Type de risque	Description du risque	niveau de Priorité (1- faibles, 5-élevé)	Conséquences possibles	Coût en performance	Probabilité d'occurence	Plan de réduction du risque	Responsable du risque
Sensibilité aux différentes luminosités	Une caméra est utilisée comme organe sensoriel pour détécter les élements du jeu. Le système est donc sensible à la lumière, et la luminosité ambiante lors de la démonstation est inconnue. Le système doit être assez robuste pour que les résultats restent les mêmes lorsque la luminosité varie.		Une luminosité imprévue entraine la détection d'un mauvaise carte. le robot peut s'échouer sur une île non détectée. L'île mystère peut être introuvable.	Perte en performance lorsque la luminosité n'est pas identique à celle utilisée lors des tests.	10%	Tester le système avec pusieurs luminosités et avoir un taux de detection de 100% dans tous les cas.	Camille Béland
Sensibilité aux différents angles de caméras	La caméra utilisé est situé au dessus de la table, au centre de celle-ci. Un objet placé aux extrémités de la table subit des distortions de taille et de formes et n'a pas la même apparence que s'il était au milieu	4	Des objets (îles, trésors et robot) placés dans certains angles ne sont pas détectés correectement	Mauvaise carte ou mauvaise position du robot causant une perte majeur d'information et de performances	20%	tester la détection des îles, des trésors et du robot dans différents angles et ajuster les paramètres pour avoir un système fiable	Camille Béland
Sensibilité aux différentes tables	six différentes tables sont à notre disposition pour faire la conception des algorithmes de vision: par contre, la position des caméras par rapport aux tables, ainsi que l'image fourni par les caméras différèrent l'égèrement d'une table à l'autre.		mauvaise détection de la carte ou mauvaise conversion pixel/mètre	perte de performances lors de l'utilisation de certaines tables de jeu	30%	Établir un systèmede vision robuste aux différentes tables. Tester toutes les caméra et ne prendre aucuns paramètres par défaut (position de la station de recharge, constante pixels/mètre).	Camille Béland
Trésors hors du champ de vision de la camera monde	La caméra monde permet d'avoir une vue d'ensemble et de détecter les élements du jeu, incluant les trésors. Par contre, les trésors sont petits et se situent aux éxtrémités de la carte, parfois à la limite du champ de vision de la caméra.	4	Certains trésors manquent de la carte. Le robot empreite un chemin non-optimal et demandant plus de temps. Le robot ne trouve aucun trésors accessible.	Certains placement de trésors affectent les performances du robot.		Prévoir une détection de trésor alternative avec la caméra embarquée.	Camille Béland
Mauvaise reception d'une instruction vers le microcontroleur	La communication entre l'ordinateur embarqué et le microcontroleur se fait par série. Ce type de protocole est sujet aux erreurs de communication, surtout en haute fréquence.	. 4	Le microcontroleur effectue une action qui n'est pas l'action demandée. Par contre, il recoit une nouvelle commande peu après (environ 0.5 secondes).	Le robot effectue momentanément une mauvaise action jusqu'à la reception de la prochaine instruction.	5%	Utiliser une fréquence de communication minimisant les risques d'erreur. Utiliser un checksum ou un bit de parité pour identifier et ignorer les erreurs. prévoir dans l'Al que le robot peut recevoir une mauvaise instruction.	Rémi Mercier
Bris des coeurs de ferrite	Les coeurs de ferrite utilisés pour l'électroaimant et pour la recharge par induction sont fragiles. Ils peuvent brisers'ils subissent un choc	2	Il devient impossible de recharger le robot ou de prendre la pièce d'or. Il faut se procurer des pièces de remplacement.	En cas de bris d'un coeur de ferrite, le robot ne peu plus terminer le jeu.	5%	Manipuler le robot et les coeurs de ferrite avec soin. Approcher la station de recharge lentement afin d'éviter une colision entre les coeurs de ferrite.	Mathieu Levèsque
Les technologies utilisées ne sont pas assez performantes	Si les technologies ont des limites de performances, certains bugs subtils peuvent se maniferster, ou encor des comportements légèrement différents que prévus. Par exemple, si le microcontroleur à trop de taches, il se peut qu'il prenne trop de temps à les effectuer et un délais dans les boucles d'asservissement apparaît.	3	Comportement du robot différent que prévus. Bugs imprévisibles.	Perte de performances dû aux technologies utilisées.	10%	Effectuer beacoup de tests à chaque expansion du robot.	Dominic Bilodeau
Coùts imprévus dépassant le budget	Quoi que ce soit la raison, si une dépense imprévue s'ajoute (nouvelle pièce, meilleure pièce, PCB, etc), il se peut qu'elle cause les coûts à dépasser le budget	4	Dépassement du budget.	Non-respect des exigeances.	20%	Garder un état actuel du budget et s'assurer de le respecter avant toute nouvelle dépense.	Dominic Bilodeau
Impossibilité d'acquérir une pièce de remplacement à temps	Suite à un bris ou à un changement de design, il faut souvent acquérir une nouvelle pièce. Par contre, il faut que la pièce en question soit obtenue en temps pour les tests et la démonstration.	3	Absence d'une pièce lors de la démonstration. Pièce non-testée rigoureusement.	Malfonction du robot, imprévus lors de la démonstration.	20%	Prendre en compte les délais de shipping et d'acquisition lors d'achats de dernière minutes. Au besoin, acheter des pièces plus cheres au détaillant afin de minimiser les délais.	Dominic Bilodeau
Oubli d'un besoin ou d'un requis du projet	L'équipe ne comprend pas, a mal interprété ou simplement a oublié un besoin ou exigeance du client.	3	L'équipe travail sur un projet qui ne satisfait pas les besoins et exigeances du client.	Non-respect des exigeances.		En cas de doute, demander des clarifications au client. S'assurer que toutes les exigeances de la DPF sont en accord avec les besoins du client. Mettre à jour régulièrement la DPF	Dominic Bilodeau
L'algorithme utilisé ne trouve aucun chemin entre deux îles, même si le robot peut physiquement passer	Il est possible dans certains cas que le robot ne trouve pas de chemin avec son algorithme, alors qu'il peut physiquement passer entre deux obstacles. Par exemple, pour éviter de toucher aux îles, on ajoute une zone interdite autour des îles afin d'avoir une marge de sécurité. Par contre, cette marge de sécurité peut être nuisible, certains chemins possibles entre les îles peuvent être perdus. Sinon, la vision peut faire une erreur et ajouter des impasses.	3	Le robot ne passe pas par le chemin optimal ou qu'il ne trouve simpement pas de chemin.	L'utilisation d'un algorithme non optimal ou d'une vision erroné cause une perte en performances	30%	Effectuer beaucoups de tests dans des cas où les îles sont proches ou dans lesquels la vision des îles peut potentiellement causer des erreurs et ajuster les paramètres pour s'assurer qu'un bon chemin est trouvé	Adam B-Bolduc
Le préhenseur n'arrive pas à ramasser le trésor dans certaines position	Pour compléter le jeu, il faut ramasser le trésor avec un électroaimant. Par contre, cette tâche doit être exécutée sans difficultés. Puisque le robot a une précision limitée sur ses déplacements, il est risqué d'avoir unpréhenseur peu efficace qui ramasse le trésor selon des conditions très spécifiques.	4	ramasser le trésor requiert un placement très spécifique qui ne peut pas être atteint avec certitude. Il est donc possible d'échouer à ramasser le trésor	risque d'échapper le trésor si le préhenseur ou l'électroaimant est trop faible	20%	À l'aide de tests, s'assurer que le design de l'électroaimant permet une flexibilité sur la charge des condensateurs et le placement du robot par rapport au trésor	Mathieu Levèsque
Le chargement du condensateur est trop lent si le robot n'est pas positionné parfaitement	Pour compléter le jeu, il faut recharger le condensateur à la station de recharge. Cette tâche demande de coller ensemble deux bobines électromagnétiques. Puisque le robot a une précision limitée sur ses déplacements, il est risqué d'avoir un système de recharge qui demande un placement très spécifique.	4	recharger les condensateurs requiert un placement très spécifique qui ne peut pas être atteint avec certitude. il est donc possible de perdre beaucoup de temps à la station de recharge.	risque de perdre beaucoup de temps ou de ne pas charger le condensateur sufisament si le système de recharge est trop demandant	15%	À l'aide de tests, s'assurer que le design du système de recharge permet une flexibilité sur la position du robot	Mathieu Levèsque
mauvais asservissement	l'asservissement permet de s'assurer que le robotroule dans la bonne direction et à la bonne vitesse avec une boucle de réfroaction. Isservissement est directement responsable des déplacements du robot, et une mauvaise boucle est très isquée	5	Un mauvais asservissement peut faire en sorte que le robot se déplace de manière incertaines et peut faire des mouvements indésirables, et peut même aller jusqu'à toucher une île.	perte en performance et risque de toucher un trésor si l'asservissement n'est pas optimisé	5%	Identifier correctement chacune des roues et faire une boucle de rétroaction adéquate. Par de nombreux tests, s'assurer qu'un mouvent dans une direction ne difurque pas, peu importe les conditions externes	Rémi Mercier
détection d'une mauvaise position du robot	la détection du robot se fait avec un algorithme de vision qui détecte un carré et un cercle violet sur le dessus du robot. Par contre, il est possible que du bruit lumineux, une mauvaise lecture ou un mauvais calcul détecte une position erronée	4	Le robot pense momentanément que sa position a changée. Un mauvais mouvement sera donc entammé	Perte de performances si une mauvaise position du robot est calculé.	5%	Utiliser plusieurs critères de vision(taille, couleur, forme) afin d'avoir une détection robuste. Alternativement, ignorer les valeurs abérantes du point de vue du robot.	Camille Béland
le robot n'est pas détecté	la détection du robot se fait avec un algorithme de vision qui détecte un carré et un cercle violet sur le dessus du robot. Par contre, il est possible que du bruit lumineux, une mauvaise lecture ou un mauvais calcul cause au robot de ne trouver aucune position.		Le robot perd momentanément sa position.	Perte de performances si la détection ne trouve pas le robot	5%	Utiliser plusieurs critères de vision(taille, couleur, forme) afin d'avoir une détection robuste. Alternativement, estimer la position du robot dans ce cas précis	Adam B-Bolduc