<< Hw1 – Array Exercise>> 제출: 4월 8일(수) 9 시까지 (15점)

1) Problem: Sparse Matrix

- Read "matrix A" from data file (hw1.txt) and store into array.
 - Data 는 다음 matrix A 를 데이터화일로 저장하여 사용함

● 위 original matrix A 를 다음과 같이 연산하여 출력한다.

Sparse Matrix A - row major

	•
column	major

row		col	value
	6	6	8
	0	0	15
	0	3	22
	0	5	-15
	1	1	11
	1	2	3
	2	3	-6
	4	0	91
	5	2	28

TOW	CC	n value
6	6	8
0	0	15
0	4	91
1	1	11
2	1	3
2	5	28
3	0	22
3	2	-6
5	0	-15

2) Output

- 1. Display original matrix A
 - -> Print matrix A
- 2. Transpose original Matrix A
 - -> Matrix A 를 행과 열만 바꾸어서 출력
- 3. Sparse matrix of A row major
 - -> 0 이 아닌 항만 "행 우선" 배열로 저장 (3-tuple)

- 4. Transpose of Sparse Matrix A column major
 - -> 3 의 결과물을 "열 우선" 배열로 저장
 - -> 알고리즘 (강의 노트의 transpose 알고리즘 참조)
- 5. Fast transpose of Sparse Matrix A
 - -> 3의 결과물을 "열 우선" 배열로 저장
 - -> 알고리즘 (강의 노트의 Fast transpose 알고리즘 참조)

=> 4,5 는 결과가 같음

* 구현 결과

```
1) Original Matrix : A
15 0 0 22 0 -15
0 11 3 0 0 0
0 0 0 -6 0 0
0 0 0 0 -6 0 0
0 0 0 0 0 0
91 0 0 0 0 0
0 0 28 0 0 0

2) Transpose of Original matrix A
15 0 0 0 91 0
0 11 0 0 0 0
0 3 0 0 0 28
22 0 -6 0 0 0
0 0 0 0 0 0
-15 0 0 0 0

3) Sparse matrix of A - row major
0 0 15
0 3 22
0 5 -15
1 1 11
1 2 3
2 3 -6
4 0 91
5 2 28

4) Transpose of Sparse matrix A - column major
0 0 15
0 4 91
1 1 11
2 1 3
2 5 28
3 0 22
3 2 -6
5 0 -15
5) Fast transpose of Sparse matrix A
0 0 15
0 0 15
0 4 91
1 1 11
2 1 3
2 5 28
3 0 22
3 2 -6
5 0 -15

계속하려면 아무 키나 누르십시오 . . .
```