- 確認事項 -

$$(a+b)^{3} = (a-b)^{3} = (a+b)(a^{2}-ab+b^{2}) = (a-b)(a^{2}+ab+b^{2}) =$$

確認事項 -

$$a^3 + b^3 =$$

$$a^3 - b^3 =$$

1 展開せよ.

$$(1) (x-3)^3$$

(2)
$$(2x+1)^3$$

(3)
$$(x+2y)(x^2-2xy+4y^2)$$

(4)
$$(3a-b)(9a^2+3ab+b^2)$$

2 因数分解せよ. (1) $x^3 - 27$

(2)
$$125a^3 + 8b^3$$

3 展開せよ.

(1)
$$(x+y+1)(x^2-xy-x+y^2+2y+1)$$

(2)
$$(a+b+c)^3$$

4 因数分解せよ.

(1)
$$64x^6 - 1$$

(2)
$$2x^6 - 52x^3 - 54$$

1年_______番

氏名_____

- 確認事項 -

二項定理

 $(a+b)^n =$

1 展開せよ. (1) $(x+1)^6$

(2) $(a-b)^4$

(2) $(2x - 3y)^5$ $[x^3y^2]$

3 $_{n}C_{0}-_{n}C_{1}+_{n}C_{2}-\cdots+(-1)^{n} _{n}C_{n}$ の値を求めよ.

(2) x を含まない項を求めよ.

1年_______番

氏名_____

第1学年 数学 II 復習課題

R4. 12

 $\boxed{1}$ 次の多項式 A,B について、A を B で割った商と余りを求 $\boxed{\boxed{3}}$ $A=3x^3+ax^2+3a^3$ 、B=x+a を、x についての多項式と めよ.

(1) $A = x^2 + 4x + 1$, B = x - 1

(2) $A = 3x^4 - 2x^3 + 4x^2 + x - 3$, $B = x^2 - x - 1$

(3) $A = x^3 - 1$, B = x + 1

2 多項式 $2x^3 + 4x^2 + 5x - 1$ を多項式 B で割ると, 商が x + 3, 余りが 10x-4 である. 多項式 B を求めよ.

 $\boxed{4}$ $A = 4x^2 + 11ax + 2a^2$, B = x + 2a を, x についての多項 式とみなす. A を B で割ったとき, 余りが -1 であった. a の 値を求めよ.

みなす. AをBで割った商と余りを求めよ.

1年_______番

確認事項 -

規約分数式 · · ·

1 次の式を既約分数式で表せ. (1)
$$\frac{(x-1)(x+1)}{3(x-1)(x+4)}$$

- (2) $\frac{(x-2)}{(x^2-4)}$
- 2 計算せよ. (1) $\frac{1}{x+1} \times \frac{x+1}{x+2}$
 - (2) $\frac{x+3}{x^2-6x+9} \div \frac{x+1}{x-3}$
 - (3) $\frac{1}{x+1} + \frac{x-1}{x+1}$
 - $(4) \ \frac{x-2}{x+3} \frac{x+2}{x+3}$
 - (5) $\frac{1}{x+1} + \frac{1}{x^2-1}$

3 計算せよ.
(1)
$$\frac{1}{x+1} - \frac{a}{ax+1}$$

(2) $\frac{1}{x-1} - \frac{1}{x+1} - \frac{1}{x^2+1}$

 $\boxed{\textbf{4}} \ A = 1 - \frac{2}{x}, \quad B = x - \frac{4}{x} \text{ のとき},$ (1) $\frac{A}{B}$ を簡単にせよ.

(2) $\frac{B+4+\frac{8}{x}}{A+\frac{4}{x}}$ を簡単にせよ.

1年______番

氏名_

- 確認事項 -

恒等式とは ・・・

確認事項

$$ax^2 + bx + c = a'x^2 + b'x + c'$$
 が x についての恒等式

 \iff

 $ax^2 + bx + c = 0$ が x についての恒等式

 \iff

- 1 次のうち, 恒等式はどれか.
 - $(1) \ x^2 + x + 1 = 0$
 - (2) $(x+1)(x-1) = x^2 1$
 - (3) $\frac{1}{1+x} + \frac{1}{1-x} = \frac{2}{1-x^2}$
 - (4) $(x+3)(x+4) 12 = x^2$
- **2** 以下の式は恒等式である. ただし a,b,c は定数とする. 式の中の定数の値を求めよ.
 - (1) $ax^2 + bx + c = 3x^2 + 2x + 1$

(2) $ax^2 + bx + c = (x+3)(x-2)$

(3) $x^2 + 4x + 3 = (ax + b)(x + 3)$

(4) $\frac{3x}{(x+1)(x-2)} = \frac{a}{x+1} + \frac{b}{x-2}$

3 $3x^2+1=a(x+1)^2-b(x+1)+c$ は、x についての恒等式である。定数 a,b,c の値を求めよ.

4 $x^2 - xy - 2y^2 + ax - y + 1 = (x + y + b)(x - 2y + c)$ は、x, y についての恒等式である.定数 a, b, c の値を求めよ.

1年_______番

氏名

第1学年 数学 II 復習課題

1 次の等式を証明せよ.

(1)
$$x^4 - 1 = (x - 1)(x^3 + x^2 + x + 1)$$

$$\frac{a}{b} = \frac{c}{d}$$
 のとき, $\frac{a+b}{a-b} = \frac{c+d}{c-d}$ が成立することを示せ.

(2)
$$(p^2+q^2)(r^2+s^2) = (pr+qs)^2 + (ps-qr)^2$$

 $oxed{4} a:b=c:d$ のとき, $\dfrac{pa+qc}{pb+qd}=\dfrac{ra+sc}{rb+sd}$ が成立することを

2
$$a+b+c=0$$
 のとき、以下の等式が成り立つことを示せ、
(1) $bc(b+c)+ca(c+a)+ab(a+b)=-3abc$

(2)
$$a^3(b-c) + b^3(c-a) + c^3(a-b) = 0$$

$$\fbox{ 5 }$$
 $\frac{x+y}{3}=\frac{y+z}{4}=\frac{z+x}{5}$ $(\neq 0)$ のとき, $\frac{xy+yz+zx}{x^2+y^2+z^2}$ の値を求めよ.

(3)
$$(b+c)^2 + (c+a)^2 + (a+b)^2 = -2(bc+ca+ab)$$

1年_______番

氏名

1 次の不等式を証明せよ.

(1)
$$a > b > 0$$
 のとき, $\frac{a}{1+a} > \frac{b}{1+b}$

(2) $(a^2 + b^2)(x^2 + y^2) \ge (ax + by)^2$

(3) $a^2 + 3b^2 \ge 3ab$

 $\boxed{\mathbf{2}}$ $a \ge 0, b \ge 0$ のとき, $5\sqrt{a+b} \ge 3\sqrt{a} + 4\sqrt{b}$ を示せ.

3 次の不等式を示せ.

(1)
$$|a+b| \le |a| + |b|$$

(2) $|a| - |b| \le |a - b|$

1年_____組____番

i e

第1学年 数学 II 復習課題

確認事項 -

相加・相乗平均

 \geq

 $\boxed{\mathbf{1}}$ x>0 のとき、次の不等式が成立することを示せ、また、等号 成立はどのようなときか. (1) $x + \frac{4}{x} \ge 4$

$$(1) x + \frac{4}{x} \ge 4$$

 $oxed{2}$ a,b,c,d は正の整数とする.以下の不等式が成立することを 示せ. また, 等号成立はどのようなときか. (1) $4a + \frac{9}{a} \ge 12$

(1)
$$4a + \frac{9}{a} \ge 12$$

(2)
$$\left(\frac{b}{a} + \frac{d}{c}\right) \left(\frac{a}{b} + \frac{c}{d}\right) \ge 4$$

(2)
$$\left(x + \frac{1}{x}\right)\left(x + \frac{4}{x}\right) \ge 9$$

$$\boxed{\mathbf{3}}$$
 $x>0$ のとき, $x+\dfrac{9}{x+2}$ の最小値を求めよ.

1年_______番

氏名_