Leetine 7

Thm Every planar graph has a 5-cdoring:

If Let P 9 Vo be given, deg (Vo) 65.

If d(Vo) & 4 m) done by greedy.

If d(Vo) = 5 and all are diff cdor, then:

Idea def: $Pi,j \leq P$ The subgraph ω / . $\forall i,j = C^{-1}(\text{Fi};j)$ "Our weeks colored i,j" (ourselve $P_{i,3}$.

Either V_1, V_3 are in the same comp of $(P \setminus \{V_0\})_{1,3}$, or they're Not. If so there's $Y: V_1 \to V_3 \subseteq P_{1,3} \setminus \{V_0\}$.

But in a planar diagram of P, & cuts Vz from V4 so they are in diff comps. of Pz,4.

Now: Eether V1, V3 are disceted in P1, 3 or V2, V4 disceted in P2, 4.

Go Change V3 - 1

Go Change V4 m 2.

which freis a color for Vo!

包

Thm [Kuretowshi]: A graph is non-planer () It contains a subdivision of K5 or K3.3.

Idea: 3v-6 ? e for planer.

15-67,10 X => K5 non-planer

3.6-6.79

Show K3,3 non-planar:

Assume it is, then biparlite $\Rightarrow |\partial f| > 4$. $\Rightarrow \overline{Z} |\partial f| = 2|E|$ $\Rightarrow 4|f| + 2|E| \Rightarrow F \leq \overline{Z} E$

Now
$$E-V+2=F \le \frac{1}{2}E \Rightarrow 2E-2V+4 \le E \Rightarrow$$

$$-2V+4 \le -E \Rightarrow 2V-4 \Rightarrow E$$
 "Biputite plana Graphs"

Prop G planar, cctd,
$$|E| > 2$$
 Then let $L = length$ of shortest circles $I.F.T.$ $L(V-2) \ge E$ $(L-2)$ $P_f: For $f \in F$, $\partial f = E_{ff}$, $U = E_{ff}$ but$

Prop G planar, cctd, |E| 7,2 Then let L = length of shortest circuit or 3 if no circuits.

(If no circuids then there's I face up 12f1 = 2E > 4)

$$E-V+2 \subseteq \frac{2}{L}E \Rightarrow LE-LV+2L \subseteq ZE$$

 $\Rightarrow -LV+2L \subseteq (2-L)E \Rightarrow \frac{L}{L-2}(V-2) \nearrow E$
 $K_{3,3}: \frac{4}{4-2}(6-2) \nearrow 9?$
 $(4) \nearrow 9?$

$$K_{3,3}: \frac{4}{4-2}(6-2) > 9 ?$$

$$2(4) > 9 ?$$