Internet of Things Hardware Platform

Overview

- Sensors & Actuators
- Node Architecture
- Communication Architecture

Sensors & Actuators

Sensors Characteristics

– Sensors:

- They are mainly input components in IoT
- They are devices that receive a stimulus and responds with an electrical signal
- Basically three types:
 - Passive, omnidirectional (e.g. mic)
 - Passive, narrow-beam sensor (e.g. PIR)
 - Active sensors (e.g. sonar, radar, etc.)
- Unit of measurements:
 - SI: modernized metric system.

Quantity	Name	Symbol
Length	Meter	m
Time	Second	S
Electric current	Ampere	А
Luminous intensity	Candela	cd

Transfer Function

- A transfer function for a sensor: a mathematical function representing the input-output relation.
 - Input: a physical measured parameter
 - Output: usually an electrical output signal.
- It describes the system response of a sensor.
- The simplest form of transfer function is a linear function which can be described as follows.

$$S = a + bx$$

where x is the input, b is the slope (and sometimes called sensitivity), and a is the offset (or the output when the input is zero).

Capacitive

- A change in capacitance with a change in environment
 - Can detect liquids and objects based on their dielectric constant
 - Can take human body capacitance as input
- For detection of displacement, humidity, acceleration, human contact, etc.

Resistive

- A change in resistance with a change in environment
 - Physical changes include light, force, heat, magnetic field, etc.
- For detection of light, force, heat, etc.
- Applications include camera, street lights, music instruments, weight sensing, touch screen, etc.

Magnetic

- There are several approaches for magnetic sensing, eg.
 Hall effect sensor, magneto-diode, magneto-transistor, etc.
- Generally, they detect magnetic fields or their alteration by ferromagnetic objects.
- For measuring of rotary movement, Earth's magnetic field, etc.

Inductive

- A change in the amplitude of an emitted high frequency electromagnetic field the oscillations.
- For detection of metallic object and different metals
- Common in vehicle detection

Thermoelectric

- A creation of voltage when there is a different temperature on each side of an object
- For measurement of temperature

Pyroelectric

- A temporary voltage generated from a certain material when it is heated or cooled
- For human/animal motion detection, flame detection,
 NDIR (Non Dispersive IR) gas analysis, etc.
- Common in PIR (Passive InfraRed) sensors

Sound level

- A generation of electrical voltage signals with vibration of air
- Two popular approaches: inductive (dynamic microphone) and capacitive (condenser microphone)
- Common sensing application: Sound meter

- Other sensing technologies
 - Electromechanical sensors
 - Involving of mechanical devices.
 - Some examples:
 - Fluid flow measurement (e.g. mechanical flow meters),
 Microelectromechanical systems (e.g. MEMS gyroscopes), etc.
 - Electrochemical sensors
 - Involving interaction between electricity and chemistry.
 - Some examples:
 - CO detector, pH meter, etc.

Sensors in Modern Smart Phones

Actuators

- They are mainly output components
- Generally 4 types:
 - Hydraulic: use hydraulic power, powerful but slow
 - Pneumatic: use compressed air, rapid delivery
 - Electric: use electricity, versatile ←for IoT
 - Mechanical: use other mechanical energy
- They alter the surrounding. Some examples:
 - Adding light, heat, sound, moisture, etc.
 - Moving objects
 - Displaying messages
 - and others...

Signals

- Sensors produce a series of digital signals
- Signals may contain noise
- Implementing complicated digital filters may not be desirable, as they are relatively complex in computation and high in power consumption
- Simple data smoothing may be sufficient to remove some noise

Exponential Smoothing

It's a class of Autoregressive integrated moving average

 The output is contributed by the current reading and the previously computed value

Node Architecture

A Thing

- We can turn almost every object into a "thing".
- A "thing" still looks much like an embedded system currently.
- A "thing" generally consists of four main parts:
 - Sensors & actuators
 - Microcontroller
 - Communication unit
 - Power supply
- A "thing" has the following properties:
 - It's usually powered by battery. This implies limited source of energy.
 - It's generally small in size and low in cost. This limits their computing capability.
 - It doesn't usually perform complicated tasks.
- Power consumption is the main design issue.

Hardware Components

XM1000: Processor and Memory

Item	Specification	Description	
Processor			
Processor Model	TI MSP430F2618	Texas Instruments MSP430 family 16-Bit RISC Architecture 62.5-ns Instruction Cycle Time	
Memory	116KB 8KB 1MB	Program flash Data RAM External Flash (ST® M25P80)	
ADC	12bit resolution	8 channels	
Interfaces	UART, SPI, I2C USB	Serial Interfaces External System Interface (FTI® FT232BM)	

Communication Architecture

IoT Networking

We focus on IEEE 802.15.4

IEEE 802.15.4 Standard

- IEEE 802.15.4 Standard specifies communication technologies for low-rate wireless personal area networks (LR-WPANs).
 - Including PHY & Medium Access Control (MAC)
- Three possible frequency bands (unlicensed):
 - 868.0-868.6 MHz, 902-928 MHz, 2.4-2.485 GHz
- Maximum data rate: 250 kb/s
 - Different modulation schemes are used in different frequency bands
- References:
 - IEEE Std. 802.15.4[™], 2005
 - Marco Naeve, Eaton Corp., IEEE 802.15.4 MAC Overview, 2004

IEEE 802.15.4 MAC: Configuration

- Network topologies:

- Star:

- Device classes:
 - Full Function Device (FFD): can act as a coordinator for a PAN (a), communicate with any other device
 - Reduced Function Device (RFD): only communicate with coordinator

Questions?

