Всероссийская олимпиада школьников по физике

11 класс, зональный этап, 1992/93 год

Задача 1. Лёгкий теплопроводящий поршень A и тяжёлый теплонепроводящий поршень B делят вертикально расположенный цилиндр на два отсека (рис.). Высота каждого отсека L=40 см, и в каждом из них находится 1 моль идеального одноатомного газа. Первоначально система находится в тепловом равновесии. Затем газ медленно нагревают, сообщая ему количество теплоты Q=200 Дж. Определите наименьшую силу трения между поршнем A и стенками сосуда, при которой поршень A ещё останется неподвижным. Поршень B может перемещаться без трения.

$$F = \frac{Q}{4L} = 125 \text{ H}$$

Задача 2. Проволочное колечко пролетает между полюсами магнита, не успев повернуться. Диаметр колечка D=6 мм, диаметр проволоки d ($d \ll D$), её удельное сопротивление $\rho_{\rm c}=2\cdot 10^{-8}$ Ом·м и плотность $\rho_{\rm n}=9\cdot 10^3$ кг/м³. Оцените изменение скорости колечка за время пролета сквозь магнитное поле, если его скорость при влёте в поле равна $v_0=20$ м/с. Вектор индукции \vec{B} магнитного поля перпендикулярен плоскости. Зависимость индукции магнитного поля от координаты x (вдоль траектории движения колечка) показана на рисунке, при этом a=10 см, $B_0=1$ Тл. Можно считать, что $a\gg D$.

$$\sqrt{2 \log_{10} \Omega_{\rm ps}^2} = n \sqrt{2 \log_{10} \Omega_{\rm ps}^2} = n \sqrt{2 \log_{10} \Omega_{\rm ps}^2}$$

Задача 3. По диаметру астероида, который имеет форму шара, проходит узкий тоннель. С поверхности астероида в тоннель бросили камень, сообщив ему скорость, равную первой космической для этого астероида. Через какое время камень вернётся назад? Известно, что минимальный период обращения космических объектов вокруг астероида равен T_0 ; астероид состоит из однородного вещества, а влияние гравитационного поля других небесных тел мало.

 Π римечание. Площадь эллипса $S=\pi ab$, где a и b — длины полуосей эллипса.

 $\left(\frac{1}{\pi} + 1\right) \partial T = \tau$

Задача 4. Тонкий пучок электронов, движущийся со скоростью v_0 , пролетает сквозь сетки A и B, к которым приложено переменное напряжение $U=U_0\sin\omega t$ (рис.). Время пролёта сквозь сетки много меньше периода переменного напряжения. Изменение скорости электронов, прошедших сквозь сетки, значительно меньше v_0 . Оцените, на каком расстоянии от сеток электроны соберутся в сгустки. Значения U_0 , v_0 , ω и $\gamma=e/m$ (отношение заряда электрона к его массе) считать известными.

$$\boxed{\frac{000}{000}} = 1$$