Daniel loves graphs. He thinks a graph is *special* if it has the following properties:

- It is undirected.
- The length of each edge is **1**.
- It includes exactly P different lovely triplets.

A triplet is a set of $\bf 3$ different nodes. A triplet is *lovely* if the minimum distance between each pair of nodes in the triplet is *exactly* $\bf Q$. Two triplets are different if $\bf 1$ or more of their component nodes are different.

Given P and Q, help Daniel draw a special graph.

Input Format

A single line containing ${\bf 2}$ space-separated integers, ${\bf P}$ (the number of different lovely triplets you must have in your graph) and ${\bf Q}$ (the required *distance* between each pair of nodes in a lovely triplet), respectively.

Constraints

 $\begin{array}{ll} \bullet & 1 \leq P \leq 5000 \\ \bullet & 2 \leq Q \leq 9 \end{array}$

Output Format

For the first line, print 2 space-separated integers, N (the number of nodes in the graph) and M (the number of edges in the graph), respectively.

On each line i of the M subsequent lines, print two space-separated integers, u_i and v_i , describing an edge between nodes u_i and v_i .

Your output must satisfy the following conditions:

• $0 \le N, M \le 100$ • $1 \le u_i, v_i \le N$

If there is more than one correct answer, print any one of them.

Sample Input

3 2

Sample Output

- 7 7
- 1 2
- 2 3 3 4
- 4 5
- 5 6
- 6 1

Explanation

There are exactly P=3 lovely triplets in this graph: $\{1,3,5\}$, $\{2,4,6\}$, and $\{2,6,7\}$.

Observe that each node in a lovely triplet is $oldsymbol{Q}=\mathbf{2}$ edges away from the other nodes composing the lovely triplet.