TIGER: Temporally Improved Graph Entity Linker Supplementary Material

1. DATASET CONSTRUCTION

We combined the TempEL¹ dataset, a benchmark for temporal entity linking, with Wikidata5M² to explore the benefits of structured knowledge graphs. Our resultant dataset has five segments: two text-based (entity description and mention context) and three graph-based (structure graph, feature graph, and feature matrix). Both the structure and feature graphs depict yearly entity relationships. Continual entities refer to existing entities in previous years, and new entities refer to newly appeared, previously non-existent entities. The construction process is shown in Figure S1, with detailed steps provided in supplementary material. We make the dataset available in the TIGER Github repository: https://anonymous.4open.science/r/TIGER-Temporally-Improved-Graph-Entity-Linker-0CC3/README.md. The data are made available at 10.5281/zenodo.10977756. We now walk through each step.

Fig. S1. Dataset construction process.

First, we categorized each year of data from the TempEL dataset into entity descriptions and mention context parts based on the year. The entity description comprises the title, text, document ID, and, importantly, the unique ID of the entity (its QID). The mention context consists of context left, context right, mention, label, QID, and category.

Second, we create a structure graph based on the relationship in the Wikidata5M dataset and the entity IDs in the TempEL dataset. There are numerous relationships among entities in the Wikidata5M dataset. To filter down the number of relationships, we matched these relationships' entity IDs (also QIDs) with the QID in the entity descriptions from the TempEL dataset. We will keep the relationship if both QIDs are in a

 $^{^{1}} https://cloud.ilabt.imec.be/index.php/s/RinXy8NgqdW58RW$

²https://deepgraphlearning.github.io/project/wikidata5m

relationship in the Wikidata5M data and are present in the existing entity description. The structure graph is an $n \times n$ adjacency matrix, where n represents the total number of entities in the dataset. Each row indicates whether an entity has a connection with another entity. The adjacency matrix is made up of 0s and 1s. If entity i and entity j are connected, the value in the ith row and jth column of the matrix is 1; otherwise, it is 0.

Note that, at this point, we may have introduced temporal leakage. This is because the cutoff for the Wikidata5M dataset is July 2019. If we construct a structure graph based on Wikidata5M, temporal leakage might occur when dealing with data from years prior to 2019. For instance, if entity 1 and entity 2 had no relationship in 2013 but established one in 2019, our construction of the 2013 structure graph would inevitably link entity 1 and entity 2. However, the efficacy of our model can still be demonstrated. For example, when we only use data from 2019 to 2022, our model demonstrates a 16.24% performance boost over the state-of-the-art in a temporal setting when the time gap is one year and an improvement to 20.93% as the gap expands to three years.

Third, we built the feature graph using the embeddings from entity descriptions. We employed the pre-trained bert-base-uncased model to embed the entity description's textual information associated with the "text" key. By accessing the embedded information for each entity in the dataset, we established a kNN graph based on these entities, which we refer to as the feature graph. This graph highlights the connections between entities based on their entity descriptions. The feature graph is also an $n \times n$ adjacency matrix, where n represents the total number of entities in the dataset. Each row indicates whether an entity has a connection with other entities. If entity i and entity j are connected, the value in the ith row and jth column of the matrix is 1; otherwise, it is 0.

The difference between connections in the structure graph and those in the feature graph is that the connections in the structure graph are constructed based on actual existing links. For instance, on the Wikipedia page for "Weightlifting (Q83462)", the "Summer Olympic Games (Q212434)" is mentioned in the first two paragraphs. Hence, a connection between these two entities exists in the structure graph. However, connections in the feature graph are generated based on the embeddings of entity descriptions, which might not exist in the KG but can still benefit the model. For example, while "Arizona_Wildcats (Q4620330)" and "Summer Olympic Games (Q212434)" are not directly related, the embeddings of their descriptions have created a link between them. This makes "Arizona_Wildcats (Q4620330)" less likely to be confused with "Arizona (Q816)" or "Wildcats (Q26665)" a 1986 film by Michael Ritchie.

Fourth, we constructed a feature matrix representing each entity based on the tokens from entity descriptions in the dataset. After getting the token IDs for each entity using the pre-trained bert-base-uncased model, we filtered all token IDs based on their frequency of occurrence. We retained those token IDs that appeared between 46 and 200 times. We discarded highly frequent token IDs since these tokens, such as "is," "an," "the," and other common words, do not offer meaningful differentiation among entities. Also, the less frequent token IDs were removed due to the possibility of them being meaningless noise or random codes, and including an excess of these rare tokens would make the matrix too sparse, slowing down computation. The final feature matrix is an $n \times m$ dimensional matrix composed of 0s and 1s. Here, n represents the total number of entities in the dataset, while m is the number of retained token IDs. If the data in the ith row and jth column of the matrix is 1, it indicates that entity i contains the jth token.

Finally, we generate distinct mention context subsets from all available mention context samples. Using the "category" in each sample as the standard, we further divided the training set into two sub-training sets: "Continual entities (existing entities in previous years)" and "New entities (newly appeared, previously non-existent entities)."

2. TRAINING DETAILS

Parameter Settings. We reuse the same hyperparameter settings from BLINK model and the same bert_uncased_L- 8_H -512_A-8 pre-trained model to train the bi-encoder. The recall@N is used as the evaluation metric, where N equals 1, 2, 4, 8, 16, 32, and 64, respectively. If the correct answer appears within the top N predictions of the model, it is considered a correct prediction. The bi-encoder is trained on the ZESHEL dataset across five epochs, utilizing 128 mentions and 128 entity tokens at a learning rate 1e-05. Conversely, the bi-encoder undergoes training for one epoch on our dataset, maintaining similar mention and entity token quantities and learning rates. The training process employs an annual training approach and tests on all test sets. For instance, the results for 2019 are obtained by training on the 2019 training set and validating on the 2019 validation set. Once trained, the model is then saved. Subsequently, testing is performed on the test sets spanning the four years from 2019 to 2022.

Training Environment. Software versions: Python 3.9.16; PyTorch 1.7.1+cu110; Faiss-GPU 1.6.5; Numpy 1.24.2; SciPy 1.10.1; scikit-learn 1.2.1. All the experiments were run on a single A100 GPU with 40GB RAM.

3. ADDITIONAL RESULTS - NEW ENTITIES TRAINING SET

Tables S1 through Table S7 present a comparison between the baseline models (BLINK and SpEL) and our model TIGER. The dataset, "Extended TempEL: New entities," has a training set (1,764), a validation set ($\approx 42k$, same as original TempEL dataset), and a test set ($\approx 48k$, same as original TempEL dataset). Here, the training set contains only 1,764 samples because, in the original TempEL dataset, each year's dataset contains only 1,764 'new entities' samples. Rows represent training datasets, while columns represent testing datasets. For example, the number at the intersection of the first row and the tenth column in Table S1 is 0.1433, showing the model's performance when trained on 2013 data and tested on 2022 data. Performance evaluations for all models were based on recall metrics, specifically @1, @2, @4, @8, @16, @32, and @64.

Table S1. Results between our model and the baseline models @1 ("Extended TempEL: New entities" as the training set).

<u> </u>	Test	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	2013	0.1440	0.1435	0.1431	0.1459	0.1473	0.1450	0.1/21	0.1477	0.1445	0.1433
	2013	0.1440	0.1433	0.1229	0.1435		0.1430			0.1228	0.1433
	2014	0.1221	0.1229	0.1229		0.1222			0.1200	0.1226	0.1240
	2016	0.1310	0.1320		0.1321		0.1373			0.1376	0.1326
	2017	0.1403	0.1320		0.1321		0.1424		0.1438	0.1410	0.1320
BLINK	2018	0.1284	0.1269				0.1276			0.1268	0.1270
	2019	0.1400	0.1397		0.1415	0.1427		0.1409	0.1449	0.1406	0.1424
	2020	0.1228	0.1231	0.1206	0.1228		0.1224			0.1216	0.1238
	2021	0.1270	0.1267		0.1265		0.1243	0.1239	0.1303	0.1294	0.1305
	2022	0.1266	0.1264								0.1300
	2013	0.1740	0.1735	0.1931	0.1759	0.1773	0.1950	0.1831	0.1777	0.1945	0.1933
	2014	0.1721	0.1529	0.1729	0.1735	0.1622	0.1520	0.1502	0.1760	0.1728	0.1646
	2015	0.1680	0.1659	0.1771	0.1784	0.1797	0.1873	0.1671	0.1812	0.1676	0.1866
	2016	0.1610	0.1820	0.1708	0.1821	0.1630	0.1604	0.1714	0.1749	0.1616	0.1626
CnEI	2017	0.1803	0.1804	0.1804	0.1815	0.1828	0.1724	0.1902	0.1838	0.1810	0.1722
SpEL	2018	0.1684	0.1569	0.1668	0.1568	0.1601	0.1776	0.1584	0.1806	0.1668	0.1670
	2019	0.1800	0.1697	0.1718	0.1915	0.1727	0.1811	0.1809	0.1849	0.1706	0.1924
	2020	0.1628	0.1731	0.1606	0.1728	0.1545	0.1724	0.1706	0.1661	0.1516	0.1638
	2021	0.1770	0.1567	0.1770	0.1765	0.1671	0.1643	0.1739	0.1603	0.1794	0.1705
	2022	0.1566	0.1564	0.1464	0.1475	0.1497	0.1571	0.1565	0.1613	0.1488	0.1600
	2013	0.2245	0.2242	0.2257	0.2299	0.2283	0.2290	0.2245	0.2285	0.2294	0.2304
	2014	0.2011	0.2022	0.2011	0.2029	0.2062	0.2019	0.2010	0.2048	0.2031	0.2003
	2015	0.2307	0.2320	0.2313	0.2319	0.2355	0.2349	0.2343	0.2359	0.2355	0.2346
	2016	0.2154	0.2185	0.2161	0.2206	0.2206	0.2208	0.2180	0.2222	0.2185	0.2197
TIGER	2017 0.3	0.2292	0.2306	0.2297	0.2313	0.2335	0.2328	0.2313	0.2330	0.2320	0.2318
HOLK		0.1725	0.1707	0.1710	0.1706	0.1753	0.1740	0.1738	0.1768	0.1750	0.1762
	2019	0.2156	0.2195	0.2172	0.2166	0.2208	0.2198	0.2174	0.2158	0.2156	0.2169
	2020	0.1570	0.1550	0.1573	0.1579	0.1606	0.1604	0.1591	0.1627	0.1604	0.1605
	2021	0.2012	0.2025	0.2013	0.2057	0.2049	0.2084	0.2049	0.2072	0.2079	0.2076
	2022	0.1523	0.1529	0.1548	0.1579	0.1598	0.1590	0.1566	0.1589	0.1566	0.1574

Table S2. Results between our model and the baseline models @2 ("Extended TempEL: New entities" as the training set).

	Test	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	Train										
	2013	0.2131	0.2141	0.2136	0.2139	0.2156	0.2157	0.2141	0.2182	0.2133	0.2117
	2014	0.1845	0.1850	0.1839	0.1840	0.1851	0.1841	0.1809	0.1858	0.1826	0.1858
	2015	0.2035	0.2035	0.2061	0.2059	0.2072	0.2064	0.2053	0.2083	0.2048	0.2034
	2016	0.1987	0.1983	0.1972	0.1985	0.1999	0.1983	0.1955	0.2007	0.1965	0.1990
BLINK	2017	0.2099	0.2100	0.2103	0.2117	0.2129	0.2133	0.2092	0.2133	0.2109	0.2119
DEIIVIX	2018	0.1902	0.1910	0.1928	0.1916	0.1937	0.1917	0.1915	0.1942	0.1896	0.1912
	2019	0.2073	0.2079	0.2109	0.2112	0.2123	0.2128	0.2087	0.2137	0.2092	0.2108
	2020	0.1862	0.1855	0.1848	0.1853	0.1891	0.1871	0.1838	0.1896	0.1844	0.1871
	2021	0.1910	0.1926	0.1900	0.1908	0.1915	0.1892	0.1868	0.1938	0.1945	0.1927
	2022	0.1912	0.1917	0.1909	0.1915	0.1943	0.1911	0.1889	0.1951	0.1925	0.1937
	2013	0.2531	0.2541	0.2536	0.2739	0.2656	0.2657	0.2541	0.2582	0.2633	0.2617
	2014	0.2445	0.2250	0.2339	0.2340	0.2351	0.2341	0.2209	0.2358	0.2226	0.2358
	2015	0.2435	0.2635	0.2461	0.2459	0.2472	0.2564	0.2553	0.2483	0.2548	0.2634
	2016	0.2387	0.2483	0.2472	0.2485	0.2399	0.2483	0.2455	0.2507	0.2365	0.2490
SpEL	2017	0.2499	0.2700	0.2503	0.2717	0.2729	0.2633	0.2592	0.2533	0.2509	0.2519
Эрын	2018	0.2502	0.2510	0.2328	0.2516	0.2437	0.2417	0.2315	0.2442	0.2496	0.2512
	2019	0.2473	0.2479	0.2609	0.2612	0.2623	0.2528	0.2587	0.2537	0.2692	0.2608
	2020	0.2262	0.2255	0.2248	0.2353	0.2491	0.2271	0.2338	0.2296	0.2344	0.2471
	2021	0.2510	0.2526	0.2500	0.2408	0.2315	0.2392	0.2268	0.2338	0.2545	0.2527
	2022	0.2112	0.2217	0.2109	0.2215	0.2143	0.2211	0.2089	0.2251	0.2225	0.2137
	2013	0.3213	0.3242	0.3235	0.3286	0.3276	0.3280	0.3208	0.3250	0.3280	0.3301
	2014	0.2921	0.2935	0.2910	0.2928	0.2956	0.2938	0.2919	0.2954	0.2958	0.2924
	2015	0.3283	0.3286	0.3306	0.3317	0.3361	0.3357	0.3302	0.3327	0.3345	0.3347
	2016	0.3113	0.3125	0.3148	0.3160	0.3181	0.3167	0.3158	0.3172	0.3161	0.3159
TIGER	2017	0.3270	0.3290	0.3290	0.3303	0.3326	0.3296	0.3275	0.3300	0.3293	0.3316
HGEN	2018	0.2555	0.2545	0.2556	0.2569	0.2594	0.2590	0.2584	0.2632	0.2601	0.2627
	2019	0.3103	0.3134	0.3139	0.3137	0.3160	0.3146	0.3121	0.3111	0.3124	0.3138
	2020	0.2346	0.2338	0.2362	0.2365	0.2409	0.2414	0.2394	0.2424	0.2434	0.2420
	2021	0.2924	0.2964	0.2936	0.2967	0.3005	0.3009	0.2979	0.3013	0.3026	0.3002
	2022	0.2314	0.2336	0.2355	0.2366	0.2396	0.2390	0.2382	0.2407	0.2367	0.2383

Table S3. Results between our model and the baseline models @4 ("Extended TempEL: New entities" as the training set).

е папш	ig sei).										
	Test Train	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	2013	0.2953	0.2951	0.2971	0.2986	0.3001	0.2994	0.2973	0.3010	0.2961	0.2952
	2014	0.2583	0.2599	0.2584	0.2591	0.2620	0.2610	0.2587	0.2612	0.2581	0.260
	2015	0.2847	0.2836	0.2856	0.2861	0.2882	0.2866	0.2848	0.2889	0.2840	0.284
	2016	0.2774	0.2778	0.2794	0.2782	0.2808	0.2795	0.2749	0.2788	0.2768	0.278
BLINK	2017	0.2908	0.2935	0.2943	0.2943	0.2976	0.2948	0.2924	0.2955	0.2919	0.294
DLINK	2018	0.2689	0.2676	0.2674	0.2682	0.2697	0.2700	0.2652	0.2703	0.2654	0.268
	2019	0.2912	0.2933	0.2930	0.2927	0.2946	0.2941	0.2926	0.2951	0.2914	0.294
	2020	0.2642	0.2633	0.2641	0.2654	0.2683	0.2661	0.2648	0.2680	0.2627	0.264
	2021	0.2686	0.2701	0.2699	0.2690	0.2715	0.2698	0.2663	0.2722	0.2739	0.271
	2022	0.2707	0.2706	0.2705	0.2718	0.2728	0.2712	0.2684	0.2741	0.2719	0.273
	2013	0.3553	0.3551	0.3471	0.3586	0.3701	0.3694	0.3673	0.3710	0.3561	0.365
	2014	0.3183	0.3099	0.3084	0.3291	0.3120	0.3310	0.3287	0.3312	0.3081	0.320
	2015	0.3547	0.3336	0.3356	0.3561	0.3382	0.3466	0.3448	0.3489	0.3340	0.354
	2016	0.3274	0.3278	0.3294	0.3282	0.3508	0.3495	0.3349	0.3288	0.3268	0.328
SpEL	2017	0.3608	0.3635	0.3443	0.3443	0.3576	0.3648	0.3424	0.3455	0.3419	0.354
SPEL	2018	0.3289	0.3276	0.3174	0.3182	0.3197	0.3200	0.3152	0.3303	0.3254	0.338
	2019	0.3412	0.3633	0.3630	0.3627	0.3646	0.3441	0.3626	0.3651	0.3414	0.354
	2020	0.3342	0.3333	0.3341	0.3254	0.3183	0.3261	0.3248	0.3280	0.3127	0.324
	2021	0.3386	0.3201	0.3299	0.3390	0.3415	0.3198	0.3263	0.3322	0.3239	0.341
	2022	0.3107	0.2906	0.2905	0.2918	0.2928	0.3112	0.3084	0.3041	0.3019	0.303
	2013	0.4288	0.4313	0.4336	0.4378	0.4353	0.4334	0.4295	0.4337	0.4338	0.437
	2014	0.3923	0.3961	0.3930	0.3965	0.3975	0.3961	0.3940	0.3979	0.3968	0.394
	2015	0.4343	0.4380	0.4394	0.4391	0.4407	0.4417	0.4384	0.4394	0.4417	0.442
	2016	0.4165	0.4181	0.4187	0.4207	0.4211	0.4227	0.4205	0.4223	0.4198	0.420
TICED	2017	0.4310	0.4348	0.4340	0.4346	0.4365	0.4343	0.4327	0.4369	0.4339	0.438
TIGER	2018	0.3523	0.3531	0.3525	0.3543	0.3566	0.3555	0.3531	0.3595	0.3574	0.359
	2019	0.4156	0.4190	0.4170	0.4191	0.4203	0.4190	0.4163	0.4176	0.4195	0.421
	2020	0.3302	0.3312	0.3334	0.3374	0.3378	0.3395	0.3361	0.3391	0.3425	0.342
	2021	0.3949	0.3993	0.3984	0.4011	0.4045	0.4006	0.4017	0.4043	0.4072	0.406
	2022	0.3268	0.3294	0.3289	0.3325	0.3355	0.3351	0.3330	0.3358	0.3348	0.334

Table S4. Results between our model and the baseline models @8 ("Extended TempEL: New entities" as the training set).

	-8										
	Test Train	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	2013	0.3888	0.3892	0.3913	0.3942	0.3937	0.3918	0.3910	0.3918	0.3881	0.3883
	2014	0.3485	0.3489	0.3502	0.3499	0.3507	0.3494	0.3474	0.3492	0.3471	0.3493
	2015	0.3754	0.3761	0.3792	0.3788	0.3819	0.3779	0.3745	0.3767	0.3747	0.3750
	2016	0.3711	0.3693	0.3717	0.3715	0.3734	0.3716	0.3686	0.3720	0.3694	0.3704
DI INIZ	2017	0.3862	0.3886	0.3900	0.3889	0.3917	0.3881	0.3862	0.3888	0.3872	0.3871
BLINK	2018	0.3604	0.3596	0.3598	0.3587	0.3600	0.3588	0.3553	0.3600	0.3545	0.3573
	2019	0.3860	0.3895	0.3892	0.3911	0.3906	0.3904	0.3875	0.3901	0.3885	0.3915
	2020	0.3538	0.3558	0.3591	0.3589	0.3606	0.3573	0.3559	0.3603	0.3558	0.3585
	2021	0.3604	0.3604	0.3620	0.3612	0.3644	0.3636	0.3584	0.3654	0.3688	0.3640
	2022	0.3619	0.3631	0.3634	0.3642	0.3653	0.3628	0.3620	0.3655	0.3649	0.3646
	2013	0.4488	0.4692	0.4613	0.4642	0.4637	0.4618	0.4610	0.4618	0.4581	0.4483
	2014	0.4185	0.4289	0.4102	0.4199	0.4207	0.4094	0.4074	0.4292	0.4071	0.4293
	2015	0.4554	0.4561	0.4592	0.4488	0.4619	0.4379	0.4545	0.4567	0.4447	0.4450
	2016	0.4511	0.4493	0.4417	0.4415	0.4534	0.4316	0.4386	0.4420	0.4294	0.4404
SpEL	2017	0.4562	0.4586	0.4700	0.4489	0.4617	0.4581	0.4662	0.4588	0.4472	0.4671
Эрцц	2018	0.4304	0.4296	0.4298	0.4387	0.4400	0.4388	0.4353	0.4200	0.4145	0.4373
	2019	0.4460	0.4695	0.4592	0.4611	0.4706	0.4604	0.4475	0.4701	0.4585	0.4715
	2020	0.4338	0.4158	0.4391	0.4389	0.4406	0.4373	0.4259	0.4203	0.4158	0.4185
	2021	0.4304	0.4404	0.4320	0.4312	0.4244	0.4236	0.4184	0.4354	0.4288	0.4340
	2022	0.3919	0.3931	0.4034	0.4142	0.4053	0.4028	0.4020	0.3955	0.3949	0.3946
	2013	0.5369	0.5393	0.5416	0.5448	0.5431	0.5412	0.5384	0.5411	0.5428	0.5453
	2014	0.4959	0.4968	0.4980	0.5002	0.5016	0.5004	0.5000	0.5015	0.5015	0.5002
	2015	0.5429	0.5471	0.5489	0.5493	0.5519	0.5488	0.5472	0.5465	0.5482	0.5506
	2016	0.5237	0.5255	0.5255	0.5282	0.5291	0.5276	0.5257	0.5283	0.5300	0.5310
TIGER	2017	0.5377	0.5414	0.5380	0.5405	0.5452	0.5409	0.5414	0.5459	0.5435	0.5451
HGEK	2018	0.4578	0.4593	0.4599	0.4610	0.4631	0.4607	0.4596	0.4635	0.4639	0.4662
	2019	0.5293	0.5284	0.5292	0.5328	0.5324	0.5308	0.5292	0.5310	0.5303	0.5330
	2020	0.4387	0.4388	0.4413	0.4471	0.4448	0.4452	0.4444	0.4453	0.4482	0.4498
	2021	0.5034	0.5063	0.5060	0.5095	0.5126	0.5089	0.5094	0.5125	0.5165	0.5145
	2022	0.4336	0.4363	0.4376	0.4403	0.4420	0.4405	0.4399	0.4407	0.4405	0.4427

Table S5. Results between our model and the baseline models @16 ("Extended TempEL: New entities" as the training set).

	Test Train	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	2013	0.4861	0.4869	0.4897	0.4907	0.4933	0.4906	0.4878	0.4884	0.4846	0.4848
	2014	0.4452	0.4476	0.4477	0.4479	0.4494	0.4486	0.4469	0.4492	0.4449	0.4474
	2015	0.4728	0.4760	0.4768	0.4782	0.4785	0.4767	0.4715	0.4719	0.4699	0.4711
	2016	0.4708	0.4709	0.4737	0.4729	0.4747	0.4737	0.4702	0.4712	0.4690	0.4702
BLINK	2017	0.4834	0.4867	0.4886	0.4883	0.4893	0.4894	0.4864	0.4871	0.4849	0.4856
DLINK	2018	0.4559	0.4585	0.4589	0.4599	0.4584	0.4580	0.4548	0.4556	0.4513	0.4536
	2019	0.4884	0.4922	0.4928	0.4931	0.4947	0.4933	0.4921	0.4918	0.4913	0.4908
	2020	0.4561	0.4580	0.4608	0.4618	0.4625	0.4611	0.4582	0.4591	0.4557	0.4561
	2021	0.4611	0.4608	0.4633	0.4626	0.4671	0.4655	0.4613	0.4634	0.4696	0.4652
	2022	0.4600	0.4644	0.4641	0.4643	0.4671	0.4639	0.4635	0.4642	0.4630	0.4657
	2013	0.5661	0.5669	0.5597	0.5707	0.5733	0.5506	0.5578	0.5484	0.5446	0.5448
	2014	0.5252	0.5176	0.5077	0.5279	0.5194	0.5086	0.5069	0.5292	0.5249	0.5274
	2015	0.5428	0.5460	0.5568	0.5582	0.5585	0.5467	0.5415	0.5519	0.5299	0.5511
	2016	0.5308	0.5309	0.5437	0.5529	0.5547	0.5537	0.5502	0.5412	0.5490	0.5302
CnEI	2017	0.5434	0.5467	0.5486	0.5483	0.5593	0.5494	0.5664	0.5671	0.5549	0.5656
SpEL	2018	0.5359	0.5285	0.5289	0.5199	0.5384	0.5280	0.5248	0.5256	0.5113	0.5336
	2019	0.5684	0.5522	0.5728	0.5631	0.5547	0.5733	0.5621	0.5618	0.5713	0.5508
	2020	0.5261	0.5280	0.5308	0.5318	0.5425	0.5311	0.5282	0.5391	0.5257	0.5361
	2021	0.5411	0.5208	0.5333	0.5326	0.5371	0.5455	0.5213	0.5334	0.5396	0.5352
	2022	0.5100	0.5044	0.5141	0.5143	0.5071	0.5039	0.5135	0.5142	0.5030	0.5157
	2013	0.6426	0.6422	0.6444	0.6444	0.6460	0.6460	0.6449	0.6441	0.6467	0.6489
	2014	0.5986	0.6005	0.5999	0.5993	0.6022	0.5995	0.6027	0.6042	0.6030	0.6033
	2015	0.6461	0.6503	0.6518	0.6510	0.6535	0.6497	0.6490	0.6487	0.6496	0.6530
	2016	0.6302	0.6291	0.6324	0.6338	0.6342	0.6324	0.6325	0.6336	0.6352	0.6352
TICED	2017	0.6377	0.6403	0.6419	0.6412	0.6457	0.6412	0.6420	0.6446	0.6419	0.6437
TIGER	2018	0.5651	0.5670	0.5682	0.5678	0.5687	0.5679	0.5652	0.5699	0.5690	0.5711
	2019	0.6366	0.6373	0.6366	0.6376	0.6383	0.6366	0.6355	0.6354	0.6367	0.6376
	2020	0.5506	0.5514	0.5516	0.5559	0.5575	0.5571	0.5575	0.5567	0.5587	0.5617
	2021	0.6068	0.6109	0.6113	0.6111	0.6162	0.6115	0.6126	0.6141	0.6193	0.6189
	2022	0.5459	0.5490	0.5509	0.5504	0.5548	0.5510	0.5514	0.5521	0.5539	0.5551

Table S6. Results between our model and the baseline models @32 ("Extended TempEL: New entities" as the training set).

	Test Train	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	2013	0.5882	0.5907	0.5918	0.5907	0.5920	0.5899	0.5871	0.5870	0.5832	0.5855
	2014	0.5467	0.5505	0.5511	0.5507	0.5515	0.5509	0.5482	0.5491	0.5456	0.5471
	2015	0.5722	0.5766	0.5781	0.5773	0.5780	0.5772	0.5744	0.5738	0.5706	0.5709
	2016	0.5735	0.5771	0.5771	0.5760	0.5789	0.5761	0.5743	0.5738	0.5708	0.5715
BLINK	2017	0.5854	0.5894	0.5892	0.5873	0.5914	0.5900	0.5874	0.5873	0.5843	0.5860
DLIIVIK	2018	0.5561	0.5588	0.5601	0.5587	0.5602	0.5598	0.5562	0.5563	0.5517	0.5536
	2019	0.5925	0.5960	0.5976	0.5943	0.5981	0.5961	0.5967	0.5940	0.5934	0.5930
	2020	0.5596	0.5627	0.5650	0.5640	0.5658	0.5647	0.5631	0.5642	0.5588	0.5606
	2021	0.5644	0.5657	0.5675	0.5684	0.5716	0.5707	0.5696	0.5699	0.5765	0.5738
	2022	0.5634	0.5679	0.5668	0.5677	0.5685	0.5679	0.5681	0.5677	0.5664	0.5660
	2013	0.6582	0.6507	0.6518	0.6607	0.6520	0.6499	0.6471	0.6570	0.6432	0.6555
	2014	0.6067	0.6205	0.6111	0.6107	0.6215	0.6309	0.6182	0.6091	0.6056	0.6271
	2015	0.6322	0.6566	0.6481	0.6373	0.6480	0.6572	0.6444	0.6438	0.6406	0.6409
	2016	0.6435	0.6571	0.6571	0.6360	0.6489	0.6361	0.6443	0.6538	0.6408	0.6515
CoEI	2017	0.6554	0.6594	0.6692	0.6673	0.6514	0.6700	0.6674	0.6473	0.6443	0.6460
SpEL	2018	0.6161	0.6188	0.6401	0.6287	0.6402	0.6298	0.6162	0.6263	0.6117	0.6136
	2019	0.6525	0.6760	0.6776	0.6543	0.6681	0.6561	0.6567	0.6540	0.6534	0.6730
	2020	0.6196	0.6227	0.6450	0.6340	0.6358	0.6247	0.6331	0.6342	0.6388	0.6206
	2021	0.6444	0.6457	0.6275	0.6284	0.6416	0.6507	0.6496	0.6399	0.6565	0.6438
	2022	0.6234	0.6179	0.6168	0.6177	0.6285	0.6279	0.6181	0.6277	0.6264	0.6160
	2013	0.7365	0.7348	0.7381	0.7347	0.7379	0.7365	0.7360	0.7365	0.7396	0.7401
	2014	0.6923	0.6938	0.6937	0.6924	0.6960	0.6954	0.6986	0.6991	0.6982	0.7016
	2015	0.7367	0.7403	0.7406	0.7409	0.7429	0.7390	0.7377	0.7395	0.7398	0.7416
	2016	0.7246	0.7258	0.7285	0.7288	0.7291	0.7267	0.7288	0.7304	0.7305	0.7300
TIGER	2017	0.7287	0.7313	0.7327	0.7330	0.7371	0.7324	0.7332	0.7338	0.7324	0.7370
HGEK	2018	0.6640	0.6657	0.6679	0.6672	0.6684	0.6688	0.6671	0.6688	0.6671	0.6702
	2019	0.7290	0.7292	0.7315	0.7304	0.7330	0.7309	0.7313	0.7283	0.7310	0.7320
	2020	0.6629	0.6651	0.6661	0.6649	0.6698	0.6695	0.6700	0.6686	0.6713	0.6721
	2021	0.7031	0.7066	0.7051	0.7061	0.7100	0.7082	0.7081	0.7107	0.7125	0.7125
	2022	0.6540	0.6556	0.6598	0.6593	0.6616	0.6613	0.6617	0.6608	0.6594	0.6631

Table S7. Results between our model and the baseline models @64 ("Extended TempEL: New entities" as the training set).

е папш	ig sei).										
	Test Train	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	2013	0.6831	0.6858	0.6879	0.6850	0.6861	0.6867	0.6840	0.6834	0.6809	0.6832
	2014	0.6499	0.6526	0.6516	0.6508	0.6523	0.6524	0.6495	0.6504	0.6471	0.649
	2015	0.6718	0.6747	0.6761	0.6746	0.6738	0.6729	0.6721	0.6705	0.6696	0.670
	2016	0.6745	0.6774	0.6775	0.6763	0.6784	0.6752	0.6747	0.6759	0.6743	0.675
BLINK	2017	0.6845	0.6867	0.6873	0.6850	0.6876	0.6876	0.6843	0.6849	0.6842	0.685
DLIM	2018	0.6583	0.6603	0.6617	0.6574	0.6600	0.6595	0.6582	0.6571	0.6554	0.656
	2019	0.6934	0.6954	0.6954	0.6949	0.6967	0.6953	0.6945	0.6921	0.6934	0.693
	2020	0.6642	0.6672	0.6676	0.6662	0.6676	0.6663	0.6658	0.6654	0.6632	0.665
	2021	0.6681	0.6702	0.6711	0.6708	0.6738	0.6730	0.6726	0.6713	0.6762	0.673
	2022	0.6639	0.6677	0.6690	0.6677	0.6705	0.6709	0.6691	0.6683	0.6707	0.669
	2013	0.7531	0.7558	0.7479	0.7350	0.7361	0.7367	0.7440	0.7334	0.7309	0.743
	2014	0.7199	0.7226	0.7216	0.7208	0.7223	0.7024	0.7195	0.7104	0.7071	0.709
	2015	0.7218	0.7347	0.7261	0.7346	0.7238	0.7429	0.7221	0.7305	0.7296	0.740
	2016	0.7445	0.7474	0.7375	0.7463	0.7484	0.7252	0.7447	0.7259	0.7443	0.745
SpEL	2017	0.7345	0.7567	0.7573	0.7450	0.7476	0.7376	0.7443	0.7549	0.7542	0.745
SPEL	2018	0.7083	0.7303	0.7117	0.7174	0.7100	0.7095	0.7182	0.7071	0.7054	0.726
	2019	0.7634	0.7554	0.7654	0.7549	0.7467	0.7553	0.7645	0.7621	0.7634	0.753
	2020	0.7242	0.7172	0.7376	0.7262	0.7176	0.7163	0.7258	0.7254	0.7132	0.715
	2021	0.7381	0.7402	0.7211	0.7208	0.7238	0.7430	0.7326	0.7313	0.7362	0.723
	2022	0.6939	0.6977	0.7090	0.7177	0.7205	0.7209	0.6991	0.7183	0.7007	0.699
	2013	0.8149	0.8136	0.8142	0.8136	0.8150	0.8132	0.8127	0.8136	0.8152	0.816
	2014	0.7751	0.7770	0.7781	0.7785	0.7787	0.7784	0.7789	0.7804	0.7797	0.783
	2015	0.8113	0.8149	0.8145	0.8146	0.8155	0.8129	0.8118	0.8137	0.8139	0.815
	2016	0.8048	0.8073	0.8106	0.8099	0.8121	0.8096	0.8099	0.8105	0.8101	0.810
TICED	2017	0.8053	0.8068	0.8102	0.8096	0.8129	0.8086	0.8079	0.8098	0.8096	0.812
TIGER	2018	0.7523	0.7557	0.7575	0.7575	0.7605	0.7577	0.7571	0.7588	0.7575	0.760
	2019	0.8096	0.8106	0.8125	0.8111	0.8125	0.8110	0.8110	0.8090	0.8112	0.813
	2020	0.7597	0.7649	0.7642	0.7642	0.7663	0.7677	0.7679	0.7659	0.7671	0.768
	2021	0.7861	0.7882	0.7898	0.7878	0.7927	0.7899	0.7904	0.7926	0.7948	0.795
	2022	0.7513	0.7544	0.7569	0.7571	0.7579	0.7578	0.7581	0.7589	0.7582	0.761

4. ADDITIONAL RESULTS - CONTINUAL ENTITIES TRAINING SET

Tables S8 through Table S14 present a comparison between the baseline models (BLINK and SpEL) and our model TIGER. The dataset, "Extended TempEL: Continual entities," has a training set (1,764), a validation set ($\approx 42k$, same as original TempEL dataset), and a test set ($\approx 48k$, same as original TempEL dataset). Here, the training set contains only 1,764 samples because, in the original TempEL dataset, each year's dataset contains only 1,764 'new entities' samples. For comparison, we also have 1,764 'continual entity' samples. Rows represent training datasets, while columns represent testing datasets. For example, the number at the intersection of the first row and the tenth column in Table S8 is 0.1741, showing the model's performance when trained on 2013 data and tested on 2022 data. Performance evaluations for all models were based on recall metrics, specifically @1, @2, @4, @8, @16, @32, and @64.

Table S8. Results between our model and the baseline models @1 ("Extended TempEL: Continual entities" as the training set).

	Test Train	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	2013	0.1710	0.1719	0.1712	0.1727	0.1719	0.1736	0.1701	0.1761	0.1743	0.1741
	2014	0.1585	0.1593	0.1598	0.1613	0.1608	0.1587	0.1584	0.1625	0.1621	0.1620
	2015	0.1854	0.1870	0.1878	0.1879	0.1897	0.1887	0.1855	0.1913	0.1898	0.1909
	2016	0.1581	0.1589	0.1579	0.1595	0.1609	0.1602	0.1575	0.1614	0.1597	0.1589
BLINK	2017	0.1926	0.1953	0.1950	0.1947	0.1961	0.1944	0.1901	0.1984	0.1952	0.1944
DLIMK	2018	0.1797	0.1782	0.1779	0.1786	0.1774	0.1799	0.1760	0.1833	0.1817	0.1801
	2019	0.1757	0.1767	0.1766	0.1763	0.1775	0.1775	0.1729	0.1785	0.1783	0.1774
	2020	0.1841	0.1867	0.1873	0.1869	0.1890	0.1874	0.1843	0.1901	0.1875	0.1866
	2021	0.1759	0.1752	0.1742	0.1760	0.1769	0.1754	0.1735	0.1797	0.1771	0.1758
	2022	0.1623	0.1641	0.1645	0.1666	0.1673	0.1656	0.1634	0.1686	0.1665	0.1665
	2013	0.2275	0.2133	0.2269	0.2133	0.2296	0.2237	0.2130	0.2284	0.2153	0.2264
	2014	0.2039	0.2160	0.2065	0.2179	0.2095	0.2091	0.2041	0.2191	0.2078	0.2213
	2015	0.2409	0.2430	0.2337	0.2331	0.2356	0.2301	0.2298	0.2373	0.2493	0.2430
	2016	0.1983	0.2124	0.2165	0.2188	0.2151	0.2044	0.2011	0.2197	0.2173	0.2166
SpEL	2017	0.2446	0.2447	0.2418	0.2347	0.2516	0.2346	0.2317	0.2421	0.2414	0.2391
Эрын	2018	0.2205	0.2342	0.2353	0.2291	0.2281	0.2271	0.2358	0.2243	0.2335	0.2342
	2019	0.2268	0.2356	0.2246	0.2285	0.2305	0.2278	0.2234	0.2275	0.2253	0.2209
	2020	0.2362	0.2426	0.2341	0.2348	0.2473	0.2391	0.2309	0.2496	0.2457	0.2314
	2021	0.2302	0.2251	0.2185	0.2218	0.2170	0.2312	0.2190	0.2315	0.2217	0.2279
	2022	0.2199	0.2187	0.2088	0.2223	0.2126	0.2240	0.2201	0.2191	0.2234	0.2193
	2013	0.2516	0.2522	0.2499	0.2516	0.2506	0.2512	0.2499	0.2500	0.2515	0.2519
	2014	0.2689	0.2696	0.2699	0.2707	0.2727	0.2713	0.2690	0.2733	0.2710	0.2684
	2015	0.2779	0.2805	0.2790	0.2788	0.2835	0.2797	0.2762	0.2777	0.2740	0.2764
	2016	0.2968	0.2963	0.2964	0.2991	0.3015	0.2969	0.2937	0.2985	0.2976	0.2962
TIGER	2017	0.3127	0.3132	0.3081	0.3099	0.3098	0.3068	0.3046	0.3078	0.3059	0.3031
TIGEN	2018	0.2919	0.2930	0.2932	0.2940	0.2973	0.2920	0.2917	0.2953	0.2943	0.2939
	2019	0.2992	0.3043	0.3066	0.3051	0.3044	0.3011	0.3017	0.3035	0.3053	0.3038
	2020	0.2880	0.2928	0.2909	0.2914	0.2942	0.2908	0.2890	0.2925	0.2895	0.2894
	2021	0.2790	0.2804	0.2808	0.2836	0.2857	0.2830	0.2812	0.2842	0.2843	0.2822
	2022	0.2831	0.2875	0.2865	0.2868	0.2867	0.2814	0.2783	0.2803	0.2795	0.2801

Table S9. Results between our model and the baseline models @2 ("Extended TempEL: Continual entities" as the training set).

	Test	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	Train										
	2013	0.2534	0.2539	0.2531	0.2556	0.2549	0.2540	0.2514	0.2575	0.2566	0.2551
	2014	0.2363	0.2358	0.2381	0.2384	0.2400	0.2381	0.2349	0.2389	0.2400	0.2397
	2015	0.2689	0.2736	0.2726	0.2742	0.2760	0.2739	0.2710	0.2775	0.2771	0.2750
	2016	0.2332	0.2373	0.2357	0.2364	0.2386	0.2375	0.2325	0.2387	0.2375	0.2361
BLINK	2017	0.2804	0.2809	0.2831	0.2816	0.2850	0.2824	0.2805	0.2871	0.2858	0.2846
DLIIVIX	2018	0.2605	0.2610	0.2613	0.2613	0.2625	0.2640	0.2581	0.2643	0.2651	0.2649
	2019	0.2605	0.2592	0.2612	0.2583	0.2624	0.2593	0.2565	0.2626	0.2633	0.2630
	2020	0.2701	0.2716	0.2727	0.2726	0.2743	0.2733	0.2673	0.2739	0.2722	0.2730
	2021	0.2581	0.2586	0.2596	0.2581	0.2612	0.2595	0.2550	0.2608	0.2624	0.2598
	2022	0.2423	0.2430	0.2441	0.2443	0.2474	0.2453	0.2422	0.2480	0.2481	0.2456
	2013	0.3104	0.3087	0.3132	0.3079	0.3209	0.3072	0.3185	0.3095	0.3196	0.3124
	2014	0.3011	0.2988	0.3049	0.3010	0.3093	0.2942	0.2940	0.3030	0.3000	0.3092
	2015	0.3351	0.3357	0.3244	0.3274	0.3271	0.3306	0.3245	0.3379	0.3283	0.3390
	2016	0.2859	0.3067	0.2954	0.2968	0.2962	0.2891	0.2907	0.2988	0.3056	0.2975
C FI	2017	0.3393	0.3447	0.3508	0.3501	0.3545	0.3354	0.3348	0.3483	0.3462	0.3481
SpEL	2018	0.3151	0.3150	0.3154	0.3250	0.3212	0.3218	0.3094	0.3315	0.3268	0.3310
	2019	0.3107	0.3273	0.3219	0.3168	0.3134	0.3108	0.3142	0.3305	0.3247	0.3221
	2020	0.3225	0.3389	0.3231	0.3324	0.3361	0.3334	0.3231	0.3403	0.3332	0.3297
	2021	0.3137	0.3171	0.3181	0.3168	0.3145	0.3261	0.3076	0.3225	0.3245	0.3204
	2022	0.3063	0.2943	0.3025	0.3079	0.3145	0.3075	0.2989	0.3157	0.3162	0.3006
	2013	0.3609	0.3603	0.3597	0.3610	0.3598	0.3582	0.3590	0.3607	0.3618	0.3617
	2014	0.3786	0.3790	0.3771	0.3808	0.3821	0.3785	0.3778	0.3832	0.3802	0.3795
	2015	0.3865	0.3900	0.3886	0.3890	0.3916	0.3898	0.3860	0.3900	0.3889	0.3881
	2016	0.4126	0.4140	0.4127	0.4149	0.4164	0.4125	0.4088	0.4141	0.4136	0.4136
TICED	2017	0.4286	0.4302	0.4284	0.4272	0.4307	0.4245	0.4248	0.4309	0.4282	0.4268
TIGER	2018	0.4072	0.4066	0.4087	0.4095	0.4112	0.4054	0.4048	0.4103	0.4073	0.4101
	2019	0.4189	0.4221	0.4230	0.4213	0.4250	0.4225	0.4210	0.4244	0.4244	0.4245
	2020	0.4018	0.4063	0.4044	0.4045	0.4072	0.4025	0.4017	0.4055	0.4048	0.4037
	2021	0.3918	0.3941	0.3948	0.3964	0.3994	0.3954	0.3933	0.3994	0.3976	0.3964
	2022	0.3934	0.3980	0.3976	0.3973	0.3963	0.3919	0.3880	0.3939	0.3921	0.3921

Table S10. Results between our model and the baseline models @4 ("Extended TempEL: Continual entities" as the training set).

	Test	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	Train										
	2013	0.3479	0.3500	0.3494	0.3500	0.3549	0.3510	0.3469	0.3536	0.3554	0.3522
	2014	0.3260	0.3289	0.3301	0.3305	0.3341	0.3302	0.3264	0.3337	0.3355	0.3327
	2015	0.3651	0.3680	0.3693	0.3721	0.3722	0.3691	0.3673	0.3712	0.3749	0.3716
	2016	0.3262	0.3266	0.3260	0.3277	0.3308	0.3287	0.3220	0.3287	0.3316	0.3280
BLINK	2017	0.3800	0.3813	0.3832	0.3836	0.3861	0.3835	0.3799	0.3854	0.3861	0.3830
DLIIVIX	2018	0.3576	0.3570	0.3569	0.3585	0.3603	0.3600	0.3540	0.3596	0.3637	0.3593
	2019	0.3570	0.3567	0.3596	0.3567	0.3619	0.3582	0.3546	0.3604	0.3625	0.3624
	2020	0.3668	0.3697	0.3713	0.3729	0.3738	0.3716	0.3657	0.3722	0.3730	0.3724
	2021	0.3540	0.3567	0.3538	0.3549	0.3609	0.3565	0.3519	0.3575	0.3599	0.3575
	2022	0.3352	0.3362	0.3382	0.3374	0.3410	0.3391	0.3368	0.3418	0.3423	0.3410
	2013	0.4081	0.4103	0.4155	0.4107	0.4328	0.4125	0.4111	0.4206	0.4169	0.4320
	2014	0.3903	0.3985	0.3950	0.4009	0.4118	0.4048	0.4038	0.3974	0.4065	0.3960
	2015	0.4395	0.4365	0.4351	0.4401	0.4473	0.4354	0.4365	0.4450	0.4357	0.4335
	2016	0.3889	0.3933	0.4010	0.3998	0.4024	0.4024	0.4002	0.3932	0.3995	0.3880
SpEL	2017	0.4458	0.4593	0.4531	0.4577	0.4601	0.4485	0.4505	0.4622	0.4519	0.4462
орын	2018	0.4341	0.4215	0.4361	0.4352	0.4353	0.4210	0.4330	0.4267	0.4292	0.4361
	2019	0.4274	0.4309	0.4353	0.4343	0.4387	0.4211	0.4215	0.4360	0.4268	0.4294
	2020	0.4431	0.4424	0.4447	0.4348	0.4481	0.4413	0.4370	0.4437	0.4471	0.4332
	2021	0.4297	0.4172	0.4196	0.4165	0.4373	0.4262	0.4137	0.4367	0.4350	0.4237
	2022	0.4065	0.4143	0.3991	0.4023	0.4109	0.4126	0.4133	0.4084	0.4107	0.4155
	2013	0.4768	0.4750	0.4748	0.4755	0.4752	0.4746	0.4742	0.4763	0.4764	0.4777
	2014	0.4901	0.4927	0.4926	0.4927	0.4909	0.4891	0.4872	0.4921	0.4903	0.4913
	2015	0.4997	0.5042	0.5037	0.5023	0.5047	0.5017	0.4996	0.5041	0.5036	0.5025
	2016	0.5271	0.5318	0.5305	0.5309	0.5329	0.5277	0.5256	0.5312	0.5285	0.5297
TIGER	2017	0.5441	0.5473	0.5474	0.5463	0.5479	0.5441	0.5424	0.5487	0.5457	0.5442
TIGEN	2018	0.5215	0.5232	0.5236	0.5256	0.5271	0.5231	0.5200	0.5259	0.5230	0.5256
	2019	0.5374	0.5428	0.5439	0.5397	0.5417	0.5377	0.5364	0.5423	0.5424	0.5426
	2020	0.5180	0.5218	0.5192	0.5176	0.5189	0.5138	0.5155	0.5201	0.5175	0.5174
	2021	0.5073	0.5093	0.5086	0.5093	0.5112	0.5081	0.5067	0.5141	0.5118	0.5133
	2022	0.5093	0.5126	0.5137	0.5117	0.5125	0.5097	0.5038	0.5083	0.5093	0.5100

Table S11. Results between our model and the baseline models @8 ("Extended TempEL: Continual entities" as the training set).

	e training set).	1									
	Test Train	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	2013	0.4531	0.4544	0.4538	0.4565	0.4586	0.4550	0.4531	0.4574	0.4609	0.456
	2014	0.4314	0.4327	0.4322	0.4347	0.4385	0.4338	0.4314	0.4360	0.4409	0.4393
	2015	0.4700	0.4721	0.4723	0.4749	0.4774	0.4749	0.4714	0.4745	0.4776	0.476
	2016	0.4258	0.4285	0.4296	0.4306	0.4354	0.4316	0.4260	0.4296	0.4363	0.431
BLINK	2017	0.4863	0.4887	0.4880	0.4906	0.4918	0.4902	0.4886	0.4898	0.4931	0.490
DLIINK	2018	0.4616	0.4638	0.4600	0.4639	0.4656	0.4624	0.4604	0.4620	0.4657	0.464
	2019	0.4614	0.4663	0.4668	0.4658	0.4689	0.4670	0.4627	0.4650	0.4698	0.469
	2020	0.4719	0.4753	0.4762	0.4772	0.4790	0.4766	0.4730	0.4776	0.4785	0.479
	2021	0.4551	0.4591	0.4594	0.4602	0.4640	0.4611	0.4586	0.4609	0.4651	0.464
	2022	0.4396	0.4421	0.4409	0.4433	0.4454	0.4428	0.4391	0.4442	0.4473	0.445
	2013	0.5321	0.5425	0.5336	0.5353	0.5355	0.5303	0.5268	0.5385	0.5376	0.538
	2014	0.5158	0.5082	0.5131	0.5224	0.5201	0.5120	0.5027	0.5133	0.5236	0.518
	2015	0.5572	0.5510	0.5449	0.5557	0.5642	0.5459	0.5607	0.5482	0.5627	0.558
	2016	0.5118	0.5015	0.5160	0.5091	0.5144	0.5134	0.5124	0.4999	0.5228	0.516
SpEL	2017	0.5704	0.5785	0.5739	0.5770	0.5805	0.5718	0.5753	0.5598	0.5661	0.572
SPEL	2018	0.5337	0.5441	0.5473	0.5364	0.5554	0.5361	0.5482	0.5411	0.5387	0.542
	2019	0.5331	0.5535	0.5431	0.5415	0.5478	0.5497	0.5485	0.5466	0.5470	0.548
	2020	0.5589	0.5637	0.5597	0.5614	0.5648	0.5559	0.5433	0.5519	0.5523	0.561
	2021	0.5252	0.5304	0.5374	0.5456	0.5390	0.5418	0.5325	0.5314	0.5522	0.534
	2022	0.5105	0.5245	0.5150	0.5320	0.5258	0.5162	0.5221	0.5164	0.5350	0.530
	2013	0.5888	0.5910	0.5876	0.5890	0.5910	0.5899	0.5880	0.5888	0.5886	0.591
	2014	0.5973	0.6006	0.5999	0.6011	0.6004	0.5977	0.5970	0.6016	0.6003	0.600
	2015	0.6069	0.6105	0.6114	0.6103	0.6113	0.6091	0.6071	0.6100	0.6094	0.612
	2016	0.6353	0.6379	0.6378	0.6381	0.6408	0.6357	0.6345	0.6398	0.6381	0.640
TICED	2017	0.6513	0.6519	0.6522	0.6504	0.6514	0.6495	0.6494	0.6511	0.6486	0.649
TIGER	2018	0.6289	0.6297	0.6290	0.6315	0.6340	0.6287	0.6276	0.6309	0.6285	0.632
	2019	0.6453	0.6480	0.6508	0.6452	0.6487	0.6455	0.6455	0.6485	0.6476	0.651
	2020	0.6253	0.6252	0.6252	0.6252	0.6257	0.6243	0.6232	0.6279	0.6255	0.627
	2021	0.6138	0.6164	0.6149	0.6152	0.6189	0.6162	0.6159	0.6228	0.6194	0.622
	2022	0.6195	0.6233	0.6243	0.6214	0.6207	0.6203	0.6166	0.6196	0.6173	0.620

Table S12. Results between our model and the baseline models @16 ("Extended TempEL: Continual entities" as the training set).

	e training set).										
	Test Train	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	2013	0.5589	0.5606	0.5615	0.5625	0.5653	0.5625	0.5614	0.5622	0.5683	0.5640
	2014	0.5393	0.5424	0.5436	0.5450	0.5473	0.5416	0.5414	0.5443	0.5490	0.545
	2015	0.5774	0.5790	0.5787	0.5801	0.5813	0.5820	0.5821	0.5814	0.5838	0.5829
	2016	0.5339	0.5377	0.5375	0.5372	0.5430	0.5396	0.5381	0.5367	0.5412	0.5389
BLINK	2017	0.5901	0.5945	0.5952	0.5970	0.5985	0.5970	0.5966	0.5966	0.5986	0.597
DLIINK	2018	0.5677	0.5707	0.5691	0.5710	0.5725	0.5695	0.5680	0.5700	0.5736	0.570
	2019	0.5715	0.5742	0.5744	0.5752	0.5772	0.5737	0.5726	0.5740	0.5774	0.578
	2020	0.5779	0.5806	0.5835	0.5842	0.5856	0.5817	0.5819	0.5839	0.5840	0.584
	2021	0.5631	0.5665	0.5662	0.5682	0.5728	0.5684	0.5667	0.5680	0.5718	0.569
	2022	0.5465	0.5499	0.5498	0.5514	0.5524	0.5479	0.5469	0.5498	0.5529	0.554
	2013	0.6296	0.6228	0.6277	0.6404	0.6316	0.6352	0.6397	0.6279	0.6365	0.642
	2014	0.6073	0.6098	0.6121	0.6203	0.6121	0.6203	0.6033	0.6203	0.6277	0.606
	2015	0.6480	0.6492	0.6482	0.6405	0.6443	0.6454	0.6429	0.6609	0.6579	0.651
	2016	0.5947	0.6009	0.5981	0.6037	0.6130	0.6174	0.5982	0.6100	0.6082	0.600
SpEL	2017	0.6690	0.6680	0.6662	0.6626	0.6731	0.6720	0.6645	0.6729	0.6620	0.660
SPEL	2018	0.6462	0.6472	0.6292	0.6368	0.6415	0.6393	0.6377	0.6495	0.6531	0.639
	2019	0.6370	0.6438	0.6362	0.6397	0.6407	0.6443	0.6516	0.6406	0.6494	0.651
	2020	0.6539	0.6515	0.6518	0.6566	0.6529	0.6423	0.6565	0.6622	0.6599	0.662
	2021	0.6354	0.6291	0.6351	0.6413	0.6341	0.6355	0.6310	0.6330	0.6371	0.633
	2022	0.6191	0.6215	0.6271	0.6283	0.6156	0.6164	0.6094	0.6146	0.6266	0.627
	2013	0.6926	0.6948	0.6924	0.6930	0.6952	0.6925	0.6917	0.6939	0.6926	0.697
	2014	0.6973	0.6975	0.6990	0.6989	0.6996	0.6970	0.6960	0.6988	0.6984	0.701
	2015	0.7074	0.7094	0.7094	0.7082	0.7124	0.7069	0.7064	0.7080	0.7074	0.709
	2016	0.7315	0.7321	0.7339	0.7316	0.7360	0.7320	0.7313	0.7339	0.7334	0.735
TICED	2017	0.7387	0.7378	0.7401	0.7378	0.7405	0.7381	0.7379	0.7399	0.7370	0.738
TIGER	2018	0.7220	0.7249	0.7236	0.7243	0.7262	0.7229	0.7235	0.7229	0.7217	0.725
	2019	0.7400	0.7405	0.7434	0.7397	0.7425	0.7406	0.7397	0.7423	0.7415	0.744
	2020	0.7194	0.7187	0.7204	0.7186	0.7212	0.7200	0.7218	0.7232	0.7227	0.724
	2021	0.7135	0.7133	0.7127	0.7121	0.7171	0.7150	0.7153	0.7182	0.7156	0.719
	2022	0.7167	0.7193	0.7178	0.7164	0.7183	0.7187	0.7163	0.7181	0.7154	0.718

Table S13. Results between our model and the baseline models @32 ("Extended TempEL: Continual entities" as the training set).

	e training set).	1									
	Test Train	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	2013	0.6631	0.6651	0.6671	0.6682	0.6688	0.6688	0.6648	0.6659	0.6687	0.6684
	2014	0.6459	0.6524	0.6515	0.6515	0.6548	0.6508	0.6492	0.6531	0.6553	0.6542
	2015	0.6797	0.6825	0.6840	0.6839	0.6849	0.6837	0.6837	0.6830	0.6851	0.6849
	2016	0.6425	0.6452	0.6438	0.6447	0.6471	0.6443	0.6442	0.6435	0.6463	0.646
BLINK	2017	0.6912	0.6955	0.6975	0.6987	0.6994	0.6982	0.6986	0.6986	0.6993	0.698
DLIINK	2018	0.6693	0.6737	0.6720	0.6731	0.6752	0.6724	0.6710	0.6708	0.6749	0.673
	2019	0.6743	0.6789	0.6807	0.6805	0.6815	0.6782	0.6795	0.6797	0.6820	0.682
	2020	0.6813	0.6829	0.6849	0.6855	0.6878	0.6858	0.6849	0.6860	0.6862	0.688
	2021	0.6658	0.6703	0.6698	0.6703	0.6734	0.6716	0.6697	0.6718	0.6745	0.673
	2022	0.6536	0.6560	0.6570	0.6568	0.6600	0.6565	0.6565	0.6590	0.6604	0.660
	2013	0.7148	0.7248	0.7236	0.7270	0.7261	0.7289	0.7243	0.7341	0.7297	0.7208
	2014	0.6996	0.7158	0.7155	0.7027	0.7214	0.7140	0.6999	0.7036	0.7099	0.712
	2015	0.7368	0.7446	0.7458	0.7411	0.7386	0.7526	0.7407	0.7389	0.7507	0.748
	2016	0.6936	0.7022	0.7054	0.7133	0.7033	0.7053	0.7124	0.7107	0.6975	0.706
C ₁₀ EI	2017	0.7476	0.7583	0.7606	0.7633	0.7533	0.7541	0.7610	0.7547	0.7679	0.750
SpEL	2018	0.7233	0.7296	0.7247	0.7251	0.7279	0.7381	0.7298	0.7248	0.7370	0.739
	2019	0.7251	0.7358	0.7317	0.7326	0.7473	0.7425	0.7371	0.7399	0.7370	0.740
	2020	0.7404	0.7517	0.7484	0.7371	0.7494	0.7548	0.7408	0.7476	0.7531	0.750
	2021	0.7315	0.7322	0.7204	0.7231	0.7241	0.7253	0.7241	0.7407	0.7284	0.724
	2022	0.7202	0.7215	0.7148	0.7132	0.7189	0.7104	0.7106	0.7092	0.7253	0.713
	2013	0.7819	0.7833	0.7826	0.7815	0.7858	0.7820	0.7812	0.7823	0.7814	0.786
	2014	0.7854	0.7854	0.7879	0.7860	0.7882	0.7839	0.7857	0.7869	0.7853	0.789
	2015	0.7909	0.7922	0.7937	0.7920	0.7949	0.7911	0.7908	0.7919	0.7916	0.791
	2016	0.8122	0.8129	0.8157	0.8138	0.8166	0.8126	0.8144	0.8146	0.8141	0.815
TICED	2017	0.8138	0.8142	0.8165	0.8138	0.8163	0.8140	0.8136	0.8154	0.8111	0.813
TIGER	2018	0.8024	0.8025	0.8042	0.8026	0.8071	0.8042	0.8039	0.8030	0.8035	0.807
	2019	0.8171	0.8176	0.8193	0.8175	0.8220	0.8190	0.8198	0.8202	0.8184	0.820
	2020	0.8001	0.8002	0.8010	0.7992	0.8039	0.8007	0.8035	0.8033	0.8023	0.805
	2021	0.7967	0.7974	0.8000	0.7979	0.8040	0.7994	0.7993	0.8019	0.7997	0.803
	2022	0.7974	0.7990	0.7985	0.7980	0.8013	0.7990	0.7989	0.8010	0.7984	0.803

Table S14. Results between our model and the baseline models @64 ("Extended TempEL: Continual entities" as the training set).

	Test	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	Train	2013	2014	2013	2010	2017	2010	2019	2020	2021	
	2013	0.7594	0.7617	0.7625	0.7613	0.7628	0.7621	0.7614	0.7628	0.7651	0.7639
	2014	0.7489	0.7538	0.7532	0.7537	0.7546	0.7529	0.7517	0.7541	0.7551	0.7539
	2015	0.7731	0.7758	0.7768	0.7776	0.7766	0.7754	0.7749	0.7746	0.7780	0.7769
	2016	0.7421	0.7449	0.7419	0.7456	0.7441	0.7434	0.7425	0.7413	0.7441	0.7440
BLINK	2017	0.7840	0.7880	0.7890	0.7886	0.7880	0.7873	0.7864	0.7867	0.7899	0.7873
DLIIVIX	2018	0.7650	0.7669	0.7660	0.7660	0.7668	0.7649	0.7641	0.7657	0.7688	0.7666
	2019	0.7695	0.7745	0.7759	0.7758	0.7764	0.7752	0.7749	0.7750	0.7770	0.7755
	2020	0.7742	0.7764	0.7765	0.7763	0.7788	0.7760	0.7767	0.7779	0.7788	0.7793
	2021	0.7621	0.7655	0.7659	0.7659	0.7669	0.7660	0.7640	0.7651	0.7675	0.7667
	2022	0.7506	0.7565	0.7560	0.7550	0.7588	0.7550	0.7556	0.7562	0.7583	0.7575
	2013	0.8156	0.8058	0.8220	0.8155	0.8169	0.8190	0.8204	0.8169	0.8144	0.8096
	2014	0.7936	0.8021	0.8042	0.8071	0.8033	0.8041	0.8011	0.7942	0.8085	0.8102
	2015	0.8169	0.8340	0.8209	0.8244	0.8253	0.8170	0.8341	0.8257	0.8338	0.8243
	2016	0.7976	0.7905	0.7877	0.7877	0.8029	0.7973	0.7997	0.7969	0.7891	0.7875
SpEL	2017	0.8438	0.8436	0.8469	0.8424	0.8422	0.8405	0.8463	0.8311	0.8405	0.8427
орын	2018	0.8223	0.8249	0.8197	0.8173	0.8131	0.8220	0.8046	0.8091	0.8136	0.8186
	2019	0.8173	0.8266	0.8273	0.8228	0.8275	0.8227	0.8322	0.8344	0.8310	0.8241
	2020	0.8172	0.8313	0.8325	0.8222	0.8337	0.8258	0.8237	0.8197	0.8381	0.8195
	2021	0.8099	0.8073	0.8132	0.8251	0.8130	0.8109	0.8213	0.8128	0.8117	0.8082
	2022	0.8000	0.8153	0.7979	0.8052	0.8024	0.8027	0.8145	0.8108	0.8160	0.8148
	2013	0.8558	0.8564	0.8556	0.8552	0.8571	0.8556	0.8554	0.8560	0.8557	0.8590
	2014	0.8568	0.8564	0.8574	0.8556	0.8582	0.8536	0.8555	0.8556	0.8545	0.8579
	2015	0.8597	0.8604	0.8614	0.8594	0.8643	0.8607	0.8600	0.8596	0.8585	0.8620
	2016	0.8761	0.8764	0.8783	0.8763	0.8807	0.8774	0.8780	0.8792	0.8782	0.8796
TIGER	2017	0.8750	0.8756	0.8766	0.8746	0.8767	0.8737	0.8741	0.8739	0.8723	0.8747
HOLK	2018	0.8680	0.8687	0.8702	0.8706	0.8739	0.8696	0.8694	0.8692	0.8678	0.8727
	2019	0.8784	0.8786	0.8796	0.8781	0.8802	0.8786	0.8808	0.8797	0.8788	0.8806
	2020	0.8657	0.8666	0.8671	0.8652	0.8686	0.8664	0.8679	0.8685	0.8668	0.8693
	2021	0.8656	0.8668	0.8686	0.8664	0.8686	0.8669	0.8677	0.8682	0.8662	0.8688
	2022	0.8652	0.8685	0.8672	0.8654	0.8683	0.8663	0.8652	0.8665	0.8654	0.8679

5. ADDITIONAL RESULTS - MITIGATING TEMPORAL DEGRADATION

Table S15 to Table S18 illuminate the effectiveness of our model in mitigating temporal degradation using results derived from the expanded TempEL dataset. In Table S15 and Table S16, we use "Extended TempEL: New entities" as the training set. In Table S17 and Table S18, we use "Extended TempEL: Continual entities" as the training set. Each column in the table represents the years' gap between the training and testing datasets, as denoted by the digits from 0 to 9. For instance, 0 implies that training and testing datasets come from the same year, while 9 indicates that the model was trained in 2013 and tested in 2022. The rows are divided based on various metrics, includes @1, @2, @4, @8, @16, @32 and @64. "Boost" displays a comparison between our model TIGER and SpEL model, calculated as Boost = $\frac{\text{Our Model's Result-Baseline Model's Result}}{\text{Baseline Model's Result}}.$ Table S15 and Table S17 show models' performance on the "Only Forward" setting. "Only Forward" means

Table S15 and Table S17 show models' performance on the "Only Forward" setting. "Only Forward" means the results include only one scenario: the model is trained in the past and tested in the future. Table S16 and Table S18 show models' performance on the "Forward and Backward" setting. "Forward and Backward" means the results include two scenarios: training in the past and testing in the future, and training in the future and testing in the past. For instance, in Table S15, when @1 and the gap is 9, our model's result under "Only Forward" is 0.2304, representing only the situation of training in 2013 and testing in 2022. However, in Table S16 under "Forward and Backward," our model's result is 0.1914, which is the average of two situations: training in 2013 and testing in 2022, and training in 2022 and testing in 2013. It is worth noting that when the gap is 0, it means the training and testing datasets come from the same year. Thus, the "Only Forward" and "Forward and Backward" values are equal.

Table S15. Temporal degradation mitigation performance on the "Only Forward" setting using "Extended TempEL: New entities" as training dataset.

		0	1	2	3	4	5	6	7	8	9
	BLINK	0.1333	0.1340	0.1340	0.1357	0.1349	0.1360	0.1348	0.1357	0.1346	0.1433
@1	SpEL	0.1733	0.1695	0.1765	0.1771	0.1699	0.1720	0.1723	0.1790	0.1796	0.1933
@1	TIGER	0.2032	0.2076	0.2086	0.2163	0.2158	0.2232	0.2211	0.2221	0.2149	0.2304
	Boost (%)	17.23	22.46	18.22	22.11	27.04	29.76	28.32	24.04	19.66	19.19
	BLINK	0.1994	0.1999	0.2004	0.2021	0.2013	0.2027	0.2009	0.2014	0.1996	0.2117
@2	SpEL	0.2444	0.2455	0.2504	0.2535	0.2513	0.2447	0.2484	0.2481	0.2496	0.2617
© Z	TIGER	0.2948	0.3009	0.3018	0.3114	0.3101	0.3201	0.3167	0.3185	0.3102	0.3301
	Boost (%)	20.65	22.55	20.54	22.82	23.41	30.82	27.46	28.39	24.30	26.14
	BLINK	0.2794	0.2789	0.2804	0.2825	0.2809	0.2837	0.2802	0.2813	0.2785	0.2952
@4	SpEL	0.3324	0.3411	0.3379	0.3396	0.3425	0.3457	0.3402	0.3446	0.3385	0.3652
6 4	TIGER	0.3975	0.4042	0.4060	0.4161	0.4143	0.4250	0.4223	0.4244	0.4139	0.4376
	Boost (%)	19.56	18.50	20.16	22.52	20.96	22.96	24.13	23.16	22.27	19.82
	BLINK	0.3720	0.3717	0.3735	0.3752	0.3724	0.3745	0.3713	0.3713	0.3687	0.3883
@8	SpEL	0.4370	0.4439	0.4422	0.4437	0.4424	0.4445	0.4438	0.4380	0.4437	0.4483
© 0	TIGER	0.5050	0.5122	0.5133	0.5234	0.5215	0.5326	0.5298	0.5311	0.5215	0.5453
	Boost (%)	15.57	15.39	16.07	17.95	17.88	19.82	19.37	21.26	17.53	21.64
	BLINK	0.4717	0.4716	0.4724	0.4737	0.4705	0.4728	0.4693	0.4681	0.4660	0.4848
@16	SpEL	0.5437	0.5427	0.5499	0.5452	0.5422	0.5448	0.5368	0.5415	0.5360	0.5448
@10	TIGER	0.6109	0.6163	0.6175	0.6257	0.6235	0.6353	0.6335	0.6334	0.6250	0.6489
	Boost (%)	12.35	13.56	12.29	14.77	15.00	16.60	18.01	16.97	16.60	19.11
	BLINK	0.5747	0.5745	0.5743	0.5751	0.5715	0.5737	0.5696	0.5678	0.5652	0.5855
@32	SpEL	0.6407	0.6412	0.6393	0.6451	0.6398	0.6397	0.6371	0.6345	0.6352	0.6555
© 32	TIGER	0.7081	0.7122	0.7132	0.7188	0.7173	0.7284	0.7262	0.7254	0.7206	0.7401
	Boost (%)	10.51	11.08	11.55	11.42	12.11	13.86	13.99	14.33	13.45	12.91
	BLINK	0.6741	0.6739	0.6735	0.6742	0.6712	0.6734	0.6698	0.6670	0.6651	0.6832
@64	SpEL	0.7331	0.7350	0.7310	0.7370	0.7279	0.7354	0.7323	0.7270	0.7201	0.7432
001	TIGER	0.7920	0.7951	0.7955	0.7993	0.7977	0.8057	0.8043	0.8030	0.7996	0.8169
	Boost (%)	8.03	8.17	8.83	8.46	9.59	9.57	9.83	10.45	11.04	9.92

Table S16. Temporal degradation mitigation performance on the "Forward and Backward" setting using "Extended TempEL: New entities" as training dataset.

		0	1	2	3	4	5	6	7	8	9
@1	BLINK	0.1333	0.1326	0.1331	0.1332	0.1329	0.1325	0.1321	0.1305	0.1306	0.1350
	SpEL	0.1733	0.1687	0.1737	0.1725	0.1688	0.1685	0.1709	0.1672	0.1731	0.1750
© 1	TIGER	0.2032	0.2037	0.2040	0.2052	0.2028	0.2031	0.2018	0.1968	0.1960	0.1914
	Boost (%)	17.23	20.74	17.42	18.98	20.17	20.53	18.10	17.70	13.18	9.37
	BLINK	0.1994	0.1985	0.1992	0.1996	0.1990	0.1981	0.1973	0.1957	0.1955	0.2015
@2	SpEL	0.2444	0.2457	0.2461	0.2482	0.2465	0.2401	0.2423	0.2390	0.2430	0.2365
02	TIGER	0.2948	0.2958	0.2961	0.2978	0.2944	0.2942	0.2926	0.2870	0.2866	0.2808
	Boost (%)	20.65	20.39	20.29	19.99	19.43	22.50	20.79	20.09	17.97	18.74
	BLINK	0.2794	0.2777	0.2793	0.2796	0.2787	0.2787	0.2771	0.2748	0.2741	0.2830
@4	SpEL	0.3324	0.3344	0.3356	0.3354	0.3404	0.3387	0.3321	0.3298	0.3266	0.3380
U 1	TIGER	0.3975	0.3985	0.3991	0.4005	0.3970	0.3967	0.3959	0.3886	0.3880	0.3822
	Boost (%)	19.56	19.18	18.94	19.43	16.63	17.13	19.19	17.84	18.83	13.09
	BLINK	0.3720	0.3704	0.3721	0.3731	0.3713	0.3708	0.3692	0.3653	0.3652	0.3751
@8	SpEL	0.4370	0.4398	0.4421	0.4409	0.4388	0.4398	0.4354	0.4319	0.4277	0.4201
© 0	TIGER	0.5050	0.5061	0.5063	0.5082	0.5046	0.5042	0.5042	0.4960	0.4957	0.4895
	Boost (%)	15.57	15.08	14.54	15.26	15.00	14.64	15.80	14.83	15.89	16.51
	BLINK	0.4717	0.4702	0.4720	0.4727	0.4709	0.4703	0.4689	0.4642	0.4644	0.4724
@16	SpEL	0.5437	0.5402	0.5414	0.5419	0.5392	0.5383	0.5364	0.5309	0.5294	0.5274
010	TIGER	0.6109	0.6111	0.6116	0.6126	0.6088	0.6096	0.6105	0.6021	0.6015	0.5974
	Boost (%)	12.35	13.12	12.95	13.04	12.90	13.26	13.81	13.41	13.62	13.27
	BLINK	0.5747	0.5730	0.5745	0.5748	0.5729	0.5723	0.5711	0.5659	0.5657	0.5745
@32	SpEL	0.6407	0.6419	0.6420	0.6441	0.6412	0.6393	0.6336	0.6309	0.6332	0.6395
602	TIGER	0.7081	0.7080	0.7087	0.7090	0.7055	0.7069	0.7079	0.7009	0.7000	0.6971
	Boost (%)	10.51	10.29	10.39	10.07	10.03	10.58	11.73	11.09	10.55	9.01
	BLINK	0.6741	0.6731	0.6741	0.6748	0.6732	0.6730	0.6723	0.6674	0.6665	0.6736
@64	SpEL	0.7331	0.7320	0.7316	0.7348	0.7307	0.7320	0.7311	0.7257	0.7190	0.7186
-01	TIGER	0.7920	0.7920	0.7925	0.7921	0.7895	0.7902	0.7923	0.7856	0.7849	0.7841
	Boost (%)	8.03	8.20	8.32	7.81	8.05	7.95	8.38	8.25	9.17	9.12

Table S17. Temporal degradation mitigation performance on the "Only Forward" setting using "Extended TempEL: Continual entities" as training dataset.

1				0							
		0	1	2	3	4	5	6	7	8	9
@1	BLINK	0.1760	0.1770	0.1776	0.1767	0.1755	0.1755	0.1703	0.1764	0.1682	0.1741
	SpEL	0.2289	0.2266	0.2247	0.2215	0.2273	0.2243	0.2245	0.2264	0.2183	0.2264
@1	TIGER	0.2860	0.2862	0.2870	0.2862	0.2827	0.2797	0.2734	0.2658	0.2600	0.2519
	Boost (%)	24.95	26.31	27.71	29.22	24.39	24.71	21.76	17.40	19.08	11.26
	BLINK	0.2586	0.2600	0.2608	0.2596	0.2589	0.2577	0.2509	0.2575	0.2482	0.2551
@2	SpEL	0.3186	0.3185	0.3189	0.3194	0.3193	0.3186	0.3118	0.3162	0.3144	0.3124
62	TIGER	0.3996	0.3997	0.4010	0.4006	0.3961	0.3933	0.3862	0.3763	0.3707	0.3617
	Boost (%)	25.40	25.53	25.74	25.44	24.07	23.46	23.84	19.03	17.89	15.78
	BLINK	0.3548	0.3568	0.3569	0.3552	0.3544	0.3526	0.3459	0.3536	0.3441	0.3522
@4	SpEL	0.4238	0.4262	0.4254	0.4256	0.4259	0.4214	0.4081	0.4202	0.4065	0.4320
94	TIGER	0.5153	0.5156	0.5160	0.5154	0.5111	0.5077	0.4999	0.4897	0.4839	0.4777
	Boost (%)	21.59	20.96	21.29	21.12	20.00	20.48	22.51	16.54	19.04	10.58
	BLINK	0.4594	0.4617	0.4622	0.4601	0.4585	0.4575	0.4496	0.4581	0.4501	0.4564
@8	SpEL	0.5394	0.5421	0.5448	0.5372	0.5362	0.5352	0.5299	0.5403	0.5281	0.5383
00	TIGER	0.6232	0.6240	0.6238	0.6235	0.6195	0.6170	0.6098	0.6004	0.5946	0.5917
	Boost (%)	15.54	15.11	14.50	16.06	15.54	15.28	15.07	11.12	12.59	9.92
	BLINK	0.5668	0.5689	0.5695	0.5683	0.5658	0.5647	0.5571	0.5647	0.5570	0.5640
@16	SpEL	0.6382	0.6369	0.6420	0.6391	0.6344	0.6335	0.6297	0.6358	0.6214	0.6422
@10	TIGER	0.7192	0.7205	0.7204	0.7195	0.7158	0.7136	0.7083	0.7005	0.6973	0.6975
	Boost (%)	12.69	13.12	12.21	12.59	12.83	12.64	12.48	10.18	12.21	8.61
	BLINK	0.6717	0.6729	0.6735	0.6724	0.6699	0.6691	0.6624	0.6687	0.6615	0.6684
@32	SpEL	0.7308	0.7318	0.7305	0.7351	0.7331	0.7231	0.7213	0.7307	0.7209	0.7208
@ 32	TIGER	0.8022	0.8026	0.8020	0.8021	0.7990	0.7975	0.7939	0.7865	0.7855	0.7860
	Boost (%)	9.77	9.67	9.80	9.11	8.98	10.29	10.07	7.64	8.96	9.05
	BLINK	0.7666	0.7676	0.7681	0.7664	0.7647	0.7640	0.7594	0.7649	0.7595	0.7639
@64	SpEL	0.8169	0.8181	0.8197	0.8149	0.8185	0.8155	0.8090	0.8166	0.8123	0.8096
₩0 1	TIGER	0.8680	0.8680	0.8680	0.8678	0.8658	0.8647	0.8623	0.8575	0.8568	0.8590
	Boost (%)	6.25	6.10	5.90	6.49	5.78	6.03	6.59	5.01	5.48	6.10

Table S18. Temporal degradation mitigation performance on the "Forward and Backward" setting using "Extended TempEL: Continual entities" as training dataset.

	<u> </u>										
		0	1	2	3	4	5	6	7	8	9
	BLINK	0.1760	0.1765	0.1779	0.1766	0.1775	0.1764	0.1731	0.1755	0.1691	0.1682
@1	SpEL	0.2289	0.2266	0.2268	0.2254	0.2286	0.2246	0.2260	0.2249	0.2214	0.2232
© 1	TIGER	0.2860	0.2879	0.2893	0.2905	0.2889	0.2856	0.2816	0.2754	0.2716	0.2675
	Boost (%)	24.95	27.05	27.53	28.88	26.40	27.15	24.60	22.46	22.69	19.87
	BLINK	0.2586	0.2592	0.2610	0.2591	0.2613	0.2586	0.2549	0.2576	0.2494	0.2487
@2	SpEL	0.3186	0.3190	0.3212	0.3185	0.3205	0.3190	0.3154	0.3151	0.3092	0.3094
© 2	TIGER	0.3996	0.4018	0.4038	0.4048	0.4026	0.3993	0.3953	0.3871	0.3828	0.3776
	Boost (%)	25.40	25.96	25.73	27.09	25.60	25.18	25.33	22.84	23.80	22.05
	BLINK	0.3548	0.3555	0.3572	0.3554	0.3580	0.3545	0.3502	0.3537	0.3446	0.3437
@4	SpEL	0.4238	0.4257	0.4267	0.4275	0.4286	0.4244	0.4155	0.4200	0.4142	0.4193
61	TIGER	0.5153	0.5175	0.5189	0.5198	0.5180	0.5144	0.5099	0.5017	0.4969	0.4935
	Boost (%)	21.59	21.57	21.63	21.58	20.87	21.20	22.72	19.45	19.96	17.71
	BLINK	0.4594	0.4607	0.4623	0.4600	0.4626	0.4597	0.4547	0.4577	0.4494	0.4480
@8	SpEL	0.5394	0.5419	0.5425	0.5406	0.5409	0.5394	0.5357	0.5375	0.5265	0.5244
© 0	TIGER	0.6232	0.6253	0.6267	0.6274	0.6261	0.6223	0.6182	0.6112	0.6066	0.6056
	Boost (%)	15.54	15.39	15.52	16.07	15.74	15.36	15.40	13.70	15.22	15.48
	BLINK	0.5668	0.5679	0.5696	0.5680	0.5696	0.5670	0.5623	0.5647	0.5568	0.5553
@16	SpEL	0.6382	0.6362	0.6385	0.6359	0.6388	0.6366	0.6338	0.6363	0.6249	0.6307
010	TIGER	0.7192	0.7214	0.7227	0.7230	0.7213	0.7181	0.7151	0.7087	0.7068	0.7071
	Boost (%)	12.69	13.39	13.18	13.69	12.92	12.80	12.82	11.38	13.11	12.12
	BLINK	0.6717	0.6721	0.6737	0.6724	0.6734	0.6709	0.6667	0.6691	0.6612	0.6610
@32	SpEL	0.7308	0.7320	0.7315	0.7315	0.7316	0.7265	0.7245	0.7299	0.7237	0.7205
602	TIGER	0.8022	0.8034	0.8039	0.8047	0.8026	0.8008	0.7989	0.7926	0.7917	0.7917
	Boost (%)	9.77	9.74	9.90	10.01	9.71	10.23	10.27	8.59	9.39	9.88
	BLINK	0.7666	0.7670	0.7681	0.7669	0.7678	0.7661	0.7630	0.7651	0.7594	0.7573
@64	SpEL	0.8169	0.8172	0.8197	0.8177	0.8204	0.8187	0.8129	0.8120	0.8125	0.8048
-01	TIGER	0.8680	0.8687	0.8693	0.8697	0.8682	0.8672	0.8660	0.8620	0.8619	0.8621
	Boost (%)	6.25	6.30	6.05	6.36	5.82	5.93	6.54	6.16	6.09	7.12

6. DIMINISHING PERFORMANCE GAINS

Figure S2 displays recall@N results from the Expanded TempEL dataset. We assessed our proposed model against the baseline bi-encoder using recall metrics. The x-axis indicates the year gap between training and testing sets, while the y-axis represents the recall rate. Overall, our model consistently outperforms the baseline models.

Fig. S2. The improvement in the metrics @1, @2, @4, @8, @16, @32 and @64.

It is also worth noting that the improvement effect of our model diminishes gradually as the metric threshold becomes more lenient, as shown in Figure S3. A plausible explanation for this observation is when using @64 threshold, the model only needs to correctly predict one out of the top 64 answers, allowing for a higher tolerance of errors. Consequently, the relative performance improvement of our model becomes less evident at these higher thresholds. This indicates a trade-off between prediction accuracy and the employed scale, suggesting the need for careful balance in practical applications.

Fig. S3. Different of Recall changes as the metric changes.