## OmniXRI's Edge AI & TinyML 小學堂







歡迎加入 邊緣人俱樂部





【第4講】

開源模型訓練工具



歐尼克斯實境互動工作室 (OmniXRI Studio) 許哲豪 (Jack Hsu)



### 簡報大綱



- ➤ 4.1. AI 工作流程
- ▶ 4.2. 開源訓練工具

本課程完全免費,請勿移作商業用途!

歡迎留言、訂閱、點讚、轉發,讓更多需要的朋友也能一起學習。

完整課程大綱: https://omnixri.blogspot.com/2024/02/omnixris-edge-ai-tinyml-0.html

課程直播清單: https://www.youtube.com/@omnixri1784/streams



### 4.1. AI 工作流程



- > 問題定義
- > 建立模型
- > 訓練調參
- > 佈署推論

### 問題定義一輸出入



### 輸入資料

非時序型資料

影像

時序型資料

視頻/語音

文章/數值

混合型資料



輸出結果

非時序型結果

分類/定位

時序型結果

動作/語意

摘要/預警

資料來源:<u>http://omnixri.blogspot.com/2018/05/aimaker.html</u>

## 問題定義一流程規畫



#### 人工智慧(大數據) vs. 咖哩雞飯

加工 原料 分解 倉儲 美食 素材 配方工序 美味咖哩雞飯 主要元素 長期儲存 模型建立、 分類、聚類、 特徵提取、 回歸預測、 分析推論 增強學習 次要元素 臨時緩衝 資料 特徵 資料 資料 資料 智能 清洗 收集 倉儲 應用

## 問題定義—工作流程



確認資料集建構方向

確認資料標註格式

選用合適框架及模型



進行模型訓練與調參

模型優化及部署

資料收集、清洗、擴增、平衡

標註規範、標註工具、輸出格式、協同工作...

TensorFlow, PyTorch ... 分類、物件、分割、語言...

超參數設定、自動調整、 效能評估、

> 量化、剪枝、蒸餾 ... 硬體選用、推論環境 ...

### 建立模型一模型動物園





Model Zoo

https://modelzoo.co/

OpenVINO Open Model Zoo

https://github.com/openvinotoolkit/open\_model\_zoo

Kaggle Models

https://www.kaggle.com/models

Papers with code Methods

https://paperswithcode.com/methods

Roboflow Models

https://roboflow.com/models

HuggingFace Models

https://huggingface.co/models

## 建立模型一自建模型



#### LeNet-5網路架構概念



#### 選用開發框架



#### 網路結構瀏覽器

NETR ® N

#### 網頁版:

https://netron.app/

#### 下載版:

https://github.com/
lutzroeder/netron



## 訓練調參一可視化工具







資料來源:https://cnbeining.github.io/deep-learning-with-python-cn/4-advanced-multi-layer-perceptrons-and-keras/ch15-understand-model-behavior-during-training-by-plotting-history.html

## 訓練調參一學習率





資料來源:https://ithelp.ithome.com.tw/m/articles/10204032

## 訓練調參一常見超參數



- ▶ 須人為介入調整的參數稱 ▶ 為「超參數」。
- ➤ batch\_size:一次迭代放 入進行訓練或測試的影像 ➤ 數量。
- ➤ epoch:所有資料皆被計 算過1次後即為1 epoch。
- ▶ learning Rate:學習速率 → 可選自動調整類型。

- ➤ base\_lr:初始學習率
- > step\_size:多少次迭代後下降學習率
- ➤ gamma:下降學習率的幅度
- ➤ momentum:動量
- ➤ weight\_decay:權重的懲罰 係數

### 訓練調參一成果指標



#### 客觀指標

- ➤ 分類問題:正確率、精確率、召回率、F1分數、全類平均精確率(mAP)、ROC /PR曲線...
- ➤ 物件偵測:IoU, mAP
- ➤ 影像分割: PA, MPA, MIoU
- ➤ 回歸預測: MSE, RMSE, MAE

### 主觀指標

- > 語音客服、自然語言理解
  - 真人比對基準
  - 操作時間
  - 客訴比例
  - 滿意度問卷法
  - 業績成長
  - ●其它

## 訓練調參一資料集分配



已標註之資料可依一定比例分配到訓練集、驗證集及測試集中。**絕對不可** 把測試集加入訓練集或驗證集中。

分配比例**沒有一定標準**,小規模資料集建議**訓練:驗證:測試**為**6:2:2**。大規模(數百萬筆)資料集,驗證、測試各留數萬筆即可。

訓練集:就像在學校學習,了解問題,找出學習重點。

驗證集:就像模擬考,測試學習成果,找出修正方向。

測試集:就像大考,出題和模擬考接近程度會影響最後成績。



## 訓練調參一交叉驗證





(a) 一般非重疊訓練、驗證及測試



OmniXRI's Edge AI & TinyML 小學堂\_【第4講】開源模型訓練工具 \_OmniXRI\_JackHsu

### 佈署推論 - 模型優化



多啦A夢的 縮小隧道



人/物縮小, 機能不變。



### 佈署推論 — 硬體選用







#### 佈署考量重點

- > 硬體成本
- > 記憶體大小(模型參數量)
- ➤ 推論速度(FPS)(含優化處理)
- ➤ 推論精度 (FP32 / INT8)
- ➤ 待機/推論功耗(W) (含主動散熱)
- ► I/O擴展性
- > 異質整合介面
- > 更新及誤報成本



### **4.2.** 開源訓練工具



- Google Colab
- Jupyter Notebook
- TensorFlow (Keras)
- PyTorch (Torch, Caffe2)
- > ONNX
- OpenCV

## 開源訓練工具一免費工具

















## Google Colab — 基本介紹





#### 免費虛擬機

- >Xeon 2.2GHz CPU \* 2
- ▶12GB記憶體
- ▶50GB以上儲存空間
- ➤免費GPU: Nvidia T4 / Google TPU
- ➤付費GPU: Nvidia A100 / V100

#### • 作業環境及預裝套件

- Liunx (Ubuntu)
- Python
- Jupyter notebook
- TensorFlow
- PyTorch
- OpenCV
- 額外套件(線上安裝)
  - Keras, MxNet, XGBoost....
- 使用限制
  - 最多連續12小時(含額外安裝)
  - 容易連線中斷

# Google Colab — 啟動









#### Jupyter Notebook工作模式







```
print("CPU Status:")
!cat /proc/cpuinfo | grep 'model name' #檢查CPU資訊
print("\nDisk Status:")
!df -lh #檢查磁碟空間
print("\nRAM Status:")
!free -h #檢查記憶體大小
```

```
model name
               : Intel(R) Xeon(R) CPU @ 2.20GHz
model name
               : Intel(R) Xeon(R) CPU @ 2.20GHz
Filesystem
               Size Used Avail Use% Mounted on
overlay
               108G
                      25G
                            84G
                                23% /
                            64M
                                 0% /dev
tmpfs
                        0.5.8G
                                 0% /dev/shm
shm
/dev/root
                                57% /usr/sbin/docker-init
                    1.1G 849M
tmpfs
               6.4G 120K 6.4G
                                 1% /var/colab
/dev/sda1
                70G
                            27G 62% /kaggle/input
               6.4G
                        0.6.4G
                                 0% /proc/acpi
tmpfs
               6.4G
                        0.6.4G
                                 0% /proc/scsi
tmpfs
               6.4G
                                 0% /sys/firmware
                        0 6.4G
tmpfs
              total
                                       free
                                                 shared
                                                        buff/cache
                                                                     available
                           used
Mem:
               12Gi
                          556Mi
                                      8.4Gi
                                                 1.0Mi
                                                             3.8Gi
                                                                          11Gi
Swap:
                 0B
                                         0B
```





# 筆記本設定須選定 Nvidia GPU (T4 / A100 / V100)

!nvidia-smi #檢查NVIDIA GPU使用狀態及參數

| GPU 1<br>Fan 7                                     | Name<br>Femp | Perf |    | ence-M |           | Disp.A<br>Memory-Usage         | Volatile | Uncorr. ECC         |
|----------------------------------------------------|--------------|------|----|--------|-----------|--------------------------------|----------|---------------------|
| N/A                                                | Γesla<br>43C | P8   | 9W |        | I OM<br>I | 0:00:04.0 Off<br>iB / 15360MiB | I 0%     | N/A                 |
| Processes:  GPU GI CI PID Type Process name  ID ID |              |      |    |        |           |                                |          | GPU Memory<br>Usage |

## Google Colab — 上傳檔案執行



### 上傳檔案

▶將 \*.ipynb 上傳到Google 雲端硬 碟,再以Colab開啟、執行。

### 執行程式 □



 直接於編輯區中輸入程式,可單 步執行(按 或Ctrl + Enter)或 全部一起執行。



## Jupyter Notebook 一主畫面





編寫完程式要按【檔案】一【儲存】儲存目前編輯內容到雲端硬碟。 檔案亦可下載到本地端,格式可選 \*.ipynb 或 \*.py







## Jupyter Notebook — 運行 Github 範例



- > 要先於瀏覽器中登錄Google帳號才使用Colab
- ➤ 一般於Github中 \*.ipynb 完整路徑名稱多半為

https://github.com/使用者名稱/專案名稱/blob/main/子目錄名稱/\*.ipynb

> 將其改成下列型式即可直接啟動運行

https://colab.research.google.com/github/使用者名稱/專案名稱/blob/main/子目錄名稱/\*.ipynb

## Jupyter Notebook — Magic Command



### 在Colab環境下加上!即可執行Linux命令

- ▶ ! Is ,查詢當下目錄內容,相當於Windows下dir指令
- ▶ ! pwd ,顯示目前工作目錄
- $\rightarrow$  ! rm xxx.xxx ,刪除檔案,加-r為刪除路徑下所有檔案(危險)
- > %cd 路徑名稱 ,切換工作路徑
- ➢ %pycat xxx.py , 開啟python程式原始碼

### TensorFlow — 簡介



▶ 開發者: Google Brain

▶ 首次發佈: 2015/1/9

➤ 程式語言: Python, C++, CUDA

支援平台: Linux, macOS, Windows, Android

▶ 主要功能:機器學習及深度學習 模型開發、訓練及部署

**TensorFlow** 

2.0

1.x 和 2.x 版本有很大差異。

2.x 已將 Keras 納入。

2.x 訓練及部署架構如下所示。



資料來源:https://zh.wikipedia.org/zh-tw/TensorFlow

### TensorFlow — Model Garden





#### **TensorFlow** Model Garden

rFlow Hub

**TensorFlow** Hub

將各種已預訓練模型置於 Github 上, 方便應用到不同裝置。 將各種已預訓練模型置於 Kaggle 上, 方便應用到不同裝置。

#### 電腦視覺

影像分類、物件偵測、 影像分割、影片分類

#### 自然語言處理

大語言模型、機器翻譯、 文字生成、知識蒸餾

#### 推薦系統

DLRM, DCNv2, NCF

https://github.com/tensorflow/models/tree/master/official

https://www.kaggle.com/models ?tfhub-redirect=true

### TensorFlow — Datasets





提供近八十類資料集可供參考,領域包括 影像、視訊、聲音、自然語言、文字等, 可直接用於模型訓練。

#### Overview

- Dataset Collections
- → 3d
- Abstractive text summarization
- Anomaly detection
- Audio
- Biology
- Categorical
- Common sense reasoning
- Computer science
- Conditional image generation

2024/03/26

- Coreference resolution
- D4rl

- Density estimation
- Dependency parsing
- Dialog act labeling
- Dialoque
- Document summarization
- ▶ Fine grained image classification ▶ Linguistic acceptability
- Graph
- Graphs
- Image
- Image classification
- Image clustering
- Image compression
- Image generation

- Image segmentation
- Image super resolution
- Image to image translation
- Instance segmentation
- Language modeling
- Machine translation
- Monolingual
- Movies and tv shows
- Multilingual
- Natural language inference
- ▶ Natural language understanding ▶ Rlds
- Nearest neighbors

- Object detection
- Open domain question answering
- Out of distribution detection
- Question answering
- Question generation
- Ranking
- Reading comprehension
- Recommendation
- Reinforcement learning
- Rqb d
- Rl unplugged
- Robotics

- Scene classification
- Semantic segmentation
- Sentiment analysis
- Sequence modeling
- Sequence to sequence language modeling
- Speech
- Speech recognition
- Structured
- Summarization
- ▶ Table to text generation
- ▶ Tabular
- Text

- ▶ Text classification
- ▶ Text classification toxicity prediction
- Text generation
- ▶ Text simplification
- Text summarization
- Time series
- Token classification
- Tracking
- Trajectory
- Translate
- Uncategorized
- Unsupervised anomaly detection
- Video

https://www.tensorflow.org/datasets/catalog/overview

### TensorFlow — 衍生家族





#### **TensorFlow Lite (TFLite)**

手機、平板 (Android, iOS)、

筆電、單板微電腦 (Linux, Pi ...)

https://www.tensorflow.org/lite

# TensorFlow Lite for Microcontroller (TFLu)

單晶片 (MCU, EdgeTPU, Mbed...)

https://www.tensorflow.org/lite/microcontrollers

2024/03/26

# PyTorch — 簡介



- ▶ 原作者: Adam Paszke, Sam ▶ PyTorch是一個開源的Python機 Chintala, Gross, Soumith **Gregory Chanan**
- 初始版本:2016年10月
- 授權方式:BSD
- ▶ 作業系統: Linux, macOS, Windows
- 程式語言: Python, C++, CUDA



- 器學習庫,基於Torch,底層由 C++實現,應用於人工智慧領域。
- ▶ 最初由Facebook團隊研發,2018 年3月將Caffe2合併。
- > 兩大特徵
  - ➤ 類似NumPy的張量計算,可用 GPU加速。
  - ▶ 基於帶自動微分系統的深度神經 網路。

資料來源: https://zh.wikipedia.org/wiki/PyTorch

# PyTorch — 主要模組



#### **Python API**

- > torch.nn
- > torch.Tensor
- torch.autograd
- > torch.cuda
- > torch.backends
- > torch.distributed
- > torch.distributions
- > torch.fft
- > torch.futures
- > torch.fx

資料來源: <a href="https://pytorch.org/docs/stable/index.html">https://pytorch.org/docs/stable/index.html</a></a>

- > torch.hub
- > torch.jit
- > torch.linalg
- torch.overrides
- > torch.profiler
- > torch.onnx
- > torch.optim
- > torch.random
- torch.sparse
- > torch.Storage
- > torch.utils

#### **Libraies**

- > torchaudio
- > torchtext
- torchvision
- ➤ TorchElastic
- TorchServe
- PyTorch on XLA Devices

# Pytorch - 支援資料集



#### torchvision.datasets

- ➤ CelebA
- >CIFAR
- ➤ Cityscapes
- **≻**COCO
- DatasetFolder
- **EMNIST**
- ▶ Fake Data
- > Fashion-MNIST
- > FlickrHM

- **>**DB51
- ➤ ImageFolder
- **≻ImageNet**
- ➤ Kinetics-400
- **KMNIST**
- **LSUN**
- >MNIST
- **≻**Omniglot
- ➤ PhotoTour

- Places365
- QMNIST
- SBD
- SBU
- STL10
- SVHN
- UCF101
- USPS
- VOC

資料來源: https://pytorch.org/vision/stable/models.html

# Pytorch 一支援模型



#### 【影像分類】

#### torchvision.models

- ➤ AlexNet
- **>**VGG
- ➤ ResNet
- ➤ SqueezeNet
- ➤ DenseNet
- ➤Inception v3
- ➤ GoogLeNet
- ➤ ResNeXt

- ➤ ShuffleNet v2
- ➤ MobileNet v2
- **>** Wide
- ➤ ResNet
- **►**MNASNet

#### 【語義分割類】

#### torchvision.models

- FCN ResNet50/101
- DeepLabV3 ResNet50/101
- DeepLabV3 MobileNetV3-Large
- LR-ASSP MovileNetV3-Large

#### 【人體關鍵點類】

#### torchvision.models

- Faster R-CNN ResNet-50 FPN
- MaskR-CNN ResNet-50 FPN
- RetinaNet RstNet-50 FPN

#### 【影片分類】

#### torchvision.models

- ResNet 3D 18
- ResNet MC 18
- ResNet (2+1)D

資料來源: https://pytorch.org/vision/stable/models.html

# PyTorch — 衍生家族







## PyTorch Mobile (Live)

行動裝置使用

https://pytorch.org/mobile/home/

### **ExecuTorch**

邊緣裝置及單晶片使用



https://pytorch.org/executorch-overview

# ONNX — 簡介







### **ONNX (Open Neural Network Exchange)**

- ➤ 是一種針對機器學習所設計的開放式的文件格式,用於存儲訓練好的模型。相當於AI文件的PDF格式。
- ➤ 由Facebook, Microsoft, Amazon, IBM共同推動。
- → 可支援各種框架互相交換,如
  Caffe2, PyTorch, MXNet, CNTK,
  NL.NET, TensorFlow, Keras。
- 可作為硬體抽象層。

**OpenVINO** 

## ONNX — Model Zoo







- > 影像分類
- > 物件偵測
- > 影像分割
- 人險/身體/手勢分析
- ▶ 影像操作(超解析度、風格轉移...)
- > 語音和聲音處理
- ▶ 機器理解(自然語言)
- 機器翻譯
- ▶ 視覺問答

資料來源: https://github.com/onnx/models

# OpenCV一簡介



原創作者:Intel

初始版本:2000年6月

正式版本:2006年(V1.0)

授權方式:BSD授權條款

作業系統: Window, Liunx,

Mac, iOS, Android ...

開發語言: C, C++, C#, Java, Python, Matlab, Ruby ...

硬體加速:TBB, IPP, CUDA,

OpenCL ...

資料來源: https://zh.wikipedia.org/wiki/OpenCV

### 主要目標:

- ▶ 為推進機器視覺的研究,提供一 套開源且最佳化的基礎庫。不重 造輪子。
- ▶ 提供一個共同的基礎庫,使得開發人員的代碼更容易閱讀和轉讓,促進了知識的傳播。
- ▶提供一個開源、免費的軟體授權, 促進商業應用軟體的開發。



# OpenCV 一演進歷史





#### 第三方開發工具:

**Emgu CV** 

語言:.NET C#, VB, VC++, Python ...

平台: Windows, Linux, Mac OS, iOS, Android ...

版本: 4.3.0 (2020.06.07)

### **OpenCV for Unity**

語言:Java,

平台: iOS, Android, Win10, WebGL, Linux

版本: OpenCV 4.4.0 Assets Plugin

# OpenCV — 主要模組(4.4.0)





# OpenCV — DNN模組



## 深度神經網路模組 (直接讀取模型)

cv::dnn::readNetFromCaffe (3.2.0 ↑)

cv::dnn::readNetFromTensorflow (3.3.0 ↑)

cv::dnn::readNetFromTorch (PyTorch, 3.3.0 ↑)

cv::dnn::readNetFromDarknet (YOLO, 3.4.0 ↑)

<u>cv::dnn::readNetFromModelOptimizer</u> (Intel OpenVINO IR, 3.4.2 ↑)

cv::dnn::readNetFromONNX (3.4.4 ↑)

cv::dnn::readNetFromTFLite (4.7.0 ↑)

資料來源:https://docs.opencv.org/4.x/d6/d0f/group\_\_dnn.html



# OpenCV — Colab顯示方式



- ➤ 在Colab上由於沒有實體顯示器可對應,所以無法使用 cv2.imshow()這類指令,需改用其它方式顯示影像及影片。
- > 可改用下列方式顯示
  - ➤ 透過matplotlib show()顯示
  - ➤ 透過IPython.display及PIL顯示
  - ➤ 以Colab自帶cv2\_imshow()函式顯示
  - ➤ 透過IPython.display HTML()及base64 b64encode()函式庫顯示視頻
  - ➤ 利用ffmpeg處理OpenCV VideoWriter()產出視頻播放問題

### Colab 完整範例:

https://github.com/OmniXRI/Colab\_OpenCV\_Display

## 小結



### ➤ AI工作流程

▶ 要先定義AI待解問題、輸出入關係、規畫工作流程,接著選用適當模型進行訓練,利用可視化工具和成果指標來調參,最後進行模型優化,選用合適硬體進行推論。

## > 開源訓練工具

➤ 認識Google Colab, Jupyter Notebook, TensorFlow, PyTorch, ONNX, OpenCV及基本功能,有助於後續學習完整AI範例。

# 參考文獻



▶ 許哲豪,臺灣科技大學資訊工程系「人工智慧與邊緣運算實務」(2021~2023)

https://omnixri.blogspot.com/p/ntust-edge-ai.html

➤ 許哲豪,NTUST Edge AI ChD (2022) Google Colab進階應用

https://omnixri.blogspot.com/p/ntust-edge-ai-chd-2022.html

# 延伸閱讀



- ➤ 許哲豪,【課程簡報】20210326\_東南資科\_創新應用實務02\_OpenCV初體驗 <a href="https://omnixri.blogspot.com/2021/03/2021032602opencv.html">https://omnixri.blogspot.com/2021/03/2021032602opencv.html</a>
- ➤ 許哲豪,【課程簡報】20210409\_東南資科\_創新應用實務03\_OpenCV彩色影像處理 https://omnixri.blogspot.com/2021/04/2021040903opencv.html
- ➤ 許哲豪,如何在Google Colab上使用本地端Webcam即時運行OpenCV自定義影像處理 函式

https://omnixri.blogspot.com/2022/09/google-colabwebcamopencv.html

➤ 許哲豪,如何在Colab上顯示雲端硬碟(Google Drive)上的影像和視頻

https://omnixri.blogspot.com/2020/12/colabgoogle-drive.html











歐尼克斯實境互動工作室 (OmniXRI Studio) 許哲豪 (Jack Hsu)

Facebook: Jack Omnixri

FB社團: Edge Al Taiwan邊緣智能交流區

電子信箱:omnixri@gmail.com

部落格: https://omnixri.blogspot.tw

<mark>荆 源:https://github.com/OmniXRI</mark>

YOUTUBE 直播: https://www.youtube.com/@omnixri1784/streams