Pautes de correcció Quimica

SÈRIE 4

Com a norma general, tingueu en compte que un error no s'ha de penalitzar dues vegades. Si un apartat necessita un resultat anterior i aquest és erroni, cal valorar la resposta independentment del valor numèric, fixant-se en el procediment de resolució (sempre que, evidentment, els valors emprats i/o els resultats no siguin absurds)

1.1 Càlcul de la constant d'acidesa:

Càlcul de concentració de H₃O⁺ :

$$[H_3O^+] = 10^{-pH} = 10^{-2.44} = x = 3.63 \cdot 10^{-3} M$$
 [0.3 punts]

Càlcul de la constant d'acidesa:

$$K_a = \frac{\begin{bmatrix} L^- \end{bmatrix} \begin{bmatrix} H^+ \end{bmatrix}}{\begin{bmatrix} HL \end{bmatrix}} = \frac{x \cdot x}{c - x}$$

[0,2 punts]

$$K_a = \frac{3.63 \cdot 10^{-3} \cdot 3.63 \cdot 10^{-3}}{0.100 - 3.63 \cdot 10^{-3}} = 1.37 \cdot 10^{-4}$$

[0,4 punts]

1.2 <u>Justificació del pH de les solucions sa</u>lines:

Per identificar les solucions esmentades mullaríem amb unes gotes de cada solució sengles tiretes de paper indicador i observaríem que en cada cas el paper mullat pren un color diferent.

Solució de NaCl:	sal d'àcid fort i base forta	<u>sense hidròlisi</u>	
	color groc o verd clar	solució neutra pH = 7	[0,2 punts]

Solució de NH₄Cl: sal d'àcid fort i base feble <u>hidròlisi àcida</u>

 $NH_4^+ + 2H_2O \implies NH_4OH + H_3O^+$

o bé $NH_4^+ + H_2O \leftrightarrows NH_4OH + H^+$ [0,2 punts] color vermell o taronja solució àcida pH < 7 [0,2 punts]

Solució de Na[CH₃-CHOH-COO]:

sal d'àcid feble i base forta <u>hidròlisi bàsica</u> CH_3 -CHOH- COO^- + $H_2O \leftrightarrows CH_3$ -CHOH-COOH + OH^- [0,2 punts] <u>color verd fosc o blau</u> solució bàsica pH > 7 [0,2 punts] Pautes de correcció Quimica

2.1 Carboni diamant - iode:

En el carboni diamant, tots els enllaços que constitueixen el sòlid són covalents i, atès que presenten una elevada energia d'enllaç, la temperatura de fusió del diamant serà elevada.

[0,5 punts]

En el iode també hi ha enllaços covalents, per bé que aquests s'estableixen entre dos àtoms de l'element donant lloc a molècules diatòmiques. Aquestes molècules, s'agreguen mitjançant enllaços febles, del tipus dipol temporal-dipol temporal (van der Waals), originant el iode sòlid. Atès que els enllaços intermoleculars són molt menys intensos que els covalents, el iode sòlid passa fàcilment a gas (sublimació) a pressions ordinàries i temperatures prou baixes.

[0,5 punts]

2.2 Conductivitat elèctrica del carboni diamant vs. l'estany:

En el carboni diamant, tots els enllaços que constitueixen el sòlid són covalents i, per aquesta raó, els electrons de la capa de valència ocupen posicions d'enllaç i originen una geometria ben definida, en la què els electrons no tenen capacitat de lliure moviment al llarg de l'estructura del sòlid.

[0,25 punts]

L'estany és un element força més electropositiu que el C. Atès el seu caràcter metàl·lic, l'estany sòlid adopta l'estructura pròpia dels cristalls metàl·lics, on els àtoms cedeixen electrons de valència al conjunt. Els electrons cedits, en no quedar restringits a unes direccions d'enllaç ben definides, gaudeixen de llibertat per moure's al llarg del cristall, cosa que fa que el sòlid metàl·lic esdevingui conductor del corrent elèctric.

[0,25 punts]

2.3 Comparació de radis atòmics:

El iode té una configuració electrònica [Kr] $4d^{10}$ $5s^25p^5$ i la de l'estany és [Kr] $4d^{10}$ $5s^25p^2$. Per als elements d'un mateix període, el radi atòmic va disminuint a mesura que augmenta el nombre atòmic. Això es degut a que a mesura que augmenta "n", l'efecte de pantalla dels electrons sobre la càrrega positiva del nucli no augmenta de manera proporcional i la càrrega nuclear efectiva (Z_{efect}) va sent cada cop més gran (major atracció dels electrons de l'escorça atòmica \to menor radi atòmic). Així, doncs, el iode presentarà un radi atòmic inferior al del Sn.

[0,5 punts]

3.1 Equilibri de dissociació del N₂O₄

Inici:

 $\begin{array}{ccc}
N_2O_4(g) & \leftrightarrows & 2NO_2(g) & \Delta H > 0 \\
n^0_{N2O4} & 0 & 0
\end{array}$

Equilibri: $n_{N2O4} = 0.030 \text{ mol}$ $p_{total} = 0.75 \text{ atm}$

Pressions parcials de cada gas en l'equilibri:

Aplicant la llei dels gasos ideals: $p_{N2O4}(eq) \cdot 2 = 0,030 \cdot 0,082 \cdot 373,15$ [0,1 punts]

d'on: $p_{N2O4}(eq) = 0.46 \text{ atm}$ [0,2 punts]

La pressió parcial del NO₂ en l'equilibri serà:

 $p_{NO2} = 0.75 - 0.46 = 0.29 \text{ atm}$ [0.2 punts]

PAU 2008

Pautes de correcció Quimica

Càlcul de Kp

$$K_p = \frac{p_{NO2}^2}{p_{N2O4}} = \frac{0.29^2}{0.46} = 0.18$$

[0,2 punts expressió + 0,2 punts resultat]

Càlcul dels mols inicials de N₂O₄ (n⁰ _{N2O4}):

$$n^{0}_{N2O4} = n_{N2O4}(eq) + \frac{1}{2} n_{NO2}(eq)$$
 [0,2 punts]

mols de NO2 en l'equilibri (aplicant la llei dels gasos ideals):

$$0.29 \cdot 2 = n_{NO2}(eq) \cdot 0.082 \cdot 373.15$$
 [0.1 punts]

d'on: $n_{NO2}(eq) = 0.019 \text{ mol}$

[0,1 punts]

mols de N₂O₄ inicials:

$$n^{0}_{N2O4} = n_{N2O4}(eq) + \frac{1}{2} n_{NO2}(eq) = 0.030 + \frac{1}{2} 0.019$$

= 0.0395 mol \approx 0.040 mol

[0,2 punts]

3.2 Efecte de l'augment de la temperatura

La reacció és endotèrmica ($\Delta H > 0$). Atès aquest fet, un augment de la temperatura modificarà el valor de la constant d'equilibri que, en ser més gran, originarà una nova situació d'equilibri on la concentració (i la pressió parcial) de NO_2 serà més gran (desplaçament de l'equilibri cap a la formació de productes).

Per aquesta raó, s'enfosquirà el color de la mescla dels dos gasos en equilibri.

[0,5 punts]

OPCIÓ A

4.1 Solubilitat del fluorur de bari

- Equilibri de solubilitat: $CaF_2(s) \leftrightarrows Ca^{2+}(aq) + 2F^{-}(aq)$ s s 2s

2s [0,1 punts]

- Producte de solubilitat: $K_{DS} = 4.0 \cdot 10^{-11} = [Ca^{2+}(aq)] \cdot [F^{-}(aq)]^{2}$ [0,1 punts]

 $s \cdot (2s)^2 = 4s^3 = 4.0 \cdot 10^{-11}$ [0,2 punts] $s = 2.15 \cdot 10^{-4}$ M [0,3 punts]

$$\frac{2,\!15\cdot10^{-4}\;\text{mol}\;\text{CaF}_2}{1\,\text{L}}\cdot\frac{78,\!1\,\text{g}\;\text{CaF}_2}{1\,\text{mol}\;\text{CaF}_2}\cdot\frac{1000\,\text{mg}\;\text{CaF}_2}{1\,\text{g}\;\text{CaF}_2} = 16,\!8\,\text{mg}\;\text{CaF}_2\cdot\text{L}^{-1}$$

[0,3 punts]

Pautes de correcció Quimica

4.2 Solubilitat del CaF₂ en l'aigua dura

Equilibri de solubilitat: $CaF_2(s) \leftrightarrows Ca^{2+}(aq) + 2 F_{-}(aq)$ s' c + s' 2s' [0,1 punts]

Càlcul de la molaritat de Ca²⁺(aq) en l'aigua dura:

$$\frac{0.320 \text{ g } Ca^{2+}}{1 L} \cdot \frac{1 \text{ mol } Ca^{2+}}{40.1 \text{ g } Ca^{2+}} = 7.98 \cdot 10^{-3} \text{ mol } Ca^{2+} \cdot L^{-1} = c + s^{-1}$$

Atès que: $[Ca^{2+}(aq)] = 7,98 \cdot 10^{-3} \text{ M} \\ [Ca^{2+}(aq)] \cdot (2s')^2 = 7,98 \cdot 10^{-3} \cdot (2s')^2 = 4,0 \cdot 10^{-11} \\ s' = 3,54 \cdot 10^{-5} \text{ M} \\ [F] = 7,08 \cdot 10^{-5} \text{ M}$ [0,2 punts]

 $\frac{7,08\cdot10^{-5} \ mol \ F^{-}}{1 \ L} \cdot \frac{19,0 \ g \ F^{-}}{1 \ mol \ F^{-}} \cdot \frac{1000 \ mg \ F^{-}}{1 \ g \ F^{-}} = 1,35 \ mg \ F^{-} \cdot L^{-1}$

[0,2 punts]

Per la qual cosa, l'aigua s'ajusta a les recomanacions.

5.1 Energia d'activació:

Valor aproximat de l'energia d'activació = 200 – 150 = 50 kJ

[0,5 punts]

5.2 Significat de X:

X representa el complex activat, que no es tracta d'un compost químic ben definit si no d'una entitat química resultat de l'aproximació dels reactius a una distància suficient per a que es produeixi una reorganització del conjunt d'àtoms presents i tingui lloc la formació dels productes de reacció.

Es valorarà amb la puntuació màxima si s'indica que X representa el complex activat de la reacció.

[0,5 punts]

5.3 <u>Càlcul de ΔH de la reacció</u>: 50 - 150 = -100 kJ de manera que la reacció serà exotèrmica

[0.3 + 0.2 punts]

5.4 Dibuix de la corba corresponent al procés catalitzat:

La corba que es dibuixi per a la reacció catalitzada haurà tenir el mateix origen i el mateix final que la corba de la figura, però haurà de presentar una energia d'activació menor.

[0.5 punts]

Quimica

Pautes de correcció

OPCIÓ B

4.1 Signe de <u>AH i AS de la reacció</u>

Es tracta d'una reacció de combustió i les combustions són exotèrmiques. D'altra banda, la reacció plantejada correspon a la reacció de formació de l'aigua líquida que, tal com es pot veure a partir de les dades aportades en la taula annexa, té una entalpia negativa en les condicions estàndard.

[0,4 punts]

Es tracta d'una reacció de combustió entre dos gasos en la que es forma un líquid. En aquesta reacció la ΔS és negativa, atès que hi ha un guany en l'ordre molecular al llarg de la reacció.

[0,4 punts]

4.2 Càlcul ∆H⁰_f d'un mol d'aigua gas a 100 ºC

(1)
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$$
 a 25 °C $\Delta H_1 = -285.8$ kJ
(2) $H_2O(l)$ a 25 °C $\rightarrow H_2O(l)$ a 100 °C $\Delta H_2 = 18 \cdot 4.18 \cdot (100 - 25)$ J $= 5643$ J = 5,64 kJ [0,2 punts]

(3)
$$H_2O(I)$$
 a $100 \,{}^{\circ}\text{C} \rightarrow H_2O(g)$ a $100 \,{}^{\circ}\text{C}$ $\Delta H_3 = 40,66 \,\text{kJ}$

[0,2 punts]

(4)
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$$
 a $100 \, {}^{\circ}\text{C}$ ΔH_4 [0,2 punts]

(4) = (1) + (2) + (3) i
$$\Delta H_4 = \Delta H_1 + \Delta H_2 + \Delta H_3$$
 [0,2 punts]
= -285,8 + 5,64 + 40,66 = -239,5 kJ·mol⁻¹ 0,4 punts]

5.1 Resposta correcta: b5.2 Resposta correcta: d5.3 Resposta correcta: a5.4 Resposta correcta: a