

AMENDMENTS TO THE CLAIMS

The listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims

1. (Currently Amended) A method of designing a molding die for molding an optical device having a desirable form optimized so as to yield a desirable wavefront aberration by using a plurality of optical parameters;

the method comprising the steps of:

designing by using at least the plurality of optical parameters, a temporary optical device for optimizing a form so as to exhibit the desirable wavefront aberration; [[and]]

making, according to the optimized form of the optical device, a temporary molding die for molding the optical device;

molding a first temporary optical device by using the temporary molding die;

measuring a wavefront aberration of thus molded first temporary optical device;

calculating a correction wavefront aberration compensating for the wavefront aberration;

designing by using at least the plurality of optical parameters a second temporary optical device for optimizing a form so as to exhibit the correction wavefront aberration; and

designing, according to the optimized form of the second temporary optical device, a normal molding die for molding a normal optical device.

2. (Original) A method according to claim 1, further comprising the steps of:
molding the normal optical device by using the normal molding die;
measuring a wavefront aberration of thus molded optical device; and
recalculating the correction wavefront aberration when the wavefront aberration has a value greater than a predetermined reference value, and repeating subsequent steps until the value of the correction wavefront aberration becomes the reference value or less.
3. (Original) A method according to claim 1, wherein the wavefront aberration and correction wavefront aberration are measured by using an interferometer apparatus for measuring a transmitted wavefront.
4. (Original) A method according to claim 1, wherein a plurality of wavefront aberration amounts are measured in a plurality of divided areas, respectively, and respective correction wavefront aberration amounts are calculated for thus measured plurality of wavefront aberration amounts.
5. (Original) A method according to claim 1, wherein at least one surface of the optical device is an aspheric surface.
6. (Original) A method according to claim 1, wherein the optical device is a single lens, used for an optical pickup objective lens, having aspheric surfaces on both sides.

7. (Original) A method according to claim 1, wherein the molding die is used for press molding or injection molding.