Übungen zur Vorlesung Differentialgeometrie I

Blatt 4

Aufgabe 11. (4 Punkte)

Für festes $\tau \in \mathbb{R}$ sei

$$F_{\tau}: (u,v) \mapsto \begin{pmatrix} \cos \tau \sin u \sinh v + \sin \tau \cos u \cosh v \\ -\cos \tau \cos u \sinh v + \sin \tau \sin u \cosh v \end{pmatrix}, \quad u \in (-\pi,\pi), \ v \in \mathbb{R}.$$

$$u \cos \tau + v \sin \tau$$

- (i) Skizziere die Fäche F_0 , genannt Helikoid, und die Fläche $F_{\pi/2}$, genannt Katenoid.
- (ii) Bestimme die erste Fundamentalform von F_{τ} .
- (iii) Zeige für eine glatte Kurve $\gamma: I \to (-\pi, \pi) \times \mathbb{R}$, dass

$$\frac{d}{d\tau}L\left(F_{\tau}\circ\gamma\right)=0\,,$$

was bedeutet, dass es eine lokale Deformation des Helikoids in das Katenoid durch Isometrien gibt.

Aufgabe 12. (Stereographische Projektion) (4 Punkte) Sei $\mathbb{S}^n = \{x \in \mathbb{R}^{n+1} : ||x||^2 = 1\}$ and $e_{n+1} = (0, \dots, 0, 1)$.

(i) Zeige, dass $\mathbb{S}^n \setminus \{e_{n+1}\}$ eine *n*-dimensionale Hyperfläche mit Parametrisierung $X : \mathbb{R}^n \to \mathbb{R}^{n+1}$ ist, wobei

$$X(x) := \frac{1}{\|x\|^2 + 1} (2x, \|x\|^2 - 1), \quad x \in \mathbb{R}^n.$$

Berechne die Metrik $(g_{ij}(x))$, die zweite Fundamentalform $(h_{ij}(x))$ für $x \in \mathbb{R}^n$ und zeige, dass X konform ist (also $(g_{ij}) = \lambda^2(\delta_{ij})$ mit $\lambda > 0$).

(ii) Sei Γ die Menge aller Geraden im \mathbb{R}^n . Zeige, dass

$$\sup_{\gamma \in \Gamma} L(X \circ \gamma) < \infty.$$

(iii) Bestimme die stereographische Projektion $X^{-1}: \mathbb{S}^n \setminus \{e_{n+1}\} \to \mathbb{R}^n$.

Aufgabe 13. (4 Punkte)

(i) Sei $X: B_1^n(0) \to \mathbb{R}$ mit

$$X(x) := \left(x, \sqrt{1 - \|x\|^2}\right).$$

Berechne die erste und zweite Fundamentalform.

- (ii) Sei $X: \mathbb{R}^n \to \mathbb{S}^n$ eine beliebige Immersion. Vergleiche die erste und zweite Fundamentalform.
- (iii) Sei $X: \mathbb{R}^n \to \mathbb{S}^n_r$ für r > 0 eine beliebige Immersion. Vergleiche die erste und zweite Fundamentalform g^r_{ij} und h^r_{ij} miteinander und mit g^1_{ij} und h^1_{ij} für eine geeignet gewählte Immersion $Y: \mathbb{R}^n \to \mathbb{S}^n$.

Aufgabe 14. (4 Punkte)

Zeige, dass der Kegel $K:=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2=k^2z^2,z>0\}$ lokal isometrisch zum \mathbb{R}^2 ist. Was ist die Relevanz dieser Aussage für Schultütenhersteller? Hinweis: Die Abbildung $Y:\mathbb{R}^2\to\mathbb{R}^3$ mit

$$Y(h,\varphi) := \begin{pmatrix} kh\cos\varphi\\kh\sin\varphi\\h \end{pmatrix}$$

ist eine Parametrisierung von K. Setze $u=\alpha h\cos(\beta\varphi)$ und $v=\alpha h\sin(\beta\varphi)$. Finde $\alpha(k)$ und $\beta(k)$, sodass die Abbildung $X:\mathbb{R}^2\to\mathbb{R}^3$ mit $X(u,v):=Y(h(u,v),\varphi(u,v))$ eine isometrische Parametrisierung von K ist.

Abgabe: Bis Donnerstag, 23.11.2017, 10.00 Uhr, in die Mappe vor Büro F 402.