





# Predictability in Future Results of Primary Schools

Andreas, Zena and Thomas

# Outline

## Are future changes in learning results predictable?

#### Situation

- The inspectorate of education provided data to look at the differences in learning results of students in primary school. Schools with a low proportion of students with an acceptable learning result could be low quality schools.
- The inspectorate of education wants to identify these low quality schools
- Important variables:
- The proportion 2F scores, representing the proportion of students with an acceptable learning result.
- Schoolweging, which is a demographic that contains all sorts of information about the situation that a child grows up in.

#### Complication

 Predict whether schools will become low quality schools in the future. Also how far in the future would be predictable and which indicators should be looked at.

#### Request

- The inspectorate of education is mainly interested in the predictability of changes in learning results over time. The most important questions are:
- Are future changes in learning results predictable?
- What indicators should they be looking at?
- How far in the future can the model predict?

# Main Findings

# Observed and Predicted difference on Test Data (year 2016 – 2017)

- Trained models on year 2015-2016
- 3 models:
  - 1. Polynomial model containing 3 variables
  - 2. Linear model containing 4 variables
  - 3. Polynomial model containing 12 variables







# The Future, Observed and Predicted 2F Scores (year 2018 -2019)

- Relation between predicted proportion 2F scores
   2016-2017 and observed scores 2018-2019
- Look at predictive value of models over 2 years

Figure 10: Observed and Predicted prop 2F score for year 2018-2019 (Simple Model)

Predicted Prop 2F Score

Same 3 models

 $R^2 = 0.24$ 



Figure 11: Observed and Predicted prop 2F score for year 2018-2019 (Model with 4 Variables)

# Our Perception

## What are good indicators?

- Omitted all rows with (left about 88%)
- Effect of variables in cohort 2015/2016 on the prop\_2F score of 2016/2017.
- An indicator should have a stand alone good relationship with the outcome variable
- A low correlation is a correlation between 0.3 and 0.5
  - but for these data predicting growth so of .1 or higher
  - This made is end up with 9 possible indicators.







How Do These Indicators Perform?

# Significant indicators and 3 different models

- Linear model, controlled for n\_observaties.
- 9 possible indicator variables > 4 significant predictors:
- schoolweging, prop\_2F (of the year before), gemeente\_bevolkingsdichtheid and gemeentenummer.
- Gemeentenummer adds a lot of dummy variables > simple model
- All continuous predictors and gemeentenummer > a full predictive model
- 3 models to compare:
  - A simple indicator model with only 3 variables
  - A more complex indicator model with "4" variables
  - A fully predictive model with "12" variables.







# Linear models versus polynomial models

- Polynomial models versus linear models
- In table 1 > adjusted r squared is not that different
- In Formula 1 > variance explained by the predictors

Table 1: Comparing the linear and polynomial model for 3 different models

|            | Indicator<br>low | Indicator<br>high | Predictive |
|------------|------------------|-------------------|------------|
| Adj.r_ln   | .346             | .360              | .361       |
| Adj.r_poly | .348             | .359              | .362       |

#### Formula 1: Linear model Indicator low



# Our Conclusions and Recommendations

### **Insights and Prediction Tool**

#### General Insights:

- Really difficult to predict growth
  - Most variables in the data set have a low correlation with the the proportion 2F score for the next year.
- 2 variables outperform the others by far:
  - proportion 2F score from the current year
  - schoolweging
- Still we were able to identify some additional variables who increase prediction of the dependent variable > gemeente bevolkinsdichtheid.

#### Model Insight:

- Simplest models performs better on the test data.
  - Both when we look 1 and 2 years ahead.

#### Conclusion:

 From our perspective it seems that some variables have a much higher predictive value than others and only incorporating these key variables might be sufficient to perform about as well as a predictive algorithm containing all variables

Table 2: Application of the simple model 10 worst school that will decrease the most

|    | School | Average Prop_2F Score | Expected Decrease |
|----|--------|-----------------------|-------------------|
| 1  | 18WL   | 0.42                  | -0.29             |
| 2  | 16BZ   | 0.44                  | -0.28             |
| 3  | 15PX   | 0.41                  | -0.28             |
| 4  | 16KG   | 0.41                  | -0.26             |
| 5  | 17BY   | 0.40                  | -0.21             |
| 6  | 16MC   | 0.37                  | -0.20             |
| 7  | 14LQ   | 0.36                  | -0.19             |
| 8  | 19AF   | 0.45                  | -0.19             |
| 9  | 19LM   | 0.42                  | -0.17             |
| 10 | 10VR   | 0.44                  | -0.17             |

Simple model to find schools that would decrease dramatically in the next year.

<sup>-</sup> the "regression towards the men"

<sup>&</sup>gt; we focus only on the 10% worst schools among the past 3 years (based on their prop 2F scores) and see whether they will continue performing worse in the upcoming year.