Predicting Transport Integrals with Machine Learning

Jeremy Thaller and Maxim Gorbatschow

05.02.2020

Quick Recap

Pic file with 900 features and 10,000 example

Goal

Predict the Transport integral give 900 distances between two 30-atom monomers

Preprocessing

Dealing with 900 features

Principal Component Analysis

PCA Cont.

Regularization for Model Fitting

Add an extra cost to the loss function to prevent overfitting

L1 vs. L2

Regularization for Model Fitting

L1: Lasso Regression

- Loss function = sum of absolute values of errors
- (Least Absolute Shrinkage and Selection Operator)
- Tends to push weights to zero

$$\sum_{i=1}^n (Y_i - \sum_{j=1}^p X_{ij}eta_j)^2 + \lambda \sum_{j=1}^p |eta_j|$$

L2: Ridge Regression

Loss function = sum of squared errors

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

Lasso shrinks the less important features' coefficients (even removing them altogether), making it better for feature selection with large number of features

Regression Models

Linear Regression

With PCA applied and k-fold cross validation:

Mean_squared_error (average):

1.002949261587887

standard_deviation: 1.187689627016626

(RMSE: 1.0014735)

Training Data: Y vs. Y_prediction

Test Data: Y vs. Y_prediction

(Linear with slope 1 => perfect match)

Sanity check: How is PCA doing?

Without PCA

RMSE:

0.795003 (no k-fold)

mean_squard_error:

1.002949261587887

standard_deviation:

1.187689627016626

With PCA

RMSE:

1.129056 (no k-fold)

mean_squard_error:

1.002949261587887

standard_deviation:

1.187689627016626

Polynomial Regression

Mean_squared_error (average):
1.774617823490909

standard_deviation: 2.4438984231990983

(RMSE: 1.3321478234381157)

Polynomial Regression

Mean_squared_error (average):

1.774617823490909

1.24277882 0.53544367 0.97998094

1.85069762 1.98805718 0.88201865

0.455358 0.37556103 0.51088562]

Random Forest Regressor

- best
parameters are
max_depth of 6
and
n_estimators of
1000

- RMSE:

0.699682

Random Forest Regressor

[6.35710053 0.71129973

0.79274011 0.58765779

0.48054221 0.75907597

0.38439998 0.17103299

0.18910843 0.59895555]

mean_squared_error:

1.1031913291487907

standard_deviation:

1.763541449709036

XGBoost Regressor

RMSE: 1.999990

```
xgboost =
xgb.XGBRegressor(objective
='reg:squarederror',
colsample_bytree = 0.3,
learning_rate = 0.1, max_depth =
5, alpha = 10, n_estimators =10)
```


Kernel Ridge

RMSE of 0.799

Keras Neural Network

RMSE: 0.645438

Correcting Keras Overfitting

Final Predictions

Keras

```
#fit keras
neuraln = Sequential()
neuraln.add(Dense(128, input_dim=60, activation='relu'))
neuraln.add(Dense(256, kernel_initializer='normal',activation='relu'))
neuraln.add(Dense(256, kernel_initializer='normal',activation='relu'))
neuraln.add(Dense(256, kernel_initializer='normal',activation='relu'))
neuraln.add(Dense(1, kernel_initializer='normal', activation='relu'))
neuraln.compile(loss='mean_absolute_error', optimizer='adam', metrics=['mean_absolute_error'])
neuraln.fit(x_pca, y, epochs=100, batch_size=10)
y_pred = neuraln.predict(x_test_pca)
y_pred = 10 ** y_pred #undo the y = np.log10(TI df) used by the training
```