实验一 常用电工仪表的测量与误差分析

一. 实验目的

- 1. 掌握系统误差和随机误差的概念
- 2. 学会分析系统误差和随机误差的方法

二. 实验原理与说明

(一)测量方法

根据获得测量结果的方法不同,测量可以分为两大类:直接测量和间接测量。

1. 直接测量法

直接测量法是指被测量与其单位量作比较,被测量的大小可以直接从测量的结果得出。

直接测量法又分直接读数法和比较法两种。

比较法是指测量时将被测量与标准量进行比较,通过比较确定被测量的值。

间接测量法是指测量时测出与被测量有关的量,然后通过被测量与这些量的关系式,计算得出被测量。例如用伏安法测量电阻,首先测得被测电阻上的电压和电流,再利用欧姆定律求得被测电阻值。间接测量法的测量误差较大,它是各个测量仪表和各次测量中误差的综合。

(二)测量误差

测量中,无论采用什么样的仪表,仪器和测量方法,都会使测量结果与被测量的真实值(即实际值或简称真值)之间存在着差异,这就是测量误差。测量误差可分为三类,即系统误差,偶然误差和疏忽误差。

1. 系统误差

系统误差的特点是测量结果总是向某一方向偏离,相对于真实值总是偏大或偏小,具有一定的规律性,根据其产生的原因可分为: 仪表误差,理论或方法误差,个人误差。

(1) 仪表误差

由于仪表在非正常工作条件下使用而引起的误差,叫仪表的附加误差。

仪表误差有两种表示方法:

a.绝对误差

用仪表测量一个电量时,仪表的指示值 A_x 与被测量的实际值 A_0 之差,叫绝对误差,用 \triangle 表示: $\triangle = A_x - A_0$ 式(1—1)

绝对误差的单位与被测量的单位相同。绝对误差在数值上有正负之分。

b.相对误差

用绝对误差无法比较两次不同测量结果的准确性,例如用电流表测量 100mA 的电流时,绝对误差为+1mA,又若测量 10mA 电流时,绝对误差为+0.25mA,虽然绝对误差是前者大于后者,但并不能说明后者的测量比前者准确,要使两次测量能够进行比较,必须采用相对误差。

通常把仪表的绝对误差△与被测量的实际值的比值的百分比,叫相对误差,用y表示。

$$\gamma = \frac{\Delta}{A_0} \times 100\%$$
 $\vec{\Xi}$ (1—2)

因为测量值 Ax 与实际值A₀ 相差不大, 故相对误差也可近似表示为:

$$\gamma = \frac{\Delta}{A_X} \times 100\%$$
 \ddagger (1-3)

用相对误差分析上述两次测量结果:第一次测量中,被测电流的相对误差为:

$$\gamma_{1} = \frac{\Delta_{1}}{A_{01}} \times 100\% = \frac{+1}{100} \times 100\% = +1\%$$

$$\vec{x} (1-4)$$

第二次测量中被测电流的相对误差为:

$$\gamma_2 = \frac{\Delta_2}{A_{co}} \times 100\% = \frac{+0.25}{10} \times 100\% = +2.5\%$$

$$\vec{x} (1-5)$$

从计算结果看出,第一次测量的绝对误差虽大,但相对误差较小,所以第一次测量比第二次测量的 结果准确。

(2) 理论误差或方法误差

这是指实验本身所依据的理论和公式的近似性,或者对实验条件及测量方法考虑得不周到带来 的系统误差。

- (3) 测量者个人因素带来的个人误差
- 2. 偶然误差

偶然误差是由于某种偶然因素所造成的,其特点是在相同的测量条件下,有时偏大,有时偏小, 无规律 性。

疏忽误差

疏忽误差是指测量结果出现明显的错误,是由于实验者的疏忽造成读错或记错等所引起的误差。

三. 实验设备

	名称	数量	型号
1.	三相空气开关	1 块	30121001
2.	多功能交直流电源	1 块	30221095
3.	电阻	2 只	$1k\Omega*1$ $15k\Omega*1$
4.	直流电压表、电流表	各1块	指针式 (学校自备)
5.	短接桥和连接导线	若干	P8-1 和 50148
6.	实验用 9 孔插件方板	1 块	297mm×300mm

四. 实验步骤

1. 图1-1 接线,Us 用直流稳压电源,取 R_1 =1 $K\Omega$, R_2 =15 $K\Omega$,测量电路中的电流 I_1 与 U_1 ,将数据填入表 1-1 内。

- 2. 然后改动电压表正表棒按图 1-2 接线,测量电路中电流 I_2 与 U_2 ,且将数据填入表 1-1 中。
- 3. 然后再改变电压表正极表棒按图 1-1 接线,进行步骤 1 的测量,重复步骤 1,步骤 2 三次,共测得六组数据,分别填入表 1-1 中。
- 4. 通过计算,分别得出两个接线图中四个电量 I_1 、 U_1 、 I_2 、 U_2 的平均值,填入表 1-2 中。
- 5. 根据式(1-1)式(1-2)计算实验结果的绝对误差,相对误差,并填入表1-2。表1-1

测量误差实验数据

		1	2	3	4	5	6
厦 1 1	I_1	0.9	0.9	0.9	0.9	0.9	0.9
图 1-1	U_1	14.05	14.05	14.05	14.06	14.06	14.06
厦 1.2	I_2	0.9	0.9	0.9	0.9	0.9	0.9
图 1-2	U_2	14.06	- 14.06	14.07	14.07	14.08	14.07

表 1-2 实验数据计算值

	平均值		电流绝对误 差	电流相对误差	电压绝对误差	电压相对误差
图 1-1	I ₁ 0.9	U ₁ 14.0525	△ ₁ -0.0377	γ ₁ -4.1%	△ ₂ -0.01	γ ₂ -0.07%
图 1-2	I ₂ 0.9	U ₂ 14.06	\triangle_2 -0.0375	γ ₂ -4%	-0.0025	-0.01%

五. 分析与讨论

- 1. 按接线图所示,计算电阻R₂上两端电压和流过电流的大小。
- 2. 根据表 1-2 中的数据,比较前一小题算得的数据,分析哪一种接法 测得的数据更为准确,并分析解释原因,说明属于哪类误差?
- 3. 若要求测量电阻 R_1 两端电压,将接线图中 R_1 、 R_2 两个电阻位置互换。 仍分别采用实验步骤 1、2、3 中的两种接法,对实验结果进行分析, 此时哪一种接法测得的数据更准确,从而最终可以得出什么结论?

答:

- 1. 按照实验步骤操作连接电路,得出上表中的数据。
- 2. 第一个方法是电压表外接法,第二个方法是电压表内接法,电压表外接法测量的电压是实际电压,测量的电流是电压表与电阻的电流,电压表内接法电压测得的是电流表与电阻的电压,电流表测得的电流是电压表与内阻并联的电流。针对此电路,电压表产生的电流微乎其微,因此测得的电流与实际电流相差无几。这种误差属于系统误差。
- 3. 第一种接法更准确,因为此时电阻的所获得的电压值与电压表的量程相接近,误差较小。结论:测量电压时,应选择合适的电压表,使其值应尽量与电压表的量程接近。