Two-Qubit Dynamics with Josephson Qubits

John Meade Dylan Funk

April 2, 2015

History

History

Topic of this slide

History

Topic of this slide

Figure : A simple caption

Review

Basic Idea

The Circuit

Figure: http://www.nature.com/nature/journal/v421/n6925/full/nature01365.html

Theory

Hamiltonian

Parameter Measurements

Charging Diagram of Single-Qubit Case

Figure: http://www.nature.com/nature/journal/v398/n6730/abs/398786a0.html

Charging Diagram Level Curves

Figure: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.193.5098&rep=rep1&type=pdf

Charging Diagram of Two-Qubit Case

Figure: http://www.nature.com/nature/journal/v421/n6925/full/nature01365.html

Charging-Energy Diagram

Figure: http://qudev.ethz.ch/content/courses/QSIT09/pdfs/Yamamoto2003.pdf

State Readout

Hamiltonian

$$H = \begin{bmatrix} E_{00} & -\frac{1}{2}E_{J1} & -\frac{1}{2}E_{J2} & 0\\ -\frac{1}{2}E_{J1} & E_{10} & 0 & -\frac{1}{2}E_{J2}\\ -\frac{1}{2}E_{J2} & 0 & E_{01} & -\frac{1}{2}E_{J1}\\ 0 & -\frac{1}{2}E_{J2} & -\frac{1}{2}E_{J1} & E_{11} \end{bmatrix}$$

Where...

$$E_{n1n2} = E_{c1}(n_{g1} - n_1)^2 + E_{c2}(n_{g2} - n_2)^2 + E_m(n_{g1} - n_1)(n_{g2} - n_2)$$

- \triangleright E_{Ji} is the Josephson energy of the i^{th} box
- ▶ $E_{c1,c2} = 4e^2 C_{\Sigma 2,\Sigma 1}/2(C_{\Sigma 1}C_{\Sigma 2} C_m^2)$ are the effective Cooper pair charging energies
- $ightharpoonup C_{\Sigma i}$ is the sum of all capacitances connected to the i^{th} island
- ▶ $n_{g1,g2} = (C_{g1,g2}V_{g1,g2} + C_pV_p)/2e$ is the charge, indiced by the gate and pulse voltages, on the qubits
- $E_m = 4e^2 C_m / (C_{\Sigma 1} C_{\Sigma 2} C_m^2)$

Frequency Responces

Figure: http://www.nature.com/nature/journal/v421/n6925/full/nature01365.html

Evapouration (Deposition)

Electron Beam Lithography (EBL)

Fabrication Techniques Etching

Figure: http://www.mrsec.harvard.edu/education/ap298r2004/Erli%20chen%20Fabrication%20III%20-%20Etching.pdf

Lift-off

Figure: http://en.wikipedia.org/wiki/Lift-off_%28microtechnology%29

SEM image of a SQUID qubit

Figure: http://www.nature.com/nature/journal/v421/n6925/full/nature01365.html

THE END

THE END

THE END

- THE END
- ► THE END
- THE END
- ► THE END.

Reference Papers

 $\label{lem:http://www.nature.com/nature/journal/v421/n6925/full/nature01365.html $$ $$ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.193.5098\&rep=rep1&type=pdf (Figures cited individually) $$$