FORTRAN

Ferran Conde Codorniu

FORmula TRANslator

Introducció

Desenvolupat per IBM els anys 1950

Orientat a anàlisi numèrica i computació científica

Primer llenguatge d'alt nivell usat àmpliament

Principals aplicacions

Predicció meteorològica

Mecànica de fluids computacional

Cristal·lografia

Anàlisi matemàtica general

Versions

Paradigmes

- FORTRAN 77:
 programació estructurada
- Fortran 90:
 programació modular i genèrica
- Fortran 2003:
 programació orientada a objectes
- Fortran 2008:
 programació concurrent

Característiques

- Compilat

- Multi-paradigma (imperatiu)

- Alt nivell

Sistema de tipus

Fortament tipat Tipatge estàtic Tipatge explícit

- Enter
- Real (precisió simple)
- Double
- Caràcter
- Complex
- Lògic

4			1	P(1) = Y + W(1)															P	R	0.	10	13	39																																					
C-	EW	EN	of the safeton	-		1	1						-	-	1			_		F	C	F	2-	Т	R	Δ	1	7			5	T	A	Т	E	- 1	V	E	/	17	-																	r	ICA	TIC	N
010	0	01	00		0	0 0	0	0	0	0	0	0	1	0	0	0	0 (0 0	0	0	0 (0 0	0	0	0	0	0 (0 0	0	0	0 0	0 0	0	0 (0 0	0	0 1	0 0	0	0	0 0	0	0	0 0	0 0	0 1	0 0	0	0 0	0	0 1	0 0	0	0	0 0	0	0	0	0	0	0
111	1	11	1	1	1	ï	1	1	11	1	1	1	1 1		1	1	1.1	1	1	1	11	1	1	1	1	1	1 1	1 1	1	1	11	1	1	11	11	1	1	1 1	1	1	11	1	1	11	1	1	1 1	1	11	1	1	1 1	1	1	1 1	1 1	1	10 1	1 1	1 1	1
2 2	2	2 2	2 2	2	2	2 2	2	2	2 2	2	2	2 2	2 2	2	2	2 :	2 2	2 2	2	2	2 2	2 2	2	2	2	2	2 2	2 2	2	2	2 2	2 2	2	2 2	2 2	2	2	2 2	2	2	2 2	2	2	22	2 2	2	2 2	2	2 2	2 2	2	2 2	2 2	2	2 2	2 2	2	2	2 7	2 2	2
3/3	3 :	3 3	3 3	3	3 :	3 3	3	3	3 3	3	3	3 3	3 3	3	3	3 :	3 3	3	3	3	3 3	3	3	3	3	3	3 3	3 3	3	3	3 3	3	3	3 :	3 3	3	3	3 3	3	3	3 3	3	3	3 3	3 3	3	3 3	3	3	3 3	3	3 :	3 3	3	3	3 3	3	3	3		3
44	4 4	4 4	4	4	4 4	4	4	4	4 4	4	4	4 4	1 4	4	4	4	4 4	4	4	4	4 4	1 4	4	4	4	4	4 4	1 4	4	4	4 4	4	4	4	4 4	4	4	4 4	4	4	4	4	4	4	4 4	4	4 4	4	4	4 4	4	4	4 4	4	4	44	4 4	4	4	4	4 4
5 5	5 5	5	5	5		1	5	5 :	5 5	5	5	5 5		5	ı	5 :	5 5	5	5	5	5 5	5	5	5	5	5	5 5	5 5	5	5	5 5	5	5	5 !	5 5	5	5	5 5	5	5	5 5	5 5	5	5 !	5 5	5	5 5	5	5	5 5	5	5	5 5	5	5	5 {	5 5	5	5	5	5 5
6 6	6 6	6	6	6	6 6	6	6		6 6	6	ı	6	6	6	6	6 (6 6	6	6	6	6 8	6	6	6	6	6	6 (6 6	6	6	6 6	6	6	6	6 6	6	6	6 6	6	6	6 (6	6	6	6 6	6	6 6	6	6	6 6	6	6	6 6	6	6	6 (ò	6	6	6	6 6
717	7 7	7	7	7	17	7	7	11	1 7	7	7	17	7	7	7	7 7	17	7	7	7	17	7	7	7	7	7	7 7	1 1	7	7	77	17	7	7	1 7	7	7	7 7	17	7	7	17	7	7	17	7	7 7	7	1	11	7	7	7 7	7	7	1	1 1	7	7	7	7 7
8 8	8 8	8	8	CO	8	ı	8	8		8	ı	8 8	I	8		8 8	8 8	8	8	8	8 8	8	8	8	8	8	8 8	8 8	8	8	8 8	8	8	8	8 8	8	8	8 8	8 8	8	8 1	8 8	8	8	8 8	8	8 8	8	8	8 8	8	8	8 8	8	8	8	8 8	8	8	8	8 8
9 9	3 9	9 .	9		9 9	9	9	9 9	9	9	9	9 9	9	9	9	9 9	9 9	9	9	9 !	9 9	9	9	9	9	9 !	9 9	9 9	9	9	9 9	9	9	9 !	9 9	9	9	9 9	9 9	9	9	9 9	9	9	9 9	9	9 9	9	9	9 9	9	9	9 9	3 9	9	9	9	9	9	9	
		31				BBI		ie i.	A 14	13	10 1	1 18	13	20	23 2	2 2	3 24	0	25	21 2	3 25	X	3)	Z.	D;	34 3	5 3	5 37	33	39	4) 4	1 42	43	14 6	5 4	6 47	43	19 5	0 51	52	53 5	4 55	56	57 5	58 51	0 60	61 6	2 63	64	E 6	5 67	68	69 7	0 71	721	73	14.7	3 76	n	18	19 8

Forma fixa

L'era pre-disquets

S'escrivia FORTRAN77 en targetes perforades

1 a 5: Label field (definir etiquetes per IF, ...)

6: Continuation field (és la continuació d'una targeta anterior?)

7 a 72: Statement field

73 a 80: Ignorades (IBM 704 només 72)

Fortran 90

Introdueix diverses millores

- Forma lliure
- Identificadors:
 de 6 a 31 caràcters
- Recursivitat
- Reserva dinàmica de memòria
- Sobrecàrrega d'operadors

Estructura d'un programa

```
program nom
(implicit none)
...
end program nom
```

implicit none

Fortran assumia:

variables [i-n]\w+ són enters; reals altrament.

Anul·lar-ho evita confusions de tipus.

```
euclid.f (FORTRAN 77)
Find greatest common divisor using the Euclidean algorithm
PROGRAM EUCLID
  PRINT *, 'A?'
  READ *, NA
  IF (NA.LE.0) THEN
    PRINT *, 'A must be a positive integer.'
    STOP
  END IF
  PRINT *, 'B?'
  READ *, NB
  IF (NB.LE.0) THEN
    PRINT *, 'B must be a positive integer.'
    STOP
  END IF
  PRINT *, 'The GCD of', NA, ' and', NB, ' is', NGCD(NA, NB), '.'
  STOP
END
FUNCTION NGCD(NA, NB)
  IA = NA
  IB = NB
 IF (IB.NE.0) THEN
    ITEMP = IA
    IA = IB
    IB = MOD(ITEMP, IB)
    GOTO 1
  END IF
  NGCD = IA
  RETURN
END
```

```
! Saves input information and the summation in a data file
program summation
implicit none
integer :: sum, a
print*, "This program performs summations. Enter 0 to stop."
open(unit=10, file="SumData.DAT")
sum = 0
do
print*, "Add:"
read*, a
if (a == 0) then
 exit
else
 sum = sum + a
end if
write(10,*) a
end do
print*, "Summation =", sum
write(10,*) "Summation =", sum
close(10)
end
```

! Performs summations using in a loop using EXIT statement

! sum.f90