

LECTURE 5: MORE APPLICATIONS WITH PROBABILISTIC ANALYSIS, BINS AND BALLS

Agenda

- Review: Coupon Collector's problem and Packet Sampling
- Analysis of Quick-Sort
- Birthday Paradox and applications
- The Bins and Balls Model

Coupon Collector Problem

- Problem: Suppose that each box of cereal contains one of n different coupons. Once you obtain one of every type of coupon, you can send in for a prize.
- Question: How many boxes of cereal must you buy before obtaining at least one of every type of coupon.
- Let X be the number of boxes bought until at least one of every type of coupon is obtained.
- \bullet E[X] = nH(n) = nInn

Application: Packet Sampling

- Sampling packets on a router with probability p
 - The number of packets transmitted after the last sampled packet until and including the next sampled packet is geometrically distributed.
- From the point of destination host, determining all the routers on the path is like a coupon collector's problem.
- ◆ If there's n routers, then the expected number of packets arrived before destination host knows all of the routers on the path = nln(n).

DoS attack

IP traceback

- Marking and Reconstruction
 - Node append vs. node sampling

Expected Run-Time of QuickSort

Quicksort Algorithm:

Input: A list $S = \{x_1, ..., x_n\}$ of n distinct elements over a totally ordered universe.

Output: The elements of *S* in sorted order.

- 1. If S has one or zero elements, return S. Otherwise continue.
- **2.** Choose an element of *S* as a pivot; call it *x*.
- **3.** Compare every other element of *S* to *x* in order to divide the other elements into two sublists:
 - (a) S_1 has all the elements of S that are less than x:
 - **(b)** S_2 has all those that are greater than x.
- **4.** Use Quicksort to sort S_1 and S_2 .
- **5.** Return the list S_1, x, S_2 .

Analysis

- Worst-case: n².
- Depends on how we choose the pivot.
- Good pivot (divide the list in two nearly equal length sub-lists) vs. Bad pivot.
- In case of good pivot -> nlg(n). [by solving recurrence]
- If we choose pivot point randomly, we will have a randomized version of QuickSort.

Probability for Computing

10

Analysis

- X_{ii} be a random variable that
 - Takes value 1 if y_i and y_i are compared with each other
 - 0 if they are not compared.
- \bullet E[X] = $\Sigma\Sigma$ E[X_{ij}]
- ◆E[X_{ij}] = 2/ (j-i+1) (when we choose either i or j from the set of Y_{ij} pivots { y_i , y_{i+1} , ..., y_j }
- \bullet Using k = j-i+1, we can compute E[X] = 2nln(n)

Detail analysis

$$\mathbf{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$= \sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k}$$

$$= \sum_{k=2}^{n} (n+1-k) \frac{2}{k}$$

$$= \left((n+1) \sum_{k=2}^{n} \frac{2}{k}\right) - 2(n-1)$$

$$= (2n+2) \sum_{k=1}^{n} \frac{1}{k} - 4n.$$

Birthday "Paradox"

What is the probability that two persons in a room of 30 have the same birthday?

Birthday Paradox

Ways to assign k different birthdays without duplicates:

$$N = 365 * 364 * ... * (365 - k + 1)$$
$$= 365! / (365 - k)!$$

Ways to assign k different birthdays with possible duplicates:

$$D = 365 * 365 * ... * 365 = 365^{k}$$

Birthday "Paradox"

Assuming real birthdays assigned randomly:

N/D = probability there are no duplicates

1 - N/D = probability there is a duplicate

$$= 1 - 365! / ((365 - k)!(365)^k)$$

Generalizing Birthdays

$$P(n, k) = 1 - n!/(n-k)!n^k$$

Given k random selections from n possible values, P(n, k) gives the probability that there is at least 1 duplicate.

Birthday Probabilities

P(no two match) = 1 - P(all are different)

P(2 chosen from N are different)

$$= 1 - 1/N$$

P(3 are all different)

$$= (1 - 1/N)(1 - 2/N)$$

P(n trials are all different)

$$= (1 - 1/N)(1 - 2/N) \dots (1 - (n-1)/N)$$

In (P)

$$= \ln (1 - 1/N) + \ln (1 - 2/N) + ... \ln (1 - (k-1)/N)$$

Happy Birthday Bob!

$$\ln(P) = \ln(1 - 1/N) + ... + \ln(1 - (k - 1)/N)$$

For 0 < x < 1: $\ln (1 - x) \le x$

$$\ln(P) \le -(1/N + 2/N + \dots + (n-1)/N)$$

Gauss says:

$$1 + 2 + 3 + 4 + ... + (n-1) + n = \frac{1}{2}n(n+1)$$

So,

$$\ln (P) \le \frac{1}{2} (k-1) k/N$$

$$P \le e^{1/2(k-1)k/N}$$

Probability of match $\geq 1 - e^{\frac{1}{2}(k-1)k/N}$

Applying Birthdays

$$P(n, k) > 1 - e^{-k*(k-1)/2n}$$

♦For n = 365, k = 20:

$$P(365, 20) > 1 - e^{-20*(19)/2*365}$$

 $P(365, 20) > .4058$

For
$$n = 2^{64}$$
, $k = 2^{32}$: $P(2^{64}, 2^{32}) > .39$

For
$$n = 2^{64}$$
, $k = 2^{33}$: $P(2^{64}, 2^{33}) > .86$

For
$$n = 2^{64}$$
, $k = 2^{34}$: $P(2^{64}, 2^{34}) > .9996$

Application: Digital Signatures

Balls into Bins

- We have m balls that are thrown into n bins, with the location of each ball chosen independently and uniformly at random from n possibilities.
- What does the distribution of the balls into the bins look like
 - "Birthday paradox" question: is there a bin with at least 2 balls
 - How many of the bins are empty?
 - How many balls are in the fullest bin?

Answers to these questions give solutions to many problems in the design and analysis of algorithms

The maximum load

- When n balls are thrown independently and uniformly at random into n bins, the probability that the maximum load is more than 3 lnn/lnlnn is at most 1/n for n sufficiently large.
 - By Union bound, Pr [bin 1 receives \geq M balls] $\leq \binom{n}{M} \left(\frac{1}{n}\right)^{M}$.
 - Note that:

$$\binom{n}{M} \left(\frac{1}{n}\right)^M \le \frac{1}{M!} \le \left(\frac{e}{M}\right)^M$$

Now, using Union bound again, Pr [any ball receives ≥ M balls] is at most

$$n\left(\frac{\mathrm{e}}{M}\right)^M \le n\left(\frac{\mathrm{e}\ln\ln n}{3\ln n}\right)^{3\ln n/\ln\ln n}$$

which is $\leq 1/n$

Application: Bucket Sort

- A sorting algorithm that breaks the Ω(nlogn) lower bound under certain input assumption
- Bucket sort works as follows:
 - Set up an array of initially empty "buckets."
 - Scatter: Go over the original array, putting each object in its bucket.
 - Sort each non-empty bucket.
 - Gather: Visit the buckets in order and put all elements back into the original array.

- A set of $n = 2^m$ integers, randomly chosen from $[0,2^k),k \ge m$, can be sorted in expected time O(n)
- Why: will analyze later!

The Poisson Distribution

- Consider m balls, n bins
 Pr [a given bin is empty] = $\left(1 \frac{1}{n}\right)^m \approx e^{-m/n}$:
 - Let X_i is a indicator r.v. that os 1 if bin j empty, 0 otherwise
 - Let X be a r.v. that represents # empty bins

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbf{E}[X_i] = n\left(1 - \frac{1}{n}\right)^m \approx ne^{-m/n}.$$

Generalizing this argument, Pr [a given bin has r balls] =

$$\binom{m}{r} \left(\frac{1}{n}\right)^r \left(1 - \frac{1}{n}\right)^{m-r} = \frac{1}{r!} \frac{m(m-1)\cdots(m-r+1)}{n^r} \left(1 - \frac{1}{n}\right)^{m-r}$$

- Approximately, $p_r \approx \frac{\mathrm{e}^{-m/n}(m/n)^r}{r!}$
- **Definition 5.1:** A discrete Poisson random variable X with parameter μ is given by the following probability distribution on j = 0, 1, 2, ...:

$$\Pr(X=j) = \frac{e^{-\mu}\mu^j}{j!}.$$

Limit of the Binomial Distribution

We have shown that, when throwing m balls randomly into b bins, the probability p_r that a bin has r balls is approximately the Poisson distribution with mean m/b. In general, the Poisson distribution is the limit distribution of the binomial distribution with parameters n and p, when n is large and p is small. More precisely, we have the following limit result.

Theorem 5.5: Let X_n be a binomial random variable with parameters n and p, where p is a function of n and $\lim_{n\to\infty} np = \lambda$ is a constant that is independent of n. Then, for any fixed k,

$$\lim_{n\to\infty} \Pr(X_n = k) = \frac{e^{-\lambda}\lambda^k}{k!}.$$

This theorem directly applies to the balls-and-bins scenario. Consider the situation where there are m balls and b bins, where m is a function of b and $\lim_{n\to\infty} m/b = \lambda$. Let X_n be the number of balls in a specific bin. Then X_n is a binomial random variable with parameters m and 1/b. Theorem 5.5 thus applies and says that

$$\lim_{n\to\infty} \Pr(X_n = r) = \frac{e^{-m/n} (m/n)^r}{r!},$$