Reachability of Fair Allocations via Sequential Exchanges

Ayumi Igarashi University of Tokyo Naoyuki Kamiyama Kyushu University

Warut Suksompong

Sheung Man Yuen National U. of Singapore National U. of Singapore

Fair Division of Indivisible Goods

- The study of allocating goods fairly among competing agents.
- Example. A company wishes to allocate its employees to different departments in fair manner.

Envy-Freeness up to One Good (EF1)

- We consider an allocation fair if it is envy-free up to one good (EF1).
- A head of department is only allowed to envy another department if the envy can be eliminated by removing an employee from that department.
- An EF1 allocation always exists [Lipton et al. '04].

Reachability of EF1 Allocations

- We take a dynamic approach.
- An EF1 allocation is already given, but the CEO of the company is unhappy about the productivity of the employees!
- The CEO wants to redistribute the employees across the departments to increase productivity; she decides on a desired final allocation.

- Constraint #1. Every month, two employees from different departments will be selected to exchange positions; the desired final allocation will hopefully be reached after some number of months.
- -Performing the entire redistribution at once instead may excessively disrupt operations.
- Constraint #2. EF1 must be maintained throughout the whole process.
- -Otherwise, some head of department would not be very happy!
- Question. Can we always start with an initial allocation and reach the desired final allocation in this manner?

Reconfiguration

- Reachability problems are also known as reconfiguration problems.
- Other Examples.
- -Minimum spanning tree [Ito et al. '11]
- -Graph coloring [Johnson et al. '16]
- -Perfect matching [Bonamy et al. '19]
- Voting [Obraztsova et al. '13; Obraztsova et al. '20]

Model: Exchange Graph

- Vertices: All allocations with the same size vector.
- Edges: Two vertices are adjacent iff they can be reached via an exchange.

• Theorem 1. Computing the distance between two allocations on the exchange graph is NP-hard.

Proof. Reduce from DIRECTED TRIANGLE PARTITION.

Connectivity of EF1 Exchange Graph

• EF1 Exchange Graph: The subgraph induced by all EF1 allocations.

• Question. Is the EF1 exchange graph always connected?

utilities	general	identical	binary	identical binary
two agents	X			
≥ three agents	Thm 2	X	X	

• Theorem 2. Determining the existence of an EF1 exchange path between two EF1 allocations is PSPACE-complete.

Proof. Reduce from Perfect Matching Reconfiguration [Bonamy et al. '19].

Optimality of EF1 Exchange Path

- Now, only consider instances where the EF1 exchange graph is connected.
- Optimal EF1 Exchange Path: An EF1 exchange path with the same number of exchanges as an exchange path without EF1 constraints.

• Question. Does there always exist an optimal EF1 exchange path between two given allocations?

• Theorem 3. Determining the existence of an optimal EF1 exchange path between two EF1 allocations is NP-hard, even for identical utilities.

Proof. Reduce from PARTITION.

