Оценка параметров систем массового обслуживания

Андрей Валиков

1 Цель работы

Оценить следующие характеристики коммутаторов: вероятность потерь вызова, производительность, среднее число соединений. Лабораторная работа выполнена на языке Python 3.6 с использованием библиотек Matplolib и SciPy и представляет собой модели, позволяющие исследовать характеристики однозвенных коммутаторов при различных параметрах.

2 Общая модель коммутатора

Коммутатор в данной работе представляет собой модель, имеющую M входов и N выходов.

3 Параметры системы

- M входы коммутатора
- N выходы коммутатора
- λ поступление нагрузки на одном входе
- μ уход нагрузки с одного выхода
- Р вероятность потерь вызовов
- G производительность
- E среднее число соединений
- $\rho = \frac{\lambda}{\mu}$ отношение поступления нагрузки к её уходу

4 Вероятность блокировки для трёх распредлений

4.1 Распределение Энгсета

$$p = \frac{\rho^N \binom{M}{N}}{\sum_{n=0}^N \rho^n \binom{M}{n}}$$

4.2 Распределение Эрланга

$$p = \frac{(M\rho)^N}{N! \sum_{n=0}^{N+1} \frac{(M\rho)^n}{n!}}$$

4.3 Биноминальное распределение

Пусть $\alpha = \frac{\rho}{\rho+1}$

$$p = \binom{M}{N} \alpha^N (1 - \alpha)^{M - N}$$

5 Код программы

5.1 main.py

import math import numpy as np from queueing import Queueing from mode of work import Mode

fact = math.factorial

 $mode \, = \, Mode.on_lambda$

lam, mu = .9, .9

$$M, N = 10, 10$$

$$_{\text{range}} = \text{np.arange}(.01, 1, .05)$$

queueing = Queueing(lam, mu, M, N, _range, mode)

$$\begin{array}{llll} P1_k, & G1_k, & E1_k = [\], & [\], & [\] \\ P2_k, & G2_k, & E2_k = [\], & [\], & [\] \\ P3_k, & G3_k, & E3_k = [\], & [\], & [\] \end{array}$$

```
for var in range:
    if mode == Mode.on lambda:
        queueing.lam, queueing.rho = var, var / mu
    elif mode = Mode.on mu:
        queueing.rho = lam / var
    elif mode == Mode.on rho:
        queueing.rho = var
    elif mode == Mode.on k:
        queueing.N = var
    P1 k.append(queueing.p_engset())
    G1 k.append (queueing.perf (P1 k[-1]))
    E1 k.append (queueing.cons (P1 k[-1]))
    P2 k.append(queueing.p erlang())
    G2 k.append (queueing.perf (P2 k[-1]))
    E2 k.append (queueing.cons (P2 k[-1]))
    P3 k.append(queueing.p binom())
    G3 k.append (queueing.perf (P3 k[-1]))
    E3 k.append (queueing.cons (P3 k[-1]))
queueing.common plot(
    title='loss_prob', title_eng='loss_prob',
    engset=P1 k, erlang=P2 k, binom=P3 k)
queueing.common_plot(
    title = 'perf', title eng = 'perf',
    engset=G1 k, erlang=G2 k, binom=G3 k)
queueing.common plot(
    title = 'aver_conn', title _eng = 'aver_conn',
    engset=E1 k, erlang=E2 k, binom=E3 k)
5.2
     mode_of_work.py
from enum import Enum
class Mode (Enum):
    on lambda = 0,
    on mu = 1,
    on rho = 2,
    on k = 3
5.3
     queueing.py
import matplotlib.pyplot as plt
import scipy.misc
```

```
import math
from \ mode\_of\_work \ import \ Mode
fact = math.factorial
comb = scipy.misc.comb
class Queueing:
    def __init__(self , lam , mu, M, N, _range , mode):
        self.lam, self.mu = lam, mu
        self.rho = lam / mu
        self.M, self.N = M, N
        self.\_range = \_range
        self.mode = mode
    """Stage 1"""
    def p_engset(self):
        """engset loss probability"""
        _sum = sum((comb(self.M, n) * (self.rho ** n) for n in range(self.N + 1)
        return comb(self.M, self.N) * ((self.rho ** self.N) / sum)
    def p_erlang(self):
        """erlang loss probability"""
        _sum = sum(((self.M * self.rho) ** n) / fact(n) for n in range(self.N +
        return (self.M * self.rho) ** self.N / (fact(self.N) * _sum)
    def p_binom(self):
        """binom loss probability"""
        alpha = self.rho / (1 + self.rho)
        return comb(self.M, self.N) * (alpha ** self.N) * (1 - alpha) ** (self.M.
    """Stage 2"""
    def perf(self, p):
        """ performance """
        return self.lam * self.M * (1 - p)
    """Stage 3"""
    def cons(self, p):
        """ connections """
        return self.rho * self.M * (1 - p)
    def common_plot(self, **kwargs):
        title = f"{kwargs['title']} "
        if self.mode == Mode.on_lambda:
            title += f'M={self.M} N={self.N} mu={self.mu}'
            plt.xlabel('lambda')
        elif self.mode == Mode.on_mu:
            title += f'M={self.M} N={self.N} lambda={self.lam}'
            plt.xlabel('mu')
```

```
elif self.mode == Mode.on_rho:
    title += f'M={self.M} N={self.N} lambda={self.lam}'
    plt.xlabel('rho')
elif self.mode == Mode.on_k:
    title += f'M={self.M} lambda={self.lam} mu={self.mu}'
    plt.xlabel('N')

# file_title = f"_M{self.M}_N{self.N}_mu{self.mu}"

plt.title(title)
plt.plot(self._range, kwargs['engset'], label='Engset')
plt.plot(self._range, kwargs['erlang'], label='Erlag')
plt.plot(self._range, kwargs['binom'], label='Binom')
plt.legend()
# plt.savefig(file_title.replace('.', '') + '.png')
plt.show()
```

6 Задача 1. Зависимость параметров от λ

6.1 M = N

Рис. 1:

Рис. 2:

Среднее число соединений M=10, N=10, mu=0.9

Рис. 3:

6.2 M > N

Вероятность потерь вызовов M=20, N=10, mu=0.9 Энгсет Эрланг 0.30 Биноминальное распределение 0.25 0.20 0.15 0.10 0.05 0.00 0.2 0.4 0.6 0.0 0.8 1.0

Рис. 4:

Рис. 5:

Рис. 6:

6.3 $M \gg N$

Вероятность потерь вызовов M=50, N=10, mu=0.9 0.8 Энгсет Эрланг 0.7 Биноминальное распределение 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.2 0.0 0.4 0.6 0.8 1.0

Рис. 7:

Рис. 8:

Среднее число соединений M=50, N=10, mu=0.9Энгсет 50 Эрланг Биноминальное распределение 40 30 20 10 0 0.2 0.4 0.6 0.8 0.0 1.0

Рис. 9:

6.4 Вывод

При исследовании зависимости параметров коммутационной системы от интенсивности поступления нагрузки были получены следующие выводы:

- При M = N:
 - Наименьшая вероятность потерь вызовов с вероятностью поступления вызовов по распределению Эрланга или Биномиальному распределению
 - Чем выше коэффициент интенсивности ухода потока нагрузки, тем лучше результат.
- При $M \gg N$
 - Наибольшая производительность системы
 - Наиболее эффективный результат дает распределение Энгсета и Биномиальное распределение, μ при этом не имеет существенного влияния.
 - Среднее число соединений в системе также имеет наибольшее значение при наименьшем значении μ , с подчинением закону распределения Энгсета и Биномиальному

Параметры коммутатора во многом зависят от:

- Закона распределения вероятностей поступающих заявок в систему
- λ
- μ
- $\rho = \frac{\lambda}{\mu}$

Для каждого конкретного случая необходимо учитывать все эти характеристики в совокупности для получения требуемых параметров системы.

7 Задача 2. Зависимость параметров от μ

Рис. 10:

Рис. 11:

Среднее число соединений M=10 N=10 λ =0.1

Рис. 12:

7.1 M > N

Вероятность потерь вызовов M=20 N=10 λ =0.1

Рис. 13:

Рис. 14:

Среднее число соединений M=20 N=10 λ =0.1

Рис. 15:

7.2 $M \gg N$

Вероятность потерь вызовов M=50 N=10 λ =0.1 1.0 Энгсет Эрланг Биноминальное распределение 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.0 0.6 0.8 1.0 μ

Рис. 16:

Рис. 17:

Среднее число соединений M=50 N=10 λ =0.1

Рис. 18:

7.3 Вывод

Будет

8 Задача 3. Зависимость параметров от ρ

8.1 M = N

Рис. 20:

Среднее число соединений M=10 N=10 λ=0.1

Рис. 21:

8.2 M > N

Вероятность потерь вызовов M=20 N=10 λ =0.1 0.8 Энгсет Эрланг 0.7 Биноминальное распределение 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.5 1.0 1.5 0.0 2.0 2.5 3.0 3.5 4.0 ρ

Рис. 22:

Рис. 23:

Среднее число соединений M=20 N=10 λ =0.1

Рис. 24:

8.3 $M \gg N$

0.0

0.0

0.5

Вероятность потерь вызовов M=50 N=10 λ=0.1 0.6 0.4 0.2 -

Рис. 25:

1.5

ρ

2.0

2.5

3.0

1.0

Рис. 26:

Среднее число соединений M=50 N=10 λ =0.1

Рис. 27:

8.4 Вывод

Будет

9 Задача 4. Зависимость параметров от $k=\frac{N}{M}$. Заменена зависимостью от N при фиксированном M

9.1 M = N

Рис. 28:

Рис. 29:

Рис. 30:

9.2 M > N

Вероятность потерь вызовов M=20 λ =0.8 μ =0.4 1.0 -Энгсет Эрланг Биноминальное распределение 0.8 0.6 0.4 0.2 0.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Ν

Рис. 31:

Рис. 32:

Рис. 33:

9.3 $M \gg N$

Вероятность потерь вызовов M=50 λ =0.8 μ =0.4 1.0 Энгсет Эрланг Биноминальное распределение 0.8 0.6 0.4 0.2 0.0 10 20 Ó 30 40 50 Ν

Рис. 34:

Рис. 35:

Рис. 36:

9.4 Вывод

Будет