512K x 8 Bit CMOS Dynamic RAM with Extended Data Out

DESCRIPTION

This is a family of 524,288 x 8 bit Extended Data Out CMOS DRAMs. Extended Data Out offers high speed random access of memory cells within the same row. Power supply voltage (+5.0V or +3.3V), access time (-5, -6, -7 or -8), power consumption (Normal or Low power) and package type (SOJ or TSOP-II) are optional features of this family.

All of this family have CAS-before-RAS refresh, RAS-only refresh and Hidden refresh capabilities. Further more, Self-refresh operation is available in Low power version.

This 512Kx8 Extended Data Out DRAM family is fabricated using Samsung's advanced CMOS process to realize high band-width, low power consumption and high reliability.

It may be used as main memory unit for personal computer and portable machines.

FEATURES

- · Part Identification
 - KM48C514B/BL (5V, 1K Ref.)
 - KM48V514B/BL (3.3V, 1K Ref.)
- · Active power dissipation

Unit: mW

Speed	3.3V (1K Ref.)	5V (1K Ref.)
-5	•	470
-6	255	385
-7	235	360
-8	220	-

- Extended Data Out operation
- Byte Read/Write operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden refresh capability
- · Self-refresh capability (L-ver only)
- TTL(5V)/LVTTL(3.3V) compatible inputs and outputs
- Early Write or output enable controlled write
- JEDEC standard pinout
- Available in plastic SOJ and TSOP(II) packages
- Dual +5V±10% power supply (5V product)
- Dual +3.3V±0.3V power supply (3.3V product)

Refresh cycles

Part	Part Vcc Refresh		Refresi	n Period
NO.	VCC	cycle	Normal	۲.
C514B	5V	11/	16ma	100
V514B	3.3V	1K	16ms	128ms

Performance range

		-			
Speed	tRAC	tCAC	tRC	tHPC	Remark
-5			90ns		
-6	60ns	15ns	110ns	25ns	5V/3.3V
-7	70ns	20ns	130ns	30ns	5V/3.3V
-8	80ns	20ns	150ns	35ns	3.3V Only

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONIC CO., LTD. reserves the right to change products and specifications without notice.

7964142 0020214 246 |

108

PIN CONFIGURATION (Top Views)

Pin Name	Pin Function	Pin Name	Pin Function
A0 - A9	Address Inputs	W	Read/Write Input
DQ0 -7	Data In/Out	OE	Data Output Enable
Vss	Ground	Vcc	Power (+5V)
RAS	Row Address Strobe	VCC	Power (+3.3V)
CAS	Column Address Strobe	N.C	No Connection

109

7964142 0020215 182

ABSOLUTE MAXIMUM RATINGS

	Symbol	Ra	Units	
Parameter	Symbol	3.3V	5 V	Uiilis
Voltage on any pin relative to Vss	Vin, Vout	-0.5 to +4.6	-1.0 to +7.0	V
Voltage on Vcc supply relative to Vss	Vcc	-0.5 to +4.6	-1.0 to +7.0	V
Storage Temperature	Tstg	-55 to +150	-55 to +150	°C
Power Dissipation	₽o	1	1	·W
Short Circuit Output Current	los	50	50	mA

^{*} Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to Vss, Ta= 0 to 70 °C)

B	Combal		3.3V			5V		
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Supply Voltage	Vcc	3.0	3.3	3.6	4.5	5.0	5.5	٧
Ground	Vss	0	0	0	0	0	0	٧
Input High Voltage	Vıн	2.1	-	Vcc+0.3*1	2.4	-	Vcc+1.0*1	٧
Input Low Voltage	VIL	-0.3 ^{*2}	-	0.8	-1.0 ^{*2}	-	0.8	٧

^{*1:} Vcc+1.3V/15ns(3.3V), Vcc+2.0V/20ns(5V), Pulse width is measured at Vcc.

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

	Parameter	Symbol	Min	Max	Units
	Input Leakage Current (Any input 0≤Vin≤Vcc+0.3V, all other pins not under test=0V)	lı(L)	-5	5	μА
3.3V	Output Leakage Current (Data out is disabled, 0V≤Vo∪т≤Vcc)	lo(L)	-5	5	μА
	Output High Voltage Level (IoH=-2mA)	Vон	2.4	-	V
	Output Low Voltage Level (IoL=2mA)	Vol	-	0.4	V
	Input Leakage Current (Any input 0≤VIN≤Vcc+0.5V, (Any input 0≤VIN≤Vcc+0.5V, all other pins not under test=0V)	li(L)	II(L) -5 5 IO(L) -5 5 VOH 2.4 - VOL - 0 II(L) -5 5 IO(L) -5 5 VOH 2.4 -	5	μА
5V	Output Leakage Current (Data out is disabled, 0V≤Vo∪τ≤Vcc)	lo(L)	-5	5 5 - 0.4	μΑ
	Output High Voltage Level (Ioн=-5mA)	Vон	2.4	•	٧
	Output Low Voltage Level (IoL=4.2mA)	Vol		0.4	٧

110

7964142 0020216 019

^{*2: -1.3}V/15ns(3.3V), -2.0V/20ns(5V), Pulse width is measured at Vss.

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Symbol	Power	Speed	Ma	ax ·		
Syllibol	Power	Power Speed KM48V514B		KM48C514B	Units	
		-5	-	85	mA	
laa.	Don't care	-6 -7	70	70	mA	
lcc1	Dont care	-7	65	65	mA	
		-8	60	•	mA	
ICC2	Don't care	Don't care	1	2	mA	
		-5	-	85	mA	
Іссз	Don't care	-6	70	70	mA	
1003	Dont care	-7	65	65	mA	
		-8	60	-	mA	
		-5	-	65	mA	
laa.	Don't care	-6 -7	55	55	mA	
ICC4	Dont care		50	50	mA	
		-8	45	-	mA	
1	Normal		0.5	, 1	mA	
lcc5	L	Don't care	100	150	μA	
		-5	-	85	mA	
laa.	Don't care	-6	70	70	mA	
lcc ₆	Dont care	-7	65	65	mA	
		-8	60	-	mA	
lcc7	L	Don't care	200	300	μА	
lccs	L	Don't care	100	200	μА	

lcc1*: Operating current (RAS, CAS. Address cycling @tRC=min.)

Icc2: Standby current (RAS=CAS=W=VIH)

Icc3*: RAS-only refresh current (CAS=VIH, RAS, Address cycling @tRC=min.)

lcc4*: Hyper Page Mode current (RAS=VIL, CAS, Address cycling @tHPC=min.)

Iccs: Standby current (ĀĀS=CĀS=₩=Vcc-0.2V)

lcce*: CAS-before-RAS Refresh current (RAS and CAS cycling @tRC=min.)

Icc7: Battery back-up current, Average power supply current, Battery back-up mode

Input high voltage(V_IH)=Vcc-0.2V, Input low voltage(V_IL)=0.2V, CAS= 0.2V

Din = Don't care, Tac=125µs, Tras=Tras min~300 ns

Iccs : Self refresh current

 $\overline{RAS} = \overline{CAS} = V_{IL}$, $\overline{W} = \overline{OE} = A0 \sim A9 = V_{CC} - 0.2V$ or 0.2V,

DQ0 ~ DQ7 = Vcc-0.2V, 0.2V or open

* NOTE: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open. Icc is specified as an average current. In Icc1, Icc3, and Icc6, address can be changed maximum once while RAS=VIL. In Icc4, address can be changed maximum once within one hyper page cycle time, tHPC

111

7964142 0020217 T55 |

CAPACITANCE (TA=25°C, Vcc=5V or 3.3V, f=1MHz)

Parameter	Symbol	Min	Max	Unit
Input capacitance [A0 ~ A9]	Cin1	-	5	pF
Input capacitance [RAS, CAS, W, OE]	C _{IN2}	-	7	pF
Output Capacitance [DQ0 ~ DQ7]	Cpq	-	7	pF

AC CHARACTERISTICS (0°C≤TA≤70°C, See note 1,2)

Test condition (5V device) : Vcc= $5.0V\pm10\%$, Vih/ViI=2.4/0.8V, Voh/VoI =2.0/0.8V Test condition (3.3V device) : Vcc= $3.3V\pm0.3V$, Vih/ViI=2.1/0.8V, Voh/VoI =2.0/0.8V

		- 5	5(*)	-	6	-	7	-	8		rh
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes
Random read or write cycle time	tRC	84		104		124		144		ns	
Read-modify-write cycle time	tRWC	116		140		165		190		ns	
Access time from RAS	tRAC		50		60		70		80	ns	3,4,10
Access time from CAS	tCAC		17		17		20		20	ns	3,4,5
Access time from column address	tAA		25		30		35		40	ns	3,10
CAS to output in Low-Z	tCLZ	3		3		3		3		ns	3
Output buffer turn-off delay from CAS	tCEZ	3	13	3	15	3	15	3	15	ns	6, 13
Transition time (rise and fall)	tΤ	2	50	2	50	2	50	2	50	ns	2
RAS precharge time	tRP	30		40		50		60		ns	
RAS pulse width	tRAS	50	10K	60	10K	70	10K	80	10K	ns	. <u>.</u> .
RAS hold time	tRSH	17		17		20		20		ns	
CAS hold time	tCSH	40		50		60		70		ns	
CAS pulse width	tCAS	8	10K	10	10K	15	10K	20	10K	ns	11
RAS to CAS delay time	tRCD	20	33	20	43	20	50	20	60	ns	4
RAS to column address delay time	tRAD	15	25	15	30	15	35	15	40	ns	10
CAS to RAS precharge time	tCRP	5		5		5		5		ns	
Row address set-up time	tASR	0		0		0		0		ns	
Row address hold time	tRAH	10		10		10		10		ns	
Column address set-up time	tASC	0		0		0		0		ns	
Column address hold time (5V)	tCAH	8		10		15		_		ns	
Column address hold time (3.3V)	tCAH	-		15		15		15		пѕ	
Column address to RAS lead time	tRAL	25		30		35		40		ns	
Read command set-up time	tRCS	0		0		0		0		ns	
Read command hold time referenced to CAS	tRCH	0		0		0		0		ns	8
Read command hold time referenced to RAS	tRRH	0		0		0		0		ns	8
Write command set-up time	tWCS	0		0		0		0		ns	7
Write command hold time	tWCH	10	ļ	10		10		10		ns	
Write command pulse width	tWP	10		10		10		10		ns	
Write command to RAS lead time	tRWL	13		15		15		20		ns	
Write command to CAS lead time	tCWL	8		10		15		20		ns	

(*): 50ns product : Vcc=5V±5%, Output Loading(CL)=50pF

112

7964142 0020218 991 **=**

AC CHARACTERISTICS (0°C≤Ta≤70°C, See note 1,2)

Donorston	C	- !	5(*)		6	-	7		8		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes
Data set-up time	tDS	0		0		0		0		กร	9
Data hold time (5V)	tDH	8		10		15		-		ns	9
Data hold time (3.3V)	tDH	-		15		15		15		ns	
Refresh period (Normal)	tREF		16		16		16		16	ms	
Refresh period (L-ver)	tREF		128		128		128		128	ms	
CAS to W delay time	tCWD	34		36		44		44		ns	7
RAS to W delay time	tRWD	67		79		94		104		ns	7
Column address to ₩ delay time	tAWD	42		49		59		64		ns	7
CAS precharge to W delay time	tCPWD	45		54		64		69		ns	
CAS set-up time (CAS-before-RAS refresh)	tCSR	5		5		5		5		ns	
CAS hold time (CAS-before-RAS refresh)	tCHR	10		10		10		10		ns	
RAS to CAS precharge time	tRPC	5		5		5		5		ns	
CAS precharge time (CBR counter test cycle)	tCPT	20		20		25		30		ns	
Access time from CAS precharge	tCPA		28		35		40		45	ns	3
Hyper Page mode cycle time	tHPC	20		25		30		35		ns	11
Hyper Page mode read-modify-write cycle time	tHPRWC	47		56		71		81		ns	11
CAS precharge time (Hyper page cycle)	tCP	8		10		10		10		ns	
RAS pulse width (Hyper page cycle)	tRASP	50	100K	60	100K	70	100K	80	100K	ns	
RAS hold time from CAS precharge	tRHCP	30		35		40		45		ns	
OE access time	tOEA		15		15		20		20	ns	3
OE to data delay	tOED	13		15		20		20		ns	
Out put buffer turn off delay time from OE	tOEZ	3	13	3	15	3	20	3	20	ns	6
OE to output in low-Z	tOLZ	3		3		3		3		ns	
OE command hold time	tOEH	13		15		20		20		ns	
Output data hold time	tDOH	5		5		5		5		ns	
Output buffer turn off delay from RAS	tREZ	3	13	3	15	3	20	3	20	ns	6, 13
Output buffer turn off delay from W	tWEZ	3	13	3	15	3	20	3	20	пѕ	6
₩ to data delay	tWED	13		15		20		20		ns	
OE to CAS hold time	tOCH	5		5		5		5		ns	
CAS hold time to OE	tCHO	_ 5		5		5		5		ns	
OE precharge time	tOEP	5		5		5		5		ns	
W pulse width (hyper page cycle)	tWPE	5		5		5		5		ns	
RAS pulse width(C-B-R self refresh)	tRASS	100		100		100		100		μs	12
RAS precharge time (C-B-R self refresh)	tRPS	90		110		130		150		ns	12
CAS hold time (C-B-R self refresh)	tCHS	-50		-50		-50		-50		ns	12

^{(*): 50}ns product : Vcc=5V±5%, Output Loading(CL)=50pF

113

7964142 0020219 828 📟

NOTES

- An initial pause of 200

 μs is required after power-up followed by any 8 ROR or CBR cycles before
 proper device operation is achieved.
- 2. VIH(min) and VIL(max) are reference levels for measuring timing of input signals. Transition times are measured between VIH(min) and VIL(max) and are assumed to be 2ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL(5V)/1 TTL(3.3V) loads and 100pF.
- 4. Operation within the tRCD(max) limit insures that tRAC(max) can be met. tRCD(max) is specified as a reference point only. If tRCD is greater than the specified tRCD(max) limit, then access time is controlled exclusively by tCAC.
- 5. Assumes that tRCD≥ tRCD(max).
- 6. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to Voн or Vol.
- 7. tWCS, tRWD, tCWD and tAWD are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If tWCS≥ tWCS(min), the cycles is an early write cycle and the data output will remain high impedance for the duration of the cycle. If tCWD≥ tCWD(min), tRWD≥ tRWD(min) and tAWD≥ tAWD(min), then the cycle is a read-modify-write cycle and the data output will contain the data read from the selected address. If neither of the above conditions is satisfied, the condition of the data out is indeterminate.
- 8. Either tRCH or tRRH must be satisfied for a read cycle.
- 9. These parameters are referenced to the $\overline{\text{CAS}}$ leading edge in early write cycles and to the $\overline{\text{W}}$ leading edge in read-modify-write cycles.
- 10. Operation within the tRAD(max) limit insures that tRAC(max) can be met. tRAD(max) is specified as a reference point only. If tRAD is greater than the specified tRAD(max) limit, then access time is controlled by tAA.
- 11. tASC≥6ns, Assume tT=2.0ns.
- 12. 1024 cycle of burst refresh must be executed within 8ms before and after self refresh in order to meet refresh specification (L-version).
- 13. If RAS goes high before CAS high going, the open circuit condition of the output is achieved by CAS high going. If CAS goes high before RAS high going, the open circuit condition of the output is achieved by RAS high going.

. .

7964142 0020220 54T l