

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

x, of the equations (14), are precisely the only possible solutions of the given problem of the Calculus of Variations; or, the only possible solutions of the given problem of the Calculus of Variations are given by the characteristic torsion strips of the equation (2), regarded as a differential equation.

We might now easily go on to set up, as we have done in Part I, § 6 for equations of the first order, the equations of the common characteristics of two partial differential equations of the second order, and the condition that they be in involution, regarding the common characteristics as the common possible solutions of two problems in the Calculus of Variations, which reduce to a single problem of the type given above with one additional auxiliary condition of the type (2). Finally, we might seek the characteristics for two differential equations of the first order in two dependent variables, and so on. These problems will, however, offer no essential difficulty to the reader, and we will not enter into a discussion of them here; the main point of the existence of a connection between the theory of characteristics and the Calculus of Variations already having been demonstrated.

SHEFFIELD SCIENTIFIC SCHOOL, YALE UNIVERSITY. FEBRUARY, 1903.

ERRATUM.

Page 139, line 7: instead of $q = \psi'(y)$, read $q = \phi'(y)$.

ON THE UNIFORMITY OF THE CONVERGENCE OF CERTAIN ABSOLUTELY CONVERGENT SERIES

By MAXIME BÔCHER

If the series

$$(1) u_1(x) + u_2(x) + \cdot \cdot \cdot$$

is absolutely and uniformly convergent for the values of x in a certain interval, and if we rearrange the terms, will the resulting series necessarily be uniformly convergent? This question must be answered in the negative as the following example shows:

(2)
$$x^2 - x^2 + \frac{x^2}{1+x^2} - \frac{x^2}{1+x^2} + \frac{x^2}{(1+x^2)^2} - \frac{x^2}{(1+x^2)^2} + \cdots$$
Here $S_{2n} = 0$, $S_{2n+1} = \frac{x^2}{(1+x^2)^n}$.