Nasa hack: AnonSec attempts to crash \$222m drone, releases secret flight videos and employee data

By Mary-Ann Russon February 1, 2016 13:05 GMT

Logistics

- HW0 up on github
 - "Due" next Tuesday
 - Not graded
 - First real homework HW1 will be assigned Tuesday.
 Homework teams should be pairs or if needed singletons
- Thursday Feb 11: in-class studio session to get over hurdles on homework. Bring your questions, Rahul will be there to help groups.
- Piazza "homeworks" are going to count towards participation credit
 - For this Thursday: Finish descriptions from last semester
 - Come to class prepared to discuss distillation of critical crypto problems seen across all the posts

Today in Cryptography (5830)

One time pad review
Block ciphers
Ideal ciphers / functions
Computational OTP-like security
Pseudorandom functions & permutations
DES, AES

One-time pads

Fix some message length n bits

Key generation: output random n-bit string K

$$E(K,M) = M \oplus K$$

$$D(K,C) = C \oplus K$$

Shannon's security notion

(1949)

Def. A symmetric encryption scheme is perfectly secure if for all messages M,M' and ciphertexts C

$$Pr[E(K,M) = C] = Pr[E(K,M') = C]$$

where probabilities are over choice of K

Thm. OTP is perfectly secure

For any C and M of length L bits

$$Pr[K \oplus M = C] = 1/2^n$$

$$Pr[K \oplus M = C] = Pr[K \oplus M' = C]$$

Shannon's security notion

(1949)

Def. A symmetric encryption scheme is perfectly secure if for all messages M,M' and ciphertexts C

$$Pr[E(K,M) = C] = Pr[E(K,M') = C]$$

where probabilities are over choice of K

Thm. OTP is perfectly secure

Thm. Perfectly secure encryption requires $|K| \ge |M|$

Block ciphers

Family of permutations, one permutation for each key functions function

$$E: \{0,1\}^k \times \{0,1\}^n \longrightarrow \{0,1\}^n$$

$$E(K,X) = Y$$
 $D(K,Y) = X$

Ignore this for now. In fact, assume we can't invert.

Ideal block cipher

- Imagine Alice and Bob share an idealized version of block cipher: random look-up table function that is (magically) efficient to evaluate (unit cost)
- We can encrypt using this idealized cipher.
 How?

Adversary knows the cipher

 Adversary can compute by making unit cost evaluations of cipher as well.

- Does scheme achieve perfect security? No. Why?
- What is best attack you can think of?

Brute-force attacks

- Get one or more input-output examples of encryption
- Try decrypting with each possible key
 - Each decryption = 1 unit cost
- Expected run time: 2^{k-1} (for key size k)
- Worst-case run time: 2^k

Computational security

We aim for encryption schemes secure only against computationally limited adversaries.

In fact, our little scheme provably leaks nothing about plaintexts for computationally bound adversaries.

Referred to as semantic security

Random IV instead of counter

- The counter reveals how many messages encrypted. Let's get rid of it
- Pick a random value each time we encrypt

- Security before: counters always unique
- Now no guarantee of uniqueness. How many messages can we encrypt before security fails?

The birthday bound

Throw q balls in 2ⁿ bins uniformly. What is probability that no bin has two balls?

$$Pr[Coll] \leq q^2/2^n$$

Implication:

Security holds up to q a bit less than 2^{n/2}

Variable length messages

We have been assuming each message is n bits

How can we do variable length messages?

Still relying on idealization

Idea: instantiate keyed random function with computationally efficient block cipher

Design block cipher to "behave like" random function

- Random oracle: function is random for every key
- Pseudorandom function (PRF): function indistinguishable from a random function for a uniform, secret key

Block ciphers

Family of permutations, one permutation for each key

$$E: \{0,1\}^k \times \{0,1\}^n \longrightarrow \{0,1\}^n$$

$$E(K,X) = Y$$
 $D(K,Y) = X$

Random permutations

Like random functions but respect permutivity

- Keyed random permutation (ideal cipher):
 - Each key selects random permutation

- Pseudorandom permutation
 - Indistinguishable from random permutation under uniform, secret key

How do we build efficient block ciphers that are close to ideal?

Data encryption standard (DES)

Originally called Lucifer

- team at IBM
- input from NSA
- standardized by NIST in 1976

n = 64

Number of keys:

k = 56

72,057,594,037,927,936

Split 64-bit input into L0,R0 of 32 bits each Repeat Feistel round 16 times

Each round applies function F using separate round key

Round functions

Best attacks against DES

Attack	Attack type	Complexity	Year
Biham, Shamir	Chosen plaintexts, recovers key	2 ⁴⁷ plaintext, ciphertext pairs	1992
DESCHALL	Unknown plaintext, recovers key	2 ^{56/4} DES computations 41 days	1997
EFF Deepcrack	Unknown plaintext, recovers key	~4.5 days	1998
Deepcrack + DESCHALL	Unknown plaintext, recovers key	22 hours	1999

- DES is still used in some places
- 3DES (use DES 3 times in a row with more keys) expands keyspace and still used widely in practice

Advanced Encryption Standard (AES)

Rijndael (Rijmen and Daemen)

n = 128 k = 128, 192, 256

Number of keys for k=128: 340,282,366,920,938,463,463,374,607,431,768,211,456

Substitution-permutation design. For k=128 uses 10 rounds of:

1) Permute:

SubBytes (non-linear S-boxes)
ShiftRows + MixCols (invertible linear transform)

2) XOR in a round key derived from K

(Actually last round skips MixCols)

Best attacks against AES

Attack	Attack type	Complexity	Year
Bogdanov,	chosen	2 ^{126.1} time +	2011
Khovratovich,	ciphertext,	some data	
Rechberger	recovers key	overheads	

- Brute force requires time 2¹²⁸
- Approximately factor 4 speedup

Summary

- Use block ciphers to build stream cipher
 - Secure block cipher means we get OTP-like security against computionally bounded adversaries
 - Brute-force attacks
- A good blockcipher is family of permutations, one permutation per key
 - Ideally behaves like random permutation for all keys
 - PRF and PRP security hold for uniform, secret keys
- We have good blockciphers: 3DES, AES
 - Design of good blockciphers is topic of a whole other class