ROBEM I Let $S = (S_n : n \ge 0)$ be the one-dimensional symmetry simple random walk with $S_0 = c \ge 0$. Let $k \ge 1$ and τ is the time of the k-th undercrossing 0. X_b is the times of $(S_{n \land \tau} : n \ge 0)$ undercrossing b. Prove:

- 1. $(X_b: b \ge c-1)$ is branch process. And offspring distribution is presented by equation (6.3.1) on textbook.
- 2. $(X_{-a}: a \ge 1)$ is branch process. And offspring distribution is presented by equation (6.3.1) on textbook.
- 3. $(X_b: 0 \le b \le c-1)$ is migrating branch process. And offspring distribution is presented by equation (6.3.1) on textbook. And the migrating distribution is concentrating on 1.

ROBEM II $c < b \in \mathbb{Z}_+$. Let $W = (W_n : n \ge 0)$ be the one-dimensional reflecting symmetry simple random walk with $W_0 = c \ge 0$ on $\mathbb{Z}^{0,b}$, whose transition matrix is $P^{0,b}$, where a = 0, p, q > 0, p + q = 1. Let $k \ge 1$ and τ is the time of the k-th undercrossing 0 on (W_n) . $0 \le a \le b$, X_a is the times of $(S_{n \land \tau} : n \ge 0)$ undercrossing a. Prove:

- 1. $(X_b: c-1 \le a \ge b-1)$ is branch process. And offspring distribution is presented by equation (6.3.1) on textbook.
- 2. $(X_b: 0 \le b \le c-1)$ is migrating branch process. And offspring distribution is presented by equation (6.3.1) on textbook. And the migrating distribution is concentrating on 1.

ROBEM III Let $W = (W_n : n \ge 0)$ be the one-dimensional simple random walk with $W_0 = 0$, whose transition matrix P given by equation (4.4.3) on textbook, $0 . <math>X_a$ is the times of $(W_{n \land \tau} : n \ge 0)$ undercrossing a. $r = \frac{p}{q}$. Prove:

1.
$$\mathbb{P}(X_0 = i) = r^i(1 - r), i \ge 0;$$

2.
$$a \ge 0$$
, $\mathbb{P}(X_a = 0) = 1 - r^{a+1}$, $\mathbb{P}(X_a = i) = r^{a+1}(1 - r)$, $i \ge 1$.

ROBEM IV Let $W=(W_n:n\geq 0)$ be the one-dimensional simple random walk with $W_0=0$, whose transition matrix P given by equation (4.4.3) on textbook, 0< p< q< 1. X_a is the times of $(W_{n\wedge\tau}:n\geq 0)$ undercrossing a. $r=\frac{p}{q}$. Prove: if $a\leq -1$, then $X_a\sim G(1-r)$, i.e. $\mathbb{P}(X_a=i)=r^{i-1}(1-r), i\geq 1$.