

Theoretische Grundlagen der Informatik Vorlesung am 24. Oktober 2017

Letzte Vorlesung

Satz:

Jede reguläre Sprache wird von einem deterministischen endlichen Automaten (DEA) akzeptiert.

Satz:

q	S	t	и	f
E(q)				{ <i>f</i> }
$\delta(E(q), a)$				{ <i>f</i> }

Satz:

q	S	t	и	f
E(q)			$\{u, f\}$	{ <i>f</i> }
$\delta(E(q), a)$				{ <i>f</i> }

Satz:

q	S	t	и	f
E(q)			$\{u, f\}$	{ <i>f</i> }
$\delta(E(q), a)$			{ <i>f</i> }	{ <i>f</i> }

Satz:

q	S	t	и	f
E(q)		{ <i>t</i> }	$\{u,f\}$	{ <i>f</i> }
$\delta(E(q), a)$			{ <i>f</i> }	{ <i>f</i> }

Satz:

q	S	t	и	f
E(q)		{ <i>t</i> }	$\{u, f\}$	{ <i>f</i> }
$\delta(E(q), a)$		$\{u,f\}$	{ <i>f</i> }	{ <i>f</i> }

Satz:

q	S	t	и	f
E(q)	$\{s,t\}$	{ <i>t</i> }	$\{u,f\}$	{ <i>f</i> }
$\delta(E(q), a)$		$\{u,f\}$	{ <i>f</i> }	{ <i>f</i> }

Satz:

q	S	t	и	f
E(q)	$\{s,t\}$	{ <i>t</i> }	$\{u, f\}$	{ <i>f</i> }
$\delta(E(q), a)$	{ <i>u</i> }	$\{u,f\}$	{ <i>f</i> }	{ <i>f</i> }

Satz:

q	S	t	и	f
E(q)	$\{s,t\}$	{ <i>t</i> }	$\{u, f\}$	{ <i>f</i> }
$\delta(E(q), a)$	{ <i>u</i> }	$\{u,f\}$	{ <i>f</i> }	{ <i>f</i> }

Satz:

q	S	t	и	f
E(q)	$\{s,t\}$	{ <i>t</i> }	$\{u,f\}$	{ <i>f</i> }
$\delta(E(q), a)$	{ <i>u</i> , <i>f</i> }	$\{u,f\}$	{ <i>f</i> }	{ <i>f</i> }

Satz:

	q	S	t	и	f
.	E(q)	$\{s,t\}$	{ <i>t</i> }	$\{u, f\}$	{ <i>f</i> }
$\delta(E)$	$\Xi(q)$, a)	{ <i>u</i> , <i>f</i> }	$\{u,f\}$	{ <i>f</i> }	{ <i>f</i> }

Satz:

q	S	t	и	f
E(q)	$\{s,t\}$	{ <i>t</i> }	$\{u,f\}$	{ <i>f</i> }
$\delta(E(q), a)$	$\{u,f\}$	$\{u, f\}$	{ <i>f</i> }	{ <i>f</i> }

Satz:

Zu jedem NEA $\mathcal A$ mit ε -Übergängen gibt es einen NEA $\widetilde{\mathcal A}$ ohne ε -Übergänge, der dieselbe Sprache akzeptiert und nicht mehr Zustände hat.

Beweis: Sei $\mathcal{A} := (Q, \Sigma, \delta, s, F)$ ein NEA mit ε -Übergängen.

Wir konstruieren $\widetilde{\mathcal{A}}:=(\widetilde{\mathbf{Q}},\Sigma,\widetilde{\delta},\widetilde{\mathbf{s}},\widetilde{\mathbf{F}})$ wie folgt:

- $\widetilde{\mathbf{Q}} := (\mathbf{Q} \backslash \mathbf{F}) \cup \widetilde{\mathbf{F}}$
- $\widetilde{s} := s$

$$\widetilde{\delta}(q, a) = \begin{cases} \{q\} & \text{falls } a = \varepsilon \\ \delta(E(q), a) & \text{sonst} \end{cases}$$

 $\widetilde{F} := \{ q \in Q \mid E(q) \cap F \neq \emptyset \}$

Damit akzeptiert \widetilde{A} dieselbe Sprache wie A, und $|\widetilde{Q}| \leq |Q|$.

EA → Regularität

Satz:

Jede Sprache, die von einem endlichen Automaten erkannt wird, ist regulär.

Beweis: EA → **Regularität**

- Sei DEA $\mathcal{A} = (Q, \Sigma, \delta, s, F)$ gegeben.
- **E**s ist zu zeigen, dass L(A) regulär ist.

Es gilt:

 $L = \{w \in \Sigma^* \mid \mathcal{A} \text{ endet nach Abarbeitung von } w \text{ in einem Zustand aus } F\}$

- Die Abarbeitung eines Wortes $w=a_1\dots a_k$ bewirkt das Durchlaufen einer Folge von Zuständen s,q_1,\dots,q_k , wobei nicht notwendig $q_i\neq q_j$ für $i\neq j$ gilt.
- Wir suchen die Wörter, so dass der letzte Zustand in F ist.
- Betrachte für jeden Zustand $f \in F$ getrennt die Wörter, deren Abarbeitung in f endet.

Beweis: EA \rightarrow Regularität

- Sei DEA $\mathcal{A} = (Q, \Sigma, \delta, s, F)$ gegeben.
- Es ist zu zeigen, dass L(A) regulär ist.

Es gilt:

 $L = \{ w \in \Sigma^* \mid \mathcal{A} \text{ endet nach Abarbeitung von } w \text{ in einem Zustand aus } F \}$

Zu $f \in F$ definiere:

$$L_f := \{ w \in \Sigma^* \mid \mathcal{A} \text{ endet nach Abarbeitung von } w \text{ in } f \}$$

= $\{ w \in \Sigma^* \mid w \text{ überführt } s \text{ in } f \text{ (im Automaten } \mathcal{A}) \}$

- Damit ist $L = \bigcup_{f \in F} L_f$.
- Wenn wir zeigen können, dass für alle $f \in F$ die Sprache L_f regulär ist, so ist auch L regulär.

Beweis: EA \rightarrow Regularität

$$L_f := \{ w \in \Sigma^* \mid w \text{ überführt } s \text{ in } f \text{ (im Automaten } \mathcal{A}) \}$$

Ab jetzt sei $Q = \{q_1, \ldots, q_n\}.$ Wir definieren zu

$$q_r, q_t \in Q$$
: $L_{q_r,q_t} := \{ w \in \Sigma^* \mid w \text{ überführt } q_r \text{ in } q_t \}$.

Insbesondere gilt also: $L_f = L_{s,f}$. Unterteile L_{q_r,q_t} :

$$L_{q_r,i,q_t} := \left\{ w \in \Sigma^* \ \middle| \ egin{array}{c} ext{Abarbeitung von } w ext{ aus } q_r ext{ nach } q_t ext{ hat nur } \ ext{Zwischenzustände } \left\{ q_1, \ldots, q_i
ight\} \end{array}
ight.$$

(also
$$w$$
 bewirkt: $q_r \to \underbrace{\dots \dots}_{\in \{q_1, \dots, q_i\}} \to q_t$.)
Damit gilt $L_{q_r, q_t} = L_{q_r, \eta, q_t}$.

Beweis: EA \rightarrow Regularität

$$L_{q_r,i,q_t} := \left\{ w \in \Sigma^* \; \middle| \; \; \; \; ext{Abarbeitung von } w ext{ aus } q_r ext{ nach } q_t ext{ hat nur Zwischenzustände } \left\{ q_1, \ldots, q_i
ight\}$$

Wir zeigen, dass L_{q_r,i,q_t} für $q_r,q_t\in Q$ und $1\leq i\leq n$ regulär sind:

Tunächst betrachten wir direkte Überführungen, also i = 0:

$$L_{q_r,0,q_t} := \left\{ w \in \Sigma^* \; \left| \; \; \; \; ext{Abarbeitung von } w ext{ f\"uhrt von } q_r ext{ nach } q_t \; \;
ight.
ight.
ight.$$

Falls r = t und somit $q_r = q_t$ ist, ist

$$L_{q_r,0,q_t} = \{ a \in \Sigma \mid \delta(q_t,a) = q_t \} \cup \{ \varepsilon \} .$$

Andernfalls betrachten wir alle w mit $q_r \stackrel{w}{\to} q_t$, ohne Zwischenzustände, also

$$L_{q_r,0,q_t} = \{a \in \Sigma \mid \delta(q_r,a) = q_t\}$$
.

Diese Sprachen sind jeweils regulär.

Beweis: EA → Regularität

■ Betrachte nun i = 1:

$$L_{q_r,1,q_t} := \left\{ w \in \Sigma^* \ \middle| \ \begin{array}{c} w \text{ \"{u}berf\"{u}hrt } q_r \text{ in } q_t \text{ entweder direkt oder unter Benutzung nur von } q_1 \end{array} \right.$$

Es gilt dann:

$$L_{q_r,1,q_t} = L_{q_r,0,q_t} \cup \left(L_{q_r,0,q_1} \cdot L_{q_1,0,q_1}^* \cdot L_{q_1,0,q_t} \right)$$

Also ist $L_{q_r,1,q_t}$ auch wieder regulär.

Es gilt allgemein:

$$L_{q_r,i+1,q_t} = L_{q_r,i,q_t} \cup \left(L_{q_r,i,q_{i+1}} \left(L_{q_{i+1},i,q_{i+1}}\right)^* L_{q_{i+1},i,q_t}\right)$$

Beweis: EA → Regularität

- Es wurden für L_{i+1} nur die Sprachen L_{i} und \cup , \cdot , * verwendet.
- Damit ist gezeigt (per Induktion), dass $L_{i,j+1,..}$ regulär ist für beliebiges i (1 $\leq i + 1 \leq n$) und alle Zustandspaare aus Q^2 .
- Damit ist gezeigt, dass insbesondere $L_f = L_{s,n,f}$ regulär ist für jedes $f \in F$.

Beispiel

Sei $(Q, \Sigma, \delta, s, F)$ mit $Q := \{q_1 := s, q_2 := q\}, \Sigma := \{0, 1\}, F := \{s\}$

Gesucht: $L(Q, \Sigma, \delta, s, F)$. Es gilt $L = L_{a_1, 2, a_1}$.

Beispiel

Gesucht: $L(Q, \Sigma, \delta, s, F)$. Es gilt $L = L_{q_1,2,q_1}$.

$$L_{q_i,0,q_i}=\varepsilon$$

$$L_{q_i,0,q_j} = (0 \cup 1) \text{ für } i,j \in \{1,2\}, i \neq j$$

$$L_{q_1,1,q_1} = L_{q_1,0,q_1} \cup L_{q_1,0,q_1} (L_{q_1,0,q_1})^* L_{q_1,0,q_1} = \varepsilon$$

$$L_{q_1,1,q_2} = L_{q_1,0,q_2} \cup L_{q_1,0,q_1} (L_{q_1,0,q_1})^* L_{q_1,0,q_2} = (0 \cup 1) \cup \varepsilon \varepsilon^* (0 \cup 1) = 0 \cup 1$$

$$L_{q_2,1,q_1} = (0 \cup 1) \cup (0 \cup 1) \varepsilon^* \varepsilon = 0 \cup 1$$

$$L_{q_2,1,q_2} = \varepsilon \cup (0 \cup 1)\varepsilon^*(0 \cup 1) = \varepsilon \cup (0 \cup 1)(0 \cup 1)$$

$$L = L_{q_1,2,q_1} = L_{q_1,1,q_1} \cup (L_{q_1,1,q_2}(L_{q_2,1,q_2})^* L_{q_2,1,q_1})$$

= $\varepsilon \cup (0 \cup 1) ((0 \cup 1)(0 \cup 1))^* (0 \cup 1) = ((0 \cup 1)(0 \cup 1))^*$

Satz von Kleene

- Wir haben gezeigt, dass die von endlichen Automaten akzeptierten Sprachen genau die regulären Sprachen sind.
- Dies wird auch als der **Satz von Kleene** bezeichnet.

Satz (Satz von Kleene):

Die von endlichen Automaten akzeptierten Sprachen sind genau die regulären Sprachen.

Frage: Was können endliche Automaten nicht?

Frage: Was können endliche Automaten nicht?

Beispiel:

Die Sprache L der korrekten Klammerausdrücke über $\Sigma = \{(,)\}.$

Etwa

$$\left(()()\right), \left(()()\left(()\right)\right) \in L \qquad ((()), (()))() (\not\in L)$$

Frage: Was können endliche Automaten nicht?

Beispiel:

Die Sprache *L* der korrekten Klammerausdrücke über $\Sigma = \{(,)\}.$ Etwa

$$\left(()()\right), \left(()()\left(()\right)\right) \in L \qquad ((()), (()))() (\not\in L)$$

- Die Klammerung ist genau dann korrekt, wenn w gleich viele öffnende wie schließende Klammern enthält, und wenn man w von links nach rechts liest, so gibt es nie mehr ")" als "(" bis dahin.
- Ein Automat, der L erkennen kann, muss in der Lage sein, sich für ein beliebiges Wort $w \in L$ die Anzahl von (gegenüber) zu merken.
- Dies kann aber beliebig groß werden, und der Automat müsste über unendliche viele Zustände verfügen.
- Die Sprache der Klammerausdrücke ist also zwar simpel, aber wohl nicht regulär.

Satz:

Sei L eine reguläre Sprache. Dann existiert eine Zahl $n \in \mathbb{N}$, so dass für jedes Wort $w \in L$ mit |w| > n eine Darstellung

$$w = uvx \text{ mit } |uv| \leq n, \ v \neq \varepsilon,$$

existiert, bei der auch $uv^ix \in L$ ist für alle $i \in \mathbb{N}_0$.

Satz:

Sei L eine reguläre Sprache. Dann existiert eine Zahl $n \in \mathbb{N}$, so dass für jedes Wort $w \in L$ mit |w| > n eine Darstellung

$$w = uvx \text{ mit } |uv| \leq n, \ v \neq \varepsilon,$$

existiert, bei der auch $uv^ix \in L$ ist für alle $i \in \mathbb{N}_0$.

Beweis:

- Sei *L* eine reguläre Sprache.
- Dann existiert ein endlicher Automat, der *L* akzeptiert.
- Sei Q dessen Zustandsmenge und n := |Q|.
- Sei $w \in L$ mit |w| > n, etwa $w = a_1 \dots a_n \dots a_m$ mit m > n.

Beweis:

- Sei L eine reguläre Sprache.
- Dann existiert ein endlicher Automat, der *L* akzeptiert.
- Sei Q dessen Zustandsmenge und n := |Q|.
- Sei $w \in L$ mit |w| > n, etwa $w = a_1 \dots a_n \dots a_m$ mit m > n.

Bei der Abarbeitung von w werden dann die Zustände q_0, \ldots, q_m durchlaufen mit $q_m \in F$.

Dann gibt es i, j mit $0 \le i, j \le n$ und $i \ne j$, so dass $q_i = q_i$. Œ gelte i < j.

Satz:

Sei L eine reguläre Sprache. Dann existiert eine Zahl $n \in \mathbb{N}$, so dass für jedes Wort $w \in L$ mit |w| > n eine Darstellung

$$w = uvx \text{ mit } |uv| \leq n, \ v \neq \varepsilon,$$

existiert, bei der auch $uv^ix \in L$ ist für alle $i \in \mathbb{N}_0$.

Dann kann der Zykel $q_i, q_{i+1}, \ldots, q_j = q_i$ auch gar nicht oder beliebig oft bei der Abarbeitung eines Wortes aus L durchlaufen werden so dass der Zustand $q_m \in F$ erreicht wird.

Satz:

Sei L eine reguläre Sprache. Dann existiert eine Zahl $n \in \mathbb{N}$, so dass für jedes Wort $w \in L$ mit |w| > n eine Darstellung

$$w = uvx \text{ mit } |uv| \leq n, \ v \neq \varepsilon,$$

existiert, bei der auch $uv^ix \in L$ ist für alle $i \in \mathbb{N}_0$.

Also gibt es eine Zerlegung $w = \underbrace{(a_1 \dots a_j)}_{u} \cdot \underbrace{(a_{i+1} \dots a_j)}_{v} \cdot \underbrace{(a_{j+1} \dots a_m)}_{x}$

mit $|uv| \le n$ und $v \ne \varepsilon$, so dass auch $uv^i x \in L$ für alle $i \in \mathbb{N}_0$.

Bemerkung

 Das Pumping-Lemma liefert nur eine notwendige, aber nicht hinreichende Bedingung für die Regularität von Sprachen.

Beispiel (1) zum PL

Satz:

Sei L eine reguläre Sprache. Dann existiert eine Zahl $n \in \mathbb{N}$, so dass für jedes Wort $w \in L$ mit |w| > n eine Darstellung

$$w = uvx \text{ mit } |uv| \leq n, \ v \neq \varepsilon,$$

existiert, bei der auch $uv^i x \in L$ ist für alle $i \in \mathbb{N}_0$.

Gegeben sei

- $\Sigma = \{0, 1\}$
- $L = \{ w \in \Sigma^* \mid w \text{ enthält 10 nicht als Teilwort } \} = 0^*1^*$

Betrachte

 $n = 1, \quad w = uvx, \quad u = \varepsilon$

Dann

- entspricht v also dem ersten Buchstaben von w
- kann uvⁱx auch 10 nicht als Teilwort besitzen.

Beispiel (2) zum PL

Satz:

Sei L eine reguläre Sprache. Dann existiert eine Zahl $n \in \mathbb{N}$, so dass für jedes Wort $w \in L$ mit |w| > n eine Darstellung

$$w = uvx \text{ mit } |uv| \leq n, \ v \neq \varepsilon,$$

existiert, bei der auch $uv^ix \in L$ ist für alle $i \in \mathbb{N}_0$.

Sei $\Sigma = \{0, 1\}$ und $L = \{0^i 1^i \mid i \ge 0\}$. Wir zeigen: L ist nicht regulär.

- Für ein n wähle $w = 0^n 1^n$
- Für jede Darstellung w = uvx mit $|uv| \le n$ und $v \ne \varepsilon$ ist aber

$$uv^0x = 0^l 1^n \notin L \qquad (l < n)$$

Beispiel (3) zum PL

Sei
$$\Sigma = \{ \text{0, 1} \}$$
 und

$$L = \left\{ w \in \Sigma^* \ \middle| \ w = 1^k \ (k > 0) \ \text{oder} \ w = 0^j 1^{k^2} \ (j \ge 1, \ k \ge 0) \ \right\}.$$

Dann erfüllt *L* die Darstellung des PL:

- Sei n = 1 und $w \in L$ mit |w| > 1.
- w habe eine Darstellung w = uvx mit $|uv| \le n$ und $v \ne \varepsilon$.

Setze $u = \varepsilon$ und |v| = 1 das erste Symbol von w.

- Falls $w = 1^k$, so ist auch $uv^i x$ vom Typ $1^\ell \in L$.
- Falls $w = 0^j 1^{k^2}$, so ist auch $uv^0 x \in L$ (für j = 1 ist $uv^0 x = x = 1^{k^2}$). Für i > 1 gilt $uv^{i}x = 0^{j+i}1^{k^2} \in L$.

Trotzdem ist L nicht regulär. Dies lässt sich mit dem verallgemeinertem Pumping Lemma zeigen.

13