WHAT IS CLAIMED IS:

- 1. An ink jet ink composition comprising water, a humectant, and a hyperbranched polymeric dye comprising a hyperbranched polymer having a dye chromophore pendant on the polymer chain or incorporated into the polymer backbone.
- 2. The composition of Claim 1 wherein said hyperbranched polymer having a dye chromophore pendant on the polymer chain has the formula:

10

5

HB-D_n

wherein:

HB is a hyperbranched polymer core; D is a dye moiety; and n is an integer of at least 2.

15

3. The composition of Claim 2 wherein said HB is a polyamide, polyester, polyether, vinylic polymer, polyimine, polysiloxane, polyesteramide or polyurethane.

20

25

- 4. The composition of Claim 2 wherein said HB is prepared by a chain polymerization of a monomer of the formula M^1 - R^1 - M^2 _m wherein (i) R^1 is a linear or branched alkyl, carbonyl, or aromatic moiety; (ii), M^1 and M^2 are reactive groups that react independently of each other in which M^1 is a polymerization group and M^2 is a precursor of a moiety M^2 * which initiates the polymerization of M^1 as a result of being activated; and (iii), m is an integer of at least 1.
- 5. The composition of Claim 2 wherein said HB is prepared by a condensation or addition polymerization of a monomer of the formula M³-R²-M⁴_p wherein (i) R² is a linear or branched alkyl or aromatic moiety; (ii), M³ and M⁴ are

groups that undergo a condensation or addition reaction; and (iii), p is an integer of at least 2.

6. The composition of Claim 2 wherein said HB is prepared by a condensation or addition polymerization of a monomer of the formula R²-M⁵_q and R³-M⁶_t wherein (i) R² is as defined above and R³ is a linear or branched alkyl or aromatic moiety; (ii), M⁵ and M⁶ are groups that undergo a condensation or addition reaction; and (iii), q is an integer of at least 2 and t an integer of at least 3.

5

- 7. The composition of Claim 4 wherein M¹ is a non-substituted or substituted vinylic group, M² is X, -CH₂X or -CH(CH₃)X wherein X is Cl, Br, I, S-C(=S), YR⁴R⁵ or -O-NR⁴R⁵, Y=O or N, and R⁴ and R⁵ are each independently -(CH₂)_r (r = 1-12), -C₆H₅, -C(O)O, or C(O).
- 8. The composition of Claim 5 wherein M³ and M⁴ are each independently -COOH, -OH, -C(O)Cl, epoxy, anhydride, NH, or NH₂, and R² is -C₆H₃-, or -(CH₂)_s-C(R⁶)- wherein R⁶ is a linear or branched alkyl or aromatic group and s is an integer of 1-14.
- 9. The composition of Claim 6 wherein M⁵ and M⁶ are each independently -COOH, -OH, -C(O)Cl, epoxy, anhydride, NH or NH₂, and R³ is -C₆H₄-, C₆H₄-, C₆H₄-, C₆H₃, N(CH₂)₃-, C₄H₈-, -C₆H₁₀-,

10. The composition of Claim 1 wherein said hyperbranched polymer having a dye chromophore incorporated into the backbone thereof is a polyamide, polyester, polyether, vinylic polymer, polyimine, polyesteramide or polyurethane.

5

10

15

20

- 11. The composition of Claim 1 wherein said hyperbranched polymer having a dye chromophore incorporated into the polymer backbone is prepared by a chain polymerization of a monomer of the formula $M^1-R^7-M^2_m$ wherein R^7 is a linear or branched alkyl, carbonyl, or aromatic moiety containing a dye chromophore and M^1 , M^2 and m are defined as in Claim 4.
- 12. The composition of Claim 1 wherein said hyperbranched polymer having a dye chromophore incorporated into the polymer backbone is prepared by a condensation or addition polymerization of a monomer of the formula M³-R⁷-M⁴_p wherein R⁷ is defined in Claim 11 and M³, M⁴ and p are defined as in Claim 5.
- 13. The composition of Claim 1 wherein said hyperbranched polymer having a dye chromophore incorporated into the polymer backbone is prepared by a condensation or addition polymerization of a monomer of the formula R⁸-M⁵_q and R⁹-M⁶_t wherein R⁸ and R⁹ are each independently a linear or branched alkyl or aromatic moiety, at least one of which contains a dye chromophore, and M⁵, M⁶, q and t are defined as in Claim 6.

25

14. The composition of Claim 1 wherein said dye chromophore is a mono- or poly-azo dye, basic dye, phthalocyanine dye, methine or polymethine dye, merocyanine dye, azamethine dye, quinophthalone dye, thiazine dye, oxazine dye, anthraquinone or metal-complex dye.

30

15. The composition of Claim 14 wherein said mono- or poly-azo dye is a pyrazoleazoindole.

- 16. The composition of Claim 14 wherein said metal-complex dye is a transition metal complex of an 8-heterocyclylazo-5-hydroxyquinoline.
- 5 17. The composition of Claim 1 wherein said humectant is diethylene glycol, glycerol or diethylene glycol monobutylether.
- 18. The composition of Claim 1 wherein said hyperbranched polymeric dye comprises about 0.2 to about 20 % by weight of said ink jet ink
 10 composition.