

考试时长: 120 分钟 **命题教师:** 王融 等

题 号	1	2	3	4	5	6	7	8	9	10
分值	15 分	15 分	10 分	10 分	10 分	9 分	9 分	9 分	8分	5 分

本试卷共 10 道大题,满分 100 分. (考试结束后请将试卷、答题本、草稿纸一起交给监考老师)

注意:本试卷里的中文为直译(即完全按英文字面意思直接翻译),所有数学词汇的定义请参照教材(Thomas' Calculus,13th Edition)中的定义。如果其中有些数学词汇的定义不同于中文书籍(比方说同济大学的高等数学教材)里的定义,以教材(Thomas' Calculus,13th Edition)中的定义为准。

- 1. (15 pts) Determine whether the following statements are **true** or **false**? No justification is necessary.
 - (1) If f'(x) is bounded on (0,1), so is f(x).
 - (2) Let f(x) be defined on $(-\infty, +\infty)$. There must be a local maximum point of f(x) between two local minimum points of f(x).
 - (3) If f(x) is differentiable on (-1,1), and f(-1)=f(1), then f'(c)=0 for some number |c|<1.
 - (4) If f(x) is a continuous, even function on [-1,1], then $g(x) = \int_0^x f(t) dt$ is odd and differentiable on [-1,1].
 - (5) If f(x) is a continuous, periodic function on **R** (*T* is the period), then $g(x) = \int_0^x f(t) dt$ is also a periodic function with the period *T*.

一、 (15分) 判断题:

- (1) 若 f'(x) 在 (0,1) 内有界,则 f(x) 也在 (0,1)内有界.
- (2) 若函数 f(x) 在 $(-\infty, +\infty)$ 有定义,那么 f(x) 的两个(局部)极小值之间一定有一个(局部)极大值.
- (3) 若函数 f(x) 在 (-1,1) 上可微,且 f(-1) = f(1),那么存在 |c| < 1,满足 f'(c) = 0.
- (4) 若函数 f(x) 是一个偶函数,且在 [-1,1] 上连续,那么 $g(x) = \int_0^x f(t) dt$ 是一个奇函数,且在 [-1,1] 上可导.
- (5) 若函数 f(x) 是一个连续的周期函数 (周期为 T), 那么 $g(x) = \int_0^x f(t) dt$ 也是一个周期为 T 的周期函数.

- 2. (15pts) Multiple Choice Questions: (only one correct answer for each of the following questions.)
 - (1) Which of the following functions is not differentiable at x = 0?
 - (A) $|x| \sin |x|$. (B) $|x| \sin(\sqrt{|x|})$. (C) $\cos |x|$. (D) $\cos \sqrt{|x|}$.
 - (2) Suppose that f(x) is differentiable at x=0 and f(0)=0. Then $\lim_{x\to 0}\frac{x^2f(x)-2f(x^3)}{x^3}=$
 - (A) -2f'(0).
- (B) -f'(0).
- (C) f'(0).
- (3) Suppose that f(x) has a second derivative and f'(0) = 0, $\lim_{x \to 0} \frac{f''(x)}{x} = 1$. Then
 - (A) f(0) is a local minimum value.
 - (B) f(0) is a local maximum value.
 - (C) (0, f(0)) is a point of inflection of the curve.
 - (D) (0, f(0)) is neither a local extrema nor a point of inflection of the curve.
- (4) Suppose that f(x) is defined on $(-\infty, +\infty)$. Which of the following statements is equivalent to the statement that "f(x) is differentiable at x = a"?
 - (A) $\lim_{h\to 0} (f(a+h) + f(a-h) 2f(a)) = 0.$
 - (B) $\lim_{h \to 0} \frac{f(a+h) f(a-h)}{2h} \text{ exists.}$ (C) $\lim_{h \to 0} \frac{f(a+h^2) f(a)}{h^2} \text{ exists.}$

 - (D) $\lim_{h\to 0} \frac{f(a+h^3) f(a)}{h^3}$ exists.
- (5) Suppose that f(x) > 0, f'(x) > 0, and f''(x) > 0 for all $x \in [a, b]$. Let $M = \int_{a}^{b} f(x) dx$,
 - N = f(a)(b a), and $P = \frac{f(a) + f(b)}{2}(b a)$. Then
 - (A) N < P < M.

(B) N < M < P.

(C) M < N < P.

(D) M < P < N.

(15分) 单项选择题:

- (1) 下列函数中, 在x = 0 处不可导的是
 - (A) $|x| \sin |x|$. (B) $|x| \sin(\sqrt{|x|})$. (C) $\cos |x|$. (D) $\cos \sqrt{|x|}$.
- (2) 若函数f(x) 在x = 0 处可导,且 f(0) = 0. 那么 $\lim_{x \to 0} \frac{x^2 f(x) 2 f(x^3)}{x^3} =$ (A) -2f'(0). (B) -f'(0). (C) f'(0). (D) 0.
 - (A) -2f'(0). (B) -f'(0).

- (3) 若函数f(x) 有二阶导数且f'(0) = 0, $\lim_{x \to 0} \frac{f''(x)}{x} = 1$. 那么
 - (A) f(0) 是(局部)极小值.
 - (B) f(0) 是 (局部) 极大值.
 - (C) (0, f(0)) 是曲线的一个拐点.
 - (D)(0, f(0)) 既不是(局部)极值点,也不是拐点.
- (4) 设函数f(x) 在**R** 上有定义. 则下面哪一项与"f(x) 在x = a 处可导"等价?
 - (A) $\lim_{h \to 0} (f(a+h) + f(a-h) 2f(a)) = 0.$

(B)
$$\lim_{h\to 0} \frac{f(a+h) - f(a-h)}{2h}$$
 存在.
(C) $\lim_{h\to 0} \frac{f(a+h^2) - f(a)}{h^2}$ 存在.

(C)
$$\lim_{h\to 0} \frac{f(a+h^2) - f(a)}{h^2}$$
 存在.

(D)
$$\lim_{h\to 0} \frac{f(a+h^3)-f(a)}{h^3}$$
 存在.

(5) 已知对任意
$$x \in [a,b]$$
,都有 $f(x) > 0$, $f'(x) > 0$, $f''(x) > 0$. 定义 $M = \int_a^b f(x) dx$, $N = f(a)(b-a)$, $P = \frac{f(a)+f(b)}{2}(b-a)$. 那么

(A)
$$N < P < M$$
.

(B)
$$N < M < P$$
.

(C)
$$M < N < P$$
.

(D)
$$M < P < N$$
.

3. (10 pts) Let
$$f(x) = \frac{x^3}{x^2+1}$$
.

- (1) Identify the inflection points and local maxima and minima of the function that may exist.
- (2) Identify the horizontal, vertical, or oblique asymptotes that may exist.
- (3) Graph the function.

三、 (10分) 考虑函数
$$f(x) = \frac{x^3}{x^2+1}$$
.

- (1) 求所有(局部)极值和拐点.
- (2) 求所有水平渐近线、垂直渐近线和斜渐近线.
- (3) 作出上述函数的简略图.
- 4. (10 pts) Find the limits.

(1)
$$\lim_{x \to 1} \left(\frac{\sin 5x}{x} + \frac{x^3 + x^2 - 2}{x^2 + 2x - 3} \right)$$
.

$$(2) \lim_{n \to \infty} \frac{1}{n} \left(\sqrt{1 - \left(\frac{1}{n}\right)^2} + \sqrt{1 - \left(\frac{2}{n}\right)^2} + \dots + \sqrt{1 - \left(\frac{n}{n}\right)^2} \right).$$

四、 (10分) 求下列极限.

(1)
$$\lim_{x \to 1} \left(\frac{\sin 5x}{x} + \frac{x^3 + x^2 - 2}{x^2 + 2x - 3} \right)$$
.

$$(2) \lim_{n \to \infty} \frac{1}{n} \left(\sqrt{1 - \left(\frac{1}{n}\right)^2} + \sqrt{1 - \left(\frac{2}{n}\right)^2} + \dots + \sqrt{1 - \left(\frac{n}{n}\right)^2} \right).$$

 $5.~(10~\mathrm{pts})$ Evaluate the definite integral.

(1)
$$\int_{-1}^{1} |a - t| t^2 dt$$
, where $a \in (-1, 1)$.

$$(2) \int_0^\pi \frac{\sin 2x}{\sqrt{1 - \cos x}} \, dx.$$

(10分) 求定积分. 五、

(1)
$$\int_{-1}^{1} |a - t| t^2 dt$$
, where $a \in (-1, 1)$.

$$(2) \int_0^\pi \frac{\sin 2x}{\sqrt{1-\cos x}} \, dx.$$

- 6. (9 pts) Find the volume of the solid generated by revolving the region bounded by $x = 12(y^2 y^3)$ ($0 \le y \le 1$) and y-axis about the line y = 2.
- 六、 (9分) 曲线 $x = 12(y^2 y^3)$ ($0 \le y \le 1$) 和 y 轴围成一个区域. 把这个区域绕直线 y = 2 旋转可得一个旋转体,求此旋转体的体积.
 - 7. (9 pts) Use the linear approximation of $f(x) = \tan x$ at $a = \frac{\pi}{6}$ to estimate the value of $\tan \frac{11\pi}{60}$. Comparing the estimation with the true value, which one is larger?
- 七、 (9分) 用在点 $\frac{\pi}{6}$ 处的线性近似来估计 $\tan \frac{11\pi}{60}$. 把获得的近似值与精确值相比较,哪一个值更大?
 - 8. (9 pts) Find the area of the region in the first quadrant bounded on the left by the y-axis, below by the curve $x = 2\sqrt{y}$, above left by the curve $x = (y-1)^2$, and above right by the line x = 3 y.
- 八、 (9分) 求由 y 轴 (左边界), $x = 2\sqrt{y}$ (下边界), $x = (y-1)^2$ (左上边界) 和x = 3 y (右上边界) 在第一象限所围成的区域面积.
 - 9. (8 pts) Let $F(x) = \int_{2019}^{x^2} \cos(2t^2) dt$. Find all the critical points for F(x) on [-1, 1].
- 九、 (8分) 已知 $F(x) = \int_{2019}^{x^2} \cos(2t^2) dt$,求 F(x) 在区间 [-1,1] 上的所有临界点.
- 10. (5 pts) (Use Rolle's theorem to prove the mean value theorem.) If the function f(x) is continuous on [a, b], and differentiable on (a, b), prove that there exists a number c in (a, b), such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

十、 (5分) 使用罗尔定理证明拉格朗日中值定理: 如果函数 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 上可微,证明: 存在 (a,b) 中的一点 c,使得

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$