

EKSAMEN I KJ 2050, GRUNNKURS I ANALYTISK KJEMI (7,5 sp)

Mandag 4. juni 2012 kl. 9.00 – 13.00.

Oppgavesettet er på to sider. Tillatte hjelpemidler: lommekalkulator. Alle oppgaver skal besvares. Sensurfrist 25. juni 2012 (3 uker). Kontaktpersoner under eksamen: Øyvind Mikkelsen (928 99 450)

Oppgave 1. (10p + 10p)

Vi har en løsning som inneholder 0,04 M sink. Denne skal titrere mot en 0,02 M standard EDTAløsning. Titreringen utføres ved pH 9,5 i en bufferløsning som holder Zn²⁺ i løsning.

- a. Beregn den teoretiske gjenværende Zn²⁺ konsentrasjonen ved ekvivalenspunktet.
- b. Beregn titrerfeilen i prosent for denne titreringen hvis man antar at gjenværende sinkkonsentrasjon er henholdsvis $5 * 10^{-5}$ og $5 * 10^{-9}$ M. Kommenter svarene.

$$\begin{array}{ll} DATA \; (H_4X = EDTA) \\ HX^{3^-} = H^+ + X^{4^-} & K_1 = 5,5 \, * \, 10^{\text{-}11} \\ Zn^{2^+} + X^{4^-} = ZnX^{2^-} & K_{Zn} = 3,2 \, * \, 10^{\text{1}6} \end{array}$$

Oppgave 2. (7p + 5p + 3p + 5p + 5p)

- a. Beskriv prinsippene, bruksområder og viktige feilkilder for titreringsteknikkene; komplekstitrering, redokstitrering og fellingstitrering.
- b. Forklar forskjellen på en primær og en sekundær standard i titrering. Gi en detaljert beskrivelse av hvordan man kan gå frem for å innstille en saltsyreløsning for bruk i titrering.
- c. Forklar hvorfor man ofte oppgir et omslagsområde på \pm 1 pH enhet for indikatorer for bruk i syrebase titreringer. Hvilke faktorer kan påvirke indikatoren slik at omslagsområdet blir større?
- d. Hvilke egenskaper er ønskelig for fellingsproduktet i klassisk gravimetri, og forklar videre hvordan man kan gå frem for å oppnå et best mulig resultat.
- e. Gjør rede for ulike typer av medfelling i gravimetri, hvordan disse kan påvirke resultatet og hvordan man kan gå frem for å få et bedre resultat.

Oppgave 3. (5p + 5p)

En bedrift har behov for å analysere løsninger av jern i området 0,005 M til 0,05 M.

- a. Lag en skjematisk beskrivelse for en spektrofotometrisk bestemmelse av jerninnholdet i prøvene. Beskriv viktig hensyn som må tas for å unngå feil og problemer i analysen
- b. Beskriv en alternativ fremgangsmåte for bestemmelse av jerninnholdet i det angitte konsentrasjonsområdet, og diskuter denne alternative metoden mot den spektrofotometriske metoden.

Oppgave 4. (5p)

a. I forbindelse med studier av metallers bindingsform (specieringsstudier) har man både metoder som i stor grad og metoder som i liten grad selv kan forårsake forskyvning av specielikevektene i prøven under selve analysen. Beskriv kort prinsippene for to analytiske metoder som kan brukes for å studere spesifikke ion, og som i liten grad forskyver specielikevektene. Angi omtrentlig deteksjonsgrense for disse teknikkene

Oppgave 5. (10p)

Kryss av for riktig eller uriktig påstand

	Riktig	Galt
Potensiometri bygger på måling av potensial ved tilnærmet null strøm i den elektrokjemiske kretsen		
Ioneselektive elektroder har typisk deteksjonsgrense i område 10 ⁻⁶ M		
Responsen til ioneselektive elektroder er uavhengige av temperaturen		
Ioneselektive elektroder har en logaritmisk respons		
pH-glasselektroden viser ofte for høy pH (altså mer basiskt) en riktig i sterkt basisk miljø		
Den indre løsningen i en pH-elektrode er oftest 0,1 M NaOH		
Ved iod titrering i basisk miljø kan følgende forstyrrende reaksjon skje; $I_2 + OH^- \Leftrightarrow IO^- + I^- + H^+$		
En måte å bestemme sulfat på er å felle det som BaSO4.		
Innstilling av iod ved tiosulfat er gitt ved reaksjonen; $2 \text{ I}^- + 2 \text{ S}_2 \text{O}_3^{2-} \Leftrightarrow \text{ I}_2 + \text{S}_4 \text{O}_6^{2-}$		
Hardhet i vann defineres som totalt kalsium- og magnesiuminnhold og kan bestemmes ved EDTA titrering.		