The Multi-shop Ski Rental Problem

Ski Rental Problem

- Buy: \$b
- Rent: \$r
- Consumer strategy: rent x days and then buy
- Nature decides the ending time: y

- Randomized strategy: prob. of buying at day x is p(x)
- Optimal strategy

Multi-shop Ski Rental Problem (MSR)

$$0 < r_1 < r_2 < \dots < r_n$$

 $b_1 > b_2 > \dots > b_n > 0$

- Consumer strategy: choose shop j, rent until day x, and then buy
- Randomized strategy: p_j(x)
- Nature strategy: ending time y

Extensions

- Multi-shop Ski Rental Problem (MSR)
- With switching cost (MSR-S)

- With entry fee (MSR-E)
- With entry fee and switching (MSR-ES)

Applications

Scheduling in distributed computing

Cost management in laaS cloud

Vendor	Option	Upfront(\$)	Hourly(\$)
	On-Demand	0	0.145
Amazon	1 yr Term	161	0.09
	3 yr Term	243	0.079
ElasticHosts	1 mo Term	97.60	0
	1 yr Term	976.04	0

Strategy Space

$$\mathcal{P} = \left\{ \mathbf{p} : \sum_{j=1}^{n} \int_{0}^{\infty} p_{j}(x) dx = 1, \right.$$

$$p_j(x) \ge 0, \forall x \in [0, +\infty) \cup \{+\infty\}, \forall j \in [n]$$

Expected Cost

$$c_j(x,y) \triangleq \begin{cases} r_j y, & y < x \\ r_j x + b_j, & y \ge x \end{cases}$$

$$C(\mathbf{p}, y) \triangleq \sum_{j=1}^{n} C_j(p_j, y)$$

$$C_{j}(p_{j}, y) \triangleq \int_{0}^{\infty} c_{j}(x, y)p_{j}(x)dx$$
$$= \int_{0}^{y} (r_{j}x + b_{j})p_{j}(x)dx + \int_{y}^{\infty} yr_{j}p_{j}(x)dx$$

Competitive Ratio

minimize
$$\max_{y>0} \left\{ \frac{C(\mathbf{p}, y)}{\text{OPT}(y)} \right\}$$
 subject to $\mathbf{p} \in \mathcal{P}$

$$OPT(y) = \begin{cases} r_1 y, & y \in (0, B] \\ b_n, & y > B \end{cases}$$

where B is defined as $B \triangleq \frac{b_n}{r_1}$.

Competitive Ratio

which is equivalent to the following:

minimize
$$\lambda$$

subject to $\frac{C(\mathbf{p}, y)}{r_1 y} \le \lambda$

$$\sum_{j=1}^{n} \int_{0}^{\infty} p_j(x) dx = 1$$

$$p_j(x) \ge 0 \quad \forall x \in [0, +\infty) \cup \{+\infty\}$$

$$\forall y \in (0, +\infty) \cup \{+\infty\}, \forall j \in [n]$$

Simplifying the Zero-sum Game

Lemma 1: We only need to consider

$$\forall x \in [0, B], \forall y \in (0, B]$$

Optimal Strategy

LEMMA 2. $\forall y \in (0, B], \exists a \ constant \ \lambda, \ such \ that \ \mathbf{p}^* \ satisfies \ that$

$$\frac{C(\mathbf{p}^*, y)}{r_1 y} = \lambda \tag{5}$$

Optimal Strategy

Lemma 3

There exist n+1 breakpoints: d_1, d_2, \dots, d_{n+1} , such that $B = d_1 \ge d_2 \ge \dots \ge d_n \ge d_{n+1} = 0$, and $\forall j \in [n]$, we have

$$p_j^*(x) = \begin{cases} \alpha_j e^{r_j x/b_j}, & x \in (d_{j+1}, d_j) \\ 0, & otherwise \end{cases}$$

Why Only One Shop at Any Time?

• Claim: If $p^*_{i}(x) \ge 0$, for some j, x. Then:

$$\forall j' > j, x' \geq x$$
, we must have $\int_{x'}^{B} p_{j'}^*(t) dt = 0$.

Final Steps

 $C(\mathbf{p}^*, y) = \lambda r_1 y$ and taking twice derivatives,

$$b_i \frac{\mathrm{d}p_j^*(x)}{\mathrm{d}x} = r_j p_j^*(x) \quad \forall x \in (d_{j+1}, d_j)$$

$$p_j^*(x) = \begin{cases} \alpha_j e^{r_j x/b_j}, & x \in (d_{j+1}, d_j) \\ 0, & otherwise \end{cases}$$

• We can solve α_i in linear time.

With switching cost (MSR-S)

 Claim: At most one switch, right before buying

- Define virtual buying cost
- Reduce to MSR