Partially Observable Markov decision process

(POMDP)

ision process

Classical

Stochastic (MDP)

- S: set of states
- A: set of actions
- Pr(s'|s,a): transition model Observable
- R(s,a,s'): reward model
- γ: discount factor
- s₀: start state

Perfect

Fully

Stochastic T(s, a, s')

Objective of a Fully Observable MDP

Find a policy

 $\pi: S \to A$

- which maximizes expected discounted reward
 - given an infinite horizon
 - assuming full observability

Partially-Observable Stochastic (POMDP)

- S: set of states
- A: set of actions
- Pr(s'|s,a): transition model
- **R**(s,a,s'): reward model
- γ: discount factor
- s₀: start state
 - O set of observation
 - O(o|a, s') = Pr(o|a, s', b)

Objective of a POMDP

Find a policy

 π : BeliefStates(S) \rightarrow A

A belief state is a *probability distribution* over states

- which maximizes expected discounted reward
 - given an infinite horizon
 - assuming partial & noisy observability

Markov decision process

- MDP adds a set of possible actions at each time step.
- The action a_t changes the transition probabilities, written as $\Pr(s_{t+1} \mid s_t, a_t)$.
- The rewards can also depend on the action and written as $\Pr(r_{t+1} \mid s_t, a_t)$.
- An MDP produces a sequence $s_1, a_1, r_2, s_2, a_2, r_3, s_3, a_3, r_4 \dots$ of states, actions, and rewards

MDP

Algorithm 1: Value iteration (Bellman, 1957)

```
input : MDP problem, convergence parameter \varepsilon output: A policy that is \varepsilon-optimal for all states begin

| Initialize V'
```

repeat

 $V \leftarrow V'$

$$\ \, {\bf for} \,\, {\it each \, state} \, s \,\, {\bf do} \,\,$$

$$\lfloor V'(s) \leftarrow R(s) + \gamma \max_{a} \sum_{s'} p(s'|s, a) V(s')$$

until CloseEnough(V, V')

return Greedy policy with respect to V'

end

POMDP

- A partially observable Markov decision process (POMDP) is a generalization of a Markov decision process (MDP).
- When the environment is only partially observable, the agent does not necessarily know which state it is in, so it cannot execute the action $\pi(s)$ recommended for that state.
- POMDPs are difficult as utility of state s and optimal action in s depends on s.

POMDP

- POMDP: the state is not directly visible. Instead, the agent receives an observation o_t drawn from $Pr(o_t \mid s_t)$.
- A POMDP generates a sequence $s_1, o_1, a_1, r_2, s_2, o_2, a_2, r_3, o_3, a_3, s_3, r_4, \ldots$ of states, observations, actions, and rewards.
- Each observation will be more compatible with some states but insufficient to identify the state uniquely

POMDP

Transition model for belief-states: Let's calculate the probability that an agent in belief state b reaches belief state b' after executing action a.

$$P(b' | b, a) = P(b' | a, b) = \sum_{o} P(b' | o, a, b) P(o | a, b)$$

Sensor model: Probability of perceiving o, given that a was performed starting in belief state b, is given by summing over all the actual states s' that the agent might reach:

$$P(o \mid a, b) = \sum_{s'} P(o \mid a, s', b) P(s' \mid a, b)$$

POMDP (belief state)

When action a is taken in belief state b(s) and o is observed, the new belief b'(s') can be calculated as follows

$$b'(s') = \Pr(s' \mid a, o, b) = \frac{\Pr(s', a, o, b)}{P(a, o, b)}$$
$$= \frac{\Pr(o \mid s', a, b) \Pr(s', a, b)}{P(a, o, b)}$$
$$= \frac{\Pr(o \mid s', a, b) \Pr(s' \mid a, b) \Pr(a, b)}{\Pr(o \mid a, b) \Pr(a, b)}$$

we can remove Pr(a, b)

POMDP (belief state)

When action a is taken in belief state b(s) and o is observed, the new belief b'(s') can be calculated using Bayes' rule:

$$b'(s') = \Pr(s' \mid b, a, o) = \frac{\Pr(o \mid a, s', b) \Pr(s' \mid a, b)}{\Pr(o \mid a, b)}$$

POMDP (Sensor Model)

When action a is taken in belief state b(s) and o is observed, the new belief b'(s') can be calculated using Bayes' rule:

$$b'(s') = \Pr(s' \mid b, a, o) = \frac{O(o \mid a, s') \sum_{s} b(s) \Pr(s' \mid s, a)}{\Pr(o \mid a, b)}$$

Probability of the observation can be computed by summing over all possible s'

$$Pr(o \mid a, b) = \sum_{s'} Pr(o \mid a, s', b) Pr(s' \mid a, b)$$
$$= \sum_{s'} O(o \mid a, s') Pr(s' \mid a, b)$$

POMDP (Sensor model)

When action a is taken in belief state b(s) and o is observed, the new belief b'(s') can be calculated using Bayes' rule:

$$b'(s') = \Pr(s' \mid b, a, o) = \frac{O(o \mid a, s') \sum_{s} b(s) \Pr(s' \mid s, a)}{\Pr(o \mid a, b)}$$

Probability of the observation can be computed by summing over all possible s'

$$Pr(o \mid a, b) = \sum_{s'} Pr(o \mid a, s', b) Pr(s' \mid a, b)$$
$$= \sum_{s'} O(o|a, s') \sum_{s} b(s) P(s'|s, a)$$

POMDPs (Transition Model)

We can now define a new "belief-state MDP" with the following transition model:

$$Pr(b'|b, a) = \sum_{o} Pr(b'|o, a, b) Pr(o|a, b)$$

$$= \sum_{o} Pr(b'|o, a, b) \sum_{s'} O(o|a, s') \sum_{s} b(s) P(s'|s, a)$$

POMDPs (Reward function)

We can now define a new "belief-state MDP" with the following transition model:

$$Pr(b'|b,a) = \sum_{o} Pr(b'|o,a,b) Pr(o|a,b)$$

$$= \sum_{o} Pr(b'|o,a,b) \sum_{s'} O(o|a,s') \sum_{s} b(s) P(s'|s,a)$$

And the following reward function:

$$\rho(b) = \sum b(s)R(s)$$

POMDPs (Policy)

• In POMDPs, an optimal policy $\pi^*(b)$ maps beliefs to actions. The policy $\pi(b)$ is a function over a continuous set of probability distributions over S.

POMDPs (Policy and Value function)

- In POMDPs, an optimal policy $\pi^*(b)$ maps beliefs to actions. The policy $\pi(b)$ is a function over a continuous set of probability distributions over S.
- A policy π can be characterized by a value function $V^{\pi}: \Delta(S) \to \mathbb{R}$ which is defined as the expected future discounted reward $V^{\pi}(b)$ the agent can gather by following π starting from belief b:

$$V^{\pi}(b) = E_{\pi} \left[\sum_{t=0}^{h} \gamma^{t} R(b_{t}, \pi(b_{t})) \mid b_{0} = b \right]$$

where $R(b_t, \pi(b_t)) = \sum_{s \in S} R(s, \pi(b_t)) b_t(s)$.

POMDPs (value iteration)

• The value of an optimal policy π^* is identified by the optimal value function V^* . Considering the Bellman optimality equation we have:

$$V^{*}(b) = \max_{a \in A} \left[\sum_{s \in S} R(s, a)b(s) + \gamma \sum_{o \in O} p(o \mid a, b) \ V^{*}(b^{ao}) \right]$$

with b^{ao} given by Bayes' rule for b'(s'), and $p(o \mid a, b)$ is the sensor model.

• When above equation holds for every $b \in \Delta(S)$ we are ensured the solution is optimal.

POMDPs

- Computing value functions over a continuous belief space fortunately is possible as the value function has a particular structure that we can exploit (Sondik, 1971).
- Value function can be parameterized by a finite number of vectors and has a convex shape.

Dempster-Shafer theory (DST)

Introduction

- Dempster-Shafer theory (DST), is a general framework for reasoning with uncertainty.
- Arthur P. Dempster first introduced DST in the context of statistical inference, later Glenn Shafer developed a general framework.
- In DST, a degree of belief is referred to as a mass and formulates a belief function rather than a Bayesian probability distribution.

Introduction

- Let X be the universe: the set representing all possible states of a system under consideration. The power set 2^X is the set of all subsets of X, including the empty set \emptyset .
- For example, if: $X = \{a, b\}$ then $2^X = \{\emptyset, \{a\}, \{b\}, X\}$.
- DST assigns a belief mass to each element of the power set.

Belief Assignment

- Formally, a function $m: 2^X \to [0,1]$ is called a basic belief assignment (BBA), when it has two properties.
 - First, the mass of the empty set is zero: $m(\emptyset) = 0$.
 - Second, the masses of all the members of the power set add up to a total of 1: $\sum_{A \in 2^X} m(A) = 1$.

Mass function

- The mass m(A) of A, a given member of the power set, expresses the proportion of all relevant and available evidence that supports the claim that the actual state belongs to A but to no particular subset of A.
- The value of m(A) pertains only to the set A and makes no additional claims about any subsets of A, each of which have, by definition, their own mass.

- From the mass assignments, the upper and lower bounds of a probability interval can be defined.
- This interval is bounded by two non-additive continuous measures called belief (or support) and plausibility:
 - bel $(A) \leq P(A) \leq \operatorname{pl}(A)$.
 - The belief bel(A) for a set A is defined as the sum of all the masses of subsets of the set of interest: bel(A) = $\sum_{B|B\subset A} m(B)$

- From the mass assignments, the upper and lower bounds of a probability interval can be defined.
- This interval is bounded by two non-additive continuous measures called belief (or support) and plausibility:
 - bel $(A) \leq P(A) \leq \operatorname{pl}(A)$.
 - The belief bel(A) for a set A is defined as the sum of all the masses of subsets of the set of interest: bel(A) = $\sum_{B|B\subset A} m(B)$
 - The plausibility pl(A) is the sum of all the masses of the sets B that intersect the set of interest A: $pl(A) = \sum_{B|B \cap A \neq \emptyset} m(B)$.

• The two measures are related to each other as follows: $pl(A) = 1 - bel(\overline{A})$.

Example

Hypothesis	Mass	Belief	Plausibility
Neither (alive nor dead)	0	0	0
Alive	0.2	0.2	0.5
Dead	0.5	0.5	0.8
Either (alive or dead)	0.3	1.0	1.0

- The two measures are related to each other as follows: $pl(A) = 1 bel(\overline{A})$.
- For finite A, given the belief measure bel(B) for all subsets B
 of A, we can find the masses m(A) with the following inverse
 function:

$$m(A) = \sum_{B|B\subseteq A} (-1)^{|A-B|} \operatorname{bel}(B) \tag{1}$$

where |A - B| is the difference of the cardinalities of the two sets.

DST and Bayesian Theory

 In the generalized probability view of DS theory, belief and plausibility are regarded as lower and upper bounds respectively for an underlying probability which is unknown.

$$bel(A) \leq P(A) \leq pl(A)$$

- Bayesian framework assign probabilities to a single event. In DST, probability values are assigned to a set of possibilities.
- the generalization of DST allows one to compute the posterior belief/plausibility given the likelihood beliefs/plausibilities and prior beliefs/plausibilities.