

4----This transligation is unique up to & M(X) was of htgs Again, 44.3 AA + is on \(\(\alpha \) := U(\alpha \)
as a homology class. In [[iv]) well defined (Marlor class), i.e. Get a humanopher m: 172 (My) -> Z. Proj: w: (D2 D2) --- (M, L) W= (D2, 2D2) -- (M, L) W 202 = W/202 Cet, by siving, $u = S^2 \longrightarrow M$, $u = S^{w(\xi)} \xrightarrow{\xi \in D^2}$ $C_{\alpha,\alpha}$, $U = S^2 \longrightarrow M$, $u = S^{w(\xi)} \xrightarrow{\xi \in D^2}$ $C_{\alpha,\alpha}$, $U = S^2 \longrightarrow M$, $U = S^2$ In, (w) - In, (w) = 2 C1 [4] ر (العلمسم ع درما) Using this proposition.

Darbur- worskin thin:
#: U -> 11 mmerced len Seddery
\$ w=wcor.
io = = Zer section.
U = nhood of gensection of (in Tol.
Search example:
<u>(1)</u>
(2) anti-symplectic involutions
(M, w) 5 + w= -w 2 - T - T d
(= Fx(r) ex. RPM = CPM.

M(n) combe uniteras $\frac{1}{2\pi i t}$ $\frac{2\pi i t}{1}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $F_2(\mathbb{CP}^n) \xrightarrow{i} \pi_2(\mathbb{CP}^n, T^n) \xrightarrow{J} \pi_i(T^n)$ j ([[[] + - + [[]] = 0 ([x]) 50 In (j ([wo] + - + [wn]) = a (mri) [wo], __, [wn] grie us to generally ~ πz ((p", T"). 工([2])=不· 2 Ic ([d])=2(~+1). 7 = = = (x+1)

 $(V^{*n}\omega)$ f (5"-1 ~ [c, + ~)) = l, \B, f(5ⁿ⁻¹ x(-\sigma,-c))=ez\z\/ mich, much more