# МГТУ МГТУ МГТУ

# Лекция 5. Случайные векторы

Велищанский Михаил Александрович

Московский Государственный Технический Университет имени Н.Э. Баумана

Москва, 2023

MITY MITY N

# Определение

Совокупность случайных величин  $X_1 = X_1(\omega), \ldots, X_n = X_n(\omega)$ , заданных на одном и том же вероятностном пространстве  $(\Omega, \mathfrak{B}, P)$ , называют многомерной (п-мерной) случайной величиной, или п-мерным случайным вектором. При этом  $CB X_1, X_2, \ldots, X_n$  — координаты случайного вектора.

# Пример

Отклонение точки разрыва снаряда от точки прицеливания при стрельбе по плоской цели можно задать 2-мерной CB(X,Y), где X — отклонение по дальности, а Y — отклонение в боковом направлении. При стрельбе по воздушной цели необходимо рассматривать 3-мерную CB(X,Y,Z), где X,Y,Z — координаты отклонения точки разрыва зенитного снаряда от точки прицеливания в некоторой пространственной CK.

# Пример

При испытании прибора на надежность совокупность внешних воздействий в некоторый момент времени можно описать случайным вектором (X, Y, Z, ...). Здесь, например, X — температура окружающей среды, Y — атмосферное давление, Z — амплитуда вибрации платформы, на которой установлен прибор и т. д. Размерность этого вектора зависит от количества учитываемых факторов и может быть достаточно большой.

### Замечание

Закон распределения п-мерной СВ так же может быть задан с помощью функции распределения.

### Замечание

Далее, для краткости, для пересечения событий  $\{X_1 < x_1\} \cap \{X_2 < x_2\} \cap \ldots \cap \{X_n < x_n\}$  будем использовать запись:  $\{X_1 < x_1, X_2 < x_2, \ldots, X_n < x_n\}$ .

# Определение

Функцией распределения (вероятностей)

$$F(x_1,\ldots,x_n)=F_{X_1,\ldots,X_n}(x_1,\ldots,x_n)$$
 (п-мерного) случайного вектора  $(X_1,\ldots,X_n)$  называют функцию, значение которой в точке  $(x_1,\ldots,x_n)\in\mathbb{R}^n$  равно вероятности совместного осуществления событий  $\{X_1< x_1\},\ldots,\{X_n< x_n\}$ , т.е.  $F(x_1,\ldots,x_n)=F_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=P\{X_1< x_1,\ldots,X_n< x_n\}$ . Данную функцию также называют совместной (п-мерной) функцией распределения  $CB(X_1,\ldots,X_n)$ .

### Замечание

| $\mathbf{x}_2$ | <b>†</b>           |
|----------------|--------------------|
| $a_2$          |                    |
|                |                    |
| O<br>X,        | $X_{11}$ $a_1$ $X$ |
|                |                    |

Значение  $F_{X_1,X_2}(a_1,a_2)$  равно вероятности попадания точки с координатами  $(X_1,X_2)$  в квадрант с вершиной в точке  $(a_1,a_2)$ .

# Теорема

Двумерная функция распределения удовлетворяет следующим свойствам:

**ФH-12** 

MLTA

- 1.  $0 \leqslant F(x_1, x_2) \leqslant 1$ .
- 2.  $F(x_1, x_2)$  неубывающая функция по каждому из аргументов  $x_1$  и  $x_2$ .
- 3.  $F(-\infty, x_2) = F(x_1, -\infty) = 0$ .
- 4.  $F(+\infty, +\infty) = 1$ .
- 5.  $P\{a_1 \leq X_1 < b_1, a_2 \leq X_2 < b_2\} = F(b_1, b_2) F(b_1, a_2) F(a_1, b_2) + F(a_1, a_2).$
- 6.  $F(x_1, x_2)$  непрерывная слева в любой точке  $(x_1, x_2) \in \mathbb{R}^2$  по каждому из аргументов  $x_1$  и  $x_2$  функция.
- 7.  $F_{X_1,X_2}(x,+\infty) = F_{X_1}(x)$ ,  $F_{X_1,X_2}(+\infty,x) = F_{X_2}(x)$ .

### Доказательство.

Свойства 1, 2 и 6 доказываются аналогично 1-мерному случаю.

3. События 
$$\{X_1<-\infty\}$$
 и  $\{X_2<-\infty\}$  являются невозможными  $\Rightarrow F(-\infty,x_2)=P\{X_1<-\infty,X_2< x_2\}=0$ ,  $F(x_1,-\infty)=P\{X_1< x_1,X_2<-\infty\}=0$ .

4. Т.к. 
$$\{X_1<+\infty\}$$
 и  $\{X_2<+\infty\}$  достоверные события, то  $\{X_1<+\infty\}\cap\{X_2<+\infty\}$  достоверное событие и,

следовательно, 
$$F(+\infty, +\infty) = P\{X_1 < +\infty, X_2 < +\infty\} = 1.$$

5. 
$$P\{a_1 \leq X_1 < b_1, a_2 \leq X_2 < b_2\} =$$
  
=  $F(b_1, b_2) - F(b_1, a_2) - F(a_1, b_2) + F(a_1, a_2).$ 



# доказательство (продолжение).

**OH-12** 

МГТУ



$$\begin{split} &P\{X_1 < a_1, a_2 \leqslant X_2 < b_2\} = \\ &= P\{\{X_1 < a_1, X_2 < b_2\} \backslash \{X_1 < a_1, X_2 < a_2\}\} = F(a_1, b_2) - F(a_1, a_2). \\ &P\{X_1 < b_1, a_2 \leqslant X_2 < b_2\} = \\ &= P\{\{X_1 < b_1, X_2 < b_2\} \backslash \{X_1 < b_1, X_2 < a_2\}\} = F(b_1, b_2) - F(b_1, a_2). \\ &\text{Тогда} \\ &P\{a_1 \leqslant X_1 < b_1, a_2 \leqslant X_2 < b_2\} = \\ &= P\{\{X_1 < b_1, a_2 \leqslant X_2 < b_2\} \backslash \{X_1 < a_1, a_2 \leqslant X_2 < b_2\}\} = \end{split}$$

# доказательство (продолжение).

MITY



$$P\{a_1\leqslant X_1 < b_1, a_2\leqslant X_2 < b_2\}=$$
 $=P\{\{X_1 < b_1, a_2\leqslant X_2 < b_2\}\setminus \{X_1 < a_1, a_2\leqslant X_2 < b_2\}\}=$ 
 $=F(b_1,b_2)-F(b_1,a_2)-(F(a_1,b_2)-F(a_1,a_2))=$ 
 $=F(b_1,b_2)-F(b_1,a_2)-(F(a_1,b_2)+F(a_1,a_2)).$ 
7. Т.к. событие  $\{X_2<+\infty\}$  является достоверным, то  $\{X_1< x_1\}\cap \{X_2<+\infty\}=\{X_1< x_1\}\Rightarrow$ 
 $\Rightarrow F(x_1,+\infty)=P\{X_1< x_1\}=F_{X_1}(x_1).$ 
Аналогично  $F(+\infty,x_2)=F_{X_2}(x_2).$ 
 $F_{X_1}(x)$  и  $F_{X_2}(x)$ — одномерные (частные, маргинальные) функции распределения СВ  $X_1$  и  $X_2$ .

### Замечание

- 1. Все свойства остаются верными для функции распределения п-мерного случайного вектора.
- 2. Функция распределения случайного вектора имеет не более счетного количества точек разрыва 1-го рода.

# Определение

Двумерную случайную величину X, Y называют дискретной, если каждая из случайных величин X и Y является дискретной.

МГТУ

# Определение (\*)

n-мерный случайный вектор  $\vec{X}(\omega)$ , принимающий не более счетного множества возможных значений  $\{X_k\}_{k=1}^{N\leqslant\infty}$  называют дискретным случайным вектором.

#### Дискретные двумерные случайные векторы

METY

Закон распределения двумерного дискретного случайного вектора может быть задан в виде следующей таблицы:

MLTA

| 401140                |                        |                       |              |                 |          |
|-----------------------|------------------------|-----------------------|--------------|-----------------|----------|
|                       | YIZ                    |                       |              |                 |          |
| X                     | <i>y</i> <sub>1</sub>  | <i>y</i> <sub>2</sub> |              | Уm              | $P_X$    |
| <i>x</i> <sub>1</sub> | $p_{11}$               | $p_{12}$              |              | $p_{1m}$        | $p_{X1}$ |
| <i>x</i> <sub>2</sub> | <i>p</i> <sub>21</sub> | p <sub>22</sub>       |              | p <sub>2m</sub> | $p_{X2}$ |
|                       |                        |                       |              |                 |          |
| Xn                    | $p_{n1}$               | $p_{n2}$              | <b>LI</b> :7 | p <sub>nm</sub> | $p_{Xn}$ |
| $P_Y$                 | $p_{Y1}$               | $p_{Y2}$              |              | $p_{Ym}$        |          |

$$p_{ij} = P\{X = x_i, Y = y_j\},\$$

$$p_{Xi} = P\{X = x_i\} = \sum_{j=1}^{m} p_{ij},\$$

$$p_{Yj} = P\{Y = y_j\} = \sum_{i=1}^{n} p_{ij},\$$

$$F(x, y) = \sum_{\substack{i: x_i < x \\ j: y_j < y}} p_{ij}.$$

Здесь  $y_1, \ldots, y_j, \ldots, y_m$  – все возможные значения СВ Y, а  $x_1, \ldots, x_i, \ldots, x_n$  – все значения СВ X.

### Дискретные двумерные случайные векторы

По схеме Бернулли с вероятностью "успеха" p и вероятностью "неудачи" q=1-p проводятся два испытания. Распределение 2-мерного СВ  $(X_1,X_2)$ , где  $X_i,\ i=1,2,$  — число "успехов" в i-м испытании,  $X_1$  и  $X_2$  могут принимать 2 значения: 0 или 1.

МГТУ

МГТУ

# Пример

$$P\{X_1 = 0, X_2 = 0\} = q^2,$$

$$P\{X_1 = 1, X_2 = 0\} = pq,$$

$$P\{X_1 = 0, X_2 = 1\} = qp,$$

$$P\{X_1 = 1, X_2 = 1\} = p^2,$$

$$P\{X_1 = 0\} = q^2 + pq = q(q + p) = q,$$

$$P\{X_1 = 1\} = pq + p^2 = p(p + q) = p.$$

|           | <i>X</i> <sub>2</sub> |       |           |  |  |
|-----------|-----------------------|-------|-----------|--|--|
| $X_1$     | 0                     | 1     | $P_{X_1}$ |  |  |
| 0         | $q^2$                 | qp    | q         |  |  |
| 1         | pq                    | $p^2$ | р         |  |  |
| $P_{X_2}$ | q                     | р     | 7         |  |  |

### Дискретные двумерные случайные векторы

мгту

|           | $X_2$ |                      |           |     |
|-----------|-------|----------------------|-----------|-----|
| $X_1$     | 0     | 1                    | $P_{X_1}$ |     |
| 0         | $q^2$ | qp<br>p <sup>2</sup> | q         | 42  |
| 1         | pq    | $p^2$                | р         | -12 |
| $P_{X_2}$ | q     | p                    |           |     |

Совместная функция распределения СВ  $X_1$  и  $X_2$ :

OH-12

$$\begin{split} F\big(x_1,x_2\big) &= P\big\{X_1 < x_1, X_2 < x_2\big\} = \\ &= \left\{ \begin{array}{ll} 0 & : & x_1 \leqslant 0 \text{ или } x_2 \leqslant 0, \\ q^2 & : & 0 < x_1 \leqslant 1 \text{ и } 0 < x_2 \leqslant 1, \\ q^2 + qp = q & : & 0 < x_1 \leqslant 1 \text{ и } x_2 > 1, \\ q^2 + qp = q & : & x_1 > 1 \text{ и } 0 < x_2 \leqslant 1, \\ 1 & : & x_1 > 1 \text{ и } x_2 > 1. \end{array} \right. \end{split}$$

# Определение

Непрерывной двумерной случайной величиной (X,Y) называют такую двумерную случайную величину (X,Y), совместную функцию распределения которой  $F(x_1,x_2)=P\{X< x,Y< y\}$  можно представить в виде сходящегося несобственного интеграла:

$$F(x,y) = \int\limits_{-\infty}^{x} \int\limits_{-\infty}^{y} f(t_1,t_2) dt_1 dt_2.$$

Функцию  $f(x,y) = f_{XY}(x,y)$  называют совместной плотностью распределения случайных величин X и Y или плотностью распределения случайного вектора (X,Y).

В точках непрерывности функции f(x,y) имеет место следующее равенство:  $f(x,y)=\frac{\partial^2 F(x,y)}{\partial x \partial y}=\frac{\partial^2 F(x,y)}{\partial y \partial x}.$ 

Аналогичным образом вводится понятие n-мерной непрерывной случайной величины.

**ФH-12** 

# Определение (\*) Н-12

Непрерывным случайным вектором называют п-мерный случайный вектор  $\vec{X}(\omega)$ , вероятность попадания которого в любую область  $\mathbb{R}^n$  бесконечно малого диаметра — бесконечно мала и  $\forall (x_1,\ldots,x_n) \in \mathbb{R}^n$  определена функция:

$$f_{\vec{X}}(x_1,\ldots,x_n) = \lim \frac{P\{\vec{X}(\omega) \subset U(\vec{x})\}}{\mu(U(\vec{x}))},$$

где  $U(\vec{x})$  – окрестность точки  $\vec{x}$ ,  $\mu(U(\vec{x}))$  – мера окрестности точки  $\vec{x} \in \mathbb{R}^n$ ,  $f_{\vec{X}}(x_1,\ldots,x_n)$  – плотность распределения вероятностей п-мерного случайного вектора.

### Теорема

Двумерная плотность распределения обладает следующими свойствами:

1. 
$$f(x,y) \ge 0$$
.  
2.  $P\{a_1 \le X < b_1, a_2 \le Y < b_2\} = \int_{a_1}^{b_1} dx \int_{a_2}^{b_2} f(x,y) dy$ .

3. 
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dxdy = 1.$$

4. 
$$P\{x < X < x + \Delta x, y < Y < y + \Delta y\} \approx f(x, y) \Delta x \Delta y$$
.

5. 
$$P{X = x, Y = y} = 0$$

6. 
$$P\{(X,Y) \in D\} = \iint_{D} f(x,y) \, dxdy.$$

7. 
$$f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) \, dy$$
,  $f_Y(y) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) \, dx$ .

### Доказательство.

Свойства (1)–(5) аналогичны одномерному случаю. Свойство (6) является обобщением свойства (2): пусть  $\{D_k\}_{k=1}^N$  — разбиение, т.е.  $D=\bigcup_k D_k$  и  $D_j\cap D_i=\varnothing$   $\forall i\neq j$ .

Аппроксимируем  $D_k$  элементарным прямоугольником  $\Delta x_i \Delta y_j = \tilde{D}_k$ . Внутри каждого прямоугольника выбираем точку  $\xi_{ij}(x_i,y_j)$  и вычислим  $f(\xi_{ij}) = f(x_i,y_j)$ . Составим следующую сумму:  $\sum_{i,j} f(x_i,y_j) \Delta x_i \Delta y_j$ . При  $\Delta x_i, \Delta y_j \to 0$  – это будет

интегральной суммой для  $\iint\limits_D f(x,y)\,dxdy$ . С другой стороны,

согласно свойству 4,  $\sum_{i,j} f(x_i,y_j) \Delta x_i \Delta y_j = \sum_k P\{(X,Y) \in \tilde{D}_k\}.$ 

Следовательно  $P\{(X,Y)\in D\}=\iint\limits_{D}f(x,y)\,dxdy.$ 

# доказательство (продолжение).

Свойство (7). Из свойства (7) функции распределения и определения непрерывного случайного вектора имеем:

$$F_X(x) = F_{XY}(x, +\infty) = \int_{-\infty}^{x} \int_{-\infty}^{+\infty} f_{XY}(t_1, t_2) dt_1 dt_2.$$

Дифференцируя интеграл по переменному верхнему пределу и учитывая, что f(x) = F'(x), имеем:

$$f_{X}(x) = F'_{X}(x) = F'_{XY}(x, +\infty) = \left(\int_{-\infty}^{x} \int_{-\infty}^{+\infty} f_{XY}(t_{1}, t_{2}) dt_{1} dt_{2}\right)'_{x} = \int_{-\infty}^{+\infty} f_{XY}(t_{1}, t_{2}) dt_{2}.$$

Для 
$$f_Y(y) = \int\limits_{-\infty}^{\infty} f_{XY}(t_1,t_2) \, dt_1$$
 доказывается аналогично.  $\square$ 

# Пример

Пусть двумерный случайный вектор распределен равномерно в круге с центром в (0,0) и радиусом R. Найдем совместную и маргинальные функции плотности распределения.

Плотность распределения равномерного СВ имеет вид:

$$f(x,y) = \begin{cases} A, & x^2 + y^2 \leq R^2, \\ 0, & x^2 + y^2 > R^2. \end{cases}$$

Из условия нормировки

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \, dxdy = \int_{x^2 + y^2 \leqslant R^2} A \, dxdy = \pi A R^2 = 1 \Rightarrow A = \frac{1}{\pi R^2}.$$

Тогда
$$f(x,y) = \left\{ egin{array}{ll} 0, & x^2 + y^2 > R^2, \ rac{1}{\pi R^2}, & x^2 + y^2 \leqslant R^2. \end{array} 
ight.$$

МГТУ

Одномерная плотность распределения X:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy =$$

$$= \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} \frac{1}{\pi R^2} \, dy = \begin{cases} 0, & |x| > R \\ \frac{2\sqrt{R^2 - x^2}}{\pi R^2}, & |x| \leqslant R \end{cases}$$

МГТУ

Аналогично можно получить и  $f_Y(y)$ .

МГТУ

# Определение

Случайные величины X и Y называются независимыми, если  $F_{XY}(x,y) = F_X(x)F_Y(y)$ . В противном случае случайные величины называют зависимыми.

#### Замечание

Из данного определения следует, что для независимых СВ X и Y события  $\{X < x\}$  и  $\{Y < y\}$  являются независимыми.

**OH-12** 

# Утверждение

Если случайные величины X и Y независимы, то независимыми являются все события  $\{x_1\leqslant X< x_2\}$  и  $\{y_1\leqslant Y< y_2\}.$ 

**OH-12** 

### Доказательство.

$$P\{x_{1} \leq X < x_{2}, y_{1} \leq Y < y_{2}\} = F(x_{2}, y_{2}) - F(x_{1}, y_{2}) - F(x_{2}, y_{1}) + F(x_{1}, y_{1}) = F_{X}(x_{2})F_{Y}(y_{2}) - F_{X}(x_{1})F_{Y}(y_{2}) - F_{X}(x_{2})F_{Y}(y_{1}) + F_{X}(x_{1})F_{Y}(y_{1}) = [F_{X}(x_{2}) - F_{X}(x_{1})][F_{Y}(y_{2}) - F_{Y}(y_{1})] = P\{x_{1} \leq X < x_{2}\}P\{y_{1} \leq Y < y_{2}\}.$$

# Утверждение (б/д)

Для того чтобы случайные величины X и Y были независимые н. и д. чтобы были независимыми любые события  $\{X \in A\}$  и  $\{Y \in B\}$ , где A и B – промежутки или объединения промежутков.

# Теорема

Для того чтобы случайные величины X и Y были независимые н. и д. чтобы  $\forall x, y \ f_{XY}(x,y) = f_X(x)f_Y(y)$ .

### Доказательство.

Пусть X и Y независимы, тогда  $F_{X,Y}(x,y) = F_X(x)F_Y(y) \Rightarrow$ 

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y} =$$

$$= \frac{dF_X(x)}{dx} \frac{dF_Y(y)}{dy} = f_X(x)f_Y(y).$$

# доказательство (продолжение).

Пусть теперь  $f_{XY}(x,y) = f_X(x)f_Y(y)$ .

$$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u,v) du dv =$$

$$= \int_{-\infty}^{x} f_{X}(u) du \int_{-\infty}^{y} f_{Y}(v) dv = F_{X}(x)F_{Y}(y).$$

ФН-12

# Утверждение (б/д)

Дискретные СВ X и Y являются независимыми т. и т.т., когда для всех возможных значений  $x_i$  и  $y_j$ :

$$p_{ij} = P\{X = x_i, Y = y_j\} = P\{X = x_i\}P\{Y = y_j\} = p_{X_i}p_{Y_i}.$$

ΦH-12

# Определение

Случайные величины  $X_1, \ldots, X_n$ , заданные на одном и том же вероятностном пространстве, называют независимыми в совокупности, если

$$F_{X_1...X_n}(x_1,...,x_n) = F_{X_1}(x_1)...F_{X_n}(x_n).$$

Как и для событий, из попарной независимости не следует независимость СВ в совокупности.

# Определение (\*)

Случайные величины  $X_1, \ldots, X_n$  называют независимыми, если  $\forall m \in \{2, 3, \ldots, n\}$  и для любого набора индексов  $\{i_j\}_{j=1}^m: \ 1 \leqslant i_1 < i_2 < \ldots < i_m = n$  и для любого набора чисел  $\{x_{i_j}\}_{j=1}^m$  имеет место равенство:

$$P\{X_{i_j} < x_{i_j}, \ \forall j = \overline{1, m}\} = \prod_{i=1}^m P\{X_{i_j} < x_{i_j}\}.$$

# Пример

Опыт состоит в однократном подбрасывании тетраэдра, грани которого пронумерованы следующим образом: на 3-х гранях стоят цифры 1, 2 и 3 соответственно, а на 4-й присутствуют все цифры 1, 2 и 3.

 $CB\ X_1,\ X_2\ u\ X_3$  принимают значения  $0\ или\ 1$ , причем  $X_1=1$ , если тетраэдр упал на грань, на которой есть 1, и  $X_1=0\ в$  противном случае;  $X_2$  характеризует наличие 2, а  $X_3$  — наличие 3.

$$P\{X_i = 1\} = P\{X_i = 0\} = \frac{1}{2}, \quad i = 1, 2, 3,$$
  
 $P\{X_i = 1, X_j = 1\} = \frac{1}{4} = P\{X_i = 1\}P\{X_j = 1\}, \quad i \neq j.$ 

Tаким образом  $X_i$  попарно независимы.

$$P{X_1 = 1, X_2 = 1, X_3 = 1} = \frac{1}{4} \neq$$
  
 $\neq P{X_1 = 1}P{X_2 = 1}P{X_3 = 1} = \frac{1}{8}.$ 

Следовательно  $X_i$ ,  $i = \overline{1,3}$ , не являются независимыми в совокупности.