FG-8006.6.1A

SPECIFIED GAS EMITTERS REGULATION

QUANTIFICATION PROTOCOL FOR LANDFILL GAS CAPTURE AND COMBUSTION

SEPTEMBER 2007

Version 1

Disclaimer:

The information provided in this document is intended as guidance only and is subject to revisions as learnings and new information comes forward as part of a commitment to continuous improvement. This document is not a substitute for the law. Please consult the *Specified Gas Emitters Regulation* and the legislation for all purposes of interpreting and applying the law. In the event that there is a difference between this document and the *Specified Gas Emitters Regulation* or legislation, the *Specified Gas Emitters Regulation* or the legislation prevail.

Acknowledgements:

This protocol is largely based on the *Draft Quantification Protocol for Landfill Gas Capture and Combustion* dated April 11, 2006. This document was prepared by Enviro-Access Inc. for submission to Environment Canada. This document represents an abridged, re-formatted and amended version of the referenced work. Therefore, the seed document remains as a source of additional detail on any of the technical elements of the protocol.

Any comments, questions, or suggestions regarding the content of this document may be directed to:

Environmental Monitoring and Evaluation

Alberta Environment 11th Floor, Oxbridge Place 9820 - 106th Street Edmonton, Alberta, T5K 2J6 E-mail: **AENV.GHG@gov.ab.ca**

ISBN: 978-0-7785-7234-3 (Printed) ISBN: 978-0-7785-7235-0 (On-line)

Copyright in this publication, regardless of format, belongs to Her Majesty the Queen in right of the Province of Alberta. Reproduction of this publication, in whole or in part, regardless of purpose, requires the prior written permission of Alberta Environment.

© Her Majesty the Queen in right of the Province of Alberta, 2007

Table of Contents

Table of C	ontents	j
List of Fig	ures	i
List of Tab	oles	i
1.0 1.1 1.2	Project and Methodology Scope and Description Protocol Scope and Description Glossary of New Terms	
2.0 2.1 2.2 2.3 2.4 2.5 2.5.1 2.6 2.6.1 2.6.1	Quantification Development and Justification	
List of	Figures	
FIGURE 1 FIGURE 1		2 3
FIGURE 2 FIGURE 2		8 13
List of	Tables	
TABLE 2. TABLE 2. TABLE 2. TABLE 2. TABLE 2.	2 Baseline SS's 3 Comparison of SS's 4 Quantification Procedures	9 14 17 21 35

1.0 Project and Methodology Scope and Description

This quantification protocol is written for the landfill operator or a landfill gas project developer. Some familiarity with, or general understanding of, the operation of a landfill and the collection and combustion of landfill gas (LFG) is expected.

The opportunity for generating carbon offsets with this protocol arises mainly from indirect GHG emission reductions through the use of captured methane from the landfill to offset non-renewable electricity production and/or avoid methane emissions from destruction of methane.

1.1 Protocol Scope and Description

LFG is passively emitted due to the anaerobic decomposition of the organic components within the landfill. As the carbon dioxide component of the LFG is biogenic, this protocol is focused on the methane component. Landfill gas collection and combustion reduces the quantity of methane emissions released to the atmosphere from the landfill. The combustion of the methane component of the landfill gas results in emissions of biogenic carbon dioxide thus achieving a reduction in man-made GHG emissions. In addition, the generation of heat, power and electricity will offset other sources, which can include the combustion of fossil fuels.

The use of LFG under controlled conditions may include:

- Combustion for the generation of heat and/or power;
- Combustion for the generation of electricity;
- Destruction during controlled flaring; and/or
- Pipeline distribution to an end-user for combustion purposes.

Combustion of the LFG may occur on- or off-site, and must be occur under controlled conditions. **FIGURE 1.1** offers a process flow diagram for a typical project.

This protocol serves as a generic 'recipe' for project developers to follow in order to meet the measurement, monitoring and GHG quantification requirements for reductions due to LFG capture and usage under controlled conditions.

Protocol Approach:

The baseline condition represents the emissions of GHGs from waste decomposition in a landfill that would have been released to the atmosphere without LFG capture and combustion under controlled conditions. The baseline condition is thus dependent on the volume of LFG captured and combusted, and not on the size, waste composition, operational method or other characteristics of the project landfill. This allows the protocol to be applied across a variety of landfills with an equivalent result. **FIGURE 1.2** offers a process flow diagram for a typical baseline configuration.

FIGURE 1.2: Process Flow Diagram for Baseline Condition

This protocol does not attempt to estimate or quantify the total GHG emissions from a landfill. The GHG reduction calculation is based on the measurement of the *volume of LFG collected and the assumption that all of the LFG collected would have been released in the absence of an LFG collection system*. Thus the calculation of the total volume of methane generated in the landfill, using modeling or other calculation methods, is not required under this protocol.

Protocol Applicability:

To demonstrate that a project meets the requirements under this protocol, the project developer must supply sufficient evidence to demonstrate that:

- 1. The combustion is carried out under controlled conditions as demonstrated by a description of the LFG end use and specifications of the combustion device in use;
- 2. The LFG is not vented directly to atmosphere under the project condition once it is gathered as demonstrated by operational records and/or an affirmation by the project developer;
- 3. Metering of gas volumes takes place upstream of collection within a reasonable distance of either the combustion device or point of inclusion in the off-site pipeline network such that the meter will account for the potential for fugitive emissions as demonstrated by a project schematics;
- 4. The quantification of reductions achieved by the project is based on actual measurement and monitoring (except where indicated in this protocol) as indicated by the proper application of this protocol; and,
- 5. The project must meet the requirements for offset eligibility as specified in the applicable regulation and guidance documents for the Alberta Offset System.

Protocol Flexibility:

Flexibility in applying the quantification protocol is provided to project developers in the following ways:

- 1. Project developers may use alternative monitoring methodologies and/or equipment rather than the methodologies and/or equipment described in this protocol. The proponent must justify that the chosen methodology and/or equipment provides equivalent or more conservative data than the specified equipment;
- 2. [Where the LFG is included within a shared pipeline network, and the end-use of the LFG cannot be directly attributed, it is reasonable to assume that the end use is complete combustion at destruction efficiencies meeting the assumptions of the emission factors underlying Environment Canada's factors, as listed in the annual inventory of national emissions. In such circumstances, the most conservative emission factors for natural gas should be used for the downstream use of the LFG];
- 3. Site specific emission factors may be substituted for the generic emission factors indicated in this protocol document. The methodology for generation of these emission factors must be sufficiently robust as to ensure reasonable accuracy;

- 4. [This protocol may be used to quantify emission reductions from an upgrade of an open flare to a controlled combustion device. For the purposes of this protocol, the efficiency of an open flare is assumed to be 25%. As such, the baseline condition for conversion from an open flare to controlled combustion would be the same as conversion from no flare to controlled combustion with a corresponding discount of 25% applied to all volumes of LFG combusted or included into the pipeline]; and
- 5. Project developers may use a site-specific flare efficiency for an open flare, provided there is sufficient data to support the efficiency chosen

If applicable, the proponent must indicate and justify why flexibility provisions have been used.

1.2 Glossary of New Terms

Functional Equivalence	The Project and the Baseline should provide the same
	function and inputs and outputs (i.e. metered landfill
	gas). This type of comparison requires a common
	metric or unit of measurement for comparison

between the Project and Baseline activity (refer to the Project Guidance Document for the Alberta Offset

System for more information).

Bioreactor Landfill: A landfill cell that is specifically engineered to

enhance the decomposition of wastes through careful

manipulation of site conditions.

Controlled Conditions: Specific conditions in terms of temperature, residence

time and air intake taking place in an enclosed space

to optimize the combustion of methane.

Landfill: A defined area of land or excavation that receives or

has previously received waste that may include household waste, commercial solid waste, non

hazardous sludge and industrial solid waste.

Landfill Gas: Gas resulting from the decomposition of wastes

placed in a landfill typically comprised primarily of methane, carbon dioxide and other trace compounds.

Landfill Gas Project: Installation of infrastructure that in operating causes a

decrease in GHG emissions through combustion of

the methane component of LFG.

2.0 Quantification Development and Justification

The following sections outline the quantification development and justification.

2.1 Identification of Sources and Sinks (SS's) for the Project

SS's were identified for the project by reviewing the seed documents and relevant process flow diagram developed by Enviro-Access Inc. for Environment Canada. This process confirmed that the SS's in the process flow diagrams covered the full scope of eligible project activities under the protocol.

Based on the process flow diagrams provided in **FIGURE 1.1**, the project SS's were organized into life cycle categories in **FIGURE 2.1**. Descriptions of each of the SS's and their classification as controlled, related or affected are provided in **TABLE 2.1**.

FIGURE 2.1: Project Element Life Cycle Chart

•
SS
TO
+
ಲ
roject
•
0
2
虿
• •
ä
d
N
H
~
2
⋖
_

1 ABLE 2.1. Floject 35 3		3. Controlled, Related or
1. 55	z. Description	Affected
Upstream SS's during Project Operation	roject Operation	
P1Waste Generation	Streams of solid waste are produced in a number ways, depending on the source of these residues. Quantities for each of the energy inputs related to the generation of the waste streams would be contemplated to evaluate functional equivalence with the baseline condition.	Related
P2 Collection and Transportation	Solid waste may be transported to the project site by truck, barge and/or train. The related energy inputs for fuelling this equipment are captured under this SS, for the purposes of calculating the resulting greenhouse gas emissions. Type of equipment, number of loads and distance travelled would be used to evaluate functional equivalence with the baseline condition.	Related
P3 Off-Site Waste Processing	Solid waste may be processed using a series of mechanical processes, heavy equipment and conveyors. This equipment would be fuelled by diesel, gasoline, or natural gas resulting in GHG emissions, or electricity. Quantities and types for each of the energy inputs would be tracked.	Related
P4 Waste Transportation	Organic residues may be transported to the project site by truck, barge and/or train. The related energy inputs for fuelling this equipment are captured under this SS, for the purposes of calculating the resulting greenhouse gas emissions. Type of equipment, number of loads and distance travelled would be used to evaluate functional equivalence with the baseline condition.	Related
P5 Waste Processing and Disposal	Waste may be handled at a disposal site by transferring the waste from the transportation container, spreading, burying, processing, otherwise dealing with the waste using a combination of loaders, conveyors and other mechanized devices. This equipment would be fuelled by diesel, gasoline or natural gas, resulting in GHG emissions. Other fuels may also be used in some rare cases. Quantities and types for each of the energy inputs may need to be tracked.	Controlled
P12 Fuel Extraction and Processing	Each of the fuels used throughout the on-site component of the project will need to sourced and processed. This will allow for the calculation of the greenhouse gas emissions from the various processes involved in the production, refinement and storage of the fuels. The total volumes of fuel for each of the on-site SS's are considered under this SS. Volumes and types of fuels are the important characteristics to be tracked.	Related
P13 Fuel Delivery	Each of the fuels used throughout the on-site component of the project will need to be transported to the site. This may include shipments by tanker or by pipeline, resulting in the emissions of greenhouse gases. It is reasonable to exclude fuel sourced by taking equipment to an existing commercial fuelling station as the fuel used to take the equipment to the site is captured under other SS's and there is no other delivery.	Related
P14 Net Electricity Production/ Usage	Electricity may be required for operating the facility. This power may be sourced either from internal generation, connected facilities or the local electricity grid. Metering of electricity may be netted in terms of the power going to and from the grid. Quantity and source of power are the important characteristics to be tracked as they directly relate to the quantity of greenhouse gas emissions.	Related

	MODERAL DE	
Related	Equipment may need to be built either on-site or off-site. This includes all of the components of the storage, handling, processing, combustion, air quality control, system control and safety systems. These may be sourced as pre-made standard equipment or custom built to specification. Greenhouse gas emissions would be primarily attributed to the use of fossil fuels and electricity used to power equipment for the extraction of the raw materials, processing, fabricating and assembly	P16 Building Equipment
Related	The site may need to be developed. This could include civil infrastructure such as access to electricity, gas and water supply, as well as sewer etc. This may also include clearing, grading, building access roads, etc. There will also need to be some building of structures for the facility such as storage areas, storm water drainage, offices, vent stacks, firefighting water storage lagoons, etc., as well as structures to enclose, support and house the equipment. Greenhouse gas emissions would be primarily attributed to the use of fossil fuels and electricity used to power equipment required to develop the site such as graders, backhoes, trenching machines, etc.	P15 Development of Site
		Other
Related	Landfill gas may be input to a pipeline system and distributed to customers at another point on the distribution system. This gas may be further processed or consumed by the consumer. The most reasonable fate would be combustion in a controlled manner. This quantity of landfill gas input to the pipeline system would need to be tracked.	P8 Pipeline Distribution and Usage
	Downstream SS's during Project Operation	Downstream SS's du
Controlled	Flaring of the landfill gas may be required during upset conditions or during maintenance. Emissions of greenhouse gases would be contributed from the combustion of the LFG as well as from any natural gas used in flaring to ensure more complete combustion. Quantities of LFG being flared and quantities of any pilot fuels or supplemental fuels would need to be tracked.	P11 Flaring
Controlled	Thermal energy may need to be distributed around or from the project site. This may require compression or other mechanical processes and includes any recirculation functions. The energy inputs related to this function would need to be tracked.	P10 Thermal Energy Distribution
Controlled	On site co-generation systems may be included at the project site. This generation could require the combustion of landfill gas, and may be supplemented by fossil fuels precipitating greenhouse gas emissions. Volumes and types of fuels are the important characteristics to be tracked.	P9 On Site Co- Generation Systems
Controlled	Landfill gas will likely have a higher concentration of carbon dioxide and other impurities than may be acceptable for the any number of uses. Mechanical equipment may be required to treat the landfill gas in order meet the required specifications. This may require several energy inputs such as natural gas and diesel. Quantities and types for each of the energy inputs would be tracked.	P7 Processing of Landfill Gas
Controlled	Landfill gas recovery systems require compressors and other equipment for the gathering and distribution of the gas at the project facility. This equipment may be fuelled by diesel, gasoline or natural gas, resulting in GHG emissions. Other fuels, such as landfill gas, may also be used in some rare cases. Quantities and types for each of the energy inputs may need to be tracked.	P6 Landfill Gas Recovery System Operation
	Project Operation	Onsite SS's during Project Operation

	Equipment built off-site and the materials to build equipment on-site, will all need to be delivered to	
P17 Transportation of	the site. Transportation may be completed by train, truck, by some combination, or even by courier.	Related
Equipment	Greenhouse gas emissions would be primarily autibuted to the use of fossil fuels to power the equipment delivering the equipment to the site.	
0014	The process of construction at the site will require a variety of heavy equipment, smaller power	
F18 Construction on	tools, cranes and generators. The operation of this equipment will have associated greenhouse gas	Related
Site	emission from the use of fossil fuels and electricity.	
	Equipment may need to be tested to ensure that it is operational. This may result in running the	
P19 Testing of	equipment using test anaerobic digestion fuels or fossil fuels in order to ensure that the equipment	Dolotod
Equipment	runs properly. These activities will result in greenhouse gas emissions associated with the	Neialed
	combustion of fossil fuels and the use of electricity.	
	Once the facility is no longer operational, the site may need to be decommissioned. This may	
020 8:42	involve the disassembly of the equipment, demolition of on-site structures, disposal of some	
rzo site	materials, environmental restoration, re-grading, planting or seeding, and transportation of materials	Related
Decommissioning	off-site. Greenhouse gas emissions would be primarily attributed to the use of fossil fuels and	
	electricity used to power equipment required to decommission the site.	

2.2 Identification of Baseline

The baseline condition for projects applying this protocol is defined as the volume of methane captured that would otherwise have been released to the atmosphere, less the volume of methane that would have been captured under any other existing regulations. The baseline scenario for conversion from an open flare to controlled combustion is considered to be the same as the baseline scenario for conversion from no flare to controlled combustion. The baseline is thus project-specific.

The approach to quantifying the baseline will be calculation based as there are suitable data available for the applicable baseline condition that can provide reasonable certainty. The baseline scenario for this protocol is dynamic as the volume of methane would be expected to change materially relative to the age of the landfill, and the baseline condition may vary from project to project.

The baseline condition is defined, including the relevant SS's and processes, as shown in **FIGURE 1.2**. More detail on each of these SS's is provided in Section 2.3, below.

2.3 Identification of SS's for the Baseline

Based on the process flow diagrams provided in **FIGURE 1.2**, the project SS's were organized into life cycle categories in **FIGURE 2.2**. Descriptions of each of the SS's and their classification as either 'controlled', 'related' or 'affected' is provided in **TABLE 2.2**.

FIGURE 2.2: Baseline Element Life Cycle Chart

B4 Waste B5 Waste Extraction / Disposal Processing Delivery B8 Fuel Imported	aseline After Baseline		B6 Waste Decomposition Decommissioning				
ection B3 Off-Site d Waste rtation Processing	On Site SS's During Baseline						
B1 Waste and Cencration Transportation	Upstream SS's Refore Raseline	B11 Development of Site	B12 Building Equipment	B13 Transportation of Equipment	B14 Construction on Site	B15 Testing of Equipment	

TABLE 2.2: Baseline SS's

Related	Electricity may be produced off-site to cover the electricity demand not being produced by the landfill gas recovery facility. This electricity will be produced at an emissions intensity as deemed appropriate. Measurement of the gross quantity of electricity produced by the facility will need to be tracked to quantify this SS.	B9 Electricity Imported
Related	Each of the fuels used throughout the on-site component of the project will need to be transported to the site. This may include shipments by tanker or by pipeline, resulting in the emissions of greenhouse gases. It is reasonable to exclude fuel sourced by taking equipment to an existing commercial fuelling station as the fuel used to take the equipment to the site is captured under other SS's and there is no other delivery.	B8 Fuel Delivery
Related	Each of the fuels that may be offset by the consumption of the landfill gas used off-site would need to sourced and processed. This will allow for the calculation of the greenhouse gas emissions from the various processes involved in the production, refinement and storage of the fuels. The total volumes of fuel for each of the on-site SS's are considered under this SS. Volumes and types of fuels are the important characteristics to be tracked.	B7 Fuel Extraction and Processing
Controlled	Waste may be handled at a disposal site by transferring the waste from the transportation container, spreading, burying, processing, otherwise dealing with the waste using a combination of loaders, conveyors and other mechanized devices. This equipment would be fuelled by diesel, gasoline or natural gas, resulting in GHG emissions. Other fuels may also be used in some rare cases. Quantities and types for each of the energy inputs may need to be tracked.	B5 Waste Disposal
Related	Organic residues may be transported to the project site by truck, barge and/or train. The related energy inputs for fuelling this equipment are captured under this SS, for the purposes of calculating the resulting greenhouse gas emissions. Type of equipment, number of loads and distance travelled would be used to evaluate functional equivalence with the baseline condition.	B4 Waste Transportation
Related	Solid waste may be processed using a series of mechanical processes, heavy equipment and conveyors. This equipment would be fuelled by diesel, gasoline, or natural gas resulting in GHG emissions, or electricity. Quantities and types for each of the energy inputs would be tracked.	B3 Off-Site Waste Processing
Related	Solid waste may be transported to the project site by truck, barge and/or train. The related energy inputs for fuelling this equipment are captured under this SS, for the purposes of calculating the resulting greenhouse gas emissions. Type of equipment, number of loads and distance travelled would be used to evaluate functional equivalence with the baseline condition.	B2 Collection and Transportation
Related	Streams of solid waste are produced in a number ways, depending on the source of these residues. Quantities for each of the energy inputs related to the generation of the waste streams would be contemplated to evaluate functional equivalence with the baseline condition.	B1Waste Generation
	g Baseline Operation	Upstream SS's during Baseline Operation
3. Controlled, Related or Affected	2. Description	1. SS

Onsite SS's during Baseline Op	eline Operation	
B6 Waste Decomposition	Waste may decompose in the disposal facility resulting in the production of methane. Disposal site characteristics and mass disposed of at each site may need to be tracked.	Controlled
Downstream SS's during Basel	g Baseline Operation	
B10 Offset Fossil Fuel Use	Fossil fuel use may occur off-site to cover the energy that may be supplied by the landfill gas exported from the landfill gas recovery facility. Volumes and types of fuels are the important characteristics to be tracked.	Related
Other		
B11 Development of Site	The site of the material processing and disposal facilities may need to be developed. This could include civil infrastructure such as access to electricity, gas and water supply, as well as sewer etc. This may also include clearing, grading, building access roads, etc. There will also need to be some building of structures for the facility such as storage areas, storm water drainage, offices, vent stacks, firefighting water storage lagoons, etc., as well as structures to enclose, support and house the equipment. Greenhouse gas emissions would be primarily attributed to the use of fossil fuels and electricity used to power equipment required to develop the site such as graders, backhoes, trenching machines, etc.	Related
B12 Building Equipment	Equipment may need to be built either on-site or off-site. This includes all of the components of the storage, handling, processing, combustion, air quality control, system control and safety systems. These may be sourced as pre-made standard equipment or custom built to specification. Greenhouse gas emissions would be primarily attributed to the use of fossil fuels and electricity used to power equipment for the extraction of the raw materials, processing, fabricating and assembly.	Related
B13 Transportation of Equipment	Equipment built off-site and the materials to build equipment on-site, will all need to be delivered to the site. Transportation may be completed by train, truck, by some combination, or even by courier. Greenhouse gas emissions would be primarily attributed to the use of fossil fuels to power the equipment delivering the equipment to the site.	Related
B14 Construction on Site	The process of construction at the site will require a variety of heavy equipment, smaller power tools, cranes and generators. The operation of this equipment will have associated greenhouse gas emission from the use of fossil fuels and electricity.	Related
B15 Testing of Equipment	Equipment may need to be tested to ensure that it is operational. This may result in running the equipment using test anaerobic digestion fuels or fossil fuels in order to ensure that the equipment runs properly. These activities will result in greenhouse gas emissions associated with the combustion of fossil fuels and the use of electricity.	Related
B16 Site Decommissioning	Once the facility is no longer operational, the site may need to be decommissioned. This may involve the disassembly of the equipment, demolition of on-site structures, disposal of some materials, environmental restoration, re-grading, planting or seeding, and transportation of materials off-site. Greenhouse gas emissions would be primarily attributed to the use of fossil fuels and electricity used to power equipment required to decommission the site.	Related

2.4 Selection of Relevant Project and Baseline SS's

Each of the SS's from the project and baseline condition were compared and evaluated as to their relevancy using the guidance provided in Annex VI of the "Guide to Quantification Methodologies and Protocols: Draft", dated March 2006 (Environment Canada). The justification for the exclusion or conditions upon which SS's may be excluded is provided in **TABLE 2.3** below. All other SS's listed previously are included.

TABLE 2.3: Comparison of SS's

I ADLE 4.3. Comparison of	11 OF 55 3			
1. Identified SS	2. Baseline (C, R, A)	3. Project (C, R, A)	4. Include or Exclude from Quantification	5. Justification for Exclusion
Upstream SS's				
P1Waste Generation	N/A	Related	Exclude	Excluded as the generation of solid waste are not impacted by
B1Waste Generation	Related	N/A	Exclude	the implementation of the project and as such the baseline and project conditions will be functionally equivalent.
P2 Collection and Transportation	N/A	Related	Exclude	Excluded as the emissions from transportation are negligible
B2 Collection and Transportation	Related	N/A	Exclude	and likely functionally equivalent to the baseline scenario.
P3 Off-Site Waste Processing	N/A	Related	Exclude	Excluded as the off-site processing of solid waste is not
B3 Off-Site Waste Processing	Related	N/A	Exclude	Impacted by the implementation of the project and as such the baseline and project conditions will be functionally equivalent.
P4 Waste Transportation	N/A	Related	Exclude	Excluded as the emissions from transportation are negligible
B4 Waste Transportation	Related	N/A	Exclude	and likely functionally equivalent to the baseline scenario.
P5 Waste Disposal	N/A	Controlled	Exclude	Excluded as the disposal of waste at the site is not impacted by
B5 Waste Disposal	Controlled	N/A	Exclude	project conditions will be functionally equivalent.
P12 Fuel Extraction and Processing	N/A	Related	Include	N/A
B7 Fuel Extraction and Processing	Related	N/A	Include	N/A
P13 Fuel Delivery	N/A	Related	Exclude	Excluded as the emissions from transportation are negligible
B8 Fuel Delivery	Related	N/A	Exclude	and likely greater under the baseline condition.
P14 Net Electricity Production/ Usage	N/A	Related	Exclude	Excluded as these SS's are not relevant to the project as the emissions from these practises are covered under proposed greenhouse gas regulations.
B9 Electricity Imported	Related	N/A	Include	N/A
Onsite SS's				
P6 Landfill Gas Recovery System Operation	N/A	Controlled	Include	N/A
P7 Processing of Landfill Gas	N/A	Controlled	Include	N/A

Emissions from construction on site are not material given the long project life, and the minimal construction on site typically required.	Exclude	Related	N/A	P18 Construction on Site
Emissions from transportation of equipment are not material for the baseline condition given the minimal transportation of equipment typically required.	Exclude	N/A	Related	B13 Transportation of Equipment
Emissions from transportation of equipment are not material given the long project life, and the minimal transportation of equipment typically required.	Exclude	Related	N/A	P17 Transportation of Equipment
Emissions from building equipment are not material for the baseline condition given the minimal building equipment typically required.	Exclude	N/A	Related	B12 Building Equipment
Emissions from building equipment are not material given the long project life, and the minimal building equipment typically required.	Exclude	Related	N/A	P16 Building Equipment
Emissions from site development are not material for the baseline condition given the minimal site development typically required.	Exclude	N/A	Related	B11 Development of Site
Emissions from site development are not material given the long project life, and the minimal site development typically required.	Exclude	Related	N/A	P15 Development of Site
				Other
N/A	Include	N/A	Related	B10 Offset Fossil Fuel Use
N/A	Include	Related	N/A	P8 Pipeline Distribution and Usage
				Downstream SS's
N/A	Include	N/A	Controlled	B6 Waste Decomposition
N/A. Pilot fuel for flare stack is excluded as this has been shown to be immaterial.	Include	Controlled	N/A	P11 Flaring
N/A	Include	Controlled	N/A	P10 Thermal Energy Distribution
N/A	Include	Controlled	N/A	P9 On Site Co-Generation Systems

Exclude	N/A
Exclude	Related
Exclude	N/A
Exclude	Related
Exclude	N/A

2.5 Quantification of Reductions, Removals and Reversals of Relevant SS's

2.5.1 QUANTIFICATION APPROACHES

Quantification of the reductions, removals and reversals of relevant SS's for each of the greenhouse gases will be completed using the methodologies outlined in **TABLE 2.4**, below. A listing of relevant emission factors is provided in **Appendix A**. These calculation methodologies serve to complete the following three equations for calculating the emission reductions from the comparison of the baseline and project conditions.

Emission Reduction = Emissions Baseline - Emissions Project

Emissions Baseline = Emissions Fuel Extraction / Processing + Emissions Electricity Production + Emissions Waste Decomposition + Emissions Offset Fossil Fuel Use

$$\begin{split} Emissions \ _{Project} = Emissions \ _{Fuel \ Extraction / \ Processing} + Emissions \ _{Recovery \ System} + \\ Emissions \ _{Processing \ of \ Landfill \ Gas} + Emissions \ _{Onsite \ Co-generation} + Emissions \ _{Thermal \ Energy} + Emissions \ _{Flaring} + Emissions \ _{Pipeline \ distribution} \end{split}$$

Where:

Emissions _{Baseline} = sum of the emissions under the baseline condition.

Emissions Fuel Extraction / Processing = emissions under SS B7 Fuel Extraction and Processing

Emissions Electricity Production = emissions under SS B9 Electricity Imported

Emissions Waste Decomposition = emissions under SS B6 Waste Decomposition

Emissions Offset Fossil Fuel Use = emissions under SS B10 Offset Fossil Fuel Use

Emissions _{Project} = sum of the emissions under the project condition.

Emissions Fuel Extraction / Processing = emissions under SS P12 Fuel Extraction and Processing

Emissions _{Recovery System} = emissions under SS P6 Landfill Gas Recovery System Operation

Emissions Processing of Landfill Gas = emissions under SS P7 Processing of Landfill Gas

Emissions _{Onsite Co-generation} = emissions under SS P9 Onsite Cogeneration Systems

Emissions Thermal Energy = emissions under SS P10 Thermal Energy Distribution

Emissions Flaring = emissions under SS P11 Flaring

Emissions Pipeline distribution = emissions under SS P8 Pipeline Distribution and Usage

lures
7
2
ŏ
Pr
=
0
#
<u></u>
,2
=
7
<u> </u>
n
0
4
તં
BLE
1
2
A
r :

1 A Project	-۱	locedures	/ Moseumod /			7 Instift mossimoment or
Baseline SS	Variable	3. Unit	Estimated	5. Method	6. Frequency	estimation and frequency
			Pr	Project SS's		
	Emissions	Fuel Extraction / Processing	$= \sum (Vol. Fuel_i * I$	Emissions Fuel Extraction / Processing = \sum (Vol. Fuel; * EF Fuel; CO2); \sum (Vol. Fuel; * EF Fuel; CH4); \sum (Vol. Fuel; * EF Fuel; OH4)	F Fuel $_{\mathrm{i}\mathrm{CH4}})$; \sum (V	ol. Fuel i * EF Fuel iN20)
	Extraction / Processing	kg of CO2e	N/A	N/A	N/A	Quantity being calculated in aggregate form as fuel and electricity use on site is likely aggregated for each of these SS's.
	Volume of Fossil Fuel Combusted for P6 to P11 / Vol Fuel	m ₃	Measured	Direct metering or reconciliation of volume in storage (including volumes received).	Continuous metering or monthly reconciliation.	Both methods are standard practise. Frequency of metering is highest level possible. Frequency of reconciliation provides for reasonable diligence.
P12 Fuel Extraction and Processing	CO ₂ Emissions Factor for Fuel Including Production and Processing / EF Fuel co ₂	kg CO ₂ per m³	Estimated	From Environment Canada reference documents.	Annual	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.
	CH ₄ Emissions Factor for Fuel Including Production and Processing / EF Fuel CH ₄	kg CH4 per m³	Estimated	From Environment Canada reference documents.	Annual	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.
	N ₂ 0 Emissions Factor for Fuel Including Production and Processing / EF Fuel N ₂ 0	kg N2O per m³	Estimated	From Environment Canada reference documents.	Annual	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.
P6 Landfill Gas Recovery		ons LFG System = $(Vol. \sum_{i} (Vol. Fuel_i)$	* EF Fuel (CO2);	Emissions LFG System = (Vol. LFG Consumed * % CH ₄ * EF LFG CH ₄); (Vol. LFG Consumed * % CH ₄ * EF LFG N _{2O}); \sum (Vol. Fuel ; * EF Fuel ; \sum (Vol. Fuel ; \sum	G Consumed * % (Vol. Fuel ; * EF F	CH ₄ * EF LFG _{N2O}); uel _{i N2O})

					System Operation
Volume of Each Type of Fuel used / Vol Fuel i	N ₂ 0 Emissions Factor for Landfill Gas / EF LFG _{N20}	CH ₄ Emissions Factor for Landfill Gas / EF LFG _{CH4}	Methane Composition in Landfill Gas / % CH ₄	Volume of Landfill Gas Consumed / Vol. LFG Consumed	Emissions _{LFG}
L/m³/other	kg N ₂ O per L / m³ / other	kg CH ₄ per m³	ı	m³	kg of CO ₂ ; CH ₄ ; N ₂ O
Measured	Estimated	Estimated	Measured	Measured	N/A
Direct metering or reconciliation of volume in storage (including volumes received).	From Environment Canada reference documents. In the absence of LFG data, rely on Industrial emissions factors for Natural Gas as this most accurately reflects the condition for the methane fraction of the LFG.	From Environment Canada reference documents. In the absence of LFG data, rely on Industrial emissions factors for Natural Gas as this most accurately reflects the condition for the methane fraction of the LFG.	Direct measurement.	Direct metering of volume of LFG being flared.	N/A
Continuous metering or monthly reconciliation.	Annual	Annual	Daily sampling averaged monthly on a volumetric basis	Continuous metering	N/A
Both methods are standard practise. Frequency of metering is highest level possible. Frequency of reconciliation provides for reasonable diligence.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	LFG composition should remain relatively stable during steady-state operation.	Direct metering is standard practise. Frequency of metering is highest level possible.	Quantity being calculated in aggregate form as fuel and electricity use on site is likely aggregated for each of these SS's.

Estimated From Environment Canada reference documents.	Estimated From Environment Canada reference documents.	Estimated From Environment Canada reference documents.	Emissions $_{Pocess\ LFG} = (Vol.\ LFG\ Consumed * \%\ CH_4 * EF\ LFG\ _{CH_4})$; (Vol. LFG Flared * % CH_4 * EF\ LFG\ _{N2O}); \sum (Vol. Fuel $_i$ * EF Fuel $_{i\ CO2}$); \sum (Vol. Fuel $_i$ * EF Fuel $_{i\ CH_4}$); \sum (Vol. Fuel $_i$ * EF Fuel $_{i\ N2O}$)	N/A N/A	Measured Direct metering of volume of LFG being consumed.	Measured Direct measurement.
kg CO ₂ per L / Estim	kg CH ₄ per L / Estim	kg N ₂ O per L / Estim	ons $_{\text{Process LFG}} = (\text{Vol. LFG C})$ $\sum (\text{Vol. Fuel} * \text{EF Fuel}$	$\log \operatorname{ofCO}_2;\operatorname{CH}_4; egin{array}{c} N_2O \\ N_2O \end{array}$	m ³ Meas	- Meas
CO ₂ Emissions Factor for Each Type of Fuel / EF Fuel _{i CO2}	CH ₄ Emissions Factor for Each Type of Fuel / EF Fuel _{i CH4}	N ₂ 0 Emissions Factor for Each Type of Fuel / EF Fuel i N20	P7 Processing Emissions of Landfill Gas	Emissions Process kg	Volume of Landfill Gas Consumed / Vol. LFG Consumed	Methane Composition in LFG / % CH ₄

N ₂ 0 Emissions Factor for Each Type of Fuel / EF Fuel _{iN20}	CH ₄ Emissions Factor for Each Type of Fuel / EF Fuel _{i CH4}	CO ₂ Emissions Factor for Each Type of Fuel / EF Fuel _{i CO2}	Volume of Each Type of Fuel Used/ Vol Fuel i	N ₂ 0 Emissions Factor for Landfill Gas / EF LFG _{N20}	CH ₄ Emissions Factor for Landfill Gas / EF LFG _{CH4}
kg N ₂ O per L / m ³ / other	kg CH ₄ per L / m³ / other	kg CO ₂ per L / m³ / other	L/m³/other	kg N ₂ O per L / m³/other	kg CH ₄ per m³
Estimated	Estimated	Estimated	Measured	Estimated	Estimated
From Environment Canada reference documents.	From Environment Canada reference documents.	From Environment Canada reference documents.	Direct metering or reconciliation of volume in storage (including volumes received).	From Environment Canada reference documents. In the absence of LFG data, rely on Industrial emissions factors for Natural Gas as this most accurately reflects the condition for the methane fraction of the LFG.	From Environment Canada reference documents. In the absence of LFG data, rely on Industrial emissions factors for Natural Gas as this most accurately reflects the condition for the methane fraction of the LFG.
Annual	Annual	Annual	Continuous metering or monthly reconciliation.	Annual	Annual
Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Both methods are standard practise. Frequency of metering is highest level possible. Frequency of reconciliation provides for reasonable diligence.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.

P8 Pipeline Distribution and	Emiss	ions Pipeline = (Vol. L) $\sum (\text{Vol. Fuel}_i *$	FG Consumed * 9 EF Fuel $_{1\text{CO}2}$); \sum	Emissions Pipeline = (Vol. LFG Consumed * % CH ₄ * EF LFG CH ₄); (Vol. LFG Consumed * % CH ₄ * EF LFG N2O); \sum (Vol. Fuel ; * EF Fuel ; CO2); \sum (Vol. Fuel ; * EF Fuel ; N2O)	Consumed * % C	H ₄ * EF LFG _{N2O});
Usage	Emissions Pipeline	kg of CO ₂ ; CH ₄ ; N ₂ O	N/A	N/A	N/A	Quantity being calculated in aggregate form as fuel and electricity use on site is likely aggregated for each of these SS's.
	Volume of Landfill Gas Consumed / Vol. LFG Consumed	m ³	Measured	Direct metering of volume of LFG being consumed.	Continuous metering.	Direct metering is standard practise. Frequency of metering is highest level possible.
	Methane Composition in LFG / % CH ₄	ı	Measured	Direct measurement.	Daily sampling averaged monthly on a volumetric basis	LFG composition should remain relatively stable during steady-state operation.
	CH ₄ Emissions Factor for Landfill Gas / EF LFG _{CH4}	$ m kg~CH_4~per~m^3$	Estimated	From Environment Canada reference documents. In the absence of LFG data, rely on the most reasonable and conservative emissions factors for Natural Gas as this most accurately reflects the condition for the methane fraction of the LFG.	Annual	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.
	N ₂ 0 Emissions Factor for Landfill Gas / EF LFG _{N20}	$kg N_2O per L/m^3/other$	Estimated	From Environment Canada reference documents. In the absence of LFG data, rely on the most reasonable and conservative emissions factors for Natural Gas as this most accurately reflects the condition for the methane fraction of the LFG.	Annual	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.

		Systems	P9 On Site Co- Generation				
Methane Composition in LFG / % CH ₄	Volume of Landfill Gas Consumed / Vol. LFG Consumed	Emissions Co-Gen	Emiss	N ₂ 0 Emissions Factor for Each Type of Fuel / EF Fuel _{i N20}	CH ₄ Emissions Factor for Each Type of Fuel / EF Fuel _{i CH4}	CO ₂ Emissions Factor for Each Type of Fuel / EF Fuel _{i CO2}	Volume of Each Type of Fuel used / Vol Fuel i
	m ³	kg of CO ₂ ; CH ₄ ; N ₂ O	ions $_{\text{Co-Gen}} = (\text{Vol. L})$ $\sum (\text{Vol. Fuel}_{\text{i}})^*$	kg N ₂ O per L / m ³ / other	kg CH ₄ per L / m³ / other	$kg CO_2 per L / m^3 / other$	L/m³/other
Measured	Measured	N/A	FG Consumed * ' EF Fuel _{i CO2}) ; Y	Estimated	Estimated	Estimated	Measured
Direct measurement.	Direct metering of volume of LFG being consumed.	N/A	Emissions $_{\text{Co-Gen}} = \text{(Vol. LFG Consumed * % CH}_4 * \text{EF LFG }_{\text{CH4}})$; (Vol. LFG Consumed * % $\sum \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \in \Omega^2})$; $\sum \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \in \Omega^4})$; $\sum \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \in \Omega^4}$)	From Environment Canada reference documents.	From Environment Canada reference documents.	From Environment Canada reference documents.	Direct metering or reconciliation of volume in storage (including volumes received).
Daily sampling averaged monthly on a volumetric basis	Continuous metering.	N/A		Annual	Annual	Annual	Continuous metering or monthly reconciliation.
LFG composition should remain relatively stable during steady-state operation.	Direct metering is standard practise. Frequency of metering is highest level possible.	Quantity being calculated in aggregate form as fuel and electricity use on site is likely aggregated for each of these SS's.	CH ₄ * EF LFG _{N20}); Fuel _{i N20})	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Both methods are standard practise. Frequency of metering is highest level possible. Frequency of reconciliation provides for reasonable diligence.

Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Both methods are standard practise. Frequency of metering is highest level possible. Frequency of reconciliation provides for reasonable diligence.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.
Annual	Annual	Continuous metering or monthly reconciliation.	Annual	Annual	Annual
From Environment Canada reference documents. In the absence of LFG data, rely on Electric Utilities emissions factors for Natural Gas as this most accurately reflects the condition for the methane fraction of the LFG.	From Environment Canada reference documents. In the absence of LFG data, rely on Electric Utilities emissions factors for Natural Gas as this most accurately reflects the condition for the methane fraction of the LFG.	Direct metering or reconciliation of volume in storage (including volumes received).	From Environment Canada reference documents.	From Environment Canada reference documents.	From Environment Canada reference documents.
Estimated	Estimated	Measured	Estimated	Estimated	Estimated
kg CH4 per m³	${ m kgN_2OperL/}{ m m^3/other}$	L/m³/other	$kgCO_2perL/\\m^3/other$	$kgCH_4perL/\\m^3/other$	$kgN_2OperL/\\m^3/other$
CH ₄ Emissions Factor for Landfill Gas / EF LFG CH4	N ₂ 0 Emissions Factor for Landfill Gas / EF LFG _{N20}	Volume of Each Type of Fuel used / Vol Fuel i	CO ₂ Emissions Factor for Each Type of Fuel / EF Fuel i co ₂	CH ₄ Emissions Factor for Each Type of Fuel / EF Fuel _{i CH4}	N ₂ 0 Emissions Factor for Each Type of Fuel / EF Fuel i N20

						P10 Thermal Energy Distribution
Volume of Each Type of Fuel used / Vol Fuel ;	N ₂ 0 Emissions Factor for Landfill Gas / EF LFG _{N20}	CH ₄ Emissions Factor for Landfill Gas / EF LFG _{CH4}	Methane Composition in LFG / % CH ₄	Volume of Landfill Gas Consumed / Vol. LFG Consumed	Emissions Heat Dist	Emiss
L/m³/other	kg N ₂ O per L / m³/other	kg CH ₄ per m³	ı	m³	kg of CO ₂ ; CH ₄ ; N ₂ O	$\frac{\text{ions }_{\text{Heat Dist}} = (\text{Vol. L})}{\sum (\text{Vol. Fuel }_{\text{i}} *}$
Measured	Estimated	Estimated	Measured	Measured	N/A	FG Consumed * EF Fuel i co2);
Direct metering or reconciliation of volume in storage (including volumes received).	From Environment Canada reference documents. In the absence of LFG data, rely on Industrial emissions factors for Natural Gas as this most accurately reflects the condition for the methane fraction of the LFG.	From Environment Canada reference documents. In the absence of LFG data, rely on Industrial emissions factors for Natural Gas as this most accurately reflects the condition for the methane fraction of the LFG.	Direct measurement.	Direct metering of volume of LFG being consumed.	N/A	Emissions $_{\text{Heat Dist}} = \text{(Vol. LFG Consumed * \% CH}_4 * \text{EF LFG }_{\text{CH4}} \text{; (Vol. LFG Consumed * %}_5 \times \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CO2}}) \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CH4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CO2}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CO2}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CO2}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} \text{(Vol. Fuel }_i * \text{EF Fuel }_{i \text{CM4}} \text{; } \sum_{i=1}^{n} (Vol. Fu$
Continuous metering or monthly reconciliation.	Annual	Annual	Daily sampling averaged monthly on a volumetric basis	Continuous metering.	N/A	G Consumed * % (Vol. Fuel i * EF F
Both methods are standard practise. Frequency of metering is highest level possible. Frequency of reconciliation provides for reasonable diligence.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	LFG composition should remain relatively stable during steady-state operation.	Direct metering is standard practise. Frequency of metering is highest level possible.	aggregate form as fuel and electricity use on site is likely aggregated for each of these SS's.	CH ₄ * EF LFG _{N2O}); Fuel _{1N2O}) Onantity being calculated in

N ₂ 0 Emissions Factor for Each Type of Fuel / EF Fuel _{1N20}	CH ₄ Emissions Factor for Each Type of Fuel / EF Fuel _{i CH4}	CO ₂ Emissions Factor for Each Type of Fuel / EF Fuel _{i CO2}	Volume of Each Type of Fuel used to Supplement Flare / Vol Fuel i	N ₂ 0 Emissions Factor for Landfill Gas / EF LFG _{N20}	CH ₄ Emissions Factor for Landfill Gas / EF LFG CH4
kg N ₂ O per L / m³ / other	kg CH ₄ per L / m³ / other	kg CO ₂ per L / m³ / other	L/m³/other	kg N ₂ O per L / m³ / other	kg CH4 per m³
Estimated	Estimated	Estimated	Measured	Estimated	Estimated
From Environment Canada reference documents.	From Environment Canada reference documents.	From Environment Canada reference documents.	Direct metering or reconciliation of volume in storage (including volumes received).	From Environment Canada reference documents. In the absence of LFG data, rely on Industrial emissions factors for Natural Gas as this most accurately reflects the condition for the methane fraction of the LFG.	From Environment Canada reference documents. In the absence of LFG data, rely on Industrial emissions factors for Natural Gas as this most accurately reflects the condition for the methane fraction of the LFG.
Annual	Annual	Annual	Continuous metering or monthly reconciliation.	Annual	Annual
Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Both methods are standard practise. Frequency of metering is highest level possible. Frequency of reconciliation provides for reasonable diligence.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.

	B10 Offset Fossil Fuel Use			B6 Waste				
Emissions Fuel Offset	Emis	Density of Methane	Methane Composition in LFG / % CH ₄	Volume of Landfill Gas Consumed / Vol	Emissions Waste		Emissions Factor for Electricity / EF Elec	Incremental Electricity Exported from the Site / Electricity
kg of CO ₂ ; CH ₄ ; N ₂ O	sions Fuel Offset = $\sum (V)$	kg/m^3		m ³	kg of CH ₄		kg of CO2e per kWh	kWh
N/A	/ol. Fuel i * EF F	Constant	Measured	Measured	N/A	Emissions was	Estimated	Measured
N/A	Emissions $_{\text{Fuel Offiset}} = \sum (\text{Vol. Fuel }_i * \text{EF Fuel }_{i \text{ CO2}}); \sum (\text{Vol. Fuel }_i * \text{EF Fuel }_{i \text{ CH4}}); \sum (\text{Vol. Fuel }_i * \text{EF Fuel }_{i \text{ N20}})$	0.7157 at standard temperature and pressure.	Direct measurement.	Direct measurement of mass of material decomposed.	N/A	Emissions Waste Decomp = Vol LFG Consumed * % CH4 * p CH4	From Alberta Environment documents.	Direct metering.
N/A	1_{iCH4}); \sum (Vol. Fu	Actual value	Daily sampling averaged monthly on a volumetric basis	Continuous metering or monthly reconciliation.	N/A	4 * ρ CH4	Annual	Continuous metering
Quantity being calculated in aggregate form as fuel and electricity use on site is likely aggregated for each of these SS's.	iel; * EF Fuel; N20)	If this value is used all values must be adjusted for standard temperature and pressure.	LFG composition should remain relatively stable during steady-state operation.	Both methods are standard practise. Frequency of metering is highest level possible. Frequency of reconciliation provides for reasonable diligence.	Quantity being calculated.		Reference values adjusted From Alberta Environment documents.	Continuous direct metering represents the industry practise and the highest level of detail.

Both methods are standard practise. Frequency of metering is highest level possible. Frequency of reconciliation provides for reasonable diligence.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	Reference values adjusted annually as part of Environment Canada reporting on Canada's emissions inventory.	
Continuous metering or monthly reconciliation.	Annual	Annual	Annual	
Direct metering or reconciliation of volumes transferred.	From Environment Canada reference documents.	From Environment Canada reference documents.	From Environment Canada reference documents.	
Measured	Estimated	Estimated	Estimated	
m ³	kg CO ₂ per m³	kg CH ₄ per m³	kg N2O per m³	
Volume of Each Type of Fuel Offset by Landfill Gas / Vol Fuel i	CO ₂ Emissions Factor for Combustion of Each Type of Fuel / EF Fuel _i	CH ₄ Emissions Factor for Combustion of Each Type of Fuel / EF Fuel _i	N ₂ 0 Emissions Factor for Combustion of Each Type of Fuel / EF Fuel _i	

2.5.2. Contingent Data Approaches

Contingent means for calculating or estimating the required data for the equations outlined in section 2.5.1 are summarized in **TABLE 2.5**, below.

2.6 Management of Data Quality

In general, data quality management must include sufficient data capture such that the mass and energy balances may be easily performed with the need for minimal assumptions and use of contingency procedures. The data should be of sufficient quality to fulfill the quantification requirements and be substantiated by company records for the purpose of verification.

The project proponent shall establish and apply quality management procedures to manage data and information. Written procedures should be established for each measurement task outlining responsibility, timing and record location requirements. The greater the rigour of the management system for the data, the more easily an audit will be to conduct for the project.

2.6.1 RECORD KEEPING

Record keeping practises should include:

- a. Electronic recording of values of logged primary parameters for each measurement interval:
- b. Printing of monthly back-up hard copies of all logged data;
- c. Written logs of operations and maintenance of the project system including notation of all shut-downs, start-ups and process adjustments;
- d. Retention of copies of logs and all logged data for a period of 7 years; and
- e. Keeping all records available for review by a verification body.

2.6.1 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

QA/QC can also be applied to add confidence that all measurements and calculations have been made correctly. These include, but are not limited to:

- a Protecting monitoring equipment (sealed meters and data loggers);
- b Protecting records of monitored data (hard copy and electronic storage);
- c Checking data integrity on a regular and periodic basis (manual assessment, comparing redundant metered data, and detection of outstanding data/records);
- d Comparing current estimates with previous estimates as a 'reality check';
- e Provide sufficient training to operators to perform maintenance and calibration of monitoring devices;
- f Establish minimum experience and requirements for operators in charge of project and monitoring; and
- g Performing recalculations to make sure no mathematical errors have been made.

	ı
Procedures	
Collection P	The second secon
t Data Co	
Contingent]	0
TABLE 2.5: Co	
TAB	

I ADLE 2.3. COIL	ADLE 2.3: Contingent Data Conctuon Horcautes	III I I OCCUUI	2	~		
1.0 Project / Baseline SS	2. Parameter / Variable	3. Unit	4. Measured / Estimated	5. Contingency Method	6. Frequency	7. Justify measurement or estimation and frequency
			P	Project SS's		
D12 Engl	Volume of Dech			Reconciliation of		Provides reasonable estimate of
F12 Fuel Extraction and	Type of Firel / Vol	$L/m^3/$	Estimated	volume of fuel	Monthly	the parameter, when the more
Processing	Fuel	other		purchased within given		accurate and precise method
0	1			time period.		cannot be used.
						LFG composition should remain
						relatively stable during steady-
	Methane			Interpolation of		state operation. Interpolating gas
	Composition in	1	Estimated	previous and following	Daily	composition provides a
	Landfill Gas / % CH4			measurements taken.		reasonable estimate when the
						more accurate and precise
						method cannot be used.
P6 Landfill Gas				Reconciliation of		
Recovery System	1 2 2			volume of fuel		Provides reasonable estimate of
Operation	Volume of Landfill	$L/m^3/$		consumed within given	;	the parameter, when the more
	Gas Consumed / Vol.	other	Estimated	time period based on	Monthly	accurate and precise method
	LFG Consumed			equipment efficiency		connot be used
				specifications and		caimor oc used.
				average flow rates.		
	Volume of Each			Reconciliation of		Provides reasonable estimate of
	Tring of England	$L/m^3/$	Detimotod	volume of fuel	Monthly	the parameter, when the more
	Type of Fuel used /	other	Estillated	purchased within given	MOHIUM	accurate and precise method
	Vol. Fuel i			fime period.		cannot be used.
	Volume of Landfill			Reconciliation of		Provides reasonable estimate of
P7 Processing of	Gas Consumed / Vol	#3	Estimated	volume of fuel	Monthly	the parameter, when the more
Landfill Gas	TEG Consumed Vol.	III	Laminaton	consumed within given	INTOTION	accurate and precise method
	Er d Consumed			time period.		cannot be used.
						LFG composition should remain
						relatively stable during steady-
	Methane			Interpolation of		state operation. Interpolating gas
	Composition in LFG	1	Estimated	previous and following	Daily	composition provides a
	/ % CH₄			measurements taken.		reasonable estimate when the
						more accurate and precise
						method cannot be used.

P10 Thermal Energy Distribution		P9 On Site Co- Generation Systems			P8 Pipeline Distribution and Usage		
Volume of Landfill Gas Consumed / Vol. LFG Consumed	Volume of Each Type of Fuel used / Vol. Fuel;	Methane Composition in LFG /% CH ₄	Volume of Landfill Gas Consumed / Vol. LFG Consumed	Volume of Each Type of Fuel used / Vol. Fuel i	Methane Composition in LFG /% CH ₄	Volume of Landfill Gas Consumed / Vol. LFG Consumed	Volume of Each Type of Fuel used / Vol. Fuel i
m ³	L/m³/ other	1	m ³	L/m³/ other	ı	m³	L/m³/ other
Estimated	Estimated	Estimated	Estimated	Estimated	Estimated	Estimated	Estimated
Reconciliation of volume of fuel consumed within given time period.	Reconciliation of volume of fuel purchased within given time period.	Interpolation of previous and following measurements taken.	Reconciliation of volume of fuel consumed within given time period.	Reconciliation of volume of fuel purchased within given time period.	Interpolation of previous and following measurements taken.	Reconciliation of volume of fuel consumed within given time period.	Reconciliation of volume of fuel purchased within given time period.
Monthly	Monthly	Daily	Monthly	Monthly	Daily	Monthly	Monthly
Provides reasonable estimate of the parameter, when the more accurate and precise method cannot be used.	Provides reasonable estimate of the parameter, when the more accurate and precise method cannot be used.	LFG composition should remain relatively stable during steady-state operation. Interpolating gas composition provides a reasonable estimate when the more accurate and precise method cannot be used.	Provides reasonable estimate of the parameter, when the more accurate and precise method cannot be used.	Provides reasonable estimate of the parameter, when the more accurate and precise method cannot be used.	LFG composition should remain relatively stable during steady-state operation. Interpolating gas composition provides a reasonable estimate when the more accurate and precise method cannot be used.	Provides reasonable estimate of the parameter, when the more accurate and precise method cannot be used.	Provides reasonable estimate of the parameter, when the more accurate and precise method cannot be used.

	Methane Composition in LFG /% CH4		Estimated	Interpolation of previous and following measurements taken.	Daily	LFG composition should remain relatively stable during steady-state operation. Interpolating gas composition provides a reasonable estimate when the more accurate and precise method cannot be used.
	Volume of Each Type of Fuel used / Vol. Fuel i	L/m³/ other	Estimated	Reconciliation of volume of fuel purchased within given time period.	Monthly	Provides reasonable estimate of the parameter, when the more accurate and precise method cannot be used.
	Volume of Landfill Gas Flared / Vol. LFG Flared	m ₃	Estimated	Reconciliation of volume of fuel consumed within given time period based on equipment efficiency specifications and average flow rates.	Monthly	Provides reasonable estimate of the parameter, when the more accurate and precise method cannot be used.
P11 Flaring	Methane Composition in LFG / % CH ₄		Estimated	Interpolation of previous and following measurements taken.	Daily	LFG composition should remain relatively stable during steady-state operation. Interpolating gas composition provides a reasonable estimate when the more accurate and precise method cannot be used.
	Volume of Each Type of Fuel used to Supplement Flare / Vol. Fuel i	L/m³/ other	Estimated	Reconciliation of volume of fuel purchased within given time period.	Monthly	Provides reasonable estimate of the parameter, when the more accurate and precise method cannot be used.
			Ba	Baseline SS's		
B7 Fuel Extraction and Processing	Volume of Fossil Fuel Combusted for B10 / Vol. Fuel	B ³	Estimated	Reconciliation of volume of fuel consumed within given time period based on equipment efficiency specifications and average flow rates.	Monthly	Provides reasonable estimate of the parameter, when the more accurate and precise method cannot be used.

B10 Offset Fossil Fuel Use	Decomposition	B6 Waste	B9 Electricity Imported
Volume of Each Type of Fuel Offset by Landfill Gas / Vol. Fuel i	Methane Composition in LFG /% CH ₄	Volume of Landfill Gas Consumed / Vol.	Incremental Electricity Exported from the Site / Electricity
m ³		m ³	kWh
Estimated	Estimated	Estimated	Estimated
Reconciliation of volume of fuel consumed within given time period.	Interpolation of previous and following measurements taken.	Reconciliation of volume of fuel consumed within given time period based on equipment efficiency specifications and average flow rates.	Reconciliation of power requirements for facility as per equipment output ratings.
Monthly	Daily	Monthly	Monthly
Provides reasonable estimate of the parameter, when the more accurate and precise method cannot be used.	LFG composition should remain relatively stable during steady-state operation. Interpolating gas composition provides a reasonable estimate when the more accurate and precise method cannot be used.	Provides reasonable estimate of the parameter, when the more accurate and precise method cannot be used.	Provides reasonable estimate of the parameter, when the more accurate and precise method cannot be used.

