Linear Algebra

주재걸 고려대학교 컴퓨터학과

onto \$1

manifold

र्विष्टिः भाहि र्विष्टिं। मिन् विष्टिं। मिन् विष्टिं। भाहि रिविष्टे। मिन्

• **Definition:** A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be onto \mathbb{R}^m if each $\mathbf{b} \in \mathbb{R}^m$ is the image of at least one $\mathbf{x} \in \mathbb{R}^n$.

 $T(\begin{bmatrix} 0 \\ 0 \end{bmatrix}) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $T(\begin{bmatrix} 0 \\ 0 \end{bmatrix}) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $T(\begin{bmatrix} 0 \\ 0 \end{bmatrix}) = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$ $T: y = Ax = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

• **Definition:** A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if each $b \in \mathbb{R}^m$ is the image of at most one $x \in \mathbb{R}^n$. That is, each output vector in the range is mapped by only one input vector, no more than that.

T is NOT one-to-one

Neural Network Example

Fully-connected layers

Neural Network Example: ONE-TO-ONE

 Will there be many (or unique) people mapped to the same (over_weighted, tall_and_smoking)?

Neural Network Example: ONTO

• Is there any (over_weighted, tall_and_smoking) that () (2) (2) (3) (3) does not exist at all?

老地

ONTO and ONE-TO-ONE

• Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, i.e.,

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all $\mathbf{x} \in \mathbb{R}^n$.

T is one-to-one if and only if the columns of A are linearly independent.

• T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m .

ONTO and ONE-TO-ONE

Example:

Let
$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- Is *T* one-to-one?
- Does T map \mathbb{R}^2 onto \mathbb{R}^3 ?

ONTO and ONE-TO-ONE

Example:

Let
$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

- Is T one-to-one?
- Does T map \mathbb{R}^3 onto \mathbb{R}^2 ?

Further Study

- Gaussian elimination, row reduction, echelon form
 - Lay Ch1.2,

- LU factorization: efficiently solving linear systems
 - Lay Ch2.5
- Computing invertible matrices
 - Lay Ch2.2

- Invertible matrix theorem for square matrices
 - Lay Ch2.3, Ch2.9