

Capstone Project-2

Ted Talk Views Prediction Supervised ML - Regression

Individual Project: Ujwal Chilakandi

Contents

Al

- Problem Statement
- Data Summary
- Data Analysis
- Feature Selection
- Data Preparation
- Implementing Various Regression Algorithms
- Hyperparameter Tuning
- Conclusions

Problem Statement Prediction of the views of the videos uploaded on the TEDx website.

Let's see the features'

Basic Data Exploration

Al

- This dataset has 4005 observations & 19 features.
- Most of the features are categorical.
- No duplicate values.

atase	et Shape: (400	5, 19)				
	Name	dtypes	Missing	Uniques	First Value	Second Value
0	talk_id	Int64	0	4005	1	92
1	title	object	0	4005	Averting the climate crisis	The best stats you've ever seen
2	speaker_1	object	0	3274	Al Gore	Hans Rosling
3	all_speakers	object	4	. 3306	{0: 'Al Gore'}	{0: 'Hans Rosling'}
4	occupations	object	522	2049	{0: ['climate advocate']}	(0: ['global health expert; data visionary'])
5	about_speakers	object	503	2977	{0: 'Nobel Laureate Al Gore focused the world'	{0: 'In Hans Rosling's hands, data sings. Glob
6	views	int64	0	3996	3523392	14501685
7	recorded_date	object	. 1	1334	2006-02-25	2006-02-22
8	published_date	· object	0	2962	2006-06-27	2006-06-27
9	event	object	0	459	TED2006	TED2006
10	native_lang	object	0	12	en	en
11	available_lang	object	. 0	3902	['ar', 'bg', 'cs', 'de', 'el', 'en', 'es', 'fa	['ar', 'az', 'bg', 'bn', 'bs', 'cs', 'da', 'de
12	comments	float64	655	601	272.0	628.0
13	duration	int64	. 0	1188	977	1190
14	topics	objec	t C	3977	['alternative energy', 'cars', 'climate change	['Africa', 'Asia', 'Google', 'demo', 'economic
15	related_talks	objec	t c	4005	{243. 'New thinking on the climate crisis', 54	{2056: "Own your body's data", 2296: 'A-visual
16	ur	1 objec	t c	4005	https://www.ted.com/talks/al_gore_averting_the	https://www.ted.com/talks/hans_rosling_the_bes
17	description	n objec	t c	4005	With the same humor and humanity he exuded in	You've never seen data presented like this. Wi
18	transcnp	t objec	it C	4005	Thank you so much, Chris. And it's truly a gre.	About 10 years ago, I took on the task to teac

Data Exploration(NaN values)

	Feature_Name	Missing	Uniques	%age of missing values
11	comments	655	601	16.35
3	occupations	522	2049	13.03
4	about_speakers	503	2977	12.56
2	all_speakers	4	3306	0.10
6	recorded_date	1	1334	0.02
0	title	0	4005	0.00
16	description	0	4005	0.00
15	url	0	4005	0.00
14	related_talks	0	4005	0.00
13	topics	0	3977	0.00
12	duration	0	1188	0.00
9	native_lang	0	12	0.00
10	available_lang	0	3902	0.00
1	speaker_1	0	3274	0.00
8	event	0	459	0.00
7	published_date	0	2962	0.00
5	views	0	3996	0.00
17	transcript	0	4005	0.00

NaN

- 16% NaN values are present in *comments*
- 13% NaN values are present in *occupations*
- 12.5% NaN values are present in *about_speakers*

Unique value

Most of the columns except **native_lang** are containing unique values.

Data Processing

 Initially the datatype of published_date, recorded_date was in string format, i have used pandas to_datetime function to convert the datatype

• Created month, day, year columns based on published_date column

	published_date	month	year	day
talk_id				
92	2006-06-27	Jun	2006	27
110	2007-04-14	Apr	2007	14

Data Processing

Created time_since_published column based on published_date & current_date

talk_id	published_date	time_since_published
64	2006-09-06	4983 days
45	2006-08-08	5012 days

• Created daily_views column based on views & time_since_published_date

1	<pre>published_date</pre>	time_since_published	views	daily_views
talk_id				
820	2010-04-07	3674 days	2248059	611
60	2007-02-09	4827 days	1214012	251
2588	2016-09-26	1310 days	2712894	2069

ΑI

Removing Outliers

Replaced outliers with mean value of duration

Removing Outliers

Replaced outliers with mean value of number_of_languages

Visualization

Views is positively skewed which basically means there are very few talks available which got a lot of views

Visualization

(Top 5 speakers who delivered most talks)

(Most popular speakers according to Comments)

Visualization

Density plot for number of languages per talk

Correlation

We can conclude that daily_views column is highly correlated with Speaker_1_avg_views, event_wise_avg_views,

Feature removing

• Most of the speakers delivered their talk in **english**

```
en es fr hi pt it ko ja de ar pt-br zh-cn
native lang 3306 15 7 2 1 1 1 1 1 1
```

Removed unnecessary features like

'talk_id'	'title'	'speaker_1'	'all_speakers'				
'occupations'	'about_speakers'	'views'	'recorded_date'				
'published_date'	'event'	'native_lang'	'available_lang'				
'topics'	'related_talks'	'url'	'description'				
'transcript'							

Data Preparation

Independent features :-

```
comments, duration, time_since_published, month, year ,day, Speaker_1_avg_views , event_wise_avg_views, Number_of_lang , No_of_topics , topics_wise_avg_views
```

- Dependent feature :- daily_views
- Splitted data into 80:20 ratio
- Used StandScaler

Let's compare those models

	Name	MAE_train	MAE_test	R2_Score_train	R2_Score_test	RMSE_Score_train	RMSE_Score_test
6	GradientBoostingRegressor:	380.283699	759.061577	0.994977	0.399657	857.067785	6248.226254
7	XGBRegressor:	429.726238	680.309046	0.993294	0.766738	990.303692	3894.743516
4	RandomForest	921.695436	839.076255	0.168246	0.335713	11029.234762	6572.562452
3	KNeighborsRegressor:	1031.112739	909.538141	0.541709	0.921037	8186.886733	2266.042923
1	Lasso:	1271.992955	1205.618639	0.859364	0.703730	4535.204569	4389.356547
2	Ridge:	1272.276531	1205.799311	0.859363	0.703867	4535.205410	4388.337808
0	Linear Reg.:	1272.640632	1206.337301	0.859364	0.703543	4535.203672	4390.738157
5	ExtraTreeRegressor:	1528.927152	1371.692837	0.147758	0.305693	11164.243764	6719.433676

We have chosen MAE and not RMSE as the *deciding factor* of our model selection because:

RMSE is heavily influenced by outliers as in the higher the values get the more the RMSE increases.

MAE doesn't increase with outliers. MAE is linear and RMSE is quadratically increasing.

ΑI

Hyperparameter Tuning

55	Name	MAE_train	MAE_test	R2_Score_train	R2_Score_test	RMSE_Score_train	RMSE_Score_test
0	XGBRegressor_without_hyper	429.888181	680.397815	0.993294	0.766717	990.312172	3894.911052
1	XGBRegressor_with_hyper	102.932939	645.449187	0.999718	0.766717	203.092063	3929.319520

- Used GridSearchCV to do hyperparameter tuning
- Hyperparameters I have used :
 - o gamma
 - Learning_rate
 - max_depth
 - n_estimators

Conclusion

- Most of the columns are categorical
- After hyper parameter tuning, we have prevented overfitting
- Out of all these models *XGBRegressor* is the best performer in terms of MAE & r2 score.
- In all the features *speaker_1_avg_views* is most important this implies that speakers are directly impacting the views.
- R2_score for the final model is 0.99 (train data) & 0.76 (test data)
- Most of the talks are available in English.
- Hans Rosling delivered most of the talks.
- According to the number of comments Richard Dawkins is the most popular speaker.
- Top 3 most popular speakers are Dick M. Carpenter, Nancy Lublin(CEO of Crisis Text Line), Bill Gates.

