

CodeKataBattle project by Russo Mario and Picone Paolo

Requirement Analysis and Specification Document

Deliverable: RASD

Title: Requirement Analysis and Verification Document

Authors: Picone Paolo and Russo Mario

Version: 1.0

Date: 20-November-2023

Download page: https://github.com/piconepaolo/PiconeRusso

Copyright: Copyright © 2023, Picone Paolo and Russo Mario – All rights

reserved

Contents

Table of Contents				
List of Tables				
			1	Intr
	1.1	Purpose		
		1.1.1 Goals		
	1.2	Scope		
		1.2.1 World phenomena		
		1.2.2 Shared phenomena		
	1.3	Definitions, Acronyms, Abbreviations		
		1.3.1 Definitions		
		1.3.2 Acronyms		
		1.3.3 Abbreviations		
	1.4	Revision history		
	1.5	Reference documents		
	1.6	Document structure		
2	Ove	rall Description		
3	Spec	cific Requirements		
4	Fori	mal Analysis Using Alloy		
5	Effo	rt Spent		
R	feren	ces 1		

List of Figures

1	DICE DPIM metamodel	2
2	DICE DPIM metamodel in portrait form	(

List of Tables

1 Introduction

1.1 Purpose

The motivation behind the existence of the CodeKataBattle platform is to provide students with a dedicated platform for practicing their programming skills. The platform aims to create a competitive environment where teams of students can participate in programming tournaments and solve programming challenges.

By offering a platform specifically designed for programming practice, CodeKataBattle aims to provide students with a structured and engaging way to improve their coding abilities. The competitive nature of the platform adds an extra layer of motivation and excitement, encouraging students to push their limits and strive for excellence.

Overall, the motivations behind the existence of the CodeKataBattle platform are to create a dedicated space for programming practice, foster healthy competition among students, and provide a means for tracking and improving programming skills.

1.1.1 Goals

- G1 Educator can create a tournament
- G2 Educator can set up battles for a tournament
- G3 Student can compete in a tournament
- G4 Team of students can compete in a battle
- G5 Educator can evaluate the performance of a student in a battle
- G6 CKB notify the student about upcoming tournaments
- G7 CKB notify the student about upcoming battles

1.2 Scope

The scope of CKB is to provide a platform for programming practice. The platform will allow students to participate in programming tournaments and solve programming challenges. The torunaments consist of a series of battles. In order to participate to a battle a student must be subscribed to the tournament in which the battle takes place. In each battle the students have to form teams by inviting other students to join. The platform will allow educators to create tournaments. For the single torunament, the educator is able to invite other educators to join the tounament as educator. The educator is able to create battles for the torunament by uploading the code kata composed by the description and software project. In addition, he should be able to upload a set of configuration for scoring. For each battle the educator is able to set restrictions such as the minimum and maximum number of team members, the registration deadline and the submission deadline. The educator is also able to set a time limit for the battle. CKB will assign the scoring for each team of the battle based on some automated tests regarding the functional aspects, timeliness, quality of the code and the set of configuration for scoring provided by the educator for the battle. In addition to this automated scoring the educator will also be able to assign a manual scoring for each team of the battle. In order to submit the solution for a battle, CKB provides a GitHub repository. The teams must fork the repository and work on their solution in the forked repository. For each push to the remote repository CKB will be informed through an API call made with GitHub Actions which teams must set up.

1.2.1 World phenomena

- WP1 Student wants to compete in a tournament
- WP2 Educator wants to create a tournament
- WP3 Educator wants to manually evaluate the performance of a student in a battle
- WP4 Educator wants to set up a battle for a tournament

1.2.2 Shared phenomena

Phenomena controlled by the world and observed by the machine:

- SP1 Student push the solution of the battle to the forked repository
- SP2 Educator sets deadlines for tournaments and battles
- SP3 Educator sets the configuration for scoring
- SP4 Educator uploads the code kata for a battle to CKB
- SP5 Educator sets the restrictions for a battle

Phenomena controlled by the machine and observed by the world:

- SP6 CKB notifies the student about upcoming tournaments and battles
- SP7 CKB notifies about the students about the results of the battle and the tournament
- SP8 CKB shows information about the scoring of the battle and the tournament
- SP9 CKB provides a GitHub repository for each battle

1.3 Definitions, Acronyms, Abbreviations

- 1.3.1 Definitions
- 1.3.2 Acronyms
- 1.3.3 Abbreviations
- 1.4 Revision history
- 1.5 Reference documents
- 1.6 Document structure

2 Overall Description

Here you can see how to include an image in your document.

Here is the command to refer to another element (section, figure, table, ...) in the document: As discussed in Section 1.6 and as shown in Figure 1, Here is how to introduce a bibliographic citation [1]. Bibliographic references should be included in a .bib file.

Table generation is a bit complicated in Latex. You will soon become proficient, but to start you can rely on tools or external services. See for instance this https://www.tablesgenerator.com.

Figure 1: DICE DPIM metamodel

Figure 2: DICE DPIM metamodel in portrait form.

3 Specific Requirements

Organize this section according to the rules defined in the project description.

4 Formal Analysis Using Alloy

Organize this section according to the rules defined in the project description.

5 Effort Spent

Provide here information about how much effort each group member spent in working at this document. We would appreciate details here.

References

[1] S. Bernardi, J. Merseguer, and D. C. Petriu. A dependability profile within MARTE. *Software and Systems Modeling*, 10(3):313–336, 2011.