Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника (РЛ)» Кафедра «Технология приборостроения (РЛ6)»

Занятие №8 — "Исследование временной дискретизации аналоговых сигналов"

по дисциплине «Информационные РЭС»

Выполнил ст. группы РЛ6-91 Филимонов С.В.

Преподаватель Руденко Н.Р.

Для расчета номиналов элементов схемы фильтра нижних частот для сигнала с частотой 3 кГц используем данные и формулы:

1. Формулы для расчетов:

$$\circ$$
 $C_1 = C_2 = \frac{1}{\omega_r \cdot R_n}$

$$_{\circ}$$
 $L_1 = \frac{2R_n}{\omega_r}$

$$_{\circ}$$
 $R_6 = R_n = \sqrt{\frac{L}{C_1 + C_2}}$, где:

- ω_r =2 π f, частота в радианах,
- f частота сигнала (3 кГц),
- lacktriangle R_n номинал резистора.

2. Данные из изображения:

 \circ R_n=150 Om.

3. Расчеты:

Рассчитаем ω_r :

$$\omega_r = 2\pi f = 2\pi \cdot 3000 = 18849.56$$
 рад/с.

 \circ Рассчитаем C_1 и C_2

 $C_1 = C_2 = \omega_r \cdot R_n = 118849.56 \cdot 150 \approx 0.0000354 \Phi = 35.4 \text{ MK}\Phi.$

- \circ Рассчитаем L_1 : L_1 =2 R_n / ω_r =2·150/18849.56 \approx 0.0159 Гн=15.9 мГн.
- о Рассчитаем $R_6 = R_n$: $R_n = \sqrt{\frac{L}{C_1 + C_2}} \approx 150 \Omega$.

4. Результаты:

- \circ C₁=C₂=35.4 мк Φ ,
- \circ L₁=15.9 M Γ H,
- ∘ R₆=150 Ом.

Рис. 1 – Схема дискретизации и восстановления исходного сигнала

Рис. 2 – Дискретизация синусоидального сигнала

Рис. 3 – Дискретизация треугольного сигнала

Рис. 4 – Дискретизация прямоугольного сигнала