Elektrochemie

Galvanické články, elektrolýza, elektrodový potenciál

Zdeněk Moravec, hugo@chemi.muni.cz

Elektrodový potenciál

- Elektroda elektrický vodič ponořený do roztoku elektrolytu
 - Elektroda prvního druhu kov ponořený do roztoku své soli Cu|Cu²⁺
 - Elektroda druhého druhu kov pokrytý vrstvou jeho nerozpustné sloučeniny ponořený do roztoku rozpustné soli Ag|AgCI|KCI
- \bullet Elektrodový potenciál (E) potenciál elektrody vůči standardní vodíkové elektrodě, jednotkou je volt $[{\bf V}]$
- Standardní elektrodový potenciál (E^0) elektrodový potenciál za standardních podmínek (0 °C; 100 kPa)
- Nernstova rovnice:
- $E = E^0 \frac{RT}{zF} \ln c = E^0 + \frac{0.0592}{z} \log c$
- Nernstova-Petersonova rovnice:
- $\bullet~E=E^0-\frac{RT}{zF}\ln\frac{a_{red}}{a_{ox}}=E^0+\frac{0.0592}{z}\log\frac{a_{red}}{a_{ox}}$

Elektrodový potenciál

Elektroda	E ⁰ [V]
Li/Li ⁺	-3,045
Cs/Cs ⁺	-2,923
Na/Na^+	-2,714
${\sf Mg}/{\sf Mg}^{2+}$	-2,363
Zn/Zn^{2+}	-0,762
Fe/Fe ²⁺	-0,440
Ni/Ni ²⁺	-0,250
H/H ⁺	0,000
Cu/Cu ²⁺	0,337
Cu/Cu ⁺	0,521
Ag/Ag^+	0,799
Pt/Pt^{2+}	1,200
Au/Au ³⁺	1,498
Mn^{3+}/Mn^{2+}	1,51
Ce^{4+}/Ce^{3+}	1,61

Standardní vodíková elektroda (SVE)

 platinový drátek pokrytý platinovou černí, sycený plynným vodíkem pod tlakem 101 325 Pa za teploty 273,15 K, ponořený do roztoku o jednotkové aktivitě H⁺. Tato elektroda má nulový elektrodový potenciál.

Elektrodový potenciál

- Čím má kov negativnější potenciál, tím se snadněji oxiduje a má silnější redukční schopnosti.
- Cu/Cu²⁺: 0,337 V
- Fe/Fe²⁺: −0,440 V
- $\bullet \ \mathsf{Cu} + \mathsf{FeSO_4} \longrightarrow \mathsf{CuSO_4} + \mathsf{Fe}$
 - Měd má kladnější potenciál a proto reakce nepoběží samovolně.
- Fe + CuSO₄ \longrightarrow FeSO₄ + Cu
 - Železo má zápornější potenciál a proto reakce *poběží samovolně*.
 - Železný drát ponořený do roztoku modré skalice se po chvíli začne pokrývat vyloučenou mědí.

Galvanický článek

- Chemický zdroj elektrického napětí.
- Skládá se ze dvou poločlánků, elektrod ponořených do elektrolytu.

Elektrolýza

1. Faradayův zákon

- Probíhá v roztocích nebo taveninách
- Elektrolýze může podléhat rozpouštědlo nebo ionty elektrolytu
- $\bullet \ 2 \, \mathsf{H}_2 \mathsf{O} \longrightarrow 2 \, \mathsf{H}_2 + \mathsf{O}_2$
- 1. Faradayův zákon
- Hmotnost vyloučené látky je úměrná proudu, který prochází elektrolytem a času, po který elektrolýza probíhala
- m = A.I.t = A.Q
 - A elektrochemický ekvivalent, I proud, t čas, Q náboj

Elektrolýza

2. Faradayův zákon

- 2. Faradayův zákon
- Látková množství vyloučená jednotkovým nábojem jsou pro všechny látky ekvivalentní.
- $A = \frac{M}{Fz}$
 - z počet vyměňovaných elektronů
 - F Faradayova konstanta (96 485,33 C.mol⁻¹)
- Faradayova konstanta odpovídá náboji jednoho molu elektronů.
- $\bullet \ F = e.N_A = 1,602176565 \times 10^{-19}.6,02214129 \times 10^{23}$
- $F = 96485, 33 \ C.mol^{-1}$

Elektrolýza

Výpočty

- Vypočítejte elektrodový potenciál zinkové elektrody, koncentrace elektrolytu je 0,5 mol.dm⁻³ a teplota 25 °C.
- Při elektrodovém ději se vyměňují dva elektrony: $Zn \longrightarrow Zn^{2+}$.
- ullet Standardní elektrodový potenciál (E^0) Zn/Zn $^{2+}$ je -0,762 V.
- $E=E^0-\frac{RT}{zF}\ln c=-0.762+\frac{8.314\cdot298.15}{2\cdot96485.33}ln(0,5)=-0.771\ V$
- Vypočítejte potenciál platinového drátku ponořeného do roztoku, kde je koncentrace Fe²⁺ 0,15 mol.dm⁻³ a koncentrace iontů Fe³⁺ 0,05 mol.dm⁻³, měření probíhá za teploty 0 °C.
- Při elektrodovém ději se vyměňuje jeden elektron: $Fe^{2+} \longrightarrow Fe^{3+}$.
- ullet Standardní elektrodový potenciál (E^0) Fe $^{3+}/{
 m Fe}^{2+}$ je 0,771 V.
- $E = E^0 \frac{RT}{zF} \ln(\frac{[red]}{[ox]}) = 0,771 \frac{8,314 \cdot 273,15}{1 \cdot 96485,33} ln(\frac{0,15}{0,05}) = 0,745 V$