Impact parameter b-tagging in DELPHES

CP3 - Center for Cosmology, Particle Physics and Phenomenology UCL, Louvain-la-Neuve Belgium

11 avril 2014

General Idea

- b-jets have charged constituents with large impact parameter
- ▶ for each track inside jet, compute $sig(IP) = \frac{IP}{\sigma(IP)}$ in 2D (simpler thanks to analytical formulas)
- count tracks with sig(IP) > cut
- ▶ if find more than 2 (high purity) or 3 (high efficiency) such tracks
 → jet is b-tagged

inspired from CMS NOTE 2006 019 and BTV-11-002

Impact parameter smearing module

- ▶ In RECO, impact parameter IP is derived from track fitting
- ▶ sigma(IP) is correlated with error on p_T , R_{curv} ... (encoded in track covariance matrix)
- ► Here we assume error can be simply parametrized as $f(p_T, \eta)$.

Module:

- takes as input tracks
- parameters needed for computation (R_{curv}, (X_c, Y_c)) already saved as members of Candidates in the ParticlePropagator module.
- ▶ specify (absolute) impact parameter resolution $f(p_T, \eta)$ in mm (here we take res = 10 μm if p_T <5 GeV and res = 5 μm if p_T >5 GeV)
- computes coordinates of point of closest approach (X_d, Y_d) to vertex (0,0) and smears (X_d, Y_d) independently $X_d(sm) = X_d + Gaus(0, res)$ (idem for $Y_d(sm)$).
- derive IP(sm) from $(X_d(sm), Y_d(sm))$
- compute independently $\sigma(IP) = |Gaus(0, res)|$.
- save these quantities as track members.

IP BTagging module

- takes as input track and jet collections (alternatively could take simply jet collection using chaged jet constituents as tracks)
- parameters :
 - $\triangleright p_T^{min} = 1 \text{ GeV of the tracks}$
 - ▶ ΔR cone to associate tracks with jet (typically $\Delta R = 0.3$)
 - $ightharpoonup IP_{max} = 2 \text{ mm}$
 - ▶ sig(IP)_{min} (algo working point)
 - N_{tracks}, defines algorithm. Minimum number of tracks that pass sig(IP) cut (= 2 for HP, = 3 for HE)
- compute $sig(IP) = sign(\mathbf{p_T^{jet}} \cdot \mathbf{IP}) IP$.
- ▶ flag BTAG set to true if at least N_{tracks} with sig(IP) > sig(IP)_{min} are found.

IP BTagging module

```
***********
# Track Counting b-tagging
module TrackCountingBTagging TrackCountingBTagging {
 set TrackInputArray Calorimeter/eflowTracks
 set JetInputArray JetEnergyScale/jets
 set BitNumber 0
 # maximum distance between jet and track
 set DeltaR 0.3
 # minimum pt of tracks
 set TrackPTMin 1.0
 # minimum transverse impact parameter (in mm)
 set TrackTPMax 2.0
 # minimum ip significance for the track to be counted
 set SigMin 6.5
 # minimum number of tracks (high efficiency n=2, high purity n=3)
 set Ntracks 3
```

IP Significance (HE)

IP Significance (HP)

Performance: High Efficiency

- c mistag rate agrees ok
- too pessimistic light rejection for low btagging efficiency

At 80% b-tagging efficiency (Loose working point):

$$sig(IP)_{min} = 4.5$$

Performance: High Purity

- c mistag rate agrees ok
- too pessimistic light rejection for low btagging efficiency

At 55% b-tagging efficiency (Medium working point):

$$sig(IP)_{min} = 6.5$$

Performance : b-tag efficiency vs. p_T

Medium working point

Performance : c-tag efficiency vs. p_T

Medium working point

Performance : light-tag efficiency vs. p_T

Medium working point

Performance : gluon-tag efficiency vs. p_T

Medium working point

Performance vs impact parameter resolution (1)

$$p_T < 5$$
GeV $\sigma(IP) = 20 \ \mu m$

$$p_T > 5 GeV \sigma(IP) = 10 \mu m$$

Performance vs impact parameter resolution (2)

$$p_T < 5$$
GeV $\sigma(IP) = 10 \mu m$

$$p_T > 5 GeV \sigma(IP) = 5 \mu m$$

Performance vs impact parameter resolution (3)

$$p_T < 5$$
GeV $\sigma(IP) = 5 \mu m$

$$p_T > 5 GeV \sigma(IP) = 1 \mu m$$

Conclusions

- decent agreement, but needs to be tuned
- present module can be modified by user to incorporate additionnal features (3D IP, flight distance ...)