Databases, continued.

SELECT Statement

- SELECT ra, dec, psfMag_r FROM sources
- SELECT ra, dec, psfMag_r FROM sources WHERE psfMag_r < 21.5
- SELECT ra, dec, psfMag_r FROM sources WHERE psfMag_r < 21.5 LIMIT 5
- SELECT COUNT(psfMag_r), AVG(psfMag_r) FROM sources WHERE psfMag_r < 21.5
- SELECT COUNT(*), run FROM sources GROUP BY run
- SELECT COUNT(*), run FROM sources GROUP BY run ORDER BY run
- SELECT COUNT(*) as ct, run FROM sources GROUP BY run ORDER BY ct

NULL

- How do we mark missing data?
 - Typical way to do this is to designate a value as "magic"
 - E.g.,: -9999 in our example database
- Relational databases provide us with a special constant, a "NULL"
 - The meaning is always clear (i.e. no data)
 - Plays well with aggregate functions
 - I.e., AVG(), COUNT() ignore null values

UPDATE

UPDATE sources

The table to update

SET psfMag_r = NULL

Columns to update (and the values to use)

WHERE $psfMag_r = -9999.0$

Selecting the subset of rows to update

JOIN: Joining tables

Example:

- Each row in the 'sources' table has a 'run' entry the ID of the SDSS run where this object was observed
- Each entry in the 'runs' table has a 'mjdstart' entry, indicating the time when the observing for this run started
- How can we find the mjdstart for each object? An algorithm for doing it by hand:
 - For each row in the sources table:
 - Read off the value of 'run'
 - Find the corresponding row in the 'runs' table
 - Read off the value of midstart

JOIN: Joining tables

The columns we're interested in.

Those appearing in more than one table need to be prefixed by the table name.

SELECT

sources.ra, sources.dec, sources.run, mjdstart

FROM

sources JOIN runs ON sources.run = runs.run

Instructions how to "join" (how to match together)
the rows in sources and runs tables

A B

SELECT <select_list> FROM TableA A LEFT JOIN TableB B ON A.Key = B.Key

SELECT <select_list>
FROM TableA A
LEFT JOIN TableB B
ON A.Key = B.Key
WHERE B.Key IS NULL

SELECT <select_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key

SQL JOINS

SELECT <select_list>
FROM TableA A
INNER JOIN TableB B
ON A.Key = B.Key

@ C.L. Moffatt, 2008

SELECT <select_list>
FROM TableA A
RIGHT JOIN TableB B
ON A.Key = B.Key

SELECT <select_list>
FROM TableA A
RIGHT JOIN TableB B
ON A.Key = B.Key
WHERE A.Key IS NULL

SELECT <select_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key
WHERE A.Key IS NULL
OR B.Key IS NULL

B

More information

http://en.wikipedia.org/wiki/Join_%28SQL%29

 http://blog.codinghorror.com/a-visual-explanation-of-sqljoins/

Doing all of this from Python

- Python can connect to a variety of databases
- SQLite module comes built into Python (sqlite3)

- We will also use a library called pandas ("Python Data Analysis Library")
 - http://pandas.pydata.org
 - Pandas provides high-performance data structures for manipulating and analyzing tabular data

Demo (IPython notebook)

More about SQL & Databases

- Interactive SQL tutorial
 - http://sqlzoo.net/wiki/Main_Page
- Introduction to SQL (Stanford)
 - https://class.stanford.edu/courses/DB/SQL/SelfPaced/courseware/ch-sql/seqvid-introduction_to_sql/
- Introduction to SQL (Phil Spector, Berkeley)
 - https://www.stat.berkeley.edu/~spector/sql.pdf
- Databases in depth: CSE444
 - http://courses.cs.washington.edu/courses/cse444/