

Certamen 2

Problema 1:

Se tienen tres condensadores idénticos de placas planas y paralelas, conectados entre sí y a una batería como se muestra en la figura. El condensador 1 tiene un dieléctrico de constante $\kappa_1 = 2$ ocupando todo su espacio entre placas, mientras que el condensador 3 tiene un dieléctrico de constante $\kappa_3 = 3$ ocupando dos tercios del espacio entre sus placas. Considere que cada condensador, sin dieléctrico, tiene capacidad o capacitancia C_0 .

- (A) (12 pts) Encuentre la capacidad equivalente del circuito y la carga total almacenada en él.
- (B) (10 pts) Obtenga la carga en cada uno de los condensadores.
- (C) (12 pts) Considere que, una vez cargados los condensadores, se desconecta la batería quitando el trozo de conector S y posteriormente se retiran ambos dieléctricos. Determine la carga almacenada en cada condensador.

Problema 2:

Un dispositivo tiene forma de paralelepípedo recto de base hexagonal formado por dos materiales (azul y amarillo), separados por una película muy delgada y aislante, según se muestra en la figura adjunta. El largo del dispositivo es L y el lado del hexágono es b. El material azul tiene una resistividad ρ_0 y el material amarillo tiene una resistividad $2\rho_0$. Considere que el ángulo interno de un hexágono es de 120° .

- (A) (11 pts) Elabore un modelo simple para calcular la resistencia del dispositivo a lo largo del eje del paralelepípedo, (perpendicular a los hexágonos).
- (B) (11 pts) Considere que los extremos del dispositivo se conectan a una diferencia de potencial igual a V_0 . Calcule la intensidad de corriente que circula por cada parte del dispositivo, (azul y amarillo). Compare estos resultados con la intensidad total de corriente, calculada a partir de considerar el material, como un único material de resistividad igual a la resistividad promedio de ambos materiales. ¿Concuerdan? ¿No concuerdan? explique.
- (C) (11 pts) Suponga ahora que la resistividad del material azul es mucho mayor que la del material amarillo $\rho_{\rm azul} \gg \rho_{\rm amarillo}$. ¿Cómo se modifica la resistencia del material?

Problema 3:

Se tiene un circuito eléctrico simple constituido por una fem y tres resistencias $(R_1, R_2 \text{ y } R_3)$ tal como se ve en la figura. Las resistencias se encuentran sumergidas en recipientes individuales de igual volumen y con el mismo fluido (la corriente no pasa por el fluido). Considerando $R_1 = R$, $R_2 = 2R$, $R_3 = 3R$ y que la energía que se requiere para evaporar el fluido es E, encuentre:

- (A) (12 pts) la resistencia equivalente y las corrientes que pasan por cada resistencia.
- (B) (12 pts) la potencia disipada en cada resistencia.
- (C) (5 pts) ordene las potencias en cada resistencia, y explique en cual se evaporará primero el líquido.
- (D) (4 pts) la nueva resistencia equivalente del sistema si el punto A y el punto B son unidos por un cable ideal.

