诚信考试 沉着应考 杜绝违纪

浙江大学 2008 - 2009 学年冬季学期

《数字电路》课程期末考试试卷

课程号: (2008-2009-1)-111C0030; 考试试卷: √A 卷、B 卷 (请在选定项上打 √)

开课学院: 信息学院 ,考试形式: √闭、开卷 (请在选定项上打 √),允许带_计算器 入场

考试时间: 2009年1月10日,所需时间: 120分钟

考生姓名:	学号:	专业:	
-------	-----	-----	--

题序	1	1]	111	四	五.	六	七	八	总 分
得分									
评卷人									

一、 逻辑代数 (16分)

采用卡诺图法化简下列逻辑函数,要求表达式尽量简单.

- 1. $F(A, B,C, D) = \sum m (1, 2, 4, 7, 8, 11, 13, 14)$
- 2. $F(A, B, C, D) = \sum m(0, 1, 4, 7, 9, 10, 13) + \sum d(2, 5, 8, 12, 14, 15)$

- 二、数制和组合逻辑 (16分)
- 1. 使用一个 8 选 1 数据选择器和一个反相器实现布尔函数: (8 分) $F(A,B,C,D) = \sum_{m} (1,3,4,11,12,13,14,15)$

2. 设A为四位二进制数,试用1片四位二进制加法器74283实现函数Y=5A.

三、反相工程(12分)

根据下面时序电路图得到状态机图.

- 1) 这是 Melay 状态机还是 Moore 状态机(1分)
- 2) 写出下面三个电路节点的布尔方程 (3分)

$$Z(A, B, Qx, Qy) =$$

$$Dx (A, B, Qx, Qy) =$$

Dy
$$(A, B, Qx, Qy) =$$

3) 完成状态转换表(4分)

Qx	Qy	A	В	Dx	Dy	Z
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

4) 根据状态转换表,只完成从状态 11 开始的状态图. (4分)

四、时序电路(12分)

采用 T 触发器设计计数器, 重复的计数序列为: 0, 1, 3, 7, 6, 4. 说明为什么二进制状态 010 和 101 被当做任意态使用时, 计数器不能正常工作. 给出一种方法校正这种设计.

五、时序电路(12分)

采用 D 触发器设计一输出序列为"00010111"移存型序列信号发生器. 要求列出状态转换表,移位寄存器的激励函数,画出逻辑电路图.

六、时序电路(12分)

采用 4 位同步二进制计数器 74161 接成 92 进制计数器,标出输入、输出端.可以附加必要的门电路. 74161 的功能表如下表.

4位同步二进制计数器 74161 的功能表

CLK	R' _D	LD'	EP	ET	工作状态
X	0	X	X	X	置零
†	1	0	X	X	预置数
X	1	1	0	1	保持
X	1	1	X	0	保持(但 C=0)
†	1	1	1	1	计数

七、Verilog HDL 语言 (10 分)

endmodule

```
分析下面 Verilog 模块描述的功能.
module X (EN, I, A, E0);
  input
                 EN;
  input
          [3:0] I;
  output [1:0] A;
                 E0;
  output
  always @ (EN or I or A or E0)
    begin
        if (EN = 0) begin E0 = 0; A = 0; end
        else
       begin
           E0 = 1; A = 0;
           if (I[0] = 1) begin E0 = 0; A = 0; end
           if (I[1] = 1) begin E0 = 0; A = 1; end
           if (I[2] = 1) begin E0 = 0; A = 2; end
          if (I[3] = 1) begin E0 = 0; A = 3; end
         end
      end
```

(1) 首先读懂上面的 *Verilog* 代码所描述的功能,然后完成下面的真值表. 注意:此真值表不是完整的真值表. (5分)

I_3	I_2	I_1	I_0	EN	A_1	A_0	E0
0	0	0	0	0			
0	0	0	0	1			
0	0	0	1	0			
0	0	0	1	1			
0	0	1	0	0			
0	0	1	0	1			
1	0	0	0	0			
1	0	0	0	1			
1	0	0	1	0			
1	0	0	1	1			

- (2) 指出上面代码所实现的功能. (1分)
- (3) 只采用 2 选 1 的选择器,实现上述代码所描述的功能. 画出电路逻辑图. (4分)

八*、脉冲电路(10 分)*

有 CMOS 正边沿 D 触发器构成的电路如下图所示,假定工作电平为 Vdd, CMOS 为理想器件, Rst 表示复位高电平有效.

- 1、画出Q端、V。波形.
- 2、求 tw.

