Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi 3 settembre 2019

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (8 punti)

a) Si stabilisca se l'insieme

$$W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | (x_1 - x_2 + x_4)(3x_1 + x_2) = 0 \}$$

è un sottospazio di \mathbb{R}^4 e in caso affermativo se ne determini una base.

Si trovi inoltre un sottospazio U di \mathbb{R}^4 , di dimensione uno, tale che U sia contenuto in W.

b) Sia $V = \langle (1, -2, 0), (0, -1, 1) \rangle$ e sia Z il sottospazio di \mathbb{R}^3 definito dalle equazioni:

$$\begin{cases} x_1 + x_2 - x_3 = 0 \\ x_1 - 2x_3 = 0 \end{cases}$$

Si determini, se possibile, una applicazione lineare $L:\mathbb{R}^3\to\mathbb{R}^3$ tale che Ker (L)=Z e Im (L)=V.

Esercizio 2. (9 punti) Sia $F_s: \mathbb{R}^3 \to \mathbb{R}^4$ l'applicazione lineare definita da:

$$F_s(x_1, x_2, x_3) = (3x_1 - x_3, sx_1 + x_2, 10x_1 + sx_2 + sx_3, -2sx_1 - 2x_2).$$

- a) Si determini una base di Im (F_s) , al variare di $s \in \mathbb{R}$.
- b) Si stabilisca per quali valori di s si ha che il vettore $3\mathbf{e}_1 + \mathbf{e}_2 10\mathbf{e}_3 2\mathbf{e}_4$ appartiene a Im (F_s) .
- c) Si stabilisca per quali valori di s si ha che F_s è iniettiva.
- d) Posto s = 0, si determinino le equazioni cartesiane di Im (F_0) .

Esercizio 3. (10 punti) Sia $T_k : \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$T_k(\mathbf{e}_1) = 3\mathbf{e}_1 + \mathbf{e}_2$$
 $T_k(\mathbf{e}_2) = k\mathbf{e}_1 + 3\mathbf{e}_2$ $T_k(\mathbf{e}_3) = -5\mathbf{e}_1 - \mathbf{e}_2 - 2\mathbf{e}_3$

e sia A_k la matrice associata a T_k rispetto alla base canonica (in dominio e codominio).

- a) Si stabilisca per quali valori di k si ha che T_k è diagonalizzabile.
- b) Si stabilisca per quali valori di k si ha che $\mathbf{e}_1 \mathbf{e}_2$ è autovettore di T_k .
- c) Posto k=1, si determinio una matrice diagonale D e due distinte matrici invertibili P_1 e P_2 tali che $P_1^{-1}A_1P_1=D=P_2^{-1}A_1P_2$ sia diagonale.

Esercizio 4 (3 punti)

È vero o falso che $[68]_{187}$ è invertibile in \mathbb{Z}_{187} ?