Mathematische Methoder der Physik I Übungsserie 5

Dr. Agnes Sambale agnes.sambale@uni-jena.de

Version: 28. Mai 2018 Abgabe: 22. November 2017 Wintersemester 17/18

Aufgabe 1 Der integrierende Faktor

Untersuchen Sie die folgenden Differentialgleichungen auf Exaktheit.

(i)
$$(x+y) x^2 y' + xy^2 + 3x^2 y = 0$$

(ii)
$$yx^3 - 2x^4 = (3y^2x^3 - x^4)y'$$

(iii)
$$(x\cos y - xy\sin y)y' + 2y\cos y + x = 0$$

Berechnen Sie die allgemeinen Lösungen der nicht-exakten Differentialgleichungen in impliziter Form, indem Sie die folgende Anleitung verwenden.

- (a) Bestimmen Sie einen integrierenden Faktor $\lambda(x)$.
- (b) Notieren Sie die neue, mit dem integrierenden Faktor multiplizierte, Differentialgleichung.
- (c) Zeigen Sie die Exaktheit der neuen Differentialgleichung.
- (d) Lösen Sie die neue Differentialgleichung durch das Auffinden einer Potentialfunktion.
- (e) Führen Sie die Probe durch, indem Sie die erhaltene Lösung implizit differenzieren und auf die ursprüngliche Differentialgleichung zurückführen.

Aufgabe 2 Konstruktion eines integrierenden Faktors

Wir wenden uns noch einmal der folgenden Differentialgleichung zu.

$$y' - y + 3x^2y^3 = 0 (1)$$

Konstruieren Sie nun einen integrierenden Faktor $\Lambda(x,y)$ auf zwei Wegen.

(a) Sie haben diese Differentialgleichung in der zweiten Aufgabe der dritten Übungsserie mit der Substitution $z = y^{-2}$ in eine lineare Differentialgleichung überführt, die auch nicht exakt ist.

$$z' + 2z - 6x^2 = 0 (2)$$

Bestimmen Sie zuerst für diese Gleichung (2) einen integrierenden Faktor $\lambda(x)$, der nur von der Variablen x abhängt. Dieser Faktor allein macht die ursprüngliche Differentialgleichung (1) noch nicht exakt. Ermitteln Sie nun für die mit $\lambda(x)$ multiplizierte ursprüngliche Gleichung einen integrierenden Faktor $\mu(y)$, der nur von der Variablen y abhängt.

- (b) Machen Sie von vornherein für den integrierenden Faktor $\Lambda(x,y)$ der ursprünglichen Differentialgleichung (1) den Produktansatz $\Lambda(x,y) = \lambda(x) \cdot \mu(y)$ und bestimmen Sie die Funktionen $\lambda(x)$ und $\mu(y)$ ohne Rückgriff auf die in der Variablen z lineare Differentialgleichung.
- (c) **Zusatz:** Weisen Sie nach, dass die Ausgangsgleichung (1) mit diesem integrierenden Faktor $\Lambda(x,y)$ exakt ist und lösen Sie diese. Vergleichen Sie das Ergebnis mit dem vorherigen Resultat aus der zweiten Aufgabe der dritten Übungsserie.

Aufgabe 3 Ideales Gas

Ein ideales Gas befinde sich in einem Kolben, der zusammengepresst wird. Dabei gelten die folgenden Zustandsgleichungen.

$$pV = Nk_{\rm B}T \ , \qquad E = \frac{3}{2}Nk_{\rm B}T \ . \label{eq:pv}$$

Darin steht p für den Druck, V für das Volumen, N für die Teilchenanzahl, T für die Temperatur, E für die innere Energie und $k_{\rm B}$ für die Boltzmann-Konstante. Nach dem ersten Hauptsatz der Thermodynamik ändert sich die innere Energie E durch das Verrichten von Arbeit $p\,\mathrm{d}V$ und die Abgabe von Wärme δQ .

$$dE = \delta Q - p \, dV$$

- (a) Schon die Schreibweise δQ (anstelle von dQ) deutet an, dass es keine Funktion Q(V,T) mit dem totalen Differential δQ gibt. Bestätigen Sie diese Aussage, indem Sie die Integrabilitätsbedingung überprüfen.
- (b) Suchen Sie nun einen integrierenden Faktor λ , der nur von T abhängt, sodass $\mathrm{d}S = \lambda \, \delta Q$ ein totales Differential beschreibt.
- (c) Führen Sie eine Probe durch, indem Sie nun für dS die Integrabilitätsbedingung nachprüfen.