Chapter18 Unsupervised Learning – Neighbor Embedding

- 1. Manifold Learning
- 2. Locally Linear Embedding (LLE)
 - a) w_{ij} represents the relation between x^i and x^j
 - b) Find a set of w_{ij} minimizing $\sum_i ||x^i \sum_j w_{ij}x^j||_2$
 - c) Then, find the dimension reduction results z^i and z^j based on w_{ij}
 - d) 在天愿做比翼鸟, 在地愿为连理枝
 - e) Keep w_{ij} unchanged, find a set of z^i minimizing $\sum_i ||z^i \sum_j w_{ij}z^j||_2$
- 3. Laplacian Eigenmaps
 - a) Graph-based approach: construct the data points as a graph
 - b) If x^1 and x^2 are close in a high density region, z^1 and z^2 close to each other
 - c) $S = \frac{1}{2} \sum_{i,j} w_{ij} (z^i z^j)^2$ Any problem? How about $z^i = z^j = 0$?
 - d) Given some constraints to z:

If the dim of z is M,
$$Span\{z^1, z^2, \dots, z^N\} = R^M$$

- 4. T-distributed Stochastic Neighbor Embedding (t-SNE)
 - a) Problem of the previous approaches:

Similar data are close, but different data may collapse

b) Compute similarity between all pairs of x and z

$$P(x^{j}|x^{i}) = \frac{S(x^{i},x^{j})}{\sum_{k!=i} S(x^{i},x^{k})} \qquad Q(z^{j}|z^{i}) = \frac{S'(z^{i},z^{j})}{\sum_{k!=i} S'(z^{i},z^{k})}$$

c) Find a set of z making the two distributions as close as possible

$$L = \sum_{i} KL(P(*|x^{i})||Q(*|z^{i})) = \sum_{i} \sum_{i} P(x^{j}|x^{i}) log \frac{P(x^{j}|x^{i})}{Q(z^{j}|z^{i})}$$

d) SNE: $S(x^i, x^j) = \exp(-||x^i - x^j||_2)$

t-SNE:
$$S'(z^i, z^j) = \frac{1}{1+||z^i-z^j||_2}$$