

介绍

笔记简介:

• 面向对象:深度学习初学者

• 依赖课程:**线性代数,统计概率**,优化理论,图论,离散数学,微积分,信息论

知乎专栏:

https://zhuanlan.zhihu.com/p/693738275

Github & Gitee 地址:

https://github.com/mymagicpower/AIAS/tree/main/deep_learning

https://gitee.com/mymagicpower/AIAS/tree/main/deep_learning

* 版权声明:

- 仅限用于个人学习
- 禁止用于任何商业用途

编写 SQL 语句是很常见的应用开发场景。然而,不同的数据库在 SQL 增删改查操作语法、类型字段和引号使用等方面存在一些细微差异,导致实际开发过程中容易犯错。就算是有经验的工程师,在面对复杂的联表查询、分组、排序等组合实现时,也往往需要花费大量心思调试和排错。

通过使用大模型,可以快速生成 SQL 语句,无需具备 SQL 编程的经验,节省了编写 SQL 语句的时间和精力。此外,与手动编写 SQL 语句相比,使用大模型生成的 SQL 语句也相对更准确和稳定,可以帮助减少错误和漏洞的出现。

SQL 语法

例如,不同数据库获取当前系统时间的语法不同:

- MySQL 使用 now() 和 sysdate()
- SQL Server 使用 getdate()
- 又比如,不同数据库拼接字符串的语法不同:
- MySQL 使用 concat() 函数
- SQL Server 使用 "+" 号
- Oracle 则使用 "||" 号

数据类型

例如,不同数据库支持的特殊数据类型不同:

- MySQL 支持 BOOLEAN 和 SET 类型
- SQL Server 则支持 SMALL DATETIME 和 MONEY 等类型
- 又比如,同样是 FLOAT 类型,也存在细微的差异:
- MySQL 中表示单精度浮点数
- SQL Server 中表示双精度浮点数

在SQL领域,大模型可以用于各种细分任务。以下是一些常见的任务:

- **SQL查询生成(Text2SQL)**: 大模型可以接收自然语言查询,并生成对应的SQL查询语句。这是最常见的任务,涉及将自然语言转换为SQL查询的语法和结构。
- **SQL查询解析**:大模型可以接收SQL查询语句,并理解其语义和结构。这可以用于解析和理解复杂的SQL查询,从中提取信息或执行其他操作。
- **SQL查询优化**:大模型可以分析给定的SQL查询,并提供优化建议。这可以包括重写查询以改进性能、选择索引或重新组织查询计划等。
- **数据库查询结果解释**:大模型可以解释SQL查询的结果,并提供相关的上下文信息。这可以帮助用户理解查询结果、推断数据关系或提供解释性的分析。
- · 数据库查询验证:大模型可以验证给定的SQL查询是否符合数据库模式和约束。这可以用于检查查询的语法正确性、表连接的有效性等。
- **数据库查询安全性分析**:大模型可以分析SQL查询,并检测潜在的安全漏洞或风险。这可以帮助保护数据库免受SQL注入等攻击。
- **数据库查询语义理解**:大模型可以理解SQL查询的语义含义,并提供更高级别的查询理解和处理。这可以包括理解查询的目的、意图和上下文等。

这些任务不是相互独立的,它们可能会相互关联并在实际应用中结合使用。此外,这只是SQL领域中的一些细分任务示例, 还有其他可能的任务和应用。

➤ Text-to-SQL (或者Text2SQL) ,顾名思义就是把文本转化为SQL语言,更学术一点的定义是:把数据库领域下的自然语言(Natural Language,NL)问题,转化为在关系型数据库中可以执行的结构化询语言(Structured Query Language,SQL),因此Text-to-SQL也可以被简写为NL2SQL。

输入自然语言问题, 比如:

查询表t user的相关信息,结果按id降序排序,只保留前10个数据

输出: SQL, 比如:

SELECT * FROM t user ORDER BY id DESC LIMIT 10

SQL查询生成 - Text2SQL

➤ SQL (结构化查询语言) 是用于查询数据库和检索数据的最常用的语言之一。借助机器学习和基于知识的资源,可以实现文本语言到SQL的转换。在NoSQL类别中,还包括基于规则的语法分析、语义匹配和模式匹配等各种其他方法。然而,在本章节中,我们仅限于将自然语言转换为SQL的研究。

Text2SQL - 模型选型

- ➤ SQLCoder 是 Defog 团队推出的一款前沿的大语言模型,专门用于将**自然语言问题转化为 SQL 查询**。在自然语言到 SQL 生成任务上,其性能超过了 gpt-3.5-turbo,并且显著地超越了所有流行的开源模型。
- ➤ SQLCoder-34B是在基于CodeLlama模型的基础上进行了微调。

任务类型	大模型	参数	授权	说明
SQL生成 Text2SQL	SQLCoder	defog-sqlcoder-34bdefog-sqlcoder2-15bdefog-sqlcoder-7b	开源	Defog的SQLCoder是一种LLM(语言模型)用于将自然语言问题转换为SQL查询。SQLCoder-34B是在基于CodeLlama模型的基础上进行了微调。
多任务	GPT	gpt4-turbogpt4gpt-3.5	商用	GPT可以用于生成SQL查询语句。GPT能够理解问题的语义, 并生成与之相匹配的SQL语句等多种任务。
需微调	Code LlaMa	• 7B、13B和34B	开源	基于LlaMa2,主要以Python等为主,不太擅长写SQL
需微调	WizardCoder	• 15B、34B	开源	基于LLama2,不擅长写SQL
需微调	StarCoder	• 15B	开源	小型的通用代码生成模型,不擅长写SQL

Text2SQL – 数据集

数据集	问题和SQL对	数据库数量	领域	表格数/数据库	单/多轮	语言
ATIS	5280	1	单领域	32	单轮	英文
GeoQuery	877	1	单领域	6	单轮	英文
Scholar	817	1	单领域	7	单轮	英文
Academic	196	1	单领域	15	单轮	英文
IMDB	131	1	单领域	16	单轮	英文
Yelp	128	1	单领域	7	单轮	英文
Advising	3898	1	单领域	10	单轮	英文
Restaurants	378	1	单领域	3	单轮	英文
WikiSQL	80657	26521	多领域	1	单轮	英文
NL2SQL	49974	5291	多领域	1	单轮	中文
Spider	10181	200	多领域	5.1	单轮	英文
CSpider	9691	166	多领域	5.3	单轮	中文
SParc	4298	200	多领域	5.1	多轮	英文
CoSQL	3007	200	多领域	5.1	多轮	英文

Text2SQL - 典型数据集介绍

数据集	说明	地址
WikiSQL	入门数据集: WikiSQL是一个大型的语义解析数据集,由80,654个自然语句表述和24,241张表格的sql标注构成。WikiSQL中每一个问句的查询范围仅限于同一张表,不包含排序、分组、子查询等复杂操作。虽然数据规模大,SQL语法却非常简单;适合做NL2SQL任务入门。	https://huggingface.co/datase ts/wikisql
Spider	难度最大数据集: 耶鲁大学在2018年新提出的一个大规模的NL2SQL (Text-to-SQL) 数据集。 该数据集包含了10,181条自然语言问句、分布在200个独立数据库中的5,693条SQL,内容覆盖了 138个不同的领域。涉及的SQL语法最全面,是目前难度最大的NL2SQL数据集。	https://yale- lily.github.io/spider
Cspider 中文	CSpider是 Spider的中文版 ,西湖大学出品。美中不足的是,数据集只是翻译了Spider的 question部分,表格列名等仍是英文,需要额外处理对齐。	https://taolusi.github.io/CSpid er-explorer/
NL2SQL 中文	中文NL2SQL数据集: 2020年之前公开的Text2SQL数据集中唯一一份高质量的中文数据集。数据集使用金融以及通用领域的表格数据作为数据源,提供在此基础上人工标注的自然语言和SQL语句的匹配对。	https://tianchi.aliyun.com/com petition/entrance/231716/info rmation
SparC	多轮交互Text2SQL: 耶鲁大学在2019年提出的基于对话的Text-to-SQL数据集。 SParC是一个跨域上下文语义分析的数据集,是Spider任务的上下文交互版本。SParC由4298个对话(12k+个单独的问题,每个对话平均4-5个子问题,由14个耶鲁学生标注)组成,这些问题通过用户与138个领域的200个复杂数据库进行交互获得。	https://yale-lily.github.io/sparc

Text2SQL - 典型数据集介绍

数据集	说明	地址
CoSQL	多轮交互Text2SQL : 耶鲁大学在2019年提出的基于对话的Text-to-SQL数据集。 内容和Sparc相似,但是标注风格略有不同,例如数据集中SQL各关键字的分布差异较大。	https://yale-lily.github.io/cosql
CHASE 中文	多轮交互中文Text2SQL : 2021年,微软亚研院和北航、西安交大联合提出的首个大规模上下文依赖的Text-to-SQL中文数据集。内容分为CHASE-C和CHASE-T两部分,CHASE-C从头标注实现,CHASE-T将Sparc从英文翻译为中;相比以往数据集,CHASE大幅增加了hard类型的数据规模,减少了上下文独立样本的数据量,弥补了Text2SQL多轮交互任务中文数据集的空白。	https://xjtu- intsoft.github.io/chase/
TableQA 中文	2020年6月,追一科技公司提出了一个大规模跨领域Text-to-SQL数据集TableQA,其中包含64891个问题和6000多个表的20311个唯一SQL查询。	https://www.luge.ai/#/luge/da taDetail?id=12
DuSQL 中文	2020年11月,百度针对跨域文本到SQL任务提出了一个大规模、实用的中文数据集DuSQL,它包含200个数据库、813个表和23797个Question-SQL对。	https://www.luge.ai/#/luge/da taDetail?id=13
BIRD-SQL 中文	2023年5月,香港大学和阿里巴巴提出了一个大规模跨域数据集BIRD,其中包含超过12751个独特的问题 SQL、95个大数据库,总大小为33.4GB。它还涵盖区块链、曲棍球、医疗保健和教育等超过37个专业领域。	https://bird-bench.github.io/

Text2SQL - 评测指标 (1/3)

名称	说明	论文
Execution Accuracy (EX)	• 计算SQL执行结果正确的数量在数据集中的比例,结果存在高估的可能。	
Exact Match (EM)	• 计算模型生成的SQL和标注SQL的匹配程度,结果存在低估的可能。	https://arxiv.org/pdf/2208.13629.pdf
Question Match Accuracy (QM)	• 问题匹配准确率是通过所有问题的EM分数来计算的。 只有当所有预测的SQL子句都正确时,每个问题的值 才为1。	, <u></u>
Interaction Match Accuracy (IM)	• 交互匹配准确度是通过对所有交互(问题序列)进行 EM得分计算的。每个交互的得分只有在交互内的所 有问题都正确时才为1。	

Text2SQL - 评测指标 (2/3)

阿里达摩院联合HKU推出Text-to-SQL新基准 BIRD 重点关注:

- > 海量且真实的数据库内容
- ▶ 自然语言问题与数据库内容之间的外部知识推理
- ➤ 在处理大型数据库时 SQL 的效率

评价指标	说明	网址
执行准确率	• 对比模型预测的 SQL 执行结果与真实标注 SQL 执行结果的差异;	论文: https://arxiv.org/abs/2305.03111
有效效率分数	同时考虑 SQL 的准确性与高效性,对比模型预测的 SQL 执行速度与真实标注 SQL 执行速度的相对差异,将运行时间视为效率的主要指标。	主页: https://bird-bench.github.io 代码: https://github.com/AlibabaResearch/ DAMO-ConvAl/tree/main/bird

Text2SQL - 评测指标 (3/3)

测评的两类问题:

- 基础问题类型 (Fundamental Type) ,包括传统 Text-to-SQL 数据集中涵盖的问题类型
- 推理问题类型(Reasoning Type),推理问题类型则包括需要外部知识来理解值的问题

Question Type	Sub Type	Question / SQL	Percentage	Reasoning	Domain Knowledge	Name the ID and age of patient with two or more laboratory examinations which show their hematoclit level	23.6 %			
Fundamental Type	Match-based	How many gas stations in CZE has Premium gas?	83.9 %	Туре		exceeded the normal range. SELECT T1.ID, STRFTIME('%Y', CURRENT_TIMESTAMP)				
		SELECT COUNT (GasStationID) FROM gasstations WHERE Country = 'CZE' AND Segment = 'Premium'				- STRFTIME('%Y', T1.Birthday) FROM Patient AS T1 INNER JOIN Laboratory AS T2 ON T1.ID = T2.ID WHERE T1.ID IN (SELECT ID FROM				
	Ranking	What are the titles of the top 5 posts with the highest popularity?				Laboratory WHERE HCT > 52 GROUP BY ID HAVING COUNT(ID) >= 2)				
	SELECT Title FROM posts ORDER BY ViewCount DESC				Numeric Computation	Among the posts with a score of over 20, what is the percentage of them being owned by an elder user?				
II.	Comparison	How many color cards with no borders have been ranked higher than 12000 on EDHRec? SELECT COUNT(id) FROM cards WHERE edhrecRank	16.7 %			SELECT CAST(SUM(IIF(T2.Age > 65, 1, 0)) AS REAL) * 100 / count(T1.Id) FROM posts AS T1 INNER JOIN users AS T2 ON T1.OwnerUserId = T2.Id WHERE T1.Score > 20				
	6	> 12000 AND borderColor = 'borderless'	20.4.0/		Synonym	How many clients opened their accounts in Jesenik branch were women? (female)	7.2 %			
	Counting	How many of the members' hometowns are from Maryland state?	30.4 %			SELECT COUNT(T1.client_id) FROM client AS T1 INNER JOIN district AS T2 ON T1.district_id				
		SELECT COUNT (T2.member_id) FROM zip_code AS T1 INNER JOIN member AS T2 ON T1.zip_code = T2.zip WHERE T1.state = 'Maryland'				= T2.district_id WHERE T1.gender = 'F' AND T2.A2 = 'Jesenik'				
	Aggregation	And the state of t			Value Illustration	Among the weekly issuance accounts, how many have a loan of under 200000?	70.1 %			
						SELECT COUNT(T1.account_id) FROM loan AS T1 INNER JOIN account AS T2 ON T1.account_id = T2.account_id WHERE T2.frequency = 'POPLATEK TYDNE' AND T1.amount < 200000				

Text2SQL - 模型训练/微调项目

- 因为大模型的参数量非常大,从头训练一个自己的大模型训练成本非常高;
- ▶ 提示词工程的效果达不到要求,通过自有数据微调,更好的提升大模型在特定领域的能力;
- ▶ 训练一个轻量级的微调模型,提升特定业务场景个性化服务能力;
- 数据安全的问题;

项目名称	说明	网址
DB-GPT-Hub	eosphoros组织提出的专注于大模型Text-to-SQL微调的开源项目,包含了大模型下载、数据集预处理、LoRA和QLoRA等微调技术、模型预测、模型评估等步骤。	https://github.com/eosphoros-ai/DB-GPT-Hub
sqlcoder	Defog组织提出的先进的Text-to-SQL的大模型,表现亮眼,效果优于GPT3.5、wizardcoder和starcoder等,仅次于GPT4。	https://github.com/defog-ai/sqlcoder
modal_finetune_sql	项目基于LLaMa 2 7b模型进行Text-to-SQL微调,有完整的训练、微调、评估流程。	https://github.com/run- llama/modal_finetune_sql
LLaMA-Efficient- Tuning	这是一个易于使用的LLM微调框架,支持LLaMA-2、BLOOM、 Falcon、Baichuan、Qwen、ChatGLM2等。	https://github.com/hiyouga/LLaMA-Factory

基础模型 (1/2)

	模型名称		说明		代码地址		模型地址
\Rightarrow	Llama	$\stackrel{\wedge}{\sim}$	2023年2月,Meta Al提出开源大模型Llama, 有7b、13b、33b、65b共4种规模。	☆	https://github.com/facebookresearch/llama	>	https://huggingface.co/meta- llama
\Rightarrow	ChatGLM	\Rightarrow	2023年3月,清华大学提出了开源的双语大模型 ChatGLM,基于 <u>GLM</u> 框架,参数规格为6b。	\Rightarrow	https://github.com/THUDM/ChatGL M3	>	https://huggingface.co/THUDM/c hatglm3-6b
\Rightarrow	Alpaca	\Rightarrow	2023年3月,斯坦福大学提出基于Llama 7b模 型微调的开源大模型Alpaca,有7b共1种规格, 训练更简单和便宜。	☆	https://github.com/tatsu- lab/stanford_alpaca	>	https://huggingface.co/tatsu- lab/alpaca-7b-wdiff
\Rightarrow	Vicuna	\Rightarrow	2023年3月,UC伯克利大学联合CMU、斯坦福 大学提出的开源大模型Vicuna,有7b、13b共2 种规格。	☆	https://github.com/lm-sys/FastChat	>	https://huggingface.co/lmsys
\Rightarrow	WizardLM	☆	2023年4月,北京大学和微软提出进化指令大模型WizardLM,有7b、13b、30b共3种规格,2023年6月,提出了数学领域的大模型WizardMath,2023年8月提出了代码领域的大模型WizardCoder。	☆	https://github.com/nlpxucan/Wizard LM	A	https://huggingface.co/WizardLM
\Rightarrow	Falcon	\Rightarrow	2023年6月,阿联酋提出了大模型Falcon,这是一种仅在网络数据集上训练的开源大模型,具有1b、7b、40b和180b四个参数规范。值得注意的是,其中Falcon 40B的性能超过了LLaMA65B。	☆	https://huggingface.co/tiiuae/falcon- 180B	\	https://huggingface.co/tiiuae

基础模型 (2/2)

	模型名称	说明	代码地址	模型地址
\Rightarrow	InternLM	☆ 2023年7月,上海人工智能实验室和商汤科技等提出了InternLM,开源了针 对实际场景量身定制的7b和20b参数模型和聊天模型以及训练系统。	https://github.com/lnternLM/	https://huggingface. co/internlm
\Rightarrow	Llama 2	☆ 2023年7月, Meta AI提出第二代Llama系列开源大模型Llama 2, 和Llama 1相比, 训练数据多40%, 上下文长度翻倍,模型有7b、13b、34b、70b共 4种规格, 但是34b没有开源。	https://github.com/f acebookresearch/lla ma	https://huggingface. co/meta-llama
*	Code LLama	☆ 2023年8月,Meta AI 在 Llama 2 的基础上提出 Code LLama。Code Llama 在多个代码基准测试中达到了开放模型中最先进的性能。有基础模型 (Code Llama)、Python 专业化 (Code Llama - Python) 和指令跟踪模型(instruction-following models),每个模型都有 7B、13B 和 34B 参数。	https://github.com/f acebookresearch/co dellama	https://huggingface. co/codellama
*	Qwen	☆ 2023年8月,阿里云提出大语言模型系列Qwen-7B(简称通义干问),在海量数据上进行预训练,包括网页文本、书籍、代码等,开源了两个版本Qwen-7B和Qwen-7B和Qwen-7B-Chat。 2023年9月,阿里云更新了Qwen-7B和Qwen-7B-Chat。		https://huggingface. co/Qwen
\Rightarrow	Baichuan 2	☆ 2023年9月,百川智能提出新一代开源大语言模型Baichuan 2,在2.6万亿个tokens的高质量语料上训练,有7B和13B的基础版和聊天版,以及4bits量化版聊天模型。		https://huggingface. co/baichuan-inc
\Rightarrow	Phi-1.5	☆ 2023年9月,微软研究院提出开源语言模型phi-1.5,一个拥有1.3b个参数的 Transformer,使用与 <u>phi-1</u> 相同的数据源进行训练,增加了由各种NLP合成 文本组成的新数据源。当根据测试常识、语言理解和逻辑推理的基准进行评估时,phi-1.5在参数少于10b的模型中表现出近乎最先进的性能。		https://huggingface. co/microsoft/phi- 1_5

大模型微调方法总结 (1/2)

	模型名称	说明		代码		论文
\Rightarrow	P-Tuning	2021年3月,清华大学等提出了针对大模型微调方法P-Tuning,采用可训练的连续提示词嵌入,降低了微调成本。	☆	https://github.com/THUDM/P-tuning	A	https://arxiv.org/pdf/2103.10385. pdf
\Rightarrow	LoRA	2021年6月,微软提出的针对大模型微调的Low-Rank Adaptation (LoRA) 方法,冻结预训练权重。	☆	https://github.com/microsoft/LoRA	>	https://arxiv.org/pdf/2106.09685. pdf
\Rightarrow	P-Tuning V2	2021年10月,清华大学提出了P-Tuning的改进版本P-Tuning V2,性能更优。	☆	https://github.com/THUDM/P- tuning-v2	\	https://arxiv.org/pdf/2110.07602. pdf
\Rightarrow	RLHF	2022年12月,OpenAI使用RLHF方法训练ChatGPT, 利用人类反馈信号直接优化语言模型,表现优异。	☆	https://github.com/huggingface/blog/blob/main/zh/rlhf.md	>	https://huggingface.co/blog/rlhf
☆	RRHF	2023年4月,阿里巴巴提出了一种新的学习范式称为RRHF(Rank Responses to Align Language Models with Human Feedback without tears),可以像微调一样轻松调整并实现PPO算法在HH数据集中的性能。	☆	https://github.com/GanjinZero/RRHF	>	https://arxiv.org/pdf/2304.05302. pdf

大模型微调方法总结 (2/2)

	模型名称	说明		代码		论文
\Rightarrow	QLoRA	2023年5月,华盛顿大学基于冻结的4bit量化模型, 结合LoRA方法训练,进一步降低了微调门槛。	☆	https://github.com/artidoro/qlora	>	https://arxiv.org/pdf/2305.14314. pdf
\Rightarrow	RLTF	2023年7月,腾讯提出了RLTF(Reinforcement Learning from Unit Test Feedback),这是一种 新颖的online强化学习框架,具有多粒度的单元测试 反馈,用于细化code LLMs。	☆	https://github.com/Zyq-scut/RLTF	\	https://arxiv.org/pdf/2307.04349. pdf
\Rightarrow	RRTF	2023年7月,华为提出RRTF(Rank Responses toalign Test&Teacher Feedback)。与 RLHF 相比,RRHF可以有效地将语言模型的输出概率与人类偏好对齐,调优期间只需要1-2个模型,并且在实现、超参数调优和训练方面比PPO更简单。			>	https://arxiv.org/pdf/2307.14936v 1.pdf
\Rightarrow	RLAIF	2023年9月,谷歌提出了RLAIF(来自AI反馈的强化学习RL),这是一种由现成的LLM代替人类来标记偏好的技术。他们发现RLHF和 RLAIF方法在摘要任务上取得了相似的结果。			A	https://arxiv.org/pdf/2309.00267. pdf

SQLCoder 是 Defog 团队推出的一款前沿的大语言模型,专门用于将**自然语言问题转化为 SQL 查询**。在自然语言到 SQL 生成任务上,其性能超过了 gpt-3.5-turbo,并且显著地超越了所有流行的开源模型。

SQLCoder-34B是一个拥有34B个参数的模型,在自身的 sql-eval测试框架上对于自然语言转SQL生成任务表现优于 gpt-4和gpt-4-turbo,并且显著优于所有流行的开源模型。

SQLCoder-34B是在基于CodeLlama模型的基础上进行了微调。

大模型	正确率
defog-sqlcoder-34b	84.0
gpt4-turbo-2023-11-09	82.5
gpt4-2023-11-09	82.5
defog-sqlcoder2-15b	77.5
gpt4-2023-08-28	74.0
defog-sqlcoder-7b	71.0
gpt-3.5-2023-10-04	66.0
claude-2	64.5
gpt-3.5-2023-08-28	61.0
claude_instant_1	61.0
text-davinci-003	52.5

Text2SQL - SQLCoder - 数据库Schema

```
CREATE TABLE products (
 product id INTEGER PRIMARY KEY, -- Unique ID for each product
name VARCHAR(50), -- Name of the product
price DECIMAL(10,2), -- Price of each unit of the product
quantity INTEGER -- Current quantity in stock
CREATE TABLE customers (
customer id INTEGER PRIMARY KEY, -- Unique ID for each customer
name VARCHAR(50), -- Name of the customer
address VARCHAR(100) -- Mailing address of the customer
CREATE TABLE salespeople (
salesperson id INTEGER PRIMARY KEY, -- Unique ID for each salesperson
name VARCHAR(50), -- Name of the salesperson
 region VARCHAR(50) -- Geographic sales region
```

```
CREATE TABLE sales (
 sale id INTEGER PRIMARY KEY, -- Unique ID for each sale
 product id INTEGER, -- ID of product sold
 customer id INTEGER, -- ID of customer who made purchase
 salesperson id INTEGER, -- ID of salesperson who made the sale
 sale date DATE, -- Date the sale occurred
 quantity INTEGER -- Quantity of product sold
CREATE TABLE product suppliers (
 supplier id INTEGER PRIMARY KEY, -- Unique ID for each supplier
 product id INTEGER, -- Product ID supplied
 supply price DECIMAL(10,2) -- Unit price charged by supplier
-- sales.product id can be joined with products.product id
-- sales.customer id can be joined with customers.customer id
-- sales.salesperson id can be joined with salespeople.salesperson id
-- product suppliers.product id can be joined with products.product id
```

https://defog.ai/sqlcoder-demo/

查询语句:

中文: 我们在纽约地区的收入前三名产品是什么?

英文: What are our top 3 products by revenue in the New York region?

SELECT p.name,
SUM(s.quantity * s.price) AS total_sales
FROM sales s
JOIN products p ON s.product_id = p.product_id
JOIN salespeople sp ON s.salesperson_id = sp.salesperson_id
WHERE sp.region = 'New York'
GROUP BY p.name
ORDER BY total_sales DESC NULLS LAST
LIMIT 3;

https://defog.ai/sqlcoder-demo/

SQL 查询优化

问题背景:

- SQL 查询优化是开发者接触到最多的也是最常用的数据库性能优化手段。
- SQL 查询优化的目标是通过各种手段减少查询的响应时间,降低数据库负载,提高查询效率。
- 在同一数据库环境中,查询执行效率取决于SQL查询 语句的质量。
- · 许多SQL程序员难以编写高质量的SQL语句,优化复杂查询需要大量时间和精力。

SQL优化:

- 大语言模型能够分析SQL查询语句,提供查询重写和 优化建议。
- 它可以根据查询语句的结构和语义,推断出更高效的查询方式,并快速提供相应的优化建议。
- 极大地减轻了开发人员和维护人员的负担。

SELECT rDelete FROM table_test WHERE rTopicId = 975312468 AND replyId = (SELEC T rTargetReplyid FROM table_test WHERE replyId = 131415161718) 帮我优化这条SQL 查询语句

为了优化这条SQL查询语句, 你可以考虑以下几点:

- 1. 确保表 `table_test` 上有适当的索引,以加快查询速度。在 `rTopicId` 和 `replyId` 列上创建索引可能会有帮助。
- 考虑使用连接(JOIN)来替代子查询。这样可以减少查询的复杂性和执行时间。例如,你可以尝试以下查询:

 如果可能的话,考虑对表进行分区或分片,以提高查询性能。这取决于你的数据库系 统和数据量。

SQL 提示词工程

prompt的组成包四个元素:

- Instruction (指令,必须)
- Context (上下文信息,可选)
- Input Data (输入,需要处理的数据,可选)
- Output Indicator (输出指引,规定输出的类型或格式,可选)

面向大语言模型的开发应用过程就是如下公式:

LMM(Instruction + Context + Input Data + Output Indicator) = Output

技巧 1:增加 Role角色,然后去下达你的指令。

技巧 2: 描述清楚需要输出的格式, 结构化输出。

技巧 3: few-shot prompt, 给模型一些示例。

技巧 4:不要用较短的模糊的prompt试图阐明意图,用较长的更具体的prompt,可以得到更相关和更详细的输出。

技巧 5: 迭代prompt, 直到达到你的需求

- 1) 分析为什么结果不满意。
- 2) 按照前面4条重新阐明。
- 3) 用小批数据实验prompt。

技巧6:碰到推理问题时,让模型多思考一会。

```
> prompt =
    现在你是一个数据分析师,SQL专家,请根据用户提供的表的
信息,以及用户的需求,写出效率最高的SQL,
    表信息如下:
      表名: students;
      字段: id,name,age,location
    用户需求:统计一下姓名年龄大于23,姓名包含andy且在
beijing,的的学生个数。
    并且要求输出的SQL以#开头,以#结尾,样例如下:
        #SELECT * FROM table#
        #SELECT COUNT(*) FROM table#
>
    注意不需要分析过程,直接给出SQL语句
> inputttext ="""<human>:
> <aibot>:
> """.format(prompt)
```


Text2SQL - 智能SQL客户端选型

项目名称	说明	授权	网址
Chat2DB	Chat2DB 是一款有开源免费的多数据库客户端工具,支持windows、mac本地安装,也支持服务器端部署,web网页访问。和传统的数据库客户端软件Navicat、DBeaver 相比Chat2DB集成了AIGC的能力,能够将自然语言转换为SQL,也可以将SQL转换为自然语言,可以给出研发人员SQL的优化建议,极大的提升人员的效率,是AI时代数据库研发人员的利器,未来即使不懂SQL的运营业务也可以使用快速查询业务数据、生成报表能力。	开源 非商用	https://github.com/chat2db/Chat 2DB https://doc.sqlgpt.cn/zh/

Chat2DB - 样例

https://sqlgpt.cn/zh

- AI智能助手,支持自然语言转SQL、SQL转自然语言、SQL优化建议
- SQL查询、AI查询和数据报表完美集成的一体化解决方案设计与实现
- 支持团队协作,研发无需知道线上数据库密码,解决企业数据库账号 安全问题
- 强大的数据管理能力,支持数据表、视图、存储过程、函数、触发器、索引、序列、用户、角色、授权等管理
- 强大的扩展能力,目前已经支持MySQL、PostgreSQL、Oracle、 SQLServer、ClickHouse、OceanBase、H2、SQLite等等,未来会 支持更多的数据库
- 前端使用 Electron 开发,提供 Windows、Mac、Linux 客户端、网页版本一体化的解决方案
- 支持环境隔离、线上、日常数据权限分离

Text2SQL - 智能SQL框架选型

项目名称	说明	授权	网址
Vanna	Vanna是一个为用户提供更便捷地与SQL数据库交互的工具。它通过允许用户使用自然语言来查询数据库,然后将这些语言转换成SQL语句,从而实现数据库信息的查询和获取。	开源	https://github.com/vanna- ai/vanna

使用场景:

适用于数据分析、数据库开发等场景。

使用者:

Vanna AI为**数据分析师**和**数据库开发人员**提供了强大的工具,简化了SQL的创建流程。无论是初学者还是经验丰富的专业人员,Vanna都能满足需求。

特色功能:

提供高效的SQL查询语句生成服务,提升数据处理效率和准确性。

- · 快速生成SQL查询语句
- 支持多种数据库
- 高精度和安全性

Vanna 简介

Vanna 的使用分为两个简单步骤 - 在你的数据上"训练" (这里的训练指的是提取特征向量) 一个 RAG "模型", 然后提出问题, 该问题将返回可设置为自动在你的数据库上运行的 SQL 查询。

- ➤ 在你的数据上训练一个 RAG "模型"
- ▶ 提问

主要功能:

- **自然语言转SQL查询**:用户可以用平时说话的方式提出问题,Vanna会自动将其转换成SQL语句,并查询数据库。
- **支持各种数据库**: Vanna可以连接到任何使用SQL的数据库,不论数据 库的类型。
- 训练模型:用户可以根据自己的数据和需求训练Vanna,使得它在转换问题为SQL语句时更准确。
- **灵活的用户界面**: Vanna提供了多种界面选择,如Jupyter Notebook、Web应用、Slack机器人等,以满足不同用户的需求。同时,它支持自定义前端开发。
- **数据安全和隐私保护**:在处理查询时,数据库内容不会发送到LLM或向量数据库,SQL执行在本地环境中进行。
- **自我学习和优化**: Vanna能根据用户的历史查询和反馈学习和改进,使得未来的查询更加准确。
- **适用于非技术用户**:对于不懂SQL的用户,Vanna提供了一种简单直观的方式来与数据库交互。它基于开源Python框架,使用检索增强生成(RAG)技术进行SQL生成和相关功能。其主要特点是通过与SQL数据库的交互,准确地通过大型语言模型(LLM)生成SQL查询。

Vanna 的使用分为两个步骤:

1. 创建知识库:

在你的数据上"训练" (这里的训练指的是提取特征向量) 一个 RAG "模型"

- 使用DDL语句训练
- 使用文档训练
- 使用SQL训练

2. 提出问题:

该问题将返回可设置为自动在你的数据 库上运行的 SQL 查询。

- 使用自然语言提出问题
- 搜索向量引擎,在知识库中找到相似度最高的资料
- 将问题与搜索的结果合并成提示词
- 将提示词提交给大语言模型
- LLM返回生成的SQL
- 使用生成的SQL查询数据库
- 获取查询的数据,并生成图表
- 如果结果不符合预期,则返回第2步。或者直接修改生成的SQL。

用户交互方式:

授权	网址
Jupyter Notebook	https://github.com/vanna-ai/vanna/blob/main/notebooks/getting-started.ipynb
vanna-ai/vanna-streamli	https://github.com/vanna-ai/vanna-streamlit
vanna-ai/vanna-flask	https://github.com/vanna-ai/vanna-flask
vanna-ai/vanna-slack	https://github.com/vanna-ai/vanna-slack

安装配置:

安装 pip install vanna

导入 # 如果您要自定义LLM或向量数据库,请参阅文档。 import vanna as vn

使用样例:

```
1 !pip install vanna
2 import vanna
3 from vanna.remote import VannaDefault
4 vn = VannaDefault(model='chinook', api_key=vanna.get_api_key('my-email@example.com'))
5 vn.connect_to_sqlite('https://vanna.ai/Chinook.sqlite')
6 vn.ask('What are the top 10 artists by sales?')
7
8 from vanna.flask import VannaFlaskApp
9 VannaFlaskApp(vn).run()
```


训练(创建知识库)

1、使用DDL语句训练

DDL语句包含有关数据库中表名、列、数据类型和关系的信息。

```
vn.train(ddl="""

CREATE TABLE IF NOT EXISTS my-table (
    id INT PRIMARY KEY,
    name VARCHAR(100),
    age INT
)
""")
```

2、使用文档训练

如果需要于业务术语或定义的文档。

vn.train(documentation="Our business defines XYZ as ...")

3、使用SQL训练

您还可以将SQL查询添加到训练数据中。如果您已经有一些查询可用,只需从编辑器中复制并粘贴它们即可开始生成新的SQL。

vn.train(sql="SELECT name, age FROM my-table WHERE name =
'John Doe'")

提问的流程

- 1. 使用自然语言提出问题
- 2. 搜索向量引擎,在知识库中找到相似度最高的资料
- 3. 将问题与搜索的结果合并成提示词
- 4. 将提示词提交给大语言模型
- 5. LLM返回生成的SQL
- 6. 使用生成的SQL查询数据库
- 7. 获取查询的数据,并生成图表
- 8. 如果结果不符合预期,则返回第 2步。或者直接修改生成的SQL。

提问例子

通过提问可以得到查询结果,以及连接到数据库时的表格和自动生成的Plotly图表。

vn.ask("What are the top 10 customers by sales?")

得到SQL:

SELECT c.c_name as customer_name,
 sum(l.l_extendedprice * (1 - l.l_discount)) as total_sales
FROM snowflake_sample_data.tpch_sf1.lineitem l join
snowflake_sample_data.tpch_sf1.orders o
 ON l.l_orderkey = o.o_orderkey join
snowflake_sample_data.tpch_sf1.customer c
 ON o.o_custkey = c.c_custkey
GROUP BY customer_name
ORDER BY total sales desc limit 10;

No.	CUSTOMER_NAME	TOTAL_SALES
0	Customer#000143500	6757566.0218
1	Customer#000095257	6294115.3340
2	Customer#000087115	6184649.5176
3	Customer#000131113	6080943.8305
4	Customer#000134380	6075141.9635
5	Customer#000103834	6059770.3232
6	Customer#000069682	6057779.0348
7	Customer#000102022	6039653.6335
8	Customer#000098587	6027021.5855
9	Customer#000064660	5905659.6159

RAG vs. Fine-Tuning

检索增强生成:RAG - Retrieval-Augmented Generation

模型微调: Fine-Tuning

RAG	模型微调
可在LLMs之间移植如果数据变得过时,可以轻松删除训练数据比微调运行成本更低更具未来性 - 如果有更好的LLM出现,可以轻松替换	如果需要最小化提示中的标记,可以选择微调启动较慢训练和运行成本较高(通常如此)

扩展Vanna

Vanna旨在连接到任何数据库、LLM和向量数据库。有一个VannaBase抽象基类定义了一些基本功能。该软件包提供了与OpenAl和ChromaDB一起使用的实现。可以轻松扩展Vanna以使用自己的LLM或向量数据库。

实践演示

1. 安装导入Vanna:

!pip install vanna import vanna from vanna.remote import VannaDefault

2. 登录 Vanna:

Vanna提供了一个获取API密钥的功能。你将收到一个发送到你的电子邮件的代码。你可以保存你的API密钥以供将来使用,这样你就不必每次都登录。

api_key = vanna.get_api_key('my-email@example.com')

3. 设置模型:

Chinook是一个公共模型,它指的是Chinook示例数据库。

vanna_model_name = 'chinook'
This is the name of the RAG model. This is typically associated with a specific dataset.
vn = VannaDefault(model=vanna_model_name, api_key=api_key)

4. 连接数据库:

这里我们正在连接到一个SQLite数据库,但你可以连接到任何SQL数据库。

vn.connect_to_sqlite('https://vanna.ai/Chinook.sqlite')

5. 提问:

现在我们将使用vn.ask来提问,它将生成SQL语句,运行SQL语句,显示表格,并生成图表。

vn.ask("What are the top 5 artists by sales?")

SELECT a.name,
sum(il.quantity) as totalsales
FROM artist a
INNER JOIN album al
ON a.artistid = al.artistid
INNER JOIN track t
ON al.albumid = t.albumid
INNER JOIN invoiceline il
ON t.trackid = il.trackid
GROUP BY a.name
ORDER BY totalsales desc limit 5;

实践演示

提问参考样例:

- What is the total sales for each artist?
- What are the top-selling albums for each artist?
- Which genre has the highest sales?
- What is the total sales for each genre?
- What are the sales trends over the years?
- How many albums are there in the database?
- Who are the top-selling artists in each genre?
- What are the top-selling tracks?
- What is the average sales per artist?
- How does the sales distribution vary across different genres?

参考: 这些是数据库中的表

实践演示

启动用户界面:

from vanna.flask import VannaFlaskApp
app = VannaFlaskApp(vn)
app.run()

其它用户交互界面 - Vanna.Al Streamlit App

安装配置:

这个项目使用Poetry,所以首先需要安装它。

pip install poetry poetry install --with dev

Poetry可以用于:

- 安装和管理项目的依赖项
- 创建一个干净的虚拟环境,该环境与 您当前的Python环境完全隔离开来

运行:

这个项目使用Poetry, 所以首先需要安装它。

poetry run streamlit run app.py

