Lesson

Introduction to Micro Controllers

Main topics

 A overview over processors in general (6800)

A look at an AVR processor

Microcontrollers

- Complete computers with build in memory, IOperipherals, serial channels, analogue IO etc.
- Microcontrollers for prototypes
 - With external EPROM
 - With build in EPROM
 - With build in PROM
- Microcontrollers for production
 - Manufactured with pre-programmed ROM

Busses

- Address bus
 - Point out memory or IO-location to manipulate with
 - Can be multiplexed
 - 4-many bits
- Data bus
 - Contains data (nipple, byte, word ..) to store or retrieve from memory or IO
- Control bus
 - R/W, interrupt, chip select, reset ...

CPU Registers

- Program counter
 - Keeps track of instructions
- Accumulators
 - All calculations is performed in the accumulators
- General registers
 - Used to load and store data
 - Indexing addresses
- Status/condition registers
 - Zero, carry, over flow, interrupt etc.

MC6800 register set

		7 0
	Δ	
		7 0
	E	
		7 0
	CCF	1 1 H I N Z V C
	15	0
${}^{\mid \times \mid}$		
	15	0
SP		
	15	0
PC		

The Condition Code Register

The CCR register holds all the system flags. Most flags reflect the status of the machine after mathematical instructions.

The CCR contains 6 system flags:

H Half Carry flag I Interrupt mask flag

N Negative sign flag

Z Zero flag

V Overflow flag

C Carry Flag

MC6800 Instruction set

Operation | Mnem. | Immed. | Direct | Index | Extend | Inher. | Operation | CC Reg | | OP---# | OP---# | OP---# | OP---# | | HINZVC |

Add	ADDA 8B-2-2 9B-3-2 AB-5-2 BB-4-3 · · A=A+M	TTTTT
	ADDB CB-2-2 DB-3-2 EB-5-2 FB-4-3 · · B=B+M	TTTTT
Add Accumulators	ABA ·· ·· ·· ·· 1B·2·1 A=A+B	T•TTTT
Add with Carry	ADCA 89.2.2 99.3.2 A9.5.2 B9.4.3 · · A=A+M	I+C T•TTTT
	ADCB C9·2·2 D9·3·2 E9·5·2 F9·4·3 · · B=B+M	I+C T•TTTT
And	ANDA 84.2.2 94.3.2 A4.5.2 B4.4.3 · · A=A+M	• • TTR •
	ANDB C4-2-2 D4-3-2 E4-5-2 F4-4-3 · · B=B+M	• • TTR •
Bit Test	BITA 85-2-2 95-3-2 A5-5-2 B5-4-3 · A+M	• • TTR •
	BITB C5-2-2 D5-3-2 E5-5-2 F5-4-3 B+M	• • TTR •
Clear	CLR · · · · 6F·7·2 7F·6·3 · · M=00	• • RSRR
	CLRA · · · · · · 4F-2-1 A=00	• • RSRR
	CLRB · · · · · · 5F-2-1 B=00	• • RSRR
Compare	CMPA 8122 9132 A152 B143 A-M	• • TTTT
_	CMPB C1-2-2 D1-3-2 E1-5-2 F1-4-3 B-M	• • TTTT
Compare Accumulato	ors CBA ·· ·· ·· ·· 11·2·1 A-B	• • TTTT
Complement 1's	COM · · · · 63.7.2 73.6.3 · · M=-M	• • TTRS
	COMA · · · · · · 43.2.1 A = - A	• • TTRS
	COMB · · · · · · 53.2.1 B = - B	• • TTRS
Complement 2's	NEG · · · · 60·7·2 70·6·3 · · M=00-	M • • TT12
-	NEGA ·· ·· ·· 40·2·1 A=00-	·A • • TT12
	NEGB · · · · · · 50·2·1 B=00-	B • • TT12
Decimal Adjust	DAA ·· ·· ·· ·· 19·2·1 *	• • TTT3
Decrement	DEC · · · · 6A-7-2 7A-6-3 · · M=M-1	. • • TT4 •
	DECA · · · · · · 4A-2-1 A=A-1	. • • TT4 •
	DECB · · · · · · 5A-2-1 B=B-1	. • • TT4 •
Exclusive OR	EORA 88-2-2 98-3-2 A8-5-2 B8-4-3	·) M • • TTR •
	EORB C8-2-2 D8-3-2 E8-5-2 F8-4-3	·) M • • TTR •
Increment	INC · · · · 6C·7·2 7C·6·3 · · M=M+1	. • • TT5 •
	INCA · · · · · · 4C·2·1 A=A+1	. • • TT5 •
	INCB · · · · · · 5C·2·1 B=B+1	. • • TT5 •
Load Accumulator	LDAA 86-2-2 96-3-2 A6-5-2 B6-4-3 · · A=M	• • TTR •
	LDAB C6-2-2 D6-3-2 E6-5-2 F6-4-3 · B=M	• • TTR •
	, , , , , , , , , , , , , , , , , , , ,	•

Addressing modes

- Inherent (Register manipulation)
- Immediate/literal (literal number as operant)
- Direct (memory access by short address)
- Extended (memory access by full address)
- Indexed (Register points to memory)
- Relative (Adds or subtracts a value to Program Counter) typical branches

Stacks

- User stacks
- Processor stacks

Memory

Linear or mapped address room

- Linear:
 - The processor can directly address all memory
 - Means many address pins on the processor
- Mapped:
 - The memory is divided into blocks
 - The processor selects which blocks should be available
 - When a block is selected it works like linear memory
 - Allows real big amount of memory

IO and **Memory**

Port mapped IO

Memory

Memory

Memory

Memory

Memory

Memory

Memory space

IO

IOspace Memory mapped IO

Memory

Memory

IO

Memory

IO

Memory

Memory space

AVR

8-bit Microcontrollers (ATMega1280)

AVR 8-bit Microcontrollers (ATMega1280)

- High Performance, Low Power Atmel® AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
 - 135 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 16 MIPS Throughput at 16MHz
- High Endurance Non-volatile Memory Segments
 - 64K/128K/256KBytes of In-System Self-Programmable Flash
 - 4Kbytes EEPROM–8Kbytes Internal SRAM
 - Write/Erase Cycles:10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/ 100 years at 25°C
 - Optional Boot Code Section with Independent Lock Bits
 - In-System Programming by On-chip Boot Program
 - True Read-While-Write Operation
 - Programming Lock for Software Security
 - Endurance: Up to 64Kbytes Optional External Memory Space

AVR

8-bit Microcontrollers (ATMega 1280)

- JTAG (IEEE std. 1149.1 compliant) Interface
 - Extensive On-chip Debug Support
 - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
 - Four 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Four 8-bit PWM Channels
 - Twelve PWM Channels with Programmable Resolution from 2 to 16 Bits
 - Output Compare Modulator
 - 16-channel, 10-bit ADC
 - Four Programmable Serial USART
 - Master/Slave SPI Serial Interface
 - Byte Oriented 2-wire Serial Interface
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
 - Interrupt and Wake-up on Pin Change

AVR 8-bit Microcontrollers (ATMega1280)

- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby
- I/O and Packages
 - 86 Programmable I/O
 - 100-lead TQFP, 100-ball CBGA
- Ultra-Low Power Consumption
 - Active Mode: 1MHz, 1.8V: 500μA
 - Power-down Mode: 0.1µA at 1.8V
- Speed Grade:
 - 0 4MHz @ 1.8V 5.5V, 0 8MHz @ 2.7V 5.5V
 - 0 8MHz @ 2.7V 5.5V, 0 16MHz @ 4.5V 5.5V

8-bit Microcontrollers (ATMega1280)

AVR Info

- http://atmel.com/products/AVR/
- Download the full datasheet for ATMega1280:

http://www.atmel.com/devices/atmega128
0.aspx?tab=documents

Test AVR tool-chain

With AVR-Studio 5