Lecture Notes in Multivariate Data Analysis

Kaizhao Liu

September 2022

Contents

1	Th€	e Multivariate Normal Distributions
	1.1	Asymptotic Distributions of Sample Means and Covariance Matrices
	1.2	The Noncentral χ^2 and F Distributions
	1.3	Quadratic Forms
	1.4	Spherical and Elliptical Distributions
	ъ.	
Z		ltivariate Integration
	2.1	Exterior Products
		The Multivariate Gamma Function
	2.3	Miscellaneous Jacobians
	2.4	Invariant Measures

1 The Multivariate Normal Distributions

1.1 Asymptotic Distributions of Sample Means and Covariance Matrices

1.2 The Noncentral χ^2 and F Distributions

Definition 1.1 (generalized hypergeometric functions). The generalized hypergeometric function is

$$_{p}F_{q}(a_{1}, \cdots a_{p}; b_{1}, \cdots, b_{q}; z) = \sum_{n=0}^{\infty} \frac{(a_{1})_{k} \cdots (a_{p})_{k}}{(b_{1})_{k} \cdots (b_{q})_{k}} \frac{z^{k}}{k!}$$

where $(a)_k = a(a+1)\cdots(a+k-1)$

For our purpose we will make use of the results in the following two lemmas. The first gives a special integral for ${}_{0}F_{1}$.

Lemma 1.1.

$$\frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{1}{2})\Gamma(\frac{n-1}{2})}\int_0^\pi e^{z\cos\theta}\sin^{n-2}\theta\mathrm{d}\theta = \,_0\mathrm{F}_1(\frac{n}{2};\frac{z^2}{4})$$

The second lemma shows that $_{p+1}\mathbf{F}_{q}$ is essentially a Laplace transform of $_{p}\mathbf{F}_{q}$.

Lemma 1.2.

$$\int_0^\infty e^{-zt} t^{a-1} {}_p \mathbf{F}_q(a_1, \cdots, a_p; b_1, \cdots, b_p; kt) dt = \Gamma(a) z^{-a} {}_{p+1} \mathbf{F}_q(a_1, \cdots, a_p, a; b_1, \cdots, b_q; kz^{-1})$$

for $p < q, \Re(a) > 0, \Re(z) > 0$ or $p = q, \Re(a) > 0, \Re(z) > \Re(k)$.

Theorem 1.1. If X is $N_n(\mu, I_n)$ then the random variable $Z = X^T X$ has the density function

$$e^{-\frac{\delta}{2}}\,_0\mathrm{F}_1(\frac{n}{2};\frac{\delta z}{4})\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}e^{-\frac{z}{2}}z^{\frac{n}{2}-1}\quad (z>0)$$

where $\delta = \mu^T \mu$. Z is said to have the noncentral χ^2 distribution with n degrees of freedom and noncentrality parameter δ , to be written as $\chi_n^2(\delta)$.

Corollary 1.1.1. If Z is $\chi_n^2(\delta)$ then its density function can be expressed as

$$\sum_{k=0}^{\infty} P(K = k) g_{n+2k}(z) \quad (z > 0)$$

where K is a Poisson random variable with mean $\frac{\delta}{2}$, and

$$g_r(z) = \frac{1}{2^{\frac{r}{2}}\Gamma(\frac{r}{2})} e^{-\frac{z}{2}} z^{\frac{r}{2} - 1}$$

the density function of the χ^2_r distribution.

Theorem 1.2. If Z is $\chi_n^2(\delta)$ then its characteristic function is

$$\varphi_z(t) = (1 - 2it)^{\frac{n}{2}} e^{\frac{it\delta}{1 - 2it}}$$

Corollary 1.2.1. $E(Z) = n + \delta$ and $Var(Z) = 2n + 4\delta$

Corollary 1.2.2. If Z_1 is $\chi^2_{n_1}(\delta_1)$, Z_2 is $\chi^2_{n_2}(\delta_2)$, and Z_1 and Z_2 are independent, then $Z_1 + Z_2$ is $\chi^2_{n_1+n_2}(\delta_1+\delta_2).$

We now turn to the noncentral F distribution. Recall that the usual central F distribution is obtained by taking the ratio of two independent χ^2 variables divided by their degrees of freedom. The noncentral F distribution is obtained by allowing the numerator variable to be noncentral χ^2 .

Theorem 1.3. If Z_1 is $\chi^2_{n_1}(\delta), Z_2$ is $\chi^2_{n_2}$, and Z_1 and Z_2 are independent, then

$$F = \frac{Z_1/n_1}{Z_2/n_2}$$

has the density function

$$e^{-\frac{\delta}{2}} {}_{1}F_{1}(\frac{n_{1}+n_{2}}{2}; \frac{n_{1}}{2}; \frac{\frac{n_{1}}{2n_{2}}\delta z}{1+\frac{n_{1}}{n_{2}}z}) \times \frac{\Gamma(\frac{n_{1}+n_{2}}{2})}{\Gamma(\frac{n_{1}}{2})\Gamma(\frac{n_{2}}{2})} \frac{z^{\frac{n_{1}}{2}-1}(\frac{n_{1}}{n_{2}})^{\frac{n_{1}}{2}}}{(1+\frac{n_{1}}{n_{2}}z)^{\frac{n_{1}+n_{2}}{2}}} \quad z > 0$$

F is said to have the noncentral F distribution with n_1 and n_2 degrees of freedom and noncentrality parameter δ , to be written as $F_{n_1,n_2}(\delta)$.

Corollary 1.3.1.
$$E(F) = \frac{n_2(n_1+\delta)}{n_1(n_2-2)}(n_2>2)$$
 and $Var(F) = 2(\frac{n_2}{n_1})^2 \frac{(n_1+\delta)^2 + (n_1+2\delta)(n_2-2)}{(n_2-2)^2(n_2-4)}(n_2>4)$

1.3 Quadratic Forms

Theorem 1.4. If
$$X$$
 is $N_m(\mu, \Sigma)$, where Σ is nonsingular, then (i) $(X - \mu)^T \Sigma^{-1} (X - \mu)$ is χ_m^2 (ii) $X^T \Sigma^{-1} X$ is $\chi_m^2(\delta)$ where $\delta = \mu^T \Sigma^{-1} \mu$

Theorem 1.5. If X is $N_m(\mu, I_m)$ and B is an $m \times m$ symmetric matrix, then X^TBX has an noncentral χ^2 distribution if and only if B is idempotent.

Spherical and Elliptical Distributions

Definition 1.2. A $m \times 1$ random vector X is said to have a spherical distribution if X and OX have the same distribution for all $O \in O(n)$.

Theorem 1.6. Let X be $E_m(\mu, V)$, where V is diagonal. If X_1, \dots, X_m are all independent then X is normal.

Proof. WLOG assume $\mu = 0$. Then the characteristic function of X has the form $\phi(t) = \psi(t^T V t) = 0$ $\psi(\sum_{i=1}^m t_i^2 v_{ii})$. Since X_1, \dots, X_m are independent we have This equation is known as Hamel's equation and its only continuous solution is $\psi(z) = e^{kz}$ for some constant k. Hence the characteristic function of X has the form $\phi(t) = e^{kt^TVt}$, and because it is a characteristic function, we must have $k \leq 0$ which implies that X has a normal distribution.

2 Multivariate Integration

2.1 Exterior Products

For any matrix X, d(X) denotes the matrix of differentials (dx_{ij}) .

For an arbitary $n \times m$ matrix X, the symbol (dX) will denote the exterior product of the mn distinct elements of dX:

$$(\mathrm{d}X) := \bigwedge_{j=1}^{m} \bigwedge_{i=1}^{n} \mathrm{d}x_{ij}$$

For a symmetric $m \times m$ matrix X, the symbol (dX) will denote the exterior product of the $\frac{m(m+1)}{2}$ distinct elements of dX:

$$(\mathrm{d}X) := \bigwedge_{1 \le i \le j = 1 \le m} \mathrm{d}x_{ij}$$

2.2 The Multivariate Gamma Function

2.3 Miscellaneous Jacobians

2.4 Invariant Measures