Tutorial Sheet -1 IEC103

QI classify the following	signals	using	one	descriptor	each
from A, B, C, & D from	the to	Howing	lis	<u></u>	

А	В	С	D
continuous Discontinuous	Time continuous	Amplifiede continous	Periodic
UISCONTINUOUS	Time discrete	Amplitude discrete Binary	A periodic

iii)
$$f(t) = cos(wot)$$
 where $wo = 2\pi$ with $t = n\pi$ $n \in \mathbb{Z}$ $N >> 1$

Vi)
$$f(t) = e^{-2t}$$
 for $t > 0$
= 0 elsewhere

$$vii)$$
 $f(t) = e^{-t^2/2}$ for $-\infty < t < \infty$

(Q2) Two signals fi(t) = A (os(wt) and f2(t) = A (os(wt+0)) are multiplied to get f(t) = A2 cos(wt) cos(wt+0), what is the average and RMS value of f(t) ?

(93) Let x,(t) and x2(t) be periodic with period T, and T2

respectively. What is the condition to make the signal

x,(t) + x2(t) periodic ?

(a4) A signal
$$f(t) = \begin{cases} -\alpha t \\ e^{-\alpha t} \end{cases}$$
 or $0 \le t < \infty$
What is the DC value and the power of the signal.

