DISZKRÉT MATEMATIKA I.

6. előadás

Kombinatorika: variációk, kombinációk

Kiválasztások

Adott egy H halmaz, melyre |H| = n. Ebből kell kiválasztani k elemet.

A kiválasztás tulajdonságai:

- A sorrend számít vagy a sorrend nem számít;
- Egy elemet **többször is kiválaszthatunk** (visszatevéssel) vagy egy elemet **legfeljebb egyszer választhatunk ki** (viszszatevés nélkül).

$$H = \{a, b, c\}, k = 2$$

Sorrend: NEM, visszatevés: NEM.

ab, ac, bc. (3 féle kiválasztás)

• Sorrend: **NEM**, visszatevés: **IGEN**.

aa, ab, ac, bb, bc, cc. (6 féle kiválasztás)

• Sorrend: **IGEN**, visszatevés: **NEM**.

ab, ac, ba, bc, ca, cb. (6 féle kiválasztás)

Sorrend: IGEN, visszatevés: IGEN.

aa, ab, ac, ba, bb, bc, ca, cb, cc. (9 féle kiválasztás)

Adott egy H halmaz, melyre |H| = n. Ebből kell kiválasztani k elemet.

A kiválasztás tulajdonságai:

- A sorrend számít: VARIÁCIÓ vagy
 a sorrend nem számít KOMBINÁCIÓ;
- Egy elemet többször is kiválaszthatunk (visszatevéssel) IS-MÉTLÉSES vagy

egy elemet legfeljebb egyszer választhatunk ki (visszatevés nélkül) **ISMÉTLÉS NÉLKÜLI**.

$$+$$
 PI. $H = \{a, b, c\}, k = 2$

- Sorrend nem, visszatevés nem: KOMBINÁCIÓ.
 ab, ac, bc.
- Sorrend nem, visszatevés igen: ISMÉTLÉSES KOMBINÁCIÓ.
 aa, ab, ac, bb, bc, cc.
- Sorrend igen, visszatevés nem: VARIÁCIÓ.
 ab, ac, ba, bc, ca, cb.
- Sorrend igen, visszatevés igen: ISMÉTLÉSES VARIÁCIÓ.
 aa, ab, ac, ba, bb, bc, ca, cb, cc.

Kombinációk

TÉTEL. n különböző elem összes kombinációinak száma

$$\binom{n}{k} := \frac{n!}{k! \cdot (n-k)!}.$$

PI. Hányféleképpen lehet kitölteni egy lottószelvényt?

7					A	fo	ga	ıdć	iná	il r	nai	rac	11			
A.A.		1	2	3	4	5	6	7.	8	9	10	11	12	13	14	15
Szerencsejáték Rt:	ZOLÓ	16	17	18	X	20	21	22	23	24	25	26	27	28	29	30
~		31	32	33	34	35	36	37	38	39	40.	41	42	43	X	45
LOTTO	GA. ZEL	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
y	_ S.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
		76	77	78	79	80	81	×	83	84	85	86	87	88	X	Wó

Megoldás. 90 számból kell kiválasztani 5-t.

KOMBINÁCIÓ, mert

- a sorrend nem számít,
- ismétlés nincs.

A kombinációk száma:

$$\binom{90}{5} = \frac{90!}{5! \cdot 85!} = 43\,949\,268.$$

Ismétléses kombinációk

 $\mathsf{T\acute{E}TEL}$. n különböző elem összes ismétléses kombinációinak száma

$$\binom{n+k-1}{k}$$
.

A PI. Hányféleképpen fagyit venni, ha 10 féle

lehet háromgombócos fagyiból választhatunk?

Megoldás. A 10 féle fagyiból kell kiválasztani 3-at.

ISMÉTLÉSES KOMBINÁCIÓ, mert

- a sorrend nem számít,
- ismétlés lehet.

Az ismétléses kombinációk száma:

$$\binom{10+3-1}{3} = \binom{12}{3} = \frac{12!}{3! \cdot 9!} = 220.$$

Variációk

TÉTEL. n különböző elem összes variációinak száma

$$\frac{n!}{(n-k)!} = n(n-1)\cdots(n-k+1).$$

🗘 Pl. A második Tokiói Olimpián (2020)

a 100 m-es férfi síkfutás döntőjébe

8 versenyző jut majd be.

Hányféleképpen kerülhet ki az arany-, az ezüst, és a bronzérmes?

Megoldás. A 8 versenyzőből kell kiválasztani 3-at.

VARIÁCIÓ, mert

- a sorrend számít,
- ismétlés nem lehet.

A variációk száma:

$$\frac{8!}{(8-3)!} = \frac{8!}{5!} = \frac{8 \cdot 7 \cdot 6 \cdot \cancel{5} \cdot \cancel{A} \cdot \cancel{\beta} \cdot \cancel{\beta}}{\cancel{5} \cdot \cancel{A} \cdot \cancel{\beta} \cdot \cancel{\beta}} = 8 \cdot 7 \cdot 6 = 336.$$

Ismétléses variációk

TÉTEL. n különböző elem összes ismétléses variációinak

száma

 n^k .

Pl. Hányféleképpen lehet kitölteni

egy totószelvényt?

Megoldás. Az $\{1,2,x\}$ halmazból kell kiválasztani 14-et.

ISMÉTLÉSES VARIÁCIÓ, mert

- a sorrend számít,
- ismétlés lehet (sőt most kell is).

Az ismétléses variációk száma:

$$3^{14} = 4782969.$$

- ♣ Pl. Egy 32 fős osztályban 5 jutalmat osztanak ki. Hányféleképpen tehetik ezt meg, ha
- a) a jutalmak különbözőek és egy ember legfeljebb egy jutalmat kaphat,
- b) a jutalmak különbözőek és egy ember több jutalmat is kaphat,
- c) a jutalmak egyformák és egy ember legfeljebb egy jutalmat kaphat,
- d) a jutalmak egyformák és egy ember több jutalmat is kaphat?

a jutalmak különbözőek és egy ember legfeljebb egy jutalmat kaphat:

$$\frac{32!}{(32-5)!} = \frac{32!}{27!} = 32 \cdot 31 \cdot 30 \cdot 29 \cdot 28 = 24165120,$$

• a jutalmak különbözőek és egy ember több jutalmat is kaphat:

$$32^5 = 33554432,$$

a jutalmak egyformák és egy ember legfeljebb egy jutalmat kaphat:

$$\binom{32}{5} = 201\,376,$$

• a jutalmak egyformák és egy ember több jutalmat is kaphat:

$${32+5-1 \choose 5} = {36 \choose 5} = 376992.$$

VERSENY