

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 January 2002 (31.01.2002)

PCT

(10) International Publication Number WO 02/08765 A2

(51) International Patent Classification7:

G01N 33/574

(21) International Application Number: PCI/US01/23843

(22) International Filing Date: 26 July 2001 (26.07.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/220,967

26 July 2000 (26.07.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US

60/220,967 (CIP)

Filed on

26 July 2000 (26.07.2000)

(71) Applicants (for all designated States except US): STAN-FORD UNIVERSITY [US/US]; Suite 35, 900 Welch Road, Stanford, CA 94305-1850 (US). APPLIED GENOMICS, INC. [/US]; 325 East Middlefield Road, Mountain View, CA 94043 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BOTSTEIN, David [US/US]; Stanford University, 900 Welch Road, Suite 35, Stanford, CA 94305-1850 (US). BROWN, Patrick, O. [US/US]; 76 Peter Coutts Circle, Stanford, CA 94305 (US). PEROU, Chuck [US/US]; The University of North Carolina, At Chapel Hill, Chapel Hill, NC 94305 (US). ROSS, Douglas [US/US]; 1437 Cabrillo Avenue, Burlingame, CA 94010 (US). VAN DE RIJN, Matthew [US/US]; Stanford University, 900 Welch Road, Suite 35, Stanford, CA 94305-1850 (US). RING, Brian [US/US]; 625 Orange Avenue, Los Altos, CA 94022 (US). SEITZ, Rob [US/US]; 2611 Elderdale Drive, Huntsville, AL 35763 (US).

- (74) Agent: GERBER, Monica, R.; Choate, Hall & Stewart, Exchange Place, 53 State Street, Boston, MA 02109 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,

[Continued on next page]

(54) Title: BASAL CELL MARKERS IN BREAST CANCER AND USES THEREOF

(57) Abstract: The invention provides a variety of reagents for use in the diagnosis and management of breast cancer. The invention utilizes cDNA microarray technology to identify genes whose expression profile across a large group of tumor samples correlates with that of cytokeratin 5 and cytokeratin 17, markers for basal cells of the normal mammary lactation gland. The invention demonstrates that tumors that express cytokeratin 5/6 and/or 17 have a poor prognosis relative to tumors overall. The invention provides basal marker genes and their expression products and uses of these genes for diagnosis of breast cancer and for identification of therapies for breast cancer. In particular, the invention provides basal marker genes including cadherin3, matrix metalloproteinase 14, and cadherin EGF LAG seven-pass G-type receptor 2. The invention provides antibodies to the polypeptides expressed by these genes and methods of use thereof.

O 02/08765 A

WO 02/08765 A2

SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

BASAL CELL MARKERS IN BREAST CANCER AND USES THEREOF

GOVERNMENT SUPPORT

The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Grant No. NIH CA 77097 awarded by the National Cancer Institute.

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to provisional application U.S.S.N 60/220,967, filed July 26, 2000, which is incorporated herein by reference.

10

BACKGROUND OF THE INVENTION

A major challenge of cancer treatment is to target specific therapies to distinct 15 tumor types in order to maximize efficacy and minimize toxicity. A related challenge lies in the attempt to provide accurate diagnostic, prognostic, and predictive information. At present, tumors are described with the tumor-node-metastasis (TNM) system. This system, which uses the size of the tumor, the presence or absence of tumor in regional lymph nodes, and the presence or absence of distant metastases, to 20 assign a stage to the tumor is described in the American Joint Committee on Cancer: AJCC Cancer Staging Manual. Philadelphia, Pa: Lippincott-Raven Publishers, 5th ed., 1997, pp 171-180, and in Harris, JR: "Staging of breast carcinoma" in Harris, J.R., Hellman, S., Henderson, I.C., Kinne D.W. (eds.): Breast Diseases. Philadelphia, Lippincott, 1991. The assigned stage is used as a basis for selection of appropriate 25 therapy and for prognostic purposes. In addition to the TNM parameters, morphologic appearance is used to further classify tumors and thereby aid in selection of appropriate therapy. However, this approach has serious limitations. Tumors with similar histopathologic appearance can exhibit significant variability in terms of clinical course and response to therapy. For example, some tumors are rapidly progressive while others are not. Some tumors respond readily to hormonal therapy 30 or chemotherapy while others are resistant.

Assays for cell surface markers, e.g., using immunohistochemistry, have provided means for dividing certain tumor types into subclasses. For example, one factor considered in prognosis and in treatment decisions for breast cancer is the presence or absence of the estrogen receptor (ER) in tumor samples. ER-positive breast cancers typically respond much more readily to hormonal therapies such as tamoxifen, which acts as an anti-estrogen in breast tissue, than ER-negative tumors. Though useful, these analyses only in part predict the clinical behavior of breast tumors. There is phenotypic diversity present in breast cancers that current diagnostic tools fail to detect. Therefore, there exists a need for improved methods for classifying tumors.

5

10

15

20

25

30

Mutation or dysregulation of any of a large number of genes contributes to the development and progression of cancer as discussed in Hanahan, D. and Weinberg, R., The Hallmarks of Cancer, Cell, 100, 57-70, 2000. Genes that play a role in cancer can be divided into a number of broad classes including oncogenes, tumor suppressor genes, and genes that regulate apoptosis. Oncogenes such as ras typically encode proteins whose activities promote cell growth and/or division, a function that is necessary for normal physiological processes such as development, tissue regeneration, and wound healing. However, inappropriate activity or expression of oncogenes can lead to the uncontrolled cell proliferation that is a feature of cancer. Tumor suppressor genes such as Rb act as negative regulators of cell proliferation. Loss of their activity, e.g., due to mutations or decreased expression at the level of mRNA or protein, can lead to unrestrained cell division. A number of familial cancer syndromes and inherited susceptibility to cancer are believed to be caused by mutations in tumor suppressor genes. Apoptosis, or programmed cell death, plays important roles both in normal development and in surveillance to eliminate cells whose survival may be deleterious to the organism, e.g., cells that have acquired DNA damage. Many chemotherapeutic agents are believed to work by activating the endogenous apoptosis pathway in tumor cells.

Although a substantial number of genes have been implicated as playing important roles in cancer, the factors responsible for the phenotypic diversity of tumors remain largely unknown. In particular, understanding of the underlying differences in gene expression that may contribute to tumor phenotype is limited.

Understanding the differences in gene expression between normal and cancerous tissue and between different tumors of the same tissue type is of significant diagnostic, prognostic, and therapeutic utility. There is therefore a need for the identification of genes exhibiting differential expression between tumors. In particular, there is a need for the identification of additional genes and proteins that can be used to classify tumors, especially genes and proteins that can provide diagnostic, prognostic, and/or predictive information in cancer. There is also a need for antibodies and other reagents for the detection and measurement of such genes and proteins.

5

10

15

20

25

30

Most of the commonly used chemotherapeutic agents act relatively nonselectively. Rather than specifically killing tumor cells, these agents target any dividing cell, resulting in a variety of adverse effects. In addition, current therapeutic strategies are of limited efficacy, and the mortality rate of breast cancer remains high. There is therefore a need for the identification of additional genes and proteins that can be used as targets for the treatment of cancer. There is also a need for antibodies and other reagents that can modulate, regulate, or interact with these genes and proteins to provide new method of treatment for cancer.

SUMMARY OF THE INVENTION

The present invention relates to the identification of markers that are useful in classifying tumors, particularly breast tumors. The markers identify a class of tumors whose cells have characteristics of basal cells of normal breast lactation ducts. The markers were identified based on their expression profiles in human breast tumor samples, normal breast tissue, and cell lines as assessed using cDNA microarrays. In particular, the basal cell markers of the present invention were identified based on the similarity of their mRNA expression patterns to the expression patterns of markers previously known to identify breast duct basal cells, e.g., cytokeratin 5 and cytokeratin 17, across a set of breast tumor samples. The basal markers include the three genes known as cadherin 3 or P-cadherin (SEQ ID NO:1; GenBank protein accession number NP_001399; GenBank cDNA accession number NM_001408), matrix metalloproteinase 14 (SEQ ID NO:2; GenBank protein accession number NP_004986; GenBank cDNA accession number NM_004995); and cadherin EGF

LAG seven-pass G-type receptor 2 or EGF-Like Domain, Multiple 2 (SEQ ID NO:3; GenBank protein accession number NP_001784; GenBank cDNA accession number NM_001793). The invention further provides antibodies that specifically bind to the polypeptides encoded by the basal marker genes identified herein. The antibodies recognize basal cells of normal mammary lactation glands.

5

10

15

20

25

30

The invention provides various diagnostic methods based on the reagents mentioned above. The diagnostic methods include methods for classifying a tumor. In particular, the invention allows classification of a breast tumor as belonging to a basal class of breast tumors. According to certain of the inventive methods the presence or amount of a gene product, e.g., a polypeptide or a nucleic acid, encoded by a basal marker gene is detected in a sample derived from a subject (e.g., a sample of tissue or cells obtained from a tumor or a blood sample obtained from a subject). In general the subject is a human, however the subject may also be an animal of any other kind. The subject may be an individual who has or may have a tumor. The sample may be subjected to various processing steps prior to or in the course of detection. In certain embodiments of the invention the gene product is a polypeptide that is detected using an antibody capable of binding to the polypeptide. In certain embodiments of the invention the antibody is used to perform immunohistochemical staining on a sample obtained from a subject. In certain embodiments of the invention basal marker gene mRNA expression is measured using a microarray. In other embodiments of the invention basal marker gene mRNA expression is measured by quantitative PCR using a set of primers designed to amplify a portion of the gene. Additional detection means that may be employed in the present invention are described in U.S. Patent No: 6,057,105. In any of the methods for tumor classification and diagnosis, it may be advantageous to detect and/or measure expression of a set of basal markers rather than expression of a single marker.

By providing reagents that may reliably be used to classify tumors as belonging to a basal subclass, the invention enables a variety of methods for improving therapeutic options for patients with breast cancer. Much effort has and continues to be expended on the discovery of new chemotherapeutic agents. These agents are tested for efficacy in clinical trials. In many such trials it is noticed that a small number of patients stabilize or improve while receiving the treatment, while

5

10

15

20

25

30

most patients do not appear to benefit. Most such agents are not further developed for a number of reasons. For example, the clinical trial results may not be adequate to gain approval by the Food and Drug Administration. In addition, a pharmaceutical company may determine that the potential market for the drug is too small to justify further efforts. However, if it were possible to identify those patients likely to respond to the treatment, then it would be possible to design clinical trials that would show efficacy, and it would be possible to appropriately select patients who would benefit from the treatment. In addition, the availability of markers that can be used to classify breast tumors enables the retrospective examination of the thousands of breast tumor samples archived in hospitals and pathology labs. These samples can be classified using the inventive reagents and classification scheme, and the results can be correlated with the clinical outcome, based on medical records. Thus it is possible to determine whether tumors that fall into a particular tumor class, e.g., a basal tumor class, are responsive to a particular treatment. This will enable the re-evaluation of drugs that failed in clinical trials and may identify a subset of tumors that are likely to respond to a particular drug, and thus a subset of patients that are likely to benefit from treatment with that drug.

The inventors have recognized that in order to achieve these goals it is necessary to develop new and improved methods for classifying breast tumors. The inventive methods provide a molecular basis for classifying tumors, based on their underlying biology. While not wishing to be bound by any theory, the inventors postulate that tumors arising from a particular cell type within the breast are likely to display common features. Such features may include the prognosis (e.g., predicted survival time or likelihood that a patient's life expectancy exceeds a given length of time) or likelihood that a tumor will respond to a particular therapy.

In particular, tumors that display characteristics of basal cells of the normal breast lactation duct (also referred to herein as breast basal cells) form a distinct subclass (referred to herein as the basal subclass). Inventors have confirmed that patients with breast tumors whose cells display characteristics of breast basal cells, e.g., expression of cytokeratin 5 and/or cytokeratin 17, have a poor clinical outcome relative to patients with breast tumors that do not express these markers. However, antibodies to these cytokeratins have been found (by the inventors and by other

investigators) to give spotty, focal staining patterns when used to perform immunohistochemistry on breast tumor samples. Thus the utility of cytokeratins 5 and 17 as markers and the utility of antibodies that bind to cytokeratin 5 or 17 for determining whether a tumor is a member of the basal subclass has been limited. The inventors have therefore identified genes whose mRNA expression profiles across a large set of tumor samples correlate with, i.e. are similar to, the expression profiles of the known basal cell markers cytokeratins 5 and 17. These genes include the basal markers of the present invention mentioned above. As described in Examples 10 and 13, the inventors have generated antibodies to the proteins expressed by these genes and shown that the antibodies stain basal cells of normal mammary lactation glands. Thus detection of one or more expression products of these genes may be used to identify tumors that fall within the basal tumor subclass.

The invention further provides therapeutic agents based on the identification of breast basal cell markers. The therapeutic agents include compounds that modulate these genes or that modulate polypeptides encoded by these genes. In particular, the therapeutic agents include antibodies that bind to polypeptides encoded by the basal cell marker genes. The invention further includes agonists and antagonists to the basal marker genes, to the polynucleotides transcribed from those genes, and to their encoded polypeptides. The invention also provides methods for identifying such agonists and antagonists. The invention further includes pharmaceutical compositions comprising such antibodies, agonists, and antagonists as well as methods of use of the pharmaceutical compositions in the treatment of cancer, particularly breast cancer.

According to one aspect, the invention provides a method of classifying a tumor comprising the steps of (i) providing a tumor sample, (ii) detecting expression or activity of a gene encoding the polypeptide of SEQ ID NO:1 in the sample; and (iii) classifying the tumor as belonging to a tumor subclass based on the results of the detecting step. The invention also provides a method of classifying a tumor comprising the steps of (i) providing a tumor sample, (ii) detecting expression or activity of a gene encoding the polypeptide of SEQ ID NO:2 in the sample, and (iii) classifying the tumor as belonging to a tumor subclass based on the results of the detecting step. In addition, the invention provides a method of classifying a tumor comprising the steps of (i) providing a tumor sample, (ii) detecting expression or

activity of a gene encoding the polypeptide of SEQ ID NO:3 in the sample, and (iii) classifying the tumor as belonging to a tumor subclass based on the results of the detecting step. The invention further includes a method of classifying a tumor comprising the steps of (i) providing a tumor sample, (ii) detecting expression or activity of at least two genes selected from the group consisting of: a gene encoding the polypeptide of SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:3 in the sample, and (iii) classifying the tumor as belonging to a tumor subclass based on the results of the detecting step. In any of the foregoing methods the detecting step may comprise detecting the polypeptide or polypeptides encoded by the genes. A variety of detection techniques may be employed including, but not limited to, immunohistochemical analysis, ELISA assay, antibody arrays, or detecting modification of a substrate by the polypeptide.

10

15

20

25

30

In certain embodiments of the methods the tumor is a breast tumor and the tumor subclass is a basal tumor subclass. The methods may further comprise providing diagnostic, prognostic, or predictive information based on the classifying step. Classifying may include stratifying the tumor (and thus stratifying a subject having the tumor), e.g., for a clinical trial. The methods may further comprise selecting a treatment based on the classifying step.

In another aspect, the invention provides a method of testing a subject comprising the steps of (i) providing a sample isolated from a subject, (ii) detecting expression or activity of a gene encoding the polypeptide of SEQ ID NO:1 in the sample, and (iii) providing diagnostic, prognostic, or predictive information based on the detecting step. The invention further provides a method of testing a subject comprising the steps of (i) providing a sample isolated from a subject, (ii) detecting expression or activity of a gene encoding the polypeptide of SEQ ID NO:2 in the sample (iii) and providing diagnostic, prognostic, or predictive information based on the detecting step. The invention further provides a method of testing a subject comprising the steps of (i) providing a sample isolated from a subject, (ii) detecting expression or activity of a gene encoding the polypeptide of SEQ ID NO:3 in the sample (iii) and providing diagnostic, prognostic, or predictive information based on the detecting step. The invention further includes a method of testing a subject comprising the steps of (i) providing a sample isolated from the subject, (ii) detecting

expression or activity of at least two genes selected from the group consisting of: a gene encoding the polypeptide of SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:3 in the sample, and (iii) providing diagnostic, prognostic, or predictive information based on the detecting step. In any of these methods the detecting step may comprise detecting the polypeptide or polypeptides. Detection may be performed using any appropriate technique including, but not limited to, immunohistochemistry, ELISA assay, protein array, or detecting modification of a substrate by the polypeptide.

5

10

15

20

25

30

The sample may comprise mRNA, in which case the detecting step may comprise hybridizing the mRNA or cDNA or RNA synthesized from the mRNA to a microarray or detecting mRNA transcribed from the gene or detecting cDNA or RNA synthesized from mRNA transcribed from the gene. In any of the above methods, the sample may be a blood sample, a urine sample, a serum sample, an ascites sample, a saliva sample, a cell, and a portion of tissue.

In another aspect, the invention provides a kit for diagnosis of a tumor which may include (i) primers for amplifying an mRNA transcribed from a gene that encodes the polypeptide of any of SEQ ID NO:1, SEQ ID NO:2; and SEQ ID NO:3 (ii) instructions for use of the kit; and/or (iii) control samples for testing the primers, wherein the control samples comprise nucleic acids that hybridize to the primers.

In another aspect, the invention provides an antibody that specifically binds to an epitope found in a polypeptide whose amino acid sequence comprises the amino acid sequence of SEQ ID NO:1, and wherein the antibody recognizes basal cells in normal mammary lactation glands. According to certain embodiments of the invention the antibody distinguishes basal cells from luminal cells in normal mammary lactation gland. According to certain embodiments of the invention the antibody recognizes an epitope found in a peptide having an amino acid sequence selected from the group consisting of SEQ ID NO:4, SEQ ID NO:5, and SEQ ID NO:6.

In another aspect, the invention provides an antibody that specifically binds to an epitope found in a polypeptide whose amino acid sequence comprises the amino acid sequence of SEQ ID NO:2, and wherein the antibody recognizes basal cells in normal mammary lactation glands. According to certain embodiments of the invention the antibody distinguishes basal cells from luminal cells in normal

mammary lactation gland. According to certain embodiments of the invention the antibody recognizes an epitope found in a peptide having an amino acid sequence selected from the group consisting of SEQ ID NO:7, SEQ ID NO:8, and SEQ ID NO:9.

5

10

15

20

25

30

In another aspect, the invention provides an antibody that specifically binds to an epitope found in a polypeptide whose amino acid sequence the amino acid sequence of SEQ ID NO:3, and wherein the antibody recognizes basal cells in normal mammary lactation glands. According to certain embodiments of the invention the antibody distinguishes basal cells from luminal cells in normal mammary lactation gland. According to certain embodiments of the invention the antibody recognizes an epitope found in a peptide having an amino acid sequence selected from the group consisting of SEQ ID NO:10, SEQ ID NO:11, and SEQ ID NO:12.

The invention further provides a kit for tumor diagnosis comprising one or more of the foregoing antibodies. The kit may further include instructions for use of the kit and/or a control slide comprising breast tissue samples for testing reagents in the kit or such samples themselves.

According to another aspect, the invention provides a method of testing a compound or a combination of compounds for activity against tumors comprising steps of (i) obtaining or providing tumor samples taken from subjects who have been treated with the compound or combination of compounds, wherein the tumors fall within a tumor subclass, (ii) comparing the response rate of tumors that fall within the tumor subclass and have been treated with the compound with the overall response rate of tumors that have been treated with the compound or combination of compounds or with the response rate of tumors that do not fall within the subclass and have been treated with the compound or combination of compounds and (iii) identifying the compound or combination of compounds as having selective activity against tumors in the tumor subclass if the response rate of tumors in the subclass is greater than the overall response rate or the response rate of tumors that do not fall within the subclass. In certain embodiments of the invention the tumors are breast tumors. In certain embodiments of the invention the tumor subclass is a basal tumor subclass. The tumors may be classified according to any of the inventive classification methods described above. In certain embodiments of the invention the

classification is based on expression of the polypeptide of SEQ ID NO:1, 2, 3, or a combination of these.

5

10

15

20

25

30

The invention further provides a method of testing a compound or a combination of compounds for activity against tumors comprising steps of (i) treating subjects in need of treatment for tumors with the compound or combination of compounds, (ii) comparing the response rate of tumors that fall within a tumor subclass with the overall response rate of tumors or with the response rate of tumors that do not fall within the subclass, and (iii) identifying the compound or combination of compounds as having selective activity against tumors in the tumor subclass if the response rate of tumors in the subclass is greater than the overall response rate or the response rate of tumors that do not fall within the subclass. The method may further comprise various additional steps. For example, the method may comprise steps of (i) providing tumor samples from subjects in need of treatment for tumors, (ii) determining whether the tumors fall within a tumor subclass, and (iii) stratifying the subjects based on the results of the determining step prior to performing the treating step. The method may further comprise the steps of (i) providing tumor samples from subjects in need of treatment for tumors, (ii) detecting expression or activity of a gene encoding the polypeptide of SEQ ID NO:1 in the samples, and (iii) stratifying the subjects based on the results of the detecting step prior to performing the treating step. The method may further comprise the steps of (i) providing tumor samples from subjects in need of treatment for tumors, (ii) detecting expression or activity of a gene encoding the polypeptide of SEQ ID NO:2 in the samples, and (iii) stratifying the subjects based on the results of the detecting step prior to performing the treating step. The method may further comprise the steps of (i) providing tumor samples from subjects in need of treatment for tumors, (ii) detecting expression or activity of a gene encoding the polypeptide of SEQ ID NO:3 in the samples, and (iii) stratifying the subjects based on the results of the detecting step prior to performing the treating step. The method may further comprise the steps of (i) providing tumor samples from subjects in need of treatment for tumors, (ii) detecting expression or activity of a gene encoding a polypeptide whose sequence comprises a sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:3 in the samples, and

(iii) stratifying the subjects based on the results of the detecting step prior to performing the treating step.

5

10

15

20

25

30

In addition, the invention includes a method of testing a compound or a combination of compounds for activity against tumors comprising steps of (i) treating subjects in need of treatment for tumors with the compound or combination of compounds or with an alternate compound, wherein the tumors fall within a tumor subclass, (ii) comparing the response rate of tumors treated with the compound or combination of compounds with the response rate of tumors treated with the alternate compound; and (iii) identifying the compound or combination of compounds as having superior activity against tumors in the tumor subclass, as compared with the alternate compound, if the response rate of tumors treated with the compound or combination of compounds is greater than the response rate of tumors treated with the alternate compound. The method may further comprise various additional steps. For example, the method may comprise steps of (i) providing tumor samples from subjects in need of treatment for tumors, (ii) determining whether the tumors fall within a tumor subclass, and (iii) stratifying the subjects based on the results of the determining step prior to performing the treating step. The method may further comprise the steps of (i) providing tumor samples from subjects in need of treatment for tumors, (ii) detecting expression or activity of a gene encoding the polypeptide of SEQ ID NO:1 in the samples, and (iii) stratifying the subjects based on the results of the detecting step prior to performing the treating step. The method may further comprise the steps of (i) providing tumor samples from subjects in need of treatment. for tumors, (ii) detecting expression or activity of a gene encoding the polypeptide of SEQ ID NO:2 in the samples, and (iii) stratifying the subjects based on the results of the detecting step prior to performing the treating step. The method may further comprise the steps of (i) providing tumor samples from subjects in need of treatment for tumors, (ii) detecting expression or activity of a gene encoding the polypeptide of SEQ ID NO:3 in the samples, and (iii) stratifying the subjects based on the results of the detecting step prior to performing the treating step. The method may further comprise the steps of (i) providing tumor samples from subjects in need of treatment for tumors, (ii) detecting expression or activity of a gene encoding a polypeptide whose sequence comprises a sequence selected from the group consisting of SEQ ID

NO:1, SEQ ID NO:2, and SEQ ID NO:3 in the samples, and (iii) stratifying the subjects based on the results of the detecting step prior to performing the treating step.

In certain embodiments of the invention the alternate compound is a compound approved by the U.S. Food and Drug administration for treatment of tumors. The invention also provides a method of treating a subject comprising steps of (i) identifying a subject as having a tumor in a basal tumor subclass, and (ii) administering to the subject a compound identified according to any of the inventive methods for identifying a subject.

5

10.

15

20

25

30

#In another aspect, the invention provides a method of treating a subject comprising steps of (i) providing a subject in need of treatment for cancer, (ii) administering to the subject an antibody that specifically binds to a polypeptide having an amino acid sequence comprising the sequence of SEQ ID NO:1, SEQ ID NO:2, or SEQ ID NO:3 or administering a combination of such antibodies. In certain embodiments of the invention the tumor is a breast tumor. In certain embodiments of the invention the antibody is conjugated with a toxic molecule.

The invention further provides a method of treating a subject comprising steps of (i) providing a subject in need of treatment for cancer, (ii) administering to the subject a compound that activates or inhibits a gene that encodes an amino acid having a sequence comprising the sequence of SEQ ID NO:1, SEQ ID NO:2, or SEQ ID NO:3, or that activates or inhibits an expression product of the gene.

In another aspect, the invention provides a composition comprising two or more compounds identified according to any of the methods described above for identifying compounds. The invention also provides a pharmaceutical composition comprising such a composition and a pharmaceutically acceptable carrier. The invention also provides a composition comprising (i) a compound identified according to any of the methods described above for identifying compounds and (ii) a second compound, wherein the second compound is approved by the U.S. Food and Drug administration for the treatment of cancer or has shown potential efficacy against cancer in pre-clinical studies. The invention also provides a pharmaceutical composition comprising such a composition and a pharmaceutically acceptable carrier.

The present application refers to various patents, publications, books, articles, and other references. The contents of all of these items are hereby incorporated by reference in their entirety. The present application also incorporates by reference six U.S. patent applications filed by inventors on July 26, 2001. These applications are entitled "REAGENTS AND METHODS FOR USE IN MANAGING BREAST CANCER", "BSTP-RAS/RERG PROTEIN AND RELATED REAGENTS AND METHODS OF USE THEREOF", "BSTP-ECG1 PROTEIN AND RELATED REAGENTS AND METHODS OF USE THEREOF", "BSTP-CAD PROTEIN AND RELATED REAGENTS AND METHODS OF USE THEREOF", "BSTP-TRANS PROTEIN AND RELATED REAGENTS AND METHODS OF USE THEREOF", "BSTP-5 PROTEINS AND RELATED REAGENTS AND METHODS OF USE THEREOF".

BRIEF DESCRIPTION OF THE DRAWING

- Figure 1A presents the amino acid sequence of the polypeptide encoded by the basal marker gene known as cadherin 3 or P-cadherin (SEQ ID NO:1).
 - Figure 1B presents the amino acid sequence of the polypeptide encoded by the basal marker gene known as matrix metalloproteinase 14 (SEQ ID NO:2).
- Figure 1C presents the amino acid sequence of the polypeptide encoded by the basal
 marker gene known as cadherin EGF LAG seven-pass G-type receptor 2 or EGF-Like
 Domain, Multiple 2 (SEQ ID NO:3).
 - Figure 1D presents the amino acid sequences of peptides used to raise antibodies that recognize the cadherin 3, matrix metalloproteinase 14, cadherin EGF LAG seven-pass G-type receptor 2, and cytokeratin 17 proteins.
- Figure 2 shows a comparison of dendrograms representing the results of hierarchical clustering of experimental samples using the intrinsic gene set and the epithelial-enriched gene set.
 - Figure 3 shows breast tissue immunohistochemistry results obtained using various antibodies.
- Figure 3A shows tumor Stanford 2-P stained for immunoglobulin light chain.
 Figure 3B shows tumor Stanford 16 stained for the T-lymphocyte cell surface antigen CD3.

Figure 3C shows normal mammary duct stained for the basal epithelial cell keratins 5/6.

Figure 3D shows normal mammary duct stained for the luminal cell keratins 8/18. Figure 3E shows tumor New York 3 stained for keratin 5/6.

- Figure 3F shows tumor Stanford 16 stained for keratins 8/18.
 Figure 4A shows a Western blot demonstrating expression of the cadherin3 polypeptide in various cell lines.
 - Figure 4B shows a Western blot demonstrating expression of the matrix metalloproteinase 14 polypeptide in various cell lines.
- Figure 4C shows a Western blot demonstrating expression of the cadherin EGF LAG seven-pass G-type receptor 2 polypeptide in various cell lines.
 - Figure 5A shows a Kaplan-Meier survival curve demonstrating poor outcome in cytokeratin 17 and/or cytokeratin 5/6 positive tumors (p = 0.012).
 - Figure 5B shows a Kaplan-Meier survival curve demonstrating poor outcome in
- cytokeratin 17 and/or cytokeratin 5/6 positive tumors in lymph node negative patients (p = 0.006).
 - Figure 6 shows antibody staining of normal breast tissue cores in a breast tissue array. Figure 6A shows staining with anti-cytokeratin 5/6 monoclonal antibody.
 - Figure 6B shows staining with anti-cadherin 3 polyclonal antibody.
- Figure 6C shows staining with anti-EGF LAG seven-pass G-type receptor 2 polyclonal antibody.
 - Figure 6D shows staining with anti-metallproteinase 14 polyclonal antibody.
 - Figure 7 shows antibody staining of breast cancer tissue cores in a breast cancer tissue array.
- Figure 7A shows antibody staining with anti-cytokeratin 5/6 monoclonal antibody. Figure 7B shows antibody staining with anti-EGF LAG seven-pass G-type receptor 2 polyclonal antibody.
 - Figure 7C shows antibody staining with anti-cadherin 3 polyclonal antibody.

30 BRIEF DESCRIPTION OF THE TABLES

The tables contain the numerical data corresponding to microarray images. Some

tables list the individual genes in the various gene subsets or provide additional information.

5

10

15

20

25

30

Table 1 is a master data table for the 65 microarray experiments performed on individual tumor samples, in which rows represent I.M.A.G.E. clones that identify approximately 1753 genes whose expression varied by at least a factor of 4 and columns represent individual microarray experiments. The first 50 pages of the table consist of a reference list in which a descriptive name for each clone (where such a name exists) appears in the column entitled Name, followed by the Genbank accession number for the clone. Each row in the reference list contains a number in the first column that numerically identifies the column. In the subsequent data portion of the table (pages 1-392), each row is similarly identified by a number in the first column so that the name and Genbank accession number for the clone for which data appears in that row may be determined by consulting the reference list. In the data portion of the table, the column headings in the first row identify the tumor samples. Each data cell in the table represents the measured Cy5/Cy3 fluorescence ratio at the corresponding target element on the appropriate array. Empty cells indicate insufficient or missing data. All ratio values are log transformed (base 2) to treat inductions or repressions of identical magnitude as numerically equal but with opposite sign.

Table 2 is a master data table for the 19 microarray experiments performed on cell line samples, in which rows represent I.M.A.G.E. clones that identify approximately 1753 genes whose expression varied by at least a factor of 4 and columns represent individual microarray experiments. This table contains only a data portion, in which the column headings in the first row identify the cell lines. Each row in the table is identified by a number which appears in the first column. The same reference list that forms part of Table 1 may be consulted to determine the name and Genbank accession number for the clone for which data appears in that row. Each data cell in the table represents the measured Cy5/Cy3 fluorescence ratio at the corresponding target element on the appropriate array. Empty cells indicate insufficient or missing data. All ratio values are log transformed (base 2) to treat inductions or repressions of

identical magnitude as numerically equal but with opposite sign.

Table 3 presents a listing and description of the 11 cell lines used to create the common reference sample.

5

10

25

30

Table 4 presents a complete listing of the 84 experimental samples that were assayed versus the common reference sample. The table includes a list of alternate names (in the column entitled Sample ID/old name) for the same tumors. The alternate names are used to identify the tumor samples in certain contexts, and the table allows conversion between the two sets of names.

Table 5 lists the tumors used in the experiments described herein, along with clinical and pathological information about each tumor/patient.

15 Table 6 is a master data table for the 84 microarray experiments performed on individual tumor, tissue, and cell line samples, in which rows represent I.M.A.G.E. clones that identify the 496 genes in the intrinsic gene set, and columns represent individual microarray experiments. The first 15 pages of the table consist of a reference list in which a descriptive name for each clone (where such a name exists) 20 appears in the column entitled Name, followed by the Genbank accession number for the clone. Each row in the reference list contains a number in the first column that numerically identifies the column. In the subsequent data portion of the table (pages 1 -91), each row is similarly identified by a number in the first column so that the name and Genbank accession number for the clone for which data appears in that row may be determined by consulting the reference list. In the data portion of the table, the column headings in the first row identify the tumor samples. Each data cell in the table represents the measured Cy5/Cy3 fluorescence ratio at the corresponding target element on the appropriate array. Empty cells indicate insufficient or missing data. All ratio values are log transformed (base 2) to treat inductions or repressions of identical magnitude as numerically equal but with opposite sign.

Table 7 is a listing of the 374 clones that identify genes selected for the epithelial

enriched gene set including Genbank accession numbers.

Table 8 is a listing of the clones that identify genes that comprise the luminal subset including Genbank accession numbers.

5

Tables 9-1 and 9-2 are listings of the two groups of clones that identify genes that comprise the basal subset including Genbank accession numbers.

Table 10 is a listing of the clones that identify genes that comprise the *ErbB2* subset including Genbank accession numbers.

Table 11 is a listing of the clones that identify genes that comprise the endothelial gene subset including Genbank accession numbers.

15 Table 12 is a listing of the clones that identify genes that comprise the stromal/fibroblast gene subset including Genbank accession numbers.

Table 13 is a listing of the clones that identify genes that comprise the B-cell gene subset including Genbank accession numbers.

20

Table 14 is a listing of the clones that identify genes that comprise the adiposeenriched/normal breast gene subset including Genbank accession numbers.

Table 15 is a listing of the clones that identify genes that comprise the macrophage gene subset including Genbank accession numbers.

Table 16 is a listing of the clones that identify genes that comprise the T-cell gene subset including Genbank accession numbers.

In Table 1, the Genbank accession number for each clone appears in the column entitled "Name", following a brief descriptive name for the gene identified by the clone, where available. In some cases the descriptive name is a number corresponding

to an I.M.A.G.E. clone ID number. As is well known and accepted in the art, the Genbank accession number represents a means of definitively identifying a particular clone, since Genbank accession numbers will be maintained permanently or, if changed, the change will be accomplished in such a manner as to allow unambiguous correlation between any new numbering system and the numbering system currently in use.

Note that Tables 1, 2, and 6 are provided for purposes of presenting the clone identifications and the data that was used to perform hierarchical clustering analysis, and that the format of the tables may not correspond exactly with the format required by software developed for the analysis of the data. Appropriate format will, in general, depend upon the particular computer program. See, for example, the Web site http://genome-www.stanford.edu/~sherlock/tutorial.html for discussion of the appropriate format for one particular analysis program.

In Tables 7 – 16, each entry identifies a clone. The first portion of each entry is a brief descriptive name for the gene identified by the clone. The Genbank accession number for the clone appears on the last line of the entry for that clone.

DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS DEFINITIONS

To facilitate understanding of the invention, the following definitions are provided. It is to be understood that, in general, terms not otherwise defined are to be given their meaning or meanings as generally accepted in the art.

25

30

20

5

10

Agonist: As used herein, the term "agonist" refers to a molecule that increases or prolongs the duration of the effect of a polypeptide or a nucleic acid. Agonists may include proteins, nucleic acids, carbohydrates, lipids, small molecules, ions, or any other molecules that modulate the effect of the polypeptide or nucleic acid. An agonist may be a direct agonist, in which case it is a molecule that exerts its effect by binding to the polypeptide or nucleic acid, or an indirect agonist, in which case it exerts its effect via a mechanism other than binding to the polypeptide or nucleic acid

(e.g., by altering expression or stability of the polypeptide or nucleic acid, by altering the expression or activity of a target of the polypeptide or nucleic acid, by interacting with an intermediate in a pathway involving the polypeptide or nucleic acid, etc.)

Antagonist: As used herein, the term "antagonist" refers to a molecule that decreases or reduces the duration of the effect of a polypeptide or a nucleic acid. Antagonists may include proteins, nucleic acids, carbohydrates, or any other molecules that modulate the effect of the polypeptide or nucleic acid. An antagonist may be a direct antagonist, in which case it is a molecule that exerts its effect by binding to the polypeptide or nucleic acid, or an indirect antagonist, in which case it exerts its effect via a mechanism other than binding to the polypeptide or nucleic acid (e.g., by altering expression or stability of the polypeptide or nucleic acid, by altering the expression or activity of a target of the polypeptide or nucleic acid, by interacting with an intermediate in a pathway involving the polypeptide or nucleic acid, etc.)

15

20

25

5

10

Basal cell: The term "basal cell" is a general term applied to any stratified or pseudostratified epithelium. It refers to cells which are juxtaposed to the basement membrane and under one or more additional epithelial layers. Mammary tissue can have both a two cell layer epithelium (basal and luminal cells) or in the duct system, a single layered epithelium. In the two cell layer, the cells adjacent to the basement membrane are termed "basal cells" and express basal cell markers (e.g., cytokeratin 17 and cytokeratin 5/6). In pseudostratified epitheum "non-basal" cells can also contact the basement membrane but since normal breast epithelium is not, in general, pseudostratified, breast basal cells are cells located adjacent to basement membrane and under one or more additional layers of epithelial cells. As used herein, the term "basal cell" is distinct from "myoepithelial cell" in that myoepithelial cell refers to cells that have the contractual apparatus for milk excretion by the ducts (i.e., they express contractile proteins).

30

Breast basal cell marker: A gene whose expression is characteristic of basal cells of normal breast lactation ducts, or an expression product of such a gene (e.g., an mRNA

or polypeptide). The marker may be used to distinguish basal cells from other cells in the breast, e.g., luminal cells. In the case of a marker that is a polypeptide, antibodies to the polypeptide stain cells in the basal layer of normal breast lactation ducts when used to perform immunohistochemistry on breast tissue samples. Since the present invention is concerned primarily with breast cancer, the term "basal cell marker" is used interchangeably with "breast basal cell marker" herein unless otherwise indicated. Examples of basal cell markers include the cytokeratin 5 and cytokeratin 17 genes, mRNAs, and proteins, in addition to the newly identified basal cell markers described herein.

Breast basal tumor marker: A gene whose expression is characteristic of basal cells in the normal breast lactation duct and which is also expressed in a subset of breast tumors, or an expression product of such a gene. These genes include cytokeratin 5 and cytokeratin 17, which are known from the prior art to distinguish breast basal cells from other breast tissue cells, and the genes identified herein. Antibodies to the proteins encoded by these genes identify basal breast cells when used to perform immunohistochemical staining of normal breast tissue, i.e., they stain cells in the basal epithelial layer. The term "basal tumor marker" is used interchangeably with "breast basal tumor marker" herein unless otherwise indicated.

Breast basal tumor subclass: The breast basal tumor subclass, as used herein, refers to breast tumors that display characteristics of basal cells of normal breast lactation ducts. Such characteristics include expression of genes whose expression has been shown to discriminate between normal basal cells of breast lactation ducts and other cells in the breast, including luminal cells of breast lactation ducts. These genes include cytokeratin 5 and cytokeratin 17, which are known from the prior art to distinguish breast basal cells from other breast tissue cells, and the genes identified herein. Antibodies to the proteins encoded by these genes identify basal breast cells when used to perform immunohistochemical staining of normal breast tissue, i.e., they stain cells in the basal epithelial layer. The term "breast basal tumor subclass" is used interchangeably with "basal tumor subclass" herein unless otherwise indicated.

Diagnostic information: As used herein, diagnostic information or information for use in diagnosis is any information that is useful in determining whether a patient has a disease or condition and/or in classifying the disease or condition into a phenotypic category or any category having significance with regards to the prognosis of or likely response to treatment (either treatment in general or any particular treatment) of the disease or condition. Similarly, diagnosis refers to providing any type of diagnostic information, including, but not limited to, whether a subject is likely to have a condition (such as a tumor), information related to the nature or classification of a tumor, information related to prognosis and/or information useful in selecting an appropriate treatment. Selection of treatment may include the choice of a particular chemotherapeutic agent or other treatment modality such as surgery, radiation, etc., a choice about whether to withhold or deliver therapy, etc.

Differential expression: A gene exhibits differential expression at the RNA level if its RNA transcript varies in abundance between different samples in a sample set. A gene exhibits differential expression at the protein level, if a polypeptide encoded by the gene varies in abundance between different samples in a sample set. In the context of a microarray experiment, differential expression generally refers to differential expression at the RNA level.

Gene: For the purposes of the present invention, the term "gene" has its meaning as understood in the art. However, it will be appreciated by those of ordinary skill in the art that the term "gene" has a variety of meanings in the art, some of which include gene regulatory sequences (e.g., promoters, enhancers, etc.) and/or intron sequences, and others of which are limited to coding sequences. It will further be appreciated that definitions of "gene" include references to nucleic acids that do not encode proteins but rather encode functional RNA molecules such as tRNAs. For the purpose of clarity we note that, as used in the present application, the term "gene" generally refers to a portion of a nucleic acid that encodes a protein; the term may optionally encompass regulatory sequences. This definition is not intended to exclude application of the term "gene" to non-protein coding expression units but rather to

clarify that, in most cases, the term as used in this document refers to a protein coding nucleic acid.

Gene product or expression product: A gene product or expression product is, in general, an RNA transcribed from the gene or a polypeptide encoded by an RNA transcribed from the gene.

-5

10

15

20

25

30

Marker: A marker, as used herein, refers to a gene whose expression is characteristic of a particular cell type. The term may also refer to a product of gene expression, e.g., an RNA transcribed from the gene or a translation product of such an RNA, the production of which is characteristic of a particular cell type. The cell type may be defined based on any phenotypic criterion. For example, a normal breast basal cell is defined based on its position within an epithelial layer. In some cases expression of a marker gene may be the sole criterion used to define the cell type. The statistical significance of the presence or absence of a marker gene expression product may vary depending upon the particular marker. In some cases the detection of a marker is highly specific in that it reflects a high probability that the cell is of a particular type. This specificity may come at the cost of sensitivity, i.e., a negative result may occur even if the cell is a cell that would be expected to express the marker. Conversely, markers with a high degree of sensitivity may be less specific than those with lower sensitivity. Thus it will be appreciated that a useful marker need not distinguish cells of a particular type with 100% accuracy. Furthemore, it will be appreciated that the use of multiple markers may improve the specificity and/or sensitivity with which a cell can be identified as being of a particular cell type. The concept of a marker may be applied not only to individual cells, but also to tumors or to other disease states. In the case of tumors, a marker for a particular tumor class is a gene whose expression is characteristic of a particular tumor type, i.e., a gene whose expression is characteristic of some or all of the cells in the tumor. The term may also refer to a product of gene expression, e.g., an RNA transcribed from the gene or a translation product of such an RNA, the production of which is characteristic of a particular tumor type, i.e., of some or all of the cells in the tumor.

Prognostic information and predictive information: As used herein the terms prognostic information and predictive information are used interchangeably to refer to any information that may be used to foretell any aspect of the course of a disease or condition either in the absence or presence of treatment. Such information may include, but is not limited to, the average life expectancy of a patient, the likelihood that a patient will survive for a given amount of time (e.g., 6 months, 1 year, 5 years, etc.), the likelihood that a patient will be cured of a disease, the likelihood that a patient's disease will respond to a particular therapy (wherein response may be defined in any of a variety of ways). Prognostic and predictive information are included within the broad category of diagnostic information.

5

10

15

20

25

30

Response: As used herein a response to treatment may refer to any beneficial alteration in a subject's condition that occurs as a result of treatment. Such alteration may include stabilization of the condition (e.g., prevention of deterioration that would have taken place in the absence of the treatment), amelioration of symptoms of the condition, improvement in the prospects for cure of the condition, etc. One may refer to a subject's response or to a tumor's response. In general these concepts are used interchangeably herein. Tumor or subject response may be measured according to a wide variety of criteria, including clinical criteria and objective criteria. Techniques for assessing response include, but are not limited to, clinical examination, chest Xray, CT scan, MRI, ultrasound, endoscopy, laparoscopy, presence or level of tumor markers in a sample obtained from a subject, cytology, histology. Many of these techniques attempt to determine the size of a tumor or otherwise determine the total tumor burden. Methods and guidelines for assessing response to treatment are discussed in Therasse P., et al., "New guidelines to evaluate the response to treatment in solid tumors", European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst, Feb 2;92(3):205-16, 2000. The exact response criterion can be selected in any appropriate manner, provided that when comparing groups of tumors and/or patients, the groups to be compared are assessed based on the same or comparable criteria for determining response rate. One of ordinary skill in the art will be able to select appropriate criteria.

Sample: As used herein, a sample obtained from a subject may include, but is not limited to, any or all of the following: a cell or cells, a portion of tissue, blood, serum, ascites, urine, saliva, and other body fluids, secretions, or excretions. The term "sample" also includes any material derived by processing such a sample. Derived samples may include nucleic acids or proteins extracted from the sample or obtained by subjecting the sample to techniques such as amplification or reverse transcription of mRNA, etc.

10

15

20

25

30

Specific binding: As used herein, the term refers to an interaction between a target polypeptide (or, more generally, a target molecule) and a binding molecule such as an antibody, agonist, or antagonist. The interaction is typically dependent upon the presence of a particular structural feature of the target polypeptide such as an antigenic determinant or epitope recognized by the binding molecule. For example, if an antibody is specific for epitope A, the presence of a polypeptide containing epitope A or the presence of free unlabeled A in a reaction containing both free labeled A and the antibody thereto, will reduce the amount of labeled A that binds to the antibody. It is to be understood that specificity need not be absolute. For example, it is well known in the art that numerous antibodies cross-react with other epitopes in addition to those present in the target molecule. Such cross-reactivity may be acceptable depending upon the application for which the antibody is to be used. One of ordinary skill in the art will be able to select antibodies having a sufficient degree of specificity to perform appropriately in any given application (e.g., for detection of a target molecule, for therapeutic purposes, etc). It is also to be understood that specificity may be evaluated in the context of additional factors such as the affinity of the binding molecule for the target polypeptide versus the affinity of the binding molecule for other targets, e.g., competitors. If a binding molecule exhibits a high affinity for a target molecule that it is desired to detect and low affinity for nontarget molecules, the antibody will likely be an acceptable reagent for immunodiagnostic purposes. Once the specificity of a binding molecule is established in one or more contexts, it may be employed in other, preferably similar, contexts without necessarily re-evaluating its specificity.

Treating a tumor: As used herein, treating a tumor is taken to mean treating a subject who has the tumor.

Tumor sample: The term "tumor sample" as used herein is taken broadly to include cell or tissue samples removed from a tumor, cells (or their progeny) derived from a tumor that may be located elsewhere in the body (e.g., cells in the bloodstream or at a site of metastasis), or any material derived by processing such a sample. Derived tumor samples may include nucleic acids or proteins extracted from the sample or obtained by subjecting the sample to techniques such as amplification or reverse transcription of mRNA, etc.

Tumor subclass: A tumor subclass, also referred to herein as a tumor subset or tumor class, is the group of tumors that display one or more phenotypic or genotypic characteristics that distinguish members of the group from other tumors.

I. Overview and Description of the Basal Marker Genes, Polynucleotides, and Polypeptides

15

20

25

30

The present invention provides new reagents and methods for the management (e.g., detection, classification, provision of diagnostic and prognostic information, treatment, etc.) of breast cancer. Significant progress has been made in understanding risk factors, including genetic factors, that may contribute to breast cancer (See, for example, Vogelstein, B. and Kinzler, eds., "Breast Cancer", by Couch, F. and Weber, B. in *The Genetic Basis of Human Cancer*, McGraw Hill, 1998), but the relevance of these factors to clinical outcome remains unclear. The most powerful prognosticators are clinical features such as lymph node status, tumor size, and tumor grade. In addition, the expression level and antibody staining pattern of several proteins are predictive of outcome and of the likelihood of response to therapy. However, the clinical outcome of individual patients remains uncertain. In addition, the ability to predict which patients are likely to benefit from a particular type of therapy (e.g., a certain drug or class of drug) remains elusive.

5

10

15

20

25

30

The invention encompasses the realization that high throughput analysis techniques, e.g., those involving the use of cDNA microarrays, can be used to provide new insights into the biology of breast cancer. By analyzing the transcriptional profiles of a large number of breast tumor samples and by undertaking comparisons, e.g., between tumors associated with varying prognoses, between primary tumors and metastases, between tumors before and after treatment, and between tumors with differing responses to therapy, the present invention provides new tools and methods for classifying tumors and defines new classes of tumors based on these methods. The invention identifies genes and gene subsets that are useful in classifying breast tumors. In addition, the methods described herein identify genes that are likely to play a role in breast cancer development, progression, and/or response to therapy. Classification based on expression of particular genes may be used to predict clinical course or to predict sensitivity to chemotherapeutic agents. Ultimately such classification may be used to guide selection of appropriate therapy. As described herein, detection of mRNA and protein corresponding to differentially expressed genes provides new methods of use in cancer prognosis, diagnosis, and treatment selection. In addition, differentially expressed genes and their encoded proteins provide targets for the identification of new therapies for breast cancer.

As described in further detail below, the invention employs methods for clustering genes into groups by determining their expression patterns across a set of samples obtained from breast tumors and from normal breast tissue. The invention also clusters the breast tumor and normal breast tissue samples into groups based on similarities in their expression of a set of genes. This two-dimensional clustering approach permits the association of particular classes of tumors with particular subsets of genes that, for example, show relatively high levels of expression in the tumors. Correlation with clinical information indicates that the tumor classes have clinical significance in terms of prognosis or response to chemotherapy.

Genes that are relatively overexpressed in tumors may be particularly appropriate targets for the development of new therapeutic agents. Any gene (or combination of genes) that is overexpressed in some tumors forms a basis by which tumors can be divided into different groups. As demonstrated herein, when particular sets of genes are used such groups have clinical significance in that, for example, they

display differences in prognosis. However, regardless of whether the resulting division has significance in terms of known clinical parameters, therapeutic agents directed towards such genes or towards their encoded proteins would be expected to be specific for the tumors that overexpress the genes. Thus the invention offers an opportunity for the development and selection of therapeutic agents based on specific properties of a tumor. In other words, any gene that is overexpressed in a subset of tumors can be used to define that subclass and is a potential target for the development of a therapeutic agent that is specific for that tumor subclass.

5

10

15

20

25

30

In particular, tumors that display characteristics of basal cells of the normal breast lactation gland (also referred to herein as breast basal cells) form a distinct subclass (referred to herein as the basal subclass). It is known in the art that two distinct types of epithelial cells are found in the adult human mammary gland: basal cells and luminal epithelial cells. Expression of cytokeratin 5 and/or cytokeratin 17 is a characteristic of basal cells of the normal mammary lactation gland, while cytokeratins 8 and 18 are expressed in luminal cells. Cytokeratins are a family of intermediate filament proteins; members of which are found in most or all epithelial cell types (Moll, R., et al., "The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors, and cultured cells", Cell, 31(1), 11-24, 1982. Intermediate-sized filaments are morphologically similar but biochemically and immunologically distinguishable cytoplasmic proteins of which five major filament types have been identified (cytokeratin, vimentin, desmin, neurofilament protein, glia filament protein), and antibodies to these proteins have been used for distinguishing different cell types and tumors derived therefrom. Epithelial and carcinoma cells are characterized by the presence of cytokeratin filaments that can be identified by antibodies. These antibodies can be used to distinguish between different cell and tumor types (Dobus, E., et al., "Immunohistochemical distinction of human carcinomas by cytokeratin typing with monoclonal antibodies", Am J. Pathol., 114(1): 121-30, 1984). In particular, antibodies against cytokeratins 5/6, 17, 8, and 18 may be used to distinguish between breast basal and luminal cell types in normal breast and in tumors (See, e.g., Purkis, P., et al., "Antibody markers of basal cells in complex epithelia", J. Clin. Pathol., 48:26-32, 1990; Taylor, -Papadimitriou and Lane, E., "Keratin expression in the mammary gland" in Neville, M and Daniel C, eds. The

5

10

15

20

Mammary Gland: Development, Regulation, and Function. New York: Plenum, pp. 181-215, 1987; Dairkee, S., et al., "Immunolocalization of a human basal epithelium-specific keratin in benign and malignant breast disease. Breast Cancer Res. Treat., 10:11-20, 1987.)

Several previous studies suggested that expression of basal cell keratins is associated with a poor clinical outcome (Dairkee, S.H., et al., "Monoclonal antibody that predicts early recurrence of breast cancer", Lancet, 1:514, 1987; Malzahn, K., et al., "Biological and prognostic significance of stratified epithelial cytokeratins in infiltrating ductal breast carcinomas", Virchows Archiv, 433:119-29, 1998). Inventors have confirmed, in a large-scale study, that patients with breast tumors whose cells display characteristics of breast basal cells, e.g., expression of cytokeratin 5 and/or cytokeratin 17, have a poor clinical outcome relative to patients with breast tumors that do not express these markers. However, antibodies to these cytokeratins have been found (by the inventors and by other investigators) to give spotty, focal staining patterns when used to perform immunohistochemistry on breast tumor samples. Thus the utility of cytokeratins 5 and 17 as markers and the utility of antibodies that bind to cytokeratin 5 or 17 for determining whether a tumor is a member of the basal subclass has been limited.

The inventors have therefore identified genes whose mRNA expression profiles across a large set of tumor samples correlate with, i.e., are similar to, the expression profiles of the known basal cell markers cytokeratins 5 and 17. These genes include the basal marker genes of the present invention, i.e., genes that encode cadherin3 or P-cadherin (SEQ ID NO:1; GenBank protein accession number NP_001399; GenBank cDNA accession number NM_001408), matrix metalloproteinase 14 (SEQ ID NO:2;

- 25 GenBank protein accession number NP_004986; GenBank cDNA accession number NM_004995); and cadherin EGF LAG seven-pass G-type receptor 2 or EGF-Like Domain, Multiple 2 (SEQ ID NO:3; GenBank protein accession number NP_001784; GenBank cDNA accession number NM_001793). A portion of the cadherin3 gene was present as I.M.A.G.E. clone 777301 on the cDNA microarray described below.
- 30 This clone is entry #421 in Table 1. A portion of the matrix metalloproteinase 14 gene was present as I.M.A.G.E. clone 270505 on the cDNA microarray described below. This clone is entry #424 in Table 1. A portion of the cadherin EGF LAG

seven-pass G-type receptor 2 gene was present as I.M.A.G.E. clone 175103 on the cDNA microarray described below. This clone is entry #1443 in Table 1.

Information about these genes may be found at NCBI's LocusLink

(http://www.ncbi.nlm.nih.gov/LocusLink), among other sources. As described in

Examples 10 and 13, the inventors have generated antibodies to the proteins expressed by these genes and shown that the antibodies stain basal cells of normal mammary lactation glands. Thus detection of one or more expression products of these genes may be used to identify tumors that fall within the basal tumor subclass.

10

15

20

25

30

As is well known in the art, breast carcinomas lose the typical histology and architecture of normal breast glands. Generally, carcinoma cells overgrow the normal cells and lose their ability to differentiate into glandular like structures. The degree of loss of differentiation in general is related to the aggressiveness of the tumor. For example, "in situ" carcinoma by definition retains the basement membrane intact, whereas as it progresses to "invasive", the tumor shows breakout of basement membranes. Thus one would not expect to see, within breast carcinomas, staining of a discrete layer of basal cells as seen in normal breast tissue. For a discussion of the physiology and histology of normal breast and breast carcinoma, see Ronnov-Jessen, L., Petersen, O. W. & Bissell, M. J. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 76, 69-125 (1996).

The basal marker genes provided herein are expressed in the best model of basal cells (HMECs, Human Mammary Epithelial Cells) and based on antibody staining, in normal breast basal cells. Therefore describing them as basal markers is appropriate. However, in addition to their specific staining properties, a major characteristic that makes these genes and their expression products useful is their variation in expression across cohorts of breast carcinoma patients, which portends their utility in stratification of breast carcinoma patients. While not wanting to be limited by the implications of having chosen a particular descriptor (i.e. "basal") inventors refer to the set of genes, proteins, and antibody reactivity patterns as "basal" as it serves as a reminder of their utility in recognizing breast tumor cells that have characteristics

reminiscent of normal breast basal cells. Breast tumors containing such cells are likewise referred to as "basal" without intending any limitations thereby.

5

10

15

20

25

30

Two of the basal marker genes, cadherin3 and cadherin EGF LAG seven-pass G-type receptor 2 encode members of the cadherin superfamily. The cadherin EGF LAG seven-pass G-type receptor 2 or EGF-Like Domain, Multiple 2 protein is a member of the flamingo subfamily, part of the cadherin superfamily. The cadherins are a large family of proteins with critical roles in the regulation of cell-cell adhesion. Generally expressed in development- or tissue-specific manners, these factors have been shown to have important roles in development, cellular proliferation, and differentiation. The cadherin superfamily include classic cadherins, desmogleins, desmocollins, protocadherins, CNRs, Fats, and seven-pass transmembrane cadherins (for review see Nollet et al. 2000). Typically transmembrane proteins, the cadherins are characterized by the unique cadherin, or EC, domain. These cadherin domains, which are involved in Ca ++ binding (Takeichi 1990), are repeated in the extracellular region of all of the family members. The amino acid sequences of other regions shows significant divergence among members, suggesting functional diversity amongst the various cadherin proteins. However, amid the members of each subfamily, the cytoplasmic domains are conserved. In the classic cadherins, which are components of adherens junctions and desmoplakin plaques, this region interacts with catenin p120cm, and plakoglobin or β-catenin. The latter binds to α-catenin, and this molecular complex further associates with \alpha-actinin, F-actin and other cytoskeletal proteins. Consistent with their roles in regulating cell-cell adhesion events, altered expression of cadherin genes has been associated with human cancer. Alteration of cadherin function may lead to subsequent metastasis by disaggregation of tumor cells, and one proposed role of many cadherins studied to date is as tumor- and invasionsuppressors. Further discussion of some of the many members of the cadherin superfamily and their possible role in cancer is found in references 53-61.

The flamingo subfamily consists of nonclassic-type cadherins; a subpopulation that does not interact with catenins. The flamingo cadherins are located at the plasma membrane and have nine cadherin domains, seven epidermal growth factor-like repeats and two laminin A G-type repeats in their ectodomain. They also have seven transmembrane domains, a characteristic unique to this subfamily. While not wishing

to be bound by any theory, it is postulated that these proteins are receptors involved in contact-mediated communication, with cadherin domains acting as homophilic binding regions and the EGF-like domains involved in cell adhesion and receptor-ligand interactions. The cadherin EGF LAG seven-pass G-type receptor 2 gene (also known as CELSR2) has not been as extensively studied as the classic cadherins, but is implicated in cell signaling. The *Drosophila* homolog of this gene has been studied in more detail, and is clearly important in regulating different cellular events (Usui T, Shima Y, Shimada Y, Hirano S, Burgess RW, Schwarz TL, Takeichi M, Uemura T, "Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled", *Cell* 1999 Sep 98:585-95.

While not wishing to be bound by any theory, it is postulated that this protein is a

While not wishing to be bound by any theory, it is postulated that this protein is a receptor involved in contact-mediated communication, with the cadherin domains acting as homophilic binding regions and the EGF-like domains involved in cell adhesion and receptor-ligand interactions.

15

20

25

30

Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes, such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes, such as arthritis and metastasis. Most MMP's are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. However, matrix metalloproteinase 14 protein is a member of the membrane-type MMP (MT-MMP) subfamily; each member of this subfamily contains a potential transmembrane domain suggesting that these proteins are expressed at the

a potential transmemorane domain suggesting that these proteins are expressed at the cell surface rather than secreted. This protein activates MMP2 protein, and this activity may be involved in tumor invasion.

Cadherin3 is predicted to be membrane-bound, with an extracellular portion. As indicated by the presence of seven putative transmembrane domains, cadherin EGF LAG seven-pass G-type receptor 2 is also likely to be a membrane bound protein. The presence of a predicted transmembrane domain indicates that matrix metalloproteinase 14 is also membrane bound. The likelihood that the proteins encoded by the basal marker genes are membrane bound makes them attractive candidate for the application of serological assays for diagnostic purposes. In addition,

the likelihood that cadherin3, cadherin EGF LAG seven-pass G-type receptor 2, and matrix metalloproteinase 14 are membrane bound makes them attractive candidates for antibody therapeutics.

The invention provides antibodies that specifically bind to the polypeptide expression products of the basal marker genes, i.e., the polypeptides of SEQ ID NO:1, 2, and 3. The antibodies stain basal cells of the normal mammary lactation gland. In certain embodiments of the invention the antibodies distinguish basal cells from luminal cells in normal mammary lactation glands.

The antibodies are potentially useful as therapeutic reagents for cancer, particularly breast cancer, either by themselves or when conjugated to or delivered with another molecule such as a toxic compound. The invention further provides pharmaceutical compositions comprising agonists or antagonists of the polynucleotides and their encoded polypeptides, and methods of use thereof for the treatment of cancer. The invention includes a variety of methods for providing information of use in the prognosis, classification, diagnosis, etc. of cancer, particularly breast cancer.

In order that the manner in which the basal cell marker genes of the present invention were identified may be better understood, a description of cDNA microarray technology is provided below. Following this description the specific experimental approach employed herein is described. Certain aspects of the invention are then described in further detail.

II. cDNA Microarray Technology

5

10

15

20

25

30

cDNA microarrays consist of multiple (usually thousands) of different cDNAs spotted (usually using a robotic spotting device) onto known locations on a solid support, such as a glass microscope slide. The cDNAs are typically obtained by PCR amplification of plasmid library inserts using primers complementary to the vector backbone portion of the plasmid or to the gene itself for genes where sequence is known. PCR products suitable for production of microarrays are typically between 0.5 and 2.5 kB in length. Full length cDNAs, expressed sequence tags (ESTs), or randomly chosen cDNAs from any library of interest can be chosen. ESTs are partially sequenced cDNAs as described, for example, in L. Hillier, et al., Generation

and analysis of 280,000 human expressed sequence tags, Genome Research, 6, 807-828, 1996. The afore-mentioned article is herein incorporated by reference, as are the entire teachings of all other patents and journal articles mentioned herein, for all purposes and not just those related to the particular context in which they are mentioned. Although some ESTs correspond to known genes, frequently very little or no information regarding any particular EST is available except for a small amount of 3' and/or 5' sequence and, possibly, the tissue of origin of the mRNA from which the EST was derived. As will be appreciated by one of ordinary skill in the art, in general the cDNAs contain sufficient sequence information to uniquely identify a gene within the human genome. Furthermore, in general the cDNAs are of sufficient length to hybridize, preferably specifically and yet more preferably uniquely, to cDNA obtained from mRNA derived from a single gene under the hybridization conditions of the experiment.

10

In a typical microarray experiment, a microarray is hybridized with 15 differentially labeled RNA or DNA populations derived from two different samples. Most commonly RNA (either total RNA or poly A⁺ RNA) is isolated from cells or tissues of interest and is reverse transcribed to yield cDNA. Labeling is usually performed during reverse transcription by incorporating a labeled nucleotide in the reaction mixture. Although various labels can be used, most commonly the 20 nucleotide is conjugated with the fluorescent dyes Cy3 or Cy5. For example, Cy5dUTP and Cy3-dUTP can be used. cDNA derived from one sample (representing, for example, a particular cell type, tissue type or growth condition) is labeled with one fluor while cDNA derived from a second sample (representing, for example, a different cell type, tissue type, or growth condition) is labeled with the second fluor. 25 Similar amounts of labeled material from the two samples are cohybridized to the microarray. In the case of a microarray experiment in which the samples are labeled with Cy5 (which fluoresces red) and Cy3 (which fluoresces green), the primary data (obtained by scanning the microarray using a detector capable of quantitatively detecting fluorescence intensity) are ratios of fluorescence intensity (red/green, R/G). 30 These ratios represent the relative concentrations of cDNA molecules that hybridized to the cDNAs represented on the microarray and thus reflect the relative expression levels of the mRNA corresponding to each cDNA/gene represented on the microarray.

Each microarray experiment can provide tens of thousands of data points, each representing the relative expression of a particular gene in the two samples. Appropriate organization and analysis of the data is of key importance. Various computer programs that incorporate standard statistical tools have been developed to 5 facilitate data analysis. One basis for organizing gene expression data is to group genes with similar expression patterns together into clusters. A method for performing hierarchical cluster analysis and display of data derived from microarray experiments is described in Eisen, M., Spellman, P., Brown, P., and Botstein, D., Cluster analysis and display of genome-wide expression patterns, *Proc. Natl. Acad.* Sci. USA, 95: 14863-14868, 1998. As described therein, clustering can be combined with a graphical representation of the primary data in which each data point is represented with a color that quantitatively and qualitatively represents that data point. By converting the data from a large table of numbers into a visual format, this process facilitates an intuitive analysis of the data. Additional information and details regarding the mathematical tools and/or the clustering approach itself may be found, for example, in Sokal, R.R. & Sneath, P.H.A. Principles of numerical taxonomy, xvi, 359, W. H. Freeman, San Francisco, 1963; Hartigan, J.A. Clustering algorithms, xiii, 351, Wiley, New York, 1975; Paull, K.D. et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst 81, 1088-92,1989; Weinstein. J.N. et al. Neural computing in cancer drug development: predicting mechanism of action. Science 258, 447-51, 1992; van Osdol, W.W., Myers, T.G., Paull, K.D., Kohn, K.W. & Weinstein, J.N. Use of the Kohonen self-organizing map to study the mechanisms of action of chemotherapeutic agents. J Natl Cancer Inst 86, 1853-9, 1994; and Weinstein, J.N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science, 275, 343-9, 1997.

10

15

20

25

30

Further details of the experimental methods used in the present invention are found in the Examples. Additional information describing methods for fabricating and using microarrays is found in U.S. Patent No. 5,807,522, which is herein incorporated by reference. Instructions for constructing microarray hardware (e.g., arrayers and scanners) using commercially available parts can be found at http://cmgm.stanford.edu/pbrown/ and in Cheung, V., Morley, M., Aguilar, F.,

Massimi, A., Kucherlapati, R., and Childs, G., Making and reading microarrays,
 Nature Genetics Supplement, 21:15-19, 1999, which are herein incorporated by
 reference. Additional discussions of microarray technology and protocols for
 preparing samples and performing microrarray experiments are found in, for example,
 DNA arrays for analysis of gene expression, Methods Enzymol, 303:179-205, 1999;
 Fluorescence-based expression monitoring using microarrays, Methods Enzymol, 306:
 3-18, 1999; and M. Schena (ed.), DNA Microarrays: A Practical Approach, Oxford
 University Press, Oxford, UK, 1999. Descriptions of how to use an arrayer and the
 associated software are found at
 http://cmgm.stanford.edu/pbrown/mguide/arrayerHTML/ArrayerDocs.html, which is

III. Experimental Approach of the Invention

herein incorporated by reference.

15

20

25

30

The present invention encompasses the realization that genes that are differentially expressed are of use in classifying tumors. Differentially expressed genes are likely to be responsible for the different phenotypic characteristics of tumors. The present invention identifies such genes. In general, a differentially expressed gene is a gene whose transcript abundance varies between different samples, e.g., between different tumor samples, between normal versus tumor samples, etc. In the case of the experiment described herein, the transcript level of a differentially expressed gene varies by at least 4-fold from its average abundance in a given sample set in at least 3 of the samples. However, genes that display smaller variations in expression are also within the scope of the invention. In general, the amount by which the expression varies and the number of samples in which the expression varies by that amount will depend upon the number of samples and the particular characteristics of the samples. One skilled in the art will be able to determine, based on knowledge of the samples, what constitutes a significant degree of differential expression.

While analysis of multiple genes is of use in developing a robust classification of tumors, each of the differentially expressed genes and their encoded proteins is a target for the development of diagnostic and therapeutic agents. Investigation of

variation in individual genes in breast tumors reveals that molecular variation can be related to important features of clinical variation. For example, expression of the estrogen receptor alpha gene (ESR1), the Erb-B2/HER2/neu oncogene, and the mutational status at the TP53, BRCA1 and BRCA2 loci have shown that molecular variation can be related to important features of clinical variation. (Discussed, for example, in Osborne, C.K., et al., The value of estrogen and progesterone receptors in the treatment of breast cancer, Cancer 46, 2884-2888, 1980; Ingvarsson, S., Molecular genetics of breast cancer progression, Seminars in Cancer Biology, 9, 277-288, 1999;

5

20

25

30

Breast Cancer Linkage Consortium, Pathology of familial breast cancer: differences between breast cancers in carriers of BRCA1 and BRCA2 mutations and sporadic cases, Lancet, 349, 1505-1510, 1997; Anderson, T. I., et al., Prognostic significance of TP53 alterations in breast carcinoma. Br J Cancer, 68, 540-548, 1993 and references cited in these articles). In particular, approximately 60% to 70% of breast tumors
express the estrogen receptor, and this expression has been shown to be a favorable prognostic factor (reviewed in Allred, D.C., et al. Prognostic and Predictive Factors in Breast Cancer by Immunohistochemical Analysis, Modern Pathology, 11(2), 155-168, 1998).

As described in more detail in Examples 1, 2, and 4, cDNA microarrays each representing the same set of approximately 8100 different human genes were produced. The human cDNA clones used to produce the microarrays contained approximately 4000 named genes, 2000 genes with homology to named genes in other species, and approximately 2000 ESTs of unknown function. An mRNA sample was obtained from each of a set of 84 tissue samples or cell lines. The expression levels of the approximately 8100 genes were measured in each mRNA sample by hybridization to an individual microarray, yielding an expression profile for each gene across the experimental samples. Although more details will be found in the Examples, an overview of the experimental procedure is presented here so that the invention may be better understood.

Variation in patterns of gene expression were characterized in 62 breast tumor samples from 40 different patients, 3 normal breast tissue samples, and 19 samples from 17 cultured human cell lines (one of which was sampled 3 times under different

conditions). Twenty of the tumors had been sampled twice, before and after a 16 week course of doxorubicin chemotherapy, and two tumors were paired with a lymph node metastasis from the same patient. The other 18 tumor samples were single samples from individual tumors. A detailed listing of the tumor samples and various characteristics including clinical estrogen receptor and Erb-B2 status as assessed using antibody staining, estrogen receptor and Erb-B2 status as assessed by microarray result, tumor grade, differentiation, survival status and time, age at diagnosis, doxorubicin response, and p53 status is presented in Table 5. A listing of the cell lines including description and ATCC (American Tissue Culture Collection) number or reference is presented in Table 3. The cell lines provided a framework for interpreting the variation in gene expression patterns seen in the tumor samples and included gene expression models for many of the cell types encountered in tumors.

5

10

15

20

25

30

As described in more detail in Example 2, mRNA was isolated from each sample. cDNA labeled with the fluorescent dye Cy5 was prepared from each experimental sample separately. Fluorescently labeled cDNA, labeled using a second distinguishable dye (Cy3), was prepared from a pool of mRNAs isolated from 11 different cultured cell lines. The pooled mRNA sample served as a reference to provide a common internal standard against which each gene's expression in each experimental sample was measured.

Comparative expression measurements were made by separately mixing Cy5-labeled experimental cDNA derived from each of the 84 samples with a portion of the Cy3-labeled reference cDNA, and hybridizing each mixture to an individual cDNA microarray. The ratio of Cy5 fluorescence to Cy3 fluorescence measured at each cDNA element on the microarray was then quantitatively measured. The use of a common reference standard in each hybridization allowed the fluorescence ratios to be treated as comparative measurements of the expression level of each gene across all the experimental samples.

A hierarchical clustering method (Eisen, et al., 1998) was used to group genes based on similarity in the pattern with which their expression varied over all experimental samples. The same clustering method was used to group the experimental samples (tissue and cell lines separately) based on the similarity in their patterns of expression. Interpretation of the data obtained from the clustering

5

10

15

20

25

30

algorithm was facilitated by displaying the data in the form of tumor and gene dendrograms. In the tumor dendrograms, the pattern and length of the branches reflects the relatedness of the tumor samples with respect to their expression of genes represented on the microarray. Microarray images and tumor and gene dendrograms are available in Perou, et al, Nature, 2000, and at inventors' Web site (http://genomewww.stanford.edu/molecularportraits/). In general, the similarity of the gene expression profiles of individual tumor samples or groups of tumor samples to one another is inversely related to the length of the branches that connect them. Thus, for example, adjacent tumor samples connected to one another by short vertical branches descending from a common horizontal branch (e.g., tumor samples Norway 48-BE and Norway 48-AF close to the right of the tumor dendrogram) are more closely related to one another in terms of their gene expression profiles than adjacent tumor samples connected to one another by longer vertical branches descending from a common horizontal branch (e.g., tumor samples Norway 100-BE and Norway 100-AF at the left side of the tumor dendrogram). To the extent that the gene expression programs dictate the biological properties and behavior of the tumors and reflect their physiological state and environment, it is expected that the clustering of the tumors reflects phenotypic relationships among them, e.g., tumor samples connected by short horizontal branches (i.e., located in close proximity to one another) are expected to exhibit similar phenotypic features. In the gene dendrograms, the pattern and length of the branches reflects the relatedness of the genes with respect to their expression profiles across the tumor samples. Similarly to the tumor samples, genes connected by short vertical branches are more similar to one another in terms of expression profile than genes connected by longer vertical branches.

The expression patterns of the genes were also displayed using a matrix format, with each row representing all of the hybridization results for a single cDNA element on the array and each column representing the measured expression levels for all genes in a single sample. In this format, tumor samples with similar patterns of expression across the gene set are close to each other along the horizontal dimension. Similarly, genes with similar expression patterns across the set of samples are close to each other along the vertical dimension. To allow the patterns of expression to be visualized, the normalized expression value of each gene was represented by a colored

box, using red to represent expression levels greater than the median and green to represent expression levels less than the median. In all images the brightest red color represents transcript levels at least 16-fold greater than the median, and the brightest green color represents transcript levels at least 16-fold below the median. This display format facilitates comparisons between genes and the recognition of significant patterns.

As described herein, systematic investigation of gene expression patterns in human breast tumors and their correlation to specific features of phenotypic variation offers a basis for an improved molecular taxonomy of breast cancers. Such a taxonomy has significant clinical utility. For example, correlation of gene expression patterns with outcome in the absence of treatment is of use in deciding whether a patient should receive adjuvant chemotherapy after surgery. As another example, genes whose expression level varies between tumors that are sensitive to chemotherapy and tumors that are resistant to chemotherapy are of use in predicting likelihood of response and in selection of appropriate treatment. Genes whose expression level varies between tumor samples taken before and after therapy are of use in understanding the response of tumors to treatment.

IV. Further Aspects of the Invention

5

10

15

25

30

20 A. Basal tumor subclasses and corresponding gene subsets

Gene and tumor dendrograms were derived from data obtained by performing a microarray analysis on the set of breast tumor and breast tissue samples described above, using a set of genes (the "intrinsic" gene set) described further below and in Example 8. Appendices A and C present the resulting tumor dendrograms and color matrix displays of the gene expression profiles obtained. Although technically the dendrograms identify groups of tumor samples, since each sample is obtained from a specific tumor the dendrograms also identify groups of tumors. Thus, in general, a group of tumor samples corresponds to a group of tumors. Therefore, throughout most of the discussion herein reference will be made to tumor groups, classes, etc., rather than tumor sample groups, classes, etc. The clustering method permits the identification of subsets of genes with related expression profiles across a set of tumors and the identification of groups or classes of tumors with similar expression

profiles across a set of genes. Although the existence of gene subsets is revealed by the display of the data in dendrogram format, understanding the significance of the gene subsets obtained in experiments such as those described above requires interpretation in light of knowledge about the genes and tumor samples. Groups of tumors identified based on their expression patterns of sets of genes (e.g., groups of tumors that overexpress genes in particular gene subsets) can be designated as tumor classes when deemed significantly distinct to warrant a distinct classification.

5

10

15

20

25

30

Table 5 includes information regarding the clinical outcome of the tumors from which the samples were obtained. In particular, the table includes survival time of the patients and, for some of the tumors, whether or not the tumor responded to chemotherapy (doxorubicin). Such information was used to demonstrate that the basal tumor class is characterized by a poor clinical outcome relative to the other tumors. Differences in survival between groups of patients was demonstrated using the Kaplan-Meier technique for survival analysis, which is implemented in computer software such as the SAS package (SAS Institute, Inc, Cary, NC) and described in the accompanying manual. Of course various other statistical techniques can be used to detect differences in survival or any other clinical parameters between groups of tumors. Various appropriate statistical techniques useful for analyzing survival are discussed, for example, in Lawless, J.F., Statistical Models and Methods for Lifetime Data. New York: John Wiley & Sons, 1982. Lee, Elisa T. Statistical Methods for Survival Data Analysis. 2nd ed. New York: John Wiley & Sons, 1992. Marubini, Ettore, and Valsecchi, Maria Grazia, Analysing Survival Data from Clinical Trials and Observational Studies. New York: John Wiley & Sons, 1995. Miller, Rupert G. Jr. Survival Analysis. New York: John Wiley & Sons, 1981. Rosner, Bernard, Fundamentals of Biostatistics. 4th ed. Belmont, California; Duxbury Press, 1995.) Other clinical parameters of importance include response to therapy, time to recurrence, etc.

As will be appreciated by one of ordinary skill in the art, the correlation of particular tumor groups with survival or other parameters of clinical importance can be strengthened by the inclusion of data obtained from additional tumor samples.

The invention identifies genes and gene subsets that are associated with the basal tumor subclass. The genes and gene subsets are identified in part by the

5

10

15

20

25

30

overexpression of certain members of each subset in a particular tumor group and are also defined in part based on the proximity of genes within each subset to one another in a gene dendrogram. As used herein unless otherwise stated, a gene is overexpressed in a tissue sample at the RNA level if a mRNA corresponding to (i.e., transcribed from) the gene is present in excess relative to the median abundance of that mRNA across the set of analyzed specimens. A gene is overexpressed in a tissue sample at the protein level if a polypeptide corresponding to (i.e., translated from a mRNA that was transcribed from) the gene is present in excess relative to the abundance of that polypeptide across the set of analyzed specimens. The measurement of relative abundance using cDNA microarrays relies upon the comparison of all samples relative to a common reference sample that provides cognate mRNA for as many genes as possible with the goal of providing a common denominator for the measured ratios across all samples. Each tested sample can be compared to all other tested samples in ratio units relative to the reference. This allows reproducible determination of gene expression in each tested sample relative to the median gene expression across any given sample set (Ross, DT, et al., Systematic variation in gene expression patterns in human cancer cell lines, Nat Genet. 2000 Mar;24(3):227-35, 2000). In general, an appropriate reference sample comprises a renewable source of diverse cell samples such as a mixture of cells obtained from the panel of 11 cell lines listed in Table 3. A particularly preferred reference sample is one in which all relevant genes are represented in significant abundance above measured background. This provides for a reproducible measurement of reference signal for all relevant genes. As is well known in the art, there is generally a correlation between overexpression or underexpression at the RNA level and overexpression or underexpression at the protein level. In other words, if a mRNA is overexpressed then it is highly likely that the corresponding polypeptide is also overexpressed, and if a mRNA is underexpressed then it is highly likely that the corresponding polypeptide is underexpressed. Therefore, detection of either mRNA or a corresponding polypeptide is generally sufficient to determine whether a particular gene is over or underexpressed. However, as is well known in the art, in certain situations it may be more convenient and/or practical to detect mRNA while in other situations it may be more convenient and/or practical to detect polypeptides.

As mentioned above, genes that are overexpressed in one or more samples may be identified by examining the microarray data displayed in matrix format, wherein red squares indicate overexpression. The basal gene subset includes a number of genes known to be expressed in basal epithelial cells (e.g., cytokeratins 5 and 17) and is characterized in that certain of the genes in the subset are overexpressed at the RNA level in samples obtained from a subset of tumors that had a poor prognosis relative to the entire group of tumors (the basal group). Referring to Perou, et al, Nature, 2000, the basal gene subset comprises two subsets identified with a blue bar and a green bar along the side of the color matrices. Genes in the basal gene subset are, in general, overexpressed in tumors in the basal tumor group (identified with orange dendrogram branches). Of course it will be appreciated that additional genes, not necessarily falling into either of the two basal gene subsets, also have an expression pattern similar to that of cytokeratin 5 and/or cytokeratin 17.

5

10

15

20

25

30

It will be appreciated that not all of the genes are overexpressed to a similar extent within a particular group of tumors and that expression of any given gene will likely vary between different tumors in a group. For example, genes identified as "Cytochrome P450, subfamily IIA" and "Lymphoid nuclear protein related to AF4" are significantly overexpressed in tumors at the far right of the luminal tumor group (Stanford 24, Norway 27, 28, 26, and 56) while they are expressed at lesser levels in other members of the luminal tumor group. Conversely, genes identified as "417081" and "Homo Sapiens PWD gene mRNA, 3' end" are, in general, relatively underexpressed in these tumors. However, the overall expression patterns of genes in each subset over all tissue samples, are sufficiently similar to cause them to cluster in close proximity on the gene dendrogram. Thus whether a gene is a member of one of the inventive gene subsets is not determined solely on the basis of the overexpression of that gene within a tumor subset but also on the relationship of the overall expression pattern of the gene to the expression pattern of other genes within the subset. It will further be appreciated that a gene may be overexpressed in more than one tumor group. For example, certain of the genes in the basal subset are expressed in a group identified with green dendrogram branches, which includes both tumor and normal tissue samples, in addition to being overexpressed in the basal tumor group.

B. Diagnostics and methods of use thereof

5

10

15

20

25

30

The invention provides reagents for detecting expression products of the basal marker genes described herein, i.e., cadherin3, matrix metalloproteinase 14, and cadherin EGF LAG seven-pass G-type receptor 2. Detection of these expression products identifies tumors in the basal tumor subclass. While not wishing to be bound by any theory, inventors suggest that breast carcinoma with basal cell like features has distinguishing biology that could be targeted in therapeutic development. Once therapeutics targeted at such tumors are identified (as described elsewhere herein), detection of these expression products allows identification of subjects likely to benefit from these therapeutics. In addition, since the invention has established a correlation between the expression of the three basal marker genes and the expression of cytokeratin 17 and also established that cytokeratin 5/6 and/or cytokeratin 17 expression in breast tumors correlates with a poor outcome, detection of expression of the basal marker genes is useful in guiding therapeutic decisions in general. If it is known that a patient has a tumor that falls into the basal tumor subclass and thus has a poor prognosis, a more aggressive approach to therapy may be warranted than in tumors not falling within the basal subclass. For example, in patients where there is no evidence of disease in lymph nodes (node-negative patients), a decision must be made regarding whether to administer chemotherapy (adjuvant therapy) following surgical removal of the tumor. While some patients are likely to benefit from such treatment, it has significant side effects. Presently it is difficult or impossible to predict which patients would benefit. Knowing that a patient falls into a poor prognosis category may help in this decision. Of note, inventors showed that in nodenegative patients cytokeratin 5/6 and/or 17 expression was a prognostic factor independent of tumor size and tumor grade. See Example 13 for further discussion of these issues and inventor's findings. Detecting expression of the basal marker genes of the present invention may provide information related to tumor progression. It is well known that as tumors progress, their phenotypic characteristics may change. The invention contemplates the possibility that breast tumors may evolve from luminallike to basal-like (or vice versa), and that detection of expression products of the basal marker genes can be used to detect such progression.

5

10

15

20

25

30

It is well known in the art that some tumors respond to certain therapies while others do not. In general there is very little information that may be used to determine, prior to treatment, the likelihood that a specific tumor will respond to a given therapeutic agent. Many compounds have been tested for anti-tumor activity and appear to be effective in only a small percentage of tumors. Due to the current inability to predict which tumors will respond to a given agent, these compounds have not been developed into marketed therapeutics. This problem reflects the fact that current methods of classifying tumors are limited. However, the present invention offers the possibility of identifying tumor subgroups characterized by a significant likelihood of response to a given agent. Tumor sample archives containing tissue samples obtained from patients that have undergone therapy with various agents are available along with information regarding the results of such therapy. In general such archives consist of tumor samples embedded in paraffin blocks. These tumor samples can be analyzed for their expression of polypeptides encoded by the basal marker genes of the present invention. For example, immunohistochemistry can be performed using antibodies that bind to the polypeptides. Tumors belonging to the basal tumor subclass may then be identified on the basis of this information. It is then possible to correlate the expression of the basal marker genes with the response of the tumor to therapy, thereby identifying particular compounds that show a superior efficacy in tumors in this class as compared with their efficacy in tumors overall or in tumors not falling within the basal tumor subclass. Once such compounds are identified it will be possible to select patients whose tumors fall into the basal tumor subclass for additional clinical trials using these compounds. Such clinical trials, performed on a selected group of patients, are more likely to demonstrate efficacy. The reagents provided herein, therefore, are valuable both for retrospective and prospective trials.

In the case of prospective trials, detection of expression products of one or more of the marker genes may be used to stratify patients prior to their entry into the trial or while they are enrolled in the trial. In clinical research, stratification is the process or result of describing or separating a patient population into more homogeneous subpopulations according to specified criteria. Stratifying patients initially rather than after the trial is frequently preferred, e.g., by regulatory agencies such as the U.S. Food and Drug Administration that may be involved in the approval

process for a medication. In some cases stratification may be required by the study design. Various stratification criteria may be employed in conjunction with detection of expression of one or more basal marker genes. Commonly used criteria include age, family history, lymph node status, tumor size, tumor grade, etc. Other criteria including, but not limited to, tumor aggressiveness, prior therapy received by the patient, ER and/or PR positivity, Her2neu status, p53 status, various other biomarkers, etc., may also be used. Stratification is frequently useful in performing statistical analysis of the results of a trial. Ultimately, once compounds that exhibit superior efficacy against breast basal tumors are identified, reagents for detecting expression of the basal marker genes may be used to guide the selection of appropriate chemotherapeutic agent(s).

5

10

15

20

25

30

In summary, by providing reagents and methods for classifying tumors based on their expression of the basal marker genes, the present invention offers a means to individualize therapy. The invention further provides a means to identify a patient population that may benefit from potentially promising therapies that have been abandoned due to inability to identify the patients who would benefit from their use.

Information regarding the expression of the basal marker genes is useful even in the absence of specific information regarding their biological function or role in tumor development, progression, maintenance, or response to therapy. Although the reagents disclosed herein find particular application with respect to breast cancer, the invention also contemplates their use to provide diagnostic and/or prognostic information for other cancer types. As is well known in the art, mutations in a single gene (e.g., the p53 gene) may play a role in the development of multiple cancer types. Thus it is contemplated that some or all of the basal marker genes described herein will be important both in breast cancer and in one or more other tumor types, particularly since basal cells are a feature of epithelia throughout the body.

In one aspect, the invention provides a method of classifying tumors by detecting the presence of one or more of the inventive gene products encoded by the cadherin3, matrix metalloproteinase 14, and cadherin EGF LAG seven-pass G-type receptor 2 genes. As is well known in the art, a polypeptide may be detected using a variety of techniques that employ an antibody that binds to the polypeptide. As described further below, these techniques include enzyme-linked immunosorbent

assay (ELISA), immunoblot, and immunohistochemistry. The invention encompasses the use of protein arrays, including antibody arrays, for detection of the polypeptide. The use of antibody arrays is described, for example, in Haab, B., et al., "Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions", Genome Biol. 2001;2(2), 2001. Other types of protein arrays are known in the art.

5

10

15

20

25

30

In addition, in certain embodiments of the invention the polypeptides are detected using other modalities known in the art for the detection of polypeptides, such as aptamers (Aptamers, *Molecular Diagnosis*, Vol. 4, No. 4, 1999), reagents derived from combinatorial libraries for specific detection of proteins in complex mixtures, random peptide affinity reagents, etc. In general, any appropriate method for detecting a polypeptide may be used in conjunction with the present invention, although antibodies may represent a particularly appropriate modality.

The invention provides antibodies to the polypeptides encoded by the encoded by the cadherin3, matrix metalloproteinase 14, and cadherin EGF LAG seven-pass G-type receptor 2 genes. Example 10 describes the generation of polyclonal antibodies to these polypeptides. In general, antibodies (either monoclonal or polyclonal) may be generated by methods well known in the art and described, for example, in Harlow, E., Lane, E., and Harlow, E., (eds.) *Using Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1998. Details and references for the production of antibodies based on an inventive polypeptide may also be found in U.S. Patent No. 6,008,337. Antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric (e.g., "humanized"), and single chain antibodies, and Fab fragments, antibodies generated using phage display technology, etc. The invention encompasses "fully human" antibodies produced using the XenoMouseTM technology (AbGenix Corp., Fremont, CA) according to the techniques described in U.S. Patent No. 6,075,181.

The invention encompasses a number of uses for these antibodies. Detection of the basal marker polypeptides may be used to provide diagnostic information. As used herein the term "diagnostic information" includes, but is not limited to, any type of information that is useful in determining whether a patient has, or is at increased risk for developing, a disease or disorder; for providing a prognosis for a patient

having a disease or disorder; for classifying a disease or disorder; for monitoring a patient for recurrence of a disease or disorder; for selecting a preferred therapy; for predicting the likelihood of response to a therapy, etc. In certain embodiments of the invention, the antibodies are used for providing diagnostic information for cancer, particularly for breast cancer, but they may also be of use for providing diagnostic information for other diseases, e.g., other types of cancer.

5

10

15

20

25

30

In general, diagnostic assays in which the antibodies may be employed include methods that use the antibody to detect the polypeptide in a tissue sample, cell sample, body fluid sample (e.g., serum), cell extract, etc. Such methods typically involve the use of a labeled secondary antibody that recognizes the primary antibody (i.e., the antibody that binds to the polypeptide being detected). Depending upon the nature of the sample, appropriate methods include, but are not limited to. immunohistochemistry, radioimmunoassay, ELISA, immunoblotting, and FACS analysis. In the case where the polypeptide is to be detected in a tissue sample, e.g., a biopsy sample, immunohistochemistry is a particularly appropriate detection method. Techniques for obtaining tissue and cell samples and performing immunohistochemistry and FACS are well known in the art. Such techniques are routinely used, for example, to detect the ER in breast tumor tissue or cell samples. In general, such tests will include a negative control, which can involve applying the test to normal tissue so that the signal obtained thereby can be compared with the signal obtained from the sample being tested. In tests in which a secondary antibody is used to detect the antibody that binds to the polypeptide of interest, an appropriate negative control can involve performing the test on a portion of the sample with the omission of the antibody that binds to the polypeptide to be detected, i.e., with the omission of the primary antibody. Antibodies suitable for use as diagnostics generally exhibit high specificity for the target polypeptide and low background. In general, monoclonal antibodies are preferred for diagnostic purposes.

In general, the results of such a test can be presented in any of a variety of formats. The results can be presented in a qualitative fashion. For example, the test report may indicate only whether or not a particular polypeptide was detected, perhaps also with an indication of the limits of detection. The results may be presented in a semi-quantitative fashion. For example, various ranges may be defined, and the

ranges may be assigned a score (e.g., 1+ to 4+) that provides a certain degree of quantitative information. Such a score may reflect various factors, e.g., the number of cells in which the polypeptide is detected, the intensity of the signal (which may indicate the level of expression of the polypeptide), etc. The results may be presented in a quantitative fashion, e.g., as a percentage of cells in which the polypeptide is detected, as a protein concentration, etc. As will be appreciated by one of ordinary skill in the art, the type of output provided by a test will vary depending upon the technical limitations of the test and the biological significance associated with detection of the polypeptide. For example, in the case of certain polypeptides a purely qualitative output (e.g., whether or not the polypeptide is detected at a certain detection level) provides significant information. In other cases a more quantitative output (e.g., a ratio of the level of expression of the polypeptide in the sample being tested versus the normal level) is necessary.

Sequence analysis of two of the basal marker proteins, matrix metalloproteinase 14 and cadherin EGF LAG seven-pass G-type receptor 2 indicates that they possess one or more transmembrane domains and an extracellular portion. Sequence analysis of the third basal marker protein, cadherin3, indicates that it also has an extracellular portion. The invention encompasses the recognition that since these proteins have an extracellular domain, the likelihood exists that a portion of these proteins may therefore be present in serum (e.g., the portion may be cleaved by endogenous proteases and released into the bloodstream), enabling their detection through a blood test rather than requiring a biopsy specimen. Regardless of whether the proteins are present in serum, the likelihood that cadherin3, cadherin EGF LAG seven-pass G-type receptor 2, and matrix metalloproteinase 14 are membrane bound makes them attractive candidates for antibody diagnostics. The proteins may be detected on cells that enter the bloodstream or in samples obtained from a tumor site (e.g., cell or tissue samples).

Measurement of prostate specific antigen (PSA) in serum using an immunoassay technique is widely used as a method for early detection of prostate cancer and for monitoring recurrence or progression after therapy, etc. Methods and considerations in the use of this clinical marker are described, for example, in Chen DW, et al. Prostate-specific antigen as a marker for prostate cancer: A monoclonal

and polyclonal immunoassay compared. Clin Chem, 33:1916-1920, 1987; Oesterling JE, et al. Free, complexed and total serum prostate specific antigen: The establishment of appropriate reference ranges for their concentrations and ratios. J Urol 154:1090-1095, 1995; Hybritech Tandem®-MP Free PSA. Package insert. March 1998 and Hybritech Tandem® Total PSA. Package insert., Hybritech, Inc., San Diego, CA. One of ordinary skill in the art will readily be able to develop appropriate assays for polypeptides encoded by the basal marker genes described herein and to apply them to the detection of such polypeptides in serum. Such assays may be used as screening tests for cancer, to detect recurrence or progression of cancer, to monitor the response of cancer to therapy, to classify and/or provide prognostic information regarding a tumor, etc.

In certain embodiments of the inventive methods a single antibody is used whereas in other embodiments of the invention multiple antibodies, directed either against the same or against different polypeptides can be used to increase the sensitivity or specificity of the test or to provide more detailed information than that provided by a single antibody. Thus the invention encompasses the use of a battery of antibodies that bind to polypeptides encoded by the basal marker genes identified herein. Of course these antibodies can also be used in conjunction with antibodies against other polypeptides, including antibodies that bind to cytokeratin 5/6 or 17.

Various other techniques for detecting the basal marker polypeptides identified herein are within the scope of the invention. For example, a basal marker polypeptide may be detected using an assay for a biochemical activity of the polypeptide, e.g., an enzymatic activity. This type of assay may be especially convenient for tests on samples such as blood or other body fluids. Such an approach may be particularly attractive in the case of matrix metalloproteinase 14. As described above, matrix metalloproteinases are involved in cleavage of various proteins in the extracellular matrix. The cleavage specificity of this protein may readily be determined, and an appropriate substrate prepared. (See, e.g., Turk, B., et al., "Determination of protease cleavage site motifs using mixture-based oriented peptide libraries", *Nature Biotechnology*, 19(7): 661-667, 2001, which discusses cleavage site motifs for various metalloproteases including MMP14, referred to as MT1-MMP therein.) Cleavage of this substrate may then be detected. In certain embodiments of the invention the

substrate includes a fluorescent moiety for convenient detection. The invention contemplates use of fluorescent resonance energy transfer (FRET) assays to detect matrix metalloproteinase 14 (see http://www.aurorabio.com).

5

10

15

20

25

30

Although in many cases detection of polypeptides using antibodies represents the most convenient means of determining whether a gene is expressed (or overexpressed) in a particular sample, the invention also encompasses the use of polynucleotides for this purpose. Microarray analysis is but one means by which polynucleotides can be used to detect or measure gene expression. Expression of a gene can also be measured by a variety of techniques that make use of a polynucleotide corresponding to part or all of the gene rather than an antibody that binds to a polypeptide encoded by the gene. Appropriate techniques include, but are not limited to, *in situ* hybridization, Northern blot, and various nucleic acid amplification techniques such as PCR, quantitative PCR, and the ligase chain reaction.

One detection method involves performing quantitative PCR on a diagnostic sample using a set of oligonucleotide primers designed to amplify the genes in one or more of the inventive gene sets of gene subsets. (Considerations for primer design are well known in the art and are described, for example, in Newton, et al. (eds.) *PCR:* Essential data Series, John Wiley & Sons; *PCR Primer: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1995; White, et al.. (eds.) *PCR Protocols: Current methods and Applications*, Methods in Molecular Biology, The Humana Press, Totowa, NJ, 1993. In addition, a variety of computer programs known in the art may be used to select appropriate primers.)

According to one embodiment of this method the diagnostic sample is distributed into multiple vessels, e.g., multiple wells of a 396 well microtiter plate. A pair of primers designed to amplify a portion of a gene in one of the inventive gene sets or subsets is added to each well, and PCR amplification is performed. The resulting product can then be detected using any of a number of methods known in the art depending upon the particular method of performing quantitative PCR that is employed. Primers sufficient for amplification of genes that allow quantitation of different cell types within the sample may also be included in the set of primers.

The invention also encompasses the detection of mutations within any of the basal marker genes or within a regulatory region of a basal marker gene. Such mutations may include, but are not limited to, deletions, additions, substitutions, and amplification of regions of genomic DNA that include all or part of a gene. Methods for detecting such mutations are well known in the art. Such mutations may result in overexpression or inappropriate expression of the gene. Detection of mutations can be used, for example, to predict the likelihood that an individual will develop a condition associated with the mutation.

Another aspect of the invention comprises a kit to test for the presence of any of the inventive polynucleotides or polypeptides, e.g., in a tissue sample or in a body fluid. The kit can comprise, for example, an antibody for detection of a polypeptide or a probe for detection of a polynucleotide. In addition, the kit can comprise a reference or control sample, instructions for processing samples, performing the test and interpreting the results, buffers and other reagents necessary for performing the test. In certain embodiments of the invention the kit comprises a panel of antibodies. In certain embodiments of the invention the kit comprises pairs of primers for detecting expression of one or more of the basal marker genes. In certain embodiments of the invention the kit comprises a cDNA or oligonucleotide array for detecting expression of one or more of the basal marker genes.

20

25

30

15

D. Therapeutics

The invention encompasses the use of the basal marker genes and their expression products as targets for the development of therapeutics. The invention specifically encompasses antagonists to the basal marker genes and their expression products. Such antagonists (which include, but are not limited to, antibodies, small molecules, antisense nucleic acids) may be produced or identified using any of a variety of methods known in the art. For example, a purified polypeptide or fragment thereof may be used to raise antibodies or to screen libraries of compounds to identify those that specifically bind to the polypeptide. The likelihood that cadherin3, cadherin EGF LAG seven-pass G-type receptor 2, and matrix metalloproteinase 14 are membrane bound makes them attractive candidates for antibody therapeutics.

Preferably antibodies suitable for use as therapeutics exhibit high specificity for the target polypeptide and low background binding to other polypeptides. In general, monoclonal antibodies are preferred for therapeutic purposes. In the case of breast cancer, antibodies against the HER2/neu/ErbB2 polypeptide (a polypeptide homologous to the epidermal growth factor receptor) represent a paradigm in terms of the development of therapeutic antibodies. The HER2/neu/ErbB2 gene is overexpressed in approximately 25 to 30 percent of metastatic breast tumors, and an antibody against the HER2/neu/ErbB2 polypeptide, Herceptin® (Trastuzumab) is approved for the treatment of certain patients with metastatic breast cancer, confirming the utility of therapeutic antibodies directed against polypeptides that are specifically overexpressed in particular tumors subsets. Proteins that are expressed on the cell surface, such as the basal marker proteins described herein, represent preferred targets for the development of therapeutic agents, particularly therapeutic antibodies. The presence of these proteins on the cell surface can be confirmed using immunohistochemisty.

10

15

20

25

30

Antibodies directed against a polypeptide expressed by a cell may have a number of mechanisms of action. In certain instances, e.g., in the case of a polypeptide that exerts a growth stimulatory effect on a cell, antibodies may directly antagonize the effect of the polypeptide and thereby arrest tumor progression, trigger apoptosis, etc. While not wishing to be bound by any theory, it may be particularly likely that certain genes that are overexpressed in tumors having a poor prognosis (e.g., genes in the basal gene subsets) encode polypeptides that have a growth stimulatory effect on tumor cells or facilitate the growth of such cells in some other way, e.g., by enhancing angiogenesis, by allowing cells to overcome normal growth regulatory mechanisms, or by blocking mechanisms that would normally lead to elimination of mutated or otherwise abnormal cells.

In certain embodiments of the invention the antibody may serve to target a toxic moiety to the cell. Thus the invention encompasses the use of antibodies that have been conjugated with a cytotoxic agent, e.g., a toxin such as ricin or diphtheria toxin, a radioactive moiety, etc. Such antibodies can be used to direct the cytotoxic agent specifically to cells that express the inventive polypeptide, particularly in the case of a polypeptide that is expressed on the cell surface.

Although certain antagonists may function through direct interaction with a polypeptide, e.g., by inhibiting its activity, others may function by affecting expression of the polypeptide. Reduction in expression of an endogenously produced polypeptide may be achieved by the administration of antisense nucleic acids (e.g., 5 oligonucleotides, RNA, DNA, most typically oligonucleotides that have been modified to improve stability or targeting) or peptide nucleic acids comprising sequences complementary to those of the mRNA that encodes the polypeptide. Antisense technology and its applications are described in Phillips, M.I. (ed.) Antisense Technology, Methods Enzymol., Volumes 313 and 314, Academic Press, 10 San Diego, 2000, and references mentioned therein. Ribozymes (catalytic RNA molecules that are capable of cleaving other RNA molecules) represent another approach to reducing gene expression. Such ribozymes can be designed to cleave specific mRNAs corresponding to a gene of interest. Their use is described in U.S. Patent No. 5,972,621, and references therein. The invention encompasses the delivery 15 of antisense and/or ribozyme molecules via a gene therapy approach in which vectors or cells expressing the antisense molecules are administered to an individual.

It may also be desirable to increase the expression of a gene in an inventive gene subset or to increase the activity of the corresponding polypeptide. For example, in the case of genes that are overexpressed in tumors having a good prognosis, e.g., certain genes in the luminal subset, it may be desirable to increase the expression of such genes or the activity of the corresponding polypeptides in tumors that fail to express these genes.

20

25

30

Small molecule modulators (e.g., inhibitors or activators) of gene expression are also within the scope of the invention and may be detected by screening libraries of compounds using, for example, cell lines that express the polypeptide or a version of the polypeptide that has been modified to include a readily detectable moiety. Methods for identifying compounds capable of modulating gene expression are described, for example, in U.S. Patent No. 5,976,793. The screening methods described therein are particularly appropriate for identifying compounds that do not naturally occur within cells and that modulate the expression of genes of interest whose expression is associated with a defined physiological or pathological effect within a multicellular organism.

More generally, the invention encompasses compounds that modulate the activity of a basal marker gene of the present invention. Methods of screening for such interacting compounds are well known in the art and depend, to a certain degree, on the particular properties and activities of the polypeptide encoded by the gene.

5 Representative examples of such screening methods may be found, for example, in U.S. Patent No. 5,985,829, U.S. Patent No. 5,726,025, U.S. Patent No. 5,972,621, and U.S. Patent No. 6,015,692. The skilled practitioner will readily be able to modify and adapt these methods as appropriate for a given polypeptide. Thus the invention encompasses methods of screening for molecules that modulate the activity of a polypeptide encoded by a basal marker gene.

The invention also encompasses the use of polynucleotide sequences corresponding to basal marker genes, or portions thereof, as DNA vaccines. Such vaccines comprise polynucleotide sequences, typically inserted into vectors, that direct the expression of an antigenic polypeptide within the body of the individual being immunized. Details regarding the development of vaccines, including DNA vaccines for various forms of cancer may be found, for example, in Brinckerhoff L.H., Thompson L.W., Slingluff C.L., Jr., Melanoma Vaccines, *Curr Opin Oncol*, 12(2):163-73, 2000 and in Stevenson, F.K., DNA vaccines against cancer: from genes to therapy, *Ann. Oncol.*, 10(12): 1413-8, 1999 and references therein. The polypeptides, or fragments thereof, that are encoded by genes in the inventive gene subsets may also find use as cancer vaccines. Such vaccines may be used for the prevention and/or treatment of cancer.

. 15

20

25

30

The invention includes pharmaceutical compositions comprising the inventive antibodies, or small molecule inhibitors, agonists, or antagonists described above. In general, a pharmaceutical composition will include an active agent in addition to one or more inactive agents such as a sterile, biocompatible carrier including, but not limited to, sterile water, saline, buffered saline, or dextrose solution. The pharmaceutical compositions may be administered either alone or in combination with other therapeutic agents including other chemotherapeutic agents, hormones, vaccines, and/or radiation therapy. By "in combination with", it is not intended to imply that the agents must be administered at the same time or formulated for delivery together, although these methods of delivery are within the scope of the invention. In general,

each agent will be administered at a dose and on a time schedule determined for that agent. Additionally, the invention encompasses the delivery of the inventive pharmaceutical compositions in combination with agents that may improve their bioavailability, reduce or modify their metabolism, inhibit their excretion, or modify their distribution within the body. The invention encompasses treating cancer, particularly breast cancer, by administering the pharmaceutical compositions of the invention. Although the pharmaceutical compositions of the present invention can be used for treatment of any subject (e.g., any animal) in need thereof, they are most preferably used in the treatment of humans.

10

15

20

25

30

The pharmaceutical compositions of this invention can be administered to humans and other animals by a variety of routes including oral, intravenous, intramuscular, intraarterial, subcutaneous, intraventricular, transdermal, rectal intravaginal, intraperitoneal, topical (as by powders, ointments, or drops), bucal, or as an oral or nasal spray or aerosol. In general the most appropriate route of administration will depend upon a variety of factors including the nature of the compound (e.g., its stability in the environment of the gastrointestinal tract), the condition of the patient (e.g., whether the patient is able to tolerate oral administration), etc. At present the intravenous route is most commonly used to deliver therapeutic antibodies and nucleic acids. However, the invention encompasses the delivery of the inventive pharmaceutical composition by any appropriate route taking into consideration likely advances in the sciences of drug delivery.

General considerations in the formulation and manufacture of pharmaceutical agents may be found, for example, in *Remington's Pharmaceutical Sciences*, 19th ed., Mack Publishing Co., Easton, PA, 1995. It will be appreciated that certain of the compounds of the present invention can exist in free form for treatment, or, where appropriate, in salt form, as discussed in more detail below. Compounds to be utilized in the pharmaceutical compositions include compounds existing in free form or pharmaceutically acceptable derivatives thereof, as defined herein, such as pharmaceutically acceptable salts, esters, salts of such esters, or any other adduct or derivative, which upon administration to a patient in need, is capable of providing, directly or indirectly, a compound as otherwise described herein, or a metabolite or residue thereof, e.g., a prodrug. Thus, as used herein, the term "pharmaceutically

acceptable salt" refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge, et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 66: 1-19 (1977), incorporated herein by reference. The salts can be prepared in situ during the final isolation and purification of the compounds of the invention, or separately by reacting the free base function with a suitable organic acid. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid, or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxyethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, ptoluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, lower alkyl sulfonate and aryl sulfonate.

10

15

20

25

30

Additionally, as used herein, the term "pharmaceutically acceptable ester" refers to esters that hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof. Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic

carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms. Examples of particular suitable esters includes formates, acetates, propionates, butyrates, acrylates and ethylsuccinates.

Furthermore, the term "pharmaceutically acceptable prodrugs" as used herein refers to those prodrugs of the compounds of the present invention that are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the invention. The term "prodrug" refers to compounds that are rapidly transformed *in vivo* to yield a particular active compound, for example by hydrolysis in blood. A thorough discussion is provided in T. Higuchi and V. Stella, "Pro-drugs as Novel Delivery Systems", Vol. 14 of the A.C.S. Symposium Series, and in Edward B. Roche, ed., *Bioreversible Carriers in Drug Design*, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incorporated herein by reference.

As mentioned above, the pharmaceutical compositions of the present invention additionally comprise a pharmaceutically acceptable carrier, which, as used herein, means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material, or formulation auxiliary of any type. Some examples of materials which can serve as pharmaceutically acceptable carriers are sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil; sesame oil; olive oil; corn oil and soybean oil; glycols; such a propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, dextrose solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and

perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator.

5

10

15

20

25

30

Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.

Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.

The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.

In order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form.

Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsulated matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.

Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.

10

15

20

25

30

Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar--agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.

Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of

tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polethylene glycols and the like.

The active compounds can also be in micro-encapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings, and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch. Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.

Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation and ear drops are also contemplated as being within the scope of this invention. The ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or

mixtures thereof. Powders and sprays can contain, in addition to the compounds of this invention, excipients such as lactose, tale, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain propellants known in the art such as chlorofluorohydrocarbons.

5

10

15

20

25

30

Transdermal patches have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.

In yet another aspect, the present invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention, and in certain embodiments, includes an additional approved therapeutic agent for use as a combination therapy. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceutical products, which notice reflects approval by the agency of manufacture, use or sale for human administration. Instructions for use of the compound(s) may also be included.

According to the methods of treatment of the present invention, cancer, particularly breast cancer, is treated or prevented in a patient such as a human or other mammal by administering to the patient a therapeutically effective amount of a compound of the invention, in such amounts and for such time as is necessary to achieve the desired result. By a "therapeutically effective amount" of a compound of the invention is meant a sufficient amount of the compound to treat (e.g. to ameliorate the symptoms of, delay progression of, prevent recurrence of, cure, etc.) cancer, particularly breast cancer, at a reasonable benefit/risk ratio, which involves a balancing of the efficacy and toxicity of the compound. In general, therapeutic efficacy and toxicity may be determined by standard pharmacological procedures in cell cultures or with experimental animals, e.g., by calculating the ED₅₀ (the dose that is therapeutically effective in 50% of the treated subjects) and the LD₅₀ (the dose that is lethal to 50% of treated subjects). The ED₅₀/LD₅₀ represents the therapeutic index

of the compound. Although in general drugs having a large therapeutic index are preferred, as is well known in the art, a smaller therapeutic index may be acceptable in the case of a serious disease, particularly in the absence of alternative therapeutic options. Ultimate selection of an appropriate range of doses for administration to humans is determined in the course of clinical trials.

It will be understood that the total daily usage of the compounds and compositions of the present invention for any given patient will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.

The total daily dose of the compounds of this invention administered to a human or other mammal in single or in divided doses can be in amounts, for example, from 0.01 to 50 mg/kg body weight or more usually from 0.1 to 25 mg/kg body weight. Single dose compositions may contain such amounts or submultiples thereof to make up the daily dose. In general, treatment regimens according to the present invention comprise administration to a patient in need of such treatment from about 0.1 µg to about 2000 mg of the compound(s) of the invention per day in single or multiple doses.

5

10

15

20

EXAMPLES

Note: A numbered list of references appears following the Examples, all of which are incorporated herein by reference.

5

10

15

20

25

Example 1

Preparation of Microarrays Containing 8498 Human cDNAs

The human cDNA clones used in this study were obtained from Research Genetics (Huntsville AB, USA) as bacterial colonies in 96-well microtiter plates. The clones were chosen from a set of 15,000 cDNA clones that corresponded to the Research Genetics Human Gene Filters sets GF200-202 (http://www.resgen.com/). These clones form part of a set of clones assembled by the I.M.A.G.E. consortium (Lennon, G.G., Auffray, C., Polymeropoulos, M., Soares, M.B. The I.M.A.G.E. Consortium: An Integrated Molecular Analysis of Genomes and their Expression. Genomics 33:151-152,1996) and are identified by I.M.A.G.E. clone ID numbers. All clones printed on these arrays were sequence validated as part of a product offered at Research Genetics, Inc. We estimate that greater than 97% of the clones on the array are correctly identified.

A detailed protocol for the production of the cDNA microarrays used in this study is available at http://cmgm.stanford.edu/pbrown/protocols.html and is reproduced below with insubstantial changes. As described below, the protocol includes steps of (1) cleaning the glass slides onto which the DNAs (e.g., products of PCR reactions) are to be spotted; (2) spotting the DNAs onto the glass slides with an arrayer; (3) Post processing to prepare arrays containing spotted DNAs for hybridization. All procedures are done at room temperature and with double distilled water unless otherwise stated. Unless otherwise stated, in this Example and the following Examples, reagents are prepared according to protocols available in Maniatis, T., Sambrook, J. and Fritsch, E., Molecular Cloning: A Laboratory Manual (3 Volume Set), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989.

30

Cleaning Slides

Use 30 slide racks in 350mL glass dishes

- 1. Dissolve 50g of NaOH pellets into 150ml ddH2O
- 2. Add 200ml of 95% EtOH, stir until completely mixed
- 3. If solution remains cloudy, add ddH2O until clear
- 4. Pour solution into glass slide box.
- 5 5. Drop in 30 slides in a metal rack. (Gold Seal slides, Cat. 3010)
 - 6. Let soak on an orbital shaker for at least two hours
 - 7. Rinse slides by transferring rack to slide dish filled with ddH2O
 - 8. Repeat ddH2O rinses x3. It's important to remove all traces of the NaOH-ethanol.
- 10 9. Prepare Poly-I-lysine solution: Use Sigma Poly-I-lysine solution. Cat. No. 8920
 - 10. Add 70mL poly-l-lysine to 280ml of water
 - 11. Transfer slides to poly-l-lysine solution and let soak for 1 hour.
 - 12. Remove excess liquid from slides by spinning the rack of slides on microtiter
- 15 plate

carriers at 500rpm.

- 13. Dry slides at 40 degrees C for 5 minutes in a vacuum oven.
- 14. Store slides in a closed box for at least two weeks prior to use.
- 15. Before printing arrays, check a sample slide to make sure it's hydrophobic
- 20 (water should bead off it) but the lysine coating is not turning opaque.

Arraying

25

- 1. Transfer PCR reactions to 96-well V-bottom tissue culture plates (Costar). Add 1/10 vol. 3M sodium acetate (pH 5.2) and equal volume isopropanol. Store at -20
- C for a few hours.
 - 2. Centrifuge in Sorvall at 3500 RPM for 45 min. Rinse with 70% EtOH. centrifuge again and dry.
 - 2. Resuspend DNA in 12ul 3X SSC for a few hours and transfer to flexible U-bottom printing plates.
- 30 4. Spot DNA onto poly-l-lysine slides with an arrayer.

Post processing

5

- 1. Rehydrate arrays by suspending slides over a dish of warm ddH2O. (~1 minute)
 - 2. Snap-dry each array (DNA side up) on a 100C hot plate for 3 seconds.
- 3. UV cross-link DNA to the glass by using a Stratalinker set for 60 milliJoules
- 4. Dissolve 5g of succinic anhydride (Aldrich) in 315mL of n-methyl-pyrrolidinone.
- 5. To this, add 35mL of 0.2M NaBorate pH 8.0 (made by dissolving boric acid in water and adjusting the pH with NaOH), and stir until dissolved.
- 10 6. Soak arrays in this solution for 15 minutes with shaking.
 - 7. Transfer arrays to 95C water bath for 2 minutes
 - 8. Quickly transfer arrays to 95% EtOH for 1 minute.
 - 9. Remove excess liquid from slides by spinning the rack of slides on microtiter plate
- carriers at 500rpm.
 - 10. Arrays can be used immediately.

Reagent Suppliers

- 20 Microscope slides Goldseal brand. (Cat. 3010)
 Poly-l-lysine solution Sigma product number P8920
 Succinic Anhydride Aldrich product number 23,969-0
 N-Methyl-Pyrrolidinone Aldrich product number 32,863-4
- 25 Microarrays were prepared according to the above protocol using the 8498 cDNA clones described above. All microarrays used in the experiments described herein were from a single print run batch of microarrays.

Example 2

30

Cell Lines, Breast Tissue, and Breast Tumor Samples for Microarray Analysis and
Preparation of mRNA Samples

Common Reference Sample

Each of the 84 experimental samples tested here was analyzed by a comparative hybridization, using a common reference RNA pool as a standard; this reference sample was composed of equal mixtures of mRNA isolated from 11 established cell lines derived from human tissue (MCF7, Hs578T, OVCAR3, HepG2, NTERA2, MOLT4, RPMI-8226, NB4+ATRA, UACC-62, SW872, and Colo205: also see Table 3 for more details). The 11 cell lines were all grown to 70-90% confluence in RPMI medium, containing 10% Fetal Calf Serum and Penicillin/Streptomycin. The cells were harvested either by scraping or centrifugation, quickly resuspended in RNA lysis buffer and mRNA prepared using the FastTrackTM 2.0 mRNA Isolation Kit (Invitrogen, Carlsbad, CA) according to the manufacturer's instructions. In each case, multiple individual mRNA preparations were collected for each cell line, which were then pooled together and analyzed via Northern analysis before final mixing to ensure the quality of the input mRNAs (e.g., to confirm that the mRNA exhibited a size distribution indicating that it was substantially nondegraded). The 11 mRNA samples were then mixed together in equal amounts, aliquoted in 10mM Tris (7.4), and stored at -80 C until use (2 micrograms of common reference sample was used per microarray hybridization and was always labeled using Cy3).

20

25

30

5

10

15

Normal Breast Tissue

Three samples of normal breast tissue were analyzed. Two of the samples were obtained from Clontech (Palo Alto, CA) and were pools of six (Normal1) or two (Normal2) whole normal breasts. The third sample (Normal3) was obtained from a single individual.

Breast Tumor Samples

The 40 individual breast tumor samples were collected at either Stanford University in Stanford CA, USA, or in the Haukeland University Hospital in Bergen, Norway. Twenty of the forty breast tumors were sampled twice as part of a larger Norwegian study on locally advanced breast cancers (T3/T4 and/or N2 tumors) and have been described previously (Aas, T., et al., Nat. Med., 2, 811-814, 1996, the

contents of which are incorporated herein by reference); these patients underwent an open surgical biopsy before treatment with doxorubicin monotherapy (range 12-23 weeks), followed by the definitive surgical resection of the remaining tumor after therapy, and were evaluated for clinical responses according to UICC criteria (Hayward, J., et al., *Br. J. Cancer*, 35, 292-298, 1977). In addition to the 20 pairs, there were 8 additional "before" specimens from Norway and 10 tumor specimens from Stanford (all Stanford tumors tested had a diameter of 3 cm or larger). Finally, 2 of the 10 Stanford tumor specimens assayed were also paired with a lymph node metastasis from the same patient.

10

mRNA Isolation from Breast Tumor and Tissue Samples

Following their excision, breast tumor samples were rapidly frozen in liquid N2 and then stored at -80 C until use. mRNA was isolated from breast tumors and normal breast tissue using the Trizol Reagent (Gibco-BRL) and Invitrogen FastTrack 2.0 Kit (all Stanford samples, and see http://genome-www.stanford.edu/sbcmp/web.shtml for the detailed protocol) or using the Trizol Reagent followed by Dynal bead separation for the mRNA purification step (all Norway tissue samples). Briefly, frozen tumor samples were cut into small pieces and immediately placed into 12 ml of Trizol Reagent. Each tumor sample in Trizol was homogenized using a PowerGen 125 Tissue Homogenizer (Fisher Scientific), and total RNA was isolated according to the Trizol reagent manufacturer's protocol. Tumor mRNA was isolated according to the manufacturer's protocols using the FastTrack 2.0 Kit (Invitrogen) or Dynal beads.

25

30

Example 3

Characterization of Breast Tissue and Tumor Samples

For all but two of the tumor specimens (i.e. New York 1 and New York 2), the mutational status of the *TP53* gene was determined using published methods (Aas, T., et al.).

A single pathologist (applicant Matt van de Rijn) reviewed hematoxylin and eosin (H&E) sections of each tumor, including all before and after pairs, and made a

histological evaluation of each while blinded to the source. Tumors were graded using a modified version of the Bloom-Richardson method (Robbins, P., et al., *Hum Pathol*, 26, 873-879, 1995). These data are displayed in Table 4. Representative H&E sections of each tumor are posted on Applicants' website at http://genome-www.stanford.edu/molecularportraits/.

Immunohistochemistry was performed as described previously (Perou, C., et al., 1999; Bindl, J. and Warnke, R., Am J Clin Pathol, 85, 490-493, 1986, and Natkunam, Y., et al., Am. J. Path., 156(1), 2000). The antibodies used included the commercially available monoclonal antibodies CAM5.2 (specific for keratins 8/18, available from Becton Dickinson), anti-keratin 5/6 (available originally from Boehringer Mannheim, Indianapolis, IN, cat. no. 1273396 and now from Chemicon International, Temekula, CA), anti-keratin 17 (clone E3, available from Dako, Carpinteria, CA, cat. no. M7046), anti-CD3 (available from Dako), and anti-immunoglobulin light chain (A191, A193, available from Dako). These immunohistochemical methods were applied for all the immunohistochemical studies described in the present application unless otherwise stated. Results are presented in Figure 3 and are described in further examples as appropriate.

20

25

30

5

10

15

Example 4

cDNA Synthesis and Labeling and Microarray Hybridization

mRNA was isolated from breast tissue, breast tumor samples, and cell lines as described in Example 2. Fluorescently labeled cDNA was synthesized from the mRNA using a reverse transcriptase reaction that included dUTP labeled with either Cy3 or Cy5. For each hybridization experiment differentially labeled cDNA samples (an experimental sample and a reference sample) were pooled and hybridized to a cDNA microarray, which was then scanned as described in Example 4. The protocol below provides details of the steps performed for cDNA synthesis and labeling and for microarray hybridization.

1. To set up for the reverse transcriptase (RT) reaction, combine the following (e.g., in an Eppendorf tube):

(a) Anchored Oligo dT primer - 2 microliters at 2.5 micrograms/microliter or control - 2 microliters.

5

- (b) mRNA (whatever volume is needed to reach 1.5-2 micrograms)
- (c) DEPC/H2O add sufficient volume so that final volume is 16 microliters
- 2. Heat at 70° C for 10 minutes
- 3. Chill on ice for 1-2 minutes
- 10 4. Add the following RT reaction components to each individual tube:
 - (a) 5X RT Buffer 6 microliters
 - (b) 50X dNTPs 0.7 microliters (500mm A,C,G, 200mm T)
 - (c) Cy Dyes dUTP 3 microliters (either Cy3 or Cy5)
 - (d) DTT Stock 3 microliters (comes with RT setup)
- 15 (e) Superscript II RT-1.7 microliters (cat# 18064-014 Gibco-BRL)
 - 5. Mix well
 - 6. Incubate at 42° C for 1 hour
 - 7. Add another 1 microliter of Superscript II RT and mix
 - 8. Incubate at 42° C for 1 more hour
- 20 9. Degrade mRNA with 1.5 microliters of 1M NaOH / 2mM EDTA
 - 10. Incubate at 65° C for 8 minutes (do NOT go TOO long here)
 - 11. Add 15 microliters of 0.1M HCL
 - 12. Add 450 microliters of TE (pH 7.4) to each sample and place each sample into a microcon-30 filter.
- 25 13. Add 15 microliters of Human COT1 DNA (Gibco-BRL = 1 microgram/microliter) to each sample in the microcon filter.
 - 14. Spin in Eppendorf centrifuge until volume equals about 50 microliters (8-10')
 - 15. Remove flowthroughs, and pool Cy3 and Cy5 flowthroughs together for future recovery of Cy dyes (store at -20 ° C).
- 30 16. Invert microcons, recover labeled samples, and pool Cy3 and Cy5 samples together that will be used for an individual experiment, in a single microcon filter that was used in step 15.

17. Add 500 microliters of T.E again, and spin until final volume equals 8 microliters or less (BE VERY CAREFUL TO NOT SPIN THE SAMPLE DRY!!!)

- 18. To the 8 microliter combined Cy3 + Cy5 sample, add the following:
- 5 (a) Yeast tRNA 1 microliter (10 micrograms/microliter)
 - (b) PolyA DNA 2 microliters (10 micrograms/microliter)
 - (c) 20XSSC 2 microliters (FINAL SSC concentration approximately 3X)
 - (d) 10% SDS 0.3 microliters

FINAL VOLUME = 13.3 MICROLITERS

- 10 19. Mix well.
 - 20. Heat sample at 100° C for 2 minutes, spin very briefly.
 - 21. Place samples at 42° C for 20-30 minutes.
 - 22. During Step 21, prepare the necessary number of hybridization chambers (Custom made by Die-Tech, San Jose, CA (see "Drawings for custom parts at
- http://cmgm.stanford.edu/pbrown/mguide/HybChamber.pdf") or purchased at Corning Costar, Acton, MA (CTMTM Hybridization Chamber, #2551), get 22mm X 22mm coverslips ready, and get arrays ready.
 - 23. Add the 13 microliters of probe (i.e., labeled cDNA mixture) onto the center of the array while NOT actually touching the array face with the pipette tip.
- 20 24. Quickly and gently place the 22mm X 22mm glass#1 coverslip onto the array face.
 - 25. Add about 15-20 microliters of 3XSSC in two drops onto the end of the array slide away from the actual array for hydration purposes.
 - 26. Assemble the hybridization chamber with the array slide in it, and place into a 65
- 25 C water bath overnight.
 - 27. Pull out the hybridization chamber and dry off the excess H₂O.
 - 28. Disassemble the hybridization chamber, and quickly place the slides into a slide washing chamber that contains 2XSSC/0.05%SDS. Jiggle the slide holder up and down until the slide coverslip falls off. Repeat this individually for each array, one at
- 30 a time, until all are done
 - 29. Wash slides in 1XSSC for 3-5 minutes.
 - 30. Wash slides in 50 C 0.2XSSC for 3-5 minutes, twice.

31. Spin slides down in centrifuge at 200 RPM for 2 minutes.32.SCAN immediately.

5

10

15

20

25

30

Example 5

Collection, Processing, and Analysis of Data from Microarray Hybridizations

The cDNA microarrays were scanned with either a General Scanning (Watertown, MA) ScanArray 3000 at 20 microns resolution, or with a prototype Axon Instruments (Foster City, CA) GenePix Scanner at 10 micron resolution. The output files, which were TIFF images, were then analyzed using the program ScanAlyze (M. Eisen; available at http://www.microarrays.org/software). Fluorescent ratios and quantitative data on spot quality (see ScanAlyze manual) were stored in a prototype of the AMAD database (M. Eisen; available at http://www.microarrays.org/software). Areas of the array with obvious blemishes were manually flagged and excluded from subsequent analyses. The primary data tables can be downloaded at http://genome-www.stanford.edu/molecularportraits/, in text/tab delimited format after obtaining a password.

Data were extracted from the database in a single table, with each row representing an array element, each column a hybridization, and each cell the observed fluorescent ratio for the array element in the appropriate hybridization. Previously flagged spots were excluded, as were spots that did not pass quality control. This table had 9216 rows and 84 columns. Array elements were removed if they were not well measured in at least 80% of the hybridizations. The data table was split into tumors and cell lines, and the two subtables were separately median polished (the rows and columns were iteratively adjusted to have median 0) before being rejoined into a single table. Genes whose expression varied by at least 4-fold from the median in this sample set in at least three of the samples tested were selected for the analyses described in the Detailed Description and in Examples 6 and 7 (1753 genes satisfied these conditions).

Average-linkage hierarchical clustering, as implemented in the program Cluster (M. Eisen; http://www.microarrays.org/software), was applied separately to

both the genes and arrays. The results were analyzed, and images generated, using TreeView (M. Eisen; http://www.microarrays.org/software).

Example 6

5

10

15

20

25

30

Molecular Portraits of Tumors Based on Variation in Expression of 1753 Genes Methods

A hierarchical clustering method (Eisen, 1998) was used to group 1753 differentially expressed genes (i.e., those genes whose expression varied by at least 4fold from the median in the sample set in at least three of the samples tested) based on similarity in the pattern with which their expression varied over all samples. The same clustering method was used to group the experimental samples (tissues and cell lines separately) based on the similarity in their patterns of expression. The data are conveniently presented in a matrix format, with each row representing a single gene, and each column representing an experimental sample. The ratio of the abundance of transcripts of each gene, in each sample, to the median abundance of the gene's transcript among all the cell lines (left panel) or to its median abundance across all the clinical samples (right panel) is represented by the color of the corresponding cell in the matrix. Green squares represent transcript levels below the median; black squares represent transcript levels equal to the median; red squares represent transcript levels greater than the median; gray squares indicate technically inadequate or missing data. The color saturation reflects the magnitude of the ratio relative to the median for each set of samples (see scale at bottom left). In all images the brightest red color represents transcript levels at least 16-fold greater than the median, and the brightest green color represents transcript levels at least 16-fold below the median.

Results

(i) Molecular Portraits of Tumors

Three striking general features of the tumors' gene expression patterns are evident in Appendices A and D. First, the breast tumors show remarkable variation in their patterns of gene expression. Second, this variation is multidimensional, that is, many different sets of genes show largely independent patterns of variation. Third,

5

10

15

20

25

30

the patterns of gene expression have a pervasive order reflecting relationships among the genes, relationships among the tumors, and connections between specific genes and specific tumors.

The hierarchical clustering algorithm organized the experimental samples based only on overall similarity in their gene expression patterns; relationships among the experimental samples are summarized in a dendrogram, in which the pattern and length of the branches reflect the relatedness of the samples (Eisen, M., et al., 1998). Fifteen of the 20 pairs of samples taken from the same tumor before and after doxorubicin chemotherapy (red dendrogram branches), and both pairs of samples taken from a primary tumor and an associated lymph node metastasis (blue branches) were clustered together on adjacent terminal branches in the dendrogram. The three clustered normal breast samples are highlighted in green. The branches representing the four breast luminal epithelial cell lines are displayed in pink; breast basal epithelial cell lines are displayed in orange, the endothelial cell lines in blue, the mesynchemal-like cell lines in dark green, and the lymphocyte-derived cell lines in dark red.

Application of the clustering method to the samples and genes identified the two members of each primary tumor/metastasis pair as being closely related to one another based on similarity in gene expression. Thus this method can provide information useful in determining whether a tumor sample obtained from a second tumor is a metastasis originating from a first tumor or is an independent primary tumor. In addition, despite the potential confounding effects of an interval of 16 weeks, independent surgical procedures and cytotoxic chemotherapy, the independent samples taken from the same tumor before and after chemotherapy were in most cases recognizably more similar to each other in their overall pattern of gene expression than either was to any of the other samples.

Closer examination of the five before and after pairs that were not matched by the clustering algorithm provided further insight. In three instances, the after chemotherapy specimens (i.e. Norway 47, 61, and 101) were clustered into a branch of the dendrogram that contained the three normal breast samples along with five additional tumor samples; we know from the clinical data that these three tumors were all classified as doxorubicin responders (Table 5 and Aas, T., et al.). Thus, in most

cases, independent tumor biopsies from the same individual could be recognized as such solely on the basis of gene expression patterns. This implies that the patterns of gene expression are homogeneous and stable in each breast tumor, and yet, sufficiently diverse between tumors, so that they can be viewed as molecular portraits of each tumor.

(ii) Specific Properties of the Tumors

5

10

25

30

The molecular portraits revealed in the patterns of gene expression not only uncovered similarities and differences among the tumors but, in many cases, pointed to a biological interpretation. As discussed below, variation in growth rate, in the activity of specific signaling pathways, and in the cellular composition of the tumors were all reflected in corresponding variations in the expression of specific subsets of genes.

15 Growth and Proliferation. The largest distinct subset of genes among the 1753 genes was the proliferation subset, which is a group of approximately 120 genes whose level of expression correlates with cellular proliferation rates (See Perou, C., et al., 1999; Ross, D., et al., Nature Genetics, 24(3): 227-35, 2000.). Expression of this subset of genes varied widely among the tumor samples, and was generally well correlated with 20 a standard pathological index of tumor cell proliferation, namely the mitotic index. The mitotic grade of each tumor, as determined by evaluating mitotic index, is displayed in a color-coded format below the tumor name, with green indicating mitotic grade 1, black indicating mitotic grade 2, red indicating mitotic grade 3, and gray indicating that mitotic grade was not evaluated. The growth and proliferation cluster also included the genes encoding two widely used immunohistochemical markers of cell proliferation (Ki-67 and PCNA, names in blue/purple letters).

Diverse proliferation-related functions are represented in the genes comprising this subset, including macromolecular synthesis, cell-cycle regulation, mitosis and cytokinesis. Many genes in which alterations in sequence or expression that are associated with tumorigenesis were also found in this gene subset, in particular, numerous genes implicated in chromosomal instability and/or anueploidy (names in

pink letters)²². These genes included the spindle checkpoint gene $hBUB1^{23}$, the human MAD2 homologue²⁴, the STK15/IPL1 kinase²⁵, and the PLK1/HSTPK13 kinase²⁶.

The importance of this clustered set of genes in cancer biology is further highlighted by its inclusion of genes encoding the molecular targets of widely used anticancer agents (names in orange letters), including both subunits of ribonucleotide reductase, topoisomerase II alpha, and dihydrofolate reductase. The many uncharacterized genes in this subset, therefore, are candidates for important roles in the regulation and execution of the cell's program for growth and proliferation, and potential targets for oncogenic mutations or antiproliferative drugs. Thus the clustering method, by generating a set of genes known to be involved in proliferation and/or known to be targets for antiproliferative drugs and further identifying a set of unknown genes whose expression patterns cause them to fall within the subset, identifies potential targets for the development of new chemotherapeutic agents.

5

10

- Variation in signaling pathways. Several groups of co-expressed genes provided views of the activities of specific signaling and/or regulatory systems.
 (a) Interferon signaling: A large subset of genes known to be regulated by the interferon pathway (including STAT1) showed substantial variation in expression among the tumors.
- (b) Estrogen receptor: Variation in expression of the estrogen receptor alpha gene (ESRI) correlated well with the direct clinical measurement of the estrogen receptor protein levels in the tumors (Table 5, concordance in 36/38 tumors tested), and paralleled variation in the expression of a larger group of genes that included three other transcription factors (GATA-binding protein 3, X-box binding protein 1 and hepatocyte nuclear factor 3 alpha (see also references 27 and 28). In a specific subset of the estrogen receptor positive tumors, the BCL2 gene and two previously known estrogen regulated genes (LIVI and trefoil factor 129) were also highly expressed (See Appendices C and D). The regulatory program reflected in the expression of this ESR1-containing subset of genes may play an important role in the clinical course of a breast tumor, as the loss of expression of the estrogen receptor is known to be associated with a poor prognosis 17, while high levels of expression of both BCL2 and

ESR1 are associated with a more favorable prognosis^{30,31}.

(c) <u>Erb-B2</u>: *HER2/neu*, also known as the *Erb-B2* oncogene, is a gene whose aberrant expression is thought to contribute to tumorigenesis in the breast¹⁶. The *Erb-B2* receptor-tyrosine kinase is known to be overexpressed in 20-30% of all breast tumors, usually associated with DNA amplification of the chromosomal locus (17q12-q22)

- that contains the ERB-B2 gene^{32,33}. Interestingly, most of the other genes contained within the Erb-B2 cluster
 - were also located in this same small region of Chromosome 17. These expression data suggested, and the results of microarray comparative genomic hybridization confirmed, that these other closely linked genes were also amplified on the genomic
- 10 DNA level and, consequently, overexpressed on the mRNA level in tumors with an amplified *Erb-B2* gene³³⁻³⁵.
 - (d) Fos/Jun Signaling: A subset of genes that included *c-Fos*, *JunB*, and other genes involved in the "immediate-early" response to serum, co-varied in expression among the tumor specimens; these genes were most highly expressed in the three normal breast samples. Applicants have found that this set of genes is characteristically induced by prolonged handling of the samples following surgical resection. The observed variation in the expression of this set of genes may therefore reflect variation in post surgical handling rather than true *in vivo* differences.

20 Example 7

Identification of Cell Type Specific Components Within Tumors Based on Variation in Expression of 1753 Genes

Methods and Rationale

15

25 Clustering was performed as described in the previous Example. The resulting dendrogram and matrix were used to identify gene expression patterns indicative of the presence of certain cell types within the samples. Human breast tumors are histologically complex tissues, containing a variety of cell types in addition to the carcinoma cells¹⁸. In analyzing the gene expression patterns in tumors and tissues, two lines of reasoning were used to infer the lineage of the cells that accounted for apparently cell-type specific expression of particular clustered groups of genes. First, such gene subsets usually included genes whose expression patterns have been well

characterized by previous workers, and have consistently pointed to a specific cell type. Second, these inferences were often corroborated by observing comparable expression of the same group of genes in one or more of the cultured cell lines (reference 21). Some of the prominent patterns of gene expression that appear, on this basis, to indicate the variable abundance of particular cell types in these tissue samples are summarized below.

Immunohistochemistry was performed as described in Example 3.

Results

5

10 At least eight subsets of genes appeared to reflect variation in specific cell types present within the tumors. The notion that developmental lineage has a pervasive influence on gene expression patterns is highlighted by the clustering pattern of the cultured cell lines. For example, the three lymphocyte cell lines comprise one branch, the two endothelial cell lines constitute another and the mesenchymal cell lines form a third. Cell lines derived from two distinct types of breast epithelial cells (basal and luminal) also formed distinct dendrogram branches. Some of the prominent patterns of gene expression that appear to indicate the variable abundance of particular cell types within a tumor sample are summarized in the remainder of this Example.

20

25

- (a) Endothelial cells: A subset of genes characteristically expressed by endothelial cells, including CD34, CD31 and von Willebrand Factor^{36,37} were also strongly expressed in the two endothelial cell lines HUVEC and HMVEC. Variation among the tumor samples in the abundance of transcripts from this subset of genes may therefore reflect variation in the vascularity or angiogenic activity within the tumors.

 (b) Stromal cells: A previously characterized subset of genes that included multiple isoforms of collagen and other genes encoding extracellular matrix components, many of which are characteristically expressed by mesenchymal cells, showed significant variation in expression among the tumor samples^{8,21}.
- 30 (c) <u>Adipose-Enriched/Normal Breast:</u> A subset of genes that included fatty acid binding protein 4 and PPARγ may represent the presence of adipose cells in the tumor samples^{38,39}. This subset of genes was most highly expressed in the three normal breast

samples. As we have no cell line guide for this cluster, the exact nature of the cell type underlying expression of these genes cannot be unequivocally determined.

- (d) <u>B-lymphocytes</u>: Variation in expression of a subset of genes that were highly expressed in RPMI-8226 (a multiple myeloma-derived cell line), including many
- immunoglobulin genes, appears to represent variable B-cell infiltration of the tumors.

 This interpretation was corroborated by immunohistochemistry)^{8,21}.
 - (e) <u>T-lymphocytes</u>: One subset of co-expressed genes included CD3, and two subunits of the T-cell receptor. Most of the genes in this subset were expressed at their highest levels in the T-cell leukemia derived cell line, MOLT-4. Variation in expression of
- this subset of genes was therefore interpreted as representing variation in T-lymphocyte populations in the tumors. Immunohistochemical staining of tumor samples, using anti-CD3 antibodies, confirmed that tumors with the highest levels of expression of this subset of genes contained numerous CD3-positive lymphocytes (Figure 3b).
- (f) Macrophages: A subset of genes that appeared to be markers of macrophage/monocyte populations included CD68, acid phosphatase 5, chitinase, and lysozyme. Interestingly, the transcripts for these genes were the most abundant in the three after chemotherapy tumor samples that clustered apart from their before counterparts (i.e. Norway 47, 61, and 101). These three tumors, all of which had responded to the chemotherapy, were thus notable not only for an overall gene expression pattern resembling that of normal breast tissue, but also, for a particularly large population of macrophages, perhaps representing a secondary response to tumor necrosis.
- (g) Basal and Luminal Epithelial Cells of the Mammary Duct, and Their Malignant
 Counterparts: Two distinct kinds of epithelial cells are found in the adult human mammary gland, basal (and/or myoepithelial cells) and luminal epithelial cells^{18,40}.
 These two cell types are conveniently distinguished immunohistochemically; basal epithelial cells can be stained with antibodies to keratin 5/6 (Figure 3c), while luminal epithelial cells stain with antibodies against keratins 8/18 (Figure 3c). Many genes
 were expressed by one of these two cell lines, but not by the other. The gene expression subsets characteristic of basal epithelial cells included several genes that have previously been shown to play important roles in this cell type, e.g., keratin 5,

keratin 17, integrin-□4 and laminin¹⁸. The gene expression subset characteristic of luminal cells was anchored by the previously noted subset of transcription factors that included the estrogen receptor gene.

5

15

20

25

30

Example 8

Classification of Breast Tumors Using an Optimized Set of Genes Showing

Differential Expression Between Tumors

10 Methods and Rationale

As described in Examples 6 and 7, analysis of genes that are differentially expressed in breast tumor samples provides an indication of the relatedness of the samples and allows identification of samples taken from the same tumor or members of a tumor/metastasis pair. Such analysis further provides insight into specific tumor properties such as variation in growth rate, activity of specific signaling pathways, and the cellular composition of the tumors. The subset of genes analyzed in Examples 6 and 7 was selected solely based upon the fact that genes in the subset were differentially expressed among the experimental samples. Recognizing that the choice of genes whose expression levels provide the basis for the ordering of the tumor samples determines which phenotypic relationships among the tumors are reflected in the clustering patterns, applicants devised methods for selecting subsets of genes optimized to reflect phenotypic relationships among the tumors.

(i) Selection of an intrinsic gene subset

The rationale behind the first optimized gene subset was Applicants' recognition that specific features of a gene expression pattern that are to be used as the basis for classifying tumors should typifythat tumor; that is, these features should be similar in any sample taken from the same tumor, and they should vary among different tumors. The 22 pairs of independent samples taken from 22 different tumors provided an opportunity for the selection of genes that fulfill these criteria. To select a set of genes whose variation in expression optimally represented differences between tumors rather than just differences between tumor samples, a "within-

between" score was assigned to each gene equal to the mean effect of the gene on the pairwise correlation coefficients of the 22 matched tumor pairs less the mean effect of the gene on the remaining 210 tumor-tumor pairwise correlation coefficients. The "effect" of a gene on a pairwise correlation was defined as the difference in the correlation coefficient with and without data for the gene included. Higher "within-between" scores indicated that the gene had a good tendency to group together paired samples.

The 496 genes with a score one standard deviation above the mean score were selected and defined as the "intrinsic" gene subset. To confirm the existence of an "intrinsic" set of genes and to verify that the "within-between" score identified these genes, the predictive quality of the score was examined using a type of "leave-one-out" cross-validation analysis. The entire analysis was repeated 22 times, each with one of the 22 matched pairs completely removed from the analysis. If an "intrinsic" set of genes existed, and if the "within-between" score successfully identified these genes, it was expected that the genes with high scores in each reduced dataset would produce relatively high correlations in the excluded pair. When the genes were sorted based on their "within-between" score in each reduced dataset, the correlation coefficient of the excluded matched pair in sliding windows of 250 genes increased progressively with increasing "within-between" score for nearly all of the matched pairs, while no such increase was found when randomly matched pairs were used.

The clustering method was used as described above to cluster the experimental samples based on the gene expression patterns of the 496 genes included in the "intrinsic" gene subset.

25 (ii) Selection of an "epithelial-enriched" gene subset

10

15

20

30

A second optimized gene subset (called the "epithelial-enriched" gene subset) was selected consisting of 374 genes that Applicants considered likely to be expressed primarily by normal or malignant breast epithelial cells. The rationale for this gene subset is that each of the tumors was ultimately caused by alterations in breast epithelial cells. The seven individual subsets of genes that were chosen to form the "epithelial-enriched" gene subset were selected from the 1753 gene cluster diagram.

The actual groups of genes chosen are listed in Table 7. These seven subsets of genes included:

- 1) A subset that was very highly expressed in the cultured basal cell lines, along with some of the other breast derived cell lines including Hs578T and BT-549;
- 5 2) A subset that was expressed in all of the cultured epithelial cell lines (both basal and luminal);
 - 3) A subset of genes centered around the high level of expression of Erb-B2;
 - 4) A subset of genes that contained genes known to be important for tumor biology (e.g., the urokinase receptor);
- 5) A subset that contained genes that were most highly expressed in the basal-like tumors;
 - 6) A subset of genes highly expressed in some of the luminal-like tumors;
 - 7) A subset of genes that was primarily expressed in the four breast carcinoma derived cell lines and/or in many of the luminal-like tumors.

15

20

The clustering method was used as described above to cluster the experimental samples based on the gene expression patterns of the 374 genes included in the "epithelial-enriched" gene set.

To confirm the results of the clustering analysis described below, a "weighted voting" method was applied to the data as described in Golub, T.R., et al., Science, 286, 531-537, 1999.

Results

The 496 genes included in the "intrinsic" gene set are identified in Table 6.

Two large branches were apparent in the tumor dendrogram that resulted from analysis based on this gene set, and within each of these two branches, smaller branches were identified for which common biological themes could be inferred. The branches are colored accordingly (basal-like = ORANGE, Erb-B2 positive = PINK, normal breast-like = GREEN, and luminal epithelial-like = BLUE). Seventeen of the 20 before and after doxorubicin pairs (indicated with suffixes BE and AF following the numerical identifier for each tumor) were matched together on terminal dendrogram branches (red branches), as were both of the tumor/lymph node

5

10

15

20

25

30

metastasis pairs (blue branches). The small black bars beneath the dendrogram identify the 17 pairs that were correctly matched by this hierarchical clustering, while the larger green bars identify the positions of the three pairs that were not matched by the clustering. It is noted that the after-chemotherapy sample in each of these three sample pairs was clustered in a branch with normal breast tissue samples. Thus as for the 1753 gene set described in Examples 6 and 7, the intrinsic gene subset correctly identified independent tumor samples from the same tumor as related to each other. Despite the potential confounding effects of an interval of 16 weeks, independent surgical procedures and cytotoxic chemotherapy, the independent samples taken from the same tumor were in most cases recognizably more similar to each other in their overall pattern of gene expression than either was to any of the other samples. In addition, samples taken from a primary tumor and a metastasis from the same tumor could be recognized as closely related to one another. Thus in most cases independent samples from the same tumor were recognizable as such solely on the basis of gene expression patterns. This implies that the patterns of gene expression are homogeneous and stable in each breast tumor and yet sufficiently diverse between tumors so that they can be viewed as molecular portraits of each tumor.

The 374 genes included in the "epithelial-enriched" subset are listed in Table 8. Figure 2 presents a comparison of tumor dendrograms representing the results of hierarchical clustering of experimental samples using the "intrinsic" gene set and the dendrogram obtained by clustering using the "epithelial-enriched" gene set. The dendrograms are colored according to the clustering patterns obtained using the "intrinsic" gene set. Only two tumors (identified by the colored arrows) were placed in significantly different groups when the clustering was based on expression of the "epithelial-enriched" gene set instead of the "intrinsic" gene set.

The overall architecture of the two dendrograms representing the clustering of breast tumor samples using these two alternative gene sets was very similar, with only two tumor pairs (i.e. Norway 14 and 26) materially changing position (Figure 2). Thus, the classifications derived from the "intrinsic" gene set are consistent with the results using the "epithelial-enriched" gene set, even though the two sets shared only 25% of their genes.

5

A consistent division of the tumor samples into two subgroups was a striking feature of the dendrograms produced by both gene sets. Application of the "weighted voting" method of Golub recapitulated the sorting of the tissue samples between these two subgroups for all but one of the 65 samples, thus confirming the robustness of the division.

Example 9

Identification of Breast Tumor Subgroups Based on Optimized Gene Sets

10 Several groups of tumors that shared pervasive similarities in their expression patterns could be identified by cluster analysis; the dendrograms in Figure 2 are colorcoded to highlight these subgroups. Characteristic features of the expression patterns, or the membership, of each highlighted group also suggested biological interpretations. These data confirm the ability of the clustering method to divide 15 breast tumors into meaningful subgroups when applied using the "intrinsic" and "epithelial-enriched" gene subsets. Specific subgroups are discussed below and are named according to correlations between the genes expressed at high levels in the tumors and genes known to be expressed in particular cell types. Luminal Epithelial Cell Pattern: As described above, the major distinction was 20 between a large group of tumors (identified by blue letters and dendrogram branches) and a second large group that included all of the other tumor subtypes and the normal breast samples (highlighted in other colors). The tumors in this "blue" group were characterized by relatively high levels of expression of many genes known to be expressed by the luminal epithelial cells of the normal mammary duct, notably 25 including the estrogen and prolactin receptors. This connection was further corroborated using immunohistochemical analysis of breast tumor sections using antibodies against the luminal cell keratins 8/18, which stained the carcinoma cells in tumor specimens in this "blue" branch as shown, for example, in Figure 3f. With one exception, none of the tumors in this group expressed Erb-B2 at high levels. An 30 estrogen receptor-positive phenotype is known to be associated with a relatively favorable prognosis 30,31, while Erb-B2 expression is believed to contribute to tumorogenesis.

Normal Breast Tissue Pattern: Several tumors, including two "before and after" pairs and the single fibroadenoma tested (displayed in green), were clustered in a group of samples that contained all three of the normal breast specimens. The "normal breast" gene expression pattern was typified by a relatively high level of expression of genes 5 characteristic of basal epithelial cells and adipose cells, and relatively low levels of expression of genes characteristic of luminal epithelial cells. Basal Epithelial Cell Pattern: Many of the genes characteristic of basal epithelial cells were highly expressed in a group of six tumors (New York 2 and 3, Stanford 14 and 23, and Norway 41 and 109, indicated in orange in the dendrogram, that were 10 clustered based on pervasive similarities in their gene expression patterns. To corroborate the "basal cell-like" characteristics of these tumors, immunohistochemistry was performed using antibodies against keratins 5/6, 8/18, and 17. All six of these tumors showed staining for either keratins 5/6 and/or 17 (basal cell keratins), and no staining for keratins 8/18 (See Figure 3e.) Notably, these six tumors 15 also failed to express the estrogen receptor and most of the other genes that were usually co-expressed with it. Approximately 90% of breast tumors are suggested to have characteristics of luminal epithelial cells, while the characteristics of the remaining 10% are less well defined¹⁸. Breast tumors that stain positive for basal cell keratins may account for 3-15% of all breast tumors 41-46. The incidence among the tumor samples described herein was 15% (6/40). Many of 20

Erb-B2 Positive: As mentioned above, overexpression of the Erb-B2 oncogene was associated with a high level of expression of a specific set of genes, almost all of which map to the Erb-B2 region of chromosome 17³³. A clustered group of tumors was identified that was partially characterized by the high level of expression of this subset of genes (Stanford 2 and Norway 47, 53, 57 and 101). These tumors showed
 low levels of expression of the estrogen receptor and almost all of the other genes associated with estrogen receptor expression, a trait they share with the "basal-like" tumors, and which may contribute to the poor prognosis associated with these two

the tumors that stained positive for basal cell keratins only showed staining in a

any of the other remaining tumor cells (Figure 3e).

fraction of the tumor cells, and neither basal nor luminal keratins could be detected in

subtypes of breast tumors^{41,43,49,50}; in addition, both the basal-like and Erb-B2 positive tumors also show many p53 sequence mutations (see Table 5).

Example 10

Producing Antibodies to Basal Marker Polypeptides and Cytokeratin 17

This example describes the generation of polyclonal antibodies that bind to cytokeratin 17 and the generation of polyclonal antibodies that bind to the polypeptides encoded by the three basal marker genes described herein, i.e., cadherin3, matrix metalloproteinase 14, and cadherin EGF LAG seven-pass G-type receptor 2. The example further describes affinity purification of the antibodies. Materials

Anisole (Cat. No. A4405, Sigma)

5

10

- 2,2'-azino-di-(3-ethyl-benzthiazoline-sulfonic acid) (ABTS) (Cat. No. A6499,
 Molecular Probes Eugene, OR)
 - Activated Maleimide Keyhole Limpet Cyanin (Cat. No. 77106, Pierce Chemical Co. Rockford, IL)
 - Biotin (Cat. No. B2643, Sigma)
 - Boric acid (Cat. No. B0252, Sigma)
- Sepharose 4b (Cat. No. 17-0120-01, LKB/Pharmacia, Uppsala, Sweden)
 - Bovine Serum Albumin (LP) (Cat. No. 100 350, Boehringer Mannheim, Indianapolis, IN)
 - Cyanogen bromide (Cat. No. C6388 Sigma, St. Louis, MO)
 - Dialysis tubing Spectra/Por Membrane MWCO: 6-8,000 (Cat. No. 132 665,
- 25 Spectrum Industries Inc., Laguna Hills, CA)
 - Dimethyl formamide (DMF) (Cat. No. 22705-6, Aldrich Chemical Company, Milwaukee, WI)
 - DIC (Cat. No. BP 592-500, Fisher)
 - Ethanedithiol (Cat. No. 39,802-0, Aldrich Chemicals, Milwaukee, WI)
- Ether (Cat. No. TX 1275-3, EM Sciences)
 - Ethylenediaminetetraacetatic acid (EDTA)(Cat No. BP 120-1, Fisher Scientific, Springfield, NJ)

1-ethyl-3-(3'dimethylaminopropyl)-carbodiimide, HCL (EDC) (Cat No. 341-006,
 Calbiochem, San Diego, CA)

- Freund's Adjuvant, complete (Cat. No. M-0638-50B, Lee Laboratories, Grayson,
 GA)
- Freund's Adjuvant, incomplete (Cat. No. M0639-50B, Lee Laboratories)
 - Fritted chromatography columns (Column part No. 12131011; Frit: Part No. 12131029, Varian Sample Preparation Products, Harbor City, CA)
 - Gelatin from Bovine Skin (Cat. No. G9382, Sigma)
 - Glycine (Cat. No. BP381-5, Fisher)
- Goat anti-rabbit IgG, biotinylated (Cat No. A 0418, Sigma)
 - HOBt (Cat. No. 01-62-0008, Calbiochem-Novabiochem)
 - Horseradish peroxidase (HRP) (Cat. No. 814 393, Boehringer Mannheim)
 - HRP-Streptavidin (Cat. No. S 5512, Sigma)
 - Hydrochloric Acid (Cat No. 71445-500, Fisher)
- Hydrogen Peroxide 30% w/w (Cat. No. H1009, Sigma)
 - Methanol (Cat. No. A412-20, Fisher)
 - Microtiter plates, 96 well (Cat. No. 2595, Corning-Costar Pleasanton, CA)
 - N-□-Fmoc protected amino acids available from Calbiochem-Novabiochem, San Diego, CA. See 1997-1998 catalog pages 1-45.
- N-□-Fmoc protected amino acids attached to Wang Resin available from Calbiochem-Novabiochem. See 1997-1998 catalog pages 161-164.
 - NMP (Cat. No. CAS 872-50-4, Burdick and Jackson, Muskegon, MI)
 - Peptide (Synthesized by Research Genetics, Inc. Details given below)
 - Piperidine (Cat. No. 80640, Fluka, available through Sigma)
- Sodium Bicarbonate (Cat. No. BP328-1, Fisher)
 - Sodium Borate (Cat. No. B9876, Sigma)
 - Sodium Carbonate (Cat. No. BP357-1, Fisher)
 - Sodium Chloride (Cat. No. BP 358-10, Fisher)
 - Sodium Hydroxide (Cat. No. SS 255-1, Fisher)
- Streptavidin (Cat. No. 1 520, Boehringer Mannheim)
 - Thioanisole (Cat. No. T-2765, Sigma)
 - Trifluoroacetic acid (Cat. No. TX 1275-3, EM Sciences)

- Tween-20 (Cat. No. BP 337-500, Fisher)
- Wetbox-(Rubbermaid Rectangular Servin' Saver™ Part No. 3862 Wooster, OH)

Solutions

- BBS Borate Buffered Saline with EDTA dissolved in distilled water (pH 8.2 to 8.4 with HCl or NaOH)
 - -25 mM Sodium borate (Borax)
 - -100 mM Boric Acid
 - -75 mM NaCl
- 10 -5 mM EDTA
 - 0.1 N HCl in saline
 - -concentrated HCl (8.3 mL/0.917 L distilled water)
 - -0.154 M NaCl
 - Glycine (pH 2.0 and pH 3.0) dissolved in distilled water and adjusted to the
- 15 desired pH.
 - -0.1 M glycine
 - -0.154 M NaCl
 - 5X Borate 1X Sodium Chloride dissolved in distilled water.
 - -0.11 M NaCl
- 20 -60 mM Sodium Borate
 - -250 mM Boric Acid
 - Substrate Buffer in distilled water adjusted to pH 4.0 with sodium hydroxide:
 - -50 to 100 mM Citric Acid

25 Peptide Synthesis Solutions

- AA solution: HOBt is dissolved in NMP (8.8 grams HOBt to 1 liter NMP).
 Fmoc-N-a-amino at a concentration at .53 M.
- DIC solution: 1 part DIC to 3 parts NMP.
- Deprotecting solution: 1 part Piperidine to 3 parts DMF
- Reagent R: 2 parts anisole, 3 parts ethanedithiol, 5 parts thioanisole, 90 parts trifluoroacetic acid.

Equipment

5

10

- MRX Plate Reader (Dynatech Inc., Chantilly, VA)
- Hamilton Eclipse (Hamilton Instruments, Reno, NV)
- Beckman TJ-6 Centrifuge, Refrigerated (Model No. TJ-6, Beckman Instruments, Fullerton, CA)
- Chart Recorder (Recorder 1 Part No. 18-1001-40, Pharmacia LKB Biotechnology)
- UV Monitor (Uvicord SII Part No. 18-1004-50, Pharmacia LKB Biotechnology)
- Amicon Stirred Cell Concentrator (Model 8400, Amicon Inc., Beverly, MA)
- 30 kD MW cut-off filter (Cat. No. YM-30 Membranes Cat. No. 13742, Amicon Inc., Beverly, MA)
- Multi-channel Automated Pipettor (Cat. No. 4880, Corning Costar Inc., Cambridge, MA)
 - pH Meter Corning 240 (Corning Science Products, Corning Glassworks, Corning, NY)
- ACT396 peptide synthesizer (Advanced ChemTech, Louisville, KY)
 - Vacuum dryer (Box is from Labconco, Kansas City, MO; Pump is from Alcatel, Laurel MD).
 - Lyophilizer (Unitop 600sl in tandem with Freezemobile 12, both from Virtis, Gardiner, NY)

20

Methods

Peptides were selected using the program Omiga TM1.1 (Oxford Molecular Group, Inc., 2105 So. Bascom Ave., Suite 200, Campbell, CA 95008) using the Hopp/Woods method, which is described in Hopp TP, Woods KR, *Mol Immunol*, Apr: 20(4):483-9. A computer program for predicting protein antigenic determinant

Apr;20(4):483-9 A computer program for predicting protein antigenic determinants, 1983, and Hopp TP and Woods KR, Proc. Nat. Acad. Sci. U.S.A. 78, 3824-3828, 1981. Preferred peptide sequences displayed minimal homology with known proteins. Three peptide sequences were selected for each polypeptide. The sequences were as follows:

30

Peptides for antibodies that bind to cadherin3 (GenBank accession number NP_001784):

RAVFREAEVTLEAGGAEQE (SEQ ID NO:4) QEPALFSTDNDDFTVRN (SEQ ID NO:5) QKYEAHVPENAVGHE (SEQ ID NO:6)

5

Peptides for antibodies that bind to matrix metalloproteinase 14 (GenBank accession number NP_004986):

- 10 AYIREGHEKQADIMIFFAE (SEQ ID NO:7) DEASLEPGYPKHIKELGR (SEQ ID NO:8) RGSFMGSDEVFTYFYK (SEQ ID NO:9)
- Peptides for antibodies that bind to anti-cadherin EGF LAG seven-pass G-type receptor 2 (GenBank accession number NP_001399):

QASSLRLEPGRANDGDWH (SEQ ID NO:10) ELKGFAERLQRNESGLDSGR (SEQ ID NO:11)

20 RSGKSQPSYIPFLLREE (SEQ ID NO:12)

Peptides for antibodies that bind to anti-cytokeratin17:

25 KKEPVTTRQVRTIVEE (SEQ ID NO:13)
QDGKVISSREQVHQTTR (SEQ ID NO:14)
SSSIKGSSGLGGGSS (SEQ ID NO:15)

Synthesis of Peptides

30 Incubate: Resin was immersed in appropriate solution. All incubation steps occured with mixing.

Wash: Added 2 mls. DMF, incubated 5 minutes and drained.

Wash Cycle: Five washes.

Machine Synthesis

The sequence of the desired peptide was provided to the peptide synthesizer. The C-terminal residue was determined and the appropriate Wang Resin was attached to the reaction vessel. The peptides were synthesized C-terminus to N-terminus by adding one amino acid at a time using a synthesis cycle. Which amino acid is added was controlled by the peptide synthesizer, which looks to sequence of the peptide entered into its database.

10

15

- Step 1 Resin Swelling: Added 2 mL DMF, incubated 30 minutes, drained DMF.
- Step 2 Synthesis cycle
 - 2a Deprotection: 1 mL deprotecting solution was added to the reaction vessel and incubated for 20 minutes.
- 2b Wash Cycle
 - 2c Coupling: 750 mL of amino acid solution and 250 mL of DIC solution were added to the reaction vessel. The reaction vessel was incubated for thirty minutes and washed once. The coupling step was repeated once.
 - 2d Wash Cycle
- Step 2 was repeated over the length of the peptide. The amino acid solution changed as the sequence listed in peptide synthesizer dictated.
 - Step 3 Final Deprotection: Steps 2a and 2b were performed one last time.
- Resins were deswelled in methanol—rinsed twice in 5 mL methanol, incubated 5 minutes in 5 mL methanol, rinsed in 5 mL methanol—and then vacuum dried.

Peptide was removed from the resin by incubating 2 hours in reagent R and then precipitated into ether. Peptide was washed in ether and then vacuum dried. Peptide was resolubilized in diH20, frozen, and lyophilized overnight.

30

Conjugation of Peptide with Keyhole Limpet Hemocyanin

Peptide (6 mg) was dissolved in PBS (6 mL) and mixed with 6 mg of maleiimide

activated KLH carrier in 6 mL of PBS for a total volume of 12 mL. The entire solution was mixed for two hours, dialyzed in 1L PBS, and lyophilized.

Immunization of Rabbits

5 Two New Zealand White Rabbits were injected with 250 μg keyhole limpet hemocyanin (KLH) conjugated peptide in an equal volume of complete Freund's adjuvant and saline in a total volume of 1 mL. Antigens (KLH-Peptide, 100 μg each) in an equal volume of incomplete Freund's Adjuvant and saline were injected into three to four subcutaneous dorsal sites for a total volume of 1 mL two, four, and six weeks after the first immunization. The three peptides were injected together.

The immunization schedule was as follows:

Day 0	Pre-immune bleed, primary immunization
Day 15	1st Boost
Day 27	1st Bleed
Day 44	2nd Boost
Day 57	2nd Bleed and 3rd Boost
Day 69	3rd Bleed
Day 84	4th boost
Day 98	4th bleed

15 The Collection of Rabbit Serum

The rabbits were bled (30 to 50 mL) from the auricular artery. The blood was allowed to clot at room temperature for 15 minutes and the serum was separated from the clot using an IEC DPR-6000 centrifuge at 5000 x g. Cell-free serum was decanted gently into a clean test tube and stored at -20°C for affinity purification.

20

Determination of Antibody Titer

All solutions with the exception of wash solution were added by the Hamilton Eclipse, a liquid handling dispenser. The antibody titer was determined in the rabbits using an ELISA assay with peptide on the solid phase. Flexible high binding ELISA

plates were passively coated with peptide diluted in BBS (100 μL, 1 μg/well) and the plate was incubated at 4°C in a wetbox overnight (air-tight container with moistened cotton balls). The plates were emptied and then washed three times with BBS containing 0.1% Tween-20 (BBS-TW) by repeated filling and emptying using a semi-automated plate washer. The plates were blocked by completely filling each well with BBS-TW containing 1% BSA and 0.1% gelatin (BBS-TW-BG) and incubating for 2 hours at room temperature. The plates were emptied and sera of both pre- and post-immune serum were added to wells. The first well contained sera at 1:50 in BBS. The sera were then serially titrated eleven more times across the plate at a ratio of 1:1 for a final (twelfth) dilution of 1:204,800. The plates were incubated overnight at 4°C. The plates were emptied and washed three times as described.

Biotinylated goat anti-rabbit IgG (100 μ L) was added to each microtiter plate test well and incubated for four hours at room temperature. The plates were emptied and washed three times. Horseradish peroxidase-conjugated Streptavidin (100 μ L diluted 1:10,000 in BBS-TW-BG) was added to each well and incubated for two hours at room temperature. The plates were emptied and washed three times. The ABTS was prepared fresh from stock by combining 10 mL of citrate buffer (0.1 M at pH 4.0), 0.2 mL of the stock solution (15 mg/mL in water) and 10 μ L of 30% H_2O_2 . The ABTS solution (100 μ L) was added to each well and incubated at room temperature. The plates were read at 414 λ , 20 minutes following the addition of substrate.

Preparation of the Peptide Affinity Purification Column:

10

15

20

25

30

The affinity column was prepared by conjugating 5 mg of peptide to 10 mL of cyanogen bromide-activated Sepharose 4B, and 5 mg of peptide to hydrazine-Sepharose 4B. Briefly, 100 uL of DMF was added to peptide (5 mg) and the mixture was vortexed until the contents were completely wetted. Water was then added (900 μ L) and the contents were vortexed until the peptide dissolved. Half of the dissolved peptide (500 μ L) was added to separate tubes containing 10 mL of cyanogen-bromide activated sepharose 4B in 0.1 mL of borate buffered saline at pH 8.4 (BBS), and 10 mL of hydrazine-Sepharose 4B in 0.1 M carbonate buffer adjusted to pH 4.5 using excess EDC in citrate buffer pH 6.0. The conjugation reactions were allowed to

proceed overnight at room temperature. The conjugated sepharose was pooled and loaded onto fritted columns, washed with 10 mL of BBS, blocked with 10 mL of 1 M glycine, and washed with 10 mL 0.1 M glycine adjusted to pH 2.5 with HCl and reneutralized in BBS. The column was washed with enough volume for the optical density at 280λ to reach baseline.

The Affinity Purification of Antibodies

The peptide affinity column was attached to a UV monitor and chart recorder.

- The titered rabbit antiserum was thawed and pooled. The serum was diluted with one volume of BBS and allowed to flow through the columns at 10 mL per minute. The non-peptide immunoglobulins and other proteins were washed from the column with excess BBS until the optical density at 280 λ reached baseline. The columns were disconnected and the affinity purified column was eluted using a stepwise pH gradient
 from pH 7.0 to pH 1.0. The elution was monitored at 280 nM, and fractions containing antibody (pH 3.0 to pH 1.0) were collected directly into excess 0.5 M BBS. Excess buffer (0.5 M BBS) in the collection tubes served to neutralize the antibodies collected in the acidic fractions of the pH gradient.
- The entire procedure was repeated with "depleted" serum to ensure maximal recovery of antibodies. The eluted material was concentrated using a stirred cell apparatus and a membrane with a molecular weight cutoff of 30 kD. The concentration of the final preparation was determined using an optical density reading at 280 nM. The concentration was determined using the following formula: mg/mL = OD₂₈₀/1.4.

25

5

Example 11

SDS-PAGE and Immunoblot Analysis of Basal Marker Polypeptides

To investigate the expression pattern of cadherin3, matrix metalloproteinase

14, and cadherin EGF LAG seven-pass G-type receptor 2, extracts were made from a
variety of different cell lines and subjected to SDS-PAGE followed by

immunoblotting according to the protocol below, using affinity purified polyclonal antibody to BSTP-ECG1 prepared as described in Example 10.

Materials

- Acetic acid, Glacial (Cat. No. A38°-212, Fisher)
- Acrylamide (Cat. No. A-3553, Sigma)
 - Anti-Rabbit IgG (H&L) (Cat. No. 31460ZZ, Pierce)
 - Bis-acrylamide (Cat. No. M-7279, Sigma)
 - Blotting paper (Cat. No. 170-3960, Bio-Rad, Hercules, CA)
 - Bovine Serum Albumin (LP) (Cat. No. 100-350, Boehringer Mannheim,
- 10 Indianapolis, IN)
 - Brilliant Blue R-250 (Cat. No. BP101-25, Fisher)
 - Complete™ Mini (Cat. No. 1836153, Boehringer Mannheim)
 - ECL Western Blotting Detection Reagents (Cat. No. RPN2106, Amersham Pharmacia Biotech, Piscataway, NJ)
- Ethyl alcohol (AAPER Alcohol and Paper Chemical Co., Shelbyville, KY)
 - Gelplate Clean (Cat. No. 786-140RF, Geno Technology, Inc., St. Louis)
 - Gelatin (Cat. No. G-2500, Sigma)
 - Glycerol (Cat. No. BP229-1, Fisher)
 - Glycine (Cat. No. G-8898, Sigma)
- Hybond ECL (Cat. No. RPN303D, Amersham Pharmacia Biotech)
 - Lauryl Sulfate (SDS) (Cat. No. L-3771, Sigma)
 - Methanol (Cat. No. BP1105-4, Fisher)
 - M-Per (Cat. No. 78501, Pierce, Rockford, IL)
 - Nalgene bottle top filters (Cat. No. 09-740-62B, Fisher)
- Nonfat dry milk (Kroger Co., Cincinnati, OH)
 - Ponceau-S (Cat. No. P-07170, Sigma)
 - Potassium phosphate (Cat. No. P-0662, Sigma)
 - 2X SDS gel loading buffer (Cat. No. 750006, Research Genetics, Huntsville, AL)
 - Size markers (Cat. No. M-3913, M-4038, M-3788, Sigma)
- o Sodium azide (Cat. No. S227I-25, Fish)
 - Sodium chloride (Cat. No. S271-3, Fisher)
 - Sodium phosphate, Dibasic, Anhydrous (Cat. No. BP332-1, Fisher)

- t-amyl alcohol (Cat. No. A-16852, Sigma)
- TEMED (Cat. No. T-9281, Sigma)
- Trizma® Base (Cat. No. T-6066, Sigma)
- Tween-20 (Cat. No. BP337-500, Fisher)

5

Solutions '

- PBS Phosphate Buffered Saline dissolved in distilled water
 - -136 mM NaCl
 - -2.7 mM KCl
- 10 -10.1 mM Na₂HPO₄
 - -1.8 mM KH₂PO₄
 - Acrylamide/Bis (30% T, 2.67% C) dissolved in distilled water
 - -4.1 M acrylamide
 - -51.9 mM N,N'-
- 1.5 M Tris-HCl (pH 8.8) dissolved in distilled water
 - 0.5 M Tris-HCl (pH 6.8) dissolved in distilled water
 - 10% SDS dissolve 10 grams SDS in 100 mls distilled water
 - Running Buffer
 - -24.8 mM Tris base
- 20 -191.9 mM glycine
 - -3.5 mM SDS
 - Towbin transfer buffer (pH 8.3) dissolved in distilled water
 - -20% methanol
 - -25 mM Tris
- 25 -192 mM glycine
 - · Equilibrating buffer for gel drying, mixed in distilled water
 - -20% ethanol
 - -10% glycerol
 - Gel staining solution dissolved in distilled water
- 30 -0.3 mM Coomassie brilliant blue R-250
 - -40% methanol
 - -7% glacial acetic acid

- Gel destaining solution mixed in distilled water
 - -25% methanol
 - -7% glacial acetic acid
- 10% Tween[®]20 in PBS
- 5% Nonfat dry milk in PBS
 - 0.2% BSA Blocking Buffer dissolved in PBS
 - -0.2% BSA
 - -0.1% gelatin
 - -0.05% Tween®20
- 10 Wash Buffer
 - -0.05% Tween®20
 - -1X PBS

Equipment

- Microcentrifuge (Model 5415, Eppendorf)
- Power Pak 200 (Cat. No. 165-5052, Bio-Rad)
 - Power Pak 3000 (Cat. No. 165-5056, Bio-Rad)
 - Protean II xi Cell (Cat. No. 165-1813, Bio-Rad)
 - Recirculating chiller (Cat. No. CFT33D115V, Neslab Instruments, Inc., Portsmouth, NH)
- 20 20-Well comb (Cat. No. 165-1867, Bio-Rad)
 - pH Meter Corning 240 (Corning Science Products, Corning Glasswares, Corning, NY)
 - Air Cadet vacuum pump (Cat. No. P-07530-50, Cole-Palmer Instruments Co., Chicago, IL)
- Tissue Tearor tissue homogenizer (Cat. No. 985370-07, BioSpec Products Inc., Bartletsville, OK)

Methods

Sample Preparation

The following cell lines were used: 184B5, MCF7, OVCAR3, UACC62, HepG2, Colo205, UACC62, JURKAT, N-TERA2, MOLT4, Sw872. These cell lines are well known in the art. Descriptions of these cell lines are provided in Table 3, in

Perou, et al., Molecular portraits of human breast tumours, *Nature*, 406(6797):747-52, 2000, in Ross, D. T. et al. Systematic Variation in Gene Expression Patterns in Human Cancer Cell Lines. Nature Genetics, 24(3):227-35, 2000, and at the American Type Culture Collection Web site: http://www.atcc.org. Cell lines were maintained under standard growth conditions and in standard tissue culture media as appropriate for the particular cell line. Cells were collected according to standard techniques (e.g., trypsinization in the case of adherent cells), and the resulting cell suspension was prepared as follows:

- -The cell suspension was pelleted by centrifugation at 3000 RPM for 10 minutes, and the supernatant was discarded.
- -The pellet was washed with 1ml PBS, centrifuged at 10000 RPM for 10 minutes, and the supernatant was discarded.
- -An appropriate volume of M-PerTM Reagent was added to the cell pellet and mixed gently for 10 minutes in an ice bath. The mixture was centrifuged at 13200 RPM for 15 minutes, and the supernatant was saved.

The protein concentration in the supernatant was measured according to standard techniques.

All samples were mixed at 1:1 with gel loading buffer and boiled for 5 minutes before loading.

20

25

10

15

SDS PAGE

Standard SDS-PAGE stacking and running gels were prepared and placed in an electrophoresis apparatus. After filling the upper and lower chambers with running buffers the samples (60 □g/lane) were loaded. The inner core was placed in the lower chamber and the lid placed on top. The apparatus was connected to the power supply and recirculating system. The temperature setting was10°C. The stacking gel was run at 14mA per gel for 1 hour. The separating gel was run at 0.58mA per gel per hour for 16 hours.

30 Transfer to nitrocellulose

After electrophoresis was complete, the gel was equilibrated in Towbin Buffer for 15-30 minutes. The assembly for transfer was as follows:

cathode pre-soaked blotting paper gel pre-wetted nitrocellulose

5 pre-soaked blotting paper

anode

The transfer was performed at 20V for 25 minutes, then 25V for 20 minutes. After the transfer was complete, the gel was stained with Coomassie and the blot was stained with Ponceau-S.

10

Western Blotting

Primary and secondary antibodies

All primary and secondary antibodies were diluted in 0.2% BSA blocking buffer. All incubation steps were done with gentle mixing.

- Blots were blocked in 5% milk overnight at room temperature. The blots were rinsed with wash buffer before adding the primary antibody and incubating for two hours at room temperature. The primary antibodies were used at titers of 1:200, 1:500, and 1:1000 for anti-matrix metalloproteinase 14 and anti-cadherin EGF LAG seven-pass G-type receptor 2 and at 1:100 for anti-cadherin3.
- 20 One wash cycle was performed. One wash cycle consisted of:

Wash 5 min, rinse

Wash 5 min, rinse

Wash 10 min, rinse

Wash 5 min, rinse

Wash 5 min, rinse

The secondary antibody was added and incubated for one hour at room temperature. One wash cycle was then performed.

Peptide Block

As a control to demonstrate the specificity of the antibody, in some experiments equal amounts (w/w) of peptide and antibody were added to 1/10 of the final volume of blocking buffer and incubated overnight at 4°C. The volume of blocking buffer was

then brought up to the final volume, and the membrane was incubated for an additional two hours at room temperature.

Developing

The blots were placed in a Ziploc® bag. Equal volumes of ECL western blotting detection reagents were mixed and distributed evenly over the blots. The blots were placed in an autoradiography cassette, covered with a piece of film, and exposed.

Results

10

15

20

25

Figure 4A shows a Western blot demonstrating expression of the cadherin3 polypeptide in various cell lines. The lane order is, from left to right: MCF-7, Colo205, UACC62, JURKAT, HEPG2, N-TERA2, MOLT4, Sw872. The primary antibody was used at a dilution of 1:100.

Figure 4B shows a Western blot demonstrating expression of the matrix metalloproteinase 14 polypeptide in various cell lines. The lane order is, from left to right: 184B5, MCF7, OVCAR3, UACC62, HepG2. The three images present identical blots in which the primary antibody was used at dilutions of 1:200 (left), 1:500 (middle), and 1:1000 (right).

Figure 4C shows a Western blot demonstrating expression of the cadherin EGF LAG seven-pass G-type receptor 2 polypeptide in various cell lines. The lane order is, from left to right: 184B5, MCF7, OVCAR3, UACC62, HepG2. The three images present identical blots in which the primary antibody was used at dilutions of 1:200 (left), 1:500 (middle), and 1:1000 (right).

For all three antibodies, the Western blots demonstrated that the antibodies bind to a polypeptide of the expected size. All of the basal marker polypeptides are expressed in a range of different cell types. While not wishing to be bound by any theory, inventors postulate that basal cells in tissues other than breast may express the basal marker genes, which may make them useful for identification of basal tumor subclasses for tumors other than breast tumors.

30

Example 12

Immunohistochemical Staining of Breast Tumor Arrays with Antibodies to

Cytokeratin 17 Demonstrates that Cytokeratin 17 Expression Correlates with Poor
Outcome

Materials and Methods

5 Tissue arrays.

10

15

20

25

A total of 611 different paraffin embedded breast carcinoma samples were identified in the files in the Department of Pathology at the University of Basel, Women's hospital Rheinfelden, and the Kreiskrankenhaus Lorrach. The specimens were obtained from patients who underwent surgery in the period between 1985 and 1994. The histologic parameters for all cases were reviewed by a single pathologist (JT) and the histologic type and grade was determined for each case according to Elston and Ellis Elston CW, Ellis IO: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. *Histopathology* 1991, 19:403-10.

Follow-up was obtained for 553 cases and ranged from 1 to 151 months with a mean of 65.9 months. The use of these specimens and data for research purposes was approved by the Ethics Committee of the Basel University Hospital. Tissue arrays were constructed by obtaining 0.6 mm diameter tissue cores from each tumor and placing these cores in a new paraffin block in rows and columns as described in Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP: Tissue microarrays for high-throughput molecular profiling of tumor specimens [see comments]. *Nat Med* 1998, 4:844-7 and in Schraml P, Kononen J, Bubendorf L, Moch H, Bissig H, Nocito A, Mihatsch MJ, Kallioniemi OP, Sauter G: Tissue microarrays for gene amplification surveys in many different tumor types. *Clin Cancer Res* 1999, 5:1966-75.

Each of the 611 cases was sampled twice, once from the center of the tumor, and once from the periphery of the mass. Cores taken from the central area from each case were combined in one array and cores taken from the periphery of the tumor were combined in the other array.

30

Immunohistochemistry and scoring.

Double staining of normal breast epithelium in conventional paraffin sections

was performed by first staining lumenal cells with CAM5.2 using alkaline phosphatase/fast blue staining and subsequently staining basal cells with CK17 using horse radish peroxidase/DAB staining.

Sections of arrays were stained with monoclonal antibodies specific for cytokeratin 17 (DAKO, clone E3, dilution 1:10) and cytokeratin 5/6 (Boehringer Mannheim, dilution 1:10) after antigen retrieval by microwaving in citrate buffer. Note that the anti-cytokeratin 5/6 antibody used herein detects both cytokeratins 5 and 6. However, cytokeratin 5 is likely to be the major antigen recognized by this antibody in breast basal cells. Staining results were scored as follows: 1 = invasive tumor cells present in tissue core and no staining seen; 2 = invasive tumor cells present and weak staining; 3 = invasive tumor cells present with strong staining. Only those cores containing tissue consistent with a diagnosis of invasive carcinoma were included in the outcome analysis. Cases that either had no tissue present on the array sections or cases in which the material sampled consisted of fat, fibrosis, normal breast glands, or in-situ carcinoma only, were omitted from further analysis. Cytokeratins often showed only focal staining of tumor cells within the tissue array cores or conventional paraffin sections. To account for the focal expression of CK17 and CK5/6, each of the 612 breast tumors was analyzed 4 times: with anti-CK17 and anti-CK5/6 antibody on the "central sample" array, and with anti-CK17 and anti-CK5/6 antibody on the "peripheral sample" array. A breast tumor sample was scored as staining positive for the keratins if infiltrating carcinoma in one or more of the cores from that sample reacted with either of the antibodies.

To aid in recognizing infiltrating carcinoma in the core samples, sections of each array were also stained with an anti-cytokeratin antibody mix reacting with cytokeratins 8 and 18 (CAM5.2, Becton & Dickinson, dilution 1:20) after antigen unmasking by trypsin digestion to highlight invasive carcinoma cells.

Statistical analysis

5

10

15

20

25

30

Univariate survival analysis based upon gene expression defined subgroups of patients was performed by Kaplan-Meier statistics using WinSTAT software (www.winstat.com). Subsequent multivariate analyses were performed using Cox's proportional hazards model for survival data (Cox: Regression models and life tables.

Journal Royal Statistical Society 1972, 74:187-220).

Results

5

10

20

25

30

Basal keratin staining in normal breast and breast carcinoma.

In normal breast, antibodies that bind to cytokeratin17 (CK17) and cytokeratin 5/6 (CK5/6) stain the basal layer of breast glandular epithelium while antibodies that bind to cytokeratins 8 and 18 stain lumenal cells (figures 3C and 3D). Whole paraffin sections of breast carcinoma showed that cytokeratin 17 and 5/6 expression in paraffin embedded tissue when present was focal (Figures 3E and 3F) with often less than 10% of tumor cells reacting. In an attempt to study further the focal reactivity of the monoclonal antibodies against the basal type cytokeratins, and to attempt to improve the reliability of this test, rabbit antisera against CK17 were raised as described in Example 12. This serum was tested on a separate tissue array with over 300 hundred breast samples. The antiserum and the monoclonal antibody against CK17 showed highly similar reactivity with epithelial cells in the breast cores. Both reagents stained the same fraction of tumor cells suggesting that neither is a significantly better reagent. These results suggest that the focal reactivity seen with monoclonal anti-CK17 was not due to weak reactivity of the monoclonal antibody but indicates that within a tumor only a subset of tumor cells express these basal keratins, reinforcing the need for alternative basal markers.

Basal keratin staining on breast carcinoma tissue arrays.

Since the size of sample examined in tissue array cores is significantly smaller than on conventional samples, there was a concern that the focal reactivity of basal type cytokeratins might cause positive tumors to be missed. We decided to maximize the chance of detecting basal keratin expression in the breast tumors on the arrays by staining them with monoclonal antibodies directed at CK5/6 and CK17 and by examining arrays made with cores taken from central and peripheral areas of the tumors. By combining the results from the "central" array and the "peripheral" array, 532 tumors were available for CK17 analysis, 535 were available for CK5/6 analysis, and 564 were available for either CK17 or CK5/6. The remainder of the tumors represented on the arrays were either lost in transfer during sectioning of the tissue

arrays block, or showed no convincing invasive carcinoma on the core section. Of the cases available for scoring, 75 and 63 tumors scored positive (either weak or strongly) for CK17 and CK5/6, respectively. By combining the results from the stains for CK17 and CK5/6, 90 cases (16%) out of the 564 tumors examined reacted with either CK17 and/or CK5/6. Follow-up data were available for 505 of the 564 cases on which CK staining data was obtained. The follow-up period ranged from 1 to 151 months with a mean of 66.1 months.

Kaplan-Meier survival analysis on all patients with follow-up showed that the absence of cytokeratin 17 and cytokeratin 5 is associated with a significantly better prognosis than the presence of either of these cytokeratins (figure 5A, p=0.012). In the group of 229 patients with known lymph node metastases, the expression of CK17 and CK5/6 had no predictive value. In contrast, in the group of 245 patients without lymph node metastases, CK17 and/or CK5/6 expression was significantly associated with shorter survival (figure 5B, p=0.006). The percentage of basal keratin positive tumors was similar in patients with and without lymph node metastases. Multivariate analysis on all patients taken together showed that the prognostic association of basal cytokeratin expression with poor outcome was not independent from tumor size, LN status and histologic grade. However when analyzed on LN-negative tumors alone, the expression of basal cytokeratins is not only a statistically significant prognosticator, but is also independent of tumor size, tumor grade, her2neu status, ER status, and GATA3 status. The results clearly demonstrate the utility of cytokeratin17 as a marker for a subclass of tumors with a poor clinical outcome while also highlighting the difficulties associated with use of anti-cytokeratin17 antibodies.

10

15

20

30

25 Her2neu, estrogen receptor and GATA-3 staining on breast carcinoma arrays

To further confirm the accuracy of correlations between immunohistochemistry results and clinical data obtained using tissue arrays, sections of the arrays made with peripheral cores were stained for a variety of other proteins known or suspected to be associated with a good or a poor clinical outcome, for example estrogen receptor and Her2neu. As expected, expression of estrogen receptors was associated with a better clinical outcome. This finding was independent of BRE grade, LN status and size. In contrast, Her2neu expression was associated

with a poor prognosis. These results are compatible with published data and are similar to those of two additional studies performed on the same breast tumor arrays. (Bucher C, Torhorst J, Kononen J, Haas P, Schraml L, Bubendorf L, Zuber M, Kochli OR, Mross F, Dieterich H, Askaa J, Godtfredsen SE, Seelig S, Moch H, Mihatsch M,

5 Kallioniemi O, Sauter G: Prognostic significance of HER-2 amplification and overexpression in breast cancer: Methodological comparison of fluorescence in situ hybridization and immunohistochemistry using tissue microarrays of 611 primary breast cancers. in press, 2001; Torhorst J, Bucher C, Kononen J, Haas P, Zuber M, Kochli OR, Mross F, Dieterich H, Moch H, Mihatsch M, Kallioniemi O, Sauter G: Tissue microarrays for rapid linking of molecular changes to clinical endpoints. in press. 2001)

Sections of the arrays were also stained for GATA-binding protein 3, an antigen thought to be co-expressed with estrogen receptors on the mRNA and protein level (Hoch RV, Thompson DA, Baker RJ, Weigel RJ: GATA-3 is expressed in association with estrogen receptor in breast cancer. *International Journal of Cancer* 1999, 84:122-8). The expression for GATA-3 was associated with a good clinical outcome and had a high correlation (Chi-square=720.3 on 9 degrees of freedom) with estrogen receptor expression. The staining results for estrogen receptor, GATA-3 and her2neu confirm findings from prior studies, and also function as an independent validation of tissue array-based studies.

15

20

25

30

Tissue arrays present a number of advantages for tumor analysis. Analysis of large numbers of tissue sections using conventional techniques is laborious and expensive. An added disadvantage is that slides are stained in different batches, which can introduce variation in staining intensity. In addition, the analysis of large number of conventional glass slides makes comparisons between tumor samples difficult. Many of these problems are circumvented by the new technique of tissue arrays. This approach allows the efficient analysis of antibody reactivity on large numbers of tumors that are stained together on the same slide.

The tissue array studies reported here allowed separation of the patients groups into patients with lymph node metastasis and those without. In patients with metastatic disease to the lymph nodes, the expression of the basal cytokeratins was not associated with a significant difference in clinical outcome. However, in lymph node

negative patients the reactivity for these markers was associated with a poor prognosis independent of tumor size, tumor grade, or immunostain reactivity for ER, her2neu or GATA3. While not wishing to be bound by any theory, taken together with the gene array data, these findings support the idea that anti-cytokeratin antibodies may identify a different type of tumor rather than just another prognostic marker and suggest the possibility that these tumors are derived from basal cells and not from lumenal cells.

Due to the focal and often weak reactivity of monoclonal antibodies against basal type keratins, the interpretation of staining results for these markers can be difficult. The intensity of staining with these markers is not comparable with other markers currently used in diagnosis of breast carcinoma, such as estrogen receptor and her2neu, a feature that prevents their use in clinical settings. We attempted to generate new reagents in the hope that they would have more robust IHC staining characteristics. Analysis of over 300 breast carcinoma samples in a separate array showed that the number of cells and the pattern of focal reactivity for the antiserum against CK17 and the intensity of staining were similar to that seen with the monoclonal antibodies. This indicates that the basal keratins are indeed only focally expressed and that the low numbers of cells stained with antibodies is not due to a weak reactivity of the monoclonal antibodies with the protein.

10

15

20

25

30

The studies presented here show that basal epithelial cytokeratin positive tumors occur with a significant frequency (>10%) and are associated with a poor prognosis. Patients with metastatic breast carcinoma to the axillary lymph nodes are at high risk for recurrence and most receive adjuvant therapy. The situation for node negative patients is less clear; depending on the size and grade of the tumor, the reported recurrence rate varies between 5-30%. In lymph node negative patients, the clinical decision whether to give or withhold systemic therapy thus is a difficult one and hence it is in this group of patients that the need for new prognostic markers is the greatest. The relative size of this group of patients is also expected to increase, due to continuing advances in screening and diagnostic techniques that identify increasingly smaller breast tumors. Most of these smaller tumors have not metastasized to the "sentinel" lymph node. This group of patients, therefore, has to make a difficult choice between a variety of additional therapies, such as: lumpectomy, mastectomy,

chemotherapy, radiation therapy, or hormonal therapy in the absence of reliable guidance from pathologic characteristics of their tumor. The cytokeratins 17 and 5/6 appear to detect a subcategory of tumors that behave poorly and may help in treatment decisions for node-negative breast carcinoma patients. These results suggest that patients that present with basal epithelial cytokeratin expressing tumors may be candidates for more aggressive treatment procedures and also for alternate therapies directed against tumors with this particular biology.

Example 13

10

15

20

25

30

5

Immunohistochemical Staining of Normal Breast and Breast Tumor Samples in
Tissue Arrays with Antibodies to Basal Marker Polypeptides
Materials and Methods

Tissue arrays including normal breast and breast tumor samples were prepared as described in Example 12. Monoclonal antibody to cytokeratin 5/6 (Boeringer Mannheim, Inc.) and polyclonal, affinity purified, anti-peptide antibodies to cadherin3, cadherin EGF LAG seven-pass G-type receptor 2, and matrix metalloproteinase 14 prepared as described in Example 10 were used to perform immunohistochemical staining using the DAKO Envision+, Peroxidase IHC kit (DAKO Corp., Carpenteria, CA) with DAB substrate according to the manufacturer's instructions.

Results

Figure 6 shows antibody staining of normal breast tissue cores. Figure 6A shows staining with anti-cytokeratin 5/6 monoclonal antibody (ck5/6). Figures 6B, 6C, and 6D show staining with anti-cadherin 3 polyclonal antibody (s0158), anti-EGF LAG seven-pass G-type receptor 2 polyclonal antibody (s0137), and anti-metalloproteinase 14 polyclonal antibody (s0144), respectively, on sections from a core derived from the same patient. The brown areas represent prominent staining of the basal layer in the two-cell layered epithelium lining the mammary gland lumen. These results confirm that the staining pattern of antibodies to the basal marker polypeptides identified herein is comparable to that of antibodies to cytokeratin 17 in

terms of the cell type stained and the ability to distinguish between basal and luminal cells in the normal mammary gland.

Figure 7 shows antibody staining of breast cancer tissue cores. Figure 7A shows antibody staining with anti-cytokeratin 5/6 monoclonal antibody (cd5/6).

Figures 7B and 7C show staining with anti-EGF LAG seven-pass G-type receptor 2 polyclonal antibody (s0137) and anti-cadherin 3 polyclonal antibody (s0158), respectively. The brown areas represent prominent staining of the epithelial cells within tumor tissue. Note the loss of normal breast glandular architecture consistent with the diagnosis of carcinoma.

REFERENCES

1. Tavassoli, F. A. & Schnitt, S. J. Pathology of the breast (Elsevier, New York, 1992).

- 2. Fambrough, D., McClure, K., Kazlauskas, A. & Lander, E. S. Diverse
- signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes [see comments]. Cell 97, 727-741 (1999).
 - 3. Galitski, T., Saldanha, A. J., Styles, C. A., Lander, E. S. & Fink, G. R. Ploidy regulation of gene expression [see comments]. Science 285, 251-254 (1999).
- 4. Cho, R. J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2, 65-73 (1998).
 - 5. Iyer, V. R. et al. The transcriptional program in the response of human fibroblasts to serum [see comments]. Science 283, 83-87 (1999).

- 6. Chu, S. et al. The transcriptional program of sporulation in budding yeast [published erratum appears in Science 1998 Nov 20;282(5393):1421]. Science 282, 699-705 (1998).
- 7. DeRisi, J. L., Iyer, V. R. & Brown, P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680-686 (1997).
- 8. Perou, C. M. et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A 96, 9212-9217 (1999).
- Alon, U. et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A 96, 6745-6750 (1999).
 - 10. Alizadeh, A. A. et al. Distinct Types of Diffuse Large B-Cell Lymphoma Identified by Gene Expression Profiling. Nature In Press (2000).
- 25 11. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531-537 (1999).
 - 12. Khan, J. et al. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res 58, 5009-5013 (1998).
 - 13. Pathology of familial breast cancer: differences between breast cancers in
- 30 carriers of BRCA1 or BRCA2 mutations and sporadic cases. Breast Cancer Linkage Consortium [see comments]. Lancet 349, 1505-1510 (1997).
 - 14. Andersen, T. I. et al. Prognostic significance of TP53 alterations in breast

carcinoma. Br J Cancer 68, 540-548 (1993).

5

15. Aas, T. et al. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2, 811-814 (1996).

- 16. Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707-712 (1989).
- 17. Osborne, C. K., Yochmowitz, M. G., Knight, W. A. d. & McGuire, W. L. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer 46, 2884-2888 (1980).
- 18. Ronnov-Jessen, L., Petersen, O. W. & Bissell, M. J. Cellular changes involved
 in conversion of normal to malignant breast: importance of the stromal reaction.
 Physiol Rev 76, 69-125 (1996).
 - 19. Eisen, M. B. & Brown, P. O. DNA arrays for analysis of gene expression. Methods Enzymol 303, 179-205 (1999).
- 20. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis
 and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95,
 14863-14868 (1998).
 - 21. Ross, D. T. et al. Systematic Variation in Gene Expression Patterns in Human Cancer Cell Lines. Nature Genetics In Press (2000).
 - 22. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human
- 20 cancers. Nature 396, 643-649 (1998).
 - 23. Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers [see comments]. Nature 392, 300-303 (1998).
 - 24. Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274, 246-248 (1996).
- 25 Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation [see comments]. Nat Genet 20, 189-193 (1998).
 - Wolf, G. et al. Prognostic significance of polo-like kinase (PLK) expression in non-small cell lung cancer. Oncogene 14, 543-549 (1997).
- 30 27. Yang, G. P., Ross, D. T., Kuang, W. W., Brown, P. O. & Weigel, R. J. Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes [In Process Citation]. Nucleic Acids Res 27, 1517-1523 (1999).

28. Hoch, R. V., Thompson, D. A., Baker, R. J. & Weigel, R. J. GATA-3 is expressed in association with estrogen receptor in breast cancer. Int J Cancer 84, 122-128 (1999).

29. Prud'homme, J. F. et al. Cloning of a gene expressed in human breast cancer and regulated by estrogen in MCF-7 cells. Dna 4, 11-21 (1985).

5

- 30. Bhargava, V., Kell, D. L., van de Rijn, M. & Warnke, R. A. Bcl-2 immunoreactivity in breast carcinoma correlates with hormone receptor positivity. Am J Pathol 145, 535-540 (1994).
- 31. Leek, R. D., Kaklamanis, L., Pezzella, F., Gatter, K. C. & Harris, A. L. bcl-2 in normal human breast and carcinoma, association with oestrogen receptor-positive, epidermal growth factor receptor-negative tumours and in situ cancer. Br J Cancer 69, 135-139 (1994).
 - 32. Pauletti, G., Godolphin, W., Press, M. F. & Slamon, D. J. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. Oncogene 13, 63-72 (1996).
 - 33. Pollack, J. R. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23, 41-46 (1999).
 - 34. Stein, D. et al. The SH2 domain protein GRB-7 is co-amplified, overexpressed and in a tight complex with HER2 in breast cancer. Embo J 13, 1331-1340 (1994).
- 20 35. Moog-Lutz, C. et al. MLN64 exhibits homology with the steroidogenic acute regulatory protein (STAR) and is over-expressed in human breast carcinomas. Int J Cancer 71, 183-191 (1997).
 - 36. Miettinen, M., Lindenmayer, A. E. & Chaubal, A. Endothelial cell markers CD31, CD34, and BNH9 antibody to H- and Y- antigens--evaluation of their
- 25 specificity and sensitivity in the diagnosis of vascular tumors and comparison with von Willebrand factor. Mod Pathol 7, 82-90 (1994).
 - 37. Abbas, A. K., Lichtman, A. H. & Pober, J. S. Cellular and molecular immunology (Saunders, Philadelphia, 1991).
- 38. Baxa, C. A. et al. Human adipocyte lipid-binding protein: purification of the protein and cloning of its complementary DNA. Biochemistry 28, 8683-8690 (1989).
 - 39. Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I. & Spiegelman, B. M. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8,

1224-1234 (1994).

- 40. Stampfer, M. .
- 41. Dairkee, S. H., Mayall, B. H., Smith, H. S. & Hackett, A. J. Monoclonal marker that predicts early recurrence of breast cancer [letter]. Lancet 1, 514 (1987).
- 5 42. Dairkee, S. H., Puett, L. & Hackett, A. J. Expression of basal and luminal epithelium-specific keratins in normal, benign, and malignant breast tissue. J Natl Cancer Inst 80, 691-695 (1988).
 - 43. Malzahn, K., Mitze, M., Thoenes, M. & Moll, R. Biological and prognostic significance of stratified epithelial cytokeratins in infiltrating ductal breast
- 10 carcinomas. Virchows Arch 433, 119-129 (1998).
 - 44. Guelstein, V. I. et al. Monoclonal antibody mapping of keratins 8 and 17 and of vimentin in normal human mammary gland, benign tumors, dysplasias and breast cancer. Int J Cancer 42, 147-153 (1988).
 - 45. Gusterson, B. A. et al. Distribution of myoepithelial cells and basement membrane proteins in the normal breast and in benign and malignant breast diseases.
 - Cancer Res 42, 4763-4770 (1982).

15

- 46. Nagle, R. B. et al. Characterization of breast carcinomas by two monoclonal antibodies distinguishing myoepithelial from luminal epithelial cells. J Histochem Cytochem 34, 869-881 (1986).
- 20 47. Dairkee, S. H., Ljung, B. M., Smith, H. & Hackett, A. Immunolocalization of a human basal epithelium specific keratin in benign and malignant breast disease. Breast Cancer Res Treat 10, 11-20 (1987).
 - 48. Berns, E. M. et al. Prevalence of amplification of the oncogenes c-myc, HER2/neu, and int-2 in one thousand human breast tumours: correlation with steroid receptors. Eur J Cancer 28, 697-700 (1992).
 - 49. Heintz, N. H., Leslie, K. O., Rogers, L. A. & Howard, P. L. Amplification of the c-erb B-2 oncogene and prognosis of breast adenocarcinoma. Arch Pathol Lab Med 114, 160-163 (1990).
 - 50. Guerin, M., Barrois, M., Terrier, M. J., Spielmann, M. & Riou, G.
- Overexpression of either c-myc or c-erbB-2/neu proto-oncogenes in human breast carcinomas: correlation with poor prognosis. Oncogene Res 3, 21-31 (1988).

51. Wang, K. et al. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray [In Process Citation]. Gene 229, 101-108 (1999).

- 52. Spellman, PT, et al., Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization, *Mol Biol Cell*, 9(12):3273-97, 1998.
 - 53. Berx, G., Staes, K., van Hengel, J., Molemans, F., Bussemakers, M. J. G., van Bokhoven, A. & van Roy, F. (1995). Cloning and characterization of the invasion suppressor gene E-cadherin (CDH1). Genomics, 26, 281-289.
- 10 54. Islam, S., Carey, T. E., Wolf, G. T., Wheelock, M. J. Johnson, K. R. (1996). Expression of N-Cadherin by human squamous carcinomacells induces a scattered fibroblastic phenotype with disrupted cell-cell adhesion. J. Cell Biol. 136, 1643-1654.
- 55. Lee SW (1996) H-cadherin, a novel cadherin with growth inhibitory functions and diminished expression in human breast cancer. Nat Med 2:7 776-82
 - 56. Lee, S. W., Reimer, C. L., Campbell, D. B., Cheresh, P., Duda, R. B. & Kocher, O. (1998). H-cadherin expression inhibits in vitro invasiveness and tumor formation in vivo. Carcinogenesis, 19, 1157-1159.

- 57. Nollet F, Berx G, van Roy F (1999) The role of the E-cadherin/catenin adhesion complex in the development and progression of cancer. Mol Cell Biol Res Commun 2:2 77-85
- 25 58. Nollet F, Berx G, van Roy F (2000) Phylogenetic Analysis of the Cadherin Superfamily allows Identification of Six Major Subfamilies Besides Several Solitary Members. JMB 299, 551-572
 - 59. Paul, R., Ewing, C. M., Robinson, J. C., Marshall, F. F., Johnson, K. R.,
- Wheelock, M. J. & Isaacs, W. B. (1997). Cadherin-6, a cell adhesion molecule specifically expressed in the proximal renal tubule and renal cell carcinoma. Cancer

Res. 57, 2741-2748.

60. Sato M, Mori Y, Sakurada A, Fujimura S, Horii A (1998) The H-cadherin (CDH13) gene is inactivated in human lung cancer. **Hum Genet** 103:1 96-101

5

61. Shimazui, T., Giroldi, L. A., Bringuier, P. P., Oosterwijk, E. & Schalken, J. A. (1996). Complex cadherin expression in renal cell carcinoma. Cancer Res. 56, 3234-3237.

1	CLAIMS
2	
,3	We claim:
4	
5	1. A method of classifying a tumor comprising the steps of:
6	providing a tumor sample;
7	detecting expression or activity of a gene encoding the polypeptide of SEQ II
8	NO:1 in the sample; and
9	classifying the tumor as belonging to a tumor subclass based on the results of
10	the detecting step.
11	
12	2. A method of classifying a tumor comprising the steps of:
13	providing a tumor sample;
14	detecting expression or activity of a gene encoding the polypeptide of SEQ II
15	NO:2 in the sample; and
16	classifying the tumor as belonging to a tumor subclass based on the results of
17	the detecting step.
18	
19	3. A method of classifying a tumor comprising the steps of:
20	providing a tumor sample;
21	detecting expression or activity of a gene encoding the polypeptide of SEQ II
22	NO:3 in the sample; and
23	classifying the tumor as belonging to a tumor subclass based on the results of
24	the detecting step.
25	
26	4. A method of classifying a tumor comprising the steps of:
27	providing a tumor sample;
28 .	detecting expression or activity of at least two genes selected from the group
29	consisting of: a gene encoding the polypeptide of SEQ ID NO:1, SEQ ID NO:2, and
30	SEQ ID NO:3 in the sample; and
31	classifying the tumor as belonging to a tumor subclass based on the results of
32	the detecting step

1	
2	5. The method of any of claims 1, 2, 3, or 4, wherein the detecting step comprises
,3	detecting the polypeptide or polypeptides.
4	
5	6. The method of claim 5, wherein the polypeptide is detected by performing
6	immunohistochemical analysis on the sample using an antibody that specifically binds
7	to the polypeptide.
8	
9	6a. The method of claim 5, wherein the polypeptide is detected by performing an
10	ELISA assay using an antibody that specifically binds to the polypeptide.
11	
12	6b. The method of claim 5, wherein the polypeptide is detected using an antibody
13	array comprising an antibody that specifically binds to the polypeptide.
14	
15	6c. The method of claim 5, wherein the detecting step comprises:
16	detecting modification of a substrate by the polypeptide.
17	
18	7. The method of any of claims 1, 2, 3, or 4, wherein classifying a tumor comprises:
19	stratifying a subject having the tumor for a clinical trial.
20 21	9 The mothed of claim 7 miles in the terms in the terms.
22	8. The method of claim 7, wherein the tumor is a breast tumor.
23	9. The method of any of claims 1, 2, 3, or 4, wherein the tumor is a breast tumor and
24	the tumor subclass is a basal tumor subclass.
25	the famor success is a casal famor success.
26	1a. The method of claim 1, further comprising:
27	providing diagnostic, prognostic, or predictive information based on the
28	classifying step.
29	
30	2a. The method of claim 2, further comprising:
31	providing diagnostic, prognostic, or predictive information based on the
32	classifying step.

1	
2	3a. The method of claim 3, further comprising:
3	providing diagnostic, prognostic, or predictive information based on the
4	classifying step.
5	
6	4a. The method of claim 4, further comprising:
7	providing diagnostic, prognostic, or predictive information based on the
8	classifying step.
9	
10	5a. The method of claim 5, further comprising:
11	providing diagnostic, prognostic, or predictive information based on the
12	classifying step.
13	
14	6aa. The method of claim 5a, wherein the polypeptide is detected by performing
15	immunohistochemical analysis on the sample using an antibody that specifically binds
16	to the polypeptide.
17	
18	6ab. The method of claim 5a, wherein the polypeptide is detected by performing an
19	ELISA assay using an antibody that specifically binds to the polypeptide.
20	
21	6ac. The method of claim 5a, wherein the polypeptide is detected using an antibody
22	array comprising an antibody that specifically binds to the polypeptide.
23	
24	6ad. The method of claim 5a, wherein the detecting step comprises:
25	detecting modification of a substrate by the polypeptide.
26	
27	9a. The method of any of claims 1a, 2a, 3a, or 4a, wherein the tumor is a breast tumor
28	and the tumor subclass is a basal tumor subclass.
29	
30	lg. The method of claim 1, further comprising:
31	selecting a treatment based on the classifying step.
32	

1	2g. The method of claim 2, further comprising:
2	selecting a treatment based on the classifying step.
3	
4	3g. The method of claim 3, further comprising:
5	selecting a treatment based on the classifying step.
6	
7	4g. The method of claim 4, further comprising:
8	selecting a treatment based on the classifying step.
9	
10	5g. The method of claim 5, further comprising:
11	selecting a treatment based on the classifying step.
12	
13	6ag. The method of claim 5g, wherein the polypeptide is detected by performing
14	immunohistochemical analysis on the sample using an antibody that specifically binds
15	to the polypeptide.
16	
17	6bg. The method of claim 5g, wherein the polypeptide is detected by performing an
18	ELISA assay using an antibody that specifically binds to the polypeptide.
19	
20	6cg. The method of claim 5g, wherein the polypeptide is detected using an antibody
21	array comprising an antibody that specifically binds to the polypeptide.
22	,
23	6dg. The method of claim 5g, wherein the detecting step comprises:
24	detecting modification of a substrate by the polypeptide.
25	
26	9g. The method of any of claims 1g, 2g, 3g, or 4g, wherein the tumor is a breast tumor
27	and the tumor subclass is a basal tumor subclass.
28	·
29	1m. A method of testing a subject comprising the steps of:
30	providing a sample isolated from a subject;
31	detecting expression or activity of a gene encoding the polypeptide of SEQ ID
32	NO:1 in the sample; and

1	providing diagnostic, prognostic, or predictive information based on the
2	detecting step.
3	
4	2m. A method of testing a subject comprising the steps of:
5	providing a sample isolated from a subject;
6	detecting expression or activity of a gene encoding the polypeptide of SEQ ID
7	NO:2 in the sample; and
8	providing diagnostic, prognostic, or predictive information based on the
9	detecting step.
10	
11	3m. A method of testing a subject comprising the steps of:
12	providing a sample isolated from a subject;
13	detecting expression or activity of a gene encoding the polypeptide of SEQ ID
14	NO:3 in the sample; and
15	providing diagnostic, prognostic, or predictive information based on the
16	detecting step.
17	
18	4m. A method of testing a subject comprising the steps of:
19	providing a sample isolated from the subject;
20	detecting expression or activity of at least two genes selected from the group
21	consisting of: a gene encoding the polypeptide of SEQ ID NO:1, SEQ ID NO:2, and
22	SEQ ID NO:3 in the sample; and
23	providing diagnostic, prognostic, or predictive information based on the
24	detecting step.
25	
26	5m. The method of any of claims 1m, 2m, 3m, or 4m, wherein the detecting step
27	comprises detecting the polypeptide or polypeptides.
28	
29	6m. The method of claim 5m, wherein the polypeptide is detected by performing
30	immunohistochemical analysis on the sample using an antibody that specifically binds
31	to the polypeptide.
32	

1	6ma. The method of claim 5m, wherein the polypeptide is detected by performing an
2	ELISA assay using an antibody that specifically binds to the polypeptide.
3	·
4	6mb. The method of claim 5m, wherein the polypeptide is detected using an antibody
5	array comprising an antibody that specifically binds to the polypeptide.
6	
7	6mc. The method of claim 5m, wherein the detecting step comprises:
8	detecting modification of a substrate by the polypeptide.
9	•
10	9m. The method of any of claims 1m, 2m, 3m, or 4m, wherein the sample is selected
11	from the group consisting of:
12	a blood sample, a urine sample, a serum sample, an ascites sample, a saliva
13	sample, a cell, and a portion of tissue.
14	
15	10m. The method of any of claims 1m, 2m, 3m, or 4m, wherein the sample is a tumor
16	sample.
17	
18	11m. The method of claim 10m, wherein the tumor sample is a breast tumor sample.
19	
20	1r. A method of testing a subject comprising the steps of:
21	providing a sample isolated from a subject;
22	detecting expression or activity of a gene encoding the polypeptide of SEQ ID
23	NO:1 in the sample; and
24	stratifying the subject for a clinical trial based on the detecting step.
25	
26	2r. A method of testing a subject comprising the steps of:
27	providing a sample isolated from a subject;
28	detecting expression or activity of a gene encoding the polypeptide of SEQ ID
29	NO:2 in the sample; and
30	stratifying the subject for a clinical trial based on the detecting step.
31	
32	3r. A method of testing a subject comprising the steps of:

1	providing a sample isolated from a subject;
2	detecting expression or activity of a gene encoding the polypeptide of SEQ ID
,3	NO:3 in the sample; and
4	stratifying the subject for a clinical trial based on the detecting step.
5	
6	4r. A method of testing a subject comprising the steps of:
7	providing a sample isolated from the subject;
8	detecting expression or activity of at least two genes selected from the group
9	consisting of: a gene encoding the polypeptide of SEQ ID NO:1, SEQ ID NO:2, and
10	SEQ ID NO:3 in the sample; and
11	stratifying the subject for a clinical trial based on the detecting step.
12	
13	5r. The method of any of claims 1r, 2r, 3r, or 4r, wherein the detecting step comprises
14	detecting the polypeptide or polypeptides.
15	
16	6r. The method of claim 5r, wherein the polypeptide is detected by performing
17	immunohistochemical analysis on the sample using an antibody that specifically binds
18	to the polypeptide.
19	
20	6ra. The method of claim 5r, wherein the polypeptide is detected by performing an
21	ELISA assay using an antibody that specifically binds to the polypeptide.
22	
23	6rb. The method of claim 5r, wherein the polypeptide is detected using an antibody
24	array comprising an antibody that specifically binds to the polypeptide.
25	
26	6rc. The method of claim 5r, wherein the detecting step comprises:
27	detecting modification of a substrate by the polypeptide.
28	
29	9r. The method of any of claims 1r, 2r, 3r, or 4r, wherein the sample is selected from
30	the group consisting of:
31	a blood sample, a urine sample, a serum sample, an ascites sample, a saliva
32	sample, a cell, and a portion of tissue.

1	•
2	10r. The method of any of claims 1r, 2r, 3r, or 4r, wherein the sample is a tumor
,3	sample.
4	
5	11r. The method of claim 10r, wherein the tumor sample is a breast tumor sample.
6	
7	1q. A method of testing a subject comprising the steps of:
8	providing a sample isolated from a subject;
9	detecting expression or activity of a gene encoding the polypeptide of SEQ ID
10	NO:1 in the sample; and
11	selecting a treatment based on the detecting step.
12	
13	2q. A method of testing a subject comprising the steps of:
14	providing a sample isolated from a subject;
15	detecting expression or activity of a gene encoding the polypeptide of SEQ ID
16	NO:2 in the sample; and
17	selecting a treatment based on the detecting step.
18	
19	3q. A method of testing a subject comprising the steps of:
20	providing a sample isolated from a subject;
21	detecting expression or activity of a gene encoding the polypeptide of SEQ ID
22	NO:3 in the sample; and
23	selecting a treatment based on the detecting step.
24	
25	4q. A method of testing a subject comprising the steps of:
26	providing a sample isolated from the subject;
27	detecting expression or activity of at least two genes selected from the group
28	consisting of: a gene encoding the polypeptide of SEQ ID NO:1, SEQ ID NO:2, and
29	SEQ ID NO:3 in the sample; and
30	selecting a treatment based on the detecting step.
31	

1	5q. The method of any of claims 1q, 2q, 3q, or 4q, wherein the detecting step
2	comprises detecting the polypeptide or polypeptides.
3	
4	6q. The method of claim 5q, wherein the polypeptide is detected by performing
5	immunohistochemical analysis on the sample using an antibody that specifically binds
6	to the polypeptide.
7	
8	6qa. The method of claim 5q, wherein the polypeptide is detected by performing an
9	ELISA assay using an antibody that specifically binds to the polypeptide.
10	
11	6qb. The method of claim 5q, wherein the polypeptide is detected using an antibody
12	array comprising an antibody that specifically binds to the polypeptide.
13	•
14	6qc. The method of claim 5q, wherein the detecting step comprises:
15	detecting modification of a substrate by the polypeptide.
16	
17	9q. The method of any of claims 1q, 2q, 3q, or 4q, wherein the sample is selected
18	from the group consisting of:
19	a blood sample, a urine sample, a serum sample, an ascites sample, a saliva
20	sample, a cell, and a portion of tissue.
21	
22	10m. The method of any of claims 1m, 2m, 3m, or 4m, wherein the sample is a tumor
23	sample.
24	
25	11m. The method of claim 10m, wherein the tumor sample is a breast tumor sample.
26	
27	20. An antibody that specifically binds to an epitope found in a polypeptide whose
28	amino acid sequence the amino acid sequence of SEQ ID NO:1, and wherein the
29	antibody recognizes basal cells in normal mammary lactation glands.
30	
31	21. The antibody of claim 21, wherein the antibody distinguishes basal cells from
32	luminal cells in normal mammary lactation glands.

1	•
2	22. The antibody of claim 20, wherein the antibody is a monoclonal antibody.
3	
4	23. The antibody of claim 20, wherein the antibody is a polyclonal antibody.
5	
6	24. The antibody of claim 20, wherein the antibody recognizes an epitope found in a
7	peptide having an amino acid sequence selected from the group consisting of SEQ ID
8	NO:4, SEQ ID NO:5, and SEQ ID NO:6.
9	
10	25. An antibody that specifically binds to an epitope found in a polypeptide whose
11	amino acid sequence comprises the amino acid sequence of SEQ ID NO:2, and
12	wherein the antibody recognizes basal cells in normal mammary lactation glands.
13	
14	26. The antibody of claim 25, wherein the antibody distinguishes basal cells from
15	luminal cells in normal mammary lactation glands.
16	
17	27. The antibody of claim 25, wherein the antibody is a monoclonal antibody.
18	
19	28. The antibody of claim 25, wherein the antibody is a polyclonal antibody.
20	
21	29. The antibody of claim 25, wherein the antibody recognizes an epitope found in a
22	peptide having an amino acid sequence selected from the group consisting of SEQ ID
23	NO:7, SEQ ID NO:8, and SEQ ID NO:9.
24	
25	30. An antibody that specifically binds to an epitope found in a polypeptide whose
26	amino acid sequence comprises the amino acid sequence of SEQ ID NO:3, and
27	wherein the antibody recognizes basal cells in normal mammary lactation glands.
28	
29	31. The antibody of claim 30, wherein the antibody distinguishes basal cells from
30	luminal cells in normal mammary lactation glands.
31	
32	32. The antibody of claim 30, wherein the antibody is a monoclonal antibody.

1	· ·
2	33. The antibody of claim 30, wherein the antibody is a polyclonal antibody.
3	
4	34. The antibody of claim 30, wherein the antibody recognizes an epitope found in a
5	peptide having an amino acid sequence selected from the group consisting of SEQ ID
. 6	NO:10, SEQ ID NO:11, and SEQ ID NO:12.
7	
8	38. A kit for tumor diagnosis comprising:
9	one or more of the antibodies of any of claims 20 through 34;
10	instructions for use of the kit; and
11	a control slide comprising breast tissue samples for testing reagents in the kit.
12	
13	40. A method of testing a compound or a combination of compounds for activity
14	against tumors comprising steps of:
. 15	obtaining or providing tumor samples taken from subjects who have been
16	treated with the compound or combination of compounds, wherein the tumors fall
17	within a tumor subclass;
18	comparing the response rate of tumors that fall within the tumor subclass and
19	have been treated with the compound with the overall response rate of tumors that
20	have been treated with the compound or combination of compounds or with the
21	response rate of tumors that do not fall within the subclass and have been treated with
22	the compound or combination of compounds; and
23	identifying the compound or combination of compounds as having selective
24	activity against tumors in the tumor subclass if the response rate of tumors in the
25	subclass is greater than the overall response rate or the response rate of tumors that do
26	not fall within the subclass.
27	
28	41. The method of claim 40, wherein the tumors are breast tumors.
29	
30	42. The method of claim 41, wherein the tumor subclass is a basal tumor subclass.
31	

43. The method of claim 41, wherein the tumors are classified according to the

1

2 method of any of claims 1, 2, 3, or 4. 3 4 44. The method of claim 41, wherein the tumor subclass is a basal tumor subclass and wherein a tumor is identified as belonging to the tumor subclass based on evidence of 5 6 expression of one or more basal marker genes in the sample. 7 8 45. The method of claim 44, wherein evidence of expression comprises presence of a 9 protein encoded by a basal marker gene, and wherein the evidence of expression is 10 obtained using an antibody that binds to the protein. 11 12 46. The method of claim 45, wherein the basal marker gene encodes a polypeptide 13 comprising the amino acid sequence of SEQ ID NO:1. 14 15 47. The method of claim 45, wherein the basal marker gene encodes a polypeptide 16 comprising the amino acid sequence of SEQ ID NO:2. 17 18 48. The method of claim 45, wherein the basal marker gene encodes a polypeptide 19 comprising the amino acid sequence of SEQ ID NO:3. 20 21 49. The method of claim 40, wherein the samples are present within a tissue array. 22 23 60. A method of testing a compound or a combination of compounds for activity 24 against tumors comprising steps of: 25 treating subjects in need of treatment for tumors with the compound or 26 combination of compounds; 27 comparing the response rate of tumors that fall within a tumor subclass with 28 the overall response rate of tumors or with the response rate of tumors that do not fall 29 within the subclass; and 30 identifying the compound or combination of compounds as having selective 31 activity against tumors in the tumor subclass if the response rate of tumors in the

1 subclass is greater than the overall response rate or the response rate of tumors that do 2 not fall within the subclass. ,3 4 61. The method of claim 60, further comprising the steps of: 5 providing tumor samples from subjects in need of treatment for tumors; 6 determining whether the tumors fall within a tumor subclass; and 7 stratifying the subjects based on the results of the determining step prior to 8 performing the treating step. 9 10 62. The method of claim 60, further comprising the steps of: 11 providing tumor samples from subjects in need of treatment for tumors; 12 detecting expression or activity of a gene encoding the polypeptide of SEQ ID 13 NO:1 in the samples; and 14 stratifying the subjects based on the results of the detecting step prior to 15 performing the the treating step. 16 17 63. The method of claim 60, further comprising the steps of: 18 providing tumor samples from subjects in need of treatment for tumors; 19 detecting expression or activity of a gene encoding the polypeptide of SEQ ID 20 NO:2 in the samples; and 21 stratifying the subjects based on the results of the detecting step prior to 22 performing the treating step. 23 24 64. The method of claim 60, further comprising the steps of: 25 providing tumor samples from subjects in need of treatment for tumors; 26 detecting expression or activity of a gene encoding the polypeptide of SEO ID 27 NO:3 in the samples; and 28 stratifying the subjects based on the results of the detecting step prior to 29 performing the treating step. 30 31 65. The method of claim 60, further comprising the steps of: 32 providing tumor samples from subjects in need of treatment for tumors;

1	detecting expression or activity of at least two genes, wherein each of the
2	genes encodes a polypeptide whose sequence comprises a sequence selected from the
3	group consisting of SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:3 in the samples;
4	and
5	stratifying the subjects based on the results of the detecting step prior to
6	performing the treating step.
7	
8	80. A method of testing a compound or a combination of compounds for activity
9	against tumors comprising steps of:
10	treating subjects in need of treatment for tumors with the compound or
11	combination of compounds or with an alternate compound, wherein the tumors fall
12	within a tumor subclass;
13	comparing the response rate of tumors treated with the compound or
14	combination of compounds with the response rate of tumors treated with the alternate
15	compound; and
16	identifying the compound or combination of compounds as having superior
17	activity against tumors in the tumor subclass, as compared with the alternate
18	compound, if the response rate of tumors treated with the compound or combination
19	of compounds is greater than the response rate of tumors treated with the alternate
20	compound.
21	
22	81. The method of claim 80, further comprising the steps of:
23	providing tumor samples from subjects in need of treatment for tumors;
24	determining whether the tumors fall within a tumor subclass; and
25	stratifying the subjects based on the results of the determining step prior to
26	performing the treating step.
27	
28	82. The method of claim 80, further comprising the steps of:
29	providing tumor samples from subjects in need of treatment for tumors;
30	detecting expression or activity of a gene encoding the polypeptide of SEQ ID
31	NO:1 in the samples; and

1	stratifying the subjects based on the results of the detecting step prior to
2	performing the treating step.
3	
4	83. The method of claim 80, further comprising the steps of:
5	providing tumor samples from subjects in need of treatment for tumors;
6	detecting expression or activity of a gene encoding the polypeptide of SEQ ID
7	NO:2 in the samples; and
8	stratifying the subjects based on the results of the detecting step prior to
9	performing the treating step.
10	
11	84. The method of claim 80, further comprising the steps of:
12	providing tumor samples from subjects in need of treatment for tumors;
13	detecting expression or activity of a gene encoding the polypeptide of SEQ ID
14	NO:3 in the samples; and
15	stratifying the subjects based on the results of the detecting step prior to
16	performing the treating step.
17	·
18	85. The method of claim 80, further comprising the steps of:
19	providing tumor samples from subjects in need of treatment for tumors;
20	detecting expression or activity of at least two genes, wherein each of the
21	genes encodes a polypeptide whose sequence comprises a sequence selected from the
22	group consisting of SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:3 in the samples;
23	and
24	stratifying the subjects based on the results of the detecting step prior to
25	performing the treating step.
26	
27	86. The method of any of claims 80, 81, 82, 83, 84, or 85, wherein the alternate
28	compound is a compound approved by the U.S. Food and Drug administration for
29	treatment of tumors.
30	
31	100. A method of treating a subject comprising steps of:
32	identifying a subject as having a tumor in a basal tumor subclass; and

1	administering a compound identified according to the method of any of claims
2	40, 41, 42, or 45 to the subject.
3	
4	101. A method of treating a subject comprising steps of:
5	identifying a subject as having a tumor in a basal tumor subclass; and
6	administering a compound identified according to the method of any of claims
7	60, 61, 62, 63, 64, or 65 to the subject.
8	·
9	103. A method of treating a subject comprising steps of:
10	identifying a subject as having a tumor in a basal tumor subclass; and
11	administering a compound identified according to the method of any of claims
12	80, 81, 82, 83, 84, or 85 to the subject.
13	
14	120. A method of treating a subject comprising steps of:
15	providing a subject in need of treatment for cancer;
16	administering to the subject an antibody that specifically binds to a
17	polypeptide having an amino acid sequence comprising the sequence of SEQ ID
18	NO:1.
19	
20	121. A method of treating a subject comprising steps of:
21	providing a subject in need of treatment for a tumor;
22	administering to the subject an antibody that specifically binds to a
23	polypeptide having an amino acid sequence comprising the sequence of SEQ ID
24	NO:2.
25	
26	122. A method of treating a subject comprising steps of:
27	providing a subject in need of treatment for a tumor;
28	administering to the subject an antibody that specifically binds to a
29	polypeptide having an amino acid sequence comprising the sequence of SEQ ID
30	NO:3.
31	

1	130. The method of any of claims 120, 121, or 122, wherein the tumor is a breast
2	tumor, and wherein the method further comprises the step of:
3	identifying the tumor as belonging to a basal tumor subclass.
4	
5	131. The method of any of claims 120, 121, or 122, wherein the antibody is
6	conjugated with a toxic molecule.
7	
8	140. A method of treating a subject comprising steps of:
9	providing a subject in need of treatment for cancer;
10	administering to the subject a compound that activates or inhibits a gene that
11	encodes an amino acid having a sequence comprising the sequence of SEQ ID NO:
12	or that activates or inhibits an expression product of the gene.
13	
14	141. A method of treating a subject comprising steps of:
15	providing a subject in need of treatment for a tumor;
16	administering to the subject a compound that activates or inhibits a gene that
17	encodes an amino acid having a sequence comprising the sequence of SEQ ID NO:
8	or that activates or inhibits an expression product of the gene.
9	
20	142. A method of treating a subject comprising steps of:
21	providing a subject in need of treatment for a tumor;
22	administering to the subject a compound that activates or inhibits a gene that
23	encodes an amino acid having a sequence comprising the sequence of SEQ ID NO:
24	or that activates or inhibits an expression product of the gene.
25	
26	150. A composition comprising:
27	two or more compounds identified according to the method of any of claims
28	40, 60, or 80.
9	
0	151. A pharmaceutical composition comprising:
1	the composition of claim 150; and
2	a pharmaceutically acceptable carrier.

1	
2	160. A composition comprising:
3	a compound identified according to the method of any of claims 40, 60, or 80;
4	a second compound, wherein the second compound is approved by the U.S.
5	Food and Drug administration for the treatment of cancer or has shown potential
6	efficacy against cancer in pre-clinical studies.
7	
8	161. A pharmaceutical composition comprising:
9	the composition of claim 160; and
10	a pharmaceutically acceptable carrier.
11	·

FIGURE 1A

Sequence of cadherin 3 (GenBank accession number NP 001784)

SEQ ID NO:1

MGLPRGPLASLLLLQVCWLQCAASEPCRAVFREAEVTLEAGGAEQEPGQALGK VFMGCPGQEPALFSTDNDDFTVRNGETVQERRSLKERNPLKIFPSKRILRRHKRD WVVAPISVPENGKGPFPQRLNQLKSNKDRDTKIFYSITGPGADSPPEGVFAVEKE TGWLLLNKPLDREEIAKYELFGHAVSENGASVEDPMNISIIVTDQNDHKPKFTQD TFRGSVLEGVLPGTSVMQVTATDEDDAIYTYNGVVAYSIHSQEPKDPHDLMFTI HRSTGTISVISSGLDREKVPEYTLTIQATDMDGDGSTTTAVAVVEILDANDNAPM FDPQKYEAHVPENAVGHEVQRLTVTDLDAPNSPAWRATYLIMGGDDGDHFTITT HPESNQGILTTRKGLDFEAKNQHTLYVEVTNEAPFVLKLPTSTATIVVHVEDVNE APVFVPPSKVVEVQEGIPTGEPVCVYTAEDPDKENQKISYRILRDPAGWLAMDPD SGQVTAVGTLDREDEQFVRNNIYEVMVLAMDNGSPPTTGTGTLLLTLIDVNDHG PVPEPRQITICNQSPVRHVLNITDKDLSPHTSPFQAQLTDDSDIYWTAEVNEEGDT VVLSLKKFLKQDTYDVHLSLSDHGNKEQLTVIRATVCDCHGHVETCPGPWKGG FILPVLGAVLALLFLLLVLLLLVRKKRKIKEPLLLPEDDTRDNVFYYGEEGGGEE DQDYDITQLHRGLEARPEVVLRNDVAPTIIPTPMYRPRPANPDEIGNFIIENLKAA NTDPTAPPYDTLLVFDYEGSGSDAASLSSLTSSASDQDQDYDYLNEWGSRFKKL **ADMYGGGEDD**

FIGURE 1B

Sequence of matrix metalloproteinase 14 (GenBank accession number NP 004986)

SEQ ID NO:2

MSPAPRPPRCLLLPLLTLGTALASLGSAQSSSFSPEAWLQQYGYLPPGDLRTHTQ
RSPQSLSAAIAAMQKFYGLQVTGKADADTMKAMRRPRCGVPDKFGAEIKANVR
RKRYAIQGLKWQHNEITFCIQNYTPKVGEYATYEAIRKAFRVWESATPLRFREVP
YAYIREGHEKQADIMIFFAEGFHGDSTPFDGEGGFLAHAYFPGPNIGGDTHFDSA
EPWTVRNEDLNGNDIFLVAVHELGHALGLEHSSDPSAIMAPFYQWMDTENFVLP
DDDRRGIQQLYGGESGFPTKMPPQPRTTSRPSVPDKPKNPTYGPNICDGNFDTVA
MLRGEMFVFKERWFWRVRNNQVMDGYPMPIGQFWRGLPASINTAYERKDGKF
VFFKGDKHWVFDEASLEPGYPKHIKELGRGLPTDKIDAALFWMPNGKTYFFRGN
KYYRFNEELRAVDSEYPKNIKVWEGIPESPRGSFMGSDEVFTYFYKGNKYWKFN
NQKLKVEPGYPKSALRDWMGCPSGGRPDEGTEEETEVIIIEVDEEGGGAVSAAA
VVLPVLLLLLVLAVGLAVFFFRRHGTPRRLLYCQRSLLDKV

FIGURE 1C

Sequence of cadherin EGF LAG seven-pass G-type receptor 2 (GenBank accession number NP 001399)

SEQ ID NO:3

MRSPATGVPLPTPPPLLLLLLLLLPPPLLGDOVGPCRSLGSRGRGSSGACAPMG WLCPSSASNLWLYTSRCRDAGTELTGHLVPHHDGLRVWCPESEAHIPLPPAPEG CPWSCRLLGIGGHLSPQGKLTLPEEHPCLKAPRLRCQSCKLAQAPGLRAGERSPE ESLGGRRKRNVNTAPQFQPPSYQATVPENQPAGTPVASLRAIDPDEGEAGRLEYT MDALFDSRSNQFFSLDPVTGAVTTAEELDRETKSTHVFRVTAQDHGMPRRSALA TLTILVTDTNDHDPVFEQQEYKESLRENLEVGYEVLTVRATDGDAPPNANILYRL LEGSGGSPSEVFEIDPRSGVIRTRGPVDREEVESYQLTVEASDQGRDPGPRSTTAA VFLSVEDDNDNAPQFSEKRYVVQVREDVTPGAPVLRVTASDRDKGSNAVVHYSI MSGNARGQFYLDAQTGALDVVSPLDYETTKEYTLRVRAQDGGRPPLSNVSGLV TVQVLDINDNAPIFVSTPFQATVLESVPLGYLVLHVQAIDADAGDNARLEYRLAG VGHDFPFTINNGTGWISVAAELDREEVDFYSFGVEARDHGTPALTASASVSVTVL DVNDNNPTFTQPEYTVRLNEDAAVGTSVVTVSAVDRDAHSVITYOITSGNTRNR FSITSQSGGGLVSLALPLDYKLERQYVLAVTASDGTRODTAQIVVNVTDANTHRP VFQSSHYTVNVNEDRPAGTTVVLISATDEDTGENARITYFMEDSIPOFRIDADTG AVTTQAELDYEDQVSYTLAITARDNGIPQKSDTTYLEILVNDVNDNAPQFLRDSY QGSVYEDVPPFTSVLQISATDRDSGLNGRVFYTFOGGDDGDGDFIVESTSGIVRT LRRLDRENVAQYVLRAYAVDKGMPPARTPMEVTVTVLDVNDNPPVFEODEFDV FVEENSPIGLAVARVTATDPDEGTNAQIMYQIVEGNIPEVFQLDIFSGELTALVDL DYEDRPEYVLVIQATSAPLVSRATVHVRLLDRNDNPPVLGNFEILFNNYVTNRSS SFPGGAIGRVPAHDPDISDSLTYSFERGNELSLVLLNASTGELKLSRALDNNRPLE AIMSVLVSDGVHSVTAQCALRVTIITDEMLTHSITLRLEDMSPERFLSPLLGLFIOA VAATLATPPDHVVVFNVQRDTDAPGGHILNVSLSVGQPPGPGGGPPFLPSEDLOE RLYLNRSLLTAISAQRVLPFDDNICLREPCENYMRCVSVLRFDSSAPFIASSSVLFR PIHPVGGLRCRCPPGFTGDYCETEVDLCYSRPCGPHGRCRSREGGYTCLCRDGYT GEHCEVSARSGRCTPGVCKNGGTCVNLLVGGFKCDCPSGDFEKPYCQVTTRSFP AHSFITFRGLRQRFHFTLALSFATKERDGLLLYNGRFNEKHDFVALEVIQEQVQL TFSAGESTTTVSPFVPGGVSDGQWHTVQLKYYNKPLLGQTGLPQGPSEQKVAVV TVDGCDTGVALRFGSVLGNYSCAAQGTQGGSKKSLDLTGPLLLGGVPDLPESFP VRMRQFVGCMRNLQVDSRHIDMADFIANNGTVPGCPAKKNVCDSNTCHNGGT CVNQWDAFSCECPLGFGGKSCAQEMANPOHFLGSSLVAWHGLSLPISOPWYLSL MFRTRQADGVLLQAITRGRSTITLQLREGHVMLSVEGTGLQASSLRLEPGRAND GDWHHAQLALGASGGPGHAILSFDYGQQRAEGNLGPRLHGLHLSNITVGGIPGP AGGVARGFRGCLQGVRVSDTPEGVNSLDPSHGESINVEOGCSLPDPCDSNPCPA NSYCSNDWDSYSCSCDPGYYGDNCTNVCDLNPCEHOSVCTRKPSAPHGYTCEC PPNYLGPYCETRIDQPCPRGWWGHPTCGPCNCDVSKGFDPDCNKTSGECHCKEN HYRPPGSPTCLLCDCYPTGSLSRVCDPEDGQCPCKPGVIGRQCDRCDNPFAEVTT NGCEVNYDSCPRAIEAGIWWPRTRFGLPAAAPCPKGSFGTAVRHCDEHRGWLPP NLFNCTSITFSELKGFAERLQRNESGLDSGRSQQLALLLRNATQHTAGYFGSDVK VAYQLATRLLAHESTQRGFGLSATQDVHFTENLLRVGSALLDTANKRHWELIOO

TEGGTAWLLQHYEAYASALAQNMRHTYLSPFTIVTPNIVISVVRLDKGNFAGAK LPRYEALRGEQPPDLETTVILPESVFRETPPVVRPAGPGEAQEPEELARRQRRHPE LSQGEAVASVIIYRTLAGLLPHNYDPDKRSLRVPKRPIINTPVVSISVHDDEELLPR ALDKPVTVQFRLLETEERTKPICVFWNHSILVSGTGGWSARGCEVVFRNESHVSC QCNHMTSFAVLMDVSRRENGEILPLKTLTTYVALGVTLAALLLTFFFLTLLRILRS NQHGIRRNLTAALGLAQLVFLLGINQADLPFACTVIAILLHFLYLCTFSWALLEAL HLYRALTEVRDVNTGPMRFYYMLGWGVPAFITGLAVGLDPEGYGNPDFCWLSI YDTLIWSFAGPVAFAVSMSVFLYILAARASCAAQRQGFEKKGPVSGLQPSFAVLL LLSATWLLALLSVNSDTLLFHYLFATCNCIQGPFIFLSYVVLSKEVRKALKLACSR KPSPDPALTTKSTLTSSYNCPSPYADGRLYQPYGDSAGSLHSTSRSGKSQPSYIPF LLREESALNPGQGPPGLGDPGSLFLEGQDQQHDPDTDSDSDLSLEDDQSGSYAST HSSDSEEEEEEEEAAFPGEQGWDSLLGPGAERLPLHSTPKDGGPGPGKAPWPG DFGTTAKESSGNGAPEERLRENGDALSREGSLGPLPGSSAQPHKGILKKKCLPTIS EKSSLLRLPLEQCTGSSRGSSASEGSRGGPPPRPPPRQSLQEQLNGVMPIAMSIKA GTVDEDSSGSEFLFFNFLH

Figure 1D

Peptides for antibodies that bind to cadherin3 (GenBank accession number NP 001784):

RAVFREAEVTLEAGGAEQE (SEQ ID NO:4)

QEPALFSTDNDDFTVRN (SEQ ID NO:5)

QKYEAHVPENAVGHE (SEQ ID NO:6)

Peptides for antibodies that bind to matrix metalloproteinase 14 (GenBank accession number NP_004986):

AYIREGHEKQADIMIFFAE (SEQ ID NO:7)

DEASLEPGYPKHIKELGR (SEQ ID NO:8)

RGSFMGSDEVFTYFYK (SEQ ID NO:9)

Peptides for antibodies that bind to anti-cadherin EGF LAG seven-pass G-type receptor 2 (GenBank accession number NP_001399):

QASSLRLEPGRANDGDWH (SEQ ID NO:10)

ELKGFAERLQRNESGLDSGR (SEQ ID NO:11)

RSGKSQPSYIPFLLREE (SEQ ID NO:12)

Peptides for antibodies that bind to anti-cytokeratin17:

KKEPVTTRQVRTIVEE (SEQ ID NO:13)

QDGKVISSREQVHQTTR (SEQ ID NO:14)

SSSIKGSSGLGGGSS (SEQ ID NO:15)

3294483_1.DOC

FIGURE 2

Intrinsic Gene Subset

Epithelial-Enriched Gene Subset

Figure 3

FIGURE 4A

FIGURE 4B

PCT/US01/23843 9/610

FIGURE 4C

Figure 5A

Figure 5B

FIGURE 6

FIGURE 7

Table 3

Common Reference Cell Line List

Name	Description	ATCC# or Reference
11 1	breast adenocarcinoma derived cell line	ATCC #HTB-22
Hs578T	breast carcinosarcoma derived cell line	ATCC #HTB-126
NTERA2	teratoma derived cell line	ATCC #CRL-1973
Colo205	colon tumor derived cell line	ATCC #CCL-222
OVCAR-3	ovarian tumor derived cell line	ATCC #HTB-161
UACC-62	melanoma derived cell line	Stinson et al. Anticancer Res. Jul-Aug;12(4):1035- 53 1992
MOLT-4	T-cell leukemia derived cell line	ATCC #CRL-1582
RPMI-8226	multiple myeloma derived cell line	ATCC #CCL-155
NB4+ATRA	APL-like cell line	Lanotte et al. Blood. Mar 1;77(5):1080-6, 1991
SW872	liposarcoma derived cell line	ATCC #HTB-92
HepG2	liver tumor derived cell line	ATCC #HB-8065

	g	ι
•	č	5
	U	3
Ī	=	-

TUMOR + TI	TUMOR + TISSUE SAMPLES			
Array ID	old name	Patient ID	New Name	Comments: before and after pair (Y or N), etc.
svcc98.2	BC107B-BE	norway 7	NORWAY 7-BE	yes
svcc63.2	BC107A-AF	norway 7	NORWAY 7-AF	
svc78.2	BC110B-BE	norway 10	NORWAY 10-BE	yes
svcc77.2	BC110A-AF	norway 10	NORWAY 10-AF	
svc122.2	BC111A-BE	norway 11	NORWAY 11	no, no after
svcc68.2	BC1118-BE	norway 19	NORWAY 19	no, no after
svcc53.2	BC112B-BE	norway 12	NORWAY 12-BE	yes
svcc97.2	BC112A-AF	norway 12	NORWAY 12-AF	
svcc81.2	BC114A-BE	norway 14	NORWAY 14-BE	yes
svcc52.2	BC114B-AF	norway 14	NORWAY 14-AF	
svcc106.2	BC115B-BE	norway 15	NORWAY 15-BE	yes
svcc64.2	BC115A-AF	norway 15	NORWAY 15-AF	
svcc108.2		norway 16	NORWAY 16	no, no after
svcc88.2		norway 17	NORWAY 17	no, no after
svcc134.2	BC118B-BE	norway 18	NORWAY 18-BE	yes
svcc112.2	BC118A-AF	norway 18	NORWAY 18-AF	
svcc89.2	BC123B-BE	norway 26	NORWAY 26-BE	yes
svcc91.2	BC123A-AF	norway 26	NORWAY 26-AF	
svcc111.2	BC124A-BE	norway 27	NORWAY 27-BE	yes
svcc109.2	BC124B-AF	norway 27	NORWAY 27-AF	
svcc1077.2		new york 1	NEW YORK 1	no
svcc132.2	59	new york 2	NEW YORK 2	no
svcc61.2	BC14	stanford 14	STANFORD 14	Ou
svcc137.2	BC16	stanford 16	STANFORD 16	. Ou
svcc119.2	BC17	stanford 17	STANFORD 17	0U
svcc96.2	BC2	stanford 2	STANFORD 2-P	primary tumor
svcc113.2	BC2-LN2	stanford 2	STANFORD 2-LN	lymph node metastasis
svcc93.2	BC206A-BE	norway 39	NORWAY 39-BE	yes
svcc135.2	BC206B-AF	norway 39	NORWAY 39-AF	
svcc107.2	BC208A-BE	norway 41	NORWAY 41-BE	yes
svcc125.2	BC208B-AF	norway 41	NORWAY 41-AF	
svcc76.2	BC213B-BE	norway 47	NORWAY 47-BE	yes
svcc79.2	BC213A-AF	norway 47	NORWAY 41-AF	
svcc92.2	BC214B-BE	norway 48	NORWAY 48-BE	yes
svcc103.2	IA-AF	norway 48	NORWAY 48-AF	
svcc99.2		stanford 23	STANFORD 23	no
svcc100.2	BC24	stanford 24	STANFORD 24	no.

V
ø
酉
₽.
-

SACCTOTICS	(BC305A-BE	norway 53	NORWAY 53-BE	ives
svcc58.2	BC305B-AF	norway 53	NORWAY 53-AF	
svcc87.2	BC308B-BE	norway 56	NORWAY 56	no, no after
svcc51.2	BC309A-BE	norway 57	NORWAY 57	no, no after
svcc118.2	BC35-0	stanford 35	STANFORD 35	100
svc117.2	BC37-FA	stanford 37	STANFORD 37-FA	00
svcc115.2	BC38	stanford 38	STANFORD 38-P	Lymph node met of tumor/LNmet pair 2
svcc116.2	BC38-LN38	stanford 38	STANFORD 38-LN	is a LN met with NO corresponding primary tumor sample
svcc83.2	BC402B-BE	norway 61	NORWAY 61-BE	yes
svcc66.2	BC403B-AF	norway 61	NORWAY 61-AF	
svcc123.2	BC406A-BE	norway 65	NORWAY 65	no, no after
svcc104.2	BC708B-BE	norway 100	NORWAY 100-BE	yes
svcc86.2	BC708A-AF	norway 100	NORWAY 100-AF	
svcc84.2	BC709B-BE	norway 101	NORWAY 101-BE	yes
svcc85.2	BC709A-AF	norway 101	NORWAY 101-AF	
svcc101.2	BC710A-BE	norway 102	NORWAY 102-BE	yes
svcc82.2	BC710B-AF	norway 102	NORWAY 102-AF	
svcc120.2	BC711B-BE	norway 104	NORWAY 104-BE	kes
svcc65.2	BC711A-AF	norway 104	NORWAY 104-AF	
svcc130.2	BC790	new york 3	NEW YORK 3	ou
svc105.2	BC805A-BE	norway 109	NORWAY 109-BE	yes
svc121.2	BC805B-AF	norway 109	NORWAY 109-AF	
svcc55.2	BC807A-BE	norway 111	NORWAY 111	no, no after
svc124.2	BC808A-BE	norway 112	NORWAY 112-BE	yes
svc126.2	BC808A-AF	norway 112	NORWAY 112-AF	
svcc70.2	Normal Breast 1	clontech 1	NORMAL 1	Normal Breast 1 (6 pooled whole nomal breasts specimens)
svcc127.2	Normal Breast2	clontech 2	NORMAL 2	Normal Breast 2 (2 pooled whole nomral breast specimens)
svcc18.2	NorwNorBst1	norway NB	NORMAL 3	NorwNorBst1 (sample from a single individual)
CELL LINE SAMPLES	MPLES			
svcc128.2	BT-474	Cell line	BT-474	cell line; luminal epithelial, ERBB2 positive
svcc69.2	BT-549	Cell line	BT-549	cell line; breast derived
svcc500.2	HMEC+INFa	Cell line	HMEC+IFNa .	cell line; HMEC-C isolate, basal epithelial cell line plus IFN alpha
svcc94.2	HMEC-C	Cell line	HMEC-C	cell line; HMEC-C isolate, basal epithelial cell line untreated
svcc47.2	HMEC-C_Confl2	Cell line	HMEC-C CON	cell line; HMEC-C isolate, basal epithelial cell line after 2 days at 100% confluence
svcc41.2	HMVEC	Cell line	HMVEC	cell line; dermal microvacsular endothelial celis
svcc110.2	Hs578T	Cell line	Hs578T	cell line; breast carcinosarcoma derived
svcc42.2	HUVEC	Cell line	HUVEC	cell line; human umbilical vein derived endothelial cell line
svcc1299.2	MCF7-NCI	Cell line	MCF7	cell line; luminal epithelial, Estrogen receptor positive

svcc73.2	MDA-MB-321	Cell line	MDA-MB-231	cell line; breast derived
svcc72.2	MOLT4	Cell line	MOLT4	rell line: t-rell leukemia derived
svcc67.2	NB4+ATRA	Cell line	NB4+ATRA	Cell line: neutronhil-like after Retinoic Acid induced differentiation 773 hours
svcc54.2	RPMI-8226	Cell line	RPMI-8226	Icell line: h-cell like (derived from a multiple myeloma)
svcc15.2	SK-BR-3	Cell line	SK-BR-3	Cell line: Iuminal enithelial FRBR2 nocitive:
svcc74.2	SW872	Cell line	SW872	Cell line:linosacroma derived cell line
svcc71.2	T47D	Cell line	T47D	Cell line: Iuminal enithelial Estroden recentor positive
svcc38.2	184A1-LATE	Cell line	184A1	cell line: hasal enithelial immortal derivativa of 19443
svcc17.2	184Aa	Cell line	184Aa	cell line: hasal enithelial a second HMEC isolate unrelated to LIMEC C
svcc40.2	184B5	Cell line	18485	cell line: basal enithalial immortal derivativa of 1948.
				לבנו יוויכל מכסנו כלוחיכוותול ווווווסו ימן חבוואם חלו דסלאם

٠.

1= tumor name as it appears in the figures

2= clinical estrogen receptor status (determined by dextran binding assay or immunohistochemistry)

3= average R/G ratio of two independent sequence verified ESR1 clones (the correlation between clinical ER status and the microarray data is best if one calls a R/G ratio of 2.25 or greater "positive" for estrogen receptor status)

4= Erb-B2 clinical status as determined using immunohistochemistry

5= average R/G ratio of four independent sequence verified Erb-B2 clones (the correlation between clinical ERBB2

status and the microarray data is best if one calls a microarray ratio of 3.15 or greater "positive")

6= tumor grade

7= differentiation status

8= patient survival status: NED=no evidence of disease, AWD=alive with disease, DOD=dead of disease, DOC=dead of

other cause

9= survival time in months

10= age at diagnosis

11=doxorubicin response: PR = reduction in tumor of 50% or more, PD = increase in tumor size over the course of the doxorubicin therapy, NT = not tested (described in T. Aas et al., Nature Medicine Vol. 2, p811-814 (1995))

12= p53 mutational status summary

13= p53 gene codon affected by mutation, if present

14= p53 gene nucleotide change identified

15= effect on p53 amino acid sequence, if applicable 16= additional findings and notes

	ч	•
	0	U
	7	5
	0	Ū
ľ	H	-

			,	
NORWAY 53	positive 0.93	positive 21.5	3 ductal DOD 34 32 PR frameshift 730-742	11bp del frameshift
NORWAY 109	negative 0.44	negative 1.35	3 DUCTAL NED 26 48 PR PR	CGA->TGA arg->stopp
NEW YORK 2	negative 1	not tested 1.7	3 DUCTAL DOD 12 54 NT not tested	
STANFORD 23	negative 0.83	negative 1.48	3 DUCTAL NED 14 34 NT frameshift	G deletion frameshift
NORWAY 41	positive 1.1	negative 2.97	3 DUCTAL DOD 9 49 PR missense	CGT->CAT arg->his
STANFORD 14	negative 1.25	not tested 6.1	2 DUCTAL AWD 28 57 NT Missense	CGG-CAG arg->gln
NEW YORK 3	negative 0.42	not tested 3.4	3 DUCTAL DOD 6 80 NT NT missense	CAC->CCC his->pro
TUMOR ID	ESR Clinical ESR Array	ERBB2 Clinical ERBB2 Array	Tumor Grade Differentiation Survival Status Survival Time Age at Dlagnosis Doxorubicin Response p53 Status	p53 Mutation p53 A.A. Seq
-	3.2	4. rv	6 8 8 10 11 11 51 51	14 15

had a high p53 immunostaining value

Special Notes

16

	-	1
	g	U
	3	5
,	n	Ų
	г	

1 negative negative positive positive not tested 2.25 2.25 ical positive not tested 0.47 2.25 ical positive not tested 0.47 2.25 ical positive not tested positive not tested ical 3 3 not tested 3 4.44 de 3 3 not tested 3 4.44 de 3 3 not tested 20 14 prob DOD NED AWD NED ne 6 10 66 20 14 prositive not prositive NT prositive not not	ì					٠			•		*	•
ESR Clinical negative negative positive not tested ESBB2 Clinical positive not tested 2.28 0.47 2.25 ERBB2 Clinical positive not tested 23.3 4.44 Tumor Grade 3 3 not tested 3 Differentiation ductal - ductal DCIS ductal fibroadenoma Survival Status DOD NED AWD NED Survival Time 6 10 66 20 14 Age at Diagnosis 44 46 51 73 32 Doxorubicin Response NT PD PR NT NT p53 Codon 273 248 136 AA->TAA AB->TAA Benign lesion Special Notes Ar. Seq arg->gln ->stopp Benign lesion Benign lesion		negative 8.6	negative 1.52	m	ductal	23	99	₽	W			
ESR Clinical ESR Arraynegative 1negative 0.88positive 2.28positive 0.47ERBB2 Clinical ERBB2 Arraypositive 		positive 2.27	positive 12.1						¥			
ESR Clinical negative negative positive ESR Array 1 0.88 2.28 ERBEZ Clinical positive not tested ERBEZ Array 22.6 15.5 9.5 Tumor Grade 3 3 3 not tested ductal ductal DOD DOD DOD NED Survival Status DOD DOD DOD NED Survival Time 6 10 66 Age at Diagnosis 44 46 51 Doxorubicin Response NT PD PD PR p53 Status missense missense p53 Codon 273 248 p53 A.A. Seq arg->cys arg->gin Special Notes		not tested 2.25	not tested 4.44		fibroadenoma	14	32	ΗN	not tested			benign lesion
ESR Clinical negative negative ESR Array 1 0.88 ERBB2 Clinical positive positive ERBB2 Array 226 15.5 Tumor Grade 3 3 3 Differentiation ductal ductal DOD DOD Survival Status 6 10 Age at Diagnosis 44 46 Doxorubicin Response NT PD p53 Status missense missense p53 Codon 2773 248 p53 A.A. Seq arg->cys arg->gin Special Notes		positive 0.47	positive 23.3	ຕຸ	ductal	20	. 73	8	nonsense	136 CAA->TAA	gln->stopp	
ESR Clinical negative ESR Array 1 ERBB2 Clinical positive ERBB2 Array 22.6 Tumor Grade 3 Differentiation ductal Survival Status 6 Age at Diagnosis 6 Age at Diagnosis 6 Age at Diagnosis 73 p53 Status 6 p53 Status 773 p53 Mutation CGT-> TGT p53 A.A. Seq arg-> cys		positive 2.28	not tested 9.5	not tested	DCIS	99	51	ቘ	WT			,
ESR Clinical ESR Array ERBB2 Clinical ERBB2 Array Tumor Grade Differentiation Survival Status Survival Time Age at Diagnosis Doxorubicin Response p53 Status p53 Ardation p53 Ardation p53 Ardation p53 Ardation		negative 0.88	positive 15.5	т	ductal DOD	10	46	Q	missense	248 CGG->CAG	arg->gln	
		negative 1	positive 22.6	m .	ductai DOD	9	4	N	missense	273 CGT->TGT	arg->cys	
2 4 4 3 3 3 4 5 10 10 10 10 11 11 11 11 11 11 11 11 11		ESR Clinical ESR Array	ERBB2 Clinical ERBB2 Array	Tumor Grade	Differentiation Survival Status	Survival Time	Age at Diagnosis	Doxorubicin Response	p53 Status	p53 Codon p53 Mutation	p53 A.A. Seq	Special Notes
	!	2 %	4 N	91	~ ∞	6	10	#	12	ti 4	15	16

Į	J	7
	٥	u
:	C	5
	٩	J

NORWAY 26	positive 9.1	positive 10.8	. 2	DOD	43	72	Od.	frameshift 217-221 14bp del frameshift	
NORWAY 7	positive 6	negative 1.9	2 2	AWD	68	99	8.	missense 273 CGT->CAT arg->his	,
NORWAY 15	positive 5.48	negative 1.57	د ر	NED	79	47	&	missense 163 TAC->TGC tyr->cys	ile->val)
NORWAY 48	negative 0.81	negative 2.7	e ti	DOD	7	54	PD	TW	p16 mutant (145 ile->val)
STANFORD 17	positive 9.1	not tested 4.6	2 trit	NED	32	53	M	TW .	ш.
NORWAY 14	positive 0.71	negative 8.15	2	DOD	12	82	Æ	W	
NORWAY 112	positive 3.35	negative 1.75	3	NED	22	37	&	TW	
TUMOR ID	ESR Clinical ESR Array	ERBB2 Clinical ERBB2 Array	Tumor Grade	Survival Status	Survival Time	Age at Diagnosis	Doxorubicin Response	p53 Status p53 Codon p53 Mutation p53 A.A. Seq	Special Notes
-	3 2	4 ro	9 7	· ∞	6	10	11	12 13 15 15	16

~

•

1	Ľ	7
	0	υ
	Z	5
	r	Ū
	_	_

 1	TUMOR ID	NORWAY 19	NORWAY 11	NORWAY 104	NORWAY 12	NORWAY 100	NORWAY 39	NORWAY 17	
0 K	ESR Clinical ESR Array	positive 7.9	positive 8.65	positive 10.8	positive 31.88	positive 19	positive 12	positive 32.9	
4 ω	ERBB2 Clinical ERBB2 Array	negative 1.43	positive 3.3	positive 3.15	positive 3.9	negative 1.45	negative 1.46	negative 2.5	
9	Tumor Grade	m	m	ო	m	ო	2	7	
7	Differentiation	ductal	ductal	ductal	ductal	ductal	ductal	ductal	
œ	Survival Status	QOQ	000	NED	DOD	000	NED	NED	
6	Survival Time	20	15	31	80	17	29	80	
2	Age at Diagnosis	74	29	44	75	47	82	26	
11	Doxorubicin Response	PD	PD	DA O	쫎	PR	PR	PR.	
12	p53 Status	missense	nonsense	WT	W	nonsense	missense	Υ	
Ħ	p53 Codon	249	204			165	237		
14	p53 Mutation	AGG->GGG	GAG->TAG			CAG->TAG	ATG->ATT		
15	p53 A.A. Seq	arg->gly	glu->stopp			gln->stopp	met->ile		
16	Special Notes								

_

tumor sample tested was from a metastasis to ovary

Special Notes

16

U	1
9	J
3	3
'n)

NORWAY 111	positive 18.9	negative 0.87	ductal NED 30 55 PR
STANFORD 16	positive 21.6	not tested 1.68	3 ductal DOD 14 77 NT NT missense 273 CGT-> TGT arq-> cvs
STANFORD 38	positive 14.5	positive 5.76	2 2 10 45 NT
STANFORD 35	positive 10.93	positive 2.47	3 ductal ? ? S2 NT missense 173 GTG->ATG
NEW YORK 1	not tested 16	not tested 2.4	2 ductal AWD 188 46 NT not tested
NORWAY 102	positive 12.3	negatíve 2.2	3 ductal NED 29 65 PR WT
NORWAY 10	positive 4.6	negative 2.2	2 lobular DOD 30 58 PR WT
TUMOR ID	ESR Clinical ESR Array	ERBB2 Clinical ERBB2 Array	Tumor Grade Differentiation Survival Status Survival Time Age at Diagnosis Doxorubicin Response p53 Status p53 Codon p53 Mutation p53 A.A. Seq
~	3.2	4 rv	6 7. 9 10 11 12 13 14 15

į	u	7
	q	υ
ì	2	5
	a	3

S NORWAY 56	positive 33	negative 1.49	က	ductal	NED	61	64	PR	۲×				
NORWAY 16	positive 18.9	negative 3.96	ю	ductal	NED	78	74	8	ΤW				1
NORWAY 18	positive 27.81	negative 2.32	7	ductal	200	33	99	8	W				
NORWAY 27	positive 29	negative 2.8	₩	ductal	AWD	73	77	W.	W				
STANFORD 24	positive 16.99	negative 1.88	2	ductal	NED	13	69	占	ΜŢ				
TUMOR ID	ESR Clinical ESR Array	ERBB2 Clinical ERBB2 Array	Tumor Grade	Differentiation	Survival Status	Survival Time	Age at Diagnosis	Doxorubicin Response	p53 Status	p53 Codon	p53 Mutation	p53 A.A. Seq	Special Notes
 1	2 6	4 rv	9	7	80	6	9	11	12	13	14	15	16

١	٥
	ψ
:	ō
	a

O To		
AID		
EWEIGHT		
1 CENICOCOX		AMYLO-1,6-GLUCOSIDASE, 4-ALPHA-GLUCANOTRANSFERASE (GLYCOGEN DEBRANCHING ENZYME,
1 GENESOSA	GF201:36(9/D9):384(13H18)	GLYCOGEN STORAGE DISEASE TYPE III) AA668425
2/GENE437X	PEROU:96(4C5):384(19F9)	GDNF FAMILY RECEPTOR ALPHA 1 AA512935
3 GENETSX	GF200:96(12C7):384(3F13)	GLUTATHIONE S-TRANSFERASE THETA 2 AA490777
4 GENE174X	GF200:96(7H5):384(2P10)	HUMAN CLONE 23907 MRNA SEQUENCE R06567
5 GENE74X	GF200:96(19B3):384(5D6)	A DISINTEGRIN AND METALLOPROTEINASE DOMAIN 15 (METARGIDIN) AA292676
6 GENE449X	PEROU:96(6C4):384(20E8)	B-FACTOR, PROPERDIN H80257
7 GENE367X	GF201:96(97C2):384(13F4)	B-FACTOR, PROPERDIN AA401441
8 GENES7X	GF200:96(17D7):384(5G13)	MUCIN 1. TRANSMEMBRANE AA488073
9 GENE425X	PEROU:96(1G8):384(19M15)	
10 GENE385X	GF202:96(109D11):384(15G21)	SELENIUM BINDING PROTEIN 1 T65736
11 GENE356X		ADRENAL GLAND, MRNA, 830 NTJ AA664406
12 GENE131X	GF200:96(29D11):384(8G21)	ESTS, HIGHLY SIMILAR TO TRANSCRIPTION ELONGATION FACTOR TFIIS.H [H.SAPIENS] R09980
13 GENE162X	GF200:96(6D1):384(2G2)	KIAA0307 GENE PRODUCT AA019774
14 GENE252X	GF201:96(68E7):384(24114)	H2A HISTONE FAMILY, MEMBER L N50797
15 GENE284X	GF201:96(85D6):384(10H12)	H2B HISTONE FAMILY, MEMBER Q AA010223
16 GENE172X	GF200:96(7D9):384(2H18)	H2B HISTONE FAMILY, MEMBER Q AA456695
17 GENE368X	GF201:96(97C6):384(13F12)	B-CELL CLL/LYMPHOMA 2 W63749
18 GENE403X	GF202:96(114A6):384(16A12)	ESTS, WEAKLY SIMILAR TO MEMBRANE GLYCOPROTEIN [M.MUSCULUS] AA159578
19 GENE383X	GF201:96(99H6):384(14011)	51700 H22854
20 GENE474X	PEROU:96(8C5):384(20F9)	NEBULETTE N77806
		HUMAN DNA SEQUENCE FROM CLONE 167A19 ON CHROMOSOME 1P32.1-33. CONTAINS THREE GENES FOR
		(NOVEL PROTEINS, THE DIO1 GENE FOR TYPE I IODOTHYRONINE DEIODINASE (EC 3.8.1.4, TXDI1, ITDI1)
21 GENE138X	GF200:96(31C3):384(8F6)	AND AN HINRINP A3 (HETEROGENOUS NUCLEAR RIBONUCLEOPR N74025
22 GENE293X	GF201:96(87B9):384(11C17)	PROLACTIN RECEPTOR R63647
23 GENE482X	PEROU:96(9B3):384(18D6)	202658 H53479
24 GENE471X	PEROU:96(8B3):384(20D5)	202658 H53479
25 GENE391X	GF202:96(111A12):384(15B24)	609283 AA167189
26 GENE316X	GF201:96(89G11):384(11N22)	MYOSIN VI AA625890
27 GENE132X	GF200:96(29E4):384(8I7)	470216 AA028987
28 GENE444X	PEROU:96(6B10):384(20C20)	N-ACETYLTRANSFERASE 1 (ARYLAMINE N-ACETYLTRANSFERASE) R91803
29 GENE217X	GF201:96(57B11):384(21D22)	HOMO SAPIENS MRNA; CDNA DKFZP434A091 (FROM CLONE DKFZP434A091) AA431988
30 GENE232X	GF201:96(64C7):384(23E14)	358936 W92233
31 GENE140X	GF200:96(32E12):384(8J23)	SEVEN IN ABSENTIA (DROSOPHILA) HOMOLOG 2 AA029041
30 GENETOOY	(0C07/76410).204/7010	HEDCIN (TDANCMEMBRANE DOCTEACE CEDIME 4) 1/24/27

33 GENE228X	GF201:96(61A3):384(22B6)	417081 W87826
34 GENE475X	PEROU:96(8D12):384(20H23)	470105 AA029949
35 GENE304X	GF201:96(88E10):384(11I20)	HUMAN SECRETORY PROTEIN (P1.B) MRNA, COMPLETE CDS N74131
36 GENE465X	PEROU:96(7F6):384(20L12)	HEPATOCYTE NUCLEAR FACTOR 3, ALPHA T74639
37 GENE271X	GF201:96(82C9):384(9F17)	X-BOX BINDING PROTEIN 1 W90128
38 GENE439X	PEROU:96(4D8):384(19H15)	ESTROGEN RECEPTOR 1 AA291702
39 GENE351X	GF201:96(96A7):384(13A14)	ESTROGEN RECEPTOR 1 AA291749
40 GENE17X	GF200:96(12E12):384(3323)	GATA-BINDING PROTEIN 3 H72474
41 GENE479X	PEROU:96(9A4):384(18B8)	GATA-BINDING PROTEIN 3 R31441
42 GENE441X	PEROU:96(6A11):384(20A22)	GATA-BINDING PROTEIN 3 R31442
43 GENE483X	PEROU:96(9B5):384(18D10)	ANNEXIN XXXI N76688
44 GENE178X	GF200:96(8C12):384(2F23)	HUMAN BREAST CANCER, ESTROGEN REGULATED LIV-1 PROTEIN (LIV-1) MRNA, PARTIAL CDS H29407
45 GENE250X	GF201:96(67E2):384(24I3)	346321 W74079
46 GENE374X	GF201:96(98C7):384(13F13)	HUMAN CHROMOSOME 16 BAC CLONE CIT987SK-254P9 H23265
47 GENE196X	GF201:96(101C12):384(14F24)	71863 T52564
48 GENE267X	GF201:96(81E4):384(938)	271989 N31935
		ESTS, HIGHLY SIMILAR TO INOSITOL POLYPHOSPHATE 4-PHOSPHATASE TYPE II-ALPHA [H.SAPIENS]
49 GENE3X	GF200:96(10C3):384(3E6)	R86721
50 GENE481X	PEROU:96(9B2):384(18D4)	179211 H50224
51 GENE470X	PEROU:96(8B2):384(20D3)	179211 H50224
52 GENE222X	GF201:96(58D2):384(21H3)	MURINE LEUKEMIA VIRAL (BMI-1) ONCOGENE HOMOLOG T87515
53 GENE56X	GF200:96(17D5):384(5G9)	MURINE LEUKEMIA VIRAL (BMI-1) ONCOGENE HOMOLOG AA478036
54 GENE14X	GF200:96(12A2):384(3B3)	LUTHERAN BLOOD GROUP (AUBERGER B ANTIGEN INCLUDED) H24954
55 GENE372X	GF201:96(97G8):384(13N16)	HOMO SAPIENS (PWD) GENE MRNA, 3' END N26536
56 GENE238X	GF201:96(65D7):384(23H14)	782547 AA431796
57 GENE40X	GF200:96(14G9):384(4M18)	ACYL-COENZYME A DEHYDROGENASE, SHORT/BRANCHED CHAIN H96140
58 GENE277X	GF201:96(83C1):384(10E1)	CARNITINE PALMITOYLTRANSFERASE II N70848
59 GENE381X	GF201:96(99D10):384(14G19)	ALDO-KETO REDUCTASE FAMILY 7, MEMBER A2 (AFLATOXIN ALDEHYDE REDUCTASE) T62865
60 GENE31X	GF200:96(13D9):384(4G17)	CYTOCHROME P450, SUBFAMILY IIA (PHENOBARBITAL-INDUCIBLE), POLYPEPTIDE 7 T73031
61 GENE81X	GF200:96(1F2):384(1K3)	ANGIOTENSIN RECEPTOR 1 H66116
62 GENE319X	GF201:96(90E9):384(11)17)	LYMPHOID NUCLEAR PROTEIN RELATED TO AF4 H99588
63 GENE163X	GF200:96(6D3):384(2G6)	HUMAN MRNA FOR KIAA0303 GENE, PARTIAL CDS AA418846
64 GENEZ6X	GF200:96(12H10):384(3P19)	EPOXIDE HYDROLASE 2, CYTOPLASMIC R73525
65 GENE325X	GF201:96(91H2):384(12O3)	DUAL SPECIFICITY PHOSPHATASE 4 AA44049
66 GENE165X	GF200:96(6D8):384(2G16)	EGF-LIKE-DOMAIN, MULTIPLE 2 H39187
67 GENE105X	GF200:96(25C5):384(7E9)	CYCLIN D1 (PRAD1: PARATHYROID ADENOMATOSIS 1) AA487700
68 GENE142X	GF200:96(32G8):384(8N15)	ALPHA-1-ANTICHYMOTRYPSIN T80924
69 GENE431X	PEROU:96(2G10):384(19M20)	TREFOIL FACTOR 1 (BREAST CANCER, ESTROGEN-INDUCIBLE SEQUENCE EXPRESSED IN) R83818
70 GENE186X	GF200:96(9G1):384(3M1)	ESTS, MODERATELY SIMILAR TO CADHERIN 12 [H.SAPIENS] W02256

74 CENESON	(0010/106-(01010/00-000-00	FOTO MONCHATTI A CHANTENIA STILCANTERIO AAAAOCCA
/ I GENEGAA	Gr200:36(22E10):384(6120)	ESIS, MODERATELY SIMILAR TO CADHERIN 12 (H.SAPIENS) AR418504
/2 GENE345X	GF201:96(95D3):384(13G5)	SMA3 AA028921
73 GENE22X	GF200:96(12G1):384(3N1)	FLAVIN CONTAINING MONOOXYGENASE 5 H52001
	-	HOMO SAPIENS BASIC TRANSCRIPTION FACTOR 2 P44 (BTF2P44) GENE, PARTIAL CDS, NEURONAL
		APOPTOSIS INHIBITORY PROTEIN (NAIP) AND SURVIVAL MOTOR NEURON PROTEIN (SMN) GENES,
74 GENE323X	٦	COMPLETE CDS W72437
75 GENE259X		204740 H57306
76 GENE136X		PLASMINOGEN ACTIVATOR, TISSUE AA453728
77 GENE123X		H.SAPIENS MRNA FOR RAT HREV107-LIKE PROTEIN AA476543
78 GENE415X	PEROU:96(10B11):384(18D21)	ESTS WEAKLY SIMILAR TO HEAT SHOCK 27 KD PROTEIN [H.SAPIENS] AA010110
79 GENE128X	GF200:96(28E10):384(7119)	ESTS, WEAKLY SIMILAR TO HSP 27 [H.SAPIENS] H57494
80 GENE240X		267681 N25553
81 GENE155X		547247 AA085318
82 GENE346X	GF201:96(95F4):384(13K7)	GLUTATHIONE S-TRANSFERASE THETA 1 H99813
83 GENE54X	GF200:96(16H3):384(4P5)	PARVALBUMIN AA010609
84 GENE191X		50582 H17038
85 GENE347X		GLUTAMATE DECARBOXYLASE 1 (BRAIN, 67KD) AA018457
86 GENE292X		PROTEIN KINASE, CAMP-DEPENDENT, CATALYTIC, BETA AA018980
87 GENE291X	GF201:96(87A12):384(11A23)	PROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, M H26426
88 GENE290X	GF201:96(87A11):384(11A21)	RAP1, GTPASE ACTIVATING PROTEIN 1 AA682897
89 GENE324X	GF201:96(91E8):384(12115)	TRANSFORMING GROWTH FACTOR BETA-STIMULATED PROTEIN TSC-22 AA664389
90 GENE88X	GF200:96(22C1):384(6E2)	TISSUE SPECIFIC TRANSPLANTATION ANTIGEN P35B AA421687
91 GENE10X	GF200:96(11F5):384(3L10)	CHLORIDE CHANNEL, NUCLEOTIDE-SENSITIVE, 1A T52435
92 GENE337X		KIAA0429 GENE PRODUCT AA676805
93 GENE242X	GF201:96(66D6):384(23H11)	504372 AA142842
94 GENE213X		RETINOIC ACID RECEPTOR RESPONDER (TAZAROTENE INDUCED) 3 W47350
95 GENE45X	GF200:96(15C9):384(4F18)	TRANSPORTER 1, ABC (ATP BINDING CASSETTE) AA487637
		ESTS, HIGHLY SIMILAR TO SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1-ALPHA/BETA
96 GENE49X	GF200:96(15H8):384([H.SAPIENS] AA486367
97 GENE494X		SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1-ALPHA/BETA AA079495
98 GENE493X	PEROU:96(9G2):384(18N4)	SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1-ALPHA/BETA AA076085
99 GENE318X		BONE MARROW STROMAL CELL ANTIGEN 2 AA485371
100 GENE376X	GF201:96(98F10):384(13L19)	INTERFERON-INDUCED PROTEIN 41, 30KD R54613
101 GENE71X	GF200:96(18H7):384(5014)	INTERFERON-INDUCED PROTEIN 41, 30KD T62627
102 GENE305X	GF201:96(88E11):384(11I22)	INTERFERON-INDUCED PROTEIN 17 AA419251
103 GENE148X	GF200:96(4A8):384(1B15)	HUMAN MRNA FOR 56-KDA PROTEIN INDUCED BY INTERFERON AA489743
104 GENE61X	GF200:96(17H9):384(5O17)	INTERFERON, ALPHA-INDUCIBLE PROTEIN (CLONE IFI-6-16) AA448478
105 GENE492X	PEROU:96(9G1):384(18N2)	INTERFERON ALPHA-INDUCIBLE PROTEIN (CLONE IFI-6-16) AA075725
106 GENE116X	GF200:96(26C8):384(7E16)	INTERFERON, ALPHA-INDUCIBLE PROTEIN (CLONE IFI-6-16) AA432030

- 101	107 CENESOOV	CE201.06/00E11.304/14/21	INTERFERON CTIMAL ATEN DECITION OF USA A A ACCORD
108	108 GENESSX	GF200:96(17/9):384/5E17)	MYXOVIRUS (INFLUENZA) RESISTANCE 1, HOMOLOG OF MURINE (INTERFERON-INDUCIBLE PROTEIN P78)
109	109 GENE310X	GF201:96(88F3):384(11K6)	INTERFERON, ALPHA-INDUCIBLE PROTEIN 27 AA157813
,			GLUTAMIC-OXALOACETIC TRANSAMINASE 2, MITOCHONDRIAL (ASPARTATE AMINOTRANSFERASE 2)
	110 GENETOOX	GF200:96(24D3):384(6H5)	AA487739
112	112 GENE489X	PEROH:96(9D8):384(16H10)	50946Z AAU56377 41638E WR6859
113	113 GENE11X		ESTS, WEAKLY SIMILAR TO III! ALU SUBFAMILY I WARNING ENTRY IIII IH SAPIENSI H97778
114	114 GENE205X	GF201:96(102D2):384(14H3)	85804 T72068
115	115 GENE432X	PEROU:96(2H1):384(1902)	KIAA0182 AI023801
116	116 GENE442X	PEROU:96(6A8):384(20A16)	HOMO SAPIENS MRNA; CDNA DKFZP586C201 (FROM CLONE DKFZP586C201) R12563
117	117 GENE413X	GF202:96(116D8):384(16H15)	HOMO SAPIENS MRNA FOR HYPOTHETICAL PROTEIN AA487488
118	118 GENE477X	PEROU:96(8E4):384(2017)	CELLULAR RETINOIC ACID-BINDING PROTEIN 2 AA036986
119	119 GENE419X	PEROU:96(10D1):384(18H1)	CELLULAR RETINOIC ACID-BINDING PROTEIN 2 AA036987
120	120 GENE107X	GF200:96(25E7):384(7113)	CELLULAR RETINOIC ACID-BINDING PROTEIN 2 AAS98508
121	121 GENE417X	PEROU:96(10C10):384(18F19)	PLACENTAL BIKUNIN (KUNITZ-TYPE SERINE PROTEASE INHIBITOR) AA031287
			HUMAN DNA SEQUENCE FROM CLONE 431H6 ON CHROMOSOME 16. CONTAINS A NOVEL GENE WITH SOME
,	7,500		HOMOLOGY TO MOUSE HINI (HEMATOLOGICAL AND NEUROLOGICAL EXPRESSED SEQUENCE 1)
122	GENEZOIA	GFZ01:36(80F11):384(9KZZ)	DOWNSTREAM OF A PUTALIVE CPG ISLAND, CONTAINS ESTS AND GSSS AA045658
123	123 GENE433X		KERATIN 18 AA070385
124	124 GENE59X	GF200:96(17G6):384(5M11)	KERATIN 8 AA598517
125	125 GENE414X	GF202:96(160G7):384(17N13)	44292 H06273
126	126 GENE90X	GF200:96(22E5):384(6110)	TUMOR PROTEIN D52 AA459318
127	GENE210X	GF201:96(55F6):384(21K11)	PROTEIN KINASE, AMP-ACTIVATED, BETA 2 NON-CATALYTIC SUBUNIT N78582
128	128 GENE219X	GF201:96(57D11):384(21H22)	HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598
129	129 GENE0X	GF200:96(10A1):384(3A2)	124781 R01118
130	GENE227X	GF201:96(59D2):384(22G3)	365536 AA009596
131	GENE394X		HOMO SAPIENS MRNA; CDNA DKFZP564H0223 (FROM CLONE DKFZP564H0223) AA160498
132	132 GENE226X	GF201:96(59C9):384(22E17)	CALMODULIN 1 (PHOSPHORYLASE KINASE, DELTA) R76554
133	133 GENE352X	GF201:96(96B1):384(13C2)	E2F TRANSCRIPTION FACTOR 5, P130-BINDING AA455521
134	134 GENE495X	PEROU:96(9G5):384(18N10)	530722 AA069820
135	135 GENE159X	GF200:96(5F11):384(2K21)	ATPASE, H+ TRANSPORTING, LYSOSOMAL (VACUOLAR PROTON PUMP) 21KD AA480826
136	GENE235X		491778 AA115275
137	137 GENE4X	GF200:96(10D5):384(3G10)	LYSOPHOSPHOLIPASE 1 H00817
138	138 GENE457X	PEROU:96(6F3):384(20K6)	ESTS, WEAKLY SIMILAR TO KIAA0108 [H.SAPIENS] AA033947
139	139 GENE399X	GF202:96(112E11):384(15J21)	ESTS, WEAKLY SIMILAR TO KIAA0108 [H.SAPIENS] AA600214
140	140 GENE173X	GF200:96(7E12):384(2J24)	GAMMA-GLUTAMYL HYDROLASE (CONJUGASE, FOLYLPOLYGAMMAGLUTAMYL HYDROLASE) AA455800
141	141 GENE375X	GF201:96(98D9):384(13H17)	HOMO SAPIENS CLONE 23856 UNKNOWN MRNA, PARTIAL CDS AA487428

142 GENET58X	IE158X	[GF200:96/5D4):384(2G2)	NIICI FOI AR PROTEIN P40 R45255
143 GENE92X	F97X	GF200:96(22H5):384(6012)	MAJOR HISTOCOMPATIBILITY COMPLEX, CLASS II, Y BOX-BINDING PROTEIN I; DNA-BINDING PROTEIN B
144 GENE143X	E143X		PEPTIDYLPROLYL ISOMERASE F (CYCLOPHILIN F) H05580
145 GENE397X	IE397X	34(15F19)	ESTS, WEAKLY SIMILAR TO R07G3.8 [C.ELEGANS] AA173423
146 GENE427X	E427X		TRANSFERRIN RECEPTOR (P90, CD71) N27985
147 GENE299X	IE299X	GF201:96(88A12):384(11A24)	ESTS, HIGHLY SIMILAR TO MITOTIC KINESIN-LIKE PROTEIN-1 [H.SAPIENS] AA454098
148 GENE42X	E42X	GF200:96(15B4):384(4D8)	V-MYB AVIAN MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG-LIKE 2 AA456878
149 GENE272X	E272X	GF201:96(82D11):384(9H21)	430186 AA010188
150 GENE47X	E47X	GF200:96(15E12):384(4J24)	THYMOSIN, BETA 10 AA486085
151 GENE390X	E390X	GF202:96(110D6):384(15G12)	ECTODERMAL-NEURAL CORTEX (WITH BTB-LIKE DOMAIN) H72122
152 GENE389X	E389X	GF202:96(110D4):384(15G8)	HOMO SAPIENS MRNA; CDNA DKFZP434F152 (FROM CLONE DKFZP434F152) AA186605
153 GENI	E335X	GF201:96(93G12):384(12N24)	HOMO SAPIENS MRNA FOR LSM1 PROTEIN AA628430
154 GENI	IE194X	GF201:96(101A7):384(14B14)	74223 T48412
155 GENE189X	E189X		80292 T64433
156 GENE12X	E12X	GF200:96(11G7):384(3N14)	TRANSCRIPTION FACTOR AP-2 BETA (ACTIVATING ENHANCER-BINDING PROTEIN 2 BETA) AA018906
157 GENE286X	E286X	GF201:96(86B7):384(10D13)	URACIL-DNA GLYCOSYLASE 2 AA425900
158 GENI	E251X	GF201:96(68D5):384(24G10)	415229 W91879
159 GENE233X	E233X	GF201:96(64D4):384(23G8)	HOMO SAPIENS MRNA; CDNA DKFZP586J2118 (FROM CLONE DKFZP586J2118) R98407
160 GENE485X	E485X	PEROU:96(9C1):384(18F2)	297604 N69835
161 GENE473X	E473X	PEROU:96(8C4):384(20F7)	297604 N69835
162 GENI	E152X	GF200:96(4E5):384(1J9)	POTASSIUM CHANNEL, SUBFAMILY K, MEMBER 1 (TWIK-1) N62620
163 GENE264X	E264X	GF201:96(80H6):384(9012)	124447 R01094
164 GENE135X	E135X	GF200:96(2B10):384(1C20)	S100 CALCIUM-BINDING PROTEIN P R32952
165 GENE197X	E197X	GF201:96(101D6):384(14H12)	68818 T53431
166 GENI	E314X	GF201:96(89C12):384(11F24)	OCCLUDIN H94471
167 GENE60X	E60X	GF200:96(17H1):384(5O1)	JUNCTION PLAKOGLOBIN R06417
			HOMO SAPIENS BREAST CANCER PUTATIVE TRANSCRIPTION FACTOR (ZABC1) MRNA, COMPLETE CDS
168 GENE422X	E422X	PEROU:96(10E9):384(18317)	AA460802
0,7	,		HOMO SAPIENS BREAST CANCER PUTATIVE TRANSCRIPTION FACTOR (ZABC1) MRNA, COMPLETE CDS
109 GENE421X	E4217		AA/82528
170 GENE9X	E9X	GF200:96(11D4):384(3H8)	LAMININ, ALPHA 5 AA459519
171 GENE77X	E77X		773233 AA425259
172 GENE411X	E411X	4(16D19)	ESTS, WEAKLY SIMILAR TO KIAA0631 PROTEIN [H.SAPIENS] AA497001
173 GENE153X	E153X	GF200:96(4F3):384(1L5)	TRANSCRIPTION FACTOR AP-2 GAMMA (ACTIVATING ENHANCER-BINDING PROTEIN 2 GAMMA) AA399334
174 GENE	E246X	GF201:96(66H1):384(23P1)	KIAA0626 GENE PRODUCT N62737
			HUMAN DNA SEQUENCE FROM CLONE 71L16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER
			PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART
175 GENE270X	- 1	GF201:96(82B4):384(9D7)	OF ANTIGEN KI-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN W47116

\sim

			HOMO SAPIENS CLONE 23876 NEURONAL OLFACTOMEDIN-RELATED ER LOCALIZED PROTEIN MRNA,
176	1.76 GENE387X	GF202:96(110A5):384(15A10)	PARTIAL CDS H23124
177	177 GENE234X	GF201:96(64D5):384(23G10)	488431 AA047441
178	178 GENE334X	GF201:96(93E11):384(12J22)	79935 T61475
179	179 GENE21X	GF200:96(12F4):384(3L7)	FUMARYLACETOACETATE H44956
180	180 GENE160X	GF200:96(5H10):384(2O19)	TRANSDUCER OF ERBB-2 AA490213
181	181 GENE146X	GF200:96(3D6):384(1H12)	DIAPHORASE (NADH/NADPH) (CYTOCHROME B-5 REDUCTASE) AA455538
182	182 GENE294X	GF201:96(87E9):384(11117)	DNA SEGMENT, SINGLE COPY PROBE LNS-CAI/LNS-CAII (DELETED IN POLYPOSIS H99681
183	183 GENE30X	GF200:96(13D4):384(4G7)	CYTOCHROME B-5 R92281
184	184 GENE491X	PEROU:96(9F3):384(18L6)	299664 N75017
185	185 GENE265X	GF201:96(81D9):384(9H18)	HOMO SAPIENS MRNA; CDNA DKFZP564J142 (FROM CLONE DKFZP564J142) N75017
186	186 GENE247X	GF201:96(66H8):384(23P15)	504678 AA142942
187	187 GENE326X	GF201:96(91H4):384(12O7)	KYNURENINASE; L-KYNURENINE HYDROLASE H87471
188	188 GENE41X	GF200:96(14H3):384(4O6)	ACTIVATED LEUCOCYTE CELL ADHESION MOLECULE R13558
185	189 GENE103X	GF200:96(24G9):384(6N17)	ELECTRON-TRANSFER-FLAVOPROTEIN, ALPHA POLYPEPTIDE (GLUTARIC ACIDURIA II) T58002
190	190 GENE119X	GF200:96(26F1):384(7K2)	130843 R22306
191	191 GENE379X	GF201:96(99B8):384(14C15)	PARAOXONASE 3 T57069
192	192 GENE121X	GF200:96(26G9):384(7M18)	PARAOXONASE 3 R95740
			GAP JUNCTION PROTEIN, BETA 1, 32KD (CONNEXIN 32, CHARCOT-MARIE-TOOTH NEUROPATHY, X-LINKED)
193	193 GENE348X	GF201:96(95G5):384(13M9)	N62394
194	194 GENE366X	GF201:96(97B6):384(13D12)	BONE MORPHOGENETIC PROTEIN 4 AA463225
195	195 GENE206X		ACYL-COENZYME A OXIDASE 2, BRANCHED CHAIN T71782
196	196 GENE141X	GF200:96(32G3):384(8N5)	ESTS, HIGHLY SIMILAR TO AQUAPORIN 3 [H.SAPIENS] R91904
197	197 GENE322X	GF201:96(91A4):384(12A7)	470279 AA028905
198	198 GENE79X	GF200:96(1A9):384(1A17)	WINGLESS-TYPE MMTV INTEGRATION SITE FAMILY, MEMBER SA W49672
199	199 GENE38X	GF200:96(14G12):384(4M24)	298155 N70794
200	200 GENE338X	GF201:96(94E8):384(12)15)	HUMAN HOX2.2 GENE FOR A HOMEOBOX PROTEIN AA610066
201	201 GENE68X	GF200:96(18G2):384(5M4)	HUMAN PROTEINASE ACTIVATED RECEPTOR-2 MRNA, 3'UTR AA454652
202	202 GENE461X	PEROU:96(784):384(20D8)	176461 H43515
203	203 GENE463X	PEROU:96(7B6):384(20D12)	364302 AA022462
204	204 GENE73X	GF200:96(1981):384(5D2)	CREATINE KINASE, MITOCHONDRIAL 1 (UBIQUITOUS) AA019482
202	205 GENE358X	GF201:96(96F4):384(13K8)	CHROMOGRANIN B (SECRETOGRANIN 1) W37769
206	206 GENE95X	[GF200:96(23H7):384(6P14)	M-PHASE PHOSPHOPROTEIN 6 AA478524
207	207 GENE203X	34(14D23)	83297 T68333
208	208 GENE154X	GF200:96(4G1):384(1N1)	3-OXOACID COA TRANSFERASE R40897
209	209 GENE207X	GF201:96(55D8):384(21G15)	MKP-1 LIKE PROTEIN TYROSINE PHOSPHATASE AA136040
210	210 GENE229X	GF201:96(62H2):384(22P3)	302025 N89753
211	211 GENE28X		ESTS, WEAKLY SIMILAR TO MEL-13A PROTEIN [M.MUSCULUS] AA464421
212	212 GENE260X	GF201:96(79G4):384(9M7)	ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY SB WARNING ENTRY !!!! [H.SAPIENS] AA454610

į		
	1	

213 GENE241X	GF201:96(66D12):384(23H23)	418240 W90241
214 GENE289X	GF201:96(86H1):384(10P1)	S100 CALCIUM-BINDING PROTEIN A8 (CALGRANULIN A) AA086471
215 GENE288X	GF201:96(86G1):384(10N1)	ESTS, HIGHLY SIMILAR TO STAT4 IM-MUSCULUSI R91570
216 GENE223X	GF201:96(58F9):384(21L17)	UNTITLED R16098
217 GENE296X	(GF201:96(87H11):384(11021)	MATRIX METALLOPROTEINASE 15 (MEMBRANE-INSERTED) AA443300
218 GENE486X	PEROU:96(9C11):384(18F22)	ERBB-2 RECEPTOR PROTEIN-TYROSINE KINASE PRECURSOR AA025141
219 GENE428X	PEROU:96(2F1):384(19K2)	ERBB2 AA481939
220 GENE420X	PEROU:96(10E11):384(18J21)	ERBB2-POLYA X03363
		V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 (NEURO/GLIOBLASTOMA
221 GENE43X	GF200:96(15B6):384(4D12)	DERIVED ONCOGENE HOMOLOG) AA443351
		V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 (NEURO/GLIOBLASTOMA
222 GEINE455X	PEROU:96(6E5):384(20110)	DERIVED ONCOGENE HOMOLOG) AA025141
223 GENE312X	GF201:96(88H2):384(1104)	GROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 H53703
224 GENE97X	GF200:96(24B4):384(6D7)	STEROIDOGENIC ACUTE REGULATORY PROTEIN RELATED AAS04710
225 GENE468X	PEROU:96(8A1):384(20B1)	68400 157034
226 GENE440X	PEROU:96(6A1):384(20A2)	68400 T57034
		SWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, SUBFAMILY E,
227 GENE466X	PEROU:96(7F8):384(20L16)	MEMBER 1 W63613
228 GENE98X	GF200:96(24B5):384(6D9)	TNF RECEPTOR-ASSOCIATED FACTOR 4 AA598826
229 GENE282X	GF201:96(84D8):384(10G16)	347348 W81186
230 GENE113X	GF200:96(26C12):384(7E24)	FLOTILLIN 2 R73545
231 GENE78X	GF200:96(19H6):384(5P12)	TGFB1-INDUCED ANTI-APOPTOTIC FACTOR 1 AA446222
232 GENE166X	GF200:96(6H10):384(2O20)	KIAA0130 GENE PRODUCT N76581
		ESTS, HIGHLY SIMILAR TO INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 2 PRECURSOR [H.SAPIENS]
233 GENE150X	GF200:96(4B7):384(1D13)	H79047
234 GENE490X	PEROU:96(9E8):384(18J16)	INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 5 (IGFBP5) AA054451
235 GENE171X	GF200:96(7D2):384(2H4)	HUMAN INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 5 (IGFBP5) MRNA H08560
236 GENE306X	GF201:96(88E3):384(1116)	HUMAN INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 5 (IGFBP5) MRNA T52830
237 GENETX	GF200:96(10A12):384(3A24)	PHOSPHOSERINE PHOSPHATASE-LIKE W05628
238 GENE137X	GF200:96(30G3):384(8M6)	122982 R00332
239 GENE109X	GF200:96(25G2):384(7M3)	CYTOCHROME C OXIDASE SUBUNIT VIC AA456931
240 GENE199X	GF201:96(101H5):384(14P10)	78921 T60482
241 GENE32X	GF200:96(13F4):384(4K7)	134783 R31701
242 GENE23X	GF200:96(12G2):384(3N3)	FIBRONECTIN 1 R62612
243 GENE221X	GF201:96(58A11):384(21B21)	H.SAPIENS MRNA FOR INHIBIN BETA(A) SUBUNIT N27159
244 GENE169X	GF200:96(7C3):384(2F6)	CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE (CAM KINASE) II GAMMA T96083
245 GENE402X		839904 AA490059
246 GENE330X	GF201:96(92E7):384(12114)	MEMBRANE FATTY ACID (LIPID) DESATURASE W49667
247 GENE370X	GF201:96(97E4):384(1338)	RIBOSOMAL PROTEIN L26 AA633569

|--|

248 GENE216Y	CE201106/56E31-384/21141	LII IMANI CIDOMOCOME 14 DAG CI DAIR CITTODICE A 3000 CONTRA A 3000 CONTR
249 GENE145X	GF200:96(3C7):384(1F14)	NON-SPECIFIC CROSS REACTING ANTIGEN AA054073
250 GENE396X		261194 H98215
251 GENE278X	GF201:96(83E6):384(10111)	503602 AA131299
252 GENE382X	GF201:96(99G5):384(14M9)	50114 H16743
253 GENE377X	GF201:96(99A4):384(14A7)	ESTS, HIGHLY SIMILAR TO CYTOPLASMIC DYNEIN LIGHT CHAIN 1 [H.SAPIENS] AA401429
254 GENE188X	GF200:96(9H12):384(3O23)	STEAROYL-COA DESATURASE (DELTA-9-DESATURASE) R00707
255 GENE168X	GF200:96(7A6):384(2B12)	LYSOSOMAL-ASSOCIATED MULTISPANNING MEMBRANE PROTEIN-5 AA410265
256 GENEGX	GF200:96(10G8):384(3M16)	ACTIN RELATED PROTEIN 2/3 COMPLEX, SUBUNIT 5 (16 KD) W55964
257 GENE269X	GF201:96(82B11):384(9D21)	345056 W72798
258 GENE273X	GF201:96(82F1):384(9L1)	487831 AA045083
259 GENE35X	GF200:96(14B7):384(4C14)	CATHEPSIN K (PYCNODYSOSTOSIS) R01515
260 GENE244X	GF201:96(66F1):384(23L1)	ESTS, WEAKLY SIMILAR TO MACROPHAGE LECTIN 2 [H.SAPIENS] N53421
261 GENE354X	GF201:96(96C1):384(13E2)	DERMATOPONTIN R48303
262 GENE429X	PEROU:96(2F2):384(19K4)	TISSUE INHIBITOR OF METALLOPROTEINASE 3 (SORSBY FUNDUS DYSTROPHY, PSEUDOINFLAMMATORY) (AA445923
263 GENE435X	PEROU:96(3B9):384(19D18)	INTEGRIN, ALPHA 2 (CD49B, ALPHA 2 SUBUNIT OF VLA-2 RECEPTOR) AA069096
264 GENE149X	GF200:96(4B4):384(1D7)	INTEGRIN, ALPHA 2 (CD49B, ALPHA 2 SUBUNIT OF VLA-2 RECEPTOR) AA463610
265 GENE313X	GF201:96(89A1):384(11B2)	SER-THR PROTEIN KINASE RELATED TO THE MYOTONIC DYSTROPHY PROTEIN KINASE N35241
266 GENE129X	GF200:96(28E3):384(715)	ESTS, WEAKLY SIMILAR TO (DEFLINE NOT AVAILABLE 5262644) [H.SAPIENS] N91426
267 GENE384X	GF202:96(109C9):384(15E17)	MICROTUBULE-ASSOCIATED PROTEIN 1B AA219045
268 GENE266X	GF201:96(81E12):384(9J24)	259996 N32611
269 GENE215X	GF201:96(56C11):384(21E22)	ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY SB1 WARNING ENTRY !!!! [H.SAPIENS] N21103
270 GENE276X	GF201:96(83A5):384(10A9)	141726 R69584
271 GENE410X	GF202:96(115D7):384(16H14)	842848 AA486281
272 GENE212X	GF201:96(55G4):384(21M7)	C3H-TYPE ZINC FINGER PROTEIN; SIMILAR TO D. MELANOGASTER MUSCLEBLIND B PROTEIN W16832
273 GENE144X	GF200:96(3C6):384(1F12)	NUCLEAR FACTOR I/X (CCAAT-BINDING TRANSCRIPTION FACTOR) AA406269
274 GENE182X	GF200:96(9A3):384(3A5)	ESTS, HIGHLY SIMILAR TO LAR-INTERACTING PROTEIN 1A [H.SAPIENS] N52679
275 GENE94X	GF200:96(23F7):384(6L14)	FAS (TNFRSF6)-ASSOCIATED VIA DEATH DOMAIN AA430751
276 GENE263X	GF201:96(80H4):384(908)	ESTS, WEAKLY SIMILAR TO STRABISMUS [D.MELANOGASTER] T95333
277 GENE275X	GF201:96(82H5):384(9P9)	HOMO SAPIENS CLONE 23704 MRNA SEQUENCE N70212
278 GENE111X	GF200:96(26B7):384(7C14)	RAB6, MEMBER RAS ONCOGENE FAMILY H20138
279 GENE164X	GF200:96(6D7):384(2G14)	HUMAN MRNA FOR KIAA0280 GENE, PARTIAL CDS AA428746
280 GENE245X	GF201:96(66F4):384(23L7)	501731 AA127861
281 GENE183X	GF200:96(9A4):384(3A7)	V-MYC AVIAN MYELOCYTOMATOSIS VIRAL ONCOGENE HOMOLOG 1, LUNG CARCINOMA DERIVED R62862
282 GENE130X	GF200:96(29B7):384(8C13)	66864 T64994
283 GENE85X	GF200:96(21G10):384(6M19)	PATERNALLY EXPRESSED GENE 3 AA459941
284 GENE139X	GF200:96(31D12):384(8H24)	ESTS, WEAKLY SIMILAR TO PLACENTAL RIBONUCLEASE INHIBITOR [H.SAPIENS] N53214
285 GENE478X	PEROU:96(8H2):384(20P3)	N-MYC AA101678

286 GFNE408X	GE202-96(114H8)-384(16016)	KDF! (195-45P-GILLELI) FNDOPI ASMIC RETICLILLIM PROTEIN RETENTION RECEPTOR 3 AA181085
287 GENE190X	GF201:96(100B1):384(14C2)	51344 H21040
288 GENE13X	GF200:96(11H12):384(3P24)	MENINGIOMA (DISRUPTED IN BALANCED TRANSLOCATION) 1 R59212
289 GENE295X	GF201:96(87H1):384(1101)	MONOAMINE OXIDASE B AA682423
290 GENE170X	GF200:96(7D12):384(2H24)	NEUREGULIN 1 R72075
291 GENEZX	GF200:96(10H9):384(3O18)	HEXABRACHION (TENASCIN C, CYTOTACTIN) T77595
292 GENE484X	PEROU:96(9B8):384(18D16)	TRANSFORMING GROWTH FACTOR, BETA 2 N48082
293 GENE33X	GF200:96(13H3):384(4O5)	CARBONIC ANHYDRASE II H23187
294 GENE361X	GF201:96(96G10):384(13M20)	CARNITINE ACETYLTRANSFERASE AA621218
295 GENE450X	PEROU:96(6C7):384(20E14)	RAS HOMOLOG GENE FAMILY, MEMBER B H89046
296 GENE82X	GF200:96(1F7):384(1K13)	RAS HOMOLOG GENE FAMILY, MEMBER B AA495846
297 GENE185X	GF200:96(9E4):384(317)	B-CELL TRANSLOCATION GENE 2 (PHEOCHROMACYTOMA CELL-3) H69582
298 GENE239X	GF201:96(65F2):384(23L4)	HOMO SAPIENS MRNA; CDNA DKFZP586B2420 (FROM CLONE DKFZP586B2420) W58343
299 GENE395X	(GF202:96(111H12):384(15P24)	ESTS, HIGHLY SIMILAR TO SCK [H.SAPIENS] H10072
300 GENE24X	GF200:96(12G3):384(3N5)	FIBROMODULIN AA486471
301 GENESOX		RIBONUCLEASE L (2,5'-OLIGOISOADENYLATE SYNTHETASE-DEPENDENT) T60223
302 GENE167X	GF200:96(7A12):384(2B24)	ACTIN-BINDING LIM PROTEIN AA406601
303 GENE124X	GF200:96(27B1):384(7D2)	FLAVIN CONTAINING MONOOXYGENASE 3 H71847
304 GENE177X	GF200:96(8C11):384(2F21)	179276 H50323
305 GENE224X	GF201:96(58G10):384(21N19)	SERUM-INDUCIBLE KINASE AA460152
306 GENE364X	GF201:96(97B1):384(13D2)	WASP FAMILY VERPROLIN-HOMOLOGOUS PROTEIN 3 AA629542
		HOMO SAPIENS DNA SEQUENCE FROM COSMID ICK0721Q ON CHROMOSOME 6. CONTAINS A 60S
	,	RIBOSOMAL PROTEIN L35A LIKE PSEUDOGENE, A GENE CODING FOR A 60S RIBOSOMAL PROTEIN L12 LIKE
307 GENE407X	GF202:96(114G1):384(16M2)	PROTEIN IN AN INTRON OF THE HSET GENE CODING FOR A KINESIN AA457543
308 GENE192X	GF201:96(100H6):384(14012)	77911 T61269
309 GENE248X	GF201:96(67C6):384(24E11)	300038 N78909
310 GENE405X	GF202:96(114C7):384(16E14)	78736 T61888
311 GENE220X	GF201:96(57D6):384(21H12)	ENDOTHELIN RECEPTOR TYPE B N29914
312 GENE258X	GF201:96(79E10):384(9119)	782730 AA447978
313 GENE424X	PEROU:96(1C10):384(19E19)	APOLIPOPROTEIN D AA457084
314 GENE36X	GF200:96(14D12):384(4G24)	APOLIPOPROTEIN D H15842
		SEMA DOMAIN, IMMUNOGLOBULIN DOMAIN (IG), SHORT BASIC DOMAIN, SECRETED, (SEMAPHORIN) 3C
315 GENE315X	[GF201:96(89F3):384(11L6)	AA042990
316 GENE200X	GF201:96(102A3):384(14B5)	ESTS, WEAKLY SIMILAR TO F56A11.5 [C.ELEGANS] T61938
317 GENE300X	GF201:96(88B12):384(11C24)	LAMININ, ALPHA 3 (NICEIN (150KD), KALININ (165KD), BM600 (150KD), EPILEGRIN) AA001432
318 GENE204X	GF201:96(102D12):384(14H23)	
319 GENE297X	GF201:96(87H2):384(11O3)	MONOAMINE OXIDASE A AA011096
320 GENE371X	[GF201:96(97E5):384(13J10)	ALDEHYDE DEHYDROGENASE 1, SOLUBLE AA664101
321 GENE418X	PEROU:96(10C7):384(18F13)	428431 AA004415

322 CENE281Y	CE201-06/84B4)-384/10C8)	INTECDAL MEMBRANE DOCTETA 20 NE2447
323 GENE446X	PFROI 196(685):384(20C10)	HIMAN IG 1 CHAIN GENE H24896
324 GENE480X	PEROU:96(9A9):384(18B18)	IMMUNOGLOBULIN J CHAIN H24896
325 GENE63X	GF200:96(18A10):384(5A20)	HUMAN IG J CHAIN GENE 770057
326 GENE436X		CD36 ANTIGEN (COLLAGEN TYPE I RECEPTOR, THROMBOSPONDIN RECEPTOR) R09416
327 GENE34X	GF200:96(14B4):384(4C8)	CD36 ANTIGEN (COLLAGEN TYPE I RECEPTOR, THROMBOSPONDIN RECEPTOR) N39161
328 GENE398X	GF202:96(112C8):384(15F15)	KIAA0569 GENE PRODUCT N45100
329 GENE285X	GF201:96(85H7):384(10P14)	V-MAF MUSCULOAPONEUROTIC FIBROSARCOMA (AVIAN) ONCOGENE HOMOLOG AA043501
330 GENE157X	GF200:96(5C8):384(2E15)	PEROXISOME PROLIFERATIVE ACTIVATED RECEPTOR, GAMMA AA088517
331 GENE363X	GF201:96(96H9):384(13O18)	TRANSMEMBRANE 4 SUPERFAMILY MEMBER 2 N93505
332 GENE8X	GF200:96(11D12):384(3H24)	SMALL INDUCIBLE CYTOKINE SUBFAMILY A (CYS-CYS), MEMBER 14 R96668
333 GENE62X	GF200:96(18A1):384(5A2)	INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 6 AA478724
334 GENE120X	GF200:96(26F3):384(7K6)	PHOSPHATIDIC ACID PHOSPHATASE TYPE 2B T72119
335 GENE83X	GF200:96(21C4):384(6E7)	PHOSPHATIDIC ACID PHOSPHATASE TYPE 2B T71976
336 GENE362X	GF201:96(96G3):384(13M6)	CAVEOLIN 1, CAVEOLAE PROTEIN, 22KD AA055835
337 GENE44X	GF200:96(15C10):384(4F20)	TRANSFORMING GROWTH FACTOR, BETA RECEPTOR II (70-80KD) AA487034
338 GENE64X	GF200:96(18A3):384(5A6)	HUMAN KRUEPPEL-RELATED ZINC FINGER PROTEIN (H-PLK) MRNA, COMPLETE CDS N54596
339 GENE184X	GF200:96(9A5):384(3A9)	HUMAN KRUEPPEL-RELATED ZINC FINGER PROTEIN (H-PLK) MRNA, COMPLETE CDS N54596
340 GENE307X	GF201:96(88E4):384(1118)	INSULIN-LIKE GROWTH FACTOR 2 (SOMATOMEDIN A) N74623
341 GENE231X	GF201:96(63E2):384(23I3)	212489 H68404
		PHOSPHORYLASE, GLYCOGEN; MUSCLE (MCARDLE SYNDROME, GLYCOGEN STORAGE DISEASE TYPE V)
342 GENE350X	GF201:96(95G9):384(13M17)	AA496032
343 GENE298X	GF201:96(87H7):384(11013)	MICROFIBRILLAR-ASSOCIATED-PROTEIN 4 AA496022
344 GENE401X	GF202:96(113H3):384(16O5)	ESTS, WEAKLY SIMILAR TO IIII ALU SUBFAMILY J WARNING ENTRY IIII [H.SAPIENS] AA487895
345 GENE443X	PEROU:96(6B1):384(20C2)	CYCLIN-DEPENDENT KINASE INHIBITOR 1C (P57, KIP2) R81336
346 GENE373X	GF201:96(97H6):384(13P12)	AQUAPORIN 1 (CHANNEL-FORMING INTEGRAL PROTEIN, 28KD) H24316
347 GENE193X	GF201:96(100H7):384(14014)	78946 T61792
348 GENE70X	GF200:96(18H1):384(5O2)	484535 AA036974
349 GENE39X	GF200:96(14G2):384(4M4)	ALCOHOL DEHYDROGENASE 2 (CLASS I), BETA POLYPEPTIDE N93428
350 GENE66X	GF200:96(18E1):384(5I2)	FOUR AND A HALF LIM DOMAINS 1 AA456394
351 GENE93X	GF200:96(23A7):384(6B14)	GLYCEROL-3-PHOSPHATE DEHYDROGENASE 1 (SOLUBLE) AA192547
352 GENE202X	GF201:96(102A5):384(14B9)	85660 T62068
353 GENE303X	GF201:96(88D12):384(11G24)	INTEGRIN, ALPHA 7 AA055979
354 GENE112X	GF200:96(26C1):384(7E2)	RETINOL-BINDING PROTEIN 4, INTERSTITIAL T72220
355 GENE301X	GF201:96(88B9):384(11C18)	LIPOPROTEIN LIPASE AA633835
356 GENE388X	GF202:96(110B10):384(15C20)	
357 GENE332X	GF201:96(92H12):384(12O24)	
358 GENE460X	PEROU:96(7A10):384(20B20)	FATTY ACID BINDING PROTEIN 4, ADIPOCYTE AI652163
359 GENE456X	PEROU:96(6E7):384(20114)	FATTY ACID BINDING PROTEIN 4, ADIPOCYTE AA046090

700 000	(01000000000000000000000000000000000000	1.00 to 1.00 t
300 GENEL33X	GFZUU:96(29GZ):384(8M3)	4/043 H1U/21
361 GENE386X	GF202:96(109G3):384(15M5)	HOMO SAPIENS CLONE 23698 MRNA SEQUENCE AA680300
362 GENE404X	GF202:96(114B5):384(16C10)	JESTS, MODERATELY SIMILAR TO FAT-SPECIFIC PROTEIN FSP27 [M.MUSCULUS] AA088749
363 GENEZ01X	GF201:96(102A4):384(14B7)	HOMO SAPIENS BRAIN MY047 PROTEIN MRNA, COMPLETE CDS T62031
364 GENE181X	GF200:96(8H9):384(2P17)	MESENCHYME HOMEO BOX 1 AA426311
365 GENE458X	PEROU:96(6G3):384(20M6)	HHCPA78 HOMOLOG AA044633
366 GENE151X	GF200:96(4E1):384(1J1)	ENDOTHELIAL KRUPPEL-LIKE ZINC FINGER PROTEIN H45711
367 GENE355X	GF201:96(96D8):384(13G16)	CYCLIN-DEPENDENT KINASE 5, REGULATORY SUBUNIT 1 (P35) AA442853
368 GENE87X	GF200:96(22B11):384(6C22)	FBJ MURINE OSTEOSARCOMA VIRAL ONCOGENE HOMOLOG B T62179
369 GENE198X	GF201:96(101F5):384(14L10)	79412 T57691
370 GENE341X	GF201:96(94G6):384(12N11)	DUAL SPECIFICITY PHOSPHATASE 6 AA630374
		LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL
371 GENE343X	GF201:96(94H6):384(12P11)	EPIDERMOLYSIS BULLOSA)) AA677534
372 GENE342X	GF201:96(94H5):384(12P9)	MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214
373 GENE327X	GF201:96(92B12):384(12C24)	COLLAGEN, TYPE XVII, ALPHA 1 H87536
374 GENE161X	GF200:96(5H7):384(2013)	CALPONIN 1, BASIC, SMOOTH MUSCLE AA399519
		PLEIOTROPHIN (HEPARIN BINDING GROWTH FACTOR 8, NEURITE GROWTH-PROMOTING FACTOR 1)
375 GENE462X	PEROU:96(7B5):384(20D10)	AA001449
	,	PLEIOTROPHIN (HEPARIN BINDING GROWTH FACTOR 8, NEURITE GROWTH-PROMOTING FACTOR 1)
376 GENE52X	GF200:96(16F12):384(4L23)	AA001449
377 GENE454X	PEROU:96(6E4):384(2018)	1912786 AI304356
378 GENE19X	GF200:96(12E9):384(3317)	GELSOLIN (AMYLOIDOSIS, FINNISH TYPE) H72027
379 GENE176X	GF200:96(8C10):384(2F19)	BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784
		SMALL INDUCIBLE CYTOKINE SUBFAMILY D (CYS-X3-CYS), MEMBER 1 (FRACTALKINE, NEUROTACTIN)
380 GENE329X	GF201:96(92B7):384(12C14)	R66139
381 GENE488X	PEROU:96(9D1):384(18H2)	KERATIN 17 aa026642
382 GENE476X	PEROU:96(8D6):384(20H11)	KERATIN 17 AA026642
		KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES)
383 GENE487X	PEROU:96(9C6):384(18F12)	W72110
384 GENE472X	PEROU:96(8C11):384(20F21)	ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110
385 GENE336X	GF201:96(93G2):384(12N4)	ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] AA055486
386 GENE106X	GF200:96(25C8):384(7E15)	CRYSTALLIN, ALPHA B AA504943
387 GENE175X	GF200:96(8B12):384(2D23)	CAVEOLIN 2 T89391
388 GENE37X	GF200:96(14E11):384(4I22)	ANNEXIN I (LIPOCORTIN I) H63077
		DYSTROPHIN (MUSCULAR DYSTROPHY, DUCHENNE AND BECKER TYPES), INCLUDES DXS142, DXS164,
389 GENE353X	GF201:96(96B2):384(13C4)	DXS206, DXS230, DXS239, DXS268, DXS269, DXS270, DXS272 AA461118
390 GENE76X	GF200:96(19D7):384(5H14)	DIHYDROPYRIMIDINASE-LIKE 2 AA487674
391 GENE256X	GF201:96(79B4):384(9C7)	272038 N31948
392 GENE29X	GF200:96(13D12):384(4G23)	CYSTEINE DIOXYGENASE, TYPE I AA497111

393	GENE412X	GE2002-96/116B111-384/16D211	-384/16D211 HIIMAN I TVED CAPBOYYI ECTEDACE MDNA 2' END T68878
394	394 GENE127X		ESTS, WEAKLY SIMILAR TO W01411.2 GENE PRODUCT [C.ELEGANS] H25606
395	GENESX	GF200:96(10E2):384(314)	KIAA0914 GENE PRODUCT NS1424
396	GENE464X	PEROU:96(7E6):384(20112)	MITOGEN INDUCIBLE 2 H29253
397	397 GENE268X	GF201:96(81H8):384(9P16)	307645 N93582
398	398 GENE236X	GF201:96(65A12):384(23B24)	HOMO SAPIENS MRNA FOR KIAA0786 PROTEIN, PARTIAL CDS W74533
399	399 GENE110X	GF200:96(26A2):384(7A4)	VON WILLEBRAND FACTOR AA487787
400	400 GENE46X	GF200:96(15E10):384(4J20)	TISSUE FACTOR PATHWAY INHIBITOR (LIPOPROTEIN-ASSOCIATED COAGULATION INHIBITOR) T47454
401	GENE339X	GF201:96(94F10):384(12L19)	ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4704754) [H.SAPIENS] AA426053
402	402 GENE58X	GF200:96(17F4):384(5K7)	FATTY-ACID-COENZYME A LIGASE, LONG-CHAIN 1 T73556
403	403 GENE195X	GF201:96(101B6):384(14D12)	HOMO SAPIENS MRNA; CDNA DKFZP586A0522 (FROM CLONE DKFZP586A0522) T50041
404	404 GENE308X	GF201:96(88E5):384(11110)	INSULIN RECEPTOR SUBSTRATE 1 AA460841
405	405 GENE48X	GF200:96(15F5):384(4):10)	SYNDECAN 2 (HEPARAN SIII FATE PROTEOGI YCAN 1 CELL SIIREACE-ASSOCIATED FIBROGI YCAN) H64346
406	406 GENE430X	PEROU:96(2F4):384(19K8)	FIBROBLAST GROWTH FACTOR RECEPTOR 1 AA281189
407	407 GENE125X	GF200:96(27B3):384(7D6)	ALKALINE PHOSPHATASE, LIVER/BONE/KIDNEY T94626
			ALDO-KETO REDUCTASE FAMILY 1, MEMBER C1 (DIHYDRODIOL DEHYDROGENASE 1; 20-ALPHA (3-ALPHA)-
408	408 GENE27X	GF200:96(13B9):384(4C17)	HYDROXYSTEROID DEHYDROGENASE) R93124
409	409 GENE447X	PEROU:96(6C11):384(20E22)	6-PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BIPHOSPHATASE 3 N93901
410	410 GENE18X	GF200:96(12E4):384(3J7)	MICROSOMAL GLUTATHIONE S-TRANSFERASE 1 AA495936
411	411 GENE279X	GF201:96(83H11):384(10021)	811020 AA485369
			GUANINE NUCLEOTIDE BINDING PROTEIN (G PROTEIN), ALPHA STIMULATING ACTIVITY POLYPEPTIDE 1
412	412 GENE214X	GF201:96(56A7):384(21A14)	AA035620
413	413 GENE101X	GF200:96(24E11):384(6J21)	814526 AA459588
414	414 GENE209X	GF201:96(55F4):384(21K7)	DNA-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT-INTERACTING PROTEIN 2 N79761
415	415 GENE365X	GF201:96(97B5):384(13D10)	BONE MORPHOGENETIC PROTEIN 7 (OSTEOGENIC PROTEIN 1) W73473
416	GENE243X	GF201:96(66E1):384(2311)	BONE MORPHOGENETIC PROTEIN 7 (OSTEOGENIC PROTEIN 1) AA029597
417	GENE274X	GF201:96(82G11):384(9N21)	ESTS, WEAKLY SIMILAR TO IIII ALU SUBFAMILY J WARNING ENTRY IIII [H.SAPIENS] AA459296
418	418 GENE393X	GF202:96(111D4):384(15H8)	757383 AA437140
419	419 GENE69X	GF200:96(18G9):384(5M18)	PREFERENTIALLY EXPRESSED ANTIGEN OF MELANOMA AA598817
420	420 GENE179X	GF200:96(8D1):384(2H1)	ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY SQ WARNING ENTRY !!!! [H.SAPIENS] H59915
	:		CYTOCHROME P450, SUBFAMILY I (DIOXIN-INDUCIBLE), POLYPEPTIDE I (GLAUCOMA 3, PRIMARY
421	421 GENE438X	PEROU:96(4D3):384(19H5)	INFANTILE) AA029776
			CYTOCHROME P450, SUBFAMILY I (DIOXIN-INDUCIBLE), POLYPEPTIDE 1 (GLAUCOMA 3, PRIMARY
422	422 GENE104X	GF200:96(25C2):384(7E3)	INFANTILE) AA448157
			PHOSPHODIESTERASE 4B, CAMP-SPECIFIC (DUNCE (DROSOPHILA)-HOMOLOG PHOSPHODIESTERASE E4)
423	423 GENE53X	GF200:96(16G12):384(4N23)	AA453293
424	424 GENE67X	GF200:96(18G10):384(5M20)	PRE-B-CELL COLONY-ENHANCING FACTOR AA281932
425	425 GENE360X	GF201:96(96F8):384(13K16)	CERULOPLASMIN (FERROXIDASE) H86554

476	476 GENESAAY	GE201-96(95A7)-384(13A13)	148225 H13688
427	427 GENE72X	GF200:96(18H9):384(5018)	NUCLEAR FACTOR I/B W87611
428	GENE426X	PEROU:96(1H4):384(1907)	EPIDERMAL GROWTH FACTOR RECEPTOR (AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL (V-ERB-B) ONCOGENE HOMOLOG) AA234783
429	429 GENE349X	GF201:96(95G6):384(13M11)	GRO1 ONCOGENE (MELANOMA GROWTH STIMULATING ACTIVITY, ALPHA) W42723
430	430 GENE86X	GF200:96(21G12):384(6M23)	PHOSPHOINOSITIDE-3-KINASE, REGULATORY SUBUNIT, POLYPEPTIDE 1 (P85 ALPHA) R54050
431	431 GENE328X	GF201:96(92B2):384(12C4)	HUMAN DNA-BINDING PROTEIN ABP/ZF MRNA, COMPLETE CDS W88571
432	432 GENE416X	PEROU:96(10C1):384(18F1)	ANTILEUKOPROTEINASE AA026192
433	433 GENE331X	GF201:96(92H10):384(12O20)	FATTY ACID BINDING PROTEIN 7, BRAIN W72051
434	434 GENE359X	GF201:96(96F6):384(13K12)	CHITINASE 3-LIKE 2 AA668821
435	435 GENE467X	PEROU:96(7F9):384(20L18)	TRANSMEMBRANE 4 SUPERFAMILY MEMBER 1 AA088439
436	436 GENE451X	PEROU:96(6D1):384(20G2)	TRANSMEMBRANE 4 SUPERFAMILY MEMBER 1 N47476
437	437 GENE91X	GF200:96(22G5):384(6M10)	HOMO SAPIENS MRNA FOR CALPAIN-LIKE PROTEASE CANPX AA457330
438	438 GENE75X	GF200:96(19B4):384(5D8)	KERATIN 7 AA489569
439	439 GENE320X	GF201:96(90F1):384(11L1)	LADININ 1 T97710
440	440 GENE108X	GF200:96(25G1):384(7M1)	CADHERIN 3, P-CADHERIN (PLACENTAL) AA425556
441	441 GENE156X	GF200:96(5B4):384(2C7)	PROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, K R79082
			SRY (SEX-DETERMINING REGION Y)-BOX 9 (CAMPOMELIC DYSPLASIA, AUTOSOMAL SEX-REVERSAL)
445	442 GENE134X	[GF200:96(2A12):384(1A24)	AA400739
443	443 GENE147X	GF200:96(4A3):384(1B5)	KERATIN 13 W23757
444	444 GENE257X	GF201:96(79D8):384(9G15)	KERATIN 13 W60057
445	445 GENE469X	PEROU:96(8A7):384(20B13)	2255577 AI679149
446	446 GENE434X	PEROU:96(3B12):384(19D24)	INTEGRIN, BETA 4 AA076514
447	447 GENE287X	GF201:96(86C6):384(10F11)	TROPONIN I, SKELETAL, FAST AA181334
448	448 GENE65X	GF200:96(18A6):384(5A12)	INHIBITOR OF DNA BINDING 4, DOMINANT NEGATIVE HELIX-LOOP-HELIX PROTEIN AA464856
449	449 GENE459X	PEROU:96(6G5):384(20M10)	510165 AA053251
450	450 GENE255X	GF201:96(69E2):384(2414)	321902 W37448
451	451 GENE218X	GF201:96(57C10):384(21F20)	PUTATIVE PROSTATE CANCER TUMOR SUPPRESSOR H13424
452	452 GENE423X	PEROU:96(1A3):384(19A5)	MDGI/FATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART W04872
453	453 GENE20X	GF200:96(12F11):384(3L21)	FOLATE RECEPTOR 1 (ADULT) R24635
454	454 GENE357X	GF201:96(96F11):384(13K22)	CELLULAR RETINOIC ACID-BINDING PROTEIN 1 AA421218
455	455 GENE211X	GF201:96(55F8):384(21K15)	CELLULAR RETINOIC ACID-BINDING PROTEIN 1 AA454702
456	456 GENE321X	GF201:96(90H10):384(11P19)	DERMATAN SULPHATE PROTEOGLYCAN 3 AA131238
457	457 GENE237X	GF201:96(65A8):384(23B16)	357396 W93847
458	458 GFNE2X	GE200:96/1088):384/3C16)	SMALL INDUCIBLE CYTOKINE SUBFAMILY A (CYS-CYS), MEMBER 18, PULMONARY AND ACTIVATION-IREGILLATED AA495985
459	459 GENE117X	GF200:96(26C9):384(7E18)	CD79A ANTIGEN (IMMUNOGLOBULIN-ASSOCIATED ALPHA) T87012
460	460 GENE114X	GF200:96(26C3):384(7E6)	NEUTROPHIL CYTOSOLIC FACTOR 1 (47KD, CHRONIC GRANULOMATOUS DISEASE, AUTOSOMAL 1) AA489666

Φ
a
亙
O
₩.

462 GENES11Y	PEKOU:36(8B1Z):384(20C24)	IMMUNOGLOBULIN LAMBDA LIGHT CHAIN K3025/
+=	12	_
Ť	GF200:96(26D3):384(7G6)	HUMAN REARRANGED IMMUNOGLOBULIN LAMBDA LIGHT CHAIN MRNA T67053
<u> </u>	GF200:96(21D8):384(6G15)	BUTYROPHILIN, SUBFAMILY 3, MEMBER A3 AA478585
_	GF201:96(88C3):384(11E6)	LACTOTRANSFERRIN AA677706
Ť	GF201:96(69A2):384(24B4)	322223 W38022
-	GF200:96(16D9):384(4H17)	PROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, F AA598513
		HUMAN DNA SEQUENCE FROM CLONE 466N1 ON CHROMOSOME 22Q12-13 CONTAINS H1F0(H1 HISTONE
		FAMILY, MEMBER 0) GENE, 2-AMINO-3-KETOBUTYRATE -COA LIGASE(NUCLEAR GENE ENCODING
_	GF201:96(55E12):384(21123)	MITOCHONDRIAL PROTEIN), GALR3 (GALANIN RECEPTOR) GENE, ESTS, N93695
F	GF200:96(9G2):384(3M3)	METALLOTHIONEIN 1G H53340
Ť	GF200:96(26C4):384(7E8)	METALLOTHIONEIN 1L N80129
<u> </u>	GF201:96(89G6):384(11N12)	S100 CALCIUM-BINDING PROTEIN A1 AA425934
宀	GF201:96(67D6):384(24G11)	810459 AA457138
+	GF2U2:96(112G1U):384(15N19)	
-+	GF200:96(24B11):384(6D21)	EPIDIDYMIS-SPECIFIC, WHEY-ACIDIC PROTEIN TYPE, FOUR-DISULTIDE CORE AA451904
-	GF201:96(59A12):384(22A23)	364555 AA022601
\neg	GF201:96(85B6):384(10D12)	359597 AA010818
	GF200:96(27C4):384(7F8)	ESTS, WEAKLY SIMILAR TO (DEFLINE NOT AVAILABLE 4502327) [H.SAPIENS] R65792
_	GF2 <u>0</u> 1:96(80F3):384(9K6)	321488 W32509
-	GF200:96(1B7):384(1C13)	V-MYC AVIAN MYELOCYTOMATOSIS VIRAL ONCOGENE HOMOLOG AA464600
	GF201:96(99C12):384(14E23)	ELECTRON-TRANSFER-FLAVOPROTEIN, BETA POLYPEPTIDE T62040
	GF201:96(92H8):384(12016)	GLUTATHIONE S-TRANSFERASE A4 AA152347
Ė	GF201:96(63C4):384(23E7)	415064 W93120
Ė	GF201:96(99A7):384(14A13)	IGG FC BINDING PROTEIN R52030
Ė	GF201:96(69D7):384(24H14)	323260 W42736
<u> </u>	GF202:96(111B9):384(15D18)	ESTS, WEAKLY SIMILAR TO (DEFLINE NOT AVAILABLE 4502327) [H.SAPIENS] T72850
П	PEROU:96(6C2):384(20E4)	220376 H86813
_	GF200:96(8E2):384(213)	MANNOSIDASE, ALPHA 6A8 H45455
	PEROU:96(6E1):384(20I2)	GLUTATHIONE S-TRANSFERASE M1 W02680
Ť	GF200:96(24C12):384(6F23)	GLUTATHIONE S-TRANSFERASE M4 AA486669
Ť	GF200:96(12C8):384(3F15)	GLUTATHIONE S-TRANSFERASE M1 AA290737
Ė	GF202:96(115A2):384(16B4)	HLA-B ASSOCIATED TRANSCRIPT-3 H67876
<u> </u>	GF201:96(84A4):384(10A8)	272262 N35592
		FIBROBLAST GROWTH FACTOR RECEPTOR 2 (BACTERIA-EXPRESSED KINASE, KERATINOCYTE GROWTH FACTOR RECEPTOR, CRANIOFACIAL DYSOSTOSIS 1, CROUZON SYNDROME, PFEIFFER SYNDROME, JACKSON-
_	GF200:96(24F4):384(6L7)	WEISS SYNDROME) AA443093

		FIBROBLAST GROWTH FACTOR RECEPTOR 2 (BACTERIA-EXPRESSED KINASE, KERATINOCYTE GROWTH
		FACTOR RECEPTOR, CRANIOFACIAL DYSOSTOSIS 1, CROUZON SYNDROME, PFEIFFER SYNDROME, JACKSON-
495 GENE25X	GF200:96(12G5):384(3N9)	WEISS SYNDROME) AA456160
496 GENE340X	GF201:96(94F6):384(12L11)	H.SAPIENS MRNA FOR TRE ONCOGENE (CLONE 210) AA437374

Table 7: Epithelial-enriched gene set

197474
H52098
786609
AA478481
FIBROBLAST ACTIVATION PROTEIN, ALPHA
AA405569
LARGE FIBROBLAST PROTEOGLYCAN PRECURSOR
AA056022
LARGE FIBROBLAST PROTEOGLYCAN PRECURSOR
AA056022
CHONDROITIN SULFATE PROTEOGLYCAN CORE PROTEIN
AA722599
PLASMINOGEN ACTIVATOR, UROKINASE RECEPTOR
AA147962
FIBRONECTIN 1
· · · · · · · · · · · · · · · · · · ·
R62612
FIBRONECTIN 1
R62612
HUMAN ISOLATE JUSO MUC18 GLYCOPROTEIN MRNA (3' VARIANT), COMPLETE CDS
AA497002
H.SAPIENS MRNA FOR INHIBIN BETA(A) SUBUNIT
N27159
HUMAN MRNA FOR FIBRONECTIN (FN PRECURSOR)
N26285
ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY SQ WARNING ENTRY !!!! [H.SAPIENS]
H77494
244703
N52533
HOMO SAPIENS MRNA FOR NIDOGEN-2
AA479199
LIM DOMAIN ONLY 7
H22826
TACHYKININ, PRECURSOR 1 (SUBSTANCE K, SUBSTANCE P, NEUROKININ 1, NEUROKININ 2, NEUROMEDIN L,
NEUROKININ ALPHA, NEUROPEPTIDE K,NEUROPEPTIDE GAMMA)
AA446659
INTERLEUKIN 1, BETA
W47101
INTERLEUKIN 1, BETA
AA150507
RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 1 (RHO FAMILY, SMALL GTP BINDING PROTEIN RAC1)
AA626787
PROTEIN TYROSINE PHOSPHATASE J
AA644448
ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY SB1 WARNING ENTRY !!!! [H.SAPIENS]
N21103
FAT TUMOR SUPPRESSOR (DROSOPHILA) HOMOLOG
A159194
271952
N35301
179276
H50323
INOSITOL POLYPHOSPHATE-5-PHOSPHATASE, 145KD
AA521067

FATAL FAMILIAL INSOMNIA) AA455969 ESTS, WEAKLY SIMILAR TO KIAA0639 PROTEIN [H.SAPIENS] BA3045 AA488420 ALDEHYDE DEHYDROGENASE 6 AA488420 ALDEHYDE DEHYDROGENASE 6 AA455235 CADHERIN 3, P-CADHERIN (PLACENTAL) AA425556 MDGIFATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART W04872 TROPONIN I, SKELETAL, FAST AA181334 MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BULLOSA)) AA677534 ANNEXIN VIII ANNEXIN VIII ANA252968 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A055486 KERATIN 17 A0205642 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL [H.SAPIENS] KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA465688 INTEGRIN, BETA 4 AA465688 INTEGRIN, BETA 4	
HYDROXYSTEROID DEHYDROGENASE) R93124 TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY, MEMBER 6 AA293571 CYSTATIN A (STEFIN A) W72207 347436 W81192 ANTILEUKOPROTEINASE AA026192 JANGGED (ALAGILLE SYNDROME) R70885 PRION PROTEIN (P27-30) (CREUTZFELD-JAKOB DISEASE, GERSTMANN-STRAUSLER-SCHEINKER SYNDROME, FATAL FAMILIAL INSOMNIA) AA455969 ESTS, WEAKLY SIMILAR TO KIAA0639 PROTEIN [H.SAPIENS] AA425427 BA3045 AA458420 ALDEHYDE DEHYDROGENASE 6 AA48420 ALDEHYDE DEHYDROGENASE 6 AA458523 ADA1657ATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART W094872 TROPONIN I, SKELETAL, FAST AA181334 MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BULLOSA)) AA677534 ANNEXIN VIII AA677534 ANNEXIN VIII AA677534 ANNEXIN VIII AA678648 EETS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA6826868 KERATIN 17 AA026842 EETS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL [H.SAPIENS] KERATIN 17 AA026842 EETS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL [H.SAPIENS] KERATIN 17 AA026843 ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL W72110 ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL W72110 ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL W72110 ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL W72110 ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL W72110 ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL W72110 ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL W72110 ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL W72110 ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL W72110 ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL W72110 ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL W72110 ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL W72110 ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL W72110 ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL	
AA293571 CYSTATIN A (STEFIN A) W72207 SA7436 W81192 ANTILEUKOPROTEINASE AA028192 JAGGEDT (ALAGILLE SYNDROME) R70885 PRION PROTEIN (P27-30) (CREUTZFELD-JAKOB DISEASE, GERSTMANN-STRAUSLER-SCHEINKER SYNDROME, FATAL FAMILIAL INSOMNIA) AA455989 ESTS, WEAKLY SIMILAR TO KIAA0639 PROTEIN [H.SAPIENS] AA284207 BA3045 AA488420 ALDEHYDE DEHYDROGENASE 6 AA455235 CADHERIN 3, P-CADHERIN (PLACENTAL) AA425568 MDGUFATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART W04872 TROPONIN I, SKELETAL, FAST AA181334 MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) M33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BUILLOSA) AA677634 AANIEXIN WIII AA252698 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A656486 KERATIN 17 AA026642 KERATIN 17 AA026642 KERATIN 17 AA026642 KERATIN 17 AA026642 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA160607 KERATIN 5 (EPIDERMOLYSIS BULLOSA) SIMPLEX DOWLING-MEARAKOBNERWEBER-COCKAYNE TYPES) W727110 BUILOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 AA485688 INTEGRIN, BETA 4 AA485688	HYDROXYSTEROID DEHYDROGENASE) R93124
W72207 3A7438 W81192 ANTILEUKOPROTEINASE AA028192 JAGGED1 (ALAGILLE SYNDROME) R70885 PRION PROTEIN (P27-30) (CREUTZFELD-JAKOB DISEASE, GERSTMANN-STRAUSLER-SCHEINKER SYNDROME, FATAL FAMILIAL INSOMNIA) AA459899 ESTS, WEAKLY SIMILAR TO KIAA0639 PROTEIN [H.SAPIENS] AA284277 B43045 ALDEHYDE DEHYDROGENASE 6 AA468420 ALDEHYDE DEHYDROGENASE 6 AA468420 ALDEHYDE DEHYDROGENASE 6 MDGIFATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART W04872 TROPONIN I, SKELETAL, FAST AA181334 MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BULLOSA)) AA677534 ANNEXIN VIII AA252968 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A056486 KERATIN 17 A0268642 KERATIN 17 BA0268642 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA160507 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W727110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) BULLOS PEMPHIGOID ANTIGEN 1 (230/240KD)	· ·
W81192 AA026192 JAGGED1 (ALAGILLE SYNDROME) R70685 PRION PROTEIN (P27-30) (CREUTZFELD-JAKOB DISEASE, GERSTMANN-STRAUSLER-SCHEINKER SYNDROME, FATAL, FAMILIA, INSOMNIA) AA455989 ESTS, WEAKLY SIMILAR TO KIAA0639 PROTEIN [H.SAPIENS] AA2842477 BA3045 AA488420 ALDEHYDE DEHYDROGENASE 6 AA488420 ALDEHYDE DEHYDROGENASE 6 AA455235 CADHERIN 3, P-CADHERIN (PLACENTAL) AA425556 MDGIFATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART W04872 TROPONIN I, SKELETAL, FAST AA161334 MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BULLOSA)) AA677534 ANNEXIN VIII AAA252968 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A AD55486 KERATIN 17 BA0268642 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA160507 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W727110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) BULLOS PEMPHIGOID ANTIGEN 1 (230/240KD)	
AAQ26192 JAGGED1 (ALAGILLE SYNDROME) R70885 PRION PROTEIN (P27-30) (CREUTZFELD-JAKOB DISEASE, GERSTMANN-STRAUSLER-SCHEINKER SYNDROME, FATAL FAMILIAL INSOMNIA) AA455969 ESTS, WEAKLY SIMILAR TO KIAA0639 PROTEIN [H.SAPIENS] AA284277 B43045 AA488420 ALDEHYDE DEHYDROGENASE 6 AA488420 ALDEHYDE DEHYDROGENASE 6 AA455235 CADHERIN 3, P-CADHERIN (PLACENTAL) AA4552956 MDGIJFATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART W04872 TROPONIN I, SKELETAL, FAST AA181334 MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BUILLOSA)) AA677534 ANNEXIN VIII AA252968 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A065486 KERATIN 17 a0026642 KERATIN 17 a0026642 KERATIN 17 a0026642 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA160507 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 BUILLOS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA468884 INTEGRIN, BETA 4 AA465688 INTEGRIN, BETA 4	
R70685 PPRION PROTEIN (P27-30) (CREUTZFELD-JAKOB DISEASE, GERSTMANN-STRAUSLER-SCHEINKER SYNDROME, FATAL FAMILIAL INSOMNIA) AA455969 ESTS, WEAKLY SIMILAR TO KIAA0639 PROTEIN [H.SAPIENS] AA284277 BA3045 AA488420 ALDEHYDE DEHYDROGENASE 6 AA488420 ALDEHYDE DEHYDROGENASE 6 AAA455235 CADHERIN 3, P-CADHERIN (PLACENTAL) AA425556 MDGI/FATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART W04872 TROPONIN I, SKELETAL, FAST AA181334 MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BULLOSA)) AA677534 ANNEXIN VII AA252968 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A056486 KERATIN 17 AA026642 KERATIN 17 AA026642 KERATIN 15 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNERWEBER-COCKAYNE TYPES) W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA465888 INTEGRIN, BETA 4 AA465688 INTEGRIN, BETA 4	[] [] [] [] [] [] [] [] [] []
FATAL FAMILIAL INSOMNIA) AA455969 ESTS, WEAKLY SIMILAR TO KIAA0639 PROTEIN [H.SAPIENS] AA284277 BA3045 AA488420 ALDEHYDE DEHYDROGENASE 6 AA488420 ALDEHYDE DEHYDROGENASE 6 AA455235 CADHERIN 3, P-CADHERIN (PLACENTAL) AA425556 MDGIFATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART W04872 TROPONIN I, SKELETAL, FAST AA181334 MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BULLOSA)) AA677534 ANNEXIN VIII ANNEXIN VIII ANA252968 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A055486 KERATIN 17 AA026642 KERATIN 17 AA026642 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA160507 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA465868 INTEGRIN, BETA 4 AA465668 INTEGRIN, BETA 4	
AA284277 6A3045 AA488420 AL DEHYDE DEHYDROGENASE 6 AA485235 CADHERIN 3, P-CADHERIN (PLACENTAL) AA425556 MDGI/FATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART W04872 TROPONIN 1, SKELETAL, FAST AA181334 MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BULLOSA)) AA677534 ANNEXIN VIII AA252988 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A055486 KERATIN 17 a026642 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA180507 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA4886884 INTEGRIN, BETA 4 AA488668 INTEGRIN, BETA 4 AA488668 INTEGRIN, BETA 4	
AA488420 ALDEHYDE DEHYDROGENASE 6 ALDEHYDE DEHYDROGENASE 6 AA455235 CADHERIN 3, P-CADHERIN (PLACENTAL) AA425556 MDGI/FATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART W04872 TROPONIN I, SKELETAL, FAST AA181334 MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BULLOSA)) AA677534 ANNEXIN VIII AA252988 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A055486 KERATIN 17 A0026642 KERATIN 17 a0026642 KERATIN 17 a0026642 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARAVKOBNER/WEBER-COCKAYNE TYPES) W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/Z40KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA458884 INTEGRIN, BETA 4 AA488668 INTEGRIN, BETA 4	ESTS, WEAKLY SIMILAR TO KIAA0639 PROTEIN [H.SAPIENS] AA284277
AA455235 CADHERIN 3, P-CADHERIN (PLACENTAL) AA425556 MDGUFATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART W04872 TROPONIN I, SKELETAL, FAST AA181334 MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BULLOSA)) AA677534 ANNEXIN VIII AA252968 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A055486 KERATIN 17 A026642 KERATIN 17 A026642 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA160507 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA458884 INTECRIN, BETA 4 AA485688 INTECRIN, BETA 4 AA485688	
AA425556 MDGI/FATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART W04872 TROPONIN I, SKELETAL, FAST AA181334 MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BULLOSA)) AA677534 ANNEXIN VIII AA252968 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A055486 KERATIN 17 AA026642 KERATIN 17 a8026642 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA160507 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA458884 INTEGRIN, BETA 4 AA485668 INTEGRIN, BETA 4	AA455235 ,
W04872 TROPONIN I, SKELETAL, FAST AA181334 MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BULLOSA)) AA677534 ANNEXIN VIII AA252968 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A055486 KERATIN 17 A0026642 KERATIN 17 a0026642 KERATIN 17 a0026642 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA458884 INTEGRIN, BETA 4 AA485668 INTEGRIN, BETA 4	AA425556
AA181334 MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BULLOSA)) AA677534 ANNEXIN VIII AA252968 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A055486 KERATIN 17 AA026642 KERATIN 17 a8026642 KERATIN 17 a8026642 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA458884 INTEGRIN, BETA 4 AA485668 INTEGRIN, BETA 4	W04872
N33214 LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BULLOSA)) AA677534 ANNEXIN VIII AA252968 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A055486 KERATIN 17 AA026642 KERATIN 17 a2026642 KERATIN 17 a2026642 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA485668 INTEGRIN, BETA 4 AA485668 INTEGRIN, BETA 4	<u>AA181334</u>
BULLOSA)) AA677534 ANNEXIN VIII AA252968 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A055486 KERATIN 17 AA026642 KERATIN 17 aa026642 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA160507 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA458884 INTEGRIN, BETA 4 AA485668 INTEGRIN, BETA 4	N33214
AA252968 ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS] A A055486 KERATIN 17 AA026642 KERATIN 17 aa026642 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA160507 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA458884 INTEGRIN, BETA 4 AA485668 INTEGRIN, BETA 4	
A055486 KERATIN 17 AA026642 KERATIN 17 aa026642 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA160507 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA458884 INTEGRIN, BETA 4 AA485668 INTEGRIN, BETA 4	AA252968
AA026642 KERATIN 17 aa026642 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA160507 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA458884 INTEGRIN, BETA 4 AA485668 INTEGRIN, BETA 4	A055486_
aa026642 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA160507 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA458884 INTEGRIN, BETA 4 AA485668 INTEGRIN, BETA 4	
AA160507 KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES) W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA458884 INTEGRIN, BETA 4 AA485668 INTEGRIN, BETA 4	
W72110 ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA458884 INTEGRIN, BETA 4 AA485668 INTEGRIN, BETA 4	AA160507
W72110 BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784 S100 CALCIUM-BINDING PROTEIN A2 AA458884 INTEGRIN, BETA 4 AA485668 INTEGRIN, BETA 4	W72110
H44784 S100 CALCIUM-BINDING PROTEIN A2 AA458884 INTEGRIN, BETA 4 AA485668 INTEGRIN, BETA 4	ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110
AA458884 INTEGRIN, BETA 4 AA485668 INTEGRIN, BETA 4	BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784
AA485668 INTEGRIN, BETA 4	S100 CALCIUM-BINDING PROTEIN A2 AA458884
	INTEGRIN, BETA 4 AA485668
	INTEGRIN, BETA 4 AA076514

2255577 Al679149
LAMININ, ALPHA 3 (NICEIN (150KD), KALININ (165KD), BM600 (150KD), EPILEGRIN) AA001432
COLLAGEN, TYPE XVII, ALPHA 1
H87536
BASONUCLIN
R26526
504940
AA150619
HUMAN DNA SEQUENCE FROM CLONE 973M2 ON CHROMOSOME 1Q24.3-31.1 CONTAINS PROSTAGLANDIN-
ENDOPEROXIDE SYNTHASE 2 (PROSTAGLANDIN G/H SYNTHASE AND CYCLOOXYGENASE) GENE, ESTS, STS,
GSSS
AA644211
810904
AA459285
MYOSIN IC
AA029956
EPHRIN-B1
AA428778
MATRIX METALLOPROTEINASE 7 (MATRILYSIN, UTERINE)
AA031513
294682
W01603
INTEGRIN, ALPHA 3 (ANTIGEN CD49C, ALPHA 3 SUBUNIT OF VLA-3 RECEPTOR) AA293040
INTEGRIN, ALPHA 3 (ANTIGEN CD49C, ALPHA 3 SUBUNIT OF VLA-3 RECEPTOR)
AA424695
SERUM AMYLOID A1
H25546
GM2 GANGLIOSIDE ACTIVATOR PROTEIN AA453978
ESTS, WEAKLY SIMILAR TO TRANSPOSON LRE2 REVERSE TRANSCRIPTASE HOMOLOG [H.SAPIENS] W48580
CARBONIC ANHYDRASE II
H23187
LATENT TRANSFORMING GROWTH FACTOR BETA BINDING PROTEIN 2
AA424629
SECRETED FRIZZLED-RELATED PROTEIN 1
T68892
LECTIN, GALACTOSIDE-BINDING, SOLUBLE, 7 (GALECTIN 7)
W72436
PLASMINOGEN ACTIVATOR, UROKINASE AA284668
ENDOTHELIN RECEPTOR TYPE A
AA452627
ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 5231137) [H.SAPIENS]
W30988
N-MYC DOWNSTREAM REGULATED AA489261
EPIDERMAL GROWTH FACTOR RECEPTOR (AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL (V-ERB-B) ONCOGENE HOMOLOG) AA234783
359285
AA016234
INTERLEUKIN 4 RECEPTOR
AA292025
DIACYLGLYCEROL KINASE, ALPHA (80KD)
AA456900

770670
AA476272 FOLATE RECEPTOR 1 (ADULT)
R24635
HUMAN MRNA FOR KIAA0300 GENE, PARTIAL CDS
AA405458 HUMAN GABA-A RECEPTOR EPSILON SUBUNIT (GABRE) RNA, ALTERNATIVE TRANSCRIPT
H63934
SMALL INDUCIBLE CYTOKINE SUBFAMILY D (CYS-X3-CYS), MEMBER 1 (FRACTALKINE, NEUROTACTIN) R66139
HUMAN DNA SEQUENCE FROM PAC 196E23 ON CHROMOSOME XQ26.1-27.2. CONTAINS THE TAT-SF1 (HIV-1 TRANSCRIPTIONAL ELONGATION FACTOR TAT COFACTOR TAT-SF1) GENE, THE BRS3 (BOMBESIN RECEPTOR SUBTYPE-3 (UTERINE BOMBESIN RECEPTOR, BRS-3) GEN AA700322
HUMAN DNA-BINDING PROTEIN ABP/ZF MRNA, COMPLETE CDS W88571
PHOSPHATIDYLINOSITOL-4-PHOSPHATE 5-KINASE, TYPE I, BETA R39069
51406 H18950
503051 AA149250
FATTY ACID BINDING PROTEIN 7, BRAIN N46862
FATTY ACID BINDING PROTEIN 7, BRAIN W72051
MACROPHAGE RECEPTOR WITH COLLAGENOUS STRUCTURE AA485867
HOMO SAPIENS MRNA FOR CALPAIN-LIKE PROTEASE CANPX AA457330
298662 N74313
FORKHEAD (DROSOPHILA)-LIKE 7 N22552
ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY J WARNING ENTRY !!!! [H.SAPIENS] AA459296
MEGAKARYOCYTE POTENTIATING FACTOR AA488406
PREFERENTIALLY EXPRESSED ANTIGEN OF MELANOMA AA598817
EYES ABSENT (DROSOPHILA) HOMOLOG 2 AA402207
SYNAPTOGYRIN 1 AA007632
PHOSPHOLIPASE C, BETA 4 H22563
TRANSCRIPTION FACTOR AP-2 GAMMA (ACTIVATING ENHANCER-BINDING PROTEIN 2 GAMMA) AA399334
KERATIN 4 AA629189
BONE MORPHOGENETIC PROTEIN 7 (OSTEOGENIC PROTEIN 1) AA029597
BONE MORPHOGENETIC PROTEIN 7 (OSTEOGENIC PROTEIN 1) W73473
KIAA0626 GENE PRODUCT N62737
HUMAN MRNA FOR KIAA0338 GENE, PARTIAL CDS R71689

CERULOPLASMIN (FERROXIDASE) H86554
ESTS, MODERATELY SIMILAR TO (DEFLINE NOT AVAILABLE 4159884) [H.SAPIENS]
DESMOCOLLIN 2
AA074677
321902
W37448 KERATIN 13
W60057
KERATIN 13 W23757
134011
R31262 49630
H29256
VITAMIN D (1,25- DIHYDROXYVITAMIN D3) RECEPTOR
AA485226 SYNDECAN 1
AA074511
SEMA DOMAIN, IMMUNOGLOBULIN DOMAIN (IG), SHORT BASIC DOMAIN, SECRETED, (SEMAPHORIN) 3F AA454570
PROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, F AA598513
BUTYRATE RESPONSE FACTOR 1 (EGF-RESPONSE FACTOR 1) AA424743
ANTHRACYCLINE RESISTANCE-ASSOCIATED AA495766
MEMBRANE COMPONENT, CHROMOSOME 1, SURFACE MARKER 1 (40KD GLYCOPROTEIN, IDENTIFIED BY
MONOCLONAL ANTIBODY GA733) AA454810
KERATIN 7 AA489569
813520 AA455591
HOMO SAPIENS MRNA; CDNA DKFZP586B2022 (FROM CLONE DKFZP586B2022) T52325
HOMO SAPIENS AGRIN PRECURSOR MRNA, PARTIAL CDS AA458878
ESTS, WEAKLY SIMILAR TO KIAA0319 [H.SAPIENS]
AA136133 ANTIQUITIN 1
ANTIQUITIN 1 AA101299
HEXOKINASE 1
AA485272 HEXOKINASE 1
AA485271
LADININ 1
T97710 H.SAPIENS MRNA FOR RECEPTOR TYROSINE KINASE EPH (PARTIAL)
N90246
144834 R77251
CREATINE KINASE, MITOCHONDRIAL 1 (UBIQUITOUS) AA019482
364302
AA022462
176461 H43515

RECEPTOR PROTEIN-TYROSINE KINASE EDDR1 H41900
HOMO SAPIENS MRNA FOR INOSITOL 1,4,5-TRISPHOSPHATE 3-KINASE ISOENZYME, PARTIAL CDS
N46828 PLEXIN 5
AA496565
810873
AA459197
504225 AA131934
SNF2-RELATED CBP ACTIVATOR PROTEIN
AA419088
ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY J WARNING ENTRY !!!! [H.SAPIENS] H97778
ESTS, WEAKLY SIMILAR TO KIAA0281 [H.SAPIENS] N54395
85804 E T72068
JUNCTION PLAKOGLOBIN R06417
CDP-DIACYLGLYCEROL SYNTHASE (PHOSPHATIDATE CYTIDYLYLTRANSFERASE) 1 R31562
PROLINE-RICH GLA (G-CARBOXGLUTAMIC ACID) POLYPEPTIDE 2 AA430552
HUMAN DNA SEQUENCE FROM PAC 127B20 ON CHROMOSOME 22Q11.2-QTER, CONTAINS GENE FOR GTPASE-
ACTIVATING PROTEIN SIMILAR TO RHOGAP PROTEIN. RIBOSOMAL PROTEIN L6 PSEUDOGENE, ESTS AND CA
AA037410
ESTS, WEAKLY SIMILAR TO LOW-DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN 1 PRECURSOR
[H.SAPIENS]
AA489246
416386 W86859
PLACENTAL BIKUNIN (KUNITZ-TYPE SERINE PROTEASE INHIBITOR) AA031287
SERINE PROTEASE INHIBITOR, KUNITZ TYPE, 2 AA459039
HUMAN PLACENTAL BIKUNIN MRNA COMPLETE CDS AA031287
810728
AA457707
HOMO SAPIENS MRNA; CDNA DKFZP586F1318 (FROM CLONE DKFZP586F1318)
T77847
147447 R81173
365517
AA009593
417081 W87826
ESTS, WEAKLY SIMILAR TO (DEFLINE NOT AVAILABLE 4929751) [H.SAPIENS]
HOMO SAPIENS MRNA; CDNA DKFZP586J2118 (FROM CLONE DKFZP586J2118) R98407
297604
N69835
297604 N69835
DNA SEGMENT, SINGLE COPY PROBE LNS-CAI/LNS-CAII (DELETED IN POLYPOSIS
H99681

ESTROGEN RECEPTOR 1 AA164586 275798 R93185
1
TUMOR PROTEIN D52
AA459318 HUMAN D9 SPLICE VARIANT B MRNA, COMPLETE CDS
AA453832 MAJOR GASTROINTESTINAL TUMOR-ASSOCIATED PROTEIN GA733-2 PRECURSOR
AA055808
KIAA0351 GENE PRODUCT AA402863
RAB2, MEMBER RAS ONCOGENE FAMILY-LIKE AA401972
NEBULETTE N77806
ESTS, WEAKLY SIMILAR TO UNKNOWN [H.SAPIENS] R01499
486828 AA042878
486828 AA042878
XMP T84249
EPITHELIAL MEMBRANE PROTEIN 2
T88721 KERATIN 8
AA598517
44292 H06273
KERATIN 18
AA070385 KERATIN 18
AA664179 CLAUDIN 4
AA430665
HCPE-R MRNA FOR CPE-RECEPTOR AA506754
HCPE-R MRNA FOR CPE-RECEPTOR W74492
HOMO SAPIENS EPITHELIAL-SPECIFIC TRANSCRIPTION FACTOR ESE-1A (ESE-1) MRNA, COMPLETE CDS AA433851
EPITHELIAL-SPECIFIC TRANSCRIPTION FACTOR ESE-1B (ESE-1) MRNA COMPLETE CDS H27938
SERINE PROTEASE INHIBITOR, KUNITZ TYPE 1 AA464250
TRANSFORMING GROWTH FACTOR, BETA 3 AA040617
TRANSFORMING GROWTH FACTOR BETA 3 A0040616
TRANSFORMING GROWTH FACTOR BETA 3 AA040616
LYSOSOMAL-ASSOCIATED MEMBRANE PROTEIN 1 H29077
ISLET CELL AUTOANTIGEN 1 (69KD) AA491302
ESTS, MODERATELY SIMILAR TO K02E10.2 [C.ELEGANS] T62552

Tanana .
82869 T69270
SELENIUM BINDING PROTEIN 1 T65736
HOMO SAPIENS MRNA FOR HYPOTHETICAL PROTEIN
AA487488 PROLACTIN RECEPTOR
R63647
321658 W32933
321658 W32933
202658 H53479
202658
H53479 ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY SQ WARNING ENTRY !!!! [H.SAPIENS]
AA464739
197520 H52110
KIAA0182 AA037466
HUMAN MRNA FOR KIAA0182 GENE, PARTIAL CDS H05563
SOLUTE CARRIER FAMILY 9 (SODIUM/HYDROGEN EXCHANGER), ISOFORM 3 REGULATORY FACTOR 1 AA425299
179211
H50224 179211
H50224
FRUCTOSE-BISPHOSPHATASE 1 AA699427
HUMAN ENDOGENOUS RETROVIRUS ENVELOPE REGION MRNA (PL1) AA701655
X-BOX BINDING PROTEIN 1 W90128
HEPATOCYTE NUCLEAR FACTOR 3, ALPHA 1774639
GATA-BINDING PROTEIN 3 H72474
GATA-BINDING PROTEIN 3 R31442
GATA-BINDING PROTEIN 3 R31441
GATA-BINDING PROTEIN 3 AA058828
ESTROGEN RECEPTOR 1 AA291702
ESTROGEN RECEPTOR 1 AA291749
ANNEXIN XXXI N76688
ANNEXIN XXXI
N76688 HOMO SAPIENS MRNA; CDNA DKFZP434A091 (FROM CLONE DKFZP434A091)
AA431988 CANALICULAR MULTISPECIFIC ORGANIC ANION TRANSPORTER C
N80617

HOMO SAPIENS MRNA FOR NEUROBLASTOMA, COMPLETE CDS AA481950
CELLULAR RETINOIC ACID-BINDING PROTEIN 2 AA036987
CELLULAR RETINOIC ACID-BINDING PROTEIN 2 AA598508
CELLULAR RETINOIC ACID-BINDING PROTEIN 2 AA036986
HUMAN SECRETORY PROTEIN (P1.B) MRNA, COMPLETE CDS N74131
MSH (DROSOPHILA) HOMEO BOX HOMOLOG 2 AA195636
HUMAN CHROMOSOME 16 BAC CLONE CIT987SK-254P9 H23265
204483 H58234
HUMAN INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 5 (IGFBP5) MRNA T52830
INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 5 (IGFBP5) AA054451
HUMAN INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 5 (IGFBP5) MRNA H08560
HUMAN MRNA FOR KIAA0061 GENE, PARTIAL CDS N33237
HUMAN MRNA FOR KIAA0143 GENE, PARTIAL CDS AA112057
CYSTEINE-RICH PROTEIN 2 AA485427
PDGF BETA T49539
67654 T49539
RAS HOMOLOG GENE FAMILY, MEMBER B H89046
RAS HOMOLOG GENE FAMILY, MEMBER B AA495846
140018 R63971
140018 R63971
81475 T63511
CYTOCHROME P450, SUBFAMILY IIJ (ARACHIDONIC ACID EPOXYGENASE) POLYPEPTIDE 2 H09076
P53-INDUCED PROTEIN H12189
HOMO SAPIENS BREAST CANCER PUTATIVE TRANSCRIPTION FACTOR (ZABC1) MRNA, COMPLETE CDS AA460802
HOMO SAPIENS BREAST CANCER PUTATIVE TRANSCRIPTION FACTOR (ZABC1) MRNA, COMPLETE CDS AA782528
SULFOTRANSFERASE FAMILY 2B, MEMBER 1 R73584
HEREDITARY HEMOCHROMOTOSIS R07647
MUCIN 1, TRANSMEMBRANE AA488073
156053 R72491

447786 AA702350
415317 W92160
IGG FC BINDING PROTEIN R52030
EPIDIDYMIS-SPECIFIC, WHEY-ACIDIC PROTEIN TYPE, FOUR-DISULFIDE CORE AA451904
SRC KINASE-ASSOCIATED PHOSPHOPROTEIN OF 55 KDA R01281
CARBONIC ANHYDRASE XI N52089
PHOSPHOFRUCTOKINASE, MUSCLE AA099169
HUMAN HEART MRNA FOR HEAT SHOCK PROTEIN 90, PARTIAL CDS AA064973
130843 R22306
470105 AA029949
H2B HISTONE FAMILY, MEMBER Q AA010223
H2B HISTONE FAMILY, MEMBER Q AA456695
H2A HISTONE FAMILY, MEMBER L N50797
H1 HISTONE FAMILY, MEMBER 2 T66816
322461 W15305
289734 N62965
DUAL SPECIFICITY PHOSPHATASE 4 AA444049
CALCIUM CHANNEL, VOLTAGE-DEPENDENT, ALPHA 2/DELTA SUBUNIT 2 N53512
ACYL-COENZYME A DEHYDROGENASE, SHORT/BRANCHED CHAIN H96140
CYTOCHROME P450, SUBFAMILY IIB (PHENOBARBITAL-INDUCIBLE), POLYPEPTIDE 6 H41908
PROTEASE INHIBITOR 12 (NEUROSERPIN) AA115876
HUMAN DNA SEQUENCE FROM CLONE 167A19 ON CHROMOSOME 1P32.1-33. CONTAINS THREE GENES FOR NOVEL PROTEINS, THE DIO1 GENE FOR TYPE I IODOTHYRONINE DEIODINASE (EC 3.8.1.4, TXDI1, ITDI1) AND AN HNRNP A3 (HETEROGENOUS NUCLEAR RIBONUCLEOPR N74025
AUTOCRINE MOTILITY FACTOR RECEPTOR AA479243
CYTOCHROME P450, SUBFAMILY IIA (PHENOBARBITAL-INDUCIBLE), POLYPEPTIDE 7 T73031
ANGIOTENSIN RECEPTOR 1 H66116
ESTS, WEAKLY SIMILAR TO TUMOROUS IMAGINAL DISCS PROTEIN TID56 HOMOLOG [H.SAPIENS] T95268
QUINOID DIHYDROPTERIDINE REDUCTASE R38198
LYMPHOID NUCLEAR PROTEIN RELATED TO AF4 H99588

NUCLEOPORIN 88KD AA479888
307220
N95180
HOMO SAPIENS MRNA; CDNA DKFZP564P0662 (FROM CLONE DKFZP564P0662)
R27680
HEPSIN (TRANSMEMBRANE PROTEASE, SERINE 1)
H62162
ESTS, HIGHLY SIMILAR TO TRANSCRIPTION ELONGATION FACTOR TFIIS.H [H.SAPIENS]
795744
AA460298
N-ACETYLTRANSFERASE 1 (ARYLAMINE N-ACETYLTRANSFERASE)
R91803
N-ACETYLTRANSFERASE 1 (ARYLAMINE N-ACETYLTRANSFERASE)
T67128
503581 AA131239
HUMAN BREAST CANCER, ESTROGEN REGULATED LIV-1 PROTEIN (LIV-1) MRNA, PARTIAL CDS
H29407
N-ACYLSPHINGOSINE AMIDOHYDROLASE (ACID CERAMIDASE)
AA664155
EPOXIDE HYDROLASE 2, CYTOPLASMIC
R73525 B-CELL CLL/LYMPHOMA 2
W63749
ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4929557) [H.SAPIENS]
T74688
BASIC HELIX-LOOP-HELIX DOMAIN CONTAINING, CLASS B, 2
T62084
FORKHEAD (DROSOPHILA) HOMOLOG 1 (RHABDOMYOSARCOMA)
AA448277 ACTIVATED P21CDC42HS KINASE
AG11VATED P21CDC42H5 KINASE AA427891
HUMAN MRNA FOR KIAA0303 GENE, PARTIAL CDS
AA418846
487929
AA045481
ZINC FINGER PROTEIN HOMOLOGOUS TO ZFP103 IN MOUSE AA429297
CELL DIVISION CYCLE 4-LIKE
AA041499
ESTS, WEAKLY SIMILAR TO P1.11659 5
N47593
ESTS, WEAKLY SIMILAR TO (DEFLINE NOT AVAILABLE 4502327) [H.SAPIENS]
172850
ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY SQ WARNING ENTRY !!!! [H.SAPIENS]
R70598
220376 H86813
HOMO SAPIENS MRNA; CDNA DKFZP434H071 (FROM CLONE DKFZP434H071)
T41078
ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY J WARNING ENTRY !!!! [H.SAPIENS]
AA669222
T3 RECEPTOR-ASSOCIATING COFACTOR-1 [HUMAN, FETAL LIVER, MRNA, 2930 NT]
AA400234

W86987 W90241 W90241 WAND W90241 WAND WAND WAND WAND WAND WAND WAND WAND	
18240 1890241 16AA0130 GENE PRODUCT 176581 1	416556
W90241 KIAA0130 GENE PRODUCT I76581 ERBB-2 RECEPTOR PROTEIN-TYROSINE KINASE PRECURSOR A025141 ETEROIDOGENIC ACUTE REGULATORY PROTEIN RELATED A504710 ERBB2-POLYA 603363 FERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) A025141 FERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) A025141 FERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) A443351 ERBB2 A481939 EROWITH FACTOR RECEPTOR-BOUND PROTEIN 7 H53703 B400 57034 B400 57034 EWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, BUBFAMILY E, MEMBER 1 VG3613 ESTS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778	
IAA0130 GENE PRODUCT I76581 IRBB-2 RECEPTOR PROTEIN-TYROSINE KINASE PRECURSOR A025141 ITTEROIDOGENIC ACUTE REGULATORY PROTEIN RELATED A504710 IRBB2-POLYA IO3363 IPERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) A025141 IPERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) A443351 IRBB2 A481939 IROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 H53703 H8400 F57034 IRBWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, IUBFAMILY E, MEMBER 1 IVG3613 ISTS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] IN37778 IN37776	1.10=10
IRBB-2 RECEPTOR PROTEIN-TYROSINE KINASE PRECURSOR (A025141 TITEROIDOGENIC ACUTE REGULATORY PROTEIN RELATED (A504710 RBB2-POLYA (03363 FERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) (A025141 FERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) (A443351 RBB2 (A481939 ROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 H53703 R8400 F57034 R8400 F57034 RWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, UBFAMILY E, MEMBER 1 (A63613 RSTS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] (N37778) (N377776)	
RBB-2 RECEPTOR PROTEIN-TYROSINE KINASE PRECURSOR A025141 ITEROIDOGENIC ACUTE REGULATORY PROTEIN RELATED A504710 ITERB2-POLYA 03363 I-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) A025141 I-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) A443351 IRBB2 A4481939 BROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 153703 8400 57034 IWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, UBFAMILY E, MEMBER 1 V636613 STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	
A025141 TEROIDOGENIC ACUTE REGULATORY PROTEIN RELATED A504710 RBB2-POLYA (03363) FERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) A025141 FERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) A443351 RBB2 A4481939 BROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 153703 8400 57034 8WI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, UBFAMILY E, MEMBER 1 W63613 STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	N76581
STEROIDOGENIC ACUTE REGULATORY PROTEIN RELATED A504710 RBB2-POLYA (03363 FERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) A025141 FERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) A443351 RBB2 A443351 RBB2 A481939 SROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 H53703 8400 57034 8400 57034 SWINSNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, BUBFAMILY E, MEMBER 1 V636613 STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	ERBB-2 RECEPTOR PROTEIN-TYROSINE KINASE PRECURSOR
A504710 IRBB2-POLYA (03363) V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) (A025141 V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) (A443351 IRBB2 (A481939 IRBB2 (A481939 IRBC (A481939 IRBC (A57034 IRBC IRBC	AA025141
RBB2-POLYA (03363 V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) (A025141 V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) (A443351 IRBB2 (A4481939 BROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 (H53703 8400 57034 (WI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, BUBFAMILY E, MEMBER 1 (V63613 STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] (N37778 71076	STEROIDOGENIC ACUTE REGULATORY PROTEIN RELATED
ACTION OF CHROMATIN, SUBFAMILY E, MEMBER 1 WINDSTAND	AA504710
PERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) WA025141 PERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) WA443351 WA443351 WA5BB2 WA481939 WA5BROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 WA53703 WA53703 WA53703 WA5400 WA557034 WA57034 WA557034 WA57034 WA557034 WA557034 WA557034 WA557034 WA557034 WA557034 WA5570	ERBB2-POLYA
NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) (A025141 V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) (A443351 (RBB2 (A481939) (BROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 (H53703) (B400) (57034 (B400) (57034 (BWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, SUBFAMILY E, MEMBER 1 (M63613) (STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] (N37778) (71076)	X03363
A025141 V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) A443351 IRBB2 A481939 BROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 H53703 88400 57034 IRB400 57034 IRB400 STO34 IRB401 IRB53703 IRB537	V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2
A025141 V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) A443351 IRBB2 A481939 BROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 H53703 8400 57034 8400 57034 8WI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, BUBFAMILY E, MEMBER 1 V63613 ISTS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	(NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG)
NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) (A443351 (RBB2 (A481939 (BROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 (H53703 (B400 (57034 (B400 (57034 (BWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, UBFAMILY E; MEMBER 1 (V63613 (STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] (N37778 (71076)	AA025141
NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG) (A443351 (RBB2 (A481939 (BROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 (H53703 (B400 (57034 (B400 (57034 (BWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, UBFAMILY E; MEMBER 1 (V63613 (STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] (N37778 (71076)	V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2
A443351 RBB2 A481939 BROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 153703 8400 57034 8400 57034 EWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, UBFAMILY E, MEMBER 1 V63613 ESTS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	
A481939 SROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 H53703 8400 F57034 8400 F57034 SWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, BUBFAMILY E, MEMBER 1 W63613 FSTS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	AA443351
GROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 H53703 8400 F57034 8400 F57034 FWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, BUBFAMILY E, MEMBER 1 W63613 FSTS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	ERBB2
H53703 8400 657034 8400 657034 8400 657034 6WI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, BUBFAMILY E, MEMBER 1 W63613 6STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	AA481939
H53703 8400 657034 8400 657034 8400 657034 6WI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, BUBFAMILY E, MEMBER 1 W63613 6STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	GROWTH FACTOR RECEPTOR-BOLIND PROTEIN 7
8400 57034 8400 57034 57034 57034 6WI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, SUBFAMILY E, MEMBER 1 V63613 6STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	
57034 8400 67034 6WI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, SUBFAMILY E, MEMBER 1 W63613 6STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	68400
8400 57034 WI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, SUBFAMILY E, MEMBER 1 V63613 STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	T57034
57034 DWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, SUBFAMILY E, MEMBER 1 V63613 STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	
WI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, SUBFAMILY E, MEMBER 1 V63613 STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	T57034
SUBFAMILY E, MEMBER 1 V63613 STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	
V63613 STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	
STS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] N37778 71076	
N37778 71076	
71076	
* * * * *	
1233 10	
	1452910

Table 8: Luminal gene subset

B-CELL CLL/LYMPHOMA 2
W63749
ESTS, WEAKLY SIMILAR TO MEMBRANE GLYCOPROTEIN [M.MUSCULUS]
AA159578
51700
H22854
NEBULETTE
N77806
HUMAN DNA SEQUENCE FROM CLONE 167A19 ON CHROMOSOME 1P32.1-33. CONTAINS THREE
GENES FOR NOVEL PROTEINS, THE DIO1 GENE FOR TYPE I IODOTHYRONINE DEIODINASE (EC
3.8.1.4, TXDI1, ITDI1) AND AN HNRNP A3 (HETEROGENOUS NUCLEAR RIBONUCLEOPROTEIN
N74025
PROLACTIN RECEPTOR
R63647
202658
H53479
202658
H53479
609283
AA167189
MYOSIN VI
AA625890
470216
AA028987
N-ACETYLTRANSFERASE 1 (ARYLAMINE N-ACETYLTRANSFERASE)
R91803
HOMO SAPIENS MRNA; CDNA DKFZP434A091 (FROM CLONE DKFZP434A091)
AA431988
358936
W92233
SEVEN IN ABSENTIA (DROSOPHILA) HOMOLOG 2
AA029041
HEPSIN (TRANSMEMBRANE PROTEASE, SERINE 1)
H62162
417081
W87626
470105 AA029949
HUMAN SECRETORY PROTEIN (P1.B) MRNA, COMPLETE CDS
N74131
HEPATOCYTE NUCLEAR FACTOR 3, ALPHA
T74639
X-BOX BINDING PROTEIN 1
W90128
ESTROGEN RECEPTOR 1
AA291702
ESTROGEN RECEPTOR 1
AA291749
GATA-BINDING PROTEIN 3
H72474
GATA-BINDING PROTEIN 3
R31441
GATA-BINDING PROTEIN 3
R31442

ANNEXIN XXXI
N76688
HUMAN BREAST CANCER, ESTROGEN REGULATED LIV-1 PROTEIN (LIV-1) MRNA, PARTIAL CDS
H29407
346321
W74079
HUMAN CHROMOSOME 16 BAC CLONE CIT987SK-254P9
H23265
71863
T52564
271989
N31935
ESTS, HIGHLY SIMILAR TO INOSITOL POLYPHOSPHATE 4-PHOSPHATASE TYPE II-ALPHA
[H.SAPIENS]
R86721
179211
H50224 179211
H50224
MURINE LEUKEMIA VIRAL (BMI-1) ONCOGENE HOMOLOG
T87515
MURINE LEUKEMIA VIRAL (BMI-1) ONCOGENE HOMOLOG
AA478036
LUTHERAN BLOOD GROUP (AUBERGER B ANTIGEN INCLUDED)
H24954
HOMO SAPIENS (PWD) GENE MRNA, 3' END
N26536
782547
AA431796
ACYL-COENZYME A DEHYDROGENASE, SHORT/BRANCHED CHAIN
H96140
CARNITINE PALMITOYLTRANSFERASE II
N70848
ALDO-KETO REDUCTASE FAMILY 7, MEMBER A2 (AFLATOXIN ALDEHYDE REDUCTASE)
T62865
CYTOCHROME P450, SUBFAMILY IIA (PHENOBARBITAL-INDUCIBLE), POLYPEPTIDE 7
T73031
ANGIOTENSIN RECEPTOR 1
H66116
LYMPHOID NUCLEAR PROTEIN RELATED TO AF4
H99588
HUMAN MRNA FOR KIAA0303 GENE, PARTIAL CDS
AA418846
EPOXIDE HYDROLASE 2, CYTOPLASMIC
R73525
DUAL SPECIFICITY PHOSPHATASE 4
AA444049

Table 9: Basal gene subset 1

DUAL SPECIFICITY PHOSPHATASE 6
AA630374
LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS
BULLOSA))
AA677534
MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED)
N33214
COLLAGEN, TYPE XVII, ALPHA 1
H87536
CALPONIN 1, BASIC, SMOOTH MUSCLE
AA399519
PLEIOTROPHIN (HEPARIN BINDING GROWTH FACTOR 8, NEURITE GROWTH-PROMOTING FACTOR 1)
AA001449
PLEIOTROPHIN (HEPARIN BINDING GROWTH FACTOR 8, NEURITE GROWTH-PROMOTING FACTOR 1)
AA001449
1912786
Al304356
GELSOLIN (AMYLOIDOSIS, FINNISH TYPE)
H72027
BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD)
H44784
SMALL INDUCIBLE CYTOKINE SUBFAMILY D (CYS-X3-CYS), MEMBER 1 (FRACTALKINE, NEUROTACTIN)
R66139
KERATIN 17
aa026642
KERATIN 17
AA026642
KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES)
W72110
ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL
W72110
ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS]
AA055486
CRYSTALLIN, ALPHA B
AA504943
CAVEOLIN 2
T89391
ANNEXIN I (LIPOCORTIN I)
H63077
DYSTROPHIN (MUSCULAR DYSTROPHY, DUCHENNE AND BECKER TYPES), INCLUDES DXS142, DXS164, DXS206, DXS230, DXS230
DXS230, DXS239, DXS268, DXS269, DXS270, DXS272 AA461118
DIHYDROPYRIMIDINASE-LIKE 2
AA487674

Table 9: Basal gene subset 2

EPIDERMAL GROWTH FACTOR RECEPTOR (AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL (V-ERB-B)
ONCOGENE HOMOLOG)
AA234783
GRO1 ONCOGENE (MELANOMA GROWTH STIMULATING ACTIVITY, ALPHA)
W42723
PHOSPHOINOSITIDE-3-KINASE, REGULATORY SUBUNIT, POLYPEPTIDE 1 (P85 ALPHA)
R54050
HUMAN DNA-BINDING PROTEIN ABP/ZF MRNA, COMPLETE CDS
W88571
ANTILEUKOPROTEINASE
AA026192
FATTY ACID BINDING PROTEIN 7, BRAIN
W72051
CHITINASE 3-LIKE 2
AA668821
TRANSMEMBRANE 4 SUPERFAMILY MEMBER 1
AA088439
TRANSMEMBRANE 4 SUPERFAMILY MEMBER 1
N47476
HOMO SAPIENS MRNA FOR CALPAIN-LIKE PROTEASE CANPX
AA457330
KERATIN 7
AA489569
LADININ 1
T97710
CADHERIN 3, P-CADHERIN (PLACENTAL)
AA425566
PROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, K
R79082
SRY (SEX-DETERMINING REGION Y)-BOX 9 (CAMPOMELIC DYSPLASIA, AUTOSOMAL SEX-REVERSAL)
AA400739
KERATIN 13
W23757
KERATIN 13
W60057
2255577
Al679149
INTEGRIN, BETA 4
AA076514
TROPONIN I, SKELETAL, FAST
AA181334
·

Table 10: ErbB2 gene subset

ERBB-2 RECEPTOR PROTEIN-TYROSINE KINASE PRECURSOR
AA025141
ERBB2
AA481939
ERBB2-POLYA
X03363
V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2
(NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG)
AA443351
V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2
(NEURO/GLIOBLASTOMA DERIVED ONCOGENE HOMOLOG)
AA025141
GROWTH FACTOR RECEPTOR-BOUND PROTEIN 7
H53703 STEROIDOGENIC ACUTE REGULATORY PROTEIN RELATED
AA504710
68400
T57034
68400
T57034
SWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN,
SUBFAMILY E, MEMBER 1
W63613
TNF RECEPTOR-ASSOCIATED FACTOR 4
AA598826
347348
W81186
FLOTILLIN 2
R73545
TGFB1-INDUCED ANTI-APOPTOTIC FACTOR 1
AA446222

TISSUE FACTOR PATHWAY INHIBITOR (LIPOPROTEIN-ASSOCIATED COAGULATION INHIBITOR) T47454
ALDEHYDE DEHYDROGENASE 1, SOLUBLE AA664101
HOMO SAPIENS MRNA FOR KIAA0758 PROTEIN, PARTIAL CDS N95226
VON WILLEBRAND FACTOR AA487787
PLATELET/ENDOTHELIAL CELL ADHESION MOLECULE (CD31 ANTIGEN) R22412
MANIC FRINGE (DROSOPHILA) HOMOLOG H22922
INTERCELLULAR ADHESION MOLECULE 2 R21535
245147 N76361
REGULATOR OF G-PROTEIN SIGNALLING 5 AA668470
TEK TYROSINE KINASE, ENDOTHELIAL (VENOUS MALFORMATIONS, MULTIPLE CUTANEOUS AND MUCOSAL) H02848
LIM BINDING DOMAIN 2 H74106
KINASE SCAFFOLD PROTEIN GRAVIN AA478542
359722 AA011182
TYROSINE KINASE WITH IMMUNOGLOBULIN AND EPIDERMAL GROWTH FACTOR HOMOLOGY DOMAINS AA432062
CD34 ANTIGEN AA434483
HUMAN DNA SEQUENCE FROM CLONE 1033B10 ON CHROMOSOME 6P21.2-21.31. CONTAINS THE BING5 GENE, EXONS 11 TO 15 OF THE BING4 GENE, THE GENE FOR GALT3 (BETA3-GALACTOSYLTRANSFERASE), THE RPS18 (40S RIBOSOMAL PROTEIN S18) GENE, THE SACM2 N78611
69672 T53626
HOMO SAPIENS KDR/FLK-1 PROTEIN MRNA, COMPLETE CDS AA026831

Table 12: Stromal/Fibroblast Gene Subset

MUSCULIN (ACTIVATED B-CELL FACTOR-1)
AA470081
COLLAGEN, TYPE V, ALPHA 1
R75635
471748
AA035018
SMOOTH MUSCLE ACTIN, ALPHA2
AA040169
TRANSGELIN/SM22
AA010664 SMOOTH MUSCLE PROTEIN 22-ALPHA
AA010664
LUMICAN
AA035657
FIBULIN 1
AA614680
COLLAGEN, TYPE VI, ALPHA 3
R62603
HOMO SAPIENS OSF-2 MRNA FOR OSTEOBLAST SPECIFIC FACTOR 2 (OSF-
2P1), COMPLETE CDS
AA598653
COLLAGEN, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV,
AUTOSOMAL DOMINANT)
T98612
COLLAGEN, TYPE I, ALPHA 1
W90360
COLLAGEN, TYPE I, ALPHA 2
AA490172
COLLAGEN, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV,
AUTOSOMAL DOMINANT)
AA044829
COLLAGEN, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV,
AUTOSOMAL DOMINANT)
T98612
COLLAGEN, TYPE I, ALPHA 2
W93067
THY-1 CELL SURFACE ANTIGEN
AA496283
HOMO SAPIENS, ALPHA-1 (VI) COLLAGEN
AA046525
COLLAGEN, TYPE VI, ALPHA 1
AA047209
COLLAGEN, TYPE VI, ALPHA 1
AA047209
HUMAN ALPHA-2 COLLAGEN TYPE VI MRNA, 3' END
AA633747 HUMAN METHIONINE SYNTHASE MRNA, COMPLETE CDS
HOWAN METHIONINE SYNTHASE WRNA, COMPLETE CDS
265694
N25353
142000

Table 13: B-cell gene subset

IMMUNOGLOBULIN GAMMA 3 (GM MARKER) AA663981
COLONY STIMULATING FACTOR 1 (MACROPHAGE) N92646
NEUTROPHIL CYTOSOLIC FACTOR 1 (47KD, CHRONIC GRANULOMATOUS DISEASE, AUTOSOMAL 1) AA489666
IMMUNOGLOBULIN LAMBDA-LIKE POLYPEPTIDE 2 W73790
IMMUNOGLOBULIN LAMBDA LIGHT CHAIN R50297
HUMAN REARRANGED IMMUNOGLOBULIN LAMBDA LIGHT CHAIN MRNA N64851
HUMAN REARRANGED IMMUNOGLOBULIN LAMBDA LIGHT CHAIN MRNA T67053
HUMAN IG J CHAIN GENE H24896
IMMUNOGLOBULIN J CHAIN H24896
HUMAN IG J CHAIN GENE T70057
MAJOR HISTOCOMPATIBILITY COMPLEX, CLASS II, DQ BETA 1 R73128
IMMUNOGLOBULIN MU H73590
EARLY DEVELOPMENT REGULATOR 2 (HOMOLOG OF POLYHOMEOTIC 2) AA598840
MAX-INTERACTING PROTEIN 1 AI087032

MESENCHYME HOMEO BOX 1
AA426311
INSULIN-LIKE GROWTH FACTOR 1 (SOMATOMEDIN C) AA456321
CYCLIN-DEPENDENT KINASE INHIBITOR 1C (P57, KIP2) R81336
78946
T61792
FATTY ACID BINDING PROTEIN 4, ADIPOCYTE AA046090
FATTY ACID BINDING PROTEIN 4, ADIPOCYTE AI652163
FATTY ACID BINDING PROTEIN 4, ADIPOCYTE N92901
MDGI/FATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART AA128926
CD36 ANTIGEN (COLLAGEN TYPE I RECEPTOR, THROMBOSPONDIN RECEPTOR) R09416
CD36 ANTIGEN (COLLAGEN TYPE I RECEPTOR, THROMBOSPONDIN RECEPTOR)
GLUTATHIONE PEROXIDASE 3 (PLASMA)
AA664180
FOUR AND A HALF LIM DOMAINS 1 AA456394
ALCOHOL DEHYDROGENASE 2 (CLASS I), BETA POLYPEPTIDE N93428
AQUAPORIN 7 H27752
484535
AA036974
LIPOPROTEIN LIPASE AA633835
GLYCEROL-3-PHOSPHATE DEHYDROGENASE 1 (SOLUBLE)
AA192547
RETINOL-BINDING PROTEIN 4, INTERSTITIAL T72220
INTEGRIN, ALPHA 7
AA055979
85660 T62068
PHOSPHOLEMMAN
H57136
AQUAPORIN 1 (CHANNEL-FORMING INTEGRAL PROTEIN, 28KD)
H24316
APOLIPOPROTEIN A-I R97710
SMALL INDUCIBLE CYTOKINE SUBFAMILY A (CYS-CYS), MEMBER 14 R96668
PEROXISOME PROLIFERATIVE ACTIVATED RECEPTOR, GAMMA
AA088517
ENDOTHELIN RECEPTOR TYPE B H28710

Table 15: Macrophage gene subset

ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY SX WARNING ENTRY !!!! [H.SAPIENS]
T94293
CHITINASE 1
Т94272
53341
R15934
SMALL INDUCIBLE CYTOKINE SUBFAMILY A (CYS-CYS), MEMBER 18, PULMONARY AND
ACTIVATION-REGULATED
AA495985
FOLYLPOLYGLUTAMATE SYNTHASE
R44864
LYSOZYME (RENAL AMYLOIDOSIS)
N63943
LYSOZYME (RENAL AMYLOIDOSIS)
N63943
TRANSCRIPTION FACTOR AP-2 ALPHA (ACTIVATING ENHANCER-BINDING PROTEIN 2
ALPHA)
N63770
LIPASE A, LYSOSOMAL ACID, CHOLESTEROL ESTERASE (WOLMAN DISEASE)
AA630104
CD68 ANTIGEN
AA421296
ACID PHOSPHATASE 5, TARTRATE RESISTANT
R08816
FC FRAGMENT OF IGE, HIGH AFFINITY I, RECEPTOR FOR; GAMMA POLYPEPTIDE
R79170
CATHEPSIN Z
AA488341

Table 16: T-cell gene subset

INTERLEUKIN 10 RECEPTOR, ALPHA
AA437226
INTEGRIN, ALPHA L, CD11A
R48796
742143
AA406027
T-CELL RECEPTOR, BETA CLUSTER
N91921
80186
T64192
T-CELL RECEPTOR, DELTA (V,D,J,C)
AA670107
ESTS, WEAKLY SIMILAR TO S-ACYL FATTY ACID SUNTHETASE THIO ESTER HYDROLASE, MEDIUM
CHAIN [R.NORVEGICUS]
AA470066
LYMPHOCYTE-SPECIFIC PROTEIN TYROSINE KINASE
AA420981
CD3D ANTIGEN, DELTA POLYPEPTIDE (TIT3 COMPLEX)
AA055946
CD3G ANTIGEN, GAMMA POLYPEPTIDE (TIT3 COMPLEX)
T66800
TRANSCRIPTION FACTOR DP-2 (E2F DIMERIZATION PARTNER 2)
AA465444

ø	
囨	
O	
۳	

_														_																								
MDA-MB-321	ARRY11X	1	-4.215	-0.4644	-1.829		1.952	0.36	1.09	0.53	-0.205	0.49	0.2456	0.59	0.3	2.122		-0.2988	1.314	3.454	-0.34	0.33		0	1.53	-0.23	-0.585	0.3812	-1.366	0.145	1.36	1.4	1.555	2.74	1.405	1.17	0.1	-0.07594
HUVEC	ARRYGX	1	0.4644	0.475	1.14	-0.01938	1.442	1.209	1.389	0.4894	-0.5456	0.5794			1.189	0.6119	0.8456	0.6306	-0.7366	-0.01656	-1.801	0.06937		-1.291	0.4694	0.6894	0.8144	0.000625		2.154	1.209	1.009	0.7841	-0.7306			3.429	2.253
HMVEC	ARRY7X	1	0.065	0.3356	0.3706		1.882		1.5	0.95	0.075	0.13	0.3056	0.22	0.53	-0.6775		-0.3788	1.484	-0.2859		0.26		89.0-	1.68	1.17	1.115			-1.435	-1.81	1.84	2.425	3,46			2.34	1.984
184B5	ARRYOX	1	-0.4656	-2.595	-1.04	-1.559	-2.018		-0.5506	-0.8606	-0.4056	0.3194	-0.245	-0.2206	0.4994	-1.948	-2.544	0.4706		-0.9466	-1.071	-1.001		-0.1406	0.6894	-2.131	-3.336	0.2606	-1.217	-1.676	-0.9706	0.3894	0.09406	0.1994		0.3794	-1.201	
184A1-LATE	ARRY1X	1	-0.1831		0.2825	-0.5369			-0.5581	-0.8081	-0.5831	-1.238	0.6275	0.6619	-0.4481	-1.936		-0.5069	-0.5741	-1.394	-0.5681	-0.7181	-0.8875	-0.5181	-0.7181	0.5719	-0.4731	0.8831	-0.2741	1.537	-0.1981	-0.3481		0.2219		-0.02812	-1.168	0.03594
Н	ARRYSX	1	0.04438	-0.525	-0.65		-0.2581	-0.1206	0.1194	-0.000625	0.6044	-0.01062			1.409	1.012	1.336	0.5706	1.673	0.6934	-1.211	-0.5806	-0.53	-0.5006	-0.8506	0.4194	0.5844	0.9506	2.123	-0.7456	-0.000625	-0.5306	-0.2859	-1.231	-1.086	-0.5206	-0.02063	0.3134
HMEC-C_CONFL2	ARRY3X	1	-0.045	-2.014	0.6705	-0.4388	-0.6375	-0.33	-0.47	-0.3	-0.175	0.47	0.8356	-2.91E-09	-0.43	-1.348	-0.6638	0.7812	0.7141	-0.02594	-0.27	-0.64	-0.4894	-0.56	0.3	-0.64	-1.065	0.5912	3.094	-0.465	-0.83	-2.91E-09	-0.1053	0.93	2.095	-0.2	0.81	0.2341
₹	ARRY4X	1	-0.5431	-0.8125	0.4425	1.693			-0.2781	0.3319			0.8975	0.2519	-0.4881	1.184	1.438	-0.4669	0.01594	0.01594	1.952	-0.9681	2.583	0.5119	-0.1981	-0.07813	-1.203	0.3231	3.056	-0.7331	-0.8881	-0.7681	0.01656	-0.5381	0.5769		0.3719	-0.1441
HMEC-C	ARRY2X	11	0.2038	-0.03563	-0.1206	0.05	-0.4288	-0.1513	-0.07125	-0.6612	0.4538	0.6588	0.2644	-0.3812	0.01875	-1.059	-0.755	-0.86	1.353	0.7628	0.2587	-0.3913	-0.1306	0.05875	-1.161	-0.1513	-0.4663	-1.08	1.793	-0.7863	0.1288	-0.1312	-0.01656	-0.4713	-1.156	-0.4612	0.4687	0.4828
GWEIGHT			1	1	1	1	1	1	1	1	1	1	1	1	Ŧ	ਜ 	1	1	F	1	1	T	Ŧ	1	1	F	Ŧ	1	F	Ŧ	1	1	키	17	Ŧ	1	1	Ŧ
			1	2	3	4	5	9	7	8	6	10	=	12	13	14	15	16	17	18	19	20	71	22	23	24	22	56	27	82	52	8	ᇎ	32	33	X	33	36

-

<u>o</u>
丒
ص
_

																			•																	•		
MDA-MB-321	ARRY11X	2.04	-0.6075	-1.05	1.265	1.64	2.53	-0.47	-0.05594	-0.7475	1.076	1.921	-0.4144	0.4812		1.911	2.45	1.969		3.982	-0.1075	-0.975	-0.2575	2.34		0.025	-0.91	-1.419	0.1712	-0.89	0.11		-0.045	0.98	-0.35	-0.4	-4.02E-09	1.33
П	ARRY6X	2.869	3.262	3.069	2.244	2.299	3.129	2.789	2.133	0.3019	0.425	2	3.195	4.131	2.959	3.561	3.229	4.498	6.48	2.552	4.922	7.354	5.242	8.849	4.698	8.644	4.829	5.331	4.221	5.629	6.439	4.629	3.864	689.9	4.389	2.999	3.279	4.689
HMVEC	ARRY7X (1.96	3.412	3.13	1.445	1.77	2.65	1.94	3.424	2.002	1.016	2.731	1.026		2.87	3.611	4.83	3.719	7.041	5.022			4.462	2.66	3.969		5.39	5.261	5.661	6.78	7.67	5.83	3.975	6.11	5.47	3.05	3.99	4.66
18485	ARRY0X	-1.671	-1.178	-1.421		-1.821	-1.921	-0.7706	0.1734	0.4819	-0.865	0.86	-1.075	-1.719	-1.091	-0.5094		-1.122	3.26	-0.5281		0.2944	-2.428	-2.071	-1.072	-1.146	0.06937		-1.399	-2.021		-1.851	-0.3656	-0.01063	2,719	0.7794		-1.641
184A1-LATE	ARRY1X	-2.208		-1.458		-1,398	-0.1381	-0.2481	-0.01406	0.8744	-0.2425	-0.4475		-4.047	-0.5781	0.7531		0.03094		0.4644	-0.2756	0.09688		-0.05812	-0.02906	0.9669	0.2419		0.1631	-1.068	-0.4381		-0.1431	-0.1681	0.8319	1.532		-0.4781
П	ARRY5X		-1.118	-1.971	-1.896	-1.821	-1.321	-0.1306	-0.4666	2.252	-0.025	-1.21	-0.175	-0.7894	-1.281	0.1906	2.589	-1.752	-0.68	-0.09813	-0.6081	-0.8856	-0.3881	-1.041	-1.592	-1.286		-2.129	-1.239	-0.1406	-0.7406		0.02438	-0.000625	2.079	0.6594	-1.331	-1.781
HMEC-C_CONFL2	ARRY3X	-1.22	-1.278	96.0-	-2.365	-1.34	-0.8	-0.14	- 0.01406	-0.2775	0.1456	-1.559	0.005625	1.941		1.551	-0.55	0.4491	-1.159	0.2125	0.2025	0.755	1.132	-0.19	-0.5009	-0.345	-2.91E-09	-0.6488	-0.4988	-0.24	-0.51	-0.23	-0.055	-2.91E-09	0.57	-0.07	0.19	-0.78
Z	ARRY4X	-0.7681	1.014	0.7819		-1.098	-1.198	-0.6981	-0.06406	0.1244	0.2575	-0.5675	0.3375						1.423	0.5244		1.047	1.754		-0.1891	0.7969		0.1131	0.4531	1.572	0.05188	0.7219	-0.2431	-0.1181		-0.2181	1.792	0.2619
	ARRYZX	0.06875	-0.8188	-0.2612	-0.9263	-0.6712	-0.1512	-0.3512	-0.07719	-0.2488	0.02438	-0.1206	-0.005625	-2.26E-09	-0.9212	1.87	-0.03125	-1.332	0.1494	-0.8588	0.3212	-0.7462	1.921	-0.8612	-0.5622	-1.036	-0.3012	-2.26E-09	-2.26E-09	0.1588	-0.1112	-1.161	0.1838	0.2188	0.3787	-0.4612	-0.3013	-0.8213
GWEIGHT		1	F	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Ŧ	T	1	1	1	1	1	1	F	1	1	1	1	1	ī	1	Ŧ	1	1	1
		37	38	39	40	41	45	43	44	45	46	47	48	49	20	51	25	53	54	25	26	22	58	59	9	61	29	63	64	92	99	29	89	69	70	71	72	73

																															_		_			_	
MDA-MB-321	1.2	-1.399		-0.47	0.04	1.022	0.75	-1.541	-0.07188	-0,2294	0	-0.495	-0.13	0	-0.2088	1.921	2.649	0.9513	1.051	-1.106	-1.09	2.598	99.0	1.04	-3.156	-2.391	-2.48	-3.27	-1.731	-1.142	-0.455	-0.85	1.728	0.2	1.062	0.045	-0.31
HUVEC	2.159	3.621	3.696	2.829	1.599	4.302	4.329	3.218	5.727	5.98	3.749		3.319	3.249		3	2.538	3.271	3.681	3.203	4.189	2.257	2.979	3.319	2.733	2.708	3.249	3.069	3.348	2.237	2.664	2.119	3.297	1.499	2.392	2.514	4.239
HMVEC	2.34	3.861	3.907	3.03	1.07	3.602	3.61	1.659	4.528	4.631			-0.13	1.43		1.211	3.469	3.081	3.891	3.124		3.098	2.96	3.05	2.154	1.999	2.18	2.41	1.789	0.5781	2.205	1.92	3.128	8.0	1.592	4.185	7.29
184B5 ARRYOX	-1.391	0.2306	0.6262	-0.2906	-0.4906	-1.198	-0.9206		-1.723	-1.08	-0.2406		-1.181	-2.691	0.4706	-0.64	-2.772	0.000625	0.000625			-2.973	-3.211	-4.061	-2.787	-1.022	-2.751	-3.801	-2.682		-1.266	-2.081	-2.273	-0.6206	-0.1881	-1.376	-1.331
184A1-LATE ARRY1X	-0.06813	0.3831	-0.8112	-0.6281	0.3719	1.974	1.642	-0.7991	-0.88			-0.7931	0.2519			-0.2775	-1.929	-0.5169	-0.4369	-0.01406	-1.688	-0.05	-3.168	-3.898	-0.8041	0.3409	-0.3881	-0.3781	-2.099	-0.93	-1.423	0.2419	-0.53	-0.03813	0.1844	-1.533	-1.008
184AA ARRYSX	-0.01063	-0.009375	0.2063	0.2094	1.159	3.042	2.609	1.778	-1.063	-0.85	-1.261	-1.166	-1.541	0.8994	-1.709	-1.12	-0.9716	2.491	3.011	2.273	3.739	2.167	0.7294	0.6294	0.6034	0.5484	0.4294	0.6394	2.248	0.8675	0.7444	0.1494	0.8275	0.4994	0.2519	0.8944	1.679
HMEC-C_CONFL2 ARRY3X	-1.22	0.1312	0.3569	0.16	0.89	0.5125	0.58	0.7591	-0.4619	-0.4994	-0.1		1.03	1.27	-0.2988	0.8206	-0.09094	1.831	1.371	1.544	2.08	0.008125	-2.91E-09	-2.91E-09	0.3941	-0.04094	0.09	-0.05	1.669		-0.125	-2.91E-09	1.228	0.05	-0.0375	0.015	0.95
HMEC+INFA ARRY4X	-0.8881	-0.06687	-0.8512	-0.2381	0.7719	1.144	-0.2981	0.7209	0	-0.2575		0.7169	2.112	1.492		1.032	0.09094	2.373	2.193	1.626	2.592	0	-0.1881	-0.3681	0.07594	0.04094	-0.1281	0.2419	0.2609	0	-0.6131	-0.1581	0	-0.8581	-0.05562	0.4969	1.242
HMEC-C ARRY2X		-2.26E-09	-0.1244	0.2688	-0.1312	1.121	1.389	0.9078	-0.1331	0.1794	0.3188	3.004	4.229	2.049	-2.26E-09	-0.03063	0.1478	2.79	2.8	1.673	2.769	0.6269	1.029	1.049	1.503	1.188	1.399	1.759	1.758	0.4769	0.2937	-0.2912	1.667	-0.4313	0.4312		2.269
GWEIGHT	Ŧ	1	1	1	1	1	. 1	Ŧ	1	1	1	1	Ŧ	1	17	Ŧ	F	ᆔ	Ŧ		#				1		1	F	+1	=	1	큐	1	1	1	1	ī
	74	75	76	77	78	79	8	81	82	83	84	82	88	87	88	8	8	91	92	93	8	95	98	97	8	8	<u>1</u>	텵	102	E E	104	105	106	107	<u>8</u>	109	110

Table 2

~
ø
囨
ㅁ

MDA-MB-321	ARRY11X	-0.78	0_	0	0.88	2.438	2.54	2.728	-2.349	0.00125	0.91	-2.132	-0.015	-2.652	5.055	2.23	1.69	1.432	1.259	1.546	0.72		4.59	1.71	-0.5	-0.8637	-1.47	-1.3	2.72		0.97	-0.24		-0.7	-0.025	-1.711	-1.22	i
HUVEC	ARRY6X	3.379	1.219	2.309	3.059	5.377	5.029	5.357	4.47	2.261	2.209	3.037	2.954	3.127	6.744	3.239	4.079	3.922		2.576	2.319	2.383	4.579	3.469	2.019	2.216	2.449	1.689	-1.461	-1.001	-0.2406	-1.441	-2.151	-2.421		-1.672	1.489	
HMVEC	ARRY7X		0.87	2.37	2.63	4.738	4.57	4.018	1.731		2.03	3.658		2.468	6.655		2.65	2.422	0.8591	2.686	2.51	3.404	3	89.9	2.4	2.166	-		-0.29		-0.31		-1.37	-1.26				-
184B5	ARRYOX	-1.201	-0.5706		-1.451	-1.923	-1.381	-1.873	0.03	0.000625	-2.681				-0.05562	-0.5106	-3.281	-1.598	-1.422		-3.651		-1.791	-0.1006	-1.071	-1.104	0.9794	0.4194	-1.001	-1.071	0.3794	-0.2206			0.5844	0.8084	-0.3906	3.729
184A1-LATE	ARRY1X	-0.1581	0.3119		-1.608	-2.56	-1.688	-1.83	0.6725			-2.79E-10		1.96	-1.063	-1.288	-2.438	-0.5556	0.0009375		-2.668		-0.2881	2.702	0.8019	1.378		-0.8281	-1.158	-0.6981	0.05188	-0.1181		0.7019	-0.7231	-0.1291	-0.6981	
П	ARRY5X	1.299	-0.1306		-0.4406	-0.5425	-0.2606	-0.4225	-0.03	-2.639	-2.521	-3.023	-2.526	0.6775	1.954	-0.000625	-0.5206	-0.7381	-0.2116	-2.714	-1.411		-2.411		0.2094	-0.3844	0.2894	0.1194	-1.261		-1.041	-0.7806	-2.041	-1.111		0.1284	1.739	-0.4706
HMEC-C_CONFL2	ARRY3X		0.73	1.13	0.5	-0.6819	-0.51	-0.5519	0.5306	-0.5788	-2.26	-1.622	-1.155	1.738	. 0.035		-1.02	-0.4275	-1.271	-0.8738	-2.91E-09		-0.89	-0.74	86.0-	-0.3838	-0.29	10.0	0.98		-0.44	0.84	0.33	0.29	0.025	1.079	0.46	4.36
HMEC+INFA	ARRY4X	1.262	0.4319	1.502	0.5119	0	0.1519	0	-0.4275		-0.3781		0.4369	0	2.717	1.742	-1.558	-0.09562	-0.2291		-0.8581	-0.1841	-0.7881	-0.09812		0.01813		0.5319		1.332	٩	1.022	1.112	0.6519	0.4669		0.6219	
HMEC-C	ARRY2X	1.559	-0.2812	1.439	1.329	1.117	1.269	1.367	-0.1706	-2.19	-2.321	-0.6731	-1.146	0.4369	4.174	2.089	-0.4912	-0.1188	-0.002187	-0.535	-1.081	-0.5472	0.1987	-0.2812	-0.4712	-0.575	-1.131	-0.1912	-0.1113	-0.1113	-0.4512	1.769	0.01875	0.2988	0.3438	2.018	1.599	4.549
GWEIGHT		1	F	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	11	1	1	1	1	1	Ŧ	1	T	1	1
		111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147

۰	•
•	υ
3	5
	σ
ł	_

																										_												
MDA-MB-321	ARRY11X	0.4112	1.301	-3.52	-1,86	-2.09	-0.69	0	-2.34	-2.33	-2.05	-0.5594	-0.74	0.13	-0.41	-0.3188	1.36	1.009	0.46	0.5706	-0.06	-0.66		0.2562		0.78	0.5512	-1.325	0		-0.1	-0.4644	-0.32	1.27	1		-0.2144	1.001
HUVEC	Г	0.000625	-0.12	-3,231					1.559	1.569	0.8394	-0.44	0.4594	2.169	0.1194	-0.2394	-0.8806	-1.362		0.41	-0.6506		-0.6259	-2.014		-0.5506	-0.8894		0.009375	-2.646	2.429		:	-0.4106	-0.4106			-1.379
HMVEC	ARRY7X		-0.6694						0.82	0.75	1.24	1.081	29.0	1.38			0	-0.1409							-1.166	-0.36							-0.12	-0.21	0.2			
184B5	ARRYOX	0.6906	-0.2	1.749	1.099	2.129	1.999		-0.4506	-0.3606	0.4894	0.69	-0.5406	-1.601	0.3994	-0.7494	1.709	1.698		0.57			0.1741	0.08562	-0.2066	-1.081	0.09062	0.03437	-0.7806	-1.016	-1.291	-0.145	0.4494	-0.3106	-0.07063	-0.1544	-2.165	-0.02938
184A1-LATE	ARRY1X	-0.6169	-1.927			-2.518	-1.798		4.248	-4.658	-0.8181	-0.7475	-1.178	-2.758	-0.1081	6906.0-	-0.06812			0.9625	-0.2081	0.4619	-0.02344		0.05594	0.2219		0.5969	-0.6781		-1.648			-0.4681	-1.228	-0.3119		-1.187
184AA	ARRYSX	-0.2394	1.07	3.119	2.389	3.539	3.439		1.299	1.249		0.88	1.089	0.4994	-1.411	1.261	0.7494	0.5884	-0.2806	-0.07	0.5394	-1.031			0.2234	0.2194	-0.5994	-1.086	-1.201	-0.7756	-0.7306	-0.875	0.4294	2.569	2.629	-0.5544		-1.169
HMEC-C_CONFL2	. ARRY3X	0.9112	1.191	2.34	2.04	3.07	3.18		3	3.17	1.7	2.671	1.04	1.94	1.56	0.1912	0.56	0.2191	-0.11	0.1606	0.85	-0.12		0.3862	0.3841	-0.72	0.5512	0.015	0.27	0.125	-0.64	-0.9344	-0.42	1.17	1.36	-0.3538	-1.364	0.2312
HMEC+INFA	ARRY4X	0.5031	0.9525	1.812	-0.05812	1.622	1.302		1.862	2.132	1.872	3.792	1.242	2.452	1.382	1.163	0.05188	0.1409	0.8019		-0.9981	0.3719	·	-0.3219	-0.2441		-0.2669	0.2369			1.402		-0.3981	0.1419	0.8219	2.118		-0.9869
HMEC-C	ARRY2X	2.17	1.789	2.929	1.509	5.689	2.459	2.409	2.629	2.659	1.909	3.159	2.009	4.439	2.189	1.88	0.4488	0.1678	-0.05125	0.06937	0.6087	-0.7212	0.02344	-0.085	-0.1272	-0.3213	-2.26E-09	-0.3363	-0.5412	0.2537		0.6144	-0.2312	0.8688	0.8187	0.155	0.04438	0.03
GWEIGHT		1	. 1	1	1	1	1	Ħ	1	1	1	1	1	F	1	1	1	1	Ŧ	Ŧ	=	1	1	Ŧ	-	7	T	귀	T	H	1	T	-	7	1	=		11
		148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184

Ŋ

٤.	v
C	ū
3	5
ŗ	Ū
	_

	_																																					
MDA-MB-321	ARRY11X	0.83	-0.37	-0.2788	-0.3009	0.4281	0.23		-0.91	0.3925	0.5813	0.37	-0.17	-0.6787	-0.28	-0.58	-0.4288	-1.632	-0.1138	-0.4287	0.3391	1.075	T	-0.05938	1.074	0	0	-1.8	0.72	-1		3.038	3.331	3.14	-1.429		-0.3019	-0.475
HUVEC	ARRY6X	-1.631	-1.051	-2.329	-0.1816	-1.453	-0.9706	-1.485	-1.471	-0.04813	0.000625		-1.731	-0.2694		-0.7106	-0.7394	-1.793	-0.07438	0.000625	-2.052	1.874	1.929	-1.43	0.3934	-1.531	-1.021	-1.981	0.1194	2.649		0.2275	3.1			1.389	-0.4625	-1.166
HMVEC	ARRY7X		-0.85		-1.041	-0.9919	-2.09		-1.59	0.9325	-0.1788		-0.47	-0.9888			-0.6688		0.4262	-0.1788		0.705	-0.22		0.2741	-0.14	-0.34	-1.56		0		-1.722	-1.949			-3.54E-10		
184B5	ARRYOX	-0.7006	-0.8006	-0.8194	-1.572	-1.523	-1.041	-0.895	0.7194	-0.5581	-0.9494		-1.321	0.000625		3.299	1.401	1.747	1.786	1.461		1.974	3.549	4.33	3.133	2.719	2.729	1.419	0.6794	-0.4206	0.000625	-0.6725	1.34E-09		0.000625	-0.2206	0.1875	0.1844
184A1-LATE	ARRY1X	-0.2781	-0.1081	-1.557	-1.729	-1.68	-1.198	1.568	2.912	1.374	-0.6369	-1.008	0.8519	1.063		1.272	0.2631	-2.79E-10	-0.08188	0.3931	-0.1591	0.8769	1.132	1.743	-0.07406	1.952	2.432	2.072	-1.248	-0.4781	1.393	-2.79E-10	-2.857		-0.1569	-0.1481	-0.1	-0.6531
184AA	ARRYSX	-0.8406	-0.9406	-1.219		-2.663	-1.181	-0.695	-0.000625	0.6919	-0.4694	-1.371	-1.261	-1.019		-0.03062	0.3006	-0.6625	0.5956	0.4406	-0.9216	-0.1856	-0.09063	1.26	-0.1466	1.429	1.259	2.829	-0.4606	-0.9406	-0.7694	0.0975	-2.04	1.399	-0.6694		0.4575	0.1744
HMEC-C_CONFL2	ARRY3X		92.0	-0.5988	-1.191	-0.7219	-0.66	-0.2344	0.79	-0.0475	0.4712	-2.91E-09	-0.74	-0.8788	-1.78	2.43	0.9812	1.328	-0.05375	-0.06875	-0.8809	-0.665	-1.52	0.4406	0.1241	1.46	1.76	1.17	-0.48	-0.42	-0.09875	1.418	0.5906	-0.53	0.7412	-0.24	0.5081	0.115
HMEC+INFA	ARRY4X	-0.3981	-0.3981		-0.04906	0	-0.7381		2.322	-0.7156	-0.5369	-1.038	-0.1581	0.6631	1.362	3.152	0.7431		-0.8219	-0.08687		-0.9331	-1.938		-0.5341	0.9419	1.222	0.3619	-0.09812	0.06188		0.37	-1.277		0.1931		0	1.477
	ARRY2X	0.1888	-0.06125	99.0	0.6378	0.1669	0.6488	0.2344	0.9788	-0.04875	60.0	-0.4612	0.00875	-0.61	-0.6913	-0.3812	-2.26E-09	-0.6031	-0.125	-0.24	-1.232	-0.7663	-1.331	0.05937	-0.1672	1.089	1.749	0.8088	-0.4613	-0.2312	-0.33	0.8469	-1.641	1.309	-0.11	1.339	0.9969	0.7938
GWEIGHT		1	1	ī	1	1	1	1	1	1	1	1	1	1	1	1	F	1	F	1	1	17	T	1	F	1	1	H	T	T	T	F	1	1	T	1	1	11
		185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221

SWEIGHT	HMEC-C	HMEC+INFA	HMEC-C CONFL2	184AA	184A1-LATE	18485	HMVFC	HINEC
	ARRY2X	ARRY4X	ARRY3X	ARRYSX	ARRY1X	ARRYOX	ARRY7X	ARRYEX
1	1.109	1.762	0		-2.898	-2.001		-1.5
1	0.6788	-0.2681	0.99	0.4394	0.4319	-0.8706	1.2	1.3
1	1.299	0.2819	0.68	0.8294	-0.6481	-0.1806	1.04	1.59
Ŧ	-2.26E-09	-0.3769	0.09125	-0.5394	0.06313	0.3606		-1.02
1	0.3188	0.8919	0.03	-0.03062	0.6919	1.279		
1	-1.376			0.07438	0.1369	-0.6856		1.12
1	-1.732	0.1809	-1.821	-1.482	-1.999		-1.301	1.0
1	0.3669	0	-1.202	0.3375	-0.32	-2.003	0.09812	1.01
F	-0.7012	0.08188	-1.33	-0.7306	0.2719	0.1894	-6.89E-09	0.179
1	-0.3212	-1.368	-0.26	-0.3206	0.7519	0.1594	-0.08	0.179
1.	0.4888	-0.3181	0.02	0.4494	-0.1781	0.8794	0.95	0.489
1	1.519							
1	0.2788	-0.1981	-2.91E-09	0.4694	-0.3481	0.3694	0.42	0.599
1	0.2488	0.1819	0.43	-0.000625	-0.6781	0.6194	-5.59E-09	0.725
1	-2.26E-09	6989'0-	0.2012	-0.1194	0.01313	-0.3094		
1	-2.26E-09	-0.1969	-0.4088		1.183	0.5006	1.441	1.16
1	-2.26E-09	2.363	-0.8288	-0.02938	-0.3669	0.2506		-0.559
-	1.119		0.67	-1.031	0.1619	-0.8906		
1	-0.4312	-1.038	-0.88	0.7594	0.3019	-1.321	99.0	0.459
1	-0.4712	-1.138	-1.06	0.6994	0.7019	-1.251	0.87	0.575
1	0.01687	-0.24	0.4681	1.347	-2.79E-10	-1.423	1.568	0.617
1	1.439	0.2619	0.02	0.01938	-1.178	-2.001	0.73	-0.260
ī	1.159	0.1719	0.84	0.5694	-0.2681	-1.051	0.87	0.649
1	1.044	0.7675	0.8556	1.715	1.588	-0.045	0.04562	1.18
11	-0.003125	0	-0.6819	0.3975	-0.34	-0.3725	1.088	1.24
Ŧ	0.3787	-0.6081	0.27	0.09937	-0.02813	-0.2206	0.76	0.159
17	-0.2612	1.712	. 0.7	-0.9206	-0.3681	1.829	2.79	
1	2.081	1.324	0.9425	1.482	-0.3256	-0.01813		
1	0.1288	2.042	0.83	0.3494	-0.4381			
Ŧ	0.3788		60.0	0.4894	-0.6081	-0.6406		2.33
1	0.2288	-0.7581	0.81	-0.000625	-0.5981	-1.051	1.86	4.02
T	-0.9562	-2.433	-1.075	-0.4456	0.3869	-0.8756	2.085	0.964
1	-1.546	-2.143	0.105	-0.3256	0.9969	1.304	0.915	0.484
T	-0.02062		-1.079	0.38		66'0		0.0 -
뒤	0.8028	0.2359	0.2141		0.03594	-0.5966		
=	-2.26E-09		-0.8388	-0.6794		0.1406		5.51
1	0.2991	-0.1578	0.2703	-0.5303		-0.7903		3.1

2000
-2 010
0.000625 -2.0
-1.437 0.4806
0.7406 1.181 -1.437 0.6775 -2.79E-10
0.4212 0.6681 C
0.1031
-2.26E-09 0.1031 1.037 0.05
7
261 262 263

œ

The same of		
-		

MDA-MB-321	ARRY11X	1.108	1.37	1.186	0.345	-2.72	-0.455		1.775	0.92	0.6741	ō	0.71	0	1.311	0.4391	0.39	0.47	0.71	0.3312	0.4512	-0.5947	2.53	2.2	1.661	2.079	0	-0.87	-1.19	-0.6819	-0.3519	0.025	-0.02	-0.3394	0	0	1.374	0.885
HUVEC	ARRY6X	0.7675		1.025	1.384	-1.501	-7.016		0.7644	-0.4106	-0.4466	0.7394	-2.531	-0.7906	0.000625	0.03844	0.9194	0.2794	0.5694	0.1606	0.000625	0.4647	0.4194	0.7394	0.9606		0.2894	0.6894	0.4994	0.4075	0.5575	0.3744	0.8094	0.32	0.7894	0.7694	0.3534	
HMVEC	ARRY7X	1.428		1.506	3.775				2.055	0	-0.03594	1.56	96.0-	-0.67	1.061	0.009062	0.42	0.55	1.77	0.1812	0.5012	1.095	0.42	0.56	0.4612	0.3191	0.78	1.01	0.49	0.1281	0.02812		1.28	0.8206	1.5	1.29		
18485	ARRYOX	0.9875	-0.2606	0.275	0.2344	-0.2506	0.7344	0.8806		-0.7306	-0.7466	1.159	0.06938	1.979	1.591	2.218	1.339	1,139	1.399	1.031	1.141	1.325	-1.441		0.000625	-1.842	0.1594	1.929	1.589	1.927	1.747	2.054	1.369	1.12	1.339	1.349	-0.9166	
184A1-LATE	ARRY1X	-2.79E-10	0.4019	-0.4625	-0.6931	-1.108	0.4569	1.473		0.4119	0.03594	-0.5781	0.2819	1.572	2.143	2.361	1.762	1.662	1.642	1.593	2.163	-0.3928	-1.748	-1.418	-1.917	0.09094	-0.3881	0.9819	0.6619	2.68	1.48	2.187	1.162	0.5825	0.9219	1.082		1.447
184AA	ARRYSX	-0.0825	0.06938	0.725	0.2144	1.409	1.644	1.851	4.834	0.5594	0.6134	1.749	1.479	1.569	1.651	2.048	1.619	0.8094	1.759	0.4306	1.141	1.285	-0.000625	0.1394	0.4206	2,568	0.4394	2.679	1,889	2.007	2.007	2.044	2.909	1.61	2.779	2.939	0.3734	1,314
HMEC-C_CONFL2	ARRY3X	0.7081	1.24	1.366	1.075	0.22	0.455	2.201	3.235	0.95	0.8241	0.88	0.31	1.67	1.311	0.3891	0.24	0.25	0.34	0.06125	0.2812	1.045	-0.46	-0.14	0.6512	3.479	1.4	0.89	1.17	1.218	1.468	1.225	3.67	3.361	3.57	3.66	0.7041	-0.465
HMEC+INFA	ARRY4X	-0.01	0.6419	0.8675	2.427	0.1419	0.5869	0.8531	1.607	0.5019	0.4059	0.6519	0.5519	0.3619	0.5931	-0.009062	0.001875	0.1619	0.03188	0.3131	0.4831	0.7872	0.1719	0.2819	0.7931	3.121	0.4019	0.7819	0.8519	0	0	0.6169	2.392	2.333	2.412	2.762	0.2259	
HMEC-C	ARRYZX	0.5469	1.469	1.234	1.854	0.5388	1.084	-2.26E-09	2.064	0.8488	0.7828	1.269	0.7288	1.419	0.98	0.07781	0.5988	0.1688	0.5088	-2.26E-09	90.06	1.614	0.7788	0.6888	0.85	3.118	1.049	0.6788	0.8088	0.8769	0.9369	1.214	4.019	3.629	4.159	4.109	0.8028	2.364
GWEIGHT		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	1	17
		596	297	298	299	300	301	305	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332

ת

•	ı
α)
Ċ	5
π	7
_	-

<u></u>		Lie.	<u></u>	110	To:	1~	110	11.0	T=-	т	<u> </u>	11.5	112	اد،		<u> </u>	<u></u>	<u> </u>		·	I	[1 ~~	<u>-</u>	ī~	<u> </u>		آج.	-	I ===			127	<u>-</u>	-	T	T.=	1
MDA-MB-321	ARRY11X	0.75	-0.09	-1.826	-4.352	-1.87	-1.196	0.2106	0.2641	1.141	0.61	0.3025	0.3025	-7.302		-4.399	-1.19	-1.499	0.2906	1.778	-0.8703	0.6913	-2.88	-0.88	-0.8909	-0.7759	0,3756	0.1312	-0.5794	1.268	0.6781	-1.27	-2.02	99'0-		0.03812	1.69	-2.45
HUVEC	ARRYGX	0.6794	-0.7506	0.6934	1.257		1.163	2.01	2.193	0.000625	1.349	0.3619	0.6319	-1.363	-1.063	0.000625	2.989	2.66	1.51	2.047	0.3891	-0.8394	-1.371	0.3194	0.4784	0.8834	2.345	1.891	1.36	-0.5525	0.6675	2.389	2.509	4,319	3.369	-0.0525	0.2594	2.009
HMVEC	ARRY7X	1.08	0.23	1.734	1.688		1.644	1.241	1.444	1.051	1.81	0.5925	0.8425	0.8781	1.158	1,161	1.79	1.301	0.8106	2.378	0.5597	0.8412	0	0	-0.08094	0.1041	2.166	1.891	1.121	0.7481	1.138	1.87	2.14	3.71	2.43	-0.5319	-0.3	
184B5	ARRYOX	0.9694	0.9994	1.763	1.697	0.5394	0.7234	1.5	-0.1766	1.441	1.019	1.042	0.9719	1.407	1.787	1.011	-0.1809	-0.07	-1.31E-09	0.7175	0.5291	0.000625	4.419	1.339	0.1184		1.075	1.011	0.31	-0.5725	-0.6825	2.589	3.219	1.909	2.059	2.167	0.1594	2.239
184A1-LATE	ARRY1X	0.06188	0.6919	0.2559	-2.79E-10	0.7219	0.5259	1.823	-0.1041	0.7931	1.222	0.2744	0.02438	1.11	1.35	0.2431	0.1816	0.1925	-0.0175	-2.79E-10	-0.09844	-0.2169	4.162	-0.4881	0.1209	-0.1841	0.0375	0.1431	-1.087	-2.79E-10	-0.79	0.4519	1.952	0.1719	2.582	1.3	0.5719	0.7319
184AA	ARRYSX	0.5694	0.1994	1.903	0.6975	1.259	1.663	0.97	0.3234	1.481	1.059	0.8719	0.8419	2.147	2.167	1.751	0.5391	0.37	1.17	1.427	1.029	1.201	1.869	1.519	0.6584	0.6034	-0.015	0.1406	-0.47	1.587	1.797	1.619	1.829	1.119	1.549	1.487	0.5394	3.779
HMEC-C_CONFL2	ARRY3X	-0.41	1.47	1.514	1.768	1.19	0.4841	-0.2894	0.1041	0.5512	-2.91E-09	0.8625	0.7525	0.8981	1.358	0.9812	1.53	1.201	0.8506	1.158	-0.7303	0.4712	1.34	1.4	0.2891	0.2641	-0.3044	-0.3688	0.8006	0.4481	1.428	99.0	1.47	2.05	1.25	1.758	-2.91E-09	3.3
HMEC+INFA	ARRY4X	-0.8281	0.3119	0.7259	0.57	0.3519	-0.4841	-0.5075	-0.5541			-0.07562	-0.3956	0	0	0.4331		0.3725	0.7025				0.2519				-0.7025		0.4425	1.48	0	0.01188		1.072	1.022	0	-0.3881	2.142
	ARRY2X	0.5188	1.409	1.653	0.9669	0.2588	0.6128	-0.2106	0.7528	0.73	1.049	0.5812	0.6712	0.4469	0.6869	0.83	1.438	1.399	0.9494	0.9769	0.09844	0.16	1.499	1.659	1.518	1.323	0.01438	-2.26E-09	1.769	2.147	1.987	0.2188	0.1488	1.109	0.9288	0.3769	0.4488	3.869
GWEIGHT		1	1	1	7	1	1	1	1	1	ᆔ	1	1	F	FI	1	F	1	17	1	파	1	=	1	1	F	1	7	1	1	=	1	1	1	Ŧ	1	1	T
		333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	320	351	352	353	354	325	356	357	328	359	98	361	362	383	364	365	366	367	368	369

2	
ø	
虿	
ō,	

ۇ ا	GWEIGHI	HMEC-C	HMEC+INFA	HMEC-CONFLZ	184AA	184A1-LA1E	18465	HMVEC	٦	MIDA-INID-321
4		ARRY2X	ARR	ARRY3X	ARRYSX	ARRY1X	ARRYOX	ARRY7X	ARRY6X	ARRY11X
370	1	3.819	2.132	3	3.629	0.2219	1.579		1.599	•
371	1	0.1269	-0.23	-0.04188	0.0175	-2.79E-10	0.0975	1.468	1.407	0.6681
372	1	-0.08625	-0.3431	0.075	1.424	1.637	0.3644	1.695	1.724	1.905
373	1	-0.5772	-0.2841	-0.9959	0.8534	0.04594	1.423	3.184	3.383	
374	1	2.264	1.967	1.885	3.004	0.8669	1.344	3.905	2.454	-0.035
375	1	2.179	1.422	1.68	0.9994	-0.2081	-0.2806	1.88	3.419	
376	1	1.38	1.433	2.131	3.011		1.621		0.000625	0.3113
377	1	1.529	2.582	2.14	0.2094	-2.138	-0.9006	2.43	0.9394	2.4
378	1	2.389	1.932	1.78	2.069	-2.428	-3.171	0.54	1.149	1.44
379	1	2.699	2.432	1.94	0.5594	-1.608	-1.581	3	0.8794	0.64
380	1	2.109	1.262	1.28	1.889	-0.01812	-0.2606	3.04	2.439	0.16
381	1	0.7328	0.1059	-0.1059	1.153	-1.294	0.1634	1.494	1.863	0.2841
382	1	1.389	0.6019	1.4	1.239	1.622	1.099	0.67	0.09938	6.0-
383	1	0.8988	0.3419	0.32	1.009	0.7919	1.619	-0.85	-1.431	1.32
384	1	0.98	0.6631	1.151	1.891	0.04313	0.000625	1.591	1.451	-0.1287
385	1	1.28	1.183	1.591	1.971	-0.1069	0.000625	2.361	1.701	0.1413
386	1	2.101	1.204	1.942	3.262	2.214	1.882		3.652	-1.688
387	-	0.2012	1.884	1.832	1.482	0.9044	2.012	0.8425	0.02187	-2.698
388	1	0.5788	0.5619	1.35	1.679	1,522	0.5194		-3.161	-4.45
389	1	1.204	1.547	0.995	1.534	0.6269	0.8344	1.875	-0.2856	-2.375
390	1	1.177	0	0.2581	0.6975	-6.25E-17	0.0575		1.957	-0.4519
391	T	0.4688	-0.3481	0.64	0.8994	0.2519	0.4994	0.52	1.219	1.15
392	1	-0.4466	-0.3334	-0.3953	0.8341	0.6766	0.4941	-0.8053	0.3341	2.245
393	1	0.3569	-2.79E-10	-0.2719	1.047	-2.79E-10	-0.4825	1.788	0.6475	1.048
394	1	0.1588	-0.6681	-0.19	0.5194	-0.3481	-1.021	1.55	1.499	-0.04
395	1	0.3688	-0.7981	-0.43	0.1794	-0.4181	0.5194	0	0.06938	0.12
396	1	0.9169	0.49	0.1381	-0.0425	-2.79E-10	0.5175			0.8881
397	1	-2.26E-09	-0.4069	-0.03875	0.7706	1.803	0.6106	0.7512	0.8506	191.1
398	1	1.239	0.3719	98'0	1.039	0.6019	1.349		-0.5106	0.26
399	1	0.1088	-0.1281	0.18	0.5194	1.102	0.7094	-0.55	-1.271)
400	1	1.829	1.672	1.62	2.359			-1.49	-1.481	
401	1	3.468	3.581	2.869	2.418	0.1209	2.668			
402	1	4.261	4.624	3.352	2.952	1.304	3.412		-3,488	-1.078
403	1	1.799	0.8919	2.2	1.779	1.772	1.919)
404	1	1.941	1.154	227.2	1.902	1.444	2.402		-2.118	-3.388
405	1	1.699	2.732	3.04	0.8994		1.389	0.49	-0.6206	
200		7 600	1 267	1 91	3 560		1.599	7.6	-3 721	20.0

C	J
Q)
3	5
'n	3

				7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			201	בויייי	ב	170 0 170
		ARRY2X	ARR	. ARRY3X	ARR	ARRY1X	ARRYOX	ARRY7X	ARRY6X	ARRY11X
407	1	2.719				0.6819	-0.1206	-0.74	-1.471	0.23
408	1	1.729	1.012	2.72	3.309	1.522	3.349	-0.62	-0.7906	-1.22
409	1	1.114	1.257	1.855	2.504	2.627	3.134	-0.545	0.9444	-0.695
410	1	1.079		1.73	1.129	0.2919	1.329		0.3694	-0.64
411	1	1.48		3.461	3.241	5.383	4.801	2.581	0.000625	-2.119
412	1	2.289	1.572	2.39	2.599	1.892	2.249	-0.21	-1.701	-2.38
413	1	2.175	1.598	2.956	3.186	2.798	3.366			-3.244
414	1	2.279	1.023	2.811	2.26	-0.3975	1.84		-0.01	-1.089
415	1	2.284		4.345	1.794	3.817	4.414			-2.695
416	1	2.749	3.152	3.33	2.439	1.032	2.009	2.77	-0.01062	-0.51
417	1	2.829	2.002	2.98	1,909	0.5719	1.479	-0.79	-0.7806	1.77
418	1	1.599	1.042	1.64	1.819	1.412	1.939		-0.8306	
419	1	2.954	2.687	1.915	1.784	2.237	2.544	-2.125	-2.136	
420	1	3.059		1.65	4.339	1.252	5.919	0.02	-0.3806	-0.98
421	1	2.7		2.501	3.461	2.293	2.671	1.041	0.000625	-0.1388
422	1	2.969	3.762	3.7	3.489	3.882	3.189		-0.4506	-1.11
423	1	3.249		3.45	4.019	3.322	4.849		-2.071	-1.43
424	1	4.349		4.33	4.669	1.982	2.079	0	0.1294	0.29
425	1	6.374		7.615	7.604	4.627	5.134	-0.175	0.2244	0.175
426	T	4.281		2		6.164	6.492			1.442
427	1	4.339		5.29	5.539	6.812	602'9		-1.781	-0.21
428	1	6.744		8.015		7.437	8.244	-1.695	-3.746	-1.695
429	1	5.899		6.95			7.929			
430	Ī	5.38		6.561	6.291	6.433	7.181		-0.4494	-0.4188
431	Ħ	3.6		3.831	3.911	4.163	4.851	-1.849	-1.489	
432	T	4.051		4.342	4.352	4.374	5.032	-1.678	-0.7481	-1.868
433	TI.	4.204		5.305	5.824	2.177	5.434	-2.225	-0.7656	-0.195
434	1	3.189		3.44	5.149	5.882	5.519	-1.17	9069.0-	1.47
435	ī	4.299		4.87	5.449	3.172	4.499	0.29	-0.7306	-0.29
436	ī	5.264		5.815	5.554	3.977	4.614	0.345	-0.7856	-0.595
437	7	4.684		4.565	5.594	3.997	4.804	-0.135	-0.9656	-1.015
438	T	690.9		89'9	6.499	3.382	4.639	-0.07	-0.3906	0.83
439	Ŧ	5.121		5.522	5.492	4.234	5.482	-0.3875	0.09187	-0.0375
440	1	3.201		2.862	3.702	3.264	3.572			
41	1	3.379	2.352		2.239	2.492	3.509		-0.3106	
442	1	3.171	4.404	3.972	1.882	-1.256	1.972	0.7025	0.1719	-1.048
443	-	7 134		3 225	770 0	50,	,,,,			

1	r	۰
	¢	υ
•	Ċ	3
1	r	Q
1	۰	

<u> </u>	י י
	1 272
10	2,192
2	1.372
4	2.184
2	3.272
2	2.732
2	3.512
4	0.9544
7	3.222
7	1.827
2	3.822
8	2.608
2	3.422
3	3.133
2	2.082
2.	1.562
2	1.812
7	1.432
2	1.662
7	2.132
7	1.502
0	0
2	0.7375
25	0.8875
7	1.427
7	2.602
4	1.504
2	1.372
6	0.2719
8	1.8
4	1.394
7	1.262
	0.5619

r	٧
(ņ
7	5
ŗ	ū

GWEIGHT HMECC <												_					_																						
OweIGNT HWEC-C HWEC-LINEA HWEC-C CONET 1840A 1840LATE 1840E HWEC-C HWEC-LINEA ARRYNX ARRXNX ARXXX ARRXNX ARXXNX ARXXNX ARXXNX ARXXNX ARXXNX ARXXN	MDA-MB-321	ARRY11X	0.1525	0.9212	0.77	1.32	1.621	2.131	1.811	-0.2159	-0.1819	-0.71	2.04	2.38	0.16	0.33	2.201	2.001	2.591	1.41	0.2791	0.5125	0.95	-3.512	-0.1694	-0.09		-1.999	-1.8		-3.29	-1.502			-1.025	-0.67	-0.5575	-1.012	-0.61
GWEIGHT HMEC-C HMEC-C CONFL2 184AA 184AL-LATE 194BS HMMCCA 1 ARRYAX ARRYX ARRYX ARRYX ARRYX ARRYX		ARRY6X	-0.1681	9009.0	2.129	-0.1406	0.000625	1.171	0.5706	2.323	2.267	1.299	0.7094		0.6594	0.2294	0.1006	0.000625	0.000625	0.2706	-1.382	-2.148	-0.6406	1.167	1.21	0.4694	0.4834	0.000625	2.149		1.489	2.167		0.6575	1.424	-0.2506	0.9519	-1.263	-0.4906
GWEIGHT HMEC-C HMEC-C_CONFL2 184AA 184A1-LATE 18 1 0.06313 -0.0312 0.08313 0.08313 0.08313 0.08313 0.08313 0.08313 0.08313 0.08313 0.08313 0.08313 0.08313 0.08314 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0258 0.0331 0.044 0.0834 0.0134 0.0344 0.0331 0.044 0.0834 0.0134 0.0344 0.0344 0.0304 0.0134 0.0344 0.0304 0.00334 0.0134 0.0344 0.0344 0.0344 <t< td=""><td>HMVEC</td><td>ARRY7X</td><td>-0.3375</td><td>1.271</td><td>2.47</td><td>-0.28</td><td>0.4312</td><td>0.8912</td><td>2.201</td><td>2.114</td><td>1.898</td><td>0.34</td><td>0.42</td><td></td><td>0.58</td><td>-0.85</td><td>-0.03875</td><td></td><td>-5.459</td><td>0.01</td><td>-1.841</td><td>-1.318</td><td>0.28</td><td>-0.2519</td><td>-0.3194</td><td>0.43</td><td>0.6941</td><td></td><td>1.48</td><td>-0.08</td><td>1.23</td><td>0.5581</td><td></td><td>-0.9719</td><td>0.025</td><td>0.46</td><td>2.142</td><td>-0.9619</td><td></td></t<>	HMVEC	ARRY7X	-0.3375	1.271	2.47	-0.28	0.4312	0.8912	2.201	2.114	1.898	0.34	0.42		0.58	-0.85	-0.03875		-5.459	0.01	-1.841	-1.318	0.28	-0.2519	-0.3194	0.43	0.6941		1.48	-0.08	1.23	0.5581		-0.9719	0.025	0.46	2.142	-0.9619	
GWEIGHT HMEC-C IMPEC-C IMPEC-C <th< td=""><td>184B5</td><td>ARRY0X</td><td>1.452</td><td>-0.03938</td><td>0.9394</td><td>1.209</td><td>0.6806</td><td>-0.7394</td><td>0.000625</td><td>-0.1966</td><td>-0.2425</td><td>-1.291</td><td>-1.941</td><td>-0.9306</td><td>-0.000625</td><td>-0.3606</td><td></td><td>1.361</td><td>1.401</td><td>0.5994</td><td>0.6584</td><td>1.202</td><td>1.139</td><td>0.3675</td><td>0.17</td><td>-0.8306</td><td>-0.04656</td><td>0.08062</td><td>-0.9206</td><td></td><td>0.6594</td><td>0.9375</td><td></td><td>2.117</td><td>2.844</td><td>0.6394</td><td>2.202</td><td>0.9475</td><td>0.3794</td></th<>	184B5	ARRY0X	1.452	-0.03938	0.9394	1.209	0.6806	-0.7394	0.000625	-0.1966	-0.2425	-1.291	-1.941	-0.9306	-0.000625	-0.3606		1.361	1.401	0.5994	0.6584	1.202	1.139	0.3675	0.17	-0.8306	-0.04656	0.08062	-0.9206		0.6594	0.9375		2.117	2.844	0.6394	2.202	0.9475	0.3794
GWEIGHT HMEC-C HMEC-C_CONFL2 184AA 1 CORRIGH ARRYXX ARRYAX ARRYAX ARRYSX 1 CORRIS -0.02562 1.002 0.8819 1 CORRIS -0.02562 1.002 0.5819 1 CORRIS -0.0213 0.22 -0.09062 1 CORRIS 0.0731 0.2016 0.09063 1 CORRIS 0.0731 0.2016 0.09063 1 CORRIS 0.0731 0.0781 0.07894 1 CORRIS 0.0754 0.7941 0.0574 1 CORRIS 0.0759 0.0781 0.0574 1 CORRIS 0.0759 0.0781 0.0574 1 CORRIS 0.0759 0.0774 0.0754 1 CORRIS 0.0759 0.0741 0.0574 1 CORRIS 0.0751 0.0754 0.0754 1 CORRIS 0.0751 0.0754 0.0754 1 CORRIS 0.0758 0.0754 0.0754 1 CORRIS 0.0758 0.0754 0.0754 <t< td=""><td>184A1-LATE</td><td>ARRY1X</td><td>1.034</td><td>-1.217</td><td>-1.688</td><td>0.6719</td><td>-0.9469</td><td>-0.2669</td><td>-0.04687</td><td>-0.1341</td><td>-0.79</td><td>-1.228</td><td></td><td>-1.748</td><td>-1.388</td><td>0.8119</td><td>0.4631</td><td>0.7731</td><td>0.1831</td><td>0.4119</td><td>0.0009375</td><td>-0.1556</td><td></td><td>3.72</td><td>-3.017</td><td>-1.528</td><td>-0.9641</td><td>-0.8769</td><td>0.2019</td><td>-2.628</td><td>-1.028</td><td></td><td>-1.129</td><td>-2.79E-10</td><td>-0.5231</td><td>1.952</td><td>2.334</td><td>0.52</td><td>0.4819</td></t<>	184A1-LATE	ARRY1X	1.034	-1.217	-1.688	0.6719	-0.9469	-0.2669	-0.04687	-0.1341	-0.79	-1.228		-1.748	-1.388	0.8119	0.4631	0.7731	0.1831	0.4119	0.0009375	-0.1556		3.72	-3.017	-1.528	-0.9641	-0.8769	0.2019	-2.628	-1.028		-1.129	-2.79E-10	-0.5231	1.952	2.334	0.52	0.4819
GWEIGHT HMEC-C HMEC+INFA HMEC-C CON 1 0.6812 -0.02562 1 1 -2.26E-09 0.06313 0.0 1 -2.26E-09 0.06313 0.0 1 -0.3012 0.7919 -2.291 1 -0.3012 0.7919 -2.291 1 -0.3012 0.7919 -2.291 1 -0.3012 0.7919 -2.291 1 -2.26E-09 0.06331 0.0 1 -2.26E-09 0.0831 0.0 1 -2.26E-09 0.0831 0.0 1 -2.26E-09 0.0831 0.0 1 0.588 0.3919 0.0 1 0.588 0.3919 0.0 1 0.588 0.0331 0.0 1 0.1022 0.3031 0.0 1 0.9288 0.0331 0.0 1 0.0669 0.0588 0.0588 1 0.0588 0		ARRYSX	0.8819	-0.5094	-0.09062	0.9894	-0.4594	-0.8794	0.9506	0.2634	0.2275	0.1994	-0.1306	-0.000625	0.8394	0.9494	0.2706	0.2006	0.3906	1.379	0.7784	0.2619	-0.000625	0.2075	0.57	0.08937	-0.006563	0.5506	-0.000625	-1.111	-0.3306	-0.6625	-0.06156	1.057	1.744	-0.4806	0.9719	0.8575	-0.7206
СМЕТGHT НМЕС-С НИЕС ARRY2X	HMEC-C_CONFL2		1.002	0.3212	0.2	-2.91E-09	0.4812	0.3712	1.291	0.7941	0.6481	0.64	0.03	69'0	0.44	0.37	0.4112	0.5412	0.9012	1.08	1.129	1.822	2.28	0.5181	0.8306	0.1	-0.01594	0.1712	0.42	0.92	0.11	0.1881	-0.4009	1.058	1.955	0.5	0.5025	0.01812	0.32
GWEIGHT	HMEC+INFA	ARRY4X	-0.02562	0.06313	-0.6281	0.7919	0.1731	0.9831		0.07594	0	0.4819	0.1019	-0.1081	-0.2581	0.3919	0.3031	-0.05687	0.3731	-0.03812	1.141	0.9944	1.012	0	0.2325	-0.5781	0.005938		-0.5481	0.2419	-0.1881	0	0.06094	0.05	6966'0	0.1219	-0.7656	0	
1	HMEC-C	ARRY2X	0.6812	-2.26E-09	0.5088	-0.3012	-1.08	-2.26E-09	0.3	1.753	2.027	0.5688	1.519	1.899	0.6588	0.3088	1.32	0.14	0.57	0.9288	-0.1022	0.9012	0.8788	1.007	1.509	0.2887	0.5228	90.0-	0.03875	-0.3112	0.05875	0.9969	0.1578	0.3369	0.9938	0.2988	-0.05875	0.09687	0.3387
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	GWEIGHT		FI	1	1	1	Ţ	7	1	1	1	1	T	1	1	Ħ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Ŧ
			481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	200	501	205	203	504	202	206	202	208	209	510	511	512	513	514	515	516	517

2
ø
☶
ø,

MDA-MB-321	ARRYIIX	4.044	0.27	-0.2737	-0.0475	-0.5109	-2.898	0.68	-0.11	0.7681		2.101	1.768	2.39	0.22	1.61	-0.4431	0.135	-0.57	-0.6419	-0.79	-0.76	0.745		-0.4775	-0.95	0.6247	-1.17	-1.489	-0.39	-0.18	0	-0.5988		-0.3394	-0.5288	0.55	
\neg	AKKY6X	0.6556	-0.6406	-0.7744	-1.658	0.1184	-0.2281	-0.3506		-0.1225	0.4494	0.7106	1.207	-0.8106	-1.661	-1.001	-3.524	-1.686		-1.123	-0.6706			-2.061	0.08187			-0.5606	-0.7494	0.3494		-0.6806	-1.959	-0.1906	-2.4	-1.689	-0.3506	
HMVEC	AKKY/X	-0.2738	-0.04 4	-1.124	-0.9475	-0.02094	-1.168			0.1481	-0.95	2.811	1.088	0.56		-0.47	-0.4931			-1.552	1.04	-1.91			0.1025			-0.8	-1.949	0.63	-1.41	.		-3.05			-2.89	
184B5	AKKYUX	0.1456	-0.7906	0.7856	-0.5081	-0.7216	1.952	0.3194	0.1294	0.6275	0.1294	4.151	-1.093	-1.011	1.189	0.2594	1.106	0.1444		0.7175	0.1694	2.029		-1.161	-1.438	-0.9706	-0.06594		0.000625	-1.321	1.429	1.119	-1.179	-1.041	-0.06	0.1606	-0.8406	-1.67
184A1-LATE	AKKYIX	-0.5619	0.9819	2.758	0.07438		1.624			4.86E-17		-1.197	-2.79E-10	-0.9781		0.2719	0.5987	0.1469		-2.79E-10	-0.02812	1.112	-0.5131		-2.346	-1.468	0.06656		0.07313	0.7219	0.5319	1.222	0.1331	-0.6481	2.073		0.4419	-0.8275
1	AKKYSX	1.116	2.429	1.246	1.182	0.2184	0.4519	-0.2106	0.5494	0.0975	-0.04062	0.9806	2.147	-1.151	1.159	-0.04062	0.6462	-0.2456	-0.1406	-1.133	-0.04062	-2.371		-0.000625	-0.3281	-1.361	1.684	2.339	0.9406	0.9294	1.029	1.179	-0.6894	1.219	-0.65	-0.4594	-0.8106	-1.12
HMEC-C CONFL2	AKKY3X	7.096	1.38	1.026	-0.2975	0.09906	0.7925	0.12		-0.2619	0.36	0.4512	0.8081	0.72	0.62	0.78	0.2669	-0.065	0.5	0.2281	0.1	-0.43	1.025	1.96	0.3325	0.64	0.6047	0.07	0.1812	0.25	-1.15	96.0	-0.3088	-2.91E-09	9099'0	0.6112	-0.62	
₹	AKKY4X	1.118	-0.1381	-0.7819	-0.2756	0.02094	0.5344	0.2119	0.04188	0		0.1431	1.41	0.7319	0.4719	0.6019	-0.3213	-0.6431	0.9419	0.11	1.072	-0.4081	1.357	1.202	0.5444	0.04188		0.1119	-0.1969	-0.1881	-0.5381	-0.4581	0.5031	0.2019	-0.1675	-0.4469	-0.6981	
+	AKKTZX	1.845	0.6887	1.305	0.1212	0.7078	0.4412	-0.8612	-0.3112	-0.06313	-0.2412	-2.26E-09	2.787	0.2688	0.9087	0.8088	-0.1444	-0.8062	0.1787	-0.07313	-0.2312	-0.6213	0.8138	1.639	1.361	0.9688	1.623	1.399	1.42	1.099	-1.341	0.2288	-2.26E-09	-0.4812	0.1294	-2.26E-09	-0.5312	-0.3506
GWEIGHT	+	 	1	Ŧ	1	1	1	. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1)	1	1	1	1	1	1	1	1	. 1	1	1
1	1	210	519	220	521	522	523	524	525	226	227	228	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	225	553	554

(1	,
Ī		,
ı	τ	3
۲	-	•

_																							_															
MDA-MB-321	ARRY11X	1.251	0.2081	1.434	-2.28	-0.13	-0.9	-0.865	1.15	-0.6488	0	-0.2644	-0.1	-0.2094	-1.511	-0.62	0.2	-0.2244	0.04625	1.12		-0.445	-0.19	0.8412	2.911	-0.6588	6.86E-09	-0.045		-0.1519	-0.41	-1.16	0.3281	-1.625	0.715	-0.825	-0.1209	-2.185
HUVEC	ARRY6X	-1.909		4.297	-3.161	-0.7906	-0.4606	-1.666	-1.951	-1.989		-2.465	-1.681	-1.31	-2.012	-2:091		-1.445	-2.244			-2.066		-0.9894	-1.819	-1.069	-0.6406			-2.353		-1.361	-0.3925		-0.7456	-0.4456	-0.2116	
HMVEC	ARRY7X					-0.47	1.06		-0.72		1-			-0.6894				-0.7444				0.135	-0.51	-2.109	-1.939	-1.119	0.48	-0.625		-2.472		-0.98	-0.2319		-0.745	-2.145	i	-3,985
184B5	ARRYOX	0.000625	-0.9325	-3.247	-1.811	-0.1906	-0.2706		-1.731	-0.8894	-0.9506	0.265	-0.9506	-1.38	0.1384	-0.9406	-0.2406	-0.045	-0.5844	-1.491	-0.1606	-1.716	-0.4606	-0.4794	-0.3094	-0.3594	3.759	-0.2556	-1.256	-0.8425	-0.3606	3.429	-0.0525	-0.7259		-1.096	0.3284	-1.616
184A1-LATE	ARRY1X	-0.2769	-2.79E-10	0.1259	0.8819	0.6219	0.8419	6908.0	0.3219	-1.637		0.8875		0.8825	-0.1291	-0.4381	0.4419	0.8475	0.2581	0.3519	0.8319	0.4469	-0.7019	0.3031	0.2731	0.9531	0.6419	-0.1531		-2.79E-10	0.2819	0.6819	-2.79E-10	0.9666	-0.5331	-0.6731		0.4269
184AA	ARRY5X	0.9806	-0.0525	1.623	-0.000625	0.5094	-0.4606		-1.161	-0.7394		-1.095	-1.891	0.07	0.9184	-1.561	-0.6006	-1.355	-1.544	-1.211		-1.536		-0.3994	-2.029	-1.129	-0.8506	-0.7156	-1.396	-1.563	-1.501	-0.6306	-0.4525	1.724	-1.416	-0.6556	0.07844	0.8544
HMEC-C_CONFL2	ARRY3X	0.9312		1.424	-0.43	-0.31	0.02	-0.795	1.79	-0.4588	-0.15	1.066	-0.15	-0.8394	0.4891	-1.14	0.05	0.3856	-0.07375		-2.91E-09	0.935	-0.16	0.5412	-0.5088	0.07125	0.46	-0.455	-0.455	-0.6219	-0.56	0.14	-0.4219	0.4247	-0.305	0.025	0.4691	0.035
Æ	ARRY4X	0.3231		1.336	2.402	-0.07812	0.6319	1.377	0.3319	1.563		2.968		1.893	1.091	2.002	0.2319	0.0575	0.2581				0.1419	0.6131	0.8331	0.6731	0.4119	1.387	1.547	-0.38	-0.05812	0.4919	-0.3	0.1166	1.277	1.327	0.03094	0.2769
HMEC-C	ARRY2X	1.67	-0.4231	1.493	0.6588	0.05875	-0.2012	-1.166	-0.4012	-2.26E-09	-0.06125	-0.3256	-0.4013	-0.07063	1.078	0.3888	-1.231	-0.2456	0.355	-0.1813	-0.4812	-0.5062	0.2388	-2.26E-09	-2.26E-09	-2.26E-09	-0.1612	0.1138	0.4338	0.04687	0.3288	-0.2713	0.08687	-0.1166	0.1937	0.5938	0.03781	1.744
GWEIGHT		Ŧ	Ŧ	T	1	1	1	1	1	1	1	1		1	1	1	T	1	1	1	1	1	T	Ħ	T		T	Ŧ	1	규	1	Ţ	1	1	F	Ŧ	1	1
		555	556	557	558	559	260	561	295	563	564	292	266	267	268	269	570	571	572	573	574	575	576	577	578	579	280	581	582	583	584	585	586	287	288	589	230	291

١	•	•
	C	U
•	ż	₹
•	ż	=
	r	o
ı	٠	-

																				•																		
MDA-MB-321	ARRY11X	-1.964	0.7556	-1.094		0.67	0.14	0.5912	0.17	0.24	-1.359	-0.175	-1.049	-0.6697	-0.15	-0.115	-0.7759	0.6413			-0.355		-0.3675	-0.07	-1.362	0.4291	0.3791	-0.05		1.221	0.13	0.7	0.26	0.3912	0.1006			6.86E-09
HUVEC	ARRY6X	0.1156	-2.415	-1.685	-0.2356	-1.411	-1.321	-0.8394	-1.511	-0.8606	-1.98			-0.2003	0.2194	-1.576	-1.117	-0.8294			-1.816	-1.248		-0.9506			0.4784	-0.4706	1.479	-0.07	-0.06063	-0.5506	-0.4506	1.401	0.05		0.24	0.5594
HMVEC	ARRY7X				1.585		0.02	-0.3688	-0.83	-0.24	0.7806	1.145		1.55				-1.169			-1.935	-1.368		-	-3.942		-1.081	-0.08	0.18		-0.11	,1.13	· k	1.281		1.77	-0.5394	0.26
184B5	ARRYOX	-0.04438		3.105		-0.6306	-0.3906	-0.6894	-1.581	-0.9306	-0.17		-0.9994	-0.7903	-0.7206	-1.646	0.1234	0.000625			-0.8856			-0.02063	1.317			0.7994		0.58	0.7294	-0.3406	0.3294		-0.74	0.6494		-0.4706
184A1-LATE	ARRY1X	-0.1119	0.2675	-0.7025	-0.7231	-3.958	-0.4181	-1.187	-0.7381	-0.3481	0.3825		-0.5769	1.512	-0.7881	-0.8031	-0.03406	-0.5369	-1.958	-0.2519	-1.043	-1.476				0.03094	0.4791	0.5519	-1.378	1.993	-0.1481	0.1719	-0.3281	-1.137			-0.9975	0.4319
184AA	ARRY5X	1.296	-1.235	0.745	-1.026	-0.4806	0.1594	0.07062	-2.141	-1.071	0.55	-1.686	-1.559	-2.13	-1.141	-0.9356	-0.9866	-0.5194	-1.941	-0.8144	-1.026	-1.458		-0.5806	1.517	-0.4016	0.8684	0.3794	1.529	0.76	0.9594	0.4094	0.3794	-1.119	-0.05	-1.871	0.15	-0.4306
HMEC-C_CONFL2	ARRY3X	-0.1338	0.8056	0.6856	-0.285	1.08	0.54	-0.5188	1.46	2.29	1.251	1.185	-0.1988	-1.53	-0.61	-0.845	-0.3459	0.1012	-1	-1.874	-0.505	-0.5175	-0.9375	-0.22	0.6081	6086.0-	-0.1409	0.31	1.09	-0.9094	0.88	2.14	-0.09	0.9712	-0.3494	0.21	0.3706	0.13
HMEC+INFA	ARRY4X		0.9975	0.2175	1.417	0.1319	-0.1081	-0.8669	0.1419	-1.208	0.4825	0.3669	-1.277	0.01219	0.5019	1.427	0.7059	1.023	-1.078		0.6369	-0.01562	0.9844	0.7019	0	-1.269	0.08094	-0.3481	-0.5281	-1.347	0.1719		0.05188	-0.9369			-1.557	-0.4481
HMEC-C	ARRY2X	0.045	-0.1056	-0.1156	0.3237	1.659	0.8588	-0.43	-0.2312	0.3788	1.009	-0.9063	0.21	-0.8209	0.1288	0.3138	0.3128	1.51	0.8888	2.115	1.004	0.5712	0.3712	0.1888	0.7469	-0.8222	0.2678	-0.1812	0.6488	-0.6806	0.8288	1.319	0.2188	-0.56	-0.1106	-1.531	-0.08063	-0.4712
GWEIGHT		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Ŧ	1	11	T	1	Ŧ	1	1	1	1
		265	593	594	295	965	265	298	299	009	109	602	603	604	905	909	209	809	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	929	627	628

- 1	AKK 12A	AKK14X	AKKT3X	AKKY5X 0 5704	AKKY IX	AKKYUX 0 3004	AKKY/X	AKKY6X	AKKYIIX
4	-0.1812	1.202	1		0.1519	-1.121	-1.87	0.6694	-1.29
+	0.8988	-0.07812	-2.9		-0.09812	0.2494		1.899	
1	-0.5962	-0.08312	0.615			0.7344			
1	0.3338	0.8069	-0.005	-0.6856	0.2869	-0.3856		0.2044	
1	-0.1412	0.6119	69'0	-0.3406	0.07188		1.51	-0.03063	0
Н	-0.4762		1.315	-0.5856		-1.986			-0.215
П	-0.3	1.013	0.08125	-0.9994		0.000625		0.4306	0.4813
+-1	-0.4412	1.012	-0.27	-0.03062	0.9119	0.1594	1.11	-1.321	
ᆔ	-1.081		-0.12	0.6494	-0.02812	0.6494			
Н	-0.2706	0.6625	1.491	-0.42		0.04		-1.21	-1.109
	-2.26E-09		2.241	-0.2094	1.113	-0.2694	0.6012	-0.8494	0.1012
-	0.4788	0.6919	1.07	-0.000625		1.299	-0.73	0.03937	-1.59
	-0.1413	0.2719	1.82	0.5294		t t		0.1894	-0.07
	-0.05125			0.6794				-0.3206	0.79
Н	0.6244		-0.5144	-1.215	-0.3425			-0.215	
1	-0.2812	-0.1381	-0.04	-0.5106	0.2619	-0.02063	-0.59	-0.06063	0.5
Н	-2.26E-09	1.113	-0.4788	-0.3394		0.5206	0.4712	-1.409	-0.6288
-	-1.101	0.1919	-0.14	-1.491			-1.27	-2.091	-0.24
	-0.4812		80.0	9009.0-	0.7219	-0.06062	5'0	-1.061	-0.15
	-0.525	0.04813	-0.00375	-0.1244	0.3281		-0.4638	-0.09438	0.5162
	-1.326	0.1869	-0.075		0.4169				90.0
	0.2588	0.1719	0.33	0.009375	0.02188	-0.07062		0.04938	89'0-
1	-2.26E-09	0.6031	1.621	-0.4094	-0,3069	-1.619	2,441	-0.4794	-1.039
1	0.2688	0.4519	-2.91E-09	-0.6406	-0.1181	-0.1206	85.0-	-0.2406	0.17
1	-0.1162	1.337	-0.105	0.3944	-0.4031			9559'0-	0.125
-	-0.00875	-0.2256	-0.3475	-0.2881	0.02438	-0.09813	-0.1975	-1.128	0.1325
	0.6088	1.422	0.92	1.419	1.402	2.289		-0.2906	-0.91
딖	-0.57	-0.7369	-0.6588	-0.3494	1.513	0.3606	1,251	1.191	1.671
딝	-0.04125	0.2819	-0.5	-0.7106	1.082	0.1694	1.25	0.9894	0.13
1	-1.041		-1.52	0.8494	1.592	1.349		0.7994	
1	-2.26E-09	-1.427	0.03125	2.691	2.813	2.261	3.651	1.141	-0.3388
긁	-0.2288	-1.136	0.4725	3.392	5.394	4.352	6.742	2.772	-2.118
1	-0.2012	-0.5581	-1.15	0.1494			1.96	-0.03062	
님	0.2188	-0.7681	-0.15	0.4894	0.9219	0.5994	3.53	0.1494	
늬	-1.371	-0.9181	1.58	-0.2906	1.102	1.509			1.09
_	-0 5012	0 7710	PZ 0-	1 490	1 27g	1 201	120	2026 0	OV C

Table 2

N	
Φ	
◪	
ā	

AKKYOX AR AKKYOX AR -0.2756 -0.00375 -0.3706 -1.383 -0.3706 -1.383 0.3394 0.7275 0.5891 0.5891 0.5891 0.7275 0.7275 0.3194 0.7275 0.3194 0.7275 0.3194 0.7275 0.3194 0.7275 0.3194 0.7275 0.3194 0.7275 0.3194 0.7275 0.3194 0.7276 -0.9306 -0.9306 -0.9306 -0.9306 -0.9306 -0.9306 -0.9506	HMEC-C	HMEC+INFA	HMEC-C CONFL2	184AA	184A1-LATE	18485	HMVEC	П	MDA-MB-321
-0.4019 -0.1025 -0.2756 -0.08875 -0.08675 -0.08675 -0.08875 -0.08675 -0.08875 -0.096875 -0.08875 -0.096875 -0.08875 -0.08875 -0.096875 -0.08875 -0.08875 -0.096875 -0.08975 -0.0875 -0.08975 -0.			AKKTSX	AKKYSX	AKKYIX	AKKYUX	AKKY/X	ARRY6X	ARRY11X
-0.0875 0.7644 0.2469 -0.2756 -0.08875 0.2006 0.5631 -0.00375 -1.085 -1.087 -0.445 -0.4591 -0.495 -1.042 -1.723 -2.79E-10 -1.583 -0.1744 1.707 -0.3706 -0.244 -0.3006 0.2519 -0.3294 -0.234 -0.3056 0.7144 -1.003 -1.226 -0.234 -0.306 0.7919 0.3894 -0.335 0.7144 -1.068 0.5194 -0.356 0.5794 -1.068 0.5194 -0.356 0.5794 -1.068 0.5194 -0.356 0.5794 -1.068 0.5194 -0.35 0.07938 0.0219 0.725 -0.568	31	5 2	-0.4019	-0.1025					0.6981
-0.08875 0.2006 0.5631 -0.009375 -1.085 -1.085 -1.085 -1.087 -1.087 -1.087 -1.087 -1.087 -1.042 -1.723 -2.79E-10 -1.583 -1.044 -0.1723 -0.709 -0.1591 -0.1816 -0.1744 -0.2619 -0.2744 -0.2055 -0.000625 -0.244 -0.2344 -0.305 -0.1794 -0.1281 -0.2916 -0.131 -0.2606 -0.7919 -0.394 -0.305 -0.7919 -0.394 -0.305 -0.794 -0.1281 -0.3984 -0.138 -0.1281 -0.1281 -0.1281 -0.1281 -0.1281 -0.1281 -0.1281 -0.1281 -0.1281 -0.1281 -0.1281 -0.1281 -0.1281 -0.1281 -0.1294 -0.1281 -0.1294 -0.1281 -0.1281 -0.1294 -0.1281 -0.1294 -0.1284 -0.1284 -0.2019 -0.2019 -0.20063 -0.00675 -0.006813 -0.01997 -0.2844 -0.3531 -0.2946 -0.2844 -0.3531 -0.2946 -0.3064 -0.30940 -0.30940 -0.30940 -0.30940 -0.30940 -0.2014 -0.2014 -0.2016-09 -0.2014 -0.2018 -0.2018 -0.2019 -0	37	331	-0.075	0.7644	0.2469	-0.2756		-0.9456	
-1.085 -1.087 -1.087 -1.087 -1.087 -1.042 -1.1723 -2.79E-10 -1.583 -1.042 -1.1723 -2.79E-10 -1.583 -1.042 -1.044 -1.070 -1.0816 -0.1591 -0.174 -1.07 -0.3706 -0.3706 -0.3706 -0.3706 -0.3706 -0.3706 -0.3706 -0.3706 -0.3706 -0.3706 -0.3706 -0.3709 -0.305 -0.1281 -0.2804 -0.335 -0.1294 -0.1281 -0.2804 -1.035 -0.2606 -2.158 -1.201 -0.2606 -2.158 -1.201 -0.2606 -2.158 -1.201 -0.2606 -2.158 -1.201 -0.2606 -2.158 -1.201 -0.2606 -2.158 -1.201 -0.395 -0.2019 -1.133 -0.2606 -2.158 -1.125 -0.294 -0.301 -0.2694 -0.3701 -0.3688 -0.2694 -0.3619 -0.361		66	-0.08875	0.2006	0.5631	-0.009375			0.2112
-1.81 -1.971		6	-1.085				-0.995	0.1144	
-0.3394 0.4425 -0.49 -1.042 -1.723 -2.79E-10 -1.583 -1.042 -0.8316 0.6709 -0.9216 -0.1591 -0.1744 1.707 -0.3706 -0.24 -0.3006 0.2619 0.3704 -0.5419 -0.3006 0.2619 0.3294 -0.244 -0.3006 0.2619 0.3294 -0.234 -0.0925 2.44 0.3294 -0.234 -0.0925 2.44 0.2394 -0.234 -0.0905 0.1794 -1.138 0.235 -0.241E-09 0.1794 -1.068 0.5194 -0.250E 0.2794 -1.068 0.5194 -0.335 0.07744 -1.068 0.5194 -0.356 0.5794 -1.048 0.5891 -0.38 0.07791 -0.7687 -1.949 -0.39 0.07793 0.07188 0.0714 -0.39 0.07475 -2.79E-10 0.7775 -0.50 0.0264 -0)	-1.81	-1.971					0
-1,042 -1,723 -2,79E-10 -1,583 -0,1591 -0,8316 0,6709 -0,2016 0,1744 1,707 -0,2016 0,2 -0,000625 -0,3706 1,288 -1,423 -0,3 -0,44 -0,3006 0,2619 0,3294 -0,5419 -0,0925 2,44 0,2394 -0,234 -0,0925 2,44 0,2394 -0,234 -0,1281 2,069 0,03 0,1794 -0,1281 2,069 0,035 0,1744 -1,003 -1,216 0,035 0,1744 -1,068 0,5194 -2,91E-09 0,0794 -1,068 0,5194 0,09562 0,0779 -1,152 0,715 0,09562 0,0779 -1,168 0,5891 0,09562 0,0779 -1,168 0,5891 0,09562 0,0779 -1,048 0,5891 0,0963 0,0748 -0,07687 -1,949 0,0863 0,0894		3	-0.3394		0.4425	-0.49		-0.88	
0.1591 -0.8316 0.6709 -0.9216 0.1744 1.707 -0.3706 1.288 -1.423 -0.3 -1.383 -0.44 -0.3006 0.2619 0.3294 -0.5419 -0.305 0.2619 0.3294 -0.234 -0.305 2.44 0.235 -0.234 -0.305 1.138 0.235 0.09 0.1794 -0.1281 2.069 0.13 -0.2606 0.7919 0.9894 0.0356 0.7144 -1.003 -1.201 0.09562 0.5794 -1.068 0.5194 0.09562 0.5794 -1.068 0.5194 0.09562 0.579 -1.152 0.715 0.1997 0.0793 0.0218 0.6294 0.038 0.0218 0.5294 0.63 -0.2694 -0.07687 -1.949 -2.91E-09 1.289 -0.0963 -0.0613 0.25 0.0604 -0.350 0.6419 0.3494	0.3069		-1.042	-1.723	-2.79E-10	-1.583		-0.7725	0.1081
0.1744 1.707 0.2 -0.000625 -0.3706 1.288 -1.423 -0.3 -1.383 -0.44 -0.3006 0.2619 0.3294 -0.5419 -0.0025 2.44 0.235 -0.234 -0.305 1.138 0.235 0.09 0.1794 -0.1281 2.069 0.13 -0.2606 0.7919 0.9894 0.0355 0.7144 -1.003 -1.216 0.09562 0.5794 -1.068 0.5194 0.09562 0.5794 -1.068 0.5194 0.09563 0.0773 0.0218 0.6294 0.1997 0.0775 -2.79E-10 0.7275 0.63 -0.2694 -0.07687 -1.949 -2.91E-09 1.869 -0.0813 0.3144 -2.91E-09 1.869 -0.0813 0.3144 -2.91E-09 0.09063 -0.06813 0.03144 -2.91E-09 0.09063 -0.06813 0.03494 -2.91E-09 -0.9406 -0.8281 -0.9406 -0.1588 -		1	0.1591	-0.8316	0.6709	-0.9216	-0.5009	-0.5716	0.3491
0.2 -0.000625 -0.3706 1.288 -1.423 -0.3 -1.383 -0.44 -0.3006 0.2619 0.3294 -0.5419 -0.0025 2.44 0.235 -0.234 -0.305 1.138 0.235 0.09 0.1794 -0.1281 2.069 0.0335 0.7144 -1.003 -1.201 0.09562 0.5794 -1.068 0.5194 0.09562 0.5794 -1.068 0.5194 0.09562 0.5794 -1.152 0.715 0.09563 0.07794 -1.152 0.715 0.09564 0.0779 0.5894 0.5891 0.63 -0.7475 -2.79E-10 0.7275 0.63 -0.2694 -0.07687 -1.949 -2.91E-09 1.869 -0.0604 0.03144 0.26 -0.09063 -0.06813 0.3144 0.25 0.0044 -0.3536 0.9425 -0.29 0.6044 -0.3634 0.3494 -2.91E-09 0.07188 -0.9366 -0.158	0.6138 0.6669			0.1744	1.707			-1.056	
1.288 -1.423 -0.3 -1.383 -0.44 -0.3006 0.2619 0.3294 -0.5419 -0.0925 2.44 0.235 -0.2344 -0.305 1.138 0.235 0.09 0.1794 -0.1281 2.069 0.13 -0.2606 0.7919 0.9894 0.0355 0.7144 -1.003 -1.226 0.09562 0.5794 -1.058 0.5194 0.09562 0.5794 -1.058 0.5194 0.09563 0.07938 0.02188 0.6294 0.63 -0.2694 -0.7968 0.575 0.63 -0.2694 -0.07687 -1.949 -2.91E-09 1.869 -0.0614 0.2194 -2.91E-09 1.869 -0.0613 0.2144 0.25 0.00613 -0.0614 0.0356 0.2844 -0.3531 -0.5406 -0.9406 -2.91E-09 -0.9406 -0.8281 -0.9406 -2.91E-09 -0.9406 -0.8281 -0.9406 -2.91E-09 -0.9506 -0.9306			0.2	-0.000625		-0.3706			0.05
-0.44 -0.3006 0.2619 0.3294 1.68 -0.0925 2.44 0.235 -0.234 -0.305 1.138 0.235 0.09 0.1794 -0.1281 2.069 0.13 -0.5606 0.7919 0.9894 0.13 -0.2606 -2.158 -1.201 0.09562 0.5794 -1.068 0.5194 0.09562 0.575 -1.152 0.715 0.09562 0.575 -1.152 0.715 0.09563 0.07938 0.02188 0.6294 0.63 -0.2694 -0.7968 0.575 -0.568 -0.2694 -0.07687 -1.949 -2.91E-09 1.869 -0.0614 0.2144 -2.91E-09 1.869 -0.0614 0.3144 -2.91E-09 0.2844 -0.3536 0.6044 -2.91E-09 0.6419 0.3494 -2.91E-09 -0.9406 -0.8281 -0.9406 -2.91E-09 -0.9406 -0.8281 -0.9306 -2.91E-09 -0.9306 -0.6334 -0.6334 <td></td> <td></td> <td>1.288</td> <td>-1.423</td> <td>-0.3</td> <td>-1.383</td> <td>-0.1519</td> <td>4.877</td> <td>-0.4819</td>			1.288	-1.423	-0.3	-1.383	-0.1519	4.877	-0.4819
1.68 0.0925 2.44 -0.234 -0.305 1.138 0.235 0.09 0.1794 -0.1281 2.069 0.13 -0.5606 0.7919 0.9894 1.13 -0.2606 -2.158 -1.201 0.0356 0.7144 -1.003 -1.226 -2.91E-09 0.5794 -1.068 0.5194 0.09562 0.579 -1.152 0.715 0.09562 0.579 -1.152 0.715 0.09562 0.579 -1.152 0.715 0.1997 0.9791 -0.5684 0.5391 0.09562 0.575 -1.152 0.715 0.1088 0.7475 -2.79E-10 0.7275 0.63 -0.2694 -0.07687 -1.949 -2.91E-09 1.869 -0.0644 0.3144 0.25 -0.09063 -0.06813 0.3144 1.245 0.2844 -0.3531 -0.9425 -0.2 -0.5306 -0.9406 -0.8281 -0.9425 -0.01 -0.09406 -0.8281 -0.9306 </td <td></td> <td></td> <td>-0.44</td> <td>-0.3006</td> <td>0.2619</td> <td>0.3294</td> <td>-0.1</td> <td>2.239</td> <td>-0.1</td>			-0.44	-0.3006	0.2619	0.3294	-0.1	2.239	-0.1
-0.0925 2.44 -0.305 1.138 0.235 -0.305 1.138 0.235 -0.5606 0.7919 0.9894 -0.2606 -2.158 -1.201 0.7144 -1.003 -1.226 0.5794 -1.068 0.5194 0.07938 0.02188 0.6294 0.07938 0.0218 0.6294 0.0775 -2.79E-10 0.7275 -0.2694 -0.07687 -1.949 1.869 -0.06813 0.31344 0.0044 0.3144 0.2844 -0.3531 -0.5356 0.9675 0.6419 0.3494 0.9675 0.6419 0.3494 0.07188 -0.9425 0.07188 -0.7406 -0.2094 -0.7406 -0.2094 -0.7406 -0.2094 -0.7406 -0.2094 -0.7406 -0.2094 -0.7406 -0.2094 -0.7406 -0.2094 -0.7406 -0.2094 -0.7406 -0.2094 -0.7267			1.68						-0.02
-0.305 1.138 0.235 0.1794 -0.1281 2.069 -0.5606 0.7919 0.9894 -0.2606 -2.158 -1.201 0.7144 -1.003 -1.226 0.5794 -1.068 0.5194 0.579 -1.152 0.715 0.0793 0.02188 0.6294 0.0775 -2.79E-10 0.7275 0.3106 -0.2094 -0.07687 -1.949 1.869 -0.06813 0.3144 0.6044 -0.3531 -0.5356 0.5844 -0.3531 -0.5356 0.9675 -0.8281 -0.9425 0.5306 -0.6281 -0.9306 0.5306 -0.6381 -0.6394 -0.2094 -0.7406 -0.7406 -0.2094 -0.7406 -0.5306 -0.5306 -0.6334 -0.6394 -1.267 -0.5306 -0.6394			-0.5419	-0.0925	2.44				3.218
0.1794 -0.1281 2.069 -0.5606 0.7919 0.9894 -0.2606 -2.158 -1.201 0.7144 -1.003 -1.226 0.5794 -1.068 0.5194 0.07938 0.02188 0.6294 1.059 0.2019 1.339 0.7475 -2.79E-10 0.7275 -0.3106 -0.2694 -0.07687 -1.949 -0.09063 -0.06813 0.3194 0.6044 -0.3531 -0.5356 0.9675 0.6419 0.3494 -0.9406 -0.8281 -0.9425 -0.9406 -0.8281 -0.9306 -0.0994 -0.7406 -0.2094 -0.3531 -0.5356 -0.9675 -0.3531 -0.5356 -0.9675 -0.36394 -0.3531 -0.5366 -0.2094 -0.3531 -0.5356			-0.2344	-0.305	1.138	0.235			0.4456
-0.5606 0.7919 0.9894 -0.2606 -2.158 -1.201 -0.7144 -1.003 -1.226 0.7144 -1.068 0.5194 0.5794 -1.068 0.5194 0.0793 0.02188 0.6294 0.07475 -2.79E-10 0.7275 -0.2694 -0.07687 -1.949 -0.2694 -0.07687 -1.949 -0.2694 -0.07687 -1.949 -0.09063 -0.06813 0.3144 0.6044 -0.3531 -0.5356 0.9675 -0.8281 -0.9425 0.5306 0.6419 0.3494 -0.9406 -0.8281 -0.9326 -0.2094 -0.7406 -0.7406 -0.2094 -0.7406 -0.7406 -0.2094 -0.7406 -0.5306 -0.2094 -1.267 -0.6394 -1.267 -0.5306 -0.6394			60.0	0.1794	-0.1281	2.069	89.0	1.159	-0.76
-0.2606 -2.158 -1.201 0.7144 -1.003 -1.226 0.5794 -1.068 0.5194 0.575 -1.152 0.715 0.07938 0.02188 0.6294 0.07475 -2.79E-10 0.7275 -0.3106 -0.2694 -0.07687 -1.949 -0.2694 -0.07687 -1.949 -0.2694 -0.06813 0.3144 0.6044 0.3144 0.2844 -0.3531 -0.5356 0.9675 0.6419 0.3494 -0.9406 -0.8281 -0.9306 -0.2094 -0.13531 -0.5356 -0.5306 0.6419 0.3494 -0.2094 -0.8281 -0.9306 -0.2094 -0.7406 -0.2094 -0.7406 -0.2094 -0.7406 -0.2094 -0.7406 -0.2094 -0.7406 -0.2094 -0.7406 -0.2094 -0.5306 -0.2094 -0.7406 -0.2094 -0.5306 -0.2094 -0.7406			0.13	-0.5606	0.7919	0.9894	-0.29	-1.061	0.03
0.7144 -1.003 -1.226 0.5794 -1.068 0.5194 0.0575 -1.152 0.715 0.07938 0.02188 0.6294 1.059 0.2019 1.339 0.7475 -2.79E-10 0.7275 -0.3106 -0.06813 0.3194 0.6044 0.3531 -0.5356 0.9675 0.6419 0.3494 -0.9906 -0.8281 -0.9425 0.9406 -0.8281 -0.9306 -0.2094 -0.3531 -0.5356 0.9675 0.6419 0.3494 -0.9406 -0.8281 -0.9306 -0.2094 -0.3531 -0.5356 -0.9406 -0.8281 -0.9306 -0.9406 -0.8281 -0.9306 -0.2094 -0.3531 -0.5356			1.13	-0.2606	-2.158	-1.201	0	0.1194	-0.95
0.5794 -1.068 0.5194 0.575 -1.152 0.715 0.07938 0.02188 0.6294 1.059 0.2019 1.339 0.7475 -2.79E-10 0.7275 -0.3106 -0.06813 0.3194 0.0044 0.3144 0.09053 -0.06813 0.3194 0.0944 -0.3531 -0.5356 0.9675 0.6419 0.3494 -0.9406 -0.8281 -0.9425 0.07188 -0.7406 -0.2094 -1.267 -0.6394 -2.091 -1.108 -0.5306			0.335	0.7144	-1.003	-1.226	-1.355	-1.196	-0.095
0.575 -1.152 0.715 0.9791 -0.5684 0.5891 0.07938 0.02188 0.6294 1.059 0.2019 1.339 0.7475 -2.79E-10 0.7275 -0.3106 -0.06813 0.3194 0.004 0.3144 0.2844 -0.3531 -0.5356 0.9675 0.6419 0.3494 -0.9406 -0.8281 -0.9306 -0.2094 -1.267 -0.9306 -0.2094 -1.267 -0.6394 -2.091 -1.108 -0.5306			-2.91E-09	0.5794	-1.068	0.5194	-0.42	0.01937	-0.39
0.07938 0.02188 0.6294 1.059 0.2019 1.339 0.7475 -2.79E-10 0.7275 -0.3106 -0.05813 0.3194 0.0044 0.3144 0.2844 -0.3531 -0.5356 0.9675 0.6419 0.3494 -0.9406 -0.8281 -0.9306 -0.2094 -0.13531 -0.5356 -0.9406 -0.8281 -0.9306 -0.2094 -1.267 -0.6394 -2.091 -1.108 -0.5306			0.09562	0.575	-1.152	0.715	-1.534	-3.475	
0.07938 0.02188 0.6294 1.059 0.2019 1.339 0.7475 -2.79E-10 0.72750.3106 -0.06813 0.31940.09063 -0.06813 0.3194 0.2844 -0.3531 -0.5356 0.9675 0.9425 0.9426 0.6419 0.34940.5306 0.6419 0.3494 -0.5306 -0.8281 -0.93060.2094 -1.267 -0.6394 -0 -2.091 -1.108 -0.9506			0.1997	0.9791	-0.5684	0.5891	-0.5903	-1.751	
1.059 0.2019 1.339 0.7475 -2.79E-10 0.7275 -0.3106 -0.07687 -1.949 -0.2694 -0.06813 0.3194 -0.09063 -0.06813 0.3144 0.2844 -0.3531 -0.5356 0.9675 0.9425 -0.9426 -0.5306 0.6419 0.3494 -0.9406 -0.2094 -1.267 -0.9306 -0.2094 -1.267 -0.6394 -0 -2.091 -1.108 -0.9506			-0.38	0.07938	0.02188	0.6294	0.07	-0.05062	-0.02
1.088 0.7475 -2.79E-10 0.7275 0.63 -0.3106 -0.07687 -1.949 -2.91E-09 1.869 -0.06813 0.3194 -0.26 -0.09063 -0.06813 0.3144 0.355 0.6044 -0.3531 -0.5356 1.245 0.2844 -0.3531 -0.5356 -0.2 -0.5306 0.6419 0.3494 -2.91E-09 -0.9406 -0.8281 -0.9306 -0.01 0.07188 -0.7406 -0.1588 -0.2094 -1.267 -0.6394 -0.35 -2.091 -1.108 -0.9506	0.7388 0.7019		1.37	1.059	0.2019	1.339	69:0-	-1.311	-0.62
0.63 -0.3106 -0.5688 -0.2694 -0.07687 -1.949 -2.91E-09 1.869 -0.06813 0.3194 -0.26 -0.09063 -0.06813 0.3144 0.355 0.6044 -0.3531 -0.5356 1.245 0.2844 -0.3531 -0.5356 -0.2 -0.5306 0.6419 0.3494 -2.91E-09 -0.9406 -0.8281 -0.9306 -0.01 0.07188 -0.7406 -0.1588 -0.2094 -1.267 -0.6394 -0.35 -2.091 -1.108 -0.9506			1.088	0.7475	-2.79E-10	0.7275	-1.492	-1.653	-1.032
-0.5688 -0.2694 -0.07687 -1.949 -2.91E-09 1.869 -0.06813 0.3194 -0.26 -0.09063 -0.06813 0.3144 0.355 0.6044 -0.3531 -0.5356 1.245 0.2844 -0.3531 -0.5356 -0.2 -0.5306 0.6419 0.3494 -2.91E-09 -0.9406 -0.8281 -0.9306 -0.01 -0.2094 -1.267 -0.6394 -0.1588 -0.2094 -1.267 -0.6394 -0.35 -2.091 -1.108 -0.9506			0.63	-0.3106	,			-1.011	0
-2.91E-09 1.869 0.3194 -0.26 -0.09063 -0.06813 0.3194 0.355 0.6044 0.3531 -0.5356 1.245 0.9675 -0.9425 -0.9425 -0.2 -0.5306 0.6419 0.3494 -2.91E-09 -0.9406 -0.8281 -0.9306 -0.01 0.07188 -0.7406 0.35 -2.091 -1.108 -0.9506	-2.26E-09 1.663		-0.5688	-0.2694	-0.07687	-1.949		-2.019	1.481
-0.26 -0.09063 -0.06813 0.3194 0.355 0.6044 -0.3531 -0.5356 1.245 0.2844 -0.3531 -0.5356 -0.2 -0.5306 0.6419 0.3494 -2.91E-09 -0.9406 -0.8281 -0.9306 -0.01 0.07188 -0.7406 -0.1588 -0.2094 -1.267 -0.6394 -0.35 -2.091 -1.108 -0.9506			-2.91E-09	1.869					
0.355 0.6044 0.3531 0.3144 1.245 0.2844 -0.3531 -0.5356 1.258 0.9675 -0.9425 -0.9425 -0.2 -0.5306 0.6419 0.3494 -2.91E-09 -0.9406 -0.8281 -0.9306 -0.01 0.07188 -0.7406 -0.1588 -0.2094 -1.267 -0.6394 -0.35 -2.091 -1.108 -0.9506	37 0	_	-0.26	-0.09063	-0.06813	0.3194	-3.7	-1.991	1.74
1.245 0.2844 -0.3531 -0.5356 1.258 0.9675 -0.9425 -0.9425 -0.2 -0.5306 0.6419 0.3494 -2.91E-09 -0.9406 -0.8281 -0.9306 -0.01 0.07188 -0.7406 -0.1588 -0.2094 -1.267 -0.6394 -0.0334 -3.091 -1.108 -0.9506			0.355	0.6044		0.3144	-1.875	-1.166	0.305
1.258 0.9675 -0.9425 -0.9425 -0.291E-09 -0.9406 -0.8281 -0.9306 -0.07188 -0.7406 -0.1588 -0.2094 -1.267 -0.6394 -0.35 -2.091 -1.108 -0.9506	1		1.245	0.2844	-0.3531	-0.5356		-1.356	0.025
-0.2 -0.5306 0.6419 0.3494 -2.91E-09 -0.9406 -0.8281 -0.9306 -0.01 0.07188 -0.7406 -0.1588 -0.2094 -1.267 -0.6394 -0.35 -2.091 -1.108 -0.9506			1.258	0.9675		-0.9425	-1.332	-2.353	-1.332
-2.91E-09 -0.9406 -0.8281 -0.9306 -0.01 0.07188 -0.7406 -0.1588 -0.2094 -1.267 -0.6394 -0.35 -2.091 -1.108 -0.9506	-0.5812 0.351	6	-0.2	-0.5306	0.6419	0.3494	-0.25		-0.32
-0.01 0.07188 -0.7406 -0.1588 -0.2094 -1.267 -0.6394 0.35 -2.091 -1.108 -0.9506	12	6	-2.91E-09	-0.9406	-0.8281	-0.9306		-0.9106	0.09
-0.1588 -0.2094 -1.267 -0.6394 0.35 -2.091 -1.108 -0.9506	-0.1912 0.961	6	-0.01		0.07188	-0.7406			-1.03
0.35 -2.091 -1.108	6	6	-0.1588	-0.2094	-1.267	-0.6394	-0.1188	0.3106	0.09125
	37		0.35	-2.091	-1.108	-0.9506			0.12

Į	9	١	J	
	•	1	9	
•	Š		5	
	۱	١	3	

H	HMEC-C	HMEC+INFA	HMEC-C_CONFL2	184AA	184A1-LATE	184B5	HMVEC	HUVEC	MDA-MB-321
4 120	┙	AKKY4X	-AKKY3X	AKKYSX	AKKY1X	AKKYOX	ARRY/X	ARRY6X	ARRY11X
0 1987		1.221	0.2991	-0.9616	-0.2991	-1.562	-0.4909	-1.072	0.8491
-0.09125	$oldsymbol{\perp}$	1.462	-2.91E-09	0.6594	0.01107			-0.8006	10.0
0.2788	L		0.77	1.209	1.062	-0.3606	-0.47		
			-0.4044	0.595	0.8675		4.774		-1.074
1.529			0.85	-0.6706	-0.1081	-1.531			0
-0.4412		0.8619	-0.35	-1.471	0.1019	-1.061		-1.261	1.67
-2.26E-09		1.363	-0.1688	-0.4494	0.2731			-0.5594	
0.5944		0.3275	-1.294	-0.655	-1.672			-0.025	0.3156
0.4112		0.6244	-0.4375	-1.118	0.5244	-0.5581		-0.4881	-0.4375
0.1587		-1.598	-0.24	0.01937	-0.3781	-0.04063		-0.2006	0.15
0.6038		1.617	-0.205		-1.903	-0.3256	-0.795	-0.6756	-0.475
-0.07125		0.5919	-0.65	-0.8806	0.8819				
0.6369		0.88	-0.4519	-0.3925	-2.79E-10	-0.6225	-0.3019	-0.3525	-0.1519
		0.2669	-0.575	0.1644	1.147	0.2044	1.055	0.2744	-1.165
		0.6525	0.07062	-1.87	0.7025		1.811	2.76	-0.03938
		-0.3881	-0.56	0.1894	1.432	-1.431		1.669	2.4
-0.5663		2.587	-1.025	-0.5256		-0.8256			
		-0.6131	-0.245	3.284		0.8844	5.445	0.7344	
-0.4862		1.417	-0.235	-0.2456	0.6469	-0.3756	3.525	2.014	-0.625
		0.9875	-2.524			-2.205			0.06562
		0.01188	-0.68	-0.000625	0.3619			-1.961	-0.93
-2.321				~		-1.921	-1.97	1.299	
0.1388		0.1319	-0.13	-0.3706	0.5919	0.4794	-0.57	-0.4706	-0.77
0.2087		-1.888	-1.12	0.09937		0.7094			
-2.26E-09			0.2612	-0.8294	0.7831	0.2806		-1.239	0.06125
-0.9212			-1.7					0.6494	
-0.8006			-1.349	-2.49				0.38	
-0.2112		-0.4881	-0.27	-0.6606	-1.408	-1.031	80.0	1.529	-1.01
-0.2662		-0.3431	-0.045	-0.05562	-1.263	0.1744			
0.2688			-0.17	-0.000625				0.9894	-0.52
2.758		0.7709	0.7391	0.008437	-0.009062	-0.6016			-1.751
0.2688		0.1919	69.0			-0.1606	-1.2	-1.311	0
-0.2712		1.022	0.27	1.319	1.082	1.209	-4.13	-1.951	-0.76
0.7288		0.6019	1.39	0.6794	0.3819	1.569	-1.59	-1.291	-2.05
0.6128		0.4459	1.224	1.333	0.3659	1.043		-3.177	-0.3659
12	١	-0.01812	1.5	0.7894	0.5719	2.679	-0.38	0.2594	-0.83

~
υ
☶
Ō
_

MDA-MB-321	ARRY11X	-2.525	-0.51	-1.22	0.21	0	-0.2519	-0.05875	-0.25	-0.77	-5	-2.719		-0.5319		-0.7087		-0.1075	-1.785	0.84	-0.94	-1.369	-0.42	0.15	-0.3309	-0.12	-0.44	1.806	-0.085	-0.39	0.785	0.71	1.58	0.56	0.6412	0.345	1.71	-0.7387
HUVEC	ARRY6X	-1.146	-0.4606	-3.911	-3.281	-1.971	-3.023	-0.9194	-0.2106	-1.011	0.6694	0.000625	2.339	-0.8125	-0.3266	0.000625	-0.06062			-0.7606	-1.101	-0.57	-0.5606	-0.2006	-0.9216	0.2694	0.3994	-0.155	-0.2556	-0.5606		0.5194	1.979	0.01937		-0.4956	0.3394	0.9806
HMVEC	ARRY7X	-3.845	-2.17	-2.61	-3.06	-4.31	-1.792	-0.7388			-0.92	-1.599	-0.88	-1.252	-0.1959		0.42		0.385	-0.15	-0.12		-0.2	-2.2		0.13						0.13	1.29	-0.82		2.285		
18485	ARRYOX	1.284	1.299	2.699	0.4294	1.349	2.207	0.000625	1.599	1.659	2.529	1.971	4.129	1.157	2.323	-0.1694	0.1994		-0.7356	-0.6806	0.2394	-0.47	0.04937	-0.7806	1.748	-1.291	-2.301	-0.495	0.2744	-0.1706	-1.706	-1.091	-1.121	-0.9506	0.1506	-0.3656	-1.041	0.000625
184A1-LATE	ARRY1X	1.687	0.9219	0.7719	0.5219	0.7619	1.87	-0.6469	0.5919	1.742	2.192	2.163	4.322	0.74	1.236	0.5131	0.5619			-0.2281	-0.1281	-0.2075	-0.3081	-0.4181	1.031	0.1219		0.2375	-1.303	-1.028	-1.573	-1.568	-0.7381	-0.8481		0.08688	-1.018	1.697
184AA	ARRYSX	0.9644	0.1594	2,539	0.7894	1.579	0.6475	9096.0	0.1894	0.1694	1.069	1.161	4.159	1,177	1.893	1.471	0.6894	-1.108	-1.296	1.289		-0.41	-0.5106	-0.4506	-0.5316	-0.05062	-0.000625	-0.965	-0.6656	-0.4506	-0.4356	-0.8906	-0.000625	-0.8806	-0.7894	-1.226	-1.121	-0.8594
HMEC-C_CONFL2	. ARRY3X	-2.195	-0.2	0.88	1.5	0.11	-0.1119	0.1712	-0.15	-2.91E-09	0.56	-0.5788	-2.91E-09	0.3281	0.8441	2.831	0.41	-0.4375	-0.135	0.47	-2.91E-09	-0.7194	0.17	-0.51	0.7691	-0.41	-1.21	-0.5344	-1.345	-0.32	-1.225	-0.77	98.0-	0.16	-1.509	-0.335	-1.68	-2.349
HMEC+INFA	ARRY4X		-1.128	1.242	1.202	-0.2781	-2.78E-17		-0.08812	-0.8881	-1.058	0.6131	-0.2381	0	0.1959	-0.5869		-0.6156		-0.7381	0.1719	0.8925	1.012	-0.4581	0.02094	-0.8981	-1.748	-0.5025	-0.4231	-0.1681	-0.4031	0.1919	-0.7481	-0.2181		-0.9931	-0.5581	
	ARRY2X	-2.586	0.06875	1.499	-2.081	-0.08125	0.3769	-0.97	0.4088	-0.6312	-0.1113	-0.89	-1.881	0.1069	0.3228	0.1	0.3088	-0.6688	-0.2662	-0.2113	0.04875	0.1894	-0.06125	0.1988	0.05781	-0.1512	0.4588	-0.4756	-0.1062	0.06875	0.3538	0.9087	-0.3812	-0.01125	-0.15	-0.8262	-0.7212	-1.33
GWEIGHT		T	F	Ŧ	1	1	1	1	1	T	F	1	1	1	1	* **	1	1	1	1	1	T	T	1	T	1	T-1	1	1	Ŧ	1	1	1	1	Ŧ	1	T	Ŧ
		740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776

MDA-MB-321	0.00	-0.26	0.5912	-0.25	-0.06875	-0.46	-1.49	0.4162	1.22	0.92	0.14	-0.4044	2.72	-1.77	0.2281	1.35	0.26		0.26	0.58	0.75	1.32	1.03	9.0	2.511	0.48	0.08	0.92	0.28	0.755	-0.58	0.39	-1.125	0.11	1.39	-0.55	1.074
HUVEC MDA	94	2.629	0.7806	-0.3006	0.000625	0.03938	-0.2206	0.1056	1.439	0.009375	0.3294	2.975	0.8094	1.329	0.0375	0.3094	2.179	0.8794	-1.981	-0.02063	-0.02062	1.539	0.7594	2.789	3.081	0.1494	-0.05062	0.04937	0.2194	0.3844	-0.03063	-0.06062	0.4944	0.1294	-0.000625	0.08938	0.5134
HMVEC I	 <u>\alpha</u>	4.08			-0.9388	-0.23	-0.65	0.3562	0.15	-0.16	0.48		-0.81	-0.77	-0.8019	-0.1	99.0	-0.47	-4.72E-16	-1.54	-0.45	2.46	0.41	1.06	2.491	0	-0.92	-0.2	-0.18	-0.125	-0.02	-0.23	0.345	-0.37	-0.42	-0.2	
184B5 APRYOX	NO INIT	0.4194	-0.9694	-1.251	0.04062	0.3094	1.389	-0.9344	-1.111	0.4294	-2.191	-0.315	2.701	-1.721	-0.0325	-0.1006	-3.381	-1.091	-0.2506	-0.6806	0.03938	-0.5306	-1.311	-0.8306	0.000625	-1.591	-0.6306	-1.411	-0.7606	-1.326	0.3594	0.09937	0.5444	0.3694	-0.3506	-0.5806	-0.2766
184A1-LATE	-2.798		-0.6669	0.06187	-0.2269	0.6619	1.472	-0.1819	-2.068	-0.3681	-1.048		-0.9181	-0.8081	-0.19	-0.7581	-1.638	2.312	-1.298		-0.01812	-1.278	0.01188		-0.6869	-1.368	-0.4281	-0.04813	-0.3181		0.2419	0.5019	0.1769	-1.118	-2.868	-0.2881	-0.06406
184AA ARRYSX	-2.511		-0.4394	-1.091	1.031	0.5194		-0.07438	9008'0-	0.2594		-1.185	-1.341	-1.861	-0.2225	-0.000625	-0.000625	-0.1206	0.03938	-0.000625	0.1394	-1.381	-0.2806	-0.4106	-0.2994	-0.8606	-0.2806	-0.2006	-0.7306	-0.5956	0.1694	-0.2906	-0.02562	-0.000625	-0.6206	0.05938	-0.9266
HMEC-C_CONFL2 ARRY3X	-2.22	-1.43	-1.709	-0.35	0.07125	-1.13	-0.07	-1.444	-2.11	-0.7	-0,39	-0.7544	-0.58	0.93	-0.03188	-0.03	-3.06	-2.6	-0.29	-0.59	-0.45	-1.77	-1.6	-0.91	-1.559	0.06	-1.43	-1.89	-1.05	-0.545	-0.98	-0.74	-1.705	-1.4	-0.57	-0.81	-0.7159
HMEC+INFA ARRY4X			-0.05687	0.7919	-0.1869	-1.258	-0.1681	-0.8619		-0.7281	-0.01812	-0.5725	-1.168	1.022	0	-0.1081	-2.288	-3.058	-0.6681	-1.508	-0.7181	-1.848	-0.8281	-0.07812	-0.3569	-0.3781	-1.178	-1.278	-1.758	-0.8131	-1.058	-1.088	-2.093	-1.808	-0.6081	-1.758	-1.704
HMEC-C ARRY2X		-1.621	-2.26E-09	-0.6013	0.35	-0.8912	-0.09125	-0.405	-0.5613	-0.5012	-0.6512	0.08438	-0.6912	-0.2012	0.6469	-0.1612	-0.8312	-2.011	-0.00125	-0.6812	-0.01125	-1.141	-0.1312	-0.2212	0.09	-0.2312	-0.04125	-0.5213	-0.7412	-0.7662	-0.5412	-0.7812	-0.6762	-0.2912	0.1588	-0.4312	0.1128
GWEIGHT	F	1	1	1	1	1	1	1	1	1	1	1	F	1	1	1	1	1	1	1	1	1	1	1	=	T	1	-	H	1	1	1	1	1	1	H	1
	1111	778	779	780	781	782	783	784	785	786	787	788	789	730	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	908	807	808	808	810	811	812	813

Table 2

PCT	/TICO	11/2	191

		~	_	112	<u> </u>	<u></u>	_		τ <u>-</u> -	Tio	<u>-</u>	1	<u></u>	I +	1++		٠.٦	115	Ιω	<u>~</u>	<u>-</u>	L.	<u></u>	<u>~</u>			~	~	10	_	lic.	<u></u>	6.		-			<u>. </u>
MDA-MB-321	ARRY11X	0.6613	0.6369	0.8006	0.8512	0.28	0.51	-1.51	-0.71	-0.06	0.7213	1.131	1.23	1.024	0.24	0.46	1.56	0.25	99.0	1.18	0.7981	1.06	1.36	1.03	1.11	0.7	0.82	0.6713	1.26	1.1	0.75	0.5812	0.7412	0.51	1.01	96.0	0.99	0.955
HUVEC	ARRY6X	0.000625	0.00625	0.16	0.000625	0.02938	0.1194		0.6994	-0.5706	0.07062	0.4306	-0.07063	-0.1566	0.1694	0.06937	-0.07062		0.3894	0.5994	-0.3825	0.04938	1.079	0.7994	0.1894	-0.1406	0.1394	0.000625	-0.05063	0.06938	0.4794	-0.4594	-0.3794	0.2494	0.09938	0.2594	-0.03062	-0.4456
HMYEC	ARRY7X	-0.1888	-0.3631	-1.579	-0.7188	-1.2	0.34		0		-0.5688	0.4312	-0.64	-0.7359	0	-0.03	-0.23		-1.5	-0.49	-0.6819	-0.64	0.4	0.15	-0.08	-0.8	-0.52	-1.229	-1.06	-0.5	-0.19	-0.8088	-1.719	-0.46	-0.52	-0.99	-2.3	-3.415
184B5	ARRYOX	-0.3294	-0.7738	0.24	-0.8494	-0.3306	-1.581		-2.371	-0.8606	0.000625	-1.519	-1.101	-1.257	-0.6606	-0.9606	-0.03062		-0.5006	-0.06063	-3.003	-0.6906	-1.461	-1.391	-1.441	-0.2406	-0.6806	-1.379	-1.761	-1.361	-1.201	-1.329	-1.209	-1.911	-1.401	-1.421	-1.351	-2.126
184A1-LATE	ARRY1X	-0.1069	0.4488	-0.1775	6989.0-	0.2119	-1.178		-1.468	-0.6281	-0.3769	6966'0-	0.06187	-0.02406	0.5819	-1.298	-1.598		-0.2781	-0.2181	-2.79E-10	0.4519	-0.3319	-0.3981	-1.678	0.1619	-0.1881	-1.537	-2.208	-1.518	-0.8081	0.6131	-1.577	-1.388	-1.328	-2.128	-0.7381	-1.623
184AA	ARRYSX	-0.9894	-0.3837	-0.54	-0.07937	-0.9706	-0.3106		-1.451	-0.3606	0.1006	-1.029	-0.5106	0.02344	-0.4206	-0.07062	-0.1406		-0.000625	-0.3506	0.1575	-0.3306	-0.4206	-0.1006	-0.7306	-0.3006	-0.2706	-0.4894	-0.5606	-0.6206	-0.3106	-1.269	-1.399	-0.3706	-0.5606	-1.301	-1.001	-0.6256
HMEC-C CONFL2	AKKY3X	0.06125	-0.8431	-1.929	-0.6388	-1.18	-2.66		-1.95	-2.04	-1.129	-1.719	-1.34	-0.7159	-1.74	-0.77	-0.51		-1.6	-2.44	-1.502	-2.42	-2.12	-1.44	-2.26	-1.06	-1.7	-1.159	-1.72	-1.03	-1.46	-0.6688	-0.5588	-1.89	-1.06	-2.23	-1.7	-1.985
HMEC+INFA	AKKY4X	-1.387			-1.147	-1.778	-2.798		-2.938	-1.748	-2.207	-2.037	-1.418	-0.9141	-0.5581	-0.8981	-0.7181		-1.828	-2.518	-1.58	-3.238	-2.538	-1.618	-2.828	-2.078	-1.238	-0.8569	-0.6981	-1.428	-1.358	-0.8669	-0.9869	-1.968	-1.208	-2.508	-2.008	-2.563
HMEC-C	AKKY2X	-0.45	-0.2144	-1.071	0.17	-0.8912	-1.221	-0.7413	-1.141	-1.141	-0.48	-2.26E-09	-0.3513	-0.1172	-0.9912	-0.06125	0.06875	-0.6713	-0.6612	-0.7913	-0.6931	-1.411	-0.8112	0.3688	-0.2913	-0.7813	-0.5812	0.15	-0.5512	-0.3912	-0.3412	-2.26E-09	-2.26E-09	-0.2412	-0.1212	-1.021	-0.9712	-0.8062
GWEIGHT			11	1	1	1	1	1	1	1	1	1	1	1	Ŧ	1	1	1	1	7	1	1	1	1	1	Ħ	1	T	1	F	ī	1	F	1	1	1	1	T
		814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	847	848	849	820

ຊ

Θ
亞
'n

MDA-MB-321	ARRY11X	-1.94	0.78	1.511	1.351	1.212	1.06	1.201	0.02	0.55	0.2041	0.33	1	1.41	0.92	1.13	1.061	0.2625	0.24	1.35	1.92	0.91	0.7	1.461	0	1.38	0.3712	0.38	0.4781	0.925	0.35	0.2906	-0.1787	0.9913	0.96	-0.03	0.2225	
HUVEC	ARRY6X	0.04938	0.5794	0.000625	0.000625	0.1219	-0.3506	0.2606	-0.2106	0.3794	0.7634		0.4594	0.7394	0.7294	0.5794	0.000625	0.4319		-0.1706	0.4594	-0.1906	-0.2306	0.000625	0.1994	-0.1506	0.000625	-0.1306	-0.2125	-1.006	-0.06063	0.01	0.000625	0.000625	0.009375	0.01938	-0.9781	-0.1806
HMVEC	ARRY7X	-0.84	-0.06	-0.2888	-0.1588	-0.6275	-0.66	-1.599	-1.83	-0.23	0.1641	-0.2	-0.27	0.64	-0.65	0.3	-0.6588	-0.4775		-0.09	-0.54	-0.41	96.0-	-1.049	-0.48	-2.42	-0.7788	-0.5	-0.7419		-0.5	-0.3794		-1.079	-0.17	-1.57	-1.428	
184B5	ARRYOX	-3.011	-1.751	-1.289	-1.229	0.1919	-1.251	-1.349	-1.211	-0.8306	-1.757	-1.321	-0.1706	-0.9106	-0.6206	-0.5406	-1.129	-0.9981	-0.7206	-1.321	-1.151	-1,131	-1.911	-2.819	-1.531	-0.7406	-0.5694	-0.6906	-0.7625	-1.106	-0.1506	-0.42	0.000625	-0.8494	-0.3406	-1.521	-2.258	-1.131
184A1-LATE	ARRY1X	-1.538	-0.1081	0.3831	0.3831	0.1944	0.3819	-0.1669	0.07188	0.8419	0.08594	-0.5881	-0.6181	-0.09812	0.7219	0.3319	0.4131	0.7744	0.8319	0.3419	0.4319	0.09188	-0.9881	-1.267	-0.7581	0.7019	0.3831	0.1119	-2.79E-10	-1.143	0.3619	-0.9375	-0.4469	-1.567	-0.2781	-0.1381	-1.086	-1.108
184AA	ARRY5X	-2.411	-0.1506	-0.3594		-0.1481	-0.7706	-0.5194	-1.271	-0.5106	-0.1866	-0.7906	-0.6006	-0.000625	-0.1806	-0.2206	-0.5394	-0.7181	-0.5606	-0.7306	-0.2606	-0.2506	-0.9506	-1.519	-1.301	-1.291	-0.9994	-0.000625	0.1175	-0.6856	-0.3606	-0.33	-0.03937	-0.1094	0.2594	-2.551	-1.188	-0.9406
HMEC-C_CONFL2	ARRY3X	60'8-	-2.57	-2.209	-2.309	-2.108	-1.5	-1.269	-2.26	-1.68	-1.956	-1.8	-1.53	-1.84	-1.74	-2.04	-2.189	-2.318	-2.13	-3.05	-1.76	-1.58	-2.52	-2.159	-2.45	-2.5	-1.819	-2.04	-1.612	-2.245	-1.78	-1.469	-0.8988	-1.429	-1.19	-2.85	-1.458	-1.3
HMEC+INFA	ARRY4X	-4.068	-1.878	-3.067	-2.177	-3.146	-2.108	-1.067	-1.698	-1.758	-2.454	-2.088	-1.648	-2.048	-1.998	-2.298	-2.607	-2.116	-2.348	-1.868	-1.768	-1.238	-2.668	-2.757	-2.728	-2.498	-2.157	-2.968	-3.07	-2.323	-1.918	-1.867	-1.477	-2.007	-1.298		-1.656	-1.698
	ARRYZX	-2.001	-1.011	-1.05	-1.16	-1.089	-0.9412	-2.26E-09	-0.9412	-0.4313	-0.6672	-0.5912	-0.2813	-0.5012	-0.3412	-0.6112	-0.88	-0.8988	-1.011	-1.151	-0.09125	-0.7312	-0.6913	-1.15	-1.271	-0.9512	-1.16	-0.6712	-0.6531	-0.9862	-0.7212	-0.5506	-0.1	-0.72	-0.2412	-2.011	0.1712	-0.4212
GWEIGHT		1	1	1	ī	1	1	1	1	T	1	1	1	T	1	1	1	1	1	T	1	- -	1.	1		H	1	1	1	Ħ	1	H	77	T	1	1	F	T
		851	852	853	854	855	826	857	828	829	860	861	862	863	864	865	998	867	898	869	870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	882	988	887

PCT/IIS01	/239.1	

5	GWEIGHT	HMEC-C	HMEC+INFA	HMEC-C_CONFL2	184AA	184A1-LATE	18485	HMVEC	HUVEC	MDA-MB-321
		ARRY2X	ARR	ARRY3X	ARRYSX	ARRY1X	ARRYOX	ARRY7X	ARRY6X	ARRY11X
888	1	-0.5612		-1.31	-0.000625	-0.4281	-1.111	-0.22	0.2294	0.81
889	1	-0.5812	-2.448	-2.15	-0.4006	-0.6281	-1.671	-0.38	0.1994	0.87
890	1	-1.071		-2.13	-0.7006	-0.5781	-1.321	-1.42	-0.3506	0.28
891	1	-0.7112	-2.128	-1.54	0.3694	0.4819	-0.1106	-0.07	0.1494	0.28
892	-	0.1044	-1.232	-1.004	-0.155			-0.1544	0.515	1.246
893	1	-0.1012	-1.698	-1.03	0.1594	-0.6181	-0.5006	0	0.6194	1.66
894	1	-0.7012		-1.61	0.04938	-0.1681	-1.251			0
895	1	-2.26E-09	-1.587	-0.6088	-0.5294	-0.9169	-1.529	-0.2588	0.02062	1.361
968	1	-0.9856	-1.342	-1.634	-0.955		-1.045	-0.4544	0.005	1.546
897	1	-0.5	-1.667	-0.7488	0.2106	1.153	0.000625	-0.6688	-0.5494	-1.219
868	1	-0.67	-2.747	-1.909	0.1306	1.303	0.000625	-0.3888	-0.2194	-1.369
839		-0.1012		-1.66	-0.5006	-0.06812	-1,361	0.26	0.9594	-0.24
006	7	-1.25		-1.099	-0.4794	0.3731	-0.4794	-0.1588	0.000625	1.011
901	T	0.2888	-0.3681	-0.51	-0.09062	-0.5781	-1,801			0.55
902	F	-0.1712	-1.148	-1.29	0.1894	0.07188	-0.4106	-0.23	0.3294	0.33
903	F	-0.1831	١	0.1681	-0.3025	-0.76	-0.7725	0.1381	0.5775	-0.08188
904	-	-0.4112	0.03188	-2.92E-09	-0.3806	-1.418	9086'0-	-0.4	-0.1306	1.63E-11
905	T	-0.000625		-1.349	-0.2	0.0725	-0.67	-0.8694	0.01	0.000625
906	F	-0.4112		-1.8	-0.000625	-0.1081	-0.3506	£0.22	0.2694	1.96
907	-1	0.2988	위	-1.22	0.1194	-0.9181	-1.131	-0.31	0.3094	0.02
808	T	-0.7612		-1.71	-1.121	-0.7781	-0.5906	-0.73	-0.1706	0.26
606		-0.075	1	-0.7338	-0.5544	-0.9319	-1.144		0.07562	0.5862
910	T	-1.196		-2.235	-1.356		-1.986		-0.4656	
911	7	-1.071	-0.4181	-0.4	-0.8506	-0.5781	-0.8606	-1.01	-0.4506	0.75
912	1	-0.1656		-0.8344	-1.395		-0.955	0.1656	-0.425	
913	=	-0.5112	-1.708	-1.57	-0.6706	-0.4981	-1.251	0	0.04938	1.09
914	T	-1.219	-0.8556	-0.7975	-0.1981	1.184	0.3419	0.1825	-0.1781	-0.4775
915	퀴	-1.076		-0.225	-1.076	0.8969	0.2644			-0.465
916	티	-0.9912	-1.748	-1.05	0.08938	0.3919	0.2594	-0.93	-0.2006	-0.27
917	1	-0.00125	-0.6181	-0.19	-0.1606	-0.6681	0.2194	-4.72E-16	-0.1906	1.47
918	+-1	0.6588	-2.578	-0.79	-1.311	0.1619	-0.4706	-0.74	-1.231	0
919	퓌	-0.5088	-0.7656	-0.0975	0.03187	0.4444	0.2919	-0.6275	-0.3281	0.8125
920		0.3388	-0.2081	-0.35	-0.000625	-0.2181	-0.3306	-0.58	-1.011	0.29
921	귀		-1.838	-2.27	-0.9006	-0.2481	-1.071	0.13	0.1094	1
922	키		-1.577	-2.659	-1.039	-0.8469	-2.219		0.000625	0.7512
923	키	0.6087	-0.4681	-0.32	0.3894	0.06188	-0.5106	1.82	0.7494	0.05
924	키	1.071	0.06438	-0.0075	1.482	1.324	-1.408	3.022	1.772	

0	j
Ċ	5
a	3
۰	-

	c	V
	C	U
Ì	2	5
	ŗ	U

		_	<u> </u>	~		منا	_	<u></u>		اما	lio.					<u></u>	∓	10	_	8	0	اما	10	8	(c)	ın		₩.	<u></u>					തി		<u>ه</u>	In!	_
MDA-MB-321	ARRY11X		-1.39	0.43		0.35		0.29		1.932	0.05		-0.1	0.3869	0.02062	2.23	0.44	0.805	0.7691	-0.28	0.0	-0.435	0.545	1.738	2.86	-0.185	-0.17	1.14	2.23	1.201	1.021	1.44		5.19	-0.135	-0.3819	0.5	
HUVEC	ARRY6X		-1.511	-0.8506		-1.851			-1.521	-0.4488	-0.3106			-0.7038	0.31	-0.2906	0.1994		-1.542		-0.3706	-1.596	0.8044	0.5175	1.369	2.754	3.889	1.049	1.969	-0.1594	-0.3394	0.5294	0.02	-1.971	-0.7556	-0.7025	-0.3306	-0.4416
HMVEC	ARRY7X		-1.51	-0.07					-1.64	-1.148	0	-0.5894	0	-0.3831	0.1406		-0.26	-0.785		-0.88	0	1.235	1.515	0.2681	1.22	1.595		1.76	1.67	-0.1488	-0.3088	0.36	-1.339			-0.7319	-0.03	
184B5	ARRYOX		0.9794	0.8294		-0.9206		-1.121	-0.7906	-0.7788	-0.5106	0.04	-1.491	-0.03375	-0.76		90.6.0-	0.7844	-0.4716	0.2294	-0.6606	-0.2256	-0.2156	-1.173	-0.6106	-2.166	-0.4106	-1,461	-0.1706	-0.9194	-0.9794	-1.691	-0.44	1.549	0.5344	-0.3325	-1.701	-0.1716
184A1-LATE	ARRY1X		-0.4981	-0.1981		-0.4981		-1.698	-0.5781	1.444	-0.2581		1.132		-0.6975	0.5619	-0.8481				0.8419	0.9269	-0.3531	-0.79	-0.09812	-1.323	-1.738	-0.4081	0.2719	0.3131	0.2631	-1.028	0.7825	2.992	0.3469	0.57	-2.098	-0.4191
184AA	ARRYSX	0.5244	1.259	0.4494	-0.05563	-1.061	-2.029	-1.681	-1.151	-1.239	-0.8706	-2.42	-1.291	0.2362	90.0	-0.4806	-0.4906		-0.1216	-0.03062	-0.9606	-1.436	0.03438	-0.6125	-0.000625	-0.4256	-0.08062	-0.2206	-0.05062	-0.05938	-0.3694	-1.531	-0.75	-0.000625	-0.03563	-1.293	-0.02062	-0.2216
HMEC-C_CONFL2	ARRY3X	0.505	1.59	0.11	-0.075	8.0-	-1.509	-0.74	0.01	-1.298	89.0	1.681	-0.76	-0.2531	-0.06938	-0.07	86.0-	0.095	-0.0009375	-0.07	-0.78	-0.425	-0.365	-1.182	-0.81	0.355	-2.91E-09	-1.13	-0.8	-0.8188	-0.7188	-0.31	-0,4894	-2.24	-0.025	-1.152	62'0	1.199
HMEC+INFA	ARRY4X	0.2969	0.4019		0.3969	-0.1981	-1.167	-0.07812	0.03188	-0.7963	0.8219			0.5787		-0.2181	-0.6581		0.0009375	0.5419	-0.3781	0.4269	-1.393	0	-0.5981	-1.633		-0.7381	-0.8781	-0.7069	-1.207	-1.208		0.06188	-0.3231	0	1.192	0.1609
	ARRY2X	0.5438	1.149	0.08875	0.2237	0.2888	-2.26E-09	0.4688	-0.5312	-0.03938	0.2688	-1.271	-0.6712	-0.1644	-0.02062	-0.08125	-0.6312	-0.1762	0.03781	0.09875	-0.2112	-0.9962	0.2038	-0.6731	-0.1012	-0.4662	0.00875	-0.3612	-0.1012	-2.26E-09	-2,26E-09	-1.111	-0.9206	-0.8612	-0.1563	-1.063	0.7488	0.2878
GWEIGHT		1	1	1	1	1	1	1	T	1	1	1	Ţ	T	1	1	7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	1	Ŧ
		962	696	964	396	996	296	896	696	970	971	972	973	974	975	926	622	978	626	086	186	985	683	984	985	986	286	886	686	066	991	266	666	994	366	966	266	866

2	
ø	
虿	
ō	

	GWEIGHI	חשברי	HMEC+INFA	HM	184AA	184A1-LATE	184B5	HMVEC	HOVEC	MDA-MB-321
		ARRY2X	ARRY4X	ARRY3X	ARRYSX	ARRY1X	ARRYOX	ARRY7X	ARRY6X	ARRY11X
999	-	0.2188	0.6019	0.17	-0.5206	-1.098	-0.6306		-1.371	-1.75
1000	1	-0.2712		0.32	-0.1606	-0.9981	-0.8706	2.23	1.109	-0.29
1001	1	-0.4272	-0.1141	-1.036	-0.7766	-1.474	-0.4666	2.094	-0.5666	0.7041
1002	1	-1.091		-0.92				2.81	0.6394	
1003	1	-0.1813	-0.1481		-2.011			6.16	3.549	
1004	1	-0.2112	-0.2781	0.54	-1.721	-1.058	-0.9006	5.2	2.589	-0.63
1005	1	0.1287		-0.03	-0.3306		0.5694			
1006	1	0.1687	-0.5181	-1.05	0.6594	-0.4481			1.149	-0.54
1007	1	-0.1106		1.711	-0.53		-0.05			
1008	1	0.085		0.05625	-1.144			0.2962	-1.554	-1.134
1009	1	0.1144	0.6575	0.9456	-0.715	0.6775	-1.055	0.4056	0.105	-0.6844
1010	1	-0.1262	1.757	0.225		-0.2631			-0.7956	
1011	1	-0.2913	1.672	0.82	-1.671	0.7219	-0.6206	0.1		-0.58
1012	1	-0.4112	0.2819	-1.1	-0.9106		-1.041			
1013	1	-0.2106	0.1725	-0.5694	-0.24	0.9625	-0.27	2.151	0.08	1.001
1014	1	-0.1612		-0.62	-0.7806	0.7019	2.299	-1.69	1.799	-0.95
1015	1	-0.4462	-0.2331	0.225	0.004375	1.227	-1.076	-0.385	-0.7856	-0.005
1016	1	-0.2663	-0.4331	1.495	-1.196	0.2269	-0.2756	-0.445	-1.786	
1017	1	0.07875	-0.8681	-0.01	0.009375	-0.6781	-0.4606		-0.4506	
1018	ī	-0.7712	-0.6881	-1.04	-1.041	-0.8181	-1.281	0.05	0.09938	0.34
1019	1	0.009375			-1.34	-0.0375	-1.2		-1.13	0.07063
1020	П	0.1594	-0.2275	-0.7294	-0.67	0.7725	0.05		-1.46	-0.9994
1021	=	0.00875	-0.3981	0.14	-0.3606	1.002	0.7294	-0.47	-0.3506	0.07
1022	1	-0.5131	0	-0.9219	-1.543			P		-0.4519
1023	1	-0.1512	-1.318	-1.82	-2.761	-0.7781	-2.621			-0.35
1024	1	0.2187	0.1519	-0.19	-1.251	0.1719	-0.5706		-0.04063	-0.23
1025	1	0.9387	-0.04813	0.01	-0.8306	0.3219	-0.6906	-1.37	-1.421	0.48
1026	1	-0.3588	0.9144	-2.108	-1.848	0.7444	-2.388			
1027	1	-0.3422		-0.7209	-0.03156	-1.149	-0.9916	-1.741		
1028	1	-0.4213	-O.	0.37	-1.291	-0.7881	-1.051	-0.42	1.439	0.78
1029	1	-0.3112	1.752	-0.1	-1.241	1.292	-0.2006	-0.95	-2.251	-0.95
1030	Ŧ	0.1078	-1.419	0.2991	-0.1816	0.0009375	-0.7816		0.2284	
1031	1	-0.5612	0.6219		-0.1506	0.5619	-0.4506	-1.21	-1.031	-0.77
1032	1	-2.73		-1.919			1.611		0.000625	
1033	1	-0.1672	-0.1841	-1,006	-0.4266	0.03594	-0.3466	-2,856	-0.2166	-0.05594
1034	1	0.4088	-1.078	-2.91E-09	-0.1206	-0.3381	-1,361			1.01
1035	_	0.2588	1.282	-0.1	-0.6206	1.362	2.369	-3.53	-0.09063	-2.21

, 4
ø
亙
╗
_

									•																													
MDA-MB-321	ARRY11X		-1.7	-2.03		-0.4588		-0.2009	2.811	1.249	4.067	4.1	2.805	1.026	1.89	2.681				-0.95	-1.352		-1.14		-1.3	-0.8	0.1	-0.9344	-0.075	-0.62		-0.545	0.155	1.16	1.308	-0.78		
	ARRY6X			-2.691			-1.511	0.2484	96.0	0.1284	4.436	-1.831	0.2044	2.905	1.499	2.161		3.68	3.881	2.939	2.047	2.059	1.299		-3.501	-0.1606		-1.135	-1.276	-0.8706	-0.5525	-0.9456	-1.646	-2.521	-1.093	-1.291	-0.9856	
HMVEC	ARRY7X		-2.7					0.2391	0.4406	0.5491	4.277			4.446	1.05	1.951		1.931	3.411	2.74	3.568	3.3				9.0-			0.065	-0.33		-0.165		-3.64	-1.212	0	-0.635	
18485	ARRY0X		-2.651	-0.01094		1.181	0.4494	-0.6416	-1.4	-0.9816	-1.894	-1.901	-1.966	-1.305	-0.5706	-1.669	-1.202	-0.21	-0.3294	-1.221	-1.503	9009.0-				-0.09063		0.035	0.1144	-1.741	0.0775	-1.016	-1.716		-0.8425	-1.361	-0.3656	-3.031
184A1-LATE	ARRY1X	-0.1181	1.742	-0.01844	1.143	-1.047	-0.4981	0.2009		-0.05906	-1.471	-0.9381	-0.8631	2.188	-0.7281	6909:0-		0.4925	-1.367	-1.058	-1.46	-0.1981	0.3419			1.372		0.6775	0.4469	0.1819	1.39	1.197	0.1969	0.8319	-2.79E-10	1.212	-0.5231	-1.018
	ARRY5X	1.289	3.209	0.3591	-0.3094	-0.1094	0.02938	-1.542	-0.11	-1.042	-0.7138	0.01938	-0.03562	0.035	-1.171	-0.2294	-1.762	-1.3	-1.129	-1.621	-0.2025	-1.841	-2.811	-0.5956	-1.391		-1.271	-0.345	-0.5856	-0.4206	-0.9625	-0.9556	-1.376	-1.411	-0.8425	-1.671		-0.7106
HMEC-C_CONFL2	ARRY3X		-3.85	-0.5903	-0.00875	-1.239	0.37	-0.4509	0.5294	-1.721	-1.093	-1.22	-0.685	-1.504	-1.06	-0.8688	608800-	-0.6394	-1.409	0.58	-0.3319	-2.91E-09	-0.48	-0.505	76.0-	0.15	-1.15	-0.08438	0.585	-1.36	-0.2419	0.305	-0.155	-0.33	-0.04188	-1.03	-0.435	
K	ARRY4X			0.01156		1.923	1.252	0.3709	-0.9975	-1.359	0.6288		0.2669	-0.3225		1.223	0.07094		1.393	0.2419	0	1.712	1.092			2.452	1.392	0.7575	-0.4531	-1.018	0	0.8569	-0.4131	2.632	0.91	0.5119		2.492
	ARRY2X	-2.881	-1.761	-1.282	-2.26E-09	-2.26E-09	:	-1.512	0.06937	-1.092	-0.004375	-0.5912	0.3538	-0.03562	-0.2412	-2.26E-09	-0.1822	-0.4306	-2.26E-09	-0.3912	0.8269	-0.9112	-0.7812	-0.1562	-0.2212	-0.3412	-1.241	-0.5156	0.1238	0.3888	0.1669	-0.6062	0.02375	-0.5313	-0.3731	-0.9412	-0.6962	-0.4412
GWEIGHT		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	11	1	1	1	1	1	1	1	1	1	1	T
		1036	1037	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072

~
Ψ
五
O

MDA-MB-321	ARRY11X		0.08	-0.66	-0.37	-0.4144	0.1	1.601		-0.375	0.14	0	0.32	0.75	0.42	-0.3203	-0.6094	0.6281	-0.4987			-0.9	-0.11	-0.4531	-0.875	0.38	-0.155	-0.275	-0.48	0.365	3.14	3.251	-0.5488	-1.061	-0.11	-0.2859	-0.24	-0.32
П	ARRY6X	1.369	3.499	1.539		-1.715	-0.6406	0.000625		2.964	1.359	-1.151		0.9694	-0.1306	-0.01094	-0.15		0.5906		-0.5166		3.229	3.386	2.224	1.539	-2.616	-2.476		-0.7456	0.2194		1.981		-0.3906	0.3234	-0.5506	
HMVEC	ARRY7X		2.75	0.73		-0.8344	6.0-				1.65	-1.18	66.0	-1.63	0								0.11	0.2269	-0.215	0.13	-0.735				1.95				0.16	0.9641	-1.62	
184B5	ARRYOX	,	-1.041	-0.4306	-2.361	-0.365	-0.4706	-0.1694	-0.2256	-0.9456	-0.1706	9086.0-	-0.7706	-0.8206	0.1394	-0.05094		-0.1725	0.000625		-0.9566	0.3194	-2.641	-2.724	-1.306	-1.251	-1.106	-1.546		0.2844	-2.701	0.000625		-0.3516	1.879	2.233	0.1694	0.01937
184A1-LATE	ARRY1X		-0.4581	-0.7681	-0.4481	0.4775	1.142	-0.5369	-0.6731	-0.6831	-0.7281	-0.06812	-0.3481	-1.358	0.3619	-0.3184		-0.18	0.2031		-0.1441		-0.7981		-0.9831	-2.408	0.9569		1.092	0.2369	1.122	-0.1969			1.742	-0.01406	1.172	0.2819
П	ARRYSX	-2.761	-0.7606	-0.6306	-1.031	-1.185	-0.7906	-0.2594	-0.8756	-0.5256	-0.01062	1.389	-0.7706	-1.341	-2.141	1.319	0.27	-0.3125	-0.7694	-1.179	-0.3266	-1.191	-2.781	-2.864	-1.766	-0.5406	-0.8256		-1.421	-0.3156	-2.141	-0.9794	-2.349	-0.6316	0.6894	1.493	0.3894	0.7794
HMEC-C_CONFL2	ARRY3X		-1.82	0.01	69.0	-0.1044	-0.85	-0.4188	0.575	-0.345	-1.14	-1.5	-1.12	-0.78	-1.06	-0.3803		0.2981	0.3612	0.1612	1.064	0.42	-1.84	-1.343	-1.025	-0.13	-0.565	-0.425	6.0	-0.865	-1	-0.06875	-0.2488	0.5691	-0.86	-0.01594	-0.03	-0.19
HMEC+INFA	ARRY4X		-2.098	-0.5481		2.378	-1.128	0.2831	0.8469	0.4569	-1.038	-0.8281	1.152	-1.278		0.01156		0	0.003125		0.3159		-1.338	-1.421	0.6769	-0.9481	1.357			-0.1931	-1.398		0.2831	-0.009062	-1.028	-0.2141		-0.3281
J	ARRY2X	-1.951	-0.6512	-0.4312	-0.4313	0.1044	-0.5812	2.24E-09	-0.6262	-0.3163	-0.7912	-0.8912	-0.5012	-1.011	-1.551	0.02844	0.4294	-0.3831	0.07	-2.26E-09	-0.5672	0.2987	0.4188	0.1656	0.5037	-0.1612	0.2038	-0.1962	-0.2513	-0.3163	-1.571	-0.49		0.3178	-0.4612	1.043	-0.5412	0.3488
GWEIGHT		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Ŧ	1	ī	1	Ŧ	H	1	1	Ħ	H	7	1	1	1
		1073	1074	1075	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1001	1092	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109

	i i	1
-0.4169	-0.6275	
-0.1594	0.56	31
-1.609	-1.209	·
-1.13/	-1.137	

																													_		_						
MDA-MB-321	ARKY11X	1.001		-0.14	-0.4	0.14	-0.31	0.00	-0.47	-1.398	0.7181	0.34		-0.7994	-0.8075	-0.13	0	0.8	0.18	0.9106	-0.9487	1.32	0.015	-0.975	-1.169	0.12	-0.74	-0.02	0.21	0.29	0.33	0.2006	0.8181	0.19	0.46	0.8113	-0.08937
П	-0.01938	0.000625	0.1844	-0.04062	-0.1006	0.3194	0.2994	0.2594		-0.4181	0.6875	-0.2106		-0.43	0.8819	0.1694	0.02937	0.4894	0.6194	-0.19	0.000625	0.3194	-0.5056	0.4044	0.2706	-0.2006	-0.1306	0.2294	0.09938	0.6094	0.5894	0.06	0.2575	-0.1806	-0.2706	0.000625	0.08
HMVEC	-0 2288	-0.1788	0.445		0.32	-0.19	0.14	0.04		0.9425	0.7181	0.22			2:052	-0.02	0.48	0	1.17	-0.1294	0.3512	60.0	-0.355	0.685	0.5512	-0.15		0.19	-0.09	0.92	0.76	-0.4994	-0.2019	0.04	0	-0.2488	0.2506
18485	-0 1094	0.03062	-1.456	-0.4106	-0.5106	-0.6706	0.2494	0.6094	-0.5406	-0.1181	0.9775	0.5994		-0.48	0.01187	-0.06063	-1.371	0.1394	0.05937	0.05	-0.06938	-1.311	-1.576		0.000625	-0.1306	-0.2406	-0.5306	-1.431	-0.4906	-0.3206	0.04	-0.4125	-0.7606	-0.06062	-0.7394	-0.7
184A1-LATE	-0 3369	0.3331	-0.1431	-0.7681	-0.3881	-0.5281	-0.7681	-0.8281	-0.1581	0.1944	0.14	0.1219	0.7619	0.5825	0.1444	-0.7181	0.001875	0.1719	0.7919		0.09313	-0.7481		-0.3131	-0.3369	- 0.1219	-0.8681	-1.938	-0.5081	-0.4681	-0.2181	-0.2275	-2.79E-10	-1.468	-1.398	-0.4169	-0.6275
Η.	0.4506	0.9806	0.6244	0.4594	0.2594	0.2394	0.2694	0.5494	0.02938	1.062	1.317	0.1994		0.99	1.522	0.4694	-0.09062	0.9794	1.889	0.35	90/9'0	-0.4506	0.02438	0.1444	0.1006	0.06938	-0.000625	-0.000625	0.4194	0.5294	0.5194	0.22	0.5075	0.2694	0.4794	-0.1594	0.56
HMEC-C CONFL2	-0.4488	0.1712	-1.375	-0.78	-0.79	-0.27	-0.72	0.54	0.37	0.6825	0.1881	-0.19		-0.5594	-0.1675	-1.64	-0.83	-0.01	-0.16	-0.2994	-0.9288	-1.03	-2.005	-1.245	-1.579	-1.12	-0.94	-1.18	66.0-	-0.79	86.0-	-1.009	-1.342	-0.75	-0.86	-1.609	-1,209
HMEC+INFA	0.7731	-0.2669	-0.1231	-0.6881	-0.4681	-0.4181	-1.208	-0.6181		0.9744	0	-0.5981	-0.2781	-0.5475	-0.5156	-1.408	-0.8781	-0.3181	-0.3881	-0.3275	6996.0-	-1.468	-2.083	-2.483	-1.557	-0.8981	-1.168	-1.678	-1.308	-0.5381	-1.348	-0.3475	-1.35	-1.088	-0.8381	-1.137	-1.137
HMEC-C	-2.24F-09	0.45	-0.4862	0.3388	0.00875	0.4687	-0.3513	-0.05125	0.4888	0.6812	0.5669	0.01875	-0.2312	-0.1006	-0.1088	-0.3912	-0.3012	0.1088	-0.05125	0.1194	-0.21	-0.3012	-1.066	-0.6662	-1.32	-0.2712	-0.4612	-1.071	-0.4112	-0.1013	0.08875	-0.4506	-0.9931	-0.4612	-0.1812	-0.64	-0.9706
GWEIGHT	1	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	FI	Ŧ	F	1	Ŧ	1	T	T	ī	1	Ħ	T	=
	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146

۰	•
	Ψ
	5
	Ø
ŀ	_

MDA-MB-321	ARRY11X	-0.115	-0.03	0.7425		-0.77	0.23	-1.77	1.101	99'0	0.71	0.93	0.88		-0.05	-0.8544	0.7981	-1.08	0.56	0.12	-1.371	1.028	0.97		0.11	0.4913		-0.09	0.03125	0	2.728	-0.68	-0.65		2.12	1.171	0.66	2.072
HUVEC	ARRY6X	-0.08563	0.5094	-0.1281	-0.6056	-1.161	-0.4406	-0.8506	0.000625	-0.8806	2.199	2.029	1.289	-2.79	0.2194	-0.005	-0.9125	-1.521		-0.1706	1.918	-0.4925	-0.5106	0.000625	0.4494	0.000625	-0.1606	0.6794	0.8406	-0.06063	-0.6325	0.1994	1.129		0.5594	-1.439	-0.4506	2.142
HMVEC	ARRY7X	,	0.18	0.1425	0.105	-0.49	-0.46	-0.61	0.4212	-0.78	-0.12	-0.04	-1.01	1.391	0.22	0.1156	-0.3119				1.869	-0.3119	60'0-	0.8412	0	0.2912				-0.59	-2.332	-0.31	-0.65		0			2.432
18485	ARRYOX	-0.1556	-0.4306	-0.05813	-0.3056	-0.07062	0.3194	1.309	-0.4294	-0.7306	9006.0-	-0.2606	-0.1206	0.49	0.2394	0.195	1.347	0.7094	0.5794	-0.09063	-0.2416	-1.183	-0.9506	-0.06938	-0.000625	-0.1194		-0.09063	-0.009375	0.08937	-0.4225	-0.2406	0.3994	1.529	-2.351	-0.7594	-0.4706	0.06187
184A1-LATE	ARRY1X	0.2769	0.3419	-0.1356	-0.4131	0.8319	0.2719	1.002	-1.097	-0.6881	-0.4181	-0.02812	0.2619	0.2425	-0.3281		-0.31	0.1919	0.4819	-0.1581	-0.009062	-2.79E-10	-0.3481	-0.2269	-0.9781	-0.2769		0.1619	-0.2269	-1.218	-2.79E-10	-2.108	-0.5881		1.942		0.7919	-0.4156
184AA	ARRYSX	-0.1656	0.009375	0.8119	0.09438	0.5994	0.2194	0.8994	0.3906	-0.5006	-0.2706	-0.2606	-0.5006	0.85	0.5994	0.795	0.0775	0.6194	-0.7606		0.008437		0.1694	1.311	-0.03062	0.1106	-0.5706			-0.9606	-1.183	-0.4906	0.06938	-0.3306	1.129	-0.06938	-0.000625	-0.1781
HMEC-C_CONFL2	ARRY3X	-0.615	-1.27	-1.248	-0.285	0.41	6.79	-0.34	-0.5688	-0.27	-2.91E-09	-0.28	-0.4	-0.9294	-0.51	-1.134	-0.2419	0.49	-1.28	-1.02	-0.05094	-0.8919	-1.06	0.3812	-1.19	-0.8888	-2.91E-09	-0.39	-0.08875	0.99	-0.8119	-2.91E-09	-0.26	-0.8	0.51	1.151	-0.19	2.662
HMEC+INFA	ARRY4X	-0.9231	-1.488	-1.616	-0.2631	0.4819	-1.358	-0.6881	0.003125	-0.8081	-0.04812	-0.4681	-0.7581	-0.8875	-0.5181	-1.392	0	-0.2681	-0.4581	1.102	0.9709	-1.12	-0.6381	-0.5269	-0.7781	-0.9169	1.122	-0.1681	-0.2369	0.2919	-0.67	0.2519	-0.9681	0.7619	-0.3481	-0.6469	-0.7481	1,724
П	ARRY2X	-0.3962	-0.2512	-1.019	0.4238	0.5788	-0.2912	0.4888	-0.12	-0.06125	-0.2712	-0.07125	-0.1113	-0.02063	-0.09125	0.4544	-0.003125	0.4087	-0.3013		0.1478	-0.5031	-0.6212	0.29	-0.2712	-0.08	-0.2212	-0.4712	-2.26E-09	1.089	-0.3631	0.1488	-1.051	-0.3313	0.4588	0.7	0.03875	-0.7188
GWEIGHT		1	1	1	1	1	1	1	1	1	1	1	Ţ	1	1	T	1	1	T	1	1	1	1	1	1	1	7	1	1	F	1	1	1	1	1			
		1147	1148	1149	1150	1151	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183

DCT/I	II SA 1	/239	4

C-C HM	HMEC+INFA ARRY4X	HMEC-C_CONFL2 ARRY3X	184AA ARRYSX	184A1-LATE ARRY1X	184B5 ARRYOX	HMVEC ARRY7X	HUVEC	MDA-MB-321 ARRY11X
	П	0.5212	0.2106	-0.3869				-0.4988
0.6631	31	0.8112	-0.1794	-1.407	-0.3194	0.07125	0.000625	-0.7988
1.862	22	1.71	-0.000625		2.249			
2.412	2	2.41	0.08938	1.412	2.629	-1.6	-1.771	0.94
0.05594	4	-0.1859	-0.6366	1.576	0.4234		-1.177	1.094
0.7619	6	0.32	-6.861		-0.2006	-3.97	-1.771	0.19
1.438	8	1.796	0.005	0.2475	-0.005		-0.315	1.806
1.502	7	2.28	0.1694	-0.5981	-0.8206	0.93	-0.3006	1.61
1.637	7	1.465	0.004375	-0.3731	-0.2756	1.185	-0.7356	1.885
2.173	둢	2.301	-0.09937		0.000625	0.7312	-0.7794	1.901
1.638	ᇷ	1.706	-0.275	-0.4225	-0.385		-0.955	1.596
1.212	ᅰ	1.32	-0.8006	0.07188	-0.5506	0.87	-0.1806	0.36
1.542		1.46	0.1694	0.6019	1.329	-0.3	-0.7106	-1.48
3.723	_	3.431	-1.149	0,07313		-0.5688	-3.819	
1.91	_	1.508	-0.5325	-2.79E-10	0.3575	0.1381	-0.9625	-0.7019
1.498		2.006	-0.475	0.3475	0.145	0.6656		-0.1544
3,393		2.771	-1.549	1.043	0.6906	-0.00875	0.000625	-0.02875
4.142		3.21	-2.351	-0.1481	-0.4106		-1.851	0.11
2.263		0.8312	-0.4994	-0.6369	-0.5094	-0.3888	0.000625	0.7712
3.693		3.651		1.163	0.3006	-1.489	1.551	1.401
4.817		6.285	0.6644	2.677	1.674		-0.3256	0.065
		3.525	-0.9356	1.037	0.2144	-0.625	-0.3356	1.545
2.143	- 1	3.671	-0.8394	0.6531	0.5706		-1.039	1.701
1.563	_	2.361	0.09063	1.773	0.6106	-0.02875	0.000625	-0.5587
5.224	_	5.802		,			-2.208	
3.732	_4	3.86	-1.891	2.512	0.1994	-0.16	0.1994	1.57
	_	3.705	-1.076	2.587	0.6244	0.205	0.6744	1.675
2.853		2.451	-0.61			-0.9694	-1.09	0.1106
2.282		2.67	-0.6406	1.742	0.5294	0	0.08938	-0.25
2.824		3.892		3.064	0.3419	-1.978	-0.1681	-2.308
2.752	$oldsymbol{\sqcup}$	2.63	-0.000625	1.002	0.09937	-0.02	0.2994	-0.34
2.292		2.43	-0.000625	1.122	0.09937	0.12	0.2394	-0.31
2.428	~	2.286	0.065	1.088	-0.065	0.08562	0.155	
2.512	7	2.55	0.01937		-0.4106	-0.09	0.1994	0.2
1.702	02	1.82	0.01938	-0.6381	1.169	9.0-	-1.881	0.71
3.322	깄	1.74	-0.3306		-0.8006	0.34	-1.561	1.73
2.582	82	m	-0.3906	-0.2781				0.34

Φ
æ
-

MDA-MB-321	ARRY11X	0.5013	1.438	0.28	-1.349	0.4925	-0.3294	-0.05]	1.016	1.401	1.271		-0.255	-3.519	-2.988	-2.92	0.1291	0.9312	0.14	-0.63	2.482	2.118	2.285	0.025	0.215	0.025	0.02	-0.465	0	-3.36	-0.23	-1.98	-0.4687	-0.34		-0.34
HUVEC	ARRY6X	-0.2394	-0.2125	-0.1306	-1.609	0.2319	0.03	-2.141			-5.165	-3.489	-2.139		-0.3756		0.1219	-1.841	-0.7916	0.8106	0.8394	9068'0-	-0.8081	1.427	-1.186				-2.601	-1.346	-1.231		-1.251	-0.9106	-0.7794			-2.541
HMVEC	ARRY7X	0.2512	0.008125	-0.1	-0.8788	0.1825		5.11		0.7		-3.289	-2.159		-1.035		0.3525		1.899	0.5312	0.99	-0.73		-1.832	-0.305	-0.825		0.655			-1.41		0.12					
18485	ARRY0X	0.000625	0.6375	1.009	0.000625	0.6819	90.0	-0.7506	2.095	-0.01062	0.725	1.541	1.041				-0.7981	-0.2106		0.7606	-0.6906	0.8394	-0.7081	0.9175	-0.3656	1.344	1.384	1.934		1.984	2.149	0.6894	1.359	1.249	0.000625	-0.4606	-0.2706	0.3494
184A1-LATE	ARRY1X	0.2731	0.53	-0.008125	1.693	-0.3256	0.2525	0.3819	0.0375		1.627	2.283	1.873		0.5269		-0.6256	0.1619	-1.159	0.4431	0.3919	0.7319		-2.79E-10		0.3869		0.05688	1.552	0.3269	1.092	0.3119	0.8819	1.532		-0.1581	0.1619	-0.2681
184AA	ARRYSX	-0.6594	-0.1825	0.07938	0.04063	0.3619	0.43	-1.551	-0.015	0.07938	0.305	1.021	0.7906	-0.7506		-0.56	-0.008125	-0.1606	-0.8016	0.2306	-0.7006	-0.6806	-1.218	-0.6525	-0.2156	0.4044	-1.016	0.2544	-0.7506	0.004375	-1.271	-0.5006	0.1294	-1.351	0.1406	-0.8006	-0.8706	-0.6806
HMEC-C_CONFL2	ARRY3X	-0.1988	-0.1019	-2.91E-09	0.7412	0.9325	-0.2494	-0.02		0.02	1.856	2.411	2.041	1.25	0.705	0.2406	2.302	1.37	0.8791	-0.5388	-1.12	-0.35	-0.9075	0.2181	-0.235	0.595	-0.215	-0.025	1.94	0.025	0.65	-0.12	0.53	-0.21	-0.4288	-0.2	-0.32	0.37
HMEC+INFA	ARRY4X	-0.2769	0	0.3619	1.013		-0.4875	0.7019	0.8575	0.3119	1.697	2.163	1.883		1.197		1.514	0.1119	0.03094	-0.5069	-0.4981	-0.06812	Q.	-0.59		-0.7431	0.4669	-0.6931	1.822	-0.1431	0.2919	1.642	0.2219	0.5419	0.2731	0.3019		0.3819
П	ARRY2X	-1.4	-1.263	-0.6512	-1.79	0.04125	-0.3906	0.06875	0.01438	0.2788	-0.3056	-2.26E-09	-2,26E-09	0.9088	0.6738	-0.01062	1.131	0.06875	-0.08219	-2.26E-09	-0.8012	0.1688	0.09125	-0.4831	-0.8562	0.4237	-0.8862	-0.8362	-0.4612	-0.3863	0.2488	-0.1413	0.01875	-0.5612	-0.05	-0.05125	-0.3813	0.5288
GWEIGHT		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	11	. 1	1	1	-
		1221	1222	1223	1224	1225	1226	1227	1228	1229	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257

٦			•
	ť	1	1
٠	÷		=
	1		1
	t	١	1
1	Ľ		_

MDA-MB-321	ARRY11X	-0.23	0.4847		2.34	-0.9575	1.67	-1.326	-1.265	-1.23	-0.415		-0.3644		-0.195	-0.4575	-0.41	-0.445	-0.1319	0.015	-0.955	-0.1	-0.14	0.04062	2.091	0.08562		0.5997	0.6863	-1.612	1.042		-1.08	-0.07188	0.93	0.05	-0.07188	
	ARRY6X	-0.5606	0.1541	-1.571	-0.9406	-1.838		-0.9566	-1.966	-4.811			-1.835		-1.486		-0.3506	-0.4056	-0.7725	-0.9656	-1.036	-0.4706	3.399	-0.04	-1.29	-0.875	0.3494		1.466	2.747	-0.1581	0.1	0.2494	-0.1625	-0.7506	0.5094	0.9775	0.7844
HMVEC	ARRY7X		-0.8653		-0.32				-2.265	-3.71	-						-1.88		0.1781		-0.565	-0.53	2.92	-0.3094			0.74			1.558	0.0925	-0.2594	0.97	-0.2019		-0.02	1.628	0.835
18485	ARRYOX	0.1394	0.2941	-1.641	0.6294		-1.051		-2.116	-0.1106	0.1344		-1.165	0.000625	1.514	-1.728		2.064	-2.163	2.174		-0.3606	-1.141	-0.63		-0.515	1.099		1.396	2.547	1.492	1.06	0.3794	1.387	2.549	-0.1006	-0.3225	1.054
184A1-LATE	ARRY1X			-0.05812	1.952		2.172	-0.8541	-1.033	0.3819	6968.0	-0.3869	-1.062	-0.03687	1.517	-0.3056	-0.5181	-0.5031	-2.79E-10		-0.2131	0.4219	-0.1181	-0.4175		-0.8225	1.822	-0.1484	0.2181	-2.79E-10	0.3344	0.1425	-0.1381	-2.79E-10	-0.6681	-1.668	-1.25	0.3969
П	ARRYSX	-0.8206	-0.3059	-1.041	-0.2606		-2.011	-2.417	-2.796	-1.251	-0.6256	-3.029	-1.625	-0.6094	0.2844	-1.288	-1.341	-0.03562	-1.723	0.04437	0.08438	-0.6206	-0.7406	-0.87	2.56E-11	0.585	-0.4006	0.6291	0.8556	0.4475	0.09187	0.35	-0.000625	0.2975	-0.000625	-0.4606		1.004
HMEC-C_CONFL2	ARRY3X	-0.03	-0.3653	-0.42	0.22	-0.6875	-0.45	-1.856	-1.275	-0.58			-0.2244	0.1512	-1.955	0.0725	-1.2	-0.355	-0.5619	-1.345	-0.585	-0.45	0.57		-0.3794	-0.04438	0.64		0.1562	0.9381	0.0625	0.3806	0.57	-0.1019	0.83	0.45	0.5781	0.515
Ϋ́	ARRY4X		-0.1534	1.542	0.4219	1.444	1.192	-1.254	0.01656	-0.8581			1.238	-0.5869	-1.963	1.164	0.6919	0.2869	1.14		0.8769	-0.1481	-1.538	-0.3875	1.173		0.2119	0.4716	-0.5619	90.06	-0.1656	-0.4975	0.8019	-0.34	-0.08812	-0.1281	0	-0.4831
HMEC-C	ARRY2X	-0.07125	0.1534	0.3688	0.3088	-1.019	-0.1612	-2.007	-0.01656	0.4988	0.5837	-2.26E-09	-0.01562	0.38	-1.386	-0.8388	-0.7912		0.04687	-0.1763	0.1138	-0.2112	-1.101	-0.08062	-0.000625	0.04437	-0.3512	0.1484	0.765	0.6669	0.7912	-0.09062	0.00875	1.097	0.01875	0.5888	0.7769	0.5538
GWEIGHT		T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	+4	1	1	1	1	1	1	1	T .	Ŧ	1	1
		1258	1259	1260	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	. 1274	1275	1276	1277	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294

읊	폏	•		•	•
₫	ឆ្គ		ć	ľ	ı
2	റ്റ		-	=	:
	~		٤		١
		ı	•	-	•

		 ،	<u>~1</u>	اء:	101	<u></u>		~			_	<u>~1</u>	<u></u>		īnī	<u> </u>	ایپ	=	<u></u> 1	<u>ای</u>	or I	<u>~</u> 1			ر ا	ണ	না	=	எ	ज	না	رن	লে		ਨਾ	ன	का	7
MDA-MB-321	AKKTIIA	-0.68	0.4513	-0.1175	-0.2575	-1.012		-1.668	-0.51		0.9581	-0.5553	2.56	7	-1.306	-0.09188	-0.91		1.981	2.865	4.048	-2.83		1	우	7	0.02	0.61	-1.759			-2.079	-0.36			0.68	-0.1394	-0.07
HUVEC	AKKTOX	0.3194	0.000625	-0.7281	-0.7281	-1.923		-1.308	•	-1.171	-0.9325	-2.356	-2.541	-1.471	-1.817		-0.1406	-3.231	-3.119	-1.966	-4.008	-0.1806	-0.5394	-4.051	-0.3944	-2.808	-0.8806	-0.6306	0.02062	0.3594	-2.113	0.000625	-2.961	-0.9306	0.4894	0.6094	-0.01	
HMVEC	AKK1/A		0.1012	0.7725	0.7525		-0.2			-1.69	-2.182			-0.85			-2.59					0							0.1112	0.19		1.251			0.48	-0.34	0.2506	
184B5	AKKYUX	1.969	-0.3794	1.472	1.192	0.6575	-0.9006	1.022	2.209	4.299	-0.2125	0.05406	3.569	1.009	0.8034		2.389	0.7094	0.4906	0.1944	0.4319	2.399	0.4206	4.239	1.896		1.249	-0.5706	0.1406	-0.7406	1.137	4.231	-0.2206	0.9994	-2.171	-2.891	0.3	2.279
184A1-LATE	AKKTIX	0.2819	0.5531	-0.2256	-0.7956	0.65	-0.3081	0.1544	1.442	1.462	-0.82	-0.05344	3.182	0.5019	0.4559	-0.08	1.672	-0.3781	-1.087		0.5544	1.312	0.4731	2.962	0.5981	-3.036	0.3381		-0.9869	-1.748	2.65	2.073	-0.6581	-0.2981	-2.908	-1.228	-0.4975	2.392
十	AKKYSX	1.039	0.000625	0.01187	0.08187	0.4975	-0.1206	0.1019	-1.061	0.2994	0.2275	1.554	0.1994	0.7594	0.7534	0.1875	0.1494	1.119	0.8506	0.6244	0.07187	-0.1806	0.1806	5.259	1.756		0.2394	2.289	0.4506	-0.01062	0.4275	-1.679	-0.000625	-0.000625	-1.571	-0.07062	0.35	0.9894
HMEC-C CONFL2	AKKY3X	1.62	0.07125	1.002	0.9525	0.2981	1.32	-0.2775	0.34	0.91	-0.1719	1.995	0.22	1.21	0.3941	0.4581	-2.91E-09	0.8	0.3312	0.685	0.6425	0.07		6.21	2.076	-1.498	0.99	1.39	0.5112	-0.44	3.478	0.8812	72.0	0.7	0.51	-2.91E-09	-0.8394	-1.63
≰	AKKY4X	0.2519	-0.4769	0.1944	0.2444	0	-0.5381		-0.02812		0		0.3719	0.2719	-0.3941	0	-1.898	-0.5081	-0.6369	-1.343	0.1844	-0.5181	0.4131	4.192	1.298	1.304	0.5619	0.8819	-0.1669	-0.1981	0	-0.2769	-0.2381	1.212		0.2119		-1.048
HMEC-C		1.319	0.05	-0.3488	-0.5488	-0.5031	-0.3313	-0.7988	-0.4512	-0.5012	1.197	0.9234	-0.3512	1.699	1.373	0.1369	-0.1312	-1.401	-1.95	-0.4262	0.2912	0.6388	-0.38	3.419	0.725	0.1812	0.6688	-0.2513	9.0	0.4688	0.3469	-0.45	1.409	0.3788	0.9888	0.4288	-0.04062	-1.571
GWEIGHT		11	1	1	1	1	pri		1	1	1	ī	H	- I	-	#	1	1	T	1	1	1	1	1	F	1	1	1	1	1	1	1	1	1	1	1	1	1
		1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331

1.4	
ø	
ā	
ď	
┝~	

0.655	1.65		0.6491	0.04	-0.03	0.03	0.19	-0.3		-0.48	-0.2519	0.3747	-1.76	0.25	-1.794	1.44	-0.01094	0.7	-0.76	-0.115	0.39	1.177		0.36	0.41	-2.41			-0.2575	-0.3188	0.8	-1.119	-1.222	-4.278	-0.81	Ţ	-0.5288
	0.3944		0.2784	0.2194	0.05938	-0.6106	-0.1806	1.539	1.496	0.3594	-0.3025	3.034			-1.745	-1.111	-0.9216	-0.4806	-0.9006	0.8944	-0.4106	-2.414	-0.6506	-0.8506	-0.9606	-2.29	-1.091	-0.3966	-1.208	-1.379	-0.5306	0.000625	0.0775	-0.6381	-2.721	-3.681	-
	-0.015			0.41	0.47	-0.76	-0.14		-1.104							-0.52				0.455	-0.34	-2.653	-0.88	-1.06	-1.12	14		0.2141	-1.328	-1.419	0.61	-0.5888	-0.5719	4.808			
	0.4244			-0.1606	-0.2506	0.5694		2.119	2.086	0.7794	0.7775	-0.2559	0.4994		0.485	-0.6406	0.2084	-0.4206	-0.9706	-0.8156	0.1094	4.236	2.579	1.639	1.689	3.6	0.4694		-0.4081	-0.4094	0.9694	1.161	1.277	2.092	0.4694	1.969	-0.06938
	-0.2631	-2.648	-0.4691	-0.3181	-0.6481	0.3419	0.8919	0.8319	-0.9119	-0.5081	-2.79E-10	0.2566	0.9019	0.4019			0.01094	0.1319		1.057	0.4219	1.539	1.662	1.462	1.572	1.642			0.4744	0.3631	0.6919	0.3531	-2.79E-10	0.7444			-0.9869
5	-1.566	-2.281	0.4084	-0.4906	-0.4606	0.07937	-0.4606	0.8694	-0.09438	0.6994	-0.5525	0.4141	0.3394	0.4394	0.495	-1.201	-2.132	-0.5006	0.9594	-0.5656	-0.7806	1.616	0.3794	0.2294	0.1694	1.02	-0.9506	-0.04656	0.6919	0.5406	0.4694	0.7006	0.3875	1.522	-1.491	1.569	-0.7394
	0.015		-0.8309	-1.07	-1.17	-1	-1.18	0.49	-1.054	-2.91E-09	0.3481	-0.9253	-0.59	0.14	1,806	-0.26	-0.3909	-0.47	0.75	-1.065	-1.71	-0.6631	-0.64	-1.14	-1.05	0.3803	-0.01	0.4541	0.0225	0.01125	-2.91E-09	-0.2988	-0.3119	1.562	80.0-	1.27	0.4312
	1.247		-0.02906	-1.308	-1.518	-1.158	-0.8881		0.1181	0.06188	-0.17	-1.253	-0.6181	-0.3181		1.452				-1.853	-1.588	0.4587	-0.9081	-1.758	-1.788	-0.007813	1.262	0.04594	0.1544	0.05313	-0.7481	-0.1869	-0.84	1.034			0.4131
5	-1.536	-2.971	-1.492	-1.111	-1.101	-1.311	-0.9412	-0.6812	-1.625	0.6288	0.07687	-0.3666	-1.201	-0.5012	1.554	0.1488	0.09781	-0.2512	0.5988	-0.9262	-1.621	0.04562	-1.161	-0.9012	-1.141	-0.7309	0.1387	0.3028	0.1112	-2.26E-09	0.4988	-0.07	0.07687	1.191	-0.6012	1.089	-2.26E-09
	1	1	1	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	1	1	T
	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366	1367	1368

r	
¢	υ
3	5
C	ō

																				•																		
MDA-MB-321	ARRY11X	-0.91	0.35	0.4106	0.0425	-1.926	-1.62	-2.632		0.395	-1.988		-4.216	-1.298	-1.67	0	-0.1519		-0.14	-2.066	-2.12	-1.191	-0.45	-0.69	-0.39	-3.71	-0.6319	-0.1944	-0.19	-0.77	-0.8187		0.1591	-0.04	-0.22	0	-0.34	-0.3209
HUVEC	ARRY6X		0.3794		-0.5781	-1.347	-0.5606	-0.3825	0.000625	-1.066	-1.428	-1.54	-4.897	-2.488	-6.221	-2.541	-1.753		-6.141	-3.527			-0.3106	-1.501	-3.301	1.079	0.5075	-0.085	0.08937	-0.2906	0.000625		-1.102	-1.071	-0.2606	-0.5906	0.08938	-0.07156
HMVEC	ARRY7X				-1.588	0.3841	-1.46		0.2412	-1,345	-0.5975	-3.039		-2.788	4.54	-2.22	-2.672		-1.91				0.05		-3.88	-0.36	-0.1119	0.08562	0.07	-0.78	0.6812		-0.6909	0	-0.69	-1.02	-0.12	-0.05094
184B5	ARRYOX		0.2394	-0.03	-0.1981	1.923	1.709	2.197	-0.6894	0.04438	0.6919	1.24	2.493	0.9819	-1.081	0.7694	2.817	1.159	1.389	1.803	2.639	0.6584	1.499	0.5994	2.369	0.2194	0.4375	0.645	0.4994	1.909	1.641		0.7584	1.019	2.589	1.879	0.8894	
184A1-LATE	ARRY1X		-0.2781	-2.247	0.1744	0.1659	0.3119	0.51		0.1969	0.6644	0.9125	-0.9941	0.5644	0.1119	0.08188	0.71	-0.4081	0.4719	0.2159	2.082	-0.2291	1.852	0.8319	2.342	0.9219	-0.8	-0.9125	-0.8081	1.132	2.053		0.1109	-0.5981	-0.03812	0.3619	0.9719	1.041
184AA	ARRYSX	-0.9606	0.8294	0.03	0.02187	1.643	1.679	2.247	0.8406	1.264	0.7519	0.91	1.123	1.102	0.7394	0.6694	1.727	1.279	1.709	1.003	1.289	2.228	1.039	1.939	3.489	1.799	0.2775	0.195	-0.000625	0.8994	2.341	-0.05563	0.4484	0.8994	2.189	1.229	0.8494	0.8884
HMEC-C_CONFL2	ARRY3X	-2.91E-09	-2.91E-09	0.3106	0.6525	0.8241	-2.91E-09	0.01812	0,5212	0.995	-0.1575	0.1406	1.184	1.332	1.38	2.09	0.4081	2.89	2.25	0.5041		1.529	0.94	0.76	3.96	1.25	0.9081	0.2356	0.52	1.34	1.211	1.485	0.5891	2.19	2.01	0.02	0.46	0.6391
HMEC+INFA	ARRY4X	1.512	-0.008125	0.0625	0.5344	-0.2641	0.08188	0	0.1331		-1.326	-1.687	-0.2241	0.8644	1.252	0.7119	0	2.062	1.552	0.04594			1.232	0.7219	3.202	0.5519	0	0.7675	0.5919	0.7419	1.313	6909'0	0.4109	1.432	0.9919	-0.7381	-0.1581	0.03094
HMEC-C	ARRY2X		0.4288	0.4794	1.411	0.4828	1.029	1.217	0.2		-0.3588	-0.1406	1.283	0.5912	1.819	1.459	1.167	2.579	1.799	0.3828	1.079	0.7878	0.9488	1.859	4.159	1.209	0.5569	0.7344	0.5488	0.8088	2.33	0.09375	0.6578	1.669	0.8588	0.09875	0.4888	0.5978
GWEIGHT		1	₩	1	-	1	1	+4	1	1	1	1	1	ī	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	1	1	1
		1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405

r	V
(υ
3	5
ŗ	0
-	_

MDA-MB-321	ARRY11X	-3.53	-1.85	-1.672			-6.274	-2.102	-1.11	-1.48	-2.42	0	-0.6638	0	-1.612	0.01	-4.08	-4.086	-2.412	-0.01938	-4.311		-0.5987	-0.6087	-0.6687	-2.24	-2.079	-4.664	-1.67	0.14	-0.9587	-0.4587	-0.89	1.079	0.4191	0.02406	-1.391	-0.8475
HUVEC	ARRY6X	-2.751	-2.051	-2.993		-7.301		-3.433	-0.1506	-0.3006	-3.881	-1.201		-1.971	-1.523	-3.041	-0.7006		-1.273	-1.92	-4.412		-3.539	-5.529	-5.109	-4.641	-0.8794	0.065	-1.521		0.000625	0.000625	0.5594		-1.132	0.4034		-2.698
HMVEC	ARRY7X	-2.75	-2,93		-4.6				0	-1.48	-3.71	-0.08		-2.97	-2.732	-2.01	-0.38		-1.792		-4.311		-3.659	-5.069	-4.969		-1.659	-0.2344			-1.019	0.2212	-0.33		-0.7909		10	-3.348
184B5	ARRYOX	2.099	1.339	1.197	0.4894	0.7094	0.995	1.587	2.569	2.119	3.769	2.319	2.426	3.509	2.107	0.9194	1.319	1.433	1.287	0.74	-0.08156	0.05562	0.000625	0.000625	0.000625	2.429	1.311	0.275	0.5094	-0.1206	-0.7794	1.251	1.769			0.5134	2.288	2.972
184A1-LATE	ARRY1X	2.142	0.5219	-2.79E-10	2.232	2.152	2.358	-2.79E-10	1.442	1.622	2.812	1.502	2.318	2.212	1.99	0.1119	0.5619	0.7759	-2.79E-10	0.1025	0.1709	-0.8519	-0.2069	-0.06687	-0.1469	1.752	0.7031	0.5375	1.502	0.8819	0.003125	1.923	0.1319	0.1009	-0.1691	-0.02406	1.491	1.764
184AA	ARRYSX	2.519	1.139	1.487	1.449	1.129	1.345	0.7375	1.459	1.949	3.249	2.499	1.276	3.259	0.8675	-0.000625	0.9194	0.4434	0.8675		0.05844	0.1556	0.3206	0.2306	0.4206	2.069	1.111	1.205	2.439	-0.07063	0.7806	0.9806	1.199	0.7184	1.118	1.303	1.738	2.532
HMEC-C_CONFL2	ARRY3X	1.78	1.54	1.478	0.11	-2.91E-09	-0.004375	0.9781	1.26	2.05	2.62	2.26	1.296	3.63	1.128	98.0	1.44	0.8541	1.388	-0.09938	0.4591	0.5662	1.161	1.331	1.421	1.56	0.1812	0.6556	0.19	1.14	0.4212	0.4712	1.4		0.8191	1.324	1.609	2.452
HMEC+INFA	ARRY4X	1.312	0.9119	1.09	-0.6081	-0.6981	-0.7025	-0.08	0.9819	1.302	1.932	2.562	1.108	2.642	0	-0.008125	0.3419	-0.01406	-0.02		-0.05906	-0.4619	0.4831	0.2531	0.1631	0.9519	-0.1669	-0.0725	-1.158		0.4731	-0.4069	0.2019	-0.4591	0.2009	0.1359	0.4809	1.784
Γ.	ARRY2X	2.019	1.419	1.827	0.3387	0.2388	0.004375	0.5069	0.6888	2.289	5.609	2.229	0.735	2.989	0.3669	0.8888	0.9387	0.7328	6908.0	0.01938	0.7278	-0.055	0.91	1.16	1.31	1.559	-2.26E-09	0.6544	0.4688	1.029	0.31	1	0.2488	-0.5322	1.108	1.323	0.5178	1.681
GWEIGHT		ī	1	1	1	#1	#	1	1	1	1	1	Ħ	1	1	1	1	1	1	1	1	1	1	11	1	1	1	1	1	1	1	1	1	1	. 1	1)	1	1
		1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439	1440	1441	1442

e	
죠	
ā	
_	

																			•																			
MDA-MB-321	AKKY11X	-0.3909	-0.195	-2.683		-1.236	-1.348	-1.644	-2.25	-1.442	0.55	-0.4575	-0.13	-0.385	0.52	-0.05875	0.16	1.675		-0.93	-4.42		-0.59	0.43	1.34	1.325	-2.831	-2.44	-2.499	-1.195	0.1897	0.3981	-0.04	0	-0.6719	0.89	0.5412	0.3813
П	AKKY6X	-3.232	-3.596	-3.994		-3.237		-2.145	-2.351	-5.063	-2.651	-3.388	-1.301	-0.8556	-1.101	-0.8894	-0.7106	-0.7656	0.615	-0.4506	1.069	-0.08062	-1.861	-2.321	-4.701	-2.446	1.208	-1.111	0.06062	2.104	-0.01094	0.2775	0.3194	0.9894	-0.2425	0.5694	0.000625	0.000625
HMVEC	AKKY/X	-2.391	-1.775	-2.913				-3.064			-3.99	-3.438	-1.95		-0.92	-0.6688	-1.33	-1.495	0.7556	-0.82		-0.02					3.249		0.9912	1.595		-0.3319	0.65	-0.36	0.2881	1.39	-0.9588	-0.7688
184B5	ARRYUX	1.088		1.186	0.8594	-0.5266	-0.9581	-0.005	0.3994	1.427	0.8694	1.562	1.239	0.5744	0.7594	0.000625	0.3794	0.7444	0.005	1.909	2.999	-0.1506	0.09937	0.6294	1.149		2.958	2.439	3.231	0.9641	0.7791	0.3075	0.1094	0.03937	0.4175	-1.011	0.8306	1.131
184A1-LATE	ARRY1X	-0.009062	0.6369	1.669	1.792	1.156	1.154		-1.268	-2.79E-10	1.192	1.054	0.9619	1.027	1.042	0.5331	-0.6781	-0.6831	0.0175	1.662	0.8819	-0.2281	0.1319	-0.5881			3.871	2.812	2.913	-0.2834	0.4716		-1.488	0.6319	-1.82	-2.128	0.6131	0.2431
	ARRYSX	0.3484	1.034	0.8062	0.8994	0.1234	-0.2581	-0.855	-0.000625	1.657	1.099	0.5119	0.4294	0.9344	1.859	1.411	0.8794	-0.1356	-0.005	1.109	1.719	0.01938	-0.2706	0.2994	-0.5406	-0.5656	1.048	0.4394	2.371	1.024	0.5291	0.3075	0.2594	0.1294	0.5875	0.3794	0.1506	0.2006
HMEC-C_CONFL2	ARRY3X	1.179	1.005	0.1369	-2.91E-09	-0.7759	-0.8875	0.3856	0.31	1.458	2.92	2.372	1.69	0.485	2.06	0.8412	0.63	-0.025	0.2556	1.11	2.25	0.03	0.34	-0.41	0.41	0.765	0.5091	1.53	0.5812	0.2447	0.2597	0.6981	0.33	-0.51	0.9881	-0.21	1.201	1.421
HMEC+INFA	ARRY4X	0.03094	0.6769	-0.4712	-0.1681	-0.1241	0.4644	0.0175	-0.2181	1.15	0.9019	1.254	1.072	0.06687	2.312	0.2331	-0.5781	0.08688	-0.4425	0.1819	1.542	-0.5381	-1.348	1.082	0.6619	1.227	-0.1791	1.122	0.003125	-0.03344	0.01156	0	-0.7381	-0.6281	0	-0.6981	0.5231	0.5331
HMEC-C	ARRY2X	0.7778	0.9637	0.09562	-0.1312	-1.267	-1.139	0.3844	0.6088	1.867	2.099	2.091	1.289	0.7937	2.849	0.95	0.4588	0.7837	0.1344	1.159	1.809	0.4288	-0.1612	-0.3212	-1.441	0.1037	0.6878	1.019	-2.26E-09	0.03344	0.4384	-0.003125	0.3487	0.01875	0.4069	0.6988	0.39	0.54
GWEIGHT		Ŧ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ī	1	1	1	1	1	1
		1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476	1477	1478	1479

, ,
Ð
ã
œ,

																				•																•		
MDA-MB-321	ARRY11X	-0.5087		0.21	0.31	-0.25	1.56	1.33	-0.26	-0.43	-1.484	0	-0,9919	-0.62	0.7113			-1.508	-1.748	0.78	99'0	-0.6488	-4.065	-2.99	0.03625		-1.61	-1.34	-1.02	-0.44	-1.293	0.6969	-0.95	0	-0.7388	0.46	-0.3987	-2.259
HUVEC	ARRY6X	0.5406	0.4744	0.4094	2.679	0.9394	4.289		1.269		1.935	1.759	1.477		0.000625		0.03	0.5919		1.709	-0,3906	-2.049	-5.796	-4.751	-5.834	-4.641	4.549	4.23	2.299	1.229		0.1462	2.119	0.7994	0.000625	0.3194	0.5006	1.611
HMVEC	ARRY7X	0.8912	1.075	0.41	3.05	0.72			0.54		0.5956	1.59	0.1181	-1.31	-0.8788			0.9825		0.88	-1.43	0.1812		0.22			2.68	2.15	1.17	1.26				-0.61		-1.37	0.7512	1.911
18485	ARRYOX	0.000625	-0.9356	-2.371	-1.441	0.6194	-0.2909			0.8394	-0.165	0.6994	-0.2325	0.5494	0.3606		0.83	0.2819	-1.138	0.8494	-0.2206	2.041	1.924	1.329	1.206	2.159	-1.561	-1.71	0.8194	0.01937	0.4462	-0.02375	-0.1906	0.4594	0.04062	-0.5506	0.000625	1.031
184A1-LATE	ARRY1X	-0.3769	-0.9831	-1.998	-1.368	-0.2181	-1.848	-0.008125	-2.138	-0.7681	0.5075	0.2419	0.39	1.712	-1.897		-0.1475	-0.01563	0.4744	-0.008125	0.7019	2.223	2.407	3.072	1.508	0.5319	1.038		-1.098	-0.9381	-1.841	-0.6912		0.04188		-0.4181	-0.09687	-1.047
184AA	ARRY5X	0.6906	0.1444	0.9694	0.6394	0.9894	-1.831			0.5194	0.085	1.019	0.0075	2.739	0.5106	0.8684		0.8719	2.602	1.579	1.949	1.751	1.274	0.4994	2.306	1.479	-1.021	-1.63	-0.9706	-0.1206	-0.1338	-0.4537	-0.2406	-0.4806		0.2594	0.2906	1.861
HMEC-C_CONFL2	ARRY3X	0.5812	-0.825	-0.19	60'0-	0.37	-0.3403		0.5		-0.07438	0.7	0.8181	1.27	1,351	0.1291	0.07063	1.562	1.122	1.32	0.12	-0.1188	1.945	-2.91E-09	1.006	3.06	97.0-	-1.69	-0.16	-0.61		-0.4531	60.0	92.0-	-0.8088	-0.2	-1.139	-0.6088
HMEC+INFA	ARRY4X	0.4531	-1.073	-0.4281	-0.4981	-0.4281	-0.04844	-0.2081			0.1775	-0.02812	0	1.192	0.9331	-0.1291		0.9644	0.7244	1.142		0.7031	0.4569	-1.468	0.9481	2.582		-0.4878	-0.7581	-0.5881	-1.681	-0.3412		-0.6781	-0.5369	-0.7181	-1.097	
HMEC-C	ARRY2X	0.98	-0.2362	0.3788	1.279	0.5888	0.04844	1.209	1.019	0.7188	0.06437	0.7088	0.9869	0.8187	1.61	1.458	2.319	1.441	1.521	1.369	0.2988	-2.26E-09	-0.5762	-1.561	1.015	1,239	-0.4112	-0.6009	-0.1212	-0.6113	0.1256	-0.2044	-0.8112	-0.5412	-1.04	-0.1112	-0.93	-2.26E-09
GWEIGHT		1	1	1	1	1	1	1	1	1	1	1	1	1	1	T	1	1	1	1		1	1	1	1	1	Ŧ	1	1	. 1	1	1	1	1	. 1	F	11	T
		1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516

뀾

2
ø
ᅙ
ō

MDA-MB-321	ARRY11X	0.4	0.99	0.6881	-0.4087	-0.6544	0.2	1.51	-0.44	-0.35		-0.1238		-1.016	-0.12	-2.79	-0.1888	0.73	0.15	0.5213	0.45	66'0	-0.1219		-0.1187	-0.7588	-0.13	-0.57	0.3	-0.1709	0.21	1.551		0.04	0.9913	-1.709	-0.1238	0.79
HUVEC	ARRY6X	-0.9106	1.009	1.837	0.09063	-1.385			-1.071	-0.4606	-0.7	0.8756		-0.6166	-0.6006	0.7194		1.109	0.8094	0.000625	1.229	1.179	1.587	0.4994	0.7306	-0.6394	-0.6406	0.009375	-0.5306	-0.1116	-0.01062	-3.279	-2.793	-1.991	-0.1494		-0.2044	0.5194
HMVEC	ARRY7X	-0.5	1.11	0.2881			-0.86		-1.29		-0.8194	0.9262		0.6741	0.12	0.2		0.97	0.88	0.05125			1.558	0.78	0.4612	-1.359	- 0.08	-3.31	-4.46		0		-0.8319		-0.3088		-0.5438	-0.15
184B5	ARRYOX	-0.7606	-1.551	0.4375	-0.08937		-2.511	0.4094	-0.2906	-0.2206	-0.1	-0.4144		-0.09656		-0.5806	-0.7694	-0.3506	-0.7406	-0.8294	-1.101	-0.5406	-1.513	-1.071	0.000625	0.2106	0.4094	0.03938	-0.3806	-0.06156	-0.09062	-0.5494		-0.3406	0.000625	0.000625		0.4294
184A1-LATE	ARRY1X	-0.7481	-2.378	-2.79E-10				-0.2081	0.4019	-0.5481	-0.4075	-0.6219		-0.004062	-0.8681	0.2119	-0.4569	-1.238	-0.8081	-0.9369	-2.038		-2.79E-10	-0.9481	-0.4869	-0.6169	0.2719	0.2419	0.4619	0.5609	-0.05812	-1.927	0.46	0.04188	0.5831	-1.037	-0.2919	-1.388
184AA	ARRYSX	-0.9006	-1.741	-0.0925	-1.089		-2.911	-0.2306	-0.9606	-0.9306	-1.11	0.1056		-0.8266	-0.4206	-0.6406	-1.619	-1.291	-1.501	0.07063	-0.1606	-0.1106	-1.943	-1.111	-0.3694	0.3506	-0.08062	-0.1506	-0.3006	0.03844	0.1794	-0.6894	1.217	9096.0-	-0.7094		-2.184	-0.2406
HMEC-C_CONFL2	ARRY3X	0.35		-1.022	-1.969	-0.5544	-0.14	-0.12	-0.76	-1.05	-0.7994	0.8962	99.0-	0.2641	-0.48	-0.61	0.4912	50.0-	-0.15	-0.02875	-0.48	-0.42	-0.6519	-0.22	-0.06875	-0.1288	89.0	96.0-	-1.87	-1.661	0.12	1.581	0.2181	-0.94	-1.349	-2.339	-1.244	-0.5
A	ARRY4X	0.1919	-2.108	-1.12	-2.807		-0.9281	-0.5681	-0.2881	1.932		-0.2819	0.9819	-0.7741	-1.018	-0.1581		-0.4581	-0.9481	-0.2269	-0.6181			-0.4781	-0.5769			-1.948	-1.228	0.02094	-0.4781	-0.8269	0	-1.208	-1.427		-1.102	-0.3581
	ARRY2X	-1.011	-1.271	-0.08313	0.38	-0.1456	-2.351	0.3087	-0.8612	-0.3712	-0.6406	-0.315	-1.991	-0.2872	-0.4412	-0.4112	-2.26E-09	-0.3412	-0.5913	0.36	0.4888	0.6488	-1.283	-0.7412	-0.03	-2.26E-09	-0.1212	-1.431	-1.931	-1.352	0.5888	-2.26E-09	0.6869	-0.5312	-0.55	-0.25	-0.125	-0.5312
GWEIGHT		Ŧ	1	1	1	1	1	1	11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	1	1	11
		1517	1518	1519	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553

ŧ	V
į	a
3	2
ı	ā

321	×		-0.3838	0.7613	<u> </u>	0	-0.12	0.5691	0.55	0.63	0.1712	1.82	1.718	2.34	1.585	-3.34	188	675	-0.45		-1.252	<u> </u>	-1.27	125	1.02	0.43		-1.369	0	-3.206	0.9381		-1.454	-1.13	-1.259	Γ	313
MDA-MB-321	ARRY11X		-0.3	0.7							0.1		1.		1.	"	-0.05188	-0.3675	ب ا		1-		7	0.00125				1-		ج.	0.9		Ŧ	7	-1.		-0.08313
HUVEC	ARRY6X	-3.1	-0.9144	0.000625	-1.455	-0.3406	-0.1606	-2.662	-1.511	0.6294	0.5106	-2.431		-1.111			-1.993	-0.2781	0.4994	-0.05	2.697	2.473	2.109	0.3206	2.399	1.089		-0.5894		-2.797	-2.433		-0.365	-0.6906	-1.22	-0.535	-1.084
HMVEC	ARRY7X		-0.7238	-0.4788	-0,4044	-0.11	-1.54		-0.09	0	-0.06875	-3.13		-0.91			-5.112		0.62		2.008		1.7	0.3412		0.37							-0.6744	-1.13		-1.284	-0.6131
184B5	ARRYOX	0.91	0.7956	0.5706	0.375	-0.1206	0.1594	0.8184	-0.1906	0.2294	-0.09938	2.749	2.657	3.389	2.784	1.849	1.077		-0.5806	-0.53	-0.6525		-0.1806	0.000625	-1.561	-2.221		0.000625		-1.287	-0.1725	-0.1094	0.375	0.4694	0.27	0.265	-1.414
184A1-LATE	ARRY1X	3.183	0.8781	-0.08687	0.5275	1.352	1.132	1.261	1.082	-0.05812	-0.9769	-0.1981	0.46	-0.5281	1.647	0.6419	-2.79E-10		-0.3181	-0.9075	-0.62		-0.4781	-0.1169	-1.718		-0.4181	6926.0-		-0.2741	-0.07	0.2431	0.6175	-0.8481	-0.3675	0.5175	-0.4312
184AA	ARRYSX	0.53	-0.1144	0.1006	-0.585	0.9794	0.8294	1.228	0.8594	0.3494	0.2306	-1.141	-1.303	-0.1006	-1.476	-1.691	0.0075	-0.7181	-0.5206	-0.08		-0.01656	-1.661	-0.5994	-1.221	-0.4606		0.06063	-1.211	-0.2766	-0.5625		0.005	-0.1806	-0.63	-0.745	-1.554
HMEC-C_CONFL2	ARRY3X	-0.6194	0.3162	0.3212	0.5556	-0.33	-0.3	-0.03094	-0.72	-1.3	-0.9788	0.24	-0.2119	0.74	-2.115	-2.07	0.4081	-0.1675	-0.08	-1.009	-0.4019	-0.7959	-0.84	-0.7688	-1.08	-0.62	-1.26	-0.5788	-0.24	0.3641	-0.01188		-0.3644	-0.33	-0.4894	-2.024	-0.9331
HMEC+INFA	ARRY4X		-0.2419	-0.1469		-0.5981	-0.4781	0.03094	1.142	-1.178	-1.517	1.062	0	1.452	-0.8734		0.4	0.9044	-0.2481		0	0.01594	-0.2881	-1.417	1.512			0.9931		-0.2841	0	-0.7369	-0.6825	-1.278	-0.6775	-1.983	
HMEC-C	ARRY2X	-0.1106	0.125	0.15	0.2644	0.7488	0.6088	-0.09219	-0.6312	-0.3112	-2.26E-09	0.1588	-0.4431	0.4488	0.8734	-1.661	-0.6531	-0.03875	-0.9612	-0.8006	-1.253	-1.907	-0.4812	-0.57	-0.5312	-0.5312	-1.221	-0.59	-0.6012	-0.4372	-0.1331	-2.26E-09	-0.005625	-0.2412	-0.7406	-1.276	-0.04438
GWEIGHT		F	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	F	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567	1568	1569	1570	1571	1572	1573	1574	1575	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589

~	
Φ	
亙	
œ.	

EC+INFA HMEC-C CONFL2 NRRY4X ARRY3X	HMEC+INFA HMEC-C CC ARRY3	ARRY4X ARRY3	ARRY4X ARRY3
-0.3269		_	
-1.007 0.9212	-1.007	-1.007	-1.007
	0	0	0
-0.8069	-0.8069	-0.8069	-0.8069
	-0.8625	-0.8625	-0.8625
-0.4569			
-0.7681			
-0.6869			
0.9019			
-0.7556			
0.1459			
-0.6581			
-0.2681		▗	
-0.5875			
-1.118			
-0.8969			
0.5775			
-0.3581 -2.91E-09	-0.3581	-0.3581	-0.3581
0			
-1.328			
0.8369			
	_	_	_
-0.01687	위	위	위
-1.428			
-1.157			
-1.648			
0.1809			
0.9219			
-1.178			
-0.5681			
-0.5281			
1.489		0,2356 1.489	
0.3619			
-0.8069			1 -2.26E-09 -0.8069

¢	٧
4	υ
3	õ
	0

MDA-MB-321	ARRY11X	-0.03	0.215		1.25		-1.63	-2.62		0.06	-0.58	-0.37	-0.92	-0.6487	0.6625	-0.63	-1.689	0.32	-1.329	0.3681	1.64	-0.1044		0.3841		1.63E-11	-2.028	-0.8659	0.5412	-0.7287		-0.6	-0.4638	0.32	-1.259	-0.32		1.042
HUVEC	ARRY6X	-1.131	-0.9356	-1.836		-1.697	0.5694	-1.621	-0.07063	-0.000625	-1.681			0.000625	-0.4081	-1.191	-2.859	-1.841	-3.019	-0.8325	-1.591	-0.275		-0.4666	9066.0-	-0.2606	-0.07813	-1.827	0.000625	0.000625		-0.3306	-0.4344	0.02937	-0.38	0.7894	2.217	-1.168
HMVEC	ARRY7X	-0.84	-0.735			-0.7859	0.83		-0.24					-0.4488	-	-0.4		-1.86	-2.419	-1.162	-1.91	0.3456					-	-2.326		-0.1288		0		-0.41		-0.83	0.2681	-1.958
184B5	ARRYOX	-0.2406	-0.4856		-0.2206	1.133	0.05938	-3.271		0.2694	-1.751	0.01937		0.5906	-0.6781	-0.4206	2,441	0.4194	1.491	0.7075	0.3094	0.105		-0.01656	-0.3506	0.5194	-2.278	-1.137	-0.7294	0.000625		0.9694	-0.2144	-0.4206	0.04	-0.2106	0.6675	0.8619
184A1-LATE	ARRY1X	-0.9081	-1.703	-0.1531	0.05187	1.566	0.2819		1.142	-0.3981	-1.168		1.642	0.3331	-0.7856	-0.9981	1.063	-0.01812	0.01313	0.91	0.9719	0.1575		-0.4241	0.1619	0.5419	-1.386	-1.294	-0.6269	0.1431	-0.1225	0.3319	0.5781	0.1419	-0.0475	-1.128	-2.79E-10	-0.3756
П	ARRYSX	-0.9506	-0.8256	-1.356	1.169	-1.637	0.01938	-0.000625		0.009375	-0.2306	-1.461	0.08938	0.4706	-0.4581		-0.7194	-0.3306	0.3106		-0.5806	-0.285	-0.1694	0.7534	-0.000625	-0.5406	0.09187	0.1434	-0.7694	-0.009375	0.265	-0.1606	0.04563	0.2094	-0.42	0.06938	0.3875	1.032
HMEC-C_CONFL2	. ARRY3X	-0.21	-0.185	1.415	-0.09	-1.056	-1.19	0.49	-2.91E-09	-0.16	-0.01	-0.22	-2.91E-09	-0.1688	0.6125	1.07	1.441	1.04	2.091	1.058	1.1	0.1456	0.8712	0.04406		0.27	0.8025	0.8241	0.1112	0.3412	0.2456	0.8	-0.3038	-0.82	-0.8694	-0.82	0.1081	0.0825
HMEC+INFA	ARRY4X		-0.4431		0.7019	0.2459	-1.808	0.05188	-0.8981	-0.2081	0.1419		0.2219	-0.7269			-0.1169	0.3019	0.9831	0	-0.5481		-0.5469	-0.01406		-1.388	-0.02563	-0.02406		-0.4169	0.7975	0.3719	-0.4119	-1.158	1.203	-1.048	-0.34	0.2344
	ARRY2X	0.4212	-0.3462	0.8838	0.3887	-1.327	-0.6712	0.5188	-0.05125	-0.1712	0.07875	-0.09125	-0.2412	0.08	1.231	0.1288	-2.26E-09	-0.5712	-2.26E-09	-0.6431	-0.2213	-0.1756	-0.32	1.243	0.02875	-0.2612	0.7512	0.1928	-0.32	0.16	0.05438	-0.1512	-0.145	-0.5113	-0.5906	-0.3012	0.3769	0.1612
GWEIGHT		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	뒤	1	1	1	1	1	1	F	1
		1628	1629	1630	1631	1632	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653	1654	1655	1656	1657	1658	1659	1660	1991	1662	1663	1664

C	١	ı
•	1	į
3	2	3
١	Į	,

960 0 125	ARRY4X ARRY3X
500	0.1869
359 -0.08594	0.2359
	1
699	
175	ا۲
013	1 740 1 202
707	1
190	
[31	
133	Ì
790	1
331	1
381	
181	-0.3
0.6	
544	
756	-0.6756
181	0.6988 -0.3281
.15	
.03	0.4069 0.03
181	-
181	0.6188 -0.4881
119	0.6788 0.2219
19	Ì
601	0.4809
28	-1.628
81	-0.6481
125	-0.7025
18	
87	0.14 -1.487
44	0.2744
88	0.02188
43	-1.143
81	-0.6081
69	-0.3969

N	
ø	
虿	
'n	
-	

MDA-MB-321	ARRY11X	-2.225	0.73	-1.95		-1.55	-1.49	-1.49		-0.45	-0.3594	0.2213	-0.8009		-0.06	-0.06	-1.09	0.08	0.32	0	-0.9375	0	0.02	-1.072	-0.08188	1.47	-1.36	0.05406	-1.108	-0.85	1.83	-0.43	-0.6097	0.3591	2.621	-0.6687	0.0225	1.055
П	ARRY6X		-0.8806	-2.051	-0.3806	-0.04094	-0.2006	-2.511	0.1106	0.3294	-0.14	0.000625	-1.012	-0.5106	-0.3006	-0.4206	-1.461	0.2894	0.1294	0.1094	-1.838		-0.7106	-0.9125	-0.3825	0.4694	0.4794	0.07344	-0.1381	0.8394	-0.2706	0.3794	-0.6603	1.538	1.071	0.3806	1.662	1.344
HMVEC	ARRY7X				-0.82		-0.37	-2.63	-0.4988	0	0.5106	-0.3688			-1.71	-2.54	-1.38		-0.17				-0.25	-0.8819	-0.7419	0.29	0.31		-0.5875	0.81		0.88	-0.9597	1.329	0.8512		3.262	
184B5	ARRYOX	-1.176	1.449		0.2894	1.719	2.549	2.379		-0.1406	0.46	-0.2094	0.1884	0.1094	0.8894	0.6194	0.05937	-0.2506	-0.3606	-0.4906	0.2119	0.5094	-0.7306	0.8675	0.8675	1.079	1.319	-0.5766	0.4819	-0.09063	-0.1906		1.45	-2.832	-0.5094	0.4406	-0.9281	-2.966
184A1-LATE	ARRY1X			-0.2781	0.8719	0.04156	0.9519	-1.738	-0.3669	1.082		-0.6269	-0.06906	-0.5481	0.03188	-0.7781	-0.6081	-0.6881	-1.088	-0.2081	0.6744	-0.6481	-0.1819	-2.79E-10	0.56	1.522	1.612	-0.05406	1.094	-0.8581	0.7619		0.6722	-1.339	-0.5369	-0.2069	-0.5656	-0.9831
H	ARRY5X	-1.666	1.879		9008'0-	0.1391	-0.1206	-2.141	-0.02938	0.08938	-0.39	-0.2694	0.06844	-0.000625	0.6894	0.4094	-0.000625	-0.09062	-0.3006	0.08938	0.2219	-0.8306	0.3194	1.067	0.6175	1.369	1.039	-0.8466	0.2719	0.4294	-0.4806	-0.2206	1.04	0.1384	1.261	-0.6194	-1.018	-0.07562
HMEC-C_CONFL2	ARRY3X		-0.99	-0.1	-2.91E-09	-0.2403	-0.47	-2.91E-09	0.5712	-0.45		-0.2788	0,3891	. 0.24	0.39	0.61	8.0	-0.53	-0.54	-1.07	0.5225	-0.11	-2.91E-09	-0.7119	0.2381	0.24	-2.91E-09	-0.06594	-0.1875	-1.15	0.49	-2.91E-09	0.5403	-0.2309	-0.8788	-1,019	-0.4675	-2.285
HMEC+INFA	ARRY4X	0.8169	0.02187		0.1919	-1.198	0.05187	0.7919	0.08313	-0.8381	0.5025	-0.2969		-0.2981	-0.5281	-0.3081	0.2319	-0.4181	-0.2481	-1.568	0.4144		-0.09812	-0.62	0	-0.1981	-0.9281	-0.2741	-1.026			-0.1881	0.1122	-0.1391	-0.3669	-1.857	-0.3356	-1.363
HMEC-C	ARRYZX	-1.036	-0.3113	-0.5712	-0.2012	-0.1916	-0.00125	-0.2912	-2.26E-09	-0.1512	-0.2406	-0.39	0.1978	0.2788	0.3988	0.7288	0.1888	-0.4612	-0.2413	-0.8012	0.2512	-0.3712	0.8688	1.337	0.7069	1.479	0.2888	0.1428	-0.5188	0.1588	-0.2512	0.9988	0.7191	0.8178	0.52	-1.37	-0.08875	-1.526
GWEIGHT		1	1	1	1	1	1	1	1	1	1	1	1	1	11	1	1	1	H	1	1	1	1	1	1	F	1	1	1	1	1	1	1	1	1	1	1	1
		1702	1703	1704	1705	1706	1707	1708	1709	1710	1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	1726	1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738

^	į
4	j
3	1
٦,	ļ

- 1	GWEIGHT	HMEC-C	HMEC+INFA	HMEC-C_CONFL2	184AA	184A1-LATE	18485	HMVEC	HUVEC	MDA-MB-321
		ARRY2X	ARRY4X	ARRY3X	ARRYSX	ARRY1X	ARRYOX	ARRY7X	ARRY6X	ARRY11X
	1	0.1688	-1.258	-0.43	-0.8106		-1.821	3.38	2.389	0
	1	-0.005625		-0.6844	-0.855	0.0275	-2.065	1.696	2.285	-0.4544
	1	-0.1256	-0.8425	-0.6844	-1.705	0.5375	-2.325	1.536	2.545	1.966
	1	-0.2313	-1.218	-0.78	9009'0-	-2.528	-1.221	2.17	2.799	0.38
	1	0.00875	-1.268	-0.93	-1.331	-2.198	-1.141	0.76	2.059	2.47
	Ţ	-2.719	-2.416	-1.558	-3.448	-2.766	-3.988	0.5425	0.8419	0.3825
	1	-0.2388	-0.2956	-0.6775	-0.2681	-1.256	-2.338		0.8119	0.9525
	1	-1,66	-1.857	-1.219	-1.279	1.703	-0.9794	1.341	0.9806	1.671
	1	0.2738	0.1769	-0.035		-1.293	-5.716	0.725	0.8444	-2.965
	1	0.2578	0.01094	0.1091	-0.01156	1.131	-0.3716			0.7891
	1	-0.1812	0.4419	0.04	0.1794	-0.9381	0.03937	-0.75	-0.6706	0.26
	1	-0.1172	0.2959		-0.1866	-0.04406	-1.767			-1.126
	1	-2.26E-09	-1.097	-0.8288	-0.02938	-0.2769	-0.5894	-0.1388	0.1506	0.1112
	1	-2.446		-2.025						2.435
	1	1.251	1.044	0.9619	1.541	-1.106	-0.09875		-0.4388	1.842

₹

r	V
•	υ
3	5
3	Ö

3W6/2	640-10	132/81	KPMI-8226	MOL 14	ND4+AIKA	SK-BK-3	81-4/4	MC-1-NC	147D
ARRY8X	ARRY10X	ARRY9X	ARRY16X	ARRY18X	ARRY17X	ARRY12X	ARRY13X	ARRY15X	ARRY14X
1	1		1	1	1	1	7	-	-
1.675		0.915			-4.347	0.735	-3.365	0.735	
1.646	0.2056	0.4156	-3.134	0.6544	-4.497	1.066	1.486	0.03563	-0.7744
1.361	-0.4894		-1.779	0.3694	0.9081	-0.5794	-0.1994	0.1206	-1.239
1.671	0.3112		-2.319	-1.62	1.629			0.6513	
0.2725	-0.0675	1.132	-0.5775	0.00125		0.1525	0.1025	-0.2475	
0.97	0.1	-1.65E-08	0.53	0.7287	1.348	-0.07	-0.15	0	-2.61
1.29	-0.2	0.17	0.57	0.8487	1.448	-0.35	-0.16	0	-2.31
0.55	-0.16	0.49	0.47	0.1488	0.9275	-0.65	-0.54	-0.28	-1.71
0.565	-0.795	-0.405	-0.075	0.6338	0.6425	0.445	-1.495	0.095	0.265
0.39	-1.47E-09	1.56	0	-1.651		-0.87	-0.04	-0.01	-1.93
-0.7244	-0.2544	0.4456	0.5656	-0.9256	-1.067		-1.674	-0.8844	-1.084
0.88	0.58	1.96		-1.191	-2.242		-0.47	-0.58	-0.32
0	-0.1	0.59	-1.09	-1.451	-1.412	1.09	-0.34	0.08	-1.55
1.392	-0.3775	0.4325	0.0725	-1.829	0	1.622	2.082	-0.4875	-0.7375
0.7763	-0.09375	0.2962	-0.8438	0.095				-1.674	
1.201	-0.2488	0.4512	-1.799	0.05		0.3912	0.1913	-0.04875	-0.09875
0.4841	-0.01594	1.504	1.474	-0.8272	-0.6584	-0.7459	-0.1959	-0.3859	-0.1259
4.174	3.824	2.804	-0.2859	-4.087		-0.01594	-0.3759	1.614	1.304
5.61	3.12	1.25	0.89	-0.7512	-0.5125	0.13	0.4	0.59	-0.13
3.74	5.4	-0.11	1.1	-0.7613	0.1175	4.05	0	0.12	-0.72
4.501	6.461	0.1306	0.3206	-1.291	-2.632	1-741		-0.7994	0.7006
2.51	3.9	0.22	-0.02	-0.7512	-1.172	98.0	0.42	1.82	0.72
-0.94	0.18	0.43	-0.08	-2.041	2.318	0	-2.41	-0.01	0.38
1.16	1.19	0.84	-1.73	-0.8413	2.108	1.83	-1.53	0	-1.29
1.135	1.225	0.415	-2.805		2.412	1.575		-0.415	
0.8512	-0.7388	0.8012	-2.269	-0.47		-1.129	-1.149	-1.469	-2.749
1.754	-0.2959	1.024	-0.8259		-1.978	-0.5959	-0.4659	1.364	0.2741
1.945	1.435	2.805	-0.025	4.034	0.8425	-2.845	-0.575	0.025	
0.81	0.11	0.27	0.1	0.7088	0.1375	-1.51	-1.16	-0.93	-0.16
5.23	0.53	1.25	-1.07	0.8288	-2.052	-1.19	0.34	-0.32	-1.15
5.725	0.8447	2.275	-1.485	-0.2866	-2.048	-2.025	0.1447	-0.07531	-0.1053
2.48	-0.15	-0.14				-1.46	1.04	-0.02	0.02
4.145	1.285		0.075		-0.9675	-2.045	-1.725	-0.075	
3.17	0.84	0	0.52	-0.9212	-0.7525		0.49	0.78	-0.02
0.33	-1.14	0.57	-1.04	-1.621	-2.022	0.24	0	-1.05	-1.4
0 7141	O 2550	VOJEO O	200 6	700 5	1000	0 1641	ט אעניט	01070	0000

ō

€	`	J
ì	a	,
1	Ċ	ŝ
Į	π	3
ł	-	-

AKKITOV	×						>		
0.71	0.44	O VEI VIII	-2.19	0.9788	-0.2625	WW TEN	-1.05	-0.46	15 U
L	-1.008	0.9625	0.9125		0	-0.5575		0.7425	-0.0375
	0	0.7	0.9		0.2575		-0.59	0.56	-0.32
-0.225	1.625	1.745	-1.135			-2.755	0.335	0.225	-2.495
0	1.37	1.61	-2.44	3.049	0.0575	-2.56	0.81	0.73	-0.15
0.89	2.68	2.36	-1.06	3.179	-0.4825	76'0-	1.45	1.27	5.37E-10
2.51	9.0	2.31	0.13	2.879	-0.3025	-1.24	1.29	0.17	
1.364	1.064	2.244	3.694	2.103	-1.448		-0.05594	-0.5859	-0.1359
0.9725	0.1725	2.032	-1.778	-0.06875	0	-2.598	-1.068	-0.9475	-1.168
0.3456	1.186	1.136	-0.8144		-1.457		-0.8144	-0.9744	-0.9744
3.331	3.771	2.051	-1.609	-0.1306		-2.529	2.211	0.1206	-1.909
1.506	0.8756	2.786	-2.614	-1.826	0.8831	-0.2344	-0.4144	0.7556	-1.954
0.1412	1.111	2.901		-1.4			-0.08875	-0.9187	
0	-0.37	2.61	-1.43		0.4675	1.28	0.94	0.85	-1.1
1.031	-1.219		-1.269	-0.19		-1.919	-0.6787	-1.319	-0.5888
-0.17	0	0.25	-0.85	1.529	1.148	-0.17	-0.75	-0.63	
	0.2691	1.049	-1.151	1.728	-2.513	-1.491	-0.6009	-0.03094	-1.951
0.3606	-1.089	-0.1594	-0.4194	-0.2206		1.361	1.411	-0.1494	-0.4994
-0.4875	-0.4275	0.0025	-0.0575	-0.8388	0	5266.0-	-0.9075	0.4125	0.4325
-0.5675	-0.4875	0.9325	0.1825		0	-0.2175	1.012	-0.0775	0.2325
-0.485	0.035	0.745	-0.545	3.154	3.233	-1.485	-0.405	-0.345	-0.035
-1.458	-0.8275	-0.0475	4.652	2.231	0	+		-1.008	
0	-1.88	0.37	5.5	5.089	3.188		-0.42	0.46	-1.03
	-0.4809	0.3691	4.169	0.5578	0.1566	6086.0-	0.4691	-0.1809	0.2091
1.255	1.865	4.145	-0.025	-0.08625			0.805	-0.655	-2.105
0.97	0.74	0.5	-0.16	-0.6112	-1.762	-1.15	-0.73	.0.07	-1.58
1.101	0.08125	2.291	-0.9888	-1.91			0.3413	-0.7187	-0.2288
	0.4112	1.251	-0.6588	-0.32	-1.961	-1.929			-0.7388
0.75	0	0.36	-0.68					-0.77	0.43
	-0.13	1.02	-0.42		1.688	0	-0.5	0.05	
0	1.42		-0.83	2.999				9.0-	
-0.495	0.335	0.635	-0.025	0.1738	0.0825	0.595	-0.195	-0.175	
0.44	0.23	0.92	0.39	-0.1612	-0.2425	1.17	-0.09	-0.34	-0.76
-8.20E-09	-0.34	90.0-	69.0-		-1.542	-1.39	0	-0.73	0.34
1.9	0.07	0.84	-1.71		-0.3525	86.0-	-0.45	-0.5	0.82
2.23	-0.08	2.19	-1.27	1.299		-0.73	4.02E-09	-0.54	-1.57

δ.

~	
Φ	
亙	
ַ	

									• •																													
T47D	ARRY14X	0.31	-0.1688	-2.153	-1.94	-1.3	-3.858	-0.88	-1.351	-0.3619	0.3306	-0.14		-0.77	-0.33		-0.3994		-0.3587	-1.529	-1.536		-1.592	-1.97	-1.94		,	-1.91	-2.76	-0.9009			-1.26	-1.712	-0.16	-0.1875	-3.575	
MCF7-NCI	ARRY15X	-0.04	-1.599	-3.003	-1.69	0.26	-2.827	-2.27	-1.081	0.5181	0.4306	-0.05	-0.005	-0.33	1.14	-0.4287	-1.199	-2.281	-1.309	-1.949	-2.506	-1.72	-1.842	-1.36	-1.82	-2.036	-2.851	-1.1	-1.93	-1.611	-1.282	-1.485	-2.49	-1.302	0.36	-1.967	-3.375	-5
BT-474	ARRY13X	0	-1.199	-2.123	-1.88	96.0-	-1.947	-3.39	-2.121	0.9781	90.8706	99.0	0.875		-1.06	-0.5487	0.03063	-0.2709	-1.099	-1.759	-1.546		-0.9319	-0.85	-1.16	-0.07594	-0.4509	0	0.05	0.9291	0.4681	0.125	0.15	-0.4219	0	-0.2775	-1.495	0
SK-BR-3	ARRY12X	0.02	-0.4288	-0.5731	0	-1.42	-1.198	-2.6	-1.311	-0.7219	-0.8794	-1	-0.275		-0.66			-3.351	-2.659	-3.119	-2.576	-4.04	-1.852	-3.21	-3.26	-2.786	-4.921			-0.2609	-0.5919	-2.145	-2.56	-2.272	-2.2	-0.8375	-2.615	-1.48
NB4+ATRA	ARRY17X		-2.531	-2.776		-1.522	-4.34	-1.362	-1.513	0.5356	-1.002	1.538	-1.147	-0.4225	-2.452		-2.882		-2.171	-1.841	-0.7784		-0.6644	-1.872	-2.332	-2.548	-0.6634	-0.7325	-1.442	-1.383		-1.847	-2.322	-2.514	-1.542	-3.22	-0.5375	
MOLT4	ARRY18X	-1.871	0.2	0.1256			0.00125	-0.7012	1.818	-0.8231	-0.7606		0.7838	0.2388	-1.451		-0.8006		-1.83	-1.6	-2.937	-4.821	-1.113	0.2788	0.5388	-2.467	-1.602	-1.111	-1.901		-1.183	-0.8262	0.4788	-1.583	-2.001	0.00125		-2.751
RPMI-8226	ARRY16X		4.161	4.327	0.02	69'0-	-0.1975	-0.16	-0.8109	0.2981	-0.1794	-0.19	-0.205	69'0-	-1.65	0.2812	-0.2394	-1.771	-2.029	-3.999	0.9841		-1.792	-2.09	-1.14	-0.8159	-3.801		-2.68	-2.561	-1.752	0.675	-1.76	-2.152	-1.32	-1.438	-3.915	-2.95
HS578T	ARRY9X	2.87	0.8712	0.4669	2.24	0.04	-0.0175		1.059	4.838	4.611	2.89	3.775	4.65		2.631	4.001	3.389	1.451	1.831	0.8941	0	1.668	2.74	2.57	3.614	4.029	3.78	3.94	4.719	3.078	4.385	3.71	3.608	2.38	3.482	2.315	4.64
BT-549	ARRY10X	2.92	0.4112	0.7369	1.17	-0.75	-0.7075	0.16	-0.7209	0.1481	0.3106	0.78	3.775	4.65	2.88	3.651	3.131	1.339	0.6712	0.1012	0.01406	0.52	1.008	1.03	1.1	2.834	1.909	2.15	2.5	4.159	2.488	1.995	1.41	4.578	1.14	3.692	0.735	2.04
SW872	ARRY8X	2.12	-0.2788	-0.7531	9.0-	1.79	4.242	3.58	2.869	5.128	5.171	0.7	0.005	0	-2.03	3.491	2.971	1.869	-0.01875	-0.8487	-0.9759	7	0.4481	96.0	1.14	2.224	2.499	3.01	2.68	-0.2809	-0.7319	0.495	0.23	3.498	2	0.8625	-0.015	-8.20E-09

7	
Ð	
囨	
,ro	
_	

_	_	1	m	ī	[in	7	7~	ाठ	_	Т	4	1	ᄱ	<u>ام</u>	ĪΩ	1	T~	ام	ि	Ιœ	Ιœ	6	Ιœ	12	le Ie		,	H.	₩	ন	ন	₩	_	<u></u>	lio.	T	ı	,
T470	ARRY14X		-1.3	-1.1	-0.45	-1,362	-0.42	-0.6319			-3.54		-1.965	-1.982	-0.865			1.962	1.089	-0.7538	0.48	-0.6359	1.8	1.12	5.37E-10			-0.01	0.04	-1.2	0.25	0.4		-1.17	-0.835	-1.621	-2.21	
MCF7-NCI	ARRY15X	-2.83	-2.27	-0.28	1.02	-0.5719	-0.11	-0.2119	-1.709	-1.549	-2.85	-1.232	-1.145	-0.8319	-0.835	-0.01	ī	1.393	0.6491	-0.4037	-1.32	0.1841	0.8	-0.95	-0.38	-0.4337	-2.5	-0.22	0.54	0	-0.37	0.03	-0.3	-0.32	0.945	-2.571	-2.92	-0.18
BT-474	ARRY13X	-0.2	-0.76	-0.91	-0.92	0.1781	0.25	0.6981	-0.8294	-0.7387	-1.85	-0.2919		-0.9519	-0.955	0.26	0.25	-0.0575	-0.3609	-0.2937	1.21	0.8241	0	1,41	1.1	0.1963	-0.84	-0.32	0	0.56	-0.19	-0.65	0.15	0.05		0.6091	-2.24	
SK-BR-3	ARRY12X		-2.12		-1.3	0.02812	0	0.1781	-1.779					-2.432	-1.645	-0.46		-0.8175	1.309	0.5962	-1.65		-1.13			-1.054		-0.23	-0.8		-0.04	-1.44	-0.64		-0.525	2.359	1.04	0.73
NB4+ATRA	ARRY17X		-1.462	-2.632	-0.9825	-0.9944	-0.5625	-0.9444	-1.082	3.569	0.6175	1.026			6.583	4.928	3.818	2.58	3.567		3.018		-2.032	-1.782	-1.272	-2.296		-2.692	0.0975		0.6375	1.948	0.5775	-0.7325		-3.613	-5.332	-1.772
MOLT4	ARRY18X		0.1488	-1.871	-0.9812	-1.233	-0.5812	-0.6531	1.169		1.329	4.707	0.05375	-1.963			-0.7912	0.00125	-0.4722	0.295	1.389		1.079	-2.441	-0.7512	-0.015		1.109		2.569	0.6688	0.8988	1.269	1.909	-0.2662	-2.472	-2.181	-1.711
RPMI-8226	ARRY16X	-1.61	-1.8	-2.41	-0.29	-2.602	-0.68	-1.552	-1.659	-2.959	0	-1.302	0.305	-1.162	-0.785	-0.7	-0.16	0.2425	-0.01094	-1.084	-1.77	-0.7659	-3.47		-0.46	0.01625	0.32	0.45	0.12	-0.54	0	-0.17	-1.1	0.11	-0.355	-1.651	-0.1	-0.59
HS578T	ARRY9X	4.31	1.92	0.44	1.5	3.658	3.78	3.568	2.391	2.461	0.63	1.588		2.458	-0.105	-0.09	0.16	2.112	0.8591	1.226	1.21		0.82	3.32	1.65	1.356	2.49	1.79	0.8	2.93	1.74	-0.03	1.74	1.46	0.775	1.049	0.73	0.61
BT-549	ARRY10X	2.19	2.82	-0.04	0	3.798	3.72	3.748	2.331	1.941	1.07	2.628	0.055	0.9181	-0.035	-0.64	-0.83	-0.4475	-0.0009375		1.04	0.8441	3.35	-0.08	3.68	2.666	2.29	0.27	-0.25	0.76	1.19	1.5	0	0	0.305	2.059	0.1	0.18
SW872	ARRY8X	0	0.26	2,15	1.46	0.5681	0.59	0.1281	3.551	0.3413	0.94	1.568	0.015	-1.622	5.655	1.04	2.89	2.732	0.7291	1.226	-0.37	-1.116	-0.3	0.08	1.86	2.356	-2.57	-0.94	3.61	4.65	0.9	1.94	-0.42	-0.69	-0.145	-1.201	0.35	-0.61

\sim
Ψ
亙
ص.

		_	_	,	,			1	1				, .	_	, .	-		T =		, .		,		,	,_	_									_			_
T47D	ARRY14X	-1.659	1.701			-1.32	-0.72	-4.16	-3.73	-3.72	-2.16	-1.969	-0.43		-0.47	-1.679	-0.02	-0.2909	5.37E-10	-0.1594	-0.68					-0.91	-1.179	-2.985		-0.675	-0.67	-0.6944	69'0	0.36	-0.15	0.3062	1.196	-1.409
MCF7-NCI	ARRY15X	-2.469	-2.919	-2.5	-3.74	-2.29	-1.35	-2.81	-3.44	-3.69	-2.83	-2.199	<u></u>	-1.25	-0.55	-0.4187	-1.54	-1.801	90.0	-0.1594	0	0.49	0.1147	0.2663	1.134	0.16	-0.03875	0.415	0.94	-0.185	0.05	0.1456	-0.2	-0.24	0	0.3363	0.4856	0.3613
BT-474	ARRY13X	-0.7887	1.001	-0.88	-0.86	-0.02		-1.35	-0.75	-0.89	-1.1	0.4406	0.28	-0.13		0.3813	-0.49	-0.5809	-0.01	-0.5594	-0.29	0.24	-0.1553		-0.05594	0		-0.015	0.59	-0.125	0.12	1.586	0.76	1.93	1.79	2.706	2.916	2,311
SK-BR-3	ARRY12X	-0.4088	-0.4794						-2.77	-2.76		-0.5094		-1.23	0	0.3412	-0.44	-0.5809	0.31	-0.09938	6.0-	0.09	,	-0.5938			-1.389		-0.64		-1.12		-0.32	-0.9	-0.48		-0.5844	-1.029
NB4+ATRA	ARRY1/X		-1.052					-2.322	-5.532	-5.522	-2.762		-1.462	-3.262	-1.512	-0.2912	-1.462	-1.603	-0.3825	-0.8219	0.1275				0.3316	-1.032	0.3988				3.228		0.2375	-1.342	-0.7725			-0.1512
MOLT4	AKKY18X		-1.351			-2.461	-1.581	-2.421	-4.191	-3.441	-2.581	-3.271	-1.041	-3.081	1.149	-0.14	-0.3512	-0.9322	-0.1312	-0.2606	0.6387		-1.017			0.7387	0.12		0.2988	0.2437	-0.8912		-1.581	-0.3612	-0.5313	-2.415		1.99
RPMI-8226	ARRY16X	-0.00875	-0.2794	-2.18		-3.24	-1.3	1.07	1.39	1.34	0.41	-1.669	1.54	1.97	-0.85	-0.1688	-2.07	-2.041	-0.64	-0.07938	-0.07	-0.34		-0.4038	-0.5259	-0.52		-1.205	-0.94		0	-1.024	0	-0.56	-0.73	-0.6138	-0.04438	-0.3288
HS578T	AKKY9X	1.521		1.34	3.48	4.41		2.33	2.36	2.26	2.4	5.191		2.83	2.51	0.1412	2.57	2.559	1.68		0.3		0.1747	0.9462	0.2241	0.03	0.7612	1.255	0.92	3.675	1.9	3.826	4.02	5.64	5.93	6.926	7.436	6.231
BT-549	AKKYIUX	0.3112	2.621	0	0	1.18	1.2	0.3	0	0	-0.42	1.211	0	-0.78	-0.1	1.231	1.14	0.8591	0.31	0.6706	1.06	1.41		0.2062	1.054	0.46	0.08125	-2.255	-0.99	3.055	2.13	4.726	2.49	5.52	5.53	-0.5438	-0.7144	0.8412
SW872	AKKTOX		0.1206	-0.85	-1.1	0	0	0	0.36	0.46	0	-1.229	-0.09	-0.55	0.1	0.2612	0.0	0.5191	0.52	1.171	0.05	-0.09		-1.154	-0.4059	0.04	-0.8688	0.805	0.38	3.475	1,56	1.106	0.11	0	-0.05	1.246	1.816	1.451

2	ļ
Ψ.	
互	i
ص	

T47D	-0.66	0.09	0.8812	0.04906		5.37E-10		-0.36	-0.2775	0.4312		-0.08	0.5413		5.37E-10	-0.7988		-0.2138	0.2112	0.3391	-1.835	-2.28		-1.916	-1.02	-0.87	-2.13	-0.68			-1.802	-1.659	-1.09	-2.079	-2.5	1.148	-0.385
MCF7-NCI APPV15Y	0.37	0.12	0.9113	0.8191	0.5481	1.03	-0.8244	60.0-	0.5125	0.3713	0.14	0.34	-0.6587	-0.44	-0.93	-0.09875	-1.232	-0.6937	-0.7387	0.1591	-1.175	-2.47	-2.959	-1.886	0.01	9.0-	-1.44	-0.08	1.75	-0.1487	-1.602	-1.169	-0.16	-0.4587	-0.25	-0.2219	-0.505
BT-474	3.6	2.04	2.251	2.659	2.598	3.19	1.636	1.48	0.6825	0.8813	1.08	96.0	-0.04875	0	0.2	-0.3287	0.06813	0.6263	0.4013	0.8591	0.185	0	-0.4994	0.07406	-0.22	8.05E-09	-0.31	-0.2	4.71		0.3481	0.6706	1.57	1.571	0.22	-0.06187	0.625
SK-BR-3	-0.7	0.34	-0.3988	-1.571	-1.522	-1.04		-0.54	-0.8475	-1.329	-2.35	0.05	-0.8787		-0.78	-0.1688		2.226	0.2113	0.6091	-3.045				-0.5	-2.41	1.55	0.26		-1.799	-2.262		-1.13	-0.3787		-0.4819	-0.115
NB4+ATRA	-1.142	-0.2425	-0.04125	-0.4334	0.03563	0.5175	1.243	-0.3025	0	-0.3912	0.4275	-1.562	1.529		-1.612	-0.09125		0.05375	-2.111	-1.853	-2.167			-2.818	-0.5025	-1.262	-3.192	1.648	-0.9825		-1.284	-1.342		-1.561	-1.562	-2.454	-0.4575
MOLT4	1.419	2.869		0.06781	-0.6231	-0.1412	-0.5756	-0.5412	-0.6988	-1.01		0.3688	0.46	-0.1913	0.8488	-0.7			-0.57	-2.262			-0.3306	-1.177	-2.401	-0.5912	-1.631	1.739	-2.801		1.177	1.499	-0.6412	2.84	2.739	-1.553	-1.036
RPMI-8226	O	0	0.04125	0.3491		0.4	-0.5344	-0.28	-0.5775	-1.209		0	1.151	1.79	-0.97	0.1312		-2.454	-2.549	-0.6609	-1.125		-2.759	-2.036	-0.28	-0.41	-1.46	-1.16	0.17	0.7812	-1.722	0.000625	0.16	2.321	0	0.06812	1.135
HS578T	7.92	5.76	5.271	6.139	6.668	7.14	4.226	5.29	4.542	3.731	3.09	3.78	2.491	3.25		1.311	1.738	1.296	1.011	1.919	3.925	4.01	3,161	3.694	2.23	2.38	29:2	2.06	0.43	1.701	3.158	4.521	4.45	5.151	1.5		0.955
BT-549	2.75	3.39	3.051	4.979	3.768	4.18	2.676	4.65	0.0225	0.5412	-0.16	0.14	1.221	2.31	3.24	1.981		1.446	1.281	1.879	3.835	4.15	3.091	3.204	-0.91	-0.22	0	0.08	1.36	1.351	-1.652	2.311		3.791	1.68	0.3381	1.095
SW872	0.2	0.36	0.5012	0.7891	0.8381	99'0	0.7156	1.04	3.212	3.121	2.79	4.05	1.351	2.69	3	1.161	1.428	1.226	0.7312	1.879	1.095	1.36	-1.299	1.244	2.28	2.36	1.	1.92	4.54	4.781	-0.1419	0.2406	-0.33	2.051	1.84	0.2681	-0.275

٢	٧
	υ
3	5
3	O

	×	0.04	-0.58	-0.74		0.03			1.428	<u> </u>	-0.39	-0.55	0.47	-0.81	-1.76	0.3112	-0.4388	-0.1688	7	0.26	0.08	1.078	0.61	1.4	-2.154	0.3281	-0.2	-0.99	-0.2275			0.85	0.525	-0.105	937	594		
T47D	ARRY14X			7					1			ľ			7	0.3	-0.4	-0.1)		1.)		-2.	0.3		7	-0.2				0	-0	-0.06937	-0.03594		
MCF7-NCI	ARRY15X	0.36	-0.55	68'0-	-0.07875	-0.4	-1.125		-1.152	-0.44	-0.11	-2.49	-1.08	-1.63	-1.67	-0.02875	-0.6087	0.3213	-0.61	-1.54	-1.6	-0.3619	-0.71	-2.21	-1.904	-1.362	-0.11	0.01	-1.127	-0.53	-0.38	-0.66	-0.545	-0.485	0.08063	-0.2359	-1.289	0.6603
BT-474	ARRY13X	-0.2	-0.26	8.0-	-1.449	90.0	0.865	0.6991	-0.3919	6.89E-09	-0.14	-2.12	-1.38	-0.61	-0.52	0.4613	-0.4287		-1.09	-2.59	-3.06	-0.1919	-0.72	0.88	-2.954	0.2581	0	0.12	-0.5375	-0.59	1.61	0.77		-1.975				
SK-BR-3	ARRY12X		-0.34	0.39	-0.2488	0.23		-0.1809	-1.102	0.85	0.54	0.42		-0.78	-1,19			0.4912	1.31	0.15	0.23	0.2981	0.63	0	-0.7244	0.8881	0.63	-1.49	-0.2875		0.4	-0.26	0.005	1.905	0.2506		0.2212	
NB4+ATRA	ARRY17X		-1.832	-3.102		-2.912			-2.244	-2.712	-2.112		-4:432	-2.662	-4.182	-6.171	-0.9212	-0.3312	-0.4425	0.1175	0.0675	2.806	1.108	1.518	3.463	-0.4344	-0.2125	-0.2725	6.0-			-0.8125			-0.6319	0.6216		-0.9722
MOLT4	ARRY18X	-0.6812	0.6388	-0.7912		-2.151	-3.686		-1.313	-2.951		-2.901	-4.251	-3.381	-3.681	-0.39	-0.36	-2.89	-1.951		-1.591	-2.723	-2.681	-3.701		0.006875	0.1387	1.109	0.00125	-1.401		-0.5112		-0.9862		-0.9272	-0.59	0.1591
RPMI-8226	ARRY16X	1.3	2.53	3.23	0.6312	-0.55	2.905	1.909	1.018	-0.26	0.3		0.47	-1.32	-1.12	0.2612	-0.1288	1.081	-0.73	-0.86	-0.87	-1.822	-2.73	-3.31	-2.544	-3.312	-1.01	-0.26	-1.108	0.05	-3.61		-0.005	-2.365	0.3906	-1.026	0.1712	-0.5197
HS578T	ARRY9X	-2.91E-09	0.33	0.81	-0.4488	-0.21	1.345	1.119	1.218	1.34	1.98	0.25	0.26	2.09	1.02		0.6612	0.9812		-0.11	-0.06	-1.212	-1.62	-1.59	-0.2644	0.1481	-0.95	1.1	1.012		-0.09	0.46	-0.305	0.135		0.9641	-1.589	0.7103
BT-549	ARRY10X	1.25	-0.45	0	0.3512	-0.8	-1.715	-0.3409	-0.1819	2.06	2	-1.17	0	1.26	1.38	0.8712	1.131	0.6612	0	-0.19	0.12	-0.2919	-0.58	-2.03	-2.494	-0.1819	-0.18	-0.01	2.232	0.71	0.38	0.52	1.325	1.405	0.02062	0.5341	-0.7188	0.4003
SW872	ARRY8X	-1.03	0	-0.12	0.6312	-0.77	-0.075	2.089	2.918	1.72	1.2	-0.35	0.63	0.49	0.21	-0.04875	2.951	0.01125	2.04	1.29	1.6	-0.4419	0.7	-0.1	0.1456	-0.1719	0.1	0.38	0.3025	-1.38	-0.22		1.085	1.455	-1.019	-0.6959	0.7212	-0.6697

Ν	
ψ,	
4	
'n	

_	I 	<u></u>	N		œ	7	4	7	Γ		0	_{स्त्री}	7	7	4	4	œ	7	œ	0	ī.	7	H	Ŋ	6	6	0	io.	6	ø			6		Ñ	က္	4
ARRY14X	0.21	-0.38	-0.3887		1.628	-0.2	-0.5594	0.1012			5.37E-10	0.5581	-1.17	-0.9587	-2.54	-1.944	-0.4988	0.2	-1.368	5.37E-10	-1.235	4.822	0.9381	-0.305	-0.3519	-2.049	5.37E-10	-1.355	-0.2509	-2.228			-0.2759		-0.795	-3.53	-1.84
ARRY15X	-0.36	-0.62	-0.6487	-1.769	-0.7719	0.35	0.05063	-0.1087	0.5081	0.73	-1.43	-1.722	1.30E-09	-0.4687	-0.81	-1.234	-0.5187	99.0	-0.1375	-0.01	-0.715	-0.6075	-0.3119	-0.645	0.4281	-0.4987	-1.47	0.585	0.7891	-1.608	-2.46	-5.192	-1.676	-2.004	-1.625	-1.72	-0.85
ARRY13X		-0.64	-1.639	1.621	-1.992	-0.55	-1.489	-0.2587		-0.47	0.45	3.638	-1.30E-09	-0.8787	0	-1.394	-0.2687	-0.29	-0.1975	-2.89	0.065	-0.7975	1.008	-1.195	-0.4619	-1.999	-1.03	-1.855	-1.431	-0.06812	-1.36	-5.312		-1.644	-0.455	-0.22	-0.75
ARRY12X	-0.93		-0.5887	-2.569	-2.942	-0.54	-2.069	-2.329			-2.5	-2.232	-2.53	-1.419	-1.41	-1.344	-0.2387	-0.17	-1.028	-2.12	0.255	-1.348	-0.4419	-1.605	-0.9719	-0.9887	-0.54		-0.7709	-0.1881			0.5741		0.245	-0.22	1.34
ARRY17X	-1.432	0.8275	-0.2612	-5.891	-3.434	-3.352		-3.471	-5.134	-2.302	-1.942	-1.574	-1.392	0.01875		-1.606	-2.031	-0.1525	0	-4.282	0.2125	-3.19		-0.9875	-0.2444		-0.8225	-5.328		0.01938			-3.308	-0.8369	-2.407	-1.942	-3.072
ARRY18X	0.5888	0.5588		-1.65	-2.333	0.9188	2.929	0.94	2.367	1.539	-0.1812	-0.9631	-0.4113	-0.51	0.8387	-0.155	0.86	-0.1312	-0.9488		-0.4662	0.00125			-0.4431		0.3088	-3.566	-1.062	-2.839			-0.6672		-0.09625	-0.01125	
ARRY16X	0.94	-0.38	-1.549	1.061	-1.312	-1.83	-1.539	-2.389	1.788	0.58	-1.8	-0.6719	-0.09	-0.2988	-0.52	0.6862	0.4512	-0.31	-0.5275	-2.04	-1.815	-2.248	-1.812	-0.115	0.8381	-1.629	-0.98		-3.261	-1.898	9.0-		-1.426	-0.4244	0.175	-0.38	-1.65
ARRY9X	-0.25	0.99	1.181	-3.149	-1.572	-1.15	-0.3594	-0.3288	0.6581	90.0	1.79	-0.5319	1,31	0.9312	1,58	0.1562	0.03125	0.07	-1.468	-0.71		-0.3275	-1.832		-0.6119	-1.439	0.6	-1.625	-1.231	-0.2981		-4.292	1.664		-1.225	-0.37	0.11
ARRY10X		0.38	0.03125		1.188	1.08	0.5506	0.7512	0.07812	0.11	0.07	-1.082	1.69	1.111	-0.05	-1.474	-0.3888	-1.12	1.072	-2.34	-1.915	-1.318	-0.9319	0.115	-1.102		0.42		-2.601	0.5519	80.0	-1.172	-0.2959	-0.1044	0.085	0.73	1.82
ARRY8X	0.73	0.57	0.3613	-4.049	-1.052	-0.63	0.2606	0.2112	-0.2119	-0.18	3.18	0.1281	1.89	0.7513	-0.65	-0.5038	-1.399	-0.55	-1.368	-2.22	-0.545	-2.848	-1.862	-0.655	0.4781		-0.05	0.945	2.229	-0.1381	0	1.978	-0.3759	0.8956	-0.285	0.43	-0.58

ŗ	V
4	υ
3	ŏ
1	O
ŀ	-

T47D	ARRY14X	-1.442	-1.33	-1.934	-2.515			-2.929		-2.23	-0.7359	-1.18	-2.49	-2.14	-1.909		-3.15	-2.88	-3.21	-3.199	-2.679		-3.62		-2.679	-4.311	-0.87	-0.51	-0.73	-5.562	-5.952	-2.525		-3.169	-3.09	-3.8	-2.826	
MCF7-NCI	ARRY15X	-0.8019	-1.01	-2.244	-2.075	0.1		-1.319	-2.815	-2.1	-2.016	-1.09	-3.12	-2.53	-3.069	-1.731	-2.71	-2.37	-2.75	-1.669	-1.259	-4.505	-2.96	-2.08	-1.889	-3.901	-1.23	-1.64	-1.71	-4.952	-5.182	-2.115	-3.33	-4.639	-4.06	-4.19	-0.2259	-1.785
BT-474	ARRY13X	-0.3719	-0.77	-0.7444	-1.575	-1.1	-2.715		-1.795	-3.32	-3.136	-2.36	-2.96	-1.94	-0.7987	-2.121	-2.44	-2.68	-2.78	-2.339	-2.449	-2.545		-1.35	-1.369	-3.261	-2.96	-2.97	-2.28	-4.652	-4.622	-1.695	-2.19	-2.589	-2.52	-2.43	-0.9159	-1.375
SK-BR-3	ARRY12X	0.9881	-0.06				-6.085		-1.885	-4.65	-4.406	-2.38	-4.19	-2.22	-1.139	-0.7309	-1.83	-0.39	-1.88	-1.979	-1.489		-	-2.74	-2.089	-3.591	-3.53	-0.71	-1.32	-4.602	-4.112	-3.425	-2.64		-6.71		-2.276	-0.355
NB4+ATRA	ARRY17X	-3.244	-3.072	-3.267	-2.307			-2.411	-4.507	0.1875	0.1216	0.1375	-0.0825	0.4975	-1.731	-1.223	-1.582	-1.202	-2.112	-1.011	-0.7612	0.3928	-1.372	-0.2325	-0.9612	-0.1734	-3.412	-1.512	-1.792	0.8256	0.8856	-1.117	-0.8425	-1.412	-0.6625	-1.002	-4.108	-4.147
MOLT4	ARRY18X	0.05687	-1.361	-1.276	-1.016	-2.691	 -		-3.016	-4.331	-4.347	-1.411	-2.351	-3.601	-1.72	-2.442	-3.221	-2.961	-3.991	-2.81	-3.11	-5.256	-4.191	-1.701	-0.79	-4.772	-4.111	-2.661	-1.971	0.5169	0.6169	-1.616	-1.601	-2.171	-1.541	-1.441		-4.126
RPMI-8226	ARRY16X	-1.502	-1.01	-0.5644	-2.435	-2.11	-4.265		-3.315	-2.1	-1.966	-0.61	-3.29	-3.38	-1.089	-1.681	-2.12	-1.74	-2.85	-2.349	-1.949	-3.995	-2.25	-0.64	-2.339	-4.381	-0.59	-1.03	-1.07	-5.482	-5.132	-0.935	-3.6		4.27		-2.226	-2.665
HS578T	ARRY9X	-0.01188	0	-0.2744	-0.225	0.28	1.175		-1.225	-0.11		0.03	0	0.01	-0.2788	-1.571	-1.89	-2.2	-2.12	-1.279	-1.049		1.29		0.3312	-0.09094	-0.45	-0.79	-1.06	-0.7319	-0.9219	-0.025			-3.74	-3.34	0.6341	0.355
BT-549	ARRY10X	2.068	1.67	2.256	3.695	0	-0.885	-0.9288	0.465	0.68	0.4841	-1.35	0.18	-1.22	0.8012	0.4391	0	0	0	0.2112	0.2112	-0.9147	0.38	0.5	0.7512	0.4091	0.26	0	0.29	-1.472	-1.352	-0.235	-1.36	-1.869	-1.49	-1.51	0.5941	1.105
SW872	ARRY8X	-0.5319	0.15	-0.6044	-0.215	1.3	-0.775	-0.4288	-0.465	1.79	1.894	-0.03	1.58	0.61	-0.8288	-0.7809	-1.27	-1.29	-1.62	-0.9788	-0.5688	-2,355	1.19	1.33	-0.3087	0.3891	0.7	0.48	0	-0.1319	-0.1619	0.715	0	-0.3194	0.08	-0.1	-1.446	0.725

2
a
豆
œ.

1		1222	T	1-21-0	1-22211	Tages	12:00	1, 21,	,
-2.14	-191			-3 102	-4 081	-2.06	-1 28	0.74	C
-1.51	-3.04	-1.42	-1.66	-4.872	-2.791	-2.99	1.63	1.05	0.39
-2.662	-1.762	-2.462	-3.872	-2.994	0.1169	-1.052	0.1581	-2.482	0.2781
-0.79	-2.49	-2.33	-1.2	-2.692	-2.021	-2.44	-1.66	-2.08	0.4
-1.79	-1.22	-1.43	0.23	-2.212	-4.031	-2.77	0	-2.84	-1.3
-1.93	-1.19	-2.89	0.49	-3.132		0	-0.79	-1.19	-0.65
-1	-0.57	-1.38	0.49	-1.432	-1.581	0	-0.19	-0.85	-0.29
-1.122	-1.532	-0.5219	-1.762	-1.824	-2.063	-3.262	0.8781	0.9381	0.2781
-1.152	-1.942	-1.482	-2.672	-2.454	-1.763	-2.652	1.148	0.4581	1.728
-3.259	-2.639	-1.689	-1.799				2.531	-0.3094	0.7606
	-1.359	-1.989	-3.319		-3.74	-3.059	0.4812	0.9312	-2.099
-5.154	-1.624	-1.654		-6.217			0.3356	1.026	-5.294
	-1.066	-0.04594	-1.636		-1.997	-1.706		0.3741	
-3.121	-1.191	-0.02094	-0.8109	-4.603		-2.461	0.3491	0.2491	-1.221
-2.13	-1.58	-2.27	-2.9	-1.162	-0.8712	-0.78	0.61	0.13	1.08
-4.25	-3.9	-1.76	-3.71	-4.732	-3.651	-3.59	2.45	1.22	1.26
-4.109	-2.799	-2.419	-1.529	-4.071	-3.05	-3.029	1.241	0.4712	1.101
	-5.36		-2.73				2.44	-0.8103	0.4997
-4.162	-4.332	-2.792	-3.352	-2.944	-3.493	-2.952	0.5181	-0.6619	-3.352
-2.379	-2.239		-1.399	-3.532	-3.771	-2.679	0.6806	-0.3194	0.000625
-3.499	-2.839	-3.119	-2.859	-2.832		-2.309	0.1806	-0.6494	0.07062
-2.96	-2.44	-2.51	-3	-3.323		-3.1	0.5997	-0.6103	0.2297
	4.869	-5.399	-7.519	-6.961		-4.599	-1.889	-3.129	0.8412
-5.092	-4.772	-3.032				-4.862	-0.3019	-2.462	0.1181
	-4.182	-3.452	-5.672	-6.114				-3.302	0.3081
-5.578	-5.967	-4.347	-6.038	-1.64	0.00125	-5.918	-0.8075	0.4625	-0.9175
-4.008	-3.347	-3.367	-4.048	-1.2	0.00125	-3.638	-0.1675	0.5425	-0.1675
-6.79	-4.64	-3.66	-5.61	-6.272	-7.091	-1.4	0.61	0.49	-0.26
-4.999	-3.909	-3.539	-5.449	-6.061	-4.4	-3.859	0.06125	-0.4088	-0.7088
-3.446	-3.126	-3.006		-5.518	-4.757	-4.536	0.6141	0.5941	0.1841
	-4.159	-3.059	-4.809	-6.252	-1.361	-4.109	0.5306	2.281	2.381
-3.716	-3.056	-2.336		-3.198	-1.527	-3.106	-1.276	1.124	1.274
-1.42	-1.5	-1.51	-1.82	-5.652	-2.191	-0.88	1.77	0	0.56
-2.842	-3.912	-3.182	-4.422	-1.084	-3.563	-4.182	0.1981	0.3481	-3.032
-2.736	-2.086	-1.676	-3.676		-3.357	-0.2559	-0.3359	-0.9659	0.3741
-2.57	-3.22	-1.58	0.04	-4.322	-4.561	-1.12	0	-1.55	0.00
-1.08	-5.5	-1.88	1.76	-4.592	-5.831	-5.23	-0.36	0.29	0
ARRY14X	ARRY15X	ARRY13X	ARRY12X	ARRY17X	ARRY18X	ARRY16X	ARRY9X	ARRY10X	ARRY8X
T47D	MCF7-NCI	BT-474	SK-BR-3	NB4+ATRA	MOLT4	RPMI-8226	HS578T	BT-549	SW872

~	
Φ	
ᆿ	
'n	

	_	12.	11	_	_	<u></u>		<u></u>	[m	٠		-		<u></u>		-	<u></u>	~		100	61		_	61	61	61	61		~				~	~			_
T47D	AKKT 14A	-1.802	-2.435			-0.7	-0.2088	-2.37	-2.13	-2.88	-1.93		0.84	-3.19	-0.6187	-0.6787	-3.518	-2.978	-2.51	-2.285	-2.112	-1.21		-2.512	-4.92	4.22	-1.622	-4.189	-0.08	0.7	-0.43	-2.901	-1.448	-0.88	0.0625	-1.86	-5.07
MCF7-NCI	AKK1134	-0.01187	-2.015	-2.236	-4.385	-1.64	-0.6087	-2.02	-4.1	-3.55	-1.46	-3.096	-1.88	-1.73	-1,399	-2.429	-1.458	-2.837	-2.75	-2.405	-1.702	-4.06	-2.945	-3.482	-4.63	-1,23	-1.882	-3.299	-1.27	-2.22	0.29	-2.561	-1.288	-1.13	0.4025	-1.87	-0.34
BT-474	ARK113A	-1.202		-1.846	-1.805	-2.2	-2.079	-2.7	0	-1.5	-1.7	-1.816	-0.65	-2.52	-1.699	-2.119		-2.637	-2.45	-2.325	-2.632	-3.72	-2.535	-3.752	-3.43	-3.17	-3.852	-0.2487	-3.15	0.56			-0.3175	-0.76	-1.627	1.29	-0.23
SK-BR-3	ARK1124	-1.562	-3.155		-2.395	-2.25	-1,399		-5.17		-1.39	-2.686	-3.95	-1.89	-0.2387	-0.5587	-0.6675	-2.428			-1.352	-5.55	-2.695	-3.292	-5.7	-4		-4.519	-0.6	-5.46			-0.8775	-0.81	-0.2075	-0.18	0.28
NB4+ATRA	-1 932	0.5356	2.473	2.382	-1.017	-1.932	-0.1212	2.698	4.048	1.698	1.828	0.9416	-2.872	-0.7425	-0.8712	-1.401	0	0.13	0.4075	-1.667	1.016		0.5722	2.826	1.078	1.318	3.336	0.04875	-2.462	-3.162		-0.2734	0	1.008		-2.032	-4.552
MOLT4	-1 581	-2.463	-2,256	-4.647	-0.3662	-0.2412	-1.39	-2.091	-2.681	-1.781	0.3088	-2.707	-2.191	-1.541	-1.15	-1.64	-1.479	0.00125	-0.8712	0.8038	0.1369	-0.01125	0.7634	1.487	0.3788	1.079		-1.91		-3.261		4.702		-0.9312	0.00125	1.869	1.369
RPMI-8226	ANK 1 10A	-1.492	-3.355		-2.165	0	-0.5088	-2.91	-1.81	-0.75	-2.27	-1.666	-3.63	-2.14	0.06125	-0.2688	-1.238	-2.898	0.05	-0.275	-1.102		0.5347	1.138	0	0.25	-0.7619	0.1712	-2.58	-3.12		-2.381	-1.758	-1.21	-0.7275	-2.29	-2.99
HS578T	-0 88	0.3981	-0.075	-0.04594	-0.055	0.31	0.09125	-0.21	-1.13	1.44	-0.49	-0.8959	0	0.34	-0.5088	0.08125	0.6025	-2.738	-1.96	0.275		0	0.3347	-2.272	0.08	-0.41	0.02812	-0.4288	0	-1.18	0	0.8991	1.622	-0.2	-1.628	-1.46	1.54
BT-549	VOT I VOT	-0.3419	-1.055	-3.216	-1.495	-1.56	-0.9888	1.97	69.0-	-0.29	0	-1.616	-0.84	0.73	-0.3488	-0.2788	-0.5475	-1.978	-2.4	-1.375	-0.9119	-4.26	-0.7953	-3.422	0.71	0.86	-0.5519	-0.8988	0.85	89.0	-1.17	-2.571	-1.258	-1.14	-2.528	-1.92	-0.44
SW872	-0.75	1.818	0.625	1.164	0.035	0.91	2.511	-0.29	1.18	0	-0.12	0.1741	-0.1	0	0.5413	0.6813	-0.9775	-1.188	0	-2.375	-1.562	-0.06	-0.6353	0.5381	0.06	-0.44	-0.2019	0.08125	-1.69	0.12	-0.85	-0.1209	1.142	0.55	-0.3075	0	-0.33

(V
	u
:	<u></u>
	╚

T47D	ARRY14X	-0.32	5.37E-10	-1.405	5.37E-10	-1.609	1.32		-0.6594	-2.945	-1.15	-2.52	-2.37	-0.095	-1.07	-2.169		2.96	-2.22	-0.805		1.42	0.395	-0.14	-0.1988		-0.1075	-	-0.57	1.01	1.245		0.17	-0.1175		0.38		-2.375
MCF7-NCI	ARRY15X	-1.37	0.34	-0.285	0.12	-0.7787	-0.84	0.9163	0.2906	-3.205	-1.29	-2.63	-2.57	-0.675	-2.28	0.3313	-0.87	-1.59	-3.19	-1.925	-1.707	0	-0.225	0	-0.4487	0.3013	0:6225	-0.615	-0.92	0.29	0.215	0.405	-1.24	-0.6575	-1.297	-0.06	-0.9275	-0.365
BT-474	ARRY13X	-0.03	-0.47	-0.425		-0.6987	-2.33	-2.154	0.8406	-1.595	-0.77	-2.43	-2.57	-1.795	-1.26	-0.8987	-0.62	0.59	-1.25	-1.145	-0.6075	-0.14	0.745	0.15	-0.6687	-0.1987	0.3425	-1.025	-0.35	-0.46	-0.645	-1.195	-1.76	-0.5375	-0.8475	-0.61	-0.3375	-0.835
SK-BR-3	ARRY12X	-0.86	2.54	-0.125	-0.33	-1.329	-3.77	-3.414	-0.4594	0.225	-1.78	-0.7	-0.38	-1.275	1.47	-3.989	-0.52	-0.18	-4.26	-2.795	-1.208	1.78	0.225	-0.71	0.1412	-0.9988	-0.2075	-1.375	-1.5	0	-0.215	0.135	-1.1	0.0125	-1.938	-0.13	-2.318	-0.545
NB4+ATRA	ARRY17X	-2.882	-1.412	2.443	-0.1925	-0.7712	-0.0225	1.744	-0.01187		1.048	-1.942		0.5025	-2.902	-3.651		1.868	0.8075	-5.237	-2.05		-1.937	-1.622	0.06875	-1.351	-0.44		-0.9825	-1.152	-2.207		-1.592	0.5			-1.54	
MOLT4	ARRY18X	2.979	0.01875		-0.7512	-1.01	0.4988	-0.915	-0.6006		-3.041	-0.4012	0.3488	-0.9262	-3.411	-2.77	-0.6912	-1.861	-3.721		0.00125	-0.4813	-0.4963	-0.5713	-1.42	0.2	0.00125		0.1988	-0.1412	-2.226	-3.486	-0.7812	0.00125	0.00125	-2.621	0.00125	
RPMI-8226	ARRY16X	0.03	-1.09	0.125	-4.56E-09	2.551	-0.76	-2.494	0.4606		0	-2.51	-0.19	1.725	0	-1.609	0.26	-0.14	-2.72	-0.635		-0.97	-0.895		-0.06875	-0.2788	0.2925	-0.015	-1	-0.87			-1.66	-0.1975	-1.688	90'0-		-1.145
HS578T	ARRY9X	1.34	-0.84	-1.385	-0.84	2.101	0	-1.024	-0.05938		2.62	0.05	0	-1.155	-0.78	-1.689		0	-0.87	1.165	-0.4775	-0.03	4.325	3.3	0.08125		-0.9175	0.255	0	-0.37	-2.305	-0.915	9.0-	-0.2675	-0.5375	0	0.9125	1.385
BT-549	ARRY10X		-1.47	-0.955	-0.31	-0.6088	0.17	-2.744	-0.1894	-3.575	-1.17	0	-1.27	-0.315	-0.46	0.7812	0	-0.82	-1.27	-0.605	-1.238	-0.93	-0.245	-0.73	-0.2288	-1.409	-0.8975	0.015	1.49	-1.19	-3.475	-2.615	0	-0.0175	-1.098	0.95	-1.278	-0.885
SW872	ARRY8X	-0.08	-1.31	-1.095	-1.3	-1.749	£8'0-	-3.234	0.01062	-0.225	-0.25	1.32	-0.62		0.66	-0.8288	-0.29	-1.28	-0.36	-1.255	-1.928	-0.83	-0.835	-1.75	-0.8088	-1.119	-0.4875	-0.855	-0.58	-0.79	-1.595	-1.635	0.14	-0.4075		-0.26	-0.5375	0.365

•	_	ų
	q	j
:	Ξ	j
ı	9	3

T47D	ARRY14X	-1.3	-1.87			-1.75	-1.7	-1.15	-0.0075	-0.5888	-0.31	-1.415	-0.4		5.37E-10	-1.314	0.02125	-1.59	-1.2		-0.39	-0.29	-1.9		-0.74	-1.162		-1.484	-1.915	0.25	-1.138	-0.555	5.37E-10	0.31	-2.562	-2.038	-1.77	-1.53
MCF7-NCI	ARRY15X	-1.27	-1.6	-0.43	-0.1275	-1.14	-1.42	-0.22	0.0025	-0.4687	-0.28	-0.145	-0.3	0.4056	-0.86	-1.114	-0.3987	-1.76	-2.91	-2.27	-1.49	-1.95	-2.18	-4.04	-0.94	-1.932	-2.474	-1.384	-1.665	-0.59	-0.1875	0.795	-1.74	-1.38	-2.792	-3.488	0.25	1.16
BT-474	ARRY13X	-0.77	-1.29	0	-0.1775	0	0	99.0	-0.3075	-0.5787	0.74		0.35	0.3756	-0.83		-0.9887	-1.11	-1.59	-2.05	-1.79	-2.03	-1.99		0	-2.052	-1.354	-0.4144	-0.8847	-1.3	-0.1775		-2.04	-5.04		-0.3175	-0.23	-1.37
SK-BR-3	ARRY12X	-0.74	-2.67	-1.6	-1.658	-1.58	-2.03	1.11	1.402	1.631	-1.09	-1.855	0	-0.5944	-0.21	-1.624	-1.039	3.12	1.82	-0.07	0	-2.18	-0.87		-0.37	-1.292	-0.7644	-0.4544	-2.075	-1.59		-2.065		-2.57	-3.012	0.3925	-1.63	-1.82
NB4+ATRA	ARRY17X	-1.622	-3.232	-1.142	0	-2.912	-2.522	-2.192	-0.52	0.1688	1.058	-3.367	0.0075	-0.5169	0.8775	-0.6762	2.989	-0.7425	-3.232	-3.682	-0.4325	0.6575	1.128	-1.712	-1.402	0.5756		-1.657	-0.02719	-0.5725	0		0.6875	0.0275	2.456	0	-2.742	-1.082
MOLT4	ARRY18X	-0.1612	-0.9712	-0.6913	-0.08875	-3.011	-2.601	-0.5112	0.00125	-1.1	-0.3512	-1.386	-0.2112	-1.756	-0.3812	-0.165	-1.29	-0.3612	-2,301	-1.531	-1.421	1.069	2.559	-1.911	-0.1313				-0.1359	-1.271	-2.619	-2.506	-1.041	-0.8012	-3.283	-0.08875	-1.201	-2.571
RPMI-8226	ARRY16X	-0.67	-0.93	-1.58	-0.2475	-2.43	-1.96	-0.91	0.3525	-0.6588	-0.55	-1.485	-0.1	0.1756	-0.22		-0.4788	-0.05	-2.67	-2.42	-2.95	-1.1	-0.82	0.36	-0.19	-1.082		-1.474	-0.8347	-1.19	-1.968	-0.445	0.36	0.26	3.118	0.8425	-2.01	-1.59
HS578T	ARRY9X	0.54	-0.03	9.0	0.2625	-0.07	-0.94	60.0	-1.028	0.7012			1.5	0.4156	-0.05		-0.08875	0.81	-0.35	0	-0.12	-0.88	8.0		-0.73	0.5281	2.716	2.416		0.25	1.832	1.205	-2.08	-4.73	-3.062		90.0-	-1.69
BT-549	ARRY10X	0	0	0.7	0.2025	-0.46	-0.1	-0.26	-1.498	-0.1688	-0.8	1.585	-0.02	-0.2244	98.0	0.6462	0.5112	-2.71	0	0.07	-1.42	-1.56	0	-0.36	-0.48	-0.9519	-0.7444	0.3656	1.715	0.62	1.572	2.665	-2.24	-5.12	-2.412	0.7525	90.0	0
SW872	ARRY8X	-0.39	2.32	-0.75	-0.7075	2.07	1.5	-0.09	-0.5975	-0.7988	-0.45	0.145	-0.21	-0.9744	8.0	-0.6338	-0.7488	1.51	0.38	2.66	0.45	-1.21	-1.15	-2.63	-0.3	1.088	1.066	1.156	2.545	1.87	2.352	0.595	-0.35	-0.64	-2.822	-0.8775	-2.65	-0.27

C	J
q	U
3	5
ŗ	U

T47D	AKKY14X	-2.428	-1.439	-3.28	-1.41	-2.249	-0.7488	0.7413		1.118	-0.64	-0.82	-0.33	5.37E-10	5.37E-10	-1.749	-1.049	-3.489	-1.43		-0.6575	-1.26			-1.22	0.9041	0.1612	0.41		-1.54	-2.152		-2.132		-1.99	-2.178	-2.392	-0.39
MCF7-NCI	ARRY15X	0.8725	-2.019	-3.49	-1.48	-3.799	-1.299	-2.459	-0.3259	-0.3919	-1.81	-1.48	96.0-	-1.78	-1.27	-2.659	-0.9287	-3.339	-1.76	0.03906	-1.247	-0.75	-1.092	-1.789	-1.22	-2.176	-1.779	-1.56	0.08	0.93	-0.8719	6099.0-	-3.172	-2.585	-1.71	-0.4675	0.1081	0.04
BT-474	AKKY13X	-1.907	0.1713	0.75	-0.4	-1.679	-0.1287	-1.529	-0.7359	-0.8419	-0.73	-0.67	-0.39	-1.9	-2.11	-1.149	-1.529	-2.139	-2.21	-0.0009375	-0.4575		-2.732	-1.409	-0.53	-0.7259	-0.6887	-2	60.0-	1.08	-0.8419	-0.3509	-0.8119	-0.415	-1.95	-0.9775	-1.662	0
SK-BR-3	AKKY12X	-1.018	-1.529	-0.55	-1.1	-2.069	-1.789	-0.6287	-0.07594	-0.2119	0	0.38	0.41	-0.18	r-	-0.7888	-0.9988	-4.189	0	-3.321	-0.4975	-1.9		-1.119	-3.77	-3.426		-2.37	-0.92	0	0.2681	-0.3509		-2.505	0.42	-2.808	-0.3319	-0.99
NB4+ATRA	AKKY1/X	-1.96	-0.8112	-2.762	-2.722	-1.231	-0.6112		-4.158	-4.874	-1.662	-2.382	-2.952	-2.032	-2.702	0.02875		-4.851	2.568	1.647	2.52	1.158	0.9156		0.1075		2.759	-0.0125	0.6675	-0.5325	-1.994	0.3566	-1.054	-0.7475	-0.0825	0	1.136	0.6375
MOL14	AKKY18X	0.00125	-1.71	-2.621	-0.5512	0.55	-0.79	-1.03	-2.977	-3.313	-1.901	-1.921	0.3388	-1.661	-2.091	-1.47	-0.26	-0.02	-1.781	-4.592	0.00125	-3.041	0.8069		1.499			2.949	0.2888	3.589		2.668	3.247	4.204	0.5288	1.691	1.667	0.5687
KPMI-8226	ARRY16X	-4.878	-0.3188	-1.58	0.34	-2.429	0.4712	-0.8388	-3.376	-5.312	-0.06	-1.82	-1.47	-1.08	-1.56	-1.389	0.7212	1.001	-2.98	-1.911	0.3125	-2.34	-3.682	-4.319		-2.686	-2.269	-1.83	-2.13	-2.6	-1.742	-1.471	-1.802	-2.905	-2.13	0.5225	1.788	0.65
HS5/81	AKKY9X	0.2025	0.1412	0.98	69.0	0.5712	1.871	-0.06875	1.384	1.498	1.1	0.9	0.75	1	-0.17	2.211	0.4012	0.5112	0.2	-1.451	0.9325	-0.47	-0.3819	1.801	0.11	0.6241	1.811	1.07	1.1	-0.2	0.008125	0.4491	-1.342	-1.505	-0.15	-0.6175	-1.692	-0.81
81-549	AKKY10X	0.4325	0.8812	1.98	0.83	1.641	2.111	0.8812	0.9141	0.8381	0.91	-0.03	0.5	1.34	0.45	-0.02875	-1.379	-2.219	-1.14	-1.491	-0.6575	1.04	0.2081	1.481	1.44	1.534	-1.079	0.35		0.32	-0.3219	1.519	1.228	1.815	O	0.9525	-0.3219	-0.23
2W8/2	AKKYBX	-1.118	0.2512	0	1.24	0.5512	1.721	-0.3387	0.9541	1.208	1.39	1.18	1.32	0.92	0.08	-0.6888	-0.2788	-0.3388	-0.08	0.1491	-0.7275	-1.24	-0.9019	-2.959	-0.29	0.5241	0.5112	-0.09	0.48	-1.1	1.198	0.7791	-1.202	-0.025	0.18	-1.688	-2.482	-0.31

C	Į
q	J
3	3
'n	0

			_			_					_		_																					dia.			1	
T47D ARRY14X	-5 174	OC C	0.98	-1.184	0.3125	-0.1109	-1.898	0.49	0.24	-0.9219	0.42		-0.9719	-0.3	-0.69	-0.34	-1.703		-0.2	0.4981	0.05	0.01	1.495	2.35	0.3125	-0.73	-1.585	-0.15	-0.4288	-0.12		1.49	1.521	2.25	2.081	0.09125	3.6	1.191
MCF7-NCI ARRY15X	-1 554	1001	0.21		0.3425	-0.4609	-0.1675	-0.46		0.2881	0.01	-0.4587	-0.7419	-1.05	0	-0.55	-2.913	-1.295	9:0-	-0.2319	-0.14	-0.01	-1.445	2.75	-0.3875	0.33	-0.2653	0.02	-0.6087	-0.58	0.4	92.0-	-0.1987	1.21	0.7806	-0.2787	2.69	0.4506
BT-474	13 574	7,20,0	5 1	-0.5137	0.0025	-1.151	-0.1175			-0.2419	-0.62	-2.709	-0.8019	0.43	-0.26	0.77	6999.0	0.155	0	4.458	2.63	1.26	1.325	-0.51	0.1925	0.87	0.1747	-0.88	0.08125	1.19	1.61	-1.7	5.271	3.82	1.451	3.981	1.93	
SK-BR-3	V27 VIV	50.0	-0.23	-0.9237	-0.6575	-2.271	-1.378	-1.27	-2.09	-1.852	-1.68	-2.779	-1.532	-2.82	-1.53	-0.67	-2.853	-1.685	-0.3	0.7681	0.23	3.79	0.075	0.92	0.9225	0.18	0.2247	99.0	0.01125	-1.52	1.29	2		-2.74	-2.469	-1.859	0	0.3506
NB4+ATRA ABRY17X	-0 04625	0.0102	-0.0125	-0.9762	-0.54	0.4566	0.18	0.5775	0.5675	0.08563	0.8975	3.949	-0.07437	1.388	-1.172	-1.782	0.1444	0.9725	-0.0025	2.856	2.588	3.958	-0.6175		-0.44	1.208	-0.8978	-0.3425	-0.7712	0.4575	-0.2525	1.638			1.048		-1.062	-1.642
MOLT4	0.175	00113	-0.9115	-0.025	0.00125	-1.072	0.00125	-0.7312	-0.7112	-0.09313	0.5388		1.597	2.299	2.539	-0.2512		0.5938	0.8487		0.4888	1.549			0.00125	0.04875		0.9188	0.42	-0.8812			-1.03	-1.151	-1.241		-1.301	
ABRY16X	0.04625	4 4	1.15	0.04625	-0.5375	1.089	-0.2875	0.16	0	-0.1419	-0.95	-1.339	-1.512	0	-1.83	-0.42	0.8769		-3.27	-1.302	0	-1.45	-3.495	-2.3	1.312	0	-0.6353	0	0.2312	0.82	0.18	-1.09	0.4112	-1.62	0.9506	0.05125	1.24	0.5306
HS578T ARRY9X	0 1262	7077	7	1.466	2.702	0.4691	2.222	-0.12	-1.25	0.3781		-1.859	-0.01188	-0.25	60:0-	0.74	-2.353	-0.635	1.51		-0.25	1.29	-0.335		-1.858	-1.03		-0.67	-1.659	-0.82	-0.29	-1.26		0.89	-0.1194	0.6512	0.18	0.5806
BT-549 ARRY10X	-0 7138	0.7130	10.31	0.02625	0.3925	-0.1509	1.342	1.42	0.49	0.5481	-0.13	-1.029	-0.7119	-0.18	-0.96	0.19	0.5669	0.275	1.65	0.1281	-0.07	-0.84	-0.105	-1.26	-0.0175	-1.33	-0.2453	1.2	0.6012	-1.33	-1.12	-1.67	1.131	0.07	0.06062	1.141	1.54	0.5606
SW872 ARRYRX	-0 9738	0.11	0.11	0.3663	1.582	2.359	-0.7275	96.0-	-1.84	-0.2419	0	-2.219	2.688	0.17	0.41	0	0.2469	0.065	0.7	-0.3019	-0.06	0.62	-0.075	-2.66	-0.6075	-1.22	-0.7953	-0.96	-1.389	0	0.34	-0.07	2.311	1.15	-0.2494	-0.7088	1.31	-0.5694

ſ	٧
4	U
Ę	ō
ď	σ

				_					_				_				_		_					_													
T47D	ST T INDE	0.2081	-1.666		0.07	5.37E-10	0.335	-0.25	-0.1188		-0.4944	0.29		-0.1509	5.37E-10	-0.49		-0.6938		-0.71	0.325		-0.01875	0.1512		0.09	0.045		0.6181	5.37E-10	0.91	0.3581		1.285	-0.475	-0.03094	-2.895
MCF7-NCI	1.581	0.9981	2.124	0.84	0.3	-0.15	-0.905	1.84	0.3313	0.12	0.3356	0.71	-0.5694	0.1291	0.57	0.04	-0.2944	-1.954	0	-0.06	-0.645	0.11	-0.1887	1.181	0.1113	-0.24	0.495	0.395	0.4481		-0.14	0.04813	-1.135	-0.625	0.295	-0.5209	-2.065
BT-474	2.191	-0.1819	0.1341	-1.06	-0.62	-0.05	0.105	2.94	0.6413	T	1.316	0	0.3106	-0.3109	0.53	-0.47	0.3756	0.1663	0.78	0.34	0.135		0.4113	0.06125	1.381	1.8	0.695	1.015	0.5281		3.13	-0.3119	-0.2253	0.135	0.855	4.549	-0.035
SK-BR-3	-1.129	0.6081	-1.736	1.27	0.03	-0.13	-0.105	0.16	-0.5988		-1.534		_	-0.6109		-0.21	0.2056	0.7762		-0.48	-1.135	-1.24	-1.059	-1.889		-0.05	-0.995	0.065	-1.422	-0.04		-0.5119		1.045	0.485	-0.3009	2.085
NB4+ATRA ARRY17X		-0.7544	-2.808			-0.6125	-2.497	-0.1725	0.07875	-0.3925		0.1275		-1.603	-2.182	-1.682	-1.197	-2.126	-2.512		-1.577	-0.4825	-0.9212	-1.331	-2.171	-0.3125	-0.4375	-0.1175	-0.8644	-0.8025	-0.7525	0.1956	0.7422	-0.7175	-1.537	0.06656	
MOLT4	100	1.057	-0.6072		-0.4212	1.759	-1.566	-0.5512	2.61	1.689		3,009	1.159	-1.202	-0.6212	2,469	-0.1956	0.005	-0.1713	0.5488	1.734	2.489	1.11	0.01	0.18	0.2688	0.06375	-0.3562	1.597	0.9588	1.479	0.09687	-1.567	-0.9563		-2.472	
RPMI-8226 ARRY16X	-1.039	-3.562	-2.076	-1.89	0.22	0.08	1.145	0.83	0.8112	-0.83	-0.4144	-0.05	-1.259	-0.6209	0.08	-0.34	0.07562	-0.08375	0.22	-0.11	-0.135	-0.34	-0.03875	-1.769	0.1612	-0.37	-0.135	-0.135	0.2781	0.08	-0.37	0.2481	-1.195	0.645	1.025	0.5091	-0.295
HS578T ARRY9X	-1.889	0.6581	-0.1259	1.43	0.38	0.78	1.505	0.95		1.17	0.9656	2.37	3.061	1.539	96.0	0.82	1.336	2.406	2.66	1.58	3.255	1.31	3.221	0.9112	1.521	1.07	0.685	0.345	2.078	2.76	2.99	-0.2219	0.4847	1.165	1.705		3.305
BT-549	-1.069	2.198	-1.196	-1.36	-0.03	0.37	0.365	0	0.2712	0.5	1.136	0.76	1.371	2.339	0.13	0.17	0.04562	0.6662	0.38	0.43	0.235	0	2.071	-0.01875	-0.04875	0	0.095	-0.065	0.02812	0.31	0.92	0.09812		0.295	1.355	-0.1509	-0.215
SW872 ARRYRX	-1.839	-0.8619	0.3241	0.81	0.13	1.81	0.305	-0.16	0.08125	0.95	-0.3144	T	0.5206	2.159	90.0	0	0.5356	-0.00375	-0.17	0.18	1.035	0.66	4.531	0.3312	-0.08875	-0.3	0.495	0.225	1.718	0.54	-0.59	0.4881	0.7447	-0.135	-0.025	-1.011	1.335

r	١
•	U
3	3
.5	O
-	_

T47D	ARRY14X	-0.3838	-0.9544	-1.714	-0.385		-2.04		0.16	-0.47	0.3106			3.29	96.0	0.115	-0.6859	-0.07875			0.475			0.02	-0.6819	-0.04094	-1.171	0.16	-0.18	1.061	0.15	0.61	1.38		0.1306		0.08062	-0 19
MCF7-NCI	ARRY15X	-0.1037	-0.8744	-0.3944	0.185	-0.83	-2.54	-0.6187	0.19	0.36	-1.239	-0.055	0.2412	4.16	0.51	0.495	-0.2759	1.011	0.85	1.396	0.505	0.7525	0.0725	0.37	0.1781	0.4391	-1.001	0.27	-0.39	0.1906	-0.28	-1.31	-0.13	1.541	0.6706	-1.42	-0.5494	-1 44
BT-474	ARRY13X		0.2156	0.8356	1,615	0	-0.05	0.2113	1.12	6.0		-1.015	0.1212	1.51	-0.21	0.335	0.1941	1.001	0.73		1.065	0.6325	-0.0475	0.51	-0.2419	0.7991	0.7691	-0.59	-0.27	-0.5294	0.35	-0.54		2.231	0.2706	1.62	1.211	0.15
SK-BR-3	ARRY12X	0.08625		-1.594		-0.34	0	0.5112	0	-0.93	-2.049	-1.225	1.171	-1.33	-0.41	-0.445	0.03406	-0.2387	-1.8	-1.674	-0.885		0.0025	-0.02		0.3291	-0.3409	0.64	-2.42	-0.8194	-0.58	-1.45		-2.719	-1.739	-2.49	-3.089	-1 51
NB4+ATRA	ARRY17X	-0.3262	-1.067		-2.327	-1.662	-0.5825	0.06875	0.1475	-0.3725	-1.492		-0.1212		0.7075	-0.7075	0.5916	-0.5612					-0.76	0.1175		0.7766	-0.3534	-2.352	-0.7225	-0.4319	-1.622	-1.262	-0.3825	-0.3912	0.1681		0.2681	-1 492
MOLT4	ARRY18X		-2.046		0.8938	1.779	4.419	0.53	660'9		-0.3106	0.8337		-0.01094	-0.6812	-0.4062	-0.2072	1.9	0.5188	0.225	0.7538	0.00125	0.00125		-1.573		0.8378	-2.251		1.029	0.01875	1.199	-0.4412					8896 0
RPMI-8226	ARRY16X	0.6962	3.536	1.146	2.815	3.85	66'0	2.331	85'9	8.2	6.971	4.615	6.511	4.04	5.05	4.975	3.244	6.441	9.1	9.076	9.095	8.722	8.042	88.88	4.768	0.2791	-0.4209	2.55		-0.9494	-1.58	-0.01	0	-0.5688	-1.619			-0.63
HS578T	ARRY9X	0.1662	-0.7944	0.1156	1.405	1.84	0.51	3.031	-0.46	1.81	0.1706	1.105	1.191	2.3	0.17	0.325	0.7841	0.4912	0		2.085	0.8025		-0.22	-0.7719		-0.08094	-0.51	1.46	0.07062	-0.99	0.01		-1.039		0.49	-0.09938	0.73
BT-549	ARRY10X	0.3162	0.3456	0.4156	-0.315	-0.03	-0.27	2.181	-0.25	0.36	-0.5894	-0.775	0.5712	-0.4597	-0.41	0.295	0.1641	-0.6588	-0.93	-0.2238	-0.015			0.17	-1.022	-0.03094	0.2691	0	0.54	-1.249	-0.06	-0.29	0.62	0.5112	-0.5194	0	0.3306	-
SW872	ARRY8X	-0.5238	0.1056	-1.854	-0.185	0.42	0.22	-0.06875	-0.36	0.97	-0.5594	0.055		0.1903	0.18	0.145	-0.2459	-0.09875	0.42	0.2263	0.015	0.5825	-0.4175	-0.54	0.008125	-0.5509	0.6691	0.28		0.1006	0	-0.44	-0.16	1.151	0.2306	-1.08		20 0

"
O
亙
ō
⊢

T47D	ARRY14X	200	2.00	1.19				-1.065			0.12	-0.4994	-1.029	-1.41		-0.52		0.95		5.37E-10		0.06625	-0.065	0.62	4.331	0.82		0.6625	-0.05	-0.6588	1.40E-10	-1.43	-1.709		0.45	-0.21	-0.18	77
MCF7-NCI	ARRY15X	6.39	70.1	72.27	-0.205	-0.225	-1.89	0.595	-1.009		-0.8	-0.7894	-0.1387	-1.12	0.07	-0.05	0.8856	0.33	0.2513	0.61	0.47	-0.2337	-0.795	-0.67	0.03125	0.07	-0.285	0.2125	0.36	-0.00875	-0.17	0.16	-0.3887	-0.8675	0.3	-0.06	-0.23	1 39
BT-474	AKKY13X	40.04	170	1.70	0,133	0.333	-0.95	-1.735		0.22	-0.26	0.4806		99.0	0.09	-0.08	2.026	0.8	0.1313	-0.55	-0.03	-0.3637	-0.165	-1.23	-0.03875	-0.03	1.195	0.0025	-0.75	0.2113		-0.16	-0.6187	-0.2175	0.21	-0.38		-0.71
SK-BR-3	AKKY12X	-0.21	107	72.7	(7).1					-0.22		-0.8594	-1.499	-0.24	-1.95	-0.83		-0.35	0.1112	-2.16	-0.33			0.41	2.131	0.08	0.285	0.4925	-1.37	-1.359	3.97E-10		-0.09875		0.34	-0.55	-0.76	2.19
NB4+ATRA	AKKT1/X	-3.762	2027	700.7	1 107	7,1,10/			-3.651	-1.242	-0.5325		-1.941	-2.442	-1.942			0.0375	2.129	1.708	0.2275	0.5738	0.1225	-0.5625	-3.231	0.5875	0.4925	0.74	-0.7025	0.7188	-2.082		0.4788		-0.8325	1.128	-0.1825	-1.152
MOLT4	ARKT 16X	2 200	2.23	1 404	107.1	1.020	1.529				0.9988	1.359	1.47				-0.9656	0.9088	-0.38	0.9688	0.05875	0.005	-0.4962	-0.8912	2.66	-1.081	-1.056	0.00125		0.01	-0.8712		0.78	0.00125	-0.5212		1.339	0.3488
RPMI-8226	ARRITION O E4	TC:O	-1 65	0 065	500.0		77.7-	0.215	-0.8788	-0.53		-0.03938	-0.4888	0.14	-0.92	0.73		0.1	0.6412	1.54	0.32		0.175	-1	-0.08875	0.35	0.105	0.1225	0	3.121	-0.07	1.25	0.01125	-0.7075	0.2	0.83	0.3	0
HSS/81	ARK 37	25.0	-0.02	-0 365	0.085	2000	0.77	1.885	1.541		1.62	1.981	0.9412	1.12	-1.28	0.05		-0.25	-0.3988	0.36	0	0.2062	0.495	-0.59	1.661	-0.02	0.375	0.0725	-0.57	-0.00875	0.77	-1.39	-0.7588	0.3325	0	-0.89	0.62	0.85
BI-549	1 90		-138	0.455	0.005	2 22	3.23	1.655	0.5412	0.03	0	0.7106	1.341	-0.29	0.25	0.7	0.5856	0.05	-0.08875	1.21	0.59	0.6262	1.195	0	-0.1688	0.17	-0.285	-0.0775	-0.08	-0.9688	-0.63		-0.7888	-0.1775		0	0.18	-0.67
ARRYRY	0.54	1.88	0.93	-0.065	-0.275	1 10	04.17	1.045	-0.06875	1.12	3.14	0.5606	0.5812	-1.13	-0.63	0.32	0.2156	0	-0.2088	0.98	-0.2	-0.4538	-0.635	-0.12	0.6612	-0.12	-0.505	-0.4175	0.22	-	0.03	-1.86	-0.1488		-0.16	-0.2	-0.23	-0.44

•	•
	ψ
:	۵
	Φ
ł	_

									٠.																													
T47D	ARRY14X	-0.3819	-1.235	-0.4688			0.8906	0.7781	0.6591	1.555		-1.562	-0.04	5.37E-10	-0.6819	-0.9044		0.58	-0.11		-1.91		-1.5	0.13	0.09	-1.592	-2.53	1.041			0.055	-0.025		0.06	0.8		0.08125	
MCF7-NCI	ARRY15X	-0.6119	-0.015	-0.2087	0.015	-0.76	0.2106	0.3681	0.3991	1.435	-0.75	-0.3119	0.56	-0.33	-0.3419	0.8556	0.12	-1.03	1.47	0.885	2.13	2.196	2.54	0.3	-0.28	1.328	0.7	0.08125	6.0	-0.41	-0.055	0.125	-1.432	-0.27	0.65	-0.39	-0.4087	-1.66
BT-474	ARRY13X	0.6681	-0.505	0.6013	-0.135	0.62	-0.1894	0.8681	-0.4309	-1.205	-0.55	0.5181	0.13		1.148	-0.7044	-0.09	-1.15	0.52	-2.695	-0.65		-0.9203	-0.35	-0.14	-0.4919	0.31		-0.72	0		0.585	1.208	-0.14	0.44	0.94	0.5213	0
SK-BR-3	ARRY12X	-0.9219	0.015	0.1812	0.055		0.1006	-0.5819		-0.645			0	-0.25	1.768	-0.3644		0.2	5.6	0.645	2.55	2.866	3.12	1.96	-0.44	0.5681	,	-1.239	-0.8		0.505		-0.9919	0	1.41	1.06	0.2112	
NB4+ATRA	ARRY17X	-1.444	2.263	-1.151	0.3225	2.538		0.3956	9988.0	-1.447	-0.3425		0.8275	1.388		-0.4769	-2.082	0.2275	-2.172	1.813	-0.3125	-1.487	-1.483	-0.7225	-1.642	0.8156	0.8475		-1.172	-1.092	-0.1975	-2.727		-0.1525	0.4275	-0.5225	0.4088	-3.972
MOLT4	ARRY18X	0.3569	1.674	1.12	-0.8262	-0.9212	0.1994	-1.263	-0.2122		-0.5212	1.267	0.4088		-0.1631		-1.611	1.139	-2.261	-0.9062	-0.8312		0.4984	0.05875		-1.613	-0.7312	-1.92	-1.291	-1.111	-0.6363	0.04375		1.019		-1.341	-0.5	
RPMI-8226	ARRY16X	0.1181	-1.895	0.1712	0.915	3.48	2.611	-0.7219	-0.1909	0.415		0.4281	92.0	-0.49	-0.8819	0.5256		0	1.51	-1.475	-0.51		-1.42	0	0.61	-0.9919	-1.18	1.781		1.02	-1.885	-0.455	2.638	_	-0.12	0.14	0.2612	
HS578T	ARRY9X	3.888	1.395	-0.2588	0.535	1.73		1.638	0.06906	-0.175	9.0	0.03812	0.11		1.818	0.2956	0.44	-0.55	0.94	0.095	0.81	0.01562	0.8097	-0.09		-1.172			0.36	1.81			1.198	0.8	-0.5	2.8	3.761	3.92
BT-549	ARRY10X	0.3581	0.165	1.051	-0.015	-0.64	-0.3894	1.098	-0.05094	-0.315	0.92	0.1481	-0.31	0.42	2.068	1.396	-0.68	1.14	-0.18	1.195	-0.41	-2.084	-1.29	-0.83	0	0.4381	0.07	2.051	2.38	2.77	-1.015	0.375	-0.6619	0.42	2.36	0.93	0.2912	2.41
SW872	ARRY8X	2.908		-0.3988	-0.255	1.75	-0.2894	-0.09188	0.3491	-1.105	-0.14	0.2081	-0.13	0.5	3.298	1.426	-0.12	-0.5	-0.22	0.705	1.69	1.616	1.64	0.45	-0.27	-1.232	0.81	0.2912	-0.16	1.41	-0.765	-1.175	0.7281	0.55	-0.01	0	-0.05875	-1.46

2
ø
瓦
ū

									• •																													
T47D	ARRY14X			9.0	5.37E-10		-1.49	-0.06	-0.08875	-0.05437	-0.7175	0.38	0.035		0.4181		-1.689	0.33		0.335			-1.52	-1.88	5.37E-10	i	0.3512	-1.46		-0.92	-1,315	-1.2		0.11	-1.2	90.0-	-1.916	-1.01
MCF7-NCI	ARRY15X	-0.4909	-0.27	-0.62	-0.74	-0.5744	-0.46	-0.12	0.3213	0.2956	0.0925	-0.01	0.645	-0.84	-0.03187	-0.455	-0.6594	-0.29	0.725	-1.115	0.255	2.086	0.51	1.08	0.11	0	-0.5587		-0.3794	-0.14	-0.545	-0.3	-1.631	60.0	0.34	-0.76	-1.176	0.04
BT-474	AKRY13X	1.089	0	-0.21	0.63		0.42	-0.33	-1.939	-0.3444	-0.2875	-0.59		0.32	0.1081	-0.165	0.4406	0	0.025	0.245		-1.084	0.16	-0.04	-0.2	-0.35	-0.6787	-1.04		1.08	-1.075	-0.33	0.2791	1	0.23	0.3	-1.116	-0.05
SK-BR-3	AKKY12X	-1.141				-0.2044		-0.53	-0.7488	0.9056	-0.3875	0.01	-0.745		-0.6219	-1.115	-2.309	0.57		-0.925	0.575	0.9756		0.04	4.72		3.041			1.26	0.045		-0.9009	-1.55	-1.49	-1.52	1.354	0.59
NB4+AIRA	AKKY1/X	-0.7834		-1.022	-0.7025	-2.587		2.198	0.5888	0.4631	0	2.338	2.703		-0.8644	-1.557	-1.752			0.6325	-1.717				0.8075	-1.642		3.538	4.678	2.008	1.773	1.708	-0.9634	-1.362	-1.102	0.5275		1.208
MOL14	AKKY18X	1.028		0.9088		4.234		4.209				4.959	5.804	2.699	6.317	6.444	7.199		5.704	6.954	2.744	1.184	-0.00125	1.459	0.05875			0.5588		2.499	1.364	1.599	0.6178	-0.8812	-0.6712	1.019		-0.3812
KPMI-8226	AKKYIDX	-1.441	-0.66	0.88	-0.15	-0.7044	0.91	0.13	0.6612	0.02562	0.0225	-0.2	-0.035		0.1581	3.395	-0.6094	-0.73	-1.505	-0.805	0.015		0.27		-0.75		-0.1888	90.0		0.53	0.895	0.84	-0.1309	-0.15	0	-0.37	-0.9459	-0.04
寸.	AKKTSX	4.399				1.896	0.59	0.85	1.171	-0.2944	0.7025	0.48		1.5	3.078	2.145	2.291		1.645			1.446	1.05	1.61	-0.61		-0.08875	-0.77	0.5806	0.4	0.775		3.019	0.31	-0.45	-1.44	-0.6859	-1.16
B1-549	51	5.779	0.36	1.25	0.34	0.6656	0.34	0.06	-0.1688	-0.4244	1.012	-0.4	1.125	0	0.7681	-0.825	-0.1194	-0.8	0.525	-1.635	-0.015	-0.4944	1.01	0.91	-0.95		0.5412	0		1.05	0.725	-0.28	1.659	0.71	. 0.21	-0.11	-1.136	0
20000	ARK 10A	0.7091	-0.88	-0.42	-1.77	3.156	-0.05	0.06	0.2712	1.556	0.6625	0.42	0.785	-0.31	1.328	-0.215	-0.4094	3.01	-0.025	-1.285	-0.135	-0.8044	-0.66	-1.09	0.21	0.87	-0.9188	0.59	0.7506	0	0.365	0.19	-0.3109	-0.65	0.75	0	0.5641	0.12

1	V
	a
1	5
	σ

									٠.																				•										
T47D	ARRY14X	0.195	0.34	5.37E-10	-2.41	0.3	1.188	0.3313	0.79	0.24	2.73	2.361		0.01812		0.2812	-0.46	2.922	3.975	0.73	,	1.791	-2.91	0.29	-0.04094	-0.65	-1.04	1.696	0.655	1.05	-1.515	-0.43	-0.69	-0.05			5.37E-10		
MCF7-NCI	ARRY15X	1.355	0.63	-0.49	0	-0.43	0.2681	-0.9187	-1.18	-2	0	-0.4787	-0.85	0.04813	-1.026	-0.7387	-0.79	-0.0675	0.135	0.81	3.37	2.391	0.29	69.0	-0.7609	2.28	2.14	2.056	0.575	0.87	1.345	2.13	-1.27	-0.09	-0.1787	0.505	0.86	0.2613	
BT-474	ARRY13X	0.765	1.28	-1.81	-0.86	-0.22	-0.4819	1.411	0.97	2.61	1.41	0.3913	0.82	1.548	0.9841	1.401	1.83	1.022	2.765	0	0.98	1.821	0	0.24	-0.2609	-0.21	1.15	1.806	0.255	-0.03	-2.025	0	0.19	0	2.291	0.015	0.74	0.2113	
SK-BR-3	ARRY12X	-0.215	0	-0.21	-0.83	1.16	0.5681	0.8913	0.64	0.42	0.75	0.8313		-0.1019	-1.646	2.601	2.78	1.322	2.065	0.71		1.621	-0.63	0.35	2.279	0.4	-2.54	1.726	-0.175	0	0.255	0.43	0.17	0.53				1.181	٠
NB4+ATRA	ARRY17X	4.013	3.058	4.358	0.8275	1.478	2.196	0.7188	0.0975	1.488	-0.2625	0.09875		-1.184	-0.9284	-2.121	-0.8525	0		0.0675	-0.7125	0.9481	0.1875	-0.1725		1.618	1.558	4.323	1.513	1.528	2.063	1.778	1.098	1.328	3.889	4.753	1.678	2.599	
MOLT4	ARRY18X	4.794	-0.1712	1.639	-0.3013	-2.351	-2.143	-1.04	i		-1.391	-2.81	-0.6212	0.9369			-0.4812			-0.5513		-0.5806	-0.6313	-1.091		-0.4412	-3.151	-3.676	2.864	3.109	1.724	2.549	1.949	0.7687	4.27	3.904	3.449	2.89	
RPMI-8226	ARRY16X	1.545	1.02	3.04	1.07	1.3	3.098	2.111	-0.78	0.19	4.17	3.721	1.06	-1.452	1.904	1.521	-0.55	2.562	3.775	1.2	5	0.8306	0.49	0.52	-0.02094	2.14	1(1.626	0.585	0.67		-0.04	69.0	0.71	-0.3088	-0.015	-1.27	-0.07875	
HS578T	ARRY9X	-0.195	-1.15	-0.96	-3.37	-1.02	-3.462		0	-1.7	-0.02	-1.689	0.42	-0.9519	-1.336	-1,319	-1	0.2425	-0.935	-0.79	0.91	-0.2494	0.65	0.71	0.9591	0.73	-0.03	-2.074	-0.255		0.335	-0.67	0.36	0.16	-0.3888		-0.72		
BT-549	ARRY10X	-1.025	-0.59	-0.65	-4.38	-2.45	-3.812	0.09125	-0.25	-1.14	-2.18	-2.089	-0.46	-1.172	-2.616	-1.179	0		-0.865	-1.34	-0.3	0.4306	0.24	0.72	0.9591	0	0.1	-1.244	0.085	0.07	-0.105	-0.63	-0.1	0.25		-0.065	0.31	0.3712	
SW872	ARRY8X	-1.095	-0.05	-1.49	0.16	0.26	-1.322	-1.639	60.0-	-1.45	-1.1	-1.429	-1.84	-0.1519	-2.436	-0.8288	-0.17	2.302	3.835	1.83	-0.03	-0.1894	0.12	0	-0.7309	0.76	-1.18	0.1556	0.775	0.62	0.105	-0.81	-0.09	-0.3	2.201	0.565	0.00	-0.5887	

2	
Ψ	
虿	
ū	

									٠.																													٠
T47D	ARRY14X	0.72	5.37E-10	0.04125	-0.91	-0.9988	-0.03	0.08	1.046	0.17	0.61	2.47	0.8756	5.37E-10	5.37E-10	-0.7519	-0.14	-1.56	-1.12	-0.5		0.46	-0.16	-0.03	-0.51	-0.9887	-0.22	0.92	0.92	0.52	-0.415	-0.54	-0.05	-0.015	0.18	5.37E-10	0.65	-1.156
MCF7-NCI	ARRY15X	0.97	1.28	0.2713	0.16	1.971	0.57	1.67	1.676	0	-0.01	0.57	0.08563	1.77	2.22		1.26	-1.79	-0.46	0.26	0.91	0.7	0	-0.2	-0.48	0.5613	-0.56	0.77	0.76	0.64	1.235	0.88			1.31	0.7	0.12	-0.1459
BT-474	ARRY13X	0.39	1.92	-0.8887	0	-0.4187	-0.48	-1.39	-0.07375	-0.12	-0.33	1.86	0.5256	0.52	-0.24		0.23	2.67	0.59	98.0-	0.22	-0.17	-1.03	-0.32	-0.5	-0.7587	-0.33	0.4	0	-0.36	-0.585	-0.89	0.72	-0.405	-0.16	0.41	-0.29	-0.2459
SK-BR-3	ARRY12X	0.11			2.34	-0.06875	-0.11		1.056	-2.98	ις.		-1.504	-1.82	-1.14	1.278	1.24	-4.18		0.23	0.23	90.06	1.48	0.58	0	-0.1287	0.4	0.94	2.73	0.67	0.005	0.14	8.0	0.015	-0.23	0.46	0.25	0.1041
NB4+ATRA	ARRY17X	2.228	1.498	1.239		1.269	0.9775	2.328	0.07375	2.348	1.718	-1.432	0.1831	-1.262	-0.9025	2.436	1.208	1.568	0.2275	1.088	0.5975	2.028	1.058	1.758	2.308	2.779	1.738	1.028	0.8875	-0.0325	1.973	1.378	3.798	3.833	1.398	1.488	0.6575	0.8916
MOLT4	ARRY18X	1.239	-0.1612	1.38	0.6887	2.21		0.4488	0.135	1.689	0.8388	1.079		2.909	2.259	1.327	1.019	2.309	1.559	0.2588	0.9288	0.5288	0.4687	-0.01125	1.429	1.79	0.7788	1.349	1.319	0.4488	1.324	0.03875	0.5388	0.9438	0.2688	1.779	-0.4012	0.5228
RPMI-8226	ARRY16X	0	-1.49	-2.269	2.34	0.5012	0.84	0.75	-0.6638	2.45	1.79	1.69	0.5456	1.76	3.01	1.238	68'0	2.99	2	2.2	2.58	0	90.0	1.68	2.48	1.881	0.57	1.23	1.37	0.1	0.425	0.73	1.33	1.655	0.53	1.57	0	-0.3859
HS578T	ARRY9X	-0.96	-0.28	-0.3688	0.46	-0.3088	-1.1	-0.74			-0.14	-1.09	-0.8244	2.34	0.25	-0.2619	-0.43	-1.99	0	0.05	-0.16	-0.56	-0.08	0.54		-0.5888	0.27	-0.78	-0.66	0	0.085	0.29	-0.13	-1.015	-0.79	-5.02E-09	0.29	0.1041
BT-549	ARRY10X	-0.67	-1.91	0.3412	0.47	-0.8088	0.03	0.98	0.4062	-0.67	0	0	0.2056	2.64	1.63	0.3781	-0.14	1.63	90.06	-1.3	-2.48	-0.16	0.3	0.95	1.07	-0.4588	60'0	0	-0.08	0.07	0.625	-0.17	-0.59	0.055	0.33	1.11	1.63	0.4741
SW872	ARRYBX	-0.22	1.57	1.261	-0.01	0.01125	0.29	0	-0.1138	60.0	0.39	-0.02	-0.08438	1.57	1.27	-0.1319	1.57	1.27	5.70E-09	0.11	1.39	5.23E-09	6.0	0	1.38	0.9713	-0.47	0.07	0.48	0.07	-0.005	0	0.05	-0.815	-0.56	-0.27	0.7	0.06406

ı	V
	Φ
	ā
	ā
ł	_

\Box	10	<u> </u>	-15	<u> </u>	गुन	न्।	ത്രി	2	m	<u> </u>	<u></u>	0	œ	4	ī	œ	2	Ŋ	~	_	œ	N	4	9	4	9	_	戸	2	4	F-F	7	7	7	ा	m	ा	<u>v</u>
T47D	AKKY14X	-0.1688	0 1004	-0.133	0.7512	0.11	-0.43	0.02	1.33	0.47	-0.2887	-1.029	1.38	1.704	-0.51	-0.8	0.02	-0.52	1.2	1.47	1.258	-0.42	-0.24	-1.16	-0.44	-0.16	0.27	1.401	0.92	1.4	-0.1	0.5012	0.1312	0.2	5.37E-10	0.23	5.37E-10	1.885
MCF7-NCI	AKKY15X	0.4813	9050	0.3300	1.211	-0.08	0.03	0.58	2.57	1.48	0.4913	1.051	o	0.8241	0.11	0.19	0.84	0	1.88	2.49	0.1981	0.53	16.0	0.93	0	0.4	- 0.78	1.541	1.22	1.1	0.5	1.321	1.381	1.44	0.84	1.09	1.52	0.925
BT-474	AKKY13X	-0.9967	0.1504	C 100	0.7013) - -	-0.77	0	0.61	0.19	-0.7087	-0.4387	-0.07	-0.4159	-1.18	-0.72	-0.32	-1.21	-0.37	o	-0.6619	-0.13	-0.46	-0.71	-0.23	0	-0.4	0.4713	0.48	0.53	0.34	0.2413	0.3313	0.39	0.62	0	0.27	0.335
SK-BR-3	AKKY12X	-0.0900	0.2734	1000	1.621	7.0	0.17		3.89	0.83	0.02125	-1.239	1.1	-0.02594	-0.32	0.74	-0.05		-0.03	-0.08	-0.4119	1.11	-0.88	0.08	0.07	0.8	0	0.7913	0.13	-1	0	0.2412	0.4312	0	-0.12	0.55	0.3	0.865
NB4+ATRA	AKKY1/X	0.5044	0.2841	20075	0.0007.5	7://0	0.4775	2.848	0.2475	1.258	0.3388	1.359	1.488	0.9616	0.2375	1.018	1.348	0.1375	2.348	2.848	1.066	0.9475	0.9675	2.158	0.2075	0.3575	1.688	2.339	1.618	2.598	1.868	1.919	1.999	2.488	3.038	1.578	1.698	1.583
MOLT4	AKKT 18X	-0 004375	0.001373	200	0000	0.0300	0.8188	2.069	2.139	0.1388	0.59	2.12	1.069	1.353	0.7988	1.399	0.8288	1.009	1.639	2.099	1.187	0.5788	0.4388	1.499	1.269	0.5387	0.7188	2.2	1.549	0.9188	1.809	1.98	1.97	1.999	1.419	1,759	2.039	1.494
RPMI-8226	1 101	0 7460	0 8806	0.0000	21170.0	0.00	0.01	1.15	1.26	1.27	0.1312	0.7912	0.88	1.024	0.57	1.23	0.56	0.13	1.63	2.14	0.4681	0.48	0	-0.08	0.14	0.67	0.99	0.2312	1.74	2.25	2.25	2.391	2.621	1.81	1.59	1.1	0.83	1.435
HS578T	0 1017	0.3869	-0 5094	98230	99,00	9,0	5	-0.4	-0.54	-0.27	-0.9488	-1.809	-1.01		-0.38	0.51	0	-1.3	-0.65	-0.19	-0.1119	-0.7	-0.19	0	90.0	-0.58	-0.05	-0.9088	-0.72	-0.23	-0.28	-0.8588	-1.309	-0.38	-0.24	-1.17	-1.13	
BT-549	0 6812	0.7769	0.7606	0.0250	00070	3	-0.04	-0.32	-0.01	0.06	-0.5688	0.4812	0.21	0.6641	0.18	0.54	0.28	-0.01	0.36	0.49	0.3681	0	1.43	0.28	0.33	0.02	0.53	-0.1988	0.43	0	96.0	-0.03875	0.3012	-0.66	0.2	0.39	0.92	0.245
SW872	0.00125	0.6769	0.7706	0 1717	2177	3	0.21	-0.96	1.09	0.57	0.1613	0.2912	0.37	0.5241	0.92	0	0.2	0.79	0.22	0.89	0.6081	0.69	0.49	-0.1	0.08	0.47	0.04	-0.00875	0	0.25	0.44	-0.1788	-0.5488	0.17	0.25	-0.46	0.45	-0.245

2
ø
囨
œ.

																																						-
T47D	ARRY14X	5.37E-10	-0.15	-0.03875	-0.08875	0.2325	-1.29	0.03125	0.95	-0.55	0.4341	0.81	0.23	0.3	5.37E-10	-0.29	0.7312	-0.1875	5.37E-10	-0.09	-0.91	0.04	1.02	1.911	-0.36	-0.06	0.1412	0.72	0.5581	0.565	0.7		0.7113	1.431	5.37E-10	1.83	0.7525	0.35
MCF7-NCI	ARRY15X	1.4	0.77	0.5613	0.4413	0.5425	0.83	0.8613	1.24	0	0.7941	0.45	-0.49	0.87	0.72	0.89	0.7013	1.113	1.37	Ŧ	0.91	0.48	96.0	1.411	69.0	1.04	0.2613	0.62	0.5481	1.565	0.64	0.4006	0.6213	2.481	0.93	1.53	1.213	9.0
BT-474	ARRY13X	-0.94	-1.11	-0.5987	-0.6087	-0.9375	0.04	-0.6187	-0.66	-0.16	-0.6759	0.2	0	-0.31	-0.41	-0.76	-0.1087	-0.4075	-0.61	0.02	0	-0.73	60.0-	-0.4987	0.2	2.02	-0.1687	-0.24	-0.3219	-0.135	-0.15	0.1206		0.1913	-0.09	0.89	0.3625	-0.38
SK-BR-3	ARRY12X	1.27	0.89	0.1013		-0.6675	-0.48	0.1212	9.0	0.3	1.304	-0.23	0.51	-0.91	0.22	-0.02	0.7712	0.0425	-0.07	0.3	-0.25	0	0.46	0.7812	0.41	1.44	0.4812	0.59	0.6381	2.725	0.59	0.06063	0.6113	0.5913	0.53	2.09	1.022	0
NB4+ATRA	ARRY17X	1.208	1.968	1.089	1.009	0	0.2775	0.4588	1.038	0.8375	0.7116	0.9975	0.8475	1.558	1.298	1.468	1.129	0.87	1.478	2.398	1.628	0.8675	0.9875	1.059	0.5275	1.628	1.619	1.378	1.516	0.2525	0.3975	1.678	1.259	1.379	1.188	1.288	0.71	0.8575
MOLT4	ARRY18X	1.179	0.8388	0.44	0.55	-0.3288	0.9688	-0.44	0.6988	0.07875	0.1728	-0.4112	0.1687	-0.00125	1.209	1.249	0.84	0.00125	0.2488	1.069	1.079	0.3088	0.8087	1.79	0.2588	0.1688	1.04	2.079	2.237	0.6338	0.2488	0.1194	0.42	1.83	1.459	-0.6912	0.00125	0.4088
RPMI-8226	ARRY16X	0.99	0.41	0.6412	0.5512	0.4125	0.05	0.5912	6.0	0.44	-0.08594	2.49	1.05	0.34	0.7	0.59	0.2312	0.7425	1.15	1.17	2.63	0.65	1.63	1.081	0.48	0	0.6912	1.35	1.298	0.295	1.26	-0.4194	1.401	0.8612	0.94	1.65	1.222	1.02
	ARRY9X	0.1	0.61	-0.8088	-0.8488	-0.5975	0	-0.08875	-1.03	-0.22	-0.4459	0.24	0.03	0.33	-0.38	0	-0.8188	-0.2975	-0.15	-0.02	-0.27	-0.49		-0.2688	-0.14	-0.25	-0.7088	-1.01	-1.112	0.135	-1.18	-0.009375	-0.7688	-1.709	-0.79		-0.8175	0.31
BT-549	ARRY10X	0.6	0	1.351	1.231	0.8825	0.44	0.2612	0	0.41	-0.3559	0.82	0.56	1.6	0.13	0.17	0.2412	0.0325	0.24	0	0.39	1.01	0.13	0.5512	0.73	1.08	-0.3588	-0.15	-0.1719	0.775	0.07	0.06062	0.04125	-0.1788	-0.03	0	0.0125	0.64
SW872	ARRY8X	0.01	0.81	0.08125	0.2512	1.192	0.62	0.6012	90.0	0.78		1	-0.36	-0.19	-0.23	-0.2	-0.4488	0.7925	1.27	0.67	0.49	0.11	0.09	0.4112	0.45	0.59	0.5212	0.58	0.4981	-0.285	0	0.7906	-0.6687	0.2212	0.13	0.15	-0.2075	0.04

~
ø
五
ē

ĺ		ARRYGY ARRY16X
2.12 1.8	2.12	54 2.12
2.01 1.719	2.01	2.01
1.37 1.249	1.37	
1.88 1.219	1.88	
0.4156 0.4144	0.4156	
0.73 1.529	0.73	0.73
1.9 2.279	1.9	
0.2912		-0.3088 0.2912
1.086 0.8544	1.086	
0.9012		-0.8888 0.9012
0.7812		-0.9088 0.7812
1.65 0.9288	1.65	
0.9612		-0.8488 0.9612
0 0.9588	0	
1.23 -0.05125	1.23	
1.758 1.657	1.758	
1.21 1.359	1.21	
2.791 1.839	2.791	
1.37 1.689	1.37	
1.9 0.9388	0	1.9
0.23 1.259	0.23	
1.626 1.215	1.626	
1.455		-1.205 1.455
2.72 0.8687	2.72	
3.446		
1.73		
	0.7225	0.7225
	0.545	
1.32 0.6688	1.32	1.32
-0.27 0.6288	-0.27	
0.47 -0.07125	0.47	
0.1925 0.00125	0.1925	
0.75 -0.9412	0.75	
47E-09 0.2688	1.47E-09	
.07875	-0.07875	-0.07875
-0.11 0.2087	-0.11	
10000		77.0

~
e
亙
Ō

T47D	ARRY14X	-1.122	0.28	-0.7959	-1.138	0.79	-0.88	-0.2981	-1.19		0.00	0.91	-0.25	-0.3075	-1.104	-1.374	0.02062		0.5881	0.8791	0.44	-1.109	0.11		0.6941	-0.2	0.56	0.2712	0.1	-0.5788			0.41	2.988	-0.01	-0.06	0.88	
MCF7-NCI	ARRY15X	-0.7419	-0.62		-0.9275	-0.75	0.43	-0.8481	-0.19		0	-0.29	-0.84	-1.047	1.346	1.176	-0.7494	0.7106	0.2881	0.8191	0	-1.389	-0.51	1.01	0.2541	0.17	- 0.59	-0.1087	-0.48	-0.6587	-0.2919	0.13	-2.43	-0.3819		-0.03	-0.23	-0.08187
BT-474	ARRY13X	-2.502	-1.13	-0.7859	-1.708	-0.2	-0.88	-1.358	-0.34		-0.7	0.02	-1.52	-1.657	1.126	1.296	-0.3394	9066.0	-1.222	-0.2109	0.02	-0.4087	0.43		-0.09594	0.57	0.64	-0.3287	-1.47	-0.7787	0.02813		-1.11	-2.022		-0.78	-0.35	
SK-BR-3	ARRY12X	0.6581	-1.26	-0.4759	-2.998	86.0-	-0.2	0.1119	-1		1.3	-1.06	-0.76	-1.028	2.026	1.046	0.6506	1.221	0.7381	0.3291	0.04	-1.269	-0.5	-1.82	-0.06594		-1.48	0.1012	-0.71	-0.1488	-1.162		-0.62	0.7781	-0.29	0	0.7	0.5381
NB4+ATRA	ARRY17X	1.976	0.1875	-0.5384	0	-0.7925	-0.0025	-0.05062	3.208		0.9775	2.108	3.108	2.67	-1.207				0.3456	1.097	0.6175	1.529	1.518	-0.7525	1.072	0.3175	0.5375	0.8888	0.0075	1.189	0.7856	4.558	0.3675	-2.094	-0.6125			
MOLT4	ARRY18X	-1.423	-0.3712	0.1928	-1.409	-2.561	-0.08125		1.289	-2.693	1.259	1.499	-0.1512	0.00125	-1.296	-2.476	0.1194	-0.8706		-0.6922	1.029	1.21	0.9588	1.849	1.193		-0.1612	-0.18	-0.2512	-0.91	1.077			1.387	-0.8512		-0.8812	
RPMI-8226	ARRY16X	-0.6419	-0.17	0.3141	0.4225	0.41	1.44	0.9019	-0.63	-2.752	-2.97	-1.24	-2.01	-2.368	2.986	2.166	1.331	0.7706	0.4881	0.1891	0.92	3.341	0.92	-0.51	0.9241	0.12	0.54	0.2812	-0.25	0.8812	0.6181		0.16	0.3181	0.61	0.12	0	-0.4219
HS578T	ARRY9X	-1.162	-0.15	0.4241	0.5825	-0.41	-0.01	-0.1981	0.42	0.9581	1	-0.02	1.29	0.9625	0.6656	0.9056		-0.5694	-0.08188	-0.9509	-0.49	-0.2988	0.19	0.92	-0.5659	0	0.22	0.6812	-1.14	1.101		-0.17	-0.15	0.6081	-0.78	-0.2	1.4	
BT-549	ARRY10X	-2.582	0	-0.2159	0.2425	-0.47	0	-0.1581	-3.08	1.988	2.98	2.62	1.8	1.432	-2.114	-0.6044	0.2506	-0.6994	0.6781	-0.07094	-0.1	-0.3688	-0.08	2.68	0.1841	0.07	0.39	0.04125	-0.15	-0.5388	-0.7919	0	0.31	-2.102	0.58	-0.33	0.13	
SW872	ARRYBX	1.298	0.16	-0.2859	0.0225	1	6.0	0.6019	1.02	2.818	0.97	2.85	2.12	1.652	0.2356	-0.1044	-0.5494	-0.1994	-0.9319	0.7991	-0.86	0.3512	0		0.3041	5.70E-09	0	0.6112	0	0.2612	0.3581	-0.87	0.57	1.228	2.39	0.75	0.4	

~
ø
囨
O.
-

T47D	ARRY14X	0.385	5.37E-10	-0.46		1.7	0.6112	0.62	0.03	0.9419	-0.22			-0.8131	-0.6894	-1.40E-10	0.16	-0.955	-0.09094		2.08	0.895	-0.985	-0.2019		-1.535		-0.82	5.37E-10	0.5112	0.3312	0.17	0.07062	-1.59	,	0.8281	-0.08	0.5091
MCF7-NCI	ARRY15X	-0.155	0.31	0	0.055	2.32	1.641	1.47	1.23		-0.13		-0.71	0.3869	-0.6394	0.53	0.44	-0.055		1.75E-08	3.67	2.025	-1.405	-1.632	-0.76	-2.505	-2,34	-0.68	-1.05	-0.6187	-0.7787	0.1	-0.6894	-1.24	0.025	-1.462	-0.29	-0.3609
BT-474	ARRY13X	-0.165	0.43	-0.55	-1.965	1.35	0.9613	H	-0.06	0.9319	0.8		0.21	0.3169	-0.1694		-0.04		1.649		-0.1	-0.615	-1.575	-0.9919	-0.32	-0.715	-1.11	69.0-	-1	0.1113	0.06125	-0.2	-1.079		0.515	0.5881	9.0-	-0.1609
SK-BR-3	ARRY12X	0.915	-0.87	-0.47		-1.92		-1.54	62'0-	-0.2981	-1.1		5.70E-09	-0.6231	0.6206		0.26		-0.4109		1.86		-0.905	1.158	1.85		0.63	0.58	-1.32	-0.1188	-0.6288	0.76	0.1106	-0.04	-0.975	-0.9519	0.21	0.1991
NB4+ATRA	ARRY17X	-0.7575	-1.482	-0.4125	-0.1575		-0.7512	-0.5625	0.7675	0.03938	0.4575			0.03438	0.1481	1.138	0.6175		-0.6734	3.248	3.318	2.993	1.603	1.766	2.518	2.173	2.248	1.688	3.368	2.599	2.659	4.268	3.998	3.638	3.973	3.536	3.948	
MOLT4	ARRY18X	-1.486	-0.02125	0.4987		0.3988	-0.57	0.1988		0.9206	0.7688	1.259	1.669	0.2556	-0.7306	0.3488	0.3788	0.1438	-0.3722	-0.6612	2.579	-0.1462		2.757		1.554	3.319	1.729	2.869	0.56	0.57	1.949	2.049	3.139	2.324	1.527	2.719	-0.1922
RPMI-8226	ARRY16X	0.045	-0.68	-0.03	0.325	0	0.9312	0	-0.01	1.722	-0.32	-1.419	-0.51	-0.4531	-0.4594	0.51	1	-0.005	0.4691		3.19	3.505	0.655	-0.8219	-1.37	1.055	0.96	0.44	1.04	-1.399	-1.779	-2.69	0.09062	4.62	1.485	4.458	0	0.5891
HS578T	ARRY9X	-0.885	0.51			0.46		-4.66E-10	0.85	0.5019	2.24	0.7706	1.86	0.7469	0.3306	-0.12	-0.05	0.005	0.6191	0.49	-1.4	1.215	1.345	0.1981	1.6	1.535		0	1.83	0.2612	0.5912	0.51		-0.56		0.7981	1.27	-0.4309
BT-549	ARRY10X	-0.425	-0.78	0.18	0.805	-0.25		0.21	0.28	-0.05813	-0.08	-0.03938	0.38	0.1869	0.3206	1.47	0	0.425	0.7891	0	0.1	0.105	0.045	1.078	2.12	0.185	-0.47	0.11	-0.08	0.6812	0.6812	-0.17	0.4506	2.44	0.755	0.2281	-0.83	1,999
SW872	ARRY8X	-0.045	0.44	0.21	-1.045	2.5	2.681	2.2	1.86	3.522	3.08	4.111	3.48	-0.3831	0.7206	0	0.28	-0.405	0.4291	-1	-0.2	-0.105	-0.035	1.158	2.09	1.485	1.5	1.14	1.57	1.091	0.8212	0	-0.06938	-0.85	-0.275	0.5081	1.42	0.3891

2
ď
亙
ō,

										•																												
T47D	ARRY14X		5.37E-10		0.83		-1.54	-1.37			-0.07375	-1.884	-0.065			-0.7694	-1.18	0.905	-0.015	0.84	5.37E-10	1.421	1.511	-0.18	1.808	5.37E-10	-0.45	-0.32		-0.5709	2.31	1.09	-1.101	0.2		0.6541	-0.22	-0.54
MCF7-NCI	ARRY15X	0.29	0.11	0.2341	-0.51	0	0.56	0.15	0	-0.5894	0.1363	-0.1944	-0.265	-0.05	-0.15		0.02	-0.415	0.015	0.3	-0.25	0.6706	0.1206	0.03	-0.4819	0.45	- 0.02	0	-1.057	0.07906	0.95	0.41	0.009063	-0.13	-0.9587	1.784	0.98	1.54
BT-474	ARRY13X	-0.61	-0.89	0.1141	0		-0.05	0.03	-0.65	0.2606	-0.5737	0.3556		0	-0.5	0.1006	0.19	0.095	0.615	-0.51	0.17	0.3306	-0.2594	-0.17	0.1281	0.79	0.18	-0.41		2.669	0	1		-0.03	0.7513	1.554	0.47	-1.36
SK-BR-3	ARRY12X	-1.02	-1.09	-2.056		-1.29	0				0.6063	-1.294		6.0-	0.08	-1.369	-0.05	-0.335	-1.055	0.72	0.16	-0.6194	-1:529	0.05	0.07812	-2.62	-1.25	-1.41			-0.49	-0.2	-0.7109	-0.54	-1.419	0.6841	0.26	
NB4+ATRA	ARRY17X	4.978	3.008	6.072	5.258	8.358	6.798	4.308	4.058	2.838	5.054	4.063	4.553	5.738	1.638	3.558	7.948	7.393	7.133	5.558	5.318	9.138	8.898	6.638	7.246	8.498	5.548	2.578	4.77	3.947	1.538	3.258	3.137	2.538	3.229	5.152	3.738	6.038
MOLT4	ARRY18X	0.3788	-0.4812	-0.5172	-0.9813		1.699		-1.461		0.035		-0.9662	-0.3813		-2.151	-0.9012		2.044	0.1888	-0.1912	-0.3006	0.1094	-0.00125	0.7669	0.4988	2.289	0.2487	0.00125	2.548	4.009	6.229	0.9378	2.409	5.56	2.573	1.279	3.499
RPMI-8226	ARRY16X	0.88	-0.42	3.514	-1.26	-0.43	-0.78	-0.26	-1.04	0.6806	-0.03375	-0.1244	0.065	90.0-	0.08	3.581	1.22	-0.955	-0.415		0.4	0.9206	1.391	0	-1.022	2.74	-0.37	3.02	4.442	4.819	4.26	3.75	1.409	0.11	2.301	4.004	4.18	2.08
HS578T	ARRY9X		0.11	1.744	-0.58	0.93	6.0	2.12	1.2		-0.6738	-0.1044		1.42	0.14	1.311	1.22	1.535	1.775	-0.43	0.11	0.6006	0.2706	-0.42	1.248	1.08	-0.02	0.19	0.5125	0.2791	69.0-	1.07	-0.0009375	1.88			-1	
BT-549	ARRY10X	0.68	0.82	0.2341	0.22	2.08	1.05	0.17	0.58	-0.1994	-0.03375	0.2456	0.585	0.92	90.0	-0.07938	-0.35	0.295	1.335	0.02	-0.07	-0.009375	-0.07938	-0.01	-0.1519	0.05	0.2	-0.54	-0.9375	-1,241	-0.44	-0.45	-0.6009	0.03	-1.029	-0.03594	-0.87	-1.03
SW872	ARRY8X	-0.17	0.89	3.694	0.82	4.42	3.09	-0.55	0.98	0.05062	0.4063	-0.1744	0.265	0.84	0	-0.2894	0	0.635	0.625	-0.33	0.12	0.2806	-0.04937	0.24	0.6981	0.45	0.37	1.96	0.5825	0.8491	0.27	0	-0.6709	0.08		0.3041	-0.56	0 .

4	î	١	ı
	¢	L	Ì
1	ć		١
	ć	C	1
1	۰		

																																						_
T47D	ARRY14X		-0.81				-1.54	-0.6009	-1.509			0.14	0.455	-0.7844	-0.99	-0.2788		0.2106	-0.9488	0.00	-1.262		-1.63	1.265		-0.19		0.2256	0.015	5.37E-10			0.005		-0.9519	1.03	0.455	
MCF7-NCI	ARRY15X	-0.64	1	0.1797	-0.3087	-0.6787	-0.12	-0.2809	-0.06937	-1.011	-1.243	-1.61	-0.575	-0.9744	-0.26	-0.1287	-0.5509	-0.3094	1.131	-0.56	-0.5319	-0.97	-0.7	-0.385	0.08	-0.02	-1.41	0.9956	-0.375	0.41	-0.09187	-0.285	-0.065	90.0	-0.6319	-0.88	-0.365	-0.79
BT-474	ARRY13X	-1.6	0	0.3197	-5.069		-0.51	-0.4509	-0.2494	-0.2309	-0.3631	-1.21	-1.535	-1.094	-0.38	-0.4987	0.3891	-0.9294	-0.1387	-0.15	1.318	-0.85	-0.2	0.645	0.08	0.5	_	-0.6744	-0.595	0.01	-0.2119		-0.005	-0.06	-0.2119	0.12	0.365	0.09
SK-BR-3	ARRY12X	0.2	2.3	0.5697	-	-0.4088	96.0-	-1.021	-1.019	-2.181	-2.893	-0.31	-1.115	-2.044	-0.23	-0.6688	-0.07094	-0.6394		-1.8	-0.6019	0.14	-0.15	-0.455		-0.23	0.77	-0.03437	-0.445	2.68			-0.335		0.2281	-1.36	0.245	0.05
NB4+ATRA	ARRY17X	4.658	6.348	3.847		5.659	3.898	3.497	4.328	5.367	8.014	4.298	3.823	6.733	5.378	4.859	4.107	4.248	5.489	4.468	3.596	5.318	5.428	7.853	6.928	7.618	3.898	5.283	5.943	6.528	5.826	5.553	5.673	6.698	4.896	5.668	5.453	900'9
MOLT4	ARRY18X	3.509	4.859		3.5	3.91	4.969	3.798	1.699	1.828	0.005625	4.299	2.754	4.134	4.129	3.13			5.05	3.119	5.027	4.459	4.019		5.599	3.989		3.834		5.459	5.847	5.674	2.804	4.749	4.547	3.549	3.804	4.769
RPMI-8226	ARRY16X	3.37	5.36	3.19	5.211	0.1512	0.5	3.359	2.971	1.979	3.867	4.76	4.345	5.486	3.3	2.681		3.941	5.301	3.78	2.948	1.77	3.1	1.015	0.01	0.89	3.19	4.716	3.595	5:32	5.458	5.255	5.465	5.05	4.198	3.28	0.265	0.55
HS578T	ARRY9X	0	6.0	0.7797	1.171	-0.4088	-0.03	1.369	2.011	0.6991	3.227	2.19	0.035		2.74	1.351	1.849	0.7906	0.4012	1.87	1.818	-1.38		0.255	0.75	1.57	-2.85E-09	-0.5044	0.945	-1.36	-0.3619	3.075	1.115	0.38	1.028	1.61	1.625	-0.06
BT-549	ARRY10X		-2.2	-1.79	0.8712	0.4112	0.32		-0.4594	0.05906	-1.023	0.39	-0.665	-0.5844	0.23	-1.649	0.2191	-0.4494	-1.339	-0.08	0.4181	-0.93	0.15	0.145	0	0.02	-0.65	-1.164	-0.015	-1.07	-0.7519	-0.245	0.005	-0.72	0.7081	-0.66	-0.245	0.3
SW872	ARRY8X	-2.87	-1.75	-1.42	-0.1188	0.08125	-0.44	0.3491	2.081	1.129	1.707	0	-0.145	0.2756	1.57	2.661	0.2491	1.091	-0.1888	0	-0.9419	1.04	0.23	-0.145	-0.5	-0.33	2.85E-09	0.08563	-0.545	0.4	1.558	0.165	-0.055	-0.11	1.458	0.12	0.945	-0.05

r	١
0	Ľ
3	٦
'n	Ç

															•																		•					•
T47D	ARRY14X	1.69	5.37E-10	-0.08	-0.79	-0.1544	5.37E-10	-1.079		0.325	5.37E-10	0.32	1.92	-1.06		-2.52	-2.259	-1.482	-1.639		0.1441			-0.3631		-0.95	-0.065	0.195	-0.56	0.985	1.82			-3.771	-1.1	-1.046	-0.08	-0.9
MCF7-NCI	ARRY15X	-1.77	-0.09	0.32	0	-0.2944	-0.52	1.221	0.065	-0.195	-0.1	9.0	0.88	0.52	-1.51	0.2897	0.5706	0.3081	0.3413	-0.1187	-0.7159	Oʻ	9:0	0.3469	0.145	-0.8	0.555	0.105	-0.07	-0.135	-0.88	-1.009		0.05906	0.36	2.354	0.32	-0.69
BT-474	ARRY13X		0.23	-1.12	0.59		1.19	-0.2687		-1.195	-0.14	-0.31	-0.82	0	-0.91		0.1506	0.2281	-0.8487	0.3113	-0.4159	0.29	0.77	0.3969	0.495	-0.82	0.845	0.105	0.99	0.235	-0.67	0.08125	1.221	0.6591	-0.66	-1.376	-0.24	2.05
SK-BR-3	ARRY12X	-0.21	1.38	0.35		-0.5644	0.15	-1.119	-0.945	0.195	1.38	-0.78	-0.92	-1.73	-0.58	-0.6003	-1.169	-2.232	-0.4487				-2.64	-2.723	-0.305	0.33		-0.545		-0.665	0.64	0.3413	-0.8988	0.4291	0	-1.036	-0.01	-0.02
NB4+ATRA	ARRY17X	3.978	5.198	3.508	2.328	5.453	2.798	4.499		3.013	2.968	2.978	5.858	4.448	2.298	2.757		4.636		0.9288	0.6316	-2.292	-1.082	-0.1656	2.933	0.1575	-0.1275	3.183	-1.462	-0.4075	3.018		3.759	3.487	1.888	0.9916	1.788	0.1775
MOLT4	ARRY18X	2.879	4.199	2.479	2.109	0.4144	3.849		1.754	-1.066	0.6488	1.279	4.649	2.499	2.009	1.788		0.9469	96.0		3.633	4.539	7.659	7.596	6.224	5.159	7.274	6.434	5.889	4.094	1.329				0.07875	0.5928	2.689	0.9288
RPMI-8226	ARRY16X	3.3	3.82	2.95	3.44	6.486	2.52	1.361	2.945	4.805	3.39	3.15	-0.97	2.7	2.61	0.3697	-0.3294	-0.1119	0.6512		2.044	-1.09	0.28	0.1969	0.195		0.015	-0.105	-0.31	0.305	1.26	0.1712		0.009062	0.72	-0.4259	0.91	0.16
HS578T	ARRY9X		-0.12	-0.37	-0.65	2.266	1.09	0.6112	0.295	0.625	-0.01	0.33	0.51	0.62	0.84		0.4906	0.9881	-1.079	0.6812	0.1441	1	0.48	1.157	0.875	0.36	1.115	2.035	2.26	0.525	0	3.291			0.11		-0.67	-0.23
BT-549	ARRY10X	0	-6.03E-09	0.01	0.14	0.3056	-0.78	-1.349	-0.065	0.805	0.19	0.63	-0.32	0.21	-1.71	0.4597	0.7906	0.3481	-0.2288	-1.059	0.7941	-0.46	-0.45	-0.8531	-0.585	0.43	-0.015		0.07	0.135	-1.75	-0.5088	0.2312	-0.6209	-0.76	-0.8359	0.18	-0.64
SW872	ARRY8X	-1.13	0.32	0	0.07	1.336	0.88	0.9212		0.605	0.09	1.7	1.78	0.75	1.84	-1.08	-0.2994	-1.152	-2.309	-0.3788	-0.2159	-1.56	85.0	0.1769	-0.145	0.18	0.675	9.05	69'0	-0.215	24.0-	0.3113	-0.07875	-0.4509	-0.15	0.01406	0.01	0

ſ	•	V
1	d	U
3	Ċ	3
J	Ī	J

| , | | |

 |
 |
 | |
 | | | |
 | |

 | | | |

 | |

 |
 | |

 | | | | | |
 | | | | | | | |
 | |
|---------|--|---
--
--
--
--
--
--

--
--|--|--
--|--|--|---|--
--
--
--
---|---|---|---
--
--
---|---
--
--
--|--|--
--
--
---|--|--|--|--|--|--|--
--|--|--|--|--|--|--
--|
| ARRY14X | 0.9212 | -0.9088 | 0.705

 | 5.37E-10
 | 0.18
 | -0.35 | -0.66
 | 0.14 | -1.96 | -0.3575 | -1.562
 | -0.52 | -1.21

 | -0.4094 | 0.4425 | -0.15 | 0.09

 | -0.07 | 0.34

 | 0.2406
 | -0.3088 | -0.55

 | 0.455 | 0.875 | 0.5712 | 5.37E-10 | 0.24 | 0.59
 | 5.37E-10 | -0.02 | -0.44 | -0.6094 | -0.5519 | -0.27 | 0.66 | 0.3712
 | |
| ARRY15X | 0.6813 | 0.3013 | 0.845

 | 99.0
 | 0.16
 | 0 | 0
 | -0.62 | 0.7 | -0.3175 | -0.3919
 | 1.39E-17 | -1.01

 | 0.1306 | 0.1225 | 0.25 | 1.29

 | -0.13 | -0.76

 | 0.9306
 | 1.241 | 0.81

 | 1.405 | 0.965 | 0.9513 | 0.13 | 9.0 | -0.26
 | -0.23 | 0.1 | 0 | 0.3806 | 0.4281 | 0.41 | 0.11 | 1.141
 | 0.4606 |
| ARRY13X | -0.3787 | -0.9087 | 0.105

 | 0.17
 | 0
 | -0.75 | -0.7
 | -1.83 | -0.07 | -0.9075 | -0.8319
 | 0.11 | 0.02

 | 0.4006 | -0.5875 | | 0.81

 | -1.66 | -1

 | -0.4594
 | 0.09125 | -0.46

 | -0.825 | -0.745 | -1.429 | -1 | 0.93 | -0.06
 | -0.64 | 0 | 1.24 | -0.1694 | -0.5919 | 0.38 | 0.57 | 0.1713
 | 2.181 |
| ARRY12X | -0.1788 | -0.01875 | -0.815

 | 0.94
 | 0.71
 | 0.52 | 0.59
 | -0.26 | 0.84 | -1.638 | -0.2119
 | -0.5 |

 | 1.031 | 0.2025 | 0.2 | -0.57

 | -1.22 | -0.39

 | -0.1894
 | 0.3613 | -0.7

 | 0.105 | 1.325 | 0.9813 | -0.22 | 69'0 | 0.73
 | 0.89 | -0.23 | 0.59 | -0.03938 | 0.2581 | 0.02 | 0.67 | 1.091
 | -0.4494 |
| ARRY17X | 2.069 | 1.399 | 1.553

 | 1.838
 | 1.868
 | 1.558 | 1.118
 | 0.6075 | 1.358 | 0.04 | 0.1456
 | 0.3175 | 0.0575

 | -0.2219 | 0 | 0.9375 | 1.018

 | 1.218 | 0.5175

 | 1.608
 | 2.379 | 2.768

 | 0.6925 | 1.723 | 1.679 | 0.3475 | 0.6175 | 0.8075
 | 0.7675 | 1.398 | 0.9775 | 1.728 | 1.606 | 1.608 | 1.138 | 2.309
 | 1.308 |
| ARRY18X | 0.69 | -0.31 | 1.544

 | 1.519
 | 1.339
 | 1.159 | 0.3187
 | -1.611 | | 0.00125 | -0.3931
 | -1.081 |

 | 0.3394 | -2.019 | 0.6288 | 1.229

 | 1.209 | 0.2888

 | 0.8594
 | 1.12 | 1.309

 | 0.1638 | 0.2638 | 0.25 | 0.8488 | 0.8288 | 0.5988
 | -0.1412 | 1.449 | 1.259 | 0.5694 | 0.8269 | 0.3688 | 0.1088 | 0.51
 | 1.169 |
| ARRY16X | 0.00125 | -0.2288 | -0.105

 | 0.89
 | 0.85
 | 0.78 | 0.79
 | 0.32 | -0.5 | -0.3975 | -2.512
 | -0.36 | 0.02

 | -0.9694 | -1.088 | 0.57 | 0.06

 | -0.4 | -0.17

 | -0.1594
 | -0.02875 | 1.81

 | 0.265 | 0.865 | 0.7212 | 0.77 | 0.86 | 6.0
 | 0.05 | 0.71 | -0.12 | 1.151 | 0.9381 | 0 | -0.07 | 0.2312
 | 0.08062 |
| ARRY9X | -0.5788 | 0.5212 | -0.155

 |
 | -0.24
 | -0.54 | -0.01
 | 0 | 0 | -0.5375 | -0.3019
 | -0.81 | 0.12

 | 0.1006 | -0.0475 | | -0.52

 | -0.37 | -0.4

 | -0.08938
 | -1.059 | 0.05

 | -0.815 | -0.735 | -0.5588 | -0.27 | 0.51 | -0.33
 | 0.18 | -0.19 | -0.72 | | 0.08812 | -4.66E-10 | -0.18 | -0.4388
 | -0.07938 |
| ARRY10X | -0.7388 | -0.8188 | 0.615

 | -0.11
 | -0.15
 | -0.12 | 0.42
 | 0.61 | -0.78 | 0.1425 | -0.1919
 | -0.17 | -0.49

 | 0.1406 | -0.2975 | 0.65 | -1.12

 | -0.85 | -0.23

 | -0.04938
 | -1.389 | 0.59

 | 0.015 | -0.145 | -0.6088 | -0.17 | | 0.04
 | 0.41 | -0.08 | -0.25 | -0.8094 | -0.6219 | 0.21 | 0.28 | 0.1012
 | -0.6294 |
| ARRYBX | 0.2012 | -0.3788 | -0.625

 | -0.12
 | -0.4
 | 0.41 | -0.38
 | -0.26 | 0.54 | 0.5425 | -0.1319
 | 0.91 | 0

 | 0.2106 | 0.5225 | 0 | -1.49E-10

 | 0.14 | 0

 | 0.8706
 | 0.3412 | 0

 | -0.015 | -0.285 | -0.01875 | 1.21 | -0.12 | 8,33E-16
 | 0.25 | 0.81 | -0.09 | 0.08062 | -0.01188 | -0.56 | -0.6 | -0.4488
 | 0.4906 |
| | ARRY10X ARRY9X ARRY16X ARRY18X ARRY17X ARRY12X ARRY13X ARRY15X | . ARRY10X ARRY9X ARRY16X ARRY11X ARRY12X ARRY13X ARRY15X ARR
112 -0.7388 -0.5788 0.00125 0.69 2.069 -0.1788 -0.3787 0.6813 | ARRY10X ARRY9SX ARRY18X ARRY17X ARRY12X ARRY13X ARRY15X ARRY15X <t< td=""><td>ARRY10X ARRY9X ARRY16X ARRY11X ARRY13X ARRY13X ARRY15X ARRY13X ARRY15X <th< td=""><td>ARRY10X ARRY9X ARRY16X ARRY11X ARRY13X ARRY13X ARRY15X ARRY13X ARRY15X <th< td=""><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X O.0.1788 O.0.3013 O. 88 -0.7318 -0.205 -0.0105 0.155 0.0105 0.3013 -0. 0. 0.005 0.00</td><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X 0.631 0.6813 0.6813 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6613 <th< td=""><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X 0.0.3013 0.</td><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X 0.6313 0.6813 0.6813 0.6913 0.6987 0.6813 0.701 0.6615 0.705 0.705 0.705 0.705 0.705 0.716 0.718 0.718 0.718 0.718 0.718</td><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X O.0.3787 O.0.6813 O. O. O.6813 O. O. O.0.3013 O. O.</td><td>ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X O.03787 O.06813 O. O. O.6813 O. O.03013 O. O.01015 O.01015 O.01015 O.0105 O.021 O.021 O.022 O.022</td><td>ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X 0.0383 0.017 0.06813 0.03187 0.0175 0.03087 0.0101 0.0105 0.0105 0.0105 0.0105 0.0105 0.0105 0.0105 0.0106 0.016</td></th<></td></th<></td></th<></td></t<> <td>ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X 0.0389 0.0131 0.0309 <t< td=""><td>ARRY10X ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X 0.03787 0.0126 0.03787 0.03187 0.0178 0.03087 0.01087 0.01087 0.01087 0.01087 0.0108 0.0108 0.0108 0.0118 0.0108 0.0118</td><td>ARRY10X ARRY10X ARRY10X ARRY11X ARRY13X ARRY15X 0.03787 0.0159 0.01012 0.0611 0.03013</td><td>ARRY10X ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X 0.03787 0.0159 0.01012 0.0618 0.01012 0.02012</td><td>ARRY10X ARRY10X ARRY11X O.0378 0.00125 0.013 0.031 <th< td=""><td>ARRY1OX ARRY16X ARRY16X ARRY11X ARRY11X ARRY13X ARRY15X 0.0188 0.0178 0.0189 0.0189 0.0189 0.0189 0.0189
 0.0189 0.0189 0.0189 0.0189 0.0189 0.0179 0.0189 0.0179 0.0189 0.0179 0.0189 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.0111 0.0101 0.0101 0.0101 0.0</td><td>112 -0.738B -0.578B -0.178B -0.3787 ARRY15X O.6813 0.0115 0.015 0.013 0.015 0.018 0.018 0.018 0.018 0.018 0.016 <t< td=""><td>112 -0.738B -0.578B ARRY15X ARRY13X ARRY13X ARRY15X 0.038 -0.128B 0.0212 -0.228B 0.00125 -0.013 -0.128 0.013 -0.12 -0.015 0.028 0.015 0.015 0.029 0.015 0.016 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.067 0.067 0.067 0.067 0.067 0.067 0.062 0.062 0.062</td><td>112 -0.738B -0.578B ARRY16X ARRY11XX ARRY11XX ARRY15X 0.0312 0.01212 0.02</td><td>112 -0.7381 -0.5788 0.00125 0.69 2.069 -0.1788 -0.3787 0.6813 112 -0.7388 -0.5788 0.00125 0.69 2.069 -0.1788 -0.3187 0.6813 125 -0.615 -0.5788 0.00125 -0.31 1.539 -0.01875 -0.9087 0.6813 125 -0.615 -0.155 -0.105 1.544 1.539 -0.0185 0.105 0.845 12 -0.11 -0.24 0.89 1.519 1.886 0.71 0 0.66 5 12 -0.15 -0.24 0.85 1.159 1.586 0.71 0 0.16 5 12 -0.15 -0.24 0.78 1.159 1.586 0.71 0 0.16 0 0 12 -0.12 -0.54 0.78 1.159 1.188 0.59 0.71 0 0 0 12 0.61 0 0.32 -1.61 0.625<!--</td--><td>1.2 -0.738B -0.578B -0.0125 0.69 2.069 -0.178B -0.3787 0.6813 1.12 -0.738B -0.578B -0.0125 -0.03B -0.0178B -0.3787 0.6813 1.88 -0.6118 -0.578B -0.0228B -0.0131 -0.0815 -0.0987 0.0813 2.5 -0.615 -0.125 -0.129B 1.544 1.539 -0.0185 -0.105 0.0845 2.5 -0.615 -0.125 -0.129 0.015 0.015 0.066 5 2.0 -0.15 -0.105 0.158 1.519 1.838 0.094 0.17 0.666 5 2.0 -0.14 0.08 1.159 1.588 0.71 0 0.16 0.</td><td>1.2 ARRY1OX ARRY1SX AR</td><td>1.1 ARRY10X ARRY10X ARRY11XX ARRY11XXX ARRY11XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</td><td>1.1 ARRY1OX ARRY1OX ARRY1AS ARRY1SX AR</td><td>1.1 ARRY1OX ARRY1OX ARRY1OX ARRY1OX ARRY1OX ARRY1SX AR</td><td>CARRYLOX ARRYLOX <</td><td>1.2 ARRY10X ARRY10X ARRY10X ARRY10X ARRY10X ARRY13X ARRY13X ARRY15X AR</td><td>CARRYIOX ARRYIOX <</td><td>C. ARKYLOX ARRYLOX ARRYLOX</td><td>C. ARKYLOX ARRYLOX ARRYLOX</td><td>1. ARRYLIX ARRYLIX</td><td>1. ARRYLIX ARRYLIX</td><td>1. ARAPLASA ARRYLISA ARRYLISA</td><td>CARRYIOK ARRYIOK <</td><td>CARRYIOK ARRYIOK <</td></td></t<></td></th<></td></t<></td> | ARRY10X ARRY9X ARRY16X ARRY11X ARRY13X ARRY13X ARRY15X ARRY13X ARRY15X ARRY15X <th< td=""><td>ARRY10X ARRY9X ARRY16X ARRY11X ARRY13X ARRY13X ARRY15X ARRY13X ARRY15X <th< td=""><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X O.0.1788 O.0.3013 O. 88 -0.7318 -0.205 -0.0105 0.155 0.0105 0.3013 -0. 0. 0.005 0.00</td><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X 0.631 0.6813 0.6813 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6613 <th< td=""><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X 0.0.3013 0.</td><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X 0.6313 0.6813 0.6813 0.6913 0.6987 0.6813 0.701 0.6615 0.705 0.705 0.705 0.705 0.705 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716
 0.716 0.718 0.718 0.718 0.718 0.718</td><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X O.0.3787 O.0.6813 O. O. O.6813 O. O. O.0.3013 O. O.</td><td>ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X O.03787 O.06813 O. O. O.6813 O. O.03013 O. O.01015 O.01015 O.01015 O.0105 O.021 O.021 O.022 O.022</td><td>ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X 0.0383 0.017 0.06813 0.03187 0.0175 0.03087 0.0101 0.0105 0.0105 0.0105 0.0105 0.0105 0.0105 0.0105 0.0106 0.016</td></th<></td></th<></td></th<> | ARRY10X ARRY9X ARRY16X ARRY11X ARRY13X ARRY13X ARRY15X ARRY13X ARRY15X ARRY15X <th< td=""><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X O.0.1788 O.0.3013 O. 88 -0.7318 -0.205 -0.0105 0.155 0.0105 0.3013 -0. 0. 0.005 0.00</td><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X 0.631 0.6813 0.6813 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6613 <th< td=""><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X 0.0.3013 0.</td><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X 0.6313 0.6813 0.6813 0.6913 0.6987 0.6813 0.701 0.6615 0.705 0.705 0.705 0.705 0.705 0.716 0.718 0.718 0.718 0.718 0.718</td><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X O.0.3787 O.0.6813 O. O. O.6813 O. O. O.0.3013 O. O.</td><td>ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X O.03787 O.06813 O. O. O.6813 O. O.03013 O. O.01015 O.01015 O.01015 O.0105 O.021 O.021 O.022 O.022</td><td>ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X 0.0383 0.017 0.06813 0.03187 0.0175 0.03087 0.0101 0.0105 0.0105 0.0105 0.0105 0.0105 0.0105 0.0105 0.0106 0.016</td></th<></td></th<> | ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X O.0.1788 O.0.3013 O. 88 -0.7318 -0.205 -0.0105 0.155 0.0105 0.3013 -0. 0. 0.005 0.00 | ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X 0.631 0.6813 0.6813 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6613 <th< td=""><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X 0.0.3013 0.</td><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X 0.6313 0.6813 0.6813 0.6913 0.6987 0.6813 0.701 0.6615 0.705 0.705 0.705 0.705 0.705 0.716
 0.716 0.716 0.716 0.716 0.716 0.718 0.718 0.718 0.718 0.718</td><td>ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X O.0.3787 O.0.6813 O. O. O.6813 O. O. O.0.3013 O. O.</td><td>ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X O.03787 O.06813 O. O. O.6813 O. O.03013 O. O.01015 O.01015 O.01015 O.0105 O.021 O.021 O.022 O.022</td><td>ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X 0.0383 0.017 0.06813 0.03187 0.0175 0.03087 0.0101 0.0105 0.0105 0.0105 0.0105 0.0105 0.0105 0.0105 0.0106 0.016</td></th<> | ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X 0.0.3013 0. | ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X 0.6313 0.6813 0.6813 0.6913 0.6987 0.6813 0.701 0.6615 0.705 0.705 0.705 0.705 0.705 0.716 0.718 0.718 0.718 0.718 0.718 | ARRY10X ARRY16X ARRY16X ARRY15X ARRY13X ARRY15X O.0.3787 O.0.6813 O. O. O.6813 O. O. O.0.3013 O. O. | ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X O.03787 O.06813 O. O. O.6813 O. O.03013 O. O.01015 O.01015 O.01015 O.0105 O.021 O.021 O.022 O.022 | ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X 0.0383 0.017 0.06813 0.03187 0.0175 0.03087 0.0101 0.0105 0.0105 0.0105 0.0105 0.0105 0.0105 0.0105 0.0106 0.016 | ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X 0.0389 0.0131 0.0309 <t< td=""><td>ARRY10X ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X 0.03787 0.0126 0.03787 0.03187 0.0178 0.03087 0.01087 0.01087 0.01087 0.01087 0.0108 0.0108 0.0108 0.0118 0.0108 0.0118</td><td>ARRY10X ARRY10X ARRY10X ARRY11X ARRY13X ARRY15X 0.03787 0.0159 0.01012 0.0611 0.03013</td><td>ARRY10X ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X 0.03787 0.0159 0.01012 0.0618 0.01012 0.02012</td><td>ARRY10X ARRY10X ARRY11X O.0378 0.00125 0.013 0.031 <th< td=""><td>ARRY1OX ARRY16X ARRY16X ARRY11X ARRY11X ARRY13X ARRY15X 0.0188 0.0178 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0179 0.0189 0.0179 0.0189 0.0179 0.0189 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.0111 0.0101 0.0101 0.0101 0.0</td><td>112 -0.738B -0.578B -0.178B -0.3787 ARRY15X O.6813 0.0115 0.015 0.013 0.015 0.018 0.018 0.018 0.018 0.018 0.016 0.016
 0.016 <t< td=""><td>112 -0.738B -0.578B ARRY15X ARRY13X ARRY13X ARRY15X 0.038 -0.128B 0.0212 -0.228B 0.00125 -0.013 -0.128 0.013 -0.12 -0.015 0.028 0.015 0.015 0.029 0.015 0.016 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.067 0.067 0.067 0.067 0.067 0.067 0.062 0.062 0.062</td><td>112 -0.738B -0.578B ARRY16X ARRY11XX ARRY11XX ARRY15X 0.0312 0.01212 0.02</td><td>112 -0.7381 -0.5788 0.00125 0.69 2.069 -0.1788 -0.3787 0.6813 112 -0.7388 -0.5788 0.00125 0.69 2.069 -0.1788 -0.3187 0.6813 125 -0.615 -0.5788 0.00125 -0.31 1.539 -0.01875 -0.9087 0.6813 125 -0.615 -0.155 -0.105 1.544 1.539 -0.0185 0.105 0.845 12 -0.11 -0.24 0.89 1.519 1.886 0.71 0 0.66 5 12 -0.15 -0.24 0.85 1.159 1.586 0.71 0 0.16 5 12 -0.15 -0.24 0.78 1.159 1.586 0.71 0 0.16 0 0 12 -0.12 -0.54 0.78 1.159 1.188 0.59 0.71 0 0 0 12 0.61 0 0.32 -1.61 0.625<!--</td--><td>1.2 -0.738B -0.578B -0.0125 0.69 2.069 -0.178B -0.3787 0.6813 1.12 -0.738B -0.578B -0.0125 -0.03B -0.0178B -0.3787 0.6813 1.88 -0.6118 -0.578B -0.0228B -0.0131 -0.0815 -0.0987 0.0813 2.5 -0.615 -0.125 -0.129B 1.544 1.539 -0.0185 -0.105 0.0845 2.5 -0.615 -0.125 -0.129 0.015 0.015 0.066 5 2.0 -0.15 -0.105 0.158 1.519 1.838 0.094 0.17 0.666 5 2.0 -0.14 0.08 1.159 1.588 0.71 0 0.16 0.</td><td>1.2 ARRY1OX ARRY1SX AR</td><td>1.1 ARRY10X ARRY10X ARRY11XX ARRY11XXX ARRY11XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</td><td>1.1 ARRY1OX ARRY1OX ARRY1AS ARRY1SX AR</td><td>1.1 ARRY1OX ARRY1OX ARRY1OX ARRY1OX ARRY1OX ARRY1SX AR</td><td>CARRYLOX ARRYLOX <</td><td>1.2 ARRY10X ARRY10X ARRY10X ARRY10X ARRY10X ARRY13X ARRY13X ARRY15X AR</td><td>CARRYIOX ARRYIOX <</td><td>C. ARKYLOX ARRYLOX ARRYLOX</td><td>C. ARKYLOX ARRYLOX ARRYLOX</td><td>1. ARRYLIX ARRYLIX</td><td>1. ARRYLIX ARRYLIX</td><td>1. ARAPLASA ARRYLISA ARRYLISA</td><td>CARRYIOK ARRYIOK <</td><td>CARRYIOK ARRYIOK <</td></td></t<></td></th<></td></t<> | ARRY10X ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X 0.03787 0.0126 0.03787 0.03187 0.0178 0.03087 0.01087 0.01087 0.01087 0.01087 0.0108 0.0108 0.0108 0.0118 0.0108 0.0118 | ARRY10X ARRY10X ARRY10X ARRY11X ARRY13X ARRY15X 0.03787 0.0159 0.01012 0.0611 0.03013 | ARRY10X ARRY10X ARRY10X ARRY11X ARRY11X ARRY13X ARRY15X 0.03787 0.0159 0.01012 0.0618 0.01012 0.02012 | ARRY10X ARRY10X ARRY11X O.0378 0.00125 0.013 0.031 <th< td=""><td>ARRY1OX ARRY16X ARRY16X ARRY11X ARRY11X ARRY13X ARRY15X 0.0188 0.0178 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0179 0.0189 0.0179 0.0189 0.0179 0.0189 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.0111 0.0101 0.0101 0.0101 0.0</td><td>112 -0.738B -0.578B
-0.178B -0.3787 ARRY15X O.6813 0.0115 0.015 0.013 0.015 0.018 0.018 0.018 0.018 0.018 0.016 <t< td=""><td>112 -0.738B -0.578B ARRY15X ARRY13X ARRY13X ARRY15X 0.038 -0.128B 0.0212 -0.228B 0.00125 -0.013 -0.128 0.013 -0.12 -0.015 0.028 0.015 0.015 0.029 0.015 0.016 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.067 0.067 0.067 0.067 0.067 0.067 0.062 0.062 0.062</td><td>112 -0.738B -0.578B ARRY16X ARRY11XX ARRY11XX ARRY15X 0.0312 0.01212 0.02</td><td>112 -0.7381 -0.5788 0.00125 0.69 2.069 -0.1788 -0.3787 0.6813 112 -0.7388 -0.5788 0.00125 0.69 2.069 -0.1788 -0.3187 0.6813 125 -0.615 -0.5788 0.00125 -0.31 1.539 -0.01875 -0.9087 0.6813 125 -0.615 -0.155 -0.105 1.544 1.539 -0.0185 0.105 0.845 12 -0.11 -0.24 0.89 1.519 1.886 0.71 0 0.66 5 12 -0.15 -0.24 0.85 1.159 1.586 0.71 0 0.16 5 12 -0.15 -0.24 0.78 1.159 1.586 0.71 0 0.16 0 0 12 -0.12 -0.54 0.78 1.159 1.188 0.59 0.71 0 0 0 12 0.61 0 0.32 -1.61 0.625<!--</td--><td>1.2 -0.738B -0.578B -0.0125 0.69 2.069 -0.178B -0.3787 0.6813 1.12 -0.738B -0.578B -0.0125 -0.03B -0.0178B -0.3787 0.6813 1.88 -0.6118 -0.578B -0.0228B -0.0131 -0.0815 -0.0987 0.0813 2.5 -0.615 -0.125 -0.129B 1.544 1.539 -0.0185 -0.105 0.0845 2.5 -0.615 -0.125 -0.129 0.015 0.015 0.066 5 2.0 -0.15 -0.105 0.158 1.519 1.838 0.094 0.17 0.666 5 2.0 -0.14 0.08 1.159 1.588 0.71 0 0.16 0.</td><td>1.2 ARRY1OX ARRY1SX AR</td><td>1.1 ARRY10X ARRY10X ARRY11XX ARRY11XXX ARRY11XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</td><td>1.1 ARRY1OX ARRY1OX ARRY1AS ARRY1SX AR</td><td>1.1 ARRY1OX ARRY1OX ARRY1OX ARRY1OX ARRY1OX ARRY1SX AR</td><td>CARRYLOX ARRYLOX <</td><td>1.2 ARRY10X ARRY10X ARRY10X ARRY10X ARRY10X ARRY13X ARRY13X ARRY15X AR</td><td>CARRYIOX ARRYIOX <</td><td>C. ARKYLOX ARRYLOX ARRYLOX</td><td>C. ARKYLOX ARRYLOX ARRYLOX</td><td>1. ARRYLIX ARRYLIX</td><td>1. ARRYLIX ARRYLIX</td><td>1. ARAPLASA ARRYLISA ARRYLISA</td><td>CARRYIOK ARRYIOK <</td><td>CARRYIOK ARRYIOK <</td></td></t<></td></th<> | ARRY1OX ARRY16X ARRY16X ARRY11X ARRY11X ARRY13X ARRY15X 0.0188 0.0178 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0179 0.0189 0.0179 0.0189 0.0179 0.0189 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.0111 0.0101 0.0101 0.0101 0.0 | 112 -0.738B -0.578B -0.178B -0.3787 ARRY15X O.6813 0.0115 0.015 0.013 0.015 0.018 0.018 0.018 0.018 0.018 0.016 <t< td=""><td>112 -0.738B -0.578B ARRY15X ARRY13X ARRY13X ARRY15X 0.038 -0.128B 0.0212 -0.228B 0.00125 -0.013 -0.128 0.013 -0.12 -0.015 0.028 0.015 0.015 0.029 0.015 0.016 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.067 0.067 0.067 0.067 0.067 0.067 0.062 0.062 0.062</td><td>112 -0.738B -0.578B ARRY16X ARRY11XX ARRY11XX ARRY15X 0.0312 0.01212 0.02</td><td>112 -0.7381 -0.5788 0.00125 0.69 2.069 -0.1788 -0.3787 0.6813 112 -0.7388 -0.5788 0.00125 0.69 2.069 -0.1788 -0.3187 0.6813 125 -0.615 -0.5788 0.00125 -0.31 1.539 -0.01875 -0.9087 0.6813 125 -0.615 -0.155 -0.105 1.544 1.539 -0.0185 0.105 0.845 12 -0.11 -0.24
0.89 1.519 1.886 0.71 0 0.66 5 12 -0.15 -0.24 0.85 1.159 1.586 0.71 0 0.16 5 12 -0.15 -0.24 0.78 1.159 1.586 0.71 0 0.16 0 0 12 -0.12 -0.54 0.78 1.159 1.188 0.59 0.71 0 0 0 12 0.61 0 0.32 -1.61 0.625<!--</td--><td>1.2 -0.738B -0.578B -0.0125 0.69 2.069 -0.178B -0.3787 0.6813 1.12 -0.738B -0.578B -0.0125 -0.03B -0.0178B -0.3787 0.6813 1.88 -0.6118 -0.578B -0.0228B -0.0131 -0.0815 -0.0987 0.0813 2.5 -0.615 -0.125 -0.129B 1.544 1.539 -0.0185 -0.105 0.0845 2.5 -0.615 -0.125 -0.129 0.015 0.015 0.066 5 2.0 -0.15 -0.105 0.158 1.519 1.838 0.094 0.17 0.666 5 2.0 -0.14 0.08 1.159 1.588 0.71 0 0.16 0.</td><td>1.2 ARRY1OX ARRY1SX AR</td><td>1.1 ARRY10X ARRY10X ARRY11XX ARRY11XXX ARRY11XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</td><td>1.1 ARRY1OX ARRY1OX ARRY1AS ARRY1SX AR</td><td>1.1 ARRY1OX ARRY1OX ARRY1OX ARRY1OX ARRY1OX ARRY1SX AR</td><td>CARRYLOX ARRYLOX <</td><td>1.2 ARRY10X ARRY10X ARRY10X ARRY10X ARRY10X ARRY13X ARRY13X ARRY15X AR</td><td>CARRYIOX ARRYIOX <</td><td>C. ARKYLOX ARRYLOX ARRYLOX</td><td>C. ARKYLOX ARRYLOX ARRYLOX</td><td>1. ARRYLIX ARRYLIX</td><td>1. ARRYLIX ARRYLIX</td><td>1. ARAPLASA ARRYLISA ARRYLISA</td><td>CARRYIOK ARRYIOK <</td><td>CARRYIOK ARRYIOK <</td></td></t<> | 112 -0.738B -0.578B ARRY15X ARRY13X ARRY13X ARRY15X 0.038 -0.128B 0.0212 -0.228B 0.00125 -0.013 -0.128 0.013 -0.12 -0.015 0.028 0.015 0.015 0.029 0.015 0.016 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.066 5.37 0.067 0.067 0.067 0.067 0.067 0.067 0.062 0.062 0.062 | 112 -0.738B -0.578B ARRY16X ARRY11XX ARRY11XX ARRY15X 0.0312 0.01212 0.02 | 112 -0.7381 -0.5788 0.00125 0.69 2.069 -0.1788 -0.3787 0.6813 112 -0.7388 -0.5788 0.00125 0.69 2.069 -0.1788 -0.3187 0.6813 125 -0.615 -0.5788 0.00125 -0.31 1.539 -0.01875 -0.9087 0.6813 125 -0.615 -0.155 -0.105 1.544 1.539 -0.0185 0.105 0.845 12 -0.11 -0.24 0.89 1.519 1.886 0.71 0 0.66 5 12 -0.15 -0.24 0.85 1.159 1.586 0.71 0 0.16 5 12 -0.15 -0.24 0.78 1.159 1.586 0.71 0 0.16 0 0 12 -0.12 -0.54 0.78 1.159 1.188 0.59 0.71 0 0 0 12 0.61 0 0.32 -1.61 0.625 </td <td>1.2 -0.738B -0.578B -0.0125 0.69 2.069 -0.178B -0.3787 0.6813 1.12 -0.738B -0.578B -0.0125 -0.03B -0.0178B -0.3787 0.6813 1.88 -0.6118 -0.578B -0.0228B -0.0131 -0.0815 -0.0987 0.0813 2.5 -0.615 -0.125 -0.129B 1.544 1.539 -0.0185 -0.105 0.0845 2.5 -0.615 -0.125 -0.129 0.015 0.015 0.066 5 2.0 -0.15 -0.105 0.158 1.519 1.838 0.094 0.17 0.666 5 2.0 -0.14 0.08 1.159 1.588 0.71 0 0.16 0.</td> <td>1.2 ARRY1OX ARRY1SX AR</td> <td>1.1 ARRY10X ARRY10X ARRY11XX ARRY11XXX ARRY11XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</td> <td>1.1 ARRY1OX ARRY1OX ARRY1AS ARRY1SX AR</td> <td>1.1 ARRY1OX ARRY1OX ARRY1OX ARRY1OX ARRY1OX ARRY1SX AR</td> <td>CARRYLOX ARRYLOX <</td> <td>1.2 ARRY10X ARRY10X ARRY10X ARRY10X ARRY10X ARRY13X ARRY13X ARRY15X AR</td> <td>CARRYIOX ARRYIOX <</td> <td>C. ARKYLOX ARRYLOX ARRYLOX</td> <td>C. ARKYLOX ARRYLOX ARRYLOX</td> <td>1. ARRYLIX ARRYLIX</td> <td>1. ARRYLIX ARRYLIX</td> <td>1. ARAPLASA ARRYLISA ARRYLISA</td> <td>CARRYIOK ARRYIOK <</td> <td>CARRYIOK ARRYIOK <</td> | 1.2 -0.738B -0.578B -0.0125 0.69 2.069 -0.178B -0.3787 0.6813 1.12 -0.738B -0.578B -0.0125 -0.03B -0.0178B -0.3787 0.6813 1.88 -0.6118 -0.578B -0.0228B -0.0131 -0.0815 -0.0987 0.0813 2.5 -0.615 -0.125 -0.129B 1.544 1.539 -0.0185 -0.105 0.0845 2.5 -0.615 -0.125 -0.129 0.015 0.015 0.066 5 2.0 -0.15 -0.105 0.158 1.519 1.838 0.094 0.17 0.666 5 2.0 -0.14 0.08 1.159 1.588 0.71 0 0.16 0. | 1.2 ARRY1OX ARRY1SX AR | 1.1 ARRY10X ARRY10X ARRY11XX ARRY11XXX ARRY11XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 1.1 ARRY1OX ARRY1OX ARRY1AS ARRY1SX AR | 1.1 ARRY1OX ARRY1OX ARRY1OX ARRY1OX ARRY1OX ARRY1SX AR | CARRYLOX ARRYLOX < | 1.2 ARRY10X ARRY10X ARRY10X ARRY10X ARRY10X ARRY13X ARRY13X ARRY15X AR | CARRYIOX ARRYIOX < | C. ARKYLOX ARRYLOX ARRYLOX | C. ARKYLOX ARRYLOX ARRYLOX | 1. ARRYLIX ARRYLIX | 1. ARRYLIX ARRYLIX | 1. ARAPLASA ARRYLISA ARRYLISA | CARRYIOK ARRYIOK < | CARRYIOK ARRYIOK < |

~
Φ
虿
ē

									• •																													
T47D	ARRY14X	-0.025	5.37E-10	0.2525	-0.115	0.48	-0.25	-0.16	-0.9888	-0.49	0.36	0.43	0.04		-0.49	0.005625	-1.142	-2.7	-5.19E-09		-0.7409	-0.2919	5.37E-10		1.96	-0.4688	-0.54	0.00	0.8112	1.22	0.7981	1.63	3.82		-0.16	-0.4888	0.19	1.272
MCF7-NCI	ARRY15X	0.165	0.48	0.1425	0.895	1.07	0.64	0.81	0.8413	0.12	-0.3	0.43	0	0.02063	1.03	0.2156	-0.4319	90.08	5.73E-09	0.87	-1.201	1.108	1.06		-0.38	0.2113	5.27	0.44	1.461	-0.27	0.3681	-0.04	-1.49	0	-1.46	0.05125	-0.56	-2.927
BT-474	ARRY13X	0.595	-0.75	0.1425	1.025	-1.07	-0.37	0.28	-0.2887	0	0.25	0.29	0.01	0.5006	-1.33	-0.9644	-0.6519	-1.35		-0.34	0.5291	0.6481	0.14	-1.299	0.14	-0.4287	-0.05	-0.48	-0.02875		-0.5519	0.22	0.72	3.59	-1.84	0.1413	-1.7	-0.1375
SK-BR-3	ARRY12X	1.195	-0.73	0.9025	0.565	0.05	0	1.18	-1.029	0.37	-0.1	-0.54	0.02	-2.789	0.5	1.206	0.5781	-0.81	-1.78	-0.29	-0.8509		0.5		0.22	0.5913	0			0.59	0.4781	-0.15	0		0.28		-0.28	
NB4+ATRA	ARRY17X	1.603	0.8175	0.37	0.8225	-0.6425	0.2375	-1.482	0.5888	0.6075	0.4875	0.4375	0.2275		0.9975	-0.03687	1.996	0.7275	2.068		3.467	0.3356	0.4975	1.289	0.9775	0.8688			-0.00125	-0.3725	0.9456	-0.2425	2.628		-0.1425	0.00875	1.228	9.0-
MOLT4	ARRY18X	1.354	0.7988	0.00125	0.9738	-0.5712	-0.07125	1.699	1.55	2.509	2,339	2.719	2.519		-0.1412	0.7744	1.277	2.199			-0.1822	2.167	1.859	2.34	1.149	0.31	3.449	2.779		-0.05125	3.117	1.289	3,379	4.119	-0.09125		2.019	0.00125
RPMI-8226	ARRY16X	0.275	0,19	-0.3575	-0.965	0	-0.86	-0.17	-0.06875	1.05	2.23	2.57	2.17		-0.04	0.5956	0.3381	1.31	0.4	0.46	1.019	0.7481	0.53	-0.2588	1.19	-0.3288		1.05	0.6412	0.84	0.1281	2.32	1.64		-3.39	-0.9688	0.72	-0.0375
HS578T	ARRY9X	0.765	-0.58	-0.4175	-0.095	0.67	0.08	0	0.4312	0.85	80.08	60.0	-0.85	0.2806	0.17	-0.1944	0.4881	-1.31		0.26		0.2781	-0.1	-0.2688	-0.2	-0.3388	1.35		0.4312		0.2481	-0.31	0.35	0.61	0.28	0.2212		
BT-549	ARRY10X	-0.475	-0.38	0.1825	0.455	-0.22	0.09	0.74	0.2112	0.24	0.37	-0.5	-0.2	-2.629	0	-1.024	-0.2419	-0.08	0.23	1.19	0.01906	1.068	1.16	0.05125	0.67	0.5412	3.01	0.63	0.3112	0.18	-0.2019	1.03	-0.73	-0.77	0.59	-0.00875	0.3	-1.158
SW872	AKKY8X	0.025	1.83	-0.0875	-1.055	-0.64	90.0	68.0-	-0.3188	0.27	-0.23	0	-0.68	-0.1094	0.7	-0.6344	1.218	-1.13	-0.57	0	-0.9509	-0.9119	-0.83	-1.159	99:0-	0.3912	-1.85	-0.66	-0.2088	-0.74	0.08812	0.65	-0.94	-0.5	-2.17		-1.31	1.892

٠	
	O
•	σ
	Ø
ı	-

	_	_													_																							
T47D	ARRY14X		-0.5988	-2.4	0.38	1.504	5.37E-10	-0.7444	9.0-	-0.045	0.8613	0.6356	-0.72	-0.39	-0.1488	-0.6519	-0.3644	-1.669	-0.55	-0.4688	-0.2188		0.025	-1.159	-0.4088		-2.44	-0.895	-0.2694	-0.46	-1.808	-0.85	-1.06	-1.034	-0.37	-0.44	1.17	-1.43
MCF7-NCI	ARRY15X	-0.6087	0.08125	-0.67	-0.55	-0.05594	-2.65	-1.314	-2.28	-0.945	-1.529	-1.464	-2.04	-2.04	-1.079	-0.9619	-1.504	0.4313	0.5	0.6113	-0.6187	-0.485	-0.195	-0.09875	-0.5187	-0.8975	-1.22	-1.145	-0.9094	-1.07	-1.377	-0.16	-0.61	-0.5944	-0.14	-1.39	9.0-	-0.51
BT-474	ARRY13X	-0.3087	0.09125	-2.17	-0.54	-0.4359	4.6	-1.284	-2.05		-0.02875	-0.2944	-1.99	0.26	-0.6687	-0.2619	-0.1444	-2.959	-1.82	-0.1487	-2.029	-0.245	-0.395	-0.1287	0.1213		-2.21	-2.025	-0.1694	-0.07	-1.647	-0.28	-1.18	-0.7944	0	-1.97		0.27
SK-BR-3	ARRY12X		1.941	-2.86	-0.77	1.634	-4.02	-0.9244	-3.52	-2.125	-2.439	-1.784	-0.68	69.0-		-2.112		-1.209	-1.5	-1.179			-1.205	-0.4587	-0.5088		-2.33	-1.905		-0.46	-2.208	-0.32	-0.78	-0.6844	-1.07	0.3		0
NB4+ATRA	AKKY1/X	0.1288	-0.2612		-1.452	1.972	0.1675	0.9931	0.3375	1.723	2.819	1.903	1.818	2.568	2.379	1.126		1.449	1.808	1.749	-1.601	-2.197	0.0825	0.05875	1.359	0	0.4675	0.4325	2.228	1.078	1.73	1.698	1.398	1.493	1.378	0.0775	-0.7225	1.688
MOLT4	AKKY18X	0.13	0.57		-0.3712	2.263		-1.426	-0.5912	-0.00625	-0.17	-0.8856	0.1488	0.6188		1.047	1.034	0.16	1.149	0.89	0.3	-1.436	1.034	-0.02	-0.64	2.421	0.03875		0.9394	0.3688	0.00125	-0.9012	-1.561	-1.106		-0.1512	0.4688	3.239
RPMI-8226	AKKY16X	0.9712	-1.469	-1.24	-1.19	-0.4559	1.57	1.706	2.12	1.885	1.961	1.686	1.98	Ō		0.03812	0.4156	-0.7188	0	0.3512	-0.5188	-0.065	-0.025	0.02125	-0.5388	1.822	0		1.841	0.47	0.6325	-0.44	-0.37	-0.6944	-0.5	0.58	1.67	-0.61
HS578T	AKKY9X	-0.5488	-2.209	0.49	0	-0.4159		-0.4344	0	-0.005	-0.3088	0.1056	-0.86	-0.08	1,741	-0.2719	-0.7344	-0.9288		-0.2688	-0.02875	0.945	-0.135	-1.179	-1.029	-0.4975	-0.79	-0.845	-0.4194	-0.49		1.57	1.2	1.056	1.52	-0.78	-0.76	
BT-549	AKKYIUX	-0.09875	-1.589	2.33	2.84	-0.5159	0.25	-0.2244	-0.72	-0.625	0.4712	0.2056	0.77	-0.01	3.491	1.658	1.056	2.971	3.46	2.221	1.831	3.235	2.315	1.121	1.711	4.252	2.25	2.535	2.311	2.01	3.092	0.99	0.89	0.8056	1.1	0	0	0.65
SW872	AKKTOX	1.181	0.1012	1.29	1.5	3.614	9.0	1.176	1.35	1.135	1.561	0.8256	0	0.00	- 1	0.08812	-0.2144	1.381	1.32	1.041	0.9288	-1.105	0.565	0.08125	0.05125	-1.248	-0.31	-0.205	0.4006	-0.15	0.0925	0.13	-0.37	-0.4544	0.04	0.2	-0.32	-0.35

~	
a	
2	
<u></u>	

									٠,																													
T47D	ARRY14X	-1.299	0.01812	-0.91	0.4313	-1.128	0.3106	0.8		-0.92	-1.294	-0.3888	-0.5888	-1.06	0.335	0.9406	-0.2775		0.2891	1.291	-0.21	-0.11	-0.0375	-0.02188	-0.995	4.915	1.705			0.215	3.92		1.21	0.28	-0.04875	-1.62	0.47	0.00
MCF7-NCI	ARRY15X	-0.5287	-3.292	-2.36	-1.609	-1.448	0.3206	0.18	-0.9044	-0.55	-0.9244	-0.3587	-0.3787	4.0	-0.675	-0.3594	-0.3075	-0.82	-0.6209	0.8213	1.08	0.11	0.7125	-0.5519	1.765	0.025	-1.175	-2.955	-0.94	-0.005	-0.13	0	-0.2	0.01	0.07125	0.51	0	-0.29
BT-474	ARRY13X	-1.769	-2.412	-1.1	-3.349	-0.5875	-0.02937	1.56	-0.1644		-2.114	-1.149	-1.319		-0.335	0.03063	-0.7575	0	-1.251	-0.9587	-0.77	0.36	-0.6075	0.9281	0.915	-0.115	1.495	0.135	2.53	0.345	1.79	1.22	0.22	0.26	0.9813	0.88	0.51	-0.16
SK-BR-3	ARRY12X	-0.1387	-0.6619	-1.95	-5.179	-1.628	-0.4394	0	-0.8344	-1.09	3.246	3.661	3.511				0.6925	-1.37	0.4191	0.4012	2.47	0.52	0.1225	1.108	0.785	0.525		-1.885	2.76	5:055	2.7	0.15	96.0-		-1.159	0	0.23	0.05
NB4+ATRA	ARRY17X	3.169	2.876	2.108	1.559	0	0.7481	-0.5725		-1.332	-1.097	-0.1512	-0.4012		1.113	-0.4119	0	0.0275	-0.2634	-1.671	-2.092	-0.7425	0	-1.984		-1.057	-1.597			-1.177	-1.122		-0.8625	-2.852	-1.991	-2.902	-0.9125	
MOLT4	ARRY18X	2.3	1.637	1.659	2.26	-0.7888	0.07938	-0.9912	,	0.8788	0.9044	1.22	96.0		-1.716		-0.04875		1.348	-0.82	-1.011	-0.2612	0.2412	-1.843	1.234	-0.9262		-2.076	-2.351		0.2488	-1.821	-1.201	-3.831	-3.23	2.179	-0.3613	
RPMI-8226	ARRY16X	1.471	1.478	3.6	1.571	-0.4975	0.3106	-0.7	0.1456	-0.97	-3.114	-1.979	-1.549	0	-0.255	0.3706	1.572	0.54	1.369	-2.109	0.55	0.87	0.1425	-0.9419	-0.055	-1.595	-2.495	-3.785	-0.28		-0.76	-0.55	-0.52	0	0.6712	0.41	0.32	-0.17
HS578T	ARRY9X	0.1412	-1.612	0.94	-1.029		-0.06938	1.51		0.75	-1.014	-0.3388	-0.7188	-0.06	0.045	0.01062	0.1525	-0.12	0.4791	-0.7288	0	6.0	-0.4975	2.038	0.055	0.225	-0.255	-0.735	0.38	-0.205	-1.01	0.21	0	2.65	1.771	0.38		0.36
BT-549	ARRY10X	0.6912	-0.05188	-1.18	-1.539	0.1325	-0.2594	0.33		0	-2.194	-1.519	-1.339	0.68	0.055	0.6306	-0.4275	0.79	-0.1509	-1.159	0.55	0.02	0.2325	2.818	0.275	-0.645	0.615	2.145	-0.3	-0.285	-0.01	0.51	-0.27	4.33	0.6012	0.73	0.29	0.7
SW872	ARRY8X	1.481	1.468	0.9	1.191	-0.8775	-0.1194	-0.03	-1.834	-0.43	2.006	2.501	2.211	-0.57	-0.045	-0.5194	0.5425		-0.03094	-0.03875	0.58	0	0.1925	1.778	2.425	-0.815	0.305	0.425	0	0.075	-1.17	-1.02	-0.68	-0.25	0.3913	0.34	-0.31	-0.05

r	J
đ	υ
ī	5
ď	3

T47D	ARRY14X	0.29		0.52	90.0-	3.592		1.534	2.565	2.12	0.845	-0.9688	0.01562	0.04125	0.675	-0.6875	0.36	0.175	2.928	0.515	1.895	1.17	-0.72	2.531	2.761	2.106	-0.49	-0.5903	1.156	-0.5519	1.472	-0.6794	-2.04	1.078		0.38	-0.4819	-0.115
MCF7-NCI	ARRY15X	0	-0.7753	0.75	-0.2	1.793	1.05	1.474	1.465	2.6	-0.075	3.131	4.516	0.6513	1.135	-0.0775	-0.54	0.315	-0.2919	-0.015	1.765	1.29		0.8806	9096'0	0.9856	-1.91	0.3197	-2.124	-1.972	-0.0275	-0.6494	-2.35	-0.07187	0.23	-0.1	-0.08187	-0.145
BT-474	ARRY13X	0.32	-1.685	0.53	0.31	0.1625	-0.2	0.8541	2.585	2.76	0.325	2.751	4.906	0.2613	0.195	0.3025		-0.315	1.428	1.135	0.125	0.08	-0.04	0.6506	2.141	1.786		-1.87	-1.834	-1.152	-0.6075	-0.6794	-1.76	0.1181	-1.31	0.73	-0.09187	0.415
SK-BR-3	ARRY12X	0.59		-0.05	-0.41	-1.168	4.45	1.414	3.345	3.76	7.845	5.461	909'9	2.541	2.465	0.4425	1.13	1.125		0.275	-0.325	-0.42		0.7006		-1.624	-0.11	-0.1703	-0.3637	-0.5619	-0.5075	-2.239	-1.18		-1.35	-0.22		0.115
NB4+ATRA	ARRY17X	-1.202	2.142	-1.082		-1.93				-2.582	-1.807	-1.591	-0.3469	-1.011	-3.197	0	0.0775		-0.6044	-0.7675	-0.2675	0.4075	3.818	1.168	-1.272	-1.537	-0.5025		-0.3762	-0.8744	0	1.048	1.018	0.2756		0.6175	0.3156	-1.097
MOLT4	ARRY18X	0.7587	-0.4966	0.4188	-0.6512	0.00125	-0.8612	1.163	9966.0-	0.8088		-3.15	-0.8456	6'0-	-1.676	-0.08875	0.7088	-0.7662	-0.8431	-0.8862	3.724	3.719	1.889	1.819		1.734		0.4484	0.125	-0.2031	-0.9488	0.4594	0.9788			0.7888	0.8069	-0.6262
RPMI-8226	ARRY16X	0.72	-1.725	1.48	0	-1.048	1.35	-1.276	0.6047	0	0.075	3.001	4.676		1.185	1.092	0.47	0.035		-0.055	-0.085	0.12	0	0.5406	-0.6594	,	0.35	-0.2503	-0.8938	-1.022	-0.2675	1.831	1.89	0.8781	0.41	-0.1	0.1481	-0.845
HS578T	ARRY9X	1.06	1.325	-0.42	0.35	2.142	0.98	1.174	0.8047	-1.42	-0.445	-0,3488	1.066	-0.3388	-0.445	0.4625	1.02	-0.095	4.168	0.335	0.475	1.63	1.51	-0.2394	0.8506	0.8256	-1.69	-0.8303	-1.044	0.02812	-0.0675	-0.8094	-1.76	-0.5219	-1.56	0.24	-1.462	-1.075
BT-549	ARRY10X	0.31	1.875	0.55		1.552	0	1.394	0.8847	0.02	-0.755	0.8612	1.186	0.1412	-2.205	0.1425	0	0.495	2.098	0.035	-0.645	0	1.85	-0.5594	-0.4494	-0.04438	-0.14	-0.2303	-0.1238	1.028	0.1025	-2.809	-2.11	1.868	1.33	0	0.05812	-0.575
SW872	ARRY8X	-0.48	0.4547	0	-0.73	4.822	-0.32	2.734	2.145	0.34	-0.345	0.2312	1.166	-0.6187	1.285	0.1725	0.39	3.575	0.3181	-0.035	0.345	0.42	0.3	0.1106	-0.2794	-0.7244	-0.11	0.1997	-1.314	-0.2519	-0.6575	0.09062	-1.59	-1.052	-2.22	-0.45	-1.222	-0.645

2
O
亙
ā

									• •																													•
T47D	ARRY14X	-1.15	-0.3488	-0.5175	-0.5675	0.3681	0.11	1.242	-1.3		1.258		-0.2	1.51	1.474	-0.9019	-0.17	1.62	0.7212		-1.278	-1.58	-0.6088	-0.23	-0.7838		-0.02	0.21	-1.719		-0.7519	-1.809	-0.27	-0.11	-1.91	-2.51	-0.5494	0.58
MCF7-NCI	ARRY15X	-0.03	0.2813	-0.4575	-0.2075	-0.3019		-0.8375	-0.39	-1.29	-1.392	-0.7753	-1.15	-0.17	-0.5459	-0.03187	90.0	0.15	0.4412	1.545	0.3525	0.07	0.2413	0.23	-0.8837	0.1925	0.36	0	-0.9887	0.43	-1.112	-0.4887	0.55	-1.18	-0.78	-0.53	0.3306	-1.81
BT-474	ARRY13X	0	-0.2987	-0.3475	-0.3175	-0.8919	-0.11	0.3325	0.03	0.88	0.3781	1.285	-0.48	-0.65	-1.566	-0.2819	2.81	0	0.5112	1.535	0.5225	29.0	-1.369	-0.85	-0.4837	0.0725	0.94	-0.52	0.00125	90.0	2.668	1.771	3.26	0.68			-1.159	-1.48
SK-BR-3	ARRY12X	-0.68	-0.2987	0.4025	0.7725	-0.6619	-0.62	0.0525	0.72	0.72	-1.212	-1.045	-2.27	9.0	0.9941		-1.14	0.48	0.1712		-3.498	0.55	-0.6088	3.5		0.4425	-1.22	-0.1	0.01125	0.41	4.148		1.35		-0.29		0.2606	0.71
NB4+ATRA	ARRY17X		-0.5512	0	0	-0.03437	2.558	0	-1.782		1.666	3.862	-1.712	-1.242	-1.738	-1.084	0.1375	-0.7725	-0.1712	-1.277		-0.2925	0.1088	2.698	1.984	0		0.9975		2.728	-1.164	-0.6912		0.5875	2.048	1.288	1.048	0.7575
MOLT4	ARRY18X	-0.1813	-0.28	0.6812	0.1312	0.1769	1.469	3.731	6.309		3.187	2.663	1.169	-0.00125	-1.107	1.437	0.2988		-1.41		0.00125	-2.051	-1.39	-2.481	0.055	-1.559		-0.2013	2.79E-11	-1.571	-2.063	-1.47	-1.231		-0.6312	-0.1512		-3.431
RPMI-8226	ARRY16X	0.55	1.291	0.3325	0.2925	0.8781	0.92	-1.258	0	-1.45	0.1181	-0.5453	-0.25	0	0.4841	0.05812	0.72		-2.069	-0.325	-0.7475	1.67	0.3612	-2	-0.3438	-0.4375	-2.03	-0.15	-2.729	-0.08	1.378		1.82	0.59	0.12	0.34	-0.4094	1.17
HS578T	ARRY9X	-0.65	-0.6488	-0.1675	-0.6175		1.29	1.092	88.0	-0.08	-0.3719	-0.9453	0.63	-0.49	-1.116	0.5081		-0.74	-0.6588	-0.095	-3.478	-1.33	-0.3688	-1.08		1.162	-1.31	-0.61	-0.9188	0.86		0.9912		-0.56		0.91	0.01062	0
BT-549	AKKY10X	-0.18	1.011	2.562	2.122	1.518	0.85	-0.9675	2.7	2.52	1.378	-0.7053	1.11	1.75	1.474	0.9281		-0.79	1.251	-1.215	-3,568	0.06	0.3412	-1.55	-1.144	-0.0075	-1	0.16	0.1612	-0.72	-1.232	1.031		-0.08	-0.42	-0.6	0.06062	-1.03
SW872	AKKYBX	-0.54	-0.06875	-0.7775	-0.9875	-0.6919	0.63	-0.9375	-0.22	-0.05	-0.4819	0.1947	-0.22	-0.34	-1.176	-0.2719	-0.01		-2.539	0.095	-3.378	-2.1	-0.1088	-0.7	-0.2038	0.0225	-1.74	0.15	-1.379	0.01	-1.042	0.7112	3	-0.51	1.67	0.6	0.4006	0.8

~
e
囨
ᆵ

П	~	92	0.59	15	35	-0.35	0.84	H	유	Γ	-3.34	72	92	Γ	-0.2	<u> </u>	Γ	8	유	25	8	1.95	31	0.44	0.19	0.31	2.73		29	18	60	68	12	81	52	0.65	32	Ē
T47D	ARRY14X	-0.065	O	-1.291	-0.35	φ	Ö		5.37E-10		.5.	-1.072	-2.065					3.089	5.37E-10	-0.25	1.205	1.	-0.6531	0	0	0.	2.	•	-0.3359	-1.018	-1.009	-0.89	0.4112	0.4281	0.2425	o	-1.32	1 241
MCF7-NCI	ARRY15X	-1.355	-0.27	-0.7109	0.81	1.02	0	1.24	-2.4	-1.604	-0.53	0.7681	1.485	0.12	0.26	1.056	-0.67	-0.9709	0.52	-0.05		2.05	1.757	0.99	1.3	1.08	4.46	1.75	0.5941	0.9725	0.8413	-2.15	0.1613	0.1281	-0.8175	1.4	1.38	2 701
BT-474	ARRY13X	1.045	0.16	1.269	0	90.0	0.12	0.14		-0.02375	-0.45	0.7281	2.245	0.48	-0.51	-1.734			0.11	-0.76	0.955	2.11	0.9269	0.78	0.48	0.64	-0.4697	0.01	0.2241	-0.2175	-0.6087	0.13	1,341	1.038	-1.197	89.0	0	0 0112
SK-BR-3	ARRY12X	-1.425	0.02		0.01	0.12	9.0	-0.27	-0.05		0.0	-2.112	0.5147	0	-0.17	1.686	0.75	0.2791	0.78	0.03	0.115	1.53	_	0.12	0	0	1.66	-0.63	-0.4059	0.5525	0.4112	-1.22	1.291	0.1881	-3.178	0.19	1.51	70000
NB4+ATRA	ARRY17X		0.9275	0.7966	0.7475	0.7075	0.5475	0.4175	0.7275	1.954			,		-0.1825	-1.677					-2.257	-0.2625	-0.04562		-0.1425	-0.1125	0.007813		-1.958	-2.31	-2.551	-0.1425	-1.831	-2.334	0.43	-2.452		2 274
MOLT4	ARRY18X	-1.106	-2.761		0.3187	0.08875	-4.461	0.9388	-0.8612	0.025	-2.941	-1,203	-1.477		0.7188	1.494	-0.1512		-1.191		-0.5962	-0.2412	-0.1644		-0.09125	-0.7312	-3.041	-1.011		0.00125	0.15	-1.451	-1.81	-0.6731	0.00125	-2.691	-0.5313	
RPMI-8226	ARRY16X	-1.505	-1.12	-1.971	88.0-	-0.51	-3.08	-0.25	-2.21		1.06	0.5781	1.655		0.81	-0.4844	0	-1.531	,	0.63	-1.305	-3.61	-0.6731	-1.73	-0.1	-0.32	-2.02		-1.476	-2.158	-2.769	-3.42	0.8712	0.8481	-3.488	1.37	0.01	0 0012
HS578T	ARRY9X	0.615	-0.02		-0.05	0	-1.84	96.0		2.506	90.0	1.408			-0.14		2.43	1.589	-0.02	-0.03	0.825	0.04	-0.6031	-1.58	-1.8	-2.08	1.68	0.3	-0.3659	-1.188	-1.309	1.11	-1.209	-1.312	-3.378	0.08	-0.1	
BT-549	ARRY10X	0.575	0.85	0.02906	0.95	0.58	-0.84	-0.96	-1.25		-0.65	1.418	-0.7053		0.53	-1.944	0.27	-0.1709	0.45	1.22	0.765	ō	0.1269	0	0.24	0.27	-0.4897		0.2741	0.4625	0.2012	1.63	0.8112	-2.022	-4.358	-0.4	-1.03	0 1412
SW872	ARRY8X	1.975	0.28	0.2691	0.2	0.5	0.97	1.33	0.4	2.106	-0.92	0.5519	-1.645	-3.4	-0.76	-1.034	1.91	1.109	0.51	0.31	2.655	1.91	-0.3831		0.54	0.56	-0.3397	-0.43		0.9525	0.2912	-2.9	-1.569	-1.622	0.2725	0.81	-0.43	-0.4188

2
<u>o</u>
2
٩

									_	_												,			,													
T47D	ARRY14X		-1.03	-0.7394	-0.3675	-0.8459	0.4	-0.1619	1.621		0.7125	1.571	2.304	0.8925	1.06	-0.8	0.9981	-0.28	0.22				-0.05		-1.15	5.37E-10	0.1181		-0.21	0.71	-0.8288			1.02	99'0	0.49	5.37E-10	0.3591
MCF7-NCI	ARRY15X	1.39	0.47	0.3306	-0.3375	2.554	-0.05	-0.3619	-0.2887	0.125	0.7525	1.101	0.2241	-2.177	1.78	-0.3	0.7081	o	0	-0.04594	4.0	1.159	0.12	-1.12	0	0.89	0.3981	-1.634	-1.27	1.75E-08	-2.269	0.055	-2.121	0.23	0.79	1.09	0.29	0.1291
BT-474	ARRY13X	3.14	-0.2	-0.1294	0.5125	-0.1659	0.79	0.6281	0.4413	-0.325	1.513	2.321	2.534		0.11	-0.14	0.5381	1.68	-0.2		-0.13	1.439	1.25	1.88	0.72	-0.1	0.1181	0.6556	0.71	-0.26	1.311	1.485	-0.7409	-0.34	<u>-</u> -	-0.5	89.0	0.4591
SK-BR-3	ARRY12X		1.33	1.511	1.202	2.344	1.72	1.848	0.2712	-0.035	1.742	2.151	2.334		0.4	1.57	1.998	1.56	0.12	1.414	0	0.2291		1.2	2.36	1.65	1.988	0.3956	0.35	0.61	2.601	1.065	1.499	1.65	1.26	-0.7	1.81	1.229
NB4+ATRA	ARRY17X	-5.302	-2.302	-4.992	-1.17		-2.412		-1.061				-2.828	-3.47	-5.152	-4.132	-1.124	-0.3525	-2.652			-0.9934	-1.322	-0.3125	-1.882	-1.682	-6.244	-5.497	-2.532	-2.812	-4.751	-4.657	-5.333	-2.552	-5.282	-6.362	-3.102	-2,903
MOLT4	ARRY18X				0.00125	-2.677	-2.311	-3.083	-1.02		0.00125		-3.327	0.00125	-4.971	-3.571	-0.6331		-0.8313	-2.427	-5.591	-1.632	-1.941	-3.211	-3.051	-1.991	-3.583	-2.176	-1.251	-1.021	-4.11	-4.476	-3.692	-3.091	-1.641	-2.211	-1.181	-1,252
RPMI-8226	ARRY16X	1.41	0.34	0.3006	-1.678	-3.876	-2.57	-3.522	-0.8188	-0.405	-1.818	-0.7294	-2.846	-1.108	-3.59	-2.49	-0.8919	-1.46	1.24	-0.5759	0.13		-0.33	-0.54	0.94	-3.71	-3.292	-3.404	-2.12	-1.8	-2.559		-0.1109	-0.64	-2.55	-5.22	-3.36	-3.961
HS578T	ARRY9X		-2.59	-2.689	-0.3775	0.2241	-0.61	-0.5019	-1.189	-0.995	0.3425	-2.609	-2.316	-1.498	-0.69	0.24	-2.442	-1.11	-1.09		-1.59	-0.8009	-0.55	-1.01	-0.61	-3.76	-1.762	-1.624	-1.61	-1.24	-4.009	-1.345	-0.4809	-0.47	0.23	9.0-	-0.57	-0.7209
BT-549	ARRY10X		-0.19	-0.8394	-0.3275	-0.6559	-2.82	-2.532	-0.1688	0.035		-1.439	0.4541	0.1425	-1.59	0.88	-1.192	-0.91	-0.71	-2.596	-0.16	-1.061	-0.27	0	-1.75	-0.81	-1.032	0.9756	0.8	0	-0.1388	-2.405	-2.391	-1.29	0	0.03	-0.77	-0.6909
SW872	ARRYBX	-1.16	-0.73	-1.649	0.3525	-3.386	0.3	0.4281	-1.359	-1.545	-2.798	-2.609	-3.486	-1.368	0	-0.82	-0.1219	-1.79	-2.73	-2.206	-2.51	-2.131	-2.55	-0.86	-1.03	-2.38	-0.4419	-0.5844	-0.42	-1.44	-4.529	-1.835	0.5891	0.94	-0.31	1.09	-0.12	-0.03094

2
<u>u</u>
坖
'n

٠																																						
T47D	ARRY14X	5.37E-10	-0.06	1.128	1.99	2.04	2.006	1.008	-0.19	1.15	0.61	1.58	1.456	3.26	2.178	2.6	1.65	-0.2259	0.5481	0.7606	2.399	0.1862	0.5913	0.4413	0.6213	1.25	1.221	1.116	3.3	1.46	0.7212	-0.2288	1.09	-0.1009	0.8491	0.2341	0.6591	1.012
MCF7-NCI	ARRY15X	1.36	0	1.518	1.75	1.78	2.176	1.378	1.64E-08	0.73	89.0-	-1.29	-0.1537	4.16	2.408	1.75	0	0.6641	0.7881	0.6306	0.4691	0.5763	0.6213	0.7713	1.031	-0.04	1.851	-0.06437	1.96	-0.35	0.9113	0.04125	1.01	1.559	0.1691	-0.5759	-2.961	-1.727
BT-474	ARRY13X	0.42	69.0	2.348	0	-0.08	-0.3444	-0.5419	0.95	0	1.8	1.4	-0.05375	3.57	0.8881	1.87	0.38	0.01406	0.5081	0.9406	0.5691	0.1063	0.8313	0.6013	1.051	0.04	1.761	0.1456	1.65	0.07		0.8413	-0.08	0.2891	-2.431	-1.226	0.6491	1.823
SK-BR-3	ARRY12X	2	0.48		1.82	1.89	2.296	1.328	0.58	1.67	3.01	2.03		-1.26	-0.2319	2.03	1.25	1.804	0.6081		2.099		0.4513	0.6013	1.191		1.911	0.8156	2.13	1.45	0.8813	1.241	0		-1.071	-1.106	-2.621	-2.338
NB4+ATRA	ARRY17X	-3.722	0.0175	-3.304	-2.622	-3.642	-3.347		-1.472	-1.152	-2.862	-1.652	-0.2262	-1.622	0.1156	-1.832	-1.602		-2.024		-3.503		-3.051	-6.041	-4.941		-1.621	-0.7369	-4.692	-3.332	-1.711	-0.4312	-0.7425	-3.803	-3.483	-3.668	-3.163	-3.11
MOLT4	ARRY18X	-4.381	-2.801	-1.743	-3.861			-2.843	-1.021	-0.3413	-2.051	-1.581	0.055	-0.2812	-1.273	-2.421	-3.521	-4.217	-2.493	-1.151	-4.422		-1.06	-1.26	-1.03	-4.071	0.53	-1.746	-1.021	0.2388	-0.87	-0.81	-0.8412	1.028	-0.4222	-0.04719		0.00125
RPMI-8226	ARRY16X	-3.58	-5	-0.3519	-3.53			-3.692	-0.85	-1.92	-3.2	-0.65	-0.2538	-0.92	-0.2319	-1.71	-0.25	-0.5959	0.6081	0.2906	2.509		0.4212	0.1712	0.3412	-2.2	-3.329	-0.4744	-0.99	-0.95	-1.509	-0.9688	-1.31	-3.241	-2.801	-3.346	-3.261	-2.448
HS578T	ARRY9X	-3.02	-1.19	-1.362	-2.06	-3.99	-3.184		-1.11	-2.01	0	-2.2	-1.974	90'0-	-2.082	-0.85	-4.16	-1.966	-1.112	-0.8394		-5.654	-1.869	-4.799	-5.119	-1.21	-0.4888		-0.19	-0.97	-1.369	-0.9988	-1.89	-0.2509	0.2391	0.2541	-3.071	-0.3775
BT-549	ARRY10X	-2.51	-1.5	-0.7519	-3.58	-3.33	-4.184		-1.07	-1.37	-2.79	-2.46	-1.524	-1.55	-2.012	-2.4	-3.13	-3.666	-2.202	-1.989	-2.951	-5.584	-3.539	-4.729	-5.049	-2.14	-2.159	-3.214	-1.13	-0.84	-1.549	-2.299	-2.31	-3.491	-0.5809	-0.1059	-4.851	-1.798
SW872	ARRY8X	-3.38	-2.09	-1.962	-3.21	-3.01		-1.252	-0.72	-0.78	-1.64	-0.1	-1.364	-0.65	-1.722	-2.06	-0.94	-2.696	-1.602	-2.599	-3.261	-5.674	-4.089	-5.119	-4.599	-2.35	-2.279	-2.494	-1.72	-2.03		-0.06875	-0.06	0.5191	1.009	-0.4159	-0.4809	0.9025

2
<u>v</u>
虿
ு

																																	-					
T47D	AKKY14X	0.5991	-0.275	1.107	2.21	1.274	1.412	0.9756	-0.08	-0.6319	-2.32	-0.6975	5.37E-10	1.385	1.56	0.6512	0.44	1.835	0.4656	0.92	-0.04	1.24		5.37E-10			2.649	1.53		0.1047	1.72	0.2181	-0.39	0.86	1.038	5.37E-10	-0.4188	-0.5488
MCF7-NCI	AKKTISX	0.9491	-0.825	2.227	2.46	2.474	2.302	0.04563	0.93	0.8181	0.12	0.2525	-0.27	0.055	-0.43	-0.00875	0.54	0.345	-0.164,4	-0.21	-0.35	0.93	0.52	-0.54	0	-0.315	-2.251	-0.44	-4.379	-4.265	-2.67	-0.001875	0	1.54	-0.07187	1.08	-0.08875	-0.3387
BT-474	AKKY 13X	5080.0-	-0.165	1.137	1.28	0.9541	0.9725	-0.2144	2.09	1.888	-0.92	-1.398	-1.24	-0.055	-0.19	-0.7587	-0.69	0.025	-0.4544	1.01	0.04	1.22	1.04	-1.71	0.88	-0.085	-1.291	1.39	-3.679	-2.185	-3.23	0.8181	0.94	0.16	1.568	0.53	0.7613	0.5313
SK-BR-3	AKKT 12X	0.009062	0.215	0.6169	0.6	0.6841	0.5425	0.5556	0.73	0.9181	1.6	-0.6975	0.3	0.855	0.91	0.5513	1.16	0.565	0.5856	99.0-	0.36	0.71	1.58	0.78	3.33		0.1791	1.26		0.9347		1.178	0.92	1.05	2.048	0.33	-1.039	-1.219
NB4+ATRA	AKK11/A	600	7897-	-0.9756	-1.352	0.1616	0	-1.687		-0.2544	-1.342	0	0.4075	-0.9075	-0.7925	-1.321	0.4875		-0.09687	-1.402	-1.982	-4,342	-4.252	-4.002	-3.992	-2.547	-3.643	-5.832		-2.468				-2.722	-3.244	-0.9125	-0.8112	-0.8312
MOLT4	AKK1 10X	0.0370	1.304	-0.09438		0.9728	0.9812		0.2988	-3.813	-1.371	0.7312	0.4088	-0.6563	-1.121	-3.3	-3.241		-4.976	-4.161	-2.471	-4.581	-2.611					-3.291		-5,117	-3.422	-4.393		-3.691	-2.483	4.241	-2.82	-3.17
RPMI-8226	AKK110A	116.2-	-1.885		-2.86	-2.846	-2.548		-0.61	-2.072	-0.89	-0.8075	-0.71	-1.295	0	0.06125	0		1.406	0.91	-1.67	1.05	2.64	4.21		-1.245	-2.021	-4.12	-4.329	-2.315	-1.67	-5.112	-4.33	-3.16	-3.092	-2.02	-1.569	-1.859
HS578T	1 281	1,201	0.102	-1.343	-1.06	-1.166	-1.438	-0.6444	0.18		0	0.2125	-0.04	-1.105	-0.78	-0.9188	-1.48	-0.535	-1.994	-0.74	-1.46	-0.55	-0.53	1.09	-1.08	0.375	-2.341	-3.63	-2.579		-1.82	-1.312	-0.69	-1.04	-0.8419	-0.17	-0.6688	-0.9288
BT-549	-2 101	1 005	1,305	-1.143	-1.19	-0.1959	-1.998	0.8356	-2.09	-2.762	-1.85	-0.9075	-0.43	-0.185	-1.47E-09	0.3812	-1.1	-1.185	-1.634	-3.22	-0.38	-0.45	0.7	-1.17			-2.591	-3.59	-4.659	-0.5653	-1.55	-2.102	-1.7	-0.31	-2.872	-2.57	-0.4988	-0.4788
SW872	-1 061	7007	0.233	-0.5331	-0.31	0.5341	0.4025	0.005625	-1.86	-3.352	-0.45	-1.648	-0.94	-0.885	-0.9	-0.9787	-1.42	-0.515	-1.364	0	-0.9	0.79	0	1.47	-0.44	0.085	-0.1809	-3.45	-2.079	0.3147	-0.06031	-1.742	-2.05	-0.43	0.3281	0.18	0.1712	0.1212

C	١
0	ľ
3	
٦,	

											•																											
T47D	ARRY14X	-0.05875	0.725	5.37E-10		0.45	4.75	1.73	-1.44	-2.5	-3.744	-0.62	-1.732	-0.05	-0.7988	0.2691	-0.9294	-0.0075	0.8525	-0.2	-1.29	-0.3888	2.525	3.02		5.24	7.41	7.03	3.82	2.31	2.967	1.717		-0.36	0.07125	0.74	3.931	5.661
MCF7-NCI	ARRY15X	0.6213	0.545	0.03	-1.25	0.17	0.4297	-0.62	-0.02	0.3	-0.06437	1.19	0.8081	0.05	0.4113	-0.7809	-0.7894	-0.6075	-0.9775	-0.2	98.0	0.7213	-2.795	-1.33	-3.754	-1.61	1.68	1.17	2.16	1.1	2.447	1.037	0.75	3.38	3.211	3.17	5.861	7.141
BT-474	ARRY13X	0.3613	0.275	-0.19	98.0	-1.16	-0.8403	9.0	0.88	0.03	0.3356	29'0	0.2081	3.32	-0.4987	1.109	1.451	0.2025	-0.5975	-0.75	20.0	0.2013	1.815	1.52		-2.86	5.53	5.03	1.3	0	-0.3231	1.327	3.97	1.92	2.301	2.29	2.941	4.171
SK-BR-3	ARRY12X	-1.519	1.375	0.38		-1.69	0.7297				0.4156	92.0-	-0.02188	-0.52	0.2813	1.999	2.771	1.082	1.522	0.75	0.18	-0.5788	-0.535	0.57	-4.204	-1.32		-0.7097	3.97	2.16	1.257	1.157	-2.28	-1		-0.95	-0.5187	-0.2088
NB4+ATRA	ARRY17X	-1.021	-4.047	-4.552	-5.402	-3.282		-4.632	-1.922	-3.302	-3.007	-2.182	-3.814	-1.012	-2.281	-2.893		0	1.95	-0.4525	-3.902	-0.06125		0.5475	-0.03625		-2.322	-1.732	-2.162	1.428	-0.6856	-0.6456	0.2175	1.078	-0.03125	1.908	-0.7912	-1.071
MOLT4	ARRY18X	-4.43	-5.086	-5.371	-5.061	-5.181		-3.451	,		-2.146	-2.801	-2.563	-1.291	-0.33		-0.5806	-0.8188	0.00125	-0.08125		0.78		1.379	2.305			0.4891	-1.961	-0.6713	-0.1244	0.02563		1.509	0.36	1.469	9.65	-1.89
RPMI-8226	ARRY16X	-2.559	-1,265	90.0		-3.72	-3.89	-4.07	-2.86	-2.08		-1.36	1.258	-1.63	0.4712	-0.5009	-0.9594	-1.128	-2.508	-0.37	0	-1.279	-1.545	-2.82	-4.614	-2.22		-0.9997	0.09	-0.16	1.277	6989.0	1.08	0.71	0.2812	0.3	-0.2288	-0.08875
HS578T	ARRY9X	-0.6288	0.605	1.08	1.14	0.06	1.14	0.03	-3.06	-1.74	-2.524	-0.79	-3.132	-0.12	-1.379	-0.4409	-0.02938	-0.4175	-2.008	-1.35	-0.47	-1.559	0.225	-0.45	-2.154	-2.16	0	1.39	-0.06	-0.09	-1.683	-0.06313	-0.01	-1.25	-1.039	-0.46	1.671	2.541
BT-549	ARRY10X	0.1512	0.265	-1.24	-0.21	0	1.82	2.82	0.45	0.19	0.7956	-0.37	-0.5619	0.33	-3.719	-0.1509	0.1006	-0.7675	-3.068	-0.14	-1.74	-0.7488	-0.225	-1.68	-2.994	. 0	4.03	3.45	2.1	1.18	1.147	0.2069	-0.73	-0.84	-1.499	-0.03	-0.7488	-0.1688
SW872	ARRY8X	-0.1987	-0.145	-0.55	0.09	-0.85	-0.4103	0	0.02	0	-1.074	-0.21	-0.9719	-1.67	-0.8888		-1.349	-0.9875	-1.288	0	-0.66	0.08125	-0.695	-2.7	-4.104	-2,44	1.1	0.5103	0	0.34	2.487	-1.243	0.01	0.23	0.3412	0	0.1813	-

2
O
5
ō

									٠,																								٠					٠
T47D	ARRY14X	0.09	1.41	1.398	1.251			0.75	2.32		0.1006	0.7662	1.34	0.2441	1.48	1.12	1.461		0.93	0.7412	1.98	2.7	6.178	4.93	3.791		1.95	3.45	3.32	3.729	2.46	3.671	1.448	1.07	2.241	2.531	2.296	2.2
MCF7-NCI	ARRY15X	1.05	-1.86	-1.002	1.241	2.506	0.64	0.02	1.83	1.87	1.641	2.806	4.75	1.664	0.7	2.24	1.541	1.35	1.24	0.9913	1.15	0.74	-1.202	-0.31	0.6113	0.7913	3.05	2.43	2.16	2.719	1.61	4.591	2.148	1.91	2.021	3.551	2.206	1.25
BT-474	ARRY13X	1.05	1.42	-1.352	0.8813	3.506	3.07	-0.12	1.61	1.02	1.981	3.166	2.76	2.834	9.0	1.22	3.051	1.47	1.18	0.2513	1.54	2.61	3.938	2.88	2.281	1.241	2.28	3.49	3.32	4.219	-0.29	2.381	2.878	1.98	1.731	2.751	3.046	1.47
SK-BR-3	ARRY12X	1.4	4.22	2.298	0.3113	3.046	2.3	3.35	3.53	3.53	3.231	1.446	0.26	0.4441	0.99	1.2	1.211	-0.1	-0.17	0.6213	0	-2.54	2.488	1.66	1.181	1.451	-2.36	4.06	4.09	4.449	1.55		2.948	4.35	2.351	3.291	2.686	1.36
NB4+ATRA	ARRY17X	0.6875	-0.1925	0.2756	0.1288		1.578		-0.1225		2.068	-0.1062		-0.1784	0.6075	-2.682	-1.461	-0.8825	-0.9425	-0.3612		1.868	3.506	2.758	2,199	0.8088	-0.7325	-2.282	-2.432	-1.243	-0.6225	-0.4712	-1.584	0.8475	-0.2512	0.3388	-0.02625	1.598
MOLT4	ARRY18X	-1.271	-3.781	-1.783		-0.2856	0.9488	-0.4212	1.109	1.899	-1.371		-1.241		0.4388	0.8488	2.67	0.8188	1.289	-0.59	0.01875		2.847	1.339	1.49	0.25	-0.5812	-1.941		-2.062	-2.051	-1.45	-0.8231	2.129	1.03		0.445	-2.001
RPMI-8226	ARRY16X	0.72	-0.04	0.2881	-0.8988	9508'0	1.92	1.59	3.98	2.45	2.001	-0.7738	-0.26	3.224	0.34	-0.87	-0.6988	-3.35		0.9088	-0.32	-0.61	0.5381	0	0.7812	0.7212	-0.65	1.95	1.67	1.939	0.4	4.071	-0.1719	2.8	1.011	2.291	2.116	0
HS578T	ARRY9X	-1.27	0.81	-0.6719	-1.729	0.1456	-2.44	-0.02	1.29	0.74		-1.494	-1.42	-0.2659	-1.31	-0.34		0.05	-1.21	-0.1888	1.09	0		1.27	-0.4288	-0.5388	-0.79	0	0.82	-0.02094	-0.82	0.5312	-1.312	-1.26	-0.7688		0.2762	-0.57
BT-549	ARRY10X	-0.57	0.04	0.6281	0.5312	1.906	0.14	0.49	1.96	0.14	2.361	0.7662	0.38	0.004062	0.34	0.05	1.781	0.54	0.5	-0.1688	-0.64	-0.1	-1.642		-0.6488	-1.359	0.19	1.79	1.78	1.919	-1.42	-1.479	-0.6919	-0.04	-0.06875	-3.009	0.09625	-1.14
SW872	ARRY8X	0	0.55	-0.2819	-0.5987	-0.4144	-0.25	-0.02	0	-0.14	0.8806	-0.7038	-0.92	0.1241	-0.41	0	-0.2388	0.65	0.42	0.3112	-0.51	-0.61	-1.372	-0.36	-0.1887	-0.3488	-0.18	-0.06	-0.51	-0.1609	0.39	1.251	-1.182	-1.58	0.2113	-2.979	0.02625	0.69

	r	١	ų
	(3	J
•	7		Š
ľ	1	ī	3
ı	Ċ	•	_

									٠.		•																											
T47D	ARRY14X		1.936	2.761	4.396	2.31	2.29	3.899	4.22	3.31	2.911	4.45	4.338	4.61	2.465	1.91	4.018	3.902	2.71	3.851	2.948	2.574	4.87	2.161	4.72	3.67	6.65		6.77	4.474	4.448			4.02	3.751	3.936	4.147	4.33
MCF7-NCI	ARRY15X	2.401	0.7263	2.281	3.966	2.69	2.56	5.329	4.2	4.87	3.091	3.47	4.158	4.39	3.445	2.48	4.028	1.783	0.87	0.3106	2.878	2.274	3.6	1.321	5.86	5.11	3.68	3.691	4.39	1.874	2.098	3.191	3.156	3.39	3.081	3.906	3.337	3.14
BT-474	ARRY13X	2.861	1.476	1.891	3.636	2.08	1.53	2.259	1.87	1.57	1.181	3.3	3.478	3.86	3.005	1.8	2.458		2.97	2,561	3.708	3.114	2.94	1.621	4.01	4.14	4.1	4.951	4.31	2.144	2.178	2.921	2.836	2.84	2.131	3.426	4.777	4.37
SK-BR-3	ARRY12X	3.161	2.456	1.831	3.546	2.98	2.91	3.979	3.83	3.15	2.631	4.9	4.958	5.34	5.985	5.01	4.508	4.892	4.04	3.951	2.478	2.344	5.3	2.871	7.03	4.97		3.191	4.03	4.024	3.868		1.666	3.28	3.071	3.056	4.707	4.36
NB4+ATRA	ARRY17X		0.04375	-1.311	-1.387	-2.612	-1.712	-2.593	0.0375	-2.342	0.2588	-1.352	-0.8744	-0.3025	-3.358		-4.504	-1.54	0.3975	0.2881		-0.5184		-0.1712	-1.742	-0.8625		-0.7612	0.2675				2.243	2.858	2.368	3.153	5.584	5.258
MOLT4	ARRY18X	-2.651		-1.83	-1.036	-3.221	-2.421	-2.412	-0.9212	-4.581	-0.08	-0.8612	-1.693	-0.2012				0.00125	-0.06125	-0.2606	-0.1431		-0.4412	0.37		-1.101		-1.26	-0.3112		-2.983	-0.33	0.1044	3.079	2.969	2.554	0.04563	2.009
RPMI-8226	ARRY16X	-1.609	-0.04375	-3.029		0.2	0	-2.611	-0.92	-0.32	-0.6988	-0.5	-0.9719	0	-1.215	0	-2.482	-0.1475		0.2006	2.558	2.334	3.36	1.451	-0.3			0.1512	-0.17	2.304	2.308	1.921	1.416	1.98	1.481	1.356	5.437	5.23
HS578T	ARRY9X	-0.1994	-1.034	-0.8288	-0.4044	-0.02	-0.36	-2.131	0	-0.1	-0.1888	0		96.0-	-2.535		-2.022	0.9825		0.05062	0.5581	-0.9959	5.03E-10	-0.2788	0		0	0.4212		0.2741	0.4681	-0.3588	-0.9644	0	-0.5194	-1.524	1.457	0.4
BT-549	ARRY10X	0.1106	-0.5238	-0.2488	-0.2644	-0.77	69.0-	-2.061	-0.93	-3.45	-0.9988	-1.31		-1.72	-1.725	-1.68	-3.872	1.002	0	0.5906	-1.012	-0.3359	-5.03E-10	-0.3488	-0.11	-1.77	0.55	2.351	3.33	1.544	1.708	-0.3688	-0.5644	-0.31	-0.2694	-0.4544	-0.5431	-0.41
SW872	ARRY8X	-1.829	-0.2738	-1.009	-1.454	0.91	1.12	-2.251	-1.34	1.58	0.8212	-0.79	-1.432	-0.4	-1.695	-2.39		0.6025	0.02	-0.2394	-1.082	-1.026	0.17	-0.7287	3.48	0	-1.03	-0.7187	-0.39	-1.576	-1.552	0.1812	-0.2944	6.0	0.3906	-0.2644	0.3369	0

2
<u>u</u>
<u>ज</u>
P

																																	•					
T47D	AKKY14X	3.501	3.021	2.657	4.458	4.661	5.546	5.091	4.14	3.681	4.71	2.142	5.306	1.424	1.54	2.45	6.081	4.41	3.351	5.576	3.56	1.148	1.37	4.715	7.311	7.201	2.01	2.551	3	1.939	2.41	1.47	2.05	0.61	3.027	1.57	1.221	2.301
MCF7-NCI	AKKY15X	5.591	3.301	2.277	4.548	4.401	5.116	5.041	3.47	4.961	4.96	2.923	3.836	1.084	1.12	2.06	5.071	4.12		2.576	2.39	3.258	1.46	3.375	4.741	4.571	1.04	1.511	1.57	2.859	3.22	1.98	2.19	1.24	2.357	1.78	3.471	1.281
BT-474	AKKY13X	5.451	2.401	2.467	4.978	2.541	2.966	3.101	2.26	2.841	2.74	1.893	2.426	1.314	1.04	2.07	2.791	1.65		5.926	3.28	1.728	2.71	6.145	7.091	7.321	1.03	1.561	1.98	1.339	2.11	2.39	2.86	2.21	3.597	1.7	1.831	1.811
SK-BR-3	ARRY12X	3.911	1.311	2.787	4.098	0.5013	0.9056	1.001	0.01	-0.2488	-0.86	1.792	2.386	3.104	2.88	2.76	0.7806	0.08	0.1013	0.1156	3.36	2.068	2.31	4.215	5.871	6.341	1.64	2.541	2.73	3.299	4.09	3.81	4.09	2.71	4.167	1.31	2.751	1.531
NB4+ATRA	ARRY1/X	3.699	-1.391	-0.7356		-1.831	-1.927	-1.831	-0.8125	0.08875	-2.152	0.38	-1.077	0.1816	-1.082	-0.1625	-1.012	-1.662	-0.6312	2.283			0.8275		-1.062	-1.501	-1.092	-0.5412	-1.942	-2.063	-2.242	-1.842	-1.482	-3.432		-1.602		0.7688
MOLT4	ARRY18X	0.00	-1.31	-0.08437	-0.8531	69'0	2.244	1.68	1.119	-0.09	-1.911	0.00125	-0.5756	-0.5672	0.8988		-1.571	-1.521	-0.87				-0.6412	-3.056		96.0	-2.441	-0.42	-2.561	-0.4222	-2.331		-2.341	-1.991	-0.2344	0.05875	-1.1	-1.32
RPMI-8226	ARRY16X	0.5112	-0.1988	2.267	-0.8719	-1.409	-2.194	-1.949	-0.91		-0.59	1.902	1.876	-0.6659	-0.26	0.44	-0.1294	-2.34	-1.009	1.206	-1.73	0.7981	-0.62	-0.795	-0.2794	-0.3588	-1.77	-0.6688	-1.82	1.639	1.89	-0.13	0	-1.02	-0.4331	-1.51	-1.299	-0.9488
HS578T	ARRY9X	1.751	0.05125	0.1769		0.6012	-0.7844	-0.7388	-0.44	1.391	0.57	0.2525	-0.06438	-0.5759	0	-0.51	-0.6294	-1.8	0.6212	-0.7644			-0.99	3.345	4.561	5.171	-0.24	-0.05875	-0.24		-1.17	-1.05	-0.65	1.28		0.65		1.191
BT-549	ARRY10X	-0.5588	-0.1388	-1.223	-0.5019	-0.7688	-0.8644	-0.7188	-0.62		0.36	-0.5075	-1.644	-1.036	0.04	0	-2.019	-0.73	0.6512	-0.4244	-1.08	-0.09188	0.79	-0.335	-0.009375	-0.3888	0.58	0.8212	0.83	-0.6209	-0.08	-1.21	-0.58	0	-1.813	-0.37	-1.499	-2.399
SW872	ARRYBX	-0.05875	-0.3088	-0.8631	0.9781	-1.779	-2.414	-2.489	-0.96	1.131	ō	-0.1475	-0.4144	-0.2759	-0.92	-0.5		0.63	0.4413	0.4756	0.56	0.4881	-0.17	3.745	4.981	5.361	0.29	0.7712	98.0	-0.1809	6.0-	-1.28	-0.73	-1.56	-0.7531	0	-2.269	0.4312

2
<u>o</u>
亞
ָם,

T47D ARRY14X	0.03	0.065	2,195	3	5.864	3.32	1.15		5.37E-10	-0.59	2.73	1.48	0.6012	0.5825	0.21	-0.1788	1.86	1.671	1.158	1.27	1.846	0.2712	0.01406	-0.37	0.49	0.1325	0.9841	-0.1188	0.8012	-0.06437	0.29	0.00625	-0.25	2.341	0.77	0.01812	1.082
MCF7-NCI ARRY15X	1.94	2.225	3.765	0	2.394	96'0	-0.62	0.43	-0.12	1.16	0	1.04	1.051	-0.4175	1.16	2.791	1.36	1.181	0.5581	0	1.346	0.8013	-0.7859	9.0	0.99	0.7825	0.4741	0.1813	0.2013	1.086	-0.81	0.6563	0	0.7506	0.08	-1.192	-0.0875
ARRY13X	1.71	1.625	3.115	-1.27	1.854	0.46	1.93	2.33		0.37		-0.48	-0.7387	2.002	2.67	0.07125	-0.02	0.9613	0.5881	60.0	1.516	0.9412	1.944	1.52	0.48	0.3325		1.561	0.00125	1.316	-0.14	1.446	0.14		0.82		-1.468
SK-BR-3 ARRY12X	1.59	2.265	-0.705	-1.04	0.9041	-0.42	0.2		0.12			-0.74	0.6813	1.652	2.31	2.381	0.22	-0.4188		0.18	0.4956		0.5241		-1.63E-11	0.8225	0.3341		-0.2087	-1.384	-0.63	0.3962	-1.1		0.55	-0.2019	-0.0675
NB4+ATRA ARRY17X	0.6875	0.8425	0.2325	-1.562	-2.208		-0.5825	-0.7325	0.0175	0.3075		-0.1525	-1.871	0	-1.222		-0.8125	-1.811	-0.8344	-1.012	-0.6569	0.1688	-0.7984	-3.082	0.1875	0	-0.6484	-0.1212	-0.3712	6969.0-	-0.4625	3.764	1.338	-1.802	0.0275	0.1456	0
ARRY18X	1.319			-2.211	-1.277	-0.5412	-0.2312	-1.071	0.8588	-0.8412		-0.6212	0.55	-0.6188	-0.9012		0.3488	-2.33	-0.5431	-0.5413	-1.116	-1.85	-2.797		0.1188		-0.9272	0.18	0.44	-0.6056	0.4388	-0.005	1.179	2.189	-0.1812	-0.9731	0.2412
RPMI-8226 ARRY16X	0.44	0.605	-0.095	-0.7	1.614	-0.02	1.19		99'0	0.74	3.34		1.661	0.4625	-0.48		0.87	-0.4688	-0.2519	0.47	-0.3844	-1.239	-0.1059	-0.56	-1.68	0.2125	1.994	0.06125	0.1912	-0.05438	-0.57	3.046	1.1	-0.03938	0.29	-0.3219	0.8625
HS578T ARRY9X	-0.34	-0.065	0.095	-0.15	-0.2459	-0.78	-0.05	0.94	-0.53	0.89	1.12	0.21	-1.189	-0.3275	0	0.6512	-1.17	-0.7388	-0.8419	-0.31	-0.1344		1.194	1.18	-0.1	-1.138	0.02406		-0.04875		1.63	0.8862	-1	1.961	-0.7	-1.262	-1.218
BT-549 ARRY10X	1.02	1.015	-0.835	0.08	2.584	69.0	1.34	1.17	-0.19	0	1	-0.11	-0.4488	0.9825	0.74	-0.2788	-0.57	-0.9988	-0.8819	-1.13	0.5656	1.181	-0.09594	-0.16	-0.8	-0.6975	0.6141	0.5112	-1.299	0.4556	1.41	-0.1238	-0.75	1.221	0.43	-0.5119	-1.328
SW872 ARRY8X	0.17	0.375	-0.665	0.2	-0.6159	-1.32	-2.05	0.21	0.02	0.78	-0.42	0.74	-0.4988	-0.6175	1.61	-1.249	0	0.08125	0.3081	0.14	-0.9844	-1.069	1.184	0.35	-1.14	-0.0475	-0.2859	-0.4588	0.06125	-0.6844	0.48	-0.1638	0.07	9069.0	0	-1.982	-0.6175

~	
a	
õ	
σ	

															1																							
T47D	ARRY14X	1.825	1.924	2.09	-0.2688	0.4006	3.201	0.14	1.01	0.6112	-1.549	0.69	0.7412	1.21	1.78	-2.382	-0.7875	0.2425	5.37E-10	1.308	0.7781	-1.51	-0.7	-0.77	0.61	0.9	0.5691	-0.28	0.37	0.3656	0.46	1.231	1.02	3.412		1.405	5.37E-10	0.2112
MCF7-NCI	ARRY15X	1.915	2.064	0.81	1.071	1.921	2.091	3.09	0	0.6713	3.611	-1.16	-0.7487	1.04	0.23	-0.6919	-0.4175	-0.3275	0.58	1.248	0.5981	-1.24	-1.24	0	0.04	-0.6	0.8291	0.99	2.19	1.816	0.51	0.3613	-0.13	2.663	69.0	1.155	99'0-	0.5813
BT-474	ARRY13X	0.165	0.8641	0.2	0.8613		2.181	1.19	0.64	-1.809	2.011	0	-0.8187	0.43	0.21	-1.622	-1.748	0.6025	0.8	-0.3319	-0.7819	1.2	0.71	0.76	-0.35	0	-0.5609	1.23	1.91	1.786	0.52	0.8213	66.0	2.853	0.48	0.015		1.181
SK-BR-3	ARRY12X		-0.6759	0.33	-0.4288	1.011	-0.02937	-0.03	1.83	0.5412	-1.929	-1.21	0.02125	29.0	1.29	-2.782	-1.228	1.392	0.57	0.7281	0.5581	0.1	98.0	-1.23	-0.05	1.28	-0.9609	2.99	-0.44	-0.5544	0.93	0.5513	0.57	1.802	99.0	-0.115	0.42	-1.289
NB4+ATRA	ARRY17X	-1.867	-0.8184	-1.822	0.3588	0.9481	-0.8919	-0.1625	-0.1325	-2.881	0.3388	1.308	-0.02125	-1.022	-0.6525		0	0	-0.4325	-0.05437	-1.004	-2.322	-1.952	1.248	0.6575	-1.322	0.7766	-0.9025	-2.242	-2.137	-0.4725	-0.7412	-0.5125	-2.12	-1.812	-1.927	1.268	-0.1512
MOLT4	ARRY18X	1.724	0.09281				-1.351	-0.1912	0.7213	-0.19		-1.191	-1.78	-1.571	-0.9812	-1.463	-1.019	-0.01875	0.2688	0.1869	-2.033	-2.291	-4.041	-0.7913	-0.2212	-1.601	-0.3722	1.159	-1.331		-0.3612	0.03	0.6988	0.00125	-1.351		1.009	0.03
RPMI-8226	ARRY16X	-0.125	-0.1559	-1.03	-0.7488	-0.4194	0.1506	-0.08	-0.4	-0.9988	3,531	-0.39	-0.6788	2.44	0.37	0.8381	1.532	-0.1975	-0.15	1.478		0.63	0.63	-0.01	0.19	2.27	0.1591	1.48	-1.63	-1.654	96.0-	0.6512	0	-1.018	-0.31	-0.015	1.01	7.241
HS578T	ARRY9X	0.155		80.0-	-0.3788			0.31	-0.02	-0.09875	-0.1988	-2.92	-0.4288	-1.29	-1.16	-1.702	-0.8075	-0.6075	-0.52	-1.212		-1.58	-1.33	-1.55	86.0-	-1.61	0.7191	99.0-	0.65	0.3356	0.52	-0.02875	-0.13	-0.0875	0	-0.255	0.48	
BT-549	ARRY10X	0.195	0.2841			-1.249	0.09062	0	0.28	-1.389	1.231	-2.64	0.1712	-0.97	-1.21	-2.752	-1.048	-1.168	-2.29	-1.142	-0.4819	-0.8	-0.37	-0.72	-1.13	-1.43	-0.2409	0.92	1.21	1.046	1.46	-0.4988	-0.23	-0.0675	-0.05	-0.835	-1.33	0.2812
SW872	ARRY8X	-0.375	-0.1159	0	0.9012	0.2706	1.211	-0.1	-0.7	0.5512	-0.9687	-2.42	-1.049	0	-0.58		-0.5875	-0.7775	-0.71	-1.012	-1.782	-1.85	-1.45	-0.21	0	-0.84	-0.7909	-1.06	1.04	0.8056	-0.06	-0.5087	-0.33	-1.198	-0.05	-0.565	-0.32	0.4112

~
ø
亞
'n
_

T47D	ARRY14X		-0.39			0.6197	0.82	0.58	0.06125	0.4	0.8206	0.7312	1.019	1.37	1.33	1.6	1.17	0.63	0.74	0.83	-0.0675	-0.2	0.82	0.1681	0.06812	-0.01	0.43	2.114	0.5425	-0.57	5.11	1.92	-0.6897	-3.061	-0.00875	-0.1387	0.3325	2.455
MCF7-NCI	ARRY15X	1.825	0.4	-1.46	-0.67	-0.4803	0	1.4	-0.1287	-0.33	0.1406	0.1613	0.2991	0.7	66.0	1.31	0.61	90.0	-0.11	0.45	-0.0575	1.03	-0.02	-0.4919	-0.1219	-0.44	0.56	0.2741	1.293	0.63	-0.07	-0.16	1.88	-1.391	-0.3687	0.1713	-0.6575	-1.525
BT-474	ARRY13X	2.075	0	1.66		1.4	2.03	0.02	3.261	2.71	1.601	3.081	4.029	3.19	3.72	4.32	3.7	3.9	3.54	-0.78	1.352	60.0	0.25	1.128	-0.1919	-2.09	-2.04	0.3741	0.8625	-1.11	0.33	-1.43	-0.3497	-0.8009		3.141	1.922	4.025
SK-BR-3	ARRY12X	-0.435	-0.84	4.32	2.6	2.37	2.66	-0.2	2.231	1.85	1.591	2.941	4.959	3.93	4.52	5.16	4.38	3.72	3.68	1.85		2.2	-0.58	-0.8319	0.9881	2.01	-1.66	-0.2259	-0.8775	0	0.5	0.15	-0.6997	0.7891	-1.459	0.7013	-1.208	0.285
NB4+ATRA	ARRY17X			0.9875	1.148	1.797	1.958	0.5375	1.249	0.7975	0.3181	1.479	-2.573	0.5175	-1.372		-0.5925	1.608	1.718	0.9475	0	0.1775	-1.372	-1.244	0.04563	-0.5225	-1.182	1.022	0.09	0.2675	-0.6825	1.128	0.6278		-0.2012	-1,341	0	-0.1375
MOLT4	ARRY18X			4.019	1.149	3.958	4.429	1.619		0.4788	-0.6806	1.14	-3.672	-0.8212	-0.3012	-1.491	-0.2112	1.329	1.609	1.329		0.7988	0.8488	2.517	1.467	-0.00125	0.3288	0.4728	0.00125	-0.02125		-0.6212	-0.1109	0.9678	0.01	0.14	-0.1288	-0.8362
RPMI-8226	ARRY16X	0.435	2.35	3.78	9.0	2.93	3.07	2.52	-2.549	0.46		0.3412	-3.161	-0.82	0	-1.41	1.86	-0.2	0.44				1.27	0.02812	-1.352	-0.61	-0.21	0.7641	1.302	0.56	-0.63	-0.4	0.9503	-1.541	0.6912	1.441	0.5425	0.075
HS578T	ARRY9X	1.395	0.88	1.57		-1.53	-0.37	0.53	-0.2188	-1.55	-0.8194	-1.029	-0.7809	-1.22	-0.51	-0.65	-1.44	69:0-		-1.34	-0.3475	-0.51	-0.95	0.06812	-1.112	-0.1	-1.89	-0.3659	-0.6375			0.23		0.4891	-0.3388	-0.3488	1.432	0.075
BT-549	ARRY10X	-1.145	-1.59	-0.37	-0.46	-2.31	-1.35	-0.75	-1.039	-1.02	-1.259	-1.049		-1.35	-0.75	-1.15	-1.2	0.04	-0.34	-3.88	-1.138	0.47	0.45	0.4581	-1.042	-0.01	-1.44	-0.7059	-0.9175	-6.82E-09	0.77	1.35	-0.8797	0.5891	1.331	0.5212	1.172	0.975
SW872	ARRYBX	0.755	-0.33	0.1	-1.76	-2.6	-1.12	-0.45		-0.22	-0.5094	0.2212	-0.9209	-0.54	-0.26	90.0	-1.14	-0.04	0.11	0.27	-0.9475	-0.86	-0.22	-0.6919	-0.2619	0	-0.35	-0.4959	0.6625	0.72	0	-0.4	-0.2397	-0.3209	1.141	0.2813	2.182	1.725

٦	١
q	U
7	
a	ä
	Jahre

	_	00	₩.	ر ا	IO.	0	N)	2	—	2	_	_	F	8	2	00
T47D	ARRY14X	-0.68	-0.984	1.066	-0.45	5.37E-1(-0.657	1.072	2.231	-2.355			0.324	-0.1688	0.285	-1.128
MCF7-NCI	ARRY15X	-1.23	-0.5544	0.5656	0	-0.41	0.7625	1.212	-0.2987	1.845	0.5191	0.68	-2.076	-0.3587	-2.485	-1.568
BT-474	ARRY13X	2.03	0.2956	-0.9144	-0.32	-0.44	2.332	0.1225	1.361	2.135	-1.261	-0.18	1.384	0.9213	1.505	-0.4481
SK-BR-3	ARRY12X	2.1		1.246	0.45	0.12	-1.138	-1.408		-0.225	2.089		0.1441	0.1612	0.055	
NB4+ATRA	ARRY17X	-0.0625	0.1531	-2.547	0.2075	-0.8025	0	0	0.2188	-2.837	-2.553	-0.0125	-1.328	1.309		0.09938
MOLT4	ARRY18X				-1.111	-0.6212	0.8912	-0.08875	0.33	-2.226	-0.9222	-0.1712	-1.147	0.45		-2.369
RPMI-8226	ARRY16X	2.35	3.306	0.1256	3.69	2.31	1.732		-0.2188	2.215	-1.331	0.89	1.534	1.701		2.442
HS578T	ARRY9X		0.2056	-0.2144	0.75	2.63	0.2925	0.6725	-0.4888	0.035	-1.071	-0.15	0.1341	-0.08875	0.435	
BT-549	ARRY10X		-0.3644	-0.6144	0.37	96'0	-0.6575	1.192	-0.3788	0.915	-1.091	0.22	0.04406	0.5412	-0.055	0.1019
SW872	ARRY8X	0.52	0.005625	2.146	0.79	1.24	0.8125	1.322	0.9612	-2.115	1.119	0	1.174	0.3812	-2.245	-1.138

96

	1
a	,
2	í
π	3
_	•

	AID	
	EWEIGHT	
1	GF202:96(116F12):384(16L23)	ESTS, MODERATELY SIMILAR TO FK506-BINDING PROTEIN 65KD [M.MUSCULUS] AA496878
2	GF202:96(114E4):384(16I8)	CHONDROCYTE-DERIVED EZRIN-LIKE PROTEIN AA486435
က	GF200:96(3F2):384(1L4)	MATRIX METALLOPROTEINASE 9 (GELATINASE B, 92KD GELATINASE, 92KD TYPE IV COLLAGENASE) 172581
4	GF200:96(13B3):384(4C5)	DUFFY BLOOD GROUP T82477
5		HEPARIN COFACTOR II T62086
9	GF201:96(68A8):384(24A16)	RIBOSOMAL PROTEIN S6 KINASE, 90KD, POLYPEPTIDE 3 R95841
7		RIBOSOMAL PROTEIN S6 KINASE, 90KD, POLYPEPTIDE 3 H55921
8		ESTS, WEAKLY SIMILAR TO RIBOSOMAL PROTEIN S6 KINASE 3 [H.SAPIENS] H67666
6	GF201:96(89C5):384(11F10)	LEUCYL/CYSTINYL AMINOPEPTIDASE H08816
10	GF201:96(93C9):384(12F18)	MEIS (MOUSE) HOMOLOG 2 R59167
11	GF201:96(70B12):384(24D23)	ESTS, WEAKLY SIMILAR TO HIGH AFFINITY IMMUNOGLOBULIN GAMMA FC RECEPTOR I B FORM
12	GF201:96(7084):384(24D7)	JY 1790 N72228
13	·-	TIGHT JUNCTION PROTEIN 2 (ZONA OCCLUDENS 2) W31983
14		HISTAMINE N-METHYLTRANSFERASE H53274
15		ANTIGEN IDENTIFIED BY MONOCLONAL ANTIBODY MRC OX-2 H23979
16		229901 H70866
17	GF200:96(19A7):384(5B14)	HOMO SAPIENS MYOSIN LIGHT CHAIN KINASE (MLCK) MRNA, COMPLETE CDS AA487215
18	GF200:96(4G3):384(1N5)	547247 AA085318
19	GF200:96(5D9):384(2G17)	INEURONAL PENTRAXIN I H22481
2	GF200:96(24F1):384(6L1)	HOMO SAPIENS MRNA; CDNA DKFZP586A1519 (FROM CLONE DKFZP586A1519) AA452981
21	GF200:96(13F3):384(4K5)	COLLAGEN, TYPE XV, ALPHA 1 AA464342
22	GF201:96(99H11):384(14O21));384(14021) 79565 T62854
23	GF200:96(13C4):384(4E7)	DECAY ACCELERATING FACTOR FOR COMPLEMENT (CDSS, CROMER BLOOD GROUP SYSTEM) R09561
24	GF200:96(7C3):384(2F6)	CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE (CAM KINASE) II GAMMA T96083
25	PEROU:96(6D5):384(20G10)	ALPHA-1-ANTICHYMOTRYPSIN N72559
26	GF201:96(56E2):384(2114)	HUMAN CHROMOSOME 16 BAC CLONE CIT9875K-A-362G6 N75498
27		COMPLEMENT COMPONENT 1 INHIBITOR (ANGIOEDEMA, HEREDITARY) AA481438
28	GF201:96(85E6):384(10)12)	P311 PROTEIN H80685
59):384(15A14) EXOSTOSES (MULTIPLE)-LIKE 2 AA490078
8	[GF201:96(65D2):384(23H4)	503741 AA131466
31		.2):384(14H23/46694 H10192
32	GF201:96(57D6):384(21H12)	ENDOTHELIN RECEPTOR TYPE B N29914
Ç		

--

•
e
亙
T
⊢

34	GF201:96(66C7):384(23F13)	156322 R72618
35		ENDOTHELIN CONVERTING ENZYME 1 H18427
36		428485 AA004514
37		1):384(21022) HOMO SAPIENS MRNA FOR KDAA0467 PROTEIN, PARTIAL CDS N95780
38	GF200:96(18H11):384(5022)	AE-BINDING PROTEIN 1 AA490684
39	(GF200:96(7B11):384(2D22)	AE-BINDING PROTEIN 1 AA490462
40		FIBROBLAST GROWTH FACTOR RECEPTOR 1 AA281189
41	GF201:96(97B11):384(13D22)	1):384(13D22) FIBROBLAST GROWTH FACTOR RECEPTOR 1 (FMS-RELATED TYROSINE KINASE 2, PFEIFFER SYNDROME) R54846
42	GF200:96(30B2):384(8C4)	ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY SX WARNING ENTRY !!!! [H.SAPIENS] AA281189
43	GF201:96(98F9):384(13L17)	ESTS, WEAKLY SIMILAR TO KIAA0291 [H.SAPIENS] AA488178
44	GF200:96(3G8):384(1N16)	MADS BOX TRANSCRIPTION ENHANCER FACTOR 2, POLYPEPTIDE C (MYOCYTE ENHANCER FACTOR 2C) AA234897
45	GF200:96(3H6):384(1P12)	LAMININ, GAMMA 1 (FORMERLY LAMB2) H24650
46	GF200:96(31G2):384(8N4)	HOMO SAPIENS MRNA; CDNA DKFZP56680846 (FROM CLONE DKFZP56680846) R62780
47	GF200:96(3A4):384(1B8)	PERIPHERAL MYELIN PROTEIN 22 R26960
48	PEROU:96(10C2):384(18F3)	DIHYDROPYRIMIDINASE-LIKE 3 (DPYSL3) AI831083
49	GF201:96(65B7):384(23D14)	133864 R28660
22	GF200:96(29G2):384(8M3)	47043 H10721
51	GF201:96(82E8):384(9115)	HOMO SAPIENS BAC CLONE RG041D11 FROM 7Q21 AA032221
52	GF201:96(89C7):384(11F14)	HUMAN OVARIAN CANCER DOWNREGULATED MYOSIN HEAVY CHAIN HOMOLOG (DOC1) MRNA, COMPLETE CDS W69790
23	GF200:96(15E10):384(4J20)	TISSUE FACTOR PATHWAY INHIBITOR (LIPOPROTEIN-ASSOCIATED COAGULATION INHIBITOR) T47454
54	GF201:96(97E5):384(13)10)	ALDEHYDE DEHYDROGENASE 1, SOLUBLE AA664101
55	GF201:96(64D9):384(23G18)	HOMO SAPIENS MRNA FOR KIAA0758 PROTEIN, PARTIAL CDS N95226
56	GF200:96(26A2):384(7A4)	VON WILLEBRAND FACTOR AA487787
57	GF200:96(2G11):384(1M22)	PLATELET/ENDOTHELIAL CELL ADHESTON MOLECULE (CD31 ANTIGEN) R22412
58	GF201:96(89E9):384(11118)	MANIC FRINGE (DROSOPHILA) HOMOLOG H22922
59	GF201:96(88D8):384(11G16)	INTERCELLULAR ADHESION MOLECULE 2 R21535
09	GF200:96(28H8):384(7P15)	245147 N76361
61	GF201:96(93A5):384(12B10)	REGULATOR OF G-PROTEIN SIGNALLING 5 AA668470
62	GF201:96(86D9):384(10H17)	TEK TYROSINE KINASE, ENDOTHELIAL (VENOUS MALFORMATIONS, MULTIPLE CUTANEOUS AND MUCOSAL) H02848
63	GF200:96(29F5):384(8K9)	LIM BINDING DOMAIN 2 H74106
64	GF200:96(24E2):384(6J3)	KINASE SCAFFOLD PROTEIN GRAVIN AA478542
65	GF201:96(82E1):384(911)	359722 AA011182
99	GF200:96(15E1):384(4J2)	TYROSINE KINASE WITH IMMUNOGLOBULIN AND EPIDERMAL GROWTH FACTOR HOMOLOGY DOMAINS

1		•
	٥	υ
٠	7	3
•	ä	ť
1	''	_

67	GF200-96(14B5)-384(4C10)	ICD34 ANTIGEN AA434483
89	GF200:96(12A12):384(3B23)	HUMAN DNA SEQUENCE FROM CLONE 1033B10 ON CHROMOSOME 6P21.2-21.31. CONTAINS THE BINGS GENE, EXONS 11 TO 15 OF THE BING4 GENE, THE GENE FOR GALT3 (BETA3-
		GALACTOSYLTKANSFEKASE), THE RYST8 (405 KIBOSOMAL PROTEIN ST8) GENE, THE SACMZ N78511
69	GF200:96(25F12):384(7K23)	69672 T53626
20	GF200:96(4A2):384(1B3)	HOMO SAPIENS KDR/FLK-1 PROTEIN MRNA, COMPLETE CDS AA026831
71	GF200:96(3H7):384(1P14)	LAMININ, ALPHA 4 R43734
77	GF202:96(109D2):384(15G3)	INTEGRIN BETA 3 {ALTERNATIVELY SPLICED, CLONE BETA 3C} [HUMAN, ERYTHROLEUKEMIA CELL HEI MRNA PARTIAI 409 NT1 AA037229
73	GF201:96(91F10):384(12K19)	+-
74		
75		TRANSCRIPTION FACTOR 4 AA669136
26	GF201:96(83C5):384(10E9)	KIAA0476 GENE PRODUCT W81135
77	GF200:96(5E5):384(2I9)	DISABLED (DROSOPHILA) HOMOLOG 2 (MITOGEN-RESPONSIVE PHOSPHOPROTEIN) HS4686
78	GF200:96(13E10):384(4I19)	ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY SX WARNING ENTRY !!!! [H.SAPIENS] N73030
79	GF200:96(13F9):384(4K17)	COAGULATION FACTOR II (THROMBIN) RECEPTOR AA456376
80	GF200:96(13G9):384(4M17)	CATHEPSIN E H94487
81	GF201:96(55D7):384(21G13)	ESTS, WEAKLY SIMILAR TO EPIDERMAL GROWTH FACTOR RECEPTOR KINASE SUBSTRATE EPS8
		[H.SAPIENS] H73479
85		BIGLYCAN N51018
83	GF200:96(14C7):384(4E14)	BIGLYCAN R77226
8		
82		
86	GF200:96(13H10):384(4O19)	CADHERIN 11 (OB-CADHERIN, OSTEOBLAST) H96738
87	GF201:96(87H8):384(11015)	MICROFIBRILLAR-ASSOCIATED PROTEIN 2 N67487
88		TUMOR SUSCEPTIBILITY GENE 101 R02529
88	GF200:96(11C2):384(3F4)	DISCOIDIN DOMAIN RECEPTOR FAMILY, MEMBER 2 AA243828
8		MICROTUBULE-ASSOCIATED PROTEIN 1B AA219945
91	PEROU:96(2H9):384(19O18)	THROMBOSPONDIN 1 AA007557
92		THROMBOSPONDIN 1 AA464630
93		
8	PEROU:96(10B7):384(18D13)	LATENT TRANSFORMING GROWTH FACTOR BETA BINDING PROTEIN 2 W52204
95		8):384(15C15) INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 7 T53298
8	PEROU:96(386):384(19D12)	VIMENTIN AA147847
97		VIMENTIN AA487812
88	PEROU:96(9D12):384(18H24)	SPARC/OSTEONECTIN AA031595
66	PEROU:96(7A6):384(20B12)	SPARC N95151
100	PEROU:96(9E7):384(18114)	SPARC/OSTEONECTIN AA045463

m

↤	
ø	
亙	
מי.	

-
ø
五
'n

140 (c) 141 (c) 142 (c) 143	GF201:96(55A2):384(21A3)	GEON GEORGEAN 384/21431 DI ATEL ET. DEDIVED GONATLU EACTOR DECEDITOR AL DUA POL VERDITAE L'13225
		FEMILELEI-DERIVED GROWIN I ACION RECEPTOR, ALPRA POLITEPTIDE 023233
		THROMBOSPONDIN 2 H38240
Γ	GF200:96(1F4):384(1K7)	HUMAN TUMOR NECROSIS FACTOR-INDUCIBLE (TSG-6) MRNA FRAGMENT, ADHESION RECEPTOR CD44 PUTATIVE CDS W93163
	GF200:96(13F4):384(4K7)	134783 R31701
144 (GF200:96(1A10):384(1A19)	WINGLESS-TYPE MMTV INTEGRATION SITE FAMILY MEMBER 2 T99653
145 (GF200:96(21E11):384(6I21)	SOLUTE CARRIER FAMILY 16 (MONOCARBOXYLIC ACID TRANSPORTERS), MEMBER 2 (PUTATIVE
1		I KANSPOR I EK) AA42561.2
		ESTS, WEAKLY SIMILAR TO (DEFLINE NOT AVAILABLE 4589520) [H.SAPIENS] AA043878
	~1	MICROFIBRIL-ASSOCIATED GLYCOPROTEIN-2 AA056013
148	GF200:96(29C1):384(8E1)	197474 H52098
149 (GF202:96(159D2):384(17H4)	786609 AA478481
150 (GF201:96(90G11):384(11N21)	1):384(11N21) FIBROBLAST ACTIVATION PROTEIN, ALPHA AA405569
	PEROU:96(6E9):384(20118)	LARGE FIBROBLAST PROTEOGLYCAN PRECURSOR AA056022
П	PEROU:96(10C3):384(18F5)	LARGE FIBROBLAST PROTEOGLYCAN PRECURSOR AA056022
	PEROU:96(10B9):384(18D17)	CHONDROITIN SULFATE PROTEOGLYCAN CORE PROTEIN AA722599
154		PLASMINOGEN ACTIVATOR, UROKINASE RECEPTOR AA147962
	GF200:96(24F2):384(6L3)	FIBRONECTIN 1 R62612
1	GF200:96(12G2):384(3N3)	FIBRONECTIN 1 R62612
157 (GF200:96(25H1):384(701)	HUMAN ISOLATE JUSO MUC18 GLYCOPROTEIN MRNA (3' VARIANT), COMPLETE CDS AA497002
	GF201:96(58A11):384(21B21)	H.SAPIENS MRNA FOR INHIBIN BETA(A) SUBUNIT N27159
٦	GF201:96(57A2):384(21B4)	HUMAN MRNA FOR FIBRONECTIN (FN PRECURSOR) N26285
	GF201:96(85D11):384(10H22)	1):384(10H22) ESTS, MODERATELY SIMILAR TO IIII ALU SUBFAMILY SQ WARNING ENTRY IIII [H.SAPIENS] H77494
161		244703 N52533
	GF200:96(5D1):384(2G1)	HOMO SAPIENS MRNA FOR NIDOGEN-2 AA479199
	GF201:96(88F8):384(11K16)	LIM DOMAIN ONLY 7 H22826
	GF201:96(81A6):384(9B12)	LIM DOMAIN ONLY 7 AA005112
165 (GF200:96(3G11):384(1N22)	LUMICAN AA453712
	GF201:96(67C12):384(24E23)	782701 AA447610
	`	LAMININ, ALPHA 2 (MEROSIN, CONGENITAL MUSCULAR DYSTROPHY) AA034939
168	GF201:96(96C1):384(13E2)	DERMATOPONTIN R48303
	GF200:96(23F9):384(6L18)	HEVIN AA490694
	GF200:96(26G11):384(7M22)	SECRETED FRIZZLED-RELATED PROTEIN 4 AA486838
╗	GF200:96(14B7):384(4C14)	CATHEPSIN K (PYCNODYSOSTOSIS) R01515
	GF201:96(92H4):384(12O8)	OSTEOMODULIN N32201
	GF201:96(101H5):384(14P10)	_
٦		PLATELET-DERIVED GROWTH FACTOR RECEPTOR-LIKE AA461197
175	GF200:96(6A2):384(2A4)	PLATELET-DERIVED GROWTH FACTOR RECEPTOR-LIKE AA455210

'n

•	4
9	į
3	5
a	3
_	

2):384(16D23]MUSCULIN (ACTIVATED B-CELL FACTOR-1) AA470081 384(4K9)	PEROU!96(BE7):384(2013) LUMICAN AA035657 PEROU!96(BE7):384(2013) LUMICAN AA035657 PEROU!96(ERD):384(2013) HONG SAPIENS OSF-2 MRNA FOR OSTEOBLAST SPECIFIC FACTOR 2 (OSF-2P1), COMPLETE CDS ASSE039 GF200:96(2264):384(648) HONG SAPIENS OSF-2 MRNA FOR OSTEOBLAST SPECIFIC FACTOR 2 (OSF-2P1), COMPLETE CDS ASSE039 GF200:96(21051):384(1842) COLLAGEN, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) T98612 GF200:96(24F7):384(1842) COLLAGEN, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) T98612 GF200:96(23A6):384(2011) AA044829 GF200:96(53A6):384(2011) COLLAGEN, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) T98612 GF200:96(52A6):384(2011) AA044829 GF200:96(53A6):384(13A1) COLLAGEN, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) T98612 GF200:96(52A6):384(12019) HONG SAPIENS, ALPHA-1 (VI) COLLAGEN MAGEZS GF200:96(52D9):384(12019) HONG SAPIENS, ALPHA-1 (VI) COLLAGEN MAGEZS GF200:96(52D6):384(13A11) HUMAN METHOUNINE SYNTHAGE NRNA, COMPLETE CDS AA233650 GF201:96(52B6):384(13B1) COMPLEMENT COMPONENT 1, S SUBCOMPONENT 1 F6048 FEROU:96(92D6):384(13B1) COMPLEMENT COMPONENT 1, S SUBCOMPONENT 1 F6048 FEROU:96(92D5):384(13B1) RITTER-ENDINGNENT 1 S SUBCOMPONENT 1 F6048 GF201:96(52B6):384(18B1) RITTER-ENDINGNENT 1 S SUBCOMPONENT 1 F6048 GF201:96(52B6):384(18B1) RITTER-ENDINGNENT 1 S SUBCOMPONENT 1 F6048 GF201:96(63C1):384(13B1) HUMAN LYSYL OXIDAGE W06914 FEROU:96(92D2):384(118H2) HUMAN LYSYL OXIDAGE W06914 FEROU:96(92D2):384(118H2) HUMAN LYSYL OXIDAGE (LOX) GENE EXON 7 AA037732 GF201:96(52B6):384(18H2)
TIVATED B-CELL FACTOR-1) AA470081 E V, AIPHA 1 R75635 18 EE ACTIN, ALPHA2 AA040169 18 EE ACTIN, ALPHA2 AA040169 18 EE ACTIN, ALPHA2 AA040169 18 EE ACTIN, ALPHA2 AA0401664 18 EE AG10664 EE SEST ESST ESST ESST ESST ESST ESST E	120678 T95650 TTSGIF INHIBITOR OF METALLOPROTEINAGE 3 (SORSRY FLINDLIS DYSTROPHY
ACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635 35018 1SCLE ACTIN, ALPHA2 AA040169 4/SM22 AA010664 1SCLE PROTEIN 22-ALPHA AA010664 1STPE I, ALPHA 1 (EHLERS-DANLOS SYNDROME TYTYPE II, ALPHA 1 (EHLERS-DANLOS SYNDROME TYTYPE III, ALPHA 2 AA490172 1TYPE III, ALPHA 2 W93067 1TYPE III, ALPHA 2 W93067 1TYPE I, ALPHA 1 AA047209 1TYPE VI, ALPHA 1 AA047209 1TY COMPONENT 1, S SUBCOMPONENT T62048 1T COMPONENT 1, S SUBCOMPONENT T62048 1T COMPONENT 1, S SUBCOMPONENT TA055520 1N-1 RECEPTOR, TYPE I PRECURSOR R56687 64525 N, ALPHA-INDUCIBLE PROTEIN (CLONE IFI-6-16) AA ASE W60414 1 OXIDASE (LOX) GENE EXON 7 AA037732	137984 R63085
MUSCULIN (ACTIVATED B-CELL FACTOR-1) AA470081 COLLAGEN, TYPE V, ALPHA 1 R75635 471748 AA035018 SMOOTH MUSCLE ACTIN, ALPHA2 AA040169 TRANSGELIN/SM22 AA010664 SMOOTH MUSCLE ACTIN, ALPHA2 AA040169 TRANSGELIN/SM22 AA010664 TRANSGELIN/SM22 AA010664 TUMICAN AA035657 FIBULIN 1 AA614680 COLLAGEN, TYPE VI, ALPHA 3 R62603 HOMO SAPIENS OSF-2 MRNA FOR OSTEOBLAST SPECIFIC FACTOR 2 (AA598653) COLLAGEN, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, COLLAGEN, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AA044829 COLLAGEN, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, COLLAGEN, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, COLLAGEN, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, COLLAGEN, TYPE III, ALPHA 1 AA0447209 COLLAGEN, TYPE III, ALPHA 1 AA047209 COLLAGEN, TYPE VI, ALPHA 1 AA047209 HUMAN ALPHA-2 COLLAGEN TYPE VI MRNA, 3' END AA633747 HUMAN METHIONINE SYNTHASE MRNA, COMPLETE CDS AA233650 Z65694 N25353 COMPLEMENT COMPONENT 1, S SUBCOMPONENT T62048 SUD213 AA464525 INTERFERON, ALPHA-INDUCIBLE PROTEIN (CLONE IFI-6-16) AA460300 LYSYL OXIDASE W60414	I LYSYL OXIDASE (LOX) GENE EXON 7 AA037732
(ACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635 035018 IUSCLE ACTIN, ALPHA 2 AA040169 IN/SM22 AA010664 MOSTED PROTEIN 22-ALPHA AA010664 MO35657 AA614680 TYPE II, ALPHA 3 R62603 IENS OSF-2 MRNA FOR OSTEOBLAST SPECIFIC FACTOR 2 (OSF-2P1), TYPE II, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSON, TYPE II, ALPHA 2 AA490172 TYPE III, ALPHA 2 AA490172 TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSON, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSON, TYPE III, ALPHA 2 AA490172 TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSON, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSON, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSON, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSON, TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSON, TYPE III, ALPHA 1 (SEURGOMPONIENT T69603 INT COMPONIENT 1, S SUBCOMPONIENT T69603 INT COMPONIENT 1, S SUBCOMPONIENT AA055520 GIN-1 RECEPTOR, TYPE 1 PRECURSOR R56687 464525 NI, ALPHA-INDUCIBLE PROTEIN (CLONE IFI-6-16) AA460304	XIDASE W60414
(ACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635 035018 USCLE ACTIN, ALPHA 2 AA040169 USCLE ACTIN, ALPHA 2 AA040169 USCLE ACTIN, ALPHA 3 R62603 IN/SM22 AA010664 AA010664 AA010664 AA010664 AA010664 AA010664 AA010664 AA010666 TYPE VI, ALPHA 3 R62603 IENS OSF-2 MRNA FOR OSTEOBLAST SPECIFIC FACTOR 2 (OSF-2P1), COMPAIRS OSF-2 MRNA FOR OSTEOBLAST SPECIFIC FACTOR 2 (OSF-2P1), COMPAIRS OSF-2 MRNA FOR OSTEOBLAST SPECIFIC FACTOR 2 (OSF-2P1), COMPAIRS OSF-2 MRNA FOR OSTEOBLAST SPECIFIC FACTOR 2 (OSF-2P1), COMPAIRS OSF-2 MRNA FOR OSTEOBLAST SPECIFIC FACTOR 2 (OSF-2P1), COMPAIRS OSF-2 MRNA FOR OSTEOBLAST SYNDROME TYPE IV, AUTOSOMAL DATA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DATA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DATA 2 W93067 TYPE II, ALPHA 1 AA047209 TYPE II, ALPHA 1 AA047209 TYPE VI, ALPHA 1 AA047209 TYPE VI COMPONENT 1, S SUBCOMPONENT T 62048 TYPE VI COMPONENT 1, S SUBCOMPONENT T 702048 TYPE VI RECEPTOR, TYPE 1 PRECURSOR R56687 464525	ON, ALPHA-INDUCIBLE PROTEIN (CLONE IFI-6-16) AA460304
TYPE V, ALPHA 1 R75635 TYPE V, ALPHA 1 R75635 325018 JSCLE ACTIV, ALPHA 2 AA040169 JSCLE ACTIV, ALPHA 2 AA040169 JSCLE ACTIV, ALPHA 3 R62603 A614680 TYPE VI, ALPHA 3 R62603 TYPE VI, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOW TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOW TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOW TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOW TYPE III, ALPHA 2 W93067 TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOW TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOW TYPE III, ALPHA 1 W90360 TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOW TYPE III, ALPHA 1 W90360 TYPE VI, ALPHA 1 SUBCOMPONENT T69603 VIT COMPONENT 1, S SUBCOMPONENT T62048 VIT COMPONENT 1, S SUBCOMPONENT T62048 VIT COMPONENT 1 S SUBCOMPONENT T62048 VIT COMPONENT 1 S SUBCOMPONENT R56687 VIT COMPONENT 1 S SUBCOMPONENT R56687	64525
ACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635 55018 SCLE ACTIV, ALPHA2 AA040169 JSM22 AA010664 SCLE PROTEIN 22-ALPHA AA010664 GSCLE PROTEIN 22-ALPHA AA010664 GSTE PROTEIN 22-ALPHA AA01066 FYPE II, ALPHA 1 KELERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOM TYPE II, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOM TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOM TYPE III, ALPHA 2 W93067 SURFACE ANTIGEN AA045209 TYPE VI, ALPHA 1 AA047209 TYPE VI, ALPHA 1 ASUBCOMPONENT T62048 T COMPONIENT 1, S SUBCOMPONENT T62048 T COMPONIENT 1 S SUBCOMPONENT T62048	N-1 RECEPTOR, TYPE I PRECURSOR R56687
ACTIVATED B-CELL FACTOR-1) A4470081 TYPE V, ALPHA 1 R75635 15018 SCLE ACTIN, ALPHA2 AA040169 JSM22 AA010664 SCLE PROTEIN 22-ALPHA AA010664 SCLE PROTEIN 22-ALPHA AA010664 GSSE57 A614680 TYPE VI, ALPHA 1 R62603 TYPE VI, ALPHA 1 LW90360 TYPE II, ALPHA 1 WUTOSOMAL DOMI TYPE II, ALPHA 1 WUTOSOMAL DOMI TYPE II, ALPHA 1 CHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMI TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMI TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMI TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMI TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMI TYPE III, ALPHA 1 AA047209 TYPE VI, ALPHA 1 ASUBCOMPONENT T69603 T COMPONIENT 1, S SUBCOMPONENT T62048	T COMPONENT 1 S SUBCOMPONENT AA055520
ACTIVATED B-CELL FACTOR-1) A4470081 TYPE V, ALPHA 1 R75635 SSOLE ACTIN, ALPHA2 AA040169 SCLE ACTIN, ALPHA2 AA040169 SCLE PROTEIN 22-ALPHA AA010664 JUSTAC2 AA010664 JUSTACA AA010668 JUSTACA AA010668 JUSTACA AA010681 JUSTACA AA	T COMPONENT 1, S SUBCOMPONENT T62048
ACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635 \$5018 SIGLE ACTIN, ALPHA 2 AA040169 J/SM22 AA010664 J/SM2 ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINAN TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINAN TYPE III, ALPHA 1 AA047209 J/SM22 AA047209 J/SM22 AA010664 J/SM22 AA010666 J/SM22 AA010666 J/SM22 AA010666 J/SM22 AA010664 J/SM22 AA010664 J/SM2 ALPHA 1 AA047209 J/SM2 AA01010 J/SM2 AA01	IT COMPONENT 1, R SUBCOMPONENT T69603
(ACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635 335018 USCLE ACTIN, ALPHA2 AA040169 USCLE ACTIN, ALPHA2 AA040169 USCLE ACTIN, ALPHA2 AA0401664 USCLE ACTIN, ALPHA2 AA0401664 USCLE PROTEIN 22-ALPHA AA010664 USCLE PROTEIN 22-ALPHA AA010664 A035657 A035657 TYPE VI, ALPHA 3 R62603 TYPE VI, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE I, ALPHA 1 W90360 TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE III, ALPHA 1 AA0490283 TYPE III, ALPHA 1 AA047209 TYPE VI, ALPHA 1 AA047209 THIONINE SYNTHASE MRNA, COMPLETE CDS AA233650	353
CACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635 35018 JSCIE ACTIN, ALPHA2 AA040169 JSCIE ACTIN, ALPHA2 AA040169 JSSI AA10664 JSCIE ACTIN, ALPHA2 AA040664 JSCIE PROTEIN 22-ALPHA AA040664 JSCIE PROTEIN 22-ALPHA AA040664 JSCIE PROTEIN 22-ALPHA AA040664 JSCIE PROTEIN 22-ALPHA AA040664 A035657 A013667 TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE II, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE III, ALPHA 2 AA490172 TYPE III, ALPHA 2 W93067 TYPE III, ALPHA 1 AA047209 TYPE VI, ALPHA 1 AA047209	THIONINE SYNTHASE MRNA, COMPLETE CDS AA233650
TYPE V, ALPHA 1 R75635 TYPE V, ALPHA 1 R75635 35018 35018 JSCLE ACTIN, ALPHA2 AA040169 JSCLE ACTIN, ALPHA2 AA040169 JSCLE PROTEIN 22-ALPHA AA010664 A035657 A614680 TYPE IJ, ALPHA 3 R62603 TYPE IJ, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE IJ, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE IJ, ALPHA 2 W93067 TYPE IJ, ALPHA 2 W93067 SURFACE ANTIGEN AA496283 ENS, ALPHA 1 AA047209 TYPE VI, ALPHA 1 AA047209	HA-2 COLLAGEN TYPE VI MRNA, 3' END AA633747
(ACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635 135018 USCLE ACTIN, ALPHA2 AA040169 USCLE ACTIN, ALPHA2 AA040169 USCLE ACTIN, ALPHA 2 AA0401664 USCLE PROTEIN 22-ALPHA AA010664 USCLE PROTEIN 22-ALPHA AA010664 A035657 AA614680 TYPE VI, ALPHA 3 R62603 TYPE VI, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE I, ALPHA 1 W90360 TYPE II, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE II, ALPHA 2 W93067 TYPE II, ALPHA 2 W93067 TYPE I, ALPHA 2 W93067 TYPE I, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE I, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE I, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE I, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE I, ALPHA 1 AA047209	TYPE VI, ALPHA 1 AA047209
(ACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635 0355018 USCLE ACTIN, ALPHA2 AA040169 IN/SM22 AA010664 IN/SM2 III, ALPHA 1 W90360 IN/SM2 III, ALPHA 2 W93067 IN/SM2 III, ALPHA 1 (FHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) T9 IN/SM2 III, ALPHA 2 W93067 IN/SM2 III, ALPHA 2 W93067 IN/SM2 III, ALPHA 2 W93067 IN/SM2 III, ALPHA 1 (FHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) T9 IN/SM2 III, ALPHA 2 W93067 IN/SM2 III, ALPHA 1 (FHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) T9 IN/SM2 III, ALPHA 2 W93067 IN/SM2 III, ALPHA 1 (FHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) T9 IN/SM2 III, ALPHA 1 (FHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) T9 IN/SM2 III, ALPHA 2 W93067 IN/SM2 III, ALPHA 1 (FHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) T9 IN/SM2 III, ALPHA 2 W93067	, TYPE VI, ALPHA 1 AA047209
(ACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635 0355018 USCLE ACTIN, ALPHA2 AA040169 IN/SM22 AA010664 IN/SM22 AA010664 IN/SM22 AA010664 AA013667 AA614680 TYPE VI, ALPHA 3 R62603 IENS OSF-2 MRNA FOR OSTEOBLAST SPECIFIC FACTOR 2 (OSF-2P1), COMPLETE CDS TYPE III, ALPHA 1 W90360 TYPE I, ALPHA 2 AA490172 TYPE I, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) T9 TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE III, ALPHA 2 W93067 TYPE I, ALPHA 2 W93067	JENS, ALPHA-1 (VI) COLLAGEN AA046525
(ACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635 335018 335018 USCLE ACTIN, ALPHA2 AA040169 USCLE ACTIN, ALPHA 2 AA0401664 USCLE PROTEIN 22-ALPHA AA010664 A035657 AA614680 TYPE VI, ALPHA 3 R62603 TYPE VI, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TOTAPE II, ALPHA 1 W90360 TYPE II, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE II, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE III, ALPHA 2 W93067	SURFACE ANTIGEN AA496283
(ACTIVATED B-CELL FACTOR-1) A4470081 TYPE V, ALPHA 1 R75635 135018 USCLE ACTIN, ALPHA2 AA040169 USCLE ACTIN, ALPHA2 AA0401664 USCLE PROTEIN 22-ALPHA AA010664 A035657 TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE II, ALPHA 2 AA490172 TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT)	TYPE I, ALPHA 2 W93067
ACTIVATED B-CELL FACTOR-1) A4470081 TYPE V, ALPHA 1 R75635 35018	TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) 1
(ACTIVATED B-CELL FACTOR-1) A4470081 TYPE V, ALPHA 1 R75635 335018 USCLE ACTIN, ALPHA2 AA040169 USCLE ACTIN, ALPHA AA010664 USCLE PROTEIN 22-ALPHA AA010664 A035657 AA614680 TYPE VI, ALPHA 3 R62603 TYPE VI, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE II, ALPHA 1 W90360 TYPE I, ALPHA 1 W90360 TYPE I, ALPHA 2 AA490172	TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT)
(ACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635 0355018 0355018 USCLE ACTIN, ALPHA2 AA040169 IN/SM22 AA010664 IN/SM22 AA010664 A035657 AA614680 TYPE VI, ALPHA 3 R62603 IENS OSF-2 MRNA FOR OSTEOBLAST SPECIFIC FACTOR 2 (OSF-2P1), COMPLETE CDS TYPE VI, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) TYPE II, ALPHA 1 W90360	, TYPE I, ALPHA 2 AA490172
ACTIVATED B-CELL FACTOR-1) A4470081 TYPE V, ALPHA 1 R75635 35018 35018 JSCLE ACTIN, ALPHA2 AA040169 JSCLE ACTIN, ALPHA2 AA0401664 JSCLE PROTEIN 22-ALPHA AA010664 JSCLE PROTEIN 22-ALPHA AA010664 A614680 TYPE VI, ALPHA 3 R62603 TYPE VI, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT) I	TYPE I, ALPHA 1 W90360
ACTIVATED B-CELL FACTOR-1) AA470081 IYPE V, ALPHA 1 R75635 55018 ISCLE ACTIN, ALPHA2 AA040169 ISCLE ACTIN, ALPHA2 AA0401664 ISCLE PROTEIN 22-ALPHA AA010664 6035657 A614680 IYPE VI, ALPHA 3 R62603 IYPE VI, ALPHA 6 OSTEOBLAST SPECIFIC FACTOR 2 (OSF-2P1), COMPLETE CDS	TYPE III, ALPHA 1 (EHLERS-DANLOS SYNDROME TYPE IV, AUTOSOMAL DOMINANT)
ACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635 35018 ISCLE ACTIN, ALPHA2 AA040169 I/SM22 AA010664 ISCLE PROTEIN 22-ALPHA AA010664 A614680 TYPE VI, ALPHA 3 R62603	ENS OSF-2 MRNA FOR OSTEOBLAST SPECIFIC FACTOR 2 (OSF-2P1), COMPLETE CDS
NCTIVATED B-CELL FACTOR-1) AA470081 YPE V, ALPHA 1 R75635 5018 SCLE ACTIN, ALPHA2 AA040169 /SM22 AA010664 SCLE PROTEIN 22-ALPHA AA010664 614680	YPE VI, ALPHA 3 R62603
NCTIVATED B-CELL FACTOR-1) AA470081 YPE V, ALPHA 1 R75635 5018 5CLE ACTIN, ALPHA2 AA040169 5SLE ACTIN, ALPHA2 AA040164 5CLE PROTEIN 22-ALPHA AA010664	614680
NCTIVATED B-CELL FACTOR-1) AA470081 YPE V, ALPHA 1 R75635 5018 SCLE ACTIN, ALPHA2 AA040169 SSLE ACTIN, ALPHA2 AA0401664 SSLE PROTEIN 22-ALPHA AA010664	335657
ACTIVATED B-CELL FACTOR-1) AA470081 IYPE V, ALPHA 1 R75635 55018 SSCLE ACTIN, ALPHA2 AA040169 J/SM22 AA010664	
ACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635 35018 ISCHE ACTIN ALPHA2 AA040169	JSCLE PROTEIN 22-ALPHA AA010664
(ACTIVATED B-CELL FACTOR-1) AA470081 TYPE V, ALPHA 1 R75635	N/SM22 AA010664 USCLE PROTEIN 22-ALPHA AA010664
(ACTIVATED B-CELL FACTOR-1) AA470081	USCLE ACTIN, ALPHAZ AA040169 IN/SM22 AA010664 USCLE PROTEIN 22-ALPHA AA010664
	11 FE V, ALTHA 1 K73033 35018 SCLE ACTIN, ALPHA2 AA040169 J/SM22 AA010664 SCLE PROTEIN 22-ALPHA AA010664

9

-	4
4	υ
3	5
٥	ū

211		TOUR OLD AND AND AND AND AND AND AND AND AND AN
	[GF201:96(95H6);384(13011)	FIBULIN 1 AA134871
212		PLATELET-DERIVED GROWTH FACTOR RECEPTOR, BETA POLYPEPTIDE R56211
213	GF201:96(66F1):384(23L1)	ESTS, WEAKLY SIMILAR TO MACROPHAGE LECTIN 2 [H.SAPIENS] N53421
214	GF200:96(1A7):384(1A13)	DOWN SYNDROME CANDIDATE REGION 1-LIKE 1 H19439
215	GF200:96(7F8):384(2L16)	HUMAN EXTRACELLULAR MATRIX PROTEIN 1 MRNA, ALTERNATIVE SPLICE VARIANT, COMPLETE CDS
216	GF201:96(101F8):384(14L16)	80643 T57803
217	GF201:96(86G3):384(10N5)	SECRETORY GRANULE, NEUROENDOCRINE PROTEIN 1 (7B2 PROTEIN) AA670429
218	GF201:96(96H4):384(1308)	CADHERIN 2, N-CADHERIN (NEURONAL) W49619
219	GF201:96(64E10):384(23I20)	428048 AA002061
220	GF200:96(12B7):384(3D13)	GROWTH ASSOCIATED PROTEIN 43 H05445
221	GF200:96(5F1):384(2K1)	MELAN-A N26562
222	GF200:96(12A5):384(3B9)	MANNOSIDASE, ALPHA, CLASS 1A, MEMBER 1 T85698
223	GF200:96(3D12):384(1H24)	MYOSIN VA (HEAVY POLYPEPTIDE 12, MYOXIN) AA025850
- 1	GF201:96(79C10):384(9E19)	ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY SQ WARNING ENTRY !!!! [H.SAPIENS] N67810
	GF200:96(1E7):384(1113)	THYROXIN-BINDING GLOBULIN T64901
	GF200:96(24C11):384(6F21)	GLUTATHIONE PEROXIDASE 2 (GASTROINTESTINAL) AA135289
1	GF201:96(87B5):384(11C9)	PROTEIN KINASE C, MU N53380
' 1		HOMO SAPIENS MRNA; CDNA DKFZP434N103 (FROM CLONE DKFZP434N103) AA431753
229	GF201:96(101H1):384(14P2)	HOMO SAPIENS CLONE 24421 MRNA SEQUENCE T60063
230	GF200:96(26F3):384(7K6)	PHOSPHATIDIC ACID PHOSPHATASE TYPE 2B T72119
231	GF200:96(21C4):384(6E7)	PHOSPHATIDIC ACID PHOSPHATASE TYPE 2B T71976
232		ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY J WARNING ENTRY !!!! [H.SAPIENS] AA130874
233		AMYLOID BETA (A4) PRECURSOR PROTEIN (PROTEASE NEXIN-II, ALZHEIMER DISEASE) W42849
٦	GF201:96(86H11):384(10P21)	
235	GF200:96(16B5):384(4D9)	
236	GF201:96(63G6):384(23M11)	
237	GF201:96(55G4):384(21M7)	C3H-TYPE ZINC FINGER PROTEIN; SIMILAR TO D. MELANOGASTER MUSCLEBLIND B PROTEIN W16832
238	GF201:96(58C7):384(21F13)	FIBRINOGEN, A ALPHA POLYPEPTIDE AA011414
239	GF201:96(70C5):384(24F9)	LI CELL ADHESION MOLECULE (HYDROCEPHALUS, STENOSIS OF AQUEDUCT OF SYLVIUS 1, MASA (MENTAL RETARDATION, APHASIA, SHUFFLING GAIT AND ADDUCTED THUMBS) SYNDROME, SPASTIC PARAPLEGIA 1) N27145
240	GF200:96(16B12):384(4D23)	RADIXIN AA477165
241	GF201:96(97B4):384(13D8)	BRANCHED CHAIN KETO ACID DEHYDROGENASE E1, ALPHA POLYPEPTIDE (MAPLE SYRUP URINE DISEASE) AA477298
242	GF200:96(14F1):384(4K2)	HUMAN BINDING PROTEIN MRNA, 3'END H89664

•	
	ø
•	◪
	B
1	_

243	GF201:96(85F7):384(10L14) GF200:96(12E9):384(3117)	305809 N90051 GELSOLIN (AMYLOIDOSIS, FINNISH TYPE) H72027
	•	IGELSOLLIN LAMITLOIDOSIS, FINNISH LIVED M/2UZ/
245		259996 N32611
246	GF201:96(89A1):384(11B2)	SER-THR PROTEIN KINASE RELATED TO THE MYOTONIC DYSTROPHY PROTEIN KINASE N35241
247):384(15H15) ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY SP WARNING ENTRY !!!! IH.SAPIENS1 AA181868
248		RIBONUCLEASE, RNASE A FAMILY, 1 (PANCREATIC) AA487797
249	GF200:96(7D12):384(2H24)	NEUREGULIN 1 R72075
250		MONOAMINE OXIDASE B AA682423
251	GF200:96(18H9):384(5018)	NUCLEAR FACTOR I/B W87611
252	GF200:96(15F8):384(4L16)	INTERLEUKIN 1 RECEPTOR-LIKE 1 AA128153
253	GF200:96(5C1):384(2E1)	SOLUTE CARRIER FAMILY 21 (PROSTAGLANDIN TRANSPORTER), MEMBER 2 AA037014
254	GF201:96(88E7):384(11114)	INHIBITOR OF DNA BINDING 3, DOMINANT NEGATIVE HELIX-LOOP-HELIX PROTEIN AA482119
255	GF200:96(2A9):384(1A18)	SELECTIN E (ENDOTHELIAL ADHESION MOLECULE 1) H39560
256	GF200:96(27B1):384(7D2)	FLAVIN CONTAINING MONOOXYGENASE 3 H71847
257	GF202:96(110B7):384(15C14)	
258		ANGIOPOIETIN 2 AA125872
259	PEROU:96(2C4):384(19E8)	MAX-INTERACTING PROTEIN 1 AA179689
260	GF200:96(3F4):384(1L8)	MATRIX METALLOPROTEINASE 1 (INTERSTITIAL COLLAGENASE) AA143201
261	GF200:96(23G1):384(6N2)	H.SAPIENS MRNA FOR GLUTAMINE CYCLOTRANSFERASE AA282134
262	GF200:96(6C4):384(2E8)	NEURONAL CELL ADHESION MOLECULE R25521
263	GF201:96(69A10):384(24B20)	
264	GF200:96(6E1):384(212)	WASP FAMILY VERPROLIN-HOMOLOGOUS PROTEIN N59851
265	GF200:96(10A11):384(3A22)	THYMOSIN, BETA, IDENTIFIED IN NEUROBLASTOMA CELLS N91887
566	GF200:96(2E8):384(1116)	PTK7 PROTEIN TYROSINE KINASE 7 AA453789
267	GF200:96(15G12):384(4N24)	SIALYLTRANSFERASE 8 (ALPHA-N-ACETYLNEURAMINATE: ALPHA-2,8-SIALYTRANSFERASE, GD3
		SYNTHASE) A AA169311
768		HUMAN CLONE 23826 MRNA SEQUENCE AA173746
569		HEXABRACHION (TENASCIN C, CYTOTACTIN) 777595
270		CANICULAR MULTISPECIFIC ORGANIC ANION TRANSPORTER AA429895
271	GF201:96(79B7):384(9C13)	CAG REPEAT CONTAINING (GLIA-DERIVED NEXIN I ALPHA) R95691
272	GF200:96(32D11):384(8H21)	CAG REPEAT CONTAINING (GLIA-DERIVED NEXIN I ALPHA) N59721
273	GF200:96(4G6):384(1N11)	SMALL PROLINE-RICH PROTEIN 2C AA399674
274	GF201:96(89A2):384(11B4)	RIBOSOMAL PROTEIN L5 AA027277
275	GF201:96(89E4):384(1138)	ESTS, MODERATELY SIMILAR TO ALTERNATIVELY SPLICED PRODUCT USING EXON 13A [H.SAPIENS]
		AA157955
276	GF200:96(28H5):384(7P9)	ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4929675) [H.SAPIENS] R01796
23	GF201:96(57C4):384(21F8)	PROSTATE DIFFERENTIATION FACTOR N26311
278	PEROU:96(6C9):384(20E18)	CYCLIN-DEPENDENT KINASE INHIBITOR 1A (P21, CIP1) N23941
279	GF200:96(2F1):384(1K2)	PROTEIN TYROSINE PHOSPHATASE, NON-RECEPTOR TYPE 1 R06605

₩	
ø	
互	
ص.	

281		0 45629 H08730 SUI FOTRANSFERASE: ESTROGEN-PREFERRING AA449459
282	GF200:96(21A3):384(6A5)	GIII FOTRANSFERASF FSTROGEN-PRFFFRRING AA449459
		מבו מומים לי מייי מייי ייים דיייים מייים מיים מייים מי
283	GF200:96(11E11):384(3J22)	PIRIN H69334
284	GF200:96(18G2):384(5M4)	HUMAN PROTEINASE ACTIVATED RECEPTOR-2 MRNA, 3'UTR AA454652
285	GF200:96(4A12):384(1B23)	INTEGRIN, BETA 8 W56709
286	PEROU:96(3B9):384(19D18)	INTEGRIN, ALPHA 2 (CD498, ALPHA 2 SUBUNIT OF VLA-2 RECEPTOR) AA069096
287	GF200:96(4B4):384(1D7)	INTEGRIN, ALPHA 2 (CD49B, ALPHA 2 SUBUNIT OF VLA-2 RECEPTOR) AA463610
		271441 N34799
	PEROU:96(1C11):384(19E21)	INTEGRIN, BETA 8 W56709
290	PEROU:96(6F2):384(20K4)	SECRETED FRIZZLED-RELATED PROTEIN 1 AA002243
291	GF200:96(25C8):384(7E15)	CRYSTALLIN, ALPHA B AAS04943
262	GF201:96(55A3):384(21A5)	PROTEIN S (ALPHA) T74192
293	GF201:96(59C7):384(22E13)	METHYL-CPG BINDING DOMAIN PROTEIN 1 AA459922
	GF200:96(5F8):384(2K15)	HOMO SAPIENS MRNA; CDNA DKFZP564L176 (FROM CLONE DKFZP564L176) N74741
	PEROU:96(2E1):384(1912)	JUN ACTIVATION DOMAIN BINDING PROTEIN AA293362
ı	GF200:96(26F6):384(7K12)	JUN ACTIVATION DOMAIN BINDING PROTEIN W96134
	GF201:96(85F4):384(10L8)	HUMAN PROTO-ONCOGENE BCD ORF1 AND ORF2 MRNA, COMPLETE CDS AA013481
	GF201:96(81C11):384(9F22)	502396 AA156946
	GF201:96(95G6):384(13M11)	GRO1 ONCOGENE (MELANOMA GROWTH STIMULATING ACTIVITY, ALPHA) W42723
300	GF200:96(5B1):384(2C1)	PROTOCADHERIN 2 (CADHERIN-LIKE 2) R89615
301	GF201:96(79A3):384(9A5)	ESTS, WEAKLY SIMILAR TO ZINC FINGER PROTEIN 91 [H.SAPIENS] N64741
302	PEROU:96(8B7):384(20D13)	241097 H80335
303		TISSUE FACTOR PATHWAY INHIBITOR 2 AA399473
304	PEROU:96(2G11):384(19M22)	_
7		INHIBITOR) AAZ8/220
\neg	\sim	CLAUDIN 4 AA506754
٦		TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY, MEMBER 10B AA453410
307	GF200:96(25H11):384(7021)	CD44 ANTIGEN (HOMING FUNCTION AND INDIAN BLOOD GROUP SYSTEM) AA282906
	GF201:96(89A7):384(11B14)	RAS INHIBITOR AA291556
	GF200:96(31A2):384(8B4)	EST, MODERATELY SIMILAR TO CD-7 METALLOTHIONEIN-2 [H.SAPIENS] R16596
	GF200:96(26C4):384(7E8)	METALLOTHIONEIN 1L N80129
	GF200:96(27A1):384(7B2)	METALLOTHIONEIN 1H H77766
		METALLOTHIONEIN 1G H53340
313	GF200:96(14G3):384(4M6)	ALANINE-GLYOXYLATE AMINOTRANSFERASE (OXALOSIS I; HYPEROXALURIA I; GLYCOLICACIDURIA; SFRINE-BYRINATE AMINOTRANSFERASE) N57872
314	GF201:96(98A4):384(13B7)	HUMAN METALLOTHIONEIN (MT)1-F GENE N55459
		HUMAN METALLOTHIONEIN (MT)I-F GENE T56281
316		487722 AA043551

σ

_
e
四
Œ
┢

317	PFROIT-96(6A6):384(20A12)	FOS-RELATED ANTIGEN 2 AA101616
318		111437 T90760
319	GF200:96(2H3):384(1O6)	PLASMINOGEN ACTIVATOR, UROKINASE RECEPTOR AA455222
320		PLASMINOGEN ACTIVATOR, UROKUNASE AA284668
321	GF200:96(3A5):384(1B10)	PEPTIDYLGLYCINE ALPHA-AMIDATING MONOOXYGENASE R66310
322	GF201:96(99B7):384(14C13)	SHC (SRC HOMOLOGY 2 DOMAIN-CONTAINING) TRANSFORMING PROTEIN 1 R52961
323	GF200:96(15B2):384(4D4)	SHC (SRC HOMOLOGY 2 DOMAIN-CONTAINING) TRANSFORMING PROTEIN 1 T50633
324	PEROU:96(7A5):384(20B10)	HEPARAN SULFATE PROTEOGLYCAN 1 AA122056
325	GF200:96(12C5):384(3F9)	GLUTATHIONE S-TRANSFERASE PI R33755
326	GF200:96(12B5):384(3D9)	GUANINE NUCLEOTIDE BINDING PROTEIN (G PROTEIN), ALPHA INHIBITING ACTIVITY POLYPEPTIDE 1
		AA406420
327	PEROU:96(3G4):384(19N8)	INTEGRIN, ALPHA 6 H06635
328	PEROU:96(986):384(18D12)	INTEGRIN ALPHA 6 N22383
329	PEROU:96(3A6):384(19B12)	INTEGRIN ALPHA 6 T54750
330	PEROU:96(8B10):384(20D19)	254428 N22383
331	GF200:96(2E9):384(1118)	PROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, GAMMA POLYPEPTIDE R38343
332		HOMO SAPIENS CLONE 24659 MRNA SEQUENCE AA454584
333	GF200:96(13H5):384(409)	CALPAIN, LARGE POLYPEPTIDE L2 AA102454
334		HUMAN RAS INHIBITOR MRNA, 3' END R83224
335	GF201:96(91A6):384(12A11)	PROTEIN TYROSINE PHOSPHATASE, NON-RECEPTOR TYPE SUBSTRATE 1 AA417279
336	GF200:96(25F4):384(7K7)	GAP JUNCTION PROTEIN, ALPHA 1, 43KD (CONNEXIN 43) AA487623
337	GF200:96(6A8):384(2A16)	HOMO SAPIENS CLONE 23565 UNKNOWN MRNA, PARTIAL CDS AA464566
338		SERUM/GLUCOCORTICOID REGULATED KINASE AA486082
339	GF200:96(26D6):384(7G12)	NICOTINAMIDE N-METHYLTRANSFERASE T72235
340		HOMO SAPIENS MRNA; CDNA DKFZPS86L2123 (FROM CLONE DKFZPS86L2123) AA443119
341	GF200:96(8B12):384(2D23)	CAVEOLIN 2 T89391
342	GF201:96(96G3):384(13M6)	CAVEOLIN 1, CAVEOLAE PROTEIN, 22KD AA055835
343		APOLIPOPROTEIN E AA478589
344	GF200:96(14E11):384(4I22)	ANNEXIN I (LIPOCORTIN I) H63077
345	PEROU:96(3D9):384(19H18)	CADHERIN 13, H-CADHERIN (HEART) AA160651
346	GF200:96(9B5):384(3C9)	CADHERIN 13, H-CADHERIN (HEART) R17717
347	GF200:96(21G5):384(6M9)	REGULATED IN GLIOMA AA425947
348	GF201:96(87G4):384(11M7)	SOLUTE CARRIER FAMILY 10 (SODIUM/BILE ACID COTRANSPORTER FAMILY), MEMBER 1 T68568
349	GF201:96(87C9):384(11E17)	PLACENTAL GROWTH FACTOR, VASCULAR ENDOTHELIAL GROWTH FACTOR-RELATED PROTEIN
		AA130714
320		VASCULAR ENDOTHELIAL GROWTH FACTOR C H07991
351		PLASMINOGEN ACTIVATOR INHIBITOR, TYPE I N75719
352	PEROU:96(689):384(20C18)	197450 H51958
353	GF200:96(3E9):384(1J18)	MET PROTO-ONCOGENE (HEPATOCYTE GROWTH FACTOR RECEPTOR) AA410591

_	4
a	J
3	5
٦,	3

25	(\$10c1384(13016)	IBONE MORPHOGENETIC PROTEIN 1 856774
356	., .,	Т
1	GF200:96(24G5):384(6N9)	1
1	PEROU:96(7F9):384(20L18)	TRANSMEMBRANE 4 SUPERFAMILY MEMBER 1 AA088439
-	PEROU:96(6D1):384(20G2)	
	GF200:96(30F10):384(8K20)	ESTS, MODERATELY SIMILAR TO CALDESMON [H.SAPIENS] H48677
. 1	GF200:96(19B11):384(5D22)	HUMAN MRNA FOR UNKNOWN PRODUCT, PARTIAL CDS H99544
362	GF200:96(4B2):384(1D3)	HUMAN BETA-1D INTEGRIN MRNA, CYTOPLASMIC DOMAIN, PARTIAL CDS W67174
363	GF200:96(22F1):384(6K2)	FORKHEAD (DROSOPHILA) HOMOLOG 1 (RHABDOMYOSARCOMA) AA194765
364	GF201:96(60E2):384(2214)	356835 W84612
365	GF201:96(90G1):384(11N1)	ESTS, WEAKLY SIMILAR TO N-WASP [H.SAPIENS] AA427561
366	GF200:96(22H2):384(6O4)	ENDOTHELIAL CELL PROTEIN C/ACTIVATED PROTEIN C RECEPTOR T47442
367	GF200:96(26F7):384(7K14)	MILK FAT GLOBULE-EGF FACTOR 8 PROTEIN AA448941
368	GF200:96(24F12):384(6L23)	EXOSTOSES (MULTIPLE) 1 AA487582
369	GF200:96(12G7):384(3N13)	FIBRILLIN 2(CONGENITAL CONTRACTURAL ARACHNODACTYLY) T98152
370	GF201:96(56F3):384(21K6)	ESTS, MODERATELY SIMILAR TO INITIATION FACTOR EIF-2B GAMMA SUBUNIT [R.NORVEGICUS]
		W58368
371	GF201:96(92G7):384(12M14)	345935 W72201
372	GF200:96(4B11):384(1D21)	INOSITOL POLYPHOSPHATE-1-PHOSPHATASE H52141
373	GF201:96(65D5):384(23H10)	
374	GF200:96(15C10):384(4F20)	TRANSFORMING GROWTH FACTOR, BETA RECEPTOR II (70-80KD) AA487034
375	GF200:96(18D4):384(5G8)	SUSHI-REPEAT-CONTAINING PROTEIN, X CHROMOSOME AA448569
376	GF200:96(18A1):384(5A2)	INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 6 AA478724
377	GF200:96(13B5):384(4C9)	DIPHTHERIA TOXIN RECEPTOR (HEPARIN-BINDING EPIDERMAL GROWTH FACTOR-LIKE GROWTH
		[FACTOR] R14663
378	GF201:96(94G6):384(12N11)	DUAL SPECIFICITY PHOSPHATASE 6 AA630374
379		
380	GF200:96(30H10):384(8O20)	
381	GF201:96(84D9):384(10G18)	ESTS, HIGHLY SIMILAR TO G PROTEIN-COUPLED RECEPTOR KINASE 6, SPLICE VARIANT B [H.SAPIENS]
2		HISTORY CANDED THE DECEMBER CHARGES OF THE MACRES A 4 A FEORED
382		$\neg \tau$
383	GF201:96(97E12):384(13J24)	┪
384	GF200:96(16A9):384(4B17)	CD59 ANTIGEN P18-20 (ANTIGEN IDENTIFIED BY MONOCLONAL ANTIBODIES 16.3A5, E)16, E)30, EL32 AND G344) H60549
385	GF200:96(14A10):384(4A20)	CD59 ANTIGEN P18-20 (ANTIGEN IDENTIFIED BY MONOCLONAL ANTIBODIES 16.3AS, EJ16, EJ30, EL32 AND G344) H60549
386	GF200:96(1G10):384(1M19)	SYNUCLETN, ALPHA (NON A4 COMPONENT OF AMYLOID PRECURSOR) AA455067
207	(100/100 (01/17/00 00000)	TOTAL

۰	_
	Φ
	丒
	æ
	_

389	PEROU:96(8A6):384(20B11)	INTEGRIN ALPHA L (ANTIGEN CD11A (P180) LYMPHOCYTE FUNCTION-ASSOCIATED ANTIGEN 1; ALPHA POLYPEPTIDE) R48796
390	GF201:96(67A5):384(24A9)	810515 AA464542
391	GF202:96(111B6):384(15D12)	ESTS, WEAKLY SIMILAR TO (DEFLINE NOT AVAILABLE 4336506) [H.SAPIENS] H96654
392	GF200:96(13B6):384(4C11)	DIHYDROPYRIMIDINE DEHYDROGENASE AA428170
393	GF200:96(16B11):384(4D21)	ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4679030) [H.SAPIENS] AA521232
394	GF200:96(3E6):384(1312)	MOESIN R22977
395	GF200:96(27C4):384(7F8)	ESTS, WEAKLY SIMILAR TO (DEFLINE NOT AVAILABLE 4502327) [H.SAPIENS] R65792
396		V-YES-1 YAMAGUCHI SARCOMA VIRAL RELATED ONCOGENE HOMOLOG T55472
397	GF201:96(95F3):384(13K5)	GLUTATHIONE PEROXIDASE 1 AA485362
398		795757 AA460314
399	GF201:96(88B11):384(11C22)	_
400	GF201:96(86D8):384(10H15)	TACHYKININ, PRECURSOR I (SUBSTANCE K, SUBSTANCE P, NEUROKININ I, NEUROKININ 2, NEUROMEDIN L, NEUROKININ ALPHA, NEUROPEPTIDE K,NEUROPEPTIDE GAMMA) AA446659
401	GF202:96(109D1):384(15G1)	INTERLEUKIN 1, BETA W47101
402	GF201:96(88D6):384(11G12)	INTERLEUKIN 1, BETA AA150507
403	GF201:96(89A6):384(11B12)	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 1 (RHO FAMILY, SMALL GTP BINDING PROTEIN
		[RAC1] AA626787
404		PROTEIN TYROSINE PHOSPHATASE J AA644448
405		ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY SB1 WARNING ENTRY !!!! [H.SAPIENS] N21103
406	GF200:96(23F10):384(6L20)	FAT TUMOR SUPPRESSOR (DROSOPHILA) HOMOLOG AA159194
407	GF201:96(58H4):384(21P7)	271952 N35301
408	GF200:96(8C11):384(2F21)	179276 H50323
409	[GF200:96(18E4):384(518)	INOSITOL POLYPHOSPHATE-5-PHOSPHATASE; 145KD AA521067
410	GF200:96(13G1):384(4M1)	CHOLINERGIC RECEPTOR, NICOTINIC, EPSILON POLYPEPTIDE R02058
411	GF200:96(13B9):384(4C17)	ALDO-KETO REDUCTASE FAMILY 1, MEMBER C1 (DIHYDRODIOL DEHYDROGENASE 1; 20-ALPHA (3-
		ALPHA)-HTUKUXTSTEKUID DEHTUKUGENASE) K931Z4
412	GF201:96(97D4):384(13H8)	TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY, MEMBER 6 AA293571
413	GF201:96(96H6):384(13012)	CYSTATIN A (STEFIN A) W72207
414	GF201:96(82C5):384(9F9)	347436 W81192
415	PEROU:96(10C1):384(18F1)	ANTILEUKOPROTEINASE AA026192
416	GF201:96(91H5):384(12O9)	JAGGED1 (ALAGILLE SYNDROME) R70685
417	GF200:96(2G8):384(1M16)	PRION PROTEIN (P27-30) (CREUTZFELD-JAKOB DISEASE, GERSTMANN-STRAUSLER-SCHEINKER SYNDROME, FATAL FAMILIAL INSOMNIA) AA455969
418	GF201:96(55C7):384(21E13)	ESTS, WEAKLY SIMILAR TO KJAA0639 PROTEIN IH.SAPIENS] AA284277
419		5).384(15010)[843045 AA488420
420	/2F2/1-06/07F2/-204/4-216/	

٠	•	
	q	ļ
•	2	
	٥	

421	GF200:96(25G1):384(7M1)	CADHERIN 3. P-CADHERIN (PLACENTAL) AA425556
422	PEROU:96(1A3):384(19A5)	MDGI/FATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART W04872
423	GF201:96(86C6):384(10F11)	TROPONIN I, SKELETAL, FAST AA181334
424	GF201:96(94H5):384(12P9)	MATRIX METALLOPROTEINASE 14 (MEMBRANE-INSERTED) N33214
425	GF201:96(94H6):384(12P11)	LAMININ, GAMMA 2 (NICEIN (100KD), KALININ (105KD), BM600 (100KD), HERLITZ JUNCTIONAL EPIDERMOLYSIS BULLOSA)) AA677534
426	GF200:96(14E8):384(4116)	ANNEXIN VIII AA252968
427	GF201:96(93G2):384(12N4)	ESTS, HIGHLY SIMILAR TO PROBABLE ATAXIA-TELANGIECTASIA GROUP D PROTEIN [H.SAPIENS]
		AAU55486
428	PEROU:96(8D6):384(20H11)	KERATIN 17 AA026642
429	PEROU:96(9D1):384(18H2)	KERATIN 17 aa026642
430	GF200:96(17G7):384(5M13)	ESTS, HIGHLY SIMILAR TO KERATIN KS, 58K TYPE II, EPIDERMAL [H.SAPIENS] AA160507
431	PEROU:96(9C6):384(18F12)	KERATIN 5 (EPIDERMOLYSIS BULLOSA SIMPLEX DOWLING-MEARA/KOBNER/WEBER-COCKAYNE TYPES)
		W72110
432	PEROU:96(8C11):384(20F21)	ESTS, HIGHLY SIMILAR TO KERATIN K5, 58K TYPE II, EPIDERMAL W72110
433	GF200:96(8C10):384(2F19)	BULLOUS PEMPHIGOID ANTIGEN 1 (230/240KD) H44784
434	GF200:96(11H4):384(3P8)	S100 CALCIUM-BINDING PROTEIN A2 AA458884
435	GF200:96(4B6):384(1D11)	INTEGRIN, BETA 4 AA485668
436	PEROU:96(3B12):384(19D24)	INTEGRIN, BETA 4 AA076514
437	PEROU:96(8A7):384(20B13)	2255577 AIG79149
	GF201:96(88B12):384(11C24)	GF201:96(88B12):384(11C24) LAMININ, ALPHA 3 (NICEIN (150KD), KALININ (165KD), BM600 (150KD), EPILEGRIN) AA001432
439	GF201:96(92B12):384(12C24)	COLLAGEN, TYPE XVII, ALPHA 1 H87536
1	GF200:96(14C12):384(4E24)	BASONUCLIN R26526
441	GF201:96(67B11):384(24C21)	S04940 AA150619
445	GF201:96(87B6):384(11C11) H	HUMAN DNA SEQUENCE FROM CLONE 973M2 ON CHROMOSOME 1Q24.3-31.1 CONTAINS
		PROSTAGLANDIN-ENDOPEROXIDE SYNTHASE 2 (PROSTAGLANDIN G/H SYNTHASE AND
		CYCLOOXYGENASE) GENE, ESIS, SIS, GSSS AA644211
443	GF201:96(80A8):384(9A16)	810904 AA459285
444	GF201:96(89D8):384(11H16)	MYOSIN IC AA029956
445	GF200:96(21F6):384(6K11)	EPHRIN-B1 AA428778
446	GF200:96(3F1):384(1L2)	MATRIX METALLOPROTEINASE 7 (MATRILYSIN, UTERINE) AA031513
447	GF200:96(28F3):384(7L5)	294682 W01603
448	PEROU:96(2E11):384(19I22)	INTEGRIN, ALPHA 3 (ANTIGEN CD49C, ALPHA 3 SUBUNIT OF VLA-3 RECEPTOR) AA293040
449	GF201:96(88E1):384(1112)	INTEGRIN, ALPHA 3 (ANTIGEN CD49C, ALPHA 3 SUBUNIT OF VLA-3 RECEPTOR) AA424695
450	GF200:96(2B4):384(1C8)	SERUM AMYLOID A1 H25546
451	GF200:96(24E3):384(6J5)	GM2 GANGLIOSIDE ACTIVATOR PROTEIN AA453978
452	GF201:96(6984):384(24D8)	ESTS, WEAKLY SIMILAR TO TRANSPOSON LREZ REVERSE TRANSCRIPTASE HOMOLOG [H.SAPIENS] W48580
453	GF200:96(13H3):384(405)	CARBONIC ANHYDRASE II H23187

_	1
a)
7	i
٦.	3
-	۰

	6):384(14(12) 6):384(14(12) 1):384(19811) 1):384(708) 1):384(702) 1):384(507) 1):384(607) 1):384(607) 1):384(18016) 1):384(18016) 1):384(18016) 1):384(18016) 1):384(18016) 1):384(18016) 1):384(18016) 1):384(18016) 1):384(18016)	SECRETAIN TRANSPORTING AND THE SELVEN TO WIS BEINGLING TROUGHT AND THE SECRETAIN TRANSPORTED TO SECRETAIN THE SECR
):384(21F7)):384(19B11)):384(7D8)):384(7D8)):384(7D2)):384(5112)):384(9C11)):384(6P21)):384(13120) 0):384(13120) 4):384(13120) 4):384(14120) 1):384(14120) 0):384(14120) 0):384(14120)	LECTIN, GALACTOSIDE-BINDING, SOLUBLE, 7 (GALECTIN 7) W72436 PLASMINOGEN ACTIVATOR, UROKINASE AA284668 ENDOTHELIN RECEPTOR TYPE A AA452627 ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 5231137) [H.SAPIENS] W30988 N-MYC DOWNSTREAM REGULATED AA489261 N-MYC DOWNSTREAM REGULATED AA489261 N-MYC DOWNSTREAM REGULATED RA489261 N-MYC DOWNSTREAM REGULATED RA489261 N-MYC DOWNSTREAM REGULATED AA489261 N-MYC DOWNSTREAM REGULATED AA489261 N-MYC DOWNSTREAM REGULATED AA489261 N-MYC DOWNSTREAM REGULATED AA489261 N-MYC DOWNSTREAM REGULATED RA489261 N-MYC DOWNSTREAM REGULATED RA489261 N-EPIDERMAL GROWTH FACTOR, SURFACE H90431 S9283 AA016234 ADRENBERGIC, BETA-2-, RECEPTOR, SURFACE H90431 S92818 AA158252 Z64166 N20482 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS] T82817
):384(19811)):384(708)):384(702)):384(512)):384(512)):384(507)):384(602)):384(1801)):384(18016)):384(18016)):384(18016)):384(18016)):384(18016)	PLASMINOGEN ACTIVATOR, UROKINASE AA284668 ENDOTHELIN RECEPTOR TYPE A AA452627 ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 5231137) [H.SAPIENS] W30988 N-MYC DOWNSTREAM REGULATED AA489261 SPIDERMAL GROWTH FACTOR RECEPTOR (AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL (V-ERB-B) ONCOGENE HOMOLOG) AA234783 S59285 AA016234 INTERLEUKIN 4 RECEPTOR AA292025 DIACYLGLYCEROL KINASE, ALPHA (80KD) AA456900 770670 AA476272 ADRENERGIC, BETA-2-, RECEPTOR, SURFACE H90431 592818 AA158252 Z64166 N20482 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS] TRANSFORMING GROWTH SACTOR, BETA 2 AA233809
):384(7D8)):384(7P2)):384(5112)):384(1907)):384(907)):384(6P21)):384(6P21)):384(1812) 0):384(1818) 1):384(1818) 1):384(1818) 0):384(1810) 0):384(1810)	ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 5231137) [H.SAPIENS] W30988 N-MYC DOWNSTREAM REGULATED AA489261 RPIDERMAL GROWTH FACTOR RECEPTOR (AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL (V-ERB-B) ONCOGENE HOMOLOG) AA234783 359285 AA016234 INTERLEUKIN 4 RECEPTOR AA292025 DIACYLGLYCEROL KINASE, ALPHA (80KD) AA456900 770670 AA476272 ADRENERGIC, BETA-2-, RECEPTOR, SURFACE H90431 592818 AA158252 264166 N20482 TRANSFORMING GROWTH FACTOR, BETA 2 N48082 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS] 182817
):384(7P2)):384(5112)):384(1907)):384(907)):384(6P21)):384(6P21)):384(1822) 0):384(1822) 1):384(18016) :384(18016)):384(18016)):384(18016)	ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 5231137) [H.SAPIENS] W30988 N-MYC DOWNSTREAM REGULATED AA489261 EPIDERMAL GROWTH FACTOR RECEPTOR (AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL (V-ERB-B) ONCOGENE HOMOLOG) AA234783 359285 AA016234 INTERLEUKIN 4 RECEPTOR AA292025 DIACYLGLYCEROL KINASE, ALPHA (80KD) AA456900 770607 AA476272 ADRENERGIC, BETA-2-, RECEPTOR, SURFACE H90431 592818 AA158252 264166 N20482 TRANSFORMING GROWTH FACTOR, BETA 2 N48082 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS] 182817
):384(5112)):384(1907)):384(907)):384(907)):384(6021)):384(1802) 0):384(1802) 4):384(18016) 1):384(18016) 0):384(107) 0):384(1000)	N-MYC DOWNSTREAM REGULATED AA489261 EPIDERMAL GROWTH FACTOR RECEPTOR (AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL (V-ERB-B) ONCOGENE HOMOLOG) AA234783 359285 AA016234 INTERLEUKIN 4 RECEPTOR AA292025 DIACYLGLYCEROL KINASE, ALPHA (80KD) AA456900 770670 AA476272 ADRENERGIC, BETA-2-, RECEPTOR, SURFACE H90431 592818 AA158252 264166 N20482 TRANSFORMING GROWTH FACTOR, BETA 2 N48082 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS] 182817
):384(1907)):384(907)):384(9011))):384(6021))):384(1822) 0):384(1822) 4):384(1822) 1):384(18016) 1:384(18016) 0):384(7120) 0):384(602)	EPIDERMAL GROWTH FACTOR RECEPTOR (AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL (V-ERB-B) ONCOGENE HOMOLOG) AA234783 359285 AA016234 INTERLEUKIN 4 RECEPTOR AA292025 DIACYLGLYCEROL KINASE, ALPHA (80KD) AA456900 770670 AA476272 ADRENERGIC, BETA-2-, RECEPTOR, SURFACE H90431 592818 AA158252 264166 N20482 TRANSFORMING GROWTH FACTOR, BETA 2 N48082 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS] 182817
);384(9C11));384(5O7));384(6P21));384(1B22) 0);384(1320) 4);384(13120) 1);384(18D16) ;384(1617) 0);384(6P2)	359285 AA016234 INTERLEUKIN 4 RECEPTOR AA292025 DIACYLGLYCEROL KINASE, ALPHA (80KD) AA456900 770670 AA476272 ADRENERGIC, BETA-2-, RECEPTOR, SURFACE H90431 592818 AA158252 264166 N20482 TRANSFORMING GROWTH FACTOR, BETA 2 N48082 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS] 182817
);384(507) (1);384(6P21));384(1B22) 0);384(1320) 4);384(1518) 1);384(18D16) ;384(18D16) 0);384(7L20)	INTERLEUKIN 4 RECEPTOR AA292025 DIACYLGLYCEROL KINASE, ALPHA (80KD) AA456900 DIACYLGLYCEROL KINASE, ALPHA (80KD) AA456900 770670 AA476272 ADRENERGIC, BETA-2-, RECEPTOR, SURFACE H90431 S92818 AA158252 264166 N20482 TRANSFORMING GROWTH FACTOR, BETA 2 N48082 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS] 182817
	1):384(6P21)):384(1B22) 0):384(1320) 4):384(1310) 1):384(1518) 1):384(18D16) 1):384(1617) 0):384(162)	DIACYLGLYCEROL KINASE, ALPHA (80KD) AA456900 770670 AA476272 ADRENERGIC, BETA-2-, RECEPTOR, SURFACE H90431 592818 AA158252 264166 N20482 TRANSFORMING GROWTH FACTOR, BETA 2 N48082 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS] 182817
):384(1822) 0):384(13120) 4):384(1518) 1):384(9A21) 1):384(18D16) 1):384(1617) 0):384(6P2)	ADRENERGIC, BETA-2-, RECEPTOR, SURFACE H90431 592818 AA158252 264166 N20482 TRANSFORMING GROWTH FACTOR, BETA 2 N48082 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS]
	0):384(13120) 4):384(1518) 1):384(9A21) 1):384(18D16) 1):384(1617) 0):384(7L20) 1):384(6P2)	ADRENERGIC, BETA-2-, RECEPTOR, SURFACE H90431 592818 AA158252 264166 N20482 TRANSFORMING GROWTH FACTOR, BETA 2 N48082 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS] 182817
	4):384(1518) 1):384(9A21) 1):384(18D16) 1:384(1617) 0):384(7L20) 1):384(6P2)	592818 AA158252 264166 N20482 TRANSFORMING GROWTH FACTOR, BETA 2 N48082 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS]
	1):384(9A21) ::384(18D16) ::384(1G17) 0):384(7L20)):384(6P2)	264166 N20482 TRANSFORMING GROWTH FACTOR, BETA 2 N48082 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS]
	1:384(18D16) 1:384(1G17) 0):384(7L20) 1:384(6P2)	TRANSFORMING GROWTH FACTOR, BETA 2 N48082 TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS] T82817
	:384(1 <u>617)</u> 0):384(7L20)):384(6P2)	TRANSFORMING GROWTH FACTOR, BETA 2 AA233809 ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS] T82817
	0):384(7L20)):384(6P2)	ESTS, WEAKLY SIMILAR TO SIMILAR TO S. CEREVISIAE HYPOTHETICAL PROTEIN YKL166 [C.ELEGANS] T82817
):384(6P2)	182817
):384(6P2)	
	11.000	667883 AA258396
):384(9C17)	FRIZZLED (DROSOPHILA) HOMOLOG 7 N69049
	384(2)13)	CHROMOSOME X OPEN READING FRAME 6 R08270
):384(5013)	INTERLEUKIN 15 RECEPTOR, ALPHA AA053285
	2):384(614)	FK506-BINDING PROTEIN 5 W86653
	3):384(415)	CYCLIN D2 H84153
	8):384(16115)	843283 AA488672
):384(24G11)	810459 AA457138
	:384(2011)	CYCLIN-DEPENDENT KINASE 7 (HOMOLOG OF XENOPUS MO15 CDK-ACTIVATING KINASE) AA031961
481 GF201:96(102B	12):384(14D23	83297 T68333
482 GF201:96(88A3):384(11A6)	MAJOR HISTOCOMPATIBILITY COMPLEX, CLASS II, DQ BETA 1 AA669055
483 GF201:96(88A4):384(11A8)	MAJOR HISTOCOMPATIBILITY COMPLEX, CLASS II, DN ALPHA AA702254
484 GF201:96(88D4):384(11G8)	INTERLEUKIN 15 N59270
485 GF200:96(24C6):384(6F11)	GUANYLATE BINDING PROTEIN 1, INTERFERON-INDUCIBLE, 67KD AA486849
486 GF201:96(88D)	:384(11G6)	INTERLEUKIN 6 (INTERFERON, BETA 2) N98591
487 GF200:96(30B3)	:384(8C6)	TUMOR NECROSIS FACTOR ALPHA-INDUCIBLE CELLULAR PROTEIN CONTAINING LEUCINE ZIPPER DOMAINS RZ0518
488 GF201:96(66C8):384(23F15)	490995 AA136707
489 GF201:96(93B9):384(12D18)	263013 H99816

٠	4
c	υ
7	5
7	5
Ľ	_

		SYNDROME TYPE VI) AA476240
491	GF202:96(115C3):384(16F6)	ECTODERMAL-NEURAL CORTEX (WITH BTB-LIKE DOMAIN) AA102130
492	GF202:96(110D6):384(15G12)	6):384(15G12) ECTODERMAL-NEURAL CORTEX (WITH BTB-LIKE DOMAIN) H72122
493	GF201:96(89E6):384(11J12)	A DISINTEGRIN AND METALLOPROTEINASE DOMAIN 9 (MELTRIN GAMMA) H59231
494	GF200:96(15H7):384(4P14)	SWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, SUBFAMILY A, MEMBER 1 AA496809
495	GF201:96(63D10):384(23G19)	.0):384(23G19) ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY J WARNING ENTRY !!!! [H.SAPIENS] W80619
496	GF201:96(87A11):384(11A21)	1):384(11A21) RAP1, GTPASE ACTIVATING PROTEIN 1 AA682897
497	GF201:96(87A12):384(11A23)	2):384(11A23) PROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, M H26426
498	GF201:96(58C2):384(21F3)	PHOSPHORYLASE, GLYCOGEN; LIVER (HERS DISEASE, GLYCOGEN STORAGE DISEASE TYPE VI) AA147640
499	GF201:96(58F11):384(21L21)	1):384(21L21) HOMO SAPIENS MRNA FULL LENGTH INSERT CDNA CLONE EUROIMAGE 122439 T66902
200		0):384(12L19) ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4704754) [H.SAPIENS] AA426053
501		ESTS, WEAKLY SIMILAR TO ALTERNATIVELY SPLICED PRODUCT USING EXON 13A [H.SAPIENS] N80834
205	GF200:96(21H10):384(6019)	PLEOMORPHIC ADENOMA GENE-LIKE 1 AA463297
503	GF201:96(65A12):384(23B24)	2);384(23B24) HOMO SAPIENS MRNA FOR KIAA0786 PROTEIN, PARTIAL CDS W74533
504	GF201:96(93D12):384(12H24)	2):384(12H24) HOMO SAPIENS CLONE L5 UNKNOWN MRNA, PARTIAL CDS N53385
505	GF201:96(69C2):384(24F4)	248849 H80749
206	PEROU:96(6E4):384(2018)	1912786 Al304356
202	GF200:96(9G4):384(3M7)	TRANSMEMBRANE PROTEIN AA456008
1	GF201:96(89B8):384(11D16)	ESTS, MODERATELY SIMILAR TO PRO-A2(XI) [H.SAPIENS] N66396
509	GF201:96(80F9):384(9K18)	366815 AA029415
- }	GF200:96(29C2):384(8E3)	241824 H93217
- 1	GF200:96(18C1):384(5E2)	781766 AA431678
512	GF201:96(9989):384(14C17)	PURINERGIC RECEPTOR (FAMILY A GROUP 5) R91539
	GF201:96(92E9):384(12118)	PURINERGIC RECEPTOR (FAMILY A GROUP 5) N90783
1	GF200:96(12C4):384(3F7)	248261 N78083
	[GF200:96(24F11):384(6L21)	81331 T60111
516		V-MYC AVIAN MYELOCYTOMATOSIS VIRAL ONCOGENE HOMOLOG AA464600
517	GF200:96(3E2):384(114)	CALCIUM CHANNEL, VOLTAGE-DEPENDENT, BETA 2 SUBUNIT R92452
518	GF201:96(86F9):384(10L17)	SOLUTE CARRIER FAMILY 16 (MONOCARBOXYLIC ACID TRANSPORTERS), MEMBER 1 AA043133
519	GF200:96(12D9):384(3H17)	823859 AA490688
520	GF200:96(27C6):384(7F12)	246035 N55540
521	GF200:96(11D3):384(3H6)	CHONDROITIN SULFATE PROTEOGLYCAN 4 (MELANOMA-ASSOCIATED) R53652
525	GF202:96(112E12):384(15J23)	12):384(15)23) HUMAN DNA SEQUENCE FROM CLONE 971N18 ON CHROMOSOME 20P12 CONTAINS PROCESSED PSEUDOGENE PHKBP1, NOVEL GENE, ESTS, CA REPEAT (D20S907), STSS AND GSSS AA457223
523	CE201-06/06HEN-394/13010)	1.204(12010) COTOCUDOME DATO CUBERRATION WITH BOUNDERTON 1 A A 204 404

•	4
G	,
2	Š
α	3
⊢	•

525 GF201;96(7081 526 GF200;96(25D1 528 GF200;96(2149) 529 GF200;96(2149) 530 GF201;96(9713) 531 GF200;96(10A1) 532 GF200;96(10A1) 533 GF200;96(10A1) 534 GF200;96(10A1) 535 GF200;96(10A1) 536 GF200;96(2150) 537 GF201;96(9785) 538 GF200;96(2110) 539 GF201;96(9785) 541 GF200;96(1161) 542 GF200;96(1161) 543 GF200;96(1161) 544 GF200;96(1161) 545 GF200;96(1161) 546 GF200;96(1161) 547 GF200;96(1161) 548 GF200;96(1161) 549 GF200;96(1161) 549 GF200;96(1161)	1012):384(24D1) 1012):384(7G23) 1010):384(13M1) 1010):384(117) 1010):384(13P6) 1010):384(13P6) 1010):384(187) 1010):384(1810) 1010):384(16112) 1010):384(16112) 1010):384(16112) 1010):384(16112) 1010):384(16112) 1010):384(16112) 1010):384(16112) 1010):384(16112) 1010):384(16112) 1010):384(16112) 1010):384(16112) 1010):384(16112)	19):384(24D1) 267252 N24579 12):384(7G23) COAGULATION FACTOR VIIIC, PROCOAGULANT COMPONENT (HEMOPHILIA A) AA437191 10):384(117) THROMBOMODULIN H59861 13):384(117) THROMBOMODULIN H59861 13):384(118) FIARMOSEN ACTIVATOR, TISSUE AA453728 13):384(118) FIARMOSEN ACTIVATOR, TISSUE AA453728 13):384(118) FIARMOSEN ACTIVATOR, TISSUE AA453728 13):384(118) FIARMOSEN ACTIVATOR, TISSUE AA488432 15):384(118) FIARMOSEN BHOSPHATASE LIKE W05628 15):384(1181) PHOSPHOSERINE PHOSPHATASE AA488432 16):384(1181) PHOSPHOSERINE PHOSPHATASE AA488432 16):384(1181) PREGNANCY SPECIFIC BETA-1-GLYCOPROTEIN 11 R73909 13):384(1144) NON-SPECIFIC CROSS REACTING ANTIGEN AA430584 15):384(11810) CARCINOEMBRYONIC ANTIGEN AA430584 15):384(124) HUMAN DNA SEQUENCE FROM CLONE 711.16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN KI-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 15):384(1449) S0114 H16743 15):384(1449) S0114 H16743
	2):384(7623) 0):384(23M19) 384(1117) 384(1117) 384(118) 384(118) 384(118) 384(118) 384(118) 384(118) 384(118) 384(118) 384(118) 384(118) 384(118) 384(118) 384(118) 384(118) 384(118) 384(118)	COAGULATION FACTOR VIIIC, PROCOAGULANT COMPONENT (HEMOPHILIA A) AA437191 307740 N92947 THROMBOMODULIN H59861 THROMBOMODULIN H59861 PLASMINOGEN ACTIVATOR, TISSUE AA453728 PHORBOL-12-MYRISTATE-13-ACETATE-INDUCED PROTEIN 1 AA458838 KIAA0159 GENE PRODUCT R00822 50182 H17882 PHOSPHOSERINE PHOSPHATASE-LIKE W055628 PHOSPHOSERINE PHOSPHATASE-LIKE W055628 PHOSPHOSERINE PHOSPHATASE AA488432 PREGNANCY SPECIFIC BETA-1-GLYCOPROTEIN 11 R73909 NON-SPECIFIC CROSS REACTING ANTIGEN AA054073 CARCINOEMBRYONIC ANTIGEN AA130584 S100 CALCIUM-BINDING PROTEIN P R32952 HUMAN DNA SEQUENCE FROM CLONE 711.16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN K1-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 50114 H16743 HOMO SAPIENS MITOCHONDRIAL DNA D38112
	0):384(23M19) :384(1117) :384(117) :384(1386) :384(187) :384(187) 2):384(16112)):384(16112)):384(16112)):384(16113)):384(16113)):384(16113)):384(16113)):384(16113)	307740 N92947 THROMBOMODULIN H59861 THROMBOMODULIN H59861 PLASMINOGEN ACTIVATOR, TISSUE AA453728 PHORBOL-12-MYRISTATE-13-ACETATE-INDUCED PROTEIN 1 AA458838 KIAA0159 GENE PRODUCT R00822 50182 H17882 PHOSPHOSERINE PHOSPHATASE-LIKE W055028 PHOSPHOSERINE PHOSPHATASE AA488432 PHOSPHOSERINE PHOSPHATASE AA488432 PREGNANCY SPECIFIC BETA-1-GLYCOPROTEIN 11 R73909 NON-SPECIFIC CROSS REACTING ANTIGEN AA054073 CARCINOEMBRYONIC ANTIGEN AA130584 S100 CALCIUM-BINDING PROTEIN P R32952 HUMAND DNA SEQUENCE FROM CLONE 71L16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN K1-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 FOOL OF SEVENS MITOCHONDRIAL DNA D38112
	384(1117) 384(108)):384(13P6)):384(1817) 2):384(1817) 5):384(16112)):384(16112)):384(16112)):384(16110)):384(1610)):384(1610)):384(1610)):384(1610)	THROMBOMODULIN H59861 PLASMINOGEN ACTIVATOR, TISSUE AA453728 PHORBOL-12-MYRISTATE-13-ACETATE-INDUCED PROTEIN 1 AA458838 KIAA0159 GENE PRODUCT R00822 50182 H17882 PHOSPHOSERINE PHOSPHATASE-LIKE W055628 PHOSPHOSERINE PHOSPHATASE AA488432 PHOSPHOSERINE PHOSPHATASE AA488432 PREGNANCY SPECIFIC BETA-1-GLYCOPROTEIN 11 R73909 NON-SPECIFIC CROSS REACTING ANTIGEN AA054073 CARCINOEMBRYONIC ANTIGEN AA130584 S100 CALCIUM-BINDING PROTEIN P R32952 HUMAN DNA SEQUENCE FROM CLONE 71L16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN K1-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 50114 H16743 HOMO SAPIENS MITOCHONDRIAL DNA D38112
	384(108)):384(13P6) 384(187) 384(187) 2):384(3A24) 6):384(16H12)):384(16H12)):384(1170)):384(11810)):384(11810)):384(11810)):384(11810)):384(11810)	PLASMINOGEN ACTIVATOR, TISSUE AA453728 PHORBOL-12-MYRISTATE-13-ACETATE-INDUCED PROTEIN 1 AA458838 KIAA0159 GENE PRODUCT R00822 50182 H17882 PHOSPHOSERINE PHOSPHATASE-LIKE W055028 PHOSPHOSERINE PHOSPHATASE-LIKE W055028 PHOSPHOSERINE PHOSPHATASE AA488432 PREGNANCY SPECIFIC BETA-1-GLYCOPROTEIN 11 R73909 NON-SPECIFIC CROSS REACTING ANTIGEN AA054073 CARCINOEMBRYONIC ANTIGEN AA130584 S100 CALCIUM-BINDING PROTEIN P R32952 HUMAN DNA SEQUENCE FROM CLONE 711.16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN K1-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 50114 H16743 HOMO SAPIENS MITOCHONDRIAL DNA D38112
):384(13P6) :384(1M8) :384(1B7) 2):384(3A24) 6):384(16H12)):384(1H14) :384(1H14)):384(1H14)):384(1H14)):384(1H14)):384(1H14)):384(1H14)):384(1H14)	PHORBOL-12-MYRISTATE-13-ACETATE-INDUCED PROTEIN 1 A4458838 KIAA0159 GENE PRODUCT R00822 50182 H17882 PHOSPHOSERINE PHOSPHATASE-LIKE W05628 PHOSPHOSERINE PHOSPHATASE A4488432 PHOSPHOSERINE PHOSPHATASE A4488432 PREGNANCY SPECIFIC BETA-1-GLYCOPROTEIN 11 R73909 NON-SPECIFIC CROSS REACTING ANTIGEN A4054073 CARCINOEMBRYONIC ANTIGEN A4130584 S100 CALCIUM-BINDING PROTEIN P R32952 HUMAN DNA SEQUENCE FROM CLONE 71L16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN K1-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 FOLLS OF SPIENS MITOCHONDRIAL DNA D38112
	:384(1M8) :384(1B7) 2):384(3A24) 6):384(16H12)):384(1H14) :384(1H14)):384(1H14)):384(1H14)):384(1H14)):384(1H14)):384(1H14)):384(1H14)	KIAA0159 GENE PRODUCT R00822 50182 H17882 PHOSPHOSERINE PHOSPHATASE-LIKE W05628 PHOSPHOSERINE PHOSPHATASE AA488432 PHOSPHOSERINE PHOSPHATASE AA488432 PREGNANCY SPECIFIC BETA-1-GLYCOPROTEIN 11 R73909 NON-SPECIFIC CROSS REACTING ANTIGEN AA054073 CARCINOEMBRYONIC ANTIGEN AA130584 S100 CALCIUM-BINDING PROTEIN P R32952 HUMAND DNA SEQUENCE FROM CLONE 71L16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN K1-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 FOLLS OF SPIENS MITOCHONDRIAL DNA D38112
	384(1B7) 2):384(3A24) 6):384(16H12)):384(1H12)):384(1F14)):384(1F14)):384(1510)):384(1609)):384(16F24)	PHOSPHOSERINE PHOSPHATASE-LIKE W05628 PHOSPHOSERINE PHOSPHATASE-LIKE W05628 PHOSPHOSERINE PHOSPHATASE AA488432 PREGNANCY SPECIFIC BETA-1-GLYCOPROTEIN 11 R73909 NON-SPECIFIC CROSS REACTING ANTIGEN A4054073 CARCINOEMBRYONIC ANTIGEN A4130584 S100 CALCIUM-BINDING PROTEIN P R32952 HUMAN DNA SEQUENCE FROM CLONE 71L16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN K1-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 50114 H16743 HOMO SAPIENS MITOCHONDRIAL DNA D38112
	2):384(3A24) 6):384(16H12) 1):384(1M20) :384(1F14) 1):384(1510) 1):384(1C20) 1):384(1C20) 1):384(1AM9) 2):384(18F24)	PHOSPHOSERINE PHOSPHATASE-LIKE W05628 PHOSPHOSERINE PHOSPHATASE AA488432 PHOSPHOSERINE PHOSPHATASE AA488432 PREGNANCY SPECIFIC BETA-1-GLYCOPROTEIN 11 R73909 NON-SPECIFIC CROSS REACTING ANTIGEN AA054073 CARCINOEMBRYONIC ANTIGEN AA130584 S100 CALCIUM-BINDING PROTEIN P R32952 HUMAN DNA SEQUENCE FROM CLONE 71L16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN K1-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 FOLLA H16743 HOMO SAPIENS MITOCHONDRIAL DNA D38112
)):384(16H12))):384(1M20) :384(1F14))):384(15B10))):384(1C20))):384(1C20))):384(1AM9))):384(18F24)	PHOSPHOSERINE PHOSPHATASE AA488432 PREGNANCY SPECIFIC BETA-1-GLYCOPROTEIN 11 R73909 NON-SPECIFIC CROSS REACTING ANTIGEN A4054073 CARCINOEMBRYONIC ANTIGEN A4130584 S100 CALCIUM-BINDING PROTEIN P R32952 HUMAN DNA SEQUENCE FROM CLONE 71L16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN KT-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 50114 H16743 HOMO SAPIENS MITOCHONDRIAL DNA D38112
	0):384(1M20)):384(1F14) 5):384(13B10) 0):384(1C20) 5):384(9D9) 5):384(14M9)	PREGNANCY SPECIFIC BETA-1-GLYCOPROTEIN 11 R73909 NON-SPECIFIC CROSS REACTING ANTIGEN A4054073 CARCINOEMBRYONIC ANTIGEN A4130584 S100 CALCIUM-BINDING PROTEIN P R32952 HUMAN DNA SEQUENCE FROM CLONE 71L16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN KT-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN A4284109 50114 H16743 HOMO SAPIENS MITOCHONDRIAL DNA D38112
):384(1F14) 5):384(13B10) 0):384(1C20) 5):384(9D9) 5):384(14M9)	NON-SPECIFIC CROSS REACTING ANTIGEN AA054073 CARCINOEMBRYONIC ANTIGEN AA130584 S100 CALCIUM-BINDING PROTEIN P R32952 HUMAN DNA SEQUENCE FROM CLONE 71L16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN KI-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 50114 H16743 HOMO SAPIENS MITOCHONDRIAL DNA D38112
	5):384(13810) 0):384(1C20) 5):384(9D9) 5):384(14M9) 12):384(14M9)	CARCINOEMBRYONIC ANTIGEN AA130584 5100 CALCIUM-BINDING PROTEIN P R32952 HUMAN DNA SEQUENCE FROM CLONE 71L16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN KI-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 50114 H16743 HOMO SAPIENS MITOCHONDRIAL DNA D38112
	0):384(1C20) 5):384(9D9) 5):384(14M9) 5):384(14M9)	S100 CALCIUM-BINDING PROTEIN P R32952 HUMAN DNA SEQUENCE FROM CLONE 711.16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN KI-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 50114 H16743 HOMO SAPIENS MITOCHONDRIAL DNA D38112
	5):384(9D9) (5):384(14M9) (2):384(18F24)	HUMAN DNA SEQUENCE FROM CLONE 71L16 ON CHROMOSOME XP11. CONTAINS A PROBABLE ZINC FINGER PROTEIN (PSEUDO)GENE, AN UNKNOWN PUTATIVE GENE, A PSEUDOGENE WITH HIGH SIMILARITY TO PART OF ANTIGEN KI-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 50114 H16743 HOMO SAPIENS MITOCHONDRIAL DNA D38112
	5):384(14M9) 12):384(18F24)	FINGER PROTEIN (PSEUDU) JEINE, AN UNKNOWN PUININE GENE, A PSEUDUGENE WITH FIGH SIMILARITY TO PART OF ANTIGEN KI-67, A PUTATIVE CHONDROITIN 6-SULFOTRAN AA284109 SO114 HIG743 HOMO SAPIENS MITOCHONDRIAL DNA D38112
	(5):384(14M9) (2):384(18F24)	50114 H16743 HOMO SAPIENS MITOCHONDRIAL DNA D38112
1	12):384(18F24)	HOMO SAPIENS MITOCHONDRIAL DNA D38112
	H12):384(19023)	236142 H61303
	'G2):384(5M3)	LOW DENSITY LIPOPROTEIN RECEPTOR (FAMILIAL HYPERCHOLESTEROLEMIA) AAS04461
1111	2):384(3023)	STEAROYL-COA DESATURASE (DELTA-9-DESATURASE) R00707
1 1 1 1):384(10018)	CYTOCHROME B-561 AA457700
' 1 1 1	.2):384(2F4)	LUNATIC FRINGE (DROSOPHILA) HOMOLOG R56562
	1):384(4K22)	ALDEHYDE DEHYDROGENASE 8 AA443630
П	0):384(4M19)	CATHEPSIN D (LYSOSOMAL ASPARTYL PROTEASE) N20475
	3):384(3N5)	FIBROMODULIN AA486471
	31):384(14C2)	51344 H21040
	ID5):384(21H9)	HOMO SAPIENS CHROMOSOME 19, COSMID F22329 T98002
	:8):384(2)16)	ESTS, HIGHLY SIMILAR TO GP330 PRECURSOR [H.SAPIENS] R76808
553 GF202:96(110		AS):384(15A10) HOMO SAPIENS CLONE 23876 NEURONAL OLFACTOMEDIN-RELATED ER LOCALIZED PROTEIN MRNA,
554 GF201:96(81G	5):384(9N12)	277463 N56872
555 GF200:96(10C	3):384(3E6)	ESTS, HIGHLY SIMILAR TO INOSITOL POLYPHOSPHATE 4-PHOSPHATASE TYPE II-ALPHA [H.SAPIENS]
1	E4):384(9J8)	271989 N31935
557 GF201:96(88E5):384(11110)	INSULIN RECEPTOR SUBSTRATE 1 AA460841
):384(12B14)	KIAA0417 GENE PRODUCT H17950

•	•
0	b
÷	₹
÷	-
ď.	٧

550	CE201:06/80A4):38A/11BB	HIIMAN DETINOTO Y DECEDIOD-CAMMA MBNA COMBI ETE COC WOROGO
560		NEURONAL PENTRAXIN II AA683041
561	GF200:96(15C7):384(4F14)	TYROSINASE (OCULOCUTANEOUS ALBINISM IA) N42770
295	GF201:96(99F12):384(14K23)	ZINC FINGER PROTEIN HOMOLOGOUS TO ZPP103 IN MOUSE R54105
563	GF200:96(9F1):384(3K1)	TRANSMEMBRANE GLYCOPROTEIN AA055862
564	GF201:96(97D10):384(13H20)	0):384(13H20) ALPHA-FETOPROTEIN T59043
265	GF200:96(4C11):384(1F21)	INTER-ALPHA (GLOBULIN) INHIBITOR, H2 POLYPEPTIDE R06634
266	GF201:96(90A4):384(11B7)	HUMAN MRNA FOR KTAA0282 GENE, PARTIAL CDS R44936
267	GF201:96(92H11):384(12O22)	.1):384(12022) CADHERIN 6, K-CADHERIN (FETAL KIDNEY) AA421819
568	GF201:96(88G7):384(11M14));384(11M14) FORKHEAD (DROSOPHILA)-LIKE 8 AA069372
569		1):384(13021) FATTY ACID BINDING PROTEIN 1, LIVER T53220
570	GF200:96(1084):384(3C8)	POTASSIUM VOLTAGE-GATED CHANNEL, KQT-LIKE SUBFAMILY, MEMBER 2 H51461
571		VITRONECTIN (SERUM SPREADING FACTOR, SOMATOMEDIN B, COMPLEMENT S-PROTEIN) NS8107
572	GF200:96(27A2):384(7B4)	PRE-ALPHA (GLOBULIN) INHIBITOR, H3 POLYPEPTIDE T68035
573	GF201:96(97C8):384(13F16)	ASIALOGLYCOPROTEIN RECEPTOR 2 R98050
574	GF201:96(97C12):384(13F24)	CARBOXYPEPTIDASE N, POLYPEPTIDE 1, SOKO AA679422
575	GF200:96(12H2):384(3P3)	FIBRINOGEN, B BETA POLYPEPTIDE H91815
576	GF200:96(16H8):384(4P15)	COAGULATION FACTOR II (THROMBIN) T62131
577	GF201:96(86G12):384(10N23)	2):384(10N23) SECRETOGRANIN II (CHROMOGRANIN C) H27864
578	GF201:96(97D5):384(13H10)	APOLIPOPROTEIN H (BETA-2-GLYCOPROTEIN I) H68848
579	GF201:96(92F7):384(12K14)	ESTS, HIGHLY SIMILAR TO PHOSPHODIESTERASE I/NUCLEOTIDE PYROPHOSPHATASE BETA
		[H.SAPIENS] AAD/8333
280		CANALICULAR MULTISPECIFIC ORGANIC ANION TRANSPORTER R91503
281		ALKALINE PHOSPHATASE, LIVER/BONE/KIDNEY T94626
582	[GF201:96(90G7):384(11N13)	LECTIN, GALACTOSIDE-BINDING, SOLUBLE, 4 (GALECTIN 4) AA130579
583	GF200:96(1D10):384(1G19)	TRANSFERIN H69531
584	GF200:96(16G6):384(4N11)	PHOSPHOLIPASE A2, GROUP IIA (PLATELETS, SYNOVIAL FLUID) T61323
585	GF201:96(59H8):384(22015)	144862 R78570
586		DNA SEGMENT, SINGLE COPY, HOMOLOGOUS ON X AND Y, EXPRESSED PROBES AA496863
587	GF201:96(96F4):384(13K8)	CHROMOGRANIN B (SECRETOGRANIN 1) W37769
588	GF201:96(91H11):384(12O21)	1):384(12O21) FIBRINOGEN-LIKE 1 AA677287
589	GF200:96(1F3):384(1K5)	TRANSMEMBRANE 4 SUPERFAMILY MEMBER 3 AA045698
230	GF200:96(1G3):384(1M5)	TRANSCOBALAMIN I (VITAMIN B12 BINDING PROTEIN, R BINDER FAMILY) AA15S695
591		WINGLESS-TYPE MMTV INTEGRATION SITE FAMILY, MEMBER 5A W49672
265	GF201:96(58C9):384(21F17)	FATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART (MAMMARY-DERIVED GROWTH INHIBITOR)
		AA148548
593	GF201:96(88C3):384(11E6)	LACTOTRANSFERRIN AA677706
594	GF200:96(9A4):384(3A7)	V-MYC AVIAN MYELOCYTOMATOSIS VIRAL ONCOGENE HOMOLOG 1, LUNG CARCINOMA DERIVED P62863
		INVENCE

٩	,		١	ı
	•	q	Ľ)
•	J	Ċ		i
	į	ī	ı	İ
	ŀ			٠

596 GFZ02:96(109EB):384(15115) 266146 N21576 597 GFZ02:96(109EB):384(15115) 216452 H33276 599 GFZ00:96(31EB):384(15116) MAL, T-CELL DIFFERENTIATION PROTEIN AA227594 600 GFZ00:96(31EB):384(1116) MAL, T-CELL DIFFERENTIATION PROTEIN AA227594 601 GFZ00:96(15E):384(116) CDB ANTIGEN, BETA POLYPEPTIDE (1797) AA238571 602 GFZ00:96(15E):384(1404) CDB ANTIGEN, BETA POLYPEPTIDE (1797) AA238571 603 GFZ00:96(15E):384(1659) CHINDOERN MICKOLIULAR CHANNEL TSZ201 604 GFZ00:96(13ER):384(1659) CHENOKINE (CX3-C) RECEPTOR 1 NIZL2R 605 GFZ00:96(13ER):384(1650) CHENOKINE (CX3-C) RECEPTOR 1 NIZL2R 606 GFZ00:96(13ER):384(1650) CHENOKINE (CX3-C) RECHINDOERN MICKOTIBULE ASSOCIATED PROTEIN-LIKE AA47196 605 GFZ00:96(13ER):384(1801) COLONY STIMULATING FACTOR 1 (47KD, CHRONIC GRANULOMATO 605 GFZ00:96(15ER):384(20EL) INMINIOGLOBULIN LANBDA-LIKE POLYPEPTIDE 2 W73790 606 GFZ00:96(15ER):384(20EL) HUMAN 1G J CHAIN GENE T7067 611 GFZ00:96(15ER):384(20EL) HUMAN 1G J CHAIN GENE T7067 612 PEROU:96(15ER):384(20EL) HUMAN 1G J CHAIN GEN	IN-INIC AATOTON
GF200:96(13E2):384(413) GF201:96(97F8):384(13116) GF201:96(3F8):384(1116) GF201:96(85H7):384(10P14) GF201:96(85H7):384(10P14) GF201:96(817):384(10P14) GF200:96(13G3):384(3M5) GF200:96(20H3):384(7E6) GF200:96(20H3):384(7E6) GF200:96(20H3):384(7E6) GF200:96(20H3):384(7G6) DFROU:96(60E):384(20C24) DFROU:96(60E):384(20C10) DFROU:96(60E):384(20C10) DFROU:96(60E):384(20C10) DFROU:96(60E):384(20C10) DFROU:96(60E):384(10B18) GF200:96(18A10):384(5A20) DFROU:96(60E):384(10B18) GF200:96(18A10):384(2A13) GF201:96(60E1):384(2H3) GF201:96(60E1):384(2H3) GF201:96(80E6):384(9H2) GF201:96(81C6):384(9H2) GF201:96(81C6):384(11P8) GF201:96(81C6):384(2H23) GF201:96(81C6):384(10F13) GF201:96(81C6):384(2C22) GF201:96(811):384(2C22) GF200:96(10H12):384(2C22) GF200:96(10H3):384(2C22) GF200:96(10H3):384(2C22) GF200:96(10H3):384(2C22)	_
GF201:96(97FB):384(13L16) GF200:96(15F2):384(1116) GF200:96(15F2):384(1014) GF201:96(85H7):384(10P14) GF201:96(817):384(10P14) GF200:96(13G3):384(10P13) GF200:96(13G3):384(20C3) GF200:96(9F9):384(7E6) GF200:96(9F9):384(7E6) GF200:96(6B12):384(20C24) PEROU:96(6B12):384(20C24) PEROU:96(6B12):384(20C3) GF200:96(1801):384(20C3) DFROU:96(6B12):384(18B18) GF200:96(1801):384(20C3) DFROU:96(6B12):384(20C3) DFROU:96(6B12):384(10B18) GF200:96(1801):384(20C3) GF200:96(1801):384(20C3) GF201:96(6B12):384(10F2) GF201:96(6B12):384(2413) GF201:96(6B12):384(2413) GF201:96(6B12):384(20C3) GF201:96(6B12):384(11P8) GF201:96(6B12):384(20C3) GF201:96(6B12):384(10F13) GF201:96(6B11):384(20C3) GF201:96(6B11):384(20C3) GF201:96(6B11):384(20C3) GF201:96(6B11):384(20C3) GF201:96(6B11):384(20C3) GF201:96(6B11):384(20C3)	_
GF200:96(3F8):384(1L16) GF200:96(15F2):384(1L16) GF201:96(85H7):384(10P14) GF201:96(817):384(10P14) GF202:96(116H2):384(16P3) GF200:96(22H3):384(606) GF201:96(917):384(7E6) GF200:96(26H7):384(7E6) GF200:96(26H7):384(7E6) GF200:96(26H7):384(7G6) PEROU:96(6B12):384(7G6) PEROU:96(6B12):384(7G6) PEROU:96(6B12):384(7G6) PEROU:96(6B12):384(20C10) PEROU:96(6B12):384(18B18) GF200:96(18A10):384(20C10) PEROU:96(6B4):384(18B18) GF200:96(18A10):384(20C10) PEROU:96(6B4):384(10B18) GF200:96(18G1):384(2H19) GF201:96(6B17):384(2H19) GF201:96(6F2):384(2H19) GF201:96(6F2):384(11P8) GF201:96(8B14):384(11P8) GF201:96(8B14):384(11P8) GF201:96(8B14):384(2H23) GF201:96(8B14):384(10F13) GF201:96(8B14):384(2C12) GF201:96(8B14):384(10F13) GF201:96(8B11):384(2C12) GF201:96(8B11):384(2C12)	
GF200:96(15F2):384(4L4) GF201:96(85H7):384(10P14) GF202:96(116H2):384(10P14) GF202:96(116H2):384(10P14) GF200:96(22H3):384(4M5) GF200:96(22H3):384(20C5) GF201:96(91):384(20C14) GF200:96(26D3):384(7E6) GF200:96(6B12):384(20C24) PEROU:96(6B12):384(7G6) PEROU:96(6B12):384(20C10) PEROU:96(6B12):384(20C10) PEROU:96(6B12):384(20C10) PEROU:96(6B12):384(20C10) PEROU:96(6B12):384(20C10) PEROU:96(6B12):384(18B18) GF200:96(18A10):384(5A14) GF200:96(18A10):384(10G5) GF201:96(8B13):384(10G5) GF201:96(8B13):384(11P2) GF201:96(8B13):384(11P2) GF201:96(8B13):384(11P2) GF201:96(8B13):384(11P3) GF201:96(8B13):384(11P3) GF201:96(8B13):384(2212) GF201:96(8B13):384(2212) GF201:96(8B13):384(2212) GF201:96(8B13):384(10F13) GF201:96(8B11):384(2C12) GF201:96(8B11):384(2C12) GF201:96(8B11):384(2C12)	MAL, T-CELL DIFFERENTIATION PROTEIN AA227594
GF201:96(85H7):384(10P14) GF202:96(116H2):384(16P3) GF200:96(13G3):384(4M5) GF200:96(22H3):384(6O6) GF201:96(91H7):384(12013) GF201:96(91H7):384(7E6) GF200:96(26C3):384(7E6) GF200:96(26C3):384(7G6) PEROU:96(6B12):384(2OC24) PEROU:96(6B12):384(2OC24) PEROU:96(6B12):384(2OC10) PEROU:96(6B12):384(2OC10) PEROU:96(6B12):384(2OC10) PEROU:96(6B12):384(2OC10) PEROU:96(6B12):384(10B18) GF200:96(18A10):384(5A14) GF200:96(18A7):384(5A14) GF201:96(6B11):384(2H3) GF201:96(6B12):384(10P2) GF201:96(81C4):384(11P8) GF201:96(81C4):384(11P8) GF201:96(81C4):384(11P8) GF201:96(81C4):384(11P3) GF201:96(81C4):384(10C12) GF201:96(81C4):384(10C12) GF201:96(81C4):384(10C12) GF201:96(81C4):384(10C12) GF201:96(81C4):384(10C12) GF201:96(81C7):384(2C12) GF201:96(81C7):384(2C12) GF201:96(81C7):384(2C12) GF201:96(81C7):384(2C12)	CDB ANTIGEN, BETA POLYPEPTIDE 1 (P37) AA293671
GF202:96(116H2):384(16P3) GF200:96(13G3):384(4M5) GF200:96(22H3):384(6O6) GF200:96(22H3):384(20G3) GF200:96(9F9):384(7E6) GF200:96(9B1):384(20C24) PEROU:96(6B12):384(20C24) PEROU:96(6B12):384(20C24) PEROU:96(6B12):384(20C34) GF200:96(18A10):384(20C3) GF200:96(18A10):384(20C3) GF200:96(18A10):384(5A14) GF200:96(18A10):384(5A14) GF200:96(18A10):384(18B18) GF200:96(18A1):384(18B18) GF200:96(18A1):384(19C2) GF201:96(6B1):384(2H12) GF201:96(6B12):384(2H12) GF201:96(6B12):384(2H13) GF201:96(6B12):384(11P8) GF201:96(8B14):384(11P8) GF201:96(8B14):384(11P8) GF201:96(8B14):384(11P8) GF201:96(8B11):384(2C12) GF201:96(8B11):384(2C12) GF201:96(8B11):384(2C12) GF201:96(8B11):384(2C22) GF200:96(1B11):384(2C22)	V-MAF MUSCULOAPONEUROTIC FIBROSARCOMA (AVIAN) ONCOGENE HOMOLOG AA043501
GF200:96(13G3):384(4M5) GF200:96(22H3):384(6D6) GF201:96(91H7):384(12013) GF200:96(2913):384(7E6) GF200:96(26C3):384(7E6) GF200:96(6B12):384(20C24) PEROU:96(6B12):384(20C12) GF200:96(26D3):384(7G6) PEROU:96(6B5):384(20C10) PEROU:96(6B9):384(18B18) GF200:96(18A10):384(5A14) GF200:96(18A10):384(5A14) GF200:96(18A10):384(5A14) GF200:96(18A1):384(10G5) GF201:96(6B0):384(10G5) GF201:96(8D10):384(11P2) GF201:96(8D10):384(11P2) GF201:96(8D10):384(11P2) GF201:96(8D10):384(11P3) GF201:96(6B1):384(11P3) GF201:96(6B1):384(11P3) GF201:96(6B1):384(2C12) GF201:96(6B1):384(2C12) GF201:96(6B1):384(2C12) GF201:96(6B1):384(2C12) GF201:96(6B1):384(2C22) GF201:96(6B1):384(2C22) GF200:96(1B4):384(2C22) GF200:96(1B1):384(2C22)	CHLORIDE INTRACELLULAR CHANNEL 2 T52201
GF200:96(2243):384(606) GF201:96(9147):384(12013) GF201:96(9147):384(12013) GF200:96(26C3):384(7E6) GF200:96(6B12):384(20C24) PEROU:96(6B12):384(20C24) PEROU:96(6B12):384(20C10) PEROU:96(6B9):384(7G6) PEROU:96(6B9):384(18B18) GF200:96(18A10):384(5A14) GF200:96(18A10):384(5A14) GF200:96(18A7):384(5A14) GF200:96(18A7):384(5A14) GF201:96(6B01):384(10G5) GF201:96(6B1):384(11P3) GF201:96(81C4):384(11P3) GF201:96(81C4):384(11P3) GF201:96(81C4):384(11P3) GF201:96(81C4):384(11P3) GF201:96(81C4):384(11P3) GF201:96(81C4):384(11P3) GF201:96(81C4):384(11P3) GF201:96(81C4):384(10C13) GF201:96(81C4):384(10C13) GF201:96(81C4):384(10C13) GF201:96(81C4):384(10C13) GF201:96(81C4):384(10C13) GF201:96(81C4):384(10C13) GF201:96(81C4):384(10C13) GF201:96(81C4):384(10C13)	CHEMOKINE (C-X3-C) RECEPTOR 1 N51278
GF201:96(91H7):384(12013) GF200:96(9F9):384(7E6) GF200:96(26C3):384(7E6) GF200:96(6B12):384(20C24) PEROU:96(6B12):384(20C24) PEROU:96(6B12):384(20C10) PEROU:96(6B5):384(20C10) PEROU:96(6B9):384(18B18) GF200:96(18A10):384(5A14) GF200:96(18A10):384(5A14) GF200:96(18A10):384(5A14) GF200:96(18A7):384(5A14) GF201:96(6B0):384(19C20) GF201:96(6B10):384(2H13) GF201:96(6F6):384(9H12) GF201:96(6F6):384(9H12) GF201:96(6F6):384(1F24) GF201:96(6F6):384(11P8) GF201:96(6F12):384(2H23) GF201:96(6F12):384(2H23) GF201:96(6B11):384(11P8) GF201:96(6B11):384(10F13) GF201:96(6B11):384(2C72) GF201:96(6B11):384(2C72) GF200:96(1B11):384(2C72) GF200:96(1B11):384(2C22)	ECHINODERM MICROTUBULE-ASSOCIATED PROTEIN-LIKE AA447196
GF200:96(9F9):384(3K17) GF200:96(26C3):384(7E6) GF200:96(6B12):384(20C24) PEROU:96(6B12):384(20C24) PEROU:96(6B12):384(20C12) GF200:96(2B03):384(7G6) PEROU:96(6B9):384(7G6) PEROU:96(6B9):384(18B18) GF200:96(18A10):384(5A14) GF200:96(18A10):384(5A14) GF200:96(18A10):384(5A14) GF200:96(18A7):384(5A14) GF201:96(6B01):384(10G5) GF201:96(8D10):384(11012) GF201:96(8164):384(11P8) GF201:96(81C6):384(9F12) GF201:96(81C6):384(9F12) GF201:96(81C6):384(11P8) GF201:96(81C6):384(11P8) GF201:96(81C6):384(11P8) GF201:96(81C6):384(11P8) GF201:96(81C6):384(11P8) GF201:96(81C6):384(1012) GF201:96(81C6):384(1012) GF201:96(81C6):384(1012) GF201:96(81C7):384(1012) GF201:96(81C7):384(2C22) GF200:96(18B4):384(2C22)) IMMUNOGLOBULIN GAMMA 3 (GM MARKER) AA663981
GF200:96(26C3):384(7E6) GF201:96(88F6):384(20C24) PEROU:96(6B12):384(20C12) GF200:96(6B12):384(20C12) GF200:96(6B2):384(20C10) PEROU:96(6B3):384(20C10) PEROU:96(6B4):384(5A14) GF200:96(18A10):384(5A14) GF200:96(18A7):384(5A14) GF200:96(18A7):384(5A14) GF201:96(6B01):384(10G5) GF201:96(8101):384(10G5) GF201:96(81C4):384(11P3) GF201:96(81C4):384(11P3) GF201:96(81C4):384(11P3) GF201:96(81C5):384(11P3) GF201:96(81C5):384(11P3) GF201:96(81C5):384(11P3) GF201:96(81C5):384(11P3) GF201:96(81C7):384(11P3) GF201:96(81C7):384(11P3) GF201:96(81C7):384(2C723) GF201:96(81C7):384(2C723) GF201:96(81C7):384(2C723) GF201:96(6B11):384(2C72)	COLONY STIMULATING FACTOR 1 (MACROPHAGE) N92646
GF201:96(88F6):384(11K12) PEROU:96(6B12):384(20C24) PEROU:96(6B12):384(20C24) PEROU:96(6B2):384(20C10) PEROU:96(6B5):384(18B18) GF200:96(18A10):384(18B18) GF200:96(18A10):384(2A20) PEROU:96(6B4):384(2A20) GF200:96(18A11):384(2A14) GF200:96(18A11):384(2A14) GF200:96(18A11):384(1A21) GF201:96(8B10):384(1A12) GF201:96(8D10):384(1A12) GF201:96(8D12):384(1A12) GF201:96(8D12):384(1A12) GF201:96(8D12):384(1A12) GF201:96(8D12):384(1A13) GF201:96(8D12):384(1A13) GF201:96(8D12):384(1A13) GF201:96(8D12):384(1A13) GF201:96(8D12):384(1A13) GF201:96(8D13):384(1A13) GF201:96(8D13):384(1A13) GF201:96(8B11):384(1A13) GF201:96(8B11):384(2C22) GF201:96(6B11):384(2C22)	NEUTROPHIL CYTOSOLIC FACTOR 1 (47KD, CHRONIC GRANULOMATOUS DISEASE, AUTOSOMAL 1) AA489666
PEROU!96(6B12):384(20C24) PEROU!96(6D6):384(20G12) GF200:96(26D3):384(7G6) PEROU!96(6B5):384(7G6) PEROU!96(9A9):384(18B18) GF200:96(18A10):384(5A14) GF200:96(18A7):384(5A14) GF200:96(18A7):384(5A14) GF200:96(18G11):384(2A19) GF201:96(6ZD10):384(2H19) GF201:96(8B0F6):384(9K12) GF201:96(81G4):384(1D8) GF201:96(81C6):384(9K12) GF201:96(81C6):384(9K12) GF201:96(81C6):384(1P8) GF201:96(81C6):384(1D8) GF201:96(81C6):384(1D8) GF201:96(81C6):384(2H13) GF201:96(81C6):384(2H13) GF201:96(81C6):384(2H13) GF201:96(81C6):384(2H13) GF201:96(81C6):384(2C2) GF201:96(81C6):384(2C2) GF201:96(81D1):384(2C22) GF201:96(8B11):384(2C22) GF200:96(10F4):384(2C22)	厂
PEROU:96(6D6):384(20G12) GF200:96(26D3):384(7G6) PEROU:96(6B5):384(7G6) PEROU:96(9A9):384(18B18) GF200:96(18A10):384(5A20) PEROU:96(6B4):384(20C8) GF200:96(18A7):384(5A14) GF200:96(18G11):384(2A14) GF201:96(6ZD10):384(10G5) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(22H23) GF201:96(81G4):384(2H23) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(6B11):384(2C22) GF201:96(6B11):384(2C22)) IMMUNOGLOBULIN LAMBDA LIGHT CHAIN R50297
GF200:96(26D3):384(7G6) PEROU:96(6B5):384(20C10) PEROU:96(9A9):384(18B18) GF200:96(18A10):384(5A20) PEROU:96(6B4):384(20C8) GF200:96(18A7):384(5A14) GF200:96(18G11):384(2A14) GF201:96(6ZD10):384(10G5) GF201:96(8B0F6):384(9K12) GF201:96(8T6):384(3K110B) GF201:96(8T6):384(3F12) GF201:96(8TG6):384(11P8) GF201:96(8TG6):384(11P8) GF201:96(8TG6):384(11P8) GF201:96(8TG6):384(11P8) GF201:96(8TG6):384(11P8) GF201:96(8TG6):384(2A13) GF201:96(8TG6):384(2A13) GF201:96(8TG6):384(2A13) GF201:96(6TG6):384(2D12) GF201:96(8TG6):384(2D12) GF201:96(6TG6):384(2C12) GF201:96(6TG6):384(3TG6)	HUMAN REARRANGED IMMUNOGLOBULIN LAMBDA LIGHT CHAIN MRNA N64851
PEROU:96(685):384(20C10) PEROU:96(9A9):384(18B18) GF200:96(18A10):384(5A20) PEROU:96(684):384(20C8) GF200:96(18A7):384(5A14) GF200:96(18A7):384(5A14) GF201:96(62D10):384(2419) GF201:96(8104):384(2413) GF201:96(81G4):384(3410G5) GF201:96(67E2):384(2413) GF201:96(67E2):384(2413) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(22H23) GF201:96(81G4):384(2C2) GF201:96(66C7):384(2C2) GF201:96(66C7):384(2C2) GF201:96(66C7):384(2C2) GF201:96(66C7):384(2C22) GF200:96(1664):384(2C22) GF200:96(1664):384(2C22)	HUMAN REARRANGED IMMUNOGLOBULIN LAMBDA LIGHT CHAIN MRNA T67053
PEROU:96(949):384(18B18) GF200:96(18A10):384(5A20) PEROU:96(6B4):384(20C8) GF200:96(18A7):384(5A14) GF200:96(18G11):384(5A14) GF201:96(62D10):384(22H19) GF201:96(81G4):384(2413) GF201:96(81G4):384(2413) GF201:96(67E2):384(2413) GF201:96(67E2):384(2413) GF201:96(67E2):384(2413) GF201:96(67E2):384(11P8) GF201:96(61G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(22H23) GF201:96(62D12):384(22H23) GF201:96(61G4):384(4D7) GF201:96(61G4):384(4D7) GF201:96(61G4):384(4D7) GF201:96(61G4):384(4D7) GF201:96(61G4):384(4D7)	
GF200:96(18A10):384(5A20) PEROU:96(6B4):384(20C8) GF200:96(18A7):384(5A14) GF200:96(18G11):384(5A14) GF201:96(6ZD10):384(19G20) GF201:96(8B0F6):384(10G5) GF201:96(8B0F6):384(9K12) GF201:96(6F2):384(2413) GF201:96(6F2):384(2413) GF201:96(8B0F6):384(11P8) GF201:96(8B0F6):384(11P8) GF201:96(8B0F6):384(11P8) GF201:96(8B0F6):384(11P8) GF201:96(8B0F6):384(11P8) GF201:96(6B0F6):384(11P8) GF201:96(6B0F6):384(11P8) GF201:96(6B0F6):384(11P8) GF201:96(6B0F6):384(2C22) GF200:96(16B4):384(2C22) GF200:96(16B4):384(2C22)	IMMUNOGLOBULIN J CHAIN H24896
PEROU:96(6B4):384(20C8) GF200:96(18A7):384(5A14) GF200:96(18G11):384(5A14) GF201:96(2D10):384(19G20) GF201:96(8D10):384(22H19) GF201:96(8B0F6):384(9K12) GF201:96(6F2):384(2413) GF201:96(6F2):384(2413) GF201:96(81C6):384(9F12) GF201:96(81C6):384(9F12) GF201:96(81C6):384(11P8) GF201:96(81C6):384(11P8) GF201:96(8144):384(11P8) GF201:96(6E91):384(2C12) GF201:96(6E91):384(2C12) GF200:96(16B4):384(4D7) GF200:96(16B4):384(4D7) GF200:96(16B4):384(2C22) GF200:96(16B4):384(2C22)	Г
GF200:96(18A7):384(5A14) GF200:96(18G11):384(5A14) GF200:96(2D10):384(19G20) GF201:96(83D3):384(10G5) GF201:96(81G4):384(2413) GF201:96(67E2):384(2413) GF201:96(67E2):384(2413) GF201:96(67E2):384(2413) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(81G4):384(11P8) GF201:96(62D12):384(22H23) GF201:96(62D12):384(2D12) GF201:96(62D12):384(2C12) GF201:96(62D12):384(2C12) GF201:96(62D12):384(2C12) GF201:96(62D12):384(2C12) GF201:96(62D12):384(2C12)	MAJOR HISTOCOMPATIBILITY COMPLEX, CLASS II, DQ BETA 1 R73128
GF200:96(18G11):384(5M22) PEROU:96(2D10):384(19G20) GF201:96(6ZD10):384(10G5) GF201:96(80F6):384(90R1) GF201:96(67E2):384(2413) GF201:96(67E2):384(2413) GF201:96(67E2):384(2413) GF201:96(81C6):384(9F12) GF201:96(81C6):384(9F12) GF201:96(80H4):384(11P8) GF201:96(80H4):384(11P8) GF201:96(62D12):384(22H23) GF201:96(62D12):384(2D12) GF200:96(1664):384(4D7) GF200:96(1664):384(4D7) GF200:96(1664):384(4D7) GF200:96(1664):384(2C22)	IMMUNOGLOBULIN MU H73590
PEROU:96(2D10):384(19G20) GF201:96(62D10):384(22H19) GF201:96(80E6):384(2CH19) GF201:96(80E6):384(9NE) GF201:96(67E2):384(2A13) GF201:96(67E2):384(2A13) GF201:96(67E2):384(15P24) GF201:96(81C6):384(9F12) GF201:96(62D12):384(11P8) GF201:96(62D12):384(10F12) GF201:96(62D12):384(10F13) GF200:96(16B4):384(10F13) GF200:96(16B4):384(10F13) GF200:96(16B4):384(10F13) GF200:96(6B11):384(2CZ2)	EARLY DEVELOPMENT REGULATOR 2 (HOMOLOG OF POLYHOMEOTIC 2) AA598840
GF201:96(62D10):384(22H19) GF201:96(83D3):384(10G5) GF201:96(81G4):384(9K12) GF201:96(6F2):384(9K13) GF202:96(111H12):384(15P24) GF201:96(81G4):384(15P24) GF201:96(89H4):384(11P8) GF201:96(89H3):384(10F3) GF201:96(89H3):384(10F3) GF201:96(80H3):384(10F13) GF201:96(80H3):384(10F13) GF200:96(16B4):384(10F13) GF200:96(10F4):384(10F13)) MAX-INTERACTING PROTEIN 1 AI087032
GF201:96(83D3):384(10G5) GF201:96(80F6):384(9K12) GF201:96(67E2):384(2413) GF202:96(111H12):384(15P24) GF201:96(81C6):384(1F24) GF201:96(81C6):384(1F8) GF201:96(80H4):384(10F8) GF201:96(80H3):384(10F8) GF201:96(80H3):384(10F13) GF201:96(80H3):384(10F13) GF200:96(16B4):384(10F13) GF200:96(6B11):384(2C22)	9) HOMO SAPIENS MRNA FOR KIAA0640 PROTEIN, PARTIAL CDS N23996
GF201:96(80F6):384(9K12) GF201:96(81G4):384(9N8) GF201:96(67E2):384(15P24) GF201:96(81C6):384(11P8) GF201:96(89H4):384(11P8) GF201:96(89H3):384(11P8) GF201:96(62012):384(2H23) GF201:96(6C7):384(10F13) GF201:96(80C7):384(10F13) GF200:96(10E4):384(10F13) GF200:96(10E4):384(10F13)	GLUTATHIONE S-TRANSFERASE M5 AA056232
GF201:96(81G4):384(9N8) GF201:96(67E2):384(24I3) GF202:96(111H12):384(15P24) GF201:96(81C6):384(9F12) GF201:96(89H4):384(11P8) GF201:96(62D12):384(22H23) GF201:96(86C7):384(10F13) GF201:96(86C7):384(10F13) GF200:96(6B11):384(2C22) GF200:96(6B11):384(2C22)	325583 AA284243
GF201:96(67E2):384(2413) GF202:96(111H12):384(15P24) GF201:96(81C6):384(9F12) GF201:96(89H4):384(11P8) GF201:96(62D12):384(2H23) GF201:96(66C7):384(10F13) GF201:96(80C7):384(10F13) GF200:96(1684):384(10F13) GF200:96(6B11):384(2C22) GF200:96(10F4):384(2C22)	244796 N52554
GF202:96(111H12):384(15P24 GF201:96(81L6):384(9F12) GF201:96(62D12):384(21P8) GF201:96(62D12):384(22H23) GF200:96(1684):384(4D7) GF201:96(86C7):384(10F13) GF200:96(6B11):384(2C22) GF200:96(10F4):384(2C22)	346321 W74079
GF201:96(81C6):384(9F12) GF201:96(89H4):384(11P8) GF201:96(62D12):384(2ZH23) GF200:96(1684):384(4D7) GF201:96(86C7):384(10F13) GF200:96(6B11):384(2CZ2) GF200:96(10F4):384(3K8)	24 ESTS, HIGHLY SIMILAR TO SCK [H.SAPIENS] H10072
GF201:96(89H4):384(11P8) GF201:96(62D12):384(2ZHZ3) GF200:96(1684):384(4D7) GF201:96(86C7):384(10F13) GF200:96(6B11):384(2CZ2) GF200:96(10F4):384(3K8)	364865 AA035745
GF201:96(62D12):384(22H23) GF200:96(1684):384(4D7) GF201:96(86C7):384(10F13) GF200:96(6B11):384(2C22) GF200:96(10F4):384(3K8)	DOUBLECORTIN AND CAM KINASE-LIKE 1 N34513
GF200:96(1684):384(4D7) GF201:96(86C7):384(10F13) GF200:96(6B11):384(2C22) GF200:96(10F4):384(3K8)	3) 201440 R99105
GF201:96(86C7):384(10F13) GF200:96(6B11):384(2C22) GF200:96(10F4):384(3K8)	RIBONUCLEASE L (2',5'-OLIGOISOADENYLATE SYNTHETASE-DEPENDENT) T60223
GF200:96(6B11):384(2C22) GF200:96(10F4):384(3K8)	
GF200:96(10F4):384(3K8)	SAL (DROSOPHILA)-LIKE 2 H23365
ľ	IMPRINTED IN PRADER-WILLI SYNDROME H93815
632 [GF201:96(96G12);384(13M24) CANNABINOID RECEPTOR 1 (BRAIN) R20626	(4) CANNABINOID RECEPTOR 1 (BRAIN) R20626

7	
ø	
죠	
œ.	
┺-	

	633	GF200:96(19B5):384(5D10)	CBP/P300-INTERACTING TRANSACTIVATOR, WITH GLU/ASP-RICH CARBOXY-TERMINAL DOMAIN, 1 AA432143
GF200:96(14C11):384(4E22) GF201:96(100A4):384(7G18) GF200:96(26D9):384(7G18) GF200:96(21G10):384(2411) GF200:96(21G10):384(2411) GF201:96(65A6):384(2421) GF201:96(65A6):384(2421) GF201:96(67C1):384(2421) GF201:96(10C12):384(4821) GF201:96(10C12):384(4821) GF200:96(16F2):384(4821) GF200:96(27E11):384(2421) GF200:96(27E11):384(2421) GF200:96(27E11):384(2121) GF200:96(10C10):384(1919) GF200:96(10C10):384(1017) GF200:96(10C10):384(1017) GF200:96(10C10):384(1017) GF200:96(10C10):384(1017) GF200:96(10C10):384(1011) PEROU:96(6E7):384(2011) PEROU:96(6E7):384(1018) GF201:96(10B10):384(1018) GF201:96(10B10):384(1018) GF200:96(10B10):384(1018) GF200:96(10B10):384(1018) GF200:96(10B10):384(1018) GF200:96(10B10):384(1018) GF200:96(10B10):384(1018) GF200:96(10B10):384(1018) GF200:96(10B10):384(1018)	634	GF201:96(100B6):384(14C12)	
GF201:96(100A4):384(14A8) GF200:96(26D9):384(7G18) GF200:96(4D6):384(1111) GF200:96(21G10):384(241) GF200:96(5A6):384(23B12) GF201:96(65A6):384(241) GF201:96(65C1):384(24E1) GF201:96(67C1):384(34(14C16) GF200:96(16C2):384(14C16) GF200:96(27E11):384(7P22) GF200:96(27E11):384(7P22) GF200:96(27E11):384(7P22) GF200:96(27E11):384(19E19) GF200:96(27E11):384(19E19) GF200:96(14D12):384(19E19) GF200:96(14D12):384(1017) DEROU:96(12013) GF200:96(14014) DEROU:96(100H7):384(10117) DEROU:96(100H7):384(10117) DEROU:96(110110):384(10117) DEROU:96(110110):384(10117) DEROU:96(110110):384(10117) DEROU:96(110110):384(10117) GF200:96(110810):384(10117) GF200:96(110810):384(10117) GF200:96(110810):384(10118) GF200:96(110810):384(10118) GF200:96(110810):384(10118) GF200:96(1108110):384(10118) GF200:96(1108110):384(10118) GF200:96(1108110):384(10118)	635	GF200:96(14C11):384(4E22)	UDP-N-ACETYL-ALPHA-D-GALACTOSAMINE; (N-ACETYLNEURAMINYL)-GALACTOSYLGLUCOSYLCERAMIDE N-ACETYLGALACTOSAMINYI TRANSFERASE (GALNAC-T) RO5336
GF200:96(26D9):384(7G18) GF200:96(4D6):384(1111) GF200:96(4D6):384(1111) GF200:96(7E2):384(23B12) GF201:96(65A6):384(24E1) GF201:96(65A6):384(24E1) GF201:96(100G12):384(14M24 GF201:96(100B8):384(14M24) GF200:96(16F2):384(4B5) GF200:96(27H11):384(7P22) GF200:96(27H11):384(7D22) GF200:96(27H11):384(19E19) GF200:96(14D12):384(19E19) GF200:96(14D12):384(19E19) GF200:96(27A3):384(1017) GF200:96(27A3):384(20D2) GF200:96(6B1):384(20D2) GF201:96(100H7):384(20B20) GF201:96(100H7):384(1918) GF201:96(10B10):384(1918) GF201:96(10B10):384(1918) GF200:96(14B4):384(1918) GF200:96(14B4):384(1920) GF200:96(14B4):384(1012) GF200:96(14B4):384(1012) GF200:96(14B4):384(1012) GF200:96(14B4):384(1012)	636	GF201:96(100A4):384(14A8)	51644 H20570
GF200:96(4D6):384(1H11) GF200:96(7E2):384(24B1) GF200:96(7E2):384(23B12) GF201:96(65A6):384(24E1) GF201:96(6100G12):384(24E1) GF201:96(100G12):384(24E1) GF201:96(100B8):384(24E1) GF200:96(27E11):384(24E1) GF200:96(27E11):384(7P22) GF200:96(27E11):384(19E19) GF200:96(27E11):384(19E19) GF200:96(14D12):384(1BE19) GF200:96(14D12):384(1BE19) GF200:96(27A3):384(1BE19) GF200:96(27A3):384(20D2) GF200:96(28H9):384(20D2) GF200:96(28H9):384(1919) DEROU:96(6E1):384(20B20) GF201:96(10B10):384(1918) GF201:96(10B10):384(1918) GF200:96(14B4):384(1918) GF200:96(14B4):384(15C20) GF200:96(14B4):384(15C20) GF200:96(14B4):384(1918) GF200:96(14B4):384(1918) GF200:96(14B4):384(1902)	637	GF200:96(26D9):384(7G18)	NUCLEOSOME ASSEMBLY PROTEIN 1-LIKE 3 AA463251
GF200:96(21G10):384(6M19) GF200:96(7F2):384(214) GF201:96(65A6):384(241) GF201:96(65A6):384(24E1) GF201:96(67C1):384(24E1) GF201:96(16F2):384(14R24) GF200:96(16F2):384(14R25) GF200:96(27H11):384(7P22) GF200:96(27H11):384(7P22) GF200:96(27H11):384(19E19) GF200:96(27H11):384(19E19) GF200:96(14D12):384(19E19) GF200:96(14D12):384(19E19) GF200:96(27A3):384(19E19) GF200:96(27A3):384(1017) DEROU:96(6B1):384(20C2) GF201:96(100H7):384(1011) DEROU:96(6E7):384(20D11) DEROU:96(3E4):384(1918) GF201:96(110B10):384(1918) GF201:96(14B4):384(1918) GF201:96(14B4):384(15C20) GF200:96(14B4):384(1018) GF200:96(14B4):384(1018) GF200:96(14B4):384(1018) GF200:96(14B4):384(1018) GF200:96(14B4):384(1018)	638		I FACTOR (COMPLEMENT) N62462
GF200:96(7F2):384(214) GF201:96(65A6):384(23B12) GF201:96(67C1):384(24E1) GF201:96(67C1):384(24E1) GF201:96(16F2):384(14C16) GF200:96(16F2):384(14C16) GF200:96(27H11):384(7P22) GF200:96(27H11):384(7P22) GF200:96(27H11):384(19E19) GF200:96(14D12):384(19E19) GF200:96(14D12):384(19E19) GF200:96(27A3):384(19E19) GF200:96(27A3):384(1017) GF200:96(27A3):384(2020) GF200:96(6B1):384(2014) DEROU:96(6B1):384(2014) DEROU:96(6E7):384(2011) DEROU:96(3E4):384(1918) GF201:96(110B10):384(1918) GF200:96(1464):384(1018) GF200:96(1461):384(1018) GF200:96(1461):384(1018) GF200:96(1461):384(1018) GF200:96(1461):384(1018) GF200:96(1461):384(1018) GF200:96(18E1):384(1018) GF200:96(18E1):384(1018)	639		
GF201:96(65A6):384(23B12) GF201:96(100G12):384(14M24 GF201:96(16F2):384(14C16) GF200:96(16F2):384(14C16) GF200:96(16A3):384(14C16) GF200:96(27H11):384(7P22) GF200:96(27H11):384(7P22) GF200:96(27H11):384(19E19) GF200:96(14D12):384(19E19) GF200:96(14D12):384(19E19) GF200:96(14D12):384(19E19) GF200:96(27A3):384(19E19) GF200:96(27A3):384(1017) DEROU:96(6B1):384(20D20) GF201:96(100H7):384(20B20) GF201:96(100H7):384(1918) GF201:96(3E4):384(1918) GF201:96(110B10):384(1918) GF201:96(14B4):384(1918) GF200:96(14B4):384(1018) GF200:96(14B1):384(1018) GF200:96(14B1):384(1018) GF200:96(14B1):384(1018) GF200:96(14B1):384(1018) GF200:96(14B1):384(1002)	640		FRIZZLED-RELATED PROTEIN WS8032
GF201:96(100G12):384(14M24 GF201:96(67C1):384(24E1) GF201:96(67C1):384(44E3) GF200:96(16A3):384(4B5) GF200:96(27H11):384(7D22) GF200:96(27H11):384(7D22) GF200:96(27H11):384(19E19) GF200:96(14D12):384(19E19) GF200:96(14D12):384(19E19) GF200:96(14D12):384(2D2) GF200:96(14D12):384(2D2) GF200:96(6B1):384(2D17) GF200:96(6B1):384(2014) PEROU:96(6B1):384(2014) PEROU:96(6E1):384(2011) PEROU:96(3E4):384(1918) GF201:96(110B10):384(1918) GF201:96(14B4):384(1918) GF200:96(14B4):384(1920) GF200:96(14B1):384(1920) GF200:96(14B1):384(1920) GF200:96(18E1):384(1920)	641	GF201:96(65A6):384(23B12)	416855 W87281
GF201:96(67C1):384(24E1) GF200:96(16F2):384(14C16) GF200:96(16A3):384(14C16) GF200:96(16A3):384(14C16) GF200:96(27H11):384(7P22) GF200:96(27H11):384(7P22) GF200:96(27E11):384(19E19) GF200:96(14D12):384(19E19) GF200:96(14D12):384(19E19) GF200:96(27A3):384(19E19) GF200:96(27A3):384(1017) GF200:96(27A3):384(1017) DEROU:96(6B1):384(2014) DEROU:96(6B1):384(2014) DEROU:96(6B1):384(2011) DEROU:96(3E4):384(1918) GF201:96(110B10):384(1918) GF200:96(14B4):384(1918) GF200:96(14B4):384(15C20) GF200:96(14B1):384(15C20) GF200:96(18E1):384(1018) GF200:96(18E1):384(1018) GF200:96(18E1):384(1018) GF200:96(18E1):384(1002)	642	GF201:96(100G12):384(14M2	460540 T40531
GF200:96(16F2):384(4L3) GF201:96(10088):384(14C16) GF200:96(16A3):384(4B5) GF200:96(27H11):384(7D22) GF200:96(27H11):384(7D22) GF200:96(32F10):384(8L19) GF200:96(32F10):384(19E19) GF200:96(14D12):384(19E19) GF200:96(14D12):384(2L22) GF200:96(27A3):384(7B6) GF200:96(27A3):384(7B6) GF200:96(6B1):384(2D17) GF200:96(6B1):384(2014) PEROU:96(6B1):384(2014) PEROU:96(6E7):384(2011) PEROU:96(110B10):384(1938) GF200:96(14B4):384(1938) GF200:96(14B4):384(15C20) GF200:96(14B4):384(15C20) GF200:96(18E1):384(15C20) GF200:96(18E1):384(15C20) GF200:96(18E1):384(15C24) GF200:96(18E1):384(15C24)	643	GF201:96(67C1):384(24E1)	503819 AA131664
GF201:96(10088):384(14C16) GF200:96(16A3):384(4B5) GF200:96(27H11):384(7D22) GF200:96(27H11):384(7D22) GF200:96(32F10):384(8H19) GF200:96(32F10):384(19E19) GF200:96(14D12):384(19E19) GF200:96(14D12):384(2D27) GF200:96(14D12):384(2D27) GF200:96(14B1):384(2D17) GF200:96(14B1):384(2014) PEROU:96(6B1):384(2014) PEROU:96(6B1):384(2011) PEROU:96(110H7):384(2011) PEROU:96(110H7):384(1918) GF201:96(3E4):384(1918) GF201:96(14B4):384(1918) GF200:96(14B4):384(1920) GF200:96(18E1):384(1920) GF200:96(18E1):384(1920) GF200:96(18E1):384(1920)	644	_	PROLINE ARGININE-RICH END LEUCINE-RICH REPEAT PROTEIN AA434342
GF200:96(16A3):384(4B5) GF200:96(27H11):384(7D22) GF200:96(27H11):384(7D22) GF200:96(32F10):384(8H19) GF200:96(32F10):384(8H19) GF200:96(14D12):384(3E19) GF200:96(14D12):384(2L22) GF200:96(14D12):384(2L22) GF200:96(14B1):384(2L22) GF200:96(14B1):384(2D17) GF200:96(191):384(2014) PEROU:96(6E1):384(2014) PEROU:96(6E7):384(2011) PEROU:96(110H10):384(1918) GF201:96(3E4):384(1918) GF201:96(110B10):384(15C20) GF200:96(110B10):384(15C20) GF200:96(18E1):384(4M4) GF200:96(18E1):384(12024) GF201:96(92H12):384(15C20) GF200:96(18E1):384(15C20) GF200:96(18E1):384(15C20)	645	GF201:96(100B8):384(14C16)	_
GF200:96(27H11):384(7P22) GF200:96(27E11):384(7J22) GF200:96(32E10):384(8H19) GF200:96(32E10):384(19E19) GF200:96(14D12):384(19E19) GF200:96(14D12):384(2L22) GF200:96(14D12):384(2L22) GF200:96(27A3):384(7B6) GF200:96(14D12):384(2D17) GF200:96(14D17):384(2014) PEROU:96(6E1):384(2014) PEROU:96(10H7):384(2011) PEROU:96(195):384(1918) GF201:96(3E4):384(1918) GF201:96(14B4):384(15C20) GF200:96(18E1):384(190) GF200:96(18E1):384(100) GF200:96(18E1):384(100) GF200:96(18E1):384(100)	646	-	S100 CALCIUM-BINDING PROTEIN, BETA (NEURAL) AA424045
GF200:96(27E11):384(7122) GF200:96(32E10):384(8H19) GF200:96(32E10):384(8H19) GF200:96(1210):384(19E19) GF200:96(14D12):384(19E19) GF200:96(14D12):384(2D2) GF200:96(27A3):384(7B6) GF200:96(8H9):384(2D17) GF200:96(8H9):384(2014) PEROU:96(6E1):384(2014) PEROU:96(6E7):384(2011) PEROU:96(100H7):384(1918) GF201:96(3E4):384(1918) GF201:96(3E4):384(1918) GF200:96(14B4):384(1918) GF200:96(18E1):384(190) GF200:96(18E1):384(190) GF200:96(18E1):384(190) GF200:96(18E1):384(190)	647		ESTS, WEAKLY SIMILAR TO W01A11.2 GENE PRODUCT [C.ELEGANS] H25606
GF200:96(32D10):384(8H19) GF200:96(32F10):384(19E19) PEROU!96(1C10):384(19E19) GF200:96(14D12):384(4G24) GF200:96(14D12):384(7B6) GF200:96(27A3):384(7B6) GF200:96(8H9):384(7B6) GF200:96(8H9):384(2D17) GF200:96(8H9):384(2014) PEROU!96(6E7):384(2014) PEROU!96(6E7):384(2011) PEROU!96(110H7):384(1918) GF201:96(3E4):384(1918) GF201:96(14B4):384(1918) GF200:96(18E1):384(190) GF200:96(18E1):384(190) GF200:96(18E1):384(190) GF200:96(18E1):384(190)	648	GF200:96(27E11):384(7J22)	240945 H91000
GF200:96(32F10):384(8L19) PEROU:96(1C10):384(19E19) GF200:96(1A11):384(19E19) GF200:96(7F11):384(2L22) GF200:96(27A3):384(7B6) GF200:96(8B9):384(7B6) GF200:96(8B1):384(20C2) GF200:96(6B1):384(20C2) GF201:96(6B1):384(20C2) GF201:96(100H7):384(20B20) GF201:96(100H7):384(20B20) GF201:96(3E4):384(1918) GF201:96(3E4):384(1918) GF200:96(1BB1):384(15C20) GF200:96(1BE1):384(190) GF200:96(1BC1):384(190) GF200:96(1BC1):384(190) GF200:96(1BC1):384(190)	649	GF200:96(32D10):384(8H19)	GLYCEROL-3-PHOSPHATE DEHYDROGENASE 1 (SOLUBLE) AA192547
PEROU:96(1C10):384(19E19) GF200:96(1AD12):384(4624) GF200:96(7F11):384(2L22) GF200:96(27A3):384(7B6) GF200:96(8B9):384(7B6) GF200:96(8B9):384(2D17) GF200:96(8B1):384(20C2) GF201:96(6B1):384(20C2) GF201:96(6E7):384(20B20) GF201:96(95H10):384(20B1) PEROU:96(3E4):384(1938) GF201:96(3E4):384(1938) GF200:96(1BB1):384(1938) GF200:96(1BE1):384(1938) GF200:96(1BC1):384(1938) GF200:96(1BC1):384(1938) GF200:96(1BC1):384(1938) GF200:96(1BC1):384(1938)	650	GF200:96(32F10):384(8L19)	ESTS, HIGHLY SIMILAR TO CARBONIC ANHYDRASE III [H.SAPIENS] AA464880
GF200:96(14D12):384(4G24) GF200:96(7F11):384(4G24) GF200:96(27A3):384(7B6) GF200:96(27A3):384(7B6) GF200:96(8B9):384(2D17) GF200:96(4B9):384(1D17) PEROU:96(6E1):384(20C2) GF201:96(100H7):384(20C14) PEROU:96(6E7):384(20C14) PEROU:96(3E4):384(20C11) PEROU:96(3E4):384(1D18) GF200:96(14B4):384(1D18) GF200:96(18E1):384(1D18) GF200:96(1BC1):384(1D18) GF200:96(1BC1):384(1D18) GF200:96(1BC1):384(1D18) GF200:96(1BC1):384(1D18) GF200:96(1BC1):384(1D18)	651	PEROU:96(1C10):384(19E19)	APOLIPOPROTEIN D AA457084
GF200:96(7F11):384(2L22) GF200:96(27A3):384(7B6) GF200:96(8B9):384(7B6) GF200:96(4B9):384(20C2) GF200:96(6B1):384(20C2) GF201:96(6B1):384(20C2) GF201:96(6E7):384(20B20) GF201:96(6E7):384(20B20) GF201:96(95H10):384(20P11) PEROU:96(3E4):384(1938) GF200:96(14B4):384(1938) GF200:96(18E1):384(4M4) GF200:96(18E1):384(12O24) GF200:96(18H1):384(12O24)	652		APOLIPOPROTEIN D H15842
GF200:96(27A3):384(7B6) GF200:96(8H9):384(2P17) GF200:96(8H9):384(2D17) GF200:96(6B1):384(20C2) GF201:96(6B1):384(20C2) GF201:96(100H7):384(20D14) PEROU:96(7A10):384(20D14) PEROU:96(3E4):384(20P11) PEROU:96(3E4):384(1938) GF200:96(14B4):384(15C20) GF200:96(18E1):384(4M4) GF200:96(18E1):384(12O24) GF200:96(18H1):384(12O24)	653	GF200:96(7F11):384(2L22)	ELASTIN (SUPRAVALVULAR AORTIC STENOSIS, WILLIAMS-BEUREN SYNDROME) AA459308
GF200:96(8H9):384(2P17) GF200:96(4B9):384(1D17) PEROU:96(6B1):384(20C2) GF201:96(100H7):384(2014) PEROU:96(6E7):384(2014) PEROU:96(95H10):384(2011) PEROU:96(3E4):384(1938) GF201:96(1484):384(15C20) GF200:96(1484):384(15C20) GF200:96(18E1):384(4M4) GF200:96(18E1):384(12O24) GF201:96(92H12):384(12O24)	654		COLLAGEN, TYPE XIV, ALPHA 1; UNDULIN AA167222
GF200:96(4B9):384(1D17) PEROU:96(6B1):384(20C2) GF201:96(6E1):384(20C2) GF201:96(6E7):384(20B20) PEROU:96(7A10):384(20B20) GF201:96(3E4):384(20P11) PEROU:96(3E4):384(19J8) GF200:96(14B4):384(15C20) GF200:96(18E1):384(4M4) GF200:96(18E1):384(12O24) GF201:96(92H12):384(12O24) GF200:96(18H1):384(12O24)	655		MESENCHYME HOMEO BOX 1 AA426311
PEROU:96(6B1):384(20C2) GF201:96(100H7):384(14014) PEROU:96(6E7):384(2014) PEROU:96(7A10):384(20B20) GF201:96(3F410):384(20P11) PEROU:96(3F4):384(1938) GF200:96(1484):384(15C20) GF200:96(18E1):384(15C20) GF200:96(18E1):384(4M4) GF200:96(18E1):384(12O24) GF200:96(18H1):384(12O24)	656		INSULIN-LIKE GROWTH FACTOR 1 (SOMATOMEDIN C) AA456321
GF201:96(100H7):384(14014) PEROU:96(6E7):384(20114) PEROU:96(7A10):384(20114) GF201:96(95H10):384(2011) PEROU:96(3E4):384(1918) GF200:96(1484):384(15C20) GF200:96(1811):384(15C20) GF200:96(1811):384(15C20) GF200:96(1811):384(1001) GF200:96(1811):384(1001)	657		CYCLIN-DEPENDENT KINASE INHIBITOR 1C (P57, KIP2) R81336
PEROU:96(6E7):384(20114) PEROU:96(7A10):384(20820) GF201:96(95H10):384(20820) PEROU:96(3E4):384(1938) GF200:96(1484):384(15C20) GF200:96(18E1):384(15C20) GF200:96(18E1):384(16C20) GF200:96(18E1):384(16C20) GF200:96(18E1):384(18C20) GF200:96(18E1):384(18C20) GF200:96(18E1):384(18C20)	658		78946 T61792
PEROU:96(7A10):384(20B20) [GF201:96(95H10):384(13019) [PEROU:96(8H6):384(1918) [GF200:96(14B4):384(1918) [GF200:96(14B4):384(15C20] [GF200:96(18E1):384(15C20] [GF200:96(18E1):384(15C20] [GF200:96(18E1):384(15C20] [GF200:96(18E1):384(1004)] [GF200:96(18E1):384(1004)]	629	PEROU:96(6E7):384(20114)	FATTY ACID BINDING PROTEIN 4, ADIPOCYTE AA046090
GF201:96(95H10):384(13019)	999	PEROU:96(7A10):384(20B20)	FATTY ACID BINDING PROTEIN 4, ADIPOCYTE A1652163
PEROU:96(8H6):384(20P11) PEROU:96(3E4):384(19J8) GF200:96(14B4):384(4C8) GF202:96(110B10):384(15C20) GF200:96(18E1):384(5I2) GF200:96(14G2):384(4M4) GF201:96(92H12):384(12O24) GF200:96(18H1):384(5O2)	661		FATTY ACID BINDING PROTEIN 4, ADIPOCYTE N92901
PEROU:96(3E4):384(19J8) GF200:96(14B4):384(4C8) GF202:96(110B10):384(15C20) GF200:96(18E1):384(5I2) GF200:96(14G2):384(4M4) GF201:96(92H12):384(12O24) GF200:96(18H1):384(5O2)	995		MDGI/FATTY ACID BINDING PROTEIN 3, MUSCLE AND HEART AA128926
GF200:96(14B4):384(4CB) GF202:96(110B10):384(15C20 GF200:96(18E1):384(512) GF200:96(14G2):384(4M4) GF201:96(92H12):384(12O24) GF200:96(18H1):384(5O2)	663		CD36 ANTIGEN (COLLAGEN TYPE I RECEPTOR, THROMBOSPONDIN RECEPTOR) R09416
GF202:96(110810):384(15C20 GF200:96(18E1):384(512) GF200:96(14G2):384(4M4) GF201:96(92H12):384(12O24) GF200:96(18H1):384(5O2)	664		CD36 ANTIGEN (COLLAGEN TYPE I RECEPTOR, THROMBOSPONDIN RECEPTOR) N39161
GF200:96(18E1):384(512) GF200:96(14G2):384(4M4) GF201:96(92H12):384(12024) GF200:96(18H1):384(502)	999		GLUTATHIONE PEROXIDASE 3 (PLASMA) AA664180
GF200:96(14G2):384(4M4) GF201:96(92H12):384(12O24) GF200:96(18H1):384(5O2)	999		FOUR AND A HALF LIM DOMAINS 1 AA456394
GF201:96(92H12):384(12O24) GF200:96(18H1):384(5O2)	299		ALCOHOL DEHYDROGENASE 2 (CLASS I), BETA POLYPEPTIDE N93428
GF200:96(18H1):384(502)	999		AQUAPORIN 7 H27752
	699		484535 AA036974

-
a
互
ص

):384(1612)):384(1612)):384(11022)):384(13P12)):384(13P12)):384(13P12)):384(13P12)):384(13P12)):384(13P12)):384(1410)):384(20H20)):384(14110)):384(14110)):384(14110)):384(14110)):384(16110)	670	GF201:96(88B9):384(11C18)	LIPOPROTEIN LIPASE AA633835
GF200:96(26C1):384(7E2) GF201:96(8BD12):384(11G24) GF201:96(8BD12):384(11G24) GF201:96(8B11):384(13D12) GF201:96(8P11):384(13D12) GF201:96(97H5):384(13D12) GF201:96(97H7):384(124) GF201:96(97H7):384(124) GF200:96(11D12):384(2E15) GF200:96(11D12):384(11U0) GF200:96(11D12):384(11U1) GF200:96(11D12):384(11U12)	671	:384(6B14)	GLYCEROL-3-PHOSPHATE DEHYDROGENASE 1 (SOLUBLE) AA192547
GF201:96(88D12):384(11G24) GF201:96(102A5):384(11D22) GF201:96(102A5):384(13P12) GF201:96(97H5):384(13P12) GF201:96(97H7):384(13P14) GF200:96(11D12):384(3445) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(13G16) GF200:96(22B11):384(13G16) GF200:96(3B2):384(13G16) GF200:96(3B2):384(13G16) GF200:96(3B2):384(13G16) GF200:96(3B2):384(13G16) GF200:96(3B2):384(13G16) GF200:96(3B2):384(13G16) GF200:96(3B2):384(13G16) GF200:96(3B2):384(12G1) GF200:96(14G11):384(1GM2) GF200:96(18A6):384(2O19) PEROU:96(7B5):384(2O19) PEROU:96(7B5):384(2O19) GF200:96(18B1:384(2O19) GF200:96(18B1:384(2O19)) GF200:96(18B1:384(2O19)) GF200:96(18B1:384(2O19)) GF200:96(13D12):384(4G23)	672	GF200:96(26C1):384(7E2)	RETINOL-BINDING PROTEIN 4, INTERSTITIAL 172220
GF201:96(102A5):384(14B9) GF201:96(89B11):384(13P12) GF201:96(97H6):384(13P12) GF201:96(97H7):384(13P14) GF200:96(11D12):384(3A4) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(10H9) GF200:96(22B11):384(10H9) GF200:96(22B11):384(10H9) GF200:96(3B5):384(13G16) GF200:96(3B7):384(13G16) GF200:96(3B7):384(13G16) GF200:96(3B7):384(13G16) GF200:96(3B7):384(13G16) GF200:96(3B7):384(13G16) GF200:96(3B7):384(13G16) GF200:96(14G11):384(1GM2) GF200:96(14G11):384(1GM2) GF200:96(18B):384(2013) PEROU:96(18F5):384(2019) PEROU:96(18B1:384(2019) PEROU:96(18B1:384(2013)) GF200:96(18D1:384(2013)) GF200:96(18D1):384(4G23)	673	GF201:96(88D12):384(11G24)	INTEGRIN, ALPHA 7 AA055979
GF201:96(89811):384(11D22) GF201:96(97H5):384(13P12) GF201:96(97H7):384(13P12) GF200:96(11D12):384(3445) GF200:96(13A3):384(4A5) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(12G16) GF200:96(13B4):384(10H9) GF200:96(22B11):384(10H9) GF200:96(3B2):384(13G16) GF200:96(3B2):384(13G16) GF200:96(3B2):384(13G16) GF200:96(3B2):384(13G16) GF200:96(3B2):384(13G16) GF200:96(3B2):384(13G16) GF200:96(3B2):384(13G16) GF200:96(3B2):384(13G16) GF200:96(14G11):384(1GM2) GF200:96(18B):384(2013) PEROU:96(18F2):384(2019) PEROU:96(18F2):384(2019) GF200:96(18D2):384(2013) GF200:96(18D2):384(2013) GF200:96(18D2):384(2013) GF200:96(18D2):384(2013) GF200:96(18D2):384(2013)	674	GF201:96(102A5):384(14B9)	85660 T62068
GF201:96(97H6):384(13P12) GF201:96(97H7):384(13P14) GF200:96(11D12):384(3445) GF200:96(13A3):384(4A5) GF200:96(13A3):384(12C16) GF200:96(13B4):384(12C16) GF200:96(13B4):384(12C16) GF200:96(13B4):384(12C16) GF200:96(13B4):384(20F6) PEROU:96(7C3):384(20F6) PEROU:96(7C3):384(20F6) GF200:96(22B1):384(14K1) GF200:96(22B1):384(10H9) GF201:96(80F1):384(10H9) GF201:96(80F1):384(10H9) GF201:96(80F1):384(10H9) GF201:96(80F1):384(10H3) GF200:96(14G11):384(13C16) GF200:96(14G11):384(12C16) GF200:96(14G11):384(1C15) GF200:96(18B):384(1C15) GF200:96(18B):384(2019) PEROU:96(18F5):384(2019) PEROU:96(18F5):384(2019) GF200:96(18D1):384(2019) GF200:96(18D1):384(4C23) GF200:96(13D12):384(4C23)	675	GF201:96(89B11):384(11D22)	PHOSPHOLEMMAN H57136
GF201:96(97H7):384(13P14) GF200:96(11D12):384(3H24) GF200:96(13A3):384(4A5) GF200:96(13A3):384(4A5) GF200:96(13B4):384(12G16) GF201:96(101F5):384(12G16) GF201:96(13B4):384(20F6) PEROU:96(7C3):384(20F6) PEROU:96(7C3):384(20F6) GF201:96(8PF1):384(11K1) GF200:96(22B11):384(12G16) GF201:96(3B07):384(10H9) GF201:96(3B07):384(10H9) GF201:96(3B07):384(13G16) GF201:96(3B17):384(13G16) GF201:96(9B7):384(13B15) GF201:96(9B7):384(13B15) GF201:96(6TG5):384(13B15) GF201:96(6TG5):384(12B15) GF200:96(14G11):384(1GM2) GF200:96(14G11):384(1C12) GF200:96(18A6):384(2013) PEROU:96(7B5):384(2013) PEROU:96(7B5):384(2013) GF200:96(18A6):384(2013) GF200:96(18D12):384(4G23) GF200:96(13D12):384(4G23)	9/9	GF201:96(97H6):384(13P12)	AQUAPORIN 1 (CHANNEL-FORMING INTEGRAL PROTEIN, 28KD) H24316
GF200:96(11D12):384(3H24) GF200:96(2S):384(2E15) GF200:96(13A3):384(4A5) GF201:96(101F5):384(14L10) GF201:96(101F5):384(12C16) GF201:96(2D8):384(2OF6) PEROU:96(7C13):384(2OF6) PEROU:96(7C13):384(2OF6) PEROU:96(7C13):384(11K1) GF201:96(8D8):384(10H9) GF201:96(8D8):384(10H9) GF201:96(8D8):384(10H9) GF201:96(8D8):384(10H9) GF201:96(8D8):384(10H9) GF201:96(8D8):384(10H9) GF201:96(8D8):384(10H9) GF201:96(8D8):384(10H9) GF201:96(8D8):384(10H5) GF201:96(8F5):384(1815) GF201:96(8F5):384(2O19) PEROU:96(14G11):384(1C15) GF200:96(18A6):384(2O19) PEROU:96(18C1):384(2O19) PEROU:96(18D1):384(2O19) GF200:96(18D1):384(2O19) GF200:96(18D1):384(2O19) GF200:96(18D1):384(4C23) GF200:96(13D12):384(4C23)	677	GF201:96(97H7):384(13P14)	APOLIPOPROTEIN A-I R97710
GF200:96(5C8):384(2E15) GF200:96(13A3):384(4A5) GF201:96(101F5):384(1410) GF201:96(14H2):384(12G16) GF201:96(2D8):384(20F6) PEROU:96(7C3):384(20F6) PEROU:96(7C3):384(20F6) PEROU:96(7C3):384(11K1) GF201:96(8D8):384(11K1) GF201:96(8D8):384(11K1) GF201:96(8D8):384(10H9) GF201:96(8D8):384(10H9) GF201:96(9B7):384(10H9) GF201:96(9B7):384(13C16) GF201:96(9B7):384(13L1) PEROU:96(10A8):384(13L1) GF201:96(6TC6):384(12B15) GF200:96(14G11):384(16M2) GF200:96(18B):384(2O19) PEROU:96(18C6):384(2O19) PEROU:96(18C6):384(2O19) PEROU:96(18C6):384(2O19) GF200:96(18C6):384(2O19) GF200:96(18C6):384(2O19) GF200:96(18C6):384(2O19) GF200:96(18C6):384(2O19) GF200:96(18C6):384(2O19) GF200:96(18C6):384(2O19) GF200:96(18C6):384(2O19)	678	GF200:96(11D12):384(3H24)	SMALL INDUCTBLE CYTOKINE SUBFAMILY A (CYS-CYS), MEMBER 14 R96668
GF200:96(13A3):384(4A5) GF201:96(101F5):384(14L10) GF200:96(14H2):384(12G16) GF200:96(13B4):384(2G16) GF200:96(13B4):384(2OFG) GF200:96(7C3):384(2OFG) GF200:96(7C3):384(11K1) GF200:96(22B11):384(11K1) GF200:96(22B11):384(11K1) GF200:96(3P7):384(10H9) GF201:96(8GD5):384(10H9) GF201:96(8GD5):384(10H9) GF201:96(8GD5):384(10H9) GF201:96(8GD5):384(10H2) GF201:96(3B11):384(13L1) PEROU:96(10A8):384(13L1) GF200:96(14G11):384(16M2) GF200:96(14G11):384(1C15) GF200:96(18A6):384(2O19) PEROU:96(7B5):384(2O19) PEROU:96(18A6):384(2O19) PEROU:96(7B5):384(2O19) GF200:96(18A1):384(2O19) GF200:96(18A1):384(2O19) GF200:96(18A1):384(2O19) GF200:96(18D1):384(4G23)	679	GF200:96(5C8):384(2E15)	PEROXISOME PROLIFERATIVE ACTIVATED RECEPTOR, GAMMA AA088517
GF201:96(101F5):384(141.0) GF200:96(14H2):384(14C1) GF200:96(1384):384(12G16) GF200:96(1384):384(20F6) PEROU:96(7C13):384(20F6) PEROU:96(7C13):384(20F6) GF201:96(80F1):384(11K1) GF200:96(22B11):384(12C1) GF201:96(80F1):384(10H9) GF201:96(80F1):384(10H9) GF201:96(80F1):384(10H9) GF201:96(98F11):384(10H1) GF201:96(98F11):384(18115) GF201:96(98F11):384(18115) GF200:96(14G11):384(1C115) GF200:96(188):384(2013) PEROU:96(186):384(2013) PEROU:96(18F1):384(1C115) GF200:96(18F1):384(2013) PEROU:96(18F1):384(2013) GF200:96(18F1):384(2013) GF200:96(18F1):384(2013) GF200:96(18F1):384(2013) GF200:96(18F1):384(2013) GF200:96(18F1):384(2013)	680	GF200:96(13A3):384(4A5)	ENDOTHELIN RECEPTOR TYPE B H28710
GF200:96(14H2):384(4O4) GF201:96(92D8):384(12G16) GF201:96(13B4):384(12G16) GF200:96(13B4):384(20F6) PEROU!:96(7D10):384(20F6) GF201:96(8PF1):384(11K1) GF200:96(22B11):384(12K1) GF201:96(8BC5):384(10H9) GF201:96(8BC5):384(10H9) GF201:96(8BC5):384(10H9) GF201:96(8BC5):384(10H9) GF201:96(9B7):384(13L1) PEROU!:96(10A8):384(13L1) GF201:96(6TC6):384(16M2) GF200:96(114G11):384(16M2) GF200:96(18B):384(2013) PEROU!:96(18C5):384(2013) GF200:96(18C5):384(2013) PEROU!:96(18C5):384(2013) GF200:96(18C5):384(2013) GF200:96(18C5):384(2013) GF200:96(18C5):384(2013) GF200:96(18C5):384(2013) GF200:96(18C5):384(2013) GF200:96(18C5):384(2013)	681	GF201:96(101F5):384(14L10)	79412 T57691
GF201:96(92D8):384(12G16) GF200:96(1384):384(4C7) PEROU:96(7C3):384(20F6) PEROU:96(7D10):384(20F6) GF201:96(8D7):384(11K1) GF201:96(8D8):384(13G16) GF201:96(8D8):384(10H9) GF201:96(8D5):384(10H9) GF201:96(8D5):384(10H9) GF201:96(8D5):384(10H9) GF201:96(9B7):384(10H9) GF201:96(9B7):384(10H2) GF201:96(9B7):384(13L1) PEROU:96(10A8):384(1815) GF200:96(1886):384(10H2) GF200:96(1886):384(2013) PEROU:96(8F5):384(2013) PEROU:96(8F5):384(2019) PEROU:96(8F5):384(2019) PEROU:96(18A6):384(2019) PEROU:96(18A1):384(2019) GF200:96(18A1):384(2013) GF200:96(18A1):384(2013) GF200:96(18A1):384(2013)	682	GF200:96(14H2):384(4O4)	ACTIVATING TRANSCRIPTION FACTOR 3 H21041
GF200:96(1384):384(4C7) PEROU:96(7C3):384(20F6) PEROU:96(7D10):384(20H20) GF201:96(8PF1):384(11K1) GF201:96(8BC9):384(189) GF201:96(8BC9):384(189) GF201:96(8BC9):384(10H9) GF201:96(8BC9):384(10H9) GF201:96(9B7):384(10H9) GF201:96(9B7):384(1211) GF201:96(9B7):384(1211) GF201:96(9B7):384(1211) GF201:96(9B7):384(10H2) GF201:96(9B7):384(10H2) GF200:96(1886):384(10H2) GF200:96(1886):384(10H2) GF200:96(187):384(2013) PEROU:96(7B5):384(2013) PEROU:96(7B5):384(2013) GF200:96(16F12):384(4023) GF200:96(13D12):384(4023)	683	GF201:96(92D8):384(12G16)	HORMONE RECEPTOR (GROWTH FACTOR-INDUCIBLE NUCLEAR PROTEIN N10) N94487
PEROU:96(7C3):384(20F6) PEROU:96(7D10):384(20F0) GF201:96(87F1):384(11K1) GF200:96(22811):384(13C16) GF201:96(86D5):384(189) GF201:96(86D5):384(189) GF201:96(86D5):384(10H9) GF201:96(98F11):384(10H9) GF201:96(98F11):384(10H2) GF201:96(10A8):384(12L1) GF201:96(14AG11):384(16M2) GF200:96(18A6):384(20L9) PEROU:96(18A6):384(20L9) PEROU:96(18F1):384(20L9) PEROU:96(18F1):384(20L9) GF200:96(18F1):384(20L9) GF200:96(18F1):384(20L9) GF200:96(18F1):384(20L9) GF200:96(18F1):384(20L9) GF200:96(18F1):384(20L9)	684	GF200:96(13B4):384(4C7)	DOPACHROME TAUTOMERASE (DOPACHROME DELTA-ISOMERASE, TYROSINE-RELATED PROTEIN 2)
PEROU:96(7C3):384(20F6) PEROU:96(7C3):384(20F0) GF201:96(8D1):384(11K1) GF201:96(8D8):384(13C16) GF201:96(8D8):384(189) GF201:96(8D5):384(10H9) GF201:96(8D5):384(10H9) GF201:96(9B71):384(10H9) GF201:96(9B71):384(10H2) GF201:96(10A8):384(13L21) PEROU:96(114G11):384(16M2) GF200:96(18A6):384(20L3) GF200:96(18A6):384(20L3) PEROU:96(7B7):384(20L9) PEROU:96(7B7):384(20L9) PEROU:96(7B5):384(20L9) GF200:96(16F12):384(4L23) GF200:96(16F12):384(4C23)			AA478553
PEROU:96(7D10):384(20H20) GF201:96(87F1):384(11K1) GF201:96(22811):384(13K1) GF201:96(20E8):384(13G16) GF201:96(80E5):384(10H9) GF201:96(80E5):384(10H9) GF201:96(30E7):384(10H9) GF201:96(30E7):384(13L21) PEROU:96(10A8):384(13L21) GF201:96(67C6):384(18B15) GF200:96(114G11):384(16M2) GF200:96(18A6):384(20L9) PEROU:96(7B5):384(20L9) PEROU:96(7B5):384(20L9) PEROU:96(7B5):384(20L9) GF200:96(16F12):384(4L23) GF200:96(114G11):384(4C23)	685		P55-C-FOS N36944
GF201:96(87F1):384(11K1) GF200:96(22B11):384(6C22) GF200:96(20B1):384(13G16) GF200:96(4A5):384(1B9) GF201:96(86D5):384(10H9) GF201:96(86D5):384(10H9) GF201:96(63B5):384(12L1) PEROU!96(10A8):384(13L1) GF201:96(67C6):384(14B15) GF200:96(114G11):384(16M2) GF200:96(18A6):384(20L1) GF200:96(18A6):384(20L1) GF200:96(18F11):384(20L1) GF200:96(18F11):384(20L1) GF200:96(18F11):384(20L1) GF200:96(18F11):384(20L1) GF200:96(18F11):384(20L1) GF200:96(18F11):384(20L1)	989		V-FOS FBJ MURINE OSTEOSARCOMA VIRAL ONCOGENE HOMOLOG AA040944
GF200:96(22811):384(6C22) GF201:96(96D8):384(13G16) GF201:96(86D5):384(1019) GF201:96(86D5):384(1019) GF201:96(86D5):384(2013) GF201:96(63B5):384(13121) PEROU:96(1048):384(13121) GF201:96(67C6):384(24E11) GF200:96(114G11):384(16M22 GF200:96(18A6):384(2013) PEROU:96(18A6):384(2013) PEROU:96(785):384(2013) PEROU:96(785):384(2013) GF200:96(16F12):384(4L23) GF200:96(13D12):384(4G23)	687	GF201:96(87F1):384(11K1)	V-FOS FBJ MURINE OSTEOSARCOMA VIRAL ONCOGENE HOMOLOG AA485377
GF201:96(96D8):384(13G16) GF200:96(4A5):384(1B9) GF201:96(86D5):384(10H9) GF201:96(86D5):384(23) GF201:96(63B5):384(23(23)) GF201:96(63B5):384(18B15) GF201:96(10A8):384(18B15) GF201:96(14G11):384(16M2) GF200:96(180):384(24E11) GF200:96(180):384(2013) PEROU:96(7B5):384(2013) PEROU:96(7B5):384(2013) GF200:96(16F12):384(4L23) GF200:96(13D12):384(4G23)	688		FBJ MURINE OSTEOSARCOMA VIRAL ONCOGENE HOMOLOG B T62179
GF200:96(4A5):384(1B9) GF201:96(86D5):384(10H9) GF201:96(86D5):384(20H9) GF201:96(63B5):384(13121) PEROU:96(10A8):384(1815) GF201:96(67C6):384(16M2) GF200:96(114G11):384(16M2) GF200:96(180):384(20H1) GF200:96(180):384(20H1) GF200:96(180):384(20H1) GF200:96(180):384(20H1) GF200:96(180):384(20H1) GF200:96(180):384(20H1) GF200:96(180):384(20H1) GF200:96(180):384(20H1) GF200:96(180):384(20H1)	689		CYCLIN-DEPENDENT KINASE 5, REGULATORY SUBUNIT 1 (P35) AA442853
GF201:96(86D5):384(10H9) GF200:96(9B7):384(23(3)) GF201:96(63B5):384(13121) BFROU:96(10A8):384(18B15) GF201:96(67C6):384(14B15) GF200:96(114G11):384(16M22 GF200:96(18A6):384(16M22 GF200:96(18A6):384(2013) PEROU:96(7B5):384(2019) PEROU:96(7B5):384(2019) GF200:96(16F12):384(4(123)) GF200:96(13D12):384(4(123)) GF200:96(13D12):384(4(123))	069	GF200:96(4A5):384(1B9)	HUMAN TRANSCRIPTION FACTOR JUNB (JUNB) GENE, 5' REGION AND COMPLETE CDS T99236
GF200:96(9B7):384(3C13) GF201:96(63B5):384(23C9) GF201:96(1048):384(181121) PEROU:96(1048):384(18115) GF201:96(67C6):384(24E11) GF200:96(114G11):384(16M22 GF200:96(188):384(2013) GF200:96(1885):384(2013) PEROU:96(7B5):384(2019) PEROU:96(7B5):384(2019) GF200:96(16F12):384(4C23) GF200:96(13D12):384(4G23)	691	GF201:96(86D5):384(10H9)	TETRANECTIN (PLASMINOGEN-BINDING PROTEIN) W73889
GF201:96(6385):384(23C9) GF201:96(98F11):384(13121) PEROU:96(1048):384(18115) GF201:96(67C6):384(24E11) GF202:96(114G11):384(16M22 GF200:96(1885):384(2013) GF200:96(1865):384(2013) PEROU:96(8F5):384(2019) PEROU:96(785):384(2019) GF200:96(16F12):384(4L23) GF200:96(13D12):384(4G23)	692	GF200:96(9B7):384(3C13)	GTP-BINDING PROTEIN OVEREXPRESSED IN SKELETAL MUSCLE AA418077
GF201:96(98F11):384(13121) PEROU:96(10A8):384(18B15) GF201:96(67C6):384(24E11) GF202:96(114G11):384(16M22 GF200:96(18B):384(16M22 GF200:96(18A6):384(2013) PEROU:96(7B5):384(2019) PEROU:96(7B5):384(2019) GF200:96(16F12):384(4L23) GF200:96(13D12):384(4G23)	693		502155 AA126676
PEROU:96(10A8):384(18B15) GF201:96(67C6):384(24E11) GF202:96(114G11):384(16M22 GF200:96(18B):384(1C15) GF200:96(18A6):384(2013) PEROU:96(8F5):384(2013) PEROU:96(7B5):384(2019) PEROU:96(7B5):384(2019) GF200:96(16F12):384(4L23) GF200:96(13D12):384(4G23)	694	GF201:96(98F11):384(13L21)	ESTS, WEAKLY SIMILAR TO P126 [H.SAPIENS] T51630
GF201:96(67C6):384(24E11) GF202:96(114G11):384(16M22 GF200:96(188):384(1C15) GF200:96(18A6):384(2013) PEROU:96(8F5):384(2019) PEROU:96(7B5):384(2019) GF200:96(16F12):384(4L23) GF200:96(13D12):384(4G23)	695	PEROU:96(10A8):384(18B15)	ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY SQ WARNING ENTRY !!!! [H.SAPIENS] H42682
GF202:96(114G11):384(16M22 GF200:96(188):384(1C15) GF200:96(18A6):384(5A12) GF200:96(SH7):384(2013) PEROU:96(785):384(2019) PEROU:96(785):384(2010) GF200:96(16F12):384(4L23) GF200:96(13D12):384(4G23)	969	GF201:96(67C6):384(24E11)	300038 N78909
GF200:96(188):384(1C15) GF200:96(18A6):384(5A12) GF200:96(SH7):384(2013) PEROU:96(785):384(2010) PEROU:96(785):384(2010) GF200:96(16F12):384(4L23) GF200:96(13D12):384(4G23)	697	GF202:96(114G11):384(16M22	2595078 AA164819
GF200:96(18A6):384(5A12) GF200:96(5H7):384(2013) PEROU:96(7B5):384(2010) PEROU:96(7B5):384(2010) GF200:96(16F12):384(4L23) GF200:96(13D12):384(4G23)	869	GF200:96(1B8):384(1C15)	V-KIT HARDY-ZUCKERMAN 4 FELINE SARCOMA VIRAL ONCOGENE HOMOLOG N20798
GF200:96(8F5):384(2013) PEROU:96(8F5):384(2019) PEROU:96(7B5):384(2010) GF200:96(16F12):384(4L23) GF200:96(13D12):384(4G23)	669	GF200:96(18A6):384(5A12)	INHIBITOR OF DNA BINDING 4, DOMINANT NEGATIVE HELIX-LOOP-HELIX PROTEIN AA464856
PEROU:96(8F5):384(20L9) PEROU:96(7B5):384(20D10) GF200:96(16F12):384(4L23) GF200:96(13D12):384(4G23) GF200:96(13D12):384(3D23)	200		CALPONIN 1, BASIC, SMOOTH MUSCLE AA399519
GF200:96(16F12):384(20D10) GF200:96(16F12):384(4L23) GF200:96(13D12):384(4G23) GF200:06(2011):384(3023)	701	_	ACTIN, GAMMA 2, SMOOTH MUSCLE, ENTERIC AA053297
GF200:96(16F12):384(4L23) GF200:96(13D12):384(4G23) GF200:96(13D12):384(3D23)	702		PLEIOTROPHIN (HEPARIN BINDING GROWTH FACTOR 8, NEURITE GROWTH-PROMOTING FACTOR 1) AA001449
GF200:96(13D12):384(4G23)	703	GF200:96(16F12):384(4L23)	PLEIOTROPHIN (HEPARIN BINDING GROWTH FACTOR 8, NEURITE GROWTH-PROMOTING FACTOR 1) AA001449
GF200-06/0H111-284/30211	704		CYSTEINE DIOXYGENASE, TYPE I AA497111
JOI 200.30(3011).304(3021)	705		27787 R40400

•	4
0	υ
3	5
.0	3

	(== :: =); c=:/c= c= \c = := :=	
707		272038 N31948
208		SPONDIN 1, (F-SPONDIN) EXTRACELLULAR MATRIX PROTEIN H09099
709		CATHEPSIN G W92603
710		HUMAN KRUEPPEL-RELATED ZINC FINGER PROTEIN (H-PLK) MRNA, COMPLETE CDS N54596
711	GF201:96(88E4):384(11I8)	INSULIN-LIKE GROWTH FACTOR 2 (SOMATOMEDIN A) N74623
712	(GF200:96(9A5):384(3A9)	HUMAN KRUEPPEL-RELATED ZINC FINGER PROTEIN (H-PLK) MRNA, COMPLETE CDS NS4S96
713	GF201:96(95G9):384(13M17)	PHOSPHORYLASE, GLYCOGEN; MUSCLE (MCARDLE SYNDROME, GLYCOGEN STORAGE DISEASE TYPE V) AA496032
714	GF201:96(87H7):384(11013)	MICROFIBRILLAR-ASSOCIATED PROTEIN 4 AA496022
715	GF201:96(97E6):384(13312)	ALCOHOL DEHYDROGENASE 4 (CLASS II), PI POLYPEPTIDE H63124
716	GF200:96(1D12):384(1G23)	HUMAN TCF-1 MRNA FOR T CELL FACTOR 1 (SPLICE FORM B) AA480071
717	GF201:96(96H9):384(13O18)	TRANSMEMBRANE 4 SUPERFAMILY MEMBER 2 N93505
718	GF201:96(79E10):384(9119)	782730 AA447978
719	GF201:96(63E2):384(2313)	212489 H68404
720	GF201:96(97A1):384(13B2)	CD1C ANTIGEN, C POLYPEPTIDE AA002086
721	GF201:96(84B4):384(10C8)	INTEGRAL MEMBRANE PROTEIN 2C N53447
722	GF201:96(9688):384(13C16)	DIPEPTIDY LPEPTIDASE IV (CD26, ADENOSINE DEAMINASE COMPLEXING PROTEIN 2) W70234
723	GF201:96(95F8):384(13K15)	GLUTAMYL AMINOPEPTIDASE (AMINOPEPTIDASE A) AA102107
724	GF200:96(1B5):384(1C9)	ARGININE VASOPRESSIN RECEPTOR 1A AA448190
725	GF200:96(26F4):384(7K8)	MATRIX METALLOPROTEINASE 16 (MEMBRANE-INSERTED) H09997
726	PEROU:96(7A1):384(20B2)	KIAA0735 AI669959
727	GF201:96(83A3):384(10A5)	CATHEPSIN B AA004638
728	GF200:96(10C5):384(3E10)	HOMO SAPIENS HYALURONOGLUCOSAMINIDASE 1 (HYAL1) MRNA, COMPLETE CDS AA464791
729	PEROU:96(9E2):384(18J4)	SPARC/OSTEONECTIN AA031596
730	GF202:96(111D5):384(15H10)	5):384(15H10) ESTS, WEAKLY SIMILAR TO AORTIC CARBOXYPEPTIDASE-LIKE PROTEIN ACLP [H.SAPIENS] AA598945
731	GF201:96(90B11):384(11D21)	1):384(11D21) KTAA0161 GENE PRODUCT W95118
732	GF201:96(81H8):384(9P16)	307645 N93582
733	GF201:96(99G3):384(14M5)	52865 H29620
734	PEROU:96(6F7):384(20K14)	ESTS, MODERATELY SIMILAR TO SECRETORY PROTEIN CONTAINING THROMBOSPONDIN MOTIFS
		[M:MUSCULUS] AA057170
735	GF200:96(12G11):384(3N21)	FOLATE RECEPTOR 2 (FETAL) AA453816
736	GF201:96(95H7):384(13013)	
737	GF200:96(21G12):384(6M23)	
738	GF201:96(87G3):384(11M5)	NERVE GROWTH FACTOR RECEPTOR (TNFR SUPERFAMILY, MEMBER 16) R55303
739	GF201:96(92C9):384(12E18)	PROLINE-RICH PROTEIN WITH NUCLEAR TARGETING SIGNAL AA669637
740	GF200:96(3F11):384(1L22)	V-MYB AVIAN MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG N49526
741		11);384(16D21 HUMAN LIVER CARBOXYLESTERASE MRNA, 3' END T68878
·742	GF200:96(21D5):384(6G9)	PROTEIN TYROSINE KINASE 2 BETA R85257

•	ł
q)
3	5
'n)

743		HHCPA78 HOMOLOG AA044633
744	GF200:96(26H3):384(706)	LPS-INDUCED TNF-ALPHA FACTOR AA625666
745	GF201:96(99H5):384(14O9)	CELLULAR REPRESSOR OF E1A-STIMULATED GENES T71991
746	GF201:96(84A4):384(10A8)	272262 N35S92
747	GF200:96(10E2):384(314)	KIAA0914 GENE PRODUCT N51424
748	GF200:96(17F4):384(5K7)	FATTY-ACID-COENZYME A LIGASE, LONG-CHAIN 1 T73556
749	GF201:96(10186):384(14D12)	
750	GF201:96(83B7):384(10C13)	HOMO SAPIENS MRNA; CDNA DKFZPS86A0522 (FROM CLONE DKFZPS86A0522) N70948
751	PEROU:96(8B4):384(20D7)	MEMBRANE METALLO-ENDOPEPTIDASE (NEUTRAL ENDOPEPTIDASE, ENKEPHALINASE, CALLA, CD10) H65598
752	GF200:96(10D2):384(3G4)	CYCLIN G2 AA489752
753	GF200:96(9E4):384(3I7)	B-CELL TRANSLOCATION GENE 2 (PHEOCHROMACYTOMA CELL-3) H69582
754	GF201:96(91G4):384(12M7)	769796 AA429034
755	GF201:96(100H6):384(14O12) 77911 T61269	77911 T61269
756	GF200:96(23E7):384(6J14)	SELENOPROTEIN P, PLASMA, 1 AA070226
757	PEROU:96(10C7):384(18F13)	428431 AA004415
758	GF200:96(12F7):384(3L13)	FUCOSIDASE, ALPHA-L- 1, TISSUE N95761
759	PEROU:96(8D10):384(20H19)	HEMOGLOBIN, ALPHA 1 AA027875
760	GF201:96(102A3):384(14B5)	ESTS, WEAKLY SIMILAR TO F56A11.5 [C.ELEGANS] T61938
761	GF200:96(16D5):384(4H9)	PROTEOLIPID PROTEIN (PELIZAEUS-MERZBACHER DISEASE, SPASTIC PARAPLEGIA 2, II INCOMPI ICATED) TZRA41
762	GF201:96(96A10):384(13A20)	GF201:96(96A10):384(13A20)
763	GF201:96(65A8):384(23B16)	357396 W93847
764	GF201:96(89F10):384(11L20)	GF201:96(89F10):384(11L20) MITOCHONDRIAL 3-OXOACYL-COA THIOLASE H07926
765	PEROU:96(6E6):384(20112)	MESODERM SPECIFIC TRANSCRIPT (MOUSE) HOMOLOG AI369005
766	GF201:96(95G7):384(13M13)	HUMAN GRANCALCIN MRNA, COMPLETE CDS R44739
292	GF200:96(22E10):384(6120)	ESTS, MODERATELY SIMILAR TO CADHERIN 12 [H.SAPIENS] AA418564
268	GF200:96(9G1):384(3M1)	ESTS, MODERATELY SIMILAR TO CADHERIN 12 [H.SAPIENS] W02256
269	GF200:96(17B1):384(5C1)	ORNITHINE DECARBOXYLASE 1 AA460115
2770	GF201:96(57D5):384(21H10)	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN H1 (H) R11019
771	GF201:96(8784):384(11C7)	PROTEIN KINASE, CAMP-DEPENDENT, CATALYTIC, BETA AA018980
772	GF201:96(95G1):384(13M1)	GLUTAMATE DECARBOXYLASE 1 (BRAIN, 67KD) AA018457
773	GF200:96(6A10):384(2A20)	PROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, N POLYPEPTIDE 2 AA464590
774	GF201:96(93G6):384(12N12)	KIAA0711 GENE PRODUCT AA702544
775	GF201:96(63C5):384(23E9)	HOMO SAPIENS MRNA; CDNA DKFZP564F093 (FROM CLONE DKFZP564F093) W87710
776	GF202:96(114G1):384(16M2)	HOMO SAPIENS DNA SEQUENCE FROM COSMID ICK0721Q ON CHROMOSOME 6. CONTAINS A 60S
		RIBOSOMAL PROTEIN L35A LIKE PSEUDOGENE, A GENE CODING FOR A 60S RIBOSOMAL PROTEIN L12
];		LIKE PROTEIN IN AN INTRON OF THE HSET GENE CODING FOR A KINESIN ANTOTAL
	JGF202:96(111C12):384(15F24	C12):384(15F24)625/64 AA188366

1			,
	C	U	۱
	ċ	3	i
	ſ	Q	ŀ
ı	_		•

8//	GF201:96(64E7):384(23114)	357298 W93688
779		12):384(14124) HNK-1 SULFOTRANSFERASE R16195
780	GF201:96(99A9):384(14A17)	INTERFERON STIMULATED GENE (20KD) AA150500
781	GF201:96(56E4):384(2118)	ESTS, MODERATELY SIMILAR TO TRANSPORTIN [H.SAPIENS] R08897
782	GF200:96(19G6):384(5N12)	HUMAN MRNA FOR KIAA0264 GENE, PARTIAL CDS AA486524
783	GF201:96(55G2):384(21M3)	ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4894378) [H.SAPIENS] AA453591
784	GF201:96(59D2):384(22G3)	365536 AA009596
785	GF202:96(116G3):384(16N5)	ESTS, WEAKLY SIMILAR TO AXONEMAL DYNEIN HEAVY CHAIN [H.SAPIENS] AA486418
786	GF201:96(95B6):384(13C11)	ESTS, HIGHLY SIMILAR TO NAD(P) TRANSHYDROGENASE [H.SAPIENS] H22944
787	[GF201:96(62B12):384(22D23)) 487436 AA043360
788	GF201:96(56C2):384(21E4)	342522 W68559
789	GF200:96(24G6):384(6N11)	H.SPAIENS 3' MRNA FOR NEURONE-SPECIFIC ENOLASE (EC 4.2.1.11) AA450189
790	GF201:96(96D6):384(13G12)	CYSTATHIONINE-BETA-SYNTHASE AA430367
791	GF201:96(87E4):384(11I7)	NUCLEOLAR PROTEIN 1 (120KD) N50854
792		0):384(10019) ESTS, WEAKLY SIMILAR TO HUEMAP [H.SAPIENS] AA122022
793	PEROU:96(6A8):384(20A16)	HOMO SAPIENS MRNA; CDNA DKFZPS86C201 (FROM CLONE DKFZPS86C201) R12563
794	GF201:96(62D2):384(22H3)	503682 AA129974
795	GF200:96(1B6):384(1C11)	VALYL-TRNA SYNTHETASE 1 AA464470
96/	GF202:96(112A2):384(15B3)	ESTS, WEAKLY SIMILAR TO ACID PHOSPHATASE [H.SAPIENS] AA160670
797	GF201:96(99C9):384(14E17)	75044 T51856
798	GF200:96(15D12):384(4H24)	THIOREDOXIN REDUCTASE 1 AA453335
799	GF201:96(56D5):384(21G10)	ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY J WARNING ENTRY !!!! [H.SAPIENS] AA404276
800		0):384(10B20) IGF-II MRNA-BINDING PROTEIN 3 AA011347
801	GF200:96(23B11):384(6D22)	HIGH-MOBILITY GROUP (NONHISTONE CHROMOSOMAL) PROTEIN ISOFORMS I AND Y AA448261
805	GF201:96(95F1):384(13K1)	GLYCYL-TRNA SYNTHETASE AA629909
803	GF200:96(21H9):384(6017)	HOMO SAPIENS CLONE 24636 MRNA SEQUENCE N79230
804	GF200:96(9D9):384(3G17)	CDC6 (CELL DIVISION CYCLE 6, S. CEREVISIAE) HOMOLOG H59203
802	GF201:96(58F6):384(21L11)	ESTS, HIGHLY SIMILAR TO TAT BINDING PROTEIN 7, TBP-7 AA464568
806		10):384(15119) HOMO SAPIENS MRNA; CDNA DKFZPS47C0410 (FROM CLONE DKFZPS47C0410) N50079
807	GF200:96(9H6):384(3O11)	HOMO SAPIENS PESCADILLO MRNA, COMPLETE CDS R13806
808	[GF200:96(16E10):384(4)19)	KALLIKREIN 3, (PROSTATE SPECIFIC ANTIGEN) AA490981
608	GF200:96(16G8):384(4N15)	ESTS, HIGHLY SIMILAR TO 6-PHOSPHOGLUCONATE DEHYDROGENASE, DECARBOXYLATING III. SAPIENSI AAS98759
810	GF201:96(87F6):384(11K11)	NUCLEOPHÓSMIN (NUCLEOLAR PHOSPHOPROTEIN B23, NUMATRIN) AA669758
811	GF201:96(90C11):384(11F21)	1):384(11F21) E2F TRANSCRIPTION FACTOR 3 N92519
812	GF200:96(7E12):384(2J24)	GAMMA-GLUTAMYL HYDROLASE (CONJUGASE, FOLYLPOLYGAMMAGLUTAMYL HYDROLASE) AA455800
813	GF200:96(13G6):384(4M11)	CENTROMERE PROTEIN E (312KD) AA402431
814	GF200:96(7B2):384(2D4)	KDAA0042 GENE PRODUCT AA477501

↤
a
☶
ā

815	GF200:96(13E4):384(4I7)	CYCLIN B1 R25788
816	-	CELL DIVISION CYCLE 25C W95001
817	GF200:96(5G1):384(2M1)	PROTEASOME (PROSOME, MACROPAIN) 26S SUBUNIT, NON-ATPASE, 12 AA497132
818	GF200:96(21C2):384(6E3)	HUMAN CLONE 23799 MRNA SEQUENCE AA489007
819	GF201:96(99B5):384(14C9)	HOMO SAPIENS CLONE 24703 BETA-TUBULIN MRNA, COMPLETE CDS AA427899
820	GF200:96(17C7):384(5E13)	METHYLENE TETRAHYDROFOLATE DEHYDROGENASE (INAD+ DEPENDENT), METHENYLTETRAHYDROFOLATE CYCLOHYDROLASE AA480995
821	GF201:96(82D11):384(9H21)	1):384(9H21) 430186 AA010188
822	GF201:96(87G10):384(11M19	(0):384(11M19) MUTT (E. COLI) HUMAN HOMOLOG (8-OXO-7,8-DIHYDROGUANOSINE TRIPHOSPHATASE) AA443998
823	GF201:96(87A10):384(11A19)	0):384(11A19) RIBONUCLEOTIDE REDUCTASE M1 POLYPEPTIDE AA633549
824	GF200:96(10H6):384(3O12)	HIGH-MOBILITY GROUP (NONHISTONE CHROMOSOMAL) PROTEIN 2 AA019511
825	GF200:96(11A6):384(3B12)	HOMO SAPIENS CLONE 24782 UNKNOWN MRNA AA430545
826	GF201:96(63E12):384(23I23)	126449 R06706
827	GF201:96(98A5):384(13B9)	APOPTOSIS INHIBITOR 4 (SURVIVIN) AA460685
828	[GF200:96(13H12):384(4O23)	CTP SYNTHASE H09614
829	GF201:96(93F10):384(12L20)	BYSTIN-LIKE AA701929
830	GF201:96(64G8):384(23M16)	258761 N30185
831	PEROU:96(481):384(19D1)	PLASMINOGEN (CONTAINS ANGIOSTATIN) R91118
832	PEROU:96(7C2):384(20F4)	KDAA0101 GENE PRODUCT N29873
833	GF200:96(10D8):384(3G16)	CHK1 (CHECKPOINT, S.POMBE) HOMOLOG N73242
834	GF201:96(58D3):384(21H5)	TOPOISOMERASE (DNA) II ALPHA (170KD) AA026682
835	(GF201:96(57D4):384(21H8)	KIAA0008 GENE PRODUCT W93717
836	PEROU:96(8H9):384(20P17)	ANTIGEN IDENTIFIED BY MONOCLONAL ANTIBODY KI-67 AA004872
837	GF200:96(1E5):384(119)	TISSUE INHIBITOR OF METALLOPROTEINASE 1 (ERYTHROID POTENTIATING ACTIVITY, COLLAGENASE
838	GF200:96(15D4):384(4H8)	IESTS. HIGHLY SIMILAR TO TOPOISOMERASE II ALPHA (C-TERMINAL) I'H SAPIFNS'I AASO434R
839	GF202:96(109F7):384(15K13)	1
840	GF201:96(96C9):384(13E18)	
841	GF200:96(3E7):384(1J14)	MINICHROMOSOME MAINTENANCE DEFICTENT (S. CEREVISIAE) 3 AA455786
842	GF201:96(90B10):384(11D19)	
843	GF201:96(87F8):384(11K15)	NUCLEAR AUTOANTIGENIC SPERM PROTEIN (HISTONE-BINDING) AA644128
844	GF200:96(22D3):384(6G6)	DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE 11 (S.CEREVISIAE CHL1-LIKE HELICASE) AA402879
845	GF200:96(10E1):384(312)	DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE 11 (S.CEREVISIAE CHL1-LIKE HELICASE) AA032090
846	GF201:96(89C4):384(11F8)	MINICHROMOSOME MAINTENANCE DEFICIENT (MISS, S. POMBE) 6 AA663995
847	GF200:96(13C12):384(4E23)	DNA (CYTOSINE-5-)-METHYLTRANSFERASE 1 N43930
848	GF201:96(102B1):384(14D1)	ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY J WARNING ENTRY !!!! [H.SAPIENS] T63980
843	[GF200:96(21A5):384(6A9)	JENHANCER OF ZESTE (DROSOPHILA) HOMOLOG 2 AA430744

	ď)
•	2	i
Ì	7	į
ı	_	۰

850	GF201-96(99F1)-384(14I1)	IREDITION FACTOR C (ACTIVATOR 1) 4 (37KD) N93924
851		V-MYB AVIAN MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG-LIKE 2 AA456878
852)):384(10P19) RIBONUCLEOTIDE REDUCTASE M2 POLYPEPTIDE AA187351
853	(GF201:96(58D7):384(21H13)	CDC28 PROTEIN KINASE 2 AA010065
854	GF200:96(25H3):384(7O5)	CDC28 PROTEIN KINASE 2 AA397813
855	GF201:96(98D1):384(13H1)	PITUITARY TUMOR-TRANSFORMING 1 AA430032
856	GF200:96(4E4):384(1J7)	HUMAN UBIQUITIN CARRIER PROTEIN (E2-EPF) MRNA, COMPLETE CDS AA464729
857	GF201:96(88A12):384(11A24)	ESTS, HIGHLY SIMILAR TO MITOTIC KINESIN-LIKE PROTEIN-1 [H.SAPIENS] AA454098
828	GF200:96(26C11):384(7E22)	TROPHININ-ASSISTING PROTEIN (TASTIN) H94949
829	GF200:96(18H3):384(5O6)	CELL DIVISION CYCLE 20, S.CEREVISIAE HOMOLOG AA598776
980	GF202:96(10984):384(15C7)	HOMO SAPIENS MRNA FOR KIAA0788 PROTEIN, PARTIAL CDS AA676460
861	GF201:96(94C2):384(12F3)	HOMO SAPIENS HPV16 E1 PROTEIN BINDING PROTEIN MRNA, COMPLETE CDS AA630784
862	GF201:96(92B8):384(12C16)	CENTROMERE PROTEIN F (350/400KD, MITOSIN) AA701455
863	GF201:96(59D12):384(22G23)	782283 AA432248
864	GF200:96(22E1):384(6I2)	POLYMYOSITIS/SCLERODERMA AUTOANTIGEN 1 (75KD) AA458994
865	GF200:96(25C6):384(7E11)	CYCLIN AZ AA608568
866	[GF200:96(25E10):384(7119)	HOMO SAPIENS MRNA FOR CDC2 DELTA T, COMPLETE CDS AA598974
867	GF201:96(92E2):384(12I4)	PROTEIN KINASE MITOGEN- ACTIVATED 13 AA157499
868	GF201:96(92F2):384(12K4)	POLO (DROSOPHIA)-LIKE KINASE AA629262
698	GF200:96(7A8):384(2B16)	HUMAN MRNA FOR KIAA0074 GENE, PARTIAL CDS NS4344
	GF201:96(92E6):384(12I12)	BUDDING UNINHIBITED BY BENZIMIDAZOLES 1 (YEAST HOMOLOG) AA446462
	GF200:96(25H4):384(7O7)	MINICHROMOSOME MAINTENANCE DEFICIENT (S. CEREVISIAE) 4 AA485983
	GF202:96(110C1):384(15E2)	FLAP STRUCTURE-SPECIFIC ENDONUCLEASE 1 AA620553
873		236142 H61303
	GF200:96(22A8):384(6A16)	FORKHEAD (DROSOPHILA)-LIKE 16 AA129552
	GF200:96(10A8):384(3A16)	ESTS, HIGHLY SIMILAR TO SERINE/THREONINE KINASE [H.SAPIENS] R19158
	GF200:96(15G5):384(4N10)	SMALL NUCLEAR RIBONUCLEOPROTEIN POLYPEPTIDES B AND B1 AA599116
	PEROU:96(3F10):384(19L20)	PROLIFERATING CELL NUCLEAR ANTIGEN H13004
878	GF200:96(16F3):384(4L5)	PROLIFERATING CELL NUCLEAR ANTIGEN AA450265
879		CALMODULIN 1 (PHOSPHORYLASE KINASE, DELTA) R76554
880	GF202:96(109C3):384(15E5)	NON-METASTATIC CELLS 1, PROTEIN (NM23A) EXPRESSED IN AA644092
881	GF201:96(86E5):384(10J9)	HUMAN MRNA FOR KIAA0098 GENE, PARTIAL CDS AA629692
882		3):384(16N15) PROLIFERATION-ASSOCIATED 2G4, 38KD AA488332
883	GF200:96(1C3):384(1E5)	URACIL-DNA GLYCOSYLASE H15111
884	GF201:96(88A9):384(11A18)	MULTIFUNCTIONAL POLYPEPTIDE SIMILAR TO SAICAR SYNTHETASE AND AIR CARBOXYLASE N33274
882	GF202:96(113E7):384(16I13)	ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY J WARNING ENTRY !!!! [H.SAPIENS] AA088458
988	GF201:96(90F3):384(11L5)	MEMBRANE-ASSOCIATED TYROSINE- AND THREONINE-SPECIFIC CDC2-INHIBITORY KINASE AA478066
887	GF200:96(5G12):384(2M23)	292933 N69491
	a .	

_	4
0	U
3	5
α	3

883	_	244205 N52980
890	GF200:96(25B2):384(7C3)	PRIMASE, POLYPEPTIDE 1 (49KD) AA025937
891	\sim 1):384(11D23) KIAA0159 GENE PRODUCT AA668256
892	GF200:96(17F10):384(5K19)	LAMIN B2 AA456868
893	GF201:96(86D3):384(10H5)	HOMO SAPIENS GENE FOR THYMIDYLATE SYNTHASE, EXONS 1, 2, 3, 4, 5, 6, 7, COMPLETE CDS AA663310
894	PEROU:96(7H9):384(20P18)	MCM5/CDC46 HOMOLOG AA075920
895	GF201:96(93B8):384(12D16)	CDC7 (CELL DIVISION CYCLE 7, S. CEREVISIAE, HOMOLOG)-LIKE 1 N62245
	GF201:96(67C5):384(24E9)	EUKARYOTIC TRANSLATION ELONGATION FACTOR 1 EPSILON 1 N91962
		TRANSLIN AA461231
	GF200:96(4D9):384(1H17)	HYALURONAN-MEDIATED MOTILITY RECEPTOR (RHAMM) R10284
839	GF201:96(96D9):384(13G18)	CYCLIN F AA676797
006	GF200:96(31E12):384(8J24)	ESTS, HIGHLY SIMILAR TO TOPOISOMERASE II ALPHA {C-TERMINAL} [H.SAPIENS] AA504348
901):384(13G20) CYCLIN E1 T54121
206	GF201:96(58B3):384(21D5)	TRANSCRIPTION FACTOR COUP 2 (CHICKEN OVALBUMIN UPSTREAM PROMOTER 2, APOLIPOPROTEIN DECLINATORY PROPERTY PROPERTY DECLINATION PROPERTY D
500	CE202-00414F4F7-20444-0140	NECOLARIA TRAIL TANDON TO THE
§ 8	GF202:96(115A5):384(16B10)):384(16810) YROSYL-TRNA SYNTHETASE AA102053):384(15F14) HOMO SAPTENS EXPORTIN T MRNA COMPLETE CDS AA211459
1	GF201:96(89C9):384(11F18)	ORIGIN RECOGNITION COMPLEX, SUBLINIT 1 (YEAST HOMOLOGY-LIKE R83277
	GF200:96(19A11):384(5B22)	MAD2 (MITOTIC ARREST DEFICIENT, YEAST, HOMOLOGY-LIKE 1 AA481076
	GF201:96(89G1):384(11N2)	HOMO SAPIENS DNA FOR APOER2 W80637
	GF200:96(15G7):384(4N14)	SMALL NUCLEAR RIBONUCLEOPROTEIN POLYPEPTIDE B" AA521249
	GF201:96(80C12):384(9E24)	770898 AA434411
	GF202:96(113A7):384(16A13)):384(16A13) ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4877775) [H.SAPIENS] AA126951
	GF200:96(26D4):384(7G8)	PHORBOLIN (SIMILAR TO APOLIPOPROTEIN B MRNA EDITING PROTEIN) T64880
912	GF202:96(116A6):384(16B11)	GF202:96(11646):384(16B11) ESTS, WEAKLY SIMILAR TO PREGNANCY ZONE PROTEIN PRECURSOR [H.SAPIENS] AA600184
913	GF202:96(112G10):384(15N19	0):384(15N19 ESTS, WEAKLY SIMILAR TO POTENT HEAT-STABLE PROTEIN PHOSPHATASE 2A INHIBITOR 11PP2A
914	GF200:96(23D11):384(6H22)	CELL DIVISION CYCLE 25B H14343
915	GF200:96(17E12):384(5I23)	CELL DIVISION CYCLE 25B AA448755
	GF200:96(11F5):384(3L10)	CHLORIDE CHANNEL, NUCLEOTIDE-SENSITIVE, 1A T52435
1	GF202:96(109A7):384(15A13)	
	PEROU:96(2A10):384(19A20)	
- 1	GF200:96(24D4):384(6H7)	GLUTAMIC-OXALOACETIC TRANSAMINASE 1, SOLUBLE (ASPARTATE AMINOTRANSFERASE 1) H22856
920	GF201:96(62E6):384(22)11)	308495 N95558
	GF201:96(58D12):384(21H23)):384(21H23) CENTROMERE PROTEIN F (350/400KD, MITOSIN) T87341
922	GF201:96(80E5):384(9110)	811069 AA485454
023	/0/14 +/4 0C / TTC 0/ / CTC	

-
<u>o</u>
互
œ,
_

GF201:96(89012):384(11424) GF202:96(11001):384(115G2) GF202:96(11001):384(115G2) GF202:96(11001):384(16N19) GF202:96(110610):384(16N19) GF202:96(116G10):384(16N19) GF202:96(116G10):384(16N19) GF202:96(9F10):384(1164) GF201:96(9F2):384(1164) GF201:96(9F2):384(1104) GF201:96(97E2):384(1104) GF201:96(95A1):384(1104) GF201:96(95A1):384(10M5) GF201:96(95A1):384(10M5) GF201:96(95A1):384(10M5) GF201:96(95A1):384(10M1) GF201:96(95A1):384(10M2) GF201:96(95A1):384(10M2) GF201:96(95A1):384(10M2) GF201:96(95A1):384(10M2) GF201:96(95A1):384(10M2) GF201:96(98B1):384(20C14) GF200:96(10C8):384(20C13) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(9B1):384(10C12) GF201:96(9B1):384(10C12) GF201:96(9B2):384(10C12) GF201:96(9B2):384(10C12) GF201:96(9B2):384(10C12) GF201:96(9B2):384(10C12) GF201:96(14H17):384(16D20 GF201:96(14H110):384(11C12) GF201:96(14H110):384(11C12) GF201:96(14H110):384(11C12)	7,00	15 13 17 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1727-1310 AAA1677-A
GF202:96(110D1):384(15G2) GF200:96(16G10):384(16N19) GF200:96(16G10):384(16N19) GF200:96(9F10):384(16N19) GF200:96(9F10):384(11G4) GF201:96(97E2):384(13L4) GF201:96(97E2):384(13L4) GF201:96(95E10):384(13L4) GF201:96(95E10):384(10M1) GF201:96(95E12):384(10M2) GF201:96(95E12):384(10M2) GF201:96(83G3):384(10M1) GF201:96(82):384(10M2) GF201:96(88F0):384(10M9) GF200:96(10B8):384(20C14) GF200:96(6F10):384(20C13) GF200:96(6F10):384(20C13) GF200:96(6F10):384(10C12) GF200:96(6F10):384(10C12) GF200:96(10B8):384(20C14) GF201:96(8B6):384(20C14) GF201:96(8B10):384(10C12) GF201:96(6B2):384(20C14) GF201:96(6B2):384(20C14) GF201:96(6B2):384(20C14) GF201:96(6B2):384(10C12) GF201:96(6B2):384(10C12) GF201:96(6B2):384(20C14) GF201:96(14H10):384(11C12) GF201:96(14H10):384(10C12) GF201:96(14H10):384(10C12) GF201:96(14H110):384(10C12) GF201:96(14H110):384(10C12)	925	GF201:96(89D12):384(11H24)) SOLUTE CARRIER FAMILY 16 (MONOCARBOXYLIC ACID TRANSPORTERS). MEMBER 3 AA129777
GF200:96(16G10):384(4N19) GF200:96(16G10):384(16N19) GF200:96(9F10):384(16N19) GF200:96(9F10):384(11G4) GF201:96(97E2):384(13C4) GF201:96(92E10):384(13C2) GF201:96(92E10):384(13M2) GF201:96(92E10):384(10M1) GF201:96(92E12):384(10M2) GF201:96(92E12):384(10M2) GF201:96(92E12):384(10M2) GF201:96(83C3):384(10M2) GF201:96(82):384(10M3) GF201:96(887):384(10M9) GF200:96(10B8):384(2C11) GF200:96(6E10):384(2C11) GF201:96(8B6):384(2C11) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C2) GF201:96(6B2):384(20C4) GF201:96(6B2):384(20C4) GF201:96(6B2):384(20C4) GF201:96(6B2):384(10C12) GF201:96(6B2):384(10C12) GF201:96(6B2):384(10C12) GF201:96(6B2):384(10C12) GF201:96(14H10):384(11C12) GF201:96(14H10):384(10C12) GF201:96(14H10):384(10C12) GF201:96(14H10):384(10C12) GF201:96(14H110):384(10C12)	976	GF202:96(110D1):384(15G2)	ESTS, MODERATELY SIMILAR TO IIII ALU SUBFAMILY SO WARNING ENTRY III [H.SAPIENS] AA186804
GF202:96(116G10):384(16N19) GF200:96(4C4):384(1F7) GF200:96(9F10):384(20124) GF200:96(9F10):384(11G4) GF201:96(97E2):384(11G4) GF201:96(97E2):384(11G4) GF201:96(95G12):384(11G4) GF201:96(95G12):384(10K11) GF201:96(83G3):384(10K11) GF201:96(82F12):384(10K11) GF201:96(82F12):384(10K12) GF201:96(82F12):384(10M9) GF201:96(887):384(10M9) GF200:96(6F10):384(2K20) GF200:96(6F10):384(2K20) GF200:96(6F10):384(2K20) GF200:96(6F10):384(10F23) GF201:96(8865):384(10F23) GF201:96(8810):384(10F23) GF201:96(801):384(10F23) GF201:96(801):384(10F23) GF201:96(6B2):384(20G8) GF201:96(6B2):384(20G8) GF201:96(6B2):384(20G8) GF201:96(6B2):384(20G8) GF201:96(6B2):384(20G8) GF201:96(6B2):384(20G1) GF201:96(6B2):384(20G1) GF201:96(6B2):384(20G1) GF201:96(14H17):384(16D20) GF201:96(14H17):384(12117) GF201:96(17E1):384(12117)	476	GF200:96(16G10):384(4N19)	PHOSPHOFRUCTOKINASE, PLATELET AA608558
GF200:96(4C4):384(1F7) GF200:96(9F10):384(3K19) GF200:96(9F10):384(13(4) GF201:96(97E2):384(13(4) GF201:96(95E12):384(13(4) GF201:96(95E12):384(10K11) GF201:96(95E12):384(10K11) GF201:96(95E12):384(10K11) GF201:96(95E12):384(10K12) GF201:96(95E12):384(10K12) GF201:96(885):384(10K12) GF200:96(2A3):384(10M9) GF200:96(6E10):384(2K20) GF200:96(8B7):384(2K20) GF200:96(6E10):384(2K11) GF200:96(6E10):384(3E16) GF200:96(6E10):384(10F23) GF201:96(8B6):384(10F23) GF201:96(8B10):384(10F23) GF201:96(8B10):384(10F23) GF201:96(8B10):384(10F23) GF201:96(6B2):384(20C4) GF201:96(6B2):384(20C4) GF201:96(6B2):384(20C4) GF201:96(6B2):384(20C4) GF201:96(6B2):384(20C4) GF201:96(14H10):384(10F23) GF201:96(14H10):384(10F23) GF201:96(14H10):384(10F23) GF201:96(14H110):384(10F23) GF201:96(14H110):384(10F23) GF201:96(14H110):384(10F23)	928	GF202:96(116G10):384(16N19	511647 AA126947
GF200:96(9F10):384(3K19) PEROU:96(7E12):384(20124) GF201:96(97E2):384(13L4) GF201:96(98D2):384(11G4) GF201:96(92810):384(11G4) GF201:96(95G12):384(13M23) GF201:96(83G3):384(10K11) GF201:96(83F6):384(10K11) GF201:96(82F12):384(10M2) GF201:96(82F12):384(10M2) GF201:96(825G12):384(10M2) GF200:96(2A3):384(10M9) GF200:96(6F10):384(2K20) GF200:96(8B7):384(2K20) GF200:96(6F10):384(2K20) GF200:96(8B10):384(10F23) GF201:96(8B6):384(10F23) GF201:96(8B10):384(10F23) GF201:96(8B10):384(10F23) GF201:96(6B2):384(10F23) GF201:96(6B2):384(10F23) GF201:96(6B2):384(10F23) GF201:96(6B2):384(10F23) GF201:96(6B2):384(10F23) GF201:96(6B2):384(10F23) GF201:96(14H10):384(10F23) GF201:96(14H10):384(10F23) GF201:96(14H110):384(10F23) GF201:96(14H110):384(10F23)	929	GF200:96(4C4):384(1F7)	PROTEOLIPID PROTEIN 2 (COLONIC EPITHELIUM-ENRICHED) AA464627
PEROU:96(7E12):384(20124) GF201:96(97F2):384(1314) GF201:96(98D2):384(13C0) GF201:96(92B1D):384(13C0) GF201:96(95A4):384(10K11) GF201:96(83G3):384(10K11) GF201:96(83G3):384(10K11) GF201:96(82512):384(10K12) GF201:96(82512):384(10K12) GF201:96(827):384(10M9) GF200:96(2A3):384(10M9) GF200:96(2A3):384(2B11) GF200:96(10B8):384(2B11) GF200:96(10B8):384(3C16) GF200:96(10B8):384(10C12) GF201:96(88B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C2) GF201:96(8B10):384(10C2) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C2) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(14H10):384(10C12) GF201:96(14H110):384(10C12) GF201:96(14H110):384(10C11) GF201:96(14H110):384(10C11)	930		PROTEIN DISULFIDE ISOMERASE RELATED PROTEIN (CALCIUM-BINDING PROTEIN, INTESTINAL- RELATED) N59626
GF201:96(97F2):384(13L4) GF201:96(88D2):384(11G4) GF201:96(92B10):384(11G4) GF201:96(95A4):384(10M1) GF201:96(83G3):384(10M1) GF201:96(83G3):384(10M1) GF201:96(82G1):384(10M2) GF201:96(82G1):384(10M2) GF201:96(82G1):384(10M2) GF200:96(2A3):384(10M3) GF200:96(2A3):384(10M3) GF200:96(10B8):384(2B11) GF200:96(10B8):384(3E16) GF200:96(10B8):384(3E16) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C2) GF201:96(8B10):384(10C2) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C12) GF201:96(9B2):384(20C4) GF201:96(9B2):384(20C4) GF201:96(14H10):384(11C12) GF201:96(14H10):384(10C12) GF201:96(14H10):384(10C12) GF201:96(14H10):384(10C12) GF201:96(14H10):384(10C12) GF201:96(14H10):384(10C12) GF201:96(14H10):384(10C12)	931		HEAT SHOCK 70KD PROTEIN 4 R85253
GF201:96(88D2):384(11G4) GF201:96(92B10):384(12C20) GF201:96(92S4):384(13A7) GF201:96(83G3):384(10M1) GF201:96(83G3):384(10M1) GF201:96(82G1):384(13M23) GF201:96(82G1):384(10M2) GF201:96(82D):384(10M2) GF200:96(2A3):384(10M3) GF200:96(8B7):384(2D13) GF200:96(8B7):384(2D13) GF200:96(8B7):384(2D13) GF200:96(10B8):384(3E16) GF200:96(10B8):384(3E16) GF201:96(8B6):384(10C12) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C2) GF201:96(8B10):384(10C2) GF201:96(8B10):384(10C2) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C2) GF201:96(9B2):384(20C4) GF201:96(14H10):384(11C12) GF201:96(14H10):384(11C12) GF201:96(14H10):384(10C2) GF201:96(14H10):384(10C2) GF201:96(14H10):384(10C2) GF201:96(14H10):384(10C2) GF201:96(14H10):384(10C2)	932		ADDUCIN 3 (GAMMA) AA461325
GF201:96(92810):384(12C20) GF201:96(9284):384(13A7) GF201:96(83G3):384(10K11) GF201:96(83G3):384(10K11) GF201:96(82G12):384(13M23) GF201:96(295G12):384(13K23) GF201:96(295G12):384(10K17) DEROU:96(687):384(10M9) GF200:96(687):384(20G14) GF200:96(810):384(20G1) GF200:96(810):384(20G1) GF200:96(10B8):384(3E16) DEROU:96(886):384(3E16) GF200:96(10B8):384(10C12) GF201:96(8810):384(10C12) GF201:96(8810):384(10C2) GF201:96(8810):384(10C2) GF201:96(8810):384(10C2) GF201:96(8810):384(10C2) GF201:96(8810):384(10C2) GF201:96(8810):384(10C2) GF201:96(8810):384(10C2) GF201:96(8810):384(10C2) GF201:96(8810):384(10C2) GF201:96(14H10):384(10C2) GF201:96(14H10):384(10C2) GF201:96(14H10):384(10C2) GF201:96(14H10):384(10C2) GF201:96(14H10):384(10C2) GF201:96(14H10):384(10C2)	933	GF201:96(88D2):384(11G4)	INTERLEUKIN 7 RECEPTOR AA485865
GF201:96(95A4):384(13A7) GF201:96(83G3):384(10K11) GF201:96(83G3):384(10K11) GF201:96(95G12):384(13M23) GF201:96(95F12):384(8M17) DEROU:96(687):384(10M9) GF200:96(2A3):384(10M9) GF200:96(810):384(2K20) GF200:96(810):384(2K11) GF200:96(810):384(2K11) GF200:96(810):384(2K11) GF200:96(810):384(316) GF200:96(10B8):384(316) GF201:96(8810):384(11C12) GF201:96(8810):384(11C12) GF201:96(8810):384(10F23) GF201:96(14H17):384(10F23) GF201:96(14H17):384(10F23) GF201:96(14H110):384(10F23) GF201:96(14H110):384(10F23)	934	GF201:96(92B10):384(12C20)	
GF201:96(83F6):384(10K11) GF201:96(83G3):384(10K11) GF201:96(95G12):384(13M23) GF201:96(95F12):384(13K23) GF201:96(29G3):384(10K17) DEROU:96(6B7):384(10M9) GF200:96(ER07):384(10M9) GF200:96(ER07):384(2D13) GF200:96(ER07):384(2D13) GF200:96(ER07):384(3E16) DEROU:96(BR07):384(3E16) DEROU:96(BR07):384(10F23) GF201:96(88B10):384(10F23) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C2) GF201:96(BR10):384(10C2)	935	GF201:96(95A4):384(13A7)	ADIPOSE DIFFERENTIATION-RELATED PROTEIN: ADIPOPHILIN AA700054
GF201:96(83G3):384(10M5) GF201:96(95G12):384(13M23) GF201:96(95G12):384(13K23) GF200:96(29G9):384(10M17) BEROU:96(687):384(10M9) GF200:96(687):384(10M9) GF200:96(687):384(20C14) GF200:96(687):384(20C14) GF200:96(80S1):384(20C16) GF200:96(80S1):384(20C16) GF200:96(10B8):384(3C16) GF200:96(10B8):384(10C12) GF201:96(88B10):384(10C12) GF201:96(88B10):384(10C20) GF201:96(68C12):384(10C12) GF201:96(68C12):384(10C20) GF201:96(68C12):384(10C20) GF201:96(68C12):384(10C20) GF201:96(68C12):384(10C20) GF200:96(14H10):384(10C20) GF200:96(14H10):384(10C20) GF200:96(14H10):384(10C20) GF200:96(14H10):384(10C20) GF200:96(14H10):384(10C20) GF200:96(14H10):384(10C20) GF200:96(14H10):384(10C20) GF200:96(14H10):384(10C20)	936	GF201:96(83F6):384(10K11)	ESTS, WEAKLY SIMILAR TO CDNA EST EMBL: D70402 COMES FROM THIS GENE [C.ELEGANS] N62924
GF201:96(95G12):384(13M23) GF201:96(95F12):384(13K23) GF201:96(29G9):384(8M17) PEROU:96(6B7):384(10M9) GF200:96(2A3):384(10M9) GF200:96(6F10):384(10M9) GF200:96(6F10):384(2D13) GF200:96(8B7):384(2D13) GF200:96(8B6):384(2D13) GF200:96(10B8):384(3D11) GF201:96(8B6):384(10F23) GF201:96(8B6):384(10F23) GF201:96(8B10):384(10F23) GF201:96(8B10):384(10F23) GF201:96(8B10):384(10F23) GF201:96(8B10):384(10F23) GF201:96(14H7):384(10F23) GF200:96(14H7):384(16O20) GF200:96(14H10):384(16O20) GF200:96(14H10):384(16O20) GF200:96(14H10):384(16O20) GF200:96(14H10):384(12017)	937	GF201:96(83G3):384(10M5)	ESTS, HIGHLY SIMILAR TO DEDUCED PROTEIN PRODUCT SHOWS SIGNIFICANT HOMOLOGY TO
GF201:96(95G12):384(13M23) GF201:96(95F12):384(13M23) GF201:96(29G9):384(13K23) GF200:96(29G9):384(10M9) GF200:96(2A3):384(10M9) GF200:96(6E10):384(2K20) GF200:96(6F10):384(2K20) GF200:96(6R6):384(2K11) GF200:96(6R6):384(2K11) GF200:96(6R6):384(2K11) GF200:96(10B8):384(3C16) GF200:96(10B8):384(10C12) GF201:96(6B4):384(10C12) GF201:96(6B4):384(10C12) GF201:96(6B2):384(10C12) GF200:96(14H7):384(16C20) GF200:96(14H10):384(16C20) GF200:96(14H10):384(16O20) GF200:96(14H10):384(16O20) GF200:96(14H10):384(16O20) GF200:96(14H10):384(16O20) GF200:96(14H10):384(10C1)			COACTOSIN FROM DICTYOSTELIUM DISCOIDEUM [H.SAPIENS] R78530
GF201:96(95F12):384(13K23) GF200:96(29G9):384(8M17) PEROU:96(6B7):384(10M9) GF200:96(2A3):384(10M9) GF200:96(6F10):384(2K20) GF200:96(6F10):384(2K20) GF200:96(8B7):384(2D13) GF200:96(8B7):384(2D13) GF200:96(8B6):384(2B11) GF200:96(10B8):384(3E16) PEROU:96(6B4):384(10F23) GF201:96(8B10):384(10F23) GF201:96(8B10):384(10F23) GF201:96(8B10):384(10F23) GF201:96(6B2):384(20C4) GF200:96(14H10):384(16O20) GF200:96(14H10):384(16O20) GF200:96(14H10):384(16O20) GF200:96(14H10):384(10S1) GF200:96(14H10):384(10S1) GF200:96(14H10):384(10S1) GF200:96(14H10):384(10S1)	938	GF201:96(95G12):384(13M23)	INTERFERON, GAMMA-INDUCIBLE PROTEIN 30 AA630800
GF200:96(29G9):384(8M17) PEROU:96(6B7):384(1A6) GF200:96(2A3):384(1A6) GF201:96(8B7):384(10M9) GF201:96(8B6):384(2K20) GF200:96(6F10):384(2K20) GF200:96(6R6):384(2B11) GF200:96(10B8):384(3E16) DEROU:96(6BA):384(20G8) GF201:96(8BB6):384(10C12) GF201:96(8B10):384(10C12) GF201:96(8B10):384(10C2) GF201:96(6B2):384(20C4) GF201:96(6B2):384(20C4) GF200:96(14H10):384(16O20 GF200:96(14H10):384(16O20 GF200:96(14H10):384(16O20 GF200:96(14H10):384(12117) GF201:96(6B2):384(20C1)	939	GF201:96(95F12):384(13K23)	GLUTAMATE DECARBOXYLASE 2 (PANCREATIC ISLETS AND BRAIN, 65KD) R44005
PEROU:96(6B7):384(20C14) GF200:96(2A3):384(1A6) GF200:96(8B3):384(1A6) GF200:96(6F10):384(2K20) GF200:96(6F10):384(2K11) GF200:96(8B7):384(2B11) GF200:96(10B8):384(3E16) GF200:96(10B8):384(3E16) GF201:96(6B4):384(1G72) GF201:96(8B10):384(10F23) GF201:96(8B10):384(10F23) GF201:96(8B10):384(10F2) GF201:96(6B2):384(20C4) GF200:96(14H10):384(16O20 GF200:96(14H10):384(16O20 GF200:96(14H10):384(16O20 GF200:96(14H10):384(12117) GF200:96(17E1):384(12117)	940		SOLUTE CARRIER FAMILY 7 (CATIONIC AMINO ACID TRANSPORTER, Y+ SYSTEM), MEMBER 7 T98394
GF200:96(2A3):384(1A6) GF201:96(83G5):384(10M9) GF200:96(6F10):384(2K20) GF200:96(8B7):384(2D13) GF200:96(8B6):384(2B11) GF200:96(10C8):384(3E16) DFRQU:96(6D4):384(3E16) GF201:96(8B6):384(1C20) GF201:96(8B6):384(1C20) GF201:96(8B10):384(1C20) GF201:96(8B10):384(1C20) GF200:96(14H7):384(4O14) PERQU:96(6B2):384(20C4) GF200:96(14H10):384(16O20) GF200:96(14H10):384(1A10) GF200:96(14H10):384(1A11) GF200:96(14H10):384(1A11)	941	PEROU:96(6B7):384(20C14)	CHEMOKINE (C-X-C MOTIF), RECEPTOR 4 (FUSIN) AA479467
GF201:96(83G5):384(10M9) GF200:96(6F10):384(2K20) GF200:96(8B7):384(2K20) GF200:96(8B6):384(2B11) GF200:96(10B8):384(3E16) GF200:96(10C8):384(3E16) GF201:96(6D4):384(1C12) GF201:96(8B6):384(1C12) GF201:96(8B10):384(1C20) GF201:96(8B10):384(1C20) GF201:96(6B2):384(1C20) GF200:96(14H7):384(4O14) PEROU:96(6B2):384(20C4) GF200:96(14H10):384(16O20 GF200:96(14H10):384(12117) GF200:96(17E1):384(12117)	942	GF200:96(2A3):384(1A6)	SMALL INDUCIBLE CYTOKINE A4 (HOMOLOGOUS TO MOUSE MIP-118) H62985
GF200:96(6F10):384(2K20) GF200:96(8B7):384(2D13) GF200:96(8B6):384(3D11) GF200:96(10B8):384(3E16) GF200:96(10C8):384(3E16) GF201:96(6D4):384(1DC12) GF201:96(8B10):384(1DC2) GF201:96(8B10):384(1DC2) GF201:96(8B10):384(1DC2) GF201:96(6B2):384(20C4) GF200:96(14H7):384(4D14) GF200:96(14H10):384(16O20 GF200:96(14H10):384(16D20 GF200:96(14H10):384(1D21) GF200:96(14H10):384(1D21) GF200:96(11H10):384(1D21)	943	GF201:96(83G5):384(10M9)	ESTS, WEAKLY SIMILAR TO PUTATIVE P150 [H.SAPIENS] R74478
GF200:96(8B7):384(2D13) GF200:96(8A6):384(3C16) GF200:96(10B8):384(3E11) GF200:96(10C8):384(3E16) BERQU:96(6D4):384(20G8) GF201:96(8B6):384(10F23) GF201:96(8B10):384(10F23) GF201:96(8B10):384(10F23) GF201:96(8B10):384(10F20) GF200:96(14H7):384(4O14) PERQU:96(6B2):384(20C4) GF200:96(14H10):384(16O20 GF200:96(14H4):384(12117) GF200:96(17E1):384(12117)	944	GF200:96(6F10):384(2K20)	ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY SX WARNING ENTRY !!! [H.SAPIENS] T94293
GF200:96(8A6):384(2B11) GF200:96(10B8):384(3C16) GF200:96(10C8):384(3E16) PERQU:96(6D4):384(20G8) GF201:96(8B6):384(10C12) GF201:96(8B10):384(10C2) GF201:96(8B10):384(10C2) GF200:96(14H7):384(4014) PERQU:96(6B2):384(20C4) GF200:96(14H10):384(16O20 GF200:96(14H4):384(1217) GF200:96(17E1):384(12117) GF200:96(17E1):384(12117)	945	GF200:96(8B7):384(2D13)	CHITINASE 1 T94272
GF200:96(10B8):384(3C16) GF200:96(10C8):384(3E16) BERQU:96(6D4):384(20G8) GF201:96(8B6):384(11C12) GF201:96(8B10):384(10F23) GF201:96(8B10):384(10F23) GF200:96(14H7):384(4014) BERQU:96(6B2):384(20C4) GF202:96(114H10):384(16O20 GF200:96(14A4):384(4A8) GF201:96(94E9):384(12J17) GF200:96(17E1):384(12J17)	946		53341 R15934
GF200:96(10C8):384(3E16) PEROU:96(6D4):384(20C8) GF201:96(88B6):384(10C12) GF201:96(88C12):384(10C23) GF201:96(88C12):384(10C23) GF200:96(25H8):384(7015) GF200:96(14H7):384(4014) PEROU:96(6B2):384(408) GF200:96(14H10):384(16O20 GF200:96(14H10):384(16D20 GF200:96(14H10):384(1217) GF200:96(17E1):384(4A8)	947		SMALL INDUCIBLE CYTOKINE SUBFAMILY A (CYS-CYS), MEMBER 18, PULMONARY AND ACTIVATION-
GF201:96(10C4):384(3ELb) PEROU:96(6D4):384(20G8) GF201:96(8BB):384(10C12) GF201:96(8BB10):384(10C23) GF201:96(25H8):384(7015) GF200:96(14H7):384(4014) PEROU:96(6B2):384(20C4) GF202:96(114H10):384(16O20 GF201:96(14A4):384(4A8) GF201:96(94E9):384(12117) GF200:96(17E1):384(511)	250		FOLIAI DOI MANAGE OF ACCOUNT
PERCUL:96(6D4):384(20G8) GF201:96(8B6):384(11C12) GF201:96(8B612):384(11C2) GF201:96(8B10):384(11C20) GF200:96(25H8):384(7015) GF200:96(14H7):384(4014) PERCUL:96(6B2):384(20C4) GF202:96(114H10):384(16O20 GF201:96(14H10):384(16D20 GF201:96(14H10):384(12117) GF201:96(94E9):384(12117)	250	GFZUU:96(10C8):384(3E16)	FULT LFULT GELUI AMA I E SYN I HASE K44864
GF201:96(88B6):384(11C12) GF201:96(86C12):384(10F23) GF201:96(88B10):384(10C20) GF200:96(25H8):384(7015) GF200:96(14H7):384(4014) PEROU:96(6B2):384(20C4) GF202:96(14H10):384(16O20 GF200:96(14H10):384(16O20 GF201:96(94E9):384(12117) GF200:96(17E1):384(511)	949	PEROU:96(6D4):384(20G8)	LYSOZYME (RENAL AMYLOIDOSIS) N63943
GF201:96(86C12):384(10F23) GF201:96(88B10):384(10C20) GF200:96(25H8):384(7015) GF200:96(14H7):384(4014) PERQU:96(6B2):384(20C4) GF202:96(114H10):384(16O20 GF200:96(14A4):384(12117) GF201:96(94E9):384(12117) GF200:96(17E1):384(511)	920		LYSOZYME (RENAL AMYLOIDOSIS) N63943
GF201:96(88B10):384(11C20) GF200:96(25H8):384(7015) GF200:96(14H7):384(4014) PERQU:96(6B2):384(20C4) GF202:96(114H10):384(16O20 GF200:96(14A4):384(4A8) GF201:96(94E9):384(12117) GF200:96(17E1):384(511)	951		TRANSCRIPTION FACTOR AP-2 ALPHA (ACTIVATING ENHANCER-BINDING PROTEIN 2 ALPHA) N63770
GF200:96(25H8):384(7015) GF200:96(14H7):384(4014) PERQU:96(6B2):384(20C4) GF202:96(114H10):384(16O20 GF200:96(14A4):384(4A8) GF201:96(94E9):384(12)17) GF200:96(17E1):384(511)	952		
GF200:96(14H7):384(4O14) PEROU:96(6B2):384(20C4) GF202:96(114H10):384(16O20 GF200:96(14A4):384(4A8) GF201:96(94E9):384(12)17) GF200:96(17E1):384(511)	953		CD68 ANTIGEN AA421296
PEROU:96(6B2):384(20C4) GF202:96(114H10):384(16O20 GF200:96(14A4):384(4A8) GF201:96(94E9):384(12)17) GF200:96(17E1):384(511)	954		ACID PHOSPHATASE 5, TARTRATE RESISTANT R08816
GF202:96(114H10):384(16O20 GF200:96(14A4):384(4A8) GF201:96(94E9):384(12)17) GF200:96(17E1):384(511)	955		FC FRAGMENT OF IGE, HIGH AFFINITY I, RECEPTOR FOR; GAMMA POLYPEPTIDE R79170
GF200:96(14A4):384(4A8) GF201:96(94E9):384(12)17) GF200:96(17E1):384(511)	926		CATHEPSIN Z AA488341
GF201:96(94E9):384(12)17) GF200:96(17E1):384(511)	957	GF200:96(14A4):384(4A8)	MAJOR HISTOCOMPATIBILITY COMPLEX, CLASS II, DM ALPHA H42679
GF200:96(17E1):384(511)	958	GF201:96(94E9):384(12)17)	HUMAN MRNA FOR SB CLASSII HISTOCOMPATIBILITY ANTIGEN ALPHA-CHAIN AA634028
	929		MAJOR HISTOCOMPATIBILITY COMPLEX, CLASS II, DP BETA 1 AA486627

-
<u>•</u>
丒
'n

961 GF200:96(17E10);384(5119) HUMAN MHC CLASS II DQ-ALPHA ASSO 962 GF200:96(17F1);384(511) HUMAN MHC CLASS II DQ-ALPHA ASSO 963 GF200:96(17F1);384(511) HUMAN MHC CLASS II DQ-BETA ASSO 964 GF200:96(3410);384(219) HUMAN MHC CLASS II DQ-BETA ASSO 964 GF201:96(63A7);384(313) HOMO SAPIENS MRNA FOR KIAA0937 965 GF201:96(63A7);384(3116) MAJOR HISTOCOMPATIBILITY COMPLE 968 GF201:96(60P);384(21019) MAJOR HISTOCOMPATIBILITY COMPLE 969 PEROU:96(60P);384(21019) MAJOR HISTOCOMPATIBILITY COMPLE 967 DFEROU:96(619);384(21019) MAJOR HISTOCOMPATIBILITY COMPLE 967 DFEROU:96(619);384(21019) MAJOR HISTOCOMPATIBILITY COMPLE 970 GF200:96(11F3);384(320) HUMAN HA-DR ALPHA-CHAIN MRNA 1972 GF200:96(11F3);384(312) NASCULAR CELL ADHESION MOLECULE 973 GF200:96(11F3);384(312) NASCULAR CELL ADHESION MOLECULE 973 GF200:96(11F3);384(1211) NASCULAR CELL ADHESION MOLECULE 975 GF200:96(2199);384(2111) ESTS, HIGHLY SIMILAR TO COMPLEME 977 GF200:96(250P);384(211) ESTS, HIGHLY SIMILAR TO COMPLEME 978 GF200:96(250P);384(1211) ESTS, HIGHLY SIMILAR TO COMPLEME 978 GF200:96(250P);384(12P21) GOMPLEMENT COMPONENT 1, Q SUBC 979 GF200:96(250P);384(12P21) GOMPLEMENT COMPONENT 2, TA1879 980 GF200:96(12D2);384(12P21) GOMPLEMENT COMPONENT 2, TA1879 981 GF200:96(12D2);384(1312) GUCOSE-6-PHOSPHATE DEHYDROGE 982 GF200:96(12D2);384(1313) GLUCOSE-6-PHOSPHATE DEHYDROGE 986 GF200:96(12D2);384(1343) GLUCOSE-6-PHOSPHATE DEHYDROGE 986 GF200:96(12D2);384(1489) GLUCOSE-6-PHOSPHATE DEHYDROGE 980 GF200:96(2715);384(1612) MEMBRANE PROTEIN, PALMITOYATE 990 GF200:96(2716);384(1612) MEMBRANE PROTEIN, PALMITOYATE 990 GF200:96(2716);384(1613) MEMBRANE PROTEIN, PALMITOYATE 990 GF200:96(2716);384(1813) HUMBRANE PROTEIN PALMITOYATE 990 G):384(7E1D) HUMAN MHC CLASS II DQ-ALPHA ASSOCIATED WITH DRW6, DQW1 PROTEIN, COMPLETE CDS, CLONE B T63324
GF200:96(17F1):384(5K1) GF200:96(8H10):384(2P19) GF200:96(32C10):384(2P19) GF201:96(68813):384(11C6) PEROU:96(6C5):384(20E10) GF201:96(8802):384(11A4) PEROU:96(6D9):384(20E10) GF201:96(11F3):384(11A4) PEROU:96(11F3):384(11B) GF200:96(11F3):384(11B) GF200:96(31P13):384(11D1) GF200:96(31P13):384(11D1) GF200:96(31P13):384(11D1) GF200:96(21P1):384(7G11) GF200:96(25D1):384(7G11) GF200:96(25D1):384(13L6) GF201:96(97F3):384(13L6) GF200:96(11D1):384(12B20) GF201:96(97F3):384(11B) GF200:96(12D2):384(11D1) GF200:96(21D5):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(10A16) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1)	
GF200:96(8H10):384(2P19) GF200:96(32C10):384(2P19) GF201:96(6S813):384(11C6) PEROU:96(6C5):384(20E10) GF201:96(88A2):384(11A4) PEROU:96(6D9):384(20E10) GF201:96(8B12):384(11A4) PEROU:96(11A10):384(20G18) GF200:96(11A10):384(11C1) GF200:96(11F3):384(11C1) GF200:96(31P13):384(11C1) GF200:96(31P13):384(11C1) GF200:96(21P13):384(1111) GF200:96(25D1):384(7G11) GF200:96(25D1):384(12P21) GF201:96(9H11):384(12P21) GF201:96(9H11):384(12P21) GF200:96(12D2):384(1316) GF200:96(12D2):384(1110) GF200:96(21D2):384(1120) GF200:96(21D2):384(1101) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF201:96(99F5):384(1110) GF200:96(211):384(1110) GF200:96(2110):384(1110) GF201:96(3E10):384(1110) GF201:96(3E10):384(1110)	
GF200:96(32C10):384(8F19) GF201:96(63A7):384(23A13) GF201:96(88B3):384(11C6) PEROU:96(6C5):384(20E10) GF201:96(88A2):384(11A4) PEROU:96(8B2):384(20G18) GF200:96(11A10):384(320) PEROU:96(8A12):384(11A4) GF200:96(11F3):384(11B) GF200:96(32F6):384(111T) GF200:96(32F6):384(7G11) GF200:96(25D1):384(7G11) GF200:96(25D1):384(12B20) GF201:96(94H11):384(12B20) GF201:96(94H11):384(12B20) GF201:96(97F3):384(1316) GF200:96(12D2):384(11B) GF200:96(21D5):384(11D1) GF200:96(21D5):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(10A16) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1) GF200:96(21D2):384(11D1)	4(2P19) HUMAN MHC CLASS II DQ-BETA ASSOCIATED WITH DR2, DQW1 PROTEIN, COMPLETE CDS AA458472
GF201:96(63A7):384(23A13) GF201:96(88B3):384(11C6) PEROU:96(6C5):384(20E10) GF201:96(88A2):384(11A4) PEROU:96(6D9):384(20G18) GF200:96(11A10):384(3E20) PEROU:96(8A12):384(12A10) GF200:96(11F3):384(12A10) GF200:96(31P3):384(11B) GF200:96(31P3):384(11B) GF200:96(25D6):384(7G11) GF200:96(25D1):384(7G11) GF200:96(25D1):384(12B20) GF201:96(97B3):384(12B20) GF201:96(97B3):384(13L6) GF200:96(12D5):384(13L6) GF200:96(12D5):384(11D1) GF200:96(12D5):384(11D1) GF200:96(21D5):384(11D1) GF200:96(21D5):384(11D1) GF200:96(21D2):384(11D1)	
GF201:96(88B3):384(11C6) PEROU:96(6C5):384(20E10) GF201:96(88A2):384(11A4) PEROU:96(6D9):384(20G18) GF200:96(11A10):384(3E20) PEROU:96(8A12):384(12A2) GF200:96(11F3):384(12B2) GF200:96(31P3):384(1118) GF200:96(31P3):384(1118) GF200:96(25D1):384(7G11) GF200:96(25D1):384(7G11) GF200:96(25D1):384(12P21) GF201:96(94H11):384(12P21) GF201:96(94H11):384(12B20) GF201:96(97F3):384(1316) GF201:96(97F3):384(1316) GF200:96(12D2):384(3H3) GF200:96(12D2):384(1120) GF200:96(211):384(3H3) GF200:96(211):384(3H3) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF201:96(99F5):384(1120) GF201:96(99F5):384(1120) GF201:96(99F5):384(1180) GF201:96(3E10):384(1120) GF201:96(3E10):384(1120) GF201:96(3E10):384(1181)	4(23A13) HOMO SAPIENS MRNA FOR KIAA0937 PROTEIN, PARTIAL CDS AA043790
PEROU:96(6C5):384(20E10) GF201:96(88A2):384(11A4) PEROU:96(6D9):384(20G18) GF200:96(11A10):384(320) PEROU:96(8A12):384(4B24) GF200:96(11F3):384(12A1) GF200:96(31P1):384(111) GF200:96(32P6):384(7G11) GF200:96(25D1):384(7G11) GF200:96(25D1):384(7G11) GF201:96(94H11):384(12B20) GF201:96(94H11):384(12B20) GF201:96(94H11):384(12B20) GF201:96(97F3):384(3H11) GF200:96(12D5):384(3H11) GF200:96(12D5):384(3H11) GF200:96(21D5):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF201:96(84A8):384(1120) GF201:96(89F5):384(1180) GF201:96(3E10):384(16F19) GF200:96(11CC10):384(16F19) GF200:96(11CC10):384(16F19)	
GF201:96(88A2):384(11A4) PEROU:96(6D9):384(20G18) GF200:96(11A10):384(3E20) PEROU:96(8A12):384(3E20) PEROU:96(18412):384(1824) GF200:96(11F3):384(11E8) GF200:96(31E9):384(1118) GF200:96(32E6):384(7G11) GF200:96(25D1):384(7G11) GF200:96(25D1):384(7G11) GF201:96(9411):384(7G11) GF201:96(97F3):384(12B20) GF201:96(97F3):384(1316) GF201:96(97F3):384(1316) GF200:96(12D5):384(3H31) GF200:96(12D5):384(1120) GF200:96(211):384(3H3) GF200:96(211):384(10A16) GF200:96(212):384(10A16) GF200:96(212):384(1120) GF200:96(212):384(1120) GF200:96(212):384(1120) GF200:96(212):384(1120) GF200:96(212):384(1120) GF200:96(211):384(14K9) GF200:96(2110):384(1120) GF200:96(2110):384(1120) GF200:96(2110):384(1120) GF200:96(2110):384(1120) GF200:96(2110):384(1111)	(20E10) MAJOR HISTOCOMPATIBILITY COMPLEX, CLASS II, DR BETA 5 H52245
PEROU:96(6D9):384(20G18) GF200:96(11A10):384(3B20) PEROU:96(8A12):384(3B20) PEROU:96(8A12):384(12A10) GF200:96(11F3):384(11D1) GF200:96(31P3):384(1117) GF200:96(32P6):384(7G11) GF200:96(25D1):384(7G11) GF200:96(25D1):384(7G11) GF201:96(9411):384(7G11) GF201:96(9411):384(12B20) GF201:96(97F3):384(1316) GF201:96(97F3):384(1316) GF200:96(12D5):384(3H3) GF200:96(12D5):384(1120) GF200:96(211):384(3H3) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(3E10):384(1180) GF200:96(3E10):384(1110)	
GF200:96(11A10):384(3B20) PEROU:96(8A12):384(20B23) GF200:96(11F3):384(1C7) GF200:96(11F3):384(1C7) GF200:96(319):384(1118) GF201:96(3809):384(1117) GF200:96(2509):384(7G11) GF201:96(3411):384(7G11) GF201:96(3411):384(7G11) GF201:96(9411):384(12P21) GF201:96(97F3):384(1316) GF201:96(97F3):384(1316) GF200:96(12D5):384(3H3) GF200:96(12D5):384(1120) GF200:96(211):384(3H3) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(2110):384(1120) GF200:96(3110):384(1120) GF200:96(3110):384(1120) GF200:96(3110):384(1120)	
PEROU:96(8A12):384(20B23) GF200:96(15A12):384(4B24) GF200:96(11F3):384(1C7) GF200:96(319):384(1118) GF200:96(32P6):384(7G11) GF200:96(25D1):384(7G11) GF200:96(25D1):384(7G11) GF201:96(9411):384(7G11) GF201:96(9411):384(7G11) GF201:96(9411):384(12P21) GF201:96(97F3):384(1316) GF200:96(12D6):384(3H11) GF200:96(12D6):384(1116) GF200:96(211):384(3H3) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(2110):384(1120) GF200:96(3110):384(1110)	
GF200:96(15A12):384(4B24) GF200:96(11F3):384(1C7) GF200:96(319):384(1L7) GF200:96(399):384(1117) GF200:96(25D9):384(7G11) GF200:96(25D1):384(7G11) GF201:96(9411):384(7G11) GF201:96(9411):384(12P21) GF201:96(9411):384(12P21) GF201:96(97F3):384(1316) GF200:96(12D6):384(3H3) GF200:96(12D5):384(3H3) GF200:96(211):384(3H3) GF200:96(211):384(3H3) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(3110):384(1110) GF200:96(3110):384(1611)	
GF200:96(1B4):384(1C7) GF200:96(11F3):384(3L6) GF200:96(3H9):384(1P18) GF201:96(3B9):384(21H17) GF200:96(25D6):384(7G11) GF200:96(25D1):384(7G11) GF201:96(94H11):384(7G11) GF201:96(94H11):384(12P21) GF201:96(97F3):384(13L6) GF200:96(12D6):384(3H11) GF200:96(12D6):384(3H3) GF200:96(211):384(3H3) GF200:96(211):384(3H3) GF200:96(211):384(1L2) GF201:96(898):384(1L2) GF201:96(891):384(1L2) GF201:96(891):384(1L2)	
GF200:96(11F3):384(316) GF200:96(3H9):384(1P18) GF201:96(58D9):384(1P117) GF200:96(25D6):384(7G11) GF200:96(25D1):384(7G11) GF201:96(9411):384(7G11) GF201:96(9411):384(12P21) GF201:96(97F3):384(12B20) GF201:96(97F3):384(1316) GF200:96(12D6):384(3H11) GF200:96(12D5):384(3H3) GF200:96(211):384(3H3) GF200:96(211):384(3H3) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(2111):384(1120) GF200:96(2111):384(1120) GF200:96(2111):384(1120) GF200:96(2111):384(1120) GF200:96(2111):384(1120) GF200:96(2111):384(1120) GF200:96(2111):384(1120) GF200:96(2111):384(1120) GF201:96(3111)	1C7) VASCULAR CELL ADHESION MOLECULE 1 H07071
GF200:96(3H9):384(1P18) GF201:96(58D9):384(21H17) GF200:96(25D6):384(7G11) GF200:96(25D1):384(7G11) GF201:96(94H11):384(12P21) GF201:96(94H11):384(12P21) GF201:96(97H3):384(12B20) GF201:96(97H3):384(13L6) GF200:96(12D6):384(3H11) GF200:96(21D5):384(3H3) GF200:96(21D2):384(3H3) GF200:96(21D2):384(1120)	I(3L6) MACROPHAGE-ASSOCIATED ANTIGEN AA401693
GF201:96(58D9):384(21H17) GF200:96(32F6):384(8L11) GF200:96(25D6):384(7G11) GF201:96(94H11):384(12P21) GF201:96(94H11):384(12P21) GF201:96(97F3):384(12B20) GF201:96(97F3):384(13H5) GF200:96(12D6):384(3H11) GF200:96(12D5):384(3H3) GF200:96(211):384(3H3) GF200:96(211):384(3H3) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(211):384(1120) GF200:96(2111):384(1120) GF200:96(2111):384(1120) GF200:96(2111):384(1120) GF200:96(2111):384(1120) GF200:96(2111):384(1120) GF200:96(2111):384(1120) GF200:96(2111):384(1120) GF200:96(3111)	(1P18) FC FRAGMENT OF IGG, LOW AFFINITY IIIA, RECEPTOR FOR (CD16) H20872
GF200:96(32F6):384(8L11) GF200:96(25D6):384(7G11) GF200:96(25D1):384(7G11) GF201:96(94H11):384(12B20) GF201:96(97H11):384(12B20) GF201:96(97F3):384(13L6) GF200:96(12D6):384(3H11) GF200:96(12D2):384(3H11) GF200:96(12D2):384(3H2) GF200:96(211):384(1L2) GF200:96(211):384(1L2) GF200:96(211):384(1L2) GF200:96(212):384(1L2) GF200:96(212):384(1L2) GF200:96(212):384(1L2) GF200:96(212):384(1L2) GF200:96(212):384(1L2) GF200:96(3110):384(1L2) GF200:96(3110):384(1L2)	
GF200:96(32F6):384(8L11) GF200:96(25D6):384(7G11) GF201:96(25D1):384(12P21) GF201:96(94H11):384(12P21) GF201:96(973):384(13L6) GF201:96(973):384(13L6) GF200:96(12D6):384(3H11) GF200:96(12D2):384(3H3) GF200:96(21D2):384(3H3) GF200:96(21D2):384(1120) GF200:96(2F12):384(1120) GF200:96(2F12):384(1120) GF200:96(2F12):384(1120) GF200:96(2F12):384(1120) GF200:96(2F12):384(1120) GF200:96(2F12):384(1120) GF200:96(2F12):384(1120) GF200:96(3F10):384(1120) GF200:96(3F10):384(1120) GF200:96(3F10):384(1120)	1
GF200:96(25D6):384(7G11) GF200:96(25D1):384(7G1) GF201:96(94H11):384(12P21) GF201:96(97F3):384(13L6) GF201:96(97F3):384(3H11) GF200:96(12D6):384(3H11) GF200:96(12D2):384(3H3) GF200:96(211):384(3H3) GF200:96(215):384(10A16) GF200:96(212):384(1120) GF201:96(84A8):384(1120) GF201:96(3E10):384(14K9) GF201:96(3E10):384(14K9) GF201:96(3E10):384(14K9) GF201:96(3E10):384(14K9) GF201:96(3E10):384(14K9)	
GF200:96(25D1):384(7G1) GF201:96(94H11):384(12P21) GF201:96(97H11):384(12B20) GF201:96(97F3):384(13L6) GF200:96(12D6):384(3H11) GF200:96(12D2):384(3H3) GF200:96(21D2):384(3H3) GF200:96(21D2):384(1A12) GF200:96(21D2):384(10A16) GF200:96(2F12):384(1120) GF201:96(84A8):384(1120) GF201:96(99F5):384(14K9) GF201:96(99F5):384(14K9) GF201:96(99F5):384(14K9) GF201:96(11CC10):384(16F1)	
GF201:96(94H11):384(12P21) GF201:96(97F3):384(12B20) GF201:96(97F3):384(13L6) GF200:96(12D6):384(3H11) GF200:96(211):384(3H3) GF200:96(215):384(3H3) GF200:96(215):384(10A16) GF200:96(2F12):384(10A16) GF200:96(2F12):384(1120) GF201:96(99F5):384(14K9) GF201:96(99F5):384(14K9) GF201:96(11CC10):384(16F19) GF200:96(11CC10):384(16F19)	
GF201:96(93A10):384(12B20) GF201:96(97F3):384(13L6) GF200:96(12D6):384(3H11) GF200:96(12D2):384(3H3) GF200:96(23F6):384(6L12) GF200:96(23F6):384(6L12) GF201:96(84A8):384(1L2) GF201:96(84A8):384(1L2) GF201:96(84A8):384(1L2) GF201:96(99F5):384(1K24) GF201:96(99F5):384(1K24) GF201:96(99F5):384(1K24) GF201:96(99F5):384(1K24) GF201:96(99F5):384(1K24) GF201:96(11CC10):384(16F19)	34(12P21) FIBRINOGEN-LIKE PROTEIN 2 H56349
GF201:96(97F3):384(13L6) GF200:96(12D6):384(3H11) GF200:96(12D2):384(3H3) GF200:96(23F6):384(6L12) GF201:96(848):384(1L2) GF200:96(212):384(1L2) GF200:96(212):384(1L2) GF200:96(2F12):384(1L2) GF200:96(2F12):384(1L2) GF200:96(3E10):384(1L2) GF201:96(99F5):384(1K9) GF201:96(99F5):384(1K9) GF201:96(116C10):384(16F19)	J):384(12B20) HOMO SAPIENS MRNA FOR KJAA0290 GENE, PARTIAL CDS AA400186
GF200:96(12D6):384(3H11) GF200:96(9F11):384(3K21) GF200:96(12D2):384(3H3) GF200:96(23F6):384(6L12) GF201:96(84A8):384(1L24) GF200:96(2F12):384(1K24) GF200:96(3E10):384(1K24) GF201:96(99F5):384(1K24) GF201:96(99F5):384(1K9) GF201:96(11CC10):384(16F19) GF200:96(11CC10):384(16F19)	
GF200:96(9F11):384(3K21) GF200:96(12D2):384(3H3) GF200:96(23F6):384(6L12) GF201:96(84A8):384(10A16) GF200:96(2F12):384(1K24) GF200:96(3E10):384(1K24) GF201:96(99F5):384(14K9) GF201:96(99F5):384(16F19) GF202:96(116C10):384(16F19)	
GF200:96(9F11):384(3K21) GF200:96(12D2):384(3H3) GF200:96(23F6):384(6L12) GF201:96(84A8):384(10A16) GF200:96(2F12):384(1K24) GF200:96(3E10):384(1K24) GF201:96(99F5):384(14K9) GF201:96(99F5):384(14K9) GF202:96(116C10):384(16F19) GF200:96(12F6):384(16F19)	\neg
GF200:96(12D2):384(3H3) GF200:96(23F6):384(6L12) GF201:96(84A8):384(10A16) GF200:96(2F12):384(1K24) GF200:96(3E10):384(1K24) GF201:96(99F5):384(1K9) GF201:96(99F5):384(1K9) GF202:96(116C10):384(16F19)	J(3K21) GOLGI AUTOANTIGEN, GOLGIN SUBFAMILY A, 2 AA495724
GF200:96(23F6):384(6L12) GF201:96(84A8):384(10A16) GF200:96(2F12):384(1X24) GF200:96(3E10):384(1J20) GF201:96(9F5):384(14K9) GF202:96(116C10):384(16F19) GF200:96(12F6):384(3L11)	4(3H3) GLUCOSE-6-PHOSPHATE DEHYDROGENASE AA424937
GF201:96(84A8):384(10A16) GF200:96(2F12):384(1K24) GF200:96(3E10):384(1J20) GF201:96(99F5):384(14K9) GF202:96(116C10):384(16F19) GF200:96(12F6):384(3L11)	(6L12) T-CELL ACTIVATION PROTEIN, EB1 FAMILY AA608576
GF200:96(2F12):384(1K24) GF200:96(3E10):384(1J20) GF201:96(99F5):384(14K9) GF202:96(116C10):384(16F19) GF200:96(12F6):384(3L11)	
GF200:96(3E10):384(1320) GF201:96(99F5):384(14K9) GF202:96(116C10):384(16F19) GF200:96(12F6):384(31.11)	П
GF201:96(99F5):384(14K9) GF202:96(116C10):384(16F19) GF200:96(12F6):384(31.11)	I(1)20) MEMBRANE PROTEIN, PALMITOYLATED 1 (55KD) W01240
GF202:96(116C10):384(16F19 GF200:96(12F6):384(3L11)	
GF200:96(12F6):384(3L11)	384(16F19) 34294 R44346
	(31.11) FUCOSYLTRANSFERASE 4 (ALPHA (1,3) FUCOSYLTRANSFERASE, MYELOID-SPECIFIC) R28447
	34(23M23) 366778 AA029722

	_	
	ø	
•	ᅕ	
	丽	
١	=	
ı	_	

3		
995	GF200:96(26G5):384(7M10)	1931094 PALSOUCOS NOVEL HUMAN GENE MAPPING TO CHOMOSOME 13 AA48R718
966	GF200:96(21F12):384(6K23)	IQ MOTIF CONTAINING GTPASE ACTIVATING PROTEIN 2 W32272
997	GF201:96(97A2):384(13B4)	CD1D ANTIGEN, D POLYPEPTIDE AA451684
866	GF202:96(109A10):384(15A19	A10):384(15A19)SMALL INDUCIBLE CYTOKINE A5 (RANTES) AA486072
666	GF200:96(12B9):384(3D17)	NATURAL KILLER CELL GROUP 7 SEQUENCE 157859
1000	GF201:96(86D10):384(10H19)	10):384(10H19) TRYPTOPHANYL-TRNA SYNTHETASE AA664040
1001	GF201:96(88D9):384(11G18)	INTERCELLULAR ADHESION MOLECULE 1 (CD54), HUMAN RHINOVIRUS RECEPTOR R77293
1002	GF200:96(17A11):384(5A21)	768638 AA425352
1003	PEROU:96(6A5):384(20A10)	SMALL INDUCTBLE CYTOKINE A2 (MONOCYTE CHEMOTACTIC PROTEIN 1, HOMOLOGOUS TO MOUSE
		SIG-JE) T77817
1004	GF200:96(2A4):384(1A8)	SMALL INDUCIBLE CYTOKINE A2 (MONOCYTE CHEMOTACTIC PROTEIN 1, HOMOLOGOUS TO MOUSE SIG-JE) AA425102
1005	GF200:96(5E4):384(2I7)	SMALL INDUCIBLE CYTOKINE SUBFAMILY A (CYS-CYS), MEMBER 13 T64134
1006	(GF201:96(86F11):384(10L21)	_
1007	GF201:96(92G4):384(12M8)	LEUKOCYTE IMMUNOGLOBULIN-LIKE RECEPTOR 2 H54023
1008	GF201:96(98G1):384(13N1)	HOMO SAPIENS MRNA FOR KILLER ACTIVATING RECEPTOR ASSOCIATED PROTEIN, ISOFORM B H12338
1009	GF200:96(26F12):384(7K24)	FC FRAGMENT OF IGE, HIGH AFFINITY I, RECEPTOR FOR; GAMMA POLYPEPTIDE H79353
1010	GF202:96(109D3):384(15G5)	INTEGRIN, ALPHA X (ANTIGEN CD11C (P150), ALPHA POLYPEPTIDE) N64384
1011	GF201:96(88D11):384(11G22)	754406 AA436187
1012	GF201:96(95H9):384(13O17)	FC FRAGMENT OF IGG, LOW AFFINITY IIA, RECEPTOR FOR (CD32) AA634109
1013	GF200:96(25E12):384(7I23)	CATHEPSIN S AA236164
1014	GF200:96(1H9):384(1O17)	SOLUTE CARRIER FAMILY 2 (FACILITATED GLUCOSE TRANSPORTER), MEMBER 5 H38650
1015	GF200:96(12D8):384(3H15)	GARDNER-RASHEED FELINE SARCOMA VIRAL (V-FGR) ONCOGENE HOMOLOG AA256231
1016	GF201:96(97B12):384(13D24)	2):384(13D24) BACTERICIDAL/PERMEABILITY-INCREASING PROTEIN AA680249
1017	GF202:96(11289):384(15D17)	99):384(15D17)
1018	GF200:96(14F5):384(4K10)	AMINOLEVULINATE, DELTA-, SYNTHASE 1 AA453691
1019		
1020	GF201:96(94A3):384(12B5)	KIAA0443 GENE PRODUCT AA702949
1021	GF201:96(87G8):384(11M15)	N-ACETYLTRANSFERASE, HOMOLOG OF S. CEREVISIAE ARD1 R55220
1022		
1023	GF201:96(94E10):384(12)19)	
1024	GF201:96(55A4):384(21A7)	PHOSPHOLIPASE C, BETA 2 AA464970
1025	GF200:96(27D10):384(7H20)	ESTS, WEAKLY SIMILAR TO E25B PROTEIN [M.MUSCULUS] AA034213
1026	GF201:96(95D8):384(13G15)	CORE-BINDING FACTOR, RUNT DOMAIN, ALPHA SUBUNIT 3 N67778
1027		i7):384(14P13) 40296 R52082
1028		RHO GTPASE ACTIVATING PROTEIN 4 H69620
1029	GF200:96(11H1):384(3P2)	RAS HOMOLOG GENE FAMILY, MEMBER H W38571

۲	-	٠	
(1)	
7		i	
(ī	3	
ŀ		•	

	и.	
1031	GF200:96(23C6):384(6F12)	HEMOPOIETIC CELL KINASE AA149096
1032	GF200:96(17A1):384(5A1)	CHEMOKINE (C-X-C MOTIF), RECEPTOR 4 (FUSIN) T62491
1033	GF200:96(4A11):384(1B21)	INTERCELLULAR ADHESION MOLECULE 3 AA478647
1034	GF201:96(100F4):384(14K8)	50619 H17517
1035);384(15G18) 742569 AA400074
1036	PEROU:96(6F11):384(20K22)	LYMPHOCYTE CYTOSOLIC PROTEIN 1 AA044266
1037	GF201:96(88B8):384(11C16)	ESTS, HIGHLY SIMILAR TO L-PLASTIN [H.SAPIENS] W73144
1038	GF200:96(15G1):384(4N2)	SPLEEN TYROSINE KINASE AA598572
1039	GF201:96(89A3):384(11B6)	RIBONUCLEASE, RNASE A FAMILY, K6 AA701545
1040	GF200:96(2E10):384(1120)	PROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, C POLYPEPTIDE H74265
1041		INTERLEUKIN 2 RECEPTOR, GAMMA (SEVERE COMBINED IMMUNODEFICIENCY) N75745
1042	GF200:96(9D8):384(3G15)	CLK-ASSOCIATING RS-CYCLOPHILIN H14513
1043	GF202:96(116A8):384(16B15)	GF202:96(116A8):384(16B15) ESTS, WEAKLY SIMILAR TO RETINAL SHORT-CHAIN DEHYDROGENASE/REDUCTASE RETSDR1
1044	PEROU:96(6B6):384(20C12)	INTEGRIN, BETA 2 (ANTIGEN CD18 (P95), LYMPHOCYTE FUNCTION-ASSOCIATED ANTIGEN 1;
		MACROPHAGE ANTIGEN 1 (MAC-1) BETA SUBUNIT) H17426
1045	GF200:96(16D6):384(4H11)	PROTEOGLYCAN 1, SECRETORY GRANULE AA278759
1046	GF200:96(24G11):384(6N21)	HUMAN EV12 PROTEIN GENE H93149
1047	GF202:96(110C3):384(15E6)	ECOTROPIC VIRAL INTEGRATION SITE 2B AA159620
1048	GF200:96(7A6):384(2B12)	LYSOSOMAL-ASSOCIATED MULTISPANNING MEMBRANE PROTEIN-5 AA410265
1049	GF201:96(79E8):384(9115)	795544 AA459654
1050	GF200:96(9B2):384(3C3)	NOTCH (DROSOPHILA) HOMOLOG 4 AA419524
1051	GF201:96(90F8):384(11L15)	LEUKOCYTE IMMUNOGLOBULIN-LIKE RECEPTOR 7 N63398
1052	GF201:96(86C4):384(10F7)	TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY, MEMBER 1B AA150416
1053	PEROU:96(6C8):384(20E16)	HEMATOPOIETIC CELL-SPECIFIC LYN SUBSTRATE 1 N32012
1054	GF200:96(1182):384(3D4)	HEMATOPOIETIC CELL-SPECIFIC LYN SUBSTRATE 1 AA424575
1055	PEROU:96(6A12):384(20A24)	
1056	-	HOMO SAPIENS MRNA FOR GALECTIN-9 ISOFORM, COMPLETE CDS AA434102
1057	GF200:96(3A1):384(1B2)	PHOSPHOINOSITIDE-3-KINASE, CATALYTIC, GAMMA POLYPEPTIDE AA464765
1058		PLECKSTRIN AA490267
1059):384(12G21) ALLOGRAFT INFLAMMATORY FACTOR 1 W69954
1060	GF200:96(18F7):384(5K14)	SRC-LIKE-ADAPTER AA485141
1061	GF201:96(100E11):384(14I22)) 33293 R43956
1062	GF200:96(22A4):384(6A8)	POTASSIUM VOLTAGE-GATED CHANNEL, SHAKER-RELATED SUBFAMILY, BETA MEMBER 2 H14383
1063	GF200:96(25E2):384(713)	CYTOCHROME B-245, BETA POLYPEPTIDE (CHRONIC GRANULOMATOUS DISEASE) AA463492
1064	GF201:96(89G2):384(11N4)	H.SAPIENS MRNA FOR CORONIN AA047478
1065	PEROU:96(6C1):384(20E2)	CD53 ANTIGEN H70125
1055	The state of the s	

Ŧ	4
đ	υ
3	5
3	0

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
14	GF200:96(6F12):384(2K24)	DEDICATOR OF CYTO-KINESIS 2 NADASS
1	• • -	
۲	GF200:96(2F11):384(1K22)	PROTEIN KINASE C, BETA 1 AA479102
쒸	GF201:96(100C6):384(14E12) [51029 H19330	51029 H19330
쒸		51178 H17121
쒸	GF200:96(22B8):384(6C16)	RHO GDP DISSOCIATION INHIBITOR (GDI) BETA AA487634
쒸	GF201:96(90B5):384(11D9)	KJAA0195 GENE PRODUCT W79511
쒸):384(13024)[CD37 ANTIGEN AA676453
쒸	• •	CHEMOKINE (C-C MOTIF) RECEPTOR 1 AA036881
쒸	GF200:96(6H11):384(2O22)	HUMAN MRNA FOR KIAA0128 GENE, PARTIAL CDS R76772
쒸	GF200:96(17G3):384(5M5)	PROTEASE INHIBITOR 2 (ANTI-ELASTASE), MONOCYTE/NEUTROPHIL AA486275
1080	GF200:96(14C2):384(4E4)	CHEMOKINE (C-C MOTIF) RECEPTOR 2 H58254
1081	GF200:96(25D7):384(7G13)	704020 AA279147
۳	GF201:96(82C3):384(9F5)	504536 AA150043
1083 G	GF200:96(4F7):384(1L13)	INTERCELLULAR ADHESTON MOLECULE 5, TELENCEPHALIN R87840
- 1	3F200:96(7B7):384(2D14)	HUMAN MRNA FOR KIAA0006 GENE, COMPLETE CDS AA236617
1085):384(14D13) PROSTATE CANCER OVEREXPRESSED GENE 1 T64312
1	GF200:96(24D2):384(6H3)	GLUTAREDOXIN (THIOLTRANSFERASE) AA291163
쒸		T-CELL RECEPTOR, ALPHA (V,D,J,C) AA427667
쒸	GF201:96(95E11):384(13121)	GRANZYME K (SERINE PROTEASE, GRANZYME 3; TRYPTASE II) AA005382
۳		CD79A ANTIGEN (IMMUNOGLOBULIN-ASSOCIATED ALPHA) T87012
쒸		CD8 ANTIGEN, ALPHA POLYPEPTIDE (P32) AA443649
쒸		INTERLEUKIN 10 RECEPTOR, ALPHA AA437226
읙	GF200:96(483):384(1D5)	INTEGRIN, ALPHA L, CD11A R48796
쒸	GF200:96(1G8):384(1M15)	742143 AA406027
ध	GF201:96(98G4):384(13N7)	T-CELL RECEPTOR, BETA CLUSTER N91921
1095	GF201:96(86E4):384(10J7)	80186 T64192
의	GF201:96(86E3):384(10J5)	T-CELL RECEPTOR, DELTA (V,D,J,C) AA670107
<u> </u>	GF201:96(98H4):384(13P7)	ESTS, WEAKLY SIMILAR TO S-ACYL FATTY ACID SUNTHETASE THIO ESTER HYDROLASE, MEDIUM
\dashv		CHAIN [R.NORVEGICUS] AA470066
쒸		LYMPHOCYTE-SPECIFIC PROTEIN TYROSINE KINASE AA420981
의	GF201:96(86E6):384(10J11)	CD3D ANTIGEN, DELTA POLYPEPTIDE (TIT3 COMPLEX) AA055946
의		CD3G ANTIGEN, GAMMA POLYPEPTIDE (TIT3 COMPLEX) T66800
읙		TRANSCRIPTION FACTOR DP-2 (E2F DIMERIZATION PARTNER 2) AA465444
9	GF200:96(14D2):384(4G4)	TUMOR NECROSIS FACTOR, ALPHA-INDUCED PROTEIN 2 AA457114
위		NATURAL KILLER CELL TRANSCRIPT 4 AA458965
<u>'</u>	/2007 ADD / CON + / 20.00 CD	CROS A11TT-CT

ď
酉
on.

1105	GF200:96(14E2):384(4I4)	APOLIPOPROTEIN C-11 AA456474
1106		TRANSKETOLASE (WERNICKE-KORSAKOFF SYNDROME) AA070357
1107	GF201:96(96B12):384(13C24)	
1108	GF201:96(68A5):384(24A10)	ESTS, WEAKLY SIMILAR TO MBNL PROTEIN [H.SAPIENS] AA460149
1109	GF201:96(80B4):384(9C8)	ATROPHIN-1 INTERACTING PROTEIN 4 AA448286
1110	GF201:96(95A2):384(13A3)	GENERAL TRANSCRIPTION FACTOR IIH, POLYPEPTIDE 3 (34KD SUBUNIT) AA460838
1111	GF200:96(29E10):384(8I19)	ESTS, MODERATELY SIMILAR TO SIMILAR TO THYMIDINE DIPHOSPHOGLUCOSE 4,6-DEHYDRATASE IC.ELEGANS1 H63455
1112	GF201:96(67D12):384(24G23)	2):384(24G23) 282047 N48252
1113	GF202:96(114C5):384(16E10)	3):384(16E10) S-ADENOSYLMETHIONINE DECARBOXYLASE 1 AA425692
1114		ESTS, WEAKLY SIMILAR TO (DEFLINE NOT AVAILABLE 3882205) [H.SAPIENS] AA425650
1115	GF202:96(112B7):384(15D13)) 593239 AA165348
1116	GF202:96(115A6):384(16B12)	HOMO SAPIENS MRNA; CDNA DKFZPS64M2423 (FROM CLONE DKFZPS64M2423) AA487070
1117	PEROU:96(7G6):384(20N12)	TUMOR REJECTION ANTIGEN (GP96) 1 AA075290
1118	GF201:96(85F6):384(10L12)	257248 N26906
1119	_	.1):384(15G22 133454 R27457
1120		1):384(23H21) ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4191594) [H.SAPIENS] AA464237
1121	\sim	MAD (MOTHERS AGAINST DECAPENTAPLEGIC, DROSOPHILA) HOMOLOG 5 AA418999
1122	GF201:96(69C12):384(24F24)):384(24F24) [782209 AA431986
1123	GF201:96(98B9):384(13D17)	ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 3954942) [H.SAPIENS] AA425297
1124	GF200:96(12D5):384(3H9)	GLUCOSAMINE (N-ACETYL)-6-SULFATASE (SANFILIPPO DISEASE IIID) AA035347
1125	GF202:96(116H7):384(16P13)	_
1126		ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4530437) [H.SAPIENS] AA457462
1127	GF201:96(57D7):384(21H14)	DCMP DEAMINASE W51951
1128	.):384(4K21)	CLATHRIN-ASSOCIATED/ASSEMBLY/ADAPTOR PROTEIN, LARGE, BETA 1 N72918
1129	4):384(14H7)	84229 172825
1130	GF201:96(90F5):384(11L9)	IRON-RESPONSIVE ELEMENT BINDING PROTEIN 2 AA133187
1131	GF202:96(115C2):384(16F4)	CHONDROITIN SULFATE PROTEOGLYCAN 6 (BAMACAN) W40150
1132	GF201:96(97A12):384(13B24)	GF201:96(97A12):384(13B24) METHYLENETETRAHYDROFOLATE DEHYDROGENASE (NADP+ DEPENDENT),
		METHENYLTETRAHYDROFOLATE CYCLOHYDROLASE, FORMYLTETRAHYDROFOLATE SYNTHETASE
1133	GF201:96(58D11):384(21H21)	
1134	GF201:96(99D6):384(14G11)	CITRATE SYNTHASE AA416759
1135	GF200:96(21F5):384(6K9)	HUMAN TB1 GENE MRNA, 3' END H11501
1136	GF202:96(116G4):384(16N7)	ESTS, WEAKLY SIMILAR TO (DEFLINE NOT AVAILABLE 4240269) [H.SAPIENS] AA169411
1137	GF200:96(7F4):384(2L8)	FRAGILE X MENTAL RETARDATION, AUTOSOMAL HOMOLOG 1 N79708
1138	GF201:96(58B5):384(21D9)	SNARE PROTEIN AA457731
1139	GF201:96(57F2):384(21L4)	TRANSCRIPTION FACTOR 12 (HTF4, HELIX-LOOP-HELIX TRANSCRIPTION FACTORS 4) H98856
1140	(GF201:96(56E6):384(21112)	RAS-GTPASE ACTIVATING PROTEIN SH3 DOMAIN-BINDING PROTEIN 2 AA151214

ч	
٥	
亙	
ď	

):384(8H2)):384(13D9)):384(13D2) 2):384(1317) 2):384(3M2)):384(2D1) 3:384(2D1) 1):384(21K11) 1):384(21K12) 3:384(11K13) 3:384(11K13) 3:384(11K13) 3:384(11K13) 3:384(11K13) 3:384(11K13) 3:384(11K13) 3:384(11K13) 3:384(11K13) 3:384(11K13) 3:384(11K13) 3:384(11K13) 3:384(11K13) 3:384(11K13) 3:384(11K13)	1):384(8H2) CHAPERONIN CONTAINING TCP1, SUBUNIT 4 (DELTA) 198684 2):384(1D2) MYOSIN PHOSPHATASE, TARGET SUBUNIT 1 AA487028 3:384(1D2) HUMAIN CLONE 23721 MRNA SEQUENCE R45056 2):384(1D2) HUMAIN CLONE 23721 MRNA SEQUENCE R45056 2):384(1D2) HUMAIN CLONE 23721 MRNA SEQUENCE R45056 2):384(337) ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4091980) [H.SAPIENS] H11938 2):384(305) ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4091980) [H.SAPIENS] W04674 3):384(2D1) CASEIN KINASE 2, ALPHA 1 POLYPEPTIDE T98414 CDS ING9204 ESTS, MODERATELY SIMILAR TO IIII ALU SUBFAMILY J WARNING ENTRY IIII [H.SAPIENS] W04674 3):384(2D1) CDS N69204 3):384(21K12) HUMAN GLUCOSE TRANSPORTER PSEUDOGENE H03954 3):384(21K12) HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598 3):384(3A2) 124781 R01118 3):384(3A2) 195903 R92227 3):384(3G16) DEADIH (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA47588 3):384(3G16) EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AB047039 4):384(1104) B42848 AA486281
):384(13D9) 384(1D2) 2):384(1D2) 2):384(1337) 2):384(4M23) 384(2D1) 384(2D1) 384(21K11) 1):384(21K12) 384(21K13) 384(21K13) 384(21K13) 384(21K13) 384(21K13) 384(21K13) 384(21K13) 384(31K13) 384(31K13) 384(31K13) 384(31K13) 384(31K13) 384(31K13) 384(31K13) 384(31K13) 384(31K13) 384(31K13)	MYOSIN PHOSPHATASE, TARGET SUBUNIT 1 AA487028 HUMAN CLONE 23721 MRNA SEQUENCE R45056 FEANSCRIPTION FACTOR 6-LIKE 1 (MITOCHONDRIAL TRANSCRIPTION FACTOR 1-LIKE) AA150777 ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4091980) [H.SAPIENS] H11938 CASEIN KINASE 2, ALPHA 1 POLYPEPTIDE T98414 ESTS, MODERATELY SIMILAR TO (DEFLINE NOT AVAILABLE 4091980) [H.SAPIENS] H11938 CASEIN KINASE 2, ALPHA 1 POLYPEPTIDE T98414 HOMO SAPIENS TRACHEA CELLULAR APOPTOSIS SUSCEPTIBILITY PROTEIN (CSE1) MRNA, COMPLETE CDS N69204 HUMAN GLUCOSE TRANSPORTER PSEUDOGENE H03954 HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598 124781 R01118 NUCLEAR TRANSCRIPTION FACTOR Y, ALPHA AA412691 195903 R92227 DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
	384(1D2) 2):384(9K23)):384(1317) 2):384(4M23) 3:384(2D1) 3:384(2D1) 3:384(21K11) 1):384(21K12) 3:384(11K13)	HUMAN CLONE 23721 MRNA SEQUENCE R45056 TRANSCRIPTION FACTOR 6-LIKE 1 (MITOCHONDRIAL TRANSCRIPTION FACTOR 1-LIKE) AA150777 ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4091980) [H.SAPIENS] H11938 CASEIN KINASE 2, ALPHA 1 POLYPEPTIDE T98414 ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY 1 WARNING ENTRY !!!! [H.SAPIENS] W04674 HOMO SAPIENS TRACHEA CELLULAR APOPTOSIS SUSCEPTIBILITY PROTEIN (CSE1) MRNA, COMPLETE CDS N69204 HUMAN GLUCOSE TRANSPORTER PSEUDOGENE H03954 PROTEIN KINASE, AMP-ACTIVATED, BETA 2 NOIN-CATALYTIC SUBUNIT N78582 HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598 NUCLEAR TRANSCRIPTION FACTOR Y, ALPHA AA412691 195903 R92227 DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
	2):384(9K23)):384(1317) 2):384(4M23)):384(2D1) 384(2D1)):384(21K11)]:384(21K11)]:384(21K12)]:384(11K13)]:384(11K13)]:384(4K16)]:384(4K16)]:384(9G16)]:384(9G16)]:384(9G16)	TRANSCRIPTION FACTOR 6-LIKE 1 (MITOCHONDRIAL TRANSCRIPTION FACTOR 1-LIKE) AA150777 ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4091980) [H.SAPIENS] H11938 CASEIN KINASE 2, ALPHA 1 POLYPEPTIDE T98414 ESTS, MODERATELY SIMILAR TO (III! ALU SUBFAMILY 1 WARNING ENTRY I!!! [H.SAPIENS] W04674 HOMO SAPIENS TRACHEA CELLULAR APOPTOSIS SUSCEPTIBILITY PROTEIN (CSE1) MRNA, COMPLETE CDS N69204 HUMAN GLUCOSE TRANSPORTER PSEUDOGENE H03954 HUMAN GLUCOSE TRANSPORTER PSEUDOGENE H03954 HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598 124781 R01118 NUCLEAR TRANSCRIPTION FACTOR Y, ALPHA AA412691 195903 R92227 DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
):384(1337) 2):384(4M23) 3:384(2D1) 3:384(2D1) 3:384(21K11) 1:384(21K12) 3:384(21K12) 3:384(11K13) 3:384(11K13) 3:384(11K13) 3:384(10L6) 3:384(10L6) 1):384(3E22)	ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4091980) [H.SAPIENS] H11938 CASEIN KINASE 2, ALPHA 1 POLYPEPTIDE T98414 ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY 1 WARNING ENTRY !!!! [H.SAPIENS] W04674 HOMO SAPIENS TRACHEA CELLULAR APOPTOSIS SUSCEPTIBILITY PROTEIN (CSE1) MRNA, COMPLETE CDS N69204 HUMAN GLUCOSE TRANSPORTER PSEUDOGENE H03954 PROTEIN KINASE, AMP-ACTIVATED, BETA 2 NON-CATALYTIC SUBUNIT N78582 HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598 124781 R01118 NUCLEAR TRANSCRIPTION FACTOR Y, ALPHA AA412691 195903 R92227 DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
	2):384(4M23)):384(906)):384(2D1)):384(21K11)):384(21K11)):384(21K12)):384(21K13)):384(1K13)):384(1K13)):384(1K13)):384(1K13)):384(1K13)):384(1K13)	CASEIN KINASE 2, ALPHA 1 POLYPEPTIDE T98414 ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY 1 WARNING ENTRY !!!! [H.SAPIENS] W04674 HOMO SAPIENS TRACHEA CELLULAR APOPTOSIS SUSCEPTIBILITY PROTEIN (CSE1) MRNA, COMPLETE CDS N69204 HUMAN GLUCOSE TRANSPORTER PSEUDOGENE H03954 PROTEIN KINASE, AMP-ACTIVATED, BETA 2 NON-CATALYTIC SUBUNIT N78582 HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598 124781 R01118 NUCLEAR TRANSCRIPTION FACTOR Y, ALPHA AA412691 195903 R92227 DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
);384(906) (384(201) (8);384(21K1) (1);384(21K1) (1);384(21K12) (1);384(11K13) (1);384(11K13) (1);384(10L6) (1);384(10L6) (1);384(10L6)	ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY 1 WARNING ENTRY !!!! [H.SAPIENS] W04674 HOMO SAPIENS TRACHEA CELLULAR APOPTOSIS SUSCEPTIBILITY PROTEIN (CSE1) MRNA, COMPLETE CDS N69204 HUMAN GLUCOSE TRANSPORTER PSEUDOGENE H03954 HUMAN GLUCOSE TRANSPORTER PSEUDOGENE H03954 HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598 HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598 NUCLEAR TRANSCRIPTION FACTOR Y, ALPHA AA412691 195903 R92227 DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
	384(2D1) 8):384(15K15) 3):384(21K11) 1):384(21H22) 3):384(3H13) 3):384(11K13) 3):384(4K16) 3):384(9G16) 3):384(10L6) 1):384(3E22)	HOMO SAPIENS TRACHEA CELLULAR APOPTOSIS SUSCEPTIBILITY PROTEIN (CSE1) MRNA, COMPLETE CDS N69204 HUMAN GLUCOSE TRANSPORTER PSEUDOGENE H03954 HUMAN GLUCOSE TRANSPORTER PSEUDOGENE H03954 HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598 HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598 HUCLEAR TRANSCRIPTION FACTOR Y, ALPHA AA412691 195903 R92227 DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
	8):384(15K15)):384(21K11) 1):384(21H22)):384(3A2)):384(11K13)):384(4K16)):384(9G16)):384(10L6)	CUS N69204 HUMAN GLUCOSE TRANSPORTER PSEUDOGENE H03954 PROTEIN KINASE, AMP-ACTIVATED, BETA 2 NON-CATALYTIC SUBUNIT N78582 PROTEIN KINASE, AMP-ACTIVATED, BETA 2 NON-CATALYTIC SUBUNIT N78582 HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598 124781 R01118 NUCLEAR TRANSCRIPTION FACTOR Y, ALPHA AA412691 195903 R92227 DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
	8):384(15K15)):384(21K11) 1):384(21K11)):384(3A2)):384(4K16)):384(9G16)):384(9G16)):384(10L5)	HUMAN GLUCOSE TRANSPORTER PSEUDOGENE H03954 PROTEIN KINASE, AMP-ACTIVATED, BETA 2 NON-CATALYTIC SUBUNIT N78582 HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598 124781 R01118 NUCLEAR TRANSCRIPTION FACTOR Y, ALPHA AA412691 195903 R92227 DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
);384(21K11) 1);384(21H22));384(3A2));384(11K13));384(4K16));384(9G16));384(10L6) 1);384(3E22)	PROTEIN KINASE, AMP-ACTIVATED, BETA 2 NON-CATALYTIC SUBUNIT N78582 HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598 124781 R01118 NUCLEAR TRANSCRIPTION FACTOR Y, ALPHA AA412691 195903 R92227 DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
	1):384(21H22)):384(3A2)):384(11K13)):384(4K16)):384(9G16)):384(10L6) 1):384(3E22)	HOMO SAPIENS 14-3-3 PROTEIN MRNA, COMPLETE CDS AA609598 124781 R01118 NUCLEAR TRANSCRIPTION FACTOR Y, ALPHA AA412691 195903 R92227 DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
):384(3A2)):384(11K13)):384(4K16)):384(9G16)):384(10L6) 1):384(3E22)	124781 R01118 NUCLEAR TRANSCRIPTION FACTOR Y, ALPHA AA412691 195903 R92227 DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
):384(11K13)):384(4K16)):384(9G16)):384(10L6) 1):384(3E22)	NUCLEAR TRANSCRIPTION FACTOR Y, ALPHA AA412691 195903 R92227 DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
):384(4K16)):384(9G16)):384(10L6) 1):384(3E22)	195903 R92227 DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039
):384(9G16)):384(10L6) 1):384(3E22)	DEAD/H (ASP-GLU-ALA-ASP/HIS) BOX POLYPEPTIDE, Y CHROMOSOME AA447588 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME N92611 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
	6(85F3):384(10L6) 16(10C11):384(3E22)	EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME N92611 EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
	6(10C11):384(3E22)	EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y CHROMOSOME AA047039 342848 AA486281
		342848 AA486281
	7):384(16H14)	
7	\neg	HUMAN CLONE 23933 MRNA SEQUENCE H56918
	3):384(13P15)	ATP CITRATE LYASE H08548
):384(10L2)	345743 W72666
1163 PEROU:96(6E1():384(20120)	MONOCYTE DIFFERENTIATION ANTIGEN CD14 PRECURSOR W87270
):384(2A21)	COMPLEMENT COMPONENT 3A RECEPTOR 1 AA464711
1165 GF201:96(88A1	0):384(11A20)	0):384(11A20) CD14 ANTIGEN AA701476
	384(2K9)	INOSITOL 1,4,5-TRIPHOSPHATE RECEPTOR, TYPE 2 AA479093
\neg):384(21H3)	MURINE LEUKEMIA VIRAL (BMI-1) ONCOGENE HOMOLOG T87515
T		MURINE LEUKEMIA VIRAL (BMI-1) ONCOGENE HOMOLOG AA478036
	3):384(14L5)	46448 H10673
):384(10M16)	ENDOTHELIAL DIFFERENTIATION-RELATED FACTOR 1 N69393
):384(9H2)	ESTS, MODERATELY SIMILAR TO IIII ALU SUBFAMILY J WARNING ENTRY IIII [H.SAPIENS] H54263
	:384(19F9)	GDNF FAMILY RECEPTOR ALPHA 1 AA512935
丁	:384(2M13)	PHOSPHOLIPASE C, EPSILON AA411387
	.):384(2M21)	NEL (CHICKEN)-LIKE 2 H45376
7	2):384(12123)	HUMAN HEART MRNA FOR HEAT SHOCK PROTEIN 90, PARTIAL CDS H88540
T	6(109H11):384(15021	11):384(15021 CALMEGIN AA778675
1177 GF201:96	GF201:96(101A7):384(14B14) 74223 T48412	74223 T48412

Table 1

1178		ESTS, HIGHLY SIMILAR TO PUTATIVE [H.SAPIENS] AA022561
11/9	GF201:96(10187):384(14D14) 70203 150083	
1180	GF200:96(25F8):384(7K15)	CAPPING PROTEIN (ACTIN FILAMENT), GELSOLIN-LIKE AA486942
1181	GF200:96(24E8):384(6315)	FORMYL PEPTIDE RECEPTOR 1 AA425249
1182	GF200:96(25G9):384(7M17)	COAGULATION FACTOR XIII, A1 POLYPEPTIDE AA448599
1183	[GF200:96(26F10):384(7K20)	TUMOR NECROSIS FACTOR (LIGAND) SUPERFAMILY, MEMBER 10 H54629
1184	GF201:96(62E7):384(22313)	PIGMENT EPITHELIUM-DERIVED FACTOR AA463946
1185	GF201:96(60B10):384(22C20) 811095 AA485674	811095 AA485674
1186	PEROU:96(6C4):384(20E8)	B-FACTOR, PROPERDIN H80257
1187	GF201:96(97C2):384(13F4)	B-FACTOR, PROPERDIN AA401441
1188	GF201:96(56A5):384(21A10)	RETINOIC ACID RECEPTOR RESPONDER (TAZAROTENE INDUCED) 3 W47350
1189	GF201:96(90E5):384(1139)	BONE MARROW STROMAL CELL ANTIGEN 2 AA485371
1190	GF201:96(88C4):384(11E8)	FC FRAGMENT OF IGG, LOW AFFINITY IIB, RECEPTOR FOR (CD32) R68106
1191	GF201:96(88B4):384(11C8)	MAJOR HISTOCOMPATIBILITY COMPLEX, CLASS I, A AA644657
1192	GF202:96(116F1):384(16L1)	72745 T50661
1193	GF201:96(88A5):384(11A10)	MAJOR HISTOCOMPATIBILITY COMPLEX, CLASS I, C AA464246
1194	GF201:96(88A6):384(11A12)	MACROPHAGE STIMULATING 1 (HEPATOCYTE GROWTH FACTOR-LIKE) T51539
1195	PEROU:96(7F2):384(20L4)	BETA-2-MICROGLOBULIN AI250654
1196	GF201:96(98F10):384(13L19)	INTERFERON-INDUCED PROTEIN 41, 30KD R54613
1197	GF201:96(66D6):384(23H11)	504372 AA142842
1198	GF202:96(113E6):384(16I11)	ESTS, WEAKLY SIMILAR TO NEURONAL THREAD PROTEIN ADZC-NTP [H.SAPIENS] AA099706
1199	GF200:96(32H9):384(8P17)	ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY SB WARNING ENTRY !!!! [H.SAPIENS] T64956
1200	GF201:96(98A2):384(13B3)	INTERFERON-INDUCED PROTEIN 17 AA058323
1201	GF201:96(88E11):384(11122)	INTERFERON-INDUCED PROTEIN 17 AA419251
1202	GF201:96(88F10):384(11K20)	361899 AA001376
1203	GF201:96(88F3):384(11K6)	INTERFERON, ALPHA-INDUCIBLE PROTEIN 27 AA157813
1204	GF200:96(10B11):384(3C22)	HYPOTHETICAL PROTEIN, EXPRESSED IN OSTEOBLAST AA410567
1205	GF200:96(4A8):384(1B15)	HUMAN MRNA FOR 56-KDA PROTEIN INDUCED BY INTERFERON AA489743
1206	GF201:96(88E12):384(11I24)	
1207	GF200:96(1F9):384(1K17)	INTERFERON-STIMULATED TRANSCRIPTION FACTOR 3, GAMMA (48KD) AA291577
1208	GF200:96(17C9):384(5E17)	MYXOVIRUS (INFLUENZA) RESISTANCE 1, HOMOLOG OF MURINE (INTERFERON-INDUCIBLE PROTEIN
		P78) AA456886
1209	[GF201:96(88F1):384(11K2)	INTERFERON-STIMULATED PROTEIN, 15 KDA AA406020
1210	PEROU:96(9F6):384(18L12)	INTERFERON-INDUCED 17 KD PROTEIN AA120862
1211	[GF200:96(17H9):384(5017)	INTERFERON, ALPHA-INDUCIBLE PROTEIN (CLONE IFI-6-16) AA448478
1212	GF200:96(26C8):384(7E16)	INTERFERON, ALPHA-INDUCIBLE PROTEIN (CLONE IFI-6-16) AA432030
1213	PEROU:96(9G1):384(18N2)	INTERFERON ALPHA-INDUCIBLE PROTEIN (CLONE IFI-6-16) AA075725
1214	PEROU:96(9G3):384(18N6)	SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1-ALPHA/BETA AA079495
1215	PEROU:96(7G12):384(20N24)	12);384(20N24) SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1-ALPHA/BETA AA076085

7-1
<u>o</u>
互
œ.

1217 GF200:96(15H9):384(4P16) GSTS, HIGHLY SINGE GF200:96(15H9):384(4P16) GSTS, HIGHLY SINGE GF200:96(15H9):384(4P18) TRANSPORTER 1, 1219 GF200:96(15H9):384(6D16) MHC CLASS I REG 1220 GF201:96(8AC7):384(15C2) PROTEASOME (PR 1221 GF200:96(10H12):384(15C2) PROTEASOME (PR 1222 GF202:96(109B12):384(6D15) MHC CLASS I REG 1222 GF202:96(109B12):384(8B19) 144918 R7ROPHILIN, SINGE GF200:96(21D8):384(8B19) 144918 R7ROPHILIN, SINGE GF200:96(21D8):384(3D13) R88807 N62522 GF200:96(21D8):384(3D13) R88807 N62522 GF200:96(21D8):384(23013) GFROTEIN-COUPLING GF200:96(20B12):384(13T10) GLUTATHIONE S-1 GF200:96(1099):384(13T10) GLUTATHIONE S-1 GF200:96(1099):384(13T10) GLUTATHIONE S-1 GF200:96(1099):384(13T10) GLUTATHIONE S-1 GF200:96(10962):384(13T10) GLUTAMATE RECE 1233 GF201:96(8B8):384(11A17) RECOVERIN AA07-1236 GF201:96(8B8):384(11A17) RECOVERIN AA07-1236 GF201:96(8B8):384(11A17) GCLONY STIMULA GF200:96(17G5):384(13T10) GCLONY STIMULA GF200:96(17G5):384(10A15) GCCONGENITAL) N66 CF201:96(83AB):384(10A15) GCCONGENITAL) N66 CF201:96(83B1):384(10A15) GCCONGENITAL) N66 CF201:96(83B1):384(11A17) GCTA-BINDING PR 1244 GF201:96(83B1):384(11A17) GCTA-BINDING PR 1244 GF201:96(819B1):384(1211) GATA-BINDING PR 1244 GF201:96(98B1):384(11A17) GCTA-BINDING PR 1244 GF201:96(98B1):384(11A17) GOTA-BINDING PR 1245 GF200:96(25E4):384(11A17) GOTA-BINDING PR 1245 GF200:96(25E4):384(11A17) GOTA-BINDING PR 1245 GF200:96(25E4):384(11A17) GDA-BINDING PR 1245 GF200:96(25E4):384(11A17) GNA-BINDING PR 1245 GF200:96(25E4):384(11A17) GNA-BINDING PR 1245 GF200:96(25E4):384(11A17) GNA-BINDING PR 1246 GF200:96(25E4):384(31C1) GR200:96(25E4):384(31C1) GR200:96(25E4):384(31C1) GR200:96(25E4):384(31C1) GR200:96(25E4):384(31C1) GR200:96(25E4):384(31C1) GR200:96(25E4):384(31C1) GR200:96(25E4):384(31C1) GR200:96(25E4):384(31C1) GR200:9	
GF200:96(15C GF200:96(12B GF200:96(21D GF200:96(21D GF200:96(21D GF200:96(21D GF200:96(21D GF200:96(24B GF200:96(781 GF200:96(781 GF201:96(8B GF201:96(8B) GF201:96(8B) GF201:96(81B) GF201:96(81B) GF201:96(81B) GF200:96(116 GF200:96(116 GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F)	ESTS, HIGHLY SIMILAR TO SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1-ALPHA/BETA [H.SAPIENS] A4486367
GF200:96(23B GF201:96(84C GF202:96(17H GF200:96(21D GF200:96(21D GF200:96(24B GF200:96(24B GF200:96(781 GF201:96(96E GF201:96(96E GF201:96(96E GF201:96(97C GF201:96(97C GF201:96(97C GF201:96(116 GF200:96(116)	TRANSPORTER 1, ABC (ATP BINDING CASSETTE) AA487637
GF201:96(84C GF202:96(17H GF200:96(17H GF200:96(21D GF200:96(21D GF200:96(32A GF200:96(98L) GF200:96(78L) GF201:96(96E) GF201:96(96E) GF201:96(96E) GF201:96(96E) GF201:96(96E) GF201:96(96E) GF201:96(96E) GF201:96(10I) GF201:96(10I) GF201:96(10I) GF201:96(11G) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F) GF200:96(12F)	MHC CLASS I REGION ORF T58146
GF200:96(17H GF200:96(12H) GF200:96(21D) GF200:96(21D) GF200:96(32A) GF200:96(32A) GF200:96(32A) GF200:96(7B1) GF200:96(7B2) GF201:96(9B2) GF201:96(9B2) GF201:96(9B2) GF201:96(9B3A) GF201:96(81H) GF201:96(81H) GF201:96(81H) GF201:96(81H) GF200:96(12F)	
GF202:96(109) GF200:96(21D) GF200:96(21D) GF200:96(224B) GF200:96(324B) GF200:96(781D) GF200:96(781D) GF201:96(8BB) GF201:96(8BB) GF201:96(8BB) GF201:96(8BB) GF201:96(8BB) GF201:96(8BB) GF201:96(8BB) GF200:96(116) GF201:96(8BB) GF200:96(125)	INTERFERON REGULATORY FACTOR 1 AA478043
GF200:96(21D8):384(6G15) GF201:96(92D11):384(12G22) GF200:96(32A10):384(8B19) GF200:96(24B9):384(6D17) GF200:96(24B9):384(6D17) GF200:96(317):384(23013) GF201:96(63H7):384(20D4) PEROU:96(7B2):384(20D2) GF201:96(96E5):384(13110) GF201:96(96E5):384(13110) GF201:96(97C9):384(13110) GF201:96(97C9):384(14110) GF201:96(8188):384(14H10) GF201:96(8111):384(10011) GF201:96(8111):384(10011) GF201:96(8111):384(10011) GF201:96(8111):384(10011) GF201:96(8111):384(10011) GF201:96(8111):384(10011) GF201:96(8111):384(10011) GF201:96(8111):384(10011) GF201:96(8111):384(10115) GF201:96(8111):384(10115) GF201:96(8111):384(10115) GF201:96(8111):384(10115) GF201:96(911015):384(10115) GF201:96(911015):384(10115) GF201:96(911015):384(10115) GF200:96(12F11):384(1211) GF200:96(12F11):384(1211)	B12):384(15C23)PROTEASOME (PROSOME, MACROPAIN) SUBUNIT, BETA TYPE, 8 (LARGE MULTIFUNCTIONAL PROTEASE
GF200:96(21D8):384(6G15) GF201:96(92D11):384(12G22) GF200:96(32A10):384(8B19) GF200:96(24B9):384(6D17) GF200:96(24B9):384(23013) GF200:96(3H7):384(23013) GF201:96(3H7):384(20D4) PEROU:96(7B2):384(20D2) GF201:96(87A9):384(13110) GF201:96(87A9):384(14110) GF201:96(87A9):384(14117) GF201:96(87A9):384(14110) GF201:96(81B8):384(14H10) GF201:96(81H1):384(10O21) GF201:96(81H1):384(10O21) GF201:96(81H1):384(10D15) GF200:96(4F1):384(111) GF201:96(83AB):384(111) GF201:96(83AB):384(10D15) GF200:96(4F1):384(111) GF201:96(83AB):384(10D15) GF200:96(4F1):384(111) GF201:96(9BB0):384(111) GF200:96(26E4):384(111) GF200:96(3B0):384(111)	7) AA181300
GF201:96(92D11):384(12G22) GF200:96(32A10):384(8B19) GF200:96(24B9):384(6D17) GF200:96(11D9):384(3H18) GF200:96(3B12):384(23O13) GF201:96(3B12):384(20D4) PEROU:96(7B2):384(20D2) GF201:96(9R2):384(13H10) GF201:96(87A9):384(13H10) GF201:96(87A9):384(14H17) GF201:96(116F8):384(14H10) GF201:96(110D5):384(14H10) GF201:96(110D5):384(10D15) GF201:96(83AB):384(10A15) GF201:96(81H11):384(10D15) GF200:96(4F1):384(111) GF201:96(83AB):384(10A15) GF200:96(12F1):384(12D15) GF200:96(4F1):384(111) GF200:96(4F1):384(111) GF200:96(9B10):384(12D15) GF200:96(9B10):384(11015) GF200:96(9B10):384(11015) GF200:96(9B10):384(11015) GF200:96(9B10):384(11015)	BUTYROPHILIN, SUBFAMILY 3, MEMBER A3 AA478S85
GF200:96(32A10):384(8B19) GF200:96(24B9):384(6D17) GF200:96(11D9):384(3H18) GF200:96(3H17):384(23013) GF200:96(3H17):384(23013) GF201:96(3B12):384(20D4) PEROU:96(7B2):384(20D2) GF201:96(87B8):384(20D2) GF201:96(87B8):384(1A110) GF201:96(87B8):384(1A117) GF201:96(87B8):384(1A117) GF201:96(116F8):384(14H10) GF201:96(1105):384(14H10) GF201:96(83H11):384(10O21) GF201:96(81H11):384(10O21) GF201:96(81H11):384(10A15) GF200:96(12F11):384(111) GF201:96(81H11):384(10A15) GF200:96(12F11):384(111) GF200:96(12F11):384(111) GF200:96(12F11):384(111) GF200:96(9B10):384(111)	11):384(12G22) UBIQUITIN-CONJUGATING ENZYME E2L 6 AA292074
GF200:96(2489):384(6D17) GF200:96(11D9):384(3H18) GF200:96(3H17):384(23013) GF200:96(9B12):384(23013) GF202:96(109G2):384(15M3) PEROU:96(7B2):384(20D4) PEROU:96(7B2):384(20D2) GF201:96(9B8):384(13110) GF201:96(9C5):384(11A17) GF201:96(9C78):384(11A17) GF201:96(116F8):384(11A17) GF201:96(116F8):384(10021) GF201:96(834B):384(10A15) GF200:96(25D10):384(10A15) GF200:96(25D10):384(10A15) GF200:96(25D10):384(10A15) GF200:96(25D10):384(10A15) GF200:96(25D10):384(10A15) GF200:96(25D10):384(10A15) GF200:96(26E4):384(11A15) GF200:96(26E4):384(13D15) GF200:96(26E4):384(11A15) GF200:96(26E4):384(11A15) GF200:96(26E4):384(11A15) GF200:96(26E4):384(11A15) GF200:96(26E4):384(11A15) GF200:96(26E4):384(11A15)	144916 R78509
GF200:96(11D9):384(3H18) GF201:96(63H7):384(23013) GF202:96(109G2):384(15M3) GF202:96(109G2):384(20D4) PEROU:96(7B2):384(20D2) GF201:96(96E5):384(13110) GF201:96(87A9):384(11A17) GF201:96(87A9):384(11A17) GF201:96(11GF8):384(14H10) GF202:96(11GF8):384(14H10) GF201:96(83H11):384(10A15) GF200:96(25D10):384(10A15) GF201:96(83A8):384(10A15) GF201:96(83A8):384(10A15) GF201:96(83A8):384(10A15) GF200:96(4F1):384(3Z1) GF200:96(2E41):384(3Z1) GF200:96(2E41):384(3Z1) GF200:96(2E41):384(3Z1) GF200:96(2E41):384(3Z1) GF200:96(2E41):384(3Z1) GF200:96(2E41):384(3Z1) GF200:96(2E41):384(3Z1) GF200:96(2E41):384(3Z1)	MONOKINE INDUCED BY GAMMA INTERFERON AA131406
GF201:96(63H7):384(23013) GF200:96(9B12):384(15M3) GF202:96(109G2):384(15M3) PEROU:96(7B2):384(20D4) PEROU:96(7B1):384(20D2) GF201:96(87B3):384(13110) GF201:96(87B3):384(14117) GF201:96(87A9):384(14117) GF201:96(116F8):384(14H10) GF200:96(116F8):384(14H10) GF200:96(116F8):384(10021) GF201:96(83AB):384(10A15) GF201:96(83B3):384(10A15) GF201:96(8111):384(10A15) GF200:96(4F1):384(111) GF201:96(83AB):384(10A15) GF200:96(4F1):384(111) GF201:96(98B3):384(10A15) GF200:96(4F1):384(3D15) GF200:96(26E4):384(718) GF200:96(9B10):384(718) GF200:96(9B10):384(718)	DIUBIQUITIN N49629
GF200:96(9B12):384(3C23) GF202:96(109G2):384(15M3) PEROU:96(7B2):384(20D4) PEROU:96(7B1):384(20D2) GF201:96(8B8):384(13110) GF201:96(87A9):384(11A17) GF201:96(87A9):384(11A17) GF201:96(101D5):384(14H10) GF200:96(116F8):384(16L15) GF200:96(101D5):384(10011) GF201:96(83AB):384(10A15) GF201:96(83AB):384(10A15) GF201:96(8111):384(10A15) GF200:96(4F1):384(111) GF201:96(83AB):384(10A15) GF200:96(12F1):384(121) GF200:96(12F1):384(121) GF200:96(12F1):384(3D15) GF200:96(12F1):384(3D15) GF200:96(26E4):384(718) GF200:96(9B10):384(718)	
GF202:96(109G2):384(15M3) PEROU:96(7B2):384(20D4) PEROU:96(7B1):384(20D2) GF201:96(96E5):384(13110) GF201:96(87A9):384(14A17) GF201:96(87A9):384(14A17) GF201:96(17G5):384(14A17) GF202:96(11GF8):384(14H10) GF201:96(83H11):384(10021) GF200:96(25D10):384(10021) GF201:96(83A8):384(10A15) GF201:96(83A8):384(10A15) GF200:96(2F11):384(3D15) GF200:96(2F11):384(3D15) GF200:96(2E41):384(3D15) GF200:96(2E41):384(3D15) GF200:96(2E41):384(3D15) GF200:96(2E41):384(3D15) GF200:96(2E41):384(3D15) GF200:96(2E41):384(3D15) GF200:96(2E41):384(3D15) GF200:96(2E41):384(3D15)	G PROTEIN-COUPLED RECEPTOR R92239
PEROU:96(7B2):384(20D4) PEROU:96(7B1):384(20D2) GF201:96(96E5):384(13110) GF201:96(96B8):384(14110) GF201:96(8789):384(1417) GF201:96(8789):384(1417) GF201:96(8769):384(14110) GF201:96(8111):384(16115) GF201:96(8111):384(10021) GF201:96(83A8):384(1015) GF201:96(8111):384(1015) GF201:96(8111):384(1015) GF201:96(8111):384(1015) GF201:96(911):384(1311) GF201:96(9110):384(1311) GF200:96(12F11):384(1311) GF200:96(12F11):384(1311) GF200:96(12F11):384(1311) GF200:96(12F11):384(1311) GF200:96(12F11):384(1311)	
PEROU:96(782):384(2004) PEROU:96(781):384(2002) GF201:96(96E5):384(13110) GF201:96(888):384(24C16) GF201:96(87A9):384(14A17) GF201:96(97C9):384(14A17) GF201:96(1105):384(14H10) GF201:96(1105):384(14H10) GF201:96(83H11):384(10021) GF201:96(83A8):384(10A15) GF201:96(83A8):384(10A15) GF201:96(8111):384(10A15) GF201:96(8111):384(10A15) GF200:96(12F11):384(121) GF200:96(26E4):384(1381) GF200:96(26E4):384(1381) GF200:96(26E4):384(1381)	AA485353
PEROU:96(7B1):384(20D2) GF201:96(96E5):384(13110) GF201:96(68B8):384(24C16) GF201:96(87A9):384(11A17) GF201:96(87A9):384(11A17) GF202:96(116F8):384(14H10) GF202:96(116F8):384(14H10) GF201:96(83H11):384(10O21) GF201:96(83A8):384(10A15) GF201:96(83A8):384(10A15) GF201:96(98B8):384(111) GF201:96(98B8):384(12D15) GF200:96(2E41):384(3D15) GF200:96(2E41):384(3D15) GF200:96(2E41):384(3C1) GF200:96(2E41):384(3C18) GF200:96(2E41):384(3C18)	GLUTATHIONE S-TRANSFERASE M1 AA232417
GF201:96(96E5):384(13110) GF201:96(68B8):384(24C16) GF201:96(87A9):384(11A17) GF201:96(97C9):384(13F18) GF200:96(17G5):384(14H10) GF201:96(81H1):384(10O21) GF201:96(83H11):384(10O21) GF201:96(83A8):384(10A15) GF201:96(83A8):384(10A15) GF201:96(81H11):384(10A15) GF201:96(98B8):384(10A15) GF200:96(12F11):384(321) GF200:96(26E4):384(718) GF200:96(26E4):384(718) GF200:96(26E4):384(718)	GLUTAMATE RECEPTOR, IONOTROPIC, N-METHYL D-ASPARTATE 1 AA351537
GF201:96(68B8):384(24C16) GF201:96(8729):384(11A17) GF201:96(97C9):384(13F18) GF200:96(11G5):384(16L15) GF201:96(10105):384(16L15) GF201:96(83H11):384(10O21) GF201:96(83A8):384(10A15) GF201:96(83A8):384(10A15) GF201:96(81611):384(10D15) GF201:96(91611):384(10D15) GF201:96(91611):384(10D15) GF200:96(12F11):384(12D15) GF200:96(12F11):384(12D15) GF200:96(26E4):384(718) GF200:96(26E4):384(718) GF200:96(26E4):384(718)	COLONY STIMULATING FACTOR 1 RECEPTOR, FORMERLY MCDONOUGH FELINE SARCOMA VIRAL (V-
GF201:96(6888):384(24C16) GF201:96(87A9):384(11A17) GF201:96(97C9):384(13F18) GF200:96(1755):384(5M9) GF202:96(116F8):384(16L15) GF201:96(81H1):384(10O21) GF201:96(83H1):384(10O21) GF201:96(83A8):384(10A15) GF201:96(83A8):384(10A15) GF201:96(9889):384(10A15) GF200:96(12F11):384(321) GF200:96(26E4):384(718) GF200:96(26E4):384(718) GF200:96(26E4):384(718)	7
GF201:96(87A9):384(11A17) GF201:96(97C9):384(13F18) GF200:96(17G5):384(5M9) GF202:96(116F8):384(16L15) GF201:96(101D5):384(14H10) GF201:96(83H11):384(10O21) GF201:96(83A8):384(10A15) GF201:96(83A8):384(10A15) GF201:96(98B8):384(111) GF201:96(98B8):384(121) GF200:96(12F11):384(321) GF200:96(26E4):384(718) GF200:96(26E4):384(718) GF200:96(26E4):384(718)	
GF201:96(97C9):384(13F18) GF200:96(17G5):384(5M9) GF202:96(116F8):384(16L15) GF201:96(101D5):384(14H10) GF201:96(83H11):384(10O21) GF201:96(83A8):384(10A15) GF201:96(83A8):384(10A15) GF201:96(98B8):384(111) GF201:96(98B8):384(13D15) GF200:96(12F11):384(321) GF200:96(26E4):384(718) GF200:96(9B10):384(3C19) GF200:96(9B10):384(3C19) GF200:96(20E4):384(718)	
GF200:96(17G5):384(5M9) GF202:96(116F8):384(16L15) GF201:96(10105):384(14H10) GF201:96(83H11):384(10021) GF200:96(25D10):384(7G19) GF201:96(83A8):384(10A15) GF201:96(98B8):384(111) GF201:96(98B8):384(12D15) GF200:96(12F11):384(321) GF200:96(26E4):384(718) GF200:96(26E4):384(718) GF200:96(9B10):384(3C19) GF200:96(9B10):384(3C19)	
GF202:96(116F8):384(16L15) GF201:96(101D5):384(14H10) GF201:96(83H11):384(10O21) GF200:96(25D10):384(7G19) GF201:96(83A8):384(10A15) GF201:96(98B8):384(111) GF201:96(911):384(121) GF200:96(12F11):384(321) GF200:96(26E4):384(718) GF200:96(9810):384(319) GF200:96(9810):384(319) GF200:96(9810):384(319)	SERINE DEHYDRATASE T71363
GF201:96(101D5):384(14H10) GF201:96(83H11):384(10O21) GF200:96(25D10):384(7G19) GF201:96(83A8):384(10A15) GF201:96(98B8):384(111) GF201:96(911):384(321) GF200:96(26E4):384(718) GF200:96(26E4):384(718) GF200:96(9810):384(321) GF200:96(9810):384(321)) 265343 N20862
GF201:96(83H11):384(10021) GF200:96(25D10):384(7G19) GF201:96(83A8):384(10A15) GF201:96(98B8):384(111) GF201:96(911):384(3D15) GF200:96(2E4):384(3D15) GF200:96(2E4):384(3D15) GF200:96(26E4):384(3D1) GF200:96(9B10):384(3C19) GF201:96(92B7):384(2C14)	05):384(14H10) HOMO SAPIENS CLONE 643 UNKNOWN MRNA, COMPLETE SEQUENCE 153404
GF200:96(25D10):384(7G19) GF201:96(83A8):384(10A15) GF200:96(4F1):384(1L1) GF201:96(98B8):384(13D15) GF200:96(12F11):384(3L21) GF200:96(26E4):384(718) GF200:96(9B10):384(3C19) GF200:96(9B10):384(3C19)	1) 811020 AA485369
GF201:96(83A8):384(10A15) GF200:96(4F1):384(1L1) GF201:96(98B8):384(13D15) GF200:96(12F11):384(3L21) GF200:96(26E4):384(7I8) GF200:96(9B10):384(3C19) GF201:96(92B7):384(12C14)	
GF201:96(83A8):384(10A15) GF200:96(4F1):384(1L1) GF201:96(98B8):384(13D15) GF200:96(12F11):384(3L21) GF200:96(26E4):384(718) GF200:96(9B10):384(3C19) GF201:96(92B7):384(12C14)	T
GF200:96(4F1):384(1L1) GF201:96(98B8):384(13D15) GF200:96(12F11):384(3L21) GF200:96(26E4):384(7I8) GF200:96(9B10):384(3C19) GF201:96(92B7):384(12C14)	П
GF201:96(98B8):384(13D15) GF200:96(12F11):384(3L21) GF200:96(26E4):384(718) GF200:96(9B10):384(3C19) GF201:96(92B7):384(12C14)	GATA-BINDING PROTEIN 6 H77652
GF200:96(12F11):384(3L21) GF200:96(26E4):384(718) GF200:96(9B10):384(3C19) GF201:96(92B7):384(12C14)	ESTS, WEAKLY SIMILAR TO NUCLEAR PROTEIN SA-1 [H.SAPIENS] H17115
GF200:96(26E4):384(718) GF200:96(9B10):384(3C19) GF201:96(92B7):384(12C14)	FOLATE RECEPTOR 1 (ADULT) R24635
GF200:96(9B10):384(3C19) GF201:96(92B7):384(12C14)	HUMAN MRNA FOR KIAA0300 GENE, PARTIAL CDS AA40S458
GF201:96(92B7):384(12C14)	HUMAN GABA-A RECEPTOR EPSILON SUBUNIT (GABRE) RNA, ALTERNATIVE TRANSCRIPT H63934
R661	JR66139

_	4
¢	υ
3	3
e	a

6471	GF201:96(92C8):384(12E16)	HUMAN DNA SEQUENCE FROM PAC 196E23 ON CHROMOSOME XQ26.1-27.2. CONTAINS THE TAT-SF1 (HIV-1 TRANSCRIPTIONAL ELONGATION FACTOR TAT COFACTOR TAT-SF1) GENE, THE BRS3 (BOMBESIN RECEPTOR SUBTYPE-3 (UTERINE BOMBESIN RECEPTOR, BRS-3) GEN AA700322
1250	~~	HUMAN DNA-BINDING PROTEIN ABP/ZF MRNA, COMPLETE CDS W88571
1251		PHOSPHATIDYLINOSITOL-4-PHOSPHATE 5-KINASE, TYPE I, BETA R39069
1252		51406 H18950
1253	GF201:96(55E8):384(21115)	503051 AA149250
1254	GF201:96(58C8):384(21F15)	FATTY ACID BINDING PROTEIN 7, BRAIN N46862
1255	GF201:96(92H10):384(12O20)	0):384(12020) FATTY ACID BINDING PROTEIN 7, BRAIN W72051
1256	GF201:96(99D9):384(14G17)	MACROPHAGE RECEPTOR WITH COLLAGENOUS STRUCTURE AA485867
1257	GF200:96(22G5):384(6M10)	HOMO SAPIENS MRNA FOR CALPAIN-LIKE PROTEASE CANPX AA457330
1258	GF201:96(79C4):384(9E7)	298662 N74313
1259	GF202:96(112C12):384(15F23	12):384(15F23)FORKHEAD (DROSOPHILA)-LIKE 7 N22552
1260		ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY J WARNING ENTRY !!!! [H.SAPIENS] AA459296
1261		MEGAKARYOCYTE POTENTIATING FACTOR AA488406
1262	GF200:96(18G9):384(5M18)	PREFERENTIALLY EXPRESSED ANTIGEN OF MELANOMA AA598817
1263		EYES ABSENT (DROSOPHILA) HOMOLOG 2 AA402207
1264	GF201:96(55B7):384(21C13)	SYNAPTOGYRIN 1 AA007632
1265	GF200:96(2H9):384(1018)	PHOSPHOLIPASE C, BETA 4 H22563
1266	GF200:96(4F3):384(1L5)	TRANSCRIPTION FACTOR AP-2 GAMMA (ACTIVATING ENHANCER-BINDING PROTEIN 2 GAMMA)
		AA399334
1267	(GF201:96(88C6):384(11E12)	KERATIN 4 AA629189
1268		BONE MORPHOGENETIC PROTEIN 7 (OSTEOGENIC PROTEIN 1) AA029597
1269	\sim	BONE MORPHOGENETIC PROTEIN 7 (OSTEOGENIC PROTEIN 1) W73473
1270		KIAA0626 GENE PRODUCT N62737
1271	GF200:96(26E2):384(714)	HUMAN MRNA FOR KIAA0338 GENE, PARTIAL CDS R71689
1272	\sim	CERULOPLASMIN (FERROXIDASE) H86554
1273		HEPATIC LEUKEMIA FACTOR W00959
1274	_	ESTS, WEAKLY SIMILAR TO VERY-LONG-CHAIN ACYL-COA SYNTHETASE [M.MUSCULUS] AA412064
1275	GF200:96(15F5):384(4L10)	SYNDECAN 2 (HEPARAN SULFATE PROTEOGLYCAN 1, CELL SURFACE-ASSOCIATED, FIBROGLYCAN)
		H64346
1276	GF201:96(79G7):384(9M13)	307050 N89673
1277	GF201:96(55F8):384(21K15)	CELLULAR RETINOIC ACID-BINDING PROTEIN 1 AA454702
1278	1):384(13K22)	CELLULAR RETINOIC ACID-BINDING PROTEIN 1 AA421218
1279	GF200:96(16G12):384(4N23)	PHOSPHODIESTERASE 4B, CAMP-SPECIFIC (DUNCE (DROSOPHILA)-HOMOLOG PHOSPHODIESTERASE
1280	GE201-96(89G6)-384(11N12)	ELIO CALCHIM-BINDING DECIFETN A1 AAA35034
1281		STOUCH CONTROL OF THE PROPERTY OF THE CONTAINING AND STOUCH TRANSPORT OF THE PROPERTY OF THE CONTAINING AND STOUCH TRANSPORT OF THE CONTAINING AND STOUCH TRANSPORT OF THE PROPERTY OF THE PRO
1282		134600 D28267
7071		154650 KZ626/

-
Ψ
五
'n

1):384(24E21) 1):384(10E17) 1):384(10E17) 1):384(10E17) 1):384(10E18) 1):384(20K20) 1)	1283	PEROU:96(9E12):384(18J24)	ERYTHROCYTE MEMBRANE PROTEIN BAND 7.2 (STOMATIN) A1224884
GF201:96(83C9):384(10E17) GF201:96(92E4):384(10E17) GF202:96(115A9):384(16B18) GF202:96(115A9):384(10E10) GF201:96(84E10):384(20G6) GF201:96(6D3):384(20G6) GF201:96(6D3):384(20G6) GF201:96(6D13):384(24G1) GF201:96(6D13):384(24G1) GF201:96(6D13):384(24G1) GF201:96(3E10):384(10D19) GF201:96(3E10):384(10D12) GF201:96(3E10):384(10D12) GF201:96(3E10):384(10D12) GF200:96(14G8):384(113) GF200:96(14G6):384(113) GF200:96(14G6):384(10D12) GF200:96(14G6):384(10D12) GF200:96(14G6):384(10D12) GF200:96(14G6):384(10D12) GF200:96(14G6):384(10D12) GF200:96(12G5):384(10D12) GF200:96(10B2):384(10D12) GF200:96(10B2):384(10D12) GF200:96(10B2):384(10D12) GF200:96(10B2):384(10D12) GF200:96(10B2):384(10D12) GF200:96(12G5):384(10D12) GF200:96(10B2):384(10D12) GF200:96(10B2):384(10D12)	1284	GF201:96(67C11):384(24E21)	
GF201:96(95E4):384(1317) GF202:96(115A9):384(16B18) GF200:96(19C2):384(5F4) GF201:96(84E10):384(20G6) GF201:96(6D3):384(20G6) GF201:96(6D3):384(20G6) GF201:96(6D3):384(24G1) GF201:96(6D1):384(24G1) GF201:96(6D1):384(24G1) GF201:96(3E10):384(24G1) GF201:96(3E10):384(10D19) GF201:96(3E10):384(12D12) GF201:96(3E10):384(12D12) GF201:96(3E10):384(13K12) GF201:96(3E10):384(4H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(19H5) GF200:96(14C6):384(19H5) GF200:96(12G5):384(19H5) GF200:96(12G5):384(19H5) GF200:96(12G5):384(19H5) GF200:96(12G5):384(19H5) GF200:96(12G5):384(19H5) GF200:96(25C2):384(19H5) GF200:96(25C2):384(10H17) GF200:96(3A9):384(10H17)	1285		416107 W85998
GF202:96(115A9):384(16B18) GF200:96(19C2):384(5F4) GF200:96(6F10):384(10120) PEROU'96(6E10):384(20G6) GF201:96(6E10):384(20G6) GF201:96(6E10):384(24G1) GF201:96(6E10):384(24G1) GF201:96(6E10):384(24G1) GF201:96(6E10):384(24G1) GF201:96(3E10):384(10119) GF201:96(3E10):384(10119) GF201:96(3E10):384(12D12) GF201:96(3E10):384(10119) GF200:96(14G9):384(13K12) BEROU':96(7C4):384(20F8) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4E12) GF200:96(14C6):384(4E12) GF200:96(14C6):384(19H5) GF200:96(12G5):384(19H5) GF200:96(12G5):384(19H5) GF200:96(12G5):384(19H5) GF200:96(12G5):384(10H5) GF200:96(12G5):384(19H5) GF200:96(25C2):384(10H5)	1286	GF201:96(95E4):384(13I7)	DEATH-ASSOCIATED PROTEIN KINASE 1 AA025275
GF200:96(19C2):384(5F4) GF201:96(84E10):384(10120) PEROU'96(6E10):384(20G6) GF201:96(6E12):384(20G6) GF201:96(6E12):384(24G1) GF201:96(6E12):384(24G1) GF201:96(6E10):384(24G1) GF201:96(6E10):384(24G1) GF201:96(3E10):384(10119) GF201:96(3E10):384(10119) GF201:96(3E10):384(10119) GF201:96(3E10):384(10119) GF200:96(14G5):384(1313) GF200:96(14G5):384(4H5) GF200:96(14G5):384(4H5) GF200:96(14G5):384(19H5) GF200:96(12G5):384(19H5) GF200:96(12G5):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(10H15) GF200:96(10B2):384(10H15) GF200:96(10B2):384(10H15) GF200:96(10B2):384(10H15) GF200:96(10B2):384(10H15) GF200:96(10B2):384(10H15)	1287	GF202:96(115A9):384(16B18)	773375 AA425723
GF201:96(84E10):384(10120) PEROU:96(6F10):384(200K20) PEROU:96(6D3):384(2066) GF201:96(93B4):384(12D8) GF201:96(56F12):384(1244) GF201:96(6D11):384(2461) GF201:96(6D11):384(2461) GF201:96(2019):384(14P8) GF201:96(2010):384(10119) GF201:96(39E10):384(10119) GF201:96(39E10):384(10119) GF201:96(39E10):384(10119) GF201:96(39E10):384(10119) GF200:96(14G1):384(14H5) GF200:96(14G1):384(14H5) GF200:96(14G1):384(16D19) GF200:96(14G1):384(19H5) GF200:96(116B10):384(19H5) GF200:96(12G5):384(19H5) GF200:96(12G5):384(10119) GF200:96(12G5):384(10119) GF200:96(12G5):384(10119) GF200:96(12G5):384(10119) GF200:96(12G5):384(10119)	1288	GF200:96(19C2):384(5F4)	ESTS, HIGHLY SIMILAR TO POSSIBLE GLOBAL TRANSCRIPTION ACTIVATOR SNF2L3 [H.SAPIENS] AA481026
PEROU!:96(6F10):384(20K20) PEROU!:96(6D3):384(20G6) GF201:96(6D3):384(20G6) GF201:96(61A12):384(21K24) GF201:96(61A12):384(24G1) GF201:96(67D1):384(24G1) GF201:96(67D1):384(24G1) GF201:96(39E10):384(10J19) GF201:96(39E10):384(12D12) GF201:96(39E0):384(12D12) GF201:96(39E0):384(12D12) GF201:96(39E0):384(12D12) GF200:96(14G8):384(14F5) GF200:96(14G6):384(16D19) GF200:96(14G6):384(16D19) GF200:96(14G6):384(19H5) GF200:96(14G6):384(19H5) GF200:96(14G6):384(19H5) GF200:96(14G8):384(19H5) GF200:96(14G8):384(19H5) GF200:96(14G8):384(19H5) GF200:96(25C2):384(7E3) GF200:96(25C2):384(19H5) GF200:96(25C2):384(19H5)	1289		416676 W86504
PEROU!96(6D3):384(20G6) GF201:96(56F12):384(12D8) GF201:96(56F12):384(21424) GF201:96(61A12):384(24G1) GF201:96(61A12):384(24G1) GF201:96(61A12):384(24G1) GF201:96(30E10):384(1019) GF201:96(30E10):384(12D12) GF201:96(30E10):384(12D12) GF201:96(30E10):384(13K12) DEROU!96(7C4):384(20F8) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(19H5) GF200:96(12G5):384(3N9) GF200:96(12G5):384(19H5) GF200:96(12G5):384(19H5) GF200:96(12G5):384(19H5) GF200:96(25C2):384(7E3) GF200:96(10B2):384(19H5) GF200:96(25C2):384(19H5) GF200:96(25C2):384(10H5)	1290	PEROU:96(6F10):384(20K20)	485760 AA039943
GF201:96(9384):384(12D8) GF201:96(56F12):384(21824) GF201:96(61A12):384(24G1) GF201:96(67D1):384(24G1) GF201:96(67D1):384(14P8) GF201:96(86E10):384(10119) GF201:96(96E10):384(12D12) GF201:96(96E0):384(12D12) GF201:96(96E0):384(12D12) GF201:96(96E0):384(12D12) GF201:96(14C6):384(14H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(19H5) GF200:96(10B2):384(3N9) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(12G5):384(19H5) GF200:96(25C2):384(19H5) GF200:96(25C2):384(19H5)	1291	PEROU:96(6D3):384(20G6)	290361 N64505
GF201:96(56F12):384(21K24) GF201:96(61A12):384(24G1) GF201:96(61A12):384(24G1) GF201:96(61A12):384(24G1) GF201:96(25C4):384(1APR) GF201:96(86E10):384(1APR) GF201:96(93E6):384(12D12) GF201:96(92E6):384(12D12) GF201:96(92E6):384(12D12) GF201:96(92E6):384(13K12) GF200:96(14C6):384(20FR) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(19H5) GF200:96(12G5):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(12G5):384(19H5) GF200:96(12G5):384(19H5) GF200:96(12G5):384(19H5) GF200:96(12G5):384(19H5) GF200:96(12G5):384(19H5)	1292		GOLGI AUTOANTIGEN, GOLGIN SUBFAMILY A, 3 AA663910
GF201:96(61A12):384(22B24) GF201:96(67D1):384(24G1) GF200:96(25C4):384(7M7) GF201:96(80E10):384(14P8) GF201:96(80E10):384(10119) GF201:96(80E10):384(12D12) GF201:96(919):384(12D12) GF201:96(919):384(12D12) GF201:96(919):384(13K12) GF200:96(14C6):384(14H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(19H5) GF200:96(10B2):384(3N9) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5)	1293		
GF201:96(67D1):384(24G1) GF200:96(25G4):384(7M7) GF201:96(86E10):384(14P8) GF201:96(86E10):384(10119) GF201:96(96E10):384(12D12) GF201:96(96E6):384(12D12) GF201:96(96E6):384(13K12) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(13K12) GF200:96(14C6):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(25C2):384(19H5) GF200:96(25C2):384(19H5)	1294		795367 AA453271
GF200:96(25G4):384(7M7) GF201:96(101144):384(14P8) GF201:96(86E10):384(10119) GF201:96(96E10):384(12D12) GF201:96(9186):384(12D12) GF201:96(9186):384(12D12) GF201:96(9186):384(13K12) DEROU:96(14C6):384(13K12) GF200:96(14C6):384(14H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(16D19) GF200:96(12G5):384(3N9) GF200:96(12G5):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(16B10):384(19H5)	1295	GF201:96(67D1):384(24G1)	268157 N30152
GF201:96(101H4):384(14P8) GF201:96(86E10):384(1019) GF201:96(86E10):384(22119) GF201:96(9386):384(12D12) GF201:96(9286):384(12D12) GF201:96(926):384(13K12) BEROU:96(7C4):384(2DF8) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4H5) GF200:96(24F4):384(3A13) GF200:96(12G5):384(3N9) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(25C2):384(19H5) GF200:96(25C2):384(19H5)	1296	GF200:96(25G4):384(7M7)	CYSTATIN B (STEFIN B) H22919
GF201:96(86E10):384(10019) GF201:96(59E10):384(22119) GF200:96(14B8):384(4216) GF201:96(93E6):384(12D12) GF201:96(96E6):384(13K12) PEROU:96(7C4):384(20F8) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(10H5) GF200:96(10B2):384(3N9) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(25C2):384(7E3) GF200:96(25C2):384(19H5)	1297	GF201:96(101H4):384(14P8)	SUPEROXIDE DISMUTASE 2, MITOCHONDRIAL T61649
GF201:96(59E10):384(22119) GF200:96(1488):384(4C16) GF201:96(9386):384(12D12) GF201:96(96F6):384(13K12) PEROU:96(7C4):384(20F8) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4H5) GF200:96(24F4):384(3A13) GF200:96(12G5):384(3N9) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5)	1298		
GF200:96(1488):384(4C16) GF201:96(9386):384(12D12) GF201:96(96F6):384(13K12) PEROU:96(7C4):384(20F8) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4H5) GF200:96(24F4):384(3A13) GF200:96(12G5):384(3N9) GF200:96(10B2):384(3N9) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5)	1299	GF201:96(59E10):384(22119)	309803 N94612
GF201:96(9386):384(12D12) GF201:96(96F6):384(13K12) PEROUJ:96(7C4):384(20F8) GF200:96(16D3):384(4H5) GF200:96(14C6):384(4H5) GF200:96(14C6):384(4E12) GF200:96(24F4):384(3A13) GF200:96(12G5):384(3N9) GF200:96(10B2):384(3N9) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5)	1300	GF200:96(14B8):384(4C16)	CHITINASE 3-LIKE 1 (CARTILAGE GLYCOPROTEIN-39) AA434115
GF201:96(96F6):384(13K12) PEROU:96(7C4):384(20F8) GF200:96(16D3):384(4H5) GF200:96(14C6):384(4H5) GF200:96(24F4):384(3A13) GF200:96(24F4):384(3C4) GF200:96(10B2):384(3C4) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(10B2):384(19H5) GF200:96(25C2):384(7E3) GF200:96(25C2):384(19H5) GF200:96(4E5):384(10A17)	1301	GF201:96(93B6):384(12D12)	EPHB6 AA609284
PEROU:96(7C4):384(20F8) GF200:96(16D3):384(4H5) GF200:96(14C6):384(4H5) GF200:96(24F4):384(3A13) GF200:96(24F4):384(6L7) GF200:96(12G5):384(3N9) GF200:96(10B2):384(3N9) GF200:96(10B2):384(19H5) GF200:96(4D3):384(19H5) GF200:96(4D3):384(19H5) GF200:96(4D3):384(19H5)	1302		CHITINASE 3-LIKE 2 AA668821
GF200:96(16D3):384(4H5) GF200:96(14C6):384(4E12) GF200:96(24F4):384(3A13) GF200:96(24F4):384(3N9) GF200:96(10B2):384(3N9) GF200:96(10B2):384(16D19 PEROU:96(4D3):384(19H5) GF200:96(25C2):384(7E3) GF200:96(4E5):384(10A17) GF200:96(4E5):384(1191)	1303	PEROU:96(7C4):384(20F8)	263815 N28486
GF200:96(14C6):384(4E12) GF200:96(24F4):384(3A13) GF200:96(24F4):384(3N9) GF200:96(12G5):384(3N9) GF200:96(10B2):384(3C4) GF200:96(10B2):384(16D19 PEROU:96(4D3):384(19H5) GF200:96(25C2):384(7E3) GF200:96(8A9):384(10A17) GF200:96(4E5):384(119)	1304		H.SAPIENS MRNA FOR AN ACUTE MYELOID LEUKAEMIA PROTEIN (3917BP) AA425238
GF200:96(24F4):384(3A13) GF200:96(24F4):384(6L7) GF200:96(12G5):384(3N9) GF200:96(10B2):384(3C4) GF202:96(116B10):384(16D19 PEROU:96(4D3):384(19H5) GF201:96(83A9):384(1OA17) GF200:96(4E5):384(10A17)	1305		BILIARY GLYCOPROTEIN AA411757
GF200:96(24F4):384(6L7) GF200:96(12G5):384(3N9) GF202:96(10B2):384(3C4) GF202:96(116B10):384(16D19 PEROU:96(4D3):384(19H5) GF200:96(25C2):384(7E3) GF201:96(83A9):384(10A17) GF200:96(4E5):384(119)	1306	GF200:96(9A7):384(3A13)	APOPTOSIS INHIBITOR 2 H48706
GF200:96(12G5):384(3N9) GF200:96(10B2):384(3C4) GF202:96(116B10):384(16D19 PEROU:96(4D3):384(19H5) GF200:96(25C2):384(10A17) GF201:96(83A9):384(10A17) GF200:96(4E5):384(1191)	1307		FIBROBLAST GROWTH FACTOR RECEPTOR 2 (BACTERIA-EXPRESSED KINASE, KERATINOCYTE GROWTH FACTOR DECEED CYMPROME
GF200:96(12G5):384(3N9) GF200:96(10B2):384(3C4) GF202:96(116B10):384(16D19 PEROU:96(4D3):384(19H5) GF200:96(25C2):384(7E3) GF201:96(83A9):384(10A17) GF200:96(4E5):384(119)			JACKSON-WEISS SYNDROME) AA443093
GF200:96(1082):384(3C4) GF202:96(116810):384(16D19 PEROU:96(4D3):384(19H5) GF200:96(25C2):384(7E3) GF201:96(83A9):384(10A17) GF200:96(4E5):384(119)	1308	GF200:96(12G5):384(3N9)	FIBROBLAST GROWTH FACTOR RECEPTOR 2 (BACTERIA-EXPRESSED KINASE, KERATINOCYTE GROWTH
GF200:96(10B2):384(3C4) GF202:96(116B10):384(16D19 PEROU:96(4D3):384(19H5) GF200:96(25C2):384(7E3) GF201:96(83A9):384(10A17) GF200:96(4E5):384(1191)			FACTOR RECEPTOR, CRANIOFACIAL DYSOSTOSIS 1, CROUZON SYNDROME, PFEIFFER SYNDROME,
GF200:96(1082):384(3C4) GF202:96(116B10):384(16D19 PEROU:96(4D3):384(19H5) GF200:96(25C2):384(7E3) GF201:96(83A9):384(10A17) GF200:96(4E5):384(10917)			JACKSON-WEISS SYNDROME) AA456160
GF202:96(116B10):384(16D19 PEROU:96(4D3):384(19H5) GF200:96(25C2):384(7E3) GF201:96(83A9):384(10A17) GF200:96(4E5):384(10917)	1309	GF200:96(10B2):384(3C4)	IMMUNOGLOBULIN SUPERFAMILY CONTAINING LEUCINE-RICH REPEAT H62387
PEROU:96(4D3):384(19H5) GF200:96(25C2):384(7E3) GF201:96(83A9):384(10A17) GF200:96(4E5):384(119)	1310	GF202:96(116B10):384(16D19	ESTS, WEAKLY SIMILAR TO KIAA0631 PROTEIN [H.SAPIENS] AA497001
GF200:96(25C2):384(7E3) GF201:96(83A9):384(10A17) GF200:96(4E5):384(1J9)	1311	PEROU:96(4D3):384(19H5)	CYTOCHROME P450, SUBFAMILY I (DIOXIN-INDUCIBLE), POLYPEPTIDE I (GLAUCOMA 3, PRIMARY INFANTILE) A4029776
GF201:96(83A9):384(10A17) GF200:96(4E5):384(1J9)	1312		CYTOCHROME P450, SUBFAMILY I (DIOXIN-INDUCIBLE), POLYPEPTIDE I (GLAUCOMA 3, PRIMARY INFANTILE) A4448157
GF200:96(4E5):384(1J9)	1313	_	306420 N92699
	1314		POTASSIUM CHANNEL, SUBFAMILY K, MEMBER 1 (TWIK-1) N62620

-	1
a	J
3	5
'n	3
_	•

1316 GF201:96(58F9): 1317 GF201:96(86H1): 1318 GF201:96(86H1): 1319 GF201:96(87F3): 1320 GF201:96(90E8): 1321 GF200:96(584):3 1322 GF200:96(584):3 1324 GF201:96(87G1): 1325 GF200:96(30G3): 1326 GF200:96(30G3): 1327 GF201:96(6C11): 1330 GF200:96(36F2): 1331 GF201:96(96D1): 1333 GF201:96(6C11): 1334 GF200:96(4G9):3 1335 PEROU:96(89B): 1336 GF200:96(10E9): 1337 GF201:96(90B1):	58F9):384(21L17) 86H1):384(10P1) 86G1):384(10P1) 87F3):384(11K5) 95C5):384(13E9) 91E7):384(12I13) 5B4):384(2C7) 90B8):384(11D15) 87G1):384(14D18)	UNTITLED R16098 S100 CALCIUM-BINDING PROTEIN A8 (CALGRANULIN A) AA086471 ESTS, HIGHLY SIMILAR TO STAT4 [M.MUSCULUS] R91570 OROSOMUCOID 1 AA700876
	86H1):384(10P1) 86G1):384(10N1) 87F3):384(11K5) 95C5):384(13E9) 91E7):384(12I13) 91E7):384(2C7) 90B8):384(11D15) 87G1):384(14D18)	S100 CALCIUM-BINDING PROTEIN A8 (CALGRANULIN A) AA086471 ESTS, HIGHLY SIMILAR TO STAT4 [M.MUSCULUS] R91570 OROSOMUCOID 1 AA700876
	86G1):384(10N1) 87F3):384(11K5) 95C5):384(13E9) 91E7):384(12I13) 584):384(2C7) 90B8):384(11D15) 87G1):384(14D18)	ESTS, HIGHLY SIMILAR TO STAT4 [M.MUSCULUS] R91570 OROSOMUCOID 1 AA700876
	87F3):384(11K5) 95C5):384(13E9) 91E7):384(12I13) 5B4):384(2C7) 90B8):384(11D15) 87G1):384(14D18) 30G3):384(8M6)	OROSOMUCOID 1 AA700876
	95C5):384(13E9) 91E7):384(12I13) 5B4):384(2C7) 90B8):384(11D15) 87G1):384(14D18) 30G3):384(8M6)	
	91E7):384(12113) 5B4):384(2C7) 90B8):384(11D15) 87G1):384(14D18) 30G3):384(8M6)	ACID SPHINGOMYELINASE-LIKE PHOSPHODIESTERASE AA676836
	584):384(2C7) 9088):384(11D15) 87G1):384(11M1) 10189):384(14D18) 30G3):384(8M6)	TOLL-LIKE RECEPTOR 2 T57791
	90B8):384(11D15) 87G1):384(11M1) 101B9):384(14D18) 30G3):384(8M6)	PROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, K R79082
	87G1):384(11M1) 101B9):384(14D18) 30G3):384(8M6)	KIAA0173 GENE PRODUCT AA682815
	101B9):384(14D18)	TRANSMEMBRANE GLYCOPROTEIN AA425450
		77193 T50121
		122982 R00332
	56C8):384(21E16)	268960 N24645
	12E7):384(3313)	HUMAN GLUCOSE TRANSPORTER-LIKE PROTEIN-III (GLUT3), COMPLETE CDS AA406551
	24G12):384(6N23)	ETS VARIANT GENE 5 (ETS-RELATED MOLECULE) AA463830
	24G1):384(6N1)	HUMAN CLONE 23933 MRNA SEQUENCE H56918
		ALDEHYDE DEHYDROGENASE 7 N93686
	:384(13G2)	CYTOCHROME P450, SUBFAMILY XXVIIA (STEROID 27-HYDROXYLASE, CEREBROTENDINOUS
		XANTHOMATOSIS), POLYPEPTIDE 1 N66957
	66C11):384(23F21)	343400 W67199
	384(1F17)	GUANYLATE BINDING PROTEIN 2, INTERFERON-INDUCIBLE W77927
	384(20D11)	TUMOR PROTEIN PS3 (LI-FRAUMENI SYNDROME) H62385
	0):384(18119)	D):384(18119) P53-ALU U94788
ľ	80F3):384(9K6)	321488 W32509
П	5D6):384(2G11)	LIVER X RECEPTOR, ALPHA H61935
1339 GF202:96(116E9	116E9):384(16J17)	ESTS, MODERATELY SIMILAR TO (DEFLINE NOT AVAILABLE 4105275) [H.SAPIENS] T60160
	GF201:96(102H8):384(14P15) 46180 H09105	46180 H09105
	:384(11C10)	MALIC ENZYME 1, SOLUBLE AA669689
1342 GF200:96(24D1)	24D1):384(6H1)	GLUTATHIONE S-TRANSFERASE A2 T73468
	28B5):384(7D9)	EST, WEAKLY SIMILAR TO IIII ALU SUBFAMILY J WARNING ENTRY IIII [H.SAPIENS] W47077
1344 GF202:96(112B1	112B10):384(15D19	0):384(15D19 510736 AA099748
):384(4G20)	ARACHIDONATE 5-LIPOXYGENASE H51574
	32G3):384(8N5)	ESTS, HIGHLY SIMILAR TO AQUAPORIN 3 [H.SAPIENS] R91904
	:384(14C15)	PARAOXONASE 3 T57069
1348 GF200:96(26G9)	26G9):384(7M18)	PARAOXONASE 3 R95740
1349 GF202:96(109A3	109A3):384(15A5)	UDP GLYCOSYLTRANSFERASE 2 FAMILY, POLYPEPTIDE B4 N53031
1350 GF201:96(95G5)	95G5):384(13M9)	GAP JUNCTION PROTEIN, BETA 1, 32KD (CONNEXIN 32, CHARCOT-MARIE-TOOTH NEUROPATHY, X- LINKED) N62394
1351 GF200:96(3D6):	3D6):384(1H12)	DIAPHORASE (NADH/NADPH) (CYTOCHROME B-5 REDUCTASE) AA455538

_
a
虿
7
-

GF201:96(81E5):384(9D10) GF201:96(6H8):384(23715) GF201:96(6H8):384(23715) GF201:96(9F2):384(18L6) GF201:96(9E1):384(1207) GF201:96(6H6):384(23711) GF201:96(6H6):384(23711) GF201:96(9E2):384(1314) GF201:96(9E2):384(10115) GF200:96(14H3):384(20H8) GF200:96(14H3):384(20H8) GF200:96(14H3):384(20H8) GF200:96(14H3):384(20H8) GF200:96(14H3):384(10113) GF200:96(14H3):384(10113) GF200:96(14H3):384(10113) GF200:96(14H3):384(10113) GF200:96(11541):384(10111) GF201:96(82011):384(10111) GF201:96(82011):384(10111) GF201:96(82011):384(10111) GF201:96(82011):384(10111) GF201:96(81G1):384(13H16) PEROU:96(115G7):384(1111) GF201:96(81G1):384(1111) GF201:96(81G1):384(1111) GF201:96(81G1):384(1111) GF201:96(81G1):384(1111) GF201:96(81G1):384(1111) GF201:96(81G1):384(1111) GF201:96(81G1):384(1111) GF201:96(81G1):384(11117) GF201:96(81G1):384(11117)	1352	GF200:96(13D4):384(4G7)	CYTOCHROME B-5 R92281
GF201:96(6648):384(23P15) GF201:96(9F2):384(18L6) GF201:96(9144):384(1207) GF201:96(18B9):384(1211) GF201:96(6646):384(23P11) GF201:96(6646):384(23P11) GF201:96(6646):384(23P11) GF201:96(6646):384(2046) PEROU:96(7D3):384(2046) PEROU:96(7D3):384(2048) GF201:96(8D11):384(2048) GF201:96(8D11):384(2048) GF201:96(8D11):384(10112) GF201:96(952012):384(10111) GF201:96(99H10):384(10111) GF201:96(99H10):384(10111) GF201:96(8D1):384(10111) GF201:96(8D1):384(10111) GF201:96(8D1):384(10111) GF201:96(8D1):384(1116) GF201:96(8D1):384(1116) GF201:96(99H3):384(1116) GF201:96(99H3):384(1111) GF201:96(99H3):384(1111) GF201:96(99H3):384(1111) GF201:96(99H3):384(1111) GF201:96(99H3):384(1111) GF201:96(99H3):384(1111) GF201:96(99H3):384(1111) GF201:96(99H3):384(1111)	1353	GF201:96(81B5):384(9D10)	268258 N30006
GF201:96(81D9):384(9H1B) PEROU:96(9F3):384(18L6) GF201:96(18B9):384(1207) GF201:96(66H6):384(23P11) GF201:96(66H6):384(23P11) GF201:96(66H6):384(23P11) GF201:96(66H3):384(20H6) PEROU:96(7D3):384(20H8) GF200:96(4B7):384(20H8) GF200:96(4B7):384(20H8) GF201:96(8D11):384(20H8) GF201:96(8D11):384(20H8) GF201:96(8D11):384(20H8) GF201:96(8D11):384(10D12) GF201:96(85B6):384(10D12) GF201:96(85B6):384(10D12) GF201:96(81G1):384(10D11) GF201:96(81G1):384(10D11) GF201:96(81G1):384(10D11) GF201:96(81G1):384(10D11) GF201:96(81G1):384(11H6) GF201:96(8D1):384(11H6) GF201:96(8D1):384(11H6) GF201:96(8D1):384(11H7) GF201:96(8D1):384(11H7) GF201:96(8D1):384(11H7) GF201:96(8D2):384(11H7) GF201:96(8D2):384(11H7) GF201:96(99F3):384(11H7) GF201:96(99F3):384(11H7)	1354	GF201:96(66H8):384(23P15)	504678 AA142942
PEROU:96(9F3):384(18L6) GF201:96(91H4):384(1207) GF201:96(618B9):384(23P11) GF201:96(66H6):384(23P11) GF201:96(66H6):384(2011) GF201:96(66H3):384(20H6) PEROU:96(7D3):384(20H8) GF200:96(7D4):384(20H8) GF200:96(7D4):384(20H8) GF201:96(80D11):384(20H8) GF201:96(80D11):384(20H8) GF201:96(80D11):384(10D12) GF201:96(85B6):384(10D12) GF201:96(85B6):384(10D12) GF201:96(81G1):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(11H6) GF201:96(81G1):384(11H6) GF201:96(81G1):384(11H6) GF201:96(81G1):384(11H0) GF201:96(81G1):384(11H0) GF201:96(81G1):384(11H0) GF201:96(81G1):384(11H0) GF201:96(81G1):384(11H0) GF201:96(81G1):384(11H0) GF201:96(81G1):384(11H0) GF201:96(81G1):384(11H0)	1355	GF201:96(81D9):384(9H18)	HOMO SAPIENS MRNA; CDNA DKFZP5641142 (FROM CLONE DKFZP564)142) N75017
GF201:96(91H4):384(1207) GF200:96(18B9):384(1211) GF201:96(66H6):384(23P11) GF201:96(66H6):384(12115) GF201:96(91E8):384(12115) GF201:96(7D3):384(20H8) GF200:96(7D4):384(20H8) GF200:96(7D4):384(20H8) GF200:96(7D4):384(20H8) GF201:96(80D11):384(8A3) GF201:96(80D11):384(10D12) GF201:96(80D11):384(10D12) GF201:96(99H10):384(10111) GF201:96(99H10):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(1011) GF201:96(81G1):384(11H6) GF201:96(81G1):384(11H6) GF201:96(81G1):384(11H6) GF201:96(81G1):384(11H6) GF201:96(81G1):384(11H7) GF201:96(81G1):384(11H7) GF201:96(81G1):384(11H7) GF201:96(81G1):384(11H7)	1356	PEROU:96(9F3):384(18L6)	[299664 N75017
GF200:96(18B9):384(5C18) GF201:96(66H6):384(23P11) GF201:96(66H6):384(1314) GF201:96(61B):384(12115) GF201:96(7D3):384(20H6) PEROU:96(7D3):384(20H8) GF200:96(7D4):384(20H8) GF200:96(7D4):384(20H8) GF200:96(7D4):384(20H8) GF201:96(80D11):384(8A3) GF201:96(80D11):384(20L2) GF201:96(80D11):384(10D12) GF201:96(99H10):384(10111) GF201:96(99H10):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(11H6) GF201:96(81G1):384(11H6) GF201:96(99F3):384(11H6) GF201:96(99F3):384(11H6) GF201:96(99F3):384(11H0) GF201:96(99F3):384(11H7) GF201:96(99F3):384(11H7) GF201:96(99F3):384(11H7) GF201:96(99F3):384(11H7) GF201:96(90G4):384(11H7)	1357	GF201:96(91H4):384(12O7)	KYNURENINASE; L-KYNURENINE HYDROLASE H87471
GF201:96(6646):384(23P11) GF201:96(96E2):384(1314) GF201:96(91E8):384(12115) GF200:96(14H3):384(20H6) PEROU!96(7D3):384(20H6) PEROU!96(7D3):384(20H8) GF200:96(4B7):384(1D13) GF201:96(8D11):384(20H8) GF201:96(8D11):384(20H8) GF201:96(8D11):384(20H2) GF201:96(99H10):384(10H11) GF201:96(99H10):384(10H11) GF201:96(99H10):384(10H11) GF201:96(81G1):384(10H11) GF201:96(81G1):384(10H11) GF201:96(81G1):384(11H6) GF201:96(81G1):384(11H6) GF201:96(81G1):384(11H6) GF201:96(81G1):384(11H6) GF201:96(99H3):384(11H6) GF201:96(99H3):384(11H6) GF201:96(99H3):384(11H6) GF201:96(99H3):384(11H7) GF201:96(99H3):384(11H7) GF201:96(99H3):384(11H7) GF201:96(99H3):384(11H7) GF201:96(90G4):384(11H7)	1358	GF200:96(18B9):384(5C18)	TRYPTOPHAN 2,3-DIOXYGENASE T72422
GF201:96(96E2):384(1314) GF201:96(91E8):384(12115) GF200:96(14H3):384(20H6) PEROU!96(7D3):384(20H8) GF200:96(4B7):384(1D13) GF200:96(29A2):384(8A3) GF201:96(8D11):384(8A2) GF201:96(8D11):384(20A2) GF201:96(8D11):384(10D12) GF201:96(99H10):384(10111) GF201:96(99H10):384(10111) GF201:96(99H10):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(10111) GF201:96(81G1):384(1116) GF201:96(81G1):384(1116) GF201:96(81G1):384(1111) GF201:96(81G1):384(1111) GF201:96(81G1):384(1111) GF201:96(81G1):384(1111) GF201:96(81G1):384(1111) GF201:96(81G1):384(1111) GF201:96(81G1):384(1111) GF201:96(81G1):384(1111) GF201:96(81G1):384(1111)	1359	GF201:96(66H6):384(23P11)	810901 AA459293
GF201:96(91EB):384(12115) GF200:96(1413):384(2016) PEROU:96(7D3):384(2016) PEROU:96(7D3):384(2018) GF200:96(4B7):384(2018) GF200:96(4B7):384(1013) GF200:96(4B7):384(1013) GF201:96(8011):384(202) GF201:96(8011):384(1012) GF201:96(991410):384(1012) GF201:96(991410):384(1011) GF201:96(991410):384(1011) GF201:96(991410):384(1011) GF201:96(991410):384(1011) GF201:96(8011):384(2013) GF201:96(8011):384(2115) GF201:96(8011):384(2115) GF201:96(8011):384(1116) GF201:96(8011):384(1116) GF201:96(9913):384(1116) GF201:96(9913):384(1116) GF201:96(9913):384(1116) GF201:96(9013):384(1117) GF201:96(9013):384(1117) GF201:96(9013):384(1116) GF201:96(9013):384(1116)	1360	GF201:96(96E2):384(1314)	ZA (REGION BETWEEN EXONS 35 AND 36 OF THE COMPLEMENT COMPONENT C4 GE) [HUMAN, FETAL
GF201:96(91E8):384(12115) GF200:96(14H3):384(12115) GF200:96(14H3):384(20H6) PEROU:96(7D4):384(20H8) GF200:96(29A2):384(8A3) GF200:96(29A2):384(8A3) GF201:96(80D11):384(20L2) GF201:96(80D11):384(11119) GF201:96(80D11):384(10D12) GF201:96(80D11):384(10D11) GF201:96(80D11):384(10D11) GF201:96(80D11):384(10D11) GF201:96(80D11):384(10D11) GF201:96(80D11):384(10D11) GF201:96(80D1):384(10D11) GF201:96(80D1):384(10D11) GF201:96(80D1):384(10D11) GF201:96(80D1):384(10D11) GF201:96(80D1):384(10D11) GF201:96(80D1):384(110D1) GF201:96(90D1):384(11D1) GF201:96(90D1):384(11D1) GF201:96(90D1):384(11D1) GF201:96(90D2):384(11D1) GF201:96(90D2):384(11D1) GF201:96(90D2):384(11D1)			ADRENAL GLAND, MRNA, 830 NT] AA664406
GF200:96(14H3):384(406) PEROU:96(7D3):384(20H8) GF200:96(7D4):384(20H8) GF200:96(7D4):384(1D13) GF201:96(8D11):384(20L1) GF201:96(8D11):384(20L2) GF201:96(8D11):384(1D12) GF201:96(8D11):384(10D12) GF201:96(8D1):384(10D12) GF201:96(8D1):384(10D11) GF201:96(8D1):384(10D11) GF201:96(8D1):384(10D11) GF201:96(8D1):384(1D11) GF201:96(8D1):384(1D11) GF201:96(8D1):384(1D11) GF201:96(8D1):384(1D1) GF201:96(8D1):384(1D1) GF201:96(8D1):384(1D1) GF201:96(9D1):384(1D1) GF201:96(9D2):384(1D1) GF201:96(9D2):384(1D1) GF201:96(9D2):384(1D1) GF201:96(9D2):384(1D1) GF201:96(9D2):384(1D1) GF201:96(9D2):384(1D1)	1361		TRANSFORMING GROWTH FACTOR BETA-STIMULATED PROTEIN TSC-22 AA664389
PEROU:96(7D3):384(20H6) PEROU:96(7D4):384(20H8) GF200:96(7D4):384(1D13) GF200:96(29A2):384(8A3) GF201:96(8D11):384(9G22) GF201:96(8D11):384(10D12) GF201:96(8D12):384(10D12) GF201:96(8D12):384(10D12) GF201:96(8D12):384(10D12) GF201:96(8D12):384(10D11) GF201:96(8D12):384(1D11) GF201:96(8D12):384(1D11) GF201:96(8D12):384(1D12) GF201:96(8D12):384(1D12) GF201:96(8D12):384(1D12) GF201:96(8D12):384(1D12) GF201:96(8D12):384(1D12) GF201:96(8D12):384(1D12) GF201:96(8D12):384(1D12) GF201:96(9D23):384(1D2) GF201:96(9D23):384(1D2) GF201:96(9D23):384(1D2) GF201:96(9D23):384(1D2) GF201:96(9D23):384(1D2)	1362	GF200:96(14H3):384(406)	ACTIVATED LEUCOCYTE CELL ADHESION MOLECULE R13558
PEROU:96(7D4):384(20H8) GF200:96(4B7):384(1D13) GF200:96(29A2):384(1D13) GF201:96(8D11):384(9G22) GF201:96(8D11):384(2N2) GF201:96(8D11):384(1D12) GF201:96(8D12):384(1D12) GF201:96(8D12):384(1D11) GF201:96(8D12):384(1D11) GF201:96(8D12):384(1D11) GF201:96(8D12):384(1D11) GF201:96(8D12):384(1D11) GF201:96(8D12):384(1D11) GF201:96(8D12):384(1D12) GF201:96(8D12):384(1D12) GF201:96(8D12):384(1D12) GF201:96(8D12):384(1D12) GF201:96(9D12):384(1D12) GF201:96(9D12):384(1D12) GF201:96(9D12):384(1D12) GF201:96(9D12):384(1D12) GF201:96(9D12):384(1D12) GF201:96(9D12):384(1D12) GF201:96(9D12):384(1D12) GF201:96(9D12):384(1D12)	1363	PEROU:96(7D3):384(20H6)	2338271 AI912047
GF200:96(4B7):384(1D13) GF200:96(29A2):384(8A3) GF201:96(8D11):384(9C22) GF201:96(87E10):384(11119) GF201:96(85B6):384(10D12) GF201:96(85B6):384(10D12) GF201:96(85B6):384(10D12) GF201:96(82B6):384(10D12) GF201:96(81G1):384(10D11) GF201:96(81G1):384(1SB1) GF201:96(81G1):384(1SB1) GF201:96(81G1):384(1SB1) GF201:96(81G1):384(1N16) GF201:96(81G1):384(1N16) GF201:96(81G1):384(1N16) GF201:96(81G1):384(1N16) GF201:96(81G1):384(1N17) GF201:96(81G1):384(1N17) GF201:96(81G1):384(1N17) GF201:96(81G1):384(1N17) GF201:96(81G1):384(1N17) GF201:96(91G12):384(1N17) GF201:96(91G12):384(1N17) GF201:96(91G12):384(1N17) GF201:96(91G12):384(1N17) GF201:96(91G12):384(1N17)	1364	PEROU:96(7D4):384(20H8)	1944078 AI201945
GF200:96(29A2):384(8A3) GF201:96(8D011):384(9A2) GF201:96(8TE10):384(1119) GF201:96(9TE10):384(1119) GF201:96(9C12):384(12E24) GF201:96(9C12):384(12E24) GF201:96(99H10):384(10D12) GF201:96(99H10):384(10D12) GF201:96(81G1):384(10H1) GF201:96(81G1):384(14019) GF201:96(8D1):384(14N14) GF201:96(8D1):384(14N14) GF201:96(8D1):384(14N24) GF201:96(8D1):384(1116) FEROU:96(8D1):384(1116) GF201:96(9G1):384(1116) GF201:96(9G2):384(1116) GF201:96(9G2):384(1116) GF201:96(9G2):384(1116) GF201:96(9G2):384(1117) GF201:96(9G2):384(1117)	1365		ESTS, HIGHLY SIMILAR TO INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 2 PRECURSOR
GF201:96(80011):384(9G22) GF201:96(87E10):384(1119) GF201:96(92C12):384(12E24) GF201:96(92C12):384(12E24) GF201:96(92C12):384(10D12) GF201:96(99H10):384(10D12) GF201:96(99H10):384(10D12) GF201:96(99H10):384(10H19) GF201:96(112A1):384(15B1) GF202:96(115G7):384(13H16) PEROU:96(8D1):384(13H16) PEROU:96(8D1):384(11L6) GF201:96(115G7):384(11L6)	1366	GF200:96(29A2):384(8A3)	FSTS WEAKLY SIMILAR TO IIII ALII SUBFAMTIY SO WADNING ENTDY IIII M. CADTENCT WOODS
GF201:96(87E10):384(11119) GF200:96(7G1):384(2012) GF201:96(92C12):384(12E24) GF201:96(92C12):384(10D12) GF201:96(85B6):384(10D12) GF201:96(89H10):384(10H11) GF202:96(112A1):384(10H11) GF202:96(112A1):384(10H14) GF201:96(81G1):384(10H14) GF201:96(81G1):384(1116) PEROU:96(8013):384(2H1) GF201:96(910H1):384(2H1) GF201:96(910H1):384(1H16) GF201:96(919):384(1H16) GF201:96(919):384(1H16) GF201:96(919):384(1H16) GF201:96(919):384(1H16) GF201:96(919):384(1H16) GF201:96(919):384(1H16) GF201:96(919):384(1H16)	1367		809503 AA454562
GF200:96(7G1):384(2N2) GF201:96(92C12):384(12E24) GF201:96(85B6):384(10D12) GF201:96(82B6):384(10D12) GF201:96(81G1):384(10D11) GF202:96(112A1):384(15B1) GF202:96(115G7):384(15B1) GF201:96(81G1):384(10D1) GF201:96(81G1):384(10D1) GF201:96(8D1):384(2D1) GF201:96(91D8):384(11L6) GF201:96(101G12):384(11L6) GF201:96(101G12):384(11L6) GF201:96(101G12):384(11D) GF201:96(101G12):384(11D) GF201:96(101G12):384(11D) GF201:96(101G12):384(11D) GF201:96(101G12):384(11D)	1368		SILVER (MOUSE HOMOLOG) LIKE N67770
GF201:96(92C12):384(12E24) GF201:96(85B6):384(10D12) GF201:96(85B6):384(10D12) GF201:96(8100):384(10D11) GF201:96(81G1):384(10D11) GF202:96(112A1):384(15B1) GF202:96(115G7):384(10D11) GF201:96(81G1):384(10D1) GF201:96(8D1):384(2D15) GF201:96(9D10):384(11L6) GF201:96(10D10):384(11L6) GF201:96(10D10):384(11D1) GF201:96(10D10):384(11D1) GF201:96(10D10):384(11D1) GF201:96(10D10):384(11D1) GF201:96(10D10):384(11D1) GF201:96(10D10):384(11D1) GF201:96(10D10):384(11D1)	1369	GF200:96(7G1):384(2N2)	DYSTROBREVIN, ALPHA H09172
GF201:96(85B6):384(10D12) GF201:96(99H10):384(14019) GF201:96(99H10):384(14019) GF201:96(8161):384(10111) GF202:96(115G7):384(16N14) GF201:96(81G1):384(18H16) GF201:96(8D1):384(20H5) GF201:96(8D1):384(14N24) GF201:96(8P13):384(11L6) GF201:96(8P13):384(11L6) GF201:96(9P13):384(11L6) GF201:96(9P13):384(11L6) GF201:96(9P13):384(11L6) GF201:96(9P13):384(11L6) GF201:96(9P13):384(11L6) GF201:96(9P13):384(11N7) GF201:96(9P13):384(11N7) GF201:96(9P13):384(11N7)	1370	GF201:96(92C12):384(12E24)	
GF201:96(8586):384(10D12) GF201:96(59A12):384(20A23) GF201:96(99H10):384(14019) GF201:96(816):384(10111) GF202:96(115G7):384(15B1) GF202:96(115G7):384(15B1) GF201:96(81G1):384(9N2) GF201:96(8D2):384(14N2) GF201:96(8D2):384(14N24) GF201:96(89F3):384(11L6) GF201:96(99F3):384(11L6) GF201:96(99F3):384(11L6) GF201:96(90G4):384(11N7) GF201:96(90G4):384(11N7) GF201:96(90G4):384(11N7)			I KANSLOCATED TO, 4 NZ6539
GF201:96(59A12):384(22A23) GF201:96(99H10):384(14019) GF201:96(8156):384(10111) GF202:96(112A1):384(15B1) GF202:96(115G7):384(16N14) GF201:96(8161):384(20H5) GF201:96(8023):384(20H5) GF201:96(8021):384(21H1) GF201:96(8013):384(21H1) GF201:96(89F3):384(11L6) GF201:96(99F3):384(11L6) GF201:96(90G4):384(11N7) GF201:96(90G4):384(11N7) GF201:96(90G4):384(11N7) GF201:96(90G4):384(11N7)	1371	GF201:96(85B6):384(10D12)	359597 AA010818
GF201:96(99H10):384(14019) GF201:96(83E6):384(10111) GF202:96(112A1):384(15B1) GF202:96(115G7):384(16N14) GF201:96(81G1):384(9N2) GF201:96(8D2):384(20H5) GF201:96(8D2):384(2H1) GF201:96(1011G12):384(11L6) GF201:96(1011G12):384(11L6) GF201:96(1011G12):384(11L6) GF201:96(1011G12):384(11L6) GF201:96(1011G12):384(11L6) GF201:96(1011G12):384(11L6) GF201:96(1011G12):384(11L6) GF201:96(1011G12):384(11L6)	1372	GF201:96(59A12):384(22A23)	364555 AA022601
GF201:96(83E6):384(10111) GF202:96(112A1):384(15B1) GF202:96(115G7):384(15B1) GF201:96(81G1):384(9N2) GF201:96(8D2):384(20H5) GF200:96(8D1):384(2H1) GF201:96(90F3):384(11L6) GF201:96(99F3):384(11L6) GF201:96(90G4):384(11N7) GF201:96(90G4):384(11N7) GF201:96(90G4):384(11N7) GF201:96(90G4):384(11N7) GF201:96(90G4):384(11N7)	1373)[47428 H11088
GF202:96(112A1):384(15B1) GF202:96(115G7):384(16N14) GF201:96(81G1):384(13H16) GF201:96(8D2):384(13H16) PEROU:96(8D2):384(20H5) GF201:96(8D2):384(111) GF201:96(89F3):384(1116) GF201:96(89F3):384(1116) GF201:96(90G4):384(1117) GF201:96(90G4):384(1117) GF201:96(90G4):384(1107) GF201:96(90G4):384(1107)	1374	GF201:96(83E6):384(10111)	503602 AA131299
GF202:96(115G7):384(16N14) GF201:96(81G1):384(9N2) GF201:96(8D3):384(13H16) PEROU:96(8D3):384(20H5) GF201:96(8D1):384(11L6) GF201:96(89F3):384(11L6) GF201:96(89F3):384(11L6) GF201:96(90G4):384(111) GF201:96(90G4):384(1117) GF201:96(90G4):384(1107) GF201:96(90G4):384(1107)	1375	GF202:96(112A1):384(15B1)	261194 H98215
GF201:96(81G1):384(9N2) GF201:96(97D8):384(13H16) PEROU:96(8D3):384(20H5) GF200:96(8D1):384(2H1) GF201:96(101G12):384(11L6) GF201:96(89F3):384(11L6) GF201:96(90G4):384(1117) GF201:96(90G4):384(11N7) GF201:96(90G4):384(11N7) GF201:96(90G4):384(7124)	1376	GF202:96(115G7):384(16N14)	ESTS, WEAKLY SIMILAR TO GTP-BINDING PROTEIN RAB2 [H.SAPIENS] AA156821
GF201:96(97D8):384(13H16) PEROU:96(8D3):384(20H5) GF200:96(8D1):384(2H1) GF201:96(101G12):384(11L6) GF201:96(89F3):384(11L6) GF201:96(4E1):384(111) GF201:96(90G4):384(11N7) GF201:96(90G4):384(11N7) GF201:96(90G4):384(7124)	1377	GF201:96(81G1):384(9N2)	282868 N50152
PEROU:96(8D3):384(20H5) GF200:96(8D1):384(2H1) GF201:96(101G12):384(11L6) GF201:96(89F3):384(11L6) GF201:96(4E1):384(111) GF201:96(90G4):384(1117) GF201:96(90G4):384(1107) GF201:96(90G4):384(1107) GF201:96(90G4):384(7124)	1378	GF201:96(97D8):384(13H16)	ANKYRIN 3, NODE OF RANVIER (ANKYRIN G) AA677185
GF200:96(8D1):384(2H1) GF201:96(101G12):384(14N24 GF201:96(89F3):384(11L6) GF200:96(4E1):384(111) GF200:96(4E1):384(1117) GF200:96(26E12):384(7124) GF201:96(69E2):384(7124)	1379		364209 AA021558
GF201:96(101G12):384(14N24 GF201:96(89F3):384(11L6) GF200:96(4E1):384(111) GF201:96(90G4):384(11N7) GF200:96(26E12):384(7124) GF201:96(69E2):384(7124)	1380	GF200:96(8D1):384(2H1)	ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY SO WARNING ENTRY !!!! [H.SAPIENS] H59915
GF201:96(89F3):384(11L6) GF200:96(4E1):384(111) GF201:96(90G4):384(11N7) GF200:96(26E12):384(7124) GF201:96(69E2):384(7124)	1381	GF201:96(101G12):384(14N24	1 81316 T60061
GF200:96(4E1):384(1J1) GF201:96(90G4):384(1JN7) GF200:96(26E12):384(7Z4) GF201:96(69E2):384(7J4)	1382	GF201:96(89F3):384(11L6)	SEMA DOMAIN, IMMUNOGLOBULIN DOMAIN (IG), SHORT BASIC DOMAIN, SECRETED, (SEMAPHORIN)
GF201:96(90G4):384(11N7) GF200:96(26E12):384(7124) GF201:96(69E2):384(2414)	1383		ENDOTHELIAL KRUPPEL-LIKE ZINC FINGER PROTEIN H45711
GF200:96(26E12):384(7I24) GF201:96(69E2):384(2414)	1384		ESTS, MODERATELY SIMILAR TO (DEFLINE NOT AVAILABLE 4159884) [H.SAPIENS] AA001222
GF201:96(69E2):384(2414)	1385	GF200:96(26E12):384(7I24)	DESMOCOLLIN 2 AA074677
() 5: =\: 00/\0\:5:=0=	1386	GF201:96(69E2):384(2414)	321902 W37448

-	4
q	J
3	5
ď	3

);384(185));384(185) 1);384(282) 1);384(4818)));384(4818) 12);384(1015) 12);384(3819) 10);384(1124) 2);384(1124) 2);384(1124) 2);384(1124) 2);384(1124) 2);384(1124) 2);384(1124) 2);384(1124) 2);384(1124) 2);384(1124)	KERATIN 13 W23757 134011 R31262 49630 H29256 VITAMIN D (1,25- DIHYDROXYVITAMIN D3) RECEPTOR AA485226 SYNDECAN 1 AA074511 SEMA DOMAIN, IMMUNOGLOBULIN DOMAIN (IG), SHORT BASIC DOMAIN, SECRETED, (SEMAPHORIN) 3F AA454570 PROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, F AA598513 BUTYRATE RESPONSE FACTOR 1 (EGF-RESPONSE FACTOR 1) AA424743 ANTHRACYCLINE RESISTANCE-ASSOCIATED AA495766 MEMBRANE COMPONENT CHROMOSOME 1 SIDEACE MARKED 1 (AMCH G1 YCOPROTEIN THENDINEMBRANE COMPONENT CHROMOSOME 1 SIDEACE MARKED 1 (AMCH G1 YCOPROTEIN THENDINEMBRANE COMPONENT CHROMOSOME 1 SIDEACE MARKED 1 (AMCH G1 YCOPROTEIN THENDINEMBRANE COMPONENT CHROMOSOME 1 SIDEACE MARKED 1 (AMCH G1 YCOPROTEIN THENDINEMBRANE COMPONENT CHROMOSOME 1 SIDEACE MARKED 1 (AMCH G1 YCOPROTEIN THENDINEMBRANE COMPONENT CHROMOSOME 1 SIDEACE MARKED 1 (AMCH G1 YCOPROTEIN THENDINEMBRANE COMPONENT CHROMOSOME 1 SIDEACE MARKED 1 (AMCH G1 YCOPROTEIN THENDINEMBRANE COMPONENT CHROMOSOME 1 SIDEACE MARKED 1 (AMCH G1 YCOPROTEIN THENDINEMBRANE COMPONENT CHROMOSOME 1 SIDEACE MARKED 1 (AMCH G1 YCOPROTEIN THENDINEMBRANE COMPONENT CHROMOSOME 1 SIDEACE MARKED 1 (AMCH G1 YCOPROTEIN THENDINEMBRANE COMPONENT CHROMOSOME 1 SIDEACE MARKED 1 (AMCH G1 YCOPROTEIN THENDINEMBRANE COMPONEMBRANE COMPONEM
		134011 R31262 19630 H29256 ITTAMIN D (1,25- DIHYDROXYVITAMIN D3) RECEPTOR AA485226 SYNDECAN 1 AA074511 SEMA DOMAIN, IMMUNOGLOBULIN DOMAIN (1G), SHORT BASIC DOMAIN, SECRETED, (SEMAPHORIN) SE AA454570 ROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, F AA598513 SUTYRATE RESPONSE FACTOR 1 (EGF-RESPONSE FACTOR 1) AA424743 ANTHRACYCLINE RESISTANCE-ASSOCIATED AA495766 AFMRD AME COMPONENT CHROMOSOME 1 SUBFACT MARKER 1 (40KD G1 YCOPROTEIN IDENTIFIED
		19630 H29256 ITTAMIN D (1,25- DIHYDROXYVITAMIN D3) RECEPTOR AA485226 SYNDECAN 1 AA074511 SEMA DOMAIN, IMMUNOGLOBULIN DOMAIN (IG), SHORT BASIC DOMAIN, SECRETED, (SEMAPHORIN) SEMA DOMAIN, IMMUNOGLOBULIN DOMAIN (IG), SHORT BASIC DOMAIN, SECRETED, (SEMAPHORIN) SEMA DOMAIN, IMMUNOGLOBULIN DOMAIN (IG), SHORT BASIC DOMAIN, SECRETED, (SEMAPHORIN) ROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, F AA598513 SUTYRATE RESPONSE FACTOR 1 (EGF-RESPONSE FACTOR 1) AA424743 NNTHRACYCLINE RESISTANCE-ASSOCIATED AA495766 ARMRD AAR COMPONENT CHROMOSOME 1 SUBFACF MARKER 1 (40KD G1 YCOPROTEIN IDENTIFIED
		VITAMIN D (1,25- DIHYDROXYVITAMIN D3) RECEPTOR AA485226 SYNDECAN 1 AA074511 SEMA DOMAIN, IMMUNOGLOBULIN DOMAIN (IG), SHORT BASIC DOMAIN, SECRETED, (SEMAPHORIN) SE AA454570 ROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, F AA598513 SUTYRATE RESPONSE FACTOR 1 (EGF-RESPONSE FACTOR 1) AA424743 ANTHRACYCLINE RESISTANCE-ASSOCIATED AA495766 AFMRD AME COMPONENT CHROMOSOME 1 SUBFACT MARKED 1 (40KD G1 YCOPROTEIN IDENTIFIED
	9):384(10115) 12):384(9G24) 9):384(4H17) 10):384(3B19) 2):384(1124) 2):384(1124) 1):384(5D8) 10):384(6D19) 10):384(4F18) 11):384(14F18)	SYNDECAN 1 AA074511 SEMA DOMAIN, IMMUNOGLOBULIN DOMAIN (IG), SHORT BASIC DOMAIN, SECRETED, (SEMAPHORIN) SF AA454570 ROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, F AA598513 SUTYRATE RESPONSE FACTOR 1 (EGF-RESPONSE FACTOR 1) AA424743 ANTHRACYCLINE RESISTANCE-ASSOCIATED AA495766 AFMRDAME COMPONENT CHROMOSOME 1 SI BEAFF MARKER 1 (40KD GI YCOPROTEIN IDENTIFIED
	12):384(9G24) 9):384(4H17) 10):384(1124) 2):384(1124) 2):384(1124) 10):384(5D8) 10):384(6D19) 10):384(6D19) 10):384(14F18)	SEMA DOMAIN, IMMUNOGLOBULIN DOMAIN (IG), SHORT BASIC DOMAIN, SECRETED, (SEMAPHORIN) IF AA454570 ROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, F AA598513 SUTYRATE RESPONSE FACTOR 1 (EGF-RESPONSE FACTOR 1) AA424743 NNTHRACYCLINE RESISTANCE-ASSOCIATED AA495766 ARMRDANE COMPONENT CHROMOSOME 1 SI BEACE MARKER 1 (40KD GI YCOPROTEIN IDENTIFIED
	9):384(4H17) 10):384(3E19) 2):384(1L24) 2):384(1J24) 4):384(5D8) 10):384(6D19) C9):384(14F18)	ROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, F AA598513 SUTYRATE RESPONSE FACTOR 1 (EGF-RESPONSE FACTOR 1) AA424743 ANTHRACYCLINE RESISTANCE-ASSOCIATED AA495766 AFMRDANE COMPONENT CHROMOSOME 1 SUBFACE MARKER 1 (40KD GI YCOPROTEIN IDENTIFIED
	10):384(3819) 2):384(1124) 2):384(1124) 4):384(508) 10):384(6019) (2):384(1418) 11):384(1619)	BUTYRATE RESPONSE FACTOR 1 (EGF-RESPONSE FACTOR 1) AA424743 ANTHRACYCLINE RESISTANCE-ASSOCIATED AA495766 AFMRD ANE COMPONENT CHROMOSOME 1 SUBFACE MARKED 1 (40KD G) YCOPROTEIN IDENTIFIED
	2):384(1124) 2):384(1124) 4):384(508) 10):384(6019) (2):384(1418) 41:384(1682)	NNTHRACYCLINE RESISTANCE-ASSOCIATED AA495766 MEMBRAINE COMPONENT CHROMOSOME 1 SI IBEACE MARKER 1 (40KD GI YCOPROTEIN IDENTIFIED
	2):384(1)24) 4):384(5D8) 10):384(6D19) C9):384(14F18) 41):384(16R2)	MEMBRANE COMPONENT CHROMOSOME 1 SLIBEACE MARKER 1 (40KD GLYCODROTEIN THEIR
	4):384(5D8) 10):384(6D19) C9):384(14F18)	יוביוניטאר כסיין סאבאן כי האסייסטייר בן טטא חלב הייטאריי בעניין איני בעניין בעניין בער הייטן בעניין בער
	4):384(5D8) 10):384(6D19) C9):384(14F18)	BY MONOCLONAL ANTIBODY GA733) AA454810
	10):384(6D19) C9):384(14F18) A1):384(16B2)	KERATIN 7 AA489569
1 1 1 1 1 1 1 1	C9):384(14F18)	813520 AA455591
1 1 1 1 1 1		HOMO SAPIENS MRNA; CDNA DKFZPS86BZUZZ (FROM CLONE DKFZPS86BZUZZ) 1523Z5 HOMO SADIENS AGDIN DDECIDEOD MBNA DADTTAI COS AA458R78
1	E8):384(15)15)	ESTS, WEAKLY SIMILAR TO KIAA0319 [H.SAPIENS] A4136133
1 1 1 1 1	5):384(4110)	ANTIQUITIN 1 AA101299
	9):384(7018)	HEXOKINASE 1 AA485272
1 1	2):384(6D24)	HEXOKINASE 1 AA485271
	(90F1):384(11L1)	LADININ 1 T97710
_	1):384(7C2)	H.SAPIENS MRNA FOR RECEPTOR TYROSINE KINASE EPH (PARTIAL) N90246
٦	11):384(3821)	144834 R77251
٦	1):384(5D2)	CREATINE KINASE, MITOCHONDRIAL 1 (UBIQUITOUS) AA019482
):384(20D12)	364302 AA022462
٦		176461 H43515
\neg	PEROU:96(10A7):384(18B13)	RECEPTOR PROTEIN-TYROSINE KINASE EDDR1 H41900
1413 GF201:96		HOMO SAPIENS MRNA FOR INOSITOL 1,4,5-TRISPHOSPHATE 3-KINASE ISOENZYME, PARTIAL CDS
7		N46828
٦	5):384(12M10)	PLEXIN 5 AA496565
1415 GF200:96(1H6):384(1011)	810873 AA459197
1416 GF201:96(61A	4):384(22B8)	504225 AA131934
\neg	12):384(11P24)	12):384(11P24) SNF2-RELATED CBP ACTIVATOR PROTEIN AA419088
\neg	1):384(3N2)	ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY J WARNING ENTRY !!!! [H.SAPIENS] H97778
		ESTS, WEAKLY SIMILAR TO KIAA0281 [H.SAPIENS] N54395
	D2):384(14H3)	85804 T72068
	1):384(501)	JUNCTION PLAKOGLOBIN R06417
1422 GF201:96(92B	9):384(12C18)	CDP-DIACYLGLYCEROL SYNTHASE (PHOSPHATIDATE CYTIDYLYLTRANSFERASE) 1 R31562

_	1
a	J
3	i
'n)

1424 GF20 1425 GF20 1426 PERO 1428 GF20 1439 PERO 1431 GF20 1433 GF20 1435 PERO 1435 PERO 1435 GF20 1437 GF20 1437 GF20	GF201:96(56A6):384(21A12) GF200:96(21F9):384(6K17)	HUMAN DNA SEQUENCE FROM PAC 127B20 ON CHROMOSOME 22Q11.2-QTER, CONTAINS GENE FOR GTPASE-ACTIVATING PROTEIN SIMILAR TO RHOGAP PROTEIN. RIBOSOMAL PROTEIN L6 PSEUDOGENE,
	0:96(21F9):384(6K17)	
		ESTS AND CA REPEAT AA037410 ESTS, WEAKLY SIMILAR TO LOW-DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN 1 PRECURSOR
	PEROU:96(9D8):384(18H16)	[17:374.1EN3] ANTO3240 [416386 W86859
	PEROU:96(10C10):384(18F19)	10):384(18F19) PLACENTAL BIKUNIN (KUNITZ-TYPE SERINE PROTEASE INHIBITOR) AA031287
	GF200:96(21G6):384(6M11)	SERINE PROTEASE INHIBITOR, KUNITZ TYPE, 2 AA459039
	PEROU:96(9E1):384(18J2)	HUMAN PLACENTAL BIKUNIN MRNA COMPLETE CDS AA031287
	GF201:96(67D3):384(24G5)	810728 AA457707
	GF200:96(30H5):384(8O10)	HOMO SAPIENS MRNA; CDNA DKFZPS86F1318 (FROM CLONE DKFZPS86F1318) T77847
	PEROU:96(9A6):384(18B12)	147447 R81173
		365517 AA009593
	GF201:96(66C9):384(23F17)	HOMO SAPIENS MRNA; CDNA DKFZP586F1223 (FROM CLONE DKFZP586F1223) N59219
	PEROU:96(989):384(18D18)	281745 N51744
\top		CALPAIN, LARGE POLYPEPTIDE L1 H15456
	GF201:96(97G1):384(13N2)	GLUCOSIDASE, ALPHA; ACID (POMPE DISEASE, GLYCOGEN STORAGE DISEASE TYPE II) AA444009
1	GF200:96(31G9):384(8N18)	ESTS, HIGHLY SIMILAR TO HYPOTHETICAL PROTEIN B, 6.8K [H.SAPIENS] R63543
	GF201:96(57C10):384(21F20)	.0):384(21F20) PUTATIVE PROSTATE CANCER TUMOR SUPPRESSOR H13424
	GF201:96(100A2):384(14A4)	HOMO SAPIENS MRNA; CDNA DKFZP564P0622 (FROM CLONE DKFZP564P0622) H15385
٦		SIALYLTRANSFERASE AA497051
٦	GF200:96(4G10):384(1N19)	SIALYLTRANSFERASE AA497051
\neg		EGF-LIKE-DOMAIN, MULTIPLE 2 H39187
1444 GF20	GF201:96(79B12):384(9C23)	284355 N52136
1445 GF20		IROQUOIS-CLASS HOMEODOMAIN PROTEIN R46202 .
1446 PERO		BH0-2
	PEROU:96(8A9):384(20B17)	ESTS, HIGHLY SIMILAR TO IROQUOIS-CLASS HOMEODOMAIN PROTEIN IRX-1 [H.SAPIENS] R55185
	PEROU:96(9A7):384(18B14)	154654 R55184
	GF200:96(31C8):384(8F16)	L37387 R38133
	GF202:96(114A4):384(16A8)	ESTS, MODERATELY SIMILAR TO MYSOIN HEAVY CHAIN 12 [H.SAPIENS] AA401349
	GF201:96(95A7):384(13A13)	148225 H13688
		SOLUTE CARRIER FAMILY 2 (FACILITATED GLUCOSE TRANSPORTER), MEMBER 1 HS8873
1453 GF20.	GF201:96(88F4):384(11K8)	SOLUTE CARRIER FAMILY 7 (CATIONIC AMINO ACID TRANSPORTER, Y+ SYSTEM), MEMBER 5 AA419177
1454 GF20	GF201:96(97D6):384(13H12)	HOMO SAPIENS CLONE 24551 MRNA SEQUENCE AA630794
1455 GF200	GF200:96(32A5):384(8B9)	DISCS, LARGE (DROSOPHILA) HOMOLOG 5 T77840
	GF200:96(16D7):384(4H13)	MACROPHAGE STIMULATING 1 RECEPTOR (C-MET-RELATED TYROSINE KINASE) AA173453
1457 GF200	0:96(5H8):384(2015)	S100 CALCIUM-BINDING PROTEIN A11 (CALGIZZARIN) AA464731

•	1
0	į
3	5
ū	3

1459	GF201:96(57810):384(21D20)	GF201:96(57810):384(21D20) MEMBRANE PROTEIN, PALMITOYLATED 3 (MAGUK P55 SUBFAMILY MEMBER 3) W44685
1460	:384(5D6)	A DISINTEGRIN AND METALLOPROTEINASE DOMAIN 15 (METARGIDIN) AA292676
1461	:384(317)	MICROSOMAL GLUTATHIONE S-TRANSFERASE 1 AA495936
1462	:384(1289)	KIAA0429 GENE PRODUCT AA676805
1463	2)	KARYOPHERIN ALPHA 4 (IMPORTIN ALPHA 3) AI378946
1464	:384(9E1)	277134 N40917
1465):384(22A24)	795832 AA461497
1466	GF201:96(86B6):384(10D11) V	VASOACTIVE INTESTINAL PEPTIDE RECEPTOR 1 H73241
1467	:384(11N14)	INTER-ALPHA (GLOBULIN) INHIBITOR H4 (PLASMA KALLIKREIN-SENSITIVE GLYCOPROTEIN) N73625
1468	384(19G16)	SYNUCLEIN, GAMMA (BREAST CANCER-SPECIFIC PROTEIN 1) AA293803
1469	:384(12G5)	ADIPOSE SPECIFIC 2 AA478298
1470	GF201:96(87H2):384(11O3)	MONOAMINE OXIDASE A AA011096
1471	GF202:96(109G3):384(15M5) H	HOMO SAPIENS CLONE 23698 MRNA SEQUENCE AA680300
1472	GF200:96(12C7):384(3F13) G	GLUTATHIONE S-TRANSFERASE THETA 2 AA490777
1473	.):384(11N22)):384(11N22) MYOSIN VI AA625890
1474	384(817)	470216 AA028987
1475):384(15C6)	S100 CALCIUM-BINDING PROTEIN A13 AA070489
1476	GF200:96(12A2):384(3B3)	LUTHERAN BLOOD GROUP (AUBERGER B ANTIGEN INCLUDED) H24954
1477	:384(7E9)	CYCLIN D1 (PRAD1: PARATHYROID ADENOMATOSIS 1) AA487700
1478	:384(7G5)	ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY SQ WARNING ENTRY !!!! [H.SAPIENS] AA598478
1479	:384(7E5)	CYSTATIN C (AMYLOID ANGIOPATHY AND CEREBRAL HEMORRHAGE) AA599177
1480	384(9L1)	487831 AA045083
1481	:384(12P5)	H.SAPIENS MRNA FOR MYOSIN-I BETA AA485871
1482	1:384(20D21)	INTEGRIN, BETA 5 N29501
1483	:384(23H14)	782547 AA431796
1484	384(7L9)	HOMO SAPIENS MRNA; CDNA DKFZP564E1616 (FROM CLONE DKFZP564E1616) H26176
1485	GF201:96(96A8):384(13A16) E	ENDOTHELIN 1 H11003
1486	GF201:96(58G10):384(21N19) S):384(21N19) SERUM-INDUCIBLE KINASE AA460152
1487	GF201:96(64F12):384(23K24) 7	:384(23K24) 795378 AA453495
1488	GF201:96(64F4):384(23K8)	138130 R53797
1489	GF201:96(97B1):384(13D2)	WASP FAMILY VERPROLIN-HOMOLOGOUS PROTEIN 3 AA629542
1490	:384(6H10)	5-HYDROXYTRYPTAMINE (SEROTONIN) RECEPTOR 2A R55130
1491	:384(4A16)	CD9 ANTIGEN (P24) AA412053
1492	:384(2P21)	PROTEIN KINASE MITOGEN-ACTIVATED 10 (MAP KINASE) 175436
1493	384(11112)	INOSITOL 1,4,5-TRIPHOSPHATE RECEPTOR, TYPE 3 AA701976
1494)):384(21P19)):384(21P19) 809824 AA455519
1405	- (0 ***OC/*OC/_O/)/O/10/10/10	

+	4
0	U
3	5
٥	J

1497 GF200:96(Z191):384(Z1818) HUMANN CIONE 23815 NRNA SEQUENCE AA724516 1498 GF200:96(Z191):384(Z1818) FILJAMIN B, BETA (ACTIN-BINDING PROTEIN [H.SPEINS] F. GF200:96(Z191):384(T181) FILJAMIN B, BETA (ACTIN-BINDING PROTEIN [H.SPEINS] F. GF200:96(Z191):384(T181) GTAD1:96(S025):384(Z461) GTAD1:96(S025):384(Z461) GTAD1:96(S035):384(Z461) GTAD1:96(S035):384(Z181) GTAD1:96(S035):384(Z1819) GTAD1:96(S035):384(Z1819) GTAD1:96(S035):384(Z1819) GTAD1:96(S035):384(Z1819) GTAD1:96(S035):384(Z1819) GTAD1:96(S035):384(Z1819) MATRX GLA PROTEIN AA081250 GF201:96(S035):384(Z1819) MATRX GLA PROTEIN AA081250 GF201:96(S035):384(Z1819) MATRX GLA PROTEIN AA081250 GF201:96(S035):384(Z1819) GTAD1:96(S035):384(Z1819) GTAD1:96(S035):384(Z182) GTAD1:96(S035):384(Z18	SOLUTE CARRIER FAMILY 9 (SODJUM/HYDROGEN EXCHANGER), ISOFORM 1 (ANTIPORTER, NA+/H+, AMILORIDE SENSITIVE) A4455369
GF200:96(22F9):384(FK18) GF200:96(27C3):384(7F6) GF200:96(27C3):384(7F6) GF200:96(25F1):384(7K1) GF201:96(89D5):384(13H16) GF201:96(83A5):384(13H16) GF201:96(83A5):384(13H16) GF201:96(93D9):384(13H16) GF201:96(93D9):384(12H18) GF201:96(93D9):384(12H18) GF201:96(93D9):384(12H18) GF201:96(92E11):384(12H21) GF201:96(92E11):384(14B21) GF201:96(92E11):384(14B21) GF201:96(80A7):384(11A14) PEROU:96(102B5):384(11A14) PEROU:96(114E5):384(11A14) GF201:96(99F11):384(13B5) GF201:96(99F11):384(11B5) GF201:96(99F11):384(11B1) GF201:96(99F11):384(11B1) GF201:96(99F11):384(11B1) GF201:96(99F11):384(11B1) GF201:96(99F11):384(11B1)	HUMAN CLONE 23815 MRNA SEQUENCE AA424516
GF200:96(27C3):384(7F6) GF200:96(25F1):384(7F6) GF200:96(110G8):384(15M16) GF201:96(83A5):384(13H16) GF201:96(83A5):384(13H16) GF201:96(83A5):384(13H16) GF201:96(83A5):384(13H16) GF201:96(8112):384(12H18) GF201:96(93D9):384(12H18) GF201:96(9111):384(12H18) GF201:96(9111):384(14B21) GF201:96(9111):384(14B21) GF201:96(92E11):384(14B21) GF201:96(92E11):384(14B21) GF201:96(9111):384(14B21) GF201:96(9111):384(11A14) PEROU:96(9111):384(13B5) GF201:96(9111):384(13B5) GF201:96(9111):384(13B5) GF201:96(9111):384(13B5) GF201:96(9111):384(13B5) GF201:96(9111):384(13B5) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(911):384(1111) GF201:96(911):384(1111) GF201:96(911):384(1111) GF201:96(911):384(1111)	FILAMIN B, BETA (ACTIN-BINDING PROTEIN-278) AA486238
GF200:96(25F1):384(7K1) GF202:96(110G8):384(15M16) GF201:96(83A5):384(13H16) GF201:96(83A5):384(13H16) GF201:96(83A5):384(13H16) GF201:96(83A5):384(13H16) GF201:96(93D9):384(12H18) GF201:96(31F10):384(12H18) GF201:96(102A11):384(12H18) GF201:96(102A11):384(14B21) GF201:96(92E11):384(12H21) GF201:96(92E11):384(12H21) GF201:96(80A7):384(11A14) PEROU:96(1011):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(11B5) GF201:96(99F11):384(11B5) GF201:96(99F11):384(11B5) GF201:96(99F11):384(11B5) GF201:96(99F11):384(11B5) GF201:96(91B10):384(11B1) GF201:96(91B10):384(11B1) GF201:96(91B10):384(11B1)	ESTS, WEAKLY SIMILAR TO OXYSTEROL-BINDING PROTEIN [H.SAPIENS] R31395
GF202:96(110G8):384(15M16) GF201:96(68D5):384(15M16) GF201:96(68D5):384(1049) GF201:96(3201):384(13119) GF201:96(3201):384(13119) GF201:96(3201):384(13119) GF201:96(3201):384(12H18) GF202:96(13F10):384(12H18) GF202:96(112G6):384(12H18) GF201:96(92E11):384(12H2) GF201:96(92E11):384(12H2) GF201:96(92E11):384(13H2) GF201:96(9111):384(13H2) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(9111):384(1111)	AA487346
GF201:96(6BD5):384(24G10) GF201:96(95E10):384(1049) GF201:96(3D8):384(19H16) GF201:96(3D8):384(19H16) GF201:96(93D9):384(11023) GF201:96(93D9):384(12H18) GF201:96(37H10):384(12H18) GF201:96(37H10):384(12H18) GF201:96(37H10):384(12H18) GF201:96(92E11):384(12H2) GF201:96(92E11):384(12H2) GF201:96(90E11):384(1011) PEROU:96(102B5):384(1011) GF201:96(91H1):384(1011) GF201:96(91H1):384(1111) GF201:96(91H1):384(1111) GF201:96(91H1):384(1111) GF201:96(91H1):384(1111) GF201:96(91H1):384(1111)	S CHROMOSOME 16 BAC CLONE CIT987SK-A-575C2 T64469
GF201:96(95E10):384(13119) GF201:96(83A5):384(1049) PEROU:96(3D8):384(19H16) GF201:96(87H12):384(11023) GF201:96(93D9):384(12H18) GF201:96(13F10):384(12H18) GF201:96(13F10):384(12H18) GF201:96(102A11):384(12H21) GF201:96(102A11):384(12H21) GF201:96(102B5):384(11A14) PEROU:96(102B5):384(11A14) PEROU:96(1011):384(1011) GF201:96(99F11):384(1011) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(1111) GF201:96(99F11):384(13B5) GF201:96(99F11):384(1185) GF201:96(99F11):384(1111) GF201:96(99F11):384(1111) GF201:96(91F11):384(1111) GF201:96(91F11):384(1111) GF201:96(91F11):384(1111) GF201:96(91F11):384(1111) GF201:96(91F11):384(1111) GF201:96(91F11):384(1111)	6
GF201:96(8345):384(1049) PEROU:96(3D8):384(19H16) GF201:96(93D9):384(11018) GF201:96(93D9):384(12H18) GF200:96(13F10):384(12H18) GF201:96(93D9):384(12H18) GF201:96(102A11):384(14B21) GF201:96(92E11):384(12H2) GF201:96(90E11):384(11A14) PEROU:96(102B5):384(11A14) PEROU:96(102B5):384(11A14) PEROU:96(1011):384(1011) GF201:96(99E11):384(13B5) GF201:96(99E11):384(13B5) GF201:96(99E11):384(13B5) GF201:96(99E11):384(13B5) GF201:96(90E11):384(13B5) GF201:96(90E11):384(13B5) GF201:96(90E11):384(13B5) GF201:96(90E11):384(13B5) GF201:96(90E11):384(11B5) GF201:96(90E11):384(11B5) GF201:96(90E11):384(11B5) GF201:96(90E11):384(11B5) GF201:96(90E11):384(11B5) GF201:96(90E11):384(11B5) GF201:96(90E11):384(11B5) GF201:96(90E11):384(11B5) GF200:96(11B10):384(11B1)	0):384(13119) GUANINE NUCLEOTIDE BINDING PROTEIN (G PROTEIN), ALPHA 15 (GQ CLASS) T99303
PEROU:96(3D8):384(19H16) GF201:96(87H12):384(11023) GF201:96(31F10):384(12H18) GF200:96(13F10):384(12H18) GF200:96(13F10):384(12H21) GF201:96(57H10):384(14B21) GF201:96(92E11):384(12H21) GF201:96(92E11):384(12H21) GF201:96(92E11):384(14B21) GF201:96(88A7):384(11A14) PEROU:96(102B5):384(11A14) PEROU:96(91F11):384(12B51) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(11B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(11B5) GF201:96(91F11):384(11B5) GF201:96(91F11):384(11B5) GF201:96(91F11):384(11B5) GF201:96(91B10):384(11B1) GF200:96(11B10):384(11B1) GF200:96(11B10):384(11B1)	
GF201:96(87H12):384(11023) GF201:96(93D9):384(12H18) GF200:96(13F10):384(12H18) GF200:96(13F10):384(12H18) GF201:96(102A11):384(14B21) GF201:96(92E11):384(12I22) GF201:96(92E11):384(12I22) GF201:96(92E11):384(14D9) GF201:96(88A7):384(11A14) PEROU:96(9111):384(20G24) GF201:96(9111):384(14R21) GF201:96(99F11):384(14R21) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(1181) GF201:96(91E11):384(1181) GF201:96(91E11):384(1181) GF200:96(17B11):384(1518) GF200:96(11810):384(1518) GF201:96(115E9):384(1181)	ROTEIN AA081250
GF201:96(93D9):384(12H18) GF200:96(13F10):384(12H18) GF200:96(13F10):384(4K19) GF201:96(57H10):384(14B21) GF201:96(102A11):384(11212) GF201:96(92E11):384(12H2) GF201:96(102B5):384(12H2) GF201:96(88A7):384(11A14) PEROU:96(102B5):384(20G24) GF201:96(99F11):384(20G24) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(11B5) GF201:96(99F11):384(11B5) GF201:96(99F11):384(11B5) GF201:96(99F11):384(11B5) GF201:96(99F11):384(11B5) GF201:96(99F11):384(11B5) GF201:96(99F11):384(11B5) GF201:96(91B10):384(11B1) GF200:96(11B10):384(11B1)	ROTEIN AA155913
GF200:96(13F10):384(4K19) GF201:96(57H10):384(21P20) GF201:96(102A11):384(14B21) GF202:96(112G6):384(12122) GF201:96(92E11):384(12122) GF201:96(92E11):384(14D9) GF201:96(88A7):384(11A14) PEROU:96(61B7):384(20G24) GF201:96(91F11):384(14R51) GF201:96(99F11):384(14R51) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(99F11):384(13B5) GF201:96(99F11):384(13B5) GF201:96(99F11):384(1181) GF201:96(99F11):384(1181) GF201:96(99F11):384(1181) GF201:96(91F11):384(1181) GF201:96(91F11):384(1181) GF200:96(17B11):384(1518) GF200:96(11810):384(1181)	CREATINE TRANSPORTER [HUMAN, BRAINSTEM/SPINAL CORD, MRNA, 2283 NTJ AA292226
GF201:96(57H10):384(21P20) GF201:96(102A11):384(21P20) GF201:96(112G6):384(14B21) GF201:96(92E11):384(12122) GF201:96(92E11):384(12122) GF201:96(92E11):384(12122) GF201:96(9111):384(14D9) GF201:96(9111):384(14D9) GF201:96(9111):384(14H9) GF201:96(9111):384(14H9) GF201:96(9111):384(14H9) GF201:96(9111):384(13B5) GF201:96(9111):384(13B5) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(9111):384(1111) GF201:96(9111):384(1111)	CLUSTERIN (COMPLEMENT LYSIS INHIBITOR, SP-40,40, SULFATED GLYCOPROTEIN 2, TESTOSTERONE-
GF201:96(57H10):384(21P20) GF201:96(102A11):384(14B21) GF202:96(112G6):384(14B21) GF201:96(92E11):384(12122) GF201:96(92E11):384(12122) GF201:96(90E11):384(11A14) PEROU:96(10811):384(20214) GF201:96(61B7):384(20214) GF201:96(99F11):384(14K21) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(90F11):384(14H9) GF201:96(90F11):384(14H9) GF201:96(90F11):384(1512) GF201:96(90F11):384(1512) GF201:96(90F11):384(1512) GF201:96(90F11):384(1611) GF201:96(90F11):384(1611) GF201:96(90F11):384(1611) GF200:96(17B11):384(1518) GF200:96(115E9):384(16118) GF202:96(115E9):384(16118)	REPRESSED PROSTATE MESSAGE 2, APOLIPOPROTEIN J) AA130017
GF201:96(102A11):384(14B21) GF202:96(112G6):384(12I21) GF201:96(92E11):384(12I22) GF201:96(92E11):384(12I22) GF201:96(102B5):384(21021) GF201:96(102B5):384(14D9) GF201:96(61D1):384(1319) PEROU:96(61D1):384(12I21) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(99F11):384(12I22) GF201:96(99F11):384(12I22) GF201:96(91E11):384(12I22) GF201:96(91E11):384(111) PEROU:96(17B11):384(1512) GF200:96(17B11):384(1518) GF200:96(115E9):384(1518)	0):384(21P20) ESTS, WEAKLY SIMILAR TO (DEFLINE NOT AVAILABLE 4106368) [D.MELANOGASTER] AA454554
GF202:96(112G6):384(15N11) GF201:96(92E11):384(12122) GF201:96(92E11):384(12122) GF201:96(102B5):384(14D9) GF200:96(28E10):384(2119) PEROU:96(61D1):384(20G24) GF201:96(61D7):384(20G14) GF201:96(99F11):384(14K21) GF201:96(99F11):384(14K21) GF201:96(99F11):384(14K21) GF201:96(99F11):384(14H9) GF201:96(9111):384(12122) GF201:96(9111):384(12122) GF201:96(9111):384(111) PEROU:96(102D5):384(1611) PEROU:96(10101):384(111) PEROU:96(1111):384(111) GF200:96(1111):384(111) GF200:96(1111):384(1111) GF200:96(1111):384(1111)	
GF201:96(92E11);384(12122) GF201:96(56G1);384(12122) GF201:96(102B5);384(14D9) GF200:96(28E10);384(1319) PEROU:96(10811);384(13119) GF201:96(61B7);384(11A14) GF201:96(61B7);384(12D14) GF201:96(99F11);384(14H9) GF201:96(99F11);384(14H9) GF201:96(99F11);384(14H9) GF201:96(99F11);384(14H9) GF201:96(99F11);384(12122) GF201:96(99F11);384(12122) GF201:96(91E11);384(1512) GF201:96(91E11);384(1512) GF200:96(17B11);384(1518) GF200:96(11810);384(1518)	SIMILAR TO UNKNOWN [H.SAPIENS] AA046023
GF201:96(56G1):384(21M2) GF201:96(102B5):384(14D9) GF200:96(28E10):384(7119) PEROU:96(10811):384(18D21) GF201:96(8BA7):384(11A14) PEROU:96(61B7):384(22D14) GF201:96(99F11):384(14K21) GF201:96(99F11):384(14K21) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(99F11):384(12D2) GF201:96(99F11):384(12D2) GF201:96(99F11):384(110) GF201:96(91E11):384(110) GF200:96(17B11):384(111) GF200:96(17B11):384(12D2) GF200:96(11S9):384(1518)	1):384(12122) PROTEIN PHOSPHATASE 1D MAGNESIUM-DEPENDENT, DELTA ISOFORM N33955
GF201:96(102B5):384(14D9) GF200:96(28E10):384(7119) PEROU:96(10811):384(7119) GF201:96(8BA7):384(11A14) PEROU:96(6D12):384(20D14) GF201:96(61B7):384(12D14) GF201:96(99F11):384(14K21) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(99F11):384(12122) GF201:96(91E11):384(111) PEROU:96(102D5):384(111) PEROU:96(11811):384(111) GF200:96(11811):384(1118) GF200:96(11181):384(1518) GF200:96(11181):384(1518)	AMYLOID BETA PRECURSOR PROTEIN (CYTOPLASMIC TAIL)-BINDING PROTEIN 2 AA431206
GF200:96(28E10):384(7119) PEROU:96(10811):384(1114) GF201:96(88A7):384(11414) PEROU:96(6102):384(20214) GF201:96(61027):384(12014) GF201:96(99F11):384(1385) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(9111):384(12122) GF201:96(9111):384(111) PEROU:96(17811):384(1512) GF200:96(17811):384(1518) GF200:96(1159):384(1618) GF200:96(1159):384(1618)	RAD51 (S. CEREVISIAE) HOMOLOG C T64150
PEROU:96(10811):384(18D21) GF201:96(88A7):384(11A14) PEROU:96(6D12):384(20G24) GF201:96(61B7):384(22D14) GF202:96(114E5):384(14K21) GF201:96(99F11):384(14K21) GF201:96(99F11):384(14H9) GF201:96(90F11):384(14H9) GF201:96(93E11):384(15122) GF200:96(4C1):384(1F1) PEROU:96(2G10):384(19Z01) GF200:96(17B11):384(15D20) GF200:96(115E9):384(16118) GF202:96(115E9):384(16118)	ESTS, WEAKLY SIMILAR TO HSP 27 [H.SAPIENS] H57494
GF201:96(8847):384(11A14) PEROU:96(6D12):384(20G24) GF201:96(6D12):384(20G14) GF202:96(114E5):384(16110) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(99F11):384(14H9) GF201:96(9111):384(12122) GF200:96(4015):384(1611) PEROU:96(2G10):384(19122) GF200:96(17B11):384(1512) GF200:96(17B11):384(1518) GF200:96(1159):384(1618)	11):384(18D21)ESTS WEAKLY SIMILAR TO HEAT SHOCK 27 KD PROTEIN [H.SAPIENS] AA010110
PEROU::96(6D12)::384(20G24) GF201:96(61B7)::384(22D14) GF202::96(114E5)::384(16110) GF201::96(99F11)::384(14H2) GF201::96(99F3)::384(14H9) GF201::96(90F3)::384(14H9) GF201::96(90F11)::384(1712) GF201::96(90F11)::384(1712) GF200::96(17811)::384(1970) GF200::96(17811)::384(16118) GF201::96(115E9)::384(16118) GF202::96(115E9)::384(16118)	4176581
GF201:96(61B7):384(22D14) GF202:96(114E5):384(16110) GF201:96(99F11):384(13B5) GF201:96(98A3):384(13B5) GF201:96(40E5):384(14H9) GF201:96(40E5):384(12122) GF201:96(93E11):384(12122) GF200:96(40E1):384(1F1) PEROU:96(2G10):384(1F1) GF200:96(17B11):384(5C21) GF201:96(61B10):384(1618) GF202:96(115E9):384(1618)	6
GF202:96(114E5):384(16110) GF201:96(99F11):384(13B5) GF201:96(98A3):384(13B5) GF201:96(40E5):384(23G10) GF201:96(64D5):384(12122) GF200:96(40E1):384(1F1) PEROU:96(2G10):384(1F1) PEROU:96(2G10):384(1F1) GF200:96(17B11):384(5C21) GF201:96(61B10):384(1618) GF202:96(115E9):384(1618)	8
GF201:96(99F11):384(14K21) GF201:96(98A3):384(13B5) GF201:96(40D5):384(23G10) GF201:96(64D5):384(23G10) GF201:96(93E11):384(12122) GF200:96(4C1):384(1F1) PEROU:96(2G10):384(1F1) GF200:96(17B11):384(5C21) GF201:96(61B10):384(1G18) GF202:96(115E9):384(1G18)	718
GF201:96(98A3):384(13B5) GF201:96(102D5):384(14H9) GF201:96(64D5):384(23G10) GF201:96(93E11):384(12122) GF200:96(4C1):384(1F1) PEROU:96(2G10):384(19M20) GF200:96(17B11):384(5C21) GF201:96(61B10):384(1618) GF202:96(115E9):384(1618)	
GF201:96(4D5):384(14H9) GF201:96(64D5):384(23G10) GF201:96(93E11):384(12J22) GF200:96(4C1):384(1F1) PEROU:96(2G10):384(19M20) GF200:96(17B11):384(22D20) GF201:96(61B10):384(16J18) GF202:96(115E9):384(16J18)	UNCOUPLING PROTEIN 2 (MITOCHONDRIAL, PROTON CARRIER) H61243
GF201:96(64D5):384(23G10) GF201:96(93E11):384(12J22) GF200:96(4C1):384(1F1) PEROU:96(2G10):384(19M20) GF200:96(17B11):384(2C21) GF201:96(61B10):384(16J18) GF202:96(109D6):384(16J18)	
GF201:96(93E11):384(12)22) GF200:96(4C1):384(1F1) PEROU:96(2G10):384(19M20) GF200:96(17B11):384(5C21) GF201:96(61B10):384(15010) GF202:96(115E9):384(16118) GF202:96(109D6):384(15111)	141
GF200:96(4C1):384(1F1) PEROU:96(2G10):384(19M20) GF200:96(17B11):384(5C21) GF201:96(61B10):384(22D20) GF202:96(115E9):384(16J18) GF202:96(109D6):384(15J11)	
PEROU: 96(2G10): 384(19M20) GF200: 96(17811): 384(5C21) GF201: 96(61810): 384(22D20) GF202: 96(115E9): 384(16118) GF202: 96(109D6): 384(15111)	INHIBITOR OF DNA BINDING 2, DOMINANT NEGATIVE HELIX-LOOP-HELIX PROTEIN H82706
GF200:96(17811):384(5C21) GF201:96(61810):384(22D20) GF202:96(115E9):384(16318) GF202:96(109D6):384(15611)	TREFOIL FACTOR 1 (BREAST CANCER, ESTROGEN-INDUCIBLE SEQUENCE EXPRESSED IN) R83818
GF201:96(61B10):384(22D20) GF202:96(115E9):384(16118) GF202:96(109D6):384(15G11)	
GF202:96(115E9):384(16J18) GF202:96(109D6):384(15G11)	ESTS, WEAKLY SIMILAR TO !!!! ALU SUBFAMILY J WARNING ENTRY !!!! [H.SAPIENS] R05293
GF202:96(109D6):384(15G11)	ATPASE, H+ TRANSPORTING, LYSOSOMAL (VACUOLAR PROTON PUMP), MEMBER J AA608567
Ī	GF202:96(109D6):384(15G11) CALCIUM CHANNEL, VOLTAGE-DEPENDENT, BETA 3 SUBUNIT R36947
1532 GF201:96(80A6):384(9A12) 809789 AA454756	756

٦	_
	a
•	莅
	æ
	_

	5	からない こうしん こうしん こうしょうしょう でして	
GF201:96(95E2):384(16A12) GF201:96(95E2):384(14A12) GF201:96(114A6):384(14A14) GF201:96(101C12):384(14M1) GF201:96(101E12):384(14D24) GF201:96(101E12):384(14D22) GF201:96(61A3):384(23E6) GF201:96(61A3):384(23E6) GF201:96(64C4):384(23E3) GF201:96(64C4):384(13F2) GF201:96(64C4):384(13F2) GF201:96(62F10):384(13F2) GF201:96(62F10):384(11F10) GF201:96(62F10):384(11F10) GF201:96(62F10):384(11F10) GF201:96(62F10):384(11F10) GF201:96(81E2):384(11F10) GF201:96(81E2):384(11F10) GF201:96(81E2):384(11F10) GF201:96(81E2):384(11F10) GF201:96(81E2):384(11F10) GF201:96(81E2):384(11B12) PEROU:96(81E2):384(11B12) GF201:96(91E4):384(11E14) GF201:96(10G2):384(11E14) GF201:96(31B2):384(11B18) PEROU:96(31B2):384(11B18) PEROU:96(31B2):384(11B18) PEROU:96(31B2):384(11B18) PEROU:96(31B2):384(11B18) PEROU:96(10G2):384(18B3) GF201:96(31B2):384(11B18) PEROU:96(10G2):384(18B3) GF201:96(10G3):384(18B3) GF201:96(10G3):384(18B3) GF201:96(10G3):384(11B18) PEROU:96(10G3):384(11B18) PEROU:96(10G3):384(11B18) PEROU:96(10G3):384(11B18)	1534	GF201:96(97/53):384(13N6)	H.SAPIENS MRNA FOR 1 YROSINE KINASE RECEPTOR H15718
GF202:96(114A6):384(16A12) GF201:96(99G1):384(14M1) GF201:96(101B12):384(14M24) GF201:96(101B12):384(14D24) GF201:96(6101B12):384(22B6) GF201:96(6101B13):384(2414) GF201:96(64D4):384(20F3) PEROU:96(8C4):384(20F3) PEROU:96(8C4):384(1912) GF201:96(8C4):384(11117) PEROU:96(8C4):384(11117) PEROU:96(8C4):384(11117) GF201:96(8C4):384(11117) GF201:96(8C4):384(11117) GF201:96(8C4):384(11117) GF201:96(8C4):384(11117) GF201:96(8C4):384(11117) GF201:96(8C4):384(11117) GF201:96(9C4):384(11117) GF201:96(9C6):384(11117) GF201:96(9C6):384(11117) GF201:96(9C6):384(11117) GF201:96(9C6):384(1118) PEROU:96(10C4):384(1118) PEROU:96(3D3):384(11B18) PEROU:96(3D3):384(11B18) PEROU:96(3D3):384(11B18) PEROU:96(3D3):384(11B18) PEROU:96(3D3):384(11B18) PEROU:96(3D3):384(11B18) PEROU:96(3D3):384(11B18) PEROU:96(3D3):384(11B18) PEROU:96(3D3):384(11B18) PEROU:96(10C4):384(18B3) GF200:96(10C4):384(18B3) GF200:96(10C4):384(18B3)	1535	GF201:96(95B2):384(13C3)	49351 H15445
GF201:96(99G1):384(14M1) GF201:96(101B12):384(14D24 GF201:96(101B11):384(14D24 GF201:96(101B11):384(2414) GF201:96(6101B11):384(2414) GF201:96(6101B11):384(2414) GF201:96(6101B11):384(2414) GF201:96(807):384(2017) GF201:96(807):384(11117) PEROU:96(807):384(11117) PEROU:96(807):384(11110) GF201:96(807):384(11110) GF201:96(807):384(11110) GF201:96(807):384(11110) GF201:96(807):384(18112) PEROU:96(807):384(18112) PEROU:96(91E4):384(18112) GF201:96(91E4):384(11117) GF201:96(10C7):384(11813) GF201:96(10C7):384(11813) GF201:96(10C37):384(11814) GF201:96(10C37):384(11818) PEROU:96(10C37):384(11818) PEROU:96(10C37):384(11818) GF201:96(313):384(11818) PEROU:96(3103):384(1818) GF201:96(3103):384(1818) GF201:96(3103):384(1818) GF201:96(3103):384(1818) GF201:96(10C37):384(1818) GF200:96(10C38):384(1818)	1536	GF202:96(114A6):384(16A12)	+
GF201:96(101C12):384(14F24 GF201:96(101B11):384(14D24 GF201:96(61A3):384(2414) GF201:96(61A3):384(2414) GF201:96(68E2):384(2414) GF201:96(64D4):384(20F7) PEROU:96(9C4):384(10H2) GF201:96(62F10):384(11117) PEROU:96(9C4):384(10H2) GF201:96(62F10):384(11110) GF201:96(9C4):384(10H2) GF201:96(9C4):384(10H2) GF201:96(9C4):384(10H2) GF201:96(9C5):384(10H2) PEROU:96(9C5):384(10H2) GF201:96(9C6):384(10H2) GF201:96(9C6):384(10H2) GF201:96(9C6):384(10H2) GF201:96(9C6):384(10H2) GF201:96(9C6):384(10H2) GF201:96(9C6):384(10H2) GF201:96(9C6):384(10H2) GF201:96(9C7):384(11B18) PEROU:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) GF201:96(9C7):384(11B18) GF201:96(9C7):384(18B9) GF200:96(10C10):384(5M15) GF200:96(10C10):384(5M15)	1537	GF201:96(99G1):384(14M1)	81449 T63490
GF201:96(101B12):384(14D24 GF201:96(6101B11):384(14D22 GF201:96(61A2):384(2265) GF201:96(68E2):384(2414) GF201:96(64D4):384(20F7) PEROU:96(8C4):384(11117) PEROU:96(8C4):384(11117) GF201:96(62F10):384(11117) GF201:96(8C1):384(11110) GF201:96(8C1):384(11110) GF201:96(8C1):384(11110) GF201:96(8C1):384(11110) GF201:96(8C1):384(12K13) PEROU:96(8C1):384(12K13) PEROU:96(9E6):384(18112) GF201:96(9E6):384(18112) GF201:96(9E6):384(18112) GF201:96(9E6):384(11114) GF201:96(9E6):384(11114) GF201:96(9E6):384(11818) GF201:96(9E9):384(11818) PEROU:96(3B1):384(11818) GF201:96(9E9):384(11818) PEROU:96(3B1):384(11818) GF201:96(9E9):384(1818) GF201:96(10C1):384(1818) GF200:96(10C1):384(1889) GF200:96(10C1):384(1818)	1538		71863 T52564
GF201:96(101811):384(14D22 GF201:96(61A3):384(2286) GF201:96(68E2):384(2414) GF201:96(64D4):384(20F7) PEROU:96(8C4):384(1012) GF201:96(62F10):384(1117) PEROU:96(62F10):384(11117) GF201:96(62F10):384(11110) GF201:96(80H5):384(11110) GF201:96(80H5):384(11110) GF201:96(80H5):384(11110) GF201:96(80H5):384(11110) GF201:96(80H5):384(111117) PEROU:96(80H5):384(111117) GF201:96(91E4):384(18112) GF201:96(91E4):384(111117) GF201:96(91E4):384(111114) GF201:96(10G7):384(11114) GF201:96(3111):384(11114) GF201:96(31113):384(118118) PEROU:96(31113):384(118118) PEROU:96(31113):384(118118) PEROU:96(31113):384(118118) GF201:96(31113):384(118118) GF201:96(31113):384(118118) GF201:96(10C10):384(18118) GF200:96(10C10):384(18118)	1539	GF201:96(101B12):384(14D2	171863 T51290
GF201:96(61A3):384(22B6) GF201:96(68E2):384(2414) GF201:96(64D4):384(20F7) PEROU:96(8C4):384(10F2) GF201:96(8C4):384(11117) PEROU:96(9C1):384(11117) GF201:96(62F10):384(11912) GF201:96(62F10):384(11110) GF201:96(80H5):384(11010) GF201:96(80H5):384(11010) GF201:96(80H5):384(11010) GF201:96(80H5):384(11010) GF201:96(91E4):384(11011) GF201:96(91E4):384(11117) GF201:96(91E4):384(11117) GF201:96(10A2):384(11114) GF201:96(10G7):384(11114) GF201:96(10G7):384(11114) GF201:96(10G7):384(11818) PEROU:96(31013):384(11818) PEROU:96(31013):384(11818) PEROU:96(31013):384(11818) GF201:96(31013):384(11818) GF201:96(31013):384(11818) GF201:96(31013):384(11818) GF201:96(31013):384(11818) GF201:96(31013):384(11818) GF201:96(10C1):384(1818) GF200:96(10C1):384(1818)	1540		71863 751229
GF201:96(68E2):384(2414) GF201:96(64D4):384(23G8) PEROU:96(8C4):384(20E7) PEROU:96(8C4):384(11117) PEROU:96(82D1):384(11117) GF201:96(82D1):384(11110) GF201:96(82D1):384(11110) GF201:96(82D1):384(11110) GF201:96(82D1):384(11110) GF201:96(82D1):384(11110) GF201:96(82D1):384(11110) GF201:96(82D1):384(11110) GF201:96(91E4):384(11117) GF201:96(91E4):384(11117) GF201:96(91E4):384(11117) GF201:96(91E4):384(11114) GF201:96(91E4):384(11114) GF201:96(91E4):384(11114) GF201:96(91E4):384(11118) PEROU:96(3B1):384(11118) PEROU:96(3B1):384(11818) PEROU:96(3B1):384(11818) PEROU:96(3B1):384(11818) GF201:96(3B1):384(11818) PEROU:96(3B1):384(11818) GF201:96(3B1):384(11818) GF201:96(3B1):384(1818) GF201:96(10C10):384(5M15) GF200:96(117G8):384(1889)	1541		417081 W87826
GF201:96(64D4):384(23G8) PEROU:96(8C4):384(20F7) PEROU:96(8C4):384(11117) PEROU:96(82D1):384(11117) PEROU:96(62F10):384(19H2) GF201:96(62F10):384(19H2) GF201:96(62F10):384(1110) GF201:96(80H5):384(1101) GF201:96(80H5):384(1101) GF201:96(80H5):384(1101) GF201:96(80H5):384(1101) GF201:96(80H5):384(18112) PEROU:96(80H5):384(18112) PEROU:96(10A2):384(18112) GF201:96(10A2):384(11114) GF201:96(10G7):384(11114) GF201:96(3113):384(11114) GF201:96(3113):384(11814) GF201:96(3113):384(11814) GF201:96(3113):384(11814) GF201:96(3113):384(11818) PEROU:96(3113):384(11818) PEROU:96(3113):384(11818) GF201:96(3113):384(11818) GF201:96(3113):384(11818) GF201:96(3113):384(11818) GF201:96(3113):384(11818) GF201:96(3113):384(11818) GF201:96(10C1):384(1818)	1542	GF201:96(68E2):384(2414)	ESTS, WEAKLY SIMILAR TO (DEFLINE NOT AVAILABLE 4929751) IH.SAPIENS] AA004846
PEROU:96(8C4):384(20F7) PEROU:96(9C1):384(18F2) GF201:96(8Z1):384(11117) PEROU:96(6ZF10):384(19H2) GF201:96(6ZF10):384(19H2) GF200:96(2ZE5):384(19H10) GF201:96(8DF):384(11P10) GF201:96(8DF):384(12K13) PEROU:96(8C5):384(12K13) PEROU:96(8C1):384(12K13) PEROU:96(9E6):384(18112) PEROU:96(9E6):384(18112) PEROU:96(10A2):384(18112) GF201:96(10G7):384(11E14) GF201:96(3B1):384(11E14) GF201:96(3B1):384(11E14) GF201:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) GF201:96(3B1):384(11B18) GF201:96(3B1):384(11B18) GF201:96(3B1):384(11B18) GF201:96(10C1):384(18B9) GF200:96(17G8):384(18B9)	1543	GF201:96(64D4):384(23G8)	HOMO SAPIENS MRNA; CDNA DKFZP58612118 (FROM CLONE DKFZP58612118) R98407
PEROU:96(9C1):384(18F2) GF201:96(87E9):384(11117) PEROU:96(3D1):384(11117) GF201:96(62F10):384(19H2) GF200:96(22E5):384(19H1) GF200:96(20E4):384(11110) GF201:96(80E4):384(11110) GF201:96(80E4):384(10E4) GF201:96(80E4):384(10E4) GF201:96(10E4):384(10E4) GF201:96(10E4):384(10E4) GF201:96(10E4):384(10E4) GF201:96(10E4):384(11114) GF201:96(10E4):384(11114) GF201:96(3B1):384(11114) GF201:96(3B1):384(11114) GF201:96(3B1):384(11818) PEROU:96(3B1):384(11818) PEROU:96(3B1):384(11818) PEROU:96(3B1):384(11818) PEROU:96(3B1):384(11818) PEROU:96(3B1):384(11818) GF201:96(3B1):384(11818) GF201:96(3B1):384(11818) GF201:96(3B1):384(11818) GF201:96(3B1):384(11818) GF201:96(3B1):384(1889) GF200:96(10C10):384(5M15)	1544	PEROU:96(8C4):384(20F7)	297604 N69835
GF201:96(87E9):384(11117) PEROU:96(3D1):384(19H2) GF201:96(62F10):384(19H2) GF200:96(22E5):384(6110) GF200:96(9De4):384(1811) GF201:96(89H5):384(1100) GF201:96(80H5):384(12K13) PEROU:96(80H5):384(12K13) PEROU:96(80H5):384(12K13) PEROU:96(91E4):384(12H1) GF201:96(91E4):384(18112) GF201:96(10C42):384(11114) GF201:96(3B1):384(11E14) GF201:96(3B1):384(11E14) GF201:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) PEROU:96(3B1):384(11B18) GF201:96(3B1):384(11B18) PEROU:96(3B13):384(11B18) GF201:96(3B13):384(11B18) GF201:96(3B13):384(11B18) GF201:96(3B13):384(11B18) GF201:96(10C10):384(18B9) GF200:96(17G8):384(18B9)	1545		297604 N69835
PEROU:96(3D1):384(19H2) GF201:96(62F10):384(19H2) GF201:96(62F10):384(22L19) GF200:96(20E5):384(1811) GF201:96(80H5):384(11P10) GF201:96(80H5):384(11P10) GF201:96(80H5):384(10H10) GF201:96(80H5):384(10H10) GF201:96(80H5):384(10H10) GF201:96(10H10):384(10H10) GF201:96(10H10):384(10H10) GF201:96(3B1):384(11H10) GF201:96(3B10):384(11H10) GF201:96(3B10):384(11H10) GF201:96(3B10):384(11H10) GF201:96(3B10):384(11H10) GF201:96(3B10):384(11H10) GF201:96(3B10):384(11H10) GF201:96(10C10):384(11H10) GF200:96(10C10):384(11H10)	1546	GF201:96(87E9):384(11117)	DNA SEGMENT, SINGLE COPY PROBE LNS-CAI/LNS-CAII (DELETED IN POLYPOSIS H99681
GF201:96(62F10):384(22L19) GF200:96(22E5):384(6110) GF200:96(22E5):384(6110) GF200:96(9De4):384(1811) GF201:96(89H5):384(11P10) GF201:96(89H5):384(12R13) PEROU:96(81P7):384(20H9) GF200:96(177):384(18112) PEROU:96(91E4):384(18112) PEROU:96(91E4):384(18112) GF201:96(10C47):384(11114) GF201:96(3811):384(11E14) GF201:96(380C7):384(11E14) GF201:96(380C7):384(11818) PEROU:96(9E9):384(18118) PEROU:96(9E9):384(18181) PEROU:96(9E9):384(18181) PEROU:96(9E9):384(18181) PEROU:96(9E9):384(18819) GF200:96(10C10):384(5M15) GF200:96(10C10):384(5M15) GF200:96(10C10):384(1889)	1547		ESTROGEN RECEPTOR 1 AA164586
GF200:96(22E5):384(6110) GF200:96(904):384(3G7) PERQU:96(10E1):384(1811) GF201:96(8915):384(1100) GF201:96(815):384(1001) GF200:96(1001):384(1001) GF200:96(1001):384(1001) GF200:96(1001):384(1001) GF200:96(1001):384(1001) GF200:96(1001):384(1001) GF200:96(1001):384(1001) GF200:96(1001):384(1001) GF200:96(1001):384(1001) GF200:96(1001):384(1001) GF200:96(1001):384(1818) GF200:96(1001):384(1889) GF200:96(1001):384(1889) GF200:96(1001):384(1889) GF200:96(1001):384(1889)	1548	GF201:96(62F10):384(22L19)	275798 R93185
GF200:96(904):384(3G7) PERQU:96(10E1):384(1811) GF201:96(89H5):384(11P10) GF201:96(817):384(12R13) PERQU:96(817):384(20F9) GF200:96(27B8):384(20L1) PERQU:96(91E4):384(1812) PERQU:96(91E4):384(1812) GF201:96(10G7):384(1813) GF201:96(3B1):384(11E14) GF201:96(3B1):384(11E14) GF201:96(3B1):384(11E14) GF201:96(9203):384(11B18) PERQU:96(9203):384(1818) PERQU:96(9203):384(1818) PERQU:96(9203):384(1818) PERQU:96(10C10):384(3E20) GF200:96(10C10):384(1889) GF200:96(10C10):384(1889)	1549	GF200:96(22E5):384(6110)	TUMOR PROTEIN D52 AA459318
PEROU:96(10E1):384(1811) GF201:96(89H5):384(12R13) GF201:96(80H5):384(12R13) PEROU:96(80H5):384(10H10) GF200:96(10H10):384(10H10) PEROU:96(10H10):384(10H10) GF200:96(10H10):384(10H10) GF200:96(10H10):384(10H10) GF200:96(10H10):384(11H10) GF200:96(10H10):384(11H10) GF200:96(10H10):384(11H10) GF200:96(10H10):384(11H10) PEROU:96(99D):384(11H10) GF200:96(10H10):384(18H10) GF200:96(10H10):384(18H10) GF200:96(10H10):384(18H10) GF200:96(10H10):384(18H10) GF200:96(10H10):384(18H10) GF200:96(10H10):384(18H10) GF200:96(10H10):384(18H10) GF200:96(10H10):384(18H10)	1550	GF200:96(9D4):384(3G7)	HUMAN D9 SPLICE VARIANT B MRNA, COMPLETE CDS AA453832
GF201:96(89H5):384(11P10) GF201:96(91F7):384(12K13) PEROU:96(8C5):384(20F9) GF200:96(27B8):384(7D16) PEROU:96(9E1):384(7D16) PEROU:96(9E1):384(18112) PEROU:96(91E4):384(18112) GF201:96(17G5):384(1811) GF201:96(3B1):384(11D2) GF201:96(3B1):384(11E14) GF201:96(9E2):384(11E14) GF201:96(9E2):384(11E14) GF201:96(9E2):384(1818) PEROU:96(9E2):384(1818) PEROU:96(9C7):384(1889) GF200:96(10C10):384(5M15) GF200:96(10G5):384(1889)	1551	PEROU:96(10E1):384(18J1)	MAJOR GASTROINTESTINAL TUMOR-ASSOCIATED PROTEIN GA733-2 PRECURSOR AA055808
GF201:96(91F7):384(12K13) PEROU:96(8C5):384(20F9) GF200:96(27B8):384(7D16) PEROU:96(9E1):384(7D16) PEROU:96(9E1):384(18112) PEROU:96(91E4):384(18112) GF201:96(17G5):384(18117) GF201:96(3B1):384(11D2) GF201:96(3B1):384(11E14) GF201:96(9E9):384(11E14) GF201:96(9E9):384(1818) PEROU:96(9E9):384(1818) PEROU:96(9C0):384(1818) PEROU:96(9C0):384(1818) GF200:96(10C10):384(1889) GF200:96(10C10):384(1889)	1552	GF201:96(89H5):384(11P10)	KIAA0351 GENE PRODUCT AA402863
PEROU:96(8C5):384(20F9) GF200:96(27B8):384(7D16) PEROU:96(8F1):384(7D16) PEROU:96(9E6):384(18112) PEROU:96(91E4):384(18113) GF201:96(17G6):384(18113) GF201:96(3B1):384(11D2) GF201:96(3B1):384(11E14) GF201:96(3B1):384(11E14) GF201:96(9E9):384(11E14) GF201:96(9E0):384(1818) PEROU:96(9C0):384(1818) PEROU:96(9C0):384(1818) GF200:96(10C10):384(1889) GF200:96(17G8):384(1889) GF200:96(17G8):384(1889)	1553	GF201:96(91F7):384(12K13)	RAB2, MEMBER RAS ONCOGENE FAMILY-LIKE AA401972
GF200:96(27B8):384(7D16) PEROU:96(8F1):384(20L1) PEROU:96(9E6):384(1812) PEROU:96(10A2):384(1813) GF201:96(10A2):384(1217) GF202:96(160G7):384(17N13) PEROU:96(3B1):384(11E14) GF201:96(8BC7):384(11E14) GF201:96(9E9):384(11E14) GF201:96(9E0):384(1818) PEROU:96(9C0):384(1818) PEROU:96(10C10):384(1818) GF200:96(10C10):384(1889) GF200:96(17G8):384(1889)	1554		NEBULETTE N77806
PEROU:96(8F1):384(20L1) PEROU:96(9E6):384(18112) PEROU:96(10A2):384(18112) GF201:96(10A2):384(1217) GF201:96(3B1):384(17113) GF201:96(3B1):384(11E14) GF201:96(3B1):384(11E14) GF201:96(9E0):384(11E14) GF201:96(9E0):384(1818) PEROU:96(9E0):384(1818) PEROU:96(9C0):384(1818) GF200:96(10C10):384(1889) GF200:96(10G5):384(1889)	1555	GF200:96(27B8):384(7D16)	ESTS, WEAKLY SIMILAR TO UNKNOWN [H.SAPIENS] R01499
PEROU:96(9E6):384(18112) PEROU:96(10A2):384(1813) GF201:96(10A2):384(1217) GF200:96(17G6):384(5M11) GF202:96(160G7):384(17N13) PEROU:96(3B1):384(11E14) GF201:96(9E03):384(11E14) GF201:96(9E03):384(11E14) GF201:96(9E03):384(1818) PEROU:96(9C03):384(1818) GF200:96(10C10):384(3E20) GF200:96(17G8):384(1889) GF200:96(17G8):384(1889)	1556	PEROU:96(8F1):384(20L1)	486828 AA042878
PEROU:96(10A2):384(1883) GF201:96(91E4):384(1217) GF200:96(17G5):384(5M11) GF202:96(160G7):384(17N13) PEROU:96(3B1):384(11E14) GF201:96(8BC7):384(11E14) GF201:96(9203):384(11E14) GF201:96(9203):384(1818) PEROU:96(9C07):384(1814) GF200:96(10C10):384(3E20) GF200:96(17G8):384(1889) GF200:96(17G8):384(1889)	1557	PEROU:96(9E6):384(18J12)	486828 AA042878
GF201:96(91E4):384(1217) GF200:96(17G6):384(5M11) GF202:96(160G7):384(17N13) PEROU:96(3B1):384(11E14) GF201:96(9203):384(11E14) GF201:96(9203):384(1818) PEROU:96(9C9):384(1818) PEROU:96(9C07):384(1814) GF200:96(10C10):384(3E20) GF200:96(17G8):384(1889) GF200:96(17G8):384(1889)	1558	PEROU:96(10A2):384(18B3)	XMP T84249
GF200:96(17G6):384(5M11) GF202:96(160G7):384(17N13) PEROU:96(3B1):384(11E14) GF201:96(8BC7):384(11E14) GF201:96(9203):384(11E14) PEROU:96(9C9):384(1818) PEROU:96(9C7):384(1814) GF200:96(10C10):384(3E20) PEROU:96(17G8):384(1889) GF200:96(17G8):384(5M15) GF200:96(17G8):384(5M15)	1559		EPITHELIAL MEMBRANE PROTEIN 2 T88721
GF202:96(160G7):384(17N13) PEROU:96(3B1):384(19D2) GF201:96(8BC7):384(11E14) GF201:96(9E3):384(12H6) PEROU:96(9E3):384(18F14) GF200:96(10C10):384(3E20) PEROU:96(10G5):384(18B3) GF200:96(17G8):384(18B3) GF200:96(17G8):384(18B3)	1560		KERATIN 8 AA598517
PEROU:96(3B1):384(19D2) GF201:96(8BC7):384(11E14) GF201:96(9E0):384(12H6) PEROU:96(9E0):384(18F14) GF200:96(10C10):384(3E20) PEROU:96(10G5):384(18B9) GF200:96(17G8):384(18B9) GF200:96(17G8):384(4F72)	1561	GF202:96(160G7):384(17N13)	44292 H06273
GF201:96(88C7):384(11E14) GF201:96(9E0):384(12H6) PEROU:96(9E9):384(1818) PEROU:96(9C7):384(18F14) GF200:96(10C10):384(3E20) PEROU:96(17G8):384(18B9) GF200:96(17G8):384(4F72) GF200:96(15C11):384(4F72)	1562	PEROU:96(3B1):384(19D2)	KERATIN 18 AA070385
GF201:96(93D3):384(12H6) PEROU:96(9E9):384(1818) PEROU:96(9C7):384(18F14) GF200:96(10C10):384(3E20) PEROU:96(10G5):384(18B9) GF200:96(17G8):384(4F72) GF200:96(15C11):384(4F72)	1563	GF201:96(88C7):384(11E14)	KERATIN 18 AA664179
PEROU:96(9E9):384(1818) PEROU:96(9C7):384(18F14) GF200:96(10C10):384(3E20) PEROU:96(10A5):384(18B9) GF200:96(17G8):384(4F72) GF200:96(15C11):384(4F72)	1564		CLAUDIN 4 AA430665
PEROU:96(9C7):384(18F14) GF200:96(10C10):384(3E20) PEROU:96(10A5):384(18B9) GF200:96(17G8):384(4F72) GF200:96(15C11):384(4F72)	1565		HCPE-R MRNA FOR CPE-RECEPTOR AAS06754
GF200:96(10C10):384(3E20) PEROU:96(10A5):384(18B9) GF200:96(17G8):384(5M15) GF200:96(15C11):384(4F22)	1566		HCPE-R MRNA FOR CPE-RECEPTOR W74492
PEROU:96(10A5):384(18B9) GF200:96(17G8):384(5M15) GF200:96(15C11):384(4F22)	1567		HOMO SAPIENS EPITHELIAL-SPECIFIC TRANSCRIPTION FACTOR ESE-1A (ESE-1) MRNA, COMPLETE CDS
PEROU:96(10A5):384(18B9) GF200:96(17G8):384(5M15) GF200:96(15C11):384(4F22)			AA433851
GF200:96(17G8):384(5M15)	1568	PEROU:96(10A5):384(18B9)	EPITHELIAL-SPECIFIC TRANSCRIPTION FACTOR ESE-18 (ESE-1) MRNA COMPLETE CDS H27938
[GF200:96/15C11):384/4F22)	1569	GF200:96(17G8):384(5M15)	SERINE PROTEASE INHIBITOR, KUNITZ TYPE 1 AA464250
123 11 11 000/ 44000 1000 101	1570	[GF200:96(15C11):384(4F22)	TRANSFORMING GROWTH FACTOR, BETA 3 AA040617

•	4
q	U
3	3
٥	J

1377 PREDUZE/GENERALIZARI PRANSFORMING GROWN HEACTOR BETA 3 AAA016516 1378 PREDUZE/GENERALIZARI PRANSFORMING GROWN HEACTOR BETA 3 AAA016516 1379 GFZ01296(102A9):384(18H2) TRANSFORMING GROWN HEACTOR BETA 3 AAA016516 1379 GFZ01296(102A9):384(18H2) TRANSFORMING GROWN HEACTOR BETA 3 AAA016516 1379 GFZ01296(102A9):384(18H2) TRANSFORMING GROWN HEACTOR BETA 3 AAA016516 1370 GFZ01296(102A9):384(14H2) SETS, MODERATELY SIMILAR TO KOZEN I 156576 1371 GFZ01296(102A9):384(14H2) SETS, MODERATELY SIMILAR TO KOZEN I 156576 1370 GFZ01296(102A9):384(14CH2) DROWG SAFIENS WINA FOR HYPOTHETICAL ROTEIN AA497488 1371 GFZ01296(102A):384(10E) DROWG SAFIENS WINA FOR HYPOTHETICAL ROTEIN AA497488 1370 GFZ01296(102D):384(20E) 202658 W32933 1381 PREDUZE/GENERALIZARI SETS WODERATELY SIMILAR TO HIJ ALI SUBFAMILY SQ WARNING ENTRY HIII [H.SAPIENS] AA467739 1382 GFZ01296(12D):384(20E) 202658 W32933 1383 PREDUZE/GENERALIZARI SETS WODERATELY SIMILAR TO HIJ ALI SUBFAMILY SQ WARNING ENTRY HIII [H.SAPIENS] AA467299 1384 GFZ01296(12D):384(20E) 202658 W32933 1385 GFZ01296(12D):384(20E) 20258 W32933 1386 GFZ01296(12D):384(20E) 20258 W32933 1387 GFZ01296(12D):384(20E) 20258 W32933 1389 GFZ01296(12D):384(20E) 20258 W32933 1390 PREDUZE/GENERALIZARI 20254 1391 GFZ01296(12D):384(21D) 170211 HSQ224 1391 GFZ01296(12D):384(21D)		10.1001100 (110010)	
PEROU:96(1072):384(18H9) GF200:96(172):384(18H9) GF201:96(10280):384(14B17) GF201:96(10280):384(14B17) GF201:96(10281):384(14B17) GF201:96(109011):384(16H15) GF201:96(109011):384(16H15) GF201:96(8C2):384(18H6) PEROU:96(9C3):384(12H17) PEROU:96(9C3):384(12H17) PEROU:96(9C3):384(12H17) PEROU:96(9C3):384(12H17) PEROU:96(9C3):384(12H17) PEROU:96(9C3):384(10H15) GF201:96(9C3):384(10H13) GF201:96(9C3):384(10H13) GF201:96(9C4):384(10H15) GF200:96(10E12):384(10H15) GF200:96(10E12):384(10H15) GF200:96(10E12):384(10H15) GF200:96(5C5):384(10H15) GF200:96(6C4):384(10H15) GF200:96(6C4):384(10H15) GF200:96(6C4):384(10H15) GF200:96(6C4):384(10H15) GF200:96(6C4):384(10H15) GF200:96(6C4):384(10H15) GF200:96(6C4):384(10H15)	15/1	PEROU:96(9E5):384(18)10)	TRANSFORMING GROWTH FACTOR BETA 3 AA040616
GF200:96(17F2):384(5K3) GF201:96(155A5):384(14B17) GF201:96(102A9):384(14B17) GF201:96(102B10):384(14B17) GF201:96(102B10):384(14B15) GF201:96(109D11):384(16H15) GF201:96(109D11):384(16H15) GF201:96(109D11):384(16H15) GF201:96(8E2):384(18B6) GF201:96(9B3):384(12H17) PEROU:96(9E3):384(12H17) PEROU:96(9E3):384(20D3) PEROU:96(9E2):384(12H17) PEROU:96(9E2):384(11D13) GF201:96(9B2):384(11D13) GF201:96(9B2):384(11D13) GF201:96(9B2):384(11D13) GF201:96(9B2):384(11D13) GF201:96(9B2):384(11D13) GF201:96(9B2):384(11D13) GF201:96(9B2):384(11D13) GF201:96(9B2):384(11D13) GF201:96(9B1):384(11D13) GF201:96(9B1):384(11D13) GF201:96(9B1):384(11D13) GF201:96(9B1):384(11D13) GF201:96(9B1):384(11D13) GF201:96(9B1):384(11D13) GF201:96(9B1):384(11D13) GF200:96(12F12):384(11B1) GF200:96(12F12):384(11B1) GF200:96(12F12):384(11B1) GF200:96(12F12):384(11B1) GF200:96(10D1):384(11B13) GF200:96(10D1):384(11B13)	15/2		TRANSFORMING GROWTH FACTOR BETA 3 AA040616
GF201:96(55A5):384(21A9) GF201:96(102A9):384(14B17) GF201:96(102B10):384(14B17) GF201:96(102B10):384(14B17) GF201:96(10B011):384(14D19) GF202:96(10B011):384(16H15) GF201:96(8C7):384(20D5) PEROU:96(8C3):384(18H6) PEROU:96(8C3):384(12H17) PEROU:96(8E8):384(20D5) PEROU:96(8E8):384(20D5) GF201:96(9B2):384(12H17) PEROU:96(8E8):384(20D3) GF201:96(9B2):384(12H17) PEROU:96(8E8):384(20D3) GF201:96(9B2):384(11P13) GF201:96(9B2):384(11P13) GF201:96(9C4H1):384(11P13) GF201:96(9C4H1):384(11P13) GF201:96(9C4H1):384(11P13) GF201:96(9C4H1):384(11P13) GF201:96(9C4H1):384(11P13) GF201:96(9C4H1):384(11P13) GF201:96(9C4H1):384(11P13) GF201:96(9C4H1):384(11P13) GF200:96(12F12):384(11P13) GF200:96(12F12):384(11P13) GF200:96(12F12):384(11P13) GF200:96(10E1):384(11P13) GF200:96(6C4H1):384(11P13) GF200:96(10E1):384(11P13) GF200:96(10E1):384(11P13) GF200:96(10E1):384(11P13) GF200:96(10E1):384(11P13)	1573		LYSOSOMAL-ASSOCIATED MEMBRANE PROTEIN 1 H29077
GF201:96(102A9):384(14B17) GF201:96(102B10):384(14B17) GF201:96(109D11):384(14D19) GF202:96(109D11):384(14D19) GF202:96(109D11):384(16H15) GF201:96(8C7):384(20D5) PEROU-96(8B2):384(12H17) PEROU-96(8B2):384(12H17) PEROU-96(8B2):384(12H17) PEROU-96(8B2):384(12H17) PEROU-96(8B2):384(12H17) PEROU-96(8B2):384(12H17) PEROU-96(8B2):384(1015) GF201:96(99D5):384(11P13) GF201:96(90H7):384(11P13) GF201:96(90H7):384(11P13) GF201:96(90H7):384(11P13) GF201:96(90H7):384(10H15) GF201:96(90H7):384(10H15) GF201:96(90H7):384(10H15) GF201:96(90H7):384(10H15) GF201:96(90H7):384(10H15) GF201:96(90H7):384(10H15) GF200:96(12F12):384(10H15) GF200:96(12F12):384(10H15) GF200:96(5F3):384(10H15) GF200:96(6A3):384(10H15)	1574	GF201:96(55A5):384(21A9)	
GF201:96(102B10):384(14D19] GF202:96(109D11):384(15G21] GF202:96(109D11):384(15G21] GF202:96(109D11):384(16H15) GF201:96(87B9):384(1017) PEROU!96(8B2):384(1816) PEROU!96(8B2):384(12H17) PEROU!96(8B2):384(12H17) PEROU!96(8B2):384(12H17) PEROU!96(8B2):384(12H17) PEROU!96(8B2):384(12H17) PEROU!96(8B2):384(10113) GF201:96(99D5):384(11P13) GF201:96(99D1):384(11P13) GF201:96(90D1):384(11P13) GF201:96(90D1):384(10115) GF201:96(90D1):384(30D2) GF201:96(6A11):384(30D2) PEROU!96(6A11):384(30D1) GF201:96(90D1):384(10D1) GF201:96(90D1):384(10D1) GF201:96(90D1):384(10D1) GF200:96(5B1):384(10D1) GF200:96(5B1):384(10D1) GF200:96(5B1):384(10D1) GF200:96(6A3):384(10D1) GF200:96(6A3):384(10D1) GF200:96(6A3):384(10D1) GF200:96(6A3):384(10D1) GF200:96(6A3):384(10D1) GF200:96(6A3):384(10D1)	1575	GF201:96(102A9):384(14B17)	ESTS, MODERATELY SIMILAR TO K02E10.2 [C.ELEGANS] T62552
GF202:96(109D11):384(15G21 GF202:96(116D8):384(11G17) BEROU:96(8789):384(11G17) PEROU:96(86789):384(18F6) PEROU:96(882):384(18D6) GF201:96(982):384(12H17) PEROU:96(882):384(12H17) PEROU:96(882):384(12H17) GF201:96(991):384(12H17) GF201:96(991):384(11D13) GF201:96(991):384(11D13) GF201:96(991):384(11D13) GF201:96(9917):384(11D13) GF201:96(9917):384(11D13) GF201:96(9017):384(11D13) GF201:96(9017):384(11D13) GF201:96(9017):384(11D13) GF201:96(9017):384(11D13) GF201:96(9017):384(10115) GF200:96(12F12):384(10115) GF200:96(12F12):384(10115) GF200:96(12F12):384(10115) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1)	1576	GF201:96(102B10):384(14D19	82869 T69270
GF202:96(116D8):384(16H15) GF201:96(8789):384(11C17) PEROU!:96(8789):384(12C17) PEROU!:96(882):384(18F6) PEROU!:96(882):384(18D6) GF201:96(982):384(12H17) PEROU!:96(882):384(12H17) PEROU!:96(882):384(12H17) PEROU!:96(882):384(12H17) PEROU!:96(891):384(12H17) PEROU!:96(9917):384(11P13) GF201:96(90H7):384(11P13) GF201:96(90H7):384(11P13) GF201:96(90H7):384(3123) PEROU!:96(811):384(3123) PEROU!:96(811):384(3123) PEROU!:96(811):384(3123) PEROU!:96(90H7):384(11P15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(57811):384(20D15) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1)	1577	GF202:96(109D11):384(15G2	I SELENIUM BINDING PROTEIN 1 T65736
GF201:96(87B9):384(11C17) PEROU!:96(8C7):384(20F13) PEROU!:96(8B2):384(18F6) PEROU!:96(9B2):384(18D6) GF201:96(9B2):384(12H17) PEROU!:96(8B2):384(20D3) GF201:96(8B2):384(20D3) PEROU!:96(8B2):384(12H17) PEROU!:96(8B2):384(12H10) GF201:96(9B2):384(11P13) GF201:96(9B2):384(11P13) GF201:96(9B2):384(11P13) GF201:96(9B2):384(11P13) GF201:96(9B2):384(3D3) PEROU!:96(9B1):384(3D3) PEROU!:96(6A11):384(3D3) PEROU!:96(6A11):384(11P15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(5B3):384(11P15) GF200:96(5B3):384(11P15) GF200:96(5B3):384(11P15) GF200:96(5B3):384(11P15) GF200:96(5B3):384(11B15) GF200:96(5B3):384(11B115) GF200:96(5B3):384(11B115) GF200:96(5B3):384(11B115) GF200:96(5B3):384(1B115) GF200:96(5B3):384(1B115) GF200:96(5B3):384(1B115) GF200:96(5B3):384(1B115) GF200:96(5B3):384(1B115) GF200:96(5B3):384(1B115) GF200:96(5B3):384(1B115) GF200:96(5B3):384(1B115)	1578	GF202:96(116D8):384(16H15)	HOMO SAPIENS MRNA FOR HYPOTHETICAL PROTEIN AA487488
PEROU!96(8C7):384(20F13) PEROU!96(9C3):384(18F6) PEROU!96(9B3):384(18D6) GF201:96(9B3):384(18D6) GF201:96(9B3):384(12H17) PEROU!96(8E8):384(2015) GF201:96(9B2):384(2015) GF201:96(9B2):384(12H10) PEROU!96(8B2):384(12H10) PEROU!96(8B2):384(11P13) GF201:96(9B2):384(11P13) GF201:96(9C5):384(11P13) GF201:96(9C5):384(11P13) GF201:96(9C5):384(3C012) GF201:96(9C5):384(3C012) GF200:96(12F12):384(3L3) PEROU!96(6A11):384(3L3) PEROU!96(6A11):384(11P15) GF200:96(12F12):384(11P15) GF200:96(5C5):384(18B1) PEROU!96(9C5):384(11P15) GF200:96(5C5):384(11P15) GF200:96(5C5):384(11D13) GF200:96(5C5):384(18H1) GF200:96(5C5):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6C5):384(18H1) GF200:96(6C5):384(18H1) GF200:96(6C5):384(18H1)	1579	GF201:96(8789):384(11C17)	PROLACTIN RECEPTOR R63647
PEROU:96(9C3):384(18F6) PEROU:96(8B3):384(18D6) PEROU:96(8B3):384(10D5) PEROU:96(8B2):384(12H17) PEROU:96(8B2):384(12H17) PEROU:96(8B2):384(2015) GF201:96(9915):384(12H10) PEROU:96(8B2):384(2013) PEROU:96(9913):384(11P13) GF201:96(90H7):384(11P13) GF201:96(90H7):384(11P13) GF201:96(90H7):384(313) PEROU:96(6A11):384(313) PEROU:96(12F12):384(313) PEROU:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(988):384(11P15) GF200:96(985):384(11P15) GF200:96(985):384(18H1) PEROU:96(985):384(18H1) PEROU:96(985):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) PEROU:96(10D1):384(118H1) GF200:96(6A3):384(18H1)	1580	PEROU:96(8C7):384(20F13)	321658 W32933
PEROU:96(8B3):384(20D5) PEROU:96(9B3):384(18D6) GF201:96(9B3):384(18D6) GF201:96(9B2):384(12H17) PEROU:96(8E8):384(2015) GF200:96(8E2):384(2015) GF201:96(9B2):384(12H10) PEROU:96(8B2):384(18D4) GF201:96(9B4):384(11P13) GF201:96(9C1):384(11P13) GF201:96(9C1):384(11P13) GF201:96(9C1):384(3C12) GF200:96(12E12):384(3L3) PEROU:96(6A11):384(3L3) PEROU:96(4D8):384(19H15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P115) GF200:96(4D8):384(11P115) GF200:96(5C11):384(11P115) GF200:96(6A3):384(11P115) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1)	1581	PEROU:96(9C3):384(18F6)	321658 W32933
PEROU:96(9B3):384(18D6) GF201:96(56H9):384(21018) GF201:96(8E8):384(21018) GF201:96(8E8):384(2015) GF200:96(6G9):384(12H10) PEROU:96(8B2):384(12H10) PEROU:96(8B2):384(18D4) GF201:96(9DH7):384(11P13) GF201:96(9DH7):384(11P13) GF201:96(9DH7):384(20A22) PEROU:96(12F12):384(3131) PEROU:96(12F12):384(3131) PEROU:96(12F12):384(19H15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(5F3):384(11P15) GF200:96(5F3):384(11P15) GF200:96(6A3):384(11P15) GF200:96(6A3):384(11P15) GF200:96(6A3):384(11P15) GF200:96(6A3):384(11P15) GF200:96(6A3):384(11P15) GF200:96(6A3):384(11P15) GF200:96(6A3):384(11P15) GF200:96(6A3):384(11P15) GF200:96(10D1):384(11B15) GF200:96(10D1):384(11B15) GF200:96(10D1):384(11B15)	1582		202658 H53479
GF201:96(5649):384(21018) GF201:96(8E8):384(21018) GF201:96(8E8):384(12H17) PEROU:96(8B2):384(12H10) GF201:96(93D5):384(12H10) PEROU:96(8B2):384(18D4) GF201:96(9917):384(11P13) GF201:96(90H7):384(11P13) GF201:96(90H7):384(3123) PEROU:96(12F12):384(3123) PEROU:96(12F12):384(3123) PEROU:96(12F12):384(19H15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(12F12):384(11P15) GF200:96(10P1):384(11P15) GF200:96(10P1):384(11P15) GF200:96(10P1):384(11P15) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6B8):384(18H1) GF200:96(6B8):384(18H1) GF200:96(10D1):384(11P1) GF200:96(10D1):384(11P1)	1583	PEROU:96(9B3):384(18D6)	202658 H53479
GF201:96(94D9):384(12H17) PEROU:96(8E8):384(2015) GF200:96(6G9):384(2015) GF201:96(93D5):384(12H10) PEROU:96(8B2):384(12H10) GF201:96(95H4):384(18D4) GF201:96(95H4):384(11P13) GF201:96(90H7):384(11P13) GF201:96(90H7):384(20A22) PEROU:96(6A11):384(20A22) PEROU:96(6A11):384(20A22) PEROU:96(6A11):384(19H15) GF200:96(12F12):384(19H15) GF201:96(96A7):384(11P115) GF201:96(96A7):384(11P15) GF200:96(5E3):384(11P15) GF200:96(5E3):384(11P15) GF200:96(6A3):384(11P15)	1584	GF201:96(56H9):384(21018)	ESTS, MODERATELY SIMILAR TO !!!! ALU SUBFAMILY SO WARNING ENTRY !!!! [H.SAPIENS] AA464739
PEROU:96(8E8):384(20115) GF200:96(6G9):384(12H10) GF201:96(93D5):384(12H10) PEROU:96(8B2):384(18D4) GF201:96(9B2):384(18D4) GF201:96(9B2):384(18D4) GF201:96(9C7F6):384(11P13) GF201:96(9C7F6):384(20L12) GF201:96(6A11):384(20A22) PEROU:96(12F12):384(18B8) GF200:96(12F12):384(13B8) GF200:96(12F12):384(13B14) PEROU:96(9C6A7):384(13B16) GF201:96(9C6A7):384(13B16) GF201:96(9C6A7):384(13C10) GF201:96(9C6A7):384(18B1) GF201:96(9C6A7):384(18B1) GF201:96(9C6A7):384(18B1) GF201:96(9C6A7):384(1B11) GF200:96(5C7B1):384(1B11) GF200:96(6A3):384(1B11) GF200:96(6A3):384(1B11) GF200:96(6A3):384(1B11)	1585	GF201:96(94D9):384(12H17)	197520 H52110
GF200:96(6G9):384(2M18) GF201:96(93D5):384(12H10) PEROU:96(8B2):384(12H10) PEROU:96(9B2):384(18D4) GF201:96(9B2):384(11P13) GF201:96(9CF6):384(11P13) GF201:96(9CF6):384(11P13) GF201:96(8CC9):384(20L12) GF200:96(12E12):384(20A22) PEROU:96(9A4):384(18B8) GF200:96(12F12):384(19H15) GF201:96(9CF6):384(19H15) GF201:96(9CF6):384(19H15) GF201:96(9CF6):384(19H15) GF201:96(9CF6):384(19H15) GF201:96(9CF6):384(18H1) GF200:96(5CF1):384(18H1) GF200:96(5CF1):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6CF1):384(18H1) GF200:96(6CF1):384(18H1)	1586	PEROU:96(8E8):384(20115)	KIAA0182 AA037466
GF201:96(93D5):384(12H10) PEROU:96(8B2):384(20D3) PEROU:96(9B2):384(18D4) GF201:96(95H4):384(11P13) GF201:96(95H4):384(11P13) GF201:96(9617):384(20L2) GF201:96(6A11):384(20A22) PEROU:96(6A11):384(20A22) PEROU:96(9A4):384(18B8) GF200:96(12F12):384(19H15) GF201:96(96A7):384(19H15) GF201:96(9B8):384(19H15) GF201:96(9B8):384(19H15) GF201:96(9B5):384(18B10) GF201:96(9B5):384(18H1) PEROU:96(9B5):384(18H1) GF200:96(5E3):384(18H1) GF200:96(5E3):384(18H1) GF200:96(5E3):384(18H1) GF200:96(6A3):384(18H1) GF200:96(6A3):384(18H1)	1587	GF200:96(6G9):384(2M18)	HUMAN MRNA FOR KIAA0182 GENE, PARTIAL CDS H05563
PEROU:96(8B) PEROU:96(8B) GF201:96(90+ GF201:96(90+ GF201:96(802) GF200:96(12E PEROU:96(6A) PEROU:96(8B) PEROU:96(8B) PEROU:96(9B) GF200:96(12E GF200:96(12E GF200:96(12E GF200:96(12E GF200:96(12E GF200:96(12E GF200:96(10E GF200:96(10E)	1588	GF201:96(93D5):384(12H10)	SOLUTE CARRIER FAMILY 9 (SODIUM/HYDROGEN EXCHANGER), ISOFORM 3 REGULATORY FACTOR 1
PEROU:96(8B) PEROU:96(9B) GF201:96(9C) GF201:96(9C) GF201:96(8C) GF201:96(8C) FEROU:96(12E) PEROU:96(12E) PEROU:96(12E) PEROU:96(12E) PEROU:96(12E) FEROU:96(12E) PEROU:96(12E) FEROU:96(12E) FEROU:96(10E)			AA425299
PEROU:96(9B; GF201:96(9C) GF201:96(9C) GF201:96(8ZC) PEROU:96(12E PEROU:96(4D) GF201:96(9A) GF201:96(9BA) GF201:96(9BA) GF201:96(9BA) GF201:96(9BA) GF201:96(9BA) GF201:96(9BA) GF201:96(9BA) GF200:96(10D) GF200:96(10D) GF200:96(10D) GF200:96(10D) GF200:96(9BA)	1589		179211 H50224
GF201:96(95H GF201:96(90H GF201:96(82C PEROU:96(12E GF200:96(12E PEROU:96(90A GF201:96(90B GF201:96(90B GF201:96(90B GF201:96(90B GF201:96(10B GF200:96(10B GF200:96(10B GF200:96(10B GF200:96(90B	1590	PEROU:96(9B2):384(18D4)	179211 H50224
GF201:96(90H GF201:96(7F6 GF201:96(12E GF200:96(12E GF200:96(12E GF201:96(9A- GF201:96(9B- GF201:96(9B- GF201:96(9B- GF201:96(9B- GF201:96(9B- GF201:96(10E GF200:96(10E GF200:96(10E GF200:96(10E GF200:96(10E	1591	GF201:96(95H4):384(13O7)	FRUCTOSE-BISPHOSPHATASE 1 AA699427
GF201:96(82C PEROU:96(12E GF200:96(12E PEROU:96(6A) GF200:96(12F GF201:96(98A GF201:96(98B PEROU:96(98B GF201:96(98B GF200:96(5E3 GF200:96(10B GF200:96(10B GF200:96(10B GF200:96(10B GF200:96(10B GF200:96(10B	1592	GF201:96(90H7):384(11P13)	HUMAN ENDOGENOUS RETROVIRUS ENVELOPE REGION MRNA (PL1) AA701655
PEROU::96(7FE GF200:96(12E PEROU::96(9A- GF200::96(12F GF201::96(9BA- GF201::96(9BA- PEROU::96(9BA- GF201::96(5FE GF200::96(5FE GF200::96(10BA- GF200::96(10BA	1593	GF201:96(82C9):384(9F17)	X-BOX BINDING PROTEIN 1 W90128
GF200:96(12E PEROU:96(6A) PEROU:96(12F GF200:96(12F GF201:96(9B6 GF201:96(9B6 PEROU:96(9B6 GF201:96(5F8 GF200:96(5F8 GF200:96(5F8 GF200:96(0A) PEROU:96(100 GF200:96(0B6 PEROU:96(100 GF200:96(0B6 PEROU:96(100	1594	PEROU:96(7F6):384(20L12)	HEPATOCYTE NUCLEAR FACTOR 3, ALPHA T74639
PEROU: 96(6A) PEROU: 96(12F GF200: 96(12F GF201: 96(96A) GF201: 96(96B) PEROU: 96(98B) PEROU: 96(57B) GF200: 96(55E3) GF200: 96(56A3) PEROU: 96(86A3) PEROU: 96(86A3) PEROU: 96(86A3) PEROU: 96(86A3) PEROU: 96(100) GF200: 96(86A3) PEROU: 96(100) GF200: 96(100) GF200: 96(86A3)	1595		GATA-BINDING PROTEIN 3 H72474
PEROU:96(9A- GF200:96(12F GF201:96(9B4 GF201:96(9B4 PEROU:96(9B4 GF201:96(57B GF200:96(5F3 GF200:96(101 GF200:96(101 GF200:96(101 GF200:96(101	1596		GATA-BINDING PROTEIN 3 R31442
GF200:96(12F PEROU:96(4Dx GF201:96(96A PEROU:96(9B; GF201:96(57B GF200:96(6A3 GF200:96(6A3 GF200:96(10I GF200:96(10I GF200:96(10I	1597		GATA-BINDING PROTEIN 3 R31441
PEROU:96(4DA) GF201:96(9BA) PEROU:96(9BA) GF201:96(57BA) GF200:96(5E3 GF200:96(6A3) PEROU:96(100 GF200:96(25E	1598	GF200:96(12F12):384(3L23)	GATA-BINDING PROTEIN 3 AA058828
GF201:96(96A PEROU:96(8B6 PEROU:96(9B6 GF201:96(57B GF200:96(5E3 GF200:96(101 PEROU:96(101 GF200:96(25E	1599		ESTROGEN RECEPTOR 1 AA291702
PEROU:96(8BK PEROU:96(9BK GF201:96(57B GF200:96(6A3 GF200:96(10I PEROU:96(10I GF200:96(2SE	1600	GF201:96(96A7):384(13A14)	ESTROGEN RECEPTOR 1 AA291749
PEROU:96(9B: GF201:96(57B GF200:96(6A3 GF200:96(10I PEROU:96(10I GF200:96(2SE	1601	PEROU:96(8B8):384(20D15)	ANNEXIN XXX N76688
GF201:96(578 GF200:96(6A3 GF200:96(6A3 PEROU:96(101 GF200:96(25E	1602	PEROU:96(9B5):384(18D10)	ANNEXIN XXX N76688
GF200:96(5E3 GF200:96(6A3 PEROU:96(10I GF200:96(2SE PEROU:96(8E4	1603	GF201:96(57B11):384(21D22)	HOMO SAPIENS MRNA; CDNA DKFZP434A091 (FROM CLONE DKFZP434A091) AA431988
GF200:96(6A3):384(2A6) PEROU:96(10D1):384(18H1) GF200:96(25E7):384(7113) PEROU:96(8E4):384(2077)	1604	GF200:96(5E3):384(2I5)	CANALICULAR MULTISPECIFIC ORGANIC ANION TRANSPORTER C N80617
PEROU:96(10D1):384(18H1) GF200:96(25E7):384(7113) PEROU:96(8E4):384(2017)	1605		HOMO SAPIENS MRNA FOR NEUROBLASTOMA, COMPLETE CDS AA481950
GF200:96(25E7):384(7113) PEROU:96(8E4):384(2017)	1606		CELLULAR RETINOIC ACID-BINDING PROTEIN 2 AAG36987
PEROU:96(8E4):384(20J7)	1607		CELLULAR RETINOIC ACID-BINDING PROTEIN 2 AA598508
	1608		CELLULAR RETINOIC ACID-BINDING PROTEIN 2 AA036986

•		4
	đ	J
	ć	5
	a	5
Į	_	

400	(001110001000100100100100100100100100100	THE MAN CHOST CONTRACT AND ASSESSED TO THE SECOND CONTRACT OF SECOND C
1610		384(2410) MSH (DROSOPHILA) HOMEO BOX HOMOLOG 2 AA195636
1611		HUMAN CHROMOSOME 16 BAC CLONE CTT987SK-254P9 H23265
1612	GF201:96(61F4):384(22L8)	204483 H58234
1613	GF201:96(88E3):384(1116)	HUMAN INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 5 (IGFBP5) MRNA T52830
1614	[PEROU:96(9E8):384(18)16)	INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 5 (IGFBP5) A4054451
1615	GF200:96(7D2):384(2H4)	HUMAN INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 5 (IGFBP5) MRNA H08560
1616	GF201:96(90D2):384(11H3)	HUMAN MRNA FOR KIAA0061 GENE, PARTIAL CDS N33237
1617		HUMAN MRNA FOR KIAA0143 GENE, PARTIAL CDS AA112057
1618	GF201:96(90E2):384(11J3)	CYSTEINE-RICH PROTEIN 2 AA485427
1619		PDGF BETA T49539
1620	GF200:96(16G1):384(4N1)	67654 149539
1621	PEROU:96(6C7):384(20E14)	RAS HOMOLOG GENE FAMILY, MEMBER B H89046
1622	GF200:96(1F7):384(1K13)	RAS HOMOLOG GENE FAMILY, MEMBER B AA495846
1623	PEROU:96(8A4):384(20B7)	140018 R63971
1624	PEROU:96(9A5):384(18B10)	140018 R63971
1625	GF201:96(101A1):384(14B2)	81475 T63511
1626	GF201:96(96D4):384(13G8)	CYTOCHROME P450, SUBFAMILY IIJ (ARACHIDONIC ACID EPOXYGENASE) POLYPEPTIDE 2 H09076
1627	GF200:96(26H5):384(7010)	P53-INDUCED PROTEIN H12189
1628	PEROU:96(10E9):384(18J17)	HOMO SAPIENS BREAST CANCER PUTATIVE TRANSCRIPTION FACTOR (ZABC1) MRNA, COMPLETE CDS
		AA460802
1629	PEROU:96(10E8):384(18115)	HOMO SAPIENS BREAST CANCER PUTATIVE TRANSCRIPTION FACTOR (ZABC1) MRNA, COMPLETE CDS AA782528
1630	GF201:96(93C7):384(12F14)	SULFOTRANSFERASE FAMILY 2B, MEMBER 1 R73584
1631	PEROU:96(1F8):384(19K15)	HEREDITARY HEMOCHROMOTOSIS R07647
1632	GF200:96(17D7):384(5G13)	MUCIN 1, TRANSMEMBRANE AA488073
1633	PEROU:96(1G8):384(19M15)	156053 R72491
1634	GF201:96(94A4):384(12B7)	447786 AA702350
1635	GF201:96(62B2):384(22D3)	415317 W92160
1636	GF201:96(99A7):384(14A13)	IGG FC BINDING PROTEIN R52030
1637	GF200:96(24B11):384(6D21)	EPIDIDYMIS-SPECIFIC, WHEY-ACIDIC PROTEIN TYPE, FOUR-DISULFIDE CORE A4451904
1638	GF200:96(10A9):384(3A18)	SRC KINASE-ASSOCIATED PHOSPHOPROTEIN OF 55 KDA R01281
1639	GF200:96(28H2):384(7P3)	CARBONIC ANHYDRASE XI N52089
1640		PHOSPHOFRUCTOKINASE, MUSCLE AA099169
1641	GF200:96(27C5):384(7F10)	HUMAN HEART MRNA FOR HEAT SHOCK PROTEIN 90. PARTIAL CDS AA064973
1642	GF200:96(26F1):384(7K2)	130843 R22306
1643	PEROU:96(8D12):384(20H23)	470105 AA029949
1644	GF201:96(85D6):384(10H12)	H2B HISTONE FAMILY, MEMBER Q AA010223
1645	GF200:96(7D9):384(2H18)	H2B HISTONE FAMILY, MEMBER O AA456695

-	
Ψ	
亙	
ō,	

1647	GF200:96(11A12):384(3B24)	H1 HISTONE FAMILY, MEMBER 2 T66816
07.07		
1048		322461 W15305
1649	GF201:96(66B11):384(23D21)	384(23D21) 289734 N62965
1650	GF201:96(91H2):384(12O3)	DUAL SPECIFICITY PHOSPHATASE 4 AA44049
1651	GF201:96(80G4):384(9M8)	CALCIUM CHANNEL, VOLTAGE-DEPENDENT, ALPHA 2/DELTA SUBUNIT 2 N53512
1652	GF200:96(14G9):384(4M18)	ACYL-COENZYME A DEHYDROGENASE, SHORT/BRANCHED CHAIN H96140
1653	PEROU:96(4B3):384(19D5)	CYTOCHROME P450, SUBFAMILY IIB (PHENOBARBITAL-INDUCIBLE), POLYPEPTIDE 6 H41908
1654	GF200:96(11C7):384(3F14)	PROTEASE INHIBITOR 12 (NEUROSERPIN) AA115876
1655	GF200:96(31C3):384(8F6)	HUMAN DNA SEQUENCE FROM CLONE 167A19 ON CHROMOSOME 1P32.1-33. CONTAINS THREE GENES
		FOR NOVEL PROTEINS, THE DIO1 GENE FOR TYPE I IODOTHYRONINE DEIODINASE (EC 3.8.1.4, TXDI1,
		ITDI1) AND AN HNRNP A3 (HETEROGENOUS NUCLEAR RIBONUCLEOPR N74025
1656	GF200:96(14D5):384(4G10)	AUTOCRINE MOTILITY FACTOR RECEPTOR AA479243
1657	GF200:96(13D9):384(4G17)	CYTOCHROME P450, SUBFAMILY IIA (PHENOBARBITAL-INDUCIBLE), POLYPEPTIDE 7 T73031
1658	GF200:96(1F2):384(1K3)	ANGIOTENSIN RECEPTOR 1 H66116
1659	GF200:96(28H3):384(7P5)	ESTS, WEAKLY SIMILAR TO TUMOROUS IMAGINAL DISCS PROTEIN TID56 HOMOLOG [H.SAPIENS]
		195268
1660	GF200:96(1387):384(4C13)	QUINOID DIHYDROPTERIDINE REDUCTASE R38198
1661	GF201:96(90E9):384(11J17)	LYMPHOID NUCLEAR PROTEIN RELATED TO AF4 H99588
1662	GF201:96(94F3):384(12L5)	NUCLEOPORIN 88KD AA479888
1663	PEROU:96(6D8):384(20G16)	307220 N95180
1664	GF200:96(28D11):384(7H21)	HOMO SAPIENS MRNA; CDNA DKFZP564P0662 (FROM CLONE DKFZP564P0662) R27680
1665	GF200:96(26H10):384(7020)	HEPSIN (TRANSMEMBRANE PROTEASE, SERINE 1) H62162
1666	GF200:96(29D11):384(8G21)	ESTS, HIGHLY SIMILAR TO TRANSCRIPTION ELONGATION FACTOR TFIIS.H [H.SAPIENS] R09980
1667	GF201:96(80E10):384(9I20)	795744 AA460298
1668	PEROU:96(6B10):384(20C20)	N-ACETYLTRANSFERASE 1 (ARYLAMINE N-ACETYLTRANSFERASE) R91803
1669	GF201:96(97H5):384(13P10)	N-ACETYLTRANSFERASE 1 (ARYLAMINE N-ACETYLTRANSFERASE) T67128
1670		503581 AA131239
1671	GF200:96(8C12):384(2F23)	HUMAN BREAST CANCER, ESTROGEN REGULATED LIV-1 PROTEIN (LIV-1) MRNA, PARTIAL CDS H29407
1672	GF201:96(89B3):384(11D6)	IN-ACYLSPHINGOSINE AMIDOHYDROLASE (ACID CERAMIDASE) AA664155
1673	(GF200:96(12H10):384(3P19)	EPOXIDE HYDROLASE 2, CYTOPLASMIC R73525
1674		B-CELL CLL/LYMPHOMA 2 W63749
1675	GF201:96(100G11):384(14M22	:384(14M22ESTS, HIGHLY SIMILAR TO (DEFLINE NOT AVAILABLE 4929557) TH. SAPIENST 774688
1676	GF200:96(22G7):384(6M14)	BASIC HELIX-LOOP-HELIX DOMAIN CONTAINING, CLASS B. 2 T62084
1677	GF201:96(62D11):384(22H21)	GF201:96(62D11):384(22H21) FORKHEAD (DROSOPHILA) HOMOLOG 1 (RHABDOMYOSARCOMA) AA448277
1678	GF201:96(91E3):384(12I5)	ACTIVATED P21CDC42HS KINASE AA427891
1679	GF200:96(6D3):384(2G6)	HUMAN MRNA FOR KIAA0303 GENE, PARTIAL CDS AA418846
1680	1017100 - OCOTOL (CAACOLOC./CAOTI)O. 10CTO	

+	4
q	ì
3	5
2	3

	1	
1681	1	ZINC FINGER PROTEIN HOMOLOGOUS TO ZFP103 IN MOUSE AA429297
1682		CELL DIVISION CYCLE 4-LIKE AA041499
1683	PEROU:96(984):384(18D8)	ESTS, WEAKLY SIMILAR TO P1.11659_5 N47593
1684		9):384(15D18) ESTS, WEAKLY SIMILAR TO (DEFLINE NOT AVAILABLE 4502327) [H.SAPIENS] T72850
1685	GF200:96(29D2):384(8G3)	ESTS, MODERATELY SIMILAR TO IIII ALU SUBFAMILY SO WARNING ENTRY IIII [H.SAPIENS] R70598
1686	PEROU:96(6C2):384(20E4)	220376 H86813
1687	GF201:96(100H8):384(14O16)	8):384(14016) HOMO SAPIENS MRNA; CDNA DKFZP434H071 (FROM CLONE DKFZP434H071) T41078
1688	GF201:96(93D10):384(12H20)	0):384(12H20)[ESTS, WEAKLY SIMILAR TO IIII ALU SUBFAMILY J WARNING ENTRY IIII [H.SAPIENS] AA669222
1689		I T3 RECEPTOR-ASSOCIATING COFACTOR-1 [HUMAN, FETAL LIVER, MRNA, 2930 NT AA400234
1690	GF201:96(63H11):384(23021)	1):384(23021) 416556 W86987
1691	GF200:96(7H5):384(2P10)	HUMAN CLONE 23907 MRNA SEQUENCE R06567
1692	PEROU:96(6F3):384(20K6)	ESTS, WEAKLY SIMILAR TO KIAA0108 [H.SAPIENS] AA033947
1693	GF202:96(112E11):384(15J21)	11):384(15J21)[ESTS, WEAKLY SIMILAR TO KIAA0108 [H.SAPIENS] AA600214
1694	GF200:96(16C10):384(4F19)	RAB2, MEMBER RAS ONCOGENE FAMILY T82414
1695	GF200:96(22C1):384(6E2)	TISSUE SPECIFIC TRANSPLANTATION ANTIGEN P35B AA421687
1696	GF201:96(55C3):384(21E5)	ESTS, WEAKLY SIMILAR TO RBCK2 [R.NORVEGICUS] AA434161
1697	GF200:96(29D10):384(8G19)	ESTS, WEAKLY SIMILAR TO ORF2 CONTAINS A REVERSE TRANSCRIPTASE DOMAIN [H.SAPIENS]
		R38239
1698	GF201:96(56F11):384(21K22)	1):384(21K22) ESTS, MODERATELY SIMILAR TO NMDA RECEPTOR GLUTAMATE-BINDING CHAIN [H.SAPIENS]
		AA455271 -
1699	PEROU:96(5C4):384(20E7)	HSP27
1700		ESTS, HIGHLY SIMILAR TO TRANSDUCIN-LIKE ENHANCER PROTEIN 3 [H.SAPIENS] AA136692
1701	GF200:96(16H3):384(4P5)	PARVALBUMIN AA010609
1702	GF201:96(100C2):384(14E4)	50582 H17038
1703	GF201:96(99H6):384(14O11)	51700 H22854
1704	GF201:96(65C8):384(23F16)	CYTIDINE MONOPHOSPHATE-N-ACETYLNEURAMINIC ACID HYDROXYLASE (CMP-N-
		ACETYLNEURAMINATE MONOOXYGENASE) N29639
1705		ADENOSINE AZA RECEPTOR N57553
1706		HOMO SAPIENS INDUCIBLE PROTEIN MRNA, COMPLETE CDS H12043
1707	GF201:96(99F2):384(14K3)	46896 H09818
1708		REGULATOR OF G-PROTEIN SIGNALLING 16 AA453774
- 1	GF201:96(66D12):384(23H23)	2):384(23H23) 418240 W90241
- 1	GF200:96(6H10):384(2O20)	
ı	PEROU:96(9C11):384(18F22)	
1712	GF200:96(24B4):384(6D7)	STEROIDOGENIC ACUTE REGULATORY PROTEIN RELATED AA504710
1713	PEROU:96(10E11):384(18J21)	ERBB2-POLYA X03363
1714	PEROU:96(6E5):384(20110)	V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 (NEURO/GLIOBLASTOMA
		(DEKLYED ONCOGENE HOMOLOG) AA025141

_	í
Œ)
3	ì
7	3

1715	GF200:96(15B6):384(4D12)	V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2 (NEURO/GLIOBLASTOMA) DERIVED ONCOGENE HOMOLOG) AA443351
1716	PEROU:96(2F1):384(19K2)	ERBB2 AA481939
1717	GF201:96(88H2):384(1104)	GROWTH FACTOR RECEPTOR-BOUND PROTEIN 7 H53703
1718	PEROU:96(8A1):384(20B1)	68400 T57034
1719	PEROU:96(6A1):384(20A2)	68400 T57034
1720	PEROU:96(7F8):384(20L16)	SWI/SNE RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN,
		SUBFAMILY E, MEMBER I W63613
1721	GF201:96(65B12):384(23D24)	2):384(23D24) ESTS, WEAKLY SIMILAR TO ENVELOPE PROTEIN [H.SAPIENS] W37778
1722		271076 N29918
1723	\Box	GLYCINE AMIDINOTRANSFERASE (L-ARGININE:GLYCINE AMIDINOTRANSFERASE) R61229
1724	PEROU:96(7H11):384(20P22)	MOUSE MITOCHONDRION, COMPLETE GENOME NC_001569
1725	GF201:96(97D9):384(13H18)	AMYLO-1,6-GLUCOSIDASE, 4-ALPHA-GLUCANOTRANSFERASE (GLYCOGEN DEBRANCHING ENZYME,
		GLYCOGEN STORAGE DISEASE TYPE III) AA668425
1726	GF200:96(1782):384(5C3)	ORNITHINE AMINOTRANSFERASE (GYRATE ATROPHY) AA446819
1727	[GF200:96(13C5):384(4E9)	DAMAGE-SPECIFIC DNA BINDING PROTEIN 2 (48KD) AA406449
1728	GF201:96(87C8):384(11E15)	PLASTIN 1 (I ISOFORM) AA017379
1729	GF201:96(99C12):384(14E23)	2):384(14E23) (ELECTRON-TRANSFER-FLAVOPROTEIN, BETA POLYPEPTIDE T62040
1730	GF201:96(82C4):384(9F7)	347276 W80996
1731	GF201:96(55A8):384(21A15)	ACYL-COENZYME A OXIDASE 2, BRANCHED CHAIN T71782
1732	PEROU:96(6C11):384(20E22)	6-PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BIPHOSPHATASE 3 N93901
1733	PEROU:96(1A6):384(19A11)	ERK3 PROTEIN KINASE AA603152
1734	GF201:96(100G5):384(14M10)	5):384(14M10) 52339 H23278
1735	GF202:96(116H11):384(16P21	11):384(16P21)CATENIN (CADHERIN-ASSOCIATED PROTEIN), ALPHA-LIKE 1 AA621315
1736	GF201:96(91A5):384(12A9)	3-HYDROXY-3-METHYLGLUTARYL-COENZYME A SYNTHASE 2 (MITOCHONDRIAL) AA496149
1737		470279 AA028905
1738	GF201:96(96G10):384(13M20)	0):384(13M20) CARNITINE ACETYLTRANSFERASE AA621218
1739	GF202:96(114C7):384(16E14)	7):384(16E14) [78736 T61888
1740	GF201:96(101C2):384(14F4)	72498 T51936
1741	GF201:96(89D6):384(11H12)	NEUROGRANIN (PROTEIN KINASE C SUBSTRATE, RC3) H49511
1742	PEROU:96(9E3):384(1816)	TRANSFORMING GROWTH FACTOR BETA AA033601
1743	(GF201:96(79A6):384(9A11)	KDAA0057 GENE PRODUCT HS9726
1744	GF201:96(84F4):384(10K8)	TRANSDUCIN (BETA)-LIKE 1 AA149637
1745	GF202:96(113B1):384(16C1)	837908 AA434090
1746	GF200:96(26H12):384(7024)	H.SAPIENS MRNA FOR RAT HREV107-LIKE PROTEIN AA476543
1747	GF201:96(95F4):384(13K7)	GLUTATHIONE S-TRANSFERASE THETA 1 H99813
1748	GF201:96(86B7):384(10D13)	URACIL-DNA GLYCOSYLASE 2 AA425900
1749		TRANSCRIPTION FACTOR AP-2 BETA (ACTIVATING ENHANCER-BINDING PROTEIN 2 BETA) AA018906
1750	GF200:96(31A5):384(8B10)	HOMO SAPIENS CLONE 23915 MRNA SEQUENCE H51765

۹	_	4
	q	U
:	2	5
	٥	Ū
ì	-	-

1751 GF200:96(31A4):384(8B8) 785816 AA449048	PHOSPHODIESTERASE I/NUCLEOTIDE PYROPHOSPHATASE 1 (HOMOLOGOUS TO MOUSE LY-41	ANTIGEN) T70503	DUAL SPECIFICITY PHOSPHATASE 5 W65461	
GF200:96(31A4):384(8B8)	1752 GF200:96(17A10):384(5A19) PHOSPHODIESTERASE I/N		GF200:96(5B3):384(2C5)	
1751	1752		1753	

	•
d	J
7	5
٥	3
-	-

	מיניים וייסויים איניים			֡				֡	
1		ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
1		ī	1	1	1	1	1	1	
퓌	Ţ	-0.00125	0.3059	0.3264	0.6647	0.6006	0.3391	0.9412	0.4488
2	1	-0.6319	-0.2647	-0.1142	0.1341	6.39E-09	0.6085	0.1006	-0.1594
3	1	0.9575	0.5247	-0.7048	-0.1366	-0.3206	0.4679	-0.76	0.07
4	1	0.3475	1.895	-0.7348	-0.1866	-0.5406	0.03789		-3.85E-09
5	1	-0.6525	0.04469		0.7834	-0.2806			-3.85E-09
9	1	0.1815		-0.5808	0.5774	-0.2566	-0,3281	0.654	
7	1	0.1455	-1.057	-0.9568	-0.6486	-0.5627	-0.1141	-0.102	-0.322
8	1	-0.2875	-0.1203	0.1502	0.2984	0.1144	0.07289	1.525	0.285
6	1	-0.1223	-0.5952	0.5654	0.5336	1.12	1.088	0.2402	-0.6098
10	1	0.0075	0.07469	0.6352	0.3834	-0.3906	0.1279		-0.08
11	1	-0.5075	0.5497	0.4002	0.1584	-0.1656	-0.3071	1.635	0.035
12	1	-1.019	-0.1622	0.06832	0.5566	0.3025	-0.389	1.173	0.3831
13	1	0.2733	0.4405	-0.129	0.4892	0.9052	0.4737	0.9358	-0.1842
14	1	0.2475	-0.03531	0.4552	0.1534	0.5394	0.3279	-0.18	0.41
15	1	0.5373	0.7845	258'0	-0.4167	0.2592	0.01773	,	0.3698
16	1	0.7169	0.5741	0,1346	-0.2072	0.2588	0.2073	0.6194	0.1294
17	1	1	. 1.127	0.3277	-0.4841	0.1719	,0.2304	0.2725	-0.3875
18	1	-0.331	0.08621	-0.9133	-1.245	-0.0791	-0.7306	-0.2285	2.232
19	1	-0.5646	1.033	0.01314	-0.07861	0.9973	0.4258		0.3679
20	1	0	-0.3028	0.1177	0.06594	0.8019	0.2804	-0.2975	0.3325
21	1	-0.04852	0.04867	0.2692	0.3974	0.5834	-0.04812	-0.856	0.564
22	1	0	-1,453	-1.182	-0.8141	-0.1481	-0.7796	0.1325	-0.6775
23	1	0.9163	1.503	6696.0	0.3722	1.138	0.5766	0.6787	1.349
24	1	2.033	2.23	0.9702	0.5084	2.564	2.413	0.015	1.055
25	1	2.455	0.7122	0.9227	0.7409	2.217		1.528	1.198
56	1	1.598	2.055	1.485	0.9834	2.269	1.968		-0.5
27	. 1	0.04275	0.3299	0.0004492	-0.05131	0.2446	-0.05686	0.8553	-0.1947
28	1)	0.6302	1.387	0.7479	0.1162	0.6721	-0.3894	-0.03727	0.5627
29	1	0.4375	0.9947	0.8652	0.2634	0.2794	-0.3421	-0.55	-0.02
30	1	-0.7225	-0.3253	-0.0948	-0.9266	-0.7006	1.768	-0.53	-1.15
31	1	-0.5414	0.05578	-0.03371	-1.535	-1.18	-0.851	-0.7989	-1.209
32	1	-0.5862	0.1609	0.1814	0.5497	-0.05437	0.7841		-0.2837
33	1	-0.317	0.6802	-0.05926	0.09898	0.5949	-0.4266		1.246
34	1	0.1211	-0.5817	0.9988		0.273		-0.5264	-0.3964
35	1	0.4375	-0.03531	-0.2948	-0.2166	0.4394	0.4679	-0.48	-0.53
36	-								

•	7	
^	1	
3	•	
Ω	3	
•	1	

1		ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
		1	1		1	1	1	1	
37	1	0.2278	-0.935	-0.3745	-0,2363	0.3197	0.008203	1.45	-0.5597
8	1	0.8163	-0.1066	0.2039	-0.1378	0.6681	0.8266	1.359	0.6387
33	1	0.7475	-0.2153	0.1552	-0.1566	0.7094	0.9279	1.71	0.83
8	1	0.1725	-0.03031	0.4102	0.8384	-0.4156			-0.355
41	1	0.04031	-0.4325	-0.142	0.4862	-0.5678	0.0007031	0.07281	-0.05719
45		0.1986	-0.004219	0.1263	0.004531	-0.2095	0.309	0.4611	0.01109
43	1	-0.13	-0.02281	-0.4423	-0.1341	-0.3181	-0.1896	-0.8775	-0.1775
44	1	-0.2125	0.4547	0.3252	0.6634	-0.3906	0.5379	0.34	0.22
45	1	0.0075	0.7647	0.7952	1.453	-0.03063	0.5479	0.48	0.16
46		-0.2752	0.632	0.8425	1.111	-0.2934	1.725	1.377	0.5673
47		0.8686	1.736	1.556	0.3945	1.23	0.979	-0.3589	0.9011
84	1	-0.008203	0.329	0.2895	0.1377			0.8643	0.1343
49		-0.03375	-0.5366	-0.08605	-0.4878	-0.3919	-0.1734		0.2787
20	7	0.2875	0.3847	-0.2948	0.7834	-0.2406	0.01789	-2.65E-09	-0.02
21	1	-0.1775	0.7197	0.7802	0.2084	-0.1556	-0.07711	-0.965	0.205
25	1	0.6175	0.2647	0.0852	0.2634	0.9794	-0.09211	-0.15	0.4
23	1	-0.7566	0.3706	-0.2189	-0.9406	-0.7447	-0.4662		-0.1341
24		0.2831	1.17	0.3708	0.2391	-0.445	-0.7065	0.6156	-1.164
22	1	0.00375	-1.949	0.3314	0.4197	-0.3744		-0.5038	0.6162
26	1	-1.267	-0.3496	-0.0791	-0.07086	-0.7049	-0.4464	-1.204	0.6857
27	1	-0.1937	0.1634	-0.4861	-0.5278	-0.2019	-0.5634	0.6687	0.1687
28	1	0.0825	-0.7003	-0.1798	0.8884	-0.1256	-0.1171	0.195	-0.045
29	1	-0.2712	-0.03406	0.2564	-0.1953	0.000625	0.4091	-1.119	-0.1588
8	1	-0.3425	-0.5553	0.0852	0.1434	-0.02062	-0.1921	0.99	0.04
61	1	0.7747	-0.2381	0.2024	0.1806	-0.3234	-0.7149	-0.6128	0.2072
62	1	-0.1125	-0.3053	0.0552	0.02344	-0.1306	-0.7221		-0.5
8	-	-0.5266	-0.02938		-0.6206	-0.5947	-0.8062	-0.6441	0.05594
4	1	-0.18	1.087	0.5577	0.4159	0.04188	-0.1896	-0.1675	-0.1375
65	1	-0.2425	0.7247	0.3252	0.2634	0.01938	-0.1821		-0.07
99	1	-0.0775	0,7797	0.5602	0.4184	-0.1056	0.1129	-0.135	0.725
67	1	-0.3725		-0.1648	-0.6366	-0.2906			0.36
88	1	0.1125	0.2197		0.6084	-0.5156	0.5629	-0.445	1.515
69	1	0	-0.8428	0.1377	0.3259	-0.4181	0.09039	-0.1175	0.6425
R	1	-0.1425	-0.6653	-0.0148	0.1134	-0.4906	-0.3021	-1.56	0.46
7	1	-0.2175	-0.7503	-0.3498	0.3184	0.07437	0.09289	-0.135	0.335
72	Ŧ				֡				

Φ	
3	
æ	
_	

j
1.1/1 -0.06125
0.7174 0.7056
0.6679 0.9462
0.8452 -0.08656
0.5952 0.6534
0.7652 0.7134
0.6302
1.108 0.1259
1.155 0.2834
0.5291 -0.2427
1.359 0.5475
0.6832 0.5715
1.014 1.643
-0.127 0.4513
·
0.2652 0.1234
0.5352 0.6134
0.5146
0.1446 0.2028
0.0952 0.2234
0.4874 -0.08437
0.1963 0.1745
0.5296 0.2678
0.3952 -0.3866
0.863 1.241
0.08238 0.000625

m

ᅐ	a)
	酉
æ	æ
-	\vdash

NORWAY 100-BE NORWAY 100-AF NORWAY 10-AF NORWAY 10-BE NORWAY 102-BE NORWAY 102-AF NORWAY 7-AF NORWAY 17-BE ARRY19X ARRY18X ARRY21X ARRY20X ARRY23X ARRY20X ARRY25X ARRY25X	RWAY 10-AF NORWA	RWAY 10-BE	NORWAY 102-BE ARRY23X	NORWAY 102-AF ARRY22X	NORWAY 7-AF ARRY74X	NORWAY 17-BE ARRY25X
1	1	-	1	1	1	1
-0.2975 -0.3303	-0.1798	0.2584	-0.2356	-0.3171	-1.205	- 0.645
0.8074	-0.6321	0.3861	0.2021		-0.8073	1,153
0.5537	-0.3858	1.152	0.1184	0.6169	-0.661	1.129
-0.1502 0.357	-0.5125	0.4057	0.4316	0.1402	0.1623	-0.3977
-0.57 0.1872	0.0777	-0.4641	-0.2481	966£.0-		0.1225
0.3075 0.3147	0.1152	0.3034	-0.5206	0.05789	-1.37	0.03
-0.05375 0.9234	0.5139	-0.3878	0.4581	0.1666	0.9987	-0.03125
0.	0.2502	-0.5216	0.08438	0.2629	0.765	-0.175
-0.004219 1.503	0.3835	-0.07828	-0.04234	0.1562	0.6383	-0.2017
0.4347 1.522	-0.1776	0.000625	0.06656	0.5251	1.127	1.047
	0.5927	0.1809	-0.1031	-0.01461	2/96'0	0.5875
	1.156	0.5139	0.7498	0.3884	5055.0	0.8705
	0.0652	-0.2666	0.04937	6229	-0.1	0.16
0.2403 -0.7925	0.218	-0.3937	-0.5278	2010:0 ·	0.002812	0.1128
-0.01031 -0.2831	0.4374	-0.05437	-0.02844	0.2301	0.1222	0.1122
0.2325 0.03969	0.5102		-0.005625	0.8929	-0.035	0.335
	0.5181	0.2263	-0.6477	0.6408		-0.7171
-0.2862 -1.069	-0.8086	0.07969	0.04562	-0.04586	-0.4038	-0.6538
-0.4853 -0.2081	-0.2876	0.000625	-0.4834	0.2651	-0.7028	-0.2728
	0.02973	0.538	-0.4661	-0.1576	-0.09547	0.4345
	1.28	-0.2114	-0.3755	-0.197	1.355	0.8852
	0.04395	0.2222	0.3681	0.2566	0.3288	
_	-0.0398	-0.1416	-0.5456	-0.09711	0.735	1.595
	-0.8848	-0.5766	0.1494	0.04789	-0.26	1.74
1.248 0.2556	-0.1339	-0.1556	-1.67	-1.671		0.1909
2.06 1.767		-0.0143	-0.2184	-0.1898	-1.248	0.4323
1.774 0.6709		-0.01031	-0.3044	-0.2059	-0.1137	-0.3137
0.4608 -0.342	-0.8915	-0.2333	0.5327			0.4133
0.1592 0.5664	-0.1131	0.7352	0.1911	-0.2104	-0.1483	0.2717
0.4155 -0.9173	0.03324	-0.1785	0.4574	0.5859	0.788	-0.512
J	0.6677	-0.1641	0.7119	0.7804	1.162	0.5925
0.6225 0.4597	0.2802	-0.3616	0.8444	-0.3071	0.045	0.255
0.7198	0,9975	-0.3443	0.7016	0.7902	1.212	1.062
1.208 1.495	1.335	-1.777	0.6694	\	0.7	0.54
	1.212 0	0.000625	1.737	1.725	2.037	2.027
1.273 0.7497	1.58	0.7984	1.564	-0.2371		2.025

•	_
	Ψ
3	Ճ
Ī	σ
ŀ	-

	ARRY19X	ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
		1	T	,I	1	1	F	F	
145	1	-0.08469	0.2025	-0.137	-0.03875	-0.3828	-0.3543		-0.1222
146	1	0.3247	0.3619	0.3024	1.271	-0.3434	-0.4949	0.7572	0.1172
147	1	1.354	0.2815	0.712	1.05	1.836	1.385	2.127	1.407
148	1	1.058	1.885	1.245	0.1634	0.3594	1.418		0.98
149	1	0.5175	-0.4553	1.135	0.6234		0.9779		2.1
150	1	0.8672	1.544	0.3849	-0.1269	1.089	0.1776	0.6597	0.7497
151	1	0.2847	0.3019	0.6924	0.000625	0.7966	0.1651	0.3472	1.047
152	1	0.5125	1.26		0.07844	0.8244		0.165	0.815
153	1	0.5925	0.3797	0.9002	0.008437	0.7944		0.635	0.705
154	1	0.9269	0.6841	0.4546	0.1828	0.7887	0.7573		0.8594
155	1	0.5375	-0.2953	0.3652	0.4634	0.1594	0.6179	89.0	0.73
156	. 1	0.3975	0.4647	0.3052	0.4234	0.03938	0.4879	0.72	0.75
157	1	0.8775	1.415	1.385	1.233	1.069	1.858	1.36	1.14
158	1	1.396	1.803	0.9839	0.7122	1.278		1.439	1.279
159	1	0.1525	7628.0	0.8402	0.6884	0.1944	0.3329	0.985	1.285
160	1	0.3661	-0.00668	0.7338	0.7521	-0.442	0.6365	-0.1814	1.029
161	1	0.8672	0.6344	1.145	-0,3469	-0.4309	0.4176	1.42	1.21
162	1	0.1114	0.6886	0.8491	0.02734	0.8433	.0.1718		1.124
163	1	0.2375	0.6547	0.2852	-0.1766	0.5894	1,138	0.56	0.53
164	1	0.3433	0.5705	-0.399	0.6692	0.3152	1.134	0.005781	0.4958
165	1	0.4569	-0.7159	1.135	-	1.389	-0.6027	1.929	0.3094
166	1	0.9075	1.025	0.7052	1.013	0.8294	0.7679	0.42	0.3
167	1	0.0875	0.6647	1.065	0.2934	0.2894	0.2679	0.02	0.83
168	1	0.6375	0.6747		0.5034	1.549	1.818	1.01	0.85
169	1	0.3454		1.143	-1.419	-1.053	0.4058		1.058
170	1	0.5954	-0.1274	0.6931	0.08133	0.4873	0.06578	1.678	0.4979
171	1	0.5475	-0.6153	1.265	-0.1266	1.339	1.088		1.16
172	1	1.252	0.5297	2.98	0.7084	2.034	0.3629	0.335	1.485
173	1	2.076	0.06297	1.983	0.05172	1.888	2.366		2.478
174	1	0.4973	-1.185	0.415	0.5333	0.8692		0.5798	0.4198
175	1	0.08449	0.4917	0.9722	-0.4296	0.5264	0.2749		0.327
176	1	0.2699	0.2071		0.1759	0.5018	0.8803	-0.3576	0.1324
177	1	0.2689	-0.1039	0.9966	-0.02516	0.4008	0.009297	-0.008594	1.091
178	1	0.0775	0.4847	1.605	-0.5266	0.8494	-0.3721		1.88
179	ī	0.361	0.9982	-0.00127	-0.01303	0.4829	0.6014	0.01354	0.3735
100	•								

Ŋ

1		
	0	Ľ
:	ľ	
	ſ	¢

l		3	יייייייייייייייייייייייייייייייייייייי	NONWAL TOTAL NONWAL TOTAL NORWAL TOTAL		NORWAT 102-DC	NORWAL 102-DE NORWAL 102-AF NORWAL 7-AF NORWAL 17-BE	NUKWAT /-AF	NUKWAT 17-DE
1		ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
1		1	1		1	1	1	1	1
181	1	0.5859	0.993	0.1936	0.0818	0.2277		0.4284	0.2016
182	1	0.6875	1.455	1.115	-0.02656	0.1394	6255'0	1.83	1.9
183	1	1.375	1.802	0.9229	-0.3688	0.2871		1.768	1.438
184	Ţ	-0.157	1.12	0.6707	0.1389	0.1248	0.1734	0.3255	0.8755
185	1	0.7027	1.61	1.59	0.07859	0.3645	0.293		1.295
186	1	0.5175	1.535	0.5752	-0.006562	-0.01063	0.007891	0.93	0.89
187	T	0.185	1.142	0.9527	0.1609	0.2869		0.7975	1.217
188	. 1	0.4614	1.709		0.2073	-0.1067	0.4418		1.154
189	1	0.3955	0.8927	0.5132	0.1214	-0.2727	-0.08414		0.878
190	1	0.5175	0.6747	0.6452	-0.04656	-0.1206	0.1279	0.9	0.88
191	1	0.4421	1.219	8665'0	0.1681	1.174		1.	0.7246
192	1	0.6134	0.7206	-0.08887	0.9094	1.055	0.7238	0.4659	0.8559
193	1	0.232	0.8392	1.3	1.648	0.8439	1.522	0.5345	1.405
194	ī	-0.1069	0.5003	0.8108	-0.03094	0.595	0.7335		1.016
195	1	-0.1846	0.2126	0.7231	0.1414	0.7573		0.07793	0.9979
196	1	0.2579	-0.06486	0.02564	0.2839	0.7598	0.9283	0.4104	0.4504
197	1	0.1623	0.7295	0.27	-0.001797	1.004	0.6427	0.05477	1.115
198	T	-0.0225	-0.6953	0.2852	0.3234	1.069	0.7679	0.53	1.32
199	1	0.08332	0.7105	0.001016	0.1993	0.3952	-0.02629	-0.09418	-0.00418
200	1	-0.0075	0.3897	0.2502	-0.3216	-0.1056	-0.07711	0.585	0.005
2 <u>0</u> 1	T	-0.002344	-0.2752	-0.4046	-0.2564	0.3495		0.4002	-0.2898
202	1	-0.09141	-0.01422	-0.3937	0.4845	0.2205	0.359	0.5211	0.1211
203	1	-0.3525	-0.1753	0.4052	0.5634	-0.01062	-0.4521	60'0	0.27
204	1	0.4147	0.6919	0.6924	0.000625	0.1566	0.1251		0.5472
202	1	0.1345	0.3616	0.9821	1.17	1.226		1.167	0.607
506	1	0.3819	0.4491	0.2496	0.2978	0.9637		0.9944	1.034
20	1	-0.4397	0.9275	0.278	0.3162	. 0.5122	0.0007031	0.9428	0.5028
208	1	0	-0.1428	0.3377	-0.4341	0.5519	0.02039	0.7925	-0.2175
503	1	0.7122	0.4694	0.8599	1.598	0.8541		1.205	1.445
210	1	0.6375	-0.3353	0.7352	0.5234	0.5894	1.278	66.0	1.22
211	1	0.3008	0.508	0,7085	-0.01328	0.7527	1.621	1.043	0.8133
212	1	0.1031	1.06	0.6308	0.7991	-0.155	0.05352	-0.1744	0.7156
213	1	-0.0875	-0.4603	0.4902	-0.2016	0.9644	0.7129	0.925	1.475
214	1	-0.6145	0.3727	0.7732		0.07734	-0.7941		-0.002031
215	1	1.94	1.418	-0.01191	-0.4837	0.9023	1.211	0.9229	0.9529
216	-	0.8475	0.04969	1 02	A15C 0-	1 654		10.4	101

,	1			

	GWEIGHT	NORWAY 100-BE NORWAY 100-AF	NORWAY 100-AF	NORWAY 10-AF	NORWAY 10-BE	NORWAY 102-BE NORWAY 102-AF NORWAY 7-AF NORWAY 17-BE	NORWAY 102-AF	NORWAY 7-AF	NORWAY 17-BE
		ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
		1	1	1	1	1	1	1	-1
217	1	0.8536	1.211	-0.6887	-0.7505		-0.976		0.4361
218	1	-0.1937	0.5434	0.9539	-0.6278	1.388	0.8766	-0.1313	0.3287
219	1	-0.2725	0.2447	0.2052	0.5834	0.07938	1.028		-0.18
220	1	-0.2225	-0.7253	0.6452	-1.377	0.1494	0.09789		0.32
221	1	-0.00875	0.02844	1.549		0.3231	-0.2384		1.024
222	1	0.2875	0.7447	1.295	0.5734	-0.3206	0.7079	-0.22	0.41
223	1	0	-0.2728	0.6977	-0.1041	-0.4181	0.4504	-0.5775	-0.3275
224	1	0.5258	-0.217	0.1835	0.9617	-0.5423	0.4062	0.7383	0.1383
225	1	-0.1684	0.1887	0.7193	0.4675	0.4234			
226	1	-0.1075	-0.2203		0.1384	-0.5356	-0.3571	-0.045	0.095
227	1	-0.2175	-0.4203	0.4502		-0.1456	-0.3271	0.905	0.005
228	1	0.3975	0.6847	0.5452	-0.5266	-0.6906	-0.7521	-0.06	-0.38
229	1	0.6275	-0.2953	0.4252	-0.3366	-0.2406	-0.4921	1.52	-3.85E-09
230	1	0.7578	-0.295	0.1055	-0.04625	0.2097	-0.1018	0.2703	-0.3197
231	1	0.4434	0.6305	0.2411	0.6993	0.2852	-0.00625	98550.0	-0.01414
232	T	0.4125	0.06969	0.0802	0.02844	-0.5556	0.5829	0.325	0.545
233	1	0.3106	0.7478	-0.3817	0.3566	-0.1675	0.551		0.07312
234	1	-0.5625	-0.6053	-0.1148	-0.8766		-0.03211	-0.82	-0.5
235	Ţ	-0.7555	-1.208	-0.8379	-1.6	-0.3337	-0,04516	-1.403	-0.323
236	1	0.9569	-0.3459	-0.4154	-0.8372	-0.2413	0.1373		0.8694
237	1	0.4231	1.11	-0.4792	0.2591	0.025	-0.02648	0.7456	-0.2344
238	1	-0.2247	0.1525		-0.2187	1.317	-0.2743	-0.06219	0.1778
239	1	-0.3778	-0.2406	0.2699	1.088	0.1741	0.6726		-0.1153
240	1	-1.011	-1.054	-0.2736	-1.425	0.000625	0.1491	-0.2288	0.2212
241		-0.8163	-0.7091	-0.3186	-0.3904	-0.04445	0.08406	0.1662	-0.1738
242		-0.0525	0.2447	-0.0948	-0.03656	-0.05062	0.06789	-0.24	0.45
243	1	0.02875	-0.4441	-0.1336	-0.3453	-0.1594	-0.5209	-0.08875	0.3312
244	1	0.608	1.115	-0.06426	0.204	-0.5301	0.3184	-0.9895	-0.01945
245	1	1.185	1.262	0.0527	0.1409	-0.2531	0.3954	-0.6625	-0.3625
246	1	0.682	0.4492	0.9197	0.858	0.3239	-0.1376	0.2245	0.3345
247	1	0.1093	-0.2535	-0.003027	-0.7648	-0.01885	0.04967	-0.2982	-0.06822
248	1	0.2316	-1.511	-0.3607	-1.552	0.2635	0.702	0.8241	0.06414
249	1	0.1425		0.3102		-0.4856	0.3629	1.375	-0.005
250	1	0.8245	•	2.562	0.8704	2.326	2.685		0.917
251	1	-1.564	-0.967	-0.3465	-0.6383	-1.042	-0.8038	1.758	-0.05172
252	1	-1.267	-1.47	-0.0298	-0.5716	-0.8556	-0.08711	1.345	0.725

Table 1

•	•
(υ
1	5
•	Ö
۰	-

															,				•											•								
IORWAY 17-BE	AKK125A	1	0.08	-0.2751	0.4322	1.124	0.9368	0.9783	-0.2306	-0.03125	-0.3775	-0.3161	-0.2739	-0.555	-0.7817	0.2428	-0.4226	-1.314	-0.03781	-0.08641	-0.08375	0.39	-0.01414	-0.2309	0.12	-0.09785	-0.55	0.2594	-0.5122	0.1	-0.02	0.07781	-0.5253	0.27	0.2872	-0.7675	0.03551	-0.2706
NORWAY 7-AF	AKK1247	-		-0.1951		0.1436	-0.9832		0.9994		0.4925		0.2361		-0.3817	-0.7972	-0.4426		0.1522	-0.2564	-0.4637	6'0		6086.0-	0.75	-0.2079	0.35	0.5094	-0.002188	1.61			0.01469		-0.3328		-1.014	0.3894
IORWAY 102-AF	AKK122A		-0.4221	-0.4272	-0.8299	0.7815	0.4747	-1.034		0.1866	-0.9496	1.522		-0.7271	-1.314	0.0007031	0.1753	-0.006055	1.54	0.04148	0.5041	0.1079	0.2138	-0.06297	-0.1521	0.18	1.598	1.427	0.8057	0.2979	0.4379	-0.0743	-1.167	0.1879	-0.5549	-0.2296	-0.8066	0.1373
ORWAY 102-BE N	AKK123A	1	0.07937	0.3243	-0.3084	-0.07703	0.1262		3.019	2.618	-0.2181	2.953	0.3155	-0.4856	-1.372	0.5422	-0.1732	-0.7946	1.752	-0.137	0.3256	0.3494	0.03523	0.3385	-0.02063	0.7215	0.09937	0.2688	0.3372	-0.1306	9068'0-	0.2072	-0.8459	-0.7506	-0.3934	-0.03812	0.03488	0.3087
NORWAY 10-BE NORWAY 102-BE NORWAY 102-AF NORWAY 7-AF NORWAY 17-BE	AKKIZUA	ı		0.5584	1.486	-0.423		-0.4983	-0.3172		0.2859	0.9373	0.7995	0.5684	-0.2583	0.3162	0.6308	0.4195	0.5156	0.02703	-0.4203	-0.2566	-0.1907	-0.06742	-0.6366	-0.9444	0.5734	-0.7372		0.7734	0.6134	-0.3687	-0.7619	1.463	0.000625	0.3159	0.2089	-0.5672
NORWAY 10-AF	ARK 161A	-	0.3252	0.2501	0.6974	0.2188	-0.368	0.5635	-1.525		0.2577	0.6091	0.2113	0.4802	0.5335	0.278	0.002598	0.4013	1.487	-0.4212	0.3414	0.1952	0.7711	-0.6257	-0.1948	-0.2927	0.5552		0.483	-0.0548	1.005	0.653	-0.5201	0.2752	1.332	0.7677	1.471	-0.4354
	ANNITON	-	1.125	0.6796	0.3869	-1.382	-1.859	-0.327	1.534		0.8072	1.129	1.361	0.2797	1.083	0.4975	0.2521	-0.2693	-0.4431	-0.1917	-0.8091	-1.025	0.4305	1.394	0.2747	-0.01316	-0.2053	0.8641	-0.4475	0.5747	0.1547	0.6025	0.2994	0.8647	0.3419	1.287	0.1102	0.9341
NORWAY 100-BE NORWAY 100-AF	VETINAL		0.6075	0.03242	-0.6003	-0.06891	-0.005703	0.1658	2.227	1.726	0.81	-0.3786	0.3336	-0.0175	0.7358	-0.5597	-0.3451	-0.2964	0.8297	0.3111	0.05375	-0.2625	-0.1966	0.9166	0.1875	0.2596	-1.022	-0.03312	-0.1547	0.0275	-0.3425	0.2853	0.01219	-0.1225	0.1947	1.92	2.023	-0.1231
GWEIGHT			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1)	Ŧ	1	1	1	1	1	1	1	1	-	H	1	1	=	-	ᆔ	F	1	1
			253	254	255	256	257	258	259	260	797	792	263	264	265	266	792	268	569	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288

ω

|--|--|

BE NORWAY 100-AF NORWAY 10-BE ARRY18X ARRY21X ARRY20X
1
0.3284 0.7489
'
1.315 0.2352
0.5633 -0.07621
0.7847 0.0352
7
-0.4236 -0.4431
0.2647 -0.0948
1.312 -0.597
0.8172 0.8277
1.275 0.4152
-0.5234 -0.2429
-0.002813 0.8877
1.811
-0.5253 0.0952
-0.178 1.333
-0.04781 0.3127
-0.385 -0.2745
-0.1353 -0.6348
-0.01281 0.0377
1.31 -0.2798
-0.418 -0.2375
0.3419 0.7524
0.6897 0.1302
-0.05953 -0.03902
0.05469 -0.9648

Table 1

O

ſ	۰		
	•	0	Ľ
•	3	Ċ	
Ì	į	I	C
ł	ŀ		•

	GWEIGHT	GWEIGHT NORWAY 100-BE	NORWAY 100-AF NORWAY 10-AF	NORWAY 10-AF	NORWAY 10-BE	NORWAY 10-BE NORWAY 102-BE NORWAY 102-AF NORWAY 7-AF NORWAY 17-BE	NORWAY 102-AF	NORWAY 7-AF	NORWAY 17-BE
		ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
		1	. 1	1	1	T	1	1	
325	1	0.4225	0.5197	-0.2698	0.8284	0.004375	-0.1971	0.075	-0.685
326	1	0.08609	-0.7467	-0.07621	0.01203	-0.412	-0.5135		-0.1814
327	1	0.5697	1.187	0.2174	-0.03437	-0.3384	0.2201	-0.3678	-0.2578
328	1	1 0.6897	0.6769	-0.3826	-0.5244	-0.5884		-1.228	
329	1	0.7675	1.135	-0.5048	0.2234	-0.3806		-1.04	-3.85E-09
330	1	1 0.6997	0.4969	-0.2826	-0.2344	-0.4984	-0.2699	Ľ	-0.03781
331	1	1 -0.2925	0.1347	0.9652	0.4334	-0.1806	0.8779		0.01
332	1	0.54	0.4672	-0.6223	0.1559	0.1419	-0.5996	-0.4575	0.4825
333	1	0.9325	0.8597	0.1602	0.3384	0.4044	0.3229		-0.015
334	1	0.2475	-0.3853	0.7652	0.4334	0.7194	0.8579		0.58
335	T	0.1836	0.02078	1.611	0.1495	-0.08453	-0.356	ė.	-0,3739
336		1.673	0.4699	0.02045	-0.9013	0.4546	1.183	0.6253	0.8553
337	1	0.105	0.7322	0.2827	0.7409	0.1869	0.1954	0.6075	0.6975
338	1		0.9204	-0.4891	-0.3209	-0.2449	-0.3664	0.0657	-0.4043
339		0.3775	0.4247	0.3652	0.7134	0.4094	0.8179	0.88	1.09
340	1	-0.0325	-0.04531	0.005195	-0.05656	0.6494	0.8079		0.08
341	1	-0.0275	-0.5203	0.0902	-0.07156	-0.2156	0.3929	-0.055	0.165
342	1	-0.06109	0.3361	0.8466	0.1148	0.3908	-0.0107	0.1314	0.7414
343		0.663	0.02023	0.1307	-0.871	0.2849	0.08344	-0.05445	0.3855
344	1	0.7475	0.6547	0.2452	-0.5766	0.2094	-0.1321	-0.22	0.33
345		1.095	0.2119	-0.08762	0.000625	0.5766		-0.3228	
346	1	0.7875	0.8547	0.1952	0.1734	0.03937	0.1279	-1.08	0.98
347	I	1.348	1.385	0.3352	-0.7266	0.5294	0.7779	0.11	0.67
348	1	-0.2747	0.1925	-0.367	-0.3488	-0.2528	,0.0857		0.4878
349	1	0.065	0.002188	0.3827	-0.05906	-0.1231	0.3354		0.5975
320	# 	-0.2525	0.7747	0.2952		-0.3406	0.08789	-0.61	0.31
351	1	-0.09672	0.4205	0.171	0.8692	-0.2948	-0.1163	-0.1942	0.6258
352	1	0.581		-0.02131		0.3629		0.2435	0.5135
353	1	-0.1225	0.004687	0.7252	0.7034	-0.7406	-0.8021	0.87	-0.31
354		0.5825		-0.2198	0.09844	0.7944	0.6129	-0.145	2.005
322	1	0.36		-0.6823	-0.2641	0.3119	0.04039	-0.8775	0.4525
320	1	-0.9245	-0.01734	-0.7868	0.5414	-0.7727	-0.2741	-1.802	0.138
357	1	-0.6453	0.1419	-0.03762		-0.8934	-1.005		0.1072
328	1,	0.2898	-0.08305	-0.9025	-0.6543	-1.638	-1.52	-0.6677	-0.5477
329	1	0.08391	-1.349	-0.9284	-0.02016	-1.244		-0.5536	-0.1736
360	1	-0.01859	1.029	0.8291	0.6273	-0.3367	0.9718		0.3539

-	
Φ	
5	
o.	
-	

	GWEIGH	ARRY19X	ARRVIRX	ARRY21X	ARRYZON	ARRY73X	APRY23X APRY27X ARRY24X ARRY25X	ARRY24X	ARRY25X
		1	1	1	1	1	1	1	
361		-0.1975	-0.1603	0.6402	0.2184	-0,8656	0.1629	-0.315	0.365
362		0.2336	-0.4792	0.2713	0.1295	0.2755	-0.476	-0.1839	0.466
363	1	0.4	-0.6028	0.1177	0.09594	0.09188		-0.1175	0.4125
364		0	0.9872	0.3677	0.3359	-0.2581	0.1904		-0.2475
365		-0.4225	0.06469	0.2052	0.2534	-0.1306	0.09789	-0.56	9.65
366	-	0.06781	0.795	0.4255	-0.1263	0,2697	0.6582	-0.009688	0.02031
367		1.188	0.7447	-0.0448	-0.1166	-0.02063	0.7879	0.31	-2.20E-08
368			-0.6468	-0.6163	-0.678	-0.02211	-0.1236	0.3785	-0.1515
369		-0.3425	0.1847	0.5552	0.9934	-0.6306	-0.4521		-0.54
370		-0.000625	-1.303		1.475	0.00125		0.6019	-0.178
371	ı	0.0475	0.4747	-0.0448	0.2534	-0.01063	-0.1221	-0.28	-0.53
372	1	0.2434	-0.4594	-0.04887	-0.1806	-0.5547	-0.1762	-1.104	-0.134
373		-0.3225	0.3347	-0.6248	0.2534	-0.3506	-0.1221	-0.1	80'0-
374	1	0.08891	0.4561	-0.2634	0.3148	-0.1492	-0.0007031	0.4314	0.001406
375	1	-0.4803	0.6169	0.3174	-0.3344	0.03156	-0.03992	0.4122	0.7322
376	H	-0.3281	-0.4409	0.5596	-0.3022	-0.2962	-0.007734		-0.1256
377		-0.4425	0.4347	75990	0.01344	9092'0-	-0.7521	-0.21	0.45
378	1	0.1175	0.2047	0.4952	1.273	90£9'0-	-0.4521	9.0	0.1
379	1	-0.1253	0.6319	0.2024	0.09063	-0.1834	0.1451	-0.1928	-0.0428
380	1	0.05344	0.6606	0.7011	-0.1206	-0.6547		-1.074	0.5459
381	1	0	-0.3428	0.0477	0.6259)	0.3504	-0.0475	0.4325
382	1	0.4663	9965'0-	0.2839	1.012	0.9481	0.9766	1.079	0.07875
383	1	-0.3432	6:9630	0.2345	-0.0373	-0.4314	0.8471		-0.7807
384	1	0.4832	1.13	-0.3891	-0.4809	0.1651	0.2736	-0.5843	0.1557
385	1	0.49	0.9372	-0.6723	-0.4541	0.6019	0.5604	-0.6575	0.5025
386	1	0.2675	0.3947	0.7452	0.5134	-0.2406	0.07789		
387	1	0.01625	-0.8366	-0.5061	-1.398	-0.7119	-0.1734	-0.3613	-0.09125
388	1	-0.0825	-0.8153	-0.9148	-0.8466	E9060'0-	-0.3321		0.02
389	1	-0.4163	1656.0-	-1.159	1.37	0.005547	4	-0.7138	0.4262
390	1	0.5432	0.8704	0.1109	-0.2609	-0.7249	-0.3664	-0.7743	-0.2643
391	1	0.6206	8266.0	0.4183	-0.8134	5206.0-		-0.1969	0.8031
392	1	0.2547	-0.8281	0.04238	0.000625	0.5866	-0.5849	-0.7728	0.7172
393	1	0.4859	-0.627	-0.1064	-0.3382	-0.1323	0.00625	-0.8516	-0.2716
394	1	0.2347	0.6519		-0.009375	-0.1634	-0.1149		0.1472
395	1	0.1364	0.9136	-0.4259	-0.4877	-1.052	-0.5932		-0.8411
305		0 5030	0.1511	V012 V	21000	CPVI OT		7777	0.06350

_
ø
亙
'n
_

)	GWEIGHI	INCRWAT 100-DE	NORWAY 100-AF	NUKWAY 10-AF	NOKWAY 10-BE	NORWAY 102-BE NORWAY 102-AF NORWAY 7-AF NORWAY 17-BE	NORWAY 102-AF	NOKWAY /-AF	NORWAY 17-BE
		ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
		1	-1		1	1	1	11	1
397	. 1	0.2642	-0.06859	-0.1181	-0.1098	0.6961	0.4546	0.1767	-0.1533
398	1	0.4575	0.9247	0.5952	9969.0-	-0.06062	-0.1821		0.48
399	1	0.8197	0.4769	-0.1926	-0.7744	-0.2784	-0.02992	0.1622	0.3622
400	1	0.0475		-	9999'0-	0.1494	0.3379	99'0	0.04
401	1	0.7875	-0.2453	0.2752	9909'0-	0.009375	-0.3821		0.4
402	1	0.4938	-0.1291	1.191		-0.8944	0.8341		0.7263
403	1	-0.1925	0.2247	-0.1348	0.2034	0.4394	62230	0.26	0.13
404	1	-0.365	-0.7878	-0.2473	0.3409	0.8869	0.7154	0.8175	-0.2725
405	1-1	0.56	-0.002812	0.1877	1.036	-0.2181	-0.2596	-0.4375	0.0925
406	1	0.1455	-0.1273	0.03322	0.9615	-0.0326	0.1859	0.588	0.358
407	1	0.0475	0.5047	-0.3148	1.107	-0.04063	-0.5021	0.04	0.25
408	1	-0.006406	0.6908	-0.2587	-0.2705	-0.7045	-0.146	0.4961	-0.8639
409	1	0.4675	0.3847	-0.3848	0.5834	-0.2006	0.3379	0.16	0.08
410	1	-0.09125	0.1459	-0.2736	0.5947	0.000625	1606.0	-0.3288	-0.2288
411	1	-0.6125	-0.1453	-0.3948	0.9234	-0.9406	-1.492	-1.87	-0.35
412	1	-0.3797	-0.6725	-0.04199	-1.424	-0.05781	0.4607	0.06281	-0.09719
413	1	-0.1112	-0.134	-0.3335	-0.1153	0.05066	2606.0	0.1013	-0.1987
414	1	-0.122	0.4152	0.3357	-0.2961	-0.3801	-0.1316	-0.8195	-0.4595
415	1	0.5375	0.8247		-2.167	-1.741		-0.12	-0.68
416	1	-0.1191	0.4881	-0.4914	-0.1832	-0.4172	-0.4687	-1.507	0.0134
417	1	0.2436	0.8908	0.04133	-0.5804	-0.8545	-0.516	-0.7739	-0.03387
418	1	0.4575	0.8147	0.9452	99/2:0-	-0.3906	-0.9921	-0.91	-3.85E-09
419	Ţ	-0.00625	-0.2791	0.1514	-1.03	0.6256	-1.146	0.3662	-0.9138
420	1	-0.1625	0.1547	0.4152	0.7134	0.4094	0.5279	0.28	-0.11
421	1	-0.1025	-0.005313	-0.5948	-0.1366	-0.7306	-0.5521	-2.65E-09	-0.52
422	1	2.296	3.253	-0.01605	-1.058	0.03813			-0.9713
423	1	0.1375	-0.2553		0.2834	-0.6906	-0.1321		0.12
424	1	1.408	0.7847	0.1052	0.3434	-0.4506	-0.7821	-0.38	0.41
425	1	1.608	0.9747	0.0852	0.1034	-1.481	-1.762		0.16
426	1	1.305	1.242	0.3225		0.02664	-0.5148		
427	1	1.556	1.333	-0.5361	-1.278	-2.222			-0.1512
428	1	1.756	1.003	-0.7261	-1.638	-1.332	-1.123		-2.001
429	1	1.173	0.4297	-0.7098	-2.272	-0.8956		-2.645	
430	1	1.19	1.087	-0.5323	-1.884	-1.848	-2.07		-1.658
431	1	0.9681	0.9153	-0.2942		-1.11			
432		1 092	0.9197	-1.17	-0.8816	-0.9656	-1.307	-1.125	-1.415

~
ø
囨
æ
-

		ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
		1	1.	1	1	1	1	1	
433	1	1.715	1.902	-0.1473	-1.389	-2.003	-1.265		0.6225
434	-	0.9091	-0.2037	0.09684	0.5451	-0.279	1.39	-0.6084	-0.08836
435	1	-0.06687	-1.57	0.08082	-0.1609	-0.505	0.7135	-0.03438	-0.3344
436	1	0.3334	0.5506	-0.6289	-0.3406	-0.5947		-0.004063	-0.384
437	1	0.6475	1.215	-0.3448	0.6634	-0.6106		96.0-	-0.54
438	1	0.9354	1.113	-0.427	-1.369	-0.8628	-0.05426	-0.05215	0.1079
439	-	0.9498	1.207	0.07746	-0.3243	-0.5584	-0.1598	-0.4777	-0.7177
440	1	-0.5525	-0.1053	-0.0548	0.9734	-0.5806	0.4079		
441	1	-0.5125		1.215			0.04789		-0.04
442	1	-0.3875		-0.6498	0.1284	-0.3556	-0.2071	-0.685	-0.145
443	1	0.09203	0.7592	1.03	-0.002031	-0.6461	-0.1176		0.05453
444	. 1	-0.0525	-0.3753	-0.6548	-0.01656	0.4394	0.1179	0.15	0.05
445	1	0.1525	0.2197	-0.8298	-0.3716	-0.4256	0.04289	-0.095	-0.165
446	-	1.932	-2.201	-4.37E-12	-2.172	-0.2358	-0.1773	0.2548	1.045
447		0.28	-1.123	-0.0623	0.06594	-0.03812	-0.3996		0.1525
448	1	0.6659	0.553		-0.0482	7,722,0	0.4462	-1.762	-0.8316
449	1	0.1968	-0.05602	-0.7755	-0.2673	-0.1113	-0.1328	-0.5807	-0.1807
450	1	0.6206	-1.182	0.9383	0.8066	-1.557	-1.519		0.5631
451		0.202	-0.3578	-0.4373	0.1609	-0.2731	-0.4346	-0.3725	-0.1525
452	1	0.5232	-0.05961	0.0409	0.2891	0.1651		0.3557	-0.1443
453	1	-0.4925	0.3147	-0.1648	0.4334	-1.161	-0.2221	-1.34	3.98
454	1	0.2723	-0.6105	-2.13E-11	-0.04176	0.6442	0.4427	0.3248	0.8948
455	-	-0.8637	0.2134	0.7839	-0.1478	-0.7519	0.6966	0.4487	-0.3413
456	1	0.9055	0.5227		-0.05859	-0.8427	0.1459		-0.752
457	1	0.6606	0.2678	-0.4517	0.7266	0.9325		0.6631	0.6931
458	1	0.7125	-1.67	0.8202	-1.082	1.034	-0.06711	0.655	0.885
459	1	-0.4825	-1.715	-0.2348	0.9634	-0.7206	-0.3921	-0.34	0.09
460	1	-1.259	-0.3817	-1.241	-0.413	0.323	0.1815	9:95'0	-0.6864
461	1	-0.4225	-0.6153	-0.0748	0.1934	-0.1106		-2.65E-09	-0.32
462	1	-0.7775	0.3897	0.3702	-0.7516	-0.8656	-0.4171	· .	0.525
463	1	0.4297	-0.2631	-0.4226	0.2656	0.1816	0.2301	-0.2578	-0.08781
464	1	-0.3325	-0.4753	-0.1648	-0.3866	-0.4606		-0.39	0.05
465	1	0.002891	0.6001	-0.5094	-0.3712	-0.5352		0.3954	-0.5146
466	1	-0.01859	-0.1014	1.029	-0.9227	-0.4967			0.2939
467	1	0.2875	0.9447	-0.2848	0.7634	-0.1006	0.1579	0.38	-3.85E-09
97									

_	
ď	
2	
70	١
-	

		ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
_		1	1	1	1	1	1	1	
469	-	2.293	3.24	0.5102	1.288	-0.9556		1.445	- 0.925
470	1	1.479	2.196	0.4164	0.8947	0.000625	-0.2009	0.7212	0.4112
471	1	-0.3664	-0.9192	1.031	-0.1104	-0.2745	0.584	0.1661	0.7361
472	1	-0.0025	-0.1153	0.2452	-0.2166	-0.06063	0.06789	0.33	0.29
473	1	0.6375	0.3747	0.5252	-1.017	-0.5406	-1.052	-0.67	-0.52
474	1	-0.307	-0.03977		669'0	-0.8951	-0.05656		0.2855
475	1	0.1977	-0.7951		-0.3963	-0.2004	-0.1019	0.7002	7.680.0-
476	Ţ	0.3988	0.7059	0.4364	0.8447	0.000625	0.1391	-1.699	-0.2388
477	1	-0.2977	0.3795	-4.37E-12	0.2682	-0.3558	0.1027		0.7848
478	1	0.3727	1.07	-0.06965	9826.0	0.3645	0.343	-0.1648	-0.3948
479	1	0.2253	-1.018	0.183	0.4212	0.8572	1.236	-0.1822	1.728
480	1	-0.1389	0.2383	-0.07121	-0.453	0.08297	-0.2885	-1.196	-0.05641
481	1	-0.7432	-0.656	0.2745	-0.8473	-0.2713	-0.8228	-2.381	-0.8907
482	1	0.6875	0.1747	-0.3748	-0.07656	-0.3906	-0.2721	-0.05	0.13
483	1	-0.03844	-0.01125	-0.5207	-0.5225	-0.1666	-0.828	0.04406	0.1041
484	1	0.1475	1.335	-0.1648	-1.237	-0.2106	-0.2221	-0.92	0.37
485	1	0.3275	0.5547	-1.115	9986'0-	0.2594	-0.5521	-0.04	0.04
486	1	0.1055	-0.6073	-0.3368	-0.2986	0.1773	-0.4141	-0.332	-0.03203
487	1	-0.3366	-1.479	-0.7489	-1.651	-0.2048	-0.9162	-0.2441	0.1359
488	1	-0.08375	-0.2266	-0.4861	-0.2878	-0.4419	-0.4534	-0.6613	0.3287
489	1	0.03328	-0.1295	-0.839	-1.061	-0.3948	-0.6663	-0.6842	0.5958
490	1	-0.3325	-0.09531	-0.2348		-0.06062	-0.1221	60.0-	0.11
491	1	0.1014	0.1886	-0.0008984	0.2973	0.1933	0.7218	1.214	0.1839
492	1	-0.1319	0.2753	-0.3042	-0.1659	8.25E-09	0.1185	0.9506	0.1306
493	1	0.2064	0.6736	-0.2559	-0.1676	-0.4217	-0.4632	0.1389	0.02895
494	1	-0.8653	-1.718	0.03238	0.000625	0.3266	-0.2049	-0.06281	0.8772
495	. 1	-0.6974	-0.3802	0.3703	0.1086	-0.4155	-0.957	1.185	-0.3149
496	1	0.1653	0.8825	0.223		-0.3828	-0.6843		-0.3322
497	1	0.3575	0.8647	-0.004805	-0.2866	-0.3406	-0.6121		-0.13
498	1	-0.1239	-0.3067	-0.9162	0.002031	0.338	-0.07352	0.2586	-0.6614
499	1	0.2175	-0.04531	-0.1248	9915'0-	0.1794	-0.02211	-2.11	0.61
200	1	-0.2062	-0.4891	-0.8786	-1.12	-1.054	6506.0-	-1.444	-0.07375
501	1	1.101	1.448	-1.122	-0.4634	-0.7475	-0.739	0.4031	1.233
205	1	-0.0125	-0.5853	0.3752	0.1034	-0.3006	•	-0.73	-0.27
503	1	-0.2475	0.5697	0.2902	0.3484	-0.3556	0.7729		0.055
EDAI	ľ								

Ψ	
酉	
a	
Ë	

	GWEIGHT	NORWAY 100-BE	NORWAY 100-AF	NORWAY 10-AF	NORWAY 10-BE	NORWAY 102-BE	NORWAY 102-BE NORWAY 102-AF NORWAY 7-AF NORWAY 17-BE	NORWAY 7-AF	NORWAY 17-BE
		ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
		Ŧ			1	1	1	1	1
505	1	1 0.7575		-0.0648	-0.05656	0.1094		0.5	-0.22
206		1 -0.1075	0.2397	2080'0	0.4484	-0.2956	-0.8071		-0.615
507	1	1 -0.3814	0.2558	0.2563	0.5245	-0.9595			0.09109
208	1	1 -0.5225	-0.1153	1.255	0.003437		0.2879		-0.94
509	1	1 -0.2025	-0.6553	0.1352	0.2934	-0.7106	-0.2221	-2.65E-09	-0.11
510	1	1 -0.5025	-0.3253	1.165	0.3934	-1.411	0.2479		
511	1	1 -0.1725	0.8447	0.4852	0.6334	0.3494	-0.3621		-0.5
512	1	1 0.6225	-0.2603	-0.1998	-0.5316	0.8344	-0.01711	-0.255	0.295
513	. 1	0.5458	0.04297	-0.2065	-0.3383	0.6877	0.03617	-0.2017	0.1283
514	1	1 -0.2375	0.2997	-0.3498	0.9784	-0.6456	-0.5271	-0.015	-0.675
515	1	1 0.4631	-0.1397	-0.01918	-0.4809	-0.265	-0.3465	-0.2344	0.8556
516	1	1 -0.3947	0.0725	0.533	0.1413	0.7472	-0.4343	-2.232	-0.3322
517	1	1 0.5648	0.272	0.9825	0.1008	-0.5633	-0.07477	0.2473	0.08734
518	1	1.273	0.7403	0.3808	-0.9109	-0.925	-0.6065		1.216
519	1	0.7647	-0.008125	0.8524	0.000625	9908'0	1.335	0.007187	1.357
520	1	0.3075	1.525	0.8352	0.05344	0.09937	0.3279	0.31	1.02
521	1	0.01203	-0.8408	-0.9003	0.168	0.1539	0.7524	-0.6555	0.1645
522	1	0.1305	0.3677	0.03816	-0.1236	-0.9477		-0.807	-0.007031
523	1	-0.2314	-0.1242	1.826	-0.1554	1.851	656'0	-0.3789	2.051
524	1		-0.9903	1.68	-0.3616	0.4544	0.6329	0.605	0.005
525	1	-0.1725	-0.3553	1.175	-0.3766	0.1394	0.5079	1.77	0.55
526	1	0.2331	-1.05	0.2708	-0.6809	0.085	0.5935	-0.03437	0.1056
527	1	0.4339	0.2311	-0.0484	-1.4	0.2658	-0.005703		0.8764
528	=	1 -0.3962	0.2909	0.04145	-0.9503	-0.3644	-0.06586		0.6662
529	1	1.728	2.475	0.2652	0.04344	-0.4606	-0.3121	-1.16	0.25
230	1	1 2.404	3.051	0.2818	-0.67	-0.1041	-0.5055		1.087
531	1	1.925	1.952	1.513	0.5513	0.05719	0.2857		-0.002188
532	1	0.5975	1.105	0.2052	-0.4066	-0.3906	-0.1221	0.25	0.13
533	1	1 -0.8366	-0.4095	0.1811	0.0193	-1.505	-0.6362	1.956	1.416
534	1	-0.5914	-0.8642	-0.9537	-0.5455	-0.8795	1.349	1.321	0.6011
535	1	0.001563	0.7087	0.009258	0.3975	-0.7666	-0.448		1.404
536	1	1.93	1.477	0.0476	-1.294	-0.5682	-1.28	1.172	0.9424
537	1	0.6306	0.7578	-0.9117	0.1966	-0.7675	-1,099	1.013	1.703
538	1	0.1688	0.846	-0.6235	-0.5852	1.861	0.2992	1.331	2,681
539	1	0.01164	-1.391	0.7493	-0.7324	-1.146	-0.618		0.2841
540	г	-1.334	-0.547	2.333	1.542	-1.662	-1.824	1.048	-1.272

_	
u	
亙	
Œ	
H	

	STORY TO SEE THE SECOND TO SEE INCIDENT TO SEE								
		ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
		1	1	1	1	1	1		1
541	1	-0.1925	-0.1353	0.0652	1.023	9008.0-		60.0-	1.47
542	, —	-0.1331	-0.5759	-0.09543	0.4428	-0.4512	-0.7127	0.4694	0.6694
543	1	-0.3725	0.5747	-0.1348		-0.6606	-0.1921	0.84	0.93
544	1	-0.3653	-0.5781	-1,088	0.000625	-0.3334	0.5851	2.417	0.7772
545	1	-0.4825	-1.875	-1.795	-0.7066	-0.5706	0.1779	2.21	0.38
546	1	0.4975	0.6247	-0.3548	1.933	0.6394	-0.01211	2.54	0.0
547	1	-0.3953	-2.068	0.8224	0.3606	-0.6134	-0.3949	1.247	0.1872
548	1	0.2977	0.3649	0.07541	0.7137	0.2596	1.188	1.01	-0.6298
549	1	0.4153	1.582	0.803	2.001	0.2372		0.4778	0.4278
550	1	0.3575	-0.3453	0.6952	0.9634	2.669	2.288	1.68	-0.8
551	1	-0.0975	-0.5603	0.3802	0.008438	1.174	1.993		0.425
552	1	0.06469	-0.6481	0.7224	0.000625	0.9566	0.4551		0.6672
553	1		2.165	0.3252	-0.1066		-0.7821		-0.43
554	1	1.689	2.056	-0.3337	0.8545	1.96	0.308	0.04109	-0.1289
555	1		1.465	0.7752	1.343	0.7594	1.348		0.99
256	1	1.403	2.03	0.6202	1.028	0.5144	0.4529	-0.055	0.995
557	1	1.493	2.85	0.5802	0.6584	0.9844	0.7029	-1,195	0.155
258	1	0.4275	0.8747	-0.5248	0.4934		-0.7421	1.09	-1.04
529	1		-0.03316	0.4873	0.5356	-0.07848	0.1	0.6021	-0.4879
260	1	0.7581	-0.4447	0.7558	0.4941	-0.48	0.4185		0.7506
561	1	-0.7325	0.2647	0.6752	0.3334	-0.7106	-0.2721		-0.42
292	1	-0.3025	-1.435	0.8852		-0.8606			
563	1	-0.2722	0.455	1.136	0.02375	-0.4903	-0.2218		-0.07969
564	1	-1.48	-1.443	0.8575	0.6257	-0.3884	-0.2098	-1.418	-0.4177
265	1	-0.2631	0.2541	1,185	0.7628	-0.1713	-0.1427		0.05937
266	1	-1.271	-0.8242	0.5263		-0.4495	-0.591		
267	1	-1.094	0.8934	0.3639	0.1122	-1.222	-0.6234		-0.2513
268	1	-0.3153			0.000625	-0.1134	-0.6849	0.2372	0.4272
269	1	-0.3009	-0.2638	1.007	-0.195	-0.7991	-0.7405		0.7216
570	1	-0.6294	0.7278	0.5583	0.7566	0.0425	-1.459	0.4531	0.2831
571	1	-0.1622	0.585	0.7355	-0.1563	0.1097	0.8182	0.4903	-0.04969
572	1	-0.4864	0.2908	0.6913	0.1195	-0.7445	0.04398		-0.2439
573	1	0.0309	1.398	0.7686	0.03684	-0.3572	0.4013		-0.3866
574	1	-0.2046	1.023	1.603	0.5414	-0.5427	-0.05418		-1.032
575	1	-0.6662		1.311	-0.5603		0.04414		-0.4838
576									

-	4
4	Ų
3	5
2	9

17 17-BE	AKK123X	=	-0.3	-0.493		-0.92	0.1272	0.09562	1.19	1.58	-0.5894	0.08312	0.5	-0.3919	-0.3168	2.406	0.7458	-0.1249	2.175	0.1702	1.419	0.1212	0.06	-0.045	1.12	0.09	0.3823		0.735	0.67	-1.29	-1.174	-1.072	-1.553	-2.585	-1.974	-1.871	-1.414
7-AF NORW	+	1	0.04			-0.29	-1.043		-2.09	-1.1	0.4306	-0.6669		-0.2019	-1.047				-4.405	4.01	2.639		-0.01	0.735	0.89	-0.29	0.2723	0.9655		0.22	3.44	5.276	1.738	1.497	2.575	2.536	2,469	0.09648
- NORWAY	AKK 124X			7	•								(5						6						-	6	9								0.0
NORWAY 102-AI	AKKY22X		0.02789	-0.2852	1.094	0.1179	-0.2549	0.4435	-0:08211	-0.04211	-0.3315	0.161	0.3179	-0.114	-0.6889	-0.6265	-0.1063		-0.0773	0.02813	-0.5427	1.509	0.1979	0.4829	2.068	0.9179	0.1002	0.6334	0.7229	1.148	-0.05211	0.1637	0.3354	0.3246			-0.2234	
NORWAY 102-BE NORWAY 102-AF NORWAY 7-AF NORWAY 17-BE	AKKY23X	1	-0.2106		-1.645	-0.6706	-0.01344	-0.025	-1.261	0.7794	0.03		-0.3706	-0.0025	-0.6074	-0.235	0.3152	1.024	-2.716	-0.5404	-0.1613	0.000625	-0.8306	-0.1656	0.2694	-0.6406	0.3416	-0.3351	-0.3456	0.5594	-0.2306	0.5652	0.6469	0.4461	0.6539	0.675	0.5981	0.1559
삚	AKKY20X	1	0.4534		1.89	0.1634	0.000625	0.2791	0.3434	0.4234	0.1741	-0.2334	-0.3966	-1.418	-0.09332	-0.3709			1.108	-0.3163	0.7528	1.275	0.9434	-0.2716	0.6234	0.3734	-0.5043	-1.181	-0.4916	0.2034	-1.137	-1.971	-0.3891	-1.8	-1.262		-2.638	-1.27
NORWAY 10-AF	ARKY21X	11				0.5652	0.2324	0.6308	-0.8148	0.5352	0.8058	0.3783	0.2752	0.1733	0.8184	0.6208	1.021		-8.44E-12	-0.2246	0.8146		0.6752	-0.2398	0.5352	-0.5748	-0.3525	-0.3193	0.7302	0.3752	-1.795	-0.879		-1.498	-2.19	-2.469	-2.296	-1.078
NORWAY 100-AF	ARRY18X	1	0.5347			0.2747	-0.2681	-0.9297	0.7847	0.4547	-0.8947	-0.9122	0.3347	-0.6372	0.07793	1.34	-0.02953	2.66	2.739	0.7549	-0.8459	0.5659	0.1847	-0.1503	-0.9053	-0.6953	-0.453			-0.8453	-2.505	-2.389		-0.8686	-1.661	-1.5	-2.027	-0.8188
NORWAY 100-BE	AKRY19X	1	-0.3025	-0.5555	-0.9464	-0.8325	-0.5253	-0.1169	0.6475	-0.4825	-0.6919	-0.7294	0.0775	-0.7644	0.1807	3.393	1.023	3.033	2.302	-0.002266	-0.6631	-0.8312	-0.2425	0.4425	-0.6225	-0.2525	0.3498	-0.03695	1.453	0.0975	0.5775	0.4133	0.705	0.8542	0.452	1.633	1.276	-0.426
GWEIGHT			1	H	1	Ţ	1	1	1	1	1	T	Ŧ		1		1	T	П	1	1	1	1	1	F	1	-	1	1	FI	T	1	Ī	1	1	F	17	F
			222	578	579	280	581	282	583	584	585	586	287	588	589	290	591	592	593	594	595	596	597	298	599	909	109	602	603	604	605	909	209	809	609	610	611	612

ď	
õ	
ā	
-	

		ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X ARRY22X ARRY24X ARRY25X	ARRY22X	ARRY24X	ARRY25X
		1	1	1	1	1	1	1	
613	1	-0.8753	0.7419	-1.158	-1.309	-0.2634		0.2672	-2.233
614	1	-0.5896	1.178	-0.5019	-0.9537	-0.1477	-0.9092	0.3429	-1.117
615	1	0.6686	-0.7042	-0.8137	-0.9855	0.4905		0.4211	-0.1689
616	-	-0.07215	0.03504	-1.764	-1.106	0.2497	-0.6818	1.77	-2.45
617	1	0.03688	0.03406	-1.595	-1.117	0.2887	-1.113	1.919	-2.341
618	1	0.3975	0.05469	-0.9848	-1.047	-0.3706	0.3979	1.94	-1.72
619	1	0.1775		-0.9248	-0.1966	-0.1906	-0.08211	0.12	0.32
620	1	0.4488	0.4559	-0.4736	-0.5053	0.000625	0.9091	-0.1088	1.341
621	1	-0.1475	-0.0003125	1.08	-0.1716	-0.05562	0.1529	1.245	-0.085
622	1	-0.1666	0.3705	1.011	-0.1407	-0.7948	-0.2762		0.9059
623	1	2.21		0.4574	0.1756	0.7816	1.66	-0.07781	0.3522
624	1	0.2363		1.344	0.5522	-0.5819	0.1866	-0.6913	0.5187
625	1	0.3333	-0.01949	0.871	0.6393	-0.2648	0.2337		0.9658
626	1	0.4625	-1.2	-0.0198	-0.8716	-0.8156	0.3129		-0.135
627	1	-0.5625	-0.9053	-0.6348	0.3734	0.6894	1.378	0.76	-0.28
628	1	1.038	-0.01531	-0.1048	-1.217	-0.07062	0.01789	-0.04	0.56
629	=	0.645	0.04219	-0.2673		0.2169	0.9254	-0.4425	-0.0725
630	1	0.03984	-0.263	0.8575	2.086	-0.3083	0.06023	99260'0-	-0.5977
631	1	-0.2994	1.028	0.5083	-0.4434	0.0225	0.381	0.2931	-0.1469
632	T	-0.8162	-0.5291	0.7414	0.2397	-0.2944	0.5941		-0.5038
633	1	0.3376	-1.465	1.065	-0.03648	-1.571	1.888	0.5301	
634	1	-0.2125	-0.2453	0.8652	0.2634	-1.051	1.488		-0.29
635	1	-0.005117	0.2121	1.123	1.461	-1.173	-0.2447		-0.1126
636	1	-0.4814	0.08578	0.8163	1.545	-0.1495	1.169		-0.9289
637	1	-0.0525	-0.4553		0.3834	0.05938	0.3579	6.73	0.31
638	1	-0.2697	-0.5825	0.508	-0.2738	-0.4878	0.0007031		-0.3872
639	. 1	-0.8462	-0.1891	1.251	1.95	0.005625	2.114		-0.1638
640	Н	-0.1994	-1.262	0.7583	-1,303	-0.1175	0.08102	0.7831	-0.3169
641	1	-0.3332	-0.446	0.7145	1.543	-0.9813	0.9772	2.009	-0.3607
642	1	-0.1825	0.3147	1.835	1.543	-0.5306	0.8179		0.55
643	1	0.1463	-0.3866	0.3539	-0.4178	-0.2219	0.05664		-0.09125
644	1	0.5369	-2.536	0.1146	0.002813	0.2688	0.9573	1.999	0.5194
645	1	0.3061	-0.4067	0.5138	0.312	0.798	0.6565	1.139	0.8886
646	-	-0.00375	0.1434	-0.01605	-0.1378	-0.02187	0.1066	0.05875	-0.01125
647	1	-0.8273	-0.6702	-0.7896	1.129	-1.475	-0.917	-1.845	0.05516
070	•	11.	i						

١	•	•
	Œ	•
	Ċ	i
	π	i
ı	_	•

	CONTACTO	3					TO A TOWN TO THE THE TOWN TO THE THE TOWN TO THE TOWN		
		ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
		1	1	1	1	1	1	1	
649	디	-0.1525	-0.7853	-0.1848	0.08344	0.4294	0.6379	8.0	-0.09
650	1	-0.5964	-1.309	0.9013		957550	0.464	1.086	0.3961
651	1	-0.48	-0.02281		-0.6141	-0.9681	-0.6596	-0.4175	-0.8275
652	1	-1.107	9698'0-	-0.07904		-1.935	-1.496	-1.254	-1.554
653	1	-0.6536		1.754		0.08828	0.4368	0.8289	0.04891
654	1	0.2972	0.7444	1,405	0.5631	-0.4909	-0.1024	-0.04031	0.1597
655	1	-0.3825	-0.8553	-0.1148	-0.2466	0.2194	-0.02211	-0.23	-0.38
656	1	-0.7094	-0.8922	0.7183	0.4266	-0.1675	0.401		-0.7069
657	1	0.0625		0.0102	0.7984	0.5344	-0.5571	-0.055	-0.675
658	1	0.03875		1.176	0.6747	0.4406	-0.2809		0.2912
629	1	0.3411	-0.001719	-0.2312	-0.05297	-0.127		0.07359	0.3036
099	1	0	-0.6428	0.6477	0.1659	-0.7481		-1.978	0.5425
199	T	0.7109	-0.9219	1.539	-0.2131	-0.3772	-0.04867		1.153
. 299	1	-0.01625	-0.1291	-0.3086	-0.2703	0.4456	-0.2859	-0.6438	0.01625
663	Ŧ	-0.5278	-0.04063	88690'0	1,478	-1.436			1.155
664	1	-0.165	-1.348	0.2927	0.3509	-1.053	0.1054		1.328
665	1	-0.4095	-1.072	-0.1218	1.126	0.05242	-0.4191	0.213	-0.177
999	1	-0.5125	0.1947		1,293	-0.08063	0.09789		0.27
299	1	-0.4325	-0.3053	1.255	1:603	-0.5206	-0.2021		
899	1	-0.385	0.5122	0.8827	6008'0	0.05688	0.5454	-1.142	-0.1525
699	ᅱ	-0.4696	-1.022	-0.01186	0.9664	-0.1677	-0.2292	0.2629	0.02295
670	T	0.4475	-1.385	-0.0348	1.253	-0.4406	-0.9121	0.21	0.33
671	퓌	-0.678	-0.0007812	-0.3303	1.658	-0.5661	-0.7176		
672	T	-0.1202	-0.823	1.617	2.136	-0.7684	-0.3698	-1.058	-0.05773
673	T	-0.6714	-0.2142	0.1363	0.4245	-0.6695	-0.351		0.03109
674	T	-0.2925	-0.08531	0.6952	1.843	-0.1006	-0.4821		-0.42
675	귀	-0.7447	-1.908	-0.04699	-0.6087	-0.2628	-0.6743		
929	1	-0.6125	-0.8853	0.0852	-0.2566	-0.1306	0.08789	0.57	-0.17
677	T	-0.5487	-1.072	0.1289	0.2672	-0.006875	0.2116	0.04375	0.09375
678	T	-0.8725	-0.7253	0.2352	-0.8066	-0.000625	0.2679	-0.34	0.55
629	T	-0.0225	0.5047	0.3652	0.6134	-0.8406			0.84
680	T	-0.0275	1.18	0.5602	0.6184	-0.1656	-0.3171		0.225
681	1	0.5053	-1.328			-0.8228		0.09781	
682	1	-0.6764	0.4908	-0.9987	-0.8105	-0.9045	-0.286	-1.644	-0.6539
683	T	-0.8902	0.347	-0.1625	-0.2943	-0.1584	0.06016	0.2323	-0.4577
684	7	10 24 2E	17710	100					

ψ	
5	
a	
_	

1									\(\frac{1}{2}\)
1		ARRY19X	ARRY18X	ARRY21X	AKKYZUX	AKKY23X	AKKY22X	AKKY24X	AKKYZSX
_		1	1	1	1	1			
685	1	0.03625	0.5234	-0.4461	1.212	-0.07188	0.1566	0.3187	-0.2313
989		-0.2837	0.7334	0.06395	0.3922	0.1581		0.5887	-1.37
687		-0.4425	0.5647	-0.4448	0.8134	-0.04062	0.3479	0.04	-1.01
889		-0.6825	-1.335	0.0952	0.04344	-0.6506	-0.5021	-0.71	-0.05
689		-0.6553	1.012	-0.2476	-0.8594	-0.3034	-0.1649	0.2772	-0.4728
069		-0.1066	1.611	0.4711	0.6493	-0.3548	-0.3262	-0.6941	0.3259
169		-0.4437	-0.5866	0.4939	0.2522	0.1281	0.1466		-0.2313
692		-0.8522	0.585	0.3055	-0.4763	-0.7803	-0.7418	-0.4297	-0.6397
693		-0.4502		1.537	-0.1443	-0.6184	-0.1798	-0.5577	-0.6177
694		0.9334	0.3906		-0.3606	-0.05469	-0.3162		-0.6241
695		0.3238	0.02094	-0.6686	-0.09031	-0.09438		-0.05375	-0.7838
969		-0.3437	-0.1666	0.9139	-0.2478	-0.4419	0.7134	-0.7513	0.2987
269		1.05	0.6269	0.5474	0.2956	-0.7284	-0.3399	-0.4078	0.1022
869		0.4905	-0.2923	0.3282	-1.074	0.8524	0.4809	-0.677	-0.217
669		0.1775	1.045	-1.105	99/5'0-	-0.06063		0.78	-1.16
700		0.08406	0.2012	0.5918	0.22	0.2059	-0.03555		-0.4234
701		0.7911	0.8983	-0.4412	-0.703	0.913	0.4615	-0.3664	0.1136
702		3.049	0.1758	-0.01371	-1.655	-1.36	-1.051	0.01109	-2.099
703	1	2.939	-0.01406	0.8864	-2.605	-1.349	-0.4409	0.4713	-0.8087
704		-0.3475	-1.1	1.19	0.2184	-0.6856	•		0.455
705		0.1736	-1.129	1.071			-0.396	-0.5739	2.216
706		-0.3822	0.205		0.9637	0.02965	0.1982	-0.1197	0.2503
707		-0.8402		0.09746	0.0357	-0.3084	-0.3298	-0.6877	0.3523
708		0.3325	1.04	1.05	1.078	0.7044	1.843		0.295
709		-0.5866	0.08062	0.7611	-0.06062	0.2853	1.164	0.1559	0.1059
710		-0.4847	-0.1675	0.683	0.2912	0.2772	-0.0843		0.7278
711		8969.0-	0.1104	1.151	0.3591	0.2251	0	-0.6843	0.5857
712		-0.4063	0.1309	1.281	-0.05039	0.005547	-0.5059		0.5262
713		-0.287	1.23	0.2607	0.359	0.2349	0.1234	0.2755	-0.6445
714		-0.2244	0.5328	0.5433	0.5116	0.6375	0.586	0.1081	-0.4419
715		-0.3725	1.185		0.3234	-0.3506	0.2079		-1.38
716		-0.1254	0.5218	0.5023	0.05059	0.2765	0.455	-1.453	-0.1329
717		-1.359	-0.9816	0.1989	-0.002813	-0.8669	-0.9384	-1.366	-0.3663
718		-0.6337	9965'0-	-0.1561	0.9922	-1.222			
719		0.2425	0.6997	0.3302	0.3884	0.004375	0.1529	0	0.235
200									

a)	
5	
ē	
Н	

嗣、	 	-0.715	-0.1303	0.78	0.4394		0.1727	-0.1025		-0.3972		0.39	0.2341	-0.06	-0.7073	492	0.7197	-0.5109	-0.03	0.9056	0.4556	188	0.01	0.45	-0.3175	0.1563	0.1158	-1.392	0.6711	-1.354	-1.063	0.2912	425	215	-0.7433	-0.5933
NORWAY 17		Ģ	-0.1		0.4		0.1	φ.1		-0.3)	0.2	Υ 	-0.7	-0.08492	0.7	-0.5)	0.9	0.4	-0.03188) _	-0.3	0.1	0.1	-1.	0.6	-1.	-1.	0.2	-0.1425	-0.07215	-0.7	-0.5
HORWAY 7-AF	1	-0.385	0.3097				0.1127	-0.6025		-0.3872	-1.626	0.42	-1.676		-3.147	0.5351	1.54	-0.3409	6.0-	-0.6444	0.4056	-0.8319	0.23	1.4	0.0225	-0.6337	1.406		1.061	0.5464	0.6874	0.3612	0.0575	0.6579	0.006719	0.05672
NORWAY 102-BE NORWAY 102-AFI NORWAY 17-BE ARRY23X ARRY25X ARRY24X ARRY25X	-	-0.8771	0.3576	-0.1821	0.03727	0.5879	-0.1295	0.02539	-0.2164		-0.04773	-0.5121		-0.3921	-1.069	0.183	0.7676	-0.253	-0.09211	-0.4065	1.104	-0.08398	-0.8721	-0.4221	1.51	-0.4559	0.2037	-0.7646	-1.151	0.0243	0.5753	0.1291	0.2354	0.4857	0.1946	0.1746
NORWAY 102-BE ARRY23X	1	-0.6856	0.2691	-0.6806	-0.5112	-0.3006	-0.128	0.1169	-1.435	-0.3678	0.4237	0.2294	-0.03648	-0.06063	896.0-	-0.3155	0.04906	-0.5915	0.3594	-0.175	0.885	0.0475	-0.3306	0.009375	1.362	0.1656	0.2752	-1.193	-1.21	-0.2342	-0.01322	0.3305	0.1869	0.5572	0.2161	1.016
NORWAY 10-BE ARRY20X	T	-0.3416	0.02313	0.7134	0.04281	0.4634	0.2761	-0.1991	0.9891		-1.562	-0.4766	0.2976	-1.047	-0,3439	0.1885	0.6831	0.7226	-0.1766	-0.5309		0.06156	-0.07656	-0.3166	0.4859	0.01969	0.1393	0.5909	0.05453	-1.19	-0.5892	-0.9654	-0.1591	1.921	-0.6298	0.4302
NORWAY 10-AF ARRY21X	-	0.2202	-0.3351	-0.2748	0.3646	0.6252	-0.2821	0.2527	0.9309	0.178	-1.16	0.0852	-0.1907	0.9352	0.3979	-0.09973		0.1343	0.6252	0.01082	-0.5092	0.2033	0.3752	-0.1948	0.1877	-0.1486	-0.529	-0.2573	-0.4937	-0.4584	0.0126	-0.9236	0.1927	1.183	-0.1681	-0.08809
NORWAY 100-AF ARRY18X	1	0.1897	-0.04563	-0.2153		0.9847	0.1473	0.1922	0.3504	0.4675	-0.7409	0.1147	-0.5212	0.1447		0.2598	-1.696	0.7138	0.6147	0.09031	-0.1997	-0.2072	0.6147	-0.1953	-0.1828	-0.3191	0.08051	0.02219	-1.204	-1.239	-0.8579	-1.794	0.5022	0.6925	0.6714	0.3314
NORWAY 100-BE ARRY19X	1	-0.6875	-0.3728	-0.2125	-0.9331	-0.3925	-0.1498	-0.575	-0.5268	-1.23	-1.458	-0.3025	-0.2084	-0.1825	-0.5798	-0.1074	0.1872	0.8366	0.5375	-0.06687	0.2831	0.1056	0.0575	0.1375	-0.04	0.6338	-0.3967	-0.455	-0.8314	-0.7361	-0.4751	0.2687	0.055	0.3654	0.1742	-0.1358
GWEIGHT		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	H	1	1	1	1	1	1	1	1	1	F	1	, , ,
		721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755

•	•
•	1
~	=
2	3
a	3
	=

-		ARRY19X	ARRY18X	ARRY21X	ARRYZOX	ARRY23X ARRY22X ARRY24X ARRY25X	ARRY22X	ARRY24X	ARRY25X
		1	1	1	1	1	1	1	
757		609600.0-	0.5576	-0.6319	-0.6037	-0.2977		-0.3471	-0.1771
758		0.6231	-0.7197	-0.5092	6068'0-	-0.035	0.2935	0.3256	0.1656
759		1.038	-1.045	-0.9948	2.103	9099'0-	-0.9721	-1.37	3.67
760			-0.537	0.03348	1.252	0.2377		1.118	0.02828
761	1	-0.305	-0.2678	0.8327	1622'0-	-0.7931	0.08539	-0.0225	-0.3625
762	1	-0.4025	0.2147	-0.1648	-0.5566	-1.171	-0.7221	0.02	0.02
763		-0.5562	-0.6591	-0.2186	2608'0	-0.4744	0.7641	1.206	-0.9437
764	1	0.4455	-0.2173	-0.03684	0.1214	-0.4227	-0.1741		-0.692
765	1	-0.1958	0.03141	-0.2181	0.3002	-0.4539	-0.4654	-0.1033	-0.2833
766		-0.3653	-0.1481	0.6224	-0.7394	0.1166	-0.5749	-1.343	0.2672
767	1	0.3475	-0.06531	2.265	1.053	0.1694	0.7379		1.29
768	1	0.3472	0.4744	2.465	1.993	0.2691	0.4876		1.56
692	1	-0.3925	-0.2753	-0.5748		1.019	"-1.122		-0.16
730	1	-0.1181	-0.5909	1.02	-0.08219	0.2638	0.4123	0.1544	0.004375
771	1	2.373	1.12	-0.06918	-0.06094	-1.375	-0.6165	0.02563	-0.3044
772	1	2.493	2.79	0.4008	0.01906	0.005	-0.3465	0.5256	1.696
733	1	-0.3375	1.1	0.2502	1.248	-1.026	-0.09711		
774	T	-0.025	0.5222	0.3927	1.081	-0.09312	0.5254		0.2375
775	1	-0.405	-0.4178	-0.1273	-0.3991	-0.02312	-1.285	-0.8325	0.4275
776	Ī	1.035	0.9527	0.2832	0.02141	1.167	0.4659	0.298	
77	可	0.6775	1.725	0.0952	-0.04656	0.7194	0.8179	0.2	-0.55
778		-0.2475	-0.9903	-0.8098	0.2684	-0.1856	-0.1971	-0.035	0.225
739	F	-0.005234	1.032	0.3625	0.4707	0.5266	1,265	-0.5527	-0.5527
98/	-	-0.00375	-0.3466	-0.6261	-0.8578	0.1181	-0.5334		-0.3213
781		0.06336	1.001	0.05105	1.329	0.2752	0.5238	1.266	-0.2341
782		-0.3188	0.1284	0.5889	0.5371	0.473	0.6216		-0.1263
783	7	-0.3809	0.3763	0.2068	-0.03492	0.381	0.02953	0.6216	-0.1384
784	-	-0.4757	-0.5885	-0.01803	0.9202	0.2462	-0.3053	1.047	0.4368
785	-	-0.5125	0.7847	-0.004805	0.3434	-0.7106	1.228		0.81
786	-	-0.0175	-0.1603	-0.2698	-0.2116	-1.346	-0.9271	0.225	-0.375
787	7	-0.1467	-0.3695	-0.239	-0.07078	-0.004844	-0.09633	-0.2142	-0.3442
388	7	-1.105	-0.1175	-0.05699	0.8912	-0.5328	-0.1543		0.0478
6 6 8 7	T	0.0975	0.7447		0.2634	0.5594	0.7679	0.1	-0.28
28	7	-0.5425	0.1047	0.3652	-0.03656	-0.6106	0.06789	-0.55	-0.08
791	17	-0.3202	-0.533	-0,4025	0.2957	-0.2284	-0.2998	-0.8177	0.2823
792	_	0 3653	0070	100					

ij	
۵	
σ	
_	

		ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
		1	1	1	1		1	1	
793	1	-1.556	-1.719	-1.739	-0.5505	0.9355		2.786	-0.2139
794	1	-0.8175	-0.2503	-1.39	-0.8816	0.2344	-0.3271	0.315	-0.125
795	1	-0.3825	-0.9953	-0.2348	0.2634	-0.3306	-0.2021	0.1	-0.15
296	1	0.2938	0.4709	0.2714		-0.01438		0.1362	0.4962
797	1	-0.1925	-0.1253	0.1152	-0.1466	0.2794	0.07789	-1.07	0.03
798	ī	2669'0-	-1.403	-0.832	-0.6738	-0.2278	0.0007031	-0.3772	-0.4972
799	1	-0.7614	-1.164	-0.3137	0.5445	0.1605		906800'0-	0.02109
800	1	-0.3461	0.3811	0.0816	0.2198	-0.7442	-0.005703	-0.1536	0.1264
801	1	-0.2512	-1.274	-0.07355	-0.3953	0.000625	-0.1009	0.1212	-0.07875
802	1	0	-0.4328	-0.8323	-0.3141	-0.1281	-0.4396	1.242	-0.0675
803	ī	-0.7825	-1.645	-0.1148	-0.05656	0.2894	-0.2421	-0.2	-0.72
804	1	-0.8955	-0.7584	0.4521	-0.009609	-0.02367	-0.7252	-1.313	-0.243
802	1	-0.01695	-0.2498	-0.9293	-0.281	0.3249	-0.06656	0.4255	-0.1745
806	1	-0.0625	0.03469	-1.045		0.1194	-0.2521	-2.65E-09	-0.11
807	1	-0.2247	0.1425	-0.357	0.4212	0.1572	-0.004297	-1.032	-0.1122
808	1	-0.1069	0.3903	-0.2292	0.2791	-0.115	-0.04648	-0.3344	-0.2944
809	1	0.2675	0.7147	-0.8048	0.1534	-0.2906	-0.1721	7'0-	-0.2
810	1	-0.1597	-0.0825	-0.03199	-1.324	0.8022	0.0007031	-0.6972	-0.3172
811	1	-0.2014	0.2058	0.006289	0.5445	-0.5395	-1.191	6896'0-	-0.1389
812	1	-0.2237	0.2834	-0.05605	-0.7078	0.04812		1.449	0.1287
813	1	5209'0-	-0.1303	0.1802	0.9984	-0.4256	-1.027		
814	1	-0.3664	-0.1692	-0.06871	0.2795	0.1855	0.364	1.676	0.5261
815	1	-0.0075	0.2597		0.8384	0.2644	0.4729		0.705
816	1	-0.3819	-0.03469	-0.05418	-0.2759	0.22	-0.5015		-0.709
817	1	0.1125	0.4397	-0.0198	-0.6516	-0.4656	-0.7171		-0.195
818	1	-0.5694	-0.5322	-0.4517	-0.1334	0.1925	-0.409		-0.6169
819	1	0.1363	-0.1466	0.03395	0.8122	1.218	0.3466	-0.3113	-0.3113
820	1	-0.4451	-0.02791		-1.069	0.3268		0.7574	-0.3326
821	1	-0.8314	-2.114	-0.7037	-0.7855	-0.3395	-0.961		-1.409
822	1	-0.2225	-0.2753	-0.2448	0.03344	0.1194	0.08789	-0.53	-0.05
823	1	0.02242	0.3196	0.04012	-0.01164	0.0843	-0.4772	0.08492	-0.1351
824	1	-0.05687	0.8303	0.4208	-0.4209	0.035	0.3135	-0.3144	-0.6744
825	1	0.1739	0.5411		-0.3401	-0.5042	0.1643	0.1364	-0.2436
826	1	-0.4195	0.1777	-0.4018	-0.8935	0.2624		0.743	0.02305
827	1	0.1469	0.5241	-0.2454	-0.9572	0.1987	-0.8927	-0.2506	-0.6106
828	7								

a	
ō	
<u>.</u>	
_	

•		ARRY19X	ARRY18X	ARRY21X	ARRY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
		1	1	1	1	1	1	1	
829	1	-0.1142	-0.587	-0.04652	-0.2683	0.07766	0.4262	-0.05172	-0.1017
830	1	-0.6895	0.8877	0.7582	-0.04359	-0.2977	1.231		-0.327
831	1	-0.4041	-0.07695	0.9436	-1.078	-0.1823	-0.4437		-0.01164
832	1	-0.04805	0.9491	0.4396	0.05789	0.5138		-0.3555	0.4245
833	1	-0.47	0.8372	-0.7323	0.5059	-0.2181	0.04039	0.4625	-0.0275
834	1	-0.6009	-0.4637	-0.09316	-0.4949	0.231	-1.23	-0.9784	-0.9784
835	1	-0.4656	0.4516	0.3621	-0.03969	0.1263	1.775	-0.08312	-0.6631
836	1	-0.1286	0.1986	-0.2509	0.1573	0.08328	0.001797	-0.006094	-0.5261
837	1	-0.0168	0.2704	0.1109	-0.1709	0.2151	-0.2064	-1.084	0.3257
838	1	-0.6725	-1.145	-0.4048	-0.7966	-0.05062	-0.3521	-0.61	-0.36
839	1	-0.4725	-0.2053	-0.3048	0.2734	-0.02063	-0.7321	20.0	90.0
840	1	-0.8974	-1.04	-0.2397	0.3485	-0.3155	-0.627		-0.05492
841	1	-0.6675	-0.1003	-0.3898	0.2884	-0.1756	-0.4571	0.585	-0.295
842	1	-0.6025	-0.5653	-0.3348	-1.087	-0.4406	-0.9221	62'0	0.02
843	11	-0.5482	-0.571	-0.4105	-0.5023	-0.4563	0.002187	-0.005703	-0.685
844	1	-0.5222	-1.145	-0.3645	0.1437	-0.3803	-0.5118	-0.1497	-0.3197
845	1	-0.3252	-0.598	-0.2575	0.3208	-0.4333	-0.3648	-0.08266	0.1073
846	_ 1	-0.6447	-0.0475	-0.06699	0.5013	-0.2128	-0.2943	-0.1822	0.6978
847	1	-0.05125	0.4859	-0.4036	0.4047	0.000625	0.2591	8806.0-	0.5112
848	1	-0.3842	-0.497	-0.04652	-0.8883	-0.7123	-0.7938	-1.242	-0.1517
849	1	0.2375	0.3847	0.2952	-0.07656	0.3294	-0.8621		0.17
820	1	-0.2725	-0.2353	0.1652	-0.2766	0.1494	-0.4321	0.46	0.17
851	1	-0.525	-0.8078	-0.4073	-0.3191	-0.6331	-0.4546	0.3375	0.0275
852	1	-0.5425	-0.5053	0.0952	0.003438	-0.2106	-0.7321	-0.48	0.14
853	1	-0.1137	0.3734	-0.1261	8/96/0-	0.4281	-0.9534	-1.231	-0.3613
854	1	-0.1259	-0.00875	-0.1982	-0.42	0.2259	-0.7955	-1.703	-0.1534
855	1	-0.1037	0.06344	0.1639	-1.388	0.3481	-0.6434	-0.5312	-0.7312
856	1	0.09375	0.4909	0.1114	0.1997	0.1556	-0.08586	-0.1238	-0.01375
857	1	-0.3025	0.8047	0.1752	-0.1966	-0.2106	0.4279		-0.63
828	1	-0.7525	-0.3953	-0.2748	0.1534	-0.7606	-0.5821	99.0	-0.79
829	1	-0.4244	-0.1872	-0.6467	0.06156	-0.1925	-0.01398	1.658	-0.9819
860	1	-0.2775	-0.5903	-0.1998	-0.1716	0.3344	-0.7271	-0.495	-0.415
861	1	-0.3575	-0.0003125	-0.0198	-0.1716	0.1244	-0.08711	0.285	0.025
862	1	-0.1269	0.4403	0.1008	-0.2009	-0.035	0.02352	0.8456	-0.5344
863	1	-0.2253	-0.7081	-0.02762	0.000625	0.5866	-0.7749	0.7372	-0.2928
1770	ŀ								

_
Ð
╗
₻
ï
•

\dagger					1	102 00	ייסיייטן דעד פר ייסיייטן דעד ען ייסיייטן איט ייסיייטן איט איטיייטן דעד פר ייסיייטן דעד פר ייסייטן דעד פייטן דער פייטן דער פייטן דעד פייטן דער פייטן דעד פייטן דער פייטן דער פייטן דער פייטן דער פייטן דע		
\dagger		AKKY19X	AKKYIBX	ARRYZIX	AKKY20X	ARRY23X	ARRY22X	ARRY24X	ARRY25X
		1		1	1	1	1		
865	1	-0.1814	위	0.05629	-0.005469	-0.2595	-0.621	-0.3889	- 0.03109
998	T	-0.2347	0.0825	-0.167	0.1012	0.08719	-1.014	-0.1222	-0.7822
867	1	-0.1416	0.5656	0.2661	0.2544	0.3403	1.419	0.2109	-0.2191
868	1	-0.03937	0.5578	0.1583	-0.3734	0.3925	0.331	-0.2969	-0.2969
698	1	-0.4497	0.3875		0.2162	0.1322	0.0007031	0.03281	-0.1172
870	1	-0.4297	0.5075	-0.232	-0.05375	-0.2378	0.4607		-0.6872
871	1	-0.2809	0.2263	0.6168	-0.5549	0.231	-0.01047	-0.06836	-0.06836
872	1	-0.2162	-0.4891	-0.5886	-0.3303	-0.1944	-0.7559	-0.08375	-0.303
873	1	-0.7525	-0.7953	-0.4148	-0.2666	-0.08062	0.4379	0.92	-0.31
874	1	-0.523	0.2241	-0.5754	0.6929	-0.3512	-0.03266	0.7595	-0.1805
875	1	-0.545	0.03219	0.1827	-0.4391	-0.3331	-0.2746	1.608	-0.9425
876	1	-0.4225	-0.2753	-0.2248	0.2534	0.7994	-0.01211	-0.36	-0.57
877	1	-0.1142	-0.127	-0.2465	-0.7783	1.338		0.3783	-0.3217
878	1	0.0075	-0.5153	-0.1548	-1.387	1.119	0,2779	0.23	0.03
879	1	-0.4587	-0.02156	0.2689	-0.4128	0.5431	-0.5084	0.04375	-0.5762
880	1	-0.1977	0.2895	-1.02E-11	-0.9418	0.8242	-0.4973	-0.8852	-0.1652
881	1	0	0.2972	-0.1723	-0.4141	0.7419	-0.2996	-0.1275	-0.5575
882	1	-0.2564	-0.1192	-0.09871	0.2695	0.4855		-0.1439	-0.5139
883	1	-0.5352	0.222	0.1025	0.8108	0.2767	•		-0.3427
884	1	0.04563	0.1828	-0.1567	0.3016	0.6175	-0.244	-0.1719	0.008125
885	1	-0.2302	-0.413	0.1575		0.1916	8692.0-	2.152	
886	1	-0.3814	-0.5442	0.06629	0.2845	0.2505	-0.241	-0.1989	0.3111
887	1	-0.61	0.04719	0.0877	0.4259	-0.4681	0.7304	-0.6475	-0.6975
888	1	-0.7737	-1.277	0.5239	0.1822	0.3981	0.01664	-0.3213	-0.2513
889	1	-0.4389	-0.3017	1.019	0.187	0.493	0.1115	-0.3764	-0.1764
890	1	-0.4684	0.3388	-0.07066	0.1676	0.1535	0.05203	-0.07586	-0.1159
891	1	-0.1442	-0.497	-0.1265	0.2117	-0.05234	-0.2638	0.5283	-0.01172
892	1	-0.1236	0.3436	0.0341	0.6323	0.03828	89£0'0	-0.3311	0.2289
893	1,	0.009844	-0.373	0.4075	-0.5942	-0.02828	-0.3098	-0.6377	0.2223
894	1	-0.38	-0.3428		-0.5441	0.3919	-0.5796	1.813	-0.2475
895	1	-0.4612	-0.2541	0.5264	-0.4153	-1.369	-0.07086	-1.179	-0.3387
968	1	-0.01727	0.4699	0.4504	-1.131	0.3146	6968'0-	0.01523	0.04523
897	1	-0.4336	-1.116	0.5241		0.03828	0.1668	0.1489	-0.191
868	1	0.1286	-0.9142	1.196	-0.8455	0.6605	-0.221	-1.089	-0.5689
899	1	-0.3625	-1.035	-0.3448	0.3534	0.6894	0.2279	-0.39	-0.26
000	ľ					4414			

ø	
즃	
ű	
•	

O		GWEIGHT	NORWAY 100-BE	E NORWAY 100-AF NORWAY 10-AF	NORWAY 10-AF		NORWAY 10-BE NORWAY 102-BE NORWAY 102-AF NORWAY 7-AF NORWAY 17-BE	NORWAY 102-AF	NORWAY 7-AF	NORWAY 17-BE
1			ARRY19X	ARRY18X	ARRY21X		ARRY23X	ARRY22X	ARRY24X	ARRY25X
1 -0.6839 0.5333 -0.04621 -0.338 1 -0.05141 -0.2342 -0.03437 -0.4455 1 -0.4631 -0.2342 -0.1347 -0.1722 1 -0.4331 -0.2659 -0.6954 0.5208 1 -0.4331 -0.2659 -0.6954 0.5828 1 -0.4522 -0.5183 0.7552 0.7834 1 -0.1369 0.2039 -0.6799 -0.6709 1 -0.17306 0.2928 -0.2267 -0.1083 1 -0.1374 0.2928 -0.2267 -0.1083 1 -0.1374 0.2679 -0.2689 -0.6709 1 -0.2736 0.2679 -0.2689 -0.6709 1 -0.1344 0.2928 -0.2267 -0.1089 1 -0.1475 -0.1081 -0.1081 -0.1081 1 -0.1050 -0.1081 -0.1081 -0.1081 1 -0.1050 -0.1081 -0.1082 -0.10			1	- 1	1	1	1	1	1	1
1	901	1	-0.6839	0.5333		-0.338	-0.302	-0.07352		-0.8414
1 -0.4837 -0.3866 -1.046 0.1722 0 1 -0.4031 -0.2659 -0.6954 0.5828 0.5828 1 -0.4031 -0.2659 -0.6954 0.5828 0.7834 1 -0.51255 -0.5133 0.7305 -0.6799 -0.6799 1 -0.7306 -0.3003 0.13929 -0.6747 -0.6747 1 -0.7326 -0.2928 -0.2267 -0.1083 1 -0.1742 -0.2678 -0.2447 1 -0.1385 -0.2678 -0.2689 -0.1083 1 -0.1650 -0.2678 -0.2689 -0.2689 1 -0.1053 -0.2678 -0.2095 -0.2096 1 -0.1053 -0.2679 -0.2689 -0.1666 1 -0.1053 -0.1081 -0.2756 -0.1883 1 -0.1053 -0.1075 -0.1276 -0.1883 1 -0.1053 -0.1075 -0.1276 -0.1883 1 </td <td>905</td> <td>1</td> <td>-0.05141</td> <td>-0.2342</td> <td>-0.3437</td> <td>-0.4455</td> <td>0.5205</td> <td>0.259</td> <td>68/8'0-</td> <td>-0.1689</td>	905	1	-0.05141	-0.2342	-0.3437	-0.4455	0.5205	0.259	68/8'0-	-0.1689
1 -0.4031 -0.2659 -0.6954 0.5828 1 -0.4525 -0.5133 0.7552 0.7834 1 -0.3169 -0.51308 -0.6709 1 -0.742 -0.407 -0.006523 -0.1083 1 -0.1742 -0.407 -0.006523 -0.1083 1 -0.1742 -0.407 -0.006523 -0.1083 1 -0.1324 0.2928 -0.2267 -0.5473 1 -0.1666 0.2208 -0.2267 -0.1083 1 -0.1666 0.2905 -0.2689 -1.089 1 -0.1666 0.2672 -0.2689 -1.089 1 -0.1653 -0.1683 -0.1683 -0.1666 1 -0.1053 -0.1681 -0.1683 -0.1689 1 -0.1053 -0.1081 -0.1689 -0.1689 1 -0.1053 -0.1081 -0.1689 -0.1689 1 -0.1053 -0.1472 -0.1374 -0.1883 <	903	1	-0.4837			0.1722	0.02812	0.05664	-0.3013	-0.9213
1 -0.5525 -0.5153 0.7552 0.7834 1 -0.3169 0.3003 0.1308 -0.6709 1 -0.7306 -0.3023 -0.1083 -0.5447 1 -0.7306 -0.2028 -0.20653 -0.1083 1 -0.3744 0.2928 -0.2266 -0.3803 1 -0.384 0.2928 -0.2786 -0.3803 1 -0.1666 0.5905 -0.2786 -0.1089 1 -0.385 -0.2678 -0.2689 -1.089 1 -0.1666 0.5905 -0.2689 -1.089 1 -0.1675 -0.2678 -0.2895 -0.2089 1 -0.1742 -1.337 -0.3965 -0.3883 1 -0.1475 -0.1365 -0.1883 -0.2866 1 -0.1742 -1.337 -0.3965 -0.1883 1 -0.1873 -0.1081 -1.217 -0.2866 1 -0.1742 -1.437 -0.2365 -0.1883	904	1	-0.4031			0.5828	-0.1113		0.4494	-0.6506
1 -0.3169 0.3003 0.1308 -0.6709 1 -0.7306 -0.3229 -0.547 -0.1083 1 -0.1742 -0.407 -0.006523 -0.1083 1 -0.1244 0.2228 -0.2267 -0.1083 1 -0.1266 0.5905 -0.2786 -0.3803 1 -0.1285 -0.2678 -0.2686 -0.3803 1 -0.1285 -0.2678 -0.2686 -0.2009 1 -0.1053 -0.1681 -0.1666 -0.1089 1 -0.1212 -0.2678 -0.2688 -0.1686 1 -0.1053 -0.1475 -1.217 -0.9287 1 -0.1472 -0.1475 -1.217 -0.9287 1 -0.1871 -0.4374 -0.1475 -1.217 1 -0.18008 0.1871 -0.4324 -0.4441 1 -0.1125 -0.0234 -0.1865 -0.1866 1 -0.1125 -0.1475 -1.217 -0.18	905	1	-0.5525				-0.6106	-0.8021	9.0	-0.73
1 -0.7306 -0.3929 -0.5447 1 -0.1742 -0.407 -0.006523 -0.1083 1 -0.1742 0.2928 -0.267 1.022 1 -0.2344 0.2928 -0.267 -0.1883 1 -0.1666 0.59509 -0.2689 -1.089 1 -0.1666 0.5622 0.0427 0.2009 1 -0.1666 0.9622 0.4927 0.2009 1 -0.1053 -0.1681 -0.1666 -0.1666 1 -0.1053 -0.1081 -0.1883 -0.1666 1 -0.1072 -1.337 -0.3655 -0.1883 1 -0.1475 -1.137 -0.5883 -0.1883 1 -0.1475 -0.1347 -0.1346 -0.0675 -0.6365 1 -0.1072 -0.1475 -0.1347 -0.1344 -0.1883 1 -0.1125 -0.1475 -0.1347 -0.1344 -0.1466 1 -0.1125 -0.1234 <td>906</td> <td>1</td> <td>-0.3169</td> <td></td> <td>0.1308</td> <td>-0.6709</td> <td>-0.225</td> <td>-1.286</td> <td>0.2156</td> <td>-0.8744</td>	906	1	-0.3169		0.1308	-0.6709	-0.225	-1.286	0.2156	-0.8744
1 -0.1742 -0.407 -0.006523 -0.1083 1 -0.3244 0.2928 -0.2567 1.022 1 -0.3738 0.9509 -0.2786 -0.3803 1 -0.1866 0.5905 -0.2689 -1.089 1 -0.2125 0.2678 -0.2689 -0.1066 1 -0.2125 0.0553 -0.4548 -0.1066 -0.0 1 -0.1053 -0.1081 -0.1376 0.000625 -0.6 1 -0.1053 -0.1081 -0.1376 0.000625 -0.6 1 -0.1042 -1.337 -0.3965 -0.1883 -0.1883 1 -0.1475 -1.217 -0.5866 -0.5866 -0.6886 1 -0.1475 -0.1475 -1.217 -0.1883 -0.1883 1 -0.1434 -0.1475 -0.6355 -0.4166 0 1 -0.1433 -0.0293 -0.6355 -0.4164 0 1 -0.1433 -0.0293	907	1	-0.7306		-0.3929		-0.4687	-1.46	-0.2081	-1.208
1 -0.3244 0.2928 -0.2267 1.022 1 0.2738 0.9599 -0.2786 -0.3803 1 -0.1666 0.5905 -0.2786 -0.3803 1 -0.185 -0.2678 -0.2689 -1.089 1 -0.2125 0.9622 0.4927 0.2009 1 -0.1053 -0.1061 -0.7376 0.000625 -0.2069 1 -0.1053 -0.1081 -0.7376 0.000625 -0.1686 1 -0.1472 -1.337 -0.3965 -0.5866 -0.1883 1 -0.1475 -0.1475 -0.1387 -0.5865 -0.1883 1 -0.1475 -0.1374 -0.1475 -0.1217 -0.9287 1 -0.1475 -0.1374 -0.0295 -0.4324 -0.1883 1 -0.1475 -0.0295 -0.1324 -0.1264 -0.1264 1 -0.1475 -0.0295 -0.1266 -0.1264 -0.1264 1 -0.2447	806	1	-0.1742	;		-0.1083	0.4177	-0.07383	-0.3317	-0.3317
1 0,2738 0,9509 -0.2786 -0.3803 1 -0,1666 0,5905 -0,2689 -1,089 1 -0,385 -0,2678 -0,2689 -1,089 1 -0,32125 -0,3653 -0,4548 -0,1066 -0,000 1 -0,1053 -0,1081 -0,7376 -0,10665 -0,1066	606	1				1.022	-0.1025	0.266		-0.1819
1 -0.1666 0.5905 -0.2689 -1.089 1 -0.385 -0.2678 -1.089 -1.089 1 -0.2125 -0.2678 -0.4548 -0.1066 -0.2009 1 -0.1053 -0.1081 -0.7376 -0.000625 -0.2608 1 -0.1053 -0.1081 -0.7376 -0.000625 -0.26883 1 -0.1053 -0.1081 -0.3965 -0.8883 -0.1066 -0.5666 1 -0.1047 -0.1475 -1.217 -0.5866 -0.5866 -0.5866 -0.5866 -0.1883 -0.1883 -0.1883 -0.1883 -0.4441 -0.4441 -0.4441 -0.4441 -0.4441 -0.4441 -0.4441 -0.1883 -0.2694 -0.2694 -0.1883 -0.1884 -0.2694 -0.2694 -0.2694 -0.2694 -0.2694 -0.2694 -0.2694 -0.2694 -0.2041 -0.2041 -0.2041 -0.2041 -0.2041 -0.2041 -0.2041 -0.2041 -0.2041 -0.2041 -0.2041 -0	910	1	0.2738			-0.3803	1.876	0.7041	-2.884	-0.1238
1 -0.385 -0.2678 -1.089 1 0.425 0.9622 0.427 0.2009 1 -0.2125 -0.3653 -0.4548 -0.1666 -0. 1 -0.1053 -0.1081 -0.7376 0.000625 -0. 1 -0.1742 -1.337 -0.3965 -0.8883 -0.1686 1 -0.1475 -0.1477 -0.5866 -0.08883 -0.1883 1 -0.06147 -0.1475 -1.217 -0.5866 -0. 1 -0.08342 -0.6355 -0.4166 0 1 -0.08008 0.1871 -0.4324 -0.4166 0 1 -0.08008 0.1871 -0.4324 -0.4166 0 1 -0.125 -0.6355 -0.4324 -0.2694 -0.2694 1 -0.2737 -0.5031 -0.2926 -0.2693 -0.2694 1 -0.2003 -0.5031 -0.1226 -0.6043 -0.6043 1 -0.2755 <	911	1	-0.1666				-0.6548	0.1038		-0.07414
1 0,425 0,9622 0,4927 0,2009 1 -0,2125 -0,3653 -0,4548 -0,1666 -0. 1 -0,1053 -0,1081 -0,7376 0,000625 -0 1 -0,1742 -1,337 -0,3965 -0,8883 -0,5866 -0 1 -0,1742 -1,337 -0,3965 -0,5866 -0,5866 -0 1 -0,1475 -0,1475 -0,1475 -0,1475 -0,5866 -0,5866 1 -0,0477 -0,1475 -0,1475 -0,1871 -0,5866 -0,5866 1 -0,08008 0,1871 -0,4324 -0,4441 -0,677 -0,6355 -0,4461 -0 1 -0,125 -0,677 -0,635 -0,635 -0,4364 -0,1866 -0 1 -0,273 -0,01875 -1,212 -0,643 -0,2694 -0,643 -0,643 -0,643 -0,643 -0,643 -0,644 -0,644 -0,644 -0,644 -0,644 -0,644	912	1	-0.385			-1.089	-0.9631	0.3354	-0.2425	0.2475
1 -0.2125 -0.3653 -0.4548 -0.1666 -0. 1 -0.1053 -0.1081 -0.7376 0.000625 -0. 1 -0.1742 -1.337 -0.3965 -0.8883 -0.5866 1 -0.1475 0.1147 0.5752 -0.5866 -0.5866 1 -0.6147 -0.1475 -0.1217 -0.9287 -0.5866 1 -0.08008 0.1871 -0.6352 -0.4441 -0.4441 1 -0.08008 0.1871 -0.6352 -0.4186 0.7441 1 -0.1025 -0.677 -0.6352 -0.4441 0.7547 1 -0.1433 -0.02953 -1.018 -0.2694 0.75694 1 -0.1433 -0.01875 -1.018 -0.2694 0.7578 1 -0.2747 -0.6331 -0.1226 -0.06437 0.0547 -0.1848 0.7344 1 -0.2755 -0.7553 -0.8748 -0.0643 -1.127 1 -0.23751	913	T	0.425		0.4927	0.2009	-0.5331	-0.4546	-0.1225	-0.3625
1 -0.1053 -0.1081 -0.7376 0.000625 -0.8883 1 -0.1742 -1.337 -0.3965 -0.8883 -0.8883 1 -0.1475 -0.1477 -0.5752 -0.5866 1 -0.6147 -0.1475 -1.217 -0.9287 1 -0.08008 0.1871 -0.6365 -0.4441 1 -0.08008 0.1871 -0.4324 -0.4441 1 -0.1125 0.02953 -0.4324 -0.4166 1 0.2747 0.001875 -1.018 -0.2694 1 0.2747 0.001875 -1.018 -0.2694 1 0.2797 -0.5031 -0.2926 0.2756 1 0.2797 -0.5031 -0.126 -0.0643 1 0.2475 0.7347 -0.5848 0.734 1 0.2475 0.7553 -0.5848 0.7334 1 0.0375 0.0547 -0.7523 -0.06056 1 -0.2725 -0.7523 -0.06054 -1.127 1 -0.3425 0.0547 0.	914	1	-0.2125			-0.1666	-0.000625	0.1179	60'0-	-0.56
1 -0.1742 -1.337 -0.3965 -0.8883 1 0.1475 0.1477 0.5522 -0.5866 1 -0.6147 -0.1475 -1.217 -0.9287 1 -0.08008 0.1871 -0.6355 -0.1883 1 -0.08008 0.1871 -0.6352 -0.4166 0 1 -0.08008 0.1871 -0.6322 -0.4166 0 1 -0.125 0.02647 -0.6552 -0.4166 0 1 0.2747 0.001875 -1.018 -0.2694 1 0.2747 0.01875 -0.2389 0.1994 1 0.2734 -0.5194 -0.2926 0.2756 1 0.2797 -0.5031 -0.2926 0.2756 1 0.2797 -0.5031 -0.1286 0.0643 1 0.2475 0.0547 -0.1848 -0.00956 1 -0.2725 -0.7523 -0.1848 -0.09656 1 -0.3751 -0.6931 -0.6931 -0.6934 -0.6054 -1.127 1 <	915		-0.1053		-0.7376	0.000625	-0.05344	-0.1749		0.1572
1 0.1475 0.1147 0.5752 -0.5866 1 -0.6147 -0.1475 -1.217 -0.9287 1 -0.08008 0.1871 -0.6355 -0.1883 1 -0.08008 0.1871 -0.6324 -0.1466 0 1 -0.08008 0.1871 -0.6322 -0.4441 0 1 -0.1033 -0.02953 -0.4166 0 1 0.2747 0.001875 -1.018 -0.2694 1 0.2747 0.001875 -1.018 -0.2694 1 0.2734 -0.5194 -0.2926 0.2756 1 0.2797 -0.5031 -0.2926 0.2643 1 0.2747 0.6595 -4.95E-12 -0.6018 1 0.2475 0.0547 -0.1848 0.0348 1 0.6375 0.9647 -0.1848 -0.0241 1 0.6931 -0.7523 -0.6054 -1.127 1 0.3751 0.05195 0.05195 0.1634 1 0.3425 0.0547 0.005195	916	1	-0.1742		-0.3965	-0.8883	0.3077	0.05617	-0.4917	-0.6417
1 -0.6147 -0.1475 -1.217 -0.9287 1 -0.3942 -0.677 -0.6365 -0.1883 1 -0.08008 0.1871 -0.6324 -0.4441 1 -0.08008 0.1871 -0.4324 -0.4466 0 1 -0.1125 0.03647 0.6552 -0.4166 0 1 0.2747 0.001875 -1.018 -0.2694 0 1 0.2747 0.001875 -1.018 -0.2694 0 1 0.2734 -0.5194 -0.2926 0.2756 0 1 0.2797 -0.5031 -0.2926 0.20643 0 0 1 0.2703 -0.6331 -0.5848 0.06437 0	917	1	0.1475		0.5752		0.3994	-0.2021	-2.36E-08	0.03
1 -0.3942 -0.677 -0.6365 -0.1883 1 -0.08008 0.1871 -0.4324 -0.4441 1 -0.1125 0.3647 0.6552 -0.4166 0 1 0.1433 -0.02953 -1.018 -0.2694 1 0.2747 0.001875 -1.018 -0.2694 1 0.2734 -0.5194 -0.2926 0.2756 1 0.2797 -0.6331 -0.1226 -0.06437 1 0.2475 0.0595 -4.95E-12 -0.6018 1 0.2475 0.0547 -0.1348 0.2134 1 0.6375 0.9647 -0.1848 0.0341 1 -0.2725 -0.7553 -0.1848 -0.09656 1 -0.2725 -0.7553 -0.1848 -0.09656 1 -0.2725 -0.7553 -0.1848 -0.09656 1 -0.3751 -0.8748 -0.0541 -0.1277 1 -0.3751 0.05172 -0.6054 -1.127 1 -0.3351 0.0547 0.002598 0.5048 1 0.3301 0.1348 -0.2322 1.036 1 0.3501 0.3366 -0.2322 1.036 <td>918</td> <td>1</td> <td>-0.6147</td> <td></td> <td>-1.217</td> <td>-0.9287</td> <td>0.3672</td> <td></td> <td>-0.9722</td> <td>-0.3522</td>	918	1	-0.6147		-1.217	-0.9287	0.3672		-0.9722	-0.3522
1 -0.08008 0.1871 -0.4324 -0.4441 1 -0.1125 0.3647 0.6552 -0.4166 0 1 0.1433 -0.02953 -1.018 -0.2694 1 0.2747 0.001875 -1.018 -0.2694 1 0.2734 -0.5031 -0.2926 0.2756 1 0.2797 -0.8331 -0.1226 -0.06437 1 0.1123 0.6595 -4.95E-12 -0.6018 1 0.2475 0.0547 -0.1848 0.7334 1 0.6375 0.9647 -0.1848 -0.2041 1 -0.2725 -0.7553 -0.1848 -0.09656 1 -0.2725 -0.7553 -0.1848 -0.09656 1 -0.3751 -0.7523 -0.134 -0.2041 1 -0.3751 0.05172 -0.6594 -1.127 1 -0.3351 0.0547 0.005195 0.1634 1 -0.3351 0.1342 -0.2322 1.036 1 0.3901 0.1873 -0.2322 1.036 1 0.3901 0.3366 -0.2322 1.036	919	1	-0.3942			-0.1883	0.1877	0.1462	0.7383	-0.4317
1 -0.1125 0.3647 0.6552 -0.4166 C 1 0.1433 -0.02953 -1.018 -0.2694 1 0.2747 0.001875 -1.018 -0.2694 1 0.2734 -0.5194 -0.5389 0.1994 1 0.2797 -0.5031 -0.2926 0.2756 1 0.2703 -0.8331 -0.1226 -0.06437 1 0.2475 0.7347 -0.5848 0.7334 1 0.6375 0.9647 -0.1848 0.2134 1 0.6375 0.9647 -0.1848 -0.09656 1 0.6375 0.9647 -0.1848 -0.09656 1 -0.2725 -0.7533 -0.1848 -0.09656 1 -0.6931 -0.7533 -0.0674 -1.127 1 -0.6931 -0.8359 -0.6054 -1.127 1 -0.3751 0.05195 0.1634 -0.2322 1 0.1363 -0.3366 -0.2322 <	920	1	-0.08008		-0.4324	-0.4441	0.3618	-0.5497		0.1824
1 0.1433 -0.02953 -1.018 -0.2694 1 0.2747 0.001875 -1.018 -0.2694 1 0.2734 -0.5194 -0.5389 0.1994 1 0.2797 -0.5031 -0.2926 0.2756 1 0.2003 -0.8331 -0.1226 -0.06437 1 0.2475 0.7347 -0.5848 0.7334 1 0.6375 0.9647 -0.1848 0.2134 1 -0.2725 -0.7553 -0.8748 -0.09656 1 -0.2725 -0.7553 -0.8748 -0.09656 1 -0.2725 -0.7553 -0.6054 -1.127 1 -0.6931 -0.8359 -0.6054 -1.127 1 -0.3751 0.7821 0.005195 0.1634 1 0.3901 0.1973 -0.2322 1.036 1 0.1363 -0.2322 1.036 -0.2378	921	1	-0.1125		0.6552		0.02938	-1.322	62'0	-0.15
1 0.2747 0.001875 -1.018 -0.2694 1 0.2434 -0.5194 -0.5389 0.1994 1 0.2797 -0.5031 -0.2926 0.2756 1 0.2003 -0.8331 -0.1226 -0.06437 1 0.1123 0.6595 -4.95E-12 -0.6018 1 0.2475 0.7347 -0.5848 0.7334 1 0.6375 0.9647 -0.1848 0.2134 1 -0.2725 -0.7553 -0.8748 -0.09656 1 -0.2725 -0.7553 -0.8748 -0.2041 1 -0.6931 -0.8359 -0.6544 -0.2041 1 -0.6931 0.7821 0.0654 -1.127 1 -0.3751 0.7821 0.005195 0.1634 1 0.3901 0.1973 -0.2322 1.036 1 0.1363 -0.3364 -0.2322 1.036	922	1	0.1433				-0.4548	-1.796	1.386	-0.6842
1 0.2434 -0.5194 -0.5389 0.1994 1 0.2797 -0.5031 -0.2926 0.2756 1 0.2003 -0.8331 -0.1226 -0.06437 1 0.1123 0.6595 -4.95E-12 -0.6018 1 0.2475 0.7347 -0.5848 0.7334 1 0.6375 0.9647 -0.1848 0.2134 1 0.2725 -0.7553 -0.8748 -0.09656 1 0.5172 -0.7523 -0.2041 1 -0.6931 -0.8359 -0.6054 -1.127 1 -0.3751 0.7921 0.002598 0.5088 1 0.3425 0.5947 0.005195 0.1634 1 0.1363 -0.2322 1.036 1 0.1363 -0.2322 1.036	923	1	0.2747		-1.018		-0.1034	÷0.4249	-0.7528	0.4572
1 0.2797 -0.5031 -0.2926 0.2756 1 -0.2003 -0.8331 -0.1226 -0.06437 1 0.1123 0.6595 -4.95E-12 -0.6018 1 0.2475 0.7347 -0.5848 0.7334 1 0.6375 0.9647 -0.1848 0.2134 1 -0.2725 -0.7553 -0.8748 -0.09656 1 0.5172 -0.7523 -0.2041 1 -0.6931 -0.8359 -0.6054 -1.127 1 -0.3751 0.7921 0.002598 0.5088 1 -0.3751 0.5947 0.005195 0.1634 1 0.1342 0.1342 -0.2322 1.036 1 0.1363 -0.2322 1.036 -0.278	924	1	0.2434		-0.5389	0.1994	-0.4647	-0.09617		-0.1341
1 -0.2003 -0.8331 -0.1226 -0.06437 1 0.1123 0.6595 -4.95E-12 -0.6018 1 0.2475 0.7347 -0.5848 0.7334 1 0.6375 0.9647 -0.1848 0.2134 1 0.2725 -0.7553 -0.8748 -0.09556 1 0.6931 -0.572 -0.7523 -0.2041 1 0.6931 0.7921 0.002598 0.5008 1 0.3425 0.5947 0.005195 0.1634 1 0.3901 0.1973 -0.2322 1.036 1 0.1363 -0.3364 -0.7384 -0.2322	925	1	0.2797	-0.5031	-0.2926	0.2756	0.3716	0.3301	-0.3678	0.2122
1 0.1123 0.6595 -4.95E-12 -0.6018 1 0.2475 0.7347 -0.5848 0.7334 1 0.6375 0.9647 -0.1848 0.2134 1 -0.2725 -0.7553 -0.8748 -0.09556 1 0.6931 -0.772 -0.7523 -0.2041 1 -0.6931 -0.8359 -0.6054 -1.127 1 -0.3751 0.7921 0.002598 0.5008 1 -0.3925 0.5947 0.005195 0.1634 1 0.3901 0.1973 -0.2322 1.036 1 0.1363 -0.3366 -0.778 -0.778	926	1	-0.2003			-0.06437	-0.8784	0.01008	-0.3078	0.1222
1 0.2475 0.7347 -0.5848 0.7334 1 0.6375 0.9647 -0.1848 0.2134 1 -0.2725 -0.7553 -0.8748 -0.09556 1 0.6931 -0.572 -0.7523 -0.2041 1 -0.6931 -0.8359 -0.6054 -1.127 1 -0.3751 0.7921 0.002598 0.5008 1 -0.3425 0.5947 0.005195 0.1634 1 0.3901 0.1973 -0.2322 1.036 1 0.1363 -0.7384 -0.278	927	. 1	0.1123			-0.6018	-0.9258	-0.2473	-1.235	0.0948
1 0.6375 0.9647 -0.1848 0.2134 1 -0.2725 -0.7553 -0.8748 -0.09556 1 -0.6931 -0.8359 -0.7523 -0.2041 1 -0.6931 -0.8359 -0.6054 -1.127 1 -0.3751 0.7921 0.002598 0.5008 1 -0.3425 0.5947 0.005195 0.1634 1 0.3901 0.1973 -0.2322 1.036 1 0.1363 -0.7385 -0.2728	928	1	0.2475		-0.5848	0.7334	0.1794	1.138	-2.6	0.15
1 -0.2725 -0.7553 -0.8748 -0.09656 1 0 0.5172 -0.7523 -0.2041 1 -0.6931 -0.8359 -0.6054 -1.127 1 -0.3751 0.7921 0.002598 0.5008 1 -0.3425 0.5947 0.005195 0.1634 1 0.3901 0.1973 -0.2322 1.036 -0.278	929	1	0.6375		-0.1848	0.2134	0.1694	0.05789	-0.23	-0.08
1 0 0.5172 -0.7523 -0.2041 1 -0.6931 -0.8359 -0.6054 -1.127 1 -0.3751 0.7921 0.002598 0.5008 1 -0.3425 0.5947 0.005195 0.1634 1 0.3901 0.1973 -0.2322 1.036 1 0.1363 -0.7364 -0.7784	930	1	-0.2725		-0.8748	-0.09656	-0.1506	-0.08211	-0.49	-0.07
1 -0.6931 -0.8359 -0.6054 -1.127 1 -0.3751 0.7921 0.002598 0.5008 1 -0.3425 0.5947 0.005195 0.1634 1 0.3901 0.1973 -0.2322 1.036 1 0.1363 -0.3366 -0.7784 -0.7784	931	1	0		-0.7523	-0.2041	-0.3481		-1.138	-0.1375
1 -0.3751 0.7921 0.002598 0.5008 1 -0.3425 0.5947 0.005195 0.1634 1 0.3901 0.1973 -0.2322 1.036 1 0.1363 -0.3366 -0.7861 -0.778	932	T	-0.6931	-0.8359	-0.6054	-1.127	0.1587	-0.2027		-0.6306
1 -0.3425 0.5947 0.005195 0.1634 1.036 1.0361 0.1391 0.1373 -0.2322 1.036	933	1	-0.3751		0.002598	0.5008	0.5968	0.3853	-0.1126	-0.0326
1 0.3901 0.1973 -0.2322 1.036	934	1	-0.3425			0.1634	-0.3706	-0.04211	0.08	-0.71
1 0 1363 -0 3366 -0 7861	935	1	0.3901			1.036	-0.01805	-0.1095		-0.04742
0.2270	936	1	0.1363	-0.3366	-0.7861	-0.2278	0.1981	0.2866	-0.5913	0.1087

1	•	4
	q	ı
	c	5
•	П	3
١	-	•

		>2	>0+>CE	>+0>0	>00	VCC>004	VCC/004	VACVOUA.	7007
1	1	ARKI 15A	ARKI TOV	ARRICIA	ARRIZON	ARK123A	WAR 22A	MANICTA	WIN 123V
		1	I	1	F	7	7		
937	1	0.2289	-0.1339	-0.3334	0.4648	0.3208	-0.0107	-0.8786	0.06141
938	1	0.6091	0.3862	-1.443	0.465	0.08094	-0.2605	-0.7284	0.2216
626	П	0.3725	-0.7203	0.0502	0.1484	0.2144		-0.355	0.375
940	1	0.9375	0.1747	-0.7248	0.2734	0.06938	-0.3621	-0.04	-0.19
941	T	1.158	-1.755	-0.2848	0.4934	-0.05062		0.54	0.72
942	F	0.7755	0.1827	0.003164	-0.2286	-0.2927	-0.8241		0.278
943	1	0.3936	-0.2292	-0.3287	0.5296	0.4455	0.444	-0.4539	-0,3839
944	F	0.8586	-0.3342	0.1063	0.06453	0.4205	-0.371	-0.7589	0.02109
945	T	1.21	-1.153	-0.2425	-0.1843	0.3216	0.2402	0.03227	-0.657
946	=	1.568	-0.1653	0.3552	0.2134	0.4794	0.5279	0.42	-0.47
947	1	0.3075	-1.625	-0.6648	9992'0-	0.5494	-1.142		-0.46
948	F	-0.1475	-0.0003125	-0.3498	0.1084	0.2744	-0.2771	1.115	-0.895
949	T	0.6475	-0.2653	-0.4148		0.8394		-0.15	-0.52
950	F	0.5186	-0.6942	-0.7137	0.1045	0.7405	86890.0	-0.1589	-0.2489
951	1	0.9236	-0.1492	-0.7687	0.04953	-0.2345	-0.106	0.9261	0.576
952	1	0.7775	0.06469	-0.4548	0.1634	0.8794	0.8079	1.43	0.15
953	1	0.8319	0.06906	-0.7004	0.2578	0.3237	0.6923	0.3244	-0.07563
954	1	1.173	1.21	-0.5298	0.1184	0.09438	-0.8671	0.485	0.095
955	1	1.253		-0.1998	-0.5816	1.124	1-1.427		0.765
926	1	0.3975	0.07469	-0.3748	0.5134	0.5194	0.1679	-0.09	-0.31
957	1	0.3947	-0.2881	-1.208	0.000625	0.6266	0.4451	0.1372	-0.6828
928	1	0.8636	0.1808	-0.7787	-0.6605	0.03547	0.354	0.7761	0.006094
959	1	0.8538	0.4509	-0.4186	-0.02031	0.1456	0.8141	0.6462	-0.2538
096	1	0.5034	-0.4194		-0.000625	0.5553	0.8538	1.016	0.09594
961	1	0.5375	-0.3853	-1.185	-0.4366	0.8894			0.29
362	1	0.6528	9.0-		-0.1912	0.7547	0.5432	0.4253	-0.3047
963	1	1.024	-0.9286	-0.3481	-0.4898	0.9961	0.6246	1.327	-0.3333
964	1	0.7005	0.2777	-0.6918	0.1864	1.162	0.4409		0.133
965	1	0.5788		-1.094	-1.025	0.000625	98090'0-		-1.109
996	1	0.8269	-0.3859	-0.7254	-0.3572	0.2587	0.3873	0.009375	-0.1406
296	1	1.118	0.1347		0.1634	0.2294	0.6379	0.43	-3.85E-09
896	1	1.111	0.348	-0.3114	0.5568	0.4227	0.7913	0.7734	-0.006641
696	1	1.103	-1.08	-0.9892	0.4791	-0.125	0.5435	0.6956	-0.08438
920	1	0.7634	0.1105	-0.3189	0.0993	-0.2448	0.4838	0.8959	-0.05414
971	1	0.4214	-1.321	-0.9409	-0.4727	-0.5367	-1.018		-0.3461
550									

ø	
☲	
ā	
-	

	_	Appoint -	ADDV10V	App.	VOCVOOR	ADDV32V	VCCVGGA	VVCVGGV	ADDVJEV
1		-	1	- VIII.	1	1	1	- T	TO THE PERSON A
973	-	0 3665	-0 6463	1 026	-1 048	3107.0-	1631	1 220	COOOOO
974	1	0.002656	02.22	0.7406	-0.3614	0.3845	7010	0 5657	1 505
075	1-	1 618	1 255		70000	2000	02.00	70000	500
220	1	מינים כ	CCC.1-		0,01377	10100		1000	1.3
9/0	7	0.5025	-0.6003	7.1-	-0./016	0.5544			-0.235
977	1	0.4763	-1.237	-0.7461	-0.5378	0.9681	-0.02336	0.6987	-0.07125
978	1	0.2102	-2.023	-0.3321	-1.084	0.252	0.5105		0.9827
979	1	0.0625	-0.9203	-0.8298	-0.3116	0.5044	-0.6571	0.465	-0.515
086	1	1.384	1	-0.4279	-0.4097	0.1963	0.5648		
981	1	-0.6925	0.4947	-0.6748	0.2434	-0.5306	0.4079	-1.22	-3.85E-09
982	1	-0.6132	-0.2561		1.173	0.05863	0.1371		
983	1	-0.1525	-0.3053	-0.5548	-0.7266	-0.06062	0.1179	-0.28	-0.02
984	1	-0.4466	-0.07937	0.04113	0.2594	-0.9847	-0.5462	-0.01406	0.1259
985	1	-0.3809			-0.495	-1.509	-0.1805		-0.1884
986	1	0.4234	0.1505	-0.6089	-0.1907	-0.6448	-0.3262		0.04586
286	1	0.93	1.347			-0.6881	-0.1096		0.1225
886	1	-0.0375	0.6097	0.1302	0.7984	-0,3556	68760'0	-0.465	-0.115
686	1	-0.0225	0.4747	-0.3648	0.2634	0.1794	-0.6821	80.0	1.46
990	1	0.39	0.1972	0.3277	0.2059	-1.058	9625'0-	-0.7475	0.1625
991	1	0.07881	0.426	0.006504		-1.009	0.3492	-1.109	0.3813
992	1	-0.2778	-1.241	0.1499	-0.6119	-0.3659	0.2126	-0.02531	0.1747
993	1	-0.4412	-0.3541	1.716	0.1247	0.000625	0.2691		0.1812
994	1	-0.1225	0.07469	-0.5048	-0.4166	-0.5906	1,458		-3.85E-09
995	. 1	-0.1375	-0.0003125	-0.2498	-1.182	-0.3656	-0.3871	-0.745	-1.115
966	1	0	0.3972	0.5977	-1.554	-0.7981	9692'0	-0.1775	1.042
997	1	-0.08453	0.1827		0.4314	-0.2427	0.3359	0.288	-0.122
866	귀	-0.2025	-0.1753	-0.9148	-0.3166	-0.4506	-0.4821	-0.49	-0.51
666		-0.1669	-1.78	-0.1292	-0.2109	-0.315	-0.4165	-1.474	-0.3144
1000	1	-0.3025	-1.265	-1.445	-0.3966	-0.3706	-0.5721	0.22	-0.73
1001	1	0.2223	0.4395	-9.61E-12	0.1282	-0.9258	-0.1073	-0.3752	0.9748
1002	1	-0.2523	-0.3452	-1.445	-1.256	-1.15	-0.452		0.7502
1003	1	-0.008359	-0.2212	-1.021	-1.552	-1.026	-0.208	0.05414	0.7841
1004	F	-0.2475	-0.08031	-0.9198	-0.6316	-0.5056		-1.155	0.965
1005	1	-0.6928	-0.4956	-0.4051	-0.2669	-0.9609	-0.2124		
1006	Ŧ	-0.2625	-0.8953	-0.3948	-1.277	-1.061	0.06789	0.92	. 0.48
1007	1	0.1675	-0.7553	-0.3948	-0.8566	-0.3006	-0.05211	0.1	0.21