Enoncés : Stephan de Bièvre

Corrections: Johannes Huebschmann

Sujets d'examen

Partiel

Exercice 1

Soit *D* un sous-ensemble de \mathbb{R}^n .

- 1. Donner la définition de "D est ouvert." (Ceci est une question de cours!)
- 2. Donner la définition de " $a \in \mathbb{R}^2$ est un point adhérent de D." (Ceci est une question de cours !) On considère dans la suite de l'exercice l'ensemble

$$D = \{(x, y) \in \mathbb{R}^2 \mid |x| \le |y|, x^2 + y^2 < 1\} \subset \mathbb{R}^2.$$

- 3. Dessiner D.
- 4. Montrer que D n'est pas ouvert.
- 5. Déterminer \overline{D} , l'adhérence de D. On justifiera brièvement sa réponse, en s'aidant d'un dessin.

[002647]

Exercice 2

On considère la fonction $f(x,y) = 2x^2 + y^2$, $(x,y) \in \mathbb{R}^2$.

- 1. Tracer les lignes de niveau f(x,y) = 2, f(x,y) = 4.
- 2. Tracer le graphe de la fonction f. Expliquer votre dessin en quelques phrases, en identifiant notamment les intersections du graphe de f avec les plans parallèles aux trois plans des coordonnées.

[002648]

Exercice 3

On considère une suite $(u_n)_n$, de terme général $u_n \in \mathbb{R}^2$.

- 1. Donner la définition de convergence pour une telle suite. (Ceci est une question de cours!)
- 2. Soit la suite de terme général $u_n = (\operatorname{th}(n), \cos(n) \exp(-n^2))$. Étudier sa convergence.

[002649]

Exercice 4

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \frac{x^2y}{x-y}, \quad \text{si } x \neq y$$
$$= x, \quad \text{si } x = y.$$

- 1. Calculer les dérivées partielles $\frac{\partial f}{\partial x}(1,-2)$ et $\frac{\partial f}{\partial y}(1,-2)$.
- 2. Pour tout $v = (\cos \theta, \sin \theta)$, calculer $D_v f(1, -2)$. Pour quelles valeurs de $\theta \in [0, 2\pi[$, $D_v f(1, -2) = 0$?

- 3. Étudier la continuité de f au point $(1,1) \in \mathbb{R}^2$.
- 4. Étudier la continuité de f au point $(0,0) \in \mathbb{R}^2$.
- 5. Montrer que les dérivées partielles $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$ existent et les déterminer.
- 6. Montrer que la dérivée directionnelle $D_{\nu}f(0,0)$ existe pour $\nu=(1,1)$, et la déterminer. On constatera que l'égalité $D_{\nu}f(0,0)=\partial_x f(0,0)+\partial_y f(0,0)$ n'est pas satisfaite. Expliquer pourquoi cela ne contredit aucun théorème du cours.

[002650]

Examen

Exercice 5

- 1. Soit $f: D \subset \mathbb{R}^m \to \mathbb{R}^n$ et $a \in D$. Donner la définition de "f est différentiable en a".
- 2. Montrer que, si f est différentiable en a, alors toutes ses dérivées partielles existent. Exprimer le lien entre la différentielle df_a de f en a et les dérivées partielles de f en a.
- 3. Les affirmations suivantes, sont-elles vraies ou fausses? On justifiera brièvement sa réponse.
 - (A) Si f est différentiable en a, alors elle y est continue.
 - (B) Si toutes les dérivées partielles de f en a existent, alors f est différentiable en a.

[002651]

Exercice 6

Utiliser une approximation affine bien choisie pour calculer une valeur approchée de

$$\exp[-0.02\sqrt{4.03}].$$

[002652]

Exercice 7

On considère la courbe $\mathscr C$ d'équation

$$y^{2}(x^{2}+1) + x^{2}(y^{2}+1) = 1.$$

- 1. Montrer qu'il existe un unique b > 0 tel que le point de coordonnées (1/2, b) se trouve sur \mathscr{C} . Déterminer b, puis déterminer l'équation de la droite tangente à \mathscr{C} , passant par (1/2, b).
- 2. Trouver l'unique fonction $\varphi: x \in]-1,1[\to \varphi(x) \in \mathbb{R}^+$ telle que $(x,\varphi(x)) \in \mathscr{C}$ pour tout $x \in]-1,1[$. Montrer que $\varphi(-x) = \varphi(x)$ et que φ est décroissante sur [0,1[. Tracer \mathscr{C} .
- 3. Énoncer le théorème des fonctions implicites et montrer qu'il existe exactement deux points de la courbe & où le théorème des fonctions implicites ne s'applique pas pour écrire, au voisinage de chacun de ces deux points, y comme fonction de x.

[002653]

Exercice 8

On considère la fonction

$$f(x,y) = (1 + 2\cos^2(\pi x))(1 - \exp(-y^2)) + \sin(\pi x).$$

Son graphe est reproduit dans la figure ci-dessous.

- 1. Trouver tous les points critiques de f et déterminer leur nature. Vos résultats sont-ils compatibles avec le graphe de la fonction, reproduit ci-dessus ?
- 2. Déterminer l'équation du plan tangent au graphe de f au point de coordonnées (1,1,f(1,1)). Tracer la droite d'intersection de ce plan avec le plan xOy.

[002654]

Exercice 9

On considère les quatre surfaces $\Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4$, définies par les équations suivantes :

$$\begin{split} z^2 - \exp(2x^2 + y^2) &= 0 \quad (\Sigma_1) \\ z &= x^2 + 3y^2 + 4 \quad (\Sigma_2) \\ z - (x - 2y)^2 - 4 &= 0 \quad (\Sigma_3) \\ \exp(x^2 + y^2) + \exp(y^2 + z^2) &= 3 \quad (\Sigma_4) \end{split}$$

Les quatre surfaces sont tracées dans les parties A, B, C et D de la figure sur la page suivante. Indiquer quelle surface correspond à quelle partie de la figure. On justifiera très brièvement ses réponses.

[002655]

