

 $\mathbb{P}_{h,J}(X)$

 $\overline{Z(h,J)}$

Simulation: Potts model for protein contact prediction

Ekeberg, Löfkvist, Lan, Weigt, and Aurell (2013)

protein family PF00006, p=213

$$X \in \{0,1,...,20\}^p$$

(20 amino acids, one gap)

3D structure SYCDMHL FYPDTWL SYKFMHA SYGDMHL SYRFMHA

Simulation: Potts model for protein contact prediction

$$\mathbb{P}_{h,J}(X) = \frac{1}{Z(h,J)} \exp \left(\sum_{j=1}^{p} h_i(X_i) + \sum_{1 \leq i < j \leq p} J_{ij}(X_i,X_j) \right) \\ X \in \{0,1,\ldots,20\}^p \text{ (20 amino acids, one gap)} \\ \begin{array}{c} \text{S Y K F M H A} \\ \text{S Y G D M H L} \\ \text{F Y N D T W L} \\ \text{S Y R F M H A} \\ \text{F Y K D T W L} \\ \text{F Y R D T W A} \end{array}$$

protein family PF00006, p=213

Ekeberg, Löfkvist, Lan, Weigt, and Aurell (2013)

- 1. Introduction
 - Variable selection and model-X knockoffs
 - Knockoff sampling is difficult
- 2. Characterizing knockoff distributions
 - The characterization theorem
 - Connection to Markov chain Monte Carlo (MCMC)
- 3. Metropolized knockoff sampling (Metro)
 - How it works
 - Time complexity and graphical structure
- 4. Good proposals inspired by the MCMC literature
 - Covariance-guided proposal
 - Multiple-try Metropolis (MTM)
- 5. Simulation results
- 6. Discussion