a) 0.1 M HCl, dioxane,50°C; b) 0.1 M HCl, 100°C; c) NH₃, MeOH; d) 1 M NaOH, MeOH; e) 0.5 M HCl, 100°C

12
$$T = H$$
, OCOR $T = C_1-C_6$ alkenyl, aryl, heteroaryl

13 T = H, OH $R^{10} = C_1 - C_6$ alkyl, $C_1 - C_6$ alkenyl, aryl, heteroaryl

a) R10COCI, Et₃N; b) NH₃

14 $R^9 = C_1 - C_4$ alkyl, alkenyl, aryl

a) $p\text{-CH}_3\text{-C}_6\text{H}_4\text{SO}_2\text{OH}$, R ^9OH , THF, 80 $^\circ\text{C}$

a) NaCNBH₃, TFA, MeOH; b) NaCNBH₃, Me₃SiCl, CH₃CN

17 V=H, F

- a) R^8COCI , Et_3N , b) Pd/C, H_2 , CH_3COOH or DAST;
- c) TPAP, NMO; d) WMgHal

20 $R^1 = C_1 - C_4$ alkyl, alkenyl

21 R = NHR¹, NH–NR¹R², NHOR¹, NH(CH₂)₂₋₄NR¹R² R¹ = H, C₁-C₆alkyl, aryl R² = H, C₁-C₆alkyl, aryl

22 R = C₁-C₄alkyl, alkenyl

- a) EDC, R1OH, DMAP, CH2CL; b) EDC, RH, CH2CL or isobutyl chloroformate, ELN, RH, abs. THF
- c) RLI; d) EDC, 1-(2-aminoethyl)-pyrrole-2,5-dione, CH₂Cl₂

24 $R^4 = P(O)(OR^6)_2$, SO_3R^6 $R^6 = C_1-C_4$ alkyl, H, metal ions onen

25 $R^5 = C_1 - C_4$ alkyl, alkenyl, NR^{12}_2 $R^{12} =$ alkyl

26 $R^1 = R^4 = C_1 - C_4$ alkyl, alkenyl

27 R4 = C1-C4alkyl, alkenyl

- a) $P(O)(OR^6)_2OH$, I_2 , pyridine, CH_2CI_2 or pyridine- SO_3 ; b) R^5COCI , EI_3N , abs. THF;
- c) Ag₂O, R⁴I, CH₂Cl₂; for R⁴ = CH₃: CH₂N₂, MeOH; d) pig liver esterase, KH₂PO₄ buffer, 36°C;

<u>a)</u>

a) C_5Cl_5NF triflate, SO_2Cl_2 , NBS, ICI; b) NaNO₂, CH₃COOH, EtOH; c) Pd/C, H₂, EtOH; d) (R³CO)₂O

a) m-CPBA, CH₂Cl₂; b) Ac₂O, 75°C