Cinétique et catalyse

Agrégation 2020

Exemples de cinétique dans la nature et au quotidien

$$C(diam) = C(graph)$$

Quelques milliards d'années

$$H_2O_{2(aq)} = H_2O_{(l)} + 1/2 O_{2(g)}$$

Quelques jours

Instantané

Réaction lentes et rapides ?

•
$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)} + 2 SO_4^{2-}_{(aq)}$$
 $K^{\circ}(25^{\circ}C) = Qr_{\acute{e}q} = 10^{49}$

 $\bullet \qquad Ag^{+}_{(aq)} + I^{-}_{(aq)} = AgI_{(s)}$

Réactions thermodynamiquement favorables

Comment et à quelles vitesses se déroulent ces réactions ?

Expérience:

$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)} + 2 SO_4^{2-}_{(aq)}$$

 $Ag^{+}_{(aq)} + I^{-}_{(aq)} = AgI_{(s)}$

t=0s

15 mL de KI à 1mol/L + 10 mL de NaS₂O₈ à 10⁻³ mol/L

10mL de $AgNO_3$ à 10⁻¹ mol/L + 10 mL de KI à 10⁻¹ mol/L

Réaction lentes et rapides ?

•
$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)}^{-} + 2 SO_4^{2-}_{(aq)}$$

$$K^{\circ}(25^{\circ}C)=Qr_{\acute{e}q}=10^{49}$$

$$\bullet \qquad Ag^{+}_{(aq)} + I^{-}_{(aq)} = AgI_{(s)}$$

$$K^{\circ}(25^{\circ}C)=Qr_{\acute{e}q}=8,52.10^{17}$$

Réactions thermodynamiquement favorables

Comment et à quelles vitesses se déroulent ces réactions ?

Expérience:

$$2 I_{(aq)}^{-} + S_2 O_8^{2^{-}} = I_{2(aq)}^{-} + 2 SO_4^{2^{-}} = I_{2(aq)}^{-}$$

∆t=instantané

 $\Delta t=1min$

 $Ag^{+}_{(aq)} + I^{-}_{(aq)} = AgI_{(s)}$

15 mL de KI à 1mol/L + 10 mL de $\rm NaS_2O_8$ à 10 $^{-3}$ mol/L

10mL de AgNO₃ à 10⁻¹ mol/L + + 10 mL de KI à 10⁻¹ mol/L

Suivi d'une estérification par CCM

CCM: élution et révélation

Élution de la plaque

Révélation de la plaque CCM

Suivi cinétique de la réaction entre les ions iodures et peroxodisulfates

$$2 I_{(aq)}^{-} + S_2 O_8^{2}_{(aq)}^{-} = I_{2(aq)}^{-} + 2 SO_4^{2}_{(aq)}^{-}$$

• 5 mL de NaS₂O₈ à 10^{-3} mol/L ~ $n_0(S_2O_8^{2-})=5.10^{-6}$ mol

Cuve introduite dans le spectrophotomètre

Loi de Beer-Lambert: $A=\xi_{12}.I.[I_2]$

Spectre de l₂

Tableau d'avancement

	2 I ⁻ (aq)	$S_2O_8^{2-}_{(aq)} =$	I _{2(aq)} +	2 SO ₄ ²⁻ (aq)
Etat initial	(EXCES)	n_0	0	0
A l'instant t Avancement = x(t)	(EXCES)	n ₀ -ξ	ξ	2.ξ
A l'instant t final Avancement x _f	(EXCES)	$n_0^{-}\xi_f^{}=0$	$\xi_f = n_0$	2. ξ _f =2.n ₀

Détermination du temps de demi-réaction

Influence de la température sur une réaction

$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)}^{-} + 2 SO_4^{2-}_{(aq)}$$

Préparation du mélange réactionnel initial:

- Eau distillée (tube à essai à mi hauteur) 10mL
- 1mL de KI à 0,1 mol/L
- 1mL de K₂S₂O₈ à 0,1 mol/L

Influence de la température sur une réaction

$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)} + 2 SO_4^{2-}_{(aq)}$$

Préparation du mélange réactionnel initial:

- Eau distillée (tube à essai à mi hauteur) 10mL
- 1mL de KI à 0,1 mol/L
- 1mL de K₂S₂O₈ à 0,1 mol/L

Influence de la concentration

$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)}^{-} + 2 SO_4^{2-}_{(aq)}$$

- 15mL KI à 1mol/L
- 5 mLNaS₂O₈ à 10⁻² mol/L

- 15mL KI à 1mol/L
- $5 \text{ mL NaS}_2\text{O}_8 \text{ à } 10^{-3} \text{ mol/L}$

Influence de la concentration

$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)}^{-} + 2 SO_4^{2-}_{(aq)}$$

- 15mL KI à 1mol/L
- $_{2}$ 5 mLNaS₂O₈ à 10^{-2} mol/L

- 15mL KI à 1mol/L
- $_{\odot}$ 5 mL NaS $_{2}$ O $_{8}$ à 10 $^{-3}$ mol/L

Pots catalytique

❖ 2 NO(g) + 2CO(g)
$$\xrightarrow{\text{Rhodium}}$$
 N₂(g) + 2 CO₂(g) palladium

❖ 2 CO(g) + O₂(g) $\xrightarrow{\text{Rhodium}}$ 2CO₂(g) ou platine

Les différentes catalyses

	Homogène	Hétérogène	Enzymatique
Avantages	Toutes les molécules du catalyseur sont disponibles	Catalyseur facilement récupérable et réutilisable	 Coûts plus bas Peu de rejet Très efficace dans les bonnes conditions de pH et température Sélective Catalyseur biosourcé
Inconvénients	Catalyseur difficilement récupérable	Seule la surface du catalyseur est disponible Coût (métaux rares)	Efficacité fortement dépendante du milieuSélectif