#### Tema 1

#### Dispositivos Lógicos Programables (PLD)

- Introducción a los sistemas digitales
  - Creación de un sistema digital
  - Partes de los sistemas digitales
  - Opciones de diseño
- Dispositivos lógicos programables
  - Criterios de clasificación
  - Tipos de dispostivos
- Field Programmable Gate Arrays (FPGA)
  - Características fundamentales
  - Estructura y ejemplo
  - Ventajas e inconvenientes

## Creación de un sistema digital

- Idea, necesidad, oportunidad...
- Análisis de requisitos y especificación.
- Diseño (Captura de Esquemáticos, HDLs y otros).
- Simulación (verificación del circuito).
- Implementación (PCB, programación, prototipado...)
- Depuración, ampliación, corrección de errores.
- Fabricación.

#### Partes de los sistemas digitales

Interfaz

Reloj

Alimentación Reset Lógica comportamiento del sistema Entrada/Salida

3

## Opciones de diseño

- Microcontrolador:
  - Ventajas, inconvenientes...
- Lógica programable:
  - Ventajas, inconvenientes...

#### Diseño de lógica no programable



#### **Acrónimos**

SPLD = PLDs Simples.

PAL = Matr. de Lógica Prog.

CPLD = PLDs Complejos.

FPGA = Circuito Prog. Usuario.

#### **Recursos Comunes**



- Memoria por Tabla de búsqueda.
- Planos AND OR
- Puertas Simples.



Bidireccional, latches, inversores, pullup/ pulldowns.



Realimentación interna local y global.

# Dispositivos lógicos programables

- Funciones lógicas configurables.
- Más versátiles que la lógica discreta.
- Mismo encapsulado, más...
- Estandarización, mejora con la integración.
- Nuevas formas de diseño lógico: HDL

#### Estructura de una GAL: 22V10



### Clasificación según tecnología de grabación

- Programables una vez.
  - Fusibles.
  - Antifusibles.
- Reprogramables no volátiles.
  - Transistores MOS de puerta flotante.
- Reprogramables volátiles.
  - Celdas SRAM.

# Ejemplo de PLD

 $X = AB + A\overline{B} + \overline{A}\,\overline{B}$ 





#### SIN PROGRAMAR

#### **PROGRAMADA**



Figure 2-4 (a) Standard gate symbol and equivalent PAL diagram; (b) schematic and PAL diagram equivalence

#### **Antifusibles**

- Antifusible: Circuito abierto que mediante programación genera un corto circuito
- ➤ Tipos OTP (One
  Time Programming).
- ➤ Alta densidad de integracción.
- ➤Basada en

Multiplexor.





**FIGURE 4.3** Metal—metal antifuse. (a) An idealized (but to scale) cross section of a QuickLogic metal—metal antifuse in a two-level metal process. (b) A metal—metal antifuse in a three-level metal process that uses contact plugs. The conductive link usually forms at the corner of the via where the electric field is highest during programming.





**FIGURE 4.1** Actel antifuse. (a) A cross section. (b) A simplified drawing. The ONO (oxide–nitride–oxide) dielectric is less than 10 nm thick, so this diagram is not to scale. (c) From above, an antifuse is approximately the same size as a contact.

# Tecnologías EPROM y EEPROMs



Figure 2-10 Creating a wired-AND with E<sup>2</sup>PROM cells



Figure 2-8 Creating a wired-AND with EPROM cells



**Figure 2-9** Structure of a FAMOS transistor [Reprinted by permission of Intel Corporation. © 1981 Intel Corporation.]

# Clasificación según funciones

- Matrices AND OR.
- Matrices AND OR + registros.
- Matrices + bloques E/S.
- PLD simples interconectados.
- Estructuras jerárquicas complejas.
  - Interconexión.
  - Bloques lógicos (LUT).
  - Bloques E/S.

#### Dispositivos Programables

| C.I. | Fabricante          |      | Año Características                                                                                                                                                                                                         |
|------|---------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLA  | Philips             | 1970 | Planos AND y OR Programables.                                                                                                                                                                                               |
| PAL  | MMI (AMD)           | 1978 | Plano AND programable y plano OR Fijo.                                                                                                                                                                                      |
| EPLD | Altera              | 1980 | Borrables UV. Tipo PAL con registros. Salida versátil (VPAL).                                                                                                                                                               |
| FPGA | Xilinx              | 1984 | Matrices de lógica programable por conexiones controladas por SRAM en el propio circuito. <u>Grano fino</u> : Puertas y/o multiplexores + registros. <u>Grano grueso</u> : Funciones complejas de varias variables y regist |
| CPLD | Xilinx, Altera, etc | 1995 | Tipo VPAL, Borrable Flash-EEPROM y programable en circuito, conexiones programables (PIA).                                                                                                                                  |

# SPLD (Simple PLD)



- OR prog.

PAL(GAL)

- AND prog.

- OR fija

# Programable ROM (PROM)



- Direcciones: N bits; Palabra de salida: M bits.
- ROM contiene 2 N palabras de M bits.
- Los bits de entrada deciden la palabra particular que estará disponible en las lineas de salida.

# Diagrama lógico de una PROM



# Circuito combinacional implementado usando PROM





# PLA:Programmable Logic Array



#### PLA



## Implementación lógica con PLA

- Número finito de puertas AND => simplificar la function al mínimo número de terminos productos.
- El número de variables en términos productos no es importante dado que tenemos todas las variables de entrada.
- Compartir términos entre diferentes OR => minimización de múltiples funciones.

#### Diseño con PLA



## PAL:Programmable Array Logic

- Matriz de ANDs programable.
- Matriz de ORs fija.
  - Cada línea salida está permanentemete conecta a un conjunto especifico de términos productos.
- El número de funciones que pueden implementarse con PAL es mucho menor que con PROM y PLA.
- Mayor densidad y menores retardos que las PLAs.

## Diagrama Lógico PAL



### Implicaciones PAL

- Número de términos productos por salida ha de ser mayor que el número de términos productos por cada suma de productos.
- No se pueden compartir términos productos entre diferentes salidas.

#### Diseño con PAL



# Diagrama de bloques de una GAL: 22V10







#### Macrocelda de salida



#### Retardos en una 22V10

- t<sub>PD</sub>: tiempo que tarda en cambiar una salida a partir de una entrada valida.
- t<sub>co</sub>:tiempo que tarda en cambiar una salida a partir de un flanco de la señal de reloj.
- t<sub>SU</sub>: tiempo mínimo que los datos deben estar estables antes del flanco de la señal de reloj.

- ◆t<sub>H</sub>:tiempo mínimo que los datos deben estar estables **después** del flanco de la señal de reloj.
- t<sub>SCS</sub>: periodo mínimo de reloj en operacions registro/registro.
- $\bullet f_{\text{max}} = 1/t_{\text{SCS}}$

Table 2-3 Sample data-sheet parameters for a 22V10

| Parameter        | Description                                 | Min.      | Max.   |
|------------------|---------------------------------------------|-----------|--------|
| t <sub>PD</sub>  | Propagation delay                           |           | 4 ns   |
| t <sub>s</sub>   | Setup time                                  | 2.5 ns    | 1: >   |
| t <sub>H</sub>   | Hold time                                   | 0         |        |
| t <sub>co</sub>  | Clock-to-output delay                       | X. mamely | 3.5 ns |
| t <sub>CO2</sub> | Clock-to-output delay (through logic array) |           | 7 ns   |
| t <sub>SCS</sub> | System clock to system clock delay          |           | 5.5 ns |

## Retardos en una 22V10 (2)

Table 2-3

 $t_{PD}$ 

 $t_{S}$ 

tH

 $t_{CO}$ 

 $t_{CO2}$ 

tscs

array)

**Parameter** 

Clock-to-output delay (through logic

System clock to system clock delay



Figure 2-15 Timing parameters

Combinatorial

logic

inals

7 ns

5.5 ns

logic

#### De los SPLDs a los CPLDs

#### Ante el avance de la tecnología,

- •¿ Por qué los fabricantes no escalaron las arquitecturas de la 16V8 y 22V10?
- •¿Por qué no pasar del 16V8 al 128V64?

#### Características del hipotético 128V64:

- •64 entradas primarias/64 pines bidireccionasles.
- •128 variables por término productos (fan-in de puertas AND).

#### Algunas limitaciones del hipotético 128V64

- •Puertas AND al menos 8 veces más lentas que las del 16V8.
- •El área de silicio se múltiplica por 64.
- •El número de E/S sólo se múltiplica por 8.

### **CPLD**



## Bloques lógico CPLD

- PLD simple
  - Entradas.
  - Matriz de términos productos.
  - Colocador de términos productos.
  - Macro-celdas (registros).
- Bloques lógicos ejecutan expresiones de suma de productos, almacenan los resultados en microceldas.
- Interconexión programable establece la ruta de las señales de y desde los bloques lógicos.

#### Principales recursos CPLD

- Número de macroceldas por bloque lógico.
- Número de entradas de las interconexiones programables a los bloques lógicos.
- Número de términos producto en los bloques lógicos.

#### CPLDs For Fig. XC9500



- CPLDs Programables en circuito impreso (ISP).
- Retardos de 5 ns.
- 36 a 576 macroceldas.
- La mejor arquitectura del mercado para asignación de pines.
- 10,000 ciclos programación/ borrado.
- Soporta JTAG: IEEE 1149.1.

## Bloque de Función XC9500



¡ Cada bloque de función es como una 36V18!

# Familia MAX7000 (ALTERA)



# Familia MAX7000 (ALTERA)

Shareable expanders can be shared by any or all macrocells in an LAB.



# Familia MAX7000 (ALTERA)

Unused product terms in a macrocell can be allocated to a neighboring macrocell.



#### Y otras soluciones?

Para construir una PLD "mejorada" se distribuyen bloques lógicos más pequeños y se dispone de más recursos de interconexión menores y más repartidos.

## ¿Qué es una FPGA?

Las FPGA (Field Programmable

Gate Array) son matrices de

celdas lógicas comunicadas entre

si y/o con bloques de E/S

mediante "canales de

comunicación".

- Las conexiones entre los diferentes elementos son programables.

  Tecnologias:
  - SRAM (Altera, Lucent Technol., Atmel, Xilinx)
  - ANTIFUSIBLE (Actel, Cypress, QuickLogic, Xilinx)
  - EPROM





Figure 8 FPGA Architecture

# CPLDs y FPGAs

CPLD FPGA

Complex Programmable Logic Devices

(Circuitos Lógicos Prog. Complejos

aplicación)

Field-Programmable Gate Array

Circuitos Progr. por el usuario en la



**Arquitectura:** 

tipo-PAL

Más Combinacional

**Densidad:** 

Baja-a-media Muchas 22V10s

Prestaciones: Retardos Predecibles

Hasta 200 MHz

Interconexión:

"Crossbar"

Tipo Matrices de puertas (GAL)

Más Registros

Medio-a-alta 1K-250K puertas lógicas

Dependiente de aplicación hasta 100MHz

Incremental

#### Arquitectura XC4000/Spartan



#### Configurable Logic Blocks

 2 generadores de funciones de 4 entradas(Look Up Tables)

- 16x1 RAM o funciones lógicas.
- 2 Biestables
  - Cada uno puedes ser configurando independientemente como una biestable o como latch.
  - Independiente polaridad de reloj.
  - Set/Reset síncronos y asíncronos



## **Look Up Tables**

WE

G Func. Gen.

G4

G3 G2



 Elección para usar cada LUT como una generador de función de 4 entradas o como una RAM síncrona de doble puerto.



44

4-bit dirección

#### Diagram I/O Block(IOBs)



#### Rutado de Xilinx FPGA

- 1) Conexión directa y rápida CLB to CLB
- 2) Conexión de próposito general –Uso matriz de conmutación

(switch matrix) 3) Líneas largas.

- Cruzan segmentos chip.
- Relojes Globales, el menor desfase (skew)
- 2 Tri-states por CLB para buses



#### Jerarquía de interconexión



- líneas simples
- líneas dobles
- líneas cuadruples
- líneas octales
- línies largas

Table 15: Routing per CLB in XC4000 Series Devices

|             | XC4000E  |            | XC4000X  |            |
|-------------|----------|------------|----------|------------|
| ]           | Vertical | Horizontal | Vertical | Horizontal |
| Singles     | 8        | 8          | 8        | 8          |
| Doubles     | 4        | 4          | 4        | 4          |
| Quads       | 0        | 0          | 12       | 12         |
| Longlines   | 6        | 6          | 10       | 6          |
| Direct      | 0        | 0          | 2        | 2          |
| Connects    |          |            |          |            |
| Globals     | 4        | 0          | 8        | 0          |
| Carry Logic | 2        | 0          | 1        | 0          |
| Total       | 24       | 18         | 45       | 32         |



High-Level Routing Diagram of XC4000 Series CLB (shaded arrows indicate XC4000X only)

#### Interconexión programable



#### Otros recursos de las FPGA

- Buffers Tri-state for buses (BUFT's)
- Buffers de reloj global & alta velocidad (BUFG's)
- Decodificadores extensos(DECODEx)
- Osciladores internos (OSC4)
- Reset global para todos los Flip-Flops, Latches (STARTUP)
- Recursos especial CLB especial
  - Lógica de Acarreo rápido
  - RAM de doble puerto síncrono.
  - Boundary Scan



# What's Really In that Chip? Programmable Interconnect Points, PIPs (White)



# Características adicionales FPGA avanzadas

- Memorias de gran tamaño empotrada
- Lógica dedicada para funciones aritméticas.
- Phase locked loops para síncronización de reloj.
- Circuitos de división y multiplicacion.
- Reconfiguración parcial.

#### CPLD o FPGA?

- CPLD
- No volatil.
- Verificación JTAG
- Alto fan-in
- Rápido contadores, maquinas de estado.
- Lógica Combinacional
- Lógica de Control

#### **FPGA**

- Reconfiguración con SRAM
- Excelente para arquiitectura de computadores, DSP,
- Flujo de diseño similar ASIC
- Necesita PROM para operaciones no volatiles

# Ventajas PLD



#### Skew



# Flujo de Diseño



# Flujo diseño CPLD



## Implementatión del Diseño

- Entrada: Netlist Salida: bitstream
- Mapear el diseño con los recursos de la FPGA
  - Descomponer el circuito en bloques que tenga máximo n entradas.
  - Problema NP-hard
  - Sin embargo, una solución óptima no se necesita.



57

# Implementatión del Diseño (Cont.)

- Place: Colocar los bloques lógicos generados durante el mapeo a posiciones específicas dentro de la FPGA.
  - Objetivo: minimizar la longitud de los cables.
  - NP-hard
- Route: Establecer una ruta de interconexiones entre los bloques lógicos.
  - NP-hard

## Aplicaciones PLD

- Lógica de pegamento (Glue Logic )
  - remplazar SSI con SPLD y MSI CPLD)
- Rápido desarrollo. (Todos)
- Prototipo de diseño (FPGAS/CPLD)
- Emulación
- Computación de próposito especifíco.
- Reconfiguración dinámica (Codiseño)
- SoC (System on Chip)

#### Diseño de Interfaces de alta velocidad

- Redimiento de E/S de 840 Mbps
- Soporta la siguientes interfaces.
  - PCI-X 133 MHz
  - RapidI/O<sup>TM</sup>
  - POS PHY Level 4 (16 bits/clk @ 832 Mbps), SPI-4
  - Lightening Data Transport (LDT)

## Up to 1108 User I/Os

- Double data rate
  - Input, output and 3-state control registers
- Up to 554 differential I/O pairs:
  - High-speed LVDS, Bus LVDS, and LVPECL on all I/O pairs
- Single-ended I/O: 19 standards supported
  - PCI @ 33 MHz & 66 MHz compliant
  - PCI-X @ 133 MHz compliant
  - LVTTL, LVCMOS, SSTL, HSTL, GTL, AGP

## Virtex-II Architecture



#### Crecimiento Exponencial en Densidad



- 175,000 celdas Lógicas = 2.0 millones puertas Lógicas en 2001
- ♦ 1 celdilla lógica = LUT 4-E + FF



#### **CLB Contains Four Slices**

- Each CLB is connected to one switch matrix
  - Providing access to general routing resources



# SelectI/O-Ultra™ Technology

- ◆ High Bandwidth and XCITE™ on-chip termination
  - Support 19 single-ended standards and 6 differential standards



#### **Processes and Tools**

