a neurocognitive graph theoretical approach to understanding the relationship between minds and brains

joshua t vogelstein, r jacob vogelstein, carey e priebe

johns hopkins university

march 11th, 2010

motivation

- connectomes and neural circuits are all the rage
- a natural question is: what do we do with them?
- we aim to construct a rigorous statistical framework that facilitates the elucidation of the causal relationship between minds, M, and brains, B
- this means proposing a model, P[B, M], that characterizes this relationship, and allows us to develop algorithms to perform various inference tasks

human MR connectome

c. elegans electron microscopy (em) chemical connectome

desiderata

model desiderata

- can account for data in a way that is interpretable
- sufficiently generalizable
- latent features are identifiable

inference algorithm desiderata

- universal consistency, meaning that it will converge to the optimal result, for any P[B, M], given infinite data
- rapid convergence rates

a proposal: brains as random graphs

- a random brain-graph, B = (V, E) is defined by a set of vertices V and edges between the vertices E
- a vertex may correspond to any "neural unit", including neurons, voxels, columns, regions
- an edge may correspond to any connection between neural units, including chemical and electrical synapses, functional strength, white matter tracts, etc.
- both vertices and edges may be endowed with (potentially latent) features, including receptive fields, probability of release, cell-type, spatial location, etc.
- observed brain-graphs are random because they are samples from some model

why random graph models

- most of probability and statistics deals with random variables, random vectors, or random point-processes (e.g., spike trains)
- random graph theory provides a rigorous statistical framework for performing inference on objects that are characterized by graphs
- our perspective is that each observed neural circuit or connectome is a sample from a random brain-graph model
- given such models, we can infer all sorts of fun stuff

the formal setting

- let b be a randomly sampled brain-graph, B = (V, E)
- let *m* be a randomly sampled mental property, *M* (e.g., intelligence)
- given a novel brain-graph, b, compute the maximum a posteriori associated mental property, m*:

$$m^* = \operatorname*{argmax}_{m} P[m|b] \tag{1}$$

where P[m|b] is the posterior

• the optimal classifier g^* provides this:

$$m^* = g^*(b) \tag{2}$$

the formal approach

- since neither the model P[B, M] nor the optimal classifier g^* are known, one must be estimated from the data
- let $(b_1, m_1), \ldots, (b_n, m_n) \stackrel{iid}{\sim} P[B, M]$ be observed pairs sampled iid from the model
- given these pairs, we can build a classifier to estimate the optimal one, by minimizing the misclassification rate:

$$\widehat{g} = \underset{g}{\operatorname{argmin}} P[g(b) \neq m | (b_1, m_1), \dots, (b_n, m_n)]$$
 (3)

 then, for a new observed brain, b, we use our estimated classifier to predict the most likely mental property, m:

$$\widehat{m} = \widehat{g}(b; (b_1, m_1), \dots, (b_n, m_n)) \tag{4}$$

bayes plug-in classifier is universally consistent

• for each b_i , estimate the posterior using the Bayes plug-in,

$$\widehat{P}[M = m|B = b] = \frac{1}{n} \sum_{i=1}^{n} \delta\{m_i = m|B = b_i\}$$
 (5)

where n is the number of training samples, and $\delta\{\cdot\}=1$ when the argument is true, and zero otherwise

- note that if $b \neq b_i$ for any b_i , then the prior is optimal
- so this would work in the limit, but converges very slowly [2]

k_n nearest neighbor is universally consistent with faster convergence rates (often)

- k_n -nearest neighbor (knn) algorithm is known to be universally consistent (u.c.) for vectors [2]
- we prove that knn is u.c. for graphs [3]
- proof of faster convergence rates under certain very lax conditions is in preparation
- the 1-nearest neighbor algorithm for graphs proceeds as follows:
 - compute the distance between b and each b_i , $d_i = d(b, b_i)$
 - let $j = \operatorname{argmin}_i d_i$, and $m = m_i$
- for k > 1, find k smallest d_i 's, and let m be whichever class is the plurality/majority
- we let $d(x,y) = (\sum_{ij} (x_{ij} y_{ij})^2)^{1/2}$ be the Froebenius norm

application to em data from c. elegans

- the c. elegans connectome has been determined for approximately 1 worm [1]
- the wild type c. elegans connectome is believed to be relatively stereotyped [1]
- odor evoked behavior is believed to be determined by synapses between a small number of neurons [4]
- thus, we generated a simulation containing two distinct populations of c. elegans
- the intention is to be able to classify a new c. elegans into either wild type, m=0 or odor evoked behavior impaired, m=1

c. elegans electron microscopy (em) connectome [1]

application to MR data from humans

- diffusion MRI can be used to infer brain-graphs [5]
- various cognitive features have been linked to connectivity [5]
- we utilized custom software to infer labeled brain-graphs from n = 1 human
- we obtain mean FA for fibers connecting 70 labeled anatomical cortical regions [6]
- based on this, we generated a simulation containing two distinct populations of humans

from MR data to brain-graph

human diffusion MRI connectome

simulation details

- let A_{ij} indicate the number of chemical synapses or white matter tracts between neurons or neuroanatomical regions i and j
- let $0 < \eta \ll 1$ indicate a noise parameter
- let \mathcal{E} be the set of edges that differ between the two classes
- let n be the number of training samples
- sample $n_0 \sim \mathcal{U}(0,\ldots,n)$, and $n_1 = n n_0$
- let $C_{ij} \stackrel{iid}{\sim} \mathcal{U}(-lb, ub)$ for $(i, j) \in \mathcal{E}$, and $C_{ij} = 0$ for $(i, j) \notin \mathcal{E}$
- sample n_0 adjacency matrices from Poisson $(A_{ij} + \eta)$ to obtain our simulated wild type population
- sample n_1 adjacency matrices from Poisson $(A_{ij} + C_{ij})$ to obtain our simulated impaired population

main result: knn classifier converges on c. elegans data

 \widehat{L} is the misclassification rate

making convergence rates faster

- if simplifying assumptions about P[B,M] can be made without introducing much bias, but substantially reducing variance, then algorithms optimal given these assumptions will tend to converge faster [1]
- the edge independent approximation is poor, but often leads to improved results (called naïve bayes)
- \mathcal{E} is known, then one can define d_i as only the distance between the subgraphs induced by \mathcal{E}
- if *E* is unknown, it can be estimated from the data (incoherent subspace)
- if E is unknown, but it is known that all the edges within it share a common set of vertices, this knowledge can be utilized (coherent subspace)

secondary result: simplifying assumptions yield faster convergence rates

discussion

- unraveling the mind-brain relationship is a central tenet of contemporary neuroscience
- we introduce a coherent framework for quantifying this relationship utilizing the concept of random brain-graphs
- we prove the existence of a universally consistent classifier
- faster convergence rates come from simplifying assumptions that don't introduce much bias
- results on real data could lead to prognostics or other therapeutics
- brain-graph model fitting, model selection, etc., all seamlessly integrate with this approach
- applications abound

bibliography & acknowledgements

bibliography

- Varshney LR, et al. Structural Properties of the Caenorhabditis elegans Neuronal Network. http://arxiv.org/abs/0907.2373
- 2. Devroye L, Györfi L, Lugosi, G. A Probabilistic Theory of Pattern Recognition. Springer, 1996.
- Vogelstein JT, Vogelstein RJ, Priebe CE. Are mental properties supervenient on brain properties? http://arxiv.org/abs/0912.1672
- 4. Chalasani SH, et al. Dissecting a circuit for olfactory behaviour in caenorhabditis elegans. Nature, 2007.
- Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009.
- Desikan Rs, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 2006.

acknowledgements

This work was supported in part by the NSA Research Program in Applied Neuroscience