Geometric Search: Partition Trees: Sofar: 1-dimensional keys -Tree structure based on - Nearest neighbors - P - Multi-dimensional data hierarchical space partition - Range sear ching - Applications: -Spatial databases + maps - Each node is associated w. - Robotics + Auton Systems a region - cell. - Vision/Graphics/Games - Each internal node stores a - Point Location -Intersection Search splitter - subdivides the cell - Machine Learning Quadtrees €
 Kd-Trees I - External noder store pts. 9? Multi-Dim vs. 1-dim Search? Point: A d-vector in Rd P= (p,,...,pd) pie R Similarities: -Tree structure -Balance O(logn) Representations: - Internal nodes -split class Point { float[] coord // coords -Scalars: Real numbers – External nodes – data Differences: for coordinates, etc. Point (int d) coord = new float [d] - No(natural) total order - Need other ways to discriminate int getDim() -- 7 coord. length - Points: p= (p1,..., p3) float get (inti) > coord[i] in real d-dim space IR + separate - Tree rotation may not be 200 82 others: equality, distance to string... - Other geom objects: Built from these meaningful

Point Quadtree: History: Bentley 1975 Quadtrees: (abstractly) - Called it 2-d tree (R2) - Each internal node stores -Partition trees 3-d tree (R3) a point - Cell: Axis-parallel rectangle - Cell is split by horiz. + vertic. [AABB-"Axis-aligned bounding box] -In short kd-tree (any dim) lines through point split NW NE NW NE SW SE - Where/which direction to split? - Splitter: Subdivides cell into (5,4)(5,4)four (gently 2°) kd-Tree: Binary variant of quadtree -splitter: Horiz. or vertic. line (2,2) (7,3) (7,3)(2,2) in 2-3 (orthogonal plane ow.) (4,1) Quadtrees & -cell: Still AABB (4,1) left: left/below Kd-Trees I right: right/ Quadtrees-Analysis Find/Pt Location: - Numerous variants! Given a guery point q, is it in tree, and if not PR, PMR, QR, QX, ... see Sameti book - Popular in 2-d apps which leaf cell contains (in 3-1, octtrees) Each external node corresps. to cell of final subdivision -Don't scale to high dim → Follow path trum root - out degree = 2d down (generalizing BST - What to do for higher dims?

Example: find(q) - find(q, root) Example: Kd-Tree Node: class KDNode } Point pt // splitting point | int cut Dim // cutting coordinate (3,1)KDNode left / low side (1,4)(5,5)KDNode right // high side (1,2) Analysis: Find runs in time O(h), where h is height of Quadtrees (Kd-Trees III Theorem: If pts are inserted in random order, expected height is O'(log n) Value find (Point q, KDNode p) }7 if (p == null) return null; else if (q == p.pt) all coords match? How do we choose cutting dim 1 - Descend the tree - Standard kd-tree: cycle - Compare query pt return p.value through them (eg. d=3: 1,2,3,1,2,3...) else it (p.onleft (q)) with node pt along based on tree depth return find (q, p. left) cut Dim class KDNode { - Optimized kd-tree: (Bentley) boolean onleft (Pointg) - Based on widest dimension return find (q, p. right) {return q[cutDim]<pt[cutDim]} of pts in cell.

	1*	. 1 1.
KDNode insert (Point x, Kd-Ir	ce Insertion:	Deletion:
Value v, KDNode p, int cd) { (Sir	oilant + + 1 nr)	-Descend path to leaf
value v, KDIVOJE p, Int CO/3	11/ar 10 219. 1213)	_ \
if (p == null) //fell out? \ 1 - De	cend tree until	-If found
P = New KDNode(x,v,cd) cutting>	find at - From - dunlicate	- leat node → just remove
		- internal node
to use	falling out < Z(Although	>> find replacement
else it $(p.pt == x)$	-> create new extended trees	, ,
else it (p.pt == x) L = rror! Duplicate key else if (p.onleft(x))	node extended trees	
1 1 1 f (2 2) 1 ft(2)		→ recur. delete
else if (p.onLeft(x))	> set cutting dim 47 standard	
L pileft=inscrt(x,v, pileft, (cd+1) % dim)	(trees)	replacement
1 P. L.C. AIMCHIM I		This is the hardest part.
	Juan Honge & L	See Latex notes.
	Xuarrees t	
(cd+1) % dim) 4	(d-Trees IV)	Rebalance by Rebuilding:
return p	A A A A D	- Rebuild subtrees
}	Tree heids	• • • • • • • • • • • • • • • • • • • •
(Example: insert (3,4)	height heigh	as with scapegoat trees
(4 Example: Mscr1(3,4)	Analysis:	- Ollogn) amortized
	Runtime: O(h)	- Find: O(logn)
	- ,	guaranteed. η
(3,4)	5,5) (an we balance the	tree? 11 differ
y protond (4,1)	5,5) can we balance the	THEO.
	Υ à , \sqcap	
(6,2) nodes	-Rotation does	b dia 16
(4,1) are null	(5,5) not make	at late late
יון יייין	· 1 1	
0 1 2 3 4 5 4 7 8	∑ U sense S	rotate (a) or? (a)
75	L ,	
	L	