$4\,t_{2}\,\,\mathcal{A}_{\alpha\theta\,i}\,\left(\mathcal{A}^{\alpha\,i\,\theta}\,+\partial^{\theta}f^{\alpha\,i}\right)+2\,t_{2}\,\,\mathcal{A}_{\alpha\,i\,\theta}\,\left(\mathcal{A}^{\alpha\,i\,\theta}\,+2\,\partial^{\theta}f^{\alpha\,i}\right)\right)\!\!\!\left[t\,,\,x\,,\,y\,,\,z\right]\,dz\,dy\,dx\,dt$ Wave operator

 $k^2 r_{\cdot \cdot} + t_{\cdot \cdot}$

 ${\stackrel{1^{\scriptscriptstyle +}}{\cdot}}\mathcal{R}^{\parallel} + ^{\alpha\beta}$

PSALTer results panel

${}^{0^+}f^{\parallel}$ † 0 ${\stackrel{0^+}{\cdot}} f^{\perp} \dagger$

⁰⁻Æ[∥]†

 ${\stackrel{0^+}{\cdot}} \tau^\perp \uparrow$

 ${\stackrel{\scriptscriptstyle{0^{-}}}{\cdot}}\sigma^{\parallel}$ †

0

 ${\stackrel{0^{\scriptscriptstyle +}}{\cdot}}\mathcal{A}^{\parallel} \quad {\stackrel{0^{\scriptscriptstyle +}}{\cdot}}{}^{\scriptscriptstyle +}{}^{\scriptscriptstyle \parallel} \quad {\stackrel{0^{\scriptscriptstyle +}}{\cdot}}{}^{\scriptscriptstyle +}{}^{\scriptscriptstyle \perp}$

 $^{1^{+}}\sigma^{\perp}_{\alpha\beta}$

 $(3+k^2)^2 t$.

 $\frac{1}{(3+k^2)^2}t$.

0

0

0

0

 $-\frac{1}{(3+k^2)^2 t} \frac{1}{(3+k^2)^2 t}$

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 $2^+ \sigma^{\parallel} \uparrow^{\alpha\beta}$ ${\stackrel{2^{\scriptscriptstyle +}}{\cdot}}{}_{\tau}{}^{\parallel} + {}^{\alpha\beta}$

 $^{2^{-}}\sigma^{\parallel} \uparrow^{\alpha\beta\chi}$

 $2^{+}_{\bullet}\sigma^{\parallel}_{\alpha\beta}$ $2^{+}_{\bullet}\tau^{\parallel}_{\alpha\beta}$ $2^{-}_{\bullet}\sigma^{\parallel}_{\alpha\beta\chi}$

0

 $\iiint\!\!\int\!\!\!\int\!\!\!\int\!\!\!\int\!\!\!\left[\frac{1}{6}\left(6\ \mathcal{A}^{\alpha\beta\chi}\ \sigma_{\alpha\beta\chi}+6\ f^{\alpha\beta}\ \tau_{(\Delta+\mathcal{K})_{\alpha\beta}}-24\ r_{\stackrel{\bullet}{3}}\ \partial_{\beta}\mathcal{A}_{\stackrel{\bullet}{i}}{}_{\stackrel{\bullet}{\theta}}\ \partial^{i}\mathcal{A}^{\alpha\beta}_{\quad \alpha}-24\ r_{\stackrel{\bullet}{3}}\ \partial_{\alpha}\mathcal{A}^{\alpha\beta}{}_{\stackrel{\bullet}{i}}\partial_{\theta}\mathcal{A}_{\stackrel{\bullet}{i}}{}_{\stackrel{\bullet}{\beta}}+48\ r_{\stackrel{\bullet}{3}}\ \partial^{i}\mathcal{A}^{\alpha\beta}_{\quad \alpha}\partial_{\theta}\mathcal{A}_{\stackrel{\bullet}{i}}{}_{\stackrel{\bullet}{\beta}}+8\ r_{\stackrel{\bullet}{3}}\ \partial^{i}\mathcal{A}^{\alpha\beta}_{\quad \alpha}\partial_{\theta}\mathcal{A}_{\stackrel{\bullet}{\beta}}+8\ r_{\stackrel{\bullet}{3}}\ \partial^{i}\mathcal{A}^{\alpha\beta}_{\quad \alpha}\partial_{\alpha}\mathcal{A}_{\stackrel{\bullet}{\beta}}+8\ r_{\stackrel{\bullet}{3}}\ \partial^{i}\mathcal{A}^{\alpha\beta}_{\quad \alpha}\partial_{\alpha}\mathcal{A}_{\stackrel{\bullet}{\beta}}+8\ r_{\stackrel{\bullet}{3}}\ \partial^{i}\mathcal{A}^{\alpha\beta}_{\quad \alpha}\partial_{\alpha}\mathcal{A}_{\stackrel{\bullet}{\beta}}+8\ r_{\stackrel{\bullet}{3}}\ \partial^{i}\mathcal{A}^{\alpha\beta}_{\quad \alpha}+8\ r_{\stackrel{\bullet}{3}}\ \partial^{i}\mathcal{A}^{\alpha\beta}_{\quad \alpha}\partial_{\alpha}\mathcal{A}_{\stackrel{\bullet}{\beta}}+8\ r_{\stackrel{\bullet}{3}}\ \partial^{i}\mathcal{A}^{\alpha\beta}_{\quad \alpha}\partial_{\alpha}\mathcal{A}_{\stackrel{\bullet}{\beta}}+8\ r_{\stackrel{\bullet}{3}}\ \partial^{i}\mathcal{A}^{\alpha\beta}_{\quad \alpha}\partial_{\alpha}\mathcal{A}_{\stackrel{\bullet}{\beta}}+8\ r_{\stackrel{\bullet}{\beta}}\partial_{\alpha}\mathcal{A}_{\stackrel{\bullet}{\beta}}+8\ r_{\stackrel{\bullet}{\beta}}\partial_{\alpha}\mathcal{A}_{\stackrel{\bullet}{\beta}$

 $\partial_{\beta}\mathcal{A}_{\alpha_{i}\theta}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}}-4r_{2}\partial_{\beta}\mathcal{A}_{\alpha\theta_{i}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}}+4r_{2}\partial_{\beta}\mathcal{A}_{i\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}}-24r_{3}\partial_{\beta}\mathcal{A}_{i\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}}-24r_{3}\partial_{\beta}\mathcal{A}_{i\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}}-4r_{4}\partial_{\alpha}\mathcal{A}^{\beta_{i}}$

 $f^{\dagger} f ||_{\alpha\beta}$

 $\frac{\sqrt{2} t_{\frac{2}{2}}}{3} \quad \frac{1}{3} i \sqrt{2} kt_{\frac{2}{2}}$

 ${\stackrel{1^{-}}{\cdot}}\mathcal{A}^{\parallel}{}_{\alpha} \,\, {\stackrel{1^{-}}{\cdot}}\mathcal{A}^{\perp}{}_{\alpha} \,\, {\stackrel{1^{-}}{\cdot}}{}^{f}{}^{\parallel}{}_{\alpha}$

0

0

0

0

0

 $2r.\frac{\partial_{i}\mathcal{A}_{\alpha\beta\theta}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta\,i} + 2r.\frac{\partial_{\theta}\mathcal{A}_{\alpha\beta\,i}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 4r.\frac{\partial_{\theta}\mathcal{A}_{\alpha\,i\,\beta}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta\,i} + 4t.\frac{\mathcal{A}_{i}}{2}\mathcal{A}_{i\,\theta\alpha}\partial^{\theta}f^{\alpha\,i} + 4t.\frac{\mathcal{A}_{i}}{2}\mathcal{A}_{i}\partial^{\theta}f^{\alpha\,i} + 4t.\frac{\mathcal{A}_{i}}{2}\mathcal{A}_{i}\partial^{\theta}f^{\alpha\,i} + 4t.\frac{\mathcal{A}_{i}}{2}\mathcal{A}_{i}\partial^{\theta}f^{\alpha\,i} + 4t.\frac{\mathcal{A}_{i}}{2}\mathcal{A}_{i}\partial^{\theta}f^{\alpha\,i} + 4t.\frac{\mathcal{A}_{i}}{2}\mathcal{A}_{i}\partial^{\phi}f^{\alpha\,i} + 4t.\frac{\mathcal{A}_{i}}{2}\mathcal{A}_{i}\partial^{\phi}f^{\alpha\,$

 $2\underbrace{t.}_{2}\partial_{\alpha}f_{\prime,\theta}\partial^{\theta}f^{\alpha\prime} - \underbrace{t.}_{2}\partial_{\alpha}f_{\theta\prime}\partial^{\theta}f^{\alpha\prime} - \underbrace{t.}_{2}\partial_{\imath}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime} + \underbrace{t.}_{2}\partial_{\theta}f_{\alpha\imath}\partial^{\theta}f^{\alpha\prime} - \underbrace{t.}_{2}\partial_{\theta}f_{\prime,\alpha}\partial^{\theta}f^{\alpha\prime} - \underbrace{t.}_{2}\partial_{\theta}f_{\alpha}\partial^{\theta}f^{\alpha\prime} - \underbrace{t.}_{2}\partial_{\theta}f^{\alpha\prime} - \underbrace{t.}_{2}$

0

Source constraints

 $\stackrel{1^+}{\cdot} \sigma^{\!\perp} \dagger^{\alpha\beta}$

 $\mathbf{1}^{\cdot}_{\boldsymbol{\cdot}}\tau^{\parallel} + ^{\alpha\beta}$

 $^{1^{-}}\sigma^{\parallel}\uparrow^{lpha}$

 $^{1^{-}}\sigma^{\perp}$ $^{+}$

 $\mathbf{1}^{\scriptscriptstyle{-}} \tau^{\parallel} +^{\alpha}$

0

0

Spin-parity form	Covariant form	Multiplicities
${\stackrel{0^+}{\cdot}} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1
⁰⁺ τ == Θ	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1
1- _τ ^Δ == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3
1- _τ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau} \left(\triangle + \mathcal{K} \right)^{\beta \chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau} \left(\triangle + \mathcal{K} \right)^{\beta\alpha}$	3
1-σ ¹ == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi} = 0$	3
1- _σ ^α == 0	$\partial_{\delta}\partial^{\alpha}\sigma_{\chi}^{\chi}{}^{\delta} + \partial_{\delta}\partial^{\delta}\sigma_{\chi}^{\chi\alpha} = \partial_{\delta}\partial_{\chi}\sigma_{\chi}^{\chi\alpha\delta}$	3
$\ k\ _{\bullet}^{1^{+}}\sigma\ ^{\alpha\beta}+\ 1^{+}_{\bullet}\tau\ ^{\alpha\beta}=0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi}==$	3
	$\partial_{\chi}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi}$	
$1^{\cdot}_{\cdot}\sigma^{\parallel}^{\alpha\beta} = 1^{\cdot}_{\cdot}\sigma^{\perp}^{\alpha\beta}$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\chi \alpha \beta} = 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi}$	3
$2^{-}\sigma^{\parallel}^{\alpha\beta\chi} = 0$	$3 \ \partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} + 3 \ \partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta}_{ \ \delta} + 2 \ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\chi\delta} + 4 \ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\chi\alpha\delta} +$	5
	$2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} + 4\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\alpha} \sigma^{\delta}_{\delta} {}^{\epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\delta \beta \epsilon} + 3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\epsilon} \sigma^{\delta \alpha}_{\delta} =$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} +$	
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\alpha\beta\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\beta\alpha\chi} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\chi\alpha\beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\beta} \sigma^{\delta}_{\delta} {}^{\epsilon} + 3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\delta\alpha\epsilon} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\epsilon} \sigma^{\delta\beta}_{\delta}$	
2 ⁺ _τ ∥ ^{αβ} == 0	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\chi}_{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi}_{\tau} (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi}_{\tau} (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi \tau} (\Delta + \mathcal{K})^{\chi \delta} = 0$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}_{\tau} (\Delta + \mathcal{K})^{\alpha \chi} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi}$	
2^+_{σ} $^{\alpha\beta} = 0$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi \delta}_{\chi} = 0$	5
	$2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma_{\chi}^{\chi} {}^{\delta} + 3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi} \right)$	
Total expected gauge generators:		35

<u>Gauge symmetries</u>

(Not yet implemented in PSALTer)

<u>Unitarity</u> conditions

r. < 0 & t. > 0

<u>Validity</u> <u>assumptions</u>

(Not yet implemented in PSALTer)