

Enhancement of the Open National Combustion Code (OpenNCC) and Initial Simulation of Energy Efficient Engine Combustor

52nd AIAA/SAE/ASEE Joint Propulsion Conference July 25-27, Salt Lake City, Utah, USA AIAA Paper 2016-4651

> Kenji Miki, Jeff Moder, Meng-Sing Liou NASA Glenn Research Center

Acknowledge: Christopher Heath, Thomas Wey, Tsan-Hsing Shih, Clarence Chang, Kumud Ajmani

Outline

Introduction

- Combustor-Turbine Interaction (Hot streaks)
- Current Capability of OpenNCC

Validation Tests

- Laminar Flow Over Flat Plate (skin friction)
- Turbulent Flow Over Flat Plate (skin friction)
- Highly-Loaded Turbine Guide Vane (heat flux)
- Non-Swirling Coaxial Jet Combustor (temperature and velocity)

Energy Efficient Engine (E³)

- Cold Flow (RANS)
- Reacting Flow (RANS)

Conclusions

Motivation

- Future propulsion systems will be of increasingly higher bypass ratio from larger fans combined with much smaller cores
- Important to understand core engine component interactions, such as <u>combustor-turbine interactions</u>

Hot Streaks

From "Deposition With Hot Streaks in an Uncooled Turbine Vane Passage", B. Casaday, et al J. Turbomach, 2013 Vol. 136 (Permission from Prof. Bons and thanks to Dr. Mike Dunn @ OSU)

- Designing high-pressure turbines (HPTs) for <u>peak</u> temperatures at the combustor exit → More cooling air →Less cycle efficiency
- Designing HPTs for the <u>mean</u>
 exit-temperature at the
 combustor exit → More local hot
 spots (hot streaks) → Less gas
 turbine durability
- CFD should give some design guidelines

Features of Open National Combustion Code (OpenNCC)

- OpenNCC is the releasable version of the National Combustion Code (NCC), which has been continuously updated for more than two decades at NASA Glenn Research Center (GRC)
- Main Features
 - ✓ Numerics: Jameson-Schmidt-Turkel (JST) scheme and Roe's upwind scheme, and *advection upstream splitting method (AUSM)*⁽¹⁻³⁾
 - Turbulence: Cubic non-linear k-ε⁽⁴⁾ model with the wall function, Low-Re model
 - ✓ Combustion: Reduced chemical kinetic, low dimensional manifold, Linear Eddy Model (LEM)⁽⁵⁾
 - ✓ Spray: Lagrangian liquid phase model⁽⁶⁻⁸⁾
 - ✓ Other features: Low-Mach preconditioning, <u>transition model⁽⁹⁾</u>, unstructured mesh, adaptive mesh refinement (AMR)⁽¹⁰⁾, massively parallel computing (with almost perfectly linear scalability achieved for non-spray cases up to 4000 central processing units)

Selected referece

(1) Liou, M.-S. and Steen, C. J., Journal of Computational Physics, Vol. 107, (1993)
(2-3) Liou, M.-S., Journal of Computational Physics, Vol. 129, 1996) and (2006)
(4) Shih, T.-H., Chen, K.-H., and Liu, N.-S., AIAA 1998-35684 (1998).

(5) Alan R. Kerstein, Combustion Science and Technology, Vol 60 (1988)

(6-8) Raju, M., NASA/CR97-206240 (1997), NASA/CR1998-20401 (1998) and NASA/CR2004-212958 (2004).

(9) Liou, W. and Shih, T.-H., No. NASA/CR-2000-209923 (2000).

(10) Wey, T. and Liu, N.-S., AIAA 2014-1385 (2014).

Validation Test

- 1. Laminar Flow Over Flat Plate
- 2. Turbulent Flow Over Flat Plate
- 3. Highly-Loaded Turbine Guide Vane
- 4. Non-Swirling Coaxial Jet Combustor

Laminar Flow Over Flat Plate

Numerical Setting

- 2D Flat Plate, Laminar
- Mesh size: 256x64
- Inflow Condition:

Mach=0.2 (69m/s), 300K, Air

Excellent agreement with Blasius solution is achieved.

Validation Test

- 1. Laminar Flow Over Flat Plate
- 2. Turbulent Flow Over Flat Plate
- 3. Highly-Loaded Turbine Guide Vane
- 4. Non-Swirling Coaxial Jet Combustor

Turbulent Flow Over Flat Plate

Numerical Setting

- 2D Flat Plate, RANS
- Turbulent Model: nonlinear k-ε model⁽¹⁾
- Transition Model⁽²⁾
- Mesh size: 256x128 and 512 x 256
- Inflow Condition:
 Mach=0.2 (69m/s), 300K, Air
 Turbulent intensity (T_{II}): 6.5% and 3.3%

- One model parameter associated with the transition model is fixed for both Tu
 = 6.5 % and 3.3 %.
- Shear stress and transition locations agree with the experimental data and analytical solution.

Validation Test

- 1. Laminar Flow Over Flat Plate
- 2. Turbulent Flow Over Flat Plate
- 3. Highly-Loaded Turbine Guide Vane
- 4. Non-Swirling Coaxial Jet Combustor

Highly-Loaded Turbine Guide Vane

Test number $\#$	p_{total} (bar)	$T_{total}[{ m K}]$	Mis_{out}	Re_{out}	Free stream turb. $[\%]$
MUR45	1.475	-	0.875	10^{6}	-
MUR129	1.849	409.20	0.840	1.1352×10^{6}	0.8
MUR235	1.828	413.3	0.927	1.1521×10^{6}	6.0

Test Conditions

- Towards our ultimate goal of understanding combustorturbine interactions, the validation test of turbine heat transfer is essential.
- High-quality mesh (80,000 grids) is generated by Cubit
- Pressure, M_{is} and heat flux are compared with the data⁽¹⁾ for three test conditions

(1) Arts, T., Lambert de Rouvroit, M., and Rutherford, A., 'Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade," VKI Technocal Note, Vol. 174, 1990.

Highly-Loaded Turbine Guide Vane (cont.)

MUR235 is the most challenging case, where subsonic-supersonic & laminar-turbulence transition take place

Validation Test

- 1. Laminar Flow Over Flat Plate
- 2. Turbulent Flow Over Flat Plate
- 3. Highly-Loaded Turbine Guide Vane
- 4. Non-Swirling Coaxial Jet Combustor

UTRC: Coaxial Jet-Flame

Numerical Setting

- Numerical scheme: AUSM⁺-up
- Steady flow calculation (RANS)
- Turbulence model: Cubic non-linear kε with the wall function
- Mesh: 366,656 grids
- Chemistry: 1-step mechanism

gas	Temperature [K]	Mass flow rate [kg/s]	Velocity [m/s]
Air	750	0.137	29
Fuel (CH_4)	300	0.0072	0.9

Axial Velocity Profiles

r/R

r/R

Temperature Profiles

Energy Efficient Engine (E³) - GE design, 80s -

Five-cups EEE sector test hardware (1)

One-cup CAD geometry

- One-cup (12 degree) E³ geometry is considered to demonstrate the predictive capability of OpenNCC
- Tetrahedral mesh (~9.5M) is generated by Cubit (AMR is off)
- Used 960 processors of Pleiades at NASA Advanced Supercomputing facility
- RANS (non-linear $k-\epsilon^{(4)}$ model) with low-Mach preconditioning
- ~160,000 iterations (cold flow) and additionally ~340,000 iterations (rec. flow)

Boundary Condition

Aame	Index	Gas	Mass flow rate $[kg/s]$
Inflow	A1	Air	0.26
Main dome	F1	Fuel	0.00182*
Pilot dome	F2	Fuel	0.00182*
Diffuser Bleed	S1	Air	- 0.018
Pilot splash plate cooling	A2	Air	0.0104
Outer liner cooling 1	A3	Air	0.0053
Outer liner cooling 2	A4	Air	0.0053
Outer liner trim cooling	A5	Air	0.0018
Outer liner cooling 3	A6	Air	0.0024
Main splash plate cooling	A7	Air	0.0116
Inner liner cooling 1	A8	Air	0.0096
Inner liner cooling 2	A9	Air	0.0056
Inner liner trim cooling	A10	Air	0.0018
Outer liner cooling 3	A11	Air	0.0024
Centerbody outer cooling	A12	Air	0.0018
Centerbody mid cooling	A13	Air	0.0024
Centerbody Inner cooling	A14	Air	0.0024

	P3 [atm]	T3 [K]	W3 [kg/s]	Wf_{total} [kg/s]	f/a	Wf_{pilot}/Wf_{total}	T_{fuel} [K]
SLTO	2.52	720	0.26	0.00364	0.014	0.5	520

- Taken into consideration is the simulated sea level takeoff condition (SLTO), which is the most severe condition during the engine operation cycle
- Cooling air is treated as source/sink terms on the surface

AIAA Paper 2016-4651

Pressure and Velocity Profiles (center-plane)

Dilution Airflow and Recirculation Zone

Green: U = -30 m/s, Red: V = -100 m/s, Blue: V=100 m/s

Mach Contour

- For AUSM scheme, the central-recirculation zone (CRZ), is much larger and extends up to the location where the dilution airflows meet
- In contrast, JST scheme predicts a much smaller CRZ, and CRZ and the dilution airflows are weakly interacted
- JST is more dissipative

Quantitative Comparison: Axial Velocity and Pressure

(b)

0.01

Distance from the nozzle exit (m)

(a)

Distance from the nozzle exit (m)

0.01

-20000

0.005

-15000g

 AUSM scheme shows that the reverse flow is stronger than the JST scheme (i.e., larger CRZ)

AUSM scheme shows the pressure is much lower than JST scheme, which indicates a stronger precessing vortex core (PVC)

Flame structures would be predicted in a different manner?

Reacting Flow Calculation (Preliminary)

Geometrical details of fuel injection for a 3D solid or hollow cone spray

- "Gaseous" fuel (T_{fuel}=515K) is injected from the main and pilot domes with 70° cone angle (hollow cone)
- Finite-rate chemistry:

$$4C_{12}H_{23} + 71O_2 \rightarrow 48CO_2 + 46 H_2O$$

- The reaction rate is calculated in the Arrhenius form: k=A Tⁿ exp(-E/RT) where A = 8.6E+11, n=0, E = 30000
- Chemical integration is done using the KIVA scheme.
- Turbulence mode: non-linear k-ε⁽⁴⁾
 model with the wall function

Temperature and Fuel Mass Fraction

• Both models predict the flame structures in a similar way.

* Magenta indicate the stoichiometric mass ratio

Exit Temperature Profile

- Radially and circumferentially non-uniform temperature profile is observed
- AUSM scheme predicts more uniform profile than the one by JST scheme
- Relatively large discrepancy from the data is seen at the top/bottom wall

Conclusions and Future Work

- We have performed detailed validation studies of the newly implemented numerical schemes and applied them to the real combustor configuration, E³ combustor
- The enhanced OpenNCC shows satisfactory performance through a series of validation tests
- In the study of E³, we observe that the AUSM scheme is less dissipative and thus, seems to capture the swirling flow and the recirculation bubble more realistically than the JST scheme
- Even though the flame structures are similar between the two schemes,
 the exit temperature profiles differ from one another
- We are planning to turn on the adaptive mesh refinement, spay liquid injection and turbulence-chemistry interaction (e.g., LEM)

Thank you!

Questions?

Acknowledgement

- Supported by NASA's Transformational Tools and Technologies project
- Simulations conducted NASA Advanced Supercomputing (NAS) Pleiades computers
- Grid Generation conducted with Cubit (Sandia National Labs)
- Flow Viz was conducted with Visit (Lawrence Livermore National Labs)