• *NMOS DA (SCP)*:

- ➤ M₁-M₂ constitute a

 perfectly matched pair,

 and have their sources

 connected together,

 hence, the name
- ➤ I_{SS}: *DC* bias current source
- > All voltages and currents are instantaneous

NMOS DA Topology

$$\triangleright$$
 V_{gs1} = V_{i1} - V_s, and V_{gs2} = V_{i2} - V_s

 \succ KVL around M_1 - M_2 GS loop:

$$V_{i1} - V_{gs1} + V_{gs2} - V_{i2} = 0$$

 $\Rightarrow V_{gs1} - V_{gs2} = V_{i1} - V_{i2} = V_{id}$

> Neglecting CLM Effect:

$$I_{d1} = \frac{k'_{N}}{2} \left(\frac{W}{L}\right) \left(V_{gs1} - V_{TN1}\right)^{2} \quad \text{and}$$

$$I_{d2} = \frac{k'_{N}}{2} \left(\frac{W}{L}\right) \left(V_{gs2} - V_{TN2}\right)^{2}$$

- \triangleright Ran into a problem, since both M_1 and M_2 would have body effect present
 - Both bodies connected to V_{SS} , but the common source node is at a floating potential V_s
 - \Rightarrow Analytical evaluation of I_{d1} and I_{d2} becomes pretty tedious
- > If the CLM effect is also included, then the problem would need numerical solution!
- To get a first-order estimate, neglect body effect

$$\Rightarrow$$
 $V_{TN1} = V_{TN2} = V_{TN0}$

> Thus:

$$V_{id} = \frac{\sqrt{I_{d1}} - \sqrt{I_{d2}}}{\sqrt{\frac{k_N'}{2} \left(\frac{W}{L}\right)}} \quad (1)$$

> Also:

$$I_{d1} + I_{d2} = I_{SS}$$
 (2)

\triangleright Solving Eqs.(1) and (2):

$$I_{d1} = I_{SS}/2 + \xi \qquad \text{and}$$

$$I_{d2} = I_{SS}/2 - \xi$$

$$\xi = \frac{k_{N}'}{4} \left(\frac{W}{L}\right) V_{id} \sqrt{\frac{4I_{SS}}{k_{N}'\left(W/L\right)} - V_{id}^{2}}$$

- For $V_{id} = 0$, $\xi = 0$, and $I_{d1} = I_{d2} = I_{SS}/2$
 - Most preferred DC bias point of the circuit
- For $V_{id} > 0$, $I_{d1} \uparrow$ and $I_{d2} \downarrow$
- $\gt For V_{id} < 0, I_{d1} \checkmark and I_{d2} \uparrow$
- \succ But for both cases, the sum of I_{d1} and I_{d2} remains constant at I_{SS}
- \succ Linear Range of this circuit is defined by the values of V_{id} , which turns either M_1 or M_2 off

To find the *Linear Range*, use Eq.(1) and put either I_{d1} or I_{d2} equal to I_{SS} :

$$\Rightarrow V_{id} = \pm \sqrt{\frac{2I_{SS}}{k'_{N}(W/L)}} = \pm \sqrt{2} \left(\sqrt{\frac{2I_{d1}}{k'_{N}(W/L)}} \right) \Big|_{V_{id}=0}$$
$$= \pm \sqrt{2} \left(\Delta V \right) \Big|_{V_{id}=0}$$

since for $V_{id} = 0$, $I_{SS} = 2I_{d1} = 2I_{d2}$

 $\Delta V = Gate \ Overdrive for M_1/M_2 for V_{id} = 0$

- Thus, the Linear Range is a function of I_{SS} and $(W/L) \Rightarrow Tremendous flexibility!$
- \triangleright Recall: In npn DA, this Linear Range was $\pm 4V_T$, and depended only on temperature

The Current Transfer Characteristics of an NMOS DA