

Analysis Of The Crab Nebula Using FACT's **Photon Stream Data**

Kevin Sedlaczek, Maximilian Nöthe for the FACT-Collaboration DPG-Frühjahrstagung 2018 Würzburg

The First G-APD Cherenkov Telescope

- located on Roque des los Muchachos, La Palma
- build to demonstrate novel light sensors silicon photo multipliers (SiPM)
- offer possibility to operate under much brighter light conditions
- camera has single photon resolution

The Photon Stream Data

Main-Pulse Event Representation

Figure: Standard FACT events.

Photon Stream:

- FACT records data in format close to readout hardware
- not intended as physics format
 - $\rightarrow \textbf{Photon Stream}$
- superposition of multiple photon signals
- reconstruct arrival time of single photons by substracting their pulse shapes
- list of lists of arrival times

The Photon Stream Data

- smaller file size: possible to compress all FACT data to fit on one 10TB drive
- simplify exchange and analysis, gain timing knowledge
- do cluster based image cleaning
- do physics analysis on an SiPM based IACT

Figure: Represent Imaging Atmospheric Cherenkov Telescope events using single photons

The Photon Stream Data

- smaller file size: possible to compress all FACT data to fit on one 10TB drive
- simplify exchange and analysis, gain timing knowledge
- do cluster based image cleaning
- do physics analysis on an SiPM based IACT

Figure: Represent Imaging Atmospheric Cherenkov Telescope events using single photons

The Data set: FACT open data crab sample

- https://fact-project.org/data
- Crab Nebula observations from November 2013
- including gamma-ray and proton simulations
- 17.7 hours of observations

Analysis

aim test the Photon Stream data in a physics analysis

Crab Nebula well measured source of cosmic gamma rays \rightarrow comparative analysis

FACT Analysis chain:

- 1. calibration of data
- **2.** image cleaning \rightarrow pure shower image remains

This Analysis so far:

- 3. Parametrization: calculate useful parameters
- 4. distinguish protons (background) from gammas
- 5. reconstruct direction and energy of particles

This is only the classical analysis approach so far!

Parameterization

Hillas parameters:

- size: number of photons in cluster
- **length**: std. dev. along long half-axis
- width: std. dev. along short half-axis
- **delta**: angle between length and disp
- skewness/ kurtosis: higher order statistical moments along half-axes

Parameterization

Source position reconstruction via disp-method:

- |disp|: distance from centre of gravity to target
- **sgn(disp)**: Head/Tail-Disambiguation
- theta: distance between reconstructed and true origin
- skewness/ kurtosis: higher order statistical moments along half-axes in cluster system

Tools

Machine learning with FACT classifier-tools, using 5-fold cross validation https://github.com/fact-project/classifier-tools

Energy estimation:

■ random forest regressor (30 estimators): klaas_energy_regressor

Gamma-hadron-separation:

■ random forest classifier (50 estimators): klaas_separation_model

Origin reconstruction:

- two step task: regression of |disp| and classification of sgn(disp)
- random forest regressor and classifier: klaas_disp_regressor

Energy estimation

Mean R^2 score from CV: 0.6065 ± 0.0092

Separation

Trained on 100 000 signal and background events

Origin reconstruction

- mean accuracy for sgn(disp): $(75,99 \pm 0,22)\%$
- \blacksquare mean R² score for disp: 0.5429 ± 0.0036

Summary

Works well already!

	significance crab	separation AUC ROC	sign accuracy	disp R ²
This analysis Std analysis	7.0σ 24.2σ	0,83 0,89	0,7599 ± 0,0022 0,75	$0,5429 \pm 0,0036 \\ 0,6 \pm 0,2$

Outlook

- run analysis on more data
- apply cuts on data
- improve hyper-parameters of classifier-tools and clustering
- lacktriang improve feature selection o feature engineering

K. Sedlaczek | 20. March 2018 Summary 13 / 13