

Perfect Wireless Experience 完美无线体验

FIBOCOM SIM 应用设计说明

文档版本: V1.0.6

更新日期: 2017-05-23

适用型号

序号	型号	说明
1	适用于所有包含 SIM 接口的通信模块	

版权声明

版权所有©2017 深圳市广和通无线股份有限公司。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

注意

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

商标申明

为深圳市广和通无线股份有限公司的注册商标,由所有人拥有。

版本记录

从个心水		
文档版本	更新日期	说明
V1.0.0	2013-08-01	初始版本
V1.0.1	2014-02-10	根据目前 SIM 卡性能变化,对 SIM 卡信号上的电容,ESD 器件带来的影响需要根据实际情况确认,然后进行优化改善。
V1.0.2	2014-07-28	修改 G510 R1 设置说明。
V1.0.3	2014-08-19	更新 G510 R1 设置说明。
V1.0.4	2014-12-26	公司名称变更,更新为"深圳市广和通无线股份有限公司"
V1.0.5	2015-08-24	更新公司 logo
V1.0.6	2017-05-23	添加模块产品型号

目录

1 SIM 接口简介	5
2 SIM 卡设计	
2.1 SIM 连接器选型推荐	
2.2 SIM 原理图设计	7
2.3 SIM 设计要点	
3 SIM 信号的射频干扰处理	g
3.1 射频干扰产生原理	g
3.2 针对性改善措施	10
4 SIM 热插拔设计	10
4.1 硬件连接	10
4.2 软件设置	
4.3 系统与模块通讯端口的调试	11

1 SIM 接口简介

Fibocom 模块集成了 SIM 卡接口, 其特点如下:

- 支持 1.8V 和 3.0V (电压自适应)
- 支持 SIM 卡状态检测(部分型号)

SIM 接口管脚说明:

ONVISCHE 194 00-73.				
管脚名称	管脚说明	备注		
SIM_CLK	串行时钟,3.25 MHz			
SIM_VCC	SIM 卡供电,电压自适应	部分型号命名为 VSIM		
SIM_DATA	串行输入输出信号	部分型号命名为 SIM_IO; 模块内部已上拉到 SIM_VCC		
SIM_RST	SIM 卡复位管脚,低电平有效			
SIM_CD	SIM 卡状态检测	部分型号支持		
SIM_GND	SIM 卡的电源地	部分型号支持 没有则直接接地		

Fibocom 模块支持并自动识别 1.8V 和 3.0V 的 SIM 卡。当模块开机时,首先在 SIM_VCC 上输出 1.8V 电压进行 SIM 卡通信,如果不成功,再输出 2.85V 进行 SIM 卡通信。

在外围电路配合下, Fibocom 模块可以支持 SIM 卡热插拔。

注意:

模块正常工作状态下,如果未启动 SIM 卡热插拔功能就取出 SIM 卡,有可能对 SIM 卡和模块造成损坏。

2 SIM 卡设计

2.1 SIM 连接器选型推荐

作为 M2M 应用的产品, SIM 卡连接器的推荐选型如下:

1. 抽屉式:

	型号(Part Number)	制造商(Manufacture)
SIM 卡槽(SIM CONNECTOR ASSY)	912283001	MOLEX
SIM 卡托(CARD HOLDER)	912360001	MOLEX

图 2-1 SIM 卡槽

SIM 卡托 (PN: 912360001)

图 2-2 SIM 卡托

2. 翻盖式:

推荐选择金属壳体的翻盖式 SIM 卡座,增强 SIM 卡对 EMI 的抗干扰能力。

2.2 SIM 原理图设计

下图是典型的 SIM 卡电路, J101 为上一章节推荐的标准 8Pin SIM 卡连接器。

图 2-3 SIM 卡电路

本文件版权属深圳市广和通无线股份有限公司所有,未经批准,不得复制。

A

注意:

- 模块内部已经将 SIM_DATA 信号上拉到 SIM_VCC,外围无需再上拉。
- R1 选择说明如下表:

各型号模块 R1 设置说明		
模块型号	R1 设置	说明
G600	NC	内部已上拉,不需要外部上拉
G610	NC	内部已上拉,不需要外部上拉
G510	100Kohm	SIM_CD 需要外部电路上拉 3V
G520	10Kohm	SIM_CD接 Pin14 (INT2);使用阻值较大的电阻,降低功耗。
G530	NC	内部已上拉,不需要外部上拉
H330	NC	内部已上拉,不需要外部上拉
H350	NC	内部已上拉,不需要外部上拉
L810	NC	内部已上拉,不需要外部上拉

2.3 SIM 设计要点

SIM 卡的接口设计对模块和 SIM 卡的正常工作尤为重要。

原理图设计要点:

- SIM 信号线需要预留电容滤波,预防 GSM 高频信号的干扰。
- SIM 信号线需要增加 ESD 保护器件。这些保护器件需要选择低容性(不要超过 39pF,如齐纳二极管等)。一般情况下,推荐客户使用 AVR-M1608C270MTAAB(TDK)。

目前 SIM 卡的性能整体趋势在变弱,现发现很多省份出现批量性的找不到 SIM 卡的情况,基于我们大量的实际测试对比验证,发现 SIM_DATA,SIM_CLK,_SIM_RST 信号上的滤波电容,ESD 器件会影响到 SIM 卡出现掉卡情况。

对出现此情况建议:

- 电路设计时预留 SIM 信号上的滤波电容, ESD 器件。但实际贴片时空缺。
- 根据实际情况,滤波电容和 ESD 器件选用更低容性的器件(小于 10pF)。
- SIM CD 设计需要注意各个型号的 R1 上拉处理方式不同。

PCB 布局要点:

- PCB 布局时, SIM 卡及走线必须远离 EMI 干扰源,比如电源电路、射频电路、天线和高速数字信号电路等。
- PCB 布局时, SIM 部分的 ESD 器件需要靠近 SIM 卡座接口。
- 为了保证信号完整性,模块到 SIM 卡的走线长度不要超过 100mm。
- 天线馈线等引伸出去后应注意,避开电源部分器件,以及避免和天线铜箔平行从而引入干扰造成 SIM 卡异常掉卡。

PCB 走线要点:

- 为了减少 EMC 问题, SIM 信号线走线尽可能的避开射频线,电源线,时钟线,高速数据线。
- SIM 信号线的相邻层不要走信号线;若走线,则有 EMI 风险,把其他走线和 SIM 信号线设计成正 交垂直,可降低风险。
- 保证整个 PCB 环境的地连通性和完整性,SIM_GND 的连通性和完整性。最近路径连接到干净的系统地。
- 为了避免互相干扰, SIM CLK 和 SIM DATA 信号在走线中分开, 最好分别做包地处理。
- SIM 信号线尽可能走里层。

3 SIM 信号的射频干扰处理

SIM 信号受干扰跟 SIM 卡本身有很大关系,推荐使用 M2M 专用 SIM 卡。SIM 卡选择不当会造成 SIM 卡功能异常。

在实际使用中,射频干扰是 SIM 卡异常的常见现象,我们重点介绍下这种干扰的处理措施。

3.1 射频干扰产生原理

天线耦合干扰

- 天线大功率发射时直接对 SIM 信号的干扰。
- 天线大功率发射时耦合到地上,使整个系统的稳定性降低,间接干扰到 SIM 信号。

PCB 传导串扰

- 主要通过客户主板上的其他信号线通过 PCB 走线串扰到 SIM 信号上。
- 被天线干扰的信号线通过 PCB 走线串扰到 SIM 信号上。
- 电源的大幅度的波动通过 PCB 串扰到 SIM 信号上。

3.2 针对性改善措施

天线耦合干扰处理

- SIM 信号上的滤波电容值的适当调整。
- 可以更换长天线,实现远离 SIM 卡部分。
- 通过屏蔽方式,隔离干扰信号,保护 SIM 卡。
- 加强系统的地设计,特别加强 SIM 卡、模块和系统主地的连通性。
- 在整个系统地不好的情况下,SIM_GND需要单独接出来,再通过磁珠连接到模块的主地,可以减弱对 SIM 卡的影响。
- PCB 各层的地接一定要充分,尽量多打地孔,增加系统的 EMC 能力。
- 天线 RF 信号耦合到 GND,从而对 GND 造成干扰,可以优化 SIM 信号上滤波电容和 ESD 器件容值,必要时可以去掉滤波电容等器件,避免从 GND 信号引入的干扰。

PCB 上串扰处理

- SIM 信号上的滤波电容值的适当调整。
- 如果无法改善则需要确定干扰源,并针对性改板。

4 SIM 热插拔设计

Fibocom 部分模块支持 SIM 卡状态检测功能,此功能可以实现 SIM 卡热插拔设计。

4.1 硬件连接

SIM 热插拔功能需要 SIM CD 信号配合。

在无 SIM 卡时, SIM CD 为高电平; 装配 SIM 卡后, SIM CD 为低电平。

如 2-3 图所示, SIM_CD 信号接 J101 的 S1 脚, S2 脚接地。当 SIM 卡未安装时, S1 为高电平; 当 SIM 卡安装后, S1 与 S2 导通, SIM_CD 被拉低。

4.2 软件设置

"+MSMPD"为 SIM 卡状态检测功能设置 AT 命令。

设置 AT+MSMPD=0, SIM 卡状态检测功能关闭,模块不检测 SIM CD 信号。

设置 AT+MSMPD=1, SIM 卡状态检测功能开启,通过 SIM_CD Pin 脚检测 SIM 卡是否安装。

SIM CD 为低, SIM 安装, 模块自动注册网络。

SIM CD 为高或未连接, SIM 卡未安装, 模块不注册网络。

注意: +MSMPD 参数默认为"0"。

本文件版权属深圳市广和通无线股份有限公司所有,未经批准,不得复制。

作的流程大概如下:

- 1、电话程序操作界面,调用相应的处理函数;
- 2、相应的操作动作会对应调用 Android 中的电话服务的 java 文件相应的方法函数,即发送对应的 RIL 请求,这些请求都在 ril.h 里面定义了:
- 3、然后把相应的参数传给 RIL 库,并调用 RIL 库的接口函数;
- **4、RIL** 库中的接口函数会发送相应的 **AT** 命令到配置好的端口中,同时监控端口接收模块返回的数据内容,完成一个操作处理。

其中前两步在官方的 android 代码中已经为开发者做好的很大一部分的功能,在处理一些特殊的通信功能时需要在电话服务的代码中修改添加;而后两步是需要模块厂商配合 Android 设备开发商着重修改调试的。

Android 中通信功能实现的一些要点包括:

- 1、模块开关机、休眠唤醒的调试(android系统中关于模块驱动的调试);
- 2、系统与模块通讯端口的调试;
- 3、RIL 的添加调试;
- 4、信号的显示、电话程序的功能、短信功能等的调试;
- 5、mux 的调试;
- 6、ppp 拨号上网的调试;
- 7、音频通道切换功能的调试:
- 8、音量调节功能的调试;
- 9、其它功能的添加、定制调试。

4.3 系统与模块通讯端口的调试

Android 系统的通信功能,实质上是 CPU 通过与无线通信模块进行 AT 命令的数据交互以实现的,有时会把无线通信模块称作为基带 (BB, Base Band)。这要求处理器 (AP, Application Processor) 应具备有与外设进行数据通讯的硬件接口,如 UART、USB 等的接口,当然也需要相应的接口的软件驱动。

对于 Fibocom 的 GPRS 模块,一般使用串口与 AP 进行通讯,在 Android 系统中的内核里都会集成普通的 UART 驱动, 所以不需要另外加载驱动, 只需要在 Android 的系统配置中把连接到 GPRS 模块的 UART 接口做好相应的配置:

对于 Fibocom 的 WCDMA 模块,如果使用的是 USB 口进行收发 AT 命令,需要在 Android 的内核中加载对应的 USB 驱动,详细加载的方法可以参考《FIBOCOM_H330 Android 驱动程序使用手册》。

对于 Fibocom 的 LTE 模块,如果使用的是 USB 口进行收发 AT 命令,需要在 Android 的内核中加载对应的 USB 驱动,详细加载的方法可以参考《FIBOCOM L8-Family 系統驱动集成及应用指导》。

在配置完成后,可以通过一些移植的串口小工具如 minicom、广和通写好的 com_tool 等或者用 echo/cat

命令来简单测试对应的模块端口生产的设备节点(如 GPRS 模块对应可能是/dev/ttyS,WCDMA 模块对应的是/dev/ttyACM3),确认通讯用的端口是否可以正常工作,如下图。在确认了端口可以正常收发 AT 命令后,就可以进行下一步的调试了。驱动的配置和编译属于内核 kernel 部分功能。

```
F:\adb>adb shell
 # com_tool /dev/ttyACM4
com_tool /dev/ttyACM4
Open success!!enjoy it.....by Trento
Wrong Baudrate, Set to 115200
at+cgmr
at+cgmr
Send > at+cgmr
Recv< at+cgmr
Recv< +CGMR: "H330_V1H.00.20_T15"
Recv< OK
at+trace=1
at+trace=1
Send > at+trace=1
Recv< at+trace=1
Recv< OK
```

图 2-1

串口调试小技巧:对于串口的调试,可以通过在处理器的串口上把 txd、rxd 短接,这样,在用测试工具测试发送数据,应该可以接收到相同的数据显示。