Model B: Imbalanced Review Rating Predictor

Purpose

Model B is a deep learning-based text classification model built to predict review ratings (1 to 5 stars) from raw product review text. It was trained on a **imbalanced dataset**, where each rating class (1 through 5) has an unequal number of samples. This design helps ensure fairness by preventing the model from being biased toward dominant classes.

Full code:

from tensorflow.keras.models import Sequential

```
from tensorflow.keras.layers import Embedding, LSTM, Dense, Bidirectional, Dropout
from tensorflow.keras.callbacks import EarlyStopping
model = Sequential()
model.add(Embedding(input dim=vocab size,
          output dim=embedding dim,
          weights=[embedding matrix],
          input_length=max_len,
          trainable=True))
model.add(Bidirectional(LSTM(128, return_sequences=False)))
model.add(Dropout(0.5)) # optional but helps reduce overfitting
model.add(Dense(32, activation='relu'))
model.add(Dense(5, activation='softmax')) # 5 classes for ratings
model.compile(loss='sparse categorical crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
# Train
early_stop = EarlyStopping(monitor='val_loss', patience=2, restore_best_weights=True)
```

Model Architecture

y_test),callbacks=[early_stop])

The model is constructed using the **Keras Sequential API** and follows a typical embedding + RNN + dense classifier pipeline. Here's a breakdown of each component:

history = model.fit(X_train_pad, y_train, epochs=20, batch_size=64, validation_data=(X_test_pad,

1. Embedding Layer

- **Purpose**: Converts integer token sequences into dense vector representations using pretrained FastText embeddings (wiki.simple.vec, 300D).
- **Trainable**: Set to True to allow fine-tuning during training.
- Weights: Initialized using an embedding matrix built from FastText vectors.
- Input Length: Fixed using max len (set during preprocessing and padding).

2. Bidirectional LSTM Layer

```
Bidirectional(LSTM(128, return sequences=False))
```

- **Purpose**: Extracts contextual information from both the past and future (forward and backward) using 128 LSTM units.
- **Bidirectionality**: Helps capture sentiment and meaning more robustly than a unidirectional LSTM.
- return_sequences=False: Only the final hidden state is used for classification (suitable for sentence-level prediction).

3. Dropout Layer

```
Dropout (0.5)
```

• **Purpose**: Prevents overfitting by randomly disabling 50% of the neurons during each training pass.

4. Dense Layer

```
Dense(32, activation='relu')
```

- **Purpose**: Acts as a non-linear transformation layer that learns intermediate features.
- **ReLU Activation**: Adds non-linearity and helps in learning complex relationships in data.

5. Output Layer

```
Dense(5, activation='softmax')
```

- **Purpose**: Predicts the probability distribution over 5 review classes (0 through 4), which are mapped to ratings 1 through 5 after prediction.
- **Softmax**: Ensures outputs represent class probabilities that sum to 1.

Model Compilation

- **Loss Function**: sparse_categorical_crossentropy used for multi-class classification with integer labels (instead of one-hot encoding).
- **Optimizer**: Adam adaptive learning rate optimization suitable for NLP tasks.

• Metric: accuracy standard classification accuracy.

Regularization: Early Stopping

EarlyStopping (monitor='val loss', patience=2, restore best weights=True)

- **Why**: To prevent overfitting and long training time.
- **Mechanism**: Monitors the validation loss and stops training if it doesn't improve after 2 consecutive epochs.
- **Restores**: The model weights from the best epoch (lowest validation loss).

Summary Table

Layer Type	Details
Embedding	FastText 300D, trainable, input length = max_len
BiLSTM	128 units, bidirectional
Dropout	50%
Dense (hidden)	32 units, ReLU activation
Output Dense	5 units, Softmax activation
Loss Function	Sparse Categorical Crossentropy
Optimizer	Adam
Early Stopping	Patience = 2, monitors validation loss

Word Embeddings: FastText (wiki.simple.vec)

What Are Word Embeddings?

Word embeddings are dense vector representations of words where similar words have similar representations in vector space. Instead of treating words as discrete symbols, embeddings allow the model to **learn semantic relationships** between words.

Which Embedding Is Used?

• Type: Pretrained FastText vectors

• File Used: wiki.simple.vec

• **Vector Dimension**: 300

• Source: Trained on Simple English Wikipedia

• Format: .vec file with lines like:

```
good 0.1234 -0.5432 ... 300 values
```

Why FastText?

FastText is chosen over other embeddings like GloVe or Word2Vec for the following reasons:

Feature	FastText vs Others		
Subword Information	FastText captures word parts (prefixes/suffixes), which improves handling of rare , misspelled , or compound words . Neither GloVe nor Word2Vec do this.		
Generalization	FastText can generate vectors for OOV (Out-of-Vocabulary) words by combining character n-grams — others return null.		
Domain Relevance	The use of Simple English Wikipedia as the training corpus aligns well with product review language: clear, non-technical, and consumer-oriented.		
Fast to Load	.vec format is human-readable and easy to parse.		
Compatibility	Easily converted into an embedding matrix compatible with TensorFlow/Keras models.		

Why LSTM? Why Bidirectional LSTM?

What is an LSTM?

LSTM (**Long Short-Term Memory**) is a type of Recurrent Neural Network (RNN) that is designed to **learn patterns in sequential data**, such as text, time series, or speech.

It's particularly good at **remembering long-term dependencies** and **avoiding vanishing gradients**, which is a common issue with standard RNNs.

How Does LSTM Work?

LSTM processes sequences **word by word** (or time step by time step) using a **memory cell** and three key gates:

Gate	Function
Forget Gate	Decides what information to discard from the cell state.
Input Gate	Decides which new information to add to the cell state.
Output Gate	Decides what to output (i.e., what part of memory to pass to the next time step).

Internal Workflow at Each Step:

- 1. Takes a word/token as input.
- 2. Updates its **cell state** (memory) based on current input and past memory.
- 3. Uses the gates to control **information flow**.
- 4. Moves to the next token and repeats.

This ability to "remember" long-term dependencies helps LSTM capture **context** like:

• "I loved this product although delivery was late." (final label = 4 or 5, despite late delivery)

Why LSTM for This Task?

Reason Explanation

Text is SequentialReviews are sentences or paragraphs — order of words matters.

LSTMs are well-suited for this.

Contextual Understanding To correctly predict a rating, the model needs to understand

Needed context (e.g., "not good" vs "good").

Better than CNNs for LSTM captures longer dependencies; CNNs are better for fixed

Long Texts n-gram patterns.

Robust to Varying

Lengths

Can handle both short and long reviews effectively.

Why Bidirectional LSTM?

A **Bidirectional LSTM** processes input in both directions:

- One LSTM processes text **left to right** (past \rightarrow future)
- Another processes text **right to left** (future \rightarrow past)

Then it **concatenates** both outputs to form a **full-context representation**.

Benefits:

- Captures **dependencies from both ends** of the sentence.
- Improves performance in tasks like sentiment analysis, where key clues can appear at any point in the text.
- Handles patterns like:
 - o "Not only was it slow, but it also broke" (need forward and backward context)

Summary

Component Reason for Selection

FastText Handles OOV words, uses subword units, Simple English Wiki trained

LSTM Ideal for sequential data, avoids vanishing gradients

Bidirectional Learns full context, improves accuracy in language tasks

Strengths of LSTM

Strength Why it Matters

Captures long-term Understands meaning from distant words

Avoids vanishing gradient Learns more effectively over long text

Works well with noisy data

Handles variations in text (spelling, style)

Effective in NLP State-of-the-art performance in sentiment, translation,

etc.

Supports variable input length Works with both short and long reviews

When to Use LSTM

Use Case Example

Sentiment analysisPredicting positive/negative reviewsText classificationAssigning topics or ratings to text

Sequence prediction Predicting next word or sequence pattern

Speech and language modeling Translating sentences, voice recognition

Time series forecasting Stock market trends, temperature over time

When Not to Use LSTM

Scenario Better Alternative

Very large datasets with long Transformer-based models (e.g., BERT, RoBERTa)

training time are faster and scale better

Highly structured, tabular data

Use tree-based models like XGBoost or Random

Forest

Real-time deployment with low

latency constraints

LSTMs are slower than CNNs or smaller models

Non-sequential tasks (e.g., image

classification)

Use CNNs instead

Limitations of LSTM

Limitation Impact

Training can be slow Especially with long sequences

High memory usage Due to recurrent operations and multiple gates

Hard to parallelize Each step depends on the previous one

Struggles with extremely long Even LSTM has limits; Transformers may perform

sequences better

Training Progress (Epoch-wise):

Epo	ch Accurac	y Loss	Val Accuracy	Val Loss
1	45.74%	1.2392	55.31%	1.0428

Epoch Accuracy Loss			Val Accuracy	Val Loss
2	57.14%	0.9933	55.38%	1.0306
3	61.10%	0.9144	55.61%	1.0532
4	64.66%	0.8381	54.83%	1.0755
5	68.68%	0.7574	53.96%	1.1480 (<i>Early Stopping</i>)

Observations

- Model B demonstrates steady learning over 5 epochs before triggering early stopping.
- Highest training accuracy reached: **68.68%** (better than Model A's 63.17%)
- Validation accuracy plateaus after Epoch 3–4, suggesting a **slight overfit** trend on imbalanced data.
- The model was optimized for **real-world distribution**, meaning it may perform better on practical reviews even if not optimized for balanced evaluation metrics.