iSDX: An Industrial-Scale Software-Defined IXP

Arpit Gupta
Princeton University

http://sdx.cs.princeton.edu

Robert MacDavid, Rüdiger Birkner, Marco Canini, Nick Feamster, Jennifer Rexford, Laurent Vanbever

Internet Exchange Points (IXPs)

Software Defined IXPs (SDXs)

Deployment Ready SDX is Hard!

Deployment Experience:

- Inter-Agency Exchange
- Large IXP in Europe
- Smaller IXPs in Asia

Challenges:

Data Plane Scalability

— ...

Data Plane Scalability Challenges

	evices Operations	Data Plane Performance	
Devices		State (# entries)	Update Rate (flow-mods/s)
	Match-Action on Multiple Headers	100K	2,500

Data Plane Scalability Challenges

		Data Plane	Performance
Devices	Operations	State (# entries)	Update Rate (flow-mods/s)
	Match-Action on Multiple Headers	100K	2,500
	Matches on IP Prefixes only	~1M	N/A

Problem: Optimize the usage of available devices

Simple Example

Forwarding Table Entries at SDX

SDN Policies	# Forwarding Table Entries	
$dPort = 443 \rightarrow fwd(C)$	1	
$dPort = 22 \rightarrow fwd(C)$	1	ASA
dPort = 80 → fwd(E)	1	-ASB

Number of forwarding table entries for A & B's Outbound SDN Policies

	Simple Example
Baseline	3

Large IXP Dataset:

- BGP RIBs & Updates from large IXP
- 511 IXP participants
- 96 million peering routes for 300K IP prefixes
- 25K BGP updates for 2-hour duration

	Simple Example	Large IXP
Baseline	3	62K

Large IXP Dataset:

- BGP RIBs & Updates from large IXP
- 511 IXP participants
- 96 million peering routes for 300K IP prefixes
- 25K BGP updates for 2-hour duration

	Simple Example	Large IXP
Baseline	3	62K

Satisfies design goals, but ...

	Simple Example	Large IXP
Baseline	3	62K

... not congruent with BGP!

Challenge: Congruence with BGP

Ensure **p** is not forwarded to C

Solution: SDN Policy Augmentation

Match on prefixes advertised by C

Data Plane State Explosion!

SDN Policies		varding Entries	•	
	10/8	40/8	80/8	
dPort = $443 \rightarrow \text{fwd}(C)$	1	1	0]
dPort = $22 \rightarrow \text{fwd}(C)$	1	1	0	
$dPort = 443 \rightarrow fwd(D)$	1	1	1	}-3

SDN Policy Augmentation increases forwarding table entries

	Simple Example	Large IXP
Baseline	3	62K
Policy Augmentation	7	68M

Not possible to support these many forwarding table entries!

Forwarding Equivalence Classes

SDN Policies	# Forwarding Table Entries		
	10/8	40/8	80/8
dPort = 443 → fwd(C)	1	1	0
$dPort = 22 \rightarrow fwd(C)$	1	1	0
dPort = 443 → fwd(D)	1	1	1

10/8, 40/8 exhibit similar forwarding behavior

Leveraging Forwarding Equivalence

Leveraging Forwarding Equivalence

	Simple Example	Large IXP
Baseline	3	62K
Policy Augmentation	7	68M
*FEC Computation	4	21M

[*Gupta et al., SIGCOMM'14]

Still not possible to support these many forwarding table entries!

More Efficient FEC Computation

SDN Policies	# Forwarding Table Entries		
	{10/8, 40/8}	80/8	
dPort = $443 \rightarrow \text{fwd(C)}$	1	0	
dPort = $22 \rightarrow \text{fwd}(C)$	1	0	
dPort = 443 → fwd(D)	1	1	

Independent FEC Computation can be more efficient

Partitioning FEC Computation

- Large number of SDX participants
 - Many different policies on groups of prefixes
 - Leads to a large number of small FECs of prefixes
- Compute FECs independently
 - Separate computation per participant
 - Leads to small number of large FECs, and less frequent recomputation
 - Enables "scale out" of the FEC computation

FEC Computation Partitioning in Action

SDN Policies	# Forwarding Table Entries	
	{10/8, 40/8}	80/8
dPort = $443 \rightarrow \text{fwd(C)}$	1	0
dPort = $22 \rightarrow \text{fwd}(C)$	1	0

 $dPort = 443 \rightarrow fwd(D)$

A & B independently compute FECs

	Simple Example	Large IXP
Baseline	3	62K
Policy Augmentation	7	68M
FEC Computation	4	21M
Independent FEC Computation	3	763K

Also requires support for 15K flow-mods/seconds

Undesired BGP & SDN Coupling

SDN Policies	# Forwarding Table Entries		
	10/8	40/8	80/8
dPort = $443 \rightarrow \text{fwd(C)}$	1	1	0
dPort = $22 \rightarrow \text{fwd}(C)$	1	1	0

dPort = $443 \rightarrow \text{fwd}(D)$	1 → 0	1	1
---	-------	---	---

Incoming BGP Update: {AS D withdraws route for prefix 10/8}

Decoupling BGP from SDN Policies

- Leverage advances in commodity hw switches
 - Support for Bitmask Matching (L2 headers)

- Extend BGP "next hop" encoding
 - So far: encode FECs (single field)
 - New idea: encode reachability bitmask (multi field)
- Changing only the BGP announcements
 - No need to update the SDX data plane!

Reachability Bitmask in Action

Reachability Bitmask in Action

Reachability Bitmask in Action

SDN Policies	# Forwarding Table Entries	
	С	
$dPort = 443 \rightarrow fwd(C)$	1	1,
dPort = 22 → fwd(C)	1	
$dPort = 443 \rightarrow fwd(D)$	1	7-1

Reduces Data Plane State

	Simple Example	Large IXP
Baseline	3	62K
Policy Augmentation	7	68M
FEC Computation	4	21M
Independent FEC Computation	3	763K
Reachability Encoding	3	65K

We can now run SDX over commodity hardware switches

iSDX Evaluation Summary

Data Plane State:

Requires 65K < 100K forwarding table entries

Data Plane Update Rate:

Requires 0 < 2500 flow-mods/second

Other Goals:

- Processes BGP update bursts in real time (50 ms)
- Requires only 360 BGP Next Hops compared to 25K from previous solutions

You Can Run iSDX Today!

http://sdx.cs.princeton.edu

- Running code
 - Vagrant & Docker based setup
 - Instructions to run with Hardware Switches
- ONF's Open Source SDN
 - Community: https://community.opensourcesdn.org/wg/iSDX/ dashboard
 - Mailing List <u>isdx@community.OpenSourceSDN.org</u>