Clustering (part 4)

Mohammed Brahimi & Samy Belkacem

Outline

- Clustering evaluation
 - Why cluster evaluation?
 - ☐ Types of cluster evaluation measures
- Unsupervised evaluation
 - Cohesion vs Separation
 - ☐ Silhouette Coefficient
- Supervised evaluation
 - Entropy
 - ☐ Precision, Recall, F-measure

Why cluster evaluation?

- Generate a random data points.
- Data without any structure

Question:

What is the result of applying K-Means with K=3?

The following link can be used: **K-Means Animation**

Why cluster evaluation?

- Generate a random data points.
- Data without any structure

Clusters found in Random Data!!

The following link can be used: **K-Means Animation**

Why cluster evaluation?

To avoid Detecting clusters in random Structure

Uncovering whether non-random structure exists in the data.

To evaluate Clustering Results

Assessing how well the clustering aligns with the data without external reference.

To compare with external known patterns

Comparing clustering results to externally known information, e.g., class labels.

To compare different Clusterings and algorithms

Evaluating and comparing different sets of clusters for quality.

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

Algorithms for Clustering Data, Jain and Dubes

Types of cluster evaluation measures

- **Unsupervised (Internal)**: measure the goodness of a clustering structure without respect to external information.
 - The ground truth is not available.
 - Examples: Cohesion, separation, SSE, Silhouette Coefficient.

- Supervised (External): measure the extent to which cluster labels match externally supplied class labels.
 - The ground truth is available.
 - Examples: Entropy, Precision, Recall, F-measure.

Outline

- Clustering evaluation
 - Why cluster evaluation?
 - ☐ Types of cluster evaluation measures
- Unsupervised evaluation
 - Cohesion vs Separation
 - □ Silhouette Coefficient
- Supervised evaluation
 - Entropy
 - ☐ Precision, Recall, F-measure

Cohesion vs Separation

Cluster cohesion (Compactness)

Measure how closely related object in a cluster.

Cluster Separation

 Measure how distinct or well- separated a cluster is from other clusters.

Graph-Based View

Weighted graph where the weights are the distances between data points.

Cohesion: Sum of proximities in a cluster.

$$cohesion(C_i) = \sum_{\substack{\mathbf{x} \in C_i \\ \mathbf{y} \in C_i}} proximity(\mathbf{x}, \mathbf{y})$$

• **Separation:** Sum of proximities between two clusters.

$$separation(C_i, C_j) = \sum_{\substack{\mathbf{x} \in C_i \\ \mathbf{y} \in C_j}} proximity(\mathbf{x}, \mathbf{y})$$

cohesion

Prototype-Based View

Represent a clusters using their centroids.

Cohesion: Sum of proximities to the cluster centroid.

$$cohesion(C_i) = \sum_{\mathbf{x} \in C_i} proximity(\mathbf{x}, \mathbf{c}_i)$$

Between two centroids

$$separation(C_i, C_j) = proximity(\mathbf{c}_i, \mathbf{c}_j)$$

Between a cluster centroid and the global centroid $separation(C_i) = proximity(\mathbf{c}_i, \mathbf{c})$

Prototype-Based View

Represent a clusters using their centroids.

Cohesion: Sum of proximities to the cluster centroid.

$$cohesion(C_i) = \sum_{\mathbf{x} \in C_i} proximity(\mathbf{x}, \mathbf{c}_i)$$

SSE is the sum of prototype based cohesion of all clusters.

Between a cluster centroid and the global centroid $separation(C_i) = proximity(\mathbf{c}_i, \mathbf{c})$

Silhouette Coefficient

- Silhouette coefficient combines cohesion and separation.
- For an individual point i
 - a = average distance of *i* to the points in its cluster
 - b = min (average distance of *i* to points in another cluster)
- The silhouette coefficient for a point is

$$s = (b - a) / max(a, b)$$

- Value can vary between -1 and 1.
- The closer to 1 the better.

Outline

- Clustering evaluation
 - Why cluster evaluation?
 - ☐ Types of cluster evaluation measures
- Unsupervised evaluation
 - Cohesion vs Separation
 - ☐ Silhouette Coefficient
- Supervised evaluation
 - Entropy
 - ☐ Precision, Recall, F-measure

Entropy

Entropy measures the extent to which the clustering structure matches external class labels.

- Pure cluster is cluster that contain only one class label.
- We measure the purity of a cluster using the entropy.
- How to Use Entropy for Evaluation:
 - Calculate entropy for each cluster.
 - Sum the entropies to get an overall measure.
 - Lower values indicate better alignment with external class labels.

Pure cluster

Impure cluster

Entropy

k	p_{1k}	p_{2k}	p_{3k}	S _{Lk}		1	2	3
1	1	0	0	0		000		000
2	0	1	0	0	$S_c = 0$	000		000
3	0	0	1	0				
k	p_{1k}	p_{2k}	p_{3k}	S_{Lk}				
1	4/8	2/8	2/8	1.5	$S_c = 0.971$			000
2	0	1	0	0				
3	2/6	0	4/6	0.918				
k	p_{1k}	p_{2k}	p_{3k}	S _{Lk}				
1	2/6	2/6	2/6	1.585	$S_c = 1.585$		000	000
2	2/6	2/6	2/6	1.585				
3	2/6	2/6	2/6	1.585				

$$S_c = \sum_{1}^{K} \frac{n_k}{N} s_{Lk} : s_{lk} = \sum_{1}^{L} -p_{Lk} \log_2 p_{lk}$$

Precision, Recall, F-measure

• **Precision:** The fraction of a cluster *i* that consists of objects of a specified class.

$$\text{Precision}(i, j) = \frac{\text{Number of examples of class } j \text{ in cluster } i}{\text{Size of cluster } i}$$

Recall: The extent to which a cluster contains all objects of a specified class.

$$Recall(i, j) = \frac{\text{Number of examples of class } j \text{ in cluster } i}{\text{Number of examples of class } j}$$

• **F-measure:** A combination of precision and recall that measures the extent to which a cluster contains only objects of a particular class and all objects of that class.

$$F(i,j) = rac{2 imes ext{Precision}(i,j) imes ext{Recall}(i,j)}{ ext{Precision}(i,j) + ext{Recall}(i,j)}$$