Отчёт по лабораторной работе 8

Супонина Анастасия Павловна

Содержание

<u> </u>	. 1
Вадание	. 1
Выполнение работы	
Сложение	. 1
Вычитание	
Умножение	
упрощенное умножение	
Деление	
 Зыводы	
Список литературы	

Список иллюстраций

No table of figures entries found.

Список таблиц

No table of figures entries found.

Цель работы

Научиться писать программы для целочисленной арифметики многократной точности.

Задание

Реализовать следующие алгоритмы для выполнения арифметических операци: - сложение - вычитание - умножение - упрощенное умножение - деление

Выполнение работы

Сложение

Задаю начальные значения

```
n = 3 u = 222 v = 600 b = 10
```

Создаю функцию для нахождения суммы столбиком

```
function sum_(n,u,v,b)
    j = n
    k = 0
    w = \lceil \rceil
    # Создаю цикл в котором беру последние цифры наших чисел
    for j in n:-1:1
        u_j = u \% b
        v j = v \% b
        # В переменную w, записываю значение их суммы
        push!(w, (u j+v j+k) \% b)
        # В переменную k, записываю значение переноса на следующий разряд,
использую для округления в меньшую сторону функцию floor
        k = floor((u j+v j+k) / b)
        # убираю из чисел последние элементы над которыыми уже провела
операцию сложения
        u = div(u, b)
        v = div(v, b)
    end
    # При сложении мы може из двух трехначных чисел получить четырехзначное,
если при сложении последние оставшиеся числа в нашей программе, а именно
первые числа в исходных значениях, дадут сумму больше 9, поэтому записываю в
значение w0, k и если оно будет равно одному то значим так и случилось и его
нужно добавить к списку w и только потом преобразовывать w в результат
    w\theta = k
    if w0 == 1
        push!(w, w0)
        # Так как сложение в столбик идет с конца числа, то итоговый
результат в переменной w у нас записан в обртаном направлении и при это ещё
является массивом, поэтому, чтобы выводе получить число, создаю функцию for
        result = 0
        for i in n:-1:0
            result += (10 ^ i) * w[j+1]
            j -= 1
        end
            return result
    else
        result = 0
        for i in n-1:-1:0
            result += (10 ^ i) * w[j]
            j -= 1
        end
        return result
    end
end
w = sum_(n,u,v,b)
```

```
println(w)
```

Вычитание

```
u = 555
v = 132
```

Записываю функцию для нахождения разности в столбик, от предыдущей функции отличаются только формулы для w и k

```
function sub_(n,u,v,b)
    j = n
    k = 0
    W = []
    for j in n:-1:1
        u_j = u \% b
        v_j = v \% b
        push!(w, (u_j-v_j+k) % b)
        k = floor((u_j-v_j+k) / b)
        u = div(u, b)
        v = div(v, b)
    end
    result = 0
    for i in n-1:-1:0
        result += (10 ^ i) * w[j]
        j -= 1
    end
    return result
end
w = sub_(n,u,v,b)
println(w)
u = [5; 0; 0]
v = [4; 5]
n = 3
m = 2
b = 10
```

Умножение

Создаю функцию для умножения чисел в столбик

```
function mul(u, v, n, m, b)
    w = zeros(Int64, 1, m+n)
    j = m
    while j > 0
        if v[j] == 0
```

```
w[j] == 0
        else
            i = n
            k = 0
            while i > 0
                t = u[i] * v[j] + w[i+j] + k
                w[i+j] = t \% b
                k = div(t, b)
                i = i - 1
            end
            w[j] = k
        end
        j -= 1
    end
    k = n + m - 1
    if w[1] == 0
        w = w[2:n+m]
        k -= 1
    end
    result = 0
    for i in 1:1:k
        result += w[i] * (10 ^ k)
        k -= 1
    end
    return result
end
w = mul(u, v, n, m, b)
println(w)
u = [5, 0, 0]
v = [4, 5]
n = 3
m = 2
b = 10
упрощенное умножение
function fast_mul(u, v, n, m, b)
    w = zeros(Int, m + n)
    f = m + n - 1
    for s in 0:f
        t = 0
        for i in 0:s
            ui = n - i
            vi = m - s + i
            if ui >= 1 && ui <= n && vi >= 1 && vi <= m
                t += u[n - i] * v[m - s + i]
```

```
end
        end
        z = (m + n) - s
        t += w[z]
        w[z] = t \% b
        k = div(t, b)
        if z > 1
            w[z - 1] += k
        end
    end
    k = n + m - 1
    if w[1] == 0
        w = w[2:n+m]
        k -= 1
    end
    result = 0
    for i in 1:1:k
        result += w[i] * (10 ^ k)
        k -= 1
    end
    return result
end
println(fast_mul(u, v, n, m, b))
Деление
u = [5, 0, 0]
v = [2, 5]
n = 3
t = 2
b = 10
function del(u, v, n, t, b)
    # преобразовываю массивы в число
    u_scalar = sum(u[i] * b^n(n - i) for i in 1:n)
    v_scalar = sum(v[i] * b^(t - i) for i in 1:t)
    # Задаю значения для q
    q = zeros(Int, n - t + 1)
    while u_scalar >= v_scalar * b^(n - t)
        q[n - t + 1] += 1
        u_scalar -= v_scalar * b^(n - t)
    end
    for i in n:-1:(t + 1)
        # Вычисляю коэффициент для текущей позиции
```

```
q index = i - t
        if u_scalar >= v_scalar * b^(q_index - 1)
            q[q_index] = div(u_scalar, v_scalar * b^(q_index - 1))
        else
            q[q_index] = 0
        end
        u_scalar -= q[q_index] * v_scalar * b^(q_index - 1)
        # Проверяю, чтобы u_scalar был неотрицательным
        if u_scalar < 0</pre>
            u_scalar += v_scalar * b^(q_index - 1)
            q[q\_index] -= 1
        end
    end
    # записываю значение остатка
    r = u_scalar
    return q, r
end
q, r = del(u, v, n, t, b)
function res(q)
    result = 0
    1 = 0
    for i in q
        result += i * (10 ^ 1)
        1 += 1
    end
    return result
end
println("Частное: ", res(q))
println("Остаток: ", r)
```

Выводы

В процессе выполнения работы, я реализовала алгоритмѕ сложения, вычитания, умножения двух типов и деления. Таким образом я научилась создавать алгоритмы для выполнения арифметических операций с большими целыми цислами на языке программирования Julia.

Список литературы

::: Пособие по лабораторной работе 8 {https://esystem.rudn.ru/pluginfile.php/2368425/mod_folder/content/0/lab08.pdf?forcedo wnload=1}