MA LEC 03

isagila

@pochtineploho

@DUBSTEPHAVEGUN

Собрано 08.10.2023 в 17:23

Содержание

1.	Лекции	:
	1.1. Лекция 23.09.01	•
	1.2. Лекция 23.09.08	ţ
	1.3. Лекция 23.09.15	7
	1.4. Лекция 23.09.22	10
	1.5. Лекция 23.09.29	12
	1.6. Лекпия 23. 10. 06	

1. Лекции

1.1. Лекция 23.09.01.

Def 1.1.1. Числовым рядом называется выражение $u_1 + u_2 + \ldots + u_n$, где $\{u_n\}$ это некоторая числовая последовательность. Обозначается $\sum_{n=1}^{\infty} u_n$.

Замечание 1.1.2. Нумерация может вестись с любого целого числа.

Def 1.1.3. u_n называется общим членом ряда.

Def 1.1.4. $S_n = u_1 + \ldots + u_k$ называется частичной суммой ряда.

 $Замечание 1.1.5. S_n$ также образуют последовательность.

Def 1.1.6. Если последовательность частичных сумм сходится, т.е. $\lim_{n\to\infty} S_n = S \in \mathbb{R}$, то говорят, что ряд сходится к сумме S (S называется суммой ряда). Если предел равен бесконечности или не существует, то ряд расходится.

Иногда сумму ряда можно найти простой арифметикой.

Пример 1.1.7 (Непосредственное вычисление суммы ряда).

$$u_n = \frac{1}{n(n+1)} \Longrightarrow \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$S_n = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right) = \underbrace{\left(\frac{1}{2} - \frac{1}{3}\right)}_{k=1} + \underbrace{\left(\frac{1}{3} - \frac{1}{4}\right)}_{k=3} + \dots + \underbrace{\left(\frac{1}{n} - \frac{1}{n}\right)}_{k=n-1} + \underbrace{\left(\frac{1}{n} - \frac{1}{n+1}\right)}_{k=n} = 1 - \frac{1}{n+1}$$

$$\lim_{n \to \infty} S_n = 1 = S$$

 $\Pi puмер 1.1.8 (\Gamma eometpuческий ряд (эталонный)). Пусть <math>b \neq 0, b \in \mathbb{R}$.

$$\sum_{n=0}^{\infty} bq^n = b + bq + bq^2 + bq^3 + \dots + bq^n = b(1 + q + q^2 + q^3 + \dots + q^n) = b\frac{1 - q^{n+1}}{1 - q} = S_n$$

$$\lim_{n \to \infty} S_n = \frac{b}{1 - q} \lim_{n \to \infty} (1 - q^{n+1})$$

Далее значение предела зависит от q.

1.
$$|q| < 1 \Longrightarrow q^n \to 0 \Longrightarrow \lim_{n \to \infty} S_n = \frac{b}{1 - q} = S$$

- 2. $|q| > 1 \Longrightarrow q^n \to \infty \Longrightarrow$ ряд расходится.
- 3. $q = 1 \Longrightarrow S_n = b(n+1) \to \infty \Longrightarrow$ ряд расходится.
- 4. $q = -1 \Longrightarrow S_n = \frac{b}{2}(1 + 1 1 + \ldots + 1 1) = \begin{cases} b \\ 0 \end{cases}$ \Longrightarrow две подпоследовательность сходятся к разным числам, значит предела нет и ряд расходится.

Замечание 1.1.9. Чаще требуется только определить сходимость ряда не вычисляя его сумму.

Свойства числовых рядов

Теорема 1.1.10.

$$\sum_{n=1}^{\infty} u_n > \iff \sum_{n=k>1}^{\infty} u_n >$$

$$\sum_{n=1}^{\infty} u_n < \iff \sum_{n=k>1}^{\infty} u_n <$$

$$\sum_{n=1}^{\infty} u_n > \iff \exists \lim_{n \to \infty} S_n \in \mathbb{R}$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\underbrace{u_1 + u_2 + \ldots + u_k}_{v} + u_{k+1} + \ldots + u_n \right) = \underbrace{\lim_{n \to \infty} v}_{n \in \mathbb{R}} + \lim_{n \to \infty} \left(u_{k+1} + \ldots + u_n \right)$$

Для расходящихся доказательство аналогично.

Замечание 1.1.11. Теорему 1.1.10 можно сформулировать по-другому (не формально): ряд и его «хвост» одновременно сходятся и расходятся.

Теорема 1.1.12.

$$\frac{\sum_{n=1}^{\infty} u_n = S \in \mathbb{R}}{\alpha \in \mathbb{R}} \Longrightarrow \sum_{n=1}^{\infty} \alpha u_n = \alpha S$$

$$\sum_{n=1}^{\infty} u_n > \Longleftrightarrow \exists \lim_{n \to \infty} S_n \in \mathbb{R}$$

$$\lim_{n \to \infty} (\alpha u_1 + \ldots + \alpha u_n) = \alpha \lim_{n \to \infty} (u_1 + \ldots + u_n) = \alpha S$$

Замечание 1.1.13. Если ряд расходится, то умножение на $\alpha \neq 0$ не меняет его расходимости.

Теорема 1.1.14.

$$\frac{\sum_{n=1}^{\infty} u_n = S \in \mathbb{R}}{\sum_{n=1}^{\infty} v_n = \sigma \in \mathbb{R}} \Longrightarrow \sum_{n=1}^{\infty} (u_n \pm v_n) = S \pm \sigma$$

 $\underbrace{\lim_{n\to\infty} S_n}_{S} \pm \underbrace{\lim_{n\to\infty} \sigma_n}_{\sigma} = \lim_{n\to\infty} (S_n \pm \sigma_n) = \sum_{n=1}^{\infty} (u_n \pm v_n)$

Замечание 1.1.15. Ряды складываются и вычитаются почленно.

Замечание 1.1.16. Из сходимости разности рядов не следует сходимость самих рядов. Например,

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) \neq \underbrace{\sum_{n=1}^{\infty} \frac{1}{n} - \sum_{n=1}^{\infty} \frac{1}{n+1}}_{\text{pacxogstcs}}$$

Гармонический ряд (эталонный)

$$\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \dots$$

Рассмотрим вспомогательный ряд и вычислим его частичные суммы

$$\frac{1}{1} + \frac{1}{2} + \underbrace{\frac{1}{4} + \frac{1}{4}}_{\frac{1}{2}} + \underbrace{\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}}_{\frac{1}{2}} + \underbrace{\frac{1}{16} + \frac{1}{16} +$$

Последовательность частичных сумм σ_n расходится при $n \to \infty$. Последовательность частичных сумм исходного ряда почленно не меньше σ_n , значит $\lim_{n \to \infty} S_n = \infty$.

Теорема 1.1.17. Члены сходящегося ряда можно группировать произвольным образом не переставляя.

□ Группируя члены ряда получаем подпоследовательность последовательности частичных сумм. Если существует предел исходной последовательности, то существует и предел любой ее подпоследовательности. ■

Замечание 1.1.18. Перестановка членов ряда может изменить сумму. Например, рассмотрим ряд $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Он сходится (без доказательства). Далее имеем

$$\begin{split} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} &= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \frac{1}{10} + \frac{1}{11} - \frac{1}{12} + \frac{1}{13} - \frac{1}{14} + \frac{1}{15} - \frac{1}{16} + \dots \\ &= \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \left(\frac{1}{5} - \frac{1}{10}\right) - \frac{1}{16} + \left(\frac{1}{7} - \frac{1}{14}\right) - \frac{1}{32} + \dots \\ &= \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \frac{1}{3} \cdot \left(1 - \frac{1}{2}\right) - \frac{1}{8} + \frac{1}{5} \cdot \left(1 - \frac{1}{2}\right) - \frac{1}{16} + \frac{1}{7} \cdot \left(1 - \frac{1}{2}\right) - \frac{1}{32} + \dots \\ &= \frac{1}{2}\left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots\right) - \frac{1}{4} - \frac{1}{8} - \frac{1}{16} - \frac{1}{32} - \dots \\ &= \frac{1}{2}\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \dots\right) \\ &= \frac{1}{2}\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \end{split}$$

Получили, что сумма ряда равна своей половине.

1.2. Лекция 23.09.08.

Замечание 1.2.1. Можно доказать, что определенной перестановкой членов ряда в качестве суммы можно получить любое заданное число.

Замечание 1.2.2. Также возможно перемножение рядов. Произведение сходящихся рядов — сходящийся ряд. Формулы для произведения можно найти в литературе.

Далее для краткости ряды будут записываться в виде $\sum u_n$. Нижней границей по умолчанию будем считать единицу. В рядах с другой нижней границей и в местах, где необходимо сделать акцент на границе, будет использоваться запись вида $\sum_{n=0}^{\infty} v_n$.

Далее рассмотрим некоторые условия сходимости рядов.

Теорема 1.2.3. (Необходимое условие сходимости ряда)

$$\sum u_n > \Longrightarrow \lim_{n \to \infty} u_n = 0$$

$$\sum u_n > \longleftrightarrow \exists \lim_{n \to \infty} S_n = S \in \mathbb{R}$$

$$u_{n+1} = S_{n+1} - S_n$$

$$\lim_{n \to \infty} u_{n+1} = \lim_{n \to \infty} (S_{n+1} - S_n) = \lim_{n \to \infty} S_{n+1} - \lim_{n \to \infty} S_n = S - S = 0$$

Замечание 1.2.4. Обратное в общем случае неверно. Например

$$\sum \frac{1}{n} < , \text{ HO } \lim_{n \to \infty} \frac{1}{n} = 0$$

Замечание 1.2.5. Необходимым условием сходимости удобно пользоваться в обратную сторону, т.е. с его помощью проще показать, что ряд расходится.

Пример 1.2.6.

$$\sum_{n \to \infty} \underbrace{(2n+3) \cdot \sin \frac{1}{n}}_{u_n}$$

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{2n+3}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{2n+3}} = \lim_{n \to \infty} \frac{2n+3}{n} = 2$$

$$\lim_{n \to \infty} u_n \neq 1 \Longrightarrow \sum_{n \to \infty} (2n+3) \cdot \sin \frac{1}{n} < 2n$$

Пример 1.2.7.

$$\sum \frac{1}{2n+3} \qquad \lim_{n \to \infty} \frac{1}{2n+3} = 0$$

Рассмотрим вспомогательный ряд $\sum \frac{1}{3n}$. Можно убедиться, что начиная с n=4 члены вспомогательного ряда меньше соответствующих членов исследуемого ряда. Заметим, что

$$\sum \frac{1}{3n} = \frac{1}{3} \sum \frac{1}{n} \Longrightarrow \langle$$

Значит, исходный ряд также расходится.

Теорема 1.2.8. (Критерий Коши для сходимости рядов)

$$\sum u_n > \longleftrightarrow \exists \lim_{n \to \infty} S_n = S \in \mathbb{R} \quad \longleftrightarrow \quad \forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad n \geqslant p \geqslant n_0: |S_n - S_p| < \varepsilon$$

Стоит отметить, что $|S_n - S_p| = |u_p + u_{p+1} + \ldots + u_n|$. Такая форма записи иногда будет полезна в дальнейшем.

Замечание 1.2.9. Смысл критерия Коши в том, что у сходящегося ряда при заданном ε начиная с n_0 весь хвост попадает в ε -трубу.

Замечание 1.2.10. Критерий не удобен для исследования на сходимость, поэтому обычно используют признаки сходимости

Достаточные условия (признаки) сходимости знакоположительных рядов

Замечание 1.2.11. Будем рассматривать только ряды, в которых $u_n > 0$, но описанные далее признаки можно применять для любых рядов, предварительно навесив модуль.

Теорема 1.2.12. (Признак сравнения в неравенствах) Пусть $\sum u_n$ — исследуемый ряд, а $\sum v_n$ — вспомогательный ряд и $u_n, v_n \ge 0$. Тогда

$$\begin{cases}
\forall n \in \mathbb{N} \mid u_n < v_n \\
\sum v_n >
\end{cases} \Longrightarrow \sum u_n > \tag{1}$$

$$\forall n \in \mathbb{N} \mid u_n > v_n \\
\sum v_n <
\end{cases} \Longrightarrow \sum u_n < \tag{2}$$

 \square Сначала докажем (1). Пусть $S_n = u_1 + u_2 + \dots$ и $\sigma_n = v_1 + v_2 + \dots$, т.к. $\forall n \in \mathbb{N} \mid u_n < v_n$, то $S_n \leqslant \sigma_n$. Причем эти последовательности возрастают, т.к. ряды знакоположительные. Далее

$$\sum v_n > \Longrightarrow \exists \lim_{n \to \infty} \sigma_n = \sigma \in \mathbb{R}$$

Таким образом последовательность $\{\sigma_n\}$ ограничена числом σ . Последовательность $\{S_n\}$ возрастает и также ограничена числом σ . Значит по т. Вейерштрасса $\exists \lim_{n\to\infty} S_n = S$, причем $S \leqslant \sigma$.

Теперь от противного докажем (2). Пусть $\sum_{n=0}^{\infty} u_n$ сходится, тогда согласно (1) $\sum_{n=0}^{\infty} v_n$ тоже должен сходится. Противоречие.

Замечание 1.2.13. Для установления расходимости ряда в качестве вспомогательного не следует брать ряды с несуществующей как предел суммой.

Пример 1.2.14.

$$\sum \frac{1}{n^2} \qquad u_n = \frac{1}{n^2}$$

$$\sum \frac{1}{n(n+1)} = 1 \in \mathbb{R} \qquad v_n = \frac{1}{n(n+1)}$$

Неравенство $\frac{1}{n^2} < \frac{1}{n(n+1)}$ неверно, однако заметим, что

$$\frac{1}{n(n+1)} = \frac{1}{n^2 + n} > \frac{1}{n^2 + 2n + 1} = \frac{1}{(n+1)^2}$$

Таким образом по признаку сравнения ряд $\sum_{n=0}^{\infty} \frac{1}{(n+1)^2}$ сходится. Если перенумеровать, то получим, что и ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится.

Теорема 1.2.15. (Предельный признак) Пусть $\sum u_n$ — исследуемый ряд, а $\sum v_n$ — вспомогательный ряд и $u_n, v_n \geqslant 0$. Тогда, если

$$\lim_{n\to\infty} \frac{u_n}{v_n} = q \in \mathbb{R} \setminus \{0\}$$

то ряды имеют одинаковую сходимость.

🗆 Распишем предел по определению, после чего раскроем получившийся модуль (учитывая то, что ряды знакоположительные).

$$\lim_{n \to \infty} \frac{u_n}{v_n} = q \iff \forall \varepsilon > 0 \left| \exists n_0 \in \mathbb{N} \left| \forall n > n_0 : \left| \frac{u_n}{v_n} - q \right| < \varepsilon \right.$$

$$\left. q - \varepsilon < \frac{u_n}{v_n} < q + \varepsilon \right.$$

$$\left. (q - \varepsilon)v_n < u_n < (q + \varepsilon)v_n \right.$$

$$(1)$$

При достаточно малом ε ряды $\sum (q+\varepsilon)v_n$, $\sum (q-\varepsilon)v_n$ и $\sum v_n$ имеют одинаковую сходимость, т.к. домножение на ненулевую константу не влияет на сходимость. Применим признак сравнения.

$$\sum v_n < \Longrightarrow \sum u_n < \sum v_n > \Longrightarrow \sum u_n > \tag{2}$$

В первом случае u_n расходится, т.к. он больше расходящегося ряда (левая часть неравенства (1)), во втором случае u_n сходится, т.к. он меньше сходящего ряда (правая часть неравенства (1)).

Замечание 1.2.16. Т.к. u_n и v_n являются бесконечно малыми (иначе вопрос о расходимости ряда u_n решен, т.к. не выполнено необходимое условие сходимости 1.2.3), то в предельном признаке устанавливается порядок u_n по отношению к v_n . Ряды имеют одинаковый характер сходимости при одином порядке малости.

$$\underline{\operatorname{Lm}}$$
 1.2.17. Пусть $\lim_{n\to\infty}\frac{u_n}{v_n}=0\Longleftrightarrow u_n=o(v_k)$. Тогда $\sum v_n>\Longrightarrow \sum u_n>.$

□ Распишем предел по определению.

$$\lim_{n \to \infty} \frac{u_n}{v_n} = 0 \iff \forall \varepsilon > 0 \left| \exists n_0 \in \mathbb{N} \right| \forall n > n_0 : \left| \frac{u_n}{v_n} \right| < \varepsilon \implies u_n < \varepsilon v_n$$
 (1)

Т.к. ряд $\sum v_n$ сходится, то выполнен критерий Коши (1.2.8), имеем

$$\forall \varepsilon' > 0 \mid \exists m_0 \in \mathbb{N} \mid \forall n \geqslant p \geqslant m_0 : |v_p + \ldots + v_n| < \varepsilon'$$
 (2)

Домножим последнее неравенство на ε и объединив его с неравенством в (1) получим, что

$$|u_p + \ldots + u_n| < \varepsilon |v_p + \ldots + v_n| < \underbrace{\varepsilon \varepsilon'}_{\tilde{\varepsilon}}$$
 (3)

Подставим это в (2), получим

$$\forall \tilde{\varepsilon} > 0 \mid \exists m_0 \in \mathbb{N} \mid \forall n \geqslant p \geqslant m_0 : |u_p + \ldots + u_n| < \tilde{\varepsilon}$$

Значит ряд $\sum u_n$ сходится по критерию Коши.

Замечание 1.2.18. Если в отношении общих членов ряда получилась бесконечность, то лучше использовать другие признаки.

Теорема 1.2.19. (Признак Даламбера)

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=D\in\mathbb{R}=\begin{cases} 0\leqslant D<1 &\Longrightarrow >\\ D=1 &\Longrightarrow \text{ необходимо дополнительное исследование}\\ D>1 &\Longrightarrow <$$

□ Распишем предел по определению.

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = D \iff \forall \varepsilon > 0 \left| \exists n_0 \in \mathbb{N} \right| \forall n > n_0: \left| \frac{u_{n+1}}{u_n} - D \right| < \varepsilon \implies (D + \varepsilon)u_n < u_{n+1} < (D + \varepsilon)u_n \tag{1}$$

Рассмотрим правую часть полученного неравенства. Положим $D + \varepsilon = r < 1$. Тогда $u_{n+1} < r \cdot u_n$ начиная с n_0 . Имеем

Отбросим «голову» полученных рядов до члена u_{n_0} включительно. Тогда из ряда $\sum v_n$ получим ряд

$$\sum v'_{n} = \sum_{k=1}^{\infty} r^{k} \underbrace{u_{n_{0}}}_{\text{const}} = u_{n_{0}} \sum_{k=1}^{\infty} r^{k}$$
(3)

Получаем эталонный геометрический ряд, т.к. r < 1 то он сходится. Значит по признаку сравнения сходится и ряд $\sum u'_n$, полученный отбрасыванием «головы» ряда $\sum u_n$. Отбрасывание конечного числа членов ряда не влияет на его сходимость, а значит ряд $\sum u_n$ также сходится.

Аналогично рассмотрим левую часть неравенства (1) и положим $D-\varepsilon=r>1$. Оценим члены ряда снизу вспомогательным рядом $\sum v'_{n_0+k}=r^ku_{n_0}$. При r>1 исходный ряд почленно больше расходящегося, значит тоже расходится.

1.3. Лекция 23.09.15.

Теорема 1.3.1. (Радикальный признак Коши)

$$\lim_{n\to\infty}\sqrt[n]{u_n}=K\in\mathbb{R}=\begin{cases} 0\leqslant K<1 &\Longrightarrow \\ K=1 &\Longrightarrow \text{ необходимо дополнительное исследование}\\ K>1 &\Longrightarrow \prec \end{cases}$$

□ Распишем предел по определению.

$$\lim_{n \to \infty} \sqrt[n]{u_n} = K \iff \forall \varepsilon > 0 \ \Big| \ \exists n_0 \in \mathbb{N} \ \Big| \ \forall n > n_0 \colon \big| \sqrt[n]{u_n} - K \big| < \varepsilon \Longrightarrow K - \varepsilon < \sqrt[n]{u_n} < K + \varepsilon \leqslant K + \varepsilon \leqslant K - \varepsilon$$

Рассмотрим случай $0 \le K < 1$. Тогда из правой части неравенства получаем

$$\exists r \mid K < r < 1 \ (\varepsilon = r - K) \Longrightarrow \sqrt[n]{u_n} < r \Longrightarrow u_n < r^n$$

Таким образом ряд $\sum u_n$ почленно меньше ряда $\sum r^n (0 < r < 1)$, который сходится. Значит по признаку сравнения он тоже сходится. Аналогично рассмотрим случай K > 1. Тогда из левой части неравенства получаем

$$\exists r \mid K > r > 1 \ (\varepsilon = K - r) \Longrightarrow r < \sqrt[n]{u_n} \Longrightarrow u_n > r^n$$

Таким образом ряд $\sum u_n$ почленно больше расходящегося ряда $\sum r^n \ (r > 1)$, значит он тоже расходится.

Рис. 1.3.2: Иллюстрация к 1.3.3

Теорема 1.3.3. (Интегральный признак Коши) Пусть есть ряд $\sum_{n=a}^{\infty} u_n$ и интеграл $\int_a^{\infty} f(x) dx$. Тогда если $f(x) \ge 0$, f(x) монотонно убывает и $\forall n \in \mathbb{N} \ \Big| \ f(n) = u_n$, то ряд и интеграл имеют одинаковую сходимость.

□ Пользуясь иллюстрацией рис. 1.3.2 составим неравенство и воспользуемся предельным переходом.

$$\underbrace{\sum_{k=2}^{n} u_k}_{\text{Нижние столбцы}} \leqslant \int_{1}^{n} f(x) \mathrm{d}x \leqslant \underbrace{\sum_{k=1}^{n-1} u_k}_{\text{Верхние столбцы}}$$
$$S_n - u_1 \leqslant \int_{1}^{n} f(x) \mathrm{d}x \leqslant S_{n-1}$$
$$\lim_{n \to \infty} (S_n - u_1) \leqslant \int_{1}^{\infty} f(x) \mathrm{d}x \leqslant \lim_{n \to \infty} (S_{n-1})$$

1. $\sum u_n = S \in \mathbb{R}$

Интеграл сходится, т.к. ограничен снизу и сверху числами S – u_1 и S соответственно.

2. $\sum u_n <$

Интеграл расходится, т.к. он не менее бесконечности (левая часть неравенства).

3.
$$\int > , \int = I$$

 $\lim_{n\to\infty} (S_n - u_1) < I \in \mathbb{R} \Longrightarrow \sum u_n >$

4. \(\lambda

Ряд расходится, т.к. предел его частичных сумм не менее бесконечности (правая часть неравенства).

Пример 1.3.4. Рассмотрим обобщенный гармонический ряд $\sum \frac{1}{n^p}$ и исследуем его сходимость с помощью интегрального признака Коши. Введем функцию $f(x) = \frac{1}{x^p}$, f(x): $[1; +\infty] \to R^+$. Если p = 1, то получаем

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x} = \ln x \Big|_{1}^{\infty} = \infty$$

Если $p \neq 1$, то

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{p}} = \frac{x^{-p+1}}{-p+1} \bigg|_{1}^{\infty} = \frac{1}{1-p} \cdot \lim_{x \to \infty} \left(x^{-p+1} - 1 \right)$$

Значит, если -p+1<0, т.е. p>1, то интеграл (а значит и ряд) сходится. Если же p<1, то ряд расходится. В итоге

$$\sum \frac{1}{n^p} \qquad \begin{cases} p > 1 \Longrightarrow > \\ p \leqslant 1 \Longrightarrow < \end{cases}$$

Знакочередующиеся ряды

Def 1.3.5. Ряд вида

$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n = u_1 - u_2 + u_3 - \ldots \pm u_n \mp 1$$

где $u_n > 0$ называют знакочередующимся рядом.

Замечание 1.3.6. Следует различать знакочередующиеся и знакопеременные ряды. В знакочередующихся рядах знак чередуется с каждым следующим членом ряда. В знакопеременных знак члена ряда не обязательно чередуется — он может меняться и по более сложным правилам. Примером знакопеременного ряда может быть

$$\sum u_n = 1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \frac{1}{6} - \frac{1}{7} + \dots$$

Теорема 1.3.7. (Признак Лейбница о сходимости ряда) Пусть дан знакочередующийся ряд $\sum (-1)^{n-1}u_n$. Тогда если u_i монотонно убывают и $\lim_{n\to\infty}u_n=0$, то данный ряд сходится.

 \square Рассмотрим частичную сумму ряда S_{2n}

$$S_{2n} = u_1 - u_2 + u_3 - u_4 + \ldots + u_{2n-1} - u_{2n} = (u_1 - u_2) + (u_3 - u_4) + \ldots + (u_{2n-1} - u_{2n})$$

Т.к. $\{u_i\}$ монотонно убывает, то $u_i > u_{i+1}$, значит все полученные скобки положительные, причем при увеличении n сумма S_{2n} накапливается. Таким образом последовательность $\{S_{2n}\}$ возрастает. Сгруппируем члены ряда в частичной суммой по другому.

$$S_{2n} = u_1 - u_2 + u_3 - u_4 + \dots + u_{2n-1} - u_{2n} = u_1 - (u_2 - u_3) - (u_4 - u_5) - \dots - (u_{2n-2} - u_{2n-1}) - u_{2n}$$

Опять же, в силу монотонности $\{u_i\}$ все полученные скобки положительные, а u_{2n} положителен по условию. Значит $S_{2n} < u_1$. Итого последовательность $\{S_{2n}\}$ ограничена сверху и монотонно возрастает, значит

$$\exists \lim_{n \to \infty} S_{2n} = S \in \mathbb{R}$$

 S_{2n+1} отличается от S_{2n} одним слагаемым $u_{2n+1},$ которое не влияет на сходимость.

$$\lim_{n\to\infty} S_{2n+1} = \underbrace{\lim_{n\to\infty} S_{2n}}_S + \underbrace{\lim_{n\to\infty} u_{2n+1}}_0 = S$$

Замечание 1.3.8 (Об оценке остатка ряда). В доказательстве теоремы 1.3.7 установили, что $S_{2n} < u_1$ (для S_{2n+1} это также верно). Рассмотрим следующий ряд

$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n = u_1 - u_2 + u_3 - u_4 + \dots \underbrace{\pm u_{k+1} \mp u_{k+2} \pm \dots}_{R_{k+1}}$$

$$R_{k+1} = \sum_{n=k+1}^{\infty} (-1)^{n-1} u_n = \pm \sum_{m=1}^{\infty} (-1)^{m-1} u_n$$

Если исходный ряд сходится, то и его остаток R_{k+1} также сходится. При этом остаток можно оценить (по модулю) старшим членом, т.е. $|R_{k+1}| < |u_{k+1}|$. Это позволяет определить, какая погрешность получится, если в приближенных вычислениях использовать частичную сумму ряда.

Пример 1.3.9. Пусть дан ряд

$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n}$$

Вычислим его остаток R_4 .

$$R_4 = \left(\frac{1}{16} - \frac{1}{32}\right) + \left(\frac{1}{64} - \frac{1}{128}\right) + \dots = \frac{1}{32} + \frac{1}{128} + \frac{1}{512} + \dots = \sum_{k=2}^{\infty} \frac{1}{2^{2k+1}}$$

Преобразуем полученное выражение перенумеровав ряд.

$$R_5 = \frac{1}{2} \sum_{k=2}^{\infty} \frac{1}{2^{2k}} = \frac{1}{2} \sum_{k=2}^{\infty} \frac{1}{4^k} = \frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{4^{k+2}} = \frac{1}{32} \sum_{k=0}^{\infty} \frac{1}{4^k} = \frac{1}{32} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{24} < \frac{1}{16} = u_4$$

Замечание 1.3.10. Заметим, что оценка 1.3.8 не работает для знакоположительных рядов. Приведем пример.

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \underbrace{\frac{1}{16} + \dots}_{R_4}$$

$$R_4 = \frac{1}{16} + \frac{1}{32} + \dots = \frac{1}{16} \left(1 + \frac{1}{2} + \dots \right) = \frac{1}{8} > \frac{1}{16} = u_4$$

Теорема 1.3.11. (Абсолютная сходимость)

$$\sum |u_n| > \Longrightarrow \sum u_n >$$

 $\ \square$ Применим критерий Коши для ряда $\sum |u_n|.$

$$\sum |u_n| > \iff \forall \varepsilon > 0 \mid \exists n_0 \in \mathbb{N} \mid \forall n > p > n_0 : |S_n - S_p| < \varepsilon$$
 (1)

Раскроем и преобразуем последнее неравенство. Воспользуемся тем, что модуль суммы не превышает суммы модулей.

$$|S_n - S_p| = \left| |u_p| + \ldots + |u_n| \right| < \varepsilon$$

$$|u_p + \ldots + u_n| \le |u_p| + \ldots + |u_n| < \varepsilon$$

$$|u_p + \ldots + u_n| < \varepsilon$$
(2)

Если вернуться к 1 и подставить полученное неравенство, то получим критерий Коши для ряда $\sum u_n$.

Def 1.3.12. Ряд называется абсолютно сходящимся, если ряд из модулей сходится. Ряд называется условно сходящимся, если он сходится, но ряд из модулей расходится.

Пример 1.3.13. Примером условно сходящегося ряда может быть ряд $\sum (-1)^{n-1} \frac{1}{n}$.

Замечание 1.3.14. Перестановка членов абсолютно сходящегося ряда не меняет его суммы.

Замечание 1.3.15. Ряд из модулей знакоположителен, значит для него можно применять все признаки для знакоположительных рядов рассмотренные ранее.

1.4. Лекция 23.09.22.

Функциональные ряды

Def 1.4.1. Ряд $\sum u_n(x)$, где $u_n(x)$ вещественно-значные, называется функциональным.

3амечание 1.4.2. Функциональный ряд при фиксированном x становится числовым. Например

$$\sum x_n \qquad x = 2 \qquad \sum 2^n < x = \frac{1}{2} \qquad \sum \frac{1}{2^n} >$$

Замечание 1.4.3. Определение общего члена, частичной суммы и суммы ряда сохраняются, но теперь это функции.

Def 1.4.4. Если при фиксированном x_0 числовой ряд $\sum u_n(x_0) >$, то говорят, что этот ряд сходится в точке $x = x_0$. При этом множество x, в которых ряд > называется областью сходимости ряда.

Замечание 1.4.5. Заметим, что если ряд $\sum u_n(x)$ сходится к сумме S(x) и $S_n(x)$, $r_{n+1}(x)$ — частичная сумма и остаток ряда (т.е. $S(x) = S_n(x) + r_{n+1}(x)$), то

$$\lim_{n\to\infty} r_{n+1}(x) = \lim_{n\to\infty} \left(S(x) - S_n(x) \right) = S(x) - \underbrace{\lim_{n\to\infty} S_n(x)}_{S(x)} = 0$$

Таким образом, у сходящегося ряда остаток стремится к нулю.

Замечание 1.4.6 (О критерии Коши для функциональных рядов).

$$\sum u_n(x) \succ \text{ в области } D \Longleftrightarrow \forall \varepsilon > 0 \ | \ \exists n_0 = n_0(\varepsilon,x) \in \mathbb{N} \ | \ \forall n > m > n_0 \colon |S_n - S_m| < \varepsilon$$

Критерий неудобен, т.к. n_0 различны для разных x. Можно определить сходимость так, чтобы избавиться от зависимости x.

Def 1.4.7. Ряд $\sum u_n(x)$ называется сходящимся равномерно в области D, если

$$\forall \varepsilon > 0 \mid \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \mid \forall n > n_0 : |r_{n+1}(x)| < \varepsilon$$

Def 1.4.8. Пусть дан функциональный ряд $\sum u_n(x)$ и сходящийся числовой ряд $\sum a_n$ такой, что $\forall n \in \mathbb{N} \ | \ u_n(x) \le a_n$ в области D. Тогда ряд $\sum u_n(x)$ называется мажорируемым числовым рядом $\sum a_n$.

Теорема 1.4.9. (Признак Вейерштрасса) Если ряд $\sum u_n(x)$ мажорируемый, то он равномерно сходится.

 $\ \square$ Пусть исходный ряд мажорируем рядом $\sum a_n.$ Обозначим остаток этого ряда $\overline{r_{n+1}}$ = $a_{n+1}+\ldots,$ тогда

$$\sum a_n > \iff \forall \varepsilon > 0 \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \mid \forall n > n_0 : |\overline{r_{n+1}}| < \varepsilon$$
 (1)

Рассмотрим модуль остатка исходного ряда.

$$|r_{n+1}| = |u_{n+1}(x) + u_{n+2}(x) + \ldots| < \underbrace{|u_{n+1}(x)|}_{\leq a_{n+1}} + \underbrace{|u_{n+2}(x)|}_{\leq a_{n+2}} + \ldots < \varepsilon$$
 (2)

Подставим (2) в (1).

$$\sum a_n > \iff \forall \varepsilon > 0 \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \mid \forall n > n_0 : |r_{n+1}| < \varepsilon$$
(3)

Замечание 1.4.10. Для мажорируемых рядов работают признаки сходимости Даламбера, Коши и т.д. Они позволяют оценить область сходимости.

 $\Pi pumep~1.4.11.~\Pi$ усть дан функциональный ряд $\sum \left(\frac{x+n}{2nx}\right)^2.~\Pi$ рименим признак радикальный Коши и получим

$$K = \lim_{n \to \infty} \left| \frac{x+n}{2nx} \right| = \frac{1}{2|x|} \lim_{n \to \infty} \left| \frac{x}{n} + 1 \right| = \frac{1}{2|x|}$$

Теперь, если K < 1, т.е. $|x| > \frac{1}{2}$, то ряд сходится. Далее нужно проверить случай K = 1, ведь радикальный признак Коши ничего не утверждает о сходимости в этом случае. Для начала рассмотрим $x = \frac{1}{2}$.

$$\sum \left(\frac{\frac{1}{2} + n}{n}\right)^n = \sum \left(1 + \frac{1}{2n}\right)^n$$
$$\lim_{n \to \infty} \left(1 + \frac{1}{2n}\right)^{2n \cdot \frac{1}{2}} = e^{\frac{1}{2}} \neq 0$$

Таким образом полученный ряд расходится, т.к. нарушено необходимое условие сходимости ряда. Аналогично рассмотрим случай $x = -\frac{1}{2}$.

$$\sum \left(\frac{-\frac{1}{2} + n}{-n}\right)^n = \sum \left(-1 + \frac{1}{2n}\right)^n = \sum (-1)^n \cdot \left(1 - \frac{1}{2n}\right)^n$$

Здесь мы также видим, что нарушено необходимое условие сходимости. Итого, область сходимости имеет вид $D = \left(-\infty; -\frac{1}{2}\right) \cup \left(\frac{1}{2}; \infty\right)$.

Непрерывность суммы ряда

Замечание 1.4.12.

$$f_1(x) + \ldots + f_n(x) = f(x)$$

$$f_i \in C_0[a; b]$$

$$\Longrightarrow f(x) \in C_0[a; b]$$

Однако для бесконечных сумм это в общем случае неверно. Покажем это на следующем примере

$$\sum \left(x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}}\right)$$

$$S_n(x) = x^{\frac{1}{2n+1}} - x$$

$$S(x) = \lim_{n \to \infty} S_n(x)$$

Требуется узнать, непрерывна ли функция S(x). Рассмотрим три случая.

$$x > 0 \Longrightarrow \lim_{n \to \infty} \left(x^{\frac{1}{2n+1}} - x \right) = 1 - x$$

$$x = 0 \Longrightarrow \lim_{n \to \infty} \left(x^{\frac{1}{2n+1}} - x \right) = 0$$

$$x < 0 \Longrightarrow \lim_{n \to \infty} \left(x^{\frac{1}{2n+1}} - x \right) = -1 - x$$

$$S(x) = \begin{cases} 1 - x & x > 0 \\ 0 & x = 0 \\ -1 - x & x < 0 \end{cases}$$

Итого мы видим, что непрерывность нарушена.

Теорема 1.4.13.

$$S(x) = \sum u_n(x)$$

 $u_n(x) \in C_0[a;b]$ $\Longrightarrow S(x) \in C_0[a;b]$
 $\sum u_n(x)$ мажорируем на $[a;b]$

□ Мы хотим доказать, что

$$\forall \varepsilon > 0 \ | \ \exists \delta > 0 \colon |\Delta x| < \delta \Longrightarrow |\Delta S| < \varepsilon \tag{1}$$

Введем следующие обозначения

$$\Delta S = S(x + \Delta x) - S(x)$$

$$S(x) = S_n(x) + r_{n+1}(x)$$

$$\Delta S_n = S_n(x + \Delta x) - S_n(x)$$
(2)

Тогда получаем, что

$$\Delta S = \Delta S_n(x + \Delta x) + r_{n+1}(x + \Delta x) - S_n(x) - r_{n+1}(x)$$

$$\Delta S_n + r_{n+1}(x + \Delta x) - r_{n+1}(x)$$
(3)

 ΔS_n это конечная сумма, значит

$$\forall \varepsilon > 0 \mid \exists \delta > 0 \colon |\Delta x| < \delta \Longrightarrow |\Delta S_n| < \frac{\varepsilon}{3} \tag{4}$$

Далее рассмотрим $r_{n+1}(x)$. Применим условие мажорируемости (т.е. равномерной сходимости).

$$\forall \varepsilon > 0 \left| \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \right| \forall n > n_0: |r_{n+1}(x)| < \frac{\varepsilon}{3} \qquad (\forall x \in [a; b])$$
 (5)

Аналогично можно рассмотреть $r_{n+1}(x + \Delta x)$. Итого из (4) и (5) получаем, что

$$|\Delta S| = |\Delta S_n + r_{n+1}(x + \Delta x) - r_{n+1}(x)| \le |S_n| + |r_{n+1}(x + \Delta x)| + |r_{n+1}(x)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$
 (6)

Замечание 1.4.14. Непрерывность суммы мажоритируемого ряда позволяет такие ряды почленно интегрировать и дифференцировать.

1.5. Лекция 23.09.29.

Теорема 1.5.1. (Интегрирование рядов) Пусть $\sum u_n(x) = S(x)$ — мажорируем на [a;b]. Тогда имеет смысл $\int_a^x S(t) dt$ ($\forall x \in [a;b]$), а также

$$\int_{a}^{x} \left(\sum_{n=1}^{\infty} u_n(t) dt \right) = \sum_{n=1}^{\infty} \int_{a}^{x} u_n(t) dt$$
 (0)

 \square Если ряд мажорируем, то S(x) непрерывна и определен интеграл $\int_a^x S(t) dt = A \in \mathbb{R}$. Докажем равенство (0). Пользуясь линейностью интеграла получаем

$$S(x) = \sum_{k=1}^{n} u_k(x) + r_{n+1}(x)$$

$$\int_a^x S(t) dt = \int_a^x \left(u_1(t) + \dots + u_n(t) \right) dt + \int_a^x r_{n+1}(t) dt = \sum_{k=1}^n \left(\int_a^x u_k(t) dt \right) + \int_a^x r_{n+1}(t) dt$$
(1)

Далее поработаем с остатком ряда. Имеем $|r_{n+1}| = |u_{n+1}(t) + u_{n+2}(t) + \ldots|$. Т.к. ряд мажорируем, то $\forall i : |u_i| \leq a_i$, где $\sum_{i=n+1}^{\infty} a_i$ это остаток мажорирующего ряда.

Т.к. мажорирующий ряд сходится, то его остаток $\sum_{i=n+1}^{\infty} a_i = \varepsilon_i \xrightarrow{n \to \infty} 0$. Тогда $|r_{n+1}(t)| < \varepsilon_n \xrightarrow{n \to \infty} 0$. Получаем

$$\left| \int_{a}^{x} r_{n+1}(t) dt \right| \leqslant \int_{a}^{x} |r_{n+1}(t)| dt < \int_{a}^{x} \varepsilon_{n} dt = \varepsilon_{n}(x-a) \xrightarrow{n \to \infty} 0$$
 (2)

Таким образом $\int_a^x r_{n+1}(t) dt$ абсолютно сходится к нулю. Используя это и (1), получаем

$$\lim_{n \to \infty} \int_{a}^{x} S(t) dt = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\int_{a}^{x} u_{k}(t) dt \right) + \underbrace{\lim_{n \to \infty} \int_{a}^{x} r_{n+1}(t) dt}_{=0}$$

$$\int_{a}^{x} S(t) dt = \sum_{k=1}^{\infty} \left(\int_{a}^{x} u_{k}(t) dt \right)$$
(3)

Полученная формула разрешает почленно интегрировать мажорируемые ряды.

Теорема 1.5.2.

 $\Box D(x)$ непрерывна, т.к. ряд производных мажорируем. Тогда имеет смысл $\int_a^x D(t) \mathrm{d}t \ (\forall x \in [a;b])$. Используя линейность интеграла получаем

$$\int_{a}^{x} D(t) dt = \int_{a}^{x} u'_{1}(t) dt + \int_{a}^{x} u'_{2}(t) dt + \dots = \sum_{n=1}^{\infty} u_{n}(t) \Big|_{a}^{x} = \sum_{n=1}^{\infty} \left(u_{n}(x) - u_{n}(a) \right) \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}{\sum u_{n}(x) = S(x)}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}_{= const}}}_{= const} S(x) - \underbrace{\frac{\sum u_{n}(x) = S(x)}_{= const}}}_{= const} S$$

Замечание 1.5.3. Не мажорируемые ряды формально дифференцируются и интегрируются почленно, но равенство сумм не выполняется (интеграл суммы не равен сумме интегралов).

Пример 1.5.4. Рассмотрим следующий ряд

$$\sum rac{\sin n^4 x}{n^2} \qquad \left| rac{\sin n^4 x}{n^2}
ight| \leqslant rac{1}{n^2} \Longrightarrow \sum rac{1}{n^2}$$
 мажорирующий

Допустим, мы не проверили, что $\sum u'_n(x)$ мажорируем и продифференцировали исходный ряд «не глядя».

$$\sum u'_n(x) = \sum \frac{1}{n^2} \left(\cos(n^4 x) \cdot n^4 \right) = \sum n^2 \cos n^4 x$$

$$u'_n = n^2 \underbrace{\cos n^4 x}_{\text{ограничена}} \xrightarrow{n \to \infty} \infty$$

Мы видим, что не выполнятся необходимое условие сходимости.

Степенные ряды

Def 1.5.5. Ряд $\sum_{n=0}^{\infty} c_n x^n$ называется степенным рядом или рядом по степени x.

В степенных рядах обозначение $\sum c_n x^n$ будет подразумевать, что нижняя граница равна нулю, а не единице, как это было ранее.

Замечание 1.5.6. Можно рассматривать степенные ряды со сдвигом в точку a.

$$\sum c_n(x-a)^n \xrightarrow{\frac{x-a=t}{}} \sum c_n t^n$$

Теорема 1.5.7. (Абеля. Признак сходимости степенного ряда) Если $\sum c_n x^n$ сходится в $x_0 \neq 0$, тогда $\forall x: |x| < |x_0|$ ряд сходится абсолютно и равномерно. Если $\sum a_n x^n$ расходится в x_1 , тогда $\forall x: |x| > |x_1|$ ряд расходится.

 \Box Сначала докажем первую часть теоремы. Ряд $\sum c_n x^n$ сходится в $x_0 \Longrightarrow$ выполнено необходимое условие сходимости $c_n x^n \xrightarrow{n \to \infty} 0$. Значит последовательность $\{u_n\}$ ограничена, т.е. $\exists M > 0 \colon |c_n x_0^n| \leqslant M$. Рассмотрим ряд из модулей элементов исходного ряда

$$\sum |c_n x^n| = |c_0| + |c_1 x| + \left|c_2 x^2\right| + \ldots + |c_n x^n| + \ldots = \underbrace{|c_0|}_{\leqslant M} + \underbrace{|c_1 x_0|}_{\leqslant M} \cdot \left|\frac{x}{x_0}\right| + \underbrace{|c_2 x_0^2|}_{\leqslant M} \cdot \left|\frac{x^2}{x_0^2}\right| + \ldots = \sum |c_n x_0^n| \left|\frac{x}{x_0}\right|^n \leqslant \sum M \cdot \left|\frac{x}{x_0}\right|^n$$

Т.к. $|x| < |x_0|$, то этот ряд сходится \Longrightarrow исходный ряд сходится абсолютно. Если $|x| < |x_0|$, то $\exists r > 0$: $|x| < r < |x_0|$. Таким образом

$$|c_n x^n| \le M \cdot \left| \frac{x}{x_0} \right|^n \le M \cdot \left| \frac{r}{x_0} \right|^n$$

и $M \left| \frac{r}{x_0} \right|^n$ — члены мажорирующего ряда.

Вторую часть теоремы докажем от противного. Пусть $\exists: |x| > |x_1|$ и $\sum c_n x^n$ сходится. Тогда согласно первой части теоремы в точке x_1 ряд должен сходится. Противоречие.

Замечание 1.5.8. Между интервалами сходимости и расходимости степенного ряда найдется точка $\pm R$ называемая радиусом сходимости ряда. Интервал (-R;R) называется кругом сходимости.

Замечание 1.5.9. В круге сходимости ряд мажорируем \Longrightarrow интегрируем. Исследуем возможность дифференцирования. Нужно показать, что $\sum u_n'(x) = \sum c_n \cdot n \cdot x^{n-1}$ мажорируем. Рассмотрим интервал $(-r;r) \in (-R;R)$. В этом интервале исходный ряд сходится, значит

$$\forall \xi \in (-R;R) \setminus (-r;r) \Longrightarrow \begin{cases} |c_n \xi^n| \leqslant M \in \mathbb{R}^+ \\ \frac{r}{\xi} < 1 \end{cases}$$

$$\forall x \in (-r;r) : |u_n'(x)| = |c_n \cdot n \cdot x^{n-1}| \leqslant |c_n \cdot n \cdot r^{n-1}| = \left| \frac{c_n \xi^n}{\xi} \right| \cdot \left| n \cdot \left(\frac{r}{\xi} \right)^{n-1} \right| \leqslant \left| \frac{M}{\xi} \right| \cdot \left| n \cdot \left(\frac{r}{\xi} \right)^{n-1} \right|$$

Если ряд из производных мажорируем, то ряд из вторых производных также мажорируем и т.д

1.6. Лекция 23.10.06.

Теорема 1.6.1. (Формула Тейлора)

$$f(x) \in C_{\infty} u_{\delta}(x_0)$$

$$\forall x \in (-R; R) \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = T$$

$$\lim_{n \to \infty} R_{n+1}(x) = 0$$

$$f(x) = T_n(x) + R_{n+1}(x) = \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$
 (1)

Заметим, что $T_n(x)$ это частичная сумма ряда (2)

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \tag{2}$$

T.к. ряд степенной, то можно найти радиус сходимости. Пусть в круге радиуса R ряд Tейлора (2) сходится к сумме T, тогда перейдем к пределу

$$\lim_{n \to \infty} f(x) = \underbrace{\lim_{n \to \infty} T_n(x)}_{T} + \underbrace{\lim_{n \to \infty} R_{n+1}(x)}_{=0} \Longrightarrow f(x) = T$$

Def 1.6.2 (Ряд Маклорена).

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Такое разложение f(x) называется стандартным.

Стандартные разложения элементарных фукнций

I $f(x) = e^x$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$R_{n+1}(x) = \frac{e^{\xi}}{(n+1)!} x^{n+1} \xrightarrow{n \to \infty} 0$$

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \frac{|x|}{n+1} < 1 \Longrightarrow \text{ область сходимости } \mathbb{R}$$

II $f(x) = \sin x$

$$f^{(n)}(x) = \sin\left(x + \frac{\pi n}{2}\right)$$

$$\sin x = \sum_{n=0}^{\infty} \frac{\sin\left(\frac{\pi n}{2}\right)}{n!} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!}$$

$$R_{n+1}(x) = \frac{\sin\left(\frac{\pi}{2}(n+1) + \xi\right)}{(n+1)!} x^{n+1} \leqslant \frac{x^{n+1}}{(n+1)!} \xrightarrow{n \to \infty} 0$$

$$\lim_{k \to \infty} \left|\frac{u_{k+1}}{u_k}\right| = \lim_{k \to \infty} \frac{x^2}{(2k+2)(2k+3)} = 0 \Longrightarrow \text{область сходимости } \mathbb{R}$$

III $f(x) = \cos x$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
$$R_{n+1}(x) \xrightarrow{n \to \infty} 0$$
область сходимости \mathbb{R}

IV.1 $f(x) = \sinh x$

$$\sinh x = \frac{e^x - e^{-x}}{2} = \frac{1}{2} \left(\sum_{n=0}^{\infty} \frac{x^n}{n!} - \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \right) = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

IV.2 $f(x) = \cosh x$

$$\cosh x = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2} + \frac{x^4}{4} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

Замечание 1.6.3.

$$e^{i\pi} = \sum_{(i\pi)^n}^{n!} = 1 + \frac{i\pi}{1!} - \frac{\pi^2}{2!} - \frac{i\pi^3}{3!} + \frac{\pi^4}{4!} = \underbrace{\left(1 - \frac{\pi^2}{2!} + \frac{\pi^4}{4!} - \ldots\right)}_{\cos \pi} + i\underbrace{\left(\frac{\pi}{1!} - \frac{\pi^3}{3!} + \frac{\pi^5}{5!} - \ldots\right)}_{\sin \pi} = -1 + 0 = -1$$

Или, если обобщить, $e^{ix} = \cos x + i \sin x$.

V Биномиальный ряд $f(x) = (1+x)^m, m \in \mathbb{R}$

Замечание 1.6.4. Представление остаточного члена в форме Лагранжа и доказательство его сходимости к нулю это сложная задача, поэтому получим представление другим способом.

$$f'(x) = m(1+x)^{m-1}$$
$$(1+x)f'(x) = m(1+x)^m = mf(x)$$
$$\begin{cases} (1+x)f'(x) = mf(x) \\ f(0) = 1 \end{cases}$$

Получили задачу Коши. Запишем ее для суммы ряда.

$$\begin{cases} (1+x)S'(x) = mS(x) \\ S(0) = 1 \end{cases} \begin{cases} S(x) = 1 + a_1x + a_2x^2 + \dots + a_nx^n + \dots \\ S'(x) = a_1 + 2a_2x + \dots + na_nx^{n-1} + \dots \end{cases}$$

$$(1+x)S'(x) = a_1 + \underbrace{a_1x + 2a_2x}_{} + \underbrace{2a_2x^2 + 3a_3x^2}_{} + 3a_3x^3 + \dots = mS(x) = m + ma_1x + ma_2x^2 + ma_3x^3 + \dots$$

Приравняем коэффициенты.

$$a_{1} = m \qquad a_{1} = \frac{m}{1}$$

$$a_{1} + 2a_{2} = ma_{1} \qquad 2a_{2} = a_{1}(m-1) \Longrightarrow a_{2} = \frac{m(m-1)}{2}$$

$$2a_{2} + 3a_{3} = ma_{2} \qquad 3a_{3} = ma_{2} - 2a_{2} \Longrightarrow a_{3} = \frac{m(m-1)(m-2)}{2 \cdot 3}$$

$$\vdots \qquad \vdots$$

$$a_{n} = \frac{m(m-1) \dots (m-n+1)}{n!} = \frac{m!}{n!(m-n)!} = {m \choose n}$$

Итого $(1+x)^m = \sum_{n=0}^{\infty} C_m^n x^n$. Выясним радиус сходимости.

$$u_{n-1} = \frac{m(m-1)\dots(m-n+2)}{(n-1)!}x^{n-1} \qquad u_n = \frac{m(m-1)\dots(m-n+1)}{n!}x^n$$

$$\lim_{n \to \infty} \left| \frac{u_n}{u_{n-1}} \right| = \lim_{n \to \infty} \left| \frac{(m-n+1)x}{n} \right| = |x| \lim_{n \to \infty} \left| \frac{m}{n} - 1 + \frac{1}{n} \right| = |x| < 1$$

Таким образом, область сходимости (-1;1).

Замечание 1.6.5. В некоторых случаях (например $m \in \mathbb{Z}^-$) x = 1 входит в область сходимости.

$$\mathbf{VI}\ f(x) = \ln(1+x)$$

Заметим, что $f'(x) = \frac{1}{1+x} = (1+x)^{-1}$ это бином. Получаем

$$f'(x) = \sum_{n=0}^{\infty} C_m^n x^n = 1 - x + x^2 - x^3 + \dots$$
$$f(x) = \ln(1+x) = \int_0^x (1 - x + x^2 - x^3 + \dots) dx = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n!}$$

Область сходимости, как и у бинома, будет равна (-1;1).

3амечание 1.6.6. Если взять $x = \frac{1}{k}$, то тогда

$$\ln(1+x) = \ln\left(1+\frac{1}{k}\right) = \ln\left(\frac{k+1}{k}\right) = \ln(k+1) - \ln k$$

Т.е. можно рекурсивно получать значения натуральных логарифмов с помощью рядов.

Замечание 1.6.7 (О применении к приближенным вычислениям). Рассмотрим «неберущийся» интеграл.

$$\int_0^a \frac{\sin x}{x} dx = \int_0^a \frac{1}{x} \left(\sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{(2n+1)!} \right) dx$$

$$= \int_0^a \sum_{n=0}^\infty \frac{(-1)^n x^{2n}}{(2n+1)!} dx$$

$$= \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} \int_0^a x^{2n} dx$$

$$= \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} \cdot \frac{a^{2n+1}}{(2n+1)}$$

Рассмотрим другой «неберущийся» интеграл.

$$\int_0^a e^{-x^2} dx = \int_0^a \sum_{n=0}^\infty \frac{(-x^2)^n}{n!} dx = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \cdot \frac{a^{2n+1}}{2n+1}$$