

Introduction to Data Science

Lecture 5.2 Visualization demo

Instructor: Sangryul Jeon

School of Computer Science and Engineering

srjeonn@pusan.ac.kr

Import packages

Let figures appear in your colab(jupyter) notebook.

```
from datascience import *
import pandas as pd
import numpy as np

%matplotlib inline
import matplotlib.pyplot as plots
plots.style.use('fivethirtyeight')
```

See the style sheets reference here

https://matplotlib.org/3.1.1/gallery/style_sheets/style_sheets_reference.html

Load CSV file – actors.csv

Read a CSV file and see what's in there

```
path_data = "https://raw.githubusercontent.com/mlee-pnu/IDS/main/FDS07/"
actors = Table.read_table(path_data + 'actors.csv')
actors
```

Variable aka feature, attribute

Actor	Total Gross	Number of Movies	Average per Movie	#1 Movie	Gross
Harrison Ford	4871.7	41	118.8	Star Wars: The Force Awakens	936.7
Samuel L. Jackson	4772.8	69	69.2	The Avengers	623.4
Morgan Freeman	4468.3	61	73.3	The Dark Knight	534.9
(47 rows omitted)					

Categorical

Mullerica

Mulerical

Mawerican

Categorical

Numerica.

Data Description

Column	Contents
Actor	Name of actor
Total Gross	Total gross domestic box office receipt, in millions of dollars, of all of the actor's movies
Number of Movies	The number of movies the actor has been in
Average per Movie	Total gross divided by number of movies
#1 Movie	The highest grossing movie the actor has been in
Gross	Gross domestic box office receipt, in millions of dollars, of the actor's #1 Movie

Plotting Two Numerical Variables

Scatter plot: scatter

Line graph: plot

Scatter Plot

- A scatter plot displays the relation between two numerical variables.
- Use Table.scatter() method

actors.scatter('Number of Movies', 'Total Gross')

x-axis y-axis

how many points? any associations?

Scatter Plot (cont.)

Number of Movies vs. Average per Movie

```
actors.scatter('Number of Movies', 'Average per Movie')
```


any associations?

Scatter Plot (cont.)

Let's look at the portion that doesn't have the outlier.

```
no_outlier = actors.where('Number of Movies', are.above(10))
no_outlier.scatter('Number of Movies', 'Average per Movie')
```


Who are they?

Identifying actors

actors.where('Number of Movies', are.above(60))

actors.where('Number of Movies', are.below(10))

actors.where('Number of Movies', are.not_between_or_equal_to(10, 60))

Actor	Total Gross	Number of Movies	Average per Movie	#1 Movie	Gross
Samuel L. Jackson	4772.8	69	69.2	The Avengers	623.4
Morgan Freeman	4468.3	61	73.3	The Dark Knight	534.9
Anthony Daniels	3162.9	7	451.8	Star Wars: The Force Awakens	936.7
Robert DeNiro	3081.3	79	39	Meet the Fockers	279.3
Liam Neeson	2942.7	63	46.7	The Phantom Menace	474.5

Line Plot

- Line plots are often used to study chronological trends and patterns.
- Let's take a look at movies_by_year data

```
movies_by_year = Table.read_table(path_data + 'movies_by_year.csv')
movies_by_year.show(3)
```

Year	Total Gross	Number of Movies	#1 Movie
2015	11128.5	702	Star Wars: The Force Awakens
2014	10360.8	702	American Sniper
2013	10923.6	688	Catching Fire
(33 rd	ows omitted)		

Column	Content
Year	Year
Total Gross	Total domestic box office gross, in millions of dollars, of all movies released
Number of Movies	Number of movies released
#1 Movie	Highest grossing movie

Line Plot (cont.)

Number of Movies by Year

movies_by_year.plot('Year', 'Number of Movies')

Line Plot (cont.)

let's focus on the 21st century only

```
century_21 = movies_by_year.where('Year', are.above(1999))
century_21.plot('Year', 'Number of Movies')
```


Line Plot (cont.)

Plot the total gross by year and see if there're any unlikely patterns.

```
century_21.plot('Year', 'Total Gross')
```


VISUALIZING CATEGORICAL DISTRIBUTIONS

Bar Chart

Make a table with the number of cartoons of each flavor of ice cream.

```
icecream = pd.DataFrame({
    'Flavor': np.array(['Chocolate', 'Strawberry', 'Vanilla']),
    'Number of Cartons': np.array([16, 5, 9])
})
icecream
```


Bar Chart (cont.)

- The bar chart displays a bar for each category.
 - The bars are equally spaced and equally wide. The length of each bar is proport ional to the frequency of the corresponding category.
 - Use plt.barh() for horizontal bar chart

Bar Chart (cont.)

- Scatter and line plots take two quantitative variables, while bar chart takes qualitative(categorical) and qualitative(numeric) variables.
- The width of each bar and the space between consecutive bars is entirely up to the person who is producing the graph
- The bars can be drawn in any order

```
icecream.sort values(by=['Number of Cartons'])
```


Grouping Categorical Data

top_movies_2017 data

Title	Studio	Gross	Gross	(Adjusted)	Year
Gone with the Wind	MGM	198676459		1796176700	1939
Star Wars	Fox	460998007		1583483200	1977
The Sound of Music	Fox	158671368		1266072700	1965
E.T.: The Extra-Terrestrial	Universal	435110554		1261085000	1982
Titanic	Paramount	658672302		1204368000	1997
The Ten Commandments	Paramount	65500000		1164590000	1956
Jaws	Universal	260000000		1138620700	1975
Doctor Zhivago	MGM	111721910		1103564200	1965
The Exorcist	Warner Brothers	232906145		983226600	1973
Snow White and the Seven Dwarves (190 rows omitted)	Disney	184925486		969010000	1937

Grouping Categorical Data (cont.)

Aggregate the number of movies released by each studio

```
movies_and_studios = top.select('Title', 'Studio')
studio_distribution = movies_and_studios.group('Studio')
```

```
sum(studio distribution.column('count'))
```

Studio	count	
AVCO	1	
Buena Vista	35	
Columbia	9	
Disney	11	
Dreamworks	3	
Fox	24	
IFC	1	
Lionsgate	3	
MGM	7	
Metro	1	
(13 rows omitted)		

Grouping Categorical Data (cont.)

Draw a bar chart in descending order

```
studio_distribution.sort('count',
descending=True).barh('Studio')
```

Grouping Numerical Data

Can we aggregate the number of movies released by year?

```
movies_and_years = top.select('Title', 'Year')
movies_and_years.group('Year').take(np.arange(10)).barh('Year')
```


Any issues?
Any solutions?

Grouping Numerical Data (cont.)

- Binning is counting the number of numerical values that lie within ranges
 es, called bins.
 - Bins are defined by their lower bounds (inclusive)
 - The upper bound is the lower bound of the next bin

Binning the Data

• USA's top-grossing movies, with adjusted gross to 2016 dollar value.

Title	Studio	Gross	Gross (Adjusted)	Year
Gone with the Wind	MGM	198,676,459	1,796,176,700	1939
Star Wars	Fox	460,998,007	1,583,483,200	1977
The Sound of Music	Fox	158,671,368	1,266,072,700	1965
E.T.: The Extra-Terrestrial	Universal	435,110,554	1,261,085,000	1982
Titanic	Paramount	658,672,302	1,204,368,000	1997
The Ten Commandments	Paramount	65,500,000	1,164,590,000	1956
Jaws	Universal	260,000,000	1,138,620,700	1975
Doctor Zhivago	MGM	111,721,910	1,103,564,200	1965
The Exorcist	Warner Brothers	232,906,145	983,226,600	1973
Snow White and the Seven Dwarves	Disney	184,925,486	969,010,000	1937
(190 rows omitted)				

Adjusted Gross	Title
1796.18	Gone with the Wind
1583.48	Star Wars
1266.07	The Sound of Music
1261.08	E.T.: The Extra-Terrestrial
1204.37	Titanic
1164.59	The Ten Commandments
1138.62	Jaws
1103.56	Doctor Zhivago
983.23	The Exorcist
969.01	Snow White and the Seven Dwarves
	(190 rows omitted)

Binning the Data (cont.)

Check the range of the data before making class intervals for the frequency distribution table.

```
adj_gross = millions['Adjusted Gross']
min(adj_gross), max(adj_gross)
```

Set class intervals to encompass the range of the data.

```
bins = pd.cut(millions['Adjusted Gross'], bins_range,
right=False).value_counts().reset_index(name='Adjusted Gross Count')

bin Adjusted Gross count
bin Adjusted Gross count
bin Adjusted Gross count
bin Adjusted Gross count
within the range
[300,400)

| Trequency of data within the range [300,400)
```

Frequency distribution table

... (14 rows omitted)

Binning the Data (cont.)

- Or you can specify the number of bins. Default value is 10.
- Note that the last class interval is [a, b], i.e., includes b.

```
bins = pd.cut(millions['Adjusted Gross'],
11).value_counts().reset_index(name='Adjusted Gross Count')
bins.rename(columns={'index': 'bins'}, inplace=True)
```

```
      bin
      Adjusted Gross count

      338.41
      177

      702.852
      15

      1067.3
      6

      1431.74
      2

      1796.18
      0

Last class [1431.74, 1796.18]
```

Histogram

A histogram is a visualization of the distribution of a quantitative variable.

```
millions.hist('Adjusted Gross', unit="Million Dollars")
millions.hist('Adjusted Gross',
bins=np.arange(300,2001,100), unit="Million Dollars")
```


26

General Principles

Histogram

- The bins are drawn to scale and are contiguous (though some might be empty)
- The **area** of each bar is proportional to the number of entries in the bin area of bar = percent of entries in bin = height of bar × width of bin

• Thus, height of bar
$$=\frac{\text{area of bar}}{\text{width of bin}} = \frac{\text{percent of entries in bin}}{\text{width of bin}}$$

- Density scale
 - The total area of all the bars in the histogram is 100%, or "sum to 1"

Density scale vs. counts


```
uneven = make_array(300, 350, 400, 500, 1800)
millions.hist('Adjusted Gross', bins=uneven, unit="Million Dollars")
```

```
millions.hist('Adjusted Gross', bins=uneven, normed=False)
```

millions.bin('Adjusted Gross', bins=uneven)

bin	Adjusted	Gross	count
300			14
350			54
400			60
500			72
1800			0

HISTOGRAM

NOT A HISTOGRAM

Level of Detail


```
some_tiny_bins = make_array(
300, 350, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 1800)
millions.hist('Adjusted Gross', bins=some_tiny_bins, unit='Million Dollars')
```


1000

Adjusted Gross (Million Dollars)

750

1250

1500

- [400, 500) bin is \$100M width and contain 30% of the data. Thus,
 0.3% per \$1M.
- a rough approximation for the hights of each of 100 skinny bins with \$1M width in [400,500)

Overlaid Scatter Plot


```
heights = pd.read_csv(path_data+'sons_heights.csv')
plt.scatter(x,y, color='blue', alpha=0.5, label='father')
plt.scatter(x,z, color='yellow', alpha=0.5, label='mother')
```


Overlaid Line Plot


```
# Read the full Census table
data = 'http://www2.census.gov/programs-surveys/popest/technical-documentation/file-
layouts/2010-2019/nc-est2019-agesex-res.csv'
full census table = pd.read csv(data)
# Extract four columns from full census table.
partial census table = full census table[['SEX', 'AGE', 'POPESTIMATE2019',
'POPESTIMATE2014']]
# Rename two columns
us pop = partial census table.rename(columns={'POPESTIMATE2019': '2019',
'POPESTIMATE2014': '2014'}, inplace=False)
# Access the rows corresponding to all children, ages 0-18, sex 0 (male & female)
filter1 = us pop['AGE'] <= 18
filter2 = us pop['SEX'] == 0
children = us pop.loc[filter1 & filter2]
                                                           0: all, 1: male, 2: female
# Drop column 'SEX'
children.drop(columns=['SEX'], inplace=True)
children
```

Overlaid Line Plot (cont.)

AGE	2014	2019		
0	3954787	3783052		
1	3948891	3829599		
2	3958711	3922044		
3	4005928	3998665		
4	4004032	4043323		
(14 rows omitted)				

Grouped Bar Charts

usa ca = pd.read csv(path data+'usa ca 2019.csv')

Ethnicity/Race	USA All	CA All	USA Children	CA Children
API	5.8	15.1	4.9	11.5
Black	12.2	5.3	13.4	4.9
Hispanic	18.5	39.5	25.6	52.1
White	60.1	36.4	50	25.5
Other	3.4	3.7	6.1	6

new_usa_ca = usa_ca.set_index(keys=['Ethnicity/Race'], inplace=False)

new usa ca = new usa ca[['USA All','CA All']]

Q&A

Prof. Jeon, Sangryul

Computer Vision Lab.

Pusan National University, Korea

Tel: +82-51-510-2423

Web: http://sr-jeon.github.io/

E-mail: srjeonn@pusan.ac.kr