

86/05/10
10515 U.S. P.

PATENT
DOCKET: MMED01
EXPRESS MAIL: E103386926705

A

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Commissioner of Patents and Trademarks
Box Patent Application
Washington, D.C. 20231

NEW APPLICATION COVER SHEET

Transmitted herewith for filing is the patent application of:

INVENTORS: Norman J. LeMaire III and William R. Hanna, Jr.

FOR: Surgical Instrument with Offset Jaw Actuator

TYPE OF APPLICATION

Original

Design

Plant

PAPERS ENCLOSED WHICH ARE REQUIRED FOR FILING DATE UNDER 37 CFR
1.53(B)(Regular) OR 37 CFR 1.53(Design) APPLICATION

13 Page(s) of specification

6 Page(s) of claims

1 Page(s) of abstract

12 Sheet(s) of drawings *pgs 1-20*

Formal

Informal

ADDITIONAL PAPERS ENCLOSED

Preliminary Amendment

Information Disclosure Statement (37 CFR 1.98)

Form PTO-1449

Citations

Assignment of Invention to: _____

Declaration of Biological Deposit

Declaration and Power of Attorney

A verified statement to establish small entity status
under 37 CFR 1.9 and 37 CFR 1.27.

Certification Under 37 CFR 1.10

I hereby certify that this New Application Cover Sheet and the documents referred to as
enclosed therein are being deposited with the United States Postal Service on this date
1/31/98 in an envelope as "Express Mail Post Office to Addressee" Mailing Label
Number E103386926705 addressed to the: Commissioner of Patents and Trademarks,
Box Patent Application, Washington, D.C. 20231.

Type/Print name of person mailing

Signature of person mailing

Other _____
 The filing fee has been calculated as below:

Regular Application

For:	No. filed	No. Extra	Rate	Small Entity Rate	Other than Small Entity Rate
Basic Filing Fee				\$395	\$790
Total Claims	21 -20=	<u>1</u>	x\$11	<u>11</u>	x\$22
Independent Claims	3 -3=	<u>0</u>	x\$41	_____	x\$82
Multiple Dependent Claims			\$135	_____	\$270
				Total:	<u># 406 -</u>

Design Application Filing fee calculation _____.
 Plant Application Filing fee calculation _____.

A check No: 1541 in the amount of # 406 - to cover the filing fee.
(Please refund any overpayment.)

Please charge the Deposit Account No. _____ in the amount of _____.

The commissioner is hereby authorized to charge payment of the following fees associated with this communication to credit any overpayment to Deposit Account No. _____

Any additional fees required under 37 CFR 1.16

Any patent application processing fees under 37 CFR 1.17

The commissioner is hereby authorized to charge payment of the following fees during the pendency of this application or credit any overpayment to Deposit Account No. _____

Any patent application processing fees under 37 CFR 1.17.

Any filing fees under 37 CFR 1.16 for presentation of extra claims.

Date: 1/31/98

Reg. No. 37,656

Ronald R. Kilponen
65 Plymouth Road
Bellingham, MA.
02019-1242

Phone: 508/966-4137

PATENT
DOCKET: MMED01
EXPRESS MAIL: E1033869267US

To the Commissioner of Patents and Trademarks:

Your petitioners, Norman J. LeMaire III, a citizen of the United States, and residing at 595 Pleasant Street, Raynham, MA. 02767 and William R. Hanna Jr., a citizen of the United States and residing at 5500 N. Main Street, Bldg. 15 Apt. 209, Fall River, MA. 02720 pray that Letters Patent be issued to them for the invention entitled, Surgical Instrument with Offset Jaw Actuator, of which the following is a specification.

10

RECEIVED
U.S. PATENT AND TRADEMARK OFFICE
JULY 19 1988

TITLE: Surgical Instrument with Offset Jaw Actuator

FIELD:

The present version of this invention relates generally to the field of surgical instruments utilized primarily in non-invasive surgery. Other uses of the principles of this instrument may find application in industries or professions requiring the use of grasping or cutting tools.

BACKGROUND:

Surgical punches and graspers have been known in the art for some time. They generally involve a fixed or stationary member, an actuator extending from an actuator handle to the working end of the stationary member where the actuator engages a jaw member.

Actuation of the actuator causes the jaw member to pivot and open relative to the stationary member where tissue is inserted between the jaw member and die portion of the stationary member. The handle is then operated to close the jaw member relative to the stationary member where the engaged tissue is lacerated or grasped and can then be removed.

This type of operation is well known in the art and various types of surgical instruments have been developed. This process however puts large stresses on the components of the instruments due to the high forces needed to lacerate or grasp and remove some tissue. These high stresses cause premature failure of the instruments from wear or worse yet catastrophic failure of the components while in use, resulting in metal fragments or slivers being dispersed in the operative site. The metal fragments are often difficult to locate and remove causing unnecessary complications, increased medical time and greater possibility of less than optimum patient results. If metal fragments or slivers remain from catastrophic instrument failure and are not located and removed after the failure, a second procedure may be necessary to remove the metal fragments or slivers and to

correct or rectify any tissue damage that may have occurred.

A typical failure mode in the prior art occurred when the pin attaching the jaw member to the stationary member or the pin attaching the actuator to the jaw member failed. Other failures occurred when the actuator bar was forced such that the bar bent, essentially locking the instrument. A jammed actuator bar would sometimes fail with the jaw member in a fully opened position and this would then cause damage to the operative site when removing the instrument with the jaw locked open. Another typical failure occurred when closing the jaw member on a piece of hard tissue, the actuator bar would fail and buckle upward immediately before the connection of the actuator bar and the jaw member. This was due to the necking down of the height and width of the actuator bar. Still other failures occurred when the contact surfaces between the actuator bar and the inner tip fractured and jammed the instrument.

Several other embodiments have addressed these problems by eliminating the pins typically used to attach the jaw member to the actuator and the jaw member to the stationary member. The pins have been replaced by a lug and groove arrangement. This procedure is costly and difficult to machine due to the precise dimensions required for smooth non-binding operation and the small size of the components.

Several other embodiments have utilized a pin for one of the attachments, either between the jaw member and actuator or between the jaw member and stationary member with a lug and groove for the other attachment. These prior art embodiments still had failures of the lug and groove surfaces due to high loading and small contact surfaces. These embodiments have tried to decrease the likelihood of catastrophic failure or premature failure by increasing the size of the components and attachments resulting in larger instrument size and more damage to the operative site from the increased size of the incisions and instruments. Large instrument size also decreases the finesse that can be obtained in

the operation of the instruments in removing only specific tissue, resulting in removal of more tissue than may be necessary and therefore longer healing time and less than optimum patient results and recovery.

Consequently there is a need for an instrument in which the size can be kept at a minimum while the cutting force applied to the components can be kept high resulting in the minimizing of the likelihood of catastrophic failure or premature wear from overloading. The instrument should have a high strength to size ratio and have an optimum design to allow the highest operational forces for the smallest size with the appropriate materials.

10

SUMMARY

In view of the foregoing disadvantages well known in the prior art there is a need for a surgical instrument with an offset jaw actuator.

A first object of this embodiment of the invention is to provide a relatively easy design to manufacture.

A second object of this embodiment of the invention is to provide an instrument having a small size.

Another object of this embodiment of the invention is to provide an instrument capable of operating with high actuation forces while minimizing the likelihood of instrument failure.

An additional object of this embodiment of the invention is to provide an instrument having both a small size and capable of handling high actuation forces while minimizing the likelihood of instrument failure.

Another object of this embodiment of the invention is to provide an instrument with an increased life expectancy from decreased wear thereby requiring less maintenance and less cost over the lifetime of the instrument.

An additional object of this embodiment of the invention is to provide an instrument having enough strength to decrease the probability of catastrophic failure of components.

30

Another object of this embodiment of the invention is to provide an instrument capable of use in small work areas.

Another object of this embodiment of the invention is to provide an instrument that is more easily flushed and cleaned following use.

These together with other objects of this instrument, along with various features of novelty which characterize this instrument, are pointed out with particularity in the claims annexed hereto and forming a part of this disclosure. For a better understanding of this instrument, its operating advantages and the specific objects attained by its uses, reference should be had to the accompanying drawings and following descriptive matter in which there is illustrated a preferred embodiment of this version of the instrument.

BRIEF DESCRIPTION OF DRAWINGS

Fig. 1 shows a side view of the surgical tool with one embodiment of the hand grip.

Fig. 2 shows a side view of the instrument with the inner tip in the open or second position.

Fig. 3 shows a side view of the instrument with the inner tip in the closed or first position.

Fig. 4 shows a detail partial side view of the closed end with the inner tip in the open or second position.

Fig. 5 shows a detail partial side view of the closed end with the inner tip in the closed or first position.

Fig. 6 shows a cross section view along longitudinal axis A-A in Fig. 16, of the outer shaft.

Fig. 7 shows a detail partial cross section view along longitudinal axis A-A in Fig. 16, of the closed end of the outer shaft.

Fig. 8 shows a detail partial bottom view of the closed end of the outer shaft.

Fig. 9 shows a detail side view of the inner tip.

Fig. 10 shows a detail partial top view of the connected end of the inner tip.

Fig. 11 shows a detail partial side view of the inner tip.

5 Fig. 12 shows a side view of the actuator bar.

Fig. 13 shows a detail partial top view of the tip end of the actuator bar.

Fig. 14 shows a detail partial side view of the actuation end of the actuator bar.

10 Fig. 15 shows a detail partial side view of the tip end of the actuator bar.

Fig. 16 shows a top detail partial view of the closed end of the outer shaft.

15 Fig. 17 shows a detail partial top view of the closed end of the outer shaft with the inner tip and actuator bar in the closed position.

Fig. 18 shows a detail partial top view of the closed end of the outer shaft with the inner tip and actuator bar in the open position.

20 Fig. 19 shows an exploded partial view of an alternative embodiment of an instrument utilizing two coppers working in conjunction with two actuator bars.

Fig. 20 shows a detail partial assembled top view of the dual actuator embodiment of Fig. 19.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to the drawings in detail wherein like elements are indicated by like numerals, there is shown in Fig. 1 the surgical tool 27 having a hand grip 48 connected to an outer shaft 50. Fig. 2 shows a view of the instrument 25 in the open position 95, or where the inner tip 100 is in a position farthest away from the outer shaft 50 and the actuator bar 176 actuation end 180 is farthest from the outer shaft 50. Fig. 3 shows the instrument 25 in the closed position 96, where the inner tip 100 is

5 contained primarily within the closed end 54 of outer shaft 50 and the actuator bar 176 actuation end 180 is closest to the outer shaft 50. Other means for translating the actuation bar 176 could include threads, triggers, ratchets, electrical motors and others providing a translational movement to the actuator bar 176. This disclosure is not meant to limit these means only to the hand grip 48 as shown.

10 The inner tip 100, outer shaft 50, and actuator bar 176 are, in a preferred embodiment, machined from stainless steel. Other materials, both ferrous and non-ferrous could be substituted.

15 The inner tip 100 rotates relative to the outer shaft 50 around the tip axle 56, Fig. 2. The tip axle 56 is inserted through the axle hole 60 of the outer shaft 50, Fig. 6, and the tip hole 106 of the inner tip 100, Fig. 8. An actuator axle 44, Figs 2,3, can be used to restrain the actuator bar 176, to movement in one dimension. The actuator axle 44 is inserted through both sides of the outer shaft 50 through shaft hole 42 and through a slot 170, Fig. 12. The rotation of the inner tip 100 is achieved through the translation of the actuator bar 176 relative to the outer shaft 50 within a trough-like opening 68, Fig. 16.

20 The actuator bar 176 receives translational motion from the rotational movement of the actuator lever 46 relative to the hand grip 48 Fig. 1, or other means for translating the actuator bar 176. The actuator bar 176 engages the inner tip 100 with the tip end 178 via a radial ridge 182 having an upper surface 184 and a lower surface 186 which is wider than the upper surface 184, Figs 13 & 15. A preferred embodiment has a ratio of the surface area of the upper surface 184 to the surface area of the lower surface 186 of less than one. The lower surface 186 has as a maximum dimension corresponding to the width of the actuator bar 176. In other words, in a preferred embodiment, the width of the lower surface 186 is equal to or less than the width of the actuator bar 176.

25 30 The radial ridge 182 of the actuation bar 176, Fig. 15, engages the

5

10

inner tip 100 curved slot 108, Figs. 9,10 which has a first surface 110 corresponding in size to the upper surface 184 and a second surface 112 corresponding in size to the lower surface 186, Figs. 9,10,12. The ratio of the first surface 110 area to the second surface 112 area in a preferred embodiment is less than one. When the actuator end 180 moves away from the outer shaft 50, the upper surface 184 engages the first surface 110, causing the inner tip 100 to rotate around tip axle 56 to the open position 95. When the actuator end 180 moves towards the outer shaft 50, the lower surface 186 engages the second surface 112, causing the inner tip 100 to rotate around tip axle 56 to the closed position 96.

This arrangement provides a maximum surface area and therefore less stress between the inner tip 100 and the actuator bar 176 when the instrument 25 is moved from the open position 95 to the closed position 96, Figs. 1, 2. The actuation of the actuator bar 176 is performed on the actuation end 180 by any actuation means commonly known in the art of which the hand grip 48 is but one embodiment. Other methods for providing translational movement to the actuator bar 176 could be utilized.

15

20

25

30

This larger surface area for the interface between the inner tip 100 and actuator bar 176 is further provided by the transition 190 of the actuator bar 176, Figs. 13,17 & 18. The transition 190 can be described as a shifting of the longitudinal axis of the actuator bar 176 near the tip end 178. Fig. 17 shows a longitudinal axis 75 and an offset axis 78 where the offset axis 78 is shifted at a transition 190 a predetermined distance 80, Fig. 17. In a preferred embodiment, the offset axis 78 is shifted a distance in the range of 20% - 75% of the width of the actuator. The shifting of the offset axis 78 occurs over a predetermined distance or shift distance 192. In a preferred embodiment, the shift distance 192 occurs over a maximum distance of two times the width 168 of the actuator bar 176. Fig. 13 shows a center 188 of the upper surface 1984. Also shown is a transition location 194. This is the location on the length of the

actuator bar 176 where the transition 190 occurs. In a preferred embodiment, the transition location 194 occurs within a maximum of four times the width 168 of the actuator bar 176 from the center 188. While this particular embodiment shows radii in the actuator bar 176 affecting the offset axis 78, other configurations could be utilized to shift the offset axis 78 such as linear transitions, steps and various sized radii.

The use of the transition 190 also allows the actuator bar 176 to maintain a constant width 168 along the entire length of the actuator bar 176. There is no necking down of the width 168 of the actuator bar 176 near the tip end 178.

The transition 190 allows the actuator bar 176 to engage the inner tip 100 in an offset position, this allows a greater potential contact surface interface between the actuator bar 176 and the inner tip 100. This results in larger surface areas of the second surface 112 and the lower surface 186, then could be provided if the actuator bar 176 had no transition 190. The larger surface areas of second surface 112 and lower surface 186 is especially important. Much of the prior art utilizes a connection between a straight actuator which necks down in height and width at the biting tip. The art is limited in the contact surface area that is possible between the components, because the actuator fits within the width of the biting tip.

In addition, the transition 190 allows the radial ridge 182 to engage the curved slot 108 of the inner tip 100 from the open side 114. This is a significant advantage in that the curved slot 108 with first surface 110 and second surface 112 can be machined from the open side 114 of the inner tip 100. The machining of curved slot 108 from the open side 114 provides an increased cost savings over machining from the connected end 102 as is done in the prior art. The access from the open side 114 decreases the complexity of cutting the curved slot 108. The nature of the relative openness of the curved slot 108 engagement with the radial ridge 182 makes

access for cleaning the instrument 25 easier and safer in that it is easier to brush and penetrate the interface of the actuator bar 176 and the inner tip 100. The access to the open side 114 is greater than the prior art because the curved slot 108 is machined from the side as opposed to the connected end 102.

When the actuator bar 176 engages the inner tip 100 to move from the open position 95 to the closed position 96, this is when the highest force on these components is encountered. In moving from the open position 95 to the closed position 96 the tissue (not shown) that is required to be removed or grasped is between the inner tip 100 biting edge 105 and the outer shaft 50 die edge 58. The highest forces and therefor the highest stresses on the instrument occur at this time and this is when the instrument is most likely to fail, while a piece of very hard tissue is being lacerated or grasped for removal.

Because there is an open side 114 on the tip 100, when the actuator bar 176 is contained within the outer shaft 50 and engaged with the inner tip 100, the actuator bar 176 tip end 178 flat side 174 is adjacent the tip opening 62 actuator edge 64, Fig. 7. While the inner tip 100 first side 116 is adjacent the tip edge 66 and the second side 118 is adjacent the depressed side 172 of the tip end 178, Fig. 13.

The interaction of the actuator bar 176, inner tip 100 and tip opening 62 results in three pair of contact surfaces between the components. In other words, frictional losses occur between flat side 174 and actuator edge 64, first side 116 and tip edge 66, and second side 118 and depressed side 172, best shown Fig. 17. These three pair of contact surfaces are a reduction as compared to the prior art which generally has 4 pair of contact surfaces.

A reduction in contact surfaces results in less potential friction from the operation of the components due to rough surfaces and tolerance build up and also less wear. This reduction in frictional losses means

more of the force applied to the instrument 25 is available for lacerating or grasping action between the biting edge 105 and die edge 58. The instrument 25 is subject to less stress for the same amount of actuation and therefore there is less probability of failure or premature wearing.

5 To summarize, the transition 190 of the actuator bar 176 allows greater contact areas between the components, decreases the cost of machining, increases the accuracy of the machining such that a smoother action of the components occurs, decreases the number of contact surfaces between the components to three as opposed to the four found in the prior 10 art decreasing the likelihood of hidden contaminants and promotes cleaning of the interface between the components.

Operation:

Assuming the instrument 25 begins in the closed position 96, the operator engages the hand grip 48 and rotates the actuator lever 46 away from the hand grip 48. This rotational movement results in a translation of the actuator bar 176 towards the hand grip 48. The inner tip 100 connected end 102 is engaged with the tip end 178 and translation of the actuator bar 176 causes the inner tip 100 to rotate around a tip axle 56 which interconnects the inner tip 100 and outer shaft 50. The inner tip 100 opens to a position between the closed position 96 and the open position 95, Figs. 1 & 2.

The interconnection between the inner tip 100 and the actuator bar 176 occurs between the first surface 100 of curved slot 108 and the upper surface 184 of radial ridge 182.

When the user desires to return the surgical tool 27 to the closed position 96, the actuator lever 46 is rotated towards the hand grip 48 reversing the translation of the actuator bar 176.

The lower surface 186 of the radial ridge 182 engages the second surface 112 of curved slot 108 causing inner tip 100 to rotate about tip

axle 56 relative to the outer shaft 50. The biting edge 105 can then grasp or lacerate tissue or another object between the biting edge 105 and die edge 58.

5

Alternative Embodiment

Figs 19 and 20 show an alternative embodiment of an instrument 25. This embodiment has two actuator bars 225a, 225b which are mirror images of one another contained within a retainer 250. The actuator bars 225a, 225b also have transitions 270a, 270b with second ends 290a, 290b for engagement with cuppers 300a, 300b for grasping, lacerating or cupping another object. While this embodiment and the one described prior, generally show the transitions and offset axis in a single plane generally horizontal, other offset directions could be utilized. This may be particularly useful in the embodiment shown in Figs 19 & 20. In this embodiment, the direction of the offset axis could be vertical either above or below the longitudinal axis, thereby providing for some mechanical advantage to, for example, the cuppers 300a, 300b.

Fig. 20 shows the actuator bars 225a,b having a longitudinal axis 306a,b with transitions 270a,b resulting in offset axis 308a,b where the offset axis 308a,b are offset a distance 310 over a shift distance 312. The distance 310 is in the range of 20% - 70% of the width of the actuator bar 225a,b while the length or shift distance 312 over which this occurs is a maximum of two times the width of the actuator bar 225a,b.

The second ends 290a, 290b have push surfaces 292a, 292b for engagement with cuppers 300a, 300b first surfaces 302a, 302b (not shown) for biasing the cuppers 300a, 300b to the closed position 235, (not shown)

The second end 290a, 290b also have pull surfaces 294a (not shown), 290b for engagement with second surface 304a, 304b (not shown) to bias the cuppers 300a, 300b to an open configuration, Fig. 19.

25

30

It will now be apparent to those skilled in the art that other

PATENT
DOCKET: MMED01
EXPRESS MAIL: E1033869267US

embodiments, improvements, details and uses can be made consistent with the letter and spirit of the foregoing disclosure and within the scope of this patent, which is limited only by the following claims, construed in accordance with the patent law, including the doctrine of equivalents.

CLAIMS

I claim:

1. A tool for lacerating or grasping other objects, the tool comprising:

5 an outer shaft with an open end and a closed end and an opening located parallel to a longitudinal axis extending from the open end to near the closed end;

10 an actuator bar with a tip end and an actuation end and a consistent width, a transition near the tip end resulting in the tip end having a longitudinal offset axis displaced from the longitudinal axis in a single plane, the actuation end engaging a translation means for translation of the actuator bar relative to the outer shaft, a radial ridge located near the tip end for engagement with an inner tip; and

15 the inner tip rotationally engaged to the outer shaft near the closed end and the inner tip having a connected end, the inner tip interengaging the radial ridge with a curved slot located on an open side where translation of the actuator bar relative to the outer shaft results in rotation of the inner tip relative to the outer shaft.

2. The tool of claim 1, wherein:

25 the translation means is a hand grip.

3. The tool of claim 1, further comprising:

30 the outer shaft having a die edge near the closed end and the

inner tip having a biting edge, the die edge and biting edge for interacting with objects locatable between the biting edge and the die edge.

5 4. The tool of claim 1, wherein:

the transition occurs over a shift distance not exceeding two times the width of the actuator bar.

10 5. The tool of claim 1, wherein:

the offset axis is displaced from the longitudinal axis a distance of 20% - 75% of the width of the actuator bar.

15 6. The tool of claim 1, further comprising:

the radial ridge having an upper surface smaller in area than a lower surface and the curved slot having a first surface smaller in area than a lower surface.

20 7. The tool of claim 1, further comprising:

the transition is located in the actuator bar within a transition location of four times the width of the actuator bar from a center.

25

8. A tool for interacting with objects, the tool comprising:

30

an outer shaft with an open end and a closed end and a trough-like opening located parallel to a longitudinal axis extending from the

open end to near the closed end, a shaft hole and an axle hole located perpendicular to the longitudinal axis through the outer shaft;

5 an actuator bar with a tip end and an actuation end with a slot located therebetween and a consistent width, a transition near the tip end resulting in the tip end having a longitudinal offset axis displaced from the longitudinal axis in a single plane, the actuation end engaging a translation means for translation of the actuator bar relative to the outer shaft, a radial ridge located near the tip end for engagement with an inner tip; and

SEARCHED - INDEXED - MAILED - FILED

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405

the transition is located in the actuator bar within a transition location of four times the width of the actuator bar from a center.

5 12. The tool of claim 8, further comprising:

the radial ridge having an upper surface smaller in area than a lower surface and the curved slot having a first surface smaller in area than a lower surface.

10

13. The tool of claim 8, wherein:

the translation means is a hand grip.

14. The tool of claim 8, further comprising:

the outer shaft having a die edge near the closed end and the inner tip having a biting edge, the die edge and biting edge for interacting with objects locatable between the biting edge and the die edge.

15. A tool for interacting with objects, the tool comprising:

an outer shaft with an open end, a closed end and a trough-like opening located parallel to a longitudinal axis extending from the open end to near the closed end, a shaft hole and an axle hole located perpendicular to the longitudinal axis through the outer shaft, a die edge circumscribing a tip opening near the closed end for interacting with an inner tip;

25

30

an actuator bar with a tip end and an actuation end having a slot perpendicular to a longitudinal axis there between, the actuator bar having a consistent width, a transition near the tip end resulting in the tip end having a longitudinal offset axis displaced from the longitudinal axis in a single plane, the actuation end engaging a translation means for translation of the actuator bar relative to the outer shaft in a direction parallel to the longitudinal axis, a radial ridge located near the tip end for engagement with the inner tip; and

5

the inner tip rotatably attached to the outer shaft near the closed end by a tip axle through the axle hole, the inner tip locatable within a tip opening in a closed position, the inner tip having a connected end opposite a biting end, the inner tip interengaging the radial ridge with a curved slot located on an open side such that translation of the actuator bar relative to the outer shaft results in rotation of the inner tip relative to the outer shaft.

10

20 16. The tool of claim 15, further comprising:

25 the radial ridge having an upper surface smaller in area than a lower surface and the curved slot having a first surface smaller in area than a lower surface.

30

17. the tool of claim 15, wherein:

the offset axis is displaced from the longitudinal axis a distance of 20% - 75% of the width of the actuator bar.

30

18. The tool of claim 15, wherein:

the transition occurs over a shift distance not exceeding two times the width of the actuator bar.

5

19. The tool of claim 15, further comprising:

the transition is located in the actuator bar within a transition location of four times the width of the actuator bar from a center.

10

20. The tool of claim 15, wherein:

the translation means is a hand grip.

15

21. The tool of claim 15, further comprising:

the outer shaft having a die edge near the closed end and the inner tip having a biting edge, the die edge and biting edge for interacting with objects locatable between the biting edge and the die edge.

20

ABSTRACT OF THE DISCLOSURE

5

A tool for grasping or cutting with an offset jaw actuator is shown. The offset provides a consistent width to the actuator discouraging buckling under heavy loading situations. The offset also provides for greater contact area between the actuator and inner tip. The interface of the actuator with the inner tip is machined into the inner tip from the side resulting in an instrument that is easier and cheaper to manufacture and clean while retaining maximum strength for cutting or grasping.

Express; ETO 3386926745

Express: E1033869 26745

Fig 4

Fig 5

Express: ETO 3386926745

Express. ET0338C 926745

Express: 2103386926745

Fig 12

Express. E103386926745

Express: ETI03386926745

Fig 16

Express: E1033869267ns

Express: E1033869267us

Fig 18

Express: ETO 33869267US

Fig 19

Express: E103386926245

Fig 20

Express: E103386926745

COMBINED DECLARATION AND POWER OF ATTORNEY

As the below named inventor, I/We hereby declare that:

My residence, post office address and citizenship are as stated below next to my name, I believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention which has the following title:

Surgical Instrument with Offset Jaw Actuator

the specification of which:

XX is attached hereto,

 was filed on as

Application Serial No:

and was amended on (if applicable)

ACKNOWLEDGEMENT OF REVIEW OF PAPERS AND DUTY OF CANDOR

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above. I acknowledge a duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, Section 1.56(a).

PRIORITY CLAIM - SECTION 119

I hereby claim foreign priority benefits under Title 35, United States Code, Section 119 of any foreign application(s) for patent or inventor's certificate or any PCT International application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application(s) for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by me on the same subject matter having a filing date before that of the application(s) of which priority is claimed.

XX no such applications have been filed.

 such applications have been filed as follows:

Country:	App. Number:	Day/Month/Year:	Priority Claimed:
<u> </u>	<u> </u>	<u> </u>	Yes <u> </u> No <u> </u>
<u> </u>	<u> </u>	<u> </u>	Yes <u> </u> No <u> </u>

PRIORITY CLAIM - SECTION 120

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of

EXPRESS MAIL: *EZ037869267015*

Title 35, United States Code, Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

XX no such applications have been filed.

 such applications have been filed as follows:

Application Serial No: Filing Date: Patented, Pending, Abandoned:

DECLARATION

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Title 18, United States Code, Section 1001, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY

As the named inventor(s), I/We, hereby appoint the following attorney to prosecute this application and transact all business in the Patent and Trademark Office connected therewith. Direct all correspondence and telephone calls to:

Ronald R. Kilponen
65 Plymouth Road
Bellingham, MA.
02019-1242

Telephone: 508/966-4137 Registration No: 37,656

SIGNATURES

Full name of sole or first inventor Norman J. LeMaire III

Inventors Signature Norman J. LeMaire III

Date 1-29-98 Country of Citizenship United States

Residence 595 Pleasant Street, Raynham, MA. 02767

Post Office Address Same

Full name of second joint inventor William R. Hanna, Jr.

Inventors Signature William R. Hanna, Jr.

Date 1-29-98 Country of Citizenship United States

Residence 5500 N. Main Street, Bldg. 15 Apt 209, Fall River, MA. 02720

Post Office Address Same

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

First/Sole Applicant or Patentee: Norman J. LeMaire III
Joint/Second Applicant or Patentee: William R. Hanna, Jr.
Serial or Patent No: _____
Filed or Issued: Herewith
Title: Surgical Instrument with Offset Jaw Actuator

**VERIFIED STATEMENT CLAIMING SMALL ENTITY STATUS
UNDER 37 CFR 1.9(f) AND 1.27(b) - INDEPENDENT INVENTOR**

As a below named inventor, I hereby declare that I qualify as an independent inventor as defined in 37 CFR 1.9(c) for purposes of paying reduced fees under Section 41(a) and (b) of Title 35, United States Code, to the Patent and Trademark Office with regard to the above identified invention described in:

- the specification filed herewith.
 application identified above.
 the patent identified above.
 the Provisional Patent application filed herewith

I have not assigned, granted, conveyed or licensed and am under no obligation under contract or law to assign, grant, convey or license, any rights in the invention to any person who could not be classified as an independent inventor under 37 CFR 1.9(c) if that person had made the invention, or to any concern which would not qualify as a small business concern under 37 CFR 1.9(d) or a nonprofit organization under 37 CFR 1.9(e). Each person concern or organization to which I have assigned, granted, conveyed, or licensed or am under an obligation under contract or law to assign, grant, convey, or license any rights in the invention is listed below:

- no such person, concern, or organization
 persons, concerns or organizations listed below

Full Name: _____

Address: _____

Individual Small business Concern Nonprofit Organization

I acknowledge the duty to file, in this application for patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28(b)).

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

Full name of sole/first Inventor Norman J. LeMaire III
Signature of sole/first Inventor Norman J. LeMaire III
Date of Signature 1-29-98

Full name of Second/Joint Inventor William R. Hanna, Jr.
Signature of Second/Joint Inventor William R. Hanna, Jr.
Date of Signature 1-29-98