

Bildung, Wissenschaft und Forschung

Schulformspezifische Kompetenzen und Begriffe im Cluster HTL 2

gültig ab den Matura-Prüfungsterminen 2017/2018

Stand: 09.09.2019

1 Zahlen und Maße

Deskriptor	Formulierung des Deskriptors: Inhalt und Handlung	
Kompetenzen für Teil B (übergreifend über beide HTL-Cluster)		
B_T_1.1	absolute und relative Fehler verstehen und anwenden	
Clusterspezifsche Kompetenzen (Cluster HTL 2)		
B_T2_1.2	komplexe Zahlen in der Gauß'schen Zahlenebene darstellen, erklären und in verschiedene Formen ineinander umrechnen (Komponentenform, Polarformen) sowie komplexe Zahlen addieren, subtrahieren, multiplizieren und dividieren	

Begriffe:

ppm (parts per million)

Vorsilben von Pico- bis Tera-

j bzw. i ... imaginäre Einheit mit $j^2 = -1$ bzw. $i^2 = -1$

Realteil, Imaginärteil, Betrag, Argument einer komplexen Zahl

Polarformen: $z = r \cdot [\cos(\varphi) + j \cdot \sin(\varphi)] = r \cdot e^{j \cdot \varphi} = (r; \varphi) = r / \varphi$

2 Algebra und Geometrie

Deskriptor	Formulierung des Deskriptors: Inhalt und Handlung	
Kompetenzen für Teil B (übergreifend über beide HTL-Cluster)		
B_T_2.1	Trigonometrie des allgemeinen Dreiecks verstehen und anwenden siehe Kommentar	
B_T_2.2	anwendungsbezogene Exponential- und Logarithmusgleichungen mittels Technologieeinsatz lösen	
Clusterspezifische Kompetenzen (Cluster HTL 2)		
B_T2_2.3	quadratische Gleichungen in einer Variablen lösen und die verschiedenen möglichen Lösungsfälle inklusive komplexer Lösungen interpretieren	
B_T2_2.4	Vektoren in ℝ² und ℝ³ verstehen und anwenden siehe Kommentar	
B_T2_2.5	lineare Gleichungssysteme in Matrizenschreibweise übertragen und umgekehrt und diese Darstellungsform mithilfe der Matrizenmultiplikation begründen	

Kommentar B_T_2.1: Sinussatz, Cosinussatz, Flächeninhalt

Kommentar B_T2_2.4: Addition, Multiplikation mit einem Skalar, Skalarprodukt, Ortsvektor, Betrag, Einheitsvektor, Normalvektor, Gegenvektor, Winkel zwischen Vektoren, Vektorprodukt, Richtungsvektor, Parameterdarstellung von Geraden

(Lagebeziehungen), Resultierende von vektoriellen Größen bzw. Zerlegung in

deren Komponenten

Begriffe:

Horizontalebene, Vertikalebene; Horizontale, Vertikale Kräfteparallelogramm, Kräftedreieck

3 Funktionale Zusammenhänge

Deskriptor	Formulierung des Deskriptors: Inhalt und Handlung		
Kompetenzen f	Kompetenzen für Teil B (übergreifend über beide HTL-Cluster)		
B_T_3.1	den Zusammenhang zwischen Funktion und Umkehrfunktion erklären und grafisch als Spiegelung des Graphen an der 1. Mediane veranschaulichen, interpretieren und damit argumentieren		
B_T_3.2	folgende Funktionen und deren Verknüpfungen grafisch darstellen, interpretieren, zu Berechnungen verwenden und erklären: lineare Funktion, quadratische Funktion, Wurzelfunktion, Potenzfunktion, Exponentialfunktion (Wachstums-, Sättigungs- und Abklingfunktion), Logarithmusfunktion; den Einfluss der Parameter a, b und c bei $a \cdot f(x + b) + c$ verstehen und anwenden, wenn f eine der eben genannten Funktionen ist (Verschiebung im Koordinatensystem und Skalierung)		
Clusterspezifisch	Clusterspezifische Kompetenzen (Cluster HTL 2)		
B_T2_3.3	die in B_T_3.2 genannten Funktionen, Polynomfunktionen sowie die Funktionen mit den Gleichungen $y = a \cdot \sin(b \cdot x + c) + d$ und $y = a \cdot \cos(b \cdot x) + d$ zur anwendungsbezogenen Modellierung verwenden, zugehörige Rechnungen mittels Technologieeinsatz durchführen; im Kontext interpretieren und argumentieren siehe Kommentar		
B_T2_3.4	logarithmische Skalierung: modellieren, interpretieren und argumentieren (Darstellung über mehrere Zehnerpotenzen; Darstellung von Potenz-, Exponential- und Logarithmusfunktion als Gerade)		

Beariffe:

s-t-, v-t-, a-t-Diagramm (t ist auf der waagrechten Achse aufgetragen)

Interpolation bzw. Extrapolation

Sättigungswert (Kapazitätsgrenze)

Kosten- und Preistheorie: Preisfunktion der Nachfrage p_N , Gewinnbereich, Gewinngrenzen: untere Gewinngrenze (Break-even-Point, Gewinnschwelle), Stückkostenfunktion (Durchschnittskostenfunktion allgemeine Sinusfunktion:

 $y(t) = A \cdot \sin(\omega \cdot t + \varphi) \, \text{mit} \, A \, \dots \, \text{Amplitude,} \, \omega \, \dots \, \text{Kreisfrequenz,} \, \varphi \, \dots \, \text{Nullphasenwinkel;}$

f ... Frequenz, T ... Schwingungsdauer (Periodendauer),

 $t_0 = \frac{-\varphi}{\omega}$... Phasenverschiebung, Zeigerdiagramm

4 Analysis

Deskriptor	Formulierung des Deskriptors: Inhalt und Handlung		
Kompetenzen f	Kompetenzen für Teil B (übergreifend über beide HTL-Cluster)		
B_T_4.1	Eigenschaften von Funktionen: asymptotisches Verhalten bei Sättigungs- und Abklingfunktionen beschreiben und erklären; Unstetigkeitsstellen interpretieren		
Clusterspezifische Kompetenzen (Cluster HTL 2)			
B_T2_4.2	Ableitungsfunktionen von Winkel- und Logarithmusfunktionen sowie von zusammengesetzten Funktionen berechnen; Quotientenregel anwenden		
B_T2_4.3	Stammfunktionen von Winkel- und Exponentialfunktionen berechnen; Methode der linearen Substitution anwenden		
B_T2_4.4	Differenzialrechnung im anwendungsbezogenen Kontext anwenden: modellieren, berechnen, interpretieren und damit argumentieren siehe Kommentar		
B_T2_4.5	Integralrechnung im anwendungsbezogenen Kontext anwenden: modellieren, berechnen, interpretieren und damit argumentieren siehe Kommentar		
B_T2_4.6	in Natur und Technik auftretende Änderungsraten mit dem Differenzialquotienten beschreiben und erklären; Probleme in Anwendungsbereichen mit Differenzialgleichungen des Typs $\frac{\mathrm{d}y}{\mathrm{d}x} = k \cdot y \text{ bzw. } \frac{\mathrm{d}y}{\mathrm{d}x} = k \cdot (r-y) \text{ modellieren und diese lösen;}$ Unterschied zwischen exponentiellem und beschränktem Wachstum anhand der Differenzialgleichung interpretieren und erklären		
B_T2_4.7	Probleme in Anwendungsbereichen mit linearen Differenzialgleichungen 1. Ordnung mit konstanten Koeffizienten modellieren und diese lösen; Methode <i>Trennen der Variablen</i> anwenden; homogene und inhomogene Differenzialgleichung unterscheiden, allgemeine und spezielle Lösung bestimmen, die Lösungsteile und die Lösung darstellen und interpretieren siehe Kommentar		

Kommentar B_T2_4.4: Anwendung der Differenzialrechnung auf die in B_T_3.2 und B_T2_3.3 genannten Funktionstypen sowie Funktionen, die aus diesen zusammengesetzt sind; aus der Physik wird die Kenntnis folgender Zusammenhänge vorausgesetzt: $v = \frac{\mathrm{d}s}{\mathrm{d}t} \;,\; a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2s}{\mathrm{d}t^2}$

Kommentar B_T2_4.5: Anwendung der Integralrechnung auf die in B_T_3.2 und B_T2_3.3 genannten Funktionstypen sowie Funktionen, die aus diesen zusammengesetzt sind. Ermittlung einer Größe aus ihrer Änderungsrate durch Integration unter Berücksichtigung von Anfangsbedingungen; das bestimmte Integral (orientierter Flächeninhalt) interpretieren; aus der Physik wird die Kenntnis folgender Zusammenhänge vorausgesetzt: $s = \int v \, dt \quad \text{und} \quad v = \int a \, dt$ Volumen von Rotationskörpern Bogenlänge

Integralmittelwert: linearer Mittelwert

Kommentar B_T2_4.7: Das Modellieren von Differenzialgleichungen beschränkt sich auf das Übertragen von angegebenen Zusammenhängen in mathematische Formelsprache.

Begriffe:

Kosten- und Preistheorie: Grenzkostenfunktion, degressiv bzw. progressiv, Kostenkehre

Ableitung nach der Zeit auch mit Punktnotation \dot{x} , \ddot{x}

Differenzial einer Funktion

Anfangsbedingung, Anfangswertproblem, Anfangswertaufgabe

Störglied, Störfunktion

allgemeine Lösung (ohne Berücksichtigung der Anfangsbedingungen)

spezielle Lösung (nach Einsetzen der Anfangsbedingungen in die allgemeine Lösung)

5 Stochastik

Deskriptor	Formulierung des Deskriptors: Inhalt und Handlung		
Kompetenzen f	Kompetenzen für Teil B (übergreifend über beide HTL-Cluster)		
B_T_5.1	Normalverteilung: Zusammenhang zwischen der Dichte- und der Verteilungsfunktion verstehen und anwenden, Erwartungswert μ bzw. Standardabweichung σ bei bekannten Bedingungen (Wahrscheinlichkeit, Intervallgrenzen) ermitteln		
B_T_5.2	Verteilung des Stichprobenmittelwertes normalverteilter Werte: modellieren, berechnen, interpretieren und erklären		
B_T_5.3	Schätzwerte für Verteilungsparameter (μ, σ) bestimmen; zweiseitige Konfidenzintervalle für den Erwartungswert μ einer normalverteilten Zufallsvariablen: modellieren, berechnen, interpretieren und erklären siehe Kommentar		
B_T_5.4	lineare Regression und Korrelation: Zusammenhangsanalysen für anwendungs- bezogene Problemstellungen beschreiben und relevante Größen (Parameter der Funktionsgleichung, Korrelationskoeffizient nach Pearson) mittels Technologie- einsatz berechnen und interpretieren sowie die Methode der kleinsten Quadrate erklären und interpretieren		
Clusterspezifsche Kompetenzen (Cluster HTL 2)			
B_T2_5.5	mit Ausgleichsfunktionen (linear, quadratisch, kubisch, exponentiell) modellieren, diese mittels Technologieeinsatz bestimmen, die Ergebnisse interpretieren sowie die Methode der kleinsten Quadrate erklären und interpretieren		

Kommentar B_T_5.3: Schätzwert für
$$\mu$$
: $\overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$ und σ^2 : $s_{n-1}^2 = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \overline{x})^2$

(Zu unterscheiden sind die Fälle bei unbekannter und bekannter Varianz: Die Anwendung der t-Verteilung (im Vergleich zur Normalverteilung) ist bei unbekannter Varianz zur Bestimmung des Konfidenzintervalls für μ erforderlich.)

Begriffe:

Zufallsstreubereich

Irrtumswahrscheinlichkeit

Konfidenzintervall (Vertrauensbereich)

Punktwolke

Regressionsgerade (Trendgerade), Regressionslinie (Trendlinie)

Regressionsfunktion (Ausgleichsfunktion)

Fehlerquadratsumme