第一章 随机事件与概率

第一节

随机事件及其运算

Overview

- 1 随机现象
- 2 样本空间
- ③ 随机事件
- 4 事件间的关系
- 5 事件的运算
- 6 事件域
- 7 分割
- 8 课堂练习

随机现象

自然界中的有两类现象: 掷一枚硬币, 正面朝上? 反面朝上?

- 确定性现象
 - 每天早晨太阳从东方升起;
 - ② 水在标准大气压下加温到 100°C 沸腾;
- 随机现象
 - 掷一枚硬币, 正面朝上? 反面朝上?
 - ② 一天内进入某超市的顾客数;
 - ③ 某种型号电视机的寿命;

随机现象

- 随机现象:在一定的条件下,并不总出现相同结果的现象称为随机 现象.
- 特点:
 - 结果不止一个
 - ② 试验中只能出现其中一个结果
 - ③ 事先不知道哪一个会出现
- 随机现象的统计规律性: 随机现象的各种结果会表现出一定的规律性, 这种规律性称之为统计规律性.

样本空间

- 随机试验 (E) 对随机现象进行的观察、记录与实验. 它具有两个特点: 随机性、重复性.
- ② 样本点随机试验的每一个可能结果.
- ◎ 样本空间 (Ω) 随机试验的所有样本点构成的集合
- 两类样本空间:

离散样本空间样本点的个数为有限个或可列个 连续样本空间样本点的个数为无限不可列个

随机事件

- 随机事件: 随机现象的某些样本点组成的集合. Ω 的子集,常用 ABC...表示
- ② 基本事件: Ω 的单点集.
- 必然事件: (Ω)
- 不可能事件: (φ) 空集.
- ⑤ 随机变量表示随机现象结果的变量. 常用大写字母 X, Y, Z... 表示.

随机变量

表示随机现象结果的变量. 常用大写字母 X, Y, Z... 表示.

随机变量

事件的表示

- 在试验中,A 中某个样本点出现了, 就说 A 出现了, 发生了, 记为 A.
- 维恩图(Venn diagram).
- 事件的三种表示: 用语言、用集合、用随机变量.

事件间的关系

- 包含关系:A ⊂ B
 A 发生必然导致 B 发生
- 相等关系:A = B ⇔ A ⊂ B 而且 B ⊂ A
- 互不相容:A 和 B 不可能同时发生

- 并: A∪B
- 交: A∩B = AB
- 差: A − B
- 对立: Ā

- 并: A∪B (A 与 B 至少有一发生)
- 交: A∩B = AB (A 与 B 同时发生)
- 差: A − B (A 发生但 B 不发生)
- 对立: Ā (A 不发生)

事件运算的图示

表示什么事件运算?

事件运算的图示

表示什么事件运算?

Figure: $A \cup B$

事件运算的图示

表示什么事件运算?

Figure: A∪B 其他??

事件运算的图示

表示什么事件运算?

事件运算的图示

表示什么事件运算?

Figure: $A \cap B$

事件运算的图示

表示什么事件运算?

Figure: A∩B 其他??

事件运算的图示

表示什么事件运算?

事件运算的图示

表示什么事件运算?

Figure: A - B

事件运算的图示

表示什么事件运算?

Figure: A - B 其他??

德莫根公式

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A_i} \qquad \overline{\bigcap_{i=1}^{n} A_i} = \bigcup_{i=1}^{n} \overline{A_i}$$

$$\overline{\bigcap_{i=1}^{n} A_i} = \bigcup_{i=1}^{n} \overline{A_i}$$

回顾一下上节课内容:

记号	概率论	集合论
Ω		
ϕ		
ω		
$A \subset B$		
$AB = \phi$		
$A \cup B$		
AB		
A - B		
\overline{A}		

事件域

设 Ω 为样本空间, \mathcal{F} 是由 Ω 的子集组成的集合类, 若 \mathcal{F} 满足以下三点, 则称 \mathcal{F} 为一个事件域, 又称为 σ 域或 σ 代数.

- § 若 $A_n \in \mathcal{F}$, n = 1, 2, ..., 则 $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$

事件域

设 Ω 为样本空间, \mathcal{F} 是由 Ω 的子集组成的集合类, 若 \mathcal{F} 满足以下三点, 则称 \mathcal{F} 为一个事件域, 又称为 σ 域或 σ 代数.

- ② 若 $A \in \mathcal{F}$, 则 $\overline{A} \in \mathcal{F}$

例 1: 若样本空间只含有两个样本点 $\Omega = \{\omega_1, \omega_2\}$, 记 $A = \{\omega_1\}$, $\overline{A} = \{\omega_2\}$, 则其事件域为 $\mathcal{F} = \{\phi, A, \overline{A}, \Omega\}$.

分割

样本空间的分割

若 A₁,A₂,...,A_n 有

- A; 互不相容;
- $A_1 \cup A_2 \cup \dots \cup A_n = \Omega$

则称 A_1,A_2,\dots,A_n 为 Ω 的一个分割.

课堂练习

1

若 A 是 B 的子事件,则 $A \cup B = (?)$,AB = (?)

2

设 A 与 B 同时出现时 C 也出现,则(?)

- A∪B 是 C 的子事件;
- ② C 是 A∪B 的子事件;
- C 是 AB 的子事件.

课堂练习

3

设事件 A="甲种产品畅销, 乙种产品滞销", 则 A 的对立事件为 (?)

- 甲种产品滞销, 乙种产品畅销;
- ② 甲、乙两种产品均畅销;
- ③ 甲种产品滞销;
- 甲种产品滞销或者乙种产品畅销.

4

设 x 表示一个沿数轴做随机运动的质点位置,试说明下列各对事件间的 关系

- **1** $A = \{|x a| < \sigma\}, B = \{x a < \sigma\}$
- ② $A = \{x > 20\}, B = \{x \le 22\}$
- **3** $A = \{x > 22\}, B = \{x < 19\}$

作业

1. 试用 A、B、C 表示下列事件:

- A 出现
- ② 仅A出现
- ◎ 恰有一个出现
- 至少有一个出现
- 5 至多有一个出现
- 都不出现
- ☑ 不都出现
- 至少有两个出现

作业

1. 试用 A、B、C 表示下列事件:

- A 出现
- ② 仅A出现
- ◎ 恰有一个出现
- 至少有一个出现
- 5 至多有一个出现
- 都不出现
- ☑ 不都出现
- 至少有两个出现

2

若样本空间只含有三个样本点 $\Omega = \{\omega_1, \omega_2, \omega_3\}$, 记 $A = \{\omega_1\}$,

 $B = \{\omega_2\}, C = \{\omega_3\}$ 则其事件域为 \mathcal{F} ?

课本 P11: 1,2,5,6,9