Capítulo 05

Lazy Learning

Classification Using Nearest Neighbors

Creado por: Ing. Marcela Parra, Mg

 Las cosas que son parecidas tienen propiedades similares.

 Este principio permite clasificar datos colocándolos en la categoría con los vecinos más similares o "más cercanos".

5.2. Objetivos

- Definir conceptos clave que definen a los clasificadores de vecinos más cercanos y por qué se les considera estudiantes "vagos".
- Medir la similitud de dos ejemplos usando la distancia.
- Implementa el algoritmo k-Vecinos más cercanos (kNN) para diagnosticar el cáncer de mama
- Analizar el enfoque kNN con Big Data.

5.4. Algoritmo kNN

Fortalezas	Debilidades		
Sencillo y eficaz.	• No produce un modelo , lo que limita la capacidad de encontrar ideas		
No hace suposiciones sobre la distribución de datos subyacente.	novedosas en las relaciones entre características • Fase de clasificación lenta.		
Fase de entrenamiento rápido .	 Requiere una gran cantidad of memoria Las características nominales y lo datos faltantes requiere procesamiento adicional. 		

5.5. Pasos del Algoritmo kNN

etiquetar

Ingrediente	Dulzura	Crujiente	Tipo de Comida
Manzana	10	9	Fruta
Tocino	1	4	Proteína
Banana	10	1	Fruta
Zanahoria	7	10	Vegetales
Apio	3	10	Vegetales
Queso	1	1	Proteína

- El algoritmo **kNN** trata las características como **coordenadas en un espacio** de **características multidimensional**.
- El conjunto de datos incluye solo **dos características**, el espacio de **características es bidimensional**.
- Podemos trazar datos bidimensionales en un diagrama de dispersión, donde la dimensión x indica el dulzor del ingrediente y la dimensión e indica el carácter crujiente.

¿Cuán dulce es la comida?

¿Cuán dulce es la comida?

¿Cuán dulce es la comida?

5.7. Cálculo de la Distancia Euclidiana

- El algoritmo kNN utiliza la distancia euclidiana para medir la similitud entre puntos, representando la ruta directa más corta entre ellos.
- La distancia se calcula a partir de p y q, que son ejemplos para comparar; cada uno tiene n características.

$$dist(p,q) = \sqrt{(p_1 - q_1)^2 - (p_2 - q_2)^2 + \dots + (p_n - q_n)^2}$$

- Donde:
- p_1 primer valor de la primera característica del ejemplo p,
- q_1 primer valor de la primera característica del ejemplo q.

5.7. Cálculo de la Distancia Euclidiana

La fórmula de la distancia compara los valores de cada característica. La distancia entre el tomate (dulzura=6, crujiente =4) y vainita (dulzura=3, crujiente =7) y se aplicaría:

$$dist(tomate, vainita) = \sqrt{(6-3)^2 - (4-7)^2} = 4.2$$

Ingrediente	Dulzura	Crujiente	Tipo de Comida	Distancia al tomate
Uva	8	5	Fruta	$\sqrt{(6-8)^2 - (4-5)^2} = 2.2$
Vainita	3	7	Vegetal	$\sqrt{(6-3)^2 - (4-7)^2} = 4.2$
Nueces	3	6	Proteína	$\sqrt{(6-3)^2 - (4-6)^2} = 3.6$
Naranja	7	3	Fruta	$\sqrt{(6-7)^2 - (4-3)^2} = 1.4$

5.7. Cálculo de la Distancia Euclidiana

La fórmula de la distancia compara los valores de cada característica. La distancia entre el tomate (dulzura=6, crujiente =4) y vainita (dulzura=3, crujiente =7) y se aplicaría:

$$dist(tomate, vainita) = \sqrt{(6-3)^2 - (4-7)^2} = 4.2$$

Ingrediente	Dulzura	Crujiente	Tipo de Comida	Distancia al tomate
Uva	8	5	Fruta	$\sqrt{(6-8)^2 - (4-5)^2} = 2.2$
Vainita	3	7	Vegetal	$\sqrt{(6-3)^2 - (4-7)^2} = 4.2$
Nueces	3	6	Proteína	$\sqrt{(6-3)^2 - (4-6)^2} = 3.6$
Naranja	7	3	Fruta	$\sqrt{(6-7)^2 - (4-3)^2} = 1.4$

$$k = 1 \rightarrow 1NN$$

5.8. Selección del valor de k

- El equilibrio entre el sobreajuste y el desajuste de los datos de entrenamiento es un problema conocido como **equilibrio entre** sesgo y varianza.
- Elegir una k grande reduce el impacto o la variación causada por datos ruidosos, pero puede sesgar al de tal manera que corre el riesgo de ignorar patrones pequeños pero importantes.
- El uso de un único vecino más cercano permite que datos ruidosos o valores atípicos influyan indebidamente en la clasificación de los ejemplos.

5.8. Selección del valor de k

- Una práctica común es establecer k igual a la raíz cuadrada del número de ejemplos de entrenamiento.
- Un enfoque alternativo es probar varios valores de k y elegir el que ofrezca el mejor rendimiento de clasificación.

5.8. Preparación de los datos

- El motivo de este paso es que la fórmula de la distancia depende de cómo se miden las características.
- Se requiere "reducir" o reescalar las diversas características de manera que cada una contribuya de manera relativamente equitativa a la fórmula de la distancia.

5.8. Preparación de los datos

1. Normalización mínima-máxima, y, transforma una característica en un rango entre 0 y 1.

$$X_{new} = \frac{X - min(X)}{max(X) - min(X)}$$

2. Estandarización de puntuación z. La escala de cada uno de los valores de una característica en términos de cuántas desviaciones estándar cae por encima o por debajo del valor medio. El valor resultante se llama puntuación z.

$$X_{new} = \frac{X - \mu}{\sigma} = \frac{X - Mean(X)}{StdDev(X)}$$

5.8. Preparación de los datos

Para calcular la distancia entre características **nominales**, se debe convertir a un **formato numérico**.

$$mujer = \begin{cases} 1 & if \ x = mujer \\ 0 & de \ otra \ forma \end{cases}$$

$$medium = \begin{cases} 1 & if \ x = medium \\ 0 & de \ otra \ forma \end{cases}$$

5.9. ¿Por qué el algoritmo kNN es flojo?

- Es un **algoritmo de aprendizaje diferido** porque, técnicamente hablando, **no produce ninguna abstracción**.
- Esto permite que la fase de entrenamiento ocurra muy rápidamente, con una posible desventaja de que el proceso de hacer predicciones tiende a ser relativamente lento.
- El algoritmo basado en instancias no construye un modelo.

Resumen

- 1. En este capítulo, se explicó el **algoritmo de clasificación k-vecinos más cercanos (kNN)**, que **almacena los datos** de entrenamiento sin realizar aprendizaje.
- 1. kNN asigna etiquetas a ejemplos de prueba **comparándolos** con los registros más similares mediante una **función de distancia**.
- A pesar de ser sencillo, kNN puede abordar tareas complejas, como identificar masas cancerosas con una precisión del 98% usando código en R.
- Luego tratará sobre la agrupación con k-medias, un método relacionado con kNN.