Electronique Numérique

CUPGE 1ère année

Johanne Bézy

Circuits combinatoires

Introduction / Plan

Définition : dans les schémas de « logique combinatoire », la sortie ne dépend que des états des entrées au même instant. Il n'y a pas d'effet mémoire.

Dans les systèmes numériques, les données codées en binaire sont soumises à un certain nombre d'opérations qui sont réalisées grâce à des circuits intégrés.

- 1. Circuits arithmétiques (additionneurs binaires/DCB)
- 2. Aiguillage d'information (multiplexeurs/démultiplexeurs)
- 3. Transformation de codes (codeurs/décodeurs)
- 4.Comparateurs

Circuits combinatoires

1. Circuits arithmétiques

1.1. Additionneur binaire

L'un des rôles essentiels des ordinateurs est d'effectuer des **opérations** arithmétiques : dans l'unité arithmétique où se trouvent des portes logiques et des bascules combinées de manière à additionner, soustraire, multiplier et diviser des nombres binaires.

a) Addition et soustraction de deux nombres binaires non signés

Les ordinateurs ne peuvent additionner que deux nombres binaires à la fois, chacun de ces nombres binaires pouvant avoir plusieurs bits. En base 2, l'addition de deux bits s'écrit :

$$\begin{cases}
0+0 = 00 \\
0+1 = 01 \\
1+0 = 01 \\
1+1 = 10
\end{cases}$$

Comme en décimal, il faut tenir compte d'une éventuelle retenue. L'addition de deux nombres de 4 bits se fait de la façon suivante :

	1			
Nombre A	a ₀	a_{1}	a_{3}	∀ a 3
Nombre B	b_{0}	<i>b</i>	b_{2}	$b_{_3}$
Somme $S = A + B$	S_{0}	S	$S_{\frac{2}{2}}$	S_{3}
Retenues (Report)	r	<i>r</i>	r 2	<i>r</i>

b) Demi-additionneur

Un demi-additionneur permet d'additionner 2 bits. Il a deux sorties : la somme et la retenue. Sa table de vérité est :

A	В	S	R
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

D'après la table de vérité, on peut écrire l'expression de la somme S et de la retenue E :

$$S = \overline{A}B + A\overline{B} = A \oplus B$$
$$R = A \cdot B$$

c) Additionneur complet

Pour pouvoir additionner des nombres à plusieurs bits, il faut à chaque rang tenir compte de la retenue des bits de poids inférieur. Un circuit additionneur doit donc comporter 3 entrées et 2 sorties. La table de vérité d'un tel circuit est :

\boldsymbol{A}	В	R_{e}	S	R_{s}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

A partir de cette table de vérité, nous pouvons remplir les tableaux de Karnaugh et simplifier les expressions de S et de Rs.

S:

AB Re	00	01	11	10
0	0	1	0	1
1	1	0	1	0

$ightharpoonup S = A \oplus B \oplus Re$

Rs:

AB Re	00	01	11	10
0	0	0	1	0
1	0	Ī	1	1

$$\blacksquare$$
 $Rs = A.B + A.Re + B.Re$

$$Rs = A.B + Re.(A + B)$$

Ou encore:

$$Rs = A.B + Re(A \oplus B)$$

Rm : cette deuxième expression permet de récupérer le A⊕B de S pour le câblage du montage

Exercice d'application n°1

→ A partir de la forme canonique Somme de Produits de S et des propriétés de l'algèbre de Boole, démontrer sa forme simplifiée obtenue précédemment.

Circuit intégré Additionneur binaire 4 bits (CI 7483 ou 5483)

4-BIT BINARY FULL ADDER WITH FAST CARRY

The SN54/74LS83A is a high-speed 4-Bit binary Full Adder with internal carry lookahead. It accepts two 4-bit binary words (A_1-A_4,B_1-B_4) and a Carry Input (C_0) . It generates the binary Sum outputs $\Sigma_1-\Sigma_4)$ and the Carry Output (C_4) from the most significant bit. The LS83A operates with either active HIGH or active LOW operands (positive or negative logic). The SN54/74LS283 is recommended for new designs since it is identical in function with this device and features standard corner power pins.

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Ratpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

PIN NAMES LOADING (Note a)

		HIGH	LOW
A ₁ -A ₄	Operand A Inputs	1.0 U.L.	0.5 U.L.
B ₁ -B ₄	Operand B Inputs	1.0 U.L.	0.5 U.L.
Co	Carry Input	0.5 U.L.	0.25 U.L.
$\Sigma_1 - \Sigma_4$	Sum Outputs (Note b)	10 U.L.	5 (2.5) U.L.
C ₄	Carry Output (Note b)	10 U.L.	5 (2.5) U.L.

a) 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.

4-BIT BINARY FULL ADDER WITH FAST CARRY LOW POWER SCHOTTKY

b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

Circuits combinatoires

2. Aiguillage d'information : Multiplexeurs / Démultiplexeurs

2.1. Multiplexeur

- **Fonction** : acheminer les informations numériques de plusieurs sources sur une seule ligne (destination commune)
- Plusieurs lignes de données d'entrée / plusieurs entrées de sélection de données /une seule ligne de sortie

 Entrées de données
- Principe et schéma :

► Fonction : la sortie S présente l'état de l'entrée E_i sélectionnée par l'adresse placée sur les voies de sélection (l'entrée Ei est orientée vers la sortie)

a) Multiplexeur 2 vers 1

- 2 entrées de données
- 1 entrée d'adresse (sélection) / 1 sortie

а	S
0	EO
1	E1

E ₀	E ₁	а	S
0	0	0	0
0	1	0	0
1	0	0	1
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	0
1	1	1	1

► Fonction de sortie :

$$S = \bar{a} E0 + aE1$$

Schéma du MUX2 avec des portes logiques

b) Multiplexeur 8 vers 1

- ▶ 8 entrées commutable vers la sortie / 3 entrées de sélection de données / une seule ligne de sortie
- Table de vérité :

Adresse de sélection	Sortie
CBA	S
0 0 0	E0
001	E1
010	E2
011	E3
100	E4
101	E5
110	E6
111	E7

- Il faut indiquer au multiplexeur quelle entrée parmi les huit doit être "reliée" à la sortie. Cela se fait au moyen de trois entrées de sélection. Le nombre binaire appliqué à ces entrées indique l'entrée sélectionnée.
- A chaque entrée de donnée est associée un nombre compris entre 0 et 7. Il suffit d'appliquer aux entrées de sélection le nombre binaire correspondant à l'entrée sélectionnée pour que celle-ci soit commutée vers la sortie.
- Par exemple, l'entrée 5 est sélectionnée avec le nombre 101, l'entrée 6 avec le nombre 110 ..etc
- Le circuit intégré qui présente ces caractéristiques est le 74C151.
- **Expression de la sortie du multiplexeur :**

$$S = \bar{C}\bar{B}\bar{A} E_0 + \bar{C}\bar{B}A E_1 + \bar{C}B\bar{A} E_2 + \bar{C}BA E_3 + \bar{C}\bar{B}\bar{A} E_4 + \bar{C}\bar{B}A E_5 + \bar{C}B\bar{A} E_6 + \bar{C}BA E_7$$

c) Application du MUX : réalisation d'une fonction logique quelconque

- Un MUX eut être utilisé pour réaliser une fonction logique quelconque (Exemple avec un MUX
 4)
- Rappel: équation logique d'un MUX 4 entrées E₀, E₁, E₂, E₃ (avec donc 2 variables de sélection B, A):

$$S = \bar{B}\bar{A}E_0 + \bar{B}AE_1 + B\bar{A}E_2 + BAE_3$$

- <u>1^{er} cas</u>: Réalisation d'une fonction à n variables avec un MUX à n variables d'adresses : dans ce cas, on place les n variables de la fonction sur les n lignes d'adresse, et il s'agit ensuite de placer 0 ou 1 sur chaque entrée de donnée.
 - Exemple : soit la fonction $f = \bar{x}y + x\bar{y}$
 - On met x sur l'entrée d'adresse B et y sur l'entrée d'adresse A (par exemple).
 - Puis on identifie la fonction ainsi obtenue en sortie du multiplexeur (forme générale de la sortie, S), avec la fonction que l'on veut générer (celle qui nous intéresse, f) :

$$\begin{cases} S = \bar{x}\bar{y}E_0 + \bar{x}yE_1 + x\bar{y}E_2 + xyE_3 \\ f = \bar{x}y + x\bar{y} \end{cases}$$

• On déduit qu'il faut : $E_0=0$, $E_1=1$, $E_2=1$, $E_3=0$

<u>2ème cas</u>: Réalisation d'une fonction à n+1 variables avec un MUX à n variables d'adresses :

- Par exemple, une fonction à 3 variables avec un MUX 4 vers1 qui a donc 2 lignes d'adresse, ou une fonction à 4 variables avec un MUX 8 vers1 qui a donc 3 lignes d'adresse.
- Ex1 : réalisation de la fonction g à 3 variables : $g = \bar{x}\bar{y}z + \bar{x}y\bar{z} + xy$
- On commence par placer 2 des 3 variables sur les lignes d'adresse (choix arbitraire : par exemple x sur l'entrée d'adresse B et y sur l'entrée d'adresse A).
- On cherche ensuite ce qu'il faut mettre sur les entrées d'adresse (0,1 ou la troisième variable, normale ou complémentée).

$$\begin{cases} S = \bar{x}\bar{y}E_0 + \bar{x}yE_1 + x\bar{y}E_2 + xyE_3 \\ g = \bar{x}\bar{y}z + \bar{x}y\bar{z} + xy \end{cases}$$

• On déduit qu'il faut : $E_0=z$, $E_1=\overline{z}$, $E_2=0$, $E_3=1$

2.2. Démultiplexeur

- L'information E d'entrée est aiguillée vers une sortie Si choisie parmi un groupe de sorties, grâce à une adresse (sélection) CBA
- Si=E quand CBA₂=i₁₀

Adresse de sélection	Sortie d'un Demux 1 vers 8
CBA	S ₀ S ₁ S ₂ S ₃ S ₄ S ₅ S ₆ S ₇
0 0 0	EXXXXXX
001	X E X X X X X X
010	X X E X X X X
011	X X X E X X X
100	X X X X E X X
101	X X X X X X X X X
110	X X X X X X X X X
111	X X X X X X X E

a) Démultiplexeur 1 vers 2

- Un DEMUX 2 sorties a une entrée de sélection (C) qui permet d'orienter la donnée présente à l'entrée E, vers l'une ou l'autre des deux sorties.
- ► Si C=0 \Rightarrow l'entrée est orientée vers la sortie S_0 : S_0 =E
- Si C=1 \Rightarrow l'entrée est orientée vers la sortie S₁: S1=E

Finalement:

$$S_0 = /C.E$$

$$S_1 = C.E$$

Le schéma d'un DEMUX 2 est :

Circuits combinatoires

3. Comparateur / Unité Arithmétique et Logique

3.1. Comparateur

- Un comparateur permet de comparer 2 mots binaires de plusieurs bits.
- ► En TD : comparaison de deux mots de deux bits : A=a1a0 et B=b1b0
- Utilisations principales :
- Circuits de décodage des adresses des ordinateurs, pour sélectionner le périphérique d'entrée / sortie, ou localiser la zone mémoire contenant les données à retrouver (comparaison du code d'adresse envoyé par le processeur, aux codes d'adresse des périphériques ou mémoire).
- Application de régulation : nombre binaire représentant la variable physique régulée (vitesse, position..) est **comparé à une valeur de consigne**.
- Ex: CI 74 85: comparateur de 2 nombres de 4 bits A et B, cascadable, avec 3 sorties
 - S vaut 1 si et seulement si A>B
 - I vaut 1 si et seulement si A<B
 - E vaut 1 si et seulement si A=B

3.2. Unité Arithmétique et Logique (UAL)

- C'est la zone de l'ordinateur où sont effectuées les opérations arithmétiques et logiques sur les données.
- L'opération est choisie par une entrée de commande.
- Exemple simple d'une UAL qui traite 4 opérations (OU, ET, NON, addition)

- Les lignes F0, F1 permettent de sélectionner (par l'intermédiaire d'un décodeur) l'opération à réaliser
- Angle sup. gauche : on trouve les fonctions élémentaires
- Le résultat d'une seule opération est transmis à un instant donné vers la porte OU de sortie, en fonction du décodeur (les autres transmettent un 0 vers la porte OU)
- L'additionneur transmet à l'extérieur sa propre retenue de sortie
- L'association de telles unités (ou de circuits plus complexes) permet de réaliser des opérations de base sur des nombres de plusieurs bits.