Analízis 2. ZH Elmélet

A végtelen sorokra vonatkozó Cauchy-féle konvergenciakritérium.

6. Tétel (Cauchy-féle konvergencia kritérium sorokra). $A \sum a_n$ sor akkor és csak akkor konvergens, ha

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall m > n > n_0 \colon |a_{n+1} + a_{n+2} + \dots + a_m| < \varepsilon.$

Bizonyítás. Tudjuk, hogy

$$\sum a_n$$
 konvergens \iff (s_n) konvergens \iff (s_n) Cauchy-sorozat,

azaz

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall n, m > n_0 \colon |s_m - s_n| < \varepsilon$

teljesül. Állításunk abból következik, hogy ha m > n, akkor

$$s_m - s_n = a_{n+1} + a_{n+2} + \dots + a_m.$$

Végtelen sorokra vonatkozó összehasonlító kritériumok.

11. Tétel (Összehasonlító kritériumok). Legyenek $\sum a_n$ és $\sum b_n$ nemnegatív tagú sorok. Tegyük fel, hogy

$$\exists N \in \mathbb{N}, \ \forall n \geq N : 0 \leq a_n \leq b_n.$$

Ekkor

- 1. Majoráns kritérium: ha a $\sum b_n$ sor konvergens, akkor $\sum a_n$ sor is konvergens.
- 2. Minoráns kritérium: ha a $\sum a_n$ sor divergens, akkor a $\sum b_n$ sor is divergens.

Bizonyítás. Az általánosság megszorítása nélkül feltehetjük, hogy $a_n \leq b_n$ minden $n \in \mathbb{N}$ esetén, hiszen véges sok tag megváltozásával egy sor konvergenciája nem változik. Jelölje (s_n) , illetve (t_n) a $\sum a_n$, illetve a $\sum b_n$ sorok részletösszegeiből álló sorozatokat. A feltevésünk miatt $s_n \leq t_n$ $(n \in \mathbb{N})$. Ekkor a nemnegatív tagú sorok konvergenciáról szóló tétel szerint

- 1. ha a $\sum b_n$ sor konvergens, akkor (t_n) korlátos, így (s_n) is az. Ezért a $\sum a_n$ sor is konvergens.
- 2. ha $\sum a_n$ sor divergens, akkor (s_n) nem korlátos, így (t_n) sem az. Ezért a $\sum b_n$ sor is divergens.

A Cauchy-féle gyökkritérium.

 Tétel (A Cauchy-féle gyökkritérium). Tekintsük a ∑a_n végtelen sort, és tegyük fel, hogy létezik az

$$A := \lim_{n \to +\infty} \sqrt[n]{|a_n|} \in \overline{\mathbb{R}}$$

- 0 ≤ A < 1 esetén a ∑a_n sor abszolút konvergens (tehát konvergens is),
 A > 1 esetén a ∑a_n sor divergens,
- A = 1 esetén a ∑a_n sor lehet konvergens is, divergens is.

Bizonyítás. Mivel $\sqrt[n]{|a_n|} \ge 0 \ (n \in \mathbb{N})$, ezért $A \ge 0$.

1. Tegyük fel, hogy $0 \le A < 1$.

$$\left\{ \sqrt[n]{|a_n|} \mid n > n_0 \right\} \subset K(A)$$
 $0 \quad A \quad q \quad 1 \quad \mathbb{R}$

Vegyünk egy A és 1 közötti q számot!

$$\lim \left(\sqrt[n]{|a_n|}\right) < q \quad \Longrightarrow \quad \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \sqrt[n]{|a_n|} < q, \ \text{azaz} \ |a_n| < q^n.$$

Mivel 0 < q < 1, ezért a $\sum q^n$ mértani sor konvergens. Így a majoráns kritérium szerint a $\sum |a_n|$ sor is konvergens, és ez azt jelenti, hogy a $\sum a_n$ végtelen sor abszolút konvergens.

2. Tegyük fel, hogy A > 1.

Vegyünk most egy 1 és A közötti q számot!

$$\lim \left(\sqrt[n]{|a_n|}\right) > q \quad \implies \quad \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \sqrt[n]{|a_n|} > q, \ \text{azaz} \ |a_n| > q^n.$$

Tehát, véges sok n indextől eltekintve $|a_n| > q^n > 1$.

Ebből következik, hogy $\lim(a_n) \neq 0$, és így a $\sum a_n$ sor divergens.

- 3. Tegyük fel, hogy A = 1. Ekkor
 - a $\sum \frac{1}{n}$ divergens sor esetében $|a_n| = \frac{1}{n}$, azaz $\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{n}} = 1$;
 - a $\sum \frac{1}{n^2}$ konvergens sor esetében $|a_n| = \frac{1}{n^2}$, azaz $\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{n^2}} = 1$.

A d'Alembertféle hányadoskritérium.

2. Tétel (A d'Alembert-féle hányadoskritérium). Tegyük fel, hogy a $\sum a_n$ végtelen sor tagjai közül egyik sem 0 és létezik az

$$A:=\lim_{n\to+\infty}\left|\frac{a_{n+1}}{a_n}\right|\in\overline{\mathbb{R}}$$

határérték. Ekkor

- 0 ≤ A < 1 esetén a ∑a_n sor abszolút konvergens (tehát konvergens is),
 A > 1 esetén a ∑a_n sor divergens,
- 3. A = 1 esetén a $\sum a_n$ sor lehet konvergens is, divergens is.

Bizonyítás. Világos, hogy $A \ge 0$.

Legyen | 0 ≤ A < 1 | és vegyünk egy olyan q számot, amire A < q < 1 teljesül. Ekkor

$$\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} < q \quad \Longrightarrow \quad \exists n_0 \in \mathbb{N}, \ \forall n \ge n_0 \colon \frac{|a_{n+1}|}{|a_n|} < q, \ \text{azaz} \ |a_{n+1}| < q|a_n|.$$

Ez azt jelenti, hogy

$$|a_{n_0+1}| < q|a_{n_0}|$$
, $|a_{n_0+2}| < q|a_{n_0+1}|$, . . . , $|a_{n-1}| < q|a_{n-2}|$, $|a_n| < q|a_{n-1}|$
minden $n \ge n_0$ esetén. Így

$$|a_n| < q|a_{n-1}| < q^2|a_{n-2}| < q^3|a_{n-3}| < \dots < q^{n-n_0}|a_{n_0}| = q^{-n_0}|a_{n_0}|q^n = aq^n$$

ahol $a := q^{-n_0}|a_{n_0}|$ egy n-től független konstans. A $\sum aq^n$ mértani sor konvergens, mert 0 < q < 1. Ezért a majoráns kritérium szerint a $\sum |a_n|$ sor is konvergens, vagyis a $\sum a_n$ végtelen sor abszolút konvergens.

2. Legyen A > 1 és vegyünk most egy olyan q számot, amire 1 < q < A teljesül. Ekkor

$$\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} > q \implies \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \frac{|a_{n+1}|}{|a_n|} > q, \ \text{azaz} \ |a_{n+1}| > q|a_n| > |a_n|.$$

Ebből következik, hogy $\lim(a_n) \neq 0$, így a $\sum a_n$ sor divergens.

- 3. Tegyük fel, hogy A = 1. Ekkor
 - $\sum \frac{1}{n}$ divergens sor esetében $|a_n| = \frac{1}{n}$, azaz $\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{n}{n+1} = 1$,
 - $\sum \frac{1}{n^2}$ konvergens sor esetében $|a_n| = \frac{1}{n^2}$, azaz $\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{n^2}{(n+1)^2} = 1$.

Leibniz-típusú sorok konvergenciája.

- 3. Tétel (Leibniz-kritérium).
 - 1. Konvergencia: $A \sum_{n=1}^{\infty} (-1)^{n+1} a_n$ Leibniz-típusú sor akkor és csak akkor konvergens, ha $\lim_{n \to \infty} (a_n) = 0$.

Bizonyítás.

1. \Longrightarrow A sorok konvergenciájának szükséges feltétele értelmében, ha a $\sum (-1)^{n+1}a_n$ sor konvergens, akkor $\lim((-1)^{n+1}a_n) = 0$, ami csak akkor lehetséges, ha $\lim(a_n) = 0$.

Tegyük fel, hogy $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ egy Leibniz-típusú sor, és $\lim(a_n) = 0$. Igazoljuk, hogy a sor konvergens. Legyen

$$s_n := \sum_{k=1}^n (-1)^{k+1} a_k = a_1 - a_2 + a_3 - a_4 + a_5 - \dots + (-1)^{n+1} a_n \qquad (n \in \mathbb{N}^+).$$

Szemléltessük az (s_n) részletösszeg-sorozat első néhány tagját!

$$s_1 = a_1,$$
 $s_2 = a_1 - a_2 = s_1 - a_2,$
 $s_3 = a_1 - a_2 + a_3 = s_2 + a_3,$
 $s_4 = a_1 - a_2 + a_3 - a_4 = s_3 - a_4,$
 $s_5 = a_1 - a_2 + a_3 - a_4 + a_5 = s_4 + a_5.$

Most megmutatjuk, hogy az ábra alapján sejthető tendencia valóban igaz, azaz, hogy az (s_{2n}) sorozat monoton növekvő, és az (s_{2n+1}) sorozat monoton csökkenő.

A páros indexű részsorozatnál a következő csoportosításból látható, hogy

$$s_{2n} = \underbrace{(\underbrace{a_1 - a_2}_{>0}) + (\underbrace{a_3 - a_4}_{>0}) + \dots + (\underbrace{a_{2n-3} - a_{2n-2}}_{>0})}_{>0} + \underbrace{(\underbrace{a_{2n-1} - a_{2n}}_{>0})}_{>0})$$

minden $n \in \mathbb{N}^+$ esetén, tehát (s_{2n}) valóban monoton növekvő.

Hasonlóan, a páratlan indexű részsorozatnál

$$s_{2n+1} = \overbrace{a_1 + (\underbrace{-a_2 + a_3}_{<0}) + (\underbrace{-a_4 + a_5}_{<0}) + \cdots + (\underbrace{-a_{2n-2} + a_{2n-1}}_{<0})}^{s_{2n-1}} + (\underbrace{-a_{2n} + a_{2n+1}}_{<0})$$

minden $n \in \mathbb{N}^+$ esetén, tehát (s_{2n+1}) monoton csökkenő sorozat.

Másrészt, az $s_0 := 0$ értelmezés mellett

$$s_{2n+1} - s_{2n} = a_{2n+1} \ge 0$$
 $(n \in \mathbb{N})$

teljesül, amiből következik, hogy $s_{2n} \le s_{2n+1}$ minden $n \in \mathbb{N}$ esetén. Ekkor

(1)
$$s_2 \le s_4 \le s_6 \le \cdots \le s_{2n} \le s_{2n+1} \le \cdots \le s_5 \le s_3 \le s_1$$
.

Tehát (s_{2n}) és (s_{2n+1}) korlátos sorozatok. Mivel mindkettő monoton és korlátos, ezért konvergens is. Jelölje $A = \lim(s_{2n+1})$ és $B = \lim(s_{2n})$ a határértéküket. Ekkor

$$A-B=\lim_{n\rightarrow +\infty}s_{2n+1}-\lim_{n\rightarrow +\infty}s_{2n}=\lim_{n\rightarrow +\infty}\bigl(s_{2n+1}-s_{2n}\bigr)=\lim_{n\rightarrow +\infty}a_{2n+1}=\lim_{n\rightarrow +\infty}a_n=0,$$

hiszen (a_{2n+1}) részsorozata az (a_n) sorozatnak. Ezért A = B, tehát az (s_{2n}) és az (s_{2n+1}) részsorozatok határértéke megegyezik. Ebből következik, hogy az (s_n) sorozat konvergens. Ez pedig azt jelenti, hogy a Leibniz-típusú sor valóban konvergens.

4

2. Tegyük fel, hogy a $\sum_{n=1} (-1)^{n+1} a_n$ Leibniz-típusú sor konvergens és A az összege. Ekkor $A = \lim(s_{2n+1}) = \lim(s_{2n})$. Az (1) egyenlőtlenségekből következik, hogy

$$s_{2n} \le A \le s_{2n+1} \le s_{2n-1}$$
 $(n \in \mathbb{N}^+).$

Így

•
$$0 \le A - s_{2n} \le s_{2n+1} - s_{2n} = a_{2n+1} \implies |A - s_{2n}| \le a_{2n+1}$$
, és

•
$$-a_{2n} = s_{2n} - s_{2n-1} \le A - s_{2n-1} \le 0 \implies |A - s_{2n-1}| \le a_{2n}$$

minden $n \in \mathbb{N}^+$ esetén. Azt kaptuk tehát, hogy

$$|A - s_n| \le a_{n+1}$$
 $(n \in \mathbb{N}^+),$

ami az állítást igazolja.

Minden [0, 1]-beli szám felírható tizedes tört alakban.

5. Tétel. Minden $\alpha \in [0,1]$ számhoz létezik olyan $(a_n) : \mathbb{N}^+ \to \{0,1,2,\ldots,9\}$ sorozat, amire az teljesül, hogy

$$\alpha = \sum_{n=1}^{+\infty} \frac{a_n}{10^n}.$$

Bizonyítás. Rögzítsünk egy $\alpha \in [0, 1]$ számot!

Az első lépésben osszuk fel a [0, 1] intervallumot 10 egyenlő hosszúságú részre. Ekkor

$$\exists a_1 \in \{0,1,2,\ldots,9\} \colon \alpha \in \left[\frac{a_1}{10},\,\frac{a_1}{10}+\frac{1}{10}\right] =: I_1 \quad \text{azaz} \quad \frac{a_1}{10} \leq \alpha \leq \frac{a_1}{10}+\frac{1}{10}.$$

A második lépésben osszuk fel az ${\cal I}_1$ intervallumot 10 egyenlő hosszúságú részre. Ekkor

$$\exists a_2 \in \{0,1,2,\ldots,9\} \colon \alpha \in \left[\frac{a_1}{10} + \frac{a_2}{10^2}, \frac{a_1}{10} + \frac{a_2}{10^2} + \frac{1}{10^2}\right] =: I_2, \quad \text{azaz}$$

$$\frac{a_1}{10} + \frac{a_2}{10^2} \le \alpha \le \frac{a_1}{10} + \frac{a_2}{10^2} + \frac{1}{10^2}$$

Ha az eljárást folytatjuk, akkor az n-edik lépésben találunk olyan $a_n \in \{0, 1, 2, ..., 9\}$ számot, hogy

$$s_n := \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} \le \alpha \le \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \frac{1}{10^n} = s_n + \frac{1}{10^n},$$

ahol s_n a sor n-edik részletősszege. Ekkor

$$|\alpha - s_n| = \left|\alpha - \left(\frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n}\right)\right| \le \frac{1}{10^n} \xrightarrow[n \to +\infty]{} 0,$$

és így

$$\alpha = \lim_{n \to +\infty} s_n = \sum_{n=1}^{+\infty} \frac{a_n}{10^n}.$$

Konvergens sorok zárójelezése.

8. Tétel. Egy konvergens sor minden zárójelezése is konvergens sor, és összege az eredeti sor összegével egyenlő.

Bizonyítás. Legyen $\sum\limits_{n=1}^{\infty}\alpha_n$ a $\sum\limits_{n=1}^{\infty}a_n$ sor (m_n) által meghatározott zárójelezése, és jelölje (σ_n) és (s_n) rendre a két sor részletösszegeiből álló sorozatokat. Ha $\sum\limits_{n=1}^{\infty}a_n$ konvergens, akkor (s_n) konvergens sorozat, de ekkor minden részsorozata is konvergens, és határértéke megegyezik az (s_n) sorozat határértékével.

Mivel $\forall n \in \mathbb{N}^+$ indexre $\sigma_n = s_{m_n}$ teljesül, így (σ_n) részsorozata az (s_n) sorozatnak. Tehát a (σ_n) sorozat konvergens és $\lim(\sigma_n) = \lim(s_n)$. Ez azt jelenti, hogy a $\sum \alpha_n$ sor konvergens, és

$$\sum_{n=1}^{+\infty}\alpha_n=\lim_{n\to+\infty}\sigma_n=\lim_{n\to+\infty}s_n=\sum_{n=1}^{+\infty}a_n.$$

Abszolút konvergens sorok átrendezése.

10. Tétel. Ha a $\sum a_n$ végtelen sor abszolút konvergens, akkor tetszőleges $(p_n) : \mathbb{N} \to \mathbb{N}$ permutációval képzett $\sum a_{p_n}$ átrendezése is abszolút konvergens, és

$$\sum_{n=0}^{+\infty} a_{p_n} = \sum_{n=0}^{+\infty} a_n.$$

Tehát egy abszolút konvergens sor bármely átrendezése is abszolút konvergens sor, és összege ugyanaz, mint az eredeti soré.

Bizonyítás. Legyen

$$s_n := \sum_{k=0}^{n} a_k$$
 és $\sigma_n := \sum_{k=0}^{n} a_{p_k}$ $(n \in \mathbb{N}).$

1. lépés. Igazoljuk, hogy a $\sum a_{p_n}$ sor abszolút konvergens. Valóban, mivel $\sum a_n$ abszolút konvergens, ezért minden $n \in \mathbb{N}$ -re

$$\sum_{k=0}^{n} |a_{p_k}| = |a_{p_0}| + |a_{p_1}| + \dots + |a_{p_n}| \le \sum_{k=0}^{+\infty} |a_k| = K < +\infty,$$

azaz a $\sum\limits_{k=0}^n |a_{p_k}|$ $(n\in\mathbb{N})$ sorozat felülről korlátos, de nyilván monoton növekvő is, következésképpen a $\sum |a_{p_n}|$ sor konvergens. Így a $\sum a_{p_n}$ sor valóban abszolút konvergens.

2. lépés. Azt igazoljuk, hogy

$$\sum_{n=0}^{+\infty} a_{p_n} = \sum_{n=0}^{+\infty} a_n.$$

Legyen

$$A := \sum_{n=0}^{+\infty} a_n = \lim_{n \to +\infty} s_n$$
 és $B := \sum_{n=0}^{+\infty} a_{p_n} = \lim_{n \to +\infty} \sigma_n$.

Tudjuk, hogy a $\sum |a_n|$ sor konvergens, így a Cauchy-kritérium szerint

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \forall m > n \ge n_0$: $|a_{n+1}| + |a_{n+2}| + \cdot + |a_m| < \varepsilon$.

Ezért
$$n = n_0$$
 mellett, ha $m > n_0$, akkor $\sum_{k=n_0+1}^{m} |a_k| < \varepsilon$.

Adott $\varepsilon > 0$ -ra tekintsük az $a_0, a_1, a_2, \ldots, a_{n_0}$ tagokat, és legyen N_0 olyan index, amire az $a_{p_0} + a_{p_1} + \cdots + a_{p_{N_0}}$ összeg már tartalmazza ezeket a tagokat. Ilyen N_0 nyilván létezik, és $N_0 \ge n_0$. Legyen $n > N_0$. Ekkor

$$\sigma_n - s_n = \underbrace{\left(a_{p_0} + a_{p_1} + \dots + a_{p_{N_0}}\right)}_{} + a_{p_{N_0+1}} + \dots + a_{p_n} - \underbrace{\left(a_0 + a_1 + \dots + a_{n_0}\right)}_{} + a_{n_0+1} + \dots + a_n - \underbrace{\left(a_{p_0} + a_{p_1} + \dots + a_{p_{N_0}}\right)}_{} + a_{p_0+1} + \dots + a_{p_n} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_n} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0} - \underbrace{\left(a_0 + a_1 + \dots + a_{p_0}\right)}_{} + a_{p_0+1} + \dots + a_{p_0+1$$

nem tartalmazza az $a_0, a_1, a_2, \dots, a_{n_0}$ tagokat. Így

$$|\sigma_n - s_n| \le \sum_{k=n_0+1}^m |a_k| < \varepsilon,$$

ahol $m := \max\{p_0, p_1, \dots, p_n\}$, hiszen $m \ge n > N_0 \ge n_0$. Ez azt jelenti, hogy $(\sigma_n - s_n)$ nullsorozat. Ezért

$$\sigma_n = (\sigma_n - s_n) + s_n \xrightarrow[n \to +\infty]{} 0 + A = A,$$

azaz

$$B = \sum_{n=0}^{\infty} a_{p_n} = \lim_{n \to +\infty} \sigma_n = \lim_{n \to +\infty} s_n = \sum_{n=0}^{\infty} a_n = A.$$

Sorok téglányszorzatának konvergenciája.

1. Tétel. Tegyük fel, hogy a $\sum_{n=0}^{\infty} a_n$ és a $\sum_{n=0}^{\infty} b_n$ végtelen sorok konvergensek. Ekkor a $\sum_{n=0}^{\infty} t_n$ téglányszorzatuk is konvergens és

$$\sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} a_n \cdot \sum_{n=0}^{+\infty} b_n,$$

azaz konvergens sorok téglányszorzata is konvergens, és a téglányszorzat összege a két sor összegének szorzatával egyezik meg.

Bizonyítás. A bizonyítás alapja a sorozatoknál tanult műveletek és határátmenet felcserélhetőségére vonatkozó tétel. Jelölje A_n , B_n és T_n rendre a $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ és $\sum_{n=0}^{\infty} t_n$ sorok n-edik részletősszegeit. Ekkor

$$T_n = \sum_{k=0}^n t_k = \sum_{k=0}^n \left(\sum_{\max\{i,j\}=k} a_i b_j \right) = \sum_{\max\{i,j\} \le n} a_i b_j = \left(\sum_{i=0}^n a_i \right) \cdot \left(\sum_{j=0}^n b_j \right) =$$
$$= A_n B_n \to \left(\sum_{n=0}^{+\infty} a_n \right) \cdot \left(\sum_{n=0}^{+\infty} b_n \right), \quad \text{ha } n \to +\infty.$$

Ez azt jelenti, hogy a (T_n) sorozat konvergens, és így a $\sum t_n$ végtelen sor is konvergens, és

$$\sum_{n=0}^{+\infty} t_n = \lim(T_n) = \left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right).$$

Abszolút konvergens sorok szorzatai.

- 2. Tétel (Abszolút konvergens sorok szorzatai). Tegyük fel, hogy a $\sum_{n=0}^{\infty} a_n$ és $\sum_{n=0}^{\infty} b_n$ végtelen sorok mindegyike abszolút konvergens. Ekkor
 - 1. $a \sum_{n=0}^{\infty} t_n$ téglányszorzat is abszolút konvergens,
 - 2. $a \sum_{n=0}^{\infty} c_n$ Cauchy-szorzat is abszolút konvergens,
 - 3. az összes a_ib_j $(i,j \in \mathbb{N})$ szorzatból tetszés szerinti sorrendben és csoportosításban képzett $\sum_{n=0}^{\infty} d_n$ végtelen sor is abszolút konvergens, és

(*)
$$\sum_{n=0}^{+\infty} d_n = \sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right)$$

Bizonyítás. Elég a 3. állítást igazolni. Mivel $\sum a_n$ és $\sum b_n$ abszolút konvergensek, ezért

$$A_N := \sum_{n=0}^N |a_n| \xrightarrow[n \to +\infty]{} A \in \mathbb{R}, \qquad B_N := \sum_{n=0}^N |b_n| \xrightarrow[n \to +\infty]{} B \in \mathbb{R}.$$

Tekintsünk egy tetszőleges $\sum d_n$ sort, ahol $d_n = \sum a_i b_j$. Legyen $N \in \mathbb{N}$ tetszőleges. Jelölje I, illetve J a maximális i, illetve j indexet a $d_0, \ddot{d}_1, \ldots, d_N$ összegekben. Ekkor

$$\sum_{n=0}^N |d_n| \leq \sum_{0 \leq i \leq I \atop 0 \leq i \leq J} |a_i b_j| = \left(\sum_{n=0}^I |a_n|\right) \cdot \left(\sum_{n=0}^J |b_n|\right) \leq A \cdot B,$$

és ez azt jelenti, hogy a $\sum |d_n|$ nemnegatív tagú sor konvergens, mert részletösszegei korlátosak. Tehát $\sum d_n$ abszolút konvergens.

A fentiek érvényesek $d_n = t_n$ esetén, így a $\sum t_n$ téglányszorzat is abszolút konvergens, tehát konvergens is. Ekkor az előző tétel szerint (*) teljesül a $\sum t_n$ sorra, azaz

$$\sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} a_n \cdot \sum_{n=0}^{+\infty} b_n.$$

Legyen $\sum t_n^*$ az a sor, amelyet a $\sum t_n$ téglányszorzatban szereplő zárójelek elhagyásával kapunk. Mivel $\sum t_n^*$ is egy lehetséges $\sum d_n$ típusú sor, ezért $\sum t_n^*$ is abszolút konvergens, és így bármely zárójelezésével az összege nem változik, azaz (*) teljesül a $\sum t_n^*$ sorra:

$$\sum_{n=0}^{+\infty} t_n^* = \sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} a_n \cdot \sum_{n=0}^{+\infty} b_n.$$

Azonban bármely $\sum d_n$ típusú sor megkapható a $\sum t_n^*$ sorból megfelelő átrendezéssel és csoportosítással. Ekkor a sor összege nem változik, tehát (*) teljesül tetszőleges $\sum d_n$ sorra.

Hatványsorok konvergenciasugara.

A CauchyHadamard-tétel.

Függvények határértékének egyértelm¶sége.

A határértékre vonatkozó átviteli elv.

Monoton függvények határértéke.

Az összetett függvény folytonossága.