1 nalen

ב, ג, ה, ז, ט, י.

A אינו איבר של David אינו לב בפרט שסעיף ו אינו נכון: A אינה חלקית ל-

2 nalen

 $M \in P(Y)$ עלינו להראות , $M \in P(X)$. תהי . $X \subseteq Y$ א.

בספר, בעמי 1.6 בעמי אלה , $X\subseteq Y$ בספר, מכאן יחד עם הנתון $M\subseteq X$ פירושו $M\in P(X)$ נקבל כי $M\subseteq Y$ כמבוקש. $M\in P(Y)$ כמבוקש

ב. התנאי $Y \in P(A \cap B)$ שקול, לפי הגדרת קבוצת חזקה, לתנאי

 $X \subseteq A \cap B$

לפי שאלה 1.10 בי, זה **שקול** ל-

 $X\subseteq B$ וגם $X\subseteq A$

שוב לפי הגדרת קבוצת חזקה, זה שקול ל-

 $X \in P(B)$ that $X \in P(A)$

ומהגדרת חיתוך, זה שקול ל-

 $X \in P(A) \cap P(B)$

 $X \in P(A) \cap P(B)$ (אם ורק אם $X \in P(A \cap B)$: קיבלנו אים לפי הגדרה 1.1, שתי הקבוצות שוות.

ג. טענת-עזר: אם $X \subseteq Y$ אז $X \subseteq Y$ טענה זו הוּכחה בעמי 14 בספר. $X \subseteq Y$ אז איז אילה עצמה:

 $A \subset B$ נתון $A \subset B$ או $A \subset B$ ב.ה.כ (בלי הגבלת כלליות) נניח $A \subset B$

(הסבר: ב.ה.כ. פירושו: אנו מוסיפים הנחה מסוימת, שאינה מגבילה אותנו באמת, כי אם היא אינה מתקיימת ההוכחה שאנו מביאים תפעל בשינוי קטן שצריך להיות ברור מאד לקורא.

במקרה אה השינוי הוא: להחליף תפקידים בין A ל- B לכל אורך ההוכחה שלהלן).

. $P(A \cup B) = P(B)$ לכן . $A \cup B = B$, בעזרת טענת העזר , $A \subseteq B$ מההנחה

, $P(A) \subseteq P(B)$, שוב מההנחה, בעזרת טענת העזר ,

. $P(A) \cup P(B) = P(B)$, a ומכאן שוב בעזרת טענה

. בסהייכ קיבלנו כי P(B) ולכן הם שווים שניהם ל- $P(A) \cup P(B)$ ו- $P(A \cup B)$ ולכן הם שווים אה לאה.

A -אינה חלקית ל- B אינה חלקית ל- B אינה חלקית ל- ד.

 $A\subseteq A$ או $A\subseteq B$ או שלילת האמירה (חוק דה-מורגן: זו שלילת האמירה)

 $a \notin B$ המקיים $a \in A$ נובע שקיים B + B אינה חלקית ל

. $b \notin A$ המקיים $b \in B$ נובע שקיים A - אינה חלקית ל

אך , $P(A \cup B)$ -שייכת ל- $\{a,b\}$ אך

, ($a \notin B$ כי $\{a,b\} \notin P(B)$ -) ($b \notin A$ כי $\{a,b\} \notin P(A)$

. $\{a,b\} \notin P(A) \cup P(B)$ ולכן

. $P(A) \cup P(B) \neq P(A \cup B)$ לכן

3 nalen

הוכחה אחת:

מהגדרת הפרש סימטרי,

(אם ורק אם) אם $A' \oplus B'$ אייך לx

A' - ולא ל- B' ולא ל- B' הוא שייך ל- B' ולא ל- A'

כלומר אסם

A -אינו שייך ל- B והוא שייך ל- B אינו שייך ל- A והוא שייך ל- x

. $x \in A - B$ והתנאי השני פירושו $x \in B - A$ התנאי הראשון פירושו

. $x \in A \oplus B$ בסהייכ, לפי הגדרת הפרש סימטרי, קיבלנו שזה מתקיים אםם

הוכחה שניה, אלגברית:

$$A' \oplus B' = (A' - B') \cup (B' - A') = (A' \cap B) \cup (B' \cap A)$$

: נשנה את סדר האיברים בעזרת חילופיות החיתוך וחילופיות האיחוד

$$= (A \cap B') \cup (B \cap A') = (A - B) \cup (B - A) = A \oplus B$$

למעשה שתי ההוכחות מקבילות כמעט צעד-צעד.

4 22167

.
$$\bigcup_{n\in \mathbb{N}}A_n=\{k\in \mathbb{N}\mid 3\leq k\}$$
 א. נוכיח כי

הכלה בכיוון אחד:

.3 היא מהגדרתה, קבוצה של טבעיים גדולים / שווים A_n

. $A_n \subseteq \{k \in \mathbb{N} \mid 3 \le k\}$ טבעי, n טבעי

מהגדרת איחוד של קבוצה של קבוצות נובע שאם כל הקבוצות באיחוד חלקיות לקבוצה מסוימת

אז גם איחוד הקבוצות הללו חלקי ל- Y (זה לא נובע משאלה 1.9 בספר, כי שם מדובר על Y

איחוד של שתי קבוצות בלבד. זו תכונה של האיחוד הכללי, שניתן להוכיחה בצורה דומה

. $\bigcup_{n\in {\bf N}}A_n\subseteq\{k\in {\bf N}\ |\ 3\le k\}$ לשאלה 1.9, מתוך ההגדרה של איחוד כללי). לכן

הכלה בכיוון שני:

. $3 \le k$, טבעי אחרות יהי , $k \in \{k \in \mathbb{N} \mid 3 \le k\}$ יהי

. $k \in A_k$, A_n ולכן מהגדרת הקבוצות $3 \le k < 2k$

.
$$k \in \bigcup_{n \in \mathbb{N}} A_n$$
 לכן

הוכחנו הכלה בשני הכיוונים, לכן הקבוצות שוות.

- .($3 \le n < 0$ המקיים n אין מספר $A_0 = \emptyset$
- . $\bigcap_{n\in \mathbb{N}}A_n=\varnothing$ הכן, מהגדרת חיתוך קבוצה של קבוצות, מהגדרת לכן,

.
$$\bigcap_{\substack{n\in \mathbf{N}\\n>4}}A_n=\{k\in \mathbf{N}\mid 3\leq k<10\}$$
 ג. נוכיח כי .

הכלה בכיוון אחד:

.
$$x \in A_5 = \{x \in \mathbb{N} \mid 3 \le x < 10\}$$
 אז בפרט $x \in \bigcap_{\substack{n \in \mathbb{N} \\ n > 4}} A_n$ אם א

הכלה בכיוון שני:

 $3 \le k < 2n$ מתקיים $5 \le n$ אז לכל . $3 \le k < 10$ יהי

. $k \in A_n$, $5 \le n$ כלומר לכל

. $k \in \bigcap_{\substack{n \in \mathbf{N} \\ n > 4}} A_n$, לכן, מהגדרת חיתוך קבוצה של קבוצות

הוכחנו הכלה בשני הכיוונים, לכן הקבוצות שוות.

: B_n נחשב את הקבוצות .ד

$$\begin{split} B_n &= A_{n+1} - (A_n \cup \{2n\}) = \{x \in \mathbf{N} \mid 3 \le x < 2n + 2\} - (\{x \in \mathbf{N} \mid 3 \le x < 2n\} \cup \{2n\}) \\ &= \{x \in \mathbf{N} \mid 3 \le x\} \cap \{x \in \mathbf{N} \mid 2n < x < 2n + 2\} \\ &= \{x \in \mathbf{N} \mid 3 \le x\} \cap \{2n + 1\} \\ &= \begin{cases} \{2n + 1\} & n > 0 \\ \varnothing & n = 0 \end{cases} \end{split}$$

. ברט ל- ווגיים, פרט לכן $\bigcup_{n\in\mathbb{N}}B_n$ לכן היא קבוצת הטבעיים האי

איתי הראבן