Diviser pour Régner

Cas de la somme d'un tableau

Correction

Problème

On veut calculer la somme de tous les éléments d'un tableau A de n éléments en utilisant l'approche "diviser pour régner".

Exercice 1

- 1) Trouver l'action correspondant à « Diviser »
- 2) Trouver l'action correspondant à « Régner »
- 3) Trouver l'action correspondant à « Combiner »

Étapes de l'algorithme

1. Diviser:

 Si le tableau contient plusieurs éléments, divisez-le en deux soustableaux de taille égale (division entoère).

2. Régner:

o Calculer récursivement la somme de chaque sous-tableau.

3. Combiner:

 Additionner les résultats des deux sous-tableaux pour obtenir la somme totale.

Exercice 2

Déduire l'algorithme sur l'exemple suivant : A = [3,1,4,1,5,9,2,6].

Présenter chaque étape par écrit.

Étape 1 : Diviser le tableau en deux moitiés

1. Tableau entier : [3, 1, 4, 1, 5, 9, 2, 6].

• Milieu : 3, divisé en :

• Gauche: [3, 1, 4, 1]

 $\bullet \quad \mathsf{Droite}: [5,9,2,6]$

Étape 2 : Travailler sur la moitié gauche $\left[3,1,4,1\right]$

- 1. Milieu: 1, divisé en:
 - $\bullet \quad \mathsf{Gauche}: [3,1]$
 - $\bullet \quad \mathsf{Droite}: [4,1]$
- 2. Travailler sur $\left[3,1\right] :$
 - Milieu : 0, divisé en :
 - [3], somme = 3
 - [1], somme = 1
 - $\bullet \quad \mathsf{Combinaison}: 3+1=4$
- 3. Travailler sur $\left[4,1\right] :$
 - Milieu : 0, divisé en :
 - [4], somme = 4
 - [1], somme = 1
 - $\bullet \quad {\it Combinaison} : 4+1=5$
- 4. Combiner les deux sous-parties :
 - [3,1] + [4,1] = 4 + 5 = 9.

Étape 3 : Travailler sur la moitié droite $\left[5,9,2,6\right]$

- 1. Milieu : 1, divisé en :
 - Gauche: [5,9]
 - Droite: [2,6]
- 2. Travailler sur $\left[5,9\right]$:
 - Milieu : 0, divisé en :
 - [5], somme = 5
 - [9], somme = 9
 - $\bullet \ \ \mathsf{Combinaison} : 5+9=14$
- 3. Travailler sur $\left[2,6\right]$:
 - Milieu : 0, divisé en :
 - [2], somme = 2
 - [6], somme = 6
 - $\bullet \quad \mathsf{Combinaison} : 2+6=8$
- 4. Combiner les deux sous-parties :
 - [5,9] + [2,6] = 14 + 8 = 22.

Étape 4 : Combiner les deux moitiés

1.
$$[3,1,4,1] + [5,9,2,6] = 9 + 22 = 31.$$

Exercice 3

Déduire un pseudo-code implémentant cet algorithme

```
Somme(A, début, fin):
    Si début == fin :
        Retourne A[début] // Un seul élément, c'est la somme

Sinon :
    milieu ← (début + fin) // 2
    sommeGauche ← Somme(A, début, milieu)
    sommeDroite ← Somme(A, milieu + 1, fin)
    Retourne sommeGauche + sommeDroite
```

Exercice 4

Implémenter l'algorithme en Python. Aidez-vous de Python Tutor.

Correction : voir fichier somme_tableau.py