Final Exam

Instructions

Answer each of the following questions and then submit your solutions to BbLearn before **10:00am today** (Monday, November 23). You can either write your solutions on paper and then capture your work digitally or you can write your solutions digitally on a tablet (e.g., iPad).

This exam is worth a total of 42 points and is worth 20% of your overall grade. Good luck and have fun!

- 1. (1 point each) True or False? Circle the correct answer. You do not need to justify your answer.
 - (a) If $g \in G$ and G is a finite group, then $g^{|G|} = e$.

True False

(b) If G is a group of order p such that p is prime, then G is cyclic.

True False

(c) If G is a finite abelian group and $a, b \in G$, then |ab| = lcm(|a|, |b|).

True False

(d) If G is group, then |ab| = |ba| for all $a, b \in G$.

True False

(e) A cyclic group of order 20 contains an element of order 5.

True False

(f) If G is a finite group of order n and k is a positive integer that divides n, then G has a subgroup of order k.

True False

(g) The group $\mathbb{Z}_6 \times \mathbb{Z}_8$ is cyclic.

True False

(h) If H and K are subgroups of a finite group G, then $|H \cap K|$ divides both |H| and |K|.

True False

(i) The symmetric group S_4 has a subgroup isomorphic to \mathbb{Z}_6 .

True False

(j) If G_1 and G_2 are groups, then all subgroups of $G_1 \times G_2$ are of the form $H_1 \times H_2$, where $H_1 \leq G_1$ and $H_2 \leq G_2$.

True False

(k) If $H \leq K \leq G$, then each left coset of H in G is contained in a left coset of K in G.

True False

(1) If G is a group, then every subgroup of the center of G (i.e., Z(G)) is normal in G.

True False

(m) If $H \subseteq G$ and G/H is cyclic, then G is cyclic.

True False

(n) If $H \subseteq G$ and G is abelian, then G/H is abelian.

True False

2. (2 points each) The following diagram is the Cayley diagram for the alternating group A_4 using the permutations (1,2,3) and (1,2)(3,4) as generators. You should assume that e=(1) (i.e., the identity in A_4).

- (a) Identify which permutations correspond to the vertices labeled a_2, a_3, b_1, b_2, b_3 .
- (b) Perform the quotient process using the subgroup $\langle (1,2,3) \rangle$. Draw the resulting diagram. You do not need to worry about labeling the vertices.
- (c) Does the diagram that you obtained in part (b) correspond to the Cayley diagram for a group? Briefly explain your answer.
- (d) Is the subgroup $\langle (1,2,3) \rangle$ normal in A_4 ? Briefly justify your answer by either referring to one of your answers in a previous part or by computing cosets.
- 3. (3 points each) Complete **two** of the following problems.
 - (a) Find the smallest n such that A_n contains an element of order 18.
 - (b) Find the largest possible order of an element in $\mathbb{Z}_9 \times \mathbb{Z}_{12}$.
 - (c) Explain why the only group homomorphism from D_3 to \mathbb{Z}_3 is the trivial homomorphism (i.e., $\varphi(g) = 0$ for all $g \in D_3$).
 - (d) Suppose $\varphi : \mathbb{Z}_{20} \to \mathbb{Z}_{20}$ is a group homomorphism such that $\ker(\varphi) = \{0, 5, 10, 15\}$. If $\varphi(13) = 8$, determine all elements that φ maps to 8.
- 4. Complete **one** the following. If you choose part (a), you must do both subparts. If you choose part (b), you must do all three subparts.
 - (a) (3 points each) Let G be a cyclic group of order n. Fix a positive integer k and define the function $\varphi: G \to G$ via $\varphi(x) = x^k$ for all $x \in G$.
 - i. Prove that φ satisfies the homomorphic property.
 - ii. Prove that φ is an isomorphism if and only if gcd(n,k) = 1. Hint: Suppose g is the generator of G and compute the order of g^k .
 - (b) (2 points each) Suppose $\varphi: \mathbb{Z}_{10} \to \mathbb{Z}_6$ satisfies the homomorphic property such that $\varphi(1) = 3$.
 - i. List the elements in the range of φ (i.e., $\varphi(\mathbb{Z}_{10})$).
 - ii. List the elements in $\ker(\varphi)$.
 - iii. What well-known group is $\mathbb{Z}_{10}/\ker(\varphi)$ isomorphic to?

- 5. (4 points) Prove **one** of the following theorems. Overall Hint: All of these look more terrifying than they are. Each one has a relatively short proof.
 - **Theorem 1.** Assume G is a group and $H \leq G$ such that |H| = 2. Then H is a normal subgroup of G if and only if H is contained in the center of G. Hint: Suppose $H = \{e, h\}$ and use the definition center together with the definition of normal subgroup (i.e., H normal in G if and only if gH = Hg for all $g \in G$).
 - **Theorem 2.** If G is a finite abelian group of odd order, then the product of all of the elements in G must be equal to the identity in G.
 - **Theorem 3.** If G is a group and H is a subgroup of G such that H is the only subgroup with order |H|, then H is a normal subgroup of G. *Hint:* Consider using Theorem 5.35 together with Theorem 3.64.
 - **Theorem 4.** If G is a group such that $N \leq H \leq G$ and $N \subseteq G$, then $H/N := \{hN \mid h \in H\}$ is a subgroup of G/N.* Hint: This looks harder than it is. Is N a normal subgroup of H?
- 6. (4 points) Prove **one** of the following theorems.
 - **Theorem 5.** As groups, $\mathbb{R}^*/\langle -1 \rangle \cong \mathbb{R}^+$. (Recall that \mathbb{R}^* is the group of nonzero real numbers and \mathbb{R}^+ is the group of positive real numbers, both of which are groups under multiplication.) *Hint:* Use the First Isomorphism Theorem.
 - **Theorem 6.** If G and H are groups, then $(G \times H)/(\{e_G\} \times H) \cong G$ (where e_G is the identity in G). Hint: Use the First Isomorphism Theorem.
 - **Theorem 7.** As groups, $D_4/\langle r^2 \rangle \cong V_4$. Hint: There are a few ways you could approach this problem: (i) use the First Isomorphism Theorem, (ii) draw the Cayley diagram for D_4 using generators r and s, add an extra arrow for r^2 to your diagram, and then perform quotient process, or (iii) consider the possible isomorphism types of $D_4/\langle r^2 \rangle$ and eliminate all except V_4 .

^{*}It turns out that every subgroup of G/N is of this form.