

Skew-Growth Curves

Raymond Pearl; Lowell J. Reed

Proceedings of the National Academy of Sciences of the United States of America, Vol. 11, No. 1. (Jan. 15, 1925), pp. 16-22.

Stable URL:

http://links.jstor.org/sici?sici=0027-8424%2819250115%2911%3A1%3C16%3ASC%3E2.0.CO%3B2-G

Proceedings of the National Academy of Sciences of the United States of America is currently published by National Academy of Sciences.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/nas.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

7-day test in tension were 210 pounds the predicted value for the 28-day test would be 275 pounds or 50 per cent of the 28-day tests should be above 275 pounds. Seventy-five per cent of them should be above 275 pounds minus 29 pounds or above 246 pounds. In like manner the limit necessary to include 90 per cent or 99 per cent of the tests may be found. Thus in the illustrated case 90 per cent would be above 275 pounds minus 55 pounds or 230 pounds, 99 per cent of the 28-day tests should be above 275 — 100 pounds or 175 pounds. The results for tensile ratios, compression and compressive ratios are similarly obtained.

TABLE III

28-Day Test Predictions Necessary to Have the Given Percentage of Actual 28-Day Test Results above the Predicted Value, the Prediction Being Made from the 7-Day Test Results

Percentage of actual 28-day tests above predicted value						
KIND OF TEST	50	75		90	99	
Tension (pounds)	Predicted					
	value	—29 роз	ınds —55	pounds	100	pounds
Tensile ratio	Predicted					
	value	-11.7%	22.	6%	40.8	3%
Compression	Predicted					
(pounds)	value	416 pour	nds801	pounds	-1447	pounds
Compressive ratio	Predicted					
	value	-13.5%	26.	1%	-47 .1	۱%

In way of conclusion it may be said that the results of this study indicate that the factors determining the strength of mortar at the end of the 7-day period of curing compared with those determining strength at the end of the 28-day period of curing are sufficiently alike to make possible the prediction of the 28-day breaking strength from the 7-day breaking strength. The error of such a prediction is on the whole not excessive.

SKEW-GROWTH CURVES¹

BY RAYMOND PEARL AND LOWELL J. REED

SCHOOL OF HYGIENE AND PUBLIC HEALTH, JOHNS HOPKINS UNIVERSITY

Read before the Academy November 12, 1924

In an earlier paper² we have pointed out that if, in the general growth curve

$$y = \frac{k}{1 + me^{a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n}},$$
 (1)

the exponent of e be cut off at the cubic term, appropriate values of the constants will give a single cycle growth curve which is unsymmetrical or skew about the point of inflection. We gave by way of illustration a theoretical case of such a skew-growth curve, but have not hitherto published any ex-

ample of the actual fitting of this curve to observational data on growth asymmetrically distributed about the point of inflection. The wide applicability of the general curve (1) to symmetrical population growth has been demonstrated.³ It seems desirable now to show the ability of the curve to deal with phenomena of skew growth. Hitherto observational growth series which were plainly skew have been graduated (if graduated at all) either by a process of fitting two or more curves to different parts of the observed

TABLE I
GROWTH OF MALE ALBINO RAT. (DONALDSON'S DATA)

AGE IN DAYS	OBSERVED WEIGHT IN GRAMS	CALCULATED WEIGHT BY OUR EQUA- TION I	AGE IN DAYS	OBSERVED WEIGHT IN GRAMS	CALCULATED WEIGHT BY OUR EQUA- TION I
10	13.5	14.1	70	106.3	103.8
11	13.3	14.5	73	113.8	110.7
12	14.8	15.0	76	121.3	117.6
13	15.3	15.5	79	128.2	124.3
14	15.2	16.1	82	135.0	130.9
15	16.5	16.7	85	143.8	137.4
17	17.8	17.9	88	148.4	143.7
19	19.5	19.3	92	152.3	151.7
21	21.2	20.8	97	160.0	161.2
23	22.9	22.4	102	168.8	170.0
25	25.3	24.2	107	177.6	178.1
27	27.4	26.1	112	183.8	185.5
29	29.5	28.2	117	191.4	192.2
31	31.8	30.5	124	197.3	200.6
34	34.9	33.2	131	202.5	208.1
37	37.8	38.3	138	209.7	214.5
40	42.2	42.7	143	218.3	218.6
43	46.3	48.6	150	225.4	223.7
46	50.5	52.8	157	227.0	228.2
49	56.7	58.3	164	231.4	232.1
52	62.5	64.2	171	235.8	235.7
55	68.5	70.4	178	239.4	238.9
58	73.9	76.8	185	239.8	241.9
61	81.7	83.4	216	252.9	252.7
64	89.1	90.1	256	265.4	264.4
67	99.3	97.0	365	279.0	279.6
			Root mean		
			square de- viation		4.96

series and then welding the separate curves together where they overlap, or by attempting to make a symmetrical curve fit obviously skew material. One or the other of these plans has been followed by Hatai on Donaldson's data, 4 and by Robertson⁵ variously. Aside from the mathematical inelegance of such procedures, in the particular case of skew-growth data the fits obtained have in some cases been grotesquely poor.

We present here four examples of skew-growth curves fitted with the cubic form of (1). These are: (a) The growth in weight of male albino rats from 10 days of age on (data from Donaldson, *loc. cit.*, pp. 108–109); (b) the growth of female albino rats from 10 days of age on (data from

TABLE II	
Growth of Female Albino Rat.	(Donaldson's Data)

AGE IN DAYS	OBSERVED WEIGHT IN GRAMS	CALCULATED WEIGHT BY OUR EQUA- TION II	AGE IN DAYS	OBSERVED WEIGHT IN GRAMS	CALCULATED WEIGHT BY OUR EQUA- TION II
10	13.0	14.0	70	99.8	99.8
11	12.8	14.5	73	105.6	105.6
12	15.1	15.0	76	110.4	111.2
13	15.1	15.5	79	118.8	116.7
14	15.6	16.1	82	124.7	122.0
15	17.7	16.7	85	131.5	127.0
17	19.2	18.0	88	136.0	131.8
19	20.6	19.4	92	139.8	137.9
21	22.6	21.0	97	146.3	144.8
23	24.9	22.7	102	153.1	151.2
25	27.4	24.5	107	155.8	156.9
27	30.0	26.5	112	161.4	162.0
29	31.4	28.7	117	168.0	166.6
31	32.9	31.0	124	172.6	172.2
34	35.7	34.8	131	181.0	177.0
37	39.5	38.9	138	185.0	181.1
40	43.7	43.4	143	186.6	183.8
43	47.9	48.3	150	188.2	187.0
46	52.0	53.4	157	188.0	189.9
49	57.7	58.8	164	189.5	192.4
52	62.9	64.4	171	192.2	194.7
55	68.4	70.1	178	197.0	196.7
58	74.6	76.0	185	200.0	198.6
61	78.4	82.0	192	202.2	200.5
64	85.8	88.0	365	226.4	226.9
67	96.0	93.9	Root mean		
			square de- viation	.,.	2.022

Donaldson, *loc. cit.*, pp. 110–111); (c) the growth in weight of *Cucurbita pepo* (Anderson's data from Robertson, *loc. cit.*, p. 74), (d) the growth in length of the regenerating tail of the tadpole (data from Durbin⁶)

The equations in the several cases are:

I. Male Rats.
$$y = 7 + \frac{273}{1 + e^{4.3204 - 7.2196x + 30.0878x^2 - 0.5291x^2}}$$
, where $y =$ weight in grams, and $x =$ age in hundred day units.

II. Female Rats.
$$y = 7 + \frac{220}{1 + e^{4.1426 - 7.6161x + 3.5065x^2 - 0.6262x^2}}$$
, y and x in same units as above.

III. Cucurbita pepo.
$$y=174+\frac{5190}{1+e^{10.3148-16.3399x+8.1028x^2-1.6667x^2}}$$
, where $y=$ weight in grams, and $x=$ age in ten day units.

IV. Tadpole tails.
$$y = \frac{9.60}{1 + e^{4.4715 - 7.2829x + 3.3833x^2 - 0.6370x^3}},$$
 where $y = \text{length of regenerated tail in number and } x = \text{age in ten day units.}$

The observed values and those calculated from the equations above set forth are exhibited in tables I to IV inclusive.

DAYS	OBSERVED WEIGHT IN GRAMS	CALCULATED WEIGHT BY OUR EQUA- TION III	DAYS	OBSERVED WEIGHT IN GRAMS	CALCULATED WEIGHT BY OUR EQUA- TION III
5	267	267	16	4720	4680
6	443	399	17	4864	4850
7	658	645	18	4980	4984
8	961	1044	19	5114	5089
9	1498	1586	20	5176	5172
10	2200	2210	21	5242	5236
11	2920	2829	22	5298	5282
12	3366	3378	23	5352	5315
13	3758	3829	24	5360	5337
14	4092	4186	25	5366	5350
15	4488	4464	Root mean		
			square de- viation	•••	46.1

TABLE III
GROWTH OF CUCURBITA PEPO. (DATA FROM ROBERTSON)

The observations and fitted curves are shown graphically in figures 1 to 4 inclusive.

To give a concrete idea of the degree of skewness in these curves table V is presented.

The figures in the last column of the table are the significant ones. If the curves were all symmetrical their values would all be 50 per cent. In fact the highest is 38.4 and the lowest 32.5. They indicate that the departure of these curves from the symmetrical condition is substantial.

The results exhibited in the tables and graphs require little comment. All of the curves are obviously skew. The graduations are all excellent. They demonstrate the ability of our generalized growth curve to deal

Growth of male albino rats (Donaldson's data). The circles give the observations in this and the following diagrams. The smooth curve is the graph of our equation I. The x in this and the following curves denotes the point of inflection.

Growth of female albino rats (Donaldson's data). The smooth curve is the graph of our equation II.

Growth of Cucurbita pepo (data from Robertson). The smooth curve is the graph of our equation III.

Regeneration of tadpole tail (Durbin's data). The smooth curve is the graph of our equation IV.

adequately with unsymmetrical growth phenomena as well as with symmetrical. This is all that we desire to demonstrate in this paper.

TABLE IV	
REGENERATION OF TADPOLE TAIL.	(Durbin's Data)

DAYS	OBSERVED RE- GENERATION IN NUMBER	CALCULATED RE- GENERATION FROM OUR EQUA- TION IV		OBSERVED REGENERA- TION IN NUMBER	CALCULATED RE- GENERATION FROM OUR EQUA- TION IV
0		0.11	13		6.37
1		0.22	14	6.60	6.71
2		0.40	15		7.00
3	0.68	0.68	17	7.60	7.48
4		1.09	19		7.88
5		1.62	23		8.58
6		2.25	27		9.17
7	2.95	2.95	29	9.68	9.38
8		3.66	31		9,50
9		4.34	33	9.20	9.57
10	5.00	4.96	37	9.30	9.60
11		5.50	41	9.60	9.60
12		5.97	51	9.40	9.60
			Root mean square de- viation		0.196

TABLE V SKEWNESS OF GROWTH CURVES

	POSITION OF POINT OF INFLECTION			
CURVE	ON x AXIS	ON y AXIS	PER CENT OF DISTANCE FROM LOWER TO UPPER ASYMPTOTE	
I. Male rats	70.0	103.5	35.3	
II. Female rats	62.3	84.5	35.2	
III. Cucurbita pepo	9.9	2168.0	38.4	
IV. Regeneration	7.3	3.12	32.5	

¹ Papers from the Department of Biometry and Vital Statistics, School of Hygiene and Public Health, Johns Hopkins University, No. 111.

² Pearl, R., and Reed, L. J. On the mathematical theory of population growth. *Metron*, **3**, pp. 6-19, 1923.

³ Pearl, R. Studies in Human Biology. Baltimore (Williams & Wilkins Co.), 1924.

⁴ Donaldson, H. H. The Rat. Philadelphia (Wistar Institute), 1915.

⁵ Robertson, T. B. *The Chemical Basis of Growth and Senescence*. Philadelphia (J. B. Lippincott Co.), 1923.

⁶ Durbin, M. L. An analysis of the rate of regeneration throughout the regenerative process. *J. Expt. Zool.* 7, pp. 397-420, 1909.