Free2CAD: Parsing Freehand Drawings into CAD Commands

一、问题定义

输入笔画的有序序列 $S=[s_i]$,描绘一个复杂形状输出 CAD 命令序列 $O=[o_i]$,被执行时较好地再现所描述的复杂形状

二、问题解决

1. 笔画分组

设笔画 s_i 的栅格图为 $\mathbf{I}(s_i) \in [0,1]^{256 imes 256}$,笔画分组 \mathcal{G}_j 相应的图为 $\mathbf{I}(\mathcal{G}_j)$

预训练 CNN 自动编码器:

设 E^S 为笔画编码器, D^S 为笔画解码器

最小化重建损失函数 $||\mathbf{I}(s_i) - D^S(E^S(\mathbf{I}(s_i)))||^2$

用 CNN 自动编码器,得到笔画与笔画分组的紧致码:

$$\mathbf{s}_i = E^S(\mathbf{I}(s_i))$$

$$\mathbf{g}_j = E^S(\mathbf{I}(\mathcal{G}_j))$$

Transformer 编码器 E^T 嵌入所有输入笔画,得到与序列中其它笔画有关的紧致码:

$$\hat{\mathbf{s}}_i = E^T(\mathbf{s}_i)$$

Transformer 解码器 D^T 预测当前笔画分组的编码:

$$\hat{\mathbf{g}}_j = D^T(STR, \mathbf{g}_0, ..., \mathbf{g}_{j-1}; [\hat{\mathbf{s}}_i])$$

笔画 s_i 属于分组 G_j 的概率为:

$$p_i^j = \sigma(\hat{\mathbf{s}}_i \cdot \hat{\mathbf{g}}_j)$$

其中 $\sigma(\cdot)$ 为 sigmoid 激活函数, $p_i^j>0.5$ 应该被选择

训练分组 Transformer:

最小化二元交叉熵损失函数 $\sum_{\mathcal{G}_j}\sum_{s_i}(\mathbb{I}_{s_i\in\mathcal{G}_j})log(p_i^j)+(1-\mathbb{I}_{s_i\in\mathcal{G}_j})log(1-p_i^j)$

其中『为指示函数

笔画分组架构图:

2. 重建 CAD 操作

设 M 为先前的分组重建的形状, P_i^j 为笔画属于当前分组 \mathcal{G}_j 的概率

上下文信息:

生成 M 的深度和法线贴图 D、N(对于第一个分组 \mathcal{G}_0 ,用地平面作为上下文)

基于 CNN 的分割:

光栅化所有笔画,生成图像 $\mathbf{I}(S)$,笔画 s_i 的权重为 P_i^j 用 CNN 处理图像 $\mathbf{I}(S)$ 和上下文贴图 D、N,预测基准面贴图 \mathbf{B}_f 和基准边贴图 \mathbf{B}_e

选择基准面和笔画:

识别覆盖了 \mathbf{B}_f 中最多的前景像素的面 $f\in M$ 以及覆盖了 \mathbf{B}_e 中最多的前景像素的笔画 $S'\subset S$

参数拟合:

对于闭合笔画,用圆或多边形拟合,获得基准形状

对于非闭合笔画,用基准面的边界将其闭合

将基准形状 P 在 f 的法向 \mathbf{n}_f 上拉伸,找到偏移量 d,使 $P+d\mathbf{n}_f$ 在剩余笔画 $s_i\in\mathcal{G}_j\backslash S'$ 重建效果 最佳

重建操作架构图:

3. 迭代评估与校正

校正错误的分组:

给定恢复的操作 o_j 产生的 3D 形状,在绘画平面中找到它的特征线,并将它们与未被分到先前组的笔画 $s_i \notin \mathcal{G}_{0...j-1}$ 匹配

完全覆盖特征线的笔画:笔画与特征线的双向倒角距离低于阈值 ϵ_1 (笔画边界框对角线长度的 2%)

部分覆盖特征线的笔画:短笔画与长特征线的 Hausdorff 距离低于 ϵ_1

检测错误的 CAD 操作:

检测以下两种情况

- (1) 基准面或曲线无法从预测贴图 \mathbf{B}_e 或 \mathbf{B}_f 中识别
- (2) Transformer 预测的分组与 CAD 操作修正的分组相差超过一半的笔画