

SERIAL PERIPHERAL INTERFACE

Prepared By
Priyanka C
Application Engineer
Ramaiah Skill Academy

Content

- Introduction to SPI protocol
- Basic SPI Architecture
- Working Principle
- SPI Modes(Clock Polarity and Clock Phase)
- Timing Diagram
- Advantages of SPI
- Limitations of SPI
- Multi-Slave configuration
- Comparison with other protocols
- Applications
- References

Introduction to SPI

- SPI is a Serial Bus communication Protocol developed by Motorola in late 1980s
- It is a Synchronous, Full Duplex protocol and most used protocol for short distance communication
- Used in microcontrollers, sensors, EEPROMS, ADCs, DACs etc
- Has a simple hardware interface
- Provides high-speed data transfer
- Supports single or multiple slave devices but has only one master that controls all communications

Basic SPI Architecture

Master-Slave Configuration

- One master controls the communication
- One or more slaves respond to the master

There are Four main signals:

- MOSI (Master Out Slave In) -> used for sending data from Master to Slave
- MISO (Master In Slave Out) -> used for sending data from Slave to Master
- SCLK (Serial Clock) → used to clock the signal
- SS/CS (Slave Select / Chip Select) → used by master to send the data by selecting a particular slave. It is used when there are multiple slaves in the design

Basic SPI Architecture

Working Principle

- → Clock Synchronization: where Master generates the clock SCLK
 - All data transfers are synchronized to this clock.
 - Data Shifts occur on clock edges determined by SPI mode.

→ Data Transfer

- Master sends data to the slave vis MOSI
- Slave responds with data via MISO
- Transfer happens in full duplex mode i.e., simultaneous read and write operations

→ Chip Selection

- SS is driven low to select a slave
- If a particular slave is not selected, it remains inactive and ignores SCLK and MOSI.

→ Data Frame

- SPI uses a shift register based data frame
- Data is typically transferred as 8 bits at a time but it can be extended

SKILL ACADEMY

SPI Modes (Clock Polarity and Phase)

- Mode 0 :
 - \rightarrow CPOL = 0, CPHA = 0
 - → Data is sampled on rising edge
- Mode 1 :
 - \rightarrow CPOL = 0, CPHA = 1
 - → Data is sampled on falling edge
- Mode 2:
 - \rightarrow CPOL = 1, CPHA = 0
 - → Data is sampled on falling edge
- Mode 3:
 - \rightarrow CPOL = 1, CPHA = 1
 - → Data is sampled on rising edge

Figure 2. SPI Mode 0, CPOL = 0, CPHA = 0: CLK idle state = low, data sampled on rising edge and shifted on falling edge.

Figure 3. SPI Mode 1, CPOL = 0, CPHA = 1: CLK idle state = low, data sampled on the falling edge and shifted on the rising edge.

Figure 4. SPI Mode 2, CPOL = 1, CPHA = 0: CLK idle state = high, data sampled on the falling edge and shifted on the rising edge.

11

Figure 5. SPI Mode 3, CPOL = 1, CPHA = 1: CLK idle state = high, data sampled on the rising edge and shifted on the falling edge.

Advantages of SPI

- High speed data transfer
- Simple Implementation
- Full-duplex communication
- Low power consumption
- Easy to daisy-chain multiple devices

Limitations of SPI

- No formal standard
- Limited to short distances
- Requires more pins than I2C
- Only one master at a time
- Handling multiple slaves requires extra control logic

Multi-Slave Configuration

14

- Daisy-Chain:
 - Single data line for all slaves
 - Advantages:
 - Reduces number of SS lines
 - Simple hardware connections
 - Disadvantages:
 - Slower due to cascading delays^{KILL ACADE}
 - Single point of failure

Multi-Slave Configuration

- Individual SS Lines:
 - Each slave has a dedicated SS line
 - Advantages:
 - Faster Communication
 - Better Fault Isolation
 - Disadvantages:
 - Requires more GPIO pins
 - Complex hardware wiring for large systems

Comparison with other Protocols

Feature	SPI	I2C	UART	CAN
Speed	High	Moderate	Moderate	Low
Number of Wires	4 (min)	2	2	2
Full Duplex	Yes	No	No	No
Master-Slave	Single Master, Multi-Slave	Multi-Master, Multi- Slave	Point-to-Point	Multi-Master, Multi- Slave
Addressing	No	Yes	No	Yes
Robustness	Low	Medium	Medium	High
Range	Short	Short-Medium	Medium	Long

Applications

- Consumer Electronics:
 - SD Cards, Touch screens
- Industrial:
 - Sensors, Actuators
- Automotive:
 - ECU communication

Assignment

- Design an SPI module in Verilog that includes both spi_master and spi_slave functionalities.
 - Implement 8-bit data transfer with support for all four SPI modes (CPOL, CPHA).
 - Ensure the master generates the clock (SCLK) and the slave communicates based on the Slave Select (SS) signal.
 - Write a testbench to verify full-duplex communication for a given sequence of data bytes and validate correct operation through simulation waveforms.
 - Explain how your design would handle scenarios where the clock speed of the SPI master is higher than the capability of the slave.

References

- 1. "Serial Communication Protocols: Principles and Applications" by Robert J. Anderson, Wiley, 2020.
- 2. "Microcontroller Systems: Advanced Design Techniques" by John H. Davies, Elsevier, 2019.