Clasa a XI-a

Soluții

Problema 1

- a) $(x_n)_n$ strict crescător; $L = \lim x_n \in \mathbf{R}_+$ nu satisface relația dată de recurență, deci $L = \infty$.
 - b) Folosind lema Stolz

$$\lim_{n \to \infty} \frac{\sqrt{x_n^3}}{n} = \lim_{n \to \infty} (\sqrt{x_{n+1}^3} - \sqrt{x_n^3}) =$$

$$= \lim_{y \to \infty} \left(\sqrt{\left(y + \frac{1}{\sqrt{y}}\right)^3} - \sqrt{y^3} \right) = \frac{3}{2},$$

 $\operatorname{deci} \lim_{n \to \infty} \frac{x_n^3}{n^2} = \frac{9}{4}.$

Punctaj recomandat: a) 2 puncte; b) aplicarea lemei Stolz 3 puncte; finalizare 2 puncte.

Problema 2

- a) Utilizând formula lui $\sin(a-b)$, descompunem det A într-o sumă de 8 determinanți, fiecare dintre ei este egal cu 0 având coloane proporționale.
- b) Dacă $z = r(\cos 2x + i \sin 2x)$, $w = r(\cos 2y + i \sin 2y)$, atunci $|z w| = 2r |\sin(x y)|$. Tinând seama de ipoteză și de observația anterioară, determinantul devine

$$\begin{vmatrix} \sin(x_1 - x_{n+1}) & \sin(x_1 - x_{n+2}) & \sin(x_1 - x_{n+3}) & \dots \\ \dots & \dots & \dots & \dots \\ \sin(x_n - x_{n+1}) & \sin(x_n - x_{n+2}) & \sin(x_n - x_{n+3}) & \dots \end{vmatrix}.$$

Dezvoltat, ca la punctul a), obținem o sumă de determinanți nuli.

Punctaj recomandat: a) 4 puncte; b) 3 puncte.

Problema 3

a) $f(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 1. \end{cases}$

b) (*) Dacă c < d și f(c) = f(d) atunci f = constant pe [c, d] (densitate și continuitate).

Presupunem că există a < b, $f(a) \neq f(b)$: notăm $a_1 = \sup\{x \in [a,b] \mid f(a) = f(x)\}$, $b_1 = \inf\{x \in [a,b] \mid f(b) = f(x)\}$. Rezultă $f(a) = f(a_1)$, $f(b_1) = f(b)$ deci f este constantă pe $[a,a_1]$ și pe $[b_1,b]$. Calculând $f\left(\frac{a_1+b_1}{2}\right)$, obținem contradicție.

1

Punctaj recomandat: a) 2 puncte; (*) 3 puncte; finalizare 2 puncte.

Problema 4

a)
$$A^{p-1} = \begin{pmatrix} 0 & \dots & 0 & 1 \\ 0 & \dots & 0 & 0 \\ \dots & \dots & \dots \\ 0 & \dots & 0 & 0 \end{pmatrix}$$
 şi $A^p = 0_p$.

b) Calcul direct.

c) Relațiile pentru n=1,2,3 implică $BC=CB=0_p$ $((B+C)^2=B^2+C^2$ implică $BC+CB=0;\,(B+C)^3=(B+C)^2(B+C)=B^3+C^3,$ implică $B^2C + C^2B = 0$ implică CB(B-C) = 0 implică CB(B-C)C = 0, implică CBC(B+C)=0, implică CBC=0 implică $C^2B=B^2C=0$ implică $0=CB^2+CBC=0$ CB(B+C) implică CB=0.)

Relația pentru n = 1 implică AB = BA, AC = CA.

Din b)
$$B = \begin{pmatrix} b_1 & & * \\ 0 & b_1 & \\ 0 & & b_1 \end{pmatrix}, C = \begin{pmatrix} c_1 & & * \\ 0 & c_1 & \\ 0 & & c_1 \end{pmatrix}$$
 şi $b_1 + c_1 = 1$. $BC = 0$ implică

Punctaj recomamndat: a) 2 puncte; b) 2 puncte; c) 3 puncte.