Rule

Masayu Leylia Khodra

Informatics Engineering Study Program
School of Electrical Engineering and Informatics

Institute of Technology Bandung

Review

- ► Knowledge-based system = knowledge + inference
 - Act humanly
 - Expert quality
- ▶ Knowledge representation
 - ▶ Rule: the simplest, most common for KBS
 - Rule based system: the simplest and most widespread solution in the real world

2

Sintaks Rule

Ekspresi logika implikasiif PI,P2,...Pm then QI, Q2,..., Qn

```
if PI,P2,...,Pm then QI, Q2,..., Qr if prekondisi> then <aksi>
```

- ▶ PI,P2,..,Pm: premis, prekondisi, LHS
- ▶ Q1, Q2,..., Qn: aksi, konklusi, RHS

3 IF3054/MLK/3Mar10

Premis / Prekondisi / LHS

- ▶ Pola fakta, representasi:
 - Logika (proposisi/predikat)
 - attribute-value
 - ► Contoh: (location RoomA)
 - ▶ object-attribute-value
 - Entitas fisik seperti box, robot, bunga
 Contoh: (bunga (warna merah) (jenis mawar))
 - Entitas konsep seperti pinjaman bank, in, waktu Contoh:

```
(in (object robot) (location RoomA))
(in (object ?X) (location ?Y))
(pinjaman (waktu 2) (bunga 5))
```

4

Aksi Rule

 Implikasi: penurunan fakta baru

if leher kaku and suhu badan tinggi and kehilangan kesadaran then penyakit meningitis Instruksi: mengubah state sistem

if clear(box1) and
 put(box2)
then on(box2,box1)

Rule Matching

▶ Rule: Z-knowledge

10

Example of a declarative rule:IF X is a rabbitTHEN X is four-legged

- Procedural interpretation:
 IF the memory state has X stored as a rabbit
 THEN update the state to make X four-legged
- ▶ We don't know the situation when X is not a rabbit

9 IF3054/MLK/3Mar10

Contoh Matching Facts **IF:** x is a horse, Comet is-a horse x is the parent of y, is-a horse Prancer y is fast Comet is-parent-of Dasher THEN: x is valuable Comet Prancer is-parent-of "x is-a horse" "x is a parent of y" Prancer is fast Dasher is-parent-of Thunder x = Cometx =Comet , y =Dasher x = Prancerx =Comet , y =Prancer Thunder is fast x = Thunderx = Dasher, y = ThunderThunder is-a horse x = DasherDasher is-a horse "y is fast" Comet is valuable Dasher is valuable y = Prancery = Thunder

Pemrosesan Rules

- ▶ Forward chaining: fakta → konklusi
 - Data driven
 - ▶ Rangkaian Modus Ponen
- ▶ Backward chaining: given goal ← fakta
 - ▶ Goal driven: diberikan goal → trigger rules yg aksinya mengandung goal
 - ▶ Rangkaian abduksi
 - Cocok untuk menelusuri fakta yang masih belum lengkap

Forward Chaining Data ← case-specific-facts Repeat CS ← Preselection {membentuk conflict set} R ← Selection {memilih satu rule dgn conflict-resolving strategy} Data ← aplikasi aksi R terhadap Data Until kondisi terminasi terpenuhi Case-specific -facts Preselection Preselection Fulle Base Preselection Preselection Strategy No Rule Found Exit If specified by rule Exit If specified by rule IF3054/MLK/3Mar10

Contoh Kasus RI: IF (lecturing X) ▶ Fakta AND (marking-practicals X) THEN ADD (overworked X) (month february) R2: IF (month february) (happy alison) THEN ADD (lecturing alison) (researching alison) R3: IF (month february) THEN ADD (marking-practicals alison) R2 atau R3? R4: IF (overworked X) OR (slept-badly X) Tergantung THEN ADD (bad-mood X) conflict resolution strategy R5: IF (bad-mood X) THEN DELETE (happy X) R6: IF (lecturing X) THEN DELETE (researching X) 14 IF3054/MLK/3Mar10

Conflict Resolving/Resolution Strategy

- ▶ Controlling Rule-based System
- Global control
 - Domain independent
 - Hard coded pada interpreter/mesin inferensi
 - Selection:
 - by order: rule order vs fact order, depth (recency) vs breadth (old)
 - ▶ Refractoriness: once only
 - by syntactic structure of the rule: specificity/complexity
 - LEX (fact recency + complexity), MEA (old fact in first condition)
- Local control
 - Domain dependent
 - ▶ Selection by means of supplementary knowledge: priority, meta rules, goal variable

15

IF3054/MLK/3Mar10

Selection by Order

- Rule order strategy
- ▶ Fact order strategy
 - Depth strategy (recency):Prefer instantiations by new facts
 - Breadth strategy:Prefer instantiations by old fact

16

Selection by Order

▶ Knowledge-base:

if (priority second) then out("print second")
if (priority first) then out("print first")
if (priority third) then out("print third")

Facts:

(priority first)
(priority second)
(priority third)

By rule order FIFO	By fact order (recency) LIFO	By fact order (breadth) FIFO
print second	print third	print first
print first	print second	print second
print third	print first	print third

17

IF3054/MLK/3Mar10

Refractoriness

 Suatu rule tidak diperbolehkan diaktivasi lebih dari satu kali dengan data yang sama

R1:IF (lecturing X)
AND (marking-practicals X)
THEN ADD (overworked X)

R5: IF (bad-mood X)
THEN DELETE (happy X)

(3.2....

R6: IF (lecturing X)

R2: IF (month february)
THEN ADD (lecturing alison)

THEN DELETE (researching X)

THEINADD (lecturing alisor

Fakta

R3: IF (month february)
THEN ADD (marking-practicals alison)

(month february)
(happy alison)
(researching alison)

R4: IF (overworked X)
OR (slept-badly X)

THEN ADD (bad-mood X)

Iterasi CS
I {R2, R3}

R R2 R6

I8

Refractoriness Example

- KB: RI: IF (priority X) THEN ADD (print X)
- Facts: (priority first) (priority second) (priority third)
- ▶ Conflict resolution strategy: refractoriness, recency
- Inference results:
 print third
 print second
 print first

19

IF3054/MLK/3Mar10

Selection by Syntactic Structure of the Rule

- Specificity / complexity
- ▶ Select most specific rule first
- Example:
 - Conflict set: {R1,R2} R1: if A, B, C then <aksi R1> R2: if A,C then <aksi R2>
 - A and B and C is more specific than A and C → select R I

20

Specificity / Complexity Example

```
(defrule swap
  (goal sort)
  (neighbor ?X ?Y)
  ?Xs <- (holds ?X ?a)
  ?Ys <- (holds ?Y ?b>?a)
  =>
   (modify ?Xs (number ?b))
   (modify ?Ys (number ?a))
  )

(defrule endsort
   ?c <- (goal sort)
   =>
   (modify ?c indexing)
)
```

- Conditions of endsort less complex than swap
- Goal is changed only when no swap applies

IF3054/MLK/3Mar10

Selection by Supplementary Knowledge: Priority

Select high priority rule Example:

22

Selection by Supplementary Knowledge: Goal Variable

Meta Rules

- Rules tidak bisa dipanggil seperti prosedur
 - Aktivasi rule hanya bisa dilakukan jika premis dipenuhi
- Knowledge and meta-knowledge tidak berbeda pd RBS
- Peran: mengarahkan reasoning
 - Pruning rule pada conflict set
 - <u>If</u> the culture was not obtained from a sterile source, there are rules which mention in their premise a previous organism

then each of them is not going to be useful

- Reorder relevant domain rules: try this before trying that
 - If the infection is pelvic-abscess,

there are rules which mention in their premise enterobacteriaceae,

there are rules which mention in their premise gram-positive rods,

24 then the former should not be done before the latter

Backward Chaining

Procedure FINDOUT (GOAL)

If (GOAL can be inferred)
then

(set RULE-LIST = list all rules whose action part fulfills GOAL)
until (RULE-LIST = empty) or (GOAL inferred) do
MONITOR(first or next rule from RULE-LIST)
delete this rule from RULE-LIST
else (request GOAL)

> 25

IF3054/MLK/3Mar10

Backward Chaining (2)

Procedure MONITOR (RULE)

Test first proposition of condition part of RULE

repeat

 $\underline{\text{If}}$ parameters known $\underline{\text{then}}$

 \underline{if} proposition true \underline{then}

proposition ← next proposition

else RULE not executable

else FINDOUT(PARAMETERS)

<u>Until</u> (no more propositions to test) or (RULE not executable)

 $\underline{\text{If}}$ (no more propositions to test) $\underline{\text{then}}$

execute action part of RULE

26

Contoh Backward Chaining

If (GOAL can be inferred) then (set RULE-LIST = list all rules whose action part fulfills GOAL)

until (RULE-LIST = empty)or (GOAL inferred) do MONITOR(first or next rule from RULE-LIST) delete this rule from RULE-LIST

else (request GOAL)

Procedure MONITOR (RULE)

Procedure FINDOUT (GOAL)

Test first proposition of condition part of RULE

repeat

If parameters known then if proposition true then

proposition ← next proposition else RULE not executable else FINDOUT(PARAMETERS)

<u>Until</u> (no more propositions to test) or (RULE not executable)

If (no more propositions to test) then execute action part of RULE

▶R5: if Z and L then S

RI: if A and N then E

▶R3: if D or M then Z

R2: if A then M

R4: if Q and (not W) and (not

Z) then N

▶R6: if L and M then E

▶R7: if B and C then Q

▶Fakta: A,L

▶Goal: E?

27

IF3054/MLK/2Mar09

Inferensi dgn Backward Chaining

R5: if Z and L then S RI: if A and N then E

R3: if D or M then Z

R2: if A then M

R4: if Q and (not W) and (not Z) then N

R6: if L and M then E

R7: if B and C then Q

Fakta: A,L

Goal: E?

FindOut(E)

Monitor(R1) FindOut(N)

Monitor(R4)

FindOut(Q) Monitor (R7)

FindOut(B) FindOut(C)

FindOut(~W) FindOut(~Z) Monitor(R6)

FindOut(M) Monitor(R2)

Yes

{RI,R6} A, FindOut(N)

{R4}

FindOut(Q), FindOut(~W), FindOut(~Z)

FindOut(B), FindOut(C)

request B request C request ~W request ~Z L, FindOut(M)

{R2}

28

PR: What action to take to get to a theatre

R	IF	THEN
I	Distance > 5 miles	Means is "drive"
2	Distance > 1 mile, time < 15 minutes	Means is "drive"
3	Distance > 1 mile, time > 15 minutes	Means is "walk"
4	Means is "drive", location is "downtown"	Action is "take a cab"
5	Means is "drive", location is not "downtown"	Action is "drive your car"
6	Means is "walk", weather is "bad"	Action is "take a coat and walk"
7	Means is "walk", weather is "good"	Action is "walk"

Lakukan inferensi:

Distance is about 6 miles; Weather is "bad"; Location is downtown; Time is about 20 minutes

- 1. Forward chaining dgn conflict resolution: rule order
- 2. Forward chaining dgn conflict resolution: refractoriness, specificity


```
Struktur Decision Tree pada Rule-BS
                                                         (defrule simpul-tanya-pilihan
 (deftemplate simpul
     (slot nama)
                                                             ? simpul <- (simpul-sekarang ?nama)
    (slot tipe)
                                                             (simpul(nama ?nama)
     (slot pertanyaan)
                                                                     (tipe pilihan)
     (slot jawaban-1)
                                                                     (pertanyaan ?pertanyaan))
     (slot jawaban-2)
                                                             (not (jwb ?))
     (slot jawaban-3)
     (multislot solusi))
                                                             (printout t ?pertanyaan " (jawaban 1/2/3) ")
                                                             (assert (jwb (read))))
 ;;; Definisi Rule Mesin Inferensi;
                                                         (defrule proses-jawaban I
 ? simpul <- (simpul-sekarang ?nama)
                                                             (simpul(nama ?nama) (tipe pilihan)
 (defrule inisialisasi
     (declare (salience 90))
                                                             (jawaban-I ?cabang-jawaban I))
                                                             ?jwb <- (jwb jawaban1)
     (not (simpul (nama akar)))
     (load-facts "ketentuan-anak.dat")
                                                             (retract ? simpul ?jwb)
     (assert (simpul-sekarang akar)))
                                                             (assert (simpul-sekarang ?cabang-jawaban I))
                                                             (format t "%s," ?cabang-jawaban I))
3I
                                                           IF3054/MLK/2Mar09
```


Implementasi Decision Tree sbg Fakta

(simpul(nama jenis-kelamin-anak1) (tipe pilihan) (pertanyaan PertanyaanAnak3)

(jawaban-1 Goal-Ketentuan-Anak2) (jawaban-2 Goal-Ketentuan-Anak3) (jawaban-3 nil)) (simpul(nama jenis-kelamin-anak2) (tipe pilihan)

> (pertanyaan PertanyaanAnak4) (jawaban-I Goal-Ketentuan-Anak4)

> (jawaban-2 Goal-Ketentuan-Anak5)

(jawaban-3 Goal-Ketentuan-Anak6))

(simpul(nama Goal-Ketentuan-Anakl)

(tipe solusi) (solusi TidakMendapatHP))

(simpul(nama Goal-Ketentuan-Anak2)

(tipe solusi) (solusi SolusiAnak I))

(simpul(nama Goal-Ketentuan-Anak3)

(tipe solusi) (solusi SolusiAnak2)) (simpul(nama Goal-Ketentuan-Anak4)

(tipe solusi) (solusi SolusiAnak3))

(simpul(nama Goal-Ketentuan-Anak5)

(tipe solusi) (solusi SolusiAnak4))

(simpul(nama Goal-Ketentuan-Anak6)

(tipe solusi) (solusi SolusiAnak5))

33

IF3054/MLK/2Mar09

Fitur Rule

- Modularity
 - ► Each rule defines a small, relatively independent piece of knowledge
- Incrementability
 - New rules can be added to the knowledge base relatively independently of other rules
- Modifiability
 - Old rules can be changed relatively independently of other rules
- Support systems transparency

34