Ejercicios 1

- 1. Demuestra por inducción que $n^2 + 3n$ es divisible por 2 para todo n > 1.
- 2. Demuestra por inducción que $n^3 + (n+1)^3 + (n+2)^3$ es múltiplo de 9 para todo $n \ge 0$.
- 3. Demuestra por inducción que $\sum_{i=1}^n \frac{1}{i(i+1)} = \frac{n}{n+1}$ para todo entero $n \ge 1$.
- 4. Demuestra por inducción que $\sum_{j=1}^{n} j \cdot j! = (n+1)! 1$, para todo entero $n \ge 1$.
- 5. Demuestra por inducción que $\sum_{j=2}^{n} \binom{j}{2} = \binom{n+1}{3}$, para todo entero $n \geq 2$.
- 6. Demuestra por inducción que $3^n > n^3 + 1$ para todo n > 3.
- 7. Para cada $n \in \mathbb{N}$, sea p(n) la propiedad " $n^2 + n + 11$ es primo". Comprueba que $p(1), \ldots, p(9)$ son todos verdaderos. Estudia si p(n) es verdadero para todo n.
- 8. Para cada $n \in \mathbb{N}$, sea p(n) la propiedad "3n+2 es múltiplo de 3". Comprueba que la implicación $p(k) \Longrightarrow p(k+1)$ es verdadera para cada $k \in \mathbb{N}$ y estudia si p(n) es verdadero para todo $n \in \mathbb{N}$.