Objectives	The student should develop a knowledge of the elements related to performance and limitations for multiengine aircraft			
Elements	 Determining Weight and Balance Atmospheric Conditions and Performance Performance Charts Multiengine Specific Performance Determine if required Performance is Attainable Exceeding Aircraft Limitations 			
Schedule	 Discuss objective Review Material Development Conclusion & Review 			
Equipment	White Board / MarkersReferences			
CFI Actions	Present lessonUse teaching aidsAsk/ answer questions			
Student Actions	 Participate in discussion Take notes Ask / answer questions 			
Completion Standards	 The student has the ability to calculate the required performance for their specific aircraft and decide if these calculations meet requirements 			

Additional Notes: _		 	

CE = Common Error

Introduction

Overview

Review objectives / Elements

What

The performance and limitations section of the POH contains the operating data for a specific airplane. This data includes charts for determining takeoff, landing, cruise, etc. performance.

Why

It is important to know what performance we are likely to obtain before a flight as well as abiding by the limitations set in section 2 of the POH

How

Determining Weight and Balance

See Weight & Balance lesson plan in initial CFI lesson plans for the in-depth lesson

- Basic process of finding weight and balance via the computational method
 - CG(Arm) = Moment/Weight
- Begin with the basic empty weight and find the weights of every item to be loaded into the plane
 - o Be sure this weight is within the max ramp weight limitation of the AFM
 - o If the weight is too high, remove items or fuel to bring it within limits
- Calculate the moments of all the items
 - Refer to the poh for the respected arm of each station and multiply that by the weight of items occupying the station
 - Add the moments together to get the total moment
- Find the CG by doing total moment / total weight
 - Use the CG envelope graph to ensure the CG is within operational limits.
- Weight shift can be done using the following formula $\frac{weight \ to \ be \ shifted}{Total \ weight} = \frac{Change \ in \ CG}{distance \ weight \ is \ shifted}$

Atmospheric Conditions and Performance

Density Altitude

- Density altitude is the pressure altitude corrected for non-standard pressure
 - o Pressure altitude is altitude corrected of nonstandard pressure
- Barometric pressure, Temperature, altitude, and humidity all affect air density
- As air becomes less dense density altitude increases and aircraft performance drops

- Aircraft performance drops at lower air density mainly due to:
 - Less air molecules for combustion
 - Less air molecules for the prop to generate lift with
 - Less air molecules for the wings to create lift with
- Always be aware of the density altitude as there may be scenarios where high-density altitudes can pose a risk to flight

Performance Charts

- Airplane performance charts are found in section 5 of the POH/AFM
- Using the performance charts, we can calculate
 - Takeoff distance (over 50' obstacle as well)
 - o Time, fuel & distance to climb
 - Climb rate chart
 - We use this to find absolute ceiling and service ceiling
 - 2 engine absolute ceiling altitude at which no climb can be established with 2 engines at full power
 - 2 engine service ceiling altitude at which 100fpm can be maintained with 2 engines at full power
 - Cruise performance
 - Endurance
 - Landing Distance (over 50' obstacle as well)
 - Crosswind component
 - IAS -> CAS conversion
 - Stall speed in certain configurations
- All these charts use Pressure altitude
 - o To find PA the equation is Pa = (29.92 Alt. Setting) * 1000 + field elevation
 - o To find DA (not needed for most charts) Da = Pa + (120(temp STDTemp))
- Demonstrate using performance charts to student

Multi Engine Specific Performance

- Multiengine aircraft have specific charts and performance concepts
- Performance charts for ME aircraft include
 - Accelerate-Stop distance distance to accelerate to V_R or V_{LOF} (whichever is specified by manufacturer), Experience engine failure, abort takeoff and stop
 - Accelerate-Go distance Distance required to accelerate to V_R, experience an engine failure, commit to takeoff and clear a 50' obstacle
 - Data from these charts are unlikely to be duplicated due to how specific they are
 - o Single Engine climb performance Climb rate that is possible with OEI
 - This chart allows us to find Single engine service and absolute ceiling
 - Single engine absolute ceiling altitude at which no climb can be maintained with OEI (you will drift down to this)

- Single engine service ceiling altitude at which a climb of 50FPM can be maintained with OEI
- Careful consideration should be made to the SE absolute ceiling and service ceiling during flight planning
 - When encountering an engine failure with negative SE climb performance, the airplane cannot fly on one engine.
 - o Light twins under 6000lbs don't have to abide by any single engine performance minimums
 - Performance just needs to be calculated however, PIC decision dictates flight
 - More than 6,000 pounds maximum certificated takeoff weight and/or V_{so} of more than 61 knots
 - The single-engine rate of climb in feet per minute at 5,000 mean sea level (MSL) must be equal to at least .027 V_{SO} squared. For twins type-certificated on or after February 4, 1991, the single-engine climb requirement is expressed in terms of a climb gradient, 1.5 percent.
- Calculate performance with student for today's flight

Determining the Required Performance is Attainable

- After the performance data is calculated using the performance charts, apply it to the surroundings
 - Compare TO/L distances to runway lengths etc.
- Know that performance is very dependent on whether, understand that later on in the day the performance can be greatly different due to this
 - o Plan ahead

Exceeding Airplane Limitations

- The POH section 2 outlines operational limitations for the aircraft
- These limitations are put in place to ensure safe operation of the aircraft
- Adverse effects of exceeding these limitations can include
 - Not having enough runway distance to take off and land
 - Not having enough fuel to reach the destination
 - Exceeding the airframes load limits may cause catastrophic damage to the aircraft
 - Exceeding max demonstrated crosswind isn't necessarily dangerous however, it can make for a very challenging takeoff/landing

Conclusion & Review

Review

- Briefly review the key points
- Stress the importance of completing these performance calculations before every flight