

课程 > Unit 7: Bayesian inf... > Lec. 14: Introductio... > 10. Exercise: Discre...

10. Exercise: Discrete unknown and continuous observation

Exercise: Discrete unknown and continuous observation

2/2 points (graded)

Similar to the last example, suppose that $X=\Theta+W$, where Θ is equally likely to take the values -1 and 1, and where W is standard normal noise, independent of Θ . We use the estimator $\widehat{\Theta}$, with $\widehat{\Theta}=1$ if X>0 and $\widehat{\Theta}=-1$ otherwise. (This is actually the MAP estimator for this problem.)

a) Let us assume that the true value of Θ is 1. In this case, our estimator makes an error if and only if W has a low (negative) value. The conditional probability of error given the true value of Θ is 1, that is, $\mathbf{P}(\widehat{\Theta} \neq 1 \mid \Theta = 1)$, is equal to

- Φ(-1) ✓
- $\Phi(0)$
- $\Phi(1)$

where $oldsymbol{\Phi}$ is the standard normal CDF.

b) For this problem, the overall probability of error is easiest found using the formula

$$egin{array}{c} oldsymbol{oldsymbol{P}}(\widehat{\Theta}
eq \Theta) = \int oldsymbol{P}(\widehat{\Theta}
eq \Theta \mid X = x) f_X(x) \, dx \end{array}$$

$$ullet \mathbf{P}(\widehat{\Theta}
eq \Theta) = \sum_{ heta} \mathbf{P}(\widehat{\Theta}
eq heta \mid \Theta = heta) \, p_{\Theta}(heta)$$

Solution:

a) We have

$$\mathbf{P}(\widehat{\Theta}
eq 1 \mid \Theta = 1) = \mathbf{P}(\Theta + W \le 0 \mid \Theta = 1) = \mathbf{P}(1 + W \le 0 \mid \Theta = 1)$$

$$= \mathbf{P}(1+W \le 0) = \mathbf{P}(W \le -1) = \Phi(-1).$$

b) Similar to part (a), $\mathbf{P}(\widehat{\Theta} \neq \theta \mid \Theta = \theta)$ is easy to calculate for either choice of $\theta = -1$ or $\theta = 1$. For this reason, the second formula is easy to implement.

提交

You have used 1 of 1 attempt

• Answers are displayed within the problem

讨论

显示讨论

Topic: Unit 7 / Lec. 14 / 10. Exercise: Discrete unknown and continuous observation

© All Rights Reserved