Math 297 Discussion 7*

Annie Xu

Feburary 27, 2019

Connected Subspaces of \mathbb{R}

We switch to IBL format now.

1. Prove: $(\mathbb{R}, d_{\text{Euc}})$ is connected.

Hint. Suppose that \mathbb{R} is disconnected. Then there exists nonempty, open sets $A, B \subset \mathbb{R}$ so that $\mathbb{R} = A \cup B$, and $A \cap B = \emptyset$. Since A and B are nonempty, choose $a \in A$ and choose $b \in B$. WOLOG, suppose that a < b. Define the set

$$C := \{ x \in \mathbb{R} : [a, x] \subset A \}.$$

- 2. Prove that if $f: X \to Y$ is continuous, and if X is connected, then $f(X) \subset Y$ is connected. Does the converse hold? That is, is there a map $f: X \to Y$ which maps every connected set to a connected set necessarily continuous?
- 3. Immediate application Prove that $X = \mathbb{R}$ with the Euclidean metric and the space $\mathbb{R} \setminus \{0\}$ with the Euclidean metric are not homeomorphic.

Connected subsets of \mathbb{R}

What do they look like? Certainly an interval is connected $(a,b) \subset \mathbb{R}$, but are there any other connected subsets of \mathbb{R} ?

Theorem 1. A subset $S \subset \mathbb{R}$ is connected if and only if it has the following property: If $x, y \in S$, then for all $x \in (x, y)$, we have $z \in S$.

This is saying the only connected subsets of \mathbb{R} are intervals.

Question. Do these all fit in here? Single points? Open intervals? Closed intervals? Half-open intervals? Intervals with infinite endpoints?

4. First prove that if $S \subset \mathbb{R}$ does not have the 'interval property' defined above, then S is disconnected.

^{*}Reference: James Munkres. Topology. Prentice Hall, NJ, 2000.

Theorem 2. Intermediate Value Theorem. Let (X, \mathcal{T}) be a connected topological space, and let $f: X \to \mathbb{R}$ be a continuous map (here we give \mathbb{R} the Euclidean topology). If $a, b \in X$, then f achieves every intermediate value between f(a) and f(b).

5. Prove it!

More generally...

Theorem 3. The image of a connected space under a continuous map is connected.