Область допустимых решений задачи представлена ниже на рисунке. Как будут записаны ограничения (1) и (2)?

Билет 13, вопрос 1 В плановом году в городе будут сооружаться дома m типов. Количество r-комнатных квартир в доме i-го типа равно q_{ri} . Стоимость строительства одного дома i-го типа составляет Ri тыс. руб. За год необходимо сдать в эксплуатацию не менее Qr r-комнатных квартир. Рассчитать план строительства жилых домов, обеспечивающий минимальные затраты на строительство. Какая из моделей верна?

$$\sum_{i=1}^{m} R_{i} * x_{i} o min$$
 $\sum_{i=1}^{m} \sum_{r=1}^{m} q_{ri} * x_{ri} o min$ $\sum_{i=1}^{m} R_{i} * x_{i} o min$ $\sum_{i=1}^{m} q_{ri} * x_{i} \geq Q_{r}$, $\forall \, r$ $\sum_{i=1}^{m} q_{ri} * x_{ri} \leq Q_{r}$, $\forall \, r$ $\sum_{i=1}^{m} q_{ri} * x_{ri} \leq Q_{r}$, $\forall \, r$ $x_{ri} \geq 0$, целые $x_{ri} \geq 0$, целые

Билет 13, вопрос 2 Дана промежуточная симплекс-таблица задачи линейного программирования (решается на min), в которой x_1 , x_2 -основные переменные, Z –целевая функция

Базис	В	X ₁	X ₂	X ₃	X ₄	X ₅	x ₆
Х ₃	14/3	0	2/3	1	0	⁻⁵ / ₃	0
X ₄	4/3	0	1/3	0	1	-1/3	0
X ₁	4	1	0	0	0	1	0
x ₆	2/3	0	-1/3	0	0	1/3	1
Z	28/3	0	-1/3	0	0	5/3	0

Что дальше?

Дана начальная симплекс-таблица прямой (исходной) задачи линейного программирования, в которой x_1, x_2 -основные переменные, x_3, x_4 дополнительные, Z –целевая функция

Итерация	Базис	Значение	x ₁	X ₂	Х3	X4	Строка Zmin
	$-\mathbf{Z}$	0	-2	-1	0	0	
0	x ₃	-2	1	2	1	0	1
	X ₄	2	2	1	0	1	2

Укажите постановку двойственной ЗЛП, в которой y_1,y_2 двойственные оценки ограничений исходной задачи.

$$f(I) = Iy_1 + Iy_2 \rightarrow I$$

Ограничения:

$$2y_1 + 2y_2 \ge 1 \qquad (1)$$

$$1y_1 + 1y_2 \ge 1$$
 (2)

$$y_1, y_2 \ge 0$$

$$-1y_1 - 2y_2 \le -2 \qquad (1) \qquad 1y_1 + 2y_2 \ge -2 \qquad (1)$$

$$-2y_1-1y_2 \le -1$$
 (2) $2y_1+1y_2 \ge 1$ (2)

$$y_1, y_2 \ge 0$$

2.

$f(Y) = 1y_1 + 1y_2 \rightarrow min$ $f(Y) = 2y_1 - 2y_2 \rightarrow max$ $f(Y) = -2y_1 + 2y_2 \rightarrow min$

Ограничения:

$$1v_{-} \pm 2v_{-} > -2$$
 (1

$$1y_1 + 2y_2 \ge -2 \qquad (1)$$

$$2y_1 + 1y_2 \ge 1 \qquad (2)$$

$$y_1, y_2 \ge 0$$

3.

1.

Билет 13, вопрос 4

Дана задача о коммивояжере линейного программирования в терминах полезности

_	3	5
4	-	2
5	3	-

Решить задачу методом потенциалов

Сетевое планирование

Табличным способом рассчитайте параметр сетевого графика $t_{\rm p}(3)$

	1	2	3	4	5
1		4	5		
2			2	7	
3				10	3
4					4
5					

Решается транспортная задача перевозки однородных грузов от поставщиков к потребителям (размерность задачи два на два) с учетом двух критериев: К1 – финансовые затраты (т.руб.); К2 – временные затраты (час.). Возможности поставщиков - а1 и а2, потребности потребителей – b1 и b2, коэффициенты затрат на одну единицу груза для соответствующих критериев приведены в таблицах. Главным критерием считать К1.

Критерий К1 – финансовые Критерий К2 – временные затраты (т.руб.);

затраты (час.).

	b1=5	b2=5
a1=5	1	2
a2=5	4	3

	b1=5	b2=5
a1=5	5	4
a2=5	2	3

Укажите пределы уступок по критерию К2 в компромиссном решении Билет 13,

вопрос 7

Оценка игроков спортивной команды (альтернатив) производится на основании пяти критериев:

К1 - морально-волевая подготовка; К2 — вес игрока; К3 — бег 100м.

Тренер отдает предпочтение игрокам с высокими оценками по всем критериям (для бега — оценки имеют обратное направление шкалы). По функции выбора с учетом числа доминирующих критериев определите лучшего (лучших) спортсменов.

Игроки	Мор- волевая (в баллах)	Вес (в кг)	Бег 100м (в сек.)
X1	10	100	15
X2	5	110	14
Х3	8	90	13

Предлагается построить аэропорт недалеко от города в одном из трех возможных мест расположения: x, y и z. Оценка вариантов постройки аэропорта производилась по трем критериям: k_1 — стоимость постройки; k_2 — время в пути до центра города; k_3 — количество людей, подвергающихся шумовым воздействиям. Значимость критериев представлена соответственно величинами: 6; 3; 1. Оценки альтернатив по критериям приведены в таблице. Определите индекс согласия доминирования альтернативы y над z по методу «Электра»

Таблица исходных данных

Площадки	k_1 (млн.руб.)	k ₂ (мин.)	k_3 (тыс.чел.)
\boldsymbol{x}	170	40	20
y	170	50	10
Z	190	45	10

Задана матрица Y исходов в терминах полезности .По критерию Сэвиджа (риска) определите лучшую альтернативу

Альтернатив ы Х	Ситуации Е			
DI X	e_1	e_2	e_3	e_4
x_1	6	4	3	2
x_2	3	3	4	5
x_3	3	4	4	2