Project I: Random Processes

Random variables, stationarity & ergodicity

Simon Andreas Bjørn February 7, 2023

» 1. Random variables

Importing some statistic and plotting modules

```
1 using Printf
2 using Statistics
3 using NaNStatistics
4 using Plots
```

» 1.1 Random variables - uniform PDF

We start by sampling the uniform destribution on $\left[0,1\right)\!$, with N=10000 samples.

```
1 N = 10_000
2 x = rand(N)
```

» 1.1 Random variables - uniform PDF

We start by sampling the uniform destribution on $\left[0,1\right)$, with N=10000 samples.

```
1 N = 10_000
2 x = rand(N)
```

We then find the first order momentum $m_x=E\{x\}$ and the second order central moment $\sigma_x^2=E\{(x-m_x)^2\}$

```
1 # Evaluate E{x} and E{(x-m<sub>x</sub>)<sup>2</sup>} by definition

2 m_x = sum(x*1/N)

3 \sigma_x^2 = sum((x.-m_x).^2 * 1/N)

4

5 # Evaluate E{x} and E{(x-m<sub>x</sub>)<sup>2</sup>} by builtin functions

6 m_x_builtin = mean(x)

7 \sigma_x^2_builtin = std(x)^2
```

» Calculation differences

Calculating the difference between the builtin functions and our direct evaluation, we see that the two methods are similar.

```
1 @printf "m_x_err: %.4f" abs(m_x-m_x_builtin)
2 # -> m_x_err: 0.0000
3 @printf "\sigma_x2_err: %.4f" abs(\sigma_x2-\sigma_x2_builtin)
4 # -> \sigma_x2_err: 0.0000
```

» Calculating the PDF

We then calculate the pdf using histcounts, and normalize the PDF.

```
1 step_size = 0.05
2 edges = -0.2:step_size:1.2
3 bins = histcounts(x, edges)
4
5 # Normalize bins to get PDF
6 pdf = bins/sum(bins*step_size)
7
8 # Theoretical PDF
9 theoretical_pdf = (x) -> Float64(0 <= x < 1)</pre>
```

» Code for plotting the PDF

And we plot the result

```
plot(
    edges[1:end-1],
    pdf.
    seriestype=:steppost,
    label="Estimated PDF"
    plot!(
    edges[1:end-1],
    theoretical_pdf.(edges[1:end-1]),
    seriestype=:steppost, label="Theoretical PDF"
    plot!(
   legend=:bottom,
    background_color=:transparent,
    foreground_color=:white
title!("PDF of x");xlabel!("Value");
ylabel!("Probability");savefig("uniform_pdf.svg")
```

» Plot of the PDF

» Ensuring properties

We want to verify if our PDF fulfill the 2 following properties:

- 1. $orall lpha,\; f_x(lpha) \geq 0$ reduce(&, pdf .>= 0) # -> true
- 2. $\int_{-\infty}^{\infty}f_x(\alpha)\;\mathrm{d}\alpha=1$ abs(sum(pdf*step_size)-1.0) < 1e-12 # -> true

We start at the definition of the mean value which is given by

$$m_x = E\{x\} = \int_{-\infty}^{\infty} \alpha f_x(\alpha) d\alpha$$
 (1)

We start at the definition of the mean value which is given by

$$m_x = E\{x\} = \int_{-\infty}^{\infty} \alpha f_x(\alpha) \mathrm{d}\alpha$$
 (1)

We then use the theoretical probability density function of a uniform distribution which is given by

$$f_x(\alpha) = \begin{cases} 0, & \alpha < a \\ \frac{1}{b-a}, & a \le \alpha \le b \\ 0, & \alpha > b \end{cases}$$

With a = 0, b = 1, we get the theoretical PDF

$$f_x(\alpha) = \begin{cases} 0, & \alpha < 0 \\ 1, & 0 \leq \alpha \leq 1 \\ 0, & \alpha > 1 \end{cases}$$

With a = 0, b = 1, we get the theoretical PDF

$$f_x(\alpha) = \begin{cases} 0, & \alpha < 0 \\ 1, & 0 \leq \alpha \leq 1 \\ 0, & \alpha > 1 \end{cases}$$

We simplify eq.1, and get the integral

$$m_x = E\{x\} = \int_0^1 \alpha \ \mathrm{d}\alpha$$

With a = 0, b = 1, we get the theoretical PDF

$$f_x(\alpha) = \begin{cases} 0, & \alpha < 0 \\ 1, & 0 \leq \alpha \leq 1 \\ 0, & \alpha > 1 \end{cases}$$

We simplify eq.1, and get the integral

$$m_x = E\{x\} = \int_0^1 \alpha \; \mathrm{d} \alpha$$

We simply solve this and get the mean value to be

$$m_x = \frac{1}{2} \left[\alpha^2 \right]_0^1 = \frac{1}{2}$$

» Deriving the theoretical variance $[\sigma_x^2]$

» Deriving the theoretical variance $[\sigma_x^2]$

Again, we start at the definition

$$\sigma_x^2 = E\left\{(x-m_x)^2\right\} = \int_{-\infty}^{\infty} (\alpha-m_x) f_x(\alpha) \mathrm{d}\alpha \tag{2}$$

» Deriving the theoretical variance $[\sigma_x^2]$

Again, we start at the definition

$$\sigma_x^2 = E\left\{ (x - m_x)^2 \right\} = \int_{-\infty}^{\infty} (\alpha - m_x) f_x(\alpha) d\alpha \tag{2}$$

We do the same simplification as with the mean value, and and fill in for m_{x} . This gives the variance

$$\begin{split} \sigma_x^2 &= \int_0^1 \left(\alpha - \frac{1}{2}\right)^2 \; \mathrm{d}\alpha \\ &= \int_0^1 \alpha^2 - \alpha + \frac{1}{4} \; \mathrm{d}\alpha \\ &= \left[\frac{1}{3}\alpha^3 - \frac{1}{2}\alpha^2 + \frac{1}{4}\alpha\right]_0^1 \\ &= \frac{1}{12} \approx 0.08334 \end{split}$$

» Repeating the uniform experiment

We repeat the experiment, find the mean and variance of each experiment and accumulate the results.

```
1 r = 50 \# Repeat r times
2 \times s = rand(Float64, (N,r))
 3 \text{ ms} = \text{mean}(xs, \text{dims}=1)
 4 \sigma s = std(xs, dims=1).^2
 5 # Accumulate the results
6 i_mean = [mean(ms[1:i]) for i in 1:length(ms)]
7 i_std = [mean(\sigma s[1:i])^2 for i in 1:length(s)]
8 # Plot the results
9 plot(1:r, i_mean, label="Cumulative mean",
        legend=:bottomleft, xlabel="Experiment iteration",
       ylabel="Mean value")
   plot!( twinx(), i_std, label="Variance",
       legend=:bottomright, color=:orange, ylabel="Variance")
   plot!(foreground_color=:white,
       background_color=:transparent)
16 savefig!("repeated_experiment_uniform.svg")
```

» Repeating the uniform experiment

We can see that the mean and variance approach some values as we perform more experiments

» 1.2 Gaussian PDF

We perform the same experiment, but sample using randn.

```
1 N = 10_000
2 x = randn(N)
3 m<sub>x</sub> = sum(x*1/N)
4 σ<sub>x</sub><sup>2</sup> = sum((x.-m<sub>x</sub>).^2 * 1/N)
5
6 step_size = 0.1
7 edges = -5.0:step_size:5.0
8 bins = histcounts(x, edges)
9 # Normalize PDF
10 pdf = bins/sum(bins*step_size)
11 theoretical_pdf = (x) -> 1.0/√(2π)*exp(-x.^2 ./ 2)
```

» 1.2 Plotting code

We then plot the results in a similar manner as 1.1.

» 1.2 Gaussian PDF plot

» 1.3 Central Limit Theorem

Again, we sample rand as according to the task. We have have the following code.

```
1 N = 10 000
2 \times = rand(Float64, (12, N))
3 \text{ ms} = \text{mean}(x, \text{dims}=1)
 5 \text{ step\_size} = 0.01
6 edges = 0.0:step_size:1.0
    bins = histcounts(ms, edges)
    pdf = bins/sum(bins*step_size)
    sum(pdf*step_size)
12 m_x = mean(ms)
   \sigma_x = std(ms)^2
15 Qprintf m_x: %.3f m_x # -> m_x: 0.499
16 Qprintf "\sigma_x^2: %.3f" \sigma_x # -> \sigma_x^2: 0.007
```

We plot the estimated PDF with the following code

```
plot(edges[1:end-1], pdf, seriestype=:steppre)
plot!(background_color=:transparent,foreground_color=:white)
xlabel!("Value"); ylabel!("Propability")
title!("PDF of CLT experiment")
savefig("clt_pdf.svg")
```

We plot the estimated PDF with the following code

```
1 plot(edges[1:end-1], pdf, seriestype=:steppre)
2 plot!(background_color=:transparent,foreground_color=:white)
3 xlabel!("Value"); ylabel!("Propability")
4 title!("PDF of CLT experiment")
5 savefig("clt_pdf.svg")
```


» Theoretical mean of CTF experiment $[m_z]$

We start by noting the random variable for our experiment can be defined as $Z=\frac{1}{12}\sum_{i=1}^{12}X_i$.

» Theoretical mean of CTF experiment $[m_z]$

We start by noting the random variable for our experiment can be defined as $Z = \frac{1}{12} \sum_{i=1}^{12} X_i$.

Then

$$E\left\{Z\right\} = E\left\{\frac{1}{12}\sum_{i=1}^{12}X_i\right\} = \frac{1}{12}E\left\{\sum_{i=1}^{12}X_i\right\} = \frac{1}{12}\sum_{i=1}^{12}E\left\{X_i\right\}$$

» Theoretical mean of CTF experiment $[m_z]$

We start by noting the random variable for our experiment can be defined as $Z = \frac{1}{12} \sum_{i=1}^{12} X_i$.

Then

$$E\left\{Z\right\} = E\left\{\frac{1}{12}\sum_{i=1}^{12}X_i\right\} = \frac{1}{12}E\left\{\sum_{i=1}^{12}X_i\right\} = \frac{1}{12}\sum_{i=1}^{12}E\left\{X_i\right\}$$

As we know that $E\left\{X_i\right\} = \frac{1}{2}$, we have

$$m_z = E\left\{Z\right\} = \frac{1}{12} \sum_{i=1}^{12} \frac{1}{2} = \frac{1}{2}$$

We want to find the variance $\sigma_x^2 = E\left\{(Z - \bar{Z})^2\right\}$, and using the definition from the previous slide, we have

$$E\left\{(Z - E\left\{Z\right\})^2\right\} = E\left\{\left(\frac{1}{12}\sum_{i=1}^{12}X_i - E\left\{\frac{1}{12}\sum_{i=1}^{12}X_i\right\}\right)^2\right\}$$

We want to find the variance $\sigma_x^2=E\left\{(Z-\bar{Z})^2\right\}$, and using the definition from the previous slide, we have

$$E\left\{(Z-E\left\{Z\right\})^2\right\} = E\left\{\left(\frac{1}{12}\sum_{i=1}^{12}X_i - E\left\{\frac{1}{12}\sum_{i=1}^{12}X_i\right\}\right)^2\right\}$$

We simplify, using

$$E\{X+Y\} = E\{X\} + E\{Y\}$$
 (3)

and get the following

$$E\left\{(Z-E\left\{Z\right\})^2\right\} = E\left\{\left(\frac{1}{12}\sum_{i=1}^{12}X_i - \frac{1}{12}\sum_{i=1}^{12}E\left\{X_i\right\}\right)^2\right\}$$

We factorize and combine our sums to get

$$E\left\{(Z - E\left\{Z\right\})^2\right\} = \left(\frac{1}{12}\right)^2 E\left\{\left(\sum_{i=1}^{12} X_i - E\left\{X_i\right\}\right)^2\right\}$$

We factorize and combine our sums to get

$$E\left\{(Z - E\left\{Z\right\})^2\right\} = \left(\frac{1}{12}\right)^2 E\left\{\left(\sum_{i=1}^{12} X_i - E\left\{X_i\right\}\right)^2\right\}$$

Expanding the binomial, we get

$$\begin{split} &= \frac{1}{12^{2}} \sum_{i=1}^{12} E\left\{ \left(X_{i} - E\left\{X_{i}\right\}\right)^{2} \right\} \\ &+ 2 \sum_{\substack{i=1\\j=2\\i < i}}^{j \to 12} E\left\{ \left(X_{i} - E\left\{X_{i}\right\}\right)\left(X_{j} - E\left\{X_{j}\right\}\right) \right\} \end{split}$$

Which almost looks good, but there is an ugly term from the binomial expansion which ruins the fun.

There is luckely an easy clean-up for this. We know that our separate observations X_i are all independent. This means that each $(X_i-E\left\{X_i\right\})$ for $i=1,2,\ldots,12$ are independent.

There is luckely an easy clean-up for this. We know that our separate observations X_i are all independent. This means that each $(X_i-E\left\{X_i\right\})$ for $i=1,2,\ldots,12$ are independent. We can then use the multiplicative property

Multiplicative Property

For two independent variables X and Y, the expectation of their product is equal to the product of the expectation of each variable.

$$E\left\{XY\right\} = E\left\{X\right\}E\left\{Y\right\}$$

There is luckely an easy clean-up for this. We know that our separate observations X_i are all independent. This means that each $(X_i-E\left\{X_i\right\})$ for $i=1,2,\ldots,12$ are independent. We can then use the multiplicative property

Multiplicative Property

For two independent variables X and Y, the expectation of their product is equal to the product of the expectation of each variable.

$$E\left\{ XY\right\} =E\left\{ X\right\} E\left\{ Y\right\}$$

This allows us to rewrite the additional binomial term as

$$E\left\{X_{i}-E\left\{X_{i}\right\}\right\}\cdot E\left\{X_{j}-E\left\{X_{j}\right\}\right\}$$

We then utilize e.q.(3) on each factor of the binomial term, and we see that

$$\begin{split} E\left\{X_{i}-E\left\{X_{i}\right\}\right\} &= E\left\{X_{i}\right\}-E\left\{E\left\{X_{i}\right\}\right\} = 0\\ & \downarrow \\ 2\sum_{\substack{i=1\\j=2\\j\neq i}}^{j\rightarrow12} E\left\{X_{i}-E\left\{X_{i}\right\}\right\}E\left\{X_{j}-E\left\{X_{j}\right\}\right\} = 0 \end{split}$$

And thus the big bad evil term dissapered.

Now that we know the additional term equates to 0 and we know $E\left\{\left(X_i-E\left\{X_i\right\}\right)^2\right\}=\frac{1}{12}$, we insert into our equation and get values into our equation

$$E\left\{ \left(Z - E\left\{Z\right\}\right)^2 \right\} = \frac{1}{12^2} \sum_{i=1}^{12} E\left\{ \left(X_i - E\left\{X_i\right\}\right)^2 \right\}$$
$$\sigma_z^2 = \frac{1}{12^2} \sum_{i=1}^{12} \frac{1}{12} = \frac{1}{144} \approx 0.0069$$

Comparing the theoretical and estimated values

We got our theoretical values to be $m_z=0.5,~\sigma_z^2=0.0069.$ Comparing this to our result from earlier, we see that our estimated values of $m_z=0.499,~\sigma_z^2=0.007$ is pretty much spot on.

We then plot a gaussian curve over our previous plot with these values using the following code

» Plot of theoretical and estimated PDF

