

Nicole Aguilera

Dr. Brett Werner

DSC 630

June 5, 2021

Project Statement

Through a retail data analytics data set, the model created through this project will be used to predict sales for a store for the following year, separated by department

Variables

Variable	Description	
Date	MM/DD/YY – Date of the start of the week in question	
Weekly_Sales	Total weekly sales for the week	
Is_Holiday	Whether the week is a holiday week (1) or not (0)	

Exploratory Data Analysis

Summary Statistics

	Weekly_Sales	Is_Holiday
count	143.000000	143.000000
mean	22513.322937	0.069930
std	9854.349032	0.255926
min	14537.370000	0.000000
25%	16494.630000	0.000000
50%	18535.480000	0.000000
75%	23214.215000	0.000000
max	57592.120000	1.000000

Data set reviews 3 years of sales data to analyze predictions

Weekly Sales from February 2010 to October 2012

LSTM Regression Model

- Long Short Term Memory
- Time series prediction of Sales through neural network model
- Train score was able to predict within \$7,846.19
- Test score was able to predict within \$3,665.01

Data Set
Train Score
Test Score

LSTM Regression with Time Steps Model

- Time series prediction of Sales using past observations as input features, instead of separate features
- Train score was able to predict within \$5,090.35
 - Test score was able to predict within \$2,655.37

Epoch 95/100
110/110 - 0s - loss: 0.0146
Epoch 96/100
110/110 - 0s - loss: 0.0146
Epoch 97/100
110/110 - 0s - loss: 0.0145
Epoch 98/100
110/110 - 0s - loss: 0.0144
Epoch 99/100
110/110 - 0s - loss: 0.0142
Epoch 100/100
110/110 - 0s - loss: 0.0145

Data Set
Train Score
Test Score

LSTM Regression Adding Holiday Variable Epoch 45 2/2 - 08 Epoch 46 2/2 - 08

- Multivariate time series forecasting
- Model can predict results with about 3.52% error
- Loss/train results
 keeps consistent
 around 8%

Model Results

LSTM Regression with Two Departments and Holiday Weeks

- Multivariate time series forecasting
- Model can predict results with about 2.70% error

Model Results

Conclusion

- Low error margins overall
- Univariate LSTM models mimicked the data, proving to be accurate
- Multivariate LSTM models had test and training sets results that seemed to be far apart, only 0.05 difference
- Best model was the univariate LSTM time model
- Add ARIMA model to be considered for multivariate analysis in the future

Works Cited

- Brownlee, J. (2016). Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras. Machine Learning Mastery. https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
- Brownlee, J. (2017). Multivariate Time Series Forecasting with LSTMs in Keras. Machine Learning Mastery. https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/
 - Retail Data Analytics. (2017). Kaggle.
 https://www.kaggle.com/manjeetsingh/retaildataset