Show all work for full or partial credit. Put a box around your final answer in each part.

- - $(x = -2) \frac{2(-3)^n}{n(3)^n} = \sum \frac{2(-1)^n}{n}$ $(x = 4) \frac{2 \cdot 3^n}{h \cdot 3^n} = \sum \frac{2}{n}$
 - (b) $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ $| \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)^2} \cdot \frac{n^2}{x^n} \right|$ $= \lim_{n \to \infty} \frac{h^2}{n^2 + 2n + 1} |x|$ = |x| < |x| $\Rightarrow -1 < x < 1$
- $\chi=1$ $\Sigma \frac{1}{h^2}$ Converges by p-series Γ . O.C. Γ -1, Γ Γ

2. Find a power series which converges to the following functions, in the form $\sum_{n=k}^{\infty} a_n x^n$ where $k \geq 0$.

- (a) $f(x) = \frac{x^3}{(1-x)^2}$ $\Rightarrow \sqrt{\frac{1}{(1-x)^2}} = \sum_{n=0}^{\infty} n x^n$ $\Rightarrow \sqrt{\frac{x^3}{(1-x)^2}} = \sum_{n=0}^{\infty} n x^3 x^{n-1}$ $\Rightarrow \sqrt{\frac{x^3}{(1-x)^2}} = \sum_{n=0}^{\infty} n x^3 x^{n-1}$
- $\int_{n=0}^{n=k} \int_{n=0}^{\infty} n \times^{n+2} = \sum_{n=0}^{\infty} (n + 1) x^{n+3}$ $= \int_{n=0}^{\infty} (n 2) x^{n}$ $\int_{n=2}^{\infty} (n 2) x^{n}$ $\int_{n=3}^{\infty} (n 2) x^{n}$
- (b) $f(x) = e^{2x}$ $e^{x} = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ $e^{2x} = \sum_{n=0}^{\infty} \frac{(2x)^n}{n!}$ $= \sum_{n=0}^{\infty} \frac{2^n x^n}{n!}$