SIMDI 226 Time series analysis : II

François Roueff http://perso.telecom-paristech.fr/~roueff/

Telecom ParisTech

January 4, 2013

François Rouefflattp://perso.telecoz-pari

1 Wold decomposition

■ Innovation process

■ Wold decomposition

2 Convolution in ℓ¹

3 ARMA processes

ançois Roueffhttp://perso.telecom-pari

イロト イタト イミト イミト 一恵

Plan Wold decomposition Innovation process Wold decomposition 2 Convolution in ℓ^1 Basic definitions • 2nd order properties Composition and inversion 3 ARMA processes ARMA equations, stationary solutions Innovations of ARMA processes ◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @ François Roueffhttp://perso.telecom-pari Wold decomposition Innovation process Wold decomposition 2 Convolution in ℓ^1 3 ARMA processes 4□ > 4億 > 4 重 > 4 重 > 重 め Q @

Innovation process

Let $(X_t)_{t\in\mathbb{Z}}$ be a centered weakly stationary process. Its linear past is defined as

$$\mathcal{H}_t^X = \overline{\operatorname{Span}}(X_s, s \le t)$$
.

Innovation process

The innovation process $(\epsilon_t)_{t\in\mathbb{Z}}$ of X is defined by

$$\epsilon_t = X_t - \operatorname{proj}\left(X_t | \mathcal{H}_{t-1}^X\right), \quad t \in \mathbb{Z}.$$

Here the projection is understood in the L^2 (Hilbert space) sense. It is characterized by

(i)
$$X_t - \epsilon_t \in \mathcal{H}_{t-1}^X$$

(ii)
$$\epsilon_t \perp \mathcal{H}_{t-1}^X$$

By definition, $(\epsilon_t)_{t\in\mathbb{Z}}$ is an orthogonal sequence.

Innovation as a limit of finite order prediction

The linear past of order p is defined as

$$\mathcal{H}_{t,p}^{X} = \operatorname{Span}(X_s, t - p < s \le t)$$
.

Then the prediction of order p is defined by

$$\operatorname{proj}\left(X_{t} | \mathcal{H}_{t-1,p}^{X}\right) = \sum_{k=1}^{p} \phi_{k,p} X_{t-k} ,$$

where $\phi_p = [\phi_{1,p}, \dots, \phi_{p,p}]^T$ is independent of t.

Since
$$\mathcal{H}_t^{X} = \overline{\bigcup_{n \geq 1} \mathcal{H}_{t,n}^{X}}$$
, we have

$$\lim_{p \to \infty} \operatorname{proj}\left(X_{t} | \mathcal{H}_{t-1,p}^{X}\right) = \operatorname{proj}\left(X_{t} | \mathcal{H}_{t-1}^{X}\right) .$$

Projection on \mathcal{H}_{t-1}^X $\varepsilon_t = X_t - \hat{X}_t$

The innovation process is a white noise

Consequence

The innovation process $(\epsilon_t)_{t\in\mathbb{Z}}$ of X is weakly stationary hence is a white noise. Its variance σ^2 is called the innovation variance of X.

Definition: regular/deterministic processes

A weakly stationary process is called regular if its innovation variance is strictly positive. Otherwise, we say that it is a deterministic process.

Examples

- \triangleright If X is a white noise, $\epsilon = X$ (hence iff).
- \triangleright A constant process $X_t = X_0$ is deterministic.
- ▶ Consider the harmonic process

$$X_t = \sum_{k=1}^{N} A_k \cos(\lambda_k t + \Phi_k) ,$$

where $(\lambda_k)_{1 \le k \le N} \in [-\pi, \pi]$ are N frequencies, $(\Phi_k)_{1 \le k \le N}$ are Ni.i.d. random variables with a uniform distribution on $[-\pi,\pi]$, and independent of $(A_k)_{1 \le k \le N}$. Then X has covariance

$$\gamma(\tau) = \frac{1}{2} \sum_{k=1}^{N} \sigma_k^2 \cos(\lambda_k \tau) ,$$

where $\sigma_k^2 = \mathbb{E}\left[A_k^2\right]$, $k = 1, \dots, N$. It follows that X is deterministic.

Purely non-deterministic processes

Let us define

$$\mathcal{H}_{-\infty}^{X} = \bigcap_{t \in \mathbb{Z}} \mathcal{H}_{t}^{X}$$
.

- ▶ If X is deterministic then $X_t \in \mathcal{H}_{-\infty}^X$ for all $t \in \mathbb{Z}$.
- ightharpoonup If $\mathcal{H}_{-\infty}^X = \{0\}$, we say that X is purely non-deterministic.

Example

If $X = \sum_{k \geq 0} \psi_k Z_{t-k}$ with $Z \sim \mathrm{WN}(0, \sigma^2)$ and $\psi \in \ell^2$ then X is purely

non-deterministic.

Unfortunately, all regular processes are not purely non-deterministic : take the sum of a white noise with an uncorrelated constant process.

4□ > 4個 > 4厘 > 4厘 > 厘 りQC

- Wold decomposition
 - Innovation process
 - Wold decomposition
- 2 Convolution in ℓ^1
- ARMA processes

Projection on the innovation process

Let X be a centered regular weakly stationary process and let $(\epsilon_t)_{t\in\mathbb{Z}}$ be its innovation process and σ its innovation variance.

Define, for all $k = 0, 1, \ldots$

$$\psi_k = \frac{\langle X_t, \epsilon_{t-k} \rangle}{\sigma^2} \tag{1}$$

so that

$$U_t := \operatorname{proj}(X_t | \mathcal{H}_t^{\epsilon}) = \sum_{k>0} \psi_k \epsilon_{t-k} .$$

Note that $\psi_0 = 1$ and for all s < t,

$$\mathcal{H}_{t}^{X} = \mathcal{H}_{t-1}^{X} \stackrel{\perp}{\oplus} \operatorname{Span}(\epsilon_{t})$$

$$= \mathcal{H}_{s}^{X} \stackrel{\perp}{\oplus} \operatorname{Span}(\epsilon_{k}, s < k \leq t) . \tag{2}$$

Then we get that

$$\mathcal{H}^X_{-\infty}\stackrel{\perp}{\oplus}\mathcal{H}^\epsilon_t=\mathcal{H}^X_t$$
 . SIMDI 226 January 4, 2013 12 / 37

Wold decomposition

Define $V_t = \operatorname{proj}\left(X_t | \mathcal{H}_{-\infty}^X\right)$.

The decomposition $X_t = U_t + V_t$ is called the Wold decomposition.

The following facts follow.

- $\triangleright U$ and V are two uncorrelated processes.
- $lackbox{$lackbox{$lackbox{$\lor$}}} (U_t)_{t\in\mathbb{Z}}$ is a regular purely non-deterministic process, $\mathcal{H}_t^U=\mathcal{H}_t^\epsilon$ and U has innovation ϵ .
- $\triangleright V$ is deterministic and $\mathcal{H}^{V}_{-\infty} = \mathcal{H}^{X}_{-\infty}$.

rançois Roueffhttp://perso.telecom-pari

Wold decomposition

Basic definitions

 2nd order properties Composition and inversion

2 Convolution in ℓ^1

ARMA processes

Wold decomposition

 Basic definitions • 2nd order properties

Composition and inversion

2 Convolution in ℓ^1

ARMA processes

4日 > 4日 > 4目 > 4目 > 目 り900

Convolution in ℓ^1

Denote

$$\ell^1 = \left\{ oldsymbol{\psi} \in \mathbb{C}^{\mathbb{Z}} \ : \ \sum_k |oldsymbol{\psi}_k| < \infty
ight\} \ .$$

Define the linear filter with impulse response $\pmb{\psi} \in \ell^1$ by the convolution

$$F_{\mathbf{v}}: x = (x_t)_{t \in \mathbb{Z}} \mapsto y = \mathbf{v} \star x , \quad y_t = \sum_{k \in \mathbb{Z}} \mathbf{v}_k x_{t-k}, \quad t \in \mathbb{Z} .$$

Definition: types of filters

- \triangleright If ψ is finitely supported, F_{ψ} is called a finite impulse response (FIR) filter.
- ightharpoonup If $\psi_t=0$ for all $t\leq 0$, F_{ψ} is said to be causal.
- ightharpoonup If $\psi_t = 0$ for all t > 1, F_{ψ} is said to be anticausal.

nçois Roueffhttp://perso.telecom-pari

4□ > 4億 > 4 差 > 4 差 > 差 9 Q (*)

Set of definition

FIR filter

When ψ is finitely supported, we may write

$$F_{\psi} = \sum_{k \in \mathbb{Z}} \psi_k B^k ,$$

where $B = S^{-1}$ is the Backshift operator.

If ψ is not finitely supported, it is well defined only on

$$\ell_{\underline{\psi}} = \left\{ (x_t)_{t \in \mathbb{Z}} \in \mathbb{C}^{\mathbb{Z}} : \text{ for all } t \in \mathbb{Z}, \sum_{k \in \mathbb{Z}} |\underline{\psi}_k \, x_{t-k}| < \infty \right\} .$$

◆ロト→御ト→恵ト→恵・夏・釣९()

ançois Roueffhttp://perso.telecom-pari

- Wold decomposition
- \bigcirc Convolution in ℓ^1
 - Basic definitions
 - 2nd order properties
 - Composition and inversion
- ARMA processes

Linear filtering of weakly stationary time series

Theorem

Let $\pmb{\psi} \in \ell^1$. Then, for all random process $X = (X_t)_{t \in \mathbb{Z}}$ such that

$$\sup_{t\in\mathbb{Z}}\mathbb{E}|X_t|<\infty\;,$$

we have $X \in \ell_{\psi}$ a.s. If moreover

$$\sup_{t\in\mathbb{Z}}\mathbb{E}\left[|X_t|^2\right]<\infty\;,$$

then the series

$$Y_t = \sum_{k \in \mathbb{Z}} \psi_k X_{t-k} ,$$

is absolutely convergent in L^2 , and we have $(Y_t)_{t\in\mathbb{Z}}=\mathrm{F}_{\psi}(X)$ a.s.

Linear filtering of weakly stationary time series

Corollary

Let $\psi \in \ell^1$. Then, if $X = (X_t)_{t \in \mathbb{Z}}$ is weakly stationary then $Y = \mathrm{F}_{\psi}(X)$ is well defined and is an L^2 process.

2nd order properties

Moreover, Y is weakly stationary and, denoting by μ , γ and ν the mean, autocovariance function and spectral measure of X, those of Y are given by

$$\triangleright \mu' = \mu \sum_k \psi_k$$

$$\triangleright \gamma'(\tau) = \sum_{\ell,k} \psi_k \overline{\psi_\ell} \gamma(\tau + \ell - k),$$

$$\nu'(\mathrm{d}\lambda) = |\psi^*(\lambda)|^2 \nu(\mathrm{d}\lambda)$$
, with $\psi^*(\lambda) = \sum_k \psi_k \mathrm{e}^{-\mathrm{i}\lambda k}$.

All-pass filters

If $|\psi^*(\lambda)|^2 = 1$ for all λ , F_{ψ} is called an all-pass filter: it does not affect the spectral measure.

Examples

- ightharpoonup Time shift : B^k
- $ightharpoonup \text{Root inversion } : (1 \alpha B) \text{ and } (1 \overline{\alpha}^{-1} B^{-1}) \text{ have the same impact}$ on the spectral measure but are different filters. Idea: can we define an all-pass filter as " $(1 - \alpha B)^{-1} \circ (1 - \overline{\alpha}^{-1} B^{-1})$ "?

<ロ>
◆ロ>
◆
◆
●
◆
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
<p

rançois Roueffhttp://perso.telecom-pari

Composition

The convolution product \star is commutative and associative in ℓ^1 . So if $\psi, \phi \in \ell^1$, then for all $x \in \ell^1$,

$$F_{\psi} \circ F_{\phi}(x) = \psi \star (\phi \star x) = (\psi \star \phi) \star x = F_{\psi \star \phi}(x)$$
.

Theorem: composition

Let $\psi, \phi \in \ell^1$. Then, for all random process $X = (X_t)_{t \in \mathbb{Z}}$ such that

$$\sup_{t\in\mathbb{Z}}\mathbb{E}|X_t|<\infty\;,$$

we have

$$F_{\psi} \circ F_{\phi}(X) = F_{\phi} \circ F_{\psi}(X) = F_{\psi \star \phi}(X)$$
 a.s.

- Wold decomposition
- 2 Convolution in ℓ^1
 - Basic definitions
 - 2nd order properties
 - Composition and inversion
- ARMA processes

Inversion

Definition: invertibility

Let $\psi \in \ell^1$ and $Y = F_{\psi}(X)$. We will say that Y is invertible with respect to X if there exists $\phi \in \ell^1$, such that $X = F_{\phi}(Y)$.

By the composition theorem, in the stationary case, it amounts to find ϕ such that

$$\psi \star \phi = e_0 \Leftrightarrow \psi^* \times \phi^* = 1$$
,

where e_0 is the impulse sequence, $e_{0,k} = \mathbb{1}_{\{0\}}(k)$.

Inversion of a FIR filter

Causal FIR filters are of the form P(B), where P is a polynomial, say $P(z) = \sum_{k=0}^{p} \mathbf{h}_k z^k$. Completing the sequence \mathbf{h} by zeros, we have

$$P(B) = F_h$$
 and $h^*(\lambda) = P(e^{-i\lambda})$.

Consequence

The problem of the inversion of a FIR filter is equivalent to find $\phi \in \ell^1$ such that

$$\frac{1}{P(z)} = \sum_{k \in \mathbb{Z}} \phi_k \, z^k$$

for all z on the unit circle Γ_1 , which has a unique solution iff P does not vanish on Γ_1 .

rançois Roueffhttp://perso.telecom-par

SIMDI 22

January 4, 2013

25 / 37

Applications

Rational filters

Let $\frac{P}{Q}$ be a rational function (with P and Q coprime polynomials). Suppose that Q does not vanish on Γ_1 . Then there exists a unique $\phi \in \ell^1$ such that, for all $z \in \Gamma_1$,

$$\frac{P}{Q}(z) = \sum_{k} \frac{\phi_k z^k}{2} .$$

Moreover $\phi_k = O(\delta^k)$ as $k \to \pm \infty$ for some $\delta \in (0,1)$ and F_{ϕ} is causal iff Q does not vanish on the unit disk Δ_1 .

Construction of an all-pass rational filter

Let $\alpha \notin \Gamma_1$ and define F_{ψ} by

$$\frac{1 - \frac{\alpha}{\alpha}z}{1 - \overline{\alpha}^{-1}z^{-1}} = \sum_{k \in \mathbb{Z}} \psi_k z^k \ .$$

Inversion of a FIR filter: a special case

By the partial fraction decomposition, it suffices to consider the case

$$P(z) = 1 - \alpha z$$

ightharpoonup If $|\alpha| < 1$ we have, for all $z \in \Gamma_1$,

$$\frac{1}{1 - \alpha z} = \sum_{k > 0} \alpha^k z^k \qquad \text{(Causal inverse filter)}.$$

ightharpoonup If $|\alpha| > 1$ we have, for all $z \in \Gamma_1$,

$$\frac{1}{1 - \alpha z} = -\sum_{k \le -1} \alpha^k z^k \qquad \text{(Anticausal inverse filter)} \ .$$

In all cases we obtain ϕ such that $\phi_k=O(\delta^k)$ as $k\to\pm\infty$ for $\delta=|\alpha|\wedge|\alpha|^{-1}$.

rançois Roueffhttp://perso.telecom-pari

SIMDI 226

January 4, 2013

26 / 3

- Wold decomposition
- 2 Convolution in ℓ^1
- ARMA processes
 - ARMA equations, stationary solutions
 - Innovations of ARMA processes

- Wold decomposition
- 2 Convolution in ℓ^1
- ARMA processes
 - ARMA equations, stationary solutions
 - Innovations of ARMA processes

January 4, 2013 30 / 37

AR(p) processes

Definition : AR(p) processes

Let $Z \sim WN(0, \sigma^2)$ and Φ be a polynomial of degree p such that $\Phi(0) = 1$. The associated AR(p) equation is defined by

$$[\Phi(\mathrm{B})](X) = Z \Leftrightarrow X_t = \sum_{k=1}^q \phi_k X_{t-k} + Z_t ext{ for all } t \in \mathbb{Z}.$$

 $(\Phi(z) = 1 - \sum_{k=1}^{q} \phi_k z^k)$ If moreover X is weakly stationary, it is called an AR(p) process.

Theorem

The AR(p) equation admits a weakly stationary solution iff Φ does not vanish on Γ_1 , in which case it is the unique one. Moreover, it is centered and admits a spectral density $f(\lambda) = \frac{\sigma^2}{2\pi} \frac{1}{|\Phi(e^{-i\lambda})|^2}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ 90(

MA(q) processes

Definition : MA(q) processes

Let $Z \sim WN(0, \sigma^2)$ and Θ be a polynomial of degree q such that $\Theta(0) = 1$. The associated MA(q) equation is defined by

$$X = [\Theta(\mathrm{B})](Z) \Leftrightarrow X_t = Z_t + \sum_{k=1}^q \theta_k Z_{t-k} \text{ for all } t \in \mathbb{Z}.$$

 $(\Theta(z) = 1 + \sum_{k=1}^{q} \theta_k z^k)$ Then X is a centered weakly stationary process and its autocovariance function γ satisfies

It is called an MA(q) process.

ARMA(p, q) processes

Definition : ARMA(p, q) processes

Let $Z \sim WN(0, \sigma^2)$ and Θ, Φ be two coprime polynomials of degree q and p such that $\Theta(0) = \Phi(0) = 1$. The associated ARMA(p, q) equation is defined by

$$[\Phi(\mathrm{B})](X) = [\Theta(\mathrm{B})](Z) \Leftrightarrow X_t = \sum_{k=1}^q \phi_k X_{t-k} + Z_t + \sum_{k=1}^q \theta_k Z_{t-k} \text{ for all } t \in \mathbb{Z}.$$

If moreover X is weakly stationary, it is called an ARMA(p,q) process.

Theorem

The ARMA(p,q) equation admits a weakly stationary solution iff Φ does not vanish on Γ_1 , in which case it is the unique one. Moreover, it is centered and admits a spectral density $f(\lambda) = \frac{\sigma^2}{2\pi} \frac{\left|\Theta(\mathrm{e}^{-\mathrm{i}\lambda})\right|^2}{\left|\Phi(\mathrm{e}^{-\mathrm{i}\lambda})\right|^2}.$

- Wold decomposition
- 2 Convolution in ℓ^1
- ARMA processes
 - ARMA equations, stationary solutions
 - Innovations of ARMA processes

←□ → ←□ → ←□ → ←□ → □ ←

rancois Roueffhttp://perso.telecom-par

nçois Roueffhttp://perso.telecom-pari

SIMDI 226

January 4, 2013

33 / 3

Existence of a canonical representation

Theorem

Consider an ARMA(p,q) process X solution to

$$[\Phi(B)](X) = [\Theta(B)](Z)$$
.

Suppose that Φ does not vanish on the unit circle Γ_1 . Then X admits a canonical representation

$$[\tilde{\Phi}(B)](X) = [\tilde{\Theta}(B)](\tilde{Z})$$
.

 $(\tilde{\Phi} \text{ and } \tilde{\Theta} \text{ do not vanish on } \Delta_1 \text{ and } \tilde{Z} \text{ is a white noise}).$

ARMA(p,q) representations

Consider an ARMA(p,q) process X solution to

$$[\Phi(\mathbf{B})](X) = [\Theta(\mathbf{B})](Z)$$
.

Then X admits a linear representation $X=\mathrm{F}_{\psi}(Z)$ for a well chosen $\psi\in\ell^1$.

We say that the ARMA(p, q) representation is

- ${
 m \triangleright}$ causal if F_{ψ} is causal. (iff Φ does not vanish on the unit closed disk $\Delta_1)$
- invertible if $F_{\psi}(Z)$ is invertible and the inverse filter is causal.(iff Θ does not vanish on the unit closed disk Δ_1)
- canonical if it is causal and invertible.

François Roueffhttp://perso.telecom-pari

SIMDI 226

January 4, 2013

34 / 37

Idea of the proof

Consider $\Phi(z) = 1 - \alpha z$ with $|\alpha| > 1$. Observe that for all $z \in \Gamma_1$,

$$\Phi(z) = -\alpha z R(z) \tilde{\Phi}(z) ,$$

where we set $\tilde{\Phi}(z)=1-\overline{\alpha}^{-1}z$ and $R(z)=rac{(1-lpha^{-1}z^{-1})}{(1-\overline{\alpha}^{-1}z)}.$

Now $\tilde{\Phi}$ corresponds to a causally invertible filter and R^{-1} corresponds to an all-pass rational filter, say F_{Φ} . Then

$$[\Phi(B)](X) = Z \Leftrightarrow [\tilde{\Phi}(B)](X) = \tilde{Z},$$

where $\tilde{Z}=-\alpha^{-1}\,{\rm F}_{\phi}\circ{\rm B}^{-1}(Z)$ is a white noise. We obtain a canonical representation.

Application: innovations of an ARMA process

Theorem

Let X be an ARMA(p,q) process with canonical representation

$$[\Phi(\mathbf{B})](X) = [\Theta(\mathbf{B})](Z)$$
.

Then Z is the innovation process of X.

Proof

The proof is in 3 steps

Step 1 Since Θ is causally invertible, $Z_t \in \mathcal{H}_t^X$ for all $t \in \mathbb{Z}$.

Step 2 Since Φ is causally invertible, $X_t \in \mathcal{H}^Z_t$ for all $t \in \mathbb{Z}$. Hence $Z_t \perp \mathcal{H}^X_{t-1}$.

Step 3 Hence, $\operatorname{proj}\left(X_{t}|\mathcal{H}_{t-1}^{X}\right)=\sum_{k=1}^{p}\phi_{k}X_{t-k}+\sum_{k=1}^{q}\theta_{k}Z_{t-k}$.

ançois Roueffhttp://perso.telecom-pari

SIMDL 226

January 4, 201

37 / 37