PROBABILITY THEORY AND RANDOM PROCESSES IIT GUWAHATI

11:00–12:00 IST AUGUST 17, 2019

Model Answers of Quiz I

5pnts.] 1. Consider four coding machines M_1 , M_2 , M_3 , and M_4 producing binary codes 0 and 1. The machine M_1 produces codes 0 and 1 with respective probabilities $\frac{1}{4}$ and $\frac{3}{4}$. The code produced by machine M_k is fed into machine M_{k+1} , (k=1, 2, 3), which may either leave the received code unchanged or may change it. Suppose that each of the machines M_2 , M_3 , and M_4 change the code with probability $\frac{3}{4}$. Given that the machine M_4 has produced code 1, find the conditional probability that the machine M_1 produced code 0.

Solution: Let A_{ij} denotes the event that jth machine produces the code i, i = 0, 1 and j = 1, 2, 3, 4. Using Bayes theorem, the required probability

$$P(A_{01}|A_{14}) = \frac{P(A_{14}|A_{01})P(A_{01})}{P(A_{14}|A_{01})P(A_{01}) + P(A_{14}|A_{11})P(A_{11})}.$$

Now, each code can change maximum 3 times. If M_1 produce code 0 and M_4 produce code 1, then the code has changed odd number times, *i.e.* either once or thrice. Similarly, if both M_1 and M_4 produce code 1, then the code has changed even number times, *i.e.* either twice or none. Hence

$$P(A_{14}|A_{01}) = {3 \choose 1} \left(\frac{3}{4}\right) \left(\frac{1}{4}\right)^2 + {3 \choose 3} \left(\frac{3}{4}\right)^3 \left(\frac{1}{4}\right)^0 = \frac{9}{16},$$

$$P(A_{14}|A_{11}) = {3 \choose 0} \left(\frac{3}{4}\right)^0 \left(\frac{1}{4}\right)^3 + {3 \choose 2} \left(\frac{3}{4}\right)^2 \left(\frac{1}{4}\right) = \frac{7}{16}.$$

Hence the required probability is $P(A_{01}|A_{14}) = \frac{3}{10}$.

- [5^{pnts.}] 2. A biased coin is tossed repeatedly. Each time there is a probability p of a head turning up independent of other tosses. Let p_n be the probability that an even number of heads has occurred after n tosses (zero is an even number). Thus $p_0 = 1$.
 - (a) Find the recurrence relation between p_n and p_{n-1} for $n \ge 1$.

Solution: Let A_n denote the event that even number of heads turn up after n tosses. Then

$$p_{n} = P(A_{n})$$

$$= P(A_{n}|A_{n-1}) P(A_{n-1}) + P(A_{n}|A_{n-1}^{c}) P(A_{n-1}^{c})$$

$$= (1-p)p_{n-1} + p(1-p_{n-1})$$

$$= p + (1-2p)p_{n-1}.$$

(b) Find the value of p_{21} in terms of p.

Solution:

$$p_{21} = p + (1 - 2p)p_{20}$$

$$= p + (1 - 2p)p + (1 - 2p)^{2}p_{19}$$

$$\vdots$$

$$= p + (1 - 2p)p + \dots + (1 - 2p)^{20}p + (1 - 2p)^{21}$$

$$= \frac{1}{2} + \frac{1}{2}(1 - 2p)^{21}.$$

- [5^{pnts.}] 3. Let S be a sample space and F be a σ -algebra defined on S. Let $P: F \to \mathbb{R}$ be a set function satisfying the following properties:
 - 1. $P(E) \ge 0$ for all $E \in \mathcal{F}$.
 - 2. P(S) = 1.
 - 3. For $n \geq 2$ and for disjoint events $E_1, E_2, \ldots, E_n, P(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n P(E_i)$.
 - 4. If $\{E_n\}_{n\geq 1}$ is a sequence of decreasing events such that $\bigcap_{i=1}^{\infty} E_i = \phi$, then $\lim_{n\to\infty} P(E_n) = 0$.

Show that P is a probability function.

Solution: Here we need to show the following: For disjoint $A_1, A_2 \ldots \in \mathcal{F}, P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

$$P(\bigcup_{i=1}^{\infty} A_i) = P\left[(\bigcup_{i=1}^{n} A_i) \cup (\bigcup_{i=n+1}^{\infty} A_i) \right]$$

= $\sum_{i=1}^{n} P(A_i) + P(\bigcup_{i=n+1}^{\infty} A_i).$ (1)

Now define $B_n = \bigcup_{i=n}^{\infty} A_i$ for $n \geq 1$. Clearly $\{B_n\}_{n \geq 1}$ is a decreasing sequence of sets. We claim that $\bigcap_{n=1}^{\infty} B_n = \phi$. If not, then there exist a $\omega \in \bigcap_{n=1}^{\infty} B_n$ and hence $\omega \in B_n$ for all $n \geq 1$. In particular, $\omega \in B_1 = \bigcup_{i=1}^{\infty} A_i$. As A_i 's are disjoint, $\omega \in A_i$ for exactly one i, say i_0 . Then $\omega \notin A_i$ for $i > i_0$ and hence $\omega \notin B_n$ for $n > i_0$. This is a contradiction to the fact that $\omega \in B_n$ for all $n \geq 1$.

This implies that $\lim_{n\to\infty} P\left(\bigcup_{i=n+1}^{\infty} A_i\right) = \lim_{n\to\infty} P(B_{n+1}) = 0$. Taking limit $n\to\infty$ on both sides of (1), we get

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i).$$