### NDA: Time Series Analysis - Part 2

**Lionel Tabourier** 

LIP6 – CNRS and Sobonne University

first\_name.last\_name@lip6.fr

January 2021

### **Outline**

- What to do with the residuals?
- 2 Autoregressive models
- Moving Average models
- 4 ARMA models

### Outline

- What to do with the residuals?
- 2 Autoregressive models
- Moving Average models
- ARMA models

# How to analyze a time series? (3)

#### Third step:

fit the residuals

If the residuals is an IID time series, nothing else to model...

**General idea:** suppose IID random variables What should we observe? Is it the case?

**General idea:** suppose IID random variables What should we observe? Is it the case?

#### Sample ACF criterion

Because of the Central Limit Theorem:

- suppose x<sub>t</sub> IID with mean 0 and variance 1 (white noise)
- if *n* large enough,  $\hat{\rho}_X(h)$  is approx. distributed as  $\mathcal{N}(0, \frac{1}{\sqrt{n}})$

In practice, consider the 95% confidence interval: How many values fall out of  $\left[\frac{-1.96}{\sqrt{n}}, \frac{+1.96}{\sqrt{n}}\right]$ ? By how much?

**General idea:** suppose IID random variables What should we observe? Is it the case?

#### Sample ACF criterion

Because of the Central Limit Theorem:

- suppose  $x_t$  IID with mean 0 and variance 1 (white noise)
- if *n* large enough,  $\hat{\rho}_x(h)$  is approx. distributed as  $\mathcal{N}(0, \frac{1}{\sqrt{n}})$



**General idea:** suppose IID random variables What should we observe? Is it the case?

### Sample ACF criterion

Because of the Central Limit Theorem:

- suppose x<sub>t</sub> IID with mean 0 and variance 1 (white noise)
- if *n* large enough,  $\hat{\rho}_X(h)$  is approx. distributed as  $\mathcal{N}(0, \frac{1}{\sqrt{n}})$



# How to analyze a time series? (3)

#### Third step:

fit the residuals

If the residuals is an IID time series, nothing else to model. . . Otherwise, we use ARMA models

### **Outline**

- What to do with the residuals?
- 2 Autoregressive models
- Moving Average models
- ARMA models

#### What is autoregression?

auto means self ⇒ regression from itself

#### The most basic AR model: 1<sup>st</sup> order regression or AR(1)

 $\{X_t\}$  is a series satisfying:

$$X_t = \phi X_{t-1} + W_t$$
,  $|\phi| < 1$ 

where  $W_t$  is a white noise (mean 0, variance  $\sigma^2$ )

#### Reminder: stationary

• 
$$\mathbb{E}[X_t] = 0$$

• 
$$\gamma_X(h) = \phi^{|h|} \gamma_X(0) = \phi^{|h|} \frac{\sigma^2}{1 - \phi^2}$$

Consider the following time series  $r_t$ :



Suppose AR(1) model for a time series  $r_t$ , how to compute  $\phi$ ?

- plot  $r_t$  as a function of  $r_{t-1}$  (lag-1 plot)
- ullet linear fit, slope is an estimation of  $\phi$

Suppose AR(1) model for a time series  $r_t$ , how to compute  $\phi$ ?

- plot  $r_t$  as a function of  $r_{t-1}$  (lag-1 plot)
- linear fit, slope is an estimation of  $\phi$



on the example  $\phi \simeq -0.659$ 

Now, we compute the residuals of the TS - AR(1) model:

$$r_t - \phi r_{t-1}$$



Is it closer to an IID noise?

Now, we compute the residuals of the TS - AR(1) model:

$$r_t - \phi r_{t-1}$$



Is it closer to an IID noise?

Now, we compute the residuals of the TS - AR(1) model:

$$r_t - \phi r_{t-1}$$

Is it closer to an IID noise?



before AR(1): not IID

Now, we compute the residuals of the TS - AR(1) model:

$$r_t - \phi r_{t-1}$$

Is it closer to an IID noise?



after AR(1): closer to IID  $\longrightarrow$  other tests?

#### AR(1) model

 $W_t$  is white noise signal = noise and (weighted) influence of the signal at t-1

$$X_t = \phi X_{t-1} + W_t$$

• 
$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + W_t$$

#### AR(p) model

 $W_t$  is white noise signal = noise and influence of the signal at p previous steps

$$X_t = \phi X_{t-1} + W_t$$

• 
$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + W_t$$

$$X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} - \ldots - \phi_p X_{t-p} = W_t$$

#### Some characteristics

- Stationary process? see characteristic polynomial  $P(x) = 1 \phi_1 x \phi_2 x^2 \dots \phi_p x^p \rightarrow \text{if no unit root AR(p) stationary}$
- typical shape: smooth decay, no cut-off



$$X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} - \ldots - \phi_p X_{t-p} = W_t$$

#### Some characteristics

- Stationary process? see characteristic polynomial  $P(x) = 1 \phi_1 x \phi_2 x^2 \dots \phi_p x^p \rightarrow \text{if no unit root AR(p) stationary}$
- typical shape: smooth decay, no cut-off



$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + W_t$$

#### Yule-Walker equations

We have seen that for AR(1):

$$\gamma(h) = \phi^{|h|}\gamma(0) = \phi^{|h|} \frac{\sigma^2}{1 - \phi^2}$$

What about the general case?

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + W_t$$

#### Yule-Walker equations

We have seen that for AR(1):

$$\gamma(h) = \phi^{|h|}\gamma(0) = \phi^{|h|} \frac{\sigma^2}{1 - \phi^2}$$

What about the general case?

• 
$$\gamma(h) = \phi_1 \gamma(h-1) + \phi_2 \gamma(h-2) + \dots$$

• 
$$\rho(h) = \phi_1 \rho(h-1) + \phi_2 \rho(h-2) + \dots$$

these are called the Yule-Walker equations

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + W_t$$

#### Yule-Walker equations

We have seen that for AR(1):

$$\gamma(h) = \phi^{|h|}\gamma(0) = \phi^{|h|} \frac{\sigma^2}{1 - \phi^2}$$

What about the general case?

• 
$$\gamma(h) = \phi_1 \gamma(h-1) + \phi_2 \gamma(h-2) + \dots$$

• 
$$\rho(h) = \phi_1 \rho(h-1) + \phi_2 \rho(h-2) + \dots$$

these are called the Yule-Walker equations

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + W_t$$

#### Yule-Walker equations

We have seen that for AR(1):

$$\gamma(h) = \phi^{|h|}\gamma(0) = \phi^{|h|} \frac{\sigma^2}{1 - \phi^2}$$

What about the general case?

• 
$$\gamma(h) = \phi_1 \gamma(h-1) + \phi_2 \gamma(h-2) + \dots$$

• 
$$\rho(h) = \phi_1 \rho(h-1) + \phi_2 \rho(h-2) + \dots$$

these are called the Yule-Walker equations

#### Illustration on a practical case

$$X_t = \frac{1}{3}X_{t-1} + \frac{1}{2}X_{t-2} + W_t$$



Sample ACF (blue) vs Yule-Walker coefficients (orange)

### **Outline**

- What to do with the residuals'
- Autoregressive models
- Moving Average models
- ARMA models

### Moving average to smooth a signal:



### Original signal f(x) smoothed over a window size w, typically:

ex1: 
$$g_1(x) = \frac{f(x) + f(x-1) + f(x+1)}{3}$$
 (no weight, two-sided,  $w = 3$ )  
ex2:  $g_2(x) = \frac{f(x) + f(x-1) + f(x-2)}{3}$  (no weight, one-sided,  $w = 3$ )  
ex3:  $g_3(x) = \frac{f(x) + a \cdot f(x-1) + b \cdot f(x-2) + c \cdot f(x-3)}{(1+a+b+c)}$  (weighted, one-sided,  $w = 4$ )

#### MA(1) model

 $W_t$  is white noise signal = weighted average of noise at t and of noise at t-1

$$\bullet X_t = \beta_0 W_t + \beta_1 W_{t-1}$$

• 
$$X_t = \beta_0 W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

#### MA(q) model

 $W_t$  is white noise signal = weighted average of noise at t and q previous steps

$$\bullet X_t = \beta_0 W_t + \beta_1 W_{t-1}$$

• 
$$X_t = \beta_0 W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

$$X_t = \beta_0 W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

#### Some characteristics

- Stationary process mean and autocovariance at lag h do not depend on time Ex: prove if  $h \le q$ ,  $Cov(X_t, X_{t+h}) = \sigma^2 \sum_{i=0}^{q-h} \beta_i \beta_{i+h}$
- ACF cuts off at lag q



$$X_t = \beta_0 W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

#### Some characteristics

- Stationary process mean and autocovariance at lag h do not depend on time Ex: prove if  $h \le q$ ,  $Cov(X_t, X_{t+h}) = \sigma^2 \sum_{i=0}^{q-h} \beta_i \beta_{i+h}$
- ACF cuts off at lag q



#### From MA(1) to AR

Considering the MA(1) process:

$$\begin{array}{rcl} X_t & = & W_t + \beta W_{t-1} \\ \Rightarrow W_t & = & X_t - \beta W_{t-1} \\ \Rightarrow W_t & = & X_t - \beta (X_{t-1} - \beta W_{t-2}) \\ \Rightarrow W_t & = & X_t - \beta X_{t-1} + \beta^2 X_{t-2} - \beta^3 X_{t-3} + \dots \\ \Rightarrow X_t & = & W_t + \beta X_{t-1} - \beta^2 X_{t-2} + \beta^3 X_{t-3} - \dots \end{array}$$

In other words, MA(1) is an  $AR(\infty)$  process

More generally, MA(q) can (often) be seen as  $AR(\infty)$  process

#### From MA(1) to AR

Considering the MA(1) process:

$$\begin{array}{lll} X_t & = & W_t + \beta W_{t-1} \\ \Rightarrow W_t & = & X_t - \beta W_{t-1} \\ \Rightarrow W_t & = & X_t - \beta (X_{t-1} - \beta W_{t-2}) \\ \Rightarrow W_t & = & X_t - \beta X_{t-1} + \beta^2 X_{t-2} - \beta^3 X_{t-3} + \dots \\ \Rightarrow X_t & = & W_t + \beta X_{t-1} - \beta^2 X_{t-2} + \beta^3 X_{t-3} - \dots \end{array}$$

In other words, MA(1) is an AR( $\infty$ ) process

More generally, MA(q) can (often) be seen as  $AR(\infty)$  process

#### From AR(1) to MA

$$X_t = W_t + \phi X_{t-1}$$
  
 $\Rightarrow X_t = W_t + \phi (W_{t-1} + \phi X_{t-2})$   
 $\Rightarrow X_t = \dots$   
 $\Rightarrow X_t = W_t + \phi W_{t-1} + \phi^2 W_{t-2} + \phi^3 W_{t-3} + \dots$   
In other words, AR(1) is an MA( $\infty$ ) process

More generally, AR(p) can (often) be seen as  $MA(\infty)$  process

#### From AR(1) to MA

$$X_t = W_t + \phi X_{t-1}$$
  
 $\Rightarrow X_t = W_t + \phi (W_{t-1} + \phi X_{t-2})$   
 $\Rightarrow X_t = \dots$   
 $\Rightarrow X_t = W_t + \phi W_{t-1} + \phi^2 W_{t-2} + \phi^3 W_{t-3} + \dots$   
In other words, AR(1) is an MA( $\infty$ ) process

More generally, AR(p) can (often) be seen as  $MA(\infty)$  process

### **Outline**

- What to do with the residuals?
- 2 Autoregressive models
- Moving Average models
- 4 ARMA models

### **ARMA** models

#### ARMA(p,q) model

ARMA(p,q) model is a combination of AR(p) and MA(q) model:

$$X_t = \phi_1 X_{t-1} + \ldots + \phi_p X_{t-p} + W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

As for AR(p) and MA(q) parameters can be found from the ACF

### In practice

- fit the residuals with several (low) values of p and q
- select what is the best model
- ⇒ complete model:

trend + seasonality + ARMA(p,q) residuals

### **ARMA** models

#### ARMA(p,q) model

ARMA(p,q) model is a combination of AR(p) and MA(q) model:

$$X_t = \phi_1 X_{t-1} + \ldots + \phi_p X_{t-p} + W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

As for AR(p) and MA(q) parameters can be found from the ACF

#### In practice

- fit the residuals with several (low) values of p and q
- select what is the best model
- ⇒ complete model:

trend + seasonality + ARMA(p,q) residuals

## A few questions that we have left aside ...

- How to choose p and q of an ARMA process?
   → useful to define partial ACF
- How to find the coefficients of an ARMA process?
   → transform it in AR(∞) (or MA(∞)) process
- How do we select the best model?
   → complexity criteria and the overfitting problem (AIC, BIC)
- How to deal more systematically with the trend?
  - → differentiation method

## A few questions that we have left aside . . .

- How to choose p and q of an ARMA process?
  → useful to define partial ACF
- How to find the coefficients of an ARMA process?
  - ightarrow transform it in AR( $\infty$ ) (or MA( $\infty$ )) process

• How to deal more systematically with the trend?

- How do we select the best model?
   → complexity criteria and the overfitting problem (AIC, BIC)
- Tomprosity of toric and the eventuing presion (1410, 210
  - → differentiation method

# A few questions that we have left aside ...

- How to choose p and q of an ARMA process?
  - → useful to define partial ACF
- How to find the coefficients of an ARMA process?
  - $\rightarrow$  transform it in AR( $\infty$ ) (or MA( $\infty$ )) process
- How do we select the best model?
  - → complexity criteria and the overfitting problem (AIC, BIC)
- How to deal more systematically with the trend?
  - ightarrow differentiation method

### A few questions that we have left aside . . .

- How to choose p and q of an ARMA process?
  - → useful to define partial ACF
- How to find the coefficients of an ARMA process?
  - $\rightarrow$  transform it in AR( $\infty$ ) (or MA( $\infty$ )) process
- How do we select the best model?
  - → complexity criteria and the overfitting problem (AIC, BIC)
- How to deal more systematically with the trend?
  - → differentiation method

# Studying time series in python

#### Among several options, pandas library

#### A few useful functions:

- Load data as dataframe: read\_csv from pandas library
- Moving average: rolling from pandas library
- Fitting: curve\_fit in scipy.optimize library
- Autocorrelation function: plot\_ACF in statsmodels library
- ARMA model fit:
   ARMA.fit in statsmodels library