

- -> Laminated pole core to reduce eddy current losses.
- · FIELD WINDINGS
- → Used to evegulate flux density | Magnetic field intensity.
- · BRUSH
- -> Carbon/Graphile
- -> Consists of a spring for tension to prevent airgap
- -> Acts as a point of contact
- · ARMATURE
- -> laminated course (Mica)
- -> Capper undings around conductor slots
- · COMMUTATOR
- -> Commutar plates (Al/ (w) seperated by mica sheets
- -> Tecanopers supply in last of the machine

· LENS LAW

- · METHODS OF VARYING M.F:
 - 1) MOUNG MAGNET
 - 2) MOUING COIL
 - 3) ROTATING COIL

-> EMF EQUATIONS OF DC MACHINE

b) Time taken by one conductor for one revolution
$$\frac{60}{N}$$

c) EMF induced in one sevolution =
$$\frac{P\phi N}{60}$$

NO. OF CONDUCTORS IN EACH CON PARALLEL PATH, = 7

EMF unduced in all conductors in one parallel path in one levolution

$$\Rightarrow \boxed{\mathcal{E} = \frac{\Phi PN}{60} \cdot \frac{Z}{A}}$$

· FOR DC GENERATOR

UNIT 3

- · DC MOTOR
- → Electromechanical device that converts electerical energy to mechanical energy.

* The unduced EMF is called BACK EMF (EB)

long ohmo law,

$$I_{A} = \frac{V_{7} - E_{B}}{R_{A}}$$

IA -> ARMATURE CURRENT

Ra- ARNATURE RESISTANCE

- · Enables a DC motor to become self segulating
- · Enables or notor to draw as much asmature

current as beginned.

· POWER INPUT AT MOTOR TERMINAL

· ELECTROMAGNETIC POWER

ELECTRICAL POWER

· ELECTROMAGNETIC TORQUE

$$T = \frac{\gamma_E}{\omega_m}$$

· ROTATIONAL SPEED

no→ rated speed

-BRUSH

> COMMUTATOR

DC-SERIES MOTOR

fuon 0,0 800

$$\omega_{m} = \frac{V}{\kappa_{e}\phi} - \frac{R_{A}}{\kappa_{e}\phi} I_{A}$$

$$= \frac{V}{\kappa_{e}\phi} - \frac{R_{A}}{(\kappa_{e}\phi)^{2}} t$$

ADVANTAGE

> EASY TO DESIGN

In series motor, flux is a func of aumature carrier, SIMPLE CONSTRUCTION

=>
$$\phi \propto I_A => \phi \approx \kappa_F I_A$$

TEASY TO MAINTAIN

-> POOR SPEED REGULATION (REQUIRES LOAD BEFORE TORQUE & SPEED, SO TORQUE DROPS SHARPLY

-> HIGH STARTING TORBUE (AT LOW SPEEDS)

- DRILL MACHINE

APPLICATIONS

→ SEWING MACHINE

→ WINCH

Ra is the sum of aumature and field winding lesistances

If Since the tarque is desectly purpositional, here for increase in tolique increase in motor current is helaturely less.

Series motors are heme ideal for 1) Higher Streeting Tolques 2) Torque Overloading

Machine euro at larger speed at light load, perceluces huge toeque.

Stould be awarded when there is a possibility of load toleque deopping to cause double the trated speed.

DC SHUNT MOTOR

- · Shurt field windings are made up of higher number of turns & lower gauge as compared to series motor.
- · Higher conductor tuens perouses s teronger mag. field.
- " Lawer gauge persières higher hessetance
- When waltage is provided to terminals, asmatules & field decay sufficient currents naturals is produced.

- · If load is inchessed, speech reduces which thereby reduces back EMF and inchesses asmature current & torque
- · Thus rawing the speed to return to original and compensate for load.

From figure,

$$V_T = I_{SH} \cdot R_{SH} = \sqrt{I_{SH}} = \frac{V_T}{R_{SH}}$$

VT is const, RSH is const

Applying KUL at June . J,

 $T_A = \frac{V_T - E_B}{R_A}$

- 1) WATER PUMPS
- 2) LATHE PUMP
- 3) CONVEYER BELTS

VARIABLE COAD

#SPEED CONTROL OF D.C MOTOR -> Jag controlling operation of apparatus > Better performance of machine -> Higher efficiency -> System ediability -> Cost effectiveness. · SERIES MOTOR VT = EB+ IA(RATRE) & Using En= DENP => VT = PENP + In(RAIRSH) ·· | N= (VT-In(RATRSH)) 60A → FLUZ CONTROL · Increasing valuable exerctance Ru will excuse secondaries cultient In , thus seeducing flux. This will excuses of Control is independent of Load.

-> RUEDSTATIC CONTROL

Residentatic voltage Rc is minimum, hence alimature culturet is man. Throsperd is also marimum. As we move of second towards point b value duops.

