Theoretical Computer Science Tutorial Week 5

Prof. Andrey Frolov

nnoborie

Agenda

Regular languages

- Myhill-Nerode criteria
 - Positive Examples
 - Negative Examples
- Pumping Lemma

Regular Languages

Definition

A languages is called regular, if it recognized by a FSA.

Problem

Which languages are regular?

For a language L over an alphabet A,

$$s_1 \equiv_L s_2 \Leftrightarrow (\forall t \in A^*) (s_1 t \in L \leftrightarrow s_2 t \in L)$$

 \equiv_L is an equivalence relation

What are equivalence relations in general?

For a language L over an alphabet A,

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) \left[(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L) \right]$$

t is called a distinguishing extension.

Myhill-Nerode theorem

A language L is regular iff \equiv_L has a finite number of equivalent classes.

Agenda

Regular languages

- Myhill-Nerode criteria
 - Positive Examples
 - Negative Examples
- Pumping Lemma

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) \left[(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L) \right]$$

Example 1: $L_1 = \{0x \mid x \in \Sigma^*\}$, where $\Sigma = \{0, 1\}$

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\} \epsilon,
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\} \epsilon, 0,
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\} \epsilon. 0. 1.
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\}
\epsilon, 0, 1, 00.
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\}
\epsilon, 0, 1, 00, 01,
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)] Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\} \epsilon, 0, 1, 00, 01,10,11,...
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]

Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\}

\epsilon, 0, 1, 00, 01,10,11,...

1. \epsilon

2. 0: 0 \not\equiv_{L_1} \epsilon, since 0 \cdot \epsilon \notin L_1 \& \epsilon \cdot \epsilon \in L_1 (a disting. ext. is \epsilon)
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]

Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\}

\epsilon, 0, 1, 00, 01,10,11,...

1. \epsilon

2. 0: 0 \not\equiv_{L_1} \epsilon, since 0 \cdot \epsilon \notin L_1 \& \epsilon \cdot \epsilon \in L_1 (a disting. ext. is \epsilon)
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) \, [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)] Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\} \epsilon, 0, 1, 00, 01,10,11,...

1. \epsilon
2. 0: 0 \not\equiv_{L_1} \epsilon, since 0 \cdot \epsilon \notin L_1 \& \epsilon \cdot \epsilon \in L_1 (a disting. ext. is \epsilon)
3. 1: 1 \not\equiv_{L_1} 0, since 1 \notin L_1, 0 \in L_1
```

```
\begin{split} s_1 \not\equiv_L s_2 &\Leftrightarrow (\exists t \in A^*) \left[ (s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L) \right] \\ \text{Example 1: } & L_1 = \{0x \mid x \in \Sigma^*\}, \text{ where } \Sigma = \{0,1\} \\ \epsilon, 0, 1, 00, 01, 10, 11, \dots \\ 1. & \epsilon \\ 2. & 0: 0 \not\equiv_{L_1} \epsilon, \text{ since } 0 \cdot \epsilon \notin L_1 \& \epsilon \cdot \epsilon \in L_1 \text{ (a disting. ext. is } \epsilon) \\ 3. & 1: \\ & 1 \not\equiv_{L_1} 0, \text{ since } 1 \notin L_1, 0 \in L_1 \\ & 1 \not\equiv_{L_1} \epsilon, \text{ since } 1 \cdot 0 \notin L_1, \epsilon \cdot 0 \in L_1 \text{ (a distinguishing ext. is } 0) \end{split}
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\}
\epsilon. 0. 1. 00. 01.10.11....
   1. ϵ
  2. 0: 0 \not\equiv_{L_1} \epsilon, since 0 \cdot \epsilon \notin L_1 \& \epsilon \cdot \epsilon \in L_1 (a disting. ext. is \epsilon)
   3. 1:
                 1 \not\equiv_{L_1} 0, since 1 \notin L_1, 0 \in L_1
                 1 \not\equiv_{L_1} \epsilon, since 1 \cdot 0 \notin L_1, \epsilon \cdot 0 \in L_1 (a distinguishing ext. is 0)
   4. 0t \equiv_{I_1} 0
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\}
\epsilon. 0. 1. 00. 01.10.11....
   1. \epsilon
  2. 0: 0 \not\equiv_{L_1} \epsilon, since 0 \cdot \epsilon \notin L_1 \& \epsilon \cdot \epsilon \in L_1 (a disting. ext. is \epsilon)
   3. 1:
                 1 \not\equiv_{L_1} 0, since 1 \notin L_1, 0 \in L_1
                 1 \not\equiv_{L_1} \epsilon, since 1 \cdot 0 \notin L_1, \epsilon \cdot 0 \in L_1 (a distinguishing ext. is 0)
   4. 0t \equiv_{I_1} 0
   5. 1t \equiv_{I_1} 1
```

Example 1:
$$L_1 = \{0x \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\}, [0] = \{0x \mid x \in \Sigma^*\} = L_1, [1] = \{1x \mid x \in \Sigma^*\}$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & \\ *[0] & \\ \text{[1]} \end{array}$$

Example 1:
$$L_1 = \{0x \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\}, [0] = \{0x \mid x \in \Sigma^*\} = L_1, [1] = \{1x \mid x \in \Sigma^*\}$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] \\ *[0] & [1] \end{array}$$

Example 1:
$$L_1 = \{0x \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\}, [0] = \{0x \mid x \in \Sigma^*\} = L_1, [1] = \{1x \mid x \in \Sigma^*\}$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] & [1] \\ \hline *[0] & [1] & \end{array}$$

Example 1:
$$L_1 = \{0x \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\}, [0] = \{0x \mid x \in \Sigma^*\} = L_1, [1] = \{1x \mid x \in \Sigma^*\}$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] & [1] \\ \hline *[0] & [0] & [0] \end{array}$$

Example 1:
$$L_1 = \{0x \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\}, [0] = \{0x \mid x \in \Sigma^*\} = L_1, [1] = \{1x \mid x \in \Sigma^*\}$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] & [1] \\ *[0] & [0] & [0] \end{array}$$

Example 1:
$$L_1 = \{0x \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\}, [0] = \{0x \mid x \in \Sigma^*\} = L_1, [1] = \{1x \mid x \in \Sigma^*\}$$

$$\begin{array}{c|c} \delta \mid 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] & [1] \\ *[0] & [0] & [0] \\ [1] & [1] \end{array}$$

Example 1:
$$L_1 = \{0x \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\}, [0] = \{0x \mid x \in \Sigma^*\} = L_1, [1] = \{1x \mid x \in \Sigma^*\}$$

$$\frac{\delta \mid 0 \mid 1}{\rightarrow [\epsilon] \mid [0] \mid [1]}$$
*[0] [0] [0]
[1] | [1] | [1]

Example 1: $L_1 = \{0x \mid x \in \Sigma^*\}$

Example 1: $L_1 = \{0x \mid x \in \Sigma^*\}$

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) \left[(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L) \right]$$

Example 2: $L_2 = \{x00 \mid x \in \Sigma^*\}$

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) \left[(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L) \right]$$

Example 2: $L_2 = \{x00 \mid x \in \Sigma^*\}$

- $1. \epsilon$
- 2. 0: $0 \not\equiv_{L_2} \epsilon$, since $00 \in L_2 \& \epsilon 0 = 0 \notin L_2$ (a disting. ext. is 0)

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) \left[(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L) \right]$$

Example 2: $L_2 = \{x00 \mid x \in \Sigma^*\}$

- $1. \epsilon$
- 2. 0: $0 \not\equiv_{L_2} \epsilon$, since $00 \in L_2 \& \epsilon 0 = 0 \notin L_2$ (a disting. ext. is 0)
- 3. 1: $1 \equiv_{L_2} \epsilon$, $t1 \equiv_{L_2} \epsilon$

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]$$

Example 2: $L_2 = \{x00 \mid x \in \Sigma^*\}$
1. ϵ
2. 0: $0 \not\equiv_{L_2} \epsilon$, since $00 \in L_2 \& \epsilon 0 = 0 \notin L_2$ (a disting. ext. is 0)
3. 1: $1 \equiv_{L_2} \epsilon$, $t1 \equiv_{L_2} \epsilon$
4. 00:

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) \left[(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L) \right]$$
Example 2: $L_2 = \{x00 \mid x \in \Sigma^*\}$
1. ϵ
2. $0: 0 \not\equiv_{L_2} \epsilon$, since $00 \in L_2 \& \epsilon 0 = 0 \notin L_2$ (a disting. ext. is 0)
3. $1: 1 \equiv_{L_2} \epsilon$, $t1 \equiv_{L_2} \epsilon$
4. $00: 00 \not\equiv_{L_2} \epsilon$, since $00 \in L_2 \& \epsilon \notin L_2$ (a distinguishing ext. is ϵ)

Example 2:
$$L_2 = \{x00 \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\} \cup \{x1 \mid x \in \Sigma^*\}, [0] = \{x10 \mid x \in \Sigma^*\}, [00] = \{x00 \mid x \in \Sigma^*\} = L_2$$

$$\frac{\delta \mid 0 \mid 1}{\rightarrow [\epsilon]}$$

$$[0]$$
*[00]

Example 2:
$$L_2 = \{x00 \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\} \cup \{x1 \mid x \in \Sigma^*\}, [0] = \{x10 \mid x \in \Sigma^*\}, [00] = \{x00 \mid x \in \Sigma^*\} = L_2$$

$$\frac{\delta \mid 0 \mid 1}{\rightarrow [\epsilon] \mid [0]}$$

$$[0]$$

$$[0]$$

$$[0]$$

Example 2:
$$L_2 = \{x00 \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\} \cup \{x1 \mid x \in \Sigma^*\}, [0] = \{x10 \mid x \in \Sigma^*\}, [00] = \{x00 \mid x \in \Sigma^*\} = L_2$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] & [\epsilon] \\ \hline [0] & *[00] & \end{array}$$

Example 2:
$$L_2 = \{x00 \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\} \cup \{x1 \mid x \in \Sigma^*\}, [0] = \{x10 \mid x \in \Sigma^*\}, [00] = \{x00 \mid x \in \Sigma^*\} = L_2$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] & [\epsilon] \\ \hline [0] & [00] & *[00] \end{array}$$

*[00]

Example 2:
$$L_2 = \{x00 \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\} \cup \{x1 \mid x \in \Sigma^*\}, [0] = \{x10 \mid x \in \Sigma^*\}, [00] = \{x00 \mid x \in \Sigma^*\} = L_2$$

$$\frac{\delta \mid 0 \mid 1}{\rightarrow [\epsilon] \mid [0] \mid [\epsilon]}$$

$$[0] \mid [00] \mid [\epsilon]$$

*[00]

[00]

Example 2:
$$L_2 = \{x00 \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\} \cup \{x1 \mid x \in \Sigma^*\}, [0] = \{x10 \mid x \in \Sigma^*\}, [00] = \{x00 \mid x \in \Sigma^*\} = L_2$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] & [\epsilon] \\ \hline [0] & [00] & [\epsilon] \end{array}$$

Example 2:
$$L_2 = \{x00 \mid x \in \Sigma^*\}$$

[
$$\epsilon$$
] = { ϵ } \cup { x 1 | $x \in \Sigma^*$ }, [0] = { x 10 | $x \in \Sigma^*$ }, [00] = { x 00 | $x \in \Sigma^*$ } = L_2

δ	0	1
$ o$ $[\epsilon]$	[0]	$[\epsilon]$
[0]	[00]	$[\epsilon]$
*[00]	[00]	$[\epsilon]$

Example 2: $L_2 = \{x00 \mid x \in \Sigma^*\}$

Example 3: $L_3 = \{x \in \Sigma^* \mid x \text{ is a binary representation of an integer divisible by 5 and it begins with 1}, where <math>\Sigma = \{0, 1\}$

- 1. $[\epsilon]$
- 2. $[0] = \{0x \mid x \in \Sigma^*\}$
- 3. $[1] = \{x \mid \text{the remainder after dividing } x \text{ by 5 is 1}\}$
- 4. $[10] = \{x \mid \text{the remainder after dividing } x \text{ by 5 is 2}\}$
- 5. $[11] = \{x \mid \text{the remainder after dividing } x \text{ by 5 is 3}\}$
- 6. $[100] = \{x \mid \text{the remainder after dividing } x \text{ by 5 is 4} \}$
- 7. $[101] = \{x \mid x \text{ is divisible by 5}\}$

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]		
[10]		
[11]		
[100]		
*[101]		

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	
[10]		
[11]		
[100]		
*[101]		

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]		
[11]		
[100]		
*[101]		

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	
[11]		
[100]		
*[101]		

Example 3: $L_3 = \{x \in \Sigma^* \mid x \text{ is a binary representation of an integer divisible by 5 and it begins with 1}\}$

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	[101]
[11]		
[100]		
*[101]		

Example 3: $L_3 = \{x \in \Sigma^* \mid x \text{ is a binary representation of an integer divisible by 5 and it begins with 1}\}$

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	[101]
[11]	[1]	
[100]		
*[101]		

Example 3: $L_3 = \{x \in \Sigma^* \mid x \text{ is a binary representation of an integer divisible by 5 and it begins with 1}\}$

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	[101]
[11]	[1]	[10]
[100]		
*[101]		

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	[101]
[11]	[1]	[10]
[100]	[11]	
*[101]		

Example 3: $L_3 = \{x \in \Sigma^* \mid x \text{ is a binary representation of an integer divisible by 5 and it begins with 1}\}$

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	[101]
[11]	[1]	[10]
[100]	[11]	[100]
*[101]		

Example 3: $L_3 = \{x \in \Sigma^* \mid x \text{ is a binary representation of an integer divisible by 5 and it begins with 1}\}$

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	[101]
[11]	[1]	[10]
[100]	[11]	[100]
*[101]	[101]	

Example 3: $L_3 = \{x \in \Sigma^* \mid x \text{ is a binary representation of an integer divisible by 5 and it begins with 1}\}$

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	[101]
[11]	[1]	[10]
[100]	[11]	[100]
*[101]	[101]	[1]

Agenda

Regular languages

- Myhill-Nerode criteria
 - Positive Examples
 - Negative Examples
- Pumping Lemma

Negative Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

For $m \neq k$,

$$a^m \not\equiv_{L_1} a^k$$
,

since $a^m b^k \notin L_1$, $a^k b^k \in L_1$ (a distinguishing ext. is b^k). Therefore, there are infinity many equivalence classes! So, L_1 is not regular.

Negative Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

For $m \neq k$,

$$a^m b \not\equiv_{L_2} a^k b$$
,

since $a^mba^k \notin L_2$, $a^kba^k \in L_2$ (a distinguishing ext. is a^k). Therefore, there are infinity many equivalence classes! So, L_2 is not regular.

Agenda

Regular languages

- Myhill-Nerode criteria
 - Positive Examples
 - Negative Examples
- Pumping Lemma

Pumping lemma

Pumping lemma

If $L\subseteq \Sigma^*$ is a regular language then there exists $m\geq 1$ such that any $w\in L$ with $|w|\geq m$ can be represented as w=xyz such that

- $y \neq \epsilon$,
- $xy^iz \in L$ for any $i \ge 1$.

How Pumping lemma is useful?

- Can we use this theorem to prove that a set is regular?
 No, because it gives only a necessary condition for a language to be regular (and not a sufficient condition).
- We can use it to prove that a language is not regular.
 How?

Pumping lemma

Pumping lemma

If $L \subseteq \Sigma^*$ is a regular language then there exists $m \ge 1$ such that any $w \in L$ with $|w| \ge m$ can be represented as w = xyz such that

- $y \neq \epsilon$,
- $xy^iz \in L$ for any $i \ge 1$.

Corollary

If for any $m \geq 1$ there is $w \in L$ such that $|w| \geq m$ and for any representation w = xyz with $y \neq \epsilon$

$$xy^iz \notin L$$
 for some $i \ge 1$.

Then L is not a regular language.

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

 $xyz \in L_1$ with $y \neq \epsilon$

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

$$xyz \in L_1$$
 with $y \neq \epsilon$

1)
$$\underbrace{a^{n-p_1-p_2}}_{\times}\underbrace{(a^{p_1})}_{V}\underbrace{a^{p_2}b^n}_{z}$$
 and $p_1 \neq 0$

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

 $xyz \in L_1$ with $y \neq \epsilon$

1)
$$\underbrace{a^{n-p_1-p_2}}_{\times}\underbrace{(a^{p_1})}_{V}\underbrace{a^{p_2}b^n}_{z}$$
 and $p_1\neq 0$

2)
$$\underbrace{a^n b^{p_1}}_{\times} \underbrace{(b^{p_2})}_{y} \underbrace{b^{n-p_1-p_2}}_{z}$$
 and $p_2 \neq 0$

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

 $xyz \in L_1$ with $y \neq \epsilon$

1)
$$\underbrace{a^{n-p_1-p_2}}_{\times}\underbrace{(a^{p_1})}_{V}\underbrace{a^{p_2}b^n}_{z}$$
 and $p_1\neq 0$

2)
$$\underbrace{a^n b^{p_1}}_{\times} \underbrace{(b^{p_2})}_{y} \underbrace{b^{n-p_1-p_2}}_{z}$$
 and $p_2 \neq 0$

3)
$$\underbrace{a^{n-p_1}}_{x} \underbrace{(a^{p_1}b^{p_2})}_{y} \underbrace{b^{n-p_2}}_{z} \text{ and } p_1, p_2 \neq 0$$

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

1) for
$$\underbrace{a^{n-p_1-p_2}}_{x}\underbrace{(a^{p_1})}_{y}\underbrace{a^{p_2}b^n}_{z}$$
 and $p_1\neq 0$, we have

$$xy^2z =$$

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

1) for
$$\underbrace{a^{n-p_1-p_2}}_{x}\underbrace{(a^{p_1})}_{y}\underbrace{a^{p_2}b^n}_{z}$$
 and $p_1\neq 0$, we have

$$xy^2z = a^{n-p_1-p_2}(a^{p_1})^2a^{p_2}b^n$$

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

1) for
$$\underbrace{a^{n-p_1-p_2}}_{x}\underbrace{(a^{p_1})}_{y}\underbrace{a^{p_2}b^n}_{z}$$
 and $p_1\neq 0$, we have

$$xy^2z = a^{n-p_1-p_2}(a^{p_1})^2a^{p_2}b^n = a^{n+p_1}b^n$$

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

1) for
$$\underbrace{a^{n-p_1-p_2}}_{x}\underbrace{(a^{p_1})}_{y}\underbrace{a^{p_2}b^n}_{z}$$
 and $p_1\neq 0$, we have

$$xy^2z = a^{n-p_1-p_2}(a^{p_1})^2a^{p_2}b^n = a^{n+p_1}b^n \notin L,$$

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1) for $\underbrace{a^{n-p_1-p_2}}_{x}\underbrace{(a^{p_1})}_{y}\underbrace{a^{p_2}b^n}_{z}$ and $p_1\neq 0$, we have

$$xy^2z = a^{n-p_1-p_2}(a^{p_1})^2a^{p_2}b^n = a^{n+p_1}b^n \not\in L,$$

2) for $\underbrace{a^nb^{p_1}}_{x}\underbrace{(b^{p_2})}_{y}\underbrace{b^{n-p_1-p_2}}_{z}$ and $p_2\neq 0$, we have

$$xy^2z =$$

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1) for $\underbrace{a^{n-p_1-p_2}}_{\times}\underbrace{(a^{p_1})}_{y}\underbrace{a^{p_2}b^n}_{z}$ and $p_1\neq 0$, we have

$$xy^2z = a^{n-p_1-p_2}(a^{p_1})^2a^{p_2}b^n = a^{n+p_1}b^n \not\in L,$$

2) for $\underbrace{a^nb^{p_1}}_{x}\underbrace{(b^{p_2})}_{y}\underbrace{b^{n-p_1-p_2}}_{z}$ and $p_2\neq 0$, we have

$$xy^2z=a^nb^{n+p_2}\notin L,$$

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1) for $\underbrace{a^{n-p_1-p_2}}_{x}\underbrace{(a^{p_1})}_{y}\underbrace{a^{p_2}b^n}_{z}$ and $p_1\neq 0$, we have

$$xy^2z = a^{n-p_1-p_2}(a^{p_1})^2a^{p_2}b^n = a^{n+p_1}b^n \not\in L,$$

2) for $\underbrace{a^nb^{p_1}}_{x}\underbrace{(b^{p_2})}_{z}\underbrace{b^{n-p_1-p_2}}_{z}$ and $p_2\neq 0$, we have

$$xy^2z = a^nb^{n+p_2} \not\in L$$

3) for $\underbrace{a^{n-p_1}}_{x}\underbrace{(a^{p_1}b^{p_2})}_{y}\underbrace{b^{n-p_2}}_{z}$ and $p_1,p_2\neq 0$, we have $xy^2z=$

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1) for $\underbrace{a^{n-p_1-p_2}}_{x}\underbrace{(a^{p_1})}_{y}\underbrace{a^{p_2}b^n}_{z}$ and $p_1\neq 0$, we have

$$xy^2z = a^{n-\rho_1-\rho_2}(a^{\rho_1})^2a^{\rho_2}b^n = a^{n+\rho_1}b^n \notin L,$$

2) for $\underbrace{a^n b^{p_1}}_{x} \underbrace{(b^{p_2})}_{z} \underbrace{b^{n-p_1-p_2}}_{z}$ and $p_2 \neq 0$, we have

$$xy^2z = a^nb^{n+p_2} \not\in L$$

3) for
$$\underbrace{a^{n-p_1}}_{x}\underbrace{(a^{p_1}b^{p_2})}_{y}\underbrace{b^{n-p_2}}_{z}$$
 and $p_1, p_2 \neq 0$, we have $xy^2z = a^{n-p_1}(a^{p_1}b^{p_2})^2b^{n-p_2} =$

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1) for
$$\underbrace{a^{n-p_1-p_2}}_{x}\underbrace{(a^{p_1})}_{y}\underbrace{a^{p_2}b^n}_{z}$$
 and $p_1\neq 0$, we have

$$xy^2z = a^{n-p_1-p_2}(a^{p_1})^2a^{p_2}b^n = a^{n+p_1}b^n \notin L,$$

2) for $\underbrace{a^n b^{p_1}}_{x} \underbrace{(b^{p_2})}_{z} \underbrace{b^{n-p_1-p_2}}_{z}$ and $p_2 \neq 0$, we have

$$xy^2z = a^nb^{n+p_2} \not\in L$$

3) for
$$\underbrace{a^{n-p_1}}_{x} \underbrace{(a^{p_1}b^{p_2})}_{y} \underbrace{b^{n-p_2}}_{z}$$
 and $p_1, p_2 \neq 0$, we have $xy^2z = a^{n-p_1}(a^{p_1}b^{p_2})^2b^{n-p_2} = a^{n-p_1}a^{p_1}b^{p_2}a^{p_1}b^{p_2}b^{n-p_2} = a^{n-p_1}a^{p_1}b^{p_2}a^{p_1}b^{p_2}a^{p_2}b^{n-p_2} = a^{n-p_1}a^{p_2}a^{$

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1) for
$$\underbrace{a^{n-p_1-p_2}}_{x}\underbrace{(a^{p_1})}_{y}\underbrace{a^{p_2}b^n}_{z}$$
 and $p_1\neq 0$, we have

$$xy^2z = a^{n-p_1-p_2}(a^{p_1})^2a^{p_2}b^n = a^{n+p_1}b^n \notin L,$$

2) for
$$\underbrace{a^nb^{p_1}}_{x}\underbrace{(b^{p_2})}_{z}\underbrace{b^{n-p_1-p_2}}_{z}$$
 and $p_2\neq 0$, we have

$$xy^2z=a^nb^{n+p_2}\not\in L,$$

3) for
$$\underbrace{a^{n-p_1}}_{x}\underbrace{(a^{p_1}b^{p_2})}_{y}\underbrace{b^{n-p_2}}_{z}$$
 and $p_1, p_2 \neq 0$, we have $xy^2z = a^{n-p_1}(a^{p_1}b^{p_2})^2b^{n-p_2} = a^{n-p_1}a^{p_1}b^{p_2}a^{p_1}b^{p_2}b^{n-p_2} = a^nb^{p_2}a^{p_1}b^n$

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1) for $\underbrace{a^{n-p_1-p_2}}_{x}\underbrace{(a^{p_1})}_{y}\underbrace{a^{p_2}b^n}_{z}$ and $p_1\neq 0$, we have

$$xy^2z = a^{n-p_1-p_2}(a^{p_1})^2a^{p_2}b^n = a^{n+p_1}b^n \notin L,$$

2) for $\underbrace{a^n b^{p_1}}_{x} \underbrace{(b^{p_2})}_{z} \underbrace{b^{n-p_1-p_2}}_{z}$ and $p_2 \neq 0$, we have

$$xy^2z = a^nb^{n+p_2} \not\in L$$

3) for
$$\underbrace{a^{n-p_1}}_{x} \underbrace{(a^{p_1}b^{p_2})}_{y} \underbrace{b^{n-p_2}}_{z}$$
 and $p_1, p_2 \neq 0$, we have $xy^2z = a^{n-p_1}(a^{p_1}b^{p_2})^2b^{n-p_2} = a^{n-p_1}a^{p_1}b^{p_2}a^{p_1}b^{p_2}b^{n-p_2} = a^nb^{p_2}a^{p_1}b^n \notin L$

Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

Let $w = xyz \in L_2$ and $y \neq \epsilon$

Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

Let $w = xyz \in L_2$ and $y \neq \epsilon$

1) if y contains b (that is
$$w = \underbrace{a^{n-p_1}}_{x} \underbrace{a^{p_1}ba^{p_2}}_{y} \underbrace{a^{n-p_2}}_{z}$$
)

Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

Let $w = xyz \in L_2$ and $y \neq \epsilon$

1) if y contains b (that is
$$w = \underbrace{a^{n-p_1}}_{x} \underbrace{a^{p_1}ba^{p_2}}_{y} \underbrace{a^{n-p_2}}_{z}$$
)

then xy^2z contains b twice and hence $xy^2z \notin L_2$

Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

Let $w = xyz \in L_2$ and $y \neq \epsilon$

1) if y contains b (that is
$$w = \underbrace{a^{n-p_1}}_{x} \underbrace{a^{p_1}ba^{p_2}}_{y} \underbrace{a^{n-p_2}}_{z}$$
)

then xy^2z contains b twice and hence $xy^2z \notin L_2$

2) if y does not contain b, that is

$$w = \underbrace{a^{n-p_1}}_{x} \underbrace{a^{p_1}}_{y} \underbrace{ba^{n}}_{z}, \text{ or } w = \underbrace{a^{n}b}_{x} \underbrace{a^{p_2}}_{y} \underbrace{a^{n-p_2}}_{z}$$

Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

Let $w = xyz \in L_2$ and $y \neq \epsilon$

1) if y contains b (that is
$$w = \underbrace{a^{n-p_1}}_{x} \underbrace{a^{p_1}ba^{p_2}}_{y} \underbrace{a^{n-p_2}}_{z}$$
)

then xy^2z contains b twice and hence $xy^2z \notin L_2$

2) if y does not contain b, that is

$$w = \underbrace{a^{n-p_1}}_{x} \underbrace{a^{p_1}}_{y} \underbrace{ba^{n}}_{z}, \text{ or } w = \underbrace{a^{n}b}_{x} \underbrace{a^{p_2}}_{y} \underbrace{a^{n-p_2}}_{z}$$

then $xy^2z=a^kba^m$ where $k\neq m$ and hence $xy^2z\notin L_2$

Pumping lemma. For practice

Pumping lemma

If $L\subseteq \Sigma^*$ is a regular language then there exists $m\geq 1$ such that any $w\in L$ with $|w|\geq m$ can be represented as w=xyz such that

- $y \neq \epsilon$,
- $|xy| \leq m$,
- $xy^iz \in L$ for any $i \ge 1$.

Corollary

If for any $m \ge 1$ there is $w \in L$ such that $|w| \ge m$ and for any representation w = xyz with $y \ne \epsilon$ and $|xy| \le m$

$$xy^iz \notin L$$
 for some $i \ge 1$.

Then L is **not** a regular language.

Pumping lemma. For practice

Corollary

If for any $m \ge 1$ there is $w \in L$ such that $|w| \ge m$ and for any representation w = xyz with $y \ne \epsilon$ and $|xy| \le m$

$$xy^iz \notin L$$
 for some $i \ge 1$.

Then L is not a regular language.

Negative Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

For each m, let $w = a^k b^k$, where $k \ge m$. If w = xyz and $|xy| \le m$, then $w = \underbrace{a^{n-\rho_1-\rho_2}}_{x}\underbrace{(a^{\rho_1})}_{z}\underbrace{a^{\rho_2}b^n}_{z}$ and hence $xy^2z \notin L$

Pumping lemma. For practice

Corollary

If for any $m \geq 1$ there is $w \in L$ such that $|w| \geq m$ and for any representation w = xyz with $y \neq \epsilon$ and $|xy| \leq m$

$$xy^iz \notin L$$
 for some $i \ge 1$.

Then L is **not** a regular language.

Negative Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

For each m, let $w=a^kba^k$, where $k\geq m+1$. If w=xyz and $|xy|\leq m$, then $w=\underbrace{a^{n-p_1}}_{x}\underbrace{a^{p_1}}_{y}\underbrace{ba^n}_{z}$ and hence $xy^2z\notin L_2$

Thank you for your attention!