tail ratio approx. for pstable($\alpha = 1, \beta = 0.5$)

$$\epsilon(x) = (\overline{F}(x, .) - \overline{F}_{P}(x, .)) / \overline{F}_{P}(x, .)$$

tail ratio approx. for $pstable(\alpha = 1.1, \beta = 0.25)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_P(x, .)) / \overline{F}_P(x, .)$

tail ratio approx. for pstable ($\alpha = 0.99$, $\beta = 0.992$)

$$\epsilon(x) = (\overline{F}(x, .) - \overline{F}_P(x, .)) / \overline{F}_P(x, .)$$

tail ratio approx. for $pstable(\alpha = 1.2, \beta = 0.5)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_P(x, .))/\overline{F}_P(x, .)$

tail ratio approx. for $pstable(\alpha = 0.7, \beta = 0.9)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_P(x, .))/\overline{F}_P(x, .)$

tail ratio approx. for pstable ($\alpha = 1.7, \beta = 0.6$)

$$\varepsilon(x) = (\overline{F}(x, .) - \overline{F}_{P}(x, .)) / \overline{F}_{P}(x, .)$$

tail ratio approx. for dstable($\alpha = 1.01$, $\beta = 0.8$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable($\alpha = 1.05, \beta = 0.4$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable($\alpha = 1.1, \beta = 0.4$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable ($\alpha = 1.2$, $\beta = 0.5$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable($\alpha = 1.3$, $\beta = 0.6$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable($\alpha = 1.4, \beta = 0.7$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable($\alpha = 1.5$, $\beta = 0.8$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable ($\alpha = 1.5$, $\beta = 0.8$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for $dstable(\alpha = 1.5, \beta = 0.8)$ $\epsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$

tail ratio approx. for $dstable(\alpha = 1.5, \beta = 0.8)$ $\epsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$

tail ratio approx. for dstable ($\alpha = 1.6, \beta = 0.9$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable ($\alpha = 1.7$, $\beta = 0.1$)

tail ratio approx. for dstable($\alpha = 1.8, \beta = 0.2$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

