

Simplicity Studio Workshop: Overview and Bootloaders

Martin Looker 8th March 2023 – v1.2

Overview

- Simplicity Studio is the unified development environment for all Silicon Labs technologies which provides:
 - Web resources
 - SDKs
 - Configuration tools
 - An IDE
 - Network and power analysers
- In this session you will learn:
 - How to connect boards to Simplicity Studio
 - How to obtain and configure board information
 - How to access documentation
 - How to access demo and example software and bootloaders
 - How to build and flash firmware to boards

Pre-requisites

- Simplicity Studio v5 installed:
 - Part 1 of this series shows how to download and install Simplicity Studio:

https://www.brainshark.com/siliconlabs/ EW23-Simplicity-Studio-Install

- Silicon Labs Wireless Kits and Boards
 - Information on multi-protocol kits and boards: https://www.silabs.com/wireless/multiprotocol?tab=kits

Simplicity Commander

- If Simplicity Studio is not installed, Simplicity Commander can be used to program pre-built binaries:
 - Download the ZIP file, for your system, towards the bottom of:

https://www.silabs.com/developers/mcu-programming-options

- 2. Unzip to a folder on your PC
- 3. Locate and run commander.exe
- Use the Select Kit dropdown to select a connected board
- 5. Flashing controls are available from the Flash tab

Downloads

- Files for the class are available on Github:
 - Visit https://github.com/silabs-MartinL/ew23-matter
 - 2. Click the **Code** dropdown
 - 3. Click **Download ZIP** (or use your preferred git method)
 - Unzip to your file system, drag and drop the ew-23matter-main folder to your bootloader project in Simplicity Studio
 - When prompted select Copy files and folders and select OK
 - 6. Binaries that we will use later are in the bin folder
 - 7. A PDF of this presentation, network settings and text files with commands are in the help folder

xG24 and xGM240: Optimized for Battery Powered IoT Mesh Devices

BG24 and MG24 SoC

BGM240S and MGM240S SiP

BGM240P and MGM240P Module

High Performance Radio

- Up to +19.5 dBm TX
- -97.6 dBm RX @ BLE 1 Mbps
- -105.7 dBm RX @ BLE 125 kbps
- -105.4 dBm RX @ 802.15.4
- Wi-Fi Coexistence
- RX Antenna Diversity

ARM® Cortex®-M33

- 78 MHz (FPU and DSP)
- TrustZone®
- Up to 1536kB of Flash
- Up to 256kB of RAM

Low Power

- 5.0 mA TX @ 0 dBm
- 19.1 mA TX @ +10 dBm
- 4.4 mA RX (BLE 1 Mbps)
- 5.1 mA RX (802.15.4)
- 33.4 µA/MHz
- 1.3 μA EM2 with 16 kB RAM

Dedicated Security Core

Secure Vault[™] - Mid / High

AI/ML

AI/ML Hardware Accelerator

Low-power Peripherals

- EUSART, USART, I2C
- 20-bit ADC, 12-bit VDAC, ACMP
- Temperature sensor +/- 1.5°C
- 32kHz, 500ppm PLFRCO

World Class Software

- Matter¹
- Thread¹ and Zigbee¹
- Bluetooth (1M/2M/LR)
- · Bluetooth mesh
- Dynamic multiprotocol¹
- Proprietary

SoCs and Modules

- 5x5 QFN40 (26 GPIO) +125°C
- 6x6 QFN48 (28/32 GPIO) +125°C
- 7x7 SiP Module
- 12.9x15.0 PCB Module

¹Requires MG24

Getting Started with BG24 and MG24 SoCs and Modules

Dev Board

- 1x Development board
 - On-board debugger
 - Signal breakouts
 - On-board sensors
 - 20-bit ADC
 - AI/ML hardware accelerator

Explorer kit

- 1x Explorer board
 - mikroBus socket
 - Qwiic connector

Part Number	Description
xG24-DK2601B	EFR32xG24 2.4 GHz +10 dev board
xG24-EK2703A	EFR32xG24 2.4 GHz +10 explorer board

Pro kits

Part Number

- 1x radio board
- 1 x WSTK main board
 - Modular development platform
 - Advanced development
 - RF measurements
 - Energy profiling
 - External device debug
 - ► Ethernet for large network test

	2000
xG24-PK6009A	EFR32xG24 2.4 GHz +10 dBm Pro Kit
xG24-PK6010A	EFR32xG24 2.4 GHz +20 dBm Pro Kit

Description

Radio Board kits

- 1x radio board
 - Uses existing WSTK boards
 - Uses existing software tools

Part Number	Description
xG24-RB4186C	EFR32xG24 2.4 GHz +10 dBm Radio Board
xG24-RB4187C	EFR32xG24 2.4 GHz +20 dBm Radio Board
xG24-RB4188A	EFR32xG24 +20 dBm Antenna Diversity Board
XGM240-RB4316A	xGM240P +10 dBm Module Radio Board
XGM240-RB4317A	xGM240P +20 dBm Module Radio Board
XGM240-RB4318A	xGM240S +10 dBm Module Radio Board

Dev Board Features

Features

- EFR32MG24B
- · Wireless SoC with multi-protocol radio
- Cortex-M33, 1536 kB Flash and 256 kB RAM

Advanced Features

- AI/ML Hardware Accelerator
- 20-bit ADC

Expansion and User Interface

- Breakout pads
- Qwiic connector
- LEDs and Push Buttons

Broad Range of Sensors

- 9-axis Inertial Sensor
- · 2 Digital Microphones
- Pressure Sensor
- Relative Humidity and Temperature Sensor
- UV and Ambient Light Sensor
- Hall-effect Sensor

https://www.silabs.com/documents/public/user-guides/ug524-brd2601b-user-guide.pdf

Launcher – Overview

- Connect board via USB
 - 1. Switch to Launcher perspective
 - Select EFR32xG24 Dev Kit Board from Debug Adapters panel
- Overview:
 - Information on device
 - Firmware updates
 - SDK version selection
 - Recommended documentation

Launcher – Documentation and Tools

- Documentation: a more comprehensive list of documentation
- Compatible Tools: has useful tools relevant to the board

Launcher – Example Projects and Demos

Example Projects & Demos tab:

- Examples create a project with source code in Simplicity Studio
- Demos program and run a pre-built binary (and bootloader)
- Can filter and search examples

Matter Bootloader – Create Example

- Examples use different bootloaders
 - The Matter documentation specifies the bootloader to use: https://docs.silabs.com/matter/1.0.1/matteroverview-quides/ota-bootloader
 - Matter SoC projects use: **Bootloader - SoC Internal Storage (single image on** 1MB device) **Bootloader - SoC Internal Storage (single image on** 512kB device)
- To create the bootloader project:
 - Select the **Launcher** perspective
 - Select the connected board in the **Debug Adapters**
 - Type bootloader into the **Filter on keywords** box
 - Check **SoC** under **Device Type**
 - In Bootloader SoC Internal Storage (single image on 1MB device) or Bootloader - SoC Internal Storage (single image on 512kB device) example, click the CREATE button to open the New Project Wizard

Bootloader – New Project Wizard

- To complete the wizard:
 - (Optional) append the board number to the default **Project Name**
 - Board numbers are printed on each board
 - This helps when the same example is created for different boards
 - Click the **FINISH** button

Bootloader – Build

- To build the bootloader:
 - Switch to the **Simplicity IDE** perspective This will happen automatically after creating an example project
 - Select the project in the **Project Explorer**
 - Click the hammer button in the toolbar to build
 - Check the build completes successfully in the Console
 - Expand the Binaries folder in the Project Explorer
 - Right-click the .s37 file in the Binaries folder then select Flash to Device... to open the Flash **Programmer**

Bootloader – Erase and Flash

- To erase and flash the bootloader using the Flash Programmer:
 - 1. Check the .s37 binary file is displayed in the **File** edit box
 - Erase the chip using the **Erase** button
 - Flash the binary using the **Program** button
 - Close the **Flash Programmer** using the **Close button**

Thank You

- This is part 2/3 of the Silicon Labs Matter-over-Thread workshop series for Embedded World 2023
 View online at:
 - 1. https://www.brainshark.com/siliconlabs/EW23-Simplicity-Studio-Install
 - 2. https://www.brainshark.com/siliconlabs/EW23-Bootloader-SS
 - 3. https://www.brainshark.com/siliconlabs/EW23-Matter-SS
- Presentations and other files can be found alongside the online videos in the Attachments tab

