14.2 Integer Representations and Algorithms

1.1 - 1.2

@2021 A.D. Gunawardena

DO NOT DISTRIBUT

14.2 Integer Representations & Algorithms

- Representation of Integers
- Algorithms for integer Operations
- Modular Exponentiation

Integer Representations

- Integers can be expressed using any integer greater than one as a base
- we commonly use
 - decimal (base 10)
 - binary (base 2)
 - octal (base 8)
 - hexadecimal (base 16)

Representation

Let *b* be an integer greater than 1. Then if *n* is a positive integer, it can be expressed uniquely in the form

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0,$$

where k is a nonnegative integer, a_0, a_1, \ldots, a_k are nonnegative integers less than b, and $a_k \neq 0$.

DO NOT DISTRIBUTE

Decimals, Hexadecimals, Binary and Octals

Decimal	0	1	2	3	4	5	6	7
Hexadecimal								
Binary								
Octal								

Decimal	8	9	10	11	12	13	14	15
Hexadecimal								
Binary								
Octal								

Base Conversions

Convert 1011 0111 to decimal, octal, and hexadecimals

From Decimals to Binary, Octal and Hexadecimals

Convert 24680 to Binary, Octal and Hexadecimals

General Algorithm for constructing Base-b expression

ALGORITHM 1 Constructing Base b Expansions.

```
procedure base b expansion(n, b): positive integers with b > 1)
q := n
k := 0
while q \neq 0
a_k := q \mod b
q := q \operatorname{div} b
k := k + 1
return (a_{k-1}, \dots, a_1, a_0) \{(a_{k-1} \dots a_1 a_0)_b \text{ is the base } b \text{ expansion of } n\}
```

Credits. Rosen Textbook

14.2 Integer Representations & Algorithms

- Representation of Integers
- Algorithms for integer Operations
- Modular Exponentiation

Adding Binary Numbers

ALGORITHM 2 Addition of Integers.

```
procedure add(a, b): positive integers)

{the binary expansions of a and b are (a_{n-1}a_{n-2} \dots a_1a_0)_2

and (b_{n-1}b_{n-2} \dots b_1b_0)_2, respectively}

c := 0

for j := 0 to n-1

d := \lfloor (a_j + b_j + c)/2 \rfloor
s_j := a_j + b_j + c - 2d
c := d
s_n := c
return (s_0, s_1, \dots, s_n) {the binary expansion of the sum is (s_n s_{n-1} \dots s_0)_2}
```

Exercise. Modify the algorithm to handle addition of octal or hexadecimal numbers

Credits. Rosen Textbook

Examples

Add the binary numbers 100011 and 110011

Add the octal numbers 745 and 123

Multiplication of Numbers

ALGORITHM 3 Multiplication of Integers.

```
procedure multiply(a, b): positive integers)

{the binary expansions of a and b are (a_{n-1}a_{n-2} \dots a_1a_0)_2

and (b_{n-1}b_{n-2} \dots b_1b_0)_2, respectively}

for j := 0 to n-1

if b_j = 1 then c_j := a shifted j places

else c_j := 0

{c_0, c_1, \dots, c_{n-1} are the partial products}

p := 0

for j := 0 to n-1

p := p + c_j

return p {p is the value of ab}
```

Div and Mod

ALGORITHM 4 Computing div and mod.

```
procedure division algorithm(a: integer, d: positive integer)
q := 0
r := |a|
while r \ge d
r := r - d
q := q + 1
if a < 0 and r > 0 then
r := d - r
q := -(q + 1)
return (q, r) \{q = a div d is the quotient, r = a mod d is the remainder\{q, r\}
```

Credits. Rosen Textbook Do Not distribute

14.2 Integer Representations & Algorithms

- Representation of Integers
- Algorithms for integer Operations
- Modular Exponentiation

14.2 Integer
Representations and
Algorithms

1.1 - 1.2

@2021 A.D. Gunawardena

DO NOT DISTRIBUT