DATA605 - Assignment 11

Nick Oliver

Assignment 11

Question

Using the "cars" dataset in R, build a linear model for stopping distance as a function of speed and replicate the analysis of your textbook chapter 3 (visualization, quality evaluation of the model, and residual analysis.)

Solution

Loaded the tidyverse library

View the data set to find the column names

```
glimpse(cars)
## Rows: 50
## Columns: 2
## $ speed <dbl> 4, 4, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13~
## $ dist <dbl> 2, 10, 4, 22, 16, 10, 18, 26, 34, 17, 28, 14, 20, 24, 28, 26, 34~
Use the lm function to fit a linear regression model
model <- lm(data = cars, dist ~ speed)</pre>
model
##
## Call:
## lm(formula = dist ~ speed, data = cars)
##
## Coefficients:
##
   (Intercept)
                       speed
       -17.579
                       3.932
```

The function to predict the stopping distance is $StoppingDistinace = -17.579 + 3.932 \times speed$

Visualizing the data

As the text does you can use the buil-in plot function to plot the scatter plot then add the regression line from generated by the 1m function using abline

```
plot(cars)
abline(model)
```


You can also use ggplot to plot the scatter plot of speed vs stopping distance. Use stat_smooth to add a linear fitted line to the plot representing a linear regression model.

```
cars %>% ggplot(aes(x = speed, y = dist)) +
  geom_point() +
  stat_smooth(method = "lm", se = T) +
  xlab('Speed') +
  ylab('Stopping Distance')
```

`geom_smooth()` using formula 'y ~ x'

Evaluating the quality of the model

```
summary(model)
```

```
##
## Call:
## lm(formula = dist ~ speed, data = cars)
##
## Residuals:
##
       Min
                1Q
                                3Q
                    Median
                                        Max
   -29.069
           -9.525
                    -2.272
                             9.215
##
                                    43.201
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                                    -2.601
## (Intercept) -17.5791
                            6.7584
                                              0.0123 *
                            0.4155
                                      9.464 1.49e-12 ***
## speed
                 3.9324
##
## Signif. codes:
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
```

Standard error at least five times to ten times smaller than corresponding coefficients? $3.9324/0.4155 \approx 9.464$ Yes it is about 9 times smaller

The value of 1.49e-12 and the *** on the p-value of speed indicates high significance of the speed or to put it another way an extremely low probability that the speed is not a good predictor of stopping distance. A

0.0123 value for the intercept indicates a very low probability that the intercept is not relevant as well. R^2 of 0.6511 indicates a good fitting model as it is relatively close to one.

Residual Analysis

Plotting the residuals vs. the input values does not show any obvious patterns which indicates that the variables used are sufficient to explain the relationship in the model.

```
qqnorm(resid(model))
qqline(resid(model))
```

Normal Q-Q Plot

We should expect to see the residuals follow a straight line but at the beginning and most certainly near the end the do not follow a straight line. This shows that the residuals may not be normally distributed.

Plotting a histogram of the residuals shows similar results.

This indicates there may be better construct a model the produces better predictions with tighter residual values.

```
ggplot(data = cars, aes(x = model$residuals)) +
   geom_histogram(fill = 'steelblue', color = 'black', binwidth = 3) +
   labs(title = 'Histogram of Residuals', x = 'Residuals', y = 'Frequency')
```

Histogram of Residuals

