Symplectic PBW Tableaux and Degenerate Relations

George Balla

Chair of Algebra and Representation Theory, RWTH Aachen

22 June 2020

Outline

- 1. Original and PBW degenerate complete symplectic flag varieties.
 - Description.
 - Defining ideals and homogeneous coordinate rings.
- 2. The symplectic semistandard PBW tableaux.
 - Description
 - One-to-one correspondence with the symplectic FFLV basis.

- 3. Towards the proofs of the main results.
 - A basis for the homogeneous coordinate rings.
 - The defining ideal in the degenerate case.

1. Original and PBW degenerate complete symplectic flag varieties.

General description. Fix a simple Lie group G over $\mathbb C$, let $\mathfrak g$ be its Lie algebra and P^+ the set of regular, dominant, integral weights. For $\lambda \in P^+$, let V_λ be the simple $\mathfrak g$ -module, and $\nu_\lambda \in V_\lambda$ a highest weight vector.

Definition

The flag variety \mathcal{F}_{λ} is the closure of the G-orbit through a highest weight line: $\mathcal{F}_{\lambda} = \overline{G[\nu_{\lambda}]} \hookrightarrow \mathbb{P}(V_{\lambda})$.

Let $\mathfrak{g}=\mathfrak{n}^+\oplus\mathfrak{h}\oplus\mathfrak{n}^-$ and $\mathcal{U}(\mathfrak{n}^-)$ be the universal env. algebra of \mathfrak{n}^- . Then $V_\lambda=\mathcal{U}(\mathfrak{n}^-)\nu_\lambda$ and there exists a degree filtration

$$\mathcal{U}(\mathfrak{n}^-)_s := \operatorname{span}\{x_1 \cdots x_l : x_i \in \mathfrak{n}^-, l \leq s\}.$$

The induced filtration $F_s := \mathcal{U}(\mathfrak{n}^-)_s \nu_\lambda$ on V_λ is called the *PBW filtration*.

Let V_{λ}^{a} be the graded space associated to the filtration F_{s} , then

$$V_{\lambda}^{a} = F_0 \oplus_{s \geq 1} F_s / F_{s-1}, \qquad F_0 = \mathbb{C}\nu_{\lambda}.$$

The space V_{λ}^{a} is a \mathfrak{g}^{a} -module, where $\mathfrak{g}^{a} = \mathfrak{b} \oplus (\mathfrak{n}^{-})^{a}$ and $\mathfrak{b} = \mathfrak{n}^{+} \oplus \mathfrak{h}$. Let G^{a} be a Lie group corresponding to \mathfrak{g}^{a} . Let ν_{λ}^{a} be the image of ν_{λ} in V_{λ}^{a} .

Definition

The PBW degenerate flag variety is defined to be $\mathcal{F}^{a}_{\lambda} := \overline{\mathrm{G}^{a}[\nu^{a}_{\lambda}]} \hookrightarrow \mathbb{P}(\mathrm{V}^{a}_{\lambda}).$

The symplectic complete flag variety. Denote it by $SP\mathcal{F}_{2n}$. It concides with the subvariety of full flags $U_1 \subset \cdots \subset U_n \subset \mathbb{C}^{2n}$, dim $U_k = k$, such that each U_k is isotropic w.r.t the nondegenerate sympl. form on \mathbb{C}^{2n} whose matrix is given by:

 $\mathbf{M}_s := \begin{bmatrix} 0 & \mathbf{I}_n \\ -\mathbf{I}_n & 0 \end{bmatrix}$, \mathbf{I}_n is the $n \times n$ matrix with 1's on the anti-diagonal and zero's elsewhere.

- In other words, we require that each U_k is an element of the symplectic Grassmannian $\operatorname{SpGr}(k,2n)$.
- Consider the irreducible fundamental Sp_{2n} -module V_{ω_k} of highest weight ω_k . We have $\mathrm{V}_{\omega_1}\simeq\mathbb{C}^{2n}$ and the canonical embedding,

$$V_{\omega_k} \hookrightarrow \bigwedge^k \mathbb{C}^{2n}, \quad \omega_k \mapsto w_1 \wedge \cdots \wedge w_k.$$

 $\bullet \ \ \mathsf{Now} \ \mathsf{consider} \ \mathbf{U}_k \subset \mathbb{C}^{2n}. \ \mathsf{For} \ i \in \{1, \dots, n\}, \ \mathsf{let} \ \overline{i} := 2n+1-i. \\ \mathsf{For} \ \mathbf{J} = \left(j_1 < \dots < j_k\right) \subset \{1 < \dots < n < \overline{n} < \dots < \overline{1}\}, \ \mathsf{let} \\ \mathsf{w}_{\mathbf{J}} := \left[\mathsf{w}_{j_1} \wedge \dots \wedge \mathsf{w}_{j_k}\right] \in \mathbb{P}\Big(\bigwedge^k \mathbb{C}^{2n}\Big) \ \mathsf{and} \ \mathbf{X}_{\mathbf{J}} \in \mathbf{V}_{\omega_k}^* \ \mathsf{the} \ \mathsf{Plücker} \\ \mathsf{coordinate}.$

One has: $\operatorname{Sp}\mathcal{F}_{2n} \hookrightarrow \prod_{k=1}^n \operatorname{SpGr}(k,2n) \hookrightarrow \prod_{k=1}^n \mathbb{P}(\bigwedge^k \mathbb{C}^{2n})$. Let $\mathbb{C}[X_J]$ be the polynomial ring in variables X_J for all $J, k = 1, \ldots, n$.

Defining ideal. Let this ideal be denoted by I, what are its generators?

Plücker relations. These are the relations

$$R_{L,J}^t := X_L X_J - \sum X_{L'} X_{J'},$$
 (1.1)

labeled by the sequences L, J; $n \ge |L| \ge |J| \ge 1$ and a number t; $1 \le t \le |J|$.

Question:

Are the relations $R_{L,J}^t$ enough to generate I?

• Linear relations. Consider SPGr(2,6). Let $U_2 \in SPGr(2,6)$ be the subspace of \mathbb{C}^6 generated by the vectors

$$u = a_{1,1}w_1 + a_{2,1}w_2 + a_{3,1}w_3 + a_{4,1}w_4 + a_{5,1}w_5 + a_{6,1}w_6$$
 and $v = a_{1,2}w_1 + a_{2,2}w_2 + a_{3,2}w_3 + a_{4,2}w_4 + a_{5,2}w_5 + a_{6,2}w_6$.

The subspace U_2 is isotropic if and only if $u^T M_s v = 0$, i.e.,

$$\begin{pmatrix} a_{1,1} & a_{2,1} & a_{3,1} & a_{4,1} & a_{5,1} & a_{6,1} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_{1,2} \\ a_{2,2} \\ a_{3,2} \\ a_{4,2} \\ a_{5,2} \\ a_{6,2} \end{pmatrix} = 0.$$

$$\Rightarrow -a_{6,1}a_{1,2} - a_{5,1}a_{2,2} - a_{4,1}a_{3,2} + a_{3,1}a_{4,2} + a_{2,1}a_{5,2} + a_{1,1}a_{6,2} = 0.$$

We have: $X_{1,6} + X_{2,5} + X_{3,4} = 0$ (or $X_{1,\bar{1}} = -X_{2,\bar{2}} - X_{3,\bar{3}}$). Let S_L denote all the relations of this kind. We call these the symplectic linear relations.

Theorem (De Concini '79)

The ideal I is generated by the relations $R_{L,J}^t$ and S_L . It is a prime ideal.

Example

Conider \mathfrak{sp}_4 , then the ideal I for the variety $\mathrm{Sp}\mathcal{F}_4$ is generated by the relations:

$$\begin{array}{l} R^1_{(1,2),(\overline{2})} := X_{1,2}X_{\overline{2}} + X_{2,\overline{2}}X_1 - X_{1,\overline{2}}X_2, \\ R^1_{(1,2),(\overline{1})} := X_{1,2}X_{\overline{1}} + X_{2,\overline{1}}X_1 - X_{1,\overline{1}}X_2, \\ R^1_{(1,\overline{2}),(\overline{1})} := X_{1,\overline{2}}X_{\overline{1}} + X_{\overline{2},\overline{1}}X_1 - X_{1,\overline{1}}X_{\overline{2}}, \\ R^1_{(1,2),(\overline{2},\overline{1})} := X_{1,2}X_{\overline{2},\overline{1}} - X_{1,\overline{2}}X_{2,\overline{1}} + X_{1,\overline{1}}X_{2,\overline{2}}, \\ R^1_{(2,\overline{2}),(\overline{1})} := X_{2,\overline{2}}X_{\overline{1}} + X_{\overline{2},\overline{1}}X_2 - X_{2,\overline{1}}X_{\overline{2}}, \\ \text{and the linear relation } S_{1,\overline{1}} := X_{1,\overline{1}} + X_{2,\overline{2}}. \end{array}$$

Homogeneous coordinate ring. Let it be denoted by $\mathbb{C}[\operatorname{Sp}\mathcal{F}_{2n}]$. Then:

$$\mathbb{C}[\mathrm{X}_\mathrm{J}]/\mathrm{I} = \mathbb{C}[\mathrm{Sp}\mathcal{F}_{2n}] = \bigoplus_{\lambda \in P^+} \mathbb{C}[\mathrm{Sp}\mathcal{F}_{2n}]_\lambda \simeq \bigoplus_{\lambda \in P^+} \mathrm{V}_\lambda^*.$$

The direct sum of the dual modules is an algebra because of the existence of the embedding of modules: $V_{\lambda+\mu} \hookrightarrow V_{\lambda} \otimes V_{\mu}$, $\nu_{\lambda+\mu} \mapsto \nu_{\lambda} \otimes \nu_{\mu}$.

The PBW Degenerate Symplectic Grassmann Variety.

Let $W := \mathbb{C}^{2n}$ and let:

$$\mathbf{W} = \mathbf{W}_{k,1} \oplus \mathbf{W}_{k,2} \oplus \mathbf{W}_{k,3},$$

where:

$$\begin{aligned} & \mathbf{W}_{k,1} = \mathsf{span}(\mathbf{w}_1, \dots, \mathbf{w}_k), \\ & \mathbf{W}_{k,2} = \mathsf{span}(\mathbf{w}_{k+1}, \dots, \mathbf{w}_{2n-k}), \\ & \mathbf{W}_{k,3} = \mathsf{span}(\mathbf{w}_{2n-k+1}, \dots, \mathbf{w}_{2n}). \end{aligned}$$

Let $\text{pr}_{1,3}$ denote the projection $\text{pr}_{1,3}: W \to W_{k,1} \oplus W_{k,3}$, i.e.,

$$\operatorname{pr}_{1,3}(\mathsf{w}_1,\ldots,\mathsf{w}_{2n})=(\mathsf{w}_1,\ldots,\mathsf{w}_k,0,\ldots,0,\mathsf{w}_{2n-k+1},\ldots,\mathsf{w}_{2n}).$$

Proposition (Feigin, Finkelberg and Littelmann '13)

The PBW degen. sympl. Grassmann variety $SPGr^a(k,2n)$ is given by: $SPGr^a(k,2n) = \{U \in Gr(k,2n) \mid pr_{1.3}(U) \text{ is isotropic}\}.$

Remark. We don't have $\operatorname{SpGr}(k,2n) \simeq \operatorname{SpGr}^a(k,2n)$ any more. Exception: case for k=n.

The PBW degenerate complete symplectic flag variety. For $\lambda \in P^+$, let it be denoted by $\mathrm{Sp}\mathcal{F}_{2n}^a$. We have $\mathrm{Sp}\mathcal{F}_{2n}^a = \overline{\mathrm{Sp}_{2n}^a[\nu_\lambda^a]} \hookrightarrow \mathbb{P}(\mathrm{V}_\lambda^a)$. On the other hand, denote by $\mathrm{pr}_k : \mathrm{W} \to \mathrm{W}$ the projections along w_k , i.e.,

$$\operatorname{pr}_k\Big(\sum_{j=1}^{2n}c_jw_j\Big)=\sum_{j\neq k}c_jw_j.$$

Theorem (Feigin, Finkelberg and Littelmann '13)

 $\operatorname{Sp}\mathcal{F}^a_{2n}$ is naturally embedded in $\prod_{k=1}^n\operatorname{SpGr}^a(k,2n)$. The image is equal to the subvariety formed by the collections $(\operatorname{U}_k)_{k=1}^n$ such that $\operatorname{pr}_{k+1}\operatorname{U}_k\subset\operatorname{U}_{k+1},\ k=1,\ldots,n-1$ and $\operatorname{U}_k\in\operatorname{SpGr}^a(k,2n)$.

It is a flat degeneration of $Sp\mathcal{F}_{2n}$ and it is an irreducible variety.

Degenerate relations. Let $\mathbb{C}[X_J^a]$ be the polynomial ring in variables X_J^a for all $J = (j_1 < \cdots < j_k) \subset \{1 < \cdots < n < \overline{n} < \cdots < \overline{1}\}, \ k = 1, \ldots, n.$

Definition

The PBW degree of J (and hence of X_J) is given by

$$\deg J = \#\{r \mid j_r > k\}.$$

• Degenerate Plücker relations (Feigin. '12). These are obtained by picking out the terms of minimal PBW degree from $R_{L,J}^t$ and applying the map $X_J \mapsto X_J^a$. They are given by

$$R_{L,J}^{t;a} := X_L^a X_J^a - \sum X_{L'}^a X_{J'}^a,$$
 (1.2)

labeled by the sequences L, J; $n \ge |L| \ge |J| \ge 1$ and a number t; $1 \le t \le |J|$.

◆ロト ◆部ト ◆意ト ◆意ト 連1章 かなぐ

• Degenerate symplectic linear relations. Let $U_2 \subset \mathbb{C}^6$, then: $\operatorname{pr}_{1,3}(u) = a_{1,1}w_1 + a_{2,1}w_2 + a_{5,1}w_5 + a_{6,1}w_6$ and

$$\mathsf{pr}_{1,3}(u) = a_{1,1}\mathsf{w}_1 + a_{2,1}\mathsf{w}_2 + a_{5,1}\mathsf{w}_5 + a_{6,1}\mathsf{w}_6$$
 and $\mathsf{pr}_{1,3}(v) = a_{1,2}\mathsf{w}_1 + a_{2,2}\mathsf{w}_2 + a_{5,2}\mathsf{w}_5 + a_{6,2}\mathsf{w}_6$.

Then $\operatorname{pr}_{1,3}(\mathrm{U}_2)$ is isotropic if and only if $\operatorname{pr}_{1,3}(u)^T\mathrm{M}_s\operatorname{pr}_{1,3}(v)=0$, i.e.,

$$-a_{6,1}a_{1,2}-a_{5,1}a_{2,2}+a_{2,1}a_{5,2}+a_{1,1}a_{6,2}=0,$$

which leads to the degenerate symplectic linear relation $X_{1,6}^a + X_{2,5}^a = 0$ (or $X_{1,\overline{1}}^a + X_{2,\overline{2}}^a = 0$).

Ones gets the same relation by picking out terms of minimal PBW degree from $X_{1,\bar{1}} = -X_{2,\bar{2}} - X_{3,\bar{3}}$. Denote these relations by S^a_L .

Main result. Let I^a be the ideal in $\mathbb{C}[X_I^a]$ generated by $R_{I,I}^{t;a}$ and S_{I}^a .

Theorem (B. '20)

The ideal I^a is the defining ideal of $Sp\mathcal{F}_{2n}^a$.

Example

For $SP\mathcal{F}_{A}^{a}$, the ideal I^{a} is generated by the relations:

$$\begin{split} R_{(1,2),(\overline{2})}^{1;a} &= X_{1,2}^a X_{\overline{2}}^a + X_{2,\overline{2}}^a X_{1}^a, \\ R_{(1,2),(\overline{1})}^{1;a} &= X_{1,2}^a X_{\overline{1}}^a + X_{2,\overline{1}}^a X_{1}^a, \\ R_{(1,\overline{2}),(\overline{1})}^{1;a} &= X_{1,\overline{2}}^a X_{\overline{1}}^a + X_{2,\overline{1}}^a X_{1}^a - X_{1,\overline{1}}^a X_{2}^a, \\ R_{(1,\overline{2}),(\overline{2},\overline{1})}^{1;a} &= X_{1,2}^a X_{2,\overline{1}}^a - X_{1,\overline{2}}^a X_{2,\overline{1}}^a + X_{1,\overline{1}}^a X_{2,\overline{2}}^a, \\ R_{(2,\overline{2}),(\overline{1})}^{1;a} &= X_{2,\overline{2}}^a X_{\overline{1}}^a - X_{2,\overline{1}}^a X_{2}^a, \\ \text{and the linear relation } S_{(1,\overline{1})}^a &= X_{1,\overline{1}}^a + X_{2,\overline{2}}^a. \end{split}$$

Homogeneous coordinate ring. Let it be denoted by $\mathbb{C}[\operatorname{Sp}\mathcal{F}_{2n}^a]$. Let J^a be the actual defining ideal of $\operatorname{Sp}\mathcal{F}_{2n}^a$. Then we have the equality, direct sum decompositions and isomorphism

$$\mathbb{C}[\mathrm{X}_{\mathtt{J}}^{\mathtt{a}}]/\mathrm{J}^{\mathtt{a}} = \mathbb{C}[\mathrm{Sp}\mathcal{F}_{2n}^{\mathtt{a}}] = \bigoplus_{\lambda \in P^{+}} \mathbb{C}[\mathrm{Sp}\mathcal{F}_{2n}^{\mathtt{a}}]_{\lambda} \simeq \bigoplus_{\lambda \in P^{+}} (\mathrm{V}_{\lambda}^{\mathtt{a}})^{*}.$$

- The algebra structure on the direct sum of the dual modules is due to existence of a unique injective homomorphism of modules, $V_{\lambda+\mu}^a\hookrightarrow V_{\lambda}^a\otimes V_{\mu}^a,\quad \nu_{\lambda+\mu}^a\mapsto \nu_{\lambda}^a\otimes \nu_{\mu}^a$ (Feigin, Fourier and Littelmann, 2011).
- The isomorphism $\mathbb{C}[\operatorname{Sp}\mathcal{F}_{2n}^a]_{\lambda} \simeq (\operatorname{V}_{\lambda}^a)^*$ is due to Feigin, Finkelberg and Littelmann, 2013.

2. The symplectic semistandard PBW tableaux.

To a dominant weight $\lambda = \sum_{k=1}^{n} m_k \omega_k$, associate the partition $\lambda = (m_1 + m_2 + \cdots + m_n, m_2 + \cdots + m_n, \dots, m_n)$.

Question:

What is the set of tableaux that labels a basis for both $\mathbb{C}[\operatorname{Sp}\mathcal{F}_{2n}]$ and $\mathbb{C}[\operatorname{Sp}\mathcal{F}_{2n}^a]$?

Young tableaux:

Definition (Young '28)

1	3	3
3	2	
Ī		

A semistandard Young tableau of shape $\lambda = (\lambda_1 \geq \cdots \geq \lambda_n \geq 0)$ on $\mathcal{N} := \{1, \dots, n, \overline{n}, \dots, \overline{1}\}$ is a filling of the corresponding Young diagram with $T_{i,j} \in \mathcal{N}$ such that: $i_1 < i_2 \Rightarrow T_{i_1,j} < T_{i_2,j}$ and $j_1 < j_2 \Rightarrow T_{i_2,j} \leq T_{i_2,j}$.

Do these tableaux fit the role?

Definition (Feigin '12)

A PBW tableau is a filling $T_{i,j}$ such that:

if $T_{i,i} \leq \mu_i$, then $T_{i,i} = i$, and

if $i_1 < i_2$ and $T_{i_1,i} \neq i_1$, then $T_{i_1,i} > T_{i_2,i}$.

3

It is semistandard if in addition:

3

for any j > 1 and any $i, \exists i_1 \geq i$ such that $T_{i_1, i-1} \geq T_{i, i}$.

Definition (B. '20)

A semistandard PBW tableau is symplectic if:

whenever $\exists i, i_1$ such that $T_{i,i} = i$ and $T_{i_1,i} = \overline{i}$, then $i_1 < i$.

Example

For $\mathfrak{g} = \mathfrak{sp}_4$, and dominant weight $\lambda = \omega_1 + \omega_2$, we have:

1	1	1	2	1	1	1	2	1	2	2	1	<u></u>	2	$\overline{2}$	2
2		2		2		2		2		2		2		2	,

$\overline{1}$	1	$\overline{1}$	2	$\overline{1}$	<u>2</u>	$\overline{1}$	$\overline{1}$	1	1	$\overline{1}$	2	$\overline{1}$	2	$\overline{1}$	$\overline{1}$
2	,	2		2	,	2	,	2	,	2	,	2	,	2	

Symplectic linear relations, again!

For L non symplectic, X_L can be written as a linear combination of $X_{L'}$ with L' symplectic, i.e., we have the relations: $\textit{\textbf{S}}_L:=X_L-\sum X_{L'}.$

Recall again
$$S_{(1,\overline{1})}:=X_{1,\overline{1}}+X_{2,\overline{2}}+X_{3,\overline{3}}.$$

Lemma (B. '20)

The PBW degree of the element X_L in \mathcal{S}_L with L non symplectic, is less or equal to the PBW degrees of the other terms.

Symplectic semistandard PBW tableaux - FFLV basis bijection.

For $\mathfrak{g}=\mathfrak{sp}_{2n}$ and $\lambda\in P^+$, recall the \mathfrak{sp}_{2n} and \mathfrak{sp}_{2n}^a -modules V_λ and V_λ^a respectively.

Let R^+ be the set of positive roots of \mathfrak{sp}_{2n} . For each $\alpha \in R^+$, fix a non zero element $f_{\alpha} \in \mathfrak{n}_{-\alpha}^-$. All positive roots of \mathfrak{sp}_{2n} can be written as:

$$\begin{split} \alpha_{i,j} &= \alpha_i + \alpha_{i+1} + \ldots + \alpha_j, & 1 \leq i \leq j \leq n, \\ \alpha_{i,\bar{j}} &= \alpha_i + \alpha_{i+1} + \ldots + \alpha_n + \alpha_{n-1} + \ldots + \alpha_j, & 1 \leq i \leq n < j, & i+j \leq 2n, \end{split}$$

where $\alpha_{i,n} = \alpha_{i,\overline{n}}$. We write $f_{i,j}$ instead of $f_{\alpha_{i,j}}$. Notice also that $\alpha_i := \alpha_{i,i}$ and $\alpha_{\overline{i}} := \alpha_{i,\overline{j}}$.

Definition (Feigin, Fourier and Littelmann '11)

A symplectic Dyck path is a sequence $p = (p(0), ..., p(k)), k \ge 0$, of positive roots such that:

- (i) p(0) is simple and $p(k) = \alpha_j$ or $p(k) = \alpha_{\bar{j}}$ and
- (ii) if $p(s) = \alpha_{p,q}$, then $p(s+1) = \alpha_{p,q+1}$ or $p(s+1) = \alpha_{p+1,q}$.

Denote by $\mathbb D$ the set of all Dyck paths. For $\lambda = \sum_{i=1}^n m_i \omega_i \in P^+$, the symplectic Feigin-Fourier-Littelmann-Vinberg (FFLV) polytope $\mathrm{P}(\lambda) \subset \mathbb{R}^{n^2}_{\geq 0}$ is the polytope $\mathrm{P}(\lambda) := \{(s_\alpha)_{\alpha>0}, \forall p \in \mathbb{D}\}$, such that:

$$\begin{cases} s_{p(0)} + \ldots + s_{p(k)} \leq m_i + \ldots + m_j, & p(0) = \alpha_i, & p(k) = \alpha_j, \\ s_{p(0)} + \ldots + s_{p(k)} \leq m_i + \ldots + m_n, & p(0) = \alpha_i, & p(k) = \alpha_{\overline{j}}, \\ s_{p(i)} \geq 0, & 0 \leq i \leq k. \end{cases}$$

Let $S(\lambda)$ be the set of integral points in $P(\lambda)$. For a multi-exponent $s=(s_{\beta})_{\beta>0}$, $s_{\beta}\in\mathbb{Z}_{\geq0}$, let f^s be the element: $f^s=\prod_{\beta\in\mathbb{R}^+}f_{\beta}^{s_{\beta}}\in\mathcal{S}(\mathfrak{n}^-)$.

Theorem (Feigin, Fourier and Littelmann '11)

The elements $\{f^s \nu_{\lambda}^a, s \in S(\lambda)\}$ form a basis of V_{λ}^a and hence of V_{λ} .

We call $\pi_{\lambda} := \{f^s \nu_{\lambda}, s \in S(\lambda)\}$ the symplectic FFLV basis.

Example

For \mathfrak{sp}_4 and $\lambda = \omega_1 + \omega_2$, the 16 integral points of $P(\lambda) \subset \mathbb{R}^4$ give rise to the set of monomials:

 $\{1, f_{11}, f_{22}, f_{11}f_{22}, f_{12}f_{22}, f_{12}, f_{11}f_{12}, f_{12}^2, f_{1\overline{1}}, f_{11}f_{1\overline{1}}, f_{12}f_{1\overline{1}}, f_{1\overline{1}}^2, f_{1\overline{1$

Proposition (B. '20)

The symplectic FFLV basis π_{λ} for V_{λ} and V_{λ}^{a} is in bijection with the set SyST_{λ} of symplectic semistandard PBW tableaux of shape λ .

Illustrative example:

(Say $f_{i_1,j_1} > f_{i_2,j_2}$ if either $i_1 < i_2$ or $i_1 = i_2$ and $j_1 > j_2$).

For \mathfrak{sp}_4 , consider the "action" of the ordered product $f_{12}f_{1\overline{1}}f_{22}$ on the highest weight tableau of shape $\lambda=(2,1)$ as seen below:

$$f_{12}f_{1\overline{1}}f_{22}\left(\begin{array}{|c|c|c|}\hline 1 & 1\\\hline 2 & \end{array}\right)=f_{12}f_{1\overline{1}}\left(\begin{array}{|c|c|c|}\hline 1 & 1\\\hline \overline{2} & \end{array}\right)=f_{12}\left(\begin{array}{|c|c|c|}\hline \overline{1} & 1\\\hline \overline{2} & \end{array}\right)=\begin{array}{|c|c|c|}\hline \overline{1} & \overline{2}\\\hline \overline{2} & \end{array}.$$

3. Proof of the main result

To each $T \in \mathsf{SyST}_{\lambda}$, $\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0)$, associate respectively the elements $X_T \in V_{\lambda}^*$ and $X_T^a \in (V_{\lambda}^a)^*$ via:

$$\mathbf{T} \mapsto \mathbf{X}_{\mathbf{T}} = \prod_{j=1}^{\lambda_1} \mathbf{X}_{\mathbf{T}_{1,j},\dots,\mathbf{T}_{\mu_j,j}} \quad \text{and} \quad \mathbf{T} \mapsto \mathbf{X}_{\mathbf{T}}^{\mathbf{a}} = \prod_{j=1}^{\lambda_1} \mathbf{X}_{\mathbf{T}_{1,j},\dots,\mathbf{T}_{\mu_j,j}}^{\mathbf{a}}.$$

Theorem (B. '20)

The set of tableaux $\{T \mid T \in SyST_{\lambda}\}$ labels a basis for $\mathbb{C}[\operatorname{Sp}\mathcal{F}_{2n}^a]_{\lambda}$ and $\mathbb{C}[\operatorname{Sp}\mathcal{F}_{2n}]_{\lambda}$.

 $\mbox{Idea of the proof: We have } \#\{T\ |\ T\in \mbox{SyST}_{\lambda}\} = \dim V_{\lambda} = \dim V_{\lambda}^{\textit{a}}.$

We consider only $\mathbb{C}[\operatorname{Sp}\mathcal{F}_{2n}^a]_{\lambda}$. It suffices to show that the elements X_T^a span $\mathbb{C}[\operatorname{Sp}\mathcal{F}_{2n}^a]_{\lambda}$.

◄□▶◀률▶◀불▶◀불▶ 활발 쒸٩♡

- Start with X_T^a , T symplectic but not semistandard. Consider two arbitrary columns L,J of T that violate this condition.
- The term $\mathbf{X}_{\mathrm{L}}^{a}\mathbf{X}_{\mathrm{J}}^{a}$ remains in $R_{\mathrm{L,J}}^{t;a}.$
- Applying $R_{\rm L,I}^{t;a}$ leads to smaller tableaux w.r.t a fixed total order.
- Now apply relations $S_{\rm L}^a$ to replace non symplectic columns. The terms in the summands become smaller w.r.t the above fixed order.

Theorem (B. '20)

The ideal I^a defined before is the defining ideal of $Sp\mathcal{F}_{2n}^a$ and it is prime.

Thank you very much for your attention!

Some references

- G. Cerulli Irelli, X. Fang, E. Feigin, G. Fourier and M. Reineke. *Linear degenerations of flag varieties: partial flags, defining equations, and group actions.* Mathematische Zeitschrift (2019): 1-25 [D0I10.1007/s00209-016-1839-y].
- R. Chirivi, P. Littelmann and A. Maffei. *Equations defining symmetric varieties and affine Grassmannians*. International Mathematics Research Notices 2009, no. 2 (2009): 291-347.
- C. De Concini. *Symplectic standard tableaux*. Advances in Mathematics, 34(1) (1979), 1-27.
- E. Feigin. \mathbb{G}_M^a Degenerations of flag varieties, Selecta Mathematica 18, no. 3 (2012): 513-537

- E. Feigin, M. Finkelberg and P. Littelmann. *Symplectic degenerate flag varieties*. Canadian Journal of Mathematics, 66(6) (2014), 1250-1286.
 - E. Feigin, G. Fourier, and P. Littelmann. *PBW Filtration and Bases for symplectic Lie Algebras*, Internat. Math. Res. Notices (2011), Vol. 2011, 5760–5784.