Atty Dkt: 034226.002

AMENDMENT

IN THE CLAIMS:

Please amend the claims as follows:

1. (Previously presented) A benzopyrone compound having the general formula (I):

wherein:

A is selected from CH or N;

B is selected from O or S:

 R_1 and R_2 are respectively selected from H, C_1 - C_{12} alkyl or C_1 - C_{12} haloalkyl;

R₃ is selected from H, C₁-C₁₂ alkyl, C₁-C₁₂ haloalkyl or C₁-C₁₂ alkoxy;

R₄, R₆, R₇, and R₈ may be the same or different, selected from H, halo, CN, NO₂, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₁-C₁₂ haloalkyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkylthio, C₁-C₁₂ alkylsulfonyl, C₁-C₁₂ alkylcarbonyl, C₁-C₁₂ alkoxyC₁-C₁₂ alkyl, C₁-C₁₂ alkyl, C₁-C₁₂ alkyl, or amino C₁-C₁₂ alkoxycarbonyl C₁-C₁₂ alkyl, C₁-C₁₂ alkyl, 0-3 substituted groups of aryl, aryloxyl, arylC₁-C₁₂ alkyl, arylC₁-C₁₂ alkoxy, aryloxyC₁-C₁₂ alkyl, arylC₁-C₁₂ alkoxyl, the 0-3 substituted groups may be selected from halo, NO₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxyC₁-C₆ alkoxyl, and the groups having general formula as follows:

wherein:

 R_{10} and R_{11} are selected from H, C_1 - C_{12} alkyl, aryl or aryl C_1 - C_{12} alkyl; R_5 is selected

Atty Dkt: 034226.002

from H, halo, CN, NO₂, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkylcarbonyl, C_1 - C_{12} alkoxy C_1 - C_{12} alkoxy C_1 - C_{12} alkoxycarbonyl, C_1 - C_{12} alkyl, C_1 - C_{12} alkyl, or amino C_1 - C_{12} alkyl in which amino is substituted with 0-2 C_1 - C_{12} alkyl, 0-3 substituted groups of aryl, aryl C_1 - C_{12} alkyl, aryloxy C_1 - C_{12} alkyl, aryl C_1 - C_{12} alkoxyl C_1 - C_{12} alkyl, heteroaryl or heteroaryl C_1 - C_{12} alkyl, the 0-3 substituted groups may be selected from halo, NO₂, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy C_1 - C_6 alkyl, and the groups having general formula as follows:

wherein:

 R_{10} and R_{11} are selected from H, C_1 - C_{12} alkyl, aryl or aryl C_1 - C_{12} alkyl; and its stereoisomer.

2. (Previously presented) The benzopyrone compound according to the claim 1, wherein:

A is selected from CH or N;

B is selected from O or S; R_1 and R_2 are respectively selected from H, C_1 - C_6 alkyl or C_1 - C_6 haloalkyl;

R₃ is selected from H, C₁-C₆ alkyl, C₁-C₆ haloalkyl or C₁-C₆ alkoxy;

R₄, R₆, R₇, and R₈ may be the same or different, selected from H, halo, CN, NO₂, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio, C₁-C₆ alkylsulfonyl, C₁-C₆ alkylcarbonyl, C₁-C₆ alkoxyC₁-C₆ alkyl, C₁-C₆ alkoxycarbonyl, C₁-C₆ alkyl, or amino C₁-C₆ alkyl in which amino is substituted with 0-2 C₁-C₁₂ alkyl, 0-3 substituted groups of aryl, aryloxyl, arylC₁-C₆ alkyl, arylC₁-C₆ alkoxy, aryloxyC₁-C₆ alkyl, arylC₁-C₆ alkoxylC₁-C₆ alkyl, heteroaryl, heteroarylC₁-C₆ alkyl, heteroarylC₁-C₆ alkoxyl, the 0-3 substituted groups may be selected from halo, NO₂, C₁-C₂ alkyl, C₁-C₂ haloalkyl, C₁-C₂ alkoxy or C₁-C₂ alkoxyC₁-C₂ alkyl, and groups having formula as follows:

Atty Dkt: 034226.002

wherein:

 R_{10} and R_{11} are respectively selected from H, C_1 - C_6 alkyl, aryl or aryl C_1 - C_6 alkyl; R_5 is selected from H, halo, CN, NO₂, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxy C_1 - C_6 alkyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkyl, or amino C_1 - C_6 alkyl in which amino is substituted with 0-2 C_1 - C_{12} alkyl, 0-3 substituted groups of aryl, aryl C_1 - C_6 alkyl, aryloxy C_1 - C_6 alkyl, aryl C_1 - C_6 alkoxyl C_1 - C_6 alkyl, heteroaryl, heteroaryl C_1 - C_6 alkyl, the 0-3 substituted groups may be selected from halo, NO₂, C_1 - C_2 alkyl, C_1 - C_2 haloalkyl, C_1 - C_2 alkoxy or C_1 - C_2 alkoxy C_1 - C_2 alkyl, and groups having formula as follows:

wherein:

R₁₀ and R₁₁ are respectively selected from H, C₁-C₆ alkyl, aryl or arylC₁-C₆ alkyl.

3. (Previously presented) The benzopyrone compound according to the claim 2, wherein:

A is selected from CH or N;

B is selected from O;

 R_1 and R_2 are respectively selected from methyl;

R₃ is selected from H or methyl;

 R_4 , R_6 , R_7 , and R_8 may be the same or different, respectively selected from H, halo, CN, NO_2 , C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_3 haloalkoxy C_1 - C_3 alkyl, or amino C_1 - C_3 alkyl in which amino is substituted with 0-2 C_1 - C_3 alkyl, phenyl, phenoxy, phenyl C_1 - C_2 alkyl, phenyl C_1 - C_2 alkoxy, phenoxy C_1 - C_2 alkyl, phenylmethyl, phenylmethoxyl, or phenylmethoxy C_1 - C_2 alkyl substituted with 0-2 halo,

Atty Dkt: 034226.002

 NO_2 , C_1 - C_2 alkyl, C_1 - C_2 haloalkyl, C_1 - C_2 alkoxy or C_1 - C_2 alkoxy C_1 - C_2 alkyl, and the substituted group having general formula as follows:

wherein:

R₁₀ and R₁₁ are respectively selected from H or C₁-C₆ alkyl;

R $_5$ is selected from H, halo, CN, NO $_2$, C $_1$ -C $_6$ alkyl, C $_2$ -C $_6$ alkenyl, C $_1$ -C $_6$ haloalkyl, C $_1$ -C $_6$ alkylcarbonyl, C $_1$ -C $_6$ alkoxyC $_1$ -C $_6$ alkyl, C $_1$ -C $_6$ alkoxycarbonyl, C $_1$ -C $_6$ alkoxycarbonylC $_1$ -C $_3$ alkyl, C $_1$ -C $_3$ haloalkoxyC $_1$ -C $_3$ alkyl, or amino C $_1$ -C $_3$ alkyl in which amino is substituted with 0-2 C $_1$ -C $_3$ alkyl, phenyl, phenyl C $_1$ -C $_2$ alkyl, phenoxy C $_1$ -C $_2$ alkyl, phenylmethyl or phenylmethoxy C $_1$ -C $_2$ alkyl substituted with 0-2 halo, NO $_2$, C $_1$ -C $_2$ alkyl, C $_1$ -C $_2$ alkoxy or C $_1$ -C $_2$ alkoxyC $_1$ -C $_2$ alkyl, and the substituted group having general formula as follows:

wherein:

 R_{10} and R_{11} are respectively selected from H or C_1 - C_6 alkyl.

4. (Previously presented) The benzopyrone compound according to the claim 3, wherein:

A is selected from CH or N;

B is selected from O;

 R_1 and R_2 are selected from methyl;

R₃ is selected from H or methyl;

R₄, R₆, R₇, and R₈ may be the same or different, respectively selected from H, Cl, Br, F, CN, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkylcarbonyl, C₁-C₆ alkoxy, C₁-C₆ alkoxyC₁-C₃ alkyl, C₁-C₃ haloalkoxyC₁-C₃ alkyl, amino C₁-C₃alkyl in which amino is substituted with 0-2 C₁-C₃ alkyl, phenyl, phenoxy, phenylmethyl, phenylmethoxyl, substituted with 0-2 halo, NO₂, C₁-C₂ alkyl, C₁-C₂ haloalkyl, C₁-C₂ alkoxy or C₁-C₂ alkoxyC₁-C₂ alkyl, and the substituted

Atty Dkt: 034226.002

groups having general formula as follows:

wherein:

 R_{10} and R_{11} are selected from methyl; R_5 is selected from H, Cl, Br, F, CN, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxy C_1 - C_3 alkyl, C_1 - C_3 haloalkoxy C_1 - C_3 alkyl, amino C_1 - C_3 alkyl in which amino is substituted with 0-2 C_1 - C_3 alkyl, phenyl, phenylmethyl, substituted with 0-2 halo, NO_2 , C_1 - C_2 alkyl, C_1 - C_2 haloalkyl, C_1 - C_2 alkoxy or C_1 - C_2 alkoxy or C_1 - C_2 alkyl, and the substituted groups having general formula as follows:

wherein:

 R_{10} and R_{11} are selected from methyl.

5. (Previously presented) A method for preparing a benzopyrone compound of general formula (I) which comprises reacting a Benzylhalide compound having general formula (II) with a 7-OH-benzopyrone compound having general formula (III) in the presence of a

$$Z$$
 R_3
 R_4
 R_5
 R_6
 R_7
 R_8
 R_7
 R_8
 R_7
 R_8
 R_7
 R_8
 R_9
 R_9

base:

wherein:

Z is leaving group selected from Cl or Br;

A is selected from CH or N;

B is selected from O or S;

 R_1 and R_2 are respectively selected from H, C_1 - C_{12} alkyl or C_1 - C_{12} haloalkyl;

 R_3 is selected from H, C_1 - C_{12} alkyl, C_1 - C_{12} haloalkyl or C_1 - C_{12} alkoxy;

Atty Dkt: 034226.002

 R_4 , R_6 , R_7 , and R_8 may be the same or different, respectively selected from H, halo, CN, NO₂, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} alkylthio, C_1 - C_{12} alkylsulfonyl, C_1 - C_{12} alkylcarbonyl, C_1 - C_{12} alkoxy C_1 - C_{12} alkyl, C_1 - C_{12} alkoxycarbonyl, C_1 - C_{12} alkyl, C_1 - C_{12} alkyl,

or amino C_1 - C_{12} alkyl in which amino is substituted with 0-2 C_1 - C_{12} alkyl; 0-3 substituted groups of aryl, aryl C_1 - C_{12} alkyl, aryl C_1 - C_{12} alkoxy, aryloxy C_1 - C_{12} alkyl, aryl C_1 - C_{12} alkyl, or heteroaryl C_1 - C_{12} alkyl, the 0-3 substituted groups may be selected from halo, NO_2 , C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy or C_1 - C_6 alkoxy C_1 - C_6 alkyl, and the groups having general formula as follows:

wherein:

 R_{10} and R_{11} are selected from H, C_1 - C_{12} alkyl, aryl or aryl C_1 - C_{12} alkyl; R_5 is selected from H, halo, CN, NO₂, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkoxycarbonyl, C_1 - C_{12} alkoxycarbonyl, C_1 - C_{12} alkoxycarbonyl, C_1 - C_{12} alkoxycarbonyl C_1 - C_{12} alkyl, C_1 - C_{12} haloalkoxy C_1 - C_{12} alkyl, or amino C_1 - C_{12} alkyl in which amino is substituted with 0-2 C_1 - C_{12} alkyl, 0-3 substituted groups of aryl, aryl C_1 - C_{12} alkyl, aryloxy C_1 - C_{12} alkyl, aryl C_1 - C_{12} alkyl, the 0-3 substituted groups may be selected from halo, NO₂, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy or C_1 - C_6 alkoxy C_1 - C_6 alkyl, and the groups having general formula as follows:

wherein:

 R_{10} and R_{11} are selected from H, C_1 - C_{12} alkyl, aryl or aryl C_1 - C_{12} alkyl.

6-8. (Canceled)

9. (Previously presented) A method of controlling insects which comprises applying the

Atty Dkt: 034226.002

compound according to claim 1 to a plant.

10. (Previously presented) A method of controlling fungi which comprises applying the

compound according to claim 1 to a plant.

11. (Previously presented) A fungicidal or insecticidal composition comprising the compound of

claim 1 as an active ingredient, wherein the weight percentage of the active ingredient in the

composition is from 0.1% to 99%.

12. (New) The benzopyrone compound according to claim 1, wherein

A is CH;

B is O;

 R_1 and R_2 are methyl;

R₃ is H; and

R₄, R₅, R₆, R₇, and R₈ may be the same or different and are selected from the group

consisting of H, halo, and C₁-C₆ alkyl.

13. (New) The benzopyrone compound according to claim 12, wherein the stereoisomer is E-

isomer.

14. (New) The benzopyrone compound according to claim 12, wherein

R₅ is methyl;

R₆, R₇ and R₈ are H; and

R4 is selected from the group consisting of Cl, methyl, ethyl, n-propyl, and n-butyl.