Master of Technology in Knowledge Engineering

Unit 7:

Developing Intelligent Systems for Performing Business Analytics

Hybrid Systems: Case Study

-- Sample Solution

Dr. Zhu Fangming
Institute of Systems Science,
National University of Singapore.
E-mail: isszfm@nus.edu.sg

© 2018 NUS. The contents contained in this document may not be reproduced in any form or by any means, without the written permission of ISS, NUS other than for the purpose for which it has been supplied.

Top Level Design

- Fuzzy System used to generate an initial population for the GA estimates which colorants to use and their ranges
- GA fine-tunes the colorant selection
- NN simulates the color of the paint resulting from the colorants (predicts the 3 spectral parameters)

Top Level Design

Example GA Chromosome

W	b	g1	g2	r1	r2	y1	y2	b	V
2	40	0	0	0	12	0	8	0	38

Genes must sum to 100%

GA Fitness Function (v1)

• Difference between the predicted spectral parameters and the target parameters

$$= A * (L_t - L_p) + B * (a_t - a_p) + C*(b_t - b_p)$$

Where A, B, C are scale factors – use domain knowledge to get their values

GA Fitness Function (v2)

- How to get sufficient accuracy?
- Use a combination of 3 fitness functions
 - NN1 ~ predict spectral parameters
 - NN2 ~ inputs target spectral parameters and predicts good colorant mix, each output colorant value is either 1 or 0 (use or not)
 - Knowledge-Based fitness function

NN1: Predict Spectral Parameters

Training data need to be collected from the factory!

NN2: Predicting the Color Mix

One binary ON/OFF output for each colorant. Compare with the colorants selected by the GA to get fitness

NN2: Fitness Calculation

Knowledge-Based Fitness

 Assess the fitness of a colorant mix by applying heuristics obtained from experience

• Example rules:

Rule1: Keep total proportions around 100%

Rule2: Avoid use of complementary colors (e.g. red & green)

Rule3: Avoid use of same type of colorants at same time (e.g. red1

& red2)

Fuzzy System Overview

- Goal = use the expert heuristics to suggest an initial "good guess" colorant mix
- Inputs?
 - For a fully automatic system then we have to use the 3 spectral parameters – or chroma, hue, lightness (obtained by a simple conversion)
 - Manual inputs get an expert to judge the colour of the target as
 - Yellowish green
 - Redish brown etc

Example Fuzzy Rule (1)

• The experts can give us rules such as:

```
If target color is greenish-yellow
Then
```

```
white = around 15% and
black = around 5-10% and
green1 = around 30-40% and
```

blue = zero

Example Fuzzy Rule (1)

In fuzzy notation

```
If target color is greenish-yellow
Then
```

```
white = small and
black = very small and
green1 = medium and
```

blue = zero

Example Fuzzy Rule(2)

• For a fully automatic system - how do we know if a color is "yellowish green" without asking the human expert?

Measuring Color - Assumptions

• Assume the mapping between hue & chroma (obtained directly from spectral reflectance) and color is as shown below (based only loosely on reality!)

hue	red	yellow	green	blue	violet		
chroma	red		yellow green	blue	violet		

Example Fuzzy Rule(2)

• Assuming the previous page was true then possible fuzzy rules could be

> If Hue is small then color is mostly Red If Chroma is large then color is very Blue If Chroma is very large then color is Violet etc....

Fuzzy System

Amount of: White Red Black Green1 Yellow Hue Green2 RuleSet1 Green Red1 Ruleset2 Chroma Red2 Blue Yellow1 Yellow2 Violet Violet Blue

Reference

• This case study is loosely modeled on the case study described in chapter 22 of the book "Neuro-Fuzzy and Soft Computing", Jang, Sun, Mizutani (Prentice Hall, 1997, ISBN 0-13-261066-3)