ANÁLISE INTELIGENTE DE DADOS (COB754)

MODELOS MÚLTIPLOS PREDITIVOS

LETÍCIA MARTINS RAPOSO

IDEIA

COMBINAR, DE ALGUMA
FORMA, AS DECISÕES
INDIVIDUAIS DE UM
CONJUNTO DE MODELOS
PREDITIVOS PARA PREDIZER
NOVOS EXEMPLOS, A FIM DE
REDUZIR A VARIÂNCIA OU
VIÉS E MELHORAR A
PREDIÇÃO.

MODELOS MÚLTIPLOS PREDITIVOS

Diferentes algoritmos de aprendizado exploram:

- Diferentes linguagens de representação;
- Diferentes espaços de procura;
- Diferentes funções de avaliação de hipóteses.

Como é possível explorar essas diferenças?

É possível desenvolver um conjunto de modelos que, trabalhando juntos, obtêm um melhor desempenho do que cada modelo trabalhando individualmente?

ERRO

O erro que surge de qualquer modelo pode ser dividido em três componentes matematicamente:

$$Err(x) = (E[\hat{f}(x)] - f(x))^{2} + E[\hat{f}(x) - E[\hat{f}(x)]]^{2} + \sigma_{e}^{2}$$

$$Err(x) = Vi\acute{e}s^{2} + Variância + Ruído$$

QUADRADO DO VIÉS: MEDE O QUÃO LONGE A PREDIÇÃO MÉDIA DO ALGORITMO DE APRENDIZADO (SOBRE TODOS OS POSSÍVEIS CONJUNTOS DE TREINAMENTO CUJO TAMANHO É IGUAL AO TAMANHO DO CONJUNTO DE TREINAMENTO DADO) ESTÁ DO VALOR CORRETO.

VARIÂNCIA: MEDE O QUÃO LONGE A PREDIÇÃO DO ALGORITMO DE APRENDIZADO ESTÁ DA PREDIÇÃO MÉDIA PARA DIFERENTES CONJUNTOS DE OBJETOS DE UM DADO TAMANHO.

RUÍDO: LIMITE INFERIOR DO ERRO ESPERADO DE QUALQUER ALGORITMO DE APRENDIZADO.

VIÉS VS. VARIÂNCIA

Viés: tendência que o modelo tem de aprender errado por não levar em consideração toda informação necessária (<u>underfitting</u>).

↑ viés: modelo com baixo desempenho que continua perdendo tendências importantes, pode não se ajustar bem aos dados.

Variância: tendência de aprender coisas aleatórias, ajustando modelos altamente flexíveis que acompanham o erro nos dados (<u>overfitting</u>).

↑ variância: se ajustará ao seu conjunto de treinamento e terá um desempenho ruim para observações fora desse conjunto.

ERRO VS COMPLEXIDADE DO MODELO

VISÃO LÓGICA DO MÉTODO DE MODELOS MÚLTIPLOS PREDITIVOS

TIPOS DE MODELOS MÚLTIPLOS PREDITIVOS

HOMOGÊNEOS

UM ÚNICO ALGORITMO DE APRENDIZADO DE MÁQUINA, DIFERENTES AMOSTRAS DO CONJUNTO ORIGINAI

BAGGING e BOOSTING

HETEROGÊNEOS

DIFERENTES
ALGORITMOS DE
APRENDIZADO DE
MÁQUINA, AMOSTRAS
IGUAIS A DO CONJUNTO
ORIGINAL

STACKING

BAGGING (BOOTSTRAP AGGREGATING)

- Desenvolvido por Leo Breiman ("Bagging predictors," Machine Learning, 24(2):123-140, 1996).
- Baseia-se em criar <u>preditores com amostras bootstrap dos dados</u>, e depois <u>combiná-lo</u>s a fim de formar um melhor preditor.
- Aprendizado em <u>paralelo</u> dos preditores.
- <u>Classificação</u>: os preditores são combinados por meio de voto.
- Regressão: usa-se, comumente, a média dos preditores.
- O objetivo do *bagging* é <u>reduzir a complexidade</u> dos modelos que superajustam os dados.
 - Tem pouco efeito sobre o viés, mas <u>reduz a variância</u>, principalmente em funções não lineares.

BAGGING

O método pode melhorar o desempenho de preditores <u>instáveis</u>, que são basicamente preditores com alta variância.

Preditor instável: pequenas perturbações no conjunto de treinamento causam grande variações nos preditores treinados com ele.

ALGORITMOS INSTÁVEIS	ALGORITMOS ESTÁVEIS
Redes Neurais	K-Nearest Neighbors
Árvores de Decisão	Análise Discriminante
Regressão	
	NÃO PODEM SER MELHORADOS POR BAGGING.

BAGGING

Considere uma amostra de treinamento $L = \{x_i, y_i\}_{i=1}^N$ e um preditor $\hat{d}_n(x)$, o qual é construído com base na amostra L.

- 1. Construa uma amostra bootstrap $L^* = \{x_i^*, y_i^*\}_{i=1}^N$
- 2. Compute o preditor via bootstrap $d_n^*(x)$, utilizando o mesmo procedimento para construir $\hat{d}_n(x)$, mas com a amostra L^* ;
- 3. O preditor via bagging é dado por $\hat{d}_{n;B}(x) \approx \frac{1}{K} \sum_{k=1}^K d_{n;(k)}^*(x)$ no caso de regressão;
- 4. Em classificação, a classe predita pelo classificador via bagging é a mais votada pelos classificadores, em que $N_j = \#\{k; d_{n;(k)}^*(x) = j\}$ e o classificador via bagging é $\hat{d}_{n;B}(x) = argmax N_j$.

SUBAGGING (SUBSAMPLE AGGREGATING)

- Proposta por Bühlmann e Yu (2002);
- Consiste em retirar amostras de tamanho M < N da amostra original L de tamanho N, sem reposição, calcular o preditor em cada uma dessas amostras e depois combiná-los.
 - M = aN, \underline{a} normalmente $\frac{1}{2}$.
- Atraente do ponto de vista computacional: ↓ n° de pontos a serem ajustados pelos preditores (M < N).</p>
- Bühlmann e Yu (2002) mostraram que:
 - Half subagging pode ser praticamente idêntico a bagging (para árvores de classificação binárias com apenas 2 nós terminais);
 - Escolher <u>a</u> muito pequeno pode levar a resultados piores do que o preditor sem *bagging*.

BOOSTING

- Técnica para combinar múltiplos modelos base (fracos) a fim de obter um modelo final com melhor desempenho (forte).
- Em cada iteração, o algoritmo atribui <u>pesos maiores às</u> observações incorretamente preditas na iteração anterior e essa etapa se repete até que o limite do algoritmo base seja atingido ou uma maior acurácia seja alcançada.
- O objetivo do boosting é aumentar a complexidade dos modelos que sofrem de alto viés, especialmente no caso de underfitting.
 - Tenta reduzir o erro nas predições → reduz o viés.

BOOSTING

APRENDIZADO SEQUENCIAL DOS PREDITORES

O 1º APRENDE A PARTIR DE TODO O CONJUNTO DE DADOS

OS SEGUINTES APRENDEM A PARTIR DE UM CONJUNTO DE TREINAMENTO COM BASE NO DESEMPENHO DOS ANTERIORES

↑ PESOS DOS EXEMPLOS ERRONEAMENTE CLASSIFICADOS

↑ PROBABILIDADE DE APARECEM NO CONJUNTO DE TREINAMENTO DO PRÓXIMO PREDITOR

ADABOOST (ADAPTATIVE BOOSTING)

- Um dos mais bem sucedidos algoritmos de Boosting.
- Desenvolvido por Freund e Schapire (1997).
- Treina uma série de modelos <u>sequencialmente</u>.
- Em cada iteração, a <u>distribuição de pesos é atualizada</u> para indicar a importância do exemplo no conjunto de dados.

ADABOOST (PARA DUAS CLASSES)

Dado n exemplos (x_i, y_i) , em que $x \in X e y \in \pm 1$:

- Inicialize os pesos (probabilidade de selecionar o exemplo i na amostra): $D_1(i) = \frac{1}{n}$, i = 1,2,...,n;
- Repita para t = 1,2,..., T:
 - 1. Obtenha uma amostra (bootstrap) usando os pesos D(i) nos dados de treinamento;
 - 2. Treine o classificador $h_t(x): X \to \pm 1$ com a amostra;
 - 3. Calcule a soma dos pesos para os exemplos classificados erroneamente $\epsilon_t = \sum_{i:h_t(x_i) \neq y_i} D_t(i)$;
 - 4. Calcule α_t (chance de classificação errada);

$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

ADABOOST

5. Atualize os pesos
$$D_{t+1}(i) = \frac{D_t(i) \exp\{-\alpha_t y_i h_t(x_i)\}}{Z_t}$$
, $Z_t = \sum_k D_t(k) \exp\{-\alpha_t y_i h_t(x_k)\}$

- Se o classificador acertar: +1 e +1 ou -1 e -1: exp(-) → diminui;
- Se o classificador errar: +1 e -1: exp(+) → aumenta;
- Saída do classificador final:

$$H_{final} = sign(\sum_t \alpha_t h_t(x)).$$

CONJUNTO DE DADOS ORIGINAL

 D_1

CASOS CLASSIFICADOS ERRONEAMENTE

$$\varepsilon_1 = 0.30$$

$$\alpha_1 = 0.42$$

RECEBEM MAIORES PESOS

 D_2

 $\alpha_2 = 0.62$

RECEBEM MAIORES PESOS

 D_3

EXEMPLO MODELOS SIMPLES +0,92 $H_{Final} = sinal$ 0,42 +0,65 SE O SINAL FOR > 0, PREDIZEMOS SE O SINAL FOR < 0, PREDIZEMOS MODELO COMPLEXO

DIFERENÇAS ENTRE BAGGING E BOOSTING

BAGGING

- Qualquer elemento tem a <u>mesma probabilidade</u> de aparecer no novo conjunto de dados.
- Treinamento paralelo (cada modelo é construído independentemente).
- O resultado é obtido pela <u>média</u> das respostas dos N modelos (ou pelo <u>voto</u> <u>majoritário</u>).
- Treina e mantém.

BOOSTING

- As observações são ponderadas: algumas delas irão participar mais frequentemente.
- Constrói os modelos de forma <u>sequencial</u>: cada novo modelo é influenciado pelo desempenho do anterior.
- Atribui um conjunto de pesos para os N classificadores a fim de obter uma média ponderada de suas estimativas.
- Treina e avalia.

RANDOM FOREST (FLORESTA ALEATÓRIA)

- As árvores de decisão são excelentes preditores. No entanto, nem sempre generalizam bem.
 - Por ex.: poda da árvore → fica menor e mais generalizável.
- Um passo além, nesse processo, é o uso de métodos que utilizem técnicas como:
 - Bagging;
 - Randomizing: em cada método/técnica empregada, utiliza-se um conjunto diferente de variáveis.
- Um bom exemplo é a técnica de Random Forest, que apresenta excelentes características de <u>acurácia</u>, generalização para outras amostras que foram utilizadas no treinamento e capacidade de <u>bom desempenho em</u> <u>pequenas amostras</u>.

RANDOM FOREST (FLORESTA ALEATÓRIA)

RANDOM FOREST = BAGGING DE ÁRVORES DE DECISÃO

RANDOMIZAÇÃO

- EXECUTA TANTO
 TAREFAS DE <u>REGRESSÃO</u>
 QUANTO DE
 <u>CLASSIFICAÇÃO</u>.
- REALIZA <u>REDUÇÃO DE</u> <u>DIMENSIONALIDADE</u>.
- TRATA <u>VALORES</u> <u>AUSENTES</u> E DISCREPANTES.
- TIPO DE MÉTODO DE <u>APRENDIZADO</u>

 CONJUNTO, EM QUE UM GRUPO DE MODELOS FRACOS SE COMBINAM PARA FORMAR UM MODELO PODEROSO.

ALGORITMO

- 1. Para b = 1 a B:
 - 1. Obtenha uma amostra boostrap Z^* de tamanho N a partir do conjunto de treinamento.
 - 2. Cresça uma árvore de decisão T_b a partir da amostra bootstrap, repetindo recursivamente os passos abaixo para cada nó da árvore, até o tamanho mínimo do nó n_{min} ser alcançado.
 - 1. Selecione m variáveis aleatoriamente a partir das p variáveis.
 - 2. Pegue a melhor variável para a divisão dentre as m.
 - 3. Divida o nó em dois nós filhos.
- 2. Finalize o conjunto de árvores $\{T_b\}_1^B$.

ALGORITMO

RECOMENDAÇÕES

Classificação: o valor padrão para m é $\left\lfloor \sqrt{p} \right\rfloor$ e o tamanho mínimo do nó é 1. Regressão: o valor padrão para m é $\left\lfloor {^p/_3} \right\rfloor$ e o tamanho mínimo do nó é 5.

- 1. Obtenha uma amostra boostrap Z^* de tamanho N a partir do conjunto de treinamento.
- 2. Cresça uma árvore de decisão T_b a partir da amostra bootstrap, repetindo recursivamente os passos abaixo para cada nó da árvore, até o tamanho mínimo do nó n_{min} ser alcançado.
- 1. Selecione m variáveis aleatoriamente a partir das p variáveis.
- 2. Pegue a melhor variável para a divisão dentre as m.
- 3. Divida o nó em dois nós filhos.

REPITA ESSA PROCESSO B VEZES E FINALIZE O CONJUNTO DE B ÁRVORES.

Para fazer uma predição de uma nova observação x:

Regressão: $f_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x)$

Classificação: Sendo $\hat{\mathcal{C}}_b(x)$ a classe predita pelo b-ésima árvore, então $\hat{\mathcal{C}}_{rf}^B(x) = voto\ major. \left\{\hat{\mathcal{C}}_b(x)\right\}_1^B$.

AMOSTRAS "OUT-OF-BAG"

- Uma característica importante da random forest é o uso de amostras "out-of-bag" (OOB) para medir o erro de predição.
- OOB é o erro médio de predição em cada amostra de treinamento x_i , usando apenas as árvores que não tinham x_i em sua amostra bootstrap.
- Estimativas "out-of-bag" ajudam a evitar a necessidade de um conjunto de dados de validação independente.
- Uma vez que o erro OOB se estabilize, o treinamento pode ser finalizado.

AMOSTRAS "OUT-OF-BAG"

IMPORTÂNCIA DA VARIÁVEL

IMPUREZA DO NÓ: MÉTODO MAIS SIMPLES

- Calcula-se, em média, o quanto a partição gerada por uma variável reduziu as impurezas dos nós sobre todas as árvores.
 - Regressão: soma residual dos quadrados;
 - Classificação: índice Gini.
- Inclinado a preferir variáveis com mais categorias.

IMPORTÂNCIA DA VARIÁVEL

MÉTODO DE PERMUTAÇÃO

- Para cada árvore, o erro OOB é registrado.
- Para medir a importância de uma variável após o treinamento, os valores da j-ésima variável são permutados (mantendo a distribuição original) nos conjuntos OOB e o erro OOB é novamente computado neste conjunto de dados perturbado.
- A pontuação de importância da j-ésima variável é calculada pela média da diferença entre o erro OOB antes e depois da permutação em todas as árvores. A pontuação é normalizada pelo desvio padrão dessas diferenças.
- Assim, para variáveis sem importância, a permutação deve ter pouco ou nenhum efeito na acurácia do modelo, enquanto a permutação de variáveis importantes deve diminuí-la significativamente.

VANTAGENS

NA CLASSIFICAÇÃO, <u>REDUZEM</u> O PROBLEMA DE <u>OVERFITTING</u>.

IDENTIFICA AS <u>VARIÁVEIS</u>

<u>MAIS IMPORTANTES</u> DO

CONJUNTO DE

TREINAMENTO.

EXTREMAMENTE FLEXÍVEL, COM UMA <u>ACURÁCIA MUITO</u> <u>ALTA</u>.

<u>NÃO</u> EXIGE <u>PREPARAÇÃO</u> <u>DOS DADOS</u> DE ENTRADA.

A CONTRUÇÃO DAS ÁRVORES PODE SER PARALELIZADA.

UMA QUANTIDADE GRANDE
DE ÁRVORES PODE TORNAR
O ALGORITMO <u>LENTO E</u>
<u>INEFICIENTE</u> PARA
PREDIÇÕES EM TEMPO REAL.

SÃO <u>MENOS INTUITIVOS</u> DO QUE AS ÁRVORES DE DECISÃO.

DESVANTAGENS

STACKING (STACKED GENERALIZATION)

- Desenvolvido por Wolpert (1992);
- Estruturado em duas camadas:
 - Nível-0:
 - Vários algoritmos de aprendizado recebem o mesmo conjunto de treinamento, gerando os classificadores de nível-0;
 - Nível-1:
 - Tem como entrada as predições da camada anterior (nível-0), na qual um meta-algoritmo de nível-l as combina para fornecer o meta-classificador final h*.

STACKING Conjunto de treinamento original Algoritmo L Algoritmo 1 Algoritmo 2 Nível-O **Classificador L Classificador 1** Classificador 2 Saída dos classificadores Classe verdadeira +Conjunto de treinamento do nível 1 Nível-1 **Meta-algoritmo** Os trabalhos literatura utilizam na um número variável de algoritmos no nível-0. Para gerar o meta-classificador, os algoritmos naïve Bayes e regressão logística **Meta-classificador** normalmente utilizados.