# Revision Notes for CO240 Models of Computation

Autumn 2017

## 1 Operational Semantics

## 1.1 Simple Expressions

 $E \in \mathsf{SimpleExp} ::= n|E + E|E \times E|...$ 

#### 1.1.1 Big-step (Natural)

- (B-NUM)  $\frac{1}{n \downarrow n}$ .
- (B-ADD)  $\frac{E_1 \Downarrow n_1 E_2 \Downarrow n_2}{E_1 + E_2 \Downarrow n_3}$  (where  $n_3 = n_1 + n_2$ ).

#### **Properties:**

- **Determinacy**: For all E,  $n_1$ ,  $n_2$ , if  $E \downarrow n_1$  and  $E \downarrow n_2$  then  $n_1 = n_2$ .
- **Totality**: For all E, there exists an n s.t.  $E \downarrow n$ .

#### 1.1.2 Small-step (Structural)

- $\bullet \text{ (S-LEFT) } \frac{E_1 \rightarrow E_1'}{E_1 + E_2 \rightarrow E_1' + E_2}.$
- (S-RIGHT)  $\frac{E \to E'}{n+E \to n+E'}$ .
- (S-ADD)  $\frac{1}{n_1 + n_2 \rightarrow n_3}$  (where  $n_3 = n_1 + n_2$ ).
- Reflexie transitive closure:  $E \to^* E'$  if E = E' or there is a finite sequence  $E \to E_1 \to E_2 \cdots \to E_k \to E'$ .
- For all E and n,  $E \downarrow n$  if and only if  $E \rightarrow$
- Normal form: E is in normal form (irreducable) if there is no E' s.t.  $E \rightarrow E'$ .

## Properties:

- **Determinacy**: For all  $E_1$ ,  $E_2$ , if  $E \to E_1$  and  $E \to E_2$  then  $E_1 = E_2$ .
- Confluence: For all E,  $E_1$ ,  $E_2$ , if  $E \rightarrow^* E_1$  and  $E \rightarrow^* E$  then there exists E' s.t.  $E_1 \rightarrow^* E'$  and  $E_2 \rightarrow^* E'$ .
- Unique answer: If  $E \rightarrow^* n_1$  and  $E \rightarrow^* n_2$  then  $n_1 = n_2$ .

• **Strong normalisation**: No infinite sequence of expressions  $E_1, E_2, E_3$  such that for all  $i, E_i \rightarrow E_{i+1}$ .

**Evaluation path** Series of small steps made during evaluation.

**Derivation tree** The tree of rule applications required to make a step.

## 1.2 While Language

 $B \in \mathsf{Bool} ::= \mathsf{true}|\mathsf{false} \mid E = E \mid E < E \mid \dots \mid B\&B \mid \neg B \dots$   $E \in \mathsf{Exp} ::= x \mid n \mid E + E \mid \dots$ 

 $C \in \mathsf{Com} := \mathsf{skip} \mid x \coloneqq E \mid \mathsf{if} \ B \ \mathsf{then} \ C \ \mathsf{else} \ C \mid C; C \mid \mathsf{while} \ B \ \mathsf{do} \ C$ 

#### 1.2.1 States

- Partial function from variable numbers s.t. s(x) is defined for finitely many x. E.g.  $s = (x \mapsto 4, y \mapsto 5, z \mapsto 6)$ .
- Configuration  $\langle E, s \rangle$  means evaluate E w.r.t. state s.

#### 1.2.2 Small Step

## **Expressions**

- $\bullet \text{ (W-EXP.LEFT) } \frac{\langle E_1, s \rangle \to_e \langle E_1', s' \rangle}{\langle E_1 + E_2, s \rangle \to_e \langle E_1' + E_2, s' \rangle}.$
- $\bullet \text{ (W-EXP.RIGHT) } \frac{\langle E,s \rangle \to_e \langle E',s' \rangle}{\langle n+E,s \rangle \to_e \langle n+E',s' \rangle}.$
- (W-EXP.VAR)  $\overline{\langle x,s \rangle \rightarrow_e \langle n,s \rangle}$  (where s(x)=n).
- (W-EXP.ADD)  $\frac{1}{(n_1+n_2,s)\rightarrow_e(n_3,s)}$  (where  $n_3=n_1+n_2$ ).

#### **Booleans**

- $\bullet \text{ (W-BOOL.AND-LEFT) } \frac{\langle B_1,s\rangle \to_b \langle B_1',s'\rangle}{\langle B_1\&B_2,s\rangle \to_b \langle B_1'\&B_2,s'\rangle}.$
- $\bullet \text{ (W-BOOL.AND-TRUE-RIGHT)} \frac{\langle B,s\rangle \to_b \langle B',s'\rangle}{\langle \text{true}\&B,s\rangle \to_b \langle \text{true}\&B',s'\rangle}.$

• (W-BOOL.AND-FALSE-RIGHT) 
$$\frac{\langle B,s\rangle \to_b \langle B',s'\rangle}{\langle \mathtt{false}\&B,s\rangle \to_b \langle \mathtt{false}\&B',s'\rangle}.$$

• (W-BOOL.AND-FALSE-FALSE) 
$$\overline{\langle \text{false\&false}, s \rangle \rightarrow_b \langle \text{false}, s \rangle}$$

$$\bullet \text{ (W-BOOL.AND-FALSE-TRUE)} \ \overline{\hspace{1cm} \langle \mathtt{false} \& \mathtt{true}, s \rangle \to_b \langle \mathtt{false}, s \rangle}.$$

• (W-BOOL.AND-TRUE-FALSE) 
$$\frac{1}{\langle \text{true\&false}, s \rangle \rightarrow_b \langle \text{false}, s \rangle}$$

• (W-BOOL.AND-TRUE-TRUE) 
$$\frac{1}{\langle \text{true} \& \text{true}, s \rangle} \rightarrow_b \langle \text{true}, s \rangle}$$

• (W-BOOL.NOT) 
$$\frac{\langle B, s \rangle \to_b \langle B', s' \rangle}{\langle \neg B, s \rangle \to_b \langle \neg B', s' \rangle}.$$

• (W-BOOL.NOT-TRUE) 
$$\overline{\langle \neg \texttt{true}, s \rangle \rightarrow_b \langle \texttt{false}, s \rangle}$$
.

• (W-BOOL.NOT-FALSE) 
$$\overline{\langle \neg \mathtt{false}, s \rangle \rightarrow_b \langle \mathtt{true}, s \rangle}$$

$$\bullet \text{ (W-BOOL.EQ-LEFT)} \ \frac{\langle E_1,s\rangle \to_e \langle E_1',s'\rangle}{\langle E_1=E_2,s\rangle \to_b \langle E_1'=E_2,s'\rangle}.$$

$$\bullet \text{ (W-BOOL.EQ-RIGHT) } \frac{\langle E,s \rangle \to_e \langle E',s' \rangle}{\langle n=E,s \rangle \to_b \langle n=E',s' \rangle}.$$

• (W-BOOL.EQ) 
$$\overline{\langle n_1 = n_2, s \rangle \rightarrow_b \langle \mathtt{true}, s \rangle}$$
  $(n_1 = n_2)$ .

• (W-BOOL.NEQ) 
$$\frac{}{\left\langle n_1=n_2,s\right\rangle \to_b \left\langle \mathtt{false},s\right\rangle} \; \left(n_1\neq n_2\right).$$

$$\bullet \text{ (W-BOOL.LESS-LEFT)} \ \frac{\langle E_1, s \rangle \to_e \langle E_1', s' \rangle}{\langle E_1 < E_2, s \rangle \to_b \langle E_1' < E_2, s' \rangle}.$$

• (W-BOOL.LESS-RIGHT) 
$$\frac{\langle E,s \rangle \to_e \langle E',s' \rangle}{\langle n < E,s \rangle \to_b \langle n < E',s' \rangle}.$$

• (W-BOOL.LESS) 
$$\overline{\langle n_1 < n_2, s \rangle \rightarrow_b \langle \mathtt{true}, s \rangle} \ (n_1 < n_2).$$

• (W-BOOL.GEQ) 
$$\frac{1}{\langle n_1 < n_2, s \rangle \to_b \langle \mathtt{false}, s \rangle} (n_1 \ge n_2).$$

#### Commands

$$\bullet \text{ (W-ASS.EXP)} \ \frac{\langle E,s \rangle \to_e \langle E',s' \rangle}{\langle x \coloneqq E,s \rangle \to_c \langle x \coloneqq E',s' \rangle}.$$

$$\bullet \text{ (W-ASS.NUM) } \overline{ \langle x \coloneqq n, s \rangle \to_c \langle \mathtt{skip}, s \, [x \mapsto n] \rangle }.$$

$$\bullet \text{ (W-SEQ.LEFT)} \ \frac{\langle C_1,S\rangle \to_c \langle C_1',s'\rangle}{\langle C_1;C_2,S\rangle \to_c \langle C_1';C_2,s'\rangle}.$$

• (W-SEQ.SKIP) 
$$\frac{}{\langle \text{skip}; C_2, S \rangle \rightarrow_c \langle C_2, s' \rangle}$$
.

• (W-COND.TRUE) 
$$\overline{\langle \text{if true then } C_1 \text{ else } C_2, s \rangle \rightarrow_c \langle C_1, s \rangle}$$

• (W-COND.FALSE) 
$$\overline{\langle \text{if false then } C_1 \text{ else } C_2, s \rangle \rightarrow_c \langle C_2, s \rangle}$$

• (W-COND.BEXP)

$$\frac{\langle B, s \rangle \to_b \langle B', s' \rangle}{\langle \text{if } B \text{ then } C_1 \text{ else } C_2, s \rangle \to_c}$$
$$\langle \text{if } B' \text{ then } C_1 \text{ else } C_2, s' \rangle$$

• (W-WHILE) All this rule does is 'unfold' the loop once:

$$\frac{\text{(while } B \text{ do } C, s) \rightarrow_c}{\text{(if } B \text{ then } (C; \text{while } B \text{ do } C) \text{ else skip}, s)}$$

#### **Properties**

- Determinacy, confluence and unique answer still hold.
- Note that with while, normalisation no longer holds for small step, as a computation may be non-terminating.

#### 1.2.3 Configurations

**Answer Configuration** Normal form where no execution is possible. E.g.  $\langle \mathtt{skip}, s \rangle$ .

**Stuck Configuration** Normal form where evaluation is not possible. E.g.  $\langle y, (x \mapsto 3) \rangle$ .

#### Normalisation

- The evaluation relations  $\rightarrow_e$  and  $\rightarrow_b$  are normalising.
- The execution relation  $\rightarrow_c$  is not:
  - Consider (while true do skip, s).
  - Assume it takes n steps to evaluate to  $\langle \mathtt{skip}, s' \rangle$ . n is well-defined since the semantics is deterministic.
  - (while true do skip, s)  $\rightarrow _{c}^{3}$  (while true do skip, s).
  - It must then take n-3 steps, which is a contradiction.

#### 1.2.4 Other Properties

**Side Effects and Evaluation Order** In our language, state may only be changed in assignment commands, which cannot be present in expressions or booleans. Consider a language with the expression do x := x + 1 return x:

- This expression has a side effect on the state.
- Order of evaluation matters: E.g. for (do x := x + 1 return x) + (do  $x := x \times 2$  return x).

**Strictness** An operation is strict in one of its arguments if that argument always need to be evaluated. E.g.

- Addition is strict in both arguments.
- & is often a left-strict operator (non-strict in its right argument).

**Procedure and Method Calls** Many issues involving strictness and evaluation:

- Call-by-value: always evaluate all arguments, left-to-right (even if they're never used).
- Call-by-name: evaluate each argument each time it is used (i.e. could be never or possibly multiple times).
- Call-by-need: evaluate each argument first time is used, but remember the result for subsequent uses.

#### 1.2.5 Big Step

$$\forall C, s, s', \langle C, s \rangle \Downarrow_e \langle s' \rangle \iff \langle C, s \rangle \rightarrow_e^* \langle \text{skip}, s' \rangle$$

#### 1.3 Structural Induction

Technique for reasoning with structured and finite collections of objects.

#### **Common Themes**

- "Consider the rules that could have produced this expression...".
- Split up proof into cases (for ∨) or directions (for ⇐⇒).
- You've probably gone wrong if you don't use the I.H. (and all of the given information) in your inductive step!

#### 1.3.1 Simple Expressions

**Base Case** Prove that P(n) holds for every number n.

**Inductive Case 1** Prove that, for all  $E_1$  and  $E_2$ ,  $P(E_1 + E_2)$  holds assuming the inductive hypotheses that  $P(E_1)$  and  $P(E_2)$  hold.

**Inductive Case 2** Prove  $P(E_1 \times E_2)$  similarly.

#### 1.3.2 Multi-step Reductions

Simple induction on numbers. If P(r) is that  $E \rightarrow^r E'$ :

**Base Case** Prove that P(0) holds.

**Inductive Case** Prove that, for all k, P(k+1) holds, assuming P(k).

#### 1.3.3 Commands

**Base Case 1** Prove that P(skip) holds.

**Base Case 2** Prove that, for all x and E, P(x = E) holds.

**Inductive Case 1** Prove that, for all  $B, C_a, C_b$ ,  $P(\text{if } B \text{ then } C_a \text{ else } C_b)$  holds, assuming  $P(C_a)$  and  $P(C_b)$ .

**Inductive Case 2** Prove that, for all  $C_a$  and  $C_b$ ,  $P(C_a; C_b)$  holds, assuming, assuming  $P(C_a)$  and  $P(C_b)$ .

**Inductive Case 3** Prove that, for all B and C, P (while B do C) holds, assuming, assuming P(C).

## 2 Register Machines

#### 2.1 Definitions

## Register Machine

- Finitely many **registers**  $R_0, \ldots, R_n$ .
- A **program** which is a finite list of instructions  $L_k$ : body. The body can be:
  - $R^+ \rightarrow L_i$ . Add 1 to R and jump to  $L_i$ .
  - $R^- \rightarrow L_i, L_j$ . If R > 0, subtract 1 and jump to  $L_i$ , else to  $L_j$ .
  - HALT. Stop executing instructions.

#### **Graphical Representation** Dont forget START!

| Instruction     | Representation                |
|-----------------|-------------------------------|
| $R^+ \to L$     | $R^+ \longrightarrow [L]$     |
| $R^- \to L, L'$ | $\mathcal{J}^{[L]}$           |
|                 | $R^-$                         |
|                 | [L']                          |
| HALT            | HALT                          |
| $L_0$           | $START \longrightarrow [L_0]$ |

**Configuration**  $(l, r_0, \dots, r_n)$ , where l is the current label and  $r_k$  is the contents of  $R_k$ .

Computation Sequence of configurations.

- Halting computation: Computation where the last configuration  $c_m$  = (l, ...) is halting configuration:
  - Proper halt:  $L_l$  is HALT.
  - **Erroneous halt**: Jumps to an instruction that doesn't exist.
- Computation is **deterministic**: relation between initial and final register contents is a **partial function** (should loop forever if undefined for given input).

## 2.2 Computable Functions

**Definition**  $f \in \mathbb{N}^n \to \mathbb{N}$  (partial function) is computable if there is a register machine M such that for all  $(x_1, \dots, x_n) \in \mathbb{N}^n$  and all  $y \in \mathbb{N}$ :

The computation of M starting with  $R_0 = 0, R_1 = x_1, \ldots, R_n = x_n$  and all other registers set to 0, halts with  $R_0 = y$  if and only if  $f(x_1, \ldots, x_n) = y$ .

## Halting Problem

- ullet S is a set of pairs (A,D) where A is an algorithm and D is some datum on which it operates.
- $A(D) \downarrow \text{ holds for } (A, D) \in S \text{ if algorithm } A \text{ applied to } D \text{ halts.}$

The Church-Truing thesis shows that there is no algorithm H s.t. for all  $(A,D) \in S$ :

$$H(A, D) = \begin{cases} 1 & A(D) \downarrow \\ 0 & \text{otherwise} \end{cases}$$

**Gödel Numberings** We code pairs numerically:

- $\langle\!\langle x,y\rangle\!\rangle \triangleq 2^x (2y+1)$ .
- $\langle x, y \rangle \triangleq 2^x (2y+1) 1$ .

We code lists numerically:

- 「[] ≜ 0.
- $\lceil x :: l \rceil \triangleq \langle \langle x, \lceil l \rceil \rangle \rangle = 2^x (2 \times \lceil l \rceil + 1).$

We code programs numerically:

•  $\lceil P \rceil \triangleq \lceil \lceil \mathsf{body}_0 \rceil, \dots, \lceil \mathsf{body}_n \rceil \rceil$ .

where instruction bodies are coded:

- $\lceil R_i^+ \to L_j \rceil \triangleq \langle \langle 2i, j \rangle \rangle$
- $\lceil R_i^- \to L_i, L_k \rceil \triangleq \langle (2i+1, \langle j, k \rangle) \rangle$
- $\lceil HALT \rceil \triangleq 0$ .

## 2.3 Gadgets

- Check your gadgets carefully.
- Don't forget to zero any scratch registers!

Zero  $R_0$ 



 $\textbf{Add}\ R_1\ \textbf{to}\ R_2$ 



Multiply  $R_1$  by  $R_2$  to  $R_0$ 



## 2.3.1 Reasoning about Gadgets

- Test it on various inputs and look for patterns.
- Break up into bits we understand.
- Use invariants.
  - Write out verification conditions: conditions, in terms of invariants and changes, for which an invariant must hold.
  - Start out with  $\bot$  and weaken the invariant until a pattern emerges.

#### Push X to L



Pop L to X



## 2.4 Universal Register Machine

Simulates an arbitrary register machine on arbitrary input.

- 1. Copy the PCth item of P to N.
- 2. If N = 0 halt, else decode N as  $\langle \langle y, z \rangle \rangle$ . Set C := y and N := z.
- 3. Copy the ith item of list A into R (where C = 2i or 2i+1).
- 4. Execute the current instruction on R, update PC to next label, and restore register value to A.

## 2.5 Halting Problem for Register Machines

H decides the problem if given:

- $R_0 = 0$ .
- $R_1 = e$ .
- $R_2 = \lceil [a_1, \ldots, a_n] \rceil$

H always halts with  $R_0$  equal to 0 or 1.  $R_0$  = 1 iff the program represented by e eventually halts when started with  $R_0$  = 0,...,  $R_n$  =  $a_n$  and all other registers zeroed.

#### Proof that H Cannot Exist

- Consider H' = H with  $R_1$  pushed onto  $R_2$ .
- Consider C = H' where C halts iff H' halts with  $R_0 = 0$ .

Assume H exists:

C started with  $R_1 = c$  halts  $\iff H'$  started with  $R_1 = c$  halts with  $R_0 = 0$   $\iff H$  started with  $R_1 = c$ ,  $R_2 = \lceil [c] \rceil$  halts with  $R_0 = 0$   $\iff \operatorname{prog}(c)$  started with  $R_1 = c$  does not halt

 $\iff$  C started with  $R_1$  = c does not halt

Contradiction!

## 3 Lambda Calculus

## 3.1 Syntax of the $\lambda$ -Calculus

 $\lambda ext{-Terms}$ 

$$M := x \mid \lambda x.M \mid MM$$

- $\lambda x.M$  is a  $\lambda$ -abstraction.
- *MM* is an **application**.
- $\lambda x.xy$  means  $\lambda x.(xy)$ .
- $\lambda x_1 \dots x_n M$  means  $\lambda x_1 \dots (\lambda x_n M) \dots$ .
- $M_1M_2...M_n$  means  $(...(M_1M_2)...)M_n$ .

#### Free and Bound Variables

- Binding occurrence if x is between  $\lambda$  and ..
- **Bound** if in the body of a binding occurrence of x.
- Free if neither binding nor bound.

The set of free variables FV(M) is calculated by:

- $FV(x) = \{x\}.$
- $FV(\lambda x.M) = FV(M) \{x\}.$
- $FV(MN) = FV(M) \cup FV(N)$ .

If  $FV(M) = \emptyset$ , M is a closed term / combinator.

**Substitution** Only replaces **free** occurrences!

• 
$$x[M/y] = \begin{cases} M & x = y \\ x & x \neq y \end{cases}$$

- $(\lambda x.N)[M/y] = \begin{cases} \lambda x.N & x = y\\ \lambda z.N[z/x][M/y] & x \neq y \end{cases}$
- $(M_1M_2)[M/y] = (M_1[M/y])(M_2[M/y])$

#### $\alpha\text{-Equivalence}$

- $\bullet$   $\overline{x} =_{\alpha} x$ .
- $\bullet \frac{M[z/x] =_{\alpha} N[z/y]}{\lambda x.M =_{\alpha} \lambda y.N} z \notin FV(M) \cup FV(N)$
- $\bullet \ \frac{M =_{\alpha} M' \qquad N =_{\alpha} N'}{MN =_{\alpha} M'N'}.$

#### 3.2 Semantics of the $\lambda$ -Calculus

## $\beta$ -reduction

- $\frac{}{(\lambda x.M) N \to_{\beta} M [N/x]}$
- $\bullet \frac{M \to_{\beta} M'}{\lambda x.M \to_{\beta} \lambda x.M'}.$
- $\bullet \ \frac{M \to_{\beta} M'}{MN \to_{\beta} M'N}.$

# $\bullet \ \frac{N \to_{\beta} N'}{MN \to_{\beta} MN'}.$

 $\bullet \ \frac{N =_{\alpha} M \qquad M \to_{\beta} M' \qquad M' =_{\alpha} N'}{N \to_{\beta} N'}.$ 

#### **Church Numerals**

 $\underline{n} \triangleq f^n x$   $\mathsf{plus} = \lambda m n f x . m \ f \ (n \ f \ x)$   $\mathsf{mult} = \lambda m n f x . m \ (n \ f) \ x$ 

## Reflexive Transitive Closure of $\rightarrow_{\beta}$

- $\bullet \ \frac{M =_{\alpha} M'}{M \to_{\beta}^{*} M'}.$
- $\bullet \ \frac{M \to_\beta M'' \qquad M'' \to_\beta^* M'}{M \to_\beta^* M'}.$

## Church-Rosser Theorem $\rightarrow_{\beta}^*$ is confluent.

If  $M \to_{\beta}^* M_1$  and  $M \to_{\beta}^* M_2$  then there exists M' such that  $M_1 \to_{\beta}^* M'$  and  $M_2 \to_{\beta}^* M'$ .

β-Equivalence  $M_1 =_β M_2$  iff there exists M such that  $M_1 \to_β^* M$  and  $M_2 \to_β^* M$ .

 $\beta$ -Normal Form A  $\lambda$ -term with no  $\beta$ -redexes.

- $\beta$ -normal forms are unique.
- Some  $\lambda$ -terms have no  $\beta$ -normal form. E.g.  $(\lambda x.xx)(\lambda x.xx)$ .
- Some  $\lambda$ -terms a  $\beta$ -normal form and also infinite chains of reudction. E.g.  $(\lambda x.y)(\lambda x.xx)(\lambda x.xx)$ .

## **Reduction Strategies**

- 1. Normal order. Redice leftmost-outermost redex first.
- 2. **Call by name.** Reduce leftmost-outermost redex first, but do not reduce inside  $\lambda$ -abstractions. (Evaluates arguments later).
- 3. **Call by value.** Reduce leftmost-innermost redex first, but do not reduce inside  $\lambda$ -abstractions. (Evaluates arguments first).

#### $\lambda$ -Definable Functions

- $f \in \mathbb{N}^n \to \mathbb{N}$  is  $\lambda$ -definable if there is a closed  $\lambda$ -term F that represents it, such that:
  - If  $f(x_1,\ldots,x_n)=y$  then  $Fx_1\ldots x_n=_\beta y$ .
  - If  $f(x_1,\ldots,x_n)\uparrow$  then  $Fx_1\ldots x_n$  has no  $\beta$ -normal form.
- A function is computable iff it is  $\lambda$ -definable.