<pre>In [1]: In [2]: In [3]: Out[3]:</pre>	import pandas as pd df=pd.read_csv('car data.csv') df.head() Car_Name Year Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type Transmission Owner 0 ritz 2014 3.35 5.59 27000 Petrol Dealer Manual 0 1 sx4 2013 4.75 9.54 43000 Diesel Dealer Manual 0 2 ciaz 2017 7.25 9.85 6900 Petrol Dealer Manual 0 3 wagon r 2011 2.85 4.15 5200 Petrol Dealer Manual 0 4 wagon r 2011 2.85 4.15 5200 Petrol Dealer Manual 0
<pre>In [4]: Out[4]: In [5]:</pre>	<pre>#We have Fuel type, Seller_Price, Transmission Owner as catergorical Features. print(df['Seller_Type'].unique())#Unique Vales in Seller_type we have Dealer, Individual. print(df['Transmission'].unique()) #Unique Values Are Manual and Automatic. print(df['Owner'].unique()) #Unique Values are 0,1,3. print(df['Fuel_Type'].unique()) #Unique values are Petrol, Diesel, CNG ['Dealer' 'Individual'] ['Manual' 'Automatic'] [0 1 3] ['Petrol' 'Diesel' 'CNG']</pre>
<pre>In [6]: Out[6]:</pre>	#To check the Null/Missing Values df.isnull().sum() #So there are no Null Values Here Car_Name 0 Year 0 Selling_Price 0 Present_Price 0 Kms_Driven 0 Fuel_Type 0 Seller_Type 0 Transmission 0 Owner 0
<pre>In [7]: Out[7]:</pre>	df.describe() #This shows all the Mean, min, maxValues. Year Selling_Price Present_Price Kms_Driven Owner count 301.000000 301.000000 301.000000 301.000000 301.000000 mean 2013.627907 4.661296 7.628472 36947.205980 0.043189 std 2.891554 5.082812 8.644115 38886.883882 0.247915 min 2003.000000 0.100000 0.320000 500.000000 0.000000 25% 2012.000000 0.900000 1.200000 15000.000000 0.000000 50% 2014.000000 3.600000 6.400000 32000.000000 0.0000000 75% 2016.000000 6.000000 9.900000 48767.000000 0.000000 max 2018.000000 35.000000 92.600000 500000.000000 3.000000
<pre>In [8]: Out[8]: In [9]: In [10]: Out[10]:</pre>	<pre>'Fuel_Type', 'Seller_Type', 'Transmission', 'Owner'], dtype='object') final_dataset=df[['Year', 'Selling_Price', 'Present_Price', 'Kms_Driven', 'Fuel_Type', 'Seller_Type', 'Transmission', 'Owner']] final_dataset.head()</pre>
In [11]: In [12]:	1 2013
Out[12]: In [13]:	Year Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type Transmission Owner Current_Year 0 2014 3.35 5.59 27000 Petrol Dealer Manual 0 2021 1 2013 4.75 9.54 43000 Diesel Dealer Manual 0 2021 2 2017 7.25 9.85 6900 Petrol Dealer Manual 0 2021 3 2011 2.85 4.15 5200 Petrol Dealer Manual 0 2021 4 2014 4.60 6.87 42450 Diesel Dealer Manual 0 2021
In [14]: Out[14]:	final_dataset['No_Years']=final_dataset['Current_Year']-final_dataset['Year'] final_dataset.head() Year Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type Transmission Owner Current_Year No_Years 0 2014
In [15]: In [16]: Out[16]:	#Year and Current_Year is not requried because we have No_Years final_dataset.drop(['Year'], axis=1, inplace=True) final_dataset.head() #So we dont have Year Now Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type Transmission Owner Current_Year No_Years 0 3.35 5.59 27000 Petrol Dealer Manual 0 2021 7 1 4.75 9.54 43000 Diesel Dealer Manual 0 2021 8 2 7.25 9.85 6900 Petrol Dealer Manual 0 2021 4 3 2.85 4.15 5200 Petrol Dealer Manual 0 2021 10 4 4.60 6.87 42450 Diesel Dealer Manual 0 2021 7
In [17]: In [18]: Out[18]: In [19]:	#Year and Current_Year is not requried because we have No_Years final_dataset.drop(['Current_Year'], axis=1,inplace=True) final_dataset.head() #So we also removed Current_Year Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type Transmission Owner No_Years 0 3.35 5.59 27000 Petrol Dealer Manual 0 7 1 4.75 9.54 43000 Diesel Dealer Manual 0 8 2 7.25 9.85 6900 Petrol Dealer Manual 0 4 3 2.85 4.15 5200 Petrol Dealer Manual 0 10 4 4.60 6.87 42450 Diesel Dealer Manual 0 7 ##Converting all categorical data to Numerical values
In [20]: Out[20]:	final_dataset=pd.get_dummies(final_dataset,drop_first=True) final_dataset.head() #CNG have been Droped,because we dont have any CNG vehicle here. Selling_Price Present_Price Kms_Driven Owner No_Years Fuel_Type_Diesel Fuel_Type_Petrol Seller_Type_Individual Transmission_Manual 0 3.35 5.59 27000 0 7 0 1 0 1 1 4.75 9.54 43000 0 8 1 0 0 1 2 7.25 9.85 6900 0 4 0 1 0 1
In [21]: Out[21]:	3
In [22]: In [23]: Out[23]:	Seller_Type_Individual -0.550724 -0.512030 -0.101419 0.124269 0.039896 -0.350467 0.358321 1.000000 0.063240 Transmission_Manual -0.367128 -0.348715 -0.162510 -0.050316 -0.000394 -0.098643 0.091013 0.063240 1.000000 #To visualize the co-relation import seaborn as sns sns.pairplot(final_dataset) <seaborn.axisgrid.pairgrid 0x583c550="" at=""></seaborn.axisgrid.pairgrid>
	35 30 30 30 30 30 30 30 30 30 30 30 30 30
	20 0 400000 400000 100000 0
	2.5 2.0 1.5 0.5 0.0 0.5 15.0 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5
	5.0
	08
	00 - CERRITERIO DE CERRITERIO
In [24]: In [25]:	<pre>import matplotlib.pyplot as plt %matplotlib inline #To plot in the form of Heat Map corrmat=final_dataset.corr() top_corr_features=corrmat.index plt.figure(figsize=(20,20)) #Plotting Heat Map g=sns.heatmap(final_dataset[top_corr_features].corr(),annot=True,cmap="RdYlGn") #This shows which features are co-related</pre>
	#Basically it shows that Green colour is Positively Corelated and red colour is Negatively corelated
	- 0.88 1 0.2 0.0081 0.048 0.47 -0.47 -0.51 -0.35 -0.50 -0.50 -0.50
	0.088 0.0081 0.089 1 0.18 -0.053 0.056 0.12 -0.05
	0.24
	- 0.54 -0.47 -0.17 0.056 0.06 -0.98 1 0.36 0.091 0.50
	0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
In [26]: Out[26]:	final_dataset.head() #This are the featurs you have, and Selling_Price is Dependent Feature, and all the other are independent feature. Selling_Price Present_Price Kms_Driven Owner No_Years Fuel_Type_Diesel Fuel_Type_Petrol Seller_Type_Individual Transmission_Manual 0 3.35 5.59 27000 0 7 0 1 0 1
In [27]:	1 4.75 9.54 43000 0 8 1 0 0 1 2 7.25 9.85 6900 0 4 0 1 0 1 3 2.85 4.15 5200 0 10 0 1 0 0 1 4 4.60 6.87 42450 0 7 1 0 0 1 #Taking the X Feature #Independent and dependent feature, X=final_dataset.iloc[:,1:]
In [28]: Out[28]:	y=final_dataset.iloc[:,0] X.head() #Independent Variable Present_Price Kms_Driven Owner No_Years Fuel_Type_Diesel Fuel_Type_Petrol Seller_Type_Individual Transmission_Manual 0 5.59 27000 0 7 0 1 0 1 1 9.54 43000 0 8 1 0 0 1 2 9.85 6900 0 4 0 1 0 1 3 4.15 5200 0 10 0 0 1 0 1
In [29]: Out[29]:	0 3.35 1 4.75 2 7.25 3 2.85 4 4.60 Name: Selling_Price, dtype: float64
In [30]: Out[30]: In [31]:	<pre>#Feature importance(Understanding Important features) from sklearn.ensemble import ExtraTreesRegressor model=ExtraTreesRegressor() model.fit(X,y) ExtraTreesRegressor() print(model.feature_importances_) #Shows which feature is importance, like 1st one "Present Features" is having Highest importance, Next importance is "Fuel Type" [0.35711444 0.04090748 0.00046391 0.07596428 0.22740164 0.01551388]</pre>
In [32]:	[0.35711444 0.04090748 0.00046391 0.07596428 0.22740164 0.01551388 0.13380778 0.1488266] #Plot Graph of feature Importance for better Visualization feat_importances=pd.Series(model.feature_importances_,index=X.columns) feat_importances.nlargest(5).plot(kind='barh') plt.show() No_Years
	Fuel_Type_Diesel - Present_Price - 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
In [34]: In [35]: Out[35]: In [36]:	<pre>##TRain Test Split from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.2) X_train.shape</pre>
In [36]: In [39]: In [40]:	<pre>#Implementing Random forest Regressor from sklearn.ensemble import RandomForestRegressor rf_random=RandomForestRegressor() ##Hypoparameter import numpy as np n_estimators=[int(x) for x in np.linspace(start=100, stop=1200, num=12)] print(n_estimators) [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200] #Randomize search CV</pre>
v]:	<pre>#Randomize search CV #Number of trees in random forest n_estimators=[int(x) for x in np.linspace(start=100, stop=1200, num=12)] #No of features to consider at every split max_features=['auto','sqrt'] #Maximum numbers of level of trees max_depth=[int(x) for x in np.linspace(5, 30,num=6)] #max_depth.append(None) #min number of samples requried to split a node</pre>
In [42]: In [46]:	min_samples_split=[2,5,10,15,100] #Min numbers of samples req at each leaf node min_samples_leaf=[1,2,5,10] from sklearn.model_selection import RandomizedSearchCV #Create an random Grid #This will select the best parameters out of it
In [47]:	<pre>random_grid={'n_estimators': n_estimators,</pre>
In [48]: In [49]: Out[49]: In [50]:	
In [52]: Out[52]:	0.2053, 22.26 , 5.0365, 5.0925, 1.8245, 0.2635, 6.5755, 1.0396, 0.4683, 0.2226, 0.4565, 0.5473, 5.262 , 17.7109, 3.0245, 4.7515, 7.0904, 6.0235, 4.7912, 21.1223, 4.0295, 5.1915, 2.7095, 5.6625, 9.008 , 7.9793, 5.93 , 0.4531, 11.1044, 7.4815, 5.168 , 7.9459, 7.9459, 1.5525, 10.7526, 0.5057, 0.6509, 5.8835, 8.1615, 1.0613, 5.706 , 3.0285, 2.764 , 6.3418, 0.3984, 3.2695, 0.6718, 5.2275, 4.9905,
In [53]: Out[53]:	0.7918, 6.5245, 3.991, 5.076, 4.0585]) sns.distplot(y_test-predictions) C:\Users\win7\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)
	0.8 - 2 - 0.4 - 0.2 - 0.0
In [54]: Out[54]:	plt.scatter(y_test, predictions) <matplotlib.collections.pathcollection 0x9833e68="" at=""> 20 -</matplotlib.collections.pathcollection>
In []:	