Porównanie działania wybranych algorytmów minimalizacji stochastycznej

Kacper Feliks, Maciej Wiśniewski

28-01-2025

Cel projektu

Projekt polega na prostym opracowaniu statystycznym wyników porównania działania wybranych algorytmów minimalizacji stochastycznej. Zdecydowaliśmy się do porównania użyć następujących algorytmów:

- Poszukiwanie przypadkowe (Pure Random Search, PRS)
- Metoda wielokrotnego startu (multi-start, MS)

Opis algorytmów

Poszukiwanie przypadkowe (Pure Random Search, PRS)

Algorytm PRS polega na losowym przeszukiwaniu przestrzeni rozwiązań, w której minimalizowana funkcja jest zdefiniowana. Działa w następujący sposób:

- 1. **Losowanie punktów**: Losujemy kolejne punkty w przestrzeni poszukiwań z rozkładu jednostajnego. Jeżeli dziedzina poszukiwań jest kostką wielowymiarową, to każdą współrzędną punktu losujemy z odpowiedniego jednowymiarowego rozkładu jednostajnego.
 - Na przykład, jeśli dziedzina poszukiwań to kostka trójwymiarowa $[0,1] \times [-2,2] \times [100,1000]$, losowanie współrzędnych wygląda następująco:
 - pierwsza współrzędna: U(0,1),
 - druga współrzędna: U(-2,2),
 - trzecia współrzędna: U(100, 1000).
- 2. **Porównanie wartości funkcji**: Wartość funkcji w każdym wylosowanym punkcie porównujemy z aktualnie zapamiętanym minimum. Jeśli wartość funkcji w nowym punkcie jest mniejsza, zapamiętujemy ten punkt jako nowe minimum.
- 3. Wynik: Wartość funkcji w ostatnim zapamiętanym punkcie stanowi wynik algorytmu.

Metoda wielokrotnego startu (Multi-Start, MS)

Algorytm MS łączy losowe przeszukiwanie przestrzeni z metodami optymalizacji lokalnej. Jego kroki są następujące:

- 1. **Losowanie punktów**: Podobnie jak w PRS, losujemy zadany zbiór punktów startowych z rozkładu jednostajnego w przestrzeni poszukiwań.
- 2. **Uruchomienie optymalizacji lokalnej**: Dla każdego wylosowanego punktu startowego uruchamiana jest metoda optymalizacji lokalnej .
- 3. **Porównanie wyników**: Dla każdego startu zapisujemy wartość funkcji w zwróconym punkcie lokalnego minimum. Wynikiem algorytmu jest minimalna wartość funkcji spośród wszystkich punktów końcowych.

Do porównania należało wybrać dwie z funkcji dostępnych w pakiecie smoof, które są skalarne (single-objective) i mają wersje dla różnej liczby wymiarów (akceptują parametr dimensions).

W celu sprawdzenia dostępnych algorytmów wykonaliśmy następujący algorytm, który znajdywał dostępne funckje o wymaganych parametrach:

```
library(smoof)

scalar_dimensional_functions <- Filter(function(fn_name) {
   fn <- get(fn_name, envir = asNamespace('smoof'))
   is.function(fn) &&
    'dimensions' %in% names(formals(fn)) &&
   inherits(try(fn(2), silent = TRUE), 'smoof_function') &&
   getNumberOfObjectives(fn(2)) == 1
}, ls('package:smoof'))

print(scalar_dimensional_functions)</pre>
```

Do porównania wybraliśmy dwie funckje:

- Schwefel
- Griewank

Nasz wybór padł dokładnie na te funkcję ze względu na nich odmienność, trudność w optymalizacji oraz niebanalną impelmentację.

Funkcja Schwefela

Funckaj Schwefela jest złożoną funkcją, posiadającą wiele minimów lokalnych.

$$f(\mathbf{x}) = 418.9829d - \sum_{i=1}^{d} x_i \sin(\sqrt{|x_i|})$$

Wzór funkcji Schwefela

gdzie przez d rozumiemy ilość wymiarów. Funkcja jest zazwyczaj definiowa na hiperszceścianach $x_i \in [-500, 500]$, dla każdego $i=1,\ldots,d$.

Minimum globalne $f(\mathbf{x}^*) = 0$, dla $\mathbf{x}^* = (420.9687, \dots, 420.9687)$

Reprezentacja funckji w przestrzeni dwuwymiarowej

Funkcja Griewanka

Funkcja Griewanka ma wiele szeroko rozpowszechnionych minimów lokalnych, które są regularnie dystrybuowane.

$$f(\mathbf{x}) = \sum_{i=1}^{d} \frac{x_i^2}{4000} - \prod_{i=1}^{d} \cos \left(\frac{x_i}{\sqrt{i}}\right) + 1$$

Wzór funkcji Griewanka

gdzie przez d rozumiemy ilość wymiarów. Funkcja jest zazwyczaj definiowa na hiperszceścianach $x_i \in [-600,600]$, dla każdego $i=1,\ldots,d$.

Minimum globalne $f(\mathbf{x}^*) = 0$, dla $\mathbf{x}^* = (0, \dots, 0)$

Wizualizacjafunkcji Griewanka

Specyfikacja sprzętu

Obliczenia i testy zostały wykonane na komputerze o następujące specyfikacji:

- system Windows 10
- $\bullet\,$ procesor Intel Core i7-6700HQ 2.60 GHz.
- pamięć Ram 16Gb

WYNIKI

Funkcja Griewanka 2D

MS

• średnia: 0.6055442

Wartość najmniejsza: 0.007396Wartość największa: 4.4481658

Mediana: 0.3253765Dolny kwartyl: 0.1257573Górny kwartyl: 0.8310025

PRS

• średnia: 0.6434122

• Wartość najmniejsza: 0.0373963

• Wartość największa: 1.7034647

• Mediana: 0.6161477

• Dolny kwartyl: 0.4292943

• Górny kwartyl: 0.8541051

Funkcja Griewanka 10D

MS

• średnia: $5.3433198 \times 10^{-11}$

- Wartość najmniejsza: 1.3820056×10^{-12} - Wartość największa: 2.1964297×10^{-10}

• Mediana: $4.1341264 \times 10^{-11}$ • Dolny kwartyl: $2.7560176 \times 10^{-11}$

• Górny kwartyl: $7.4529827 \times 10^{-11}$

PRS

• średnia: 51.7091663

• Wartość najmniejsza: 12.0229676

• Wartość największa: 83.9943267

• Mediana: 51.6668436

• Dolny kwartyl: 43.7718444

• Górny kwartyl: 61.4505366

Funkcja Griewanka 20D

MS

• średnia: $8.1357054 \times 10^{-11}$

- Wartość najmniejsza: 1.3866686×10^{-13} - Wartość największa: 1.7841773×10^{-10}

• Mediana: $7.5553341 \times 10^{-11}$ • Dolny kwartyl: $5.6181226 \times 10^{-11}$ • Górny kwartyl: $1.0998349 \times 10^{-10}$

PRS

• średnia: 222.7744787

Wartość najmniejsza: 138.0348086Wartość największa: 271.2005696

 \bullet Mediana: 223.940142

Dolny kwartyl: 207.9649149Górny kwartyl: 239.8048899

Funkcja Schwefela 2D

MS

• średnia: -836.7813912

Wartość najmniejsza: -837.9657745
Wartość największa: -719.5274399

Mediana: -837.9657745
Dolny kwartyl: -837.9657745
Górny kwartyl: -837.9657745

PRS

• średnia: -797.1918759

• Wartość najmniejsza: -836.5685042

• Wartość największa: -643.5621982

 \bullet Mediana: -804.2280449

• Dolny kwartyl: -823.5638115

• Górny kwartyl: -781.6197479

Funkcja Schwefela 10D

MS

• średnia: -3262.1275223

Wartość najmniejsza: -3716.0755343
Wartość największa: -2923.4470726

Mediana: -3259.0250766
Dolny kwartyl: -3378.9804707
Górny kwartyl: -3142.8476519

PRS

• średnia: -1990.2290063

• Wartość najmniejsza: -2648.5365291

- Wartość największa: -1671.7495182

 \bullet Mediana: -1977.0998535

• Dolny kwartyl: -2101.5557137

• Górny kwartyl: -1880.3428427

Funkcja Schwefela 20D

MS

• średnia: -5930.2842622

Wartość najmniejsza: -6721.5020158
Wartość największa: -5415.4216596

Mediana: -5927.3537852
Dolny kwartyl: -6073.1127276
Górny kwartyl: -5732.1016643

PRS

• średnia: -2871.2092706

- Wartość najmniejsza: -3883.630182

• Wartość największa: -2404.6476755

 \bullet Mediana: -2845.6522752

• Dolny kwartyl: -3018.7275952

• Górny kwartyl: -2683.1582378

Wyniki na wykresach

Funkcja Griewanka 2D MS

Funkcja Griewanka 2D PRS

Znaleziona wartosc minimum

Funkcja Griewanka 10D MS

Znaleziona wartosc minimum

Funkcja Griewanka 10D PRS

Funkcja Griewanka 20D MS

Znaleziona wartosc minimum

Funkcja Griewanka 20D PRS

Znaleziona wartosc minimum

Funkcja Schwefela 2D MS

Znaleziona wartosc minimum

Funkcja Schwefela 2D PRS

Znaleziona wartosc minimum

Funkcja Schwefela 10D MS

Znaleziona wartosc minimum

Funkcja Schwefela 10D PRS

Znaleziona wartosc minimum

Funkcja Schwefela 20D MS

Znaleziona wartosc minimum

Funkcja Schwefela 20D PRS

Znaleziona wartosc minimum

Wykresy pudełkowe

Funkcja Griewanka, 2D

Funkcja Griewanka, 10D

Funkcja Griewanka, 20D

Funkcja Schwefela, 2D

Funkcja Schwefela, 10D

Funkcja Schwefela, 20D

T testy

Dla hipotezy zerowej twierdzącej, że średnie są sobie równe

Funkcja Griewanka, 2D

```
##
## Paired t-test
##
## data: G2PRS and G2MS
## t = 0.51955, df = 99, p-value = 0.6045
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -0.1067528 0.1824889
## sample estimates:
## mean difference
## 0.03786802
```

Funkcja Griewanka, 10D

```
##
## Paired t-test
##
## data: G10PRS and G10MS
## t = 40.75, df = 99, p-value < 2.2e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 49.19135 54.22699
## sample estimates:
## mean difference
## 51.70917</pre>
```

Funkcja Griewanka, 20D

```
##
## Paired t-test
##
## data: G20PRS and G20MS
## t = 87.939, df = 99, p-value < 2.2e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 217.7479 227.8011
## sample estimates:
## mean difference
## 222.7745</pre>
```

Funkcja Schwefela, 2D

```
##
## Paired t-test
##
## data: S2PRS and S2MS
## t = 10.624, df = 99, p-value < 2.2e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 32.19550 46.98353
## sample estimates:
## mean difference
## 39.58952</pre>
```

Funkcja Schwefela, 10D

```
##
## Paired t-test
##
## data: S10PRS and S10MS
## t = 56.898, df = 99, p-value < 2.2e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 1227.543 1316.254
## sample estimates:
## mean difference
## 1271.899</pre>
```

Funkcja Schwefela, 20D

```
##
## Paired t-test
##
## data: S20PRS and S20MS
## t = 91.343, df = 99, p-value < 2.2e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 2992.623 3125.527
## sample estimates:
## mean difference
## 3059.075</pre>
```

Wnioski końcowe:

Wpływ wymiarowości:

Wraz ze wzrostem liczby wymiarów, różnica między algorytmami staje się coraz bardziej wyraźna. Przewaga MS nad PRS rośnie wykładniczo wraz z wymiarowością.

Porównanie funkcji:

Funkcja Schwefela wykazuje większe różnice między algorytmami niż funkcja Griewanka. Dla funkcji Griewanka w 2D nie zaobserwowano istotnej różnicy między algorytmami.