

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI WORK INTEGRATED LEARNING PROGRAMMES

COURSE HANDOUT

Part A: Content Design

Course Title	Mathematical Foundations for Data Science
Course No(s)	DSECL ZC416
Credit Units	4
Course Author	G Venkiteswaran
Version No	3
Date	15.04.2021
Lead Instructor	G Venkiteswaran

Course Description

Vector and matrix algebra, systems of linear algebraic equations and their solutions; eigenvalues, eigenvectors and diagonalization of matrices; Calculus and optimization; Counting principles and combinatorics

Course Objectives

No	Objective- The course aims to	
CO1 Introduce concepts in linear algebra and to use it as a platform to model physical problems.		
CO2	Provide techniques for analytical and numerical solutions of linear equations and introduce the concept of convergence.	
CO3	Utilize concepts of linear algebra and calculus in solving optimization problems.	
CO4	Introduce some of the concepts in combinatorics	
CO5	Introduce some concepts from counting principles	

Text Book(s)

No	Author(s), Title, Edition, Publishing House	
T1	Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India, 10th Edition, 2015 (earlier	
	editions are also okay)	
T2	Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw Hill, 7th Ed.,	
	2011.	

Reference Book(s) & other resources

=		
No	Author(s), Title, Edition, Publishing House	
R1	K Hoffman and R Kunze, Linear Algebra, Pearson Education, 2 nd Edition, 2005.	
R2	Kolman, Busby, Ross and Rehman, Discrete Mathematical Structures for Computer Science,	

Pearson Education, 6th Edition, 2017		
R3 Operations Research: An Introduction, Pearson Education, 10 th Edition, 2017. (Earlier education)		Operations Research: An Introduction, Pearson Education, 10 th Edition, 2017. (Earlier editions
		are also okay)

Content Structure

No	Title of the module	References
M1	 Matrices, rank, determinants, solution of linear systems – analytical techniques Solution of linear systems (A (m x n) x (n x 1) = b (m x 1); A has rank r.) – just a recapitulation Solution using Gauss elimination with and without pivoting and operations count LU decomposition methods Iterative methods for linear systems 	T1: Sec 7.3, 20.1, 20.2, 20.3
M2	2. Vector spaces and subspaces, basis and dimensions, Linear transformations and properties2.1 Vector spaces, inner product spaces, properties, LI and LD, bases and dimensions, LT	T1: Sec 7.4, 7.9
	2.2. LT and Rank-Nullity theorem 2.3 NS(A), RS(A) and CS(A) – illustration	
M3	 3. Eigenvalues, Eigenvectors and singular values 3.1. Eigenvalues and eigenvectors of special matrices and their properties 3.2. Eigenbases and diagonalization 3.3. Gerschgorin's Theorem 3.4 Power Method 	T1: Sec 8.1,8.7, 20.7, 20.8
M4	 4. Decomposition methods (Eigenvalue, decomposition, QR and SVD) 4.1 Gram-Schmidt Orthogonalization procedure 4.2 QR decomposition 4.3 SVD 4.4 Dimensionality reduction 	T1: Sec 20.9 Class notes
M5	 5. Linear programming problems 5.1 Motivation – 3 problems 5.2 Application of LA to Simplex method 	Class notes
M6	6. Calculus and Optimization (applications from probability theory to be used for exemplification in Calculus)	Class notes
	6.1 Continuous functions on closed intervals, differentiation (1d case)	

	6.2 Taylor series expansion6.3 Maxima and minima6.4 Integral properties (cdf and pdf, even and off integrands, integration by	
	parts and so on) for 1d	
	7. Calculus of several variables 7.1 Review limits, continuity and differentiability (graphically and	
	algebraically)	
	7.2 Vector calculus and some of the identities	
	7.3 Maxima and minima (unconstrained) 7.4 Steepest gradient method	
	7.4 Steepest gradient method 7.5 Lagrange multipliers (for more number of constraints)	
M7	8. Counting principles and combinatorics	T2: Sec 5.1-5.3
	8.1 Induction principle	
	8.2 Mathematical induction	
	8.3 Strong induction	
	8.4 Recursive definition and structural induction	
	9. Counting Principles	
	9.1 Basics of counting	
	9.2 Pigeonhole principle	T2: C C1 C4
	9.3 Permutations and combinations 9.4 Binomial coefficients and identities	T2: Sec 6.1-6.4
	9.4 Billomial Coefficients and identities	
	10. Advanced counting	
	10.1 Application of recurrence relations	
	10.2 Solving linear recurrence relations 10.3 Generating functions	T2: Sec 8.1.
	10.3 Generating functions	8.2, 8.4

Learning Outcomes:

No	Learning Outcomes	
LO1	Students will be able to effectively use matrix algebra tools to analyse and solve systems of linear equations.	
LO2	Students will be able to use some numerical methods to solve linear systems of equations	
LO3	Students would be able to use methods in linear algebra to solve linear programming problems and methods in calculus to solve non-linear optimization problems.	
LO4	Students will be able to use the methods of counting principles and combinatorics	

Part B: Contact Session Plan

Academic Term	Second Semester 2021-2022
Course Title	Mathematical Foundations for Data Science
Course No	DSECL ZC416
Lead Instructor	G. Venkiteswaran

Course Contents

Contact Hours	List of Topic Title	Text/Ref Book/external resource
1	 Matrices, rank, determinants, solution of linear systems – analytical techniques Solution of linear systems (A (m x n) x (n x 1) = b (m x 1); A has rank r.) – just a recapitulation Solution using Gauss elimination with and without pivoting and operations count LU decomposition methods 	T1: Sec 7.3, 20.1, 20.2
2	Numerical solution for linear systems	T1: Sec 20.2, 20.3
3	 Vector spaces and subspaces, basis and dimensions, Linear transformations and properties Vector spaces, inner product spaces, properties, LI and LD, bases and dimensions, LT LT and Rank-Nullity theorem NS(A), RS(A) and CS(A) – illustration 	T1: Sec 7.9
4	 Eigenvalues and eigenvectors of special matrices and their properties Eigenbases and diagonalization Gerschgorin's Theorem Power Method 	T1: Sec 8.1,8.7, 20.7, 20.8
5-6	Decomposition methods (Eigenvalue, decomposition, QR and SVD) • Gram-Schmidt Orthogonalization procedure • QR decomposition	T1: Sec 20.9 Class notes

	SVDDimensionality reduction	
7 -8	Application of linear algebra in optimization. Modelling linear programming problem and the basics of Simplex algorithm and sensitivity analysis. • Model a LPP in construction of buildings. • Model the currency arbitrage optimization problem. • Work out the graphical method of solution in the case of 2 variable case • Simplex method for simple cases • Outline how Gauss Jordan produces the inverse matrix.	Class notes
9	 Properties of functions Continuous functions on closed intervals, differentiation (1d case) Taylor series expansion Maxima and minima Integral properties (cdf and pdf, even and off integrands, integration by parts and so on) for 1d 	Class notes
10	Calculus of several variables Review limits, continuity and differentiability (graphically and algebraically) Vector calculus and some of the identities Maxima and minima (unconstrained) Steepest gradient method Lagrange multipliers (for more number of constraints)	Class notes
11-12	 Induction principle Recursive definition and structural induction Mathematical induction Strong induction 	T2: Sec 5.1, 5.2, 5.3,
13-14	 Counting Principles Basics of counting Pigeonhole principle Permutations and combinations Binomial coefficients and identities 	T2: Sec 6.1, 6.2, 6.3,6.4
15-16	 Advanced counting Application of recurrence relations Solving linear recurrence relations Generating functions 	T2: Sec 8.1, 8.2, 8.4

The above contact hours and topics can be adapted for non-specific and specific WILP programs depending on the requirements and class interests.

Lab Details

Title	Access URL
Lab Setup Instructions	Not applicable
Lab Capsules	Not applicable
Additional References	Not applicable

Select Topics and Case Studies from business for experiential learning

Topic No.	Select Topics in Syllabus for experiential learning	Access URL
1	Assignment - linear algebra topics	
2	Assignment- discrete structures topics	

Evaluation Scheme

Legend: EC = Evaluation Component

No	Name	Type	Duration	Weight	Day, Date, Session, Time
1	Assignment 1	Online		10%	Start date: 1/06/2021
2	Assignment 2	Online		10%	Start date: 23/08/2021
3	Quiz 1	Online	*	5%	11/06/2021
4	Quiz 2	Online	*	5%	13/08/2021
5	Quiz 3	Online		5%	10/09/2021
6	Mid-Semester Exam	Closed book	90 min	30%	4/07/2021 FN
7	Comprehensive Exam	Open book	150 min	40%	26/09/2021 FN

Important Information

Syllabus for Mid-Semester Test (Closed Book): Topics in Weeks 1-8

Syllabus for Comprehensive Exam (Open Book): All topics (in sessions 1 to 16) given in plan of study

Evaluation Guidelines:

- 1. EC-1 consists of two Assignments and two Quizzes (best two out of the three would be taken for grading). Announcements regarding the same will be made in a timely manner.
- 2. For Closed Book tests: No books or reference material of any kind will be permitted. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- 3. For Open Book exams: Use of prescribed and reference text books, in original (not photocopies) is permitted. Class notes/slides as reference material in filed or bound form is permitted. However, loose sheets of paper will not be allowed. Use of calculators is permitted in all exams. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- 4. If a student is unable to appear for the Regular Test/Exam due to genuine exigencies, the student should follow the procedure to apply for the Make-Up Test/Exam. The genuineness of the reason for absence in the Regular Exam shall be assessed prior to giving permission to appear for the Make-up Exam. Make-Up Test/Exam will be conducted only at selected exam centres on the dates to be announced later.

It shall be the responsibility of the individual student to be regular in maintaining the self-study schedule as given in the course handout, attend the lectures, and take all the prescribed evaluation components such as Assignment/Quiz, Mid-Semester Test and Comprehensive Exam according to the evaluation scheme provided in the handout.