Forward

$$h^l=f_lig(h^{l-1}ig) \,\, ext{and}\,\, y=l\circ f_d\circ ...\circ f_1(x)$$

Gradient Problem

Gradient Exploding

 $\begin{array}{c} \text{1. If } w \text{ is initialized with} > 1, \\ \text{2. get too many layers} \end{array}$

Weights get too big for float16

Parameter Initializati

Target:

$$\mathbb{E}\left[rac{\partial t}{\partial h^t}
ight] = 0$$
 $Var\left[rac{\partial l}{\partial h^t}
ight] = 0$

Backward

$$egin{aligned} rac{\partial l}{\partial W^t} &= rac{\partial l}{\partial h^d} rac{\partial h^d}{\partial h^{d-1}} ... rac{\partial h^{t+1}}{\partial h^t} rac{\partial h^t}{\partial W^t} \ &= M^L ... M^{l+1} v^l \end{aligned}$$

TargetLet gradients lie in proper interval

Solution

MLP example (h = hidden layer weights)

Condition:

1.
$$w_{i,j}^t$$
 is of i.i.d, we get: $\mathbb{E}\left[\frac{\partial l}{\partial h^t}\right] = 0 \ \ Var\left[\frac{\partial l}{\partial h^t}\right] = b$ 2. h_i^{t-1} is independent to $w_{i,j}^t$

- 3. Dont consider activation function

Expectation and Variance of every layers' weights:
1. Forward
$$\rightarrow \mathbb{E} \left[h_i^t \right] = 0$$
, $Var \left[h_i^t \right] = n_{t-1} \gamma_t Var \left[h_i^{t-1} \right] \rightarrow n_{t-1} \gamma_t =$
2. Backward $\rightarrow \mathbb{E} \left[\frac{\partial l}{\partial h_i^{t-1}} \right] = 0$, $Var \left[\frac{\partial l}{\partial h_i^{t-1}} \right] = n_t \gamma_t Var \left[\frac{\partial l}{\partial h_i^t} \right] \rightarrow$

Hard to fullfill two of them

Solution: Xavier Initialization

1. Let
$$\gamma_t \frac{n_{t-1}+n_t}{2}=1 o \gamma_t = rac{2}{n_{t-1}+n_t}$$
 2. We get $\mathscr{N}\left(0,\sqrt{rac{2}{n_{t-1}+n_t}}
ight)$, $\mathscr{U}\left(-\sqrt{rac{6}{n_{t-1}+n_t}},\sqrt{rac{6}{n_{t-1}+n_t}}
ight)$

What if to consider activation function?

 $n_t \gamma_t = 1$

Activation function selection

require linear part

tanh: OK ReLU: OK Sigmoid: Not OK Scaled Sigmoid: OK

Scaled Sigmoid: 4xsigmoid(x) - 2