WikipediA

16-bit

In <u>computer architecture</u>, **16-bit** <u>integers</u>, <u>memory addresses</u>, or other <u>data</u> units are those that are 16 <u>bits</u> (2 octets) wide. Also, 16-bit <u>CPU</u> and <u>ALU</u> architectures are those that are based on <u>registers</u>, <u>address buses</u>, or <u>data buses</u> of that size. 16-bit <u>microcomputers</u> are computers in which 16-bitmicroprocessors were the norm.

A 16-bit register can store 2^{16} different values. The <u>signed</u> range of <u>integer</u> values that can be stored in 16 bits is -32,768 (-1×2^{15}) through 32,767 ($2^{15} - 1$); the <u>unsigned</u> range is 0 through 65,535 ($2^{16} - 1$). Since 2^{16} is 65,536, a processor with 16-bit <u>memory addresses</u> can directly access 64 <u>KB</u> (65,536 bytes) of <u>byte-addressable</u> memory. If a system uses <u>segmentation</u> with 16-bit segment offsets, more can be accessed.

Contents

16-bit architecture 16/32-bit Motorola 68000 and Intel 386SX

Intel 16-bit memory models
16-bit application
List of 16-bit CPUs
See also
References

16-bit architecture

The MIT Whirlwind (c. 1951)^{[1][2]} was quite possibly the first-ever 16-bit computer. Other early (c. 1965–70) 16-bit computers include the IBM 1130,^[3] the HP 2100,^[4] the Data General Nova,^[5] and the DEC PDP-11.^[6] Early (c. 1973–75) multi-chip 16-bit microprocessors include the National Semiconductor IMP-16and the Western Digital MCP-1600. Early (c. 1975–76) single-chip 16-bit microprocessors include the Panafacom MN1610,^{[7][8]} National Semiconductor PACE, the HP BPC, and the TI TMS9900. Other notable 16-bit processors include the Intel 8086, the Intel 80286, the WDC 65C816, and the Zilog Z8000. The Intel 8088 was binary compatible with the Intel 8086, and was 16-bit in that its registers were 16 bits wide, and arithmetic instructions could operate on 16-bit quantities, even though its external bus was 8 bits wide.

A 16-bit integer can store 2^{16} (or 65,536) distinct values. In an <u>unsigned</u> representation, these values are the integers between <u>0</u> and 65,535; using <u>two's complement</u>, possible values range from -32,768 to 32,767. Hence, a processor with 16-bit <u>memory addresses</u> can directly access 64 KB ofbyte-addressable memory.

16-bit processors have been almost entirely supplanted in the <u>personal computer</u> industry, and are used less than 32-bit (or 8-bit) CPUs in embedded applications.

16/32-bit Motorola 68000 and Intel 386SX

The Motorola 68000 is sometimes called *16-bit* because its internal and external data buses were 16 bits wide; however, it could be considered a <u>32-bit</u> processor in that the general purpose registers were 32 bits wide and most arithmetic instructions supported 32-bit arithmetic. The 68000 was a <u>microcoded</u> processor with three internal 16-bit ALUs. Only <u>24 bits</u> of the <u>program counter</u> (PC) were available on original DIP packages, with up to 16 megabytes of addressable RAM. 68000 software is 32-bit in nature and forward-

compatible with other 32-bit processors in the same family The 68008 was a version of the 68000 with 8-bit external data path and 1 megabyte addressing for the 48-pin DIP version and 4 megabyte for the 52-pin PLCC version. Several Apple Inc. Macintosh models; e.g., LC series, used 32-bit 68020 and 68030 processors on a 16-bit data bus to save cost.

Similar analysis applies to Intel's<u>80286</u> CPU replacement called the<u>386SX</u> which is a 32-bit processor with 32-bit <u>ALU</u> and internal 32-bit data paths with a 16-bit external bus and 24-bit addressing of the processor it replaced.

Intel 16-bit memory models

Just as there are <u>multiple</u> data models for 64-bit architectures the 16-bit Intel architecture allows for different memory models—ways to access a particular memory location. The reason for using a specific memory model is the size of the assembler instructions or required storage for pointers. Compilers of the 16-bit era generally had the following type-width characteristic:

16-bit data model

Data model	short	int	long	Pointers
IP16L32 (near)	16	16	32	16
I16LP32 (far)	16	16	32	32

Tiny

Code and data will be in the same segment (especially, the registers CS, DS, ES, SS will point to the same segment); *near* (16-bit) pointers are always used. Code, <u>data</u> and stack together cannot exceed 64 KB.

Small

Code and data will be in different segments, and near pointers are always used. There will be 64 KB of space for code and 64 KB for data/stack.

Medium

Code pointers will use *far* pointers (16:16 bit), enabling access to 1 MB. Data pointers remain to be of the near type.

Compact

Data pointers will use far and code will use near pointers.

Large/huge

Code and data pointers will be far.[10]

16-bit application

In the context of <u>IBM PC compatible</u> and <u>Wintel</u> platforms, a 16-bit application is any software written for <u>MS-DOS</u>, <u>OS/2</u> 1.x or early versions of <u>Microsoft Windows</u> which originally ran on the 16-bit <u>Intel</u> 8088 and <u>Intel</u> 80286 <u>microprocessors</u> Such applications used a 20-bit or 24-bit <u>segment or selector-offset</u> address representation to extend the range of addressable memory locations beyond what was possible using only 16-bit addresses. Programs containing more than 2¹⁶ <u>bytes</u> (65,536 <u>bytes</u>) of instructions and data therefore required special instructions to switch between their 64-kilobyte <u>segments</u>, increasing the complexity of programming 16-bit applications.

List of 16-bit CPUs

- Angstrem
 - 1801 series CPU
- Data General
 - Nova
 - Eclipse

- Digital Equipment Corporation
 - PDP-11 (for LSI-11, see Western Digital, below)
 - DEC J-11
 - DEC T-11
- EnSilica
 - eSi-1600

- Ferranti
 - Ferranti F100-L
 - Ferranti F200-L
- Freescale
 - Freescale 68HC12
 - Freescale 68HC16
- General Instrument
 - CP1600
- Hewlett-Packard
 - HP 21xx/2000/1000/98xx/BPC
 - HP 3000
- Honeywell
 - Honeywell Level 6DPS 6
- IBM
 - **1130/1800**
 - System/7
 - Series/1
 - System/36
- Infineon
 - XE166 family
 - C166 family
 - C167 family
 - XC2000
- Intel
 - Intel 8086/Intel 8088
 - Intel 80186/Intel 80188
 - Intel 80286
 - Intel MCS-96

- Lockheed
 - MAC-16
- Motorola
 - Motorola 68000 (32-bit registers, 16-bit bus)
 - Motorola 68010 (32-bit registers, 16-bit bus)
- National Semiconductor
 - IMP-16
 - PACE/INS8900
- NEC
 - V20/V30
- Renesas
 - Renesas M16C (16-bit registers, 24-bit address space)
- Ricoh
 - Ricoh 5A22 (WDC 65816 clone used inSNES)
- Texas Instruments
 - Texas Instruments TMS9900
 - TI MSP430
- Western Design Center
 - WDC 65816/65802
- Western Digital
 - MCP-1600 (used in the DEC LSI-11)
- Xerox
 - Alto
- Zilog
 - Zilog Z8000

See also

- Microprocessor: 16-bit designs
- Influence of the IBM PC on the personal computer market: Before the IBM PC's introduction
- 74181 (key component of some early 16-bit and other CPUs)
- Audio bit depth as 16-bit is the most common bit depth used, e.g. orCD audio.

References

- 1. Computer History Museum, Year 1951 (http://www.computerhistory.org/timeline/?year=1951) (see also Year 1943 (http://www.computerhistory.org/timeline/?year=1943).
- 2. Digital Press, <u>Digital at Work (http://www.computerhistoryorg/collections/accession/102630350)</u> Pearson, 1992, ISBN 1-55558-092-0, pp. 4, 23.
- 3. IBM Archives, The IBM 1130 computing system(http://www-03.ibm.com/ibm/history/exhibits/1130/1130_intro.html)
- 4. Computer History Museum, "HP 2116" (http://www.computerhistory.org/revolution/minicomputers/11/337/2385)
- 5. Computer History Museum, "Data General Nova minicomputer" (http://www.computerhistory.org/collections/accession/102646102).
- 6. Digital Press, Digital at Work (http://www.computerhistory.org/collections/accession/102630350) Pearson, 1992, ISBN 1-55558-092-0, pp. 58–61.
- 7. "16-bit Microprocessors" (http://www.cpu-museum.com/161x_e.htm) CPU Museum Retrieved 5 October 2010.
- 8. "History" (http://www.pfu.fujitsu.com/en/profile/historyhtml). PFU. Retrieved 5 October 2010.
- 9. Motorola, Inc., Motorola M68000 Family Programmer's Reference Manual (http://cache.freescale.com/files/archives/doc/ref_manual/M68000PRM.pdf) 1992, sec. 2.4, p. 2–21.
- 10. Borland Turbo C++ 1.01 in-program manual

Retrieved from 'https://en.wikipedia.org/w/index.php?title=16-bit&oldid=854882742

This page was last edited on 14 August 2018, at 12:55(UTC).

Text is available under the <u>Creative Commons Attribution-ShareAlike Licenseadditional terms may apply By using this site, you agree to the <u>Terms of Use and Privacy Policy.</u> Wikipedia® is a registered trademark of the <u>Wikimedia Foundation, Inc.</u>, a non-profit organization.</u>