Part-of-speech tagging 实验说明文档

姓名: 谭逸佳

学号: 2015211207

任务定义:

利用给定的已经标注语料,得到一个词性标注模型,对测试集中数据进行标注,并分析结果(Predicate a POS tags for each word in sentences.)。

方法描述:

词性标注采用隐马尔可夫模型(Hidden Markov Model),将给定语料中的80%作为测试集,20%作为训练集得到标注模型。将输入的未标注的词语看做观测状态序列,词性看做隐藏序列,在训练集中通过对每个词性进行分析,得到其状态转移概率和到可见观测状态的概率(发射概率)。训练结束后,将测试句子的词语作为输入,首先计算第一个单词出现概率最大的状态作为初始状态,采用Viterbi 算法,当前状态序列得到的概率始终为最大概率,句子序列每分析一个单词都得到一个最大的隐藏序列(词性标注)概率,一直到句子分析结束,最后得到的状态序列即为使得句子词性标注准确度最高的结果。

输入与输出:

以某一个测试句子为例,先从输入句子的第一个词"戏曲"进行分析,从每个词性的发射概率得到使得"戏曲"出现概率最大的状态下的概率作为初始概率,当前词性标注作为**初始状态**进行下一步分析。分析下一个词语"学校",我们需要 1 状态下的标注 S 到每一个标注 S 的概率 P_1 ,以及标注 S'到词语"学校"的发射概率 P_2 ,计算 P_1 * P_2 的结果并找到最大值,此时的状态 2 下的标注为 S',以此类推,得到所有的标注状态。

图 1: 输入词语的转移状态与发射状态

以词性"n"为例,计算得到该词性的转移概率为(部分)

{'ud': 0.08065424586126542, 'wp': 0.0013197565904999613, 'wkz':

- 0.00684175069301026, 'm': 0.016913867935989046, 'wu':
- 0.036914530575281344, 'n': 0.16750969109964992, 'nrf':
- 0.01826675649110407, 'wky': 0.0103482169481043, 'k':
- 0.003384982384838813, 'vn': 0.054491037803571625, 'n]nt':
- 0.01090041635835533, 'rz': 0.004102841618165152, 'wd':
- 0.11605575005245894, 'f': 0.03439097927043414, 'd':
- 0.04270158039471214, 'v': 0.10496758589461827, 'a':
- 0.01770903508675053, 'wj': 0.06888687642881597, 'mq':
- 0. 0005411554220460092,

发射概率为(部分)

'[黑岛镇': 3.875413215934149e-06, '[粟子房镇': 3.875413215934149e-06, '永记': 3.875413215934149e-06, '令安': 3.875413215934149e-06, '秉广': 3.875413215934149e-06, '向军': 3.875413215934149e-06, '19980114-05-011-001': 3.875413215934149e-06, '调流': 3.875413215934149e-06, ······

图 2: 词性转移组合

word test result			
19980124-10-003-004 m jb]nz	[上海市 ns ns	应邀 vi vi	台 jb n
戏曲 n n	戏曲 n n	赴 v v	教学 vi n
学校 n n	学校 n]nt n	台湾 ns ns	
的 ud ud	的 ud ud	演出 v v	, wd wd
在校生 n n	部分 m n	, wd wd	不但 с с
也 d d	优秀 a a	小 a a	培养 v v
有 vx v	学生 n n	演员 n n	7 ul ul
机会 n n	赴 v v	ĺi⊓ k k	
到 v v	香港 ns ns	规范 a v	艺术 n n
境外 s s	演出 v v	熟悉 v v	人才 n n
进行 vx vx	, wd wd	的 ud ud	, wd wd
文化 n n	并 c c	技艺 n n	同时 c c
交流 vn vn	取得 v v	, wd wd	
∘ wj wj	成功 an a	又 d d	加强 v v
如 v v	。 wj wj 演员 n n	征服 v v	7 ul ul
[中国 ns ns	演员 n n 们 k k	7 ul ul	两岸 n n
京剧 n n	在 p p	台湾 ns ns	同胞 n n
艺术 n n	香港 ns ns	同胞 n n	
基金会 n]nt n	的 ud ud	。 wj wj	在 p p
在 p p	轰动 vn vn	我们 rr rr	艺术 n n
1994年 t t	又 d d	还 d d	上{shang5} f f
组织 v v	引起 v v	৷ ☑{ying4} v v	的 ud ud
[北京市 ns ns 戏曲 n n	台湾 ns ns	[台湾 ns ns	
W 14 5	文化界 n n	复兴 nz vn	交流 vn vn
	的 ud ud	剧校 n]nt n	, wd wd
、 wu wu [天津市 ns ns	关注 vn vn	邀请 v v	增进 v v
艺术 n n	。 wj wj	多次 mq mq	7 ul ul
² 穴 n n n 学校 n]nt n	1995年 t t	派出 v v	
· wu wu	9月 t t	教员 n n	友谊 n n
、 "u "u [上海市 ns ns	他们 rr rr	赴 v v	• wj wj

图 3: 词性标注的测试结果与标准结果的比对(部分)

经过训练得到的模型在测试集上得到的每个句子的平均准确率(Accuracy)为

Accuracy: 0. 7855756237359307

经过训练得到的模型在语料中所有句子上得到的平均准确率(Accuracy)为

Accuracy: 0. 8765127325092565

结果分析与性能评价:

以图 3 中结果为例,在第一个 19980124-10-003-004 词语中,正确标注为 "m",而模型却将其错误地标注为 "jb]nz"。原因是在整个训练语料中, "jb]nz "标注仅出现了一次 "英/jb]nz",所以当计算发射概率时,对每一个 标注状态的发射概率进行**平滑处理**(Laplace Smoothing)后,"jb]nz "的分母较小,并且 19980124-10-003-004 词语在训练集中从未出现,平滑后分子均为 1,所以使得标注 jb]nz "得到 19980124-10-003-004 的概率最大,造成了错误。

另外一种错误情况例如图 2 中把词性本该为 "n]nt"的 "基金会"标注成了 "n"。原因是在训练语料中,"基金会"这个单词本身有 "n]nt"和 "n"两种词性,由于训练语料的客观原因,造成转移概率与发射概率乘积在两种词性中大小关系有所不同,可以说,造成标注错误的很多结果都是由于**该词语在语料存在多种词性,而训练语料内容不够充分,使得标注结果有一定的特殊性,存在误差**。将词性为 "n]nt"的 "学校"标注成了 "n"、将词性为 "n]nt"的 "剧校"标注成了 "n"、词性为 "nz"的 "复兴"标注成了 "vn"都是由于此类原因。

当模型应用于语料中所有句子时,由于模型由其中部分语料训练得到,所以对于已存在的句子的预测性增强,词性标注的准确率也会相应提高。

若将每个词语出现次数最多的词性作为测试集中的标注,得到准确率

Accuracy: 0.88152388357654

原因是测试集中词语内容与训练集相差不大,大部分词性都**没有发生变化**,所以采用频率最高的词性会有很高的准确率,但当词语的词性变化较多时,这种方法准确率会下降。

源码运行环境:

Python3.6