

FRAPPE - Multi-Function Fuze (

Max PERRIN

TDA Armements

Head of Munitronics Activities max.perrin@tda.thalesgroup.com

NDIA 49th FUZE CONFERENCE April 5-7, 2005 Seattle, WA, USA

- Fuze Main Features
- Fuze Design
- Sensor Performances
- Operational Flexibility

TDA - Munitronics Activities (

TDA - R&D in Fuzing Domain (

Product & Industrial Background

Technological & Advanced **Studies**

SPACIDO

Artillery Fuzes - TDA Product Evolution (

A new generation state-of-the-art multifunction fuze

- For new 155mm/52 calibre munitions
- Compliant with IM requirements
- Compliant with modern gun environments
- Providing better operational flexibility
- Achieving optimum lethal effects
 - on a large variety of targets
 - in any type of operations and terrains
- With growth potential

FRAPPE Fuze - Operating Modes (+)

Inductive setting According to STANAG 4369 / AOP 22:

ID Code = 01011

- **Mission Parameters**
 - Operating Modes
 - HOBs
 - Post-Impact Delay
 - Inhibition Time
 - Flight Time

Fuze Design (

Fuzing Performances (

... to optimize strike lethal effect

- Through the use of state-of-the-art technology, in
 - Microwave proximity sensor design
 - Post-Impact module design

Proximity Sensor ()

- FM-CW radar sensor
- Full digital signal processing

- HOB accuracy
- Counter-measure resistance

Radar Sensor

Post-Impact Delay (

- T
 - Reinforced fuze body
 - Settable electronic delay

- Penetration survivability
- Optimum firing delay

Fuze and projectile nose after impact

Operational Flexibility ()

- Provide the user with unmatched operational flexibility
 - The user always get the right fuze configuration to achieve the best effect on target
 - The set of selectable parameters can be customised to fit specific user's requirement
 - Height of burst (Proximity mode)
 - number of pre-set HOB, HOB value
 - Delay time (PID mode)
 - Inhibition time (Proximity mode)
 - Flight time (Time mode)

A modern design to provide growth potential to the fuze:

- Adaptation to the threat and to new operational requirements
- Basis for future smart fuze design
 - (e.g SPACIDO Course Correction Fuze)

FRAPPE: New Generation Multi-Function Fuze

- The use of state-of-the-art technologies for
 - Better Operational Flexibility
 - Better Artillery Strike Efficiency

MBU/ MP /2005

FRAPPE - Multi-Function Fuze

NDIA 49th FUZE CONFERENCE April 5-7, 2005 Seattle, WA, USA

Max PERRIN

TDA Armements

Head of Munitronics Activities max.perrin@tda.thalesgroup.com

