Matematični izrazi in uporaba paketa beamer Matematičnih nalog ni treba reševati!

Fakulteta za matematiko in fiziko

Kratek pregled

Paket beamer

Paketa amsmath in amsfonts

Matematika, 1. del

Stolpci in slike

Paket beamer in tabele

Matematika, 2. del

Za prosojnice je značilna uporaba okolja frame, s katerim definiramo posamezno prosojnico,

Za prosojnice je značilna uporaba okolja frame, s katerim definiramo posamezno prosojnico, postopno odkrivanje prosojnic,

Za prosojnice je značilna uporaba okolja frame, s katerim definiramo posamezno prosojnico, postopno odkrivanje prosojnic, ter nekateri drugi ukazi, ki jih najdemo v paketu beamer.

Za prosojnice je značilna uporaba okolja frame, s katerim definiramo posamezno prosojnico, postopno odkrivanje prosojnic, ter nekateri drugi ukazi, ki jih najdemo v paketu beamer.

Primer

Verjetno ste že opazili, da za naslovno prosojnico niste uporabili ukaza maketitle, ampak ukaz titlepage.

Poudarjeni bloki

Opomba

Okolja za poudarjene bloke so block, exampleblock in alertblock.

Pozor!

Začetek poudarjenega bloka (ukaz begin) vedno sprejme dva parametra: okolje in naslov bloka. Drugi parameter (za naslov) je lahko prazen.

Izrek

Praštevil je neskončno mnogo.

Dokaz.

Denimo, da je praštevil končno mnogo.

► Naj bo *p* največje praštevilo.

Izrek

Praštevil je neskončno mnogo.

Dokaz.

Denimo, da je praštevil končno mnogo.

- ► Naj bo *p* največje praštevilo.
- Naj bo q produkt števil 1, 2, ..., p.

Izrek

Praštevil je neskončno mnogo.

Dokaz.

Denimo, da je praštevil končno mnogo.

- ► Naj bo *p* največje praštevilo.
- Naj bo q produkt števil 1, 2, ..., p.
- ightharpoonup Število q+1 ni deljivo z nobenim praštevilom, torej je q+1 praštevilo.

Izrek

Praštevil je neskončno mnogo.

Dokaz.

Denimo, da je praštevil končno mnogo.

- ► Naj bo *p* največje praštevilo.
- Naj bo q produkt števil 1, 2, ..., p.
- ightharpoonup Število q+1 ni deljivo z nobenim praštevilom, torej je q+1 praštevilo.
- ▶ To je protislovje, saj je q + 1 > p.

Matrike

Izračunajte determinanto

$$\begin{vmatrix} -1 & 4 & 4 & -2 \\ 1 & 4 & -2 & 2 \\ 1 & 4 & 5 & -1 \\ 3 & 8 & 4 & 3 \end{vmatrix}$$

V pomoč naj vam bo Overleaf dokumentacija o matrikah:

→ Matrices

Okolje align in align*

Dokaži *binomsko formulo*: za vsaki realni števili *a* in *b* in za vsako naravno število *n* velja

$$(a+b)^n = \dots$$

Okolje align in align*

Dokaži *binomsko formulo*: za vsaki realni števili *a* in *b* in za vsako naravno število *n* velja

$$(a+b)^n = (a+b)(a+b)\dots(a+b)$$

Okolje align in align*

Dokaži *binomsko formulo*: za vsaki realni števili *a* in *b* in za vsako naravno število *n* velja

$$(a+b)^n = = a^n + na^{n-1}b + \cdots + \binom{n}{k}a^{n-k}b^k$$

Še ena uporaba okolja align*

Nariši grafe funkcij:

$$y = x^2 - 3|x| + 2y = 3\sin(\pi + x) - 2y = \log_2(x - 2) + 3y = 2\sqrt{x^2 + 15} + 6y = 2\sqrt{x^2 + 15}$$

Okolje multline

Poišči vse rešitve enačbe

$$(1+x+x^2)\cdot(1+x+x^2+x^3+\ldots+x^9+x^{10}) == (1+x+x^2+x^3+x^4+x^5+x^6)^2$$

Okolje cases

Dana je funkcija

- ▶ Določi a, tako da izračunaš limito $\lim_{(x,y)\to(0,0)} f(x)$.
- lzračunaj parcialna odvoda $f_x(x, y)$ in $f_y(x, y)$.