П

0.1 由乘法交换性诱导的同时性质

命题 0.1 (矩阵乘法可交换的基本性质)

若两个矩阵或线性变换 A,B 乘法可交换, 即 AB=BA, 则有 $(AB)^m=A^mB^m$, f(A)g(B)=g(B)f(A) 以及二项式定理

$$(A + B)^m = A^m + C_m^1 A^{m-1} B + \dots + C_m^{m-1} A B^{m-1} + B^m$$

等成立, 其中 $m \ge 1$, f(x), g(x) 为多项式.

特别地, 一个矩阵或线性变换 A 一定与其自身可交换, 从而也满足 f(A)g(A) = g(A)f(A), 其中 f(x), g(x) 为多项式.

证明 证明是显然的.

0.1.1 特征子空间互为不变子空间

命题 0.2 (特征子空间互为不变子空间)

- 1. 设 φ , ψ 是复线性空间 V 上乘法可交换的线性变换, 即 $\varphi\psi = \psi\varphi$, 求证: φ 的特征子空间是 ψ 的不变子空间, ψ 的特征子空间是 φ 的不变子空间.

注 这个命题的结论对一般的数域是不成立的. 例如, $A = I_2$, $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, 显然 A, B 乘法可交换, 但它们在有理数域或实数域上没有公共的特征向量. 事实上, B 在有理数域或实数域上都没有特征值 (它的特征值是 ±i), 从而也没有特征向量, 所以更谈不上公共的特征向量了. 为了这个命题的结论推广到数域 \mathbb{F} 上, 我们必须假设 A, B 的特征值都在 \mathbb{F} 中.

证明

1. 由代数基本定理以及线性方程组的求解理论可知, $n(n \ge 1)$ 维复线性空间上的线性变换或 n 阶复矩阵至少有一个特征值和特征向量. 任取线性变换 φ 的一个特征值 λ_0 , 设 V_0 是特征值 λ_0 的特征子空间,则对任意的 $\alpha \in V_0$,有

$$\varphi\psi(\alpha) = \psi\varphi(\alpha) = \psi(\lambda_0\alpha) = \lambda_0\psi(\alpha),$$

即 $\psi(\alpha) \in V_0$, 因此 V_0 是 ψ 的不变子空间. 同理可证 ψ 的特征子空间是 φ 的不变子空间.

2.

命题 0.3

设V为n维复线性空间,S是 $\mathcal{L}(V)$ 的非空子集,满足:S中的全体线性变换没有非平凡的公共不变子空间.设线性变换 φ 与S中任一线性变换乘法均可交换,证明: φ 是纯量变换.

证明 任取 φ 的特征值 λ_0 及其特征子空间 V_0 . 任取 $\psi \in S$, 则 $\varphi \psi = \psi \varphi$, 由命题 0.2可知 V_0 是 ψ – 不变子空间, 从而是 S 中全体线性变换的公共不变子空间. 又 $V_0 \neq 0$ (特征向量均非零), 故 $V_0 = V$, 从而 $\varphi = \lambda_0 I_V$ 为纯量变换. □

0.1.2 有公共的特征向量

命题 0.4

- 1. 设 φ, ψ 是复线性空间 V 上乘法可交换的线性变换, 求证: φ, ψ 至少有一个公共的 (复) 特征向量.

注 这个命题的结论对一般的数域是不成立的. 例如, $A = I_2$, $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, 显然 A, B 乘法可交换, 但它们在有理数域或实数域上没有公共的特征向量. 事实上, B 在有理数域或实数域上都没有特征值 (它的特征值是 ±i), 从而也没有特征向量, 所以更谈不上公共的特征向量了. 为了这个命题的结论推广到数域 \mathbb{F} 上, 我们必须假设 A, B 的特征值都在 \mathbb{F} 中.

证明

1. 任取 φ 的特征值 λ_0 及其特征子空间 V_0 , 由命题 0.2可知, V_0 是 ψ — 不变子空间. 将线性变换 ψ 限制在 V_0 上, 由于 V_0 是维数大于零的复线性空间, 故由命题??可知 $\psi|_{V_0}$ 至少有一个特征值 μ_0 及其特征向量 $\alpha \in V_0$, 从而 $\varphi(\alpha) = \lambda_0 \alpha$, $\psi(\alpha) = \mu_0 \alpha$, 于是 α 就是 φ, ψ 的公共特征向量.

2.

命题 0.5

- 1. 设 φ , ψ 是数域 \mathbb{F} 上线性空间 V 上的乘法可交换的线性变换, 且 φ , ψ 的特征值都在 \mathbb{F} 中, 求证: φ , ψ 的特征子空间互为不变子空间, 并且 φ , ψ 至少有一个公共的特征向量.
- 2. 若数域 \mathbb{F} 上的 n 阶矩阵 A, B 乘法可交换, 且它们的特征值都在 \mathbb{F} 中, 则 A, B 的特征子空间互为不变子空间, 并且 A, B 在 \mathbb{F}^n 中至少有一个公共的特征向量.

证明

1. 由线性方程组的求解理论可知, 若数域 \mathbb{F} 上的线性变换或 \mathbb{F} 上的矩阵在 \mathbb{F} 中有一个特征值, 则在 \mathbb{F} 上的线性空间或 \mathbb{F} 上的列向量空间中必存在对应的特征向量. 任取线性变换 φ 的一个特征值 $\lambda_0 \in \mathbb{F}$, 设 V_0 是特征值 λ_0 的特征子空间,则对任意的 $\alpha \in V_0$, 有

$$\varphi\psi(\alpha) = \psi\varphi(\alpha) = \psi(\lambda_0\alpha) = \lambda_0\psi(\alpha),$$

即 $\psi(\alpha) \in V_0$, 因此 V_0 是 ψ -不变子空间. 取 V_0 的一组基并扩张为V的一组基,则 ψ 在这组基下的表示矩阵为分块对角矩阵 $\begin{pmatrix} A & C \\ O & B \end{pmatrix}$, 其中A是 $\psi|_{V_0}$ 在给定基下的表示矩阵,于是 $|\lambda I_V - \psi| = |\lambda I - A||\lambda I - B|$. 因为 ψ 的特征值都在 Γ 中,故A的特征值都在 Γ 中,于是 $\psi|_{V_0}$ 的特征值都在 Γ 中。任取 $\psi|_{V_0}$ 的一个特征值 $\mu_0 \in \Gamma$ 及其特征向量 $\alpha \in V_0$,则 $\varphi(\alpha) = \lambda_0 \alpha$, $\psi(\alpha) = \mu_0 \alpha$,于是 α 就是 φ , ψ 的公共特征向量.

2.

0.1.3 可同时上三角化

命题 0.6

- 1. 设数域 \mathbb{F} 上的n 阶矩阵A 的特征值都在 \mathbb{F} 中, 求证: A 在 \mathbb{F} 上可上三角化, 即存在 \mathbb{F} 上的可逆矩阵P, 使得 $P^{-1}AP$ 是上三角矩阵.
- 2. 设数域 \mathbb{F} 上线性空间 V 上的线性变换 φ 的特征值都在 \mathbb{F} 中, 则存在 V 的一组基, 使得 φ 在这组基下的表示矩阵是上三角矩阵.

证明

1. 对阶数进行归纳. 当n=1 时结论显然成立, 设对n-1 阶矩阵结论成立, 现对n 阶矩阵 A 进行证明. 设 $\lambda_1 \in \mathbb{F}$ 是 A 的一个特征值, 则由线性方程组的求解理论可知, 存在特征向量 $e_1 \in \mathbb{F}^n$, 使得 $Ae_1 = \lambda_1 e_1$. 由基扩张定理, 可将 e_1 扩张为 \mathbb{F}^n 的一组基 $\{e_1, e_2, \cdots, e_n\}$, 于是

$$(Ae_1, Ae_2, \cdots, Ae_n) = (e_1, e_2, \cdots, e_n) \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix},$$

其中 A_1 是 $\mathbb F$ 上的 n-1 阶矩阵. 令 $P=(e_1,e_2,\cdots,e_n)$,则 P 是 $\mathbb F$ 上的 n 阶可逆矩阵,且由上式可得 $AP=P\begin{pmatrix}\lambda_1&*\\O&A_1\end{pmatrix}$,即 $P^{-1}AP=\begin{pmatrix}\lambda_1&*\\O&A_1\end{pmatrix}$. 由此可得 $|\lambda I_n-A|=(\lambda-\lambda_1)|\lambda I_{n-1}-A_1|$,又 A 的特征值全在 $\mathbb F$ 中,从而 A_1 的特征值也全在 $\mathbb F$ 中,故由归纳假设,存在 $\mathbb F$ 上的 n-1 阶可逆矩阵 Q,使得 $Q^{-1}A_1Q$ 是上三角矩阵. 令

$$R = P \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix},$$

则 R 是 \mathbb{F} 上的 n 阶可逆矩阵, 且

$$R^{-1}AR = \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix}^{-1} \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix} \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix} = \begin{pmatrix} \lambda_1 & * \\ O & Q^{-1}A_1Q \end{pmatrix}$$

是上三角矩阵.

2.

命题 0.7

- 1. 设 A, B 是数域 \mathbb{F} 上的 n 阶矩阵, 满足: AB = BA 且 A, B 的特征值都在 \mathbb{F} 中, 求证: A, B 在 \mathbb{F} 上可同时上三角化, 即存在 \mathbb{F} 上的可逆矩阵 P, 使得 $P^{-1}AP$ 和 $P^{-1}BP$ 都是上三角矩阵.
- 2. 设数域 \mathbb{F} 上线性空间 V 上的线性变换 φ , ψ 乘法可交换, 且它们的特征值都在 \mathbb{F} 中, 则存在 V 的一组 基, 使得 φ , ψ 在这组基下的表示矩阵都是上三角矩阵.

证明

1. 对阶数进行归纳. 当 n=1 时结论显然成立,设对 n-1 阶矩阵结论成立,现对 n 阶矩阵进行证明. 因为 AB=BA 且 A,B 的特征值都在 \mathbb{F} 中,故由命题 0.5可知, A,B 有公共的特征向量 $e_1\in\mathbb{F}^n$,不妨设

$$Ae_1 = \lambda_1 e_1, Be_1 = \mu_1 e_1,$$

其中 $\lambda_1, \mu_1 \in \mathbb{F}$ 分别是 A, B 的特征值. 由基扩张定理, 可将 e_1 扩张为 \mathbb{F}^n 的一组基 $\{e_1, e_2, \cdots, e_n\}$. 令 $P = (e_1, e_2, \cdots, e_n)$, 则 $P \in \mathbb{F}$ 上的 n 阶可逆矩阵, 从而有

$$A(e_{1}, e_{2}, \cdots, e_{n}) = (e_{1}, e_{2}, \cdots, e_{n}) \begin{pmatrix} \lambda_{1} & * \\ O & A_{1} \end{pmatrix} \Leftrightarrow AP = P \begin{pmatrix} \lambda_{1} & * \\ O & A_{1} \end{pmatrix} \Leftrightarrow P^{-1}AP = \begin{pmatrix} \lambda_{1} & * \\ O & A_{1} \end{pmatrix},$$

$$B(e_{1}, e_{2}, \cdots, e_{n}) = (e_{1}, e_{2}, \cdots, e_{n}) \begin{pmatrix} \lambda_{1} & * \\ O & B_{1} \end{pmatrix} \Leftrightarrow BP = P \begin{pmatrix} \lambda_{1} & * \\ O & B_{1} \end{pmatrix} \Leftrightarrow P^{-1}BP = \begin{pmatrix} \lambda_{1} & * \\ O & B_{1} \end{pmatrix}.$$

$$(1)$$

其中 A_1, B_1 是 \mathbb{F} 上的 n-1 阶矩阵. 由 AB = BA 及(1)式可得到

$$\begin{pmatrix} P^{-1}AP \end{pmatrix} \begin{pmatrix} P^{-1}BP \end{pmatrix} = P^{-1}ABP = P^{-1}BAP = \begin{pmatrix} P^{-1}BP \end{pmatrix} \begin{pmatrix} P^{-1}AP \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix} \begin{pmatrix} \lambda_1 & * \\ O & B_1 \end{pmatrix} = \begin{pmatrix} \lambda_1 & * \\ O & B_1 \end{pmatrix} \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} \lambda_1 & * \\ O & A_1B_1 \end{pmatrix} = \begin{pmatrix} \lambda_1 & * \\ O & B_1A_1 \end{pmatrix}$$

从而 $A_1B_1 = B_1A_1$. 又由(1)式可得

$$|\lambda I_n - A| = |\lambda - \lambda_1| |\lambda I_{n-1} - A_1|, \quad |\lambda I_n - B| = |\lambda - \lambda_1| |\lambda I_{n-1} - B_1|.$$

因此 A_1 , B_1 的特征值也是 A, B 的特征值. 又由于 A, B 的特征值都在 \mathbb{F} 中, 故 A_1 , B_1 的特征值都在 \mathbb{F} 中. 故由归纳假设, 存在 \mathbb{F} 上的 n-1 阶可逆矩阵 Q, 使得 $Q^{-1}A_1Q$ 和 $Q^{-1}B_1Q$ 都是上三角矩阵. 令

$$R = P \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix},$$

则 R 是 \mathbb{F} 上的 n 阶可逆矩阵, 且

$$R^{-1}AR = \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix}^{-1} \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix} \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix} = \begin{pmatrix} \lambda_1 & * \\ O & Q^{-1}A_1Q \end{pmatrix},$$

$$R^{-1}BR = \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix}^{-1} \begin{pmatrix} \mu_1 & * \\ O & B_1 \end{pmatrix} \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix} = \begin{pmatrix} \mu_1 & * \\ O & Q^{-1}B_1Q \end{pmatrix}$$

都是上三角矩阵.

2.

0.1.4 可同时对角化

命题 0.8

- 1. 设 φ , ψ 是数域 \mathbb{F} 上 n 维线性空间 V 上的线性变换,满足: $\varphi\psi = \psi\varphi$ 且 φ , ψ 都可对角化, 求证: φ , ψ 可同时对角化,即存在 V 的一组基,使得 φ , ψ 在这组基下的表示矩阵都是对角矩阵.
- 2. 设 A, B 是数域 \mathbb{F} 上的 n 阶矩阵, 满足: AB = BA 且 A, B 都在 \mathbb{F} 上可对角化, 则 A, B 在 \mathbb{F} 上可同时对角化, 即存在 \mathbb{F} 上的可逆矩阵 P, 使得 $P^{-1}AP$ 和 $P^{-1}BP$ 都是对角矩阵.

证明

1. 对空间维数进行归纳. 当 n=1 时结论显然成立,设对维数小于 n 的线性空间结论成立,现对 n 维线性空间进行证明. 设 φ 的全体不同特征值为 $\lambda_1,\cdots,\lambda_s\in\mathbb{F}$, 对应的特征子空间分别为 V_1,\cdots,V_s ,则由 φ 可对角化可知

$$V = V_1 \oplus \cdots \oplus V_s$$
.

若 s=1,则 $\varphi=\lambda_1I_V$ 为纯量变换,此时只要取 V 的一组基,使得 ψ 在这组基下的表示矩阵为对角矩阵,则 φ 在这组基下的表示矩阵为 λ_1I_n ,结论成立. 若 s>1,则 $\dim V_i < n$. 注意到 $\varphi\psi=\psi\varphi$ 且 φ,ψ 的特征值都在 $\mathbb P$ 中,由命题 0.2可知 V_i 都是 $\psi-$ 不变子空间. 考虑线性变换的限制 $\varphi|_{V_i},\psi|_{V_i}$: 它们乘法可交换,且由可对角化线性变换的性质可知它们都可对角化,故由归纳假设可知, $\varphi|_{V_i},\psi|_{V_i}$ 可同时对角化,即存在 V_i 的一组基,使得 $\varphi|_{V_i},\psi|_{V_i}$ 在这组基下的表示矩阵都是对角矩阵. 将 V_i 的基拼成 V 的一组基,则 φ,ψ 在这组基下的表示矩阵都是对角矩阵,即 φ,ψ 可同时对角化.

2.

0.1.5 个数的推广

命题 0.9

设数域 \mathbb{P} 上的 n 阶矩阵 A_1, A_2, \dots, A_m 两两乘法可交换, 且它们的特征值都在 \mathbb{P} 中,求证: 它们在 \mathbb{P}^n 中至 少有一个公共的特征向量.

证明 对m进行归纳,m=2时就是命题 0.4. 设矩阵个数小于m时结论成立,现证m个矩阵的情形. 将所有的 A_i 都看成是列向量空间 \mathbb{F}^n 上的线性变换,任取 A_1 的一个特征值 $\lambda_1 \in \mathbb{F}$ 及其特征子空间 $V_1 \subseteq \mathbb{F}^n$. 注意到 $A_1A_i = A_iA_1$,故由命题 0.2可知, V_1 是 A_2, \dots, A_m 的不变子空间. 将 A_2, \dots, A_m 限制在 V_1 上,它们仍然两两乘法可交换且特征

值都在 \mathbb{F} 中,故由归纳假设可得 $A_2|_{V_1}, \cdots, A_m|_{V_1}$ 有公共的特征向量 $\alpha \in V_1$. 注意到 α 也是 A_1 的特征向量,于是 α 是 A_1, A_2, \cdots, A_m 的公共特征向量.

命题 0.10

设数域 \mathbb{F} 上的 n 阶矩阵 A_1, A_2, \dots, A_m 两两乘法可交换, 且它们的特征值都在 \mathbb{F} 中, 求证: 它们在 \mathbb{F} 上可同时上三角化, 即存在 \mathbb{F} 上的可逆矩阵 P, 使得 $P^{-1}A_iP(1 \le i \le m)$ 都是上三角矩阵.

证明 完全类似于命题 0.7的证明, 其中利用命题 0.9得到 A_1, A_2, \cdots, A_m 的公共特征向量, 请读者自行补充相关的细节.

命题 0.11

设数域 \mathbb{F} 上的 n 阶矩阵 A_1, A_2, \cdots, A_m 两两乘法可交换, 且它们都在 \mathbb{F} 上可对角化, 求证: 它们在 \mathbb{F} 上可同时对角化, 即存在 \mathbb{F} 上的可逆矩阵 P, 使得 $P^{-1}A_iP(1 \leq i \leq m)$ 都是对角矩阵.

证明 若 A_i 都是纯量矩阵,则结论显然成立.以下不妨设 A_1 不是纯量矩阵,余下的证明完全类似于命题 0.8的证明,请读者自行补充相关的细节.

例题 0.1 设 A, B 都是 n 阶矩阵且 AB = BA. 若 A 是幂零矩阵, 求证: |A + B| = |B|.

证明 证法一: 由命题 0.7可知, A,B 可同时上三角化, 即存在可逆矩阵 P, 使得 $P^{-1}AP$ 和 $P^{-1}BP$ 都是上三角矩阵. 因为上三角矩阵的主对角元是矩阵的特征值, 而幂零矩阵的特征值全为零, 所以 $|P^{-1}AP + P^{-1}BP| = |P^{-1}BP|$, 即有 |A+B| = |B|.

证法二: 先假设 B 是可逆矩阵, 则 $|A+B|=|I_n+AB^{-1}||B|$, 只要证明 $|I_n+AB^{-1}|=1$ 即可. 由 AB=BA 可知 $AB^{-1}=B^{-1}A$, 再由 A 是幂零矩阵容易验证 AB^{-1} 也是幂零矩阵,从而其特征值全为零. 因此 I_n+AB^{-1} 的特征值全为 1, 故 $|I_n+AB^{-1}|=1$.

对于一般的矩阵 B, 可取到一列有理数 $t_k \to 0$, 使得 $t_k I_n + B$ 是可逆矩阵. 由可逆情形的证明可得 $|A + t_k I_n + B| = |t_k I_n + B|$. 注意到上式两边都是 t_k 的多项式, 从而关于 t_k 连续. 将上式两边同时取极限, 令 $t_k \to 0$, 即得结论. \square