## 容器行业存储标准CSI与 Apache Mesos



by 宋子豪



## Who am I



- Apache Mesos PMC, Committer
- Tech Lead @Mesosphere
- Leading developments on Containerization in Mesos and DC/OS
- M.S. of Computer Engineering from University of California, Santa Barbara

#### Overview

- State of storage in Container Orchestrator today
- Benefits of standardization CSI
  - User perspective
  - Orchestrator perspective
  - Storage Provider perspective
- Overview of CSI
- Mesos overview
- Adopting container standards
- Highlighted new features
- Future roadmap



#### Background – user demand

Over the past 2 years there has been a huge shift involving *stateful* applications becoming a mainstream feature used by most container users.





## Background – container orchestrators

Popular container orchestrators have *independently* evolved storage interfaces





DC/OS









## Background – storage providers

Selected open source and commercial vendors have solutions – sometimes usable across orchestrator platforms



















### State of the world today



5 plugins for AWS EBS being maintained

## Variations of storage interface: Is this good for the community?

# Users Container Orchestrators Storage Providers





#### CSI: Goals

The Container Storage Interface (CSI) is modeled on the successful OCI and CNCF sponsored CNI interoperability initiatives in the container and network space respectively.

Its goal is to provide a *vendor neutral*, curated specification that allows standardized storage plugins to be published and utilized across multiple container orchestrators, including Mesos and DC/OS.



#### **CSI**: Overview

- Control plane interface
  - CSI "steps aside" after wiring volume to container
     not a bottleneck in the data IO plane
  - Flexible deployment
- Focus on volume lifecycle
  - Create
  - Publish/Unpublish (to nodes, to containers)
  - Destroy
- Service-oriented
  - Long running
  - gRPC; CO is a client of plugin services



### CSI: Configuration / Operation

- CSI spec focuses on protocol over operational concerns
- Minimal deployment requirements
  - gRPC endpoint as UNIX socket\*
  - location via CSI\_ENDPOINT envvar
- Packaging guidelines / recommendations (optional)
  - vendor implementations packaged as "plugins"
  - plugins should expect to be supervised
  - plugins should expect to be isolated



## **CSI**: Plugin Composition

- 3 core gRPC services
  - Identity
  - Controller
  - Node
- Flexible composition
  - Identity+Controller+Node (headless)
  - Identity+Controller
  - Identity+Node



## CSI integration: option #1



## CSI integration: option #2





## CSI: Volume Lifecycle

- CO provisions volumes
  - → CSI "attach to node"
  - → CSI "mount vol in CT"
- Plugins advertise support for lifecycle ops via \*Capabilities
  - Create/Delete Volume
  - Controller Publish/Unpublish





## **CSI**: Identity Service

- GetSupportedVersions
- GetPluginInfo



#### **CSI:** Controller Service

- ControllerGetCapabilities
- CreateVolume, DeleteVolume
- Controller { PublishVolume, UnpublishVolume }
- ListVolumes
- ValidateVolumeCapabilities
- GetCapacity



\_\_\_\_

#### **CSI: Node Service**

- ProbeNode
- Node { PublishVolume, UnpublishVolume }
- GetNodeID
- . NodeGetCapabilities



## Mesos Integration with CSI



- New Concept: Resource Provider (RP)
  - An interface for providing resources to Mesos
  - Can be both Local and External
  - Agent can be viewed as a Local RP
- Why introduce RP?
  - Allow customization and extension on Resources
  - Support external resources (not tied to an agent)



## Storage Resource Provider

- Introduce a first class Storage Resource Provider
  - Talk to CSI plugins
  - Expose "disk" resources
  - Handle operations (e.g., volume provisioning)
- Goal
  - Storage vendors just need to give Mesos the CSI plugin Docker image name, and Mesos will handle the rest.



## Mesos CSI Integration (Mesos 1.5 & 1.6)



## Mesos Roadmap on Storage Support

- Local Resource Provider (LRP) integration
- Storage LRP w/ CSI integration
- External Resource Provider (ERP) integration
- Storage ERP w/ CSI integration
- Epic: <a href="https://issues.apache.org/jira/browse/MESOS-7235">https://issues.apache.org/jira/browse/MESOS-7235</a>
- LRP support is targeted for Mesos 1.5
- ERP support is targeted for Mesos 1.6



## Community: Who is involved with CSI





MESOS





























#### CSI Roadmap: Beyond intro release



Considering these - priority tbd, your feedback encouraged:

- Snapshot support
- Volume resizing
- Quota
- Windows OS/container support
  User ID & credential passthrough to storage provider

This is deemed out of scope - up to orchestrator platform to implement, differentiate

Storage class (aka profiles)



## Community: How to get involved



zoom

github: spec, sample code, issue tracking

https://github.com/container-storage-interface

#### online 1 hour meeting every 2 weeks

- https://zoom.us/j/790748945
- notes:

https://docs.google.com/document/d/1-oiNg5V\_GtS\_JBAEViVBhZ3BYVFlbSz70hreyaD7c 5Y/edit#heading=h.h3flg2md1zg

recorded, see notes for link

google+ group for mailing list communication

container-storage-interface-community

Google+





## Mesos programming abstraction



- Framework
- Resource/Offer
- Task
- Executor

## A typical Mesos framework



Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

## Containerizer and isolators (0.18, 2014)



- Pluggable architecture
- Isolators (lifecycle hooks)
  - cgroups/cpu
  - cgroups/mem
  - \_ ...
- Launchers (process mgmt)
  - linux (cgroups & ns)
  - posix
  - windows

## Current list of isolators

- environment\_secret
- appc/runtime
- cgroups/blkio
- cgroups/cpu
- cgroups/cpuset
- cgroups/devices
- cgroups/hugetlb
- cgroups/mem
- cgroups/net\_cls
- cgroups/net prio
- cgroups/perf\_event
- cgroups/pids
- disk/du
- disk/xfs

- docker/runtime
- docker/volume
- filesystem/linux
- filesystem/posix
- filesystem/shared
- filesystem/windows
- gpu/nvidia
- linux/capabilities
- namespaces/ipc
- namespaces/pid
- network/cni
- network/port mapping
- posix/cpu
- posix/mem

- posix/rlimits
- volume/host\_path
- volume/image
- volume/sandbox\_path
- volume/secret

## Native Docker image support (0.28, 2016)



## Adopting container standards

- Container images
  - Docker
  - AppC
  - OCI image spec
- Container network
  - CNI
- Container storage
  - DVDI
  - CSI



Supported through pluggable interfaces in MesosContainerizer

## De facto container standard



Volume Plugin (DVDI)

Network Plugin (libnetwork)















## We need true container standards!

- Stable interfaces
- Backward compatibility
- Multiple implementations
- Vendor neutral
- Interoperability

## Ideal world





Registry API



Volume Plugin (DVDI)

Network Plugin (libnetwork)















## Ideal world





Google Cloud Platform

Registry API









Volume Plugin (DVDI)











Network Plugin (libnetwork)







## Ideal world







#### **Registry API** → Container Image Spec









**Network Plugin (libnetwork) → Container Network Spec** 



















### Standards we need for containers

- Image
- Networking
- Storage
- Runtime
- Metrics
- •

### Standards we need for containers

- Image
- Networking
- Storage
- Runtime
- Metrics
- •

### Container image spec

#### Scope

- How to package application bits into images
- How to package application configs into images
- How to store and transfer images
- How to unpack images to get application bits and configs

### OCI: Open Container Initiative

- OCI image spec
  - https://github.com/opencontainers/image-spec



### Mesos will support OCI image spec (soon)



### Container networking spec

#### Scope

- How to connect containers
- How to allocate IP Addresses
- How to enforce security policies
- How to isolate performance
- How to provide quality of service
- How to balance network traffic

# CNI: Container Networking Interface

- A simple CLI based interface
- Container orchestrator should invoke the CLI commands
  - Before container starts
  - After container terminates
- Adopted by major container orchestrators and network vendors
  - Recently joined CNCF
  - https://github.com/containernetworking/cni



# CNI: Container Networking Interface



- Each plugin implements two CLI commands:
  - ADD: Attach network to the network namespace
  - DEL: Detach network from the network namespace
  - Pass config using arguments and environment variables

# Mesos supports CNI



via an Isolator in MesosContainerizer:

--isolation=network/cni,...















### Container storage spec

#### Scope

- How to Create/Destroy volumes
- How to Attach/Detach volumes
- How to Mount/Unmount volumes
- How to create snapshots
- How to restore snapshots

### CSI: Container Storage Interface

- Joint work between major container orchestrators
  - Mesos, Kubernetes, Docker, Cloud Foundry
  - https://github.com/container-storage-interface
- The goal of CSI in v1.0
  - One storage plugin works for all COs
  - Support dynamic provisioning
  - Support both local and remote storage
  - Support Mount and Block volumes



# Highlighted new features

- General nesting support
- Remote debugging support

# Why nested container?



Sidecar pattern

# Why nested container?



**Transient Container** 

# Why nested container?



**Hierarchical Container** 

# MesosContainerizer supports nesting

- Depth > 2!
- Volume sharing with siblings
- Fully compatible with other features



# Use nesting to support debugging!



### Remote debugging support

- Similar to `docker exec` and `docker attach`, but can be done remotely
- Fully integrated with Mesos authn/authz
- Leverage nested container support

### Future Roadmap

- Standalone mode
- Host port isolation
- PAM module support
- Unified artifacts store
- Seccomp and SELinux
- LXC support
- VM support
- User namespace
- •

# Summary

- Containerization in Mesos
  - Stable, in production for years
  - Option to not rely on Docker daemon
  - Pluggable and extensible
  - Embracing container standards







