المستوى السنة الرابعة متوسط

التمرين الأول:

نعلق كتلة عيارية بمعلاق ربيعة فتشير إلى قيمة ثقله في الهواء.

ثم نغمر الكتلة العيارية داخل حوض به ماء.

- ①- حدد قيمة ثقل الجسم في الهواء؟ثم داخل الماء.
 - ②- استنتج شدة دافعة ارخميدس؟

جسم صلب متوازن مغمور كليًا (عالق) داخل سائل كتلته الحجمية

أزاح حجمًا $V=2m^3$ ، باعتبار الجاذبية الأرضية في هذا ، $ho_L=1000 kg/m^3$

- 🛈 شدّة دافعة أرخميدس.
- مثّل بشعاع كل القوى المؤثرة على الجسم.

التمرين الثالث:

جسم صلب ثقله في الهواء P = 5.4N ، يُغمر في سائل كتلته الحجمية

فيزيح كمية من السائل كتلتها $ho=1000 kg/m^3$

باعتبار الجاذبية الأرضية ، $m_\ell=200g$

g = 10N/kg في هذا المكان

أحسب ما يلي :

- 🛈 شدّة دافعة أرخميدس.
- شدة الثقل الظاهري.
- (v) استنتج حجم الجسم (v).

الميدان الظواهر الميكيانيكية

السلسلة (ودافعة ارخميدس)

تعريف دافعة أرخميدس:قوة تلامسية التي يدفع بها السائل الأجسام(لا تنحل ولا $\vec{F}a$: تتفاعل)المغمورة به جزئيا أو غمرا كليا ، نرمز لها بالرمز خصائصها:

نقطة التأثير: تكون في مركز ثقل الجزء المغمور من الجسم في السائل.

الجهة: من الأسفل نحو الأعلى.

المنحى: حاملها حامل الثقل (شاقولي)

المادة: علوم فيزيائية وتكنولوجيا

الشدة: تساوي ثقل السائل المزاح، ويُعبّر عنها بالعلاقة:

$$F_a = m_\ell imes g$$
 او $F_a = P - P_{ap}$

الثقل الحقيقي (في الهواء) . P_{ap} : الثقل الظاهري (في السائل)، P

N/kg الجاذبية الأرضية: g (kg). الجاذبية الأرضية: m_ℓ

العاملان المؤثران في دافعة أرخميدس F_A هما:

 $V(m^3)$ المغمور 1. حجم الجسم

 $ho_\ell \, (kg/m^3)$ الكتلة الحجمية للسائل. 2

 $F_{\scriptscriptstyle A} = m_\ell.g =
ho_\ell.v.g$: ونعبّر عن ذلك بالعلاقة

- شرط توازن جسم في سائل:

الجسم طافي تماما على سطح السائل

$$Fa = P$$

$$\rho_s = \rho_\ell$$

Fa = P $\rho_s < \rho_\ell$

المستوى السنة الرابعة متوسط

التمرين السادس:

يطفو إناء من الألمنيوم كتلته m=0.1kg على سطح الماء .

- 🛈 اسحب شدة دافعة ارخميدس المطبقة من طرف الماء على الإناء.
- حدد مميزات $\vec{F}a$ دافعة ارخميدس المطبقة من طرف الماء.ثم مثل القوى

1cm
ightarrow 1N المؤثرة على الإناء مستعملا سلم الرسم:

($ho_\ell=1000 kg/m^3$ و g=10N/kg).

التمرين السابع :

نعتبر النتائج التجريبية الممثلة في الأشكال التالية:

- اذكر القوى المطبقة على الجسم (S) المعلق في الشكل-1 واستنتج كتلته $oldsymbol{\mathbb{D}}$.
- $oldsymbol{\mathbb{Q}}$ احسب شدة دافعة ارخميدس المسلطة على الجسم (S) بالنسبة لكل سائل.
 - (S) باعتماد الشكل- (S) احسب (V) حجم الجسم (S)

(تعطى الكتلة الحجمية للماء: $ho_\ell = 1g \, / \, Cm^3$).

(g=10N/kg: احسب الكتل الحجمية للكحول و للماء المالح. (تعطي: Φ

الميدان الظواهر الميكيانيكية

مدرج

3N دينامومتر

المادة: علوم فيزيائية وتكنولوجيا

التمرين الرابع:

نعلق جسما صلبا (S) بواسطة دينامومتر (الشكل-1) فيشير هذا الأخير إلى شدة F_1 . F_1 نغمر الجسم F_1 المعلق في مخبار مدرج يحتوي بدئيا على حجم V_1 من الماء، فيزاح السائل ليصبح الحجم النهائي V_2 .(الشكل-2).

- اذكر القوى المطبقة على الجسم (S) قبل غمره في الماء، واستبتج تقله.
 - اذكر القوى المطبقة على الجسم (S) عند غمره في الماء، (S)

واستنتج الشدة Fa لدافعة ارخميدس.

 $ho=1kg/\ell$ الكتلة الحجمية للماء ، ho imes v imes g احسب ho . الكتلة الحجمية للماء ، ho عيث ho . ho عيث ho . ho عيث ho . ho عيث ho . ho

التمرين الخامس:

نعلق جسما صلبا (S) كتلته M ذات كتلة حجمية $\rho_S = 1.6g/cm^3$ بواسطة دينامومتر فيشير إلى القيمة 4N عندما نغمر الجسم (S) كليا في سائل (L) يشير الدينامومتر إلى القيمة (L) 2N . (تعطي (L)).

- (v) احسب كتلة الجسم (S) ،واستنتج حجمه (v)
 - احسب شدة دافعة ارخميدس.
- عين الكتلة الحجمية ho_ℓ للسائل (L) ،ثم تعرف عليه باعتماد الجدول التالي:

زبت	ماء مالح	ماء	كحول	(L) ال (L)
0.9	1.2	1	0.82	$\rho(g/cm^3)$