Problem Set Week 7

ETHZ Math Olympiad Club

7 April 2025

Problem A-2 (IMC 1999)

Does there exist a bijective map $\pi: \mathbb{N}_{>0} \to \mathbb{N}_{>0}$ such that

$$\sum_{n=1}^{\infty} \frac{\pi(n)}{n^2} < \infty?$$

Problem 2 (IMC 1994)

Let $f \in C^1(]a, b[, \mathbb{R})$ with $\lim_{x \to a^+} f(x) = +\infty$, $\lim_{x \to b^-} f(x) = -\infty$, and $f'(x) + f^2(x) \ge -1$ for all $x \in [a, b[$. Prove that $b - a \ge \pi$ and give an example where $b - a = \pi$.

Problem B-3 (IMC 2005)

In the linear space of all real $n \times n$ matrices, find the maximum possible \mathbb{R} -dimension of an \mathbb{R} -linear subspace V such that

$$\forall X, Y \in V$$
, $\operatorname{tr}(XY) = 0$.

(The trace of a matrix is the sum of its diagonal entries.)

Problem 4 (Bernoulli Competition 2024)

Let $n, m \in \mathbb{N}_{>0}$ be positive integers, with $m \geq 3$, and let $A \in \mathbb{Z}^{n \times n}$. Suppose A has finite order $(\exists k \in \mathbb{N}^*, A^k = I_n)$ and satisfies

$$A \equiv I_n \pmod{m}^1$$
.

Prove that $A = I_n$, and find counterexamples when m = 2.

¹For an integer $u \in \mathbb{Z}$, $\equiv \pmod{u}$ is the equivalence relation on the set of integer matrices $\bigcup_{r,l \in \mathbb{N}^*} \mathbb{Z}^{r \times l}$, where for $C, D \in \mathbb{Z}^{r \times l}$, $C \equiv D \pmod{u} \Leftrightarrow \forall (i,j) \in r \times l$, $u \mid (C-D)(i,j)$.