Mini-TREC Challenge

Elastic Search Engine for locating relevant documents on a COVID-19 Dataset

Search Engine Technology Wintersemester 20/21 DIS-17.1 Project Group Placeholder

Lecturer

Dr. Johann (Wanja) Schaible

Attendees Constantin Krah Andreas Kruff Joshua Thos Anh Huy Matthias Tran

Agenda

Project Planning

- 1. Used Tools
- 2. Timeline

Procedure

- 1. MVP Development
- 2. Workflow of the final Build

Ranking Optimization

- 1. Index Pipeline
- 2. Language Processing
- 3. Segmentation
- 4. Similarity Moduls
- 5. Reranking
- 6. Query Pipeline

Results

- 1. Measuring Performance
- 2. Conclusion
- 3. How to further improve

Od — Project Planning

1.1 Used Tools

https://github.com/AH-Tran/DIS17.1-Suchmaschinentechnologie

https://www.docker.com/

https://www.elastic.co/de/elasticsearch/

https://www.elastic.co/de/kibana

https://www.python.org/

1.2 Timeline

P 100

P_200

P_500

P 1000

0.4668

0.3970

all 0.279

all 0.1936

Experiment Evaluation: Recall, Precision @ 5, 10, Recip rank as FOCUS

*Measuring Performance on Page. 20

02 Procedure

2.1 MVP Development

Preprocessing metadata.csv

- Identify documents with missing date
- Manually search for the dates of these documents
- Add the date to the specific paper via Python
- Add 01.01 to dates with only the year in it

Index metadata.csv

Index the metadata.csv via Kibana interface

Execute all 50 queries in topic on the Index / Transform search results into trec_eval format

- Search for the given queries in the Index
- Drop duplicates within the same query results
- Transform the results into the trec_eval format so we can compare it with given grels file

Evaluating the results with trec_eval

Compare the resulting results.txt

runid	all	Standar
num_q	all	50
num_ret	all	49416
num_rel	all	26664
num_rel_ret	all	9679
тар	all	0.1847
gm_map	all	0.1006
Rprec	all	0.2826
bpref	all	0.3162
recip_rank	all	0.7690
iprec_at_recall_0.00	all	0.8312
iprec_at_recall_0.10	all	0.4805
iprec_at_recall_0.20	all	0.3866
iprec_at_recall_0.30	all	0.2660
iprec_at_recall_0.40	all	0.1884
iprec_at_recall_0.50	all	0.1327
iprec_at_recall_0.60	all	0.0634
iprec_at_recall_0.70	all	0.0194
iprec_at_recall_0.80	all	0.0069
iprec_at_recall_0.90	all	0.0000
iprec_at_recall_1.00	all	0.0000
P_5	all	0.6480
P_10	all	0.6380
P_15	all	0.5960
P_20	all	0.5840
P_30	all	0.5633
P_100	all	0.4668
P_200	all	0.3970
P_500	all	0.2794
P 1000	a11	0.1936

2.2 Workflow of the final Build

03 — Ranking Optimization

3.1 Index Pipeline

3.2 Language Processing

Stopwords

- Delete stopwords with built-in functions from Elasticsearch
- Only remove english stop words

Synonyms

- Extract all topic, narrative and question for every query and remove stopwords, punctuation etc. with python
- Add synonyms
 - For common words:
 - to the resulting list with the wordnet python library
 - For medical terms:
 - from the American Chemical Society (CAS) COVID-19 Thesaurus based on certain string similarities
- Due to a lack of context we had to filter and combine synonyms manually

3.3 Segmentation | Tokenizing & Stemming

General

- Ascii II folding in the Analyzers to transform letters like á to a
- Transform all words to lowercase
- Define keywords that should not be separated like "Covid-19"
- Define characters that should be written as a word, like \$ => dollar

Tokenizing

- Tokenized with the standard built-in tokenizer from Elasticsearch
- The separator for each token is a whitespace

Stemming

- Compared Snowball Stemmer and the Porter Stemmer
- Snowball Stemmer is a much more aggressive than the Porter Stemmer
- Better results with the Porter Stemmer, which is the standard in Elasticsearch
- Only stemmed english words because of the queries

```
GET /_analyze
{
    "tokenizer" : "standard",
    "filter" : ["asciifolding"],
    "text" : "açaí à la carte"
}
[ acai, a, la, carte ]
```

```
POST _analyze
{
    "tokenizer": "standard",
    "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}

[ The, 2, QUICK, Brown, Foxes, jumped, over, the, lazy, dog's, bone ]
```

```
GET /_analyze
{
    "tokenizer": "standard",
    "filter": [ "stemmer" ],
    "text": "the foxes jumping quickly"
}
[ the, fox, jump, quickli ]
```

3.4 Similarity Modules

LMJ(Language Model based on the Jelinek Mercer Smoothing)

- Calculates numbers between zero and one for the similarity between text and query
- A number near zero is pretty good
- The closer the number is to one the more irrelevant is the document
- Performed best for short texts found in titles

DFR

- Calculates with the Bose-Einstein approximation
- Performed best for longer, natural segments of texts found in abstracts

These Similarity Modules were also tested against BM25(Elasticsearch standard) and TF-IDF and performed overall the best.

3.6 Query Pipeline

O4 Results

4.1 Measuring Performance

4.1 Measuring Performance

	MVP	Index	Boosting	Improv. Synonyms	Re-ranking	Re-ranking 2	Re-ranking 3
num_q	50	50	50	50	50	50	50
num_ret	49416	49330	49329	49347	49347	49450	49348
num_rel	26664	26664	26664	26664	26664	26664	26664
num_rel_ret	9679	9401	9788	9930	9929	9666	9935
\mathbf{map}	0.1847	0.1892	0.2035	0.2059	0.2057	0.1927	0.2057
Rprec	0.2826	0.2807	0.2978	0.3027	0.2994	0.2898	0.2995
recip_rank	0.7690	0.8627	0.8627	0.8686	0.8935	0.8474	0.8935
P_{-5}	0.6480	0.6820	0.7320	0.7600	0.7880	0.7040	0.7880
P_10	0.6380	0.6720	0.6820	0.6980	0.7000	0.6660	0.7000
P_30	0.5633	0.6233	0.6300	0.6327	0.6373	0.6007	0.6373
P_1000	0.1936	0.1880	0.1958	0.1986	0.1986	0.1933	0.1987
Recall	0.3630	0.3526	0.3671	0.3724	0.3724	0.3625	0.3726

4.2 Conclusion

♣Good approaches	■ Bad approaches (our specific use case)		
Reranking 1 & 2	Reranking 3 (Just 6 more rel_ret results)		
Boosting (Publish_time, multi-fields)	Index-Management with untuned Boosting		
Porter Stemmer	Snowball Stemmer		
Field specific ranking models (DFR, LMJ)	Standard Ranking Models BM25, TF-IDF		
Index expansion with synonyms	Query expansion with synonyms		
	Ngrams		

4.3 How to further improve

- Query-specific boosting & synonyms/query expansion
- Machine Learning Approach to create synonyms without contextual problems
- Cleaning the metadata (publish_time) to facilitate easier optimization of boosting
- Test & compare Stemming vs Lemmatization
- Automatization of testing procedures to determine optimal weights, boost and values

Vielen Dank!

