

Learning objectives

After completing this topic successfully, you will be able to ...

- 1. Explain what supervised learning is?
- 2. Distinguish it from unsupervised learning and reinforcement learning
- 3. Describe in detail an algorithm for decision tree induction
- 4. Apply decision tree induction to a data set
- 5. List related algorithms
- Discuss high-level concepts such as choice of hypothesis language, overfitting, underfitting and noise

Reading: Russell & Norvig 3rd Ed, Chapter 18.18.4; Kelleher et al. Chapter 4

Overview of topic

This week:

- 1. Introduction, learning objectives and overview
- 2. Supervised learning principles
- 3. Decision trees
- 4. Entropy
- 5. Information gain

Next week:

- 6. The ID3 algorithm
- 7. Issues in decision tree learning
- ID3 extensions and related algorithms
- 9. Supervised learning considerations
- 10. Review of topic

Supervised learning: motivating examples

- Estimate sale price of a house, given past data of house sizes, locations and their prices
- 2. Before unlocking a tablet, determine whether a known user or somebody else is looking at the webcam
- Decide whether a chemical spectrum of a mixture has evidence of containing cocaine, based on other spectra with & without cocaine
- Predict concentration of cocaine in mixture
- 5. Determine whether objects of interest are present in a scene if so, what are they? (relevant for autonomous vehicles and robotics, among other domains)

Key feature:

given "right answers" / "ground truth" as start point. Which tasks are classification, and which are regression?

Supervised vs. unsupervised learning

Supervised learning: task definition

- Given examples, return function h (hypothesis) that approximates some 'true' function f that (hypothetically) generated the labels for the examples
 - Have set of examples, the training data:
 each has a label and a set of attributes that have known values
 - Consider *labels* (classes) to be *outputs* of some function *f*; the observed *attributes* are its *inputs*
 - Denote the attribute value inputs x, labels are their corresponding outputs f(x)
 - An example is a pair (x, f(x))
 - Function f is unknown; want to discover an approximation of it, h
 - Can use h to predict labels of new data: generalisation

Also known as Pure Inductive Learning – why?

Training data example

Overview of the supervised learning process

Decision trees

- Decision trees are a fundamental structure used in information-based machine learning
- Main idea: use a decision tree as a predictive model, to decide what category/label/class an item belongs to based on the values of its features
- So-called due to their tree-like structure:
 - A node (where two branches intersect) is a decision point. Nodes partition the data.
 - observations about an item (values of features) are represented using branches
 - The terminal nodes are called leaves; these specify the target label for an item

Decision tree for a sample dataset

Example dataset for induction (1)

Weather dataset

– Four attributes:

outlook: sunny / overcast / rainy

temperature: hot / mild / cool

humidity: high / normal

windy: true / false

- Used to decide whether or not to play tennis
- 14 examples in dataset
- See weather.xls (spreadsheet) or weathertxt.csv (comma separated values format)

Objective:

- Find hypothesis that describes the cases given and can be used to make decisions in other cases
- Express the hypothesis as a decision tree.

Example dataset for induction (2)

Anyone for Tennis?						
ID	Outlook	Temp	Humidity	Windy	Play?	
Α	sunny	hot	high	false	no	
В	sunny	hot	high	true	no	
С	overcast	hot	high	false	yes	
D	rainy	mild	high	false	yes	
Е	rainy	cool	normal	false	yes	
F	rainy	cool	normal	true	no	
G	overcast	cool	normal	true	yes	
Н	sunny	mild	high	false	no	
I	sunny	cool	normal	false	yes	
J	rainy	mild	normal	false	yes	
K	sunny	mild	normal	true	yes	
L	overcast	mild	high	true	yes	
М	overcast	hot	normal	false	yes	

high

true

no

Ν

rainy

mild

Decision tree for this data (1)

Decision tree for this data (2)

Anyone for Tennis?						
ID	Outlook	Temp	Humidity	Windy	Play?	
Α	sunny	hot	high	false	no	
В	sunny	hot	high	true	no	
С	overcast	hot	high	false	yes	
D	rainy	mild	high	false	yes	
Е	rainy	cool	normal	false	yes	
F	rainy	cool	normal	true	no	
G	overcast	cool	normal	true	yes	
Н	sunny	mild	high	false	no	
I	sunny	cool	normal	false	yes	
J	rainy	mild	normal	false	yes	
K	sunny	mild	normal	true	yes	
L	overcast	mild	high	true	yes	
M	overcast	hot	normal	false	yes	
N	rainy	mild	high	true	no	

Inductive learning of a decision tree

Step 1

• For all attributes that have not yet been used in the tree, calculate their **entropy** and **information gain** values for the training samples

Step 2

Select the attribute that has the highest information gain

Step 3

Make a tree node containing that attribute

Repeat

 This node partitions the data: apply the algorithm recursively to each partition

Motivation

- We already saw how some descriptive features can more effectively discriminate between (or predict) classes which are present in the dataset
- Decision trees partition the data at each node, so it makes sense to use features which have higher discriminatory power "higher up" in a decision tree.
- Therefore we need to develop a formal measure of the discriminatory power of a given attribute
- Information gain this can be calculated using entropy

Anyone for Tennis?						
ID	Outlook	Temp	Humidity	Windy	Play?	
Α	sunny	hot	high	false	no	
В	sunny	hot	high	true	no	
С	overcast	hot	high	false	yes	
D	rainy	mild	high	false	yes	
Е	rainy	cool	normal	false	yes	
F	rainy	cool	normal	true	no	
G	overcast	cool	normal	true	yes	
Н	sunny	mild	high	false	no	
I	sunny	cool	normal	false	yes	
J	rainy	mild	normal	false	yes	
K	sunny	mild	normal	true	yes	
L	overcast	mild	high	true	yes	
M	overcast	hot	normal	false	yes	
N	rainy	mild	high	true	no	

Entropy

- Claude Shannon (often referred to as "the father of information theory") proposed a measure to of the impurity of the elements in a set, referred to as entropy
- Entropy may be used to measure of the uncertainty of a random variable
- The term entropy generally refers to disorder or uncertainty, so the use of this term in the context of information theory is analogous to the other well-known use of the term in statistical thermodynamics
- Acquisition of information (information gain) corresponds to a reduction in entropy
- "Information is the resolution of uncertainty" (Shannon)
- 1948 article "A Mathematical Theory of Communication"

Calculating entropy

• The entropy of a dataset S with n different classes may be calculated as:

$$\operatorname{Ent}(S) = \sum_{i=1}^{n} -p_i \log_2 p_i$$

- Here p_i is the proportion of class i in the dataset.
- This is an example of a probability mass function
- Entropy is typically measured in bits (note log₂ in the equation above)
- The lowest possible entropy output from this function is 0 $(\log_2 1 = 0)$
- The highest possible entropy is $\log_2 n$ (=1 when there are only 2 classes)

Why use the binary logarithm?

- A useful measure of uncertainty should:
 - Assign high uncertainty values to outcomes with a low probability
 - Assign low uncertainty values to outcomes with a high probability
- Consider the plot to the right
 - log_2 returns large negative values when P is close to 0
 - log_2 returns small negative values when P is close to 1
- Using $-log_2$ is more convenient, as this will give positive entropy values, with 0 as the lowest entropy

Entropy worked example 1

$$\operatorname{Ent}(S) = \sum_{i=1}^{n} -p_i \log_2 p_i$$

$$Ent(S) = Ent([9+,5-])$$

$$Ent(S) = -9/14 \log_2(9/14) - 5/14 \log_2(5/14)$$

$$Ent(S) = 0.9403$$

If calculating this in a spreadsheet application such as Excel, make sure that you are using log_2 (e.g. LOG(9/14, **2**))

Anyone for Tennis?						
ID	Outlook	Temp	Humidity	Windy	Play?	
Α	sunny	hot	high	false	no	
В	sunny	hot	high	true	no	
С	overcast	hot	high	false	yes	
D	rainy	mild	high	false	yes	
Е	rainy	cool	normal	false	yes	
F	rainy	cool	normal	true	no	
G	overcast	cool	normal	true	yes	
Н	sunny	mild	high	false	no	
I	sunny	cool	normal	false	yes	
J	rainy	mild	normal	false	yes	
K	sunny	mild	normal	true	yes	
L	overcast	mild	high	true	yes	
М	overcast	hot	normal	false	yes	
N	rainy	mild	high	true	no	

Entropy worked example 2

Anyone for Tennis?

ID	Outlook	Temp	Humidity	Windy	Play?
Α	sunny	hot	high	false	no
В	sunny	hot	high	true	no
С	overcast	hot	high	false	yes
D	rainy	mild	high	false	yes
Е	rainy	cool	normal	false	yes
F	rainy	cool	normal	true	no
G	overcast	cool	normal	true	yes
Н	sunny	mild	high	false	no
	sunny	cool	normal	false	yes
J	rainy	mild	normal	false	yes
K	sunny	mild	normal	true	yes
L	overcast	mild	high	true	yes
M	overcast	hot	normal	false	yes
N	rainy	mild	high	true	no

Entropy worked example 2

$$\operatorname{Ent}(S) = \sum_{i=1}^{n} -p_i \log_2 p_i$$

$$\operatorname{Ent}(S_{\text{windy=false}}) = \operatorname{Ent}([6+,2-])$$

$$= -6/8 \log_2(6/8) - 2/8 \log_2(2/8)$$

$$= 0.3112 + 0.5 = 0.8112$$

Anyone for Tennis?						
ID	Outlook	Temp	Humidity	Windy	Play?	
Α	sunny	hot	high	false	no	
В	sunny	hot	high	true	no	
С	overcast	hot	high	false	yes	
D	rainy	mild	high	false	yes	
Е	rainy	cool	normal	false	yes	
F	rainy	cool	normal	true	no	
G	overcast	cool	normal	true	yes	
Н	sunny	mild	high	false	no	
I	sunny	cool	normal	false	yes	
J	rainy	mild	normal	false	yes	
K	sunny	mild	normal	true	yes	
L	overcast	mild	high	true	yes	
M	overcast	hot	normal	false	yes	
Ν	rainy	mild	high	true	no	

$$\operatorname{Ent}(S_{\operatorname{windy=true}}) = \operatorname{Ent}([3+,3-] =$$

$$= -3/6 \log_2(3/6) - 3/6 \log_2(3/6)$$

$$= 0.5 + 0.5 = 1.0$$

Information gain

• The **information gain** of an attribute is the reduction in entropy from partitioning the data according to that attribute

$$Gain(S,A) = Ent(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Ent(S_v)$$

- Here S is the entire set of data being considered, and S_v refers to each partition of the data according to each possible value v for the attribute
- |S| and $|S_v|$ refer to the cardinality or size of the overall dataset, and the cardinality or size of a partition respectively
- When selecting an attribute for a node in a decision tree, use whichever attribute A
 gives the greatest information gain

Information gain worked example

Gain
$$(S, A) = \text{Ent}(S) - \sum_{v \in \text{Values}(A)} \frac{|S_v|}{|S|} \text{Ent}(S_v)$$

$$|S|=14$$
 $|S_{windy=true}|=6$

 $|S_{\text{windy=false}}| = 8$

Gain(S, Windy)

= Ent(S) -
$$|S_{\text{windy=true}}|/|S|$$
 Ent($S_{\text{windy=true}}$) - $|S_{\text{windy=false}}|/|S|$ Ent($S_{\text{windy=false}}$)

$$= Ent(S) - (6/14) Ent([3+,3-]) - (8/14) Ent([6+,2-])$$

$$= 0.940 - (6/14) 1.00 - (8/14) 0.811$$

Gain(S, Windy) = 0.048

Best partitioning = highest information gain

Anyone for Tennis?						
ID	Outlook	Temp	Humidity	Windy	Play?	
Α	sunny	hot	high	false	no	
В	sunny	hot	high	true	no	
С	overcast	hot	high	false	yes	
D	rainy	mild	high	false	yes	
Е	rainy	cool	normal	false	yes	
F	rainy	cool	normal	true	no	
G	overcast	cool	normal	true	yes	
Н	sunny	mild	high	false	no	
I	sunny	cool	normal	false	yes	
J	rainy	mild	normal	false	yes	
K	sunny	mild	normal	true	yes	
L	overcast	mild	high	true	yes	
M	overcast	hot	normal	false	yes	
N	rainy	mild	high	true	no	

Having found the best split for the root node, repeat the whole procedure with each subset of examples ...

S will now refer to the subset in the partition being considered, instead of the entire dataset

Example: complete decision tree

Anyone for Tennis?						
ID	Outlook	Temp	Humidity	Windy	Play?	
Α	sunny	hot	high	false	no	
В	sunny	hot	high	true	no	
С	overcast	hot	high	false	yes	
D	rainy	mild	high	false	yes	
Е	rainy	cool	normal	false	yes	
F	rainy	cool	normal	true	no	
G	overcast	cool	normal	true	yes	
Н	sunny	mild	high	false	no	
I	sunny	cool	normal	false	yes	
J	rainy	mild	normal	false	yes	
K	sunny	mild	normal	true	yes	
L	overcast	mild	high	true	yes	
M	overcast	hot	normal	false	yes	
N	rainy	mild	high	true	no	

What about Temp = {Hot, Mild, Cool}?