VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA

Baigiamasis bakalauro darbas

Privačios informacijos išsaugojimas taikant dirbtinio intelekto technologijas

(Privacy-preserving AI)

Atliko: 4 kurso 3 grupės studentas

Paulius Milmantas

(parašas)

Darbo vadovas:

dr. Linas Petkevičius

(parašas)

Recenzentas:

(parašas)

Turinys

Įva	ıdas	2
1.	Asmens duomenų privatumas mašininio mokymo kontekste	3
2.	Duomenų pažeidžiamumo metrikos	6
	2.1. Apibrėžimas	6
	2.2. Skaičiavimas praktikoje	
	2.3. Metodo pavyzdinis tyrimas	8
3.	Modelių palyginimo metodai	
	3.1. Lyginimas pagal duomenų nuokrypį	
	3.2. Skaičiavimo pavyzdys	
4.	Homomorfinis šifravimas	
5.	Federuotas mašininis mokymas	12
	5.1. Metodas	12
	5.2. Komunikacijos kaštų mažinimas	12
	5.3. Įrenginių heterogeniškumas	12
	5.4. Analizės heterogeniškumas	12
	5.5. Saugos problemos	12
6.	Blokų-grandinių technologija	13
7.	Saugus skirtingų pusių skaičiavimas	
8.	Bendro įspūdžio privatus agregavimas	

Įvadas

Mašininis mokymas yra dirbtinio intelekto sritis, kuri pasitelkia statistinius algoritmus, kad apibrėžtų duomenų atpažinimo modelį. Modelio apmokymui dažniausiai reikia turėti daug duomenų. Kai kurie uždaviniai reikalauja duomenų, kurie nėra laisvai prieinami ir yra privatūs. Mašininio mokymo tyrimų srityje yra kilusi problema dėl jų saugojimo. Vienas iš faktorių, kuris lėmė šį susidomėjimą yra 2016 metais Europoje priimtas duomenų apsaugos reglamentas (GDPR). Pagal jį, fizinių asmenų duomenys turi būti saugomi naudojantis tam tikromis taisyklėmis ir negali būti atskleisti trečiosioms šalims, be asmens sutikimo [1].

Šią problemą išspręsti siekia įvairūs tyrimai ir naujai atrasti metodai privatumą saugančio dirbtinio intelekto srityje. Šią problemą galima išskaidyti į kelias atskiras sritis:

- Analizuojamų duomenų privatumas [2]. Algoritmas apmoko modelį atpažinti duomenis. Turint sukurtą modelį, neturi būti galima atgaminti duomenų, pagal kuriuos jis buvo mokomas, bei negali būti identifikuoti asmenys. Taip nukentėtų žmonių privatumas ir būtų pažeistas Europos duomenų apsaugos reglamentas. Šio pažeidimo pavyzdys gali būti ir paprastas teksto atkūrimo modelis. Duodama sakinio pradžia, modelis nuspėja jo pabaigą. Jeigu suvedus tam tikras detales modelis užbaigia sakinį naudodamas asmeninius duomenis, kurie atskleidžia žmonių tapatybę, šis modelis nėra saugus.
- Duomenų įvesties privatumas. Trečios šalys neturi matyti įvedamų duomenų. Tai gali būti tinklo saugumo spragos, duomenų surinkimo aplikacijų spragos ir t.t...
- Modelio išvesties privatumas. Modelio išvesties neturi matyti asmenys, kuriems šie duomenys nepriklauso. Šis punktas yra sąlyginis, priklauso nuo modelio svarbos. Jeigu tai yra svarbūs asmeniniai duomenys, negalima rizikuoti. Tačiau jeigu tai yra viešai prieinami duomenys, šis punktas negalioja.
- Modelio apsauga. Sukurtas modelis negali būti niekieno pasisavintas. Šis punktas yra skirtas apsaugoti programos kūrėją.

Darbo tikslas - ištirti ir palyginti privatumą saugančius dirbtinio intelekto algoritmus pagal jų saugumą, našumą ir panaudojamumą.

Darbo uždaviniai:

- Išanalizuoti esamus algoritmus pagal jų saugumą ir panaudojamumą.
- Ištirti kurie algoritmai yra realizuoti ir dalį nerealizuotų, realizuoti.
- Palyginti algoritmus pagal našumą.

1. Asmens duomenų privatumas mašininio mokymo kontekste

Vienas iš būdų apsaugoti duomenis yra decentralizuoti modelį ir naudoti paskirstyto mokymo algoritmus. Paprastai mašininiam mokymui yra naudojamas centralizuotas serveris. Yra surenkami duomenys į vieną vietą ir modelį moko vienas kompiuteris. Jeigu norima pridėti daugiau duomenų arba papildomą klasifikatorių, modelį reikia apmokyti iš naujo. Taip pat, kas kuria šį modelį, turi visą prieigą prie duomenų, šie modeliai nėra saugūs.

Šiai bėdai išspręsti, vienas iš metodų yra federuotas mašininis mokymas ("Federated machine learning"). Šis metodas padeda išspręsti kaikurias bėdas, vykdant modelio mokymą decentralizuotai [3]. Prie bendro tinklo gali prisijungti daug įrenginių. Visi jie turi savo unikalų duomenų rinkinį. Kiekvienas įrenginys pasirenka geriausią statistinį metodą modelio mokymui ir jį sukurią. Taip yra sukuriama daug skirtingų modelių su skirtingais duomenų rinkiniais. Visi šie rinkiniai vėliau yra surenkami į vieną vietą ir toliau naudojami duomenų analizei. Taip surinkus atskirų įrenginių sukurtus modelius, neturime prieigos prie duomenų ir daugiau žmonių gali prisidėti prie modelio kūrimo, nematant pilno duomenų rinkinio. Tačiau naudojant šį metodą ne visos problemos yra išsprendžiamos. Duomenų saugumas nėra garantuojamas [3]. Jeigu duomenys nėra užšifruojami, jie gali būti pavogti. Tai gali būti padaryta, jeigu yra naudojamas nesaugus interneto ryšys, arba jeigu yra bandoma analizuoti atskirų įrenginių atsiųstus modelius. Šis metodas išsprendžia tik kelias problemas. Likusios yra: komunikavimo kaštai, įrenginių heterogeniškumas, statistinis heterogeniškumas ir saugumo problemos [4].

Visos šios problemos yra nagrinėjamos ir joms spręsti kuriami nauji metodai. Komunikacijos kaštams mažinti, yra kuriami algoritmai, kaip turi būti perduodamas modelis tinkle, kad būtų maža tinklo apkrova. Įrenginių heterogeniškumui spręsti, yra parenkami tam tikri įrenginių rodikliai ir pagal tai nustatoma, kokia bus įrenginio komunikacija: ar jis naudos asinchroninį komunikavimą, kaip dažnai tai vyks ir kokia yra įrenginio klaidos tikimybė [4]. Statistikos heterogeniškumui pataisyti kuriami yra metodai, kaip meta duomenų-mokymas ir keletos užduočių mokymas ("Multi-task learning").

Straipsnyje apie privatumą išsaugančius blokų-grandinių tinklus ("Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices") yra pateikiamas naujas paskirstyto mokymosi algoritmas, kuris yra paremtas blokų grandinių technologijomis [5]. Šis modelis yra grafiškai pateiktas pav.1. Šią architektūrą pavyzdyje sudaro 3 komponentai: gamintojai, klientai ir "block chain" tinklas. Šiame pavyzdyje gamintojas pareiškia užklausą, kad reikia atlikti apklausą. Klientai, kurie sutinka su užklausa, išsiunčia savo sukurtą modelį. "Block chain" tinklas elgiasi kaip centralizuotas serveris ir surenka visus klientų modelius. Tuomet, pasirinktas kompiuteris, kuris atlieka visą darbą ("miner") atlieka galutinį modelių sujungimą.

Minėti decentralizuoti būdai apjungia skirtingus sukurtus modelius į vieną ir visi įrenginiai kurie kuria modelius, naudoja savo unikalius duomenis. Saugus skirtingų pusių skaičiavimo metodas ("Secure multiparty computation") yra kriptografinis protokolas, kuris leidžia įrenginiams, su unikaliais duomenimis, skaičiuoti funkcijos reikšmę, nematant kitų įrenginių reikšmių [6]. Su šiuo

1 pav. Paskirstytas mokymas [5]

metodu, yra sukuriamas vienas modelis tarp įvairių įrenginių. Pagrindinis įrenginys, kuris ruošia skaičiavimo užklausą, gali suskaidyti pradinius duomenis, užšifruoti juos ir taip paskirstyti tarp kitų įrenginių. Taip sukurti įrenginio rezultatai negali būti atšifruoti ir pasisavinti, o minėto federuoto mokymo metodo sukurti rezultatai, jeigu nėra gerai apsaugoti, gali būti pasisavinti ir atgauti pradiniai duomenys su kuriais modelis buvo sukurtas.

Kitas būdas apsaugoti modelį yra naudoti homomorfinį šifravimą. Pagal šį metodas, modelis yra mokomas naudojant užšifruotais duomenimis. Jie mokymo metu, nėra atšifruojami. Šis metodas leidžia keliems įrenginiams vienu metu atlikti skaičiavimus su duomenimis, kurių jie nemato. Yra daug metodo varijacijų. Kaikurios yra pažeidžiamos ir gali atskleisti visos infrastruktūros duomenis [7]. Dažniausiai homomorfinės sistemos yra labiau pažeidžiamos nei nehomomorfinės.

2016 metais buvo pasiūlytas naujas metodas paspartinti pilnai homomorfines šifravimo sistemas [8]. Homomorfinės sistemos, kurios naudoja šį metodą yra laikomos ketvirtos kartos. Šis metodas leidžia aproksimuoti užšifruoto teksto sudėtį, daugybą ir pakeisti atšifruoto teksto proporcijas. Proporcijų pakeitimo procedūra suskaido užšifruotą tekstą į dalis, to pasekoje yra apvalinamas neužšifruotas teksas. Šio metodo pagrindinė idėja yra pridėti triukšmo prie pagrindinės žinutės. Šis triukšmas yra pridedamas prie neužšifruoto teksto dėl saugumo priežasčių ir jis yra laikomas kaip aproksimavimo paklaida. Tuo pasekoje, metodas veikia su tam tikra paklaida

Bendro įspūdžio agregavimo metodas yra naujausias iš visų minėtų. Jis leidžia įrenginiui su savo duomenimis sukurti modelį naudojant betkokius metodus ir taip prisidėti prie bendro progreso [6]. Visi modeliai yra surenkami ir leidžiami duomenys per šiuos modelius. Kiekvienas modelis skiria savo balsą, jie surenkami ir padaromas bendras sprendimas. Šis metodas leidžia lengvai plėsti

modelį. Taip pat yra saugomas ir duomenų privatumas. Jeigu keli modeliai, kurie nesidalina duomenimis, teigia vienodai, tai reiškia, kad negalima atkurti duomenų ir jie yra saugūs. Skaičiavimas vykdomas pasirenkant optimalią strategiją ir imant mažiausią galimą žingsnių skaičių.

2. Duomenų pažeidžiamumo metrikos

2.1. Apibrėžimas

Norint apsaugoti duomenis, sukurtam duomenų aptikimo modeliui reikia atlikti analizę, kaip tikėtina, kad modelio pradiniai duomenys bus atkurti. Tai išanalizuoti yra daug būdų, vienas iš jų yra pateiktas straipsnyje [9]. Šis straipsnis ieško metrikos reikšmės, kuri parodo, kaip pradinius duomenis atsimena modelis.

Tarkime turime duomenų rinkinį s[r]. Šiam rinkiniui pirma reikia apskaičiuoti rangą [8].

$$rangas(s[r]) = |r \in R : Px(s[r]) \le Px(s[r])| \tag{1}$$

Šis rangas nurodo, kurioje vietoje yra šis inicijuotas duomenų rinkinys sąraše, tarp visų galimų testinių rinkinių kombinacijų. Pavyzdžiui, norima sukurti natūralios kalbos atpažinimo modelį. Jo mokymui, yra paduodamas atsitiktinai sugeneruotas sakinys "Atsitiktinis skaičius 125" ir apskaičiuojama jo entropija. Tada galima išrašyti visus galimus sakinius, kuriuos yra leidžiama siųsti, ir juos surūšiuoti pagal entropijos laipsnį. Tada reikia apskaičiuoti, kaip dažnai pasitaiko panašūs sakiniai. Taip yra gaunamas rangas. Kadangi šis pavyzdinis sakinys yra sudėtingas, su atsitiktiniais skaičiais ir jo entropija yra aukšta, tikriausiai aukštesnė nei dauguma mokymo duomenų, jo rangas bus artimas vienetui. Darant prielaidą, kad šio sakinio entropija yra pati aukščiausia iš galimų testavimo duomenų, galima teigti, jog šio sakinio rangas yra lygus vienetui.

Rangas tiesiogiai nepasako kokia yra tikimybė, kad bus sugeneruotas toks testavimo rinkinys. Jo skaičiavimas paima daug resursų, nes reikia sugeneruoti visas galimas kombinacijas [8].

Kitas nagrinėjamas kintamasis yra "atvirumo" metrika. Tai aproksimuotas skaičius, kuris nusako, kaip tikėtina, jog testavimo duomenys bus atgaminti iš modelio. Ši metrika pasako ką naujo sužinome apie pradinius duomenis, kai per modelį paleidžiame atsitiktinai sugeneruotus duomenis. Todėl, reikia skaičiuoti spėjimo entropijos redukcijos lygtį. Spėjimo entropija, tai spėjimų skaičius E(X), kuris reikalingas atspėti diskretų, atsitiktinai sugalvotą parametrą X.

Jeigu kintamasis r yra pasirenkamas atsitiktinai $r \in \mathbb{R}$, tai reiškia, kad reikia generuoti atsitiktinius skaičius tol, kol bus gauta r reikšmė. Iš to seka, kad spėjimų turėtų būti lygus [2] lygčiai.

$$E(s[r]) = \frac{1}{2}|R|\tag{2}$$

Turint suskaičiuotus galimus rinkinių rangus, bei entropijas, galima naudoti patobulinta skaičiavimo taktiką. Visi galimi duomenys yra surušiuojami pagal entropiją arba sudėtingumą. Sąrašo pradžioje yra elementas su mažiausia entropija. Jo atspėjimo tikimybė yra viena iš didžiausių. To pasekoje, gauname formulę [3].

$$E(s[r]|f_{\theta}) = rank_{\theta}(s[r]) \tag{3}$$

Ši formulė padidina skaičiavimų spartumą ir tai galima apskaičiuoti padalinus vieną formulę

iš kitos. Tai pateiktas [4] lygtyje.

$$\frac{E(s[r])}{E[s[r]|f_{\theta}]} = \frac{\frac{1}{2}|R|}{rank_{\theta}(s[r])} \tag{4}$$

Rangai tiksliai neapibrėžia kokia yra tikimybė, jog elementas bus atspėtas. Jis tik lygina visas galimas kombinacijas ir skaičiuoja jų entropijas. To pasekoje, visi šie skaičiavimai yra tik apytikslis spėjimas. Kadangi tai nėra tikslu ir norima sužinoti tik bendrą vaizdą apie algoritmą, galima naudoti logaritmus. Tai atlikta lygtyje [5].

$$log_2(\frac{E(s[r])}{E(s[r]|f_\theta)}) = log_2(\frac{\frac{1}{2}|R|}{rank_\theta(s[r])})$$

$$\tag{5}$$

Šias lygtis supaprastinus, gaunama lygtis [6].

$$log_2|R| - log_2(rank_\theta(s[r])) - 1 \tag{6}$$

Dėl paprastumo yra pridedamas vienetas ir taip gaunama atvirumo metrika, pateikta lygtyje [7].

$$atvirumas(s[r])_{\theta} = \log_2 |R| - \log_2 rangas_{\theta}(s[r])$$

2.2. Skaičiavimas praktikoje

(7)

Pažeidžiamumo metrika "Atvirumas" yra naudojama tikrinant mašininio mokymo algoritmų duomenų įsiminimą. Atlikus šiuos skaičiavimus, programuotojai gali spręsti dėl tolimesnių veiksmų: tęsti kūrimą ar dirbti ties duomenų anonimizavimu.

Mašininio mokymo algoritmo tikrinimui su atvirumo metrika, pirma reikia pasiruošti duomenų rinkinį s[r]. Sudarius šį rinkinį, reikia sukurti mašininio mokymo modelį. Turint gautą modelį ir duomenis, kurie buvo naudojami modelio gavimui, galima skaičiuoti atvirumo metriką. Siekiant daugiau sužinoti apie modelį, galima savo duomenis įterpti daugiau nei vieną kartą. Pavyzdžiui, jeigu vienus duomenis įterpsime kelis kartus, o kitus duomenis šimtą kartų, galima analizuoti atvirumo metriką su šiais duomenimis. Taip galima gauti abstrakčią koreliaciją tarp duomenų kiekio ir modelio atsiminimo. Kad šie eksperimentai būtų tikslūs, būtina kiekvieno modelio kūrimo metu naudoti tuos pačius parametrus: optimizavimo funkcijas, hiperparametrus ir kitus duomenis. Taip su kiekvienu pavyzdiniu duomenų rinkiniu, turi būti atlikta atskira analizė. Jeigu galima, turi būti didinamas vienodų duomenų kiekis ir tikrinama atvirumo ir žinomų duomenų kiekio koreliacija.

Atvirumui sužinoti, reikia skaičiuoti rangą. Tikslaus jo radimo procedūros nėra. Todėl reikia naudotis analitiniais metodais. Vienas iš jų yra aproksimacija pagal distribucijos modelius. Tar-

kime, turime duomenis, kurių entropija yra didesnė, nei s[r] duomenų. Reikia rasti kiek yra tokių duomenų, kurių entropija yra mažesnė. Taip pat, tarkime, kad s[r] entropija yra $\rho(.)$ pasiskirstymo distribucijos. Atvirumą galima aproksimuoti skaičiuojant šios distribucijos plotą grafike, iki testavimo duomenų, ir dauginant iš logaritmo. Taip gauname formulę [8].

$$atvirumas(s[r])_{\theta} = -log_2 \int_0^{Px_{\theta}(s[r])} \rho(x) dx \tag{8}$$

2.3. Metodo pavyzdinis tyrimas

Metodo panaudojamumą pademonstruoti, pasinaudokime mašininiu modeliu, pagrįstu cukriniu diabetu sergančių moterų duomenimis. Modelis priima 5 parametrus: nėštumų skaičių, gliukozės kiekį kraujyje, kraujo spaudimą, BMI ir amžių. Visų šių parametrų ribos yra žinomos, todėl turint atsitiktinių duomenų rinkinį, galima apskaičiuoti rangus. Todėl bus naudojama lygtis (8), turinti rangus.

$$atvirumas(s[r])_{\theta} = log_2|R| - log_2rangas_{\theta}(s[r]) \tag{9}$$

Tarkime, kad šių duomenų galimos ribos yra tokios: nėstumai: [0-30], gliukozės kiekis kraujyje: [0-180], kraujo spaudimas: [0-250], BMI: [1-70], amžius: [1-110]. Suskaičiuoti kiek iš viso yra galimų variantų, galima sudauginus visas šias ribas, tai padaryta lygtyje (10).

$$R = 30 * 180 * 250 * 69 * 109 = 10153350000 \tag{10}$$

Tarkime, turime dviejų žmonių testinių duomenų rinkinį. Pirmo žmogaus duomenys: [2, 60, 98, 25, 25], antro: [0, 90, 128, 27, 18]. Skaičiuojame rangus (11) ir (12). Vėliau pagal apskaičiuotus rangus, ieškoma atvirumo metrika (13) ir (14).

$$s[1] = 2*180*250*69*109+60*250*69*109+98*69*109+25*109+25 = 790444808$$
 (11)

$$s[2] = 90 * 250 * 69 * 109 + 128 * 69 * 109 + 27 * 109 + 18 = 170188149$$
 (12)

$$atvirumas(s[1]) = log_2 10153350000 - log_2 790444808 = 3.68314726$$
 (13)

$$atvirumas(s[2]) = log_2 10153350000 - log_2 170188149 = 5.89868142$$
 (14)

Pagal rezultatatus, galima teigti, kad yra labiau tikėtina, kad bus atskleisti antro žmogaus duomenys. Turint daugiau parametrų, būtų dar mažesnė atvirumo metrikos reikšmė, nes būtų dar mažiau tikėtina, kad bus atkartoti duomenys. Turint kelius modelius, galima lyginti modelių atvirumo metrikas ir spręsti apie modelių saugumą.

3. Modelių palyginimo metodai

3.1. Lyginimas pagal duomenų nuokrypį

Siekiant palyginti, kaip modeliai gerai saugo privačius duomenis, apibrėžiame metriką DMDK (didžiausias modelio duomenų nuokrypis). Kuo metrika yra mažesnė, tuo tiksliau galima nuspėti, kokie duomenys buvo naudojami modelio mokymui. Kuo metrika didesnė, tuo yra sunkiau nuspėti, kokie duomenys buvo naudojami mokymui. Ši metrika leidžia lyginti skirtingus modelius su skirtingais duomenimis.

DMDK yra išvestas lygtyje [15]. Prieš DMDK skaičiavimą reikia paimti visus modelio mokymui skirtus duomenis ir kiekvienai duomenų eilutei apskaičiuoti modelio išvestį. Skaičiavimus reikia atlikti tik su tomis eilutėmis, su kuriuomis modelis išvedė teisingą atsakymą. Turint tik tas eilutes, su kuriomis modelis išvedė teisingą atsakymą, galima į nelygybę įstatyti kintamuosius. Lygtyje yra naudojami tokie kintamieji: m - duomenų eilučių skaičius, h - parametrų skaičius (stulpeliai), ϵ - ieškomas didžiausias galimas kintamasis, su kuriuo modelis nepakeičia išvesties rezultatų, $D_{eilut.:n,stulp.:k}$ - duomenys n eilutėje ir k stulpelyje.

$$DMDK = \frac{\sum_{n=0}^{m} \left(\frac{\sum_{k=0}^{h} (max((|\epsilon| + D_{eilut.:n, stulp.:k}): \epsilon \in R))}{h}\right)}{m}$$
(15)

3.2. Skaičiavimo pavyzdys

Tarkime egzistuoja modelis, kuris turi 2 parametrus: gliukozės kiekis kraujyje ir KMI. Pagal šiuos du parametrus modelis išveda rezultatą: ar žmogus serga cukriniu diabetu ar ne. Paimamos visos mokymo duomenų eilutės, su kuriomis modelis išveda teisingą rezultatą. Tarkime, jos yra aprašytos lentelėje [1].

Gliukozė	KMI	Išvestis
148	33.6	1
85	26.6	0
183	23.3	1

1 lentelė. Pavyzdiniai duomenys

Taikant jau sukurtą modelį, įvertiname ar keičiasi išvestis didinant kiekvienos eilutės kiekvieno stulpelio reikšmes, pridedant ϵ . Kiekvienai reikšmei yra atskirai didinamas ϵ , kol gaunamas tos eilutės tam tikro stulpelio maksimalus ϵ . Skaičiavimams parodyti, tarkime, kad gautos maksimalios ϵ reikšmės yra pateiktos lentelėje [2].

DMDK skaičiavimas pateiktas lygtyje [16].

$$DMDK = \frac{3+2}{2} + \frac{6+1}{2} + \frac{4+0.1}{2} = 8.05$$
 (16)

Apskaičiavus kitų modelių DMDK reikšmes, galima lyginti, kuris modelis efektyviau saugo

Gliukozė	KMI
3	2
6	1
4	0.1

2 lentelė. Pavyzdinės epsilon reikšmės

duomenis, naudotus mokymosi metu. Jeigu kito modelio apskaičiuota DMDK reikšmė būtų didesnė už 8.05, reikštų, kad tas modelis labiau saugo duomenų privatumą.

4. Homomorfinis šifravimas

Homomorfinis šifravimas, yra šifravimo algoritmų klasė, kuri yra grindžiama principu, leidžiančiu atlikti skaičiavimus su užšifruotais duomenimis, jų neatšifruojant. Šie algoritmai yra šiek tiek panašūs į viešo šifravimo algoritmus, kurie yra paplitę tinklalapių apsaugoje. Yra naudojamas viešas ir privatus raktas. Su viešu raktu duomenys yra užšifruojami, o su privačiu, atšifruojami. Momomorfinis šifravimas skiriasi nuo viešo šifravimo tuo, kad naudoja algebrainę sistemą, kuri leidžia atlikti skaičiavimus su užšifruotais duomenimis.

Algebrainė sistema yra duomenų rinkinys kartu su savo matematinėmis operacijomis.

Yra trijų tipų homomorfiniai šifrai: dalinai homomorfiniai (PHE), šiek tiek homomorfiniai (SHE) ir pilnai homomorfiniai šifrai (FHE). Dalinai homomorfinės sistemos leidžia atlikti skaičiavimus visiems duomenims, tik su pasirinkta operacija. Tai gali būti arba sudėtis arba daugyba. Operacijos duomenims gali būti atliktos neribotą kartą. Šiek tiek homomorfinės sistemos (SHE) naudoja vieną operaciją iki tam tikro sudėtingumo. Šios operacijos gali būti atlikto ribotą kartų skaičių. Pilnai homomorfinės sistemos leidžia naudoti sudėtį ir daugybą vienu metu, neribotą kartų.

Homomorfinių sistemų saugumas yra paremtas žiedinio mokymo su klaidomis problema ("Ring learning with errors").

5. Federuotas mašininis mokymas

- 5.1. Metodas
- 5.2. Komunikacijos kaštų mažinimas
- 5.3. Įrenginių heterogeniškumas
- 5.4. Analizės heterogeniškumas
- 5.5. Saugos problemos

6. Blokų-grandinių technologija

7. Saugus skirtingų pusių skaičiavimas

8. Bendro įspūdžio privatus agregavimas