MAT20306 - Advanced Statistics

Lecture 4: Chi-square tests and correlation

Biometris

Situation 13: 1 sample, 2 nominal variables

Model: **one**(!) random sample of units (students), we measure:

2 nominal variables with r and c categories, respectively

X (continent, r=4) and Y (favorite color, c=3).

The data come in the form a cross-table

Result (e.g):

		Υ		
nij	green	yellow	red	ni.
Africa	16	2	5	23
America	4	9	9	22
Asia	7	7	6	20
Europe	9	10	2	21
n.j	36	28	22	86

n_{ii}=number of units with i-th X-category, and j-th Y-category (random)

 n_i and n_i are the marginal totals (random); $n = n_i$ sample size (fixed)

Research question: association between X and Y? (\rightarrow H_a)

H₀: X and Y are independent

Before the party: Chi-squared test for independence

 $H_0: \pi_{ii} = \pi_{i.} \times \pi_{.i}$ i=1,...r; j=1,...,cHa: at least one equality above does not hold

$$\chi^2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - \hat{E}_{ij})^2}{\hat{E}_{ij}}$$

 \hat{E}_{ii} = estimated expected cell frequency under H_0 , n_{ii} =O_{ii}= observed cell frequency

Under H_0 , χ^2 approximately follows a $\chi^2_{(\mathbf{r-1})(\mathbf{c-1})}$ distribution

Approximation OK if all \hat{E}_{ii} 's > 1, and 80% of \hat{E}_{ii} 's > 5

Under H_a x^2 tends to larger values than under H_0 sample view Help

We use a right-sided R.R. / p value

During the party: Descriptive (Sample) Statistics

		Υ		
nij	green	yellow	red	ni.
Africa	16	2	5	23
America	4	9	9	22
Asia	7	7	6	20
Europe	9	10	2	21
n.j	36	28	22	86

		Υ		
nij	green	yellow	red	ni.
Africa	16	2	5	23
America	4	9	9	22
Asia	7	7	6	20
Europe	9	10	2	21
n.j	36	28	22	86

 $E_{ii} = n * \pi_{ii}$; If X and Y are independent, $\pi_{ii} = \pi_{i.} * \pi_{.i}$, so under H_0 $E_{ii} = n * \pi_{ii} = n * \pi_{i.} * \pi_{.i} \rightarrow$

$$\hat{E}_{ij} = n \ \hat{\pi}_{i.} \ \hat{\pi}_{.j} = n \ \frac{n_{i.}}{n} \frac{n_{.j}}{n} = \frac{n_{i.} n_{.j}}{n}$$
 Given n_{i.} and n_{.j} what do we expect for n_{ij}'s under H₀?

$$\chi^2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - \hat{E}_{ij})^2}{\hat{E}_{ij}}$$

= 17.81

		Υ		
nij	green	yellow	red	ni.
Africa	16	2	5	23
America	4	9	9	22
Asia	7	7	6	20
Europe	9	10	2	21
n.j	36	28	22	86

$$\hat{E}_{ij} = n \; \hat{\pi}_{i.} \; \hat{\pi}_{.j} = n \; \frac{n_{i.}}{n} \frac{n_{.j}}{n} = \frac{n_{i.} n_{.j}}{n}$$

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - \hat{E}_{ij})^2}{\hat{E}_{ij}} =$$

H₀ rejected H_a shown
There is association between X and Y

The after party with SPSS output

Continent * Colour Crosstabulation

				Colour		
			1,00	2,00	3,00	Total
Continent	1,00	Count	16	2	5	23
		Expected Count	9,6	7,5	5,9	23,0
	2,00	Count	4	9	9	22
		Expected Count	9,2	7,2	5,6	22,0
	3,00	Count	7	7	6	20
		Expected Count	8,4	6,5	5,1	20,0
	4,00	Count	9	10	2	21
		Expected Count	8,8	6,8	5,4	21,0
Total		Count	36	28	22	86
		Expected Count	36,0	28,0	22,0	86,0

H₀ rejected H_a shown There is association between X and Y.

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)	Point Probability
Pearson Chi-Square	17,810 ^a	6	,007	,006	2	2
Likelihood Ratio	19,728	6	,003	,005		
Fisher's Exact Test	18,436		500-00-00-00	,004		
Linear-by-Linear Association	,077 ^b	1	,781	,814	,414	,045
N of Valid Cases	86					

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 5,12.

b. The standardized statistic is ,277.

Situation 14: r samples, 1 nominal variable

Model 2: r random samples are taken (students from r continents), 1 nominal variable is measured, Y, with c possible outcomes

The data come again in a cross-table; the n_i are fixed sample sizes, chosen in advance in the design.

		Υ		
nij	green	yellow	red	ni.
Africa	15	2	3	20
America	5	10	5	20
Asia	7	7	6	20
Europe	9	9	2	20
n.j	36	28	16	80

The nominal variable has c possible outcomes.

H₀: the probabilities for these c outcomes are the same across the r samples.

Situation 14: Null-hypothesis of Homogeneity

		Υ		
nij	green	yellow	red	ni.
Africa	15	2	3	20
America	5	10	5	20
Asia	7	7	6	20
Europe	9	9	2	20
n.j	36	28	16	80

Example: 4 Continents (r=4) and 3 colors, (c=3)

$$\pi_{1g} = \pi_{2g} = \pi_{3g} = \pi_{4g} \qquad \text{(equal GREEN prob's)}$$

$$\pi_{1y} = \pi_{2y} = \pi_{3y} = \pi_{4y} \qquad \text{(equal YELLOW prob's)}$$

$$(\pi_{1r} = \pi_{2r} = \pi_{3r} = \pi_{4r} \qquad \text{then holds automatically)}$$

Before the party: Chi-squared test for homogeneity

 $H_0: \ \pi_{1j}=\pi_{2j}=\ldots=\pi_{rj} \ , \ j=1,\ldots,c$ $H_a:$ at least one equality above does not hold

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - \hat{E}_{ij})^2}{\hat{E}_{ij}}$$

 \hat{E}_{ij} = estimated expected cell frequency under H_0 , n_{ij} = O_{ij} = observed cell frequency

Under H_0 , χ^2 approximately follows a $\chi^2_{(\mathbf{r-1})(\mathbf{c-1})}$ distribution

Approximation OK if all \hat{E}_{ij} 's > 1, and 80% of \hat{E}_{ij} 's > 5

Under H_a x^2 tends to larger values than under H_0 sample view Help

We use a right-sided R.R. / p value

During the party: Descriptive (Sample) Statistics

		Υ		
nij	green	yellow	red	ni.
Africa	15	2	3	20
America	5	10	5	20
Asia	7	7	6	20
Europe	9	9	2	20
n.j	36	28	16	80

$$\hat{E}_{ij} = n \; \hat{\pi}_{i.} \; \hat{\pi}_{.j} = n \; \frac{n_{i.}}{n} \frac{n_{.j}}{n} = \frac{n_{i.} n_{.j}}{n}$$

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - \hat{E}_{ij})^2}{\hat{E}_{ij}} = 14.15$$

The after party with SPSS output

				Colour		
			1,00	2,00	3,00	Total
Continent	1,00	Count	15	2	3	20
		Expected Count	9,0	7,0	4,0	20,0
	2,00	Count	5	10	5	20
		Expected Count	9,0	7,0	4,0	20,0
	3,00	Count	7	7	6	20
		Expected Count	9,0	7,0	4,0	20,0
	4,00	Count	9	9	2	20
		Expected Count	9,0	7,0	4,0	20,0
Total		Count	36	28	16	80
		Expected Count	36,0	28,0	16,0	80,0

H₀ rejected H_a accepted There is no homogeneity of colours across continents.

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)	Point Probability
Pearson Chi-Square	14,151 ^a	6	,028	,026		
Likelihood Ratio	15,173	6	,019	,028		
Fisher's Exact Test	14,223			,023		
Linear-by-Linear Association	,824 ^b	1	,364	,402	,201	,034
N of Valid Cases	80					

a. 4 cells (33,3%) have expected count less than 5. The minimum expected count is 4,00.

b. The standardized statistic is ,908.

Final remarks about Chi-squared tests

- the test statistic of Pearson's chi-square can be used in combination with the chi-square approximation (rule of thumb about the expected E values),
- or it can be used in combination with an exact approach (without a need for the rule of thumb)
- In practice: when an exact P-value is available, we use that.
- In this course we use the approximate P-value obtained with the chi-square approximation, except for the 2x2 case in SPSS (Fisher exact test).

And when you think it's done ... There is more!

Pearson correlation coefficient

- when people talk about a correlation or correlation coefficient they usually mean Pearson's correlation coefficient
 - named after Karl Pearson (1857–1936), British statistician

- Pearson's correlation coefficient ρ_{xy} measures the strength of the linear association between two quantitative variables x and y, see figure (O&L 11.20)
- ρ_{xy} is always between -1 and +1.
- values close to 1 or $-1 \Rightarrow$ strong (linear) association, values close to $0 \Rightarrow$ little or no (linear) association
- when correlation ρ_{xy} =1 or ρ_{xy} -1,

Pearson correlation coefficient, continued

- There is no distinction between dependent and independent variables: $\rho_{xy} = \rho_{yx}$.
- The absolute value of ρ_{xy} is not affected by linear transformations of x or y, e.g. correlation between x and y is the same as between 2x + 1 and 10 + 5y. So, it does not matter whether measurements are in e.g. grams or kilograms.
- When x and y are independent, $\rho_{xy} = \rho_{yx} = 0$, but the reverse is not necessarily true.
- The correlation ρ_{xy} is a population parameter that is estimated by the sample correlation r_{xy} :

$$r_{xy} = r_{yx} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}, \quad -1 \le r_{xy} \le 1$$

Correlation & inference

- Test on ρ_{xy}
- 1. H_0 : $\rho_{xy} = 0$.
- 2. Test statistic is:

$$t = r_{xy} \frac{\sqrt{n-2}}{\sqrt{1-r_{xy}^2}}$$

3. When H_0 is true, $t \sim t_{n-2}$

Grasshoppers (Example 11.13 in O&L)

Study of the reproductive success of grasshoppers. An entomologist collected a sample of 30 female grasshoppers. She recorded the number of mature eggs produced and the body weight of each of the females (grams).

	Number	weight
1	27.00	2.10
2	32.00	2.30
3	39.00	2.40
4	48.00	2.50
5	59.00	2.90
6	67.00	3.10
7	71.00	3.20
8	65.00	3.30
9	73.00	3.40
10	67.00	3.40
11	78.00	3.50
12	72.00	3.50
13	81.00	3.50
14	74.00	3.60
15	83.00	3.60

Grasshoppers (Example 11.13 in O&L)

	Correlations	S		
		Number of eggs	Weight of female	
Number of eggs	Pearson Correlation	1	.606 **	1
	Sig. (2-tailed)		.000	
	N	30	30	
Weight of female	Pearson Correlation	.606 **	1	
	Sig. (2-tailed)	.000		
	N	30	30	ĺ

** Correlation is significant at the 0.01 level (2-tailed).

$$H_0$$
: $\rho_{xy} = 0$ vs H_A : $\rho_{xy} > 0$

$$t = r_{xy} \frac{\sqrt{n-2}}{\sqrt{1-r_{xy}^2}} = 0.606 \cdot \frac{\sqrt{30-2}}{\sqrt{1-0.606^2}} = 4.0311$$
 Weight of female

Under H_0 : $t_{n-2}=t_{28}$ distribution RSP=0.000 <0.05, so reject H_0 We have shown there is a positive correlation between weight and number of eggs

5.00

Spearman rank correlation

- r_{xy} is highly sensitive to outlying observations (outliers)
- an alternative is Spearman's rank correlation $r_{\rm S}$ (not mentioned in O&L), named after Charles Spearman (1863 1945), English psychologist

- observations are replaced by rank numbers
 ranking x and y separately, with mid ranks in case of ties
- Spearman's $r_{\rm S}$ is the ordinary correlation, but derived from these rank numbers
- r_s measures the strength of a monotonic relationship between two quantitative variables x and y.
 The relationship need not be linear, see figure from Wikipedia.

• but r_s is not estimating a population parameter, in contrast to r_{xy} ,

An example of Spearman's rank correlation

Spearman' correlation of 0.821 can be Obtained by calculating Pearson's correlation on rank numbers

Correlations

		Rank of x	Rank of y
Rank of x	Pearson Correlation	1	.821**
	Sig. (2-tailed)		.000
	N	19	19
Rank of y	Pearson Correlation	.821**	1
	Sig. (2-tailed)	.000	
	N	19	19

^{**} Correlation is significant at the 0.01 level (2-tailed).

Х	у /	Rx V	Ry
91	1.53	6	7
04	2.18	15	15
28	1.88	13	8
-26	2.02	9	12
-1.86	1.14	1	5
1.77	.96	3	3
32	2.25	11	16
1.63	2.85	19	17
19	1.94	14	9
32	2.00	12	11
34	1.23	10	6
-1.16	.22	5	1
1.43	3.11	18	18
87	2.10	7	14
45	1.98	8	10
-1.79	.62	2	2
-1.52	1.01	4	4
1.01	3.68	17	19
.74	2.03	16	13

Correlations

		Х	Y
х	Pearson Correlation) 1	.852**
	Sig. (2-tailed)		4 .000
	N	19	/ 19
У	Pearson Correlation	.852**	/ 1
	Sig. (2-tailed)	.000	/
	N	19	19

**. Correlation is significant at the 0.01 level

Note that here Pearson correlation and Spearman rank correlation are similar.

Correlations

			х	У
Spearman's rho	Х	Correlation Coefficient	1.000	.821*
		Sig. (2-tailed)		.000
		N	19	19
	у	Correlation Coefficient	.821**	1.000
		Sig. (2-tailed)	.000	
		N	19	19

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Another example of Spearman's rank correlation

Unrelated *x* and *y*, with one added outlying observation with both high *x* and *y* value.

Correlations					
		Х	y		
х	Pearson Correlation	1	.445*		
	Sig. (2-tailed)		.012		
	N	31	31		
У	Pearson Correlation	.445*	1		
	Sig. (2-tailed)	.012	/		
	N	31/	31		

^{*} Correlation is significant at the 0.05 level (2-tailed).

Pearson correlation is sensitive to the outlier: relatively high correlation (and significantly different from 0)

Spearman correlation is not really sensitive to the outlier and consequently lower

		Correlations		
			Х	У
Spearman's rho	X	Correlation Coefficient	1.000	.185
		Sig. (2-tailed)		.319
		N	31	31
	У	Correlation Coefficient	.185	1.000
		Sig. (2-tailed)	.319	-
		N	31	31

HOW ARE YOU DOING??

