Integrated SCRUM Planning Optimization Model Derived from Entities, Relationships, Goals, Conditions, and Decision Variables

Prepared for: TruelyMostWanted

August 12, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	4
3	3. Goals	4
4	4. Conditions	5
5	5. DecisionVariables	7

1 1. Sets (Entities)

- \mathcal{P} (**Project**, index p): set of projects.
- \mathcal{T} (**Team**, index t): set of teams.
- \mathcal{W} (Worker, index w): set of individual workers.
- \mathcal{F} (**Feature**, index f): set of features.
- S (Skill, index s): set of skills.
- \mathcal{R} (Role, index r): set of roles.
- \mathcal{PO} (**ProductOwner**, index po): set of Product Owners.
- SM (ScrumMaster, index sm): set of Scrum Masters.
- \mathcal{PB} (**ProductBacklog**, index pb): set of product backlogs.
- \mathcal{SP} (**Sprint**, index sp): set of sprints.
- SPP (SprintPlanning, index spp): set of sprint plannings.
- \mathcal{DS} (DailyScrum, index ds): set of daily scrums.
- SR (SprintReview, index sr): set of sprint reviews.
- \mathcal{SRE} (SprintRetrospective, index sre): set of sprint retrospectives.
- \mathcal{SBL} (SprintBacklog, index sbl): set of sprint backlogs.
- SG (SprintGoal, index sg): set of sprint goals.
- \mathcal{E} (**Epic**, index e): set of epics.
- \mathcal{US} (UserStory, index us): set of user stories.
- TSK (Task, index tsk): set of tasks.
- \mathcal{DEV} (**DevelopmentSnapshot**, index dev): set of development snapshots.
- \mathcal{BL} (Blocker, index bl): set of blockers.
- SH (Stakeholder, index sh): set of stakeholders.
- VEL (Velocity, index vel): set of team velocity records.
- \mathcal{REP} (ReleasePlan, index rep): set of release plans.
- \mathcal{RM} (Roadmap, index rm): set of roadmaps.
- \mathcal{SCB} (ScrumBoard, index scb): set of scrum boards.
- \mathcal{FED} (Feature Documentation, index fed): set of feature documentation entries.

Parameters from attributes (illustrative, all derived from Entities.csv):

- $budget_p \in \mathbb{R}_{>0}$ (Project.budget), $p \in \mathcal{P}$.
- $availability_w \in [0,1]$ (Worker.availability), $w \in \mathcal{W}$.
- $priority_f \in \mathbb{Z}_{\geq 0}, \ effort_f^F \in \mathbb{R}_{\geq 0} \ (\textbf{Feature.priority}, \ \textbf{Feature.estimated_effort}), \ f \in \mathcal{F}.$
- $achieved_{sp} \in \{0,1\}$ (Sprint.achievement_of_goal), $sp \in \mathcal{SP}$.
- $velAvg_t \in \mathbb{R}_{>0}$ (Velocity.avg._story_points), $t \in \mathcal{T}$ (linked via R19).
- $severity_{bl} \in \mathbb{R}_{>0}$ (Blocker.severity), $bl \in \mathcal{BL}$.
- $spoints_{us} \in \mathbb{Z}_{\geq 0}$ (UserStory.story_points), $us \in \mathcal{US}$.
- $effort_{tsk}^{TSK} \in \mathbb{R}_{\geq 0}$ (Task.effort), $tsk \in \mathcal{TSK}$.
- $size_t \in \mathbb{Z}_{>1}$ (Team.team_size), $t \in \mathcal{T}$.
- $rel_{sh,f} \in \mathbb{R}_{\geq 0}$ (Stakeholder.relevance_to_feature), $(sh,f) \in \mathcal{SH} \times \mathcal{F}$.
- $planDate_{rep} \in \mathbb{R}_{>0}$ (ReleasePlan.planned_date), $rep \in \mathcal{REP}$.
- Status/flags (0/1): $activeProject_p$, $readyTeam_t$, $hasAC_{us}$, $activeSprint_{sp}$, $openPB_{pb}$, $docLinked_f$, etc.

Relationship incidence parameters (from Relationships.csv):

- $A_{t,p}^{TP} \in \{0,1\}$ (R1 team t can be assigned to project p).
- $A_{w,t}^{WT} \in \{0,1\}$ (R2 worker w belongs to team t). (Note: Employee \equiv Worker.)
- $A_{w,s}^{WS} \in \{0,1\}$ (**R3** worker w has skill s).
- $A_{w,r}^{WR} \in \{0,1\}$ (**R4** worker w takes on role r).
- $A_{po,pb}^{PO\text{-}PB} \in \{0,1\}$ (R5), $A_{t,sm}^{T\text{-}SM} \in \{0,1\}$ (R6).
- $A_{pb,f}^{PB\text{-}F} \in \{0,1\}$ (R7), $A_{pb,e}^{PB\text{-}E} \in \{0,1\}$ (R8).
- $A_{e,us}^{E-US} \in \{0,1\}$ (R9), $A_{us,tsk}^{US-TSK} \in \{0,1\}$ (R10).
- $\bullet \ A^{US\text{-}SBL}_{us,sbl} \in \{0,1\} \ (\textbf{R11}), \, A^{SBL\text{-}SP}_{sbl,sp} \in \{0,1\} \ (\textbf{R12}).$
- $A_{sp,sg}^{SP\text{-}SG} \in \{0,1\}$ (R13), $A_{scb,tsk}^{SCB\text{-}TSK} \in \{0,1\}$ (R14).
- $\bullet \ A_{fed,f}^{FED\text{-}F} \in \{0,1\} \ (\textbf{R15}), \ A_{tsk,bl}^{TSK\text{-}BL} \in \{0,1\} \ (\textbf{R16}).$
- $A_{sh,sr}^{SH\text{-}SR} \in \{0,1\}$ (R17), $A_{sm,sre}^{SM\text{-}SRE} \in \{0,1\}$ (R18).
- $\bullet \ \ A_{vel,t}^{VEL\text{-}T} \in \{0,1\} \ (\textbf{R19}), \ A_{rep,f}^{REP\text{-}F} \in \{0,1\} \ (\textbf{R20}).$
- $\bullet \ \ A_{rep,rm}^{REP\text{-}RM} \in \{0,1\} \ (\textbf{R21}), \ A_{sp,dev}^{SP\text{-}DEV} \in \{0,1\} \ (\textbf{R22}).$

2 2. Indices

- $p \in \mathcal{P}, t \in \mathcal{T}, w \in \mathcal{W}, f \in \mathcal{F}, s \in \mathcal{S}, r \in \mathcal{R}, po \in \mathcal{PO}, sm \in \mathcal{SM},$
- $pb \in \mathcal{PB}$, $sp \in \mathcal{SP}$, $spp \in \mathcal{SPP}$, $ds \in \mathcal{DS}$, $sr \in \mathcal{SR}$, $sre \in \mathcal{SRE}$,
- $sbl \in \mathcal{SBL}$, $sg \in \mathcal{SG}$, $e \in \mathcal{E}$, $us \in \mathcal{US}$, $tsk \in \mathcal{TSK}$, $dev \in \mathcal{DEV}$,
- $bl \in \mathcal{BL}$, $sh \in \mathcal{SH}$, $vel \in \mathcal{VEL}$, $rep \in \mathcal{REP}$, $rm \in \mathcal{RM}$, $scb \in \mathcal{SCB}$, $fed \in \mathcal{FED}$.

3 3. Goals

We combine all goal terms via a weighted scalarization. Let $\mathcal G$ be the set of goal IDs $G0, \ldots, G11$ with weights w_g from Goals.csv. The overall single-objective form is:

$$\max \Phi = \sum_{g \in \mathcal{G}} w_g \cdot \Gamma_g,$$

where each Γ_g is defined below; for originally "minimize" goals we use a negative sign so that higher Γ_g is better.

- G0 minimize_project_budget Logic: Reduce total allocated budget. Math: $\Gamma_{G0} = -\sum_{p \in \mathcal{P}} B_p$, where B_p is decision DV4.
- G1 maximize_worker_availability Logic: Prefer plans leveraging available workers. Math: $\Gamma_{G1} = \sum_{w \in \mathcal{W}} availability_w$.
- G2 maximize_feature_priority Logic: Select high-priority features into active sprints. Math: $\Gamma_{G2} = \sum_{f \in \mathcal{F}} \sum_{sp \in \mathcal{SP}} priority_f \cdot y_{f,sp}$, where $y_{f,sp}$ encodes DV1 for feature—sprint selection.
- G3 minimize_feature_estimated_effort Logic: Prefer features requiring less effort. Math: $\Gamma_{G3} = -\sum_{f \in \mathcal{F}} \sum_{sp \in \mathcal{SP}} effort_f^F \cdot y_{f,sp}$.
- G4 maximize_sprint_goal_achievement Logic: Favor plans with achieved sprint goals. Math: $\Gamma_{G4} = \sum_{sp \in \mathcal{SP}} achieved_{sp}$.
- G5 maximize_velocity_avg_story_points Logic: Prefer teams with higher historical velocity. Math: $\Gamma_{G5} = \sum_{t \in \mathcal{T}} velAvg_t$.
- G6 minimize_blocker_severity

 Logic: Reduce overall blocker impact. Math: $\Gamma_{G6} = -\sum_{bl \in \mathcal{BL}} severity_{bl}$.
- G7 maximize_user_story_story_points Logic: Deliver more story points. $Math: \Gamma_{G7} = \sum_{sp \in \mathcal{SP}} C_{sp}$, where C_{sp} is DV5 (commitment in sprint sp).
- G8 minimize_task_effort Logic: Reduce effort on tasks in progress. Math: $\Gamma_{G8} = -\sum_{tsk \in \mathcal{TSK}} effort_{tsk}^{TSK} \cdot u_{tsk}$, where u_{tsk} is DV3.
- G9 maximize_team_size_utilization Logic: Utilize larger teams effectively on projects. Math: $\Gamma_{G9} = \sum_{t \in \mathcal{T}} \sum_{p \in \mathcal{P}} size_t \cdot x_{t,p}$, where $x_{t,p}$ is DV0.

• G10 maximize_stakeholder_relevance_to_feature

Math: $\Gamma_{G10} = \sum_{sh \in SH} \sum_{f \in F} \sum_{sn \in SP} rel_{sh,f}$ Logic: Emphasize features most relevant to stakeholders.

 $y_{f,sp}$.

• G11 minimize_time_to_release

Math: $\Gamma_{G11} = -\sum_{rep \in \mathcal{REP}} planDate_{rep}$. Logic: Accelerate release plans.

4 4. Conditions

All conditions combine logical gating with linear constraints; Criteria Type $\in \{2,1,0\}$ maps to Must-/May-/Cannot-Match. The items C0-C11 come directly from Conditions.csv. We additionally enforce structural conditions implied by Relationships.csv (R1-R22).

C0-C11 from Conditions.csv

• CO enforce_active_projects (Must-Match)

Logic: Assign teams only to active projects.

Math: $\forall t \in \mathcal{T}, \ \forall p \in \mathcal{P}: \ x_{t,p} \leq A_{t,p}^{T\hat{P}} \cdot activeProject_{p}.$

• C1 require_team_status_ready (Must-Match)

Logic: Only ready teams can be assigned.

Math: $\forall t, p: x_{t,p} \leq readyTeam_t$.

• C2 exclude_unavailable_workers (Cannot-Match)

Logic: Workers with zero availability cannot be allocated.

Math: $\forall w, us: z_{w,us} \leq \mathbf{1}[availability_w > 0].$

• C3 prefer_certified_skills (May-Match)

Logic: Encourage certified skill coverage for stories.

Math: Let $cert_w = \sum_s A_{w,s}^{WS} \cdot certified_s$. For each sprint $sp: \sum_{us} \sum_w z_{w,us} \cdot cert_w \geq \kappa_{sp}$ (soft: can be relaxed/penalized).

• C4 limit_high_severity_blockers (Must-Match)

Logic: Cap blocker impact/effort reserved.

Math: $\sum_{tsk} \sum_{bl} A_{tsk,bl}^{TS\vec{K}\text{-}BL}$ severity_{bl} $\cdot u_{tsk} \leq W$ (where W is DV10).

• C5 require_user_story_acceptance_criteria (Must-Match)

Logic: Only stories with acceptance criteria may receive allocation.

Math: $\forall w, us: z_{w,us} \leq hasAC_{us}$.

• C6 prefer_high_team_type_fit (May-Match)

Logic: Favor team-project type fit.

Math: $\sum_{t,p} fit_{t,p} \cdot x_{t,p} \geq \phi$ (soft threshold; $fit_{t,p} \in [0,1]$).

• C7 require_sprint_status_active (Must-Match)

Logic: Only active sprints may accept features.

Math: $\forall f, sp : y_{f,sp} \leq activeSprint_{sp}$.

• C8 prefer_positive_trend_velocity (May-Match)

Logic: Prefer teams with improving trend.

Math: $\sum_{t} trend_t \cdot \sum_{p} x_{t,p} \geq 0$ (soft; $trend_t \in \mathbb{R}$ from **VEL.trend**).

• C9 require_backlog_status_open (Must-Match)

Logic: Features must come from an open Product Backlog.

Math: $\forall f, sp: y_{f,sp} \leq \sum_{pb} A_{pb,f}^{PB-F} \cdot openPB_{pb}$.

- C10 limit_scrum_board_wip (Must-Match) Logic: Cap number of cards (WIP) on the board. Math: $\sum_{tsk} u_{tsk} \leq K$ (where K is DV11).
- C11 require_feature_documentation_linked (Must-Match) Logic: Only features with linked documentation can be selected. $Math: \ \forall f, sp: \ y_{f,sp} \leq docLinked_f \ (\text{e.g.}, docLinked_f = \max_{fed} A_{fed,f}^{FED-F} \cdot \mathbf{1}[linked_requirements]).$

Structural constraints from Relationships.csv (R1-R22)

- R1 Team \rightarrow Project (1:N): each team belongs to exactly one project: $\forall t: \sum_{p} x_{t,p} = 1$ and $x_{t,p} \leq A_{t,p}^{TP}$.
- **R2 Worker** \rightarrow **Team (N:1)**: each worker has exactly one home team: $\forall w: \sum_t A_{w,t}^{WT} = 1.$
- R3 Worker–Skill (N:M): skill availability parameterized by $A_{w,s}^{WS}$ (used in C3).
- R4 Worker–Role (N:M): role coverage via $A_{w,r}^{WR}$ as feasibility/input.
- R5 PO manages PB (1:1): unique mapping input $A_{po,pb}^{PO-PB}$; ensure $\sum_{po} A_{po,pb}^{PO-PB} = 1 = \sum_{pb} A_{po,pb}^{PO-PB}$.
- R6 Team supported by SM (1:1): unique mapping input $A_{t,sm}^{T-SM}$.
- R7 PB contains Feature (1:N): selection only from containing PB (enforced in C9).
- R8 PB contains Epic (1:N): feasibility for epic-story relations.
- R9 Epic contains UserStory (1:N): $\forall us: \sum_{e} A_{e,us}^{E-US} = 1$.
- R10 UserStory consists of Tasks (1:N): task coverage via $A_{us,tsk}^{US-TSK}$.
- R11 UserStory in SprintBacklog (N:M) & R12 SBL belongs to Sprint (1:1): if $y_{f,sp} = 1$ for some us of f, then $\exists sbl$ with $A_{us,sbl}^{US-SBL}A_{sbl,sp}^{SBL-SP} = 1$ (modelled via gating).
- R13 Sprint pursues Goal (1:1): for each sp there is a unique sg; consistency used by parameter $achieved_{sp}$.
- R14 ScrumBoard contains Tasks (1:N): $\sum_{tsk} A_{scb,tsk}^{SCB-TSK} \leq K$ for each scb (WIP cap aligns with C10).
- R15 FED documents Feature (1:1): $docLinked_f = \max_{fed} A_{fed,f}^{FED-F}$ (used in C11).
- R16 Task blocked by Blocker (N:M): accounted in C4 via $A_{tsk.bl}^{TSK-BL}$.
- R17 Stakeholder participates in SR (N:M): engagement parameter $A_{sh,sr}^{SH-SR}$; supports goal G10 context.
- R18 SM moderates Retrospective (1:N): feasibility input $A_{sm,sre}^{SM-SRE}$.
- R19 Velocity refers to Team (1:1): $velAvg_t = \sum_{vel} A_{vel,t}^{VEL-T} \cdot avgSP_{vel}$.
- R20 ReleasePlan includes Feature (1:N): coupling of rep and f via $A_{rep,f}^{REP-F}$ (context for G11).
- R21 ReleasePlan part of Roadmap (N:1): feasibility $A_{rep,rm}^{REP-RM}$.
- R22 Sprint generates Snapshot (1:1): traceability $A_{sp,dev}^{SP-DEV}$.

Capacity, commitment, and linking constraints (illustrative):

- Worker capacity with buffer: $\forall w, sp : \sum_{us} z_{w,us} \cdot spoints_{us} \leq availability_w \cdot (1-\beta) \cdot Cap_w$ (DV8 β , given Cap_w).
- Commitment consistency: $\forall sp: \sum_{us} spoints_{us} \cdot q_{us,sp} \leq C_{sp}$, where $q_{us,sp} \in \{0,1\}$ indicates story scheduled in sprint sp and can be linearized via $z_{w,us}$ (aux. variable; standard big-M linking if introduced).

5 5. DecisionVariables

- DVO assign_team_to_project: $x_{t,p} \in \{0,1\}$ for $(t,p) \in \mathcal{T} \times \mathcal{P}$.
- DV1 select_feature_for_sprint: $y_{f,sp} \in \{0,1\}$ for $(f,sp) \in \mathcal{F} \times \mathcal{SP}$.
- DV2 allocate_worker_to_story: $z_{w,us} \in \{0,1\}$ for $(w,us) \in \mathcal{W} \times \mathcal{US}$.
- DV3 set_task_in_progress: $u_{tsk} \in \{0,1\}$ for $tsk \in \mathcal{TSK}$.
- DV4 budget_allocation_project: $B_p \in \mathbb{R}_{\geq 0}$ with $0 \leq B_p \leq \overline{B}_p$ for $p \in \mathcal{P}$.
- DV5 story_points_commitment: $C_{sp} \in \mathbb{Z}_{\geq 0}$ with $0 \leq C_{sp} \leq \overline{C}$ for $sp \in \mathcal{SP}$.
- DV6 max_parallel_tasks_per_worker: $M \in \mathbb{Z}_{\geq 0}$ with $0 \leq M \leq 20$ (global cap). Constraint: $\forall w : \sum_{tsk} assign_{w,tsk} \leq M$ if a per-task assignment variable $assign_{w,tsk}$ is used.
- DV7 sprint_length_days: $L \in \{7, 10, 14, 21, 28\}.$
- DV8 capacity_buffer_percentage: $\beta \in [0, 1]$.
- DV9 priority_threshold_feature: $\theta \in \mathbb{Z}_{>0}$; gating $\forall f, sp: y_{f,sp} \leq \mathbf{1}[priority_f \geq \theta]$.
- DV10 limit_blocker_workaround_effort: $W \in \mathbb{R}_{>0}$ (used in C4).
- DV11 max_cards_on_scrum_board: $K \in \mathbb{Z}_{>0}$ (used in C10).