Estimación del estado hídrico de una planta y gestión automática del riego

Índice

- Sensores instalados
 - Sensores ZIM
 - Dendómetros
- Modelado
 - Mínimos cuadrados con sensores ZIM

Sensores instalados

Sensor ZIM

Dendómetro

Sensores ZIM

Ventajas:

- Sensor más barato y fácil de instalar
- Estado hídrico "fácilmente visualizable" para el agricultor

Desventajas:

• El estado de una hoja no siempre es representativo del árbol entero

Principio de funcionamiento (sensores ZIM)

Esquemas de un sensor ZIM instalado en una hoja

Hoja de olivo vista al microscopio

- A: Con riego abundante
- B: En secano, con estrés hídrico severo

Estrés hídrico según sensores ZIM

Mide el estado de la planta en base a un valor numérico (entero entre 1 y 3):

- Estado 1: Estrés hídrico leve. La planta está "bien regada" o sobre regada. Estado óptimo durante la floración y algunas etapas de formación del fruto.
- Estado 2: Estrés hídrico moderado. Estado óptimo en algunos momentos del ciclo de vida de la planta.
- Estado 3: Estrés hídrico severo. Estado a evitar siempre, ya que perjudica a la planta.

La lectura de los sensores es menos precisa en los estados 2 y 3, debido a las cámaras de aire en el espacio intercelular.

Estrés hídrico según sensores ZIM

Se han sugerido algunos indicadores de estrés hídrico a considerar, representativos de la forma de la curva:

Dendómetros

Ventajas:

• Relación directa con el estado de la planta completa

Desventajas:

- Más caros
- Relación no lineal fuertemente dependiente de la especie

Estrés hídrico según dendómetros

Se han sugerido algunos indicadores de estrés hídrico, aunque la relación con el estrés hídrico no es lineal:

Estrés hídrico según dendómetros

Suele considerarse en su lugar la evolución de la lectura a lo largo del tiempo:

Modelado

Se pretende buscar una forma de aproximar el nivel de estrés hídrico a partir de los datos disponibles: Sensores ZIM y dendómetros de cada parcela, precipitaciones, evapotranspiración, riego de cada parcela y estados calculados a mano de 6 ZIMs y 6 dendómetros.

Se ha decidido empezar por utilizar los datos de sensores ZIM por ser más baratos y fáciles de instalar, y si la aproximación es buena podría permitir prescindir de los dendómetros.

Mínimos cuadrados con sensores ZIM

Empleando datos de área y máximo con una ventana deslizante:

Mínimos cuadrados con sensores ZIM

Escogiendo mejor los datos de calibración:

Mínimos cuadrados con sensores ZIM

Añadiendo la evapotranspiración, el resultado no mejora visiblemente:

