STEAM Flow Computer FC410S

OPERATION MANUAL

REV 4.1

1. 제품 소개(Introduction)	4
1.1 특 징(Feature)	4
1.2 제품 기호(Model Number Designation)	5
2. AP (Specification)	6
3. 설치(Installation)	10
3.1 전원 결선(Power Connections)	10
3.1.1 교류 전원 결선(AC Power Connection)	10
3.1.2 직류 전원 결선(DC Power Connection)	10
3.2 입력 결선(Input Connections)	11
3.2.1 Frequency Type Flow Meter Connections	11
3.2.2 4-20mA Analog Type Flow Meter Connections	13
3.2.3 Temperature Input Connections	13
3.2.4 Pressure Input Connections	15
3.3 출력 결선(Output Connections)	16
3.3.1 Relay Output Connection	16
3.3.2 4-20mA Analog Output Connection	16
3.3.3 Pulse Output Connection	17
3.3.4 Error Signal Connection	18
4. 동작(Operation)	19
4.1 유량 측정(Flow Measurement)	
4.1.1 Frequency Type Flowmeter Input	19
4.1.2 Analog Type Flowmeter Input	19
4.1.3 Steam Measurement	
4.2 Pressure Measurement(압력 측정)	22
4.3 Temperature Measurement(온도 측정)	22
4.4 Display Information(지시하는 정보)	23
4.5 Alarm 제어 동작(Relay Output)	24
4.6 Alarm Dead Band 설정	25
4.7 Analog Output(전류 출력)	25
FnS PLUS Co.	

4.8 Pulse Output(펄스 출력)	26
5 M M/Dus augumnius)	27
5. 설정(Programming)	
5.1 설정 모드의 구성	
5.2 설정 모드에서의 Key 조작 방법	
5.2.1 설정 모드 접근 방법	
5.5.2 설정 모드에서의 이동 방법	
5.2.3 설정 모드에서 벗어나는 방법	34
5.2.4 설정 값 수정 방법	35
5.3 설정 항목(Programming the Setup Parameters)	36
5.3.1 Flow Parameters 그룹	36
5.3.2 Steam Parameters コ雷	37
5.3.3 Option 그룹	39
5.3.4 Test 그룹	41
5.4 전류 교정(Analog Output Calibration)	42
5.4.1 Zero Calibration	42
5.4.2 Span Calibration	42
6. 제품 치수(Dimension)	43
6.1 Panel Cutting Size	43
6.2 Panel Mount Type	43
6.3 Explosion Protected Box	44
6.4 Weather Proof Type	44
7. 결선(Wiring Designations)	45
7.1 기본 결선(Basic Wiring)	
7.2 Remote 및 Analog Output Option 결선	45
7.3 Communication Option 결선	
7.4 Pressure Input 결선	
7.5 Tomporoture Input 경서	

1. 제품 소개(Introduction)

1.1 특 징(Feature)

FC410S Series Steam Flow Computer 는 Process 상의 유량측정 Sensor 로부터 유량신호(Flow Signal)를 받고, 또한 온도와 압력을 입력으로 하여 포화증기(Saturated Steam) 및 과열증기(Superheated Steam)의 Parameter 를 계산하고 Mass 나 Energy 의양으로 환산하여 적산(Total), 순시량(Flow Rate), 누적 적산(Accumulated Total), 비체적(Specific Volume), 엔탈피(Enthalpy), 온도(Temperature), 압력(Pressure)을 지시한다.

유량 측정 센서의 종류에 따라 Frequency Output Type Flow Meter 나 4-20mA Analog Output Type Flow Meter 를 연결하여 사용할 수 있다. 2 개의 Relay 를 이용하여 Rate 에 따른 Alarm(High-Low/High-High High/Low-Low Low)을 검출할 수 있으며, 제어목적에 따라 Rate 에 따른 4-20mA Analog Output 을 Option 으로 추가할 수 있다. Flow Sensor 에서 들어오는 유량 신호를 Scale Pulse(Mass / Energy / Net Total)로 변환하여 출력하므로 외부에 다른 Counter 나 적산계를 달아 사용할 수 있다.

전면에 있는 LCD(or VFD) Display 는 각종 Parameter 및 지시치를 전부 보여줄 수 있게 함으로써 운전자가 쉽게 조작할 수 있도록 하였다. 전면에 있는 Key 를 이용하여 각종 지시치를 손쉽게 확인할 수 있고, 유량 제어 목적에 맞도록 사용자가 직접 현장에서 설정값을 쉽게 Programming 할 수 있다.

사용자가 설정한 Data 나 적산 유량 등은 내부의 비휘발성 Memory 에 저장되어 전원이 꺼지더라도 현재의 모든 값을 10년간 유지한다.

㈜에프앤에스 플러스의 FC410 Series Steam Flow Computer 를 사용해 주셔서 감사합니다. 에프앤에스 플러스는 유량 계측/제어용 Controller 를 전문적으로 설계/생산하는 업체로 앞으로도 더 좋은 성능의 Controller 개발에 주력할 것입니다.

사용해 보시고 개선해야 할 내용이나 문제점이 있으시면 언제든지 연락주십시요. 감사하는 마음으로 더욱 노력하겠습니다.

또한 유량 관련한 특수한 Controller 나 System 이 필요하시면 설계/제작해 드립니다.

1.2 제품 기호(Model Number Designation)

계기의 Model은 Input, Output Option 에 따라 설정되며 Option 사양은 다음과 같다.

MODEL	Order Code			Description		
FC410S				2*20 Character LCD EL Backlight Display		
C.	P					Frequency Type Flow Meter Input
Sensor	A					4-20mA Analog Type Flow Meter Input
In/Output 0 Basic Model(No Option) 1 4-20mA Analog Output 2 Remote Switch Input		Basic Model(No Option)				
		1				4-20mA Analog Output
		2				Remote Switch Input
			0			None Communication
Communication			1			RS-232 Communication
			2			RS-422/RS-485 Communication
				A		AC 85-264V(Free Voltage)
Power				D		DC 24V
					0	Only Basic
Case					1	With IP65 Flexible Rubber
					2	With EXP. Box

기본 모델(Basic Model)은 Alarm 출력을 위한 2-Relay Output, Pulse Output 과 Error 신호가 제품 출하시 포함되어 있습니다.

2. 사양(Specification)

General

Display: 2*20 Character LCD with EL Backlight or VFD

Display Update Rate: 0.25 seconds

Transducer Supply: 8~24VDC 50mA Max.

Operating Temperature: 0 to 60 °C standard

Storage Temperature : -20 to 70 °C

Case

Dimensions: 144mm Wide X 72mm High X 177mm Deep

Cutout: $139 \text{mm Wide X } 67 \text{mm High } (\pm 0.5)$

Material: Poly-Carbonate and ABS

Flexible Rubber: IP65

Explosion Protected: Division 1, Class I Group – C & D

Class II Group – E, F & G

Class III

Zone 1 or 2, Exd IIB T6

Frequency Input

Frequency Range: 0 Hz to 5 KHz

Signal Type: Sine wave, Open collector, Reed switch, Proximity switch,

Voltage or Current pulse

K-factor Range: 0.0001 to 50,000.0000 (the pulse per units)

4-20mA Analog Input(Flow)

Input Impedance: 250-Ohm
Resolution: 12-Bit
Accuracy: 0.05%

 Isolation :
 Non Isolated

 Span :
 $0.0001 \sim 50000$

 Zero :
 $0.0000 \sim 50000$

FnS PLUS Co.

RTD Input

RTD Type: Platinum PT100.

Temperature Range : $-100^{\circ}\text{C}(-148^{\circ}\text{F}) \sim 300^{\circ}\text{C}(572^{\circ}\text{F})$

(A wider temperature range can be handled via a 4-20mA

input.)

Accuracy: 0.1°C

Linearity: The non-linearity of the RTD is internally compensated

for.

4-20mA Analog Input(Temperature & Pressure)

Input Impedance: 250-Ohm
Resolution: 12-Bit
Accuracy: 0.05%

Isolation: Non Isolated

Pressure Input

Type: Absolute or Gauge.

Span: The absolute or gauge pressure is programmable at 4mA

and 20mA.

Atmospheric: If a gauge pressure sensor is used the atmospheric

pressure can be programmed.

Relay Output

Function: High and Low flowrate alarms based on the flowrate

selected as the default display.

Max. Switching Power: 2,000VA / 240W

Max. Switching Voltage: AC 250V / DC 30V

Max. Switching Current: 8-Amp.

4-20mA Analog Output

Function: The flowrate selected as the Default display is output on

the 4-20mA output.

Resolution: 12-bit

Accuracy: Better than 0.1%

Maximum Load: 500 ohms internally powered. 950 ohms from DC 24V

Isolation: Output is isolated

Error Output Signal

Function: The error signal output is on the out of range.

Output: An open collector transistor will sink 50mA max.

Pulse Output Signal

Function: The Pulse output is scaled and outputs one pulse each

time the total increments.

Output: An open collector transistor will sink 50mA max.

Duty Cycle: 49 Pulse/sec. Max.
Pulse Width: 10ms(negative going)

Communication

Type: RS232, RS-422 or RS485

Baud Rate: 1200 to 19200 BPS

Parity: none
Data bit: 8-Bit

ID Code: For multi point communications, a unique address can be

programmed

FnS PLUS Co.

Steam

Display: Mass(kg / ton)

Energy(MJ / GJ / Mcal).

Steam Type: Saturated and Superheated.

Temperature / Pressure Range : Saturated Steam $100^{\circ}\text{C}(212^{\circ}\text{F}) \sim 374^{\circ}\text{C}(705^{\circ}\text{F})$

 $1.033 \sim 225.56 \text{ kg/cm}^2$

(101.3 ~ 22119.88 kPa)

Superheated Steam $130^{\circ}\text{C}(266^{\circ}\text{F}) \sim 800^{\circ}\text{C}(1472^{\circ}\text{F})$

 $3 \sim 200 \text{ kg/cm}^2$

(294.2 ~ 19613.3 kPa)

3. 설치(Installation)

3.1 전원 결선(Power Connections)

교류 입력의 전압 범위는 85-264VAC 이고, 직류 입력은 +/- 극성에 관계없이 연결하여 사용할 수 있다. Noise 에 의한 오동작을 방지하기 위해 각 입력은 Signal Line 과 분리하여 설치한다.

3.1.1 교류 전원 결선(AC Power Connection)

3.1.2 직류 전원 결선(DC Power Connection)

3.2 입력 결선(Input Connections)

3.2.1 Frequency Type Flow Meter Connections

Flow Meter 에 따라 출력 신호가 다르므로 신호의 종류에 따라 내부에 있는 DIP(Dual In-line Package) Switch 를 올바르게 설정한다. 출하시 기본적으로 Open Collector 신호를 받도록 설정돼 있다.

Terminal 18 번에서는 DC 8V - DC 24V 가 출력되므로 Flow Meter 가 Power 를 필요로 할 경우 연결하여 사용할 수 있다. 출하시 기본적으로 DC 24V 가 출력되며, 다른전압을 원할경우 볼륨저항을 조정하여 사용한다.

I (C) IT	Terminal		Switch Setting							
Input Signal Type	+	-	1	2	3	4	5	6	7	8
1.Open Collector	19	20	Off	Off	Off	Off	On	Off	Off	On
2.TTL Logic Pulse	19	20	Off	Off	Off	Off	Off	Off	Off	On
3.Reed Switch	19	20	Off	Off	Off	On	On	Off	Off	On
4.Coil(20mVp-p min)	19	20	Off	Off	Off	Off	Off	On	Off	Off
5.Coil (low impedance)	19	20	Off	On	Off	Off	Off	On	Off	Off
6.Current Pulse	18	19	On	Off	Off	Off	Off	Off	Off	On
7.Namur Proximity	18	19	Off	Off	On	Off	Off	Off	On	On

1. Open Collector

2. Square Wave CMOS or Logic Pulse

3. Reed Switch

4. Coils

5. Current Pulse

6. Namur Proximity Switch

3.2.2 4-20mA Analog Type Flow Meter Connections

Current Sink Type(외부 Power 를 필요로 하는 경우)과 Current Source Type(자체에서 Power 가 출력 되는 경우) 모두 사용 가능하다. Current Sink Type Flow Meter 의 경 우 Controller 자체에서 DC12V 가 출력되므로 이 Power 를 이용할 수 있고, 특수하 게 DC 12V 이상의 Power 를 요구할 경우에는 외부에 별도의 Power Supply 를 사용 한다.

1. Current Sink Type Flow Meter 2. Current Source Type Flow Meter

3.2.3 Temperature Input Connections

온도의 입력 방법은 RTD 또는 4-20mA 입력의 두 가지가 있다. 이것은 Option 으 로 선택 가능하다.

* RTD Input Connection

RTD Sensor 의 입력은 다음 그림과 같이 3-Wire Type 으로 연결하며 RTD Type 은 Platinum RTD(PT100)으로 한다.

RTD 의 비선형 오차(Non-Linearity)를 Soft-Ware 적으로 보상한다.

RTD의 온도 입력 범위는 -100∼300℃이며 이 입력 범위를 벗어나는 입력에 대해 서는 4-20mA Type 의 Temperature Transmitter 를 사용해야 한다.

RTD Sensor 을 연결할 때는 Shield 된 Cable 를 사용하여야 한다.

FnS PLUS Co.

RTD Sensor Input

* 4-20mA Input Connection

Current Sink Type(외부 Power 를 필요로 하는 경우)과 Current Source Type(자체에서 Power 가 출력 되는 경우) 모두 사용 가능하다. Current Sink Type Temperature Transmitter 의 경우 Controller 자체에서 DC12V 가 출력되므로 이 Power 를 이용할 수 있고, 특수하게 DC 12V 이상의 Power 를 요구할 경우에는 외부에 별도의 Power Supply 를 사용한다.

온도입력 단자를 사용하지 않을 경우에는 반드시 Signal+와 GND, 즉 35 번 단자와 34 번 단자를 Short 시켜 놓는다.

Current Sink Type Temperature Transmitter

Current Source TypeTemperature Transmitter

3.2.4 Pressure Input Connections

압력의 입력은 4-20mA의 Pressure Transmitter 를 사용해야 한다.

Current Sink Type(외부 Power 를 필요로 하는 경우)과 Current Source Type(자체에서 Power 가 출력 되는 경우) 모두 사용 가능하다. Current Sink Type Pressure Transmitter 의 경우 Controller 자체에서 DC12V 가 출력되므로 이 Power 를 이용할 수 있고, 특수하게 DC 12V 이상의 Power 를 요구할 경우에는 외부에 별도의 Power Supply 를 사용한다.

압력입력 단자는 Steam 의 종류에 관계없이 항상 존재하므로 사용하지 않을 경우에는 반드시 Signal+와 GND,즉 29 번 단자와 27 번 단자를 Short 시켜 놓는다.

1. Current Sink Type
Pressure Transmitter

2. Current Source Type
Pressure Transmitter

주의) Steam flow computer 는 RTD Sensor 신호를 우선 공급시켜 주어야 정상 동작을 보장할수 있습니다.

3.3 출력 결선(Output Connections)

3.3.1 Relay Output Connection

1. Alarm 1(Relay 1)

2. Alarm 2(Relay 2)

Flow Alarm 출력을 위한 2개의 Relay Output 이 기본 제공된다.

Switching 용량은 Maximum 250VAC 8-Amp. 또는 30VDC 8-Amp.까지 Control 이 가능하나 외부에 별도의 Relay 나 SSR을 사용할 것을 권장한다.

3.3.2 4-20mA Analog Output Connection

Default 로 지시하는 순시량(Mass/Energy/Corrected Volume Rate) 값을 4-20mA 신호로 변환하여 외부의 다른 계기로 전송하여 기록하거나 제어할 수 있다.

2-Wire 방식으로 전송하며 외부의 계기에 따라 Controller 의 내부 전원을 사용하는 경우와 외부의 전원을 사용하는 경우(외부의 계기에 전원이 포함되어 있는 경우) 모두를 구동할 수 있다.

1. 내부 전원을 사용하는 경우

2. 외부 전원을 사용하는 경우

3.3.3 Pulse Output Connection

Default 로 선택된 적산량(Mass/Energy/Corrected Volume total)의 최소 자릿수가 한 숫자씩 증가할 때마다 하나의 Pulse 가 출력 된다.

내부 회로가 Open Collector 로 구성되어 있어 극성이 맞지 않을 경우에 동작하지 않으므로 주의하여 연결한다. 최대 50mA @30VDC 의 Current Sink 출력으로 외부에 전원과 Current Limit 저항이 필요하다.

Pulse Output 은 Pulse 폭이 10-mSecond 이고, 최대 초당 49-pulse 이상은 출력할 수 없다.

Open Collector 사용 시

FnS PLUS Co.

3.3.4 Error Signal Connection

온도나 압력이 입력 Range 에서 벗어나거나 4-20mA Analog Type Flow Meter 에서 전류 입력이 3.5mA 이하로 떨어졌을 경우에 출력 된다.

내부 회로가 Open Collector 로 구성되어 있어 극성이 맞지 않을 경우에 동작하지 않으므로 주의하여 연결한다.

50mA @30VDC의 Current Sink 출력이다. 외부에 전원과 Current Limit 저항이 필요하다.

1. Open Collector 사용 시

2. 외부 Relay 구동 시

4. 동작(Operation)

4.1 유량 측정(Flow Measurement)

4.1.1 Frequency Type Flowmeter Input

K-Factor : 단위 유량당의 펄스로 정의 되며, Flow Meter 혹은 배관의 설계에 따라 정해진다. (Pulse / Unit volume)

입력하는 K-Factor 의 단위는 $Pulse/m^3$ 으로 입력하며 만약 체적이 기타 다른 단위라면 m^3 으로 환산하여 입력한다. 그러면 다음과 같은 식으로 단위 시간당 흐르는 유량을 알 수 있다.

Rate: 단위 시간당의 유량(Volumetric Flow Rate).

여기서, TimeBase 는 순시유량(Rate)에서의 기준시간으로서 Unit/Second 에서는 1, Unit/Minute 에서는 60, Unit/Hour 에서는 3600, Unit/Day 에서는 86400이다.

이 유량은 온도와 압력을 보정하지 않은 유량(Volumetric Flowrate) 이다.

4.1.2 Analog Type Flowmeter Input

Span: 20mA 일 때의 순간유량(Flow rate at 20mA).

Zero: 4mA 일 때의 순간유량(Flow rate at 4mA).

여기서 Zero 와 Span 의 단위는 m³/(Second, Minute/Hour or Day)로 입력한다.

만약 체적이 기타 다른 단위라면 \mathbf{m}^3 으로 환산하여 입력한다

그러면 다음과 같은 식으로 단위 시간당 흐르는 유량을 알 수 있다.

여기서 말하는 유량은 온도와 압력을 보정하지 않은 유량(Volumetric Flowrate) 이다.

Rate: 단위 시간당의 유량(Volumetric Flow Rate).

Rate =
$$(Span - Zero) * A^n + Zero$$

여기서, A: Input signal — 0 @4mA, 1 @ 20mA,

n: 1 is Linear input, ½ is Differential Pressure type flow meter input.

x.xx is for open channel flow meter input

4.1.3 Steam Measurement

*사용 온도 및 압력 범위

스팀(Steam)	온도(Temperature)	압력(Pressure)
포화증기	100°C ~ 374°C	1.033 ~ 225.56 kg/cm ²
(Saturated)	212°F ~ 705°F	101.3 ~ 22119.88 kPa
과열증기	130°C ~ 800°C	$3 \sim 200 \text{ kg/cm}^2$
(Superheated)	266°F ~ 1472°F	294.2 ~ 19613.3 kPa

포화증기는 증기의 포화곡선에서 온도는 압력에 대응하고 압력은 온도에 대응되므로 온도나 압력 중 하나를 선택할 수 있고, 과열증기는 온도와 압력 두 입력이모두 필요하다. 온도와 압력을 이용하여 ASME Steam Table 을 기반으로 한 공식을 이용하여 다음의 Parameter 를 계산한다.

v: 비체적(Specific Volume of Steam), m³/kg

h: 엔탈피(Enthalpy of Steam), kJ/kg

FnS PLUS Co.

다음은 비체적(Specific Volume) v 와 엔탈피(Enthalpy) h 를 이용해서 Mass 와 Energy 를 구하는 식이다.

* Volumetric Flow meter input with Frequency.

Energy = Mass * h

* Volumetric Flow meter input with 4-20mA.

$$Mass = ((Span - Zero) * A^n + Zero) * 1/v$$

$$Energy = Mass * h$$

이상과 같이 각각 4.1.1 과 4.1.2 에서 정의한 Volumetric Rate 에 비체적 v 를 곱하면 Mass 가, Mass 에 엔탈피 h 를 곱하면 Energy 가 구해진다.

Mass 의 단위는 kg, ton 중 선택가능하며, Energy 는 kJ, MJ, Mcal 중 선택 가능하다. Frequency Flow meter 의 경우 K-Factor 는 pulse/m³ 이고 Analog Flow meter 의 경우 Span 은 m³/(sec,min,hour or day)이다. 만약 체적(Volume)이 ft³, gallon 혹은 기타 다른 단위라면 m³으로 환산하여 사용해야 한다.

* 건도(Dryness Fraction): 습증기의 열역학적 상태량 산출에 있어 중요한 요소로서 습증기 중에 어느 정도의 포화증기가 포함돼 있는지를 나타낸다. 건도를 알지 못 하면 1.0000 으로 입력하여 이상적인 포화증기로 계산을 한다. 건도가 1보다 작은 수치면 습분(moisture)을 포함하는 습증기이다.

체적
$$(v) = Vf + x(Vg - Vf)$$

엔탈피(h) =
$$Hf + x(Hg - Hf)$$

여기서, Vf, Hf 는 습도가 100%일 때의 비체적과 엔탈피, Vg, Hg 는 습도가 0%(건도가 1)일 때의 비체적과 엔탈피를 나타낸다.

4.2 Pressure Measurement(압력 측정)

압력은 kg/cm², kPa, bar 중의 어느 한 단위로 프로그램 가능하다. Program Mode 의 "Pressure Unit"에서 압력의 단위를 선택할 수 있다. 또한 입력되는 압력을 절대압력(Absolute Pressure) 또는 게이지압력(Gauge Pressure)으로 프로그램 할 수 있다. 이는 "Pressure Input"에서 선택할 수 있다.

게이지 압력 Sensor 를 사용할 경우, 설치 높이에 따라 대기압(Atmospheric Pressure) 이 다르기 때문에 대기압을 프로그램 할 수 있다. 이는 "STEAM PARAMETERS" 의 "ATMOSPHERIC PRESSURE"에서 입력한다.

따라서 게이지 압력 Sensor 를 사용할 경우의 절대압력은 다음과 같다.

절대압력(Pabs) = 대기압(Patm) + 게이지압력(Pg)

해면에서의 대기압의 Standard 수치는 1.03323kg/cm², 101.325kPa, 1.01325bar 이다.

압력의 입력은 4mA 일 때의 압력, 20mA 일 때의 압력을 "STEAM PARAMETERS"의 "PRESSURE at 4mA"와"PRESSURE at 20mA"에서 프로그램하면 입력한 값에 비례하는 압력을 얻을 수 있다.

4.3 Temperature Measurement(온도 측정)

온도의 입력은 RTD 에 의한 방법 4-20mA 에 의한 방법 두 가지가 있다.

4-20mA 에 의한 온도의 입력 또한 압력과 마찬가지로 4mA 일 때의 온도, 20mA 일 때의 온도를 "STEAM PARAMETERS"의 "TEMPERATURE at 4mA" 와"TEMPERATURE at 20mA"에서 프로그램하면 입력한 값에 비례하는 압력을 얻을 수 있다.

RTD 온도 입력에 사용되는 RTD Sensor 의 종류는 Platinum RTD(PT100)으로 RTD 의 비선형 오차(Non-Linearity)는 Soft-Ware 적으로 보상한다.

RTD 의 온도 입력 범위는 -100 ~ 300℃이며 이 입력 범위를 벗어나는 입력에 대해서는 4-20mA Type 의 Tempreature Transmitter 를 사용해야 한다.

또한 RTD 온도입력시 실제 온도와 다른 온도를 지시할 경우 이를 Soft-Ware 적으로 교정해 줄 수 있는데 이는 Program Mode 에서 "STEAM PARAMETERS"항목 FnS PLUS Co.

중 "RTD OFFSET"에 실제 온도와 차이가 나는 만큼 Offset 을 설정하면 가능하다.즉 지시하는 온도는 다음과 같다.

지시하는 온도 = 입력온도 + OFFSET 온도

4.4 Display Information(지시하는 정보)

초기에 표시하고 있는 값은 설정모드의 "Default Display"를 어떻게 설정 했는가에 따라 다르게 표시된다. Steam 에서는 Mass 와 Energy, Ideal Gas 에서는 Mass 와 Corrected Volume 중 어느것을 선택했는가에 따라 다르게 표시 되는데 Mass 를 기준으로 설명하면 다음과 같다.

초기에는 Display 상단에는 Mass Flow Rate 가 하단에는 Mass Total 이 표시되며 Mass 가 Display 될 때 Mode/Dis Key 를 누르면 Steam 의 경우에는 Energy 표시모드 로 바뀌어 Display 상단에는 Energy Flow Rate 가 하단에는 Energy Total 이 표시된다.

다시 Mode/Dis Key 를 누름에 따라 누적 적산량(MASS ACC-TOTAL), 밀도(Density), 온도(TMP.) 와 압력(PRE.), 비체적(Specific Volume) 및 엔탈피(Enthalpy)를 순차적으 로 표시한다.

"Default Display"를 Mass 가 아닌 Energy 또는 Corrected Volume 를 선택했다면 초기에 표시하는 값은 Energy 또는 Corrected Volume 이며 Mode/Dis Key 를 누르면 Mass 가 Display 된다. 다시 Mode/Dis Key 를 누르면 Energy Acc-Total 또는 Corrected Volume Acc-Total 를 지시하게 된다. 즉 "Default Display"에서 선택한 단위로 초기에 Display 하며 또한 같은 단위로 누적적산유량을 적산하게 된다. 또한 "Default Display"에서 선택한 단위를 기준으로 Pulse Output/4-20mA Analog Output/Alarm Output 을 발생한다.

Program Mode 에서 "FLOW PARAMETERS" 항목 중 "AUTO RETURN"을 "Enable" 로 선택하면 Key 입력이 없을 경우 10 초가 경과하면 자동적으로 "Default Display" 에서 설정한 "MASS" 나 "ENERGY" 또는 "VOLUME FLOW"를 지시하게 되며, "Disable"로 선택하면 Mode/Dis Key 에 의해서만 표시 항목을 변경할 수 있다.

적산량을 Reset 하기 위해서는 여러 방법이 있는데 "OPTION" 의 "RESET METHOD"에서 설정이 가능하다. 만약 "RESET KEY"를 선택하면 Reset/Enter Key 를 누르면 0 으로 Reset 이 된다. "24:00"으로 설정하면 매일 24 시에 0 으로 Reset

이 된다. 통신을 이용해 Reset 명령어로 Reset 을 시킬 수 있다. 누적 적산량은 "FLOW PARAMETERS" 항목 중에 "ACC-TOTAL RESET" 을 "YES"로 선택한 다음 Reset/Enter Key 를 눌러야만 0 으로 Clear 되며 또한 통신을 이용하여 Reset 시킬수 있다.

4.5 Alarm 제어 동작(Relay Output)

"Default Display"에서 설정한 "MASS", "ENERGY" 또는 "VOLUME FLOW" RATE 와 설정돼 있는 Parameter 를 비교하여 High/Low Alarm 을 발생하며 접점은 Normally Open Contact 과 Normally Close Contact 을 모두 제공한다.

Alarm 설정은 우선 Relay Sequence 를 설정해야 한다. Sequence 설정 항목 "RELAY SEQUENCE"는 다음 3 가지 종류가 있는데 High-Low / High High-High / Low-Low Low 가 있고, Relay 1 이 항상 높은 쪽이고, Relay 2 가 항상 낮은 쪽이다.

"RELAY1 SET-POINT"와 "RELAY2 SET-POINT" 항목에 동작점을 설정하면 이 동 작점을 기준으로 Relay 가 On/Off 된다. 동작점을 0 으로 설정하면 Alarm Relay 가 동작하지 않으며 Relay1의 설정 값이 Relay2의 설정 값보다 항상 커야 한다.

4.6 Alarm Dead Band 설정

Alarm Dead Band 는 순시 유량이 Alarm 설정치 부근에 있을 경우 Alarm 이 계속해서 On/Off 되는 현상을 제거하기 위해 히스테리시스 특성을 주는 기능이다.

High/ High-high Alarm 동작

Low/Low-low Alarm 동작

Dead Band 설정 범위는 마지막 두 자리를 0.50000 까지 설정할 수 있으며 소수점의 위치에 따라 의미가 달라지므로 유의해야 한다. 예를 들면, 소수점이 0.0 으로 선택되어 있을 경우는 0.0-5000.0 까지 설정이 가능한 상태가 되고, 소수점이 0.00으로 선택되어 있을 경우는 0.0-500.00 까지 설정이 가능한 상태가 된다.

4.7 Analog Output(전류 출력)

"Default Display"에서 설정한 "MASS", "ENERGY" 또는"VOLUME FLOW"의 순시량에 따라 4-20mA Analog 출력을 발생시킨다.

순시량이 Program Mode 의 "OUTPUT at 4mA" 항목에 설정되어 있는 값 이하일 경우에는 4mA가 출력되고, "OUTPUT at 20mA" 항목에 설정되어 있는 값 이상일 경우에는 20mA가 출력된다. 순시량이 항목 "OUTPUT at 4mA"에 설정되어 있는 값과 항목 "OUTPUT at 20mA"에 설정되어 있는 값의 범위에 있을 경우 그 값에 비례하는 전류가 출력된다.

Analog 값이 정확하게 출력 되지 않을 경우에는 Program Mode 에서 간단하게 현장에서 교정할 수 있다. (ref. 5.4 Analog Calibration)

4.8 Pulse Output(펄스 출력)

"Default Display"에서 설정한 "MASS", "ENERGY" 또는"VOLUME FLOW"의적산(Mass/Energy/Corrected Volume Total)값의 최소 자릿수가 한 숫자씩 증가할 때마다 Pulse Output 단자에서 한 개의 Pulse가 출력된다. Flow Meter에서 나오는 무단위 Pulse를 단위 Pulse로 변환하여 출력한다. Open Collector 출력이므로 외부에 Counter나 별도의 적산계 등을 연결하여 사용할 수 있다.

1 [Pulse Output] = K-Factor / 10 Decimal Point [Pulse Input]

예를 들어 적산에 대한 Decimal Point 를 설정하지 않은 상태에서 K-Factor 를 0.1 로 설정했다면 입력 Pulse 0.1 개마다 1 개의 출력이 발생이 되나 실제로는 1 개의 Pulse 가 들어오면 10 개의 Pulse 가 발생하는 것이다. K-Factor 를 10 으로 설정하고 Decimal Point 를 0.0 으로 설정했다면 입력 Pulse 1 개마다 1 개의 출력이 발생한다. 마찬가지로 K-Factor 를 10 으로 설정하고 Decimal Point 를 0으로 설정했다면 입력 Pulse 10 개마다 1 개의 출력이 발생한다.

5. 설정(Programming)

5.1 설정 모드의 구성

Note

- 1. 위의 각 항목의 내용은 Model 이나 Option 에 따라 필요한 것만 표시 된다. 예를 들어 Analog Output Option 이 없을 경우에는 Analog 설정에 관한 항목은 표시 되지 않는다.
- 2. Analog Flow Meter 와 Frequency Flow Meter 는 주문 시 그 모델이 정의된다.
- 3. 온도 입력에서 RTD 와 4-20mA 는 주문 시 그 모델이 정의된다.

5.2 설정 모드에서의 Kev 조작 방법

5.2.1 설정 모드 접근 방법

설정값(Parameter)을 변경하기 위해 Program Mode 에 접근하려면 Shift Key 와 Down Key 를 동시에 약 3 초간 연속적으로 누르면 된다. 부저음과 함께 상단에 Model 의 종류("FC-410S"), 하단에 현재 설치되어 있는 Option 이 표시된다.

Model 과 Option 이 표시되고 Key 를 해제하면 Program Version(REV - x.xx)이 3 회 깜박이고 난 후 Model 과 Version 이 표시된다. 이 상태에서 Enter/Reset Key 를 누르면 "FLOW PARAMETER"가 표시되고 이때부터 원하는 항목을 변경할 수 있게된다.

5.5.2 설정 모드에서의 이동 방법

Program Mode 는 크게 Flow Parameters , Steam Parameters , Option, Test 등 총 4 그룹으로 나뉘어져 있다. 각 그룹으로 이동하는 방법은 Up Key 를 이용하여 이동한다. 프로그램을 변경할 그룹으로 이동한다음 Enter/Reset Key를 누르면 해당 그룹의 항목들이 표시되며 각 항목에서는 Enter/Reset Key를 이용하여 이동할 수 있다.

5.2.3 설정 모드에서 벗어나는 방법

설정이 완료되거나 설정 Parameter 를 확인하고 설정 모드를 벗어나 정상동작 모드로 이동하기 위해서는 그룹 이름을 표시하고 있을 경우 Up Key 를 사용해 "EXIT/PROGRAM MENU"로 이동한 다음 Enter/Reset Key 를 누르면 벗어날 수 있다.

각 그룹 내부에서 프로그램의 마지막 항목은 "END OF PROCESS"로서 "EXIT/PROGRAM MENU"의 직전 항목이다.

5.2.4 설정 값 수정 방법

설정이 완료되거나 설정 Parameter 를 확인하고 설정 모드를 벗어나 정상적인 동작을 하려면 그룹 이름을 표시하고 있을 경우에는 Up Key 를 이용하여 "EXIT/PROGRAM MENU"로 이동한 다음 Enter/Reset Key 를 누르면 벗어나게 된다. 또한, 해당 그룹 내에서 프로그램을 변경하고 마지막의 "END OF PROCESS"항목이 나온 후에 Enter/Reset Key 를 누르면 바로 "EXIT/PROGRAM MENU"로 이동한다.

숫자를 입력하게 되어 있는 Parameter 일 경우 Shift Key 를 누르면 오른쪽으로 한 자리씩 커서가 이동하고 마지막 자리에서는 가장 처음 자리로 커서가 이동한다. Up Key 를 누르면 숫자가 하나씩 증가하고, 9 까지 증가한 후 다시 0으로 변경된다. Decimal Point 설정할 때는 소수점 자리가 하나씩 증가하고, Time Base 를 설정할 때는 Second/Minute/Hour/Day 순으로 변경된다. Analog 출력 값을 조정하는 항목에서는 출력되는 전류 값이 증가한다.

Down Key 를 누르면 숫자가 하나씩 감소하고 0 일 경우에는 다시 9 로 변경된다. Analog 출력 값을 조정하는 항목에서는 출력되는 전류 값이 증가한다.

Parameter 에 대하여 수정이나 확인이 완료된 후 Enter/Reset Key 를 누르면 해당 항목에서 벗어나 다음 항목을 표시한다.

5.3 설정 항목(Programming the Setup Parameters)

숫자를 입력하는 항목에서는 Shift Key, Up Key, Down Key 를 사용하고 선택을 하는 항목에서는 Up Key 로 선택 한다. 각 항목에서 설정을 마친 후 Enter/Reset Key 를 누르면 다음 항목을 표시한다.

5.3.1 Flow Parameters 그룹

Flow Meter 에 관련된 기본적인 사항을 설정한다.

Display(항목)	Description	Value
K-FACTOR	Frequency Output Type Flow Meter 인 경우 K-Factor(the Pulse per m ³)를 입력 한다.	0.01 to 99,999
FLOW SPAN(at 20mA	Analog Output Type Flow Meter 의 Span 값을 입력한다.(m³/TimeBase)	0.1000 to 99,999
FLOW ZERO(at 4mA)	Analog Output Type Flow Meter 의 Zero 값을 입력한다(m³/TimeBase)	0.0000 to 99,999
FILTER FACTOR	순시유량을 안정적으로 볼 수 있도 록 디지털 필터링을 한다.	01 to 99
FLOW CORRECTION	Analog Output Type Flow Meter 의 선형 (Linear) 또는 제곱근(Square Root) 관 계를 선택한다	LINEAR, SQUARE ROOT
FLOW CUT – OFF	Span 의 xx.xx% 이하는 순시 유량의 지시와 적산을 하지 않는다.	00.00 to 99.99
TOTAL DECIMAL	적산량의 소수점(Decimal Point)을 입력한다. 이 값은 적산과 누적 적산량에 같이 적용된다.	0000, 000.0, 00.00, 0.000
RATE DECIMAL	순시량에 대한 소수점(Decimal Point) 을 입력한다.	0000, 000.0, 00.00, 0.000
FLOW TIME BASE	순시 유량의 기준 시간(Time Base)을 입력한다.	SECOND, MINUTE, HOUR, DAY

ACC-TOTAL RESET	누적 적산량을 Clear 한다. "YES"를 선택한 다음 Enter/Reset Key 를 누르면 값이 clear 된다.	YES, NO
AUTO RETURN	Auto Return 기능으로 "Enable"로 선택하면 아무런 Key 입력이 없으면 10 초후에 Display 상에 default 값을 표시한다. "Disable"로 선택하면 Mode/Dis Key 에 의해서만 표시 항목을 변경할수 있다.	Enable, Disable
END OF PROCESS	Flow Parameter 의 끝을 의미한다. 여기서 Enter Key 를 누르면 EXIT/PROGRAM MENU 으로 이동한다.	

5.3.2 Steam Parameters □룹

Steam/Gas 에 관련된 각종 parameter 를 설정한다.

Display(항목)	Description	Value
STEAM EQUATION	포화증기(Saturated Steam)와 과열증기 (Superheated Steam)중 측정하려는 종 류를 선택한다.	SATURATED, SUPERHEATED
SENSOR INPUT	포화증기의 경우 온도와 압력 중 어 느것을 기준입력으로 할 것인지 선택 한다.	TEMPERATURE PRESSURE
DRYNESS FRACTION	포화증기의 건도(Dryness)를 입력한다. 과열증기와 이상 기체의 경우 이 항 목은 나타나지 않는다. 건도 100%는 1.0000 이다.	0.8000 ~ 1.0000
TEMPERATURE UNIT	센서의 온도단위나 Display 하고 싶은 온도의 단위를 입력한다.	CELSIUS °C, FAHRENHEIT °F
PRESSURE UNIT	센서의 압력단위나 Display 하고 싶은 압력의 단위를 입력한다.	kPa, bar, kg/cm²
RTD OFFSET	RTD 를 사용한 온도입력에서 온도 보 정용으로 사용한다. 실제 온도와 계 측기의 측정온도 차이를 입력한다.	-9999.9 ~ +9999.9

TEMPERATURE at 4mA	4-20mA 전송의 온도입력에서 4mA 일 때의 온도를 입력한다.	-9999.9 ~ +9999.9
TEMPERATURE at 20mA	4-20mA 전송의 온도입력에서 20mA 일 때의 온도를 입력한다	-9999.9 ~ +9999.9
PRESSURE INPUT	압력센서의 입력이 있을 경우 절대압 력(Absolute), 계기압력(Gauge)인지 선 택한다.	ABSOLUTE, GAUGE
ATMOSPHERIC PRESSURE	압력센서의 입력이 계기압력(Gauge) 일 경우 대기압을 입력한다.	000.000 ~ 999.999
PRESSURE at 4mA	4-20mA 전송의 압력입력에서 4mA 일 때의 압력을 입력한다	00000.000 ~ 99999.999
PRESSURE at 20mA	4-20mA 전송의 온도입력에서 20mA 일 때의 압력을 입력한다	00000.000 ~ 99999.999
MASS UNIT	Steam 또는 Ideal Gas 의 Mass 단위를 선택한다.	kg, ton
ENERGY UNIT	Steam 의 Energy 단위를 선택한다	MJ, GJ, Mcal
DEFAULT DISPLAY	Default 로 Display 할 항목을 선택한 다.	MASS FLOW, ENERGY FLOW,
RANGE-OVER CHECK	온도나 압력이 범위를 벗어났을때 경보를 발생하는 기능을 선택한다. Enable 을 선택하면 경보를 발생한다. Low Flow(Analog Flow meter only) 경보 발생여부를 포함한다. Steam 을 장시 간 사용하지 않고 있을 때 유용하다.	Enable, Disable
END OF PROCESS	Steam Parameter 의 끝을 의미한다. 여 기서 Enter Key 를 누르면 EXIT /PROGRAM MENU 으로 이동한다.	

5.3.3 Option 그룹

Option 에 관련된 각종 parameter 를 설정한다.

Display(항목)	Description	Value
RELAY SEQUENCE	Alarm Relay 의 동작 Sequence 를 설정 한다.	HH / H, H / L, L / LL
RELAY1 SET-POINT	Relay 1 의 동작점을 설정한다. 동작점은 순시량의 소수점에 따라 움직인다. 설정 값이 Relay 2 보다 항상 커야만 한다.	0 to 9999999
RELAY2 SET-POINT	Relay 2 의 동작점을 설정한다. 동작점은 순시량의 소수점에 따라 움직인다. 설정 값이 Relay 1 보다 항상 작이야 한다.	0 to 9999999
RELAY DEAD-BAND	Relay 의 히스테리시스 특성값을 입력 한다. 순시의 소수점에 따라 소수점 이 움직인다.	0 to 50000
OUTPUT at 4mA	4mA 일 때의 Set-Point 를 입력시킨다. 소수점은 "RATE DECIMAL" 항목에 정해진 값을 참고한다.	0 to 9999999
OUTPUT at 20mA	20Ma 일 때의 Set-Point 를 입력시킨 다. 소수점은 "RATE DECIMAL" 항목 에 정해진 값을 참고한다.	0 to 9999999
SIGNAL TYPE	직렬 통신 방식을 설정한다. Parity none, 8bit, 비동기 통신 방식이다.	RS232 RS422 RS485
BAUD RATE	통신 속도(Baud Rate)를 정한다. 단위 는 BPS(Bit Per Second)이다.	1200 2400 4800 9600 19200
DATA LOGGING	통신 대상이 Computer 인지 Printer 인 지를 선택한다.	COMPUTER, PRINTER
PRINT METHOD	Printer 를 선택하였을 경우 Printing 방법을 설정한다. "RESET KEY"를 설정하면 Reset Key 를 누를 때마다, "TIME INTERVAL"을 설정하면 설정한 Time Interval 에 의해 출력 된다.	RESET KEY, TIME INTERVAL

PRINT INTERVAL	Printing 을 "TIME INTERVAL"로 할 경우 시간을 설정한다. 설정한 시간 이 되면 Printing 이 된다.	1 MINUTE, 10 MINUTES, 30 MINUTES, 1 HOUR, 6 HOURS, 12 HOURS, 24 HOURS
PRINT UNIT	Print 설정 시 단위를 포함하여 출력할 것인지 선택한다. "DEFAULT"를 선 택하면 해당 단위가 함께 출력된다.	NONE, DEFAULT
RESET METHOD	Reset 을 언제 시킬 지를 설정한다. "RESET KEY"를 설정하면 Reset Key를 누를 때마다 Reset 이 되고, "PRINT TIME"을 설정하면 Printing 될 때마다 Reset 되고, "24:00"을 설정하면 매일 24 시가 되면 자동으로 Reset 된다. Printing 을 "PRINT TIME"으로 설정하면 print 후에 reset 된다.	RESET KEY, PRINT TIME, 24:00
DATE FORMAT	Date Format 을 선택한다. "EUROPE"으로 선택하면 day/month/year 로 표시가되고, "USA"로 선택하면 month/day/year 로 표시가되고, "KOREA"로 선택하면 year/month/day로 표시된다.	EUROPE, USA, KOREA
TIME SET	TIME SET 현재 날짜 및 시간을 설정한다.	
IDENTIFICATION	Steam Flow Computer 의 ID 번호 (Identification Number)를 입력한다.	00 to 99
END OF PROCESS	Option 의 끝을 의미한다. 여기서 Enter Key 를 누르면 EXIT /PROGRAM MENU 으로 이동한다.	

5.3.4 Test 그룹

Calibration 또는 Test 에 관련된 내용을 설정한다.

Display(항목)	Description	Value
FREQUENCY	입력이 Frequency Type 일 경우에 입력되는 주파수를 나타내 준다. 주파수의 단위는 Hz 이고 최대 5000.0Hz 까지 측정이 가능하다.	XXXX.XHz
ANALOG	입력이 Analog Type 일 경우 입력되는 전류값을 표시한다. 단위는 mA 이고 최대 20mA 까지 측정이 가능하다.	XX.XxmA
TEMPERATURE	Sensor 입력으로 RTD 를 받을 경우에 는 °C 를 표시하고, 4-20mA 를 받을 경우에는 mA를 지시한다.	XXX.X°C
PRESSURE	Sensor 입력으로 압력을 받을 경우 현 재의 mA를 지시한다.	XX.XxmA
4mA OUTPUT ADJUST	4mA 값을 조정한다. Up Key 를 누르면 전류가 증가하게 되고, Down Key를 누르면 전류가 감소하게 된다.	> <
20mA OUTPUT ADJUST	20mA 값을 조정한다. Up Key를 누르면 전류가 증가하게 되고, Down Key를 누르면 전류가 감소하게 된다.	> <
RELAY1 ON/OFF TEST	Relay 1을 On/Off 시켜 접점을 Test 해볼 수 있다. Up Key 를 누르면 "RELAY ON" 또는 "RELAY OFF"로 변경되면서 Relay 1 접점이 On/Off 되게 된다.	RELAY ON, RELAY OFF
RELAY2 ON/OFF TEST	Relay 2을 On/Off 시켜 접점을 Test 해볼 수 있다. Up Key 를 누르면 "RELAY ON" 또는 "RELAY OFF"로 변경되면서 Relay 2 접점이 On/Off 되게 된다.	RELLAY ON, RELAY OFF
END OF PROCESS	TEST 의 끝을 의미한다. 여기서 Enter Key 를 누르면 EXIT /PROGRAM MENU 으로 이동한다.	

5.4 전류 교정(Analog Output Calibration)

Analog 출력 값이 정확하게 맞지 않을 경우 현장에서 Program 으로 조정 해 줄수 있다. 이 방법은 Program Mode 에 Test 그룹에 있는 "4mA OUTPUT ADJUST"와 "20mA OUTPUT ADJUST" 항목에서 Offset 값을 조정해 주는 방법이다.

우선 Tester 등과 같이 전류를 측정할 수 있는 장비를 준비한 다음 아래의 결선방법으로 결선을 완료한 후에 "4mA ADJUST" 나 "20mA ADJUST" 항목을 설정한 다음 Up/Down Key를 이용하여 전류를 증감시킨다.

- 1. 내부 전원을 사용할 경우
- 2. 외부 전원을 사용할 경우

5.4.1 Zero Calibration

항목 "4mA OUTPUT ADJUST"에서는 4mA 가 출력된다. Up Key를 누르면 전류가 증가하게 되고, Down Key를 누르면 전류가 감소하게 된다. Up 이나 Down Key를 길게 누르면 출력 전류 값이 빠르게 증가 또는 감소하게 된다.

5.4.2 Span Calibration

항목 "20mA OUTPUT ADJUST" 항목에서는 20mA 가 출력된다. Up Key 를 누르면 전류가 증가하게 되고, Down Key 를 누르면 전류가 감소하게 된다. Up 이나 Down Key 를 길게 누르면 출력 전류 값이 빠르게 증가 또는 감소하게 된다.

정확하게 조정이 완료되었으면 Enter/Reset Key 를 누르면 해당 Offset 값을 저장하고 조정이 완료된다.

6. 제품 치수(Dimension)

6.1 Panel Cutting Size

6.2 Panel Mount Type

6.3 Explosion Protected Box

6.4 Weather Proof Type

7. 결선(Wiring Designations)

7.1 기본 결선(Basic Wiring)

Terminal	FC410S-PXX	FC410S-AXX	
1	AC / DC PC	OWER INPUT	
2	AC / DC PC	OWER INPUT	
3	AC Fram	e Ground	
4	Relay 1 – Normal	lly Closed	
5	Relay 1 – Commo	on	
6	Relay 1 – Normal	lly Open	
7	Relay 2 – Normal	lly Closed	
8	Relay 2 – Commo	on	
9	Relay 2 – Normal	lly Open	
10	Error Signal Output	(Open Collector +)	
11	Error Signal Output	Error Signal Output(Open Collector -)	
12	Pulse Signal Output(Open Collector +)		
13	Pulse Signal Output(Open Collector -)		
14 – 17	Option 에 따라 다	Option 에 따라 다름(별도 표 참조)	
18	DC Power Output(+24V)	DC Power Output(+24V)	
19	Flow Pulse Signal Input(+)		
20	Flow Pulse Signal Input(-)		
21 – 36	Option 에 따라 다	름(별도 표 참조)	
37		Flow Analog Signal Input(-)	
38			
39		Flow Analog Signal Input(+)	
18		DC Power Output(+24V)	

7.2 Remote 및 Analog Output Option 결선

Terminal	Remote Option	Analog Output Option
21	Remote Switch COMMON	
22	Remote RESET Switch	
23		내부 전원 사용할 때 Signal(+)
24		내부 전원 사용할 때 Signal(-)
25		외부 전원 사용할 때 Signal(-)
26		외부 전원 사용할 때 Signal(+)

7.3 Communication Option 결선

Terminal	RS-232 Option	RS-422/485 Option
14	TX(Data Output)	RX(-)
15	RX(Data Input)	RX(+)
16	GND(Signal Ground)	TX(-)
17	CTS	TX(+)

7.4 Pressure Input 결선

Terminal	4-20mA Pressure Input	
27	Press. Analog Signal Input(-)	
28		
29	Press. Analog Signal Input(+)	
18	DC Power Output(+24V)	DC Power Output(+24V)

7.5 Temperature Input 결선

Terminal	RTD Input Option	4-20mA Input Option
34	b	Temp. Analog Signal Input(-)
35	В	Temp. Analog Signal Input(+)
36	A	

RS-232/422/485 Communication for FC410S

1. 사양(Specification)	49
2. Hardware Connection	49
2.1 RS-232 Connection	50
2.2 RS-422 Connection	51
2.3 RS-485 Connection	52
3. Software Protocol	53
3.1 Address	54
3.2 Address 별 명령어 사용법	55
3.2.1 Mass Flow Rate (Address #01)	55
3.2.2 Mass Total (Address #02)	55
3.2.3 Energy Flow Rate (Address #03)	576
3.2.4 Energy Total (Address #04)	586
3.2.5 Acc Total (Address #05)	597
3.2.6 Density (Address #06)	57
3.2.7 Temperature (Address #07)	57
3.2.8 Pressure (Address #08)	58
3.2.9 v (Specific Volume) (Address #09)	58
3.2.10 h (Specific Enthalpy) (Address #10)	58
3.2.11 Date (Address #28)	58
3.2.12 Time (Address #29)	59
3.2.13 다수 Controller 에 동시에 쓰기	59
3.3 Modbus RTU	60
3 3 1 Address	60

1. 사양(Specification)

Type: RS232, RS-422 or RS485

Baud Rate: 1200 to 19200 BPS

Parity: NONE
Data bit: 8-Bit
Stop bit: 1-Bit

ID Code: For multi point communications, a unique address can be

programmed

2. Hardware Connection

Computer 나 기타 Controller 에서 통신 라인을 연결하여 현재 Flow Controller 의 내용을 확인할 수 있다. 또한 간략한 설정도 통신으로 가능하다.

통신은 크게 RS-232 와 RS-422/RS-485 로 구분할 수 있다. RS-232 의 경우에는 Computer 의 Serial Port 나 Multi Port 에 바로 연결하여 사용할 수 있고, RS-422/RS-485 는 별도의 RS-232 to RS-422/RS-485 Converter 를 사용하거나 RS-422/RS-485 가 지원이 되는 Multi Port 를 사용하여야만 한다. RS-485 는 RS-422 에서 TX+와 RX+, TX-와 RX-를 서로 Short 시켜 사용할 수 있다.

RS-232 의 경우에는 거리가 13-15M 로 제한이 되고, RS-422/RS-485 의 경우에는 1.2KM 이상 Data 를 전송하지 못한다. 1.2KM 이상 Data 전송을 원할 경우에는 전용선 Modem 등과 같은 장비를 이용하여 전송하여야 한다.

2.1 RS-232 Connection

RS-232 의 경우는 Null Modem 으로 동작하므로 3 선(TX, RX, GND)만 연결하여 사용할 수 있다. 대부분의 Computer 는 RS-232 를 바로 지원하므로 Computer 의 Serial Port 에 바로 연결하여 사용할 수 있다.

Computer 의 Serial Port 는 9-Pin D-Sub Connector 일 경우와 25-Pin D-Sub Connector 일 경우 신호 대 Pin 번호가 서로 다르므로 다음 표를 참고하여 결선하여야 한다.

Computer			400-Seris	
25-Pin	9-Pin	Signal	Conti	roller
2	3	TX	RX	15
3	2	RX	TX	14
7	5	GND	GND	16

RS-232 의 경우에는 거리가 13-15M 로 제한이 되므로 거리가 가까울 경우에만 사용하여야 한다. 또 안정성을 위해 Shield Cable 을 사용할 것을 권장한다.

2.2 RS-422 Connection

일반전인 Computer 의 경우에는 RS-422 을 지원하지 않으므로 RS-232 to RS-422 Converter 를 사용하거나 RS-422 가 지원이 되는 Multi Port 를 사용하여야만 연결이 가능하다.

RS-422 의 경우에는 4 선이 연결이 되어야 하나 특수한 경우에는 Ground 를 연결하여야 한다. 또한 양측에 종단 저항(120-Ohm)이 필요할 경우도 있으니 유의해야한다.

Multi Drop 으로 여러 개의 Controller 를 연결이 최대 32 개까지 가능하다. Cable 은 Twisted Pair with Shield Cable 을 사용하여야 한다. 거리는 최대 1.2KM 까지 가능하다.

2.3 RS-485 Connection

일반전인 Computer 의 경우에는 RS-485 을 지원하지 않으므로 RS-232 to RS-485 Converter 를 사용하거나 RS-485 가 지원이 되는 Multi Port 를 사용하여야만 연결이 가능하다.

RS-485 의 경우에는 2 선이 연결이 되어야 하나 특수한 경우에는 Ground 를 연결하여야 한다. 또한 종단 저항(120-Ohm)이 필요할 경우도 있으니 유의해야 한다.

Multi Drop 으로 여러 개의 Controller 를 연결이 최대 32 개까지 가능하다. Cable 은 Twisted Pair with Shield Cable 을 사용하여야 한다. 거리는 최대 1.2KM 까지 가능하다.

또한 RS-485 의 연결은 RS-422 에서 TX+와 RX+, TX-와 RX-를 서로 Short 시켜 연결해야 한다.

3. Software Protocol

FC410/420 Flow Controller 는 ASCII 형태의 Protocol 을 지원한다.

전송:I<ID><R/W><Address><Command><CR>

수신 :<ID><Space><Address><Space><Value><CR><LF>

I: 명령어의 시작을 의미하며 ASCII 'I' Code 값(Hex code 로는 0x49)이다.

ID: 두 자리의 숫자로 정의되며 Multi Drop 으로 사용 시 Controller의 구분용으로 사용된다.

R/W : 값을 확인하고자 할 경우에는 ASCII Code 'R'(0x52)을 값을 쓰고자 할 경우에는 ASCII Code 'W'(0x57)를 사용하면 된다.

Address: 값을 읽거나 쓰고자 하는 곳의 위치로 두 자리 숫자로 정의된다.

Command: Write 시만 유효하며 값이나 명령어가 사용된다.

Value: 읽고자 하는 값으로 모두 ASCII Code 로 처리된다.

Space: 공백으로 Hex code 로 0x20의 값이다.

CR: Carriage Return 으로 Hex code 로 0x0d의 값이다.

LF: Line Feed 로 Hex code 로 0x0a 의 값이다.

* Controller 의 모든 수치데이타 응답은 항상 부호를 포함한다.

예) 온도값 -35.75 를 응답할 경우 (ID는 01 이라면)

01△**07**△**-32.75** (△는 공백, 07 은 온도 address 임)

기타예)

01△**02**△+**0** (△는 공백, 02 은 Mass Total address 임)

 $01\triangle02\triangle+0.0$

01△07△-35.03 (-온도표시 예)

주 1) 이 제품에서 사용되는 프로토콜을 위한 문자의 16진수.

I: 0x49 R: 0x52

W : 0x57

 $0\sim9:0x30\sim0x39$

/: 0x2F

Space: 0x20

CR: Carrige Return (0x0D)

LF: Line Feed (0x0A)

주 2)명령에 대한 응답은 항상 있으나 전체 Control 명령 시에는 Response 가 없다. 예를 들어 여러 대의 Controller 가 있을 경우 특정 시간에 전체 Controller 의 양을 Clear 시키거나 Time 을 새로 설정할 경우 한 대씩 할 경우에는 시간 Gap 이 발생하므로 이럴 경우에는 ID 를 "00"으로 처리하여 전송하면 모든 Controller 가 동시에 그 명령을 수행한다. Multi Drop 으로 구성되어 있을 경우 여러 대의 Controller 가 동시에 응답을 하면 안되므로 이럴 경우에는 응답을 하지 않는다.

3.1 Address

Address	Name	State	Length	Remarks	
01	Mass Flow Rate	R	Max. 17-char		
02	Mass Total	R/W	Max. 17-char	Write 는 0 만 가능	
03	Energy Flow Rate	R	Max. 17-char		
04	Energy Total	R/W	Max. 17-char	Write 는 0 만 가능	
05	Acc Total	R/W	Max. 17-char	Write 는 0 만 가능	
06	Density	R	Max. 17-char		
07	Temperature	R	Max. 17-char		
08	Pressure	R	Max. 17-char		
09	V (Specific Volume)	R	Max. 17-char		
10	H (Specific Enthalpy)	R	Max. 17-char		
28	Date	R/W			
29	Time	R/W			

3.2 Address 별 명령어 사용법

- ☞ 여기서 전송이란 PC 또는 PLC 등이 Flow Controller 에게 보내는 명령이며, 수 신이란 명령어를 보냈을 때 Flow Controller 가 응답하는 Message 이다. 전송 및 수신의 모든 명령어와 Message 는 ASCII Code 형태로 전송되고 수신된다.
- ☞ 여기서 사용되는 △ 표시는 space 로서 Hex code 로 0x20 이다

3.2.1 Mass Flow Rate (Address #01)

Mass Flow Rate 는 Mass Flow 의 순시유량값이다. 읽기만 가능한 값이다.

현재 Controller ID 가 01 이고, Mass Flow 순시량이 5.8 일경우

전송: I01R01<CR>

수신: 01△01△+5.8<CR><LF>

현재 Controller ID 가 01 이고, Mass Flow 순시량이 0 일경우

전송: I01R01<CR>

수신 : 01△01△+0<CR><LF>

현재 Controller ID 가 01 이고, Mass Flow 순시량이 0.0 일경우

전송: I01R01<CR>

수신 : 01△01△+0.0<CR><LF>

* 뒤쪽의 01은 요청받은 address를 나타내는 것임.

3.2.2 Mass Flow Total (Address #02)

Mass Flow Total 값은 전면의 Reset Key 로 Reset 되는 Total 값이다. Mass Flow 에 대한 적산값으로, 읽기도 가능하고, 쓰기는 0으로 Reset 하기 위하여, 0을 쓰는 것만 허용된다.

- 읽기 (ID 가 01 이고, Mass Total 값이 330.01 일 경우)

전송: I01R02<CR>

수신: 01△02△+330.01<CR><LF>

- 쓰기 (ID 가 01 이 대상이고, 적산량 소수점이 2 자리설정시 ; 0 만 쓰기 가능함)

전송: I01W020<CR>

수신 : 01△02△+0.00<CR><LF>

3.2.3 Energy Flow Rate (Address #03)

데이터 송수신에 대한 내용은 3.2.1의 Mass Flow Rate 내용과 동일하다.

Energy Flow Rate 는 Energy Flow 의 순시유량값이다. 읽기만 가능한 값이다.

현재 Controller ID 가 01 이고, Energy Flow 순시량이 5.8 일경우

전송: I01R03<CR>

수신: 01△03△+5.8<CR><LF>

현재 Controller ID 가 01 이고, Energy Flow 순시량이 0 일경우

전송: I01R03<CR>

수신 : 01△03△+0<CR><LF>

현재 Controller ID 가 01 이고, Energy Flow 순시량이 0.0 일경우

전송: I01R03<CR>

수신 : 01△03△+0.0<CR><LF>

3.2.4 Energy Flow Total (Address #04)

데이터 송수신에 대한 사항은 3.2.2 의 Mass Flow Total 이나, 3.2.4 의 Energy Flow Total 과 동일하다.

Acc Total 은 전면의 Reset Key 로는 Reset 되지 않는 누적 적산량이다. 전면의 Reset Key 로 Reset 되는 Total 값이다. Energy Flow 에 대한 적산값으로, 읽기도 가능하고, 쓰기는 0으로 Reset 하기 위하여.0을 쓰는 것만 허용된다.

- 읽기 (ID 가 01 이고, Energy Total 값이 330.01 일 경우)

전송: I01R04<CR>

수신: 01△04△+330.01<CR><LF>

- 쓰기 (ID 가 01 이 대상이고, 적산량 소수점이 2 자리설정시 ;0 만 쓰기 가능함)

전송: I01W040<CR>

수신: 01△04△+0.00<CR><LF>

3.2.5 Acc Total (Mass or Energy) (Address #05)

Acc Total 은 전면의 Reset Key 로 Reset 되지 않는 누적 적산량이다. Acc Total 은 Mass Mode 로 보느냐, Energy Mode 로 보느냐에 따라서 해당 Mode 의 Acc Total 값이 되는 것이다.

데이터의 송수신에 관한 사항은 3.2.2 절과 3.2.4 절의 Total 과 동일하다.

다만, 이 값을 0으로 Write (Reset)하면 Mass Total 과 Energy Total 의 적산량까지 모두 Reset 되게 되어있다.

- 읽기 (ID 가 01 이고, Acc Total 값이 330.01 일 경우)

전송: I01R05<CR>

수신:01△05△+330.01<CR><LF>

- 쓰기 (ID 가 01 이 대상이고, 적산량 소수점이 1 자리설정시 ;0 만 쓰기 가능함)

전송: I01W050<CR>

수신 : 01△05△+0. 0<CR><LF>

3.2.6 Density (Address #06)

Density 는 Steam 종류에서 IDEAL GAS 에서만 필요한 값이며, 역시 수치데이타 응답이므로 ID△ADDRESS△+수치데이타 의 형식으로 응답한다. 읽기만 가능 3.2.7 과 데이터 송수신에 대한 내용은 동일하다.

3.2.7 Temperature (Address #07)

온도값을 나타내며 $ID\triangle ADDRESS \triangle + 호수치데이타 의 형식으로 응답한다.$ 읽기만 가능

예) 온도가 -0.03 도 일경우

전송: I01R07<CR>

수신: 01△07△-0. 03<CR><LF>

3.2.8 Pressure (Address #08)

압력을 나타내며, 역시 수치데이타 응답이므로 ID△ADDRESS△+수치데이타 의 형식으로 응답한다. 읽기만 가능

3.2.7 과 데이터 송수신에 대한 내용은 동일하다.

3.2.9 v (Specific Volume) (Address #09)

비체적(Specific Volume: m3/kg)값이다. 수치데이타 응답이므로 ID△ADDRESS△+수 치데이타 의 형식으로 응답한다.

3.2.7 과 데이터 송수신에 대한 내용은 동일하다.

3.2.10 h (Specific Enthalpy) (Address #10)

Specific Enthalpy 값이다. 역시 수치데이타 응답이므로 ID△ADDRESS△+수치데이타 의 형식으로 응답한다.

3.2.7 과 데이터 송수신에 대한 내용은 동일하다.

3.2.11 Date(Address #28)

Flow Controller 의 날짜를 나타낸다. 날짜를 다시 설정하기 위해서 Write 할 수 있다.

ID 가 01, Controller 의 날짜가 2001 년 5월 2일 인 경우:

전송: I01R28<CR>

수신: 01△28△01/05/02<CR><LF>

ID 가 01, Controller 의 날짜를 2005 년 03 월 20 일로 설정할 경우:

전송: I01W282005/03/20<CR>

수신 : 01△28△05/03/20<CR><LF>

3.2.12 Time(Address #29)

Flow Controller 의 시간을 나타낸다. 수신 byte 수는 13 byte 이며 시간을 다시 설정하기 위해서 Write 할 수 있다.

ID 가 01, Controller 의 시간이 16 시 30 분 10 초일 경우:

전송: I01R29<CR>

수신 : 01△29△16:30:10<CR><LF>

ID 가 01, Controller 의 시간을 09 시 15 분 20 초로 설정할 경우:

전송: I01W2909:15:20<CR>

수신 : 01△29△09:15:20<CR><LF>

3.2.13 Multi Drop 으로 다수의 Flow Controller 가 연결되어 있을경우

각기 다른 ID를 가진 여러대의 Flow Controller 에 한꺼번에 명령을 내릴수 있다.

다만 동시에 읽기 명령은 안되며, 쓰기(설정)하는 것만 가능하다. 이때는 고유 ID 대신에 ID를 "00"으로 주면 된다.

- 예 1) 여러 Controller의 날짜 (Address #28)를 동시에 읽을경우 => 불가 (읽기는 동시에 불가능 하다.)
- 예 2) 여러대의 Controller 에 동시에 날짜를 2005년 10월 01일로 설정할 때

전송: I00W282005/10/01<CR>

수신 : 전송에 대한 응답은 별도로 하지 않는다. 날짜는 설정됨

3.3 Modbus RTU

FC410S 는 Mod-bus(RTU) 형태의 Protocol을 지원한다.(order spec)

3.3.1 Address

No.	Item	Register	Data type	속성	비고
1	Mass Rate	40001, 40002	4Bytes IEEE float	Read	
2	Mass Total	40003, 40004	4Bytes IEEE float	Read	
3	Energy Rate	40005, 40006	4Bytes IEEE float	Read	
4	Energy Total	40007, 40008	4Bytes IEEE float	Read	
5	Acc Total	40009, 40010	4Bytes IEEE float	Read	
6	Density	40011, 40012	4Bytes IEEE float	Read	
7	Temperature	40013, 40014	4Bytes IEEE float	Read	
8	Pressure	40015, 40016	4Bytes IEEE float	Read	
9	Specific Volume	40017, 40018	4Bytes IEEE float	Read	
10	Specific Enthalpy	40019, 40020	4Bytes IEEE float	Read	

Acc Total 은 Default Display 의 누적 적산량이다.

Default Display 가 Mass 일 경우 Mass Acc Total

Energy 일 경우 Energy Acc Total

모든 Data 값은 4321 Swapped FP 이다.