OPENCOURSEWARE UNIVERSIA_UNIVERSIDAD DE LEÓN

José Luis Fanjul Suárez / Rocío Fanjul Coya

- 5.1. VARIACIÓN DE LOS FLUJOS NETOS DE CAJA
- 5.2. VARIACIÓN DEL COSTE DE CAPITAL Y DEL TIPO DE REINVERSIÓN
- 5.3. INTRODUCCIÓN DEL RIESGO

5. ANÁLISIS DE SENSIBILIDAD

5. ANÁLISIS DE SENSIBILIDAD.-

5.1. VARIACIÓN DE LOS FLUJOS NETOS DE CAJA.-

5.1.1. VARIACIÓN DE LOS FLUJOS NETOS DE CAJA: EJEMPLO 1.

Proyect	:o	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	VAN	$I(0) = \sum_{n=5}^{\infty}$	TII	R = RCI
Blanco		- 6	1	1	2	2	1		n=0 1		,050913
Negro		- 5	1	1	1	2	1		1	0	,060309
Rojo		- 7	1	2	2	2	1		1	0	,046046
Amarill	o	- 4	1	1	1	1	1		1	0	,079308
Proyecto	(Q_0	Q_1		Q ₂	Q	3	Q_4	Q_5	VAN(0)	TIR=RCI
Blanco		-6	1		1	2		2	1	1	0,050913
Negro		-5	1		1	1		2	1	1	0,060309
Rojo		-7	1		2	2	2	2	1	1	0,046046
Amarillo		-4	1		1	1		1	1	1	0,079308

Proyecto	Q_0	Q ₁	Q ₂	Q_3	Q_4	Q_5	VAN(0)	TIR=RCI
Blanco	-6	1	1	2	2	1	1	0,050913
Negro	- 5	1	1	1	2	1	1	0,060309
Rojo	-7	1	2	2	2	1	1	0,046046
Amarillo	-4	1	1	1	1	1	1	0,079308

5.1.1. VARIACIÓN DE LOS FLUJOS NETOS DE CAJA: EJEMPLO 2.

Proyecto	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	VAN(0)	TIR=RCI
Blanco	-1	1	1	1	1	1	4	0,965948
Negro	-1	1	1	1	1	-1	2	0,883204

Dirección Financiera Caso a Caso Fanjul y Castaño

109

NO HAY INTERSECCIÓN

5.2. VARIACIÓN DE COSTE DE CAPITAL Y TIPO DE REINVERSIÓN.-

TRIPOTEKA

CASO: TRIPOTEKA (k = 3 %, 6 %, 8 %; i* = 1,5 %).

CASO: TRIPOTEKA (k = 6 %, 7 %, 8 %; $i^* = 3 \%$).

CASO: TRIPOTEKA (k = 4 %, 5 %, 6 %; $i^* = 2 \%$).

MÉTODO DE AMORTIZACIÓN FRANCÉS, PROGRESIVO O CLÁSICO: los TÉRMINOS AMORTIZATIVOS CONSTANTES serán la suma de la CUOTA DE INTERESES y la CUANTÍA DEL CAPITAL AMORTIZADO.

$$a = I_{k} + M_{k} = \frac{C_{0}}{a_{\overline{n}|i}} \longrightarrow \begin{cases} I_{k} = C_{k-1} * i \\ a_{\overline{-1}|i} = \frac{1 - \frac{1}{(1+i)^{n}}}{i} = \frac{(1+i)^{n} - 1}{i \cdot (1+i)^{n}} \end{cases}$$

$$a_{\overline{n}|i} = \frac{1 - \frac{1}{(1+i)^n}}{i} = \frac{(1+i)^n - 1}{i \cdot (1+i)^n} \Longrightarrow$$

$$\begin{cases} a^{1}_{\overline{4}|0,03} = \frac{(1,03)^{4} - 1}{(0,03) \cdot (1,03)^{4}} = 3,828611 \\ a^{2}_{\overline{3}|0,06} = \frac{(1,06)^{3} - 1}{(0,06) \cdot (1,06)^{3}} = 2,673012 \end{cases} \Rightarrow$$

$$\begin{cases} a^{3}_{\overline{2}|0,08} = \frac{(1,08)^{2} - 1}{(0,08) \cdot (1,08)^{2}} = 1,783265 \end{cases}$$

$$a = \frac{C_0}{a_{\overline{n}|i}} \Rightarrow \begin{cases} Anualidad \ 1 \xrightarrow{0} 26,902705 \\ Anualidad \ 2 \xrightarrow{0} 6,323468 \end{cases}$$

$$Anualidad \ 3 \xrightarrow{0} 1,809138$$

TRIPOTEKA 1

CUADRO 4: 3 %, 6 %, 8 %

REINVERSIÓN: 1,5 %

Opción 4: Método Francés Anualidad constante P1: (k = 3 %) (n=4) (V= 100) Anualidad (1) = $26,902705 \rightarrow 26,9$

Función de Excel:

 \rightarrow PMT

TRIPOTEKA 1 CUADRO 4: 3 %, 6 %, 8 % REINVERSIÓN: 1,5 %

PAGO

P2: (k= 6 %) (n=3) (V= 16,902705) Anualidad (2) = $6.323468 \rightarrow 6.32$

P3: (k= 8%) (n=2) (V= 3,226172)
Anualidad (3) = 1,809138
$$\rightarrow$$
 1,81

R.C.I.

0,092733

F.N.C.

-100

10

30

40

50

1,809138 0,08 3,226172

0

- 100

10

40

30

RCI = 0.092733

50

TRIPOTEKA 1

CUADRO 4:

3 %, 6 %, 8 %

REINVERSIÓN: 1,5 %

P1: (k = 3 %) (n = 4) (V = 100)

Anualidad (1) = $26,902705 \rightarrow 26,9$

P2: (k = 6 %) (n = 3) (V = 16,902705)

Anualidad (2) = $6,323468 \rightarrow 6,32$

CUADRO 4: 6 %, 7 %, 8 %

REINVERSIÓN: 3 %

$$a_{\overline{n}|i} = \frac{1 - \frac{1}{(1+i)^n}}{i} = \frac{(1+i)^n - 1}{i \cdot (1+i)^n} \Longrightarrow$$

$$a_{\overline{n}|i} = \begin{cases} a_{\overline{4}|0,06}^{1} = \frac{(1,06)^{4} - 1}{(0,06) \cdot (1,06)^{4}} = 3,465106 \\ a_{\overline{n}|i}^{2} = \frac{(1,07)^{3} - 1}{(0,07) \cdot (1,07)^{3}} = 2,624316 \end{cases} \Rightarrow$$

$$\begin{cases} a_{\overline{3}|0,07}^{3} = \frac{(1,08)^{2} - 1}{(0,08) \cdot (1,08)^{2}} = 1,783265 \end{cases}$$

$$a = \frac{C_0}{a_{\overline{n}|i}} \Rightarrow \begin{cases} Anualidad \ 1 \xrightarrow{0} 28,85914 \\ Anualidad \ 2 \xrightarrow{0} 7,186310 \end{cases}$$

$$Anualidad \ 3 \xrightarrow{0} 3,390107$$

Opción 4: Método Francés Anualidad constante P1: (k = 6 %) (n = 4) (V = 100) $(Anualidad (1) = 28,859149 \rightarrow 28,86)$

$$RCI = 0.092733$$

REINVERSIÓN: 3 %

PAGO

TRIPOTEKA 2

CUADRO 4:

P2: (k = 7%) (n = 3) (V = 18,859149)Anualidad (2) = $7,186310 \rightarrow 7,18$

P3:
$$(k = 8\%)$$
 $(n = 2)$ $(V = 6,045459)$

Anualidad $(3) = 3,390107 \rightarrow 3,39$

	F.N.C.	R.C.I.	Interés	Anualidad	Préstamo
0	-100	0,092733	0,06	28,859149	100
1	10		0,07	7,186310	18,859149
2	30		0,08	3,390107	6,045459
3	40				
4	50				

0

3

4

TRIPOTEKA 2

CUADRO 4:

P1: (k = 6 %) (n = 4) (V = 100)

Anualidad (1) = $28,859149 \rightarrow 28,86$

CUADRO 4: 4 %, 5 %, 6 %

REINVERSIÓN: 2 %

$$a_{\overline{n}|i} = \frac{1 - \frac{1}{(1+i)^n}}{i} = \frac{(1+i)^n - 1}{i \cdot (1+i)^n} \Longrightarrow$$

$$\begin{cases} a^{1}_{\overline{4}|0,04} = \frac{(1,04)^{4} - 1}{(0,04) \cdot (1,04)^{4}} = 3,629895 \\ a^{2}_{\overline{3}|0,05} = \frac{(1,05)^{3} - 1}{(0,05) \cdot (1,05)^{3}} = 2,723248 \end{cases} \Rightarrow$$

$$\begin{cases} a^{3}_{\overline{2}|0,06} = \frac{(1,06)^{2} - 1}{(0,06) \cdot (1,06)^{2}} = 1,833392 \end{cases}$$

$$a = \frac{C_0}{a_{\overline{n}|i}} \Rightarrow \begin{cases} Anualidad 1 \xrightarrow{C^1 = 100} 27,549005 \\ Anualidad 2 \xrightarrow{C^2 = 17,549005} 6,444145 \end{cases}$$

$$Anualidad 3 \xrightarrow{C^3 = 3,993149} 2,178011$$

Opción 4: Método Francés Anualidad constante P1: (k = 4 %) (n = 4) (V = 100) $(Anualidad (1) = 27,549005 \rightarrow 27,549)$

REINVERSIÓN: 2 %

CUADRO 4:

P2: (k = 5%) (n = 3) (V = 17,549005) Anualidad (2) = $6,444145 \rightarrow 6,44$

P3: (k = 6%) (n = 2) (V = 3,99315)
Anualidad (3) = 2,178011
$$\rightarrow$$
 2,178

PAGO

	F.N.C.	R.C.I.	Interés	Anualidad	Préstamo
0	-100	0,092733	0,04	27,549005	100
1	10		0,05	6,444145	17,549005
2	30		0,06	2,178011	3,99315
3	40				
4	50				

0

- 100

10

3

40

30

50

TRIPOTEKA 3

CUADRO 4:

4 %, 5 %, 6 %

P1: (k = 4 %) (n = 4) (V = 100)

 $Anualidad(1) = 27,549005 \rightarrow 27,549$

P2: (k = 5%) (n = 3) (V = 17,549005)

5.3. Introducción del Riesgo.-

VALOR ACTUAL NETO (VAN) = VALOR PRESENTE NETO (VPN) = NET PRESENT VALUE (NPV):

$$VAN(k) = Q_0 + \frac{Q_1}{(1+k)} + \frac{Q_2}{(1+k)^2} + \dots + \frac{Q_n}{(1+k)^n} = \sum_{j=0}^{j=n} \frac{Q_j}{(1+k)^j}$$

TIPO INTERNO DE RENDIMIENTO (TIR) = INTERNAL RATE RETURN (IRR) = RENDIMIENTO DEL CAPITAL INVERTIDO (RCI):

$$VAN(r) = Q_0 + \frac{Q_1}{(1+r)} + \frac{Q_2}{(1+r)^2} + \dots + \frac{Q_n}{(1+r)^n} = \sum_{j=0}^{j=n} \frac{Q_j}{(1+r)^j} = 0$$

5.3.1. INTRODUCCIÓN DEL RIESGO EN EL ANÁLISIS DE PROYECTOS.-

VALOR ACTUAL NETO (VAN) = VALOR PRESENTE NETO (VPN) = NET PRESENT VALUE (NPV)

$$VAN(k, p) = Q_0 + \frac{Q_1}{(1+k+p)} + \frac{Q_2}{(1+k+p)^2} + \dots + \frac{Q_n}{(1+k+p)^n} = \sum_{j=0}^{j=n} \frac{Q_j}{(1+k+p)^j}$$

SUMARIO

Introducción del Riesgo en el Análisis de Provectos

Varianza del VAN

Distribución Beta

o Uniforme

CASOS

Distribución Triangular

Distribución Rectangular

Decisiones secuenciales

Esperanza matemática del VAN

INTRODUCCIÓN DEL RIESGO EN EL ANÁLISIS DE PROYECTOS

MODELOS PROBABILÍSTICOS: PARÁMETROS

- 1) La RENTABILIDAD: representada por el VALOR CENTRAL DEL PROYECTO
- VALOR CENTRAL DEL PROYECTO.

 2) El PIESCO: representado por la DISPERS
- 2) El RIESGO: representado por la DISPERSIÓN.

ESPERANZA MATEMÁTICA DEL VALOR ACTUAL NETO DE UNA INVERSIÓN

La ESPERANZA MATEMÁTICA del Valor Actual Neto (VAN) mide la RENTABILIDAD de la Inversión.

$$E[\xi] = \sum \xi_j \cdot P(\xi_j) \longrightarrow E[VAN(k)] = \sum_{j=0}^{j=n} \frac{E[Q_j]}{(1+k)^j}$$

El CRITERIO DE ACEPTACIÓN de un Proyecto, viene dado por: $E[VAN] \ge 0$

VARIANZA MATEMÁTICA DEL VALOR ACTUAL NETO DE UNA INVERSIÓN

La VARIANZA (DESVIACIÓN TÍPICA) del Valor Actual Neto (VAN) mide el RIESGO de la Inversión.

$$\sigma^{2}[\xi] = \sum_{j} P(\xi_{j}) \cdot (\xi_{j} - E[\xi])^{2}$$

$$\sigma^{2}[VAN(k)] = \sum_{j=0}^{j=n} \frac{\sigma^{2}[Q_{j}]}{(1+k)^{2j}} \pm 2 \cdot \sum_{\substack{i=0 \ j=0 \ i\neq j}}^{i=n} \frac{Cov[Q_{i}, Q_{j}]}{(1+k)^{(i+j)}}$$

MODELOS PROBABILÍSTICOS DE COMPORTAMIENTO DE LOS PARÁMETROS DE UNA INVERSIÓN

DISTRIBUCIÓN BETA

Esperanza $\alpha_{1}[x] = \frac{p}{p+q}$ $E[t] = \frac{a \cdot q + b \cdot p}{p+q}$ $E[Q_{j}] = \frac{Q_{a} + (\alpha + \gamma) \cdot Q_{m} + Q_{b}}{\alpha + \gamma + 2}$ $\alpha = p-1$ $\alpha = q-1$ $\alpha = q-1$ $\alpha = q-1$ $\alpha = q-1$

MODELOS PROBABILÍSTICOS DE COMPORTAMIENTO DE LOS PARÁMETROS DE UNA INVERSIÓN

DISTRIBUCIÓN TRIANGULAR

Esperanza	Varianza
$E[x] = \frac{a+m+b}{3}$	$\sigma^{2}[x] = \frac{(b-a)^{2} - (m-a) \cdot [b-m]}{18}$

MODELOS PROBABILÍSTICOS DE COMPORTAMIENTO DE LOS PARÁMETROS DE UNA INVERSIÓN

Esperanza $E[x] = \frac{a+b}{2}$ $\sigma^{2}[x] = \frac{(b-a)^{2}}{12}$

BIBLIOGRAFÍA Y LECTURAS

FANJUL Y TASCÓN: ECONOMÍA Y ORGANIZACIÓN DE EMPRESAS

FANJUL Y CASTAÑO: PROYECTO EMPRESARIAL

FANJUL Y CASTAÑO: DIRECCIÓN FINANCIERA CASO A CASO

FANJUL Y OTROS: ANÁLISIS DE PROYECTOS. CASOS Y SUPUESTOS

PINDADO (ED.): FINANZAS EMPRESARIALES

SUÁREZ: DECISIONES ÓPTIMAS DE INVERSIÓN Y FINANCIACIÓN EN LA EMPRESA

VALLELADO Y AZOFRA (EDS.): PRÁCTICAS DE DIRECCIÓN FINANCIERA

OPENCOURSEWARE UNIVERSIA_UNIVERSIDAD DE LEÓN

universidad deleón

Gracias

5. ANÁLISIS DE SENSIBILIDAD

- 5.1. VARIACIÓN DE LOS FLUJOS NETOS DE CAJA
- 5.2. VARIACIÓN DEL COSTE DE CAPITAL Y DEL TIPO DE REINVERSIÓN
- 5.3. INTRODUCCIÓN DEL RIESGO

universidad ^{de}león