AJUSTE DE CURVAS: MÉTODO DOS MÍNIMOS QUADRADOS, MÉTODO POLINOMIAL E LINEARIZAÇÃO

> PARTE I – REGRESSÃO LINEAR

Computação Científica

prof. Marco Villaça

Regressão Linear

O objetivo da regressão linear é determinar a "melhor" reta que se ajuste a um conjunto de dados.

Exemplo: Experimento do túnel de vento para medir como a força da resistência do ar depende da velocidade

REGRESSÃO LINEAR

v, m/s	10	20	30	40	50	60	70	80
F, N	25	70	380	550	610	1220	830	1450

Dados experimentais para a força e a velocidade em um experimento de túnel de vento e gráfico correspondente

REGRESSÃO LINEAR

- Linear em estatística significa que a resposta deve ser uma combinação linear de variáveis explicativas.
- O problema básico é encontrar a melhor linha reta $y = a_0 + a_1 x$, dado que $i \in \{1, ..., N\}$ e os pares (y_i, x_i) são observados.
- O método é facilmente generalizado para encontrar o melhor ajuste da forma

$$y = a_1 f_1(x) + \cdots + a_k f_k(x)$$

- Não é necessário que as funções f_k sejam lineares em x:
 - ✓ Tudo o que é necessário é que y seja uma combinação linear dessas funções.

- Determinar uma função aproximada que ajuste a tendência geral dos dados sem necessariamente passar pelos pontos individuais.
- O exemplo mais simples é o ajuste de uma reta a um conjunto de pares de

observação
$$(x_1, y_1)$$
, (x_2, y_2) , ..., (x_n, y_n)
$$y = a_0 + a_1 x + e$$
 (i)

onde: a₀ – intersecção com o eixo y;

a₁ – inclinação da reta

e = erro ou resíduo entre o modelo e a observação

• O erro ou resíduo é, portanto, descrito por

$$e = y - (a_0 + a_1 x)$$

• O ajuste dos parâmetros pelo MMQ consiste em determinar os valores de a_0 e a_1 que minimizam a soma dos quadrados dos resíduos:

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$
 (ii)

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

• Para determinar os parâmetros a_0 e a_1 deriva-se (ii) com relação a estes:

$$\frac{\partial S_r}{\partial a_0} = -2\sum_{i=1}^n (y_i - a_0 - a_1 x_i)$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum_{i=1}^n (y_i - a_0 - a_1 x_i) x_i$$

Para obter o mínimo, iguala-se as derivadas a zero:

$$\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} a_0 - \sum_{i=1}^{n} a_1 x_i = 0$$

$$\sum_{i=1}^{n} y_i x_i - \sum_{i=1}^{n} a_0 x_i - \sum_{i=1}^{n} a_1 x_i^2 = 0$$

$$\frac{\partial S_r}{\partial a_0} = -2\sum_{i=1}^n (y_i - a_0 - a_1 x_i)$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum_{i=1}^n (y_i - a_0 - a_1 x_i) x_i$$

Prosseguindo e reorganizando:

$$na_0 + \left(\sum_{i=1}^n x_i\right) a_1 = \sum_{i=1}^n y_i$$
 (iii)

$$\left(\sum_{i=1}^{n} x_i\right) a_0 + \left(\sum_{i=1}^{n} x_i^2\right) a_1 = \sum_{i=1}^{n} x_i y_i$$
 (iv)

• Resolvendo o sistema para a_1 :

$$a_1 = \frac{n\sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i}{n\sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} \tag{v}$$

• Substituindo (v) em (iii), obtém-se a_0 a partir de:

$$a_0 = \bar{y} - a_1 \,\bar{x} \tag{vi}$$

onde \bar{x} e \bar{y} são as médias de x e y

Ajuste uma reta aos valores tabela ao lado.

v (m/s)	F (N)
10	25
20	70
30	380
40	550
50	610
60	1220
70	830
80	1450

Nesse caso F = f (v). Reorganizando os dados e totalizando os somatórios necessários, constrói-se a tabela ao lado.

i	x_i	y_i	x_i^2	$x_i y_i$	y_i^2
1	10	25	100	250	625
2	20	70	400	1400	4900
3	30	380	900	11400	144400
4	40	550	1600	22000	302500
5	50	610	2500	30500	372100
6	60	1220	3600	73200	1488400
7	70	830	4900	58100	688900
8	80	1450	6400	116000	2102500
Σ	360	5135	20400	312850	5104325

EXEMPLO I

• A inclinação e a intersecção com o eixo y podem ser calculadas com as equações (v) e (vi):

$$a_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}} = \frac{8 \cdot 312 - 360 \cdot 5135}{8 \cdot 20400 - 360^{2}} = 19,47024$$

$$a_{0} = \bar{y} - a_{1} \bar{x} = 641,875 - 19,47024 \cdot 45 = -234,2875$$

• Utilizando F no lugar de y e v no lugar de x, o ajuste pelo MMQ é

$$F = -234,29 + 19,47 v$$
 (para $v \ge 12,03$)

EXEMPLO I — Ajuste de uma reta por mínimos quadrados

Quantificação do erro - Regressão linear

 A soma dos quadrados dos resíduos é definida por

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

 Por analogia podemos determinar um "desvio padrão" para a reta de regressão:

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

 Similar a soma dos quadrados dos resíduos entre os pontos dados e a média

$$S_t = \sum_{i=1}^n (y_i - \bar{y})^2$$

 Utilizada em estatística para calcular o desvio padrão:

$$S_y = \sqrt{\frac{S_t}{n-1}}$$

Quantificação do erro - Regressão linear

• A diferença entre o módulo do erro residual antes da regressão

$$S_t = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

e o erro que permanece depois da regressão

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

normalizada, é chamada de coeficiente de determinação

$$r^2 = \frac{S_t - S_r}{S_t}$$

• Para um ajuste perfeito, $S_r=0$ e $r^2=1$, ou seja a reta explica 100% da variação dos dados

• Uma equação alternativa para r^2 , conveniente para cálculo computacional é:

$$r^{2} = \left(\frac{n\sum_{i=1}^{n} x_{i}y_{i} - \sum_{i=1}^{n} x_{i}\sum_{i=1}^{n} y_{i}}{\sqrt{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}\sqrt{n\sum_{i=1}^{n} y_{i}^{2} - \left(\sum_{i=1}^{n} y_{i}\right)^{2}}}\right)^{2}$$

• Utilizando a equação acima, calcula-se o coeficiente de determinação do ajuste realizado no Exemplo 1:

$$r^{2} = \left(\frac{a_{1}}{\sqrt{8 \cdot 20400n}} \frac{n \sum_{i=3}^{n} x_{2} y_{i}}{\sqrt{8 \cdot 20400n} \sum_{i=0}^{n} \frac{60^{2} x_{i}}{\sqrt{8 \cdot 5000n}} \frac{125 \sum_{i=1}^{n} y_{i}}{\sqrt{8 \cdot 20400n}}\right)^{2} = 0.8805$$

• O que indica que 88,05% da incerteza original foi explicada pelo ajuste linear.

Linearização de relações não lineares

- Nem sempre a relação entre a variável dependente e a independente é linear.
- Nesses casos, podem ser usadas transformações para expressar os dados em uma forma que seja compatível com a regressão linear:
 - ✓ Equação exponencial: $y = \alpha e^{\beta x}$
 - ✓ Equação de potência simples: $y = \alpha x^{\beta}$
 - V Equação da taxa de crescimento de saturação: $y = \alpha \frac{x^m}{\beta + x^m}$ onde m é a ordem do ajuste

Linearização de relações não lineares

Linearização de relações não lineares

•Equação exponencial:

$$> y = \alpha e^{\beta x}$$

• Equação de potência simples:

$$\triangleright y = \alpha x^{\beta}$$

• Equação da taxa de crescimento de saturação:

$$\checkmark y = \alpha \frac{x^m}{\beta + x^m}$$
 \Rightarrow $\frac{1}{y} = \frac{1}{\alpha} + \frac{\beta}{\alpha} \frac{1}{x^m}$

$$\frac{1}{y} = \frac{1}{\alpha} + \frac{\beta}{\alpha} \frac{1}{x^m}$$

Ajuste a equação $y = \alpha x^{\beta}$ aos dados da tabela ao lado usando uma transformação de potência simples

v (m/s)	F (N)
10	25
20	70
30	380
40	550
50	610
60	1220
70	830
80	1450

Nesse caso F = f (v). Reorganizando os dados e totalizando os somatórios necessários, constrói-se a tabela ao lado.

i	x_i	y_i	$log x_i$	log y _i	$(\log x_i)^2$	$log x_i log y_i$	$(\log y_i)^2$
1	10	25	1,0000	1,3979	1,0000	1,3979	1,9542
2	20	70	1,3010	1,8451	1,6927	2,4005	3,4044
3	30	380	1,4771	2,5798	2,1819	3,8107	6,6553
4	40	550	1,6021	2,7404	2,5666	4,3902	7,5096
5	50	610	1,6990	2,7853	2,8865	4,7322	7,7581
6	60	1220	1,7782	3,0864	3,1618	5,4880	9,5256
7	70	830	1,8451	2,9191	3,4044	5,3860	8,5210
8	80	1450	1,9031	3,1614	3,6218	6,0164	9,9942
Σ	360	5135	12,606	20,515	20,516	33,622	55,322

• A inclinação e a intersecção com o eixo y podem ser calculadas com as equações (iii) e (v):

$$a_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}} = \frac{8 \cdot 33,622 - 12,606 \cdot 20,515}{8 \cdot 20,516 - 12,606^{2}} = 1,9842$$

$$a_{0} = \bar{y} - a_{1} \bar{x} = 2,5644 - 1,9842 \cdot 1,5757 = -0,5620$$

• Utilizando F no lugar de y e v no lugar de x, o ajuste pelo MMQ é $\log F = -0.5620 + 1.9842 \log v$

$$y = \alpha x^{\beta}$$

$$y = \alpha x^{\beta} \qquad \qquad \rightarrow \log y = \log \alpha + \beta \log x$$

Para exibir o ajuste usando coordenadas não transformadas:

$$a_0 = \log \alpha$$
 \Rightarrow $\alpha = 10^{a_0}$

$$\alpha = 10^{a_0}$$

$$a_1 = \beta$$

Substituindo os valores:

$$\alpha = 10^{-0.562} = 0.2741$$

$$a_1 = 1,9842$$

O ajuste por mínimos quadrados é

$$F = 0.27 v^{1.98}$$

com coeficiente de determinação (calcule) $r^2=0.9481$

EXEMPLO 2 — Ajuste com equação de potência simples

A Figura ao lado representa o ajuste por mínimos quadrados de um modelo de potência simples aos dados sendo:

- (a) o ajuste dos dados transformados e
- (b) o ajuste da equação de potência juntamente com os dados

A tabela ao lado contém os registros efetuados dos valores médios da radiação solar em uma localidade para alguns meses do ano.

Ajuste o modelo

$$M(x) = a_1 (x - 6)^4 + a_0 sen \left(\frac{\pi}{12}x\right)$$

aos valores da tabela, no sentido dos mínimos quadrados, e use o modelo encontrado para prever a radiação média no mês de Agosto.

Um langley (Ly) é uma unidade de distribuição de energia por área Um langley é definido como uma caloria termoquímica por cm². Em unidades SI, 1 langley vale 41,840 J/m².

Mês	Radiação (Ly/dia)		
1	122		
3	188		
6	270		
10	160		
12	120		

• Olhando para a prova do Método dos Mínimos Quadrados, percebe-se que não é essencial que $y = a_1x + a_0$; poderia ser $y = a_1f(x) + a_0g(x)$. Nesse caso:

$$a_1 = \frac{\sum_{i=1}^n g(x_i)^2 \sum_{i=1}^n f(x_i) y_i - \sum_{i=1}^n f(x_i) g(x_i) \sum_{i=1}^n g(x_i) y_i}{\sum_{i=1}^n f(x_i)^2 \sum_{i=1}^n g(x_i)^2 - \left(\sum_{i=1}^n f(x_i) g(x_i)\right)^2}$$

$$a_0 = \frac{\sum_{i=1}^n g(x_i)y_i - a_1 \sum_{i=1}^n f(x_i)g(x_i)}{\sum_{i=1}^n g(x_i)^2}$$

$$r^{2} = \left(\frac{\sum_{i=1}^{n} g(x_{i})^{2} \sum_{i=1}^{n} f(x_{i}) y_{i} - \sum_{i=1}^{n} f(x_{i}) g(x_{i}) \sum_{i=1}^{n} g(x_{i}) y_{i}}{\sqrt{\sum_{i=1}^{n} f(x_{i})^{2} \sum_{i=1}^{n} g(x_{i})^{2} - \left(\sum_{i=1}^{n} f(x_{i}) g(x_{i})\right)^{2}} \sqrt{\sum_{i=1}^{n} g(x_{i})^{2} \sum_{i=1}^{n} y_{i}^{2} - \left(\sum_{i=1}^{n} g(x_{i}) y_{i}\right)^{2}}}\right)^{2}}$$

Trata-se de um modelo linear não polinomial, com

$$f(x) = (x-6)^4$$
 e $g(x) = sen\left(\frac{\pi}{12}x\right)$

Reorganizando os dados e totalizando os somatórios necessários, constrói-se a tabela abaixo.

x_i	y_i	$f(x_i)$	$g(x_i)$	$f(x_i)^2$	$g(x_i)^2$	$f(x_i)g(x_i)$	$f(x_i) y_i$	$g(x_i) y_i$	y_i^2
1	122	625	0,25882	390625	0,0670	161,7623	76250	31,5760	14884
3	188	81	0,70711	6561	0,5000	57,2758	15228	132,9363	35344
6	270	0	1	0	1	0	0	270	72900
10	160	256	0,49999	65536	0,2500	127,9986	40960	79,9992	25600
12	120	1296	-0,00001	1679616	0,0000	-0,0095	155520	-0,0009	14400
Σ		2258	2,4659	2142338	1,8170	347,0271	287958	514,5106	163128

Calculando a inclinação e a intersecção com o eixo y, resulta :

$$a_1 = 0.0914$$

$$a_0 = 265,7164$$

• E o modelo obtido é

$$M(x) = 0.0914 (x - 6)^4 + 265.7 sen \left(\frac{\pi}{12}x\right)$$

com coeficiente de determinação $r^2 = 0,9941$.

• Com x = 8, obtém-se a radiação média no mês de agosto:

$$M(x) = 0.0914 (2)^4 + 265.7 sen\left(\frac{2\pi}{3}\right) = 231.7 Ly/dia$$

EXEMPLO 3 – Modelo MMQ generalizado

A Figura ao lado representa o ajuste por mínimos quadrados com o modelo generalizado juntamente com os dados

COMPUTAÇÃO CIENTÍFICA - PROF. MARCO VILLAÇA

1) A concentração de bactéria E. Coli em uma área de prática de natação é monitorada após uma tempestade:

t (h)	4	8	12	16	20	24
c(<i>UFC/100 m</i> l)	1600	1320	1000	890	650	560

O tempo é medido em horas seguindo o fim da tempestade, e a unidade UFC é uma Unidade Formadora de Colônia. Use esses dados para estimar (a) a concentração no fim da tempestade t = 0 e (b) o instante de tempo em que a concentração alcança 200 *UFC/100 ml*.

Exercícios

2) Um pesquisador relatou os dados tabulados a seguir para uma experiência a fim de determinar a taxa de crescimento da bactéria k (por dia) como uma função da concentração de oxigênio c (mg/l). Sabe-se que tais dados podem ser modelados pela seguinte equação:

$$y = k_m \frac{c^2}{c_s + c^2}$$

onde c_s e k_m são parâmetros Use uma transformação para linearizar esta equação. A seguir use a regressão linear para estimar c_s e k_m e prever a taxa de crescimento em $c = 2 \, mg/l$.

С	0,5	0,8	1,5	2,5	4
k	1,1	2,5	5,3	7,6	8,9

Exercícios

```
function [alfa, betha, r]=reglinear(x, y, e, m)
/* x vetor com os pontos da variável independente
y vetor com os pontos da variávei dependente
e: 'r' - reta, 'e' - exp, 'p' - potencia, 's' - saturação
se for s tem que passar a potencia m */
  a = [0 \ 0];
  n = length(x)
  if n~=length(y) then
    error("inconsistencia nos dados");
  end
  <u>plot(x,y,'o')</u>
  xx = linspace(min(x), max(x), 100);
```

```
if (e == 'e') then
  y = log(y);
elseif (e == 'p') then
  \mathbf{x} = \log 10(\mathbf{x});
  y = log10(y);
elseif (e == 's') then
  x = 1 ./ x .^m;
  y = 1 ./ y;
elseif (e == 'r')
  // não necessita ajuste nos eixos
else
  error("opção inexistente");
end
```

```
somax=sum(x); somay=sum(y); somaxy=sum(x.*y);
somaxx=sum(x.^2); somayy=sum(y.^2);
A = n*somaxy - somax*somay;
B = n*somaxx - somax^2;
C = n*somayy - somay^2;
a(2) = A/B; //a1
a(1) = somay/n - a(2)*somax/n; // a0
r = (A/(sqrt(B)*sqrt(C)))^2;
```

```
if (e == 'e') then
  betha = a(2);
  \mathbf{alfa} = \exp(\mathbf{a(1)});
  yy =alfa*exp(betha*xx);
elseif (e == 'p') then
  betha = a(2);
  alfa = 10^{(a(1))}
  yy = alfa*xx.^betha
elseif (e == 's') then
  alfa = 1/a(1);
  betha = alfa*a(2);
  yy = alfa*xx.^m./(betha + xx.^m);
```

```
elseif (e == 'r')
    yy = a(1)+a(2)*xx;
    alfa = a(1);
    betha = a(2);
  end
  plot(xx,yy)
  xgrid;
endfunction
```

Teste a sua função conferindo com os resultados obtidos nos Exemplos 1 e 2 e nos Exercícios 1 e 2.

Bibliografia e crédito das figuras

CHAPRA, Steven. **Applied numerical methods with MATHLAB for engineers and scientists.** McGrawHill, 2012.

CHAPRA, Steven e CANALE, Raymond. **Numerical methods for engineers.** McGrawHill, 2010.