$-\mathcal{Q}$
Assume that nEZ, n=0 (mod 3). So there exist x EZ that n=3x
Case 1: Assume that n is an odd number. Since n=3x, x must be odd
and there exist kez that x=2k+1. This, n=(3x)= [3(2k+1)2], which
is 36k2+36k+9, and it could be rewritten as 6(6k3+6k+1)+3,
Since k62, n=3 (mod 6).
Case 2: Assume that n is a even number. Since n=3x, x muse be even
and there exist kez that x=2k. This, n=(3x)= [3(12)]2, which
is 36kt, and it could be rewritten as 616k). Since RGZ,
n'= 0 (mod 6).
Since these cases above are exhaustive, so for all n66, n30 (mod 3)
implies that n'=0 (mod 6) or n'= 3 (mod 6) 1.
Q2
$E = \{(1,1), (0,0), (2,2), (1,1), (-1,1), (-2,2), (2,-2)\}$
{2} = {2,-2}
₹13= ₹1,-13
803=40j.

