第10讲问题的复杂度分析(上)

罗国杰

gluo@pku.edu.cn

2025年春季学期

算 P 法 K 设山 分 析 实 验

Travelling Salesman Problem

问题的复杂度

~

"最优"算法的复杂度

寻找最优算法的途径

寻找最优算法的途径

(设计算法)设计算法 A 并求 $W_A(n)$,得到求解该问题<mark>算法类</mark>最优算法的复杂度上界

(分析下界) 寻找函数 F(n),使得对任何算法都存在规模为 n 的输入使得算法在这个输入下至少要做 F(n) 次基本运算,得到该算法类最坏时间复杂度的一个下界

(判断) 如果 $W_A(n) = F(n)$ 或 $W_A(n) = \Theta(F(n))$, 则 A 是最优的.

(判断) 如果 $W_A(n) > F(n)$, A 不是最优的或者 F(n) 的下界过低.

(重新设计算法) 改进 A 或设计新算法 A' 使得 $W_{A'}(n) < W_{A}(n)$.

(重新分析下界) 重新证明新下界 F'(n) 使得 F'(n) > F(n).

重复上述两步, 最终得到 $W_{A'}(n) = F'(n)$ 或者 $W_{A'}(n) = \Theta(F'(n))$.

主要内容

- 平凡下界
- ▶ 决策树模型
 - ▶检索问题的复杂度下界分析
 - ▶排序问题的复杂度下界分析
 - ▶冒泡排序、堆排序、排序算法的决策树与时间复杂度下界
- 选择问题的复杂度下界分析
 - ▶找最大和最小问题、找第二大问题、找中位数的问题

平凡下界 (Ordinary Lower Bound)

- 算法的输入规模和输出规模是它的平凡下界
- 问题: 写出所有的 n 阶置换
 - ▶ 求解的时间复杂度下界为 Ω (n!)
- 问题: 求 n 次实系数多项式在给定x的值
 - ▶ 求解的时间复杂度下界为 Ω (n)
- 问题: 求两个 n×n 矩阵的乘积
 - ▶求解的时间复杂度下界是 Ω (n²)
- 问题: 货郎问题
 - ▶ 求解的时间复杂度下界是 Ω (n²)

检索问题的复杂度: 顺序检索算法的复杂度分析

检索问题: 给定按递增顺序排列的数组 L (项数 $n \ge 1$)和数 x, 如果 x 在 L 中, 输出 x 的下标; 否则输出 0.

算法 顺序捡索

输入: *L*, *x*

输出: *j*

- 1. *j*←1
- 2. while $j \le n$ and $L(j) \ne x$ do $j \leftarrow j+1$
- 3. if j > n then $j \leftarrow 0$

分析: 假设 x 在L中每个位置和空隙的概率都是1/(2n+1) W(n)=n $A(n)=[(1+2+...+n)+n(n+1)]/(2n+1)\approx 3n/4.$

检索问题的复杂度: 二分捡索的最坏时间复杂度

定理1
$$W(n) = \lfloor \log n \rfloor + 1$$
 $n \ge 1$

证 对n归纳 n=1时, $\triangle W(1)=1$, $\triangle T=\lfloor \log 1\rfloor+1=1$. 假设对一切k, $1 \le k < n$, 命题为真, 则

$$W(n) = 1 + W(\lfloor \frac{n}{2} \rfloor)$$

$$= 1 + \lfloor \log \lfloor \frac{n}{2} \rfloor \rfloor + 1$$

$$= \begin{cases} \lfloor \log n \rfloor + 1 & n \end{pmatrix}$$

$$= \lfloor \log (n-1) \rfloor + 1 & n \end{pmatrix}$$

$$= \lfloor \log n \rfloor + 1$$

检索问题的复杂度:二分捡索的平均时间复杂度(1/2)

令 $n=2^k-1$, S_t 是算法做 t 次比较的输入个数, $1 \le t \le k$ 则

$$S_1 = 1 = 2^0$$
, $S_2 = 2 = 2^1$, $S_3 = 2^2$, $S_4 = 2^3$, ..., $S_t = 2^{t-1}$, $t < k$
 $S_k = 2^{k-1} + n + 1$

其中 2^{k-1} 为 x 在表中做 k 次比较的输入个数

$$A(n) = \frac{1}{2n+1}(1S_1 + 2S_2 + \dots + kS_k)$$

检索问题的复杂度: 二分捡索的平均时间复杂度(2/2)

$$A(n) = \frac{1}{2n+1} (1S_1 + 2S_2 + ... + kS_k)$$

$$= \frac{1}{2n+1} \left[\sum_{t=1}^{k} t 2^{t-1} + k(n+1) \right]$$

$$= \frac{1}{2n+1} \left[(k-1)2^k + 1 + k(n+1) \right]$$

$$\approx \frac{k-1}{2} + \frac{k}{2} = k - \frac{1}{2} = \left\lfloor \log n \right\rfloor + \frac{1}{2}$$

检索问题的决策树

设A是一个捡索算法,对于给定输入规模n,A的一棵决策树是一棵二叉树,其结点被标记为1, 2, ..., n,且标记规则是:

- (1) 根据算法A,首先与x 比较的L 的项的下标标记为树根.
- (2) 假设某结点被标记为i,
 - ▶i 的左儿子是: 当 x < L(i)时,算法A下一步与x比较的项的下标
 - ▶i 的右儿子是: 当x>L(i)时,算法A下一步与x比较的项的下标
 - ▶若 x < L(i) 时算法 A 停止,则 i 没有左儿子.
 - ▶若 x>L(i) 时算法 A 停止,则 i 没有右儿子.

检索问题的决策树: 实例

顺序捡索算法和二分捡索算法的决策树,n=15

给定输入,算法 4 将从根开始,沿一条路径前进,直到某个结点为止。所执行的基本运算次数是这条路径的结点个数。最坏情况下的基本运算次数是树的深度+1。

14 决策树(Decision Tree)

- ▶ 决策树是一棵二叉树, 对于给定问题(以比较运算作为基本运算)规定一个决策 树的构造规则. 求解这个问题的不同算法所构造的决策树结构不一样.
- ▶ 给定一个算法的决策树. 对于任何输入实例,算法将从树根开始,沿一条路径向 下,在每个结点做一次基本操作(比较).然后根据比较结果(<,=,>)走到某个 子结点或者在该处停机. 对于给定实例的计算恰好对应了一条从树根到树叶或者 某个内部结点的路径.
- 给定一个算法和输入的规模 n, 对于不同的输入, 算法将在对应决策树的某个结 点(树叶或者内部结点)停机. 将该结点标记为一类输入. 问题的输入分类的数量 对应于决策树的停机结点数(结点总数或者叶结点数)

决策树与问题复杂度

▶ 决策树的特点:

- ▶ 以比较作基本运算的算法模型
- ▶一个问题确定了一类决策树, 具有相同的构造规则, 该决策树类决定了求解该问题的一个算法类
- ▶ 结点数 (或树叶数) 等于输入分类的总数
- ▶最坏情况下的时间复杂度对应于决策树的深度
- ▶ 平均情况下的时间复杂度对应于决策树的平均路径长度

■ 用决策树模型界定确定问题难度

- ▶给定结点数(或树叶数)的决策树的深度至少是多少?
- ▶给定结点数(或树叶数)的决策树的平均路径长度至少是多少?

决策树: 二叉树的性质

命题1 在二叉树的 t 层至多 2^t 个结点(根为0层)

命题2 深度为 d 的二叉树至多 2^{d+1}-1 个结点.

命题3 n个结点的二叉树的深度至少为 $\lfloor \log n \rfloor$.

命题4 设t为二叉树的树叶个数,d为树深,如果树的每个内结点都有2个儿子,则t≤2d.

命题4归纳法: d=0, 命题为真。假设对小于d 的深度为真,设 T 深度为 d, 树叶数 t。取走 T 的 d 层 树叶,得到T'。T" 的深度为d-1,树叶数 t"。

$$t=t'+x/2 \le 2^{d-1}+2^{d-1}=2^d$$
 ("≤"由归纳假设和命题1得到)

检索问题的复杂度分析

- 证 由命题3, n 个结点的决策树的深度 d 至少为 log n , 故
 W(n) = d+1 = logn +1.

■ 结论: 对于有序表搜索问题,在以比较作为基本运算的算法类中,二分法在最坏情况下是最优的.

检索问题的复杂度分析

- 检索问题
 - ▶ 给定按递增顺序排列的数组 L (项数 $n \ge 1$) 和数 x,
 - ▶如果x在L中,输出x的下标;否则输出0。
- ■思考
 - ▶ 根据平凡下界,检索问题输入数组 L 导致至少 $\Omega(n)$ 复杂度
 - ▶上述分析的 [logn] +1 次比较是什么?
- 检索问题 (Llogn] +1 下界版)
 - ▶给定O(1)时间查询递增顺序排列的数组 L (项数 $n \ge 1$) 的查询器,以及数 x,

• 查询器
$$g(i,x) = \begin{cases} "L(i) < x" & \text{如果 } L(i) < x \\ "L(i) = x" & \text{如果 } L(i) = x \end{cases}$$
 (将 L 排除出本问题的输入)
$$"L(i) > x" & \text{如果 } L(i) > x$$

▶如果x在L中,输出x的下标;否则输出0。

排序问题的时间复杂度分析

- ■冒泡排序
 - ▶最坏和平均复杂性均为 Θ(n²)
- ▶ 快速排序
 - ▶ 最坏情况 O(n²); 平均情况 O(nlogn)
- → 二分归并排序
 - ▶ 最坏情况 O(nlogn); 平均情况 O(nlogn)
- 堆排序
 - ▶最坏情况 O(nlogn); 平均情况 O(nlogn)
- 排序问题的复杂度下界

排序问题的决策树

考虑以比较运算作为基本运算的排序算法类,

任取算法 A, 输入 $L=\{x_1, x_2, ..., x_n\}$, 如下定义决策树:

- 1. A第一次比较的元素为 x_i, x_j ,那么树根标记为 i, j
- 2. 假设结点 k 已经标记为 i, j,比较 x_i 和 x_j (1) $x_i < x_j$

若算法结束, k 的左儿子标记为输出;

若下一步比较元素 x_p , x_q , 那么 k 的左儿子标记为 p, q (2) $x_i > x_j$

若算法结束, k 的右儿子标记为输出;

若下一步比较元素 x_p, x_q , 那么 k 的右儿子标记为 p,q

一棵冒泡排序的决策树

设输入为 x_1, x_2, x_3 ,冒泡排序的决策树如下

任意输入: 对应了决策树树中从树根到树叶的一条路经,

算法最坏情况下的比较次数:树深

删除非二叉的内结点(灰色结点),得到二叉树叫做 B-树 B-树深度不超过决策树深度,B-树有n!片树叶.

排序问题的决策树: 引理

引理1 设 t 为B-树中的树叶数, d 为树深, 则 $t \le 2^d$.

证明 归纳法.

d=0,树只有1片树叶,深度为0,命题为真. 假设对一切小于d 的深度为真,设 T 是一棵深度为 d 的树,树叶数为 t. 取走 T 的 d 层的 x 片树叶,得到树 T ". 则 T "的深度为d-1,树叶数 t "。那么

$$t'=(t-x)+x/2=t-x/2$$
, $x \le 2^d$
 $t=t'+x/2 \le 2^{d-1}+2^{d-1}=2^d$

排序问题的决策树:最坏情况复杂度的下界

引理2 对于给定的n,任何通过比较对n 个元素排序的算法的决策树的深度至少为 $\lceil \log n \rceil$.

证明 判定树的树叶有n!个,由引理1得证.

定理4 任何通过比较对 n 个元素排序的算法在最坏情况下的时间复杂性是 $\lceil \log n! \rceil$, 近似为 $n \log n - 1.5n$.

证明 最坏情况的比较次数为树深,由引理2树深至少为

$$\log n! = \sum_{j=1}^{n} \log j \ge \int_{1}^{n} \log x dx = \log e \int_{1}^{n} \ln x dx$$
$$= \log e (n \ln n - n + 1)$$
$$= n \log n - n \log e + \log e$$

 $\approx n \log n - 1.5n$

结论: 归并排序和堆排序算法在最坏情况阶达到最优.

排序问题的决策树: 平均情况分析

epl(T):假设所有的输入等概分布,令 epl(T) 表示 B-树中从根到树叶的所有路径长度之和,epl(T)/n! 的最小值对应平均情况复杂度的下界.

思路:分析具有最小 epl(T) 值的树的结构求得这个最小值.

引理3 在具有 t 片树叶的所有 B-树中,树叶分布在两个相邻层上的树的 epl 值最小

证明: 反证法.

设树 T 的深度为 d,假设树叶 x 在第 k 层,k < d-1. 取 d-1 层的某个结点 y,y 有两个儿子是第 d 层的树叶.将 y 的两个儿子作为 x 的儿子得到树 T'.

排序问题的决策树: 具有最小 epl 值的树结构

$$epl(T) - epl(T') = (2d+k) - [(d-1)+2(k+1)]$$
$$= 2d+k - d+1-2k-2 = d-k-1 > 0 \qquad (d > k+1)$$

T'的树叶相距层数小于 T的树叶相距的层数,而 T'的 epl 值小于 T的 epl 值

排序问题的决策树: epl 值的下界

引理4 具有t片树叶且 epl 值最小的 B-树 T 满足 epl $(T) = t \lfloor \log t \rfloor + 2(t - 2^{\lfloor \log t \rfloor})$

证明:由引理1 树 T的深度 $d \ge \lceil \log t \rceil$,由引理3 树 T只有 d 和 d-1层有树叶.

Case1 $t = 2^k$. 必有d = k, epl $(T) = t d = t k = t \lfloor \log t \rfloor$

排序问题的决策树: epl 值的下界 (续)

Case2 $t \neq 2^k$.

设d层和d-1层树叶数分别为x, y,

$$x + y = t$$
$$x/2 + y = 2^{d-1}$$

解得 $x = 2t - 2^d$, $y = 2^d - t$.

$$\operatorname{epl}(T) = x d + y (d-1)$$

$$= (2t - 2^d)d + (2^d - t)(d - 1)$$

$$= td - 2^{d} + t = t(d-1) + 2(t-2^{d-1})$$

$$= t \lfloor \log t \rfloor + 2(t - 2^{\lfloor \log t \rfloor}) \quad (\lfloor \log t \rfloor = d - 1)$$

排序问题的决策树: 平均复杂度的下界

定理4 在输入等概分布下任何通过比较对n个项排序的算法平均比较次数至少为 $\lfloor \log n! \rfloor$, 近似为 $n \log n - 1.5 n$.

证明: 算法类中任何算法的平均比较次数是该算法决策树T的 epl(T)/n!, 根据引理4

$$A(n) \ge \frac{1}{n!} epl(T)$$

$$= \frac{1}{n!} (n! \lfloor \log n! \rfloor + 2(n! - 2^{\lfloor \log n! \rfloor}))$$

$$= \lfloor \log n! \rfloor + \varepsilon, \qquad 0 \le \varepsilon < 1$$

$$\approx n \log n - 1.5 n$$

$$0 \le n! - 2^{\lfloor \log n! \rfloor} < n! - 2^{\log n! - 1} = n! - \frac{n!}{2} = \frac{n!}{2}$$

结论: 堆排序在平均情况下阶达到最优. 2

29 几种排序算法的比较

算法	最坏情况	平均情况	占用空间	最优性
冒泡排序	$O(n^2)$	$O(n^2)$	原地	
快速排序	$O(n^2)$	$O(n\log n)$	$O(\log n)$	平均最优
归并排序	$O(n\log n)$	$O(n\log n)$	O(n)	最优
堆排序	$O(n\log n)$	$O(n\log n)$	原地	最优

选择问题

问题: 从给定的集合 L 中选择第 i 小的元素不妨设 L 为 n 个不等的实数

i=1,称为最小元素;

i=n,称为最大元素;

i=n-1,称为第二大元素;

位置处在中间的元素, 称为中位元素

当n为奇数时,中位数只有1个,i=(n+1)/2;

当n为偶数时,中位数有2个,i=n/2,n/2+1. 也可以规定其中的一个

选最大

算法 FindMax

```
输入: n 个数的数组 L 输出: max, k

1. max \leftarrow L[1]; k \leftarrow 1
2. for i \leftarrow 2 to n do
3. if max < L[i]
4. then max \leftarrow L[i]
5. k \leftarrow i
```

6. return max, k

算法最坏情况下的时间复杂度 W(n)=n-1

找最大问题的复杂度

下界: 在 n 个数的数组中找最大的数,以比较做基本运算的算法类中的任何算法在最坏情况下至少要做 n-1 次比较.

证 因为MAX是唯一的,其它的 n-1 个数必须在比较后被淘汰。一次比较至多淘汰一个数,所以至少需要 n-1 次比较.

结论: FindMax 算法是最优算法.

选择算法的有关结果

	算法	最坏情况	空间
选最大	顺序比较	<i>n</i> –1	<i>O</i> (1)
选最大	顺序比较	2 <i>n</i> -3	<i>O</i> (1)
和最小	算法 FindMaxMin	$\lceil 3n/2 \rceil - 2$	<i>O</i> (1)
选第二大	顺序比较	2 <i>n</i> -3	<i>O</i> (1)
処	锦标赛方法	$n+\lceil \log n \rceil -2$	O(n)
选中位数	排序后选择	$O(n\log n)$	$O(\log n)$
20中12000	算法Select	$O(n) \sim 2.95n$	$O(\log n)$

选最大算法 FindMax是最优的算法

选最大和最小

通常算法: 顺序比较

复杂性: W(n)=2n-3

算法 FindMaxMin

输入: n个数的数组L

输出: max, min

- 1. 将n个元素两两一组分成 $\lfloor n/2 \rfloor$ 组
- 2. 每组比较,得到 $\lfloor n/2 \rfloor$ 个较小和 $\lfloor n/2 \rfloor$ 个较大
- 3. 在 [n/2] 个 (n为奇数,是 [n/2]+1) 较小中找最小min
- 4. 在 $\lceil n/2 \rceil$ 个(n为奇数,是 $\lfloor n/2 \rfloor + 1$)较大中找最大max

复杂性: 行2 比较 $\lfloor n/2 \rfloor$ 次,行3--4 比较至多2 $\lceil n/2 \rceil$ -2次, $W(n) = \lfloor n/2 \rfloor + 2 \lceil n/2 \rceil - 2 = n + \lceil n/2 \rceil - 2 = \lceil 3n/2 \rceil - 2$

选择算法的时间复杂度分析

下界证明方法:构造最坏输入/对手论证 (adversary arguments)

- ► 任意给定一个算法 A, A 对于任意输入 x 都存在一个确定的操作序列 τ
- ▼ 中的操作分成两类:
 - ▶决定性的:能够对确定输出结果提供有效信息
 - ▶ 非决定性的:对确定结果没有帮助的冗余操作
- 根据算法 A 构造某个输入实例 x, 使得 A 对 x 的操作序列 τ 包含尽量多的非决定性操作。
- 给出冗余操作+必要的操作的计数公式

选最大与最小算法

- 定理: 任何通过比较找最大和最小的算法至少需要「3n/2]-2次比较。
- 证明思路:任给算法A,根据算法 A 的比较结果构造输入T,使得 A 对 T 至少做「3n/2-2 次比较。
- 证:不妨设n个数彼此不等,A为任意找最大和最小的算法。max是最大,A必须确定有n-1个数比max小,通过与max的比较被淘汰。min是最小,A也必须确定有n-1个数比min大,通过与min的比较而淘汰.总共需要2n-2个信息单位。

基本运算与信息单位

数的状态标记及其含义:

N: 没有参加过比较 W: 赢

L:输WL:赢过且至少输1次

如果比较后数的状态改变,则提供信息单位,状态不变不提供信息单位,每增加1个W提供1个信息单位 每增加1个L提供1个信息单位.

两个变量通过一次比较增加的信息单位个数不同: 0,1,2

case1: N,N → W,L: 增加2个信息单位

case2: W,N → W,L: 增加1个信息单位

case3: W,L → W,L: 增加0个信息单位

算法输出与信息单位

算法输出的条件:

n-2 个数带有 W 和 L 标记,最大数只带 W 标记,最小数只带 L 标记,总计 2n-2个信息单位

对于任意给定的算法,构造输入的原则是:

根据算法的比较次序,针对每一步参与比较的两个变量的状态,调整对参与比较的两个变量的赋值,使得每次比较后得到的信息单位数达到最小. 从而使得为得到输出所需要的2*n*-2个信息单位,该算法对所构造的输入至少要做「3*n*/2]-2次比较.

对输入变量的赋值原则

x与y的状态	赋值策略	新状态	信息单位	
N,N	<i>x>y</i>	W,L	2	
W,N; WL,N	<i>x>y</i>	W,L; WL,L	1	
L,N	<i>x</i> < <i>y</i>	L,W	1	
W,W	<i>x>y</i>	W,WL	1	
L,L	x>y	WL,L	1	
W,L; WL,L;	<i>x>y</i>	不变	0	
W,WL				
WL,WL	保持原值	不变	0	

一个赋值的实例

每个步骤分解: ① 算法发起比较请求; ② 构造最坏输入; ③ 返回比较结果

步比较比		比较	x_1		x_2		x_3		x_4		x_5		x_6	
少 比较	比较 结果	状态值		状态值		状态值		状态值		状态值		状态值		
JAK	郊川水	111不	N	*	N	*	N	*	N	*	N	*	N	*
1	x_1, x_2	$x_1>x_2$	W	20	L	10	N	*	N	*	N	*	N	*
2	x_1, x_5	$x_1 > x_5$	W	20	L	10	N	*	N	*	L	5	N	*
3	x_3, x_4	$x_3 > x_4$	W	20	L	10	W	15	L	8	L	5	N	*
4	x_3, x_6	$x_3>x_6$	W	20	L	10	W	15	L	8	L	5	L	12
5	x_3, x_1	$ x_3>x_1 $	WL	<u>20</u>	L	10	W	<u>25</u>	L	8	L	5	L	12
6	x_2, x_4	$x_{2}>x_{4}$	WL	20	WL	<u>10</u>	W	25	L	8	L	5	L	12
7	x_5, x_6	$x_5 > x_6$	WL	20	WL	10	W	25	L	8	WL	<u>5</u>	L	3
8	x_6, x_4	$x_6>x_4$	WL	20	WL	10	W	25	L	<u>2</u>	WL	5	WL	<u>3</u>

构造的输入为(20, 10, 25, 2, 5, 3)

问题复杂度的下界

为得到2n-2个信息单位,对上述输入A至少做 $\lceil 3n/2 \rceil - 2$ 次比较. 一次比较得到2个信息单位只有case1. A至多有 $\lfloor n/2 \rfloor$ 个case1,至多得到 $2 \lfloor n/2 \rfloor \le n$ 个信息单位. 其它case, 1次比较至多获得1个信息单位,至少还需要 n-2次比较.

当 n 为偶数,A做的比较次数至少为

$$\lfloor n/2 \rfloor + n-2 = 3n/2 - 2 = \lceil 3n/2 \rceil - 2$$

当n为奇数,A做的比较次数至少为

$$\lfloor n/2 \rfloor + n-2 + 1 = (n-1)/2 + 1 + n-2 = \lceil 3n/2 \rceil - 2$$

结论: FindMaxMin是最优算法

找第二大

通常算法: 顺序比较

- 1. 顺序比较找到最大max;
- 2. 从剩下的n-1个数中找最大,就是第二大second

复杂度: W(n)=n-1+n-2=2n-3

锦标赛算法:

两两分组比较,大者进入下一轮每个元素用数表记录每次比较时小于自己的元素

锦标赛算法

算法 FindSecond

输入: n个数的数组L

输出: Second

- 1. $k \leftarrow n$
- 2. 将 k 个元素两两一组,分成 $\lfloor k/2 \rfloor$ 组
- 3. 每组的2个数比较,找到较大的数
- 4. 将被淘汰的较小的数在淘汰它的数所指向的链表中做记录
- 5. if k 为奇数 then $k \leftarrow \lfloor k/2 \rfloor + 1$
- 6. else $k \leftarrow \lfloor k/2 \rfloor$
- 7. if k>1 then goto 2
- 8. *max* ←最大数
- 9. $Second \leftarrow max$ 的链表中的最大

时间复杂度分析

命题2.2 max在第一阶段的分组比较中总计进行了 $\lceil \log n \rceil$ 次比较.

证 设本轮参与比较的有 t 个元素,经过分组淘汰后进入下一轮的元素数至多是 $\lceil t/2 \rceil$. 假设 k 轮淘汰后只剩下一个元素 max,利用

$$\lceil \lfloor t/2 \rceil / 2 \rceil = \lceil t/2^2 \rceil$$

的结果并对 k 归纳,可得到 $\lceil n/2^k \rceil = 1$.

若 $n=2^d$,那么有 $k=d=\log n=\lceil \log n \rceil$

若 $2^{d} < n < 2^{d+1}$,那么 $k = d + 1 = \lceil \log n \rceil$

算法时间复杂度是

$$W(n)=n-1+\lceil \log n\rceil-1=n+\lceil \log n\rceil-2.$$

找第二大问题

■ 锦标赛算法

找第二大问题:问题复杂度分析

元素x的权: w(x), 表示以x为根的子树中的结点数初始, $w(x_i)=1$, $i=1,2,\ldots,n$; 若 x>y, [w(x),w(y)]:=[w(x)+w(y),0]赋值原则: 在比较的时候进行赋值或者调整赋值。只对没有失败过的元素(权大于0的元素)进行赋值。权大者胜,原来胜的次数多的仍旧胜,构造较大的输入值.

1. w(x), w(y) > 0:

若 w(x)>w(y), 构造 x 的值大于 y 的值; // 权大者胜 若 w(x)=w(y), 构造 x 的值大于 y 的值; // 权等,任意分配

2. w(x)=w(y)=0, 构造 x, y 值不变; // x与 y 比较对于确定第二大无意义

李 实例:构造最坏输入

每个步骤分解: ① 算法发起比较请求; ② 构造最坏输入; ③ 返回比较结果

	比较 请求	比较结果	$w(x_1)$	$w(x_2)$	$w(x_3)$	$w(x_4)$	$w(x_5)$	值
初始			1	1	1	1	1	*, *, *, *,
第1步	x_1, x_2	$x_1 > x_2$	2	0	1	1	1	20, 10, *, *, *
第2步	x_1, x_3	$x_1 > x_3$	3	0	0	1	1	20, 10, 15, *, *
第3步	x_5, x_4	$x_5>x_4$	3	0	0	0	2	20, 10, 15, 30, 40
第4步	x_1, x_5	$x_1 > x_5$	5	0	0	0	0	41, 10, 15, 30, 40

构造树

根据算法A的比较次序,在比最大的过程中如下构造树:

- 1. 初始是森林,含有n个结点;
- 2. 如果 x, y 是子树的树根,则算法比较 x, y;
- 3. 若x, y 以前没有参加过比较,任意赋值给x, y, 比如 x>y; 那么将y 作为x 的儿子;
- 4. 若x, y已经在前面的比较中赋过值,且x > y, 那么 把y 作为x 的儿子,以y 为根的子树作为x 的子树;

找第二大问题复杂度下界

针对这个输入,估计与max比较而淘汰的元素数根的权为n,其它的结点权为0,根为max

 w_k 表示 max 在它第 k 次比较后形成以max为根子树的结点总数,则 $w_k \le 2w_{k-1}$,设 K 为max最终与权不为0的结点的比较次数,则

$$n = w_K \le 2^K w_0 \le 2^K \Rightarrow K \ge \log n \Rightarrow K \ge \lceil \log n \rceil$$

确定最大需要淘汰 N-1 个元素,确定第二大需要淘汰 K-1 个元素,至少用 $N+\lceil \log n \rceil -2$ 次比较.

结论: 锦标赛方法是找第二大的最优算法.

1 几种选择算法的总结

问题	算法	最坏情况	问题下界	最优性
找最大	Findmax	n-1	n-1	最优
找最大最小	FindMaxMin	$\lceil 3n/2 \rceil - 2$	$\lceil 3n/2 \rceil - 2$	最优
找第二大	锦标赛	$n+\lceil \log n \rceil-2$	$n+\lceil \log n \rceil-2$	最优
找中位数	Select	O(n)	3n/2-3/2	阶最优
找第k小	Select	O(n)	$n+\min \{k,n-k+1\}-2$	阶最优

本课小结

- 寻找最优算法的途径
 - ▶1. 设计算法; 2. 分析问题下界;
 - ▶3-∞. 努力设计算法和分析下界,直至两者相遇
- 问题复杂度下界
 - ▶平凡下界
 - ▶直接计算最少运算次数 (例: 无序数组找最大)
 - ▶决策树模型 (例:检索问题、排序问题)
 - ▶构造最坏输入/对手论证 (例:选择问题)

(未完待续)