Efficient and Adaptive ConvNets for Face Recognition: A Channel Prioritized Approach

National Taiwan University, Deep Learning for Computer Vision (DLCV), 2018 Spring

Tsun-Hsien Tang R06946003

Kai-Chun Su R06921062

Chia-Ching Lin D05921018

Chun-Min Chang D05921027

Group 19 CRLowerBound

Motivation

- Deploying ConvNets on resource-limited platforms is often impeded by constraints in size and speed
- Need an one-for-all model to meet different power consumption, accuracy, and latency requirements

Therefore, we propose to train a ConvNet to achieve model reduction and dynamically trade-offs between performance and resource

Base Model Architecture

- VGG-like ConvNets using global average pooling
- Every conv layer is followed by a BN layer

Method: Channel Prioritization for Sparsity and Adaptivity

- We leverage scaling factors of batch normalization since these factors represent the importance of channels
 - We enforce to sparsify and prioritize channels along their indices using three techniques
 - (i) Monotonically decreasing initialization (ii) Monotonicity-induced penalty

(iii) Sparsity penalty

$$\gamma_l^{(k)} = 1 - \frac{k-1}{N_l}, \quad k = 1, ..., N_l$$

$$L_{m,l}^{(k)} = \begin{cases} \gamma_l^{(k+1)} - \gamma_l^{(k)} &, \text{ if } \gamma_l^{(k+1)} > \gamma_l^{(k)} \\ 0 &, \text{ otherwise} \end{cases}$$

$$|L_{o}|$$

$$\gamma_{l}^{(k)} = 1 - \frac{k-1}{N_{l}}, \quad k = 1, ..., N_{l}$$

$$L_{m,l}^{(k)} = \begin{cases} \gamma_{l}^{(k+1)} - \gamma_{l}^{(k)} &, \text{ if } \gamma_{l}^{(k+1)} > \gamma_{l}^{(k)} \\ 0 &, \text{ otherwise} \end{cases} |\gamma_{l}^{(k)}|$$

$$L_{obj} = Loss + \lambda_{s} \sum_{k,l} |\gamma_{l}^{(k)}| + \lambda_{m} \sum_{k,l} L_{m,l}^{(k)} |\gamma_{l}^{(k)}| + \lambda_{m} \sum_{k,l}$$

Based on the learned channel priority, a small sub-network can be built by removing (100-p)% insignificant channels. By jointly training the sub-network at various utilization levels, we can obtain the adaptive property

Pre-training stage

- 1. Monotonically decreasing initialization on scaling factors
- 2. Train with sparsity and monotonicity-induced penalties
- 3. Prune channels by a global threshold

Magnitude-based Pruning threshold: 0.1

Fine-tuning stage

- 4. Fix all parameters in BN layers
- 5. Define and sum up the losses at different utilization levels
- 6. Fine-tune the pruned network with the aggregated loss

Experiment Results

	Accuracy (%)	Multi-Adds	Parameters
VGG-16 (baseline)	86.28	24.71 x 10 ⁹	15.91 x 10 ⁶
MobileNet-224 [1]	65.31	5.73 x 10 ⁹	5.62 x 10 ⁶
SqueezeNet-v1.0 [2]	59.56	8.61 x 10 ⁸	1.75 x 10 ⁶
Extracted feature+NearestOne*	84.05	7.30 x 10 ⁹	4.05 x 10 ⁶
Our (100%)	86.38	6.87 x 10 ⁹	4.05 x 10 ⁶
Our (75%)	81.40	3.84 x 10 ⁹	2.28 x 10 ⁶
Our (50%)	78.47	1.68 x 10 ⁹	1.01 x 10 ⁶

*Features extracted from the best CNN model, compute centers for all classes using training and validation data, and predict the test class with the smallest cosine similarity

Compressed Network

Training Details

Objective: softmax loss+center_loss

Hyper-parameters		Optimizer and Augmentation		
lambda_s	1e-3	Optimizer	Adam, beta1=0.5	
lambda_m	4e-5	Batch size	64	
lambda_c	1e-3	Ir	1e-4	
alpha_c	0.5	Rotation	[-45, 45]	
weight_decay	1e-5	Scale	+- 15%	
dropout	0.8	Shift	+- 15 %	
early stop	10	Flip	with prob = 0.5	

Conclusions

- We propose a generalized method to train an efficient and adaptive CNNs, also suitable for face recognition
- ConvNet with prioritized channels can adapt to various requirements
- Experiments showed 2.5, 14.5x reduction with 0, 8% accuracy drop