Problem 1:

SS: 99 Ss: 418 ss: 483 Total: 1000

SS observed frequency: 99/1000 = 0.099 Ss observed frequency: 418/1000 = 0.418 ss observed frequency: 483/1000 = 0.483

 $S=SS*2+Ss \rightarrow S=99*2+418=616 \rightarrow p=S/2N=616/2000=0.308$ $S=SS*2+Ss \rightarrow S=483*2+418=1384 \rightarrow q=S/2N=1384/2000=0.692$

SS expected frequency: $P=p^2=0.308^2=0.095$

Ss expected frequency: H=2pq=2*0.308*0.692=0.426

ss expected frequency: Q=q²=0. 692²=0.479

 $X^2 = (O-E)^2 / E$

 $X_{SS}^2 = (0.099 - 0.095)^2 / 0.095 = 0.168 * 10^{-3}$

 $X_{S_S}^2 = (0.418 - 0.426)^2 / 0.426 = 0.150 * 10^{-3}$

 $X_{ss}^2 = (0.483 - 0.479)^2 / 0.479 = 0.033 * 10^{-3}$

Total = $0.168*10^{-3}+0.150*10^{-3}+0.033*10^{-3}=0.351*10^{-3}=X_{total}^{2}$

df=number of genotypes-number of alleles

df=3-2=1

 $X_{0.05, 1} = 3.81$

 $X^{2}_{0.05, 1}$ vs X^{2}_{total}

 $0.351*10^{-3} < 3.81 \rightarrow$ The Null Hypothesis is true, so the population follows a Hardy-Weinberg equilibrium

Problem 2:

Recessive (aa) Affected ratio = 1/10000 a/A frequencies? Aa frequency?

p=A

q=a

p+q=1

 $p^2 = AA$

2pq=Aa

q²=aa

 $q^2=1/10000 \rightarrow \sqrt{0.1*10^{-3}} = q = 0.01$ $p+q=1 \rightarrow p=1-q \rightarrow p=1-0.01 \rightarrow p=0.99$

 $p^{2}+2pq+q^{2}=1 \rightarrow 1-p^{2}+q^{2}=2pq \rightarrow 1-0.99^{2}+0.01^{2}=2pq=0.0198 \rightarrow 0.0198*100=1.98\%$

The frequency for the normal allele (A) is 0.99 and the frequency for diseased allele (a) is 0.01 The proportion of heterozygote individuals (Aa) is of 1.98%, almost 2 individuals out of every 100.

Problem 3:

12% men, X linked \rightarrow 0.12=A

% women A? % aa if it was recessive?

For the case of the dominant trait

0.12 = A = p

Male options: A=p, a=q

A in phenotype can only have probability of p \rightarrow p=0.12 \rightarrow p+q=1 \rightarrow q=1-0.12 = 0.88= q

Female options: AA=p², Aa=2pq, aa=q²

A in phenotype can be p² or 2pq, so $A_{ph} = p^2 + 2pq \rightarrow A_{ph} = 0.12^2 + (2*0.12*0.88) = 0.23$

23% of women will present this phenotype in the dominant case

In case of the recessive trait

0.12 = a = q

Male options: a=q, A=p

a in phenotype can only have probability of $q \rightarrow q=0.12 \rightarrow p+q=1 \rightarrow p=1-0.12=0.88=p$

Female options:

Recessive trait will only show if aa $(q^2) \rightarrow q^2=0.12^2=0.0144$

1.4% of women will present this phenotype in the recessive case

Problem 4:

ss 58

Ss 42 (Stubble)

SS are dead

SS observed frequency: 0/100 = 0Ss observed frequency: 42/100 = 0.42ss observed frequency: 58/100 = 0.58

 $S=0*2+42=42 \rightarrow p= S/2N=42/200=0.21$ $s=58*2+42=158 \rightarrow q=s/2N=158/200=0.79$

The frequency of allele S is 0.21 and the frequency of allele s is 0.79.

SS expected frequency: $P=p^2=0.21^2=0.044$

Ss expected frequency: H=2pq=2*0.21*0.79=0.332

ss expected frequency: $Q=q^2=0.79^2=0.624$

 $X^2 = (O-E)^2 / E$

 $X^{2}_{SS} = (0-0.044)^{2} / 0.044 = 0.044$

 $X_{2SS}^2 = (0.42 - 0.332)^2 / 0.332 = 0.023$

 $X_{ss}^2 = (0.58 - 0.624)^2 / 0.624 = 0.003$

Total = $0.003+0.023+0.044=0.07 = X_{total}^2$

df=number of genotypes-number of alleles

$$df=3-2=1$$

$$X_{0.05, 1} = 3.81$$

$$X^2_{0.05,\,1}\ vs\ X^2_{total}$$

 $0.07 \le 3.81 \rightarrow \text{The Null Hypothesis}$ is true, so the population follows a Hardy-Weinberg equilibrium

Problem 5:

4 alleles

6-9 TTA each

p = 0.43

q = 0.37

r=0.18

s=0.02

Genotype number = (alleles*(alleles+1))/2 \rightarrow 4*(4+1)/2 = 20/2 = 10 10 genotypes are possible

The frequency of heterozygotes can be calculated with

total =
$$p^2+2pq+2pr+2ps+q^2+2qr+2qs+r^2+2rs+s^2 = 1$$

htz = $2pq+2pr+2ps+2qr+2qs+2rs$

 $f = htz/total \rightarrow f = 0.65/1 = 0.65$

The expected frequency for an heterozygote is of 0.65

Problem 6:

0.04 recessive (aa) \rightarrow q²=0.04

(alle

$$q^2=0.04 \rightarrow \sqrt{0.04}=0.2$$

$$p=1-q \rightarrow p=1-0.2 = p=0.8$$

The frequency for the recessive allele is of 0.2, the frequency of the dominant allele is of 0.8.

	A	a
A	AA	Aa
a	Aa	aa

The probability of a descendant of 2 carriers presenting the recessive trait is of 0.25, if the progenitors were not carriers(and dominant) it would be of 0%.

Problem 7:

93 mice

alleles A1 and A2

Observed:

A1A1=0.226

A1A2=0.4

A2A2=0.374

```
p=A1A1+(A1A2) / 2 = 0.226+0.4 / 2 = 0.426
q=1-p=1-0.426=0.574
Expected:
P=p^2 \rightarrow P=0.18
2pq = 0.49
q^2 = 0.33
X^2 = (O-E)^2 / E
X_{A1A1}^2 = (0.226-0.18)^2 / 0.18 = 0.012
X^{2}_{A1A2} = (0.4-0.49)^{2} / 0.49 = 0.016
X^{2}_{A2A2} = (0.374 - 0.33)^{2} / 0.33 = 0.006
Total = 0.012+0.016+0.006=0.034 = X_{total}^2
df=number of genotypes-number of alleles
df=3-2=1
X_{0.05, 1}^2 = 3.81
X^{2}_{0.05, 1} vs X^{2}_{total}
0.034 < 3.81 \rightarrow The Null Hypothesis is true, so the population follows a Hardy-Weinberg
equilibrium
```

Problem 8:

35% white mice → aa

$$q^2=0.35 \rightarrow \sqrt{0.35} = q = 0.59$$

 $p=1-q \rightarrow p=1-0.59 = 0.41$

The frequency for the recessive allele is of 0.59, the frequency of the dominant allele is of 0.41.

```
p^2=0.41^2=0.168

q^2=0.35

2pq=2*0.59*0.41=0.484
```

The frequency for the recessive homozygote is of 0.35, the frequency of the dominant homozygote is of 0.168 and the frequency for the heterozygote is of 0.484.

Problem 9:

```
Cows

BB=0.81

Bb=0.18

bb=0.01

Bulls

BB=0.33

Bb=0.66
```

Problem 10:

20 individuals \rightarrow 40 alleles 2 Cc \rightarrow 2 c alleles 18 CC

```
\begin{array}{l} 2/40 = 0.05 = q \\ p = 1\text{-}q \ \rightarrow \ p = 1\text{-}0.05 = p = 0.95 \\ q^2 = 0.05^2 = 0.0025 \ \rightarrow \ proportion \ of \ cc \ individuals \end{array}
```

The incidence of cystic fibrosis in the island will be of 0.25% (1 out of 400 individuals will be cc)