## Doc

## 概要

由於工作繁忙,大概零零散散參賽了2週,所以特徵處理跟EDA只有做了一些基本的,在這次競賽中主要想分享2個部分,同時也是我學習到的部分。

- 1. 驗證集的實驗
- 2. 紀錄每一次改動

## 驗證集的實驗

這次大部分都把心力花在驗證集上面,也因為這樣讓我當初public已經掉到100多名了,最終private落在70幾名,也代表我的驗證方式非常的穩定。

我一開始是用train\_test\_split, 發現怎麼訓練, 驗證分數都會輕鬆達到0.8以上 (tree model), 然而測試集上面卻很低分, 因此我開始想著怎麼做出好的驗 證集, 之後嘗試了幾個不同的驗證方法分享在下面。

- 1. Kfold
- 2. Stratified Kfold
- 3. Groupbykfold
- 4. Adversarial validation

我自己平常最常用的驗證方法即是Kfold 和 Stratified Kfold,但結果也是非常overfit,代表了我們的驗證集和測試集非常不一樣。經過了思考和爬文(Kaggle),也許這種類型的資料分布,每個月的分佈應該是很類似的,因此我選擇嘗試了groupkfold,將1~30天當成第一個月,31~60當成第二個月,以此類推。果然最終結果驗證分數非常接近public的分數,但在我的這個方法中,會有一個月特別差,我估計那個月是2月,因為當時是年節,因此分佈又更不一樣,如果有人做EDA找出原因,希望可以和我分享EDA的結果。除了以月來做,我也嘗試過如果以一週一週來看呢,最終也是overfitting,

最後也研究了一個在kaggle上很常被使用的驗證方法,非常的有趣,叫做對抗 驗證,步驟如下:

- 1. train['is\_test'] = 0, train['is\_test'] = 1
- 2. 並做一個分類器去預測 is\_test, metric = auc

- 3. 正常來說, auc 應該是要落在0.5上下, 如果不是, 代表train 跟 test 有很明顯地分布差異。
- 4. 最後透過預測出來的機率,去做排序,可以挑出最像test dat的一部分當作驗證集。

## 紀錄每一次的改動

有別於以往的競賽,我這次想要做點不一樣的,我想要把我每次的改動調整,不論是資料清洗、特徵工程、調整參數...等都記錄下來,目的也是為了知道每次的調整驗證分數和測試分數的變化。

我有一個Rocord.csv,每次會自動存取了做了什麼樣的改動,因此每一次的改動我都能清楚知道,例如:這次的版本我選則對類別特徵作one-hot、下一個版本可能是使用lgb的內建categorical\_feature、下下一個版本可能是label encoding...等,並且每個版本的結果,我能更清楚的知道我該怎麼選擇,當然這個方法不是百分之百正確,只能確定說在目前的條件設定下,這個版本比其他版本好。

除了上述的csv, 我也記錄了每一次的特徵重要性, 當做了一些新的特徵, 不只關注分數的波動, 也得關心特徵的排名, 是不是也跟著調整了, 也許能從中找出新的想法。

| 1  | Α        | В             | C          | D                                                | E      | F                  |        | G           |     | Н      | 1         | J         | K            | L         | M       |       |
|----|----------|---------------|------------|--------------------------------------------------|--------|--------------------|--------|-------------|-----|--------|-----------|-----------|--------------|-----------|---------|-------|
| 1  | Cnt_gb_m | Drop_feat     | Filename   | Label_encoding                                   | Lgb_pa | ran Proces         | ss_a   | Process_b   | Pro | cess_c | Process_c | Process_0 | Process_f    | Process_f | Process | _it P |
| 2  |          | ['locdt']     | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | leaves': 25        | 56, 'n | nin_child_  | Y   |        |           |           |              |           |         |       |
| 3  |          | ['locdt']     | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | leaves': 25        | 56, 'n | nin_child_s | Y   |        |           |           |              |           |         |       |
| 4  |          | ['locdt', 'ba | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | leaves': 25        | 56, 'n | nin_child_s | Y   |        |           |           |              |           |         |       |
| 5  |          | ['locdt']     | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | leaves': 25        | 56, 'n | nin_child_  | Y   |        |           |           |              |           |         |       |
| 6  |          | ['locdt', 'ba | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | leaves': 25        | 56, 'n | Υ           | Y   |        |           |           |              |           |         |       |
| 7  |          | ['locdt', 'ba | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | leaves': 25        | 56, 'n | nin_child_s | Y   |        | Y         |           |              |           |         |       |
| 8  |          | ['locdt', 'ba | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | leaves': 64        | 4, 'mi | in_child_sa | Y   |        | Υ         |           |              |           |         |       |
| 9  |          | ['locdt', 'ba | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | leaves': 64        | 4, 'mi | in_child_sa | Y   |        | Υ         |           |              |           |         |       |
| 0  |          | ['locdt', 'ba | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | leaves': 64        | 4, 'mi | in_child_sa | Y   |        | Y         |           |              |           |         |       |
| 11 |          | ['locdt', 'ba | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | leaves': 64        | 4, 'mi | in_child_sa | Y   |        | Y         |           |              |           |         |       |
| 12 | Υ        | ['locdt', 'ba | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | lea <sub>1</sub> Y |        |             | Y   |        | Y         | Υ         | ['flbmk', 'f | fly       | Υ       | Y     |
| 13 | Y        | ['locdt', 'ba | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | leav Y             |        |             | Υ   |        | Υ         | Υ         | ['flbmk', 'f | flY       | Υ       | Y     |
| 14 | Υ        | ['locdt', 'ba | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | leav Y             |        |             | Υ   |        | Υ         | Υ         | ['flbmk', 'f | flY       | Υ       | Y     |
| 15 | Υ        | ['locdt']     | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | lea <sub>1</sub> Y |        |             | Y   |        | Y         | Υ         | ['flbmk', 'f | fly       | Y       | Y     |
| 16 | Y        | ['locdt']     | Submission | ['insfg', 'ecfg', 'ovrlt', 'flbmk', 'flg_3dsmk'] | {'num_ | lea <sub>1</sub> Y |        |             | Y   |        | Y         | Y         | ['flbmk', 'f | flY       | Y       | Y     |

