Chapter 7 Lebesgue Measure

Arthur Chen

March 5, 2022

7.2 Outer Measure

Exercise 7.2.1

Prove Lemma 7.2.5. Show that outer measure has the following six properties:

v - Empty set

The empty set \emptyset has outer measure $m^*(\emptyset) = 0$.

Let $\epsilon > 0$, and let B_i be an open box with volume less than ϵ . B_i covers the empty set, for all values of ϵ , so $m^*(\emptyset) \leq \epsilon$ for all $\epsilon > 0$. Thus 0 is a lower bound for the volume of the boxes covering \emptyset . In fact, it is a least lower bound, because the volume of a box is nonnegative. Thus $0 = \inf\{\text{vol}(B_i) : B_i \text{ covers } \emptyset\} = m^*(\emptyset)$.

vi - Positivity

We have $0 \le m^8(\Omega) \le +\infty$ for every measurable set Ω .

The outer measure is the infimum of the volume of open boxes that cover a set. The volume of open boxes is nonnegative, meaning that the infimum is ≥ 0 .

vii - Monotonicity

If $A \subset B \subset \mathbb{R}^n$, then $m^*(A) \leq m^*(B)$.

Let (B_j) cover B. Then (B_j) covers A, and thus the infimum of the volume of boxes that cover A is less than or equal to the infimum of the volume of boxes that cover B.

x - Countable Sub-additivity

If $(A_j)_{j\in J}$ are a countable collection of subsets of \mathbb{R}^n , then $m^*(\cup_{j\in J}A_j)\leq \sum_{j\in J}m^*(A_j)$.

Fix $\epsilon > 0$. Because A can be covered by a countable number of boxes, the index set can be relabeled as $J = \{j_1, j_2 \dots\}$.

Lemma 1 Let B be an outer measurable set. Then for all $\epsilon > 0$, there exists a countable covering of B by open boxes $(A_j)_{j \in J}$ such that $\sum_{j \in J} vol(A_j) < m^*(B) + \epsilon$.

Proof: Suppose not. Then there exists an $\epsilon > 0$ such that for all countable coverings of B by open boxes $(A_j)_{j \in J}$, we have $\sum_{j \in J} vol(A_j) \geq m^*(B) + \epsilon$. Then $m^*(B) + \epsilon$ is a lower bound for the set

$$\{\sum_{j\in J} vol(A_j): (A_j)_{j\in J} \ covers \ B; J \ at \ most \ countable\}$$

which contradicts $m^*(B)$ being the greatest lower bound for this set.

Using the lemma, for all $j \in N$, we can cover A_j with countable open boxes with volume less than $m^*(A_j) + \frac{\epsilon}{2^j}$. Denoting these boxes B_{jk} , the B_{jk} cover $\bigcup_{j \in J} A_j$). Because the A_j and B_k are countable, the B_{jk} are countable. Thus

$$m^*(\bigcup_{j\in J} A_j) \le \sum_{j\in\mathbb{N}, k\in\mathbb{N}} \operatorname{vol}(B_{jk}) < \sum_{j\in\mathbb{N}} (m^*(A_j) + \frac{\epsilon}{2^j}) \le \sum_{j\in\mathbb{N}} (m^*(A_j)) + \epsilon$$

Because $\epsilon > 0$ was arbitrary, the result is proved.

viii - Finite Sub-additivity

If $(A_j)_{j\in J}$ are a finite collection of subsets of \mathbb{R}^n , then $m^*(\bigcup_{j\in J}A_j)\leq \sum_{j\in J}m^*(A_j)$. This just follows from x.

xiii - Translation Invariance

If Ω is a subset of \mathbb{R}^n and $x \in \mathbb{R}^n$, then $m^*(x + \Omega) = m^*(\Omega)$. Let $(A_j)_{j \in J}$ be a countable cover of Ω . Consider $A_j + x$. It has volume

$$vol(A_j + x) = \prod_{i=1}^{n} ((b_i + x_i) - (a_i + x_i)) = \prod_{i=1}^{n} (b_i - a_i) = vol(A_j)$$

A covering means that for all $p \in \Omega$, there exists A_j such that $p \in A_j$. For all points $p+x \in \Omega+x$, there exists A_j+x such that $p+x \in A_j+x$. Thus, $(A_j+x)_{j\in J}$ cover $\Omega+x$. Since the volume of A_j is unchanged through translation, the infimum of their union remains unchanged, so $m^*(\Omega+x)=m^*(\Omega)$.