aultinomial Logit Mod

Nested Logit Model

1 Introduction

Discrete Choice Model
Binary Choice Model
Binary Choice Model: Bernoulli Example
Interpretation of Binary Choice Model
Utility Function Model
Binary Response Models
Orderd Probit / Logit Model
Multinomial Logit Model

Introduction

- In many applications, the dependent variable is not continuous, but rather qualitative.
 - Examples:
 - Binary outcomes (e.g., employed/unemployed, purchase/no purchase)
 - Categorical outcomes (e.g., choice of transport: car, bus, train)
 - Ordered responses (e.g., satisfaction levels: low, medium, high)
- Standard linear regression is not appropriate for such cases.
- Special models are required:
 - Binary choice models: Logit, Probit
 - Multinomial/Ordered models

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Model Cho

Binary Choice Model: Bernoulli Example Interpretation of Binary

Utility Function Model

Binary Response Mo Orderd Probit / Log

Model
Multinomial Logit Model

A standard regression line extends beyond the "0-1" range, which makes it unsuitable for qualitative dependent variables.

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Model

Binary Choice Mod

Bernoulli Example Interpretation of Binary

Utility Function Mod

Binary Response Mo Orderd Probit / Log

Multinomial Logit Model

Types of Qualitative Dependent Variable Models

- Models for qualitative dependent variables are broadly classified into three categories:
 - 1 Discrete choice models (e.g., binary choice: Logit, Probit; multinomial choice)
 - 2 Limited dependent variable models (e.g., Tobit, censored regression models)
 - 3 Duration models (e.g., survival analysis, hazard models)
- Each category addresses a specific structure in the dependent variable.

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Cho Model

> Binary Choice Model: Bernoulli Example

nterpretation of Binary Choice Model

Utility Function Model
Binary Response Model

Orderd Probit / Logit Model

Multinomial Logit Model Nested Logit Model

Introduction

2 Discrete Choice Model

Binary Choice Model
Binary Choice Model: Bernoulli Example
Interpretation of Binary Choice Model
Utility Function Model
Binary Response Models
Orderd Probit / Logit Model
Multinomial Logit Model
Nested Logit Model

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Choice

Binary Choice Model: Bernoulli Example

Choice Model

Binary Response Model

Orderd Probit / Logit

odel ultinomial Logit Mo

Binary Choice Model

• e.g. Employment decision, purchase decision, voting behaviour

Let y^* be a latent variable. Consider the following model:

$$y_i^* = X_i \beta + u_i, \quad u_i \sim N(0, \sigma^2)$$

for $i = 1, \ldots, N$.

The latent variable is unobserved, but y_i is observed as 0 or 1 (e.g. "Yes" or "No"), i.e.:

$$y_i = \begin{cases} 1 & \text{if } y_i^* > 0 \\ 0 & \text{if } y_i^* \le 0 \end{cases}$$

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Choice Model

Binary Choice Model

Binary Choice Model:
Bernoulli Example
Interpretation of Binary

Utility Function Model

Binary Response Mode Orderd Probit / Logit

Multinomial Logit Model

Probability Representation

Since y_i is binary (0 or 1), we cannot directly model it as a continuous variable. Instead, we consider the **probability** that $y_i = 1$:

$$Pr(y_i = 1) = Pr(y_i^* > 0)$$

$$= Pr(X_i\beta + u_i > 0)$$

$$= Pr(u_i > -X_i\beta)$$

$$= 1 - Pr(u_i \le -X_i\beta)$$

$$= 1 - F(-X_i\beta)$$

$$= F(X_i\beta)$$

- $F(\cdot)$ denotes the cumulative distribution function (c.d.f.) of u_i .
- By assuming symmetry of u_i , the probability simplifies to $F(X_i\beta)$.
- Different choices of $F(\cdot)$ lead to different models:
 - Normal \Rightarrow Probit model
 - Logistic ⇒ Logit model
- We can consider the other distribution function.

2025 Jukina HATAKEYAMA

TA Session for

Econometrics II

troduction

oovete Chair

odel

Binary Choice Model

ary Choice Model: noulli Example erpretation of Binary

ility Function

Orderd Probit /

Aultinomial Lo

Binary Choice as Bernoulli Trial

Consider a binary outcome $y_i \in \{0, 1\}$.

- Each observation can be seen as a **Bernoulli trial**.
- Let

$$Pr(y_i = 1 \mid X_i) = \pi_i, \quad Pr(y_i = 0 \mid X_i) = 1 - \pi_i$$

• Then $y_i \sim \mathsf{Bernoulli}(\pi_i)$

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Choice Model

Binary Choice Model

Binary Choice Model: Bernoulli Example

Interpretation of Binary Choice Model

Utility Function Model

Binary Response Models

Model Multinomial Logit Mo

Bernoulli Likelihood Function

The likelihood for N independent observations is:

$$L(\beta) = \prod_{i=1}^{N} \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

- Here, π_i is the probability of observing $y_i = 1$, which depends on explanatory variables X_i and parameters β .
- Taking logs gives the log-likelihood:

$$\ell(\beta) = \sum_{i=1}^{N} [y_i \log \pi_i + (1 - y_i) \log(1 - \pi_i)]$$

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Choice Model

Binary Choice Model

Binary Choice Model

Bernoulli Example

Choice Model

Utility Function Model

Binary Response Models Orderd Probit / Logit

Model

Multinomial Logit Model

Link Function: Connecting X and π_i

To model π_i as a function of X_i , we introduce a link function:

• Logit model:

$$\pi_i = \frac{\exp(X_i \beta)}{1 + \exp(X_i \beta)}$$

• Probit model:

$$\pi_i = \Phi(X_i\beta)$$

• Both ensure $0 \le \pi_i \le 1$

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Choice Model

Binary Choice Model

Binary Choice Model: Bernoulli Example

Choice Model

Utility Function Model

Binary Response Models

Orderd Probit / Logit

lodel Iultinomial Logit Model

Interpretation of Bernoulli Model

- Each y_i is a **realisation of a Bernoulli trial** with success probability π_i .
- The model allows us to understand how explanatory variables X_i affect the probability of success.
- Maximum likelihood estimation can be used to estimate β .
- Predicted probability: $\hat{\pi}_i = \hat{Pr}(y_i = 1 \mid X_i)$

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Choice Model

Binary Choice Model

Binary Choice Model: Bernoulli Example

Interpretation of Binary Choice Model

Utility Function Model

Binary Response Models
Orderd Probit / Logit

Model Probit / L

Multinomial Logit Model Nested Logit Model

Estimation of Binary Choice Models

Maximum Likelihood Estimation (MLE):

- Assume $y_i \sim \mathsf{Bernoulli}(\pi_i)$
- Specify a link function:
 - Logit: $\pi_i = \frac{\exp(X_i\beta)}{1+\exp(X_i\beta)}$
 - Probit: $\pi_i = \Phi(X_i\beta)$
- Construct the log-likelihood:

$$\ell(\beta) = \sum_{i=1}^{N} [y_i \log \pi_i + (1 - y_i) \log(1 - \pi_i)]$$

Use numerical optimisation (e.g. Newton-Raphson, BFGS) to find

$$\hat{\beta} = \arg\max_{\beta} \ell(\beta)$$

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Model Choic

Binary Choice Model
Binary Choice Model

Bernoulli Example

Interpretation of Binary Choice Model

Utility Function Model Binary Response Model

Model
Multinomial Logit Mod

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Binary Choice Model: Bernoulli Example

Practical steps:

- **1** Define X_i and y_i in your dataset
- 2 Choose Logit or Probit link
- 3 Fit the model.
- **4** Obtain $\hat{\beta}$ and predicted probabilities $\hat{\pi}_i$

Interpretation as Nonlinear Regression

The maximum likelihood estimation problem can be viewed as a nonlinear least squares estimation problem based on the regression model:

$$y_i = F(X_i \beta^*) + u_i,$$

where
$$F_i = F(X_i \beta^*)$$
 and $\beta^* = \beta/\sigma^1$.

The error term is defined as $u_i = y_i - F_i$, which takes values

$$u_i = \begin{cases} 1 - F_i & \text{with probability } F_i \\ -F_i & \text{with probability } 1 - F_i \end{cases}$$

Therefore, $\mathbb{E}[u_i] = 0$ and $Var(u_i) = F_i(1 - F_i)$.

Normalisation by σ is standard in the probit model, since only β/σ is identifiable.

Econometrics II 2025 Jukina HATAKEYAMA

TA Session for

Model
Binary Choice Model

Bernoulli Example Interpretation of Binary Choice Model

> cility Function Model nary Response Models

erd Probit / lel

nomial Logi ed Logit Mo

Weighted Least Squares Interpretation

The variance of the error term is heteroskedastic:

$$Var(u_i) = F_i(1 - F_i).$$

Therefore, the weighted least squares estimator solves

$$\min_{\beta^*} \sum_{i=1}^{N} \frac{(y_i - F(X_i \beta^*))^2}{F_i(1 - F_i)}.$$

- This shows that binary choice models can be interpreted as generalised least squares problems.
- In practice, estimation is still typically carried out via **maximum likelihood**.

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Cho

Binary Choice Model

Interpretation of Binary Choice Model

Utility Function Model
Binary Response Models
Orderd Probit / Logit
Model

Multinomial Logit Model Nested Logit Model

- Viewing the binary choice model from the WLS perspective shows how the contribution of each observation to estimation varies.
- Observations with predicted probabilities near 0 or 1 have small variance, so they contribute little information to estimating β^* .
- Observations with $F_i \approx 0.5$ have larger variance and carry the most information, making the likelihood more sensitive to these cases.
- This interpretation helps build intuition about the shape of the likelihood function and why the model learns most from "uncertain" outcomes.

Utility Function Model

Consider the decision to purchase a good. Let the utilities for individual i be

$$\begin{cases} U_{1i} = X_i \beta_1 + \epsilon_{1i}, \\ U_{2i} = X_i \beta_2 + \epsilon_{2i}. \end{cases}$$

We purchase the good if $U_{1i} > U_{2i}$, otherwise we do not purchase it. Define the observed outcome:

$$y_i = \begin{cases} 1 & \text{if we purchase the good,} \\ 0 & \text{otherwise.} \end{cases}$$

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Ch

Binary Choice Model: Bernoulli Example

Interpretation of Binary Choice Model

Utility Function Model

Orderd Probit / Logit

Multinomial Logit Mode Nested Logit Model

Binary Choice Model: Bernoulli Example

Choice Model

Utility Function Model

Jtility Function Model

Orderd Probit / Logit Model

Multinomial Logit Mod Jested Logit Model

Then the probability of purchase is

$$Pr(y_i = 1) = Pr(U_{1i} > U_{2i})$$

$$= Pr(X_i\beta_1 + \epsilon_{1i} > X_i\beta_2 + \epsilon_{2i})$$

$$= Pr(X_i(\beta_1 - \beta_2) > \epsilon_{2i} - \epsilon_{1i})$$

$$= Pr(X_i\beta^* > \epsilon_i^*)$$

$$= 1 - F(-X_i\beta^*)$$

$$= F(X_i\beta^*),$$

where $\beta^* = \beta_1 - \beta_2$ and $\epsilon_i^* = \epsilon_{2i} - \epsilon_{1i}$. $F(\cdot)$ denotes the cumulative distribution function of ϵ_i^* .

Since the likelihood is fully determined by $F(X_i\beta^*)$, the parameters can be consistently estimated by **maximum likelihood estimation (MLE)**.

Binary Response Data

Suppose we analyse a survey question with a Yes/No answer:

$$y_i = \begin{cases} 1 & \text{if the } i \text{th respondent answers YES,} \\ 0 & \text{if the } i \text{th respondent answers NO.} \end{cases}$$

Consider the linear regression model:

$$y_i = X_i \beta + u_i.$$

Taking expectations, we obtain:

$$\mathbb{E}[y_i] = X_i \beta.$$

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Cho

Binary Choice Model:

Interpretation of Binary Choice Model

Itility Function Model

Binary Response Models
Orderd Probit / Logit

Orderd Probit / Logit Model

Limitations of the Linear Probability Model

Note that $X_i\beta$ can take any value in $(-\infty,\infty)$, while $\mathbb{E}[y_i]$ must lie in [0,1] because

$$\mathbb{E}[y_i] = 1 \times Pr(y_i = 1) + 0 \times Pr(y_i = 0) = Pr(y_i = 1) \in [0, 1].$$

To respect this probability structure, we instead write

$$y_i = Pr(y_i = 1) + u_i,$$

where the error term is defined as

$$u_i = \begin{cases} 1 - Pr(y_i = 1) & \text{if } y_i = 1, \\ -Pr(y_i = 1) & \text{if } y_i = 0. \end{cases}$$

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete (Model

> Binary Choice Model: Bernoulli Example Interpretation of Binary Choice Model

> > lity Function Model

Binary Response Models

rderd Probit / Logit lodel Jultinomial Logit Model

Multinomial Logit Mo Nested Logit Model Recall that the probability of a positive response is modelled as

$$Pr(y_i = 1) = F(X_i\beta),$$

where $F(\cdot)$ is a cumulative distribution function (CDF), e.g. the standard normal or logistic distribution.

- ullet If F is the standard normal CDF, the model is called the **probit model**.
- If F is the logistic CDF, the model is called the **logit model**.

The probability mass function of y_i is

$$f(y_i) = (F(X_i\beta))^{y_i} (1 - F(X_i\beta))^{1-y_i}.$$

Assuming independence across observations, the joint likelihood is

$$L(\beta \mid X) = \prod_{i=1}^{N} f(y_i) = \prod_{i=1}^{N} (F(X_i \beta))^{y_i} (1 - F(X_i \beta))^{1 - y_i}.$$

Estimation is carried out by maximum likelihood.

2025 Jukina HATAKEYAMA

TA Session for Econometrics II

ntroduction

Discrete Cho

Binary Choice Model: Bernoulli Example Interpretation of Bina

> ce Model cy Function Model

Binary Response Models Orderd Probit / Logit

l nomial Logit Mod

d Logit Model

Ordered Probit/Logit Model

Consider an ordinal dependent variable $y_i \in \{1, 2, ..., J\}$. We assume an unobserved latent variable:

$$y_i^* = X_i \beta + \varepsilon_i$$

where ε_i follows a standard normal distribution (probit) or logistic distribution (logit).

The observed outcome y_i is determined by threshold values μ_i :

$$y_i = j$$
 if $\mu_{j-1} < y_i^* \le \mu_j$, $j = 1, \dots, J$

with $\mu_0 = -\infty$ and $\mu_J = +\infty$.

The probability of observing category j is:

$$Pr(y_i = j \mid X_i) = F(\mu_j - X_i\beta) - F(\mu_{j-1} - X_i\beta),$$

where $F(\cdot)$ is the cumulative distribution function.

 \Rightarrow Parameters β and thresholds μ_i are estimated by MLE.

2025 Jukina HATAKEYAMA

TA Session for

Econometrics II

troduction

croduction

del ary Choice Model

terpretation of Binary noice Model ility Function Model

Orderd Probit / Logit Model

lultinomial Lo ested Logit N

24 / 39

$$y_i = \begin{cases} 1 & \text{if } & -\infty < y_i^* \le \mu_1, \\ 2 & \text{if } & \mu_1 < y_i^* \le \mu_2, \\ \vdots & & \\ J & \text{if } & \mu_{J-1} < y_i^* \le \infty \end{cases}$$

$$Pr(y_{i} = 1) = Pr(y_{i}^{*} \leq \mu_{1}) = Pr(u_{i} \leq \mu_{1} - X_{i}\beta)$$

$$= F(\mu_{1} - X_{i}\beta),$$

$$Pr(y_{i} = 2) = Pr(\mu_{1} \leq y_{i}^{*} \leq \mu_{2}) = Pr(\mu_{1} - X_{i}\beta \leq u_{i} \leq \mu_{2} - X_{i}\beta)$$

$$= F(\mu_{2} - X_{i}\beta) - F(\mu_{1} - X_{i}\beta),$$

$$Pr(y_i = m) = Pr(\mu_{m-1} < y_i^*) = Pr(\mu_{m-1} - X_i\beta < u_i)$$

= 1 - F(\mu_{m-1} - X_i\beta)

TA Session for Econometrics II 2025

lukina HATAKEYAMA

Orderd Probit / Logit Model

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Cho

Binary Choice Model

Binary Choice Model:

Interpretation of Binary

Utility Function Model

Binary Response Models

Orderd Probit / Logit

Model Probit / Logit

Multinomial Logit Model lested Logit Model

Joint Distribution and Likelihood (Known Thresholds)

Consider n independent observations $\{y_i, X_i\}_{i=1}^n$ with **known thresholds** μ_1, \ldots, μ_{J-1} .

The joint likelihood (assuming independence) is

$$L(\beta \mid \{y_i, X_i\}, \mu_1, \dots, \mu_{J-1}) = \prod_{i=1}^n \prod_{j=1}^J \left[F(\mu_j - X_i \beta) - F(\mu_{j-1} - X_i \beta) \right]^{\mathbf{1}\{y_i = j\}},$$

where $\mathbf{1}\{y_i = j\}$ is an indicator function.

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Chai

Model
Binary Choice Model

Bernoulli Example
Interpretation of Binary

Itility Function Model

Orderd Probit / Logit Model

> Itinomial Logit Model sted Logit Model

Log-Likelihood Function (Known Thresholds)

Taking the logarithm of the likelihood gives the log-likelihood function:

$$\ell(\beta) = \sum_{i=1}^{n} \sum_{j=1}^{J} \mathbf{1} \{ y_i = j \} \log \left[F(\mu_j - X_i \beta) - F(\mu_{j-1} - X_i \beta) \right].$$

Goal: Estimate β by maximizing $\ell(\beta)$, treating the thresholds μ_j as known constants.

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Choice Model

Binary Choice Model: Bernoulli Example Interpretation of Binary Choice Model

Itility Function Model

Orderd Probit / Logit Model

> lultinomial Logit Model ested Logit Model

First-Order Condition (FOC) for β

The log-likelihood function (thresholds known) is:

$$\ell(\beta) = \sum_{i=1}^{n} \sum_{j=1}^{J} \mathbf{1} \{ y_i = j \} \log \left[F(\mu_j - X_i \beta) - F(\mu_{j-1} - X_i \beta) \right].$$

The first-order condition with respect to β is

$$\frac{\partial \ell(\beta)}{\partial \beta} = \sum_{i=1}^{n} \sum_{j=1}^{J} \mathbf{1} \{ y_i = j \} \frac{-f(\mu_j - X_i \beta) + f(\mu_{j-1} - X_i \beta)}{F(\mu_j - X_i \beta) - F(\mu_{j-1} - X_i \beta)} X_i = 0,$$

where $f(\cdot)$ is the density function corresponding to $F(\cdot)$.

This equation is solved numerically to obtain the MLE of β .

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete C Model

Binary Choice Model: Bernoulli Example Interpretation of Binary

lity Function Model

Orderd Probit / Logit Model

lultinomial Logit Model ested Logit Model

Log-Likelihood Function (Thresholds as Parameters)

For n independent observations $\{y_i, X_i\}_{i=1}^n$, the log-likelihood is

$$\ell(\beta, \mu_1, \dots, \mu_{J-1}) = \sum_{i=1}^n \sum_{j=1}^J \mathbf{1}\{y_i = j\} \log \left[F(\mu_j - X_i \beta) - F(\mu_{j-1} - X_i \beta) \right],$$

where $\mu_0 = -\infty$ and $\mu_J = +\infty$.

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Che

Binary Choice Model

Bernoulli Example
Interpretation of Binary
Chaira Madel

tility Function Model

Orderd Probit / Logit

Orderd Probit / Logit Model

ultinomial Logit Model

First-Order Conditions (FOC)

Maximizing $\ell(\beta, \mu)$ with respect to β and μ_i gives:

$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^{n} \sum_{j=1}^{J} \mathbf{1} \{ y_i = j \} \frac{f(\mu_j - X_i \beta) - f(\mu_{j-1} - X_i \beta)}{F(\mu_j - X_i \beta) - F(\mu_{j-1} - X_i \beta)} X_i = 0,$$

$$\frac{\partial \ell}{\partial \mu_j} = \sum_{i=1}^n \frac{\mathbf{1}\{y_i = j\} f(\mu_j - X_i \beta) - \mathbf{1}\{y_i = j+1\} f(\mu_j - X_i \beta)}{F(\mu_j - X_i \beta) - F(\mu_{j-1} - X_i \beta)} = 0.$$

Constraint: $\mu_1 < \mu_2 < \cdots < \mu_{J-1}$ to ensure identifiability.

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Choice Model

Binary Choice Model: Bernoulli Example Interpretation of Binary

Utility Function Model

Binary Response Models

Orderd Probit / Logit

Orderd Probit / Logit Model

> ltinomial Logit Model ited Logit Model

Multinomial Logit Model

Consider a categorical dependent variable $y_i \in \{1, 2, ..., J\}$ with no natural ordering.

We assume the utility of each category j is

$$U_{ij} = X_i \beta_j + \varepsilon_{ij}, \quad j = 1, \dots, J,$$

where ε_{ij} are independent and identically distributed following a Type I extreme value distribution.

The observed choice corresponds to the alternative with the highest utility:

$$y_i = \arg\max_j U_{ij}.$$

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Cho

Binary Choice Model

Bernoulli Example
Interpretation of Binary
Choice Model

Utility Function Mode

Binary Response Mode

lodel

Multinomial Logit Model
Nested Logit Model

Choice Probabilities

Under the IID extreme value assumption, the probability that individual i chooses category j is

$$Pr(y_i = j \mid X_i) = \frac{\exp(X_i \beta_j)}{\sum_{k=1}^{J} \exp(X_i \beta_k)}.$$

Notes:

- One category (typically j=J) is treated as the reference, with $\beta_J=0$ for identification.
- The model captures the relative log-odds of choosing one category versus the baseline:

$$\log \frac{Pr(y_i = j)}{Pr(y_i = J)} = X_i \beta_j.$$

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete (

Binary Choice Model: Bernoulli Example Interpretation of Binary

Interpretation of Binary Choice Model

Binary Response Mod

Multinomial Logit Model

Log-Likelihood Function

For n independent observations $\{y_i, X_i\}_{i=1}^n$, the likelihood is

$$L(\{\beta_j\}_{j=1}^{J-1}) = \prod_{i=1}^n \prod_{j=1}^J \left[Pr(y_i = j \mid X_i) \right]^{\mathbf{1}\{y_i = j\}}.$$

Taking logarithms yields the log-likelihood:

$$\ell(\{\beta_j\}_{j=1}^{J-1}) = \sum_{i=1}^n \sum_{j=1}^J \mathbf{1}\{y_i = j\} \log \Pr(y_i = j \mid X_i),$$

which is maximised to estimate the parameters β_j .

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Ch

Binary Choice Model: Bernoulli Example

Interpretation of Binary Choice Model

Utility Function Model

Binary Response Models Orderd Probit / Logit

Multinomial Logit Model

Key Features of the Multinomial Logit Model

- Suitable for nominal dependent variables with more than two categories.
- Assumes Independence of Irrelevant Alternatives (IIA): the relative odds between any two alternatives are unaffected by other choices.
- Parameters β_j are interpreted as effects on the log-odds relative to the baseline category.

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Cho

Binary Choice Model: Bernoulli Example

Interpretation of Binary Choice Model

Utility Function Model

Binary Response Mod Orderd Probit / Logit

Model
Multinomial Logit Model

Multinomial Logit Model

Nested Logit Model

Nested Logit Model

Consider a categorical dependent variable y_i with J alternatives that can be grouped into G nests.

Let C_g denote the set of alternatives within nest g, for $g=1,\ldots,G$. The utility of alternative j in nest g is

$$U_{ij} = X_i \beta_j + \varepsilon_{ij}, \quad j \in C_g,$$

where ε_{ij} follows a Generalised Extreme Value (GEV) distribution allowing for correlation within nests.

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Cho

Binary Choice Mo

Binary Choice Model: Bernoulli Example Interpretation of Binar

Interpretation of Binary Choice Model

Binary Response Mode

Model

Aultinomial Logit Mod

Nested Logit Model

Choice Probabilities in Nested Logit

The probability that individual i chooses alternative j in nest g is the product of:

ullet the conditional probability of choosing j given nest g is selected:

$$Pr(y_i = j \mid y_i \in C_g) = \frac{\exp(X_i \beta_j / \lambda_g)}{\sum_{k \in C_g} \exp(X_i \beta_k / \lambda_g)},$$

• the marginal probability of selecting nest q:

$$Pr(y_i \in C_g) = \frac{\left(\sum_{k \in C_g} \exp(X_i \beta_k / \lambda_g)\right)^{\lambda_g}}{\sum_{h=1}^G \left(\sum_{k \in C_h} \exp(X_i \beta_k / \lambda_h)\right)^{\lambda_h}},$$

so that

$$Pr(y_i = j) = Pr(y_i = j \mid y_i \in C_a) \cdot Pr(y_i \in C_a),$$

where $\lambda_g \in (0,1]$ is the dissimilarity parameter for nest g.

Jukina HATAKEYAMA

TA Session for

Econometrics II

roduction

counts Chair

nary Choice Mod

Function M Response M

d Probit / Lo

Multinomial Logit N
Nested Logit Model

Key Features of Nested Logit

- Allows for correlation of unobserved utility within nests, relaxing the Independence of Irrelevant Alternatives (IIA) assumption of the standard multinomial logit.
- The dissimilarity parameter λ_g captures the degree of substitution within nest g:
 - $\lambda_g = 1$ implies independence within the nest (reduces to standard MNL).
 - $\lambda_g < 1$ implies positive correlation among alternatives in the same nest.
- Estimation is typically performed by Maximum Likelihood Estimation (MLE), treating β_j and λ_g as parameters.
- Useful when alternatives can be naturally grouped, e.g., transport modes: private vs public transport.

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Cho

Binary Choice Mode

Binary Choice Model: Bernoulli Example nterpretation of Binary

Choice Model
Utility Function Model

Binary Response Models Orderd Probit / Logit

lodel Iultinomial Logit Model

Likelihood Function for Nested Logit

For n independent observations $\{y_i, X_i\}_{i=1}^n$, the likelihood is

$$L(\{\beta_j\}, \{\lambda_g\}) = \prod_{i=1}^{n} Pr(y_i = j_i),$$

where $Pr(y_i = j_i)$ is computed as the product of the conditional and marginal probabilities within the chosen nest.

Taking logarithms gives the log-likelihood function, which is maximised to estimate β_j and λ_g .

TA Session for Econometrics II 2025

Jukina HATAKEYAMA

Introduction

Discrete Choice

Binary Choice Model: Bernoulli Example

Interpretation of Binary Choice Model

Binary Response Mode

odel ultinomial Logit Model