第二章 数值微分和数值积分

主讲: 纪庆革副教授

中山大学数据科学与计算机学院

E-Mail: 1024180018@qq.com

数值微分

- 1. 函数f(x)以<mark>离散点列</mark>给出时,而要求我们给出导数值,
- 2. 函数f(x)过于复杂

这两种情况都要求我们用数值的方法求函数的导数值

微积分中,关于导数的定义如下:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x) + f(x-h)}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

自然,而又简单的方法就是,取极限的近似值,即差商

THE STATE OF THE S

向前差商

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

由Taylor展开

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2!}f''(\xi), x_0 \le \xi \le x_0 + h$$

因此,有误差

$$R(x) = f'(x_0) - \frac{f(x_0 + h) - f(x_0)}{h} = -\frac{h}{2!}f''(\xi) = O(h)$$

THE STATE OF THE S

向后差商

$$f'(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h}$$

由Taylor展开

$$f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2}{2!}f''(\xi), x_0 \le \xi \le x_0 + h$$

因此,有误差

$$R(x) = f'(x_0) - \frac{f(x_0) - f(x_0 - h)}{h} = \frac{h}{2!}f''(\xi) = O(h)$$

中心差商

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

由Taylor展开

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2!}f''(x_0) + \frac{h^3}{3!}f'''(\xi_1), x_0 \le \xi_1 \le x_0 + h$$

$$f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2}{2!}f''(x_0) - \frac{h^3}{3!}f'''(\xi_2), x_0 - h \le \xi_2 \le x_0$$

因此,有误差

$$R(x) = f'(x_0) - \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

$$= \frac{h^2}{12} [f'''(\xi_1) + f'''(\xi_2)] = \frac{h^2}{6} f'''(\xi) = O(h^2)$$

由误差表达式,h越小,误差越小,但同时舍入误差增大,所以,有个最佳步长。

可以用事后误差估计的方法来确定。

设D(h), D(h/2)分别为步长为h, h/2的差商公式。则

$$\left| D(h) - D(\frac{h}{2}) \right| < \varepsilon$$

时的步长h/2就是合适的步长

例:

$$f(x)=exp(x)$$

h	f'(1.15)	R(x)	h	f'(1.15)	R(x)
0.10	3.1630	-0.0048	0.05	3.1590	-0.0008
0.09	3.1622	-0.0040	 0.04	3.1588	-0.0006
0.08	3.1613	-0.0031	 0.03	3.1583	-0.0001
0.07	3.1607	-0.0025	 0.02	3.1575	-0.0007
0.06	3.1600	-0.0018	 0.01	3.1550	-0.0032

插值型数值微分

插值是建立**逼近函数**的手段,用以研究原函数的性质。 因此,可以用插值函数的导数**近似**为原函数的导数

$$f^{(k)}(x) \approx L_n^{(k)}(x)$$

误差

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x) = f(x) - L_n(x)$$

$$R_n^{(k)}(x) = \frac{d^k}{dx^k} \left[\frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x) \right]$$

(1)两点公式

过节点做线性插值多项式,并记 $h=x_1-x_0$,则

$$P_1(x) = \frac{x - x_0}{h} f(x_1) - \frac{x - x_1}{h} f(x_0)$$

两边求导数得

$$P_1'(x) = \frac{1}{h}(f(x_1) - f(x_0))$$

于是得两点公式
$$f'(x_0) = f'(x_1) \approx \frac{1}{h} (f(x_1) - f(x_0))$$

其截断误差为

$$\begin{cases} R_1(x_0) = -\frac{h}{2}f''(\xi) \\ R_1(x_1) = \frac{h}{2}f''(\xi) \end{cases}$$

例:

给定点列
$$\{(x_i, f(x_i))\}_{i=0}^2$$
 且 $x_2 - x_1 = x_1 + x_0 = h$,求

$$f'(x_2), f'(x_1), f'(x_0)$$

解:

$$L_2(x) = \frac{(x - x_1)(x - x_2)}{2h^2} f(x_0) + \frac{(x - x_0)(x - x_2)}{-h^2} f(x_1) + \frac{(x - x_0)(x - x_1)}{2h^2} f(x_2)$$

$$L'_{2}(x) = \frac{(x - x_{1} + x - x_{2})}{2h^{2}} f(x_{0}) + \frac{(x - x_{0} + x - x_{2})}{-h^{2}} f(x_{1}) + \frac{(x - x_{0} + x - x_{1})}{2h^{2}} f(x_{2})$$

$$\begin{split} f'(x_0) &\approx L'_2(x_0) = \frac{1}{2h} \Big(-3f(x_0) + 4f(x_1) - f(x_2) \Big) + \frac{h^2}{3} \, f'''(\xi) \\ f'(x_1) &\approx L'_2(x_1) = \frac{1}{2h} \Big(-f(x_0) + f(x_2) \Big) - \frac{h^2}{6} \, f'''(\xi) \\ f'(x_2) &\approx L'_2(x_2) = \frac{1}{2h} \Big(f(x_0) - 4f(x_1) + 3f(x_2) \Big) + \frac{h^2}{3} \, f'''(\xi) \\ f''(x_0) &\approx L''_2(x_0) = \frac{1}{h^2} \Big(f(x_0) - 2f(x_1) + f(x_2) \Big) + [-hf'''(\xi_1) + \frac{h^2}{6} \, f^{(4)}(\xi_2)] \\ f''(x_1) &\approx L''_1(x_2) = \frac{1}{h^2} \Big(f(x_0) - 2f(x_1) + f(x_2) \Big) - \frac{h^2}{12} \, f^{(4)}(\xi) \\ f''(x_2) &\approx L''_2(x_2) = \frac{1}{h^2} \Big(f(x_0) - 2f(x_1) + f(x_2) \Big) + [hf'''(\xi_1) - \frac{h^2}{6} \, f^{(4)}(\xi_2)] \end{split}$$

Taylor展开分析,可以知道,它们都是 $O(h^2)$ 称为三点公式

其截断误差为

$$\begin{cases} R_2(x_0) = f'(x_0) - P_2'(x_0) = \frac{1}{3}h^2 f'''(\xi) \\ R_2(x_1) = f'(x_1) - P_2'(x_1) = -\frac{1}{6}h^2 f'''(\xi) \\ R_2(x_2) = f'(x_2) - P_2'(x_2) = \frac{1}{3}h^2 f'''(\xi) \end{cases}$$

如果要求f(x)的二阶导数,可用 $P''_2(x)$ 作为的近似值,

于是有

$$f''(x_i) \approx P_2''(x_i) = \frac{1}{h^2} (f(x_0) - 2f(x_1) + f(x_2))$$

其截断误差为 $f''(x_i) - P_2''(x_i) = o(h^2)$

(3)五点公式(选学内容)

过五个节点上的函数值,重复同样的手续,不难导出下列五点公式:

$$\begin{cases} f'(x_0) \approx \frac{1}{12h} [-25f(x_0) + 48f(x_1) - 36f(x_2) + 16f(x_3) - 3f(x_4)] \\ f'(x_1) \approx \frac{1}{12h} [-3f(x_0) - 10f(x_1) + 18f(x_2) - 6f(x_3) + f(x_4)] \\ f'(x_1) \approx \frac{1}{12h} [f(x_1) - 8f(x_1) + 8f(x_2) - f(x_3)] \end{cases}$$

$$f'(x_2) \approx \frac{1}{12h} [f(x_0) - 8f(x_1) + 8f(x_3) - f(x_4)]$$

$$f'(x_3) \approx \frac{1}{12h} [-f(x_0) + 6f(x_1) - 18f(x_2) + 10f(x_3) + 3f(x_4)]$$

$$f'(x_4) \approx \frac{1}{12h} [3f(x_0) - 16f(x_1) + 36f(x_2) - 16f(x_3) + 3f(x_4)]$$

$$\begin{cases} f''(x_0) \approx \frac{1}{12h^2} [35f(x_0) - 104f(x_1) + 114f(x_2) - 56f(x_3) + 11f(x_4)] \\ f''(x_1) \approx \frac{1}{12h^2} [11f(x_0) - 20f(x_1) + 6f(x_2) + 4f(x_3) - f(x_4)] \\ f''(x_2) \approx \frac{1}{12h^2} [-f(x_0) + 16f(x_1) - 30f(x_3) + 16f(x_3) - f(x_4)] \\ f''(x_3) \approx \frac{1}{12h^2} [-f(x_0) + 4f(x_1) + 6f(x_2) - 20f(x_3) + 11f(x_4)] \\ f''(x_4) \approx \frac{1}{12h^2} [11f(x_0) - 56f(x_1) + 11f(x_2) - 104f(x_3) + 35f(x_4)] \end{cases}$$

不难导出这些求导公式的余项,并由此可知,用五点公式求节点上的导数值往往可以获得满足的结果。

