Assignment 1: Advanced Color-to-Gray Conversion

Computer Vision

National Taiwan University

Fall 2018

Color Conversion

- RGB2YUV
 - Read https://en.wikipedia.org/wiki/YUV for more details

$$\begin{bmatrix} Y' \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.14713 & -0.28886 & 0.436 \\ 0.615 & -0.51499 & -0.10001 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix},$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.13983 \\ 1 & -0.39465 & -0.58060 \\ 1 & 2.03211 & 0 \end{bmatrix} \begin{bmatrix} Y' \\ U \\ V \end{bmatrix}.$$

 Many vision systems only take the Y channel (luminance) as input to reduce computations

RGB to Gray

Problems

What happened?

Dimensionality reduction

$$Y = 0.299R + 0.587G + 0.114B$$

- Another view:
 - The conversion is actually a plane equation! All colors on the same plane are converted to the same grayscale value.

Finding a better conversion

The general form of linear conversion:

$$Y = w_r \cdot R + w_g \cdot G + w_b \cdot B$$
$$w_r, w_g, w_b >= 0$$
$$w_r + w_g + w_b = 1$$

- Let's consider the quantized weight space $w \in \{0, 0.1, 0.2, ..., 1\}$
 - For example: $(w_r, w_g, w_b) = (0, 0, 1)$ $(w_r, w_g, w_b) = (0, 0.1, 0.9)$
 - Given a color image, a set of weight combination corresponds to a grayscale image candidate.
 - We are going to identify which candidate is better!

Measuring the perceptual similarity

• Joint bilateral filter (JBF) as the similarity measurement

Multiple Local Minima

Keep the 3 most voted

Color Image Guided Bilateral Filter

Given T as the guidance, the bilateral filter is written as:

$$F^{T}(I) = \frac{\sum_{q \in \Omega_p} G_s(p, q) G_r(T_p, T_q) I_q}{\sum_{q \in \Omega_p} G_s(p, q) G_r(T_p, T_q)}$$

• If *T* is a single-channel image:

$$G_r(T_p, T_q) = e^{-\frac{(T_p - T_q)^2}{2\sigma_r^2}}$$

• If *T* is a color image:

$$G_r(T_p, T_q) = e^{-\frac{(T_p^r - T_q^r)^2 + (T_p^g - T_q^g)^2 + (T_p^b - T_q^b)^2}{2\sigma_r^2}}$$

Assignment Description

- Test images
 - 學號末三碼除以三之餘數

Assignment Description

- Implement the conventional rgb2gray conversion
- Implement the joint bilateral filter
- Implement the advanced rgb2gray described above
 - Quantize the weight space as in p6 (hint: totally 66 combinations)
 - Consider the 9 bilateral parameters $\sigma_s \in \{1,2,3\}$ and $\sigma_r \in \{0.05,0.1,0.2\}$
 - Find the cost local minima on the 2D plane $w_r + w_g + w_b = 1$
 - Vote the candidates for each set of bilateral parameter
 - Return the top 3 most voted candidates for each input image

Submission

- Code: *.py
- Output images (assume the input is 0a.png)
 - Conventional rgb2gray: 0a_y.png
 - Advanced rgb2gray: 0a_y1.png, 0a_y2.png, 0a_y3.png
- A PDF report, containing
 - Your student ID, name and input images
 - Describe how to run your code
 - Describe how you implement the local minima selection
 - Show your output images and the corresponding weight combinations
 - Any other trick you want to share or comments to this assignment are welcome
- Compress all above files in a zip file named StudentID.zip
 - e.g. R07654321.zip
- Submit to CEIBA
- Deadline: 10/16 11:00 pm