Phân tích thuật toán

Dãy số Fibonacci

Là dãy số với mỗi số là tổng của hai số trước đó

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$$

Một cách hình thức, các số Fibonacci F_n được định nghĩa bởi luật đơn giản:

$$F_n = \left\{ egin{array}{ll} 1 & ext{if } n=1 \ 0 & ext{if } n=0. \end{array}
ight.$$

Các số Fibonacci tăng gần như lũy thừa của 2. Ví dụ, F_{30} lớn hơn một triệu, F_{100} có khoảng 21 chữ số.

Câu hỏi: Một cách tổng quát $F_n pprox 2^{0.694n}$. Tại sao?

Từ định nghĩa, ta dễ dàng đi tới cài đặt đệ quy như dưới đây:

```
long fib1 (int n){
   if (n == 0) return 0;
   if (n == 1) return 1;
   return fib1 (n-1) + fib1 (n-2);
}
```

Hình dưới đây mô tả các lời gọi đệ quy khi tính giá trị F_5 .

Câu hỏi: Thuật toán này chạy trong thời gian bao lâu, tính thời gian như một hàm T(n) theo n? Và liệu ta có thể tính nhanh hơn?

Trả lời: Thời gian chạy của thuật toán là

$$T(n) \geq F_n$$

Điều này có thể chứng minh dùng quy nạp. Thuật toán này thực sự tồi tệ vì $T(200) \geq F_{200} \geq 2^{138}$.

Lý do mà thuật toán này chậm là do ta phải tính lại nhiều lần cùng một giá trị. Như trong Hình trên, các giá trị F_i phải tính lại rất nhiều lần. Số lần được thể hiện trong bảng sau:

Hàm	phải tính lại
F_5	1 lần
F_4	1 lần
F_3	2 lần
F_2	3 lần
F_1	5 lần
F_0	3 lần

Bài tập: Hãy sửa lại đoạn mã của fib1 để in ra màn hình số lần các giá trị F_i phải tính lại.

Thuật toán nhanh hơn

Ta có thể thiết kế thuật toán nhanh hơn bằng cách tránh việc gọi lại. Cụ thể, ta sử dụng một mảng f[MAX], với f[i] lưu lại các giá trị F_i đã tính toán để không cần tính lại. Thuật toán cài đặt như sau:

Một cải tiến nhỏ của thuật toán trên giúp ta tiết kiệm bộ nhớ: Ta không cần tạo ra một mảng f[MAX] để lưu các giá trị trung gian, thay vào đó ta dùng biến f thay cho các f[i-1], và biến g thay cho các f[i].

```
long fib2 (int n){
   int f, g;
   int tmp;
   if (n == 0) return 0;
   f = 0;   g = 1;
   for (int i = 1; i <= n; i++) {
       tmp = g;
       g = f + g;
       f = tmp;
   }
   return f;
}</pre>
```

Câu hỏi: Thuật toán này chạy trong thời gian bao lâu, tính thời gian như một hàm T(n) theo n?

Trả lời: Khi $n \geq 1$, thời gian chạy của thuật toán là T(n) = 3n.

Ký hiệu O-lớn

Định nghĩa: Xét hai hàm $f,g:\mathbb{N}^+\to\mathbb{N}^+$. Ta nói rằng f=O(g) (có nghĩa rằng f tăng không nhanh hơn g) nếu có một hằng số c>0 sao cho $f(n)\leq c\cdot g(n)$.

Viết f=O(g) rất giống với viết $f\leq g$. Nó chỉ khác ở hằng số c. Ví dụ, 10n=O(n). Hằng số này giúp chúng ta không quá tập trung vào các giá trị n nhỏ. Một chương trình chạy trong $f_1(n)=n^2$ bước, trong khi chương trình khác chạy trong $f_2(n)=2n+20$ bước (Hình dưới đây). Chương trình nào chạy nhanh hơn? Khi $n\leq 5$, rõ ràng f_1 tốt hơn; tuy nhiên khi giá trị n tăng dần lên, rõ ràng f_2 tăng nhanh hơn.

Ta có thể thấy điều này bởi ký hiệu O-lớn: $f_2=O(f_1)$, bởi vì

$$rac{f_2(n)}{f_1(n)} = rac{2n+20}{n^2} \leq 22$$

với mọi n; mặt khác $f_1
eq O(f_2)$, vì tỉ lệ $f_1(n)/f_2(n) = n^2(2n+20)$ có thể lớn tùy ý khi n tăng lên.

Câu hỏi:

- Đúng hay sai: 10n = O(n) ?
- Xét $f_1(n)=n^2$ và $f_2(n)=2n+20$. Vậy thì

$$f_1 = O(f_2)$$
 hay $f_2 = O(f_1)$?

• Xét $f_2(n)=2n+20$ và $f_3(n)=n+1$. Vậy thì

$$f_2=O(f_3)$$
 hay $f_3=O(f_2)$?

Một số luật cho ${\cal O}$ lớn

- Bổ qua phép nhân với hằng số. Ví dụ, $14n^2$ trở thành n^2
- n^a sẽ bị *lấn át* bởi n^b nếu a>b. Ví dụ, n^2 sẽ *lấn át* n
- Hàm mũ sẽ lấn át hàm đa thức. Ví dụ, 3^n lấn át n^5 .
- Tương tự, đa thức sẽ lấn át hàm logarit. Ví dụ, n lấn át $(\log n)^3$.

Ký hiệu Ω và Θ

Xem O(.) tương tự như \leq ta có thể định nghĩa ký hiệu tương tự như ký hiệu \geq và = như sau đây:

$$\begin{array}{lll} f = \Omega(g) & \iff & g = O(f) \\ f = \Theta(g) & \iff & f = O(g) \; \mathrm{va} \; f = \Omega(g). \end{array}$$

Bài tập: Hãy chỉ ra xem liệu f=O(g) hay $f=\Omega(g)$ hay cả hai $f=\Theta(g)$.

f(n)	g(n)	O hay Ω hay Θ
n-100	n-200	
$n \log n$	$10n \log 10n$	
\sqrt{n}	$(\log n)^3$	
$n2^n$	3^n	
n!	2^n	
2^n	2^{n+1}	
$(\log n)^{\log n}$	$2^{\left(\log_2 n\right)^2}$	

Bài tập: Chứng minh rằng nếu c là một số thực dương thì $g(n)=1+c+c^2+\cdots+c^n$ là

- $\Theta(1)$ nếu c < 1,
- $\Theta(n)$ nếu c=1, và
- $\Theta(c^n)$ nếu c>1.

Quay trở lại với số Fibonacci

Bài tập: Trong bài tập này ta sẽ chứng minh rằng dãy Fibonacci tăng nhanh như hàm mũ.

- 1. Dùng quy nạp để chứng minh rằng $F_n \geq 2^{0.5n}$ với $n \geq 6$.
- 2. Tìm hằng số c<1 sao cho $F_n\leq 2^{cn}$ với mọi $n\geq 0$. Chứng minh câu trả lời của bạn.
- 3. Tìm giá trị c lớn nhất sao cho $F_n=\Omega(2^{cn})$?

Bài tập: Liệu có cách tính số Fibonacci thứ n nhanh hơn hàm fib2 ? Ý tưởng tính toán sau đây liên quan đến ma trận.

Chúng ta bắt đầu bằng cách viết phương trình $F_1=F_1$ và $F_2=F_0+F_1$ theo ký hiệu ma trận:

$$\begin{bmatrix} F_1 \\ F_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} F_0 \\ F_1 \end{bmatrix}$$

Tương tự,

$$\left[egin{array}{c} F_2 \ F_3 \end{array}
ight] = \left[egin{array}{c} 0 & 1 \ 1 & 1 \end{array}
ight] \cdot \left[egin{array}{c} F_1 \ F_2 \end{array}
ight] = \left[egin{array}{c} 0 & 1 \ 1 & 1 \end{array}
ight]^2 \cdot \left[egin{array}{c} F_0 \ F_1 \end{array}
ight]$$

và tổng quát ta được

$$\left[egin{array}{c} F_n \ F_{n+1} \end{array}
ight] = \left[egin{array}{cc} 0 & 1 \ 1 & 1 \end{array}
ight]^n \cdot \left[egin{array}{c} F_0 \ F_1 \end{array}
ight]$$

Vậy để tính F_n , ta chỉ cần lấy ma trận 2×2 này, ta gọi nó là X, và tính X^n .

- 1. Chứng minh rằng để nhân 2 ma trận 2×2 ta chỉ cần dùng 4 phép cộng và 8 phép nhân.
- 2. Chứng minh rằng chỉ cần $O(\log n)$ phép nhân ma trận là đủ để tính X^n .

Vậy số phép toán số học cần bởi thuật toán tính F_n dùng nhân ma trận, ta gọi nó là [fib3], chỉ là $O(\log n)$. Có phải chứng ta đã phá vỡ giới hạn lũy thừa cho phép tính số fibonacci thứ n?