MODUL 12

Deep Learning : Pengenalan Gambar Batu, Gunting, Kertas dengan Convolutional Neural Network

Implementasi Dengan Python

Dalam proses pengenalan, gambar akan diubah menjadi matriks dan vektor kemudian akan di training. Setelah proses tersebut model akan bisa digunakan untuk pendeteksian.


```
[123] 1 import tensorflow as tf
2 model = tf.keras.models.Sequential([
3 tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(100, 150, 3)),
                             tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
                           tr.keras.layers.Com/2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Com/2D(128, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(512, activation='relu'),
                12
                            tf.keras.layers.Dense(3, activation='softmax')
                 14])

v [124] 1 model.compile(loss='categorical_crossentropy',

                                                optimizer=tf.optimizers.Adam(),
                                                metrics=['accuracy']
 O
                            train generator
                            steps_per_epoch=16,
epochs=15,
validation_data=validation_generator,
                             validation_steps=4,
                            verbose=2
       Epoch 1/15
                درير العام
16/16 - 17s - loss: 1.0886 - accuracy: 0.3516 - val_loss: 1.0014 - val_accuracy: 0.5547 - 17s/epoch - 1s/step
Epoch 2/15
                16/16 - 15s - loss: 0.4345 - accuracy: 0.8361 - val_loss: 0.3568 - val_accuracy: 0.8672 - 15s/epoch - 918ms/step
                16/16 - 15s - loss: 0.3774 - accuracy: 0.8633 - val_loss: 0.2960 - val_accuracy: 0.9141 - 15s/epoch - 959ms/step
Epoch 5/15
               Epoch 5/15
16/16 - 15s - loss: 0.1635 - accuracy: 0.9336 - val_loss: 0.1859 - val_accuracy: 0.9219 - 15s/epoch - 957ms/step Epoch 10/15
16/16 - 15s - loss: 0.2045 - accuracy: 0.9258 - val_loss: 0.2448 - val_accuracy: 0.8906 - 15s/epoch - 908ms/step Epoch 11/15
16/16 - 14s - loss: 0.2259 - accuracy: 0.9253 - val_loss: 0.1847 - val_accuracy: 0.9531 - 14s/epoch - 866ms/step Epoch 12/15
16/16 - 14s - loss: 0.2091 - accuracy: 0.9199 - val_loss: 0.1239 - val_accuracy: 0.9844 - 14s/epoch - 877ms/step Epoch 13/15
16/16 - 15s - loss: 0.1506 - accuracy: 0.9629 - val_loss: 0.1800 - val_accuracy: 0.9141 - 15s/epoch - 953ms/step Epoch 14/15
16/16 - 14s - loss: 0.1397 - accuracy: 0.9512 - val_loss: 0.2771 - val_accuracy: 0.8906 - 14s/epoch - 894ms/step Epoch 15/15
16/16 - 14s - loss: 0.1582 - accuracy: 0.9473 - val_loss: 0.1524 - val_accuracy: 0.9375 - 14s/epoch - 848ms/step keras.callbacks.History at 0x7f9fabadace0>
      ► Kode program untuk upload dan mendeteksi gambar
1 import numpy as np
2 from google.colab import files
3 from keras.preprocessing import image
4 import matplotlib.pyplot as plt
5 import matplotlib.image as mpimg
                  6 %matplotlib inline
               1 uploaded = files.upload()
y
28s □
                   1 uploaded = inter.upload()
2 for fn in uploaded.keys():
3  path=fn
4  img = image.load_img(path,target_size=(100,150))
                        imgplot = plt.imshow(img)
x=image.img_to_array(img)
x=np.expand_dims(x, axis=0)
                   9 images=np.vstack([x])
                10 classes=model.predict(images, batch_size=10)
                        if classes[0][0]==1:
                print('rock')

frint('rock')

frint('paper')

rint('paper')

relse:
                        print('scissors')
20
                   40
                  60
                  80
                         'n
                                       20
                                                       40
                                                                        60
                                                                                        ลก
                                                                                                       100
                                                                                                                        120
                                                                                                                                        140
```


MODUL 13

Deep Learning : Pengenalan Anjing dan Kucing dengan TensorFlow dan Arsitektur Convolutional Neural Network

Implementasi dengan Python

Kategori Anjing

Kategori Kucing

Resize gambar ke ukuran 90x90 pixel

Hasil resize gambar anjing

