INTRODUCCIÓN AL PROCESAMIENTO DE SEÑALES

Práctica 3:

Sistemas Lineales. Respuesta al Impulso. Convolución.

1. Aprovechando la linealidad

a) Sea S1 un SLID cuya respuesta a la señal $x_1[n]$ es $y_1[n]$. Halle sus respuestas a $x_2[n]$ y a $x_3[n]$.

b) El SLIT S2 responde a $x_1(t)$ con $y_1(t) = 3(1 - e^{-2t})u(t)$. Halle sus respuestas a $x_2(t)$ y a $x_3(t)$.

- c) Halle las respuestas impulsionales de los sistemas S1 y S2.
- d) Halle la respuesta del sistema S2 a la señal $x_4(t) = t.u(t)$ en función de $y_1(t)$. Para ello trate de vincular $x_4(t)$ con $x_1(t)$.

Ayuda: En el ejercicio 3 de la práctica 2 demostramos que si se tienen dos SLIDs, S_1 y S_2 , conectados en cascada, el sistema S también resulta SLID. En este caso, se puede demostrar (luego veremos cómo) que al intercambiar el orden de S_1 y S_2 se obtiene el mismo sistema S. Esto puede serle de utilidad para los incisos c y d).

2. Respuesta al impulso

En forma general, diremos que cuando a un sistema lineal discreto se le aplica a su entrada una delta de Kronecker en el instante k, $x[n] = \delta[n-k]$, se obtiene como respuesta la señal $\bar{h}[n,k]$.

- a) En base al conocimiento de $\bar{h}[n,k]$, ¿cómo resulta la salida del sistema a una entrada cualquiera x[n]?
- b) ¿Qué condición debe cumplir $\bar{h}[n,k]$ para que represente a un sistema lineal causal?
- c) ¿Qué condición debe cumplir $\bar{h}[n,k]$ para que represente a un sistema sin memoria?

- d) ¿Qué condición debe cumplir $\bar{h}[n,k]$ para que represente a un sistema invariante al desplazamiento? ¿Cómo resulta la salida del sistema a una entrada cualquiera x[n] en este caso?
- e) Para el caso

$$\bar{h}[n,k] = \begin{cases} 1 & -1 \le n \le k, \ k = 0 \\ 1/k & k - 1 \le n \le k + 3, \ k \ne 0 \\ 0 & \text{c.c.} \end{cases}$$

Calcule la secuencia de salida y[n] para $-2 \le n \le 6$ cuando se aplica al sistema la entrada x[n] = u[n] - u[n-3]

3. Convolución de señales VIC

- a) Sea $y(t) = \{x * h\}(t)$ la convolución entre las señales x(t) y h(t)
 - I. ¿Cómo resulta la convolución entre $x(t-t_0)$ y h(t), con $t_0 \in \mathbb{R}$?
 - II. ¿Cómo resulta la convolución entre x(t) y $h(t-t_1)$, con $t_1 \in \mathbb{R}$?
 - III. ¿Cómo resulta la convolución entre $x(t-t_0)$ y $h(t-t_1)$, con $t_0, t_1 \in \mathbb{R}$? Compruebe que este resultado verifica los dos casos anteriores.
- b) Calcular la convolución continua $y(t) = \{x * h\}(t)$ para los casos:
 - I. $x(t) = \operatorname{sinc}(t) \vee h(t) = \delta(t)$
 - II. $x(t) = \prod (t) \ y \ h(t) = \prod (t-1)$
 - III. $x(t) = \prod (t) \ y \ h(t) = \prod (t/2)$
 - IV. Una forma "ingeniosa" de resolver el inciso anterior sería escribir $\prod (t/2) = \prod (t+\frac{1}{2}) + \prod (t-\frac{1}{2})$ y utilizar el resultado de 3*b*II. Verifique su resultado con este procedimiento.
 - v. $x(t) = 2 \land (t+1) \ y \ h(t) = \Box (t-1)$
 - VI. $x(t) = 2 \bigwedge (t+1) \text{ y } h(t) = \delta(t-\frac{1}{2}) \delta(t-\frac{3}{2})$
 - VII. Calcule $\int_{-\infty}^t y(\tau) d\tau$ para el inciso anterior y compárela con el resultado del inciso 3bv. ¿A qué se debe este resultado?

VIII.
$$x(t) = e^{-\alpha t} u(t)$$
 y $h(t) = e^{-\beta t} u(t)$ para $\alpha \neq \beta$ y para $\alpha = \beta$

- c) En los incisos anteriores, ¿qué largo tiene el soporte de la señal y(t)? ¿Cómo resulta en términos de los soportes de x(t) y h(t)?
- d) Definimos el área bajo la curva de una señal x(t) como $A_x = \int_{-\infty}^{\infty} x(t) dt$. Demuestre que si $y(t) = \{x*h\}(t)$, entonces $A_y = A_x$ A_h . Verifique los resultados de los incisos anteriores utilizando esta propiedad.

4. Convolución de señales VID

- a) Calcular la convolución discreta $y[n] = \{x * h\}[n]$ para los casos:
 - I. $x[n] = 0.5^n u[n] \text{ y } h[n] = 4^n u[n-2]$
 - II. $x[n] = \delta[n+2] \text{ y } h[n] = a^{-n} u[-n]$ 0 < a < 1
 - III. $x[n] = 1 \text{ y } h[n] = \prod_{5}[n]$
 - IV. $x[n] = u[n] \ y \ h[n] = n \square_{7}[n]$
 - v. $x[n] = \prod_{3} [n] \ v \ h[n] = \prod_{3} [n-1]$
- b) Analice cómo queda el soporte de la señal y[n] en términos de los soportes de x[n] y h[n].
- c) Enuncie propiedades similares a las de los incisos 3a y 3d, para el caso de señales VID.
- d) Obtener h[n] (ó x[n]) si se conocen $y[n] = \{x * h\}[n]$ y x[n] (ó h[h]), lo que se denomina "deconvolución", es en general una tarea complicada. Existen, sin embargo casos sencillos donde la misma puede resolverse, por ejemplo en base a plantear un sistema de ecuaciones. En el siguiente gráfico, la señal y[n] es la convolución entre x[n] y h[n]. Sabiendo que h[-1] = 0, calcular h[n].

5. Promedio Móvil

El cálculo del promedio móvil de M=2N+1 muestras de una secuencia dada puede obtenerse aplicando esta secuencia a la entrada de un SLID cuya respuesta impulsional es:

$$h[n] = \frac{1}{2N+1} \sum_{m=-N}^{N} \delta[n-m]$$

- a) Halle la ecuación en diferencias que describe al sistema.
- b) ¿Es el sistema causal? ¿Cómo es posible usar este sistema con datos "del mundo físico"?
- c) Obtenga la salida si la entrada es $x[n] = A + \text{sen}(2\pi n/M)$; con $A \in \mathbb{R}$ constante.
- d) Analice (se recomienda utilizar Octave) qué ocurriría si la entrada es $x[n] = A + \text{sen}(2\pi n/K)$; con $A \in \mathbb{R}$, y con K un número entero no necesariamente igual a 2N+1, por ejemplo A=1, $N=2, K=3,4,6,7,\ldots$

6. Realización de Sistemas

Dadas las siguientes ecuaciones en diferencias/diferenciales que describen sistemas LID/LIT:

$$S1) \ 2 \ y[n] + y[n-1] - 4y[n-3] = x[n] + 3 \ x[n-5]$$

$$S2) y[n] = x[n] - x[n-1] + 2 x[n-2] - 3 x[n-4]$$

S3)
$$\dot{y}(t) + \frac{1}{RC} y(t) = \frac{1}{RC} x(t)$$

$$S_4$$
) $\ddot{y}(t) + \dot{y}(t) - 2 y(t) = x(t)$

- a) Halle la realización de los sistemas en la forma directa I.
- b) Halle la realización de los sistemas en la forma directa II.
- c) En cada caso: ¿qué realización utiliza menor cantidad de bloques de retardo/integradores? ¿Y sumadores?
- d) Determine si los sistemas S1 y S2 son de tipo FIR o IIR.

7. Convoluciones en Octave

a) En el ambiente de trabajo de Octave defina los vectores x y h correspondientes a señales discretas y calcule la convolución entre ellas ejecutando las siguientes sentencias:

```
N1 = -20; N2 = 20; n = [N1:N2];

x = zeros(size(n)); x((n>=-5)&(n<=5)) = 1;

h = zeros(size(n)); h((n>=-9)&(n<=9)) = [[1:1:10] [9:-1:1]];

n2 = [2*n(1):2*n(end)]; y = conv(x,h);
```

- I. Grafique utilizando el comando stem (tenga en cuenta que debería hacer stem(n,x), stem(n,h) y stem(n2,y)). Recuerde que puede poner las tres gráficas en una misma figura utilizando el comando subplot.
- II. Pruebe qué sucede al modificar los valores de N1 y N2.

- III. Podría desplazar la señal x, mediante las sentencias K = 5; x = circshift(x,[0,K]);. Vuelva a calcular la convolución en este caso e interprete sus resultados. Pruebe qué sucede con diferentes valores de desplazamiento K.
- b) Con la misma idea del inciso anterior se podría intentar calcular las respuestas a las excitaciones x1, x2 y x3 de un sistema con respuesta impulsional h, mediante las siguientes sentencias:

```
N1 = -60; N2 = 60; n = [N1:N2];
h = zeros(size(n)); h(n>0) = exp(-.2*n(n>0));
x1 = zeros(size(n)); x1((n>=0) & (n<=10)) = 1;
x2 = zeros(size(n)); x2((n>=0)) = 1;
x3 = zeros(size(n)); x3((n>=0)) = 1; x3((n>=20)) = 1.5;
y1 = conv(x1,h); y2 = conv(x2,h); y3 = conv(x3,h);
n2 = [2*n(1):2*n(end)];
```

Interprete qué ocurre en y2 a partir de n2 = 61 (recuerde que conv resuelve la convolución entre secuencias de largo finito).

c) Verificar el resultado del problema 4d.

Algunos resultados

2. e) Para
$$-2 \le n \le 6$$
, $y[n] = \{0, 1, 2, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}\}$

3. b) I.
$$y(t) = \operatorname{sinc}(t)$$
II. $y(t) = \bigwedge(t-1)$
III. $y(t) = (t+3/2) \sqcap (t+1) + \sqcap (t) + (3/2-t) \sqcap (t-1)$
IV. $y(t) = \bigwedge(t+1/2) + \bigwedge(t-1/2)$
V. $y(t) = (t+3/2)^2 \sqcap (t+1) + (3/2-2t^2) \sqcap (t) + (t-3/2)^2 \sqcap (t-1)$
VI. $y(t) = 2 \bigwedge(t+1/2) - 2 \bigwedge(t-1/2)$
VIII. $(\beta - \alpha)^{-1}(e^{-\alpha t} - e^{-\beta t})u(t)$ si $\alpha \neq \beta$; $t e^{-\alpha t}u(t)$ si $\alpha = \beta$

4. a) I.
$$y[n] = \frac{8}{7} (4^n - 8.0, 5^n) u[n - 2]$$

II. $y[n] = \frac{a^{-n}}{a^2} u[-n - 2]$

III. $y[n] = 5$

IV. $y[n] = \left(\sum_{k=-3}^{n} k\right) (u[n+3] - u[n-3]) = \frac{(n+4)(n-3)}{2} (u[n+3] - u[n-3])$

V. $y[n] = \bigwedge_3 [n-1]$

d)
$$h[n] = \delta[n-1] + 2 \delta[n-2] + \delta[n-3]$$

$$5. \quad c) \ y[n] = A$$