# Funkcijos, apibrėžtos reikšmių lentele, interpoliacinė funkcija



#### Dalimis daugianarė interpoliacinė funkcija

- Tolydi visame intervale.
- Nėra diferencijuojama interpoliavimo mazguose.

#### Splainų panaudojimo idėja:

#### Interpoliavimas splainais

- Nedidelio laipsnio daugianariai jungia duotuosius taškus.
- Funkcija glodi visame intervale (t.y. ir vidiniuose interpoliavimo mazguose).
- Nedidelio laipsnio daugianariai neleidžia atsirasti osciliacijoms.

# Splainai

spline (angl.)– lazdelė Standi lazdelė



Nulinis kreivis galuose

# Splainų taikymas



Laivo paviršiaus valdymo tinklas

Realaus laivo korpuso paviršiaus aproksimacija splainais (FastShip V, firmos Proteus paketas 1997)

## Splainai



- N intervalų ir N+1 taškų.
- $\circ$   $S_i(x)$  neaukštos eilės daugianaris *i*-ajame intervale.

# Splaino apibrėžimas

• Funkcija y = f(x) apibrėžta reikšmių lentele  $(x_i, y_i), i = 0, 1, \dots N$ :

$$x_0 \quad x_1 \quad \cdots \quad x_N$$
 $y_0 \quad y_1 \quad \cdots \quad y_N$ 

Siekviename daliniame intervale  $[x_i, x_{i+1}]$  funkcija y = f(x) aproksimuojama m-ojo laipsnio daugianarių

$$S_i^m(x) = a_{i0}x^m + a_{i1}x^{m-1} + \dots + a_{im-1}x + a_{im}.$$

- Funkcija ir visos jos išvestinės iki (m − 1) eilės yra tolydžios kiekviename intervalo [x<sub>0</sub>, x<sub>N</sub>] taške.
- Tokia interpoliacinė funkcija vadinama m-tosios eilės splainu

#### Dažniausiai naudojami splainai

- Tiesinis splainas;
- Kvadratinis splainas;
- Kubinis splainas.



# Tiesinis splainas: $S_i^1(x) = a_i x + b_i$

```
Duoti taškai: (x_0, y_0), \ldots, (x_N, y_N).
Intervalai: I_0 = [x_0, x_1], \ldots, I_{N-1} = [x_{N-1}, x_N].
```



## Tiesinis splainas

- Du gretimi taškai jungiami atkarpa.
- Tolydumo reikalavimas yra ekvivalentus splaino tolydumui  $(m=1 \Rightarrow m-1=0)$ :

$$S_{i-1}^1(x_i) = S_i^1(x_i) = y_i, \quad i = 1, \dots N-1.$$

 Jungiančios taškus atkarpos gaunamos iš interpoliavimo sąlygos:

$$a_i x_i + b_i = y_i, i = 0, \dots, N-1;$$
  
 $a_i x_{i+1} + b_i = y_{i+1}.$ 

2N nežinomųjų  $a_i, b_i$ ; 2N lygčių.

# Tiesinis splainas

Duoti taškai: 
$$(x_0, y_0), \dots, (x_N, y_N).$$
  
Intervalai:  $I_0 = [x_0, x_1], \dots, I_{N-1} = [x_{N-1}, x_N].$ 

$$S^{1}(x) = \begin{cases} f(x_{0}) + f(x_{0}, x_{1})(x - x_{0}), & x_{0} \leq x \leq x_{1}; \\ f(x_{1}) + f(x_{1}, x_{2})(x - x_{1}), & x_{1} \leq x \leq x_{2}; \\ \vdots & \vdots & \vdots \\ f(x_{N-1}) + f(x_{N-1}, x_{N})(x - x_{N-1}), & x_{N-1} \leq x \leq x_{N}. \end{cases}$$

Sutampa su dalimis tiesine interpoliacine funkcija.

#### Pavyzdys:





$$S_0 = 4 - 3x$$
  $0 \le x \le 2;$   
 $S_1 = -2 + 7(x - 2)$   $2 \le x \le 5;$   
 $S_2 = 19 + 39(x - 5)$   $5 \le x \le 6.$ 

Tiesinis splainas sutampa su dalimis tiesine interpoliacine funkcija! Tiesinio splaino trūkumas - nėra glodumo interpoliavimo mazguose (pirmoji išvestinė netolydi).

Tolydžiosios išvestinės gaunamos taikant aukštesnės eilės splainus.

Vidiniuose mazguose splainas yra tolydi funkcija :

$$S_{i-1}(x_i) = S_i(x_i), \quad i = 1, \dots, N-1.$$

Vidiniuose mazguose išvestinė tolydi:

$$S_{i-1}^{(k)}(x_i) = S_i^{(k)}(x_i), \quad i = 1, \dots, N-1, \quad k = 1, \dots, m-1.$$

## Kvadratinis splainas

Kvadratinis splainas - tolydi pirma išvestinė. Bet antra išvestinė gali būti netolydi. Kaip gauti formules

$$S_i^2(x) = a_i x^2 + b_i x + c_i?$$

N+1 taškas  $(i=0,\ldots,N)$ ;

N intervalų  $\Rightarrow 3N$  nežinomųjų koeficientų

$$(a_i, b_i, c_i)$$
  $i = 0, ..., N-1.$ 



Reikia 3N lygčių.

# Kvadratinis splainas: $S_i^2(x) = a_i x^2 + b_i x + c_i$

uoti taškai:  $(x_0, y_0), \ldots, (x_N, y_N).$ Intervalai:  $I_0 = [x_0, x_1], \ldots, I_{N-1} = [x_{N-1}, x_N].$ Duoti taškai: S2(2) S3(X)  $f(x_4)$  $S_1(x)$  $f(x_1)$  $f(x_2)$  $f(x_3)$  $f(x_0)$ I

3N nežinomujų koeficientų.

#### Kvadratinis splainas

Interpoliavimo ir tolydumo sąlygos 2N lygčių:

$$S_i(x_i) = y_i,$$
  $i = 0, 1, ..., N-1$   
 $S_i(x_{i+1}) = y_{i+1},$   $i = 0, 1, ..., N-1.$ 

N – 1 lygtis:
N – 1 lygtis:

$$S'_{i-1}(x_i) = S'_i(x_i), \quad i = 1, ..., N-1.$$

Papildoma sąlyga (duota išvestinė viename iš kraštinių taškų - e<sub>0</sub> = 0 natūralioji kraštinė sąlyga)
 1 lygtis

$$2N + (N-1) + 1 = 3N$$
  $\Rightarrow$  3N lygčjų su 3N nežinomųjų.

## Kvadratiniai splainai

Interpoliavimo ir tolydumo sąlygos 2N lygčių:

$$a_i x_i^2 + b_i x_i + c_i = y_i,$$
  $i = 0, 1, ..., N - 1$   
 $a_i x_{i+1}^2 + b_i x_{i+1} + c_i = y_{i+1},$   $i = 0, 1, ..., N - 1.$ 

lšvestinių tolydumo sąlygos N-1 lygtis:

$$2a_{i-1}x_i + b_{i-1} = 2a_ix_i + b_i$$
,  $i = 1, ..., N-1$ .

Papildoma sąlyga (duota išvestinė viename iš kraštinių taškų  $-e_0=0$  natūralioji kraštinė sąlyga)

$$2a_0x_0 + b_0 = e_0.$$

# Kvadratinis splainas

## Kvadratinis splainas - algoritmas

e<sub>0</sub> duotas, sprendžiame

$$\begin{pmatrix} x_0^2 & x_0 & 1 \\ x_1^2 & x_1 & 1 \\ 2x_0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ e_0 \end{pmatrix}$$

 $e_1 = 2a_1x_1 + b_1$  iš suderinamumo sąlygu:

$$S'_0(x_1) = S'_1(x_1) \Rightarrow 2a_0x_1 + b_0 = 2a_1x_1 + b_1 = e_1.$$

sprendžiame

$$\begin{pmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ 2x_1 & 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ e_1 \end{pmatrix}$$

## Kvadratinis splainas. Pavyzdys

Funkcijos  $f(x) = x^3 - 5x^2 + 3x + 4$  aproksimavimas kvadratinių splainų, nauduojant taškus (0;4), (2;-2), (5;19), (6;58).



# Kubinis splainas

$$S_i^3(x) = a_i x^3 + b_i x^2 + c_i x + d_i, \quad x_i \le x \le x_{i+1}.$$

Kaip ir kvadratiniam splainui gaunama 4N koeficientų 4N lygčių sistema.

- Vidiniuose mazguose tolydumas.
- Intervalo galai fiksuoti.
- Vidiniuose mazguose išvestinės tolydžios.
- Papildomos sąlygos antrosios eilės išvestinėms intervalo galuose.

# Kubinis splainas: $S_i^3(x) = a_i x^3 + b_i x^2 + c_i x + d_i$

Duoti taškai:  $(x_0, y_0), \ldots, (x_N, y_N).$ Intervalai:  $I_0 = [x_0, x_1], \ldots, I_{N-1} = [x_{N-1}, x_N].$ 



4N nežinomųjų koeficientų.

#### Kubinis splainas

Interpoliavimo ir tolydumo sąlygos 2N lygčių:

$$S_i(x_i) = y_i,$$
  $i = 0, 1, ..., N-1$   
 $S_i(x_{i+1}) = y_{i+1},$   $i = 0, 1, ..., N-1.$ 

Svestinių tolydumo sąlygos 2(N-1) lygtis:

$$S'_{i-1}(x_i) = S'_i(x_i),$$
  $i = 1, ..., N-1$   
 $S''_{i-1}(x_i) = S''_i(x_i),$   $i = 1, ..., N-1.$ 

Papildomos sąlygos (natūraliosios kraštinės sąlygos) 2 lygtys

$$S_0''(x_0) = 0, \quad S_{N-1}''(x_N) = 0.$$

# Kubiniai splainai: $S_i^3(x) = a_i x^3 + b_i x^2 + c_i x + d_i$

Duoti taškai: 
$$(x_0, y_0), \ldots, (x_N, y_N).$$
  
Intervalai:  $I_1 = [x_0, x_1], \ldots, I_N = [x_{N-1}, x_N].$ 



 $S_i(x)$  – gabalais kubinis daugianaris;  $S_i(x)$  - gabalais kvadratinis daugianaris;  $S_i''(x)$ ) - gabalais tiesinis daugianaris.

Suvedama į N lygčių sistemą su N nežinomųjų.

#### Kubiniai splainai

Pažymėkime 
$$g_i = S_i''(x_i), h_i = x_{i+1} - x_i, i = 1, \dots, N-1.$$
  $g_0 = S_0''(x_0) = 0, g_N = S_{N-1}''(x_N) = 0.$ 

Tiesinis splainas: 
$$S_{i}^{"}(x) = g_{i} + \frac{g_{i+1} - g_{i}}{h_{i}}(x - x_{i}).$$
 (1)

$$\int_{x_{i}}^{x} (1) : S_{i}'(x) - S_{i}'(x_{i}) = g_{i}(x - x_{i}) + \frac{g_{i+1} - g_{i}}{2h_{i}}(x - x_{i})^{2}$$

Pažymėkime 
$$e_i = S_i'(x_i) S_i'(x) = e_i + g_i(x - x_i) + \frac{g_{i+1} - g_i}{2h_i} (x - x_i)^2$$
 (2)

$$(2)\Big|_{x=x_{i+1}} :\Rightarrow e_{i+1} = e_i + \frac{g_{i+1} + g_i}{2}h_i.$$
(3)

$$\int_{x_i}^{x} (2):$$

$$S_i(x) = y_i + e_i(x - x_i) + \frac{g_i}{2}(x - x_i)^2 + \frac{g_{i+1} - g_i}{6h_i}(x - x_i)^3. \quad (4)$$

$$(4)\Big|_{x=x_{i+1}} :\Rightarrow y_{i+1} = y_i + e_i h_i + \frac{g_i}{2} h_i^2 + \frac{g_{i+1} - g_i}{6} h_i^2.$$
 (5)

$$\Rightarrow e_i = \frac{y_{i+1} - y_i}{h_i} - \frac{g_{i+1}}{6}h_i - \frac{g_i}{3}h_i. \tag{6}$$

#### Kubiniai splainai

$$e_{i+1} = e_i + \frac{g_{i+1} + g_i}{2} h_i. \tag{3}$$

$$e_i = \frac{y_{i+1} - y_i}{h_i} - \frac{g_{i+1}}{6}h_i - \frac{g_i}{3}h_i.$$
 (6)

(3) perrašykime i-ajame taške įstatant į ją (6) (i-1)-ajame taške :

$$e_{i} = e_{i-1} + \frac{g_{i} + g_{i-1}}{2} h_{i-1} = \frac{y_{i} - y_{i-1}}{h_{i-1}} - \frac{g_{i}}{6} h_{i-1} - \frac{g_{i-1}}{3} h_{i-1} + \frac{g_{i} + g_{i-1}}{2} h_{i-1}.$$

$$\Rightarrow e_{i} = \frac{y_{i} - y_{i-1}}{h_{i-1}} + \frac{g_{i}}{3} h_{i-1} + \frac{g_{i-1}}{6} h_{i-1}.$$

$$(7)$$

$$(7) = (6) \Rightarrow \frac{y_{i} - y_{i-1}}{h_{i-1}} + \frac{g_{i}}{3} h_{i-1} + \frac{g_{i-1}}{6} h_{i-1} = \frac{y_{i+1} - y_{i}}{h_{i}} - \frac{g_{i+1}}{6} h_{i} - \frac{g_{i}}{3} h_{i}.$$

#### Triįstrižainė lygčių sistema

$$h_{i-1}g_{i-1} + 2(h_{i-1} + h_i)g_i + h_ig_{i+1} = 6(\frac{y_{i+1} - y_i}{h_i} - \frac{y_i - y_{i-1}}{h_{i-1}}),$$
  
 $g_0 = 0, \quad g_N = 0, \quad i = 1, ..., N-1.$ 

# Kubinis splainas

#### Triįstrižainė lygčių sistema

$$h_{i-1}g_{i-1} + 2(h_{i-1} + h_i)g_i + h_ig_{i+1} = 6(\frac{y_{i+1} - y_i}{h_i} - \frac{y_i - y_{i-1}}{h_{i-1}}),$$
  
 $g_0 = 0, \quad g_N = 0, \quad i = 1, ..., N-1.$ 

arba

#### Triįstrižainė lygčių sistema

$$\frac{h_{i-1}}{h_{i-1} + h_i} g_{i-1} + 2g_i + \frac{h_i}{h_{i-1} + h_i} g_{i+1} = 6f(y_{i-1}, y_i, y_{i+1}),$$
  

$$g_0 = 0, \quad g_N = 0, \qquad i = 1, ..., N - 1.$$

# Lygčiu sistema su triįstrižaine matrica

$$\begin{pmatrix} \frac{1}{h_0} & 0 & & & & & \\ \frac{h_0}{h_0 + h_1} & 2 & \frac{h_1}{h_0 + h_1} & & & & & \\ & \ddots & \ddots & \ddots & & & & \\ & \frac{h_{j-1}}{h_{j-1} + h_j} & 2 & \frac{h_j}{h_{j-1} + h_j} & & & & \\ & \ddots & \ddots & \ddots & & & & \\ & \frac{h_{N-2}}{h_{N-2} + h_{N-1}} & 2 & \frac{h_{N-1}}{h_{N-2} + h_{N-1}} \\ & 0 & 1 & & & & \\ \end{pmatrix} \begin{pmatrix} g_0 \\ g_1 \\ \vdots \\ g_i \\ \vdots \\ g_{N-1} \\ g_N \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ f(y_0, y_1, y_2) \\ \vdots \\ f(y_{N-2}, y_{N-1}, y_N) \\ \vdots \\ f(y_{N-2}, y_{N-1}, y_N) \end{pmatrix}$$

## Kubinio splaino lygtis:

$$S_i^3(x) = y_i + e_i(x - x_i) + G_i(x - x_i)^2 + H_i(x - x_i)^3, \quad i = 0, 1, ..., N - 1.$$

$$e_{i} = \frac{y_{i+1} - y_{i}}{h_{i}} - g_{i+1} \frac{h_{i}}{6} - g_{i} \frac{h_{i}}{3},$$

$$G_{i} = \frac{g_{i}}{2},$$

$$H_{i} = \frac{g_{i+1} - g_{i}}{6h_{i}}.$$

#### Kubinis splainas. Pavyzdys su duomenimis

#### Duoti taškai:

$$x_i$$
 0 2 5 6  $y_i$  4 -2 19 58

Raskite f(4).

Tikslus sprendinys: 
$$f(x) = x^3 - 5x^2 + 3x + 4$$
,  $f(4) = 0$ .

$$S^{3''}(0) = S^{3''}(3) = 0$$
 (natūralusis splainas)

$$h_0 = 2 - 0 = 2$$

$$f(x_0, x_1) = \frac{y_1 - y_0}{h_0} = \frac{-2 - 4}{2} = -3$$

$$h_1 = 5 - 2 = 3$$

$$f(x_1, x_2) = \frac{y_2 - y_1}{h_1} = \frac{19 + 2}{3} = 7$$

$$h_2 = 6 - 5 = 1$$

$$f(x_2, x_3) = \frac{y_3 - y_2}{h_2} = \frac{58 - 19}{1} = 39.$$

#### Trijstrižainė lygčių sistema

$$\begin{pmatrix}
1 \\
h_0 & 2(h_1 + h_0) & h_1 \\
h_1 & 2(h_2 + h_1) & h_2 \\
1
\end{pmatrix}
\begin{pmatrix}
g_0 \\
g_1 \\
g_2 \\
g_3
\end{pmatrix} = \begin{pmatrix}
6 \left(\frac{y_2 - y_1}{h_1} - \frac{y_1 - y_0}{h_0}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_2}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_2}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_2}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_2}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_2}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_2}{h_2}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_2}{h_2}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_2}{h_2}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_2}{h_2}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_2}{h_2}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_2}{h_2}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_2}{h_2}\right) \\
6 \left(\frac{y_3 - y_2}{h_2} - \frac{y_2 - y_2}{h_2}\right) \\
6 \left(\frac{y_3 - y_2}{$$

Naturaliosios kraštinės sąlygos:  $g_0 = 0$ ,  $g_3 = 0$ .

$$\begin{pmatrix} 10 & 3 \\ 3 & 8 \end{pmatrix} \begin{pmatrix} g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} 60 \\ 192 \end{pmatrix} \Rightarrow \begin{pmatrix} g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} -1,35211 \\ 24,50704 \end{pmatrix}.$$

## Kubinis splainas: 2 pavyzdys

$$S_i^3(x) = y_i + e_i(x - x_i) + G_i(x - x_i)^2 + H_i(x - x_i)^3, \quad i = 0, ..., N - 1.$$

$$e_i = \frac{y_{i+1} - y_i}{h_i} - g_{i+1} \frac{h_i}{6} - g_i \frac{h_i}{3}, \quad G_i = \frac{g_i}{2}, \quad H_i = \frac{g_{i+1} - g_i}{6h_i}.$$

 $g_0=0; \quad g_1=-1,35211; \quad g_2=24,50704; \quad g_3=0.$  Splaino koeficientai:

```
i = 0: e_0 = 2,549296; G_0 = 0; H_0 = -0,112676.

S_0^3(x) = 4 - 2,549296x - 0,112676x^3, 0 \le x \le 2;

i = 1: e_1 = -3,901408; G_1 = -0,676056; H_1 = 1,4366197.

S_1^3(x) = -2 - 3,901408(x - 2) - 0,676056(x - 2)^2 + 1,4366197(x - 2)^3, 2 \le x \le 5; i = 2: e_2 = 30,830986; G_2 = 12,253521; H_2 = -4,0845070.

S_2^3(x) = 19 + 30,830986(x - 5) + 12,253521(x - 5)^2 - 4,0845070(x - 5)^3, 5 \le x \le 6.
```

## Tikslus sprendinys: $f(x) = x^3 - 5x^2 + 3x + 4$ , f(4) = 0.



Tikslus sprendinys:  $f(x) = x^3 - 5x^2 + 3x + 4$ , f(4) = 0. Kubinis splainas  $f(4) = S_2^3(4) = -1,0141$ .

- Tikslus sprendinys yra kubinė funkcija.
- Kodėl kubinis splainas nesutampa su tiksliu sprendiniu?
- Dėl skirtingų kraštinių sąlygų!
- Bendruoju atveju  $f''(x_0) \neq 0$  ir  $f''(x_N) \neq 0$ .

#### Kubinio splaino kraštinės sąlygos

- Natūralusis: Antra išvestinė lygi nuliui intervalo galuose.
- Clamped(suvaržytas): nurodytos pirmos išvestinės intervalo galuose.
- Not-a-Knot(nesurištas): Tolydi trečia išvestinė taškuose x1 ir x<sub>N-1</sub>.



# Rungės funkcijos ir not-a-knot splaino palyginimas

Rungės funkcija (raudonas punktyras) 9-taškų not-a-knot splainas (žalia)



Tolydžiosios treciosios išvestinės taškuose  $x_1$  ir  $x_{N-1}$ .

# Rungės funkcijos ir suvaržyto (Clamped End) splaino palyginimas

Rungės funkcija (raudonas punktyras) 9-taškų suvaržytas (Clamped End) splainas (žalia)



Kraštiniuose taškuose užduotos pirmųjų išvestinių reikšmės:

$$f'(-1) = 1 \text{ ir } f'(1) = -4.$$



#### Kitos splainų rūšys ir taikymai

#### Parametrinis interpoliavimas splainais

#### Duoti taškai $(x_i, y_i)$ .

- Taškų parametrizacija  $(t_i, x_i)$ ,  $(t_i, y_i)$ ,  $t_i = 0, 1, \dots, N$ ;
- Kubiniai splainai  $x = S_x^3(t), y = S_y^3(t);$
- Braižomas grafikas y = f(x).

$$x = [0\ 2\ 4\ 2\ 4\ 2\ 0\ -2\ -4\ -2\ -4\ -2\ 0],$$
  
 $y = [5\ 3\ 3\ 1\ -1\ -1\ -3\ -1\ -1\ 1\ 3\ 3\ 5], t = 0, \dots, 12.$ 



Matlab funkcijos:

spline(kubinis splainas);

pchip(dalimis kubinis Hermito
interpoliavimas), išlaiko
duomenų monotoniškumą ir
formą.



Uždaras aproksimacinis antrojo laipsnio splainas.



Kilpos susiformavimas naudojant tolygius splainus



Catmull-Rom (Bessel-Overhauser) interpoliacinis splainas



Uždaras kubinis  $\mathbb{C}^2$  splainas.

# Paviršių aproksimavimas ir interpoliavimas splainais

