180 Series elements: Why should one use them in Linear Analysis

Mechanics & Simulation Support Group

Introduction

- 180 series elements were designed & developed for large deformation analysis with plenty of advanced element technologies and a very rich nonlinear constitutive support.
- During the development, consistency and generality were the main theme.
 - Fewer assumptions were made.

Introduction (cont.)

- They are natural candidates for nonlinear analysis in general for:
 - Finite strain and large rotation analysis
 - History dependent and independent materials
- We will not focus on nonlinear functionalities in general here.
- But ... they are excellent choices even in linear analysis. The reasons are discussed here.

Solid Elements; Formulations

Formulations	Core Legacy	180 Series	Comment on 18x Series					
Displacement			•Both Shear and					
Conventional	√4	√ 3	Volumetric locking are addressed in 180 series					
Selective Reduced Integration(B-bar)	×	√	Independent of Poisson's Ratio (nearly or					
Uniform Reduced Integration	1	✓	equal to 0.5) and useful					
Enhanced Strain	✓ 2	✓	for small strain plasticity					
Mixed u-P			•ANSYS automatically					
Elasto-plastic materials	×	√	switches among the mixed u/P formulations					
Fully incompressible hyperelastic	×	✓	according to the					
Nearly incompressible hyperelastic	√	✓	materials.					

¹ PLANE82, SOLID45 and SOLID95 only

² Extra shapes meant for bending application only

³ Degenerate forms, Plane stress state of PLANE182

⁴ Not desirable most frequently!

Enhanced Strain vs Extra Shapes

- Bending of a thin plate (R=10, h=1)
- Element 182 with enhanced strain formulation and 42 with extra shape function
- Axisymemtric stress state
- Pure elastic material, different Poisson's ratios
 (E=1875, nu=0.0, 0.25, 0.3, 0.49, 0.499, 0.4999)
- Linear analysis, under pressure (p=1)

Enhanced Strain vs Extra Shapes

- Vertical displacements of central point
 - No locking in element 182 for high Poisson's ration

		Resul	ts f	rom El	er	nent 42	2	
NU	I	Node	I	Theory	1	ANSYS	I	Error(%)
0		1		5.03200		4.95185		1.59273
		7		5.03200		4.95220		1.58579
0.25		1		3.97070		3.91587		1.38088
		7		3.97070		3.91623		1.37170
0.3		1		3.74360		3.69292		1.35370
		7		3.74360		3.69329		1.34380
0.49	B	1		2.82480		2.72489		3.53689
		7		2.82480		2.72529		3.52272
0.499	Ņ.	1		2.79000		2.36694		15.16353
		7		2.79000		2.36734		15.14912
0.499	9	1		2.78550		2.06928		25.71246
		7		2.78550		2.06968		25.69802

li e our e	0002	P1 +1012/2/2001	I AUGUS I	F
NU	Node	Theory	SYZNA	Error(%)
0	1	5.03200	5.15370	2.41859
	7	5.03200	5.15406	2.42564
0.25	1	3.97070	4.04281	1.81599
	7	3.97070	4.04317	1.82514
0.3	1	3.74360	3.79787	1.44975
	7	3.74360	3.79824	1.45955
0.49	1	2.82480	2.79481	1.06156
	7	2.82480	2.79520	1.04796
0.499	1	2.79000	2.74437	1.63538
(0.750),707(7	2.79000	2.74476	1.62158
0.4999	1	2.78550	2.73931	1.65809
	7	2.78550	2.73970	1.64426

Mixed u-P in Linear Analysis

Checkerboard patterns of pure displacement formulations

When Poisson's ratio is too high and other technologies can not eliminate volumetric locking, mixed u-P formulation should be employed.

18x only!

Mixed u-P results, no checkerboard patterns

Solid Elements; Stress States

Stress States	Core Legacy	180 Series ¹
Plane Stress	✓	✓
Plane Strain	√	✓
Generalized Plane Strain	×	✓
3D Continuum	✓	✓
Axisymmetric	✓	✓

¹ All formulations pass patch test for all stress states

182/183 only!

Generalized Plane Strain

- To simulate elbow pipe under pressures
 - Geometry
 - As shown in the figure
 - The two end planes have an angle of 90 degrees
 - Material
 - E=200 Gpa
 - Nu=0.28
 - Load
 - Inner pressure: 150 Mpa
 - External pressure: 1200 Mpa
 - FE model
 - 2D 183 generalized [lane strain
 - 3D 186

3D Simulation of The Elbow Pipe

Model creation and solution need more time

2D Simulation of The Elbow Pipe

- Modeling so simple
- Simulation is about 100 times faster than 3D
- Results are almost identical

Solid Elements; Materials

- 180 series of continuum elements are applicable for all different type of materials
 - Anisotropic materials
 - Hyperelastic
 - Viscoelastic
 - Viscoplastic
 - Elastoplastic
 - Foam
 - Cast-Iron
 - Many more

Solid Elements: Other advantages

- Variational analysis using CADOE is supported with 180 series
- Mass matrix evaluated with numerically exact order of integration in 180 series
 - Consistent performance in modal/frequency analysis
- Pressure load stiffness terms are included by default
 - More accurate eigenvalue buckling prediction
 - Consistent stiffness matrix for nonlinear analysis

Other advantages (cont.)

- Mixed u/P formulations can be combined with different element technologies and applied to all stress states
- Automatic selection of element technologies is under development

Beam Elements

• What is available?

Core Legacy	180 series
BEAM4	BEAM188
BEAM44	BEAM189
BEAM3	
BEAM24	
BEAM23	
BEAM54	

Beam 188/189 - Section Support

Function	Core Legacy	180 series
	Degacy	
Standard Cross sections	☑ BEAM44 only	✓
Arbitrary User Mesh	×	
Multi-Material Cross section	×	
Geometrically Exact Tapered Section	×	√ 1
User Control over cross section mesh	×	✓

BEAM188/189 – Modal analysis

• 180 Series provides Consistent Mass Matrix inclusive of rotary inertia terms

Mode	SOLID45	BEAM189
1	3.56799	3.5306
2	17.2689	17.174
3	22.0382	21.830
4	35.6358	34.850
5	60.4129	60.019

BEAM188/189-Shear Stresses

Torsional

188/189 provide highly accurate torsional shear stresses varying in a quite complex manner over the cross section (irrespecive of particular shapes or topological complexities)

Transverse shear

188/189 provide highly accurate transverse shear stress output (either in numbers or graphically).
 Traditionally these are referred to as Vq/I terms, and is deemed important in civil engineering. Again, the complexity of cross section is immaterial.

BEAM188/189 Shear Stresses Visualization

Built-up Multi-material Sections

Define Materials for a Standard Section

Define Materials for a Custom Section

Curved composite cantilever beam

Cross section has 3 materials

Material	EX
1	0.5E7
2	1.0E7
3	3.0E7

	BEAM189 (N	NDOF=96)	BEAM (NDOF=		SOLID186 (NDOF=18900)			
Max. displacement	Value	% diff.	Value	% diff.	Reference value			
Ux	19.664	0.2	19.666	0.2	19.625			
Uy	24.819	1.9	24.822	1.9	25.310			
Uz	54.486	0.5	54.490	0.5	54.769			
CPU Time	82.6	10	115.4	60	4587.850			

Composite Rotor Section

Parametric Study (Sandwich Beam)

		No	ormalized	l Results	(BEAM18	39/SOLID	45)		
E-Face/E-Core	Length/Thicknes	UZ	UY	UX	ROTX		Frequ	encies	
1	40	1.0025	1.0025	1.0000	1.0162	0.9987	0.9989	0.9757	0.9768
2	40	1.0025	1.0025	1.0000	1.0148	0.9987	0.9989	0.9758	0.9770
20	40	1.0025	1.0025	1.0030	1.0281	0.9988 0.9989		0.9758	0.9323
200	40	1.0026	1.0025	1.0050	1.0704 0.9988		0.9987	0.9759	1.0402
2000	40	1.0062	1.0025	1.0050	1.0659	0.9988	0.9930	0.9759	0.9625
20000	40	1.0510	1.0025	1.0040	0.9252	0.9987	0.9436	0.8883	0.9761
1	20	1.0025	1.0023	0.9930	1.0186	0.9987	0.9993	0.9757	0.9799
2	20	1.0025	1.0025	0.9940	1.0187	0.9988	0.9994	0.9760	0.9807
20	20	1.0025	1.0025	1.0030	1.0425	0.9988	0.9995	0.9762	1.1674
200	20			1.0190	1.0654	0.9988	0.9987	0.9762	0.9757
2000	20	1.0232	1.0025	1.0080	1.0537	0.9988	0.9930	0.9726	0.9763
20000	20	1.1332	1.0070	1.0090	0.7943	0.8676	0.9988	0.7716	0.6789

Inclusion of warping

$$\{\mathbf{u}, \boldsymbol{\varphi}, \boldsymbol{\omega}\}$$

$$\mathbf{x} = \mathbf{x}^{0} + H^{\alpha} \mathbf{n}^{\alpha} + \omega \psi \mathbf{t}$$

$$\varepsilon = \ln(\lambda) + H^{\alpha} \varepsilon_{\alpha}^{\beta} \kappa^{\beta} + \frac{d\omega}{dS} \psi \mathbf{t} + O(h^{2})$$

188/189 only!

Restrained Warping Analysis

Geometry

h = 10 cm, b = 10 cm, s = t = 0.2 cm,

L = 150 cm (length)

Material Properties

 $E = 21000 \text{ kN/cm}^2$, $G = 8077 \text{ kN/cm}^2$

Boundary Conditions

$$x = 0$$
: $u_x = u_y = u_z = 0$

$$\theta_{x} = 0$$

$$x = L$$
: $u_y = u_z = 0$

$$\theta_{x} = 0$$

Warping restraint is important!

Critical buckling loads (Theory and numerics of three-dimensional beams with elastoplastic material behavior by F. Gruttmann et al.):

$$F_1 = n^2 \frac{\pi^2 E I_{22}}{L^2}$$

$$F_2 = n^2 \frac{\pi^2 E I_{33}}{L^2}$$

$$F_{1} = n^{2} \frac{\pi^{2} E I_{22}}{L^{2}} \qquad F_{2} = n^{2} \frac{\pi^{2} E I_{33}}{L^{2}} \qquad F_{3} = \frac{1}{(i_{M})^{2}} (G I_{T} + n^{2} \frac{\pi^{2} E I_{w}}{L^{2}})$$

The theoretical critical buckling load:

$$F_{cr} = 2 \left[\left(\frac{1}{F_2} + \frac{1}{F_3} \right) + \sqrt{\left(\frac{1}{F_2} - \frac{1}{F_3} \right)^2 + \frac{4}{F_2 F_3} \left(\frac{m_2}{i_M} \right)^2} \right]^{-1}$$
 where $(i_M)^2 = (i_p)^2 + (m_2)^2$

$$(i_M)^2 = (i_p)^2 + (m_2)^2$$

Mode

Value of the Buckling Load (kN)

Number

FEM (w/o warping) FEM (w/ warping)

Reference

115.5

443.3

Pure torsional reference critical buckling load w/o warping = 7.386 (kN)

Lateral Buckling

NAFEMS BENCHMARK TEST

FOR BEAMS AND SHELLS, January 1993

Problem ID 3DNLG-4

Critical Buckling Load

Target Solution= 0.01892

BEAM188 = 0.01902

BEAM44 produces a error message:

*** ERROR ***

CP= 1.090 TIME= 10:04:53

Stress stiffness matrix is all zero. No load factor solution is possible.

Lateral/Torsional Buckling

BEAM44 0.17484E+07

BEAM188 0.17732E+07

Target 0.17510E+07

BEAM44 missed mode BEAM188 0.42867E+07 Target 0.40632E+07

Buckling & Load Stiffness of A Ring

BEAM188

Buckling load

BEAM188 BEAM44

1 7.5061 10.002

2 37.607 39.998

3 88.045 89.959

4 159.23 159.84

Critical Load

Target = 7.500

^{*} SURF153 can be overlaid on BEAM44 to get correct results

Tapered sections*

Geometrically Exact Tapering:

Cross section properties are evaluated at points of integration using linear interpolation of section dimensions spatially.

- More accurate
- Allows for optimizing web & flanges
- Is applicable to all Standard/User

Mesh sections!

* Scheduled for release in 8.0 (beta in 7.0)

BEAM188/189 - Others

- Curved beams may be modeled with BEAM189 without facet approximation
- CADOE variational (what-if) analysis is supported with 180 series beam elements
- Visualization in 3D of stresses, strains, mode shapes etc.

Material nonlinearities in beams

t		Fo	rmı	ılati	on	Elasti	city			F	Plas	ticit	ty			Viscopl	asticity	Viscoe	asticity		Other	Fea
Type of Element	Interpolation	B-Bar	URI/Standard	Enhanced	Mixed U-P	Isotropic, Orthotropic (MP)	ANEL	BISO	MISO	NLISO	BKIN	KINH/MKIN	СНАВ	CAST/UNIAXIAL	HILL	RATE (PEIRCE, PERZYNA)	CREEP (Implicit)	Viscoelasticity (hypoelasticity)	Viscoelasticity (hyperelasticity)	User-Defined	Element Birth and Death	Initial Stress
188	Linear		•			•		•	•	•	•	•	•	•		•	•	•		•	•	•
189	Quadratic		•			•		•	•	•	•	•	•	•		•	•	•		•	•	•

BEAM23 & BEAM24 provide plasticity support

Beams:

Linear, Small & Large Strain!

- Core legacy elements use "linear" strain measure (even in nonlinear analysis)
- BEAM 188/189 use natural strain (logarithmic)
- Usually—small strain implies an approximation to "logarithmic" (such as Green-Lagrange)

Strain reported in a single element stretched by 20%:

Target = 0.18232, BEAM189 = 0.18232, BEAM44=0.20

SHELL181

	ıt	ıt		Fo	ormi	ulati	on	Elastic	city				Plas	ticit	y			Viscopl	asticity	Hy	/perela	sticit	.y	Viscoel	asticity
	ANSYS Elemer Library	Type of Elemer	Interpolation	B-Bar	URI/Standard	Enhanced Strain	Mixed U-P	Isotropic, Orthotropic (MP)	ANEL	BISO	MISO	NLISO	BKIN	KINH/MKIN	CHAB	CAST/UNIAXIAL	HILL	RATE (PEIRCE, PERZYNA)	CREEP (Implicit)	Mooney-Rivlin	Polynomial Form	Ogden	Arruda-Boyce	Viscoelasticity (hypoelasticity)	Viscoelasticity (hyperelasticity)
SI	HELL181	Shell	Bilinear		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

- HILL (anisotropic Hill potential) can be used with any plasticity model (including CREEP, RATE).
- CHAB (Chaboche nonlinear kinematic hardening) can be combined with any isotropic hardening.
- RATE is combined with any isotropic hardening law
- All 18x elements support USERMAT user-defined material as well as USERCREEP user-defined implicit creep law.
- SHELL181 supports composite definition.

SHELL181 features

	Core Legacy 4-node Shell elements	SHELL 181
Layered Composites	×	✓
Offset (reference surface)	×	✓
Function builder support for thickness	×	✓
Choice of Incompatible mode vs. Uniform Reduced Integration	×	✓

Friendly interface for sections

Section Offset

- SECOFFSET, Location, OFFSET1..
 - Location is one of TOP, BOT, MID, USER
 - OFFSET is valid only when POSITION=USER
- SHELL181 will include rotary inertia effects
 - Other shell elements in ANSYS ignore rotary inertia effects in all circumstances.

Transverse Shear Stiffness

- In the beginning of each load step, ANSYS will evaluate
 - Interlaminar shear stress distribution coefficients
 - Consistent energy equivalent transverse shear correction factors (not available in any other ANSYS shell element)
- Abundant choice of material models (including hyperelasticity)

Error* in Frequencies of a sandwich beam

Element	SHELL 91	SHELL 91	SHELL 181
Element	(Regular)	(Sandwich)	
1	2.87%	-4.39%	0.97%
2	-0.78%	-0.42%	0.60%
3	19.22%	-20.28%	4.31%
4	60.41%	-42.82%	7.40%
5	39.66%	-34.30%	7.74%
6	57.92%	-42.51%	8.12%
7	36.30%	-34.50%	10.40%
8	23.88%	-27.28%	9.49%
9	44.18%	-35.45%	5.74%
10	64.43%	-44.48%	7.63%

^{*}Comparison with SOLID45 results

Tapered circular plate using Function Builder

Free thermal expansion

Element	Order of
	stress
Target	0.0
SHELL 63	10e-6
SHELL 143	1417
SHELL 181	10E-7
SHELL 43	2.742

SHELL181 - advantages

- Wide variety of elasto-plastic, viscoelastic, viscoelastic, viscoplastic, and hyperelastic material models
- Formulation is equivalent to a "Field consistent" algorithm*
- Robust nonlinear convergence behavior
- CADOE Variational analysis support
- UserMat is supported

Conclusions

- Be it a linear or nonlinear analysis, 180 series is a good choice
- They provide
 - More functionality
 - Better accuracy (by strong emphasis on consistency)
 - State of the art formulations
 - More friendly interfaces and internal architecture
 - Higher customizability (e.g. UserMat and cross section building for beams)
 - Higher robustness