Přednáška 5, 31. října 2014

Dvě základní limity. Nechť $\alpha, q \in \mathbb{R}$. Pak

$$\lim_{n \to \infty} n^{\alpha} = \begin{cases} +\infty & \dots & \alpha > 0 \\ 1 & \dots & \alpha = 0 \\ 0 & \dots & \alpha < 0 \end{cases}$$

a

$$\lim_{n \to \infty} q^n = \left\{ \begin{array}{ll} +\infty & \dots & q > 1 \\ 1 & \dots & q = 1 \\ 0 & \dots & -1 < q < 1 \\ \text{neexistuje} & \dots & q \le -1 \end{array} \right.$$

Ponecháváme jako úlohu.

Tři důležité věty o posloupnostech. Připomeňme si, že jako monotónní posloupnost označujeme neklesající nebo nerostoucí posloupnost.

Věta (o monotónní podposloupnosti). Každá posloupnost $(a_n) \subset \mathbb{R}$ má monotónní podposloupnost.

 $D\mathring{u}kaz$. Nechť $(a_n) \subset \mathbb{R}$ je libovolná posloupnost. Řekneme, že v indexu $k \in \mathbb{N}$ začíná dobrá posloupnost, existují-li takové indexy $k = k_1 < k_2 < \ldots$, že $a_{k_1} \leq a_{k_2} \leq \ldots$, a že v k začíná $\check{s}patná$ posloupnost, existují-li takové indexy $k = k_1 < k_2 < \cdots < k_j$, že $a_{k_1} \leq a_{k_2} \leq \cdots \leq a_{k_j} > a_n$ pro každé $n > k_j$. V prvním případě tedy členem a_k začíná nekonečná neklesající podposloupnost, a ve druhém taková konečná neklesající podposloupnost, že už ji nelze prodloužit. Zřejmě v každém indexu $k \in \mathbb{N}$ začíná dobrá posloupnost nebo v něm začíná špatná posloupnost. (Vystartujeme z k a libovolně budujeme neklesající podposloupnost. Když se nikdy nezastavíme, máme dobrou posloupnost, a když nastane krok, kdy už nemůžeme nijak pokračovat, máme špatnou posloupnost.)

Pokud v indexu 1 začíná dobrá posloupnost, jsme hotovi. Když ne, začíná v 1 špatná posloupnost a jako $k_1 > 0$ definujeme její poslední index. Pokud v indexu $k_1 + 1$ začíná dobrá posloupnost, jsme hotovi. Když ne, začíná v $k_1 + 1$ špatná posloupnost a jako $k_2 > k_1$ definujeme její poslední index. Takto pokračujeme dále. Pokud někdy dostaneme dobrou posloupnost, jsme hotovi, protože (a_n) má neklesající podposloupnost. Pokud ji nikdy nedostaneme a máme stále špatné posloupnosti, vezmeme jejich poslední indexy $1 \le k_1 < k_2 < \ldots$ Podle definice špatné posloupnosti tvoří klesající podposloupnost $a_{k_1} > a_{k_2} > \ldots$ a jsme zase hotovi.

Úloha. Nechť $l=(k-1)^2+1,\ k\in\mathbb{N}$. Dokažte postupem z předchozího důkazu, že každá l-tice $(a_1,a_2,\ldots,a_l)\subset\mathbb{R}$ obsahuje podposloupnost délky k, která je monotónní. (Návod: když každému $n\in\{1,2,\ldots,l\}$ přiřadíme dvojici (r,s), kde r je délka nejdelší neklesající podposloupnosti začínající v a_n a obdobně s pro nerostoucí, pak toto zobrazení je \ldots)

Výsledek se podle jeho objevitelů, maďarských matematiků Paula (Pála) Erdőse (1913–1996) a Georga (Gy"orgyho) Szekerese (1911–2005), nazývá Erdősovo-Szekeresovo lemma. Úložka: dá se při pevném k hodnota $(k-1)^2+1$ zmenšit?

Věta (Bolzanova–Weierstrassova). Každá omezená posloupnost $(a_n) \subset \mathbb{R}$ má konvergentní podposloupnost.

 $D\mathring{u}kaz$. Nechť $(a_n) \subset \mathbb{R}$ je omezená. Podle předchozí věty má (a_n) monotónní podposloupnost (b_n) , jež je zjevně omezená. Podle tvrzení o limitě monotónní posloupnosti je (b_n) konvergentní.

Úloha. Dokažte B.-W. větu jiným způsobem, bez použití věty o monotónní podposloupnosti, za pomoci Cantorovy věty o vnořených intervalech. (Návod: $když\ (a_n) \subset [a,b]$, dělte [a,b] opakovaně napůl tak, že vzniklý interval stále obsahuje nekonečně mnoho členů posloupnosti (a_n) .)

Věta se jmenuje podle pražského italsko-německého matematika, kněze a filosofa Bernarda Bolzana (1781–1848) a německého matematika Karla Weierstrasse (1815–1897). Lehce se rozšíří na neomezené posloupnosti: každá posloupnost $(a_n) \subset \mathbb{R}$ má podposloupnost s vlastní nebo nevlastní limitou.

Důležitá definice. Jak jsem už zmínil ve 3. přednášce, posloupnost $(a_n) \subset \mathbb{R}$ je cauchyovská (též Cauchyova), pokud

$$\forall \varepsilon > 0 \ \exists n_0: \ m, n > n_0 \Rightarrow |a_m - a_n| < \varepsilon$$
.

Členy posloupnosti se tedy k sobě vzájemně (v tomto přesném smyslu) neomezeně blíží.

Věta (Cauchyho podmínka). Posloupnost $(a_n) \subset \mathbb{R}$ je cauchyovská, právě když je konvergentní.

Důkaz. Nejprve \Leftarrow . Když $\lim a_n = a \in \mathbb{R}$, pak pro dané $\varepsilon > 0$ existuje n_0 , že $n > n_0 \Rightarrow |a_n - a| < \varepsilon$. Podle Δ -ové nerovnosti,

$$m, n > n_0 \Rightarrow |a_n - a_m| \le |a_n - a| + |a - a_m| < 2\varepsilon$$
,

a (a_n) je tedy cauchyovská.

Nyní \Rightarrow . Posloupnost $(a_n) \subset \mathbb{R}$ buď cauchyovská. Je tedy omezená. (Nechť $\varepsilon = 1$ a n_0 splňuje, že $m, n > n_0 \Rightarrow |a_n - a_m| < 1$. Pak položíme $m = n_0 + 1$ a pro každé n je $|a_n| \leq \max(\{|a_1|, |a_2|, \dots, |a_{n_0}|, 1 + |a_{n_0+1}|\})$.) Podle B.—W. věty má (a_n) konvergentní podposloupnost (a_{k_n}) , $\lim_{n \to \infty} a_{k_n} = a \in \mathbb{R}$. Pro dané $\varepsilon > 0$ nyní vezmeme n_0 , že $m, n > n_0 \Rightarrow |a_n - a_m| < \varepsilon$ a i $|a_{k_n} - a| < \varepsilon$. Pro každé $n > n_0$ potom máme

$$|a_n - a| \le |a_n - a_{k_n}| + |a_{k_n} - a| < 2\varepsilon$$

(první $|\cdot| < \varepsilon$ díky cauchyovskosti neboť $k_n \ge n$ a druhá $|\cdot| < \varepsilon$ díky $a_{k_n} \to a$) a tedy a je limitou celé posloupnosti, $\lim a_n = a$.

Nevlastní limity jsou v rozporu s cauchyovskostí: je jasné, že když lim $a_n = \pm \infty$, pak (a_n) není Cauchyova. Cauchyovskost posloupnosti je důležitá vlastnost, která umožňuje zkoumat úplnost (nepřítomnost "děr") daného prostoru i za situace, kdy nemáme k dispozici uspořádání jako v \mathbb{R} , třeba v případě komplexních čísel \mathbb{C} vybavených obvyklou vzdáleností $|z_1 - z_2|$. Ve světě zlomků \mathbb{Q} tato věta pochopitelně neplatí: když $(a_n) \subset \mathbb{Q}$ má za limitu $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$, tak je posloupnost (a_n) cauchyovská, ale nemá ve \mathbb{Q} limitu.

Aritmetika nekonečen. Jak jsem slíbil, tvrzení o aritmetice limit nyní rozšíříme na nevlastní limity. $Rozšířená reálná osa \mathbb{R}^* = \mathbb{R} \cup \{-\infty, +\infty\}$ vznikne přidáním obou nekonečen k reálným číslům. Porovnávání a aritmetické operace na \mathbb{R}^* definujeme následovně:

$$\forall a \in \mathbb{R}: -\infty < a < +\infty;$$

$$\forall a \in \mathbb{R}^*, a \neq -\infty: a + (+\infty) = (+\infty) + a = +\infty;$$

$$\forall a \in \mathbb{R}^*, a \neq +\infty: a + (-\infty) = (-\infty) + a = -\infty;$$

$$\forall a \in \mathbb{R}^*, a > 0: a(\pm \infty) = (\pm \infty)a = \pm \infty;$$

$$\forall a \in \mathbb{R}^*, a < 0: a(\pm \infty) = (\pm \infty)a = \mp \infty;$$

$$\forall a \in \mathbb{R}: \frac{a}{+\infty} = 0.$$

Zbylé výrazy

$$(+\infty) + (-\infty), (-\infty) + (+\infty), 0 \cdot (\pm \infty), (\pm \infty) \cdot 0, \frac{\pm \infty}{+\infty}, \frac{a}{0} \text{ pro } a \in \mathbb{R}^*$$

— součet dvou nekonečen s opačnými znaménky, součin nuly a nekonečna, podíl dvou nekonečen a každý podíl s nulou ve jmenovateli — ponecháváme nedefinované, jsou to tzv. neurčité výrazy.

Tvrzení (rozšířená aritmetika limit). $Nechť(a_n), (b_n) \subset \mathbb{R}, \lim a_n = a \in \mathbb{R}^* \ a \lim b_n = b \in \mathbb{R}^*. \ Potom$

- 1. $\lim(a_n + b_n) = a + b$, je-li tento součet definován,
- 2. $\lim(a_n b_n) = ab$, je-li tento součin definován a
- 3. pokud $b_n \neq 0$ pro každé $n > n_0$, pak $\lim(a_n/b_n) = a/b$, je-li tento podíl definován.

Důkaz je ponechán jako úloha. Vlastně toto tvrzení zdůvodňuje aritmetiku nekonečen: pravidlo jako například $\forall a \in \mathbb{R}^*, a < 0 : a(-\infty) = +\infty$ je jen přepisem výsledku, že pro každé dvě posloupnosti čísel $(a_n), (b_n)$ s $\lim a_n = a < 0$ a $\lim b_n = -\infty$ platí, že $\lim (a_n b_n) = +\infty$.

Zmiňme, že neurčitý výraz je i

$$1^{\pm\infty}$$

(v tom se občas chybuje): když $(a_n), (b_n) \subset \mathbb{R}$ s $\lim a_n = 1$ a např. $\lim b_n = +\infty$, pak o limitě posloupnosti $(a_n^{b_n})$ lze říci jen to, že buď neexistuje nebo to je nezáporné reálné číslo nebo $+\infty$ (vymyslete příslušné příklady). Ale (dotaz na přednášce) snadno se vidí, že $0^{+\infty} = 0$ a, obecněji, $a^{+\infty} = 0$ pro $0 \le a < 1$ a $a^{+\infty} = +\infty$ pro a > 1. Podobně $a^{-\infty} = +\infty$ pro 0 < a < 1 a $a^{-\infty} = 0$ pro a > 1. Ale $0^{-\infty}$ je neurčitý výraz!

Je zajímavé, že některé neurčité výrazy jsou neurčitější než jiné. Třeba

$$\frac{0}{0}=$$
úplně cokoli, ale pro $a\neq 0$ je $\frac{a}{0}=+\infty$ nebo $-\infty$ nebo neexistuje .

Pro každé $\alpha \in \mathbb{R}^*$ se totiž lehce najdou posloupnosti $(a_n), (b_n)$, že $\lim a_n = \lim b_n = 0$ a $\lim (a_n/b_n) = \alpha$, popř. neexistuje. Pro druhý neurčitý výraz však máme jen tři uvedené možnosti.

Limes inferior a limes superior. Podle rozšířené B.–W. věty má každá posloupnost (a_n) konvergentní podposloupnost nebo podposloupnost jdoucí do $-\infty$ nebo jdoucí do $+\infty$. Každá (a_n) má tedy alespoň jeden $\operatorname{hromadný} \operatorname{bod} \alpha \in \mathbb{R}^*$, což je vlastní nebo nevlastní limita nějaké podposloupnosti. Označíme

 $\mathbb{R}^* \supset H = \{\text{hromadn\'e body posloupnosti } (a_n)\} \ (\neq \emptyset) \ .$

Snadno se vidí, že H má největší i nejmenší prvek. (Když (a_n) není shora omezená, pak je $+\infty \in H$ největším prvkem. Je-li (a_n) shora omezená číslem $c \in \mathbb{R}$, je c zřejmě i horní mez pro H. Nechť $\alpha = \sup(H) \in \mathbb{R}$. Podle vlastnosti suprema a definice množiny H pro každé $n \in \mathbb{N}$ má (a_n) podposloupnost s limitou v intervalu $[\alpha - 1/n, \alpha]$. Z těchto podposloupností pro $n = 1, 2, \ldots$ vybereme vhodně členy a_{k_1}, a_{k_2}, \ldots , že $k_1 < k_2 < \ldots$ a pro každé n je $a_{k_n} \in [\alpha - 2/n, \alpha]$. Tím jsme vyrobili podposloupnost, jejíž limita je α . Tedy $\alpha = \sup(H) \in H$ a H má největší prvek. Podobně se ukáže, že H má nejmenší prvek.) Definujeme

$$\liminf_{n \to \infty} a_n := \min(H) \text{ a } \limsup_{n \to \infty} a_n := \max(H).$$

Tyto zkratky znamenají *limes inferior*, nejmenší limita (podposloupnosti), a *limes superior*, největší limita (podposloupnosti). Na rozdíl od limity liminf a limsup vždy existují a jsou definované pro každou posloupnost.

Úloha. Sestrojte posloupnost reálných čísel, pro niž $H = \mathbb{R}^*$, to jest každé reálné číslo, $-\infty$ $i + \infty$ je její hromadný bod.

Příklad. Posloupnost (a_n) s $a_n = 1/n + n^{1+(-1)^n}$ má $\liminf a_n = 1$ a $\limsup a_n = +\infty$.

Uvedeme druhou, ekvivalentní, definici lim inf a lim sup. Pro posloupnost $(a_n) \subset \mathbb{R}$ definujeme dvě nové posloupnosti (b_n) a (c_n) ,

$$b_n = \sup(\{a_n, a_{n+1}, \dots\})$$
 a $c_n = \inf(\{a_n, a_{n+1}, \dots\})$.

Je-li (a_n) shora neomezená, máme (resp. definujeme) $b_1 = b_2 = \cdots = +\infty$, jinak je $b_1 \geq b_2 \geq \ldots$ nerostoucí posloupnost reálných čísel. Podobně $c_1 = c_2 = \cdots = -\infty$ je-li (c_n) zdola neomezená, jinak je $c_1 \leq c_2 \leq \ldots$ neklesající posloupnost reálných čísel. V prvním případě definujeme $\lim b_n = +\infty$, ve druhém $\lim b_n$ existuje vlastní či je $-\infty$ podle tvrzení o limitě monotónní posloupnosti. Podobně klademe $\lim c_n = -\infty$ v prvním případě, a jinak je $\lim c_n$ vlastní či $+\infty$.

Tvrzení (o liminf a limsup). Limita $\lim a_n$ existuje (vlastní či nevlastní), právě když $\lim \inf a_n = \lim \sup a_n$, pak $\lim \inf a_n = \lim \sup a_n$. Dále

$$\limsup a_n = \lim b_n \ a \ \liminf a_n = \lim c_n \ .$$

 $D\mathring{u}kaz$. Když $\lim a_n = a \in \mathbb{R}^*$ existuje, pak podle tvrzení o limitě podposloupnosti má každá podposloupnost limitu a, tedy $H = \{a\}$, $\liminf a_n = \min(H) = a = \max(H) = \limsup a_n$. Předpokládejme naopak, že $\lim a_n$ neexistuje. Podle rozšířené B.-W. věty má (a_n) podposloupnost s limitou $a \in \mathbb{R}^*$. Protože a není limitou celé posloupnosti, pro $a \in \mathbb{R}$ existuje $\varepsilon > 0$, že mimo interval $(a - \varepsilon, a + \varepsilon)$ leží nekonečně mnoho členů posloupnosti (a_n) . Pokud $a = +\infty$, existuje $\varepsilon > 0$, že mimo interval $(1/\varepsilon, +\infty)$ leží nekonečně mnoho členů posloupnosti (a_n) . Podobně pro $a = -\infty$ s intervalem $(-\infty, -1/\varepsilon)$. Tyto členy posloupnosti (a_n) tvoří její podposloupnost (d_n) . Posloupnost (d_n) má podle rozšířené B.-W. věty podposloupnost s limitou $b \in \mathbb{R}^*$. Podle tvrzení o limitě a uspořádání i b leží mimo interval $(a - \varepsilon, a + \varepsilon)$, respektive mimo $(1/\varepsilon, +\infty)$, respektive mimo $(-\infty, -1/\varepsilon)$. Tedy $a \neq b$ a $a, b \in H$, a proto i nejmenší a největší prvek H, $\liminf a_n$ a $\limsup a_n$, se $\liminf a_n$

Dokážu, že $\lim b_n = \limsup a_n$, důkaz pro $\lim c_n = \liminf a_n$ je stejný. Jeli (a_n) shora neomezená pak jistě $\lim b_n = +\infty$ i $\limsup a_n = +\infty$. Nechť je (a_n) shora omezená a (d_n) je její podposloupnost s \liminf tou rovnou $\limsup a_n$. Protože b_n je horní mezí skoro všech d_n (s možnou výjimkou $d_1, d_2, \ldots, d_{n-1}$), máme (podle tvrzení o \liminf a uspořádání) pro každé n i $b_n \geq \limsup a_n$ a tedy i $\lim b_n \geq \limsup a_n$. Na druhou stranu z definice čísel b_n snadno sestrojím podposloupnost (a_{k_n}) posloupnosti (a_n) , že pro každé n je $b_n \geq a_{k_n} > b_n - 1/n$. Pak podle věty o dvou policajtech je $\lim b_n = \lim a_{k_n}$, tedy $\lim b_n \in H$ a $\lim b_n \leq \limsup a_n$. Celkem tedy $\lim b_n = \limsup a_n$.

Jak se dá představit $\limsup a_n$ (a podobně $\liminf a_n$)? $Z + \infty$ posouváme dolů píst, dokud nenarazí na členy posloupnosti (a_n) (nedá-li se píst nikam umístit, je $\limsup a_n = +\infty$). Pak se nachází v poloze b_1 . Smažeme a_1 , čímž se mohlo uvolnit místo, a znovu posouváme dolů píst, dokud nenarazí na zbylé členy posloupnosti. Nachází se v poloze b_2 . Smažeme a_2 a posouváme dolů píst. A tak postupujeme dále. Mezní poloha, k níž se píst přibližuje, je $\limsup a_n$. Jiný možný pohled na $\limsup a_n$ je lehkoatletický. Pro shora omezenou posloupnost (a_n) řekneme, že přeskočí laťku ve výšce $l \in \mathbb{R}$, když pro každé $\varepsilon > 0$ pro nekonečně mnoho n je $a_n > l - \varepsilon$. Pak $\limsup a_n$ je přesně nejvyšší laťka, kterou (a_n) přeskočí.