

RQZ: A rational QZ method for the generalized eigenvalue problem

Daan Camps, Karl Meerbergen, and Raf Vandebril

May 6, 2018

KU Leuven - University of Leuven - Department of Computer Science - NUMA Section

In this talk we will discuss:

Numerical solution of the generalized eigenvalue problem:

In this talk we will discuss:

Numerical solution of the generalized eigenvalue problem:

- ♦ Small to medium-sized
- ♦ Regular
- ♦ All eigenvalues required
- \Diamond No symmetry assumed

In this talk we will discuss:

Numerical solution of the generalized eigenvalue problem:

- ♦ Small to medium-sized
- ♦ Regular
- ♦ All eigenvalues required
- \diamondsuit No symmetry assumed

Tools:

In this talk we will discuss:

Numerical solution of the generalized eigenvalue problem:

- ♦ Small to medium-sized
- ♦ Regular
- ♦ All eigenvalues required
- ♦ No symmetry assumed

Tools:

- ♦ Hessenberg, Hessenberg form
- ♦ Shift & pole introduction and swapping
- Rational Krylov
- ♦ Subspace iteration

In this talk we will discuss:

Numerical solution of the generalized eigenvalue problem:

- ♦ Small to medium-sized
- ♦ Regular
- ♦ All eigenvalues required
- ♦ No symmetry assumed

Tools:

- ♦ Hessenberg, Hessenberg form
- ♦ Shift & pole introduction and swapping
- Rational Krylov
- ♦ Subspace iteration

Solution:

In this talk we will discuss:

Numerical solution of the generalized eigenvalue problem:

- ♦ Small to medium-sized
- ♦ Regular
- ♦ All eigenvalues required
- ♦ No symmetry assumed

Tools:

- Hessenberg, Hessenberg form
- ♦ Shift & pole introduction and swapping
- ♦ Rational Krylov
- ♦ Subspace iteration

Solution:

♦ Method of QR-type driven by rational functions

4

In this talk we will discuss:

Numerical solution of the generalized eigenvalue problem:

- ♦ Small to medium-sized
- ♦ Regular
- ♦ All eigenvalues required
- ♦ No symmetry assumed

Tools:

- Hessenberg, Hessenberg form
- ♦ Shift & pole introduction and swapping
- Rational Krylov
- ♦ Subspace iteration

Solution:

♦ Method of QR-type driven by rational functions

Generalized eigenvalue problems

- \diamondsuit Given $A \& B: n \times n$ matrices, either $\mathbb R$ or $\mathbb C$
- \diamondsuit Computation of the triplets $(\alpha, \beta, \mathbf{x})$ that satisfy $\beta A\mathbf{x} = \alpha B\mathbf{x}$
- ♦ Procedure:
 - 1. Reduce the pencil to a manageable form
 - 2. Iterate to generalized Schur form
 - 3. Recover eigenvectors
- ♦ Make use of well-chosen unitary equivalences:

$$(\hat{A}, \hat{B}) = Q^*(A, B)Z$$
 preserves eigenvalues

Generalized eigenvalue problems

- \diamondsuit Given $A \& B: n \times n$ matrices, either $\mathbb R$ or $\mathbb C$
- \diamondsuit Computation of the triplets $(\alpha, \beta, \mathbf{x})$ that satisfy $\beta A\mathbf{x} = \alpha B\mathbf{x}$
- ♦ Procedure:
 - 1. Reduce the pencil to a manageable form
 - 2. Iterate to generalized Schur form
 - 3. Recover eigenvectors
- ♦ Make use of well-chosen unitary equivalences:

$$(\hat{A},\hat{B})=Q^*(A,B)Z$$
 preserves eigenvalues

In this talk we will discuss:

Numerical solution of the generalized eigenvalue problem $\beta A \mathbf{x} = \alpha B \mathbf{x}$:

- ♦ Small to medium-sized
- ♦ Regular
- ♦ All eigenvalues required
- ♦ No symmetry assumed

Tools:

- ♦ Hessenberg, Hessenberg form
- ♦ Shift & pole introduction and swapping
- ♦ Rational Krylov
- ♦ Subspace iteration

Solution:

♦ Method of QR-type driven by rational functions

7

Hessenberg, Hessenberg form

source: spikedmath.com/573.html

Hessenberg, Hessenberg form

A

Hessenberg, Hessenberg form

 $\boldsymbol{\mathcal{A}}$

Hessenberg, Hessenberg form

$$A$$
 poles $\Xi = (\frac{\times}{\times}) \subset \bar{\mathbb{C}}$

8

Hessenberg, Hessenberg form

$$\begin{array}{c} \times \ \times \\ \text{a)} \times \times \times \times \times \times \times \times \times \\ \text{b)} \times \times \times \times \times \times \times \times \\ \text{c)} \times \times \times \times \times \times \times \\ \text{d)} \times \times \times \times \times \\ \text{d)} \times \times \times \times \\ \text{e)} \times \times \times \\ \text{f)} \times \times \\ \text{g)} \times \\ \end{array}$$

$$oldsymbol{\mathcal{A}}$$
 poles $\Xi=(rac{1}{\mathbf{a}},rac{2}{\mathbf{b}},\ldots)\subsetar{\mathbb{C}}$

8

Introducing a shift

A

Introducing a shift

)

Introducing a shift

A

В

)

Swapping poles

A

Swapping poles

Solve coupled Sylvester equation

(cfr. reordering Schur form [Kågström and Poromaa])

$$\Rightarrow Q^* = \begin{bmatrix} \times & \times \\ \times & \times \end{bmatrix}, Z = \begin{bmatrix} \times & \times \\ \times & \times \end{bmatrix}$$

Swapping poles

 \times \times \times \times \times \times \bigcirc × × × × × $(d) \times \times \times \times$ $(e) \times \times \times$

Swapping poles

A

В

Swapping poles

 \times \times \times \times \times \times

10

Swapping poles

В

Swapping poles

Swapping poles

Swapping poles

Swapping poles

$$\begin{array}{c} \times \times \times \otimes \otimes \times \times \times \times \\ \text{(b)} \times \times \otimes \otimes \times \times \times \times \\ \text{(c)} \times \otimes \otimes \times \times \times \times \\ \text{(d)} \otimes \otimes \times \times \times \\ \text{(e)} \otimes \otimes \otimes \otimes \\ \text{(f)} \times \times \\ \text{(g)} \times \end{array}$$

Swapping poles

Swapping poles

$$\begin{array}{c} \times \times \times \times \times \otimes \otimes \times \times \times \\ \text{b} \times \times \times \otimes \otimes \times \times \times \\ \text{c} \times \times \otimes \otimes \times \times \times \\ \text{d} \times \otimes \otimes \times \times \\ \text{e} \otimes \otimes \times \times \\ \text{f} \otimes \otimes \otimes \\ \text{g} \times \\ \end{array}$$

Swapping poles

 \times \times \times \times \times \times $(b) \times \times \times \times \times \times \times$ \bigcirc × × × × × × $(d) \times \times \times \times \times$ $(e) \times \times \times \times$ $(f) \times \times \times$

Swapping poles

$$\begin{array}{c} \times \times \times \times \times \times \otimes \otimes \times \\ \text{b} \times \times \times \times \otimes \otimes \times \\ \text{c} \times \times \times \otimes \otimes \times \\ \text{d} \times \times \otimes \otimes \times \\ \text{e} \times \otimes \times \times \\ \text{f} \otimes \otimes \times \\ \\ \text{g} \times \otimes \\ \otimes \end{array}$$

Introducing a pole

Introducing a pole

$$\begin{array}{c} \times \times \times \times \times \times \times \otimes \otimes \\ \text{b} \times \times \times \times \times \otimes \otimes \\ \text{c} \times \times \times \times \otimes \otimes \\ \text{d} \times \times \times \otimes \otimes \\ \text{e} \times \times \otimes \otimes \\ \text{f} \times \otimes \otimes \\ \text{g} \otimes \otimes \\ \text{h} \otimes \\ \end{array}$$

A

The algorithm in a nutshell:

The algorithm in a nutshell:

1. Introduce shift at the top

The algorithm in a nutshell:

- 1. Introduce shift at the top
- 2. Swap it all the way down

The algorithm in a nutshell:

- 1. Introduce shift at the top
- 2. Swap it all the way down
- 3. Introduce pole at the end

The algorithm in a nutshell:

- 1. Introduce shift at the top
- 2. Swap it all the way down
- 3. Introduce pole at the end

Poles at ∞ (\times = 0) \rightarrow **QZ method**: Bulge exchange interpretation [Watkins]

Caution: shift $\notin \Xi$ to avoid slower convergence

Is it worth it?

Data: 9 random matrix pairs, $n \in [100, 1000]$, reduced to H-T, averaged over 10 runs

Is it worth it?

Data: 9 random matrix pairs, $n \in [100, 1000]$, reduced to H-T, averaged over 10 runs

Is it worth it?

Data: 9 random matrix pairs, $n \in [100, 1000]$, reduced to H-T, averaged over 10 runs

Is it worth it?

Data: 9 random matrix pairs, $n \in [100, 1000]$, reduced to H-T, averaged over 10 runs

Numerical example 2: Reduction to Hessenberg, Hessenberg

Data: MHD matrix pair from MatrixMarket, n = 1280

Numerical example 2: Reduction to Hessenberg, Hessenberg

Data: MHD matrix pair from MatrixMarket, n = 1280

Numerical example 2: Reduction to Hessenberg, Hessenberg

Data: MHD matrix pair from MatrixMarket, n = 1280

Definition: Properness

The Hessenberg, Hessenberg pair (A, B) is called *proper* (or *irreducible*) if:

$$\begin{array}{c} 1. \\ \times \\ 1 \end{array} \neq \begin{array}{c} \gamma \\ \times \\ \end{array}$$

$$\begin{bmatrix} \frac{2}{\times} & \neq & \frac{0}{0} \end{bmatrix}$$

Why and how does RQZ work?

Krylov subspaces

1. Krylov subspace: $\mathcal{K}_i(M, \mathbf{v}) = \mathcal{R}(\mathbf{v}, M\mathbf{v}, \dots, M^{i-1}\mathbf{v})$

Why and how does RQZ work?

Krylov subspaces

- 1. Krylov subspace: $\mathcal{K}_i(M, \mathbf{v}) = \mathcal{R}(\mathbf{v}, M\mathbf{v}, \dots, M^{i-1}\mathbf{v})$
- 2. rational Krylov subspace: $\mathcal{K}_i^{\mathsf{rat}}(M, \mathbf{v}, \Xi = (\xi_1, \dots, \xi_{i-1})) = q_{\Xi}(M)^{-1} \mathcal{K}_i(M, \mathbf{v})$

Why and how does RQZ work?

Krylov subspaces

- 1. Krylov subspace: $\mathcal{K}_i(M, \mathbf{v}) = \mathcal{R}(\mathbf{v}, M\mathbf{v}, \dots, M^{i-1}\mathbf{v})$
- 2. rational Krylov subspace: $\mathcal{K}_i^{\mathsf{rat}}(M, \mathbf{v}, \Xi = (\xi_1, \dots, \xi_{i-1})) = q_{\Xi}(M)^{-1} \mathcal{K}_i(M, \mathbf{v})$

Theorem

If (A, B) is a proper Hessenberg pair with poles $(\xi_1, \dots, \xi_{n-1})$ then for $i = 1, \dots, n-1$:

$$\mathcal{K}_i^{\mathsf{rat}}(AB^{-1}, \mathbf{e}_1, (\xi_1, \dots, \xi_{i-1})) = \mathcal{K}_i^{\mathsf{rat}}(B^{-1}A, \mathbf{e}_1, (\xi_2, \dots, \xi_i)) = \mathcal{R}(\mathbf{e}_1, \dots, \mathbf{e}_i) = \mathcal{E}_i$$

Why and how does RQZ work?

Theorem: Implicit Q (and Z)

Given a pair (A, B), the matrices Q and Z that transform it to proper Hessenberg form,

$$(\hat{A},\hat{B})=Q^*(A,B)Z,$$

are determined essentially unique if Qe_1 and the poles are fixed.

Why and how does RQZ work?

Nested subspace iteration

An RQZ step with shift ϱ on a pencil with poles $(\xi_1, \ldots, \xi_{n-1})$ and new pole ξ_n performs nested subspace iteration for $i = 1, \ldots, n-1$ accelerated by

$$\mathcal{R}(\mathbf{q}_1,\ldots,\mathbf{q}_i) = (A - \varrho B)(A - \xi_i B)^{-1} \mathcal{E}_i$$
$$\mathcal{R}(\mathbf{z}_1,\ldots,\mathbf{z}_i) = (A - \xi_{i+1} B)^{-1} (A - \varrho B) \mathcal{E}_i.$$

Why and how does RQZ work?

Nested subspace iteration

An RQZ step with shift ϱ on a pencil with poles $(\xi_1, \ldots, \xi_{n-1})$ and new pole ξ_n performs nested subspace iteration for $i = 1, \ldots, n-1$ accelerated by

$$\mathcal{R}(\boldsymbol{q}_1,\ldots,\boldsymbol{q}_i) = (A - \varrho B)(A - \xi_i B)^{-1} \mathcal{E}_i$$
$$\mathcal{R}(\boldsymbol{z}_1,\ldots,\boldsymbol{z}_i) = (A - \xi_{i+1} B)^{-1} (A - \varrho B) \mathcal{E}_i.$$

What does this mean?

ullet QR step with shift ϱ on entire space

Why and how does RQZ work?

Nested subspace iteration

An RQZ step with shift ϱ on a pencil with poles $(\xi_1, \ldots, \xi_{n-1})$ and new pole ξ_n performs nested subspace iteration for $i = 1, \ldots, n-1$ accelerated by

$$\mathcal{R}(\boldsymbol{q}_1,\ldots,\boldsymbol{q}_i) = (A - \varrho B)(A - \xi_i B)^{-1} \mathcal{E}_i$$
$$\mathcal{R}(\boldsymbol{z}_1,\ldots,\boldsymbol{z}_i) = (A - \xi_{i+1} B)^{-1} (A - \varrho B) \mathcal{E}_i.$$

What does this mean?

- ullet QR step with shift arrho on entire space
- RQ steps with tightly packed shifts ≡ on selected subspaces

Tightly packed shifts

 \rightarrow More cache efficient implementations (Level 3 BLAS)

Tightly packed shifts

Block Hessenberg

 \rightarrow complex conjugate shifts and poles in real arithmetic for real pencils

Aggressive Early deflation

The performance of the QR algorithm can be significantly improved by an aggressive early deflation technique ([Braman, Byers and Mathias]) and similar techniques have been developed for the QZ method ([Kågström and Kressner]).

Aggressive Early deflation

Aggressive Early deflation

A and B

Aggressive Early deflation

A and B

Aggressive Early deflation

A and B

Aggressive Early deflation

Standard eigenvalue problems

• RQZ applies equivalence transformations on the pencil:

$$(\hat{A},\hat{B})=Q^*(A,B)Z$$

• Consequently we have two similarity transformations:

$$\hat{A}\hat{B}^{-1}=Q^*AB^{-1}Q\quad\text{and}\quad \hat{B}^{-1}\hat{A}=Z^*B^{-1}AZ$$

Standard eigenvalue problems

• RQZ applies equivalence transformations on the pencil:

$$(\hat{A},\hat{B})=Q^*(A,B)Z$$

• Consequently we have two similarity transformations:

$$\hat{A}\hat{B}^{-1}=Q^*AB^{-1}Q\quad\text{and}\quad \hat{B}^{-1}\hat{A}=Z^*B^{-1}AZ$$

$$\hat{A}\hat{B}^{-1} - diag(\alpha, \xi_1, \dots, \xi_{n-1}) =$$

Standard eigenvalue problems

• RQZ applies equivalence transformations on the pencil:

$$(\hat{A},\hat{B})=Q^*(A,B)Z$$

• Consequently we have two similarity transformations:

$$\hat{A}\hat{B}^{-1}=Q^*AB^{-1}Q\quad\text{and}\quad \hat{B}^{-1}\hat{A}=Z^*B^{-1}AZ$$

$$\hat{A}\hat{B}^{-1}-\textit{diag}(\alpha,\xi_1,\ldots,\xi_{n-1})=$$

Standard eigenvalue problems

• RQZ applies equivalence transformations on the pencil:

$$(\hat{A},\hat{B})=Q^*(A,B)Z$$

Consequently we have two similarity transformations:

$$\hat{A}\hat{B}^{-1}=Q^*AB^{-1}Q$$
 and $\hat{B}^{-1}\hat{A}=Z^*B^{-1}AZ$

$$\hat{A}\hat{B}^{-1} - diag(\alpha, \xi_1, \dots, \xi_{n-1}) =$$

 ${\sf Extended \; Hessenberg \; + \; diagonal = rational \; Hessenberg}$

 \rightarrow my connection with this mini-symposium

Extensions

Rational Krylov method

The connection between RQZ and the rational Krylov method can be used:

- to compute the Ritz values from the Hessenberg, Hessenberg recurrence pencil
- to filter and restart the rational Krylov method

Extensions

Rational Krylov method

$$A V_{k+1} \underline{G}_k = B V_{k+1} \underline{H}_k$$

with:

- $\bullet \ \mathcal{R}(V_{k+1}) = \mathcal{K}_{k+1}^{\mathsf{rat}}(AB^{-1}, \mathbf{v}, \Xi_{1:k})$
- $(\underline{H}_k, \underline{G}_k)$ the Hessenberg, Hessenberg recurrence pencil

Applying an RQZ step with shift ϱ , we get $\mathcal{K}_k^{\mathsf{rat}}(AB^{-1}, \hat{\mathbf{v}}, \Xi_{2:k})$ with:

$$\hat{\mathbf{v}} = (A - \xi_1 B)^{-1} (A - \varrho B) \mathbf{v}$$

Conclusions

- 1. RQZ is a generalization of QZ
- 2. Implicit rational subspace iteration is promising
- 3. New shift and pole strategies can be a powerful tool to compute invariant subspaces

Further reading:

```
arXiv:1802.04094
```

http://numa.cs.kuleuven.be/software/rqz/

Conclusions

- 1. RQZ is a generalization of QZ
- 2. Implicit rational subspace iteration is promising
- 3. New shift and pole strategies can be a powerful tool to compute invariant subspaces

Further reading:

```
arXiv:1802.04094
```

```
http://numa.cs.kuleuven.be/software/rqz/
```

Thank you for your attention!