

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

MTM3100 - Pré-cálculo

12^a lista de exercícios - Equações exponenciais e logarítmicas.

1. Resolva as equações abaixo.

(a)
$$3^x = \frac{1}{27}$$
.

(b)
$$4 + 3^{5x} = 8$$
.

(c)
$$2e^{12x} = 17$$
.

(d)
$$e^{1-4x} = 2$$
.

(e)
$$4(1+10^{5x})=9$$
.

(e)
$$4(1+10^{5x}) = 9$$
. (f) $\frac{10}{1+e^{-x}} = 2$.

(g)
$$e^{2x} - e^x - 6 = 0$$
.

(h)
$$4x^3e^{-3x} - 3x^4e^{-3x} = 0$$
. (i) $e^{2x} - 3e^x + 2 = 0$.

(i)
$$e^{2x} - 3e^x + 2 = 0$$
.

(i)
$$\ln x = 10$$
.

(k)
$$\log x + \log(x - 1) = \log(4x)$$
.(l) $\log_2 x + \log_2(x - 3) = 2$.

$$\log_2 x + \log_2 (x - 3) = 2$$

2. Resolva as inequações abaixo.

(a)
$$\left(\frac{1}{3}\right)^{2x-1} \le 4$$
.

(b)
$$\ln x \ge 3$$
.

(c)
$$x^2e^x - 2e^x < 0$$
.

(d)
$$2 < 10^x < 5$$
.

(e)
$$3 \le \log_2 x \le 4$$
.

(f)
$$\log(x-2) + \log(9-x) < 1$$
.

3. Suponha que você esteja dirigindo o seu carro em um dia muito frio (temperatura ambiente de $5^{\circ} C$) e o motor do seu carro superaqueceu (chegou a 105° C). Você estaciona e espera o motor esfriar. A equação que governa a temperatura T (em $^{\circ}C$) do motor após t minutos parado é dada por

$$\ln\left(\frac{T-5}{100}\right) = -0.11t.$$

- (a) Determine T(t), isto é, escreva T em função de t.
- (b) Utilize o item (a) para determinar a temperatura do motor após 20 minutos.
- 4. Um circuito elétrico é formado por uma bateria de $60\,V$, um resistor de $10\,\Omega$ e um indutor de $5\,H$ colocados em série. Usando cálculo e as leis físicas que governam o sistema, é possível mostrar que a corrente I (em A) t segundos após o circuito ser ligado é dada por

$$I = \frac{60}{13}(1 - e^{-13t/5}).$$

- (a) Determine t(I), isto é, escreva t em função de I.
- (b) Após quantos segundos a corrente será de 2 A?
- 5. Um cliente fez um empréstimo de valor V e pagará parcelas mensais de mesmo valor P. Se a taxa de juros (compostos) é de 1,4 % ao mês, por quantos meses uma parcela deve ser antecipada para que seu valor caia pela metade? (use as aproximações $\log 2 \approx 0, 3$ e $\log 1, 014 \approx 0,006$)
- **6.** A equação de Tsiolkovsky afirma que a mudança máxima na velocidade, denotada por Δv , em um foguete é dada por

$$\Delta v = v_{\rm ex} \ln \left(\frac{m_0}{m_1} \right),$$

sendo m_0 a massa do foguete quando ele está com o tanque de combustível cheio, m_1 a massa do foguete quando ele está com o tanque de combustível vazio e $v_{\rm ex}$ a velocidade de exaustão efetiva, que mede o quão eficiente é a queima de combustível no foguete. Suponha que para um foguete entrar na órbita terrestre baixa é necessário atingir um Δv de 9600 m/s, e que esse foguete apresenta $v_{\rm ex} = 4100$ m/s. Determine, em porcentagem, qual deve ser a proporção de combustível em relação à massa total m_0 para que o foguete entre na orbita terrestre baixa.

- 7. Seja $f(x) = \alpha e^{\beta x}$. Se $\ln f(0) = \ln 7$ e $\ln f(1) = \ln 7 + 14$, determine a soma $\alpha + \beta$.
- 8. Observe que $(17+12\sqrt{2})(17-12\sqrt{2})=17^2-2\cdot 12^2=1$. Usando este fato obtém-se que a maior raiz da equação

$$(17 + 12\sqrt{2})^x + (17 - 12\sqrt{2})^x = \frac{197}{14}$$

é da forma

$$x = \frac{\log n}{\log(17 + 12\sqrt{2})},$$

para algum inteiro n. Determine n.

9. Lembre que a tangente hiperbólica de x é dada por

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

Se tanh(x) = 1/54, qual é o valor de x (aproximadamente)?

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

MTM3100 - Pré-cálculo

Gabarito da 12ª lista de exercícios

Equações exponenciais e logarítmicas.

1.

(a)
$$x = -3$$
.

(b)
$$x = \frac{2\log_3 2}{5}$$
.

(c)
$$x = \frac{\ln(17/2)}{12}$$
.

(d)
$$x = \frac{1 - \ln 2}{4}$$
.

(e)
$$x = \frac{\log(5/4)}{5}$$
.

(f)
$$x = -\ln(4)$$
.

(g)
$$x = \ln 3$$
.

(h)
$$x = 0$$
 ou $x = \frac{4}{3}$.

(i)
$$x = 0$$
 ou $x = \ln 2$.

(j)
$$x = e^{10}$$
.

(k)
$$x = 5$$
.

(1)
$$x = 4$$
.

2.

(a)
$$S = [1/2 - \log_3 2, \infty)$$
.

(b)
$$S = [e^3, \infty).$$

(c)
$$S = (-\sqrt{2}, \sqrt{2}).$$

(d)
$$S = (\log 2, \log 5)$$
.

(e)
$$S = [8, 16].$$

(f)
$$S = (2,4) \cup (7,9)$$
.

3.

(a)
$$T(t) = 5 + 100e^{-0.11t}$$
.

(b)
$$T(20) = 5 + 100e^{-0.11 \cdot 20} \cong 16^{\circ} C.$$

4.

(a)
$$t(I) = \frac{5}{13} \ln \left(\frac{60}{60 - 13I} \right)$$
.

(b)
$$t(2) = \frac{5}{13} \ln \left(\frac{30}{17} \right) s \approx 0.218 s.$$

5. 50

6. 90, 3813 % (aproximadamente)

7. 21

8. n = 14

9. $x \approx 0,0185$.