

Direcção Pedagógica

Departamento de Admissão à Universidade (DAU)

Disciplina:	MATEMÁTICA	N° Questões:	57
Duração:	120 minutos	Alternativas por questão:	5
Ano:	2017		

INSTRUÇÕES

- Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- 2. Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do rectângulo por cima da letra. Por exemplo, pinte assim 👫, se a resposta escolhida for A
- 3. A máquina de leitura óptica anula todas as questões com mais de uma resposta e/ou com borrões. Para evitar isto, preencha primeiro à lápis HB, e só depois, quando tiver certeza das respostas, à esferográfica.

Daume	de latitudido de l'internation
12.	O valor de $\left(\frac{1}{3}\right)^{-10} \times 27^{-3} + \left(0,2\right)^{-4} \times 25^{-2} + \left(64^{-\frac{1}{9}}\right)^{-3}$ é:
	A. 6 B. 7 C. 9 D. 8 E. 5
13.	Na figura ao lado os pontos A, B, C e D pertencem à uma circunferência de centro O e E é o ponto médio do segmento OD. Se AD mede 5 cm a medida do raio da circunferência é:
1721	A. $5cm$ B. $\frac{5}{2}cm$ C. $\frac{5\sqrt{3}}{2}cm$
	D. $5\sqrt{3}cm$ E. $\frac{1}{2}cm$
14.	O polinómio $P(x) = x^2 + ax + b$ é divisível por $Q(x) = x - 1$ e $R(x) = x + 3$. Os valores de a e b são: A. $a = -3$ e $b = 2$ B. $a = -2$ e $b = 3$ C. $a = -2$ e $b = -3$ D. $a = 2$ e $b = -3$ E. $a = 2$ e $b = 3$
15.	Uma gota de tinta caiu num lençol formando um círculo de raio igual a $k cm$. Se de hora em hora a medida do raio duplica, depois de seis horas a medida do raio será: A. $12k cm$ B. $6k cm$ C. $64k cm$ D. $32k cm$ E. $8k cm$
16.	O contradomínio da função $f(x) = 2 \operatorname{sen} x$ de domínio $\left[-\frac{\pi}{6}; \pi \right]$ é:
	A. [-1;2] B.]-1;2[C. [-2;2] D. [-1;1] E. [-2;1]
17.	A solução da inequação $x^2 < 3x + 10$ é: A. $[-\infty; -2] \cup [5; +\infty[$ B. $]-\infty; -2[\cup]5; +\infty[$ C. $[-2;5]$ D. $]-2;5[$ E. $[-2;0] \cup [5; +\infty[$ A solução de $(1-x) \cdot 2^{ x-1 } \le 0$ é A. $]-\infty;1[$ B. $[-1;1]$ C. $[1; +\infty[$ D. $]-\infty;1]$ E. $[1; +\infty[$
18.	A solução de $(1-x)\cdot 2^{x-1} \le 0$ é A. $]-\infty;1[$ B. $[-1;1]$ C. $[1;+\infty[$ D. $]-\infty;1]$ E. $[1;+\infty[$
19.	É dado o sistema $\begin{cases} 2^x = 3y \\ 3^x = 2y \end{cases}$. O valor de $x + y$ é igual a: $A. \frac{5}{6} \qquad B. \frac{7}{6} \qquad C. -\frac{7}{6}$ $D. \frac{2}{3} \qquad E. -\frac{5}{6}$
20.	A inversa da função $f(x) = 4^{x-1}$, é: A. $f^{-1} = -1 + \log_4 x$ B. $f^{-1} = 1 - \log_4 x$ C. $f^{-1} = 4 + \log_4 x$ D. $f^{-1} = 1 + \log_4 x$ E. $f^{-1} = \log_4(x+1)$
21.	O termo seguinte na sucessão 0,3,8,15,24,35, é: A. 44 B. 38 C. 43 D. · 45 E. 48
22.	De uma progressão (a_n) sabe-se que a razão é $-\frac{1}{3}$. Qual das seguintes afirmações é verdadeira:
e Jan	A. (a_n) é infinitamente grande B. (a_n) é estritamente decrescente C. (a_n) é limitada D. (a_n) é estritamente crescente E. Nenhuma das alternativas anteriores
23.	Numa progressão aritmética $a_1 + a_5 = 16$ e $a_5 + a_9 = 40$. O primeiro termo e a razão são respectivamente: A $a_1 = 3$ e $d = 2$ B. $a_2 = 2$ e $d = 3$ C. $a_1 = 3$ e $d = -2$ D. $a_1 = 2$ e $d = -3$ E. $a_1 = 4$ e $d = 2$
24.	A. $a_1 = 3$ e $d = 2$ B. $a_1 = 2$ e $d = 3$ C. $a_1 = 3$ e $d = -2$ D. $a_1 = 2$ e $d = -3$ E. $a_1 = 4$ e $d = 2$ A soma dos termos de uma progressão geométrica infinita de razão $\frac{1}{2}$ é D. $\frac{1}{2}$ E. $\frac{1}{3}$
25.	igual a 6. O primeiro termo é:
	A. e^{10} B. e^{5} C. e^{15} D. $\frac{1}{e^{5}}$ E. $\frac{1}{e^{10}}$
The state of the s	gráfico abaixo está representada parte de uma função $y = f(x)$ e uma recta tangente à curva no ponto de abcissa $x = 3$. a base no gráfico responda as questões 26, 27 e 28.
26.	$g'(3)$ é igual a: A. 1 B. $\frac{\sqrt{3}}{3}$ C. 7 D. $\sqrt{3}$ E. 0
27.	A medida de \overline{AC} é: A. $\frac{\sqrt{3}}{2}$ B. $\frac{5\sqrt{3}}{2}$ C. $\frac{7\sqrt{3}}{2}$ D. $\frac{7}{2}$ E. $\frac{8\sqrt{3}}{3}$
28.	$\alpha(3)$ é ignal a: $2\sqrt{3}$ $4\sqrt{3}$ $-3\sqrt{3}$
20	
29.	O mínimo relativo da função $f(x) = -x^3 + 3x^2 - 1$ é:

Locard	A. $x = -1$ B. $x = 2$ C. $x = 0 \lor x = 2$ D. $x = 1$ E. Nenhuma das alternativas
30.	A(s) assimptota(s) vertical(is) da função $f(x) = \frac{x^2 - 2x - 3}{x^2 - 1}$, é (são):
-	A. $x=1 \lor x=-1$ B. $x=1$ C. $x=3 \lor x=-1$ D. $x=1$ E. Nenhuma das alternativas
No fi	igura estão representadas as funções $y = f(x) = 2x - 3$ e $y = g(x)$. Responda as questões de 31 a 35.
31.	O valor de $g(4)$ é:
31.	
32.	A. 6 B. 4 C. 8 D. 3 E. 5 $f(x) < g(x)$ em:
	y=f00//
	A. $]-\infty,0]\cup[4,+\infty[$ B. $]0,4[$ C. $]-\infty,0[\cup]4,+\infty[$
33.	D. [0,4] E. Nenhuma das alternativas
33.	O vértice da parábola é $V(1,-4)$ então os zeros da função são:
	A. $-1 e 3$ B. $-\frac{1}{2} e 3$ C. $-\frac{1}{2} e 2$ D. $-1 e 2$ E. $-1 e \frac{5}{2}$ A recta perpendicular a $y = f(x)$ que passa pelo ponto (3,4) é:
34.	A recta perpendicular a $y = f(x)$ que passa pelo ponto (3,4) é:
	A. $y-x-11=0$ B. $2y+x-11=0$ C. $2y-x+11=0$
	D. $2y+x+11=0$ E. $2y-x-10=0$
35.	O domínio de $v = \frac{1}{1}$ é:
	O domínio de $y = \frac{1}{g(x)}$ é:
100	A. R B. $R/\{-1\}$ C. $R/\{3\}$
	D. R/{-1,3} E. Nenhuma das alternativas
36.	De uma função h dum certo domínio, sabe-se que a sua derivada h' está igualmente definida no mesmo domínio e é
	dada por, $h'(x) = -2 + 3\cos x$. Qual é o valor de $\lim_{x \to \frac{\pi}{2}} \frac{h(x) - h(\frac{\pi}{2})}{x - \frac{\pi}{2}}$?
7	$x \rightarrow \frac{\pi}{2}$ $x - \frac{\pi}{2}$
	【11)2.11(2)(2)(2)(2)(3)(3)(3)(3)(3)(3)(3)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)
	A. 4 B. -2 C. $\frac{2-3\sqrt{3}}{2}$ D. $\frac{2-3\sqrt{2}}{2}$ E. 1
Nog	ráfico estão representadas partes dos gráficos das funções $y = f(x)$ e $y = g(x)$. Com base na figura responda as questões
	7 a 44.
37.	O valor de x para $f(x) = g(x)$ é:
38.	A1 B. 4 C. 2 D. 1 E. 0 O valor de x para $f[g(x)]=1$ é:
36.	
	y = f(x)
39.	O produto $f(-2) \times g(-2)$ é:
40.	A. +∞ B. negativo C∞ D. zero E. positivo
40.	O $\lim_{x\to -1^-} \frac{2}{f(x)}$ é igual a:
	$A\infty$ $B. +\infty$ $C. 0$ $D1$ $E. 2$
41.	A área do triângulo formado pela recta definida por $y = f(x)$ e pelos eixos das
	1.2 are as triangulo for made pera recta definida por y = j (w) e peros cixos das
	coordenadas é: $y = g(x)$
	coordenadas é: A. $2u^2$ B. $6u^2$ C. $4u^2$ D. $1u^2$ E. $8u^2$
42.	coordenadas é: A. $2u^2$ B. $6u^2$ C. $4u^2$ D. $1u^2$ E. $8u^2$ A função tem um ponto de inflexão em:
42.	coordenadas é: A. $2u^2$ B. $6u^2$ C. $4u^2$ D. $1u^2$ E. $8u^2$ A função tem um ponto de inflexão em: A. $x = -1$ B. $x = 0$ C. $x = 1$ D. $x = 2$ E. $x = 3$
	coordenadas é: A. $2u^2$ B. $6u^2$ C. $4u^2$ D. $1u^2$ E. $8u^2$ A função tem um ponto de inflexão em: A. $x = -1$ B. $x = 0$ C. $x = 1$ D. $x = 2$ E. $x = 3$ A expressão analítica de $y = g(x)$ é:
42.	coordenadas é: A. $2u^2$ B. $6u^2$ C. $4u^2$ D. $1u^2$ E. $8u^2$ A função tem um ponto de inflexão em: A. $x = -1$ B. $x = 0$ C. $x = 1$ D. $x = 2$ E. $x = 3$ A expressão analítica de $y = g(x)$ é: A. $y = x^3$ B. $y = (x-1)^3$ C. $y = (x+1)^3$ D. $y = x^3 + 1$ E. $y = x^3 - 1$
42.	coordenadas é: A. $2u^2$ B. $6u^2$ C. $4u^2$ D. $1u^2$ E. $8u^2$ A função tem um ponto de inflexão em: A. $x = -1$ B. $x = 0$ C. $x = 1$ D. $x = 2$ E. $x = 3$ A expressão analítica de $y = g(x)$ é: A. $y = x^3$ B. $y = (x-1)^3$ C. $y = (x+1)^3$ D. $y = x^3 + 1$ E. $y = x^3 - 1$ O coeficiente angular da recta $y = g(x)$ é:
42. 43.	coordenadas é: A. $2u^2$ B. $6u^2$ C. $4u^2$ D. $1u^2$ E. $8u^2$ A função tem um ponto de inflexão em: A. $x = -1$ B. $x = 0$ C. $x = 1$ D. $x = 2$ E. $x = 3$ A expressão analítica de $y = g(x)$ é: A. $y = x^3$ B. $y = (x-1)^3$ C. $y = (x+1)^3$ D. $y = x^3 + 1$ E. $y = x^3 - 1$ O coeficiente angular da recta $y = g(x)$ é: A. 2 B. 4 C. -2 D. -4 E. 1
42. 43. 44.	coordenadas é: A. $2u^2$ B. $6u^2$ C. $4u^2$ D. $1u^2$ E. $8u^2$ A função tem um ponto de inflexão em: A. $x = -1$ B. $x = 0$ C. $x = 1$ D. $x = 2$ E. $x = 3$ A expressão analítica de $y = g(x)$ é: A. $y = x^3$ B. $y = (x-1)^3$ C. $y = (x+1)^3$ D. $y = x^3 + 1$ E. $y = x^3 - 1$ O coeficiente angular da recta $y = g(x)$ é: A. 2 B. 4 C. -2 D. -4 E. 1 ráfico da PRIMEIRA DERIVADA da função $y = g(x)$ é uma parábola voltada para baixo, cujas raízes são
42. 43. 44. O gr	coordenadas é: A. $2u^2$ B. $6u^2$ C. $4u^2$ D. $1u^2$ E. $8u^2$ A função tem um ponto de inflexão em: A. $x = -1$ B. $x = 0$ C. $x = 1$ D. $x = 2$ E. $x = 3$ A expressão analítica de $y = g(x)$ é: A. $y = x^3$ B. $y = (x-1)^3$ C. $y = (x+1)^3$ D. $y = x^3 + 1$ E. $y = x^3 - 1$ O coeficiente angular da recta $y = g(x)$ é: A. 2 B. 4 C. -2 D. -4 E. 1 ráfico da PRIMEIRA DERIVADA da função $y = g(x)$ é uma parábola voltada para baixo, cujas raízes são $1 = x = 3$. Com base nesta informação responda as questões 45 e 46.
42. 43. 44.	coordenadas é: A. $2u^2$ B. $6u^2$ C. $4u^2$ D. $1u^2$ E. $8u^2$ A função tem um ponto de inflexão em: A. $x = -1$ B. $x = 0$ C. $x = 1$ D. $x = 2$ E. $x = 3$ A expressão analítica de $y = g(x)$ é: A. $y = x^3$ B. $y = (x-1)^3$ C. $y = (x+1)^3$ D. $y = x^3 + 1$ E. $y = x^3 - 1$ O coeficiente angular da recta $y = g(x)$ é: A. 2 B. 4 C. -2 D. -4 E. 1 ráfico da PRIMEIRA DERIVADA da função $y = g(x)$ é uma parábola voltada para baixo, cujas raízes são $1 = x = 3$. Com base nesta informação responda as questões $45 = 46$. O(s) extremo(s) de $y = g(x)$ é (são):
42. 43. 44. O gr	coordenadas é: A. $2u^2$ B. $6u^2$ C. $4u^2$ D. $1u^2$ E. $8u^2$ A função tem um ponto de inflexão em: A. $x = -1$ B. $x = 0$ C. $x = 1$ D. $x = 2$ E. $x = 3$ A expressão analítica de $y = g(x)$ é: A. $y = x^3$ B. $y = (x-1)^3$ C. $y = (x+1)^3$ D. $y = x^3 + 1$ E. $y = x^3 - 1$ O coeficiente angular da recta $y = g(x)$ é: A. 2 B. 4 C. -2 D. -4 E. 1 ráfico da PRIMEIRA DERIVADA da função $y = g(x)$ é uma parábola voltada para baixo, cujas raízes são $1 = x = 3$. Com base nesta informação responda as questões 45 e 46.

- B. É crescente ne intervalo 1;3
- D. É uma função do terceiro grau

- A. Tem um ponto de inflexão
- Intercepta pelo menos uma vez o eixo das abcissas
- A derivada de $h(x) = \frac{x+2}{(x^2-1)^2}$ é:
 - A. $h'(x) = \frac{3x^2 + 8x + 1}{(x^2 1)^3}$
- B. $h'(x) = \frac{3x^2 + 8x + 1}{(x^2 1)^4}$
- C. $h'(x) = -\frac{3x^2 + 8x + 1}{(x^2 1)^3}$

- D. $h'(x) = -\frac{3x^2 8x 1}{(x^2 1)^3}$
- É. $h'(x) = \frac{3x^2 8x + 1}{(x^2 1)^3}$
- Sendo f(x) = 3x 1 e g(x) = -x + 4, a função composta $f \circ g(x)$ no ponto x = 3 será igual a: 48.

47.

- Nenhuma

No gráfico está representada a função $h(x) = A + \frac{B}{x - C}$. Considerando o gráfico

- respondas as questões de 49 a 53.
 - $h(x) \le 0$ no intervalo: A. [-2;1]
- C. -2;1]

- D. [-2:1]

- O contradomínio da função é: 50.
 - A. $R/\{-2\}$
- B. $R/\{1;-2\}$

- As assíntotas desta função são: 51.
 - A. x = -2 e y = 1
- B. x = 2 e y = 1
- E. Nenhuma das alternativas anteriores
- C. x = -2 e y = -1

- D. x=2 e y=-152. O valor de x para o qual se verifica $h[h(x)] = -\frac{1}{2}$ é:

- A. 2 B. 1

 Em relação a função y = h(x), É FALSO dizer que: 53.
 - A. A função é injectiva

- - B. A função é derivável em R/{-2}
- C. A 2ª derivada é negativa no intervalo -2;+∞
- D. A 1ª derivada admite um zero
- E. A função num determinado ponto é descontínua com salto de segunda espécie.
- 54. O gráfico que define a função y = h(x) é:

55. Identifique o gráfico correspondente a função y =

- A solução do integral $\int \frac{3x+1}{x} dx$ é: 56.

- B. $3x + \ln|x| + c$ C. $3x^2 + \ln|x| + c$ D. $\frac{3x^2 + x}{x^2} + c$
- E. Nenhuma

- Para que valores de x o número z = 5x 10 + (y + 4)i é imaginário puro? 57.
 - A. $x=2 \land y \neq -4$
- B. $y \neq -4$
- C. $x \neq 2 \land y = -4$
- D. x=2
- E. $x \neq 2 \land y \neq -4$