UK University Integration Bee Syllabus

VISHAL GUPTA

2023/2024

Please note that this syllabus is more of a guideline of content that will allow you to be able to solve each problem rather than a strict requirement for every problem – a lot of the time advanced techniques/special functions can be avoided with clever substitutions and tricks!

§1 Integration Techniques

You should be familiar with the integration techniques listed below. The items at the end will not be required.

Status	Topic
✓	Everything which is on the A-Level and STEP Mathematics and Further
	Mathematics syllabus for Integration, including integration by substitu-
	tion and integration by parts.
✓	Differentiation under the integral sign (DUTIS):

$$\frac{d}{dt} \left(\int_{a}^{b} f(x, t) dx \right) = \int_{a}^{b} \frac{\partial}{\partial t} (f(x, t)) dx.$$

✓ Differentiation under the integral sign general version (DUTIS):

$$\frac{d}{dt}\left(\int_{a(t)}^{b(t)} f(x,t) dx\right) = \int_{a(t)}^{b(t)} \frac{\partial}{\partial t} (f(x,t)) dx + f(b(t),t)b'(t) - f(a(t),t)a'(t)$$

- The Weierstrass substitution, $t = \tan\left(\frac{x}{2}\right)$ (also known as t substitution).
- Infinite series and their use in evaluating integrals, swapping an integral and an infinite sum issues of convergence won't be considered.
- The reflection property of integrals:

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx.$$

- Odd and even functions and their use in evaluating integrals.
- X Green's Theorem, Stokes' Theorem, the Divergence Theorem and other results from vector calculus.

§2 Functions & Specific results

Some knowledge of the following special functions and more specific results may be required.

Status Topic

✓ The Gamma function,

$$\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} \, \mathrm{d}x.$$

 \checkmark The Euler Reflection Formula for the Γ function,

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$$

✓ The Beta function

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

✓ The Riemann zeta function,

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 for $s > 1$.

- The floor function $\lfloor x \rfloor$ which rounds down to the integer less than or equal to x.
- Useful infinite series, such as

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6},$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2} = G \quad \text{(Catalan's Constant)}.$$

 \checkmark Euler Mascheroni constant γ

$$\gamma = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} - \ln n$$

✓ Wallis' Product

$$\prod_{n=1}^{\infty} \frac{4n^2}{4n^2 - 1} = \frac{\pi}{2}$$