Based off the weather, can we predict a latitude?

By Charles Phil, Bryan Mangrum, Coye Roseberry, Hayden Hinton, and Shawn Varghese

Overview

Goal:

- Predict a city's latitude from weather data
- Visualize predicted city locations on a map

Methods:

- Train a model on city lat/long and weather statistics
- Render city locations on an interactive web map

Data Wrangling

Sourced data from OpenWeather Historical weather API:

- 40 years of aggregated data (by month and day) for 500 Cities
 - ~183k rows of data
 - 47 Columns (potential features)

Scoped Data:

- Continental USA
 - \circ 500 \rightarrow 387 cities
- Average of each column grouped by city

Example API:

```
"cod":200,
"city_id":5400075,
"calctime": 3.105838634,
"result":[
      "month": 1,
      "day": 1.
      "temp":{
         "record min": 274.44,
         "record max":290.45,
         "average_min":276.79,
         "average max":286.5,
         "median": 281.26,
         "mean":281.29,
         "p25":278.57,
         "p75":283.83,
         "st dev":3.69,
         "num":136
       pressure":{
         "min" . 1014
```

Tableau

- Tableau helped us visualize the data and adjust scope
- Reduced to just the United States to prevent issues working with both the Northern and Southern hemispheres

Feature Selection

Started with 47 Weather Stats as potential features, SelectFromModel limited it to 11:

- 1. 'Longitude'
- 2. 'Min_temp_k'
- 3. 'Max_temp_k'
- 4. 'avgmax_temp_k'
- 5. 'Median_temp_k'
- 6. 'Mean_temp_k'
- 7. 'P25_temp_k'
- 8. 'P75_temp_k'
- 9. 'Stdev_wind_mps'
- 10. 'mean_cloud_%'
- 11. 'stdev_cloud_%'

Machine Learning Process

Tested two main models to find best fit:

- Multivariate Linear Regression
 - Training score = 0.68
 - Testing score = 0.30
- Random Forest Regressor
 - Training score = 0.93
 - Testing score = 0.48

Best fit:

- Random Forest Regressor as the estimator for our feature selection
- Multivariate Linear Regression for the predictive model

Final model scores:

- Training set: 0.589
- Testing set: 0.478

Random Forest Regressor used to weight feature importance

Conclusions

Regions with stable weather patterns were predicted more accurately:

- Southern California, with its unnaturally consistently nice weather, had closer predictions
- The Midwest had our most far off predictions where weather fluctuates between extremes across a year.

Climate alone is not a sufficient predictor for latitude:

 Additional factors could include altitude, local flora, terrain, population density, etc.

Bonus!

Actual City Location

Predicted Location

