Note: In this course, smooth is C^{∞} . Manifolds are assumed to be smooth, without boundary, and finite dimensional.

1

Definition 1.1 — Diff(M) is a topological group under smooth convergence on compact sets.

Assume M is compact.

Proposition 1.2

 $\mathrm{Diff}(M)$ is locally homeomorphic to $\ell^2,\ i.e.$ separable Hilbert space. In particular, it is locally contractible.

Example 1.3

- (1) $Diff_0(M)$ is the path-component of the identity. It is a normal subgroup.
- (2) MCG(M).
- (3) $\operatorname{Diff}_C(M) = \{ \phi \in \operatorname{Diff}(M) : \phi = \operatorname{id} \text{ outside some compact } \operatorname{set} K_{\phi} \}.$

Motivation:

- (1) Classifying fiber bundles.
- (2)

Definition 1.4 — The dublde is **flat** if it is isomorphic to $\widetilde{X} \times F/\pi_1(X)$, where \widetilde{X} is the universal cover.