University of Wisconsin-Madison Department of Economics

Econ 703 Prof. R. Deneckere Fall 2004

Homework #4

- 1. Is every point of every open set $E \subset \mathbb{R}^2$ a limit point of E? Answer the same question for closed sets in \mathbb{R}^2 .
- 2. Let $B \subset \mathbb{R}^2$ be as follows: $B = \{(x, y) \in \mathbb{R}^2 : y = \sin \frac{1}{x}, x > 0\} \cup \{(0, 0)\}$ Is B closed? open? bounded? compact?
- 3. Let (X,d) be a metric space. Prove the following statement: $A \subset X$ is closed iff for every sequence $\{x_n\} \subset A$, $x_n \to x$ implies $x \in A$.
- 4. Let (X,d) be a metric space, and let $A \subset X$. Prove that A is closed if and only if it contains all of its limit points.