Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Tutorial Sheet 3

- 1. Show that the following series diverges
 - (a) $\sum_{n=1}^{\infty} n^{\frac{1}{n}}$, (b) $\sum_{n=1}^{\infty} (1 + \frac{x}{n})^n$, (c) $\sum_{n=1}^{\infty} \log(\frac{n+1}{n})$.
- 2. If $0 \le a_n \le 1$ $(n \ge 0)$ and if $0 \le x < 1$, then prove that $\sum_{n=1}^{\infty} a_n x^n$ converges.
- 3. Determine which of the following series converges/diverges:
 - $(a) \sum_{n=1}^{\infty} \frac{\log n}{n^{3/2}}, \quad (b) \sum_{n=1}^{\infty} \frac{1}{n \sqrt[n]{n}}, \quad (c) \sum_{n=1}^{\infty} \frac{\sqrt[n]{n}}{n^2}.$
- 4. Determine which of the following series converges/diverges:
 - (a) $\sum_{n=1}^{\infty} \frac{n^{\sqrt{2}}}{2^n}$, (b) $\sum_{n=1}^{\infty} \frac{n!}{10^n}$, (c) $\sum_{n=1}^{\infty} \frac{n!}{(2n+1)!}$.
- 5. Determine which of the following series converges absolutely/conditionally:
 - $(a) \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}, \quad (b) \sum_{n=1}^{\infty} (-1)^n \frac{\sin nx}{n^2}, \quad (c) \sum_{n=2}^{\infty} (-1)^n \frac{1}{\log n}.$
- 6. Find the value of x for which the following series converges:
 - (a) $\sum_{n=0}^{\infty} (n+1+2^n)x^n$, (b) $\sum_{n=0}^{\infty} \frac{n!x^n}{n^n}$, (c) $\sum_{n=1}^{\infty} \frac{n^{n^2}}{(n+1)^{n^2}}(x-1)^n$.
- 7. Test the convergence of the infinite series:
 - $(a) \sum_{n=0}^{\infty} \sin\left(\frac{\pi}{2^n}\right), \quad (b) \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{1}{\sqrt{n}}\right).$