1	(a)	(i)	State the SI base units of volume.
		(ii)	base units of volume
			[1]
	(b)	The	volume V of liquid that flows through a pipe in time t is given by the equation
			$\frac{V}{t} = \frac{\pi P r^4}{8Cl}$
			ere P is the pressure difference between the ends of the pipe of radius r and length l . constant C depends on the frictional effects of the liquid.
		Det	ermine the base units of C .
			base units of C[3]

A ball is thrown vertically down towards the ground with an initial velocity of 4.23 m s ⁻¹ . The ball falls for a time of 1.51 s before hitting the ground. Air resistance is negligible.
(a) (i) Show that the downwards velocity of the ball when it hits the ground is $19.0 \mathrm{ms^{-1}}$.
(ii) Calculate, to three significant figures, the distance the ball falls to the ground.
distance = m [2]
(b) The ball makes contact with the ground for 12.5 ms and rebounds with an upwards velocity of 18.6 m s ⁻¹ . The mass of the ball is 46.5 g.
(i) Calculate the average force acting on the ball on impact with the ground.
magnitude of force =N
direction of force[4]
(ii) conservation of energy to determine the maximum height the ball reaches after it hits the ground.
height = m [2]
(c) State and explain whether the collision the ball makes with the ground is elastic or inelastic.
[1]

	<u>////////</u>
	mass mass
	Fig. 3.1
	in equilibrium. Explain, by reference to the forces acting on the mass, wha
is meant by	equilibrium.
	[2]
b) The mass is	s pulled down and then released at time $t = 0$. The mass oscillates up and
-	ariation with t of the displacement of the mass d is shown in Fig. 3.2.
	6.0
$d/10^{-2}{\rm m}$	
	4.0
	2.0
	0 0.2 0.4 0.6 0.8 1.0
	-2.0 t/s
	-4.0
	-6.0
	Fig. 3.2
Fig. 3.2	Fig. 3.2
Fig. 3.2	Fig. 3.2 to state a time, one in each case, when ss is at maximum speed,
Fig. 3.2 (i) the mas	Fig. 3.2 to state a time, one in each case, when ss is at maximum speed,
Fig. 3.2 (i) the mas	Fig. 3.2 to state a time, one in each case, when ss is at maximum speed, time =
Fig. 3.2 (i) the mas (ii) the elas	Fig. 3.2 to state a time, one in each case, when ss is at maximum speed, time =

(c) The arrangement shown in Fig. 3.3 is used to determine the length l of a spring when different masses M are attached to the spring.

Fig. 3.3

The variation with mass M of l is shown in Fig. 3.4.

Fig. 3.4

(i)	State and explain whether the spring obeys Hooke's law.
	[2]
(ii)	Show that the force constant of the spring is 26 N m ⁻¹ .
	[2]
(iii)	A mass of 0.40kg is attached to the spring. Calculate the energy stored in the
` '	spring.
	energy = J [3]
	g ,

(a)	The	output of a heater is 2.5 kW when connected to a 220 V supply.
	(i)	Calculate the resistance of the heater.
		resistance = Ω [2]
	(ii)	The heater is made from a wire of cross-sectional area $2.0\times10^{-7}\text{m}^2$ and resistivity $1.1\times10^{-6}\Omega\text{m}$.
		your answer in (i) to calculate the length of the wire.
		length = m [3]
(b)	The	supply voltage is changed to 110V.
	(i)	Calculate the power output of the heater at this voltage, assuming there is no change in the resistance of the wire.
		power = W [1]
	(ii)	State and explain quantitatively one way that the wire of the heater could be changed to give the same power as in (a) .
		[2]

• • • • • • • • • • • • • • • • • • • •	 	 	• • • • • •

(ii) Kirchhoff's second law is linked to the conservation of a certain quantity. State this quantity.

_____[1]

(b) The circuit shown in Fig. 5.1 is used to compare potential differences.

Fig. 5.1

The uniform resistance wire XY has length 1.00 m and resistance 4.0 Ω . Cell A has e.m.f. 2.0 V and internal resistance 0.50 Ω . The current through cell A is I. Cell B has e.m.f. E and internal resistance r.

The current through cell B is made zero when the movable connection J is adjusted so that the length of XJ is $0.90\,\text{m}$. The variable resistor R has resistance $2.5\,\Omega$.

(i) Apply Kirchhoff's second law to the circuit CXYDC to determine the current *I*.

(ii)	Calculate the potential difference across the length of wire XJ.
	potential difference =V [2]
(!!!\	value and average in (iii) to extent the value of F
(iii)	your answer in (ii) to state the value of E.
	<i>E</i> = V [1]
(iv)	State why the value of the internal resistance of cell B is not required for the determination of $\it E$.
	[1]

(a) A laser is used to produce an interference pattern on a screen, as shown in Fig. 6.1. 6

Fig. 6.1 (not to scale)

The laser emits light of wavelength 630 nm. The slit separation is 0.450 mm. The distance between the slits and the screen is 1.50 m. A maximum is formed at P₁ and a minimum is formed at P₂.

Interference fringes are observed only when the light from the slits is coherent.

(i)	Explain what is meant by coherence.
	[2
(ii)	Explain how an interference maximum is formed at P ₁ .
(iii)	Explain how an interference minimum is formed at P_2 .
	[1
(iv)	Calculate the fringe separation.

fringe separation = m [3]

(b)	State the effects, if any, on the fringes when the amplitude of the waves incident on the
	double slits is increased.
	[3]

(a)	The	spontaneous decay of polonium is shown by the nuclear equation
		$^{210}_{84} \text{Po} \rightarrow ^{206}_{82} \text{Pb} + \text{X}.$
	(i)	State the composition of the nucleus of X.
	(ii)	The nuclei X are emitted as radiation. State two properties of this radiation. 1
		2
(b)	of le	e mass of the polonium (Po) nucleus is greater than the combined mass of the nuclead (Pb) and X. a conservation law to explain qualitatively how this decay sible.
	(a)	(ii) (ii) (b) The of le pos