

1 WHAT IS CLAIMED IS:

5

1. An optical pickup apparatus for recording or reproducing of information of one of a plurality of optical disks, including a first optical disk and a second optical disk, in a shared manner, the 10 plurality of optical disks having transparent substrates different in thickness, comprising:

a plurality of light sources, including at least first and second light sources, which selectively emit one of a plurality of light beams, the plurality of 15 light beams being different in wavelength, the wavelengths of first and second light beams, emitted by the first and second light sources, being appropriate for accessing the first and second optical disks respectively;

20 a coupling lens which converts a corresponding one of the plurality of light beams selectively emitted by the plurality of light sources, into a collimated beam;

25 an objective lens which forms a light spot on a corresponding one of the plurality of optical disks by focusing the collimated beam;

1 a holographic optical element which
receives a reflection beam of the light spot from the
corresponding one of the plurality of optical disks, and
provides holographic effects on the reflection beam so as
5 to diffract the reflection beam in predetermined
diffracting directions depending on the wavelength of the
reflection beam; and

 a photodetector which receives the
reflection beam from the holographic optical element at
10 light receiving areas of the photodetector, and outputs
signals indicative of respective intensities of the
received reflection beam at the light receiving areas, so
that a focusing error signal and a tracking error signal
are generated based on the signals output by the
15 photodetector.

20 2. The optical pickup apparatus according
to claim 1, wherein the photodetector includes a set of
first light receiving areas and a set of second light
receiving areas which are separately provided for the
first and second light beams having the different
25 wavelengths, and wherein the holographic optical element

1 is configured such that the reflection beam is diffracted
to only the first light receiving areas of the
photodetector when the reflection beam has the wavelength
of the first light beam, and the reflection beam is
5 diffracted to only the second light receiving areas of the
photodetector when the reflection beam has the wavelength
of the second light beam.

10

 3. The optical pickup apparatus according
to claim 1, wherein the photodetector includes a set of
common light receiving areas which is provided in common
15 for the first and second light beams having the different
wavelengths, and wherein the holographic optical element
is configured with a first hologram and a second hologram,
such that the reflection beam is diffracted at the first
hologram to the common light receiving areas of the
20 photodetector when the reflection beam has the wavelength
of the first light beam, and the reflection beam is
diffracted at the second hologram to the common light
receiving areas of the photodetector when the reflection
beam has the wavelength of the second light beam.

25

1 4. The optical pickup apparatus according
to claim 1, wherein the first light source emits a first
laser beam with a first wavelength appropriate for
accessing the first optical disk, and the second light
5 source emits a second laser beam with a second wavelength
appropriate for accessing the second optical disk.

10

5. The optical pickup apparatus according
to claim 4, wherein the photodetector and the holographic
optical element are configured so as to satisfy the
following requirements:

15 $W \leq 2D [\tan\{\sin^{-1}(L_1/d_2)\} - \tan\{\sin^{-1}(L_1/d_1)\}]$

$W \leq 2D [\tan\{\sin^{-1}(L_2/d_2)\} - \tan\{\sin^{-1}(L_2/d_1)\}]$

where L_1 is the first wavelength of the first laser beam,
 L_2 is the second wavelength of the second laser beam, d_1
is a grating pitch of a first hologram of the holographic
20 optical element, d_2 is a grating pitch of a second
hologram of the holographic optical element, W is a width
of the light receiving areas of the photodetector, and D
is a distance between the holographic optical element and
the photodetector.

25

1 6. The optical pickup apparatus according
to claim 1, wherein the optical pickup apparatus has a
common optical path for the first and second light beams,
and the coupling lens and the objective lens are arranged
5 such that both an optical axis of the coupling lens and an
optical axis of the objective lens accord with the common
optical path.

10

7. The optical pickup apparatus according
to claim 6, wherein the objective lens is a single element
which is provided in common for the first and second light
15 beams emitted by the first and second light sources.

20 8. The optical pickup apparatus according
to claim 6, wherein the holographic optical element is
arranged on the common optical path.

25

1 9. The optical pickup apparatus according
to claim 8, wherein the holographic optical element is
configured with a polarization hologram and a quarter-wave
plate, the polarization hologram having diffracting
5 effects depending on polarizing directions of the
reflection beam, and the quarter-wave plate being arranged
on the common optical path such that the quarter-wave
plate is placed on an optical-disk side of the
polarization hologram.

10

15 10. The optical pickup apparatus according
to claim 6, wherein the coupling lens is arranged on the
common optical path such that the coupling lens is placed
adjacent to the first and second light sources.

20

25 11. The optical pickup apparatus according
to claim 6, further comprising a beam splitter which is
arranged on the common optical path adjacent to the first
and second light sources and allows the first and second

1 light beams from the first and second light sources to be
collected to the coupling lens along the common optical
path.

5

12. The optical pickup apparatus according
to claim 6, wherein the first and second light sources are
10 arranged in a vicinity of the common optical path, and the
first and second light sources, the photodetector and the
holographic optical element are accommodated in a common
package.

15

13. The optical pickup apparatus according
to claim 11, wherein the holographic optical element is
20 arranged on the common optical path, and the beam
splitter, the first and second light sources, the
holographic optical element and the photodetector are
accommodated in a common module.

25

1 14. The optical pickup apparatus according
to claim 12, wherein the holographic optical element is
arranged on the common optical path, and the first and
second light sources, the photodetector and the
5 holographic optical element are integrated into the common
package.

10

15. The optical pickup apparatus according
to claim 9, wherein the polarization hologram includes:
 a transparent substrate;
 a birefringence layer of a polymer material
15 provided on the transparent substrate in a periodic
 grating pattern, the birefringence layer having different
 refractive indexes for two orthogonal polarizing
 directions of the reflection beam; and
 an isotropic overcoat layer provided to
20 enclose the birefringence layer therein,
 the polarization hologram diffracting the
 reflection beam in the predetermined diffracting
 directions depending on the wavelength of the incident
 reflection beam.

25

1 16. The optical pickup apparatus according
to claim 15, wherein the birefringence layer of the
polarization hologram is made of a stretched organic
polymer film.

5

10 17. The optical pickup apparatus according
to claim 15, wherein the birefringence layer of the
polarization hologram is configured with a stretched
organic polymer film, and the organic polymer material of
the birefringence layer being selected from among poly-
carbonate, polyvinylalcohol, polymethylmethacrylate, poly-
15 styrene, polysulfone, polyethylsulfone, and polyimide.

20 18. The optical pickup apparatus according
to claim 15, wherein the birefringence layer of the
polarization hologram is configured with a heated and
stretched polyimide film.

25

1 19. The optical pickup apparatus according
to claim 15, wherein the polarization hologram is
configured to substantially satisfy the following
requirements

5 $(n_p - n_l)h = m\lambda$

$(n_s - n_l)h = (m \pm 1/2)\lambda$

where n_p is a refractive index of the birefringence layer
for a p-polarized light of the reflection beam, n_s is a
refractive index of the birefringence layer for an s-
10 polarized light of the reflection beam, n_l is a refractive
index of the isotropic overcoat layer, h is a depth of the
periodic grating pattern, λ is a wavelength of the
reflection beam, and m is an integer ($m = 0, \pm 1, \pm 2, \dots$).

15

20 20. The optical pickup apparatus according
to claim 15, wherein the polarization hologram is
configured to substantially satisfy the following
requirements

$(n_p - n_l)h = (m \pm 1/2)\lambda$

$(n_s - n_l)h = m\lambda$

where n_p is a refractive index of the birefringence layer
25 for a p-polarized light of the reflection beam, n_s is a

1 refractive index of the birefringence layer for an s-
polarized light of the reflection beam, n_1 is a refractive
index of the isotropic overcoat layer, h is a depth of the
periodic grating pattern, L is a wavelength of the
5 reflection beam, and m is an integer ($m = 0, \pm 1, \pm 2, \dots$).

10

15

20

25