Detailed Analysis of N-Gram Text Prediction

Mudit Gupta Roll Number: 2024201058

March 27, 2025

1 Introduction

This report provides a comprehensive evaluation of an N-Gram model for text prediction. The analysis focuses on its accuracy, efficiency, and adaptability across various datasets, with results interpreted to assess generalization and performance trends.

2 Corpus Details and Size

Three datasets were utilized for training and evaluation:

- General English Corpus: A broad, diverse dataset representing standard English text.
- Topic-Specific Dataset: A focused corpus with domain-specific content.
- Topic-Specific Dataset (Part 7): A subset featuring specialized terminology.

3 Performance Metrics

The following metrics were analyzed:

- Total Letter Keys Typed: Number of character keystrokes.
- Total Tab Key Presses: Number of Tab key completions.
- Avg Letters per Word: Computed as Total Letter Keys Total Words
- Avg Tabs per Word: Computed as Total Tab Keys Total Words.

4 Experimental Results

4.1 Letter and Tab Key Analysis

Dataset	Letter Keys	Tab Keys	Avg Letters/Word	Avg Tabs/Word					
General English Corpus									
n=2	297	383	0.29	1.60					
n=3	276	420	0.26	1.76					
n=6	263	440	0.25	1.84					
n=10	263	428	0.25	1.79					
Topic-Specific Dataset									
n=2	261	374	0.24	1.53					
n=3	245	358	0.23	1.47					
n=6	225	357	0.21	1.47					
n = 10	224	350	0.21	1.44					
Topic-Specific Dataset (Part 7)									
n=2	233	382	0.22	1.58					
n=3	226	328	0.21	1.36					
n=6	208	359	0.19	1.48					
n=10	209	340	0.20	1.40					

Table 1: Performance metrics across datasets for different n-gram values.

4.2 Comparison Across Different N Values

Dataset	n=2	n=3	n=6	n=10
General English Corpus	1.60	1.76	1.84	1.79
Topic-Specific Dataset	1.53	1.47	1.47	1.44
Topic-Specific Part 7	1.58	1.36	1.48	1.40

Table 2: Average Tabs per Word for different n-gram values.

4.3 Video Results Summary

Video	Dataset	Model (n)	Letter Keys	Avg Let- ters/Word	Avg Tabs/Word
General English Test	General English Corpus	2	288	0.33	1.62
Best Model Combo	Topic-Specific Part 7	3	226	0.21	1.36

Table 3: Video results summary.

5 Findings and Discussion

5.1 Corpus Analysis

General English Corpus: The dataset showed a steady increase in tab key usage from n = 2 (1.60) to n = 6 (1.84), followed by a slight decrease at n = 10 (1.79). This suggests that higher n-gram values improve prediction up to a point, beyond which gains diminish, possibly due to overfitting or limited additional context.

Topic-Specific Dataset: Tab usage decreased consistently from n = 2 (1.53) to n = 10 (1.44), with stabilization between n = 3 and n = 6. This indicates that the model benefits from increased context in domain-specific text, achieving optimal efficiency at n = 10.

Topic-Specific Dataset (Part 7): The lowest tab usage was observed at n = 3 (1.36), with a slight increase at n = 6 (1.48) and a reduction again at n = 10 (1.40). This suggests that n = 3 captures sufficient context for this specialized subset, with marginal improvements at n = 10.

5.2 Model Performance Analysis

- n=2: Highest tab usage across datasets (1.53–1.60), indicating limited predictive capability due to insufficient context.
- n=3: Improved performance, with Topic-Specific Part 7 achieving the lowest tab usage (1.36), suggesting adequacy for specialized text.
- n=6: Mixed results—highest tab usage for General English (1.84) but stable for Topic-Specific datasets (1.47–1.48), reflecting a balance between context and complexity.
- n=10: Best overall performance for Topic-Specific datasets (1.44 and 1.40), though slightly less efficient for General English (1.79), indicating specialization benefits.

5.3 Video Results Analysis

The General English Corpus with n = 2 showed moderate tab usage (1.62) with higher avg letters per word (0.33), suggesting good generalization. The Topic-Specific Part 7 with n = 3 achieved the lowest tab usage (1.36), reinforcing its efficiency for domain-specific prediction.

6 Conclusion and Recommendations

- Best Model Selection: The n=3 model excels for Topic-Specific Part 7 (1.36 Avg Tabs/Word), while n=10 is optimal for broader adaptability (1.44–1.79).
- Best Corpus Selection: Topic-Specific Part 7 for specialized content; General English Corpus for general text.
- Future Work: Explore hybrid n-gram models or transformer-based methods to further reduce tab usage and enhance adaptability.