

Modular Framework for Data Acquisition and Annotation

Authors:

- Guilherme Claro n° 98432
- Tiago Mostardinha nº 103944
- Eduardo Fernandes nº 102648
- Pedro Durval
- João Afonso

n° 103173

n° 103037

• Samuel Silva

Supervisors:

- Fábio Barros
- António Teixeira

Index

INTRODUCTION	<u>RELATED</u> WORK
REQUIREMENTS	PERSONA
ARCHITECTURE	<u>USE</u> CASE
CONTEXT	DEMO
CHALLENGES	

Context

INITIAL GOALS

- Completed frontend
- Functional Database
- Model training capabilities

ACHIEVEMENTS

- Fully functional frontend
- Store all data in Database
- Standardized comunication between the API and Database

Overall features

- Modular Framework must be able to capture relevant data for data acquisition, annotation
- The system should provide tools for annotating the acquired data with labels and metadata that can be used to train and evaluate machine learning models
- Capable of recording videos
- Frontend fully operational
- Should be able to efficiently handle large amounts of data, and perform tasks such as data acquisition, annotation, feature extraction, and model training quickly and without any delays

Requirements M3

Functional

- Record video and audio
- Create new projects for dataset acquisition, training, and visualization
- Facilitate fast acquisition and training of datasets
- Recognize specified features in visualisation
- Properly store data
- Allow download of files

Non-Functional

- System must deal properly with various types of data
- Users should be able to easily navigate the system
- Unique identifier for each data instance
- Direct flow of data from the API to the Database

Architecture

CHALLENGES

CHALLENGES

- Storing large files in the Database
- Acquiring various types of data
- Implement training capabilities

SOLUTIONS

- GridFs
- Modularization of API to enable data versatility

Related Work

Related Work

QUICSENSE

Similarities

- Support for data acquisition
- Data training
- Gesture recognition

Diferences

- More understandable UI
- Lack of data inputs (only supports video).
- Action recognition

Personas & Use Cases

Persona

Rui Veloso - DataSet User

PERSONA

As a computer engineering student at University of Porto, Rui Veloso, 21 years old is always trying to improve himself and always striving to acquire novel knowledge and skills. Therefore, he is exploring and intends to implement a non-verbal Dataset,, so that he can apply it as a feature on his newest new project he is developing for the subject Human - Computer-Interaction

MOTIVATION

Rui wants to implement a nonverbal gestures DataSet.

USE CASE

DEVELOPMENT

Prototype in Canva

Implemented Prototype Idea

LIVE DEMO

Conclusion & Future Work