Notes on Representation Theory

Author: 秦宇轩 (QIN Yuxuan) Last compiled at 2025-10-22

Contents

This is the note on representation theory.

Main references:

1. <u>Introduction to representation theory (arXiv 0901.0827)</u>, Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, and Elena Yudovina. Accessed at 2025-10-22.

Abberiviations, default settings, terminologies:

- Intertwining maps: morphisms between representations (see Larsh's Note, Definition 3);
- · ACF: Algebraic Closed Field;
- F: an arbitrary field;
- k: an algebraic closed field;
- *A*: an algebra over an algebraic closed field *k*;

1. Basic notions of representation theory

Definition 1.1 (Irreducible and indecomposable representation)

A **nonzero** representation V of algebra A is called:

- **Irreducible** if the only sub-representations are 0 and V;
- Indecomposable if it is not isomorphic to a direct sum of two nonzero representations.

Theorem 1.2 (Schur's Lemma)

Let V_1, V_2 be representations of an algebra A over an arbitrary field \mathbb{F} , and let $\varphi: V_1 \to V_2$ be a nontrivial morphism between reps. Then:

- If V_1 is irreducible, φ is injective;
- If V_2 is irreducible, φ is surjective.

Proof. Since both ker φ and im φ are sub-representations of V_1 and V_2 , resp.

If both V_1 and V_2 are irreducible, then φ must be an isomorphism, or trivial.

Corollary 1.2.1 (Schur's Lemma for algebras over a ACF)

If we further assume $\mathbb{F}=k$ is an ACF and V is finite dimensional in <u>Theorem 1.2</u>, then we have this result:

For any endomorphism of an irreducible **finite dimensional** representation over an ACF φ : $V \to V$, we claim that $\varphi = \lambda \cdot \operatorname{id}$ for some $\lambda \in k$, i.e. φ is a scalar operator.

Proof. Thanks to your linear algebra course, we know that any endomorphism $\varphi: V \to V$ of a finite dimensional vector space B over an ACF admits a eigenvalue $\lambda \in k$ and, $(\varphi - \lambda \cdot \mathrm{id})$ is not a isomorphism since its determinant equals 0.

So
$$(\varphi - \lambda \cdot id) = 0$$
 must be the trivial map since V is irreducible. \square

By this corollary, we obtain a good description of irreducible representations of commutative algebras. The key is that if $\rho:A\to \operatorname{End}(V)$ is a representation and A is commutative, then $\rho_a:V\to V$ is automatically a intertwining operator for all $a\in A$.

Theorem 1.3 (A commutative: Irreducible \iff 1-dimensional)

If A is commutative and $\rho:A\to \operatorname{End}(V)$ is an representation of A, then V is irreducible $\Longleftrightarrow V$ is 1-dimensional.

Proof.

- (**⇐**): Trivial;
- (\Longrightarrow): Since $\rho_a:V\to V$ is an intertwining map and V is irreducible, we know that ρ_a is an isomorphism. By Corollary 1.2.1, ρ_a is a scalar operator, since $V\neq 0$ by the definition of irreducible representation, V must be 1-dimensional.