

1. Equação da assíntota: y = mx + b

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\sqrt{x^2 + x}}{x} \stackrel{\frac{\infty}{\omega}}{=} \lim_{x \to +\infty} \frac{x\sqrt{1 + \frac{1}{x}}}{x} = \lim_{x \to +\infty} \sqrt{1 + \frac{1}{x}} = 1$$

$$b = \lim_{x \to +\infty} \left(f(x) - mx \right) = \lim_{x \to +\infty} \left(\sqrt{x^2 + x} - x \right) \stackrel{\infty}{=} \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + x} - x \right) \left(\sqrt{x^2 + x} + x \right)}{\sqrt{x^2 + x} + x} = 1$$

$$= \lim_{x \to +\infty} \frac{x}{\sqrt{x^2 + x} + x} \stackrel{\frac{\infty}{\omega}}{=} \lim_{x \to +\infty} \frac{x}{x} \left(\sqrt{1 + \frac{1}{x}} + 1 \right) = \lim_{x \to +\infty} \frac{1}{\sqrt{1 + \frac{1}{x}} + 1} = \frac{1}{1 + 1} = \frac{1}{2}$$

$$\text{Como } m = 1 \text{ e } b = \frac{1}{2}, \ m + b = 1 + \frac{1}{2} = \frac{3}{2}.$$

2.

2.1.
$$f'(4) = \lim_{x \to 4} \frac{f(x) - f(4)}{x - 4} = \lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \lim_{x \to 4} \frac{(\sqrt{x} - 2)(\sqrt{x} + 2)}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{x - 4}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{x - 4}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{1}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{1}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{x - 4}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{1}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{x - 4}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{1}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{x - 4}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to$$

Resposta: $f'(4) = \frac{1}{4}$

2.2.
$$(f(x) - f(1))^{7} = (\sqrt{x} - 1)^{7} = \sum_{k=0}^{7} ({}^{7}C_{k} (\sqrt{x})^{7-k} (-1)^{k})$$
$$({}^{7}C_{k} (\sqrt{x})^{7-k} (-1)^{k}) = (-1)^{k} {}^{7}C_{k} x^{\frac{7-k}{2}}$$

O termo de grau 2 resulta quando $\frac{7-k}{2} = 2$, ou seja, para k = 3.

O termo de grau 2 é $(-1)^3 \times {}^7C_3x^2 = -35x^2$.

Resposta: $-35x^2$

3.
$${}^5C_2 = 10$$
 (número de "posições" para os dois algarismos 4)
 $3! = 6$ (permutações dos restantes três algarismos (diferentes) pelas posições não ocupadas pelos algarismos 4)

$$^{5}C_{2}\times3!=60$$

Resposta: (A) 60

4.

4.1. Do 5.° ao 11.° elemento (incluindo estes), existem 7 elementos.

Antes do 5.º elemento, existem 4 elementos.

Logo, depois do 11.º elemento, existem 4 elementos.

No total, a linha tem 15 elementos (4+7+4), pelo que a linha é:

$$^{14}C_0$$
 $^{14}C_1$ \cdots $^{14}C_{14}$

O 8.° elemento é ${}^{14}C_7 = 3432$.

Resposta: (A) 3432

4.2. $\binom{{}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \binom{{}^{n}C_{n-1} + {}^{n}C_{n}}{1 + \binom{{}^{n}C_{n-1} + {}^{n}C_{n}}} = 172$

$$\left(1+n+\frac{n!}{2!(n-2)!}\right)+(n+1)=172 \Leftrightarrow 2n+2+\frac{(n-1)n}{2}=172 \Leftrightarrow$$

$$\Leftrightarrow n^2 + 3n - 340 = 0 \Leftrightarrow n = \frac{-3 \pm \sqrt{9 + 1360}}{2} \Leftrightarrow n = \frac{-3 \pm 37}{2} \Leftrightarrow$$

$$\Leftrightarrow n = 17 \lor n = -20$$

No contexto, n = 17.

A soma de todos os elementos dessa linha é dada por 2¹⁷, ou seja, 131 072.

Resposta: 131 072

5.

5.1. Admitam-se as "posições" numeradas:

• Vermelho na "posição" 1: V 1 2 3 4 5

Há 0 maneiras de o azul ficar à esquerda do vermelho

• Vermelho na "posição" 2: $\boxed{\begin{array}{c|c} 1 & 2 & 3 & 4 & 5 \\ \hline V & \boxed{} & \boxed{} & \boxed{} \end{array}}$

Há $1 \times 3! = 6$ maneiras de o azul ficar à esquerda do vermelho.

Há $2\times3!=12$ maneiras de o azul ficar à esquerda do vermelho.

Novo Espaço – Matemática A, 12.º ano

Proposta de resolução do teste de avaliação [novembro - 2020]

• Vermelho na "posição" 4:

1	_ 2	. 3	4	_ 5
			V	

Há $3\times3!=18$ maneiras de o azul ficar à esquerda do vermelho.

Vermelho na "posição" 5:

. 1	2	3	4	. 5
				V

Há $4 \times 3! = 24$ maneiras de o azul ficar à esquerda do vermelho.

No total, há 60 maneiras diferentes (6 + 12 + 18 + 24) de o peão azul ficar à esquerda do peão vermelho.

Resposta: 60

- **5.2.** A soma dos números dos três peões é ímpar se:
 - os três tiverem número ímpar

ou

• dois tiverem número par e o outro um número ímpar.

Número de casos favoráveis: ${}^{3}C_{3} + {}^{3}C_{1} \times {}^{2}C_{2} = 1 + 3 \times 1 = 4$

Número de casos possíveis. ${}^5C_3 = 10$.

Seja *p* a probabilidade pedida.

$$p = \frac{4}{10} = 0,4$$

A probabilidade é 40%.

Resposta: 40%

6.

$$P(B|A) = \frac{1}{2} \Leftrightarrow \frac{P(B \cap A)}{P(A)} = \frac{1}{2} \Leftrightarrow P(A) = 2P(B \cap A)$$

Como
$$P(B \cap A) = \frac{1}{6}$$
, tem-se que $P(A) = 2 \times \frac{1}{6} = \frac{1}{3}$

$$P(\overline{B}) = P(A) = \frac{1}{3}$$
. Então, $P(B) = \frac{2}{3}$.

$$P(B \cap \overline{A}) = P(B \setminus (A \cap B)) = P(B) - P(A \cap B) = \frac{2}{3} - \frac{1}{6} = \frac{1}{2}$$

Resposta: (A) $\frac{1}{2}$

7. A partir da informação dada, preenche-se a seguinte tabela:

	Ensino	Ensino	
	básico	secundário	
	A	$\overline{\overline{A}}$	
Entrada E_1 \overline{B}	170	$\#(\overline{A} \cap \overline{B})$	250
Entrada E_2	$\#(A \cap B)$	$\#(\overline{A} \cap B)$	230
			480

$$\#(\overline{A} \cap \overline{B}) = 250 - 170 = 80$$

$$P(\overline{A} \cap B) = \frac{\#(\overline{A} \cap B)}{480} = 0.15$$

Daqui resulta que $\#(\overline{A} \cap B) = 72$.

Assim,
$$\#(A \cap B) = 230 - 72 = 158$$
.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{158}{480}}{\frac{230}{480}} = \frac{158}{230}$$

$$P(A|B) \approx 0,69$$

Resposta: 0,69