Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Практикум на ЭВМ: 7 семестр.

Отчёт № 2.

Анализ улучшений программы на CUDA, реализующей свертку изображения

Работу выполнил

Федоров В. В.

Постановка задачи и формат данных.

Задача: Реализовать улучшения программы с использованием CUDA, осуществляющей свертку изображения с тремя заранее выбранными ядрами (2 ядра 3х3 и 1 ядро 5х5), протестировать программу в двух режимах — на большом изображении размером минимум 2000х2000 и на множестве малых изображений размером порядка 300х300.

Математическое описание

В общем виде свертка является операцией над произвольной матрицей A размеров $N \times M$ и другой матрицей K размера $2p+1\times 2q+1$, называемой ядром свертки. Выходом этой операции является матрица B, вычисляемая по следующей формуле:

$$B[x][y] = \sum_{i=-p}^{p} \sum_{j=-q}^{q} A[x+i][y+j] \times K[i][j]$$

Для простоты элементы ядра нумеруем, начиная с (-p, -q). Для того, чтобы не выходить за границу входного массива, размер выходного массива получается равным $N-2p\times M-2q$. В случае изображения оно представляется в виде нескольких матриц, каждая из которых сворачивается по отдельности. Для тестирования программы были выбраны следующие 3 ядра:

ра:
Увеличение резкости (Sharpen):
$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$
 Обнаружение границ (Edge detection):
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$
 Гауссово размытие (Gauss blur):
$$\frac{1}{256}\begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

Примеры работы свертки с данными ядрами:

Описание программы

Программа состоит из следующих элементов:

- _global__ void conv(Pixel *src, Pixel *tgt, double *ker, int ker_pad, int width, int height); функция, выполняемая CUDA-ядрами. Осуществляет свертку для одного пикселя выходного изображения.
- class CudaProcessor; класс, хранящий в себе выделенные в оперативной памяти GPU массивы для входного и выходного изображения и для ядра, а также некоторые числовые параметры вроде размеров изображений и замеров по времени. Он имеет следующие методы:

- O CudaProcessor(int width, int height, double* convker, int _ker_dim); выделяет необходимую память на GPU.
- o void ProcessImage(Image& input, Image& output); обрабатывает входное изображение и сохраняет результат в выходное.
- o ~CudaProcessor(); освобождает выделенную память.
- int main(int argc, char *argv[]); основной цикл работы программы, открывает изображения, обрабатывает их и сохраняет, после чего выводит замер времени.

Программа написана с использованием CMake и библиотеки STB для открытия и сохранения изображений. После сборки из папки bin необходимо запустить программу при помощи команды ./main <sharpen/edge/gauss5> <large/small>

В случае аргумента large программа обрабатывает 1 изображение размером 5000x5000, в случае small -1000 изображений размером 300x300.

Были реализованы следующие улучшения:

- 1. Использование отдельных функций для каждого фильтра вместо единой функции для всех.
- 2. Переиспользование динамической памяти, выделяемой библиотекой STB для открытия изображений. Вместо того, чтобы для каждого изображения выделять память заново и затем освобождать ее, программа сохраняет выделенную память и затем использует ее для новых изображений.
- 3. Для реализации параллельной обработки на девайсе копирования данных между процессором и девайсом каждое изображение обрабатывается в своем CUDA-потоке.
- 4. Была добавлена возможность загружать и обрабатывать N изображений за раз. Тестирование было проведено при N=100.
- 5. После открытия изображения оно разделяется на 4 массива, в каждом из которых хранится отдельный канал, после чего каждый канал обрабатывается отдельно в своем CUDA-потоке.
- 6. Функции были переписаны с использованием разделяемой памяти: каждой нити соответствует пиксель из входного изображения и ячейка в разделяемой памяти, в которую она его копирует. После копирований нити синхронизируются и считают свертку на основе данных из разделяемой памяти.

Тестирование и результаты

Программа запускалась на системе Polus. Тестирование показало следующие результаты по времени:

Wall-time работы программы, с

Ядро	Режи	Оригина	1	2	3	4	5	6
сверт	M	Л						
КИ	рабо							
	ТЫ							
Sharp	Large	33.7812	31.1006	30.8739	31.6444	31.5513	32.0057	30.8541
en		29	89	11	89	75	61	36
	Small	191.530	180.008	175.198	178.124	174.862	175.701	178.038
		448	894	975	867	174	360	064
Edge	Large	32.1266	31.0404	30.8031	31.9031	31.5489	32.9051	30.7066
		72	47	97	59	28	56	96
	Small	185.065	181.572	178.714	176.291	166.736	167.609	165.744
		419	233	117	504	041	524	487

Gauss 5	Large	31.6849 50	30.9155 66	30.8192 51	31.1087 66	31.1924 64	31.7147 50	30.5154 74
	Small	177.057 809	168.251 438	167.364 230	167.373 238	166.464 592	167.805 969	166.419 692

Число обработанных пикселей / с

Ядро свертки	Режим работы	Оригинал	1	2	3	4	5	6
Sharpen	Large	740056	803841	809745	743064	768017	781109	784827
	Small	469899	499975	513702	505264	514691	512233	505510
Edge	Large	778170	805401	811604	759805	768074	759759	759724
	Small	486315	495671	503598	510518	539775	536962	543004
Gauss5	Large	789018	808654	811181	830323	828021	813941	847013
	Small	508309	534914	537749	537720	540656	536334	540801

Основные выводы.

В силу того, что большую часть времени программа тратит на открытие изображений с диска, ускорение работы GPU не дало значительных результатов. Использование индивидуальных ядровых функций для каждой свертки однозначно улучшило программу, действие остальных улучшений оказалось сомнительным.