Model symulacyjny PAM4

Clock Recovery

- Wejście: informacje o poziomach dwóch ostatnich danych oraz o poziomie sygnału na zboczu pomiędzy nimi, otrzymywane od Data Recovery.
- Wyjście: dwa sygnały zegarowe, przesunięte względem siebie o połowę okresu, przesyłane do Data Recovery.
- Poziom sygnału na zboczu informuje, czy sygnał zegara jest za późno czy za wcześnie w stosunku do sygnału synchronizującego.
- Rodzaj zbocza jest określany na podstawie otrzymywanych danych.
- W stanie synchronizacji Clock Recovery powinien na przemian otrzymywać dane 'zwolnij' i 'przyspiesz'.

Clock Recovery

- W czasie trwania sekwencji synchronizacyjnej detektor fazy reaguje jedynie na sąsiadujące dane "11" i "00"(poziomy 300 i -300mV)
- W czasie transmisji danych detektor fazy reaguje również na sąsiadujące poziomy "10" i "01"(poziomy 100 i -100mV)

Rozwiązania

- Akumulator 14 bitowy 10 najstarszych bitów determinuje częstotliwość
- Algorytm sterowania współczynnikiem ścieżki proporcjonalnej(zmniejszenie współczynnika w przypadku zmiany kierunku częstotliwości, wzrost ponowny po 10 zboczach w 1 kierunku)
- Wysoka maksymalna wartość współczynnika Kp 64, pozwala na szybkie zmiany cz.

Symulacja 10 GHz – częstotliwość VCO

Symulacja 10 GHz – stan akumulatora

Symulacja 10 GHz – współ. pętli proporcjonalnej

Symulacja 10 GHz – częstotliwość VCO w czasie transmisji danych

Symulacja 10 GHz – stan akumulatora w czasie transmisji danych

Symulacja 9.98 GHz – częstotliwość VCO

Symulacja 9.98 GHz – stan akumulatora

Symulacja 9.98 GHz – współ. pętli proporcjonalnej

Symulacja 9.98 GHz – częstotliwość VCO w czasie transmisji danych

Symulacja 9.98 GHz – stan akumulatora w czasie transmisji danych

Symulacja 10.1 GHz – częstotliwość VCO

Symulacja 10.1 GHz – stan akumulatora

Symulacja 10.1 GHz – współ. pętli proporcjonalnej

Symulacja 10.1 GHz – częstotliwość VCO w czasie transmisji danych

Symulacja 10.1 GHz – stan akumulatora w czasie transmisji danych

Ilość danych synchronizacyjnych w zależności od częstotliwości

Częstotliwość[GHz]	9.6	9.8	9.9	9.95	9.98	10	10.02	10.05	10.1	10.2	10.4
Ilosc danych[kB]	>12	5	2.8	1.3	0.6	0-0.5	0.5	1.3	2.4	5	>12
Wahania cz.[MHz]	-	2	0	0-2	1	0-1	1	2	0	2	-

Problemy Clock Recovery

- Minimalne wahania częstotliwości(+/- 1-2 MHz)
- Wahania stanu akumulatora
- Zależność prędkości synchronizacji od początkowego ułożenia zegara
- Możliwa maksymalna lub duża wartość Kp na koniec sekwencji synchronizacyjnej – możliwe błędy na początku transmisji danych

Częstotliwość = 9.9GHz, Kp=1

Częstotliwość = 9.9GHz, Kp=64

Częstotliwość = 9.9GHz, Algorytm Kp

• Cz.9.9GHz, Kp=64, Stan Akumulatora:

• Cz.9.9GHz, Algorytm Kp, Stan Akumulatora:

- Szybkość synchronizacji dla Kp=64 i zmiennego Kp jest podobna, jednak dla stałego Kp zmiany stanu akumulatora po osiągnięciu pożądanej wartości są mniejsze, zaś zmiany częstotliwości-większe.
- Wniosek najlepszym rozwiązaniem jest ustawienie stałego Kp w czasie synchronizacji, oraz zmiany Kp w czasie transferu danych(stały Kp powoduje odbiór błędnych danych – zbyt duże zmiany częstotliwości).
- W celu uproszczenia modelu można jednak pozostawić algorytm obliczania Kp w całym czasie transmisji. Jest jednak wówczas możliwy minimalny odchył stanu akumulatora na koniec sekwencji synchronizacyjnej w stosunku do pożądanej wartości.

- Thermic Jitter losowe zmiany wartości zegara na zboczach, których amplituda rośnie z temperatura. Tylko dla VCO.
- Temp. 200K

• Temp. 300K

Temp. 400K

• Periodic Jitter – periodyczne zmiany częstotliwości

• Akumulowany efekt na częstotliwości 10 GHz, temp. 400K

Częstotliwość 9.98 GHz, Temp. 300K

Jitter wyłączony

Cz. z uwzględnieniem Jitteru

Data Recovery

- Adaptacja DFE
- CTLE (z adaptacją)

Połączenie z Clock Recovery - CDR

Adaptacja DFE PAM 4

- Potrzebna do ustawienia dwóch skrajnych poziomów threshold
- Slicer z początkowo ustawioną domyślną wartością threshold porównuje wartość maksymalną w zadanej sekwencji (znanej z góry)
- Zmniejsza lub zwiększa wartość thr do momentu zmiany wartości odczytanej danej
- Setup i hold time nie wpływają na poprawność działania – wartość thr nie musi być idealna

Sygnał z wartościami threshold

Sekwencja adaptacji DFE

CTLE

- Zamodelowany za pomocą transformaty
- Częstotliwości biegunów stałe
- Funkcja filtracji cały wektor sygnału poddany filtracji

CTLE

CTLE - modelowanie

- HFboost= ωp1/wpz
- DCgain = Gain HFboost

$$H(s) = \frac{g_m}{C_p} \frac{s + \frac{1}{R_s C_s}}{\left(s + \frac{1 + g_m R_s/2}{R_s C_s}\right) \left(s + \frac{1}{R_D C_p}\right)}$$

$$\omega_z = \frac{1}{R_s C_s}, \quad \omega_{p1} = \frac{1 + g_m R_s/2}{R_s C_s}, \quad \omega_{p2} = \frac{1}{R_D C_p}$$

- Adaptacja przed wysłaniem danych
- Zadana sekwencja w PAM 2: 0 0 1 0
- Odczytywane są wartości danych oraz wartości na zboczach – potrzebne 2 sygnały zegarowe
- Tymczasowo zestaw ustawień ze zmianą fz (możliwość zmiany Gain)

Zbocze	Dana	Zbocze	Przesunięcie fz
1	1	0	0
0	1	0	-
1	1	1	+
0	1	1	-

CTLE

Sygnał z kanału

Sygnał po CTLE

CTLE- adaptacja - problemy

- Testowana z jednym modelem kanału
- Uruchamiana po wstępnej synchronizacji zegara (czasami adaptuje się bez potrzeby)

System PAM4

- 1) Synchronizacja sygnału wejściowego i wyjściowego przy pomocy sekwencji zegarowej i modułu CDR
- 2) Adaptacja CTLE
- 3) Adaptacja DFE
- 4) Transfer danych

Przykład działania modelu systemu dla częstotliwości 10.1GHz i 5kB danych

Synchronizacja zegara – początek przesyłu sekwencji

Synchronizacja zegara - koniec

Adaptacja CTLE – wynikowa charakterystyka + adaptacja DFE

Fragment sygnału danych z zegarami dla danych I zboczy

Marginesy setup time 52-94 ps

Marginesy hold time 57-94 ps

