

General Procedure to Model Fitting

- 1. Hyperparameters
- 2. Initialize parameters

- 3. Main loop
 - a. Fit parameters
 - b. Update loss

SVD with Alternating Least Squares

- 1. Hyperparameters
- 2. Initialize parameters

- 3. Main loop
 - a. Fit parameters with least squares
 - b. Update loss

```
k = \text{No. of latent factors}
P = \text{random}(n, k)
Q^T = \text{random}(k, i)
\hat{X} = PQ^T
R = \text{loss\_prev} = \text{mean}[(X - \hat{X})^2]
```

while loss_delta is not zero: $Q^T = (P^T P)^{-1} P^T X$ $P = XQ(Q^T Q)^{-1}$ $\hat{X} = PQ^T$ This part changes when the method of fitting the model change

 $loss = mean[(X - \hat{X})^{2}]$ $loss_delta = loss - loss_prev$ $loss_prev = loss$

SVD with Alternating Least Squares

- SVD with ALS is very fast, typically converge within a dozen epochs.
- The use of least squares means the process is easily parallelized, so scaling up is not a problem
- ALS might not be feasible if you want $X \neq PQ^T$.

- Gradient descent is a very general optimization algorithm, usable with pretty much all models.
- It uses the <u>first derivative</u> of the loss function with respect to a parameter to adjust the parameter.

- Gradient descent uses the <u>first derivative</u> of the loss function with respect to a parameter to adjust the parameter.
- E.g. suppose our model is

$$\hat{y} = \alpha + x$$

This is a (simplified) regression task, which we can solve by minimizing the squared error:

$$c = (y - \hat{y})^2$$

• For illustration purpose, let us assume the data is generated by y = 5 + x, so that if x = 1, y = 6.

Error
$$\epsilon = y - \hat{y}$$

Loss $= \epsilon^2$

First derivative of loss function:

$$\frac{d}{d\alpha} \epsilon^2$$

$$= 2\epsilon \frac{d}{d\alpha} [y - (\alpha + x)]$$

$$= -2\epsilon$$

This is the marginal effect, or gradient, of α on loss.

We have an initial guess of what α is (usually just a random number.)

This gives us an initial prediction \hat{y} and corresponding error and loss.

$$\hat{\alpha}_0 = 2$$

$$\hat{y}_0 = 2 + 1 = 3$$

$$\epsilon_0 = y - \hat{y} = 6 - 3 = 3$$

$$\frac{d}{d\alpha}\epsilon^2 = -2\epsilon = -6$$

$$\epsilon_0 = 3$$

$$\frac{d}{d\alpha}\epsilon^2 = -6 > 0$$

In our example, ϵ is positive, so the gradient is negative.

This means loss is decreasing in alpha.

This makes sense, because if $y > \hat{y} = \alpha + x$ increasing α will bring \hat{y} closer to y.

Conversely, if $\epsilon < 0$, then

$$y < \hat{y} = \alpha + x$$

decreasing α will bring \hat{y} closer to y .

The gradient tells us the direction we need to adjustment our parameter.

The amount we need to adjust is, to a first-order approximation, inversely proportional to the gradient.

E.g.

$$\frac{d}{d\alpha}\epsilon^2 = -6$$

 α needs to be bigger.

If we adjust the parameter by the exact amount of the gradient, we might overshoot:

$$\hat{\alpha}_1 = \hat{\alpha}_0 - \frac{d}{d\alpha} \epsilon^2$$

$$= 2 - (-6)$$

$$= 8 > 5 = \text{true } \alpha$$

Overshooting could result in our parameters bouncing around the true value, never to converge.

To prevent overshooting, we moderate the gradient by a learning rate γ :

$$\hat{\alpha}_1 = \hat{\alpha}_0 - \gamma \frac{d}{d\alpha} \epsilon^2$$

E.g. if $\gamma = 0.1$:

$$\hat{\alpha}_1 = \hat{\alpha}_0 - \gamma \frac{d}{d\alpha} \epsilon^2$$

$$= 2 - 0.1(-6)$$

$$= 2.6 < 5 = \text{true } \alpha$$

Now we are not overshooting, but it will take us more iterations to get to the true α value.

- The gradient tells us the direction we need to adjustment our parameter. In the above example, the amount we need to adjust is, to a first-order approximation, proportional to $-dc/d\alpha$.
- Moderating the adjustment by a learning rate γ , we have the following update rule:

$$\alpha_t = \alpha_{t-1} - \gamma \frac{dc}{d\alpha} \bigg|_{\alpha_{t-1}}$$

Or more typical in computer science:

$$\alpha \leftarrow \alpha - \gamma \frac{dc}{d\alpha}$$

• With more than one sample, we take the average.

SVD and Gradient Descent

- In SVD, we have $\hat{X} = PQ^T$
- User u's preference for item i is $\hat{x}_{ui} = \vec{p}_u \vec{q}_i^T$ nusers \times

- Loss function is $L = \sum \epsilon_{ui}^2 = \sum (\vec{x}_{ui} \hat{x}_{ui})^2$
- Take derivative of loss function w.r.t. to \vec{p}_u and \vec{q}_i^T (note that they are both vectors):

$$\frac{\partial L}{\partial p_{u,1}} = 2\epsilon_{ui}(-q_{i,1}), \frac{\partial L}{\partial p_{u,2}} = 2\epsilon_{ui}(-q_{i,2}), \dots$$

So we have
$$\frac{\partial L}{\partial \vec{p}_{u}} = 2\epsilon_{ui}(-\vec{q}_{i}^{T}) = -2\epsilon_{ui}\vec{q}_{i}$$

Similarly,
$$\frac{\partial L}{\partial \vec{q}_i} = 2\epsilon_{ui}(-\vec{p}_u) = -2\epsilon_{ui}\vec{p}_u$$

- Update rule is $\vec{p}_u = \vec{p}_u \gamma(-2\epsilon_{ui}\vec{q}_i)$, $\vec{q}_i = \vec{q}_i \gamma(-2\epsilon_{ui}\vec{p}_u)$
- Combine every u and i, we have $P = P + \gamma 2EQ$ and $Q^T = Q^T + \gamma 2P^TE$

SVD with Gradient Descent

- 1. Hyperparameter
- 2. Random initial values

- 3. Main loop
 - a. Fit parameters with gradient descent
 - b. Update loss

k = No. of latent factors

$$P = \text{random}(n, k)$$

 $Q^T = \text{random}(k, i)$
 $\hat{X} = PQ^T$
 $loss_prev = mean[(X - \hat{X})^2]$

while loss_delta is not zero:

$$E = X - \hat{X}$$

$$Q^{T} = Q^{T} + \gamma P^{T} E$$

$$P = P + \gamma E Q$$

$$\hat{X} = P Q^{T}$$

$$loss = mean[(X - \hat{X})^{2}]$$

$$loss_delta = loss - loss_prev$$

$$loss_prev = loss$$

Simon Funk's SVD

- User u's preference for item i is $\hat{x}_{ui} = \mu + b_u + b_i + \vec{p}_u \vec{q}_i^T$, where μ the constant term, b_u is the user fixed effect and b_i the item fixed effect.
- Compute gradients:

$$\frac{\partial L}{\partial \vec{p}_{u}} = 2\epsilon_{ui} \left(-\vec{q}_{i}^{T} \right) = -2\epsilon_{ui} \vec{q}_{i}$$

$$\frac{\partial L}{\partial \vec{q}_{i}} = 2\epsilon_{ui} \left(-\vec{p}_{u} \right) = -2\epsilon_{ui} \vec{p}_{u}$$

$$\frac{\partial L}{\partial \mu} = \frac{\partial L}{\partial b_{u}} = \frac{\partial L}{\partial b_{i}} = 2\epsilon_{ui} \left(-\vec{p}_{u} \right) = -2\epsilon_{ui}$$

• Update rule is

$$\begin{split} \vec{p}_u &= \vec{p}_u - \gamma(-2\epsilon_{ui}\vec{q}_i), \vec{q}_i = \vec{q}_i - \gamma(-2\epsilon_{ui}\vec{p}_u) \\ \mu &= \mu - \gamma(-2\epsilon_{ui}), b_u = b_u - \gamma(-2\epsilon_{ui}), b_i = b_i - \gamma(-2\epsilon_{ui}) \end{split}$$

Stochastic Gradient Descent

- Learning is quite slow if we only update model weights after we go through all data.
- We could instead update every time after we gone through a given number of samples. This is **Stochastic Gradient Descent (SGD).**
- Because we are not using all data, we could be updating towards the wrong direction sometimes, but on average the updates will be correct. Hence, *stochastic*.

Stochastic Gradient Descent

• The stochastic nature is actually a good property because it helps the model escape from local optima.