Chapitre: Fonction exponentielle

Propriétés 3 : Soient x et y deux réels.

3) Relation fonctionnelle et conséquences

I. Fonctions exponentielles

1) $\exp(x + y) =$ (relation 3) $\exp(-x) =$

1) Fonction exponentielle

3)
$$\exp(-x) =$$

fonctionnelle) 4) $\exp(x - y) =$

2) $\exp(x) \exp(-x) =$

Propriété 1:

Si f est une fonction dérivable sur \mathbb{R} telle que f' = f et f(0) = 1 alors f ne s'annule pas $\operatorname{sur} \mathbb{R}$.

Preuve (facultative):

Preuve (facultative):

Soit ϕ la fonction définie sur \mathbb{R} par $\phi(x) = f(x) \times f(-x)$.

La fonction ϕ est dérivable sur $\mathbb R$ et pour tout x, on a à l'aide des propriétés sur la dérivée d'un produit et le composition :

 $\phi'(x) = f'(x) \times f(-x) + f(-x) \times \left(-f'(x)\right) = 0$

Donc ϕ est une fonction constante sur \mathbb{R} . Or $\phi(0) = f(0) \times f(0) = 1$ donc pour tout nombre réel x on a $\phi(x) = 1$. Ainsi $f(x) \times f(-x) = 1$. Ce qui montre que pour tout réel x, $f(x) \neq 0$.

tout réel x: $f'(x) = \frac{\exp(x+y) \times \exp(x) - \exp(x+y) \times \exp(x)}{(\exp(x))^2} = 0, \text{ donc la fonction } f \text{ est constante sur } \mathbb{R}.$

fest le quotient de deux fonctions dérivables sur $\mathbb R$ donc f est dérivable sur $\mathbb R$ et pour

1) Soit y un nombre réel donné et f est la fonction définie sur \mathbb{R} par $f(x) = \frac{\exp(x+y)}{\exp(x)}$.

Or $f(0) = \frac{\exp(y)}{\exp(0)} = \exp(y)$ donc pour tout nombre réel x on a $f(x) = \exp(y)$.

Ainsi $\frac{\exp(x+y)}{\exp(x)} = \exp(y)$. Ce qui montre que $\exp(x+y) = \exp(x) \exp(y)$.

2) D'après la propriété 3-1) $\exp(x) \exp(-x) = \exp(x - x) = \exp(0) = 1$.

3) D'après la propriété 1, $\exp(x) \neq 0$ pour tout réel x donc d'après la propriété 3-2), on a bien : $\exp(-x) = \frac{1}{\exp(x)}$

4) $\exp(x-y) = \exp(x+(-y)) = \exp(x) \exp(-y) = \frac{\exp(x)}{\exp(x)}$ d'après les propriétés 3-1) et 3-3).

Définition 1: Il existe une unique fonction f dérivable sur \mathbb{R} telle que :

•
$$f(0) =$$

Cette fonction est appelée fonction . On note provisoirement cette fonction exp.

Preuve (facultative):

1) Existence: Admise

2) Unicité : Si g est une fonction dérivable sur $\mathbb R$ telle que g'=g et g(0)=1 alors la fonction $h = \frac{g}{f}$ est définie (f ne s'annule pas sur \mathbb{R} d'après la propriété 1) et dérivable sur \mathbb{R} .

 $h' = \frac{g'f - f'g}{f^2} = 0$ car f' = f et g' = g, donc la fonction h est constante sur \mathbb{R} .

Or $h(0) = \frac{g(0)}{f(0)} = 1$ donc pour tout nombre réel x on a h(x) = 1. Ainsi g(x) = f(x).

Ce qui montre que a = f.

• $\exp(0) =$

Propriété 4(conséquence du 1)): Pour tout nombre réel a et pour tout nombre entier n: $\exp(na) =$

Preuve: On la fera pour $n \in \mathbb{N}$, sans utiliser la relation fonctionnelle, en même temps que la propriété 8.

Idée de preuve (par récurrence) :

$$exp(2a) = exp(a+a) = exp(a)exp(a) = (exp(a))^{2}$$

$$exp(3a) = exp(2a+a) = exp(2a)exp(a) = (exp(a))^{2}exp(a) = (exp(a))^{3}$$

Propriétés 2 (conséquences): La fonction exponentielle est dérivable sur \mathbb{R} , et pour tout réel x, on a : • $\exp'(x) =$

Exercice 1 : Propriétés algébriques

Dans chaque cas, écrire l'expression donnée sous la forme $\exp(A(x))$ où A(x) est une expression et x un réel.

a)
$$\exp(x) \times \exp(x)$$
 b) $\exp(-1) \times \exp(x)$ c) $\exp(-x) \times \exp(x)$ d) $\exp(1) \times \exp(x)$

II. Notation e^x

Définition 2 : Le nombre *e* est l'image de

par la fonction exponentielle. Ainsi

$$exp(1) =$$

Remarque : $e \approx 2.718281828$. C'est un nombre irrationnel.

Cette notation est due au mathématicien suisse Leonhard Euler vers 1728.

Propriété 5 : Pour tout nombre entier relatif n.

$$\exp(n) =$$

Preuve: Pour tout nombre entier relatif $n \cdot \exp(n) = \exp(n \times 1) = (\exp(1))^n = e^n$

Par extension on convient de noter :

Propriété 6 : Pour tout nombre réelx.

$$\exp(x) =$$

 e^x est l'image de x par la fonction exponentielle.

Avec cette notation, on retrouve les propriétés connues sur les puissances :

Propriétés 7 (propriétés algébriques) : Soient a et b deux réels. Soit n un entier, alors :

- 1) $e^0 =$
- 2) $e^{a+b} =$
- 3) $e^{-a} =$
- 4) $e^{a-b} =$
- 5) $(e^a)^n =$

Application 1 : Simplifier les expressions suivantes, pour tout réel x :

$$A = e^{x+2}e^{-x+2} \qquad C = \sqrt{(e^{-2x} + 1)^2}$$

$$B = \frac{e^{-2x+1}}{e^{-x+1}}$$

$$D = \frac{e^{x} - 1}{e^{x} + 1} + \frac{e^{-x} - 1}{e^{-x} + 1}$$

Exercice 2 : Propriétés algébriques

Dans chaque cas, écrire les réels donnés sous la forme e^k où k est un entier.

a)
$$e^{-7} \times e^3$$

b)
$$e^{-1} \times e^{-5}$$
 c) $e^2 \times e$

c)
$$e^2 \times e^2$$

e)
$$\frac{1}{e^{-1}}$$

f)
$$\frac{1}{e^2}$$

$$\frac{e^{-3}}{e^2}$$

f)
$$\frac{1}{e^2}$$
 g) $\frac{e^{-3}}{e^2}$ h) $\frac{e}{e^{-1}}$ i) $\frac{e^{-2}}{e}$ j) $(e^2)^3$

k)
$$(e^3)^2$$

I)
$$(e^{-1})$$

m)
$$\frac{e^2 \times e^{-3}}{e^5}$$

k)
$$(e^3)^2$$
 I) $(e^{-1})^6$ m) $e^2 \times e^{-3}$ n) $e \times (e^{-1})^3$

Exercice 3: Propriétés algébriques

Dans chaque cas, compléter avec le nombre qui convient.

a)
$$e^{...} \times e^6 = e^1$$

b)
$$e^{-1} \times e^{...} = (e^4)$$

$$\frac{e^{...}}{e^{1,5} \times e^3} = e^1$$

a)
$$e^{-1} \times e^{6} = e^{18}$$
 b) $e^{-1} \times e^{-1} = (e^{4})^{2}$ c) $\frac{e^{-1}}{e^{1.5} \times e^{3}} = e^{10}$ d) $e \times \frac{1}{e^{-1}} = e^{-0.5}$

Exercice 4 : Propriétés algébriques

Dans chaque cas, écrire l'expression donnée sous la forme $e^{A(x)}$ où A(x) est une expression et x un réel. a) $e^x \times e^5$ b) $e^{-x} \times e^2$ c) $e^{-2x} \times e^{-1}$ d) $e^x \times e^x$

a)
$$e^x \times e^s$$

b)
$$e^{-x} \times e^2$$

d)
$$e^x \times e^x$$

i)
$$(e^{-x+1})^2$$

e)
$$e^x \times e^{-x}$$
 f) $e^{1-x} \times e^{1-x}$ g) $(e^x)^4$ h) $(e^{2x})^{-1}$
i) $(e^{-x+1})^2$ j) e^x k) e^x l) e^{2x-1}

$$\frac{e^x}{0.1x}$$

$$\frac{e^{2x+}}{e^{x-}}$$

Exercice 5 : Propriétés algébriques

Dans chaque cas, écrire l'expression donnée sous la forme $e^{A(x)}$ où A(x) est une expression et x un réel.

a)
$$e^{1+x} \times e^x$$

b)
$$e^{2-x} \times$$

c)
$$(e^{1+x})^2 \times$$

$$e^{-x}$$
 d) $e \times e^{5-x}$

f)
$$\frac{e^{2x-5}}{e^{x+5}}$$

g)
$$e^{-x+}$$

h)
$$e \times e^3$$

i)
$$e^x \times e^x$$

f)
$$\frac{e^{2x-5}}{e^{x+5}}$$
 g) $\frac{e^{-x+1}}{e^{x-3}}$ h) $\frac{e \times e^{3x-1}}{e^{x+1}}$ i) $\frac{e^x \times e^{x+1}}{e^{x-1}}$ j) $\frac{e^{2-x} \times (e^{2x+1})^3}{e^{-x-1} \times e^{2x}}$

Exercice 6 : Propriétés algébriques

t désigne un nombre réel. Développer et réduire chaque expression.

1)
$$A = (e^t - 1)^2$$

2)
$$B = e^{2t}(e^t - e^{-2t})$$

2)
$$B = e^{2t}(e^t - e^{-2t})$$
 3) $C = 3e^t(e^t - e^{-t}) - 5e^{2t}$

Exercice 7 : Propriétés algébriques

Démontrer les égalités suivantes pour tout réel x :

1.
$$3e^{2x} - 8e^x - 3 = (1 + 3e^x)(e^x - 3)$$

2.
$$\frac{1+e^{2x}}{1+e^x} = \frac{e^{-x}+e^x}{e^{-x}+1}$$

3.
$$\frac{e^{1+2x}}{1+e^{2x}} = \frac{e^{1+x}}{e^{-x}+e^x}$$

4.
$$\frac{e^{x+1}}{e+e^{x+1}} = \frac{e^x}{1+e^x}$$

5.
$$1 - \frac{e^{-x}}{1 + e^{-x}} = \frac{e^x}{1 + e^x}$$

III. Etude de la fonction exponentielle

Propriété 8 (Signe): La fonction exponentielle est strictement

 $\operatorname{sur} \mathbb{R}$.

Ainsi pour tout réel x on a e^x

Preuve:

Pour tout réel x, $\exp(x) = \exp\left(\frac{x}{2} + \frac{x}{2}\right) = \exp\left(2 \times \frac{x}{2}\right) = \left(\exp\left(\frac{x}{2}\right)\right)^2 > 0$ car $\exp\left(\frac{x}{2}\right) \neq 0$.

Exercice 8: Signe

Déterminer le signe des expressions données sur R.

a)
$$A(x) = 0.5 + e^x$$

b)
$$B(x) = 1 + 0.5e^x$$

c)
$$C(x) = -10e^x$$

d)
$$D(x) = -1 - e^x$$

e)
$$E(x) = \frac{e^x}{e^x + 1}$$

f)
$$F(x) = e^x(2 + e^x)$$

e)
$$E(x) = \frac{1}{e^x + 1}$$

g) $G(x) = -2e^{-x}$

h)
$$H(x) = 0.3e^{1-0.7x}$$

Exercice 9: Signe

Déterminer le signe des expressions données sur R.

a)
$$A(x) = 5e^x - xe^x$$

$$b) B(x) = x^2 e^x - x e^x$$

c)
$$C(x)e^x - 2xe^x$$

d)
$$D(x) = xe^{-x} - x^2e^{-x}$$

e)
$$E(x) = 4e^{-x} - x^2e^{-x}$$

f)
$$F(x) = xe^x - e^{x+2}$$

g)
$$G(x) = x^2 e^x - e^{x+2}$$

$$h) H(x) = \frac{e^x - xe^x}{e^x + 1}$$

Propriété 9 (Variation): La fonction exponentielle est strictement sur \mathbb{R} .

Preuve : Soit pour tout réel x, $f(x) = e^x$ ainsi par définition $f'(x) = e^x > 0$ d'après la propriété 9.

La fonction exponentielle est donc strictement croissante sur \mathbb{R} .

Propriété 10 (Courbe) :

Soit f la fonction exponentielle et C_f sa courbe représentative.

La courbe représentative C_e de la fonction exponentielle est toujours audessus de l'axe des abscisses.

• Tableau de variations de la fonction exponentielle:

$$f(0) = e^0 = 1$$
 et $f'(0) = e^0 = 1$
 $f(1) = e$ et $f'(1) = e$

• Equation de la tangente T_0 à C_e au point A(0;1):

$$y = f'(0)(x - 0) + f(0)$$

$$y = e'(0)(x - 0) + e^{0}$$

$$y = 1 \times x + 1$$

$$y = x + 1$$

• Equation de la tangente T_1 à C_e au point B(1;e):

$$y = f'(1)(x - 1) + f(1)$$

 $y = e \times (x - 1) + e$
 $y = ex$

Propriétés 11 (conséquence) :

- 1) Pour tous réels a et b, $e^a = e^b \Leftrightarrow$
- 2) Pour tous réels a et b, $e^a \le e^b \Leftrightarrow$

Application 2 : Résoudre dans \mathbb{R} les équations et inéquations suivantes :

a)
$$e^{x+1} - e^{2x+5} = b$$
) $e^{3-x} = 1$

b)
$$e^{3-x} = 1$$

c)
$$(e^x + 5)(e^x - 1) = 0$$

U		
	. 22	
d) $e^{2x-1} \le e^{x+7}$	e) $e^{2x} + 2 \le 0$	t) $e^x - 1 \le 0$
d) $e^{2x-1} \le e^{x+7}$	e) $e^{2x} + 2 \le 0$	$f) e^x - 1 \le 0$

Exercice 10: Equation

Résoudre dans \mathbb{R} .

a)
$$e^{2x} = e^5$$

b)
$$e^x = e$$

c)
$$e^x = e^{-x}$$

b)
$$e^x = e$$
 c) $e^x = e^{-x}$ d) $e^x = 1$

e)
$$e^{-x} = 1$$
 f) $e^{2-x} = 1$

g)
$$e^x = 0$$

h)
$$e^{x+1} = -1$$

Exercice 11: Equation

Résoudre dans \mathbb{R} .

a)
$$e^{x^2} = e^x$$

b)
$$e^{-2x} - 1 = 0$$

b)
$$e^{-2x} - 1 = 0$$
 c) $e^{5x+1} = e \times e^{2x}$

a)
$$e^x = e^x$$
 b) $e^x = 1 - 0$ c) $e^x = e^x$ d) $(e^x - e^2)(e^{-x} + 5) = 0$ e) $3e^{3x-42} + 1 = 4$ f) $e^{5x} = \frac{e^{-x}}{e}$

$$3e^{3x-42}+1=4$$

f)
$$e^{5x} = \frac{e^{-x}}{e}$$

Exercice 12: Equation

- 1. Résoudre dans \mathbb{R} l'équation $X^2 + 6X 7 = 0$.
- 2. En déduire la résolution dans \mathbb{R} de l'équation :

$$e^{2x} + 6e^x - 7 = 0$$

Exercice 13: Equation

- 1. Démontrer que l'équation $e^x 2e^{-x} + 1 = 0$ est équivalente à l'équation $(e^x)^2 + e^x 2 = 0$.
- 2. Résoudre dans \mathbb{R} l'équation $e^x 2e^{-x} + 1 = 0$.

Exercice 14: Inéquation

Résoudre dans \mathbb{R} les inéquations suivantes :

a)
$$e^{x+1} \le e^5$$

b)
$$e^{3-x} > e^2$$
 c) $e^{-x} < e^4$

c)
$$e^{-x} < e^4$$

d)
$$1 \le e^{3x}$$

e)
$$e^{-x^2} - e \times e^{7x-9} \le 0$$

f)
$$e^{x+3} \ge \frac{1}{e}$$

g)
$$1 - e^{x^2 - 1} \ge 0$$

Exercice 15 : Inéquation

- 1. Justifier que $e^{2x} e^x$ est du signe de $e^x 1$.
- 2. Résoudre dans \mathbb{R} l'inéquation $e^x 1 \ge 0$
- 3. En déduire le signe de $e^{2x} e^x$ sur \mathbb{R} .

Exercice 16: Inéquation

- 1. Résoudre dans \mathbb{R} l'inéquation $e^{-x} e^x > 0$.
- 2. En déduire le signe de $1 \frac{1+e^x}{1+e^{-x}}$ sur \mathbb{R} .

Exercice 17: Inéquation

1. Factoriser le polynôme du second degré :

$$-5X^2 + 3X + 2$$

- 2. En déduire une factorisation de $-5e^{2x} + 3e^x + 2$.
- 3. Etudier le signe de $-5e^{2x} + 3e^x + 2 \operatorname{sur} \mathbb{R}$.

Exercice 18: Inéquation

1. Démontrer que pour tout réel x,

$$-2e^{2x} + e^x + 1 = (2e^x + 1)(1 - e^x)$$

2. En déduire le signe de $-2e^{2x} + e^x + 1$ sur \mathbb{R} .

IV. Dérivées et exponentielle

1) Dérivée

Propriété 12: Soit f la fonction exponentielle, f est dérivable sur \mathbb{R} et pour tout réel x:

$$f'(x) =$$

La fonction exponentielle est égale à sa

Exercice 19 : Dérivée et fonction exponentielle

Déterminer les dérivées des fonctions suivantes sur \mathbb{R} :

a)
$$f(x) = e^x + 4$$

b)
$$g(x) = 2.7e^x + 8$$

e) $k(x) = 3x - 3e^x$

c)
$$l(x) = 5x^3 - 9e^x$$

d)
$$h(x) = 5e^x + x$$

f)
$$m(x) = e - e^x$$

Exercice 20 : Dérivée et fonction exponentielle

Déterminer les dérivées des fonctions suivantes sur \mathbb{R} :

Produit:

a)
$$f(x) = (2x - 7)e^x$$

b)
$$g(x) = (1 - x)e^x$$

c)
$$h(x) = xe^x$$

d)
$$k(x) = (3x^2 - 2)e^x$$

e)
$$l(x) = (x^2 - 2x)e^x$$

f)
$$m(x) = e^x(e^x - 2)$$

Quotient:

a)
$$f(x) = \frac{e^x}{x}$$

$$b) g(x) = \frac{x}{e^x}$$

c)
$$h(x) = \frac{3x+1}{e^x}$$

d)
$$k(t) = \frac{1+e^t}{e^t}$$

Propriété 13: Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{ax+b}$ avec a et b deux réels. f est dérivable sur un intervalle $\mathbb R$ et pour tout réel x on a :

$$f'(x) =$$

Preuve: f(x) est la fonction g(ax + b) avec g la fonction exponentielle. Donc f est dérivable sur \mathbb{R} et pour tout réel x, $f'(x) = ag'(ax + b) = ae^{ax+b}$

Application 3: Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{5x+1}$. Déterminer f'(x).

Remarque: La formule précédente est un cas particulier d'une formule plus générale:

Propriété 14 (hors programme): Soit u une fonction définie et dérivable sur un intervalle I.

Alors la fonction $f: x \mapsto e^{u(x)}$ est dérivable sur I et pour tout $x \in I$:

$$f'(x) =$$

Exercice 21 : Dérivées de $x \mapsto e^{ax+b}$

Déterminer les dérivées des fonctions suivantes sur $\mathbb R$:

a)
$$f(x) = e^{2x+5}$$

b)
$$g(x) = e^{-x}$$

c)
$$h(x) = 3e^{-2x}$$

c)
$$h(x) = 3e^{-2x}$$
 d) $k(x) = 2x - e^{-5x}$

2) Fonctions $t \mapsto e^{-kt}$ et $t \mapsto e^{kt}$ avec k > 0

<u>Propriété 15 :</u> Soit k un nombre réel strictement positif.

La fonction f_k définie sur \mathbb{R} par :

$$f_k(x) = e^{-kt}$$

est dérivable sur $\mathbb R$ et pour tout réel t on a :

$$f_k'(t) =$$

<u>Propriété 16 :</u> Soit k un nombre réel strictement positif.

La fonction f_k définie sur \mathbb{R} par :

$$f_{\nu}(x) = e^{-kt}$$

est strictement

sur \mathbb{R} .

Preuve :
$$f_k(x) = e^{-kt}$$

On pose $u(t) = -kt$ ainsi $u'(t) = -k$
 $f'(t) = u'(t)e^{u(t)}$

 $f'(t) = -ke^{-kt} < 0$ car pour tout réel t, on a : $e^{-kt} > 0$ et k > 0 (ainsi -k < 0) Ainsi la fonction f_k est strictement décroissante sur \mathbb{R} .

Exercice 22 : Fonctions $t \mapsto e^{kt}$ et $t \mapsto e^{-kt}$

On considère les fonctions f et g définies sur \mathbb{R} par : $f(x) = e^{0.8x} \text{ et } g(x) = e^{-1.5x}.$

On a représenté ci-contre ces deux fonctions. Associer à chaque fonction sa courbe représentative. <u>Propriété 17 :</u> Soit k un nombre réel strictement positif.

La fonction g_k définie sur $\mathbb R$ par :

$$g_k(x) = e^{kt}$$

est dérivable sur $\mathbb R$ et pour tout réel t on a :

$$g'_k(t) =$$

<u>Propriété 18 :</u> Soit k un nombre réel strictement positif.

La fonction g_k définie sur $\mathbb R$ par :

$$g_k(x) = e^{kt}$$

est strictement

sur \mathbb{R} .

Preuve:
$$g_k(x) = e^{kt}$$

On pose $u(t) = kt$ ainsi $u'(t) = k$
 $g'(t) = u'(t)e^{u(t)}$

 $g'(t) = ke^{kt} > 0$ car pour tout réel t, on a : $e^{kt} > 0$ et k > 0

Ainsi la fonction g_k est strictement croissante sur \mathbb{R} .

Remarque: On pose pour tout entier naturel n, $u_n = e^{na}$.

- Si a > 0, la suite (u_n) est croissante.
 On dit que la croissance de cette suite est exponentielle.
- Si a < 0, la suite (u_n) est décroissante. On dit que la décroissance de cette suite est exponentielle.

Exercice 23 : Fonctions $t\mapsto e^{kt}$ et $t\mapsto e^{-kt}$

1. Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = e^{2,2x}$$

et C_f sa courbe représentative.

- a) Exprimer f'(x) en fonction de x.
- b) Déterminer le sens de variation de la fonction f.
- c) Dans un repère, tracer la courbe C_f .
- 2. Reprendre la question précédente avec la fonction f définie sur \mathbb{R} par $f(x) = e^{-0.3x}$.

Propriété 19 : Soit *n* un entier relatif.

Pour tout réel a, la suite de terme général e^{na} est géométrique.

Preuve : Pour tout entier naturel n, on pose $u_n = e^{na}$.

$$u_{n+1} = e^{(n+1)a} = e^{na+a} = e^{na} \times e^{a}$$
 soit $u_{n+1} = e^{a} \times u_{n}$.

La suite (u_n) est donc géométrique de raison e^a et de premier terme $e^0 = 1$.

On démontre ainsi que pour tout entier naturel n on a $u_n=u_0q^n$ c'est-à-dire $e^{na}=(e^a)^n$.

Exercice 24 : Suite géométrique

 (u_n) est la suite définie, pour nombre n de \mathbb{N} , par $u_n = -3e^{1,1n}$.

Démontrer que la suite (u_n) est géométrique.

Préciser sa raison et son premier terme u_0 .

Exercice 25 : Suite géométrique

 (v_n) est la suite définie, pour nombre n de \mathbb{N} , par $v_n = \frac{1}{3}e^{5-0.6n}$.

La suite (v_n) est-elle géométrique ?

Justifier.

Etude de fonctions exponentielles

Exercice 26: Etude de fonction exponentielle

f est la fonction définie sur \mathbb{R} par :

$$f(x) = (x^2 - 4)e^x$$

Dresser le tableau de variations de f.

Exercice 27: Etude de fonction exponentielle

g est la fonction définie sur \mathbb{R} par :

$$g(x) = 5e^{-4.5x} + 6$$

Démontrer que la fonction g est décroissante sur \mathbb{R} .

Exercice 28: Etude de fonction exponentielle

f est la fonction définie sur [1;3] par :

$$f(x) = \frac{e^x}{2x}$$

Dresser le tableau de variations de f.

Exercice 29: Etude de fonction exponentielle

g est la fonction définie sur \mathbb{R} par :

$$g(x) = \frac{x^2 + 2x}{e^x}$$

Dresser le tableau de variations de q.

Exercice 30: Etude de fonction exponentielle et courbe

f est la fonction définie sur [-3;3] par :

$$f(x) = e^{0.82x}$$

- 1. Dresser le tableau de variations de f.
- 2. A l'aide d'un tableau de valeur allant de -3 à 3 avec un pas de 1, tracer la courbe représentative de f.

Exercice 31: Etude de fonction exponentielle et courbe

f est la fonction définie sur [-3;1] par :

$$g(x) = (5 - 4x)e^x$$

- 1. Dresser le tableau de variations de g.
- 2. A l'aide d'un tableau de valeur allant de -3 à 1 avec un pas de 1, tracer la courbe représentative de g.

Exercice 32: Modélisation à l'aide d'une fonction exponentielle

On considère deux fonctions f et g définies sur \mathbb{R} par :

$$f(x) = (2 + x)e^x$$
 et $g(x) = 2x e^x$.

On a tracé, ci-contre, trois courbes C₁, C₂ et C₃, Parmi elles figure la représentation graphique de chacune des fonctions f et g.

- 1) f (0) est égal à :
- a) 0
- b) 2
- c) -2
- 2) La représentation graphique de la fonction *q* est :
- a) C₁
- b) C₂
- 3) Pour tout nombre réel x, g'(x) est égal à :
- a) $2e^x$
- b) $2(x+1)e^{x}$
- c) $2 + e^x$

Exercice 33: Modélisation à l'aide d'une fonction exponentielle

Dans tout l'exercice, on désigne par $\mathbb R$ l'ensemble des nombres réels.

On donne ci-contre une petite partie de la courbe représentative C_f d'une fonction f définie et dérivable sur R, dans un repère orthonormé du plan.

On note f ' la fonction dérivée de f. La courbe C_f passe par le point A(0; 5) et par le point B d'abscisse 2.

La tangente T_A à la courbe au point A passe par le point C (1; 1) et la tangente T_B au point Best horizontale.

PARTIE A:

- 1) La valeur de f(0) est :
- b) 4 c) 1,2 d) autre réponse
- 2) La valeur de f'(0) est :
- b) 4 c) 1,2 d) autre réponse
- 3) La valeur de f'(2) est :
- a) 0
- b) 3 c) 2,1 d) autre réponse

PARTIE B: La fonction f représentée dans la PARTIE A est définie sur \mathbb{R} par :

$$f(x) = (-x^2 - 2x + 2)e^{-x} + 3$$

On désigne par f ' la fonction dérivée de la fonction f

1. Montrer que pour tout nombre réel x appartenant à \mathbb{R} .

$$f'(x) = (x^2 - 4)e^{-x}$$

- 2. Étudier le signe de f'(x) suivant les valeurs de x.
- 3. En déduire le tableau de variation de la fonction f.

Exercice 34: Modélisation à l'aide d'une fonction exponentielle

Sur le graphique ci-dessous, C_f est la courbe représentative, dans le repère orthonormé $(0; \vec{\iota}, \vec{\jmath})$, d'une fonction f définie sur \mathbb{R} .

Partie A - Étude graphique

La droite T est tangente à C_f au point $A(2,5;\ 1,5)$ et d'ordonnée à l'origine 2,75. Déterminer graphiquement et indiquer sur votre copie :

- 1. *f*(1)
- 2. f'(2,5)
- 3. Une équation de la tangente T;

Partie B - Étude algébrique

On admet que pour tout réel x, $f(x) = (x - 1)e^{-x+2.5}$.

- 1. Montrer que pour tout réel x, $f(x) = e^{2.5} \left(\frac{x}{e^x} \frac{1}{e^x} \right)$
- 2. a. Calculer f'(x) pour tout réel x.
 - b. Étudier le signe de f' et en déduire le tableau des variations de la fonction f.

Exercice 35: Modélisation à l'aide d'une fonction exponentielle

On procède, chez un sportif, à l'injection intramusculaire d'un produit. Celui-ci se diffuse progressivement dans le sang. On admet que la concentration de ce produit dans le sang (exprimée en mg/L = milligramme par litre) peut être modélisée par la fonction f, définie sur l'intervalle [0; 10] par :

 $f(x) = \frac{6x}{e^x} \quad \text{où } x \text{ est le temps exprimé en heure.}$

Sa courbe représentative ${\it C}$ est donnée ci-dessous dans un repère orthonormé du plan.

1. Montrer que pour tout $x \in [0; 10]$, la fonction dérivée de f, notée f', a pour expression :

$$f'(x) = \frac{6 - 6x}{e^x}.$$

- 2. Étudier le signe de f' sur [0; 10] puis en déduire le tableau de variations de f sur [0; 10].
- 3. Quelle est la concentration maximale du médicament dans le sang ? (on donnera la valeur exacte et une valeur approchée à 10^{-1} près). Au bout de combien de temps est-elle atteinte ?
- 4. Ce produit fait l'objet d'une réglementation par la fédération sportive : un sportif est en infraction si, au moment du contrôle, la concentration dans son sang du produit est supérieure à 2 mg/L. Le sportif peut-il être contrôlé à tout moment après son injection ? Expliquer votre raisonnement en vous basant sur l'étude de la fonction et/ou une lecture graphique sur la courbe C.

Exercice 36: Modélisation à l'aide d'une fonction exponentielle

Dans le repère ci-dessous, on note C_f la courbe représentative d'une fonction f définie sur l'intervalle [-10; 2].

On a placé dans ce repère les points A(0; 2), B(2; 0) et C(-2; 0).

On dispose des renseignements suivants :

- Le point B appartient à la courbe C_f.
- La droite (AC) est tangente en A à la courbe C_f.
- La tangente à la courbe C_f au point d'abscisse 1 est une droite parallèle à l'axe des abscisses.

- 1. Déterminer la valeur de f'(1).
- 2. Donner une équation de la tangente à la courbe C_f au point A.

On admet que cette fonction f est définie sur [-10; 2] par $f(x) = (2 - x)e^x$.

- 3. Montrer que pour tout réel x appartenant à l'intervalle [-10; 2], $f'(x) = (-x + 1)e^x$.
- 4. En déduire le tableau de variations de la fonction f sur l'intervalle [-10; 2].
- 5. Déterminer une équation de la tangente à la courbe C_f au point B.

Exercice 37: Modélisation à l'aide d'une fonction exponentielle

La concentration d'un médicament dans le sang en mg.L $^{-1}$ au cours du temps t, exprimé en heure, est modélisée par la fonction f définie sur $[0; +\infty[$ par $: f(t) = t \mathrm{e}^{-0.5t}$ dont la représentation graphique est donnée ci-dessous.

- 1. Calculer la valeur exacte de f(4) et interpréter le résultat dans le contexte de l'exercice.
- 2. On note f' la fonction dérivée de f. Montrer que pour tout $t \in [0; +\infty[$, $f'(t) = (1-0.5t)e^{-0.5t}$.
- 3. Étudier le signe de f'(t) sur $[0; +\infty[$.
- 4. Déduire de la question précédente le tableau de variations de la fonction f sur $[0; +\infty[$.
- 5. Quelle est la concentration maximale du médicament dans le sang ? On donnera la valeur exacte, puis une valeur approchée à 10^{-2} près.