

Following V

568K Followers

Boston Harbor Hotel

Downtown Boston
Come Experience our 5 Star Luxury
Hotel.

Iconic Waterfront Hotel with a Convenient Location to Everything Boston Has to Offer. Every Room Boasts City or Harbor Views.

1-866-286-0843 • Expedia Rate

Viewed

4.8/5 Exceptional! (1,132 reviews)

\$693 \$581

nightly price Sponsored

People who looked at the Boston Harbor Hotel also viewed these:

Four Seasons Hotel Boston

\$645

The Ritz-Carlton, Boston

\$595

source: Expedia

A Machine Learning Approach — Building a Hotel Recommendation Engine

Al driven personalization, travel recommendation

Susan Li Aug 13, 2018 · 5 min read

All online travel agencies are scrambling to meet the AI driven personalization standard set by Amazon and Netflix. In addition, the

comparing, matching and sharing.

In this post, we aim to create the optimal hotel recommendations for Expedia's users that are searching for a hotel to book. We will model this problem as a multi-class classification problem and build SVM and decision tree in ensemble method to predict which "hotel cluster" the user is likely to book, given his (or her) search details.

The Data

The data is anonymized and almost all the fields are in numeric format. The data set can be found at <u>Kaggle</u>, we will use train.csv which captured the logs of user behavior, and destinations.csv which contains information related to hotel reviews made by users.

The Figure 1 below provides the schema of the train.csv:

Feature Name	Feature Description	Feature Data Type	
date_time	Timestamp	string	
site_name	ID of Expedia point of sale	int	
posa_continent	ID of continent associate with site name	int	
user_location_country	the ID of the country the user is located	int	
user_location_region	the ID of the region the user is located	int	
user_location_city	the ID of the city the user is located	int	
orig_destination_distance	physical distance between a hotel and a customer at the time of search	double	
	ID of user		
user_id	1 when a user connected from a mobile	int	
is_mobile	device, 0 otherwise	tinyint	
	1 if the click/booking was generated as		
is_package	part of a package, 0 otherwise	int	
channel	ID of a marketing channel	int	
srch_ci	Checkin date	string	
srch_co	Checkout date	string	
	The number of adults specified		
srch_adults_cnt	in the hotel room	int	

31011_1111_0110	III CITE SCUTOII	II I K	
	ID of the destination where the hotel		
srch_destination_id	search was performed	int	
srch_destination_type_id	Type of destination	int	
hotel_continent	Hotel continent	int	
hotel_country	Hotel country	int	
hotel_market	Hotel market	int	
	Number of similar events in the context		
cnt	of the same user session	int	
is_booking	1 if a booking, 0 if a click	int	
	ID of a hotel cluster - <i>This is what we</i>		
hotel_cluster	are going to predict	bigint	

Figure 1

The Figure 2 below provides the schema of the destinations.csv:

Feature Name	Feature Description	Feature Data Type	
	ID of the destination where the hotel		
srch_destination_id	search was performed	int	
d1-d149	latent description of search regions	double	

Figure 2

```
import datetime
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

```
from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier from sklearn.pipeline import make_pipeline from sklearn import preprocessing from sklearn.preprocessing import StandardScaler from sklearn import svm
```



```
df = pd.read_csv('train.csv.gz', sep=',').dropna()
dest = pd.read_csv('destinations.csv.gz')
df = df.sample(frac=0.01, random_state=99)
df.shape
```

(241179, 24)

EDA

The objective is to predict which hotel_cluster a user will book given the information in his (or her) search. There are 100 clusters in total. In another word, we are dealing with a 100 class classification problem.

```
plt.figure(figsize=(12, 6))
sns.distplot(df['hotel_cluster'])
```


Figure 3

is skewness in the data.

Feature Engineering

The date time, checkin date and checkout date columns can not be used directly, we will extract year and month from them. First, we define a couple of functions to achieve that, and we also define a function to merge with destination.csv.

```
from datetime import datetime
def get year(x):
    if x is not None and type(x) is not float:
        try:
            return datetime.strptime(x, '%Y-%m-
%d').year
        except ValueError:
            return datetime.strptime(x, '%Y-%m-%d
%H:%M:%S').year
    else:
        return 2013
    pass
def get_month(x):
    if x is not None and type(x) is not float:
            return datetime.strptime(x, '%Y-%m-
%d').month
        except:
            return datetime.strptime(x, '%Y-%m-%d
%H:%M:%S').month
    else:
        return 1
    pass
def left_merge_dataset(left_dframe, right_dframe,
merge column):
    return pd.merge(left_dframe, right_dframe,
on=merge column, how='left')
```



```
df['date_time_year'] = pd.Series(df.date_time, index =
    df.index)
df['date_time_month'] = pd.Series(df.date_time, index =
    df.index)

from datetime import datetime
    df.date_time_year = df.date_time_year.apply(lambda x:
    get_year(x))
df.date_time_month = df.date_time_month.apply(lambda x:
    get_month(x))
```

Dealing with srch_ci column:

```
df['srch_ci_year'] = pd.Series(df.srch_ci,
index=df.index)
df['srch_ci_month'] = pd.Series(df.srch_ci,
index=df.index)

# convert year & months to int
df.srch_ci_year = df.srch_ci_year.apply(lambda x:
get_year(x))
df.srch_ci_month = df.srch_ci_month.apply(lambda x:
get_month(x))

# remove the srch_ci column
del df['srch_ci']
```

Dealing with srch_co column:

```
df['srch_co_year'] = pd.Series(df.srch_co,
index=df.index)
df['srch_co_month'] = pd.Series(df.srch_co,
index=df.index)
```



```
get_month(x))
# remove the srch_co column
del df['srch_co']
```

Preliminary Analysis

After creating new features and removing the features that are not useful, we want to know if anything correlates well with hotel_cluster . This will tell us if we should pay more attention to any particular features.

```
df.corr()["hotel_cluster"].sort_values()
```

<pre>srch_destination_type_id</pre>	-0.036120
site_name	-0.027497
hotel_country	-0.023837
is_booking	-0.022898
user_location_country	-0.020239
srch_destination_id	-0.016736
srch_co_month	-0.005874
srch_rm_cnt	-0.005570
srch_ci_month	-0.005015
date_time_month	-0.002142
channel	-0.001386
date_time_year	-0.000435
cnt	0.000378
hotel_continent	0.000422
user_location_city	0.001241
user_id	0.003891

5, 5,,_5±_y cu,	0.000002
is_mobile	0.008788
srch_co_year	0.009287
posa_continent	0.012180
srch_adults_cnt	0.012407
srch_children_cnt	0.014901
hotel_market	0.022149
is_package	0.047598
hotel_cluster	1.000000
Name: hotel cluster, dtype:	float64

Figure 4

No column correlates linearly with hotel_cluster, this means that methods which model linear relationship between features might not be suitable for the problem.

Strategy

After a quick google search, it is not hard to learn that for known combinations of search destinations, hotel country, hotel market will definitely help finding the hotel cluster. Let's do that.

```
pieces =
[df.groupby(['srch_destination_id','hotel_country','hot
el_market','hotel_cluster'])
['is_booking'].agg(['sum','count'])]
agg = pd.concat(pieces).groupby(level=[0,1,2,3]).sum()
agg.dropna(inplace=True)
agg.head()
```

sum count

Figure 5

```
agg['sum_and_cnt'] = 0.85*agg['sum'] +
0.15*agg['count']
agg = agg.groupby(level=[0,1,2]).apply(lambda x:
x.astype(float)/x.sum())
agg.reset_index(inplace=True)
agg.head()
```

	srch_destination_id	hotel_country	hotel_market	hotel_cluster	sum	count	sum_and_cnt
0	4	7	246	22	0.0	0.125	0.073171
1	4	7	246	29	0.0	0.125	0.073171
2	4	7	246	30	0.0	0.125	0.073171
3	4	7	246	32	1.0	0.250	0.560976
4	4	7	246	43	0.0	0.125	0.073171

Figure 6

```
agg_pivot = agg.pivot_table(index=
['srch_destination_id','hotel_country','hotel_market'],
columns='hotel_cluster',
values='sum_and_cnt').reset_index()
agg_pivot.head()
```


5 rows × 103 columns

Figure 7

Merge with the destination table and our newly created aggregate pivot table.

```
df = pd.merge(df, dest, how='left',
on='srch_destination_id')
df = pd.merge(df, agg_pivot, how='left', on=
['srch_destination_id','hotel_country','hotel_market'])
df.fillna(0, inplace=True)
df.shape
```

(241179, 276)

Implementing Algorithms

We are only interested in booking events.

```
df = df.loc[df['is_booking'] == 1]
```

Get features and labels.

```
X = df.drop(['user_id', 'hotel_cluster', 'is_booking'],
axis=1)
y = df.hotel_cluster
```

Naive Bayes


```
clf = make_pipeline(preprocessing.StandardScaler(),
GaussianNB(priors=None))
np.mean(cross_val_score(clf, X, y, cv=10))
```

0.10347912437041926

K-Nearest Neighbors Classifier

```
from sklearn.neighbors import KNeighborsClassifier

clf = make_pipeline(preprocessing.StandardScaler(),
KNeighborsClassifier(n_neighbors=5))
np.mean(cross_val_score(clf, X, y, cv=10,
scoring='accuracy'))
```

0.25631461834732266

Random Forest Classifier

We report performance measurement by \underline{k} -fold cross-validation, and $\underline{Pipeline}$ makes it easier to compose estimators.

```
clf = make_pipeline(preprocessing.StandardScaler(),
RandomForestClassifier(n_estimators=273,max_depth=10,ra
ndom_state=0))
np.mean(cross_val_score(clf, X, y, cv=10))
```

0.24865023372782996

Multi-class Logistic Regression


```
clt = make_pipeline(preprocessing.StandardScaler(),
LogisticRegression(multi_class='ovr'))
np.mean(cross_val_score(clf, X, y, cv=10))
```

0.30445543572367767

SVM Classifier

SVM is very time consuming. However, we achieved a much better result.

```
from sklearn import svm

clf = make_pipeline(preprocessing.StandardScaler(),
    svm.SVC(decision_function_shape='ovo'))
    np.mean(cross_val_score(clf, X, y, cv=10))
```

0.3228727137315005

Seems we need to do more feature engineering in order to improve the result. Stay tuned for further improvement!

Source code can be found on Github. Have a great week!

Data Science Machine Learning Recommendation System Python

Programming

About Write Help Legal

Get the Medium app

