EVALUACIÓN DE LOS MODELOS

La curva ROC nos permite ver todos los umbrales de clasificación sin leer +1000 matrices de confusión

Has Heart

Disease

True Positives

False Negatives

Heart Disease

Actual-

Does Not Have

Heart Disease

False Positives

True Negatives

METODOLOGIA - PASOS

- 1. Seleccionar un desenlace a modelar (hospitalización, mortalidad, cirugía, urgencias)
- 2. Pre-procesar los datos en el formato correcto.
- 3. Fraccionar el conjunto de datos en partes para construir el modelo y para probarlo (10 Fold CV)
- 4. Definir una métrica de base para comparar (ROC / AUC)
- 5. Escoger varios modelos, evaluar sus métricas y seleccionar el mejor.
- 6. Usar el modelo por cada paciente en una medición.
- 7. Validar la metodología con investigación (epidemiología, dirección de salud) y publicar.

NUESTRO MODELO IPS DE MORTALIDAD

Modelo de predicción de mortalidad datos del 2020 del PGP

Truth -Actual- $Sensitivity = \frac{1}{TP + FN}$ **Has Heart Does Not Have** Disease **Heart Disease** [same as recall; aka true positive rate **Has Heart True Positives False Positives** Disease $Specificity = \frac{1}{TN + FP}$ **Predicted Does Not Have False Negatives True Negatives** [aka true negative rate]

Universidad de Antioquia

n=5511 pacientes

4134 datos de entrenamiento
1377 para prueba

Modelo Mortalidad XGBoost con grid de 100 modelos y 10-Fold CV	
.metric	.estimate
sens	0.9919225
spec	0.4748201
accuracy	0.9397240
roc_auc	0.9119431

NUESTRO MODELO IPS DE MORTALIDAD

Modelo de predicción de mortalidad datos del 2020 del PGP

Universidad de Antioquia

ROC-AUC= 0.91 Accuracy= 0.94

NUESTRO MODELO IPS DE MORTALIDAD

Model-agnostic variable importance (XGBoost Classifier)

Pasos en el algoritmo de Gradient Boosting

Input: Data $\{(x_i, y_i)\}_{i=1}^n$, and a differentiable **Loss Function** $L(y_i, F(x))$

Step 1: Initialize model with a constant value: $F_0(x) = \operatorname{argmin} \sum_{i=1}^{n} L(y_i, \gamma)$

Step 2: for m = 1 to M:

(A) Compute
$$r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$
 for $i = 1,...,n$

(B) Fit a regression tree to the r_{im} values and create terminal regions R_{im} , for $j = 1...J_m$

(C) For
$$j = 1...J_m$$
 compute $\gamma_{jm} = \underset{\gamma}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma)$
(D) Update $F_m(x) = F_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$

(D) Update
$$F_m(x) = F_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$$

Step 3: Output $F_M(x)$

