Ad-hoc On-Demand Distance Vector Routing

DOI: 10.1109/MCSA.1999.749281 · Source: DBLP			
CITATIONS 8,386		READS 1,936	
2 authors:			
	Charles Edward Perkins Institute of Electrical and Electronics Engineers 210 PUBLICATIONS 52,375 CITATIONS SEE PROFILE		Elizabeth M. Belding University of California, Santa Barbara 173 PUBLICATIONS 29,711 CITATIONS SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Ad-Hoc On-Demand Distance Vector (AODV) Routing

Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir Das, Proceedings of IEEE WMCSA'99, New Orleans, LA, February 1999

Presented by 민 병호 (**Byungho Min**) 17 April, 2006

Contents

- Ad-Hoc Network Routing Constraints
- Ad-Hoc On-Demand Distance Vector (AODV)
- AODV Algorithm
 - Path Discovery
 - Route Table Management
 - Path Maintenance
 - Local Connectivity Management
- Simulation and Results
- Current Status and Future Work
- Conclusion

Ad-Hoc Network Routing Constraints

- No Infrastructure Support
 - No Specialized Routers
 - (Physically) No Fixed Routers
- Frequent Topology Change
 - Mobility
- Problems Due to Wireless Media
 - Bandwidth
 - Range of Communication
 - Collisions Due to Broadcasting
 - Asymmetric One-Way Links

Ad-Hoc On-Demand Distance Vector (AODV)

- A Source Initiated Routing Protocol
- Premise
 - Symmetric Links
- Features
 - Pure On-Demand Acquisition
 - Broadcast only when necessary
 - Notion of 'Active' Paths
 - No centralized topological knowledge
 - Neighborhood detection
 - Topological Maintenance
 - Uses 'Hello' to identify neighbors

AODV Algorithm

- Path Discovery
 - Reverse Path Setup
 - Forward Path Setup
- Route Table Management
- Path Maintenance
- Local Connectivity Management

Path Discovery

- When?
 - No Information on Some Node to Which Communication Is Requested
- Each Node Has Two Counters

node sequence number broadcast_id

- Path Discovery Process
 - Source Node Broadcasts a Route Request (RREQ) Packet to Its Neighbors
 - Neighbors Forward the Request to Their Neighbors, and so on until Either the Destination or an Intermediate Node with a "Fresh Enough" Route to the Destination Is Located

More on RREQ

- broadcast_id Is Incremented for New RREQ
- RREQ from Same Node with Same broadcast_id Will Not Be Broadcasted More than Once

Node A wants to contact node D,

Represents transmission of RREQ

Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once

Node D does not forward RREQ, because node D is the intended target of the RREQ

Represents links on path taken by RREP

Forward links are setup when RREP travels along the reverse path

Represents a link on the forward path

Routing table entries used to forward data packet. Route is *not* included in packet header

Path Discovery (Cont'd)

- RREQ Generates Backward Path to Source
- RREP Generates Forward Path to Destination

Route Request (RREQ) Message Format

Route Reply (RREP) Message Format

Route Table Management

- Route Request Expiration Timer
 - Purges Reverse Paths That Do Not Lie on Active Route
- active_route_timeout
 - Is Used to Determine If Neighboring Node Is Active i.e.
 Sends at Least One Packet in This Time
- Route Cache Timer
 - Purges Inactive Routes

Route Table Management (Cont'd)

- Each Route Table Entry Contains
 - Destination
 - Next Hope
 - Number of Hops
 - Sequence Number for the Destination
 - Active Neighbors for This Route
 - Expiration Time for the Route Table Entry

Route Table Management (Cont'd)

- When a Route Entry Is Used to Transmit Data from Source to Destination, *Timeout* for Each Entry Is Reset to Current Time + active_route_timeout
- When a New Route Is Available, Route Table Will Be Updated Only If New Route Has
 - Larger dest_sequence_#
 - Same <u>dest_sequence_</u># but with <u>Smaller hop_cnt</u> to the Destination

Path Management

- If Source Node Moves during an Active Session
- → It Can Redo Path Discovery
- If Destination or Intermediate Nodes Move
 - → A Special RREP Is Sent to Affected Source Nodes
 - On link breakage, affected node propagates an unsolicited RREP $< dest_sequence_\#+1$, $\infty>$ to all active neighbors
- → Source May Restart Route Discovery Process

Path Management Example

- If Link between C and D Is Broken, a Special RREP Will Be Sent to B and E by C
 - C Will Increase Its dest_sequence_# by 1 and Set hop_ count to ∞)
- Then B and E Will Send This RREP to Its Active Neighbors F and G
- At the End, All Active Source Nodes Are Notified
- When Source Finds Out a Link to Destination Is Broken, and It Likes to Rebuild the Path to Destination, Source Will Send a RREQ with Last dest squence #+1 100 100

100

100

Local Connectivity Management

- Two Ways for a Node to Find Its Neighbors
 - Receiving Broadcast from Its Neighbors
 - Send Its Neighbors Hello Messages Containing Its Identity and Sequence Number
 - Sequence number is not changed for hello message
 - Nodes can not rebroadcast hello messages (TTL=1)
- Local Connectivity Is Changed If
 - Receiving a Broadcast or a Hello from a New Node
 - Failing to Receive allowed_hello_loss Consecutive Hello Message from a Node Previously in the Neighborhood
- Neighbors Only Communicate When Heard Each Other's Hello Message
 - It Ensures the Link Is Bidirectional

Simulations and Results

Simulations and Results

Current Status and Future Work

- Current Status
 - Multicast
 - RREQ, RREP, and Multicast validation message
- Future Works
 - Intermediate Node Route Rebuilding
 - Try 'repair' before link failure notification
 - Elimination of Hello Messages
 - Locality of Association and QoS
 - Improve bandwidth utilization by varying route propagation without indiscriminate relays

Conclusion

- Storing Only the Needed Routes
- Minimized Need for Broadcast
- Reduced Memory Requirements and Needless Duplications
- Quick Response to Link Breakage in Active Routes
- Loop-Free Routes Maintained by Use of Destination Sequence Numbers
- Scalable to Large Populations of Nodes