3.2.4 (4.5). СВОБОДНЫЕ КОЛЕБАНИЯ В ЭЛЕКТРИЧЕСКОМ КОНТУРЕ

ДОПОЛНИТЕЛЬНОЕ ОПИСАНИЕ – 26 октября 2016 г.

В работе используются: генератор импульсов, электронное реле, магазин сопротивлений, магазин емкостей, индуктивность, электронный осциллограф с разделительной панелью, измеритель LCR.

Экспериментальная установка. На рис. 2 приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L и переменные ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Γ 5–54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке (или на выходе генератора). Реле содержит диодный тиристор 1 D и ограничительный резистор R_1 .

Рис. 2. Схема установки для исследования свободных колебаний

Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\simeq 1~{\rm MOm}$), так что его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода <синхроимпульсы> генератора.

ЗАДАНИЕ

В работе предлагается исследовать зависимость периода свободных колебаний контура от ёмкости, зависимость логарифмического декремента затухания от сопротивления, определить критическое сопротивление и добротность контура.

І. Подготовка приборов к работе

1. а) Соберите схему согласно рис. 2. Выход генератора через реле подключите к клеммам «1» и «2'» магазина емкостей. В этом случае верхним рядом курбелей (ручек) можно менять ёмкость в интервале 0–1 мк Φ . Показания курбелей суммируются.

¹ Тиристор (от греч. thyra — вход, дверь и англ. resistor —сопротивление) — полупроводниковый ключ, сопротивление которого зависит от напряжения на нём. При напряжении выше порогового тиристор открывается, а при любом напряжении другого знака закрывается; благодаря этому сопротивление генератора не влияет на процесс в колебательном контуре.

2. Включите генератор импульсов в сеть; ручкой «АМПЛ» генератора установите на вольтметре напряжение чуть меньше 30-и В, при этом должны быть нажаты кнопки « \times 1», « \square » (или « \square Г») и «запуск»; ручку регулировки амплитуды синхроимпульсов «АМПЛ» поставьте на максимум (поворот по часовой до упора);

длительность импульсов подбирается с помощью подвижных шкал (чёрная и белая) и вертикального ряда кнопок (множителей): при нажатой чёрной кнопке отсчёт ведётся по чёрной шкале с умножением на коэффициент, указанный около нажатой кнопки; при нажатой белой кнопке — соответственно по белой шкале: частота повторения импульсов устанавливается аналогично;

установите длительность импульсов $\sim 5 \ \mu S \ (5 \cdot 10^{-6} \ c)$; частоту повторения импульсов $\nu_0 = 100 \ \mathrm{Hz} \ (T_0 = 0.01c)$.

б) Настройте осциллограф, руководствуясь техническим описанием, расположенным на установке.

II. Измерение периодов

- 3. Установите на магазине сопротивлений величину R=0; на магазине емкостей величину C=0.02 мк Φ ;
- 4. Прокалибруйте горизонтальную ось осциллографа по известному периоду повторения импульсов: для этого
 - а) подберите частоту развёртки 90, при которой расстояние x_0 между импульсами, поступающими с генератора, занимает почти весь экран; измерьте расстояние x_0 ;
 - б) измерив на экране расстояние x, которое занимают несколько полных периодов n, можно, зная T_0 (0,01 сек) и x_0 , рассчитать период колебаний контура: $T = T_0 \, x/(n \, x_0)$. Малые расстояния x можно увеличить кнопкой растяжки развёртки (×10).
 - в) Изменяя ёмкость от 0.02 мк Φ до 0.9 мк Φ и периодически проверяя величину x_0 , проведите измерения периодов (8–10 значений).

III. Критическое сопротивление и декремент затухания

- 5. Приняв $L=200~{\rm M}$ Гн, рассчитайте ёмкость C, при которой собственная частота колебаний контура $\nu_0=1/(2\pi\sqrt{LC})$ составляет 5 кГц. Для выбранных значений L и C рассчитайте критическое сопротивление контура $R_{\rm KP}$ по формуле $R_{\rm KP}=2\sqrt{L/C}$.
- 6. Установите на магазине ёмкость, близкую к рассчитанной. Увеличивая сопротивление R от нуля до $R_{\rm kp}$, наблюдайте картину затухающих колебаний на экране ЭО. Зафиксируйте сопротивление магазина, при котором колебательный режим переходит в апериодический. Найденное экспериментально значение $R_{\rm kp}$ может отличаться от рассчитанного, т.к. величина L задана приближённо.
- 7. Установите сопротивление $R\simeq 0.1R_{\rm kp}$ (эксп.). Получите на экране картину затухающих колебаний. Для расчёта логарифмического декремента затухания Θ по формуле

 $\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}$

измерьте амплитуды, разделённые целым числом периодов n.

Точность измерений повысится, если сместить горизонтальную ось симметрии сигнала в нижнюю часть экрана. Расчёт будет тем точнее, чем больше отличаются друг от друга измеряемые амплитуды, а минимальная не должна быть меньше 5–6 мм.

8. Повторите измерения для 6-8 значений R в интервале $(0,1-0,3)\cdot R_{\rm kp}$.

IV. Колебания на фазовой плоскости

9. Для наблюдения затухающих колебаний на фазовой плоскости подайте на вход «X» ЭО напряжение с магазина сопротивлений; для этого достаточно отсоединить «синхроимпульсы» генератора от клемм «X— земля» разделительной панели Π и соединить клемму X панели с точкой, расположенной между катушкой L и магазином R.

Переведите ручку «TIME/DIV» развёртки в положение «X-Y» (поворотом против часовой стрелки) и убедитесь, что растяжка ($\times 10$) отключена.

Введите сопротивление R на магазине и ручками чувствительности каналов подберите масштаб спирали.

При том же значении C, что и в п. 4, наблюдайте за изменением спирали при увеличении сопротивления от 0.1 до $0.3 \cdot R_{\text{kd}}$.

Для определения Θ измерьте радиусы витков спирали, разделённые целым числом периодов n, для одного-двух значений R на каждом краю рабочего диапазона.

10. Отсоедините катушку от цепи. Измерьте омическое сопротивление катушки R_L и индуктивность L с помощью измерителя LCR на частотах 50 Γ ц, 1 к Γ ц и 5 к Γ ц. Подумайте, почему результат измерения R_L зависит от частоты.

V. Обработка результатов

- 1. Рассчитайте экспериментальные значения периодов по результатам измерений и теоретические по формуле $T=2\pi\sqrt{LC}$. Постройте график $T_{\text{эксп}}=f(T_{\text{теор}})$.
- 2. Рассчитайте значения Θ и $R_{\text{конт}}$ (сопротивление контура состоит из сопротивления магазина R и омического сопротивления катушки R_L).

Постройте график в координатах $1/\Theta^2 = f[1/(R_{\text{конт}}^2)]$. Определите критическое сопротивление $R_{\text{кр}}$ по наклону прямой. Приняв обозначения $1/\Theta^2 = Y$, $1/(R_{\text{конт}}^2) = X$, можно показать, что $R_{\text{кр}} = 2\pi \sqrt{\Delta Y/\Delta X}$.

- 3. Рассчитайте теоретическое значение $R_{\rm kp} = 2\sqrt{L/C}$ и сравните с измеренным.
- 4. Рассчитайте добротность контура Q для максимального и минимального значений Θ по картине затухающих колебаний и сравните с расчётом Q через параметры контура R,L,C.
 - 5. Рассчитайте добротность Q по спирали.
 - 6. Сведите результаты эксперимента в таблицу:

	$R_{ m \kappa p}$				Q		
$L_{ m \scriptscriptstyle Kat}$	Teop.	Подбор	Граф.	R	Teop.	$f(\Theta)$	Спираль
				max			
				min			

7. Оцените погрешности и сравните результаты. Какой из методов определения $R_{\rm \kappa p}$ и Q точнее? Исправлено 26-X-2016 г.