REPORT GENERATED FOR CITY OF CHICAGO

PREDICTING WEST NILE VIRUS

By: Jimmy, Maryam, Ming Jie, Priscilla & Ting Wei

ABOUT: WEST NILE VIRUS

THE VIRUS

 First isolated in West Nile district

THE TRANSMITTER

- Mosquitoes
- Mostly Culex species

THE EFFECTS

- Fever
- Inflammation
- Death

WNV: TREATMENT & CONTROL

WNV: URGENCY

2001

First detection of WNV in dead birds

2003

A comprehensive surveillance and control system established

END-2012

174 cases, including 5 deaths

2002

635 cases, including 42 deaths

2011

22 human cases, including 1 death

+

PROBLEM STATEMENT

We need a more accurate system of forecasting the outbreaks of West Nile Virus that will help the City of Chicago and the Chicago Department of Public Health to allocate resources more efficiently and work towards eradicating the viral epidemic.

Thus, we must build an improved model of at least 75% recall to successfully predict when and where WNV- positive mosquitoes will be found in the city.

PROJECT WORKFLOW

DATA IMPORT DATA CLEANING

DATASETS IMPORTED

DATASET NAME	YEAR DATA WAS COLLECTED						
_	2007	2008	2009	2010	2011	2012	2013
MAIN (TRAIN)	May-Oct		May-Oct		Jun-Sep		Jun-Sep
SPRAY					Aug-Sep		July-Sep
WEATHER	May-Oct	May-Oct	May-Oct	May-Oct	May-Oct	May-Oct	May-Oct

TRAIN DATA CLEANING STEPS

DROP DUPLICATES

CREATE DATE-TIME COLUMNS

DROP COLUMNS; IRRELEVANT

COMBINE RECORDS FOR TRAPS
WITH >50 MOSQUITOES IN
SAME DAY

SPRAY DATA CLEANING STEPS

DROP DUPLICATES

CREATE DATE-TIME COLUMNS

DROP ROWS

IMPUTE VALUES

WEATHER DATA CLEANING STEPS

LOWERCASE COLUMN NAMES

CONVERT DATES TO DT FORMAT

DROP ROWS WITH HIGH MISSING VALUES

IMPUTE VALUES

EXPLORATORY DATA ANALYSIS

HEATMAP SUMMARY

- High correlation with wnv-present:
 - Temperature
 - Relative Humidity
 - Precipitation

WNV-CARRIER MOSQUITOES

Mosquitoes with WNV:

- 5%
- 1/20 mosquitoes found are WNV-carriers

WNV-CARRIER SPECIES

- Species with WNV:
 - Culex Pipiens
 - Culex Restuans

AUGUST HAS HIGHEST RATE OF WNV

AREAS WITH HIGHEST WNV

- Airport 66 cases
- Port of Chicago 44 cases

SPRAY EFFECTIVENESS

- Spray is effective
- Areas not sprayed has larger mosquito clusters
 & higher WNV counts

TEMPERATURE & WNV

 At higher Tmax and Tmin temperatures, higher frequency of mosquitoes with wnvpresent = 1

TEMPERATURE & WNV

Tavg peaks above 70°F (21°C) in July (7) or August (8)

AVERAGE WIND SPEED & WNV

- Peaks at lower average wind speed between 6-8mph (light to gentle breeze)
- At lower average wind speed, higher occurrences of mosquitoes with wnvpresent = 1

AVERAGE WIND SPEED & WNV

- Generally, average wind speed decreases from June (6) to September (9)
- Exception is seen in 2007 where there are fluctuations in average wind speed probably due to more extreme weather conditions

TOTAL PRECIPITATION & WNV

Low or no precipitation levels (<1.0 inch) sees higher frequency of mosquitoes
 with wnvpresent = 1

TOTAL PRECIPITATION & WNV

- Low precipitation levels in June (6) to September (9)
 - o at < 0.3 inch

WEATHER CONDITIONS IN SUMMER

HIGH TEMP

LOW PRECIPITATION

LOW AVE WIND SPEED

6-8 mph

>70 degrees fahrenheit

< 0.3 inch

MODELLING & EVALUATION

NEW PREDICTIVE FACTORS CREATED

TRAIN DATASET

Year/Month/Day

Week of Year

WEATHER DATASET

Relative Humidity

Day/Night Length

Weather 9 Days Ago

DATA PREPARATION

MODELLING AIM

Create a model that achieves

at least 75% on recall

in predicting the presence of WNV.

MODELS BUILT

Several classification models were built and trained on the prepared dataset

- Logistic Regression (Baseline)
- Random Forest
- AdaBoost
- XGBoost

METRIC USED

- Recall was selected as the performance metric
- Measure of model performance in terms of correctly identifying the positive class out of all the actual positives
- Focus on true positive predictions

MODEL PERFORMANCE

MODEL	TRAIN RECALL	TEST RECALL
LOGISTIC REGRESSION (BASELINE)	0.82	0.68
RANDOM FOREST	0.90	0.83
ADABOOST	0.88	0.76
XGBOOST	0.93	0.58

MODEL EVALUATION

Predictions made by model

WNV Absent

False Negative:

Model wrongly predicts wnv absent

28

WNV Present

True Positive:

Model correctly predicts wnv present

110

Recall:

TP/(TP+FN)

= 110/138

= 0.83

Actual WNV Present observations

NOTABLE FACTORS

- Mosquito season predominantly in Q3
- Length of day/night affects mosquito activity
- Higher temperatures correlates with increased WNV presence
- Presence of Culex Pipiens & presence of Culex Restuans

COST-BENEFIT ANALYSIS

WNV INFOGRAPHICS

Develops serious, sometimes fatal, illness

1 out of 5 develops a fever among other symptoms

No vaccine nor medication available

EXISTING EFFORTS

Adulticiding

 Aerial spraying of pesticides aimed at eliminating adult mosquitoes

Environmental Concerns

 Pesticides have been evaluated for this use and have been found to pose minimal risk to human health and the environment when used according to label directions

SPRAYING: PROS & CONS

PROS

Decrease in Mosquito populations

Reducing medical expenses associated with mosquito-borne illnesses

Preventing Loss of Productivity

CONS

Financial cost of Spraying

COST SAVINGS

\$500K

TO SPRAY ENTIRE CHICAGO PER MOSQUITO SEASON

Cost can be reduced with model's guidance

\$3.52/acre x 150,100 acre

\$56 MILLION

SPENT YEARLY
ON HOSPITALISATION

for WNV disease cases

OVER \$55.5 MILLION SAVED

CONCLUSION & RECOMMENDATIONS

CONCLUSION: MISSION SUCCESS

Model outperforms baseline model

Predictions will help Chicago and the CDPH more
 efficiently allocate resources to effectively prevent
 transmission of WNV

- Projected cost subject to change
 - Yearly review of cost-benefit analysis necessary.

- Limited features in dataset
 - Features such as number of dead birds reported has a strong impact on the spread of WNV. However, this can be easily resolved.

RECOMMENDATIONS

- Individual level:
 - Encourage civilians to strengthen personal protection against mosquitoes
- City level:
 - Enhance ground surveillance for mosquito breeding grounds and stagnant waters
- State level:
 - Further invest in research to eradicate mosquito-borne diseases

APPENDIX

MODEL OPTIMIZATION RANDOM FOREST

- Hyperparameters of our best performing model, Random Forest, were tuned to increase performance
- Parameters optimized were max_depth, max_features, min_samples_split and n_estimators which we ran through a gridsearch.
- Rewarded with a humble improvement of 0.01 on Recall score.

RELATIVE HUMIDITY FORMULA

Relative humidity can be derived from dew point and temperature using the formula below.

17.625 and 243.04 are known as magnus coefficients obtained through experiments.

$$RH = 100 imes egin{bmatrix} rac{e^{rac{17.625 imes D_p}{243.04 + D_p}}}{e^{rac{17.625 imes T}{243.04 + T}}} \end{bmatrix}$$

DAY AND NIGHT LENGTH

Day length = round(Sunset) - round(Sunrise) timing Divided by 100.

CROSS VALIDATION RECALL SCORES

- Logreg 0.82
- RF 0.89 (pre tuning)
- Adaboost 0.88
- XGboost 0.92
- 3 Folds, Recall Score

CONFUSION MATRIX

COST OF SPRAYING BREAKDOWN

Zenivex = \$299.80/gl

1 gallon = 128 fluid ounce

1 fluid ounce = \$2.34

1.5 fluid ounce = \$3.51

\$3.52 per acre

150,100 acres x \\$3.51 = **\$526,851**

[Source](https://www.gfmosquito.com/wp-content/uploads/2017/07/2017-ND-Mosq.-Control-Quote s-Tabulation.pdf)

\$56 MILLION?! AMJ TROP MED HYG

Table 6

Total estimated costs for United States hospitalized West Nile virus cases and death from 1999 through 2012 by cost category from simulation model in 2012 USD

Cost category	Mean*	95% CI	Median*	Range
Total acute medical care	\$252,115,100	(\$158,022,000- \$458,998,400)	\$230,879,300	(\$115,644,400- \$2,822,846,000)
Total acute lost productivity [†]	\$22,081,260	(\$9,550,370- \$63,069,700)	\$16,144,050	(\$7,070,480- \$2,643,251,000)
Total long-term medical care	\$27,570,280	(\$11,566,780- \$56,221,870)	\$25,468,510	(\$6,087,800- \$118,883,900)
Total long-term lost productivity	\$26,866,800	(\$13,526,800- \$48,279,320)	\$25,416,720	(\$7,790,800- \$85,567,700)
Total lifetime lost productivity caused by deaths [‡]	\$449,464,800	(NA)	\$449,464,800	(NA)

RANDOMFOREST

Works well with non-linear data

Lower risk of overfitting

Runs efficiently on a large dataset.

RANDOM FOREST CLASSIFIER

