A review of computational approaches to predict Enhancer-Promoter Interaction and Pseudouridine Modification

Sourajyoti Datta

Supervisor: Muhammad Nabeel Asim

Seminar – Applied AI (DFKI)

Summer Semester 2021

Concepts of biology

Cells

- Basic building block of all living organisms
- Contains genetic material

Genetic information of an organism

- Defines the form and function of the organism
- Defines all biological/biochemical activities
- Preserved in nucleic acids

Nucleic acids

- One of the macro-molecules essential for life
- Composed of Nucleotides
- Deoxyribonucleic acid (DNA)
 - Two strands of polynucleotide chains in a double helix structure
- Ribonucleic acid (RNA)
 - A single strand of polynucleotide chain wrapped on itself

Fig: Outline of an animal cell showing the nucleus, cell membrane and some other organelles [1]

Fig: DNA

Fig: RNA

Central Dogma of Molecular Biology

Gene:

- Contained within chromosomes
- Segments of nucleotide seguence in DNA or RNA
- Encodes synthesis of a product

Gene expression:

- Produces functional gene products:
 - RNA
 - **Proteins**

Flow of genetic information:

- DNA is copied to create RNA (**DNA Transcription**)
 - Regulation of genetic expression occurs
- RNA is used to produce proteins (**Translation**)

Regulation of DNA Transcription

- Importance of Regulation for organisms:
 - Provide attributes like Versatility and Adaptability
 - Through Cellular differentiation and Morphogenesis
- **Cis-regulatory Elements –** segments of DNA sequence:
 - **Enhancers**
 - **Promoters**
- Promoters define the *Transcription Start Sites (TSS)*
- **Enhancer-Promoter Interaction (EPI):**
 - Occurs through **DNA/Chromosome looping**
 - Favorable folding of the genome in the 3D space
 - Active enhancers interact with specific promoters
 - Key role in Transcription Regulation
 - Implications in disease progression

Fig: Variety of cells in root tissue of onion [4]

Fig: Regulation of transcription in mammals (EPI) [5]

RNA Modification/Editing

- Post-transcriptional mechanism, occurs in the RNA molecule
- Used by cells to perform specific changes in RNA sequences:
 - Nucleobase Insertion. Deletion. Substitution
- Importance of RNA Editing:
 - Affects different aspects of RNA
 - Activity, Localization, Structure, Stability
 - Role in Regulation of Genetic Expression
 - Supports genetic code rewiring
 - Linked to human diseases
- Pseudouridine Modification (Ψ):
 - Most abundant RNA modification in cellular RNA
 - Occurs at Uridine sites
 - 5-ribosyluracil generated from isomerization of Uridine base
 - Catalyzed by *Pseudouridine Synthase* (PUS)

Fig: Sample RNA Editing: mRNA edited with gRNA [6]

Fig: Pseudouridine Modification [7]

Motivation for computational methods

- Experimental approaches have been successful in EPI and Ψ-site identification
 - Huge amounts of data generated for knowledge discovery:
 - By high-throughput sequencing technologies
 - Genomic and Epigenomic data
- Resulted in increasing use of Machine Learning and Deep Learning approaches:
 - Due to overwhelming advantages of computational approaches
 - By high-throughput sequencing technologies
- Wet lab experimental approaches:
 - Technically challenging with Theoretical limitations
 - Labor intensive
 - Requires skilled laboratory experience
 - Time consuming
 - Expensive
 - High false-negative rates
 - Generates ground truth data

- Computational approaches:
 - Easier development
 - Comparatively, much less labor intensive
 - Requires coding skills
 - Ease of reuse, hence, saves time
 - Economical
 - Accurate and Robust

EPI – Features

DNA Sequences as feature

- Long sequences, consisting of 4 nucleobases
 - Adenine [A], Cytosine [C]Guanine [G] and Thymine [T]
- Fixed length segments used as input

Natural Language Processed embeddings

- DNA2vec
- EP2vec

3D Chromatin Interaction features

- ChIA-PET and Hi-C Contact Matrices
- Distance Measures

Genomic features

- Gene Expression profiles
 - Enhancer Gene Correlation
 - Gene Score
- DNA Methylation
- ChIP-seq peaks
- Window Signal (Enhancer and Gene)

Epigenomic features

- ChIP-seq profiles
- RNA-seq profiles
- Chromatin accessibility
 - DNase-seq
 - ChIP-seq

EPI – Classifiers

- **Machine Learning approaches**
 - Uses feature sets directly
 - Requires crafted features
 - Requires domain expertise
 - Feature Selection performed
 - To filter relevant and important features only
 - Forward feature selection widely used

- **Deep Learning approaches**
 - Uses feature sets directly
 - Do not require hand crafted features

- Feature Extraction layer
 - Learns and extracts features directly from data
 - **Convolutional Neural Network** layer
 - Extracts spatial features
 - **Recurrent Neural Network** layer
 - Extracts temporal dependencies

- Prevalence of **Ensemble** algorithms for classification:
 - **Gradient Boosting Regression**
 - **Decision Trees**
 - AdaBoost

Fully Connected Neural Network layer used for final classification

EPI – State-of-the-Art ML approach

Input for model

- Enhancer-Promoter pair features for 7 cell lines
 - 3D Chromatin Interaction features
 - Epigenomic features

Partitions

- Partitions with overlapping feature set are used
- 11 in total

Incremental Learner (IL)

- Each IL trained on each partition
- Contains 200 Weak leaners (W_i), Decision Trees
- Result is the voting of all the W_i(s)

Fig: Architecture of **EPIP**, proposed by Talukder et. al. [8]

Model Prediction

Result is the voting of all 11 ILs

EPI – State-of-the-Art DL approach

Input to network

- **Enhancer** and **Promoter** sequence segment from DNA
- One-Hot Encoding of segment

Feature Extractor

- Multi-path, multi-laver architecture
- **CNN** processes Enhancer and Promoter sequences separately, parallelly
- **RNN** processes combined features

Domain Discriminator

- Removes cell-line specific features
- Retains global features for EPI
- **Gradient Reversal Layer**

EPI Label Predictor

FCNN laver

Fig: Architecture of **SEPT**, proposed by Jing et. al. [9]

EPI – Performance of Global models

EPI – Performance of Cell-line-specific models

Ψ-site – Features

RNA Sequences as feature

- Long sequences, consisting of 4 nucleobases
 - Adenine [A], Cytosine [C], Guanine [G] and Uracil [U]
- Fixed length segments used as input

Genomic features

- WHISTLE
- PIANO

- Structural context of mRNA
- **Clustering information of RNA segments**

RNA Sequence encoding schemes as features:

- **Nucleotide Binary Profiles**
- **Nucleotide Density**
- Accumulated Nucleotide Frequency
- **Electron-Ion Interaction Pseudopotentials**
- **Nucleic Acid Composition**
- **Enhanced Nucleic Acid Composition**
- Di-Nucleotide Composition
- **Tri-Nucleotide Composition**
- **Nucleotide Chemical Property**
- Position Specific Nucleotide Propensity
- Xmer k-spaced Ymer Composition Frequency

Ψ-site – Classifiers

- **Machine Learning approaches**
 - Uses feature sets directly
 - Requires crafted features
 - Requires domain expertise

- Feature Selection performed
 - To filter relevant and important features only
 - Forward feature selection
 - **Light Gradient Boosting Machine**

- Prevalence of **Ensemble** algorithms for classification:
 - Random Forest
 - Extreme Gradient Boosting (XGboost)
 - Ensemble of different algorithms

- **Deep Learning approaches**
 - Uses feature sets directly
 - Do not require hand crafted features

- Feature Extraction layer
 - Learns and extracts features directly from data
 - **Convolutional Neural Network** layer
 - Extracts spatial features from sequences

Fully Connected Neural Network layer used for final classification

Ψ-site – State-of-the-Art ML approach

Input for model

RNA Sequence encoding schemes on segments

Feature Selection layer

- **Correlation based Feature Selection (CFS)** algorithm
- Greedy hill-climbing augmented with backtracking

3 Feature Extraction and Fusion layers

- 6 ensemble ML algorithms
- Voting based feature generation
- Contains Skip connections

Prediction layer

Random Forest based final classifier

Fig: Architecture of iPseU-Layer, proposed by Aziz et. al. [10]

Ψ-site – State-of-the-Art DL approach

Input to network

- RNA Sequence encodings, concatenated:
 - One-hot Encoding
 - Merged-seq Encoding

Feature Extractor

- Multi-layer architecture
- CNN processes the sequence vectors
- Different sized kernels capture spatial information at different resolutions

■ Ψ-site Label Predictor

- 2-layer architecture
- FCNN layer

Fig: Architecture of **Merged-seq**, proposed by Aziz et. al. [11]

Ψ-site – Performance of approaches

Ψ-site – Performance of approaches

Conclusion

State of the art

- Huge repository of in-silico methods for prediction of EPI and Ψ-sites in DNA and RNA sequences respectively
- **Trend: Machine Learning** approaches focus on **Ensemble** methods
- Advent of **Deep Learning**, to learn important features from data
- DL approaches out-perform ML approaches

Issues with surveyed researches

- Performance of approaches **not comparable** directly in some instances
 - **Non-uniform set of metrics** reported by researches
 - Variety of datasets (cell-lines) used by researches
- Need consensus in community to structure these aspects to **identify progress** clearly

Further research opportunities

- Comparison between **predictive power** of different types of features
 - Analyze if certain type of feature, or a hybrid set of features outperforms others
- Application of **RNN** and hybrid layers for Ψ -site prediction, like in EPI
- Application of Natural Language Processing embeddings for Ψ-site prediction, like in EPI

Thank you for your time! Questions?

References

- 1. Science Learning Hub Pokapū Akoranga Pūtaiao, University of Waikato, www.sciencelearn.org.nz
- Cvtogenetics, Università degli Studi di Napoli Federico II
- Emmanuel Barillot, Laurence Calzone, Philippe Hupé, Jean-Philippe Vert, Andrei Zinovvey, Computational Systems Biology of Cancer Chapman & Hall/CRC Mathematical & Computational Biology . 2012
- 4. Wilson, Edmund B. (1900) The cell in Development and Inheritance (2nd ed.), Category: New York: The Macmillan Company
- Bernstein. (2021). Regulation of transcription in mammal. CC-BY-SA-4.0 Wikimedia Commons, Creative Commons Attribution-Share Alike 4.0 International license. https://bit.ly/2WyfJ0k
- 6. Stuart, K. et al. Complex management: RNA editing in trypanosomes. Trends in biochemical sciences 30 2 (2005): 97-105.
- 7. Zhao, Yang & Dunker, William & Yu, Yi-Tao & Karijolich, John. (2018). The Role of Noncoding RNA Pseudouridylation in Nuclear Gene Expression Events. Frontiers in Bioengineering and Biotechnology, 6, 10,3389/fbioe,2018,00008.
- 8. Talukder, Amlan \& Saadat, Samaneh \& Li, Xiaoman \& Hu, Haiyan. (2019). EPIP: A novel approach for condition-specific enhancerpromoter interaction prediction. Bioinformatics (Oxford, England). 35. 10.1093/bioinformatics/btz641.
- 9. Jing, Fang \& Zhang, Shihua. (2020). Prediction of enhancer-promoter interactions using the cross-cell type information and domain adversarial neural network. BMC Bioinformatics. 21. 10.1186/s12859-020-03844-4.
- 10. Mu, Yashuang \& Zhang, Ruijun \& Wang, Lidong \& Liu, Xiaodong. (2020). iPseU-Layer: Identifying RNA Pseudouridine Sites Using Layered Ensemble Model. Interdisciplinary Sciences: Computational Life Sciences. 12. 10.1007/s12539-020-00362-y.
- 11. Bin Aziz, Abu Zahid & Hasan, Md. Al & Shin, Jungpil. (2021). Identification of RNA pseudouridine sites using deep learning **approaches.** PLOS ONE. 16. e0247511. 10.1371/journal.pone.0247511.

