Nirma University
Institute of Technology
Semester End Examination (IR/RPR), December - 2023
B. Tech. in Computer Science and Engineering, Semester-V
2CS503-O Design and Analysis of Algorithms

Roll / Exam	No 21BCE032	Supervisor's Initial with Date	
Time:	3 Hours	Max Marks: 100	Total State of the
Instruc	 Figures to right indicate f Draw neat sketches wher Assume suitable data who 	full marks. ever necessary. erever required.	
	Secti	on I	
Q-1 A	Do as directed Solve the following recurrences: (a) T(n)-8T(n-1) = 14n+5		[1 6] [8]
	(b) $T(n) = 3T(n/4) + n^2$ (Using Recu		
В	Find out the θ notation for the follows 1. $f(n) = 27n^2 + 16n$ 2. $f(n) = 3 * 2^n + 4n^2 + 5n + 3$	ng: -	[8]
Q-2 A	Do as directed Sort the following elements in de Algorithm. 65, 77, 5, 23, 32, 45, 99, 83		[18] [6]
	OR		
A	Using greedy algorithm, find an optim $n=5$. Profits: (a, b, c, d, e) = (100,19,27,25,1 Deadline: (d ₁ , d ₂ , d ₃ , d ₄ , d ₅) = (2, 1, 2, 1)	nal schedule for following jobs with 5)	[6]
В	l=0	complexity of the following: (ii) $c=0$ for $i=1$ to n do for $j=1$ to n^2 do for $k=1$ to \sqrt{n} do $x=x+1$	[6]

Discuss the general template of divide and conquer algorithm. B

C Find out MST (Minimum Spanning Tree) for the following graph using [6] Prims algorithm.

Q-3 Do as directed

[**16**]

[16]

[8]

[8]

A Device Back tracking solution for finding Hamiltonian cycle for given graph. Trace it for the following adjacency matrix of a graph.

	A	B	C	D	E
A	1	0	1	0	0
В	0	1	1	0	1
C	1	1	0	1	0
D	0	1 N	1	0	0
E	1	0.5	0	1	0

B Discuss the applicability of Bellman Ford algorithm for different kinds of graphs and Find all pair shortest path for the following graph using Bellman Ford algorithm.

Section II

Q-4 Do as directed

What is the optimal way to compute A1*A2*A3*A4, where the dimensions of the matrices are: A1: 10 × 20, A2: 20 × 1, A3: 1 × 40, A4: 40 × 5? The

of the matrices are: A1: 10 × 20, 12: 20 × 1, 10: 1 × 40, 14: 40 × 5? The optimal way is the one that involves the least number of scalar multiplications. Report the optimal parenthesising and minimum number of scalar multiplications. Show computation for each step.

of scalar multiplications of the following set of frequency.

B Find an optimal Huffman code for the following set of frequency.

 Characters
 A
 B
 C
 D
 E
 F

 Frequencies
 24
 12
 10
 8
 8
 5

Q-5 Do as Directed.

What is amortized analysis of an algorithm? Compare accounting method, potential method and aggregate analysis with a suitable example.

[18]

OR

A Explain the Algorithm for solving Knapsack problem for the following data [6] using Greedy Algorithm.

Assume maximum knapsack capacity W = 7

ltems	Weight	w maken	Value
11	5		C C C C C C C C C C C C C C C C C C C
12	4	-	2
13	3	118	A

B Write Dijkstra shortest path algorithm. Also apply the algorithm on the [6] following figure. Assume vertex "A" as the source vertex

- C Making change problem can be solved by Greedy Algorithm as well as Dynamic programming approach. True / false justify with suitable example.
- C What do you understand by P, NP, NP complete and NP hard problems, [6] explain with suitable examples?
- Q-6 Do as directed
 A Apply Hungarian algorithm to assign the four tasks to four operators. The assigning costs are given in Table. Evaluate Time complexity of the algorithm.

		Operm	Operators		
	1	2	3	4	
\mathbf{A}	20	28	19	13	
В	15	30	31	28	
C	40	21	20	17	
D	21	28	26	12	
	B C	B 15	A 20 28 B 15 30 C 40 21	A 20 28 19 B 15 30 31 C 40 21 20	

B The N Queen is the problem of placing N chess queens on an N×N [8] chessboard so that no two queens attack each other. Design an algorithm for solving N-Queen Problem using backtracking and evaluate time complexity.