3주차 2차시 논리식의 간략화

[학습목표]

- 1. 카노프 맵에서의 행과 열의 이웃관계를 설명할 수 있다.
- 2. 가노프 맵을 이용한 간략화 과정을 단계별로 정리할 수 있다.

학습내용1 : 카르노 맵

- 카르노 맵이라고도 함
- 조직적인 맵을 사용하여 부울 대수를 최적으로 간략화 할 수 있는 방법
- 카노프 맵은 부울 대수식을 간소화 하기 위한 가장 체계적이고 간단한 방법
- 최적의 간략화에 근거한 디지털 회로설계만이 게이트 수의 최소화할 수 있음
- 디지털 회로는 회로의 경제성, 소비전력의 효율성, 회로의 신뢰성, 제품의 소형화가 가능해짐

〈변수 2개, 변수 3개, 변수 4개, 변수 5개, 변수 6개로 이루어진 입력변수에 적용할 수 있고 그 이상의 변수가 존재하는 경우에는 다른 방법을 사용〉

1) 변수가 2개인 카노프 맵

AB	0	1
0	$\overline{A}\overline{B}$	$\overline{A}B$
1	$A\overline{B}$	AB

ВАВ	0	1
0	$\overline{A}\overline{B}$	$A\overline{B}$
1	$\overline{A}B$	AB

1. 변수가 2개인 카노프 맵

АВ	0	1
0	\overline{AB}	$\overline{A}B$
1	$A\overline{B}$	AB

В	0	1
0	$\overline{A}\overline{B}$	$A\overline{B}$
1	$\overline{A}B$	AB

1) 출력이 0인 경우에는 빈칸으로 표시하지 않고 1인 경우에만 표시하는 경우

A B	0	1
0	1	
1		1

0	1
1	
	1
	1

2. 변수가 3개인 카노프 맵의 표현

BC A	00	01	11	10
0	\overline{ABC}	\overline{ABC}	$\overline{A}BC$	$\overline{A}B\overline{C}$
1	$A\overline{B}\overline{C}$	$A\overline{B}C$	ABC	$AB\overline{C}$

САВ	00	01	11	10
0	\overline{ABC}	$\overline{A}B\overline{C}$	$AB\overline{C}$	$A\overline{B}\overline{C}$
1	\overline{ABC}	$\overline{A}BC$	ABC	$A\overline{B}C$

- 카노프 맵을 가장 간단한 형태로 표현

1) 출력이 0인 경우에는 빈칸으로 표시하지 않고 1인 경우에만 표시

BC A	00	01	11	10
0	1	1		
1		1	1	

САВ	00	01	11	10
0	1			
1	1		1	1

3. 변수가 4개인 카노프 맵의 표현

AB CD	00	01	11	10
00	\overline{ABCD}	\overline{ABCD}	\overline{ABCD}	\overline{ABCD}
01	$A\overline{B}\overline{C}\overline{D}$	$A\overline{BCD}$	$A\overline{B}CD$	$A\overline{B}C\overline{D}$
11	$AB\overline{C}\overline{D}$	$AB\overline{C}D$	ABCD	$ABC\overline{D}$
10	$A\overline{BCD}$	$A\overline{BCD}$	$A\overline{B}CD$	$A\overline{B}C\overline{D}$

CD AB	00	01	11	10
00	\overline{ABCD}	$A\overline{B}\overline{C}\overline{D}$	$AB\overline{C}\overline{D}$	$A\overline{B}\overline{C}\overline{D}$
01	\overline{ABCD}	$A\overline{BCD}$	$AB\overline{C}D$	$A\overline{B}\overline{C}D$
11	$\overline{AB}CD$	$A\overline{B}CD$	ABCD	$A\overline{B}CD$
10	\overline{ABCD}	$A\overline{B}C\overline{D}$	$ABC\overline{D}$	$A\overline{B}C\overline{D}$

- 카노프 맵을 가장 간단한 형태로 표현

1) 출력이 0인 경우에는 빈칸으로 표시하지 않고 1인 경우에만 표시

CD	00	01	11	10
00	1	1		
01			1	
11		1	1	
10				

AB CD	00	01	11	10
00	1			
01	1		1	
11		1	1	
10				

4. 부울 대수식을 이용한 카노프 맵의 작성

- 카노프 맵을 작성할 때, 진리표에 근거하여 작성
- 변수가 4개인 표준형의 부울 대수식에 대한 카노프 맵의 작성

$$\begin{split} X(A,\!B,\!C,\!D) = & \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D + \overline{A} \cdot B \cdot C \cdot D + A \cdot B \cdot \overline{C} \cdot D + A \cdot B \cdot C \cdot D \\ = & m_0 + m_1 + m_7 + m_{13} + m_{15} \\ = & \sum m(0,\!1,\!7,\!13,\!15) \end{split}$$

CD	00	01	11	10
00	1	1		
01			1	
11		1	1	
10				

5. 카노프 맵에서 행과 열의 이웃관계

- 이웃과의 그룹화는 부울 대수를 간략화하는 방법을 제시
- 카노프 맵은 평면 형태로 보여지나 이웃 관계는 상하좌우 모두를 포함하므로 실제로는 원통 형태나 구(球) 형태

학습내용2 : 카노프 맵의 간략화

1. 카노프 맵을 이용한 간략화 과정 단계별 정리

① 주어진 부울식이나 진리표에 근거하여 카노프 맵을 작성

② 그룹화를 수행

- 카노프 맵에서 1로 표시된 이웃들을 1, 2, 4, 8, 16 개씩 그룹화
- 가능하면 큰 개수로 그룹화하는 것이 간략화의 효과가 큼
- 각각 다른 그룹에 여러 번 중복하여 그룹화 할 수 있음
- 그룹화할 이웃이 없는 경우 단독으로 그룹화되고 이것은 간략화 되지는 않음
- ③ 각 그룹을 간략화
- ④ 각 간략화된 부울식들 끼리 OR 연산 수행

2. 2변수 카르노 맵 표현 방법

$A \mid A\overline{B} \mid AB \mid$	$A \mid m_2 \mid m_3 \mid$
AB 0 1 0 0 1 1 2 3	$B = \begin{bmatrix} A & \overline{A} & A \\ \overline{B} & m_0 & m_2 \end{bmatrix}$

3. 일반항과 무관항 표현

* 무관항 (don't care) : 입력이 결과에 영향을 미치지 않는 민텀항

* X로 표시하거나 d로 표시함

A^{B}	0	1	AB	0	1	
0	1		0	1	Х	
1		1	1		1	

$$F(A,B) = \sum m(0,3)$$
 $F(A,B) = \sum m(0,3) + \sum d(1)$

4. 카르노맵을 이용한 간략화 방법

- ① 1, 2, 4, 8, 16개로 그룹을 지어 묶음
- ② 바로 이웃해 있는 항들끼리 묶음
- ③ 반드시 직사각형이나, 정사각형의 형태로 묶어야만 함

1) 간략화 예

예:

$$f = \sum m(0,1,2) = \overline{a}\overline{b} + \overline{a}b + a\overline{b}$$
$$= \overline{a}(\overline{b} + b) + \overline{b}(\overline{a} + a) = \overline{a} \cdot 1 + \overline{b} \cdot 1$$
$$= \overline{a} + \overline{b}$$

5. 3변수 카르노 맵 표현 방법

10000	0 07 88 80		1	$A\overline{B}$ $A\overline{B}C$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
C	AB C	ABC	ABO	ABC	$A \overline{ABC} \overline{ABC} ABC \overline{ABC}$
AI.	³ 00	01	11	10	BC 00 01 11 10
0	0	2	6	4	0 0 1 3 2
1	1	3	7	5	1 4 5 7 6

$AR \subset \overline{C} \subset C$	AB	0	1	
\overline{AB} \overline{ABC} \overline{ABC}	00	0	1	
$\overline{A}B$ $\overline{A}B\overline{C}$ $\overline{A}BC$	01	2	3	
$AB \overline{ABC} ABC$	11	6	7	
$A\overline{B}$ $A\overline{BC}$ $A\overline{BC}$ $A\overline{BC}$	10	4	5	
AB ABC ABC				

1) 간략화 예

a b c	f	$f = \sum m(3,5,6,7) = ab + bc + ac$
0 0 0	0	$J = \sum_{i=1}^{n} m(3,3,0,7) = u0 + 00 + uc$
0 0 1	0	ha
0 1 0	0	$a^{bc} 00 01 11 10$
0 1 1	1	
1 0 0	0	1 1 1 1
1 0 1	1	
1 1 0	1	
1 1 1	1	세번중복하여묶음

6. 4변수 카르노 맵 표현 방법

CI AB	00	01	11	10	AR	D_{00}	01	11	10_
00	ABCD	AB CD	ĀBCD	\overline{ABCD}	00	0	1	3	2
01	ABC D	ĀB C D	ABCD	\overline{ABCD}	01	4	5	7	6
11	$AB\overline{C}\overline{D}$	ABCD	ABCD	$ABC\overline{D}$	11	12	13	15	14
10	$A\overline{B}\overline{C}\overline{D}$	ABCD	ABCD	$A\overline{B}C\overline{D}$	10	8	9	11	10
C. AB	D ₀₀	01	11	10					
00	0	4	3	2					
010	4	5	7	6 * -		상	하좌	우느	
11	12	13	15	14			되어		
10	8	9.	11	10					

1) 여러 가지 4변수 카르노 맵의 예제

7. 무관항이 있을 경우 카르노 맵을 이용하여 간략화

$$F(A, B, C, D) = \sum m(0, 2, 3, 4, 5, 11) + \sum d(1, 7, 9, 15)$$

$$F(A, B, C, D) = \sum m(1,2,3,4,6,8,10) + \sum d(0,12,14)$$

$$F(A, B, C, D) = \sum m(0,2,3,4,8,9,11) + \sum d(1,5,6,7,10,12)$$

8. 진리표로부터 카르노 맵을 작성하고 간략화

1) 논리식에서 생략된 부분을 찾아서 Minterm으로 변경

$$f(x, y, z) = xyz + xy + xy$$

$$= xyz + xy(z + z) + xy(z + z)$$

$$= xyz + xyz + xyz + xyz + xyz + xyz$$

$$= \sum m(0, 1, 2, 3, 7)$$

$$f(w,x,y,z) = wx + wxy + \overline{wyz} + \overline{wyz} + \overline{wxyz}$$

$$= wx(\overline{y} + y)(\overline{z} + z) + wxy(\overline{z} + z) + \overline{w(x} + x)yz + \overline{w(x} + x)\overline{yz} + \overline{wxyz}$$

$$= \sum m(1,3,5,6,7,12,13,14,15)$$

9. 논리식을 카르노 맵으로 작성하고 간략화

$$F(A,B,C,D) = A + B + \overline{ABCD}$$

$$F(A,B,C,D) = AB + \overline{B}C + ACD + AB\overline{D} + AC\overline{D}$$

$$AB \xrightarrow{CD} 00 \quad 01 \quad 11 \quad 10$$

$$00 \quad 01 \quad 11 \quad 10$$

$$01 \quad 01 \quad 01$$

$$11 \quad 1 \quad 1 \quad 1$$

$$10 \quad 1 \quad 1$$

$$AB \quad \overline{B}C \quad ACD$$

10. 5변수인 경우

1) 5변수 카르노 맵

2) 5변수 논리함수를 카르노 맵을 이용하여 간략화

11. 6변수인 경우

1) 6변수 카르노 맵

2) 6변수 논리함수를 카르노 맵을 이용하여 간략화

학습내용3 : 카노프 맵의 응용

1. 무관 조건

- ① 출력에 관여하지 않는 입력이 존재할 수 있음
- ② 출력에 관여하지 않는 입력변수를 무관 조건(Don't Care)이라 함
- ③ 무관 조건은 이웃 영역을 그룹화할 때 가장 간단한 표현을 얻기 위해 임의로 채워질 수 있음
- ④ 간략화 과정에서 그룹화 할 수도 있고 그룹화 하지 않을 수도 있음

2. 2개의 논리함수를 하나의 시스템으로 통합

- 두 개의 시스템으로 분리되어 있는 것을 하나의 시스템으로 통합하는 것이 가능하고, 공유 가능한 게이트가 있을 때 공유하여 시스템을 구성하면 경제적으로 좋은 시스템이 될 수 있을 것임

예 1 :

$$F(X,Y,Z) = \sum m(0,2,6,7)$$
 $G(X,Y,Z) = \sum m(1,3,6,7)$

예 2:

$$F(X,Y,Z) = \sum m(0,1,6)$$
 $G(X,Y,Z) = \sum m(2,3,6)$

예 3:

$$F(W, X, Y, Z) = \sum m(4, 5, 6, 8, 12, 13)$$
$$G(W, X, Y, Z) = \sum m(0, 2, 5, 6, 7, 13, 14, 15)$$

2. 3개의 논리함수를 하나의 시스템으로 통합

예:

$$F(W,X,Y,Z) = \sum m(0,2,6,10,11,14,15)$$

$$G(W,X,Y,Z) = \sum m(0,3,6,7,8,9,12,13,14,15)$$

$$H(W,X,Y,Z) = \sum m(0,3,4,5,7,10,11,12,13,14,15)$$

- 세 함수끼리 서로 독립된 부분과 두 개의 함수에서 같은 영역 중 크게 묶을 수 있는 영역을 먼저 찾음

- 나머지 중에서 공통된 부분과 독립된 부분을 찾음

3. 무관항을 갖는 경우

예:

$$F(W, X, Y, Z) = \sum m(2,3,4,6,9,11,12) + \sum d(0,1,14,15)$$

$$G(W, X, Y, Z) = \sum m(2,6,10,11,12) + \sum d(0,1,14,15)$$

- 서로 독립된 영역을 찾은 후, 선택되지 않는 부분을 찾아서 나머지를 묶음

[학습정리]

- 1. 카르노 맵을 이용하여 논리식을 간략화 할 수 있다.
- 2. 카르노 맵을 이용하여 간략화 할 경우에, 무관 조건등을 반영하여야 한다.