Lecture

Three Phase Power Equations

Agenda

Lecture

R.D. del Mundo Ivan B.N.C. Cruz Christian. A. Yap

How is power in three phase systems distributed?

Lecture Outcomes

at the end of the lecture, the student must be able to ...

 Formulate and Solve Complex Power Equations in Three-Phase AC Systems

Single-Phase Power Equations

For a single-phase system:

$$\begin{aligned} &P_p = V_p I_p Cos\theta \\ &Q_p = V_p I_p Sin\theta \\ &S_p = V_p I_P^* = P_P + jQ_P \end{aligned}$$

where:

 V_p = magnitude of voltage per phase

 I_p = magnitude of current per phase

 $\hat{\theta}$ = phase angle displacement between V_p and I_p

Three-Phase Power Equations

For a three-phase system:

$$P_{3\phi} = 3V_p I_p \cos\theta$$

$$Q_{3\phi} = 3V_p I_p \sin\theta$$

$$S_{3\phi} = 3V_p I_p^* = P_{3\phi} + jQ_{3\phi}$$

Note: V_p and I_p are per-phase (per leg) quantities; the equations here hold whether the system is wye- or delta-connected.

Three-Phase Power Equations

For a wye-connected

system:

$$V_p = \frac{V_{LL}}{\sqrt{3}}$$

$$I_p = I_L$$

For a delta-connected system:

$$V_p = V_{LL}$$

$$I_p = \frac{I_L}{\sqrt{3}}$$

Whether wye- or delta-connected:

$$P_{3\phi} = \sqrt{3}V_LI_L\cos\theta$$

$$Q_{3\phi} = \sqrt{3}V_{l}I_{l} \sin\theta$$

$$S_{3\phi} == P_{3\phi} + jQ_{3\phi}$$

Note: θ is the angle between V_p and I_p , NOT between V_L and I_L .

Conventions for this Class

Unless otherwise stated, for our class:

"Power" = Real Power.

Take note of the context:

- Total three-phase real power, if for three-phase systems.
- Single-phase real power, if for single-phase systems.
- "Current" = Line current (rms value only).
- "Voltage" = Line-to-line voltage (rms value only).

Note: These definitions will prove useful once we get to per unit systems.

EXAMPLE

- A three-phase motor draws 20-kVA at 0.707 pf lag from a 220-V source. A wye connected capacitor bank is connected in parallel with the motor to improve the power factor. Determine the following:
- (a) Motor Line current (3 pts)
- (b) The kVA rating of capacitors to make the combined load have pf = 0.90 lag.(4 pts)
- (c) Line current of combined load (3 pts)

Motor	Capadlo	Total
P= 14.14 KW	Pc = O	PTOT= 14.14 EW
Qm= 14.14KVar (Octot = 4.14 kvars - ?
Los Adesired = 0.9 pt		
SKI Q7.7	fan Odesred =	Qtot Ptot
PT-1	tan cost 0.9 =	
$\chi = ? = 7.43 \text{ Kvars}$		
Rating of = 7-43k vars capacitors		

$$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} = 52.492 - 45^{\circ} + 19.486290^{\circ}$$

$$\frac{1}{1} = 52.492 - 45^{\circ} = 19.486290^{\circ}$$

$$\frac{1}{1} = 52.492 - 45^{\circ} = 19.486$$

$$\frac{1}{1} = 7.4314445 = 19.486$$

$$\frac{1}{1} = 19.486290^{\circ}$$

HOMEWORK 2

A three-phase line, which has an impedance of (2+j4) Ω per phase, feeds two balanced three-phase loads that are connected in parallel. One of the loads is Y-connected with an impedance of (30+j40) Ω per phase, and the other is Δ -connected with an impedance of (60-j45) Ω per phase. The line is energized at the sending end from a 60-Hz, three-phase, balanced voltage source of $120\sqrt{3}$ V (rms, line-to-line). Determine (a) the current, real power, and reactive power delivered by the sendingend source; (b) the line-to-line voltage at the load; (c) the current per phase in each load; and (d) the total three-phase real and reactive powers absorbed by each load and by the line. Check that the total three-phase complex power delivered by the source equals the total three-phase power absorbed by the line and loads.

SUMMARY

Formulating Three Phase Power Equations