Inexact Proximal-Gradient Methods and Linearly-Convergent Stochastic-Gradient Methods

Mark Schmidt

Joint work with Nicolas Le Roux, Francis Bach, Michael Friedlander

INRIA - SIERRA Project - Team Laboratoire d'Informatique de l'École Normale Supérieure (CNRS/ENS/UMR 8548)

May 2012

Outline

- Motivation and Overview
- 2 Inexact Proximal-Gradient Methods
- 3 Linearly-Convergent Stochastic-Gradient Methods

Composite Convex Optimization Problems

• We consider composite optimization problems:

$$\min_{x\in\mathbb{R}^d}f(x):=g(x)+h(x),$$

where g and h are convex but h may be non-smooth

Composite Convex Optimization Problems

• We consider composite optimization problems:

$$\min_{x \in \mathbb{R}^d} f(x) := g(x) + h(x),$$

where g and h are convex but h may be non-smooth

• Often, g is a data-fitting term, and h is a regularizer,

$$\min_{x \in \mathbb{R}^d} \sum_{i=1}^N l_i(x) + \lambda r(x).$$

• A well-studied example is ℓ_1 -regularized least squares,

$$\min_{\mathbf{x} \in \mathbb{R}^d} \|A\mathbf{x} - \mathbf{b}\|^2 + \lambda \|\mathbf{x}\|_1.$$

• We consider composite optimization problems:

$$\min_{x \in \mathbb{R}^d} f(x) := g(x) + h(x),$$

where g and h are convex but h may be non-smooth

We consider composite optimization problems:

$$\min_{x \in \mathbb{R}^d} f(x) := g(x) + h(x),$$

where g and h are convex but h may be non-smooth

• Convergence rates of methods for composite optimization:

Algorithm	Convex	Strongly Convex
Stochastic Sub-Gradient	$O(1/\sqrt{k})$	O(1/k)

• We consider composite optimization problems:

$$\min_{x \in \mathbb{R}^d} f(x) := g(x) + h(x),$$

where g and h are convex but h may be non-smooth

• Convergence rates of methods for composite optimization:

Algorithm	Convex	Strongly Convex
Stochastic Sub-Gradient	$O(1/\sqrt{k})$	O(1/k)
Proximal-Gradient	O(1/k)	$O((1-\gamma)^k)$

• We consider composite optimization problems:

$$\min_{x \in \mathbb{R}^d} f(x) := g(x) + h(x),$$

where g and h are convex but h may be non-smooth

• Convergence rates of methods for composite optimization:

Algorithm	Convex	Strongly Convex
Stochastic Sub-Gradient	$O(1/\sqrt{k})$	O(1/k)
Proximal-Gradient	O(1/k)	$O((1-\gamma)^k)$
Accelerated Proximal-Gradient	$O(1/k^2)$	$O((1-\sqrt{\gamma})^k)$

We consider composite optimization problems:

$$\min_{x\in\mathbb{R}^d}f(x):=g(x)+h(x),$$

where g and h are convex but h may be non-smooth

• Convergence rates of methods for composite optimization:

Algorithm	Convex	Strongly Convex
Stochastic Sub-Gradient	$O(1/\sqrt{k})$	O(1/k)
Proximal-Gradient	O(1/k)	$O((1-\gamma)^k)$
Accelerated Proximal-Gradient	$O(1/k^2)$	$O((1-\sqrt{\gamma})^k)$

 Proximal-gradient methods have the same convergence rates as [accelerated] gradient methods for smooth optimization.
 [Nesterov, 2007, Beck & Teboulle, 2009]

For many problems we can not use proximal-gradient iterations:

- We can not efficiently compute the proximity operator.
- 2 We can not efficiently evaluate the gradient of g.

For many problems we can not use proximal-gradient iterations:

- We can not efficiently compute the proximity operator.
- 2 We can not efficiently evaluate the gradient of g.

For example,

1 Overlapping-group ℓ_1 -regularization,

$$h(x) := \lambda \sum_{g \in \mathcal{G}} \|x_g\|,$$

$$g(x) := \sum_{i=1}^{N} f_i(x).$$

We can often efficiently approximate these quantities:

• For overlapping-group ℓ_1 -regularization, we can use an inexact proximity operator,

$$y \approx \operatorname{prox}[x].$$

2 For data-fitting with a large number of samples N, we can use a subsample of the f_i ,

$$\frac{1}{|\mathcal{B}|}\sum_{i\in\mathcal{B}}f_i'(x)\approx\frac{1}{N}\sum_{i=1}^Nf_i'(x)=f'(x).$$

We can often efficiently approximate these quantities:

• For overlapping-group ℓ_1 -regularization, we can use an inexact proximity operator,

$$y \approx \operatorname{prox}[x].$$

2 For data-fitting with a large number of samples N, we can use a subsample of the f_i ,

$$\frac{1}{|\mathcal{B}|}\sum_{i\in\mathcal{B}}f_i'(x)\approx\frac{1}{N}\sum_{i=1}^Nf_i'(x)=f'(x).$$

But, we may lose the convergence rates with these approximations.

- Inexact Proximal-Gradient Methods:
 - We show that [accelerated] proximal-gradient methods with decreasing errors achieve the rates of the error-free case.

- Inexact Proximal-Gradient Methods:
 - We show that [accelerated] proximal-gradient methods with decreasing errors achieve the rates of the error-free case.
- 2 Linearly-Convergent Stochastic-Gradient Methods:
 - We show that using an increasing sample of the f_i functions achieves a linear convergence rate.

- Inexact Proximal-Gradient Methods:
 - We show that [accelerated] proximal-gradient methods with decreasing errors achieve the rates of the error-free case.
- 2 Linearly-Convergent Stochastic-Gradient Methods:
 - We show that using an increasing sample of the f_i functions achieves a linear convergence rate.
 - We propose a method that achieves a linear convergence rate but only evaluates a single f_i on each iteration.

Outline

- Motivation and Overview
- 2 Inexact Proximal-Gradient Methods
- 3 Linearly-Convergent Stochastic-Gradient Methods

We want to solve a smooth optimization problem,

$$\min_{x \in \mathbb{R}^d} g(x).$$

• We want to solve a smooth optimization problem,

$$\min_{x\in\mathbb{R}^d} g(x).$$

• At iteration x_k we use a quadratic upper bound on g,

$$x_{k+1} = \mathop{\arg\min}_{x \in \mathbb{R}^d} \ g(x_k) + \langle g'(x_k), x - x_k \rangle + \frac{1}{2\alpha_k} \|x - x_k\|^2.$$

• We want to solve a smooth optimization problem,

$$\min_{x \in \mathbb{R}^d} g(x).$$

• At iteration x_k we use a quadratic upper bound on g,

$$x_{k+1} = \mathop{\arg\min}_{x \in \mathbb{R}^d} \ g(x_k) + \langle g'(x_k), x - x_k \rangle + \frac{1}{2\alpha_k} \|x - x_k\|^2.$$

• We can equivalently write this as the quadratic optimization

$$x_{k+1} = \underset{x \in \mathbb{R}^d}{\min} \ \frac{1}{2} ||x - (x_k - \alpha_k g'(x_k))||^2.$$

• We want to solve a smooth optimization problem,

$$\min_{x \in \mathbb{R}^d} g(x).$$

• At iteration x_k we use a quadratic upper bound on g,

$$x_{k+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^d} \ g(x_k) + \langle g'(x_k), x - x_k \rangle + \frac{1}{2\alpha_k} \|x - x_k\|^2.$$

• We can equivalently write this as the quadratic optimization

$$x_{k+1} = \underset{x \in \mathbb{R}^d}{\arg \min} \frac{1}{2} ||x - (x_k - \alpha_k g'(x_k))||^2.$$

$$x_{k+1} = x_k - \alpha_k g'(x_k).$$

• We want to solve a smooth optimization problem,

$$\min_{x \in \mathbb{R}^d} g(x).$$

• At iteration x_k we use a quadratic upper bound on g,

$$x_{k+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^d} \ g(x_k) + \langle g'(x_k), x - x_k \rangle + \frac{1}{2\alpha_k} \|x - x_k\|^2.$$

• We can equivalently write this as the quadratic optimization

$$x_{k+1} = \underset{x \in \mathbb{R}^d}{\arg \min} \frac{1}{2} ||x - (x_k - \alpha_k g'(x_k))||^2.$$

$$x_{k+1} = x_k - \alpha_k g'(x_k).$$

• We want to solve a composite optimization problem,

$$\min_{x \in \mathbb{R}^d} g(x) + h(x).$$

• At iteration x_k we use a quadratic upper bound on g,

$$x_{k+1} = \mathop{\arg\min}_{x \in \mathbb{R}^d} \ g(x_k) + \langle g'(x_k), x - x_k \rangle + \frac{1}{2\alpha_k} \|x - x_k\|^2.$$

• We can equivalently write this as the quadratic optimization

$$x_{k+1} = \underset{x \in \mathbb{R}^d}{\arg \min} \frac{1}{2} ||x - (x_k - \alpha_k g'(x_k))||^2.$$

$$x_{k+1} = x_k - \alpha_k g'(x_k).$$

• We want to solve a composite optimization problem,

$$\min_{x \in \mathbb{R}^d} g(x) + h(x).$$

• At iteration x_k we use a quadratic upper bound on g,

$$x_{k+1} = \underset{x \in \mathbb{R}^d}{\min} \ g(x_k) + \langle g'(x_k), x - x_k \rangle + \frac{1}{2\alpha_k} \|x - x_k\|^2 + h(x).$$

• We can equivalently write this as the quadratic optimization

$$x_{k+1} = \underset{x \in \mathbb{R}^d}{\arg \min} \ \frac{1}{2} ||x - (x_k - \alpha_k g'(x_k))||^2.$$

$$x_{k+1} = x_k - \alpha_k g'(x_k).$$

• We want to solve a composite optimization problem,

$$\min_{x \in \mathbb{R}^d} g(x) + h(x).$$

• At iteration x_k we use a quadratic upper bound on g,

$$x_{k+1} = \underset{x \in \mathbb{R}^d}{\operatorname{arg\,min}} \ g(x_k) + \langle g'(x_k), x - x_k \rangle + \frac{1}{2\alpha_k} \|x - x_k\|^2 + h(x).$$

We can equivalently write this as the proximal optimization

$$x_{k+1} = \underset{x \in \mathbb{R}^d}{\arg \min} \frac{1}{2} ||x - (x_k - \alpha_k g'(x_k))||^2 + \alpha_k h(x).$$

$$x_{k+1} = x_k - \alpha_k g'(x_k).$$

• We want to solve a composite optimization problem,

$$\min_{x \in \mathbb{R}^d} g(x) + h(x).$$

• At iteration x_k we use a quadratic upper bound on g,

$$x_{k+1} = \underset{x \in \mathbb{R}^d}{\operatorname{arg\,min}} \ g(x_k) + \langle g'(x_k), x - x_k \rangle + \frac{1}{2\alpha_k} ||x - x_k||^2 + h(x).$$

• We can equivalently write this as the proximal optimization

$$x_{k+1} = \underset{x \in \mathbb{R}^d}{\arg \min} \ \frac{1}{2} \|x - (x_k - \alpha_k g'(x_k))\|^2 + \alpha_k h(x).$$

$$x_{k+1} = \operatorname{prox}_{\alpha_k}[x_k - \alpha_k g'(x_k)].$$

$$h(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C}. \end{cases}$$

$$h(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C}. \end{cases}$$

$$h(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C}. \end{cases}$$

$$h(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C}. \end{cases}$$

$$h(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C}. \end{cases}$$

• Iterative Soft-Thresholding methods are a special case:

$$h(x) = \lambda ||x||_1.$$

• Iterative Soft-Thresholding methods are a special case:

$$h(x) = \lambda ||x||_1.$$

• In this case $\text{prox}_{\alpha_k}[x]_i$ shrinks $|x_i|$ by $\min\{\alpha_k \lambda, |x_i|\}$

• Iterative Soft-Thresholding methods are a special case:

$$h(x) = \lambda ||x||_1.$$

• In this case $\operatorname{prox}_{\alpha_k}[x]_i$ shrinks $|x_i|$ by $\min\{\alpha_k\lambda, |x_i|\}$

• Iterative Soft-Thresholding methods are a special case:

$$h(x) = \lambda ||x||_1.$$

• In this case $\operatorname{prox}_{\alpha_k}[x]_i$ shrinks $|x_i|$ by $\min\{\alpha_k \lambda, |x_i|\}$

Special case of Iterative Soft-Thresholding Methods

• Iterative Soft-Thresholding methods are a special case:

$$h(x) = \lambda ||x||_1.$$

• In this case $\text{prox}_{\alpha_k}[x]_i$ shrinks $|x_i|$ by $\min\{\alpha_k \lambda, |x_i|\}$

Special case of Iterative Soft-Thresholding Methods

• Iterative Soft-Thresholding methods are a special case:

$$h(x) = \lambda ||x||_1.$$

• In this case $\operatorname{prox}_{\alpha_k}[x]_i$ shrinks $|x_i|$ by $\min\{\alpha_k\lambda, |x_i|\}$

file:///Users/Mark/Pictures/2011/12Paris/MVI_0643.MOV

Accelerated (Proximal-)Gradient Methods

• Proximal-gradient methods have the same convergence rates as gradient methods for smooth optimization.

Accelerated (Proximal-)Gradient Methods

- Proximal-gradient methods have the same convergence rates as gradient methods for smooth optimization.
- But for smooth problems accelerated gradient methods have faster rates [Nesterov, 1983]:

$$x_{k+1} = y_k - \alpha_k g'(y_k),$$

 $y_{k+1} = x_{k+1} + \beta_k (x_{k+1} - x_k).$

Accelerated (Proximal-)Gradient Methods

- Proximal-gradient methods have the same convergence rates as gradient methods for smooth optimization.
- But for smooth problems accelerated gradient methods have faster rates [Nesterov, 1983]:

$$x_{k+1} = y_k - \alpha_k g'(y_k),$$

 $y_{k+1} = x_{k+1} + \beta_k (x_{k+1} - x_k).$

 For composite problems accelerated proximal-gradient methods have these same rates:

$$x_{k+1} = \text{prox}_{\alpha_k} [y_k - \alpha_k g'(y_k)],$$

$$y_{k+1} = x_{k+1} + \beta_k (x_{k+1} - x_k).$$

Exact Proximal-Gradient Methods

For what problems can we apply proximal-gradient methods?

Exact Proximal-Gradient Methods

- For what problems can we apply proximal-gradient methods?
- We can efficiently compute the proximity operator for:
 - **1** ℓ_1 -Regularization.
 - **2** Group ℓ_1 -Regularization.
 - **3** Lower and upper bound constraints.
 - 4 Hyper-plane and half-space constraints.
 - Simplex constraints.
 - © Euclidean cone constraints.

Exact Proximal-Gradient Methods

- For what problems can we apply proximal-gradient methods?
- We can efficiently compute the proximity operator for:
 - **1** ℓ_1 -Regularization.
 - **2** Group ℓ_1 -Regularization.
 - **3** Lower and upper bound constraints.
 - Hyper-plane and half-space constraints.
 - Simplex constraints.
 - © Euclidean cone constraints.
- But for many problems we can not efficiently compute the proximity operator.

Inexact Proximal-Gradient Methods

• We can efficiently approximate the proximity operator for:

Inexact Proximal-Gradient Methods

- We can efficiently approximate the proximity operator for:
 - Total-variation regularization and generalizations like the graph-guided fused-LASSO.
 - 2 Nuclear-norm regularization and other regularizers on the singular values of matrices.
 - **3** Overlapping group ℓ_1 -regularization with general groups.
 - Positive semi-definite cone.
 - Combinations of simple functions.

Summary of Contribution

Many recent works use inexact proximal-gradient methods:

 Cai et al. [2010], Liu & Ye [2010], Schmidt & Murphy [2010], Barbero & Sra [2011], Fadili & Peyré [2011], Ma et al. [2011].

Summary of Contribution

Many recent works use inexact proximal-gradient methods:

 Cai et al. [2010], Liu & Ye [2010], Schmidt & Murphy [2010], Barbero & Sra [2011], Fadili & Peyré [2011], Ma et al. [2011].

Our question:

 Can inexact proximal-gradient methods achieve the fast convergence rates?

Summary of Contribution

Many recent works use inexact proximal-gradient methods:

 Cai et al. [2010], Liu & Ye [2010], Schmidt & Murphy [2010], Barbero & Sra [2011], Fadili & Peyré [2011], Ma et al. [2011].

Our question:

 Can inexact proximal-gradient methods achieve the fast convergence rates?

Our contribution:

• Inexact proximal-gradient methods can achieve the fast convergence rates, if the errors are appropriately controlled.

Outline

- Motivation and Overview
- 2 Inexact Proximal-Gradient Methods
 - Overview of Inexact Proximal-Gradient Methods
 - Related Work, Assumptions, and Convergence Rate Results
 - Experiments on a Structured Sparsity Problem
- 3 Linearly-Convergent Stochastic-Gradient Methods

• Proximal-gradient methods with zero-mean random error:

[Duchi & Singer, 2009, Langford et al., 2009]

• Same slow convergence rates as sub-gradient methods.

Proximal-gradient methods with zero-mean random error:

[Duchi & Singer, 2009, Langford et al., 2009]

- Same slow convergence rates as sub-gradient methods.
- Projected-gradient methods with fixed error magnitude:

[Nedic & Bertsekas, 2000, d'Aspremont, 2008, Baes, 2009, Devolder et al., 2011]

Fast convergence rate up to some fixed error level.

Proximal-gradient methods with zero-mean random error:

[Duchi & Singer, 2009, Langford et al., 2009]

- Same slow convergence rates as sub-gradient methods.
- Projected-gradient methods with fixed error magnitude:

[Nedic & Bertsekas, 2000, d'Aspremont, 2008, Baes, 2009, Devolder et al., 2011]

- Fast convergence rate up to some fixed error level.
- Projected-gradient methods with decreasing error magnitude:

[Luo & Tseng, 1993, Baes, 2009, Devolder et al., 2011, Friedlander & Schmidt, 2011]

• Either do not consider acceleration, assume an exact projection, or require that the domain is compact.

Proximal-gradient methods with zero-mean random error:

```
[Duchi & Singer, 2009, Langford et al., 2009]
```

- Same slow convergence rates as sub-gradient methods.
- Projected-gradient methods with fixed error magnitude:

```
[Nedic & Bertsekas, 2000, d'Aspremont, 2008, Baes, 2009, Devolder et al., 2011]
```

- Fast convergence rate up to some fixed error level.
- Projected-gradient methods with decreasing error magnitude:

```
[Luo & Tseng, 1993, Baes, 2009, Devolder et al., 2011, Friedlander & Schmidt, 2011]
```

- Either do not consider acceleration, assume an exact projection, or require that the domain is compact.
- Proximal-gradient methods with decreasing error magnitude: [Patriksson, 1995, Combettes, 2004]
 - Do not consider convergence rates.

Problem Setting and Algorithm

• We consider the problem

$$\min_{x\in\mathbb{R}^d} g(x) + h(x).$$

• The basic proximal-gradient method uses

$$x_k = \operatorname{prox}_{\alpha_k}[x_{k-1} - \alpha_k g'(x_{k-1})].$$

Problem Setting and Algorithm

• We consider the problem

$$\min_{x \in \mathbb{R}^d} g(x) + h(x).$$

• The basic proximal-gradient method uses

$$x_k = \operatorname{prox}_{\alpha_k}[x_{k-1} - \alpha_k g'(x_{k-1})].$$

The accelerated proximal-gradient method uses

$$x_k = \operatorname{prox}_{\alpha_k}[y_{k-1} - \alpha_k g'(y_{k-1})],$$

where

$$y_k = x_k + \beta_k(x_k - x_{k-1}),$$

and the sequence $\{\beta_k\}$ is chosen to give a faster rate.

- In all our results we assume:
 - g is convex and g' is L-Lipschitz continuous,

$$||g'(x)-g'(y)|| \le L||x-y||, \forall x, y.$$

(if twice-differentiable, equivalent to $0 \le g''(x) \le LI, \forall x$)

- In all our results we assume:
 - g is convex and g' is L-Lipschitz continuous,

$$||g'(x) - g'(y)|| \le L||x - y||, \forall x, y.$$

(if twice-differentiable, equivalent to $0 \le g''(x) \le LI, \forall x$)

 h is a lower semi-continuous proper convex function (includes all real-valued functions, and indicator functions).

- In all our results we assume:
 - g is convex and g' is L-Lipschitz continuous,

$$||g'(x) - g'(y)|| \le L||x - y||, \forall x, y.$$

(if twice-differentiable, equivalent to $0 \le g''(x) \le LI, \forall x$)

- h is a lower semi-continuous proper convex function (includes all real-valued functions, and indicator functions).
- g + h attains its minimum at a certain x_* .
- The step size α_k is set to 1/L.

- In all our results we assume:
 - g is convex and g' is L-Lipschitz continuous,

$$||g'(x) - g'(y)|| \le L||x - y||, \forall x, y.$$

(if *twice-differentiable*, equivalent to $0 \le g''(x) \le LI, \forall x$)

- h is a lower semi-continuous proper convex function (includes all real-valued functions, and indicator functions).
- g + h attains its minimum at a certain x_* .
- The step size α_k is set to 1/L.
- The gradient g' is computed with an error e_k .
- x_k is an ε_k -approximate solution of the proximity operator,

$$\frac{L}{2}||x_k-y||^2+h(x_k)\leq \varepsilon_k+\min_{x\in\mathbb{R}^d}\left\{\frac{L}{2}||x-y||^2+h(x)\right\}.$$

(we can use a duality gap to check this condition)

Fast Convergence Rates of Proximal-Gradient Methods

• Convergence rates of methods for composite optimization:

Algorithm	Convex	Strongly Convex
Sub-Gradient	$O(1/\sqrt{k})$	O(1/k)
Proximal-Gradient	O(1/k)	$O((1-\mu/L)^k)$
Accelerated Proximal-Gradient	$O(1/k^2)$	$O((1-\sqrt{\mu/L})^k)$

Fast Convergence Rates of Proximal-Gradient Methods

• Convergence rates of methods for composite optimization:

Algorithm	Convex	Strongly Convex
Sub-Gradient	$O(1/\sqrt{k})$	O(1/k)
Proximal-Gradient	O(1/k)	$O((1-\mu/L)^k)$
Accelerated Proximal-Gradient	$O(1/k^2)$	$O((1-\sqrt{\mu/L})^k)$

• We give conditions on the sequences of gradient errors $\{e_k\}$ and proximity errors $\{\varepsilon_k\}$ that preserve these rates.

Convexity - Basic Proximal-Gradient Method

Proposition 1. If the sequences $\{||e_k||\}$ and $\{\sqrt{\varepsilon_k}\}$ are summable then the basic proximal-gradient method achieves

$$f\left(\frac{1}{k}\sum_{i=1}^k x_i\right) - f(x_*) = O(1/k).$$

Convexity - Basic Proximal-Gradient Method

Proposition 1. If the sequences $\{||e_k||\}$ and $\{\sqrt{\varepsilon_k}\}$ are summable then the basic proximal-gradient method achieves

$$f\left(\frac{1}{k}\sum_{i=1}^k x_i\right) - f(x_*) = O(1/k).$$

• E.g., $||e_k||$ and $\sqrt{\varepsilon_k}$ could decrease as $O(1/k^{1+\delta})$ for $\delta > 0$.

Convexity - Basic Proximal-Gradient Method

Proposition 1. If the sequences $\{||e_k||\}$ and $\{\sqrt{\varepsilon_k}\}$ are summable then the basic proximal-gradient method achieves

$$f\left(\frac{1}{k}\sum_{i=1}^k x_i\right) - f(x_*) = O(1/k).$$

- E.g., $||e_k||$ and $\sqrt{\varepsilon_k}$ could decrease as $O(1/k^{1+\delta})$ for $\delta > 0$.
- If they decrease as O(1/k), then we get $O((\log k)^2/k)$. (see the paper for the constant factors)

Convexity - Accelerated Proximal-Gradient Method

Proposition 2. If the sequences $\{k||e_k||\}$ and $\{k\sqrt{\varepsilon_k}\}$ are summable then the accelerated proximal-gradient method achieves

$$f(x_k) - f(x_*) = O(1/k^2),$$

with
$$\beta_k = (k-1)/(k+2)$$
.

Convexity - Accelerated Proximal-Gradient Method

Proposition 2. If the sequences $\{k||e_k||\}$ and $\{k\sqrt{\varepsilon_k}\}$ are summable then the accelerated proximal-gradient method achieves

$$f(x_k) - f(x_*) = O(1/k^2),$$

with $\beta_k = (k-1)/(k+2)$.

- E.g., $||e_k||$ and $\sqrt{\varepsilon_k}$ could decrease as $O(1/k^{2+\delta})$ for $\delta > 0$.
- As in previous work, our analysis indicates the accelerated method is more sensitive to errors.

Strongly Convex Objectives

• We also consider the case where g is strongly convex.

Strongly Convex Objectives

- We also consider the case where g is strongly convex.
- A function g is strongly convex if the function

$$g(x) - \mu ||x||^2,$$

is convex for some $\mu > 0$.

• For *twice-differentiable* functions, equivalent to $g''(x) \succeq \mu I, \forall x$.

Strongly Convex Objectives

- We also consider the case where g is strongly convex.
- A function g is strongly convex if the function

$$g(x) - \mu ||x||^2,$$

is convex for some $\mu > 0$.

- For *twice-differentiable* functions, equivalent to $g''(x) \succeq \mu I, \forall x$.
- Here, we can obtain linear convergence rates.

Strong Convexity - Basic Proximal-Gradient Method

Proposition 3. If the sequences $\{||e_k||\}$ and $\{\sqrt{\varepsilon_k}\}$ are in $O(\rho^k)$ for $\rho < (1 - \mu/L)$ then the basic proximal-gradient method achieves

$$||x_k - x_*|| = O((1 - \mu/L)^k).$$

Strong Convexity - Basic Proximal-Gradient Method

Proposition 3. If the sequences $\{||e_k||\}$ and $\{\sqrt{\varepsilon_k}\}$ are in $O(\rho^k)$ for $\rho < (1 - \mu/L)$ then the basic proximal-gradient method achieves

$$||x_k - x_*|| = O((1 - \mu/L)^k).$$

- If they converge with $\rho > (1 \mu/L)$, the rate is $O(\rho^k)$.
- If they converge with $\rho = (1 \mu/L)$, the rate is $O(k(1 \mu/L)^k)$.

Strong Convexity - Accelerated Method

Proposition 4. If the sequences $\{||e_k||^2\}$ and $\{\varepsilon_k\}$ are in $O(\rho^k)$ for $\rho < (1 - \sqrt{\mu/L})$ then the accelerated proximal-gradient method achieves

$$f(x_k) - f(x_*) = O((1 - \sqrt{\mu/L})^k),$$

with
$$\beta_k = (1 - \sqrt{\mu/L})/(1 + \sqrt{\mu/L})$$
.

Strong Convexity - Accelerated Method

Proposition 4. If the sequences $\{||e_k||^2\}$ and $\{\varepsilon_k\}$ are in $O(\rho^k)$ for $\rho < (1 - \sqrt{\mu/L})$ then the accelerated proximal-gradient method achieves

$$f(x_k) - f(x_*) = O((1 - \sqrt{\mu/L})^k),$$

with
$$\beta_k = (1 - \sqrt{\mu/L})/(1 + \sqrt{\mu/L})$$
.

We also obtain a bound on the iterates because

$$\frac{\mu}{2}||x_k - x_*||^2 \le f(x_k) - f(x_*).$$

Outline

- Motivation and Overview
- 2 Inexact Proximal-Gradient Methods
 - Overview of Inexact Proximal-Gradient Methods
 - Related Work, Assumptions, and Convergence Rate Results
 - Experiments on a Structured Sparsity Problem
- 3 Linearly-Convergent Stochastic-Gradient Methods

CUR-like factorization with the ℓ_2 -norm

We consider the factorization of Mairal et al. [2011] to approximate a matrix W using a subset of rows and columns:

$$\min_{X} \frac{1}{2} ||W - WXW||_{F}^{2} + \lambda_{\text{row}} \sum_{i=1}^{n_{r}} ||X^{i}||_{p} + \lambda_{\text{col}} \sum_{j=1}^{n_{c}} ||X_{j}||_{p}.$$

CUR-like factorization with the ℓ_2 -norm

We consider the factorization of Mairal et al. [2011] to approximate a matrix W using a subset of rows and columns:

$$\min_{X} \frac{1}{2} ||W - WXW||_{F}^{2} + \lambda_{\text{row}} \sum_{i=1}^{n_{r}} ||X^{i}||_{p} + \lambda_{\text{col}} \sum_{j=1}^{n_{c}} ||X_{j}||_{p}.$$

- For appropriate p, yields sparse rows and sparse columns.
- Previous work used $p = \infty$, since there is no known exact algorithm for p = 2.

CUR-like factorization with the ℓ_2 -norm

We consider the factorization of Mairal et al. [2011] to approximate a matrix W using a subset of rows and columns:

$$\min_{X} \frac{1}{2} ||W - WXW||_F^2 + \lambda_{\text{row}} \sum_{i=1}^{n_r} ||X^i||_p + \lambda_{\text{col}} \sum_{j=1}^{n_c} ||X_j||_p.$$

- For appropriate p, yields sparse rows and sparse columns.
- Previous work used $p = \infty$, since there is no known exact algorithm for p = 2.
- We use the proximal-Dykstra algorithm to compute an approximate proximity operator with p = 2.
- Duality gap ensures ε_k -optimality of approximate proximity.

Comparison against a fixed prox solution accuracy

Using an optimal ε_k sequence compared to a fixed precision for the approximate proximity:

Comparison against a fixed number of prox iterations

Using an optimal ε_k sequence compared to running a fixed number of proximal iterations:

Discussion

- Inexact proximal-gradient methods may be useful in other applications: total-variation or nuclear-norm regularization.
- Our analysis also allows errors in the gradient: undirected graphical models, kernel methods, and SDPs.

Discussion

- Inexact proximal-gradient methods may be useful in other applications: total-variation or nuclear-norm regularization.
- Our analysis also allows errors in the gradient: undirected graphical models, kernel methods, and SDPs.
- We would like to handle an unknown L and μ .
- We would like to adaptively update $||e_k||$ and ε_k .
- We would like to analyze proximal-Newton methods.

Discussion

- Inexact proximal-gradient methods may be useful in other applications: total-variation or nuclear-norm regularization.
- Our analysis also allows errors in the gradient: undirected graphical models, kernel methods, and SDPs.
- We would like to handle an unknown L and μ .
- We would like to adaptively update $||e_k||$ and ε_k .
- We would like to analyze proximal-Newton methods.
- Villa et al. [2011] and Jiang et al. [2011] have independently analyzed accelerated proximal-gradient methods (convex g).

 Proximal-gradient methods are appealing because of their good theoretical and empirical convergence rates.

- Proximal-gradient methods are appealing because of their good theoretical and empirical convergence rates.
- But, they require the calculation of the proximity operator.

- Proximal-gradient methods are appealing because of their good theoretical and empirical convergence rates.
- But, they require the calculation of the proximity operator.
- Many authors have recently applied these methods under an inexact proximity operator.

- Proximal-gradient methods are appealing because of their good theoretical and empirical convergence rates.
- But, they require the calculation of the proximity operator.
- Many authors have recently applied these methods under an inexact proximity operator.
- We show that the convergence rates are preserved if the inexactness is appropriately controlled

Outline

- 1 Motivation and Overview
- 2 Inexact Proximal-Gradient Methods
- 3 Linearly-Convergent Stochastic-Gradient Methods

Strongly Convex and Smooth Big-N Problems

• We now focus to problems of the form

$$\min_{x\in\mathbb{R}^d}g(x):=\frac{1}{N}\sum_{i=1}^Nf_i(x),$$

where each f'_i is *L*-Lipschitz continuous and g is μ -strongly convex.

Strongly Convex and Smooth Big-N Problems

• We now focus to problems of the form

$$\min_{x\in\mathbb{R}^d}g(x):=\frac{1}{N}\sum_{i=1}^Nf_i(x),$$

where each f'_i is *L*-Lipschitz continuous and g is μ -strongly convex.

• Includes ℓ_2 -regularization of any convex loss functions,

$$f_i(x) := \frac{\lambda}{2} ||x||^2 + I_i(x).$$

• We are interested in the case where N is large.

Stochastic Gradient Methods for Big-N Problems

Stochastic gradient (SG) methods use iterations of the form

$$x^{k+1} = x^k - \alpha_k f'_{i_k}(x^k),$$

where i_k is selected uniformly among the set $\{1, \ldots, n\}$.

 \bullet Appealing because the iteration cost is independent of N.

Stochastic Gradient Methods for Big-N Problems

Stochastic gradient (SG) methods use iterations of the form

$$x^{k+1} = x^k - \alpha_k f'_{i_k}(x^k),$$

where i_k is selected uniformly among the set $\{1, \ldots, n\}$.

- \bullet Appealing because the iteration cost is independent of N.
- But SG iterations have a sublinear convergence rate

$$\mathbb{E}[g(x^k)] - g(x^*) = O(1/k).$$

 This is optimal if only accessing the function through unbiased function/gradient measurements.

Full Gradient Methods for Big-N Problems

- But, for finite data sets better rates are possible.
- For example, we could use the full gradient (FG) method,

$$x^{k+1} = x^k - \alpha_k g'(x^k) = x^k - \frac{\alpha_k}{N} \sum_{i=1}^N f'_i(x^k).$$

• This method achieves a linear convergence rate,

$$g(x^k) - g(x^*) = O(\rho^k).$$

But, FG iterations are N times more expensive than SG iterations.

Stochastic vs. Full Gradient Methods

Stochastic vs. Full Gradient Methods

- Stochastic makes great progress initially, but slows down.
- Determinstic makes steady progress, but is expensive.

Stochastic vs. Full Gradient Methods

- Stochastic makes great progress initially, but slows down.
- Determinstic makes steady progress, but is expensive.
- Can we design hybrid methods with the best of both worlds?

Motivation for Hybrid Methods

A variety of methods have been proposed to speed up SG methods:

A variety of methods have been proposed to speed up SG methods:

 Momentum, gradient averaging, iterate averaging, stochastic version of FG methods:

[Polyak & Juditsky, 1992, Tseng ,1998, Nesterov, 2009, Sunehag, 2009, Ghadimi & Lan, 2010, Xiao, 2010]

• Can improve constants, but still have sublinear O(1/k) rate.

A variety of methods have been proposed to speed up SG methods:

 Momentum, gradient averaging, iterate averaging, stochastic version of FG methods:

```
[Polyak & Juditsky, 1992, Tseng ,1998, Nesterov, 2009, Sunehag, 2009, Ghadimi & Lan, 2010, Xiao, 2010]
```

- Can improve constants, but still have sublinear O(1/k) rate.
- Constant step-size SG, accelerated SG:

```
[Kesten, 1958, Delyon & Juditsky, 1993, Solodov, 1998, Nedic & Bertsekas, 2000]
```

• Linear convergence, but only up to a fixed tolerance.

A variety of methods have been proposed to speed up SG methods:

 Momentum, gradient averaging, iterate averaging, stochastic version of FG methods:

```
[Polyak & Juditsky, 1992, Tseng ,1998, Nesterov, 2009, Sunehag, 2009, Ghadimi & Lan, 2010, Xiao, 2010]
```

- Can improve constants, but still have sublinear O(1/k) rate.
- Constant step-size SG, accelerated SG:

```
[Kesten, 1958, Delyon & Juditsky, 1993, Solodov, 1998, Nedic & Bertsekas, 2000]
```

- Linear convergence, but only up to a fixed tolerance.
- Hybrid Methods, Incremental Average Gradient:

```
[Bertsekas, 1997, Blatt et al., 2008]
```

• Linear rate, but iterations make full passes through the data.

Two ideas for achieving a linear rate

Is a linear rate possible, without iterations requiring full passes?

Two ideas for achieving a linear rate

Is a linear rate possible, without iterations requiring full passes?

 Idea #1: Control the sample size to interpolate between the stochastic and deterministic method.
 (avoids making full passes on early iterations)

Two ideas for achieving a linear rate

Is a linear rate possible, without iterations requiring full passes?

- Idea #1: Control the sample size to interpolate between the stochastic and deterministic method.
 (avoids making full passes on early iterations)
- Idea #2: **Build a sequence of estimates** that converge to $g'(x_k)$ as $||x_{k-1} x_k|| \to 0$. (only looks at a single f_i on each iteration)

Outline

- Motivation and Overview
- 2 Inexact Proximal-Gradient Methods
- 3 Linearly-Convergent Stochastic-Gradient Methods
 - Big-N Problems
 - Hybrid Deterministic-Stochastic Methods
 - Stochastic Average Gradient Method

Hybrid Deterministic-Stochastic Methods

• A common variant of SG methods uses a batch \mathcal{B}_k instead of a single example,

$$x^{k+1} = x^k - \frac{\alpha_k}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} f_i'(x_k).$$

Hybrid Deterministic-Stochastic Methods

• A common variant of SG methods uses a batch \mathcal{B}_k instead of a single example,

$$x^{k+1} = x^k - \frac{\alpha_k}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} f_i'(x_k).$$

- The gradient error is affected by the batch size $|\mathcal{B}_k|$.
- For example, uniform sampling (without replacement) yields

$$\mathbb{E}[||e_k||^2] = \left(\frac{N - |\mathcal{B}_k|}{N}\right) \frac{S}{|\mathcal{B}_k|},$$

Hybrid Deterministic-Stochastic Methods

• A common variant of SG methods uses a batch \mathcal{B}_k instead of a single example,

$$x^{k+1} = x^k - \frac{\alpha_k}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} f_i'(x_k).$$

- The gradient error is affected by the batch size $|\mathcal{B}_k|$.
- For example, uniform sampling (without replacement) yields

$$\mathbb{E}[||e_k||^2] = \left(\frac{N - |\mathcal{B}_k|}{N}\right) \frac{S}{|\mathcal{B}_k|},$$

- We can choose the batch sizes to achieve linear convergence.
- Early iterations are cheap like SG iterations.

Incremental Gradient Method Error Bounds

Under standard assumptions on the f'_i , by choosing $|\mathcal{B}_k|$ to satisfy

$$\frac{N-|\mathcal{B}_k|}{N}\frac{1}{|\mathcal{B}_k|}=O(\gamma^k),$$

for any $\epsilon > 0$ we have

$$\mathbb{E}[f(x_k) - f(x_*)] = [f(x_0) - f(x_*)]O([1 - \mu/L + \epsilon]^k) + O(\sigma^k),$$

where $\sigma = \max\{\gamma, 1 - \mu/L\}$.

Batch Schedule needed for Linear Rate

Improved Rates with Newton-like Scaling

- The algorithm may converge slowly if μ/L is small.
- We can also analyze a Newton-like algorithm

$$x_{k+1} = x_k + \alpha_k d_k,$$

where d_k is the solution of

$$H_k d_k = -g(x_k).$$

Improved Rates with Newton-like Scaling

- The algorithm may converge slowly if μ/L is small.
- We can also analyze a Newton-like algorithm

$$x_{k+1} = x_k + \alpha_k d_k,$$

where d_k is the solution of

$$H_k d_k = -g(x_k).$$

• We can then show rates using a modified μ and L based on the Hessian approximation H_k .

Quasi-Newton Scaling and Heuristic Line Search

• We made an implementation, where we use the *L-BFGS* quasi-Newton Hessian approximation.

Quasi-Newton Scaling and Heuristic Line Search

- We made an implementation, where we use the *L-BFGS* quasi-Newton Hessian approximation.
- To choose the step size, we use the Armijo condition

$$\bar{f}(x_k + \alpha_k d_k) < \bar{f}(x_k) + \eta \alpha g(x_k)^T d_k,$$

on the sampled objective

$$\bar{f}(x_k) = \frac{1}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} f_i(x_k).$$

Quasi-Newton Scaling and Heuristic Line Search

- We made an implementation, where we use the *L-BFGS* quasi-Newton Hessian approximation.
- To choose the step size, we use the *Armijo* condition

$$\bar{f}(x_k + \alpha_k d_k) < \bar{f}(x_k) + \eta \alpha g(x_k)^T d_k,$$

on the sampled objective

$$\bar{f}(x_k) = \frac{1}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} f_i(x_k).$$

 By increasing the batch size this eventually reduces to a conventional line-search quasi-Newton method, inheriting the global and local convergence guarantees of this method.

Batch-Size Selection in Stochastic Gradient Methods

We performed experiments comparing three algorithms:

- Deterministic: Conventional L-BFGS quasi-Newton method.
- Stochastic: Constant step-size stochastic gradient descent.
- Hybrid: An L-BFGS quasi-Newton method with batch size

$$|\mathcal{B}_{k+1}| = \lceil \min\{1.1 \cdot |\mathcal{B}_k| + 1, M\} \rceil.$$

Batch-Size Selection in Stochastic Gradient Methods

We performed experiments comparing three algorithms:

- Deterministic: Conventional L-BFGS quasi-Newton method.
- Stochastic: Constant step-size stochastic gradient descent.
- Hybrid: An L-BFGS quasi-Newton method with batch size

$$|\mathcal{B}_{k+1}| = \lceil \min\{1.1 \cdot |\mathcal{B}_k| + 1, M\} \rceil.$$

We trained a conditional random fields (CRF) on the CoNLL-2000 noun-phrase chunking shared task (chain-structure).

Evaluation on Chain-Structured CRFs

Results on chain-structured conditional random field:

Outline

- Motivation and Overview
- Inexact Proximal-Gradient Methods
- 3 Linearly-Convergent Stochastic-Gradient Methods
 - Big-N Problems
 - Hybrid Deterministic-Stochastic Methods
 - Stochastic Average Gradient Method

- The growing-batch method eventually uses full passes on each iteration.
- Is it possible to have a linearly convergent algorithm whose iteration cost is independent of *N*?

- The growing-batch method eventually uses full passes on each iteration.
- Is it possible to have a linearly convergent algorithm whose iteration cost is independent of *N*?
 - YES!

- The growing-batch method eventually uses full passes on each iteration.
- Is it possible to have a linearly convergent algorithm whose iteration cost is independent of *N*?
 - YES! The stochastic average gradient (SAG) algorithm:

$$x^{k+1} = x^k - \frac{\alpha_k}{N} \sum_{i=1}^{N} y_i^k,$$

where

$$y_i^k = \begin{cases} f_i'(x_k) & \text{if } i = i_k, \\ y_i^{k-1} & \text{otherwise.} \end{cases}$$

- The growing-batch method eventually uses full passes on each iteration.
- Is it possible to have a linearly convergent algorithm whose iteration cost is independent of *N*?
 - YES! The stochastic average gradient (SAG) algorithm:

$$x^{k+1} = x^k - \frac{\alpha_k}{N} \sum_{i=1}^{N} y_i^k,$$

where

$$y_i^k = \begin{cases} f_i'(x_k) & \text{if } i = i_k, \\ y_i^{k-1} & \text{otherwise.} \end{cases}$$

 Randomized version of the incremental aggregated gradient (IAG) algorithm of Blatt et al. [2008].

Convergence Rate of SAG: Small Steps

With a step size of $\alpha_k = \frac{1}{2NL}$, the SAG iterations satisfy

$$\mathbb{E}[\|x^k - x^*\|^2] \le C \left(1 - \frac{\mu}{8LN}\right)^k$$

• A linear rate with iterations that are independent of N!

Convergence Rate of SAG: Small Steps

With a step size of $\alpha_k = \frac{1}{2NL}$, the SAG iterations satisfy

$$\mathbb{E}[\|x^k - x^*\|^2] \le C \left(1 - \frac{\mu}{8LN}\right)^k$$

- A linear rate with iterations that are independent of N!
- But, with this step size the performance is similar to the FG and IAG methods.

Convergence Rate of SAG: Big Steps

If we have enough data, the SAG iterations have a faster convergence rate with a larger step size:

If
$$\frac{\mu}{L} \geq \frac{8}{N}$$
, with a step size of $\alpha_k = \frac{1}{2N\mu}$, the SAG iterations satisfy

$$\mathbb{E}[g(x^k) - g(x^*)] \le C \left(1 - \frac{1}{8N}\right)^k$$

Comparison of SAG to FG and SG Methods

Comparing SAG to a variety of FG and SG methods:

Summary

Part 1:

- You can have the fast convergence rates of proximal-gradient methods, even if you can't compute the proximity operator.
 - M. Schmidt, N. Le Roux, F. Bach. Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization. NIPS, 2011.

Summary

Part 1:

- You can have the fast convergence rates of proximal-gradient methods, even if you can't compute the proximity operator.
 - M. Schmidt, N. Le Roux, F. Bach. Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization. NIPS, 2011.

Part 2.

- If you have a large finite data set, there are some options in between stochastic and exact gradient methods.
 - M. Friedlander, M. Schmidt. Hybrid Deterministic-Stochastic Methods for Data Fitting. Accepted to SISC, 2012.
 - N. Le Roux, M. Schmidt, F. Bach. A Stochastic Gradient Method with an Exponential Convergence Rate for Strongly-Convex Optimization with Finite Training Sets. Submitted. 2012.