The regularity number of a finite group

Marina Anagnostopoulou-Merkouri

joint work with Tim Burness

Groups in Florence IV

 Ω - finite set,

 Ω - finite set, $G \leq \operatorname{Sym}(\Omega)$.

 Ω - finite set, $G \leq \operatorname{Sym}(\Omega)$.

A base for G is a subset $\mathcal{B} \subseteq \Omega$ such that $G_{(\mathcal{B})} = \bigcap_{\beta \in \mathcal{B}} G_{\beta} = 1$.

 Ω - finite set, $G \leq \operatorname{Sym}(\Omega)$.

A base for G is a subset $\mathcal{B} \subseteq \Omega$ such that $G_{(\mathcal{B})} = \bigcap_{\beta \in \mathcal{B}} G_{\beta} = 1$.

The **base size** of G, denoted by $b(G, \Omega)$, is the minimal size of a base for G.

 Ω - finite set, $G \leq \operatorname{Sym}(\Omega)$.

A base for G is a subset $\mathcal{B} \subseteq \Omega$ such that $G_{(\mathcal{B})} = \bigcap_{\beta \in \mathcal{B}} G_{\beta} = 1$.

The **base size** of G, denoted by $b(G, \Omega)$, is the minimal size of a base for G.

Examples

- o $b(S_n, \{1, ..., n\}) = n 1$
- $\circ \ b(GL(V),V)=\dim(V)$

Note: In general, computing $b(G, \Omega)$ is **hard**.

Some conjectures that have attracted a lot of attention in recent years are the following:

Some conjectures that have attracted a lot of attention in recent years are the following:

(1) **Cameron's conjecture:** If G is an almost simple primitive group in a non-standard action, then $b(G, \Omega) \leq 7$.

Some conjectures that have attracted a lot of attention in recent years are the following:

(1) **Cameron's conjecture:** If G is an almost simple primitive group in a non-standard action, then $b(G, \Omega) \leq 7$.

Burness et al.: Cameron's conjecture is true.

Some conjectures that have attracted a lot of attention in recent years are the following:

(1) **Cameron's conjecture:** If G is an almost simple primitive group in a non-standard action, then $b(G, \Omega) \leq 7$.

Burness et al.: Cameron's conjecture is true.

(2) **Vdovin's conjecture:** If G is transitive with soluble point stabiliser, then $b(G,\Omega) \leq 5$.

Some conjectures that have attracted a lot of attention in recent years are the following:

(1) **Cameron's conjecture:** If G is an almost simple primitive group in a non-standard action, then $b(G, \Omega) \leq 7$.

Burness et al.: Cameron's conjecture is true.

- (2) **Vdovin's conjecture:** If G is transitive with soluble point stabiliser, then $b(G,\Omega) \leq 5$.
 - Vdovin: reduction to almost simple groups
 - o Burness: primitive groups & sporadic socle
 - Baykalov: alternating socle & current work on classical groups

Remark: If G is transitive with point stabiliser H, then $b(G, \Omega)$ is the smallest k such that G has a **regular orbit** on $(G/H)^k$.

Remark: If G is transitive with point stabiliser H, then $b(G, \Omega)$ is the smallest k such that G has a regular orbit on $(G/H)^k$.					

Remark: If G is transitive with point stabiliser H, then $b(G, \Omega)$ is the smallest k such that G has a **regular orbit** on $(G/H)^k$.

A tuple $\tau = (H_1, \dots, H_k)$ of core-free subgroups of G is **regular** if G has a regular orbit on

$$G/H_1 \times \cdots \times G/H_k$$

Remark: If G is transitive with point stabiliser H, then $b(G, \Omega)$ is the smallest k such that G has a **regular orbit** on $(G/H)^k$.

A tuple $\tau=(H_1,\ldots,H_k)$ of core-free subgroups of G is **regular** if G has a regular orbit on

$$G/H_1\times \cdots \times G/H_k$$

or equivalently if there exist $g_1, \ldots, g_k \in G$ such that

$$\bigcap_{i=1}^{R} H_i^{g_i} = 1$$

Remark: If G is transitive with point stabiliser H, then $b(G, \Omega)$ is the smallest k such that G has a **regular orbit** on $(G/H)^k$.

A tuple $\tau = (H_1, \dots, H_k)$ of core-free subgroups of G is **regular** if G has a regular orbit on

$$G/H_1\times \cdots \times G/H_k$$

or equivalently if there exist $g_1, \ldots, g_k \in G$ such that

$$\bigcap_{i=1}^k H_i^{g_i} = 1$$

Remark: If G is transitive with point stabiliser H, then $b(G,\Omega) \leq k \iff$ the k-tuple (H,\ldots,H) is regular.

The **regularity number** of G, denoted by R(G), is the smallest k such that all core-free k-tuples of G are regular.

If $\mathcal{S}=\{H\leqslant G: H \text{ core-free}\}$ and $\mathcal{P}\subseteq \mathcal{S}$, then we define:

 $R_{\mathcal{P}}(G) = \min\{k : \text{ every tuple in } \mathcal{P}^k \text{ is regular}\}$

The **regularity number** of G, denoted by R(G), is the smallest k such that all core-free k-tuples of G are regular.

If
$$\mathcal{S}=\{H\leqslant G: H \text{ core-free}\}$$
 and $\mathcal{P}\subseteq \mathcal{S}$, then we define:

$$R_{\mathcal{P}}(G) = \min\{k : \text{ every tuple in } \mathcal{P}^k \text{ is regular}\}$$

We propose the following generalised base conjectures:

The **regularity number** of G, denoted by R(G), is the smallest k such that all core-free k-tuples of G are regular.

If
$$S = \{H \leqslant G : H \text{ core-free}\}\$$
and $\mathcal{P} \subseteq \mathcal{S}$, then we define:

$$R_{\mathcal{P}}(G) = \min\{k : \text{ every tuple in } \mathcal{P}^k \text{ is regular}\}$$

We propose the following **generalised base conjectures**:

• **Conjecture 1:** If G is almost simple, then $R_{ns}(G) \le 7$ with equality if and only if $G = M_{24}$.

The **regularity number** of G, denoted by R(G), is the smallest k such that all core-free k-tuples of G are regular.

If
$$S = \{H \leqslant G : H \text{ core-free}\}\$$
and $\mathcal{P} \subseteq \mathcal{S}$, then we define: $R_{\mathcal{P}}(G) = \min\{k : \text{ every tuple in } \mathcal{P}^k \text{ is regular}\}$

We propose the following **generalised base conjectures**:

- **Conjecture 1:** If G is almost simple, then $R_{ns}(G) \le 7$ with equality if and only if $G = M_{24}$.
- **Conjecture 2:** We have $R_{sol}(G) \leq 5$ for every finite group.

Results

Results

Theorem A (A-M & Burness | 2024+)

Let G be almost simple with socle A_n . Then

- If $G \in \{S_n, A_n\}$, then $R(G) = n |S_n : G|$
- $R_{ns}(G) \leqslant 6$, with $R_{ns}(G) = 2$ if $n \geqslant 13$
- $R_{\text{sol max}}(G) \leqslant 5$, with $R_{\text{sol max}}(G) = 2$ if $n \geqslant 17$

Results

Theorem A (A-M & Burness | 2024+)

Let G be almost simple with socle A_n . Then

- $\quad \text{o If } G \in \{S_n,A_n\} \text{, then } R(G) = n |S_n:G|$
- \circ $R_{ns}(G) \leqslant 6$, with $R_{ns}(G) = 2$ if $n \geqslant 13$
- ∘ $R_{\text{sol max}}(G) \leqslant 5$, with $R_{\text{sol max}}(G) = 2$ if $n \geqslant 17$

Theorem B (A-M & Burness | 2024+)

Let G be almost simple with sporadic socle. Then

- ∘ R(G) ≤ 7 with equality if and only if $G = M_{24}$
- $R_{sol}(G) \leq 3$

Final remarks

Final remarks

Methods: probabilistic, computational, combinatorial.

Final remarks

Methods: probabilistic, computational, combinatorial.

Future goals:

- **1.** Prove Conjecture 1 for all almost simple groups of Lie type
- 2. Prove that $R_{
 m sol\,max}(G)\leqslant 5$ for all almost simple groups of Lie type
- **3.** Prove Conjecture 2 for S_n and A_n