Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît le langage universel.
- **b** A est tel que tous ses états sont accepteurs.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- d A reconnaît un langage complet.
- [e] Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b)

(b) KO (c) KO (d) OK

FIGURE 1 – Comment marquer une case.

Question 2 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- © La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- [e] Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- **b** Cette affirmation est fausse.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L reconnaît un langage déterministe.
- $\boxed{\mathbf{b}}$ L a tous ses états accepteurs.
- C L'exécution de L est définie pour chaque mot de Σ^* .
- d L est le langage universel.

- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \blacksquare On peut utiliser le lemme de l'itération sur L.
- \boxed{b} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- f Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a $|L| < |L_1|$.
- b L est un langage irrégulier.
- \blacksquare L contient le langage vide.
- \blacksquare L est un langage régulier.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- 🖺 L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ε-transitions, après avoir appliqué possiblement l'algorithme de suppression des ε-transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Aucun des automates n'est équivalent.
- Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- L'automate représenté dans la Figure 3d est équivalent.
- d L'automate représenté dans la Figure 3e est équivalent.
- e Il est absurde de parler d'équivalence entre automates.
- [f] L'automate représenté dans la Figure 3b est équivalent.
- El Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- h L'automate représenté dans la Figure 3c est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2b.
- $\boxed{\mathbf{b}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- C L'automate résultant est représenté dans la Figure 2e.
- d L'automate résultant est représenté dans la Figure 2c.
- El Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- L'automate résultant est représenté dans la Figure 2d.
- \square Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- $\boxed{\mathbf{h}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- Celui de la Figure 4e correspond.
- **b** Celui de la Figure 4c correspond.
- © Celui de la Figure 4b correspond.
- d Celui de la Figure 4d correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- d Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- f Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [1] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5b correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7a correspond à la minimisation de A.
- \square Figure 7b correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7d correspond à la minimisation de A.
- [f] Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- b L'automate de départ n'était pas minimal.
- $\boxed{\mathbb{C}}$ Il n'est pas nécessaire de calculer \equiv_3 .
- d L'automate de départ était minimal.
- L'exécution de l'algorithme n'est pas finie.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- b L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- e L'exécution de l'algorithme n'est pas finie.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate résultant de la minimisation aura le même nombre d'états.
- e L'exécution de l'algorithme n'est pas finie.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons L_2 .

- a La cim de L_2 est 3. b La cim de L_2 est 1. c 1 est une ci pour L_2 .

 La cim de L_2 est 2. 10 est une ci pour L_2 . f La cim de L_2 est 0.

 Aucune des ci données n'est correcte. h Toutes les ci données sont correctes.

 Il manque des données dans l'énoncé pour déterminer la cim de L_2 .
- Question 20 \clubsuit (1 points) Nous considérons le langage L_3 .
- - iii ii manque des donnees dans i chonce pour determiner la
- Question 21 (0.5 points) Donner un mot dans L_1 .
- Question 22 (3 points) Démontrer que L_1 est non régulier.
- Question 23 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4			1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34		a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4		b	24	24	24	24	24	4	4
c		4	24	34	234	4	4		c		4	4	34	234	34	4
				(b)			(c)									
	1*	14*	24*	134*	234*	34*	4			1*	14*	24*	134*	234*	34*	4
a	14	134	234	134	234	34	34		a	14	134	234	14	234	34	34
b	0.4	0.4	0.4	0.4	0.4	1	1	i	b	24	24	234	24	24	1	4
	24	24	24	24	24	4	4		D	24	24	234	24	24	4	4
c	24	4	24	34	234	34	4		С	24	4	4	34	234	4	4

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_3	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$		\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1		1	1
2	2	2	2	2	2	2	2	2	2	2	2	Ī	2	2
3	3	3	3	3	3	3	3	3	3	3	3		3	3
4	4	4	4	4	4	4	4	4	4	4	4		4	4
5	5	5	5	5	5	5	5	5	5	5	5	ſ	5	5
6	6	6	6	6	6	6	6	6	6	6	6		6	6
	(8	a)		(b)			(c)				(d)		

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 INF 302 : Langages et Automates Licence Sciences et Technologies, 2ième année Année académique 2016/2017 Feuille(s) de réponses 0 1 2 3 4 5 6 7 8 9 Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Numéro d'anonymat : 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Question 1: a b def gh Question $2 : \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Question $3: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e Question $4 : \blacksquare \ b \ c \ d$ Question 5: a b c d e f h Question $6: \blacksquare \ b \blacksquare \ \blacksquare \ e \ f \ g \ h$ Question 7: a b
e f g h Question $8: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Question 9: a b def gh Question $10: a b c d e \blacksquare g h$ Question $12: \boxed{a} \blacksquare \blacksquare \boxed{d} \blacksquare \boxed{f} \blacksquare \boxed{h} \boxed{j}$ Question 13: a b c e f g Question $14: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Question $15 : \blacksquare \ b \ c \ d \ e \ f \ g \ h$ Question 16: a b c d ■ f g ■

donner ex f Reservé enseignant Question 21:

Question $17 : \blacksquare \ b \blacksquare \ d \ e \ f \ B \ h$ Question $18: a \blacksquare \blacksquare \blacksquare e f g h$ Question 19: a b c f g h i

INF 302: Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de colorier entièrement les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo noir. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

(0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques $(L = L_1 \setminus L_2)$. Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L est un langage régulier.
- $|L| < |L_1|$.
- L contient le langage vide.
- $\boxed{\mathbf{d}}$ L est un langage irrégulier.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK

Figure 1 – Comment marguer une case.

2:
Question 2 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q) .
\blacksquare La post-condition est la condition Q .
La post-condition doit être impliquée par la condition de chacun des états terminaux.
© La post-condition doit être impliquée par la condition d'un seul état terminal.
d Aucune des affirmations concernant post-condition n'est correcte.
e Toutes les affirmations concernant post-condition sont correctes.
f L'énoncé de la question est absurde.
Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 3 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- $\boxed{\mathbf{a}}$ On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut utiliser le lemme de l'itération sur L.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- $\boxed{\mathrm{e}}$ Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 (0,5 points) Soit A un automate complet sur un alphabet Σ .

a A reconnaît le langage universel.	\fbox{e} Aucune des affirmations concernant A n'es
$\boxed{\mathbf{b}}$ A reconnaît un langage complet.	correcte.

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- $\overline{\mathbf{d}}$ A est tel que tous ses états sont accepteurs.
- [f] Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

a Cette affirmation est fausse.	© L'affirmation est absurde.
Cette affirmation est vraie.	d Il manque des données dans l'énoncé pour
	pouvoir répondre à la question.

Question 6 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\[a \]$ L'exécution de L est définie pour chaque mot de Σ^* .
- b L est le langage universel.
- © L reconnaît un langage déterministe.
- $\boxed{\mathbf{d}}$ L a tous ses états accepteurs.

- $oxed{e}$ Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3b est équivalent.
- D Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- © Il est absurde de parler d'équivalence entre automates.
- L'automate représenté dans la Figure 3d est équivalent.
- El Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- [f] L'automate représenté dans la Figure 3e est équivalent.
- El L'automate représenté dans la Figure 3c est équivalent.
- h Aucun des automates n'est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\mathbf{a}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- $\boxed{\mathbf{b}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- C L'automate résultant est représenté dans la Figure 2b.
- d Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- El II manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- L'automate résultant est représenté dans la Figure 2d.
- <u>El L'automate résultant est représenté dans la Figure 2e.</u>
- h L'automate résultant est représenté dans la Figure 2c.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- © Celui de la Figure 4b correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5b correspond.
- Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- f Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- C L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- e Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- \boxed{b} Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- \boxed{d} Figure 7d correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate de départ était minimal.
- d L'automate résultant de la minimisation aura le même nombre d'états.
- e L'exécution de l'algorithme n'est pas finie.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate résultant de la minimisation aura le même nombre d'états.
- b L'automate de départ n'était pas minimal.
- C L'exécution de l'algorithme n'est pas finie.
- L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 20 (3 points) Démontrer que L_1 est non régulier.

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

- a La cim de L_3 est 3. b La cim de L_3 est 4. c 3 est une ci pour L_3 . La cim de L_3 est 5. 10 est une ci pour L_3 .
- f Aucune des ci données n'est correcte. \Box Toutes les ci données sont correctes. \Box Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 22 \clubsuit (1 points) Nous considérons L_2 .

- - $\overline{}$ Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 23 (0.5 points) Donner un mot dans L_1 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1^	14*	24*	134*	234*	34↑	4		1↑	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)							(c)				
	1 *	1 14	2.4%	40.4%	20.44	0.4*	4		1*	1.4*	0.1*	19.4*	20.44	0.4*	
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	134	$\begin{array}{ c c }\hline 24^* \\ \hline 234 \\ \hline \end{array}$	134*	234*	34	34	a	14	134	234	134"	234*	34	34
a b							\vdash	a b	1						\perp
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

 $Figure \ 3-Des \ automates \ pour \ la \ déterminisation. \ Dans \ la \ représentation \ tabulaire, les \ états \ sont \ en \ colonnes, les \ symboles \ en \ lignes, les \ étoiles \ marquent \ les \ états \ accepteurs.$

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
 (b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)		(b)			(0	c)			(d)		

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9	
0	1	2	3	4	5	6	7	8	9	
0	1	2	3	4	5	6	7	8	9	
0	1	2	3	4	5	6	7	8	9	
0	1	2	3	4	5	6	7	8	9	

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Nun	iéro d'	'anonym	nat:

Question	1	:	b		\mathbf{d}	e	f	\mathbf{g}	h
Question	2	:		$ \mathbf{c} $	d	е	f	g	

Question $3: \mathbb{A} \blacksquare \blacksquare \blacksquare \mathbb{E} \mathbb{E} \mathbb{F} \mathbb{E} \mathbb{h}$ Question $4: \mathbb{A} \mathbb{D} \blacksquare \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{h}$

Question 5: a \blacksquare c d

Question $6: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e

Question 7: a b c d e f \blacksquare h

Question $8: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 9 : a b c \blacksquare e f g h

Question 10: a b c d e s s h

Question $11: a \blacksquare c d e f g h$

Question 14: \boxed{a} \boxed{d} \boxed{e} \boxed{f}

 Question 15 :
 a
 ■
 c
 d
 e
 f
 g
 h

 Question 16 :
 a
 b
 ■
 d
 e
 f
 g
 h

 Question 17 :
 ■
 c
 d
 e
 f
 g
 h

 Question 18 :
 ■
 b
 c
 ■
 f
 g
 h

Question 19:

donner c ex **f e** Reservé enseignant

.....

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 & (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

(0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate. Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions. Cette méthode peut être appliquée sur les automates déterministes. Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions. Toutes les affirmations concernant la méthode sont correctes. e L'énoncé de la question est absurde. [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question. Question 3 (0.5 points) Soit L un langage complet sur un alphabet Σ . a L'exécution de L est définie pour chaque mot e Aucune des affirmations concernant L n'est correcte. $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont corb L a tous ses états accepteurs. rectes. L'énoncé de la question est absurde. d L reconnaît un langage déterministe. h Il manque des données dans l'énoncé pour pouvoir répondre à la question. Question 4 (0,5 points) Soit A un automate complet sur un alphabet Σ . A est tel que son exécution est définie pour e Aucune des affirmations concernant A n'est chaque mot de Σ^* . correcte. f Toutes les affirmations concernant A sont corb A reconnaît le langage universel. rectes. C A est tel que tous ses états sont accepteurs. g L'énoncé de la question est absurde. d A reconnaît un langage complet. h Il manque des données dans l'énoncé pour pouvoir répondre à la question. Question 5 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération". a Cette affirmation est fausse. C L'affirmation est absurde. d Il manque des données dans l'énoncé pour Cette affirmation est vraie. pouvoir répondre à la question. (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et Question 6 ♣ $L \neq L'$. \boxed{a} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$. \blacksquare On peut utiliser le lemme de l'itération sur L. On peut trouver un automate d'états fini non déterministe qui reconnaît L. On peut trouver un automate d'états fini déterministe qui reconnaît L. e Aucune des affirmations concernant L n'est correcte. f Toutes les affirmations concernant L sont correctes. El L'énoncé de la question est absurde.

h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L contient le langage vide.
- $\boxed{\mathbf{b}}$ L est un langage irrégulier.
- \blacksquare L est un langage régulier.
- d $|L| < |L_1|$.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- a La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- \blacksquare La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3e est équivalent.
- b Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- C L'automate représenté dans la Figure 3b est équivalent.
- d Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- e L'automate représenté dans la Figure 3c est équivalent.
- f Il est absurde de parler d'équivalence entre automates.
- [8] Aucun des automates n'est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- b L'automate résultant est représenté dans la Figure 2b.
- \boxed{c} Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- d L'automate résultant est représenté dans la Figure 2c.
- e Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- f Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- El L'automate résultant est représenté dans la Figure 2e.
- L'automate résultant est représenté dans la Figure 2d.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- **b** Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5b correspond.
- C Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- El II manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- d Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [j] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7b correspond à la minimisation de A.
- \boxed{b} Figure 7a correspond à la minimisation de A.
- \square Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- f Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- b L'automate de départ n'était pas minimal.
- \square Il n'est pas nécessaire de calculer \equiv_3 .
- d L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- L'automate de départ n'était pas minimal.
- © L'exécution de l'algorithme n'est pas finie.
- d L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- L'automate résultant de la minimisation aura le même nombre d'états.
- C L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons le langage L_3 .

- Question 20 (3 points) Démontrer que L_1 est non régulier.
- Question 21 (0.5 points) Donner un mot dans L_1 .
- **Question 22** (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 23 \clubsuit (1 points) Nous considérons L_2 .

- - \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14* 134	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b	I							a b	1	<u> </u>					\vdash
-	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

culer une expression régulière.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'a	anonymat:

Question $1: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ \blacksquare

Question $2 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $3: [a] [b] [c] [d] [e] [f] \blacksquare [h]$

Question 4:

b c d e f g h

Question $5: \boxed{a} \boxed{c} \boxed{d}$

Question $6: \begin{tabular}{lll} \begin{tabular}{$

Question $7 : \blacksquare \ b \blacksquare \ d \ e \ f \ g \ h$

Question 8: a
def

Question 9: [a] [b] [c] [d] [e] [f] [g]

Question $10: a b c d e f g \blacksquare$

Question 11: a b d e f g h

Question 12: a b c e f g

Question $13: \blacksquare \Box \Box \Box \Box \Box \Box$

Question 14:
© de E hij

Question 15: a b c \blacksquare e f g h

Question 16: a b c d ■ f g ■

Question $17: a \blacksquare c d \blacksquare f g h$

Question $18: \boxed{a} \boxed{c} \boxed{d} \boxed{f} \boxed{g} \boxed{h}$

Question 19:

b

d
e
f

g
h

Question 20:	f P P	Reservé enseignant
en utilisant le lemme de l'itération		
Question 21:	donner ex f	Reservé enseignant
Question 21:	donner ex f	Reservé enseignant
Question 21:	donner ex f	Reservé enseignant
		Reservé enseignant Reservé enseignant
Question 22:		
Question 22:		
Question 22 : Question 23 : ■ b c ■ e f g h i		Reservé enseignant
Question 22 : Question 23 : ■ b c ■ e f g h i		Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\ \ \,$ L'exécution de L est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{b}}$ L est le langage universel.
- $\underline{\mathbf{d}}$ L reconnaît un langage déterministe.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OI

FIGURE 1 – Comment marquer une case.

4:
 Question 2 ♣ (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate. Cette méthode peut être appliquée sur les automates non-déterministes et sans \(\epsilon\)-transitions. Cette méthode peut être appliquée sur les automates non-déterministes et avec \(\epsilon\)-transitions, après avoir appliqué possiblement l'algorithme de suppression des \(\epsilon\)-transitions. Cette méthode peut être appliquée sur les automates déterministes.
 Toutes les affirmations concernant la méthode sont correctes. L'énoncé de la question est absurde. Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Soit A un automate complet sur un alphabet Σ . Question 3

 a A reconnaît le langage universel. b A est tel que tous ses états sont accepteurs. ■ A est tel que son exécution est définie pour chaque mot de Σ*. d A reconnaît un langage complet. 	 E Aucune des affirmations concernant A n'est correcte. f Toutes les affirmations concernant A sont correctes. E L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question. 						
$L \neq L'$.	gulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et						
a On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.							
On peut trouver un automate d'états fini non déterministe qui reconnaît L.							
On peut trouver un automate d'états fini déterm	iniste qui reconnait L.						
On peut utiliser le lemme de l'itération sur L .							
f Toutes les affirmations concernant L sont correct	ces.						
g L'énoncé de la question est absurde.							
h Il manque des données dans l'énoncé pour pouvo	ir répondre à la question.						
Question 5 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : $ L $ dénote le cardinal du langage L .							
 L est un langage régulier. □ L < L₁ . □ L est un langage irrégulier. □ L contient le langage vide. 	 Toutes les affirmations concernant L sont correctes. L'énoncé de la question est absurde. Il manque des données dans l'énoncé pour pouvoir répondre à la question. 						

Question 6 $(0,5~\mathrm{points})$ Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

 \fbox{e} Aucune des affirmations concernant L n'est

correcte.

Cette affirmation est vraie.	© L'affirmation est absurde.
b Cette affirmation est fausse.	d Il manque des données dans l'énoncé pour
	pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- C La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- © Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Il est absurde de parler d'équivalence entre automates.
- b Aucun des automates n'est équivalent.
- C L'automate représenté dans la Figure 3e est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- e L'automate représenté dans la Figure 3c est équivalent.
- [f] Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- El Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- h L'automate représenté dans la Figure 3b est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- $\boxed{\mathbf{b}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- C L'automate résultant est représenté dans la Figure 2e.
- d L'automate résultant est représenté dans la Figure 2b.
- e Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- $\boxed{\mathbf{f}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- El L'automate résultant est représenté dans la Figure 2c.
- L'automate résultant est représenté dans la Figure 2d.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- d Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- 🗓 Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- El Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- **b** Celui de la Figure 4c correspond.
- © Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

, , , , , , , , , , , , , , , , , , , ,						
	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7d correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7b correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- [f] Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- d L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- L'exécution de l'algorithme n'est pas finie.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- d L'automate de départ était minimal.
- e Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate de départ était minimal.
- d L'exécution de l'algorithme n'est pas finie.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (3 points) Démontrer que L_1 est non régulier.

Question 20 \clubsuit (1 points) Nous considérons L_2 .

- a 1 est une ci pour L_2 . b La cim de L_2 est 1. c La cim de L_2 est 3.
- \blacksquare La cim de L_2 est 0. \blacksquare La cim de L_2 est 2. \blacksquare 10 est une ci pour L_2 .
- B Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. i Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

- a 3 est une ci pour L_3 . \blacksquare 10 est une ci pour L_3 . \blacksquare La cim de L_3 est 3.
- La cim de L_3 est 5. E La cim de L_3 est 4. F Aucune des ci données n'est correcte. E Toutes les ci données sont correctes.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b	I						\perp	a b	1	<u> </u>					<u> </u>
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9

- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Nun	iéro d'	'anonym	nat:

Question $1: a b c d e f \blacksquare h$

Question $2: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 3: a b \blacksquare d e f $\mathbb B$ h

Question 4 : a \blacksquare \blacksquare \blacksquare e f g h

Question $6 : \blacksquare \ b \ c \ d$

Question $7: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question $8: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 9 : a b c \blacksquare e f g h

Question $10: a b c d e f g \blacksquare$

Question $11: \[a \] \blacksquare \[e \] \[d \] \blacksquare \[e \] \[f \] \[i \] \[j \]$

Question $12: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question 13: a b c e f g

Question 14 : a b c ■ e f g h

Question 15: \blacksquare b c d e f \blacksquare h

Question 16:

defines

Question 17: a
c d e f g

Question 18:
© defe

Question 19:	f 🏻 🗖 🖪 Reservé enseignant
en utilisant le lemme de l'itération	
Question 20: a b c d ■ ■ g h i	
Question 21: a \blacksquare c \blacksquare e f \blacksquare h	
Question 22:	donner ex [f] 🖪 Reservé enseignant
Question 23:	donner c ex f Reservé enseignant
Question 24:	Reservé enseignant

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraîne la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ L est le langage universel.
- $\boxed{\mathbf{b}}$ L a tous ses états accepteurs.
- C L reconnaît un langage déterministe.
- d L'exécution de L est définie pour chaque mot de Σ^* .
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OI

Figure 1 – Comment marquer une case.

répondre à la question.
ation "Tous les langages réguliers satisfont le
L'affirmation est absurde. Il manque des données dans l'énoncé pour pouvoir répondre à la question.
a méthode permettant de passer d'un automate quations aux états à l'automate. Les non-déterministes et sans ϵ -transitions. Les non-déterministes et avec ϵ -transitions, après des sion des ϵ -transitions. Les déterministes. Correctes.
n par la différence entre deux langages réguliers le cardinal du langage L .
 Toutes les affirmations concernant L sont correctes. L'énoncé de la question est absurde. Il manque des données dans l'énoncé pour pouvoir répondre à la question.
a méthode permettant de passer d'un automate quations aux chemins à l'automate. es non-déterministes et sans ϵ -transitions. es non-déterministes et avec ϵ -transitions. es déterministes. correctes.

 $({\bf 0.5~points})$ Soit L un langage régulier quel conque. Rappel : $L\subset L'$ ssi $L\subseteq L'$ et

Question 2 🌲

 \blacksquare On peut utiliser le lemme de l'itération sur L.

Aucune des affirmations concernant L n'est correcte.
Toutes les affirmations concernant L sont correctes.

■ On peut trouver un automate d'états fini non déterministe qui reconnaît L. © On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$. ■ On peut trouver un automate d'états fini déterministe qui reconnaît L.

 $L\neq L'.$

Question 7 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît un langage complet.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- d A reconnaît le langage universel.
- f Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\mathbf{a}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- D Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- C L'automate résultant est représenté dans la Figure 2c.
- d Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- L'automate résultant est représenté dans la Figure 2d.
- $\boxed{\mathbf{f}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- El L'automate résultant est représenté dans la Figure 2e.
- h L'automate résultant est représenté dans la Figure 2b.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3e est équivalent.
- Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- C Aucun des automates n'est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- El II manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- [f] L'automate représenté dans la Figure 3c est équivalent.
- El L'automate représenté dans la Figure 3b est équivalent.
- h Il est absurde de parler d'équivalence entre automates.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- b L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- $\boxed{\mathbf{d}}$ Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- f Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \square Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- 🗓 Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5b correspond.
- Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- f Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4b correspond.
- **b** Celui de la Figure 4c correspond.
- © Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7d correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- [f] Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- L'exécution de l'algorithme n'est pas finie.
- © L'automate résultant de la minimisation aura le même nombre d'états.
- \boxed{d} Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ était minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate de départ n'était pas minimal.
- d L'exécution de l'algorithme n'est pas finie.
- L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- b L'automate de départ était minimal.
- L'automate de départ n'était pas minimal.
- d L'exécution de l'algorithme n'est pas finie.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons L_2 .

- Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. h Il manque des données dans l'énoncé pour déterminer la cim de L_2 .
- Question 20 (0.5 points) Donner un mot dans L_1 .

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

- a 3 est une ci pour L_3 .
 I 10 est une ci pour L_3 .
 C La cim de L_3 est 4.

 I La cim de L_3 est 3.
 I La cim de L_3 est 5.
 I Aucune des ci données n'est correcte.

 I Toutes les ci données sont correctes.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 22 (3 points) Démontrer que L_1 est non régulier.

Question 23 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b	1						=	a b	1						\vdash
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9	Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.
0 1 2 3 4 5 6 7 8 9	Numéro d'anonymat :
0 1 2 3 4 5 6 7 8 9	

Question	1	:	a	b	\mathbf{c}	\mathbf{d}	e	f		h
Question	2	:			\mathbf{c}		e	f	g	h
Question	3	:		b	c	d				
Question	4	:					e	f		
Question	5	:	a			d	e	f	g	h
Question	6	:					e	f		
Question	7	:	a		\mathbf{c}	\mathbf{d}	e	f	g	h
Question	8	:		b		\mathbf{d}	e	f	g	

Question 9: a b c d ■ f g h Question $10: a b c \blacksquare e f g h$

Question $11: \blacksquare \ b \ \blacksquare \ d \ e \ f$

Question $12: \blacksquare \blacksquare \blacksquare \stackrel{\square}{\blacksquare} \stackrel{\square}{\blacksquare} \stackrel{\square}{\blacksquare} \stackrel{\square}{\blacksquare} \stackrel{\square}{\blacksquare} \stackrel{\square}{\blacksquare} \stackrel{\square}{\blacksquare} \stackrel{\square}{\blacksquare} \stackrel{\square}{\blacksquare}$

Question 13: a b c le f g Question 14: a b c e f g h

Question 15: a b c \blacksquare e f g h

Question 16: \boxed{a} \boxed{c} \boxed{d} \boxed{e} \boxed{f} \boxed{g} Question 17 : \blacksquare \blacksquare \Box \Box \Box \blacksquare \Box \Box

Question 18:

b

d
e
f

g
h

Question 19: ■ b c d e ■ g h i

donner ex **f** Reservé enseignant Question 20:

Question $21: a \blacksquare c d \blacksquare f g h$

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- b A reconnaît le langage universel.
- C A reconnaît un langage complet.
- \boxed{d} A est tel que tous ses états sont accepteurs.
- \fbox{e} Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OI

FIGURE 1 – Comment marquer une case.

Question 2 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- © La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- © On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut utiliser le lemme de l'itération sur L.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L est un langage régulier.
- $\boxed{\mathbf{b}}$ L est un langage irrégulier.
- L contient le langage vide.
- d $|L| < |L_1|$.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L a tous ses états accepteurs.
- \Box L'exécution de L est définie pour chaque mot de Σ^* .
- \square L est le langage universel.
- d L reconnaît un langage déterministe.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- **b** Cette affirmation est fausse.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\mathbf{a}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- b L'automate résultant est représenté dans la Figure 2b.
- C L'automate résultant est représenté dans la Figure 2c.
- d Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- $\boxed{\text{e}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- f Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- [8] L'automate résultant est représenté dans la Figure 2e.
- L'automate résultant est représenté dans la Figure 2d.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Aucun des automates n'est équivalent.
- b L'automate représenté dans la Figure 3c est équivalent.
- C L'automate représenté dans la Figure 3e est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- El Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- f Il est absurde de parler d'équivalence entre automates.
- El Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- h L'automate représenté dans la Figure 3b est équivalent.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \Box Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [J] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5c correspond.
- © Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- b Celui de la Figure 4c correspond.
- Celui de la Figure 4e correspond.
- d Celui de la Figure 4b correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- C L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- e L'exécution de l'algorithme n'est pas finie.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate résultant de la minimisation aura le même nombre d'états.
- C L'exécution de l'algorithme n'est pas finie.
- L'automate de départ était minimal.
- e L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- Figure 7c correspond à la minimisation de A.
- \boxed{b} Figure 7d correspond à la minimisation de A.
- \square Figure 7b correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- C L'automate de départ n'était pas minimal.
- \boxed{d} Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ était minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 (3 points) Démontrer que L_1 est non régulier.

Question 21 \clubsuit (1 points) Nous considérons L_2 .

- Question 22 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 23 \clubsuit (1 points) Nous considérons le langage L_3 .

- aLa cim de L_3 est 3.b3 est une ci pour L_3 .cLa cim de L_3 est 4. \blacksquare 10 est une ci pour L_3 . \blacksquare La cim de L_3 est 5.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b	1						=	a b	1						\vdash
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9	C
0 1 2 3 4 5 6 7 8 9	$\overline{\mathbf{et}}$
0 1 2 3 4 5 6 7 8 9	
0 1 2 3 4 5 6 7 8 9	

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonyr	nat:

Question $1: \blacksquare$ b c d e f g h

Question $2: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $5 : \blacksquare \ b \ \blacksquare \ d \ e \ f \ g \ h$

Question $6: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 7: a b c d e f h

Question 8:

b
c
d

Question 9: a b c d e f g

Question $10: a b c \blacksquare e f g h$

Question $11: \blacksquare b \ \square \blacksquare \blacksquare \blacksquare \blacksquare \Box \Box$

Question 12: a b c e f g

Question 13: a def

Question 14: a b \blacksquare d e f g h

Question 15: $a \blacksquare c \blacksquare e f g h$

Question 16: \blacksquare \blacksquare \boxdot \blacksquare \boxdot \blacksquare \blacksquare \blacksquare

Question 17: b c d e f g h

Question 18: a
cdefg

Question 19:

donner ex **f n** Reservé enseignant

.....

INF 302: Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de colorier entièrement les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo noir. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

(0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques $(L = L_1 \setminus L_2)$. Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L est un langage régulier.
- $|L| < |L_1|$.
- L contient le langage vide.
- $\boxed{\mathbf{d}}$ L est un langage irrégulier.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK

Figure 1 – Comment marguer une case.

Question 2 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- a La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- © Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \boxed{a} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut utiliser le lemme de l'itération sur L.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ε-transitions, après avoir appliqué possiblement l'algorithme de suppression des ε-transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît un langage complet.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- C A reconnaît le langage universel.

- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\[a \]$ L'exécution de L est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{b}}$ L est le langage universel.
- $\boxed{\mathbf{d}}$ L reconnaît un langage déterministe.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3e est équivalent.
- b Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- C Aucun des automates n'est équivalent.
- d L'automate représenté dans la Figure 3c est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- I L'automate représenté dans la Figure 3b est équivalent.
- Il est absurde de parler d'équivalence entre automates.
- h Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- \boxed{b} Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- \boxed{c} Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- d Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- e L'automate résultant est représenté dans la Figure 2b.
- [f] L'automate résultant est représenté dans la Figure 2c.
- L'automate résultant est représenté dans la Figure 2d.
- h L'automate résultant est représenté dans la Figure 2e.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- \Box L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5a correspond.
- Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4b correspond.
- b Celui de la Figure 4c correspond.
- © Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \Box Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate résultant de la minimisation aura le même nombre d'états.
- b L'exécution de l'algorithme n'est pas finie.
- C L'automate de départ n'était pas minimal.
- L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- \boxed{d} Figure 7b correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ n'était pas minimal.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- d L'automate de départ était minimal.
- e L'exécution de l'algorithme n'est pas finie.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- L'exécution de l'algorithme n'est pas finie.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- d L'automate de départ était minimal.
- e Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 \clubsuit (1 points) Nous considérons le langage L_3 .

- aLa cim de L_3 est 3.bLa cim de L_3 est 4.c3 est une ci pour L_3 .■ La cim de L_3 est 5.■ 10 est une ci pour L_3 .
- f Aucune des ci données n'est correcte.

 g Toutes les ci données sont correctes.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 21 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 22 (3 points) Démontrer que L_1 est non régulier.

Question 23 \clubsuit (1 points) Nous considérons L_2 .

- d La cim de L_2 est 0. e La cim de L_2 est 3. La cim de L_2 est 2. E Aucune des ci données n'est correcte. h Toutes les ci données sont correctes.
 - $\overline{1}$ Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b							\vdash	a b	1	<u> </u>					\vdash
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

donner c ex **f n** Reservé enseignant

Examen de seconde session du 27/06/2017 INF 302 : Langages et Automates Licence Sciences et Technologies, 2ième année Année académique 2016/2017 Feuille(s) de réponses 0 1 2 3 4 5 6 7 8 9 Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Numéro d'anonymat : 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Question $1 : \blacksquare \ b \ \blacksquare \ d \ e \ f \ B \ h$ Question $2 : [a] \blacksquare \blacksquare [d] [e] [f]$ Question $3: \mathbb{A} \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Question $5: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e Question $6: \boxed{a} \blacksquare \boxed{c} \boxed{d}$ Question 7: a C d e f g h Question $8: \begin{tabular}{lll} \hline a \\ \hline b \\ \hline c \\ \hline d \\ \hline e \\ \hline f \\ \hline \hline h \\ \hline \end{array}$ Question 9: a b c d f g h Question $10: a b c d e f \blacksquare h$ Question $11 : \blacksquare \ b \ \blacksquare \ d \ e \ f$ Question 12: a b c e f g Question 13: a b c e f g h Question 14: \blacksquare \Box \Box \Box \blacksquare \blacksquare \blacksquare \Box \Box \Box \Box Question 15: \blacksquare \Box \Box \Box \blacksquare \blacksquare \Box \Box \Box Question 16: a Cdefgh Question $17: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Question $18: \boxed{a} \boxed{c} \boxed{d} \boxed{e} \boxed{f} \boxed{g} \boxed{\blacksquare}$ Question 19: donner ex **f n** Reservé enseignant

Question 20: a b c **I** f g h

Question 21:

Question 22:	f 🗹 🖸 Reservé enseignant
en utilisant le lemme de l'itération	
Question 23: ■ b c d e ■ g h i	
Question 24:	Reservé enseignant

INF 302: Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de colorier entièrement les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo noir. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

(0.5 points) Soit L un langage régulier quelconque. Rappel: $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \boxed{a} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- On peut utiliser le lemme de l'itération sur L.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK

Figure 1 – Comment marquer une case.

Question 2 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ L est le langage universel.
- $\boxed{\mathbf{b}}$ L a tous ses états accepteurs.
- $\[\underline{\mathbf{d}} \]$ L reconnaît un langage déterministe.
- \blacksquare Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question $5 \clubsuit (0,5 \text{ points})$ Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un $syst\`eme\ d'\acute{e}quations\ aux\ \acute{e}tats$ à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- a La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- \blacksquare La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- I L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L est un langage régulier.
- \blacksquare L contient le langage vide.
- d $|L| < |L_1|$.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ A est tel que tous ses états sont accepteurs.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- d A reconnaît le langage universel.
- e Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes
- [8] L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Aucun des automates n'est équivalent.
- b L'automate représenté dans la Figure 3e est équivalent.
- C Il est absurde de parler d'équivalence entre automates.
- d Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- L'automate représenté dans la Figure 3d est équivalent.
- f L'automate représenté dans la Figure 3c est équivalent.
- Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- h L'automate représenté dans la Figure 3b est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- \boxed{a} Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- b L'automate résultant est représenté dans la Figure 2e.
- C L'automate résultant est représenté dans la Figure 2b.
- d Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- e L'automate résultant est représenté dans la Figure 2c.
- L'automate résultant est représenté dans la Figure 2d.
- $\boxed{\mathbb{S}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- $\boxed{\mathbf{h}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- b Celui de la Figure 4c correspond.
- © Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \Box Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- d Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- 🗓 Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5c correspond.
- © Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- C L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- El L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ était minimal.
- d L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- \boxed{b} Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\overline{\mathbf{d}}$ Figure 7b correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 18 ♣ (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

a Il n'est pas nécessaire de calculer =3.
b L'automate de départ n'était pas minimal.
c L'automate de départ était minimal.
d L'automate résultant de la minimisation aura le même nombre d'états.

L'exécution de l'algorithme n'est pas finie.

[f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.

Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.

■ Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

— le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$

— le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et

— le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (3 points) Démontrer que L_1 est non régulier.

Question 20 (0.5 points) Donner un mot dans L_1 .

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

	La cim de L_3 est 5.	10 est une ci pour L_3 .	\mathbf{c}	La cim de L_3 est 3.
d	3 est une ci pour L_3 .	La cim de L_3 est 4.	Aucune o	des ci données n'est correcte.
	g	Toutes les ci données sont cor	rectes.	
	h Il manque des e	données dans l'énoncé pour dé	terminer l	a cim de L_3 .

Question 22 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 23 \clubsuit (1 points) Nous considérons L_2 .

	10 est une ci	nour I.	b	La cim	do I.	oet 3	c	La cim de	I = ost 0
_			_		_				-
$^{\mathrm{d}}$	1 est une ci p	our L_2 .	e	La cim	$de L_2$	est 1.		La cim de	L_2 est 2.
\mathbf{g}	Aucune des ci	données n'est	corr	ecte.	h	Toutes ?	les ci do	onnées sont	correctes.
	i Il mar	nque des donn	ées d	lans l'én	oncé p	our détei	miner l	la cim de L	2.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14* 134	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b	I							a b	1	<u> </u>					\vdash
-	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

culer une expression régulière.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Nume	ero d'anonymat:	

Question 1 : a \blacksquare \blacksquare \blacksquare e f \blacksquare h

Question 2: a b c d e f h

Question 3: a c d

Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f

Question $5: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e

Question $6: \mathbb{A} \blacksquare \blacksquare \mathbb{G}$ \mathbb{G}

Question $7: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question 8: a
© d e f g h

Question 9: a b c d f f h

Question $10: a b c d e \blacksquare g h$

Question 11: a de f

Question 12: a b c e f g h

Question 14: a b c e f g

Question 15: $a \blacksquare c \blacksquare e f g h$

Question 16: $\boxed{a} \blacksquare \boxed{d} \blacksquare \boxed{f} \boxed{g} \boxed{h}$

Question 17: a b \blacksquare d e f g h

Question 19:	f p P Reservé enseignant
en utilisant le lemme de l'itération	
Question 20:	donner ex f Reservé enseignant
Question 20:	donner ex f Reservé enseignant
	donner ex f Reservé enseignant
Question 20 : Question 21 : ■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	donner ex $\boxed{\mathbf{f}}$ $\boxed{\mathbf{g}}$ Reservé enseignant donner c ex $\boxed{\mathbf{f}}$ $\boxed{\mathbf{g}}$ Reservé enseignant
Question 21 : ■ C d e f S h	
Question 21 : ■ C d e f S h	
Question 21 : ■ C d e f S h	
Question 21 : ■ ■ C d e f g h Question 22 :	
Question 21 : ■ ■ C d e f g h Question 22 : Question 23 : ■ b C d e ■ g h i	donner c ex f Reservé enseignant
Question 21 : ■ ■ C d e f g h Question 22 : Question 23 : ■ b C d e ■ g h i	donner c ex f Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) O

FIGURE 1 – Comment marquer une case.

Question 2 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ A reconnaît un langage complet.
- b A est tel que tous ses états sont accepteurs.
- C A reconnaît le langage universel.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 & (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut utiliser le lemme de l'itération sur L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- © On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- **b** La post-condition doit être impliquée par la condition d'un seul état terminal.
- \blacksquare La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- [8] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L contient le langage vide.
- $|L| < |L_1|$.
- \blacksquare L est un langage régulier.
- $\boxed{\mathbf{d}}$ L est un langage irrégulier.
- $oxed{\mathbb{E}}$ Aucune des affirmations concernant L n'est correcte
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- 🗵 L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\[a \]$ L'exécution de L est définie pour chaque mot de Σ^* .
- b L a tous ses états accepteurs.
- $\boxed{\mathbf{d}}$ L reconnaît un langage déterministe.
- \blacksquare Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- L'automate représenté dans la Figure 3d est équivalent.
- D Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- C Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- d L'automate représenté dans la Figure 3e est équivalent.
- e Il est absurde de parler d'équivalence entre automates.
- f Aucun des automates n'est équivalent.
- 🗵 L'automate représenté dans la Figure 3c est équivalent.
- h L'automate représenté dans la Figure 3b est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2b.
- b Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- C L'automate résultant est représenté dans la Figure 2c.
- L'automate résultant est représenté dans la Figure 2d.
- El Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- f L'automate résultant est représenté dans la Figure 2e.
- $\[\[\] \]$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- h Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- f Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \square Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [J] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- **b** Celui de la Figure 4c correspond.
- © Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

				_		
	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- \overline{a} Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- \Box Figure 7a correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7b correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- f Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- b Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate de départ était minimal.
- d L'automate de départ n'était pas minimal.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- d L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

(0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- d L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ était minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons le langage L_3 .

- a 3 est une ci pour L_3 . La cim de L_3 est 5. \blacksquare 10 est une ci pour L_3 . \blacksquare La cim de L_3 est 4. \blacksquare Aucune des ci données n'est correcte. d La cim de L_3 est 3. [g] Toutes les ci données sont correctes. h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .
- Question 20 (0.5 points) Donner un mot dans L_1 .
- Question 21 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.
- Question 22 (3 points) Démontrer que L_1 est non régulier.

Question 23 ♣ (1 points) Nous considérons L_2 .

- \boxed{b} La cim de L_2 est 3. $\boxed{\mathbb{C}}$ 1 est une ci pour L_2 . a La cim de L_2 est 0.
- La cim de L_2 est 2. $\overline{\mathbb{d}}$ La cim de L_2 est 1. 10 est une ci pour L_2 .
- Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b							\perp	a b	1						\vdash
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_{1} = \epsilon X_{2} \\ X_{2} = bX_{3} + aX_{4} + bX_{3} \\ X_{3} = bX_{2} \\ X_{4} = \epsilon X_{5} + a \\ X_{5} = a + \epsilon \end{cases} \begin{cases} X_{1} = \epsilon \\ X_{2} = X_{1}\epsilon + X_{3}\epsilon + bX_{3} + aX_{4} \\ X_{3} = X_{2} \\ X_{4} = X_{5}\epsilon \\ X_{5} = a + \epsilon \end{cases} \begin{cases} X_{1} = \epsilon X_{2} \\ X_{2} = bX_{3} + aX_{4} \\ X_{3} = X_{2} \\ X_{4} = X_{5} \\ X_{5} = a \end{cases}$$
(a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(a	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

donner c ex **f e** Reservé enseignant

Examen de seconde session du 27/06/2017 INF 302 : Langages et Automates Licence Sciences et Technologies, 2ième année Année académique 2016/2017 Feuille(s) de réponses 0 1 2 3 4 5 6 7 8 9 Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Numéro d'anonymat : 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Question $1: a \blacksquare c d$ Question 2: a b c e f g h Question $3: \blacksquare \blacksquare \bigcirc \blacksquare \boxdot \boxdot \boxdot \blacksquare$ Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Question $5: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e Question $6 : \blacksquare \ b \blacksquare \ d \ e \ f \ g$ Question $7: \blacksquare b \blacksquare d e f g h$ Question $8: \begin{tabular}{lll} \hline a \\ \hline b \\ \hline c \\ \hline d \\ \hline e \\ \hline f \\ \hline \hline h \\ \hline \end{array}$ Question 9: b c d e f g h Question $10: a b c \blacksquare e f g h$ Question $11 : \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Question 12: a b c \blacksquare e f \blacksquare Question 14: a b c e f g h Question 15: a
© d e f g h Question 16: bcdefg Question $17: \blacksquare \blacksquare \blacksquare d e f g h$ Question 18:

b

d
e
f

g
h Question 19: a
deff Question 20: donner ex **f n** Reservé enseignant

Question 21:

Question 22:	f P Reservé enseignant
en utilisant le lemme de l'itération	
Question 23: a b c d g g h i	
Question 24:	Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- b A reconnaît un langage complet.
- C A reconnaît le langage universel.
- \boxed{d} A est tel que tous ses états sont accepteurs.
- e Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OI

FIGURE 1 – Comment marquer une case.

 Question 2 ♣ (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q). ■ La post-condition est la condition Q. ■ La post-condition doit être impliquée par la condition de chacun des états terminaux. © La post-condition doit être impliquée par la condition d'un seul état terminal. d Aucune des affirmations concernant post-condition n'est correcte. © Toutes les affirmations concernant post-condition sont correctes. f L'énoncé de la question est absurde. © Il manque des données dans l'énoncé pour pouvoir répondre à la question. 							
Question 3 (0,5 points) Nous considérons l'affi lemme de l'itération".	irmation "Tous les langages réguliers satisfont le						
Cette affirmation est vraie.Cette affirmation est fausse.	 C L'affirmation est absurde. d Il manque des données dans l'énoncé pour pouvoir répondre à la question. 						
vers une expression régulière en associant un système. Cette méthode peut être appliquée sur les autom Cette méthode peut être appliquée sur les autom Cette méthode peut être appliquée sur les autom Toutes les affirmations concernant la méthode so E L'énoncé de la question est absurde. Il manque des données dans l'énoncé pour pouvoir	nates déterministes. nates non-déterministes et avec ϵ -transitions. nates non-déterministes et sans ϵ -transitions. ont correctes. oir répondre à la question.						
 a L < L₁ . L est un langage régulier. L contient le langage vide. d L est un langage irrégulier. e Aucune des affirmations concernant L n'est correcte. 	 f Toutes les affirmations concernant L sont correctes. E L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question. 						
Question 6 (0,5 points) Soit L un langage comp	plet sur un alphabet Σ .						
 a L a tous ses états accepteurs. b L est le langage universel. c L reconnaît un langage déterministe. d L'exécution de L est définie pour chaque mot de Σ*. 	 e Aucune des affirmations concernant L n'est correcte. f Toutes les affirmations concernant L sont correctes. ■ L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour 						

pouvoir répondre à la question.

Question 7 & (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- \blacksquare On peut utiliser le lemme de l'itération sur L.
- © On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ε-transitions, après avoir appliqué possiblement l'algorithme de suppression des ε-transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Aucun des automates n'est équivalent.
- b L'automate représenté dans la Figure 3e est équivalent.
- C L'automate représenté dans la Figure 3b est équivalent.
- d L'automate représenté dans la Figure 3c est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- [f] Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- El Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- h Il est absurde de parler d'équivalence entre automates.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\mathbf{a}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- b L'automate résultant est représenté dans la Figure 2b.
- \fbox{C} Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- d Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- e L'automate résultant est représenté dans la Figure 2c.
- $\boxed{\mathbf{f}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- L'automate résultant est représenté dans la Figure 2d.
- h L'automate résultant est représenté dans la Figure 2e.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4b correspond.
- **b** Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- f Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- b L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- d L'exécution de l'algorithme n'est pas finie.
- L'automate de départ était minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- \boxed{b} Figure 7d correspond à la minimisation de A.
- \blacksquare Figure 7c correspond à la minimisation de A.
- $\overline{\mathbf{d}}$ Figure 7b correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a Il n'est pas nécessaire de calculer \equiv_3 .
- b L'automate de départ était minimal.
- © L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- b L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- d L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (3 points) Démontrer que L_1 est non régulier.

Question 20 \clubsuit (1 points) Nous considérons le langage L_3 .

- a 3 est une ci pour L_3 . b La cim de L_3 est 4. 10 est une ci pour L_3 . La cim de L_3 est 5. e La cim de L_3 est 3. f Aucune des ci données n'est correcte. E Toutes les ci données sont correctes.
 - \underline{h} Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 21 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 \clubsuit (1 points) Nous considérons L_2 .

- d La cim de L_2 est 3. \blacksquare 10 est une ci pour L_2 . \blacksquare La cim de L_2 est 0.
- Aucune des ci données n'est correcte.

 h Toutes les ci données sont correctes.
 - $\boxed{1}$ Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
	(b)											(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
									1 -	11		101	254	34	4
a	14	134	234	134	234	34	34	a	14	134	234	14	234	34	34
b	14 24	134 24	234	134 24	234	34	34 4	a b	14 24						\vdash
		_		_	_		-	1		134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

culer une expression régulière.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_{1} = \epsilon X_{2} \\ X_{2} = bX_{3} + aX_{4} + bX_{3} \\ X_{3} = bX_{2} \\ X_{4} = \epsilon X_{5} + a \\ X_{5} = a + \epsilon \end{cases} \begin{cases} X_{1} = \epsilon \\ X_{2} = X_{1}\epsilon + X_{3}\epsilon + bX_{3} + aX_{4} \\ X_{3} = X_{2} \\ X_{4} = X_{5}\epsilon \\ X_{5} = a + \epsilon \end{cases} \begin{cases} X_{1} = \epsilon X_{2} \\ X_{2} = bX_{3} + aX_{4} \\ X_{3} = X_{2} \\ X_{4} = X_{5} \\ X_{5} = a \end{cases}$$
(a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9

- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Nun	iéro d'	'anonym	nat:

Question $1: \blacksquare$ b c d e f g h

Question $2 : \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 5: a \blacksquare d e f g h

Question $6: \boxed{a} \boxed{b} \boxed{c} \boxed{d} \boxed{e} \boxed{f} \boxed{b}$

Question $7: \blacksquare \blacksquare \bigcirc \blacksquare \bigcirc \boxdot \bigcirc \blacksquare$

Question $8 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $9: a b c d \blacksquare f g h$

Question 10: a b c d e f h

Question $11: a b c \blacksquare e f g$

Question 12: a b \blacksquare d e f g h

Question 14 : ■ **b** ■ **d e f**

Question 15: $\boxed{a} \blacksquare \boxed{d} \blacksquare \boxed{f} \boxed{g} \boxed{h}$

Question 16: a b d e f g h

Question 17: a b c \blacksquare e f g

Question 18: a b \blacksquare d \blacksquare f \blacksquare h

Question 19:	f 🗹 🖸 Reservé enseignant
en utilisant le lemme de l'itération	
Question 20: a b e f g h	
Question 20 : a b ■ e f g h Question 21 :	donner c ex f \hbar Reservé enseignant
	donner c ex f Reservé enseignant
	donner c ex f Reservé enseignant
	donner c ex f \blacksquare Reservé enseignant donner ex f \blacksquare Reservé enseignant
Question 21:	
Question 21:	
Question 21:	
Question 21: Question 22:	
Question 21: Question 22: Question 23: ■ b c d ■ f S h i	donner ex f Reservé enseignant
Question 21: Question 22: Question 23: ■ b c d ■ f S h i	donner ex f Reservé enseignant

INF 302: Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de colorier entièrement les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo noir. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

(0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques $(L = L_1 \setminus L_2)$. Rappel : |L| dénote le cardinal du langage L.

- a L est un langage irrégulier.
- \blacksquare L est un langage régulier.
- L contient le langage vide.
- d $|L| < |L_1|$.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK

Figure 1 – Comment marguer une case.

	11:
Question 2 (0,5 points) Nous considérons l'affilemme de l'itération".	firmation "Tous les langages réguliers satisfont le
Cette affirmation est vraie.Cette affirmation est fausse.	 C L'affirmation est absurde. d Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 3 4 (0,5 points) Nous nous intéressons vers une expression régulière en associant un <i>système</i>	à la méthode permettant de passer d'un automate d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 & (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- f Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Soit A un automate complet sur un alphabet Σ . Question 5

- a A est tel que tous ses états sont accepteurs.
- A est tel que son exécution est définie pour chaque mot de Σ^* .
- C A reconnaît le langage universel.
- d A reconnaît un langage complet.
- e Aucune des affirmations concernant A n'est correcte.
- f Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- **b** La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \boxed{a} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut utiliser le lemme de l'itération sur L.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- $\lceil f \rceil$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ L est le langage universel.
- b L'exécution de L est définie pour chaque mot de Σ^* .
- $\[\underline{\mathbf{d}} \]$ L reconnaît un langage déterministe.
- \underline{f} Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- b Il est absurde de parler d'équivalence entre automates.
- C L'automate représenté dans la Figure 3b est équivalent.
- d L'automate représenté dans la Figure 3e est équivalent.
- El Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- f Aucun des automates n'est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- h L'automate représenté dans la Figure 3c est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\mathbf{a}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- $\boxed{\mathbf{b}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- C L'automate résultant est représenté dans la Figure 2c.
- d Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- e Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- L'automate résultant est représenté dans la Figure 2d.
- 🗵 L'automate résultant est représenté dans la Figure 2b.
- h L'automate résultant est représenté dans la Figure 2e.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- d Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- 🗓 Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- **b** Celui de la Figure 4b correspond.
- © Celui de la Figure 4c correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate résultant de la minimisation aura le même nombre d'états.
- d L'automate de départ n'était pas minimal.
- e L'exécution de l'algorithme n'est pas finie.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- \Box Figure 7d correspond à la minimisation de A.
- \boxed{d} Figure 7b correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a Il n'est pas nécessaire de calculer \equiv_3 .
- b L'automate de départ était minimal.
- C L'automate de départ n'était pas minimal.
- L'exécution de l'algorithme n'est pas finie.
- E L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- C L'automate de départ était minimal.
- d L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 20 (3 points) Démontrer que L_1 est non régulier.

Question 21 \clubsuit (1 points) Nous considérons L_2 .

- $fantsymbol{a}$ La cim de L_2 est 3. $fantsymbol{b}$ La cim de L_2 est 1. $fantsymbol{L}$ La cim de L_2 est 2. $fantsymbol{1}$ 1 est une ci pour L_2 .
- B Aucune des ci données n'est correcte. h Toutes les ci données sont correctes.
 - $\boxed{\mathbf{i}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 22 \clubsuit (1 points) Nous considérons le langage L_3 .

- a 3 est une ci pour L_3 . b La cim de L_3 est 4. La cim de L_3 est 5. 10 est une ci pour L_3 . e La cim de L_3 est 3.
- f Aucune des ci données n'est correcte.

 E Toutes les ci données sont correctes.
 - $\boxed{\mathbf{h}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 23 (0.5 points) Donner un mot dans L_1 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4			
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34			
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4			
С		4	24	34	234	4	4	c		4	4	34	234	34	4			
(b)									(c)									
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4			
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34			
a b								a b	1						=			
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34			

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_{1} = \epsilon X_{2} \\ X_{2} = bX_{3} + aX_{4} + bX_{3} \\ X_{3} = bX_{2} \\ X_{4} = \epsilon X_{5} + a \\ X_{5} = a + \epsilon \end{cases} \begin{cases} X_{1} = \epsilon \\ X_{2} = X_{1}\epsilon + X_{3}\epsilon + bX_{3} + aX_{4} \\ X_{3} = X_{2} \\ X_{4} = X_{5}\epsilon \\ X_{5} = a + \epsilon \end{cases} \begin{cases} X_{1} = \epsilon X_{2} \\ X_{2} = bX_{3} + aX_{4} \\ X_{3} = X_{2} \\ X_{4} = X_{5} \\ X_{5} = a \end{cases}$$
(a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
(a)					(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année 0 1 2 3 4 5 6 7 8 9

INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

U	ш		U	ш	J	U	ш		U
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'an	nonymat:

Question $2 : \blacksquare \ b \ c \ d$

Question $3: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $5: \mathbb{A} \square \mathbb{C} \mathbb{G} \mathbb{G} \mathbb{G}$

Question $6 : \blacksquare \ b \blacksquare \ d \ e \ f \ g$

Question 7: $a \blacksquare \blacksquare \blacksquare$ e f g h

Question $8: \begin{tabular}{lll} \hline a \\ \hline b \\ \hline c \\ \hline d \\ \hline e \\ \hline f \\ \hline \hline h \\ \hline \end{array}$

Question $9: [a] [b] [c] [d] [e] [f] \blacksquare [h]$

Question $10: a b c d e \blacksquare g h$

Question 11: a b c e f g

Question 13: a b c \blacksquare e f g h

Question 14 : ■ **b** ■ **d e f**

Question $15: \blacksquare \blacksquare \blacksquare d e f g h$ Question 16: a Cdefgh Question 17: a b c lef g l

Question 19:

donner c ex **f n** Reservé enseignant

Question 20:	f 🗗 🖸 Reservé enseignant
en utilisant le lemme de l'itération	
Question 21 : a b ■ e f g h i Question 22 : a b ■ e f g h	
	nner ex f 🔳 Reservé enseignant
Question 24:	Reservé enseignant

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

Question 2 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ A reconnaît le langage universel.
- $\boxed{\mathbf{b}}$ A est tel que tous ses états sont accepteurs.
- C A reconnaît un langage complet.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- e Aucune des affirmations concernant A n'est correcte.
- Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a $|L| < |L_1|$.
- \blacksquare L contient le langage vide.
- \blacksquare L est un langage régulier.
- d L est un langage irrégulier.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- g L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut utiliser le lemme de l'itération sur L.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- d On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- $\boxed{\mathrm{e}}$ Aucune des affirmations concernant L n'est correcte.
- $\lceil f \rceil$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L a tous ses états accepteurs.
- b L est le langage universel.
- C L reconnaît un langage déterministe.
- d L'exécution de L est définie pour chaque mot de Σ^* .
- $\[e \]$ Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- b La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- [e] Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- B Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- b Cette affirmation est fausse.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2b.
- b L'automate résultant est représenté dans la Figure 2c.
- $\boxed{\mathbb{C}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- L'automate résultant est représenté dans la Figure 2d.
- e Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- I L'automate résultant est représenté dans la Figure 2e.
- Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- $\boxed{\mathbf{h}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3b est équivalent.
- b L'automate représenté dans la Figure 3c est équivalent.
- C Aucun des automates n'est équivalent.
- d L'automate représenté dans la Figure 3e est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- [Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- h Il est absurde de parler d'équivalence entre automates.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \square Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [j] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5b correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- Celui de la Figure 4e correspond.
- **b** Celui de la Figure 4b correspond.
- © Celui de la Figure 4c correspond.
- d Celui de la Figure 4d correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- b L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- L'automate de départ était minimal.
- C L'automate de départ n'était pas minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- b L'automate de départ était minimal.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- \boxed{d} Il n'est pas nécessaire de calculer \equiv_3 .
- L'exécution de l'algorithme n'est pas finie.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\mathbf{a}}$ $\overline{\mathbf{Figure}}$ 7b correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- f Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 (3 points) Démontrer que L_1 est non régulier.

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

- aLa cim de L_3 est 3.La cim de L_3 est 5.CLa cim de L_3 est 4.d3 est une ci pour L_3 .10 est une ci pour L_3 .
- f Aucune des ci données n'est correcte. \Box Toutes les ci données sont correctes. \Box Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 22 \clubsuit (1 points) Nous considérons L_2 .

- Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. l Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 23 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	C		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	13		24*	134*	234*	34*	34
a b							\perp	a	1 1	134					=
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
 (b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0 1 2 3 4 5	6 7 8 9
0 1 2 3 4 5	6789
0 1 2 3 4 5	6 7 8 9
0 1 2 3 4 5	6789
0 1 2 3 4 5	6789

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'a	nonymat:

Question $1: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$
Question 2: a b c e f g h
Question $3:$ a \blacksquare \blacksquare d e f Ξ h
Question $4: \blacksquare \blacksquare \blacksquare$ d e f \blacksquare h
Question 5 : a b c d e f \blacksquare h
Question 6: b d e f g
Question 7: b c d
Question $8: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$
Question $9:$ a b c \blacksquare e f Ξ h
Question 10: a b c d \blacksquare f g h
Question 11: \blacksquare b \blacksquare \blacksquare e \blacksquare g h i j
Question 12 : \blacksquare b \blacksquare d e f
Question 13: a b c \blacksquare e f g
Question 14: \blacksquare b c d e f g h
Question 15: \blacksquare b \blacksquare d e f \blacksquare h
Question 16: $a \blacksquare c \blacksquare \blacksquare f \blacksquare h$
Question 17: ${\tt a}$ ${\tt b}$ ${\tt c}$ ${\tt d}$ ${\tt f}$ ${\tt g}$
Question 18: a b def gh

Question 19:

donner ex **f n** Reservé enseignant

.....

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît le langage universel.
- **b** A est tel que tous ses états sont accepteurs.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- d A reconnaît un langage complet.
- e Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OK

FIGURE 1 – Comment marquer une case.

	13:
Question 2 (0,5 points) Nous considérons l'affirme de l'itération".	rmation "Tous les langages réguliers satisfont le
a Cette affirmation est fausse.Cette affirmation est vraie.	 C L'affirmation est absurde. d Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 3 4 (0,5 points) Nous nous intéressons à vers une expression régulière en associant un système de Cette méthode peut être appliquée sur les autom	

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- f Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- f Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques $(L = L_1 \setminus L_2)$. Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L est un langage régulier.
- b L est un langage irrégulier.
- $|L| < |L_1|$.
- L contient le langage vide.
- correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L est le langage universel.
- \boxed{b} L'exécution de L est définie pour chaque mot de Σ^* .
- © L reconnaît un langage déterministe.
- $\boxed{\mathbf{d}}$ L a tous ses états accepteurs.

- correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont cor-
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- \blacksquare La post-condition est la condition Q.
- © La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- © Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \Box On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut utiliser le lemme de l'itération sur L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2b.
- $\boxed{\mathbf{b}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- C Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- \boxed{d} Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- L'automate résultant est représenté dans la Figure 2d.
- f Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- [8] L'automate résultant est représenté dans la Figure 2e.
- h L'automate résultant est représenté dans la Figure 2c.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3e est équivalent.
- **b** Aucun des automates n'est équivalent.
- © Il est absurde de parler d'équivalence entre automates.
- d L'automate représenté dans la Figure 3b est équivalent.
- e L'automate représenté dans la Figure 3c est équivalent.
- [f] Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- L'automate représenté dans la Figure 3d est équivalent.
- h Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \square Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [J] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4b correspond.
- **b** Celui de la Figure 4c correspond.
- Celui de la Figure 4e correspond.
- d Celui de la Figure 4d correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5c correspond.
- Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- El Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ n'était pas minimal.
- b L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- d L'automate résultant de la minimisation aura le même nombre d'états.
- e L'automate de départ était minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- \boxed{b} Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ était minimal.
- b L'exécution de l'algorithme n'est pas finie.
- L'automate résultant de la minimisation aura le même nombre d'états.
- d L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

		1*	2*	3*	4*	5*	6
	a	2	2	3	3	6	6
ĺ	b	3	3	4	4	6	6
ĺ	c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- Figure 7c correspond à la minimisation de A.
- \boxed{b} Figure 7d correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- f Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (3 points) Démontrer que L_1 est non régulier.

Question 20 \clubsuit (1 points) Nous considérons le langage L_3 .

La cim de L_3 est 5.

10 est une ci pour L_3 .

C La cim de L_3 est 4.

3 est une ci pour L_3 .

E La cim de L_3 est 3.

F Aucune des ci données n'est correcte.

Toutes les ci données sont correctes.

h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 21 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 \clubsuit (1 points) Nous considérons L_2 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
С		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14* 134	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b								a b	1						=
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1 2	3	4	5	6	7	8	9
---	-----	---	---	---	---	---	---	---

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonymat :
• • • • • • • • • • • • • • • • • • • •

Question 1: a b d e f g h

Question $2: \boxed{a} \boxed{c} \boxed{d}$

Question $3: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e

Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 6: a b c d e f h

Question $7 : \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question $8 : \blacksquare \ b \blacksquare \blacksquare \ e \ f \ g \ h$

Question 9: a b c d f g h

Question 10: a b c d e f h

Question $11: \blacksquare \ b \blacksquare \blacksquare \ e \blacksquare \ e \ b \ b \ i \ j$

Question 12: a b def gh

Question 13: a def

Question 14: a b c e f g

Question $15 : \blacksquare \ b \blacksquare \ d \ e \ f \ g \ h$

Question 16: \blacksquare b c d e f \blacksquare

Question $17 : \blacksquare \ b \blacksquare \ d \blacksquare \ f \ B \ h$

Question 18:

b c d e f g h

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ L est le langage universel.
- $\boxed{\mathbf{b}}$ L a tous ses états accepteurs.
- d L reconnaît un langage déterministe.
- [e] Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OF

Figure 1 – Comment marquer une case.

14
Question 2 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et
$L \neq L'$.
a On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
\blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L .
\blacksquare On peut utiliser le lemme de l'itération sur L .
\blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît $L.$

 $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes. El L'énoncé de la question est absurde.

h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate Question 4 & vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques $(L = L_1 \setminus L_2)$. Rappel : |L| dénote le cardinal du langage L.

- b $|L| < |L_1|$.
- L contient le langage vide.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont cor-
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît un langage complet.
- **b** A reconnaît le langage universel.
- A est tel que son exécution est définie pour chaque mot de Σ^* .
- d A est tel que tous ses états sont accepteurs.
- e Aucune des affirmations concernant A n'est
- f Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- **b** Cette affirmation est fausse.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- b L'automate résultant est représenté dans la Figure 2e.
- $\boxed{\mathbb{C}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- d L'automate résultant est représenté dans la Figure 2c.
- $\boxed{\mathrm{e}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- f L'automate résultant est représenté dans la Figure 2b.
- L'automate résultant est représenté dans la Figure 2d.
- h Il est absurde de parler de suppression des ϵ -transitions pour un automate.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- b Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- C Aucun des automates n'est équivalent.
- d L'automate représenté dans la Figure 3c est équivalent.
- e L'automate représenté dans la Figure 3b est équivalent.
- [f] L'automate représenté dans la Figure 3e est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- h Il est absurde de parler d'équivalence entre automates.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- d Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- e Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- f Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [j] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4c correspond.
- **b** Celui de la Figure 4d correspond.
- © Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5b correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- [f] Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- El manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate résultant de la minimisation aura le même nombre d'états.
- C L'exécution de l'algorithme n'est pas finie.
- d L'automate de départ n'était pas minimal.
- L'automate de départ était minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- \boxed{b} Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- \boxed{d} Figure 7d correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ n'était pas minimal.
- d L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ était minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- C L'automate de départ n'était pas minimal.
- \boxed{d} Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ était minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 \clubsuit (1 points) Nous considérons L_2 .

- Aucune des ci données n'est correcte. $\boxed{\underline{h}}$ Toutes les ci données sont correctes. $\boxed{\underline{i}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 21 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 22 \clubsuit (1 points) Nous considérons le langage L_3 .

- a La cim de L_3 est 4. b 3 est une ci pour L_3 . 10 est une ci pour L_3 .
- La cim de L_3 est 5.

 E La cim de L_3 est 3.

 E Aucune des ci données n'est correcte.

 E Toutes les ci données sont correctes.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 23 (3 points) Démontrer que L_1 est non régulier.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
С		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14* 134	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b								a b	1						=
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'ee~acad\'emique~2016/2017} \end{array}$

Feuille(s) de réponses

` '		
0 1 2 3 4 5 6 7 8 9		o d'anonymat ci-contre
0 1 2 3 4 5 6 7 8 9	et recopiez le manue	ellement dans la boite.
0 1 2 3 4 5 6 7 8 9	Numé	ero d'anonymat :
0 1 2 3 4 5 6 7 8 9		
0 1 2 3 4 5 6 7 8 9		
Question 1: a b c d e f	h	
Question 2: a \blacksquare \blacksquare e f	gh	
Question $3: \blacksquare \blacksquare \blacksquare \blacksquare$ e f		
Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f		
Question $5: \blacksquare \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	gh	
Question 6: a b def	g h	
Question $7: \blacksquare \ b \ c \ d$		
Question 8 : \blacksquare b \blacksquare d e f	g	
Question 9: a b c d e f	h	
Question 10: a b c d e f	h	
Question 11: delighted delighted elegistration delighted delight	h i j	
Question 12: a b c \blacksquare e f	g h	
Question 13: a \blacksquare d e f		
Question 14: a b c e f	g	
Question 15 : \blacksquare \blacksquare \boxdot \boxdot \boxdot	g h	
Question 16: a b def	g h	
Question 17: a \blacksquare \blacksquare d e f	g h	
Question 18: a C d e f	g	
Question 19:		donner ex f Reservé enseignan
Question 20:	g h i	
Question 21:		donner c ex f Reservé enseignan
_		

Question 22 : a b \blacksquare e f g h

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- **b** A reconnaît un langage complet.
- C A est tel que tous ses états sont accepteurs.
- d A reconnaît le langage universel.
- \fbox{e} Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OI

FIGURE 1 – Comment marquer une case.

15:2 Question 2 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate. Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions. Cette méthode peut être appliquée sur les automates déterministes. \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions. Toutes les affirmations concernant la méthode sont correctes. e L'énoncé de la question est absurde. f Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 (0,5 points) Soit L un langage complet sur un alphabet Σ .

\fbox{a} L'exécution de L est définie pour chaque mot	$\ \ \ \ \ \ \ \ \ \ \ \ \ $
$\mathrm{de}\ \Sigma^*.$	correcte.
$\boxed{\mathbf{b}}$ L a tous ses états accepteurs.	$\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont cor-
	rectes.
$\boxed{\mathbf{d}}$ L reconnaît un langage déterministe.	L'énoncé de la question est absurde.

h Il manque des données dans l'énoncé pour

pouvoir répondre à la question.

(0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques $(L = L_1 \setminus L_2)$. Rappel : |L| dénote le cardinal du langage L.

■ L contient le langage vide. b $ L < L_1 $. c L est un langage irrégulier. • L est un langage régulier. • Aucune des affirmations concernant L n'est	 f Toutes les affirmations concernant L sont correctes. E L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.
--	--

(0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P, Q).

La post-condition est la condition Q.

correcte.

- b La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le Question 6 lemme de l'itération".

Cette affirmation est vraie.	© L'affirmation est absurde.
b Cette affirmation est fausse.	d Il manque des données dans l'énoncé pour
	pouvoir répondre à la question.

Question 7 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \boxed{a} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut utiliser le lemme de l'itération sur L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- L'automate résultant est représenté dans la Figure 2d.
- © Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- d L'automate résultant est représenté dans la Figure 2c.
- $\boxed{\mathsf{e}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- $\boxed{\mathbf{f}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- El L'automate résultant est représenté dans la Figure 2b.
- h L'automate résultant est représenté dans la Figure 2e.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3c est équivalent.
- b Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- C Aucun des automates n'est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- e L'automate représenté dans la Figure 3b est équivalent.
- [f] Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- El L'automate représenté dans la Figure 3e est équivalent.
- h Il est absurde de parler d'équivalence entre automates.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- b L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4c correspond.
- **b** Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- d Celui de la Figure 4d correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5c correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [j] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- b L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ n'était pas minimal.
- El L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- C L'automate de départ n'était pas minimal.
- \boxed{d} Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ était minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate résultant de la minimisation aura le même nombre d'états.
- b L'exécution de l'algorithme n'est pas finie.
- C L'automate de départ n'était pas minimal.
- L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\mathbf{a}}$ $\overline{\mathbf{Figure}}$ 7d correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- $\boxed{\mathbf{f}}$ Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 \clubsuit (1 points) Nous considérons L_2 .

- a La cim de L_2 est 1.
 I 10 est une ci pour L_2 .
 I 11 est une ci pour L_2 .
 I 12 est une ci pour L_2 .
 I 13 est une ci pour L_2 .
 I 14 est une ci pour L_2 .
 I 15 La cim de L_2 est 3.
 I 16 Est une ci pour L_2 .
 I 17 Est une ci pour L_2 .
 I 18 Est une ci pour L_2 .
 I 19 Est
 - \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

- a La cim de L_3 est 3.
 10 est une ci pour L_3 .
 C La cim de L_3 est 4.

 La cim de L_3 est 5.
 3 est une ci pour L_3 .
 f Aucune des ci données n'est correcte.

 Toutes les ci données sont correctes.

 h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .
- Question 22 (3 points) Démontrer que L_1 est non régulier.
- Question 23 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b	_						\perp	a b		<u> </u>					\vdash
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

culer une expression régulière.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonymat :

Question $1: \blacksquare$ b c d e f g h

Question $2 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 3: a b c d e f h

Question $4: \blacksquare$ b c \blacksquare e f \blacksquare h

Question $5: \blacksquare \ b \ \blacksquare \ d \ e \ f \ g$

Question $6: \blacksquare \ b \ c \ d$

Question $7: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 8: a $\blacksquare \blacksquare \blacksquare$ e f \blacksquare h

Question 9: a Cdefgh

Question $10: a b c \blacksquare e f g h$

Question $11 : \blacksquare \ b \ \blacksquare \ d \ e \ f$

Question 12: a b def gh

Question 13: a b c e f g

Question $14: \blacksquare \blacksquare \bigcirc \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

 Question 15 : a b ■ c f s h

 Question 16 : a ■ c d e f s ■

 Question 17 : ■ b c ■ f s h

Question 18: a b def gh

Question 19:

donner ex **f n** Reservé enseignant

Question 20 : \boxed{a} \boxed{c} \boxed{d} \boxed{f} \boxed{g} \boxed{h} \boxed{i} Question 21 : \boxed{a} \boxed{e} \boxed{e} \boxed{f} \boxed{g} \boxed{h}

Question 22:	f P Reservé enseignant
en utilisant le lemme de l'itération	
Question 23:	donner c ex 🕤 🔳 Reservé enseignant
Question 24:	Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- **b** Cette affirmation est fausse.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) K

(b) KO (c) KO (d) O

FIGURE 1 – Comment marquer une case.

Question 2 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L reconnaît un langage déterministe.
- $\boxed{\mathbf{b}}$ L a tous ses états accepteurs.
- \Box L est le langage universel.
- d L'exécution de L est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- a On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut utiliser le lemme de l'itération sur L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- a La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- \blacksquare La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- [e] Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a L est un langage irrégulier.
- L contient le langage vide.
- \blacksquare L est un langage régulier.
- d $|L| < |L_1|$.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît le langage universel.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- \blacksquare Aucune des affirmations concernant A n'est correcte.
- f Toutes les affirmations concernant A sont correctes.
- [8] L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3c est équivalent.
- b L'automate représenté dans la Figure 3b est équivalent.
- C Aucun des automates n'est équivalent.
- d Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- El Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- L'automate représenté dans la Figure 3d est équivalent.
- g L'automate représenté dans la Figure 3e est équivalent.
- h Il est absurde de parler d'équivalence entre automates.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2e.
- b L'automate résultant est représenté dans la Figure 2c.
- $\boxed{\mathbb{C}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- d L'automate résultant est représenté dans la Figure 2b.
- L'automate résultant est représenté dans la Figure 2d.
- Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- $\boxed{\mathbb{S}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- h Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare L'expression régulière associée à cet automate est $((ab^*ab^*+b^+)a)^*(ab^*ab^*+b^+)$.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- b Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- © Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- Celui de la Figure 4e correspond.
- **b** Celui de la Figure 4c correspond.
- © Celui de la Figure 4b correspond.
- d Celui de la Figure 4d correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ n'était pas minimal.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- \boxed{d} Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ était minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- b L'automate résultant de la minimisation aura le même nombre d'états.
- C L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- e L'exécution de l'algorithme n'est pas finie.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 \clubsuit (1 points) Nous considérons L_2 .

- a La cim de L_2 est 0. 10 est une ci pour L_2 . La cim de L_2 est 2.
- d La cim de L_2 est 1. e La cim de L_2 est 3. f 1 est une ci pour L_2 .
- Aucune des ci données n'est correcte. h Toutes les ci données sont correctes.
 - \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 21 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 22 \clubsuit (1 points) Nous considérons le langage L_3 .

- aLa cim de L_3 est 4.b3 est une ci pour L_3 .cLa cim de L_3 est 3.■ La cim de L_3 est 5.■ 10 est une ci pour L_3 .
- f Aucune des ci données n'est correcte.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 23 (3 points) Démontrer que L_1 est non régulier.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	1.4*	0.4*	194*	99.4*	34*	1		1*	1.4*	0.4*	194*	00.4*	9.4*	1
	1	14*	24*	134*	234*	34	4		1"	14*	24*	134*	234*	34*	4
a	14	134	234	134	234	34	34	a	14	134	234	134	234	34	$\frac{4}{34}$
a b							\perp	a b	1						
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'ee~acad\'emique~2016/2017} \end{array}$

Feuille(s) de réponses

	numéro d'anonymat ci-contre manuellement dans la boite. Numéro d'anonymat :
Question 1 : ■ b c d	
Question 2: a b c d e f h	
Question 3:	
Question 4: a e f g h	
Question 5: a def g	
Question 6 : ■ ■ ■ ■ e f	
Question 7: a def ef gh	
Question 8: a b defgh	
Question 9: a b c d e g h	
Question 10: a b c d I f g h	
Question 11: © d e f	
Question 12: a b c e f g	
Question 13 : \blacksquare b c \blacksquare e \blacksquare h i j	
Question 14: b c d e f g h	
Question 15: \blacksquare b c d e f \blacksquare	
Question 16: a \blacksquare c d e f g h	
Question 17: a b c \blacksquare f g h	
Question 18: $\boxed{\mathbf{a}} \boxed{\mathbf{g}} \boxed{\mathbf{g}} \boxed{\mathbf{h}}$	
Question 19:	donner ex $\boxed{\mathbf{f}}$ $\boxed{\mathbf{m}}$ Reservé enseignant
Question 20: a \blacksquare d e f g h i	
Question 21:	donner c ex f n Reservé enseignant

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\ \ \,$ L'exécution de L est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{b}}$ L est le langage universel.
- $\underline{\mathbf{d}}$ L reconnaît un langage déterministe.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OF

FIGURE 1 – Comment marquer une case.

Question 2 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît un langage complet.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{d}}$ A est tel que tous ses états sont accepteurs.
- e Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \blacksquare On peut utiliser le lemme de l'itération sur L.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- © On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a $|L| < |L_1|$.
- \blacksquare L est un langage régulier.
- \blacksquare L contient le langage vide.
- d L est un langage irrégulier.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- La post-condition doit être impliquée par la condition d'un seul état terminal.
- \blacksquare La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- [e] Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Aucun des automates n'est équivalent.
- b L'automate représenté dans la Figure 3b est équivalent.
- © Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- d L'automate représenté dans la Figure 3c est équivalent.
- e Il est absurde de parler d'équivalence entre automates.
- [f] Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- B L'automate représenté dans la Figure 3e est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- L'automate résultant est représenté dans la Figure 2d.
- C L'automate résultant est représenté dans la Figure 2e.
- $\boxed{\mathbf{d}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- e L'automate résultant est représenté dans la Figure 2c.
- [f] L'automate résultant est représenté dans la Figure 2b.
- \square Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- h Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- d Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \square Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [j] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4b correspond.
- **b** Celui de la Figure 4c correspond.
- Celui de la Figure 4e correspond.
- d Celui de la Figure 4d correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5b correspond.
- Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- El Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- \Box L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate de départ n'était pas minimal.
- L'automate de départ était minimal.
- e L'exécution de l'algorithme n'est pas finie.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a Il n'est pas nécessaire de calculer \equiv_3 .
- b L'automate de départ était minimal.
- C L'automate de départ n'était pas minimal.
- L'exécution de l'algorithme n'est pas finie.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	<u>1</u> *	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- a Figure 7d correspond à la minimisation de A.
- \boxed{b} Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- **b** L'automate résultant de la minimisation aura le même nombre d'états.
- C L'exécution de l'algorithme n'est pas finie.
- d L'automate de départ était minimal.
- L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons L_2 .

- Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. l Il manque des données dans l'énoncé pour déterminer la cim de L_2 .
- Question 20 (3 points) Démontrer que L_1 est non régulier.
- Question 21 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 22 \clubsuit (1 points) Nous considérons le langage L_3 .

- a La cim de L_3 est 3.
 10 est une ci pour L_3 .
 10 est une ci pour L_3 .
 11 La cim de L_3 est 4.
 12 La cim de L_3 est 5.
 13 Aucune des ci données n'est correcte.
 14 Toutes les ci données sont correctes.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 23 (0.5 points) Donner un mot dans L_1 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
			2-1	101	201	01			1	14	24	101	204	01	
a	14	134	234	134	234	34	34	a	14	134	234	14	234	34	34
a b	14 24						\vdash	a b	1						\sqsubseteq
		134	234	134	234	34	34	-	14	134	234	14	234	34	34

FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(a	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0$	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9

- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonymat :

Question 2: a
© d e f g h

Question $3: \blacksquare \blacksquare \bigcirc \blacksquare \boxdot \boxdot \boxdot \boxdot$

Question $4: \mathbb{A} \blacksquare \blacksquare \mathbb{G}$ def \mathbb{G} h

Question $5: \boxed{a} \blacksquare \boxed{c} \boxed{d}$

Question $6: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e

Question $7 : \blacksquare \ b \blacksquare \ d \ e \ f \ g$

Question $8: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 9: a b c d e f g

Question 10: a

© d e f g h

Question 11: \blacksquare \blacksquare \Box \Box \blacksquare \blacksquare \Box \Box \Box \Box \Box \Box

Question 12: a b def gh

Question 13: a b c e f g

Question 14 : ■ □ □ □ □ □

Question 15: \blacksquare \blacksquare \Box \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare

Question 16: a b c e f g

Question 17 : a b ■ d e f g h

Question $18 : \blacksquare \ b \ c \ d \ \blacksquare \ f \ g \ h$

Question 19:

b

d
e

f

g

h

i

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

Question 2 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L contient le langage vide.
- $|L| < |L_1|$.
- \blacksquare L est un langage régulier.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \boxed{a} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut utiliser le lemme de l'itération sur L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- f Toutes les affirmations concernant L sont correctes.
- g L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- © La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- **b** A reconnaît le langage universel.
- C A reconnaît un langage complet.
- \fbox{e} Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- [8] L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- b Cette affirmation est fausse.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L reconnaît un langage déterministe.
- $\boxed{\mathbf{b}}$ L est le langage universel.
- $\overline{\mathbf{d}}$ L a tous ses états accepteurs.

- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2c.
- b Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- $\boxed{\mathbb{C}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- L'automate résultant est représenté dans la Figure 2d.
- \blacksquare Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- f ll est absurde de parler de suppression des ϵ -transitions pour un automate.
- [8] L'automate résultant est représenté dans la Figure 2b.
- h L'automate résultant est représenté dans la Figure 2e.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3b est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- © Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- d Il est absurde de parler d'équivalence entre automates.
- e Aucun des automates n'est équivalent.
- f L'automate représenté dans la Figure 3c est équivalent.
- El Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- h L'automate représenté dans la Figure 3e est équivalent.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- \Box L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- f Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- © Celui de la Figure 4c correspond.
- d Celui de la Figure 4b correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ était minimal.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- \boxed{d} Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7d correspond à la minimisation de A.
- \boxed{b} Figure 7a correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- \boxed{d} Figure 7b correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- b L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- d L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

(0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate résultant de la minimisation aura le même nombre d'états.
- b L'automate de départ n'était pas minimal.
- C L'exécution de l'algorithme n'est pas finie.
- L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

(0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$. Question 19

Question 20 (3 points) Démontrer que L_1 est non régulier.

Question 21 & (1 points) Nous considérons le langage L_3 .

- La cim de L_3 est 5. 10 est une ci pour L_3 . $\overline{\mathbb{C}}$ La cim de L_3 est 4. \bullet 3 est une ci pour L_3 . d La cim de L_3 est 3. f Aucune des ci données n'est correcte. Toutes les ci données sont correctes.
 - Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

(1 points) Nous considérons L_2 . Question 22 ♣

> La cim de L_2 est 2. \boxed{b} La cim de L_2 est 3. $\boxed{\mathbf{d}}$ 1 est une ci pour L_2 . 10 est une ci pour L_2 . B Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 23 (0.5 points) Donner un mot dans L_1 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
С		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14* 134	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a								a b	1						=
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

h

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9		Co
0	1	2	3	4	5	6	7	8	9		et :
0	1	2	3	4	5	6	7	8	9		
0	1	2	3	4	5	6	7	8	9		
0	1	2	3	4	5	6	7	8	9		

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonyr	nat:

Question	Т	•				C	1	
Question	2	:		b	\mathbf{c}	e	f	g
0	9		ы				ſ	Ø

Question 3: a e e f g h

Question $4: \blacksquare \blacksquare$ $\boxed{ }$ $\boxed{ }$

Question 5:
Question 6:
Quest

Question $6: \blacksquare$ b c d e f g h

Question 7:

b
c
d

Question 8: a b c d e f h

Question 9: a b c ■ e f g h

Question 10: a
© d e f g h

Question 11 : \blacksquare b \blacksquare d e f

Question 12: a b c \blacksquare e f $\mathbb S$

 Question 14 : a
 ■ c d e f g h

 Question 15 : a b c d e f g h

 Question 16 : a b ■ d e f g h

 Question 17 : a b ■ d ■ f g h

Question 18: b c f g h

Question 19:

donner c ex **f n** Reservé enseignant

.....

Question 20:	f P Reservé enseignant
en utilisant le lemme de l'itération	
Question 21 : © d e f g h	
Question 22: ■ b c d e ■ g h i	
Question 23:	donner ex f Reservé enseignant
Question 24:	Reservé enseignant

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

19:
Question $2 \clubsuit$ (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate
vers une expression régulière en associant un système d'équations aux états à l'automate.
\blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après
avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
\blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
Cette méthode peut être appliquée sur les automates déterministes.
Toutes les affirmations concernant la méthode sont correctes.
e L'énoncé de la question est absurde.
f Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers Question 3 ♣ L_1 et L_2 quelconques $(L = L_1 \setminus L_2)$. Rappel : |L| dénote le cardinal du langage L.

L contient le langage vide.	$\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont con
L est un langage régulier.	rectes.

- d $|L| < |L_1|$.
- correcte.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 ♣ (0,5 points) Soit L un langage régulier quelconque. Rappel: $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- On peut utiliser le lemme de l'itération sur L.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L'exécution de L est définie pour chaque mot correcte.
- b L est le langage universel.
- d L reconnaît un langage déterministe.
- e Aucune des affirmations concernant L n'est
- Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît le langage universel.
- **b** A reconnaît un langage complet.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- d A est tel que tous ses états sont accepteurs.
- e Aucune des affirmations concernant A n'est correcte.
- f Toutes les affirmations concernant A sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- a La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- \blacksquare La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- \boxed{a} Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- \boxed{b} Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- [C] Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- d L'automate résultant est représenté dans la Figure 2e.
- e L'automate résultant est représenté dans la Figure 2c.
- f L'automate résultant est représenté dans la Figure 2b.
- \square Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- L'automate résultant est représenté dans la Figure 2d.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- L'automate représenté dans la Figure 3d est équivalent.
- b L'automate représenté dans la Figure 3b est équivalent.
- C Aucun des automates n'est équivalent.
- d L'automate représenté dans la Figure 3e est équivalent.
- e Il est absurde de parler d'équivalence entre automates.
- [f] Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- El Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- h L'automate représenté dans la Figure 3c est équivalent.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \Box Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- d Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [j] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5b correspond.
- © Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- El Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- **b** Celui de la Figure 4c correspond.
- © Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a Il n'est pas nécessaire de calculer \equiv_3 .
- b L'automate résultant de la minimisation aura le même nombre d'états.
- C L'automate de départ était minimal.
- d L'automate de départ n'était pas minimal.
- L'exécution de l'algorithme n'est pas finie.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	<u>1</u> *	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- b L'automate de départ n'était pas minimal.
- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- e L'exécution de l'algorithme n'est pas finie.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 \$\\$ (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

L'automate de départ n'était pas minimal.

L'exécution de l'algorithme n'est pas finie.

C L'automate résultant de la minimisation aura le même nombre d'états.

Il n'est pas nécessaire de calculer ≡₃.
e L'automate de départ était minimal.

f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.

El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.

h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

Question 22 (3 points) Démontrer que L_1 est non régulier.

Question 23 \clubsuit (1 points) Nous considérons L_2 .

aLa cim de L_2 est 3.bLa cim de L_2 est 1.CLa cim de L_2 est 0.■ 10 est une ci pour L_2 .■ La cim de L_2 est 2.f1 est une ci pour L_2 .BAucune des ci données n'est correcte.hToutes les ci données sont correctes.III manque des données dans l'énoncé pour déterminer la cim de L_2 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1 *	1.4*	0.4*	194*	99.4*	2.4*	1		1 *	1.1*	0.4*	194*	22.4*	2.1*	1
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14* 134	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b	1						\vdash	a b	1						
-	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'ee~acad\'emique~2016/2017} \end{array}$

Feuille(s) de réponses

	Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite. Numéro d'anonymat :
Question $1: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$	
Question $2 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$	
	h
	 h
Question 6 : a b ■ d e f g	h
Question 7: a ■ c d	
Question 8 : a \blacksquare \blacksquare d e f g	
Question 9: a b c d e f g	
Question $10:$ \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	g h
Question 11 : \blacksquare \blacksquare \Box \Box \blacksquare \blacksquare \blacksquare	g h i j
Question 12: $ a b c \blacksquare $	g
Question 13: a b c e f g	g h
Question 14: $a \blacksquare \blacksquare d$ $e f$	
Question 15: a b c d \blacksquare f \blacksquare	
Question 16: a \blacksquare c d e f g	g h
Question 17: ■ b ■ e f g	g h
Question 18: ■ b c ■ e f g	
Question 19:	donner ex f 🔳 Reservé enseignant
Question 20:	donner c ex f Reservé enseignant

Question 21: \blacksquare b \blacksquare d e f \blacksquare h

Question 22:	f P Reservé enseignant
en utilisant le lemme de l'itération	
Question 23: a b c f g h i	
Question 24:	Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302: Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de colorier entièrement les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo noir. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

(0.5 points) Soit L un langage régulier quelconque. Rappel: $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \boxed{a} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- On peut utiliser le lemme de l'itération sur L.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK

FIGURE 1 – Comment marquer une case.

Question 2 \clubsuit (0,5 points) Soit L un langage obte L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : $ L $ déno	
 ■ L contient le langage vide. ■ L est un langage régulier. □ L < L₁ . □ L est un langage irrégulier. □ Aucune des affirmations concernant L n'est correcte. 	 f Toutes les affirmations concernant L sont correctes. g L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 3 (0,5 points) Nous considérons la repour prouver qu'un automate étendu avec deux états d'une spécification (P,Q). La post-condition doit être impliquée par la condition Q. La post-condition doit être impliquée par la condition d'a la post-condition doit être impliquée par la condition d'a la post-condition d'a la po	ition de chacun des états terminaux. ition d'un seul état terminal. on n'est correcte. sont correctes.
Question 4 ♣ (0,5 points) Nous nous intéressons à vers une expression régulière en associant un système à Cette méthode peut être appliquée sur les autom Cette méthode peut être appliquée sur les autom Cette méthode peut être appliquée sur les autom Toutes les affirmations concernant la méthode so E L'énoncé de la question est absurde. f Il manque des données dans l'énoncé pour pouvo	ates déterministes. ates non-déterministes et avec ϵ -transitions. ates non-déterministes et sans ϵ -transitions. nt correctes.
Question 5 (0,5 points) Soit A un automate con	nplet sur un alphabet Σ .
 A est tel que son exécution est définie pour chaque mot de Σ*. A est tel que tous ses états sont accepteurs. A reconnaît le langage universel. A reconnaît un langage complet. 	 Aucune des affirmations concernant A n'est correcte. Toutes les affirmations concernant A sont correctes. L'énoncé de la question est absurde. Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 6 (0,5 points) Nous considérons l'affilemme de l'itération".	rmation "Tous les langages réguliers satisfont le
Cette affirmation est vraie.Cette affirmation est fausse.	 C L'affirmation est absurde. d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L est le langage universel.
- $\boxed{\mathbf{b}}$ L a tous ses états accepteurs.
- $\[\underline{\mathbf{d}} \]$ L reconnaît un langage déterministe.
- \blacksquare Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ε-transitions, après avoir appliqué possiblement l'algorithme de suppression des ε-transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- \boxed{a} Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- b L'automate résultant est représenté dans la Figure 2e.
- L'automate résultant est représenté dans la Figure 2d.
- d L'automate résultant est représenté dans la Figure 2c.
- e Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- $\boxed{\mathbf{f}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- \square Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- h L'automate résultant est représenté dans la Figure 2b.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Il est absurde de parler d'équivalence entre automates.
- **b** L'automate représenté dans la Figure 3e est équivalent.
- © Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- d L'automate représenté dans la Figure 3c est équivalent.
- El Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- f Aucun des automates n'est équivalent.
- B L'automate représenté dans la Figure 3b est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- Celui de la Figure 4e correspond.
- **b** Celui de la Figure 4b correspond.
- C Celui de la Figure 4c correspond.
- d Celui de la Figure 4d correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5b correspond.
- Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- \Box L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- b L'automate de départ était minimal.
- C L'automate de départ n'était pas minimal.
- L'exécution de l'algorithme n'est pas finie.
- e Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- \boxed{b} Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- \boxed{d} Figure 7b correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- c L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ était minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ était minimal.
- d L'automate de départ n'était pas minimal.
- e L'exécution de l'algorithme n'est pas finie.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 21 (3 points) Démontrer que L_1 est non régulier.

Question 22 \clubsuit (1 points) Nous considérons L_2 .

Question 23 \clubsuit (1 points) Nous considérons le langage L_3 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1^	14*	24*	134*	234*	34↑	4		1↑	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1 *	1.14	2.4%	40.4%	20.44	0.4*	4		1*	1.4*	0.1*	19.4*	20.44	0.4*	
	1*	14*	24*	134*	234*	34*	$\lfloor 4 \rfloor$		1*	14*	24*	134*	234*	34*	4
a	14	134	$\begin{array}{ c c }\hline 24^* \\ \hline 234 \\ \hline \end{array}$	134*	234*	34	34	a	14	134	234	134"	234*	34	34
a b							\vdash	a b	1						\perp
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

 $Figure \ 3-Des \ automates \ pour \ la \ déterminisation. \ Dans \ la \ représentation \ tabulaire, les \ états \ sont \ en \ colonnes, les \ symboles \ en \ lignes, les \ étoiles \ marquent \ les \ états \ accepteurs.$

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0 $	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'ee~acad\'emique~2016/2017} \end{array}$

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8 9 Codez votre	numéro d'anonymat ci-contre
0 1 2 3 4 5 6 7 8 9 et recopiez le	manuellement dans la boite.
0 1 2 3 4 5 6 7 8 9	Numéro d'anonymat :
0 1 2 3 4 5 6 7 8 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9	
Question 1: a \blacksquare \blacksquare e f g h	
Question 2: © defe	
Question $3: \blacksquare \blacksquare$ C d e f g	
Question $4: \blacksquare \blacksquare \blacksquare \blacksquare$ e f	
Question $5: \blacksquare$ b c d e f g h	
Question 6: b c d	
Question 7: a b c d e f \blacksquare h	
Question $8: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f	
Question $9:$ a b \blacksquare d e f g h	
Question $10:$ a b c d e f g \blacksquare	
Question 11: b C d e f g h	
Question 12: a b c \blacksquare e f $\mathbb S$	
Question 13: \blacksquare \blacksquare \boxdot \boxdot \boxdot	
Question 14 : \blacksquare b \blacksquare d \blacksquare \blacksquare \blacksquare b i j	
Question 15: a b c \blacksquare e f \blacksquare	
Question 16: a b \blacksquare d e f \blacksquare h	
Question 17: a \blacksquare C \blacksquare e f \blacksquare h	
Question 18: \blacksquare \blacksquare \blacksquare d e f \unlhd h	
Question 19:	donner ex 🖪 🔳 Reservé enseignant
Question 20:	donner c ex f Reservé enseignant
Question 20:	donner c ex 🗓 🗖 neserve ensergnant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

Question 2 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ L a tous ses états accepteurs.
- $\boxed{\mathbf{b}}$ L reconnaît un langage déterministe.
- d L'exécution de L est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 & (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \boxed{a} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut utiliser le lemme de l'itération sur L.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- [8] L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a $|L| < |L_1|$.
- $\boxed{\mathbf{b}}$ L est un langage irrégulier.
- \blacksquare L contient le langage vide.
- L est un langage régulier.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- [g] L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ A est tel que tous ses états sont accepteurs.
- **b** A reconnaît un langage complet.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- d A reconnaît le langage universel.
- [f] Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- © La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\mathbf{a}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- D Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- C L'automate résultant est représenté dans la Figure 2c.
- L'automate résultant est représenté dans la Figure 2d.
- e L'automate résultant est représenté dans la Figure 2b.
- $\boxed{\mathbf{f}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- El L'automate résultant est représenté dans la Figure 2e.
- h Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- b L'automate représenté dans la Figure 3c est équivalent.
- C L'automate représenté dans la Figure 3b est équivalent.
- d Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- L'automate représenté dans la Figure 3d est équivalent.
- Il est absurde de parler d'équivalence entre automates.
- El L'automate représenté dans la Figure 3e est équivalent.
- h Aucun des automates n'est équivalent.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- b Celui de la Figure 5a correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- Celui de la Figure 4e correspond.
- **b** Celui de la Figure 4d correspond.
- Celui de la Figure 4b correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- d Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- 🗓 Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- d L'automate de départ n'était pas minimal.
- e L'exécution de l'algorithme n'est pas finie.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ était minimals
- L'automate de départ n'était pas minimal.
- d L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- \boxed{b} Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate de départ était minimal.
- L'exécution de l'algorithme n'est pas finie.
- El L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

		1*	2*	3*	4*	5*	6
	a	2	2	3	3	6	6
	b	3	3	4	4	6	6
Γ	c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\mathbf{a}}$ $\overline{\mathbf{Figure}}$ 7d correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7a correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7b correspond à la minimisation de A.
- [f] Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons le langage L_3 .

- aLa cim de L_3 est 4.b3 est une ci pour L_3 . \blacksquare 10 est une ci pour L_3 .dLa cim de L_3 est 3. \blacksquare La cim de L_3 est 5. \blacksquare Aucune des ci données n'est correcte. \blacksquare Toutes les ci données sont correctes. \blacksquare Il manque des données dans l'énoncé pour déterminer la cim de L_3 .
- Question 20 (3 points) Démontrer que L_1 est non régulier.
- Question 21 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 22 \clubsuit (1 points) Nous considérons L_2 .

- Aucune des ci données n'est correcte.

 h Toutes les ci données sont correctes.
 - \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 23 (0.5 points) Donner un mot dans L_1 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4			1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34		a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4		b	24	24	24	24	24	4	4
c		4	24	34	234	4	4		c		4	4	34	234	34	4
	(b)												(c)			
	1*	14*	24*	134*	234*	34*	4			1*	14*	24*	134*	234*	34*	4
a	14	134	234	134	234	34	34	Ī	a	14	134	234	14	234	34	34
b	0.4	0.4	0.4	0.4	0.4	4	4	İ	b	24	2.4	234	24	24	1	1
	24	24	24	24	24	4	4		D	24	24	254	24	24	4	$\mid 4 \mid$
c	24	4	24	34	234	34	4		c	24	4	4	34	234	4	4

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_{1} = bX_{5} \\ X_{2} = aX_{1} + aX_{5} + bX_{3} \\ X_{3} = bX_{2} \\ X_{4} = aX_{2} + aX_{4} + \epsilon \\ X_{5} = bX_{4} \end{cases} \begin{cases} X_{1} = aX_{2} \\ X_{2} = bX_{3} + aX_{4} \\ X_{3} = aX_{2} \\ X_{4} = aX_{4} + bX_{5} + \epsilon \\ X_{5} = bX_{1} + aX_{2} \end{cases} \begin{cases} X_{1} = aX_{2} \\ X_{2} = bX_{3} + aX_{4} \\ X_{3} = aX_{2} \\ X_{4} = aX_{4} + bX_{5} \\ X_{5} = bX_{1} + aX_{2} + \epsilon \end{cases}$$
(e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
(a) (b)					(0	c)		(d)					

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0$	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0 1	2	3	4	5	6	7	8	9
-----	---	---	---	---	---	---	---	---

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Nume	ro d'anonymat :	

Question $1 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 2: a b c d e f h

Question $3: \mathbb{A} \blacksquare \blacksquare \blacksquare \mathbb{E}$ e f \mathbb{E} h

Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $5: \boxed{a} \blacksquare \boxed{c} \boxed{d}$

Question $6: a b \blacksquare \blacksquare e f g h$

Question 7: a b def gh

Question 9: a b c e f g h

Question $10: a b c d \blacksquare f g h$

Question 11: a b c e f g

Question $12: \blacksquare \Box \Box \Box \Box \Box \Box$

Question $15: \blacksquare \blacksquare \blacksquare d e f g h$

Question 16: a b \blacksquare d \blacksquare f g h

Question 17: a b c \blacksquare e f g

Question 18: a b deffh

Question 19: \boxed{a} \boxed{b} \boxed{d} \boxed{d} \boxed{f} \boxed{g} \boxed{h}

Question 20:	f 🏿 🗖 Reservé enseignant
en utilisant le lemme de l'itération	
Question 21:	donner c ex f \blacksquare Reservé enseignant
Question 21:	donner c ex f Reservé enseignant
	donner c ex f \blacksquare Reservé enseignant
Question 22: ■ b c d e ■ g h i	
	donner c ex $\boxed{\mathbf{f}}$ $\boxed{\mathbf{e}}$ Reservé enseignant donner ex $\boxed{\mathbf{f}}$ $\boxed{\mathbf{e}}$ Reservé enseignant
Question 22: ■ b c d e ■ g h i	
Question 22 : ■ b c d e ■ g h i Question 23 :	
Question 22 : ■ b c d e ■ g h i Question 23 :	
Question 22 : ■ b c d e ■ g h i Question 23 :	donner ex $\boxed{\mathbf{f}}$ $\boxed{\mathbf{e}}$ Reservé enseignant
Question 22 : ■ b c d e ■ g h i Question 23 :	donner ex $\boxed{\mathbf{f}}$ $\boxed{\mathbf{e}}$ Reservé enseignant

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- [e] Toutes les affirmations concernant post-condition sont correctes.
- [f] L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OK

FIGURE 1 – Comment marquer une case.

Question 2 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L reconnaît un langage déterministe.
- \Box L'exécution de L est définie pour chaque mot de Σ^* .
- d L a tous ses états accepteurs.

- \blacksquare Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît le langage universel.
- b A reconnaît un langage complet.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- $\overline{\mathbf{d}}$ A est tel que tous ses états sont accepteurs.
- \fbox{e} Aucune des affirmations concernant A n'est correcte.
- f Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- $\boxed{\mathbf{a}}$ L est un langage irrégulier.
- \blacksquare L contient le langage vide.
- \blacksquare L est un langage régulier.
- d $|L| < |L_1|$.
- \blacksquare Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 & (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- On peut utiliser le lemme de l'itération sur L.
- d On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- [8] L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2e.
- b L'automate résultant est représenté dans la Figure 2c.
- © Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- L'automate résultant est représenté dans la Figure 2d.
- [e] Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- [f] L'automate résultant est représenté dans la Figure 2b.
- \square Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- h Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Aucun des automates n'est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- C Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- d L'automate représenté dans la Figure 3e est équivalent.
- e L'automate représenté dans la Figure 3b est équivalent.
- f L'automate représenté dans la Figure 3c est équivalent.
- Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- h Il est absurde de parler d'équivalence entre automates.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- **b** Celui de la Figure 4c correspond.
- Celui de la Figure 4e correspond.
- d Celui de la Figure 4b correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- © Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- d Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- 🗓 Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5c correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ n'était pas minimal.
- \square Il n'est pas nécessaire de calculer \equiv_3 .
- d L'automate de départ était minimal.
- El L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\overline{\mathbf{d}}$ Figure 7b correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- b L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 20 \clubsuit (1 points) Nous considérons L_2 .

- a La cim de L_2 est 1.b 1 est une ci pour L_2 .c La cim de L_2 est 3.■ 10 est une ci pour L_2 .■ La cim de L_2 est 2.f La cim de L_2 est 0.
- Aucune des ci données n'est correcte.

 | Description | De
 - \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

- a 3 est une ci pour L_3 . b La cim de L_3 est 3. La cim de L_3 est 5.
- [f] Aucune des ci données n'est correcte. [g] Toutes les ci données sont correctes.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 22 (3 points) Démontrer que L_1 est non régulier.

Question 23 (0.5 points) Donner un mot dans L_1 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
				(5)								(0)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*		234*	34*	34	a	1*	14*	24*		234*	34*	34
a b				134*			\perp	a b				134*			
	14	134	234	134*	234	34	34	-	14	134	234	134*	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonymat :

Question $1: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question 2: a b c d e f

Question $3: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e

Question $5: \mathbb{A} \blacksquare \blacksquare \mathbb{G}$ def gh

Question $6: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e

Question 7: a Cd

Question 8:

defg
h

Question 9: a b c e f g h

Question 10: a
Cdefgh

Question 11: a b def gh

Question 12: $a \blacksquare c d \blacksquare \blacksquare h i j$

Question $13 : \blacksquare \ b \blacksquare \ d \ e \ f$

Question 14: a b c e f g

Question 15:

b
c
d
e
f
g

Question 16 : a ■ ■ e f g h

Question 17: a b def g h

Question $18: \ a \ b \ \blacksquare \ d \ \blacksquare \ f \ g \ h$

Question 19:

donner c ex **f e** Reservé enseignant

Question 20: a b c

f g h i

Question 21 : a b \blacksquare \blacksquare e f g h

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) O

FIGURE 1 – Comment marquer une case.

Question 2 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut utiliser le lemme de l'itération sur L.
- \boxed{b} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- e Aucune des affirmations concernant L n'est correcte.
- $\lceil f \rceil$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L est le langage universel.
- $\boxed{\mathbf{b}}$ L a tous ses états accepteurs.
- $\boxed{\mathbb{C}}$ L'exécution de L est définie pour chaque mot de $\Sigma^*.$
- d L reconnaît un langage déterministe.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- b A reconnaît un langage complet.
- d A reconnaît le langage universel.
- e Aucune des affirmations concernant A n'est correcte.
- f Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la guestion est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a $|L| < |L_1|$.
- \blacksquare L contient le langage vide.
- \blacksquare L est un langage régulier.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- © La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2e.
- $\boxed{\mathbf{b}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- C L'automate résultant est représenté dans la Figure 2b.
- L'automate résultant est représenté dans la Figure 2d.
- El II manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- El L'automate résultant est représenté dans la Figure 2c.
- $\boxed{\mathbf{h}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3b est équivalent.
- b L'automate représenté dans la Figure 3e est équivalent.
- © Il est absurde de parler d'équivalence entre automates.
- d L'automate représenté dans la Figure 3c est équivalent.
- e Aucun des automates n'est équivalent.
- Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- El Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- L'automate représenté dans la Figure 3d est équivalent.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- **b** Celui de la Figure 4c correspond.
- © Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- f Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- El II est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- b Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \Box Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- d Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5c correspond.
- © Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

				_	,	
	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- Figure 7c correspond à la minimisation de A.
- \boxed{b} Figure 7b correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7d correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- $\boxed{\mathbf{f}}$ Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- b L'automate de départ n'était pas minimal.
- C L'automate de départ était minimal.
- L'exécution de l'algorithme n'est pas finie.
- e Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- b L'exécution de l'algorithme n'est pas finie.
- © L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- e L'automate de départ était minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

(0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- b L'automate de départ n'était pas minimal.
- C L'exécution de l'algorithme n'est pas finie.
- L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ était minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (3 points) Démontrer que L_1 est non régulier.

Question 20 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 21 & (1 points) Nous considérons le langage L_3 .

- a La cim de L_3 est 3. \boxed{b} La cim de L_3 est 4. La cim de L_3 est 5.
 - $\boxed{\mathbf{d}}$ 3 est une ci pour L_3 . \blacksquare 10 est une ci pour L_3 .
- Toutes les ci données sont correctes. f Aucune des ci données n'est correcte. h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 4 (1 points) Nous considérons L_2 .

- 10 est une ci pour L_2 . La cim de L_2 est 2. \square 1 est une ci pour L_2 .
- f La cim de L_2 est 1. d La cim de L_2 est 0. e La cim de L_2 est 3. Aucune des ci données n'est correcte. h Toutes les ci données sont correctes.
 - \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Champ Libre

Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	1.4*	0.4*	194*	99.4*	34*	1		1*	1.4*	0.4*	194*	00.4*	9.4*	1
	1	14*	24*	134*	234*	34	4		1"	14*	24*	134*	234*	34*	4
a	14	134	234	134	234	34	34	a	14	134	234	134	234	34	$\frac{4}{34}$
a b							\perp	a b	1						
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

 $Figure \ 3-Des \ automates \ pour \ la \ déterminisation. \ Dans \ la \ représentation \ tabulaire, les \ états \ sont \ en \ colonnes, les \ symboles \ en \ lignes, les \ étoiles \ marquent \ les \ états \ accepteurs.$

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
 (b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(a	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9

- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Num	ro d'anonymat :	

Question $1: \boxed{\mathbf{a}} \quad \boxed{\mathbf{c}} \quad \boxed{\mathbf{d}}$

Question $2 : \blacksquare \ b \blacksquare \blacksquare \ e \ f \ g \ h$

Question $3: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f

Question 4: a b c d e f h

Question 5:

b c d e f g h

Question $6: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 7: $\boxed{\mathbf{a}}$ $\boxed{\mathbf{c}}$ $\boxed{\mathbf{e}}$ $\boxed{\mathbf{f}}$ $\boxed{\mathbf{g}}$ $\boxed{\mathbf{h}}$

Question 9: a b c lef s h

Question 10: a b c d e f g

Question $11 : \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question 12: a b c e f g h

Question 13: \blacksquare \Box \Box \Box \blacksquare \blacksquare \blacksquare \Box \Box \Box

Question 14: a b c e f g

Question $15 : \blacksquare \ b \ c \ d \ e \ f \ g \ h$

Question 16: a b c \blacksquare e f \blacksquare

Question 17:

b c e f g h

Question $18 : \blacksquare \ b \ c \blacksquare \ \blacksquare \ f \ g \ h$

Question 19:	f P P Reservé enseignant
en utilisant le lemme de l'itération	
Question 20:	donner c ex $\boxed{\mathbf{f}}$ $\boxed{\mathbf{g}}$ Reservé enseignant
Question 20:	donner c ex f ■ Reservé enseignant
	donner c ex f ≡ Reservé enseignant
Question 21: a b ■ d ■ f g h	
	donner c ex f \blacksquare Reservé enseignant donner ex f \blacksquare Reservé enseignant
Question 21: a b ■ d ■ f g h	
Question 21: a b ■ d ■ f g h	
Question 21: a b ■ d ■ f g h	
Question 21 : a b ■ d ■ f g h Question 22 :	
Question 21 : a b ■ d ■ f g h Question 22 : Question 23 : ■ C d e f g h i	donner ex f Reservé enseignant
Question 21 : a b ■ d ■ f g h Question 22 : Question 23 : ■ C d e f g h i	donner ex f Reservé enseignant

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

Question 2	(0,5 points)	Soit L un langa	ge complet sur	un alphabet Σ .
------------	---------------	-------------------	----------------	------------------------

- a L est le langage universel.
- \Box L'exécution de L est définie pour chaque mot de Σ^* .
- $\[\underline{\mathbf{d}} \]$ L reconnaît un langage déterministe.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- **b** Cette affirmation est fausse.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- \blacksquare La post-condition est la condition Q.
- © La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- 🗵 Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a $|L| < |L_1|$.
- \blacksquare L est un langage régulier.
- \blacksquare L contient le langage vide.
- $\boxed{\mathbf{d}}$ L est un langage irrégulier.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- \blacksquare On peut utiliser le lemme de l'itération sur L.
- \boxed{d} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- e Aucune des affirmations concernant L n'est correcte.
- $\lceil f \rceil$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- l Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ A est tel que tous ses états sont accepteurs.
- **b** A reconnaît le langage universel.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- d A reconnaît un langage complet.
- \fbox{e} Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2b.
- L'automate résultant est représenté dans la Figure 2d.
- [c] Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- d L'automate résultant est représenté dans la Figure 2c.
- [e] Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- $\boxed{\mathbf{f}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- El L'automate résultant est représenté dans la Figure 2e.
- h Il est absurde de parler de suppression des ϵ -transitions pour un automate.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Aucun des automates n'est équivalent.
- b L'automate représenté dans la Figure 3c est équivalent.
- © L'automate représenté dans la Figure 3e est équivalent.
- d L'automate représenté dans la Figure 3b est équivalent.
- El Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- L'automate représenté dans la Figure 3d est équivalent.
- Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- h Il est absurde de parler d'équivalence entre automates.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4c correspond.
- Celui de la Figure 4e correspond.
- © Celui de la Figure 4d correspond.
- d Celui de la Figure 4b correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- © Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- f Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \square Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5c correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- L'exécution de l'algorithme n'est pas finie.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- d L'automate de départ était minimal.
- e Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- \Box Figure 7b correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7d correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ n'était pas minimal.
- b L'automate résultant de la minimisation aura le même nombre d'états.
- C L'automate de départ était minimal.
- d L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- d L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 20 (0.5 points) Donner un mot dans L_1 .

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

- - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 22 \clubsuit (1 points) Nous considérons L_2 .

- Aucune des ci données n'est correcte. h Toutes les ci données sont correcte. l Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 23 (3 points) Démontrer que L_1 est non régulier.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1^	14*	24*	134*	234*	34↑	4		1↑	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1 *	1.14	2.4%	40.4%	20.44	0.4*	4		1*	1.4*	0.1*	19.4*	20.44	0.4*	
	1*	14*	24*	134*	234*	34*	$\lfloor 4 \rfloor$		1*	14*	24*	134*	234*	34*	4
a	14	134	$\begin{array}{ c c }\hline 24^* \\ \hline 234 \\ \hline \end{array}$	134*	234*	34	34	a	14	134	234	134"	234*	34	34
a b							\vdash	a b	1						\perp
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

 $Figure \ 3-Des \ automates \ pour \ la \ déterminisation. \ Dans \ la \ représentation \ tabulaire, les \ états \ sont \ en \ colonnes, les \ symboles \ en \ lignes, les \ étoiles \ marquent \ les \ états \ accepteurs.$

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

Question 21 : \blacksquare b c d \blacksquare f \blacksquare h Question 22 : \blacksquare b c d \blacksquare f \blacksquare h i

 ${\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'{e}e~acad\'{e}mique~2016/2017}$

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9	Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite. Numéro d'anonymat :
Question 1 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare	
Question 2: a b c d e f	h
Question 3: b c d	
Question 4: © d e f	8
Question 5: a def	В Р
Question 6: def	В Р
Question 7 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare	
Question 8: a b d e f	g h
Question 9: a C d e f	g h
Question 10 : a b c d e \blacksquare	g h
Question 11 : $a \blacksquare c d e f$	g h
Question 12 : \blacksquare b \blacksquare d e f	
Question 13 : \blacksquare \blacksquare \Box \blacksquare \blacksquare \boxdot	g h i j
Question 14: a b c ■ e f	g
Question 15: a C d e f	
Question 16: \boxed{a} \boxed{c} \boxed{d} \boxed{e} \boxed{f}	g h
Question 17: \blacksquare b \bigcirc d \blacksquare f	g h
Question $18: \ \ \blacksquare \ \ \ \ \ \ \ \ \ \ \$	g h
Question 19:	donner c ex f n Reservé enseignant
Question 20.	donner ex f Reservé enseignant
Question 20:	donner ex [1] Reserve enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

	25:
Question 2 \clubsuit (0,5 points) Soit L un langage ob L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : $ L $ dén	tenu par la différence entre deux langages réguliers ote le cardinal du langage L .
\blacksquare L contient le langage vide.	f Toutes les affirmations concernant L sont cor-
\blacksquare L est un langage régulier.	rectes.
\Box L est un langage irrégulier.	S L'énoncé de la question est absurde.
$\exists L < L_1 .$	h Il manque des données dans l'énoncé pour
	pouvoir répondre à la question.
correcte.	
pour prouver qu'un automate étendu avec deux états une spécification (P,Q) .	
a La post-condition doit être impliquée par la con	dition d'un seul état terminal.
La post-condition est la condition Q.	dition de chaque des états terminaur
■ La post-condition doit être impliquée par la con d Aucune des affirmations concernant post-conditi	
e Toutes les affirmations concernant post-conditio	
É L'énoncé de la question est absurde.	n som correctes.
Il manque des données dans l'énoncé pour pouve	oir répondre à la question.
$L \neq L'$. On peut trouver un automate d'états fini non de On peut utiliser le lemme de l'itération sur L . On peut trouver un automate d'états fini détern d On peut trouver deux langages réguliers L_1 et L e Aucune des affirmations concernant L n'est corr L Toutes les affirmations concernant L sont correct L L'énoncé de la question est absurde. L'enoncé pour pouver L l'indicate L l'indic	niniste qui reconnaît L . L_2 tels que $L_1 \subset L \subset L_2$. recte. retes. oir répondre à la question.
Question 5 (0,5 points) Soit A un automate co	mplet sur un alphabet Σ .
\blacksquare A est tel que son exécution est définie pour	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
chaque mot de Σ^* .	correcte.
b A reconnaît un langage complet. ☐ A reconnaît un langage complet.	f Toutes les affirmations concernant A sont correctes.
 ☑ A est tel que tous ses états sont accepteurs. ☑ A reconnaît le langage universel. 	 Eléction Eléction L'énoncé de la question est absurde. Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 6 (0,5 points) Soit L un langage com	plet sur un alphabet Σ .
\fbox{a} L est le langage universel. \fbox{b} L'exécution de L est définie pour chaque mot	$\stackrel{ ext{ e}}{ ext{ }}$ Aucune des affirmations concernant L n'est correcte.

de Σ^* .

 $\boxed{\mathtt{C}}\ L$ reconnaît un langage déterministe.

 $\begin{tabular}{l} \hline d \end{tabular} L$ a tous ses états accepteurs.

 $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont cor-

h Il manque des données dans l'énoncé pour

L'énoncé de la question est absurde.

pouvoir répondre à la question.

Question 7 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- b L'automate représenté dans la Figure 3e est équivalent.
- C Aucun des automates n'est équivalent.
- d Il est absurde de parler d'équivalence entre automates.
- e L'automate représenté dans la Figure 3c est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- [8] L'automate représenté dans la Figure 3b est équivalent.
- h Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\mathbf{a}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- L'automate résultant est représenté dans la Figure 2d.
- C L'automate résultant est représenté dans la Figure 2b.
- d Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- e L'automate résultant est représenté dans la Figure 2c.
- $\boxed{\mathbf{f}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- El Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- h L'automate résultant est représenté dans la Figure 2e.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- b L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- f Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \boxed{b} Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- f Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- Celui de la Figure 4e correspond.
- b Celui de la Figure 4d correspond.
- © Celui de la Figure 4c correspond.
- d Celui de la Figure 4b correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- b L'automate de départ était minimal.
- C L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- \square Il n'est pas nécessaire de calculer \equiv_3 .
- d L'automate de départ n'était pas minimal.
- e L'automate de départ était minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- \overline{a} Figure 7a correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- © Figure 7d correspond à la minimisation de A.
- $\overline{\mathbf{d}}$ Figure 7b correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons L_2 .

- La cim de L_2 est 2. b La cim de L_2 est 3. c La cim de L_2 est 1.
- d 1 est une ci pour L_2 . E La cim de L_2 est 0. I 10 est une ci pour L_2 .
- B Aucune des ci données n'est correcte. h Toutes les ci données sont correctes.
 - $\boxed{\mathrm{i}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 20 \clubsuit (1 points) Nous considérons le langage L_3 .

- - $\blacksquare 10 \text{ est une ci pour } L_3. \qquad \boxed{\textbf{e}} \quad \text{La cim de } L_3 \text{ est 4.}$
- - \blacksquare Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 21 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 (3 points) Démontrer que L_1 est non régulier.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
		11	24	104	204	04			1	14	24	194	254	94	
a	14	134	234	134	234	34	34	a	14	134	234	14	234	34	34
a b							\vdash	a b	1						
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

 $Figure \ 3-Des \ automates \ pour \ la \ déterminisation. \ Dans \ la \ représentation \ tabulaire, les \ états \ sont \ en \ colonnes, les \ symboles \ en \ lignes, les \ étoiles \ marquent \ les \ états \ accepteurs.$

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
 (b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'ee~acad\'emique~2016/2017} \end{array}$

Feuille(s) de réponses

O 1 2 3 4 5 6 7 8 9 Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite. O 1 2 3 4 5 6 7 8 9 Numéro d'anonymat : O 1 2 3 4 5 6 7 8 9	
Question $1: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$	
Question 2: Call ef gh	
Question 3: a defg	
Question 4: defe	
Question 5: b c d e f g h	
Question 6: a b c d e f h	
Question 7: a C d	
Question 8: e e f	
Question 9: a b c d e E E h	
Question 10: a C d e f g h	
Question 11: b d e f	
Question 12: a b c \blacksquare e f $\mathbb S$	
Question 13: a b \blacksquare \blacksquare f \blacksquare h i j	
Question 14: ■ b c d e f g h	
Question 15: a b c f g h	
Question 16: a \blacksquare c d e f \blacksquare	
Question 17: a C d e f S h	
Question 18: a \blacksquare \blacksquare e f Ξ h	
Question 19: ■ b c d e ■ g h i	
Question 20: a ■ c ■ e f g h	
Question 21 : donner c ex f Reservé en	seignant
Question 22 : donner ex f Reservé en	seignant

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole ♣ peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L a tous ses états accepteurs.
- b L'exécution de L est définie pour chaque mot de Σ^* .
- \square L est le langage universel.
- d L reconnaît un langage déterministe.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OK

Figure 1 – Comment marquer une case.

Question 2 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 (0,5 points) Soit A un automate complet sur un alphabet Σ .

a	A	reconnaît	le.	langage	universel
~	2 L	rccomman	10	langage	um verser.

- **b** A est tel que tous ses états sont accepteurs.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- d A reconnaît un langage complet.
- \blacksquare Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- a La post-condition doit être impliquée par la condition d'un seul état terminal.
- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- B Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a $|L| < |L_1|$.
- L est un langage régulier.
- L contient le langage vide.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- \boxed{b} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- On peut utiliser le lemme de l'itération sur L.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- g L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- L'automate représenté dans la Figure 3d est équivalent.
- b Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- C L'automate représenté dans la Figure 3c est équivalent.
- d Il est absurde de parler d'équivalence entre automates.
- e L'automate représenté dans la Figure 3b est équivalent.
- f L'automate représenté dans la Figure 3e est équivalent.
- Aucun des automates n'est équivalent.
- h Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- b L'automate résultant est représenté dans la Figure 2e.
- \square Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- d Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- e L'automate résultant est représenté dans la Figure 2b.
- L'automate résultant est représenté dans la Figure 2d.
- El L'automate résultant est représenté dans la Figure 2c.
- $\boxed{\mathbf{h}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- **b** Celui de la Figure 4c correspond.
- © Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \Box Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- d Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- f Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [j] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ n'était pas minimal.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- d L'automate de départ était minimal.
- e Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ était minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ était minimal.
- L'automate de départ n'était pas minimal.
- d L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\text{a}}$ $\overline{\text{Figure 7b}}$ correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- $\boxed{\mathbf{f}}$ Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (3 points) Démontrer que L_1 est non régulier.

Question 20 \clubsuit (1 points) Nous considérons L_2 .

- a La cim de L_2 est 1. b La cim de L_2 est 0. c La cim de L_2 est 3. d 1 est une ci pour L_2 . d 10 est une ci pour L_2 . d La cim de L_2 est 2. E Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. i Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

- f Aucune des ci données n'est correcte. \Box Toutes les ci données sont correctes. \Box Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b							\vdash	a b	1	<u> </u>					\vdash
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

culer une expression régulière.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_{1} = bX_{5} \\ X_{2} = aX_{1} + aX_{5} + bX_{3} \\ X_{3} = bX_{2} \\ X_{4} = aX_{2} + aX_{4} + \epsilon \\ X_{5} = bX_{4} \end{cases} \begin{cases} X_{1} = aX_{2} \\ X_{2} = bX_{3} + aX_{4} \\ X_{3} = aX_{2} \\ X_{4} = aX_{4} + bX_{5} + \epsilon \\ X_{5} = bX_{1} + aX_{2} \end{cases} \begin{cases} X_{1} = aX_{2} \\ X_{2} = bX_{3} + aX_{4} \\ X_{3} = aX_{2} \\ X_{4} = aX_{4} + bX_{5} \\ X_{5} = bX_{1} + aX_{2} + \epsilon \end{cases}$$
(e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9

- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonymat :	

Question $1: a b c d e f \blacksquare h$

Question $2 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 3: a b def gh

Question 4: a \blacksquare d e f $\mathbb S$

Question $5: \boxed{\mathbf{a}} \quad \boxed{\mathbf{c}} \quad \boxed{\mathbf{d}}$

Question $6: \mathbb{A} \square \mathbb{G} \square \mathbb{G} \mathbb{G}$

Question $7: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $8: \blacksquare \ b \blacksquare \ \blacksquare \ e \ f \ g \ h$

Question $9: \blacksquare$ b c d e f g h

Question 10: a b c d e B B h

Question 11: a
definition

Question 12: a b c e f g h

Question 13: a b c e f g

Question 14: \blacksquare \blacksquare \Box \Box \Box \blacksquare \Box \Box \Box \Box \Box

Question 15 : \blacksquare b c d e f \blacksquare

Question 16: a b ■ ■ f g h

Question 17: a b \blacksquare d \blacksquare f g h

Question 18: a
c d e f g h

Question 19:	f 🗹 🖸 Reservé enseignant
en utilisant le lemme de l'itération	
Question 20: a b c d m g h i	
Question 21: ■ b c ■ e f g h	
Question 22:	donner ex [f] 🔳 Reservé enseignant
Question 23:	onner c ex f 🔳 Reservé enseignant
Question 24:	Reservé enseignant

INF 302: Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de colorier entièrement les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo noir. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

(0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques $(L = L_1 \setminus L_2)$. Rappel : |L| dénote le cardinal du langage L.

- a L est un langage irrégulier.
- L contient le langage vide.
- \blacksquare L est un langage régulier.
- d $|L| < |L_1|$.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK

Figure 1 – Comment marguer une case.

Question 2 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{b}}$ A reconnaît un langage complet.
- C A reconnaît le langage universel.
- \boxed{d} A est tel que tous ses états sont accepteurs.
- \fbox{e} Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L'exécution de L est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{b}}$ L a tous ses états accepteurs.
- $\boxed{\mathbf{d}}$ L reconnaît un langage déterministe.
- $oxed{e}$ Aucune des affirmations concernant L n'est correcte
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \boxed{a} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut utiliser le lemme de l'itération sur L.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- $\boxed{\mathrm{e}}$ Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- **b** Cette affirmation est fausse.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- C La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- **b** Aucun des automates n'est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- d L'automate représenté dans la Figure 3c est équivalent.
- e Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- f L'automate représenté dans la Figure 3e est équivalent.
- g Il est absurde de parler d'équivalence entre automates.
- h L'automate représenté dans la Figure 3b est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\textbf{a}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- $\boxed{\mathbf{b}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- $\boxed{\mathbb{C}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- d Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- e L'automate résultant est représenté dans la Figure 2e.
- L'automate résultant est représenté dans la Figure 2d.
- B L'automate résultant est représenté dans la Figure 2b.
- h L'automate résultant est représenté dans la Figure 2c.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5b correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- **b** Celui de la Figure 4b correspond.
- © Celui de la Figure 4c correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

		1*	2*	3*	4*	5*	6
	a	2	2	3	3	6	6
	b	3	3	4	4	6	6
Γ	c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- \boxed{b} Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7d correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- [f] Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- C L'exécution de l'algorithme n'est pas finie.
- L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ était minimal.
- c L'automate résultant de la minimisation aura le même nombre d'états.
- d Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- d L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ était minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 20 (3 points) Démontrer que L_1 est non régulier.

Question 21 \clubsuit (1 points) Nous considérons L_2 .

- In the large L_2 and L_2 est L_2 est L_2 est L_2 est L_2 est L_3 end L_4 est L_4 est L_5 est L_6 end L_7 est L_8 est L_8 est L_9 est L
- Aucune des ci données n'est correcte. h Toutes les ci données sont correctes.
 - $\boxed{\mathbf{i}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 22 \clubsuit (1 points) Nous considérons le langage L_3 .

- La cim de L_3 est 5.
 10 est une ci pour L_3 .
 C La cim de L_3 est 3.
 D La cim de L_3 est 4.
 D 3 est une ci pour L_3 .
 D Aucune des ci données n'est correcte.
 D Toutes les ci données sont correctes.
 D Il manque des données dans l'énoncé pour déterminer la cim de L_3 .
 - in manque des données dans l'enonce pour déterminer la chir de L3

Question 23 (0.5 points) Donner un mot dans L_1 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	134	24*	134* 134	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b							\perp	a b	1						=
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

culer une expression régulière.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(a	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9	

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonymat :							

Question $1: \mathbb{A} \blacksquare \blacksquare \mathbb{G} \oplus \mathbb{F} \oplus \mathbb{F}$

Question $2 : \blacksquare$ b c d e f g h

Question $3: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e

Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 5: a b c d e f h

Question $6: \mathbb{A} \blacksquare \blacksquare \blacksquare \mathbb{B}$ e f \mathbb{B} h

Question $7 : \blacksquare \ b \ c \ d$

Question $8 : \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question 9: a b def gh

Question $10: a b c d e \blacksquare g h$

Question 11: a b c le f g

Question 12: a b c e f g h

Question $14: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question 15: a b \blacksquare d e f g h

Question 16: \boxed{a} \boxed{c} \boxed{m} \boxed{f} \boxed{g} \boxed{h}

Question 17:

b c d e f g

Question 18: a
defigh

Question 19:

donner c ex f Reservé enseignant

Question 20:	f pf pj	Reservé enseignant
en utilisant le lemme de l'itération		
Question 21: ■ b c ■ e f g h i		
Question 22: © d e f g h		
Question 23:	nner ex f	Reservé enseignant
Question 24:		Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marguer une case.

28:
Question 2 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q) .
La post-condition est la condition Q .
b La post-condition doit être impliquée par la condition d'un seul état terminal.
■ La post-condition doit être impliquée par la condition de chacun des états terminaux.
d Aucune des affirmations concernant post-condition n'est correcte.
e Toutes les affirmations concernant post-condition sont correctes.
f L'énoncé de la question est absurde.
Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 3 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.
\blacksquare On peut utiliser le lemme de l'itération sur L .
On peut trouver un automate d'états fini déterministe qui reconnaît L.

- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- l Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- e Aucune des affirmations concernant A n'est a A est tel que tous ses états sont accepteurs. correcte. A est tel que son exécution est définie pour
- C A reconnaît un langage complet.

chaque mot de Σ^* .

- d A reconnaît le langage universel.
- f Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- **b** Cette affirmation est fausse.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 ♣ (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques $(L = L_1 \setminus L_2)$. Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L est un langage régulier.
- \blacksquare L contient le langage vide.
- d $|L| < |L_1|$.
- $\boxed{\mathrm{e}}$ Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L reconnaît un langage déterministe.
- $\boxed{\mathbf{b}}$ L a tous ses états accepteurs.
- $\boxed{\mathbf{d}}$ L'exécution de L est définie pour chaque mot de Σ^* .
- \blacksquare Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3b est équivalent.
- **b** Il est absurde de parler d'équivalence entre automates.
- C L'automate représenté dans la Figure 3c est équivalent.
- d Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- El Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- [f] L'automate représenté dans la Figure 3e est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- h Aucun des automates n'est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2e.
- \boxed{b} Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- \boxed{c} Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- d L'automate résultant est représenté dans la Figure 2c.
- L'automate résultant est représenté dans la Figure 2d.
- Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- B L'automate résultant est représenté dans la Figure 2b.
- h Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- Celui de la Figure 4e correspond.
- **b** Celui de la Figure 4b correspond.
- © Celui de la Figure 4c correspond.
- d Celui de la Figure 4d correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- f Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \square Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- 🗓 Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5c correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- [f] Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ était minimal.
- L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- C L'exécution de l'algorithme n'est pas finie.
- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- b L'automate de départ était minimal.
- \boxed{c} Il n'est pas nécessaire de calculer \equiv_3 .
- d L'automate de départ n'était pas minimal.
- L'exécution de l'algorithme n'est pas finie.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

		1*	2*	3*	4*	5*	6
	a	2	2	3	3	6	6
ľ	b	3	3	4	4	6	6
	c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\text{a}}$ $\overline{\text{Figure 7d correspond à la minimisation de } A.$
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- $\boxed{\mathbf{f}}$ Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 20 \clubsuit (1 points) Nous considérons L_2 .

- \Box Adduine des ci données il est correcte. \Box Fourtes les ci données sont correct \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

- aLa cim de L_3 est 4.■ La cim de L_3 est 5.© 3 est une ci pour L_3 .■ 10 est une ci pour L_3 .eLa cim de L_3 est 3.
- f Aucune des ci données n'est correcte.

 B Toutes les ci données sont correctes.

 Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 (3 points) Démontrer que L_1 est non régulier.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

14 14 204 14 204 24 24 24 24 204			
a 14 14 234 14 234 34 34 a 14 134 234	.4 234	34	34
b 24 24 234 24 24 4 4 b 24 24 24	24 24	4	4
c 4 24 34 234 4 4 6 4 4 4	34 234	34	4
(b) (c)			
1* 14* 24* 134* 234* 34* 4 1* 14* 24* 1	34* 234*	34*	4
a 14 134 234 134 234 34 34 a 14 134 234	.4 234	34	34
b 24 24 24 24 24 4 4 b 24 24 234	24 24	4	4
c 4 24 34 234 34 4 c 4 4 4	34 234	4	4

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
(a)				(b)			(0	c)			(d)		

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'ee~acad\'emique~2016/2017} \end{array}$

Feuille(s) de réponses

edific(b) de repolíbes	
	tre numéro d'anonymat ci-contre ez le manuellement dans la boite.
0 1 2 3 4 5 6 7 8 9	Numéro d'anonymat :
0 1 2 3 4 5 6 7 8 9	Transfer d anonymate.
0 1 2 3 4 5 6 7 8 9	
Question $1: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$	
Question $2: \blacksquare$ b \blacksquare d e f \blacksquare	
Question $3: \blacksquare \blacksquare \bigcirc \blacksquare $ e f \blacksquare h	
Question 4: a \blacksquare C d e f \blacksquare h	
Question $5: \blacksquare$ b \bigcirc d	
Question $6: \blacksquare \blacksquare$ $ \bigcirc $	
Question $7: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f	
Question 8: a b c d e f h	
Question 9: a b c d e f \blacksquare h	
Question 10: a b c d ■ f g h	
Question 11 : \blacksquare b c d e f g h	
Question 12: e f g h i	
Question 13: a \blacksquare d e f	
Question 14: a b c ■ e f g	
Question 15: a b ■ e f g h	
Question 16: a \blacksquare c \blacksquare f \blacksquare h	
Question 17: $ a b c d \blacksquare f $	
Question 18: $a \blacksquare c d e f g h$	
Question 19:	donner c ex $\boxed{\mathbf{f}}$ $\boxed{\mathbf{n}}$ Reservé enseignant
Question 20: a C d e S h i	
Question 21 : a ■ c ■ e f g h	
Question 22:	donner ex [f] 🔳 Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraîne la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ L a tous ses états accepteurs.
- b L est le langage universel.
- d L reconnaît un langage déterministe.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) Ol

Figure 1 – Comment marquer une case.

(0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P, Q). La post-condition doit être impliquée par la condition de chacun des états terminaux. La post-condition doit être impliquée par la condition d'un seul état terminal. La post-condition est la condition Q. d Aucune des affirmations concernant post-condition n'est correcte. [e] Toutes les affirmations concernant post-condition sont correctes. f L'énoncé de la question est absurde. Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 (0.5 points) Soit A un automate complet sur un alphabet Σ .

a A reconnaît le langage universel.	$\cent{@}$ Aucune des affirmations concernant A n'est
b A est tel que tous ses états sont accepteurs. \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .	correcte. f Toutes les affirmations concernant A sont correctes. l L'énoncé de la question est absurde

h Il manque des données dans l'énoncé pour

pouvoir répondre à la question.

(0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques $(L = L_1 \setminus L_2)$. Rappel : |L| dénote le cardinal du langage L.

L est un langage régulier. $ L < L_1 $.	f Toutes les affirmations concernant L sont correctes.
L contient le langage vide.	g L'énoncé de la question est absurde.h Il manque des données dans l'énoncé pour
$\overline{\mathbf{d}}$ L est un langage irrégulier.	nouvoir répondre à la question

(0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le Question 5 lemme de l'itération".

a Cette affirmation est fausse.	© L'affirmation est absurde.
Cette affirmation est vraie.	d Il manque des données dans l'énoncé pour
	pouvoir répondre à la question.

Question 6 & (0.5 points) Soit L un langage régulier quelconque. Rappel: $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \boxed{b} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut utiliser le lemme de l'itération sur L.

- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.

d A reconnaît un langage complet.

correcte.

l Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ε-transitions, après avoir appliqué possiblement l'algorithme de suppression des ε-transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3e est équivalent.
- b Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- L'automate représenté dans la Figure 3d est équivalent.
- d Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- e Il est absurde de parler d'équivalence entre automates.
- f Aucun des automates n'est équivalent.
- El L'automate représenté dans la Figure 3c est équivalent.
- h L'automate représenté dans la Figure 3b est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\mathbf{a}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- b L'automate résultant est représenté dans la Figure 2e.
- © L'automate résultant est représenté dans la Figure 2b.
- d Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- $\boxed{\textbf{e}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- L'automate résultant est représenté dans la Figure 2d.
- El L'automate résultant est représenté dans la Figure 2c.
- h Il est absurde de parler de suppression des ϵ -transitions pour un automate.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5b correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4c correspond.
- **b** Celui de la Figure 4b correspond.
- © Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \Box Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- e Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- f Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- \boxed{a} L'expression régulière associée à cet automate est $X_2=(aab^*a+b+ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- C L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- b Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate de départ était minimal.
- d L'automate de départ n'était pas minimal.
- El L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- b L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- d L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- \boxed{b} Figure 7b correspond à la minimisation de A.
- \square Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{f}}$ Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 \clubsuit (1 points) Nous considérons L_2 .

- a 1 est une ci pour L_2 . b La cim de L_2 est 1. La cim de L_2 est 2.

 10 est une ci pour L_2 . e La cim de L_2 est 3. f La cim de L_2 est 0.

 S Aucune des ci données n'est correcte. h Toutes les ci données sont correctes.
- \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 21 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 22 (3 points) Démontrer que L_1 est non régulier.

Question 23 \clubsuit (1 points) Nous considérons le langage L_3 .

- La cim de L_3 est 3. C La cim de L_3 est 4. La cim de L_3 est 5. C La cim de L_3 est 4. Aucune des ci données n'est correcte.
 - Toutes les ci données sont correctes.
 - $\boxed{\mathbb{h}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4			
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34			
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4			
c		4	24	34	234	4	4	c		4	4	34	234	34	4			
	(b)								(c)									
	II						$\overline{}$											
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4			
a	14	134	24*	134*	234*	34*	34	a	1*	134	234	134*	234*	34*	34			
a b							\vdash	a b	1						\sqsubseteq			
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34			

FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
(a)					(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

donner ex **f n** Reservé enseignant

Examen de seconde session du 27/06/2017 INF 302 : Langages et Automates Licence Sciences et Technologies, 2ième année Année académique 2016/2017 Feuille(s) de réponses 0 1 2 3 4 5 6 7 8 9 Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Numéro d'anonymat : 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Question 1: a b c d e f \blacksquare hQuestion $2 : \blacksquare b \blacksquare d e f g$ Question 3: a b d e f g h Question $4 : \blacksquare b \blacksquare d e f g h$ Question $5: \boxed{\mathbf{a}} \quad \boxed{\mathbf{c}} \quad \boxed{\mathbf{d}}$ Question $6: \blacksquare \ b \blacksquare \ \blacksquare \ e \ f \ g \ h$ Question $7: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Question $8 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Question 9: a b def gh Question $10: a b c d e \blacksquare g h$ Question 11: a b c le f g Question 12: a b c e f g h Question 14: a def Question 15: \blacksquare \blacksquare \Box \blacksquare \boxdot \blacksquare \blacksquare \blacksquare **Question 16 :** ■ b c d e f g ■ Question 17: a b \blacksquare d \blacksquare f g hQuestion 18: a b c e f g h

Question 20 : a b ■ e f g h i

Question 21 : donner c ex f ■ Reservé enseignant

Question 19:

Question 22:	f pf pj	Reservé enseignant
en utilisant le lemme de l'itération		
Question 23: ■ b c ■ e f g h		
Question 24:		Reservé enseignant
	<u> </u>	

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ A est tel que tous ses états sont accepteurs.
- **b** A reconnaît un langage complet.
- C A reconnaît le langage universel.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- \fbox{e} Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OF

FIGURE 1 – Comment marquer une case.

Question 2	(0,5 points)	Soit L un langa	ge complet sur	un alphabet Σ .
------------	---------------	-------------------	----------------	------------------------

e Aucune des affirmations concernant L n'est a L a tous ses états accepteurs. b L reconnaît un langage déterministe. f Toutes les affirmations concernant L sont cor-C L'exécution de L est définie pour chaque mot rectes. de Σ^* . L'énoncé de la question est absurde. d L est le langage universel. h Il manque des données dans l'énoncé pour pouvoir répondre à la question. (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate

Question 3 ♣ vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- f Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- La post-condition est la condition Q.
- C La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- [8] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

Cette affirmation est vraie.	© L'affirmation est absurde.
b Cette affirmation est fausse.	d Il manque des données dans l'énoncé pour
	pouvoir répondre à la question.

Question 6 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- f Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L contient le langage vide.
- $|L| < |L_1|$.
- \blacksquare L est un langage régulier.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- \blacksquare On peut utiliser le lemme de l'itération sur L.
- d On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- f Toutes les affirmations concernant L sont correctes.
- [8] L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2e.
- $\boxed{\mathbf{b}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- $\boxed{\mathbb{C}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- d Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- L'automate résultant est représenté dans la Figure 2d.
- [f] L'automate résultant est représenté dans la Figure 2c.
- B L'automate résultant est représenté dans la Figure 2b.
- h Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- L'automate représenté dans la Figure 3d est équivalent.
- b L'automate représenté dans la Figure 3c est équivalent.
- C Aucun des automates n'est équivalent.
- d Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- e L'automate représenté dans la Figure 3e est équivalent.
- [f] Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- B L'automate représenté dans la Figure 3b est équivalent.
- h Il est absurde de parler d'équivalence entre automates.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- Celui de la Figure 4e correspond.
- **b** Celui de la Figure 4d correspond.
- © Celui de la Figure 4b correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5c correspond.
- C Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- El II manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \Box Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- d Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- 🗓 Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ était minimal.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7d correspond à la minimisation de A.
- \boxed{b} Figure 7a correspond à la minimisation de A.
- \blacksquare Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7b correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- b L'automate de départ était minimal.
- \square Il n'est pas nécessaire de calculer \equiv_3 .
- d L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- d L'automate de départ n'était pas minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 4 (1 points) Nous considérons L_2 .

- a La cim de L_2 est 1.
- d 1 est une ci pour L_2 . La cim de L_2 est 2.
- Aucune des ci données n'est correcte. h Toutes les ci données sont correctes.
 - \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 20 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 21 ♣ (1 points) Nous considérons le langage L_3 .

- La cim de L_3 est 5. 10 est une ci pour L_3 . \Box 3 est une ci pour L_3 .
- e La cim de L_3 est 3. f Aucune des ci données n'est correcte. d La cim de L_3 est 4. g Toutes les ci données sont correctes.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

(3 points) Démontrer que L_1 est non régulier. Question 22

Question 23 (0.5 points) Donner un mot dans L_1 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
С		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14* 134	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a								a b	1						=
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2		\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1		1	1	1	1	1	1	1
2	2	2	2	2	2	2		2	2	2	2	2	2	2
3	3	3	3	3	3	3		3	3	3	3	3	3	3
4	4	4	4	4	4	4		4	4	4	4	4	4	4
5	5	5	5	5	5	5		5	5	5	5	5	5	5
6	6	6	6	6	6	6		6	6	6	6	6	6	6
	(8	a)		(b)					(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonymat :

0 1 2 3 4 5 6 7 8 9

Question 1: a b c le f g h

Question 2: a b c d e f h

Question $3: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f

Question $4: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question $5 : \blacksquare$ b \square d

Question $6: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 7: \blacksquare b c \blacksquare e f \blacksquare h

Question 8:

defines

In the second
Question 9: a b c d f g h

Question $10: \blacksquare$ b c d e f g h

Question 11 : \blacksquare b c d e f g h

Question 12: a b c \blacksquare e f \blacksquare

Question $13 : \blacksquare \ b \ \blacksquare \ d \ e \ f$

Question 14: $a \ \blacksquare \ c \ d \ \blacksquare \ \blacksquare \ h \ i \ j$

Question 15: a b c
f g h

Question 16: a b d e f g h

Question 17: a b c d ■ f g ■

Question 18 : a \blacksquare \blacksquare d \blacksquare f \blacksquare h

Question 19: a b c d **I g** h i

Question 20:

donner c ex f 🔳 Reservé enseignant

Question $21: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question 22:	f pi pi	Reservé enseignant
en utilisant le lemme de l'itération		
Question 23:	donner ex f	Reservé enseignant
Question 24:		Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- a La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- [e] Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OK

FIGURE 1 – Comment marquer une case.

Question 2 (0,5 points) Soit L un langage complet sur un alphabet Σ .	Question 2	(0,5 points)	Soit L un	langage comple	t sur un alphabet Σ .
--	------------	---------------	-------------	----------------	------------------------------

- a L est le langage universel.
- $\boxed{\mathbf{b}}$ L a tous ses états accepteurs.
- d L reconnaît un langage déterministe.
- \blacksquare Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- $\[a \]$ A reconnaît le langage universel.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{d}}$ A est tel que tous ses états sont accepteurs.
- \blacksquare Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- On peut utiliser le lemme de l'itération sur L.
- © On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- $\boxed{\mathrm{e}}$ Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- **b** Cette affirmation est fausse.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a L est un langage irrégulier.
- $|L| < |L_1|$.
- \blacksquare L contient le langage vide.
- \blacksquare L est un langage régulier.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- 🗵 L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3b est équivalent.
- b L'automate représenté dans la Figure 3c est équivalent.
- C Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- d Il est absurde de parler d'équivalence entre automates.
- e L'automate représenté dans la Figure 3e est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- B Aucun des automates n'est équivalent.
- h Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\mathbf{a}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- b L'automate résultant est représenté dans la Figure 2e.
- © Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- L'automate résultant est représenté dans la Figure 2d.
- \fbox{e} Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- f L'automate résultant est représenté dans la Figure 2b.
- \square Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- h L'automate résultant est représenté dans la Figure 2c.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- f Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \square Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- [i] Tous les équations données sont correctes.
- [J] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- **b** Celui de la Figure 4c correspond.
- © Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a Il n'est pas nécessaire de calculer \equiv_3 .
- **b** L'automate résultant de la minimisation aura le même nombre d'états.
- C L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- L'exécution de l'algorithme n'est pas finie.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7b correspond à la minimisation de A.
- \square Figure 7a correspond à la minimisation de A.
- $\overline{\mathbf{d}}$ Figure 7d correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 21 🌲 (1 points) Nous considérons L_2 .

- La cim de L_2 est 2. a 1 est une ci pour L_2 . \Box La cim de L_2 est 0. d La cim de L_2 est 1. 10 est une ci pour L_2 . f La cim de L_2 est 3. h Toutes les ci données sont correctes. B Aucune des ci données n'est correcte. \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .
- Question 22 (3 points) Démontrer que L_1 est non régulier.

Question 23 4 (1 points) Nous considérons le langage L_3 .

- [a] La cim de L_3 est 3. La cim de L_3 est 5. \blacksquare 10 est une ci pour L_3 . d La cim de L_3 est 4. g Toutes les ci données sont correctes.
 - $\boxed{\mathbb{h}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Champ Libre

Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1^	14*	24*	134*	234*	34↑	4		1↑	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1 *	1.14	2.4%	40.4%	20.44	0.4*	4		1*	1.4*	0.1*	19.4*	20.44	0.4*	
	1*	14*	24*	134*	234*	34*	$\lfloor 4 \rfloor$		1*	14*	24*	134*	234*	34*	4
a	14	134	$\begin{array}{ c c }\hline 24^* \\ \hline 234 \\ \hline \end{array}$	134*	234*	34	34	a	14	134	234	134"	234*	34	34
a b							\vdash	a b	1						\perp
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

 $Figure \ 3-Des \ automates \ pour \ la \ déterminisation. \ Dans \ la \ représentation \ tabulaire, les \ états \ sont \ en \ colonnes, les \ symboles \ en \ lignes, les \ étoiles \ marquent \ les \ états \ accepteurs.$

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(a	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

donner c ex f Reservé enseignant

Examen de seconde session du 27/06/2017 INF 302 : Langages et Automates Licence Sciences et Technologies, 2ième année Année académique 2016/2017 Feuille(s) de réponses 0 1 2 3 4 5 6 7 8 9 Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Numéro d'anonymat : 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Question $1: a \blacksquare \blacksquare d e f g$ Question 2: a b c d e f h Question $3: \mathbb{A} \quad \square \quad \mathbb{C} \quad \mathbb{A} \quad \mathbb{E} Question $4: \blacksquare \blacksquare \bigcirc \blacksquare \boxdot \boxdot \boxdot \blacksquare$ Question $5 : \blacksquare \ \boxed{b} \ \boxed{c} \ \boxed{d}$ Question $6: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Question 7: a b
e f g h Question $8 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Question 9: a b c d e g h Question $10: a b c \blacksquare e f g h$ Question 11: a b c le f g Question 13: a def Question 14: a b c e f g h Question 15: a b c d f g Question 18: a b **E E** f g h Question 19: donner ex f Reservé enseignant

Question 21: a
© d
f
g h i

Question 20:

Question 22:	f P Reservé enseignant
en utilisant le lemme de l'itération	
Question 23: a \blacksquare \blacksquare d e f g h	
Question 24:	Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

Question 2 \clubsuit (0,5 points) Soit L un langage ré $L \neq L'$. On peut trouver un automate d'états fini détern On peut trouver un automate d'états fini non de On peut utiliser le lemme de l'itération sur L . d On peut trouver deux langages réguliers L_1 et L e Aucune des affirmations concernant L n'est correct Toutes les affirmations concernant L sont correct L L'énoncé de la question est absurde. la ll manque des données dans l'énoncé pour pouverte.	éterministe qui reconnaît L . L_2 tels que $L_1 \subset L \subset L_2$. L_2 . L_3 . L_4 etes.
Question 3 ♣ (0,5 points) Nous considérons la pour prouver qu'un automate étendu avec deux états une spécification (P,Q). a La post-condition doit être impliquée par la con La post-condition est la condition Q. La post-condition doit être impliquée par la con d. Aucune des affirmations concernant post-condition E. Toutes les affirmations concernant post-condition f. L'énoncé de la question est absurde. El Il manque des données dans l'énoncé pour pouve	dition d'un seul état terminal. dition de chacun des états terminaux. ion n'est correcte. in sont correctes.
Question 4 ♣ (0,5 points) Nous nous intéressons vers une expression régulière en associant un système ☐ Cette méthode peut être appliquée sur les autor ☐ Cette méthode peut être appliquée sur les autor ☐ Cette méthode peut être appliquée sur les autor ☐ Toutes les affirmations concernant la méthode se ☐ L'énoncé de la question est absurde. ☐ Il manque des données dans l'énoncé pour pouve	mates déterministes. mates non-déterministes et avec ϵ -transitions. mates non-déterministes et sans ϵ -transitions. ont correctes.
Question 5 (0,5 points) Nous considérons l'afflemme de l'itération".	firmation "Tous les langages réguliers satisfont le
Cette affirmation est vraie.Cette affirmation est fausse.	© L'affirmation est absurde. d Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 6 (0,5 points) Soit L un langage com	plet sur un alphabet Σ .
 a L est le langage universel. b L a tous ses états accepteurs. c L'exécution de L est définie pour chaque mot de Σ*. d L reconnaît un langage déterministe. 	 e Aucune des affirmations concernant L n'est correcte. f Toutes les affirmations concernant L sont correctes. ■ L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{b}}$ A est tel que tous ses états sont accepteurs.
- C A reconnaît le langage universel.
- d A reconnaît un langage complet.
- \fbox{e} Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- $\boxed{\mathbf{a}}$ L est un langage irrégulier.
- $|L| < |L_1|$.
- \blacksquare L est un langage régulier.
- \blacksquare L contient le langage vide.
- \blacksquare Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- 🗵 L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- **b** L'automate représenté dans la Figure 3c est équivalent.
- C L'automate représenté dans la Figure 3e est équivalent.
- d Il est absurde de parler d'équivalence entre automates.
- L'automate représenté dans la Figure 3d est équivalent.
- [f] L'automate représenté dans la Figure 3b est équivalent.
- B Aucun des automates n'est équivalent.
- h Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- L'automate résultant est représenté dans la Figure 2d.
- b L'automate résultant est représenté dans la Figure 2c.
- $\boxed{\mathbb{C}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- d L'automate résultant est représenté dans la Figure 2e.
- \blacksquare Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- $\boxed{\mathbf{f}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- g L'automate résultant est représenté dans la Figure 2b.
- h Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- d Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- f Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [j] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- © Celui de la Figure 4b correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- El Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- e L'exécution de l'algorithme n'est pas finie.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- b Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- b L'automate de départ était minimal.
- L'automate de départ n'était pas minimal.
- d L'automate résultant de la minimisation aura le même nombre d'états.
- e L'exécution de l'algorithme n'est pas finie.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- \overline{a} Figure 7b correspond à la minimisation de A.
- \boxed{b} Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- $\boxed{\mathbf{f}}$ Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons L_2 .

- a La cim de L_2 est 1.
 I 10 est une ci pour L_2 .
 I La cim de L_2 est 2.
 I La cim de L_2 est 2.
 I La cim de L_2 est 0.
 I I manque des données dans l'énoncé pour déterminer la cim de L_2 .
- Question 20 (3 points) Démontrer que L_1 est non régulier.
- Question 21 (0.5 points) Donner un mot dans L_1 .
- Question 22 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 23 \clubsuit (1 points) Nous considérons le langage L_3 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	C		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	13		24*	134*	234*	34*	34
a b							\perp	a	1 1	134					=
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro	d'anon	ymat:	

Question $1 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $2: \blacksquare \blacksquare \blacksquare d e f g h$

Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $5 : \blacksquare \$ $\boxed{\mathbf{b}} \$ $\boxed{\mathbf{c}} \$ $\boxed{\mathbf{d}}$

Question 6: a b c d e f h

Question 7:

b c d e f g h

Question $8: \[a \] \[b \] \blacksquare \[e \] \[f \] \[g \] \[h \]$

Question $9: [a] [b] [c] [d] \blacksquare [f] [g] [h]$

Question $10: \blacksquare$ b c d e f g h

Question $11: \blacksquare \ b \blacksquare \ d \blacksquare \ f \blacksquare \ h \ i \ j$

Question $12 : \blacksquare \ b \blacksquare \ d \ e \ f$

Question 13: a Cdefgh

Question 14: a b c e f g

Question 15: $a \blacksquare \blacksquare \blacksquare$ e f g h

Question 16: bcdefg

Question $17 : \blacksquare \ b \blacksquare \ d \ e \ f \ g \ h$

Question 18: a b deffh

Question 19: a
defffighti

Question 20:	f 🗹 🖸 🗎 Reservé enseignant
en utilisant le lemme de l'itération	
Question 21:	donner ex f \blacksquare Reservé enseignant
Question 21:	donner ex f Reservé enseignant
Question 21:	donner ex f Reservé enseignant
Question 21: Question 22:	donner ex f \blacksquare Reservé enseignant donner c ex f \blacksquare Reservé enseignant
Question 22:	
Question 22: Question 23: ■ b C d ■ f g h	donner c ex f Reservé enseignant
Question 22 : Question 23 : ■ b C d ■ f S h	donner c ex f Reservé enseignant

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de colorier entièrement les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo noir. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

(0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques $(L = L_1 \setminus L_2)$. Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L est un langage régulier.
- L contient le langage vide.
- d $|L| < |L_1|$.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK

Figure 1 – Comment marguer une case.

Question 2 (0,5 points) Nous considérons l'affi lemme de l'itération".	irmation "Tous les langages réguliers satisfont le
Cette affirmation est vraie.Cette affirmation est fausse.	 C L'affirmation est absurde. d Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 3 ♣ (0,5 points) Nous considérons la repour prouver qu'un automate étendu avec deux états une spécification (P,Q). La post-condition est la condition Q. La post-condition doit être impliquée par la condition de la question de la question concernant post-condition de la question est absurde. L'énoncé de la question est absurde.	dition de chacun des états terminaux. dition d'un seul état terminal. on n'est correcte. n sont correctes.
Question 4 \clubsuit (0,5 points) Soit L un langage rég $L \neq L'$. On peut utiliser le lemme de l'itération sur L . On peut trouver un automate d'états fini déterm On peut trouver un automate d'états fini non dé d On peut trouver deux langages réguliers L_1 et L e Aucune des affirmations concernant L n'est correct Toutes les affirmations concernant L sont correct L L'énoncé de la question est absurde. L'enoncé des données dans l'énoncé pour pouve	eterministe qui reconnaît L . 2 tels que $L_1 \subset L \subset L_2$. ecte. tes.
Question 5 (0,5 points) Soit A un automate con	mplet sur un alphabet Σ .
 A est tel que son exécution est définie pour chaque mot de Σ*. A reconnaît le langage universel. A est tel que tous ses états sont accepteurs. A reconnaît un langage complet. 	 E Aucune des affirmations concernant A n'est correcte. f Toutes les affirmations concernant A sont correctes. S L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 6 (0,5 points) Soit L un langage comp	olet sur un alphabet Σ .
 a L est le langage universel. b L'exécution de L est définie pour chaque mot de Σ*. c L reconnaît un langage déterministe. d L a tous ses états accepteurs. 	 e Aucune des affirmations concernant L n'est correcte. f Toutes les affirmations concernant L sont correctes. L'énoncé de la question est absurde.

 $\begin{tabular}{l} \hline \end{tabular}$ Il manque des données dans l'énoncé pour

pouvoir répondre à la question.

Question 7 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ε-transitions, après avoir appliqué possiblement l'algorithme de suppression des ε-transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- L'automate résultant est représenté dans la Figure 2d.
- b Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- $\boxed{\mathbb{C}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- d Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- e L'automate résultant est représenté dans la Figure 2b.
- f L'automate résultant est représenté dans la Figure 2c.
- B L'automate résultant est représenté dans la Figure 2e.
- $\boxed{\mathbf{h}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- L'automate représenté dans la Figure 3d est équivalent.
- Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- © L'automate représenté dans la Figure 3c est équivalent.
- d Il est absurde de parler d'équivalence entre automates.
- e L'automate représenté dans la Figure 3e est équivalent.
- [f] Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- El L'automate représenté dans la Figure 3b est équivalent.
- h Aucun des automates n'est équivalent.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- **b** Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- d Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- 🗓 Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- b Celui de la Figure 5a correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- b L'automate résultant de la minimisation aura le même nombre d'états.
- \square Il n'est pas nécessaire de calculer \equiv_3 .
- d L'automate de départ était minimal.
- L'exécution de l'algorithme n'est pas finie.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate résultant de la minimisation aura le même nombre d'états.
- **b** L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- d L'automate de départ n'était pas minimal.
- L'automate de départ était minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- **b** L'automate résultant de la minimisation aura le même nombre d'états.
- C L'automate de départ était minimal.
- d L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- \fbox{a} Figure 7d correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- $\boxed{\mathbf{f}}$ Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (3 points) Démontrer que L_1 est non régulier.

Question 20 \clubsuit (1 points) Nous considérons le langage L_3 .

- - 10 est une ci pour L_3 .

 E La cim de L_3 est 3.
- Aucune des ci données n'est correcte.
 - $\boxed{\mathbf{h}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 21 \clubsuit (1 points) Nous considérons L_2 .

- 10 est une ci pour L_2 . La cim de L_2 est 2. C La cim de L_2 est 1.
- $\boxed{\mathbf{d}}$ 1 est une ci pour L_2 . $\boxed{\mathbf{e}}$ La cim de L_2 est 3. $\boxed{\mathbf{f}}$ La cim de L_2 est 0.
- Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. l Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	1.4*	0.4*	194*	99.4*	34*	1		1*	1.4*	0.4*	194*	00.4*	9.4*	1
	1	14*	24*	134*	234*	34	4		1"	14*	24*	134*	234*	34*	4
a	14	134	234	134	234	34	34	a	14	134	234	134	234	34	$\frac{4}{34}$
a b							\perp	a b	1						
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
(a)				(b)			(0	c)			(d)		

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonymat :								

Question $1: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question $2 : \blacksquare \ b \ c \ d$

Question $3: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question $4: \blacksquare \blacksquare \blacksquare d e f g h$

Question $5 : \blacksquare$ b c d e f g h

Question 6: a b c d e f \blacksquare h

Question $7: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $8 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 9:

b c d e f g h

Question 10:

b c d e f g h

Question 11: a b d e f g h

Question 12: $a \blacksquare \blacksquare d e \blacksquare \blacksquare h i j$

Question $13 : \blacksquare \ b \blacksquare \ d \ e \ f$

Question 14: a b c e f g

Question 15: $a b c d \blacksquare f g \blacksquare$

Question 16: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare

Question $17 : \blacksquare \ b \ c \ d \ \blacksquare \ f \ B \ h$

Question 18: a b deffh

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L est le langage universel.
- $\boxed{\mathbf{b}}$ L a tous ses états accepteurs.
- C L reconnaît un langage déterministe.
- d L'exécution de L est définie pour chaque mot de Σ^* .
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OF

FIGURE 1 – Comment marquer une case.

Cette affirmation est vraie.	© L'affirmation est absurde.
b Cette affirmation est fausse.	d Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 3 \clubsuit (0,5 points) Soit L un langage obt L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : $ L $ déno	enu par la différence entre deux langages réguliers et e le cardinal du langage L .
 a L est un langage irrégulier. b L < L₁ . ■ L contient le langage vide. ■ L est un langage régulier. e Aucune des affirmations concernant L n'est correcte. 	 f Toutes les affirmations concernant L sont correctes. E L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 4 \clubsuit (0,5 points) Nous considérons la pour prouver qu'un automate étendu avec deux états une spécification (P,Q) .	méthode de Floyd que nous souhaitons appliquer terminaux est partiellement correct par rapport à
 a La post-condition doit être impliquée par la cond ■ La post-condition est la condition Q. 	dition d'un seul état terminal.
La post-condition doit être impliquée par la cond	dition de chacun des états terminaux.
d Aucune des affirmations concernant post-condition	on n'est correcte.
e Toutes les affirmations concernant post-condition	a sont correctes.
f L'énoncé de la question est absurde.	
El Il manque des données dans l'énoncé pour pouve	ir répondre à la question.
$L \neq L'$.	gulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et
On peut utiliser le lemme de l'itération sur L .	
On peut trouver un automate d'états fini non dé	
On peut trouver un automate d'états fini déterm	
d On peut trouver deux langages réguliers L_1 et L e Aucune des affirmations concernant L n'est corre	
Toutes les affirmations concernant L sont correct	
E L'énoncé de la question est absurde.	003.
h Il manque des données dans l'énoncé pour pouvo	oir répondre à la question.
	T
Question 6 (0,5 points) Soit A un automate con	mplet sur un alphabet Σ .
$\boxed{\mathbf{a}}$ A reconnaît le langage universel.	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
\blacksquare A est tel que son exécution est définie pour	correcte. $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont cor-
chaque mot de Σ^* .	rectes.
C A reconnaît un langage complet.	L'énoncé de la question est absurde.
$\boxed{\mathbf{d}}$ A est tel que tous ses états sont accepteurs.	h Il manque des données dans l'énoncé pour

pouvoir répondre à la question.

 $(0,5~{
m points})$ Nous considérons l'affirmation "Tous les langages réguliers satisfont le

lemme de l'itération".

Question 7 \clubsuit (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3e est équivalent.
- **b** Il est absurde de parler d'équivalence entre automates.
- C L'automate représenté dans la Figure 3c est équivalent.
- d Aucun des automates n'est équivalent.
- El Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- [f] Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- L'automate représenté dans la Figure 3d est équivalent.
- h L'automate représenté dans la Figure 3b est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\mathbf{a}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- b L'automate résultant est représenté dans la Figure 2e.
- $\boxed{\mathbb{C}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- d Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- El Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- f L'automate résultant est représenté dans la Figure 2b.
- L'automate résultant est représenté dans la Figure 2d.
- h L'automate résultant est représenté dans la Figure 2c.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [j] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- Celui de la Figure 4c correspond.
- d Celui de la Figure 4b correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5c correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- **b** L'exécution de l'algorithme n'est pas finie.
- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- b Il n'est pas nécessaire de calculer \equiv_3 .
- L'exécution de l'algorithme n'est pas finie.
- d L'automate de départ était minimal.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\mathbf{a}}$ Figure 7d correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\overline{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

(0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé. a L'exécution de l'algorithme n'est pas finie. L'automate résultant de la minimisation aura le même nombre d'états. C L'automate de départ était minimal. L'automate de départ n'était pas minimal. Il n'est pas nécessaire de calculer \equiv_3 . f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte. El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes. h Il manque des données dans l'énoncé pour répondre à la question. Partie 5 : Lemme de l'itération (6 points) Nous considérons — le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$ — le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et — le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2. Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale. (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$. Question 19 Question 20 (0.5 points) Donner un mot dans L_1 . Question 21 (3 points) Démontrer que L_1 est non régulier. Question 22 🌲 (1 points) Nous considérons L_2 . 10 est une ci pour L_2 . b 1 est une ci pour L_2 . \Box La cim de L_2 est 3. d La cim de L_2 est 0. La cim de L_2 est 2. B Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. i Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 23 ♣ (1 points) Nous considérons le langage L_3 .

- a La cim de L_3 est 3. b La cim de L_3 est 4. \bigcirc 3 est une ci pour L_3 . La cim de L_3 est 5. 10 est une ci pour L_3 .
- f Aucune des ci données n'est correcte. g Toutes les ci données sont correctes. h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b	_						\perp	a b		<u> </u>					\vdash
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	=	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	=	0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1		1	1
2	2	2	2	2	2	2	2	2	2	2	2		2	2
3	3	3	3	3	3	3	3	3	3	3	3		3	3
4	4	4	4	4	4	4	4	4	4	4	4		4	4
5	5	5	5	5	5	5	5	5	5	5	5		5	5
6	6	6	6	6	6	6	6	6	6	6	6		6	6
(a) (b)				(b)			(c)				(d)		

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'ee~acad\'emique~2016/2017} \end{array}$

Feuille(s) de réponses

	numéro d'anonymat ci-contre e manuellement dans la boite.
0 1 2 3 4 5 6 7 8 9 et recopiez le 0 1 2 3 4 5 6 7 8 9	
0 1 2 3 4 5 6 7 8 9	Numéro d'anonymat :
0 1 2 3 4 5 6 7 8 9	
Question 1: a b c d e f h	
Question 2 :	
Question $3:$ a b \blacksquare e f g h	
Question $4: \mathbb{A} \blacksquare \blacksquare \mathbb{G}$ def \mathbb{G}	
Question 5: \blacksquare \blacksquare \blacksquare d e f \blacksquare h	
Question 6: a \blacksquare c d e f g h	
Question $7: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$	
Question $8: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$	
Question 9: a b c d e f h	
Question 10: a b c d e f ■ h	
Question 11:	
Question $12: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	
Question 13: a c d e f s h	
Question 14: a b c ■ e f g	
Question 15 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare	
Question 16: a b ■ d e f g ■	
Question 17: a b def ßh	
Question 18: a b c \blacksquare f \blacksquare h	
Question 19:	donner c ex f
Question 20:	donner ex f 🔳 Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ A est tel que tous ses états sont accepteurs.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- © A reconnaît le langage universel.
- d A reconnaît un langage complet.
- \fbox{e} Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OI

FIGURE 1 – Comment marquer une case.

Question 2 \clubsuit (0,5 points) Soit L un langage obt L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : $ L $ déno	tenu par la différence entre deux langages réguliers ote le cardinal du langage L .
 a L < L₁ . ■ L est un langage régulier. c L est un langage irrégulier. ■ L contient le langage vide. e Aucune des affirmations concernant L n'est correcte. 	 f Toutes les affirmations concernant L sont correctes. E L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 3 \clubsuit (0,5 points) Soit L un langage ré $L \neq L'$. On peut trouver un automate d'états fini détern	egulier quel conque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et niniste qui reconnaî t L .

- \blacksquare On peut utiliser le lemme de l'itération sur L.
- © On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate Question 4 ♣ vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

Cette affirmation est vraie.	© L'affirmation est absurde.
b Cette affirmation est fausse.	d Il manque des données dans l'énoncé pour
	pouvoir répondre à la question.

(0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate Question 6 4 vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L est le langage universel.
- **b** L reconnaît un langage déterministe.
- $\boxed{\mathbf{d}}$ L a tous ses états accepteurs.

- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- b La post-condition doit être impliquée par la condition d'un seul état terminal.
- \blacksquare La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3c est équivalent.
- **b** L'automate représenté dans la Figure 3b est équivalent.
- C L'automate représenté dans la Figure 3e est équivalent.
- d Aucun des automates n'est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- [f] Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- g Il est absurde de parler d'équivalence entre automates.
- h Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- L'automate résultant est représenté dans la Figure 2d.
- b L'automate résultant est représenté dans la Figure 2b.
- $\boxed{\mathbb{C}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- d Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- e L'automate résultant est représenté dans la Figure 2e.
- $\boxed{\mathbf{f}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- \square Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- h L'automate résultant est représenté dans la Figure 2c.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- b L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \boxed{b} Durant le calcul, nous pouvons trouver $X_2 = (b+ab+ab^*a)X_2 + \epsilon.$
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- d Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- Celui de la Figure 4e correspond.
- b Celui de la Figure 4c correspond.
- © Celui de la Figure 4d correspond.
- d Celui de la Figure 4b correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ était minimal.
- b L'automate de départ n'était pas minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- d L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- \boxed{b} Figure 7d correspond à la minimisation de A.
- \Box Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a Il n'est pas nécessaire de calculer \equiv_3 .
- L'exécution de l'algorithme n'est pas finie.
- C L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- E L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

(0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- d L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (3 points) Démontrer que L_1 est non régulier.

Question 20 ♣ (1 points) Nous considérons L_2 .

- La cim de L_2 est 2. 10 est une ci pour L_2 .
- $\boxed{\mathbf{d}}$ 1 est une ci pour L_2 .
- B Aucune des ci données n'est correcte. \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 21 ♣ (1 points) Nous considérons le langage L_3 .

- 10 est une ci pour L_3 . \boxed{c} 3 est une ci pour L_3 . b La cim de L_3 est 4.
- d La cim de L_3 est 3. La cim de L_3 est 5. f Aucune des ci données n'est correcte. Toutes les ci données sont correctes.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

(0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$. Question 22

Question 23 (0.5 points) Donner un mot dans L_1 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
С		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	134	234	134	234	34	34	a	14	134	234	14	234	34	34
b	24	24	24	24	24	4	4	b	24	24	234	24	24	4	4
		l .	ı												
c		4	24	34	234	34	4	$^{\mathrm{c}}$		4	4	34	234	4	4

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9

- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonymat :

Question $1: \mathbb{A} \square \mathbb{C} \mathbb{G} \mathbb{B} \mathbb{B}$

Question $2: \mathbb{A} \square \mathbb{C} \square \mathbb{E}$ e f $\mathbb{E} \square \mathbb{E}$

Question $3: \blacksquare \blacksquare \bigcirc \blacksquare \boxdot \boxdot \boxdot \boxdot$

Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $5 : \blacksquare$ \boxed{b} \boxed{c} \boxed{d}

Question $6: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $7: a b c d e f \blacksquare h$

Question $8 : \blacksquare \ b \blacksquare \ d \ e \ f \ g$

Question 9: a b c d f g h

Question 10:

b c d e f g h

Question $11 : \blacksquare \ b \ \blacksquare \ d \ e \ f$

Question 12: a b c e f g

Question 14: b c d e f g h

Question 15: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare

Question 16: a b c
e f g h

Question 17: \boxed{a} \boxed{c} \boxed{d} \boxed{e} \boxed{f} \boxed{g}

Question $18: a \blacksquare c d \blacksquare f g h$

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- [e] Toutes les affirmations concernant post-condition sont correctes.
- [f] L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OK

FIGURE 1 – Comment marquer une case.

	36:
$L \neq L'$.	gulier quel conque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et
On peut utiliser le lemme de l'itération sur L .	
On peut trouver un automate d'états fini non dé	_
© On peut trouver deux langages réguliers L_1 et L_2	
On peut trouver un automate d'états fini déterm	
e Aucune des affirmations concernant L n'est corr	
$\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont corrections	tes.
E L'énoncé de la question est absurde.	
h Il manque des données dans l'énoncé pour pouve	oir répondre à la question.
Question 3 4 (0,5 points) Nous nous intéressons vers une expression régulière en associant un système Cette méthode peut être appliquée sur les auton Cette méthode peut être appliquée sur les auton Cette méthode peut être appliquée sur les auton Toutes les affirmations concernant la méthode so L'énoncé de la question est absurde. Il manque des données dans l'énoncé pour pouvoir	nates non-déterministes et sans ϵ -transitions. nates déterministes. nates non-déterministes et avec ϵ -transitions. ont correctes.
Question 4 (0,5 points) Soit A un automate con	mplet sur un alphabet Σ .
	\blacksquare Aucune des affirmations concernant A n'est
$oxed{b}$ A reconnaît un langage complet.	correcte.
\Box A reconnaît le langage universel.	f Toutes les affirmations concernant A sont cor-
\blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .	rectes. Substitute L'énoncé de la question est absurde. Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 5 (0,5 points) Nous considérons l'affelemme de l'itération".	irmation "Tous les langages réguliers satisfont le
a Cette affirmation est fausse.	© L'affirmation est absurde.
Cette affirmation est vraie.	d Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 6 (0,5 points) Soit L un langage comp	plet sur un alphabet Σ .
a L est le langage universel.	$\begin{tabular}{ll} \hline e \\ \hline \end{array}$ Aucune des affirmations concernant L n'est
b L'exécution de L est définie pour chaque mot	correcte.
$de \Sigma^*$.	f Toutes les affirmations concernant L sont correctes
© L reconnaît un langage déterministe.	rectes. L'énoncé de la question est absurde.
$\boxed{\mathrm{d}}\ L$ a tous ses états accepteurs.	h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a L est un langage irrégulier.
- \blacksquare L contient le langage vide.
- \blacksquare L est un langage régulier.
- d $|L| < |L_1|$.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3c est équivalent.
- b Il est absurde de parler d'équivalence entre automates.
- L'automate représenté dans la Figure 3d est équivalent.
- d L'automate représenté dans la Figure 3e est équivalent.
- e L'automate représenté dans la Figure 3b est équivalent.
- f Aucun des automates n'est équivalent.
- El Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- h Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- L'automate résultant est représenté dans la Figure 2d.
- b L'automate résultant est représenté dans la Figure 2c.
- $\lceil C \rceil$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- d Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- e L'automate résultant est représenté dans la Figure 2b.
- $\boxed{\mathbf{f}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- \square Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- h L'automate résultant est représenté dans la Figure 2e.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5b correspond.
- © Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \square Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [j] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4c correspond.
- **b** Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- d Celui de la Figure 4b correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- b L'automate de départ était minimal.
- C L'automate de départ n'était pas minimal.
- L'exécution de l'algorithme n'est pas finie.
- e Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	<u>1</u> *	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7d correspond à la minimisation de A.
- \boxed{b} Figure 7a correspond à la minimisation de A.
- \Box Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- b L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- d L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons L_2 .

- a 1 est une ci pour L_2 . b La cim de L_2 est 1. c La cim de L_2 est 3. La cim de L_2 est 2. l 10 est une ci pour L_2 . f La cim de L_2 est 0. E Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. i Il manque des données dans l'énoncé pour déterminer la cim de L_2 .
- Question 20 \clubsuit (1 points) Nous considérons le langage L_3 .
- In 10 est une ci pour L_3 . In La cim de L_3 est 4. In La cim de L_3 est 3. In La cim de L_3 est 5. In La cim de L_3 est 4. In La cim de L_3 est 3. In La cim de L_3 est 5. In La cim de L_3 est 4. In La cim de L_3 est 3.
- Question 21 (0.5 points) Donner un mot dans L_1 .
- Question 22 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.
- Question 23 (3 points) Démontrer que L_1 est non régulier.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14* 134	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b	1						\perp	a b	1						\perp
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_{1} = \epsilon X_{2} \\ X_{2} = bX_{3} + aX_{4} + bX_{3} \\ X_{3} = bX_{2} \\ X_{4} = \epsilon X_{5} + a \\ X_{5} = a + \epsilon \end{cases} \begin{cases} X_{1} = \epsilon \\ X_{2} = X_{1}\epsilon + X_{3}\epsilon + bX_{3} + aX_{4} \\ X_{3} = X_{2} \\ X_{4} = X_{5}\epsilon \\ X_{5} = a + \epsilon \end{cases} \begin{cases} X_{1} = \epsilon X_{2} \\ X_{2} = bX_{3} + aX_{4} \\ X_{3} = X_{2} \\ X_{4} = X_{5} \\ X_{5} = a \end{cases}$$
(a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_3	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$		\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1		1	1
2	2	2	2	2	2	2	2	2	2	2	2	Ī	2	2
3	3	3	3	3	3	3	3	3	3	3	3		3	3
4	4	4	4	4	4	4	4	4	4	4	4		4	4
5	5	5	5	5	5	5	5	5	5	5	5	ſ	5	5
6	6	6	6	6	6	6	6	6	6	6	6		6	6
	(8	a)			(b)			(c)				(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'ee~acad\'emique~2016/2017} \end{array}$

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8 9	Codez votre numéro		
0 1 2 3 4 5 6 7 8 9	et recopiez le manue	llement dans la	<u>boite.</u>
0 1 2 3 4 5 6 7 8 9	Numér	o d'anonymat :	
0 1 2 3 4 5 6 7 8 9		J III	
0 1 2 3 4 5 6 7 8 9			
Question 1: © de f	g		
Question 2 : \blacksquare \blacksquare \Box \blacksquare \boxdot \blacksquare	g h		
Question $3: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f			
Question 4: a b c e f	g h		
Question 5 : a \blacksquare c d			
Question $6:$ a b c d e f	h		
Question 7: a \blacksquare d e f	g h		
Question $8: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f			
Question 9: a b d e f	g h		
Question $10: \blacksquare$ b c d e f	g h		
Question 11 : a b c \blacksquare e f	g		
Question 12 : $\boxed{\mathbf{a}}$ $\boxed{\mathbf{c}}$ $\boxed{\mathbf{d}}$	g h i j		
Question 13 :	g h		
Question 14: \blacksquare \blacksquare \Box \Box \Box \Box			
Question 15: a b c e f	g		
Question 16: a b c e f	g h		
Question 17: a b \blacksquare d \blacksquare f	g h		
Question 18: def	g h		
Question 19: a b c f	g h i		
Question 20 : \blacksquare b c \blacksquare e f	g h		
Question 21:		donner ex f	Reservé enseignant
Question 22:		donner c ex f	Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302: Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de colorier entièrement les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo noir. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 & (0.5 points) Soit L un langage régulier quelconque. Rappel: $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut utiliser le lemme de l'itération sur L.
- \boxed{b} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- l Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK

Figure 1 – Comment marquer une case.

Question 2 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- [a] L reconnaît un langage déterministe.
- $\boxed{\mathbf{b}}$ L est le langage universel.
- $\boxed{\mathbf{d}}$ L a tous ses états accepteurs.

- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a $|L| < |L_1|$.
- \blacksquare L contient le langage vide.
- L est un langage régulier.
- \blacksquare Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- \blacksquare La post-condition est la condition Q.
- © La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- b Cette affirmation est fausse.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- **b** A reconnaît un langage complet.

- Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- \boxed{a} Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- b L'automate résultant est représenté dans la Figure 2e.
- C L'automate résultant est représenté dans la Figure 2b.
- d L'automate résultant est représenté dans la Figure 2c.
- El Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- $\boxed{\mathbf{f}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- L'automate résultant est représenté dans la Figure 2d.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3b est équivalent.
- La l'imanque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- © Il est absurde de parler d'équivalence entre automates.
- d L'automate représenté dans la Figure 3c est équivalent.
- El Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- L'automate représenté dans la Figure 3d est équivalent.
- B Aucun des automates n'est équivalent.
- h L'automate représenté dans la Figure 3e est équivalent.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- d Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- e Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- f Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [J] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4c correspond.
- Celui de la Figure 4e correspond.
- © Celui de la Figure 4d correspond.
- d Celui de la Figure 4b correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	<u>1</u> *	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7b correspond à la minimisation de A.
- \boxed{b} Figure 7a correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7d correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- f Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- C L'automate de départ n'était pas minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- e L'exécution de l'algorithme n'est pas finie.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- b L'automate de départ était minimal.
- L'automate de départ n'était pas minimal.
- d L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- \boxed{b} Il n'est pas nécessaire de calculer \equiv_3 .
- L'exécution de l'algorithme n'est pas finie.
- d L'automate de départ était minimal.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 (3 points) Démontrer que L_1 est non régulier.

Question 21 \clubsuit (1 points) Nous considérons L_2 .

- Aucune des ci données n'est correcte.
 h Toutes les ci données sont correctes.
 - \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 22 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 23 \clubsuit (1 points) Nous considérons le langage L_3 .

- a La cim de L_3 est 3.
 10 est une ci pour L_3 .
 10 est une ci pour L_3 .
 11 La cim de L_3 est 4.
 12 La cim de L_3 est 5.
 13 Aucune des ci données n'est correcte.
 14 Toutes les ci données sont correctes.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
С		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b							\perp	a b	1	<u> </u>					\perp
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

culer une expression régulière.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_{1} = bX_{5} \\ X_{2} = aX_{1} + aX_{5} + bX_{3} \\ X_{3} = bX_{2} \\ X_{4} = aX_{2} + aX_{4} + \epsilon \\ X_{5} = bX_{4} \end{cases} \begin{cases} X_{1} = aX_{2} \\ X_{2} = bX_{3} + aX_{4} \\ X_{3} = aX_{2} \\ X_{4} = aX_{4} + bX_{5} + \epsilon \\ X_{5} = bX_{1} + aX_{2} \end{cases} \begin{cases} X_{1} = aX_{2} \\ X_{2} = bX_{3} + aX_{4} \\ X_{3} = aX_{2} \\ X_{4} = aX_{4} + bX_{5} \\ X_{5} = bX_{1} + aX_{2} + \epsilon \end{cases}$$
(e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_3	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$		\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1		1	1
2	2	2	2	2	2	2	2	2	2	2	2	Ī	2	2
3	3	3	3	3	3	3	3	3	3	3	3		3	3
4	4	4	4	4	4	4	4	4	4	4	4		4	4
5	5	5	5	5	5	5	5	5	5	5	5	ſ	5	5
6	6	6	6	6	6	6	6	6	6	6	6		6	6
	(8	a)			(b)			(c)				(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0 $	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 INF 302 : Langages et Automates Licence Sciences et Technologies, 2ième année Année académique 2016/2017 Feuille(s) de réponses 0 1 2 3 4 5 6 7 8 9 Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Numéro d'anonymat : 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Question $1 : \blacksquare \ b \blacksquare \blacksquare \ e \ f \ g \ h$ Question $2: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Question 3: a b c d e f h Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Question $5: \mathbb{A} \square \mathbb{C} \square \mathbb{E}$ e f \mathbb{E} h Question $6 : \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Question 7: b c d Question $8 : \blacksquare \ b \ c \ d \ e \ f \ g \ h$

 Question 9: a b c d e f g h

 Question 10: a b c d e f g h

 Question 11: a d e f m h i j

 Question 12: a d d e f

 Question 13: a b c d e f g

 Question 14: a c d e f g h

 Question 15: a b d d e f g h

 Question 16: a c d e f g h

 Question 17: a b d f g h

 Question 18: a b d d e f g

Question 19:

donner ex **f n** Reservé enseignant

.....

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- **b** A reconnaît le langage universel.
- C A est tel que tous ses états sont accepteurs.
- d A reconnaît un langage complet.
- \fbox{e} Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OI

FIGURE 1 – Comment marquer une case.

38
olet sur un alphabet Σ .
 e Aucune des affirmations concernant L n'est correcte. f Toutes les affirmations concernant L sont correctes. ■ L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.
à la méthode permettant de passer d'un automate d'équations aux états à l'automate. Lates non-déterministes et avec ϵ -transitions, après pression des ϵ -transitions. Lates non-déterministes et sans ϵ -transitions. Lates déterministes. Lates déterministes.

Question 4 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

 a Cette affirmation est fausse.
 C L'affirmation est absurde.

 ■ Cette affirmation est vraie.
 d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- C La post-condition doit être impliquée par la condition d'un seul état terminal.

[f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- [8] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- $\boxed{\mathbf{a}}$ L est un langage irrégulier.
- \blacksquare L contient le langage vide.
- \blacksquare L est un langage régulier.
- d $|L| < |L_1|$.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \boxed{a} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut utiliser le lemme de l'itération sur L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- f Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- L'automate résultant est représenté dans la Figure 2d.
- b L'automate résultant est représenté dans la Figure 2c.
- $\boxed{\mathbb{C}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- $\boxed{\mathbf{d}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- $\boxed{\mathbb{E}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- f L'automate résultant est représenté dans la Figure 2b.
- g L'automate résultant est représenté dans la Figure 2e.
- h Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- L'automate représenté dans la Figure 3d est équivalent.
- b L'automate représenté dans la Figure 3c est équivalent.
- C L'automate représenté dans la Figure 3b est équivalent.
- d Aucun des automates n'est équivalent.
- El Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- [f] Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- Il est absurde de parler d'équivalence entre automates.
- h L'automate représenté dans la Figure 3e est équivalent.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- d Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- h Aucune des équations données n'est correcte.
- [i] Tous les équations données sont correctes.
- [1] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- \blacksquare L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4c correspond.
- **b** Celui de la Figure 4d correspond.
- © Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5c correspond.
- © Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- d L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- b L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- \underline{d} Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ était minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ n'était pas minimal.
- b L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- d L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ était minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- \boxed{b} Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7d correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- $\boxed{\mathbf{f}}$ Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons le langage L_3 .

- a 3 est une ci pour L_3 . b La cim de L_3 est 4. c La cim de L_3 est 3. 10 est une ci pour L_3 . La cim de L_3 est 5.
- Question 20 (3 points) Démontrer que L_1 est non régulier.
- Question 21 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.
- Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 \clubsuit (1 points) Nous considérons L_2 .

- a La cim de L_2 est 0. La cim de L_2 est 2. C 1 est une ci pour L_2 .
- d La cim de L_2 est 3. e La cim de L_2 est 1. 10 est une ci pour L_2 .
- Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. l Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
С		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b							\perp	a b	1	<u> </u>					\perp
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_3	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9
_	_		_		_	_		_	_

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonyn	nat:
• • • • • • • • • • • • • • • • • • • •	

Question $1: \blacksquare$ b c d e f g h

Question 2: a b c d e f h

Question $3: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e

Question $4: a \blacksquare c d$

Question $5: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question $6: \mathbb{A} \blacksquare \blacksquare \mathbb{G}$ \mathbb{G} \mathbb{G}

Question $7: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $8: \mathbb{A} \blacksquare \blacksquare \blacksquare \mathbb{G}$ \mathbb{G} \mathbb{h}

Question $9: \blacksquare$ b c d e f g h

Question $10 : \blacksquare$ b c d e f g h

Question $11: \[a \] \blacksquare \[e \] \blacksquare \[h \] \[j \]$

Question $12: \blacksquare \ b \ \blacksquare \ d \ e \ f$

Question 13: a b c e f g h

Question 14: a b c e f g

Question $15: \blacksquare \blacksquare \blacksquare d e f g h$

Question 16: a b d e f g l

Question 17:

b

d
e

f

g

h

Question 18: a b def gh

Question 19: a b c \blacksquare \blacksquare f g h

Question 20:	f d Reservé ense	ignant
en utilisant le lemme de l'itération		
Question 21:	donner c ex f n Reservé ense	ignant
Question 21:	donner c ex f n Reservé ense	$ignant \\ \dots$
Question 21:	donner c ex f n Reservé ense	$ignant \\ \dots$
Question 21: Question 22:	donner c ex f \blacksquare $Reserv\'e$ $ense$ donner ex f \blacksquare $Reserv\'e$ $ense$	
Question 22:		ignant
Question 22 : Question 23 : a ■ c d e ■ g h i	donner ex f Reservé ense	ignant
Question 22 : Question 23 : a ■ c d e ■ g h i	donner ex f Reservé ense	ignant

INF 302: Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de colorier entièrement les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo noir. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

(0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quel conques $(L=L_1\setminus L_2).$ Rappel : |L| dénote le cardinal du langage L.

- a $|L| < |L_1|$.
- L est un langage régulier.
- \blacksquare L contient le langage vide.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK

Figure 1 – Comment marguer une case.

	39
Question 2 (0,5 points) Soit A un automate cor	mplet sur un alphabet Σ .
 A est tel que son exécution est définie pour chaque mot de Σ*. A reconnaît le langage universel. A est tel que tous ses états sont accepteurs. A reconnaît un langage complet. 	 E Aucune des affirmations concernant A n'est correcte. f Toutes les affirmations concernant A sont correctes. E L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 3 ♣ (0,5 points) Nous nous intéressons à vers une expression régulière en associant un système de Cette méthode peut être appliquée sur les autom avoir appliqué possiblement l'algorithme de supp Cette méthode peut être appliquée sur les autom avoir appliqué possiblement l'algorithme de supp Cette méthode peut être appliquée sur les autom	d'équations aux états à l'automate. Lates non-déterministes et sans ϵ -transitions. Lates non-déterministes et avec ϵ -transitions, après pression des ϵ -transitions.
ette methode peut etre appliquee sur les autom	iates deterministes.

Question 4 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.

Toutes les affirmations concernant la méthode sont correctes.

e L'énoncé de la question est absurde.

e L'énoncé de la question est absurde.

[f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

[f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Soit L un langage complet sur un alphabet Σ .

$\boxed{\mathbf{a}}$ L'exécution de L est définie pour chaque mot	
$\mathrm{de} \ \Sigma^*.$	correcte.
b L a tous ses états accepteurs.	$\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
 L reconnaît un langage déterministe. L est le langage universel.	L'énoncé de la question est absurde.
a 2 est le langage ann'essen	h Il manque des données dans l'énoncé pour
	pouvoir répondre à la question.

Question 6 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

\mathbf{a}	Cette	affirmation	est	fausse.	

Cette affirmation est vraie.

© L'affirmation est absurde.

d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- © On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut utiliser le lemme de l'itération sur L.
- $\boxed{\mathrm{e}}$ Aucune des affirmations concernant L n'est correcte.
- $\lceil f \rceil$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition est la condition Q.
- b La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- d Aucune des affirmations concernant post-condition n'est correcte.
- © Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- b Il est absurde de parler d'équivalence entre automates.
- C Aucun des automates n'est équivalent.
- d L'automate représenté dans la Figure 3e est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- I L'automate représenté dans la Figure 3b est équivalent.
- [3] Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- h L'automate représenté dans la Figure 3c est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\mathbf{a}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- b L'automate résultant est représenté dans la Figure 2c.
- \square Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- d L'automate résultant est représenté dans la Figure 2b.
- L'automate résultant est représenté dans la Figure 2d.
- f L'automate résultant est représenté dans la Figure 2e.
- $\boxed{\mathbb{S}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- h Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4b correspond.
- **b** Celui de la Figure 4d correspond.
- © Celui de la Figure 4c correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5b correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- d Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- [e] Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- b L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- d L'automate de départ n'était pas minimal.
- \boxed{e} Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\mathbf{a}}$ Figure 7b correspond à la minimisation de A.
- \boxed{b} Figure 7a correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7d correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- e L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- **b** L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- d L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ était minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 (3 points) Démontrer que L_1 est non régulier.

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

- a 3 est une ci pour L_3 . b La cim de L_3 est 3. 10 est une ci pour L_3 . d La cim de L_3 est 4. E La cim de L_3 est 5. f Aucune des ci données n'est correcte. Toutes les ci données sont correctes. h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .
- Question 22 \clubsuit (1 points) Nous considérons L_2 .
 - a La cim de L_2 est 1. b La cim de L_2 est 3. 10 est une ci pour L_2 . d La cim de L_2 est 0. La cim de L_2 est 2. f 1 est une ci pour L_2 . S Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. i Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 23 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4	
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34	
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4	
c		4	24	34	234	4	4	c		4	4	34	234	34	4	
				(b)					(c)							
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4	
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34	
a b	_						\perp	a b		<u> </u>					\vdash	
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34	

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_3	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$		\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1		1	1
2	2	2	2	2	2	2	2	2	2	2	2	Ī	2	2
3	3	3	3	3	3	3	3	3	3	3	3		3	3
4	4	4	4	4	4	4	4	4	4	4	4		4	4
5	5	5	5	5	5	5	5	5	5	5	5	ſ	5	5
6	6	6	6	6	6	6	6	6	6	6	6		6	6
	(a)				(b)			(0	c)				(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 INF 302 : Langages et Automates Licence Sciences et Technologies, 2ième année Année académique 2016/2017 Feuille(s) de réponses 0 1 2 3 4 5 6 7 8 9 Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Numéro d'anonymat : 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Question 1: $a \blacksquare c \blacksquare e f \blacksquare h$ Question $2 : \blacksquare$ b c d e f g h Question $3: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Question 5: a b c d e f h Question $6: \boxed{a} \blacksquare \boxed{c} \boxed{d}$ Question $8 : \blacksquare \ b \blacksquare \ d \ e \ f \ g$ Question 9: a b c d f g h Question $10: a b c d \blacksquare f g h$ Question 11: a b c le f g h Question 12: a b c \blacksquare e f \blacksquare Question 14: a def

Question 19: donner ex f Reservé enseignant

 Question 15 : a b ■ d e f g ■

 Question 16 : a b ■ d e f g h

 Question 17 : a ■ ■ e f g h

 Question 18 : ■ b ■ d e f g h

Question 20:	f p p Reservé enseignant
en utilisant le lemme de l'itération	
Question 21 : a b ■ d ■ f g h Question 22 : a b ■ d ■ f g h i	
Question 23 :	donner c ex f Reservé enseignant
Question 24:	Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 & (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

Question 2 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ $L \neq L'$. On peut trouver un automate d'états fini déterministe qui reconnaît L . On peut utiliser le lemme de l'itération sur L . On peut trouver un automate d'états fini non déterministe qui reconnaît L . On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$. Aucune des affirmations concernant L n'est correcte. Toutes les affirmations concernant L sont correctes. L'énoncé de la question est absurde.								
h Il manque des données dans l'énoncé pour pouvo	ir répondre à la question.							
Question 3 (0,5 points) Nous considérons l'affilemme de l'itération".	rmation "Tous les langages réguliers satisfont le							
Cette affirmation est vraie.Cette affirmation est fausse.	 C L'affirmation est absurde. d Il manque des données dans l'énoncé pour pouvoir répondre à la question. 							
 Question 4 ♣ (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate. Cette méthode peut être appliquée sur les automates déterministes. Cette méthode peut être appliquée sur les automates non-déterministes et avec \(\epsilon\)-transitions, après avoir appliqué possiblement l'algorithme de suppression des \(\epsilon\)-transitions. Cette méthode peut être appliquée sur les automates non-déterministes et sans \(\epsilon\)-transitions. Toutes les affirmations concernant la méthode sont correctes. L'énoncé de la question est absurde. Il manque des données dans l'énoncé pour pouvoir répondre à la question. 								
Question 5 \clubsuit (0,5 points) Soit L un langage obte L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : $ L $ déno	enu par la différence entre deux langages réguliers te le cardinal du langage L .							
 L est un langage régulier. L contient le langage vide. C L < L₁ . d L est un langage irrégulier. e Aucune des affirmations concernant L n'est correcte. 								
Question 6 (0,5 points) Soit A un automate con	mplet sur un alphabet Σ .							
 A est tel que son exécution est définie pour chaque mot de Σ*. A reconnaît le langage universel. A reconnaît un langage complet. A est tel que tous ses états sont accepteurs. 	 e Aucune des affirmations concernant A n'est correcte. f Toutes les affirmations concernant A sont correctes. E L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question. 							

Question 7 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- a La post-condition doit être impliquée par la condition d'un seul état terminal.
- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- d Aucune des affirmations concernant post-condition n'est correcte.
- © Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ L a tous ses états accepteurs.
- $\boxed{\mathbf{b}}$ L est le langage universel.
- d L reconnaît un langage déterministe.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- L'automate résultant est représenté dans la Figure 2d.
- $\boxed{\mathbf{b}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- C L'automate résultant est représenté dans la Figure 2e.
- d Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- \boxed{e} Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- [f] Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- El L'automate résultant est représenté dans la Figure 2b.
- h L'automate résultant est représenté dans la Figure 2c.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3b est équivalent.
- b L'automate représenté dans la Figure 3e est équivalent.
- © Il est absurde de parler d'équivalence entre automates.
- d Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- e L'automate représenté dans la Figure 3c est équivalent.
- f Aucun des automates n'est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- h Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- © Celui de la Figure 4b correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- d Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [J] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5c correspond.
- Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- El manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- b L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ n'était pas minimal.
- b L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- d L'automate de départ était minimal.
- El L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- b L'automate résultant de la minimisation aura le même nombre d'états.
- C L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- e Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\mathbf{a}}$ Figure 7b correspond à la minimisation de A.
- $\boxed{\text{b}}$ Figure 7a correspond à la minimisation de A.
- \square Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- d L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 20 \clubsuit (1 points) Nous considérons le langage L_3 .

- La cim de L_3 est 5. \blacksquare 10 est une ci pour L_3 . \boxdot 3 est une ci pour L_3 . \boxdot La cim de L_3 est 3. \boxdot La cim de L_3 est 4. \blacksquare Aucune des ci données n'est correcte.
 - Toutes les ci données sont correctes.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 21 (3 points) Démontrer que L_1 est non régulier.

Question 22 \clubsuit (1 points) Nous considérons L_2 .

- aLa cim de L_2 est 0.La cim de L_2 est 2.CLa cim de L_2 est 1.
- 10 est une ci pour L_2 .

 E La cim de L_2 est 3.

 f 1 est une ci pour L_2 .

 E Aucune des ci données n'est correcte.

 h Toutes les ci données sont correctes.
 - \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 23 (0.5 points) Donner un mot dans L_1 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
	(b)											(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b	I						\perp	a b	1	<u> </u>					<u> </u>
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(a)				(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonyn	nat:
• • • • • • • • • • • • • • • • • • • •	

Question $1: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f

Question $2: \blacksquare \blacksquare \blacksquare d e f g h$

Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $5: \blacksquare \blacksquare$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Question $6: \blacksquare$ b c d e f g h

Question $7: \mathbb{A} \blacksquare \blacksquare \mathbb{G}$ def g

Question 8: a b c d e f \blacksquare h

Question 10: a b c d e f h

Question 11: a C d e f g h

Question 13: a b c e f g

Question 14 : ■ b ■ d e f

Question $15 : \blacksquare \ b \blacksquare \ d \ e \ f \ g \ h$

Question 16: bcdefg

Question 17 : a b c ■ e f g h

Question $18: a \blacksquare \blacksquare d \blacksquare f g h$

Question 19:

donner c ex **f n** Reservé enseignant

.....

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- b La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- d Aucune des affirmations concernant post-condition n'est correcte.
- [e] Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OK

Figure 1 – Comment marquer une case.

	41:
Question 2 \clubsuit (0,5 points) Soit L un langage obt L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : $ L $ déno	senu par la différence entre deux langages réguliers et e le cardinal du langage L .
 L est un langage régulier. L est un langage irrégulier. L < L₁ . L contient le langage vide. Aucune des affirmations concernant L n'est correcte. 	 f Toutes les affirmations concernant L sont correctes. E L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 3 4 (0.5 points) Nous nous intéressons	à la méthode permettant de passer d'un automate

vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0.5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et Question 4 ♣ $L \neq L'$.

- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- \boxed{b} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- On peut utiliser le lemme de l'itération sur L.
- e Aucune des affirmations concernant L n'est correcte.
- $\lceil f \rceil$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate Question 5 ♣ vers une expression régulière en associant un système d'équations aux états à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

a Cette affirmation est fausse.	© L'affirmation est absurde.
Cette affirmation est vraie.	d Il manque des données dans l'énoncé pour
	pouvoir répondre à la question.

Question 7 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{b}}$ A est tel que tous ses états sont accepteurs.
- C A reconnaît un langage complet.
- d A reconnaît le langage universel.
- \fbox{e} Aucune des affirmations concernant A n'est correcte.
- Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L reconnaît un langage déterministe.
- $\boxed{\mathbf{b}}$ L est le langage universel.
- d L'exécution de L est définie pour chaque mot de Σ^* .
- f Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- \boxed{a} Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- \Box Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- $\boxed{\mathbb{C}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- L'automate résultant est représenté dans la Figure 2d.
- e L'automate résultant est représenté dans la Figure 2c.
- [f] L'automate résultant est représenté dans la Figure 2e.
- El L'automate résultant est représenté dans la Figure 2b.
- h Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3b est équivalent.
- b L'automate représenté dans la Figure 3e est équivalent.
- C Il est absurde de parler d'équivalence entre automates.
- L'automate représenté dans la Figure 3d est équivalent.
- e L'automate représenté dans la Figure 3c est équivalent.
- [f] Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- h Aucun des automates n'est équivalent.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5c correspond.
- © Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- d Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- e Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- f Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- 🗓 Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- **b** Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- b L'automate de départ était minimal.
- L'exécution de l'algorithme n'est pas finie.
- d L'automate de départ n'était pas minimal.
- e Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ était minimal.
- © L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ était minimal.
- C L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

		1*	2*	3*	4*	5*	6
	a	2	2	3	3	6	6
ĺ	b	3	3	4	4	6	6
ĺ	c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- \overline{a} Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7b correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- [f] Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (3 points) Démontrer que L_1 est non régulier.

Question 20 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 21 (0.5 points) Donner un mot dans L_1 .

Question 22 \clubsuit (1 points) Nous considérons L_2 .

- a 1 est une ci pour L_2 .

 La cim de L_2 est 2.

 La cim de L_2 est 3.

 La cim de L_2 est 1.

 La cim de L_2 est 0.
- Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. l Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 23 \clubsuit (1 points) Nous considérons le langage L_3 .

- a 3 est une ci pour L_3 . La cim de L_3 est 5. C La cim de L_3 est 4. La cim de L_3 est 3.
- $\[\]$ Aucune des ci données n'est correcte. $\[\]$ Toutes les ci données sont correctes. $\[\]$ Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)							(c)				
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	134	24*	134* 134	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b							\perp	a b	1						=
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(a)				(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0 1 2 3	4	5	6	7	8	9
---------	---	---	---	---	---	---

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Num	ro d'anonymat :	

Question $1 : \blacksquare$ b \blacksquare d e f \blacksquare

Question $2 : \blacksquare \ b \ c \blacksquare \ e \ f \ g \ h$

Question $3: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e

Question $4: \blacksquare \ b \blacksquare \blacksquare \ e \ f \ g \ h$

Question $5: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f

Question $6: \boxed{a} \blacksquare \boxed{c} \boxed{d}$

Question 7:

b c d e f g h

Question $8: \boxed{a} \boxed{b} \boxed{c} \boxed{d} \boxed{e} \boxed{f} \boxed{b}$

Question 9: a b c le f g h

Question $10: a b c \blacksquare e f g h$

Question 11: a b c le f g

Question $12: \blacksquare \blacksquare \blacksquare \blacksquare$ def $\blacksquare \blacksquare$ hijj

Question 13: a b d e f g h

Question 14 : ■ b ■ d e f

Question 15: a b \blacksquare d e f \blacksquare

Question 16: a b c \blacksquare f g h

Question $17: \blacksquare \blacksquare \bigcirc \blacksquare \bigcirc \blacksquare \bigcirc \blacksquare \bigcirc \blacksquare$

Question 18: a Cdefgh

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît le langage universel.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- d A reconnaît un langage complet.
- \fbox{e} Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (

(b) KO (c) KO (d) OF

FIGURE 1 – Comment marquer une case.

Question 2 \clubsuit (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- © La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L reconnaît un langage déterministe.
- $\[b \]$ L'exécution de L est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{d}}$ L a tous ses états accepteurs.

- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- f Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L contient le langage vide.
- \blacksquare L est un langage régulier.
- d $|L| < |L_1|$.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- 🗵 L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- © On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut utiliser le lemme de l'itération sur L.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- g L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\mathbf{a}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- $\boxed{\mathbf{b}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- C L'automate résultant est représenté dans la Figure 2c.
- d L'automate résultant est représenté dans la Figure 2b.
- e L'automate résultant est représenté dans la Figure 2e.
- [f] Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- \square Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- L'automate résultant est représenté dans la Figure 2d.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3c est équivalent.
- b Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- C Aucun des automates n'est équivalent.
- d L'automate représenté dans la Figure 3b est équivalent.
- [e] Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- [f] L'automate représenté dans la Figure 3e est équivalent.
- Il est absurde de parler d'équivalence entre automates.
- L'automate représenté dans la Figure 3d est équivalent.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [J] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- **b** Celui de la Figure 4b correspond.
- © Celui de la Figure 4c correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- b Celui de la Figure 5a correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- f Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- b L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- e L'exécution de l'algorithme n'est pas finie.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- \boxed{b} Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ était minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7d correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7a correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- $\boxed{\mathbf{f}}$ Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons le langage L_3 .

Question 20 \clubsuit (1 points) Nous considérons L_2 .

- Question 21 (0.5 points) Donner un mot dans L_1 .
- Question 22 (3 points) Démontrer que L_1 est non régulier.
- Question 23 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b	1						=	a b	1						\vdash
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0 1	2	3 4	5	6	7	8	9
0 1	2	3 4	5	6	7	8	9
0 1	2	3 4	5	6	7	8	9
0 1	2	3 4	5	6	7	8	9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'an	nonymat:

Question $1: [a]$	\mathbf{c}	d e	f g h
-------------------	--------------	-----	-------

Question $2: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e

Question $3: \boxed{a} \boxed{c} \boxed{d}$

Question $4: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question 5: a b c d e f h

Question $6: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 7 : \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Question $8: \blacksquare \blacksquare \ \mathbb{C} \ \blacksquare \ \mathbb{E} \ \mathbb{F} \ \mathbb{B}$

Question 9: a b c d e f g \blacksquare

Question 10: a b c d e f g

Question $11: \[a \] \blacksquare \[e \] \blacksquare \[h \] \[j \]$

Question 12: a b c e f g h

Question 13: a b c e f g

Question 14 : ■ □ □ □ □ □

Question 15: \blacksquare b \blacksquare d e f \blacksquare h

Question 16 : a b \blacksquare \blacksquare f g h

Question 17 : a b c \blacksquare e f g \blacksquare

Question 18: a b c \blacksquare e f g h

Question 19: a
deff

Question 20: b c e f g h i

Question 21:

ı	donner	ex	f		$Reserv\acute{e}$	enseign an
---	-------------------------	----	---	--	-------------------	------------

.....

Question 22:	f pi pi	Reservé enseignant
en utilisant le lemme de l'itération	 	
Question 23:	donner c ex f	Reservé enseignant
Question 24:		Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) O

FIGURE 1 – Comment marquer une case.

(0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L. f Toutes les affirmations concernant L sont cor- \blacksquare L contient le langage vide. rectes. $|L| < |L_1|$. L'énoncé de la question est absurde. \blacksquare L est un langage régulier. h Il manque des données dans l'énoncé pour $\boxed{\mathbf{d}}$ L est un langage irrégulier. pouvoir répondre à la question. e Aucune des affirmations concernant L n'est correcte. Question 3 ♣ (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$. On peut trouver un automate d'états fini non déterministe qui reconnaît L. \blacksquare On peut utiliser le lemme de l'itération sur L. © On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$. On peut trouver un automate d'états fini déterministe qui reconnaît L. e Aucune des affirmations concernant L n'est correcte. f Toutes les affirmations concernant L sont correctes. B L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question. Question 4 (0,5 points) Soit A un automate complet sur un alphabet Σ . e Aucune des affirmations concernant A n'est a A reconnaît un langage complet. correcte. **b** A est tel que tous ses états sont accepteurs. Toutes les affirmations concernant A sont cor-C A reconnaît le langage universel. A est tel que son exécution est définie pour B L'énoncé de la question est absurde. chaque mot de Σ^* . h Il manque des données dans l'énoncé pour pouvoir répondre à la question. (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer Question 5 ♣ pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q). a La post-condition doit être impliquée par la condition d'un seul état terminal. La post-condition est la condition Q. La post-condition doit être impliquée par la condition de chacun des états terminaux. d Aucune des affirmations concernant post-condition n'est correcte. e Toutes les affirmations concernant post-condition sont correctes. f L'énoncé de la question est absurde. [8] Il manque des données dans l'énoncé pour pouvoir répondre à la question. Question 6 (0,5 points) Soit L un langage complet sur un alphabet Σ . a L a tous ses états accepteurs. correcte.

f Toutes les affirmations concernant L sont cor-

h Il manque des données dans l'énoncé pour

L'énoncé de la question est absurde.

pouvoir répondre à la question.

rectes.

b L est le langage universel.

de Σ^* .

© L'exécution de L est définie pour chaque mot

d L reconnaît un langage déterministe.

Question 7 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- **b** L'automate représenté dans la Figure 3c est équivalent.
- C Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- d Aucun des automates n'est équivalent.
- e Il est absurde de parler d'équivalence entre automates.
- f L'automate représenté dans la Figure 3b est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- h L'automate représenté dans la Figure 3e est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\mathbf{a}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- $\boxed{\mathbf{b}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- C L'automate résultant est représenté dans la Figure 2b.
- d Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- e L'automate résultant est représenté dans la Figure 2e.
- L'automate résultant est représenté dans la Figure 2d.
- El Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- h L'automate résultant est représenté dans la Figure 2c.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- © Celui de la Figure 4d correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- b Celui de la Figure 5c correspond.
- Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- \blacksquare L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- f Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- **b** L'automate de départ n'était pas minimal.
- \square Il n'est pas nécessaire de calculer \equiv_3 .
- L'exécution de l'algorithme n'est pas finie.
- El L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7b correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- b L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- e L'exécution de l'algorithme n'est pas finie.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 20 \clubsuit (1 points) Nous considérons le langage L_3 .

- 10 est une ci pour L_3 .
 La cim de L_3 est 5.
 C 3 est une ci pour L_3 .

 La cim de L_3 est 4.
 F Aucune des ci données n'est correcte.

 S Toutes les ci données sont correctes.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 21 \clubsuit (1 points) Nous considérons L_2 .

- a 1 est une ci pour L_2 . b La cim de L_2 est 3. c La cim de L_2 est 0. ■ La cim de L_2 est 2. ■ 10 est une ci pour L_2 . f La cim de L_2 est 1.
- Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. h Il manque des données dans l'énoncé pour déterminer la cim de L_2 .
- Question 22 (3 points) Démontrer que L_1 est non régulier.
- Question 23 (0.5 points) Donner un mot dans L_1 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b	I						\perp	a b	1	<u> </u>					<u> </u>
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

culer une expression régulière.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
(a)					(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8 9	
0	1	2	3	4	5	6	7	8 9	
0	1	2	3	4	5	6	7	8 9	
0	1	2	3	4	5	6	7	8 9	
0	1	2	3	4	5	6	7	8 9	

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonymat :								

Question $1: \boxed{\mathbf{a}} \boxed{\mathbf{c}} \boxed{\mathbf{d}}$

Question 2 : \blacksquare b \blacksquare d e f \blacksquare h

Question $3: \blacksquare \blacksquare \bigcirc \blacksquare \boxdot \boxdot \boxdot \boxdot$

Question 4: a b c \blacksquare e f g h

Question 5: a \blacksquare \blacksquare d e f g

Question 6: a b c d e f h

Question $7: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $8: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 9: a b c d e f \blacksquare h

Question 10: a b c d e \blacksquare g h

Question 11: a C d e f g h

Question 12 : a b c \blacksquare e f g

Question $13 : \blacksquare \ b \blacksquare \ d \ e \ f$

Question 14: \blacksquare \Box \Box \Box \blacksquare \blacksquare \Box \Box \Box \Box

 Question 15 : a b c ■ e f g ■

 Question 16 : a b ■ d e f g h

 Question 17 : ■ b ■ d e f g h

Question 18: a
e f g h

Question 19:

donner c ex **f e** Reservé enseignant

Question 22:	f P Reservé enseignant
en utilisant le lemme de l'itération	
Question 23:	onner ex 🔳 Reservé enseignant
Question 24:	Reservé enseignant

INF 302: Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de colorier entièrement les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo noir. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

(0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques $(L = L_1 \setminus L_2)$. Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L contient le langage vide.
- $|L| < |L_1|$.
- \blacksquare L est un langage régulier.
- $\boxed{\mathbf{d}}$ L est un langage irrégulier.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK

Figure 1 – Comment marguer une case.

Question 2 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- b Cette affirmation est fausse.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L reconnaît un langage déterministe.
- $\boxed{\mathbf{b}}$ L est le langage universel.
- d L'exécution de L est définie pour chaque mot de Σ^* .
- \blacksquare Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- a La post-condition doit être impliquée par la condition d'un seul état terminal.
- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- \boxed{b} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- On peut utiliser le lemme de l'itération sur L.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ A est tel que tous ses états sont accepteurs.
- **b** A reconnaît le langage universel.
- © A reconnaît un langage complet.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- \fbox{e} Aucune des affirmations concernant A n'est correcte.
- f Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- b L'automate résultant est représenté dans la Figure 2c.
- $\boxed{\mathbb{C}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- $\boxed{\mathbf{d}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- e L'automate résultant est représenté dans la Figure 2e.
- L'automate résultant est représenté dans la Figure 2d.
- \square Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- h L'automate résultant est représenté dans la Figure 2b.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Aucun des automates n'est équivalent.
- **b** Il est absurde de parler d'équivalence entre automates.
- C Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- d L'automate représenté dans la Figure 3b est équivalent.
- [e] Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- [f] L'automate représenté dans la Figure 3e est équivalent.
- B L'automate représenté dans la Figure 3c est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5b correspond.
- © Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- $\boxed{\mbox{b}}$ L'expression régulière associée à cet automate est $X_2=(aab^*a+b+ab)X_2.$
- \blacksquare L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- © Celui de la Figure 4b correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \Box Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- $\boxed{\mathbf{f}}$ Durant le calcul, nous pouvons trouver l'équation $X_1=ab^*aX_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- **b** L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ était minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a Il n'est pas nécessaire de calculer \equiv_3 .
- **b** L'automate de départ était minimal.
- L'exécution de l'algorithme n'est pas finie.
- d L'automate de départ n'était pas minimal.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	<u>1</u> *	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- © Figure 7d correspond à la minimisation de A.
- $\overline{\mathbf{d}}$ Figure 7b correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ était minimal.
- d L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 20 (0.5 points) Donner un mot dans L_1 .

Question 21 (3 points) Démontrer que L_1 est non régulier.

Question 22 \clubsuit (1 points) Nous considérons L_2 .

a La cim de L_2 est 1.
I 10 est une ci pour L_2 .
I La cim de L_2 est 2.
I La cim de L_2 est 3.
I I manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 23 \clubsuit (1 points) Nous considérons le langage L_3 .

- In angue des données dans l'énoncé pour déterminer la cim de L_3 .

 In angue des données dans l'énoncé pour déterminer la cim de L_3 .

 In angue des données dans l'énoncé pour déterminer la cim de L_3 .
 - ii inanque des données dans l'enonée pour déterminer la enir de 23

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
									1			4 0 4 4 4			$\overline{}$
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	134	24*	134*	234*	34*	34	a	1*	134	234	134*	234*	34*	34
a b							\vdash	a b	1						
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

culer une expression régulière.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_{1} = \epsilon X_{2} \\ X_{2} = bX_{3} + aX_{4} + bX_{3} \\ X_{3} = bX_{2} \\ X_{4} = \epsilon X_{5} + a \\ X_{5} = a + \epsilon \end{cases} \begin{cases} X_{1} = \epsilon \\ X_{2} = X_{1}\epsilon + X_{3}\epsilon + bX_{3} + aX_{4} \\ X_{3} = X_{2} \\ X_{4} = X_{5}\epsilon \\ X_{5} = a + \epsilon \end{cases} \begin{cases} X_{1} = \epsilon X_{2} \\ X_{2} = bX_{3} + aX_{4} \\ X_{3} = X_{2} \\ X_{4} = X_{5} \\ X_{5} = a \end{cases}$$
(a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'ee~acad\'emique~2016/2017} \end{array}$

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8 9	Codez votre numéro d'anonymat	
0 1 2 3 4 5 6 7 8 9	et recopiez le manuellement dans	la boite.
0 1 2 3 4 5 6 7 8 9	Numéro d'anonymat	:
0 1 2 3 4 5 6 7 8 9	,	
0 1 2 3 4 5 6 7 8 9		
Question 1 : ■ b ■ d e f	5 h	
Question $2: \blacksquare$ b \complement d		
Question 3: a b c d e f	h	
Question $4:$ a \blacksquare \blacksquare d e f		
Question $5: \blacksquare$ b \blacksquare \blacksquare e \boxed{f}	B h	
Question $6: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$		
Question 7: a b c e f	5 h	
Question $8: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$		
Question 9: a b c d e \blacksquare	g h	
Question 10: a b c d e f	g \blacksquare	
Question 11: a b c e f	g	
Question 12: b d e f		
Question 13: a \blacksquare c d e f	g h	
Question 14 : \blacksquare b \blacksquare d \blacksquare f	■ h i j	
Question 15 : a b \blacksquare e f	g h	
Question 16: a b d e f	g \blacksquare	
Question 17: $a \blacksquare c d e f$	g h	
Question 18: Georgian	g h	
Question 19:	donner c ex	f 🔳 Reservé enseigna
Question 20:	donner ex	f 🗎 Reservé enseigne

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

Question 2 (0,5	points)	Soit A un	automate	complet su	ar un a	lphabet 2	Σ.
-----------------	---------	-------------	----------	------------	---------	-----------	----

- a A reconnaît un langage complet.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- d A reconnaît le langage universel.
- Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- On peut utiliser le lemme de l'itération sur L.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- 🖺 L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 & (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- **b** Cette affirmation est fausse.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a $|L| < |L_1|$.
- $\boxed{\mathbf{b}}$ L est un langage irrégulier.
- \blacksquare L contient le langage vide.
- \blacksquare L est un langage régulier.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- 🗵 L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ L a tous ses états accepteurs.
- $\boxed{\mathbf{b}}$ L est le langage universel.
- d L'exécution de L est définie pour chaque mot de Σ^* .
- \blacksquare Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- \boxed{a} Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- **b** L'automate résultant est représenté dans la Figure 2c.
- C L'automate résultant est représenté dans la Figure 2e.
- d Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- \blacksquare Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- L'automate résultant est représenté dans la Figure 2d.
- g L'automate résultant est représenté dans la Figure 2b.
- h Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Il est absurde de parler d'équivalence entre automates.
- b Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- C L'automate représenté dans la Figure 3e est équivalent.
- d Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- e L'automate représenté dans la Figure 3b est équivalent.
- [f] L'automate représenté dans la Figure 3c est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- h Aucun des automates n'est équivalent.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \square Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- f Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4c correspond.
- Celui de la Figure 4e correspond.
- © Celui de la Figure 4b correspond.
- d Celui de la Figure 4d correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ était minimal.
- d L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7d correspond à la minimisation de A.
- \boxed{b} Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ était minimal.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- d Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 20 (3 points) Démontrer que L_1 est non régulier.

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

- La cim de L_3 est 5.
 10 est une ci pour L_3 .
 C 3 est une ci pour L_3 .
 d La cim de L_3 est 4.
 E La cim de L_3 est 3.
 F Aucune des ci données n'est correcte.
 Toutes les ci données sont correctes.
 In Il manque des données dans l'énoncé pour déterminer la cim de L_3 .
- Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 \clubsuit (1 points) Nous considérons L_2 .

- B Aucune des ci données n'est correcte. h Toutes les ci données sont correctes.
 - \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1														
		1 1 1 1	0.4*	10.4*	00.4*	0.4*	4 1		1 1	1.4*	0.4*	10.4*	00.4*	0.4*	4
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	134	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b							\perp	a b	1	<u> </u>					\vdash
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

culer une expression régulière.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 INF 302 : Langages et Automates Licence Sciences et Technologies, 2ième année Année académique 2016/2017 Feuille(s) de réponses 0 1 2 3 4 5 6 7 8 9 Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Numéro d'anonymat : 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Question $1 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Question 2: a
c d e f g h Question $3: \blacksquare \ b \ \blacksquare \ d \ e \ f \ g$ Question $4: \blacksquare \blacksquare \bigcirc \blacksquare \bigcirc \boxdot \bigcirc \blacksquare$ Question $5: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f Question $6 : \blacksquare \ b \ c \ d$ Question 7: a b
e f g h Question $8: \begin{tabular}{lll} \hline a \\ \hline b \\ \hline c \\ \hline d \\ \hline e \\ \hline f \\ \hline \hline h \\ \hline \end{array}$ Question 9: a b c d e g h Question 10: a b c d e f \blacksquare h Question 11: a b c le f g Question $12: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Question 14: a Cdefgh

.....

donner c ex f Reservé enseignant

 Question 15 : a
 ■ ■ d
 ■ f
 g
 h

 Question 16 : a
 b
 c
 ■ e
 f
 g
 h

 Question 17 : ■ b
 c
 d
 e
 f
 g
 ■

 Question 18 : a
 ■ ■ d
 e
 f
 g
 h

Question 19:

Question 20:	f 🗹 🖸 Reservé enseignant
en utilisant le lemme de l'itération	
Question 21 : ■ □ c d e f g h	
Question 22:	donner ex f 🔳 Reservé enseignant
Question 23: b c d e g h i	
Question 24:	Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 & (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

	4
Question 2 (0,5 points) Soit L un langage comp	elet sur un alphabet Σ .
 a L a tous ses états accepteurs. b L reconnaît un langage déterministe. c L'exécution de L est définie pour chaque mot de Σ*. d L est le langage universel. 	 E Aucune des affirmations concernant L n'es correcte. f Toutes les affirmations concernant L sont correctes. ■ L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 3 \clubsuit (0,5 points) Soit L un langage obte L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : $ L $ déno	-
 ■ L est un langage régulier. □ L est un langage irrégulier. ■ L contient le langage vide. □ L < L₁ . e Aucune des affirmations concernant L n'est correcte. 	 f Toutes les affirmations concernant L sont con rectes. L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pou pouvoir répondre à la question.
Question 4 \clubsuit (0,5 points) Nous considérons la repour prouver qu'un automate étendu avec deux états tune spécification (P,Q) . La post-condition est la condition Q .	,
La post-condition doit être impliquée par la condition doit doit doit doit doit doit doit doit	lition de chacun des états terminaux.

- La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le Question 5 lemme de l'itération".

- Cette affirmation est vraie.
- **b** Cette affirmation est fausse.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 & (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \blacksquare On peut utiliser le lemme de l'itération sur L.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- d On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{b}}$ A reconnaît le langage universel.
- C A reconnaît un langage complet.
- \boxed{d} A est tel que tous ses états sont accepteurs.
- e Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ε-transitions, après avoir appliqué possiblement l'algorithme de suppression des ε-transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3c est équivalent.
- **b** Il est absurde de parler d'équivalence entre automates.
- C Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- d L'automate représenté dans la Figure 3b est équivalent.
- e Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- I L'automate représenté dans la Figure 3e est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- h Aucun des automates n'est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2e.
- b Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- \square Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- d L'automate résultant est représenté dans la Figure 2c.
- L'automate résultant est représenté dans la Figure 2d.
- [f] L'automate résultant est représenté dans la Figure 2b.
- \square Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- $\boxed{\mathbf{h}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- b Celui de la Figure 5a correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- b L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4c correspond.
- **b** Celui de la Figure 4d correspond.
- © Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ était minimal.
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7b correspond à la minimisation de A.
- \boxed{b} Figure 7a correspond à la minimisation de A.
- \Box Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- b L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- d L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ n'était pas minimal.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- d L'automate de départ était minimal.
- e Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 \clubsuit (1 points) Nous considérons le langage L_3 .

- a La cim de L_3 est 4. b La cim de L_3 est 3. 10 est une ci pour L_3 . La cim de L_3 est 5. e 3 est une ci pour L_3 . f Aucune des ci données n'est correcte. E Toutes les ci données sont correctes.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 21 (3 points) Démontrer que L_1 est non régulier.

Question 22 \clubsuit (1 points) Nous considérons L_2 .

- La cim de L_2 est 2. E La cim de L_2 est 0. I 10 est une ci pour L_2 . E Aucune des ci données n'est correcte. La cim de L_2 est 0. In Toutes les ci données sont correctes.
 - $\overline{}$ Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 23 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
С		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b							\vdash	a b	1	<u> </u>					\perp
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

culer une expression régulière.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9	Codez
0 1 2 3 4 5 6 7 8 9	et rec
0 1 2 3 4 5 6 7 8 9	
0 1 2 3 4 5 6 7 8 9	

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numér	o d'anonymat :	

```
Question 1: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare
```

Question 2:
$$a$$
 b c d e f \blacksquare h

Question
$$3: \blacksquare \ b \ \blacksquare \ d \ e \ f \ g \ h$$

Question
$$4: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

Question
$$5 : \blacksquare \$$
 $\boxed{ }$ $\boxed{ }$ $\boxed{ }$ $\boxed{ }$

Question
$$6: \blacksquare \blacksquare \blacksquare$$
 define h

Question
$$8: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$$

Question 9:
$$a$$
 b c d e f \blacksquare h

Question 10: a b c d
$$\blacksquare$$
 f \blacksquare h

Question
$$12: \blacksquare \ b \blacksquare \ d \ e \ f$$

Question 16 :
 a b c
$$\blacksquare$$
 e f g h

Question 17 :
 a b
$$\blacksquare$$
 d \blacksquare f g h

Question 19:	_			
	Λ	+	. 10	
		esi 1611	1 1 9	•

donner ex **f e** Reservé enseignant

Question 20: a b \blacksquare \blacksquare e f g h

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- **b** Cette affirmation est fausse.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) O

FIGURE 1 – Comment marquer une case.

Question 2 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{b}}$ A reconnaît le langage universel.
- © A reconnaît un langage complet.
- d A est tel que tous ses états sont accepteurs.
- lacksquare Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- C La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut utiliser le lemme de l'itération sur L.
- $\boxed{\ }$ On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- $\boxed{\mathrm{e}}$ Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\[a \]$ L'exécution de L est définie pour chaque mot de Σ^* .
- b L reconnaît un langage déterministe.
- $\boxed{\mathbf{d}}$ L est le langage universel.

- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- $\boxed{\mathbf{a}}$ L est un langage irrégulier.
- \blacksquare L contient le langage vide.
- C $|L| < |L_1|$.
- \blacksquare L est un langage régulier.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2b.
- L'automate résultant est représenté dans la Figure 2d.
- C L'automate résultant est représenté dans la Figure 2c.
- d Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- $\boxed{\mathbf{f}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- h L'automate résultant est représenté dans la Figure 2e.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3e est équivalent.
- b Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- © Il est absurde de parler d'équivalence entre automates.
- d L'automate représenté dans la Figure 3b est équivalent.
- e L'automate représenté dans la Figure 3c est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- 🗵 Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- h Aucun des automates n'est équivalent.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- b Celui de la Figure 5b correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- [f] Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- Celui de la Figure 4e correspond.
- b Celui de la Figure 4d correspond.
- © Celui de la Figure 4c correspond.
- d Celui de la Figure 4b correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \square Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [J] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- C L'exécution de l'algorithme n'est pas finie.
- L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ était minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- \boxed{a} Il n'est pas nécessaire de calculer \equiv_3 .
- b L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- d L'automate de départ était minimal.
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- \overline{a} Figure 7d correspond à la minimisation de A.
- \boxed{b} Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\overline{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ n'était pas minimal.
- b L'exécution de l'algorithme n'est pas finie.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- d L'automate de départ était minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 21 (3 points) Démontrer que L_1 est non régulier.

Question 22 \clubsuit (1 points) Nous considérons L_2 .

- d La cim de L_2 est 1. e La cim de L_2 est 0. 10 est une ci pour L_2 .
- Aucune des ci données n'est correcte.

 h Toutes les ci données sont correctes.
 - $\boxed{\text{i}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 23 \clubsuit (1 points) Nous considérons le langage L_3 .

- \blacksquare 10 est une ci pour L_3 . \blacksquare La cim de L_3 est 4. \blacksquare La cim de L_3 est 5.
- d La cim de L_3 est 3. e 3 est une ci pour L_3 . f Aucune des ci données n'est correcte. E Toutes les ci données sont correctes.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	0.4*	134*	234*	34*	4		1*	1.4*	0.4*	194*	99.4*	2.4*	1
	1	14	24*	134	234	34	4		1.	14*	24*	134*	234*	34*	4
a	14	134	234	134	234	34	34	a	14	134	234	134	234	34	$\frac{4}{34}$
a b							\perp	a b	1						
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

donner c ex f Reservé enseignant

Examen de seconde session du 27/06/2017 INF 302 : Langages et Automates Licence Sciences et Technologies, 2ième année Année académique 2016/2017 Feuille(s) de réponses 0 1 2 3 4 5 6 7 8 9 Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Numéro d'anonymat : 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Question $1 : \blacksquare \ b \ c \ d$ Question $2: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Question 3:

b c d e f g h Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ Question $6: \blacksquare \ b \blacksquare \ \blacksquare \ e \ f \ g \ h$ Question 7: a b c d e f h Question $8: \mathbb{A} \square \mathbb{C} \square \mathbb{E}$ Question 9: a Cdefgh Question $10: a b c d e \blacksquare g h$ Question 11: a b c le f g Question $12: a \blacksquare \blacksquare d e f$ Question 15: $a \blacksquare c \blacksquare \blacksquare f \blacksquare h$ **Question 16:** a b ■ d e f g ■ Question 17 : a b ■ d e f g h Question $18 : \blacksquare \ b \ c \ d \ \blacksquare \ f \ g \ h$ Question 19: donner ex f Reservé enseignant

Question 20:

Question 21:	f pf p Reservé enseignant
en utilisant le lemme de l'itération	
Question 22: a \blacksquare C d e \blacksquare S h i	
Question 23 : ■ b ■ d e f g h	
Question 24:	Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- b La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- [e] Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OK

FIGURE 1 – Comment marquer une case.

Question 2 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L contient le langage vide.
- $\boxed{\mathbf{b}}$ L est un langage irrégulier.
- \blacksquare L est un langage régulier.
- d $|L| < |L_1|$.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \boxed{b} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- On peut utiliser le lemme de l'itération sur L.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- f Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- C A est tel que tous ses états sont accepteurs.
- d A reconnaît un langage complet.
- $\[\]$ Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\ \ \,$ L'exécution de L est définie pour chaque mot de Σ^* .
- b L a tous ses états accepteurs.
- d L est le langage universel.

- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2b.
- $\boxed{\mathbf{b}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- L'automate résultant est représenté dans la Figure 2d.
- d L'automate résultant est représenté dans la Figure 2e.
- \bullet Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- [f] Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- g L'automate résultant est représenté dans la Figure 2c.
- $\boxed{\mathbf{h}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- b Il est absurde de parler d'équivalence entre automates.
- C L'automate représenté dans la Figure 3e est équivalent.
- d L'automate représenté dans la Figure 3b est équivalent.
- e Aucun des automates n'est équivalent.
- [f] Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- L'automate représenté dans la Figure 3d est équivalent.
- h L'automate représenté dans la Figure 3c est équivalent.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- b Celui de la Figure 5c correspond.
- © Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4b correspond.
- b Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

			•			
	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7b correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- [f] Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- b L'exécution de l'algorithme n'est pas finie.
- © L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate résultant de la minimisation aura le même nombre d'états.
- d L'exécution de l'algorithme n'est pas finie.
- L'automate de départ était minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- L'exécution de l'algorithme n'est pas finie.
- C L'automate de départ n'était pas minimal.
- \boxed{d} Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 . Question 20 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$. Question 21 (3 points) Démontrer que L_1 est non régulier. Question 22 & (1 points) Nous considérons L_2 . 10 est une ci pour L_2 . La cim de L_2 est 2. C La cim de L_2 est 3. f 1 est une ci pour L_2 . d La cim de L_2 est 1. h Toutes les ci données sont correctes. B Aucune des ci données n'est correcte. [i] Il manque des données dans l'énoncé pour déterminer la cim de L_2 . Question 23 ♣ (1 points) Nous considérons le langage L_3 .

a La cim de L_3 est 3.b La cim de L_3 est 4.■ La cim de L_3 est 5.■ 10 est une ci pour L_3 .e 3 est une ci pour L_3 .f Aucune des ci données n'est correcte.g Toutes les ci données sont correctes.h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)							(c)				
				,								. ,			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*		234*	34*	34	a	1*	14*	24*		234*	34*	34
a b	1			134*			=	a b	1			134*			\vdash
	14	134	234	134*	234	34	34	1	14	134	234	134*	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

culer une expression régulière.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Licence Sciences et Technologies, 2ième année

 $\ensuremath{\mathsf{INF}}$ 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

	odez votre numéro d'anonymat ci-contre
0 1 2 3 4 5 6 7 8 9 et	recopiez le manuellement dans la boite.
0 1 2 3 4 5 6 7 8 9	Numéro d'anonymat :
0 1 2 3 4 5 6 7 8 9	
0 1 2 3 4 5 6 7 8 9	
Question 1 : ■ b ■ d e f g	
Question $2: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$	
Question $3: \blacksquare \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\mathbf{h}
Question $4: \blacksquare \ b \ \blacksquare \ \blacksquare \ e \ f \ g$	\mathbf{h}
Question $5: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$	
Question $6: \blacksquare$ b c d e f g	\mathbf{h}
Question 7: $\boxed{\mathbf{a}}$ $\boxed{\mathbf{c}}$ $\boxed{\mathbf{d}}$	
Question $8:$ a b c d e f	$\overline{\mathbf{h}}$
Question 9: \boxed{a} \boxed{b} \boxed{d} \boxed{e} \boxed{f} \boxed{g}	\mathbf{h}
Question 10: a b c d e f \blacksquare	h
Question 11: a \blacksquare d e f	
Question 12 : \boxed{a} \boxed{c} \boxed{e} \boxed{e}	h i j
Question 13: a b c \blacksquare e f g	
Question 14: a b \blacksquare d e f g	h
Question 15: a b c \blacksquare e f \blacksquare	h
Question 16: a b c \blacksquare f g	h
Question 17: $\boxed{\mathbf{a}} \blacksquare \boxed{\mathbf{d}} \blacksquare \boxed{\mathbf{f}} \boxed{\mathbf{g}}$	h
Question 18: a \blacksquare c d e f g	
Question 19:	donner ex 🔳 🖪 Reservé enseignant
Question 20:	donner c ex f Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

Question 2 (0,5	points)	Soit A un	automate	complet su	ar un a	lphabet 2	Σ.
-----------------	---------	-------------	----------	------------	---------	-----------	----

- a A reconnaît un langage complet.
- **b** A reconnaît le langage universel.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- e Aucune des affirmations concernant A n'est correcte.
- f Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\[a \]$ L'exécution de L est définie pour chaque mot de Σ^*
- b L a tous ses états accepteurs.
- $\boxed{\mathbf{d}}$ L est le langage universel.

- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- a La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a L est un langage irrégulier.
- \blacksquare L est un langage régulier.
- \blacksquare L contient le langage vide.
- d $|L| < |L_1|$.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \boxed{a} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut utiliser le lemme de l'itération sur L.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- f Toutes les affirmations concernant L sont correctes.
- g L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2c.
- b Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- C L'automate résultant est représenté dans la Figure 2b.
- d L'automate résultant est représenté dans la Figure 2e.
- $\[e \]$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- $\boxed{\mathbf{f}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- L'automate résultant est représenté dans la Figure 2d.
- h Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- L'automate représenté dans la Figure 3d est équivalent.
- b L'automate représenté dans la Figure 3c est équivalent.
- C L'automate représenté dans la Figure 3e est équivalent.
- d Aucun des automates n'est équivalent.
- [e] Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- [f] Il est absurde de parler d'équivalence entre automates.
- El L'automate représenté dans la Figure 3b est équivalent.
- Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5b correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- Celui de la Figure 4e correspond.
- **b** Celui de la Figure 4b correspond.
- © Celui de la Figure 4c correspond.
- d Celui de la Figure 4d correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- d Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a Il n'est pas nécessaire de calculer \equiv_3 .
- L'exécution de l'algorithme n'est pas finie.
- C L'automate de départ était minimal.
- d L'automate de départ n'était pas minimal.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ était minimal.
- C L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	<u>1</u> *	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- Figure 7c correspond à la minimisation de A.
- \boxed{b} Figure 7d correspond à la minimisation de A.
- \square Figure 7a correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7b correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

L'automate de départ n'était pas minimal.

L'automate résultant de la minimisation aura le même nombre d'états.

L'automate de départ était minimal.

d L'exécution de l'algorithme n'est pas finie.

Il n'est pas nécessaire de calculer \equiv_3 .

f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.

El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.

h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (3 points) Démontrer que L_1 est non régulier.

Question 20 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

Aucune des ci données n'est correcte. $\boxed{\mathbb{G}}$ Toutes les ci données sont correctes. $\boxed{\mathbb{H}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 22 \clubsuit (1 points) Nous considérons L_2 .

Aucune des ci données n'est correcte.

h Toutes les ci données sont correctes.

 \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 23 (0.5 points) Donner un mot dans L_1 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1^	14*	24*	134*	234*	34↑	4		1↑	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1 *	1.14	2.4%	40.4%	20.44	0.4*	4		1*	1.4*	0.1*	19.4*	20.44	0.4*	
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	134	$\begin{array}{ c c }\hline 24^* \\ \hline 234 \\ \hline \end{array}$	134*	234*	34	34	a	14	134	234	134"	234*	34	34
a b							\vdash	a b	1						\perp
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9

- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Nun	éro d'	anonym	at:

Question $1 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 2: a b c \blacksquare e f g h

Question 3: a b c d e f h

Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f

Question 5: a
defg

Question $6: \boxed{a} \blacksquare \boxed{c} \boxed{d}$

Question 7: $\boxed{\mathbf{a}} \quad \boxed{\mathbf{g}} \quad \boxed{\mathbf{g}} \quad \boxed{\mathbf{g}}$

Question $8: \mathbb{A} \blacksquare \blacksquare \blacksquare \mathbb{B}$ e f \mathbb{B} h

Question 9: a b c d e f h

Question $10: \blacksquare$ b c d e f g h

Question 11: a b c e f g

Question 12:

b c d e f g h

Question $13: \blacksquare \blacksquare \blacksquare$ d e \blacksquare g h i j

Question $14 : \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question 15: $a \blacksquare c d e f g \blacksquare$

Question $16: \blacksquare \blacksquare \bigcirc \blacksquare \bigcirc \blacksquare \bigcirc \blacksquare \bigcirc \blacksquare$

Question $18: \blacksquare \ b \ c \ d \ \blacksquare \ f \ g \ h$

Question 19:	f 🗹 🖸 Reservé enseignant
en utilisant le lemme de l'itération	
Question 20:	donner c ex [f] Reservé enseignant
Question 21: b c e f 8 h	
Question 22: ■ b c d e ■ g h i	
Question 23:	donner ex $\boxed{\mathbf{f}}$ $\boxed{\mathbf{g}}$ Reservé enseignant
Question 24:	Reservé enseignant

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) O

FIGURE 1 – Comment marquer une case.

Question 2 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L contient le langage vide.
- $\boxed{\mathbf{b}}$ L est un langage irrégulier.
- C $|L| < |L_1|$.
- \blacksquare L est un langage régulier.
- $oxed{\mathbb{E}}$ Aucune des affirmations concernant L n'est correcte
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \boxed{b} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- On peut utiliser le lemme de l'itération sur L.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- 🖺 L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L a tous ses états accepteurs.
- $\boxed{\mathbf{b}}$ L reconnaît un langage déterministe.
- $\underline{\mathbf{d}}$ L est le langage universel.

- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît le langage universel.
- $\boxed{\mathbf{b}}$ A est tel que tous ses états sont accepteurs.
- C A reconnaît un langage complet.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- f Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- \blacksquare La post-condition est la condition Q.
- La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3c est équivalent.
- b Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- C L'automate représenté dans la Figure 3e est équivalent.
- d Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- e Aucun des automates n'est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- B L'automate représenté dans la Figure 3b est équivalent.
- h Il est absurde de parler d'équivalence entre automates.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- \boxed{a} Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- b L'automate résultant est représenté dans la Figure 2b.
- L'automate résultant est représenté dans la Figure 2d.
- d Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- e L'automate résultant est représenté dans la Figure 2e.
- [f] L'automate résultant est représenté dans la Figure 2c.
- \square Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- h Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4c correspond.
- **b** Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- d Celui de la Figure 4d correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5c correspond.
- Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- [f] Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- d Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- \boxed{b} Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate résultant de la minimisation aura le même nombre d'états.
- C L'exécution de l'algorithme n'est pas finie.
- L'automate de départ était minimal.
- e L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- **b** L'automate résultant de la minimisation aura le même nombre d'états.
- C L'automate de départ était minimal.
- d L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

		1*	2*	3*	4*	5*	6
	a	2	2	3	3	6	6
ľ	b	3	3	4	4	6	6
	c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\mathbf{a}}$ $\overline{\mathbf{Figure}}$ 7d correspond à la minimisation de A.
- \boxed{b} Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- $\boxed{\mathbf{f}}$ Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons le langage L_3 .

- Question 20 (3 points) Démontrer que L_1 est non régulier.
- **Question 21** (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.
- Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 \clubsuit (1 points) Nous considérons L_2 .

- aLa cim de L_2 est 0. \blacksquare 10 est une ci pour L_2 . \blacksquare La cim de L_2 est 2.dLa cim de L_2 est 3. \blacksquare 1 est une ci pour L_2 . \blacksquare La cim de L_2 est 1.
- Aucune des ci données n'est correcte. h Toutes les ci données sont correctes.
 - $\boxed{\mathbf{i}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	1 14	0.444	4044	00.4*	34*	1		1 1 1	1.4*	0.44	10.4*	00.4*	0.44	
	1	14*	24*	134*	234*	34	$\lfloor 4 \rfloor$		1*	14*	24*	134*	234*	34*	4
a	14	134	234	134*	234	34	34	a	14	134	234	134*	234	34*	34
a b							<u> </u>	a b							\perp
	14	134	234	134	234	34	34		14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9
	1	ы			F				

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonymat :
• • • • • • • • • • • • • • • • • • • •

Question $1: \boxed{\mathbf{a}} \quad \boxed{\mathbf{c}} \quad \boxed{\mathbf{d}}$

Question 2:

b c e f g h

Question $3: \blacksquare \ b \ \blacksquare \ \blacksquare \ e \ f \ g \ h$

Question $4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f

Question $5: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f

Question $6: \boxed{a} \boxed{b} \boxed{c} \boxed{d} \boxed{e} \boxed{f} \boxed{b}$

Question 7: a b c e f g h

Question $8: \blacksquare \ b \ \blacksquare \ d \ e \ f \ g$

Question 9: a b c d e B B h

Question 10: a b def g h

Question 11: a b d e f g h

Question 13: a def

Question 14: a C d M M h i j

Question 15: a b c \blacksquare e f \blacksquare

Question $16: \blacksquare \blacksquare \bigcirc \blacksquare \bigcirc \blacksquare \bigcirc \blacksquare \bigcirc \blacksquare$

Question 17: \blacksquare \Box \Box \Box \Box \Box \Box \Box \Box \Box

Question 18: a b d e f g h

Question 19:

b
c
e
f
g
h

Question 20:	f P Reservé enseignant
en utilisant le lemme de l'itération	
Question 21:	donner c ex f Reservé enseignant
Question 21:	donner c ex f n Reservé enseignant
Question 21:	donner c ex f Reservé enseignant
Question 21: Question 22:	donner c ex f \blacksquare Reservé enseignant donner ex f \blacksquare Reservé enseignant
Question 22:	
Question 22 : Question 23 : a ■ d e f g h i	donner ex f Reservé enseignant
Question 22 : Question 23 : a ■ d e f g h i	donner ex f Reservé enseignant

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

Question 2 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L est le langage universel.
- \Box L'exécution de L est définie pour chaque mot de Σ^* .
- d L a tous ses états accepteurs.

- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ε-transitions, après avoir appliqué possiblement l'algorithme de suppression des ε-transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- b La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A est tel que tous ses états sont accepteurs.
- **b** A reconnaît un langage complet.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- d A reconnaît le langage universel.
- e Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \boxed{b} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- On peut utiliser le lemme de l'itération sur L.
- $\boxed{\mathrm{e}}$ Aucune des affirmations concernant L n'est correcte.
- $\lceil f \rceil$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- Cette affirmation est vraie.
- **b** Cette affirmation est fausse.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L est un langage régulier.
- $|L| < |L_1|$.
- \blacksquare L contient le langage vide.
- $\boxed{\mathbf{d}}$ L est un langage irrégulier.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- 🗵 L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3e est équivalent.
- b Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- © L'automate représenté dans la Figure 3c est équivalent.
- d Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- e Aucun des automates n'est équivalent.
- [f] L'automate représenté dans la Figure 3b est équivalent.
- Il est absurde de parler d'équivalence entre automates.
- L'automate représenté dans la Figure 3d est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2b.
- \boxed{b} Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- L'automate résultant est représenté dans la Figure 2d.
- d Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- \boxed{e} Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- f L'automate résultant est représenté dans la Figure 2c.
- 🗵 L'automate résultant est représenté dans la Figure 2e.
- h Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5c correspond.
- © Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- f Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- f Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [J] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- © Celui de la Figure 4d correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- d L'exécution de l'algorithme n'est pas finie.
- L'automate de départ était minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ n'était pas minimal.
- C L'exécution de l'algorithme n'est pas finie.
- d L'automate de départ était minimal.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- b L'automate de départ n'était pas minimal.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- e Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- \boxed{b} Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- [f] Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 20 (0.5 points) Donner un mot dans L_1 .

Question 21 \clubsuit (1 points) Nous considérons L_2 .

- Aucune des ci données n'est correcte. In Toutes les ci données sont correcte. Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 22 (3 points) Démontrer que L_1 est non régulier.

Question 23 \clubsuit (1 points) Nous considérons le langage L_3 .

- a 3 est une ci pour L_3 . La cim de L_3 est 5. C La cim de L_3 est 4. d La cim de L_3 est 3. 10 est une ci pour L_3 .
- f Aucune des ci données n'est correcte. E Toutes les ci données sont correctes.

 h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
С		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b	1	<u> </u>					<u> </u>	a b	1						\vdash
1	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
(a)				(b)			(0	c)			(d)		

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'ee~acad\'emique~2016/2017} \end{array}$

Feuille(s) de réponses

O 1 2 3 4 5 6 7 8 9 Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite. O 1 2 3 4 5 6 7 8 9 Numéro d'anonymat : O 1 2 3 4 5 6 7 8 9
Question $1: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$
Question 2: a b c d e f h
Question 3: e e f
Question 4: b d e f g
Question 5: a b def gh
Question 6: b e f g h
Question 7: b C d
Question 8: ■ b ■ d e f g h
Question 9: a b c d e f g ■
Question 10: a b def bh
Question 11: © d e f
Question 12: a b c e f g
Question 13: e f g h i j
Question 14: a C d e f g h
Question 15: $\boxed{\mathbf{a}} \boxed{\mathbf{d}} \boxed{\mathbf{f}} \boxed{\mathbf{g}} \boxed{\mathbf{h}}$
Question 16: © def gh
Question 17: a b c ■ e f g ■
Question 18: a b c ■ e f g h
Question 19: donner c ex f Reservé enseignan
Question 20 : donner ex f Reservé enseignar

Question 21:

b

d
e

f

E

h

i

Question 22:	f pf p Reservé enseignant
en utilisant le lemme de l'itération	
Question 23: \blacksquare \blacksquare \boxdot \boxdot \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare	
Question 24:	Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1-Comment marquer une case.

pour prouver qu'un automate étendu avec deux états	terminaux est partiellement correct par rapport à								
une spécification (P,Q) .									
La post-condition est la condition Q .	114. 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
La post-condition doit être impliquée par la cond									
La post-condition doit être impliquée par la cond									
d Aucune des affirmations concernant post-condition									
e Toutes les affirmations concernant post-condition	n sont correctes.								
f L'énoncé de la question est absurde.									
Il manque des données dans l'énoncé pour pouvo g	ir répondre à la question.								
Question 3 (0,5 points) Soit L un langage comp	olet sur un alphabet Σ .								
$\boxed{\mathbf{a}} \ L \ \mathbf{a} \ \text{tous ses \'etats accepteurs}.$	$\cent{@}$ Aucune des affirmations concernant L n'est								
E a tous ses etats accepteurs. E L'exécution de E est définie pour chaque mot	correcte.								
de Σ^* .	$\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont cor-								
$\stackrel{\square}{\mathbb{C}}$ L est le langage universel.	rectes.								
$ \overline{\underline{d}} $ L reconnaît un langage déterministe.	L'énoncé de la question est absurde.								
_	h Il manque des données dans l'énoncé pour pouvoir répondre à la question.								
	pouron repondre a la question.								
Question 4 \clubsuit (0,5 points) Soit L un langage rég $L \neq L'$.	gulier quel conque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et								
On peut utiliser le lemme de l'itération sur L .									
On peut trouver un automate d'états fini déterm	iniste qui reconnaît L .								
\Box On peut trouver deux langages réguliers L_1 et L_2									
On peut trouver un automate d'états fini non dé									
$\stackrel{\bullet}{=}$ Aucune des affirmations concernant L n'est corre	_								
\Box Toutes les affirmations concernant L sont correct									
	es.								
E L'énoncé de la question est absurde.	1 1								
h Il manque des données dans l'énoncé pour pouvo	or repondre a la question.								
Question 5 (0,5 points) Nous considérons l'affilemme de l'itération".	rmation "Tous les langages réguliers satisfont le								
—									
Cette affirmation est vraie.	C L'affirmation est absurde.								
b Cette affirmation est fausse.	Example 1 Example 2 Example 2								
Question 6 \clubsuit (0,5 points) Soit L un langage obt L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : $ L $ déno	enu par la différence entre deux langages réguliers et e le cardinal du langage L .								
\blacksquare L contient le langage vide. \blacksquare \blacksquare Toutes les affirmations concernant L sont cor-									
L est un langage irrégulier.	rectes.								
_									
L est un langage régulier.	h Il manque des données dans l'énoncé pour								
$ \underline{d} L < L_1 $. pouvoir répondre à la question.									

 \fbox{e} Aucune des affirmations concernant L n'est

correcte.

Question 2 🌲 (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer

Question 7 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ A est tel que tous ses états sont accepteurs.
- b A reconnaît un langage complet.
- C A reconnaît le langage universel.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- e Aucune des affirmations concernant A n'est correcte.
- f Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3b est équivalent.
- Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- C Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- d L'automate représenté dans la Figure 3e est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- I L'automate représenté dans la Figure 3c est équivalent.
- Il est absurde de parler d'équivalence entre automates.
- h Aucun des automates n'est équivalent.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2c.
- D Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- C L'automate résultant est représenté dans la Figure 2e.
- L'automate résultant est représenté dans la Figure 2d.
- e L'automate résultant est représenté dans la Figure 2b.
- f Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- \blacksquare Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- $\boxed{\mathbb{h}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- b L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- d Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- f Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \square Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- © Celui de la Figure 4d correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- b L'automate résultant de la minimisation aura le même nombre d'états.
- \square Il n'est pas nécessaire de calculer \equiv_3 .
- d L'automate de départ était minimal.
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate de départ n'était pas minimal.
- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7b correspond à la minimisation de A.
- \square Figure 7a correspond à la minimisation de A.
- $\overline{\mathbf{d}}$ Figure 7d correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- b L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- d L'automate de départ était minimal.
- e L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons L_2 .

- $\boxed{\mathbf{a}}$ La cim de L_2 est 0. $\boxed{\mathbf{b}}$ La cim de L_2 est 3. $\boxed{\mathbf{c}}$ La cim de L_2 est 1.
- d 1 est une ci pour L_2 . La cim de L_2 est 2. 10 est une ci pour L_2 .
- - (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.
- Question 21 (3 points) Démontrer que L_1 est non régulier.
- Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 \clubsuit (1 points) Nous considérons le langage L_3 .

- a 3 est une ci pour L_3 .
 10 est une ci pour L_3 .
 C La cim de L_3 est 4.
- - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Champ Libre

Question 20

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1 *	1.4*	0.4*	194*	99.4*	2.4*	1		1 *	1.1*	0.4*	194*	22.4*	2.4*	1
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14* 134	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b	1						\vdash	a b	1						
-	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(a)				(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8 9	Codez votre numéro d'anonymat ci-contre
0 1 2 3 4 5 6 7 8 9	et recopiez le manuellement dans la boite.
0 1 2 3 4 5 6 7 8 9	Numéro d'anonymat :
0 1 2 3 4 5 6 7 8 9	
0 1 2 3 4 5 6 7 8 9	

Question 1:					e	[f]		
Question 2:		b		\mathbf{d}	e	f	g	
Question 3:	a	b	[c]	d	\mathbf{e}	f		h
Question 4:			c		e	f	g	h
Question 5:		b	\mathbf{c}	\mathbf{d}				
Question 6:		b		\mathbf{d}	e	f	g	h
Question 7 :	a	b	c		e	f	g	h
Question 8:					e	f		
Question 9:	a	b	c	\mathbf{d}		f	g	h
Question 10	: 8	l b) [C		ϵ	f	<u>g</u>	

Question 11: a b c e f g Question $12 : \blacksquare \ b \ \blacksquare \ d \ e \ f$ Question $13: \blacksquare \blacksquare \blacksquare$ d \blacksquare f \blacksquare h i \boxdot

Question 14: a Cdefgh Question $15: \blacksquare \ b \ c \ d \ e \ f \ g \ \blacksquare$ Question $17: \blacksquare$ b c d e f g h Question $18: \blacksquare \ b \ \blacksquare \ d \ e \ f \ g \ h$

Question 19 : a b c d ■ ■ g h i Question 20:

Question 20:	donner c ex f Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

Question 2 (0,5 points) Soit L un langage comp	biet sur un aipnabet 2.
 a L'exécution de L est définie pour chaque mot de Σ*. b L a tous ses états accepteurs. c L reconnaît un langage déterministe. d L est le langage universel. 	 e Aucune des affirmations concernant L n'est correcte. f Toutes les affirmations concernant L sont correctes. ■ L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 3 (0,5 points) Soit A un automate con	mplet sur un alphabet Σ .
 A est tel que son exécution est définie pour chaque mot de Σ*. A est tel que tous ses états sont accepteurs. A reconnaît le langage universel. A reconnaît un langage complet. 	 e Aucune des affirmations concernant A n'est correcte. f Toutes les affirmations concernant A sont correctes. E L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 4 ♣ (0,5 points) Nous considérons la repour prouver qu'un automate étendu avec deux états une spécification (P,Q). La post-condition est la condition Q. La post-condition doit être impliquée par la condition de la post-condition doit être impliquée par la condition de la post-condition doit être impliquée par la condition de la post-condition de la question concernant post-condition formation de la question est absurde. El l'énoncé de la question est absurde. El l'énoncé pour pouvoir l'énoncé pouvoir l'énoncé pour pouvoir l'énoncé	lition d'un seul état terminal. lition de chacun des états terminaux. on n'est correcte. n sont correctes.
Question 5 (0,5 points) Nous considérons l'affilemme de l'itération".	irmation "Tous les langages réguliers satisfont le
Cette affirmation est vraie.Cette affirmation est fausse.	 C L'affirmation est absurde. d Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 6 \clubsuit (0,5 points) Soit L un langage obt L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : $ L $ déno	enu par la différence entre deux langages réguliers et le cardinal du langage L .
a L est un langage irrégulier. L contient le langage vide.	f Toutes les affirmations concernant L sont correctes.

C $|L| < |L_1|$.

correcte.

 \blacksquare L est un langage régulier.

 \fbox{e} Aucune des affirmations concernant L n'est

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

pouvoir répondre à la question.

 \fbox{h} Il manque des données dans l'énoncé pour

Question 7 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \blacksquare On peut utiliser le lemme de l'itération sur L.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- © On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- e Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2e.
- \Box Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- \square Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- d Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- e L'automate résultant est représenté dans la Figure 2b.
- $\boxed{\mathbf{f}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- El L'automate résultant est représenté dans la Figure 2c.
- L'automate résultant est représenté dans la Figure 2d.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Il est absurde de parler d'équivalence entre automates.
- b Aucun des automates n'est équivalent.
- C Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- d L'automate représenté dans la Figure 3b est équivalent.
- e L'automate représenté dans la Figure 3c est équivalent.
- [f] Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- B L'automate représenté dans la Figure 3e est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5c correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- a L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- [e] Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \blacksquare L'expression régulière associée à cet automate est $(ab^*a+b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- f Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \square Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4b correspond.
- Celui de la Figure 4e correspond.
- © Celui de la Figure 4d correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- \boxed{b} Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate de départ était minimal.
- d L'automate de départ n'était pas minimal.
- El L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- d L'automate de départ n'était pas minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	<u>1</u> *	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- \boxed{b} Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7d correspond à la minimisation de A.
- f Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ n'était pas minimal.
- b L'automate de départ était minimal.
- C L'exécution de l'algorithme n'est pas finie.
- \blacksquare Il n'est pas nécessaire de calculer \equiv_3 .
- El L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons L_2 .

- a La cim de L_2 est 3. \blacksquare 10 est une ci pour L_2 . \Box 1 est une ci pour L_2 .d La cim de L_2 est 0. \Box La cim de L_2 est 1. \Box La cim de L_2 est 2.
- Aucune des ci données n'est correcte.
 h Toutes les ci données sont correctes.
 - \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 20 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

- - d 3 est une ci pour L_3 . 10 est une ci pour L_3 .

Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 (3 points) Démontrer que L_1 est non régulier.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	1.4*	24*	134*	234*	3.4*	1
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14* 134	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b							\perp	a b	1	<u> </u>					\perp
	14	134	234	134	234	34	34	-	14	134	234	14	234	34	34

FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

culer une expression régulière.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(a	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'ee~acad\'emique~2016/2017} \end{array}$

Feuille(s) de réponses

	numéro d'anonymat ci-contre e manuellement dans la boite.
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9	Numéro d'anonymat :
0 1 2 3 4 5 6 7 8 9	
Question 1 :	
Question 2: a b c d e f h	
Question 3: b C d e f 8 h	
Question 4 : ■ b ■ d e f 8	
Question 5:	
Question 6: a c e f s h	
Question $7: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$	
Question 8: © © © © E © h	
Question 9: a b c d e f g ■	
Question $10:$ a b c d e f g \blacksquare	
Question 11: a b c ■ e f g	
Question 12: a \blacksquare d e f	
Question 13 : \blacksquare \trianglerighteq \blacksquare	
Question 14: a \blacksquare c d e f $\Bbb S$ h	
Question 15: \blacksquare b c d e f \blacksquare	
Question 16: a \blacksquare \blacksquare d \blacksquare f \blacksquare h	
Question 17: a b \blacksquare d e f g h	
Question 18: b c e f g h	
Question 19: a \blacksquare c d e \blacksquare g h i	
Question 20:	donner c ex 🗐 🔳 Reservé enseignant
Question 21: b c d f B h	
Question 22:	donner ex f n Reservé enseignant

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- [e] Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO

(b) KO (c) KO (d) OK

FIGURE 1 – Comment marquer une case.

(0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L. f Toutes les affirmations concernant L sont cora L est un langage irrégulier. rectes. L contient le langage vide. L'énoncé de la question est absurde. $|C| |L| < |L_1|$. h Il manque des données dans l'énoncé pour L est un langage régulier. pouvoir répondre à la question. e Aucune des affirmations concernant L n'est correcte.

(0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le Question 3 lemme de l'itération".

- d Il manque des données dans l'énoncé pour Cette affirmation est vraie. pouvoir répondre à la question.
- Question 4 (0,5 points) Soit L un langage complet sur un alphabet Σ .
 - a L'exécution de L est définie pour chaque mot
 - **b** L reconnaît un langage déterministe.

a Cette affirmation est fausse.

d L est le langage universel.

- correcte.
- Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.

C L'affirmation est absurde.

h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- f Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Lette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît un langage complet.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- C A reconnaît le langage universel.
- d A est tel que tous ses états sont accepteurs.
- f Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \blacksquare On peut utiliser le lemme de l'itération sur L.
- \boxed{b} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- $\[\]$ Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- 🗵 L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a L'automate représenté dans la Figure 3e est équivalent.
- b L'automate représenté dans la Figure 3c est équivalent.
- C Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- d Aucun des automates n'est équivalent.
- e L'automate représenté dans la Figure 3b est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- g Il est absurde de parler d'équivalence entre automates.
- h Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a L'automate résultant est représenté dans la Figure 2e.
- b L'automate résultant est représenté dans la Figure 2c.
- C Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- L'automate résultant est représenté dans la Figure 2d.
- \bullet Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- f Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- $\boxed{\mathbb{S}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- h L'automate résultant est représenté dans la Figure 2b.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5c correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- \blacksquare L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4c correspond.
- **b** Celui de la Figure 4b correspond.
- © Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- f Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \square Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- b L'automate de départ était minimal.
- \square Il n'est pas nécessaire de calculer \equiv_3 .
- d L'automate de départ n'était pas minimal.
- L'exécution de l'algorithme n'est pas finie.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- b L'exécution de l'algorithme n'est pas finie.
- C L'automate de départ était minimal.
- L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ était minimal.
- b L'exécution de l'algorithme n'est pas finie.
- C L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate résultant de la minimisation aura le même nombre d'états.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\mathbf{a}}$ Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7b correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- [f] Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 20 (0.5 points) Donner un mot dans L_1 .

Question 21 \clubsuit (1 points) Nous considérons L_2 .

- a La cim de L_2 est 3.b 1 est une ci pour L_2 .c La cim de L_2 est 0.■ 10 est une ci pour L_2 .■ La cim de L_2 est 2.f La cim de L_2 est 1.
- Aucune des ci données n'est correcte.
 h Toutes les ci données sont correctes.
 - \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 22 \clubsuit (1 points) Nous considérons le langage L_3 .

- - $\underline{\mathbb{h}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 23 (3 points) Démontrer que L_1 est non régulier.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
\mathbf{c}		4	24	34	234	4	4	С		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	134	234	134	234	34	34	a	14	134	234	14	234	34	34
b	24	24	24	24	24	4	4	b	24	24	234	24	24	4	4
ט	24	24	24	24	44						_			_	
С	24	4	24	34	234	34	4	c		4	4	34	234	4	4

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_3	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$		\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1		1	1
2	2	2	2	2	2	2	2	2	2	2	2	Ī	2	2
3	3	3	3	3	3	3	3	3	3	3	3		3	3
4	4	4	4	4	4	4	4	4	4	4	4		4	4
5	5	5	5	5	5	5	5	5	5	5	5	ſ	5	5
6	6	6	6	6	6	6	6	6	6	6	6		6	6
	(8	a)			(b)			(c)				(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'ee~acad\'emique~2016/2017} \end{array}$

Feuille(s) de réponses

	numéro d'anonymat ci-contre manuellement dans la boite.
0 1 2 3 4 5 6 7 8 9	N. C. D.
0 1 2 3 4 5 6 7 8 9	Numéro d'anonymat :
0 1 2 3 4 5 6 7 8 9	
Question 1: b d e f g	
Question 2: a c e f g h	
Question 3: a C d	
Question 4: a b c d e f \blacksquare h	
Question $5: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f	
Question 6 : ■ ■ ■ ■ e f	
Question 7: a C d e f h	
Question 8: b e f g h	
Question 9: a b c d e g h	
Question 10: a b c e f g h	
Question 11: a b c e f g	
Question 12: b d e f	
Question 13: a b c e f g h	
Question 14: e f g h i j	
Question 15: a b c d ■ f g ■	
Question 16: a b c f g h	
Question 17: b c f s h	
Question 18: a C d e f S h	
Question 19:	donner c ex f Reservé enseignant
Question 20:	donner ex 🖪 🔳 Reservé enseignant

 Question 21 : a b c ■ f B h i

 Question 22 : b ■ d e f B h

Question 23:	f pf p	j i	Reservé ensei	gnant
en utilisant le lemme de l'itération				
Question 24:			Reservé ensei	gnant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302: Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de colorier entièrement les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo noir. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 & (0.5 points) Soit L un langage régulier quelconque. Rappel: $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \boxed{b} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- \blacksquare On peut utiliser le lemme de l'itération sur L.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK

FIGURE 1 – Comment marquer une case.

Question 2 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît un langage complet.
- **b** A reconnaît le langage universel.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{d}}$ A est tel que tous ses états sont accepteurs.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a L est un langage irrégulier.
- $|L| < |L_1|$.
- \blacksquare L est un langage régulier.
- L contient le langage vide.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L reconnaît un langage déterministe.
- $\boxed{\mathbf{b}}$ L a tous ses états accepteurs.
- $\underline{\mathbf{d}}$ L est le langage universel.

- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ε-transitions, après avoir appliqué possiblement l'algorithme de suppression des ε-transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- \boxed{a} Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- b L'automate résultant est représenté dans la Figure 2b.
- C L'automate résultant est représenté dans la Figure 2c.
- d L'automate résultant est représenté dans la Figure 2e.
- $\boxed{\mathrm{e}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- L'automate résultant est représenté dans la Figure 2d.
- h Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- b L'automate représenté dans la Figure 3e est équivalent.
- C Aucun des automates n'est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- el Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- [f] L'automate représenté dans la Figure 3c est équivalent.
- B L'automate représenté dans la Figure 3b est équivalent.
- h Il est absurde de parler d'équivalence entre automates.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5b correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4c correspond.
- Celui de la Figure 4e correspond.
- © Celui de la Figure 4d correspond.
- d Celui de la Figure 4b correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- f Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [J] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\boxed{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- \boxed{b} Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- f Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a Il n'est pas nécessaire de calculer \equiv_3 .
- b L'automate de départ était minimal.
- © L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate résultant de la minimisation aura le même nombre d'états.
- b L'automate de départ était minimal.
- C L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- C L'automate de départ n'était pas minimal.
- d L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (3 points) Démontrer que L_1 est non régulier.

Question 20 \clubsuit (1 points) Nous considérons le langage L_3 .

h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 21 \clubsuit (1 points) Nous considérons L_2 .

a La cim de L_2 est 3. La cim de L_2 est 2. C La cim de L_2 est 0. d 1 est une ci pour L_2 . e La cim de L_2 est 1. 10 est une ci pour L_2 .

Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. l Il manque des données dans l'énoncé pour déterminer la cim de L_2 .

Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
				,								` /			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14*	24*		234*	34*	34	a	1*	14*	24*		234*	34*	34
a b				134*			\perp	a b	1			134*			\perp
	14	134	234	134*	234	34	34	-	14	134	234	134*	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_3	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$		\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1		1	1
2	2	2	2	2	2	2	2	2	2	2	2	Ī	2	2
3	3	3	3	3	3	3	3	3	3	3	3		3	3
4	4	4	4	4	4	4	4	4	4	4	4		4	4
5	5	5	5	5	5	5	5	5	5	5	5	ſ	5	5
6	6	6	6	6	6	6	6	6	6	6	6		6	6
	(8	a)			(b)			(c)				(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8	9
-------------------	---

- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Num	ro d'anonymat :	

Question 1 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare

Question $2: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 3: a b def gh

Question 4 : a b \blacksquare \blacksquare e f g h

Question 5: a b c d e f \blacksquare h

Question $6: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $7: \boxed{a} \boxed{c} \boxed{d}$

Question $8: \blacksquare \ b \ \blacksquare \ d \ e \ f \ g$

Question 9: a b c d e s s h

Question 10: a b c e f g h

Question 11: a b c e f g

Question 12: a Cdefgh

Question $14 : \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question 15: a b c \blacksquare e f g h

Question 16: a b c \blacksquare e f \blacksquare

Question 17: $a b c \blacksquare \blacksquare f$

Question $18: \blacksquare \blacksquare \bigcirc

Question 19:	f p p Reservé enseignant
en utilisant le lemme de l'itération	
Question 20: b d e f g h	
Question 21: a \blacksquare c d e \blacksquare g h i	
Question 22:	donner ex f 🔳 Reservé enseignant
Question 23:	onner c ex 🔳 Reservé enseignant
	_
Question 24:	Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

Question 2 \clubsuit (0,5 points) Soit L un langage obt	56: enu par la différence entre deux langages réguliers
 L₁ et L₂ quelconques (L = L₁ \ L₂). Rappel : L dénote L contient le langage vide. L < L₁ . L est un langage irrégulier. L est un langage régulier. Aucune des affirmations concernant L n'est correcte. 	 f Toutes les affirmations concernant L sont correctes. E L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le Question 3 lemme de l'itération".

Cette affirmation est vraie.	© L'affirmation est absurde.
b Cette affirmation est fausse.	d Il manque des données dans l'énoncé pour
	pouvoir répondre à la question.

(0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer Question 4 ♣ pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P, Q).

- a La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Soit L un langage complet sur un alphabet Σ .

a L est le langage universel.	\fbox{e} Aucune des affirmations concernant L n'est
 b L a tous ses états accepteurs. c L'exécution de L est définie pour chaque mot de Σ*. d L reconnaît un langage déterministe. 	 correcte. f Toutes les affirmations concernant L sont correctes. L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 & (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut utiliser le lemme de l'itération sur L.
- \boxed{b} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{b}}$ A est tel que tous ses états sont accepteurs.
- d A reconnaît le langage universel.
- e Aucune des affirmations concernant A n'est correcte.
- f Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Il est absurde de parler d'équivalence entre automates.
- b L'automate représenté dans la Figure 3b est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- d Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- e L'automate représenté dans la Figure 3c est équivalent.
- f L'automate représenté dans la Figure 3e est équivalent.
- Aucun des automates n'est équivalent.
- Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- a Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- b Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- C L'automate résultant est représenté dans la Figure 2e.
- L'automate résultant est représenté dans la Figure 2d.
- e L'automate résultant est représenté dans la Figure 2b.
- [f] L'automate résultant est représenté dans la Figure 2c.
- \square Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- h Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4b correspond.
- **b** Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \square Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- f Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- 🗓 Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5b correspond.
- © Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- [f] Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- El Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- \overline{a} Figure 7a correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7b correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- f Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- L'exécution de l'algorithme n'est pas finie.
- © L'automate résultant de la minimisation aura le même nombre d'états.
- d L'automate de départ n'était pas minimal.
- e Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- 🗵 Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- d L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ n'était pas minimal.
- b L'automate de départ était minimal.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- d L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons L_2 .

- d 1 est une ci pour L_2 . I 10 est une ci pour L_2 . I La cim de L_2 est 1.
 B Aucune des ci données n'est correcte. In Toutes les ci données sont correctes.
 - $\boxed{\mathbf{i}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_2 .
- Question 20 (0.5 points) Donner un mot dans L_1 .
- Question 21 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Question 22 \clubsuit (1 points) Nous considérons le langage L_3 .

- aLa cim de L_3 est 4.b3 est une ci pour L_3 .cLa cim de L_3 est 3.La cim de L_3 est 5.10 est une ci pour L_3 .
- f Aucune des ci données n'est correcte.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 23 (3 points) Démontrer que L_1 est non régulier.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
С		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	14* 134	24*	134*	234*	34*	34	a	1*	14*	24*	134*	234*	34*	34
a b								a b	1						=
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_3	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$		\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1		1	1
2	2	2	2	2	2	2	2	2	2	2	2	Ī	2	2
3	3	3	3	3	3	3	3	3	3	3	3		3	3
4	4	4	4	4	4	4	4	4	4	4	4		4	4
5	5	5	5	5	5	5	5	5	5	5	5	ſ	5	5
6	6	6	6	6	6	6	6	6	6	6	6		6	6
	(8	a)			(b)			(c)				(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'ee~acad\'emique~2016/2017} \end{array}$

Feuille(s) de réponses

, ,	d'anonymat ci-contre llement dans la boite.
	nement dans la boite.
	o d'anonymat :
0 1 2 3 4 5 6 7 8 9	
0 1 2 3 4 5 6 7 8 9	
Question 1 : e e f	
Question 2: b c e f g h	
Question 3: b c d	
Question 4: a \blacksquare d e f g	
Question 5: a b c d e f h	
Question $6: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$	
Question $7: \blacksquare \ b \blacksquare \blacksquare \ e \ f \ g \ h$	
Question 8: b c d e f g h	
Question 9: a b \blacksquare d e f g h	
Question 10: a b c \blacksquare e f Ξ h	
Question 11: a b def gh	
Question 12: © © © © f © h i j	
Question 13: © C d e f	
Question 14: a b c \blacksquare e f g	
Question 15: a b c \blacksquare e f g h	
Question 16: a \blacksquare c d e f \blacksquare	
Question 17: defines define	
Question 18: b c d f g h	
Question 19: b c d f g h i	
Question 20:	donner ex [f] 🔳 Reservé enseignant
Question 21:	donner c ex 🔳 Reservé enseignant

Question 22 : a b c \blacksquare f \blacksquare h

Question 23:	f 🗹 D Reservé enseignant
en utilisant le lemme de l'itération	
Question 24:	Reservé enseignant

INF 302: Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de colorier entièrement les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo noir. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

(0.5 points) Soit L un langage régulier quelconque. Rappel: $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \boxed{a} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- On peut utiliser le lemme de l'itération sur L.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- l Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK

Figure 1 – Comment marquer une case.

Question 2	(0.5 points)	Soit A un	automate co	mplet sur i	in alphabet Σ .
Question 2	COLLIDO DOLLIDO	<i>i</i> Don 21 un	automiate co.	mpice sur e	μ

- $\boxed{\mathbf{a}}$ A reconnaît un langage complet.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- $\boxed{\mathbf{d}}$ A est tel que tous ses états sont accepteurs.
- \blacksquare Aucune des affirmations concernant A n'est
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ε-transitions, après avoir appliqué possiblement l'algorithme de suppression des ε-transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- a La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- \blacksquare La post-condition est la condition Q.
- d Aucune des affirmations concernant post-condition n'est correcte.
- e Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- B Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- a L est un langage irrégulier.
- L est un langage régulier.
- C $|L| < |L_1|$.
- L contient le langage vide.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- a L a tous ses états accepteurs.
- $\boxed{\mathbf{b}}$ L reconnaît un langage déterministe.
- $\boxed{\mathbf{d}}$ L est le langage universel.

- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2: Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- L'automate résultant est représenté dans la Figure 2d.
- $\boxed{\mathbf{b}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- C L'automate résultant est représenté dans la Figure 2b.
- d Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- \boxed{e} Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- [f] L'automate résultant est représenté dans la Figure 2e.
- B L'automate résultant est représenté dans la Figure 2c.
- h Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Aucun des automates n'est équivalent.
- **b** L'automate représenté dans la Figure 3e est équivalent.
- © Il est absurde de parler d'équivalence entre automates.
- d Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- El Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- [f] L'automate représenté dans la Figure 3b est équivalent.
- El L'automate représenté dans la Figure 3c est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- b L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \square Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- 🗓 Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5b correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- El Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- **b** Celui de la Figure 4b correspond.
- © Celui de la Figure 4c correspond.
- Celui de la Figure 4e correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- g Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'exécution de l'algorithme n'est pas finie.
- L'automate de départ n'était pas minimal.
- C L'automate de départ était minimal.
- d L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- b L'exécution de l'algorithme n'est pas finie.
- L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ était minimal.
- e L'automate de départ n'était pas minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a Il n'est pas nécessaire de calculer \equiv_3 .
- b L'automate de départ était minimal.
- C L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 18 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\mathbf{a}}$ Figure 7d correspond à la minimisation de A.
- $\boxed{\mathbf{b}}$ Figure 7a correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- $\boxed{\mathbf{f}}$ Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons L_2 .

- Question 20 (0.5 points) Donner un mot dans L_1 .

Question 21 \clubsuit (1 points) Nous considérons le langage L_3 .

- aLa cim de L_3 est 3.b3 est une ci pour L_3 .cLa cim de L_3 est 4.■ La cim de L_3 est 5.■ 10 est une ci pour L_3 .
- Question 22 (3 points) Démontrer que L_1 est non régulier.
- Question 23 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
									1			4 0 444			$\overline{}$
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	1*	134	24*	134*	234*	34*	34	a	1*	134	234	134*	234*	34*	34
a b							\vdash	a b	1						
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)			(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0	1 2	3 4	5 6	7 8	9	\mathbf{Codez}
0	1 2	3 4	5 6	7 8	9	et reco

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro	d'anonymat :	

Question 1: $a \blacksquare \blacksquare \blacksquare$ e f B

Question 2: a
c d e f g h

Question $3: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e

Question $4: \boxed{a} \blacksquare \boxed{d} \boxed{e} \boxed{f} \boxed{g}$

Question $5: \boxed{a} \boxed{c} \boxed{d}$

Question 6: a
c
e
f
e
h

Question 7: a b c d e f h

Question $8: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 9:

b c d e f g h

Question 10: a b c d e f g

Question $11 : \blacksquare \ b \ \blacksquare \ d \ e \ f$

Question 12: $a \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \Box$

Question 13: a b c e f g

Question 14: a b c e f g h

Question 15: $a \blacksquare c d \blacksquare f g h$

Question 16:

b

e

f

g

h

Question 17: a b c ■ e f g ■

Question 18: a b c e f g h

Question 18. @ D C _ C I C II

Question 19: ■ b c d ■ f g h i

Question 20:

donner ex f Reservé enseignant

Question 21: a b c f g h

Question 22:	f 🗹 D Reservé enseignant
en utilisant le lemme de l'itération	
Question 23:	onner c ex f 🔳 Reservé enseignant
Question 24:	Reservé enseignant

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ε-transitions, après avoir appliqué possiblement l'algorithme de suppression des ε-transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK FIGURE 1 – Comment marquer une case.

Question 2 (0,5 points) Soit L un langage complet sur un alphabet Σ .	Question 2	(0,5 points)	Soit L un	langage	complet	sur un	alphabet Σ .
--	------------	---------------	-------------	---------	---------	--------	---------------------

- a L est le langage universel.
- $\boxed{\mathbf{b}}$ L a tous ses états accepteurs.
- C L reconnaît un langage déterministe.
- d L'exécution de L est définie pour chaque mot de Σ^* .
- \blacksquare Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 (0,5 points) Nous considérons l'affirmation "Tous les langages réguliers satisfont le lemme de l'itération".

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- C L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- \boxed{a} On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut utiliser le lemme de l'itération sur L.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- $\boxed{\mathbf{e}}$ Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- [g] L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît un langage complet.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- C A reconnaît le langage universel.
- $\boxed{\mathbf{d}}$ A est tel que tous ses états sont accepteurs.
- \fbox{e} Aucune des affirmations concernant A n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- [g] L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L contient le langage vide.
- L est un langage régulier.
- $d |L| < |L_1|$.
- $\[\]$ Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- El L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- \blacksquare La post-condition est la condition Q.
- © La post-condition doit être impliquée par la condition d'un seul état terminal.
- d Aucune des affirmations concernant post-condition n'est correcte.
- © Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- a Il est absurde de parler d'équivalence entre automates.
- b L'automate représenté dans la Figure 3c est équivalent.
- © Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- d L'automate représenté dans la Figure 3e est équivalent.
- e L'automate représenté dans la Figure 3b est équivalent.
- L'automate représenté dans la Figure 3d est équivalent.
- Aucun des automates n'est équivalent.
- Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.

Question 10 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\mathbf{a}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- b Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- C L'automate résultant est représenté dans la Figure 2c.
- d Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- L'automate résultant est représenté dans la Figure 2d.
- f L'automate résultant est représenté dans la Figure 2e.
- $\[\]$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- h L'automate résultant est représenté dans la Figure 2b.

Partie 3 : Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- **b** Celui de la Figure 5a correspond.
- © Celui de la Figure 5b correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- $\boxed{\mathbf{f}}$ Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- 🗓 Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- Celui de la Figure 4e correspond.
- **b** Celui de la Figure 4c correspond.
- © Celui de la Figure 4d correspond.
- d Celui de la Figure 4b correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ n'était pas minimal.
- \boxed{b} Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate résultant de la minimisation aura le même nombre d'états.
- L'exécution de l'algorithme n'est pas finie.
- e L'automate de départ était minimal.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate de départ était minimal.
- d L'automate résultant de la minimisation aura le même nombre d'états.
- e L'exécution de l'algorithme n'est pas finie.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	<u>1</u> *	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- \overline{a} Figure 7b correspond à la minimisation de A.
- \boxed{b} Figure 7d correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\overline{\mathbf{d}}$ Figure 7a correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate résultant de la minimisation aura le même nombre d'états.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate de départ était minimal.
- d L'automate de départ n'était pas minimal.
- e L'exécution de l'algorithme n'est pas finie.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (0.5 points) Donner un mot dans L_1 .

Question 20 \clubsuit (1 points) Nous considérons L_2 .

- a La cim de L_2 est 0.b 1 est une ci pour L_2 .10 est une ci pour L_2 .La cim de L_2 est 2.e La cim de L_2 est 1.f La cim de L_2 est 3.
- Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. l Il manque des données dans l'énoncé pour déterminer la cim de L_2 .
 - (3 points) Démontrer que L_1 est non régulier.

Question 22 \clubsuit (1 points) Nous considérons le langage L_3 .

- \blacksquare 10 est une ci pour L_3 . \blacksquare La cim de L_3 est 5. \blacksquare 3 est une ci pour L_3 . \blacksquare La cim de L_3 est 4. \blacksquare Aucune des ci données n'est correcte. \blacksquare Toutes les ci données sont correctes.
 - $\underline{\mathbb{h}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Question 23 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.

Champ Libre

Question 21

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4			1*	14*	24*	134*	234*	34*	4	
a	14	14	234	14	234	34	34		a	14	134	234	14	234	34	34	
b	24	24	234	24	24	4	4		b	24	24	24	24	24	4	4	
С		4	24	34	234	4	4		c		4	4	34	234	34	4	
	(b)									(c)							
	1*	14*	24*	134*	234*	34*	4			1*	14*	24*	134*	234*	34*	4	
a	14	134	234	134	234	34	34		a	14	134	234	14	234	34	34	
b	24	24	24	24	24	4	4		b	24	24	234	24	24	4	4	
		l .	ı														
c		4	24	34	234	34	4		$^{\mathrm{c}}$		4	4	34	234	4	4	

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
(a)					(b)			(0	c)			(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9	Codez votre n
0 1 2 3 4 5 6 7 8 9	et recopiez le
0 1 2 3 4 5 6 7 8 9	

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'an	nonymat:

Question $1: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e f

Question 2: a b c d e f \blacksquare h

Question $3: \boxed{a} \boxed{c} \boxed{d}$

Question $4: \mathbb{A} \blacksquare \blacksquare \blacksquare \mathbb{B}$ e f \mathbb{B} h

Question 5: a C d e f g h

Question $6: \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question $8 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question 9: a b c d e **g** h

Question $10: a b c d \blacksquare f g h$

Question 11: a b c le f g

Question 12: $a \blacksquare c \blacksquare \blacksquare f \blacksquare h$ i

Question 13: b c d e f g h

Question $14: \blacksquare \Box \Box \Box \Box \Box \Box$

Question 15: a b c \blacksquare e f \blacksquare

Question 16:
© C d e f S h

Question 17: a b \blacksquare d e f g h

Question $18: \blacksquare \blacksquare \blacksquare d e f g h$

Question 19:

donner ex **f n** Reservé enseignant

Question 20: a b
e f g h i

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année INF 302: Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(07h30 \rightarrow 09h30)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de colorier entièrement les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo noir. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 & (0.5 points) Soit L un langage régulier quelconque. Rappel: $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- \blacksquare On peut utiliser le lemme de l'itération sur L.
- On peut trouver un automate d'états fini déterministe qui reconnaît L.
- d On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- e Aucune des affirmations concernant L n'est correcte.
- f Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b) KO (c) KO (d) OK

Figure 1 – Comment marquer une case.

	59
Question 2 ♣ (0,5 points) Nous considérons la pour prouver qu'un automate étendu avec deux états une spécification (P,Q). La post-condition est la condition Q. La post-condition doit être impliquée par la condition de la post-condition doit être impliquée par la condition de la question de la question est absurde. Toutes les affirmations concernant post-condition de la question est absurde.	adition de chacun des états terminaux. adition d'un seul état terminal. ion n'est correcte. on sont correctes.
Question 3 ♣ (0,5 points) Nous nous intéressons vers une expression régulière en associant un système ☐ Cette méthode peut être appliquée sur les autor ☐ Cette méthode peut être appliquée sur les autor ☐ Cette méthode peut être appliquée sur les autor ☐ Toutes les affirmations concernant la méthode se ☐ L'énoncé de la question est absurde. ☐ Il manque des données dans l'énoncé pour pouve	mates déterministes. mates non-déterministes et avec ϵ -transitions. mates non-déterministes et sans ϵ -transitions. ont correctes.
Question 4 (0,5 points) Soit A un automate co	omplet sur un alphabet Σ .
 a A est tel que tous ses états sont accepteurs. b A reconnaît un langage complet. c A reconnaît le langage universel. a A est tel que son exécution est définie pour chaque mot de Σ*. 	 e Aucune des affirmations concernant A n'est correcte. f Toutes les affirmations concernant A sont correctes. g L'énoncé de la question est absurde. h Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 5 (0,5 points) Nous considérons l'afflemme de l'itération".	firmation "Tous les langages réguliers satisfont le
a Cette affirmation est fausse.■ Cette affirmation est vraie.	© L'affirmation est absurde. d Il manque des données dans l'énoncé pour pouvoir répondre à la question.
Question 6 (0,5 points) Soit L un langage com	plet sur un alphabet Σ .
 a L reconnaît un langage déterministe. b L est le langage universel. c L a tous ses états accepteurs. d L'exécution de L est définie pour chaque mot 	 e Aucune des affirmations concernant L n'est correcte. f Toutes les affirmations concernant L sont correctes. L'énoncé de la question est absurde.

de Σ^* .

 \blacksquare L'énoncé de la question est absurde.

pouvoir répondre à la question.

h Il manque des données dans l'énoncé pour

Question 7 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions, après avoir appliqué possiblement l'algorithme de suppression des ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Cette méthode peut être appliquée sur les automates déterministes.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L est un langage régulier.
- $\boxed{\mathbf{b}}$ L est un langage irrégulier.
- \blacksquare L contient le langage vide.
- d $|L| < |L_1|$.
- \blacksquare Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- \boxed{a} Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- b L'automate résultant est représenté dans la Figure 2c.
- \Box Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- $\boxed{\mathbf{d}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- e L'automate résultant est représenté dans la Figure 2b.
- f L'automate résultant est représenté dans la Figure 2e.
- L'automate résultant est représenté dans la Figure 2d.
- h Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- L'automate représenté dans la Figure 3d est équivalent.
- Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.
- C L'automate représenté dans la Figure 3b est équivalent.
- d Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- e L'automate représenté dans la Figure 3e est équivalent.
- f Aucun des automates n'est équivalent.
- B L'automate représenté dans la Figure 3c est équivalent.
- h Il est absurde de parler d'équivalence entre automates.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5a correspond.
- **b** Celui de la Figure 5b correspond.
- © Celui de la Figure 5c correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 12 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- Celui de la Figure 4e correspond.
- **b** Celui de la Figure 4c correspond.
- © Celui de la Figure 4b correspond.
- d Celui de la Figure 4d correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 13 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- \blacksquare L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- \square L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 14 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- \Box Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- Figure 7c correspond à la minimisation de A.
- \boxed{b} Figure 7b correspond à la minimisation de A.
- \Box Figure 7a correspond à la minimisation de A.
- $\boxed{\mathbf{d}}$ Figure 7d correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- f Toutes les représentations proposées correspondent à la minimisation de A.
- g Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 16 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ était minimal.
- b L'automate de départ n'était pas minimal.
- C L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- L'automate résultant de la minimisation aura le même nombre d'états.
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- \boxed{b} Il n'est pas nécessaire de calculer \equiv_3 .
- C L'automate résultant de la minimisation aura le même nombre d'états.
- d L'automate de départ était minimal.
- e L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- a L'automate de départ était minimal.
- b L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- d L'exécution de l'algorithme n'est pas finie.
- Il n'est pas nécessaire de calculer \equiv_3 .
- [f] Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 (3 points) Démontrer que L_1 est non régulier.

Question 20 \clubsuit (1 points) Nous considérons L_2 .

- d La cim de L_2 est 3. e La cim de L_2 est 1. 10 est une ci pour L_2 .
- Aucune des ci données n'est correcte. h Toutes les ci données sont correctes. l Il manque des données dans l'énoncé pour déterminer la cim de L_2 .
- Question 21 (0.5 points) Donner un mot dans $\{a,b\}^* \setminus L_1$.
- Question 22 (0.5 points) Donner un mot dans L_1 .

Question 23 \clubsuit (1 points) Nous considérons le langage L_3 .

- $\boxed{\mathbf{a}}$ 3 est une ci pour L_3 . $\boxed{\mathbf{b}}$ La cim de L_3 est 3. $\boxed{\mathbf{d}}$ La cim de L_3 est 5. $\boxed{\mathbf{d}}$ 10 est une ci pour L_3 .
- f Aucune des ci données n'est correcte.
 - h Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
	(b)											(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
$\overline{}$									1	1-1		101	204	94	
a	14	134	234	134	234	34	34	a	14	134	234	14	234	34	34
a b	14 24	134 24	234 24	134 24	234	34	34 4	a b	14 24						\perp
				_	_	· .		1		134	234	14	234	34	34

(d) (e) FIGURE 3 – Des automates pour la déterminisation. Dans la représentation tabulaire, les états sont en colonnes, les symboles en lignes, les étoiles marquent les états accepteurs.

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
(b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

$ \equiv_0$	\equiv_1	\equiv_2	\equiv_3	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$		\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1		1	1
2	2	2	2	2	2	2	2	2	2	2	2	Ī	2	2
3	3	3	3	3	3	3	3	3	3	3	3		3	3
4	4	4	4	4	4	4	4	4	4	4	4		4	4
5	5	5	5	5	5	5	5	5	5	5	5	ſ	5	5
6	6	6	6	6	6	6	6	6	6	6	6		6	6
	(a)				(b)			(c)				(d)	

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

INF 302 : Langages et Automates Année académique 2016/2017

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.

Numéro d'anonymat :										

Question 1 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare

Question $2 : \blacksquare \blacksquare \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Question $3: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e

Question $4: \[a \] \[b \] \[c \] \[\blacksquare \] \[e \] \[f \] \[g \] \[h \]$

Question $5: \boxed{a} \boxed{c} \boxed{d}$

Question 6: a b c d e f h

Question $7: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$

Question $8: \blacksquare \ b \ \blacksquare \ d \ e \ f \ g \ h$

Question 9: a b c d e f h

Question 10:

b c d e f g h

Question 11: a b c ■ e f g

Question 12:

b c d e f g h

Question 13 : \blacksquare \blacksquare \Box \Box \Box \Box

Question 14: a b ■ e ■ h i j

Question $15: \blacksquare$ b c d e f g h

Question 16: ■ b c ■ f g h

Question 17:

b c d e f g

Question 18: a b d f g h

INF 302 : Langages et Automates Année académique 2016/2017

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (07h30 \rightarrow 09h30).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Documents du cours et du TD autorisés.
- Tout dispositif électronique est interdit
 - (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ prévu à cet effet.
- Pour marquer une case, il est demandé de **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner le carré).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse.
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Reservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 5 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (4 points)

Question 1 (0,5 points) Soit A un automate complet sur un alphabet Σ .

- a A reconnaît le langage universel.
- \blacksquare A est tel que son exécution est définie pour chaque mot de Σ^* .
- d A est tel que tous ses états sont accepteurs.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant A sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

(a) KO (b)

(b) KO (c) KO (d) OK

FIGURE 1 – Comment marquer une case.

 ${\bf Question~2~~(0,5~points)} \ {\bf Nous~considérons~l'affirmation~"Tous~les~langages~réguliers~satisfont~le~lemme~de~l'itération".$

- a Cette affirmation est fausse.
- Cette affirmation est vraie.

- © L'affirmation est absurde.
- d Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 3 \clubsuit (0,5 points) Soit L un langage obtenu par la différence entre deux langages réguliers L_1 et L_2 quelconques ($L = L_1 \setminus L_2$). Rappel : |L| dénote le cardinal du langage L.

- \blacksquare L contient le langage vide.
- $\boxed{\mathbf{b}}$ L est un langage irrégulier.
- C $|L| < |L_1|$.
- \blacksquare L est un langage régulier.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 4 (0,5 points) Soit L un langage complet sur un alphabet Σ .

- $\boxed{\mathbf{a}}$ L est le langage universel.
- \fbox{b} L'exécution de L est définie pour chaque mot de Σ^* .
- \fbox{C} L a tous ses états accepteurs.
- $\boxed{\mathbf{d}}$ L reconnaît un langage déterministe.
- \fbox{e} Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 5 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux états à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ε-transitions, après avoir appliqué possiblement l'algorithme de suppression des ε-transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 6 4 (0,5 points) Nous nous intéressons à la méthode permettant de passer d'un automate vers une expression régulière en associant un système d'équations aux chemins à l'automate.

- Cette méthode peut être appliquée sur les automates déterministes.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et sans ϵ -transitions.
- \blacksquare Cette méthode peut être appliquée sur les automates non-déterministes et avec ϵ -transitions.
- Toutes les affirmations concernant la méthode sont correctes.
- e L'énoncé de la question est absurde.
- [f] Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 7 \clubsuit (0,5 points) Soit L un langage régulier quelconque. Rappel : $L \subset L'$ ssi $L \subseteq L'$ et $L \neq L'$.

- On peut utiliser le lemme de l'itération sur L.
- \blacksquare On peut trouver un automate d'états fini non déterministe qui reconnaît L.
- © On peut trouver deux langages réguliers L_1 et L_2 tels que $L_1 \subset L \subset L_2$.
- \blacksquare On peut trouver un automate d'états fini déterministe qui reconnaît L.
- $\boxed{\mathrm{e}}$ Aucune des affirmations concernant L n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant L sont correctes.
- B L'énoncé de la question est absurde.
- h Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Question 8 \clubsuit (0,5 points) Nous considérons la méthode de Floyd que nous souhaitons appliquer pour prouver qu'un automate étendu avec deux états terminaux est partiellement correct par rapport à une spécification (P,Q).

- La post-condition est la condition Q.
- b La post-condition doit être impliquée par la condition d'un seul état terminal.
- La post-condition doit être impliquée par la condition de chacun des états terminaux.
- d Aucune des affirmations concernant post-condition n'est correcte.
- © Toutes les affirmations concernant post-condition sont correctes.
- f L'énoncé de la question est absurde.
- Il manque des données dans l'énoncé pour pouvoir répondre à la question.

Partie 2 : Déterminisation d'automates (3 points)

Question 9 (1,5 points) Nous considérons les automates représentés dans la Figure 2. L'automate dans la Figure 2a est non-déterministe et avec ϵ -transitions. Nous nous intéressons à l'algorithme de suppression des ϵ -transition et l'automate en résultant.

- $\boxed{\textbf{a}}$ Aucun des automates proposés ne peut résulter de l'algorithme de suppression des ϵ -transitions.
- b L'automate résultant est représenté dans la Figure 2c.
- $\boxed{\mathbb{C}}$ Tous les automates proposés sont résultant de l'algorithme de suppression des ϵ -transitions.
- $\boxed{\mathbf{d}}$ Il est absurde de parler de suppression des ϵ -transitions pour un automate.
- L'automate résultant est représenté dans la Figure 2d.
- I L'automate résultant est représenté dans la Figure 2e.
- [3] Il manque des données dans l'énoncé pour pouvoir déterminer s'il y a un automate résultant.
- h L'automate résultant est représenté dans la Figure 2b.

Question 10 (1,5 points) Nous considérons les automates dans la Figure 3. L'automate dans la Figure 3a est non-déterministe et avec ϵ -transitions. Nous considérons également les autres automates qui sont déterministes et sans ϵ -transitions et leur équivalence par rapport à l'automate dans la Figure 3a.

- L'automate représenté dans la Figure 3d est équivalent.
- b Il est absurde de parler d'équivalence entre automates.
- C L'automate représenté dans la Figure 3b est équivalent.
- d Aucun des automates n'est équivalent.
- e Il manque des données dans l'énoncé pour déterminer l'équivalence entre ces automates.
- f L'automate représenté dans la Figure 3e est équivalent.
- B L'automate représenté dans la Figure 3c est équivalent.
- h Les automates dans les Figures 3b, 3c, 3d, 3e sont tous équivalents à l'automate dans la Figure 3a.

Partie 3: Automates vers expressions régulières (4 points)

Dans cette partie, nous nous intéressons à la méthode associant des équations aux états.

Question 11 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons aux étapes intermédiaires de calcul lors de l'application de la méthode associant des équations aux états.

- a Durant le calcul, nous pouvons trouver l'équation $X_1 = ab^*aX_2$.
- Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^*a + b)X_2$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_1 = b^*aX_2$.
- d Durant le calcul, nous pouvons trouver l'équation $X_0 = (ab^* + b)X_2$.
- L'expression régulière associée à cet automate est $(ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- f Durant le calcul, nous pouvons trouver $X_2 = (b + ab + ab^*a)X_2 + \epsilon$.
- \blacksquare Durant le calcul, nous pouvons trouver l'équation $X_2 = (b + ab + aab^*a)X_2 + \epsilon$.
- h Aucune des équations données n'est correcte.
- i Tous les équations données sont correctes.
- [J] Il manque des données dans l'énoncé pour déterminer si les équations données sont correctes.

Question 12 4 (1 points) Considérons l'automate représenté dans la Figure 6. Nous nous intéressons au résultat final obtenu par l'application de la méthode associant des équations aux états.

- L'expression régulière associée à cet automate est $((ab^*ab^* + b^+)a)^*(ab^*ab^* + b^+)$.
- b L'expression régulière associée à cet automate est $X_2 = (aab^*a + b + ab)X_2$.
- L'expression régulière associée à cet automate est $X_0 = (ab^*a + b)X_2$ où la variable X_2 est remplacée par son expression régulière correcte.
- d Aucune des expressions régulières données n'est correcte.
- e Tous les expressions régulières données sont correctes.
- [f] Il manque des données dans l'énoncé pour déterminer si les expressions régulières données sont correctes.

Question 13 (1 points) Considérons l'automate représenté dans la Figure 4a. Nous nous intéressons aux systèmes d'équations possiblement correspondant à cet automate dans la Figure 4.

- a Celui de la Figure 4d correspond.
- Celui de la Figure 4e correspond.
- © Celui de la Figure 4b correspond.
- d Celui de la Figure 4c correspond.
- e Aucun des systèmes d'équations proposés ne correspond.
- [f] Les systèmes d'équations dans les Figures 4b, 4c, 4d, 4e correspondent tous.
- Il est absurde d'associer un système d'équations à un automate.
- h Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Question 14 (1 points) Considérons l'automate représenté dans la Figure 2a. Nous nous intéressons à des systèmes d'équations correspondants possiblement à cet automate.

- a Celui de la Figure 5c correspond.
- b Celui de la Figure 5b correspond.
- © Celui de la Figure 5a correspond.
- Aucun des systèmes d'équations proposés ne correspond.
- e Tous les systèmes d'équations correspondent.
- $\boxed{\mathbf{f}}$ Il est absurde d'associer un système d'équations à un automate car cela n'est pas possible d'associer un système d'équation à un automate non-déterministe avec ϵ -transitions.
- El Il manque des données dans l'énoncé pour déterminer si un système d'équations correspond à cet automate.

Partie 4: Minimisation d'automates (3 points)

Les questions de cette partie font référence à l'algorithme de minimisation vu en cours et utilise la représentation de l'exécution sous forme de tableau vue en cours.

Question 15 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8b. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'automate de départ était minimal.
- L'automate résultant de la minimisation aura le même nombre d'états.
- C L'automate de départ n'était pas minimal.
- Il n'est pas nécessaire de calculer \equiv_3 .
- e L'exécution de l'algorithme n'est pas finie.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Question 16 (1,5 points) Considérons l'automate A représenté sous forme tabulaire ci-dessous.

	1*	2*	3*	4*	5*	6
a	2	2	3	3	6	6
b	3	3	4	4	6	6
c	6	5	3	3	5	6

Nous souhaitons minimiser cet automate. Pour cela, nous appliquons l'algorithme de minimisation et la représentation de son exécution sous forme de tableau, comme vu en cours/td.

- $\overline{\mathbf{a}}$ Figure 7a correspond à la minimisation de A.
- Figure 7c correspond à la minimisation de A.
- $\overline{\mathbf{d}}$ Figure 7d correspond à la minimisation de A.
- e Aucune des représentations proposées ne correspond à la minimisation de A.
- Toutes les représentations proposées correspondent à la minimisation de A.
- Il est absurde/impossible de minimiser un tel automate.
- h Il manque des données dans l'énoncé pour déterminer s'il est possible de minimiser cet automate.

Question 17 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8c. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- L'exécution de l'algorithme n'est pas finie.
- b L'automate de départ n'était pas minimal.
- © L'automate résultant de la minimisation aura le même nombre d'états.
- \boxed{d} Il n'est pas nécessaire de calculer \equiv_3 .
- e L'automate de départ était minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation ou l'automate de départ n'est correcte.
- Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- Il manque des données dans l'énoncé pour répondre à la question.

Question 18 4 (0,5 points) Nous considérons l'exécution de l'algorithme de minimisation représentée dans la Figure 8a. Cette exécution est réalisée sur un certain automate, non donné dans l'énoncé.

- Il n'est pas nécessaire de calculer \equiv_3 .
- b L'exécution de l'algorithme n'est pas finie.
- C L'automate de départ était minimal.
- d L'automate résultant de la minimisation aura le même nombre d'états.
- L'automate de départ n'était pas minimal.
- f Aucune des affirmations concernant le résultat de l'algorithme de minimisation ou l'automate de départ n'est correcte.
- El Toutes les affirmations concernant le résultat de l'algorithme de minimisation, l'algorithme de minimisation et l'automate de départ sont correctes.
- h Il manque des données dans l'énoncé pour répondre à la question.

Partie 5 : Lemme de l'itération (6 points)

Nous considérons

- le langage $L_1 = \{a^{2 \times m} \cdot b^{2 \times n} \in \{a, b\}^* \mid m, n \in \mathbb{N} \text{ et } m \text{ est un diviseur de } n\},$
- le langage régulier $L_2 = \{\epsilon, 0, 1\}$ et
- le langage L_3 défini par l'expression régulière $(aaa)^*aa$, le langage des mots contenant un nombre de a dont le reste par la division euclidienne par 3 est 2.

Dans cette partie, nous utilisons les deux abréviations suivantes : ci pour constante d'itération et cim pour constante d'itération minimale.

Question 19 \clubsuit (1 points) Nous considérons L_2 .

- - \Box Il manque des données dans l'énoncé pour déterminer la cim de L_2 .
- Question 20 (0.5 points) Donner un mot dans L_1 .
- Question 21 (0.5 points) Donner un mot dans $\{a, b\}^* \setminus L_1$.
- Question 22 (3 points) Démontrer que L_1 est non régulier.

Question 23 \clubsuit (1 points) Nous considérons le langage L_3 .

- - $\boxed{\mathbf{h}}$ Il manque des données dans l'énoncé pour déterminer la cim de L_3 .

Champ Libre

Question 24 Vous pouvez utiliser l'espace de texte associé à cette question sur la feuille de réponse comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE 2 – Des automates pour la suppression des ϵ -transitions.

(a) Un automate à déterminiser.

	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
a	14	14	234	14	234	34	34	a	14	134	234	14	234	34	34
b	24	24	234	24	24	4	4	b	24	24	24	24	24	4	4
c		4	24	34	234	4	4	c		4	4	34	234	34	4
				(b)								(c)			
	1*	14*	24*	134*	234*	34*	4		1*	14*	24*	134*	234*	34*	4
	1	14	24	134	234	94	4		1	14	24	194	234	94	-1
a	14	134	234	134	234	34	34	a	14	134	234	14	234	34	34
a b							\perp	a b	1						\perp
	14	134	234	134	234	34	34	1	14	134	234	14	234	34	34

 $Figure \ 3-Des \ automates \ pour \ la \ déterminisation. \ Dans \ la \ représentation \ tabulaire, les \ états \ sont \ en \ colonnes, les \ symboles \ en \ lignes, les \ étoiles \ marquent \ les \ états \ accepteurs.$

(a) Un automate pour lequel on veut calculer une expression régulière.
$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 \\ X_5 = bX_4 + \epsilon \end{cases}$$
 (b)

$$\begin{cases} X_1 = bX_5 \\ X_2 = aX_1 + aX_5 + bX_3 \\ X_3 = bX_2 \\ X_4 = aX_2 + aX_4 + \epsilon \\ X_5 = bX_4 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 + \epsilon \\ X_5 = bX_1 + aX_2 \end{cases} \begin{cases} X_1 = aX_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = aX_2 \\ X_4 = aX_4 + bX_5 \\ X_5 = bX_1 + aX_2 + \epsilon \end{cases}$$
 (e)

FIGURE 4 – Un automate et des équations aux états.

$$\begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 + bX_3 \\ X_3 = bX_2 \\ X_4 = \epsilon X_5 + a \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon \\ X_2 = X_1 \epsilon + X_3 \epsilon + bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \epsilon \\ X_5 = a + \epsilon \end{cases} \qquad \begin{cases} X_1 = \epsilon X_2 \\ X_2 = bX_3 + aX_4 \\ X_3 = X_2 \\ X_4 = X_5 \\ X_5 = a \end{cases}$$
 (a) (b) (c)

FIGURE 5 – Des systèmes d'équations possiblement correspondant avec l'automate dans la Figure 2a.

FIGURE 6 – Automate pour calcul d'expression régulière (avec la méthode des équations aux états).

\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_0	$ \equiv_1$	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_3	$ \equiv_0$	\equiv_1	\equiv_2
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6
	(8	a)		(b)			(0	c)			(d)		

FIGURE 7 – Des représentations de l'exécution de l'algorithme de minimisation.

\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	\equiv_2	\equiv_0	\equiv_1	$ \equiv_2 $
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
	(a)			(b)			(c)	

FIGURE 8 – Des exécutions de l'algorithme de minimisation sur des automates (non fournis).

Examen de seconde session du 27/06/2017 Licence Sciences et Technologies, 2ième année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'ee~acad\'emique~2016/2017} \end{array}$

Feuille(s) de réponses

	odez votre numéro d'anonymat ci-contre
0 1 2 3 4 5 6 7 8 9 et	recopiez le manuellement dans la boite.
0 1 2 3 4 5 6 7 8 9	Numéro d'anonymat :
0 1 2 3 4 5 6 7 8 9	ramero a anonymae r
0 1 2 3 4 5 6 7 8 9	
Question 1 : a ■ c d e f g	$\overline{\mathbf{h}}$
Question 2: a \blacksquare c d	
Question 3: ■ b c ■ e f g	h
Question $4:$ a b c d e f \blacksquare	h
Question $5: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$ e	
Question $6: \blacksquare \blacksquare \blacksquare \blacksquare$ e	
Question 7 : \blacksquare \blacksquare \boxdot \boxdot \blacksquare \boxdot \blacksquare	h
Question 8: b d e f g	
Question 9: a b c d f g	h
Question $10:$ \blacksquare \bigcirc	h
Question $11: \begin{tabular}{ll} tabu$	h i j
Question $12: \blacksquare$ b \blacksquare d e f	
Question $13:$ a \blacksquare c d e f $\mathbb S$	h
Question 14: a b c ■ e f g	
Question 15 : \blacksquare \blacksquare \boxdot \boxdot \blacksquare \boxdot \boxdot	Ь
Question $16:$ a \blacksquare c d e f $\mathbb S$	Ь
Question 17: b c d e f g	
Question 18: b c d f g	h
Question 19: \blacksquare b c d e \blacksquare g	h i
Question 20:	donner ex f Reservé enseigna
Question 21:	donner c ex [f] Reservé enseigna
Question 21:	donner c ex [1] Reserve enseigna:

