NAME:

Solution

PROBLEM 1: (25pts) The dimensions for the four bar linkage shown below are as follows.

- Position of all points on the mechanism.
- Angular velocities for all links in the mechanism.
- Velocities for points A, B, and P in Cartesian and magnitude-unit vector forms.
- Relative velocities of point B with respect to A and point P with respect to A in Cartesian and magnitude-unit vector forms.
- Angular Accelerations for all links in the mechanism.
- Accelerations for points A, B, and P in Cartesian and magnitude-unit vector forms.
- Relative accelerations of point B with respect to A and point P with respect to A in Cartesian and magnitude-unit vector forms.

	x comp	v comp	mag	angle	i	i
r04=	4.00	y comp 0.00	4.000	0.0	1.000	0.000
				7 7		
r A= rBA=	0.21 9.73	6.00 -2.30	6.000 10.000	88.0 -13.3	0.035 0.973	0.999 -0.230
rBO4=	9.73 5.94	-2.30 3.70	7.000	31.9	0.973	0.529
rB=	9.94	3.70	10.608	20.4	0.937	0.349
rPA=	7.28	-6.86	10.000	-43.3	0.728	-0.686
rP=	7.49	-0.86	7.539	-6.5	0.993	-0.114
vA=	479.71	-16.75	480.000	-2.0	0.999	-0.035
vBA=	-128.95	-546.55	561.559	-103.3	-0.230	-0.973
vB=	350.76	-563.31	663.584	-58.1	0.529	-0.849
vPA=	-384.95	-408.85	561.559	-133.3	-0.686	-0.728
vP=	94.76	-425.61	436.027	-77.4	0.217	-0.976
aA=	-1520.03	-38370.33	38400.422	-92.3	-0.040	-0.999
аВА	-36877.40	-18974.51	41472.574	-152.8	-0.889	-0.458
аВ	-38397.43	-57344.83	69012.986	-123.8	-0.556	-0.831
aPA=	-41424.02	2006.30	41472.574	177.2	-0.999	0.048
aP=	-42944.05	-36364.03	56271.964	-139.7	-0.763	-0.646
ALT	x comp	y comp	mag	angle	i	j
rO4=	4.00	0.00	4.000	0.0	1.000	0.000
rA=	0.21	6.00	6.000	88.0	0.035	0.999
rBA=	-2.10	-9.78	10.000	-102.1	-0.210	-0.978
rBO4=	-5.89	-3.78	7.000	-147.3	-0.842	-0.540
rB=	-1.89	-3.78	4.227	-116.6	-0.447	-0.894
rPA=	-6.71	-7.42	10.000	-132.1	-0.671	-0.742
rP=	-6.50	-1.42	6.652	-167.7	-0.977	-0.214
vA=	479.71	-16.75	480.000	-2.0	0.999	-0.035
vBA=	-543.96	116.88	556.375	167.9	-0.978	0.210
vB= vPA=	-64.25	100.13	118.970	122.7	-0.540	0.842
vPA= vP=	-412.64	373.20 356.45	556.375 362.702	137.9 79.3	-0.742 0.185	0.671
aA=	67.06 -1520.03	-38370.33	38400.422	-92.3	FALSE	0.983 -0.999
a A= aBA	9543.26	-36370.33 29611.30	31111.140	-92.3 72.1	0.307	0.952
а Б А аВ	8023.23	- 8759.02	11878.243	-47.5	0.307 0.675	-0.737
а Б aPA=	23070.36	20872.51	31111.140	42.1	0.073	0.671
ara= aP=	21550.32	-17497.81	27759.503	-39.1	0.742	-0.630
			_,			0.000

PROBLEM 2: (25pts) The dimensions for the slider crank mechanism shown below are as follows.

Offset= 0 m
$$\Theta_2$$
= 100°
 L_2 = 3 m ω_2 = -45 1/s
 L_3 = 13 m α_2 = 50 1/s²

- Position of all points on the mechanism.
- Angular velocities for all links in the mechanism.
- Velocities for points A and B in Cartesian and magnitude-unit vector forms.
- Relative velocities of point B with respect to A in Cartesian and magnitude-unit vector forms.
- Angular Accelerations for all links in the mechanism.
- Accelerations for points A and B in Cartesian and magnitude-unit vector forms.
- Relative accelerations of point B with respect to A in Cartesian and magnitude-unit vector forms.

Slider Crank

	_	
a=		Link 2
b=	13	Link 3
C=	0	Link 1
$\theta_2 =$	100	1.745329252
$\dot{\theta}_{2}^{2} =$	-45	$\frac{1}{s}$
$\ddot{\theta}_{2}^{2} =$	50	1/2
By=	0.00	/ s 0.00
Bx=	12.14	-13.18
$\theta_3 =$	-13.1	-166.9
$\dot{\theta}_2 =$	-1.85	1.85
$\ddot{\theta} =$	473.83	-473.83
vB=	127.48	138.42
aB=	2263.68	-449.30

Bonus: (5pts) The dimensions for the inverted slider crank mechanism shown below are as follows.

Link 1=0.8m. Link 2=0.5m Link 4=0.3m
$$\gamma$$
=90° θ_2 =25° ω_2 =-50/s ω_2 =-50/s

- Position of all points on the mechanism.
- Angular velocities for all links in the mechanism.
- Velocities for points A and B in Cartesian and magnitude-unit vector forms.
- Relative velocities of point B with respect to A in Cartesian and magnitude-unit vector forms.
- Angular Accelerations for all links in the mechanism.
- Accelerations for points A and B in Cartesian and magnitude-unit vector forms.
- Relative accelerations of point B with respect to A in Cartesian and magnitude-unit vector forms.

PROBLEM 3: (25pts) The figure below illustrates a mechanism that is found in a typical car jack. The load F is applied by the user and the 500lb represents the weight the jack is lifting. Point C in the ratchet can be treated as a pin joint during the lifting part of the motion.

Determine:

- The mechanical advantage of the mechanism.
- The value of F required to move the 500lb load upward.
- Suggest two ways to increase the mechanical advantage of the mechanism.
 - 1. EXTEND THE LEWGTH OF THE HANDLE AND MOVE THE FORCE FARTHER OUT.
 - 2. RECONFIGURE THE MECHANISM SO B IS CLOSER TO A.

PROBLEM 4: (25pts) The dimensions for the mechanism shown below are as follows.

$R_{O4O2} = 4m$	$R_{O4B} = 7m$	$\Theta_2 = 88^{\circ}$
$R_{AO2} = 6m$	$R_{PA}=10m$	$\omega_2 = -80 1/\text{s}$
$R_{BA}=10m$	∠BAP= 330°	$R_{PC}=5m$

Using the figure provided on the next page find the following quantities.

- All instant centers for this mechanism, make sure they are appropriately labeled.
- The angular velocities of each link of this mechanism.
- The linear velocities for points A, B, P, and C. Illustrate these values on the figure at the appropriate location.

NAME: _____

PROBLEM 1: (25pts) The dimensions for the four bar linkage shown below are as follows.

- Position of all points on the mechanism.
- Angular velocities for all links in the mechanism.
- Velocities for points A, B, and P in Cartesian and magnitude-unit vector forms.
- Relative velocities of point B with respect to A and point P with respect to A in Cartesian and magnitude-unit vector forms.
- Angular Accelerations for all links in the mechanism.
- Accelerations for points A, B, and P in Cartesian and magnitude-unit vector forms.
- Relative accelerations of point B with respect to A and point P with respect to A in Cartesian and magnitude-unit vector forms.

PROBLEM 2: (25pts) The dimensions for the slider crank mechanism shown below are as follows.

Offset= 0 m
$$\Theta_2$$
= 100°
 L_2 = 3 m ω_2 = -45 1/s
 L_3 = 13 m α_2 = 50 1/s²

- Position of all points on the mechanism.
- Angular velocities for all links in the mechanism.
- Velocities for points A and B in Cartesian and magnitude-unit vector forms.
- Relative velocities of point B with respect to A in Cartesian and magnitude-unit vector forms.
- Angular Accelerations for all links in the mechanism.
- Accelerations for points A and B in Cartesian and magnitude-unit vector forms.
- Relative accelerations of point B with respect to A in Cartesian and magnitude-unit vector forms.

Bonus: (5pts) The dimensions for the inverted slider crank mechanism shown below are as follows.

Link 1=0.8m. Link 2=0.5m Link 4=0.3m
$$\gamma$$
=90° θ_2 =25° ω_2 =-50/s ω_2 =-50/s

- Position of all points on the mechanism.
- Angular velocities for all links in the mechanism.
- Velocities for points A and B in Cartesian and magnitude-unit vector forms.
- Relative velocities of point B with respect to A in Cartesian and magnitude-unit vector forms.
- Angular Accelerations for all links in the mechanism.
- Accelerations for points A and B in Cartesian and magnitude-unit vector forms.
- Relative accelerations of point B with respect to A in Cartesian and magnitude-unit vector forms.

PROBLEM 3: (25pts) The figure below illustrates a mechanism that is found in a typical car jack. The load F is applied by the user and the 500lb represents the weight the jack is lifting. Point C in the ratchet can be treated as a pin joint during the lifting part of the motion.

Determine:

- The mechanical advantage of the mechanism.
- The value of F required to move the 500lb load upward.
- Suggest two ways to increase the mechanical advantage of the mechanism.

1.

2.

PROBLEM 4: (25pts) The dimensions for the mechanism shown below are as follows.

$R_{O4O2} = 4m$	$R_{O4B} = 7m$	$\Theta_2 = 88^{\circ}$
$R_{AO2} = 6m$	$R_{PA}=10m$	$\omega_2 = -80 \text{ 1/s}$
$R_{BA}=10m$	∠BAP= 330°	$R_{PC}=5m$

Using the figure provided on the next page find the following quantities.

- All instant centers for this mechanism, make sure they are appropriately labeled.
- The angular velocities of each link of this mechanism.
- The linear velocities for points A, B, P, and C. Illustrate these values on the figure at the appropriate location.

Exam I