при s = 1 среднее арифметическое; при s = 2 среднее квадратичное.

Доказать, что:

- 1) min $(a, b) \leqslant \Delta_s(a, b) \leqslant \max(a, b)$;
- 2) функция Δ_s (a, b) при $a \neq b$ есть возрастающая функция переменной s;
 - 8) $\lim_{a\to\infty} \Delta_s(a, b) = \min(a, b);$

$$\lim_{s\to +\infty} \Delta_s(a, b) = \max(a, b).$$

V казание. Рассмотреть $\frac{d}{ds}$ [In Δ_s (a, b)].

1297(н). Доказать неравенства:

- a) $x^{\alpha}-1 > \alpha (x-1)$ при $\alpha > 2$, x > 1;
- б) $\sqrt[n]{x} \sqrt[n]{a} < \sqrt[n]{x-a}$, если n > 1, x > a > 0;
- B) $1 + 2 \ln x \le x^2$ при x > 0.

§ 8. Направление вогнутости. Точки перегиба

1°. Достаточные условия вогнутости. График дифференцируемой функции $y=f_i(x)$ называется вогнутым вверх или выпуклым вниз (вогнутым вниз или выпуклым верх) на сегменте [a, b], если отрезок кривой

$$y = f(x) \quad (a \leqslant x \leqslant b)$$

расположен выше (соответственно ниже) касательной, проведенной в любой точке этого отрезка. Достаточным условием вогнутости графика вверх (вниз), в предположении существования второй производной $\dot{t}''(x)$ при $a\leqslant x\leqslant b$, является выполнение неравенства

$$f''(x) > 0$$
 ($f'(x) < 0$) uph $a < x < b$.

 2° . Достаточное условне точки перевиба. Точки, в которых меняется направление вогнутости графика функции, называются точками перевиба. Точка x_0 , для которой либо $f''(x_0) = 0$, либо $f''(x_0)$ не существует, причем $f'(x_0)$ имеет смысл, есть точка перегиба, если f''(x) меняет свой знак при переходе через значение x_0 .

1298. Исследовать направление вогнутости кривой

$$y=1+\sqrt[3]{x}$$

в точках $A \leftarrow 1, 0, B (1, 2)$ и C (0, 0).