1 Bewegungsplanung bei unvollständiger Information

1.1 Ausweg aus einem Labyrinth

1.1.1 Pledge-Strategie

Input: polygonales Labyrinth L, Roboter R, Drehwinkel $\varphi \in \mathbb{R}$ Output: Ausweg aus Labyrinth falls möglich, ansonsten Endlosschleife · While $R \in L$

gehe vorwärts, bis $R \notin L$ oder Wandkontakt gehe links der Wand, bis $R \notin L$ oder $\varphi = 0$

1.2 Zum Ziel in unbekannter Umgebung

1.2.1 Wanze (Bug)

Input:

- · P_1, \dots, P_n disj. einf. zsh. endl. poly. Gebiete aus \mathbb{R}^2
- $\mathbf{s}, \mathbf{z} \in \mathbb{R}^2 \setminus \bigcup_{i=1}^n P_i$ R Roboter mit Position \mathbf{r} Output:
- · While $\mathbf{r} \neq \mathbf{z}$ laufe in Richtung \mathbf{z} bis $\mathbf{r} = \mathbf{z}$ oder $\exists i : r \in P_i$ If $\mathbf{r} \neq \mathbf{z}$ umlaufe P_i und suche ein $\mathbf{q} \in \operatorname{arg\,min}_{\mathbf{x} \in P_i} ||\mathbf{x} - \mathbf{z}||_2$ gehe zu **q**

terminiert.

Universales Steuerwort: Führt für alle Startpunkte zum geg. Ziel. (ungültige Befehle werden ignoriert)

1.3 Behälterproblem (bin packing)

Maximale Füllmenge h, verteile Zahlenmenge auf möglichst wenige Behälter. NP-hart.

First fit .

- $\begin{array}{c} \cdot B_1, \dots, B_m \leftarrow \emptyset \\ \cdot \text{ For } i = 1, \dots, m \\ \text{ Bestimme kleinstes j mit} \end{array}$ $b_i + \sum_{b \in B_j} b \le h$ Füge b_i zu B_j hinzu

2-kompetitiv

Falls $k_A \leq a + ck_{min}$ für alle Eingaben, heißt A c-kompetitiv.

Türsuche ·

- · Wähle Erkundungstiefen $f_i > 0$ für $i \in \mathbb{N}$
- · For i := 1 to ∞ (stoppe, wenn Tür gefunden) gehe f_i Meter die Wand entlang und zurück wechsle Laufrichtung

 $d:=\mathrm{dist}(\mathbf{s},\mathrm{T\ddot{u}r})=f_n+\varepsilon\in$ $(f_n, f_{n+1}]$ Legt $L = 2\sum_{i=0}^{n} f_i + d$ zurück $(oder^{n+1})$ $L \in \Theta(n^2) = \Theta(d^2)$ Bestmöglich: 9-kompetetitiv (z.B. für $f_i = 2^i$)

1.4 Sternsuche

Gleich Türsuche, nur mit mehr als zwei Wänden (Halbgeraden). Bestmöglich: Für $f_i = (\frac{m}{m-1})^i$ ist Stern suche c-kompetitiv mit $c:=2m(\frac{m}{m-1})^{m-1}+1<2me+1$

1.5 Suche in Polygonen

Roboter R sucht Weg in polygonalem Gebiet P mit n Ecken von s nach z.

Weglängen: gefunden: l, kürzest: dStrategie existiert mit $\frac{l}{d} \in O(n)$ Baum der kürzesten Wege (BkW) (Blätter sind Polygonecken)

2 Konvexe Hüllen 2.1 Dualität

 $\mathbf{x} := \left[\; 1 \; \bar{\mathbf{x}} \; \right], \bar{\mathbf{x}} \in \mathbb{R}^d$ bilden affinen Raum A^d .

 $\mathbf{u}^t\mathbf{x} := \left[\begin{smallmatrix} u_0 & u_1 & \dots & u_d \end{smallmatrix} \right] \cdot \left[\begin{smallmatrix} 1 & x_1 & \vdots & x_d \end{smallmatrix} \right] \geq 0$ **u** bezeichnet Halbraumvektor und \mathbf{x} einen seiner Punkte Nur betrachtet mit $(1 \quad 0 \quad \dots \quad 0)^t$ im Inneren, d.h. $u_0 > 0$, normiert $u_0 = 1$.

 \mathbf{u}^* ist dual zu \mathbf{u} und bezeichnet den Halbraum.

 $\mathbf{x} \in \mathbf{u}^* \Leftrightarrow \mathbf{u} \in \mathbf{x}^* \text{ (Dualität)}$

2.2 Konvexe Mengen

Verbindungsstrecke

 $\mathbf{x} := \mathbf{a}(1-t) + \mathbf{b}t, \quad t \in [0,1] \text{ wird}$ genannt ab.

 $M \subset A$ ist konvex wenn sie zu je zwei ihrer Punkte auch die Verbingungsstrecke enthält. Konvexe Hülle [M] von M ist Schnitt aller konvexen Obermengen.

Ist $M \subset A$ bilden alle Halbräume, die M enthalten, eine konvexe Menge im Dualraum.

Ist $M^* \subset A^*$ eine Halbraummenge, bilden alle Punkte, die in allen $m^* \in M^*$ enthalten sind, eine konvexe Menge im Primalraum A.

2.3 Konvexe Polyeder *P*

ist Schnitt endlich vieler Halbräume.

Rand ∂P ; Facetten darauf. Jede Facectte liegt auf Rand eines Halbraums (FHR)

P ist konvexe Hülle seiner Eckenmenge

Ist P ein konvexes Polyeder mit den Ecken $\mathbf{p}_1, \dots, \mathbf{p}_e$ und den FHRen $\mathbf{u}_1^*, \dots, \mathbf{u}_f^*$, hat die Menge $U^* := \{\mathbf{u}^* | \mathbf{u}^* \supset P\} \subset A^* \text{ die Ecken}$ $\mathbf{w}_1^*,\dots,\mathbf{w}_f^*$ und die FHRe $\mathbf{p}_1,\dots,\mathbf{p}_e$. Dual ausgedrückt heißt das, dass die Menge $U:=\{\mathbf{u}|\mathbf{u}^*\supset P\}\stackrel{\smile}{\subset} A$ die Ecken \mathbf{w}_i und die FHRe \mathbf{p}_i^* hat. Polyeder P und $U\subset A$ heißen dual zueinander.

2.4 Euler: Knoten, Kanten, Facetten

v Knoten, e Kanten, f Seiten Eulers Formel: v - e + f = 2

2.5 Datenstruktur für Netze

Für jede Ecke \mathbf{p} :

- · Koordinaten von **p**
- \cdot Liste von Zeigerpaaren: die ersten Zeiger im Gegenuhrzeigersinn auf alle Nachbarn von ${\bf p}$ Sind **p**, **q**, **r** im GUS geordnete Nachbarn einer Facette und weist der 1. Zeiger eines Paares auf q, zeigt der 2. Zeiger indirekt auf ${\bf r}$. Er weist auf das Zeigerpaar von q

2.6 Konvexe Hülle

 $\mathit{Input:}\ P := (\mathbf{p}_1, \dots, \mathbf{p}_n) \subset A^3$ Output: [P]

- 1. Verschiebe P sodass Ursprung in P liegt
- $2. \ U_4 \leftarrow \mathbf{p}_1^* \cap \ldots \cap \mathbf{p}_4^*$
- 3. For i = 5, ..., n
 - · (falls $U_4 \subset \mathbf{p}_i^*$, markiere \mathbf{p}_i als gelöscht
 - · sonst verknüpfe **p**_i bidirektional mit einem Knoten von $U_4 \notin \mathbf{p}_i^*$
- 4. For i = 5, ..., n
 - $\cdot \ U_i \leftarrow U_{i-1} \cap \mathbf{p}_i^*$
- 5. Dualisiere, verschiebe und gib $\bigcap_{\mathbf{u}\in U}\mathbf{u}^*-\mathbf{v}$ aus

3 Distanzprobleme 3.1 Voronoi-Gebiet

eines der Punkte \mathbf{p}_i ist $\begin{aligned} &V_i = \{\mathbf{x} \in \mathbb{R}^2 | \forall j = 1, ..., n: \\ &||\mathbf{x} - \mathbf{p}_i||_2 \leq ||\mathbf{x} - \mathbf{p}_j||_2 \} \end{aligned}$ V_i ist konvex da Schnitt der Halbebenen.

Voroni-Kreis (Punkte des Schnitts von drei Voronoi-Gebieten) ist leer.

3.2 Delaunay-Triangulierung

Delaunay-Triangulierung D(P)einer Punktemenge P hat Kantenmenge $\{\mathbf{p}_i\mathbf{p}_j|V_i\cap V_j \text{ ist }$ Kante des Voronoi-Diagramms V(P)}. Ist der zu V(P) duale Graph. Die Gebiete von D(P) sind

disjunkte Dreiecke und zerlegen die

3.2.1 Eigenschaften

konvexe Hülle [P]

Umkreise der Dreiecke sind leer Paraboloid-Eigenschaft:

Sei $Z(x, y) = x^2 + y^2$. Projiziert man den unteren Teil der

konvexen Hülle $[\{\begin{pmatrix} \mathbf{p}_i\\ Z(\mathbf{p}_i) \end{pmatrix}|i=1,\ldots,n\}]$ orthogonal auf die xy-Ebene, erhält

man D(P)D(P) kann mit Konvexe Hülle und

mittlerem Aufwand $O(n \log n)$ berechnet Werden

Kanten einer Triangulierung von Q sind konvex (Tal) oder konkav (Berg), ersetze sukzessiv in konkave durch konvexe Kanten Winkeleigenschaft: Der kleinste Winkel in jedem Viereck ist größer bei DT als bei jeder anderen

Triangulierung \mathbf{jeder} Punkt \mathbf{p}_i ist mit nächstem Nachabarn durch Kante in D(P)verbunden \rightarrow nächste Nachbarn aller p_i können in O(n) bestimmt

minimale Spannbäume von P liegen auf D(P) (findbar mit Kruskal (greedy))

werden

Rundweg um minimalen Spannbaum ist 2-kompetitiv zu kürzestem Rundweg.

4 Stationäre Unterteilung für Kurven

4.1 Kardinale Splines

$$\begin{split} N^0(u) &:= \begin{cases} 1, & u \in [0,1) \\ 0, & sonst \end{cases} \\ N^n(u) &:= \int_{u-1}^u N^{n-1}(t) dt \\ N^n(u) & \begin{cases} = 0, & u \notin [0,n+1) \\ > 0, & u \in (0,n+1) \end{cases} \end{split}$$

4.2 Symbole Dopplungsmatrix: $\alpha_0(z) = 1 + z$

Chaikin: $\alpha_1(z) = \frac{1}{2}(1+z)^2$ $Unterteilungsgleic\bar{h}ung$: $\alpha(z) * c(z^2) = b(z)$ Differenzenschema zu einem $\alpha(z)$: $\beta(z) = \frac{\alpha(z)}{1+z}$ (Polynomdivision). Existiert nur wenn $\alpha(z)$ den Faktor (1+z) hat, bzw. wenn $\alpha(-1) =$ $\sum_{j\in\mathbb{Z}}\alpha_{2j} - \sum_{j\in\mathbb{Z}}\alpha_{2j+1} = 0$ Für konvergentes $\alpha(z)$ gilt $\sum_{j\in\mathbb{Z}}\alpha_{2j}=\sum_{j\in\mathbb{Z}}\alpha_{2j+1}=1$ Ableitungsschema: $2 * \alpha(z)/(1+z)$ Existiert das r-te Ableitungsschema von und ist konvergent, konvergieren alle durch erzeugten Folgen $(c^m)_{m\in\mathbb{N}}$ gegen r-mal stetig differenzierbare Funktionen. Unterteilungsschema konvergent \leftrightarrow Differenzenschema Nullschema

konvergent: für jede Maske ist die

Mittelungsmatrix: (z) = (1+z)/2

Lane-Riesenfeld-Algorithmus:

5 Unterteilung für Flächen

Summe der Gewichte 1

Matrix $C = \mathbf{c}_{\mathbb{Z}^2}$ hat das Symbol $\mathbf{c}(\mathbf{x}) := \mathbf{c}(x, y)$ $:= \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \mathbf{c}_{ij} x^i y^j$ $=: \sum_{\mathbf{i} \in \mathbb{Z}^2} \mathbf{c_i} \mathbf{x^i}$ Seien U,V Unterteilungsalgorithmen mit Symbol $\alpha(x), \beta(x)$ Das Unterteilte Netz $B := \mathbf{b}_{\mathbb{Z}^2} := UCV^t$ hat das Symbol $\mathbf{b}(x,y)^{\mathbb{Z}} := \alpha(x)\mathbf{c}(x^2,y^2)\beta(y)$ $\gamma(x,y) := \alpha(x)\beta(y)$ ist das Symbol des Tepus(U, V) mit der Unterteilungsgleichung $\mathbf{b}(\mathbf{x}) =$ $\gamma(\mathbf{x})\mathbf{c}(\mathbf{x}^2)$ $\mathbf{\bar{b}_i} = \sum_{\mathbf{k} \in \mathbb{Z}^2} \gamma_{\mathbf{i}-2\mathbf{k}} \mathbf{c_k}$ $\mathbf{x}^2 = (x^2, y^2)!$ $Ver feinerungsschema\ (U_1,U_1):$ $\frac{1}{4}[1 \times x^2]$ $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ $\cdot [1 \ 2 \ 1]$ $\begin{bmatrix} 1\\y\\y^2 \end{bmatrix}$

6 Wavelets 1D

$$\begin{array}{l} \text{geg: } s(u) = \sum\limits_{i=0}^{2^m-1} c_i^m * N_i^0(2^m * u) \\ \text{oder } s = \\ \sum\limits_{i=0}^{2^{m-1}-1} (c_i^{m-1}B_i^{m-1} + d_i^{m-1}W_i^{m-1}) \end{array}$$

Zerlegung ·

For k = m-1, ..., 0
For i = 0, ...,
$$2^k - 1$$

 $c_i^k = 0.5 * (c_{2i}^{k+1} + c_{2i+1}^{k+1})$
 $d_i^k = 0.5 *$
 $d_i^k = 0.5 *$
 $d_i^k = 0.5 *$
 $d_i^k = 0.5 *$

Ausgabe:
$$s = c_0^0 * B_0^0 + \sum_{i=0}^{2^0-1} d_i^0 * W_i^0 + \ldots + \sum_{i=0}^{2^{m-1}-1} d_i^{m-1} * W_i^{m-1} \\ B_i^k = N_i^0(2^k * u)$$

Rekonstruktion ·

For
$$i = 0...2^k - 1$$

For $i = 0...2^k - 1$
 $c_{2i}^{k+1} = c_i^k + d_i^k$
 $c_{2i}^{k+1} = c_i^k + d_i^k$
 $c_{2i}^{k+1} = c_i^k - c_i^k$

7 Wavelets 2D

$$\begin{array}{l} s(x,y) = \\ \sum i,j = 0^{2^m-1} c^m_{ij} * B^m_i(x) * B^m_j(y) \end{array}$$

Zerlegung^2 (Spalte erster Index!)

$$\begin{split} \cdot \text{ F\"ur k} &= \text{m-1...0} \\ \text{F\"ur i,j} &= 0...2^k - 1 \\ c^k_{ij} &= \\ 0.25*(c^{k+1}_{2i,2j} + c^{k+1}_{2i+1,2j} + \\ c^{k+1}_{2i,2j+1} + c^{k+1}_{2i+1,2j+1}) \\ d^k_{ij} &= 0.25*(+-+-) \\ e^k_{ij} &= 0.25*(+-+-) \\ f^k_{ij} &= 0.25*(+-+-) \end{split}$$

Beachte auch: in der nächsten Matrix sind die c_{ij} nur in den 4er Feldern jeweils links oben! Rekonstruktion² analog zu Zerlegung², jedoch mit Faktor 4 statt 0.25 und c, d, e, f, ergebin jeweils (2i,2j), (2i+1,2j) usw.

8 Flussmaximierung

Flussnetzwerk F := (G = $(V,E), q \in V, s \in V, k: V^2 \to \mathbb{R}_{\geq 0})$ Graph zusammenhängend (für jeden Knoten ex. Weg von q zu s), $|E| \ge |V| - 1$ Fluss $f: V^2 \to \mathbb{R}$ mit $f \leq k$ $\begin{array}{l} \forall x,y \in V: f(x,y) = -f(y,x) \\ \forall x \in V \setminus \{q,s\}: \sum\limits_{y \in V} f(x,V) := \\ \sum\limits_{y \in V} f(x,y) = 0 \end{array}$ Residual graph $G_f := (V, E_f :=$ $\{e \in V^2 | f(e) < k(e) \}$ Residualnetz $\boldsymbol{F}_f := (\boldsymbol{G}_f, \boldsymbol{q}, \boldsymbol{s}, \boldsymbol{k}_f := \boldsymbol{k} - f)$

8.1 Methoden

8.1.1 Ford-Fulkerson (naiv)

solange es einen Weg $q \rightsquigarrow s$ in G_f gibt, erhöhe f maximal über diesen Weg.

8.1.2 Edmonds-Karp

=FF, erhöhen immer längs eines kürzesten Pfades in G_f

8.1.3 Präfluss-Pusch

Präfluss-Eigenschaft Fluss mit Rein-Raus >= 0

Höhenfunktion h(q) = |V|, h(s)= 0, (x, y) in E_f: h(x) - h(y)<=1\$

Push(x,y) schiebe mögliches Maximum (ü und k beachten!) über Kante

Pushbar(x,y) $x \in V \setminus \{q, s\}$ und h(x) - h(y) = 1 und $\ddot{\mathbf{u}}(x) > 0$ und $(x,y) \in E_f$

Lift(x) $\begin{aligned} h(x) &\leftarrow 1 + \min_{(x,\,y) \in E_f} h(y) \\ \mathbf{Liftbar(x)} \ \ x \in V \setminus \{q,s\} \ \text{und} \end{aligned}$ $\ddot{\mathbf{u}}(x) > 0$ und $h(x) \leq \min_{(x,y) \in E_f} h(x)$

Präfluss-Push: ·

· h(x) ← if x = q then |V| else 0 $f(x,y) \leftarrow \text{if } x = 0$ q then k(x, y) else 0

8.1.4 An-Die-Spitze Leere(x) ·

$$\begin{split} \cdot \text{ while } \ddot{\mathbf{u}}(x) &> 0 \\ \text{ if } i_x &\leq Grad(x) \\ \text{ if } \text{ pushbar}(x, n_x(i_x)) : \\ \text{ push}(x, n_x(i_x)) \\ \text{ sonst: } i_x &+= 1 \\ \text{ else } \\ \text{ Lift}(\mathbf{x}), i_x &\leftarrow 1 \end{split}$$

L ist Liste aller $x \in V \setminus \{q, s\}$ mit x vor y falls pushbar(x,y) $n_x(i) \quad (1 \le i \le Grad(x)) \text{ sind }$ Nachbarn von x (auch Gegenrichtung) i_x ist Zähler (alle $n_x(i)$ mit $i \leq i_x$ nicht pushbar)

An die Spitze · Initialisiere f und h wie bei Präfluss-Push

- $\forall x \in V: i_x \leftarrow 1$
- · Generiere L
- $\cdot x \leftarrow \text{Kopf}(L)$ · while $x \neq \text{NIL}$
- Leere(x) Falls $h_{alt} < h(x)$, setze x an Spitze von L
 - $x \leftarrow \text{Nachfolger von x in L}$

9 Zuordnungsprobleme 9.1 Paaren in allgemeinen Graphen

Alternierender Weg ist maximal, wenn er nicht Teil eines längeren alternierenden Weges ist.

→ Maximale Paarung kann durch sukzessive Vergrößerung gefunden werden

9.2 Berechnung vergrößender Wege

Vergrößernder Weg · Input: G und P, Output: Vergrößernder Weg für P

- $h(x) \leftarrow 0$ wenn x frei, -1 wenn x gebunden
- Solange kein vergrößernder Pfad gefunden und gibt unutersuchte Kante $\langle x, y \rangle$ mit $h(x) \in 2\mathbb{N}_0$
- \cdot if h(y) = -1unwichtig

9.3 Maximal gewichtete Paarungen

Berechnung möglich in $O(|V|^3)$ bzw. $O(|V| \cdot |E| \log |V|)$

10 Minimale Schnitte

- $\cdot \ \bar{G}:=(V,\bar{E}), \bar{E}:=\{(x,y)|\langle y,x\rangle=$
- $\begin{aligned} &\langle x,y\rangle \in E \\ &\cdot k: V^2 \to \mathbb{R}_{\geq 0}, k(x,y) \coloneqq \end{aligned}$ if $(\langle x, y \rangle \in$
- E) then $\gamma(\langle x, y \rangle)$ else 0

 $x, z \in V$ beliebig

Berechne maximalen Fluss $\to A := \{y \mid \exists \text{ Pfad } x \leadsto y \text{ in } \bar{G}_f\}$ und $B := V \setminus A$ bilden minimalen xz-Schnitt $(x \in A, z \in B)$ Gewicht des Schnitts = Wert des

kleinster xz-Schnitt in G lässt sich

mit Flussmaximierung in $O(|V|^4)$ berechnen

(es existieren Algorithmen in $O(|V|^2 \log |V| + |V||E|))$

10.1 Zufällige Kontraktion

qqf. todo

Monte-Carlo-Algorithmus =stochastischer Algorithmus, kann falsche Ergebnisse Liefern Las-Vegas-Algorithmus = stoch.Algo., immer richtig

10.2 Rekursive Kontraktion IV Optimierungsalgorithmen

11 Kleinste Kugeln

Für jede Punktmenge P ist die kleinste Kugel $K(P) \supset P$ eindeutig.

11.1 Algorithmus von Welzl

K(P,R) ist Kugel die P enthält und R auf der Oberfläche hat

Welzl · Input: $P, R \subset \mathbb{R}^d$

K(P,R) exist., P,R endlich · if $P = \emptyset$ or |R| = d + 1 $C \leftarrow K(R)$ · else wähle $\mathbf{p} \in P$ zufällig $\mathbf{C} \leftarrow \mathrm{Welzl}(P \setminus \{\mathbf{p}\}, R)$ if $\mathbf{p} \notin C$ $C \leftarrow \text{Welzl}(P \setminus \{\mathbf{p}\}, R \cup \{\mathbf{p}\})$ · Gib C aus

12 Lineare **Programmierung**

12.1 Lineare Programme $\begin{array}{l} \text{LP ist } z(\mathbf{x}) \coloneqq \mathbf{z}\mathbf{x} = \max!, \ A\mathbf{x} \geq \mathbf{a}, \\ \text{wobei } \mathbf{z}, \mathbf{x} \in \mathbb{R}^d, A \in \mathbb{R}^{n \times d}, \mathbf{a} \in \mathbb{R}^n, \end{array}$

und $\mathbf{z}\mathbf{x} := \mathbf{z}^t\mathbf{x}$ d ist die Dimension des linearen

Programms. Die Ungleichungen $A\mathbf{x} \geq \mathbf{a}$

repräsentieren den Schnitt S von n Halbräumen, der Simplex genannt wird.

Die Punkte $\mathbf{x} \in S$ heißen zulässig. Die Ecken von S liegen je auf d Hyperebenen (d Gleichungen des Gleichungssystems).

Simplexalgorithmus: Iterativ Ecken entlang gehen, bis z maximal.

12.2 Flussmaximierung als

maximiere Summe der ausgehenden Flüsse aus der Quelle. Gleichungen zur Flusserhaltung (je eingehende Kanten - ausgehende $Kanten = 0 \ (\ge und \le))$ Gleichungen zur Kapazitätsbeschränkung (Fluss ≥

0 und (Kapazität - Fluss) ≥ 0) f(a,b) = -f(b,a)

12.3 Kürzester Weg als LP

Suche Weg $1 \rightsquigarrow 2$ $\label{eq:constraints} \begin{array}{l} \sum_{(i,j)\in E} \overset{\smile}{x_{ij}} \gamma_{ij} = \min! \\ x_{ij} \geq 0, (i,j) \in E \end{array}$

$$\sum_{j} x_{ij} - \sum_{j} x_{ji} = \begin{cases} 1 & i = 1 \\ -1 & i = 2 \\ 0 & sonst \end{cases}$$

(Ausgehende Kanten = Eingehende Kanten außer für $i \neq 1, 2$) negative Kreise \Rightarrow keine endliche Lösung. Erzwingbar durch $x_{ij} \le 1, (i, j) \in E$ (?)

12.4 Maximusnorm

geg: r = A * a - c mit A Matrix wobei c konstanter Vektor und a Vektor aus Variablen. Dann LP mit $y_0 = 1/r, y_1 = a_1/r, y_2 = a_2/r, \dots$ $y_0 = max!$ $\begin{array}{ccc} -c & A \\ c & -A \end{array} <= [1,1,\ldots,1]$

13 Simplexalgorithmus

 $\mathbf{y}(\mathbf{x}) = A\mathbf{x}$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 wobei $n = d+1$ und $x_n = 1$

Hyperebenen $H_i: y_i(\mathbf{x}) = 0$ Gegeben: $A = [a_{ij}]_{i,j=1,1}^{m,n}$ Gesucht: $B = [b_{ij}]_{i,j=1,1}^{m,n}$ r=Pivotzeile, s=Pivotspalte

Austausch ·

 $\cdot b_{rs} \leftarrow \frac{1}{a_{rs}}$

$$\begin{array}{l} \cdot \ b_{rj} \leftarrow -\frac{a_{rj}}{a_{rs}} \ (\mbox{Pivotzeile}, \ j \neq s) \\ \cdot \ b_{is} \leftarrow \frac{a_{is}}{a_{rs}} \ (\mbox{Pivotspalte}, \ i \neq r) \\ \cdot \ b_{ij} \leftarrow a_{ij} - \frac{a_{is}a_{rj}}{a_{rs}} \ (i \neq r, j \neq s) \end{array}$$

$$b_{ij} \leftarrow a_{ij} - \frac{a_{is}a_{rj}}{a_{rs}} \; (i \neq r, j \neq s)$$

13.1 Normalform

Jedes lin. Programm kann auf die $\mathbf{z}\mathbf{x} = \max!$

 $A\mathbf{x} \ge 0$

mit $\mathbf{x} = [x_1 \dots x_d \ 1]^t$ kann auf die Form

 $[\mathbf{c}^t c]\mathbf{y} = \max!$

 $\mathbf{y} \geq 0$

 $[B\mathbf{b}]\mathbf{y} \ge 0$ mit $\mathbf{y} := [y_1 \dots y_d \ 1]^t$ gebracht werden.

Notation:

$$\begin{array}{c|cccc} x_{0\dots d} & 1 \\ y_{d+1} = & & & \\ \vdots & B & \mathbf{b} \\ y_m = & & & \\ z = & \mathbf{c}^t & c & & \\ \end{array} \geq 0$$

13.2 Simplexalgorithmus

Simplex · Input: $\bar{\bar{A}}$

Normalformmatrix eines lin.

Progr. $\bar{A} := \begin{bmatrix} A & \mathbf{a} \\ \mathbf{c}^t & c \end{bmatrix}$ Solange ein $c_s > 0$

Falls alle $a_{is} \geq 0$ gib $c \leftarrow \infty$ aus

Ende sonst

> bestimme r so, dass $\begin{aligned} \frac{a_r}{a_{rs}} &= \max_{a_{is} < 0} \frac{a_i}{a_{is}} \\ \bar{\underline{A}} &\leftarrow \operatorname{Austausch}(\bar{A}, r, s) \end{aligned}$

· Gib \bar{A} aus

Die Lösung ist dann, dass alle y_i die oben an der Tabelle stehen = 0

Util

 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \sphericalangle (\mathbf{a}, \mathbf{b})$ $\sum_{k=0}^{n} 2^k = 2^{n+1} - 1$ Laufzeiten

Kapi- Name Laufzeit tel 1.1 Pledge 1.2 Wanze (Bug) 2.6 Konvexe erw: $O(n \log n)$, Hülle max: $O(n^2)$ Zielsuche 6 Ford- O(|E|*W) (k Wert Flüs- Fulkersoreines max. Flusses) se Edmonds $O(|E|^2 * |V|)$ 6 Flüsse

Präfluss- $O(|V|^2 * |E|)$ 6 Flüs-Push se

An-Die- $O(|V|^3)$ 6 Flüs-Spitze

se Paare $O(|E| \cdot$

7

7

8.3

9

10

10

10

 $\min\{|L|,|R|\})$ Vergrö- $|O(|V| \cdot |E|)$ ßernder

Weg

 $\underset{\text{Schnitt}}{\text{Min}} \left| \begin{matrix} O(|V|^2 \log |V|) \\ \text{richtig mit} \end{matrix} \right|$

 $P \in \Theta(1/\log|V|)$ Welzl mittl: O(n)

Simplex erw: $O(n^2d)$, max: $\Omega(n^{d/2})$

Ellipsoid polyn.; in praxis

langsamer als Simplex

Innere polyn.; in praxis fast

Punkte so gut wie Simplex Seidel $O(d^3d! + dnd!)$ 10.5