

Evaluating Pose Similarity in TikTok Videos

CIS 581 Final Project Fall 2020

Alex Chen, James Rao, Jonathan Lee, Mona Lee, and Tatiana Tsygankova

Goal

Given a target dance video and a second dance video, determine a score (1-10) for how accurate the second video is at replicating the dance in the target video.

Roadmap

Data Pre-Processing

- Training DataPreparation
- OpenPose
- FeatureRefinement

Model Architecture

- Pytorch Neural Network
- Activation Function
 Experimentation
- Parameter Tuning

Results and Discussion

- Findings
- Discussion
- Next Steps

Data Pre-Processing

Training Data Preparation and Extracting Features from OpenPose

Collecting Data

- 12 dances
- 15-25 videos per dance
- Team scored each video
 1-10 based on labeled
 target video

Pre-Processing

- OpenPose to output body keypoints for each frame (30 fps) for each video
- Normalize keypoints to [0, 1] scale
- Centered frame around the nose by setting its coordinate values to (0.5, 0.5)

The Model

Neural Network for Multiclass Classification

Initial Approaches

Euclidean distance, cosine similarity, various model architectures

- We experimented with a variety of scoring techniques, finding that the most robust way to calculate similarity was using a neural network
- We also conducted parameter tuning: searching for the optimal number of hidden layers, presence of a Dropout layer, and various activation/loss functions.

```
def compute_cosine_similarity(filepath1, filepath2):
  frame1Keypoints = []
  frame2Keypoints = []
  with open(filepath1) as frame1:
     itemData = json.load(frame1)
      frame1Keypoints = itemData['people'][0]['pose keypoints 2d']
  with open(filepath2) as frame2:
     itemData = json.load(frame2)
      frame2Keypoints = itemData['people'][0]['pose_keypoints_2d']
  #get xy vector for frame1 (drop the confidence from the keypoint data)
  frame1 xy = get xy coord array(frame1Keypoints)
  #frame2 xv vector
  frame2_xy = get_xy_coord_array(frame2Keypoints)
  #cosine similarity from scipy
  result = cosine similarity(frame1 xv, frame2 xv)
  return result
def get keypoints all frames(json list, first frames):
  keypoints all frames = []
  for frame in range(first frames):
      print('getting keypoints for frame: ', frame)
      with open(json_list[frame]) as fr:
         itemData = json.load(fr)
         peopleData = itemData['people']
         if len(peopleData) == 0:
           frameKeypoints = [0 for i in range(75)]
         else:
           frameKeypoints = peopleData[0]['pose keypoints 2d']
      frame xy = get xy coord array(frameKeypoints)
      keypoints all frames.extend(frame xy)
  return keypoints all frames
```

Neural Network Overview

Hyperparameters: 100 epochs, α =0.001

Final Model

- Three layers: input, hidden, and output
- Decided on a hidden layer size of 256 neurons
- Used **ReLU** activation function for input and hidden layers
- Performs **Softmax** on the output to get the predictions in the range [0, 10]
- Error criterion is **Cross Entropy Loss**

Conclusions

Project Summary

Results

16-4-5 train-test-val split

Large values for mean abs. error

Predictions tended towards middle values (5-7)

Testing Results		1.27		
Renegade All About Cake		Don't Start Now	Elastic	
test set mae: 1.11	test set mae: 2.18	test set mae: 1.40	test set mae: 0.39	
predicted: 7.08	predicted: 7.90	predicted: 5.77	predicted: 6.98	
actual: 6	actual: 9	actual: 3	actual: 7	
predicted: 3.68	predicted: 6.08	predicted: 6.17	predicted: 7.03	
actual: 4	actual: 5	actual: 7	actual: 7	
predicted: 3.92	predicted: 5.37	predicted: 8.60	predicted: 7.13	
actual: 2	actual: 1	actual: 8	actual: 6	

Renegade					
Random seed:	0	123	222	345	67
	test set mae:	test set mae: 0.33	test set mae: 2.55	test set mae: 3.20	test set mae: 3.34
	predicted: 7.08	predicted: 5.00	predicted: 3.00	predicted: 4.63	predicted: 5.00
	actual: 6	actual: 5	actual: 5	actual: 2	actual: 2
	predicted: 3.68	predicted: 5.00	predicted: 6.88	predicted: 4.57	predicted: 5.01
	actual: 4	actual: 5	actual: 6	actual: 1	actual: 8
	predicted: 3.92	predicted: 5.00	predicted: 4.23	predicted: 4.60	predicted: 5.01
	actual: 2	actual: 4	actual: 9	actual: 8	actual: 1
Don't Start Now					
Random seed:	0			345	678
	test set mae: 1.33	test set mae: 0.34	test set mae: 1.08	test set mae: 1.33	test set mae: 1.40
	predicted: 5.01	predicted: 5.02	predicted: 4.59	predicted: 4.99	predicted: 5.77
	actual: 4	actual: 5	actual: 6	actual: 7	actual: 3
	predicted: 5.02	predicted: 5.02	predicted: 5.47	predicted: 4.99	predicted: 6.17
	actual: 7	actual: 6	actual: 7	actual: 3	actual: 7
	predicted: 5.01	predicted: 5.02	predicted: 5.29	predicted: 5.00	predicted: 8.60
	actual: 6	actual: 5	actual: 5	actual: 5	actual: 8
Elastic					
Random seed:	0	123	222	345	67
	test set mae:	test set mae:	test set mae: 2.61	test set mae: 0.39	test set mae: 1.67
	predicted: 6.49	predicted: 5.80	predicted: 6.74	predicted: 6.98	predicted: 5.00
	actual: 7	actual: 6	actual: 2	actual: 7	actual: 6
	predicted: 6.46	predicted: 5.87	predicted: 7.07	predicted: 7.03	predicted: 5.00
	actual: 3	actual: 8	actual: 8	actual: 7	actual: 7
	predicted: 6.50	predicted: 5.85	predicted: 5.86	predicted: 7.13	predicted: 5.00
	actual: 7	actual: 7	actual: 8	actual: 6	actual: 7
Savage		400	202	7.045	
Random seed:	0				
	test set mae: 1.87	test set mae: 1.87	test set mae: 0.72	test set mae: 0.43	test set mae: 0.99
	predicted: 5.00	predicted: 5.00	predicted: 5.86	predicted: 5.75	predicted: 6.01
	actual: 4	actual: 6	actual: 7	actual: 7	actual: 6
	predicted: 5.00	predicted: 5.00	predicted: 5.87	predicted: 6.02	predicted: 5.99
	actual: 2	actual: 6	actual: 5	actual: 6	actual: 8
	predicted: 5.01	predicted: 5.00	predicted: 5.86	predicted: 5.99	predicted: 6.04
	actual: 6	actual: 2	actual: 6	actual: 6	actual: 7

Areas of Improvement

- Increase training/testing/validation data —> scrape data from TikTok instead of manual collection
- More data representing extreme ratings (1-3, 8-10)
- Consider other methods for rating videos
- Consideration for multiple dancers
- Dimensionality reduction of the feature space
- Investigating other models for multiclass classification (introducing other layers, experimenting with the activation function)

