

	Z
D track object behavior DGreet Gmen jitter 3 Align images (mosaics) (4) 3d (eGustruction 5 Spatial elfects	
(dx, dy) (X+dx, y+dy) (aller displacent)	
Caused by relative movment between object and Camera	
DI (X14, t) DAPPly Taylor Series of CalCulate intensity (space, time) approximation & chapping flow 3 divide to the Change	
(Code) (DluCas kanade method , track Some point in video (DluCas kanade method , track Some point in video (DluCas kanade method , track Some point in video (DluCas kanade method , track Some points to track (DluCas kanade method , track Some points to track (DluCas kanade method , track Some points to track (DluCas kanade method , track Some points to track (DluCas kanade method , track Some point in video method) (DluCas kanade method , track Some point in video method) (DluCas kanade method) (D	
(4) Capture first have and detect Come points (5) These points will be tracked using lu as kanade	
	1

lucas kanade / / Function used cuz. Calc Optical Flow Pyr Lk (Preving, next ing, prev pts, next pts, [win size, max level, criteria]) Params Previnge > First input image next ing > Scand input image prev pts , vector of 2d points - How needed to be found win size - , Size of Search window at each pyramid lul max level -> obased maximal pyramid level number

O -> pyramid are not used (Single level)

1 -> 2 pyramid levels are used Criteria -> specify the termination Criteria of iterative Search algorithm Return (3) evr 2) Status Output Status nexpots autput vectoral ewors · output vector of Veder 2d points each element each element Contain d vector = I In vector = error if Croesspording Calculated new if flow ch Peature Possition of input Cracsponding Fedures in 2nd Features are wasn't lound tound image

else 20

ALADIB

Scanned with CamScanner

Some Code snippets 11
CV2. Video Capture (Video path) -> guill cust "i'c
Params for Corner detection -> dict (@ block Size) quality level 3 min distance)
Params for lucas kanade dict (win Size (XIY) 2 max level
random > np. random. randint ()
JITIO NOST Gray (No) Frames 15 July (No)
CV2. good Feature To Track (ing, mask = none, Pavans ch)
į į
•

Dense optial Place	
optical flow vector for every Slow speed, more accurate used in Ovideo Segmentation O learning structure for	pixel of Frame
Duideo Segmentation	
2 leaving structure la	ren Moton
Derse opstical flow has many impose but we will leave with Franchack method	ementeblor 1.
Francback method	•
Dapproximete window of image Polynomial with help of po	by quadratic Lynamial expansion
2) observing polonomyal transform	under State I
3 Dense optical Plow , angle	
Meed magnitude, direction from	2d-Channel avrag
CalcophalFlow France back (5)	
Prev = First Input Image	
next -> Se Cond input image pyr-Scale -> image scale to build py	ranid (SCole <)
levels -> (=1) -> no extra layers on	image
winsize - average window Size iteration - a number ch	(TOVARIAS).
ALADIB POLY-17 > 5,7 (PT)	el-neighburhood il

Scanned with CamScanner