WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DI INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C12N 15/61, 15/29, 15/62, 15/63, 1/21, C07K 14/415, C12N 9/90, G01N 33/53. C12Q 1/533, A61K 38/52

(11) Internationale Veröffentlichungsnummer:

WO 97/0525

A2

AT

(43) Internationales Veröffentlichungsdatum:

13. Februar 1997 (13.02.9

(21) Internationales Aktenzeichen:

PCT/AT96/00141

(22) Internationales Anmeldedatum: 2. August 1996 (02.08.96)

(30) Prioritätsdaten:

A 1320/95

2. August 1995 (02.08.95)

(74) Anwälte: CASATI, Wilhelm usw.; Amerlingstrasse 8, A-1061 Wien (AT).

(81) Bestimmungsstaaten: AU, CA, JP, NO, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BIOMAY PRODUKTIONS- UND HANDELSGESELLSCHAFT MBH [AT/AT]; Herrenstrasse 2, A-4020 Linz (AT).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): FERREIRA, Fatima [BR/AT]; Würzenberg 35, A-5102 Anthering (AT). RICHTER, Klaus [AT/AT]; Huberbergstrasse 18, A-5162 Obertrum (AT). ENGEL, Edwin [AT/AT]; Karl im Hof Weg 6, A-8773 Kammem (AT). EBNER, Christof [AT/AT]; St. Elisabethplatz 4/13, A-1040 Wien (AT). JILEK, Alexander [AT/AT]; Gruberstrasse 51, A-4020 Linz (AT). RHEINBERGER, Hans-Jörg [LI/AT]; Mascagnigasse 20, A-5020 Salzburg (AT). KRAFT, Dietrich [AT/AT]; Montigasse 1, A-1170 Wien (AT). BREITENBACH, Michael [AT/AT]; Alfred Kubinstrasse 11/11, A-5020 Salzburg (AT).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(54) Title: RECOMBINANT 60KDA VEGETABLE PANALLERGEN (CO-FACTOR-INDEPENDENT PHOSPHOGLYCERATE MU-TASE; E.C. 5.4.2.1.)

(54) Bezeichnung: REKOMBINANTES 60 KDA PFLANZLICHES PANALLERGEN (KOFAKTOR-UNABHÄNGIGE PHOSPHO-GLYCERATMUTASE; E.C. 5.4.2.1.)

(57) Abstract

The description relates to a recombinant DNA molecule which codes a polypeptide antigen property of the co-factor-independent phosphoglycerate mutase (E.C. 5.4.2.1.) of birch, mugwort or timothy grass pollen. This allergen in birch pollen is highly preserved on sequence and antigen property in all plants (but not in animal organisms). The amino acid sequence and the most important B and T-cell epitopes of the molecule are derived and demonstrated. The recombinant allergen was expressed in E. coli and binds the IgE serum of patients who are allergic to tree, grass and weed pollens and various foodstuffs. A monoclonal antibody (BIP 3) specifically bonds to said highly conserved protein from all plants tested. The significance of the co-factorindependent phosphoglycerate mutase (E.C. 5.4.2.1.) derives from the fact that it results in the cross-sensitisation of patients. The recombinant molecule and its partial peptides can be used in diagnostic and therapeutic methods based, for example, on antigen-antibody interaction, mediator release or T-cell reactivity.

(57) Zusammenfassung

Wir zeigen ein rekombinantes DNA Molekül, das für ein Polypeptid mit der Antigenität der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) des Birken-, Beifußoder Lieschgraspollen kodiert. Dieses Allergen des Birkenpollens ist in Sequenz und Antigenität in allen Pflanzen (aber nicht in tierischen Organismen) hoch konserviert. Die Aminosäuresequenz und die wichtigsten B-Zell- und T-Zell-Epitope des Moleküls werden abgeleitet und gezeigt. Das rekombinante Allergen wurde in Escherichia coli exprimiert und bindet Serum IgE von Patienten, die gegen Pollen von Bäumen, Gräsern und Unkräutern sowie gegen verschiedene Nahrungsmittel allergisch sind. Ein monoklonaler Antikörper (BIP 3) bindet spezifisch an dieses hochkonservierte Protein aus allen untersuchten Pflanzen. Die Bedeutung der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) liegt darin, daß sie zur Kreuzsensibilisierung von Patienten führt. Das rekombinante Molekül und seine

Plaque-lifts getestet mit Patientensers und BIP 3

Teilpeptide kann zu diagnostischen und therapeutischen Verfahren herangezogen werden, die z.E. auf Antigen-Antikörper Wechselwirkung, Mediatorfreisetzung, oder T-Zell-Reaktivität beruhen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger
AU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungarn	NZ	Neuseeland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumānien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		

Rekombinantes 60 kDa pflanzliches Panallergen (Kofaktor-unabhängige Phosphoglyceratmutase; E.C. 5.4.2.1.)

BIP3 ist ein gegen ein Birkenpollenprotein gerichteter monoklonaler Antikörper, der, 5 wie bereits früher gezeigt (1), ein Nebenallergen mit einem Molekulargewicht von 60 kDa erkennt. Eine Birkenpollen-cDNA-Expressionsbank wurde mit BIP3 als Probe gescreent und dabei eine cDNA kodierend für ein Pollenallergen mit dem Molekulargewicht 60 kDa isoliert. Dieses Allergen zeigt hohe Sequenzhomologie mit pflanzlichen Kofaktor-unabhängigen Phosphoglyceratmutasen. In weiterer Folge wurden cDNAs die 10 für das gleiche Protein kodieren sowohl aus einer cDNA-Bank von Lieschgraspollen sowie von Beifußpollen isoliert.

Phosphoglyceratmutasen (PGM) katalysieren in der Glykolyse und Glukoneogenese die Umwandlung von 3-Phosphoglycerat zu 2-Phosphoglycerat. Diese Reaktion findet ubi-15 quitar in prokaryotischen und eukaryotischen Organismen statt (2). Es gibt zwei Arten von PGM: Kofaktor-abhängige PGM (PGM-d), die 2,3-Bisphosphoglycerat als Kofaktor brauchen, und Kofaktor-unabhängige PGM (PGM-i), die 2,3-Bisphosphoglycerat nicht benötigen. PGM-d wurden in allen Vertebraten nachgewiesen, während Pflanzen PGM-i verwenden. In Prokaryoten und niederen Eukaryoten ist die Situation wesentlich 20 komplizierter. PGM aus Hefe wurde als PGM-d charakterisiert, während PGM aus Neurospora crassa, die ebenso wie Hefe zu den Pilzen, und damit zu den niederen Eukaryoten zählt, zu der PGM-i Gruppe gehört. PGM von gram-positiven Bakterien (z.B. Bacillus) ist Kofaktor-unabhängig, gram-negative Bakterien (z.B. Escherichia coli) haben Kofaktor-abhängige PGM. PGM von Säugern ist ein Dimer, wobei die Unterein-25 heiten ein Molekulargewicht von 30 kDa haben (2). Das Pflanzenenzym PGM-i ist ein Monomer mit einem Molekulargewicht von etwa 60 kDa (3). Bis jetzt wurden nur PGM-i Sequenzen von Mais (3), Rhizinus und Tabak (4) veröffentlicht. Es wurden keinerlei Sequenzhomologien zwischen PGM-i und PGM-d festgestellt, was den Schluß zuläßt, daß beide Enzyme - obwohl sie die gleiche Reaktion katalysieren - evolutionär 30 unabhängig entstanden sind.

Häufig sind atopische Patienten empfindlich gegen verschiedene Allergene unterschiedlicher Herkunft. In früheren klinischen Studien wurden Allergiesyndrome beschrieben, bei denen die Kreuzreaktivität der Patienten gegen Allergene verschiedener Herkunft (Pollenallergene von Bäumen, Gräsern und Unkräutern, sowie Nahrungsmittelallergene) eine charakteristische Rolle spielt (5,6,7).

Einige bestimmte Kombinationen der Allergenkreuzreaktivität scheinen häufiger aufzu5 treten. Zum Beispiel haben Patienten mit Birkenpollenallergie oft auch eine Intoleranz
gegen eine Vielzahl von Früchten und Gemüsen, wie Apfel, Birne, Nüsse, Karotten,
Kartoffel, Sellerie und viele andere pflanzliche Nahrungsmittel. Typische Symptome
sind lokale Reaktionen der Schleimhäute des oberen respiratorischen bzw. Verdauungstrakts (Jucken, Entzündung, Angioödem), bei vielen Patienten treten aber auch
10 systemische Symptome auf (Urticaria, Asthma, anaphylaktischer Schock).

In den letzten Jahren konnten durch cDNA Klonieren die abgeleiteten Aminosäuresequenzen vieler atopischer Allergene bestimmt werden. Mit Hilfe rekombinanter Allergene konnte in einigen Fällen gezeigt werden, welche allergenen Verbindungen für die Kreuzsensibilisierung verantwortlich sind. In einigen Fällen wurde die Kreuzsensibili-15 sierung durch IgE Antikörper, die homologe Proteine in unterschiedlichen Allergenquellen erkennen, verursacht. Zum Beispiel scheint Bet v 2, das zu der Profilinfamilie gehört und ein Nebenallergen aus Birkenpollen ist (8), in pollenallergischen Patienten eine solche kreuzreaktive Verbindung zu sein. Profiline sind ubiquitäre, aktinbindende Proteine, die in allen eukaryotischen Zellen gefunden werden. Pflanzliche Profiline 20 haben eine hohe Sequenzhomologie, wodurch die hochgradige Kreuzreaktivität mit Patienten-IgE verursacht wird. Als Folge sind Patienten, die gegen Profilin allergisch sind, empfindlich gegen viele pflanzliche Stoffe, wie z.B. Pollen, Früchte, Nüsse, Gemüse etc. Aus diesem Grund wird Profilin als Pflanzen Panallergen bezeichnet (9). Bet v 1, ein Hauptallergen aus Birkenpollen, ist ein anderes für Kreuzreaktionen verant-25 wortliches Pollenallergen. Bet v 1 gehört zu der Familie der Pflanzen PR (pathogenesis related) Proteine (10), die in vielen Pflanzen vorkommen. Mit Bet v 1 homologe Proteine kommen in Pollen von verwandten Bäumen vor (Erle, Hasel, Hainbuche) (11,12,13) vor, was die Kreuzsensibilität von Baumpollen-allergischen Patienten erklärt. Mit Bet v 1 verwandte Proteine wurden auch in Früchten, Gemüse und Nüssen 30 nachgewiesen (14). Das erklärt die klinische Beobachtung, warum pollenallergische Patienten häufig Symptome nach Einnahme bestimmter Früchte und Gemüse zeigen (7).

Die Hauptallergene von Graspollen sind in vielen Grasfamilien konserviert (15), aber

bis jetzt wurden nur Profiline als kreuzreaktive Moleküle in Graspollen und pflanzlichen Nahrungsmitteln beschrieben (16). Kreuzreaktivitäten zwischen Katze, Hund und anderen tierischen Allergenquellen werden hauptsächlich dem Albumin zugeschrieben (17). Aus diesen Beobachtungen kann allgemein geschlossen werden, daß kreuzreagierende 5 Allergene hochkonservierte Proteine sind. Diese Beobachtungen führen dazu, daß das Konzept der Allergie gegen eine bestimmte Pflanzenspezies erweitert werden muß durch das Konzept der Allergie gegen ein bestimmtes hochkonserviertes Protein, das in vielen Pflanzenspecies vorkommt. Die genaue Identifizierung und Charakterisierung von kreuzreagierenden Allergenen ist von größter Wichtigkeit für die Diagnose und 10 mögliche Therapie von Typ I-Allergien.

In der folgenden Patentanmeldung wird gezeigt, daß die pflanzlichen Phosphoglyceratmutasen (E.C.5.4.2.1.) hochkonservierte Pflanzenallergene (d.h. ein Panallergen) sind, die zu einer hochgradigen Kreuzreaktivität von Patienten führen, die gegen Baum-, Gras- und Unkrautpollen bzw. pflanzliche Nahrungsmittel, wie Sellerie und Apfel aller-15 gisch sind.

Materialen und Methoden:

1. Herstellung der cDNA Banken:

20

Gesamt RNA wurde aus Birken-, Beifuß- sowie Lieschgraspollen (Allergon AB, Engelholm) mit der Guanidinium-Phenol-Extraktionsmethode isoliert. Poly(A)+ mRNA wurde mit oligo-dT magnetisierbaren Zellulosepartikeln (Serotec) nach Angaben des Herstellers isoliert. Die cDNA Synthese wurde mit dem Lambda-ZAP cDNA Synthese 25 Kit von Stratagene[®] durchgeführt. Die Synthese des ersten Stranges wurde mit einem oligo(dT) Linker-primer, der eine XhoI Schnittstelle enthielt, gestartet. Nach der Synthese des zweiten Stranges wurden EcoRI Adaptoren an die cDNA ligiert. Die mit XhoI verdaute cDNA wurde dann an die vorverdauten Uni-ZAP XR Vektorarme ligiert und in vitro verpackt. In allen 3 Fällen wurden 1,0-1,5 x 10⁶ rekombinante Plaques erhalten. 30 Die Titer der amplifizierten Banken lagen bei 10¹⁰ pfu/ml.

2. Screening der cDNA Bank mit dem monoklonalen Antikörper BIP 3, in vitro Excision und DNA Sequenzanalyse.

Die cDNA Banken von Birken- und Lieschgraspollen wurden mit dem monoklonalen 5 Antikörper BIP 3 gescreent (1). Positive Plaques wurden auf nachfolgende Art sichtbar gemacht: Inkubation mit Kaninchen Antimaus IgG, dann mit ¹²⁵J-Esel Antikaninchen IgG. Abschließend wurde Autoradiographie durchgeführt. Positive Plaques wurden isoliert und durch neuerliches Screening isoliert. Nachfolgend wurden mit den gereinigten Phagen die *in vitro* Excision wie im Stratagene Handbuch beschrieben durchgeführt, 10 um sie in den pBluescript SK+ Vektor (Stratagene) subklonieren zu können. Plasmide mit rekombinanten cDNA Inserts wurden isoliert, und die Inserts wurden nach der Sanger Methode (18) unter Verwendung des T7 Sequenzierkits (Pharmacia) sequenziert. Es wurden beide Stränge sequenziert.

15 3. Screening der cDNA-Bank mit radioaktiv markierter DNA

Aufgrund der großen Ähnlichkeit der isolierten cDNAs aus der Birken- und Lieschgrasbank wurde das Insert eines Lieschgrasklones (Phl1) isoliert und mittels der "random priming method" (19) radioaktiv markiert. Mit dieser radioaktiv markierten Sonde wurde ein Screening der Beifuß cDNA-Bank durchgeführt (20). Die Hybridisierung der Nitrocellulosefilter erfolgte in 1M Salzlösung bei 60°C für 15-20 Stunden. Anschließend wurden die Filter 2x 30 min mit 5xSSPE 0,1% SDS bei 50°C gewaschen, dann getrocknet und exponiert (1xSSPE= 150mM NaCl, 10 mM Na-phosphat pH 7,0, 1mM EDTA). Nach der Autoradiographie wurden positive Phagen isoliert und durch mehrmaliges Ausplattieren bei geringer Plaquedichte und wiederholtem Screening gereinigt. Die in vitro Excision und Sequenzierung wurde wie unter Punkt 2 beschrieben durchgeführt.

4. Herstellung der Nitrocellulosefilter mit rekombinanten Birken-, Beifuß- sowie Lieschgraspollen PGM-i Allergene und IgE Detektion.

Rekombinante Lambda ZAP Phagen, die PGM-i Allergen cDNA exprimieren, wurden verwendet, um E. coli, Stamm XL-1 Blue, zu infizieren. Inkubation von E. coli

erfolgte in LB Medium mit 10 mM MgSO. Zur Expression des rekombinanten PGM-i Allergens wurden die Phagen induziert, indem auf die Platten in 10 mM Isopropyl-betathiogalaktosid (IPTG) getränkte Nitrozellulosefilter gelegt wurden. Die Nitrozellulosefilter wurden dann in Sektoren geschnitten und mit Sera von Patienten mit allergischen 5 Symptomen gegen Pollen von Birke, Gras, Unkraut oder gegen pflanzliche Nahrung inkubiert. Gebundenes IgE wurde mit 125 J-Kaninchen Antihuman IgE (Pharmacia) nachgewiesen.

Ergebnisse

10

In diesem Teil wird gezeigt, daß es sich bei dem neu klonierten Allergen tatsächlich um ein hochkonserviertes Panallergen handelt, und daß es für eine verbesserte Diagnose und Therapie von Patienten mit einer Allergie gegen dieses Protein aus Pollen und pflanzlichen Nahrungsmitteln verwendet werden kann.

15

DNA- und Aminosäuresequenzen:

Fig. 1 zeigt die cDNA Sequenz und die abgeleitete Aminosäure Sequenz von Birkenpollen PGM-i. Fig. 7a,7b zeigen die cDNA Sequenz und abgeleitete Aminosäure Sequenz von Lieschgraspollen PGM-i (Isoformen Phl1 und Phl5), die gleich Ergebnisse für Beifußpollen PGM-i (Isoformen Art6 und Art17) zeigen die Fig. 10a,10b.

Wie weiter unten gezeigt, binden diese Moleküle den monoklonalen Antikörper BIP 3 (Ref. 1, Fig. 5a, Fig. 14a, Fig. 15a, Fig. 16a) und IgE von Patienten, die gegen Pollen und pflanzliche Nahrungsmittel empfindlich sind (Fig. 5b, Fig. 6, Fig. 14b, Fig. 15b, Fig. 16b).

25 Sequenzvergleich:

Fig. 2 zeigt die hohe Sequenzhomologie aller bisher bekannten pflanzlichen PGM-i (81% bis 87% Identität in allen paarweisen Kombinationen). Die drei bis jetzt bekannten pflanzlichen PGM-i wurden von den Autoren nicht als Allergene erkannt (3,4). Da die Sequenzhomologien so hoch sind, können wir aus dem Sequenzvergleich (Fig.2) schließen, daß in unserer cDNA-Sequenz der Birke die Kodons für die ersten 29 Aminosäuren (inklusive dem Start-Methionin) fehlen. Allerdings beeinflußt diese kurze N-terminale Deletion nicht die Antikörperbindung (Fig.6).

÷

4

Fig. 13 zeigt die hohe Sequenzhomologie der von uns klonierten PGM-i aus Lieschgras (Phl1 und Phl5) und Beifuß (Art6 und Art17) sowie aus Birke (bvmut). Da die Sequenzhomologien sehr hoch sind konnte aus dem Sequenzvergleich geschlossen werden daß die gezeigten Sequenzen von Lieschgras und Beifuß vollständig sind. Die daraus berechneten paarweisen Distanzen sind: Birke/Beifuß 84% identische Aminosäuren, Birke/Lieschgras 83% und Lieschgras/Beifuß 82% identische Aminosäuren. Diese Zahlen zeigen, daß eine direkte immunologische Kreuzreaktion zwischen diesen Allergenen sehr wahrscheinlich ist. Um diese Kreuzreaktion direkt zu zeigen, sind Inhibitionsexperimente notwendig, die zur Zeit in unserem Laboratorium durchgeführt werden.

Die äußerst hohe Sequenzidentität der drei Phosphoglyceratmutasen (Birke, Beifuß und Lieschgras), und die dominante Bedeutung beim Beifuß und Lieschgras deuten auf die besondere Wichtigkeit dieser neuen Allergenfamilie hin. Hinsichtlich konventioneller Immuntherapie wäre hier zu sagen, daß dieses Allergen in seiner vollen Sequenzlänge nicht zur Immuntherapie verwendet werden sollte, weil die Gefahr der Induktion von allergischen Reaktionen besteht, die vorher beim Patienten nicht vorhanden waren. Sehr wohl können aber Teile oder Varianten dieses Moleküls zur Therapie benützt werden. Der Grund, warum Phosphoglyceratmutase trotz seiner extrem hohen Konservierung in der Evolution keinen Anlaß zu Autoimmunreaktionen beim Menschen gibt (wie dies zB. für die Superoxiddismutase, ein Hauptallergen von Aspergillus, gefunden wurde), besteht darin, daß es zwei Klassen von Phosphoglyceratmutasen gibt und die menschliche Phospho-

Berechnung der B- und T-Zell Epitope:

Die B-Zell Epitope (Fig.3) von Birkenpollen PGM-i wurden mit "PepStructure", einem Teil des GCG Programmpakets berechnet. T-Zell Epitope (Fig.4) von Birkenpollen PGM-i wurden mit einem Programm von Margalit et al. (21) berechnet. Die B-Zell Epitope von Lieschgras- und Beifußpollen PGM-i (Fig.8a,8b; Fig. 11a,11b) sowie die T-Zell Epitope (Fig. 9a,9b; Fig. 12a,12b) von PGM-i aus beiden Pollen wurden in gleicher Weise berechnet.

<u>Immunreaktivität</u>

Fig. 5A zeigt einen Immunoblot mit Pollenextrakten von Birke, Beifuß und Lieschgras, und Extrakten von Sellerie (Knollen- und Stangensellerie) und Apfel. Gezeigt ist das Autoradiogramm des mit BIP3 inkubierten Blots. Es ist bemerkenswert, daß der mono- klonale Antikörper BIP 3 in allen diesen Materialien ein 60 kDa Protein erkennt, was auf eine hohe Konservierung der antigenen Epitope hinweist. Weiters werden (Fig. 5B) Immunoblots von BIP 3 -immunaffinitätsgereinigtem PGM-i aus Birkenpollen mit Birkenpollenextrakt als Kontrolle, geprobt mit zwei Patientensera (HP, HL) und nichtallergischem Normalhumanserum (NHS) gezeigt. Die beiden Patienten sind typische Graspollenallergiker, die jedoch das gereinigte Panallergen und im Birkenpollenextrakt ausschließlich PGM-i erkennen. Auch dieses Experiment zeigt die hohe Konservierung von pflanzlichem PGM-i Allergen und seine Bedeutung für die Kreuzreaktivität der Patientenseren.

Fig. 6 zeigt, daß Plaques, die das rekombinante Fusionsprotein bestehend aus der PGM
15 i Sequenz (Fig.1) und 36 Aminosäuren der beta-Galaktosidase enthalten, tatsächlich

BIP 3 binden. Die gleichen Plaquelifts wurden mit den Seren von 11 ausgewählten

Patienten, die allergisch sind gegen Pollen von Bäumen (SS), Gräsern (CM, HL, HP,

SE, MR, CF, BG, GP) oder Unkraut (KG,CW) bzw. Apfel (KG,CW) oder Sellerie

(KG,CW), inkubiert. Als Kontrolle wurde Serum eines gesunden, nicht allergischen

Patienten verwendet (NHS). In gleicher Weiser zeigen Fig. 14a, 15a, 16a die Bindung von

BIP3 Antikörper an rekombinante Fusionsproteine die die PGM-i Sequenz aus Lieschgras

(Fig. 14a,15a) und Beifuß (Fig.16a) enthalten. Die Fig. 14b, 15b, und 16b zeigen daß

Plaquelifts der gleichen rekombinanten Fusionsproteine aus Lieschgras (Fig. 14b, 15b) sowie aus Beifuß (Fig. 16b) ebenso IgE Antikörper aus Seren von allergischen Patienten (SS,

25 HP, KG) binden.

Fig. 5, Fig. 6, Fig. 14, Fig. 15 und Fig. 16 zusammen zeigen, daß wir tatsächlich ein hochkonserviertes Pflanzen Panallergen kloniert haben. Wir nehmen an, daß eine solch hohe
Konservierung einer allergenen Sequenz bzw. Struktur große Bedeutung für die Diagnose
und Therapie hat. Patienten, die dieses Molekül erkennen, sind wahrscheinlich kreuzreaktiv
mit vielen Pollen und pflanzlichen Nahrungsmitteln. Sie können aber andererseits durch
konventionelle Immuntherapie gut behandelt werden, weil PGM-i aus Pflanzen hochkonserviert sind, aber gleichzeit mit humanem oder tierischem PGM nicht verwandt sind.

42

SEQUENZ 1: Kofaktor-unabhängiger Phosphoglyceratmutase (E.C.5.4.2.1.)

ANGABEN	711	CEO	m	NO.	1
ANGABEN	Zυ	2EO	w	NU:	ı

_	Z:\	SEOU	アンス アイブ	TETRIN	TOTAL	ATT TYPE	τ.
٦.	(11	VHI II	IPN/	KHNI	47 M I	l HHr	u.

- (A) LÄNGE: 1593 Basenpaare / 531 Aminosäurereste
- (B) ART: Nukleinsäure / protein
- (C) STRANGFORM:ds
- (D) TOPOLOGIE: linear
- 10 (ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein
 - (iii) HYPOTHETISCH: nein
 - (iv) ANTISENSE: nein
 - (v) ART DES FRAGMENTS: Teilsequenz
 - (vi) URSPÜNGLICHE HERKUNFT:
- 15 (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:
- Gly Gly Glu Ala Lys Pro Asp Gln Tyr Asn Cys Ile His Val

 43 GCC GAG ACT CCC ACC ATG GAT TCC CTC AAA CAG GGT GCT CCT 84
 Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Gln Gly Ala Pro

 85 GAG AAG TGG AGG TTG GTT AGG GCT CAT GGT AAG GCC GTA GGC 126
 Glu Lys Trp Arg Leu Val Arg Ala His Gly Lys Ala Val Gly

1 GGG GGC GAG GCC AAG CCC GAT CAG TAC AAC TGC ATC CAT GTG

- 127 CTT CCA ACA GAG GAT GAC ATG GGC AAC AGT GAA GTT GGT CAC

 Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His
- 169 AAT GCA CTT GGA GCT GGT CGC ATC TTT GCC CAA GGT GCA AAG 210
 Asn Ala Leu Gly Ala Gly Arg Ile Phe Ala Gln Gly Ala Lys
 - 211 CTT GTT GAC TCT GCT CTT GCC TCT GGA AAA ATT TAT GAA GGA 252 Leu Val Asp Ser Ala Leu Ala Ser Gly Lys Ile Tyr Glu Gly

	253									TGT Cys						294
5	295	TTG	CAT	стс	ATT	GGC	TTA	TTG	AGT	GAT	GGT	GGA	GTC	CAC	тсс	336
5	337					•				Asp CTT						378
				·						Leu						
10	379									CAT His						420
	421									GTA Val						462
15	463									CGT						504
1.5	505									Arg CGC						546
							-			Arg						
20	547									GTC Val						588
	589	•						·		ССТ						630
05										Pro						670
25	631									AGG Arg						672
	673									GTC Val						714
30	715									GAT Asp						756
		uly	∟yɔ	110	401	uly	110	115	101	n a p	u i y	nsp	/\ I U	• 4 1		

	757	ACA	ATC	AAC	TTC	CGA	GCA	GAT	CGT	ATG	GTT	ATG	ATT	GCT	AAG	798
		Thr	Ile	Asn	Phe	Arg	Ala	Asp	Arg	Met	Val	Met	He	Ala	Lys	
	799	GCA	CTT	GAA	TAT	GAA	AAT	TTT	GAC	AAG	ATT	GAT	CGA	GTT	CGA	840
		Ala	Leu	Glu	Tyr	Glu	Asn	Phe	Asp	Lys	He	Asp	Arg	Val	Arg	
5														1		
	841	TTC	CCT	AAA	ATC	CGT	TAT	GCT	GGA	ATG	CTT	CAA	TAT	GAT	GGC	882
		Phe	Pro	Lys	Пe	Arg	Tyr	Ala	Gly	Met	Leu	Gln	Tyr	Asp	Gly	
	883											GAA				924
10		Glu	Leu	Lys	Leu	Pro	Ser	His	Tyr	Leu	Val	Glu	Pro	Pro	Glu	
10		474	C 4 C	404	• • • •	TOT	CCT	C	T A T	CTA	CTC	C 4 C	A A T	ccc	CTC	966
	925											CAC His				900
		116	uiu	Ary	1 111	261	ыу	uiu	ıyı	Leu	Vai	1115	A5II	шу	Vai	
	967	CGT	ТЛА	TTT	GCT	TGC	AGT	GAG	ACT	GTC	ΔΔΔ	TTT	GGT	CAT	GTC	1008
	307											Phe				2000
15		3	• • • • • • • • • • • • • • • • • • • •	,	.,,,	٠, ٠			,,,,		-, -	,	٠.,			
	1009	ACT	TTC	TTC	TGG	AAT	GGA	AAC	CGC	TCT	GGA	TAT	TTC	AAT	TCA	1050
		Thr	Phe	Phe	Trp	Asn	G1 y	Asn	Arg	Ser	G1 y	Tyr	Phe	Asn	Ser	
	1051	GAA	CTG	GAG	GAA	TAC	GTG	GAA	ATT	CCA	AGT	GAT	AGT	GGA	ATT	1092
		G 1u	Leu	G1 u	Glu	Tyr	Val	G1 u	Ile	Pro	Ser	Asp	Ser	Gly	Пe	
20																
	1093	ACA	TTC	AAC	GTC	CAG	CCA	AAG	ATG	AAG	GCA	TTG	GAG	ATT	GCT	1134
		Thr	Phe	Asn	Val	Gln	Pro	Lys	Met	Lys	Ala	Leu	Glu	He	Ala	
	1135															1176
25		Glu	Lys	Ihr	Arg	Asp	Ala	He	Leu	Ser	Gly	Lys	Phe	Asp	Gin	
23	1177	CTC	ССТ	CTT	A A C	CTC	CCA	A A T	ССТ	C 4 C	ATC	CTC	ccc	САТ	A C A	1218
	11//											Val				1210
		Vai	rig	Vai	M3II	Leu	110	7311	uiy	дэр	met	V U 1	uıy	1173	1111	
	1219	GGT	GAT	ATT	GAG	GAC	ACA	GTT	GTG	GCT	TGC	AAG	GCT	GCT	GAT	1260
												Lys				
30		3	r			- F					- , -	 -			- r	
	1261	GAG	GCT	GAC	AAG	ATG	ATC	CTT	GAT	GCA	ATA	GAG	CAA	GTG	GGT	1302
		1										Glu				
				•	-				•							

	1303														GAC	1344
		Gly	He	Tyr	Val	Val	Ihr	Ala	Asp	His	Gly	Asn	Ala	Glu	Asp	
	1345	ATG	GTG	AAG	AGG	AAC	AAG	TCC	GTG	CAA	CCT	CTT	CTT	GAC	AAG	1386
5	-	Met	Val	Lys	Arg	Asn	Lys	Ser	Val	Gln	Pro	Leu	Leu	Asp	Lys	
	1387	AAT	GGC	AAT	CTT	CAA	GTG	CTC	ACC	TCT	CAC	ACC	CTC	CAA	CCA	1428
		Asn	Gly	Asn	Leu	Gln	Val	Leu	Thr	Ser	His	Thr	Leu	Gln	Pro	
	1429	GTG	CCA	ATT	GCA	ATT	GGA	GGT	CCT	GCA	TTG	GCA	AGT	GGT	GTC	1470
10		Val	Pro	Ile	Ala	Ile	Gly	Gly	Pro	Ala	Leu	Ala	Ser	Gly	Val	
	1471	AGG	TTC	TGC	AAG	GAT	CTT	CCT	GAT	GGT	GGG	CTT	GCC	AAT	GTT	1512
		Arg	Phe	Cys	Lys	Asp	Leu	Pro	Asp	Gly	Gly	Leu	Ala	Asn	Val	
	1513	GCT	GCA	ACT	GTG	ATC	AAT	CTA	CAT	GGG	TTT	GAG	GCT	CCT	AGT	1554
15		Ala	Ala	Thr	Val	Ile	Asn	Leu	His	Gly	Phe	Glu	Ala	Pro	Ser	
	1555	GAC	TAT	GAG	CCA	ACC	CTC	ATT	GAA	CTC	GTT	GAT	AAC	TAG		1593
		Asp	Tyr	Glu	Pro	Thr	Leu	He	Glu	Leu	Val	Asp	Asn	*		

ANGABEN ZU SEQ ID NO:2

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 2:
 30 Gly Gly Glu Ala Lys Pro Asp Gln Tyr Asn Cys Ile

5 10

ANGABEN ZU SEQ ID NO:3 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 26 5 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: 10 (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 3: Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Gln Gly Ala Pro Glu Lys Trp 10 15 Arg Leu Val Arg Ala His Gly Lys Ala 20 ANGABEN ZU SEQ ID NO:4 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 14 20 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: 25 (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 4: Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His

10

30

1

ANGABEN ZU SEQ ID NO:5

(i) SEQUENZKENNZEICHEN:

		-13-				
	(A) LÄNGE: 18					
	(B) ART: protein					
(ii)	ART DES MOLEKÜLS	S: peptide				
(iii) HYPOTHETISCH: nei	n				
5 (v)	ART DES FRAGMENT	S: N-Terminus	bis C-Ter	minus		
(vi) URSPÜNGLICHE HEI	RKUNFT:				
	(A) ORGANISMUS:	Betula verrucos	a			
	(C) ENTWICKLUNG	SSTADIUM: F	ollen			
(vi	i) SEQUENZBESCHREI	IBUNG:SEQ IE	NO: 5:			
10 GT	y Lys Ile Tyr Glu Gly	Glu Gly Phe	Lys Tyr	Ile Lys	Glu Cys	Phe Glu
1	5		10		15	
As	•					
1	В					
Αħ	NGABEN ZU SEQ ID NO	O:6				
15 (i)	SEQUENZKENNZEICH	HEN:				
	(A) LÄNGE: 13					
	(B) ART: protein					
(ii)	ART DES MOLEKÜLS	S: peptide				
(iii) HYPOTHETISCH: nei	n	•			
20 (v)	ART DES FRAGMENT	S: N-Terminus	bis C-Ter	minus		
(vi) URSPÜNGLICHE HEI	RKUNFT:				
	(A) ORGANISMUS:	Betula verrucos	a			
	(C) ENTWICKLUNG	SSTADIUM: F	ollen			
(vi	i) SEQUENZBESCHREI	BUNG:SEQ II	NO: 6:			
05	u Ser Asp Gly Gly Val	-		G1n Leu		
1	5		10	•		
Αì	NGABEN ZU SEQ ID NO	O:7				
	SEQUENZKENNZEICH					
30	(A) LÄNGE: 12					
J0	(B) ART: protein					
	(-, F F			1		

(ii) ART DES MOLEKÜLS: peptide

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
- 5 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:

Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Val

1

5

10

10 ANGABEN ZU SEQ ID NO:8

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 8:
 Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val

1

Ę

10

- ²⁵ (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 16
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 30 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

(C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

									-16-								
	Val	Lys	Lys	Leu	Arg 5	r G1 u	ı Glu	. Leu	ı Lys	Va1		~ Asp	Glr	n Tyr	Leu 15		
	AN	GAB	EN 2	zu s	EQ I	D N	D:12										
5	(i) S	SEQI	JENZ	ZKEI	NNZ	EICH	IEN:										
_		(A) LÄ	NGE	: 21												
		(B)) AR	Γ: pr	otein												
	(ii)	AR	ΓDE	S M	OLEI	KÜL	S: pe	ptide									
	(iii)	HY	POTE	HETI	SCH	: nei	n										
10	(v)	ART	DES	FR	4GM	ENT	S: N	-Teri	ninus	bis	C-Te	rmin	us				
	(vi)	URS	PÜN	IGLI	CHE	HEI	RKUI	NFT:									
		(A)	OR	GAN	ISM	US: 1	Betul	a ver	rucos	a							
		(C)	EN'	TWI	CKL	UNG	SSTA	ADIU	JM: I	Polle	n						
	(vii)	SEC	QUE	VZBI	ESCI	IREI	BUN	G:SI	EQ II	NC	: 12:						
15	Ala	Leu	G1 u	Tyr	_	Asn	Phe	Asp	Lys			Arg	Val	Arg	Phe	Pro	Lys
	l Ha	A = a	Tun	A1 -	5					10					15		
	116	Arg	Tyr 20	міа				٠									
	AN	GAB	EN Z	U S	EQ II	D NO	D:13										
20	(i) S	EQU	JENZ	KEN	INZI	EICH	EN:										
		(A)	LÄI	VGE	35												
		(B)	ART	r: pre	otein												
	(ii) .	ART	DES	МО	LEK	ÜLS	: рер	tide									
	(iii)	HYI	POTE	IETI:	SCH:	nei	1										
25	(v)	ART	DES	FRA	GM	ENT	S: N	Tern	ninus	bis (С-Те	rmin	ıs				*
	(vi)	URS	PÜN	GLI	CHE	HER	KUN	VFT:									
•		(A)	ORG	GAN	ISMI	US: I	Betula	ı veri	rucos	a							
		(C)	ENT	WI(CKL	JNG	SSTA	DIU	M: P	oller	1						
	(vii)	SEC)UEN	IZBE	SCH	IREI	BUN	G:SE	Q ID	NO	: 13:						
30	Met	Leu	Gln	Tyr	Asp	Gly	G1 u	Leu	Lys	Leu	Pro	Ser	His	Tyr	Leu	Val	Glu
,	1	_			5					10					15		
i	Pro	Pro	G1 u	Пe	G1 u	Arg	Thr	Ser	Gly	G1 u	Tyr	Leu	Val	His	Asn	Gly	Val

-17-

20

25

30

Arg

35

ANGABEN ZU SEQ ID NO:14

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 25
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 14:

Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu Leu Glu Glu Tyr Val

Glu Ile Pro Ser Asp Ser Gly Ile
20 25

20 ANGABEN ZU SEQ ID NO:15

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 24
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 25 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 30 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:

Ser Gly Lys Phe Asp Gln Val Arg Val Asn Leu Pro Asn Gly Asp Met Val

1

5

10

15

Gly His Thr Gly Asp Ile Glu 20

ANGABEN ZU SEQ ID NO:16

- ₅ (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 17
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen

- 20 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:
- 30 His Gly Phe Glu Ala Pro Ser Asp Tyr Glu Pro Thr Leu

ANGABEN ZU SEQ ID NO:18

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
- 10 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:

Tyr Asn Cys Ile His Val Ala Glu Thr Pro Thr Met Asp

1 10

15 ANGABEN ZU SEQ ID NO:19

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 06
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 20 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 25 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 19:

Glu Lys Trp Arg Leu Val
1 5

- (i) SEQUENZKENNZEICHEN:
- 30 (A) LÄNGE: 10
 - (B) ART: protein

5

10

20

- -20-(ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 20: Phe Ala Gln Gly Ala Lys Leu Val Asp Ser 1 10 **ANGABEN ZU SEQ ID NO:21** (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 11 (B) ART: protein 15 (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 21: Glu Gly Glu Gly Phe Lys Tyr Ile Lys Glu Cys 1 5 10 **ANGABEN ZU SEQ ID NO:22** ²⁵ (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 04 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein
 - (vi) URSPÜNGLICHE HERKUNFT:

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

- (A) ORGANISMUS: Betula verrucosa
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 22:

Thr Leu Glu Asn

51

ANGABEN ZU SEQ ID NO:23

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11
- 10 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- 15 (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 23:

Asn Asp Trp Glu Val Ile Lys Arg Gly Trp Asp 1 5 10

- ²⁰ ANGABEN ZU SEQ ID NO:24
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 09
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 24:
 - Val Glu Ala Val Lys Lys Leu Arg Glu
 - 1

ANGABEN ZU SEQ ID NO:25

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11
- 5 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- 10 (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 25:

Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val 1 5 10

- 15 ANGABEN ZU SEQ ID NO:26
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- ²⁵ (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 26:

Arg Thr Phe Ala Cys Ser Glu Thr Val Lys
1 5 10

- 30 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11
 - (B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 5 (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 27:

Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser
1 5 10

ı۸

ANGABEN ZU SEQ ID NO:28

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 08
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 28:

His Thr Gly Asp Ile Glu Asp Thr
1 5

- 25 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 30 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa

```
(C) ENTWICKLUNGSSTADIUM: Pollen
   (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 29:
   Met Ile Leu Asp Ala Ile Glu Gln Val Gly Gly Ile
   1
                                       10
 5
   ANGABEN ZU SEQ ID NO:30
   (i) SEQUENZKENNZEICHEN:
       (A) LÄNGE: 12
       (B) ART: protein
   (ii) ART DES MOLEKÜLS: peptide
   (iii) HYPOTHETISCH: nein
   (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
   (vi) URSPÜNGLICHE HERKUNFT:
       (A) ORGANISMUS: Betula verrucosa
       (C) ENTWICKLUNGSSTADIUM: Pollen
   (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 30:
   Ser Gly Val Arg Phe Cys Lys Asp Leu Pro Asp Gly Gly Leu Ala Asn Val
  1
                   5
                                       10
                                                          15
  Ala Ala
  18
20
  ANGABEN ZU SEQ ID NO:31
  (i) SEQUENZKENNZEICHEN:
       (A) LÄNGE: 09
       (B) ART: protein
25 (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
       (A) ORGANISMUS: Betula verrucosa
       (C) ENTWICKLUNGSSTADIUM: Pollen
30
  (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 31:
  Asn Leu His Gly Phe Glu Ala Pro Ser
```

1		- 1
,		
-		

- (i) SEQUENZKENNZEICHEN:
- 5 (A) LÄNGE: 1671 Basenpaare / 556 Aminosäurereste
 - (B) ART: Nukleinsäure / protein
 - (C) STRANGFORM:ds
 - (D) TOPOLOGIE:linear
 - (ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein
- (iii) HYPOTHETISCH: nein
- 10 (iv) ANTISENSE: nein
 - (v) ART DES FRAGMENTS: Gesamtsequenz
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 15 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 32:
 - 1 ATG GCG ACC TCA TGG ACG CTG CCC GAC CAT CCC ACG CTC CCC 42

 Met Ala Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro
- 43 AAG GGC AAG ACG GTG GCC GTC ATC GTG CTC GAC GGA TGG GGC
 Lys Gly Lys Thr Val Ala Val Ile Val Leu Asp Gly Trp Gly
 - 85 GAG GCC AGC GCT GAC CAG TAC AAC TGC ATC CAT CGT GCC GAG 126 Glu Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg Ala Glu
- 25 127 ACG CCC GTC ATG GAT TCG CTC AAG AAT GGT GCT CCT GAG AAG 168
 Thr Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys
 - 169 TGG ACA CTA GTG AAG GCT CAT GGA ACT GCT GTT GGT CTC CCT 210
 Trp Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu Pro
- 30 211 AGT GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GCT 252 Ser Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala

	253	CTT	GGC	GCT	GGT	CGG	ATT	TTT	GCT	CAA	GGG	GCG	AAG	TTG	TTT	294
		Leu	Gly	Ala	Gly	Arg	Ile	Phe	Ala	G1 n	Gly	Ala	Lys	Leu	Phe	
	295			GCT												336
_		Asp	Ala	Ala	Leu	Ala	Ser	Gly	Lys	Ile	Trp	Glu	Asp	Glu	Gly	
- 5	227	TTC	4 A T	TAC	ATC		C A A	TOT	 -	000	C 4 4	сст	407	CTC	CAC	270
	33/			TAC Tyr												378
		rne	ASII	ıyr	116	Lys	GIU	2er.	rne	Ald	Giu	uly	1111	Leu	п12	
	379	CTT	ATT	GGT	CTG	TTG	AGT	GAT	GGA	GGC	GTC	CAC	TCC	CGG	CTA	420
				Gly												
10				·					-	_						
	421	GAC	CAA	GTG	CAG	TTG	CTT	GTG	AAA	GGT	GCC	AGT	GAG	AGG	GGA	462
		Asp	Gln	Val	Gln	Leu	Leu	Val	Lys	Gly	Ala	Ser	Glu	Arg	Gly	
	463			AGA												504
1.5		Ala	Lys	Arg	Ile	Arg	Leu	His	Ile	Leu	Thr	Asp	Gly	Arg	Asp	
15	505	CTC	TTO	C 4 T	004	400	ACT	C TT	CCT	TTO	CTA	C 4 C	4.04	CTA	040	r 4.0
	505			GAT Asp												546
		Vai	Leu	ASP	ыту	261	261	Vai	ыу	rne	vai	Giu	1111	Leu	Giu	
	547	AAT	GAT	CTT	GCT	CAG	CTT	CGT	GAG	AAG	GGT	GTT	GAT	GCA	CAG	588
				Leu												
20																
	589	GTT	GCA	TCT	GGT	GGT	GGA	AGG	ATG	TAT	GTT	ACC	ATG	GAC	CGC	630
		Val	Ala	Ser	Gly	Gly	Gly	Arg	Met	Tyr	۷a٦	Thr	Met	Asp	Arg	
	631			TAA												672
25		lyr	Glu	Asn	Asp	irp	Asp	Val	Val	Lys	Arg	Gly	lrp	Asp	Ala	
23	673	CAG	GTG	СТТ	CCA	CAA	CC A	CCV	TAC	۸۸۸	TTC		ACT	CCV	CTT	714
	0/3			Leu												/14
		uin	• • •	Leu	uıy	014	AIG		',	Lys	, ,,,	. .y 3	Jei	7,10	LCU	
	715	GAA	GCT	GTG	AAA	ACG	СТА	AGA	GCA	GAG	ССС	AAG	GCC	AAT	GAT	756
		G1 u	Ala	Val	Lys	Thr	Leu	Arg	Ala	Glu	Pro	Lys	Ala	Asn	Asp	
30																
	757	CAG	TAC	TTG	CCT	GCG	TTT	GTG	ATA	GTT	GAT	GAA	AGT	GGC	AAA	798
		Gln	Tvr	j en	Pro	Ala	Phe	Val	Πe	Val	Asn	61 u	Ser	Glv	Lvs	

	799												GTG			840
		Ser	Val	Gly	Pro	Ile	Val	Asp	Gly	Asp	Ala	Val	Val	Пe	Phe	
	841	AAT	TTC	AGA	GCT	GAT	CGC	ATG	GTT	ATG	CTT	GCA	AAG	GCT	CTT	882
5		Asn	Phe	Arg	Ala	Asp	Arg	Met	Val	Met	Leu	Ala	Lys	Ala	Leu	
	883	GAG	TTT	GCT	GAT	TTT	GAT	AAA	TTT	GAC	CGT	GTT	CGT	GTA	CCA	924
		G1 u	Phe	Ala	Asp	Phe	Asp	Lys	Phe	Asp	Arg	Val	Arg	Val	Pro	
	925	AAA	ATT	AAG	TAT	GCT	GGG	ATG	СТС	CAG	TAT	GAT	GGT	GAG	TTG	966
10		Lys	Пe	Lys	Tyr	Ala	G1 y	Met	Leu	Gln	Tyr	Asp	Gly	Glu	Leu	
	967	AAG	CTT	CCA	AAC	AAA	TTC	CTT	GTT	TCC	CCA	CCC	TTG	ATA	GAG	1008
													Leu			
	1009	AGG	ACA	тст	GGT	GAA	TAC	TTG	GTA	AAG	AAT	GGC	GTT	CGC	ACA	1050
15													Val			
	1051	TTT	GCT	TGC	AGC	GAG	Δ۲۲	GTG	AAG	TTT	GGT	ГАТ	GTC	ΔΩΔ	TTT	1092
	2001												Val			1032
	1093	ΤŤſ	TEG	ΔΔΤ	GGA	ΔΔ۲	CGT	TCT	GGA	TAC	TTC	GAT	GAA	۸۲۲	ΔΔG	1134
20	1033												Glu			1154
	1125	C 4 4	CAC	TAC		C 4 4		CCT	ACT	CAT	ACT	ССТ	ATC	a. C.a.	TTC	1176
	1135												Ile			1176
25	1177												GCT Ala			1218
	1219												CAG Gln			1260
			3			_ · _			- · J	- 					_	
30	1261												ACC Thr			1302
- •		115	ASII	Leu	110	V311	uly	vsh	net	1 U 1	uly	. 1113	1111	ury	p	
	1303	ΔΤΤ	GAA.	GCC	ΔCΔ	GTC	GTT	CCC	TGC	ΔAG	GCT	GCT	GΔT	GΔΔ	GCA	1344

Пe	Glu Al	a Thr	Val	Val	Ala	Cvs	Ivs	Ala	Αla	Asn	61 u	ΔΊа
					7114	C 1 3	L 9 3	73 I U	\neg \cdot \cdot	730	ulu	~ 1 0

1345 GTC AAG ATT GTT TTG GAT GCA GTG GAG CAA GTT GGT GGT ATT 1386

Val Lys Ile Val Leu Asp Ala Val Glu Gln Val Gly Gly Ile

5

- 1387 TAT CTT GTC ACT GCT GAT CAT GGA AAC GCA GAG GAT ATG GTG 1428

 Tyr Leu Val Thr Ala Asp His Gly Asn Ala Glu Asp Met Val
- 1429 AAA AGA AAC AAA TCT GGC CAG CCT GCT CTT GAC AAG AGC GGT 1470 Lys Arg Asn Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly

10

- 1471 AGC ATC CAG ATT CTT ACC TCG CAT ACG CTT CAG CCA GTC CCT 1512 Ser Ile Gln Ile Leu Thr Ser His Thr Leu Gln Pro Val Pro
- 1513 GTT GCG ATC GGA GGC CCT GGT CTC CAC CCA GGA GTG AAG TTC 1554

 Val Ala Ile Gly Gly Pro Gly Leu His Pro Gly Val Lys Phe

15

- 1555 AGG TCT GAT ATC AAC ACA CCT GGA CTC GCC AAT GTT GCC GCC 1596 Arg Ser Asp Ile Asn Thr Pro Gly Leu Ala Asn Val Ala Ala
- 1597 ACC GTG ATG AAC CTC CAT GGC TTC CAG GCC CCT GAT GAT TAT 1638
 Thr Val Met Asn Leu His Gly Phe Gln Ala Pro Asp Asp Tyr

20

1639 GAG ACG CTC ATT GAA GTT GCT GAC AAG TAA

1671
Glu Thr Thr Leu Ile Glu Val Ala Asp Lys *

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 15
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 30 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

-29-

- (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 33:

 $5 \frac{\text{Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys Gly Lys Thr}}{1}$

ANGABEN ZU SEQ ID NO: 34

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 35
- 10 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- 15 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 34:

Asp Gly Trp Gly Glu Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg

1 5 10 15

20

Ala Glu Thr Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys 20 25 30

Trp Thr Leu

35

25

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 19
- 30 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein

									-30-							
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus																
(vi) URSPÜNGLICHE HERKUNFT:																
(A) ORGANISMUS. Phleum pratense																
(C) ENTWICKLUNGSSTADIUM: Pollen																
5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 35:																
		Pro) Ser	Asp		Asp	Met	Gly	Asn			Val	Gly	His	Asn	Ala
	1				5					10					15	
	Leu	Gly	Ala													
10																
			EN Z		•											
((i) SEQUENZKENNZEICHEN:															
	(A) LÄNGE: 18															
(B) ART: protein																
(ii) ART DES MOLEKÜLS: peptide																
(iii) HYPOTHETISCH: nein																
			DES						nus b	is C-	Tern	ninus				
((vi)	URS	PÜN	GLIC	HE I	HERI	KUNF	T:								
(A) ORGANISMUS: Phleum pratense																
20		((C) EN	TWI	CKL	UNG	SSTA	DIU	M: P	olle	n					
(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 36:																
(31 v	lvs	Пе	Trn	61	Δsn	61 (21 v	Dha	A c n	Tun	Il.	Lve	61	San 2	Dho
]		_, ,	110	ρ	5	ИЗЪ	ara (лгу	i iie	10	ıyı	116	Lys	gru	15	rne
25			ė													
25	Al a	G 1 u														
									•							
ļ	ANC	ABI	EN 21	JSF	O ID	NO:	37									
ANGABEN ZU SEQ ID NO: 37 (i) SEQUENZKENNZEICHEN:																
30	-, -,		A) LÄ			. Us kil.	· · · · ·			•						
	i) Sl					CHE	N:									

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 5 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 37:

Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val

1 5 10

10

ANGABEN ZU SEQ ID NO: 38

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
- 15 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 38:

Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu
1 5 10

25

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- 30 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 39:

5

Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val

1

5

10

ANGABEN ZU SEQ ID NO: 40

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 17
- 10
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 15 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 40:

Glu Thr Leu Glu Asn Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp Ala

1 5 10 15

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 26
- 25
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 30 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 41:

Ser Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp 1 5 10 15

Trp Asp Val Val Lys Arg Gly Trp Asp Ala 5 20 25

ANGABEN ZU SEQ ID NO: 42

- (i) SEQUENZKENNZEICHEN:
- 10 (A) LÄNGE: 9
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 42:

Glu Ala Pro Tyr Lys Phe Lys Ser Ala 201 5

- (i) SEQUENZKENNZEICHEN:
- (A) LÄNGE: 14
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- 30 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 43:

Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu Pro

1 10

5

ANGABEN ZU SEQ ID NO: 44

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 15 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 44:

Asp Glu Ser Gly Lys Ser Val
1 5

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
 - (B) ART: protein
- 25 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 45:

Phe Arg Ala Asp Arg Met

1 5

ANGABEN ZU SEQ ID NO: 46

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 31
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 46:

15

Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys Ile Lys Tyr

1 5 10 15

Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Asn Lys
20 25 30

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 18
- 25 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 30 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 47:

Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val 10 15 Arg Thr **ANGABEN ZU SEQ ID NO: 48** (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 36 (B) ART: protein 10 (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense 15 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 48: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr Lys Glu Glu 10 Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile Thr Phe Asn Glu Gln Pro 25 30 20 Lys Met Lys Ala 35 25 **ANGABEN ZU SEQ ID NO: 49** (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 8 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 49:

Ile Ala Glu Lys Thr Arg Asp Ala 1 5

- 10 ANGABEN ZU SEQ ID NO: 50
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 24
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 15 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 20 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 50:

Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn Gly Asp Met

1 5 10 15

Val Gly His Thr Gly Asp Ile Glu 20

ANGABEN ZU SEQ ID NO: 51

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 26
- 30 (B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein

- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 51:

Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Gly

1 10 15

Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile 10 20 25

ANGABEN ZU SEQ ID NO: 52

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8

15

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

20

- (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 52:

Leu Thr Ser His Thr Leu Gln Pro
25 1 5

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 19
 - (B) ART: protein
- 30 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein

- -39-(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense (C) ENTWICKLUNGSSTADIUM: Pollen 5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 53: Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp Ile Asn Thr 10 15 Pro Gly Leu 10 ANGABEN ZU SEQ ID NO: 54 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 14 (B) ART: protein 15 (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense (C) ENTWICKLUNGSSTADIUM: Pollen ²⁰ (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 54: Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr Leu 10
- 25

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 5
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 55:

5 Trp Gly Glu Ala Ser 1 5

- 10 ANGABEN ZU SEQ ID NO: 56
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 15 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 56:

Met Asp Ser Leu Lys Asn Gly Ala 1 5

- 25 ANGABEN ZU SEQ ID NO: 57
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 30 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 57:

$$5 \frac{\mbox{Phe Ala Gln Gly Ala Lys Leu Phe Asp Ala}}{1}$$

- (i) SEQUENZKENNZEICHEN:
- 10
- (A) LÄNGE: 5
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 15 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 58:

- (i) SEQUENZKENNZEICHEN:
- 25
- (A) LÄNGE: 4
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 30 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 59:

Thr Leu Glu Asn

1

1

5

ANGABEN ZU SEQ ID NO: 60

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 15 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 60:

Asn Asp Trp Asp Val Val

1

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- 25 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 30 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 61:

Leu Glu Ala Val Lys Thr Leu
1 5

ANGABEN ZU SEQ ID NO: 62

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 62:

15 Leu Ala Lys Ala Leu Glu 1 5

ANGABEN ZU SEQ ID NO: 63

- 20 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 63:

Phe Ala Cys Ser Glu Thr Val Lys

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11
- 5 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 64:

Leu Asp Ala Val Glu Gln Val Gly Gly Ile Tyr

1 5 10

15

10

ANGABEN ZU SEQ ID NO: 65

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 25 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 65:

Pro Gly Leu Ala Asn Val Ala Ala 1 5

30

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 66:

Asn Leu His Gly Phe Gln Ala Pro Asp Asp 1 5 10

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1668 Basenpaare / 555 Aminosäurereste
 - (B) ART: Nukleinsäure / protein
 - (C) STRANGFORM:ds
 - (D) TOPOLOGIE:linear
- (ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein
- (iii) HYPOTHETISCH: nein
- (iv) ANTISENSE: nein
- (v) ART DES FRAGMENTS: Gesamtsequenz
- (vi) URSPÜNGLICHE HERKUNFT:
- 25 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 67:
- 1 ATG ACC TCA TGG ACG CTG CCC GAC CAC CCC ACG CTC CCC AAG

 Met Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys

	43	GGC	CAAG	ACG	GTG	GCC	GT(ATO	GTO	CT(GAC	GGA	TGO	GGG	GAG	84
		Gly	/ Lys	Thr	Val	Ala	۷a٦	Пe	Val	Leu	ı Asp	Gly	Trp	Gly	/ Glu	
	85	GCC	AGC	GCT	GAC	CAG	TAC	: AAC	TGC	ATO	CAT	CGC	GCC	GAG	ACG	126
		Αla	Ser	Ala	Asp	Gln	Tyr	Asn	Cys	Πe	His	Arg	Ala	Gli	Thr	
5																
	127	CCC	GTC	ATG	GAT	TCG	CTC	AAG	AAT	GGT	GCT	ССТ	GAG	AAG	TGG	168
		Pro	Val	Met	Asp	Ser	Leu	Lys	Asn	G1 y	Ala	Pro	Glu	Lys	Trp	
	169	ACA	CTA	GTG	AAG	GCT	CAT	GGA	ACT	GCT	GTT	GGT	СТС	ССТ	AGT	210
		Thr	Leu	Va1	Lys	Ala	His	Gly	Thr	Ala	۷al	Gly	Leu	Pro	Ser	
10	211	GAT	GAC	GAC	ATG	GGC	AAC	AGT	GAA	GTT	GGC	CAC	AAT	GCT	CTT	252
		Asp	Asp	Ásp	Met	Gly	Asn	Ser	Glu	Val	Gly	His	Asn	Ala	Leu	
	253	GGC	GCT	GGT	CGG	ATT	TTC	GCT	CAA	GGG	GCG	AAG	TTG	TTT	GAT	294
		Gly	Ala	Gly	Arg	Пe	Phe	Ala	Gln	Gly	Ala	Lys	Leu	Phe	Asp	
15	29 5	GCT	GCT	CTT	GCA	TCT	GGG	AAG	ATT	TGG	GAA	GAT	GAG	GGT	TTC	336
		Ala	Ala	Leu	Ala	Ser	Gly	Lys	Пe	Trp	G1 u	Asp	Glu	Gly	Phe	
•	337	AAT	TAC	ATC	AAA	GAA	TCT	TTT	GCC	GAA	GGT	ACT	CTG	CAC	CTT	378
		Asn	Tyr	Пe	Lys	Glu	Ser	Phe	Ala	Glu	Gly	Thr	Leu	His	Leu	
20	379										CAC					420
		Пe	Gly	Leu	Leu	Ser	Asp	Gly	Gly	Val	His	Ser	Arg	Leu	Asp	
	421	CAA	GTG	CAG	TTG	CTT	GTG	AAA	GGT	GCC	AGT	GAG	AGG	GGA	GCA	462
		Gln	Val	Gln	Leu	Leu	Val	Lys	Gly	Ala	Ser	Glu	Arg	Gly	Ala	
25																
25	463										GAT					504
		Lys	Arg	He	Arg	Leu	His	He	Leu	Thr	Asp	Gly	Arg	Asp	Val	
		TT 0	D. 4. T.				o - -									-
	วป5										GAG					546
		Leu	Asp	ыу	5er	Ser	Val	Gly	Phe	Val	Glu	Thr	Leu	G1 u	Asn	
30	F 4 7	CAT	^**	007	040	^	^^-									
30	54/										GTT					588
		Asp	Leu	Ala	Gin	Leu	Arg	Glu	Lys	Gly	Va1	Asp	Ala	Gln	Val	

	589	GC/	4 TCT	r ggt	GGT	GGA	A AG	AT6	TAT	r GT1	r ACE	: ATG	GAC	CGC	TAT	630
		Αla	a Ser	- Gly	(Gly	ر G1 ر	/ Arg	Met	Туг	· Val	Thr	Met	: Asp	Arg	Tyr	
									•							
	631	GA(raa a	GAC	TGG	GAT	GTG	GTC	AA(G CGT	GGG	TGG	GAT	GCC	CAG	672
															Gln	
5	5								-	-						
	673	GT0	CTT	GGA	GAA	GCA	CCA	TAC	AAA	\ TTC	ΆΔΑ :	AGT	GCA	CTT	GAA	714
				ı Gly												/14
								.,,	-, -		. Ly 3	Jei	ΛIQ	LEU	Giu	
	715	GCT	GTG	i AAA	ACG	CTA	AGA	GCA	GΔG	. ררר	ΔΔΩ	ccc	٨٨٢	CAT	CAC	756
				Lys												750
10	757			CCT												700
	, 5,															798
		1 3 1	Leu	Pro	Ald	rne	Vai	116	vai	ASP	GIU	3er	ыу	Lys	5er	
	700	СТТ	ССТ	ССТ	A T A	СТА	CAT	000								
	133			CCT												840
		Val	ыу	Pro	116	vai	Asp	ыу	Asp	Ala	Val	Val	Thr	Phe	Asn	
15	0.41	TTC	4.04	ОСТ	047	000										
	041			GCT												882
		rne	Arg	Ala	Asp	Arg	Met	Val	Met	Leu	Ala	Lys	Ala	Leu	Glu	
	002	TT T	CCT		T **											
	003			GAT												924
		rne	Ala	Asp	Phe	Asp	Lys	Phe	Asp	Arg	Val	Arg	Val	Pro	Lys	
20	005															
20	925															966
		lle	Lys	Tyr	Ala	Gly	Met	Leu	Gln	Tyr	Asp	Gly	Glu	Leu	Lys	
	967			AAC												1008
		Leu	Pro	Asn	Lys	Phe	Leu	Val	Ser	Pro	Pro	Leu	He	Glu	Arg	
25																
23	1009															1050
		Thr	Ser	G1 y	Glu	Tyr	Leu	Va1	Lys	Asn	Gly	Val	Arg	Thr	Phe	
	1051	GCT	TGC	AGC	GAG	ACC	GTG	AAG	TTT	GGT	CAT	GTC	ACA	TTT	TTC	1092
		Ala	Cys	Ser	Glu	Thr	Val	Lys	Phe	Gly	His	Val	Thr	Phe	Phe	
30	1093	TGG	AAT	GGA	AAC	CGT	TCT	GGA	TAC	TTC	GAT	GAA	ACC	AAG	GAA	1134
		Trp	Asn	Gly	Asn	Arg	Ser	Gly	Tyr	Phe	azA	G1 u	Thr	Lvs	Glu	

	1135	GAG	TAC	ATA	GAA	ATT	ССТ	AGT	GAT	AGT	GGT	ATC	ACA	TTC	AAT	1176
		Glu	Tyr	Ile	Glu	He	Pro	Ser	Asp	Ser	Gly	Ile	Thr	Phe	Asn	
	1177	GAG	CAG	CCC	AAA	ATG	AAG	GCA	CTT	GAA	ATT	GCT	GAG	AAA	ACC	1218
		Glu	Gln	Pro	Lys	Met	Lys	Ala	Leu	G1u	Ile	Ala	Glu	Lys	Thr	
5																
	1219	CGG	GAT	GCT	ATC	CTC	AGT	GGA	AAG	TTT	GAC	CAG	GTA	CGT	ATT	1260
		Arg	Asp	Ala	Пe	Leu	Ser	Gly	Lys	Phe	Asp	Gln	Val	Arg	Ile	
	1261	AAC	CTG	CCA	AAT	GGT	GAT	ATG	GTG	GGT	CAC	ACC	GGT	GAT	ATT	1302
										_		Thr	_	-		
10	1303															1344
		Glu	Ala	Thr	۷a۱	Val	Ala	Cys	Lys	Ala	Ala	Asp	Glu	Ala	Val	
	1345															1386
		Lys	He	Val	Leu	Asp	Ala	Val	Glu	Gln	Val	Gly	Gly	He	Tyr	
15	1207	OTT	070													
13	1387															1428
		Leu	Vai	ınr	Ala	Asp	His	61 y	Asn	Ala	Glu	Asp	Met	Val	Lys	
	1429	AGA	۸۸۲	۸۸۸	тст	ccc	CAC	ССТ	ССТ	CTT	CAC	A A C	۸۵۲	ССТ	A.C.C	1470
	1763											Lys				1470
		/··· 9	71311	Lys	261	uly	um	110	A18	Leu	wsh	Lys	361	шу	361	
20	1471	ATC	CAG	ATT	CTT	ACC	TCG	CAT	ACG	CTT	CAG	CCA	GTC	CCT	GTT	1512
												Pro				
												•				
	1513	GCG	ATC	GGA	GGC	ССТ	GGT	СТС	CAC	CCA	GGA	GTG	AAG	TTC	AGG	1554
												Val.				
25	1555	TCT	GAT	ATC	AAC	ACA	CCT	GGA	СТС	GCC	TAA	GTT	GCC	GCC	ACC	1596
		Ser	Asp	Пe	Asn	Thr	Pro	Gly	Leu	Ala	Asn	Va1	Ala	Ala	Thr	
										•						
1	1597	GTG	ATG	AAC	CTC	CAT	GGC	TTC	CAG	GCC	CCT	GAT	GAT	TAT	GAG	1638
		Val	Met	Asn	Leu	His	Gly	Phe	Gln	Ala	Pro	Asp	Ąsp	Tyr	Glu	
30]	1639	ACG	ACG	CTC	TTA	GAA	GTT	GCT	GAC	AAG	TAA					1668
		Thr	Thr	Leu	Ile	Glu	Val	Ala	Asp	Lys	*					

ANGABEN ZU SEQ ID NO: 68 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 16 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense 10 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 68: Met Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys Gly Lys 10 15 15 ANGABEN ZU SEQ ID NO: 69 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 35 (B) ART: protein ²⁰ (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense 25 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 69: Asp Gly Trp Gly Glu Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg 10 15

30 Ala Glu Thr Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys 20 1 25 30

Trp Thr Leu

35

ANGABEN ZU SEQ ID NO: 70

- ⁵ (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 19
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT.
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 70:

Leu Pro Ser Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala
1 5 10 15

Leu Gly Ala

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 17
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 30 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 71:
 - Gly Lys Ile Trp Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe

PCT/AT96/00141

-51-

1

5

10

15

Ala

- 5 ANGABEN ZU SEQ ID NO: 72
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 10 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 15 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 72:

Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val
1 5 10

- 20 ANGABEN ZU SEQ ID NO: 73
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 25 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 73:
 - Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu

1

5

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
- 5 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

10

- (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 74:

Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val

15 1 10

ANGABEN ZU SEQ ID NO: 75

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 17
- 20
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 25 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 75:

Glu Thr Leu Glu Asn Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp

1 10 15

30

Ala

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 26
- 5 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 76:

Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp

1 10 15

15

10

Trp Asp Val Val Lys Arg Gly Trp Asp Ala
20 25

ANGABEN ZU SEQ ID NO: 77

- 20 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 9
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 77:

 $^{
m 30}$ Glu Ala Pro Tyr Lys Phe Lys Ser Ala

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 14
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense

10

- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 78:

Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu Pro

1 10

15

ANGABEN ZU SEQ ID NO: 79

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- ²⁰ (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 25 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 79:

Asp Glu Ser Gly Lys Ser Val

30

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 80:

Asn Phe Arg Ala Asp Arg Met

- 15 ANGABEN ZU SEQ ID NO: 81
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 31
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 20 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 81:

Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys Ile Lys Tyr 5 10 15

Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Asn Lys 20

30

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 18
 - (B) ART: protein
- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 82:

Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val
1 5 10 15

15 Arg Thr

ANGABEN ZU SEQ ID NO: 83

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 36
- 20
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 25 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 83:

Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr Lys Glu Glu $30_{\ l}$

Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile Thr Phe Asn Glu Gln Pro

-57-

20

25

30

Lys Met Lys Ala 35

5

ANGABEN ZU SEQ ID NO: 84

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 84:

Ile Ala Glu Lys Thr Arg Asp Ala
1 5

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 24
 - (B) ART: protein
- 25 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- ³⁰ (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 85:

-58-

1

5

10

15

Val Gly His Thr Gly Asp Ile Glu 20

5

ANGABEN ZU SEQ ID NO: 86

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 26
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 86:

Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Gly

1 5 10 15

20 Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile 20 25

- (i) SEQUENZKENNZEICHEN:
- 25 (A) LÄNGE: 8
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 30 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 87:

Leu Thr Ser His Thr Leu Gln Pro

5

ANGABEN ZU SEQ ID NO: 88

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 19
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 15 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 88:

Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp Ile Asn Thr

1 10 15

20 Pro Gly Leu

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 14
- 25
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 30 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 89:

Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr Leu

1 5 10

- ⁵ ANGABEN ZU SEQ ID NO: 90
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 5
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 10 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 15 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 90:

Trp Gly Glu Ala Ser
1 5

- 20 ANGABEN ZU SEQ ID NO: 91
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 25 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 30 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 91:

Met Asp Ser Leu Lys Asn Gly Ala

1

ANGABEN ZU SEQ ID NO: 92

5

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 10
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 10 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 92:

15 Phe Ala Gln Gly Ala Lys Leu Phe Asp Ala 1 5 10

ANGABEN ZU SEQ ID NO: 93

(i) SEQUENZKENNZEICHEN:

20

- (A) LÄNGE: 5
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 25 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 93:

 $30 \frac{\mathsf{Tyr}}{1}$ Ile Lys Glu Ser

```
ANGABEN ZU SEQ ID NO: 94
```

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 4
- 5 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 94:

Thr Leu Glu Asn

15

1

10

ANGABEN ZU SEQ ID NO: 95

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
- 20 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 25 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 95:

Asn Asp Trp Asp Val Val

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 96:

Leu Glu Ala Val Lys Thr Leu
1 5

15 ANGABEN ZU SEQ ID NO: 97

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 97:

25

Leu Ala Lys Ala Leu Glu Phe 1 5

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 5 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 98:

Phe Ala Cys Ser Glu Thr Val Lys 10 $_{\mathrm{1}}$

ANGABEN ZU SEQ ID NO: 99

- (i) SEQUENZKENNZEICHEN:
- 15 (A) LÄNGE: 9
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 99:

Leu Asp Ala Val Glu Gln Val Gly Gly 25 1 5

ANGABEN ZU SEQ ID NO: 100

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 5 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 100:

Pro Gly Leu Ala Asn Val Ala Ala 1 5

10

ANGABEN ZU SEQ ID NO: 101

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
- 15 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 101:

Asn Leu His Gly Phe Gln Ala Pro Asp Asp
1 5 10

25

ANGABEN ZU SEQ ID NO: 102

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1674 Basenpaare / 557 Aminosäurereste
 - (B) ART: Nukleinsäure / protein
 - (C) STRANGFORM:ds

- (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein

(iii) HYPOTHETISCH: nein

(iv) ANTISENSE: nein

	(v) ART DES FRAGMENTS: Gesamtsequenz															
	(vi) URSPÜNGLICHE HERKUNFT:															
5	(A) ORGANISMUS: Artemisia vulgaris															
		(C) EN	TWI	CKL	UNG	SST	ADIU	JM: I	Poller	1					
	(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 102:															
					•											
	1														CCA	42
10		Met	. Gly	'Ser	Ser	Gly	Phe	Ser	Trp	Lys	Leu	Αla	Asp	His	Pro	
10	43	AAG	CTG	CCA	AAG	AAC	AAG	CTG	GTA	ece	ATG	ΔΤΤ	сто	TTG	GAC	84
											Met					04
							-									
	85	GGA	TGG	GGT	GAA	GCT	TCT	ССТ	GAT	AAA	TAT	AAC	TGT	ATC	CAC	126
											Tyr					
15	127										СТС					168
		Vai	Ala	Glu	Ihr	Pro	Ihr	Met	Asp	Ser	Leu	Lys	Asn	Gly	Ala	
	169	ССТ	GAT	CAC	TGG	AGA	TTG	GTG	AGG	GCT	CAT	GGA	ACT	GCT	GTT	210
											His					220
20	211										AAC					252
		Gly	Leu	Pro	Thr	Glu	Asp	Asp	Met	Gly	Asn	Ser	Glu	Val	Gly	
	253	CAC	ΔΑΤ	GCT	CTT	GGT	GCT	GGA	∆GG.	ΔΤΟ	TTT	CCT	C	CCT	ССТ	294
											Phe					234
									J							
25	295	AAA	CTC	GTT	GAT	CAA	GCA	CTT	GCC	TCT	GGG	AGA	ATT	TAC	GAA	336
		Lys	Leu	Val	Asp	Gln	Ala	Leu	Ala	Ser	Gly	Arg	Ile	Tyr	Glu	
	227	CAT	C A A	ССТ	TTO		TAC	4.7.0		0.4.4	TO.					
	337										TCA Ser					378
		,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	0.4	J.,		,,,,,,		110	Lys	UTU	261	rne	Ala		Maii	
30	379	ACC	TTG	CAT	стт	ATT	GGA	TTG	ATG	AGT	GAT	GGT	GGT	GTT	CAC	420
											Asp					
			1													

	421	TCÁ	CGT	CTT	GAT	CAG	TTG	CAG	TTG	TTG	CTT	AAC	GGA	GCT	AGT	462
		Ser	Arg	Leu	Asp	Gln	Leu	Gln	Leu	Leu	Leu	Asn	G1 y	Ala	Ser	
	463	GAG	CGT	GGT	GCC	AAG	AAG	ATC	CGT	GTT	CAC	GTG	CTT	ACT	GAT	504
5		Glu	Arg	Gly	Ala	Lys	Lys	Ile	Arg	Val	His	Val	Leu	Thr	Asp	
	505	GGT	CGT	GAT	GTT	TTG	GAT	GGT	TCA	AGT	GTC	GGT	TTT	GCT	GAA	546
		Gly	Arg	Asp	Val	Leu	Asp	Gly	Ser	Ser	Val	Gly	Phe	Ala	Glu	
	547	ACA	CTT	GAA	GCA	GAA	CTT	GCA	AGT	CTC	CGC	AGC	AAG	GGC	ATT	588
10		Thr	Leu	Glu	Ala	Glu	Leu	Ala	Ser	Leu	Arg	Ser	Lys	Gly	He	
	589										CGT					630
										,	Arg					
	631										GTT					672
15	670										Val					
15	6/3										CCA					714
											Pro					
	715										AGA					756
20	757										Arg					700
20	/5/										GTT					798
	700										Val				·	0.4.0
	799										GAT					840
٠											Asp	·	•			
25	841										ATG					882
											Met					
	883										AAG					924
											Lys					
30	925										ATG					966
		Arg	Phe	Pro	Lys	He	Arg	Tyr	Ala	Gly	Met	Leu	Gln	Tyr	Asp	

	967	GGA	GAG	TTG	AAG	CTT	CCA	AAC	CAT	TAC	CTT	GTT	TCT	CCC	CCA	1008
		Gly	Glu	Leu	Lys	Leu	Pro	Asn	His	Tyr	Leu	Va1	Ser	Pro	Pro	
*																
	1009	TTG	ATT	GAC	AGG	ACA	TCT	GGC	GAA	TAT	TTG	GTG	CAT	AAT	GGT	1050
		Leu	Пe	Asp	Arg	Thr	Ser	Gly	Glu	Tyr	Leu	Va1	His	Asn	Gly	
5															_	
	1051	GTC	CGC	ACT	TTT	GCT	TGC	AGT	GAG	ACT	GTC	AAA	TTC	GGT	CAT	1092
			Arg													
			· 9				0,0	001			• • •	Ly 3		٠,,	1113	
	1093	GTC	Δ۲Δ	TTT	TTC	TGG	ΔΔΤ	CCA	۸۸۲	ւեւ	TCT	сст	TAC	TTC	۸۸۲	1134
	1030		Thr													1154
10		Vai	1 111	rne	rne	пр	WZII	ату	W211	Arg	Ser	ыу	ıyı	rne	ASII	
10		TCA	CAC	TTC	C 4 4	C 4 4	TAT	CTT	C 4 4	A T T	C C A	4 C T	~ .	407	ССТ	1176
	1135															1176
		5er	Glu	Leu	Glu	Giu	ıyr	vaı	614	116	Pro	Ser	Asp	Ser	Gly	
		. ~~														
	1177															1218
			Thr								-					
15	1219															1260
		Gly	Glu	Lys	Thr	Arg	Asp	Ala	Ile	Leu	Ser	Gly	Lys	Phe	Asp	
	1261	CAG	GTA	CGT	GTG	AAC	ATA	CCA	AAC	GGT	GAC	ATG	GTT	GGG	CAC	1302
		Gln	Va1	Arg	Val	Asn	Пe	Pro	Asn	Gly	Asp	Met	Val	Gly	His	
20	1303	ACC	GGT	GAT	GTT	GAG	GCT	ACT	GTC	GTG	GCC	TGC	AAG	GCT	GCT	1344
		Thr	Gly	Asp	Val	Glu	Ala	Thr	Val	Val	Ala	Cys	Lys	Ala	Ala	
	1345	GAT	GAA	GCT	GTT	AAG	ATG	ATC	CTT	GAT	GCC	GTA	GAG	CAA	GTG	1386
		Asp	Glu	Ala	Val	Lys	Met	Ile	Leu	Asp	Ala	Va T	Glu	Gln	Va1	
						•				•						
25	1387	GGT	GGG	ATA	TAC	GTT	GTG	ACT	GCC	GAT	CAC	GGT	AAT	GCT	GAG	1428
			Gly													
								• • • • • • • • • • • • • • • • • • • •		р		u .,	,,,,,,			
	1429	GAC	ATG	GΤΔ	AAG	ΔGΔ	744	AAG	AAG	GGT	GAG	CCT	CTT	רדר	AAG	1470
	23		Met													17/0
		wah	11E L	v a I	Lys	∧ı y	N3II	Lys	Lys	ury	ujiu	110	Leu	LEU	cy s	
30	1/71	CAC	ררי	CAC	CTC	C A C	A T T	CT A	A C A	T·C·A	CAC	٨٢٣	СТТ	C A C	000	1510
50	1471															1512
		Asp	Gly	Glu	Val	Gln	He	Leu	ihr	Ser	His	Thr	Leu	Gln	Pro	ı

1513 GTG CCA ATT GCA ATT GGA GGT CCT GGG TTA TCC GCT GGT GTG 1554

Val Pro Ile Ala Ile Gly Gly Pro Gly Leu Ser Ala Gly Val

1555 AGG TTC CGC AAG GAT GTA CCA AGT GGA GGA CTT GCA AAC GTA 1596
Arg Phe Arg Lys Asp Val Pro Ser Gly Gly Leu Ala Asn Val

5

1597 GCA GCA ACT GTG ATG AAT CTT CAT GGG TTT GTG GCT CCT GAG 1638
Ala Ala Thr Val Met Asn Leu His Gly Phe Val Ala Pro Glu

1639 GAC TAC GAG ACT ACT CTG ATC GAA GTT GTT GAG TAA

Asp Tyr Glu Thr Thr Leu Ile Glu Val Val Glu *

10

ANGABEN ZU SEQ ID NO: 103

- (i) SEQUENZKENNZEICHEN:
- 15 (A) LÄNGE: 21
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 103:

Met Gly Ser Ser Gly Phe Ser Trp Lys Leu Ala Asp His Pro Lys Leu 25 1 5 10 15

Pro Lys Asn Lys Leu 20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 14

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 5 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 104:

Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile 10 $\overset{\circ}{1}$ 5 10

ANGABEN ZU SEQ ID NO: 105

- (i) SEQUENZKENNZEICHEN:
- 15
- (A) LÄNGE: 25
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 105:

Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Asn Gly Ala Pro Asp His 25 l 5 10 15

Trp Arg Leu Val Arg Ala His Gly Thr 20 25

30 ANGABEN ZU SEQ ID NO: 106

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 19

-71-

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 5 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 106:

Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala ${f 10}$ ${f 1}$ 5 ${f 10}$ 15

Leu Gly Ala

- ANGABEN ZU SEQ ID NO: 107
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 20
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 20 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 25 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 107:

Gly Arg Ile Tyr Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe 1 5 10 15

Ala Thr Asn Thr

30

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 108:

Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln
1 5 10

15

ANGABEN ZU SEQ ID NO: 109

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
- 20 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 25 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 109:

Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val 1 5 10

30 ANGABEN ZU SEQ ID NO: 110

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 13

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 5 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 110:

Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val 10₁ 10

ANGABEN ZU SEQ ID NO: 111

- (i) SEQUENZKENNZEICHEN:
- (A) LÄNGE: 10 15
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 111:

Ala Ser Leu Arg Ser Lys Gly Ile Asp Ala 25 1 10

ANGABEN ZU SEQ ID NO: 112

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 19

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 5 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 112:

10 Trp Glu Val

ANGABEN ZU SEQ ID NO: 113

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 9

15

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

20

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 113:

Glu Ala Pro His Lys Phe Lys Asn Val
25 1 5

ANGABEN ZU SEQ ID NO: 114

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 16

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 5 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 114:

Ile Lys Thr Leu Arg Gln Ala Pro Gly Ala Asn Asp Gln Tyr Leu Pro 1 5 10 15

10

ANGABEN ZU SEQ ID NO: 115

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- 15 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 115:

Asp Asp Ser Gly Thr Pro Val

25

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 116:

5
Asn Phe Arg Ala Asp Arg Met
1 5

ANGABEN ZU SEQ ID NO: 117

- 10 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 39
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 15 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 117:
- 20 Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val Arg Phe Pro 1 5 10 15

Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu 20 25 30

25 Pro Asn His Tyr Leu Val Ser 35

- 30 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 18
 - (B) ART: protein

-77-

	(ii) ART DES MOLEKÜLS: peptide												
	(iii) HYPOTHETISCH: nein												
	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT:												
5	5 (A) ORGANISMUS: Artemisia vulgaris												
	(C) ENTWICKLUNGSSTADIUM: Pollen												
	(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 118:												
	Pro Leu Ile Asp Arg Thr Ser Gly Glu Tyr Leu Val His Asn Gly Val												
10	1 5 10 15												
10	Arg Thr												
	Arg inc												
	ANGABEN ZU SEQ ID NO: 119												
	(i) SEQUENZKENNZEICHEN:												
15	(A) LÄNGE: 46												
	(B) ART: protein												
	(ii) ART DES MOLEKÜLS: peptide												
	(iii) HYPOTHETISCH: nein												
	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus												
20	(vi) URSPÜNGLICHE HERKUNFT:												
	(A) ORGANISMUS: Artemisia vulgaris												
	(C) ENTWICKLUNGSSTADIUM: Pollen												
	(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 119:												

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 24
 - (B) ART: protein
- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 120:

15 Val Gly His Thr Gly Asp Val Glu

20

ANGABEN ZU SEQ ID NO: 121

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- 20 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 25 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 121:

Lys Ala Ala Asp Glu Ala Val 15

30

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 25
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 122:

Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Lys Gly

1 10 15

Glu Pro Leu Leu Lys Asp Gly Glu Val
20 25

ANGABEN ZU SEQ ID NO: 123

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
- 20
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 25 (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 123:

Leu Thr Ser His Thr Leu Gln Pro
1 5

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 124:

Gly Val Arg Phe Arg Lys Asp Val Pro Ser Gly Gly Leu

1 5 10

15

ANGABEN ZU SEQ ID NO: 125

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- ²⁵ (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 125:

Val Ala Pro Glu Asp Tyr Glu Thr Thr Leu 1 5 10

የበ

ANGABEN ZU SEQ ID NO: 126

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 5
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 126:
- $10_{\mbox{Ala Asp His Pro Lys}}$

- 15 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 16
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 127:
- 25 Tyr Asn Cys Ile His Val Ala Glu Thr Pro Thr Met Asp Ser Leu Lys
 1 5 10 15

- (i) SEQUENZKENNZEICHEN:
- (A) LÄNGE: 7
 - (B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 5 (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 128:

Asp His Trp Arg Leu Val Arg
1 5

ANGABEN ZU SEQ ID NO: 129

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
- 15 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 129:

Phe Ala Gln Gly Ala Lys Leu Val Asp Gln
1 5 10

25

ANGABEN ZU SEQ ID NO: 130

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 19
 - (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 130:

Glu Ala Pro His Lys Phe Lys Asn Val Val Glu Ala Ile Lys Thr Leu 1 5 10 15

Arg Gln Ala

10

ANGABEN ZU SEQ ID NO: 131

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
- _ (B) ART: protein
- 15 (2) There protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 20 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 131:

Arg Thr Phe Ala Cys Ser Glu Thr Val Lys
1 5 10

25

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
- 30 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein

- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 132:

Ser Glu Leu Glu Glu Tyr Val Glu 1 5

- 10 ANGABEN ZU SEQ ID NO: 133
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 14
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 15 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 133:

Val Lys Met Ile Leu Asp Ala Val Glu Gln Val Gly Gly Ile 1 5 10

- 25 ANGABEN ZU SEQ ID NO: 134
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 134:

$$5 \frac{\text{Gly Gly Leu Ala Asn Val Ala Ala}}{1}$$

- (i) SEQUENZKENNZEICHEN:
- 10
- (A) LÄNGE: 9
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 15 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO. 135.

As n Leu His Gly Phe Val Ala Pro Glu $\mathbf{20}_{1}$

- (i) SEQUENZKENNZEICHEN:
- 25 (A) LÄNGE: 1683 Basenpaare / 560 Aminosäurereste
 - (B) ART: Nukleinsäure / protein
 - (C) STRANGFORM:ds
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein
 - (iii) HYPOTHETISCH: nein
 - (iv) ANTISENSE: nein
 - (v) ART DES FRAGMENTS: Gesamtsequenz

(vi) UR	SPÜ	NGL	JCHE	HER	KU)	NFT
-----	------	-----	-----	-------------	-----	-----	------------

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 136:

	1				TCA										-	42
		nec	uly	261	Ser	עונט	АЅР	Lys	inr	ınr	ırp	Lys	Leu	АТА	ASP	
	43	CAC	CCA	AAA	СТА	CCA	AAA	GGA	AAA	ATG	ATC	GCG	GTT	GTT	GTT	84
10		His	Pro	Lys	Leu	Pro	Lys	Gly	Lys	Met	Ile	Ala	Val	۷al	Val	
	85	TTG	GAC	GGT	TGG	GGT	GAA	GCT	TCT	CCC	GAC	AAA	TAT	AAT	TGT	126
		Leu	Asp	Gly	Trp	Gly	Glu	Ala	Ser	Pro	Asp	Lys	Tyr	Asn	Cys	
	127	ATC	CAT	GTT	G CC	CAA	ACA	ССС	GTC	ATG	TAT	TCT	CTT	AAA	AAC	168
15		Ile	His	Val	Ala	Gln	Thr	Pro	Val	Met	Tyr	Ser	Leu	Lys	Asn	
	169	AGT	GCA	ССТ	GAT	CAC	TGG	AGA	TTG	GTG	AGG	GCA	CAT	GGT	ACT	210
		Ser	Ala	Pro	Asp	His	Trp	Arg	Leu	Val	Arg	Ala	His	G1 y	Thr	
	211	GCT	GTG	GGG	CTT	ССС	ACA	GAC	GAT	GAC	ATG	GGA	AAC	AGC	GAA	252
20		Ala	Val	Gly	Leu	Pro	Thr	Asp	Asp	Asp	Met	Gly	Asn	Ser	Glu	
	253	GTT	GGA	CAT	AAT	GCT	CTT	GGA	GCT	GGT	CGA	ATT	TAT	GCC	CAA	294
		Va1	Gly	His	Asn	Ala	Leu	G1 <i>y</i>	Ala	Gly	Arg	Пe	Tyr	Ala	Gln	
	295	GGT	GCA	AAA	CTT	GTG	GAT	CTT	GCT	CTT	GCC	TCT	GGA	AAG	ATA	336
25		Gly	Ala	Lys	Leu	Val	Asp	Leu	Ala	Leu	Ala	Ser	Gly	Lys	Ile	
	337	TAT	GAC	GAT	GAA	GGT	TTT	AAT	TAC	ATT	AAG	GAA	TCT	TTF	GCA	378
		Tyr	Asp	Asp	Glu	Gly	Phe	Asn	Tyr	Пe	Lys	Glu	Ser	Phe	Ala	
	379	AAT	AAT	ACA	TTG	CAC	стс	ATT	GGA	TTG	ATG	AGT	GAT	GGG	GGT	420
30		Asn	Asn	Thr	Leu	His	Leu	Ile	Gly	Leu	Met	Ser	Asp	G1 y	Gly	
	421	GTG	CAC	TCT	CGC	CTT	GAT	CAG	TTA	CAG	CTG	TTG	СТС	AAĄ	GGT	462

		Val	His	Ser	Arg	Leu	Asp	Gln	Leu	Gln	Leu	Leu	Leu	Lys	Gly	
	463	GCT	AGT	GAA	CGT	GGT	GCC	AAG	AAG	ATC	CGT	GTC	CAC	GTA	СТТ	504
		Ala	Ser	Glu	Arg	Gly	Ala	Lys	Ļys	Ile	Arg	Val	His	Val	Leu	
5	505	ACT	GAT	GGC	CGT	GAT	GTT	TTG	GAT	GGT	TCA	AGT	GTA	GGC	TTT	546
			Asp													
	547	GCA	GAA	ACA	СТТ	GAA	AAG	GAC	СТТ	GCA	GAC	СТА	CGT	AGC	AAA	588
			Glu													
10	589	GGT	ATA	GAT	GCT	CAG	GTT	GCT	TCT	GGT	GGA	GGT	CGC	ATG	TAT	630
			Ile													
	631	GTC	ACC	ATG	GAT	CGT	ΤΔΤ	GAG	ΔΔΤ	GAT	TGG	GAT	GTT	GTG	ΔΔΔ	672
			Thr													072
15	673	CGT	GGT	TGG	GAT	GCT	CAG	GTG	CTT	GGT	GΔΔ	ecc	CCA	CAC	ΔΔΔ	714
			Gly													, 14
	715	TTC	AAG	AGT	GCT	GTT	GAG	GCT	ATC	AAG	AAG	CTA	AGG	GAA	GCT	756
			Lys													
	757		AAT							_	_		_			798
20			Asn													
	799	GAT	GAG	AGT	GGG	AAG	ССТ	GTG	GGT	CCC	АТА	ATG	GAC	GGT	GAT	840
			G1 u													
	841	GCT	GTT	GTC	ACA	TTC	AAC	TTC	CGA	GCA	GAT	CGA	ATG	ACA	ATC	882
25		Ala	Va1	Va 1	Thr	Phe	Asn	Phe	Arg	Ala	Asp	Arg	Met	Thr	Ile	
	883	CTT	GCC	CAG	GCT	CTT	GAG	TAT	GAG	AAG	TTT	GAT	AAA	TTT	GAC	924
		Leu	Ala	Gln	Ala	Leu	Glu	Tyr	Glu	Lys	Phe	Asp	Lys	Phe	Asp	
	925	AGG	GTG	CGG	TTC	CCT	AAA	ATC	CGC	TAT	GCT	GGA	ATG	CTT	CAA	966
30		Arg	Val	Arg	Phe	Pro	Lys	Ile	Arg	Tyr	Ala	Gly	Met	Leu	Gln	
	967	TAT	GAT	GGG	GAG	TTG	AAG	СТА	CCA	AGT,	CGT	TAC	CTG	GTT	тст	1008

Tyr Asp Gly Glu Leu Lys Leu Pro Ser Arg Tyr Leu Val Ser

- 1009 CCT CCA TTG ATA GAG AGG ACA TCT GGT GAA TAT CTA GTC AAT 1050 Pro Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Asn
- 5 1051 AAT GGT ATC CGC ACC TTT GCT TGT AGT GAA ACA GTA AAA TTT 1092 Asn Gly Ile Arg Thr Phe Ala Cys Ser Glu Thr Val Lys Phe
 - 1093 GGT CAT GTT ACC TTC TTT TGG AAT GGG AAC CGC TCT GGA TAT 1134
 Gly His Val Thr Phe Phe Trp Asn Gly Asn Arg Ser Gly Tyr
- 10 1135 TTT AAT TCA GAG TTG GAG GAA TAT GTA GAA ATT CCA AGT GAT 1176

 Phe Asn Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp
 - 1177 AAT GGA ATT TCC TTC AAT GTC CAA CCA AAG ATG AAG GCT TTG 1218
 Asn Gly Ile Ser Phe Asn Val Gln Pro Lys Met Lys Ala Leu
- 15 1219 GAG ATT GGT GAG AAG GCC CGT GAT GCA ATT CTC AGT CGC AAA 1260 Glu Ile Gly Glu Lys Ala Arg Asp Ala Ile Leu Ser Arg Lys
 - 1261 TTT GAC CAG GTA AGG GTG AAT ATA CCA AAT GGT GAC ATG GTT 1302
 Phe Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met Val
- 1303 GGG CAT ACC GGT GAC ATT GAG GCA ACA GTT GTG GCA TGC AAG 1344
 20 Gly His Thr Gly Asp Ile Glu Ala Thr Val Val Ala Cys Lys
 - 1345 GCT GCT GAT GCT GTT AAG ATG ATC CTT GAT GCA ATA AAG 1386 Ala Ala Asp Asp Ala Val Lys Met Ile Leu Asp Ala Ile Lys
- 25 1387 GAA GTA GGT GGA ATA TAT GTG GTG ACT GCG GAT CAT GGT AAT 1428
 Glu Val Gly Gly Ile Tyr Val Val Thr Ala Asp His Gly Asn
 - 1429 GCA GAG GAC ATG GTG AAG AGA AAC AAG GAG GGA GAG CCC CTT 1470 Ala Glu Asp Met Val Lys Arg Asn Lys Glu Gly Glu Pro Leu
- 30 1471 CTT GAT AAG GAT GGC AAA GTT CAG ATC CTA ACC TCG CAC ACT 1512 Leu Asp Lys Asp Gly Lys Val Gln Ile Leu Thr Ser His Thr

1513 CTG CAG CCA GTA CCG GTT GCA ATT GGA GGT CCT GGG TTA GCA

Leu Gln Pro Val Pro Val Ala Ile Gly Gly Pro Gly Leu Ala

1555 GCA GGT GTG AAA TTC CGC AAG GAT GTG CCA AAT GGT GGA CTA

Ala Gly Val Lys Phe Arg Lys Asp Val Pro Asn Gly Gly Leu

5

1597 GCA AAT GTA GCA GCA ACA GTG ATG AAT CTG CAT GGT TTT GTG

Ala Asn Val Ala Ala Thr Val Met Asn Leu His Gly Phe Val

1639 GCT CCT GAT GAC TAT GAG ACA ACC CTT ATT GAA GTT GTT GAT 1680

Ala Pro Asp Asp Tyr Glu Thr Thr Leu Ile Glu Val Val Asp

10

1681 TAA

1683

ANGABEN ZU SEQ ID NO: 137

15 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 23

(B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 20 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 137:

25
Met Gly Ser Ser Gly Asp Lys Thr Thr Trp Lys Leu Ala Asp His Pro
1 5 10 15

Lys Leu Pro Lys Gly Lys Met

20

30

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 14
 - (B) ART: protein'
- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 138:

Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile 1 5 10

- 15 ANGABEN ZU SEQ ID NO: 139
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 18
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 139:

25

Ser Leu Lys Asn Ser Ala Pro Asp His Trp Arg Leu Val Arg Ala His 1 5 10 15

Gly Thr

-91-

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 19
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 140:

Leu Pro Thr Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala 1 5 10 15

Leu Gly Ala

15

ANGABEN ZU SEQ ID NO: 141

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 21
 - (B) ART: protein
- ²⁰ (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 25 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 141:

Gly Lys Ile Tyr Asp Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe

1 10 15

30 Ala Asn Asn Thr Leu

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
- 5 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 142:

Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Leu 1 5 10

15

ANGABEN ZU SEQ ID NO: 143

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 25 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 143:

Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val 1 5 10

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 144:

Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val

1 5 10

15 ANGABEN ZU SEQ ID NO: 145

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 17
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 145:

25

Glu Thr Leu Glu Lys Asp Leu Ala Asp Leu Arg Ser Lys Gly Ile Asp

1 10 15

Ala

30

ANGABEN ZU SEQ ID NO: 146

(i) SEQUENZKENNZEICHEN:

-94-

- (A) LÄNGE: 26
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 146:

10
 Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp 1 Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp 1

Trp Asp Val Val Lys Arg Gly Trp Asp Ala
20 25

15

ANGABEN ZU SEQ ID NO: 147

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 9
 - (B) ART: protein
- 20 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 25 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 147:

Glu Ala Pro His Lys Phe Lys Ser Ala 1 5

30

ANGABEN ZU SEQ ID NO: 148

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 16
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 148:

- 15 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 20 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 149:

- 30 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 5 (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 150:

Asn Phe Arg Ala Asp Arg Met
1 5
10

ANGABEN ZU SEQ ID NO: 151

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 39
- 15 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 151:

Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val Arg Phe Pro 1 5 10 15

Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu
20 25 30

Pro Ser Arg Tyr Leu Val Ser 35

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 17
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 152:

Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Asn Asn Gly Ile

5 10 15

Arg

15

ANGABEN ZU SEQ ID NO: 153

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 20 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 25 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 153:

Ser Glu Thr Val Lys Phe 1 5

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 72
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 154:

Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu Leu Glu Glu

1 10 15

Tyr Val Glu Ile Pro Ser Asp Asn Gly Ile Ser Phe Asn Val Gln Pro
20 25 30

Lys Met Lys Ala Leu Glu Ile Gly Glu Lys Ala Arg Asp Ala Ile Leu 35 40 45

Ser Arg Lys Phe Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met
50 55 60

Val Gly His Thr Gly Asp Ile Glu 65 70

- 25 ANGABEN ZU SEQ ID NO: 155
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 26
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 30 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 155:

5 Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Glu Gly
1 5 10 15

Glu Pro Leu Leu Asp Lys Asp Gly Lys Val
20 25

10

ANGABEN ZU SEQ ID NO: 156

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 15 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 156:

Leu Thr Ser His Thr Leu Gln Pro

- ²⁵ ANGABEN ZU SEQ ID NO: 157
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 30 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminu's bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

-100-

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 157:

$$5 \frac{\text{Val Lys Phe Arg Lys Asp Val Pro Asn Gly Gly Leu}}{1}$$

ANGABEN ZU SEQ ID NO: 158

- (i) SEQUENZKENNZEICHEN:
- 10
- (A) LÄNGE: 10
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 15 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 158:

Val Ala Pro Asp Asp Tyr Glu Thr Thr Leu
$${\bf 20}_{\ 1}$$
 5 ${\bf 10}$

- (i) SEQUENZKENNZEICHEN:
- 25
- (A) LÄNGE: 6
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen

-101-

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 159:

Leu Ala Asp His Pro Lys
1 5

5

ANGABEN ZU SEQ ID NO: 160

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 15 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 160:

Val Val Val Leu Asp Gly Trp Gly Glu Ala Ser 1 5 10

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- 25 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 161:

-102-

Asp His Trp Arg Leu Val Arg
1 5

ANGABEN ZU SEQ ID NO: 162

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 162:

15
Phe Ala Glu Thr Leu Glu Lys Asp Leu Ala
1 5 10

ANGABEN ZU SEQ ID NO: 163

- 20 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 163:

30 Asn Asp Trp Asp Val Val

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 21
- 5 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 10 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 164:

15

Arg Glu Ala Pro Asn

20

ANGABEN ZU SEQ ID NO: 165

- 20 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 5
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 165:

Lys Phe Asp Arg Val

- (i) SEQUENZKENNZEICHEN:
- 5 (A) LÄNGE: 14
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 166:

Asn Asn Gly Ile Arg Thr Phe Ala Cys Ser Glu Thr Val Lys

15 1

5
10

ANGABEN ZU SEQ ID NO: 167

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8

20

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 25 (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 167:

Ser Glu Leu Glu Glu Tyr Val Glu 1 5

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 16
 - (B) ART: protein
- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 168:

Asp Asp Ala Val Lys Met Ile Leu Asp Ala Ile Lys Glu Val Gly Gly

1 10 15

15

ANGABEN ZU SEQ ID NO: 169

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- ²⁵ (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 169:

Gly Gly Leu Ala Asn Val Ala Ala 1 5

30

ANGABEN ZU SEQ ID NO: 170

(i) SEQUENZKENNZEICHEN:

-106-

- (A) LÄNGE: 9
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 170:
- 10 Asn Leu His Gly Phe Val Ala Pro Asp

15

20

Literaturzitate:

- 5 1. Jarolim, E., Tejkl, M., Rohac, M., Schlerka, G., Scheiner, O., Kraft, D., Breitenbach, M., Rumpold, H. (1989) Monoclonal antibodies against birch pollen allergens: Characterization by immunoblotting and use for single-step affinity purification of the major allergen Bet v 1. Int. Arch. Allergy Appl. Immunol. 90: 54-60.
- 10 2. Fothergill-Gilmore, L., Watson, H. (1989) Adv. Enzymol. 62: 227-313.
- Graña, X., de Lecea, L., El-Maghrabi, M.R., Ureña, J.M., Caellas, C., Carreras, J., Puigdomenech, P., Pilkis, S.J., Climent, F. (1992) Cloning and sequencing of a cDNA encoding 2,3-bisphosphoglycerate-independent phosphoglycerate mutase from 15 maize. Possible relationship to the alkaline phosphatase family. J. Biol. Chem. 267: 12797-12803.
- Huang, Y., Blakeley, S.D., McAleese, S.M., Fothergill-Gilmore, L.A., Dennis,
 D.T. (1993) Higher-plant cofactor-independent phosphoglyceromutase: purification,
 molecular characterization and expression. Plant Mol. Biol. 23: 1039-1053.
 - 5. Aalberse, R.C., Kosthe, V., Clemens, J.G.J. (1981) Immunoglobulin E antibodies that crossreact with vegetable foods, pollen, and hymenoptera venom. J. Allergy Clin. Immunol 68: 356-364.
- 25
 - 6. Eriksson, N.E., Formgren, H., Svenonius, E. (1982) Food hypersensitivity in patients with pollen allergy. Allergy 37: 437-443.
- 7. Halmepuro, L., Vuontela, K., Kalimo, K., Björksten, F. (1984) Cross-reactivity of 30 IgE antibodies with allergens in birch pollen, fruits and vegetables. Int. Arch. Allergy Appl. Immunol. 74: 235-240.

8. Valenta, R., Duchene, M., Pettenburger, K., Sillaber, C., Valent, P., Bettelheim, P., Breitenbach, M., Rumpold, H., Kraft, D., Scheiner, O. (1991) Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science 253:557-560.

5

- 9. Valenta, R., Duchene, M., Ebner, C., Valent, P., Sillaber, C., Deviller, P., Ferreira, F., Tejkl, M., Edelmann, H., Kraft, D., Scheiner, O. (1993) Profilins constitute a novel family of functional plant pan-allergens. J. Exp. Med. 175:377-385.
- 10 10. Breiteneder, H., Pettenburger, K., Bito, A., Valenta, R., Kraft, D., Rumpold, H., Scheiner, O., Breitenbach, M. (1989) The gene coding for the major birch pollen allergen, Bet v I, is highly homologous to a pea disease resistance response gene. EMBO J. 8:1935-1938.
- 15 11. Breiteneder, H., Ferreira, F., Reikerstorfer, A., Duchene, M., Valenta, R., Hoffmann-Sommergruber, K., Ebner, C., Breitenbach, M., Kraft, D., Scheiner, O. (1992) Complementary DNA cloning and expression in Escherichia coli of Aln g I, the major allergen in pollen of alder (Alnus glutinosa). J. Allergy Clin. Immunol. 90:909-917.
- 20 12. Breiteneder, H., Ferreira, F., Hoffmann-Sommergruber, K., Ebner, C., Breitenbach, M., Rumpold, H., Kraft, D., Scheiner, O. (1993) Four recombinant isoforms of Cor a I, the major allergen of hazel pollen, show different IgE-binding properties. Eur. J. Biochem. 212:355-362.
- 25 13. Larsen, J.N., Stroman, P., Ipsen, H. (1992) PCR based cloning and sequencing of isogenes encoding the tree pollen major allergen Car b I from Carpinus betulus, hornbeam. Mol. Immunol. 29:703-711.
- Ebner, C., Hirschwehr, R., Bauer, L., Breiteneder, H., Valenta, R., Ebner, H.,
 Kraft, D., Scheiner, O. (1995) Identification of allergens in fruits and vegetables: IgE cross-reactivities with the important birch pollen allergens Bet v 1 and Bet v 2_i (birch profilin). J. Allergy Clin. Immunol. 95: 962-969.

5

- 15. Valenta, R., Vrtala, S., Ebner, C., Kraft, D., Scheiner, O. (1992) Diagnosis of grass pollen allergy with recombinant timothy grass (Phleum pratense) pollen allergens. Int. Arch. Allergy Immunol. 97: 287-294.
- 16. Van Ree, R., Voitenko, V., Van Leeuwen, W.A., Aalberse, R.C. (1992) Profilin is a crss-reactive allergen in pollen and vegetable food. Int. Arch. Allergy Immunol. 98: 97-104.
- 10 17. Spitzauer, S., Schweiger, C., Sperr, W.R., Pandjaitan, B., Valent, P., Mühl, S., Ebner, C., Scheiner, O., Kraft, D., Rumpold, H., Valenta, R. (1993) Molecular characterization of dog albumin as a cross-reactive allergen. J. Allergy Clin Immunol. 93: 614-627.
- 15 18. Sanger, F., Nicklen, S., Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5468.
 - 19. Feinberg, A.P. and Vogelstein, B. (1984) A technique for radiolabeling DNA restriction Endonuclease fragments to high specific activity. Anal. Biochem. 137:266-267.
- 20. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular Cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York, 2nd ed.
- Margalit, H., Spogue, J.L., Cornette, J.L., Cease, K.B., Delisi, C., Berzofsky,
 J.A. (1987) Prediction of immunodominant helper T cell antigenic sites from the primary sequence. (1987) J. Immunol. 138: 2213.

Patentansprüche:

- Rekombinante DNA Moleküle, dadurch gekennzeichnet, daß sie eine Nukleinsäurese-5 quenz aufweisen, die mit den in Fig. 1, Fig. 7a,7b, Fig. 10a,10b dargestellten gesamten Sequenzen oder Teilbereichen derselben in homologer Weise übereinstimmen oder die durch Degeneration aus der in Fig. 1, Fig. 7a,7b, Fig. 10a,10b dargestellten Sequenzen ableitbar sind und für ein Polypeptid kodieren, das die Antigenität des Allergens "Kofaktor-unabhängige Phosphoglyceratmutase (E.C. 5.4.2.1.)" aus Birken-, Beifuß- oder Lieschgraspollen besitzt oder für ein Peptid, das mindestens ein Epitop dieser Allergene aufweist, sowie eine Nukleinsäuresequenz, die mit den genannten Nukleinsäuresequenzen unter den stringenten Bedingungen hybridisert, beispielsweise 1M Salz, 60°C und das Hybrid unter stringenten Waschbedingungen beispielsweise 2x 30min, 5x SSPE, 0,1% SDS bei 50°C stabil bleibt, insbesondere für die Kofaktor-unabhängige Phosphoglyceratmutase (E.C. 5.4.2.1.) des Pollens von Birke, Hasel, Erle, Eiche, Buche, Hainbuche und Olive, von Gräser, wie Phleum pratense, Lolium perenne, Poa pratensis, Secale cereale, von Unkräutern wie Beifuß sowie von pflanzlichen Nahrungsmitteln wie Apfel, Kartoffel, Banane, Kiwi, Sellerie, Karrotte, Birne, Kirsche, Pfirsich, Pflaume, Marille, Walnuß, Haselnuß, Erdnuß, Mandel, Pistazien, Pfeffer, Kümmel und Koriander.
- 20 2. Rekombinante DNA-Moleküle nach Anspruch 1, dadurch gekennzeichnet, daß sie eine Nukleinsäuresequenz aufweisen, die für ein Polypeptid kodiert, das als Antigen kreuzreaktiv mit der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Birken-, Lieschgras- oder Beifußpollen ist, insbesondere mit allen pflanzlichen Kofaktor-unabhängigen Phosphoglyzeratmutasen (E.C. 5.4.2.1.), die zu den in Fig. 1, Fig. 7a,7b, Fig. 10a, 25 10b gezeigten Sequenzen eine hohe Homologie aufweisen.
 - 3. Rekombinante DNA-Moleküle nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie funktionell mit einer Expressions-Kontrollsequenz zu einem Expressionskonstrukt verbunden sind.
- Wirtssystem, dadurch gekennzeichnet, daß es mit einem rekombinanten Expressions konstrukt nach Patentanspruch 3 transformiert ist.

- 5. Aus einem DNA-Molekül nach Anspruch 1 oder 2 abgeleitetes rekombinantes oder synthetisches Protein oder Polypeptid, dadurch gekennzeichnet, daß es die Antigenität von Kofaktor-unabhängiger Phosphoglyzeratmutase (E.C. 5.4.2.1.) aus Birken-, Lieschgrasoder Beifußpollen oder zumindestens eines Epitops davon aufweist und eine Aminosäuresequenz besitz, die einer der in Fig. 1, Fig. 7a,7b, Fig. 10a,10b gezeigten Sequenzen im Ganzen oder in Teilen entspricht.
- 6. Rekombinantes oder synthetisches Protein oder ein Polypeptid nach Patentanspruch 4 oder 5, dadurch gekennzeichnet, daß es ein Fusionsprodukt darstellt, das die Antigenität der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Birken-, Lieschgras- oder Beifußpollen oder zumindestens eines Epitops davon aufweist und einen zusätzlichen Polypeptidanteil aufweist, wobei das gesamte Fusionsprodukt von der DNA eines Expressionskonstrukts gemäß Anspruch 5 kodiert wird.
- 15 7. Rekombinantes oder synthetisches Protein oder Polypeptid nach Patentanspruch 6, dadurch gekennzeichnet, daß der besagte zusätzliche Polypeptidanteil beta-Galaktosidase, eine Teilsequenz der beta-Galaktosidase oder ein anderes zur Fusion geeignetes Polypeptid ist.
- 20 8. Diagnostisches oder therapeutisches Reagens, dadurch gekennzeichnet, daß es ein synthetisches Protein oder Polypeptid gemäß einem der Patentansprüche 5 bis 7 enthält.
- Verfahren zum in vitro Nachweis der Allergie eines Patienten gegen Kofaktor-unabhängige Phosphoglyzeratmutase (E.C. 5.4.2.1.), dadurch gekennzeichnet, daß die Reaktion
 der IgE Antikörper im Serum des Patienten mit einem rekombinanten oder synthetischen Protein oder Polypeptid nach einem der Patentansprüche 7 bis 10 gemessen wird.
 - 10. Verfahren zum in vitro Nachweis der zellulären Reaktion auf Kofaktor-unabhängige Phosphoglyceratmutase (E.C. 5.4.2.1.), dadurch gekennzeichnet, daß ein rekombinantes oder synthetisches Protein oder Polypeptid nach einem der Patentansprüche 5 bis 7 zur Stimulierung oder Hemmung der zellulären Reaktion eingesetzt wird.

Fig. 1:

cDNA Sequenz und abgeleitete Aminosäuresequenz von Kofaktor-unabhängiger Phosphoglyceratmutase 5 (E.C. 5.4.2.1.)

1						TGC Cys		42
43						CAG Gln		84
85						AAG Lys		126
127	_					GAA Glu		168
169						CAA Gln		210
211						ATT Ile		252
253						GAA Glu		294
295						GGA Gly		336
337						GGA Gly		378
379						CTT Leu		420

Fig. 1: Fortsetzung

421	CGT	GAT	GTT	TTG	GAT	GGT	TCA	AGT	GTA	GGA	TTT	GTT	GAA	ACT	462
	Arg	Asp	Val	Leu	Asp	Gly	Ser	Ser	Val	Gly	Phe	Val	Glu	Thr	
463	CTT	GAG	AAT	GAC	CTT	GCA	AAA	СТА	CGT	GAG	AAG	GGT	GTT	GAT	504
	Leu	Glu	Asn	Asp	Leu	Ala	Lys	Leu	Arg	Glu	Lys	Gly	۷a٦	Asp	
505	GCA	CAG	ATT	GCA	тст	GGT	GGT	GGT	CGC	ATG	TAT	GTC	ACA	ATG	546
										Met					
E 11 7	CAT	CCT	TAT	CVC	A A T	CVC	TCC	C A A	CTC	ATC	A A A	CCA		TCC	588
547										ATC Ile					200
							·							,	
589										TAC					630
	Asp	Ala	H15	Val	Leu	Gly	Glu	Ala	Pro	Tyr	Lys	Phe	Lys	Ser	
631	GCT	GTT	GAA	GCT	GTC	AAG	AAA	CTG	AGG	GAG	GAG	СТА	AAG	GTC	672
	Ala	Val	Glu	Ala	Val	Lys	Lys	Leu	Arg	Glu	Glu	Leu	Lys	Val	
673	AGT	GAC	CAG	TAC	TTG	ССТ	CCA	TTC	GTC	ATT	GTT	GAT	GAC	AAT	714
	Ser	Asp	Gln	Tyr	Leu	Pro	Pro	Phe	V a 1	Пe	Val	Asp	Asp	Asn	
715	GGG	AAG	ССТ	GTT	GGT	ССТ	ATA	GTT	GAT	GGT	GAT	GCT	GTG	GTT	756
										Gly					
/5/										GTT Val					798
	1111	116	W211	rne	Arg	нια	wah	Arg	net	Vai	net	IIE	Ala	Lys	
799	GCA	CTT	GAA	TAT	GAA	AAT	TTT	GAC	AAG	ATT	GAT	CGA	GTT	CGA	840
	Ala	Leu	Glu	Tyr	Glu	Asn	Phe	Asp	Lys	He	Asp	Arg	Val	Arg	
841	TTC	ССТ	AAA	ATC	CGT	TAT	GCT	GGA	ATG	CTT	CAA	TAT	GAT	GGC	882
	Phe	Pro	Lys	Ile	Arg	Tyr	Ala	Gly	Met	Leu	Gln	Tyr	Asp	Gly	
883	GAG	TTG	AAG	CTC	CCG	AGC	CAT	TAC	CTT	GTT	GAA	ССТ	CCA	GAG	924
										Val					

Fig. 1:Fortsetzung

966	GTC	GGC	AAT	CAC	GTG	CTA	TAT	GAA	GGT	TCT	ACG	AGA	GAG	ATA	925
	Val	Gly	Asn	His	Val	Leu	Tyr	Glu	Gly	Ser	Thr	Arg	Glu	He	
1008	GTC	CAT	GGT	TTT	AAA	GTC	ACT	GAG	AGT	TGC	GCT	TTT	ACT	CGT	967
	Val	His	Gly	Phe	Lys	Val	Thr	Glu	Ser	Cys	Ala	Phe	Thr	Arg	•
- 0 5 0															
1050															1009
	Ser	Asn	Phe	Tyr	Gly	Ser	Arg	Asn	Gly	Asn	Trp	Phe	Phe	Thr	
1000		004													
1092															1051
	116	ыу	Ser	Asp	Ser	Pro	lle	Glu	Val	lyr	Glu	Glu	Leu	Glu	
1134	GCT	ΔΤΤ	GAG	TTG	GC V	AAG	ATG	AAG	CCV	CAG	CTC	۸۸۲	TTC	۸۲۸	1002
, 220 ,			Glu												1093
		• • •			, <u> </u>	~ <i>y</i> -		_, ,	,,,	.	• • •	71311	, ,,,	• • • • • • • • • • • • • • • • • • • •	
1176	CAG	GAC	TTT	AAA	GGA	AGC	СТТ	АТА	GCT	GAT	AGA	ACG	AAA	GAA	1135
	Gln	Asp	Phe	Lys	G1 y	Ser	Leu	Пe	Ala	Asp	Arg	Thr	Lys	Glu	
															•
1218	ACA	CAT	GGG	GTG	ATG	GAC	GGT	AAT	CCA	CTG	AAC	GTT	CGT	GTG	1177
	Thr	His	Gly	Val	Met	Asp	Gly	Asn	Pro	Leu	Asn	Val	Arg	۷al	
1260															1219
	Asp	Ala	Ala	Lys	Cys	Ala	Val	Val	Thr	Asp	Glu	Ile	Asp	Gly	
1202	CCT	CTC	~			204									
1302															1261
	ыу	Vai	Gln	GIU	Tie	Ala	ASP	Leu	1 i e	мет	Lys	Asp	Ala	Glu	
1344	GAC	GAG	GCT:	ΔΔΤ	GGG	ΓΔΤ	GAT	ere	ACT	GTT	CTT	TAT	ATT	CCV	1303
20			Ala												1303
					J.,		,,,,,		• • • •		• • •	.,.	1,0	0.,	
1386	AAG	GAC	CTT	CTT	ССТ	CAA	GTG	TCC	AAG	AAC	AGG	AAG	GTG	ATG	1345
			Leu												
1428															1387
	Pro	Gln	Leu	Thr	His	Ser	Thr	Leu	Val	Gln	Leu	Asn	Gly	Asn	

Fig. 1: Fortsetzung

1429 GTG CCA ATT GCA ATT GGA GGT CCT GCA TTG GCA AGT GGT GTC

Val Pro Ile Ala Ile Gly Gly Pro Ala Leu Ala Ser Gly Val

1471 AGG TTC TGC AAG GAT CTT CCT GAT GGT GGG CTT GCC AAT GTT

Arg Phe Cys Lys Asp Leu Pro Asp Gly Gly Leu Ala Asn Val

1513 GCT GCA ACT GTG ATC AAT CTA CAT GGG TTT GAG GCT CCT AGT

Ala Ala Thr Val Ile Asn Leu His Gly Phe Glu Ala Pro Ser

1555 GAC TAT GAG CCA ACC CTC ATT GAA CTC GTT GAT AAC TAG

1593

Asp Tyr Glu Pro Thr Leu Ile Glu Leu Val Asp Asn *

```
Fig.2:
```

Sequenzvergleich von PGM-i aus Birkenpollen (bvmut), Rhizinus (rcmut), Mais (zmmut) und Tabak (ntmut)

Plurality: 2.00 Threshold: 1.00 AveWeight 1.00 AveMatch 0.54 AvMisMatch -0.40

PRETTY of: mut.msf(*) July 22, 1995 19:13 ..

```
50
               1
              .....g GEAKPDQYNC IHVAETPtMD
mut.msf{bvmut}
mut.msf{rcmut} ...geFtWKL aDHPKLPKGK TIAmVVLDGW GEAKPDQYNC IHVAETPtMD
mut.msf{zmmut} MGSSGFsWtL pDHPKLPKGK sVAVVVLDGW GEAnPDQYNC IHVAqTPvMD
mut.msf{ntmut} MGSSGdaWKL kDHPKLPKGK TVAVIVLDGW GEAKPneFNa IHVAETPvMy
             Consensus
                                                               100
              51
mut.msf{bvmut} SLKqGAPEKW RLVrAHGKAV GLPTEDDMGN SEVGHNALGA GRIFAQGAKL
mut.msf{rcmut} SFKktaPErW RLIKAHGTAV GLPTEDDMGN SEVGHNALGA GRIYAQGAKL
mut.msf{zmmut} SLKNGAPEKW RLVKAHGTAV GLPsDDDMGN SEVGHNALGA GRIFAQGAKL
mut.msf{ntmut} SLKNGAPEKW RLIKAHGnAV GLPTEDDMGN SEVGHNALGA GRIFAQGAKL
    Consensus S-K--APE-W RL--AHG-AV GLP--DDMGN SEVGHNALGA GRI-AQGAKL
              101
                                                              150
mut.msf{bvmut} VDsALASGKI YEGEGFKYIK ECFEnGTLHL IGLLSDGGVH SRLDQLQLLL
mut.msf{rcmut} VDLALASGKI YEGEGFKYVK ECFDKGTLHL IGLLSDGGVH SRLDQLQLLL
mut.msf{zmmut} VDqALASGKI YDGDGFnYIK EsFEsGTLHL IGLLSDGGVH SRLDQLQLLL
mut.msf{ntmut} VDLALASGKI YEGEGFKYVK ECFEKGTLHL IGLLSDGGVH SRLDQvQLLL
    Consensus VD-ALASGKI Y-G-GF-Y-K E-F--GTLHL IGLLSDGGVH SRLDQ-QLLL
              151
              KGASErGAKR IRVHILTDGR DVLDGSSVGF VETLENDLAK LREKGVDAQI
mut.msf{bvmut}
mut.msf{rcmut}
              KGAaEhGAKR IRVHVLTDGR DViDGtSVGF aETLEKDLen LREKGVDAQV
              KGvsErGAKk IRVHILTDGR DVLDGSSIGF VETLENDL1e LRaKGVDAQI
mut.msf{zmmut}
              KGAakhGAKR IRVHaLTDGR DVLDGSSVGF mETLENSLAG LREKGIDAQV
mut.msf{ntmut}
    Consensus KG----GAK- IRVH-LTDGR DV-DG-S-GF -ETLE--L-- LR-KG-DAQ-
```

Fig.2:Fortsetzung

	201				250
mut.msf{bvmut}	ASGGGRMYVT	MDRYENDWEV	IKRGWDAhVL	GEAPYKFKSA	VEAVKKLREE
mut.msf{rcmut}	ASGGGRMYVT	MDRYENDWnV	VKRGWDAQVL	GEAPYKFKSA	VEAIKKLREE
<pre>mut.msf{zmmut}</pre>	ASGGGRMYVT	MDRYENDWDV	VKRGWDAQVL	GEAPYKFKSA	1EAVKtLRag
mut.msf{ntmut}	ASGGGRMYVT	MDRYENDWDV	VKRGWDAQVL	GEAPhKFKdp	VEAVKKLRqE
Consensus	ASGGGRMYVT	MDRYENDW-V	-KRGWDA-VL	GEAP-KFK	-EA-K-LR
	251				300
mut.msf{bvmut}	1KvsDQYLPP	FVIVDDNGKP	VGP I v DGDAV	VTINFRADRM	VMiAKALEYE
<pre>mut.msf{rcmut}</pre>	PKANDQYLPP	FVIVDENGKP	VGP I v DGDAV	VTINFRADRM	VMLAKALEYE
mut.msf{zmmut}	PKANDQYLPP	FVIVDDsGna	VGPV1DGDAV	VTINFRADRM	VMLAKALEYa
<pre>mut.msf{ntmut}</pre>	PnANDQYLaP	FVIVDDNGKP	Vaa I 1 DGDAV	VTFNFRADRM	VMLAKALEYE
Consensus	DQYL-P	FVIVDG	V DGDAV	VT-NFRADRM	VM-AKALEY-
					k.
	301				350
<pre>mut.msf{bvmut}</pre>	NFDKiDRVRf	PK I RY AGMLQ	YDGELKLPSH	YLVePPEIER	TSGEYLVHNG
<pre>mut.msf{rcmut}</pre>	NFDtFDRVRf	${\tt PKIhYAGMLQ}$	YDGELKLPSH	YLVSPPEIER	TSGEYLVHNG
<pre>mut.msf{zmmut}</pre>	dFDnFDRVRv	PKIRYAGMLQ	YDGELKLPSr	YLVSPPEIDR	TSGEYLVKNG
<pre>mut.msf{ntmut}</pre>	NFDKFDRVRv	PKIRYAGMLQ	${\tt YhGELqLPSH}$	YLVSPPEIaR	hSGEYLVrNG
Consensus	-FDDRVR-	PKI-YAGMLQ	Y-GEL-LPS-	YLV-PPEI-R	-SGEYLV-NG
	351				400
<pre>mut.msf{bvmut}</pre>				LEEYVEIPSD	
<pre>mut.msf{rcmut}</pre>	VhTFACSETV	KFGHVTFFWN	GNRSGYFNpE	MEEYVEIPSD	vGITFNVQPK
<pre>mut.msf{zmmut}</pre>	IRTFACSETV	KFGHVTFFWN	GNRSGYFdat	kEEYVEVPSD	SGITFNVaPn
<pre>mut.msf{ntmut}</pre>				LEEYVEIPSD	•
Consensus	TFACSETV	KFGHVTFFWN	GNRSGYF	-EEYVE-PSD	-GITFNV-P-
	401				450
mut.msf{bvmut}				MVGHTGDIEd	
<pre>mut.msf{rcmut}</pre>				MVGHTGDVEA	
mut.msf{zmmut}				MVGHTGDIEA	
<pre>mut.msf{ntmut}</pre>				MVGHTGDIkA	
Consensus	MKA-EIAE	RDA-LSGKF-	QVRVN-PNGD	MVGHTGD	TCK-ADE

Fig.2: Fortsetzung

Consensus -- LIE--DN-

_	451				500
mut.msf{bvmut}	AdKMILDAIE	QVGGIYVVTA	DHGNAEDMVK	RNKSvqPLLD	KNGN1QVLTS
<pre>mut.msf{rcmut}</pre>	AVKMIiDAIE	QVGGIYVVTA	DHGNAEDMVK	RdKSGKPMaD	KsGkIQILTS
<pre>mut.msf{zmmut}</pre>	AVKiILDAVE	QVGGIYIVTA	DHGNAEDMVK	RNKSGKPLLD	KNdrIQILTS
<pre>mut.msf{ntmut}</pre>	AVKMILEAIE	QVGGIYIVTA	DHGNAEDMVK	${\tt RNKkGePaLD}$	KNGNIQILTS
Consensus	A-K-IA-E	QVGGIY-VTA	DHGNAEDMVK	R-KPD	KQ-LTS
	501				550
<pre>mut.msf{bvmut}</pre>	HTLQPVPIAI	${\tt GGPaLAsGVR}$	FckD1PdGGL	ANVAATViNL	HGFEAPSDYE
<pre>mut.msf{rcmut}</pre>	HTLQPVPIAI	GGPGLtPGVR	FRSDiPTGGL	ANVAATVMNL	HGFEAPSDYE
<pre>mut.msf{zmmut}</pre>	HTLQPVPVAI	GGPGLhPGVk	${\sf FRnDiqTpGL}$	ANVAATVMNL	HGFEAPaDYE
<pre>mut.msf{ntmut}</pre>	HTcePVPIAI	GGPGLAPGVR	FRqD1PTGGL	ANVAATEMNL	HGsEAPSDYE
Consensus	HT PVP - AI	GGP-LGV-	FDGL	ANVAAT NL	HG-EAP-DYE
	551 560				
mut.msf{bvmut}	PTLIE1VDN.				
<pre>mut.msf{rcmut}</pre>	PTLIEaVDN.				
<pre>mut.msf{zmmut}</pre>	qTLIEVaDN.				
<pre>mut.msf{ntmut}</pre>	PslIEVVDNm				

Fig.3:

8/48

B-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus

Birkenpollen

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Gly Gly Glu Ala Lys Pro Asp Gln Tyr Asn Cys Ile (AS 1-12)
- Epitop 2: Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Gln Gly Ala Pro Glu Lys Trp Arg Leu Val Arg Ala His Gly Lys Ala (AS 15-40)
- Epitop 3: Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His (AS 43-56)
- Epitop 4: Gly Lys Ile Tyr Glu Gly Glu Gly Phe Lys Tyr Ile Lys Glu Cys Phe Glu Asn (AS 79-96)
- Epitop 5: Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Leu (AS 105-117)
- Epitop 6: Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Val (AS 123-134)
- Epitop 7: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val (AS 137-149)
- Epitop 8: Glu Thr Leu Glu Asn Asp Leu Ala Lys Leu Arg Glu Lys Gly Val Asp (AS 153-168)
- Epitop 9: Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Glu Val Ile Lys Arg Gly Trp Asp Ala (AS 179-198)

Fig. 3: Fortsetzung

9/48

- Epitop 10: Val Lys Lys Leu Arg Glu Glu Leu Lys Val Ser Asp Gln Tyr Leu Pro (AS 215-230)
- Epitop 11: Ala Leu Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val Arg Phe Pro Lys Ile Arg Tyr Ala (AS 267-287)
- Epitop 12: Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Ser His

 Tyr Leu Val Glu Pro Pro Glu Ile Glu Arg Thr Ser Gly Glu Tyr

 Leu Val His Asn Gly Val Arg (AS 289-323)
- Epitop 13: Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Ser Gly Ile (AS 340-364)
- Epitop 14: Ser Gly Lys Phe Asp Gln Val Arg Val Asn Leu Pro Asn Gly Asp Met Val Gly His Thr Gly Asp Ile Glu (AS 387-410)
- Epitop 15: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Val Gln (AS 441-457)
- Epitop 16: His Gly Phe Glu Ala Pro Ser Asp Tyr Glu Pro Thr Leu (AS 512-524)

Fig.4:

10/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglycera tmutase (E.C. 5.4.2.1.) aus Birkenpollen

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Tyr Asn Cys Ile His Val Ala Glu Thr Pro Thr Met Asp (AS 9-21)

Epitop 2: Glu Lys Trp Arg Leu Val (AS 29-34)

Epitop 3: Phe Ala Gln Gly Ala Lys Leu Val Asp Ser (AS 65-74)

Epitop 4: Glu Gly Glu Gly Phe Lys Tyr Ile Lys Glu Cys (AS 83-93)

Epitop 5: Thr Leu Glu Asn (AS 154-157)

Epitop 6: Asn Asp Trp Glu Val Ile Lys Arg Gly Trp Asp (AS 187-197)

Epitop 7: Val Glu Ala Val Lys Lys Leu Arg Glu (AS 212-220)

Epitop 8: Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val (AS 269-279)

Epitop 9: Arg Thr Phe Ala Cys Ser Glu Thr Val Lys (AS 323-332)

Epitop 10: Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser (AS 350-360)

Epitop 11: His Thr Gly Asp Ile Glu Asp Thr (AS 405-412)

Epitop 12: Met Ile Leu Asp Ala Ile Glu Gln Val Gly Gly Ile (AS 425-436)

Fig.4: Fortsetzung

11/48

Epitop 13: Ser Gly Val Arg Phe Cys Lys Asp Leu Pro Asp Gly Gly Leu Ala Asn Val Ala Ala (AS 488-506)

Epitop 14: Asn Leu His Gly Phe Glu Ala Pro Ser (AS 510-518)

12/48
Fig.5A: BIP 3 Immunblot mit Pollenextrakten von Birke, Beifuß und Lieschgras, und Extrakten von Sellerie und Apfel.

Fig.5B: IgE Immunblots von BIP 3-immunaffinitätsgereinigtem PGM-i aus Birkenpollen (MU), Birkenpollenextrakt (BPEX). Sera von graspollenallergischen Patienten (HP, HL), Normalhumanserum (NHS).

13/48
Fig.6: Plaque-lifts getestet mit Patientensera und BIP 3

Fig.7a:

cDNA Sequenz und abgeleitete Aminosäuresequenz
von Kofaktor-unabhängiger Phosphoglyceratmutase
(E.C. 5.4.2.1.) aus Lieschgraspollen
(Isoform Phl1)

Sequence: a:\phllcod.dna, Length: 1671, Range for analysis: 1-1671

42					CAT										1
	Pro	Leu	Thr	Pro	His	Asp	Pro	Leu	Thr	Trp	Ser	Thr	Ala	Met	
84					CTC.										43
	ыу	ırp	ыу	Asp	Leu	Val	116	Vai	Ala	Val	Inr	Lys	61 y	Lys	
126					ATC										85
	Glu	Ala	Arg	His	Ile	Cys	Asn	Tyr	Gln	Asp	Ala	Ser	Ala	Glu	
168	AAG	GAG	ССТ	GCT	GGT	AAT	AAG	СТС	TCG	GAT	ATG	GTC	CCC	ACG	127
	Lys	Glu	Pro	Ala	Gly	Asn	Lys	Leu	Ser	Asp	Met	Val	Pro	Thr	
210	CCT	стс	GGT	GTT	GCT	ACT	GGA	CAT	GCT	AAG	GTG	CTA	ACA	TGG	169
	Pro	Leu	G1 y	Val	Ala	Thr	Gly	His	Ala	Lys	Val	Leu	Thr	Trp	
252	GCT	AAT	CAC	GGC	ĢTT	GAA	AGT	AAC	GGC	ATG	GAC	GAC	GAT	AGT	211
	Ala	Asn	His	Gly	Val	Glu	Ser	Asn	Gly	Met	Asp	Asp	Asp	Ser	
294	TTT	TTG	AAG	GCG	GGG	CAA	GCT	TTT	ATT	CGG	GGT	GCT	GGC	CTT	253
•					Gly										
336	GGT	GAG	GAC	GAA	TGG	ATT	AAG	GGG	TCT	GCA	CTT	GCT	GCT	GAT	295
					Trp										
, 378	CVC	CTC	۸СТ	CCT	C A A	ccc	TT T	TCT	C	A A A	ATC	TAC	A A T	TTC	222
13/6					GAA Glu										33/
I				~ · J	ulu	~10	1116	751	uiu	∟y ɔ	115	ı yı	W211	1116	

Fig.7a: Fortsetzung

379													CGG		420
	Leu	Ile	Gly	Leu	Leu	Ser	Asp	G1 y	G1 y	Val	His	Ser	Arg	Leu	
421	GAC	CAA	GTG	CAG	TTG	CTT	GTG	AAA	GGT	GCC	AGT	GAG	AGG	GGA	462
	Asp	Gln	Val	Gln	Leu	Leu	Val	Lys	G1 y	Ala	Ser	Glu	Arg	Gly	
463	GCA	AAA	AGA	TTA	CGG	СТТ	CAC	ATT	CTT	ACC	GAT	GGG	CGT	GAT ⁻	504
	Ala	Lys	Arg	Ile	Arg	Leu	His	He	Leu	Thr	Asp	Gly	Arg	Asp	
505	GTC	TTG	GAT	CCV	۸۵۲	ΔСТ	GTT	сст	TTC	GTA	GAG	۸۲۸	СТА	CAC	546
303													Leu		540
547													GCA		588
	ASN	ASP	Leu	АТА	GIN	Leu	Arg	61 u	Lys	ыу	vai	Asp	Ala	GIN	
589	GTT	GCA	TCT	GGT	GGT	GGA	AGG	ATG	TAT	GTT	ACC	ATG	GAC	CGC	630
	Val	Ala	Ser	Gly	Gly	Gly	Arg	Met	Tyr	Val	Thr	Met	Asp	Arg	
631	TAT	GAG	AAT	GAC	TGG	GAT	GTG	GTC	AAG	CGT	GGG	TGG	GAT	GCC	672
	Tyr	Glu	Asn	Asp	Trp	Asp	Val	Val	Lys	Arg	Gly	Trp	Asp	Ala	
673	CAG	GTG	CTT	GGA	GAA	GCA	AJJ	TAC	ΔΔΔ	TTC	ΑΑΑ	AGT	GCA	CTT	714
0,0													Ala		
715													AAT Asn		756
	aiu	Λια	Vai	Lys		LEU	Alg	Ala	uiu	710	Lys	A10	7311	лэр	
757													GGC		798
	Gln	Tyr	Leu	Pro	Ala	Phe	Val	Пe	Val	Asp	.G1 u	Ser	Gly	Lys	
799	TCC	GTT	GGT	ССТ	ATA	GTA	GAT	GGC	GAT	GCA	GTT	GTG	ATT	TTC	840
	Ser	Val	Gly	Pro	Пe	Val	Asp	Gly	Asp	Ala	Val	Va1	Пe	Phe	
B41	ΔΔΤ	TTC	AGA:	GCT	GAT	CGC	ATG	GTT	ATG	CTT	GCA	AAG	GCT	СТТ	882
				Ala											

Fig.7a: Fortsetzung

924	CCA	GTA	CGT	GTT	CGT	GAC	TTT	AAA	GAT	TTT	GAT	GCT	TTT	GAG	883
	Pro	Val	Arg	Val	Arg	Asp	Phe	Lys	Asp	Phe	Asp	Ala	Phe	Glu	
000	TT 0		227												
966			GGT												925
	Leu	Glu	Gly	Asp	lyr	GIn	Leu	Met	Gly	Ala	Tyr	Lys	He	Lys	
1008	GAG	ATA	TTG	000	CCA	TCC	GTT	CTT	TTC	ΔΔΔ	ΔΔ	۵٦٦	CTT	ΔΔG	967
			Leu												307
										-3				,-	
1050	ACA	CGC	GTT	GGC	AAT	AAG	GTA	TTG	TAC	GAA	GGT	TCT	ACA	AGG	1009
	Thr	Arg	Val	Gly	Asn	Lys	Val	Leu	Tyr	Glu	Gly	Ser	Thr	Arg	
1092	TTT	ACA	GTC	CAT	GGT	TTT	AAG	GTG	ACC	GAG	AGC	TGC	GCT	TTT	1051
	Phe	Thr	Val	His	Gly	Phe	Lys	Val	Thr	Glu	Ser	Cys	Ala	Phe	
1124	* * C	400			TT 0			TOT							
1134															1093
	Lys	1111	Glu	ASP	rne	ıyr	ыу	2er	Arg	ASN	ыу	ASN	irp	Pne	
1176	TTC	ACA	ATC	GGT	AGT	GAT	AGT	ССТ	ATT	GAA	ΑΤΑ	TAC	GAG	GAA	1135
			Ile												
												·			
1218	AAA	GAG	GCT	ATT	GAA	CTT	GCA	AAG	ATG	AAA	CCC	CAG	GAG	AAT	1177
	Lys	Glu	Ala	Пe	Glu	Leu	Ala	Lys	Met	Lys	Pro	Gln	Glu	Asn	
1260															1219
	Arg	vai	Gln	Asp	Phe	Lys	Gly	Ser	Leu	He	Ala	Asp	Arg	Thr	
1302	GAT	GGT	Δ۲۲	$\Gamma \Lambda \Gamma$	сст	GTG	ATG	CAT	CCT	A A T	CCA	CTC	A A C	ATT	1261
100			Thr												1201
	•	•			.		,,,,	7.00	u .,	71311		LCu	7(311	110	
1344	GCA	GAA	GAT	GCT	GCT	AAG	TGC	GCC	GTT	GTC	ACA	GCC	GAA	ATT	1303
			Asp												
1386	ATT	GGT	GGT	GTT	CAA	GAG	GTG	GCA	GAT	TTG	GTT	ATT	AAG	GTC	1345
	Ile	Gly	Gly	Va1	Gln	Glu	Val	Ala	Ash	Leu	Val	He	lvs	Val	

Fig. 7a: Fortsetzung 17/4

1387		CTT Leu													1428
1429															1470
	Lys	Arg	Asn	Lys	Ser	ыу	ыn	Pro	АТА	Leu	ASP	Lys	5er	ч	
1471	AGC	ATC	CAG	ATT	CTT	ACC	TCG	CAT	ACG	CTT	CAG	CCA	GTC	CCT	1512
	Ser	Пe	Gln	Ile	Leu	Thr	Ser	His	Thr	Leu	Gln	Pro	Val	Pro	
1513	CTT	ece.	۸۲۲	GGA	GGC	CCT	GGT	רדר	۲۵۲	A))	GGA	GTG	ΔAG	TTC	1554
1313		Ala													100 .
1555															1596
	Arg	Ser	Asp	Ile	Asn	Thr	Pro	Gly	Leu	Ala	Asn	Val	Ala	Ala	
1597	ACC	GTG	ATG	AAC	СТС	CAT	GGC	TTC	CAG	GCC	ССТ	GAT	GAT	TAT	1638
	Thr	Va1	Met	Asn	Leu	His	G1 y	Phe	Gln	Ala	Pro	Asp	Asp	Tyr	
1.620	C A C	400	ACC	CTC	A T T	202	стт	CCT	CVC	۸۸۲	T A A				1671
1639		ALG													10/1

Fig.7b:

18/48

cDNA Sequenz und abgeleitete Aminosäuresequenz von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus 5 Lieschgraspollen (Isoform Phl5)

Sequ	ence	: a;	\ph1	5cod	.dna	, Le	ngth	: 16	68,	Rang	e fo	r an	alys	is:	1-1668
1	ATG	ACC	TCA	TGG	ACG	CTG	CCC	GAC	CAC	ССС	ACG	CTC	ССС	AAG	42
	Met	Thr	Ser	Trp	Thr	Leu	Pro	Asp	His	Pro	Thr	Leu	Pro	Lys	
43	GGC	AAG	ACG	GTG	GCC	GTC	ATC	GTG	СТС	GAC	GGA	TGG	GGC	GAG	84
	Gly	Lys	Thr	Val	Ala	Val	Ile	Val	Leu	Asp	Gly	Trp	Gly	Glu	
85	GCC	AGC	GCT	GAC	CAG	TAC	AAC	TGC	ATC	CAT	CGC	GCC	GAG	ACG	126
	Ala	Ser	Ala	Asp	Gln	Tyr	Asn	Cys	Пe	His	Arg	Ala	Glu	Thr	
127	CCC	GTC	ATG	GAT	TCG	стс	AAG	AAT	GGT	GCT	CCT	GAG	AAG	TGG	168
	Pro	Val	Met	Asp	Ser	Leu	Lys	Asn	Gly	Ala	Pro	Glu	Lys	Trp	
169	ACA	CTA	GTG	AAG	GCT	CAT	GGA	ACT	GCT	GTT	GGT	CTC	CCT	AGT	210
	Thr	Leu	Val	Lys	Ala	His	Gly	Thr	Ala	Val	Gly	Leu	Pro	Ser	
211			GAC												252
	Asp	Asp	Asp	Met	Gly	Asn	Ser	G1 u	Val	Gly	His	Asn	Ala	Leu	
253			GGT												294
	Gly	Ala	Gly	Arg	Ile	Phe	Ala	Gln	Gly	Ala	Lys	Leu	Phe	Asp	
295			CTT												336
	Ala	Ala	Leu	Ala	Ser	Gly	Lys	De	Trp	G 1u	Asp	Glu	Gly	Phe	
337	AAT	TAC	ATC	AAA	GAA	TCT	TTT	GCC	GAA	GGT	ACT	CTG	CAC	CTT	378
	Asn	Tyr	Пe	Lys	Glu	Ser	Phe	Ala	Glu	Gly	Thr	Leu	His	Leu	

Fig	g.71	b:F	orts	etz	ung				19	/48	3				
379														A GAC	420
	li∈	e Gly	/ Leu	ı Leu	. Ser	Asp	Gly	Gly	' Va	l His	s Sei	r Arg	J Lei	ı Asp	
421														GCA	462
	Gln	val	Gln	. Leu	Leu	Val	Lys	Gly	Alā	Ser	· Glu	ı Arç	Gly	/ Ala	
463														GTC	504
	Lys	Arg	l Ile	Arg	Leu	His	He	Leu	Thr	` Asp	Gly	/ Arg	Asp	Val	
505														AAT	546
	Leu	Asp	Gly	Ser	Ser	Val	Gly	Phe	Va 1	Glu	Thr	Leu	Glu	Asn	
547			GCT												588
	Asp	Leu	Ala	Gln	Leu	Arg	Glu	Lys	Gly	Val	Asp	Ala	Gln	Val	
589			GGT												630
	Ala	Ser	Gly	Gly	Gly	Arg	Met	Tyr	Val	Thr	Met	Asp	Arg	Tyr	
631			GAC												672
	Glu	Asn	Asp	Trp	Asp	Val	Val	Lys	Arg	Gly	Trp	Asp	Ala	Gln	
673			GGA												714
	vai	Leu	Gly	Glu	Ala	Pro	lyr	Lys	Phe	Lys	Ser	Ala	Leu	Glu	
715			AAA												756
	Ala	Val	Lys	Ihr	Leu	Arg	Ala	Glu	Pro	Lys	Ala	Asn	Asp	Gln	
757			CCT												798
	ıyr	Leu	Pro	Ala	Pne	Val	He	Val	Asp	Glu	Ser	Gly	Lys	Ser	
799			CCT												840
	vai	ыІу	Pro	He	Val	Asp	Gly	Asp	Ala	Val	Val	Thr	Phe	Asn	
841			GCT												882
	rne	Ara	Ala	Asn	Ara	Met	Val	Met	Leu	Δla	Lvc	Λla	Lau	<i>E</i> 1	

WO 97/05258 PCT/AT96/00141

					18	0/4	2			ing	etzi	rts	:Fo	./D	F 1 g
924			GTA Val												883
966			GAG Glu												925
1008	-		ATA		·										967
	Arg	Glu	Пe	Leu	Pro	Pro	Ser	Val	Leu	Phe	Lys	Asn	Pro	Leu	
1050			CGC Arg												1009
1092			ACA Thr												1051
1134			ACC Thr												1093
1176			ACA Thr												1135
1218			GAG Glu												1177
1260			GTA Val												1219
1302			GGT Gly												1261
1344			GAA Glu												1303
1386			GGT Gly												1345

F	i	g		7	b	:	Fo	rt	S	e	t	z	u	n	g
---	---	---	--	---	---	---	----	----	---	---	---	---	---	---	---

CTT	GTC	ACT	GCT	GAT	CAT	GGA	AAC	GCA	GAG	GAT	ATG	GTG	AAA	1428
Leu	Val	Thr	Ala	Asp	His	Gly	Asn	Ala	Glu	Asp	Met	Val	Lys	
AGA	AAC	AAA	TCT	GGC	CAG	CCT	GCT	CTT	GAC	AAG	AGC	GGT	AGC	1470
Arg	Asn	Lys	Ser	Gly	Gln	Pro	Ala	Leu	Asp	Lys	Ser	Gly	Ser	
ATC	CAG	ATT	CTT	ACC	TCG	CAT	ACG	CTT	CAG	CCA	GTC	CCT	GTT	1512
He	Gln	He	Leu	Thr	Ser	His	Thr	Leu	Gln	Pro	Val	Pro	Val	
GCG	ATC	GGA	GGC	CCT	GGT	СТС	CAC	CCA	GGA	GTG	AAG	TTC	AGG	1554
Ala	Пe	Gly	Gly	Pro	Gly	Leu	His	Pro	Gly	Val	Lys	Phe	Arg	
TCT	GAT	ATC	AAC	ACA	CCT	GGA	CTC	GCC	AAT	GTT	GCC	GCC	ACC	1596
Ser	Asp	He	Asn	Thr	Pro	Gly	Leu	Ala	Asn	Val	Ala	Ala	Thr	
GTG	ATG	AAC	СТС	CAT	GGC	TTC	CAG	GCC	CCT	GAT	GAT	TAT	GAG	1638
Val	Met	Asn	Leu	His	Gly	Phe	Gln	Ala	Pro	Asp	Asp	Tyr	Glu	
								:						
ACG	ACG	СТС	ATT	GAA	GTT	GCT	GAC	AAG	TAA					1668
Thr	Thr	Leu	He	Glu	۷a٦	Ala	Asp	Lys	*					
	AGA Arg ATC Ile GCG Ala TCT Ser GTG Val	Leu Val AGA AAC Arg Asn ATC CAG Ile Gln GCG ATC Ala Ile TCT GAT Ser Asp GTG ATG Val Met ACG ACG	Leu Val Thr AGA AAC AAA Arg Asn Lys ATC CAG ATT Ile Gln Ile GCG ATC GGA Ala Ile Gly TCT GAT ATC Ser Asp Ile GTG ATG AAC Val Met Asn ACG ACG CTC	AGA AAC AAA TCT Arg Asn Lys Ser ATC CAG ATT CTT Ile Gln Ile Leu GCG ATC GGA GGC Ala Ile Gly Gly TCT GAT ATC AAC Ser Asp Ile Asn GTG ATG AAC CTC Val Met Asn Leu ACG ACG CTC ATT	AGA AAC AAA TCT GGC Arg Asn Lys Ser Gly ATC CAG ATT CTT ACC Ile Gln Ile Leu Thr GCG ATC GGA GGC CCT Ala Ile Gly Gly Pro TCT GAT ATC AAC ACA Ser Asp Ile Asn Thr GTG ATG AAC CTC CAT Val Met Asn Leu His ACG ACG CTC ATT GAA	AGA AAC AAA TCT GGC CAG Arg Asn Lys Ser Gly Gln ATC CAG ATT CTT ACC TCG Ile Gln Ile Leu Thr Ser GCG ATC GGA GGC CCT GGT Ala Ile Gly Gly Pro Gly TCT GAT ATC AAC ACA CCT Ser Asp Ile Asn Thr Pro GTG ATG AAC CTC CAT GGC Val Met Asn Leu His Gly ACG ACG CTC ATT GAA GTT	AGA AAC AAA TCT GGC CAG CCT Arg Asn Lys Ser Gly Gln Pro ATC CAG ATT CTT ACC TCG CAT Ile Gln Ile Leu Thr Ser His GCG ATC GGA GGC CCT GGT CTC Ala Ile Gly Gly Pro Gly Leu TCT GAT ATC AAC ACA CCT GGA Ser Asp Ile Asn Thr Pro Gly GTG ATG AAC CTC CAT GGC TTC Val Met Asn Leu His Gly Phe	AGA AAC AAA TCT GGC CAG CCT GCT Arg Asn Lys Ser Gly Gln Pro Ala ATC CAG ATT CTT ACC TCG CAT ACG Ile Gln Ile Leu Thr Ser His Thr GCG ATC GGA GGC CCT GGT CTC CAC Ala Ile Gly Gly Pro Gly Leu His TCT GAT ATC AAC ACA CCT GGA CTC Ser Asp Ile Asn Thr Pro Gly Leu GTG ATG AAC CTC CAT GGC TTC CAG Val Met Asn Leu His Gly Phe Gln ACG ACG CTC ATT GAA GTT GCT GAC	AGA AAC AAA TCT GGC CAG CCT GCT CTT Arg Asn Lys Ser Gly Gln Pro Ala Leu ATC CAG ATT CTT ACC TCG CAT ACG CTT Ile Gln Ile Leu Thr Ser His Thr Leu GCG ATC GGA GGC CCT GGT CTC CAC CCA Ala Ile Gly Gly Pro Gly Leu His Pro TCT GAT ATC AAC ACA CCT GGA CTC GCC Ser Asp Ile Asn Thr Pro Gly Leu Ala GTG ATG AAC CTC CAT GGC TTC CAG GCC Val Met Asn Leu His Gly Phe Gln Ala	Leu ValThrAlaAspHisGlyAsnAlaGluAGAAACAAATCTGGCCAGCCTGCTCTTGACArgAsnLysSerGlyGlnProAlaLeuAspATCCAGATTCTTACCTCGCATACGCTTCAGIleGlnIleLeuThrSerHisThrLeuGlnGCGATCGGAGGCCCTGGTCTCCACCCAGGAAlaIleGlyProGlyLeuHisProGlyTCTGATATCAACACACCTGGACTCGCCAATSerAspIleAsnThrProGlyLeuAlaAsnGTGATGAACCTCCATGGCTTCCAGGCCCCTValMetAsnLeuHisGlyPheGlnAlaProACGACGCTCATTGAAGTTGCTGACAAGTAA	AGA AAC AAA TCT GGC CAG CCT GCT CTT GAC AAG Arg Asn Lys Ser Gly Gln Pro Ala Leu Asp Lys ATC CAG ATT CTT ACC TCG CAT ACG CTT CAG CCA Ile Gln Ile Leu Thr Ser His Thr Leu Gln Pro GCG ATC GGA GGC CCT GGT CTC CAC CCA GGA GTG Ala Ile Gly Gly Pro Gly Leu His Pro Gly Val TCT GAT ATC AAC ACA CCT GGA CTC GCC AAT GTT Ser Asp Ile Asn Thr Pro Gly Leu Ala Asn Val GTG ATG AAC CTC CAT GGC TTC CAG GCC CCT GAT Val Met Asn Leu His Gly Phe Gln Ala Pro Asp ACG ACG CTC ATT GAA GTT GCT GAC AAG TAA	LeuValThrAlaAspHisGlyAsnAlaGluAspMetAGAAACAAATCTGGCCAGCCTGCTCTTGACAAGAGCArgAsnLysSerGlyGlnProAlaLeuAspLysSerATCCAGATTCTTACCTCGCATACGCTTCAGCCAGTCGTCIleGlnIleLeuThrSerHisThrLeuGlnProValGCGATCGGAGGCCCTGGTCTCCACCCAGGAGTGAAGAlaIleGlyGlyProGlyLeuHisProGlyValLysTCTGATATCAACACACCTGGACTCGCCAATGTTGCCSerAspIleAsnThrProGlyLeuAlaAsnValAlaGTGATGAACCTCCATGGCTTCCAGGCCCCTGATGATValMetAsnLeuHisGlyPheGlnAlaProAspAspACGACGCTCATTGAAGTTGCTGACAAGTAA	AGA AAC AAA TCT GGC CAG CCT GCT CTT GAC AAG AGC GGT Arg Asn Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly ATC CAG ATT CTT ACC TCG CAT ACG CTT CAG CCA GTC CCT Ile Gln Ile Leu Thr Ser His Thr Leu Gln Pro Val Pro GCG ATC GGA GGC CCT GGT CTC CAC CCA GGA GTG AAG TTC Ala Ile Gly Gly Pro Gly Leu His Pro Gly Val Lys Phe TCT GAT ATC AAC ACA CCT GGA CTC GCC AAT GTT GCC GCC Ser Asp Ile Asn Thr Pro Gly Leu Ala Asn Val Ala Ala GTG ATG AAC CTC CAT GGC TTC CAG GCC CCT GAT GAT TAT Val Met Asn Leu His Gly Phe Gln Ala Pro Asp Asp Tyr ACG ACG CTC ATT GAA GTT GCT GAC AAG TAA	Ser Asp Ile Asn Thr Pro Gly Leu Ala Asn Val Ala Ala Thr GTG ATG AAC CTC CAT GGC TTC CAG GCC CCT GAT GAT TAT GAG Val Met Asn Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu ACG ACG CTC ATT GAA GTT GCT GAC AAG TAA

ĺ

Fig. 8a:

22/48

B-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Lieschgraspollen (Isoform Phl1)

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys Gly Lys Thr (AS 4-18)
- Epitop 2: Asp Gly Trp Gly Glu Ala Ser Ala Asp Gln Tyr Asn Cys

 Ile His Arg Ala Glu Thr Pro Val Met Asp Ser Leu Lys

 Asn Gly Ala Pro Glu Lys Trp Thr Leu (AS 25-59)
- Epitop 3: Leu Pro Ser Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu Gly Ala (AS 69-87)
- Epitop 4: Gly Lys Ile Trp Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala Glu (AS 105-122)
- Epitop 5: Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val (AS 131-143)
- Epitop 6: Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu (AS 148-160)
- Epitop 7: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val

 (AS 163-175)
- Epitop 8: Glu Thr Leu Glu Asn Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp Ala (AS 179-195)
- Epitop 9: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala (AS 199-224)

WO 97/05258 PCT/AT96/00141

Fig. 8a:Fortsetzung

23/48

- Epitop 10: Glu Ala Pro Tyr Lys Phe Lys Ser Ala (AS 229-237)
- Epitop 11: Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu Pro (AS 243-256)
- Epitop 12: Asp Glu Ser Gly Lys Ser Val (AS 262-268)
- Epitop 13: Phe Arg Ala Asp Arg Met (AS 282-287)
- Epitop 14: Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys

 Ile Lys Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu

 Lys Leu Pro Asn Lys (AS 297-327)
- Epitop 15: Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val Arg Thr (AS 333-350)
- Epitop 16: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr
 Lys Glu Glu Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile
 Thr Phe Asn Glu Gln Pro Lys Met Lys Ala (AS 365-400)
- Epitop 17: Ile Ala Glu Lys Thr Arg Asp Ala (AS 403-410)
- Epitop 18: Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn Gly Asp Met Val Gly His Thr Gly Asp Ile Glu (AS 413-436)
- Epitop 19: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile (AS 467-492),
- Epitop 20: Leu Thr Ser His Thr Leu Gln Pro (AS 495-502)
- Epitop 21: Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp Ile Asn Thr Pro Gly Leu (AS 509-527)
- Epitop 22: Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr Leu (AS 537-550)

Fig. 8b:

24/48

B-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Lieschgraspollen (Isoform Phl5)

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Met Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys Gly Lys (AS 1-16)
- Epitop 2: Asp Gly Trp Gly Glu Ala Ser Ala Asp Gln Tyr Asn Cys

 Ile His Arg Ala Glu Thr Pro Val Met Asp Ser Leu Lys

 Asn Gly Ala Pro Glu Lys Trp Thr Leu (AS 24-58)
- Epitop 3: Leu Pro Ser Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu Gly Ala (AS 68-86)
- Epitop 4: Gly Lys Ile Trp Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala (AS 104-121)
- Epitop 5: Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val

 (AS 130-142)
- Epitop 6: Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu (AS 148-159)
- Epitop 7: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val (AS 162-174)
- Epitop 8: Glu Thr Leu Glu Asn Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp Ala (AS 178-194)
- Epitop 9: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala (AS 198-223)

- Fig. 8b:Fortsetzung
- 25/48
- Epitop 10: Glu Ala Pro Tyr Lys Phe Lys Ser Ala (AS 228-236)
 - Epitop 11: Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu Pro (AS 242-255)
 - Epitop 12: Asp Glu Ser Gly Lys Ser Val (AS 261-267)
 - Epitop 13: Asn Phe Arg Ala Asp Arg Met (AS 280-286)
 - Epitop 14: Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys

 Ile Lys Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu

 Lys Leu Pro Asn Lys (AS 296-326)
 - Epitop 15: Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val Arg Thr (AS 332-349)
 - Epitop 16: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr

 Lys Glu Glu Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile

 Thr Phe Asn Glu Gln Pro Lys Met Lys Ala (AS 364-399)
 - Epitop 17: Ile Ala Glu Lys Thr Arg Asp Ala (AS 402-409)
 - Epitop 18: Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn Gly Asp Met Val Gly His Thr Gly Asp Ile Glu (AS 412-435)
 - Epitop 19: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile (AS 466-491)
 - Epitop 20: Leu Thr Ser His Thr Leu Gln Pro (AS 494-501)
 - Epitop 21: Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp Ile Asn Thr Pro Gly Leu (AS 508-526)
 - Epitop 22: Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr Leu (AS 536-549)

Fig. 9a:

26/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Lieschgraspollen (Isoform Phll)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Trp Gly Glu Ala Ser (AS 27-31)

Epitop 2: Met Asp Ser Leu Lys Asn Gly Ala (AS 46-53)

Epitop 3: Phe Ala Gln Gly Ala Lys Leu Phe Asp Ala

(AS 91-100)

Epitop 4: Gly Lys Ile Trp Glu (AS 115-119)

Epitop 5: Thr Leu Glu Asn (A\$ 180-183)

Epitop 6: Asn Asp Trp Asp Val Val (AS 213-218)

Epitop 7: Leu Glu Ala Val Lys Thr Leu (AS 238-244)

Epitop 8: Leu Ala Lys Ala Leu Glu (AS 290-295)

Epitop 9: Phe Ala Cys Ser Glu Thr Val Lys (AS 351-358)

Epitop 10: Leu Asp Ala Val Glu Gln Val Gly Gly Ile Tyr

(AS 453-461)

Epitop 11: Pro Gly Leu Ala Asn Val Ala Ala (AS 525-532)

Epitop 12: Asn Leu His Gly Phe Gln Ala Pro Asp Asp

(AS 536-545)

Fig. 9b:

27/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Lieschgraspollen (Isoform Ph15)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Trp Gly Glu Ala Ser (AS 26-30)

Epitop 2: Met Asp Ser Leu Lys Asn Gly Ala (AS 45-52)

Epitop 3: Phe Ala Gln Gly Ala Lys Leu Phe Asp Ala (AS 90-99)

Epitop 4: Tyr Ile Lys Glu Ser (AS 114-118)

Epitop 5: Thr Leu Glu Asn (AS 179-182)

Epitop 6: Asn Asp Trp Asp Val Val (AS 212-217)

Epitop 7: Leu Glu Ala Val Lys Thr Leu (AS 237-243)

Epitop 8: Leu Ala Lys Ala Leu Glu Phe (AS 289-295)

Epitop 9: Phe Ala Cys Ser Glu Thr Val Lys (AS 350-357)

Epitop 10: Leu Asp Ala Val Glu Gln Val Gly Gly (AS 452-460)

Epitop 11: Pro Gly Leu Ala Asn Val Ala Ala (AS 524-531)

Epitop 12: Asn Leu His Gly Phe Gln Ala Pro Asp Asp (AS 535-544)

Fig.10a:

28/48

cDNA Sequenz und abgeleitete Aminosäure-sequenz von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus 5 Beifußpollen (Isoform Art6))

Sequence: a:\art6cod.dna, Length: 1674, Range for analysis: 1-1674

1				TCA											42
	Met	Gly	Ser	Ser	Gly	Phe	Ser	Trp	Lys	Leu	Ala	Asp	His	Pro	
43	AAG	CTG	CCA	AAG	AAC	AAG	CTG	GTA	GCG	ATG	ATT	GTG	TTG	GAC	84
	Lys	Leu	Pro	Lys	Asn	Lys	Leu	Val	Ala	Met	Ile	Val	Leu	Asp	
85	GGA	TGG	GGT	GAA	GCT	тст	ССТ	GAT	AAA	TAT	AAC	TGT	ATC	CAC	126
	Gly	Trp	Gly	Glu	Ala	Ser	Pro	Asp	Lys	Tyr	Asn	Cys	Пe	His	
127	GTG	GCC	GAG	ACT	ССТ	ACC	ATG	GAT	TCT	СТС	AAA	AAC	GGC	GCC	168
				Thr											
160	CCT	CAT	ርላር	TGG	ACA	TTC	CTC	VCC	CCT	CAT	CC V	۸۲۲	CCT	CTT	210
103				Trp											210
211				ACT											252
	ыу	Leu	Pro	Thr	ulu	ASP	ASP	met	ыу	Asn	5er	61U	vai	ыу	
253	CAC	AAT	GCT	CTT	GGT	GCT	GGA	AGG	ATC	TTT	GCT	CAA	GGT	GCT	294
	His	Asn	Ala	Leu	G1 y	Ala	Gly	Arg	Пe	Phe	Ala	Gln	Gly	Ala	
295	AAA	СТС	GTT	GAT	CAA	GCA	CTT	GCC	тст	GGG	AGA	ATT	TAC	GAA	336
	Lys	Leu	Va1	Asp	Gln	Ala	Leu	Ala	Ser	Gly	Arg	He	Tyr	G1 u	
227	CAT	GAA	GCT	TTC	4 4 T	TAC	ATC	۸۸۲	$C \wedge A$	TCA	ттт	rer.	۸۲۲	۸۸۲	378
/ د د				Phe											3/6
	₩2ħ	i	ury	ine	W211	ı yı	116	L y S	ulu	261.	ine	HID	1 111	V211	

Fig. 10a: Fortsetzung 29/48

379	ACC	TTG	CAT	CTT	ATT	GGA	TTG	ATG	AGT	GAT	GGT	GGT	GTT	CAC	420
	Thr	Leu	His	Leu	Ile	Gly	Leu	Met	Ser	Asp	Gly	Gly	Val	His	
421	TCA	CGT	СТТ	GAT	CAG	TTG	CAG	TTG	TTG	СТТ	AAC	GGA	GCT	AGT	462
										Leu					
463	GAG	CGT	GGT	GCC	AAG	AAG	ΔΤΓ	CGT	GTT	CAC	GTG	CTT	ΔCT	GAT	504
										His					304
505	GGT	ССТ	GAT	GTT	TTG	GΔT	GGT	TΓΔ	ΔGT	GTC	GGT	7 77	GCT	GAA	546
000										Val					340
5.47	۸۲۸	CTT	CΛΛ	CC V	CAA	стт	GC V	۸СТ	רדר	CGC	۸۲۲	44 C	ccc	АТТ	£00
J47										Arg					588
500	CAT	ССТ	CAC	CTT	CCT	TCT	CCT	CCA	CCA	CGT	A T.C	TAT	CTC	A .C.C	
203										Arg					630
621	ATC	CAT	ССТ	TAC	CAC	A A T	CAC	TCC	C	GTT	CTC		CTT	CC 4	670
031										Val					672
672	TCC	CAT	CCT	CAC	CTT	CTT	CCT	C	CCT	664	646	• • •	***		71.4
0/3										CCA Pro					714
/15										AGA Arg					756
						:									
757										GTT Val					798
													•	·	
799										GAT Asp					840
				•						·		•			
841	GTC Val									ATG Met					882
						,			🤊						

Fig	.10	a:F	ort	set	zung	ŀ		3	30/	48				-	
883	CAA	GCT	CTT	GAA	TAC	GAG	AAG	TTT	GAT	AAG	TTT	GAC	AGA	GTG	924
	Gln	Ala	Leu	GTu	Tyr	Glu	Lys	Phe	Asp	Lys	Phe	Asp	Arg	Val	
925	CGT	TTC	CCA	AAA	ATC	CGT	TAT	GCT	GGT	ATG	СТС	CAG	TAT	GAT	966
	Arg	Phe	Pro	Lys	Ile	Arg	Tyr	Ala	Gly	Met	Leu	Gln	Tyr	Asp	
967			TTG												1008
	Gly	Glu	Leu	Lys	Leu	Pro	Asn	His	Tyr	Leu	Va1	Ser	Pro	Pro	
1009														-	1050
	Leu	He	Asp	Arg	Thr	Ser	Gly	Glu	Tyr	Leu	Val	His	Asn	Gly	
1051	GTC	CGC	ACT	TTT	GCT	TGC	AGT	GAG	ACT	GTC	AAA	TTC	GGT	CAT	1092
	Val	Arg	Thr	Phe	Ala	Cys	Ser	Glu	Thr	Val	Lys	Phe	Gly	His	
1093	GTC	ACA	TTT	TTC	TGG	AAT	GGA	AAC	CGC	тст	GGT	TAC	TTC	AAC	1134
	Val	Thr	Phe	Phe	Trp	Asn	Gly	Asn	Arg	Ser	Gly	Tyr	Phe	Asn	
1135	TCA	GAG	TTG	GAA	GAA	TAT	GTT	GAA	ATT	CCA	AGT	GAT	AGT	GGT	1176
	Ser	Glu	Leu	Glu	Glu	Tyr	Val	Glu	Пe	Pro	Ser	Asp	Ser	Gly	
1177	ATT	ACC	TTC	AAC	GTC	AAA	CCA	AAG	ATG	AAA	GCT	TTG	GAG	ATT	1218
	Ile	Thr	Phe	Asn	Val	Lys	Pro	Lys	Met	Lys	Ala	Leu	Glu	Пe	
1219	GGT	GAG	AAG	ACC	CGT	GAT	GCT	ATC	СТС	AGC	GGA	AAG	TTT	GAC	1260
	Gly	Glu	Lys	Thr	Arg	Asp	Ala	Ile	Leu	Ser	Gly	Lys	Phe	Asp	
1261	CAG	GTA	CGT	GTG	AAC	ATA	CCA	AAC	GGT	GAC	ATG	GTT	GGG	CAC	1302
	Gln	V a 1	Arg	Val	Asn	Пе	Pro	Asn	Gly	Asp	Met	Val	Gly	His	
1303	ACC	GGT	GAT	GTT	GAG	GCT	ACT	GTC	GTG	GCC	TGC	AAG	GCT	G CT	1344
	Thr	Gly	Asp	Val	Glu	Ala	Thr	Val	Val	Ala	Cys	Lys	Ala	Ala	
1345	GAT	GAA	GCT	GTT	AAG	ATG	ATC	CTT	GAT	GCC	GTA	GAG	CAA	GTG	1386
	Asp	Glu	Ala	Val	Lys	Met	Ile	Leu	Asp	Ala	Val	Glu	Gln	Val	

Fig.10a:Fortsetzung

31/48

1387	GGG Gly						•	1428
1429	ATG Met							1470
1471	GGC Gly							1512
1513	CCA Pro							1554
1555	TTC Phe							1596
1597	GCA Ala							1638
1639	TAC Tyr							1674

L

Fig.10b:

32/48

cDNA Sequenz und abgeleitete Aminosāure-sequenz von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus 5 Beifußpollen (Isoform Art17)

Sequence: a:\art17cod.dna, Length: 1683, Range for analysis: 1-1683

. 1	ATG	GGA	AGC	TCA	GGA	GAC	AAA	ACG	ACA	TGG	AAA	TTG	GCA	GAT	42
	Met	Gly	Ser	Ser	Gly	Asp	Lys	Thr	Thr	Trp	Lys	Leu	Ala	Asp	
42	CAC	CC 1		CTA	CC 4		CC 4		ATC	ATC	000	CTT	CTT	CTT	0.4
43										ATC					84
	His	Pro	Lys	Leu	Pro	Lys	Gly	Lys	Met	IJе	Ala	Va1	Val	Val	
85	TTG	GAC	GGT	TGG	GGT	GAA	GCT	тст	ССС	GAC	AAA	TAT	AAT	TGT	126
	Leu	Δsn	GIV	Trn	61 v	61	Δla	Car	Pro	Asp	Lvc	Tvr	Δsn	۲vs	
	LCu	ЛЗР	uiy	117	uly	uiu	Aiu	361	110	∆3Þ	Lys	, , ,	nan	0,3	
127	ATC	CAT	GTT	GCC	CAA	ACA	CCC	GTC	ATG	TAT	TCT	CTT	AAA	AAC	168
	Ne	His	Val	Ala	Gln	Thr	Pro	Val	Met	Tyr	Ser	Leu	Lys	Asn	
169	AGT	GCA	CCT	GAT	CAC	TGG	AGA	TTG	GTG	AGG	GCA	CAT	GGT	ACT	210
	Ser	Ala	Pro	Asp	His	Trp	Arg	Leu	Val	Arg	Ala	His	Gly	Thr	
211	GCT	GTG	GGG	CTT	CCC	ACA	GAC	GAT	GAC	ATG	GGA	AAC	AGC	GAA	252
	Ala	Val	Gly	Leu	Pro	Thr	Asp	Asp	Asp	Met	Gly	Asn	Ser	Glu	
253	GTT	GGA	CAT	AAT	GCT	CTT	GGA	GCT	GGT	CGA	ATT	TAT	GCC	CAA	294
	Val	Gly	His	Asn	Ala	Leu	Gly	Ala	Gly	Arg	He	Tyr	Ala	Gln	
								••							
295	GGT	GCA	AAA	CTT	GTG	GAT	CTT	GCT	CTT	GCC	TCT	GGA	AAG	ATA	336
	Gly	Ala	Lys	Leu	Val	Asp	Leu	Ala	Leu	Ala	Ser	Gly	Lys	Ile	
•															
337	TAT	GAC	GAT	GAA	GGT	TTT	AAT	TAC	ATT	AAG	GAA	тст	TTT	GCA	378
	Tyr	Asp	Asp	Glu	G1 v	Phe	Asn	Tyr	Пe	Lys	Glu	Ser	Phe	Ala	

ı

Fig.10b: Fortsetzung

33/48

420	GGT	GGG (GAT (AGT	ATG A	TTG A	GGA 1	ATT (CTC /	CAC	TTG (ACA 1	AAT /	AAT /	379
	Gly	Gly	Asp	Ser	Met	Leu	G1 y	Ile	Leu	Hi s	Leu	Thr	Asn	Asn	
462	GGT	AAA	СТС	TTG	CTG	CAG	TTA	CAG	GAT	CTT	CGC	TCT	CAC	G TG	421
	Gly	Lys	Leu	Leu	Leu	Gln	Leu	Gln	Asp	Leu	Arg	Ser	His	Val	
504	CTT	GTA	CAC	GTC	CGT	ATC	AAG	AAG	GCC	GGT	CGT	GAA	AGT	GCT	463
	Leu	Val	His	Val	Arg	Пe	Lys	Lys	Ala	G1 y	Arg	Glu	Ser	Ala	
546	TTT	GGC	GTA	AGT	TCA	GGT	GAT	TTG	GTT	GAT	CGT	GGC	GAT	ACT	505
	Phe	Gly	Val	Ser	Ser	G1 y	Asp	Leu	Val	Asp	Arg	G1 y	Asp	Thr	
588	AAA	AGC	CGT	CTA	GAC	GCA	СТТ	GAC	AAG	GAA	СТТ	ACA	GAA	GCA	547
		Ser													
630	TAT	ATG	CGC	GGT	GGA	GGT	тст	GCT	GTT	CAG	GCT	GAT	ATA	GGT	589
	Tyr	Met	Arg	Gly	Gly	G1 y	Ser	Ala	Val	Gln	Ala	Asp	Ile	61 y	
672	AAA	GTG	GTT	GAT	TGG	GAT	TAA	GAG	TAT	CGT	GAT	ATG	ACC	GTC	631
	Lys	Val	Val	Asp	Trp	Asp	Asn	Glu	Tyr	Arg	Asp	Met	Thr	Val	
714	AAA	CAC	CCA	GCC	GAA	GGT	СТТ	GTG	CAG	GCT	GAT	TGG	GGT	CGT	673
	Lys	His	Pro	Ala	Glu	G1 y	Leu	Val	Gln	Ala	Asp	Trp	Gly	Arg	
756	GCT	GAA	AGG	СТА	AAG	AAG	ATC	GCT	GAG	GTT	GCT	AGT	AAG	TTC	715
	Ala	Glu	Arg	Leu	Lys	Lys	Ile	Ala	Glu	Val	Ala	Ser	Lys	Phe	
798	GTT	ATT	GTG	TTT	CCA	CCC	TTA	TAC	CAG	GAT	AAT	GCT	AAT	CCA	757
	Val	Ile	Va 1	Phe	Pro	Pro	Leu	Tyr	Gln	Asp	Asn	Ala	Asn	Pro	
840	GAT	GGT	GAC	ATG	ATA	ССС	GGT	GTG	ССТ	AAG	GGG	AGT	GAG	GAT	799
	Asp	Gly	Asp	Met	Ile	Pro	Gly	Val	Pro	Lys	Gly	Ser	Glu	Asp	
882	ATC	ACA	ATG	CGA	GAT	GCA	CGA	TTC	AAC	TTC	ACA	GT _l C	GTT	GCT	841
	IJе	Thr	Met	Arg	Asp	Ala	Arg	Phe	Asn	Phe	Thr	۷ąi٦	Val	Ala	

Fig. 10b: Fortsetzung 34/48

883	CTT	GCC	CAG	GCT	CTT	GAG	TAT	GAG	AAG	TTT	GAT	AAA	TTT	GAC	924
	Leu	Ala	G1n	Ala	Leu	Glu	Tyr	Glu	Lys	Phe	Asp	Lys	Phe	Asp	
925	AGG	GTG	CGG	TTC	CCT	AAA	ATC	CGC	TAT	GCT	GGA	ATG	CTT	CAA	966
	Arg	Val	Arg	Phe	Pro	Lys	Ile	Arg	Tyr	Ala	Gly	Met	Leu	Gln	
967	TAT	GAT	GGG	GAG	TTG	AAG	СТА	CCA	AGT	CGT	TAC	CTG	GTT	тст	1008
	Tyr	Asp	Gly	Glu	Leu	Lys	Leu	Pro	Ser	Arg	Tyr	Leu	Val	Ser	
1009	CCT	CCA	TTG	ATA	GAG	AGG	ACA	TCT	GGT	GAA	TAT	СТА	GTC	AAT	1050
	Pro	Pro	Leu	Пe	Glu	Arg	Thr	Ser	Gly	Glu	Tyr	Leu	Val	Asn	
10 51	AAT	GGT	ATC	CGC	ACC	TIT	GCT	TGT	AGT	GAA	ACA	GTA	AAA	TTT	1092
	Asn	Gly	Пe	Arg	Thr	Phe	Ala	Cys	Ser	Glu	Thr	Val	Lys	Phe	
1093	GGT	CAT	GTT	ACC	TTC	TTT	TGG	AAT	GGG	AAC	CGC	тст	GGA	TAT	1134
	Gly	His	Val	Thr	Phe	Phe	Trp	Asn	Gly	Asn	Arg	Ser	Gly	Tyr	
1135	TTT	AAT	TCA	GAG	TTG	GAG	GAA	TAT	GTA	GAA	ATT	CCA	AGT	GAT	1176
	Phe	Asn	Ser	Glu	Leu	Glu	Glu	Tyr	Val	Glu	Ile	Pro	Ser	Asp	
1177	AAT	GGA	ATT	TCC	TTC	AAT	GTC	CAA	CCA	AAG	ATG	AAG	GCT	TTG	1218
	Asn	Gly	Ile	Ser	Phe	Asn	Val	Gln	Pro	Lys	Met	Lys	Ala	Leu	
1219	GAG	ATT	GGT	GAG	AAG	GCC	CGT	GAT	GCA	ATT	СТС	AGT	CGC	AAA	1260
	Glu	Ile	Gly	Glu	Lys	Ala	Arg	Asp	Ala	Πe	Leu	Ser	Arg	Lys	
1261	TTT	GAC	CAG	GTA	AGG	GTG	AAT	ATA	CCA	AAT	GGT	GAC	ATG	GTT	1302
	Phe	Asp	Gln	Val	Arg	Val	Asn	Ile	Pro	Asn	Gly	Asp	Met	Val	
1303	GGG	CAT	ACC	GGT	GAC	ATT	GAG	GCA	ACA	GTT	GTG	GCA	TGC	AAG	1344
			Thr												
1345	GCT	GCT	GAT	GAT	GCT	GTT	AAG	ATG	ATC	CTT	GAT	GCA	ATA	AAG	1386
1			Asp												

1683

Fig.10b: Fortsetzung

1387	GAA	GTA	GGT	GGA	ATA	TAT	GTG	GTG	ACT	GCG	GAT	CAT	GGT	AAT	1428
	Glu	Val	Gly	Gly	Пe	Tyr	Val	Val	Thr	Ala	Asp	His	Gly	Asn	
1429	GCA	GAG	GAC	ΔΤς	GTG.	ΔΔG	ΔΩΔ	٦ΔΔ	AAG	GAG	GGA	GAG	רננ	CTT	1470
1765									Lys						1470
1471	CTT	GAT	AAG	GAT	GGC	AAA	GTT	CAG	ATC	CTA	ACC	TCG	CAC	ACT	1512
	Leu	Asp	Lys	Asp	Gly	Lys	Val	Gln	Пe	Leu	Thr	Ser	His	Thr	
1513	CTG	CAG	CCA	GTA	CCG	GTT	GCA	ATT	GGA	GGT	CCT	GGG	TTA	GCA	1554
	Leu	Gln	Pro	Val	Pro	Val	Ala	Ile	Gly	Gly	Pro	Gly	Leu	Ala	
1555	GCA	GGT	GTG	AAA	TTC	CGC	AAG	GAT	GTG	CCA	AAT	GGT	GGA	CTA	1596
	Ala	Gly	Val	Lys	Phe	Arg	Lys	Asp	Val	Pro	Asn	Gly	Gly	Leu	
1507	CC A	0 A T	CT A	CC4	CCA	A.C.A	CTC	ATC	A A T	CTO	C17	ООТ	***	0.7.0	1.630
1597															1638
	Ala	Asn	Val	Ala	Ala	ihr	Val	met	Asn	Leu	HIS	Gly	rhe	val	
1639	GCT	ССТ	GAT.	GAC	TAT	GAG	ACA	ACC	CTT	ATT	GAA	GTT	GTT	GAT	1680
									Leu						-

35/48

.

1681 TAA

İ

Fig.11a:

36/48

B-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus BeifuBpollen (Isoform Art6)

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Met Gly Ser Ser Gly Phe Ser Trp Lys Leu Ala Asp His Pro Lys Leu Pro Lys Asn Lys Leu (AS 1-21)
- Epitop 2: Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile (AS 28-41)
- Epitop 3: Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Asn Gly Ala Pro Asp His Trp Arg Leu Val Arg Ala His Gly Thr (AS 44-68)
- Epitop 4: Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu Gly Ala (AS 72-90)
- Epitop 5: Gly Arg Ile Tyr Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala Thr Asn Thr (AS 108-127)
- Epitop 6: Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln (AS 134-146)
- Epitop 7: Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val (AS 152–163)
- Epitop 8: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
 (AS 166-178)
- Epitop 9: Ala Ser Leu Arg Ser Lys Gly Ile Asp Ala (AS 189-198)
- Epitop 10: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Glu Val (AS 202-220)

37/48

Fig.11a: Fortsetzung

- Epitop 11: Glu Ala Pro His Lys Phe Lys Asn Val (AS 232-240)
- Epitop 12: Ile Lys Thr Leu Arg Gln Ala Pro Gly Ala Asn Asp Gln Tyr Leu Pro (AS 244-259)
- Epitop 13: Asp Asp Ser Gly Thr Pro Val (AS 265-271)
- Epitop 14: Asn Phe Arg Ala Asp Arg Met (AS 284-290)
- Epitop 15: Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val Arg Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Asn His Tyr Leu Val Ser (AS 296-334)
- Epitop 16: Pro Leu Ile Asp Arg Thr Ser Gly Glu Tyr Leu Val His Asn Gly Val Arg Thr (AS 336-353)
- Epitop 17: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu
 Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Ser Gly Ile
 Thr Phe Asn Val Lys Pro Lys Met Lys Ala Leu Glu Ile
 Gly Glu Lys Thr Arg Asp Ala (AS 368-413)
- Epitop 18: Ser Gly Lys Phe Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met Val Gly His Thr Gly Asp Val Glu (AS 416-439)
- Epitop 19: Lys Ala Ala Asp Glu Ala Val (AS 446-452)
- Epitop 20: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Lys Gly Glu Pro Leu Leu Lys Asp Gly Glu Val (AS 470-494)
- Epitop 21: Leu Thr Ser His Thr Leu Gln Pro (AS 497-504)
- Epitop 22: Gly Val Arg Phe Arg Lys Asp Val Pro Ser Gly Gly Leu (AS 517-529)

PCT/AT96/00141

WO 97/05258

Fig.11a: Fortsetzung

38/48

Epitop 23: Val Ala Pro Glu Asp Tyr Glu Thr Thr Leu (AS 543-552)

Fig. 11b:

39/48

B-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Beifußpollen (Isoform Art17)

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Met Gly Ser Ser Gly Asp Lys Thr Thr Trp Lys Leu Ala Asp His Pro Lys Leu Pro Lys Gly Lys Met (AS 1-23)
- Epitop 2: Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile (AS 30-43)
- Epitop 3: Ser Leu Lys Asn Ser Ala Pro Asp His Trp Arg Leu Val Arg Ala His Gly Thr (AS 53-70)
- Epitop 4: Leu Pro Thr Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu Gly Ala (AS 74-92)
- Epitop 5: Gly Lys Ile Tyr Asp Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala Asn Asn Thr Leu (AS 110-130)
- Epitop 6: Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Leu (AS 136-148)
- Epitop 7: Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val (AS 154-165)
- Epitop 8: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val (AS 168-180)
- Epitop 9: Glu Thr Leu Glu Lys Asp Leu Ala Asp Leu Arg Ser Lys Gly Ile Asp Ala (AS 184-200)
- Epitop 10: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr
 Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala
 (AS 204-229)

Fig. 11b: Fortsetzung

40/48

Epitop 11: Glu Ala Pro His Lys Phe Lys Ser Ala (AS 234-242)

Epitop 12: Ile Lys Lys Leu Arg Glu Ala Pro Asn Ala Asn Asp Gln Tyr Leu Pro (AS 246-261)

Epitop 13: Asp Glu Ser Gly Lys Pro Val (AS 267-273)

Epitop 14: Asn Phe Arg Ala Asp Arg Met (AS 286-292)

Epitop 15: Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val Arg Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Sen Arg Tyr Leu Val Ser (AS 298-336)

Epitop 16: Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Asn Asn Gly Ile Arg (AS 338-354)

Epitop 17: Ser Glu Thr Val Lys Phe (AS 359-364)

Epitop 18: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu
Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Asn Gly Ile
Ser Phe Asn Val Gln Pro Lys Met Lys Ala Leu Glu Ile
Gly Glu Lys Ala Arg Asp Ala Ile Leu Ser Arg Lys Phe
Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met Val
Gly His Thr Gly Asp Ile Glu (AS 370-441)

Epitop 19: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Glu Gly Glu Pro Leu Leu Asp Lys Asp Gly Lys Val (AS 472-497)

Epitop 20: Leu Thr Ser His Thr Leu Gln Pro (AS 500-507)

Epitop 21: Val Lys Phe Arg Lys Asp Val Pro Asn Gly Gly Leu (AS 521-532)

Epitop 22: Val Ala Pro Asp Asp Tyr Glu Thr Thr Leu (AS 546-555)

Fig. 12a:

41/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Beifußpollen (Isoform Art6)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Ala Asp His Pro Lys (AS 11-15)

Epitop 2: Tyr Asn Cys Ile His Val Ala Glu Thr Pro Thr Met Asp Ser Leu Lys (AS 38-53)

Epitop 3: Asp His Trp Arg Leu Val Arg (AS 58-64)

Epitop 4: Phe Ala Gln Gly Ala Lys Leu Val Asp Gln (AS 94-103)

Epitop 5: Glu Ala Pro His Lys Phe Lys Asn Val Val Glu Ala Ile Lys Thr Leu Arg Gln Ala (AS 232-250)

Epitop 6: Arg Thr Phe Ala Cys Ser Glu Thr Val Lys (AS 352-361)

Epitop 7: Ser Glu Leu Glu Glu Tyr Val Glu (AS 379-389)

Epitop 8: Val Lys Met Ile Leu Asp Ala Val Glu Gln Val Gly Gly Ile (AS 452-465)

Epitop 9: Gly Gly Leu Ala Asn Val Ala Ala (AS 527-534)

Epitop 10: Asn Leu His Gly Phe Val Ala Pro Glu (AS 538-546)

Fig. 12b:

42/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Beifußpollen (Isoform Art17)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Leu Ala Asp His Pro Lys (AS 12-17)

Epitop 2: Val Val Leu Asp Gly Trp Gly Glu Ala Ser (AS 26-36)

Epitop 3: Asp His Trp Arg Leu Val Arg (AS 60-66)

Epitop 4: Phe Ala Glu Thr Leu Glu Lys Asp Leu Ala (AS 182-191)

Epitop 5: Asn Asp Trp Asp Val (AS 218-223)

Epitop 6: Glu Ala Pro His Lys Phe Lys Ser Ala Val Glu Ala Ile Lys Lys Leu Arg Glu Ala Pro Asn (AS 234-254)

Epitop 7: Lys Phe Asp Arg Val (AS 306-310)

Epitop 8: Asn Asn Gly Ile Arg Thr Phe Ala Cys Ser Glu Thr Val Lys (AS 350-363)

Epitop 9: Ser Glu Leu Glu Glu Tyr Val Glu (AS 381-388)

Epitop 10: Asp Asp Ala Val Lys Met Ile Leu Asp Ala Ile Lys .
Glu Val Gly Gly (AS 451-466)

Epitop 11: Gly Gly Leu Ala Asn Val Ala Ala (AS 530-537)

Epitop 12: Asn Leu His Gly Phe Val Ala Pro Asp (AS 541-549)

1

Fig.13:

43/48

Sequenzvergleich von PGM-i aus Lieschgraspollen (Phl5, Phl1), Beifußpollen (Art6, Art17) und 5 Birkenpollen (bvmut)

Plurality: 2.00 Threshold: 1.00 AveWeight 1.00 AveMatch 0.54 AvMis-Match -0.40

PRETTY of: pat.msf(*) July 28, 1996 22:24 ...

```
.....mTSW tLpDHPtLPK GKtVAVIVLD GWGEASaDQY NCIHrAETPV
 pat.msf{Ph15}
               .....maTSW tLpDHPtLPK GKtVAVIVLD GWGEASaDQY NCIHrAETPV
 pat.msf{phl1}
 pat.msf{Art6} MGSSG..fSW kLaDHPkLPK nKlVAmIVLD GWGEASPDkY NCIHVAETPt
               MGSSGdkTtW kLaDHPkLPK GKmIAVVVLD GWGEASPDKY NCIHVAqTPV
pat.msf{Art17}
               ......gGEAkPDQY NCIHVAETPt
pat.msf{bvmut}
              MGSSG--TSW -L-DHP-LPK GK-VAVIVLD GWGEASPDQY NCIHVAETPV
     Consensus
                                                                 100
               51
 pat.msf{Phl5} MDSLKNGAPE KWtLVkAHGT AVGLPsDDDM GNSEVGHNAL GAGRIFAQGA
               MDSLKNGAPE KWŁLVKAHGT AVGLPSDDDM GNSEVGHNAL GAGRIFAQGA
 pat.msf{phl1}
               MDSLKNGAPD hWRLVRAHGT AVGLPTEDDM GNSEVGHNAL GAGRIFAQGA
 pat.msf{Art6}
pat.msf{Art17} MySLKNsAPD hWRLVRAHGT AVGLPTDDDM GNSEVGHNAL GAGRIYAQGA
              MDSLKGGAPE KWRLVRAHGK AVGLPTEDDM GNSEVGHNAL GAGRIFAQGA
pat.msf{bvmut}
     Consensus MDSLKNGAPE KWRLVRAHGT AVGLPTDDDM GNSEVGHNAL GAGRIFAQGA
                                                                 150
               101
 pat.msf{Ph15} KLfDAALASG KIWEDEGFNY IKESFAeGTL HLIGLLSDGG VHSRLDQvQL
               KLFDAALASG KIWEDEGFNY IKESFAeGTL HLIGLLSDGG VHSRLDQvQL
 pat.msf{phl1}
               KLVDQALASG rIYEDEGFNY IKESFAtnTL HLIGLMSDGG VHSRLDQLQL
 pat.msf{Art6}
               KLVDIALASG KIYDDEGFNY IKESFAnnTL HLIGLMSDGG VHSRLDQLQL
pat.msf{Art17}
pat.msf{bvmut} KLVDsALASG KIYEqEGFkY IKEcFenGTL HLIGLLSDGG VHSRLDQLQL
              KLVDAALASG KIYEDEGFNY IKESFA-GTL HLIGLLSDGG VHSRLDQLQL
     Consensus
```

200

50

151

pat.msf{Ph15} LvKGASERGA KRIR1HILTD GRDVLDGSSV GFVETLENDL AQLREKGVDA

Fig.13: Fortsetzung

44/48

```
pat.msf{phll}
               LVKGASERGA KRIRIHILTD GRDVLDGSSV GFVETLENDL AQLREKGVDA
 pat.msf{Art6}
               LLnGASERGA KKIRVHVLTD GRDVLDGSSV GFaETLEaEL AsLRsKGIDA
pat.msf{Art17} LLKGASERGA KkIRVHVLTD GRDVLDGSSV GFaETLEKDL AdLRsKGIDA
pat.msf{bvmut} LLKGASERGA KRIRVHILTD GRDVLDGSSV GFVETLENDL AKLREKGVDA
     Consensus LLKGASERGA KRIRVHILTD GRDVLDGSSV GFVETLENDL ADLREKGVDA
                201
                                                                    250
 pat.msf{Ph15}
                QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPYKFK SAIEAVKTLR
 pat.msf{phll}
                QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPYKFK SA1EAVKTLR
 pat.msf{Art6}
                QVASGGGRMY VTMDRYENDW EVVKIGWDAQ VLGEAPHKFK nvVEAIKTLR
                QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPHKFK SAVEAIKKLR
pat.msf{Art17}
pat.msf{bvmut}
                QIASGGGRMY VTMDRYENDW EVIKRGWDAH VLGEAPYKFK SAVEAVKKLR
                QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPYKFK SAVEAVKTLR
     Consensus
                                                                    300
                251
 pat.msf{Ph15}
                aEPKANDQYL PaFVIVDESG KsVGPIVDGD AVVTFNFRAD RMVMLAKALE
pat.msf{phll}
                aEPKANDQYL PaFVIVDESG KSVGPIVDGD AVVIFNFRAD RMVMLAKALE
 pat.msf{Art6}
                qaPqANDQYL PPFVIVDDSG tPVGPVVDGD AVVTvNFRAD RMtMLAqALE
pat.msf{Art17}
                eaPnANDQYL PPFVIVDESG KPVGPImDGD AVVTFNFRAD RMtiLAgALE
                eElkvsDOYL PPFVIVDDnG KPVGPIVDGD AVVTiNFRAD RMVMiAKALE
pat.msf{bvmut}
     Consensus
                -EPKANDQYL PPFVIVDESG KPVGPIVDGD AVVTFNFRAD RMVMLAKALE
                301
                                                                    350
 pat.msf{Ph15}
               FadFDKFDRV RvPKIkYAGM LQYDGELKLP NkFLVSPPLI ERTSGEYLVk
 pat.msf{phll}
                FadFDKFDRV RvPKIkYAGM LQYDGELKLP NKFLVSPPLI ERTSGEYLVK
 pat.msf{Art6}
                YEKFDKFDRV RFPKIRYAGM LQYDGELKLP NHYLVSPPLI DRTSGEYLVH
                YEKFDKFDRV RFPKIRYAGM LQYDGELKLP STYLVSPPLI ERTSGEYLVn
pat.msf{Art17}
                YENFDKiDRV: RFPKIRYAGM LQYDGELKLP shYLVePPeI ERTSGEYLVh
pat.msf{bvmut}
                YE-FOKFORV RFPKIRYAGM LQYDGELKLP N-YLVSPPLI ERTSGEYLV-
     Consensus
                                                                    400
                351
 pat.msf{Ph15}
                NGVRTFACSE TVKFGHVTFF WNGNRSGYFd etkEEYIEIP SDSGITFNeQ
 pat.msf{phl1}
                NGVRTFACSE TVKFGHVTFF WNGNRSGYFd etkEEYIEIP SDSGITFNeQ
                NGVRTFACSE TVKFGHVTFF WNGNRSGYFN SELEEYVEIP SDSGITFNVK
 pat.msf(Art6)
pat.msf{Art17}
                NGIRTFACSE TVKFGHVTFF WNGNRSGYFN SELEEYVEIP SDnGIsFNVQ
pat.msf{bvmut}
                           TVKFGHVTFF WNGNRSGYFN SELEEYVEIP SDSGITFNVQ
```

Fig.13:Fortsetzung

45/48

Consensus NGVRTFACSE TVKFGHVTFF WNGNRSGYFN SELEEYVEIP SDSGITFNVQ

					•
	401				450
pat.msf{Phl5}	PKMKALEIAE	KTRDAILSGK	FDQVRINLPN	GDMVGHTGDI	EATVVACKAA
<pre>pat.msf{phl1}</pre>	PKMKALEIAE	KTRDAILSGK	FDQVRINLPN	GDMVGHTGDI	EATVVACKAA
<pre>pat.msf{Art6}</pre>	PKMKALEIgE	KTRDAILSGK	FDQVRVNiPN	GDMVGHTGDV	EATVVACKAA
pat.msf{Art17}	PKMKALEIgE	KaRDAILSrK	FDQVRVNiPN	GDMVGHTGDI	EATVVACKAA
<pre>pat.msf{bvmut}</pre>	PKMKALEIAE	KTRDAILSGK	FDQVRVNLPN	GDMVGHTGDI	Edtvvackaa
Consensus	PKMKALEIAE	KTRDAILSGK	FDQVŔVNLPN	GDMVGHTGDI	EATVVACKAA
	451				500
pat.msf{Phl5}	DEAVKIVLDA	VEQVGGIY1V	TADHGNAEDM	VKRNKSGQPa	LDKsGSIQIL
<pre>pat.msf{phll}</pre>	DEAVKIVLDA	VEQVGGIY1V	TADHGNAEDM	${\tt VKRNKSGQPa}$	LDKsGSIQIL
pat.msf{Art6}	DEAVKMILDA	VEQVGGIYVV	TADHGNAEDM	VKRNKkGePL	L.KdGeVQIL
<pre>pat.msf{Art17}</pre>	DDAVKMILDA	IkeVGGIYVV	TADHGNAEDM	VKRNKeGePL	LDKdGkVQIL
<pre>pat.msf{bvmut}</pre>	DEAdKMILDA	IEQVGGIYVV	TADHGNAEDM	VKRNKSvQPL	LDKnGn1QVL
Consensus	DEAVKMILDA	VEQVGGIYVV	TADHGNAEDM	VKRNKSGQPL	LDK-GS-QIL
					550
	501				
pat.msf{Ph15}	TSHTLQPVPV		VKFRsDInTp		NLHGFqAPDD
<pre>pat.msf{Ph15} pat.msf{ph11}</pre>	TSHTLQPVPV TSHTLQPVPV	AIGGPGLhpG	VKFRsDInTp	GLANVAATVM	NLHGFqAPDD NLHGFqAPDD
•	TSHTLQPVPV TSHTLQPVPV TSHTLQPVPI	AIGGPGLhpG AIGGPGLsaG	VKFRsDInTp VrFRKDVPsG	GLANVAATVM GLANVAATVM	NLHGFqAPDD NLHGFqAPDD NLHGFvAPED
pat.msf{phll}	TSHTLQPVPV TSHTLQPVPV TSHTLQPVPI TSHTLQPVPV	AIGGPGLhpG AIGGPGLsaG AIGGPGLaaG	VKFRsDInTp VrFRKDVPsG VKFRKDVPnG	GLANVAATVM GLANVAATVM GLANVAATVM	NLHGFqAPDD NLHGFqAPDD NLHGFvAPED NLHGFvAPDD
<pre>pat.msf{phll} pat.msf{Art6}</pre>	TSHTLQPVPV TSHTLQPVPV TSHTLQPVPI TSHTLQPVPV TSHTLQPVPI	AIGGPGLhpG AIGGPGLsaG AIGGPGLaaG AIGGPaLasG	VKFRsDInTp VrFRKDVPsG VKFRKDVPnG VrFcKD1PdG	GLANVAATVM GLANVAATVM GLANVAATVM	NLHGFqAPDD NLHGFqAPDD NLHGFvAPED NLHGFvAPDD NLHGFeAPSD
<pre>pat.msf{ph11} pat.msf{Art6} pat.msf{Art17}</pre>	TSHTLQPVPV TSHTLQPVPV TSHTLQPVPI TSHTLQPVPV TSHTLQPVPI	AIGGPGLhpG AIGGPGLsaG AIGGPGLaaG AIGGPaLasG	VKFRsDInTp VrFRKDVPsG VKFRKDVPnG	GLANVAATVM GLANVAATVM GLANVAATVM	NLHGFqAPDD NLHGFqAPDD NLHGFvAPED NLHGFvAPDD NLHGFeAPSD
<pre>pat.msf{phll} pat.msf{Art6} pat.msf{Art17} pat.msf{bvmut}</pre>	TSHTLQPVPV TSHTLQPVPV TSHTLQPVPI TSHTLQPVPV TSHTLQPVPI	AIGGPGLhpG AIGGPGLsaG AIGGPGLaaG AIGGPaLasG	VKFRsDInTp VrFRKDVPsG VKFRKDVPnG VrFcKD1PdG	GLANVAATVM GLANVAATVM GLANVAATVM	NLHGFqAPDD NLHGFqAPDD NLHGFvAPED NLHGFvAPDD NLHGFeAPSD
<pre>pat.msf{phll} pat.msf{Art6} pat.msf{Art17} pat.msf{bvmut}</pre>	TSHTLQPVPV TSHTLQPVPV TSHTLQPVPI TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV	AIGGPGLhpG AIGGPGLsaG AIGGPGLaaG AIGGPaLasG	VKFRsDInTp VrFRKDVPsG VKFRKDVPnG VrFcKD1PdG	GLANVAATVM GLANVAATVM GLANVAATVM	NLHGFqAPDD NLHGFqAPDD NLHGFvAPED NLHGFvAPDD NLHGFeAPSD
<pre>pat.msf{phll} pat.msf{Art6} pat.msf{Art17} pat.msf{bvmut}</pre>	TSHTLQPVPV TSHTLQPVPV TSHTLQPVPI TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV	AIGGPGLhpG AIGGPGLsaG AIGGPGLaaG AIGGPaLasG AIGGPGLG	VKFRsDInTp VrFRKDVPsG VKFRKDVPnG VrFcKD1PdG	GLANVAATVM GLANVAATVM GLANVAATVM	NLHGFqAPDD NLHGFqAPDD NLHGFvAPED NLHGFvAPDD NLHGFeAPSD
<pre>pat.msf{ph11} pat.msf{Art6} pat.msf{Art17} pat.msf{bvmut} Consensus</pre>	TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV 551 50 YETTLIEVaD	AIGGPGLhpG AIGGPGLaaG AIGGPaLasG AIGGPGLG 61 K	VKFRsDInTp VrFRKDVPsG VKFRKDVPnG VrFcKD1PdG	GLANVAATVM GLANVAATVM GLANVAATVM	NLHGFqAPDD NLHGFqAPDD NLHGFvAPED NLHGFvAPDD NLHGFeAPSD
<pre>pat.msf{ph11} pat.msf{Art6} pat.msf{Art17} pat.msf{bvmut}</pre>	TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV 551 50 YETTLIEVaD	AIGGPGLhpG AIGGPGLaaG AIGGPaLasG AIGGPGLG 61 K	VKFRsDInTp VrFRKDVPsG VKFRKDVPnG VrFcKD1PdG	GLANVAATVM GLANVAATVM GLANVAATVM	NLHGFQAPDD NLHGFQAPDD NLHGFVAPED NLHGFVAPDD NLHGFeAPSD
<pre>pat.msf{ph11} pat.msf{Art6} pat.msf{Art17} pat.msf{bvmut}</pre>	TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV 551 50 YETTLIEVaD	AIGGPGLhpG AIGGPGLaaG AIGGPALasG AIGGPGLG 51 K K	VKFRsDInTp VrFRKDVPsG VKFRKDVPnG VrFcKD1PdG	GLANVAATVM GLANVAATVM GLANVAATVM	NLHGFqAPDD NLHGFqAPDD NLHGFvAPED NLHGFvAPDD NLHGFeAPSD
<pre>pat.msf{ph11} pat.msf{Art6} pat.msf{Art17} pat.msf{bvmut}</pre>	TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV TSHTLQPVPV 551 50 YETTLIEVaD YETTLIEVaD	AIGGPGLhpG AIGGPGLaaG AIGGPaLasG AIGGPGLG 51 K K	VKFRsDInTp VrFRKDVPsG VKFRKDVPnG VrFcKD1PdG	GLANVAATVM GLANVAATVM GLANVAATVM	NLHGFqAPDD NLHGFqAPDD NLHGFvAPED NLHGFvAPDD NLHGFeAPSD

)

46/48
Fig. 14: Plaquelifts von Klon Phl1 codierend für Lieschgras PGM-i getestet mit Patientensera (A) und BIP3 (B).

Sera von allergischen Patienten (SS, HP, KG) Serum eines nicht-allergischen Donors (NHS) Kontrollfilter ohne BIP3 (C)

A

B

BIP3

47/48
Fig. 15: Plaquelifts von Klon Phl5 codierend für Lieschgras PGM-i getestet mit Patientensera (A) und BIP3 (B).

Sera von allergischen Patienten (SS, HP, KG) Serum eines nicht-allergischen Donors (NHS) Kontrollfilter ohne BIP3 (C)

A

B

BIP3

WO 97/05258 PCT/AT96/00141

48/48
Fig. 16: Plaquelifts von Klon Art17 codierend für Beifuß PGM-i getestet mit

Patientensera (A) und BIP3 (B). Sera von allergischen Patienten (SS, HP, KG) Serum eines nicht-allergischen Donors (NHS) Kontrollfilter ohne BIP3 (C)

A

B

BIP3

