Problem 2

(a)

We could do product construction of two machine, we modify the M_1 in the following way:

that is, the every transition in the M_1 will be inserted with a M_2 so that the string in M_2 could be plugged into the machine. This, however, does not constrain the number of the string in M_2 that could appear. We design another machine that accept the string with the substring that in M_2 only appeared once.

The illustration show above is a machine (A) that accept the string if any of its substring is in M_2 . We could negate the machine to have a machine that doesn't accept any string if it has a substring in M_2 . We could do contatenation with these two machine, then the machine will accept the string with the substring that in M_2 only appeared once. Do production construction of these two machines (the modified M_1 and this one) we will get the NFA we wanted.

In this second part you will give a different proof. Let r_1 be a regular expression for L_1 and r_2 be a regular expression for L_2 , that is $L_1=L(r_1)$ and $L_2=L(r_2)$. We will develop a recursive algorithm that given r_1 and r_2 constructs a regular expression r' such that $L(r')=\operatorname{insert}(L_1,L_2)$. No correctness proof is required but a brief explanation of the derivation would help you get partial credit in case of mistakes

(i)

For each of base cases when $r_1=\emptyset,\epsilon,a$ ($a\in\Sigma$), describe a regular expression for $\mathrm{insert}(L(r_1),L(r_2))$ in terms of r_2 and the letters in Σ .

- If $r_1=\epsilon$, that actually means $L(r_1)=\{\epsilon\}$. So, $\operatorname{insert}(L(r_1),L(r_2))$ means insert the string in L_2 into the ϵ . Then the regular expression is just $r'=\epsilon r_2\epsilon=r_2$.
- If $r_1=a$, then to insert the string in L_2 into either before or after a. That is, the regular expression is

$$r'=\epsilon ar_2+r_2a\epsilon=ar_2+r_2a$$

• If $r_1=\emptyset$, then $L(r_1)=\emptyset$. There is no string in language $L(r_1)$ and we thus couldn't insert any string in L_2 into L_1 . Thus $r'=\emptyset$

(ii)

Suppose $r_1 = s + t$ where s and t are regular expressions. Moreover let s' be a regular expression for $\operatorname{insert}(L(s), L(r_2))$ and t' be a regular expression for $\operatorname{insert}(L(t), L(r_2))$. Describe a regular expression for the language $\operatorname{insert}(L(r_1), L(r_2))$ using r_2 , s, t, s', t'.

The $L(r_1)$ either satisfies the regular expression s or t. In each cases, we already have the regular expression that tells us how to insert string of $L(r_2)$ into it (namely, s' and t'). Therefore, r'=s'+t'.

(iii)

Same as previous part but now consider $r_1 = st$.

Using the assumption as (ii), that is, define $s'=\operatorname{insert}(L(t),L(r_2))$ and $t'=\operatorname{insert}(L(t),L(r_2))$. $r_1=st$ means a string that first satisfies regular expression s and then t. We could either insert the string in L_2 into the s part or t part. (we could also insert the string into the "space" between s and t / or before s / after t, these cases are already handled by s' and t', so we doesn't to consider them additionally). Therefore, the regular expression looks like

$$r'=s't+st'$$

which corresponding to insertion into either s part or t part.

(iv)

Same as previous part but now consider $r_1 = (s)^*$.

Using the assumption as (ii), that is, define $s'=\mathrm{insert}(L(t),L(r_2))$. We could rewrite the r_1 as $r_1=\epsilon+s(s)^*$ (this explicitly distinguishes the ϵ case). We know that from part (i) that $r_\epsilon=\epsilon$ has $r'_\epsilon=r_2$. So we only need to consider the case of $r_{\mathrm{other}}=s(s)^*$. This regular expression represents all the string that have 1 or unlimited pattern of s. (namely s+). Then we could pick

any one of s from the $r_{
m other}$, and insert the string represented by r_2 into it. The resulted regular expression thus looks like $r'_{
m other} = (s)^* s'(s)^*$. Combine all cases, we get

$$\boxed{r'=r_2+(s)^*s'(s)^*}$$

(v)

We use some shorthand for clarity: for a regular expression s, define $L(s') = \operatorname{insert}(L(s), L_2)$. We first calculate some pattern that will used later:

$$0' = 0(101) + (101)0$$

$$1' = 1(101) + (101)1$$

$$(01)' = 0'1 + 01'$$

$$= 0(101)1 + (101)01 + 01(101) + 0(101)1$$

$$= 01011 + 10101 + 01101$$

and then

$$(0^*)' = 0^*0'0^* + 101 = 0^*(0101 + 1010)0^* + 101$$

 $(1^*)' = 1^*1'1^* + 101 = 1^*(1101 + 1011)1^* + 101$

We consider the part 011*0 first (it is complicated):

$$(011^*0)' = (011^*)'0 + (011^*)0' = ((01)'1^* + 01(1^*)')0 + (011^*)(0101 + 1010)$$

= $(01011 + 10101 + 01101)1^*0 + 01(1^*(1101 + 1011)1^* + 101) + (011^*)(0101 + 1010)$

We then used the algorithm described above for r_1 :

$$(r_1)'=(0^*+(01)^*+011^*0)' \ =(0^*)'+((01)^*)'+(011^*0)' \ =0^*(0101+1010)0^*+(01)^*(01)'(01)^*+101+(011^*0)' \ =0^*(0101+1010)0^*+(01)^*(01011+10101+01101)(01)^*+ \ 101+(01011+10101+01101)1^*0+01(1^*(1101+1011)1^*+101)+(011^*)(0101+1010)$$

it's complicated.