

Last name, First name

Exercise 1 (value 13)

A fishing company needs to organize its operations. The company has been given a see surface where to fish, that has been partitioned into a set S of sectors. Each sector $s \in S$ has an expected amount of production q_s that the company want to fish entirely. The fishing is made by fishing ships each of which must be associated with a mother ship used for fish preparation and packaging (no fishing activity can be done by the mother ship). Each mother ship provides support to a maximum of 5 fishing ships, but each fishing ship is associated with only one mother ship. The company can use up to m mother ships that can be located in one of the sectors $s \in S$. At most one mother ship per sector is allowed. Let K denote the set of available fishing ships. Each ship $k \in K$ has a fishing capacity c^k . A fishing ship operates in only one sector, which can be different from that of its mother ship. In each sector can operate several fishing ships. The cost of using a mother ship is b, while the cost of assigning the fishing ship $k \in K$ to a mother ship located in sector $s \in S$ to fish in sector $s \in S$ is a_{si}^k .

Write a MILP model including all the given specifications and minimizing the total cost. Clearly explain the used variables. Suggestion: mother ships can be identified using only the index of the sector they are assigned.

Sector 1 is very relevant and if no mother ship is located in sector 1 then a cost D must be paid: change the objective function to address this new cost.

For contract reasons, if fishing ship α is assigned to fish in a sector $i \in S$ then it must be the one and only fishing ship operating in that sector. Note that fishing ship α has a sufficient capacity for doing that.

Exercise 2 (value 9)

Consider the following ILP problem.

$$P = \min -5x_1 - 3x_2$$

$$2x_1 + x_2 \le 14$$

$$x_1 + 8x_2 \le 32$$

$$x_1, x_2 \ge 0, integer$$

Perform the following tasks:

- (i) Represent graphically problem P.
- (ii) Compute the optimal solution of the continuous relaxation by using the symplex method, than define all the Gomory's cuts associated with the optimal tableau.
- (iii) Draw the Gomory's cuts on the graphical representation and say if they are faces of the convex hull (explain why)
- (iv) Insert the first cut in the tableau and select the pivot (without computing it). Explain your choice.

Exercise 3 (value 6)

Write a GLPK or XPRESS model corresponding to the following mathematical model

$$\max z = \sum_{i \in N} \sum_{k=1}^{m} b_{ik} x_{ik} - \sum_{i \in N} w_i - \sum_{k=1}^{m} l_k y_k$$

$$\sum_{k=1}^{m} x_{ik} \le w_i \qquad i \in N \qquad (1)$$

$$\sum_{i \in N \setminus \{0\}} x_{ik} \le M y_k, \qquad k = 1, \dots, m \qquad (2)$$

$$w_i = \sum_{j=0}^{4} j \gamma_{ij}, \qquad i \in N \qquad (3)$$

$$\sum_{j=0}^{4} \gamma_{ij} = 1, \qquad i \in N \tag{4}$$

$$x_{ik} \in \{0, 1\}$$
 $i \in \mathbb{N}, \ k = 1, \dots, m$ (5)

$$y_k \in \{0, 1\}$$
 $k = 1, \dots, m$ (6)

$$\gamma_{ij} \in \{0, 1\}$$
 $i \in N \ j = 0, \dots, 4$ (7)

$$w_i \ge 0 i \in N (8)$$

Last name, First name

Exercise 1

Variables

 $y_s=1$ if a mother ship is located in sector $s\in S,$ 0 otherwise. $x_{si}^k=1$ if fishing ship $k\in K$ operates in sector $i\in S$ from mother ship located in sector $s\in S,$ 0 otherwise.

Model

$$\min b \sum_{s \in S} y_s + \sum_{k \in K} \sum_{i \in S} \sum_{i \in S} a_{si}^k x_{si}^k + D(1 - y_1)$$

$$\sum_{s \in S} y_s \le m$$

$$\sum_{s \in S} \sum_{k \in K} c^k x_{si}^k \ge q_i \quad i \in S$$

$$\sum_{i \in S} \sum_{k \in K} x_{si}^k \le 5y_s \quad s \in S$$

$$\sum_{s \in S} \sum_{i \in S} x_{si}^k \le 1 \quad k \in K$$

$$\sum_{s \in S} \sum_{k \in K \setminus \{\alpha\}} x_{si}^k \le |K|(1 - \sum_{s \in S} x_{si}^{\alpha}) \quad i \in S$$

$$x_{si}^k \in \{0, 1\} \quad s, i \in S, k \in K$$

$$y_s \in \{0, 1\} \quad s \in S.$$

Exercise 2

Let's write the model in standard form:

$$\begin{array}{ll} \min & -5x_1 - 3x_2 \\ & 2x_1 + x_2 + x_3 & = 14 \\ & x_1 + 8x_2 + x_4 & = 32 \\ & x_1, x_2, x_3, x_4 & \geq 0 \end{array}$$

x_1	x_2	x_3	x_4		
-5	-3	0	0	0	-z
2	1	1	0	14	x_3
1	8	0	1	32	x_4
$\overline{x_1}$	x_2	x_3	x_4		
0	-1/2	5/2	0	35	-z
1	1/2	1/2	0	7	x_1
0	15/2	-1/2	1	25	x_4
x_1	x_2	x_3	x_4		-
0	0	37/15	1/15	110/3	-z
1	0	8/15	-1/15	16/3	x_1
0	1	-1/15	2/15	10/3	x_2

The Gomory's cuts built on both rows are: $8/15x_3 + 14/15x_4 \ge 1/3 \rightarrow 8x_3 + 14x_4 \ge 5$ $14/15x_3 + 2/15x_4 \ge 1/3 \rightarrow 14x_3 + 2x_4 \ge 5$

That become:

$$2x_1 + 8x_2 \le 37$$
$$2x_1 + 2x_2 \le 17$$

x_1	x_2	x_3	x_4	x_5		
0	0	-37/15	-1/15	0	-110/3	-z
1	0	8/15	-1/15	0	16/3	x_1
0	1	-1/15	2/15	0	10/3	x_2
0	0	-8/15	2/15 - 14/15	1	-1/3	x_5
10						
cut 1						
7 -						
cut 2						
II						
3 · 2 ·						
1 -						
3 -2 -1	1	2 3	4 5 6	7\ 8	9 10	11
-1 -				I /		
-2 -					``	
_g]					\	`\

```
/* Exercise 3 */
param m, integer, > 0;
set N;
set J := 1..m;
set Q := 0, ..., 4;
param b{i in N, k in J}, >= 0;
param l\{k in J\}, >= 0;
param M, >= 0;
var x{i in N, k in J}, binary;
var y{k in J}, binary;
var gamma{i in N, j in Q}, binary;
var w\{i in N\}, >=0;
 \label{eq:maximize z: sum{i in N, k in J} b[i,k]*x[i,k]-sum{i in N} w[i] - sum{k in J} l[k]*y[k]; } 
s.t. v1\{i in N\}: sum\{k in J\} x[i,k] \leftarrow w[i];
  v2\{k \text{ in J}\}: sum\{i \text{ in N} : i>0\} x[i,k] \leftarrow M*y[k];
  v3{i in N}: w[i] = sum{j in Q} j*gamma[i,j];
  v4{i in N}: sum{j in Q}gamma[i,j] = 1;
solve;
```


Last name, First name.

Answer to the following questions. Each question may have zero, one or more correct answers. Each exact answer to a question has value +1, each wrong answer has value -1. No answer has zero value.

(Q1) Given the PLI model $\min\{c^Tx: x \in P \cap Z^n\}$ with $P = \{Ax = b, x \geq 0\}$, and the optimal solution x^* of its continuous relaxation, a Gomory's cut is: (a) an inequality for P satisfying the Farkas' lemma; (b) an inequality $\alpha_F^T x_F \geq \alpha_0$ satisfied by any $x \in P$; (c) an inequality $\alpha_F^T x_F \geq \alpha_0$ satisfied by any $x \in P \cap Z^n$, but not by x^* ; (d) an inequality $\alpha_F^T x_F \geq \alpha_0$ satisfied by any $x \in P$ but not by x^* ; (e) none of the above answers.

a b c d e

(Q2) Consider the two problems, $P: \min\{c^Tx: Ax = b, x \geq 0\}$, $D: \max\{u^Tb: u^TA \leq c^T\}$, then (a) a feasible solution of P gives a lower bound on the optimal value of P; (b) a feasible solution of P gives a lower bound on the optimal value of P; (c) a pair of solutions x and u with x feasible for P and u feasible for D are optimal if $c^T - c_B^T B^{-1} A \geq 0$; (d) a pair of solutions x and y are optimal if $y \geq 0$; (e) a pair of solutions $y \geq 0$ and $y \geq 0$.

a b c d e

(Q3) Given a PLC problem P in standard form with n variables and m constraints, consider the two phases method. The artificial problem used to solve the first phase : (a) has m variables and n constraints; (b) has, at most, n+m variables and m constraints; (c) has an objective function in maximization form; (d) gives a feasible base for problem P, if its optimal solution has value zero; (e) gives a feasible and optimal solution for problem P if its optimal solution has a negative value;

a b c d e

(Q4) Consider a graph G = (V, E), the Shortest Spanning Tree Problem and its optimal solution T^* . (a) the edge with minimum cost is always in T^* ; (b) the edge with minimum cost is in T^* only if it does not close a cycle with other edges; (c) the edge with maximum cost is always in T^* ; (d) the edge with second minimum cost is always in T^* ; (e) the edge with second minimum cost is in T^* only if the edge with minimum cost is not in T^* .

a b c d e

(Q5) The reduced cost of a basic variable x_j , in a tableau in basic form: (a) is always null; (b) is strictly positive if the current solution is optimal and the problem is in minimization form; (c) has a non-negative value if the current solution is optimal and the problem is in minimization form; (d) has a non-positive value if the current solution is optimal and the problem is in minimization form; (e) represent the variation of the objective function when the r.h.s. of the j-th constraint increases of one unit;

a	b	c	d	е