Theory of Computation

Tutorial 3 - DFAs

Cesare Spinoso-Di Piano

Plan for today

- 1. Introduction to DFAs
- 2. Regular Languages

Introduction to DFAs

DFAs

Formal definition of a DFA

Definition. A <u>deterministic</u> finite automaton (DFA) M is a 5 element tuple $M = (Q, \Sigma, \delta, q_0, F)$ where

Q is the set of all states

 Σ is the alphabet

 δ is the transition function $\delta: Q \times \Sigma \to Q$

 q_0 is the (unique) initial state

F is the set of final states

A DFA is a machine that takes as input a string and returns either an accept or a reject.

DFAs as language accepters

Definition. Let M be a DFA. The language L(M) includes all strings (over the alphabet Σ) accepted by M. That is, $L(M) = \{$ all strings that "drive" M to a final state $\}$.

Formally, we write this as $L(M)=\{w\in \Sigma^*: \delta^*(q_0,w)\in F\}$, where δ^* is the extended transition function $\delta^*: Q\times \Sigma^*\to Q$ which, given a state q and a string w, returns the state that M would be in after reading w starting from q.

4

The following is a DFA **M** such that $L(M) = \{w \in \{0,1\}^* : w \text{ starts with a } 1\}$ for $\Sigma = \{0,1\}$.

5

Example - Tracing input

L(M) = $\{w \in \{0,1\}^* : w \text{ starts with a } 1\}$ **Input String:** 101

The input finishes in a final state, ${\bf M}$ accepts.

L(M) =
$$\{w \in \{0,1\}^* : w \text{ starts with a } 1\}$$

Input String: 010

The input does not end in a final state, \boldsymbol{M} rejects.

Example. Create a DFA that accepts the language $L = \{w \in \{0,1\}^* : w \text{ contains } 00 \text{ as a substring}\}.$

Regular Languages

Regular Languages

Definition. A language L is regular if there exists a DFA M such that L(M) = L. One way to show that a language L is regular is to show there is a DFA M that accepts it.

Example. Show that the language

 $L = \{a^n : n \text{ is a multiple of 2 but not of 3}\}\ (\Sigma = \{a\}) \text{ is regular.}$