MLaPP Chapter 10 Bayes nets 贝叶斯网络

MLaPP

MLaPP Chapter 10 Bayes nets 贝叶斯网络
10.1 Introduction
10.1.1 Chain rule 链式法则
10.1.2 Conditioanl independence 条件独立
10.1.3 Graphical models 图模型
10.1.4 Graph terminology 图术语
10.1.5 Directed graphical models 有向图模型
10.2 Examples 例子
10.2.1 Naive Bayes classifiers 朴素贝叶斯分类器
10.2.2 Markov and hidden Markov models 马尔可夫和隐马尔可夫模型
10.2.3 Medical diagnosis 医学诊断
10.2.4 Genetic linkage analysis * 基因连锁分析
10.2.5 Directed Gaussian graphical models * 有向高斯图模型
10.3 Inference 推断
10.4 Learning 学习
10.4.1 Plate notation 盘 了表示 法
10.4.2 Learning from complete data 从完整数据中学习
10.4.3 Learning with missing and/or latent variables
10.5 Conditional independence properties of DGMs
10.5.1 d-separation and the Bayes Ball algorithm (global Markov properties)
10.5.2 Other Markov properties of DGMs
10.5.3 Markov blanket and full conditionals
10.6 Influence (decision) diagrams * 影响(决策)图

10.1 Introduction

书里开头就引用了迈克尔·乔丹对图模型的理解,他说处理复杂系统有两个原则,模块性

(modularity) 个抽象性(abstraction),而概率论(probability theory)则通过因式分解(factorization)和求平均(averaging)深刻地实现了这两个原则。

概率图模型有三大任务:表征(representatino),推断(Inference),学习

(Learning),表征就是怎样样用图模型表示概率分布,有有向图和无向图两种方法,推断就是怎么从已经学到的联合概率分布中推断出条件概率,学习就是怎么用数据学习出模型中的参数。具体内容分类如下,

- 表征, Representation
 - 有向图模型,又叫贝叶斯网络
 - Undirected Graphical Models, BN, Bayes Nets [chap10]
 - 。 无向图模型, 又叫马尔可夫随机场
 - Directed Graphical Models, MRF, Markov random fields [chap19]
- 推断, Inference
 - 确切推断, Exact Inference [chap20]
 - 。 变分推断, Variational inference [chap21]
 - 更多变分推断, More Variational inference [chap22]
 - 。 蒙特卡洛推断, Monte Carlo inference [chap23]
 - 。 马尔可夫链蒙特卡洛推断, Markov chain Monte Carlo (MCMC) inference [chap24]
- 学习, Learning
 - EM algorithm [chap11]
 - Graphical model structure learning [chap26]
 - Latant variable models for discrete data [chap27]

概率图模型有什么好的参考资料?公开课,书,网页都可以。

10.1.1 Chain rule 链式法则

一般来说,我们处理的监督问题就是试图去拟合这样的一个函数, $f:\mathbb{R}^n\to\mathbb{R}$ 也就是说输入 \mathbf{x} 一般都是一个多维度的特征向量。在朴素贝叶斯模型中,我们曾假设不同的特征之间的相互独立的,如果不独立的话,可以用链式法则来计算一个序列的概率,

$$p(x_{1:V}) = p(x_1)p(x_2|x_1)p(x_3|x_2,x_1)\cdots p(x_V|x_{1:V-1})$$

注意上面的公式都是条件概率,为了表示的简介省略了参数 θ 而已。链式法则可以用语言模

型来解释(language model),整个序列的概率就是某个句子的概率。可以发现上面的条件概率越往后越复杂。

我们来分析一下要计算这个联合概率的复杂度是多少。假设每个维度的变量都一样地拥有 K 个状态,那么 $p(x_1)$ 有 K-1 个变量,复杂度是 O(K);接着 $p(x_2|x_1)$ 要用大小为 $O(K^2)$ 的 **随机矩阵(stochastic matrix)** T 来表达,且矩阵元素满足

$$p(x_2=j|x_1=i)=T_{ij}, \quad T_{ij}\in [0,1], \quad \sum_{ij}T_{ij}=1$$

同样地, $p(x_3|x_2,x_1)$ 要用 $O(K^3)$ 的 **条件概率表(conditional probability tables or CPTs)**来表示。到最后的一个概率,需要用 $O(K^V)$ 个参数,这个复杂度是不可以接受的。

【TODO:这里是不是可以给出一个条件概率分布的具体例子,所以可以直观地感受一下】

一种解决方法是用 CPD , Condiational probability distribution 来替代 CPT , 比如 multinomial logistic regression ,

$$p(x_t = k | \mathbf{x}_{1:t-1}) = \mathcal{S}(\mathbf{W}_t \mathbf{x}_{1:t-1})_k$$

参数复杂度为 $O(K^2V^2)$,为什么呢?考虑 \mathbf{W}_t 和 $\mathbf{x}_{1:t-1}$ 之间做的是内积操作,参数数量应该是一样的,都是 K(t-1) ,那么 x_t 一共要取 K 种状态,所以 $p(x_t|\mathbf{x}_{1:t-1})$ 有 K(t-1)K 个参数。那么 $t=1,\cdots,V$ 的话,一共就是

$$K^2(0+1+2+\cdots+(V-1))=K^2V(V-1)/2$$

个参数,所以参数的复杂度为 $O(K^2V^2)$ 。

然而这种模型对有些预测问题不是很适用,因为每个变量都要依靠前面所有的变量。(不是很理解这句话。)

10.1.2 Conditioanl independence 条件独立

可以从随机变量的独立推广到条件独立,比如 $oldsymbol{X}$ 和 $oldsymbol{Y}$ 在给定 $oldsymbol{Z}$ 的条件下独立,可以写作

$$X \perp Y|Z \iff p(X,Y|Z) = p(X|Z)p(Y|Z)$$

我们可以利用条件独立,对前面讲过的链式法则做一些假设,比如令将来的状态在给定现在状态的条件下与过去的状态无关,又叫做是一阶马尔可夫假设(first order Markov assumption),写成表达式就是,

$$x_{t+1} \perp \mathbf{x}_{1:t-1} | x_t$$

那么联合概率转换成了,

$$p(x_{1:V}) = p(x_1) \prod_{t=2}^V p(x_t|x_{t-1})$$

这个就是 **一阶马尔可夫链(first order Markov chain)**,可以通过初始状态分布 $p(x_1=i)$ 和状态转移矩阵 $p(x_t=j|x_{t-1}=i)$ 来确定。后面的小节还会提到二阶和更高阶的情况。

10.1.3 Graphical models 图模型

一阶的马尔可夫可以用来处理以为的一维的序列数据,也可以定义二维的模型处理图片,三维的模型处理视频数据。当推广到任意维的时候,图模型就诞生了。

图模型就是一种通过做条件独立假设(CI assumption)来表示联合概率分布的方法。这一章主要讲有向图模型,即贝叶斯网络,而无向图模型放在了第19章。

10.1.4 Graph terminology 图术语

图模型是图论和概率论的结合,先来回顾一下图论的一些知识。

- ullet graph G=(V,E), nodes or vertices, edges, adjacency matrix (邻接矩阵)
- parent, child, family, root ,leaf, ancestors, descendants, neighbors
- degree, in-degree, out-degree, cycle or loop (环)
- DAG, directed acyclic graph (有向无环图), topological ordering (拓扑排序)
- path or trail (路径或迹), tree, polytree, moral directed tree, forest
- subgraph, clique, maximal clique

树和有向无环图的关系

- 树是一种特殊的有向无环图, DAG 不一定是树
 - 。 github 的版本管理就是通过 DAG 来做的。
- DAG 可以有多个根节点(无父节点),但是树只有唯一的一个 root
- DAG 的某个节点可以有多个父节点

- 。 也叫 polytree , 否则叫 moral directed tree
- 造成了两个节点可以有多条通路
- 。 如果把有向图的箭头去掉, DAG 可能会存在环, 树则没有

DAG 的拓扑排序 (topological ordering)

拓扑排序的名词一定要跟 DAG 联系起来才有意义。就是说,在图的顶点构成的所有排列中,对于图中任意边 $A \to B$ 都满足 A 排在 B 前面的排列都是合法的拓扑排序。可以参考这里的 讲义。

团 (clique)的定义

团就是无限图的完全子图,极大团(maximal clique)就是无法通过添加点和边仍然满足团定义的完全子图,最大团(maximum clique)就是最大的那个极大团,可能有多个。参考这里

10.1.5 Directed graphical models 有向图模型

有向图模型,字面上的理解就是图是 DAG 的图模型。有三个名字,

- 贝叶斯网络, Bayesian Network
- 置信网络, Belief Network
- 因果网络, Causal Network

然而这几个名字的意思和这个模型都没啥直接关系,所以作者决定就叫它有向图模型好了。

DAG 一定可以有拓扑排序,即父节点一定会在孩子节点前面,我们可以定义 ordered Markov property 假设,即每个节点在给定父节点的条件下,和其他所有先驱节点条件无关,表示如下,

$$x_s \perp \mathbf{x}_{\mathrm{pred}(s) \setminus \mathrm{pa}(s)} | \mathbf{x}_{\mathrm{pa}(s)}$$

其中 $\mathbf{pred}(s)$ 表示 s 的所有先驱节点(predecessors), $\mathbf{pa}(s)$ 是 s 的父节点。图 10.1 的联合概率就可以重写了。

一般地, 贝叶斯网络可以写成这样的形式,

$$p(\mathbf{x}_{1:V}|G) = \prod_{t=1}^V p(x_t|\mathbf{x}_{\mathrm{pa}(t)})$$

其中 $p(x_t|\mathbf{x}_{\mathrm{pa}(t)})$ 是 CPD,Conditional Probablistic Distribution。假设每个点都只有 O(F) 个父节点,那么整个模型的参数复杂度就是 $O(VK^F)$,比原来的 $O(K^V)$ 大大降低了。

10.2 Examples 例子

这一小节讲述 PGM 的应用。

10.2.1 Naive Bayes classifiers 朴素贝叶斯分类器

回忆一下朴素贝叶斯分类器,该模型假设了特征维度之间都是相互独立的,那么有

$$p(y,\mathbf{x}) = p(y)p(x_{1:D}|y) = p(y)\prod_{i=1}^D p(x_i|y)$$

如果想要抓住不同特征之间的相关性(correlation),可以考虑一种图模型,叫做 **tree-augmented naive Bayes classifier**,or **TAN**,此模型是 two-fold,可以很容易地用 Chow-Liu 算法(见26.3小节)找到最优的树结构,而且处理丢失特征(见20.2小节)也很简单。

10.2.2 Markov and hidden Markov models 马尔可夫和隐马尔可夫 模型

我们可以做更高阶的马尔可夫假设,比如二阶的情况,正如图 10.3 所示,可以这样表示,

$$p(\mathbf{x}_{1:T}) = p(x_1, x_2) \prod_{t=3}^T p(x_t | x_{t-1}, x_{t-2})$$

不幸的是,二阶的马尔可夫假设对于长范围关系是不充分的,而更高阶的假设会带来参数复杂度的爆炸,因此有另一种常见的模型,是假设在观察变量中,有另一个隐藏变量在背后,这种叫做隐马尔可夫模型(HMM, Hidden Markov Model)。如果用 z_i 表示隐变量, x_i 表示观察变量的话,可以做两个一阶马尔可夫假设,

• 齐次马尔可夫假设

- 当前的隐变量只和前一个隐变量有关,得到转移模型 (transition model)
- 。 即 $p(z_t|z_{t-1})=p(z_t|z_{1:T},\mathbf{x}_{1:T})$,可以对 CPD $p(z_t|z_{t-1})$ 进行建模

• 观测独立性假设

- 当前的观察变量只和当前的隐变量有关,得到观察模型(observation model)
- \circ 即 $p(\mathbf{x}_t|z_t) = p(\mathbf{x}_t|z_{1:T},\mathbf{x}_{1:T})$,可以对 CPD $p(\mathbf{x}_t|z_t)$ 进行建模

学了随机过程(stochastic process)的同学可能会了解的多一点,隐马尔可夫模型是一种最简单的动态贝叶斯网络(DBN, Dynamic Bayesian Network),是一种时间序列上的模型方法,是处理时间序列问题的一种应用最广泛的模型之一(其他的还有 CRF, RNN 等)。第 17章会细讲这个模型,在这里举几个例子来简单说明一下其用途。

- 标注问题, 见李航的《统计学习方法》第 1.9 小节, 输入观测序列, 输出状态序列
 - 词性标注 (part of speech tagging)
 - 。 分词,见结巴分词
- 语音识别 , ASR, Automatic Speech Recognition
 - 。 令 \mathbf{x}_t 表示语音信号提取的特征,令 \mathbf{z}_t 表示说的单词(字),转移模型 $p(\mathbf{z}_t|\mathbf{z}_{t-1})$ 表示语言模型(language model),观察模型 $p(\mathbf{x}_t|\mathbf{z}_t)$ 表示声学模型(acoustic model)。
- Video Activity Recognition
- Optical Character Recognition
- Protein Sequence alignment

10.2.3 Medical diagnosis 医学诊断

10.2.4 Genetic linkage analysis * 基因连锁分析

10.2.5 Directed Gaussian graphical models * 有向高斯图模型

10.3 Inference 推断

定义概率图模型和联合概率分布,主要的用途是拿来做概率推断(Probabilistic Inference)。先举个例子,在 HMM 中,用 \mathbf{x}_v 表示可见变量,用 \mathbf{x}_h 表示隐藏变量。我们假设已经得到了联合概率分布 $p(\mathbf{x}_h,\mathbf{x}_v|\boldsymbol{\theta})$,目标则是推断出隐变量的条件概率分布,

$$p(\mathbf{x}_h|\mathbf{x}_v,oldsymbol{ heta}) = rac{p(\mathbf{x}_h,\mathbf{x}_v|oldsymbol{ heta})}{p(\mathbf{x}_v|oldsymbol{ heta})} = rac{p(\mathbf{x}_h,\mathbf{x}_v|oldsymbol{ heta})}{\sum_{\mathbf{x}_h'} p(\mathbf{x}_h',\mathbf{x}_v|oldsymbol{ heta})}$$

注意下面的分母 $p(\mathbf{x}_v|\boldsymbol{\theta})$, 其实就是训练集数据的似然概率 , 又叫做是 probability of the evidence , 可以写成是边缘似然来求解。

还有另一种需求,就是可能只有部分的隐变量是我们感兴趣的,比如把隐变量划分成 query variables \mathbf{x}_q 和 nuisance variables \mathbf{x}_n 两部分。我们只关心 \mathbf{x}_q 而不关心 \mathbf{x}_n ,也可以通过 marginalizing out 来求边缘概率,

$$p(\mathbf{x}_q|\mathbf{x}_v,oldsymbol{ heta}) = \sum_{\mathbf{x}_n} p(\mathbf{x}_q,\mathbf{x}_n|\mathbf{x}_v,oldsymbol{ heta})$$

上面的方法都是确切推断(exact inference)。精确推断常见的方法有变量消去(variable elimination)和信念传播(Belief Propagation,又叫做和积算法,Sum-Product Algorithm)。

这种方法会消耗指数级别的复杂度,适用范围有限,因此有其他的近似推断(approximation inference)的方法。近似推断又主要有两大类,第一类是采样的方法,比如马尔科夫链蒙特卡洛采样(MCMC, Markov Chain Monte Carlo sampling);第二类是使用确定性近似完成近似推断,比如变分推断(variational inference)。

10.4 Learning 学习

图模型中的学习(Learning)一般指的是学习模型中的参数,一般也是通过 MAP 来估计参数,

$$\hat{oldsymbol{ heta}} = rg \max_{oldsymbol{ heta}} \sum_{i=1}^N \log p(\mathbf{x}_{i,v}|oldsymbol{ heta}) + \log p(oldsymbol{ heta})$$

其中 $\mathbf{x}_{i,v}$ 指的是隐变量中的第 i 个样例。若先验 $p(oldsymbol{ heta}) \propto 1$, 那么退化成 MLE。

一般的概率图模型文献中,都会把 Inference 和 Learning 区分开来,但是在贝叶斯学派的观点来看,参数和隐变量都是变量,两者没有区别。

10.4.1 Plate notation 盘子表示法

盘子表示法的示意图如图 10.7 所示。当一组变量 X_1, \cdots, X_N 是独立同分布的(iid, independently identically distribution),即都是从同一个分布 θ 种产生的,那么可以用一个盘子(Plate)把这些变量圈起来,用一个循环表示出来,像书里那样子画的,相当于是一种语法糖(syntactic sugar)。那么把每个重复的画出来的方式就称作展开(unrolled)的模型。我们用图模型表示随机变量之间的联合概率,

$$p(oldsymbol{ heta}, \mathcal{D}) = p(oldsymbol{ heta}) \Bigg [\prod_{i=1}^N p(\mathbf{x}_i | oldsymbol{ heta}) \Bigg]$$

另一个复杂一点的嵌套盘子 (nested plate) 表示法在 10.8 中画出来了。

我们先来回归一下朴素贝叶斯分类器,其假设为所有的特征之间都是相互条件独立的,若 class conditional density 是多努利分布,可以写成连乘的形式,

$$p(\mathbf{x}|y=c) = \prod_{j=1}^D \operatorname{Cat}(x_j|oldsymbol{ heta}_{jc}) = \prod_{j=1}^D p(x_j|y=c,oldsymbol{ heta}_{jc})$$

其中,

- ullet $(\mathbf{x}_{ij})_{N imes D}$ 为训练集第 i 个样本的第 j 个特征维度,共 N 个样本,D 个特征维度
- ullet $(oldsymbol{ heta}_{jc})_{D imes C}$ 为模型学到的参数,表示第 c 类中出现特征 j 的概率
 - 。 如 bag-of-words 模型,表示第 c 类文档(比如广告邮件)出现第 \emph{j} 个单词(比如 "打折")的概率。
 - \circ NBC Model Fitting result: $\hat{m{ heta}}_{jc} = N_{jc}/N_c$ (公式 3.58)
- ★ 是 class prior , 类别的先验
 - \circ NBC Model Fitting result: $\hat{\pi}_c = N_c/N$ (公式 3.57)

【此处该有图】

- 图①,针对所有的样本,每个维度都是条件独立的
- 图②,针对所有的样本的某个维度,比如 x_{i1} ,对所有的类别的贡献程度是不同的,比如 "discount" 这个词,对 "广告","正常","色情"等邮件类别的贡献概率是不同的,正相关。
- 图③ , 由图①把维度 j:D 放到盘子里得到的
- 图④ , 由图③把 i:N,c:C 放进盘子里得到的

可以看到嵌套的表示法更简洁。

10.4.2 Learning from complete data 从完整数据中学习

所谓的完整的数据(complete data),指的是没有丢失的数据或者没有隐变量(或者说隐变量都观察到了),那么训练集上的似然概率是,

$$p(\mathcal{D}|oldsymbol{ heta}) = \prod_{i=1}^N p(\mathbf{x}_i|oldsymbol{ heta}) = \prod_{i=1}^N \prod_{t=1}^V p(x_{ ext{it}}|\mathbf{x}_{i, ext{pa}(t)},oldsymbol{ heta}_t) = \prod_{t=1}^V p(\mathcal{D}_t|oldsymbol{ heta}_t)$$

补充说明:中间的两个连乘项,就是概率图模型的因式分解,

$$p(\mathbf{x}|oldsymbol{ heta}) = \prod_{t=1}^V p(x_t|\mathbf{x}_{ ext{pa}(t)},oldsymbol{ heta}_t)$$

考虑完整的贝叶斯推断,若也有可以因式分解的先验(factored prior), $p(m{ heta}) = \prod_{t=1}^V p(m{ heta}_t)$,那么对应的后验也可以因式分解,

$$p(oldsymbol{ heta}|\mathcal{D}) \propto p(\mathcal{D}|oldsymbol{ heta})p(oldsymbol{ heta}) = \prod_{t=1}^V p(\mathcal{D}_t|oldsymbol{ heta}_t)p(oldsymbol{ heta}_t)$$

如果我们用表格(tabular)的方法表达所有的 CPD,那么表格里的每个项都是待学习的参数 heta,若用多努利分布来拟合模型,即 $x_t|\mathbf{x}_{\mathsf{pa}(t)}=c\sim\mathrm{Cat}(m{ heta}_{tc})$,可以定义

$$heta_{tck} riangleq p(x_t = k | \mathbf{x}_{ ext{pa}(t)} = c)$$

- $k=1:K_t$ 表示节点 t 的所有状态
- ullet $c=1:C_t$ 其中 $C_t riangleq \prod_{s \in \mathrm{pa}(t)} K_s$ 表示父节点组合的数目
- t=1:T 表示节点 (node)的个数

显然,有 $\sum_k heta_{tck} = 1$ 即所有状态的累加和是1.

考虑在每个概率上加一个狄利克雷先验, $m{ heta}_{tc}\sim ext{Dir}(m{lpha}_{tc})$,那么后验就可以是 $m{ heta}_{tc}|m{\mathcal{D}}\sim ext{Dir}(m{N}_{tc}+m{lpha}_{tc})$ 其中充分统计量定义如下,

$$N_{tck} riangleq \sum_{i=1}^{N} \mathbb{I}(x_{i,t} = k, x_{i, ext{pa}(t)} = c)$$

表示第 t 个节点在状态 k 且父节点是 c 的统计量。那么根据狄利克雷分布的均值公式可知,

$$\overline{ heta}_{tck} = rac{N_{tck} + lpha_{tck}}{\sum_{k'} (N_{tck'} + lpha_{tck'})}$$

下面的例子讲的是,如何从数据集中应用上面的公式估计条件概率 $p(x_4|x_2,x_3)$ (Really?)参数,就略过啦~

10.4.3 Learning with missing and/or latent variables

如果我们的数据有缺失(比如某个传感器故障,导致 \mathbf{x}_i 的某个维度的数值无法测量到),或者含有隐变量,那么似然函数就无法因式分解,而且是非凸的。如果用 MLE 或者 MAP 只能得到局部最优解。

一般可以用 EM, Expectation-Maximization 这种迭代算法。EM 算法的直观想法是,如果数据是完整的(complete),那么计算参数就会很容易,比如用 MLE;相反如果知道了模型的所有参数,那么补全完整的数据也很容易。(参考李航《统计学习方法》第9章和本书的第11章)

10.5 Conditional independence properties of DGMs

先来讲一下 **I-map** 的概念,这个东西有点绕,感觉是理论学家为了严谨而弄出的一些概念。 图模型的一个很重要的核心就是做了很多条件独立性假设(Conditional Indepence Assumptions),比如 $\mathbf{x}_A \perp_G \mathbf{x}_B | \mathbf{x}_C$ 表示在图 \mathbf{G} 中给定 \mathbf{C} 后, \mathbf{A} 和 \mathbf{B} 是条件独立的。

所以 I-map 就是个集合,集合里的元素都是一个个条件独立语句,比如 I(G) 表示图 G 中所有的条件独立语句,I(p) 表示分布 p 所有的条件独立语句,那么当且仅当 $I(G) \subseteq I(p)$ 时,我们就可以说图 G 是分布 p 的一个 I-map,或者说 p 是关于图 G 的马尔可夫。(We say that G is an I-map (independent map) for p, or that p is Markov wrt G.)换句话说,就是图 G 中做的条件独立语句一定不能比分布 p 中多。

注意全连接的图(完全图?)一定是所有分布的 I-map,因为 I(G) 是空集,没有做任何的条件独立假设。因此有 minimal I-map 的概念,就是说当不存在子图 $G'\subseteq G$ 也是分布 p 的 I-map 时,图是分布 p 的 minimal I-map.

下面讨论图 G 中的所有 $\mathbf{x}_A \perp_G \mathbf{x}_B | \mathbf{x}_C$ 关系。即求解 I(G)。

10.5.1 d-separation and the Bayes Ball algorithm (global Markov properties)

在判断图 G 中的两个变量是否是条件独立时,常常用到一个很重要的概念,叫做 d-separation,可以有下面的定义。

当且仅当下面的三个条件满足时,我们会称无向路径 P 被包含证据的点集 E 给 d-分割了 (undirected path P is d-separated by a set of nodes E, which contains the evidence),

- 1. 路径 P 包含链 $s \rightarrow m \rightarrow t$ 或者 $s \leftarrow m \leftarrow t$, 其中 $m \in E$
- 2. 路径 P 包含像帐篷 (tent) 或者叉子 (fork) 一样的结构,即 $s \checkmark^m \setminus t$,其中 $m \in E$
- 3. 路径中包含对撞(collider)或者 v 型结构(v-structure),即 $s \searrow_m \swarrow t$,且 m 和其后代(descendant)全部不能出现在 E 中。

为什么要有 d-separate 这个概念呢?假设我们在已知观察变量,或者叫做 evidence 的点集 E 的前提下,想知道点集 A 和点集 B 是否关于 E 条件独立,那么我们就沿着从 A 到 B 的一条路径,如果这条路径被 d-separate,那么说明 A 和 B 关于 E 条件独立。表述如下,

$\mathbf{x}_A \perp \mathbf{x}_B | \mathbf{x}_E \iff A \text{ is d-separated from B given E}$

上面讲的就是 **全局马尔可夫性质 (global Markov properties)**。 书里有提到 Bayes ball algorithm,但是感觉没啥意义,就是前面讲过的思路。

上面的三种条件,我们再来推导一番,

- $\bullet \quad X \to Y \to Z$
 - $egin{array}{ll} \circ & p(x,y,z) = p(x)p(y|x)p(z|y) \end{array}$
 - $\circ x \perp z | y$
- $X \leftarrow Y \rightarrow Z$
 - $egin{array}{ll} \circ & p(x,y,z) = p(y)p(x|y)p(z|y) \end{array}$
 - $\circ x \perp z | y$
- $X \rightarrow Y \leftarrow Z$
 - $\circ \quad p(x,y,z) = p(x)p(z)p(y|x,z)$
 - $\circ x \not\perp z | y \text{ but } x \perp z$

注意第三种情况,就是说本来 x 和 z 是独立的,但是看到 y 后,反而不独立了,这种情况就叫做 explaining away, inter-causal reasoning, or Berkson's paradox. 可以举个例子,如果 x,z 表示两次独立的扔硬币事件,y 表示两个硬币点数之和,明显知道了 y 以后,两个事件就不独立了,可以做一些推导。比如已知 y=1,x=0,那么明显 z 只能取 1 了,即

$$p(z=1|x=0)=0.5 \neq p(z=1|x=0,y=1)=1$$

对于 v-structure 的情况,还有一点要注意,即 boundary conditions,如图 10.10(c) 所示。就是 evidence 不一定要非得是 y,任意 y 的后代,比如 y' 都可以起到同样的作用。

10.5.2 Other Markov properties of DGMs

有了前面的 d-separation 的概念,我们可以对一个PGM中所有的点做一个结论,称作 **有向** 局部马尔可夫性质(directed local Markov property),

$$t \perp \operatorname{nd}(t) \backslash \operatorname{pa}(t) \mid \operatorname{pa}(t)$$

其中 $\mathbf{nd}(t)$ 表示节点 t 的所有非后代(descendant)节点, $\mathbf{pa}(t)$ 表示所有父节点。这个性质是说,给定节点父节点的条件下,该节点和其他所有除了父节点和后代节点的节点都是条件独立的。

其实很好理解,假设我们从该节点往父节点上面走,发现一定不是 v-structure,但是由于给定了所有父节点为 evidence,根据第 1,2 条规则,肯定是被 d-separated 了,也就是说条件独立成立。再往下走,肯定和孩子节点或者自己构成 v-structure 结构(不然还是孩子节点,可以画出来看看),那么由于孩子节点不是 evidence 的子集,根据第 3 条规则,此条路径必然也被 d-separated 了。所以条件独立。可以举书里 10.11 的例子来说明这个性质,略。

上面的性质有种特殊情况,

$$t \perp \operatorname{pred}(t) \backslash \operatorname{pa}(t) \mid \operatorname{pa}(t)$$

其中 $\operatorname{pred}(t)\subseteq\operatorname{nd}(t)$ 表示节点 t 的先继节点集合。这个性质叫做 **有序马尔可夫性质 (ordered Markov property)**。Koller 大神的书里证明了这里讲过的三种性质 G,L,O 都是等价的。

10.5.3 Markov blanket and full conditionals

某节点 t 的 Markov blanket 可以表示为 $\mathbf{mb}(t)$, 定义如下 ,

$$\mathrm{mb}(t) riangleq \mathrm{ch}(t) \cup \mathrm{pa}(t) \cup \mathrm{copa}(t)$$

后面的三个符号分别表示节点 $m{t}$ 的 children, parent 和 co-parent ,而 co-parent 表示和 $m{t}$ 共享某个孩子节点的节点集合。

Markov blanket 这个概念很有用,比如我们要计算这个条件概率,

$$p(x_t|\mathbf{x}_{-t}) = rac{p(x_t,\mathbf{x}_{-t})}{p(\mathbf{x}_{-t})}$$

考虑分子 (numerator) 分母 (denominator) 中约去一些项,只剩包含 x_t 的那些 CPD,

$$p(x_t|\mathbf{x}_{-t}) \propto p(x_t|\mathbf{x}_{\mathrm{pa}(t)}) \prod_{s \in \mathrm{ch}(t)} p(x_s|\mathbf{x}_{\mathrm{pa}(t)})$$

后面的连乘项里,就包含了 co-parent 的节点。这个概率 $p(x_t|\mathbf{x}_{-t})$ 叫做 **full conditional**,分布就叫做 full conditional distribution,会在第 24 章的 MCMC 中的吉普斯采样(Gibbs Sampling)会用到。

10.6 Influence (decision) diagrams * 影响(决策)图

我们可以用影响图或者叫决策图来表示多阶段贝叶斯决策问题。这种图是在 PGM 的基础上增加了一些节点,

节点名称	作用	用什么表示
chance nodes	图模型节点,表示随机变量	椭圆,oval
decision nodes, action nodes	要决策的东西	矩形 , rectangle
utility nodes, value nodes	Utility	菱形 , diamond

例子这里就不提了,到时候如果要讲的话,可以把图贴到 PPT 里。还有前面三个小结的内容同理。课后的习题也要看一下。