Practice Questions MTH166

Exact and non-exact

(1) The general solution of the ordinary differential equation

$$(p-x)(p-y) = 0$$
, $(p = \frac{dy}{dx})$ is

(a)
$$(2y + x^2 - c)(y - 2ce^x) = 0$$
 (b) $(2yx^2 - c)(y - ce^x) = 0$ (c) $(2y + x^2 + c)(ye^x) = 0$ (d) $(2y - x^2 - c)(y - ce^x) = 0$

(2) An integrating factor of $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$ is

(a) y (b)
$$\frac{1}{x^4}$$
 (c) $\frac{-1}{2xy}$ (d) $\frac{y}{2x}$

(3) An integrating factor of $(x^3y^2 + x)dy + (x^2y^3 - y)dx = 0$ is

(a)
$$\frac{x}{y}$$
 (b) $\frac{1}{x^4}$ (c) $\frac{-1}{2xy}$ (d) $\frac{y}{2x}$

(4) An integrating factor of $\frac{dy}{dx} = \frac{x^3 + y^3}{xy^2}$ is

(a)
$$\frac{x}{y}$$
 (b) $\frac{1}{x^4}$ (c) $\frac{1}{xy}$ (d) $\frac{1}{2xy}$

(5) The solution of (3x - 2y)dx = 2xdy is

(a)
$$3x^2 = 4xy + c$$
 (b) $3x^2 = 2xy + c$ (c) $3x^2 = -xy + c$ (d) $3x - 2y = 2x + c$

(6) The general solution of $xdx + ydy + \frac{xdy - ydx}{x^2 + y^2} = 0$ is

(a)
$$x^2 + y^2 - 2tan^{-1}\left(\frac{y}{x}\right) = c$$
 (b) $x^2 + y^2 + tan^{-1}\left(\frac{y}{x}\right) = c$ (c) $x^2 - y^2 + 2tan^{-1}\left(\frac{y}{x}\right) = c$ (d) $x^2 + y^2 + 2tan^{-1}\left(\frac{y}{x}\right) = c$

(7) The general solution of the differential equation p = log(px - y) is , ($p = \frac{dy}{dx}$)

(a)
$$y = px + e^p$$
 (b) $y = cx - e^c$ (c) $y = px - e^p$ (d) $y = px - e^c$

(8) The differential equation $(x + x^8 + ay^2)dx + (y^8 - y + bxy)dy = 0$ is exact if

(9) $\frac{1}{y^2}(-y\,dx + xdy) =$

(a)
$$d(xy)$$
 (b) $d(y/x)$ (c) $d\{ln(xy)\}$ (d) $-d(x/y)$

(10) $y \, dx + x \, dy =$

(a)
$$d(xy)$$
 (b) $d(x/y)$ (c) $d\{ ln(xy) \}$ (d) $d(x+y)$

1st Order Higher degree

1. If the differential equation $16x^2 + 2p^2y - p^3x = 0$ while solving for y takes the form y = f(x, p), then f(x, p) =

(a) $\frac{px}{2} - \frac{8x^2}{p^2}$ (b) $\frac{2x}{p} + \frac{8x^2}{p}$ (c) $\frac{x}{2} + \frac{8x^2}{p^2}$ (d) $\frac{8x}{p^2} - \frac{px}{2}$

2. If the differential equation $y = 3px + 6p^2y^2$ while solving for x takes the form x = f(y, p), then f(y, p) =

(a) $\frac{py}{3} - \frac{8y^2}{p^2}$ (b) $\frac{y}{3p} - 2py^2$ (c) $\frac{px}{2} - 2p^2x^2$ (d) $\frac{y}{p^2} - p^2y$

3. Solution of differential equation $p^2 - 8p + 15 = 0$ is

(a) p = 5, p = 3 (b) (y - 5x - c)(y - 3x - c) = 0 (c) (y + 5x)(y + 3x) = 0 (d) (y + 5x)(y - 3) = 0

4. Which of the following is solution of $(p - xy)(p - x^2)(p - y^2) = 0$

(a) $3x - y^3 - c = 0$ (b) xy + cy + 1 = 0 (c) $2y + x^2 + c = 0$ (d) None

5. Solution for $px - y = e^p$ is

(a) $v = cx^2 + e^c$ (b) $v^2 = cx + e^c$ (c) $v = cx - e^c$ (d) xv + cv = x

6. Solution for sin y cos px dy – sin px cos y dx = log p

(a) $y = \sin^{-1}(\log c) + pc$ (b) $y = \log(\log c) + \sin p$ (c) $y = \sin cx + \log c$ (d) None of these

7. Order of $p^3 + 2xp^2 - y^2p^2 - 2xy^2p = 0$ is

(a) 2 (b) 1 (c) 3 (d) None of these

8. Degree of $p^3 + 2xp^2 - y^2p^2 - 2xy^2p = 0$ is

(a) 2 (b) 1 (c) 3 (d) None of these

9. General solution of 3x - y + p = 0

(a) $y = 3(x+1) + ce^x$ (b) $3x + e^y = 0$ (c) $y + 3e^x + cx = 0$ (d) None

Normal ODE, Dependent –Independent functions, Homogeneous Linear ODE:

a) 4

b)3

1.)	The differential equation $y''+3y'+\sqrt{x}y=\sin x$ an integer is normal on every subinterval of								
	a) $(-\infty,\infty)$	b) $[0,\infty)$	c) $(0,\infty)$	d) $(-\infty,1)$,	$(-1,1),(1,\infty)$				
2.)	The differential e	quation $(x^2-1)y''+2x$	$y' + y = x \ln x \text{ is not}$	ormal on every	subinterval of				
	a) $(-\infty,\infty)$	b) $(0,\infty)$	c) $(-\infty, 2)$	d) (0,1),(1,∞)				
3.)	Which of the following functions are linearly independent for $x \in (0, \infty)$?								
	a) $1, x, x^2, 1+x$	b) $1, x(1-x), x^2, x$	c) $2x, 6x + 3$	3,3x+2 d) 1,	$x, x^2, x^2(1-x)$				
4.)	If $y_1(x)$ and $y_2(x)$ be the linearly independent solutions of the equation $y''+a(x)y'+b(x)y=0$ an interval I then which of the following is true								
a) both $y_1(x)$ and $y_2(x)$ vanishes for some $x_0 \in I$ b) both $y_1(x)$ and $y_2(x)$ take extreme values for some $x_0 \in I$									
5.) The general solution of the differential equation $y''+2\pi y'+\pi^2 y=0$ is									
	a) $(A+Bx)e^{-\pi x}$	b) $(A + Bx)e^{-x}$	c) $(A+B)e^{-\pi x}$	$d) \ (A + Bx)e^{\pi x}$					
The differential equation whose linearly independent solutions are e^{2x} , xe^{2x} is ?									
	a) $y''+4y'+4y=0$	b) $y''+4y'-4y=0$	c) $y''-4y'+4y =$	0 d) y"-4y'	4y = 0				
7.)	The lowest possible order of homogeneous linear differential equation whose particular solution is $3\cos 2x + 5\sinh 3x$ is								
	a) 2	b) 3	c) 5	d) 4					
8.)	The roots of characteristic equation of differential equation $y^{iv} + 8y'' - 9y = 0$								
	a) $\pm 1, \pm 3i$	(b) $\pm i, \pm 3i$	$i, \pm 3$ d) $\pm 1, \pm 3$	± 3					
9.)	The general solution of differential equation $y'''-2y''+y'=0$ is								
l	$\mathbf{O} \cdot Ae^x + (Bx + C)$	b) $A + (Bx + C)$	$C)e^x$ c) (A	$Bx + C)e^x$	$d) A + (Bx + C)e^{-x}$				
🥽 soluti	The lowest possion is $1 + x + e^x - 3e$	ble order of homoger 3x is	neous linear diffe	erential equatio	n whose particular				

c) 2

d) 5

(Operator method) Exp(ax), cosh(ax) sinh(ax), h(x). exp(ax): Polynomila, Sin(ax), cos(ax):

1. The particular integral $\frac{1}{D+3}e^{2x}$ is

(a)
$$\frac{1}{5}e^{2x}$$

(b)
$$\frac{1}{5}$$

(c)
$$\frac{1}{3}e^{2x}$$

(a)
$$\frac{1}{5}e^{2x}$$
 (b) $\frac{1}{5}$ (c) $\frac{1}{3}e^{2x}$ (d) $\frac{1}{2x+3}e^{2x}$

2. The particular integral $\frac{1}{D^2-9}e^{3x}$ is

(a)
$$\frac{1}{6}e^{3x}$$
 (b) $\frac{xe^{3x}}{6}$ (c) $\frac{x}{3}e^{3x}$ (d) doesn't exist

(c)
$$\frac{x}{2}e^{3x}$$

3. The particular integral $\frac{1}{f(D)}e^{ax}g(x)$ is

(a)
$$e^{ax} \frac{1}{f(D)} g(x)$$

(b)
$$g(x) \frac{1}{f(D)} e^{ax}$$

(a)
$$e^{ax} \frac{1}{f(D)} g(x)$$
 (b) $g(x) \frac{1}{f(D)} e^{ax}$ (c) $e^{ax} \frac{1}{f(D+a)} g(x)$ (d) $\frac{1}{f(a)} e^{ax} g(x)$

(d)
$$\frac{1}{f(a)}e^{ax}g(x)$$

4. The particular integral $\frac{1}{f(D^2)}e^{ax}$ is

(a)
$$\frac{1}{f(-a^2)}e^{ax}$$

(c)
$$\frac{1}{f(a^2)}e^{ax}$$
, provided $f(a^2) = 0$

(b)
$$\frac{1}{f(a^2)}e^{ax}$$
, provided $f(a^2) \neq 0$ (d) $\frac{1}{f(a)}e^{ax}$, provided $f(a) \neq 0$

(d)
$$\frac{1}{f(a)}e^{ax}$$
, provided $f(a) \neq 0$

5. The particular integral $\frac{1}{D^3-D^2+4D-4}\sin 3x$ is

(a)
$$-\frac{1}{5}\sin 3x$$

(c)
$$\frac{1}{9}x\cos 3x$$

(b)
$$\frac{1}{50} (\sin 3x + x \cos 3x)$$

(a)
$$-\frac{1}{5}\sin 3x$$
 (c) $\frac{1}{9}x\cos 3x$
(b) $\frac{1}{50}(\sin 3x + x\cos 3x)$ (d) $\frac{1}{50}(\sin 3x + 3\cos 3x)$

6. The particular integral of the differential equation $y'' + y = 6 \sin x$ is

(a)
$$6\cos x$$

(b)
$$3x \sin x$$

(b)
$$3x \sin x$$
 (c) $-3x \cos x$ (d) $6x \cos x$

7. The particular integral $\frac{1}{D+5}$ (2016)^x is

(a)
$$\frac{1}{2021}(2016)^x$$

(a)
$$\frac{1}{2021}(2016)^x$$
 (b) $x(2016)^x$ (c) $\frac{1}{\ln 2016}(2016)^x$ (d) $\frac{1}{(\ln 2016)+5}(2016)^x$

(d)
$$\frac{1}{(\ln 2016)+5} (2016)^{x}$$

8. The particular integral of $\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4$ is

(a)
$$\frac{x^2}{3} + 4x$$

(a)
$$\frac{x^2}{3} + 4x$$
 (b) $\frac{x^3}{3} + 4x$ (c) $\frac{x^3}{3} + 4$

(d)
$$\frac{x^2}{3} + 4x^2$$

9. The particular integral of $\frac{d^4y}{dx^4} - 16\frac{d^2y}{dx^2} = (8x + 16)$ is

(a)
$$-\frac{x^2}{12} - \frac{x}{2}$$

(a)
$$-\frac{x^2}{12} - \frac{x}{2}$$
 (b) $\frac{x^3}{6} + 2x$ (c) $\frac{x^3}{3} + 4$

(d)
$$\frac{x^2}{3} + 4x$$

10. The particular integral $\frac{1}{(D+1)^3}(2x+4)$ is

(a)
$$\frac{x^2}{3} + 4x$$

(b)
$$2x + 4$$
 (c) $x - 2$

(c)
$$x - 2$$

(d)
$$2x - 2$$

11. The particular integral of the differential equation $y'' + 4y = \sin x \cos x$ is

(b)
$$3x \sin x \cos x$$

(a)
$$6 \cos x$$
 (b) $3x \sin x \cos x$ (c) $-3x \cos x$ (d) $-\frac{x}{8} \cos 2x$

12. The particular integral $\frac{1}{D^2}\cos 2x$ is

(a)
$$-4\cos 2x$$
 (b) $-4\sin 2x$

(a)
$$-4\cos 2x$$
 (b) $-4\sin 2x$ (c) $\frac{1}{2}\sin 2x$ (d) $-\frac{1}{4}\cos 2x$

13. The particular integral $\frac{1}{n-1}\cos 2x$ is

(a)
$$-\frac{1}{5}(\cos 2x - 2\sin 2x)$$
 (b) $\frac{1}{2}$

(a)
$$-\frac{1}{5}(\cos 2x - 2\sin 2x)$$
 (b) $\frac{1}{2}\cos 2x$ (c) $-\sin 2x$ (d) $-\frac{1}{5}(\sin 2x + 2\cos 2x)$

Method of Variation of Parameter, Method of Undetermined co-efficient:

The value of parameter A(x) for LDE $y''-2y'-3y = e^x$ using method of variation of parameters when $y_1 = e^{-x}$ and $y_2 = e^{-x}$ 1 e^{3x} is

Euler-Cauchy Equation , Simultaneous ODE

	Q28. If $D = \frac{d}{dx}$, then $\frac{1}{x^2D^2+2}$	$16x^3$ is equals to							
	a) $\frac{1}{2}x^3$	b) $2x^3$	$c)^{\frac{1}{4}}(\log x)^3$	d) $\frac{1}{4}x^3$					
	Q29. C.F. of $(x^2D^2 - xD)y$	= 0 is							
	a) $\alpha + bx$	b) $ax + bx^2$	c) $a \log x + bx^2$	d) $a + bx^2$					
	Q30. To convert the Euler (a) $x = e^t$	Cauchy equation into a lieb) $x = t$	near equation with consta	nt coefficient we assume d) None of these					
	Q31. If the system of equat	tions is $(2D - 4)y_1 + (3D)$	$(t+5)y_2 = 3t + 2, (D-2)y_1$	$y_1 + (D+1)y_2 = t$ then y_2 is	÷				
			c) $ae^{-2t} + \frac{1}{9}(3t+5)$						
Q	27. Which of the following i	is Euler-Cauchy equation	n?		:.				
a)	$x^3y'' + x^2y' + y = 0$	b) $x^2y'' + xy' + y = 0$	$c)x^2y'' + xy = 0$	d) None of these					
	Q40. Particular integral of	v ² a," 7a, 7a, d. 6 io							
	a) $-x-3$	b) $x - 3$	c) $-x + 3$	d) None of these					
	38. The complimentary for $ae^x + be^{2x}$	unction of the different b)ax	tial equation $x^2y'' - xy'$ c) $(a + b \log x)$	· · · · · · · · · · · · · · · · · · ·					
ŧ	Q36. For the given system o	of linear differential equation	on $y_1 = 2y_1 + y_2, y_2 = y_1 +$	$2y_2$, then the second order					
	a) $y_1'' + 4y_1' + 3y_1 = 0$		$c)y_1'' - 4y_1' - 3y_1 = 0$	d) None of these					
*	Q.5 For the differential operator notation are:	equation $(x^3D^3 - 3x^3)$	(D+3)y=0 using trans	sformation $x = e^t$ the ro	ots of its				
		• a) 1,1,3	b) 1, -1 , 3	c) 1, 1, -3	d)				
*	Q.25 If $y_1(t)$, $y_2(t)$ satidifferential equation sa			$y_2^{\prime\prime} + by_2 = 0$ is the second order					
	■ a) 5	b) -5	it is the value of b	c) 3	d)-3				
*	Q.29 If $D = \frac{d}{dx}$, then	$\frac{1}{(x^2D^2+3)}16x^3$ is equal	to	,	•				
	• a) $\frac{1}{2}x^3$	b) $2x^3$		$(\log x)^3$	d) $\frac{1}{4}x^3$				
*	For a given system of linear differential equation $y_1' = 2y_1 + y_2$, $y_2' = y_1 + 2y_2$, the second order linear differential satisfied by the y_1 is								
	differential satisfiedby the y_1 is (A) $y_1'' + 4y_1' + 3y_1 = 0$ (B) $y_1'' - 4y_1' + 3y_1 = 0$ (C) $y_1'' - 4y_1' - 3y_1 = 0$ (D)none								
*	★ The particular integral of differential equation(x > 0)								
	$x^3y^{'''}+5x^2y^{''}+5xy^{'}+y=x^2$ Using the transformation $x=e^t$, we get (in operator notation) $[\theta^3+2\theta^2+2\theta+1]y=e^{2t}$ is								
	, .	(A) $\frac{1}{21}e^{2t}(1)$	$B)\frac{1}{31}e^{-2t}(C) - \frac{1}{51}e^{2t}$	$I(D) \frac{1}{21} e^{7t}$					
		21	J1 J1	41					