

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AD2 1° semestre de 2010

1 - Primeira questão (2,0 pontos)

Verifique quais dentre estas funções abaixo são distribuição de probabilidade.

a)
$$f(x) = \frac{1}{10} (-3x^2 + 8x + 5); x \in [1,2]$$

$$\int_{1}^{2} f(x) dx = \frac{1}{10} \int_{1}^{2} \left(-3x^{2} + 8x + 5 \right) dx = \frac{1}{10} \left[-3 \frac{x^{3}}{3} + 8 \frac{x^{2}}{2} + 5x \right] \Big|_{1}^{2}$$

ou ainda

$$\int_{1}^{2} f(x)dx = \frac{1}{10} \left[-x^{3} + 4x^{2} + 5x \right] \Big|_{1}^{2} = \frac{-8 + 1 + 16 - 4 + 10 - 5}{10} = \frac{27 - 17}{10} = 1$$

Observe que no intervalo dado a função f(x) só assume valores positivos, ela é uma parábola com concavidade pra baixo passando nos pontos (1;1) e (2;0,9). Portanto temos que a função f(x) dada acima é uma distribuição.

b)
$$f(x) = sen(x); x \in [0, \pi/2]$$

$$\int_{0}^{\pi/2} f(x)dx = \int_{0}^{\pi/2} sen(x)dx = -\cos(x)|_{0}^{\pi/2} = -\cos(\pi/2) + \cos(0) = 0 + 1 = 1$$

Observando também que a função sen(x) é sempre positiva no intervalo dado temos que f(x) é uma distribuição.

c)
$$f(x) = sen(x); x \in [\pi/4, 3\pi/4]$$

$$\int_{\pi/4}^{3\pi/4} f(x)dx = \int_{\pi/4}^{3\pi/4} sen(x)dx = -\cos(x)|_{\pi/4}^{3\pi/4} = -\cos(3\pi/4) + \cos(\pi/4) = -0.71 + 0.71 = 0$$

Apesar da função f(x) ser positiva no intervalo dado a integral nesse intervalo não é igual a 1 e portanto a função não é uma distribuição de probabilidade.

d)
$$f(x) = e^x$$
; $x \in [-1,1]$

$$\int_{-1}^{1} f(x)dx = \int_{-1}^{1} e^{x} dx = e^{x} \mid_{-1}^{1} = e^{1} - e^{-1} = 2,71828 - 0,36787 = 2,35041$$

ou seja, não é uma distribuição de probabilidade. Observe que a propriedade de ser positiva é garantida, mas a integral no intervalo dado é diferente de 1.

2 - Segunda questão (2,0 pontos)

Numa linha de produção de uma granja temos que a variância do peso dos frangos igual à 25,5g². Foram retirados uma duzia de frangos da linha de produção e o peso médio desta amostra foi de 1650g. Estime a média do peso dos frangos desta linha de produção supondo que o peso dos frangos siga um modelo Normal e que se desejamos um coeficiente de confiança de 90%.

Solução:

y = 0.90 e portanto temos pela tabela normal $Z_{y/2} = Z_{0.45} = 1.65$

Segue então que

$$IC(\mu, 90\%) = [1650 - 1,65*\sqrt{\frac{25,5}{12}}; 1650 + 1,65*\sqrt{\frac{25,5}{12}}] = [1647,59; 1652,40]$$

3 - Terceira questão (1,5 pontos)

Num lote de 1000 tijolos foi retirada uma amostra de 10 unidades cujos comprimentos variaram entre 17,9 e 18, 7 cm. O fabricante afirma que a média de comprimento dos tijolos é de 18, 3 cm e a variância de 6 cm². Baseado nisto, qual a probabilidade do lote de tijolos ser rejeitada com base na amostra?

Solução:

H0: A amostra tem a mesma media

H1: A amostra não tem a mesma media, isto é, a amostra rejeitada em termos estatísticos:

$$H_0: \mu = 18,3 \text{ e } H_1: \mu \neq 18,3$$

Portanto
$$\breve{X} \approx N(\mu, \frac{10}{6})$$

Fixando $\alpha = 0.06$ temos:

$$0,06 = P(\frac{\dot{X} - 18,3}{\sqrt{10/6}} < \frac{x_{cl} - 18,3}{\sqrt{10/6}} ou \frac{\dot{X} - 18,3}{\sqrt{10/6}} > \frac{x_{c2} - 18,3}{\sqrt{10/6}})$$

Portanto temos da tabela Normal que $x_{cl} = -1.88$ e $x_{c2} = 1.88$

O que nos fornece:

$$x_{cl} = 18,3 - 1,88\sqrt{10/6} = 15,87$$

 $x_{cl} = 18,3 + 1,88\sqrt{10/6} = 20,73$

4 - Quarta questão (1,0 ponto)

Uma empresa fez um levantamento do setor de atendimento ao consumidor. O tempo de atendimento de cada cliente, T, foi modelado por uma densidade Exponencial (2). Calcule:

Solução: O modelo Exponencial tem como densidade a expressão $f(x) = \alpha e^{-\alpha x}$, $x \ge 0$ sendo nula para valores negativos de x. Assim, as probabilidades são calculadas da seguinte forma

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} = -e^{\alpha x}|_{b}^{a} = e^{-\alpha a} - e^{-\alpha b}$$

Aqui a densidade é Exponencial(2), ou seja, $\alpha = 2$.

a) P(T < 2)

$$P(T<2) = \int_{0}^{2} 2e^{-2x} = e^{\theta} - e^{-4} = 1 - 0.01831 = 0.98168$$

b)
$$P(T < 2 | T \le 4)$$

$$P(T<2|T\le4) = \frac{P(X\le2)}{P(X\le4)} = \frac{\int_{0}^{2} 2e^{-2x}}{\int_{0}^{4} 2e^{-2x}} = \frac{e^{0} - e^{-4}}{e^{0} - e^{-8}} = \frac{0.98168}{0.99966} = 0.98201$$

5 – Quinta questão (1,0 pontos)

Uma nova cola rápida foi testada colando barras de madeira sempre com a mesma área 2 de recobrimento. Foram feitos 50 testes e a resistência era de 200 kg/cm em média. O 2 desvio padrão foi de 50 kg/cm . Supondo que esta amostra é significativa, qual a probabilidade de que a colagem resista a mais de 300kg/cm ? Qual a probabilidade de que a colagem não resista a menos de 100kg/cm ? Faça uma suposição sobre a distribuição de probabilidade. Você baseou-se em que para afirmar esta suposição?

Solução: Vamos supor que o número de amostras é grande o suficiente para usemos a distribuição Normal e, portanto, a probabilidade seja calculada pela expressão

$$P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le Z\frac{b-\mu}{\sigma}\right).$$

Com os valores dados acima teremos que μ =200 e σ =50 . Para a primeira questão temos que

$$P(X>300)=P(Z \ge \frac{300-200}{50})=P(Z \ge 2)=0,5-0,4772=0,0228$$

Para a segunda questão teremos

$$P(X<100)=P(Z\leq \frac{100-200}{50})=P(Z\leq -2)=0,0228$$
.

Observe que nesta parte da questão era dispensável o cálculo por uma questão de simetria em relação à media.

6 – Sexta questão (1,5 pontos)

Uma distribuição Normal tem média 5,3 e desvio padrão igual 1,1. Calcule as probabilidades abaixo:

Solução: O modelo Normal tem como densidade a expressão, $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty \text{ , onde } \mu \text{ é a média e } \sigma^2 \text{ é a variância. Assim, as}$

probabilidades são calculadas da seguinte forma

$$P(a < X < b) = \int_{a}^{b} \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^{2}}{2\sigma^{2}}} dx$$
 ou usando a distrubuição Normal padrão o que torna

os calculos bem mais simples.

a)
$$P(5,0 \le X \le 5,4)$$
 (0,5 pontos)

$$P(5,0 < X < 5,4) = P\left(\frac{5,0-5,3}{1,1} < \frac{X-5,3}{1,1} < \frac{5,4-5,3}{1,1}\right)$$

$$P(5,0 < X < 5,4) = P(-0,27 < Z < 0,09) = 0,1064 + 0,0359 = 0,1423$$

b)
$$P(X > 5,4)$$
 (0,5 pontos)

$$P(X > 5,4) = P\left(\frac{X-5,3}{1,1} > \frac{5,4-5,3}{1,1}\right) = P(Z > 0,09) = 1-0,5+0,0359 = 0,4641$$

c)
$$P(X < 5,2)$$
 (0,5 pontos)

$$P(X<5,2)=P(\frac{X-5,3}{1,1}<\frac{5,2-5,3}{1,1})=P(Z<-0,09)=0,5-0,0359=0,4641$$

7 – Sétima questão (1,0 ponto)

Abaixo temos uma tabela que apresenta o número de terremotos registrados em todo o mundo entre 6,0 e 6,9 de magnitude. Os valores da tabela correspondem ao último algarismo dos anos que vão de 2000 até o ano de 2009.

	Ano	0	1	2	3	4	6	6	7	8	9
Te	rremotos	146	121	127	140	141	140	142	178	168	141

Fonte:http://www.apolo11.com/terremotos_globais.php?posic=dat_20100120-091349.inc

a) Estime a média e a variância do número de terremotos;

Solução: Usaremos os seguintes estimadores para média e variância que são não viciados e consistentes

$$\bar{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} = \frac{146 + 121 + 127 + 140 + 141 + 140 + 142 + 178 + 168 + 141}{10} = \frac{1444}{10} = 144,4$$

e

$$S^{2} = \frac{\sum_{i=1}^{n} X_{i}^{2} - n \bar{X}^{2}}{n-1}$$

ou

$$S^{2} = \frac{146^{2} + 121^{2} + 127^{2} + 140^{2} + 141^{2} + 140^{2} + 142^{2} + 178^{2} + 168^{2} + 141^{2} - 10 \times (144,4)^{2}}{9}$$

ou ainda

$$S^2 = \frac{211120 - 208513,6}{9} = 289,6$$

b) Suponha que podemos usar para este caso a distribuição Normal e calcule a probabilidade do número de terremotos ser maior que 178, o máximo encontrado na tabela.

Solução:

Aqui calcularemos

$$P(X>178) = P\left(Z > \frac{178 - 144.4}{\sqrt{289.6}}\right) = P\left(Z > \frac{33.6}{17.017}\right) = P(Z>1.97) = 1 - [0.5+0.47] = 0.03$$

Observe que para esta massa de dados não tem sentido o uso do modelo Normal. O número de dados é pequeno, não há a menor garantia que a amostra seja significativa e, portanto, não há nada que faça sentido para um estudo probabilístico.

Tal exercício é meramente ilustrativo quanto ao uso de estimadores e é um exemplo de mal uso da Teoria das Probabilidades.

Tabela da distribuição Normal N(0,1)

\mathbf{z}_{c}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,362
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,401
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,417
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,444
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,454
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,470
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,476
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,481
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,485
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,491
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,493
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,497
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,498
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,499
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.