Trabajo práctico N° 5

Representación digital de datos: Texto y Multimedia

FECHA DE FINALIZACIÓN: 7 DE MAYO

Introducción a la computación Departamento de Ingeniería de Computadoras Facultad de Informática - Universidad Nacional del Comahue

Objetivo: comprender la representación binaria de texto, imágenes y otros datos más complejos.

Recursos web:

- Wikipedia: Run-length encoding: https://en.wikipedia.org/wiki/Run-length_encoding
- Wikipedia: ASCII: http://es.wikipedia.org/wiki/ASCII
- Tabla de caracteres ASCII Extendida: http://www.programasprogramacion.com/caracteres.php
- Tabla de caracteres *UTF-8*: http://www.fileformat.info/info/charset/UTF-8/list.htm

Lectura obligatoria:

• Apuntes de cátedra. Capitulo 4: Representación digital de datos: Texto y Multimedia. Disponible en: https://egrosclaude.github.io/IC/IC-notes.pdf

Tabla ASCII:

Dec	Hea	ζ	Dec	He	ĸ	Dec	Hea	ζ	Dec	Hea	ζ	Dec	He	X	Dec	He	X	Dec	Hea	ĸ	Dec	He	ĸ
0	00	NUL	16	10	DLE	32	20		48	30	0	64	40	0	80	50	P	96	60	(112	70	p
1	01	SOH	17	11	DC1	33	21	!	49	31	1	65	41	Α	81	51	Q	97	61	a	113	71	q
2	02	STX	18	12	DC2	34	22	11	50	32	2	66	42	В	82	52	R	98	62	b	114	72	r
3	03	ETX	19	13	DC3	35	23	#	51	33	3	67	43	С	83	53	S	99	63	С	115	73	s
4	04	EOT	20	14	DC4	36	24	\$	52	34	4	68	44	D	84	54	T	100	64	d	116	74	t
5	05	ENQ	21	15	NAK	37	25	%	53	35	5	69	45	Ε	85	55	U	101	65	е	117	75	u
6	06	ACK	22	16	${\tt SYN}$	38	26	&	54	36	6	70	46	F	86	56	V	102	66	f	118	76	V
7	07	BEL	23	17	ETB	39	27	,	55	37	7	71	47	G	87	57	W	103	67	g	119	77	W
8	80	BS	24	18	CAN	40	28	(56	38	8	72	48	Н	88	58	X	104	68	h	120	78	Х
9	09	HT	25	19	EM	41	29)	57	39	9	73	49	Ι	89	59	Y	105	69	i	121	79	У
10	OA	LF	26	1A	SUB	42	2A	*	58	ЗА	:	74	4A	J	90	5A	Z	106	6A	j	122	7A	z
11	OB	VT	27	1B	ESC	43	2B	+	59	ЗВ	;	75	4B	K	91	5B	[107	6B	k	123	7B	{
12	OC	FF	28	1C	FS	44	2C	,	60	3C	<	76	4C	L	92	5C	\	108	6C	1	124	7C	
13	OD	CR	29	1D	GS	45	2D	-	61	3D	=	77	4D	М	93	5D]	109	6D	m	125	7D	}
14	0E	SO	30	1E	RS	46	2E		62	3E	>	78	4E	N	94	5E	^	110	6E	n	126	7E	~
15	OF	SI	31	1F	US	47	2F	/	63	3F	?	79	4F	0	95	5F	_	111	6F	0	127	7F	DEL

Representación de imágenes

Los archivos de imagen utilizados en los ejercicios respetan el siguiente formato:

Ancho	Alto	Bits por pixel	Datos de la imagen
1 byte	1 byte	1 byte	

Por simplicidad, el formato no incluye la paleta de colores

Ejemplo dado un archivo de imagen cuyo contenido expresado en hexadecimal es: "04 06 01 69 12 4F" y cuyo formato es el descripto en la teoría, para poder obtener la imagen se deben seguir los siguientes pasos:

- 1. Extraer los datos de la cabecera de la imagen: ancho, alto, y bits por pixel:
 - Ancho: 4 pixeles.
 - Alto: 6 pixeles.
 - Bits por pixel: 1 bit por pixel.
- 2. Representar en binario los datos de la imagen: $0110\,1001\,0001\,0010\,0100\,1111$
- 3. Crear una cuadricula de anchoxalto pixeles.
- 4. Tomando de a "bits por pixel" de los datos de la imagen, rellenar la cuadricula, comenzando desde la esquina superior izquierda, completando las filas:

Datos de la imagen

L	$vatos \ a$	e ia imagen
	Hex.	Binario
	6	0110
	9	1001
	1	0001
	2	0010
	4	0100
	\mathbf{F}	1111

Imagen

Ejercicios

- 1. Sabiendo que el contenido de un archivo de imagen en hexadecimal es: "08 08 01 00 27 65 65 25 25 77", dibuje su imagen.
- 2. Codifique la siguiente imagen expresando el contenido de su archivo en hexadecimal.

Compresión

Compresión con perdida

3. Dada la siguiente codificación (representada en **hexadecimal**) que corresponde a una imagen:

- a) Dibuje la imagen resultante considerando una paleta de 2 colores.
- b) ¿Cuántos bytes requiere la codificación dada de la imagen? ¿Y la del ejercicio 2?
- c) ¿Que ventajas y desventajas tiene este tipo de codificación?

Compresión sin perdida

4. Considerando la imagen que se muestra abajo, aplique un esquema de compresión que agrupa píxeles consecutivos de igual color y los reemplaza por una codificación "cantida-d/color", utilizando una codificación $\bf 3+1$, con tres bits para la cantidad y un bit para el color.

Tenga en cuenta que al calcular la cantidad se debe considerar que las filas de la imagen son consecutivas. Es decir, si una fila termina con dos pixeles negros y la siguiente comienza con otros dos pixeles negros, la codificación debe ser "4 pixeles negros"

- 5. Sabiendo que el contenido de un archivo de imagen en hexadecimal es: " $^{\circ}$ OC 10 02 10 78 07 30 72 0B 20 73 2B 20 72 52 24 72 07 25 22 47 20 78 87 20 72 91 28 72 2B 60 BA 0B 72 33 07 30 B3 07 10 74 0B 40 73 1B 50 76 07 30 B6 0B 10", y que la imagen fue codificada utilizando el esquema de compresión " $^{\circ}$ cantidad/ $^{\circ}$ color", con 4 bits para representar la cantidad:
 - a) Dibuje la imagen.
 - b) El formato de imagen presentado en este práctico no incluye la paleta de colores ¿Genero esto algún problema al decodificar la imagen?
 - c) Comparar la cantidad de bytes requeridos para ésta codificación frente a las de los ejercicios 2 y 3 ¿Cuál requiere la menor cantidad de bytes?
 - d) ¿Que ventajas y desventajas tiene este tipo de codificación?

Codificación de texto

- 1. Decodifique los siguientes mensajes codificados en UTF-8 y representados en hexadecimal.
 - a) 41 79 75 64 61
 - b) 45 6C 20 C3 B1 61 6E 64 C3 BA 20 62 61 6A C3 B3 20 65 6C 20 C3 A1 72 62 6F 6C
 - c) Para cada uno de los mensajes anteriores, responda: ¿cuántos caracteres posee? ¿cuántos bytes ocupa?
- 2. Codifique su apellido y legajo en ASCII, respetando el siguiente formato: "Apellido (legajo)". Remplace aquellos caracteres que no puedan ser representados por el símbolo "?".