西安电子科技大学

试 题

考试 120 分钟

题号	1 1	111	四	五	六	总分
分数						

1. 考试形式: 闭卷; 2. 本试卷共 六 大题, 满分 100 分.

- 一. 填空题 (每小题 4 分, 共 24 分)
- 1. 设 $y = x \frac{1}{2}\sin 2x$, 则 $\frac{dx}{dy} =$ ______.
- 2. 曲线 $y = x + x^{\frac{5}{3}}$ 的凹区间是______.
- 3. 设 $f(x) = \begin{cases} \int_0^x (e^{t^2} 1)dt \\ x^2 \end{cases}, \quad x \neq 0$ 则 f'(0) =______.
- 4. 已知 F(x) 是 e^{1-x^2} 的一个原函数,则 $dF(\sin x) =$ _____.
- 5. $\int_{-1}^{1} |x| (x^2 + \frac{\sin^3 x}{1 + \cos x}) dx = \underline{\hspace{1cm}}$
- 6. 当常数 k > 1 时,反常积分 $\int_{2}^{+\infty} \frac{dx}{x(\ln x)^{k}}$ 收敛于______.
- 二. 单项选择题 (每小题 4 分, 共 16 分)
- 1. 下列结论中正确的是

()

- (A) 两个无穷大量之和一定是无穷大量:
- (B) 设 f(x) 在 [a,b] 上二阶可导,且 f''(x) > 0. 则存在唯一的点 $\xi \in (a,b)$,使 得 $f'(\xi) = \frac{f(b) f(a)}{b a}$;
- (C) 设 f(x) 在 [a,b] 上连续,如果 f(a) 与 f(b) 同号,则方程 f(x) = 0 在 (a,b) 内必无实根;
- (D) 如果 f(x), g(x) 在 $(-\infty, +\infty)$ 上都可导,且 f(x) < g(x),则 f'(x) < g'(x).

2. 设方程	$\sin(xy) + \ln(y - x) = x$ 确定 y 为 x 的函数,	则 $\frac{dy}{dx}\Big _{x=0}$ =	()
--------	---	--------------------------------	---	---

- (A) 1,
- (B) -1, (C) 2, (D) -2.

- (A) e-1;
- (B) 1-e;

(

)

4. 设平面经过原点及点(6, -3, 2),且与平面4x - y + 2z = 8垂直,则此平面方程为(

(A)
$$2x + 2y - 3z = 0$$
; (B) $3x - 2y + z = 0$; (C) $x - y + 4z = 0$; (D) $x + 3y - z = 0$.

三. 解答下列各题 (每小题 7 分, 共 35 分)

1. 若
$$f(x)$$
 在 $x = e$ 处具有连续的一阶导数,且 $f'(e) = 2e^{-1}$,求 $\lim_{x \to 0^+} \frac{d}{dx} f(e^{\cos \sqrt{x}})$.

2. 求函数 $y = \int_0^x \sqrt{t} (t-1)^3 dt$ 的定义域,单调区间和极值点.

3. 设 F(x) 是 f(x) 的 原 函 数 , 当 $x \ge 0$ 时 , 有 $f(x)F(x) = \sin^2 2x$,且 $F(0) = 1, F(x) \ge 0$,试求 f(x).

5. 设函数 f(x) 在 $(0, +\infty)$ 内可导,且满足 $f(x) = 1 + \int_{1}^{x} \frac{1}{x} f(t) dt$ (x > 0), 求 f(x).

四. (8分) 设 $\vec{c} = 2\vec{a} + \vec{b}$, $\vec{d} = k\vec{a} + \vec{b}$, $|\vec{a}| = 1$, $|\vec{b}| = 2$, 且 $\vec{a} \perp \vec{b}$. 试求: (1) k 为何值时, $\vec{c} \perp \vec{d}$; (2) k 为何值时,以 $\vec{c} = \vec{d}$ 为邻边的平行四边形的面积为6.

五. (10 分) 过原点作曲线 $y = e^{\frac{1}{2}x}$ 的切线,该切线与曲线 $y = e^{\frac{1}{2}x}$ 以及 y 轴围成的区域为 D. (1) 求 D 的面积 A ; (2) 求 D 绕 x 轴旋转所成旋转体的体积 V .

六. (7分) 设 f(x) 在[0,1]上连续,在(0,1)内可导,且对任何 $x \in (0,1)$ 都有 $f(x) \neq 0.$ 证明:至少存在一点 $\xi \in (0,1)$,使得 $\frac{f'(\xi)}{f(\xi)} = \frac{f'(1-\xi)}{f(1-\xi)}$.