

TAPERED DELAY LINE

BACKGROUND OF THE INVENTION

The present invention relates to thin film delay lines and, in particular, to resistive, thin film circuit devices defined by symmetrical patterns containing conductive pathways of non-uniform width and spacing between adjacent conductors.

Varieties of thin film devices have been constructed for high frequency circuits. Most have been directed to microwave applications. Some devices, such as discrete delay line assemblies, have been constructed for higher frequency applications.

Delay lines are frequently used to adjust timing inconsistencies at complex circuitry mounted to complex printed circuit boards that operate at ever increasing higher frequencies. Desirably therefore any delay line should accommodate these higher frequency applications by exhibiting a constant impedance over the operating delay period. Secondarily, it is desirable that the devices can be produced at reduced sizes. Examples of some discrete, multi-layer, delay line devices constructed on ceramic substrates are shown at US patents 5,030,931; 5,365,203; and 5,499,442.

The subject invention provides patterned thin film devices wherein the inductive and capacitive characteristics of the conductors that define the device are tailored by varying the line width and line spacing between adjacent conductors over the device. Several delay line circuits having a nominal 50 ohm impedance characteristic are disclosed wherein non-uniformities are formed in regions of the conductors that are not bordered on both sides by adjoining conductors, that is at the input or outermost and output or innermost conductors of a spiral patterned delay line. A reduced inductance of narrowed conductors is particularly offset with narrowed line spacing to reduce the

16250001
16250002
16250003
16250004
16250005
16250006
16250007
16250008
16250009
16250010
16250011
16250012
16250013
16250014
16250015
16250016
16250017
16250018
16250019
16250020
16250021
16250022
16250023
16250024
16250025
16250026
16250027
16250028
16250029
16250030
16250031
16250032
16250033
16250034
16250035
16250036
16250037
16250038
16250039
16250040
16250041
16250042
16250043
16250044
16250045
16250046
16250047
16250048
16250049
16250050
16250051
16250052
16250053
16250054
16250055
16250056
16250057
16250058
16250059
16250060
16250061
16250062
16250063
16250064
16250065
16250066
16250067
16250068
16250069
16250070
16250071
16250072
16250073
16250074
16250075
16250076
16250077
16250078
16250079
16250080
16250081
16250082
16250083
16250084
16250085
16250086
16250087
16250088
16250089
16250090
16250091
16250092
16250093
16250094
16250095
16250096
16250097
16250098
16250099
162500100
162500101
162500102
162500103
162500104
162500105
162500106
162500107
162500108
162500109
162500110
162500111
162500112
162500113
162500114
162500115
162500116
162500117
162500118
162500119
162500120
162500121
162500122
162500123
162500124
162500125
162500126
162500127
162500128
162500129
162500130
162500131
162500132
162500133
162500134
162500135
162500136
162500137
162500138
162500139
162500140
162500141
162500142
162500143
162500144
162500145
162500146
162500147
162500148
162500149
162500150
162500151
162500152
162500153
162500154
162500155
162500156
162500157
162500158
162500159
162500160
162500161
162500162
162500163
162500164
162500165
162500166
162500167
162500168
162500169
162500170
162500171
162500172
162500173
162500174
162500175
162500176
162500177
162500178
162500179
162500180
162500181
162500182
162500183
162500184
162500185
162500186
162500187
162500188
162500189
162500190
162500191
162500192
162500193
162500194
162500195
162500196
162500197
162500198
162500199
162500200
162500201
162500202
162500203
162500204
162500205
162500206
162500207
162500208
162500209
162500210
162500211
162500212
162500213
162500214
162500215
162500216
162500217
162500218
162500219
162500220
162500221
162500222
162500223
162500224
162500225
162500226
162500227
162500228
162500229
162500230
162500231
162500232
162500233
162500234
162500235
162500236
162500237
162500238
162500239
162500240
162500241
162500242
162500243
162500244
162500245
162500246
162500247
162500248
162500249
162500250
162500251
162500252
162500253
162500254
162500255
162500256
162500257
162500258
162500259
162500260
162500261
162500262
162500263
162500264
162500265
162500266
162500267
162500268
162500269
162500270
162500271
162500272
162500273
162500274
162500275
162500276
162500277
162500278
162500279
162500280
162500281
162500282
162500283
162500284
162500285
162500286
162500287
162500288
162500289
162500290
162500291
162500292
162500293
162500294
162500295
162500296
162500297
162500298
162500299
162500300
162500301
162500302
162500303
162500304
162500305
162500306
162500307
162500308
162500309
162500310
162500311
162500312
162500313
162500314
162500315
162500316
162500317
162500318
162500319
162500320
162500321
162500322
162500323
162500324
162500325
162500326
162500327
162500328
162500329
162500330
162500331
162500332
162500333
162500334
162500335
162500336
162500337
162500338
162500339
162500340
162500341
162500342
162500343
162500344
162500345
162500346
162500347
162500348
162500349
162500350
162500351
162500352
162500353
162500354
162500355
162500356
162500357
162500358
162500359
162500360
162500361
162500362
162500363
162500364
162500365
162500366
162500367
162500368
162500369
162500370
162500371
162500372
162500373
162500374
162500375
162500376
162500377
162500378
162500379
162500380
162500381
162500382
162500383
162500384
162500385
162500386
162500387
162500388
162500389
162500390
162500391
162500392
162500393
162500394
162500395
162500396
162500397
162500398
162500399
162500400
162500401
162500402
162500403
162500404
162500405
162500406
162500407
162500408
162500409
162500410
162500411
162500412
162500413
162500414
162500415
162500416
162500417
162500418
162500419
162500420
162500421
162500422
162500423
162500424
162500425
162500426
162500427
162500428
162500429
162500430
162500431
162500432
162500433
162500434
162500435
162500436
162500437
162500438
162500439
162500440
162500441
162500442
162500443
162500444
162500445
162500446
162500447
162500448
162500449
162500450
162500451
162500452
162500453
162500454
162500455
162500456
162500457
162500458
162500459
162500460
162500461
162500462
162500463
162500464
162500465
162500466
162500467
162500468
162500469
162500470
162500471
162500472
162500473
162500474
162500475
162500476
162500477
162500478
162500479
162500480
162500481
162500482
162500483
162500484
162500485
162500486
162500487
162500488
162500489
162500490
162500491
162500492
162500493
162500494
162500495
162500496
162500497
162500498
162500499
162500500
162500501
162500502
162500503
162500504
162500505
162500506
162500507
162500508
162500509
162500510
162500511
162500512
162500513
162500514
162500515
162500516
162500517
162500518
162500519
162500520
162500521
162500522
162500523
162500524
162500525
162500526
162500527
162500528
162500529
162500530
162500531
162500532
162500533
162500534
162500535
162500536
162500537
162500538
162500539
162500540
162500541
162500542
162500543
162500544
162500545
162500546
162500547
162500548
162500549
162500550
162500551
162500552
162500553
162500554
162500555
162500556
162500557
162500558
162500559
162500560
162500561
162500562
162500563
162500564
162500565
162500566
162500567
162500568
162500569
162500570
162500571
162500572
162500573
162500574
162500575
162500576
162500577
162500578
162500579
162500580
162500581
162500582
162500583
162500584
162500585
162500586
162500587
162500588
162500589
162500590
162500591
162500592
162500593
162500594
162500595
162500596
162500597
162500598
162500599
162500600
162500601
162500602
162500603
162500604
162500605
162500606
162500607
162500608
162500609
162500610
162500611
162500612
162500613
162500614
162500615
162500616
162500617
162500618
162500619
162500620
162500621
162500622
162500623
162500624
162500625
162500626
162500627
162500628
162500629
162500630
162500631
162500632
162500633
162500634
162500635
162500636
162500637
162500638
162500639
162500640
162500641
162500642
162500643
162500644
162500645
162500646
162500647
162500648
162500649
162500650
162500651
162500652
162500653
162500654
162500655
162500656
162500657
162500658
162500659
162500660
162500661
162500662
162500663
162500664
162500665
162500666
162500667
162500668
162500669
162500670
162500671
162500672
162500673
162500674
162500675
162500676
162500677
162500678
162500679
162500680
162500681
162500682
162500683
162500684
162500685
162500686
162500687
162500688
162500689
162500690
162500691
162500692
162500693
162500694
162500695
162500696
162500697
162500698
162500699
162500700
162500701
162500702
162500703
162500704
162500705
162500706
162500707
162500708
162500709
162500710
162500711
162500712
162500713
162500714
162500715
162500716
162500717
162500718
162500719
162500720
162500721
162500722
162500723
162500724
162500725
162500726
162500727
162500728
162500729
162500730
162500731
162500732
162500733
162500734
162500735
162500736
162500737
162500738
162500739
162500740
162500741
162500742
162500743
162500744
162500745
162500746
162500747
162500748
162500749
162500750
162500751
162500752
162500753
162500754
162500755
162500756
162500757
162500758
162500759
162500760
162500761
162500762
162500763
162500764
162500765
162500766
162500767
162500768
162500769
162500770
162500771
162500772
162500773
162500774
162500775
162500776
162500777
162500778
162500779
162500780
162500781
162500782
162500783
162500784
162500785
162500786
162500787
162500788
162500789
162500790
162500791
162500792
162500793
162500794
162500795
162500796
162500797
162500798
162500799
162500800
162500801
162500802
162500803
162500804
162500805
162500806
162500807
162500808
162500809
162500810
162500811
162500812
162500813
162500814
162500815
162500816
162500817
162500818
162500819
162500820
162500821
162500822
162500823
162500824
162500825
162500826
162500827
162500828
162500829
162500830
162500831
162500832
162500833
162500834
162500835
162500836
162500837
162500838
162500839
162500840
162500841
162500842
162500843
162500844
162500845
162500846
162500847
162500848
162500849
162500850
162500851
162500852
162500853
162500854
162500855
162500856
162500857
162500858
162500859
162500860
162500861
162500862
162500863
162500864
162500865
162500866
162500867
162500868
162500869
162500870
162500871
162500872
162500873
162500874
162500875
162500876
162500877
162500878
162500879
162500880
162500881
162500882
162500883
162500884
162500885
162500886
162500887
162500888
162500889
162500890
162500891
162500892
162500893
162500894
162500895
162500896
162500897
162500898
162500899
162500900
162500901
162500902
162500903
162500904
162500905
162500906
162500907
162500908
162500909
162500910
162500911
162500912
162500913
162500914
162500915
162500916
162500917
162500918
162500919
162500920
162500921
162500922
162500923
162500924
162500925
162500926
162500927
162500928
162500929
162500930
162500931
162500932
162500933
162500934
162500935
162500936
162500937
162500938
162500939
162500940
162500941
162500942
162500943
162500944
162500945
162500946
162500947
162500948
162500949
162500950
162500951
162500952
162500953
162500954
162500955
162500956
162500957
162500958
162500959
162500960
162500961
162500962
162500963
162500964
162500965
162500966
162500967
162500968
162500969
162500970
162500971
162500972
162500973
162500974
162500975
162500976
162500977
162500978
162500979
162500980
162500981
162500982
162500983
162500984
162500985
162500986
162500987
162500988
162500989
162500990
162500991
162500992
162

capacitance and whereby the operating Z_0 of the delay lines is improved. Several alternative coil or spiral arrangements that exhibit different delays are disclosed that are constructed on rigid and flexible dielectric substrates. Necessary terminations are connected with solder filled vias and/or edge connections to the rigid or flexible substrate.

SUMMARY OF THE INVENTION

It is a primary object of the present invention to provide thin film devices having conductors of non-uniform line width and spacing between adjacent conductors to control the inductive and capacitive characteristics of the device.

It is a further object of the invention to provide thin film devices constructed from symmetrical conductor patterns, such as zigzag, serpentine, spiral or coil shapes, wherein regions of the conductors are formed with non-uniform line width and spacing between adjacent conductors to control the inductive-capacitive characteristics of the device.

It is a further object of the invention to provide alternative delay line circuits constructed from one or more coil shaped paths wherein the innermost and/or outermost conductors exhibit reduced or wider line widths and/or narrowed line spacing from other adjoining conductors.

It is a further object of the invention to provide a device with conductors of tailored shape and a ground plane of tailored thickness.

Various of the foregoing objects, advantages and distinctions of the invention can be found in alternative thin film delay line devices and circuits constructed on rigid and flexible/foldable ceramic substrates. Several coil shaped delay lines having a nominal 50 ohm impedance characteristic are defined by conductors of varying the line width and

line spacing between adjacent conductors over the device. The conductor non-uniformities are formed in regions of the conductors that are not bordered on both sides by adjoining conductors.

Still other objects, advantages and distinctions of the invention will become more apparent from the following description with respect to the appended drawings. To the extent alternative constructions, improvements or modifications have been considered they are described as appropriate. The description should not be literally construed in limitation of the invention. Rather, the scope of the invention should be broadly interpreted within the scope of the further appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Like reference numerals refer to like structure at the various drawings and which are as follows:

Figure 1 is a diagram of a typical “prior art” thin film delay line.

Figure 2 is a diagram of a 0.9nsec tapered delay line.

Figure 3 is a diagram of a 1.8 nsec tapered delay line.

Figure 4 is a diagram of a 4.25 nsec folding, tapered delay line.

Figure 5 shows an exemplary signal waveform for a delay line device of Figure 4 in solid line relative to a similar device (shown in dashed line) having a conventional conductor pattern of geometrically identical shape but wherein all conductive paths exhibit the same width and inter-conductor spacing.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to Figure 1, a typical prior art delay line device 2 is shown. The device 2 is defined by a patterned, conductive signal path 4 having a number of zig-zag or

serpentine convolutions 6 that are symmetric with respect to each other. Each convolution 6 includes a linear portion 8 that extends parallel to an adjoining neighbor and is constructed using conventional thin film processes as distinguished from integrated circuit processes. The width of each convolution 6 is the same as the others and the spacing between each linear portion 8 is the same.

The electrically conductive signal path 4 is defined by a thin film that is deposited and patterned using conventional plating, sputtering, cvp deposition or the like and compatible photolithography and etching techniques to derive the conductive path 4. It is to be appreciated the path 4 can take myriad forms wherein the conductors wind back and forth upon each other. Each convolution 6 can also include several sub-convoluted paths and the pattern of which are repeated.

The patterned signal path 4 is constructed on a top surface of a dielectric substrate 10, for example, a resin board, ceramic oxide, zirconia-tin-titanate or other material having a desirable dielectric characteristic. A suitable ground plane 12 is deposited on the bottom surface of the substrate 10.

The time delay T_d of the device 2 is a function of the self and mutual inductance of the conductive paths 8 and the parallel plate and fringe capacitance between the several adjoining conductive paths 8 and ground plane 12, that is, $T_d = \sqrt{L \times C}$. At operating frequencies in excess of 200 MHz, the impedance (Z_o) characteristic of the device varies over time, since the inductance contributed by the outermost end conductors 14 and 16 is relatively less than the inner conductors. That is, there are fewer adjoining conductors to couple with at the input and output ends and therefore less mutual inductance. Signal artifacts thus appear when measuring the impedance

characteristic of the device. At the relatively high operating frequencies at which delay lines are now commonly implemented, the spurious signal artifacts can affect the performance of the principal circuitry with which the delay line is coupled.

Because it is desirable to maintain a constant impedance Z_o during the entire period of the time delay and appreciating that $Z_o = \sqrt{L/C}$, attempts have been made to reduce the spacing between relatively unbounded or uncoupled conductors of circuits having uniform conductor widths. Other attempts have been directed to reduce the inductance and line width of uncoupled conductors and simultaneously reduce the capacitance of the uncoupled conductors to offset the reduced inductance to maintain Z_o .

In the latter regard, the outermost and innermost conductors of the coil shaped delay line circuits 20, 30 and 40 of Figures 2-4 have been modified at the input and output ends. That is, the line width of the outermost, input end and innermost, output end conductors have been reduced and the spacing relative to the nearest adjoining conductor has been reduced. Device performance has thereby been improved (i.e. a relatively smoother impedance Z_o characteristic is created) as exemplified by the comparative waveforms shown at Figure 5 for the device 40.

Figure 5 particularly exemplifies the impedance characteristic exhibited by a test signal impressed on two nominal 2.0 nanosecond delay lines. The signal shown in dashed line is that of a delay line constructed in conventional fashion with conductors of uniform line width and line spacing. The solid line signal is exhibited by a delay line of identical pattern but constructed with the improved (i.e. tailored line shape/line spacing) conductors of the devices 20, 30 and 40 of Figures 2-4. Figure 5 demonstrates the

relatively smoother impedance characteristic and reduced peak-to-peak swing of Z_0 that is obtained by tailoring the conductors.

Each of the improved devices of Figures 2-4 provides non-uniform line width and line spacing at the outermost (input end) and innermost (output end) conductor coils and coupling conductors. With attention to Figure 2, the device 20 provides a square coil shaped conductive path 22 wherein the interior coils 27, 27' and 27" are each sized at a nominal 0.240 inch line width and a 0.160 inch spacing between the interior coils 27, 27' and 27". Relatively thinner outermost and innermost conductors 24 and 25 are formed with a nominal 0.060-inch line width and a 0.080-inch spacing between the coils 24-27 and 25-27". The reduced capacitance exhibited by the conductors 24, 25 and 26 offsets the comparatively low inductance of the uncoupled conductors 24 and 25 such that the device 20 exhibits a substantially uniform 50-ohm impedance to signals coupled to the device 20. The line width and/or line spacing of the device conductors wherever they are uncoupled from other parallel conductors. It may also be desirable to tailor the thickness of the ground plane 12 in the regions of a device's coupled and uncoupled conductors to control the capacitance.

Figure 3 is depicts a coiled delay line device 30 having a nominal 1.8 nanosecond delay. Where the path 22 is generally configured in a square shape, the conductive path 32 exhibits a rectangular shape. The input coil 34, output coil 35 and coupling conductor 36 each exhibit a nominal 0.060 inch line width and a 0.070 inch spacing between the coils 34-37 and 35-37". The coil conductors 37, 37' and 37" are formed with a nominal 0.230-inch line width and a 0.100-inch spacing between the coils 37, 37' and 37".

10005704.4 0201

Figure 4 depicts another coiled delay line device 40 having a nominal 4.25 nanosecond delay. The device 40 is constructed in a folding configuration on a flexible substrate 41. A number of coiled delay line segments 42, each similar to the device 20, are distributed about the surface of the substrate. A longitudinal fold line 43 extends between the segments 42 and terminations 44 are provided at the edges of the substrate 41.

An input coil 45, output coil 46 and coupling conductors 49 exhibit a nominal 0.060-inch line width and a 0.080 inch spacing between the coils 45-47 and 46-47". The coil conductors 47, 47' and 47" are formed at a nominal 0.150-inch line width and a 0.150-inch spacing between the coils 47, 47' and 47". Plated through vias (not shown) couple terminations 48 to each other in an appropriate fashion.

While the invention has been described with respect to a number of presently preferred delay line devices, the invention can be adapted to a variety of other transmission line circuit components wherein it is desired to obtain a substantially constant operating impedance at frequencies greater than 100 MHz. The geometric configuration of the device's conductor pathway can take any desired form, thus the disclosed coil-shaped delay lines should not be held as limiting. It is also to be appreciated the shaping of the line width and line spacing can be selectively relegated to selected regions of the pathway as opposed all uncoupled regions. It is to be appreciated still other circuit and device constructions may be suggested to those skilled in the art. The scope of the invention should therefore be construed broadly within the spirit and scope of the following claims.

What is claimed is: