Cálculo EE

Integral definido

1. Sabendo que $\int_{1}^{4} f(x) dx = 3$ e que $\int_{2}^{4} f(x) dx = 5$, determine:

(a) $\int_{1}^{4} f(t) dt$; (b) $\int_{4}^{2} f(t) dt$; (c) $\int_{1}^{2} f(x) dx$; (d) $\int_{1/2}^{2} f(2x) dx$.

2. Seja $f:[0,5] \longrightarrow \mathbb{R}$ a função representada na figura ao lado. Recorrendo ao significado geométrico do integral em termos de área, calcule

3. Sem recorrer ao Teorema Fundamental do Cálculo, determine $\int_0^3 f(x) dx$, sendo f a função representada na figura. Justifique convenientemente a sua resposta.

4. Sejam $f:[0,3] \longrightarrow \mathbb{R}$ a função representada na figura e $F: [0,3] \longrightarrow \mathbb{R}$ uma sua primitiva. Sem calcular qualquer integral, determine F(3) - F(0).

5. Seja $f:[0,5] \longrightarrow \mathbb{R}$ a função representada na figura e seja $F: [0, \sqrt{5}] \longrightarrow \mathbb{R}$ definida por $F(x) = \int_0^{x^2} f(t) dt$. Sem calcular qualquer integral, determine $F(\sqrt{3})$ e $F'(\sqrt{3})$.

- 6. Apresente um exemplo de:
 - (a) uma função $f: [0,2] \longrightarrow \mathbb{R}$ tal que $\int_0^2 f(x) dx = 0$ e $f(x) \neq 0, \forall x \in [0,2];$

1

- (b) duas funções $f, g: [0, 2] \longrightarrow \mathbb{R}$ tais que $\int_0^2 f(x) dx = \int_0^2 g(x) dx$ e $f(x) \neq g(x)$,
- 7. Calcule os seguintes integrais definidos:

(a)
$$\int_0^2 (x+1)^2 dx$$
;

(b)
$$\int_{-1}^{1} \frac{1}{1+x^2} dx;$$

(c)
$$\int_{-3}^{2} \sqrt{|x|} \ dx$$
;

(d)
$$\int_0^3 2 - |x| \ dx$$
;

(e)
$$\int_{-1}^{2} x |x| \ dx;$$

(f)
$$\int_{0}^{2\pi} |\cos x| \ dx;$$

(g)
$$\int_3^4 \frac{1 - 4x^3}{x - x^4} dx$$
;

(h)
$$\int_0^{\pi} x \sin x \, dx$$
;

(i)
$$\int_0^1 x \arctan x^2 dx$$
;

(j)
$$\int_0^{\sqrt{2}/2} \arcsin x \ dx$$
;

(k)
$$\int_0^2 \frac{2x-1}{(x-3)(x+1)} dx$$
;

(1)
$$\int_{e}^{e^2} \frac{\ln(\ln x^2)}{x} dx;$$

(m)
$$\int_0^1 \ln(x^2+1)dx$$
;

(n)
$$\int_0^{\frac{\pi}{2}} \sin 2x \cos 5x \ dx;$$

(o)
$$\int_0^1 g(x) dx$$
, com $g(x) = \begin{cases} x & \text{se } 0 \le x \le \frac{1}{2}, \\ -x & \text{se } \frac{1}{2} < x \le 1 \end{cases}$

- 8. Determine todos os valores reais c tais que $\int_{c}^{c} x(1-x) dx = 0$.
- 9. Determine um polinómio quadrático p(x) tal que p(0) = p(1) = 0 e $\int_0^1 p(t) dt = 1$.
- 10. Sem calcular os integrais $I = \int_0^1 \sqrt{1-x^2} dx$ e $J = \int_{2\pi}^{3\pi/2} \sin^2 x dx$, justifique que I > 0 e
- 11. Comparando o integral dado com um integral mais fácil de calcular, verifique as seguintes estimativas:

(a)
$$\frac{\pi}{4} < \int_0^1 \frac{dx}{1+x^3} < 1$$

(a)
$$\frac{\pi}{4} < \int_0^1 \frac{dx}{1+x^3} < 1;$$
 (b) $0 < \int_0^{\pi} \sin^2 x \, dx < 2;$

12. Seja f uma função contínua tal que se verifica a igualdade seguinte para todo o númro real x:

$$\int_0^x f(t) dt = \frac{4}{3} + 3x^2 + \sin(2x).$$

Calcule $f(\frac{\pi}{2})$ e $f'(\frac{\pi}{4})$.

- 13. Mostre que a função $y=\int_0^x \sqrt{1-t^2}\ dt$ satisfaz a equação diferencial y'y''=-x e a condição inicial y(0)=0.
- 14. Efetuando a mudança de variável adequada, determine os seguintes integrais:

(a)
$$\int_0^1 \frac{\sqrt{x}}{1 + \sqrt[3]{x}} dx;$$

(b)
$$\int_{-5}^{0} 2x\sqrt{4-x}dx;$$

(c)
$$\int_0^3 \frac{x}{\sqrt{1+x}} \, dx;$$

(d)
$$\int_0^1 \frac{e^x}{1 + e^{3x}} dx;$$

(e)
$$\int_1^e \frac{\sqrt{\ln x}}{x} dx$$
;

(f)
$$\int_0^3 \sqrt{9-x^2} \ dx;$$

(g)
$$\int_0^1 \frac{x^2}{\sqrt{4-x^2}} dx$$
;

(h)
$$\int_{3/4}^{4/3} \frac{1}{x^2 \sqrt{1+x^2}} dx;$$

(i)
$$\int_0^{3/8} \sqrt{1+4x^2} \ dx$$
;

(j)
$$\int_0^{\pi/2} \frac{\cos x}{1 + \cos x} dx;$$

(k)
$$\int_{\pi/2}^{2\pi/3} \frac{dx}{2 + \cos x}$$
;

15. Sejam $a\!\in\!\mathbb{R}^+$ e $f:[-a,a]\longrightarrow\mathbb{R}$ uma função integrável. Mostre que:

(a) se
$$f$$
 é par então $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$;

(b) se
$$f$$
 é impar então $\int_{-a}^{a} f(x) dx = 0$.

16. Considere a função $F(x) = \int_0^x f(t) dt$.

Mostre que:

- (a) se f é par então F(x) é ímpar.
- (b) se f é impar então F(x) é par.
- 17. Sabendo que $\int_{-1}^{1} \sqrt{1-x^2} \, dx = \pi/2$, deduza qual o valor de $\int_{-a}^{a} \sqrt{a^2-x^2} \, dx$, usando a mudança de variável x=ct, para c constante e conveniente.