Clique3

Trong <u>lý thuyết đồ thị</u>, một **clique** (tiếng Anh, phát âm là [kli:k]) trong <u>đồ thị vô hướng</u> G là tập các <u>đỉnh</u> V(V) là tập con của tập các đỉnh của G) thoả mãn: với mỗi cặp đỉnh thuộc V luôn tồn tại một <u>cạnh</u> của G nối chúng. Do vậy một đồ thị con được tạo ra từ V sẽ là một <u>đồ thị đầy</u> đủ. Kích thước của một clique là số đỉnh của nó.

Xét đồ thị gồm n đỉnh, đỉnh i có nhãn a_i (hai đỉnh phân biệt sẽ có nhãn khác nhau). Đỉnh i có cạnh nối tới đỉnh j nếu a_i chia hết cho a_i chia hết cho a_i .

Yêu cầu: Đếm số clique có kích thước bằng 3.

Input

- Dòng đầu chứa số nguyên n;
- Dòng thứ hai chứa n số nguyên dương $a_1, a_2, ..., a_n$ ($a_i \le 3 \times 10^6$);

Output

- Gồm một dòng chứa một số là số clique có kích thước bằng 3.

Dữ liệu vào	Kết quả ra
5	5
1 2 4 6 8	

Subtask 1: $n \le 500$;

Subtask 2: $n \le 5000$;

Subtask 3: $n \le 10^5$;

Subtask 4: $n \le 10^6$;

iset

Một đồ thị gồm n đỉnh, các đỉnh được đánh số từ 0 đến n-1 được tạo theo cách sau:

- Đỉnh thứ i có trọng số w_i ;
- Ban đầu chỉ có đỉnh 0;
- Thực hiện n-1 lần thêm, lượt thứ i $(1 \le i \le n-1)$ thêm đỉnh thứ i vào đồ thị bằng một trong ba loại:
 - o Loại j 0: Nối i với j;
 - Loại j 1: Nối i với các đỉnh k là kề của j;
 - o Loại j 2: Nối i với j và nối i với tất cả đỉnh kề của j.

Yêu cầu: Tìm tập độc lập có tổng trọng số lớn nhất.

Input

- Dòng đầu chứa số nguyên dương n;
- Dòng thứ hai chứa $w_0, w_1, ..., w_{n-1}$;
- Dòng thứ i $(1 \le i \le n-1)$ trong n-1 dòng tiếp theo gồm hai số mô tả lượt thêm đỉnh thứ i.

Output

- Gồm một số là tổng trọng số lớn nhất tìm được.

Dữ liệu vào	Kết quả ra
3	2
1 1 1	
0 0 1 0	

Subtask 1: $n \leq 10$;

Subtask 2: $n \le 1000$ và việc thêm đỉnh chỉ dùng một trong ba loại;

Subtask 3: $n \le 10^5$;

speed

Một thành phố du lịch có n địa điểm được kết nối với nhau bằng m con đường hai chiều. Con đường thứ k $(1 \le k \le m)$ kết nối địa điểm i_k với j_k và cho các phương tiện đi với tốc độ đúng bằng s_k .

Để khuyến khích khách du lịch đi lại an toàn trong thành phố, lãnh đạo thành phố muốn xác định giá trị s_{min} và s_{max} tương ứng là tốc độ tối thiểu và tốc độ tối đa để khi một phương tiện duy trì vận tốc trong đoạn từ s_{min} đến s_{max} thì có thể đi đến tất cả thành phố xuất phát từ một bất kì thành phố. Giá trị s_{min} và s_{max} cần thỏa mãn thêm điều kiện $s_{max} - s_{min}$ đạt giá trị nhỏ nhất, nếu có nhiều bộ s_{min} và s_{max} thỏa mãn, cần tìm bộ mà s_{min} nhỏ nhất.

Input

- Dòng đầu chứa các số nguyên dương *n*, *m*;
- Dòng thứ k $(1 \le k \le m)$ trong m dòng tiếp theo chứa ba số nguyên dương i_k, j_k, s_k cho biết có một con đường hai chiều nối giữa hai địa điểm i_k, j_k $(1 \le i_k, j_k \le n)$ với yêu cầu tốc độ là s_k $(1 \le s_k \le 10^9)$.

Output

- Gồm hai số nguyên s_{min} và s_{max} xác định được.

Dữ liệu vào	Kết quả ra
3 5	2 3
1 2 1	
1 2 2	
1 2 5	
2 3 3	
2 3 6	

Subtask 1: $n \le 100$; $m \le 1000$;

Subtask 2: $n \le 1000$; $m \le 10000$;

gstree

Xét đồ thị gồm n đỉnh, các đỉnh được đánh số từ 1 đến n và có nhãn là một số nguyên dương a_i . Gọi GCD(x,y) là ước số chung lớn nhất của hai số x,y. Cạnh giữa hai đỉnh i,j có trọng số $123456 - GCD(a_i,b_j)$.

Yêu cầu: Tìm cây khung nhỏ nhất của đồ thị.

Input

- Dòng đầu chứa số nguyên n;
- Dòng thứ hai chứa n số nguyên dương $a_1, a_2, ..., a_n$ $(a_i \le 10^5)$.

Output

- Gồm một số là trọng số của cây khung nhỏ nhất tìm được.

Dữ liệu vào	Kết quả ra
3	246892
10 20 30	

Subtask 1: $n \le 500$;

Subtask 2: $n \le 50000$;

Mã ẩn

Xét một dãy nhị phân A gồm n phần tử, phần tử A_i $(1 \le i \le n)$ chỉ nhận giá trị 0 hoặc 1. Vì lí do bảo mật, ban đầu tất cả các phần tử của dãy A đều được ẩn giá trị và chỉ biết trong dãy A có chính xác k giá trị 0 $(0 \le k \le n)$. Thời điểm 0 là thời điểm bắt đầu xác định dãy A. Có m thông tin về mối quan hệ giữa các cặp phần tử trong dãy A sẽ lần lượt xuất hiện, thông tin thứ t $(1 \le t \le m)$ xuất hiện tại thời điểm t. Cấu trúc của thông tin thứ t được mô tả thông qua ba giá trị u_t, c_t, v_t . Trong đó, u_t, v_t tương ứng với chỉ số của hai phần tử trong dãy A $(1 \le u_t < v_t \le n)$ và c_t là một trong các kí tự >, < hoặc = để biểu diễn mối quan hệ giữa A_{u_t} và A_{v_t} . Nếu c_t là kí tự > thì $A_{u_t} > A_{v_t}$, nếu c_t là kí tự < thì $A_{u_t} < A_{v_t}$, còn c_t là kí tự = thì $A_{u_t} = A_{v_t}$. Các thông tin đều bảo đảm tính chính xác, hợp lí trên dãy A.

Cần tìm thời điểm s $(0 \le s \le m)$ nhỏ nhất để xác định duy nhất một cách gán giá trị cho tất cả n phần tử của dãy A sao cho có chính xác k giá trị 0 và thỏa mãn s thông tin đầu tiên.

Yêu cầu: Cho các thông tin về dãy A, hãy đưa ra thời điểm s nhỏ nhất sao cho dãy A được xác định duy nhất. Trong trường hợp sử dụng tất cả m thông tin mà vẫn có nhiều hơn một cách gán giá trị cho tất cả n phần tử của dãy A thì đưa ra -1.

Input

- Dòng đầu tiên chứa một số nguyên dương q là số lượng bộ dữ liệu;
- Tiếp theo gồm q nhóm dòng, mỗi nhóm mô tả một bộ dữ liệu theo khuôn dạng sau:
 - 0 Dòng thứ nhất chứa ba số nguyên n, m và k cách nhau bởi dấu cách $(1 \le m \le 4 \times 10^5; 0 \le k \le n);$
 - O Dòng thứ t trong số m dòng tiếp theo $(1 \le t \le m)$ chứa ba giá trị u_t, c_t, v_t mô tả thông tin xuất hiện tại thời điểm t. Các giá trị cách nhau đúng một dấu cách.

Dữ liệu vào đảm bảo tồn tại ít nhất một dãy A có chính xác k giá trị 0 thỏa mãn tất cả m thông tin. Tổng các số m trong q bộ dữ liệu không quá 2×10^6 .

Output

• Mỗi dòng chứa một số nguyên s tương ứng với thời điểm nhỏ nhất để xác định duy nhất một cách gán giá trị cho tất cả n phần tử của dãy A trong dữ liệu vào tương ứng. Nếu không tìm được thời điểm s thoả mãn thì ghi ra -1.

Gọi N là tổng các số n trong q bộ dữ liệu.

Subtask 1: $1 \le n \le 2 \times 10^3 \text{ và } N \le 10^4$;

Subtask 2: $1 \le n \le 2 \times 10^4 \text{ và } N \le 10^5$;

Dữ liệu	Kết quả	Giải thích
3	5	Trong dãy thứ nhất, tại thời điểm $s=5$ xác định duy nhất dãy
6 6 3	0	{1, 0, 1, 0, 1, 0} thỏa mãn các thông tin tính đến thời điểm
1 > 2	-1	5. Với thời điểm $t = 4$ có thêm ít nhất một dãy $\{1, 0, 0, 1,$
3 = 5		0, 1} thỏa mãn các thông tin tính đến thời điểm 4.
4 = 6		Trong dãy thứ hai, không cần xét đến các thông tin bổ sung mà
1 > 2		vẫn xác định dãy duy nhất $\{0, 0, 0, 0\}$. Do đó, đưa ra s bằng
2 = 4		0.
1 = 3		Trong dãy thứ ba, mặc dù sử dụng hết 2 thông tin nhưng vẫn có
4 2 4		ít nhất hai dãy thỏa mãn tất cả 2 thông tin là: {0, 0, 1, 1}
1 = 2		và {1, 1, 0, 0}. Do đó, đưa ra -1.
3 = 4		
4 2 2		
1 = 2		
3 = 4		