NATIONAL UNIVERSITY OF SINGAPORE

ANSWERS

CS2100 – COMPUTER ORGANISATION

(Semester 2: AY2017/18)

ANSWER BOOKLET

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This answer booklet consists of SIX (6) printed pages.
- 2. Fill in your Student Number with a pen clearly below. Do NOT write your name.
- 3. You may write your answers in pencil (2B or above).

STUDENT NUMBER (fill in with a pen):

Α	0	1			

For examiner's use only											
Question	Total	Marks									
Q1	10										
Q2	15										
Q3	20										
Q4	12										
Q5	15										
Q6	14										
Q7	14										
Total	100										

Write your answers in the box/space provided.

Q1: /10

2a. [10] $DA = A \cdot C' + B \cdot C' \cdot D'$ $DB = A' \cdot B + C \cdot D' + B \cdot C' \text{ or } A' \cdot B + C \cdot D' + A \cdot C'$ $TC = A \cdot D + B \cdot C \cdot D + B' \cdot C' \cdot D$ $JD = A + B \cdot C + B' \cdot C'$ $KD = A \cdot C + B' \cdot C + A' \cdot B \cdot C'$

3d.	_											
[8]	8	4 1	12)				-	 Λ			
	A_3	A_2	A_1	A_0	128	64	32	16 3	$^{ imes A}$ K	4	2	1
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0	1	0	1
	0	0	1	0	0	0	0	1	0	0	0	0
	0	0	1	1	0	0	0	1	0	1	0	1
	0	1	0	0	0	0	1	0	0	0	0	0
	0	1	0	1	0	0	1	0	0	1	0	1
	0	1	1	0	0	0	1	1	0	0	0	0
	0	1	1	1	0	0	1	1	0	1	0	1
	1	0	0	0	0	1	0	0	0	0	0	0
	1	0	0	1	0	1	0	0	0	1	0	1

4a. [2]

Maximum total instructions = 379

 $(2^6 - 5) + (5 \times 2^6) = 59 + (5 \times 64) = 59 + 320 = 379$

4b.

Stuck-at-0 fault at bit 6 of the instruction

[3] Eg: addi \$t0, \$zero, 64

This is supposed to put the value 64 into \$t0. However, due to the stuck-at-0 error at bit 6, the value in \$t0 will be 0.

Other similar examples using the same argument are acceptable, for example, some students use **sll \$t1**, **\$t1**, **1** (pre-condition: \$t1 cannot be zero), but this would require comparing the old and new values of \$t1. The **addi** solution above is simpler.

4c.

Stuck-at-0 fault at ALUSrc

If the instruction is correctly carried out, **lw \$t1, 0(\$t0)** would have loaded the value at address **12** into \$t1.

With stuck-at-0 fault at ALUSrc, the instruction would have loaded the value at address 46 into \$11 instead.

Hence, we could first load different values in addresses 12 and 46 before using the test.

4d.

Adding bne instruction

[4] Since ALUop code 11 is not used, we may use it for bne.

Hence, branch taken = **ALUop1** AND **ALUop2** AND **!(isZero)** where (isZero) is the output from the ALU.

or

Use ALUop code 01 (same as beg).

Hence, branch taken = !ALUop1 AND ALUop2 AND !(isZero)

where (isZero) is the output from the ALU, or

branch taken = **Branch** AND !(isZero).

I tried to be more liberal in marking this part as most students didn't give a sufficiently rigorous answer.

Q4: /12

```
5a.
         lw $s2, 0($t0)
[1]
5b.
     Array A:
                                    14
                 11
                       10
                                           9
                              31
                                                 42
                                                        6
                                                              11
[4]
5c.
         int i;
[4]
                                               These elements are unchanged.
         for (i=n-1; i>=0; i-=2) {
           if (B[i]%4 == 3)
               A[i]++;
           else
               A[i] += B[i];
         }
                                                     5f.
5d.
                           5e.
                                 0810001c
       0018c080
                                                           0300782a
[2]
                                                      [2]
                           [2]
                                                                        /15
                                                          Q5:
6a.
     Minimum =
                  1203 (3 + 100×12)
[2]
     Maximum = 1303 (3 + 100 \times 13)
6b.
      (Due to control) Inst2, Inst4, Inst11, Inst13, Inst14
[6]
      (Due to data) Inst8, Inst10, Inst17
6c.
                           6d.
       24_ cycles
                                    26_ cycles
[3]
                            [3]
                                                          Q6:
```

CS2100

7a. Index: _5_ bits; Offset: 4 bits [2] 7b. $A[1023] \rightarrow Index _31$; $B[1023] \rightarrow Index _15_{};$ [4] 7c. Array *A*: _____**1024**___ accesses; Array B: _____ accesses [2] 7d. Array *A*: _______%; Array *B*: ______% [2] 7e. Hits: 6138 [4] Misses: _____;

Q7: /14

=== END OF PAPER ===

Workings

Q1c.

$$X = ((A \cdot B)' \cdot A)' = A \cdot B + A' = B + A';$$
 $Y = ((A \cdot B)' \cdot B)' = A \cdot B + B' = A + B'$
 $Z = (X \cdot Y)' = X' + Y' = A \cdot B' + A' \cdot B$

$$F = (X \cdot Y \cdot Z)' = [(B + A') \cdot (A + B') \cdot (A \cdot B' + A' \cdot B)]' = [(A \cdot B + A' \cdot B') \cdot (A \cdot B' + A' \cdot B)]' = 0' = 1$$

Q3a.

Α	В	F
0	0	0
0	1	0
1	0	1
1	1	1

Q3b.

Α	В	С	D	G
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Q3c. $H = A \cdot B \cdot C' \cdot D' + A \cdot B \cdot C' \cdot D$ = $A \cdot B \cdot C'$

Q3d. Note that $50 \times A$ on A=0, 1, 2, 3, 4, ..., 9 gives us 000, 051, 102, 153, 204, ..., 459. It can be seen that the left-most digit 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 is simply A/2. Hence the left-most 4 bits $F_{11}F_{10}F_{9}F_{8}$ are $0A_{3}A_{2}A_{1}$.

The middle digit is 0 (or 0000 in binary) if A is even (i.e. A_0 = 0), or 5 (or 0101 in binary) if A is odd (i.e. A_0 = 1). The right-most digit is A itself.

Finally, $20 \times (B\%2)$ is achieved by putting B_0 into F_5 .

Q2.

	Curren	t state			Nex s	state				
Α	В	С	D	A^{+}	B ⁺	C ⁺	D^+	TC	JD	KD
0	0	0	0	0	0	0	1	0	1	Х
0	0	0	1	0	0	1	1	1	Х	0
0	0	1	0	0	1	1	0	0	0	Х
0	0	1	1	0	0	1	0	0	Х	1
0	1	0	0	1	1	0	0	0	0	Х
0	1	0	1	0	1	0	0	0	Х	1
0	1	1	0	0	1	1	1	0	1	Х
0	1	1	1	0	1	0	1	1	Х	0
1	0	0	0	X(1)	X(0,1)	X(0)	X(1)	X(0)	X(1)	X(0)
1	0	0	1	X(1)	X(0,1)	X(1)	X(1)	X(1)	X(1)	X(0)
1	0	1	0	X(0)	X(1)	X(1)	X(1)	X(0)	X(1)	X(1)
1	0	1	1	X(0)	X(0)	X(0)	X(0)	X(1)	X(1)	X(1)
1	1	0	0	1	1	0	1	0	1	Х
1	1	0	1	1	1	1	1	1	Х	0
1	1	1	0	X(0)	X(1)	X(1)	X(1)	X(0)	X(1)	X(1)
1	1	1	1	0	0	0	0	1	Х	1

Q5. Tested on QTSpim

```
Data
                 Text
Text
                                                                 User Text Segment [00400000]..[00440000]
[00400000] 8fa40000 lw $4, 0($29)
[00400004] 27a50004 addiu $5, $29, 4
                                                           ; 183: lw $a0 0($sp) # argc
                                                           ; 184: addiu $a1 $sp 4 # argv
[00400008] 24a60004 addiu $6, $5, 4
                                                           ; 185: addiu $a2 $a1 4 # envp
[0040000c] 00041080 sll $2, $4, 2
                                                           ; 186: sll $v0 $a0 2
                                                           ; 187: addu $a2 $a2 $v0
[00400010] 00c23021 addu $6, $6, $2
[00400014] 0c100009 jal 0x00400024 [main]
                                                         ; 188: jal main
[00400018] 00000000 nop
                                                           ; 189: nop
[0040001c] 3402000a ori $2, $0, 10
                                                           ; 191: li $v0 10
[00400020] 0000000c syscall
[00400024] 3c101001 lui $16, 4097 [A]
                                                           ; 192: syscall # syscall 10 (exit)
                                                           ; 8: la $s0, A # $s0 is the base address of array A
[00400028] 3c011001 lui $1, 4097 [B]
                                                           ; 9: la $s1, B # $s1 is the base address of array B
[0040002c] 34310020 ori $17, $1, 32 [B]
[00400030] 3c011001 lui $1, 4097 [n]
                                                           : 10: la $t0, n # $t0 is the address of n (size of array)
[00400034] 34280040 ori $8, $1, 64 [n]
[00400038] 8d120000 lw $18, 0($8)
                                                            ; 11: lw $s2, 0($t0) # $s2 is the content of n
[0040003c] 12400011 beq $18, $0, 68 [End-0x0040003c]
[00400040] 2258ffff addi $24, $18, -1 ; 16: addi $t8, $s2, -1 # $t8 = n-1 [00400044] 0018c080 sll $24, $24, 2 ; 17: sll $t8, $t8, 2 # $t8 = 4*(n-1)
                                                           ; 17: sll $t8, $t8, 2 # $t8 = 4*(n-1)
[00400048] 02184020 add $8, $16, $24
                                                          ; 18: add $t0, $s0, $t8
                                                          ; 19: add $t1, $s1, $t8
[0040004c] 02384820 add $9, $17, $24
[00400050] 8d0a0000 lw $10, 0($8)
                                                           ; 20: lw $t2, 0($t0) # $t2 = A[i]
[00400054] 802D0000 andi $12, $11, 3 ; 22: andi $14, $14, -3 # $t4 = (B[i] $4) -3 [00400056] 218cfffd addi $12, $12, -3 ; 23: addi $t4, $t4, -3 # $t4 = (B[i] $4) -3 beq $12, $0, 12 [Al-0x00400060]; 24: beq $t4, $zero, A1 # if (B[i] $4 == 3) goto A1 [00400064] 014b5020 add $10, $10, $11 ; 25: add $t2, $t2, $t3 # else A[i] += B[i] ; 26: j A2 ; 27: addi $t2, $t2, 1 # A[i] ++
[00400054] 8d2b0000 lw $11, 0($9)
                                                           ; 21: lw $t3, 0($t1) # $t3 = B[i]
[0040006c] 214a0001 addi $10, $10, 1
[00400070] ad0a0000 sw $10, 0($8)
                                                           ; 28: sw $t2, 0($t0)
[00400074] 2318fff8 addi $24, $24, -8 ; 29: addi $t8, $t8, -8 # i = i - 2 [00400078] 0300782a slt $15, $24, $0 ; 30: slt $t7, $t8, $zero # if ($t8
[0040007c] 11e0fff3 beq $15, $0, -52 [Loop-0x0040007c]
[00400080] 3402000a ori $2, $0, 10 ; 32: li $v0, 10 # system call code for exit
[00400084] 0000000c syscall
                                                            ; 33: syscall
```

Data: before and after

```
User data segment [10000000]..[10040000]
[10000000]..[1000ffff] 00000000
[100100001
             000000011 000000009 000000031 000000002
             0000000009 0000000001
                                    0000000006 0000000010
[10010010]
             0000000003 0000000007
                                    0000000002 0000000012
[10010020]
[10010030]
             0000000011 0000000041
                                    0000000019
                                               0000000035
             8000000008
                        000000000 000000000 000000000
[100100401
[10010050]..[1003ffff] 00000000
```

CS2100

Q6. (c)

	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2	2	2	2	2 4	2 5	2 6	2 7	2 8	2 9	3
I1 beq	F	D	Ε	М	W																									
12			F	D	Е	М	W																							
addi			Г	U	L	IVI	vv																							
l3 sll				F	D	Ε	М	W																						
14					F	D	Ε	М	W																					
add I5																														
add						F	D	Ε	M	W																				
16							F	7	_																					
lw							F	D	Ε	IVI	W																			
17								F	D	Ε	М	W																		
lw I8																														
andi									F	D		Ε	М	W																
19											_																			
addi										F	D		Ε	M	W															
110																														
beq											F			D	Ε	М	W													
A1 I11																														
add																														
I12																														
J A2																														
l13																														
A1:															F	D	Ε	M	W											
addi																														
I14 A2:																F	D	Ε	M	W										
SW																•	٦	_	'V'											
115																	Г	_	_	N 4	\^'									
addi																	F	D	E	IVI	W									
116																		F	D	Ε	М	W								
slt																				_										
I17 beq																			F		D	Ε	М	W						
Deq																														

Q6. (d)

	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	1 4	1 5	1 6	1 7	1 8	1 9	2	2	2	2	2 4	2 5	2 6	2 7	2 8	2 9	3
I1 beq	F	D	Ε	Μ	8																									
12																														
addi			F	D	Ε	M	W																							
13				_	7	-	D 4	١٨/																						
sll				F	D	Ε	М	W																						
14					F	D	Ε	М	W																					
add					·		_																						igsqcut	
15						F	D	Ε	М	W																				
add I6																													\vdash	
lw							F	D	Ε	М	W																			
17																														
lw								F	D	Ε	М	W																		
18									F	D		Е	М	W																
andi									Г	U			IVI	VV																
19										F	D		Е	М	W															
addi										·			_																	
l10											F			D	_	N 4	14/													
beq A1											F			υ	Ε	М	W													
I11																														
add															F	D	Ε	M	W											
l12																F	D													
J A2																F	ט													
I13																														
A1:																														
addi																													\vdash	
I14 A2:																		F	D	۱۸/	М	W								
SW																		ı-	0	VV	IVI	VV								
115																				_	_	_								
addi																			F	D	Ε	M	W							
l16																				F	D	Е	М	W						
slt																				r	U		IVI	VV						
l17																					F		D	Ε	М	W				
beq																													\vdash	

- Q7.(a) Number of blocks = 128/4 = 32; Index: 5 bits; Offset: 4 bits

B[0] at 0x1003F100 \rightarrow B[1023] at 0x100400FC (because B[1024] at 0x10040100) 100400FC \rightarrow ... 000<u>0 1111</u> 1100 \rightarrow Index 15

- (c) 512 elements for each array are accessed: [1023], [1021], ..., [3], [1].

 A: 1024 accesses (1 read and 1 write per element); B: 512 accesses
- (d) Since A[1023] and B[1023] are mapped to different indices, there will not be racing.A: 256 misses, 768 hits, hit rate = 75%B: 256 misses, 256 hits, hit rate = 50%
- (e) 6147 instructions (3 + 512×12). 9 misses, 6138 hits.
 Index field: 3 bits; Offset: 3 bits
 The first beq instruction is at addr 0x0040003c → ... 00111100 → index 7, 2nd word
 The following shows the cache content for the first iteration:

Index		
0	12	13
1	14	15
2	16	17
3	18	19
4	I10	
5		l13
6	114	l15
7	116	417

The misses are I1, I2, I4, I6, I8, I10, I13, I14 and I16. After that, all instructions in the loop are present in the cache.