Midterm 2 Review Avinash Iyer

• 5 questions:

- (1) (Discrete) game tree: count information sets, pure strategies, subgames, etc.
- (2) (Discrete) game tree: find SPE and Pure Strategy Nash equilibria.
- (3) SPE in Stackelberg-style game: player 1 chooses $a_1 \in \mathbb{R}$, player 2 sees a_1 , then chooses $a_2 \in \mathbb{R}$.
 - Strategy for Player 1: a₁*
 - Strategy for Player 2: $a_2(a_1^*)$ (best response function)
- (4) Repeated games: given a stage game G, find
 - SPE in finitely repeated game $G(T, \delta)$.
 - In $G(\infty, \delta)$, find δ for which grim trigger is a SPE.
 - Conceptual: limited punishment, Folk Theorem.
- (5) Bargaining: given a strategy, and a given player, examine
 - Proposer node:
 - * Find payoff from following
 - * Find payoff from deviating (offer less to other)
 - Responder to z:
 - * Find payoff from accepting (z)
 - st Find payoff from rejecting accept any z at least as large as this value

Positive Externality Repeated Game: Consider a game with effort x_i and payoff

$$v_i = \left(16 - x_i + \frac{1}{2}x_j\right)x_i - 4x_i$$

The Unique Nash Equilibrium for this game is $x_1 = x_2 = 8$, where $v_1 = v_2 = 64$. However, the social optimum is $x_1 = x_2 = 12$, where $v_1 = v_2 = 72$.

- (a) $G(T, \delta)$, where T is finite: there must be only one SPE playing the Nash equilibrium in every stage game. Therefore, it is not possible to play (12, 12) in any period of a SPE.
- (b) $G(\infty, \delta)$ with grim trigger:
 - ullet Deviation in past \Rightarrow play Nash equilibrium \Rightarrow no incentive to deviate.
 - No deviation in past:
 - Discounted Average Payoff from follow: 72
 - Discounted Average Payoff from deviation:

$$BR_{i}(12) \Rightarrow \frac{\partial v_{i}}{\partial x_{i}} = 0$$

$$18 - 2x_{1} = 0$$

$$x_{1} = 9$$

$$v_{1} = 81$$

Payoff from Deviation:

$$\overline{v}_1 = (1 - \delta) \left(81 + \overbrace{64\delta + 64\delta^2 + \cdots}^{\text{grim trigger payoffs}} \right)$$

$$= 81(1 - \delta) + 64\delta$$

$$72 \ge 81(1 - \delta) + 64\delta$$

$$17\delta \ge 9$$

$$\delta \ge \frac{9}{17}$$

(c) If the punishment period was shorter, would need future punishment to be weighted more, meaning δ would need to be higher.