4-Reduction Formula

REDUCTION FORMULA & BETA AND GAMMA FUNCTIONS

3.1 Reduction Formula

A reduction formula connects an integral with another integral of the same type but of a lower order. Usually, a reduction formula is obtained by the method of integration by parts. The reduction formula is applied repeatedly to express a given integral in terms of a much simple integral which can be easily evaluated. We will get some reduction formulae below.

Reduction formula for $\int x^n e^{ax} dx$.

 $Let I_n = \int x^n e^{ax} dx$

Integrating by parts,

$$\int x^n e^{ax} dx = x^n \frac{e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$

$$\therefore I_n = \frac{x^n e^{\alpha x}}{a} - \frac{n}{a} I_{n-1}.$$

Example: Denoting $\int x^3 e^{ax} dx$ by I_3 and putting n = 3, 2, 1 successively in the above formula, we get

$$I_{3} = \frac{x^{3} e^{ax}}{a} - \frac{3}{a} I_{2} = \frac{x^{3} e^{ax}}{a} - \frac{3}{a} \left(\frac{x^{2} e^{ax}}{a} - \frac{2}{a} I_{1} \right)$$

$$= \frac{x^{3} e^{ax}}{a} - \frac{3x^{2} e^{ax}}{a^{2}} + \frac{6}{a^{2}} \left(\frac{x e^{ax}}{a} - \frac{1}{a} \int e^{ax} dx \right)$$

$$= \frac{x^{3} e^{ax}}{a} - \frac{3x^{2} e^{ax}}{a^{2}} + \frac{6x e^{ax}}{a^{3}} - \frac{6}{a^{3}} \cdot \frac{e^{ax}}{a}$$

$$= \frac{e^{ax}}{a} \left(a^{3}x^{3} - 3a^{2}x^{2} + 6ax - 6 \right).$$

Inagx = mingx - Mgm Ingx Igx.

3.3 Reduction formula for $\int \sin^n x \, dx$, $\int_0^{\pi/2} \sin^n x \, dx$, $\int_0^{\pi/2} \cos^n x \, dx$ and $\int_0^{\pi/2} \cos^n x \, dx$.

Let $I_n = \int \sin^n x \, dx = \int \sin^{n-1} x \sin x \, dx$ where n is a positive integer.

Integrating by parts,

$$I_n = \sin^{n-1} x (-\cos x) + \int (n-1) \sin^{n-2} x \cos^2 x \, dx$$

$$= -\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x (1 - \sin^2 x) \, dx$$

$$= -\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x \, dx - (n-1) \int \sin^n x \, dx$$

$$= -\sin^{n-1} x \cos x + (n-1) I_{n-2} - (n-1) I_n$$

By transposition,

$$nI_n = -\sin^{n-1}x\cos x + (n-1)I_{n-2}$$

$$I_n = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} I_{n-2} + \dots (1)$$

which is the reduction formula for $\int \sin^n x \, dx$.

If
$$J_n = \int_0^{\pi/2} \sin^n x \, dx$$
, we have

$$J_{n} = -\left[\frac{\sin^{\frac{1}{n}-1}x\cos x}{n}\right]_{0}^{\frac{\pi}{2}} + \frac{n-1}{n}J_{n-2} \qquad \text{from (1)}.$$

$$= 0 + \frac{n-1}{n} J_{n-2} = \frac{n-1}{n} J_{n-2} \dots (2)$$

This is the reduction formula for $\int_{0}^{\pi/2} \sin^{n} x \, dx$. Replacing n by

n-2, n-4, ... successively, we have from (2),

$$J_{n-2} = \frac{n-3}{n-2} J_{n-4}$$
, $J_{n-4} = \frac{n-5}{n-4} J_{n-6}$ and so on.

$$\therefore J_{n} = \frac{n-1}{n} J_{n-2} = \frac{(n-1)(n-3)}{n(n-2)} J_{n-4}$$

$$=\frac{(n-1)(n-3)(n-5)}{n(n-2)(n-4)}J_{n-6}$$

Proceeding in this way,

$$J_n = \frac{(n-1)(n-3)(n-5)...2}{n(n-2)(n-4)...3} J_1$$
, where n is odd.

$$J_n = \frac{(n-1)(n-3)(n-5)...1}{n(n-2)(n-4)...2} J_0$$
, where n is even.

Now
$$J_1 = \int_0^{\pi/2} \sin x \, dx = [-\cos x]_0^{\pi/2} = 1$$

and
$$J_0 = \int_0^{\pi/2} \sin^0 x \, dx = \int_0^{\pi/2} dx = \frac{\pi}{2}$$
.

. .:
$$J_n = \frac{(n-1)(n-3)(n-5)...2}{n(n-2)(n-4)...3}$$
, when n is odd

and
$$\frac{(n-1)(n-3)(n-5)...1}{n(n-2)(n-4)...2} \cdot \frac{\pi}{2}$$
, when n is even ...

If
$$I_n = \int \cos^n x \, dx$$
, we can similarly prove that
$$I_n = \frac{\sin x \cos^{n-1} x}{n} + \frac{n-1}{n} I_{n-2}$$

$$\text{If} \qquad J_n = \int_0^{\pi/2} \cos^n x \, dx \, ,$$

$$J_n = \frac{(n-1)(n-3)(n-5)...2}{n(n-2)(n-4)...3}$$
, when n is odd

and
$$\frac{(n-1)(n-3)(n-5)...1}{n(n-2)(n-4)...2} \cdot \frac{\pi}{2}$$
, when n is even...

Thus
$$\int_{0}^{\pi/2} \sin^n x \, dx = \int_{0}^{\pi/2} \cos^n x \, dx$$
.

Formula (3) and (4) above are called Walli's Formula.

It may be noted that the factors in the numerator begin with (n-1) go on decreasing by 2 and end with 2 or 1. The factors in the denomination with n, go on decreasing by 2 and end with 3 or 2. When n is expression we multiply by $\frac{\pi}{2}$.

Examples:

1.
$$\int_{0}^{\pi/2} \sin^6 x \, dx = \frac{(6-1)(6-3)(6-5)}{6(6-2)(6-4)} \cdot \frac{\pi}{2} = \frac{5 \cdot 3 \cdot 1}{6 \cdot 4 \cdot 2} \cdot \frac{\pi}{2} = \frac{5\pi}{32}$$

2.
$$\int_{0}^{\pi/2} \cos^{7} x \, dx = \frac{(7-1)(7-3)(7-5)}{7(7-2)(7-4)} = \frac{6.4.2}{7.5.3} = \frac{16}{35}.$$

3.4 Reduction formula for ∫ cos^m x sin nx dx.

Let
$$I_{m,n} = \int \cos^m x \sin nx \, dx$$
.

Integrating by parts,

$$I_{mn} = \cos^m x \left(-\frac{\cos nx}{n} \right) - \int_{m} \cos^{m-1} x \left(-\sin x \right) \left(\frac{-\cos nx}{n} \right)$$

$$= -\frac{\cos^m x \cos nx}{n} - \frac{m}{n} \int \cos^{m-1} x (\cos nx \sin x) dx \dots (1)$$

Now $\sin (nx - x) = \sin nx \cos x - \cos nx \sin x$

$$\cos nx \sin x = \sin nx \cos x - \sin (n-1)x$$

Substituting in (1), we have

$$I_{m,n} = -\frac{\cos^m x \cos nx}{n}$$
$$-\frac{m}{n} \int \cos^{m-1} x \left[\sin nx \cos x - \sin (n-1)x \right] dx$$

$$= -\frac{\cos^{m} x \cos nx}{n} - \frac{m}{n} I_{m,n} + \frac{m}{n} I_{m-1,n-1}$$

or
$$\left(1 + \frac{m}{n}\right) I_{m,n} = -\frac{\cos^m x \cos nx}{n} + \frac{m}{n} I_{m-1,n-1}$$

$$\therefore I_{m,n} = \frac{\cos^m x \cos nx}{m+n} + \frac{m}{m+n} I_{m-1,n-1}.$$

This is the required reduction formula.

From the above formula

$$\int_{0}^{\pi/2} \cos^m x \sin nx \, dx$$

$$= \frac{1}{m+n} + \frac{m}{m+n} \int_{0}^{\pi/2} \cos^{m-1} x \sin(n-1) x \ dx.$$

3.5 Reduction formula for cos x cos nx dx

Let
$$I_{m,n} = \int \cos^m x \cos nx \, dx$$
.
Integrating by parts,

$$I_{m,n} = \cos^m x \frac{\sin nx}{n} - \int -m \cos^{m-1} x \sin x \frac{\sin nx}{n} dx$$
$$= \frac{\cos^m x \sin nx}{n} + \frac{m}{n} \int \cos^{m-1} x (\sin nx \sin x) dx$$

Now
$$\cos (n-1)x = \cos nx \cos x + \sin nx \sin x$$
....(1)

$$\therefore \sin nx \sin x = \cos (n-1)x - \cos nx \cos x$$

Substituting in (1), we have

$$I_{m,n} = \frac{\cos^m x \sin nx}{n} + \frac{m}{n} \int \cos^{m-1} x \left[\cos (n-1) x - \cos nx \cos x\right] dx$$

$$= \frac{\cos^m x \sin nx}{n} + \frac{m}{n} I_{m-1,n-1} - \frac{m}{n} I_{m,n}$$

or
$$\frac{m+n}{n}I_{m,n} = \frac{\cos^m x \sin nx}{n} + \frac{m}{n}I_{m-1,n-1}$$

$$I_{m,n} = \frac{\cos^m x \sin nx}{m+n} + \frac{m}{m+n} I_{m-1,n-1}.$$

and
$$\int_{0}^{\pi/2} \cos^{m} x \cos nx \, dx$$

$$= \frac{m}{m+n} \int_{0}^{\pi/2} \cos^{m-1} x \cos(n-1) x \, dx.$$

Examples Worked Out

Obtain a reduction formula for $\int \tan^n x \, dx$ and hence find $\int \tan^n x \, dx$ Let $I_n = \int \tan^n x \, dx$

Then
$$I_n = \int \tan^n x \, dx$$

$$= \int \tan^{n-2} x \tan^2 x \, dx = \int \tan^{n-2} x (\sec^2 x - 1) \, dx$$

$$= \int \tan^{n-2} x \sec^2 x \, dx - \int \tan^{n-2} x \, dx$$

$$= \frac{\tan^{n-1} x}{n-1} - I_{n-2}, \text{ which is the required reduction form}$$

$$\therefore \int \tan^6 x \, dx = I_6 = \frac{\tan^5 x}{5} - I_4$$

$$= \frac{\tan^5 x}{5} - \left(\frac{\tan^3 x}{3} - I_2\right) = \frac{\tan^5 x}{5} - \frac{\tan^3 x}{3} + I_2$$

$$= \frac{\tan^5 x}{5} - \frac{\tan^3 x}{3} + \frac{\tan x}{1} - I_0$$
But $I_0 = \int dx = x$.
$$\therefore \int \tan^6 x \, dx = \frac{\tan^5 x}{5} - \frac{\tan^3 x}{3} + \tan x - x$$

Obtain a reduction formula for $\int \csc^n x \, dx$ and find $\int \csc^5 x \, dx$. $I_n = \int \csc^n x \, dx = \int \csc^{n-2} x \csc^2 x \, dx$ Integrating by parts,

$$I_n = \csc^{n-2} x (-\cot x) - \int (n-2) \csc^{n-3} x (-\csc x \cot x) (-\cot x) dx$$

$$= -\csc^{n-2} x \cot x - (n-2) \int \csc^{n-2} x \cot^2 x dx$$

=
$$-\csc^{n-2}x\cot x - (n-2)\int \csc^{n-2}x(\csc^{n-2}x-1) dx$$

= $-\csc^{n-2}x\cot x - (n-2)\int \csc^{n-2}x(\csc^{n-2}x-1) dx$

$$= -\operatorname{cosec}^{n-2} x \cot x - (n-2) \int \operatorname{cosec}^{n} x \, dx + (n-2) \int \operatorname{cosec}^{n-2} x \, dx$$

$$= -\csc^{n-2}x \cot x - (n-2)I_n + (n-2)I_{n-2}$$

:: $(n-1)I_n = -\csc^{n-2}x \cot x + (n-2)I_{n-2}$

$$I_n = -\frac{\csc^{n-2} x \cot x}{n-1} + \frac{n-2}{n-1} I_{n-2}.$$

Applying this reduction formula

Applying this reduction formula,
$$\int \csc^5 x \, dx = I_5 = -\frac{\csc^3 x \cot x}{4} + \frac{3}{4} I_3$$

$$= -\frac{\csc^3 x \cot x}{4} + \frac{3}{4} \left(-\frac{\csc x \cot x}{2} + \frac{1}{2} I_1 \right)$$

$$= -\frac{\csc^3 x \cot x}{4} - \frac{3}{8} \csc x \cot x + \frac{3}{8} \csc x \, dx$$

$$= -\frac{\csc^3 x \cot x}{4} - \frac{3}{8} \csc x \cot x + \frac{3}{8} \log \tan \frac{x}{2}.$$

From the reduction formula for $\int \cos^m x \sin nx \, dx$, find 3. $\int \cos^2 x \sin 3x \, dx$.

We know that if $I_{m,n} = \int \cos^m x \sin nx \, dx$,

$$I_{m,n} = -\frac{\cos^m x \cos nx}{m+n} + \frac{m}{m+n} I_{m-1,n-1}.$$

$$\therefore \int \cos^2 x \sin 3x \, dx = I_{2,3}$$

$$= -\frac{\cos^2 x \cos 3x}{5} + \frac{2}{5} I_{1,2}$$

$$= -\frac{\cos^2 x \cos 3x}{5} + \frac{2}{5} \left[\frac{-\cos x \cos 2x}{3} + \frac{1}{3} I_{0,1} \right]$$
Now $I_{0,1} = \int \sin x \, dx = -\cos x$

$$\therefore I_{2,3} = -\frac{\cos^2 x \cos 3x}{5} - \frac{2 \cos x \cos 2x}{15} - \frac{2 \cos x}{15}$$

4. Use the reduction formula for $\int \cos^m x \cos nx \, dx$ to prove the $\int_0^{\pi/2} \cos^n x \cos nx \, dx = \frac{\pi}{2^{n+1}}$

We have $\int \cos^m x \cos nx \, dx$

$$= \frac{\cos^m x \sin nx}{m+n} + \frac{m}{m+n} \int \cos^{m-1} x \cos (n-1)$$

 $\int_{0}^{\pi/2} \cos^{m} x \cos nx \, dx$

$$= \left[\frac{\cos^m x \sin nx}{m+n} \right]_0^{\pi/2} + \frac{m}{m+n} \int_0^{\pi/2} \cos^{m-1} x \cos(n-1)x$$

$$= 0 + \frac{m}{m+n} \int_{0}^{\pi/2} \cos^{m-1} x \cos(n-1) x \, dx$$

Putting m = n and denoting $\int_{0}^{\pi/2} \cos^{n} x \cos nx \, dx \text{ by } l_{n}$ $l_{n} = \frac{1}{2} l_{n}$

Similarly,
$$I_{n-1} = \frac{1}{2}I_{n-2}$$
, $I_{n-2} = \frac{1}{2}I_{n-3}$ and so on.
 $I_n = \frac{1}{2}I_{n-3}$

$$I_{n-2} = \frac{1}{2} I_{n-3} \text{ and so on.}$$

$$I_{n} = \frac{1}{2} I_{n-1} = \frac{1}{2^{2}} I_{n-2} = \frac{1}{2^{3}} I_{n-3} = \dots = \frac{1}{2^{n}} I_{n-n}.$$
Now $I_{n-n} = I_{0} = \int_{0}^{\pi/2} I_{n-1} dx$

Now
$$I_{n-n} = I_0 = \int_0^{\pi/2} \frac{1}{2^n} I_{n-3} = \dots = \frac{1}{2^n} I_{n-n}$$
.

$$dx = \frac{\pi}{2} \qquad \therefore I_n = \frac{1}{2^n} \cdot \frac{\pi}{2} = \frac{\pi}{2^{n+1}}$$

Examples 6

Obtain a reduction formula for $\int \sin^a x \, dx$ and find $\int \sin^6 x \, dx$.

Obtain a reduction formula for $\int_{0}^{\pi/2} \sin^{4}x \, dx$ and hence evaluate

$$\int_{0}^{\pi/2} \sin^6 x \, dx.$$

Obtain a reduction formula for $\int_{0}^{\pi/2} \cos^{4}x \, dx$ and hence evaluate

$$\int_{0}^{\pi/2} \cos^{10} x \, dx.$$

Obtain a reduction formula for $\int \cot^n x \, dx$ and hence integrate

Obtain a reduction formula for $\int \sec^n x \, dx$ and hence find (i) $\int \sec^5 x \, dx$ (ii) $\int \sec^6 x \, dx$

If $I_n = \int_0^{\pi/4} \tan^n x \, dx$, show that $I_n + I_{n-2} = \frac{1}{n-1}$ and deduce the value of Is.

From the reduction formula for $\int \cos^m x \cos nx \, dx$ find cos3 x cos 5x dx.

Prove that $\int_{0}^{\pi/2} \cos^{5} x \sin 3x \, dx = \frac{1}{3}$.

Prove that
$$\int_{0}^{\pi/2} \cos^{m}x \sin mx \, dx = \frac{1}{2^{m+1}} \left(2 + \frac{2^{2}}{2} + \frac{2^{3}}{3} + \frac{2^{4}}{4} + \dots + \frac{2^{m}}{m} \right).$$
10. If $I_{m,n} = \int_{0}^{\pi/2} \cos^{m}x \sin nx \, dx$, prove that

$$I_{m,n} = \frac{1}{m+n} + \frac{m}{m+n} I_{m-1, n-1}$$