Data Analysis Overview:

To explore which factors directly correlate with rent costs, we implemented a three-pronged analytical approach.

First, we examined data at the state level to identify broad patterns and determine if regional trends had a significant impact on rent prices.

Next, we refined our focus by analyzing data at the ZIP code level, which gave us a more granular view and a larger set of data points. This allowed for a more precise evaluation of how local factors influence rent costs.

Finally, we expanded our scope to include non-economic variables to assess whether other factors outside traditional economic indicators affect rent prices. This approach helped us identify contrasting variables and strengthened our conclusions by highlighting which specific factors had a stronger correlation with rent costs compared to others.

1. State Data Analysis Report

Variables Explanation

- states: The state from which the data is collected
- avg unemployment: Average Unemployment Rate
- industries: The dictionary that counts the number of each industry being used
- count: Number of Corporations owned Buildings in the dataset
- total: Number of Buildings in the dataset
- rate: Count / Total, Ratio of buildings occupied by corporations
- key_industry_rate: Percentage of Count occupied by core corporations, including terms engineering, technology, business, financial
- overall rent: Annual Rent Fee per Square Foot
- cbd_rate: Percentage of buildings in the city area relative to the total number of buildings
- Population.Change.Rate: Population Growth Rate
- CPI: Consumer Price Index of each state
- Median. Household. Income: Median Household Income

We collected Data from 2018Q1 to 2024Q1. Considering the fluctuations due to the pandemic, we decided to take the average of each variable. The pandemic increases uncertainty in the data, the purpose of this report is to see what affects the rent at the national level with a macroeconomic view.

Since there are differences in the price level between each state, we added CPI value to the dataset so that the value is adjusted by price level.

There are 20 states that are extracted from the dataset.

Also, we wanted to see how expensive housing of each state is compared to their income.

External Sources:

Population. Change. Rate: U.S. Census Bureau

Median. Household. Rate: Federal Reserve Bank of St. Louis

CPI: U.S. Bureau of Labor Statistics

Data Explanation

We initially regressed **overall_rent** on a broad set of predictors:

Variables included:

avg_unemployment, count, total, rate, key_industry_rate, cbd_rate, populationchangerate, medianhouseholdincome, cpi

Source	S	S	d f	MS		er of obs	=	26	
Model	2444.2	2785	9	271.580872	F(9, Prob		=	10.02	
Residual	271.15	4724	10	27.1154724	R-sq	uared	=	0.9001	
					Adj	R-squared	=	0.8103	3
Total	2715.38	8258	19	142.914872	Root	MSE	=	5.2073	3
over	all_rent	Coefficien	+	Std. err.	t	P> t	[05%	conf	intervall
overa	acc_renc	Coefficien	_	Stu. err.		7/14	[93%	COIII.	Intervati
avg_unemp	oloyment	-4.697317		2.694285	-1.74	0.112	-10.70	9056	1.305924
	count	.0118222		.0033086	3.57	0.005	.004	1503	.0191941
	total	0005507		.0002789	-1.97	0.077	00	L172	.0000707
	rate	-45.70203		24.07763	-1.90	0.087	-99.3	5033	7.946266
key_indus	try_rate	-4.806494		15.66144	-0.31	0.765	-39.70	236	30.08937
	cbd_rate	13.04685		9.253953	1.41	0.189	-7.572	2248	33.66594
oopulationcha	angerate	.2954543		.758791	0.39	0.705	-1.39	5238	1.986146
edianhouseho	ldincome	0001361		.0001572	-0.87	0.407	0004	1864	.0002142
	cpi	.3655749		.1135039	3.22	0.009	.1120	5724	.6184773
	_cons	-39.28945		31.60577	-1.24	0.242	-109.7	7115	31.13259

This model achieved a very high R-squared of 0.9001, indicating strong overall explanatory power.

However, due to the **limited sample size** (N = 20), including too many correlated variables raised concerns about **multicollinearity** and potential overfitting.

We exclude rate because rate is explained by count and total.

We visualized:

- The correlation coefficients between each variable and overall rent, and
- The corresponding p-values from the regression

This helped us identify variables that were either:

- Weakly correlated with rent, or
- Statistically insignificant in the model (p > 0.1)

Based on these results, we excluded the following:

- avg_unemployment
- populationchangerate
- medianhouseholdincome

So we included those variables into the new regression model.

We re-estimated the model with five predictors:

Variables included:

count, total, key_industry_rate, cbd_rate, cpi

. reg overall_rent count total key_industry_rate cbd_rate cpi

Source	SS	df	MS	Number of obs	=	20 13.27
Model	2242.22974	5	448.445949	F(5, 14) Prob > F	=	0.0001
Residual	473.153016	14	33.796644	R-squared Adi R-squared	=	0.8258 0.7635
Total	2715.38276	19	142.914882	Root MSE	=	5.8135

overall_rent	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
count total key_industry_rate cbd_rate cpi _cons	.0081424 0003486 22.20981 7.536121 .2757335 -63.1803	.0023247 .0002008 8.006914 9.011265 .1061646 29.5637	3.50 -1.74 2.77 0.84 2.60 -2.14	0.004 0.104 0.015 0.417 0.021 0.051	.00315640007793 5.036691 -11.79112 .048033 -126.5881	.0131285 .000082 39.38294 26.86336 .503434

- This reduced model maintained a strong R-squared of 0.8258 and Adjusted R-squared of 0.7635
- Most variables remained statistically significant, except cbd_rate (p = 0.417)

Although cbd_rate showed a **strong positive correlation** with overall_rent, its high p-value suggests that **its effect may be captured by other variables**, particularly count, which reflects overall leasing activity.

The final model regressed overall_rent without cbd_rate. Variables Included:

Count, total, key_indutsry_rate, cpi

30 41110, 10 1411, 111	• —	v —						
reg overall_	rent	count total k	ey_in	dustry_	_rate (cpi		
Source	SS		df	df MS I		Number of	obs =	20
						F(4, 15)	=	16.75
Model	221	18.59245	4	554.64	48112	Prob > F	=	0.0000
Residual	496	6.790312	15	33.119	93541	R-squared	=	0.8170
						Adj R-squa	red =	0.7683
Total	27:	15.38276	19	142.93	L4882	Root MSE	=	5.7549
overall_r	ent	Coefficient	Std.	err.	t	P> t	[95% cor	nf. interval]
co	unt	.009555	.001	5812	6.04	0.000	.0061846	.0129253
to	tal	0004209	.000	1794	-2.35	0.033	0008033	0000386
ey_industry_r	ate	24.83145	7.29	3549	3.40	0.004	9.285614	40.37728
	cpi	.3012977	.100	6448	2.99	0.009	.0867784	.5158169
	ons	-70.95995	27.	7794	-2.55	0.022	-130.1703	-11.74956

Based on these findings, we constructed a final regression model including only variables with strong theoretical relevance and statistical significance.

This specification balances:

- Model simplicity
- Statistical robustness
- Economic interpretability

Overall Rent vs Each Variable

Looking at the graph, we can see there is a positive and obvious correlation between the rent and each variable used for the regression. Also, SE, explained by the shaded area around the lines, is not wide, showing the accuracy of the model.

Conclusion

We conclude that the rent increases if the state has more buildings owned by corporations, especially corporations that belong to one of the core industries(business, technology, engineering, and financial services), and a higher price level. We are going to develop this model to predict further specification.

Explanation

Key industry rate:

Count:

State-level observation

How to get the Regression model - p-value + correlation + multicolinear + simplifying the model maintaining R squared

External Source

2. Zip Code Data Analysis Report - Economic variable focused

Variables Explanation

- zip: the median ZIP code of the geographical cluster
- industries: The dictionary that counts the number of each industry being used
- count: Number of Corporations owned Buildings in the dataset
- total: Number of Buildings in the dataset
- overall rent: Annual Rent Fee per Square Foot
- rate: Count / Total, Ratio of buildings occupied by corporations
- key_industry_rate: Percentage of Count occupied by core corporations, including terms engineering, technology, business, financial
- overall rent: Annual Rent Fee per Square Foot

This report narrowed down the observation from the first report, which was at the state level. The observations are organized by zip code. The buildings with similar zip codes are geographically clustered. This allows for a closer look into each area's characteristics, specifically with a focus on how developed the area is.

First, we made a dictionary that counts the number of each industry being used, putting that under industries variable.

That way we can determine the density of core industry in each zip code interval. In order to see the relationship between technological advance and the overall rent, we decided to remove the other variables unrelated to core industry indexes.

We collected *count, total,* and *overall_rent rate, key_industry_rate, industries* from **the provided csv file.**

We collected *zip* from **the provided csv file** and organized it with an interval of 200.

External Sources:

CPI: U.S. Bureau of Labor Statistics

Data Explanation

We began by regressing **overall_rent** on the following predictors using a larger dataset with finer regional granularity (e.g., by ZIP or smaller metro areas):

Variables included:

count, total, key_industry_rate, cbd_rate, cpi

Source SS		SS	df			Number of	obs	=	60	
Model	576	9.97642	5	1153.9	9528	F(5, 54) Prob > F		=	15.75 0.0000	
Residual	395	5.31417	54	73.246	5587	R-squared		=	0.5933	
						Adj R-squa	red	=	0.5556	
Total	972	5.29059	59	164.83	5434	Root MSE		=	8.5584	
overall_ı	rent	Coefficient	Std.	err.	t	P> t	[95%	conf	· inte	rval]
CO	ount	.0098412	.003	5872	2.74	0.008	.002	6493	.0:	17033
to	otal	0000836	.00	0705	-0.12	0.906	001	4969	.00	13298
ey_industry_ı	rate	21.23604	8.33	0908	2.55	0.014	4.53	3578	37.9	93851
cbd_ı	rate	11.10938	3.78	3527	2.94	0.005	3.52	3868	18	. 6949
	cpi	.3370306	.090	3194	3.73	0.000	.155	9512	.!	51811
(cons	-77.55115	24.7	3094	-3.14	0.003	-127.	1337	-27	.9686

The model achieved a **moderate R-squared of 0.5933**, indicating decent explanatory power.

However, the **p-value for total was 0.906**, suggesting it was not statistically significant in this new context.

Conversely, cbd_rate now became highly significant (p = 0.005), indicating its relevance at more granular spatial scales.

Overall Rent vs Each Variable

We removed the Total variable and regressed it again.

Variables included:

count, key_industry_rate, cbd_rate, cpi

Source		SS	df	- 1	MS	Number of		=	60
Model	576	68.94724	4	1442.	23681	F(4, 55) Prob > F			20.05 .0000
Residual	395	66.34335	55	71.93	35154	R-squared		= 0	.5932
Total	Total 9725.29059		59	164.835434		Adj R-squa Root MSE			.5636 .4814
overall_ı	rent	Coefficient	Std.	err.	t	P> t	[95%	conf.	interval]
co	ount	.0095382	.002	4941	3.82	0.000	. 0	0454	.0145364
ey_industry_ı	rate	20.89518	7.74	8501	2.70	0.009	5.36	6842	36.42353
cbd_ı	rate	11.14658	3.73	6544	2.98	0.004	3.65	8379	18.63478
	cpi	.3390355	.087	9228	3.86	0.000	.162	8343	.5152367

We re-estimated the model without total, which led to:

- An essentially unchanged R-squared (0.5932)
- Improved adjusted R-squared (0.5636) due to reduced noise
- All remaining predictors became statistically significant at the 1% level or better.

Conclusion

In our initial model using state-level data, total — the total number of buildings — appeared to play a key role in explaining overall rent. However, as we moved to a more granular ZIP-code-level analysis, total lost its significance, while cbd_rate became a much stronger predictor. This shift highlights how the importance of variables can change depending on the spatial scale of analysis: supply factors dominate at broader levels, while centrality and urban density become more influential locally.

Our ultimate objective was to identify which variables have the **strongest and most direct impact on rent**. Based on statistical significance and explanatory power, we conclude that **count**, **key_industry_rate**, **cbd_rate**, **and cpi** are the most robust predictors in our final model. These findings provide valuable insights into **what truly drives rent variation**, helping individuals, businesses, and policymakers make better location-based decisions.

3. Quality of Life vs Overall rent - non economic value

Variable Explanations:

- cbd rate: Percentage of buildings in the city area relative to the total number of buildings
- class A rate: The quality of buildings
- crime.score: Violent crime rate = (A state's number of crimes (Homicide, Rape, Robbery, Aggravated Assaulted) / population) * 100,000
- education: Education score
- health.value: Health score
- overall rent: Annual Rent Fee per Square Foot
- Median. Household. Income: Median Household Income
- pop density: The number of people per square mile
- Population.Change.Rate: Population Growth Rate
- retail.score: The number of each state's major retailers (Costco, Target, Walmart) / state's area

These 9 factors were used to determine the quality of life and we used linear regression to determine how much the quality of life of an area correlates to the overall rent. This allows for a closer look into other factors that may affect the overall rent. This shows that not all factors affect the overall rent and that the economic factors have a stronger and more important impact on the overall rent.

External Sources:

Retail.score - Costco, Walmart, and Targets: Kaggle

health.value: America's Health Rankings

education: WalletHub

pop density: statsamerica(populations), statesymbolsusa(states by square mile)

Crime.score: FBI

Population. Change. Rate: U.S. Census Bureau

Median. Household. Rate: Federal Reserve Bank of St. Louis

. reg overall_rent populationchangerate medianhouseholdincome class_a_rate education crimescore healthvalue retail_score pop_density cbd_rate

Source	SS	df	MS	Number of obs	=	20 1.87
Model Residual	1702.79816 1012.5846	9 10	189.199795 101.25846	Prob > F R-squared	=	0.1720 0.6271
Total	2715.38276	19	142.914882	Adj R-squared Root MSE	=	0.2915 10.063

overall_rent	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
populationchangerate	2248374	1.115737	-0.20	0.844	-2.710855	2.261181
medianhouseholdincome	000036	.0005019	-0.07	0.944	0011542	.0010823
class_a_rate	-21.59209	20.71422	-1.04	0.322	-67.74626	24.56207
education	.0927095	.5094195	0.18	0.859	-1.042348	1.227767
crimescore	0029696	.0316221	-0.09	0.927	0734281	.0674889
healthvalue	2.001869	16.58232	0.12	0.906	-34.94585	38.94959
retail_score	-46.93961	93.35578	-0.50	0.626	-254.9493	161.07
pop_density	.0233028	.0363427	0.64	0.536	0576738	.1042794
cbd_rate	34.69586	13.88644	2.50	0.032	3.754944	65.63677
_cons	34.06027	39.68521	0.86	0.411	-54.36388	122.4844

Overall Rent vs Each Variable

As seen in these graphs, except for cbd_rate and education, all of the graphs have a slope very close to 0 (close to horizontal lines). This explains how the factors (quality of life) considered do not have a strong correlation with the overall rent. So every factor, except

for cbd_rate and education, don't explain overall rent very well. So we decided to find the correlation between overall rent and each of the variables to examine the exact correlation between the variables and overall rent.

As examined earlier the new correlation tests, except for cbd_rate and education, explain that the other variables don't majorly affect the overall rent.

From these observations made, even though we used several features that explained quality of life to determine if quality of life as a whole had an effect on overall rent the observations show that there is no major correlation between quality of life and overall rent. So, quality of life has little to no effect on overall rent.

Factors that affect overall rent are economic factors like cbd_rate, not quality of life factors.

External Sources

Population.Change.Rate:

https://www.census.gov/library/visualizations/2023/comm/percent-change-state-population.html

Median.Household.Rate: <u>https://fred.stlouisfed.org/series/MEHOINUSA646N</u>

CPI: https://www.bls.gov/regions/subjects/consumer-price-indexes.htm

Retail.score

Costco: https://www.kaggle.com/datasets/polartech/complete-store-locations-of-costco
Walmart: https://www.kaggle.com/datasets/jackogozaly/us-walmart-store-locations
Targets: https://www.kaggle.com/datasets/saejinmahlauheinert/target-store-locations

health.value: https://www.americashealthrankings.org/explore/measures/Overall

education: https://wallethub.com/edu/e/states-with-the-best-schools/5335

pop density:

Population: https://www.statsamerica.org/sip/rank list.aspx?rank label=pop1&ct=S18,

Size of States:

https://statesymbolsusa.org/symbol-official-item/national-us/uncategorized/states-size

Crime.score: https://cde.ucr.cjis.gov/LATEST/webapp/#/pages/home