Solucionario de Física

Te compartimos el solucionario del simulacro del área de Física.

1. La solución es C.

El trabajo es igual al área del trapecio formado por la recta. Entonces, para los dos triángulos tenemos:

$$A_1 = \frac{1}{2}(36,0 \ N)(0,06 \ m) = 1,08 \ J$$

$$A_2 = \frac{1}{2} (6,0 \ N)(0,01 \ m) = 0,03 \ J$$

De esta forma el trabajo necesario para deformarlo es:

$$W = A_1 - A_2 = 1,08 J - 0,03 J = 1,05 J \Rightarrow W \approx 1,0 J$$

2. La solución es D

Según el problema:

Como el cuerpo está en equilibrio, la sumatoria de fuerzas sobre él debe ser igual a cero. Para ello, se dibuja el diagrama de cuerpo libre con todas las fuerzas que actúan sobre el cuerpo.

En el eje horizontal, se tienen las siguientes fuerzas:

 \vec{F}_{k2} y \vec{F}_{k2} , fuerzas debidas a los resortes con constante k1 y k2 respectivamente.

 $ec{f}$, fuerza de rozamiento.

En el eje vertical, se tienen las siguientes fuerzas:

 \overrightarrow{N} , fuerza normal debido a la reacción del suelo sobre el objeto.

 \overrightarrow{mg} , peso del cuerpo.

Dado que se quiere hallar \vec{f} , la ecuación en el eje horizontal será, por condición de equilibrio:

$$\vec{f} = \vec{F}_{k1} + \vec{F}_{k2}$$

$$f = kx_1 + kx_2$$

$$f = 250(0,25) + 250(0,25)$$

$$f = 125 N$$

3. La solución es A.

En un movimiento vertical con g = cte,

$$h = v_0 t \pm \frac{1}{2} g t^2$$

En caída libre, la velocidad inicial $v_0=0$. Entonces, la altura (en metros) es:

$$h = \frac{1}{2}gt^2 = \frac{1}{2}(9.81\frac{m}{s^2})(3.25 s)^2 = 51.8 \text{ m}$$

4. La solución es B

DCL del Bloque B

$$F_R = m_B a$$
$$T = 2a...(1)$$

DCL del Bloque A

$$F_R = m_A a$$

12 - T = 4a ... (2)

Sumando (1) y (2):

$$12 = 6a$$
$$a = 2m/s^2$$

5. La solución es E.

La energía consumida por la plancha (en kWh) durante 40 minutos es:

$$E = P\Delta t = (1,2kW)40 \min \frac{1 \text{ hora}}{60 \text{ min}} = 0.8 \text{ kWh}$$

Su costo será: $costo = 0.8 \times 40 = 32$ céntimos

6. La solución es D.

La velocidad del centro de masa del sistema de dos partículas es:

$$\overrightarrow{V_{CM}} = \frac{m_1 \overrightarrow{v_1} + m_2 \overrightarrow{v_2}}{m_1 + m_2}$$

Según los datos del problema y usando las direcciones convencionales de los ejes XY, positiva hacia la derecha y negativa hacia la izquierda,

$$u = \frac{m_1(-v) + m_2(v_2)}{m_1 + m_2}$$

Despejando v_2 se obtiene:

$$v_2=\left(\!\frac{m_1}{m_2}+1\right)u+\frac{m_1}{m_2}v$$

7. La solución es B.

La energía mecánica total, que permanece constante, en cualquier punto x es la suma de la energía cinética y potencial elástica:

$$E = \frac{1}{2}kx^2 + \frac{1}{2}v^2 = cte$$

y es igual a la energía cinética en la posición de equilibrio o la energía potencial en los extremos:

$$E = \frac{1}{2}mv_{mx}^2$$

$$E = \frac{1}{2}kA^2$$

Usemos la última expresión para calcular la energía total. La frecuencia de oscilaciones v es:

$$v = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

$$k = 4\pi^2 m v^2$$

Luego,

$$E = \frac{1}{2}kA^2 = \frac{1}{2}4\pi^2 mv^2 A^2 = \frac{1}{2}4(3,14)^2(1)(4)^2(0,4)^2 = 50,48J$$

8. La solución es B

Consideremos las trayectorias del movimiento de los planetas alrededor del sol como circunferencias

La distancia Marte-Tierra cuando están:

1. Lo más alejado: $D_1 = R_{MS} + R_{TS}$

2. Lo más cercano: $D_2 = R_{MS} - R_{TS}$

Donde R_{MS} y R_{TS} son las distancias de Marte y de la Tierra al Sol, respectivamente.

La diferencia de tiempos que demora la señal de radio en llegar desde la Tierra a Marte en ambas situaciones será:

$$\Delta t = \frac{D_1}{c} - \frac{D_2}{c}$$

$$= \frac{R_{MS} + R_{TS} - (R_{MS} + R_{TS})}{c} = \frac{2R_{TS}}{c} = \frac{2(150 \times 10^9 m)}{3 \times 10^8 m/s} = 1000 s$$

9. La solución es D

Datos:

La fuerza electromotriz de la fuente & se mantiene constante.

La resistencia R_2 aumenta.

La resistencia R_1 no cambia.

- a. FALSO. Es un circuito en paralelo, la diferencia de potencial es la misma en ambas resistencias e igual a la fuerza electromotriz $\boldsymbol{\varepsilon}$ de la fuente.
- b. FALSO. La potencia disipada en R_2 , $P=\frac{\varepsilon^2}{R_2}$ disminuye.
- c. FALSO. La corriente por R_1 , $I_1=rac{\varepsilon}{R_1}$, permanece constante.
- d. VERDADERO. Según la premisa anterior, la corriente por R_1 , $I_1=\frac{\varepsilon}{R_1}$, permanece constante.
- e. FALSO.

10. La solución es E

Para espejos esféricos se cumple:

$$\frac{l}{o} = -\frac{q}{p}$$

$$q = -\frac{(0.9)(1.5)}{1.8} = -0.75m$$

La distancia imagen q=-075m (distancia medida en la zona virtual).

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$

$$f = \frac{pq}{p+q} = \frac{1,5(-0,75)}{1,5-0,75}$$

La distancia focal es f = -1.5m (en zona virtual).

$$R = 2|f| = 2(1,5) = 3m$$

11. La solución es B

Al chocar con átomos del blanco, electrones con energía cinética $E=eV_0$, donde V_0 es diferencia de potencial, se generan rayos X.

La energía de los fotones emitidos, correspondientes a esta radiación electromagnética, es: $hv=eV_0-K_B$ donde es $K_B=0$ la energía cinética de retroceso de los átomos del blanco. Si entonces $K_B=0$

$$hv_{max} = h\frac{c}{\lambda_{min}} = eV_0$$
 Luego, $\lambda_{min} = \frac{hc}{eV_0} = \frac{(6.626 \times 10^{-34} J \, s)(3 \times 10^8 \, m/s)}{(1.6 \times 10^{-19} \, C)(60 \times 10^3 \, V)} = 0.2 \, \text{Å}$

12. La solución es C

$$\frac{C_V^{Vapor}}{C_V^{He}} = 0.47 \dots (I) \frac{C_V^{Vapor}}{C_V^{He}} = 0.47 \dots (I)$$

Se pide
$$\frac{C_P^{Vapor}}{C_P^{He}}$$

Capacidad calorífica:

$$\frac{C_p^{Vapor}}{C_V^{Vapor}} = 1,38$$

$$\frac{C_p^{He}}{C_V^{He}} = 1,66$$

En general, la relación entre la capacidad calorífica y el calor específico es:

$$C = mc$$

Luego, también se cumple para el calor específico del vapor de agua y del helio:

$$\begin{split} \frac{C_P^{Vapor}}{C_V^{Vapor}} &= 1{,}38 \ldots (II) \\ \frac{C_P^{He}}{C_V^{He}} &= 1{,}66 \ldots (III) \end{split}$$

Dividiendo (II) entre (III) y usando el dato (I):

$$\frac{\frac{C_{P}^{Vapor}}{C_{V}^{Vapor}}}{\frac{C_{P}^{He}}{C_{V}^{He}}} = \frac{C_{P}^{Vapor}}{C_{P}^{He}} \frac{C_{V}^{He}}{C_{V}^{Vapor}} = \frac{C_{P}^{Vapor}}{C_{P}^{He}} \frac{1}{0,47} = \frac{1,38}{1,66}$$

$$\frac{C_p^{Vapor}}{C_p^{He}} = 0,47 \ \frac{1,38}{1,66} = 0,39$$

13. La solución es C

De la gráfica, podemos observar que la distancia entre cresta y cresta es una longitud de onda y ello se dará en un periodo, por tanto $t=2\ s$

Nos piden ω , el cual viene dado por: $\omega = \frac{2\pi}{t} = \frac{2\pi}{2} = \pi \ rad/s$

14. La solución es A.

Analizaremos cada una de las proposiciones.

- I. FALSO. Al expulsar el agua, lo que disminuye es su peso, pues hay menos masa. El empuje permanece constante, pues el volumen sumergido del submarino no cambia.
- II. VERDADERO. Mientras el submarino no emerge o se sumerge más en el agua, hay equilibrio de fuerzas.
- III. VERDADERO. Al disminuir el peso por la expulsión de agua, ahora el empuje es mayor que su peso y el submarino emerge.
- IV. FALSO. Al ingresar agua al submarino, lo que aumenta es el peso. El empuje es contante porque el volumen sumergido sigue siendo el mismo. En este caso, el submarino se hunde.

15. La solución es B

Considerando que el tren inicia en reposo y al final se detiene, hacemos un esquema.

Tramo AB (MRUV acelerado):

$$d_1 = \frac{1}{2} \times 0.2t^2 = 0.1t^2$$

$$v_{max} = v_0 + et = 0 + 0.2t = 0.2t \dots (I)$$

Tramo BC (MRUV desacelerado):

$$v_F^2 = v_{max}^2 - 2ad_{BC}$$

$$C = (0.2t)^2 - 2 \times 0.2 \times (4500 - 0.1t^2)$$

Operando $t = 150 \, s$, reemplazando en (I): $v_{max} = 30 \, m/s$

16. La solución es C

El peso específico es una magnitud que relaciona el peso de un cuerpo por unidad de volumen.

En el problema:

$$PE = \frac{(40 \times 10^{-3} \ kg)(10 \ m/s^2)}{(50 \times 10^{-6} \ m^3)} = 8 \times 10^3 N/m^3$$

17. La solución es A.

El impulso es la medida vectorial de la transferencia de movimiento mecánico.

Para una fuerza constante: $\vec{I} = \overrightarrow{F} \cdot \Delta t$

En el problema: $|\vec{I}| = |\overrightarrow{F_{media}}| \cdot \Delta t$

donde el impulso generado por la fuerza media numéricamente es igual al impulso generado por una fuerza constante.

De esta manera:

$$16 = F_{media}(0.001)$$

$$F_{media} = 16 \times 10^3 N = 16 \, kN$$

18. La solución es C

$$c=\lambda fc=\lambda f$$

c: rapidez de la luz

 λ : longitud de onda

f: frecuencia

Entonces:

$$3 \times 10^8 = \lambda \, (550 \times 10^6)$$

$$\lambda = 0.545 m = 54.5 cm$$

- 19. La solución es A. En el planteamiento del problema han considerado el término *monomio* como "término algebraico".
- I. VERDADERA. Toda ley puede ser expresada en términos de las magnitudes fundamentales.
- II. FALSA. El principio de homogeneidad permite conocer los exponentes correctos en una ley física y así detectar errores en el planteamiento de la ley.
- III. FALSA. Cada término podría ser una magnitud fundamental o derivada. Por ejemplo:

$$d = V_0 t + \frac{a}{2} t^2$$
$$[d] = [V_0 t] = \left[\frac{a}{2} t^2\right] = L$$

20.La solución es A. La rapidez media estaría definida como el cociente del recorrido total entre el tiempo total.

$$v_m = \frac{128}{9.5} = 13.5 \ km/h$$

