IEEE 802.11ba: Low-Power Wake-Up Radio for Green IoT

Digital Object Identifier: 10.1109/MCOM.2019.1800389

tags: Paper Study

Introduction

- Green IoT:
 - Battery life
 - low power consumption
 - most efficient way for power saving: goto sleep state.
 - Wake-up device from AP when in sleep state.
 - o penalty: longer data reception time
- · WUR standard development timeline
 - o 2017 draft 0.1
 - o 2019 Draft 2.0(?)

- Target goal: < 1mW in WUR mode
- · Two Radio in Wi-Fi:
 - PCR: primary connectivity radio
 - · WUR: companion connectivity radio
- · Introduce new Wake-up Frame
 - STA received a wakeup frame, will turn PCR into active mode.
 - WUR in the same band as legacy/n/ac/... Wi-Fi

Deployment Scenarios

Smart home example: smart curtain(窗簾)

- o Curtain controller is in sleep mode
- light sensor senses strong light => trigger server => server control curtain
 - AP wake-up curtain controller, and exchange control data package.

PHY

Waveform and modulation of WUR

- 4MHz BW (13 subcarriers in 312.5KHz subcarrier spacing)
- not carry any data information (only sync and mac control frames)
- modulated by AP using OFDM system (only use 13 subcarrier of whole NFFT=64)
- information is modulated in OOK per subcarrier, aka MC-OOK
 - non-coherent receiving(such envelope detector) is possible => no need high accuracy SX/xtal/PLL.

PLCP and WUR Frame format

- Frame format
 - Example of BW80

	Duplication of 20 MHz Preamble (legacy part)				▼ FDMA WUR Signal → ▼	
20MHz	L-STF	L-LTF	L-SIG	BPSK- Mark	WUR-Sync	WUR-Data
20MHz	L-STF	L-LTF	L-SIG	BPSK- Mark	WUR-Sync	WUR-Data
20MHz	L-STF	L-LTF	L-SIG	BPSK- Mark	 WUR-Sync 	-Data Padding
20MHz	L-STF	L-LTF	L-SIG	BPSK- Mark	WUR-Sync	WUR-Data

- Follow legacy non-ht preamble and two extra bpsk makrer
- o non-ht preamble for silencing legacy devices to prevent collision.
- BPSK markers to prevent impairment due to significant power jump from full-band width to 4MHz
- maximum WUR frame upto 5.6ms.

Data field

- Two data rate: 62.5Kbps and 250Kbps.
 - 250Kbps for indoor application in 70/105 m of 5G/2.4G
 - 62.5Kbps for outdoor wide range application.

SYNC Field

- · using lowest rate
- SYNC1(128us) for 62.5Kbps packet
- · SYNC2(64us) for 250Kbps packet

MAC

Basic Wake-up operations

- WUR only able to signaling Wakeup procedure no ability to carrier data.
- WUR response using PCR
- · Wakeup delay:
 - mainly due to STA completely turn-off, need extra time for wakeup procedure
 - longer than Wi-Fi typical response time.
 - Slow wake-up response make slow error recovery of AP
 - AP needs more time to check if retransmission of the wake-up signaling.
 - impact data delivery latency, but latency is not critical in low power IoT device.

WUR Duty cycle

- Exchange wake-up duty information field before into WUR mode
- · Duty parameters

- period
- start point of 'on' duration
- · length of 'on' duration
- minimum wake-up duration:
 - AP should advertise minimum wake-up duration
 - minimum wake-up 'on' period.
- Time parameters
 - basic time unit in 4us
 - \circ 16bits 'on' period => 4×2^{16} us duration
 - \circ 16bits number of dutys => total 2^{34} us duty
- Procedures
 - Ap send Wake-up signal in WUR 'on' Period.
 - o if WUR 'on' duty low, will cause longer wake-up procedure.

WUR Mode

- · PCR:
 - o can be shutoff before STA receives any WUR frame.
 - o active after STA receives WUR frame
 - first send response when receive WUR frame
- Four type WUR frame:
 - WUR Wake-up
 - WUR Beacon
 - WUR discovery
 - WUR vendor-specific
- · When into WUR mode
 - o device not to sync with beacon frame and
 - o any negotiated service period is suspended.
- · GoTo WUR Mode
 - 1. Negotiation WUR parameters.
 - 2. STA send WUR Mode Setup Action Frame.
 - 3. AP reply ack of WUR Mode Setup Action Frame
 - 4. doze mode and shutoff PCR

- STA self wake-up:
 - send a WUR Mode Tear-down Action frame to AP.
- WUR mode suspend:
 - keep WUR parameter, but STA exists WUR mode.

Channel Access

- WUR frame is in control frame, will be higher priority AC(access categories)
- AP not update contention window when sending WUR signal to STA due to slow response of STA in WUR mode.

Protocol Data Unit

• WUR Frame: Header, frame body, frame check(CRC)

- · Header:
 - frame control
 - type: which type of WUR frame
 - length/misc: others info.
 - address
 - as WID: the Wakeup id of WUR device
 - as GID: the group id of the grouped WUR devices.
 - if Beacon WUR: transmit id
 - TD Control
 - WUR Beacon, a partial TSF for the purpose of sync.
 - WUR frames, other types of enhancements