Partie 1. Équation différentielle

1. g est dérivable sur \mathbb{R} et pour tout réel x on a $g'(x) = e^x - 1 - 2e^{-x}$ et :

$$g'(x) + g(x) = e^x - 1 - 2e^{-x} + e^x - x + 2e^{-x}$$

= $2e^x - x - 1$

On en déduit donc que la fonction g définie est une solution de (E).

- **2.** $E_0 \iff y' = -y$: les solutions de E_0 sont les fonctions dérivables sur \mathbb{R} et définies par : $x \longmapsto Ce^{-x}$ où $C \in \mathbb{R}$.
- 3. On en déduit que toutes les solutions de (E) sont les fonctions dérivables et définies par :

$$x \mapsto Ce^{-x} + e^{x} - x + 2e^{-x}$$
 avec $C \in \mathbb{R}$.

Partie 2. Étude de la fonction g

- 1. Calcul des limites de g en :
 - **a.** $-\infty$.

On a $\lim_{x \to -\infty} e^x = 0$, $\lim_{x \to -\infty} -x = +\infty$ et $\lim_{T \to +\infty} e^x = +\infty$: on en déduit par composition des limites $\lim_{x \to -\infty} e^{-x} = +\infty$ d'où par somme des limites :

$$\lim_{x \to -\infty} g(x) = +\infty$$

b. $+\infty$.

On change d'écriture : pour $x \neq 0$: $e^x - x = x \left(\frac{e^x}{x} - 1 \right)$.

 $\lim_{x \to +\infty} x = +\infty \text{ et } \lim_{x \to +\infty} \frac{\mathrm{e}^x}{x} = +\infty \text{ (limite de cours)}.$

Par produit des limites $\lim_{x \to +\infty} x \left(\frac{e^x}{x} - 1 \right) = +\infty$.

 $\lim_{x \to +\infty} -x = -\infty \text{ et } \lim_{T \to -\infty} e^T = 0 \text{ : on en déduit par composition des limites } \lim_{x \to +\infty} e^{-x} = 0 \text{ d'où par somme des limites :}$

$$\lim_{x \to +\infty} g(x) = +\infty$$

2. Pour tout réel x,

$$(e^{x}-2)(e^{x}+1) = e^{2x} + e^{x} - 2e^{x} - 2$$

= $e^{2x} - e^{x} - 2$

3. On a déjà vu que $g'(x) = e^x - 1 - 2e^{-x}$. On met e^{-x} en facteur, il vient :

$$g'(x) = e^{x} - 1 - 2e^{-x}$$

$$= e^{-x} (e^{2x} - e^{x} - 2)$$

$$= e^{-x} (e^{x} - 2)(e^{x} + 1)$$

- **4.** Pour tout réel x on $a: e^{-x} > 0$ et $e^x + 1 > 0$ donc g'(x) a le même signe que $e^x 2$ sur \mathbb{R} .
 - Or $e^x 2 > 0 \iff e^x > 2 \iff x > \ln 2$ (la fonction ln est strictement croissante sur]0; $+\infty$ [donc l'ordre est conservé).
 - De même $e^x 2 < 0 \iff x < \ln 2$.
 - Et $e^x 2 = 0 \iff x = \ln 2$.

On en déduit le tableau de signes de g'(x) et de variations de g sur \mathbb{R} :

$$g(\ln 2) = e^{\ln 2} - \ln 2 + 2e^{-\ln 2} = 3 - \ln 2.$$