Variables discrètes finies - Exercices pratiques

Exercice 1 - Loi d'un dé truqué - Deuxième année - *

On considère un dé cubique truqué, de telle sorte que la probabilité d'obtenir la face numérotée k est proportionnelle à k (on suppose que les faces sont numérotées de 1 à 6). Soit X la variable aléatoire associée au lancer de ce dé.

- 1. Déterminer la loi de X, calculer son espérance.
- 2. On pose Y = 1/X. Déterminer la loi de Y, et son espérance.

Exercice 2 - Garagiste - Deuxième année - *

Un garagiste dispose de deux voitures de location. Chacune est utilisable en moyenne 4 jours sur 5. Il loue les voitures avec une marge brute de 300 euros par jour et par voiture. On considère X la variable aléatoire égale au nombre de clients se présentant chaque jour pour louer une voiture. On suppose que $X(\Omega) = \{0, 1, 2, 3\}$ avec

$$P(X = 0) = 0, 1$$
 $P(X = 1) = 0, 3$ $P(X = 2) = 0, 4$ $P(X = 3) = 0, 2$.

- 1. On note Z le nombre de voitures disponibles par jour. Déterminer la loi de Z. On pourra considérer dans la suite que X et Y sont indépendantes.
- 2. On note Y la variable aléatoire : " nombre de clients satisfaits par jour". Déterminer la loi de Y.
- 3. Calculer la marge brute moyenne par jour.

Exercice 3 - Vaches laitières - Deuxième année - *

Les vaches laitières sont atteintes par une maladie M avec la probabilité p=0,15. Pour dépister la maladie M dans une étable de de n vaches, on fait procéder à une analyse de lait. Deux méthodes sont possibles :

Première méthode: On fait une analyse sur un échantillon de lait de chaque vache.

Deuxième méthode : On effectue d'abord une analyse sur un échantillon de lait provenant du mélange des n vaches. Si le résultat est positif, on effectue une nouvelle analyse, cette fois pour chaque vache.

On voudrait connaître la méthode la plus économique (=celle qui nécessite en moyenne le moins d'analyse). Pour cela, on note X_n la variable aléatoire du nombre d'analyses réalisées dans la deuxième étape. On pose $Y_n = \frac{X_n}{n}$.

- 1. Déterminer la loi de Y_n , et montrer que son espérance vaut : $1 + \frac{1}{n} (0.85)^n$.
- 2. Etudier la fonction $f(x) = ax + \ln x$, pour $a = \ln(0.85)$. Donner la liste des entiers n tels que f(n) > 0.
- 3. Montrer que f(n) > 0 équivaut à $E(Y_n) < 1$. En déduire la réponse (en fonction de n) à la question posée).

Variables discrètes finies - Exercices théoriques

Exercice 4 - Maximiser l'espérance - Oral ESCP - **

Soit $n \geq 2$. On considère deux variables aléatoires indépendantes X_1 et X_2 , définies sur le même espace probabilisé (Ω, \mathcal{B}, P) , et suivant la loi uniforme discrète sur $\{1, 2, \ldots, n\}$. On considère a un entier de $\{1, 2, \ldots, n\}$, et Y la variable aléatoire définie par :

$$\forall \omega \in \Omega, \ Y(\omega) = \left\{ \begin{array}{ll} X_1(\omega) & \text{si } X_2(\omega) \leq a \\ X_2(\omega) & \text{si } X_2(\omega) > a. \end{array} \right.$$

- 1. Déterminer la loi de Y (vérifier que l'on obtient bien une loi de probabilité).
- 2. Calculer l'espérance de Y et la comparer à l'espérance de X_1 .
- 3. Pour quelles valeurs de a cette espérance est-elle maximale?

Exercice 5 - Entropie d'une variable aléatoire - L3 - **

Soit X une variable aléatoire discrète prenant la valeur x_i avec probabilité p_i , pour $i = 1, \ldots, n$. On définit l'entropie de X par :

$$H(X) = -\sum_{i=1}^{n} p_i \ln(p_i).$$

- 1. Calculer H(X) si X est constante.
- 2. Calculer H(X) si X est équidistribuée.
- 3. Trouver la valeur maximale de H(X) pour X parcourant l'ensemble des variables aléatoires discrètes prenant au plus n valeurs.

Variables discrètes infinies

Exercice 6 - Une certaine variable aléatoire - Oral ESCP - *

Soit $p \in]0,1[$. On dispose d'une pièce amenant "pile" avec la probabilité p. On lance cette pièce jusqu'à obtenir pour la deuxième fois "pile". Soit X le nombre de "face" obtenus au cours de cette expérience.

- 1. Déterminer la loi de X.
- 2. Montrer que X admet une espérance, et la calculer.
- 3. On procède à l'expérience suivante : si X prend la valeur n, on place n+1 boules numérotées de 0 à n dans une urne, et on tire ensuite une boule de cette urne. On note alors Y le numéro obtenu. Déterminer la loi de Y. Calculer l'espérance de Y.
- 4. On pose Z = X Y. Donner la loi de Z et vérifier que Z et Y sont indépendantes.

Exercice 7 - Deux fois pile - Deuxième année - *

On joue à pile ou face avec une pièce non équilibrée. A chaque lancer, la probabilité d'obtenir pile est 2/3, et donc celle d'obtenir face est 1/3. Les lancers sont supposés indépendants, et on note X la variable aléatoire réelle égale au nombre de lancers nécessaires pour obtenir, pour la première fois, deux piles consécutifs. Pour $n \ge 1$, on note p_n la probabilité P(X = n).

1. Expliciter les événements (X = 2), (X = 3), (X = 4), et déterminer la valeur de p_2 , p_3 , p_4 .

- 2. Montrer que l'on a $p_n = \frac{2}{9}p_{n-2} + \frac{1}{3}p_{n-1}, n \ge 4$.
- 3. En déduire l'expression de p_n pour tout n.
- 4. Rappeler, pour $q \in]-1,1[$, l'expression de $\sum_{n=0}^{+\infty} nq^n$, et calculer alors E(X).

Exercice 8 - Loi de Pascal - L2 - \star

On lance une pièce de monnaie dont la probabilité de tomber sur pile vaut p. On note X la variable aléatoire correspondant au nombre de lancers nécessaire pour obtenir r fois pile. Quelle est la loi de X?

Exercice 9 - Rangée de spots - Oral ESCP - **

Une rampe verticale de spots nommés de bas en haut $S_1,\ S_2,\ S_3,\ S_4$ change d'état de la manière suivante :

- à l'instant t = 0, le spot S_1 est allumé.
- si, à l'instant t = n, $n \ge 0$, le spot S_1 est allumé, alors un (et un seul) des spots S_1 , S_2 , S_3 , S_4 s'allume à l'instant t = n + 1, et ceci de manière équiprobable.
- si, à l'instant t = n, $n \ge 0$, le spot S_k $(2 \le k \le 4)$ est allumé, le spot S_{k-1} s'allume à l'instant t = n = 1.

On pourra remarquer qu'à chaque instant, un et un seul spot est allumé. On note X la variable aléatoire représentant le premier instant (s'il existe) où le spot S_2 s'allume.

- 1. Calculer la probabilité pour que le spot S_1 reste constamment allumé jusqu'à l'instant n.
- 2. Calculer la probabilité des événements (X = 1) et (X = 2).
- 3. Calculer la probabilité des événements (X = n), pour $n \ge 3$.
- 4. Déterminer l'espérance de X.

Exercice 10 - Une autre expression de l'espérance - L2/L3/Master Enseignement - **

- 1. Soit X une variable aléatoire à valeurs dans \mathbb{N} .
 - (a) Montrer que, pour tout $n \in \mathbb{N}^*$, on a :

$$\sum_{k=0}^{n} kP(X=k) = \sum_{k=0}^{n-1} P(X > k) - nP(X > n).$$

- (b) On suppose que $\sum_{k=0}^{+\infty} P(X>k)$ converge. Démontrer que X admet une espérance.
- (c) Réciproquement, on suppose que X admet une espérance. Démontrer alors que $(nP(X>n))_n$ tend vers 0, puis que la série $\sum_{k=0}^{+\infty} P(X>k)$ converge, et enfin que

$$E(X) = \sum_{k=0}^{+\infty} P(X > k).$$

- 2. Application : on dispose d'une urne contenant N boules indiscernables au toucher numérotées de 1 à N. On effectue, à partir de cette urne, n tirages successifs d'une boule, avec remise, et on note X le plus grand nombre obtenu.
 - (a) Que vaut $P(X \le k)$? En déduire la loi de X.
 - (b) A l'aide des questions précédentes, donner la valeur de E(X).

- (c) A l'aide d'une somme de Riemann, démontrer que la suite $\left(\frac{1}{N}\sum_{k=0}^{N-1}\left(\frac{k}{N}\right)^n\right)_N$ admet une limite (lorsque N tend vers $+\infty$) que l'on déterminera.
- (d) En déduire que $\lim_{N\to +\infty}\frac{E(X)}{N}=\frac{n}{n+1}.$