# Diagrams



#### Newton's Laws

N1L: An object at rest will stay at rest and an object moving at a constant velocity will stay at that velocity unless there is an unbalanced force acting on the object.



$$R(\uparrow) = 5-3 = 2N$$

$$R(\rightarrow) = 3-4 = -1N$$
Resultant force in up/right directions.

Since forces are vectors, we can write forces like this: (1)

### Resolving Components





#### Ex 10B

$$d) \begin{pmatrix} -1 \\ 4 \end{pmatrix} + \begin{pmatrix} 6 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ -7 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \end{pmatrix} N$$

2. 
$$\alpha$$
)  $\begin{pmatrix} 2 \\ 7 \end{pmatrix} + \begin{pmatrix} -3 \\ 1 \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$   
 $\begin{pmatrix} x \\ -8 \end{pmatrix}$ 

b) 
$$\begin{pmatrix} 3 \\ -4 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} y \\ y \end{pmatrix} = \begin{pmatrix} -5 \\ 1 \end{pmatrix}$$

6. 
$$\binom{9}{-6} + \binom{6}{0} + \binom{-4}{-2} = \binom{0}{0}$$

$$a+b=4$$
 — (1)  $()+(2):2a=6$   $\rightarrow a=3$   $b=1$ 

$$\begin{cases} 8. & \alpha \end{cases} \begin{pmatrix} -3 \\ 7 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 2 \\ -6 \end{pmatrix} \implies p=1, q=-6 \end{cases}$$

b) 
$$R = \begin{pmatrix} -3 \\ 7 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ 6 \end{pmatrix} N$$

$$|R| = \sqrt{2^2 + 6^2} = 2\sqrt{10} N$$

c) 
$$\frac{R}{\sqrt{2}}$$
  $\frac{\theta}{\sqrt{3}}$   $\frac{1}{\sqrt{3}}$   $\frac{1}{\sqrt{3}}$ 

9. a) 
$$f_{2}$$
  $f_{3}$   $f_{4}$   $f_{5}$   $f_{5}$   $f_{6}$   $f_{7}$   $f_{7}$ 

b) 
$$F_1 + F_2 = \binom{3}{2} + \binom{0}{2\alpha} = \binom{0+3}{2\alpha-2} = R / \binom{13}{10}$$
  
 $\lambda \binom{0+3}{2\alpha-2} = \binom{13}{10}$ 

$$\lambda a_{4} = 3\lambda = 13$$
 —  $0$   $0 \times 2 \times 2\lambda a_{4} = 26$  —  $0'$   $2\lambda a_{5} = 26$  —  $0'$   $2\lambda a_{7} = 26$  —  $0'$   $2\lambda a_{7} = 26$  —  $0'$   $2\lambda a_{7} = 26$  —  $0'$ 

#### Ex 10C

3. 
$$F=ma$$
  
 $m=F/\alpha=30/1.2=25 \text{ kg}$ 

4. 
$$W = mg$$
 (earth)  
 $m = W/g = 735/9.8 = 75 kg$   
 $W = mg$  (moon)  
 $g = W/m = 120/75 = 1.5 ms^{-2}$ 

8. First=
$$M\alpha = 3 \times 2 = 6 \text{ N}$$

$$F = F_{net} - 10 \text{ N} = -4 \text{ N}$$

$$2 \text{ ms}^{-2}$$

$$F_{\text{net}} = m\alpha = 3 \times 2 = 6 \text{ N}$$
  
 $F = F_{\text{net}} - 10 \text{ N} = -4 \text{ N}$ 

9, a) 
$$v^2 = n^2 + 2as$$
  $a = \frac{v^2 - u^2}{2s} = \frac{3^2 - 0}{2 \times 5} = 0.9 \text{ ms}^{-2}$ 

b)  $mg = (500 + 300)(9.8) = -7840N$ 

Finet =  $ma = (500 + 300)(60.9) = -72$ 
 $T = F_{met} - mg = -720 + 7840 = 712$ 

b) 
$$mg = (500 + 300)(9.8) = -7840N$$
  
 $-0.9 \downarrow$   $mg = (500 + 300)(0.9) = -720N$   
 $T = F_{net} - mg = -720 + 7840 = 7120 N upwards$ 



Frut = ma = 
$$(500 + 300)(0.9) = 720N$$

T= Fruet -mg=  $720 + 7840 = 8560N$  upwards

## Movement in 2 Dimensions

F=ma

Vector = scalar x vector

$$\begin{pmatrix} F_x \\ F_y \end{pmatrix} = m \times \begin{pmatrix} a_x \\ a_y \end{pmatrix}$$

There really is nothing much to talk about here.

### Connected Particles



M, M2 Tacts on both M, and Mz, in opposite directions

Light, inextensible string

## Pulleys



The tension throughout the string is constant.