Introduction to Theoretical Computer Science, Fall 2024 Quiz 2 Solutions

Q1. The following CFG generates A.

$$S \rightarrow AB$$

$$B \rightarrow B0|B1|e$$

$$A \rightarrow 0A0|1A1|\#B$$

- Q2. We give a reduction from ALL_{PDA} to EQ_{PDA} . Let P be a PDA. Let P^* be a PDA with $L(P^*) = \Sigma^*$. P^* can be easily constructed. Then we have that "P" \in ALL_{PDA} if and only if "P" " P^* " \in EQ_{PDA} . This completes the reduction.
- Q3. Suppose that A is recursively enumerable. Let M_A be the TM that semidecides A. We shall use M_A to construct a TM M_H that halts on $H_{\mathrm{T}M}$. Let x be an arbitrary string. Note that either $x \in H_{\mathrm{T}M}$ or $x \in \overline{H}_{\mathrm{T}M}$. Or equivalently, either $0x \in A$ or $1x \in A$. Therefore, M_A halts on exactly one of 0x and 1x. We can run M_A on 0x and 1x in parallel, and see on which input it halts. If M_A halts on 0x, then $x \in H_{\mathrm{T}M}$. If M_A halts on 1x, then $x \notin H_{\mathrm{T}M}$.