

П	е дисл	ювие			
Не	котор	рые обо	означения и замечания		
1.	Клас	Классификация полулинейных уравнений с частными производными			
	втор	второго порядка			
	1.1. 1.2. 1.3. 1.4.	Канон Канон	уравнений. Уравнения характеристик		
2.			зания уравнений математической физики		
4.	2.1. 2.2.	Точеч	ные преобразования разование годографа		
		2.2.1.2.2.2.	Случай, когда одна из независимых переменных принимается за искомую величину Использование эквивалентной системы уравнений		
	2.3.	Конта	ктные преобразования. Преобразования Лежандра и Эйлера		
		2.3.1. 2.3.2. 2.3.3+.	Общий вид контактных преобразований		
	2.4.	Преоб	разования Беклунда		
		2.4.1. 2.4.2.	Преобразования Беклунда для уравнений второго порядка		
	2.5.	Дифф	еренциальные подстановки		
3.	Реш	ения ти	па бегущей волны и автомодельные решения. Метод подобия		
	3.1. 3.2.		арительные замечанияия типа бегущей волны		
		3.2.1. 3.2.2. 3.2.3.	Общий вид решений типа бегущей волны		
	3.3.	Автом	одельные решения. Метод подобия		
		3.3.1. 3.3.2.	Общий вид автомодельных решений. Метод подобия		
		3.3.3.	и механики Более общий подход, основанный на решении функционального уравнения		
		3.3.4.	уравнения		
	3.4.		ения, инвариантные относительно комбинаций преобразований		
			и растяжения, и их решения		
		3.4.1. 3.4.2.	Экспоненциально-автомодельные (предельные) решения		
	3.5.	Обоби	ценно-автомодельные решения		

4.			щенного разделения переменных	49	
	4.1.	Введе	ние	49	
		4.1.1. 4.1.2. 4.1.3.	Решения с мультипликативным и аддитивным разделением переменных Простейшие случаи разделения переменных в нелинейных уравнениях Примеры нетривиального разделения переменных в нелинейных	49 49	
		_	уравнениях	51	
	4.2.		тура решений с обобщенным разделением переменных	53	
		4.2.1. 4.2.2.	Общий вид решений. Рассматриваемые классы нелинейных уравнений Общий вид функционально-дифференциальных уравнений	53 54	
	4.3.	Упрощенная схема построения точных решений, основанная на априорном задании одной системы координатных функций			
		4.3.1. 4.3.2.	Описание упрощенной схемы построения точных решений	54 55	
	4.4.		Решение функционально-дифференциальных уравнений методом		
		диффе 4.4.1. 4.4.2.	ренцирования Описание метода дифференцирования Примеры построения решений с обобщенным разделением переменных	57 57 58	
	4.5.	Решение функционально-дифференциальных уравнений методом			
		•	пления	62	
		4.5.1. 4.5.2.	r r	62 63	
	4.6.	Метод	ц Титова — Галактионова	68	
		4.6.1. 4.6.2.	Описание метода. Подпространства, инвариантные относительно нелинейного оператора	68 70	
5.	Мето	од фуні	кционального разделения переменных	73	
	5.1. 5.2.	Струк	тура решений с функциональным разделением переменных	73	
				73	
		5.2.1. 5.2.2.	Решения типа обобщенной бегущей волны. Примеры Решение путем сведения к уравнениям с квадратичной нелинейностью	73 78	
	5.3.	Метод	дифференцирования	80	
		5.3.1. 5.3.2.	Основные идеи метода. Редукция к уравнению стандартного вида Примеры построения решений с функциональным разделением переменных	80 80	
	5.4.	5.4. Метод расщепления. Редукция к функциональному уравнению с де переменными			
		5.4.1.	Метод расщепления. Редукция к функциональному уравнению стандартного вида	85	
		5.4.2.	Функциональные уравнения с тремя аргументами специального вида	86	
	5.5.	Решения некоторых нелинейных функциональных уравнений и их приложения в математической физике			
		5.5.1. 5.5.2.	Функциональное уравнение $f(x)+g(y)=Q(z)$, где $z=\varphi(x)+\psi(y)$ Функциональное уравнение $f(t)+g(x)+h(x)Q(z)+R(z)=0$, где	87	
		5.5.3.	$z=arphi(x)+\psi(t)$	87	
		5.5.4.	$z=\varphi(x)+\psi(t) \\$ Функциональное уравнение $f(x)+g(y)+h(x)P(z)+s(y)Q(z)+R(z)=0,$ где $z=\varphi(x)+\psi(y)$	90 91	

6.	Прям 6.1.		год Кларксона— Крускала точных решений специального вида	94 94		
		6.1.1. 6.1.2.	Упрощенная схема. Примеры построения точных решений	94 96		
	6.2.	Поиск	точных решений общего вида	97		
		6.2.1. 6.2.2.	Общий вид решений	97 98		
	6.3.	Некот	орые модификации и обобщения	99		
		6.3.1.	Комбинация методов Кларксона — Крускала и обобщенного разделения переменных	99		
		6.3.2.	Построение точных решений уравнений с тремя и более независимыми переменными	101		
7.			ий метод исследования симметрий дифференциальных			
				103		
	7.1.		араметрические преобразования и их локальные свойства	103		
		7.1.1. 7.1.2. 7.1.3.	Однопараметрические преобразования. Инфинитезимальный оператор Инвариант оператора. Преобразования на плоскости Формулы для вычисления производных. Координаты первого и второго	103 104		
		7.11.5.	продолжений	105		
	7.2.	Симме	етрии нелинейных уравнений второго порядка. Условие			
			иантности	107		
		7.2.1. 7.2.2.	Условие инвариантности. Процедура расщепления по производным . Примеры поиска симметрий нелинейных уравнений математической	107 108		
		физики				
	7.3.		ьзование симметрий уравнения для поиска точных решений. иантные решения	112		
		7.3.1. 7.3.2.	Использование симметрий уравнения для построения однопараметрических решений	112 113		
		7.3.3. 7.3.4.	Примеры построения инвариантных решений нелинейных уравнений Решения, порождаемые линейными комбинациями допускаемых	114		
			операторов	117		
	7.4.		орые обобщения. Уравнения старших порядков	119		
		7.4.1.	Однопараметрические группы Ли точечных преобразований. Генератор группы	119		
		7.4.2. 7.4.3.	Инварианты группы. Локальные преобразования производных Условие инвариантности. Процедура расщепления. Инвариантные	120		
			решения	121		
	7.5.		етрии систем уравнений математической физики	122		
		7.5.1. 7.5.2.	Основные соотношения, используемые при анализе симметрий систем уравнений	122		
			пограничного слоя	123		
8.			еский метод исследования симметрий дифференциальных			
		нений*		129 129		
	8.1. 8.2.	8.2. Конкретные примеры: уравнение Фитц-Хью — Нагумо и нелинейное				
			вое уравнение	130		
9.	Мет о 9.1.		ференциальных связей ние метода	136 136		
		9.1.1. 9.1.2.	Предварительные замечания. Простейший пример	136 137		

	9.2.	Диффе	еренциальные связи первого порядка	140
		9.2.1. 9.2.2. 9.2.3.	Эволюционные уравнения второго порядка	140 144 146
	9.3.		ренциальные связи второго и старших порядков	147
	<i>J.J.</i>	9.3.1.	Дифференциальные связи второго порядка для эволюционных уравнений	147
		9.3.2.	Примеры использования дифференциальных связей для построения точных решений	147
	9.4.	Испол	ьзование нескольких дифференциальных связей	149
	9.5.		между методом дифференциальных связей и другими методами	152
		9.5.1.	Обобщенное и функциональное разделение переменных и	1.50
		9.5.2.	дифференциальные связи	152 153
		9.5.3.	Методы группового анализа и метод дифференциальных связей	153
10.			ве для нелинейных уравнений математической физики	156
	10.1.		жные особенности решений обыкновенных дифференциальных	154
			ений	156 156
			Результаты классификации нелинейных уравнений первого и второго порядков	156
		10.1.3.	Уравнения Пенлеве	157
		10.1.4.	Тест Пенлеве для обыкновенных дифференциальных уравнений	158 159
		10.1.5.	Некоторые замечания о тесте Пенлеве. Индексы Фукса. Примеры Тест Пенлеве для систем обыкновенных дифференциальных уравнений	161
	10.2.	Решен	ия уравнений с частными производными, имеющие подвижный	162
			Описание метода Простейшая схема анализа нелинейных уравнений в частных	102
		10.2.1.	производных	163
		10.2.2.	Общая схема анализа нелинейных уравнений в частных производных	163
		10.2.4.	Основные этапы исследования нелинейных уравнений на тест Пенлеве Некоторые замечания. Усеченные разложения	164 164
10.3. Примеры применения теста Пенлеве и усеченных разлож				
			ва нелинейных уравнений математической физики	166
		10.3.1.	Уравнения, удовлетворяющие тесту Пенлеве	166
		10.5.2.	Пенлеве	169
	10.4.	Постр	оение решений нелинейных уравнений, не удовлетворяющих	
			Пенлеве, с помощью усеченных разложений	171
11.				174
	11.1.	Метод	, основанный на использовании пар Лакса	174
			Описание метода. Условие совместности. Пары Лакса	174
	11.2		Примеры пар Лакса для нелинейных уравнений математической физики допользующий условие совместности систем линейных	175
	11.2.		ений	176
			Общая схема. Условие совместности. Линейные системы с двумя	
			уравнениями Решение определяющих уравнений в виде полиномов по спектральному	176
			параметру. Примеры	178
	11.3.		, основанный на использовании линейных интегральных	101
			ений	181
		11.3.1. 11.3.2	Описание метода	181 182
				. 02

	11.4.	Решение задачи Коши методом обратной задачи			
		11.4.1. Предварительные замечания. Прямая и обратная задачи рассеяния	185 187		
		задачи	189		
12.	Зако	оны сохранения и интегралы движения 1			
	12.1.	Основные определения и примеры	192		
		12.1.1. Общий вид законов сохранения	192		
		12.1.2. Интегралы движения	192 193		
	100	физики	193		
	12.2.	Уравнения, допускающие вариационную формулировку. Нётеровы	194		
		симметрии	194		
		12.2.1. Лагранжиан, уравнение Эйлера—Лагранжа. Нётеровы симметрии	194		
13	Vnap	нения Пенлеве	199		
15.		Первое уравнение Пенлеве	199		
		Второе уравнение Пенлеве	200		
		Третье уравнение Пенлеве	201		
		Четвертое уравнение Пенлеве	202		
		Пятое уравнение Пенлеве	203		
		Шестое уравнение Пенлеве	203		
14.	Квяз	илинейные уравнения с частными производными первого порядка	205		
	14.1.	Характеристическая система. Общее решение	205		
		14.1.1. Уравнения с двумя независимыми переменными	205		
		14.1.2. Использование двухпараметрических частных решений	206 206		
	14.2.	Задача Коши. Теорема существования и единственности	206		
		14.2.1. Две формулировки задачи Коши	206		
		14.2.2. Процедура решения задачи Коши	207 207		
	14.3.	Качественные особенности и разрывные решения квазилинейных			
		уравнений	209		
		14.3.1. Модельное уравнение газовой динамики	209		
		14.3.2. Решение задачи Коши	209 211		
		14.3.4. Использование интегральных равенств для определения обобщенных	211		
		решений	214		
		14.3.5. Законы сохранения. Вязкие решения 14.3.6. Формула Хопфа для обобщенного решения	215 217		
		14.3.7. Задача о распаде произвольного разрыва	218		
		14.3.8. Задача о распространении сигнала	219		
	14.4.	Обобщенные решения квазилинейных уравнений	220		
		14.4.1. Предварительные замечания	220		
		14.4.2. Обобщенное решение. Условия на разрыве и условия устойчивости	$\frac{\overline{2}\overline{2}}{223}$		
		14.4.3. Законы сохранения. Вязкие решения	223		
15	Ц.,				
15.	5. Нелинейные уравнения общего вида с частными производными первого				
		д ка	225 225		
	13.1.	Методы решения	225		
		15.1.2. Метод Лагранжа — Шарпи	226		
		15.1.3. Построение полного интеграла с помощью двух первых интегралов .	227		
		15.1.4. Случай, когда уравнение не зависит явно от w	228		
		15.1.5. Уравнение Гамильтона — Якоби	229		

15.2.	Задача	Коши. Теорема существования и единственности	229	
		Постановка задачи и процедура построения решения	229 230	
	15.2.3.	Задачи Коши для уравнения Гамильтона — Якоби	230	
		Примеры решения задачи Коши	231	
15.3.		ценные вязкие решения и их приложения	232	
	15.3.1. 15.3.2.	Предварительные замечания	232	
	15.3.3.	уравнения	232	
	15 2 4	неравенствах	233	
	15.3.4.	Локальная структура обобщенных вязких решений	234 235	
	15.3.6.	Примеры вязких (негладких) решений	236	
16. Решение некоторых функциональных уравнений				
16.1.	Метод	дифференцирования по параметру	238	
	16.1.1.	Рассматриваемые классы уравнений. Описание метода Решение конкретных функциональных уравнений методом	238	
		дифференцирования по параметру	239	
16.2.	Метод	дифференцирования по независимым переменным	240	
		Предварительные замечания Решение конкретных функциональных уравнений методом	240	
		дифференцирования по независимым переменным	240	
Список литературы				