

Near-linear Time Gaussian Process Optimization with Adaptive Batching and Resparsification

D. Calandriello* ¹, **L. Carratino*** ², A. Lazaric ³, M. Valko ¹, L. Rosasco ^{2,4}

* equal contribution. 1 DeepMind, 2 MaLGa - UniGe, 3 Facebook, 4 MIT - IIT

Set of candidates \mathcal{A}

Set of candidates A

for $t = 1, \ldots, T$:

- (1) Select candidate
- (2) Receive noisy feedback
- (3) Update model

Set of candidates A

for $t = 1, \ldots, T$:

- (1) Select candidate
- (2) Receive noisy feedback
- (3) Update model

Set of candidates A

for $t = 1, \ldots, T$:

- (1) Select candidate
- (2) Receive noisy feedback
- (3) Update model

Set of candidates A

for $t = 1, \ldots, T$:

- (1) Select candidate
- (2) Receive noisy feedback
- (3) Update model

Set of candidates A

for $t = 1, \ldots, T$:

- (1) Select candidate
- (2) Receive noisy feedback
- (3) Update model

Set of candidates A

for $t = 1, \ldots, T$:

- (1) Select candidate
- (2) Receive noisy feedback
- (3) Update model

Set of candidates A

for $t = 1, \ldots, T$:

- (1) Select candidate
- (2) Receive noisy feedback
- (3) Update model

Set of candidates A

for $t = 1, \ldots, T$:

- (1) Select candidate
- (2) Receive noisy feedback
- (3) Update model

Set of candidates $A = \{x_1, \dots, x_A\} \subset \mathbb{R}^d$,

for
$$t = 1, \ldots, T$$
:

- (1) Select candidate
- (2) Receive noisy feedback
- (3) Update model

Set of candidates $\mathcal{A} = \{x_1, \dots, x_A\} \subset \mathbb{R}^d$, unknown reward function $f : \mathcal{A} \to \mathbb{R}$

for
$$t = 1, \ldots, T$$
:

- (1) Select candidate
- (2) Receive noisy feedback
- (3) Update model

Set of candidates $\mathcal{A} = \{x_1, \dots, x_A\} \subset \mathbb{R}^d$, unknown reward function $f : \mathcal{A} \to \mathbb{R}$

for
$$t = 1, \ldots, T$$
:

- (1) Select candidate x_t using model u_t (ideally $u_t \approx f$)
- (2) Receive noisy feedback
- (3) Update model

Set of candidates $\mathcal{A} = \{x_1, \dots, x_A\} \subset \mathbb{R}^d$, unknown reward function $f : \mathcal{A} \to \mathbb{R}$

for
$$t = 1, \ldots, T$$
:

- (1) Select candidate x_t using model u_t (ideally $u_t \approx f$)
- (2) Receive noisy feedback $y_t = f(x_t) + \eta_t$
- (3) Update model

Set of candidates $\mathcal{A} = \{x_1, \dots, x_A\} \subset \mathbb{R}^d$, unknown reward function $f : \mathcal{A} \to \mathbb{R}$

for
$$t = 1, \ldots, T$$
:

- (1) Select candidate x_t using model u_t (ideally $u_t \approx f$)
- (2) Receive noisy feedback $y_t = f(x_t) + \eta_t$
- (3) Update model u_t

Set of candidates $\mathcal{A} = \{x_1, \dots, x_A\} \subset \mathbb{R}^d$, unknown reward function $f : \mathcal{A} \to \mathbb{R}$

for
$$t = 1, \ldots, T$$
:

- (1) Select candidate x_t using model u_t (ideally $u_t \approx f$)
- (2) Receive noisy feedback $y_t = f(x_t) + \eta_t$
- (3) Update model u_t

Performance measure: cumulative regret w.r.t. best x_*

$$R_T = \sum_{t=1}^T f(x_*) - f(x_t)$$
.

Set of candidates $\mathcal{A} = \{x_1, \dots, x_A\} \subset \mathbb{R}^d$, unknown reward function $f : \mathcal{A} \to \mathbb{R}$

for
$$t = 1, \ldots, T$$
:

- (1) Select candidate x_t using model u_t (ideally $u_t \approx f$)
- (2) Receive noisy feedback $y_t = f(x_t) + \eta_t$
- (3) Update model u_t

Performance measure: cumulative regret w.r.t. best x_*

$$R_{T} = \sum_{t=1}^{T} f(x_{*}) - f(x_{t}).$$

Use Gaussian process/kernelized Bandit to model f

Gaussian Process Optimization

 $\ensuremath{\underline{\bullet}}$ Well studied: exploration $\ensuremath{\mathsf{vs}}$ exploitation \to no-regret (low error) $\ensuremath{\underline{\bullet}}$

Image from Berkeley's CS 188

Gaussian Process Optimization

 $\ensuremath{\underline{\bullet}}$ Well studied: exploration $\ensuremath{\mathsf{vs}}$ exploitation \to no-regret (low error) $\ensuremath{\underline{\bullet}}$

🥞 performance vs scalability ? 🥞

Image from Berkeley's CS 188

Gaussian Process Optimization

 \odot Well studied: exploration vs exploitation \rightarrow no-regret (low error) \odot

🤔 performance vs scalability ? 😌

🙂 Batch BKB: no-regret and scalable 🙂

Image from Berkeley's CS 188

Experimental scalability

Computational scalability

Experimental scalability

Computational scalability

Experimental scalability

sequential

batch

Computational scalability

VS

٧S

approximate GP

Experimental scalability

Computational scalability

VS

👱 Batching and approximations increase regret 🐱

$$X_t = \{x_1, \dots, x_t\}, Y_t = \{y_1, \dots, y_t\}$$

Exact GP-UCB:

$$u_t(\,\cdot\,) = \mu(\,\cdot\,|\,X_t,Y_t)$$

$$X_t = \{x_1, \dots, x_t\}, Y_t = \{y_1, \dots, y_t\}$$

Exact GP-UCB:

$$u_t(\,\cdot\,) = \mu(\,\cdot\,|\,X_t,Y_t) + \beta_t\sigma(\,\cdot\,|\,X_t)$$

$$X_t = \{x_1, \dots, x_t\}, Y_t = \{y_1, \dots, y_t\}$$

Exact GP-UCB:

$$u_t(\,\cdot\,) = \mu(\,\cdot\,|\,X_t,Y_t) + \beta_t\sigma(\,\cdot\,|\,X_t)$$

[Sri+10]: $u_{\rm t}$ valid UCB.

$$X_t = \{x_1, \dots, x_t\}, Y_t = \{y_1, \dots, y_t\}$$

Exact GP-UCB:

$$u_t(\,\cdot\,) = \mu(\,\cdot\,|\,X_t,Y_t) + \beta_t\sigma(\,\cdot\,|\,X_t)$$

[Sri+10]: $u_{\rm t}$ valid UCB.

Sparse GP-UCB:

$$\widetilde{\boldsymbol{\mathfrak{u}}}_{t}(\,\cdot\,) = \widetilde{\boldsymbol{\mu}}(\,\cdot\,|\,\boldsymbol{X}_{t},\boldsymbol{Y}_{t},\boldsymbol{\mathop{\mathcal{D}}}_{t}) + \widetilde{\boldsymbol{\beta}}_{t}\widetilde{\boldsymbol{\sigma}}(\,\cdot\,|\,\boldsymbol{X}_{t},\boldsymbol{\mathop{\mathcal{D}}}_{t})$$

with $\mathcal{D}_t \subset X_t$ inducing points

$$X_t = \{x_1, \dots, x_t\}, Y_t = \{y_1, \dots, y_t\}$$

Exact GP-UCB:

$$u_t(\,\cdot\,) = \mu(\,\cdot\,|\,X_t,Y_t) + \beta_t\sigma(\,\cdot\,|\,X_t)$$

[Sri+10]: u_t valid UCB.

Sparse GP-UCB:

$$\widetilde{u}_t(\,\cdot\,) = \widetilde{\mu}(\,\cdot\,|\,X_t,Y_t,{\color{red} {\color{blue} {\color{blue} D}}}_t) + \widetilde{\beta}_t\widetilde{\sigma}(\,\cdot\,|\,X_t,{\color{blue} {\color{blue} {\color{blue} D}}}_t)$$

with $\mathfrak{D}_{\mathsf{t}} \subset X_{\mathsf{t}}$ inducing points

[Cal+19]: \widetilde{u}_t valid UCB if \mathcal{D}_t updated at every t.

Performance vs Scalability

Better performance: collect more feedback, update inducing points (resparsify)

Performance vs Scalability

Better performance: collect more feedback, update inducing points (resparsify) $\widetilde{u}_t(\,\cdot\,) = \widetilde{\mu}(\,\cdot\,|\,X_t,Y_t,\,\mathcal{D}_t) + \widetilde{\beta}_t\widetilde{\sigma}\,\,(\,\cdot\,|\,X_t,\,\mathcal{D}_t)$ Worse scalability: experimental cost, resparsification cost

Performance vs Scalability

Delayed Resparsification

New adaptive batching rule

no-resparsify until
$$\sum_{\mathfrak{i} \in \mathsf{Batch}} \widetilde{\sigma}(x_{\mathfrak{i}}) \geqslant 1$$

Delayed Resparsification

New adaptive batching rule

no-resparsify until
$$\sum_{\mathfrak{i} \in \mathsf{Batch}} \widetilde{\sigma}(x_{\mathfrak{i}}) \geqslant 1$$

"Not too big" Lemma: valid UCB

Delayed Resparsification

New adaptive batching rule

no-resparsify until
$$\sum_{\mathfrak{i} \in \mathsf{Batch}} \widetilde{\sigma}(x_{\mathfrak{i}}) \geqslant 1$$

"Not too big" Lemma: valid UCB

"Not too small" Lemma: batch-size $= \Omega(t)$

Batch-BKB

Theorem

With high probability **Batch-BKB** achieves no-regret with time complexity $O(Td_{eff}^2)$, where $d_{eff} \ll T$ is the effective dimension / degrees of freedom of the GP.

Batch-BKB

Theorem

With high probability **Batch-BKB** achieves no-regret with time complexity $O(Td_{eff}^2)$, where $d_{eff} \ll T$ is the effective dimension / degrees of freedom of the GP.

Comparisons:

- $\underline{\bullet}$ Same regret of GP-UCB/IGP-UCB and better scalability (form $O(T^3)$ to $O(Td_{eff}^2)$)
- Larger batches than GP-BUCB
- Better regret and better scalability than async-TS

In practice: Scalability

In practice: Performance

NAS-bench-101 Regret / Regret uniform

NAS-bench-101 Simple Regret

Thank you

