Домашняя работа к занятию 10

1.1-1.3 Решите задачи Коши

1.1
$$\begin{cases} y'' - y = \sinh x \\ y(0) = 0, \ y'(0) = 0 \end{cases}$$
1.2
$$\begin{cases} y'' + y = 2\sin x \sin 2x \\ y(0) = 0, \ y'(0) = 0 \end{cases}$$
1.3
$$\begin{cases} x^2y'' - xy' + y = 2x \\ y(1) = 0, \ y'(1) = 0 \end{cases}$$

- **2.1** Найдите общее решение уравнения $x^2y'' + xy' + y = 4\cos\left(\ln|x|\right)$ и решите задачу Коши $y(1) = 0, \ y'(1) = 2.$
- **2.2** Найдите все решения уравнения $y'' + y' 2y = \sin x$, ограниченные при $|x| \to \infty$.
- **3.1** Покажите, что уравнение колебаний при наличии периодической возмущающей силы $\ddot{x}+a^2x=A\sin\omega t$ имеет периодическое частное решение с частотой ω только при условии $\omega\neq a\;(\omega>0,\,a>0).$
- **3.2** Уравнение колебаний при наличии сопротивления среды и периодической возмущающей силы имеет вид $\ddot{x} + 2k\dot{x} + a^2x = A\sin(\omega t)$.

Покажите, что это уравнение имеет периодическое частное решение $x(t)=\frac{A}{\sqrt{(\omega^2-a^2)^2+4k^2\omega^2}}\sin(\omega t+\delta),$ где $\delta=\arctan\frac{2k\omega}{\omega^2-a^2}.$

Рассмотрите случаи $\omega \neq a$ и $\omega = a \ (\omega > 0, \ a > 0).$

Ответы и указания

1.1 Указание: ФСР однородного уравнения $\varphi_1(x) = \operatorname{ch} x$, $\varphi_2(x) = \operatorname{sh} x$.

Otbet:
$$y(x) = \frac{1}{2}(x \operatorname{ch} x - \operatorname{sh} x)$$

1.2 Указание: $2\sin x \sin 2x = \cos x - \cos 3x$.

Уравнение $y'' + y = \cos x$ имеет частное решение $y_1(x) = \frac{1}{2}x \sin x$. Уравнение $y'' + y = \cos 3x$ имеет частное решение $y_2(x) = -\frac{1}{8}\cos 3x$.

Общее решение $y(x) = C_1 \cos x + C_2 \sin x + \frac{1}{2} x \sin x + \frac{1}{8} \cos 3x$.

Otbet:
$$y(x) = \frac{1}{2}x\sin x + \frac{1}{8}\cos 3x - \frac{1}{8}\cos x = \frac{1}{2}x\sin x - \frac{1}{4}\sin x\sin 2x$$
.

1.3 Указание: уравнение является уравнением Эйлера. Его характеристический многочлен $P_2(\lambda)=(\lambda-1)^2.$

Общее решение $y(x) = C_1 x + C_2 x \ln|x| + x \ln^2|x|$

Otbet:
$$y(x) = x \ln^2 x, x \in (0; +\infty)$$

2.1
$$y(x) = 2(1 + \ln x)\sin(\ln x), x \in (0; +\infty)$$

2.2
$$y = -0, 3\sin x - 0, 1\cos x$$

3.1-3.2 Указание: воспользуйтесь методом комплексных амплитуд.