National University of Computer & Emerging Sciences Karachi Campus

Multivariable Calculus (MT2008)

Sessional-II Exam

Date: April 5th, 2024 Time: 8:30 am - 9:30 am Course Instructor(s)

Dr. Fahad Riaz, Dr. Nazish Kanwal

Ms. Fareeha Sultan, MS. Alishba, & Ms. Uzma.

Total Time: 1 Hour Total Marks: 30 Total Questions: 04

Student Name

 $\overline{\text{Roll No}}$

Section

Student Signature

Attempt all questions. There are 4 questions and 1 pages.

CLO #1: Understand the basic concepts and know the basic techniques of differential and integral calculusof functions of several variables.

Question 1

[9 marks]

- (a) Let $f(x, y) = y \cos(2x) \sin(2x)$.
 - i. 3 points Find the direction derivative of f at (0,0) in the direction i-j.
 - ii. 2 points What is the value of the largest directional derivative of f at (0,0).

(a) We have

$$\nabla f = \langle -2y\sin(2x) - 2\cos(2x), \cos(2x) \rangle$$

so

$$\nabla f(0,0) = \langle -2,1 \rangle$$
.

The directional derivative is then given by

$$\begin{split} D_{\langle 1,-1\rangle}f(0,0) &= \frac{\langle -2,1\rangle \cdot \langle 1,-1\rangle}{\mid \langle 1,-1\rangle\mid} \\ &= \frac{-1}{\sqrt{2}} \end{split}$$

(b) The value of the largest directional derivative is

Solution:

$$|\nabla f(0,0)| = \sqrt{5}.$$

(b) 4 points Find an equation for the tangent plane and parametric equations for the normal line to the surface $x^2y^3z^4 + xyz = 2$ at the point (2, 1, -1).

b)
$$\alpha \xi^{3} \xi^{4} + \chi y \xi = 2$$
; $P_{0}(2_{1},-1)$.

 $P_{0}(P_{0})(\chi-\chi_{0}) + P_{0}(P_{0})(y-y_{0}) + P_{0}(P_{0})(\chi-\chi_{0}) = 0$
 $P_{0}(P_{0})(\chi-\chi_{0}) + P_{0}(P_{0})(y-y_{0}) + P_{0}(P_{0})(\chi-\chi_{0}) = 0$
 $P_{0}(P_{0})(\chi-\chi_{0}) + P_{0}(P_{0})(\chi-\chi_{0}) = 0$
 $P_{0}(P_{0})(\chi-\chi_{0})(\chi-\chi_{0})(\chi-\chi_{0}) + P_{0}(P_{0})(\chi-\chi_{0})(\chi-$

CLO #2: Apply the theory to calculate the gradients, directional derivatives, arc length of curves, area of surfaces, and volume of solids.

Question 2 [6 marks]

(a) $\boxed{4 \text{ points}}$ Evaluate the double integral over the rectangular region R.

$$\int \int_{R} \frac{xy}{x^2 + 1} \ dA; \quad R = \{(x, y) : 0 \le x \le 1, \ -3 \le y \le 3\}.$$

$$\iint_{R} \frac{\lambda y^{2}}{\lambda + 1} d\lambda = \int_{-3}^{3} \int_{0}^{1} \frac{y^{2}}{\lambda^{2} + 1} d\lambda dy$$

$$= \int_{-3}^{3} y^{2} \left(\frac{1}{2} \ln(x^{2} + 1) \right)^{1} dy$$

$$= \int_{-3}^{3} \frac{1}{2} (\ln 2 - \ln 1) y^{2} dy$$

$$= \frac{\ln 2}{2} \left(\frac{y^{3}}{3} \right)_{-3}^{3}$$

$$= \frac{\ln 2}{2} \left(\frac{27 + 24}{3} \right)$$
Solution:

(b) 2 points Write a formula to find the volume of the solid enclosed between the surface $z = \frac{x}{y}$ and the rectangular region $R: 0 \le x \le 2, \ 1 \le y \le e^2$.

Solution: $V=\int_0^2\int_1^{e^2}\,\frac{x}{y}\,dydx\quad\text{or }V=\int_1^{e^2}\int_1^2\,\frac{x}{y}\,dxdy$

CLO #3: Solve problems involving maxima and minima, line integral and surface integral, and vector calculus.

Question 3 [5 marks]

Compute the local minima of the given function by using **gradient descent algorithm** by taking **step size as 0.15** and initial point as **(2,2)**. Perform **three** iterations.

$$f(x,y) = 4x^2 + 2.5y^2 + 3xy - 5.5x - 4.1y$$

f(x,y) =	$(x,y) = 4x^2 + 2.5y^2 + 3xy - 5.5x - 4.1y$					5.5		
x0 =(2.2)		alpha=0.15			fy=5x2+3x1-	4		
S.No.	x1	x2	fx	fy	x1	x2	f(x1,x2)	
					2	2	19	
1	2	2	16.5	12	-0.475	0.2	2.53	
2	-0.475	0.2	-8.7	-4.425	0.83	0.86375	-1.248502344	
3	0.83	0.86375	3.73125	2.80875	0.2703125	0.4424375	-2.116026846	
4	0.2703125	0.4424375	-2.0101875	-0.976875	0.57184062	0.58896875	-2.31539239	
5	0.57184062	0.58896875	0.84163125	0.66036562	0.44559593	0.48991390	-2.361260295	
6	0.44559593	0.48991390	-0.46549078	-0.21364265	0.51541955	0.52196030	-2.371827458	
7	0.51541955	0.52196030	0.18923735	0.15606018	0.48703395	0.49855127	-2.374265927	
8	0.48703395	0.49855127	-0.10807455	-0.04614176	0.50324513	0.50547254	-2.374829727	
9	0.50324513	0.50547254	0.04237870	0.03709810	0.49688832	0.49990782	-2.374960388	
10	0.49688832	0.49990782	-0.02516988	-0.00979588	0.50066381	0.50137720	-2.374990753	
11	0.50066381	0.50137720	0.00944212	0.00887747	0.49924749	0.50004558	-2.374997833	
12	0.49924749	0.50004558	-0.00588329	-0.00202958	0.50012998	0.50035002	-2.37499949	

CLO #3: Solve problems involving maxima and minima, line integral and surface integral, and vector calculus.

Question 4 [10 marks]

(a) 5 points Given the three points $P_1(1,4)$, $P_2(5,2)$, and $P_3(3,-2)$. Let

$$G(x,y) = (x-1)^{2} + (y-4)^{2} + (x-5)^{2} + (y-2)^{2} + (x-3)^{2} + (y+2)^{2}$$

is the sum of the squares of the distances from point P(x, y) to the three points $(P_1, P_2, \& P_3)$. Find the values of x and y so that this G(x, y) is minimized.

Solution:

$$G_x = 2(x-1) + 2(x-5) + 2(x-3) = 6x - 18 = 0 \Rightarrow x = 3$$

$$G_y = 2(y-4) + 2(y-2) + 2(y+2) = 6y - 8 = 0 \Rightarrow y = \frac{4}{3}$$
so critical point is $(3, \frac{4}{3})$.
$$G_{xx} = 6, \ G_{yy} = 6, \ G_{xy} = 0 \Rightarrow D = G_{xx}G_{yy} - \{G_{xy}\}^2 = 36 > 0$$
and $G_{xx} = 6 > 0 \Rightarrow (3, \frac{4}{3})$ is minimum point and $G(3, \frac{4}{3}) = \frac{80}{3}$ is the minimum value of G .

(b) 5 points Use **Lagrange multipliers** to find the maximum and minimum values of the function subject to the given constraint. Also find the points at which these values occurs.

$$f(x,y) = x^2 + y^2; \quad xy = 1.$$

Solution: We have $\nabla f = \lambda \nabla g \Rightarrow 2xi + 2yj = \lambda(yi + xj)$ $\Rightarrow 2x = \lambda y \Rightarrow \lambda = \frac{2x}{y}$ and $2y = \lambda x \Rightarrow \lambda = \frac{2y}{x}$. On equating these two equations, we get $x^2 = y^2 \Rightarrow x = \pm y$. Then g(x,y) gives $y^2 = 1 \Rightarrow y = \pm 1$ and $x = \pm 1$, and f(1,1) = 2 = f(-1,-1) is the minimum value. No maximum value as function is the sum of the squares of x and y.