Elliptic Partial Differential Equations

Lecture by Ivan Moyano

Lent 2019, typed by Jiwoon Park

Perron's methods

Let $\Omega \subset \mathbb{R}^d$ be an open bounded connected set.

Definition) regular point $\xi \in \partial \Omega$, barrier function.

Theorem) (Perron) Statement? (proof is done later)

Definition) subharmonic, superharmonic functions $\in C^2(\Omega)$.

Mean value inequality) state and prove (in versions for harmonic/subharmonic/superharmonic functions.)

Corollary 1) (Maximum principle) If u is subharmonic, then $\sup_{\overline{B}_R} u = \sup_{\partial B_R} u$, and if u is superharmonic, then $\inf_{\overline{B}_R} u = \inf_{\partial B_R} u$.

Corollary 2) (Strong maximum principle) Let u be sub(resp. super)harmonic in Ω . Assume $\exists x_0 \in \Omega$ such that $\max_{\overline{\Omega}} u = u(x_0) = M(\text{resp. }\min_{\overline{\Omega}} u = u(x_0))$. Then u = constant.

Definition) sub/super-harmonic function in $C^0(\Omega)$

Lemma) Let u_1, u_2 be subharmonic functions Then $\max(u_1, u_2)$ is subharmonic.

Now come back to the Dirichlet problem in the ball B = B(0, R),

$$\begin{cases} \triangle u = 0 & \text{in } B \\ u = \varphi & \text{on } \partial B \end{cases} \qquad \dots \dots (D)$$

Theorem) For all $\varphi \in C^0(\partial B)$,

$$u(x) = \begin{cases} \int_{\partial B} \frac{R^2 - |x|^2}{dw_d R} \frac{\varphi(y)}{|x - y|^d} dS_y &, x \in B \\ \varphi(x), & x \in \partial B \end{cases}$$

is $C^2(B) \cap C^0(\overline{B})$ and satisfies the Dirichlet problem (D).

Interior estimate for derivatives

Theorem 2.9) (Interior estimates for harmonic functions) Let $\Delta u = 0$ in Ω . Let $\Omega' \subset \Omega$ compact. Then $\forall \alpha \in \mathbb{N}^d$,

$$\sup_{\Omega} |\partial^{\alpha} u| \leq \left(\frac{|\alpha| d}{\mathrm{dist}(\Omega', \partial \Omega)}\right)^{|\alpha|} \sup_{\Omega} |u|$$

Fact: (Exercise) $\triangle u = 0$ implies $u \in C^{\infty}(\Omega)$ and u real analytic.

Theorem 3.1) Let $\Omega \subset \mathbb{R}^d$, then $u \in C^0(\Omega)$ harmonic in Ω iff $\forall y \in \Omega$ and $\forall R > 0$, $\overline{B(y,R)} \subset \Omega$,

$$u(y) = \frac{1}{dw_d R^{d-1}} \int_{\partial B(y,R)} u(x) dS_x \quad \dots \quad (MID)$$

Theorem 3.2) Given $\Omega \subset \mathbb{R}^d$ domain. $(u_n)_{n=1}^{\infty} \subset C^0(\Omega)$ such that $\Delta u_n = 0$ in Ω and

$$\sup_{n\in\mathbb{N}}\sup_{x\in\Omega}|u_n(x)|<\infty$$

Then $\exists (u_{n_k})_k$ such that $u_{n_k} \xrightarrow{\text{unif.}} u$ in any $\Omega' \subset \Omega$ compact and $\triangle u = 0$ in Ω .

Indication : the construction of the Perron's solution is made through a process of the form $u = \sup\{v \in C^0(\Omega) \text{ subharmonic, } v \leq \varphi \text{ on } \partial\Omega\}$. u will be the candidate for our solution of the Dirichlet problem.

Proposition 3.4) u is subharmonic and v is superharmonic in Ω , $u, v \in C^0(\Omega)$. Then

$$v \ge u \text{ on } \partial \Omega \quad \Rightarrow \quad \begin{cases} v > u & \text{in } \overline{\Omega} & or \\ v \equiv u & \text{in } \overline{\Omega} \end{cases}$$

Definition) harmonic lifting of $u \in C^0(\Omega)$ in a ball B.

Lemma 3.6) Let $u \in C^0(\Omega)$ subharmonic in Ω , U a harmonic lifting of u with respect to $\overline{B} \subset \Omega$. Then U is subharmonic in Ω and U > u in Ω .

Lemma 3.7) Given $\{u_j\}_{j=1}^N$ subharmonic functions in Ω , we have that

$$u(x) = \max\{u_j(x) : 1 \le j \le N\}$$

is also subharmonic in Ω .

Theorem) (Perron) Let $\varphi \in C^0(\partial\Omega)$ and consider the Dirichlet problem $-\Delta u = 0$ in Ω and $u = \varphi$ on $\partial\Omega$. Then

- (1) The classical Dirichlet problem has a unique solution $u \in C^2(\Omega)$ if $\partial \Omega$ regular.
- (2) If Dirichlet problem is solvable for all φ , then $\partial\Omega$ is regular.

Poisson equation

Consider the problem

$$\begin{cases}
-\Delta u = f & \text{in } \Omega \\
u = \varphi & \text{on } \partial\Omega
\end{cases} \dots \dots (D)$$

where Ω is a bounded set in \mathbb{R}^d and $\partial\Omega$ is regular for the \triangle .

First we want to find the fundamental solution : $\triangle E = \delta_{x=0}$ with $E \in C^{\infty}(\mathbb{R}^d \setminus \{0\})$, i.e. the fundamental solution. We have

$$E(x) = \begin{cases} \frac{1}{2}|x|, & d = 1\\ \frac{1}{2\pi} \log|x|, & d = 2\\ \frac{1}{dw_d(d-2)}|x|^{2-d}, & d \ge 3 \end{cases}$$

(show this)

Green's representation

Proposition 4.3) Assume that $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$, solving Poisson's equation

$$\begin{cases} \triangle u = -f, & f \in C^0(\Omega) \\ u = \varphi, & \varphi \in C^0(\partial\Omega) \end{cases}$$

Then

$$u(y) = \int_{\partial \Omega} \left(\varphi \frac{\partial E}{\partial n_x} (x - y) - E(x - y) \frac{\partial u}{\partial n_x} (x) \right) dS_x + \int_{\Omega} E(x - y) f(x) dx$$

Definition) Green's function.

Definition) locally Hölder function $f \in C^0(\Omega)$

Theorem 5.3) Under these hypothesis $(f \in C^0(\Omega), \varphi \in C^0(\partial\Omega))$ are locally Hölder), the Dirichlet problem has a unique solution $u \in C^2\Omega \cap C^0(\overline{\Omega})$. (needs following lemmas)

Construction of the solution of (D) is made in two steps.

1st. Given $f \in C^0(\Omega) + \text{locally H\"older } \alpha$, we set

$$W(x) = \int_{\mathbb{R}^d} E(x - y) f(y) dy, \quad x \in \mathbb{R}^d \quad \dots \quad (\dagger)$$

We shall prove $W \in C^2(\mathbb{R}^d)$, $W|_{\partial\Omega} \in C^0(\partial\Omega)$ and $\Delta W = f$ in Ω .

2nd. We use Perrons' theorem to solve

$$\begin{cases} \triangle \tilde{u} = 0 & \text{in } \Omega \\ \tilde{u} = \varphi - W|_{\partial\Omega} & \text{on } \partial\Omega \end{cases}$$

Then we already know $\tilde{u} \in C^2(\Omega) \cap C^0(\overline{\Omega})$ since $\varphi - W|_{\partial\Omega} \in C^0(\partial\Omega)$.

Set $u = W + \tilde{y}$, then $-\Delta u = f$ and $u|_{\partial\Omega} = \varphi$ on $\partial\Omega$.

Lemma 5.1) Under the hypothesis that $f \in L^1(\Omega) \cap L^{\infty}(\Omega)$, W in (\dagger) is $C^1(\mathbb{R}^d)$ and

$$\partial_{x_j} W(x) = \int_{\mathbb{R}^d} \partial_{x_j} E(x - y) f(y) dy, \quad \forall x \in \mathbb{R}^d$$

Lemma 5.2) Let $f \in L^1 \cap L^\infty(\Omega)$ and $|f(x) - f(y)| \leq C_{\alpha,x}|x - y|^{\alpha}$ locally around any $x \in \Omega$. then W as above is $C^2(\mathbb{R}^d)$ and for any $\Omega_0 \subset \mathbb{R}^d$ such that the divergence theorem holds we have

$$\partial_{x_i x_j} W(x) = \int_{\Omega_0} \partial_{x_i x_j} E(x - y) (f(y) - f(x)) dy$$
$$- f(x) \int_{\partial \Omega_0} \partial_{x_j} E(x - y) (n_y \cdot e_i) dS_y =: F_{ij}(x) \quad \dots \quad (**)$$

where e_i are standard bases of \mathbb{R}^d , and $\partial_{x_i x_j} E(x-y)$ should be understood as a distribution.

proof) Use similar cutoff function, having in addition $\partial_{ij}V_{\epsilon} \to F_{ij}$.

Hölder solutions for $-\triangle u = f$

 $\textbf{ Definition)} \quad [f]_{\alpha,\Omega}, \ \|f\|_{C^{0,\alpha}(\Omega)}, \ \|f\|_{C^{k,\alpha}(\Omega)}.$

Also define $||f||'_{C^k(\Omega)}$, $||f||'_{C^{k,\alpha}(\Omega)}$ (in terms of $d = \operatorname{diam}(\Omega)$)

Lemma 6.1) Let $x_0 \in \mathbb{R}^d$, $B_2 = B(x_0, 2R)$, $B_1 = B(x_0, R)$, $f \in C^{0,\alpha}(\overline{B}_2)$, $0 < \alpha < 1$, then W defined by $W(x) = \int_{\Omega} E(x-y) f(y) dy$ is in $C^{2,\alpha}(B_1)$. Furthermore,

$$\begin{split} & \big\| D^2 W \big\|_{C^{0,\alpha}(B_1)}' \le C \big\| f \big\|_{C^{0,\alpha}(B_2)}' \\ & Equivalently, \quad \big\| D^2 W \big\|_{C^0(B_1)} + R^{\alpha} [D^2 W]_{\alpha,B_1} \le C \Big(\big\| f \big\|_{C^0(\overline{B_2})} + R^{\alpha} [f]_{\alpha,B_2} \Big) \end{split}$$

Corollary 6.2) Let $u \in C_0^2(\mathbb{R}^d)$, $f \in C^{0,\alpha}(\mathbb{R})$ compactly supported and such that $-\Delta u = f$ in \mathbb{R}^d . Then $u \in C^{2,\alpha}(\mathbb{R}^d)$, and if $B = B(x_0, R)$ is any ball containing supp(u) (the support is compact by its definition), we have

$$||D^2u||'_{C^{0,\alpha}(B)} \le C[f]'_{0,\alpha,B}$$

for some $C = C(d, \alpha)$ and

$$||u||_{C^{1,\alpha}(B)} \le C'R^2[f]_{0,B}$$

for some C' = C(d).

Proposition 6.3) $\Omega \subset \mathbb{R}^d$ domain, $f \in C^{0,\alpha}(\Omega)$ and $u \in C^2(\Omega)$ be the solution of $-\Delta u = f$ in Ω . Then $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ and satisfies, for all balls $B_1 = (x_0, R), B_2 = B(x_0, 2R) \subset \Omega$,

$$\|u\|'_{C^{2,\alpha}(B_1)} \le C(\|u\|_{C^0(B_2)} + \|f\|'_{C^{0,\alpha}(B_2)})$$

for some $C = C(d, \alpha) > 0$.

We can prove this estimate in more general setting, when Lu = f with

$$Lu = \sum_{i,j=1}^{d} a^{ij}(x)\partial_{x_{i}x_{j}}^{2} u + \sum_{i=1}^{d} b^{i}(x)\partial_{x_{i}} u + c(x)u, \quad u \in C^{2}(\Omega)$$

 $a^{ji} = a^{ij}(symmetric)$ and $\Lambda |\xi|^2 \le a^{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2$ for some $\lambda, \Lambda > 0((uniformly\ elliptic))$ and all $\xi \in \mathbb{R}^d$.

Hölder norms(II)

Definition) (More Hölder norms) Assume Ω is compact. For $x, y \in \Omega$, let $d_x = \operatorname{dist}(x, \partial\Omega), d_y = \operatorname{dist}(y, \partial\Omega)$ and $d_{x,y} := \min\{d_x, d_y\}$. Define $[u]_{k,0,\Omega}^*, |u|_{k,\Omega}^*$.

Also for $u \in C^{k,\alpha}$, define $[u]_{k,\alpha,\Omega}^*$ and a norm in $C^{k,\alpha}(\overline{\Omega})$, $|u|_{k,\alpha,\Omega}^*$.

For $j \in \mathbb{N}$, also define $[u]_{k,0,\Omega}^{(j)}$, $[u]_{k,\alpha,\Omega}^{(j)}$, $|u|_{k,\Omega}^{(j)}$, $|u|_{k,\alpha,\Omega}^{(j)}$

Let L_0 only have 2nd order terms, i.e. $L_0 u = \sum a^{ij} \partial_{x_i x_j}^2 u$.

Proposition 7.2) Let L_0 satisfy uniform ellipticity and symmetry, and $u \in C^2(\Omega)$ satisfy $L_0u = f$, $f \in C^{0,\alpha}(\Omega)$. Then

$$|u|_{2,\alpha,\Omega}^* \le C(|u|_{0,\Omega} + |f|_{0,\alpha,\Omega}^{(2)})$$

for some $C \equiv C(d, \alpha, \lambda, \Lambda) > 0$.

Theorem 7.4) (Interior Schauder estimate for Lu=f) Let $\Omega \subset \mathbb{R}^d$ be open, L be uniformly elliptic, symmetric, $f \in C^{0,\alpha}(\Omega)$ and $|a^{ij}|_{0,\alpha,\Omega}^{(0)}, |b^i|_{0,\alpha,\Omega}^{(1)}, |c|_{0,\alpha,\Omega}^{(2)} \leq \tilde{\Lambda}$. Then if $u \in C^2(\Omega)$ with Lu=f, we have the estimate

$$|u|_{2,\alpha,\Omega}^* \le C(|u|_{0,\Omega} + |f|_{\alpha,\Omega}^{(2)})$$

for a constant $C = C(d, \alpha, \lambda, \tilde{\Lambda})$.

-needs following interpolation inequalities for proof.

Remark : We may assume Ω is compact, as we may take nested sequence of compact sets that covers Ω , if the constants uniform in this family of compact sets - which is indeed the case.

Lemma 1) For any $\sigma, \tau \geq 0$,

$$|fg|_{0,\alpha,\Omega}^{(\sigma+\tau)} \leq |f|_{0,\alpha,\Omega}^{(\sigma)} + |g|_{0,\alpha,\Omega}^{(\tau)}$$

Lemma 2) (Interpolation, Hörmander) Let $u \in C^{2,\alpha}(\Omega)$, $\Omega \subset \mathbb{R}^d$ be a domain. Then for any $\epsilon > 0$, there is a constant $C(\epsilon) > 0$ such that

$$[u]_{j,\beta,\Omega}^* \le C(\epsilon)|u|_{0,\Omega} + \epsilon[u]_{2,\alpha,\Omega}^*$$
$$|u|_{j,\beta,\Omega}^* \le C(\epsilon)|u|_{0,\Omega} + \epsilon[u]_{2,\alpha,\Omega}^*$$

for $j = 0, 1, 2, 0 \le \alpha, \beta \le 1$ and $j + \beta \le 2 + \alpha$.

[More generally, we can think of inequalities in the following setting: Suppose we have an inequality of form $\|u\|_{B_1} \lesssim \|u\|_{B_0}^{\theta} \|u\|_{B_2}^{1-\theta}$, where $B_2 \subset B_1 \subset B_0$ are nested Banach spaces. Then we have $\|u\|_{B_2} \leq C_{\epsilon} \|u\|_{B_0} + \epsilon \|u\|_{B_2} + C\|f\|_X$, so $(1-\epsilon)\|u\|_{B_2} \leq C(\epsilon)\|u\|_{B_0} + C\|f\|_X$ for small ϵ .]

Recall our hypothesis, for $L = \sum a^{ij} \partial_i \partial_j + \sum b^i \partial_i + c$,

$$(\mathrm{H1}) \quad |a^{ij}|_{0,\alpha,\Omega}^{(0)}, |b^{i}|_{0,\alpha,\Omega}^{(1)}, |c|_{0,\alpha,\Omega}^{(2)} \leq \Lambda, \quad \Lambda > 0$$

(H2)
$$a^{ij}(x) = a^{ji}(x), \quad \sum_{i,j=1}^d a^{ij}(x)\xi_i\xi_j > \lambda |\xi|^2$$

and

(H) a^{ij}, b^i, c are Hölder continuous, $a^{ij} = a^{ji}, a$ is uniformly elliptic, with parameter λ

Interior Hölder estimate

Corollary) Under (H1) and (H2), the solution of Lu = f satisfies that $\forall \Omega' \subset\subset \Omega$,

$$\delta |\nabla u|_{0,\Omega'} + \delta^2 |D^2 u|_{0,\Omega'} + \delta^{2+\alpha} [\partial^2 u]_{\alpha,\Omega'} \le C(|u|_{0,\Omega} + |f|_{0,\alpha,\Omega})$$

for $C = C(d, \alpha, \lambda, \Lambda, \Omega)$ and $\delta = \operatorname{dist}(\Omega', \partial\Omega)$. (what is this a corollary of?)

Boundary and Global estimates

Definition) Domains of class $C^{2,\alpha}$), boundary portion $T \subset \partial \Omega$.

The key point in the proof of Hölder interior was to use *Interpolation Estimates*. This would be the same in boundary estimates and global estimates.

Lemma 8.1) (Interpolation estimates on the boundary) Let $\Omega \subset \mathbb{R}^d_+$ open in \mathbb{R}^d_+ with a boundary portion T on $\{x_d=0\}$. Assume $u \in C^{2,\alpha}(\Omega \cup T)$. Then $\forall \epsilon > 0$,

$$[u]_{j,\beta,\Omega\cup T}^* \le C_{\epsilon} |u|_{0,\Omega} + \epsilon [u]_{2,\alpha,\Omega,\cup T}^*,$$

$$|u|_{j,\beta,\Omega\cup T}^* \le C_{\epsilon} |u|_{0,\Omega} + \epsilon [u]_{2,\alpha,\Omega\cup T}^*, \quad \forall \alpha \in [0,1], \ j+\beta < 2+\alpha$$

(not proved)

Lemma 8.2) Let $\Omega \subset \mathbb{R}^d_+$, T boundary portion, and $u \in C^2(\Omega \cup T)$ bounded solution of Lu = f and u = 0 on T under hypothesis (H1) and (H2) on $\Omega \cup T$ and $f \in C^{0,\alpha}(\Omega \cup T)$. Then

$$|u|_{2,\alpha,\Omega\cup T}^* \le C(|u|_{0,\Omega} + |f|_{0,\alpha,\Omega\cup T}^{(2)})$$

for $C = C(d, \alpha, \lambda, \Lambda)$.

-The proof is almost the same as **Theorem 7.4**.

Definition) Let T be a boundary portion of Ω , $x, y \in \Omega$, $\overline{d}_x := \operatorname{dist}(x, \partial \Omega \backslash T)$, $\overline{d}_{x,y} = \min(\overline{d}_x, \overline{d}_y)$. Define $[u]_{k,\alpha,\Omega \cup T}^*$, $|u|_{k,\alpha,\Omega \cup T}^*$, where $|u|_{k,\Omega,\Omega \cup T}^* := |u|_{k,0,\alpha,\Omega \cup T}^*$.

Curved boundaries of Class $C^{k,\alpha}$

Consider $\psi: \Omega \to \Omega'$, $C|x-y| \le |\psi(x)-\psi(y)| \le \tilde{C}(x-y)$. Make change of variable $u(x) = \tilde{u}(x') = \tilde{u}(\psi(x))$ then we would have

$$C|u(x)|_{j,\beta,\Omega} \lesssim |u'(x')|_{j,\beta,\Omega'} \lesssim \tilde{C}|u(x)|_{j,\beta,\Omega}C|u(x)|_{j,\beta,\Omega\cup T} \lesssim |\tilde{u}(x')|_{j,\beta,\Omega'\cup T'} \lesssim \tilde{C}|u(x)|_{j,\beta,\Omega\cup T}^{*}$$

$$C|u(x)|_{0,\beta,\Omega\cup T}^{(\sigma)} \lesssim |\tilde{u}(x)|_{0,\beta,\Omega'\cup T'}^{(\sigma)} \lesssim \tilde{C}|u(x)|_{0,\beta,\Omega\cup T}^{(\sigma)}$$

by chain rule.

Lemma 8.3) Let Ω be a bounded domain of class $C^{2,\alpha}$ in \mathbb{R}^d , $u \in C^{2,\alpha}(\overline{\Omega})$ satisfies Lu = f in Ω , u = 0 on $\partial\Omega$ where $f \in C^{0,\alpha}(\overline{\Omega})$ and L satisfies (H2) and

$$|a^{ij}|_{0,\alpha,\Omega}, |b^{i}|_{0,\alpha,\Omega}, |c|_{0,\alpha,\Omega} \leq \Lambda.$$

Then we have, for some $\delta > 0$ not depending x_0 such that

$$|u|_{2,\alpha,\Omega\cap B(x_0,\delta)} \le C(|u|_{0,\Omega} + |f|_{0,\alpha,\Omega}), \quad \forall x_0 \in \partial\Omega$$

for $C = C(d, \alpha, \lambda, \Lambda, \Omega)$ but not depending on x_0 .

We had interior estimate in $C^{1,\alpha}$ and boundary estimates in $C^{2,\alpha}$. If $L = \sum a^{ij}(x)\partial_{x_ix_j}^2 + \sum b^i(x)\partial_{x_i} + c(x)$, is uniformly elliptic, $a^{ij} = a^{ji}$ and $|a^{ij}|_{0,\alpha,\Omega}, |b^i|_{0,\alpha,\Omega}, |c|_{0,\alpha,\Omega} < \Lambda$, then we have :

Theorem) (Global estimates) Let Ω has $C^{2,\alpha}$ boundary and bounded, $f \in C^{0,\alpha}(\overline{\Omega})$ and $u \in C^{2,\alpha}(\overline{\Omega})$ satisfies Lu = f in Ω , $u = \varphi$ on $\partial\Omega$ with $\varphi \in C^{2,\alpha}(\Omega)$. Then there is C > 0 such that

$$|u|_{2,\alpha,\Omega} \le C(|u|_{0,\Omega} + |\varphi|_{2,\alpha,\Omega} + |f|_{0,\alpha,\Omega})$$

where $C = C(d, \alpha, \lambda, \Lambda, \Omega) > 0$.

-proof hint : To produce Hölder interior estimate for $\Omega' \subset\subset \Omega$, choose $\sigma = \delta$ of **Lemma 8.3** and let $\Omega_{\sigma} = \{x \in \Omega : \operatorname{dist}(x, \partial\Omega) > \sigma\}$. For $x, y \in \Omega$, there are three possibilities :

- (1) $x, y \in \Omega_{\sigma}$, then interior Hölder inequality applies
- (2) $x, y \in B(x, \delta)$, then boundary Hölder inequality applies.
- (3) For a boundary point $x_j x \in \Omega_{\sigma}$, $y \in B_{x_j,\rho}$ or $x \in B(x_j,\rho)$, $y \in B(x)j,\rho$ then

$$\frac{|\partial_x^2 u(x) - \partial^2 u(y)|}{|x-y|^\alpha} \leq \frac{1}{\sigma^\alpha} (|\partial^2 u(x)| + |\partial^2 u(y)|) \leq C(|u|_0 + |f|_{0,\alpha})$$

Existence of Classical solutions

Theorem) Let L be elliptic satisfying (H) and $c(x) \leq 0$. Let Ω satisfy the exterior sphere condition (i.e. $\forall x_0 \in \partial \Omega, \exists B \subset \mathbb{R}^d \setminus \Omega$, a ball, such that $B \cap \overline{\Omega} = \{x_0\}$). Assume $f \in C^{0,\alpha}(\overline{\Omega})$ and $\varphi \in C^0(\partial \Omega)$. Then the Dirichlet problem Lu = f in Ω and $u = \varphi$ on $\partial \Omega$ has a unique classical solution $u \in C^0(\overline{\Omega}) \cap C^{2,\alpha}(\Omega)$. [a difference with the previous result is that we do not have $u \in C^{2,\alpha}(\overline{\Omega})$ anymore - so we do not have linear bound of u in terms of f and φ . $\neg \varphi$ what does this mean????]

proof) Proof to be done in the Example Sheet. But the idea is similar to that of Poisson equation.

- First see solvability in balls idea of harmonic lifting appplies again.
- Use maximum principles for $Lu \ge 0$ (or ≤ 0) (to be done in next lecture)
- Use compactness of solutions of Lu = f, that is a consequence of interior estimate.

Weak/Strong Maximum Principles for Lu = f

As usual, $Lu = \sum a^{ij} \partial_{x_i x_j}^2 u + \sum b^i \partial_{x_i} u + c(x) u = f \text{ in } \Omega, u = \varphi \text{ on } \partial\Omega.$

To establish maximum principle, we need to make strong restriction on c.

Theorem) Let L be (not necessarily uniform) elliptic (that is, $a^{ij}(x)\xi_i\xi_j \geq \lambda(x)|\xi|^2$), c=0 in Ω and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ with $Lu \geq 0$ in Ω and $\beta(x) := \frac{\sup_{i=1,\dots,d}|b^i(x)|}{\lambda(x)} \leq \beta$ for all $x \in \Omega$ (recall, λ is the ellipticity constant.) Then

$$\sup_{\Omega} u = \sup_{\partial \Omega} u$$

Theorem) (Strong maximum principle, E. Hopf) We now let L be uniformly elliptic, say $\sum_{ij} a^{ij} \xi_i \xi_j \geq \lambda |\xi|^2$ with $\lambda > 0$ uniform. Let $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfy $Lu \geq 0$, and assume $\max_{z \in \overline{\Omega}} u(z) = u(z_0)$. Then

- (1) If c = 0 and $z_0 \in \Omega$, then u is constant.
- (2) If $c \leq 0$, c/λ bounded, and $u(z_0) \leq 0$ for some $z_0 \in \Omega$, then u is constant.

-need a lemma

Lemma) (Hopf) Let L be uniformly elliptic and $Lu \geq 0$ in Ω . Take $x_0 \in \partial \Omega$ such that

- (i) u is continuous at x_0 ,
- (ii) $u(x_0) > u(x)$ for all $x \in \Omega$,
- (iii) $\partial\Omega$ satisfies the interior sphere condition.

Then,

- (1) if c = 0, then $\frac{\partial u}{\partial n_x}(x_0) > 0$,
- (2) if $c \leq 0$, c/λ is bounded and $u(x_0) \geq 0$, then $\frac{\partial u}{\partial n_x}(x_0) \leq 0$.

Alexandroff maximum principle

Suppose $L = \sum_{ij} \partial_{x_i x_j}^2 + \sum_i b^i \partial_{x_i} + c(x)$ satisfies ellipticity condtion (i.e. $A = (a^{ij})_{i,j=1}^d$ positive definite in Ω) in Ω . Define $D(x) = \det(A(x))$, $D^* = D^{1/d}$, then

$$0 < \lambda(x) < D^*(x) < \Lambda(x)$$

where $\lambda(x)$ is the minimum eigenvalue of A(x) and $\Lambda(x)$ is the maximum eighenvalue of A(x). Let $u \in C^2(\Omega)$, and $\Gamma^+ = \{y \in \Omega : u(x) \le u(y) + \nabla u(y)(x-y), \forall x \in \Omega\}$, the **upper contact set of** u [Remark: Has $D^2u \le 0$ on Γ^+ . In particular, u is concave in Ω iff $\Gamma^+ = \Omega$.].

Theorem) (Alexandroff) If $\Omega \subset \mathbb{R}^n$, $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$, $Lu \geq f$ in Ω with $\frac{|b|}{D^*}$, $\frac{f}{D^*} \in L^d(\Omega)$, $c \leq 0$ in Ω , then

$$\sup_{\Omega} u \le \sup_{\partial \Omega} u^+ + C \left\| \frac{f^-}{D^*} \right\|_{L^d(\Gamma^+)}$$

for some constant $C=C(d,\operatorname{diam}(\Omega),\left\|\frac{b}{D^*}\right\|_{L^d(\Omega)}).$ -is very useful. proof uses the next lemma

Lemma) Let $g \in L^1_{loc}(\mathbb{R}^d)$, $g \geq 0$. Then $\forall u \in C^0(\overline{\Omega}) \cap C^2(\Omega)$, we have

$$\int_{B(0,\tilde{u})} g(x)dx \le \int_{\Gamma_u^+} g(\nabla u)|\det(D^2 u)|dx$$

for $\tilde{u} = \frac{1}{\operatorname{diam}(\Omega)} (\sup_{\overline{\Omega}} u - \sup_{\partial \Omega} u) \ge 0.$

Remark: $\forall x \in \Gamma^+$,

$$\det(D^2 u(x)) \le \frac{1}{D} \left(\frac{-a^{ij}(x)\partial_{x_i x_j}^2 u}{d} \right)^d$$

We first assume the lemma and prove the theorem.

Semilinear equation

Study one particular class of semilinear equations of form

$$\begin{cases} \triangle u = f(x, u) & x \in \Omega \\ u = 0 & x \in \partial \Omega \end{cases}$$

for some function $f: \overline{\Omega} \times \mathbb{R} \to \mathbb{R}, (x, \xi) \mapsto f(x, \xi)$. Here, f(x, u) makes non-linearity. Note that this has no contribution from ∇u (we call those equations for which f depends on ∇u , the quasilinear equations).

Theorem) Let Ω be bounded and has $C^{2,\alpha}$ boundary, $f \in C^1(\overline{\Omega} \times \mathbb{R})$. Assume that there are $\underline{u}, \overline{u} \in C^{2,\alpha}(\overline{\Omega})$ satisfying

$$\begin{cases} \underline{u} \leq \overline{u} & \text{in } \Omega \\ \underline{\Delta}\underline{u} \geq f(x,\underline{u}) & \text{in } \Omega, \qquad \underline{u} \leq 0 & \text{on } \partial \Omega \\ \underline{\Delta}\overline{u} \leq f(x,\overline{u}) & \text{in } \Omega, \qquad \overline{u} \geq 0 & \text{on } \partial \Omega \end{cases}$$

Then there exists $u \in C^{2,\alpha}(\overline{\Omega})$ such that $\Delta u = f(x,u(x))$ in Ω , u = 0 on $\partial\Omega$ and $\underline{u} \leq u \leq \overline{u}$ in Ω . [This is called the method of sub-&-supersolutions]

(The proof uses a version of Arzela-Ascoli theorem - state it/ proof to be done in the example sheet)

Corollary) Let $\Omega \subset C^{2,\alpha}$ be bounded, and let $f \in C^1(\overline{\Omega} \times \mathbb{R})$ and f is bounded. Then there exists a solution $u \in C^{2,\alpha}(\overline{\Omega})$ of $\Delta u = f(x,u)$ in Ω and u = 0 on $\partial\Omega$.

Theorem) (Gidas, Ni & Nirenberg) Let $B = B(0,1) \subset \mathbb{R}^d$. Assume that $u \in C^0(\overline{B}) \cap C^2(B)$ is a positive solution $(u \ge 0 \text{ on } B)$ of

$$\begin{cases} \triangle u + f(u) = 0 & \text{in } B \\ u = 0 & \text{on } \partial B \end{cases}$$

Assume that f is locally Lipschitz in \mathbb{R} . Then u is radially symmetric and

$$\frac{\partial u}{\partial r}(x) < 0$$
 whenever $x \neq 0$.

(not proving)

Theorem) (Varadham, Maximum principle in narrow domains) Consider $Lu = \sum_{ij} a^{ij} \partial_{x_i x_j}^2 u + \sum_i b^i \partial_{x_i} u + c(x)u$, a^{ij} positive definite pointwise in Ω , $|b^i| + |c| \leq \Lambda$, $\det(a^{ij}(x)) \geq \lambda$, $\delta := \dim(\Omega) > 0$. Assume $u \in C^0(\overline{\Omega}) \cap C^2(\Omega)$ satisfies $Lu \geq 0$ in Ω and $u \leq 0$ in $\partial\Omega$. Then $\exists C_\delta = C_\delta(d, \Lambda, \lambda) > 0$ such that,

$$|\Omega| \le C_{\delta}$$
 implies $u \le 0$ in Ω .

where $|\Omega|$ is the Lebesgue measure of Ω . [Remark: we do not need condition on sign of c]

Theorem) (Serrin, Comparison principle) Suppose that $u \in C^0(\overline{\Omega}) \cap C^2(\Omega)$ with $Lu \geq 0$ in Ω and $u \leq 0$ in Ω (not $\partial\Omega$, all of Ω), with L having continuous coefficients (no bounds necessary). Then

- either u < 0 in Ω ,
- or $u \equiv 0$ in Ω .

Lemma) (Fanghua Lin & Qing Han) (See Section 2.6 of Han, Lin ([3])) Let Ω a bounded convex domain in the x_1 -direction and symmetric with respect to $\{x_1 = 0\}$. If $u \in C^0(\overline{\Omega}) \cap C^2(\Omega)$ satisfies

$$\begin{cases} \triangle u + f(u) = 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

with f locally Lipschitz. Assume that u > 0 in Ω , then u is symmetric with respect to x_1 direction and

$$\frac{\partial u}{\partial x_1}(x) < 0 \quad \forall x \in \Omega, \ x_1 > 0$$

Let L be an operator of form

$$L = -\sum_{i=1}^{d} \partial_{x_i} (a^{ij}(x)\partial_{x_i} u) + c(x) \quad \text{(so that } b^i \equiv 0)$$

and consider equation Lu = f in Ω . We impose conditions

$$\begin{cases} a^{ij} \in L^{\infty} \cap C^0(\Omega), \\ a^{ij} = a^{ji} \\ a^{ij}(\xi)\xi_i\xi_j \ge \lambda |\xi|^2, \ \forall \xi \in \mathbb{R}^d \\ f \in L^{\frac{2d}{d+2}}(\Omega) \quad \text{(exponent chosen for Sobolev embedding)} \end{cases}$$

u is a weak solution of Lu = f if

$$\int_{\Omega} \Big(\sum_{i,j=1}^{n} a^{ij}(x) \partial_{x_{j}} u \partial_{x_{i}} \varphi + cu\varphi \Big) dx = \int_{\Omega} \varphi f dx, \quad \forall \varphi \in H_{0}^{1}(\Omega)$$

We want to characterize Hölder continuity in terms of the growth of local integrals.

Let $\Omega \subset \mathbb{R}^d$ be bounded and connected. Given $u \in L^1_{loc}(\Omega)$, given $x_0 \in \Omega$, r > 0 such that $B(x_0, r) \subset \Omega$, we define

$$u_{x_0,r} = \frac{1}{B(x_0,r)} \int_{B(x_0,r)} u(x) dx$$

Theorem) Assume that $u \in L^2(\Omega)$ and there are M > 0, $\alpha \in (0,1)$.

$$\int_{B(x_0,r)} |u(x) - u_{x_0,r}|^2 dx \le M^2 r^{d+2\alpha}, \quad \forall B(x_0,r) \subset \Omega$$

Then u has continuous correction in $C^{0,\alpha}(\Omega)$ and $\forall \overline{\Omega'} \subset \Omega$, we have

$$|u|_{0,\alpha,\Omega'} \le C(M + ||u||_{L^2(\Omega)})$$

for some $C = C(d, \alpha, \Omega, \Omega') > 0$.

Corollary) Suppose $u \in H^1_{loc}(\Omega)$ satisfies that for some $\alpha \in (0,1)$,

$$\int_{B(x_0,r)} |\nabla u|^2 dx \le M^2 r^{d-2+2\alpha}, \quad \forall B(x_0,r) \subset \Omega$$

Then $u \in C^{0,\alpha}(\Omega)$ and $\forall \Omega'$ with $\overline{\Omega'} \subset \Omega$,

$$|u|_{0,\alpha,\Omega'} \le C(M + ||u||_{L^2(\Omega)})$$

for some $C = C(d, \alpha, \Omega', \Omega) > 0$.

We expect that if $a^{ij} \in C^0(\overline{\Omega})$, $c = c(x) \in L^d(\Omega)$, $f \in L^{\frac{2d}{d+2}}(\Omega)$ then the weak solution satisfies $u \in H^1(\Omega) \cap C^{0,\alpha}(\Omega)$. To use perturbation argument, we may write u = v + w where w is the weak solution of $L_0w = 0$ where $L_0w := -\sum_{i,j} \partial_{x_j}(a^{ij}(x_0)\partial_{x_i}w)$ and v solves

$$\sum_{i,j=1}^{d} \int_{B} a^{ij}(x_0) \partial_{x_i} v \partial_{x_j} \varphi dx = \int_{B} (f\varphi - cu\varphi) dx + \sum_{i,j=1}^{d} \int (a^{ij}(x_0) - a^{ij}(x)) \partial_{x_i} u \partial_{x_j} \varphi dx, \quad \forall \varphi \in H_0^1(B)$$

The first step would be to study the constant-coefficient case to have control on w.

Theorem) (Caccioppoli's inequality for harmonic functions) If $w \in C^1$ solved $L_0w = 0$ weakly, i.e. it satisfies $\int_B a^{ij}(x_0) \partial_{x_i} w \partial_{x_j} \varphi dx = 0$ for all $\varphi \in H_0^1(B)$, then

$$\int_{B} |\nabla w|^{2} \eta^{2} dx \le C \int_{B} |\nabla \eta|^{2} |w|^{2} dx, \quad \forall \eta \in C_{0}^{1}(B)$$

for $C = C(\lambda, \Lambda) > 0$ where $\lambda |\xi|^2 \leq \sum_{i,j} a^{ij}(x_0) \xi_i \xi_j \leq \Lambda |\xi|^2$.

Corollary) (Precis version of Cacciofolli's inequality) With same choice of w as above, for all $0 < r < R \le 1$,

$$\int_{B(0,r)} |\nabla w|^2 dx \le \frac{C}{(R-r)^2} \int_{B(0,R)} |w|^2 dx$$

[This can be thought of as a reverse of Poincaré inequality]

Proposition) Assume that w is a weak solution of $\sum_{i,j=1}^{d} \int_{B} a^{ij} \partial_{x_i} w \partial_{x_j} \varphi dx$ for all $\varphi \in H_0^1(B)$. Then for all $0 < \rho \le r$,

$$\int_{B(0,\rho)} |w|^2 dx \le C \left(\frac{\rho}{r}\right)^d \int_{B(0,r)} |w|^2 dx,$$

$$\int_{B(0,\rho)} |w - w_{0,\rho}|^2 dx \le C \left(\frac{\rho}{r}\right)^{d+2} \int_{B(0,r)} |w - w_{0,r}|^2 dx$$

where $C = C(\lambda, \Lambda)$.

Corollary) Under the previous hypothesis, we have that $\forall u \in H^1(B(x_0, r))$ and $\forall 0 < \rho \le r$, we have

$$\int_{B(x_0,\rho)} |\nabla u|^2 dx \le C\left(\left(\frac{\rho}{r}\right)^d \int_{B(x_0,r)} |\nabla u|^2 dx + \int_{B(x_0,r)} |\nabla (u-w)|^2 dx\right)$$

Theorem) Let $u \in H^1(B)$ be a weak solution of Lu = f.

$$\int_{B} \sum_{i,j=1}^{d} a^{ij}(x) \partial_{x_i} u \partial_{x_j} \varphi dx + \int_{B} c(x) u \varphi dx = \int f \varphi dx, \quad \forall \varphi \in H_0^1(B)$$

with $a^{ij}=a^{ji},\,a^{ij}\in C^0(\overline{B}),\,c\in L^d(B),\,f\in L^q,\,q\in (\frac{2}{d},d)$ and $d\geq 2.$ Then

$$\int_{B(x,r)} |\nabla u|^2 dx \le Cr^{d-2+2\alpha} \left(\|f\|_{L^q(B_1)}^2 + \|u\|_{H^1}^2 \right)$$

with $\alpha=2-\frac{d}{q}\in(0,1)$ and $C\equiv C(\lambda,\Lambda,\|c\|_{L^d(B)},\tau)>0$ where $\tau:\mathbb{R}_+\to\mathbb{R}_+\cup\{0\}$ sufficiently chosen so that

$$|a^{ij}(x) - a^{ij}(y)| \le \tau(|x - y|), \quad \forall x, y \in B$$

De Giorgi's Theorem, Part I

Let B = B(0,1). Let $L = \sum a^{ij}(x)\partial_{ij} + c(x)$ (so that b = 0) with λ -uniformly elliptic, $a^{ij} \in L^{\infty}(B)$ (not even continuous) and $c \in L^q(B)$ for q > d/2.

Definition) (weak subsolution) Let $u \in H^1(B)$ is a **weak subsolution** of Lu = f, for f given, if...

Theorem) (De Giorgi, part I) Under the previous hypothesis, assume in addition that $f \in L^q(B)$, q > d/2 and $\exists \Lambda > 0$ suhch that

$$\sup_{i,j} |a^{ij}|_{L^{\infty}(B)} + ||c||_{L^q} \le \Lambda$$

Then, if $u \in H^1(B)$ is a weak subsolution of Lu = f, then

$$u^{+} \in L^{\infty}_{loc}(B)$$
 and
$$\sup_{B(0,1/2)} u^{+} \le C(\|u^{+}\|_{L^{2}(B)}^{2} + \|f\|_{L^{q}(B)}^{2})$$

[The same bound was proved by Nash, with a method to which applies also to parabolic equations. But De Giorgi's method gives better insight.]
(the proof is very very long)

De Giorgi's Theorem, Part II

Set B = B(0,1). We now write Lu in the divergence form

$$Lu = \sum_{i,j=1}^{d} \partial_{x_i} (a^{ij}(x)\partial_{x_j} u) + c(x)$$

Here, we assume c=0. Also let $a^{ij}\in L^{\infty}(B), \ a^{ij}=a^{ji}$ and $\lambda|\xi|^2\leq \sum a^{ij}\xi_i\xi_i\leq \Lambda|\xi|^2$.

Theorem) (De Giorgi, part II) If u is a weak solution of Lu = 0 in B(0,1), then $u \in C^{0,\alpha}(b)$ and

$$\sup_{x \in B(0,1/2)} |u(x)| + \sup_{x,y \in B(0,1/2)} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le C(d, \Lambda/\lambda) ||u||_{L^{2}(B)}$$

for some $\alpha = \alpha(d, \lambda/\Lambda) \in (0, 1)$.

We will need three key ingredients to prove the theorem.

- Poincaré-Sobolev ienquality
- Density theorem
- Oscillation theorem

Lemma) Let $\Phi \in C^{0,1}_{loc}(\mathbb{R})$ by convex and $\Phi' \geq 0$. If u is a subsolution of Lu = 0, then we have that $v = \Phi(u)$ is also a subsolution of Lu = 0 whenever $v \in H^1_{loc}(B)$.

Remark: if u is a supersolution and Φ is concave, then $\Phi(u)$ is a subsolution.

Remark: if u is a subsolution, then $v = (u - k)^+$ is also a subsolution, with choice of $\Phi(s) = (s - k)^+$.

Proposition) (Poincaré-Sobolev inequality) For any $\epsilon > 0$, there is $C = C(\epsilon, d) > 0$ such that $\forall u \in H^1(B)$ satisfying meas $\{x \in B; u(x) = 0\} \ge \epsilon \cdot \text{meas}(B)$, we have

$$\int_{B} |u|^{2} dx \le C(\epsilon, d) \int_{B} |\nabla u|^{2} dx$$

Proposition) (Density theorem) Suppose u is a positive supersolution of Lu=0 in B(0,2) satisfying meas $\{x \in B(0,1); u(x) \ge 1\} \ge \epsilon \cdot \text{meas}(B)$. Then there is $C = C(\epsilon, d, \Lambda/\lambda) > 0$ such that

$$\inf_{B(0,1/2)} u \ge C$$

Similarly, if u is a negative subsolution, then $\sup_{B(0,1/2)} u \leq C$.

Definition) The oscillation of u

Proposition) Assume that u is a bounded solution of Lu=0 in B(0,2), then there is $\gamma=\gamma(d,\Lambda/\lambda)\in(0,1)$ such that

$$\operatorname{osc}_{B(0,1/2)}(u) \le \gamma \operatorname{osc}_{B(0,1)}(u)$$