Задание 7

Коновалов Андрей, 074

0	1	2	3	4	5	6	σ

Задача 1

Построим множества t_{ij} для $i=1..6,\ j=1..6-i+1$ для слова ababab в соответствии с алгоритмом. Получим:

			J			
t_{ij}	1	2	3	4	5	6
1	$\{A\}$	$\{S\}$	$\{A\}$	$\{S\}$	$\{A\}$	$\{S\}$
2	$\{S\}$	$\{A\}$	$\{S\}$	$\{A\}$	$\{S\}$	
3	$\{A\}$	$\{S\}$	$\{A\}$	$\{S\}$		
4	$\{S\}$	$\{A\}$	$\{S\}$			
5	$\{A\}$	$\{S\}$				
6	$\{S\}$					

Вертикальная нумерация соответствует j, горизонтальная - i. Поскольку $S \in t_{16}$, то $ababab \in L$.

Задача 3

- (i) Покажем, что лемма о разрастании для линейных языков не выполняется. Для $\forall k \geq 0$, возьмем слово $z = b^k a^k b^k \in L_2$, и посмотрим на произвольное его разбиение z = uvwxy, такое, что $|uvxy| \leq k$, |vx| > 0.
- $|z|=3k \wedge |uvxy| \leq k \Rightarrow |w| \geq 2k$. В таком случае, получаем, что подслово a^k слова z полностью лежит в w. А значит v и x имеют вид $b^t, t \geq 0$. Поскольку |vx| > 0, то либо |v| > 0, либо |x| > 0, а значит в слове $p=uv^iwx^iy$ при i=2 не будет выполняться соотношение $|p|_b=2|p|_a$, а значит $p \notin L_2$.

Поскольку лемма о разрастании не выполняется, то L_2 - нелинейный.

- (ii) Нет, не согласен. Любое из слов вида $b^k a^k b^k$, где $k \geq 3$ не подпадает ни под один из перечисленных шаблонов (перечисленных в фигурных скобках в условии), и, при этом, счетчик не обнулится внутри этого слова, значит рассуждение не верно. Тем не менее, исходное утверждение верно. Его доказательство приведено мной в задаче 5 задания 6.
- (iii) Докажем, что M принимает L_2 . Введем следующую "потенциальную функцию": в состоянии q_0 собираются слова w для которых $|w|_b = 2|w|_a$, причем в стеке находится лишь Z; в состоянии q_+ собираются слова w для которых $|w|_b 2|w|_a > 0$, причем количество символов 1 в стеке равно $|w|_b 2|w|_a$; в состоянии q_- собираются слова w для которых $|w|_b 2|w|_a < 0$, причем количество символов 1 в стеке равно $||w|_b 2|w|_a|$.

Проверим корректность всех переходов.

Проверим переходы из q_0 . При переходе (a,Z,11Z) в состояние q_- число $|w|_b-2|w|_a=-2<0$, причем в стеке окажется 2 символа 1. При переходе (b,Z,1Z) в состояние q_+ число $|w|_b-2|w|_a=1>0$, причем в стеке окажется 1 символ 1.

Проверим переходы из q_+ . При переходе по b счетчик увеличивается на 1, а в стек, соответственно дописывается 1 символ 1. При переходе по a возможны несколько случаев: счетчик = 1, тогда осуществляется переход в q_- , а счетчик становится равным -1, в стеке оказывается 1 символ 1; счетчик = 2, тогда осуществляется переход в q_0 , а счетчик становится равным 0, в стеке не оказывается символов 1; счетчик > 2, тогда в стеке лежит ≥ 3 символов 1, а значит возможен и осуществляется переход (a,111,1) в q_+ . При всех переходах "потенцальная функция" выполняется для текущего считанного слова.

Аналогично проверяются переходы из q_{-} .

(vi) Да, поскольку для него выполняются условия в определении: (i) выполняется, (ii) выполняется, (iii) очевидно выполняется, поскольку ε -переходов вообще в автомате нет.

Задача 4

(i) Покажем, что лемма о разрастании для КС-языков не выполняется. Для $\forall k \geq 0$, возьмем слово $w = a^k b^k c^k \in L$, и посмотрим на произвольное его разбиение w = uvzxy, такое, что $|vzx| \leq k$, |vx| > 0.

 $|vzx| \leq k$. В таком случае vzx не может содержать буквы a и c одновременно, а значит либо a, либо c не будет содержаться ни в одном слове из v и x. Получаем, что в слове $p = uv^iwx^iy$ при i = 2 не будет выполняться соотношение $|p|_a = |p|_b = |p|_c$, а значит $p \notin L$.

Поскольку лемма о разрастании не выполняется, то L_2 - не KC.

(ii) Язык $\bar{L}=\{w\mid |w|_a\neq |w|_b\vee |w|_b\neq |w|_c\vee |w|_c\neq |w|_a\}$. Докажем, что язык КС, построив F-автомат, который его принимает. Для построения сначала построим 3 автомата, которые принимают языки $\{|w|_a\neq |w|_b\}$, $\{|w|_b\neq |w|_c\}$, $\{|w|_c\neq |w|_a\}$ используя конструкцию счетчика с маркером дна стека z. Теперь построим новый автомат, в котором будет новое начальное состояние, соединенное со всеми бывшими начальными состояними переходами вида (ε,z,z) . Построенный автомат будет принимать все слова, принимаемые хотя бы одним из построенных до этого автоматов и никакие другие, а значит и язык \bar{L} .