Mechanical Joints

- 1. Non-Permanent Joints Bolts, Screws, Circlips
- 2. Permanent Joints Welding, Brazing, Soldering

Basic Types of Non-Permanent Joints

Head Type of Bolts

- Hexagon head bolt
 - Usually uses nut
 - Heavy duty
- Hexagon head cap screw
 - Thinner head
 - Often used as screw (in threaded hole, without nut)
- Socket head cap screw
 - Usually more precision applications
 - Access from the top
- Machine screws
 - Usually smaller sizes
 - Slot or philips head common
 - Threaded all the way

Fig. 8-10

Machine Screws

Fig. 8–11

Hexagon-Head Bolt

- Hexagon-head bolts are one of the most common for engineering applications
- Standard dimensions are included in Table A–29
- W is usually about 1.5 times nominal diameter
- Bolt length *L* is measured from below the head

Threaded Lengths

English
$$L_T = \begin{cases} 2d + \frac{1}{4} \text{ in } & L \le 6 \text{ in} \\ 2d + \frac{1}{2} \text{ in } & L > 6 \text{ in} \end{cases}$$
 (8–13)

Metric
$$L_T = \begin{cases} 2d + 6 & L \le 125 & d \le 48 \\ 2d + 12 & 125 < L \le 200 \\ 2d + 25 & L > 200 \end{cases}$$
 (8-14)

Application of Bolted Joints

Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Shigley's Mechanical Engineering Design

ISO Metric Screw Threads

TABLE 10.2 Basic Dimensions of ISO Metric Screw Threads

		Coarse Threads	S		Fine Threads	
Nominal Diameter d (mm)	Pitch p (mm)	$\begin{array}{c} \textbf{Minor} \\ \textbf{Diameter} \\ \textbf{\textit{d}}_r \ (\textbf{mm}) \end{array}$	Stress Area $A_t (\text{mm}^2)$	Pitch p (mm)	$\begin{array}{c} \textbf{Minor} \\ \textbf{Diameter} \\ \textbf{\textit{d}}_r \ (\textbf{mm}) \end{array}$	Stress Area $A_t (\text{mm}^2)$
3	0.5	2.39	5.03			
3.5	0.6	2.76	6.78			
4	0.7	3.14	8.78			
5	0.8	4.02	14.2			
6	1	4.77	20.1			
7	1	5.77	28.9			
8	1.25	6.47	36.6	1	6.77	39.2
10	1.5	8.16	58.0	1.25	8.47	61.2
12	1.75	9.85	84.3	1.25	10.5	92.1
14	2	11.6	115	1.5	12.2	125
16	2	13.6	157	1.5	14.2	167
18	2.5	14.9	192	1.5	16.2	216
20	2.5	16.9	245	1.5	18.2	272
22	2.5	18.9	303	1.5	20.2	333
24	3	20.3	353	2	21.6	384
27	3	23.3	459	2	24.6	496
30	3.5	25.7	561	2	27.6	621
33	3.5	28.7	694	2	30.6	761
36	4	31.1	817	3	32.3	865
39	4	34.1	976	3	35.3	1030

Note: Metric threads are identified by diameter and pitch as "M8 \times 1.25."

Bolt Materials

- Proof load (F_p) is the maximum load that a bolt can withstand without acquiring a permanent set
- Proof strength (S_p) is the quotient (proportion) of proof load and tensile-stress area (A_t)
 - Corresponds to proportional limit
 - Slightly lower than yield strength
 - Typically used for static strength of bolt
- Good bolt materials have stressstrain curve that continues to rise to fracture

Bolt Standardization and Materials

- Grades specify material, heat treatment, strengths
 - Table 8–9 for SAE grades
 - Table 8–10 for ASTM designations
 - Table 8–11 for metric property class
- Grades should be marked on head of bolt

SAE Specifications for Steel Bolts

Table 8–9

SAE Grade No.	Size Range Inclusive, in	Minimum Proof Strength,* kpsi	Minimum Tensile Strength,* kpsi	Minimum Yield Strength,* kpsi	Material	Head Marking
1	$\frac{1}{4} - 1\frac{1}{2}$	33	60	36	Low or medium carbon	
2	$\frac{1}{4} - \frac{3}{4}$	55	74	57	Low or medium carbon	
	$\frac{7}{8}$ - 1 $\frac{1}{2}$	33	60	36		
4	$\frac{1}{4}$ - 1 $\frac{1}{2}$	65	115	100	Medium carbon, cold-drawn	
5	$\frac{1}{4}$ – 1	85	120	92	Medium carbon, Q&T	
	$1\frac{1}{8} - 1\frac{1}{2}$	74	105	81		
5.2	$\frac{1}{4}$ – 1	85	120	92	Low-carbon martensite, Q&T	
7	$\frac{1}{4}$ – 1 $\frac{1}{2}$	105	133	115	Medium-carbon alloy, Q&T	
8	$\frac{1}{4} - 1\frac{1}{2}$	120	150	130	Medium-carbon alloy, Q&T	
8.2	$\frac{1}{4}$ -1	120	150	130	Low-carbon martensite, Q&T	

*Minimum strengths are strengths exceeded by 99 percent of fasteners.

ASTM Specification for Steel Bolts

Table 8–10

ASTM Desig- nation No.	Size Range, Inclusive, in	Minimum Proof Strength,* kpsi	Minimum Tensile Strength,* kpsi	Minimum Yield Strength,* kpsi	Material	Head Marking
A307	$\frac{1}{4}$ – 1 $\frac{1}{2}$	33	60	36	Low carbon	
A325,	$\frac{1}{2}$ -1	85	120	92	Medium carbon, Q&T	
type 1	$1\frac{1}{8} - 1\frac{1}{2}$	74	105	81		(A325)
A325,	$\frac{1}{2}$ - 1	85	120	92	Low-carbon, martensite,	
type 2	$1\frac{1}{8} - 1\frac{1}{2}$	74	105	81	Q&T	(A325)
A325,	$\frac{1}{2}$ - 1	85	120	92	Weathering steel,	
type 3	$1\frac{1}{8} - 1\frac{1}{2}$	74	105	81	Q&T	(A325)
A354,	$\frac{1}{4}$ - $2\frac{1}{2}$	105	125	109	Alloy steel, Q&T	
grade BC	$2\frac{3}{4}-4$	95	115	99		BC
A354, grade BD	$\frac{1}{4}$ -4	120	150	130	Alloy steel, Q&T	
A449	$\frac{1}{4}$ - 1	85	120	92	Medium-carbon, Q&T	
	$1\frac{1}{8}-1\frac{1}{2}$	74	105	81		
	$1\frac{3}{4}$ – 3	55	90	58		
A490, type 1	$\frac{1}{2}$ - 1 $\frac{1}{2}$	120	150	130	Alloy steel, Q&T	A490
A490, type 3	$\frac{1}{2}$ –1 $\frac{1}{2}$	120	150	130	Weathering steel, Q&T	<u>A490</u>

*Minimum strengths are strengths exceeded by 99 percent of fasteners.

Metric Mechanical-Property Classes for Steel Bolts

Table 8–11

Property Class	Size Range, Inclusive	Minimum Proof Strength,† MPa	Minimum Tensile Strength,† MPa	Minimum Yield Strength,† MPa	Material	Head Marking
4.6	M5-M36	225	400	240	Low or medium carbon	4.6
4.8	M1.6–M16	310	420	340	Low or medium carbon	4.8
5.8	M5-M24	380	520	420	Low or medium carbon	5.8
8.8	M16–M36	600	830	660	Medium carbon, Q&T	8.8
9.8	M1.6–M16	650	900	720	Medium carbon, Q&T	9.8
10.9	M5-M36	830	1040	940	Low-carbon martensite, Q&T	10.9
12.9	M1.6–M36	970	1220	1100	Alloy, Q&T	12.9

^{*}The thread length for bolts and cap screws is

TABLE 10.5 Specifications for Steel Used in Millimeter Series Screws and Bolts

	D'annatan	Proof Load	Yield	Tensile	Elongation,	Reduction of Area,	Har	ore dness, kwell
SAE Class	Diameter d (mm)	$(Strength)^a$ S_p (MPa)	Strength ^b S_y (MPa)	Strength S_u (MPa)	Minimum (%)	Minimum (%)	Min	Max
4.6	5 thru 36	225	240	400	22	35	B67	B87
4.8	1.6 thru 16	310	_	420	_	_	B71	B87
5.8	5 thru 24	380	_	520	_	_	B82	B95
8.8	17 thru 36	600	660	830	12	35	C23	C34
9.8	1.6 thru 16	650	_	900	_	_	C27	C36
10.9	6 thru 36	830	940	1040	9	35	C33	C39
12.9	1.6 thru 36	970	1100	1220	8	35	C38	C44

^aProof load (strength) corresponds to the axially applied load that the screw or bolt must withstand without permanent set.

Source: Society of Automotive Engineers standard J1199 (1979).

^b Yield strength corresponds to 0.2 percent offset measured on machine test specimens.

Bolt Specification

Tension in Loaded Bolted Joints

$$F_i$$
 = preload

 P_{total} = Total external tensile load applied to the joint

P = external tensile load per bolt

 P_b = portion of P taken by bolt

 P_m = portion of P taken by members

 $F_b = P_b + F_i = \text{resultant bolt load}$

 $F_m = P_m - F_i = \text{resultant load on members}$

C =fraction of external load P carried by bolt

N = Number of bolts in the joint

Effective Grip Length for Tapped Holes

• For screw in tapped hole, effective grip length is

$$l = \begin{cases} h + t_2/2, & t_2 < d \\ h + d/2, & t_2 \ge d \end{cases}$$

Bolted Joint Stiffnesses

- During bolt preload
 - bolt is stretched
 - members in grip are compressed
- When external load *P* is applied
 - Bolt stretches further
 - Members in grip uncompress some
- Joint can be modeled as a soft bolt spring in parallel with a stiff member spring

Tension in Loaded Bolted Joints

During bolt preload

- bolt is stretched
- members in grip are compressed

When external load P is applied

- ullet Bolt stretches an additional amount δ
- Members in grip uncompress same amount δ

$$\delta = \frac{P_b}{k_b}$$
 and $\delta = \frac{P_m}{k_m}$

$$P_m = P_b \frac{k_m}{k_b} \tag{c}$$

Stiffness Constant

• Since
$$P = P_b + P_{m'}$$

• Since
$$P = P_b + P_{m'}$$
 $P_b = \frac{k_b P}{k_b + k_m} = CP$ (d)

$$P_m = P - P_b = (1 - C)P$$
 (e)

• C is defined as the *stiffness constant* of the joint

$$C = \frac{k_b}{k_b + k_m} \tag{f}$$

• C indicates the proportion of external load P that the bolt will carry. A good design target is around 0.2.

Table 8-12

Computation of Bolt and Member Stiffnesses. Steel members clamped using a $\frac{1}{2}$ in-13 NC steel bolt. $C = \frac{k_b}{k_b + l}$

	Stiffne	esses, M lbf/i	n	
Bolt Grip, in	k _b	k _m	C	1 – C
2	2.57	12.69	0.168	0.832
3	1.79	11.33	0.136	0.864
4	1.37	10.63	0.114	0.886

Initial Torque in Bolt

$$T = \left[\left(\frac{d_m}{2d} \right) \left(\frac{\tan \lambda + f \sec \alpha}{1 - f \tan \lambda \sec \alpha} \right) + 0.625 f_c \right] F_i d \tag{c}$$

• Define term in brackets as torque coefficient K

$$K = \left(\frac{d_m}{2d}\right) \left(\frac{\tan \lambda + f \sec \alpha}{1 - f \tan \lambda \sec \alpha}\right) + 0.625 f_c \tag{8-26}$$

$$T = KF_i d ag{8-27}$$

Recommended Preload

$$T = KF_i d$$
 (8–27)
$$F_i = \begin{cases} 0.75F_p & \text{for nonpermanent connections, reused fasteners} \\ 0.90F_p & \text{for permanent connections} \end{cases}$$
 (8–31)

$$F_p = A_t S_p \tag{8-32}$$

Typical Values for Torque Coefficient K

$$T = KF_i d ag{8-27}$$

- Some recommended values for *K* for various bolt finishes is given in Table 8–15
- Use K = 0.2 for other cases

Table 8-15

Torque Factors *K* for Use with Eq. (8–27)

Bolt Condition	K
Nonplated, black finish	0.30
Zinc-plated	0.20
Lubricated	0.18
Cadmium-plated	0.16
With Bowman Anti-Seize	0.12
With Bowman-Grip nuts	0.09

Bolt and Member Loads

• Initial Load (Preload) $F_i = K_i A_t Sp$ For ordinary usage, $F_i = 0.9A_t S_p$

Resultant bolt load with external load (P) is

$$F_b = P_b + F_i = CP + F_i \qquad F_m < 0$$
 (8-24)

Resultant load on the members with external load (P) is

$$F_m = P_m - F_i = (1 - C)P - F_i \qquad F_m < 0$$
 (8-25)

 These results are only valid if the load on the members remains negative, indicating the members stay in compression.

Bolt Factor of Safety

Tensile Stress in the Bolt

$$\sigma_b = \frac{F_b}{A_t} = \frac{CP + F_i}{A_t}$$

$$n_p = \frac{S_p}{\sigma_b} = \frac{S_p}{(CP + F_i)/A_t}$$

Example 1: Centrically Bolted Connection

For bolt assembly with 8 bolts, the stiffness of each bolt (k_b) is 1.0 MN/mm and the stiffness of the members (k_m) is 2.6 MN/mm. The joint is preloaded. Assume an external static load of 40 KN is applied and is distributed equally among the bolts. It has been determined that M6x1 Class 5.8 bolted will be used.

- a. Calculate the force in the bolts and the members
- b. Determine the best factor of safety in the bolt.
- c. Determine the maximum external load that can be applied to joint without exceeding the proof strength of the bolts.
- e. Determine the maximum external load that can be applied to joint causing the members to separate.

Example 2: Centric Bolted Connection Design

The Figure shows a ball bearing encased in a "pillow block" and supporting one end of a rotating shaft. The shaft applies a static load of 9 kN to the pillow block, as shown. Select appropriate metric (ISO) screws for the pillow block attachment and specify an appropriate tightening torque.

Eccentrically Loaded Bolted Connections

- Eccentric loading is when the line action of the load does not pass though the centroid of the geometric pattern of the fasteners.
- Requires finding moment about centroid of bolt pattern

Shear Loads in Eccentric Loading

• Primary Shear: $F' = V_1/n$

 Secondary Shear, due to moment load around centroid:

$$M_1 = F_A'' r_A + F_B'' r_B + F_C'' r_C + \cdots$$

$$\frac{F_A''}{r_A} = \frac{F_B''}{r_B} = \frac{F_C''}{r_C} \tag{8-57}$$

$$F_n'' = \frac{M_1 r_n}{r_A^2 + r_B^2 + r_C^2 + \cdots}$$

Example 3 – Eccentrically Loaded Bolted Connection Design

The Figure shows a 15 by 200-mm rectangular steel bar cantilevered to a 250 mm steel channel using four tightly fitted bolts located at A, B, C, and D. The joint is subject to an eccentric load of 16 KN as shown. You are the engineer. Specify and ISO bolt and tightening load for the application.

Sample Problem 1

Specify a bolt pattern for 4 bolts and determine the size of the bolts.

Permanent Joints

- Welding
- Soldering
- Brazing
- Bonding

Welding Symbols

Welding Symbol Examples

- Weld leg size of 5 mm
- Fillet weld
- Both sides

Intermittent and staggered 60 mm along on 200 mm centers

→ 60 ←

- Leg size of 5 mm
- On one side only (outside)
- Circle indicates all the way around

200 -

60-200

Welding Symbols

- Arrow side of a joint is the line, side, area, or near member to which the arrow points
- The side opposite the arrow side is the *other side*
- Shape of weld is shown with the symbols below

	Type of weld								
Bead	Fillet	Plug			Groove				
Dead	Fillet	or slot	Square	V	Bevel	U	J		
				\	V	5	V		

Fig. 9–2

Butt (Bead) Joint Loaded in Tension

- Simple butt joint loaded in tension or compression
- Stress is normal stress

$$\sigma = \frac{F}{hl} \tag{9-1}$$

- Throat h does not include extra reinforcement
- Reinforcement adds some strength for static loaded joints
- Reinforcement adds stress concentration and should be ground off for fatigue loaded joints

 Reinforcement

Fig. 9–7*a*

Butt Joint Loaded in Shear

- Simple butt joint loaded in shear
- Average shear stress

$$\tau = \frac{F}{ht}$$

Fig. 9–7*b*

Fillet Weld Loaded with Transverse Load

 Assume the external load is carried entirely by shear forces on the minimum throat area.

$$\tau = \frac{F}{0.707hl} = \frac{1.414F}{hl} \tag{9-3}$$

• By ignoring normal stress on throat, the shearing stresses are inflated sufficiently to render the model conservative.

Fillet Welds Loaded in Shear

Same equation also applies for simpler case of simple shear loading in fillet weld

$$\tau = \frac{F}{0.707hl} = \frac{1.414F}{hl} \tag{9-3}$$

Fig. 9–11

Fillet Welds Loaded in Shear

- Fillet welds carrying both direct shear V and moment M
- Primary shear

$$\tau' = \frac{V}{A}$$

Secondary shear

$$\tau'' = \frac{Mr}{J}$$

- A is the throat area of all welds
- *r* is distance from centroid of weld group to point of interest
- J is second polar moment of area of weld group about centroid of group

Fig. 9–12

Common Torsional Properties of Fillet Welds (Table 9–1)

Weld	Throat Area	Location of G	Unit Second Polar Moment of Area
1. G \overline{y} d d	$A = 0.707 \ hd$	$\bar{x} = 0$ $\bar{y} = d/2$	$J_u = d^3/12$
$ \begin{array}{c c} \hline 2. & $	$A = 1.414 \ hd$	$\bar{x} = b/2$ $\bar{y} = d/2$	$J_u = \frac{d(3b^2 + d^2)}{6}$
3. $\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$	A = 0.707h(b+d)	$\bar{x} = \frac{b^2}{2(b+d)}$ $\bar{y} = \frac{d^2}{2(b+d)}$	$J_u = \frac{(b+d)^4 - 6b^2d^2}{12(b+d)}$

Common Torsional Properties of Fillet Welds (Table 9–1)

4.
$$| \leftarrow b \rightarrow |$$
 $| \leftarrow b \rightarrow |$ $| \leftarrow b \rightarrow |$ $| \rightarrow |$ $| \overline{x} \leftarrow |$

$$A = 0.707h(2b + d)$$

$$\bar{x} = \frac{b^2}{2b+d}$$

$$\bar{y} = d/2$$

$$\bar{x} = \frac{b^2}{2b+d}$$
 $J_u = \frac{8b^3 + 6bd^2 + d^3}{12} - \frac{b^4}{2b+d}$

5.
$$\downarrow b \rightarrow \downarrow$$
 $\downarrow \bar{x} \leftarrow$

$$A = 1.414h(b+d)$$

$$\bar{x} = b/2$$

$$J_u = \frac{(b+d)^3}{6}$$

$$A = 1.414 \, \pi hr$$

$$J_u = 2\pi r^3$$

^{*}G is centroid of weld group; h is weld size; plane of torque couple is in the plane of the paper; all welds are of unit width.

Fillet Welds Loaded in Bending

Note that the Fillet welds carry both shear V and moment M

Total Shear
$$au = (au'^2 + au''^2)^{1/2}$$

Bending Properties of Fillet Welds (Table 9–2)

Weld	Throat Area	Location of G	Unit Second Moment of Area
1. \overline{y}	A = 0.707hd	$\bar{x} = 0$ $\bar{y} = d/2$	$I_u = \frac{d^3}{12}$
$ \begin{array}{c c} \hline y & & \\ \hline \overline{y} & & \\ \hline \end{array} $	A = 1.414hd	$\bar{x} = b/2$ $\bar{y} = d/2$	$I_u = \frac{d^3}{6}$
$ \begin{array}{c c} \hline 3. & $	A = 1.414hb	$\bar{x} = b/2$ $\bar{y} = d/2$	$I_u = \frac{bd^2}{2}$
$ \begin{array}{c c} \hline 4. & $	A = 0.707h(2b + d)	$\bar{x} = \frac{b^2}{2b+d}$ $\bar{y} = d/2$	$I_u = \frac{d^2}{12}(6b+d)$

Bending Properties of Fillet Welds (Table 9-2)

5.
$$\frac{\downarrow}{\overline{y}} G G$$

$$A = 0.707h(b + 2d)$$

$$\bar{x} = b/2$$

$$\bar{y} = \frac{d^2}{b + 2d}$$

$$I_u = \frac{2d^3}{3} - 2d^2\bar{y} + (b+2d)\bar{y}^2$$

6.
$$\downarrow b \rightarrow \downarrow$$
 $\downarrow \bar{x}$

$$A = 1.414h(b+d)$$

$$\bar{x} = b/2$$

$$\bar{y} = d/2$$

$$I_u = \frac{d^2}{6}(3b+d)$$

7.
$$|-b-|$$
 $\overline{y} \updownarrow \uparrow$ $|-\overline{g} \downarrow \uparrow$

$$A = 0.707h(b + 2d)$$

$$\bar{x} = b/2$$

$$\bar{y} = \frac{d^2}{b + 2a}$$

$$I_u = \frac{2d^3}{3} - 2d^2\bar{y} + (b+2d)\bar{y}^2$$

8.
$$G \xrightarrow{\overline{y}} G \xrightarrow{d}$$

$$A = 1.414h(b+d)$$

$$\bar{x} = b/2$$
$$\bar{y} = d/2$$

$$I_u = \frac{d^2}{6}(3b+d)$$

$$A = 1.414\pi hr$$

$$l_u = \pi r^3$$

Strengths of Welded Joint

Table 9-3

Minimum Weld-Metal Properties

AWS Electrode Number*	Tensile Strength kpsi (MPa)	Yield Strength, kpsi (MPa)	Percent Elongation
E60xx	62 (427)	50 (345)	17–25
E70xx	70 (482)	57 (393)	22
E80xx	80 (551)	67 (462)	19
E90xx	90 (620)	77 (531)	14–17
E100xx	100 (689)	87 (600)	13–16
E120xx	120 (827)	107 (737)	14

*The American Welding Society (AWS) specification code numbering system for electrodes. This system uses an E prefixed to a four- or five-digit numbering system in which the first two or three digits designate the approximate tensile strength. The last digit includes variables in the welding technique, such as current supply. The next-to-last digit indicates the welding position, as, for example, flat, or vertical, or overhead. The complete set of specifications may be obtained from the AWS upon request.

- 1. Let $\tau_{allow} = Min (0.3S_{ut} \text{ or } 0.4S_{y})$ of the Parent Material
- 2. The weld (joint) MUST be stronger than the parts welded together. $\tau_{\text{allow}} < S_v$ of the Electrode
- 3. Use the cheapest Electrode that satisfies this condition

Welding: Example 1 and Example 2

Example 1:

The Figure shows a horizontal steel bar of thickness (h) of 5 mm loaded in steady tension and welded to a vertical support. b = 50 mm and d = 50 mm Find the load (F) that will cause an allowable shear stress (τ_{allow}) of 140 MPa.

Example 2:

The Figure shows a horizontal steel bar of thickness of 5 mm welded to a vertical support as shown b = 50 mm, d = 50 mm and c = 150 mm F = 10 KN The bar is 1020 HR steel and the support is 1015 HR steel. Specify the weld.

Welding: Example 3 and Sample Problem

Example 3:

The attachment shown is made of 1018 HR Steel 12 mm thick. The static force 10 kN is applied axially. The member is 75 mm wide. Fillet weld is used. Provide specifications of the weld. Required: Weld pattern, electrode number, length of

Problem 9–34
Dimensions in millimeters.

SAMPLE PROBLEM

weld, and leg size.

The attachment shown is made of 1018 HR Steel 12 mm thick. The attachment length (L_1) is 225 mm.

The static force 10 kN is applied vertically.

The member is 75 mm wide. Fillet weld are used.

Provide specifications of the weld.

Required: Weld pattern, electrode number, length of weld, and leg size.

Problem 9–35 Dimensions in millimeters.

