파이썬으로 만드는 OpenCV ⑥

Segmentation Modeling(2)

데이크루 2기 Team 포스

목차

- 1. 모형 설명
- 2. 실험 결과

Segmentation Modeling

분할 모델링입니다.

같은 실험 dataset에서 모델링을 달리하여 결과값을 비교해보겠습니다!

– 진행 방향

U-NET

ResU-NET

RPA_ResU-Net

- Data Augmentation 기법 적용 x
- 논문 Augmentation 기법 적용
- OpenCV 기법 적용

- Data Augmentation 기법 적용 x
- 논문 Augmentation 기법 적용
- OpenCV 기법 적용

- Data Augmentation 기법 적용 x
- 논문 Augmentation 기법 적용
- OpenCV 기법 적용

- ResU-NET - 기존 U-Net에서 Encoder 및 Decoder 부분의 block마다 residual unit with identity mapping을 적용 하였습니다.

- ResU-NET
- 의료 이미지의 낮은 수준의 특징 분포를 인코딩하기 위해 Residual Unit을 도입하는 것을 제안하였습니다.
- 정보의 손실을 최소화하며 low-level feature를 인식할 수 있도록 합니다.

- loU(Intersection of Union)
 - 본 게시물의 판단 척도는 loU입니다!

Data Augmentation x

논문 Augmentation 기법

OpenCV 기법 적용

Gaussian Blur 적용

평균이 아닌 가우시안 분포를 갖는 커널로 블러링 하는 것!

OpenCV 기법 적용

- 비교

Augmentation 방법	train iou	validation iou
Augmentation x	0.779	0.786
논문 기법 적용	0.774	0.783
OpenCV 기법 적용	0.740	0.730

- 기본 U-Net 성능에 비해 ResU-Net가 더 좋은 성능이 도출되었습니다!
- Augmentation을 적용하지 않은 case가 가장 높은 결과를 도출하였습니다!
- OpenCV를 적용하였을 때, 비슷한 결과값이 나온 것을 확인할 수 있습니다!

