

Collins Parser

(Collins 1997, 2005)

What is a supervised parser? When is it lexicalized? How are dependencies used for CFG parsing? What is a generative model? Why discriminative reranking? How is it evaluated? How good are the results?

Outline

- basics
 - (P)CFG
 - supervised learning
 - (lexicalized) PCFG
- Collins 1997: Probabilistic parser
 - model 1: generative version of (Collins 1996)
 - model 2: + complement/adjunct distinction
 - (model 3: + wh-movement model)
- Collins 2005: Reranking
 - reranker architecture
 - generative / discriminative, (log-)linear
- conclusion

Probabilistic CFG

• CFG

$$S \rightarrow NP VP$$

• PCFG

$$S \rightarrow NP \quad VP$$
 (90%)

which means:

-
$$\mathcal{P}(Rule_r = \langle NP, VP \rangle \mid Rule_l = S) = 0.9$$

- with normalization:

$$\sum_{rule_r} \mathcal{P}(rule_r|rule_l) = 1$$

Supervised Parsing Architecture

Finding the Best Parse

$$T_{best} = \arg \max_{T} \mathcal{P}(T|S) = \arg \max_{T} \frac{\mathcal{P}(T,S)}{\mathcal{P}(S)} = \arg \max_{T} \mathcal{P}(T,S)$$

Two types of models

• discriminative:

- $\mathcal{P}(T|S)$ estimated directly
- $\mathcal{P}(T,S)$ distribution not available
- no model parameters for generating S

• generative:

- estimation of $\mathcal{P}(T,S)$
- PCFG: $\mathcal{P}(T,S) = \prod_{rule \in S} \mathcal{P}(rule_r|rule_l)$

Lexicalization of Rules

add head word and its PoS tag to each nonterminal

$$S \rightarrow NP VP$$

becomes

$$S(\mathbf{loves}, \mathbf{VB}) \to NP(John, NNP) \quad VP(\mathbf{loves}, \mathbf{VB})$$

let's write this as

$$P(\mathbf{h}) \to L_1(l_1) \ H(\mathbf{h})$$

Collins 1997: Model 1

Tell a **head-driven** (lexicalized) generative story:

$$\mathcal{P}(rule_r|rule_l) = \mathcal{P}(L_n(l_n), \dots, L_1(l_1), \mathbf{H}(\mathbf{h}), R_1(r_1), \dots, R_m(r_m)|P(\mathbf{h}))$$

generate heads first,
 then the left and right modifiers (independently)

$$= \mathcal{P}(\mathbf{H}(\mathbf{h}) \mid P(\mathbf{h})) \cdot \prod_{i=1}^{n+1} \mathcal{P}(L_i(l_i) \mid P(\mathbf{h}), \mathbf{H}(\mathbf{h}), \vec{\Delta}(i))$$

$$\cdot \prod_{i=1}^{m+1} \mathcal{P}(R_i(r_i) \mid P(\mathbf{h}), \mathbf{H}(\mathbf{h}), \vec{\Delta}(i))$$

stop generating modifiers when

$$L_{n+1}(l_{n+1}) = \mathsf{STOP}$$
 or $R_{m+1}(r_{m+1}) = \mathsf{STOP}$

• $\vec{\Delta}: \mathbb{N} \to \langle \text{neighbour?}, \text{verb in between?}, (0, 1, 2, > 2) \text{ commas in between?} \rangle$

Parameter Estimation

$$= \mathcal{P}(H(h) \mid P(h)) \quad \cdot \quad \prod_{i=1}^{n+1} \mathcal{P}(L_i(l_i) \mid P(h), H(h), \vec{\Delta}(i))$$

$$\cdot \quad \prod_{i=1}^{m+1} \mathcal{P}(R_i(r_i) \mid P(h), H(h), \vec{\Delta}(i))$$

parameters estimated by **relative frequency** in the training set (max. likelihood):

$$\mathcal{P}(H(h)|P(h)) = \frac{C(H(h), P(h))}{C(P(h))}$$

$$\mathcal{P}(L_i(l_i)|P(h), H(h), \vec{\Delta}(i)) = \frac{C(L_i(l_i), P(h), H(h), \vec{\Delta}(i))}{C(P(h), H(h), \vec{\Delta}(i))}$$

linearly smoothed with counts with less specific conditions (backoff)

Parsing

- Bottom-Up chart parsing
- PoS tag sentence
- each word is a potential head of a phrase
- calculate probabilities of modifiers
- go on

Dataset

Penn Treebank: Wall Street Journal portion

- sections 2-21 for training
 - 40k sentences
- section 23 for testing
 - 2,416 sentences

Evaluation

PARSEVAL evaluation measures:

where 'correct' constituent ↔ same boundaries, same label

 $Crossing\ Brackets\ (CB) = nr$ of constituents violating the boundaries in the gold parse

Results Model 1

ſ	MODEL	$\leq 40 \text{ Words } (2245 \text{ sentences})$					$\leq 100 \text{ Words } (2416 \text{ sentences})$				
		LR	LP	CBs	0 CBs	$\leq 2 \text{ CBs}$	LR	LP	CBs	0 CBs	$\leq 2 \text{ CBs}$
	(Magerman 95)	84.6%	84.9%	1.26	56.6%	81.4%	84.0%	84.3%	1.46	54.0%	78.8%
	(Collins 96)	85.8%	86.3%	1.14	59.9%	83.6%	85.3%	85.7%	1.32	57.2%	80.8%
	Model 1	87.4%	88.1%	0.96	65.7%	86.3%	86.8%	87.6%	1.11	63.1%	84.1%

Subcategorization Problem

consider this parse:

Correct

Subcategorization Problem

due to the independence of modifiers, Model 1 may parse:

Subcategorization Problem

Solution: distinguish modifiers into complements ('-C') and adjuncts

→ estimate separate probabilities

ightarrow learn that $VP(\mathrm{was})$ prefers only one complement.

complement information might also help identifying functional information like subject

Model 2

Extend Model 1:

$$\mathcal{P}(H(h)|P(h)) \cdot \mathcal{P}(LC|P(h), H(h)) \cdot \mathcal{P}(RC|P(h), H(h))$$

$$\cdot \prod_{i=1}^{m+1} \mathcal{P}(L_i(l_i)|P(h), H(h), \vec{\Delta}(i), \underbrace{LC_i})$$

$$\cdot \prod_{i=1}^{m+1} \mathcal{P}(R_i(r_i)|P(h), H(h), \vec{\Delta}(i), \underbrace{RC_i})$$

- draw sets of allowed complements (subcat sets) for the left (LC) and right (RC) side
- generate each complement in LC/RC exactly once.
- no STOP before the subcat set is satisfied

Results Model 2

MODEL	$\leq 40 \text{ Words } (2245 \text{ sentences})$					$\leq 100 \text{ Words } (2416 \text{ sentences})$				
	LR	LP	CBs	0 CBs	$\leq 2 \text{ CBs}$	LR	LP	CBs	0 CBs	$\leq 2 \text{ CBs}$
(Magerman 95)	84.6%	84.9%	1.26	56.6%	81.4%	84.0%	84.3%	1.46	54.0%	78.8%
(Collins 96)	85.8%	86.3%	1.14	59.9%	83.6%	85.3%	85.7%	1.32	57.2%	80.8%
Model 1	87.4%	88.1%	0.96	65.7%	86.3%	86.8%	87.6%	1.11	63.1%	84.1%
Model 2	88.1%	88.6%	0.91	66.5%	86.9%	87.5%	88.1%	1.07	63.9%	84.6%

Reranking (Collins 2005) Architecture

Why rank again?

- consider more features of a parse tree
 - CFG rule occurrence (lexicalized / with grandparent node)
 - bigram (nonterminals only / lexicalized) occurrence
 - ...
- parser: generative model
 - new random variables needed for every feature
 - → nr of joint-probability parameters grows exponentially with nr of features (must be avoided by a generative story introducing conditional independencies)
- reranker: discriminative (log-)linear classifier
 - treat every feature independently
 - simple to extend feature set

Log-Linear Models

for PCFG, one step is an application of a CFG-rule:

$$\mathcal{P}(T,S) = \prod_{rule \in S} \mathcal{P}(rule_r|rule_l)$$

$$= \prod_{rule \in \mathcal{G}} \mathcal{P}(rule_r|rule_l)^{C_S(rule)}$$

$$\Leftrightarrow log(\mathcal{P}(T,S)) = \sum_{rule \in \mathcal{G}} log(\mathcal{P}(rule_r|rule_l)) \cdot C_S(rule)$$

i.e. linear combination in log space

call $log(\mathcal{P}(rule_r|rule_l))$ 'feature weight' and C(rule) 'feature value'

Results after Reranking

Model	\leq 40 Words (2,245 sentences)								
	LR	LP	CBs	0 CBs	2 CBs				
Charniak 1997	87.5%	87.4%	1.00	62.1%	86.1%				
Collins 1999	88.5%	88.7%	0.92	66.7%	87.1%				
Charniak 2000	90.1%	90.1%	0.74	70.1%	89.6%				
ExpLoss	90.2%	90.4%	0.73	71.2%	90.2%				
	≤ 100 Words (2,416 sentences)								
Model	≤ 100 V	Words (2	,416 se	ntences)					
Model	≤ 100 V	Words (2 LP	,416 se CBs	ntences) 0 CBs	2 CBs				
Model Charniak 1997	-	20.	2.	M.	2 CBs 83.2%				
Charniak 1997	LR	LP	CBs	0 CBs					
	LR 86.7%	LP 86.6%	CBs 1.20	0 CBs 59.5%					
Charniak 1997 Ratnaparkhi 1998	LR 86.7% 86.3%	LP 86.6% 87.5%	CBs 1.20 1.21	0 CBs 59.5% 60.2%	83.2%				

Conclusion

- Lexicalized parser
- 'Head-centric' generative process
- Extensions for subcategorization (and wh-movement)
- Discriminative Reranking of results

Thanks for your attention!

questions

discussion

Parsing 1/3

bottom up chart parsing:

choose a complete(+) phrase as head for a new phrase

Parsing 2/3

add completed neighbouring phrases as modifiers

Parsing 3/3

complete by adding STOP modifiers

Prob = X Prob = X
$$\times \mathcal{P}_L(STOP \mid)$$

 $\times \mathcal{P}_R(STOP \mid)$

wh-Movement Rules

Solution: Account for (+gap) rules separately. \rightarrow Allow generation of a TRACE under a (+gap)-version of a nonterminal.

wh-Movement Rule Analysis

we observe: A TRACE can be

- passed down the head (rule 3)
- passed down to one of the left / right modifiers
- discharged by a TRACE

Model 3

Extend Model 2: new random variable G with values:

- Head passed down the head (3)
- Left/Right passed down to one of the left / right modifiers (LC+=gap / RC+=gap)

the gap entry in LC/RC is discharged by a TRACE or a (gap)-phrase modifier phrase

$$\mathcal{P}(H(h)|P(h)) \cdot \mathcal{P}(LC|P(h), H(h)) \cdot \mathcal{P}(RC|P(h), H(h)) \cdot \mathcal{P}(G|P(h), H(h))$$

$$\cdot \prod_{i=1}^{m+1} \mathcal{P}(L_i(l_i)|P(h), H(h), \vec{\Delta}(i), \underbrace{\vec{LC_i}})$$

$$\cdot \prod_{i=1}^{n+1} \mathcal{P}(R_i(r_i)|P(h), H(h), \vec{\Delta}(i), \underbrace{RC_i})$$

Results Model 3

MODEL	<u> </u>	≤ 40 Wor	45 senten	ces)	$\leq 100 \text{ Words } (2416 \text{ sentences})$					
	LR	LP	CBs	0 CBs	$\leq 2 \text{ CBs}$	LR	LP	CBs	0 CBs	$\leq 2 \text{ CBs}$
(Magerman 95)	84.6%	84.9%	1.26	56.6%	81.4%	84.0%	84.3%	1.46	54.0%	78.8%
(Collins 96)	85.8%	86.3%	1.14	59.9%	83.6%	85.3%	85.7%	1.32	57.2%	80.8%
Model 1	87.4%	88.1%	0.96	65.7%	86.3%	86.8%	87.6%	1.11	63.1%	84.1%
Model 2	88.1%	88.6%	0.91	66.5%	86.9%	87.5%	88.1%	1.07	63.9%	84.6%
Model 3	88.1%	88.6%	0.91	66.4%	86.9%	87.5%	88.1%	1.07	63.9%	84.6%

Practical Issues - Smoothing

sparse data for full conditioning set \rightarrow needs backoff

	Back-off	$\mathcal{P}_H(H \mid)$	$\mathcal{P}_G(G \mid)$	$ig \mathcal{P}_{L1}(L_i(lt_i))$	$\mathcal{P}_{L2}(lw_i\mid)$
	Level		$\mathcal{P}_{LC}(LC \mid)$	$\mathcal{P}_{R1}(R_i(rt_i) \mid)$	$\mathcal{P}_{R2}(rw_i \mid)$
L			$\mathcal{P}_{RC}(RC\mid)$		
	1	P, w, t	P, H, w, t	P, H, w, t, Δ, LC	$L_i, lt_i, P, H, w, t, \Delta, LC$
	2	P, t	P, H, t	P, H, t, Δ, LC	$\begin{bmatrix} L_i, lt_i, P, H, t, \Delta, LC \end{bmatrix}$
	3	P	P, H	P, H, Δ, LC	L_i,lt_i
	4	_	<u> </u>	_	lt_i

linear combination: $\hat{p} = \lambda \cdot \hat{p_{mle}} + (1 - \lambda) \cdot \hat{p}_{backoff}$ recursively stacked: $\hat{p}_{backoff} = \lambda' \cdot \hat{p}_{mle'} + (1 - \lambda') \cdot \hat{p}_{backoff'}$

all words occurring less than 5 times are replaced by UNKNOWN

History-Based Models

history-based model (generative, structured):

$$\mathcal{P}(T,S) = \prod_{i=1}^{n} \mathcal{P}(d_i | \Phi(d_1,\ldots,d_{i-1}))$$

i.e. a pair (t,s) is generated by a sequence of steps $D=\langle d_1,\ldots,d_n\rangle$

Boosting

- machine-learning algorithm
- composition of (typically) simple classifiers
- repeatedly add a new classifier which is trained with particular focus on the samples that are incorrectly classified by the previous zoo of classifiers

Here:

- each simple classifier has exactly one binary feature
- learning finds the feature that helps the most to improve the results of the previous classifier zoo