Ficha 1

- 1. Temos três vetores $\vec{a}(1,2)$, $\vec{b}(-5,-1)$, $\vec{c}(-1,3)$. Encontre as coordenadas dos vetores $2\vec{a}+3\vec{b}-\vec{c}$ e $16\vec{a}+5\vec{b}-9\vec{c}$.
- 2. Temos três vetores $\vec{a}(1,2)$, $\vec{b}(-5,-1)$, $\vec{c}(-1,3)$. Encontre α e β tais que $\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}$.
- 3. Verifique que os vetores $\vec{a}(1,2)$ e $\vec{b}(-5,-1)$ formam uma base. Encontre as coordenadas dos vetores $\vec{c}(-1,3)$ e $\vec{d}(-2,6)$ nesta base.
- 4. Numa base o vetor \vec{a} tem coordenadas (x, 1-x) e o vetor \vec{b} tem coordenadas (x^2-2x, x^2-2x+1) . Encontre os valores de x tais que $\vec{a}||\vec{b}|$.
- 5. Considere o triângulo $\triangle ABC$. Encontre na base formada por vetores \overrightarrow{AB} e \overrightarrow{Ac} o ponto D de intersecção da bissetriz do ângulo $\angle BAC$ com o segmento BC.
- 6. No paralelogramo ABCD o ponto K está no centro do segmento $\overrightarrow{BC} \in O$ é o ponto de intersecção das diagonais. Considerando a base $\overrightarrow{AB} \in \overrightarrow{AD}$, encontre os vetores \overrightarrow{BD} , $\overrightarrow{CO} \in \overrightarrow{KD}$.
- 7. No trapézio \overrightarrow{ABCD} as bases verificam a relação |AD|/|BC| = 3/2. Considerando a base \overrightarrow{AC} e \overrightarrow{BD} , encontre os vetores \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} e \overrightarrow{DA} .
- 8. No quadrilátero \overrightarrow{ABCD} os pontos E e F são centros dos lados \overrightarrow{AB} e \overrightarrow{CD} . Mostre que $\overrightarrow{EF} = (\overrightarrow{BC} + \overrightarrow{AD})/2$.
- 9. Sejam $\vec{e_1}, \vec{e_2}$ e $\vec{e_1}, \vec{e_2}$ duas bases. Os vetores da segunda base na primeira base têm coordenadas (-1,3) e (2,-7). Encontre:

- (a) As coordenadas do vetor na primeira base se são conhecidas as suas coordenadas (α'_1, α'_2) na segunda base;
- (b) As coordenadas do vetor na segunda base se são conhecidas as suas coordenadas (α_1, α_2) na primeira base;
- (c) As coordenadas dos vetores \vec{e}_1, \vec{e}_2 na segunda base.
- 10. Encontre as coordenadas do ponto no sistema de coordenadas O(2, -1), $e_1(1, 5)$, $e_2(-1, 4)$ se são dadas as suas coordenadas x', y' no sistema de coordenadas O'(3, 2), $e_1(1, -1)$, $e_2(4, 2)$.
- 11. Escreva na forma Ax + By + C = 0 a equação da reta definida na forma paramétrica: $\{(x,y) \mid x=2+3t, y=3+2t, t \in \mathbb{R}\}.$
- 12. Escreva a equação da reta que atravessa os pontos A(-3,1) e B(1,2).
- 13. Estude se as retas têm ponto de interesecção, são paralelas ou coincidem:
 - (a) x 3y 2 = 0 e 2x + y 1 = 0;
 - (b) x + 3y 1 = 0 e 2 2x 6y = 0;
 - (c) -x y 3 = 0 e 3x + 3y + 1 = 0.
- 14. Encontre a tais que as retas ax + y = 1, x y = a, $x + y = a^2$ têm um ponto comum.
- 15. Resolva o sistema:

(a)

$$2x_1 + x_2 = 10,$$

$$x_1 + x_2 = 17;$$

(b)

$$3x_1 + 5x_2 = 2,$$

$$5x_1 + 9x_2 = 4;$$

(c)

$$2x_1 + x_2 = 1,$$

$$-4x_1 - 2x_2 = -2;$$