Sistemas de Numeração

Conversão de Decimal para Outras Bases

Conversão Decimal → Base B

- Dois Métodos
 - Divisões inteiras sucessivas
 - Subtrações sucessivas

Conversão Decimal → Base B (método divisões inteiras sucessivas)

Passos do Algoritmo:

- 1) Efetuar uma divisão inteira do número decimal (D) pelo valor da base (B), obtendo-se o quociente (Q) e o resto (R);
- 2)O resto da divisão (R) é um dos algarismos da resposta;
- 3) Pegar o quociente (Q) e considerar como o novo número (D);
- 4) Se quociente = 0 então finaliza algoritmo senão retornar ao passo e 1 continuar.

Decimal → Octal (método divisões inteiras sucessivas)

Exemplo 1: Converter 1403 para octal

```
1403 / 8 = 175 resto = 3 -> d0
175 / 8 = 21 resto = 7 -> d1
21 / 8 = 2 resto = 5 -> d2
2 / 8 = 0 resto = 2 -> d3
=> (d3 d2 d1 d0) = 2573<sub>8</sub>
Portanto: 1403 = 2573<sub>8</sub>
```

Decimal → Binário (método divisões inteiras sucessivas)

Exemplo 2: Converter 46 para binário

```
46 / 2 = 23 resto = 0 -> d0
23 / 2 = 11 resto = 1 -> d1
11 / 2 = 5 resto = 1 -> d2
5 / 2 = 2 resto = 1 -> d3
2 / 2 = 1 resto = 0 -> d4
1 / 2 = 0 resto = 1 -> d5
=> (d5 d4 d3 d2 d1 d0) = 101110<sub>2</sub>
Portanto: 46 = 101110<sub>2</sub>
```

Decimal → Hexadecimal (método divisões inteiras sucessivas)

Exemplo 3: Converter 2754 para hexadecimal

```
• 2754/16 = 172 \text{ resto} = 2 -> d0
• 172/16 = 10 \text{ resto} = 12 = 2 -> d1
• 10/16 = 0 \text{ resto} = 10 = 2 -> d1
• 10/16 = 0 \text{ resto} = 10 = 2 -> d2
• 10/16 = 0 \text{ resto} = 10 = 2 -> d2
```

• Logo: $2754 = AC2_{16}$

Conversão Decimal → Base B (método subtrações sucessivas)

Método das subtrações sucessivas:

- 1) Subtrair o número decimal (D) tantas vezes (N) quanto for possível da maior potência possível da base B;
- A quantidade de vezes (N) que foi feita a subtração é um dos algarismos da resposta;
- 3) Pegar o resultado da subtração e repetir os passos 1 e 2 até chegar na potência $B^0 = 1$.

Decimal → Octal (método subtrações sucessivas)

- Exemplo 1: Converter 1403 para octal
 - 1403-512-512 = 379 (subtraiu 2 vezes a potência 512)
 - 379-64-64-64-64 = 59 (subtraiu **5** vezes a potência 64)
 - 59-8-8-8-8-8-8 = 3 (subtraiu **7** vezes a potência 8)
 - 3-1-1-1 = 0 (subtraiu 3 vezes a potência 1)
 - Portanto: $1403 = 2573_8$

Qtd. subtrações			8 ³	82	81	80
			512	64	8	1
2x512 =	1024	1403 -512-512 = 379	2			
5x64 =	320	379 -64-64-64-64 = 59		5		
7×8 =	56	59 -8-8-8-8-8-8 = 3			7	
3×1 =	3	3 -1-1-1 = 0				3

Prova=> (2x512)+(5x64)+(7x8)+(3x1) = 1024+320+56+3 = 1403

Conversão Decimal → Hexadecimal (método subtrações sucessivas)

- Exemplo 2: Converter 2754 para hexadecimal
 - 2754-256-256-256-256-256-256-256-256-256 = 194 (subtraiu **10** vezes a potência 256.)
 - 174-16-16-16-16-16-16-16-16-16-16 = 2 (subtraiu **12** vezes a potência 16)
 - 2-1-1 (subtraiu 2 vezes a potência 1)
 - Substituir por algarismos hexadecimais...

Quant. Subtrações		16 ²	16¹	16°
		256	16	1
$10 \times 256 = 2560$	2754-2560 = 194	10	12	2
$12 \times 16 = 192$	194-192 = 2			
2x1 = 2	2-2 = 0			2

Conversão Decimal → Hexadecimal (método subtrações sucessivas)

- Exemplo 2: Converter 2754 para hexadecimal
 - 2754-256-256-256-256-256-256-256-256-256 = 194 (subtraiu A vezes a potência 256.)
 - 174-16-16-16-16-16-16-16-16-16-16 = 2 (subtraiu C vezes a potência 16)
 - 2-1-1 (subtraiu 2 vezes a potência 1)
 - Portanto: $2754 = AC2_{16}$

Quant. Subtrações		16 ²	16¹	16°
		256	16	1
$10 \times 256 = 2560$	2754-2560 = 194	A	С	2
$12 \times 16 = 192$	194-192 = 2			
2x1 = 2	2-2 = 0			2

Conversão Decimal → Binário (método subtrações sucessivas)

Exemplo 3: Converter 46 para binário

```
46 - 32 = 14 (subtraiu uma vez a potência 32) => d5=1
14 - 0 = 14 (não subtraiu a potência 16) => d4=0
14 - 8 = 6 (subtraiu uma vez a potência 8) => d3=1
6 - 4 = 2 (subtraiu uma vez a potência 4) => d2=1
2 - 2 = 0 (subtraiu uma vez a potência 2) => d1=1
0 - 0 = 0 (não subtraiu a potência 1) => d0=0
=> (d5 d4 d3 d2 d1 d0) = 101101<sub>2</sub>
Portanto: 46 = 101110<sub>2</sub>
```

Conversão Decimal → Binário (método subtrações sucessivas)

Exemplo 3: Converter 46 para binário

Quant. Subtrações		2 ⁵	24	2 ³	2 ²	21	20
		32	16	8	4	2	1
1x32 = 32	46-32 = 14	1					
$0 \times 16 = 0$	14-0 = 14		0				
1x8 = 8	14-8 = 6			1			
1x4 = 4	6-4 = 2				1		
1x2 = 2	2-2 = 0					1	
$0 \times 1 = 1$	0-0 = 0						0

Portanto: $46 = 101110_2$