INSURANCE PREMIUM ANALYSIS USING KNIME

Project Guide:-SAYAN CHAKBRABOTY

Presented by

RIAJ IKBAL

1

33200121135

2

BTECH | CSE | 3RD YEAR 3

FROM
TECHNO
INTERNATIONAL
BATANAGAR

4

motive

The loss ratio is constructed specifically to analyze the operation of an insurance company.

At first we need to read the data set so here i used csv reader

now here i have filtered the column accordingly and removed the unnecessary columns to the right side

here's the filtered table

first partition

second partitionm

K-means for grouping the unlabeled dataset into different clusters.

here clusters are created we can see the coverage, premiums of the insurance, and the loss on the insurance after this i have used cluster assigner it assigns new data to an existing set of prototypes, which are obtained

Edit Hilite N		101011111111111					
ole "default" - Rows:	35 Spec -	Columns: 6 Pr	operties Flow	Variables			
Row ID S	State	D premiums	D insuran	S Region	S Cluster	S Cluster	
Row0 Ala	abama	784.55	145.08	South	cluster_0	cluster_0	
Row3 Ark	kansas	827.34	142.39	South	cluster_0	cluster_0	
Row5 Col	lorado	835.5	139.91	West	cluster_0	cluster_0	
Row6 Cor	nnecticut	1,068.73	167.02	Northeast	cluster_1	cluster_1	
Row7 Del	laware	1,137.87	151.48	South	cluster_1	cluster_1	
Row9 Flo	rida	1,160.13	144.18	South	cluster_1	cluster_1	
Row10 Ge	orgia	913.15	142.8	South	cluster_0	cluster_0	
Row11 Hat	waii	861.18	120.92	West	cluster_0	cluster_0	
Row14 Inc	diana	710.46	108.92	Midwest	cluster_2	cluster_2	
Row15 Iov	wa	649.06	114.47	Midwest	cluster_2	cluster_2	
Row16 Kar	nsas	780.45	133.8	Midwest	cluster_0	cluster_0	
Row19 Ma	ine	661.88	96.57	Northeast	cluster_2	cluster_2	
Row20 Ma	ryland	1,048.78	192.7	South	cluster_1	cluster_1	
Row22 Mic	:higan	1,110.61	152.26	Midwest	cluster_1	cluster_1	
Row23 Mir	nnesota	777.18	133.35	Midwest	cluster_0	cluster_0	
Row24 Mis	ssissippi	896.07	155.77	South	cluster_0	cluster_0	
Row25 Mis	souri	790.32	144.45	Midwest	cluster_0	cluster_0	
Row26 Mo	ntana	816.21	85.15	West	cluster_0	cluster_0	
Row27 Ne	braska	732.28	114.82	Midwest	cluster_2	cluster_2	
Row29 Ne	w Hamps	746.54	120.21	Northeast	cluster 2	cluster_2	
Row30 Ne	w Jersey	1,301.52	159.85	Northeast	cluster_1	cluster_1	
Row33 No	rth Carolina	708.24	127.82	South	cluster_2	cluster_2	
Row34 No	rth Dakota	688.75	109.72	Midwest	cluster_2	cluster_2	
Row35 Oh	iio	697.73	133.52	Midwest	cluster_2	cluster_2	
Row36 Ok	lahoma	881.51	178.86	South	cluster 0	cluster_0	
Row38 Per	nnsylvania	905.99	153.86	Northeast	cluster 0	cluster_0	
		1,148.99	148.58	Northeast	cluster 1	cluster 1	
		669.31	96.87	Midwest	cluster_2	cluster_2	
	nnessee	767.91	155.57	South	cluster_0	cluster_0	
Row44 Uta		809.38	109.48	West	cluster 0	cluster 0	
		716.2	109.61	Northeast	cluster 2	cluster_2	
		768.95	153.72	South	cluster 0	cluster 0	
		890.03	111.62	West	cluster 0	cluster 0	
		670.31	106.62	Midwest	cluster 2	cluster 2	
	omina	791.14	122.04	West	cluster 0	cluster 0	

This node performs a principal component analysis (PCA) on the given data.

The input data is projected from its original feature space into a space of (possibly) lower dimension with a minimum of information loss.

the transformed data

ic deradic ice	ows: 35 Spec -	Columns: 7 Pr	operties Flow	Variables			
Row ID	S State	D premiums	D insuran	S Region	S Cluster	S Cluster	D PCA di
Row0	Alabama	784.55	145.08	South	cluster_0	cluster_0	-63.393
Row3	Arkansas	827.34	142.39	South	cluster_0	cluster_0	-21.037
Row5	Colorado	835.5	139.91	West	cluster 0	cluster 0	-13.142
Row6	Connecticut	1,068.73	167.02	Northeast	cluster_1	cluster_1	221.597
Row7	Delaware	1,137.87	151.48	South	cluster_1	cluster_1	289
Row9	Florida	1,160.13	144.18	South	cluster_1	cluster 1	310.488
Row10	Georgia	913.15	142.8	South	cluster_0	cluster_0	64.442
Row11	Hawaii	861.18	120.92	West	cluster_0	cluster_0	10.668
Row14	Indiana	710.46	108.92	Midwest	cluster_2	cluster_2	-140.515
Row15	Iowa	649.06	114.47	Midwest	cluster_2	cluster_2	-201.137
Row16	Kansas	780.45	133.8	Midwest	cluster_0	cluster_0	-68.521
Row19	Maine	661.88	96.57	Northeast	cluster_2	cluster 2	-190.03
Row20	Maryland	1,048.78	192.7	South	cluster 1	cluster 1	204.112
Row22	Michigan	1,110.61	152.26	Midwest	cluster 1	cluster 1	261.929
Row23	Minnesota	777.18	133.35	Midwest	cluster 0	cluster 0	-71.819
Row24	Mississippi	896.07	155.77	South	cluster 0	cluster 0	48.637
Row25	Missouri	790.32	144.45	Midwest	cluster_0	cluster_0	-57.707
Row26	Montana	816.21	85.15	West	cluster 0	cluster 0	-37.422
Row27	Nebraska	732.28	114.82	Midwest	cluster 2	cluster 2	-118.242
Row29	New Hamps	746.54	120.21	Northeast	cluster 2	cluster 2	-103.544
Row30	New Jersey	1,301.52	159.85	Northeast	cluster_1	cluster_1	452.721
Row33	North Carolina		127.82	South	cluster_2	cluster_2	-140.974
Row34	North Dakota	688.75	109.72	Midwest	cluster_2	cluster 2	-162.058
Row35	Ohio	697.73	133.52	Midwest	cluster 2	cluster 2	-150.911
Row36	Oklahoma	881.51	178.86	South	cluster 0	cluster 0	36.279
Row38	Pennsylvania	905.99	153.86	Northeast	cluster 0	cluster 0	58.338
Row39	Rhode Island	1,148.99	148.58	Northeast	cluster 1	cluster_1	299.803
Row41	South Dakota	669.31	96.87	Midwest	cluster 2	cluster 2	-182.605
Row42	Tennessee	767.91	155.57	South	cluster 0	cluster 0	-78.99
Row44	Utah	809.38	109.48	West	cluster 0	cluster 0	-41.969
Row45	Vermont	716.2	109.61	Northeast	cluster 2	cluster_2	-134.736
Row46	Virginia	768.95	153.72	South	cluster_0	cluster_0	-78.126
Row47	Washington	890.03	111.62	West	cluster 0	cluster 0	38.533
Row49	Wisconsin	670.31	106.62	Midwest	cluster 2	cluster 2	-180.705
Row50	Wyoming	791.14	122.04	West	cluster 0	cluster 0	-58.966

after that we plotting the data in x & y axis

the states which have maximum premiums holder are from 750 -800

also in bar chart plotting is done

in midwest the coverage of insurance is going in negative same in west and northeast has the most premiums

Calculates for each pair of selected columns a correlation coefficient, i.e. a measure of the correlation of the two variables.

after selection put CSS rules into a single string and set it as a flow variable 'customCSS so i have taken this columns

also line plot is necessary to understand the story

so company seems to be in heavy loss lets further investigate the data

after watching all plots now connect pca with this node performs a principal component analysis (PCA) on the given input data. The directions of maximal variance (the principal components) are extracted and can be used in the PCA Apply node to project the input into a space of lower dimension while preserving a maximum of information.

now i have used statistics to calculate statistical moments such as minimum, maximum, mean, standard deviation, variance, median, overall sum, number of missing values and row count across all numeric columns, and counts all nominal values together with their occurrences. The dialog offers two options for choosing the median and/or nominal values calculations:

again finding the correlations

i have taken degree of freedom as column

now line plot

but as we can see their is a huge growth no loss in the line plot

Thanks for watching

