KI-Simulation in Computerspielen

Informatik-Seminar HAW-Hamburg WS2011/2012 12.10.2011

Robin Christopher Ladiges B-AI5

Gliederung

- Entscheidungsfindung
 - Automaten / Nachrichten / Gedächtnis
 - Ziel-getriebenes Verhalten
 - Fuzzy Logik
- Bewegung
 - Graphenaufbau
 - Wegsuche
 - Steering

Entscheidungsfindung Automaten

- Für NPCs, Gegner, eigene Einheiten, Gesprächsverlauf, Truhen, Story, etc.
- Mehrere getrennte endliche Automaten pro Entität möglich
- Unterschiedliches Verhalten in anderen Zuständen
- Automaten dynamisch zur Laufzeit austauschbar

Entscheidungsfindung Nachrichten

- Bei Ereignissen (Events) Nachrichten an alle betroffenen Entitäten
- Entitäten werten Nachrichten aus (Message Dispatch)
- Können Zustandsänderungen auslösen

Nachricht: Sender, Empfänger, Nachrichtentyp, Zeitpunkt, (Zusatzinformationen)

Entscheidungsfindung

Gedächtnis

- Wissen wahrnehmen, interpretieren/bewerten, merken und sich später daran erinnern.
- Kurzzeit- vs. Langzeitgedächtnis

Entscheidungsfindung Ziel-getriebenes Verhalten

- Ziele und Unterziele (Hierarchische Struktur)
 - wie menschliches Denken
- Dynamisch veränderbar um auf Ereignisse zu reagieren
- Zielabwägung nötig

Entscheidungsfindung

Ziel-getriebenes Verhalten

Entscheidungsfindung Fuzzy Logik

- unscharfe Mengen (Fuzzy Sets)
- Mitgliedschaftsfunktion $m_A: A \rightarrow [0,1]$

$$m_A(x) = 0 \leftrightarrow x \notin A$$

Logik (AND-, OR- und NOT-Operatoren)

$$m_A(x) \vee m_B(x) :=$$
 $max(m_A(x), m_B(x))$

$$\neg m_A(x) := 1 - m_A(x)$$

Entscheidungsfindung Fuzzy Logik

Fuzzy Regeln

- Alle Regeln schlagen an (zu bestimmten Wert 0..1)
- Regeln interpretieren
 - Die meist zutreffenste Alternative wählen (Maximalwert)
 - Defuzzifikation (ein kombiniertes Ergebnis / Mittelwert)

Bewegung

- Action Selection (Aktionsauswahl)
 - Zielauswahl
 - Wegauswahl
- Steering (Lenkung)
 - Weg/Ziel verfolgen
 - Hindernissen/Wänden ausweichen
- Locomotion (Fortbewegung)
 - Physikalische Bewegung
 - Animation

Bewegung Graphenaufbau

- Anwendungsfälle
- Graphenimplementierung
 - Un-/Gerichteter Graph
 - Un-/Gewichteter Graph
 - Dynamische Graphen
- Navigationsknotenverteilung
 - Manuell
 - Automatisch (POV, NavMesh, Flood Fill)

Bewegung Graphensuche

Bewegung Graphensuche

- Wann?
 - im Voraus (bei Geländeerzeugung)
 - sofort
 - verzögert (in festen Zeitschlitzen)
- Dijkstra-Algorithmus
- A*-Algorithmus
 - Vector Distance Heuristic

$$\sqrt[2]{x^2 + y^2} \qquad \sqrt[2]{x^2 + y^2 + z^2}$$

$$x + y$$
 $\sqrt{x} + y + z$ $x + y + z$

$$x+y$$

$$x+y+z$$

Bewegung Steering

Anstreben (Seek)

Abfangen (Pursuit)

Bewegung Steering

Hindernissen ausweichen (Obstacle Avoidance)

Wänden ausweichen (Wall Avoidance)

Bewegung Steering

Gliederung

- Entscheidungsfindung
 - Automaten / Nachrichten / Gedächtnis
 - Zielgetriebenes Verhalten
 - Fuzzy Logik
- Bewegung
 - Graphenaufbau
 - Wegsuche
 - Steering

Quellen

Explizite Quellen für dieses Seminar:

[1] Buckland – Programming Game AI by Example

[2] Bourge & Seemann – Al for Game Developers

Bilder aus Computerspielen:

[3] Piranha Bytes – Gothic II: Die Nacht des Raben

[4] Blizzard – StarCraft II: Wings of Liberty

[5] Piranha Bytes – Making Of Gothic 3

Themenverwandtes Vorwissen:

- [6] Krumke & Noltemeier Graphentheoretische Konzepte und Algorithmen
- [7] Hopcroft, Motwani & Ullman Introduction to Automata Theory, Languages, and Computation
- [8] Gamma, Helm, Johnson & Vlissides Design Patterns
- [9] Rucker Software Engineering and Computer Games

Internet:

[9] http://en.wikipedia.org/wiki/Fuzzy_set

Ende

Danke für eure Aufmerksamkeit

Inhaltliche Fragen
Unklarheiten
Anmerkungen
Ergänzungen

(Noch keine Kritik am Vortrag)