

Dr. Gaddiel Desirena López

Procesamiento de Lenguaje Natural (NLP) 2021

Motivation

- ¿Cómo obtiene un motor de búsqueda como Google documentos relevantes de una consulta determinada?
- ¿Cómo puede una empresa tramitar las reclamaciones hechas por sus usuarios en sus portales web?

Estos problemas lo estudian:

- Recuperación de información: ciencia de la búsqueda de información en colecciones de documentos.
- Text Mining: extracción automática de conocimientos del texto.

¡Ambos están estrechamente relacionados con la NLP!

Tokens y Tipos

Tokenización: la tarea de dividir una oración o documento en partes llamadas emph tokens.

Se pueden emplear transformaciones adicionales como la eliminación de caracteres especiales (por ejemplo, puntuación), minúsculas, etc. [Manning et al., 2008].

Example

Input: I like human languages and programming languages.

Tokens: [I] [like] [human] [languages] [and] [programming] [languages]

Tipos

- Un tipo es una clase de token que contiene una única secuencia de caracteres.
- Se obtienen identificando tokens únicos dentro del documento.

Tipos de la sentencia pasada: [I] [like] [human] [languages] [and] [programming]

El token *languages* se repitió en esta sentencia.

Extracción de Vocabulario

- Un termino es un tipo normalizado.
- La normalización es el proceso de crear clases de equivalencia de diferentes emph tipos. Esto quedará claro en las siguientes diapositivas.
- ► El vocabulario V, es el conjunto de términos (tokens únicos normalizados) dentro de una colección de documentos o corpus D.

Eliminación de Stopwords

- Para reducir el tamaño del vocabulario y eliminar los términos que no aportan mucha información, se eliminan los términos que aparecen con alta frecuencia en el corpus.
- Estos términos se llaman stopwords e incluyen artículos, pronombres, preposiciones y conjunciones.
 Ejemplo: [a, an, and, any, has, do, don't, did, the, on].

¡La eliminación de stopwords puede resultar inconveniente en muchas tareas de NLP!

Ejemplo: I don't like pizza => pizza ("I", "don't", y "like" se eliminan)

Stemming

Un proceso de normalización de términos en el que los términos se transforman a su raíz para reducir el tamaño del vocabulario. Se lleva a cabo aplicando reglas de reducción de palabras.

Ejemplo: algoritmo de Porter.

(F)	Rule			Example		
	SSES	\rightarrow	SS	caresses	\rightarrow	caress
	IES	\rightarrow	I	ponies	\rightarrow	poni
	SS	\rightarrow	SS	caress	\rightarrow	caress
	S	\rightarrow		cats	\rightarrow	cat

Ejemplo: $d={\rm I}$ like human languages and programming languages => I like human languag and program languag 1

El vocabulario del documento d después de eliminar stopwords y aplicar el steamming:

termId	value		
t1	human		
t2	languag		
t3	program		

¹http://9ol.es/porter_js_demo.html

Lematización

- Otra estrategia de normalización de términos.
- También transforma las palabras en sus raíces.
- Realiza un análisis morfológico utilizando diccionarios de referencia (tablas de búsqueda) para crear clases de equivalencia entre tipos.
- Por ejemplo, para el token studies, una regla de stemming devolvería el término emph studi, mientras que a través de la lematización obtendríamos el término study².

²https://blog.bitext.com/
what-is-the-difference-between-stemming-and-lemmatization/

Regla de Zipf [1]

- La ley de Zipf, propuesta por George Kingsley Zipf en [Zipf, 1935], es una ley empírica sobre la frecuencia de términos dentro de una colección de documentos (corpus).
- Establece que la frecuencia f de un término en un corpus es inversamente proporcional a su clasificación r en una tabla de frecuencias ordenada:

$$f = \frac{cf}{r^{\beta}} \tag{1}$$

- ▶ Donde cf es una constante dependiente de la colección y $\beta>0$ es un factor de desintegración.
- Si $\beta = 1$, entonces f sigue exactamente la ley de Zipf; de lo contrario, sigue una distribución similar a Zipf.
- La ley se relaciona con el principio de esfuerzo mínimo. A menudo usamos algunas palabras para escribir ideas.
- La ley Zipf es un tipo de distribución de la ley de potencia (distribuciones de cola larga)

Regla de Zipf [2]

Figura 1: Zipf's law

- Si trazamos un gráfico de log log, obtenemos una línea recta con pendiente $-\beta$.
- Enumerar las palabras más frecuentes de un corpus se puede utilizar para crear una lista de stopwords.

Publicación de listas e índice invertido

Sea ${\cal D}$ una colección de documentos y ${\cal V}$ el vocabulario de todos los términos extraídos de la colección:

- La lista de publicación de un término es la lista de todos los documentos donde el término aparece al menos una vez. Los documentos se identifican por sus identificadores.
- lackbox Un índice invertido es una estructura de datos de tipo diccionario que mapea términos $t_i \in V$ en sus listas de publicación correspondientes.

$$< term > \rightarrow < docId >^*$$

Motores de búsqueda web [1]

Un motor de búsqueda es un sistema de recuperación de información diseñado para buscar información en la Web (resolver necesidades de información) [Manning et al., 2008]. Sus componentes básicos son:

- Crawler: un robot que navega por la Web de acuerdo con una estrategia definida. Por lo general, comienza navegando por un conjunto de sitios web semilla y continúa navegando por sus hipervínculos.
- Indexador: encargado de mantener un índice invertido con el contenido de las páginas recorridas por el Crawler.
- Procesador de Query: encargado de procesar las consultas de los usuarios y buscar en el índice los documentos más relevantes para una consulta.
- Funcjóm de ranking: la función utilizada por el procesador de consultas para clasificar los documentos indexados en la colección por relevancia de acuerdo con una consulta.
- ► Interfaz de Usuario: recibe la consulta como entrada y devuelve los documentos clasificados por relevancia.

Motores de búsqueda web [2]

Figura 2: Los diversos componentes de un motor de búsqueda web [Manning et al., 2008].

El modelo de espacio vectorial

- Para clasificar las consultas o medir la similitud entre dos documentos, necesitamos una métrica de similitud.
- Los documentos se pueden representar como vectores de términos, donde cada término es una dimensión vectorial [Salton et al., 1975].
- Los documentos con diferentes palabras y longitudes residirán en el mismo espacio vectorial.
- Estos tipos de representaciones se denominan Bolsa de palabras.
- En las representaciones de bolsa de palabras se pierde el orden de las palabras y la estructura lingüística de una oración.
- ▶ El valor de cada dimensión es un peso que representa la relevancia del término t_i en el documento d.

$$d_j \to \overrightarrow{d_j} = (w(t_1, d_j), ..., w(t_{|V|}, d_j))$$
 (2)

¿Cómo podemos modelar qué tan informativo es un término para un documento?

Término Frecuencia - Frecuencia inversa del documento [1]

- ▶ Sea $tf_{i,j}$ la frecuencia del término t_i en el documento d_j .
- ▶ Un término que ocurre 10 veces debería proporcionar más información que uno que ocurre una vez.
- ¿Qué pasa cuando tenemos documentos que son mucho más largos que los demás?
- Podemos normalizar por la frecuencia máxima de términos en el documento.

$$ntf_{i,j} = \frac{tf_{i,j}}{\text{máx}_i(tf_{i,j})}$$

- ¿Un término que aparece en muy pocos documentos proporciona más o menos información que uno que aparece varias veces?
- ▶ Por ejemplo, el documento The respected major of Pelotillehue. El término Pelotillehue aparece en menos documentos que el término major, por lo que debería ser más descriptivo.

Término Frecuencia - Frecuencia inversa del documento [2]

Sea N el número de documentos de la colección y n_i el número de documentos que contienen el término t_i , definimos idf_{t_i} de la siguiente manera:

$$idf_{t_i} = log_{10}(\frac{N}{n_i})$$

- ▶ Un término que aparece en todos los documentos tendría idf = 0 y uno que aparece en 10% de los documentos tendría idf = 1.
- ► El modelo de puntuación tf idf combina las puntuaciones tf e idf, lo que da como resultado los siguientes pesos w para un término en un documento:

$$w(t_i, d_j) = tf_i \times log_{10}(\frac{N}{n_i})$$

▶ Las consultas del motor de búsqueda también se pueden modelar como vectores. Sin embargo, estas consultas tienen términos de entre 2 y 3 aproximadamente, lo que ocasionan muchos ceros en el vector. Para evitar tener demasiadas dimensiones nulas, los vectores de consulta se pueden suavizar de la siguiente manera:

$$w(t_i, d_j) = (0.5 + 0.5 \times t f_{i,j}) log_{10}(\frac{N}{n_i})$$

Similitud entre vectores

- Representar consultas y documentos como vectores permite calcular su similitud.
- Un enfoque sería utilizar la distancia euclidiana.
- ▶ El enfoque común es calcular el coseno del ángulo entre los dos vectores.
- Si ambos documentos son iguales, el ángulo sería 0 y su coseno sería 1. Por otro lado, si son ortogonales, el coseno es 0.
- La similitud del coseno se calcula de la siguiente manera:

$$cos(\vec{d}_1, \vec{d}_2) = \frac{\vec{d}_1 \cdot \vec{d}_2}{|\vec{d}_1| \times |\vec{d}_2|} = \frac{\sum_{i=1}^{|V|} (w(t_i, d_1) \times w(t_i, d_2))}{\sqrt{\sum_{i=1}^{|V|} w(t_i, d_1)^2} \times \sqrt{\sum_{i=1}^{|V|} w(t_i, d_2)^2}}$$

- Esto se llama erróneamente distancia del coseno. En realidad, es una métrica de similitud.
- ▶ Observe que la similitud de coseno normaliza los vectores por su norma euclidiana $||\vec{d}||_2$.

Cosine Similarity

Figura 3: Similaridad del Coseno.

Agrupación de documentos [1]

- L'Cómo podemos agrupar documentos que son similares entre sí?
- Cada grupo de documentos se denomina clúster.
- En la agrupación tratamos de identificar grupos de documentos en los que se maximiza la similitud entre documentos en el mismo grupo y se minimiza la similitud de documentos en diferentes grupos.

Figura 4: Conjunto de documentos donde se pueden identificar claramente los clusters.

Agrupación de documentos [2]

- ► La agrupación de documentos permite identificar temas en un corpus y reducir el espacio de búsqueda en un motor de búsqueda, es decir, el índice invertido se organiza según los grupos.
- K-means es un algoritmo de agrupamiento simple que recibe el número de grupos k como parámetro.
- El algoritmo se basa en la idea de centroide, que es el vector promedio de documentos que pertenecen al mismo grupo.
- ▶ Sea S un conjunto de vectores de 2 dimensiones: $\{3,6\},\{1,2\},\{5,1\}$, el centroide de S es $\{(3+1+5)/3,(6+2+1)/3\}=\{3,3\}$.

K-Means

- 1. Comenzamos con k centroides aleatorios.
- 2. Calculamos la similitud entre cada documento y cada centroide.
- Asignamos cada documento a su centroide más cercano formando un grupo.
- 4. Los centroides se recalculan de acuerdo con los documentos que se les asignan.
- 5. Este proceso se repite hasta la convergencia.

K-means

```
K-MEANS(\{\vec{x}_1,\ldots,\vec{x}_N\},K)
  1 (\vec{s}_1, \vec{s}_2, \dots, \vec{s}_K) \leftarrow \text{SELECTRANDOMSEEDS}(\{\vec{x}_1, \dots, \vec{x}_N\}, K)
  2 for k ← 1 to K
  3 do \vec{u}_k \leftarrow \vec{s}_k
  4 while stopping criterion has not been met
        do for k \leftarrow 1 to K
             \mathbf{do} \, \omega_k \leftarrow \{\}
      for n \leftarrow 1 to N
  8
              do j \leftarrow \arg\min_{i^{j}} |\vec{\mu}_{i^{j}} - \vec{x}_{n}|
                    \omega_i \leftarrow \omega_i \cup \{\vec{x}_n\} (reassignment of vectors)
              for k \leftarrow 1 to K
 10
              do \vec{\mu}_k \leftarrow \frac{1}{|\omega_k|} \sum_{\vec{x} \in \omega_k} \vec{x} (recomputation of centroids)
 11
         return \{\vec{u}_1, \dots, \vec{u}_K\}
 12
```

Figura 5: Algoritmo de K-means

Este correo es SPAM?

Positivo o Negativo? (review de una Pelicula)

- ► Increiblememente decepcionante
- ► Lleno de carácteres estrafalarios y sátira ricamente aplicada, y algunos giros de la trama geniales.
- esta es la mejor comedia loca de todos los tiempos.
- ► Fue patético. La peor parte fueron las escenas de boxeo.

Cuál es el área de investigación de un artículo específico?

- Química
- ► Biotecnología
- Matemáticas aplicadas
- Física
- ▶ Ingeniería

Clasificación de Texto

- ► Asignar categorías, tópicos, o géneros
- Detección de SPAM
- Identificación de autores
- ► Identificación de Edad/Sexo
- ► Identificación del Lenguaje
- Análisis de Sentimientos

Clasificación de Texto: Definición

- ► Entrada:
 - sea un documento denotado como d
 - Un conjunto fijo de clases $C = \{c_1, c_2, \dots, c_j\}$
- ▶ Salida: Una clase de documento predecido $c \in C$

Métodos de Clasificación de Texto

Reglas de codificación a mano:

- Reglas basadas en combinaciones de palabras o características: spam -> algún email en la lista negra ó ("dólares"Y "han sido seleccionado")
- La precisión puede ser alta (si las reglas son definidas cuidadosamente por algún experto)
- Crear y Mantener estas reglas pueder ser un trabajo muy costoso

Métodos de Clasificación de Texto

Algoritmos Supervizados de Aprendizaje Máquina:

- ► Entrada:
 - sea un documento denotado como d
 - Un conjunto fijo de clases $C = \{c_1, c_2, \dots, c_i\}$
 - ▶ Un conjunto de entrenamiento de m documentos correctamente etiquetados manualmente $(d_1, c_1), \ldots, (d_m, c_m)$
- ▶ Salida: Un clasificador entrenado $\gamma: d \rightarrow c$

Métodos de Clasificación de Texto

Algunos tipos de clasificadores:

- ► Logistic Regression
- ▶ Naïve Bayes
- ► Support-Vector machines
- k-Nearest Neighbors

Preprocesamiento con Python

Vayamos a Python!:

- ► Tokenization
- Stemming
- Lemmatization.
- ► StopWords.

II.- Naive Bayes para Clasificación de Documentos

Clasificación de Documentos: Naïve Bayes

Intuición:

- Es un método sim\(\text{Na\(\)ive} \) basado en las reglas de Bayes.
- ► Se basa en una representación muy simple de un documento: Bag of Words.

Representación de texto mediante Bag of Words (BoW)

Regla de Bayes aplicado a Documentos y Clases

Para un documento d y una clase c:

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

La clase a la que el documento d es más probable a pertenecer:

$$C_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(c|d)$$

$$= \underset{c \in C}{\operatorname{argmax}} \frac{P(d|c)P(c)}{P(d)}$$

$$= \underset{c \in C}{\operatorname{argmax}} P(d|c)P(c)$$

- MAP es el máximo posteriori (la clase más cercana)
- ► Regla de Bayes
- Quitamos el denominador

Regla de Bayes aplicado a Documentos y Clases

$$C_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(d|c)P(c)$$
$$= \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n|c)P(c)$$

- ▶ Un documento d puede ser representado por sus características: $d = \{x_1, \dots, x_n\}$
- ▶ Tenemos $O(|X|^n \cdot |C|)$ parametros
- Podemos estimarlo si tenemos un gran número de ejemplos de entrenamiento disponibles.

Naïve Bayes Multinomial: suposición de independencia

- ► Suposición en la bolsa de palabras (BoW): Suponemos que las posiciones de las palabras no importan.
- ▶ Suposición de independencia condicional: Asumimos que las probabilidades de las características $(P(x_i|c_j))$ son independientes dados una clase c:

$$P(x_1, x_2, \dots, x_n | c) = P(x_1 | c)(x_2 | c)(x_3 | c) \cdot \dots P(x_n | c)$$

Naïve Bayes Multinomial: suposición de independencia

- Suposición en la bolsa de palabras (BoW): Suponemos que las posiciones de las palabras no importan.
- ▶ Suposición de independencia condicional: Asumimos que las probabilidades de las características $(P(x_i|c_j))$ son independientes dados una clase c:

$$P(x_1, x_2, \dots, x_n | c) = P(x_1 | c)(x_2 | c)(x_3 | c) \cdot \dots P(x_n | c)$$

$$C_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n | c) P(c)$$

$$C_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1 | c) (x_2 | c) (x_3 | c) \cdot \dots P(x_n | c) P(c)$$

$$C_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{x \in X} P(x | c)$$

Aplicanco Naïve Bayes Multinomial a la clasificación de documentos

▶ todas las posiciones en el documento de test \rightarrow posiciones

$$C_{NB} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j) \underset{i \in \textit{posiciones}}{\prod} P(x_i | c_j)$$

Proceso de Aprendizaje en un modelo de Naïve Bayes Multinomial

Primer intento: Estimar el máximo likelihood usando el cálculo de las frecuencias en los datos:

$$\hat{P}(c_j) = \frac{\operatorname{doccount}(C = c_j)}{N_{\operatorname{doc}}}$$

$$\hat{P}(w_j | c_j) = \frac{\operatorname{count}(w_i, c_j)}{\sum_{w \in V} \operatorname{count}(w, c_j)}$$

$$\hat{P}(w_j|c_j) = \frac{count(w_i,c_j)}{\sum\limits_{w \in V} count(w,c_j)}$$
 es la fracción de veces que la

palabra w_i aparece a lo largo de todas las palabras en el documento con la clase c_j .

Proceso de Aprendizaje en un modelo de Naïve Bayes Multinomial

- ► Estimación de Parámetros: Crear un mega-documento para la clase *j* concatenando todos los documentos en esta clase:
 - Usar la frecuencia de w en el mega-documento.

Problema con el Máximo Likelihood

Qué pasa si no tenemos en nuestros datos de entrenamiento una palabra en específico (ejemplo: "fantastic") y queremos clasificar esta palabra en una clase llamada positive?

$$\hat{P}("fantastic"|positive) = \frac{count("fantastic",positive)}{\sum\limits_{w \in V} count(w,positive)}$$

$$= 0$$

Algún $\hat{P}(w_j|c_j)$ con probabilidad cero no se puede condicionar, sin importar las probabilidades de las otras evidencias.

$$C_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{i} P(x_i|c)$$

Técnica de Laplace-Smoothing para Naïve Bayes

► El suavizado de Laplace es una técnica de suavizado que resuelve el problema de probabilidad cero en Naïve Bayes.

$$\hat{P}(w_j|c_j) = \frac{count(w_i,c_j)+1}{\sum\limits_{w\in V}(count(w,c_j)+1)}$$
$$= \frac{count(w_i,c_j)+1}{(\sum\limits_{w\in V}count(w,c_j))+|V|}$$

Modelo de Naïve Bayes Multinomial: Entrenamiento

- ▶ De un corpus de entrenamiento, extraer el *Vocabulario*.
- ightharpoonup Calcular los términos $P(c_j)$.
 - Para cada $c_j \in C$ hacer:

$$\begin{array}{l} docs_j \leftarrow \mathsf{todos} \; \mathsf{los} \; \mathsf{documentos} \; \mathsf{con} \; \mathsf{clase} \; c_j \\ P(c_j) \leftarrow \frac{|docs|}{|totaldocumentos|} \end{array}$$

- ightharpoonup Calcular los términos $P(w_k|c_i)$
 - $text_j \leftarrow un$ sólo documento que contenga todos los $docs_j$
 - Por cada palabra en w_k en el Vocabulario

$$\begin{array}{l} n_k \leftarrow \text{ de ocurrencias de } w_k \text{ en } text_j \\ P(w_k|c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha|Vocabulary|} \end{array}$$

Generación de Modelo para Naïve Bayes Multinomial

Modelado del Lenguaje con Naïve Bayes Multinomial

- ► El clasificador Naïve Bayes puede usar cualquier tipo de características ordenadas:
 - URL, emails, diccionarios, características de una red, etc...
- Pero si:
 - Sólo usamos las características de las palabras
 - Usamos todas las palbras en el texto (no un subconjunto)
- Entonces:
 - Naïve bayes tiene una similitud importante con el modelado del lenguaje.

Modelo de Lenguaje: Unigrama

- ightharpoonup Asignar a cada palabra P(word|c)
- Asignar a cada sentencia: $P(s|c) = \prod P(word|c)$

Class	pos					
0.1	1	I	love	this	fun	film
0.1	love					
0.01	this	0.1	0.1	.05	0.01	0.1
0.05	fun					
0.1	film			P(s	pos)	= 0.000005

Modelo de Lenguaje: Unigrama

Cuál es la clase a la que pertenece la sentencia s?

Model pos		Model neg						
0.1	1	0.2	1	1	love	this	fun	film
0.1	love	0.001	love	0.1				-
0.01	this	0.01	this	0.1 0.2	0.1 0.001	0.01 0.01	0.05 0.005	0.1 0.1
0.05	fun	0.005	fun					
0.1	film	0.1	film		P(s pos) > P(s neg)			

Modelado del Lenguaje con Naïve Bayes Multinomial: **Ejemplo**

		Doc	Words	Class
$\hat{P}(c) = \frac{N_c}{N_c}$	Training	1	Chinese Beijing Chinese	С
$\frac{1}{N}$		2	Chinese Chinese Shanghai	С
		3	Chinese Macao	С
$\hat{P}(w \mid c) = \frac{count(w,c)+1}{c}$		4	Tokyo Japan Chinese	j
count(c)+ V	Test	5	Chinese Chinese Tokyo Japan	?

Priors:

Priors:

$$P(c) = \frac{3}{4} \frac{1}{4}$$

Conditional Probabilities:

P(Chinese | c) =
$$(5+1)/(8+6) = 6/14 = 3/7$$

P(Tokyo | c) = $(0+1)/(8+6) = 1/14$
P(Japan | c) = $(0+1)/(8+6) = 1/14$
P(Chinese | j) = $(1+1)/(3+6) = 2/9$
P(Tokyo | j) = $(1+1)/(3+6) = 2/9$
P(Japan | j) = $(1+1)/(3+6) = 2/9$

Choosing a class:

$$P(c|d5) \propto 3/4 * (3/7)^3 * 1/14 * 1/14 \approx 0.0003$$

$$P(j|d5) \propto 1/4 * (2/9)^3 * 2/9 * 2/9 \approx 0.0001$$

Conclusions and Additional Concepts

- Representing documents as vectors is essential for calculating similarities between document pairs.
- Bag of words vectors lack linguistic structure.
- Bag of words vectors are high-dimensional and sparse.
- Word n-grams can help capturing multi word-expressions (e.g., New York => new_york)
- Modern information retrieval systems go beyond vector similarity (PageRank, Relevance Feedback, Query log mining, Google Knowledge Graph, Machine Learning).
- ▶ Information retrieval and text mining are less concerned with linguistic structure, and more interested in producing fast and scalable algorithms [Eisenstein, 2018].

References I

Eisenstein, J. (2018).

Natural language processing. Technical report, Georgia Tech.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). *Introduction to Information Retrieval*. Cambridge University Press, New York, NY, USA.

Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for automatic indexing. *Communications of the ACM*, 18(11):613–620.

Zipf, G. K. (1935). *The Psychobiology of Language*. Houghton-Mifflin, New York, NY, USA.