11.6 #3

 $\overrightarrow{n}_1 = \langle 3, -2, 1 \rangle \perp \text{plane } P_1$ $\overrightarrow{n}_2 = \langle 5, 1, -6 \rangle \perp \text{plane } P_2$

 \vec{n} , is not a scalar multiple of \vec{n}_z so \vec{n} , t \vec{n}_z . $\vec{n}_1 \cdot \vec{n}_z = 15 - 2 - 6 = 7 \neq 0$, so \vec{n} , t \vec{n}_z .

Since it, and it are neither parallel nor orthogonal,
the planes P, and Pz are neither parallel nor perpendicular.