MEMO EQUATIONS DIFFERENTIELLES

Ι	Equations linéaires du premier ordre	1
Π	Second ordre à coefficients constants	3

I. Equations linéaires du premier ordre

K désigne R ou €.

Définition 1 On appelle équation différentielle linéaire du premier ordre (sous cette écriture elle est parfois dite résolue ou normalisée) toute équation différentielle de la forme (L) y'-a(x)y=b(x) où a et b sont deux fonctions à valeurs dans $\mathbb K$ définies continues sur l'intervalle ouvert non vide I de $\mathbb R$.

La fonction b est appelée second membre de l'équation (L). Lorsque b est nulle, l'équation différentielle (L) est dite sans second membre ou homogène.

Dans le cas général, l'équation différentielle (H) y' - a(x)y = 0 est appelée équation homogène associée à (L).

Remarque I.1 L'étude d'une équation différentielle de la forme

$$\alpha(x) y' + \beta(x) y + \gamma(x) = 0$$

se ramène à celle de (L) en se plaçant sur un intervalle I où les fonctions α, β, γ sont continues et α ne s'annule pas.

Remarque I.2 Une solution φ de (L) sur I est nécessairement de classe C^1 sur I. L'application $\Lambda: C^1(I, \mathbb{K}) \longrightarrow C^0(I, K)$ est linéaire et l'équation différentielle (L) s'écrit aussi $f \longrightarrow f' - a f$

 $\Lambda(y) = b.$

D'après la théorie des équations linéaires, la solution générale de (L) s'obtient en ajoutant à une solution particulière de (L) (en cas d'existence) la solution générale de (H).

Remarque I.3 Dans la pratique, avant d'utiliser la méthode de variation de la constante, on peut essayer de "deviner" une solution particulière simple de (L).

Théorème 1 Solution générale de l'équation homogène

On considère l'équation différentielle (H) y' - a(x)y = 0.

Etant donnée A une primitive de a sur I, la solution générale de l'équation (H) est donnée par $I \longrightarrow \mathbb{K}$, $\lambda \in \mathbb{K}$.

Ainsi l'ensemble des (fonctions) solutions de (H) est une droite vectorielle.

Notamment, pour tout $(x_0, y_0), (x_0, y_0) \in I \times \mathbb{K}$, il existe une et une seule solution (I, φ) vérifiant $\varphi(x_0) = y_0$ donnée par

$$\forall x \in I, \ \varphi(x) = y_0 \ \exp\left(\int_{x_0}^x a(t) \ dt\right)$$

Remarque I.4 Une solution non nulle d'une équation différentielle linéaire homogène du premier ordre ne s'annule en aucun point de I, ce qui "justifie" la "recette" $\frac{y'}{y} = a$ puis $\ln(|y|) = A + c^{te}$ pour les fonctions réelles, ce qui reste correct pour les fonctions complexes.

Théorème 2 Solution générale de l'équation complète

(Solution particulière de l'équation (L) : méthode de variation de la constante)

On considère l'équation différentielle (L) y' - a(x)y = b(x). L'ensemble des solutions de (L) sur I est non vide. Ainsi l'ensemble des (fonctions) solutions de (L) sur I est une droite affine.

Notamment, pour tout (x_0, y_0) , $(x_0, y_0) \in I \times \mathbb{K}$, le problème de Cauchy associé à la condition initiale (x_0, y_0) admet une et une seule solution sur I.

Remarque I.5 Principe de superposition

Lorsque le second membre de l'équation différentielle (L) est de la forme $b = b_1 + \cdots + b_N$ et pour tout $i, i \in [1, N]$, ψ_i est une solution particulière de l'équation (L_i) $y' - a(x)y = b_i(x)$, alors $\psi_1 + \cdots + \psi_N$ est une solution particulière de (L).

<u>Cas particulier important</u>: a constante, $a \in \mathbb{C}$ et $b(x) = e^{\alpha x} P(x)$ avec P fonction polynôme et $\alpha \in \mathbb{C}$.

La solution générale de l'équation (H) est donnée par $z=\lambda\,e^{ax}$. On cherche une solution particulière de (L) de la forme $\psi:x\longrightarrow e^{\alpha x}\,Q(x)$, où Q est une fonction polynôme. On obtient les deux cas :

- $\alpha \neq a$: $\deg(Q) = \deg(P)$ et on identifie
- $\alpha = a$: Q est une primitive de P

II. Second ordre à coefficients constants

On considère l'équation différentielle linéaire du second ordre à coefficients constants

(L)
$$ay'' + by' + cy = f(x)$$

où a,b,c sont trois scalaires, $a\neq 0$, et f une fonction à valeurs dans $\mathbb K$ définie continue sur l'intervalle I de $\mathbb R$.

La fonction f (ou $\frac{f}{a}$) est appelée le second membre de l'équation différentielle (L). Lorsque f=0, l'équation (L) est dite sans second membre ou homogène.

Dans le cas général, l'équation différentielle (H) ay'' + by' + cy = 0 est appelée équation homogène associée à (L).

Remarque II.1 Une solution φ de (L) sur I est nécessairement de classe C^2 sur I. L'application $\Lambda: C^2(I, \mathbb{K}) \longrightarrow C^0(I, \mathbb{K})$ est linéaire et l'équation différentielle (L) s'écrit $f \longrightarrow f'' - a f' - b f$

aussi D(y) = c.

D'après la théorie des équations linéaires, la solution générale de (L) s'obtient en ajoutant à une solution particulière de (L) la solution générale de (H).

Définition 2 On appelle condition initiale la donnée d'un triplet $(x_0, y_0, y_0') \in I \times \mathbb{K}^2$. On appelle problème de Cauchy associé à cette condition initiale la recherche des solutions φ de l'équation différentielle (L) vérifiant $\varphi(x_0) = y_0$ $\varphi'(x_0) = y_0'$

Théorème 3 L'ensemble des solutions de l'équation différentielle (L) n'est pas vide ; plus précisément, pour tout $(x_0, \alpha, \beta) \in I \times \mathbb{K}^2$, il existe une et une seule solution φ_0 de (L) sur I vérifiant $\varphi_0(x_0) = \alpha$ et $\varphi'_0(x_0) = \beta$.

Notamment la seule solution φ de (H) telle que φ et φ' s'annulent en un même point est la fonction nulle.

Description de l'ensemble des solutions de $({\cal H})$:

Pour obtenir un système fondamental de solutions de (H), on en cherche des solutions de la forme $z: x \longrightarrow e^{rx}$ avec $r \in \mathbb{C}$. On est conduit à la résolution de l'équation

(E)
$$a r^2 + b r + c = 0$$

appelée équation caractéristique associée à (H).

Si r est une racine de (E), on peut obtenir la forme générale des solutions de (H) à l'aide de la méthode de variation de la constante en posant $z = u e^{rx}$.

On peut énoncer la règle suivante :

• (E) a deux racines distinctes r et s. En notant $z_1: x \to e^{rx}$ et $z_2: x \to e^{sx}$ alors (z_1, z_2) est un système fondamental de solutions de (H). La solution générale de (H) est donnée par

$$z: x \longrightarrow \lambda \, e^{rx} + \mu \, e^{sx} \quad \lambda, \mu \in \mathbb{C}$$

• (E) a une racine double r. En notant $z_1: x \to e^{rx}$ et $z_2: x \to x e^{rx}$ alors (z_1, z_2) est un système fondamental de solutions de (H). La solution générale de (H) est donnée par

$$z: x \longrightarrow (\lambda + \mu x) e^{sx} \quad \lambda, \mu \in \mathbb{C}$$

<u>Cas particulier important</u>: $a, b, c \in \mathbb{R}$ et avec des conditions initiales réelles, on cherche des solutions réelles.

 \bullet (E) a deux racines réelles distinctes r et s. La solution générale de (H) est donnée par

$$z: x \longrightarrow \lambda e^{rx} + \mu e^{sx} \quad \lambda, \mu \in \mathbb{R}$$

• (E) a une racine double réelle r. La solution générale de (H) est donnée par

$$z: x \longrightarrow (\lambda + \mu x) e^{sx} \quad \lambda, \mu \in \mathbb{R}$$

• (E) a deux racines complexes non réelles conjuguées r et s avec $r = \alpha + i\beta, (\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^*$. La solution générale de (H) est donnée par

$$z: x \longrightarrow (A\cos(\beta x) + B\sin(\beta x))e^{\alpha x}$$
 $A, B \in \mathbb{R}$

Cas particulier important : $f(x) = e^{\alpha x} P(x)$ avec $\alpha \in \mathbb{C}$ et P fonction polynôme (à coefficients dans \mathbb{C}).

On cherche une solution particulière ψ de (L) définie par $\psi(x)=e^{\alpha x}\,Q(x)$ où Q est une fonction polynôme :

- ou bien α n'est pas racine de (E): alors $\deg(Q) = \deg(P)$ et on identifie
- ou bien α est racine simple de (E): alors $\deg(Q) = \deg(P) + 1$ (choisir Q sans terme constant)
- ou bien α est racine double de (E): alors $\deg(Q) = \deg(P) + 2$ (Q est une "double primitive" de P/a)