Università "Ca'Foscari" Venezia

Dipartimento di Scienze Ambientali, Informatica e Statistica

Giovanni Fasano †

Brevi NOTE sul Metodo del BRANCH & BOUND

[†]Università Ca'Foscari Venezia, Dipartimento di Management, S.Giobbe Cannaregio 873, 30121 Venezia, ITALY. E-mail:fasano@unive.it; URL: http://venus.unive.it/~fasano - A.A. 2014-2015.

Le presenti note sintetizzano alcune linee guida relative al Metodo del Branch & Bound, per la soluzione di problemi di Programmazione Lineare. Le note si riferiscono al corso di Ricerca Operativa, svolto dal docente Giovanni Fasano nell'A.A. 2014-2015, presso l'Università Ca'Foscari Venezia, sede di via Torino (Mestre). Le lezioni sono state organizzate nell'ambito del Corso di Laurea in *Informatica*.

Figura 1: Il poliedro Q_i e l'insieme $S_i = \{(1,2), (2,0), (2,1), (2,2), (3,0), (3,1), (3,2), (3,3), (4,2)\}$ dei punti a coordinate intere in esso contenuti, i.e. $S_i \subseteq Q_i$.

1 Note e premesse sul Metodo del Branch & Bound (B&B)

Il B&B rappresenta una tecnica iterativa esatta, di tipo enumerativo, per la soluzione di problemi di Programmazione Matematica Intera/Mista e, più in particolare, per la soluzione di problemi di Programmazione Lineare Intera (PLI) e Programmazione Lineare Mista (PLM). Si spponga pertanto di voler risolvere il problema di PLI (nel seguito si indicherà con \boldsymbol{Z} l'insieme dei numeri interi, i.e. $\boldsymbol{Z} = \{0, \pm 1, \pm 2, \ldots\}$)

$$\begin{array}{c}
\min \ c^T x \\
x \in Q_0 \\
x \in \mathbf{Z}^n,
\end{array} \equiv \begin{array}{c}
\min \ c^T x \\
x \in S_0,
\end{array} \tag{1}$$

nel quale $Q_0 = \{x \in \mathbb{R}^n : Ax \geq b\}$ è un generico poliedro in \mathbb{R}^n , $S_0 = Q_0 \cap \mathbb{Z}^n$, $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$ e $b \in \mathbb{R}^m$. L'insieme S_0 contiene tutti e soli i punti del poliedro Q_0 a coordinate intere. Più in generale, si indicherà di seguito con S_i l'insieme dei punti a coordinate intere dato da $S_i = Q_i \cap \mathbb{Z}^n$, dove Q_i è un poliedro in \mathbb{R}^n (si veda l'esempio nella Figura 1).

Premesse

• I punti a coordinate intere in S_i non necessariamente coincidono con i vertici del poliedro Q_i (contrariamente a quanto mostrato in Figura 1), pertanto se si tentasse di risolvere il problema

$$\min c^T x \\ x \in Q_0,$$

non necessariamente si avrebbe una soluzione x_0 a coordinate intere.

• Definendo i vettori

$$x_0$$
 soluzione di
$$\begin{cases} \min c^T x \\ x \in Q_0 \end{cases}$$

e

$$x_0$$
 soluzione di $\begin{cases} \min c^T x \\ x \in Q_0 \end{cases}$ \hat{x}_0 soluzione di $\begin{cases} \min c^T x \\ x \in S_0 \end{cases}$

si ha naturalmente

$$f(\hat{x}_0) \ge f(x_0),$$

poichè $S_0 \subseteq Q_0$.

• Il Metodo del B&B consiste anzitutto nel partizionare (BRANCHING) in modo intelligente la regione ammissibile S_0 , nei sottoproblemi S_i , $i \in \{1, \ldots, k\}$, così che

$$S_0 = \bigcup_{i=1}^k S_i$$

$$\emptyset = S_i \cap S_j, \quad 0 \le i \ne j \le k.$$

cercando (se necessario) una stima, per difetto, di una soluzione del sottoproblema

$$\min_{x \in S_i.} c^T x \tag{P_i}$$

Il problema (P_i) così generato viene detto aperto e viene inserito in una lista. Nella procedura riportata in Sezione 2 si considererà per semplicità una partizione semplificata, che non pregiudica la convergenza del metodo.

• Per calcolare una stima della soluzione di (P_i) si deve calcolare un bound (BOUND-ING) per (P_i) . In particolare, detta \hat{x}_i una soluzione di (P_i) e posto $\hat{z}_i = c^T \hat{x}_i$, per calcolare un bound di (P_i) calcoliamo x_i , soluzione ottima del problema di Programmazione Lineare

$$\min_{x \in Q_i,} c^T x \tag{PL_i}$$

ed indichiamo con z_i il valore $z_i = c^T x_i$. Sarà senz'altro $z_i \leq \hat{z}_i$ poichè il poliedro Q_i è tale che $S_i \subseteq Q_i$. Si dice che (PL_i) è un rilassamento di (P_i) . Ribadiamo che il poliedro Q_i contiene gli stessi punti a coordinate intere di S_i .

2 Sintesi del Metodo del B&B

Fatte le precedenti premesse, il Metodo del B&B può essere schematizzato come segue:

1. Sia $\tilde{z} = c^T \tilde{x}$ l'ottimo corrente (calcolato in qualche modo, anche attraverso tecniche euristiche) di (P_0) . Nel caso peggiore, ovvero se non si è in grado di stimarlo in nessun modo, si pone $\tilde{z} = +\infty$ e \tilde{x} si pone non noto.

2. Sia \mathcal{L} la lista dei cosiddetti problemi aperti (P_i) , $i \geq 0$ (dei quali cioè è ancora necessario cercare un possibile bound per la soluzione). All'inizio della procedura \mathcal{L} contiene solo il problema iniziale (P_0) , ovvero si pone

$$\mathcal{L} = \{(P_0)\}.$$

- 3. Si estrae dalla lista \mathcal{L} il problema (P_i) (la scelta del problema (P_i) da estrarre dalla lista \mathcal{L} , i.e. la regola di estrazione, è arbitraria) e se ne risolve il rilassamento (PL_i) con le seguenti regole:
 - (a) se (PL_i) ammette soluzione x_i e risulta $z_i \geq \tilde{z}$, allora si chiude (P_i) , ovvero il sottoproblema (P_i) non può contenere alcuna soluzione a coordinate intere migliore della soluzione corrente \tilde{x} ;
 - (b) se (PL_i) ha un insieme ammissibile vuoto, allora **si chiude** (P_i) , in quanto il sottoproblema (P_i) è anch'esso vuoto. Quindi (P_i) non può contenere alcuna soluzione a coordinate intere migliore della soluzione corrente \tilde{x} ;
 - (c) se (PL_i) ammette soluzione x_i e risulta $z_i < \tilde{z}$, allora ci sono due possibili casi:
 - se $x_i \in \mathbb{Z}^n$ (ovvero se x_i ha tutte componenti intere), allora si pone $\tilde{x} = x_i$, $\tilde{z} = c^T x_i$ e si chiude il sottoproblema (P_i) (in quanto x_i è anch'esso soluzione di (P_i)), ovvero

$$\mathcal{L} = \mathcal{L} \setminus \{(P_i)\};$$

• se $x_i \notin \mathbb{Z}^n$ (ovvero se x_i NON ha tutte componenti intere), allora si partiziona il problema (P_i) nei due sottoproblemi (P_{i+1}) e (P_{i+2}) , e si pone

$$\mathcal{L} = \mathcal{L} \setminus \{(P_i)\} \cup \{(P_{i+1}), (P_{i+2})\},\$$

ovvero da \mathcal{L} si toglie (P_i) e si inseriscono (P_{i+1}) e (P_{i+2}) . In particolare, se la componente x_i^j di x_i risulta NON intera*, i.e.

$$x_i^j = \alpha \notin \mathbf{Z},$$

allora il problema (P_i) viene 'partizionato' nei due sottoproblemi

$$\min_{x \in S_i} c (P_{i+1})$$

$$x^j \le \lfloor \alpha \rfloor$$

e

$$\min_{x \in S_i} c^T x
x \in S_i
x^j \ge |\alpha| + 1,$$

$$(P_{i+2})$$

essendo $\lfloor \alpha \rfloor$ la parte intera inferiore di α . A questi ultimi vengono associati i problemi rilassati (PL_{i+1}) e (PL_{i+2}) , ottenuti 'dividendo' (PL_i) come

^{*}Qualora vi siano più componenti del vettore x_i non intere, se ne sceglie arbitrariamente una

Figura 2: A partire dal poliedro Q_i si generano i poliedri $Q_{i+1} = Q_i \cup \{x \in \mathbb{R}^2 : x^2 \leq \lfloor \alpha \rfloor \}$ e $Q_{i+2} = Q_i \cup \{x \in \mathbb{R}^2 : x^2 \geq \lfloor \alpha \rfloor + 1\}$, così che $S_{i+1} \subseteq Q_{i+1}$ e $S_{i+2} \subseteq Q_{i+2}$.

segue:

e

$$\min_{x \in Q_i} c^T x
x \in Q_i
x^j \ge \lfloor \alpha \rfloor + 1.$$
(PL_{i+2})

Ciò garantisce che (si veda anche la Figura 2)

$$S_i = S_{i+1} \cup S_{i+2}$$
 e $\emptyset = S_{i+1} \cap S_{i+2}$.

4. Se la lista \mathcal{L} risulta vuota (i.e. non vi sono più sottoproblemi al suo interno, da estrarre) allora STOP (la procedura del B&B termina): il punto \tilde{x} è una soluzione di 1. Altrimenti si torna al punto 3.