ASSIGNMENT 04

Muneeb Ahmad Sheikh January 15, 2021

- Questions:
- Exercise:2.20:

i)

Show that the matrix

$$A = \begin{pmatrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{pmatrix}$$

is a symmetric matrix.

• Solution:

We've given matrix

$$A = \begin{pmatrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{pmatrix}$$

For symmetric matrix

$$A = A'$$

Now,

$$A' = \begin{pmatrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{pmatrix}$$

Clearly, A = A'

Therefore, A is symmetric

ii)

Show that the matrix

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

is a skew-symmetric matrix.

• Solution:

We've given matrix

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

For skew-symmetric matrix

$$A = -A'$$

Now,

$$A' = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

Clearly, A = -A'

Therefore, A is skew-symmetric

• Exercise:2.22:

Find 1/2(A + A') and 1/2(A - A') when,

$$A = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}$$

• Solution:

We've given matrix,

$$A = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}$$

Now,

$$A' = \begin{pmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \end{pmatrix}$$

Therefore,

$$A + A' = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} + \begin{pmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \end{pmatrix}$$

$$A + A' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Or,

1/2(A+A')=3x3 Null Matrix

Also,

$$A - A' = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} - \begin{pmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \end{pmatrix}$$
$$A - A' = \begin{pmatrix} 0 & 2a & 2b \\ -2a & 0 & 2c \\ -2b & -2c & 0 \end{pmatrix}$$

Now,

$$1/2(A - A') = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} = A$$