Momentum Paper Questions Jan 2002—Jun 2008 (old spec)

4 The simplified diagram shows an experimental arrangement to investigate the collision of two trolleys.

Q4 Jun 2002

card	
trolley A	trolley B

In the experiment, trolley A is travelling at speed v. It collides with and sticks to, the initially stationary trolley B.

(a)	State	the measurements you would need to take so that you could determine the speed of
	(i)	trolley A before the collision,
	(ii)	trolleys A and B after the collision.
		(3 marks)
(b)		in how you would verify that momentum was conserved in this collision, indicating wha measurements would be required.
		(2 marks,
(c)	State trolley	and explain what you would do to minimise the effects of friction on the motion of the
	•••••	
	•••••	
		(2 marks

2 The diagram represents part of an experiment that is being used to estimate the speed of an air gun pellet.

Q2 Jan 2003

The pellet which is moving parallel to the track, strikes the block, embedding itself. The trolley and the block then move along the track, rising a vertical height, h.

 Using energy considerations explain how the speed of the trolley and block immediately after has been struck by the pellet, may be determined from measurements of h. Assume frictional forces are negligible. 	er it
	••••
(3 ma	rks

	mass of trolley and block mass of pellet speed of trolley and block immediately after impact		$0.50 \mathrm{kg}$ $0.0020 \mathrm{kg}$ $0.40 \mathrm{ms^{-1}}$	
	Calcu	ılate		
	(i)	the momentum of the trolley and block immediate	ly after impact,	
	(ii)	the speed of the pellet just before impact.		
			(4 marks)	
(c)	(i)	State what is meant by an inelastic collision.		
	(ii)	Use the data from part (b) to show that the coll inelastic.	ision between the pellet and block is	
			(4 marks)	
			(4 marks)	

(b) The following data is collected from the experiment

2	The c	_	n represents an exp	periment that can be u	used to investig	ate stopping distances fo	r a moving
				Trolley		Q2 Jun 2003	
						Block	
	then t	ravels	along the horizonta		ding with the b	leased it moves down th lock. The trolley and bloured.	
	(a)	State	the main energy cl	nanges taking place			
		(i)	as the trolley desc	eends,			
		(ii)	after the collision	, as the trolley and bl	ock move toge	ther.	
							(2 marks)
	(b)		ribe how the speed imentally.	of the trolley, just b	pefore it collide	es with the block may be	e measured
		You	may be awarded ma	arks for the quality o	f written comm	unication in your answer	r.
							••••••
							(3 marks)
(c)	Stat	e and	explain how the sp	peed of the trolley, p	rior to impact	could be varied.	
	••••	•••••					••••••
	•••••	•••••	•••••				•••••

(2 marks)

(a) Calc		culate Q2 Jan 2004		
	(i)	the acceleration of the car,		
	(ii)	the speed of the car after 8.0 s,		
	(iii)	the momentum of the car after 8.0 s,		
	(iv)	the distance travelled by the car in the first 8.0 s of its motion,		
	(v)	the work done by the resultant horizontal force during the first 8.0 s.		
		(9 marks		

2 A constant resultant horizontal force of 1.8×10^3 N acts on a car of mass 900 kg, initially at rest on a

level road.

(2 marks)

(5 marks)

(c) In practice the resultant force on the car changes with time. Air resistance is one factor that affects the resultant force acting on the vehicle.

You may be awarded marks for the quality of written communication in your answer.

(i) Suggest, with a reason, how the resultant force on the car changes as its speed increases.

(ii) Explain, using Newton's laws of motion, why the vehicle has a maximum speed.

		in contact with the club for 15 ms and the mass of the ball is 4.5×10^{-2} kg.
(a)	Expla	ain what is meant by an inelastic collision. Q6 Jun 2004
	•••••	
		(1 mark)
(b)	Calcu	ulate
	(i)	the change in momentum of the ball,
	()	
	(ii)	the average force the club exerts on the ball.
		(4 marks)
	45	
(c)	(i)	State the value of the force exerted by the ball on the club and give its direction.
	<i>(</i> 11)	
	(ii)	Explain how your answer to part (i) follows from an appropriate law of motion.
		You may be awarded marks for the quality of written communication in your answer.

The graph shows how the momentum of two colliding railway trucks varies with time. Truck A has a mass of 2.0 × 10⁴kg and truck B has a mass of 3.0 × 10⁴kg. The trucks are travelling in the same direction.
 Q5 Jun 2005

(a) Calculate the change in momentum of

(i)	truck A,	
(1)	uuch in,	

(ii) truck B.

(4 marks)

(b) Complete the following table.

	initial	final	initial kinetic	final kinetic
	velocity/m s ⁻¹	velocity/m s ⁻¹	energy/J	energy/J
truck A				
truck B				

(4 marks)

(r mar no)
State and explain whether the collision of the two trucks is an example of an elastic collision.
(3 marks
(3 marks

1	(a)	State two quantities that are conserved in an elastic collision. Q1 Jun 2006 quantity 1:				
		quan	tity 2:			
			(2 marks)			
	(b)	_	s molecule makes an elastic collision with the walls of a gas cylinder. The cule is travelling at 450 m s ⁻¹ at right angles towards the wall before the collision.			
		(i)	What is the magnitude and direction of its velocity after the collision?			
		(ii)	Calculate the change in momentum of the molecule during the collision if it has a mass of $8.0 \times 10^{-26} kg$.			
			(4 marks)			
	(c)		Newton's laws of motion to explain how the molecules of a gas exert a force on vall of a container.			
			may be awarded additional marks to those shown in brackets for the quality of en communication in your answer.			
		•••••				
		•••••				
		•••••	(4 marks)			

6	Figur same		hows two trolleys, A and B, of earl, u .	qual mass, travellir	ng towards each other	at the
			Figu	ire 3	Q6 Ja	an 2007
		_	A	√ <i>u</i>	B ()	
	(a)	State	and explain why the initial total	momentum of the	trolleys is zero.	
						(2 marks)
	(b)		trolleys collide and then move ap	art. If no resultant	t external forces are a	cting,
		(i)	the velocity of trolley A must be	e equal and opposi	te to the velocity of tr	rolley B,
		(ii)	the speed of each trolley will be	smaller as a resul	t of the collision.	
						(4 marks)
(c) De	scrib	e how you would measure the spe	eed of trolley A aft	er the collision.	
			y be awarded additional marks to communication in your answer.	those shown in br	ackets for the quality	of
		•••••				

3 A steady stream of water strikes a wall horizontally without rebounding and, as a result, exerts a force on the vertical wall.

You may be awarded additional marks to those shown in brackets for the quality of written communication in your answer to Question 3(a).

Q3 Jan 2008

		•	to dan 2000
(a)	With	h reference to Newton's Laws of motion,	
	(i)	state and explain why the momentum of the water changes	as it strikes the wall,
	(ii)	explain why the water exerts a constant force on the wall.	
			(5 marks)
(b)		er arrives at the wall at a rate of $18 \mathrm{kg s^{-1}}$. It strikes the wall have $.2 \mathrm{m s^{-1}}$ without rebounding. Calculate	
	(i)	the change in momentum of the water in one second,	
	(ii)	the force exerted by the water on the wall.	
			(3 marks)
(c)		e and explain the effect on the magnitude of the force if the wing the wall.	,
	•••••		
	•••••		
			(2 marks)

3 The graph shows how the velocity, v, of a car varies with time, t.

3 (a) Describe the motion of the car for the 50 s period.

You may be awarded additional marks to those shown in brackets for the quality of vritten communication in your answer.	
(3 mark	

3	(b)	The	mass of the car is 1200 kg. Calculate for the first 20 s of motion,	
3	(b)	(i)	the change in momentum of the car,	
3	(b)	(ii)	the rate of change of momentum,	
				••
3	(b)	(iii)	the distance travelled.	
			(4 mark	s)

A pile driver is used to drive cylindrical poles, called piles, into the ground so that they form the foundations of a building. **Figure 3** shows a possible arrangement for a pile driver. The hammer is held above the pile and then released so that it falls freely under gravity, until it strikes the top of the pile.

6	(b)	(iii)	the speed of the hammer and pile immediately after impact if the mass of the pile is $2000\mathrm{kg}$.
			(4 marks)
6	(c)		r an impact the hammer and the pile move so that the pile sinks into the ground to oth of 0.25 m.
		Calc	uate
6	(c)	(i)	the loss of kinetic energy of the hammer and pile,
6	(c)	(ii)	the average frictional force the ground exerts on the pile while bringing it to rest.
			(4 marks)
6	(d)		process is repeated several times and each time the hammer is raised 4.5 m above oile. Suggest why the extra depth of penetration is likely to decrease with each act.
			(2 marks)