cv and ml

segmentation continue

Владимир Глазачев cv в rosebud.ai

Input Image

Semantic Segmentation

Boundary Segmentation

Semantic Instance Segmentation

Компоненты классификации

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

- GlobalAvgPooling
- + BatchNorm
- + Residual connections
- + ..

Лосс в сегментации

cross entropy for pixel predictions

Метрика в сегментации

Медленно, не используем маски во время обучения

Медленно, не используем маски во время обучения

Для картинки 256х256, с окном 64х64 и шагом 8:

- 32*32 раз нужно прогнать инференс полностью
- результат будет 64x64 (256/8 x 256/8)
- какая тут может быть мгновенная оптимизация?

Для картинки 256х256, с окном 64х64 и шагом 8:

- 32*32 раз нужно прогнать инференс полностью
- результат будет 64x64 (256/8 x 256/8)
- какая тут может быть мгновенная оптимизация?

Для картинки 256х256, с окном 64х64 и шагом 8:

- 32*32 раз нужно прогнать инференс полностью
- результат будет 64x64 (256/8 x 256/8)
- какая тут может быть мгновенная оптимизация?

окно (вход) был 64х64х3, мы сжимаем 3 раза становится 8х8х256

Для картинки 256х256, с окном 64х64 и шагом 8:

- 32*32 раз нужно прогнать инференс полностью
- результат будет 64x64 (256/8 x 256/8)
- какая тут может быть мгновенная оптимизация?

окно (вход) был 64x64x3, мы сжимаем 3 раза становится 8x8x256 conv все равно на размер входа, монжо прогнать сразу всю картинку 256x256x3 -> 32x32x256 и применить dense к каждому 8x8 окошку

Хотим выкинуть dense слои с fix входом вообще чтобы считать за один проход

16x5x5 -> 400x1 -> dense layer -> 120x1 в dense 400x120 параметров ; фиксированный размер входа и выхода

16x5x5 -> 120x1x1 -> 120x1 -> dense layers

16x5x5 -> 120x1x1 -> 84x1x1 -> dense layer

16x5x5 -> 120x1x1 -> 84x1x1 -> 10x1x1 , 10 classes classifier

Умеем делать за 1 проход ; разрешение маски меньше чем картинки (сжимаем в сколько то раз)

Сегментация - а зачем сжимали?

Сегментация - а зачем сжимали?

Будет ли так работать? Какие проблемы?

Сегментация - а зачем сжимали?

Input: 3 x H x W

Predictions: H x W

receptieve field растет примерно линейно от количества и размеров сверток, сжимая увеличиваем мультипликативно -> будем сжимать

Сегментация - сохраняем размеры

Fully Convolutional Networks for Semantic Segmentation, Shelhamer et al., 2015

Для начала попробуем просто сделать upscaling нашей мапы вероятностей

Сегментация - сохраняем размеры

Fully Convolutional Networks for Semantic Segmentation, Shelhamer et al., 2015

Для начала попробуем просто сделать upscaling нашей мапы вероятностей

Как работал upsampling в FCN

Проблемы?

Давайте разжимать

Learning Deconvolution Network for Semantic Segmentation, 2015

Давайте разжимать - unpooling

Давайте не очень сильно сжимать

UNET

ключевая идея - skip connection

Upsampling

Сейчас часто используют просто комбинацию из upsampling+conv

Input: 2 x 2 Output: 4 x 4

4x4

Итого

Что сейчас?

- анпулинги в таком виде особо не используются, можно просто использовать какой то upsampling + conv layer
- сегментация хорошо решается, если у вас нормальный датасет то сделать бейзлайн - практически однокнопочная задача; потом уже в зависимости от бизнес/академ задачи нужно думать
- зоопарк бенчмарков так что сложн сравниваться
- https://storage.googleapis.com/openimages/web/index.html если общая задача сегментировать все подряд то можно начать с этого
- вы можете брать претрейн модели и дообучать на вашу задачу, вы можете в своей unet like архитектуре брать енкодер обученный на классификацию

сегментация - лосс и проблемы

- кросентропия (попикселная класификация)
- может быть довольно unbalanced
- в какой то момент вы умеете хорошо решать задачу так что важны становятся границы а оно не отбалансированно
- iou как метрика больше похоже на то что мы хотим
- дифф версии іои этого можно добавлять в лосс

Аугментации

TestTime аугментации

Все еще кот так что можно аггрегировать, всегда (когда имеет смысл) может улучшить результат, но дорого

Ссылки

- в части про архитектуры многие картинки из курса по compvision michigan university https://www.youtube.com/watch?v=XaZIIVrIO-Q&t=3282s
- картинки из лекций Сергей Николенко https://www.youtube.com/watch?v=xhifn1K8sxM&t=1549s
- если есть вопросы можно мне написать в телеграмме @vladgl