Number Theory 17

09 March 2024 11:13

O) Let m and n be positive integers, such that, gcd(1|k-1, m) = gcd(1|k-1, n) holds for all positive integer k. Prove that $m = 11^n N$ for some integer v.

Ans: Let $p \neq ||$ be a prime such that $p^{\alpha}||$ m but $p^{\alpha}||$ n

Let $m = p^{\alpha}b$, $n = p^{\alpha}d$ where bonded are coprime to p^{α} , as a

Fact such that $|| k \equiv | \pmod{p^{\alpha}}$ and $p^{\alpha}|| \gcd(||k-||,m|)$ $\Rightarrow p^{\alpha}|| \gcd(||k-||,n|) \Rightarrow \gcd(||k-||,m|)$ Similarly for $\alpha < c$ case prot needed as v is any integer.

Hence $\alpha = c \neq p \neq ||$. Thus $m = ||v^{\alpha}||$ n.

B) How many prime P are there such that $29^{p}+1$ is a multiple of P?

Au:- If $P = 29 \times \text{then } q \text{cd}(29, P) \neq 1$ and $29 \times 29^{p}+1$ $\Rightarrow 29 \times \times 29^{p}+1$ Now if $P \neq 29 \times \text{then}$ q(d(P, 29) = 1) as 29 uprime. q(d(P, 29) = 1) as 29 uprime.

Then $29^{p} \equiv 29 \text{ (wod } p)$ [Fermat's Little Theorem] $30 = 2 \times 3 \times 5$ $\Rightarrow 29^{p}+1 \equiv 30 \text{ (wod } p) \Rightarrow P \in \{2, 3, 5\}$ $\Rightarrow P \mid 30 \Rightarrow P \in \{2, 3, 5\}$

O) Calculate the last three digits of $2005^{11} + 2005^{12} + \cdots + 2005^{2006}$.

Aw: $-2005 \equiv 5 \pmod{1000}$ $5^{11} + 5^{12} + \cdots + 5^{2006} \pmod{1000}$ $5^{11} + 5^{12} + \cdots + 5^{2006} \equiv 0 \pmod{125}$

$$\begin{array}{lll}
S'' + S'^2 + \cdots + S^{2006} & = 0 \pmod{12} \\
\downarrow 2k & = 1 \pmod{8} & S^{2k+1} & = S \pmod{8} \\
\Rightarrow & S'' + S^{12} + \cdots + S^{2006} & = (mod 8) \\
& = 998 (1+5) & = 998 \times 6 \pmod{8} & \Rightarrow 125 \times 4 & = 20 \pmod{8} \\
& = 4 \pmod{8} & \Rightarrow 500 & = 4 \pmod{8} \\
\Rightarrow & S'' + \cdots + S^{2006} & = (500) \pmod{1000}
\end{array}$$

Howework a and b be relatively prime positive intergs. Prove to the there are in finitely many relatively prime terms in the AP, a, a+b, a+2b, a+3b, ----

2) Evaluate
$$\begin{bmatrix} \frac{2^{\circ}}{3} \end{bmatrix} + \begin{bmatrix} \frac{2^{1}}{3} \end{bmatrix} + \begin{bmatrix} \frac{2^{2}}{3} \end{bmatrix} + \cdots + \begin{bmatrix} \frac{2^{1}}{3} \end{bmatrix}$$