How to Build a Tree?

Three elements:

- 1. Where to split?
- 2. When to stop?
- 3. How to predict at each leaf node?

- A split is denoted by (j, s): split the data into two parts based on "var j < value s or not".
- For each split, define a Goodness of split criterion $\Phi(j,s)$, e.g., deduction of RSS for regression trees.

Start with the root. Try all possible variables j=1:p and all possible split values (for each variable j, sort the n values from the n samples, and choose s to be a middle point of two adjacent values, so at most (n-1) possible values for s), and pick the best split, i.e., the split with the best Φ value. Now, data are divided into the left node and right node. Repeat this procedure in each node.

Goodness of Split $\Phi(j,s)$

For Classification tree, we check the gain of an impurity measure

$$\Phi(j,s) = i(t) - [p_R \cdot i(t_R) + p_L \cdot i(t_L)]$$

where

$$i(t) = I(\hat{p}_t(1), \dots, \hat{p}_t(K))$$

 $\hat{p}_t(j) =$ frequency of class j at node t
 $I(\dots) =$ an impurity measure.

Pick a split (j, s) that leads to a large reduction of impurity measure.

An impurity measure is a function

 $I(p_1,\ldots,p_K)$ where $p_j\geq 0$ and $\sum_j p_j=1$ with properties

- 1. maximum occurs at (1/K, ..., 1/K) (the most impure node);
- 2. minimum occurs at $p_j = 1$ (the purest node)
- 3. $I(\cdots)$ is symmetric function of p_1, \ldots, p_K , i.e., permutation of p_j does not affect ϕ .

Ideally we want the impurity measure to be small for each node.

Impurity Measures

- Misclassification rate : $1 \max_j p_j$
- Entropy (deviance): $-\sum_{j=1}^{K} p_j \log p_j$
- Gini index :

$$\sum_{j=1}^{K} p_j (1 - p_j) = 1 - \sum_{j} p_j^2$$

Specially when K=2, we have

 ${\bf Misclassification} \quad : \quad \min(p,1-p)$

Entropy : $p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}$

 $\mbox{Gini index} \quad : \quad 2p(1-p)$

The latter two are strictly **concave**, consequently the corresponding goodness-of-split measure Φ is always positive (unless the class frequency of the left node and the one of the right node are exactly the same), therefore they are often used in growing trees.

Consider a binary classification problem. Evaluate the following split:

$$(20,5) \Longrightarrow (10,0) + (10,5).$$

- A node with 20 samples from "class 1" and 5 samples from "class 0" is split into two,
- left node has 10 samples from "class 1" and 0 samples from "class 0" and
- right node has 10 samples from "class 1" and 5 samples from "class 0".

• $\Phi(j,s)$ based on misclassification rate

$$\frac{5}{25} - \frac{10}{25} \cdot \frac{0}{10} - \frac{15}{25} \cdot \frac{5}{15} = 0$$

• $\Phi(j,s)$ based on entropy

$$\left[\frac{5}{25}\log\frac{25}{5} + \frac{20}{25}\log\frac{25}{20}\right] - \frac{10}{25} \cdot 0$$
$$-\frac{15}{25} \cdot \left[\frac{5}{15}\log\frac{15}{5} + \frac{10}{15}\log\frac{15}{10}\right] > 0$$

This split is regarded as zero gain if using Misclassification, but positive gain if using Entropy or Gini (which favor splits that lead to pure nodes).

Boosting Overview

AdaBoost

What exactly does it do? The resulting classifier will always have a good prediction accuracy?

• Forward stage-wise optimization for fitting an additive model

AdaBoost is a special case of this framework with Exponential loss for classification. Similarly we can develop Boosting algorithms for regression/classification with other loss functions.

AdaBoost

Consider a binary classification problem with $y=\pm 1.$ classifier

$$g:x\longrightarrow \{-1,1\}.$$

Here g is a **weak classifier**, i.e., its performance is just slightly better than random guessing. In fact, it's okay that g is even worse than random guessing. Then you'll see that boosting automatically uses -g(x).

Aim: use a combination of weak classifiers to improve the performance.

- Sequentially modify the weights on the training data {w_i}ⁿ_{i=1};
- Sequentially pick classifiers $g_t(x)$;
- Output the weighted version

$$G(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t g_t(x)\right).$$

The algorithm still works if $g_t(x)$'s are chosen randomly.

The Algorithm

- **1.** Initialize the weights $w_i^{(1)} = 1/n, i = 1, 2, ..., n$.
- 2. For t = 1 to T:
 - (a) Fit a classifier $g_t(x)$;
 - (b) Compute the training error wrt weights $\boldsymbol{w}_i^{(t)}$'s

$$\epsilon_t = \sum_i w_i^{(t)} I(y_i \neq g_t(x_i))$$

- (c) Compute $\alpha_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t}$. Note $\alpha_t < 0$ if $\epsilon_t > 1/2$.
- (d) Update weights

$$w_i^{(t+1)} = w_i^{(t)} \frac{\exp[-\alpha_t y_i g_t(x_i)]}{Z_t},$$

where Z_t is the normalizing constant to ensure that $\sum_i w_i^{(t+1)} = 1$.

3. Output $G_T(x) = \text{sign}(\sum_{t=1}^T \alpha_t g_t(x))$.

Proof

Show that the Training Error (measured by mis-classification rate) will go to 0 (not necessarily monotonically) when $T \to \infty$.

$$\begin{aligned} & \text{Training-Err}(G_T) &= & \sum_i \frac{1}{n} I\Big(y_i \neq \text{sign}\big(\sum_{t=1}^T \alpha_t g_t(x_i)\big)\Big) \\ &= & \sum_i \frac{1}{n} I\Big(\sum_{t=1}^T y_i \alpha_t g_t(x_i) < 0\Big) \\ &\leq & \sum_i \frac{1}{n} \exp\Big(-\sum_{t=1}^T \alpha_t y_i g_t(x_i)\Big) \quad I(z < 0) < e^{-z}, z \in \mathbb{R} \\ &\leq & \prod_{t=1}^T Z_t \end{aligned}$$

F18 STAT 542 F. Liang 8

$$\sum_{i=1}^{n} \frac{1}{n} \exp\left(-\sum_{t=1}^{T} \alpha_{t} y_{i} g_{t}(x_{i})\right)$$

$$= \sum_{i} \frac{1}{n} \prod_{t=1}^{T} \exp\left(-\alpha_{t} y_{i} g_{t}(x_{i})\right)$$

$$= \sum_{i} w_{i}^{(1)} \prod_{t=1}^{T} \frac{w_{i}^{(t+1)}}{w_{i}^{(t)}} Z_{t}$$

$$= \sum_{i} w_{i}^{(1)} \frac{w_{i}^{(2)}}{w_{i}^{(1)}} \cdots \frac{w_{i}^{(T)}}{w_{i}^{(T-1)}} \frac{w_{i}^{(T+1)}}{w_{i}^{(T)}} \left(\prod_{t=1}^{T} Z_{t}\right)$$

$$= \left(\prod_{t=1}^{T} Z_{t}\right) \sum_{i} w_{i}^{(T+1)}$$

$$= \prod_{t=1}^{T} Z_{t},$$

which decreases with T if $\epsilon_t < 1/2$, since

$$Z_{t} = \sum_{i} w_{i}^{(t)} \exp\left(-\alpha_{t} y_{i} g_{t}(x_{i})\right)$$

$$= \sum_{i: y_{i} g_{t}(x_{i})=1} w_{i}^{(t)} \exp\left(-\alpha_{t}\right) + \sum_{i: y_{i} g_{t}(x_{i})=-1} w_{i}^{(t)} \exp\left(\alpha_{t}\right)$$

$$= (1 - \epsilon_{t}) \exp\left(-\alpha_{t}\right) + \epsilon_{t} \exp\left(\alpha_{t}\right)$$

$$= (1 - \epsilon_{t}) \sqrt{\frac{\epsilon_{t}}{1 - \epsilon_{t}}} + \epsilon_{t} \sqrt{\frac{1 - \epsilon_{t}}{\epsilon_{t}}}$$

$$= 2\sqrt{\epsilon_{t}(1 - \epsilon_{t})}$$

$$< 1$$

• We can use a classifier $g_t(x)$ whose error rate $\epsilon_t > 1/2$ (i.e., worse than random-guessing).

Then $\alpha_t < 0$, and Adaboost basically uses $-g_t(x)$.

- AdaBoost combines weak classifiers to reduce the 0/1 training error (or more specifically, reduce an upper bound of the training error). The training error of the combined classifier G_T (from Adaboost) is **not** monotonically decreasing with T.
 After each iteration, Adaboost decreases a particular upper-bound of the 0/1 training error. So in a long run, the training error will be pushed to zero.
- The classifier returned by AdaBoost is not guaranteed to have a good performance on the test set. In fact AdaBoost is prone to overfitting, unless it stops early.

Boosting: Forward Stagewise Additive Modeling

Consider an Additive Model:

$$f(x) = \sum_{t=1}^{T} \beta_t b(x; \gamma_t),$$

where $b(x;\gamma)$ is a classifier or a regression function characterized by parameter γ .

Forward Stagewise Optimization

- (1) $f_0(x) = 0$
- (2) For t = 1 to T,
 - ullet Given f_{t-1} , choose (eta_t, γ_t) to minimize

$$\sum_{i} L(y_i, f_{t-1}(x_i)) + \beta b(x_i; \gamma); \qquad (1)$$

• Update $f_t(x) = f_{t-1}(x) + \beta_t b(x; \gamma_t)$.

Boosting algorithms can take various forms, depending on the choice of the base model $b(\cdot; \gamma)$, the choice of the loss function L(y, f(x)), and how optimization is done at (??).

AdaBoost is equivalent to forward stagewise additive modeling using an exponential loss

$$L(y, f(x)) = \exp(-yf(x)).$$

$$\arg\min_{\beta,\gamma} \sum_{i} L(y_{i}, f_{t-1}(x_{i}) + \beta b(x_{i}; \gamma))$$

$$= \arg\min_{\beta,\gamma} \sum_{i} \exp[-y_{i} f_{t-1}(x_{i}) - y_{i} \beta b(x_{i}; \gamma)]$$

$$= \arg\min_{\beta,\gamma} \sum_{i} w_{i}^{(t)} \exp(-\beta y_{i} b(x_{i}; \gamma)).$$

- Instead of optimizing over both β and $b(\cdot, \gamma)$, AdaBoost just randomly picks a classifier $b(\cdot; \gamma)$, and then optimize over β .
- For any given $b(\cdot;\gamma)$, denote the corresponding weighted empirical error rate by ϵ , then the optimal β is given by

$$\beta = \frac{1}{2} \log \frac{1 - \epsilon}{\epsilon}.$$

For regression, we can use L_2 -Boosting.

Loss function is the squared error,

$$(y_i - f_{t-1}(x_i) - \beta b(x_i; \gamma))^2$$

$$= (r_{it} - \beta b(x_i; \gamma))^2.$$

At the t-th iteration,

$$f_t(x) = f_{t-1}(x) + \hat{\beta}_t x^{(t)},$$

where $x^{(t)}$ denotes the variable (possibly random) chosen at the t-th iteration, and $\hat{\beta}_t$ is the estimated coefficient based on the partial residuals r_{it} .

When doing the optimization at the t-th iteration,

- for exponential loss, the effect of the previous (t-1) functions becomes weights;
- for squared loss, the effect of the previous (t-1) functions becomes **partial** residuals.

For many other loss functions, we don't have such a simple form for the effect of the previous (t-1) functions, then we can approximate $L(y_i, f_{t-1}(x_i) + f_t(x_i))$ by Taylor expansions (**Gradient Boosting**).