Motivation Introduction Related Work Transfer Learning Framework Evaluation Results Conclusion Future Work

Transfer Learning of Link Specifications

August 21, 2013

- With the growth of of Linked Data Set, Link Discovery becomes one of the crucial issues in Semantic Web.
- Specifying link specifications represents the main player in link discovery and the better specifications the better linking results.
- Our work is motivated by the question: Can we reuse existing knowledge of links specifications to detect new link specifications and enhancing Link Discovery accuracy?.

Introduction

Link Discovery consists of tow basic steps:

- Specifying the Link specifications.
- Carrying out linking using a link discovery framework.

Many frameworks were developed to address quadratic a-priori runtime of Link Discovery

- LIMES
- SILK
- RDF-AI

Link Discovery

- Our work is related to tow research areas:
 - Link Discovery
 - Dectect link specifications
- Link Discovery main aim is finding links between tow datasets. Link Discovery is formalized as:
 - For source S and target T and relation ρ , compute the set M of pairs of instances $(s,t) \in S \times T$ such that $\forall (s,t) \in M : \rho(s,t)$.
 - $\rho(s,t)$ represents the projection of s and t into similarity space \mathfrak{S} such that $\rho(s,t)$ is set iff $\sigma(s,t) \geq \tau$ is satisfied, where $\sigma: S \times T \to [0,1]$ is a similarity function and $\tau \in [0,1]$.

Link Specification

- Link Specification is a main step in Link Discovery
- Link Specifications has three compnents:
 - Two sets of restrictions \mathcal{R}_1^S ... \mathcal{R}_m^S resp. \mathcal{R}_1^T ... \mathcal{R}_k^T that specify the sets S resp. T,
 - A specification of a complex similarity metric σ via the combination of several atomic similarity measures $\sigma_1, ..., \sigma_n$ and
 - A set of thresholds τ_1 , ..., τ_n such that τ_i is the threshold for σ_i .

Transfer Learning

- Transfer Learning is a Machine Learning approach.
- Machine Learning goal is: Here the mathcal error happens
- In our approach we use Transductive Transfer Learning

Transfer Learning Framework I

Transfer Learning of link specifications is tackled through three problems:

- Restrictions similarity It is reduced to be Classes similarity as s rdf:type someClass The similarity function: $\zeta: 2^C \times 2^C \mapsto [0,1]$
- Properties similarity The similarity function: $\pi: P \times P' \mapsto [0,1]$, where P and P' are properties sets for C and C', the set all such property similarity functions is denoted as Π .
- Determining accuracy of link specifications link specification assessment function: $\alpha: Q \mapsto [0,1]$.

Transfer Learning Framework II

- The overall similarity measure for Transfer Learning is represented as: $\omega(t,t') = \alpha(q') \cdot \zeta(\psi(q'),\mathcal{C}) \cdot \zeta(\psi'(q'),\mathcal{C}') \cdot r'(r(q',P_L,\pi),P'_L,\pi)$ Each function in similarit measure can be implemented in manifold approaches
- ullet Class similarity function ζ is implemented in Framework using tow approaches:
 - label-based similarity
 - name-based similarity (URI similarity)
 - · data-centric similarity

Experiemental setup I

The goal of evaluation is tow-folded:

- Evaluating the accuracy of function f' to be based for predicting f'.
- Discover whether the functions f' for other domains could be used directly.
- 113 specifications were retrieved from LATC, each has manual links evaluation.

Experiemental setup II

- URI similarity is used where the source and target endpoints in a specification are alive
- The experiement was applied on 12 specifications out of specifications retrieved from LATC.
- The distributions of the specfications across different domains are:

First experiements set Results

- ullet Detecting right specfication average is 81%
- Detecting right specfications in geo-spatial domain is 92%
- Detecting right specifications in persons domain is 58.3%

Second experiements set Results

In the second experiements series, both source and target endpoints considered to be alive.

Conclusion

- ullet Detecting best similar specification with mean reciprocal rank larger than or equal 0.81
- Transfer learning can not replace the learning of link specification in itself

Future Work

- Combining other learning approaches of link specification to transfer learning
- Using more sophisticated class and property similarity approaches

Motivation
Introduction
Related Work
Transfer Learning Framework
Evaluation
Results
Conclusion
Future Work
Questions?

Questions