Name:		
VIP ID:		

- Write your name and VIP ID in the space provided above.
- Each of the propositions below is worth 20 points. Present a proof of **exactly** five of them. Mark clearly in the next page which propositions you have chosen.
- You much choose at least one of each of the following categories:

Proof by Contrapositive: Instead of proving $P \implies Q$, try $\neg Q \implies \neg P$.

Proof by Contradiction: To prove $P \implies Q$, start with the assumption that P and $\neg Q$ are true.

If and only if statement: To prove $P \iff Q$, prove both $P \implies Q$ and $Q \implies P$.

Existence statement: List, construct, or prove by contradiction.

Proof by Induction: $\forall n \geq n_0, P(n)$. Prove the basis step $P(n_0)$, and use the inductive hypothesis to prove the inductive step $P(n) \implies P(n+1)$.

- Make sure to **box** your proofs, to differentiate them from your exploration and planning. I will only grade for boxed content on each submission.
- Books, notes and calculators are allowed.

Proposition #	Max	Points
	20	
	20	
	20	
	20	
	20	
Total	100	

Proposition 1. For every $n \in \mathbb{N}$, it follows that

$$3^{1} + 3^{2} + 3^{3} + 3^{4} + \dots + 3^{n} = \frac{3^{n+1} - 3}{2}.$$

Proposition 2. Concerning the Fibonacci sequence $\{F_n\}_{n\in\mathbb{N}}$, it follows that

$$F_2 + F_4 + F_6 + F_8 + \dots + F_{2n} = F_{2n+1} - 1.$$

Proposition 3. For every $n \in \mathbb{N}$, it follows that

$$(1+2+3+\cdots+n)^2 = 1^3+2^3+3^3+\cdots+n^3.$$

Proposition 4. For every $n \in \mathbb{N}$, it follows that

$$\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} \ge \frac{1}{2}.$$

Proposition 5. For any integer $n \ge 0$, it follows that $3|(5^{2n} + 2)$.

Proposition 6. For every $n \in \mathbb{N}$, it follows that

$$\sum_{k=1}^{n} (4k - 3) = n(2n - 1)$$

Proposition 7. Given an integer $a \in \mathbb{Z}$, then $a^3 + a^2 + a$ is even if and only if a is even.

Proposition 8. There exist three positive real numbers $x \in \mathbb{R}$ for which $x^2 < \sqrt{x}$.

Proposition 9. There exists a real number $x \in \mathbb{R}$ such that $x^3 - 4x^2 = 7$.

Proposition 10. If $n \in \mathbb{Z}$, then $4|n^2$ or $4|(n^2-1)$.

Proposition 11. Suppose $x, y \in \mathbb{R}$. Then $x^3 + x^2y = y^2 + xy$ if and only if $y = x^2$ or y + x = 0.

Proposition 12. There exist no integers $a, b \in \mathbb{Z}$ for which 21a + 30b = 1.

Proposition 13. The number $\sqrt[3]{2}$ is irrational.

Proposition 14. The number $\log_3 4$ is irrational.

Proposition 15. If $a, b \in \mathbb{R}$ are positive real numbers, then $a + b \geq 2\sqrt{ab}$.

Proposition 16. For each positive real number $x \in \mathbb{R}$, if x is irrational, then \sqrt{x} is irrational.

Proposition 17. For each integer $n \in \mathbb{Z}$, n is even if and only if $4|n^2$.

Proposition 18. If $p, q \in \mathbb{Q}$ are rational numbers with p < q, then there exists another rational number $x \in \mathbb{Q}$ that satisfies p < x < q.