第七章 复合优化算法

修贤超

https://xianchaoxiu.github.io

目录

- 7.1 近似点梯度法
- 7.2 Nesterov 加速算法
- 7.3 近似点算法
- 7.4 分块坐标下降法
- 7.5 对偶算法
- 7.6 交替方向乘子法
- 7.7 随机优化算法

典型问题形式

■ 考虑如下凸问题

$$\min_{x_1, x_2} f_1(x_1) + f_2(x_2)
\text{s.t.} A_1 x_1 + A_2 x_2 = b$$
(1)

- 目标函数可以分成彼此分离的两块, 但是变量被线性约束结合在一起

问题形式举例

■ 例 7.13 可以分成两块的无约束优化问题

$$\min_{x} \quad f_1(x) + f_2(x)$$

引入一个新的变量 z 并令 x=z, 将问题转化为

$$\min_{x,z} \quad f_1(x) + f_2(z)$$

s.t.
$$x - z = 0$$

■ 例 7.14 带线性变换的无约束优化问题

$$\min_{x} \quad f_1(x) + f_2(Ax)$$

引入一个新的变量 z, 令 z = Ax, 则问题变为

$$\min_{x,z} \quad f_1(x) + f_2(z)$$

s.t.
$$Ax - z = 0$$

问题形式举例

■ \mathbf{M} 7.15 凸集 $C \subset \mathbb{R}^n$ 上的约束优化问题

$$\min_{x} \quad f(x) \\
\text{s.t.} \quad Ax \in C$$

引入约束 z = Ax, 那么问题转化为

$$\min_{x,z} \quad f(x) + I_C(z)$$
s.t.
$$Ax - z \equiv 0$$

问题形式举例

■ 例 7.16 全局一致性问题

$$\min_{x} \quad \sum_{i=1}^{N} \phi_i(x)$$

令 x = z, 并将 x 复制 N 份, 分别为 x_i , 那么问题转化为

$$\min_{x_i, z} \quad \sum_{i=1}^{N} \phi_i(x_i)$$
s.t. $x_i - z = 0, i = 1, 2, \dots, N$

增广拉格朗日函数法

■ 首先写出问题(1)的增广拉格朗日函数

$$L_{\rho}(x_1, x_2, y) = f_1(x_1) + f_2(x_2) + y^{\top} (A_1 x_1 + A_2 x_2 - b) + \frac{\rho}{2} ||A_1 x_1 + A_2 x_2 - b||_2^2$$

■ 增广拉格朗日函数法为如下更新

$$(x_1^{k+1}, x_2^{k+1}) = \arg\min_{x_1, x_2} L_{\rho}(x_1, x_2, y^k)$$
$$y^{k+1} = y^k + \tau \rho (A_1 x_1^{k+1} + A_2 x_2^{k+1} - b)$$

交替方向乘子法

- Alternating direction method of multipliers, ADMM
- 同时对 x_1 和 x_2 进行优化有时候比较困难,而固定一个变量求解关于另一个变量的极小问题可能比较简单
- 其迭代格式可以总结如下

$$x_1^{k+1} =_{x_1} L_{\rho}(x_1, x_2^k, y^k)$$

$$x_2^{k+1} = \arg\min_{x_2} L_{\rho}(x_1^{k+1}, x_2, y^k)$$

$$y^{k+1} = y^k + \tau \rho (A_1 x_1^{k+1} + A_2 x_2^{k+1} - b)$$

原问题最优性条件

■ 问题(1)的拉格朗日函数为

$$L(x_1, x_2, y) = f_1(x_1) + f_2(x_2) + y^{\top} (A_1 x_1 + A_2 x_2 - b)$$

■ 根据最优性条件定理,若 x_1^*, x_2^* 为问题(1)的最优解, y^* 为对应的拉格朗日乘子,则以下条件满足

$$0 \in \partial_{x_1} L(x_1^*, x_2^*, y^*) = \partial f_1(x_1^*) + A_1^\top y^*$$
 (2a)

$$0 \in \partial_{x_2} L(x_1^*, x_2^*, y^*) = \partial f_2(x_2^*) + A_2^\top y^*$$
 (2b)

$$A_1 x_1^* + A_2 x_2^* = b (2c)$$

■ 条件(2c)又称为原始可行性条件,条件(2a)和条件(2b)又称为对偶可行性条件

ADMM 单步迭代最优性条件

 \blacksquare 由 x_2 的更新步骤

$$x_2^k = \arg\min_{x} \left\{ f_2(x) + \frac{\rho}{2} ||A_1 x_1^k + A_2 x - b + \frac{y^{k-1}}{\rho}||^2 \right\}$$

■ 根据最优性条件推出

$$0 \in \partial f_2(x_2^k) + A_2^{\top} [y^{k-1} + \rho(A_1 x_1^k + A_2 x_2^k - b)]$$

 \blacksquare 当 $\tau = 1$ 时知

$$0 \in \partial f_2(x_2^k) + A_2^\top y^k$$

ADMM 单步迭代最优性条件

 \blacksquare 由 x_1 的更新公式

$$x_1^k =_x \left\{ f_1(x) + \frac{\rho}{2} ||A_1 x + A_2 x_2^{k-1} - b + \frac{y^{k-1}}{\rho}||^2 \right\}$$

■ 假设子问题能精确求解,根据最优性条件

$$0 \in \partial f_1(x_1^k) + A_1^{\top} [\rho(A_1 x_1^k + A_2 x_2^{k-1} - b) + y^{k-1}]$$

 \blacksquare 当 $\tau = 1$ 时知

$$0 \in \partial f_1(x_1^k) + A_1^{\top}(y^k + \rho A_2(x_2^{k-1} - x_2^k))$$

ADMM 单步迭代最优性条件

■ 对比条件(2a)可知多出来的项为 $A_1^{\top}A_2(x_2^{k-1}-x_2^k)$, 因此要检测对偶可行性只需要检测残差

$$s^k = A_1^{\top} A_2 (x_2^{k-1} - x_2^k)$$

■ 综上当 x_2 更新取到精确解且 $\tau = 1$ 时,判断 ADMM 是否收敛只需要检测前 述两个残差 r^k , s^k 是否充分小

$$0 \approx ||r^k|| = ||A_1 x_1^k + A_2 x_2^k - b||$$
 (原始可行性)
 $0 \approx ||s^k|| = ||A_1^{\mathsf{T}} A_2 (x_2^{k-1} - x_2^k)||$ (对偶可行性)

线性化

- 线性化技巧使用近似点项对子问题目标函数进行二次近似
- 考虑第一个子问题

$$\min_{x_1} \quad f_1(x_1) + \frac{\rho}{2} ||A_1 x_1 - v^k||^2$$

■ 当子问题目标函数可微时,线性化为

$$x_1^{k+1} = \arg\min_{x_1} \left\{ (\nabla f_1(x_1^k) + \rho A_1^\top (A_1 x_1^k - v^k))^\top x_1 + \frac{1}{2\eta_k} ||x_1 - x^k||_2^2 \right\}$$

这等价于做一步梯度下降

■ 当目标函数不可微时,可以考虑只将二次项线性化

$$x_1^{k+1} =_{x_1} \left\{ f_1(x_1) + \rho (A_1^\top (A_1 x_1^k - v^k))^\top x_1 + \frac{1}{2\eta_k} ||x_1 - x^k||_2^2 \right\}$$

这等价于做一步近似点梯度步

缓存分解

■ 如果目标函数中含二次函数,例如 $f_1(x_1) = \frac{1}{2} ||Cx_1 - d||_2^2$, 那么针对 x_1 的更 新等价于求解线性方程组

$$(C^{\top}C + \rho A_1^{\top}A_1)x_1 = C^{\top}d + \rho A_1^{\top}v^k$$

- 虽然子问题有显式解,但是每步求解的复杂度仍然比较高
- 首先对 $C^{\top}C + \rho A_1^{\top}A_1$ 进行 Cholesky 分解并缓存分解的结果,在每步迭代中 只需要求解简单的三角形方程组
- ullet 当 ho 发生更新时,就要重新进行分解.特别地,当 $C^{\intercal}C +
 ho A_1^{\intercal}A_1$ 一部分容易求逆,另一部分是低秩的情形时,可以用 SMW 公式来求逆

优化转移

■ 为了方便求解子问题,可以用一个性质好的矩阵 D 近似二次项 $A_1^{\mathsf{T}}A_1$, 此时子问题可替换为

$$x_1^{k+1} = \arg\min_{x_1} \left\{ f_1(x_1) + \frac{\rho}{2} ||A_1 x_1 - v^k||_2^2 + \frac{\rho}{2} (x_1 - x^k)^\top (D - A_1^\top A_1)(x_1 - x^k) \right\}.$$

这种方法也称为优化转移

- 通过选取合适的 D,当计算 $\arg\min_{x_1} \left\{ f_1(x_1) + \frac{\rho}{2} x_1^\top D x_1 \right\}$ 明显比计算 $\arg\min_{x_1} \{ f_1(x_1) + \frac{\rho}{2} x_1^\top A_1^\top A_1 x_1 \}$ 要容易时,优化转移简化子问题的计算
- 特别地,当 $D=rac{\eta_k}{
 ho}I$ 时,优化转移等价于做单步的近似点梯度步

二次罚项系数的动态调节

- 原始可行性和对偶可行性分别用 $||r^k||$ 和 $||s^k||$ 度量
- 求解过程中二次罚项系数 ρ 太大会导致原始可行性 $||r^k||$ 下降很快,但是对偶可行性 $||s^k||$ 下降很慢;二次罚项系数太小,则会有相反的效果.这样都会导致收敛比较慢或得到的解的可行性很差.
- lacktriangle 在每次迭代时动态调节惩罚系数 ho 的大小,从而使得原始可行性和对偶可行性能够以比较一致的速度下降到零

$$\rho^{k+1} = \begin{cases} \gamma_p \rho^k, & \|r^k\| > \mu \|s^k\| \\ \rho^k / \gamma_d & \|s^k\| > \mu \|r^k\| \\ \rho^k, & 其他 \end{cases}$$

■ 常见的选择为 $\mu = 10, \gamma_p = \gamma_d = 2$

多块问题的 ADMM

■ 考虑有多块变量的情形

$$\min_{x_1, x_2, \dots, x_N} f_1(x_1) + f_2(x_2) + \dots + f_N(x_N)$$
s.t.
$$A_1 x_1 + A_2 x_2 + \dots + A_N x_N = b$$

■ 多块 ADMM 迭代格式为

$$x_1^{k+1} = \arg\min_{x} L_{\rho}(x, x_2^k, \dots, x_N^k, y^k)$$

$$x_2^{k+1} = \arg\min_{x} L_{\rho}(x_1^{k+1}, x, \dots, x_N^k, y^k)$$

$$\dots$$

$$x_N^{k+1} = \arg\min_{x} L_{\rho}(x_1^{k+1}, x_2^{k+1}, \dots, x, y^k)$$

$$y^{k+1} = y^k + \tau \rho (A_1 x_1^{k+1} + A_2 x_2^{k+1} + \dots + A_N x_N^{k+1} - b)$$

其中 $\tau \in (0, (\sqrt{5} + 1)/2)$ 为步长参数

■ 考虑 LASSO 问题

$$\min \quad \mu \|x\|_1 + \frac{1}{2} \|Ax - b\|^2$$

■ 转换为标准问题形式

$$\min_{x,z} \quad \frac{1}{2} ||Ax - b||^2 + \mu ||z||_1$$
s.t. $x = z$

■ 交替方向乘子法迭代格式为

$$x^{k+1} = \arg\min_{x} \left\{ \frac{1}{2} ||Ax - b||^{2} + \frac{\rho}{2} ||x - z^{k} + y^{k}/\rho||_{2}^{2} \right\}$$
$$= (A^{T}A + \rho I)^{-1} (A^{T}b + \rho z^{k} - y^{k})$$

(3)

■ 交替方向乘子法迭代格式为

$$z^{k+1} = \arg\min_{z} \left\{ \mu \|z\|_{1} + \frac{\rho}{2} \|x^{k+1} - z + y^{k}/\rho\|^{2} \right\}$$
$$= \operatorname{prox}_{(\mu/\rho)\|\cdot\|_{1}} \left(x^{k+1} + y^{k}/\rho \right)$$
$$y^{k+1} = y^{k} + \tau \rho (x^{k+1} - z^{k+1})$$

- lacksquare 在求解 x 迭代时,可以使用固定的罚因子 ho,缓存矩阵 $A^{\mathsf{T}}A+
 ho I$ 的初始分解
- 主要运算量来自更新 x 变量时求解线性方程组,复杂度为 $O(n^3)$

■ 考虑 LASSO 问题的对偶问题

$$\min \quad b^{\top} y + \frac{1}{2} ||y||^2
\text{s.t.} \quad ||A^{\top} y||_{\infty} \le \mu$$

■ 引入约束 $A^{T}y + z = 0$, 可以得到如下等价问题

min
$$\underbrace{b^{\top}y + \frac{1}{2}||y||^2}_{f(y)} + \underbrace{I_{||z||_{\infty} \le \mu}(z)}_{h(z)}$$

s.t. $A^{\top}y + z = 0$

■ 对约束 $A^{T}y + z = 0$ 引入乘子 x, 对偶问题的增广拉格朗日函数为

$$L_{\rho}(y,z,x) = b^{\mathsf{T}}y + \frac{1}{2}||y||^{2} + I_{||z||_{\infty} \le \mu}(z) - x^{\mathsf{T}}(A^{\mathsf{T}}y + z) + \frac{\rho}{2}||A^{\mathsf{T}}y + z||^{2}$$

- 当固定 y,x 时,对 z 的更新即向无穷范数球 $\{z\mid \|z\|_\infty \le \mu\}$ 做欧几里得投影,即将每个分量截断在区间 $[-\mu,\mu]$ 中
- 当固定 z,x 时,对 y 的更新即求解线性方程组

$$(I + \rho A A^{\mathsf{T}})y = A(x^k - \rho z^{k+1}) - b$$

■ ADMM 迭代格式为

$$z^{k+1} = \mathcal{P}_{\|z\|_{\infty} \le \mu} \left(x^k / \rho - A^{\top} y^k \right)$$
$$y^{k+1} = (I + \rho A A^{\top})^{-1} (A(x^k - \rho z^{k+1}) - b)$$
$$x^{k+1} = x^k - \tau \rho (A^{\top} y^{k+1} + z^{k+1})$$

■ 由于 $m \ll n$, 求解 y 更新的线性方程组需要的计算量是 $O(m^3)$

应用举例: 矩阵分离问题

■ 考虑矩阵分离问题

$$\min_{X,S} ||X||_* + \mu ||S||_1$$
s.t.
$$X + S = M$$

 \blacksquare 引入乘子 Y 作用在约束 X+S=M 上,得到增广拉格朗日函数

$$L_{\rho}(X, S, Y) = \|X\|_{*} + \mu \|S\|_{1} + \langle Y, X + S - M \rangle + \frac{\rho}{2} \|X + S - M\|_{F}^{2}$$

应用举例: 矩阵分离问题

■ 对于X 子问题

$$X^{k+1} = \arg\min_{X} L_{\rho}(X, S^{k}, Y^{k})$$

$$= \arg\min_{X} \left\{ \|X\|_{*} + \frac{\rho}{2} \|X + S^{k} - M + \frac{Y^{k}}{\rho}\|_{F}^{2} \right\}$$

$$= \arg\min_{X} \left\{ \frac{1}{\rho} \|X\|_{*} + \frac{1}{2} \|X + S^{k} - M + \frac{Y^{k}}{\rho}\|_{F}^{2} \right\}$$

$$= U \operatorname{Diag}(\operatorname{prox}_{(1/\rho)\|\cdot\|_{1}}(\sigma(A)))V^{\top}$$

其中 $A=M-S^k-\frac{Y^k}{\rho}$, $\sigma(A)$ 为 A 的所有非零奇异值构成的向量并且 $U\mathrm{Diag}(\sigma(A))V^{\top}$ 为 A 的约化奇异值分解

应用举例: 矩阵分离问题

■ 对于S 子问题

$$S^{k+1} = \arg\min_{S} L_{\rho}(X^{k+1}, S, Y^{k})$$

$$= \arg\min_{S} \left\{ \mu \|S\|_{1} + \frac{\rho}{2} \|X^{k+1} + S - M + \frac{Y^{k}}{\rho}\|_{F}^{2} \right\}$$

$$= \operatorname{prox}_{(\mu/\rho)\|\cdot\|_{1}} (M - X^{k+1} - \frac{Y^{k}}{\rho})$$

■ 交替方向乘子法的迭代格式为

$$X^{k+1} = U \operatorname{Diag}(\operatorname{prox}_{(1/\rho)\|\cdot\|_1}(\sigma(A)))V^{\top}$$

$$S^{k+1} = \operatorname{prox}_{(\mu/\rho)\|\cdot\|_1}(M - L^{k+1} - \frac{Y^k}{\rho})$$

$$Y^{k+1} = Y^k + \tau \rho (X^{k+1} + S^{k+1} - M)$$

应用举例: 全局一致性优化问题

■ 考虑全局一致性优化问题

$$\min_{x_i, z} \quad \sum_{i=1}^{N} \phi_i(x_i)$$
s.t. $x_i - z = 0, i = 1, 2, \dots, N$

■ 增广拉格朗日函数为

$$L_{\rho}(x_1, \dots, x_N, z, y_1, \dots, y_N) = \sum_{i=1}^{N} \phi_i(x_i) + \sum_{i=1}^{N} y_i^{\top}(x_i - z) + \frac{\rho}{2} \sum_{i=1}^{N} \|x_i - z\|^2$$

■ 固定 z^k, y_i^k , 更新 x_i 的公式为

$$x_i^{k+1} = \arg\min_{x} \left\{ \phi_i(x) + \frac{\rho}{2} ||x - z^k + y_i^k/\rho||^2 \right\}$$

应用举例: 全局一致性优化问题

 \blacksquare 在一般情况下更新 x_i 的表达式为

$$x_i^{k+1} = \operatorname{prox}_{\phi_i/\rho}(z^k - y_i^k/\rho)$$

■ 固定 x_i^{k+1}, y_i^k , 关于 z 可以直接写出显式解

$$z^{k+1} = \frac{1}{N} \sum_{i=1}^{N} (x_i^{k+1} + y_i^k / \rho)$$

■ 交替方向乘子法迭代格式为

$$x_i^{k+1} = \operatorname{prox}_{\phi_i/\rho}(z^k - y_i^k/\rho), \ i = 1, 2, \dots, N$$

$$z^{k+1} = \frac{1}{N} \sum_{i=1}^{N} (x_i^{k+1} + y_i^k/\rho)$$

$$y_i^{k+1} = y_i^k + \tau \rho (x_i^{k+1} - z^{k+1}), \ i = 1, 2, \dots, N$$

Q&A

Thank you!

感谢您的聆听和反馈