Computer Vision

Undergraduate Course

Chapter 13. Color Image Processing (Practice)

Dongbo Min

Department of Computer Science and Engineering

Chungnam National University, Korea

Practice Lecture

Chromaticity Diagram

Run the code in page 10.

Color Models

- Run the code in page 12.
- Implement 'rgb2hsv', 'hsv2rgb', 'rgbtontsc', and 'ntsctorgb' in page 14-16 by yourself.

Color Image Processing

Run the code in page 31-36.

Principles for homework submission

MATLAB homework

- Submit all source codes (m file) for each (sub-) problem
- If the codes do NOT work, then there will be a penalty.
- The report for MATLAB homework should include the intermediate process, reason, and final results.

Report homework

- The report should include the intermediate process, reason, and final results.
- The report homework should be done by hand, NOT using any computer software.

Example of Source Code

- For each problem, the source code should consist of two functions, as below.
 - In the 'homwork_main.m', the results should appear or be saved as below.

homework_main.m in1 = imread('cameraman.tif'); out1 = function_example(in1); imshow(out1); % or use imwrite(out1, 'output.png');

function_example.m

```
% Please make sure that there is a return variable to save an output.
% In the example below, 'y' is the return variable.
function y = function_example( im )
% Implement your code here.
end
```

숙제 제출 원칙

• 매트랩 숙제

- 각 세부문제 별로 모든 소스 코드를 제출
- 만약 코드가 작동하지 않을 경우, 감점
- 메트랩 숙제에 대한 보고서는 중간 결과, 이유, 최종 결과 등을 모두 포함하여 자세히 서술할 것

• 문제풀이 숙제

- 보고서는 중간 결과, 이유, 최종 결과 등을 모두 포함하여 자세히 서술할 것
- 문제풀이 숙제는 반드시 손으로 해서 낼 것 (컴퓨터 SW를 사용하지 말 것!)

Practice Homework

1. (Report) Exercise 4

- 2. (MATLAB) Exercise 11 and 12 (a) $^{\sim}$ (d)
 - In Exercise 11, use the wiener filter only. You can use your own code that you implemented in 'Practice Homework 2 of Chapter 8' or the MATLAB built-in function 'wiener2'.
 - In Exercise 11, use 'twins.tif'.

