Using Monte Carlo Simulations to find the optimal portfolio weights - portfolio with highest Sharpe Ratio

```
In [2]: # Either Download the data from yfinance. Here we are importing the Adj Closing Price of 10 st
          # from a csv file
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import plotly.express as px
          import seaborn as sns
          close price df = pd.read csv("stock prices.csv")
In [3]: close_price_df.head(5)
Out[3]:
                         AMZN
                                    CAT
                                               DE
                                                        EXC
                                                               GOOGL
                                                                            JNJ
                                                                                      JPM
                                                                                                          PFE
                                                                                                                    PG
                Date
                                                                                              META
           0 1/2/2014 19.898500
                               69.512543
                                         75.620926
                                                   14.121004
                                                             27.855856
                                                                      71.443314
                                                                                 45.640057
                                                                                           54.709999
                                                                                                    20.879053 61.941517
             1/3/2014
                     19.822001
                               69.473892
                                         75.956062
                                                   13.835152
                                                            27.652653
                                                                       72.086861
                                                                                 45.992889
                                                                                           54.560001
                                                                                                    20.920183 61.872295
           2 1/6/2014
                      19.681499
                               68.561180
                                         75.327690
                                                   13.923512
                                                             27.960960
                                                                       72.463608
                                                                                 46.259468
                                                                                           57.200001
                                                                                                    20.940746 62.018425
           3 1/7/2014
                     19.901501
                               68.785461
                                          75.662811
                                                    13.996271
                                                             28.500000
                                                                       74.001869
                                                                                 45.726311
                                                                                           57.919998 21.070980
                                                                                                               62.618301
             1/8/2014 20.096001
                               68.947906
                                         74.850121
                                                   13.965082 28.559309
                                                                       73.899841
                                                                                 46.157543 58.230000 21.214928 61.710812
In [4]: close_price_df.tail()
Out[4]:
                     Date
                              AMZN
                                          CAT
                                                      DE
                                                               EXC
                                                                      GOOGL
                                                                                    JNJ
                                                                                              JPM
                                                                                                        META
                                                                                                                   PFE
                12/12/2022 90.550003 233.059998
                                               437.049988
                                                          42.500000
                                                                   93.309998 177.839996
                                                                                         134 210007
                                                                                                   114 709999
                                                                                                              52.160000
                                                                                                                        152
                                                         42.540001
                12/13/2022 92.489998 235.490005
                                               437.190002
                                                                    95.629997
                                                                              179.210007
                                                                                         134.080002
                                                                                                   120.150002
                                                                                                              53.070000 152.2
          2254
               12/14/2022 91.580002 234.479996
                                               438.440002
                                                          42.820000
                                                                    95.070000
                                                                              179.759995
                                                                                         133.410004
                                                                                                   121.589996
                                                                                                              54.480000
                                                                                                                        152.8
           2255
               12/15/2022 88.449997 230.660004
                                               429.790008
                                                         42.380001
                                                                    90.860001
                                                                              177.490005
                                                                                         130.100006
                                                                                                   116.150002
                                                                                                              53.610001
                                                                                                                        151.
               12/16/2022 87.860001 232.720001 431.089996 41.930000 90.260002 175.669998
                                                                                        129.289993 119.430000 51.400002 150.4
```

In [5]: # Calculate the percentage daily return for each stock
 # We will perform this calculation on all stocks except for the first column which is "Date"
 daily_returns_df = close_price_df.iloc[:, 1:].pct_change() * 100
 daily_returns_df.replace(np.nan, 0, inplace = True)
 daily_returns_df

Out[5]:

	AMZN	CAT	DE	EXC	GOOGL	JNJ	JPM	META	PFE	PG
0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
1	-0.384451	-0.055602	0.443179	-2.024307	-0.729481	0.900780	0.773077	-0.274169	0.196992	-0.111753
2	-0.708814	-1.313748	-0.827284	0.638662	1.114930	0.522629	0.579608	4.838708	0.098293	0.236179
3	1.117807	0.327126	0.444884	0.522567	1.927829	2.122805	-1.152537	1.258737	0.621916	0.967255
4	0.977313	0.236162	-1.074095	-0.222838	0.208102	-0.137872	0.943073	0.535223	0.683156	-1.449240
2252	1.638800	2.538609	0.515165	2.607441	0.517070	1.194942	1.551152	-1.026749	0.850732	1.027036
2253	2.142457	1.042653	0.032036	0.094120	2.486336	0.770361	-0.096867	4.742396	1.744632	-0.150847
2254	-0.983886	-0.428897	0.285917	0.658201	-0.585588	0.306896	-0.499700	1.198498	2.656868	0.394108
2255	-3.417782	-1.629133	-1.972903	-1.027554	-4.428315	-1.262789	-2.481072	-4.474048	-1.596914	-1.131900
2256	-0.667039	0.893088	0.302470	-1.061823	-0.660355	-1.025414	-0.622608	2.823933	-4.122363	-0.443384

2257 rows × 10 columns

Out[6]:

	Date	AMZN	CAT	DE	EXC	GOOGL	JNJ	JPM	META	PFE	PG
0	1/2/2014	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
1	1/3/2014	-0.384451	-0.055602	0.443179	-2.024307	-0.729481	0.900780	0.773077	-0.274169	0.196992	-0.111753
2	1/6/2014	-0.708814	-1.313748	-0.827284	0.638662	1.114930	0.522629	0.579608	4.838708	0.098293	0.236179
3	1/7/2014	1.117807	0.327126	0.444884	0.522567	1.927829	2.122805	-1.152537	1.258737	0.621916	0.967255
4	1/8/2014	0.977313	0.236162	-1.074095	-0.222838	0.208102	-0.137872	0.943073	0.535223	0.683156	-1.449240
2252	12/12/2022	1.638800	2.538609	0.515165	2.607441	0.517070	1.194942	1.551152	-1.026749	0.850732	1.027036
2253	12/13/2022	2.142457	1.042653	0.032036	0.094120	2.486336	0.770361	-0.096867	4.742396	1.744632	-0.150847
2254	12/14/2022	-0.983886	-0.428897	0.285917	0.658201	-0.585588	0.306896	-0.499700	1.198498	2.656868	0.394108
2255	12/15/2022	-3.417782	-1.629133	-1.972903	-1.027554	-4.428315	-1.262789	-2.481072	-4.474048	-1.596914	-1.131900
2256	12/16/2022	-0.667039	0.893088	0.302470	-1.061823	-0.660355	-1.025414	-0.622608	2.823933	-4.122363	-0.443384

2257 rows × 11 columns

```
In [7]: #Define a func to plot finacial data for multiple stocks on the same fig

def plot_financial_data(df, title):
    fig = px.line(title=title)

for i in df.columns[1:]:
        fig.add_scatter(x=df['Date'], y=df[i], name = i)
        fig.update_traces(line_width=2)
        fig.update_layout({'plot_bgcolor': "white"})

fig.show()
```

In [8]: # Plot stock closing prices
plot_financial_data(close_price_df, 'Adjusted Closing Prices [\$]')

Adjusted Closing Prices [\$]

In [9]: # Plot the stocks daily returns
plot_financial_data(daily_returns_df, 'Percentage Daily Returns [%]')

Percentage Daily Returns [%]


```
In [10]: # Plot histograms for stocks daily returns using plotly express
# Compare META to JNJ daily returns histograms
fig = px.histogram(daily_returns_df.drop(columns = ['Date']))
fig.update_layout({'plot_bgcolor': "white"})
```


In [11]: # Plot a heatmap showing the correlations between daily returns
Strong positive correlations between Catterpillar and John Deere - both into heavy equipment
META and Google - both into Tech and Cloud Computing
plt.figure(figsize = (10, 8))
sns.heatmap(daily_returns_df.drop(columns = ['Date']).corr(), annot = True);

In [12]: # Plot the Pairplot between stocks daily returns
sns.pairplot(daily_returns_df);

/Users/murtazawani/anaconda3/lib/python3.11/site-packages/seaborn/axisgrid.py:118: UserWarnin a:

The figure layout has changed to tight

In [14]: price_scaling(close_price_df)

Out[14]:

	Date	AMZN	CAT	DE	EXC	GOOGL	JNJ	JPM	META	PFE	PG
0	1/2/2014	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
1	1/3/2014	0.996155	0.999444	1.004432	0.979757	0.992705	1.009008	1.007731	0.997258	1.001970	0.998882
2	1/6/2014	0.989095	0.986314	0.996122	0.986014	1.003773	1.014281	1.013572	1.045513	1.002955	1.001242
3	1/7/2014	1.000151	0.989540	1.000554	0.991167	1.023124	1.035812	1.001890	1.058673	1.009192	1.010926
4	1/8/2014	1.009925	0.991877	0.989807	0.988958	1.025253	1.034384	1.011338	1.064339	1.016087	0.996275
2252	12/12/2022	4.550594	3.352776	5.779485	3.009701	3.349744	2.489246	2.940619	2.096692	2.498198	2.461515
2253	12/13/2022	4.648089	3.387734	5.781336	3.012534	3.433030	2.508422	2.937770	2.196125	2.541782	2.457802
2254	12/14/2022	4.602357	3.373204	5.797866	3.032362	3.412927	2.516121	2.923090	2.222446	2.609314	2.467489
2255	12/15/2022	4.445058	3.318250	5.683480	3.001203	3.261792	2.484347	2.850566	2.123012	2.567645	2.439559
2256	12/16/2022	4.415408	3.347885	5.700671	2.969336	3.240252	2.458872	2.832818	2.182965	2.461798	2.428743
4 2252 2253 2254 2255	1/8/2014 12/12/2022 12/13/2022 12/14/2022 12/15/2022	1.009925 4.550594 4.648089 4.602357 4.445058	0.991877 3.352776 3.387734 3.373204 3.318250	0.989807 5.779485 5.781336 5.797866 5.683480	0.988958 3.009701 3.012534 3.032362 3.001203	1.025253 3.349744 3.433030 3.412927 3.261792	1.034384 2.489246 2.508422 2.516121 2.484347	1.011338 2.940619 2.937770 2.923090 2.850566	1.064339 2.096692 2.196125 2.222446 2.123012	1.016087 2.498198 2.541782 2.609314 2.567645	0.99627 2.46151 2.45780 2.46748 2.43955

2257 rows × 11 columns

In [15]: #Plot the scaled closing prices data
plot_financial_data(price_scaling(close_price_df), title="Scaled Closing Prices [\$] ")

Scaled Closing Prices [\$]


```
In [16]: # We create an array that holds random portfolio weights
# Note that portfolio weights must add up to 1
import random

def generate_portfolio_weights(n):
    weights = []
    for i in range(n):
        weights.append(random.random())

# let's make the sum of all weights add up to 1
    weights = weights/np.sum(weights)
    return weights
```

In [17]: # Testing the function out

```
weights = generate_portfolio_weights(4)
         print(weights)
         print(sum(weights))
         [0.23926912 0.18451745 0.29859814 0.27761529]
         1.0
In [18]: # Assume that we have $1,000,000 that we would like to invest in one or more of the selected s
         # We create a function that receives the following arguments:
               # (1) Stocks closing prices
               # (2) Random weights
               # (3) Initial investment amount
         # The function will return a DataFrame that contains the following:
               # (1) Daily value (position) of each individual stock over the specified time period
               # (2) Total daily value of the portfolio
               # (3) Percentage daily return
         def asset_allocation(df, weights, initial_investment):
             portfolio df = df.copy()
             # Scale stock prices using the "price_scaling" function that we defined earlier (Make them
             scaled_df = price_scaling(df)
             for i, stock in enumerate(scaled_df.columns[1:]):
                 portfolio_df[stock] = scaled_df[stock] * weights[i] * initial_investment
             # Sum up all values and place the result in a new column titled "portfolio value [$]"
             # Note that we excluded the date column from this calculation
             portfolio_df['Portfolio Value [$]'] = portfolio_df[portfolio_df != 'Date'].sum(axis = 1, n
             # Calculate the portfolio percentage daily return and replace NaNs with zeros
             portfolio_df['Portfolio Daily Return [%]'] = portfolio_df['Portfolio Value [$]'].pct_change
             portfolio_df.replace(np.nan, 0, inplace = True)
             return portfolio_df
```

```
In [19]: weights = generate_portfolio_weights(10)
initial_investment = 1000000
```

In [20]: portfolio_df = asset_allocation(close_price_df, weights, initial_investment)
 portfolio_df.round(2)

Out[20]:

	Date	AMZN	CAT	DE	EXC	GOOGL	JNJ	JPM	META	PFE	PG	
	1/0/0014	115000.00	101045 51	100015.00	0010.00	00705.00	170121.53	57197.43	60000 01	006717.61	72155.61	-
0		115938.82 115493.09	101345.51	189815.29 190656.52			170121.53	57639.61	60908.91	206717.61 207124.83	72155.61	
2		114674.46	99958.48	189079.25		23875.68	172551.06	57973.69	63681.04	207328.42	72245.20	
3	1/7/2014	115956.30	100285.47	189920.43	1995.57	24335.96	176213.98	57305.52	64482.62	208617.82	72944.00	1
4	1/8/2014	117089.55	100522.30	187880.50	1991.12	24386.61	175971.03	57845.96	64827.75	210043.01	71886.87	1
2252	12/12/2022	527590.52	339788.82	1097034.60	6059.60	79676.79	423474.36	168195.83	127707.21	516421.43	177612.16	9
2253	12/13/2022	538893.92	343331.64	1097386.05	6065.30	81657.82	426736.64	168032.91	133763.59	525431.08	177344.24	3
2254	12/14/2022	533591.82	341859.10	1100523.66	6105.22	81179.65	428046.28	167193.24	135366.75	539391.09	178043.17	3
2255	12/15/2022	515354.82	336289.76	1078811.40	6042.49	77584.75	422640.96	163045.06	129310.37	530777.48	176027.90	3
2256	12/16/2022	511917.20	339293.12	1082074.49	5978.33	77072.42	418307.14	162029.93	132962.01	508896.90	175247.42	3
0057	10 -	. 1										

2257 rows × 13 columns

```
In [21]: # Plot the portfolio percentage daily return
    plot_financial_data(portfolio_df[['Date', 'Portfolio Daily Return [%]']], 'Portfolio Percentage

# Plot each stock position in our portfolio over time
    # This graph shows how our initial investment in each individual stock grows over time
    plot_financial_data(portfolio_df.drop(['Portfolio Value [$]', 'Portfolio Daily Return [%]'], a:

# Plot the total daily value of the portfolio (sum of all positions)
    plot_financial_data(portfolio_df[['Date', 'Portfolio Value [$]']], 'Total Portfolio Value [$]'
```

Portfolio Percentage Daily Return [%]

Portfolio positions [\$]

Total Portfolio Value [\$]


```
In [22]: # Let's define the simulation engine function
                # The function receives:
                      # (1) portfolio weights
                      # (2) initial investment amount
                # The function performs asset allocation and calculates portfolio statistical metrics including
               # The function returns:
                      # (1) Expected portfolio return
                      # (2) Expected volatility
                      # (3) Sharpe ratio
                      # (4) Final portfolio value in dollars
                      # (5) Return on investment
                def simulation_engine(weights, initial_investment):
                      # Perform asset allocation using the random weights (sent as arguments to the function)
                      portfolio_df = asset_allocation(close_price_df, weights, initial_investment)
                      # Calculate the return on the investment
                      # Return on investment is calculated using the last final value of the portfolio compared
                      return on investment = ((portfolio df['Portfolio Value [$]'][-1:] -
                                                                portfolio_df['Portfolio Value [$]'][0])/
                                                                portfolio_df['Portfolio Value [$]'][0]) * 100
                      # Daily change of every stock in the portfolio (Note that we dropped the date, portfolio d
                      portfolio_daily_return_df = portfolio_df.drop(columns = ['Date', 'Portfolio Value [$]', 'Portfolio Value [$]'
                      portfolio_daily_return_df = portfolio_daily_return_df.pct_change(1)
                      # Portfolio Expected Return formula
                      expected_portfolio_return = np.sum(weights * portfolio_daily_return_df.mean() ) * 252
                      # Portfolio volatility (risk) formula
                      # The risk of an asset is measured using the standard deviation which indicates the disper
                      # The risk of a portfolio is not a simple sum of the risks of the individual assets within
                      # Portfolio risk must consider correlations between assets within the portfolio which is i
                      # The covariance determines the relationship between the movements of two random variables
                      # When two stocks move together, they have a positive covariance when they move inversely,
                      covariance = portfolio_daily_return_df.cov() * 252
                      expected volatility = np.sqrt(np.dot(weights.T, np.dot(covariance, weights)))
                      # Check out the chart for the 10-years U.S. treasury at https://ycharts.com/indicators/10
                      rf = 0.03 # Try to set the risk free rate of return to 1% (assumption)
                      # Calculate Sharpe ratio
                      sharpe ratio = (expected portfolio return - rf)/expected volatility
                      return expected_portfolio_return, expected_volatility, sharpe_ratio, portfolio_df['Portfol
In [23]: # Let's test out the "simulation_engine" function and print out statistical metrics
                # Define the initial investment amount
                initial_investment = 1000000
               portfolio metrics = simulation engine(weights, initial investment)
In [24]: print('Expected Portfolio Annual Return = {:.2f}%'.format(portfolio_metrics[0] * 100))
               print('Portfolio Standard Deviation (Volatility) = {:.2f}%'.format(portfolio_metrics[1] * 100)
               print('Sharpe Ratio = {:.2f}'.format(portfolio metrics[2]))
               print('Portfolio Final Value = $\{:.2f\}'.format(portfolio_metrics[3]))
print('Return on Investment = \{:.2f\}%'.format(portfolio_metrics[4]))
                Expected Portfolio Annual Return = 16.58%
                Portfolio Standard Deviation (Volatility) = 17.68%
                Sharpe Ratio = 0.77
                Portfolio Final Value = $3413778.95
                Return on Investment = 241.38%
```

```
In [25]: #Let's run Monte Carlo simulations by running the above funtion over multiple weights sets
                 sim runs = 10000
                 initial_investment = 1000000
                 n = 10
                 # Placeholder to store all weights
                 weights_runs = np.zeros((sim_runs, n))
                 # Placeholder to store all expected returns
                 expected portfolio returns runs = np.zeros(sim runs)
                 # Placeholder to store all volatility values
                 volatility_runs = np.zeros(sim_runs)
                 # Placeholder to store all Sharpe ratios
                 sharpe_ratio_runs = np.zeros(sim_runs)
                 # Placeholder to store all final portfolio values
                 final value runs = np.zeros(sim runs)
                 # Placeholder to store all returns on investment
                 return_on_investment_runs = np.zeros(sim_runs)
                 for i in range(sim_runs):
                         # Generate random weights
                        weights = generate_portfolio_weights(n)
                        # Store the weights
                        weights_runs[i,:] = weights
                        # Call "simulation_engine" function and store Sharpe ratio, return and volatility
                        # Note that asset allocation is performed using the "asset_allocation" function
                        expected_portfolio_returns_runs[i], volatility_runs[i], sharpe_ratio_runs[i], final_value_
print("Simulation Run = {}".format(i))
                        print("Weights = {}, Final Value = ${:.2f}, Sharpe Ratio = {:.2f}".format(weights_runs[i].
                        print('\n')
                 weights – ארפוע הארויש ברמויש אושיש ארשיש אויים אויי
                 083\overline{2}3.32, Sharpe Ratio = 0.75
                 Simulation Run = 67
                 Weights = [0.109 0.18 0.063 0.043 0.203 0.026 0.157 0.116 0.035 0.069], Final Value = $32
                 40393.42, Sharpe Ratio = 0.69
                 Simulation Run = 68
                 Weights = [0.081 0.124 0.088 0.13 0.114 0.073 0.122 0.075 0.138 0.057], Final Value = $31
                 90622.38, Sharpe Ratio = 0.73
                 Simulation Run = 69
                 Weights = [0.061 0.153 0.118 0.139 0.114 0.077 0.097 0.054 0.136 0.051], Final Value = $32
                 75281.47, Sharpe Ratio = 0.74
                 Simulation_Run = 70
                                                         In [26]: #Run with max Sharpe Ratio
                 sharpe_ratio_runs.argmax()
Out[26]: 5211
In [27]: | sharpe ratio runs.max()
Out[27]: 0.8143491268005124
```

```
In [28]: # Obtain the portfolio weights that correspond to the maximum Sharpe ratio (Golden set of weights)
         weights_runs[sharpe_ratio_runs.argmax(), :]
Out[28]: array([0.21183053, 0.12265763, 0.22626394, 0.0743913 , 0.03238587,
                 0.03810591, 0.02391695, 0.00549857, 0.09690676, 0.16804253])
In [29]: est weights allocation (maximum Sharpe ratio)
         larpe_ratio, optimal_portfolio_final_value, optimal_return_on_investment = simulation_engine(we
In [30]: print('Best Portfolio Metrics Based on {} Monte Carlo Simulation Runs:'.format(sim_runs))
         print(' - Portfolio Expected Annual Return = {:.02f}%'.format(optimal portfolio return * 100)
                  - Portfolio Standard Deviation (Volatility) = {:.02f}%'.format(optimal_volatility * 1
                  - Sharpe Ratio = {:.02f}'.format(optimal_sharpe_ratio))
- Final Value = ${:.02f}'.format(optimal_portfolio_final_value))
         print('
         print(' - Return on Investment = {:.02f}%'.format(optimal_return_on_investment))
         Best Portfolio Metrics Based on 10000 Monte Carlo Simulation Runs:
           - Portfolio Expected Annual Return = 18.00%
           - Portfolio Standard Deviation (Volatility) = 18.42%
           - Sharpe Ratio = 0.81
           - Final Value = $3781799.27
           - Return on Investment = 278.18%
```

In [31]: # Create a DataFrame that contains volatility, return, and Sharpe ratio for all simualation rul
sim_out_df = pd.DataFrame({'Volatility': volatility_runs.tolist(), 'Portfolio_Return': expected
sim_out_df

Out[31]:

	Volatility	Portfolio_Return	Sharpe_Ratio
0	0.179925	0.158362	0.713417
1	0.188436	0.153359	0.654649
2	0.186065	0.166909	0.735809
3	0.174441	0.157039	0.728263
4	0.204028	0.166594	0.669487
9995	0.186843	0.171355	0.756546
9996	0.178487	0.163160	0.746048
9997	0.184988	0.162646	0.717053
9998	0.188797	0.170067	0.741893
9999	0.184139	0.156351	0.686170

10000 rows × 3 columns

```
In [32]: # Plot volatility vs. return for all simulation runs
# Highlight the volatility and return that corresponds to the highest Sharpe ratio
# This gives us a idea of a Markowitz efficient frontier. A concave down curve which higlights
# highest return for a given level of risk
import plotly.graph_objects as go
fig = px.scatter(sim_out_df, x = 'Volatility', y = 'Portfolio_Return', color = 'Sharpe_Ratio',
fig.update_layout({'plot_bgcolor': "white"})
fig.show()
```



```
In [33]: # Let's highlight the point with the highest Sharpe ratio
fig = px.scatter(sim_out_df, x = 'Volatility', y = 'Portfolio_Return', color = 'Sharpe_Ratio',
fig.add_trace(go.Scatter(x = [optimal_volatility], y = [optimal_portfolio_return], mode = 'mar
fig.update_layout(coloraxis_colorbar = dict(y = 0.7, dtick = 5))
fig.update_layout({'plot_bgcolor': "white"})
fig.show()
```


In]	1:	