

Ciência dos Materiais A

Departamento de Ciência dos Materiais

Margarida Lima (mmal@fct.unl.pt), Rui Borges (rcb@fct.unl.pt);

Carmo Lança (mcl@fct.unl.pt)

Departamento de Química

Ana Rita Duarte (ard08968@unl.pt)

FACULDADE DE CIÊNCIAS E TECNOLOGIA

UNIVERSIDADE NOVA DE LISBOA

Ano letivo de 2023-2024

Funcionamento da UC

- Aulas: exposição teórica, problemas e laboratoriais;
- Módulo 1 (DCM): TP1-Margarida Lima e Rui Borges; TP2-Carmo Lança
- Módulo 2 (DQ): Ana Rita Duarte; 23 de Outubro
- Avaliação do Módulo 1: 1 teste e 1 ficha no moodle;
- Testes:

T1 (teste do Módulo 1 (**TP**)) - 4 de Novembro Ficha (19h-19.30 Moodle) (**Lab.**)) - 10 de Novembro

T2 (teste do Módulo 2 (**TP**)) - 12 de Dezembro

- Nota final: 50% Módulo 1 + 50% Módulo 2
- Nota do Módulo 1- 40% T1+ 10% ficha

Método de avaliação da UC – Módulo 1 (DCM)

- A avaliação contínua consiste em:
 - 1 teste escrito teórico e prático que corresponde a 40% da Nota final,
 e
 - 1 ficha de avaliação/relatório da componente laboratorial que corresponde a 10% da nota final.
 - Nota do Módulo 1- 40% T1+ 10% ficha
- A nota final resultante do teste e das ficha de avaliação laboratorial deverá ser igual ou superior a 10 valores. Frequência obrigatória pela presença nas aulas de laboratório.

Método de avaliação da UC

- Os alunos que pretendam fazer a disciplina unicamente por Exame (80% da Nota final) têm que frequentar obrigatoriamente as aulas de laboratório (20% da nota final).

Bibliografia (Módulo 1)

- Principles of Materials Science and Engineering, de W. F. Smith, McGraw-Hill, 3rd edition, New York, 1996; translated to Portuguese ("Princípios de Ciência e Engenharia dos Materiais") published by McGrawHill de Portugal, Lisboa, 1998
- Fundamentals of Materials Science and Engineering. An Integrated approach,
 William Callister Jr, David G. Rethwisch, Wiley, 5th Edition, 2015
- Introduction to Materials Science for Engineers, James F. Shackelford, Pearson, 8th Edition, 2015

Conteúdo programático TP1

- Compreender a importância da relação "estrutura-propriedades" na seleção de materiais para diferentes aplicações,
- Identificar os principais tipos de sistemas cristalográficos, assim como as células unitárias das estruturas: cúbica simples, cúbica de corpo centrado, cúbica de faces centradas e hexagonal,
- Descrever a forma de empacotamento dos planos compactos das estruturas cristalinas do sistema cúbico de faces centradas e hexagonal,
- Relacionar a estrutura cristalina com o cálculo da densidade teórica.

Estrutura

Materiais

(Arranjo interno, subatómico, atómico, micro e macroscópico dos componentes)

(Resposta do material a um estímulo exterior Propriedades independente da forma e da dimensão características mecânicas, elétricas, térmicas, magnéticas, ópticas)

(Métodos de preparação dos materiais - dependem da estrutura pretendida e por isso das propriedades desejadas)

Processos de Transformação

Engenharia

Desempenho/comportamento do material em determinadas aplicações

Exemplos ilustrativos (propriedades mecânicas)!

Solução adequada

Falta de rigidez

Falta de resistência

Falta de tenacidade

Peso excessivo

Tipo	Descrição	Ligação química	Propriedades	Aplicações
Metais	Maioritariamente compostos de um elemento metálico (Fe, Al, Cu, Ti, Au, Ni,)	Ligação metálica	Cristalinos Densos, rígidos, resistentes (fractura e tracção), dúcteis Bons condutores eléctricos e térmicos	Materiais estruturais, condutores eléctricos e térmicos
Cerâmicos	Composto formado entre elementos metálicos e não-metálicos (maior parte óxidos, nitretos e carbonetos)	Ligação iónica (e covalente)	Cristalinos (cerâmico) ou amorfo (vidro) Rígidos, resistentes,frágeis e duros Quimicamente resistentes Isolantes térmicos (refractários) e eléctricos	Cerâmicos tradicionais: argilas (porcelanas), cimentos, vidros, tijolos, gesso Cerâmicos técnicos: vitrocerâmicos, instrumentos de corte, abrasivos, pyrex
Polímeros	Longas cadeias moleculares compostas de unidades que se repetem e tendo, a maior como base o elemento carbono (hidrocarbonetos)	Ligação covalente	Muito deformáveis (dúcteis); pouco resistentes à temperatura; quimicamente inertes, flexíveis e moldáveis	Indústria têxtil, automóvel, farmacêutica; construção civil; embalagens;

10 Aula T1

Estruturas cristalinas (Redes de Bravais)

Os arranjos em sólidos cristalinos podem ser descritos por uma rede de linhas designada de rede espacial.

Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	a a
Hexagonal	$a = b \neq c$	$\alpha=\beta=90^{\circ},\gamma=120^{\circ}$	c a a a
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	c a a

Orthorhombic

$$a = b = a$$

Rhombohedral
$$a = b = c$$
 $\alpha = \beta = \gamma \neq 90^{\circ}$

$$a \neq b \neq c$$
 $\alpha = \beta = \gamma = 90^{\circ}$

Monoclinic

$$a \neq b \neq c$$

$$a \neq b \neq c$$
 $\alpha = \gamma = 90^{\circ} \neq \beta$

Triclinic

$$a \neq b \neq a$$

$$a \neq b \neq c$$
 $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Estrutura Cúbica Simples (CS)

empilhamento AAA (empilhamento de planos não compactos)

Ciência dos Materiais A Aula T1 15

Número de átomos por célula unitária

• Simple cubic (SC) structures: In these structures there are 8 atoms corresponding to 8 corners and there are no atoms on the faces or in the interior of the unit cell. Therefore, $N_c = 8$, $N_f = 0$ and $N_i = 0$ Using above eqn. we get, $N_{av} = 8/8 + 0/2 + 0/1 = 1$

15

Parâmetro de rede vs raio atómico - CS

Simple Cubic Packing

Successive layers are superimposed over the base

a=2r

Factor de empacotamento atómico- CS (52%)

Ciência dos Materiais A Aula T1 18

Estrutura Cúbica de Corpo Centrado (CCC)

empilhamento ABA (empilhamento de planos não compactos)

Número de átomos por célula unitária

Ciência dos Materiais A Aula T1 20

Parâmetro de rede vs raio atómico - CCC

$$a^{2} + a^{2} = x^{2}$$
$$2a^{2} = x^{2}$$
$$x = \sqrt{2}a$$

$$a^{2} + \left(\sqrt{2}a\right)^{2} = (4r)^{2}$$
$$3a^{2} = 16r^{2}$$
$$a^{2} = \frac{16}{3}r^{2}$$

$$a = \frac{4}{\sqrt{3}}r$$
 ou
$$a = \frac{4\sqrt{3}}{3}r$$

Factor de empacotamento atómico- CCC (68%)

23

Estrutura Cúbica de Faces Centradas (CFC)

empilhamento ABC (empilhamento de planos compactos)

Ciência dos Materiais A Aula T1 23

Número de átomos por célula unitária

Ciência dos Materiais A Aula T1 24

Parâmetro de rede vs raio atómico - CFC

$$a^{2} + a^{2} = (4r)^{2}$$
$$2a^{2} = 16r^{2}$$
$$a = \sqrt{8}r$$

$$a = 2\sqrt{2}r$$

Factor de empacotamento atómico- CFC (74%)

24

Estruturas Hexagonal Compacta

empilhamento ABA (empilhamento de planos compactos)

Cada átomo no centro dos planos hexagonais contribui para a célula unitária com ½ átomo

Cada átomo de cada vértice dos planos hexagonais contribui para a célula unitária com 1/6 de átomo.

Há que considerar ainda 3 átomos no interior da célula unitária

Número de átomos por célula unitária =
$$12x\frac{1}{6} + 2x\frac{1}{2} + 3 = 6$$

Factor de empacotamento atómico- HC (74%)

A sites

C=1.633a

B sites

Number of atoms in HCP unit cell= (12*1/6)+(2*1/2)+3=6atoms

Vol.of HCP unit cell=

A sites area of the hexagonal face X height of the hexagonal

Area of the hexagonal face=area of each triangle X6

a=2r

Area of triangle $=\frac{bh}{2} = \frac{ah}{2} = \frac{1}{2}a \cdot \frac{a\sqrt{3}}{2}$

Area of hexagon = $6 \cdot \frac{a^2 \sqrt{3}}{4}$

Volume of HCP= $6.\frac{a^2\sqrt{3}}{4}$. $C = 6.\frac{a^2\sqrt{3}}{4}$. 1. 633a

APF= $6*\frac{4\pi r^3}{3}/(\frac{\sqrt{3}}{4}*6*1.633*a3)$

APF =0.74

Hari Prasad

Empilhamento das camadas

Cubic closest packed structure

Hexagonal closest packed structure

Empilhamento das camadas

A) a layer of close-packed spheres (note hexagonal arrangement)

C) Adding a third layer directly over the first/bottom layer (ABAB...) hcp

B) Addition of a second layer, sitting in the depressions between the lower layer, as close together as they can get

D) Adding a third layer over the octahedral sites (ABCABC...) ccp or fcc (face-centred cubic)

Ciência dos Materiais A Aula T1 31

1s close-packed layer

1s close-packed layer

side view

2nd close-packed layer

2nd close-packed layer

Estruturas compactas

(estruturas de máxima compacidade)

Estruturas cristalinas de metais (25°C)

Metal	Crystal Structure	Atomic Radius (nm)
Aluminum	FCC	0.1431
Cadmium	НСР	0.1490
Chromium	BCC	0.1249
Cobalt	НСР	0.1253
Copper	FCC	0.1278
Gold	FCC	0.1442
Iron (Alpha)	BCC	0.1241
Lead	FCC	0.1750
Magnesium	HCP	0.1599
Molybdenum	BCC	0.1363
Nickel	FCC	0.1246
Platinum	FCC	0.1387
Silver	FCC	0.1445
Tantalum	BCC	0.1430
Titanium (Alpha)	HCP	0.1445
Tungsten	BCC	0.1371
Zinc	HCP	0.1332

https://www.nde-ed.org/EducationResources/CommunityCollege/Materials/Structure

