

Space Transportation Directorate

Recent Improvements in the FDNS CFD Code and its Associated Process

Jeff S. West and Suzanne M. Dorney

NASA Marshall Space Flight Center

MC:TD64

MSFC, AL 35812

JANNAF- 38th Combustion Subcommittee Meeting

Destin, Florida

April 8-12, 2002

Recent Improvements in the FDNS CFD Code and its Associated Process

OVERVIEW

- Motivation
- Discussion of Process, Limitations, and Improvement
- Process and Code Improvements
- Ongoing Improvements
- Summary and Future Plans

Recent Improvements in the FDNS CFD Code and its Associated Process

Motivation

- NASA 2nd Generation (SLI) Launch Vehicle Reliability Requirements are Ambitious
- Using CFD as numerical experiments provides an opportunity to reduce the number of physical experiments required to define a successful design *if and only if CFD results can impact the Engineering Process*
- Typical CFD Analysis Procedure is:
Grid Generation, Pre-Processing, Execution, Post Processing (GPEP)
- Where is Engineering?

Recent Improvements in the FDNS CFD
Code and its Associated Process

Space Transportation Directorate
Jeff West/TD64
NASA/MSFC

Motivation (cont'd)

- Only after Analysis Process is completed can Engineering take place
- Our need/goal is to minimize the effort for GPEP in order to maximize the effort for Engineering
- FDNS has been developed over the last dozen years by a teamwork between NASA/MSFC and its contractors
- FDNS has a legacy of advanced and unique models successfully supporting NASA programs, however, FDNS requires considerable manual/interactive effort to accomplish a flow solution

Process Limitations (Process Definitions)

1. Grid Generation
 - Gridgen (Pointwise), Custom Grid Templates (Miss. State - ERC)
 - Not a target of this effort
2. Pre-Processing
 - Grid File, Initial Conditions File, Input Control File (Chemistry Specification, BCs, Iteration Control, Output Control)
3. Execution
 - Serial/Parallel, Domain Decomposition, Solution Monitoring
4. Post Processing
 - Quality Control, Refined Product Identification/Computation, Feature Detection

Space Transportation Directorate
Jeff West/TD64
NASA/MSC

Recent Improvements in the FDNS CFD Code and its Associated Process

Process Limitation and Improvement Definition

- Process Limitation: Obstacle to Achieving Goal (Subjective)
 - Obstacles identified by observation of common experiences
 - Obstacles are due to accessibility of features and large number of models from aggressive development
 - Removing generality or ability does not result in Improvement
- An Improvement must enhance the Generality, Simplicity, and Effectiveness of the Process

Jeff West/TD64
NASA/MSC

Recent Improvements in the FDNS CFD
Code and its Associated Process

Process Limitation: Boundary Condition Specification

- Input Control File: BC setup is not scalable by human means
 - I/O Boundaries: 13 values on 1 line
 - Wall Boundaries: 12 values on 1 line
 - Zone Boundaries: 17 values on 2 lines
 - Not uncommon to have over 100 boundaries to specify
- Verifying BC's requires reference to grid values
- PreViewer was created, a batch and/or GUI application
 - Unix Prompt> PreViewer –batch grid_file input_control_file
- Eliminates 95+% of human error

Recent Improvements in the FDNS CFD
Code and its Associated Process

Jeff West/TD64
NASA/MSFC

PreViewer Summary

- PreViewer Features
 - Zero/Multiple BC Definitions (Awareness is 90% of the battle)
 - Verification of Block Boundary Alignment
 - Objective evaluation, catches bugs in grid generator and flow solver alike
 - Visualization of boundary information
 - Boundary Condition combination/coalescence
- Application Details
 - PreViewer is limited to supporting FDNS
 - Portable, requires only C++, Qt, and OpenGL
 - Verified on SGI, Linux-Intel, Solaris, should work on (HP-UX, Linux-Alpha, Win32)
 - Available upon request
 - <http://techtran.msfc.nasa.gov/software/previewer.html>
 - Extendable, have algorithm, will implement

Recent Improvements in the FDNS CFD
Code and its Associated Process

Process Limitation: Code Version Control

- Multiple Versions
 - FDNS has been developed aggressively and concurrently by multiple entities
 - Multiple versions with conflicting models and heritage
- CVS (Concurrent Versions System)
 - Manual attempts ultimately failed due to inability to keep pace with development
 - CVS eliminates a large portion of human effort required to maintain a consistent code base for multiple users
 - Provides near-perfect documentation (the culprit can be identified)

Space Transportation Directorate
Jeff West/TD64
NASA/Marshall

Recent Improvements in the FDNS CFD
Code and its Associated Process

Process Limitation: Code Consistency Control

- Ongoing Development Poses a Threat to Code Base Maturity
 - Code Enhancement must continue on a constant basis
 - Awareness of how a best-prediction changes with improvements is a necessity
 - Rarely-used but valuable capability must be retained
- ATS (Automated Test Suite)
 - Manually maintaining a suite of check cases at the frequency of improvements is not practical
 - Automated Pre-Processing, Execution, and Post-Processing
 - Stringent comparison of new code results to ‘accepted result’
 - The ideal Suite of check cases would be mutually orthogonal

Automated Test Suite Summary

- Features

- Sets up and runs case identically each time
- User configurable threshold of comparison to ‘accepted’ results
- Pass/No Pass notification by email
- Allows selection of all or subset of Cases
- Parallel execution on shared memory architectures
- Portable, GUI-driven, Unix C++/Qt Application
- Robust, Fire and Forget
- Potentially available via CVS

Automated Test Suite Summary, (Cont'd)

Improvement	Description	Completion Date
Enhanced Plot3D Output	Allows run-time alterations of requested output variable	3-x-2002
Real Fluids Capability	Allows constant pressure model of real fluid properties of LOX (LH2 soon)	4-3-2002
Improved Accuracy Block Boundary BCs	Improve the accuracy of block boundaries to allow massive domain decomposition	5-?-2002
Time Accurate Transient Simulation	Re-implement Time Accurate capability in the code	6-?-2002

Space Transportation Directorate
Jeff West/TD64
NASA/MSFC

Recent Improvements in the FDNS CFD Code and its Associated Process

Process Limitation: Domain Decomposition

- FDNS accomplishes parallel operation by domain decomposition
 - Number of BCs can increase from 6 to hundreds or thousands
 - How does one specify grid decomposing strategy for load balancing?
 - How does one compute required zone BCs once grid decomposition is specified?
 - How does one decompose/recompose the grid and initial conditions files once mapping is defined?
- PreViewer's Interactive Decomposer and Load Balancer
 - Creates decompose map file
- PreViewer's -fullDecompose and -recompose modes
 - Unix> PreViewer -fullDecompose init_file grid_file control_file map_file new_init new_grid new_control
 - Unix> PreViewer -recompose format decomposed_file map_file recomposed_file

Recent Improvements in the FDNS CFD Code and its Associated Process

Domain Decomposition, (cont'd)

- Domain Decomposition may not be desirable for all problems
- (Ongoing Work) One alternative is to implement multi-threaded parallelism (OpenMP). Cooperative effort with NASA/AMES support staff has completed OpenMP implementation of chemistry module

$$\lim_{n \rightarrow \infty} \text{Speedup} = \frac{\text{total CPU time}}{\text{Serial Time} + \frac{\text{Parallel Time}}{n}} = \frac{100}{35.9 + 0} = 2.7855$$

Domain Decomposition, (cont'd)

- (Ongoing with ESI) Ultimate solution is to implement block boundaries that are numerically identical to the numerical scheme at the internal point
- Significant improvement has been obtained
- Once completed, this improvement will be incorporated into the main-line code

Single Block

FDNS500-CVS

Interim Result

Summary and Future Work

- The development of a utility, PreViewer, has essentially eliminated the creeping of simple human error into the FDNS Solution process
- Extension of PreViewer to encapsulate the Domain Decomposition process has made practical the routine use of parallel processing
- The combination of CVS source control and ATS consistency validation significantly increases the Efficiency of the CFD process

Summary and Future Work, (cont'd)

- Harness Parallel Resources
 - Transient Simulations
 - 3D problems (multiple element injectors)
 - Hardware:
 - NASA/AMES: Large MP platforms
 - NASA/MSFC: 100 node, 200 CPU AMD Athlon MP-based Linux Cluster
- Address Multiple Phase Problems
 - Fuel injector environment definition (conjugate heat transfer)
 - Rocket Chamber and Nozzle Regenerative Cooling
 - Real Fluid Property Simulation
- Automated Grid Generation
 - Close coupling of grid generation to source CAD database