

Language: Indonesian

Day:

Rabu, 7 Juli 2010

Soal 1. Tentukan semua fungsi $f: \mathbb{R} \to \mathbb{R}$ sehingga kesamaan

$$f(\lfloor x \rfloor y) = f(x) \lfloor f(y) \rfloor$$

berlaku untuk semua $x, y \in \mathbb{R}$. (Di sini $\lfloor z \rfloor$ menyatakan bilangan bulat terbesar yang lebih kecil atau sama dengan z.)

Soal 2. Misalkan I pusat lingkaran dalam segitiga ABC dan misalkan Γ lingkaran luarnya. Misalkan garis AI memotong Γ lagi di D. Misalkan E titik pada busur \widehat{BDC} dan F titik pada sisi BC sehingga

$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$

Terakhir, misalkan G titik tengah ruas garis IF. Buktikan bahwa garis DG dan EI berpotongan pada Γ .

Soal 3. Misalkan \mathbb{N} himpunan bilangan bulat positif. Tentukan semua fungsi $g: \mathbb{N} \to \mathbb{N}$ sehingga

$$(g(m)+n)(m+g(n))$$

suatu kuadrat sempurna untuk semua $m, n \in \mathbb{N}$.

Language: Indonesian

Language: Indonesian

Day: 2

Kamis, 8 Juli 2010

Soal 4. Misalkan P suatu titik di dalam segitiga ABC. Garis-garis AP, BP dan CP memotong lagi lingkaran luar Γ dari segitiga ABC berturut-turut di titik-titik K, L dan M. Garis singgung Γ di C memotong garis AB di S. Misalkan SC = SP. Buktikan bahwa MK = ML.

Soal 5. Di dalam masing-masing dari enam kotak $B_1, B_2, B_3, B_4, B_5, B_6$ mula-mula terdapat satu koin. Terdapat dua tipe operasi yang diperbolehkan:

- Tipe 1: Pilih suatu kotak tidak kosong B_j dengan $1 \le j \le 5$. Hilangkan satu koin dari B_j dan tambahkan dua koin ke B_{j+1} .
- Tipe 2: Pilih suatu kotak tidak kosong B_k dengan $1 \le k \le 4$. Hilangkan satu koin dari B_k dan tukarkan isi (ada kemungkinan kosong) kotak B_{k+1} dan B_{k+2} .

Tentukan apakah terdapat suatu barisan hingga operasi tersebut sehingga hasil pada kotak-kotak B_1, B_2, B_3, B_4, B_5 menjadi kosong dan kotak B_6 berisi tepat $2010^{2010^{2010}}$ koin. (Catatan bahwa $a^{b^c} = a^{(b^c)}$.)

Soal 6. Misalkan a_1, a_2, a_3, \ldots suatu barisan bilangan real positif. Anggap bahwa untuk suatu bilangan bulat positif s, kita mempunyai

$$a_n = \max\{a_k + a_{n-k} \mid 1 \le k \le n - 1\}$$

untuk semua n > s. Buktikan bahwa terdapat bilangan bulat positif ℓ dan N, dengan $\ell \le s$ dan sehinggga $a_n = a_\ell + a_{n-\ell}$ untuk semua $n \ge N$.

Language: Indonesian

Waktu: 4 jam dan 30 menit Masing-masing soal bernilai 7 angka