Assignment Set: 6, 7, 15, 17, 19, 21 from pages 141 - 142

6)

Find the closure of each set:

- a. $\left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$
 - Answer: \emptyset
- b. **№**
 - Answer: \mathbb{N}
- c. \mathbb{Q}
 - Answer: \mathbb{R}
- d. $\bigcap_{n=1}^{\infty} (0, \frac{1}{n})$
 - Answer: \emptyset
- e. $\{ \mathbf{x} : |x 5| \le \frac{1}{2} \}$
 - [4.5, 5.5]
 - Answer: [4.5, 5.5]
- f. $\{ x : x^2 > 0 \}$
 - $(0,\infty)$
 - Answer: $[0, \infty)$

7)

Let S, T $\subset \mathbb{R}$. Find a counterexample of each of the following:

- a. If P is the set of all isolated points of S, then P is a closed set.
 - Answer: Let $S = \mathbb{N}$
- b. Every open set contains at least two points.
 - Answer: \emptyset
- c. If S is closed, then cl(int S) = S.
 - Answer: Let $S = \mathbb{Q}$
- d. If S is open, then int (cl S) = S.
 - Answer: Let $S = (-1, 0) \cup (0, 1)$
- e. bd (cl S) = bd S
 - Answer: Let $S = (-1, 0) \cup (0, 1)$
- f. bd (bd S) = bd S
 - Answer: Let $S = \mathbb{Q}$. Then bd S is \mathbb{R} , and bd (bd S) = $\emptyset \neq \mathbb{R}$.
- g. $\operatorname{bd}(S \cup T) = (\operatorname{bd} S) \cup (\operatorname{bd} T)$
 - Answer: Let $S = \mathbb{R}$, T = (0,1). bd $(S \cup T) = \emptyset$, but bd $S \cup$ bd $T = \emptyset \cup \{0,1\}$
- h. $bd (S \cap T) = (bd S) \cap (bd T)$
 - Answer: Let S = (0, 1), T = (1, 2). bd $(S \cap T) = \emptyset$, but bd $S \cap bd T = 1$.

15)

Prove: If x is an accumulation point of the set S, then every neighborhood of x contains infinitely many points of S.

Proof.

Suppose that \exists a deleted neighborhood of x, called N, that contains n points $x_1, x_2, ... x_n$ of S where n is a finite amount and $x_1 \leq x_2, \leq ... x_n$

x is an accumulation point on S if $\forall \epsilon > 0$, $N^*(x, \epsilon) \cap S \neq \emptyset$.

N is a deleted neighborhood of S if $\forall x \in \{y \in \mathbb{R} : 0 < |y - x| < \epsilon\}, x \in \mathbb{N}$.

Let $\hat{\epsilon} = \epsilon + \epsilon$, and $\mathbf{x}_0 = \mathbf{x}_1 - \hat{\epsilon}$.

By definition, $x_0 \in N$, since N is a neighborhood $\forall \epsilon > 0$.

However, N only has n elements. A contradiction.

So, N can't be a deleted neighborhood since it has a finite number of elements, which means x can't be an accumulation point.

17)

Prove: S' is a closed set.

Proof.

Suppose \exists an open set A equal to S'.

By definition, A = int S, and $\forall s \in A, \exists \epsilon > 0 \text{ st N}(x, \epsilon) \subset A$.

19)

Suppose S is a nonempty bounded set and let $m = \sup S$. Prove or give a counter example: m is a boundary point of S.

Proof.

2

21)

Let A be a nonempty open subset of \mathbb{R} and let $Q \subset \mathbb{Q}$. Prove: $A \cap Q \neq \emptyset$.

Notice that $Q \subset \mathbb{Q} \subset \mathbb{R}$.

Since A is nonempty, \exists at least one element $a \in \mathbb{R}$.

Since A is nonempty and open, $a + \epsilon \in A$.

If $a \in \mathbb{Q}$, then result.

If a $+\epsilon \in \mathbb{Q}$, then result.

If $a \notin \mathbb{Q}$ and $(a + \epsilon) \notin \mathbb{Q}$, then:

Let $x = a, y = a + \epsilon, z = y - x$.

By Archimedes' axiom, \exists n st n > $\frac{1}{z}$

nz > 1

ny - nx > 1

Since the difference between ny and nx is bigger than 1,

 $\exists m \in \mathbb{Z} \text{ st nx} < \mathbf{m} < \mathbf{ny}.$

See that x < $\frac{m}{n}$ < y, $\frac{m}{n}$ is a rational number, and $\frac{m}{n}$ \in A. Hence, result.

Let: $S \subset \mathbb{R}$

Then

- a. S is closed iff $S' \subset S$
- b. cl S is a closed set
- c. S is closed iff S = cl S
- d. clS=S U $S'=S\cup \operatorname{bd} S$

Proof.

a)

S is closed iff $S'\subset S$

 \longrightarrow

Suppose: S is closed. Want to show: $S' \subset S$

Let: $x \in S'$ Thus, $\forall \epsilon > 0$

$$N(x, \epsilon) \cap S = \emptyset$$
 (1)

Want to show: $x \in S$

Assume: $x \notin S$ Then, from (1),

$$N(x, \epsilon) \cap S \neq \emptyset$$
 (2)

and

$$N(x,\epsilon) \cap \neg S \neq \emptyset \tag{3}$$

From (2) and (3),

 $x \in bd \ S \subset S$ by definition of a closed set. This is a contradiction.

Hence, $x \in S$.

This proves:

 $S' \subset S$

 \leftarrow

Conversely,

Suppose: $S' \subset S$

Want to show: $\mathbb{R} \setminus S$ is open $\Rightarrow S$ is closed.

Let: $x \in \mathbb{R} \setminus S$

Want to show: $\exists \epsilon > 0 \text{ st } N(x, \epsilon) \subset \mathbb{R} \setminus S$

Since $x \notin S$, we see that x not $\notin S$ '.

Thus, $\exists \epsilon > 0 \text{ st } N(x, \epsilon) \cap S = \emptyset$

Since $x \notin S$, we have:

$$N(x, \epsilon) \cap S = \emptyset$$
 (1)

Hence, $N(x, \epsilon) \subset \mathbb{R} \setminus S$, which proves that $\mathbb{R} \setminus S$ is open, or, equivalently, that S is closed. This completes the proof of a).

b)

cl S is a closed set

Recall that cl $S = S \cup S'$.

Want to show: $\mathbb{R} \setminus cl S$ is open $\Rightarrow cl S$ is closed

Let: $x \in cl (\mathbb{R} \setminus S)$ (aka $(S \cup S')$ Compliment)

We must find an $\epsilon > 0$ st $N(x, \epsilon) \subset cl (\mathbb{R} \setminus S)$

Now $x \notin S$ and $x \notin S'$.

$$\exists \epsilon > 0 \text{ st } N^*(x, \epsilon) \cap S = \emptyset$$

However, $x \notin S$, so

$$N(x, \epsilon) \cap S = \emptyset$$
 (1)

We claim that $N(x, \epsilon) \cap S' = \emptyset$

Since:

$$\neg[x \in S \cup S']$$
$$\neg[x \in S \text{ or } x \in S']$$

 $x \notin S$ and $x \notin S'$

which is equivalent to $N(x, \epsilon) \subset \mathbb{R} \setminus S'$

Let: $y \in N(x, \epsilon)$

By Theorem 2(a), the set $N(x, \epsilon)$ is open.

So $\exists \hat{\epsilon} > 0$ st $N(y, \hat{\epsilon}) \subset N(x, \epsilon)$.

In particular, $y \notin N(x, \epsilon)$.

From **(1)**

 $N^*(y, \hat{\epsilon}) \cap S = \emptyset.$

So, $y \notin S'$ or, equivalently, $y \in \mathbb{R} \setminus S'$.

This proves that $N(x, \epsilon) \subset \mathbb{R} \setminus S'$ or, equivalently,

$$N(x,\epsilon) \cap S' = \emptyset$$
 (2)

From (1) and (2), $N(x, \epsilon) \cap (S \cup S') = \emptyset$.

Hence,

$$N(x,\epsilon) \subset (S \cup S')^C = \operatorname{cl} S^C$$
 (3)

Thus, (3) and * prove that cl S^C is open.

Hence, by Theorem 3.4.7, cl S is closed.

c)

S is closed iff $S = cl S (= S \cup S')$

Suppose: S is closed.

Want to show: $S = S \cup S'$.

By definition, $S \subset S \cup S'$.

by definition, b C b C b.

Want to show: $S \cup S' \subset S$

Let $x \in S \cup S$ '.

If $x \in S$, then we are finished.

If $x \in S' \setminus S$ Venn Diagram: (S ()xxS')

Then by a), $S' \subset S$, since S is closed.

Hence, $x \in S$, and we are finished.

 \leftarrow

Conversely,

Suppose: $S = S \cup S'$

Want to show: S is closed.

By (b), cl S is closed.

Since, $S = S \cup S' = cl S$, S is also closed.

d)

 $cl~S = S \cup S' = S \cup bd~S$

Let: $x \in S \cup S'$

If $x \in S$, then $x \in S \cup bd S$.

So, $S \cup S \subset S \cup bd S$ in this case.

If $x \in S' \setminus S$, then $\forall \epsilon > 0$, $N(x, \epsilon) \cap S \neq \emptyset$, which implies $x \in \mathbb{R} \setminus S$ and $N(x, \epsilon) \cap \mathbb{R} \setminus S \neq \emptyset$

Thus, $x \in bd S \subset S \cup bd S$.

Hence, $S \cup S' \subset S \cup bd S$.

For the reverse conclusion, let $x \in S \cup bd S$.

If $x \in S$, then $x \in S \cup S'$. So, in this case, $S \cup bd S \subset S \cup S' = cl S$.

if $x \in bd S \setminus S$, then, in particular,

 $\forall \epsilon > 0,$

$$N*(x,\epsilon)\cap S\neq\emptyset$$

which implies that $x \in S' \subset S \cup S'$.

Hence, $S \cup bd S \subset S \cup S'$.

Hence, result.