WHAT IS CLAIMED IS:

1. A method for the treatment of kaolin particulate material comprising:

- (a) providing a dispersed aqueous suspension comprising kaolin particulate material and having a pH of at least about 7.5;
- (b) selecting at least one selective flocculation polymer, wherein said at least one selective flocculation polymer has a measured anionicity ranging from about 1% to about 12%;
- (c) selectively flocculating said suspension into a first layer and a second layer by adding to said suspension said at least one selective flocculation polymer; and
 - (d) separating said first layer from said second layer.
- 2. A method according to claim 1, wherein said kaolin particulate material comprises a primary kaolin clay.
- 3. A method according to claim 1, wherein said kaolin particulate material comprises a sedimentary kaolin clay.
- 4. A method according to claim 1, wherein said kaolin particulate material comprises at least one impurity.
- 5. A method according to claim 4, wherein said at least one impurity is present in an amount of at least 0.1% by weight, based on the dry weight of the kaolin particulate material.
- 6. A method according to claim 5, wherein said at least one impurity is chosen from titania, anatase, smectite, iron oxide, and mica.
- 7. A method according to claim 1, wherein said dispersed aqueous suspension is provided by a process comprising including at least one dispersant with the aqueous suspension of kaolin particulate material.
- 8. A method according to claim 1, further comprising blunging said dispersed aqueous suspension.

9. A method according to claim 8, wherein said suspension comprises said kaolin particulate material in an amount of at least about 35% by weight, on a dry weight basis, prior to blunging.

- 10. A method according to claim 8, wherein said suspension comprises said kaolin particulate material in an amount ranging from about 40% to about 70% by weight, on a dry weight basis, prior to blunging.
- 11. A method according to claim 1, further comprising conditioning said dispersed aqueous suspension by allowing said suspension to age for a period of at least 30 minutes.
- 12. A method according to claim 11, further comprising conditioning said dispersed aqueous suspension by adding to said suspension at least one conditioning chemical.
- 13. A method according to claim 12, wherein said at least one conditioning chemical is added after said ageing.
- 14. A method according to claim 11, further comprising adjusting the pH of said suspension to a pH ranging from about 6.5 to about 7.5 prior to said ageing.
- 15. A method according to claim 1, wherein said pH is at least about 9.5.
- 16. A method according to claim 1, wherein said pH is in the range of from about 10.5 to about 12.5.
- 17. A method according to claim 1, wherein said pH is at least about 11.5.
- 18. A method according to claim 1, wherein said at least one selective flocculation polymer has a measured anionicity ranging from about 4.5% to about 8%.
- 19. A method according to claim 1, wherein said at least one selective flocculation polymer has a measured anionicity ranging from about 6% to about 7%.

20. A method according to claim 1, wherein said at least one selective flocculation polymer is chosen from water-soluble weakly anionic organic polyelectrolytes.

- 21. A method according to claim 1, wherein said at least one selective flocculation polymer is chosen from polyacrylamide copolymers.
- 22. A method according to claim 1, wherein said at least one selective flocculation polymer is chosen from polyacrylamide/polyacrylic acid copolymers.
- 23. A method according to claim 1, wherein said at least one selective flocculation polymer has a molecular weight of at least 100,000.
- 24. A method according to claim 1, wherein said at least one selective flocculation polymer has a molecular weight of at least 1,000,000.
- 25. A method according to claim 1, wherein said selecting at least one selective flocculation polymer comprises measuring the measured anionicity value by a titration method.
- 26. A method according to claim 1, wherein said suspension comprises said kaolin particulate material in an amount ranging from about 10% to about 15% by weight, on a dry weight basis, prior to said selective flocculating.
- 27. A method according to claim 1, wherein said at least one selective flocculation polymer is present in an amount ranging from about 0.01% to about 0.5% by weight, based on the dry weight of the kaolin particulate material.
- 28. A method according to claim 1, wherein said at least one selective flocculation polymer is added to said suspension in the form of a solution comprising said at least one polymer.
- 29. A method according to claim 28, wherein said at least one selective flocculation polymer is present in the solution at a concentration ranging from about 0.025% to about 0.25%.

30. A method according to claim 28, wherein said at least one selective flocculation polymer is present in the solution at a concentration of about 0.075%.

- 31. A method according to claim 1, wherein said second layer has a specific gravity ranging from about 1.001 to about 1.030
- 32. A method according to claim 1, wherein said second layer has a specific gravity ranging from about 1.001 to about 1.004.
- 33. A method according to claim 1, wherein said selective flocculating comprises mixing said suspension.
- 34. A method according to claim 1, further comprising redispersing said separated flocculated product layer and then selectively flocculating said redispersed layer.
- 35. A method for the treatment of kaolin particulate material comprising:
- (a) providing a dispersed aqueous suspension of said kaolin particulate material having a pH of at least about 7.5;
- (b) selecting at least one selective flocculation polymer, wherein said at least one polymer has a narrow range of variability for measured anionicity and has a measured anionicity ranging from about 1% to about 12%;
- (c) selectively flocculating said suspension with adjusted pH into a first layer and a second layer by adding to said suspension said at least one polymer; and
 - (d) separating said first layer from said second layer.
- 36. A method according to claim 35, wherein said at least one selective flocculation polymer has a measured anionicity ranging from about 4.5% to about 8%.
- 37. A method according to claim 35, wherein said at least one selective flocculation polymer has a measured anionicity ranging from about 6% to about 7%.

38. A method for the treatment of kaolin particulate material comprising:

- (a) providing a dispersed aqueous suspension of said kaolin particulate material having a pH of at least about 7.5;
- (b) selecting at least one selective flocculation polymer, wherein said at least one selective flocculation polymer has been manufactured by a continuous process and has a measured anionicity ranging from about 1% to about 12%;
- (c) selectively flocculating said suspension with adjusted pH into a first layer and a second layer by adding to said suspension said at least one selective flocculation polymer; and
 - (d) separating said first layer from said second layer.
- 39. A method according to claim 38, wherein said at least one selective flocculation polymer has a measured anionicity ranging from about 4.5% to about 8%.
- 40. A method according to claim 38, wherein said at least one selective flocculation polymer has a measured anionicity ranging from about 6% to about 7%.