- 1. Define, enuncia, demuestra, da ejemplo o contraejemplo según se pida y siempre justificando de forma razonada tus respuestas:
 - (a) (1,5 ptos.) Enuncia las propiedades que definen una aplicación lineal. Pon un ejemplo de una aplicación de \mathbb{R}^4 en \mathbb{R}^3 que no sea lineal.
 - (b) (2 ptos.) Define combinación lineal. Prueba que, si $\{u,v,w\}$ es una familia de vectores de \mathbb{R}^n que satisfacen la relación $2u-5v-\frac{3}{2}w=\vec{0}$, el sistema de ecuaciones AX=v donde $A=[u\ w]$ es la matriz de orden $n\times 2$ cuyas columnas son $u\ y\ w$, es un sistema compatible.
 - (c) (1,5 ptos.) Responde, nunca (luego es falsa), siempre (luego es verdadera), a veces (luego puede ser verdadera o falsa):
 - (c1) Si n < m y $f: \mathbb{R}^n \to R^m$ es lineal, entonces f es suprayectiva.
 - (c2) Si r < p y $F = \{v_1, \dots, v_r\}$ es una familia de vectores de \mathbb{R}^p , la familia F es libre.
- 2. (3 ptos.) Para el subespacio $S=\{(y+2z,x+4y+10z,3x-y+4z,2x+4z):x,y,z\in\mathbb{R}\},$ se pide
 - (a) Calcula las ecuaciones implícitas, esto es, encuentra un sistema de ecuaciones cuyas soluciones sean los vectores de S.
 - (b) Calcula un par de bases.
 - (c) Comprueba si $v_1 = (0, 1, -1, 3)$ y $v_2 = (2, 7, -5, -2)$ pertenecen a S.
- 3. (2 ptos.) Sean $c,d\in\mathbb{R}$ y g la aplicación lineal descrita en los argumentos x,y,z como

$$g(x, y, z) = (x - y + 2z, -cx + y - cz - z, c^{2}x - y + (c^{2} + 1)z).$$

Si Si U_d es el subespacio generado por los vectores $(0, d+2, d^2+2d)$ y $(\frac{1}{2}, 1, 2)$, calcula los valores de c, d para los que U_d está contenido en el conjunto imagen de g.

PREGUNTA 1

- (a). Una aplicación f: IR" IR" ne dire lineal ni satisface las propiedade.
 - edade.

 1) f(1)+31= f(1)+f(1) pare hodo (1,) de 1kh
 - 2) fital: tfa) pare coalquier escalar tell y coalquier rector à
 - Muc aplicación no lineal $f: \mathbb{R}^3 \to \mathbb{R}^2$. No lo en parque, i. fuera lineal $f(\frac{9}{9}): (\frac{9}{3}) \mapsto (\frac{1}{4})$ by $f(\frac{9}{3}): (\frac{1}{3}) + (\frac{9}{3})$.
- (b) . Un vector b ne dice combinación lineal de los rectores vi, vip lamado poro.

 ni existen escalates to, to..., to elevade modo que b ne expresa en la forma: b=t,·v,+tz·vz+...+tpvp
 - Reexcripinos la ecuación rectoral $2\vec{1}-5\vec{0}-\frac{3}{2}\vec{\omega}=\vec{0}$ en la forma equivalente: $\vec{J}=\frac{2}{5}\vec{u}-\frac{3}{15}\vec{\omega}$. Observamos que, el vector \vec{u} es una combinación Rineal de \vec{u} y $\vec{\omega}$ con penos $\vec{t}:=\frac{2}{5}$ y $\vec{t}_2=\frac{3}{15}$. La ecuación rectorial la podemos escribir en la forma motricial $\vec{J}:=\frac{3}{5}\vec{u}-\frac{3}{15}\vec{\omega}=[\vec{u}\,\vec{w}](\frac{2}{5}\vec{t}_5)$ y elemendo $\vec{A}:=[\vec{u}\,\vec{w}]$ motriz $\vec{v}:=\frac{3}{5}\vec{u}-\frac{3}{15}\vec{\omega}=1$ interval $\vec{u}:=\frac{3}{15}\vec{u}$ de elemendo $\vec{u}:=\frac{3}{15}\vec{u}$ en $\vec{u}:=\frac{3}{15}\vec{u}$ en $\vec{u}:=\frac{3}{15}\vec{u}$ en el nisterval $\vec{u}:=\frac{3}{15}\vec{u}$ de en sistema compatible $\vec{v}:=\frac{3}{15}\vec{u}$ en en sistema compatible
- Per definición,

 (c) C1: Nunca V La aplicación lineal of en reprayectiva ni
 el conjunto imagen de f. Im f. IRM. Si A en la machire mon

 canónica de f. Im f.: (of A. luego of nere responsayectiva

 ni y relemente ni (of A IRM). Esto equivale a de cir que

 en he las columnas de A disponerma de m rectaros LI, pero

 el responsación (of A esta generado per n rectaros y, como

 n < m, esto no puede ocurrir nunca.

es combinación lineal de otros ó contiene el rector o, le familia no en libre. Pero como rep y los rectores o,...v. los tomamos en 12º, le matriz A=[o,..., ve] puede tener p pirotes en ne forma reducida, lo que indicaria que la farmilia en libre

PREGUNTA Z -

El respecció s'esta dado en forme paramétrica y usando las propiedados de numa y producto por escalar de RY, la elementos de S ne pueden escribir en la forma.

$$\begin{array}{c} y+z \\ x+4y+10z \\ 3x-9+4z \\ 2x+4z \end{array} = \times \begin{pmatrix} 0 \\ 1 \\ 3 \\ z \end{pmatrix} + y \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} + z \begin{pmatrix} 10 \\ 4 \\ 4 \end{pmatrix} \quad \text{ests es, les vectores de 5} \\ \text{pen combinación lineal de la familie } \lambda \vec{U} = \begin{pmatrix} 0 \\ 1 \\ 3 \\ 2 \end{pmatrix}, \vec{U} = \begin{pmatrix} 1 \\ -1 \\ 3 \\ 2 \end{pmatrix}, \vec{U} = \begin{pmatrix} 10 \\ -1 \\ 3 \\ 4 \end{pmatrix} - \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 4 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 4 \\ 4 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 4 \end{pmatrix} + \frac{1}{2} = \begin{pmatrix} 10 \\ 1$$

(a) Como los vectores de 8 ne describers como combinaciones lineales de fu.v. v. las ecuaciones implicitas de 8 ne obtienen al aplicar reducción gaussiane sobre la motiva (v. v. v.) = (AIb) imporrendo que el sistema que representa nea compatible:

(b) the bare do S esterá formada por mue tamilia libre del nistema generador d'a, vindy la reducción del apartado (a) non muestra que la familia d'a, vid es LI y que wes combinación lineal de ambos vectoros: w= 2 u + zv. Par Tanto 5 = Gendú, vid = Gend

· (c) Pare comprober que la rectore v, y vz estein en S', berole con renficer ruo satisfacen las ecuaciones imperatas que describen S' 2-3y + 13x=0 (y) t-2y+8x=0.

en-5 (baste con que no re cumple una se ellas

•
$$\sqrt{2} = (2,7,-5,-2)$$
:
 $(3.2-3.7+(-5) = 0$ (G) $82-2.7+(-2) = 0$
Ruego $\sqrt{2}$ estar en S.

PREGUNTA 3 -

Observamo que $g(x,y,z) = x \begin{pmatrix} 1 \\ -c \end{pmatrix} + y \begin{pmatrix} -1 \\ -1 \end{pmatrix} + 2 \begin{pmatrix} -2 \\ -(c+1) \end{pmatrix} = \begin{bmatrix} 1 & -1 & 2 \\ -c & 1 & -(c+1) \\ c^2 + 1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. Por tanto g(x) = A(x) = A(x) lees g = A(x) A en la matriz canônica de g. Por tanto, el conjunto imagen de g es $\lim_{x \to \infty} g = A(x) = \lim_{x \to \infty} A(x) = \lim_{x$

Observames accornais que $\begin{pmatrix} 2 \\ -(c+1) \end{pmatrix} = \begin{pmatrix} -1 \\ -c \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \end{pmatrix}$, leogo podemes eliminer ele vector del conjunto generador y teneros.

In 5 = Gen $\frac{1}{2}\begin{pmatrix} -c \\ -c \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \end{pmatrix}$.

El ruberpacio Ud estara contenido en el conjuento ton f si y alcorento si los rectores (0/2) y (1/2) están en Irang. Esto equivale a dour que ambos rectores non combinación lineal de (-1/2) y (-1/2) o oquivalentemento, que los resternas

$$\begin{pmatrix} 0 \\ d+2 \\ d^{2}+7d \end{pmatrix} = \times \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} + y\begin{pmatrix} 1 \\ -c_{2} \end{pmatrix} \qquad y \qquad \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \times \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} + y\begin{pmatrix} 1 \\ -c_{2} \end{pmatrix}$$

sean competibles. Aplicamos reducción de Gours vinultó rea

sobre le matriz ampliade $\begin{pmatrix}
-1 & 1 & | 1/2 & 0 \\
1 & -2 & | 1 & d+2 \\
-1 & | 2 & | 2 & d^2+2d
\end{pmatrix}$ $\begin{pmatrix}
-1 & 1 & | 1/2 & 0 \\
0 & 1-2 & | 3/2 & d+2 \\
0 & | 2-3 & | 3/2 & d^2+2d
\end{pmatrix}$ $\begin{pmatrix}
-1 & 1 & | 1/2 & 0 \\
0 & 1-2 & | 3/2 & d+2 \\
0 & 0 & | 3/2 & | 2+2d
\end{pmatrix}$ $\begin{pmatrix}
-1 & 1 & | 1/2 & 0 \\
0 & 1-2 & | 3/2 & d+2 \\
0 & 0 & | 3/2 & | 2+2d
\end{pmatrix}$ $\begin{pmatrix}
-1 & 1 & | 1/2 & 0 \\
0 & 0 & | 3/2 & | 2+2d
\end{pmatrix}$ $\begin{pmatrix}
-1 & 1 & | 1/2 & | 1/2 & | 2 & | 2+2d & | 2+2d$

El nisterne es incompatible

Pare < + 1, 13 B= 2 y ambos vitemas reres compatibles ni

4

y odernente ni $\frac{1}{12} \left| \frac{1}{2} \right|^2 = \frac{1}{12} \left| \frac{1}{12} \right|^2 = \frac{1}{12} \left| \frac{$