Field Components of TE Mode waves in Field Components of TM Mode waves Rectargular wave guide. in Rectangular Waveguide. Ex= jwy Ho (nth) Cos (mth) x. Sin (nth)y. e. $E_{x} = \frac{-jB}{h^{2}} E_{0} \left(\frac{m\pi}{a}\right) C_{0} \left(\frac{m\pi}{a}\right) \times Sin\left(\frac{n\pi}{b}\right) y = 2$ Ey= -jwy Ho. (mt) . Sin (mt) . Cor (nt) y.e. $E_{y} = \frac{-jB}{h^{2}} \cdot E_{0} \cdot \left(\frac{n\pi}{b}\right) Sin\left(\frac{m\pi}{a}\right) \times \cdot Cos\left(\frac{n\pi}{b}\right) y \cdot \frac{-ky}{2}$ $E_{z} = E_{o}$. $Sin\left(\frac{m\pi}{a}\right) \times . Sin\left(\frac{n\pi}{b}\right) y . e^{-\chi^{2} z}$. $E_{7}=0.$ $H_{x}=\frac{j\beta}{h^{2}}H_{0}(\alpha)Sin(\frac{m\pi}{a})x.Gs(\frac{n\pi}{b})y.e^{-st_{7}}.$ $H_{\chi} = \frac{j\omega \mathcal{E}_{e}}{h^{2}} E_{o} \cdot \mathcal{B}_{o} \left(\frac{n\pi}{b}\right) Sin\left(\frac{m\pi}{a}\right) \times G_{o} \left(\frac{n\pi}{b}\right) y \cdot e^{-\frac{3}{2}y}$ Hy=-jwee Eo (mt) Cos (mt) x. Sin (nt) yer. Hy= jB Ho(nb). Cos(mt)x. Sin(nt)y= x7. $H_{z}=0$. $\beta=\beta'\left[1-\left(\frac{t_{c}}{t}\right)^{2}\right]$. $H_{z} = H_{o} \cdot Cos\left(\frac{m\pi}{a}\right) \times \cdot Cos\left(\frac{n\pi}{b}\right) y \cdot e^{-kz}$ $\eta = \eta'$ $1 - \left(\frac{\dagger c}{\dagger}\right)^2$ $\beta' = \frac{\omega}{u'}; \quad u' = \frac{1}{\mu \epsilon_e}$ $t_{c} = \frac{u'}{2} \left[\frac{m}{a} \right]^{2} + \left(\frac{n}{b} \right)^{2} \left[\frac{\lambda_{c} - u'}{b} \right] \left[\frac{\lambda_{c} - u'}{a} \right] + \left(\frac{n}{b} \right)^{2},$ $v_{c} = \frac{u'}{a} \cdot \left(\frac{n}{b} \right)^{2} + \left(\frac{n}{b} \right)^{2},$ $v_{c} = \frac{u'}{a} \cdot \left(\frac{n}{b} \right)^{2} + \left(\frac{n}{b} \right)^{2},$