자연어 처리 DAY 4 Transformer

Jaegul Choo

Associate Professor, Graduate School of AI, KAIST

1.

Transformer

- Attention is all you need, NeurIPS'17
 - No more RNN or CNN modules

Attention Is All You Need, NeurlPS'17 http://jalammar.github.io/illustrated-transformer/

© NAVER Connect Foundation

http://jalammar.github.io/illustrated-transformer/

- Inputs: a query q and a set of key-value (k, v) pairs to an output
- Query, key, value, and output is all vectors
- Output is weighted sum of values
- Weight of each value is computed by an inner product of query and corresponding key
- Queries and keys have same dimensionality d_k , and dimensionality of value is d_v

$$A(q, K, V) = \sum_{i} \frac{\exp(q \cdot k_i)}{\sum_{j} \exp(q \cdot k_j)} v_i$$

• When we have multiple queries q, we can stack them in a matrix Q:

$$A(q, K, V) = \sum_{i} \frac{\exp(q \cdot k_i)}{\sum_{j} \exp(q \cdot k_i)} v_i$$

Becomes:

Row-wise

softmax

$$A(Q, K, V) = \operatorname{softmax}(QK^T)V$$

Example from illustrated transformer

http://jalammar.github.io/illustrated-transformer/

Problem

- As d_k gets large, the variance of $q^T k$ increases
- Some values inside the softmax get large
- The softmax gets very peaked
- Hence, its gradient gets smaller

Solution

Scaled by the length of query / key vectors:

$$A(Q, K, V) = softmax \left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

Attention Is All You Need, NeurlPS'17

2.

Transformer (cont'd)

- The input word vectors are the queries, keys and values
- In other words, the word vectors themselves select each other
- Problem of single attention
 - Only one way for words to interact with one another
- Solution
 - Multi-head attention maps Q, K, V into the h number of lower-dimensional spaces via W matrices
- Then apply attention, then concatenate outputs and pipe through linear layer

MultiHead(Q, K, V) = Concat(head₁, ..., head_h) W^O where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

Attention Is All You Need, NeurIPS'17

12

Example from illustrated transformer

Example from illustrated transformer

- Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types
 - *n* is the sequence length
 - *d* is the dimension of representation
 - k is the kernel size of convolutions
 - r is the size of the neighborhood in restricted self-attention

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(\hat{k}\cdot n\cdot \hat{d}^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Attention Is All You Need, NeurIPS'17

Each block has two sub-layers

- Multi-head attention
- Two-layer feed-forward NN (with ReLU)

- Each of these two steps also has
 - Residual connection and layer normalization:
 - LayerNorm(x + sublayer(x))

Attention Is All You Need, NeurIPS'17

 Layer normalization changes input to have zero mean and unit variance, per layer and per training point (and adds two more parameters)

$$\mu^{l} = \frac{1}{H} \sum_{i=1}^{H} a_{i}^{l}, \qquad \sigma^{l} = \sqrt{\frac{1}{H} \sum_{i=1}^{H} (a_{i}^{l} - \mu^{l})^{2}}, \qquad h_{i} = f(\frac{g_{i}}{\sigma_{i}} (a_{i} - \mu_{i}) + b_{i})$$

Layer normalization consists of two steps:

- Normalization of each word vectors to have mean of zero and variance of one.
- Affine transformation of each sequence vector with learnable parameters

Use sinusoidal functions of different frequencies

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$$

ullet Easily learn to attend by relative position, since for any fixed offset k,

 $PE_{(pos+k)}$ can be represented as linear function of $PE_{(pos)}$

http://jalammar.github.io/illustrated-transformer/

• learning rate = $d_{model}^{-0.5} \cdot \min(\#step^{-0.5}, \#step \cdot warmup_steps^{-1.5})$

- Attention is all you need, NeurIPS'17
 - No more RNN or CNN modules

Attention Is All You Need, NeurIPS'17 http://ialammar.github.io/illustrated-transformer/

Words start to pay attention to other words in sensible ways

https://colab.research.google.com/github/tensorflow/tensor2 tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

Attention Is All You Need, NeurlPS'17

Words start to pay attention to other words in sensible ways

https://colab.research.google.com/github/tensorflow/tensor2 tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

Attention Is All You Need, NeurlPS'17

24

Output Probabilities

- Two sub-layer changes in decoder
- Masked decoder self-attention on previously generated output

Encoder-Decoder attention,
where queries come from previous decoder layer
and keys and values come from output of encoder

Attention Is All You Need, NeurIPS'17

- Those words not yet generated cannot be accessed during the inference time
- Renormalization of softmax output prevents the model from accessing ungenerated words

- Those words not yet generated cannot be accessed during the inference time
- Renormalization of softmax output prevents the model from accessing ungenerated words

- Those words not yet generated cannot be accessed during the inference time
- Renormalization of softmax output prevents the model from accessing ungenerated words

Results on English-German/French translation (newstest2014)

Model	BLEU		Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [I8]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5\cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$	

Attention Is All You Need, NeurlPS'17

References

- Illustrated transformer
 - http://jalammar.github.io/illustrated-transformer/
- The Annotated Transformer
 - http://nlp.seas.harvard.edu/2018/04/03/attention.html
- CS224n –Deep Learning for Natural Language Processing
 - http://web.stanford.edu/class/cs224n/
- Convolution Sequence to Sequence
 - https://arxiv.org/abs/1705.03122
- Fully-parallel text generation for neural machine translation
 - https://blog.einstein.ai/fully-parallel-text-generation-for-neural-machine-translation/

Attention Is All You Need, NeurIPS'17

End of Document Thank You.

