Spring 2015

Week 2 Module 7

Digital Circuits and Systems

Universality, Rearranging Truth Tables

Shankar Balachandran*
Associate Professor, CSE Department
Indian Institute of Technology Madras

*Currently a Visiting Professor at IIT Bombay

Summary of Digital Logic Gates

Gate	Schematic Symbol	Algebraic Function	Truth Table
BUFFER	$x \longrightarrow f$	f = x	$\begin{bmatrix} x & f \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$
AND	x	f = xy	$ \begin{array}{c cccc} x & y & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array} $
OR	$x \longrightarrow f$	f = x + y	$ \begin{array}{c cccc} x & y & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array} $
xor	$\begin{pmatrix} x \\ y \end{pmatrix} -f$	$f = x \oplus y$	$ \begin{array}{c c} x & y & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} $

Gate	Schematic Symbol Algebraic Function		Truth Table
NOT (Inverter)	x — >>> f	$f = \overline{x}$	$\begin{bmatrix} x & f \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$
NAND		$f = \overline{xy}$	x y f 0 0 1 0 1 1 1 0 1 1 1 0
NOR	$x \longrightarrow f$	$f = \overline{x + y}$	$ \begin{array}{c cccc} x & y & f \\ \hline 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array} $
XNOR (Equivalence)	$\begin{bmatrix} x \\ y \end{bmatrix}$ f	$f = \overline{x \oplus y}$ $= x \odot y$	$ \begin{array}{c cccc} x & y & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array} $

AND/OR CIRCUITS

- The simplest type of combinational logic design consists of inverters, AND gates, and OR gates. This is known as an AND/OR circuit.
- An AND/OR circuit can be designed to implement any function by performing the following steps:
 - 1. Put the expression in SOP form
 - 2. Form complemented literals with inverters.
 - Form product terms with AND gates.
 - 4. Sum the product terms with an OR gate

Example

$$f(x,y,z) = xy + \overline{x}yz$$

Exercise

Implement the function $f(x,y,z)=(x+\overline{y})(y+\overline{z})(x+\overline{x})$ using OR/AND logic

Universality

- All Boolean functions can be implemented using the set {AND, OR, NOT}
- Universal gates
 - □ Gates which can implement any Boolean function without the need to use any other type of gate
 - NAND and NOR are universal gates
- To show universality of a gate:
 - Show that AND, OR and NOT can be implemented using that gate

NAND Universality

AND, OR and NOT can be implemented using NAND only
 NOT or INV

$$X \longrightarrow F = \overline{x.x} = \overline{x}$$

AND

$$\begin{array}{ccc}
x & & \\
y & & \\
\end{array}
\qquad F = \overline{xy} = xy$$

OR

$$F = \overline{\overline{x} \cdot \overline{y}} = \overline{\overline{x} + \overline{y}} = x + y$$

Exercises

Show that NOR gate is a universal gate also

- Is XOR a universal gate?
 - If so, show how {AND, OR, NOT} operations can be done using XOR gates only.
 - If not, show which operations can be done and which cannot be.

Boolean Expression ⇒ Truth Table

- To convert boolean expression to truth table:
 - Expand the expression into the minterms (i.e., canonical SOP form) and enter 1's in truth table rows (or, expand into canonical POS and enter 0's for each maxterm).

Example

$$f(x,y,z) = \overline{z} + yz$$

$$= \overline{z}(x+x) + yz$$

$$= \overline{xz} + yz + x\overline{z}$$

$$= \overline{xz}(y+\overline{y}) + yz(x+\overline{x}) + x\overline{z}(y+\overline{y})$$

$$= \overline{xyz} + xyz + xyz + xyz + xy\overline{z} + xy\overline{z}$$

$$= \sum (0, 2, 3, 4, 6, 7)$$

x	y	Z	f
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

м

Truth Table ⇒ Boolean Expression

- To convert a truth table to a boolean expression:
 - Write a canonical SOP expression that consists of all minterms (or write a canonical POS using maxterms) and then simplify the algebraic expression.

Example

$$f(x,y,z) = \sum (0, 2, 3, 4, 6, 7)$$

$$= \overline{x}y\overline{z} + \overline{x}y\overline{z} + \overline{x}yz + x\overline{y}\overline{z} + xy\overline{z} + xyz$$

$$= \overline{x}z(y+\overline{y}) + yz(x+\overline{x}) + x\overline{z}(y+\overline{y})$$

$$= \overline{x}z + yz + x\overline{z}$$

$$= \overline{z}(\overline{x} + x) + yz$$

$$= \overline{z} + yz$$

Truth tables to Boolean Expression

- When the expressions get more complicated, simplification gets harder
 - You may miss out combinations
- More inputs, more the effort
- Systematic way to reduce effort
 - Karnaugh Maps

x	y	Z	\boldsymbol{f}
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Minterms	f(x,y,z)
m0	1
m1	0
m2	1
m3	1
m4	1
m5	0
m6	1
m7	1

$x \mid yz$	00	01	10	11
0	1	0	1	1
1	1	0	1	1

$x \mid yz$	00	01	11	10
0	1	0	1	1
1	1	0	1	1

x1 x2x3	00	01	11	10
0	m_{ooo}	m_{001}	m_{o11}	m ₀₁₀
		m ₁₀₁	m ₁₁₁	m ₁₁₀

x1	00	01	11	10
0	m_{o}	$m_{_1}$	m_3	m_2
1	m_4	$m_5^{}$	m_7	m_6

End of Week 2: Module 7

Thank You