In [1]: import numpy as np
 import seaborn as sns
 import pandas as pd

from sklearn.linear_model import LinearRegression
 from sklearn.model_selection import train_test_split

CRIM: Per capita crime rate by town

ZN: Proportion of residential land zoned for lots over 25,000 sq. ft

INDUS: Proportion of non-retail business acres per town

CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

NOX: Nitric oxide concentration (parts per 10 million)

RM: Average number of rooms per dwelling

AGE: Proportion of owner-occupied units built prior to 1940 **DIS:** Weighted distances to five Boston employment centers

RAD: Index of accessibility to radial highways **TAX:** Full-value property tax rate per \$10,000

PTRATIO: Pupil-teacher ratio by town

B: 1000(Bk — 0.63)², where Bk is the proportion of [people of African American descent] by town

LSTAT: Percentage of lower status of the population

In [2]: # Importing Data
 from sklearn.datasets import load_boston
 boston_data = load_boston()

In [3]: boston = pd.DataFrame(boston_data.data, columns=boston_data.feature_names)
boston.head()

Out[3]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
	0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
	1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
	2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
	3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
	4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

In [4]: #Now we'll add price column
boston['Price'] = boston_data.target
boston.head()

Out[4]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

In [5]: boston.describe()

Out[5]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.00
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.79
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.10
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.12
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.10
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.20
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.18
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.12
4								

```
In [6]: boston.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 506 entries, 0 to 505
        Data columns (total 14 columns):
        CRIM
                   506 non-null float64
        ΖN
                   506 non-null float64
                   506 non-null float64
        INDUS
                   506 non-null float64
        CHAS
        NOX
                   506 non-null float64
        RM
                   506 non-null float64
                   506 non-null float64
        AGE
        DIS
                   506 non-null float64
                   506 non-null float64
        RAD
        TAX
                   506 non-null float64
                   506 non-null float64
        PTRATIO
                   506 non-null float64
        R
                   506 non-null float64
        LSTAT
        Price
                   506 non-null float64
        dtypes: float64(14)
        memory usage: 55.5 KB
In [7]: # splitting data to training and testing dataset
        # Input Data
        x = boston_data.data
        # Output Data
        y = boston data.target
        xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size =0.2,
                                                             random_state = 0)
        print("xtrain shape : ", xtrain.shape)
        print("xtest shape : ", xtest.shape)
        print("ytrain shape : ", ytrain.shape)
        print("ytest shape : ", ytest.shape)
        xtrain shape : (404, 13)
        xtest shape : (102, 13)
        ytrain shape : (404,)
        ytest shape : (102,)
In [8]: # Fitting Multi Linear regression model to training model
        lr = LinearRegression()
        lr.fit(xtrain, ytrain)
        # predicting the test set results
        y_pred = lr.predict(xtest)
```

In [9]: # Results of Linear Regression. from sklearn import metrics from sklearn.metrics import r2_score print('Mean Absolute Error : ', metrics.mean_absolute_error(ytest, y_pred)) print('Mean Square Error : ', metrics.mean_squared_error(ytest, y_pred)) print('RMSE', np.sqrt(metrics.mean_squared_error(ytest, y_pred))) print('R squared error', r2_score(ytest, y_pred))

Mean Absolute Error : 3.8429092204444983 Mean Square Error : 33.44897999767656 RMSE 5.783509315085138 R squared error 0.5892223849182504

```
In [10]: #Actual Value Vs Predicted Value
    df1 = pd.DataFrame({'Actual': ytest, 'Predicted':y_pred})
    df2 = df1.head(10)
    df2.plot(kind = 'bar')
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7d55b9c950>

In [11]: sns.pairplot(boston)

Out[11]: <seaborn.axisgrid.PairGrid at 0x7f7d4ece6cd0>

Zero Correlation: When x and y are completely independent

Positive Correlation: When x and y go together

From the above graphs (Last Row), we can clearly see that the feature RM ans LSTAT has a positive correlation with Price.

```
In [27]: #np.c : it is used to concatenate columns
         X = pd.DataFrame(np.c_[boston['LSTAT'], boston['RM']], columns = ['LSTAT','RM'])
         Y = boston['Price']
In [28]: Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size =0.2,
                                                               random state = 0)
          print("xtrain shape : ", Xtrain.shape)
         print("xtest shape : ", Xtest.shape)
         print("ytrain shape : ", Ytrain.shape)
print("ytest shape : ", Ytest.shape)
         xtrain shape: (404, 2)
         xtest shape : (102, 2)
         ytrain shape : (404,)
         ytest shape : (102,)
In [29]: # Fitting Multi Linear regression model to training model
          lr = LinearRegression()
          lr.fit(Xtrain, Ytrain)
          # predicting the test set results
          Y pred = lr.predict(Xtest)
In [30]: # Results of Linear Regression.
          from sklearn import metrics
          from sklearn.metrics import r2_score
         print('Mean Absolute Error : ', metrics.mean_absolute_error(Ytest, Y_pred))
         print('Mean Square Error : ', metrics.mean_squared_error(Ytest, Y_pred))
          print('RMSE', np.sqrt(metrics.mean_squared_error(Ytest, Y_pred)))
          print('R squared error', r2_score(Ytest, Y_pred))
         Mean Absolute Error: 4.142444656238561
         Mean Square Error: 37.38310563877995
         RMSE 6.114172522817781
         R squared error 0.5409084827186417
```