Information Theoretic Approaches for Testing Missingness in Predictive Modeling

Shreyas Bhave¹, Rajesh Ranganath², Adler Perotte¹

¹Columbia University Department of Biomedical Informatics ²New York University, The Courant Institute

What are we *missing* by making assumptions about missing data?

R := missingness pattern

X := data matrix

Data is often in this category but MAR is assumed anyway Y := outcome, fully observed

 $X_{obs} :=$ observed portion of data

 $X_{mis} := missing portion of data$

		Assumptions	What can be done?	Challenges
l	MCAR	$R \perp \!\!\! \perp X_{obs}$, $R \perp \!\!\! \perp X_{mis} \mid X_{obs}$	mean impute, marginal sampling	how do you know data is MCAR?
	MAR	$R \perp \!\!\! \perp X_{mis} \mid X_{obs}$	multiple imputation e.g. MICE, MissForest	comp expensive, how do you know data is MAR?
	MNAR	any data that violates MAR	model missingness process e.g. graphical modeling	biased models, poor inference, dataset shift

Intuition and domain knowledge about data generation process are often valuable but are there more *rigorous*, *general* ways to *test* assumptions?

MI-MCAR: Mutual Information for Missing Completely at Random

MCAR:
$$R \perp \!\!\! \perp X_{obs}$$
, $R \perp \!\!\! \perp X_{mis} \mid X_{obs}$

OAR (Observed at Random)

Little	e's
Test	for
MCA	AR

- assumes data are continuous, normal
- comparing means within a missingness pattern to some true estimated population mean
- only continuous data, limiting parametric assumptions

MI-MCAR (ours)

- use mutual information (MI) to build test statistic for independence
- randomization test
- MI is robust to transformations, nonparametric
- can accommodate continuous and categorical data

$$\hat{I}(R, X_{obs}) = \hat{H}(R) - \hat{H}(R | X_{obs}) \qquad \hat{ct} = \sum_{b=1}^{B} \mathbb{1} \left(\hat{I}(R, X_{obs}) \le \hat{I}^{b} \right)$$

$$\hat{H}(R) = -\frac{1}{N} \sum_{i=1}^{N} log(p_{R}(r_{i})) \qquad \hat{p} = \frac{1}{B+1} \left(1 + \hat{ct} \right)$$

$$\hat{H}(R | X_{obs}) = -\frac{1}{N} \sum_{i=1}^{N} log(p_{R | X_{imp}}(r_{i} | x_{i}))$$

Algorithm 1 MI-MCAR

Input: $X \in \mathbb{R}^{N \times P}$, $R \in \{0,1\}^{N \times P}$

Output: p, the p-value where null hypothesis is $R \perp \!\!\! \perp \!\!\! \perp \!\!\! X_{obs}$

Use multiple imputation to get X_{imp} from X

Fit p_R using density estimation

Fit $p_{R|X_{imp}}$ using some conditional model

Compute $\hat{I}(R, X_{obs})$ using p_R and $p_{R|X_{imp}}$

for
$$j \in [1, 2, ..., B]$$
 do

Sample R^j from p_R

Fit $p_{R^j|X_{imp}}$ using same conditional model specification

Compute $\hat{I}_j := \hat{I}(R^j, X_{obs})$ using p_R and $p_{R_j|X_{imp}}$

end for

Compute
$$p := \frac{1}{B+1} \left(1 + \sum_{j=1}^{B} \mathbb{I} \left(\hat{I}(R, X_{obs}) \leq \hat{I}_{j} \right) \right)$$

MI-US: Mutual Information for Unobserved Sources

how to test this condition?

Idea: we can use Y as a surrogate for information in the missing data

MI-US: Conditional randomization test (CRT) as in Candes et al.¹ with conditional mutual information as test statistic.

Null Hypothesis: $R \perp \!\!\! \perp Y | X_{obs}$

To obtain samples from the null we can directly model $P(R | X_{obs})$

$$I(R, Y|X_{obs}) = H(Y|X_{obs}) - H(Y|X_{obs}, R)$$
$$I_{null}(\tilde{R}, Y|X_{obs}) = H(Y|X_{obs}) - H(Y|X_{obs}, \tilde{R})$$

Algorithm 2 MI-US

Input: $X \in \mathbb{R}^{N \times P}$, $R \in \{0,1\}^{N \times P}$, YOutput: p, the p-value where null hypothesis is $R \perp \!\!\! \perp Y | X_{obs}$ Use multiple imputation to get X_{imp} from X

Fit $P_{Y|X_{imp},R}$ using some conditional model Fit $P_{R|X_{imp}}$ using some conditional model

Compute $\hat{H}(Y|X_{obs},R) := -\frac{1}{N} \sum_{i=1}^{N} log P_{Y|X_{imp},R}(y_i|x_i,r_i)$ for $j \in [1, 2, ..., B]$ do

Sample \tilde{R}^j from $p_{R|X_{imp}}$

Fit $P_{Y|X_{imp},\tilde{R^j}}$ using same conditional model

Compute $\hat{H}_j := -\frac{1}{N} \sum_{i=1}^N log P_{Y|X_{imp}, \tilde{R}^j}(y_i|x_i, r_i^j)$

end for

Compute
$$p := \frac{1}{B+1} \left(1 + \sum_{j=1}^{B} \mathbb{1} \left(\hat{H}(Y|X_{obs}, R) \ge \hat{H}_j \right) \right)$$

Experiments & Discussion

- MI-MCAR Simulated Data
 - mixture of continuous normal and binary data
 - · missingness simulated
 - logistic models, MADE for density estimation
- MI-US Simulated Data
 - binary outcome Y simulated with random logistic
 - continuous features from multivariate normal
 - used logistic to estimate conditional model
- MI-US Semi-Simulated MNIST
 - simple CNN model specification
 - missingness simulated with masking approach

Table 1. MI-MCAR Empirical rejection rate with different numbers of features on heterogeneous data (binary and continuous)

f	MCAR	MAR	MNAR
10	0.02	1.00	0.98
50	0.04	1.00	1.00
100	0.02	1.00	1.00

Table 2. MI-US empirical rejection rate under different missingness simulations with different number of features

•	f	MCAR	MAR	MNAR
	10	0.02	0.06	0.87
	50	0.05	0.03	0.96
	100	0.03	0.02	0.94

MNIST semi-synthetic p-value distribution

