Notes1.Representation

1 1. What is a generative model?

We are given a training set of examples, the assumption is these data points are sampled form **unknown probability** distribution. We denote P_{data}

The problem is to basically come up with a good approximation of this data generating process.

Model family : All possible distribution(eg .Guassian with different μ and Σ)

The goal become to find a good approximation within the set.

define distance :loss function \mathcal{L}

optimization: We want $P_{ heta}$ relatively close to $P_{ ext{data}}$

We want to learn a probability distribution p(x) over images x such that

Generation: If we sample $x_{new} \sim p(x)$, x_{new} should look like a dog (sampling)

Density estimation: p(x) should be high if x looks like a dog, and low otherwise (anomaly detection)

Unsupervised representation learning: We should be able to learn what these images have in common, e.g., ears, tail, etc. (features)

1.1 How to present p(x)?

1.1.1 Example of joint distribution

Modeling a single pixel's color.

Three discrete random variables:

Red Channel R. $Val(R) = \{0, \dots, 255\}$

Green Channel G. $Val(G) = \{0, \dots, 255\}$

Blue Channel B. $Val(B) = \{0, \dots, 255\}$

Sampling from the joint distribution $(r,g,b) \sim p(R,G,B)$

randomly generates a color for the pixel.

How many parameters do we need to specify the joint distribution p(R = r,G = g,B = b)?

256 * 256 * 256-1

Suppose X1,...,Xn are binary (Bernoulli) random variables, i.e., $Val(Xi) = \{0,1\} = \{Black,White\}$.

How many possible images (states)?

$$2 \times 2 \times \cdots \times 2$$
 (n times) $= 2^n$

Sampling from p(x1,...,xn) generates an image

How many parameters to specify the joint distribution p(x1,...,xn) over n binary pixels?

$$2^{n} - 1$$

A strong assumption is that all the r.v. are idpendent, then

We can use much less parameters!!!

$$p(x_1,\ldots,x_n)=p(x_1)p(x_2)\cdots p(x_n)$$

However the assumption is too strong that we might ignore the structure

So we need the rules: Chain rules and Bayes Rule

If we use the chain rules

$$p(x_1, \dots, x_n) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \cdots p(x_n|x_1, \dots, x_{n-1})$$

We still need 2^{n-1} parameters(in fact we don't do any assumption, No free launch)

 $p(x_1)$ requires 1 param

 $p(x_2|x_1)$ require 2 params x1 =0 1param x1=1 1param total 2params

...

Markov chain:

Now suppose
$$X_{i+1} \perp X_1, \dots, X_{i-1} \mid X_i$$
, then
$$p(x_1, \dots, x_n) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2) \cdots p(x_n \mid x_1, \dots, x_{n-1})$$

$$= p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_n \mid x_{n-1})$$

Now we just need 2n-1!!!

2 2. Representing probability distributions

2.1 Curse of dimensionality

2.2 Crash course on graphical models (Bayesian networks)

2.3	Generative vs discriminative models

2.4 Neural models