МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Северо-Кавказский федеральный университет»

Кафедра инфокоммуникаций

От	чет по практи	ическому занят	гию №3.5
«Визуализа	ация данны	х с помощью	matplotlib»

по дисциплине «Теории распознавания образов»

Выполнил студент группы	ИВТ-б-о-21-1
Харченко Б.Р. « »	20г.
Подпись студента	
Работа защищена « »	20r.
Проверил Воронкин Р.А.	
	(подпись)

1. Создать общедоступный репозиторий на GitHub, в котором будет использована лицензия МІТ и выбранный Вами язык программирования (выбор языка программирования будет доступен после установки флажка Add .gitignore).

2. Проработать примеры лабораторной работы.

Создать ноутбук, в котором выполнить решение трех вычислительных задач (например, задачи из области физики, экономики, математики, статистики и т. д.) требующих построения графика (линейного, кругового, столбчатой), условия которых предварительно необходимо согласовать с преподавателем.

```
Вычисляем время падения для сферических частиц
    time_sphere = np.linspace(0, 2, 100) # Время от 0 до 2 секунды с равными интервалами
    height_sphere = initial_velocity_sphere * time_sphere - 0.5 * 9.8 * time_sphere**2
Вычисляем время падения для плоских пластинок
    time_plate = np.linspace(0, 2, 100) # Время от 0 до 2 секунды с равными интервалами
    height_plate = initial_velocity_plate * time_plate - 0.5 * 9.8 * time_plate**2
    plt.plot(time_sphere, height_sphere, label='Сферические частицы')
    plt.plot(time_plate, height_plate, label='Плоские пластинки')
    plt.xlabel('Время, сек')
    plt.ylabel('Высота, м')
    plt.title('Движение налетающих объектов')
    plt.legend()
    plt.grid(True)
    plt.show()
             Движение налетающих объектов
          Сферические частицы
          Плоские пластинки
   10
 Высота, м
```

2.00

0.00

0.25 0.50 0.75 1.00 1.25 1.50 1.75

Время, сек

```
Среднее количество посещений кардио тренировок: 97.5
Среднее количество посещений силовых тренировок: 125.0
Среднее количество посещений групповых тренировок: 95.0
```

Выводим график

```
labels = ['Неделя 1', 'Неделя 2', 'Неделя 3', 'Неделя 4']
x = np.arange(len(labels))
width = 0.3

fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, cardio_visits, width, label='Кардио')
rects2 = ax.bar(x + width/2, strength_visits, width, label='Силовые')
rects3 = ax.bar(x + width*3/2, group_visits, width, label='Групповые')

ax.set_ylabel('Количество посещений')
ax.set_xlabel('Недели')
ax.set_title('Посещаемость тренировок за месяц')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()

plt.show()
```



```
Задаём параметры
   pizza_types = ['Маргарита', 'Пепперони', 'Гавайская']
   orders = [120, 90, 150]
   explode = (0.1, 0.1, 0.15)
                                                                                  a
                                                                                   й
Выводим диаграмму
                                                                                  Т
   fig, ax = plt.subplots()
                                                                                   И
   ax.axis("equal")
                                                                                   К
   ax.set_title('Предпочтения клиентов по типам пиццы')
                                                                                  a
   plt.show()
                                                                                  0
          25.0%
                                                                                  Л
```

бо изображение в сети Интернет. Создать ноутбук, в котором будет отображено выбранное изображение средствами библиотеки matplotlib по URL из сети Интернет.

Вопросы для защиты работы

1. Как выполнить построение линейного графика спомощью matplotlib?

Для построения линейного графика используется функция plot(), со следующей сигнатурой:

```
plot([x], y, [fmt], *, data=None, **kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
```

2. Как выполнить заливку области между графиком и осью? Между двумя графиками?

```
plt.plot(x, y, c = "r")
plt.fill_between(x, y)

100
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00
```

3. Как выполнить выборочную заливку, котораяудовлетворяет некоторому условию?

```
\label{eq:plt.plot} \begin{split} & \text{plt.plot}(x,\ y,\ c="r") \\ & \text{plt.fill\_between}(x,\ y,\ \text{where}=(y\,>\,0.75)\ |\ (y\,<\,-0.75)) \end{split}
```


4. Как выполнить двухцветную заливку?

```
In [14]: plt.plot(x, y, c="r")
  plt.grid()

plt.fill_between(x, y, where=y>=0, color="g", alpha=0.3)
  plt.fill_between(x, y, where=y<=0, color="r", alpha=0.3)</pre>
```

Out[14]: <matplotlib.collections.PolyCollection at 0x1b7583e04f0>

5. Как выполнить маркировку графиков?

```
x = [1, 2, 3, 4, 5, 6, 7]
y = [7, 6, 5, 4, 5, 6, 7]
plt.plot(x, y, marker="o", c="g")
```


6. Как выполнить обрезку графиков?

```
s = mp.arange(0.0, 5, 0.01)
y = mp.cos(x * mp.n)
y_masked = mp.ma.masked_where(y = -0.1, y)
plt.ylim(-1, 1)
plt.plot(x, y_masked, limewidth=3)
```


7. Как построить ступенчатый график? В чемособенность ступенчатого графика?

8. Как построить стековый график? В чем особенность стекового графика?

Для построения стекового графика используется функция stackplot(). Суть его в том, что графики отображаются друг над другом, и каждый следующий является суммой предыдущего и заданного набора данных.

30

9. Как построить stem-график? В чем особенность stem-графика? Визуально этот график выглядит как набор линий от точки с координатами (x, y) до базовой линии, в верхней точке ставится маркер.

10. Как построить точечный график? В чем особенность точечного графика?

Для отображения точечного графика предназначена функция scatter(). В простейшем виде точечный график можно получить передав функции scatter() наборы точек для x, y координат.

11. Как осуществляется построение столбчатых диаграмм с помощью matplotlib?

12. Что такое групповая столбчатая диаграмма? Что такоестолбчатая диаграмма с errorbar элементом?

```
cat_par = [f"P[i]" for i in range(5)]

g1 = [10, 21, 34, 12, 27]
g2 = [17, 15, 25, 21, 26]

width = 0.3

x = np.arange(len(cat_par))

fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, g1, width, label='g1')
rects2 = ax.bar(x + width/2, g2, width, label='g2')

ax.set_title('npwiep rpynnono@ Amarpausus')
ax.set_txtick(x)
ax.set_xticklabels(cat_par)

ax.legend()
```


Errorbar элемент позволяет задать величину ошибки для каждого элемента графика. Для этого используются параметры хегг, yerr и ecolor (для задания цвета).

13. Как выполнить построение круговой диаграммысредствами matplotlib?

14. Что такое цветовая карта? Как осуществляется работа сцветовыми картами в matplotlib?

Цветовая карта представляет собой подготовленный набор цветов, который хорошо подходит для визуализации того или иного набора данных.

15. Как отобразить изображение средствами matplotlib?

Рассмотрим две функции для построения цветовой сетки: imshow() и pcolormesh().

```
from FIL import Image
import requests

from io import BytesIO

response = requests.get('https://matplotlib.org/_static/logoZ.png')
img = Image.open(BytesIO(response.content))

plt.imshow(img)
```

В результате получим изображение поготипа Motplotlib.


```
np.random.seed(123)

data = np.random.rand(5, 7)
plt.pcolormesh(data, cmap='plasma', edgecolors='k', shading='flat')
```


16. Как отобразить тепловую карту средствами matplotlib?

```
np.random.seed(123)

data = np.random.rand(5, 7)
plt.pcolormesh(data, cmap='plasma', edgecolors="k", shading='flat')
```