Single Source Shortest Path: Dijkstra's algo

Dijkstra's Algorithm will work for both Directed and undirected graphs but only when the weights are positive!

Procedure:

- > Step 01: Construct the cost adjacency matrix for the given graph.
- > Step 02: Assume a vertex as the source (alphabetically) (if source is not mentioned) and compute the distance from the source to all other vertices as D[w]=c(s,w) or c(s,u)+c(u,w) i.e. direct distance or indirect distance. This is also known as relaxation.
- > Step 03: Pick the shortest path of the computed distance.
- > Step 04: The vertex causing the shorted path is also included into the source.
- > Step 05: Repeat the steps till all shortest paths are evaluated.

	adjacen	cy	n	rot	7	be		ADI	4										
+		+-	+		+-		+		+		٠		+		+-		+-		+
ı	to/from	lθ	ı	1	ı	2	I	3	I	4	I	5	I	6	ı	7	I	8	I
+		 	*		+-		+		+		+ ·		+		+-		+ ·		†
ı	0	inf	ı	4	L	inf	I	inf	ı	inf	l	inf	ı	inf	ı	8	ı	inf	ı
ı	1	4	١	inf	L	8	١	inf	١	inf	ı	inf	ı	inf	ı	11	ı	inf	ı
1	2	inf	ı	8	П	inf	١	7	١	inf	ı	4	ı	inf	ı	inf	ı	2	١
1	3	inf	ı	inf	L	7	I	inf	١	9	l	14	I	inf	l	inf	ı	inf	١
1	4	inf	ı	inf	L	inf	١	9	١	inf	ı	10	ı	inf	ı	inf	ı	inf	١
1	5	inf	ı	inf	ı	4	I	14	١	10	l	inf	I	2	ı	inf	ı	inf	١
1	6	inf	ı	inf	П	inf	١	inf	١	inf	ı	2	ı	inf	ı	1	ı	6	١
1	7	8	1	11	I	inf	1	inf	1	inf	I	inf	I	1	I	inf	I	7	I
I	8	inf	I	inf	l	2	I	inf	I	inf	I	inf	I	6	I	7	I	inf	١
4.		+	-+-		+-		+		+		۴.		+-		٠-		4.		4

since one shortest path to 2 is already in P& O didn't added (15,2)

Visited: [0,1,7,6,5], Unvisited: [2,3,4,8]

Pr(0=[(12,2), (15,8), (21,4), (25,3)]

update new distance as { Min distance till current node + Dist from current to next reachable node from adjacency matrix }

dist from current node to reachable node Visited: [0,1], Unvisited: [2,3,4,5,6,7,8]

 ∞ ∞ ∞ ∞ add all nodes that are

into PrQ with dist =

reachable from current node

PrQ=((41) (8,7)

7	\otimes	2	ω	D 9 ↑ 8+1	Ø	15 8+7
n n	Class					

new pattr to 8 from 2 has dist 14 which is less than already discovered dist to 8 i.e 15 so adding (14,8) to fro D D 11 D -2521-0000

Px 0 = [(14,8) (15,8) (19,3), (21,4), (25,3)]

15 2521-0000 dist to sistrom?

P60 = [(21,4),(25,3)]

Visited: [0,1,7,6,5,2,8,4], Unvisited: [3] 012345678 4 - 00 00 30 - - 00 00 00

Visited: [0,1,7,6,5,2,8,4,3], Unvisited: []

Priotiy Queue: https://www.youtube.com/watch?v=wptevkObshY

Node	0	1	2	3	4	5	6	7	8
Dist	0	4	12	19	21	11	9	8	14
Prev	0	0	1	2	5	6	7	0	2