The growing impact of satellite megaconstellation launch and re-entry emissions on radiative forcing and stratospheric ozone depletion

The environmental impacts of SMC emissions

Launches (all atmospheric layers)

SMC Launches

Reentries (60-80 km)

Payload/Rocket

Thermal NO_x Al_2O_3

Developing 3D emission inventories of rocket launches and re-entries

Launch emissions (all atmospheric layers)

Annual propellant consumption has increased from 38-67 Gg.

Re-entry emissions (60-80 km)

Annual re-entry mass (5 Gg) is now ~40% of natural influx (26% SMC). 2 kt unablated mass returns to Earth.

Implementing annual emissions into GEOS-Chem

Impact of space industry emissions on stratospheric concentrations

Global Stratospheric Mean Concentrations

Minimal O_3 loss from SMCs but significant BC emissions.

Minimal increases in ozone depleting emissions from SMCs.

Stratospheric ozone depletion in the context of the Montreal Protocol

Peak O₃ loss coincides with maximum increases in Cl_y.

Peak O₃ loss is a reversal of 10% of Montreal recovery (2% for SMCs).

Stratospherically-adjusted radiative flux at tropopause (2030)

All

SMC

Increased stratospheric BC burden drives forcing through absorption of SW radiation.

Instantaneous radiative flux at top of atmosphere (2023)

Net increase at the top of atmosphere attributable to BC SW absorption.

Negative flux at tropopause, likely due to BC absorption above the tropopause.

- Developed SMC and non-SMC emission inventories for 2020-2022.
- Preliminary results demonstrate immediate environmental impacts.
 - A decade of increasing rocket launch and re-entry emissions reverse 10% of Montreal Protocol gains.
 - SMCs cause negligible O_3 depletion but lead to large increases in stratospheric BC.
 - Increasing rocket launch and re-entry emissions cause decrease in stratospherically-adjusted tropopause flux and increase in instantaneous TOA flux.
 - SMCs affect climate through significant emissions of BC above the tropopause.

