Kalman Filter CS 470 Introduction To Artificial Intelligence

Daqing Yi

Department of Computer Science Brigham Young University

- Introduction
 - Background
- 2 Derivation
 - Properties
- Kalman filter
 - Algorithm

- 1 Introduction
 - Background
- 2 Derivation
 - Properties
- Kalman filter
 - Algorithm

Bayesian filter

Bayesian filter family

- Gaussian noise
 - Kalman filter
 - Information filter
 - Extended Kalman filter
 - Unscented Kalman filter
- Non-Gaussian noise
 - Particle filter
 - RB Particle filter

Kalman filter

Kalman filter

- Named by Rudolf E. Kalman
- Proposed in 1960
- Filter: filtering out the noise (uncertainty)
- Optimal estimation
- Recursive update

- IntroductionBackground
- DerivationProperties
- Kalman filterAlgorithm

Assumption

System dynamics

$$x_k = A_k x_{k-1} + B_k u_k + \omega_k$$

$$z_k = H_k x_k + v_k$$

- Linear model
 - transition model $x_k = A_k x_{k-1} + B_k u_k$
 - observation model $z_k = H_k x_k$
- Gaussian white noise
 - transition noise $\omega_k \sim N(0, R_k)$
 - observation noise $v_k \sim N(0, Q_k)$

Kalman filte

What is behind?

transition model

$$P(x_k \mid x_{k-1}, u_k) = det(2\pi R_k)^{-\frac{1}{2}}$$

$$exp\{-\frac{1}{2}(x_k - A_k x_{k-1} - B_k u_k)^T R_k^{-1}(x_k - A_k x_{k-1} - B_k u_k)\}$$

observation model

$$P(z_k \mid x_k) = det(2\pi Q_k)^{-\frac{1}{2}} exp\{-\frac{1}{2}(z_k - Hx_k)^T Q_k^{-1}(z_k - H_kx_k)\}$$

prior

$$P(x_0) = det(2\pi\Sigma_k)^{-\frac{1}{2}}exp\{-\frac{1}{2}(x_0 - \mu_0)^T\Sigma_k^{-1}(x_0 - \mu_0)\}$$

Bayesian filter

Prediction

$$\hat{bel}(x_k) = \int P(x_k \mid x_{k-1}, u_k) bel(x_{k-1}) dx_{k-1}$$

Update

$$bel(x_k) = \alpha P(z_k \mid x_k) \hat{bel}(x_k)$$

- IntroductionBackground
- DerivationProperties
- Kalman filterAlgorithm

←ロト ←団ト ←豆ト ←豆 ・ り へ ○

Kalman filter

Prediction

$$\bar{\mu}_k = A_k \mu_{k-1} + B_k u_k$$

 $\bar{\Sigma}_k = A \Sigma_{k-1} A^T + R_k$

Update

$$K_k = \bar{\Sigma}_k H_k^T (H_k \bar{\Sigma}_k H_k^T + Q_k)^{-1}$$

$$\mu_k = \bar{\mu}_k + K_k (z_k - H_k \bar{\mu}_k)$$

$$\Sigma_k = (I - K_k H_k) \bar{\Sigma}_k$$