Kriptografi

TK13029
COMPUTATION II

Review Teori Bilangan

Pembagian

- Jika a dan b adalah bilangan bulat dimana $a \neq 0$, dikatakan a membagi habis b jika ada bilangan bulat c sehingga b = ac.
 - a disebut sebagai faktor atau pembagi b
 - *b* disebut kelipatan dari *a*
 - *a* | *b* : *a* membagi *b*
 - $a \nmid b : a$ tidak membagi b
 - Jika $a \mid b$ dan $a \mid c$, maka $a \mid (b + c)$
 - Jika $a \mid b$, maka Jika $a \mid bc$, untuk semua bilangan bulat c
 - Jika $a \mid b$ dan $b \mid c$, maka $a \mid c$
- Contoh: 3 | 7 dan 3 | 12
 - 3 \ 7 dan 3 | 12

Algoritma Pembagian

- Diketahui a adalah bilangan bulat dan d bilangan bulat positif. Terdapat bilangan bulat unik q dan r, dengan $0 \le r < d$, sehingga a = dq + r
 - a adalah bilangan yang dibagi (dividen)
 - *d* adalah pembagi (*divisor*)
 - q adalah hasil bagi (quotient)
 - r adalah sisa bagi (reminder)
 - $q = a \operatorname{div} d \operatorname{dan} r = a \operatorname{mod} d$
- Contoh: tentukan
 - q dan r untuk 101 dibagi 11
 - 101 = 11(9) + 2, q = 9 dan r = 2
 - $q \operatorname{dan} r \operatorname{untuk} -11 \operatorname{dibagi} 3$
 - -11 = 3(-4) + 1, q = -4 dan r = 1 (r tidak boleh negatif karena $0 \le r < 3$)

Modular Arithmetic (1)

- Jika a dan b adalah bilangan bulat dan m bilangan bulat positif, maka a dikatakan kongruen b modulo m jika m membagi a-b.
 - $a \text{ kongruen } b \text{ modulo } m : a \equiv b \pmod{m}$
 - a tidak kongruen b modulo $m : a \not\equiv b \pmod{m}$
 - $a \equiv b \pmod{m}$ jika dan hanya jika $a \mod m = b \mod m$
 - $a \equiv b \pmod{m}$ jika dan hanya jika terdapat bilangan bulat k sehingga a = b + km
- Contoh:
 - apakah 17 kongruen 5 modulo 6?
 - 6 membagi habis (17 5) = 12
 - apakah 24 kongruen 14 modulo 6?
 - 6 tidak membagi habis (24 14) = 10

Modular Arithmetic (2)

- Diketahui m bilangan bulat positif. Jika $a \equiv b \pmod{m}$ dan $c \equiv d \pmod{m}$, maka
 - $a + c \equiv b + d \pmod{m}$
 - $ac \equiv bd \pmod{m}$
 - $(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$
 - $ab \mod m = ((a \mod m)(b \mod m)) \mod m$

Modular Exponentiation

- Menghitung b^n mod m
- Konsep

$$n = (a_{k-1}a_{k-2} \dots a_1a_0)_2$$

$$b^n = b^{a_{k-1} \cdot 2^{k-1} + \dots + a_1 \cdot 2 + a_0}$$

$$= b^{a_{k-1} \cdot 2^{k-1}} \cdot \dots \cdot b^{a_1 \cdot 2} \cdot b^{a_0}$$

```
Contoh: 3<sup>11</sup>
11 = (1011)_2
3^{11} = 3^{1 \cdot 8} \cdot 3^{\overline{0} \cdot 4} \cdot 3^{1 \cdot 2} \cdot 3^{1}
        =3^8 \cdot 3^0 \cdot 3^2 \cdot 3^1
        = 6561 \cdot 1 \cdot 9 \cdot 3 = 177147
```

ALGORITHM 5 Fast Modular Exponentiation.

```
procedure modular exponentiation(b: integer, n = (a_{k-1}a_{k-2} \dots a_1a_0)_2,
         m: positive integers)
power := b \mod m
for i := 0 to k - 1
      if a_i = 1 then x := (x \cdot power) \mod m
      power := (power \cdot power) \mod m
return x\{x \text{ equals } b^n \text{ mod } m\}
```


• Contoh: 3¹¹ **mod** 13 $11 = (1011)_2, x = 1,$ power = 3 mod 13 = 3 $a_0 = 1$, $x = (1 \cdot 3) \text{mod } 13 = 3$, $power = 3 \cdot 3 \mod 13$ $= 3^2 \mod 13$ $= 9 \mod 13$ = 9 $a_1 = 1$, $x = (3 \cdot 9)$ **mod** 13 = 1, power = 81 mod 13 = 3 $a_2 = 0, x = 1,$ power = 9 mod 13 = 9

 $a_3 = 1, x = (1 \cdot 9) \text{mod } 13 = 9,$

power = 81 mod 13 = 3

Jadi, 3^{11} **mod** 13 = 3

Modular Exponentiation

```
ALGORITHM 5 Fast Modular Exponentiation.
```

```
procedure modular exponentiation(b: integer, n = (a_{k-1}a_{k-2} \dots a_1a_0)_2, m: positive integers)
```

```
x := 1

power := b \mod m

for i := 0 \text{ to } k - 1

if a_i = 1 \text{ then } x := (x \cdot power) \mod m

power := (power \cdot power) \mod m

return \ x\{x \text{ equals } b^n \mod m\}
```


Greatest Common Divisors (GCD)

Faktor Persekutuan terBesar (FPB)

- GCD(a,b): bilangan terbesar yang membagi habis a dan b, untuk $a \neq 0$ dan $b \neq 0$ adalah bilangan bulat
 - GCD(24,36) = 12
 - GCD(17,22) = 1
- Bilangan bulat a dan b disebut relatively prime, jika GCD(a, b) = 1
- Deretan bilangan bulat $a_1, a_2, \dots a_n$ disebut pairwise relatively prime jika $GCD(a_i, a_i) = 1$, untuk $1 \le i < j \le n$.
 - 10, 17, 21 adalah pairwise relatively prime karena GCD(10,17)=1, GCD(17,21)=1, dan GCD(10,21)=1
 - 10, 19, 24 bukan pairwise relatively prime karena GCD(10,24) = 2

Kongruensi

- $a \equiv b \pmod{m}$ jika dan hanya jika $a \mod m = b \mod m$
 - Contoh: apakah $14 \equiv 8 \pmod{6}$?
 - Iya, karena $14 \mod 6 = 8 \mod 6$

- **→**
- 2 = 2
- Jika m bilangan bulat positif dan a, b, c adalah bilangan bulat. Jika $ac \equiv bc \pmod{m}$ dan GCD(c, m) = 1, maka $a \equiv b \pmod{m}$
 - c adalah relatively prime dengan m
 - *m* | *a* − *b*

Kongruensi Linier (1)

- $ax \equiv b \pmod{m}$, untuk m bilangan bulat positif, a dan b adalah bilangan bulat, dan x adalah peubah.
 - Bagaimana mencari semua nilai x yang memenuhi kongruensi $ax \equiv b \pmod{m}$?
 - Inverse dari a modulo m, $\bar{a}a \equiv 1 \pmod{m}$, untuk a dan m adalah relatively prime.
 - \bar{a} disebut inverse perkalian
 - Gunakan persamaan euclidean untuk mencari GCD(a, m) = 1, yaitu $m = k \cdot a + 1$, dilanjutkan dengan extended euclidean
- Contoh: tentukan inverse dari 3 modulo 7

$$7 = 2 \cdot 3 + 1$$

$$\rightarrow$$

$$7 = 2 \cdot 3 + 1$$
 \rightarrow $-2 \cdot 3 + 1 \cdot 7 = 1$

maka —2 adalah inverse dari 3 modulo 7

Selain itu, (-2 + 7) = 5 dan 12 juga termasuk dari inverse dari 3 modulo 7

Kongruensi Linier (2)

• Solusi untuk $3x \equiv 4 \pmod{7}$ Inverse dari 3 modulo 7 adalah -2 $-2 \cdot 3 = -6 \equiv 1 \pmod{7}$ $-2 \cdot 3x \equiv -2 \cdot 4 \pmod{7}$ $x \equiv -8 \pmod{7}$ $x \mod 7 = -8 \mod 7$ $x \mod 7 = 6$ $x \equiv 6 \pmod{7}$ Untuk x = 6, maka $3 \cdot 6 = 18 \equiv 4 \pmod{7}$ Solusi lainnya untuk x adalah 6 + 7 = 13, 20, ... dan <math>-1, -8, -15, ...

Contoh Inverse a Modulo m

Inverse 55 modulo 7

Euclidean:

$$55 = 7 \cdot 7 + 6$$
 \rightarrow $6 = 55 - 7 \cdot 7$

$$6 = 55 - 7 \cdot 7$$

$$7 = 1 \cdot 6 + 1$$
 \rightarrow $1 = 7 - 1 \cdot 6$

$$1 = 7 - 1 \cdot 6$$

Extended Euclidean:

$$1 = 7 - 1 \cdot (55 - 7 \cdot 7)$$

$$1 = 8 \cdot 7 - 1 \cdot 55$$

Inverse 55 modulo 7 = -1, atau nilai positifnya (-1 + 7) = 6

Inverse 55 modulo 7 = 6

Inverse 7 modulo 31

Euclidean:

$$31 = 4 \cdot 7 + 3$$

$$31 = 4 \cdot 7 + 3$$
 \rightarrow $3 = 31 - 4 \cdot 7$

$$7 = 2 \cdot 3 + 1$$

$$7 = 2 \cdot 3 + 1$$
 \rightarrow $1 = 7 - 2 \cdot 3$

Extended Euclidean:

$$1 = 7 - 2 \cdot (31 - 4 \cdot 7)$$

$$1 = 9 \cdot 7 - 2 \cdot 31$$

Inverse 7 modulo 31 = 9

Teori Bilangan untuk Kriptografi

Teori Bilangan dan Kriptografi

- Teori bilangan berperan penting untuk kriptografi
 - Proses merubah (**enkripsi**) informasi asli (*plaintext*), menggunakan sebuah atau lebih kunci, menjadi informasi yang sulit dimengerti atau bisa dibaca oleh pihak lain (*ciphertext*).
 - Proses mengembalikan (dekripsi) *ciphertext* ke *plaintext* dengan kunci rahasia yang sama atau berbeda.
- Jenis kriptografi ditentukan dari kunci yang digunakan.
 - Simetris: kunci rahasia yang digunakan untuk enkripsi dan dekripsi sama
 - Asimetris: kunci rahasia yang digunakan untuk enkripsi dan dekripsi berbeda

Model Enkripsi Simetris

Figure 3.1 Simplified Model of Symmetric Encryption

Table konversi dari huruf ke angka:

A atau a = 0 K atau k = 10 U atau u = 20

B atau b = 1 L atau I = 11 V atau V = 21

C atau c = 2 M atau m = 12 M atau w = 22

D atau d = 3 N atau n = 13 X atau x = 23

E atau e = 4 O atau o = 14 Y atau y = 24

F atau f = 5 P atau p = 15 Z atau z = 25

G atau g = 6 Q atau q = 16

H atau h = 7 R atau r = 17

I atau i = 8 S atau s = 18

J atau j = 9 T atau t = 19

Kriptografi Simetris – Klasik (1)

- Shift Ciphers: mempertukarkan karakter
 - Caesar cipher:
 - Enkripsi: $c = (p + k) \mod 26$
 - Dekripsi: $p = (c k) \mod 26$
 - p = karakter pada plaintext
 - *c* = karakter pada ciphertext
 - k = bilangan (kunci rahasia)
 - Affine cipher:
 - Enkripsi: $c = (ap + b) \mod 26$
 - Dekripsi: $p \equiv \bar{a}(c-b) \pmod{26}$
 - a = kunci rahasia pertama
 - $\bar{a} = \text{inverse dari } a$
 - b = kunci rahasia kedua

- Cara menentukan formula dekripsi Affine cipher:
 - $c \equiv (ap + b) \pmod{26}$
 - $c b \equiv ap \pmod{26}$
 - karena GCD(a, 26) = 1, maka terdapat inverse \bar{a} dari a module 26
 - $\bar{a}(c-b) \equiv \bar{a}ap \pmod{26}$, karena $\bar{a}a =$
 - $p \equiv \overline{a}(c-b) \pmod{26}$

Kriptografi Simetris – Klasik (2)

- Block Ciphers: transposition cipher
 - Menggunakan kunci permutasi σ untuk himpunan $\{1,2,\ldots,m\}$, untuk m adalah bilangan bulat positif, yang dipetakan *one-to-one* ke himpunan $\{1,2,\ldots,m\}$ juga.
 - Enkripsi: $c_1c_2 \dots c_m = p_{\sigma(1)}p_{\sigma(2)} \dots p_{\sigma(m)}$
 - Dekripsi: $p_1 p_2 \dots p_m = p_{\sigma^{-1}(1)} p_{\sigma^{-1}(2)} \dots p_{\sigma^{-1}(m)}$
 - Kunci untuk enkripsi $\sigma(i)=j$, karakter ke-i dipindahkan ke posisi j
 - Kunci untuk dekripsi $\sigma^{-1}(j) = i$, karakter ke-j dipindahkan ke posisi i

A atau a = 0	K atau k = 10	U atau u = 20
B atau b = 1	L atau l = 11	V atau v = 21
C atau c = 2	M atau m = 12	W atau w = 22
D atau d = 3	N atau n = 13	X atau x = 23
E atau e = 4	O atau o = 14	Y atau y = 24
F atau f = 5	P atau p = 15	Z atau z = 25
G atau g = 6	Q atau q = 16	
H atau h = 7	R atau r = 17	
I atau i = 8	S atau s = 18	
J atau j = 9	T atau t = 19	

- $c = (13 + 3) \mod 26 = 16$
- $c = (14 + 3) \mod 26 = 17$
- $c = (22 + 3) \mod 26 = 25$
- Ciphertext = UXQ QRZ

Caesar Cipher

- Dekripsi: $p = (c k) \mod 26$
 - $p = (20 3) \mod 26 = 17$
 - $p = (23 3) \mod 26 = 20$
 - $p = (16 3) \mod 26 = 13$
 - $p = (16 3) \mod 26 = 13$
 - $p = (17 3) \mod 26 = 14$
 - $p = (25 3) \mod 26 = 22$
 - Plaintext: RUN NOW

Contoh Perhitungan Affine Cipher

A atau a = 0	K atau k = 10	U atau u = 20
B atau b = 1	L atau l = 11	V atau v = 21
C atau c = 2	M atau m = 12	W atau w = 22
D atau d = 3	N atau n = 13	X atau x = 23
E atau e = 4	O atau o = 14	Y atau y = 24
F atau f = 5	P atau p = 15	Z atau z = 25
G atau g = 6	Q atau q = 16	
H atau h = 7	R atau r = 17	
I atau i = 8	S atau s = 18	
J atau j = 9	T atau t = 19	

- Dekripsi: $p \equiv \bar{a}(c-b) \pmod{26}$
- Gunakan extended Euclidean untuk mendapatkan inverse \bar{a}
- $\bar{a} = 9$
- $p \equiv 9 (c 8) \pmod{26}$
- $p = 9 (c 8) \bmod 26$
 - p = 9 (7 8)**mod** 26 = 17
 - p = 9 (16 8) mod 26 = 20
 - p = 9(21 8) mod 26 = 13
 - p = 9(21 8) mod 26 = 13
 - p = 9(24 8) mod 26 = 14
 - p = 9(22 8) mod 26 = 22
 - Plaintext: RUN NOW

Contoh Perhitungan Transposition Cipher

- Plaintext: "RUN NOW"
- Kunci rahasia $\sigma(1) = 2$, $\sigma(2) = 3$, $\sigma(3) = 1$
- Enkripsi:
 - Ciphertext = NRU WNO

N	R	U

- Dekripsi:
 - Kunci rahasia $\sigma^{-1}(2) = 1, \sigma^{-1}(3) = 2, \sigma^{-1}(1) = 3$
 - Plaintext: RUN NOW

Kriptografi
Kunci Asim

Kriptografi Asimetris Rivest—Shamir-Adleman (RSA)

 Baca Buku Kenneth H. Rosen dkk halaman 315 – 320

Key Generation by Alice

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \equiv e^{-1} \pmod{\phi(n)}$

Public key $PU = \{e, n\}$

Private key $PR = \{d, n\}$

Encryption by Bob with Alice's Public Key

Plaintext: M < n

Ciphertext: $C = M^e \mod n$

Decryption by Alice with Alice's Private Key

Ciphertext: C

Plaintext: $M = C^d \mod n$

Figure 9.5 The RSA Algorithm

Kriptografi dengan Matriks dan Inverse-nya

Kriptografi dengan matriks A dan Inversnya Hill Cipher

Diketahui pesan yang akan di-encoding (di-enkripsi):

- 1. Konversikan pesan ke nilai numeriknya
 - Tabel konversi
- 2. Tentukan matriks kuadrat A berukuran $n \times n$ dan hitung invers A^{-1}
- 3. Kelompokkan pesan menjadi sejumlah vektor $P = \{\mathbf{p_1}, \mathbf{p_2}, ...\}$
 - setiap vektor $\mathbf{p_i}$ berukuran $n \times 1$
 - Lakukan padding (misalnya spasi) jika diperlukan
- 4. Untuk encryption, hitung $\mathbf{c_i} = (A \times \mathbf{p_i}) \mathbf{mod} 26$
- 5. Untuk decryption, hitung $\mathbf{p_i} = (A^{-1} \times \mathbf{c_i}) \mathbf{mod} 26$
 - vektor $\mathbf{c_i}$ adalah ciphertext berukuran $n \times 1$

Contoh:

Diketahui sebuah pesan "Run NOW"

2. Matriks
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$
, $A^{-1} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & -3 & 2 \\ -1 & -1 & 1 \end{bmatrix}$

3.
$$\mathbf{p_1} = \begin{bmatrix} 17 \\ 20 \\ 13 \end{bmatrix}$$

4. Encryption:
$$\mathbf{c_1} = A \times \mathbf{p_1} = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 17 \\ 20 \\ 13 \end{bmatrix} = \begin{bmatrix} 24 \\ 30 \\ 67 \end{bmatrix} \mathbf{mod} \ 26 = \begin{bmatrix} 24 \\ 4 \\ 15 \end{bmatrix} \Rightarrow \mathsf{YEP}$$

5. Decryption:
$$\mathbf{p_1} = A^{-1} \times \mathbf{c_1} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & -3 & 2 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 24 \\ 4 \\ 15 \end{bmatrix} \mathbf{mod} \ 26 = \begin{bmatrix} 17 \\ 20 \\ 13 \end{bmatrix}$$

Contoh:

Diketahui sebuah pesan "Run NOW"

2. Matriks
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$
, $A^{-1} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & -3 & 2 \\ -1 & -1 & 1 \end{bmatrix}$

3.
$$\mathbf{p_2} = \begin{bmatrix} 13 \\ 14 \\ 22 \end{bmatrix}$$

4. Encryption:
$$\mathbf{c_2} = A \times \mathbf{p_2} = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 13 \\ 14 \\ 22 \end{bmatrix} = \begin{bmatrix} 5 \\ 35 \\ 42 \end{bmatrix} \mathbf{mod} \ 26 = \begin{bmatrix} 5 \\ 9 \\ 10 \end{bmatrix} \xrightarrow{\mathsf{FJK}} \mathsf{FJK}$$

5. Decryption:
$$\mathbf{p_2} = A^{-1} \times \mathbf{c_2} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & -3 & 2 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 9 \\ 10 \end{bmatrix} \mathbf{mod} \ 26 = \begin{bmatrix} 13 \\ 14 \\ 22 \end{bmatrix}$$

A atau a = 0K atau k =

G atau
$$g = 6$$
 Q atau $q = 6$

H atau h = 7 R atau r =
$$\frac{1}{2}$$

$$J$$
 atau $j = 9$ T atau $t =$

Latihan Soal

Diketahui pesan "DO NOT WALK DOG". Gunakan kriptografi berikut untuk merubah pesan (enkripsi) dan mengembalikannya kembali (dekripsi). Ingat, jawaban harus disertakan proses perhitungan!

- 1. Caesar Cipher dengan k = 17
- 2. Affine Cipher dengan a=17 dan b=5
- 3. Transposition Cipher dengan $\sigma(1)=3$, $\sigma(2)=1$, $\sigma(3)=4$ dan $\sigma(4)=2$
- 4. Kriptografi dengan kunci rahasia adalah $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$

