Assignment 3

1. Consider the set of training data shown in the table below for a binary classification problem (here + or -). Note that for each record there are three attributes, two of which are binary and one which is continuous.

Record	1	2	3	4	5	6	7	8	9
\mathbf{A}	T	\mathbf{T}	${f T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f T}$	\mathbf{F}
\mathbf{B}	$\mid \mathrm{T} \mid$	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	${f T}$	\mathbf{F}	\mathbf{F}	${f T}$
\mathbf{C}	1.0	6.0	5.0	4.0	7.0	3.0	8.0	7.0	5.0
Class	+	+	38 <u>-4</u>	+	- <u>-</u>	_	_	+	<u>-</u>

a. Determine the entropy of this collection of training examples

4/9 are of class plus, 5/9 are of class minus.

Entropy(t) =
$$\sum_{i=1}^{k} p(i|t)log_2p(i|t)$$
= -((4/9)log₂(4/9) + (5/9)log₂(5/9)) = 0.99107606

b. What the information gains (based on entropy measure) for attributes A and B? Which one provides the largest information gain?

A	+	-
Т	3	1
F	1	4

Entropy(A|T) =
$$-(((3/4)\log 2(3/4) + (1/4)\log 2(1/4)) = 0.811278124$$

Entropy(A|F) =
$$-(((1/5)\log 2(1/5) + (4/5)\log 2(4/5)) = 0.721928095$$

$$\Delta = 0.99107606 - ((4/9)*0.811278124 + (5/9)*0.721928095) = 0.229436841$$

В	+	ı
T	2	3
F	2	2

Entropy(B|T) = $-((2/5)\log 2(2/5) + (3/5)\log 2(3/5)) = 0.970950594$

Entropy(B|F) =
$$-((2/4)\log 2(2/4) + (2/4)\log 2(2/4)) = 1$$

$$\Delta = 0.99107606 - ((5/9)*0.970950594 + (4/9)*1) = 0.00721461889$$

Class A gives the largest information gain between classes A and B.

c.

С	+	-
≥3	1	1
btw	2	2
>6	1	2

Entropy(C|btw) =
$$-((2/4)\log 2(2/4) + (2/4)\log 2(2/4)) = 1$$

Entropy(C|>6) =
$$-((1/3)\log 2(1/3) + (2/3)\log 2(2/3)) = 0.918295834$$

$$\Delta = 0.99107606 - ((2/9)*1 + (4/9)*1 + (3/9)*0.918295834) = 0.018310782$$

d. Determine a decision tree based upon choosing the largest information gain using the entropy measure and splitting attribute C as in part (c). Justify your choices

Class A has the highest gain. Consequently, we choose A as the choice of the first attribute to test. The next choice is choice B as the "true" leaf for B is homogenous for both the True A and False A case. If Class B returns false, then class C will determine the class of the result.

- 2. For this problem, use the two-dimensional image in Figure 1. Your goal is to label the white pixels in terms of connected regions.
 - a. Recall the labelling algorithm we introduced in class. For each white pixel, we considered the neighboring pixels to the north and west.

b. Apply label readjustment by creating a table similar to the one we formed in class. Column 1: Label before readjustment Column 2: Label after readjustment

1	1	Stays
2	1	$2 \rightarrow 1$
3	3	Stays

4	4	Stays
5	5	Stays
6	4	$6 \rightarrow 4$
7	7	Stays
8	8	Stays
9	9	Stays
10	9	$10 \rightarrow 9$
11	11	Stays
12	12	Stays
13	13	Stays
14	9	$14 \rightarrow 9$
15	15	Stays
16	13	$16 \rightarrow 13$
17	9	17 → 9
18	9	18 → 9
19	9	$19 \rightarrow 17 \rightarrow 9$

3. Maximize the linear function $z = 5x_1 + x_2$ with the constraints

$$x_1 - x_2 \ge 2,$$

 $x_1 + x_2 \le 9,$
 $x_1 + 4x_2 \le 16,$
 $x_1, x_2 \ge 0.$

Veriticies = (2.0,0.0), (4.8, 2.8), (6.667, 2.333), (9.0, 0)

Z values = 10, 26.8, 35.66667, 45

Maximum occurs at (9,0). Therefore $x_1 = 9$ and $x_2 = 0$ for max(z).