Algebra Lineal

Jerónimo Delorenzi

2024

1. Unidad 1 - Espacios Vectoriales

1.1. Cuerpos

Sea F un conjunto no vacío dotado de dos operaciones:

- $+: F \times F \to F$ llamadada **Suma**
- $\cdot: F \times F \to F$ llamadada **Producto**

Decimos que es $(F, +, \cdot)$ es un cuerpo si se verifican los siguentes axiomas:

- 1. Asociatividad suma: \forall a,b,c \in F tenemos que a+(b+c)=(a+b)+c
- 2. Elemento neutro suma: $\exists 0 \in F \text{ tal que } \forall a \in F, a+0=0+a=a$
- 3. Elemento opuesto: dado $a \in F$, $\exists b \in \mathbf{F}$ tal que a + b = b + a = 0
- 4. Conmutatividad suma: \forall a,b \in F tenemos que a + b = b + a
- 5. Asociatividad producto: \forall a,b \in F tenemos que $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 6. Elemento neutro producto: $\exists 1 \in F \text{ tal que } \forall a \in F, a \cdot 1 = 1 \cdot a = a$
- 7. Elemento inverso multiplicativo: dado a $\in F^*$ $(F^* := F \{0\}), \exists$ b $\in F$ tal que $a \cdot b = b \cdot a = 1$
- 8. Conmutatividad producto: \forall a,b \in F tenemos que $a \cdot b = b \cdot a$
- 9. Distributiva del producto respecto a la suma: \forall a,b,c \in F tenemos que $a \cdot (b+c) = a \cdot b + a \cdot c$

A los elementos de F se los llama escalares.

1.1.1. Subcuerpos

Un subconjunto $\mathbb{F} \subset \mathbb{C}$ es subcuerpo si con las operaciones restringidas tenemos que $(F, +, \cdot)$ es un cuerpo.

Puesto que la asociatividad, conmutatividad y distributivas se heredan del cuerpo, bastará solo verificar:

- \forall a,b $\in \mathbb{F}$ tenemos que la suma es cerrada, es decir: $a + b \in \mathbb{F}$.
- \forall a,b \in \mathbb{F} tenemos que el producto es cerrado, es decir: $a \cdot b \in \mathbb{F}$.
- $0,1 \in \mathbb{F}$ es decir, el neutro de la suma y el producto pernetencen a \mathbb{F} .
- \forall a \in \mathbb{F} el opuesto de a \in \mathbb{C} tambien sera elemento de \mathbb{F} , $-a \in \mathbb{F}$
- \forall a $\in \mathbb{F}$, el inverso de a $\in \mathbb{C}$ tambien sera elemento de \mathbb{F} , $a^{-1} \in \mathbb{F}$

1.1.2. Ejemplos

El conjunto $\mathbb{Q}[\sqrt{2}] := \{x + \sqrt{2} \cdot y : x, y \in \mathbb{Q}\}$ es un subcuerpo de \mathbb{C} . Se le llama a $\mathbb{Q}[\sqrt{2}]$ extensión de \mathbb{Q} por $\sqrt{2}$.

Existen cuerpos que no son de los numéricos ni extensiones de los mismos, y ademas son finitos.

Por ejemplo \mathbb{Z}_2 definido por $\mathbb{Z}_2 := \{\overline{0}, \overline{1}\}$ donde es el cuerpo formado por la clases de equivalencia del 0 y el 1 definido por la congruencia modulo dos:

- $a \equiv b \pmod{2} \iff 2 | (b-a)$
- En general: Sea $n \in \mathbb{N}$, se define la relacion de congruencia modulo n:

$$a \equiv b \pmod{n} \iff n | (b-a)$$

donde la clase de equivalencia esta determinado de esta manera.

$$Sea \ a \in \mathbb{Z} : \bar{a} = \{b \in \mathbb{Z} : a \equiv b \pmod{n}\} = \{b \in \mathbb{Z} : n | (b-a)\}$$

$$= \{b \in \mathbb{Z} : b-a = kn, \ para \ algun \ k \in \mathbb{Z}\} = \{b \in \mathbb{Z} : a = b+kn, \ para \ algun \ k \in \mathbb{Z}\}$$

$$\underline{\text{Luego}} \ \mathbb{Z}_n := \{\bar{0}, \bar{1}, \dots, \overline{n-1}\}. \ \text{Ahora, dados} \ \bar{i}, \bar{j} \in \mathbb{Z}_n \ \text{definimos} \ \bar{i}+\bar{j} =$$

$$\bar{i}+\bar{j}$$

Y tenemos que \mathbb{Z}_n es cuerpo $\iff n$ es primo.

Sea F un cuerpo, para $n \in \mathbb{N}$ consideramos el elemento 1 + n veces + 1 donde $n \in \mathbb{N}$ es n natural. Este elemento lo llamamos n e identificamos los números naturales con ciertos elementos del cuerpo. De esta forma, la expresión nx para $n \in \mathbb{N}$ y $x \in \mathbb{Z}$: nx = (1 + n veces + 1)x = (1x + n veces + 1x) = x + n veces + x, es decir, + x es el elemento de + x que se obtiene sumando n veces el elemento + x.

Un cuerpo F se dice de **caracteristica** n si $n \in \mathbb{N}$ es el menor número natural para el cual 1 + n veces +1 = 0. Si no existe tal $n \in \mathbb{N}$, decimos que F es de **caracteristica** 0.

1.2. Espacios Vectoriales

Sea \mathbb{F} un cuerpo de escalares. Sea V dotado de dos operaciones, suma (+), que a un par de elementos u y v les asigna un elemento u+v y producto por escalar (\cdot) , que dado un escalar $\alpha \in \mathbb{F}$ y un elemento $v \in \mathbb{F}$ le asigna un elemento $\alpha \cdot v$. Decimos que la terna $(V, +, \cdot)$ es un \mathbb{F} – espacio vectorial si se verifican los siguientes axiomas:

- 1. Clausura de la suma: si $u, v \in V$, entonces $u + v \in \mathbb{F}$.
- 2. Asociatividad de la suma: si $u, v, w \in V$, entonces u + (v + w) = (u + v) + w.
- 3. Elemento neutro suma: $\exists \ \bar{0} \in V \text{ tal que } u + \bar{0} = \bar{0} + u = u.$
- 4. Elemento opuesto: dado $u \in V$, $\exists v \in V$ tal que u + v = v + u = 0.
- 5. Conmutatividad suma: si $u, v \in V$, entonces u + v = v + u.
- 6. Clausura del producto por escalar: si $u, v \in V$, entonces $u \cdot v \in V$
- 7. Asociatividad del producto por escalar: $\alpha, \beta \in \mathbb{F}$ y $u \in V$, entonces $\alpha \cdot (\beta \cdot u) = (\alpha \cdot \beta) \cdot u$.
- 8. Distributiva del producto con respecto a la suma de escalares: si $\alpha, \beta \in \mathbb{F}$ y $u \in V$, entonces $u \cdot (\alpha + \beta) = u \cdot \alpha + u \cdot \beta$.
- 9. Distributiva del producto con respecto a la suma de vectores: si $\alpha \in \mathbb{F}$ y $u, v \in V$, entonces $\alpha \cdot (u + v) = \alpha \cdot u + \alpha \cdot v$.
- 10. Unitariedad del producto por escalar: si $u \in V$, entonces $1 \cdot u = u$.

Proposición 1 En un $F - ev(V, +, \cdot)$ se verifican:

1. El elemento neutro para la suma es único.

Demostración. Dado $v \in V$, supongamos que existe otro elemento neutro para la suma, llamemoslo $w \in V$, tal que $\forall v \in V$, v + w = w + v = v. Entonces tenemos que, 0 = 0 + w = w.

2. Dado un vector $v \in V$, existe un único opuesto, denotado $-v \in V$.

Demostración. Sea $v \in V$ vector, y $w \in V$, $z \in V$ dos vectores opuestos a v, es decir $v + z = z + w = \bar{0}$ y $v + w = w + v = \bar{0}$. Luego, $z = z + \bar{0} = z + (a + w) = (z + a) + w = \bar{0} + w = w$

3. Dado un vector $v \in V$, se tiene que $0 \cdot v = \bar{0}$.

Demostración. Tenemos que
$$0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v$$
.
Luego $0 \cdot v + (-0) \cdot v = (0 \cdot v + 0 \cdot v) + (-0 \cdot v) = 0 \cdot v + (0 \cdot v + (-0 \cdot v))$
Con lo cual $\overline{0} = 0 \cdot v + \overline{0} = 0 \cdot v$

4. Dado un escalar $\alpha \in \mathbb{F}$, se tiene que $\alpha \cdot \bar{0} = \bar{0}$.

Demostración. Tenemos que
$$\alpha \cdot \bar{0} = \alpha \cdot (\bar{0} + \bar{0}) = \alpha \cdot \bar{0} + \alpha \cdot \bar{0}$$
. Luego $\alpha \cdot \bar{0} + (-\alpha \cdot \bar{0}) = (\alpha \cdot \bar{0} + \alpha \cdot \bar{0}) + (-\alpha \cdot \bar{0}) = \alpha \cdot \bar{0} + (\alpha \cdot \bar{0} + (-\alpha \cdot \bar{0}))$ Con lo cual $\bar{0} = \alpha \cdot 0 + \bar{0} = \alpha \cdot \bar{0}$

5. Dado un vector $v \in V$, se tiene que $(-1) \cdot v = -v$

Demostración. Probar $(-1) \cdot v = -v$, es lo mismo que probar $v + (-1) \cdot v = 0$.

Por lo tanto
$$v + (-1) \cdot v = 1 \cdot v + (-1) \cdot v = (1 + (-1)) \cdot v = 0 \cdot v = 0$$

6. Dado un escalar $\alpha \in \mathbb{F}$ y un vector $v \in V$ que verifican que $\alpha \cdot v = \overline{0}$, se tiene que o bien $\alpha = 0$ o bien $v = \overline{0}$ (sin excluir el caso simultaneo).

Demostración. Supongamos que para
$$\alpha \in \mathbb{F}$$
 y $v \in V$ tenemos que $\alpha \cdot v = \bar{0}$. Si $\alpha = 0$ no hay nada que probar. Supongamos que $\alpha \neq 0$, tenemos que $v = 1 \cdot v = (\frac{1}{\alpha}\alpha)v = \frac{1}{\alpha}(\alpha v) = \frac{1}{\alpha} \cdot \bar{0} = \bar{0}$

1.3. Subespacios Vectoriales

Sean $(V, +, \cdot)$ un F-ev y $U \subset V$. Decimos que U es un F-subespacio vectorial de \mathbf{V} si con las operaciones restringidas en un F-ev. Es decir, dado $(V, +, \cdot)$ donde $+: V \times V \to V$ y $\cdot: \mathbb{F} \times V \to V$. Luego $U \subset V$ y tenemos $(U, +|_U, \cdot|_U)$ donde: $U \times U \to V$ y $\cdot: \mathbb{F} \times U \to V$.

Observaciones: En la definicion de $sev\ U$ de V se debe considerar:

- 1. $U \subset V$
- 2. Las operaciones suma y producto por escalar restringidas.
- 3. El mismo cuerpo.

Proposición 2 - Caracterización Sea V un F-ev. Sea $U \subset V$. Tenemos que $U \subset V$ sii se satisfacen:

- 1. la suma es cerrada en $U: u, v \in U \ \forall \ u, v \in U$.
- 2. el producto por escalar es cerrado en $U: u \in U \ \forall \ \alpha \in \mathbb{F} \ y \ u \in U$.

Demostración. Tenemos que probar que U es sev, pero veamos que la asociatividad, conmutatividad para la suma y la asociatividad y unitariedad del producto por escalar, distributiva respecto a la suma de escalares y a la suma de vectores se heredan de V. Luego al probar que la suma es cerra y el producto por escalar también, tenemos que por las propiedades que verifican un ev $((-1) \cdot v = -v \text{ y } \alpha \cdot \bar{0} = \bar{0})$. Luego U es un sev.

Observaciones:

- Siempre tenemos dos subespacios: V al que se lo llama subespacio total y $\{\bar{0}\}$ llamado trivial.
- Si $\{\bar{0}\} \subsetneq U \subsetneq V$ sev se dice que U es no trivial o propio.

1.3.1. Suma de sev

Proposicion 3 Sea $(V, +, \cdot)$ un F-ev. Sean $U, W \subset V$, entonces $U \cap W \subset V$.

Demostración.

- Cierre suma: sean $u, v \in U \cap W$, tenemos que $u \in U$ y $u \in W$, y también $v \in U$ y $v \in W$. Luego $u + v \in U$ pues $U \subset Vsev$ y $u + v \in W$ pues $W \subset Vsev$.
- Cierre producto por escalar: sean $u, \in U \cap W$ y $\alpha \in \mathbb{F}$, tenemos que $u \in U$ y $u \in W$. Luego $\alpha \cdot u \in U$ pues $U \subset Vsev$ y $\alpha \cdot u \in W$ pues $W \subset Vsev$. \therefore por (1) y (2), $U \cap W$ es sev.

Sea V un F-ev y sean $U_1, \ldots, U_n \subset V$. Definimos el **conjunto suma** de U_1, \ldots, U_n como:

$$S = U_1 + \ldots + U_n := \{u_1 + \ldots + u_n \in V : u_i \in U_i \text{ para todo } i = 1, \ldots, n\} \subset V$$

Proposición 4 Sea V un F-ev y sean $U_1, \ldots, U_n \subset V$ sev. Si S es el conjunto suma de U_1, \ldots, U_n entonces $S \subset V$. Más aún, es el sev de V más chico que contiene a $U = U_1 \cup \ldots \cup U_n$ en el sentido de que si $U \subset W \subset V$ sev entonces $S \subset W$.

Demostración.

- Sean $u = u_1 + \ldots + u_n$, $w = w_1 + \ldots + w_n \in S$, donde $u_i, w_i \in U_1$ para $todo\ i = 1, \ldots, n$, y sea $\alpha \in \mathbb{F}$ tal que:
 - 1. $u+w = (u_1+\ldots+u_n)+(w_1+\ldots+w_n) = (u_1+w_1)+\ldots+(u_n+w_n) \in S$, ya que cada u_i es sev, con lo cual $u_i+w_i \in U_i$ para $todo\ i=1,\ldots,n$.
 - 2. $\alpha \cdot u = \alpha \cdot (u_1 + \ldots + u_n) = (\alpha \cdot u_1 + \ldots + \alpha \cdot u_n) \in S$, ya que cada u_i es sev, con lo cual $\alpha \cdot u_i \in U_i$ para $todo\ i = 1, \ldots, n$. Por caracterización de sev, sigue que $S \subset Vsev$.

■ Sea $U \subset W \subset V$ sev. Si $u = u_1 + \ldots + u_n \in S$ con $u_i \in U_i$ para todo $i = 1, \ldots, n$ tenemos que $u_1 \in U_i \subset U \subset W$ para todo $i = 1, \ldots, n$. Luego $S \subset W$.

Observaciones:

- 1. cada $U_i \subset Ssev, i = 1, ..., n$.
- 2. $U \subset S$, aunque no necesariamente U es un sev.
- 3. si U = S entonces U es un sev.

Sea V un F-ev y sean $U_1, \ldots, U_n \subset V$ sev. Decimos que el sev suma $S = U_1 + \ldots + U_n$ es **suma directa** si para cada $s \in S$ exiten únicos $u_1 \in U_1, \ldots, u_n \in U_n \in U_n$ tales que $u = u_1 + \ldots + u_n$ Y lo denotamos como:

$$S = U_1 \oplus \ldots \oplus U_n$$

Proposicion 5 Sea V un F-ev y sean $U, W \subset V$ sev Consideremos el subespacio suma S = U + W. Tenemos que $S = U \oplus W$ si $i \ U \cap W = \{\bar{0}\}.$

Demostración.

- (⇒) $S = U \oplus W$, sea $u \in U \cap W$. Como $\bar{0} = u + (-u) = -u + u$ y la escritura es única, entonces tiene que ser u = -u, luego $u = \bar{0}$
- (⇐) Tenemos que si $v = u + w = u' + w' \in S$ con $u, u' \in U$ y $w, w' \in W$. Luego $\bar{0} = u u' = w w' \in U \cap W$, de modo que $u, u' = -w + w' \in U \cap W = \{\bar{0}\}$. Esto nos dice que u = u' y w = w', de modo que la escritura es única.

Proposicion 6 Sean V un F-ev, $U_1, \ldots, U_n \subset V$ y $S = U_1 + \ldots + U_n$. Entonces es suma directa sii el vector $\bar{0}$ sólo se puede obtener sumando el elemento trivial de cada sev U_1, \ldots, U_n .

Demostración.

- (\Rightarrow) $S = U_1 \oplus \ldots \oplus U_n$. Si $\{\bar{0}\} = u_1 \oplus \ldots \oplus u_n \in S$, por unicidad de escritura debe ser $u_i = \{\bar{0}\}\ i = 1, \ldots, n$.
- (\Leftarrow) Sea $u = u_1 \oplus \ldots \oplus u_n = v_1 \oplus \ldots \oplus v_n \in S$ con $u_i, v_i \in U_i$ $i = 1, \ldots, n$. Entonces $\{\bar{0}\} = (u_1 - v_1) + \ldots + (u_n - v_n)$ y por hipotesis debe ser $u_i = v_i$, $i = 1, \ldots, n$. Luego la suma es directa.

1.4. Conjunto Generador

Sean V F-ev, $v_1, \ldots, v_n \in V$. Una **combinación lineal** (cl) de los vectores $v_1, \ldots, v_n \in V$ es un vector de la forma:

$$\alpha_1 v_1 + \ldots + \alpha_n v_n$$

con $\alpha_1, \ldots, \alpha_n \in F$. Las cl de vectores de un ev siempre tienen una cantidad finita de términos.

Sea V F-ev y $\emptyset \subsetneq S \subset V$. El **conjunto generado** por S o **Span** de S es el conjunto de todas las cl posibles de elementos de S:

$$span(S) := \{\alpha_1 v_1 + \ldots + \alpha_n v_n : v_1, \ldots, v_n \in V, \alpha_1, \ldots, \alpha_n \in F, n \in \mathbb{N}\}\$$

Si $S = \emptyset$ definimos $span(S) := \{\bar{0}\}.$

Ejemplos:

- $(17, -4, 2) \in span((2, 1, -3), (1, -2, 4))$
- span((1,0),(0,1)) es el plano xy, ya que cualquier vector del plano se puede escribir como cl de esos vectores.

Proposición 6 Sean V un F-ev y $S \subset V$. Entonces $span(S) \subset Vsev$.

Demostración. Usamos caracterización de subespacios.

Sean $\alpha, \beta \in F, u, v \in span(S)$. Veamos que $\alpha u + \beta v \in span(S)$. En efecto:

$$-u \in span(S) \Rightarrow \exists \alpha_1, \dots, \alpha_n \in F \text{ tal que } u = \alpha_1 v_1 + \dots + \alpha_n v_n \text{ con } v_i \in S.$$

$$v \in span(S) \Rightarrow \exists \beta_1, \dots, \beta_n \in F \text{ tal que } v = \beta_1 w_1 + \dots + \beta_n w_n \text{ con } w_i \in S.$$

Luego
$$\alpha u + \beta v = \alpha(\alpha_1 v_1 + \dots + \alpha_n v_n) + \beta(\beta_1 w_1 + \dots + \beta_n w_n)$$

Entonces tenemos $\alpha u + \beta v = \alpha \alpha_1 v_1 + \ldots + \alpha \alpha_n v_n + \beta \beta_1 w_1 + \ldots + \beta \beta_n w_n \in span(S)$ pues es una cl de elementos de S.

Llamaremos al span(S) como el subespacio generado por S.

Observación Sean V un F-ev y $S \subset V$. Entonces $S \subset span(S)$. En efecto, cada $u \in S$ tenemos $u = 1 \cdot u$, que es una cl de elementos de S, luego está en span(S). También, si $S \subseteq T \Rightarrow span(S) \subseteq span(T)$.

Proposición 7 Sean V un F-ev y $S \subset V$. Entonces $span(S) = \bigcap \{U \subset V : U \text{ sev } y \mid S \subset U\}.$

Demostración. Llamemos $\mathcal{F} = \{U \subset V : Usev \ y \ S \subset U\}$ a la familia de sev que contienen a S. Queremos llegar a que $span(S) = \bigcap_{U \in \mathcal{F}} U$.

 (\subset) Veamos que $span(S) \subset U \ \forall \ U \in \mathcal{F}$.

Sea $U \in \mathcal{F}$. Entonces $S \subset U$. Sea $u \in span(S) = \exists \alpha_1, \ldots, \alpha_n \in F$ tq $u = \alpha_1 v_1 + \ldots + \alpha_n v_n$ con $v_i \in S$., luego $v_i \in U$, y como $U \in Vsev$, sigue que $u \in U$.

(⊃) $span \in \mathcal{F}$, luego la intersección de span(S) con el resto de los sev de la familia \mathcal{F} está contenida en span(S).

Corolario 1 $S \subset Vsev sii S = span(S)$

Demostración.

- (\Rightarrow) Sea S un subespacio de V. Debemos probar igualdad de conjuntos.
 - $S \subseteq span(S)$: es directo ya que $u \in S$ tenemos $u = 1 \cdot u$, que es una cl de elementos de S, luego está en span(S).
 - $span(S) \subseteq S$: sea $w \in span(S)$, por definicion de span, w es una cl de los vectores de S, es decir $\exists \alpha_1, ..., \alpha_n$ tq $w = \alpha_1 v_1 + ... + \alpha_n v_n$ con $v_i \in S$. Como S es un sev, sabemos que la suma y el producto son cerrados en S. Luego $w \in S$ y por lo tanto todo elemento de span(S) pertenece a S.
- (\Leftarrow) Por proposición, sabemos que span(S) es sev de V, como S = span(S) entonces S también es sev de V.

Sean V un F-ev y $S \subset V$. Si span(S) = V decimos que S **genera** a V, o que V **es generado** por S o que S es un **subconjunto generador** de V o que S es un **sistema generador** de V.

Si existe un conjunto generador de V que es finito, decimos que V es finitamente generado. Si no exista tal S decimos que V es infinito dimensional.

Ejemplos:

- \blacksquare Base canonica de \mathbb{R}^3 $\{i,j,k\}$ es un conjunto generador de $\mathbb{R}^3.$
- $\{1, x, x^2\}$ es un conjunto generador de $\mathbb{C}_2[x]$ como \mathbb{C} -ev.
- $\mathbb{C}[x]$ es infinito dimensional: ningún conjunto finito de elementos puede generarlo.
- El conjunto solucion del sistema AX = 0 donde

$$\begin{pmatrix}
1 & 2 & 0 & 3 & 0 \\
0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

está generado por $\{(-2,1,0,0,0),(-3,0,-1,1,0)\}.$

1.5. Independencia Lineal

Sean V un F-ev y $S \subset V$

• Si S es finito $(S = \{v_1, \ldots, v_n\})$ decimos que S es **linealmente independiente** (li) si la única cl de elementos de S que resulta en el vector nulo es la trivial.

Es decir: si $\alpha_1 v_1 + \ldots + \alpha_n v_n = \overline{0}$ para algún $\alpha_1, \ldots, \alpha_n \in F$ entonces $\alpha_1 = \ldots = \alpha_n = 0$.

- Si $S = \emptyset$ decretamos que S es li.
- Si S es un conjunto infinito, decimos que es li si todo subconjunto finito de S es li.
- Si S no es li decimos que S es linealmente dependiente (ld).

Proposición 8 Sean V un F-ev y $S \subset V$

- 1. S es ld sii $\exists v_1, \ldots, v_m \in S$ y $\alpha_1, \ldots, \alpha_m \in F$ no todos nulos tq $\alpha_1 v_1 + \ldots + \alpha_m v_m = \bar{0}$.
- $2. \ \bar{0} \in S \Rightarrow S \ ld.$
- 3. $S \ ld$ entonces todo $T \supset S$ es ld.
- 4. S li entonces todo $T \subset S$ es li.
- 5. $v \in V$, $\{v\} \ ld \ sii \ v = \bar{0}$.
- 6. $u, v \in V$, $\{u, v\}$ $ld sii <math>\exists \lambda \in F \text{ tq } u = \lambda v$.
- 7. $S ld sii \exists un vector en S que es <math>cl$ de los demás.

Demostración.

- 1. (\Rightarrow) Es directa.
 - (\Leftarrow) Supongamos que $\exists v_1, \ldots, v_m \in S$ y $\alpha_1, \ldots, \alpha_m \in F$ no todos nulos tq $\alpha_1 v_1 + \ldots + \alpha_m v_m = \bar{0}$. Como no todos los $\alpha_1, \ldots, \alpha_m$ son nulos, sin perder generalidad tomamos $\alpha_1 \neq 0$. Entonces podemos expresar a $v_1 = -\frac{\alpha_2}{\alpha_1} v_2 \ldots \frac{\alpha_m}{\alpha_1} v_m$. Es decir, se puede escribir a v_1 como combinacion lineal de otros vectores. Luego S es ld.
- 2. Por hipotesis $\bar{0}$ está en S, entonces tenemos $\alpha_1 v_1 + \ldots + \alpha_k \bar{0} + \ldots + \alpha_n v_n = \bar{0}$ donde $\alpha_1, \ldots, \alpha_n \in F$ no todos son nulos, entonces si tomamos $\alpha_k \neq 0$ tenemos una combinación lineal no trivial, luego S es ld.

- 3. S es ld, es decir que existen $\alpha_1v_1 + \ldots + \alpha_nv_n = \bar{0}$ tq la solución es la no trivial. Tomemos $S \subset T$. Como S es ld y $S \subset T$, sea $T = \{u_1, \ldots, u_m\}$ entonces, $\alpha_1v_1 + \ldots + \alpha_nv_n + \beta_1u_1 + \ldots + \beta_mu_m = \bar{0}$ como $\alpha_1v_1 + \ldots + \alpha_nv_n = \bar{0}$ es ld en consecuencia T será ld.
- 4. Dado S li, tenemos que $\alpha_1v_1+\ldots+\alpha_nv_n=\bar{0}$ es una combinación lineal trivial. Dado $T\subset S$ supongamos que T no es li, es decir, ld. Como T es ld, entonces tenemos que existe una combinación lineal no trivial, entonces encontramos un subconjunto ld en S, y esto contradice que S sea li. Luego T es li.
- 5. (⇒) Supongamos que {v} es ld es decir que existe combinación lineal no trivial, αv = 0̄, donde α ≠ 0. Como el resultado es 0̄ implica necesariamente que v = 0̄.
 (⇐) Proposición 8.2.
- 6. (\Rightarrow) Supongamos que $\{u,v\}$ es ld, entonces tenemos $\alpha_1 u + \alpha_2 v = \bar{0}$ donde al menos α_1 o α_2 es no nulo, tomemos $\alpha_1 \neq 0$, entonces podemos reescribir, $-\frac{\alpha_2}{\alpha_1}v = u$ y si llamamos $-\frac{\alpha_2}{\alpha_1} = \lambda$ llegamos a que $\lambda v = u$. (\Leftarrow) $\lambda v = u \Rightarrow u \lambda v = \bar{0}$. Si tomamos $\alpha_1 = 1$ y $\alpha_2 = -\lambda$ como ambos son no nulos llegamos a que $\{u,v\}$ es ld.
- 7. (⇒) Si S es ld entonces α₁v₁ + ... + α_nv_n = 0 donde α₁,..., α_n no son todos nulos. Sin perder generalidad tomamos α₁ ≠ 0, entonces v₁ = -α₂/α₁v₂ ... α_n/α₁v_n y vemos que v₁ es combinación lineal de los vectores de S.
 (⇐) Si ∃ un vector de S que es cl de los demas tomemos, α₁v₁ + ... + α_{n-1}v_{n-1} = v_n ⇒ α₁v₁ + ... + α_{n-1}v_{n-1} v_n = 0 y vemos que α_n ≠ 0 es decir que S es ld.

Ejemplo:

- Los vectores i, j, k son li en \mathbb{R}^3 .
- El conjunto $\{x^2, x^4, x^6, x^8\}$ es li en $\mathbb{R}[x]$.
- El conjunto $\{sin(x), cos(x)\}$ es li en $\mathbb{R}^{[-\pi,\pi]}$.

1.6. Bases y dimensión

Sea V un F-ev. Una **base** de V es un conjunto generador li. V se dice que es **finito dimensional** si tiene una base finita.

Ejemplos:

- \mathbb{F}^n , $B = \{e_i\}_{i=1,\dots,n}$.
- $\mathbb{F}_n[x], B = \{x^i : i = 0, \dots, n\}.$
- $\mathbb{F}[x]$, $B = \{x^i : i \in \mathbb{N}_0\}$, es infinito dimensional.
- \blacksquare $\mathbb{F}^{m \times n}$, $B = \{E_{ij} = 1, \dots, m \ j = 1, \dots, n\}$.
- \mathbb{F}^{∞} , $B = \{e_i : i \in \mathbb{N}\}$. es infinito dimensional.

Proposición 9 Sea V un F-ev. Si V está generado por un conjunto S de cardinal finito n, entonces todo conjunto T de vectores li de V es finito y más aún, si su cardinal es m, entonces $m \le n$.

Demostración. Sea $S = \{v_1, \ldots, v_n\}$ tq span(S) = V y sea $T \subset Vli$. Supongamos que T es finito, sea $T = \{u_1, \ldots, u_m\}$. Tenemos por hipótesis que T es li. Queremos probar que debe ser $m \leq n$.

Como span(S) = V, todo vector de T se escribe como cl de los elementos de S

$$u_1 = \alpha_{11}v_1 + \ldots + \alpha_{1n}v_n$$

$$\vdots$$

$$u_m = \alpha_{m1}v_1 + \ldots + \alpha_{mn}v_n$$

Llamemos $A = (a_{ij})$ a la matriz en $\mathbb{F}^{m \times n}$ de coeficientes de las expresiones anteriores.

Consideremos el sistema homogéneo $A^tX=0$, luego X es el vector de m incógnitas x_1, \ldots, x_m y el sistema consta de n ecuaciones y m incógnitas. Sea $(\beta_1, \ldots, \beta_m)^t$ una solución del sistema, y vemaos que debe ser trivial, es decir, que el sistema homogéneo tiene sólo la solución trivial. Para esto, plantemos la cl de vectores de T y la reescribimos como cl de elementos de S

$$\beta_{1}u_{1} + \ldots + \beta_{m}u_{m} = \beta_{1}(\alpha_{11}v_{1} + \ldots + \alpha_{1n}v_{n}) + \ldots + \beta_{m}(\alpha_{m}1v_{1} + \ldots + \alpha_{mn}v_{n})$$

$$= \beta_{1}\alpha_{11}v_{1} + \ldots + \beta_{1}\alpha_{1n}v_{n} + \ldots + \beta_{m}\alpha_{m1}v_{1} + \ldots + \beta_{m}\alpha_{mn}v_{n}$$

$$= (\beta_{1}\alpha_{11} + \ldots + \beta_{m}\alpha_{m1})v_{1} + \ldots + (\beta_{1}\alpha_{1n} + \ldots + \beta_{m}\alpha_{mn})v_{n}$$

y puesto que $(\beta_1, \ldots, \beta_m)$ es una solución de $A^TX = 0$, tenemos que cada coeficiente de la cl resultante debe ser 0- Entonces la cl de elementos de T

resultantes es igual al vector nulo, luego cada coeficiente $\beta_i = 0$. Es decir, la solución del sistema es la trivial y no puede haber otr, Sigue que no hay variables libres, y como tiene n filas y m columnos, debe ser $m \le n$.

Supongamos que T es infinito, y consideremos un subconjunto U de T de n vectores. Tal conjunto es li por definición. Si agregamos un elemento de T, digamos u_{n+1} , tenemos un subconjunto $U' = U \cup \{u_{n+1}\}$ de T de n+1 vectores. Esto contradice lo que probamos anteriormente, luego T no puede ser infinito.

Corolario 2 Sea V un F-ev finito dimensional. Entonces todas sus bases tienen igual cantidad de elementos.

Demostración. Si B_1, B_2 bases de V de cardinales n_1, n_2 , entonces:

- como B_1 genera y B_2 li, debe ser $n_2 \leq n_1$
- como B_2 genera y B_1 li, debe ser $n_1 \leq n_2$ Asi $n_1 = n_2$.

Sea V un F-ev finito dimensional. La **dimensión** de V sobre F es la cantidad de elementos de sus bases. Denotamos dim_FV . Definimos la dimensión del espacio trivial como $dim_F\{\bar{0}\}=0$.

Corolario 3 Sea V un F-ev finito dimensional con $dim_F V = n$. Entonces.

- Si $S \subset V$ y |S| > n entonces S es ld.
- Si $S \subset V$ v |S| < n entonces S no genera V.

Demostración.

1.

2.

Proposición 10 Sea V un F-ev finito dimensional con $dim_F V = n$. Sea $B = \{v_1, \ldots, v_n\}$. B es base de V sii para cada $v \in V \exists ! \alpha_1, \ldots, \alpha_n \in F$ to $v = \alpha_1 v_1 + \ldots + \alpha_n v_n$.

Demostración.

 (\Rightarrow) Como span(B) = V, existen tales escalares. Como B es li, son únicos. En efecto, si existen $\alpha_1, \ldots, \alpha_n \in F$ y $\beta_1, \ldots, \beta_n \in F$ tq:

$$v = \alpha_1 v_1 + \ldots + \alpha_n v_n \ y \ v = \beta_1 v_1 + \ldots + \beta_n v_n$$

restando ambas expresiones tenemos que

$$\bar{0} = (\alpha_1 - \beta_1)v_1 + \ldots + (\alpha_n - \beta_n)v_n$$

y puesto que B es li, cada coeficiente debe ser 0, luego $\alpha_i = \beta_i$.

(\Leftarrow) Puesto que, por hipotesis todo vector de V es cl de elementos de V, B genera V. La unicidad de escritura se da en particular para $\bar{0}$, luego tenemos que B debe ser li. □

Proposición 6 Sea V un F-ev finito dimensional con $dim_FV=n$. Sea $S=\{v_1,\ldots,v_n\}\subset V$

- 1. Si S genera V entonces existe $B \subset S$ tal que B es base de V.
- 2. Si S es li entonces existe $T = \{v_{s+1}, \dots, v_n\}$ tq $B = S \cup T$ es base de V.

Demostración.

1. Si S es li, B = S es base de V.

Si S no es li, debe ser s > n, luego existe $v \in S$ tq $v \in span(S/\{v\})$, y más aún, $span(S/\{v\}) = span(S) = V$.

Ahora bien, si $S/\{v\}$ es li, $B=S/\{v\}$ es base. Si no es li, procedemos inductivamente.

El proceso se detiene pues no puede existir un conjunto generador con menos de n elementos.

2. Si S genera V, B = S es base de V.

Si S no genera V debe ser s < n. Sea B una base cualquiera de V, luego existe $v \in B$ tq $v \notin span(S)$. Entonces $S \cup \{v\}$ es li.

Ahora bien, si $B = S \cup \{v\}$ genera V, B es base. Si no genera, procedemos inductivamente.

El proceso se detiene al completar un conjunto li de n elementos.

Corolario 4 Sea V un F-ev con $dim_FV = n$. Entonces tiene base.

Corolario 5 Sea V un F-ev finito dimensional con $dim_F V = n$. $U \subset V sev$. Entonces $dim_F U \leq n$ y existe $W \subset V sev$ to $V = U \oplus W$.

Demostración. Si $dim_F U > n$ y S es una base de U, entonces S es li y su cardinal es mayor a n. No puede ser por Corolario 3. Luego $dim_F U \le n$.

Sea entonces $S = \{v_1, \dots, v_m \text{ y por por la proposición sabemos que existe } T = \{v_{s+1}, \dots, v_n\}$ tq $B = S \cup T$ es base de V. Sea W = span(T). Veamos que W es el compelento buscado, vd, $V = U \oplus W$. Para esto usamos caracterización de suma directa. Bastará probar que V = U + W y que $U \cap W = \{\bar{0}\}$.

Veamos que V = U + W. Necesitamos probar que todo $v \in V$ puede escribirse como suma de un elemento de U y uno de W. En efecto, dado $v \in V$ al ser B base, existen $\alpha_1, \ldots, \alpha_m, \alpha_{m+1}, \ldots, \alpha_n \in F$ to v = 0

 $\alpha_1 v_1 + \ldots + \alpha_m v_m + \alpha_{m+1} v_{m+1} \ldots + \alpha_n v_n$, de donde observamos que $u = v = \alpha_1 v_1 + \ldots + \alpha_m v_m \in U$ y $w = \alpha_{m+1} v_{m+1} \ldots + \alpha_n v_n \in W$ y v = u + w.

Finalmente sea $v \in U \cap W$. Entonces existen $\alpha_1, \ldots, \alpha_m, \alpha_{m+1}, \ldots, \alpha_n \in F$ tq $v = v = \alpha_1 v_1 + \ldots + \alpha_m v_m$ y $v = \alpha_{m+1} v_{m+1} \ldots + \alpha_n v_n$, de donde sigue que

$$\bar{0} = \alpha_1 v_1 + \ldots + \alpha_m v_m - \alpha_{m+1} v_{m+1} - \ldots + \alpha_n v_n$$

Luego cada $\alpha_i = 0, v = \bar{0}.$

Teorema 1 Sea V un F-ev y $U_1, U_2 \subset V$ sev finitos dimensionales. Entonces

$$dim(U_1 + U_2) = dimU_1 + dimU_2 - dim(U_1 \cap U_2)$$

Demostración. Sea $S = \{v_1, \dots, v_m\}$ una base de $U_1 \cap U_2$.

- Completamos S a una base de $U_1: T_1 = \{u_1, \ldots, u_r\}.$
- Completamos S a una base de $U_2: T_2 = \{w_1, \ldots, w_s\}$.

Asi tenemos, $dim U_1 = m + r$ u $dim U_2 = m + s$. Veamos que $B = S \cup T_1 \cup T_2$ es base de $U_1 + U_2$.

Tenemos en primer lugar que $U_1 \subset span(B)$ y $U_2 \subset span(B)$, luego $U_1 + U_2 = span(B)$. Veamos que es li. Para esto plantemos:

$$\alpha_1 v_1 + \ldots + \alpha_m v_m + \beta_1 u_1 + \ldots + \beta_r u_r + \gamma_1 w_1 + \ldots + \gamma_s w_s = \bar{0}$$

donde $a = \alpha_1 v_1 + \ldots + \alpha_m v_m \in span(S), b = \beta_1 u_1 + \ldots + \beta_r u_r \in span(T_1) \subset U_1 \text{ y } c = \gamma_1 w_1 + \ldots + \gamma_s w_s \in span(T_2) \subset U_2.$ Eutonces existen, $d_1, \ldots, d_r \in S$ to $c = d_1 v_1 + \ldots + d_m v_m$. Asi,

$$c = \gamma_1 w_1 + \ldots + \gamma_s w_s = d1_v 1 + \ldots + d_m v_m$$

de donde $\bar{0} = \gamma_1 w_1 + \ldots + \gamma_s w_s - d1_v 1 - \ldots - d_m v_m$, esto es una cl de elementos de $S \cup T_2$ que es base de U_2 y por lo tanto li. Como esta igualada al vector nulo, resulta que $c_i = d_i = 0$. Sigue entonces que $a_i = b_i = 0$. Asi, B es base del espacio suma $U_1 + U_2$. Finalmente,

$$dim(U_1+U_2) = m+r+s = m+r+m+s-m = dim(U_1)+dim(U_2)-(dimU_1\cap U_2)$$

Ejemplos

- $\blacksquare \mathbb{F}^n$, $B = \{e_i\} \ dim \mathbb{F}^n = n$.
- \blacksquare $\mathbb{F}_n[x], B = \{x^i : i = 0, \dots, n\}, dim \mathbb{F}_n[x] = n + 1.$
- $\mathbb{F}[x]$, $B = \{x^i : i \in \mathbb{N}_0\}$, es infinito dimensional.
- $\blacksquare \mathbb{F}^{m \times n}, B = \{E_{ij} = 1, \dots, m \mid j = 1, \dots, n\}, \dim \mathbb{F}^{m \times n} = mn.$
- \mathbb{F}^{∞} , $B = \{e_i : i \in \mathbb{N}\}$. es infinito dimensional.

14

2. Unidad 2 - Transformaciones Lineales