sales-analysis

1 Adventure-Works-EDA

1.1 Import libraries

```
[1]: |pip install openpyxl plotly -q
```

```
[2]: import jovian
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns; sns.set_theme()
import plotly.figure_factory as ff
from itertools import combinations
from collections import Counter
import datetime as dt
import warnings
warnings.filterwarnings('ignore')
```

1.2 Data wrangling

1.2.1 Data gathering

1.2.2 Merging data

```
[7]: temp_data = pd.merge(Sales_data, Product_data, on='ProductKey', how='inner') df = pd.merge(temp_data, Customers_data, on='CustomerKey', how='inner') df = pd.merge(df, Territory_data, on='SalesTerritoryKey', how='inner')
```

1.2.3 Assessing data

[8]: df.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 58189 entries, 0 to 58188 Data columns (total 46 columns):

	#	Column	Non-Null Count		Dtype
-					
	0	ProductKey	58189	non-null	object
	1	OrderDate	58189	non-null	datetime64[ns]
	2	ShipDate	58189	non-null	datetime64[ns]
	3	CustomerKey	58189	non-null	object
	4	PromotionKey	58189	non-null	object
	5	SalesTerritoryKey	58189	non-null	object
	6	SalesOrderNumber	58189	non-null	object
	7	SalesOrderLineNumber	58189	non-null	int64
	8	OrderQuantity	58189	non-null	int64
	9	UnitPrice	58189	non-null	float64
	10	TotalProductCost	58189	non-null	float64
	11	SalesAmount	58189	non-null	float64
	12	TaxAmt	58189	non-null	float64
	13	DateKey	58189	non-null	object
	14	ProductName	58189	non-null	object

```
15 SubCategory
                               58189 non-null
                                               object
                                               object
     16 Category
                               58189 non-null
     17 StandardCost
                               58189 non-null
                                               float64
     18 Color
                               30747 non-null
                                               object
     19 ListPrice
                               58189 non-null
                                               float64
     20 DaysToManufacture
                               58189 non-null
                                               int64
         ProductLine
                               58189 non-null
                                               object
     22
         ModelName
                               58189 non-null
                                               object
     23 Photo
                               58189 non-null
                                               object
     24 ProductDescription
                               58189 non-null
                                               object
     25
         StartDate
                               58189 non-null
                                               datetime64[ns]
     26 FirstName
                               58189 non-null
                                               object
     27 LastName
                               58189 non-null
                                               object
     28 FullName
                                               obiect
                               58189 non-null
     29 BirthDate
                               58189 non-null
                                               datetime64[ns]
     30
         MaritalStatus
                               58189 non-null
                                               object
     31 Gender
                               58189 non-null
                                               object
     32 YearlyIncome
                               58189 non-null
                                               int64
     33 TotalChildren
                               58189 non-null
                                               int64
     34 NumberChildrenAtHome 58189 non-null
                                               int64
     35 Education
                               58189 non-null
                                               object
     36 Occupation
                               58189 non-null
                                               obiect
         HouseOwnerFlag
                               58189 non-null
                                               int64
     37
     38 NumberCarsOwned
                               58189 non-null
                                               int64
     39 AddressLine1
                               58189 non-null
                                               object
     40 DateFirstPurchase
                               58189 non-null
                                               datetime64[ns]
     41 CommuteDistance
                               58189 non-null
                                               object
     42 Region
                               58189 non-null
                                               object
     43 Country
                               58189 non-null
                                               object
     44 Group
                               58189 non-null
                                               obiect
                               58189 non-null
     45 RegionImage
                                               object
    dtypes: datetime64[ns](5), float64(6), int64(8), object(27)
    memory usage: 20.9+ MB
[9]: # Check shape of the data after merging
     print(f"Number of Rows: {df.shape[0]}")
     print(f"Number of Columns: {df.shape[1]} \n")
```

Number of Rows: 58189 Number of Columns: 46

[10]: df.describe().transpose()

[10]: count mean std min \
SalesOrderLineNumber 58189.0 1.887453 1.018829 1.0000
OrderQuantity 58189.0 1.569386 1.047532 1.0000

UnitPrice	58189.0	413.888218	833.052938	0.5725
TotalProductCost	58189.0	296.539185	560.171436	0.8565
SalesAmount	58189.0	503.666270	941.462817	2.2900
TaxAmt	58189.0	40.293303	75.317027	0.1832
StandardCost	58189.0	296.539185	560.171436	0.8565
ListPrice	58189.0	503.666270	941.462817	2.2900
DaysToManufacture	58189.0	1.045215	1.757395	0.0000
YearlyIncome	58189.0	59769.887779	33128.041818	10000.0000
TotalChildren	58189.0	1.838921	1.614467	0.0000
NumberChildrenAtHome	58189.0	1.073502	1.580055	0.0000
HouseOwnerFlag	58189.0	0.690560	0.462267	0.0000
NumberCarsOwned	58189.0	1.502466	1.155496	0.0000
		5% 50%	75%	max
SalesOrderLineNumber	1.00		2.0000	8.0000
OrderQuantity	1.00		2.0000	4.0000
UnitPrice	4.99		269.9950	3578.2700
TotalProductCost	3.36	-	343.6496	2171.2942
SalesAmount	8.99	00 32.6000	539.9900	3578.2700
TaxAmt	0.71		43.1992	286.2616
StandardCost	3.36		343.6496	2171.2942
ListPrice	8.99		539.9900	3578.2700
DaysToManufacture	0.00		4.0000	4.0000
YearlyIncome		000 60000.0000	80000.0000	170000.0000
TotalChildren	0.00		3.0000	5.0000
NumberChildrenAtHome	0.00		2.0000	5.0000
HouseOwnerFlag	0.00		1.0000	1.0000
NumberCarsOwned	1.00	00 2.0000	2.0000	4.0000

[11]: # Check for duplicate data df.duplicated().sum()

[11]: 0

1.2.4 Handling missing data

[13]: # Applying the custom function missing_pct(df)

[13]:	Column	Missing_value_count	Missing_Percentage (%)
18	Color	27442	47.16
0	ProductKey	0	0.00
34	NumberChildrenAtHome	0	0.00
26	FirstName	0	0.00
27	LastName	0	0.00
28	FullName	0	0.00
29	BirthDate	0	0.00
30	MaritalStatus	0	0.00
31	Gender	0	0.00
32	YearlyIncome	0	0.00
33	TotalChildren	0	0.00
35	Education	0	0.00
24	ProductDescription	0	0.00
36	Occupation	0	0.00
37	HouseOwnerFlag	0	0.00
38	NumberCarsOwned	0	0.00
39	AddressLine1	0	0.00
40	DateFirstPurchase	0	0.00
41	CommuteDistance	0	0.00
42	Region	0	0.00
43	Country	0	0.00
44	Group	0	0.00
25	StartDate	0	0.00
23	Photo	0	0.00
1	OrderDate	0	0.00
22	ModelName	0	0.00
2	ShipDate	0	0.00
3	CustomerKey	0	0.00
4	PromotionKey	0	0.00

```
5
       SalesTerritoryKey
                                             0
                                                                   0.00
       SalesOrderNumber
                                                                   0.00
6
                                             0
7 SalesOrderLineNumber
                                                                   0.00
                                             0
8
           OrderQuantity
                                             0
                                                                   0.00
9
               UnitPrice
                                                                   0.00
                                             0
10
        TotalProductCost
                                             0
                                                                   0.00
11
            SalesAmount
                                             0
                                                                   0.00
12
                  TaxAmt
                                              0
                                                                   0.00
13
                 DateKev
                                             0
                                                                   0.00
14
            ProductName
                                                                   0.00
                                             0
15
            SubCategory
                                              0
                                                                   0.00
16
                Category
                                              0
                                                                   0.00
17
            StandardCost
                                                                   0.00
                                             0
19
                                                                   0.00
               ListPrice
                                             0
20
      DaysToManufacture
                                              0
                                                                   0.00
21
             ProductLine
                                                                   0.00
                                              0
45
            RegionImage
                                                                   0.00
                                              0
```

```
[14]: # Drop columns with nan values

df= df.dropna(axis=1)
```

1.2.5 Adding columns

```
[15]: # Extracting Year from OrderDate
      df['sale_year'] = df['OrderDate'].dt.year
      # Extracting Month from OrderDate
      df['sale_month'] = df['OrderDate'].dt.month
      # Extracting day from OrderDate
      df['sale_day'] = df['OrderDate'].dt.day
      # Extracting dayofweek from OrderDate
      df['sale_week'] = df['OrderDate'].dt.dayofweek
      # Extracting day_name from OrderDate
      df['sale_day_name'] = df['OrderDate'].dt.day_name()
      # Extracting Month Year from OrderDate
      df['year\_month'] = df['OrderDate'].apply(lambda x:x.strftime('%Y-\lambda'))
      # Calculate Total Invoice Amount
      df['total_Invoice_amount'] = df['SalesAmount'] + df['TaxAmt']
      # Considering only salesamount and total_sales_amount to calculate profit
      df['profit'] = (df['UnitPrice']*df['OrderQuantity']) - df['TotalProductCost']
```

```
# Removing extra character from the string

df['ProductName'] = df['ProductName'].str.replace(',','-')

# Calculate Age

df['Age'] = df['OrderDate'].dt.year - df['BirthDate'].dt.year

1.3 Exploring data

1.3.1 Basic Overview

List of product's category

[16]: df['Category'].unique().tolist()

[16]: ['Bikes', 'Accessories', 'Clothing']

List of product's subcategory
```

```
[17]: df['SubCategory'].unique().tolist()
```

```
[17]: ['Road Bikes',
       'Mountain Bikes',
        'Bottles and Cages',
        'Gloves'.
        'Tires and Tubes',
       'Helmets',
       'Touring Bikes',
       'Jerseys',
       'Cleaners',
       'Caps',
       'Hydration Packs',
       'Socks',
       'Fenders',
        'Vests',
       'Bike Racks',
       'Bike Stands',
       'Shorts']
```

Analysing UnitPrice

```
[18]: Avg_unit_price = df.groupby(['ProductKey'])['UnitPrice'].mean()
ax = sns.distplot(Avg_unit_price, kde=True, hist=True, color='#374045')
ax.set(title='Distribution of Average unit price',
xlabel='Average Unit Price');
```


• Maximum of the product unit price is below \$1000

Sales order number distribution

[19]: n_orders = df.groupby(['CustomerKey'])['SalesOrderNumber'].nunique()
multi_orders_perc = np.sum(n_orders > 1)/df['CustomerKey'].nunique()
print(f"{100*multi_orders_perc:.2f}% of customers ordered more than once.")

36.97% of customers ordered more than once.

Sales order line number distribution

• Most of the time **three to two** products are ordered in a single order

Sales Order Quantity distribution

• maximum quantity ordered for a product is below 5

Age Distribution

```
| bins = [18, 30, 40, 50, 60, 70, 120] | labels = ['18-29', '30-39', '40-49', '50-59', '60-69', '70+'] | df['agerange'] = pd.cut(df.Age, bins, labels = labels,include_lowest = True) | age_distribution = df['agerange'].value_counts().to_frame().reset_index() | age_distribution.columns = ['Age Range', 'Population count'] | fig = px.bar(age_distribution, x='Age Range', y='Population count', color_discrete_sequence=['#374045']) | fig.update_layout( autosize=True, width=500, height=500, font=dict(size=10)) | fig.show()
```

• A sizable portion of the clientele is made up of people between the ages of **40 and 59**.

1.3.2 Sales

Year wise sales

[24]: df.groupby('sale_year')['SalesAmount'].sum().plot(kind='bar', color='#374045');

• The year 2016 saw an exponential surge in sales

Top 5 Selling Product

[25]:				OrderQuantity
	Category	SubCategory	ProductName	
	Accessories	Bottles and Cages Tires and Tubes	Water Bottle - 30 oz. Patch Kit/8 Patches	6370 4705
			Mountain Tire Tube	4551
			Road Tire Tube	3544
		Helmets	Sport-100 Helmet- Red	3398

Quantity ordered based on category and subcategory from 2014 to 2016

[27]: <pandas.io.formats.style.Styler at 0x7f6487132dc0>

Country wise quantity ordered

• High quantity of products is ordered from Australia and United States

1.3.3 Profit

Overall profit based on order year, category and subcategory

[29]: <pandas.io.formats.style.Styler at 0x7f6487c4e190>

• Major Profit is contributed by the Bike Category

Low profit contributing product

```
[30]: df.groupby(['Category', 'SubCategory', 'ProductName'])['profit'].sum().

←nsmallest(10).to_frame()
```

```
[30]:
                                                                     profit
      Category
                  SubCategory
                                  ProductName
      Clothing
                  Socks
                                  Racing Socks- L
                                                                  1474.4574
                                  Racing Socks- M
                                                                  1581.3837
                                  Bike Wash - Dissolver
      Accessories Cleaners
                                                                  4299.8688
                  Tires and Tubes Patch Kit/8 Patches
                                                                  4314.8350
      Clothing
                  Caps
                                  AWC Logo Cap
                                                                  4331.8315
      Accessories Tires and Tubes Touring Tire Tube
                                                                  4363.8089
                                  Long-Sleeve Logo Jersey- XL
      Clothing
                 Jerseys
                                                                  4495.6007
                                  Short-Sleeve Classic Jersey- L 4544.8782
                                  Long-Sleeve Logo Jersey- S
                                                                  4610.5777
                                  Short-Sleeve Classic Jersey- M 4793.2322
```

Profitability by country

• High volume of profit is earned from Australia and United States

1.3.4 Question and Answers

How efficient are the logistics?

```
r=25,
b=10,
t=10,
),
font=dict(size=10))
fig.show()
```

- The average order has a gap of 7 days between the day the order is ready for export from the factory and the date it was shipped
- Management must work to reduce this gap toward 3 days.

What was the best month for sales? How much was earned that month?

• There are large profit transactions in the months of **June**, **November**, and **December**

What time should we display advertisement to maximize likelihood of customerls buying product?

• High sales orders are seen on **Wednesday and Saturday**, therefore we can promote our product during these workweek

Which products are most often sold together?

```
[36]: # Group the data based on sales order number and product name because the 
→products

# that bought together will have share same order number

dup_order['grouped'] = df.groupby('SalesOrderNumber')['ProductName'].

→transform(lambda x: ','.join(x))

dup_order = dup_order[['SalesOrderNumber', 'grouped']].drop_duplicates()
```

[37] : count = dup_order['grouped'].value_counts()[0:5].plot.pie()

• From the above pie diagram we can draw a conclusion that these products are mostly Purchased together

```
[38]: count = Counter()

for row in dup_order['grouped']:
    row_list = row.split(',')
    count.update(Counter(combinations(row_list, 2)))

for key, value in count.most_common(10):
    print(key, value)
```

('Mountain Bottle Cage', 'Water Bottle - 30 oz.') 1623 ('Road Bottle Cage', 'Water Bottle - 30 oz.') 1513 ('HL Mountain Tire', 'Mountain Tire Tube') 915 ('Touring Tire', 'Touring Tire Tube') 758 ('Mountain Tire Tube', 'Patch Kit/8 Patches') 737 ('Mountain Tire Tube', 'ML Mountain Tire') 727 ('Water Bottle - 30 oz.', 'AWC Logo Cap') 599 ('Road Tire Tube', 'ML Road Tire') 580

('Road Tire Tube', 'Patch Kit/8 Patches') 556 ('HL Road Tire', 'Road Tire Tube') 552

• The above product can be sold in a bundle or a combined package for discount

Which product sold the most? why do you think it sold the most?


```
[40] : prices = df.groupby('ProductName').mean()['UnitPrice']
prices = prices[products]
```

```
[41]: fig, ax1 = plt.subplots()

ax2 = ax1.twinx()
ax1.bar(products, quantity_ordered, color='#D9B300')
ax2.plot(products, prices, '#374045')

ax1.set_xlabel('Product Name')
ax1.set_ylabel('Quantity Ordered', color='#D9B300')
ax2.set_ylabel('Price($)', color='#374045')
ax1.set_xticklabels(products, rotation='vertical')

plt.show();
```


[42]: prices.corr(quantity_ordered)

[42]: -0.5333019792658484

- There is a high negative correlation between Price and number of Quantity ordered
- we can conclude that **low price product has high demand**

Compare most ordered product by gender

```
[43] : male = df[df["Gender"]=="M"]
      female = df[df["Gender"]=="F"]
[44]: male_ord_qty = male.groupby(['ProductName'],as_index=False)['OrderQuantity'].

→ sum().nlargest(5, 'OrderQuantity').sort_values('ProductName')

      male_ord_qty.columns=['ProductName','Order_Qty_Male']
      female_ord_qty = female.

¬groupby(['ProductName'],as_index=False)['OrderQuantity'].sum().

       ←nlargest(5,'OrderQuantity').sort_values('ProductName')
      female_ord_qty.columns=['ProductName','Order_Qty_Female']
      df_merge = pd.merge(male_ord_qty, female_ord_qty, on='ProductName')
[45]: fig = px.line(df_merge, x="ProductName",_
       ~y=["Order_Qty_Male","Order_Qty_Female"])
      fig.update_layout(
          autosize=True.
          width=800,
          height=400)
      fig.show()
```

Does Gender and home ownership matter in order purchasing

• It's interesting to note that the average amount spent by men without permanent addresses is low, whilst the average amount spent by women without permanent addresses is higher.

Number of childer and Purchase correlation

```
r=25,
b=10,
t=10,
))
fig.show()
```

Education, Occupation and Purchase correlation

Maritial Status single and above 50 age purchase

```
[49] : df_2 = df[(df['MaritalStatus'] = = 'S')&(df['Age'] > 50)]
[50]: df_2 = df_2.groupby('agerange')['SalesAmount'].mean().to_frame().dropna()
      df_2.reset_index(inplace=True)
      fig = px.bar(df_2, x='agerange', y='SalesAmount',_
       fig.update_layout(
         autosize=False,
         width=300,
         height=300,
          margin=dict(
             1=25,
             r = 25.
             b = 10,
             t = 10.
         ))
      fig.show()
```

Which age group has produced the most revenue?

```
t = 10,
    ))
fig.show()
```

```
Yearly income range and purchase correlation
[52]: def create_bins(lower_bound, width, quantity):
          """ create_bins returns an equal-width (distance) partitioning.
              It returns an ascending list of tuples, representing the intervals.
                                                               with i > 0
              A tuple bins[i], i.e. (bins[i][0], bins[i][1])
              and i < quantity, satisfies the following conditions:
                  (1) bins[i][0] + width == bins[i][1]
                  (2) bins[i-1][0] + width == bins[i][0] and
                       bins[i-1][1] + width == bins[i][1]
          ,,,,,,
          bins = []
          for low in range(lower_bound,
                            lower_bound + quantity*width + 1, width):
              bins.append((low, low+width))
          return bins
                          width=30000,
                          quantity=5)
```

```
[53]: bins = create_bins(lower_bound=10000,
      bins2 = pd.IntervalIndex.from_tuples(bins)
      df['salary_range'] = pd.cut(df['YearlyIncome'], bins2)
```

```
[54]: df_4 = df.groupby('salary_range')['SalesAmount'].mean().to_frame()
      df_4.reset_index(inplace=True)
      sns.barplot(x="SalesAmount", y="salary_range", data=df_4);
```


• High salary range leads to increase in purchase

```
Paritial high school vs bachlors income mean and most ordered product
```

```
[55]: | df_6 = df[(df['Education']=='Partial High...
     [56]: df_6.reset_index(inplace=True)
    fig = px.bar(df_6, x='Education', y='YearlyIncome')
    fig.update_layout(
        autosize=False,
        width=300,
        height=300,
        margin=dict(
           1=25
           r = 25,
           b = 10.
           t = 10,
        ))
    fig.show()
[57]: df_7 = df[(df['Education']=='Partial High_
     df_7.groupby(['Education','ProductName'])['OrderQuantity'].mean().
     ←to_frame().sort_values('OrderQuantity', ascending=False)[:10]
    df_7.reset_index(inplace=True)
```

```
fig = px.bar(df_7, x="Education",
             y="OrderQuantity", color="ProductName",
             title="Paritial high school vs bachlors expense analysis",
             barmode="group")
fig.show()
```

• Customers with a high school diploma and modest annual income buy more prod**ucts** than people with bachelor's degrees

```
1.3.5 Customer Segmentation
[58]: # RFM stands for recency, frequency, monetary value.
      # In business analytics, we often use this concept to divide
      # customers into different segments, like high-value customers,
      # medium value customers or low-value customers, and similarly many others.
[59]: # Recency: How recently has the customer made a transaction with us
      # Frequency: How frequent is the customer in ordering/buying some product from,
      \hookrightarrow US
      # Monetary: How much does the customer spend on purchasing products from us
[60]: # calculating recency for customers who had made a purchase with a company
      df_recency = df.groupby(by='FullName',
                              as_index=False)['OrderDate'].max()
      df_recency.columns = ['CustomerName', 'LastPurchaseDate']
```

```
recent_date = df_recency['LastPurchaseDate'].max()
df_recency['Recency'] = df_recency['LastPurchaseDate'].apply(
    lambda x: (recent_date - x).days)
```

```
[61]: # calculating the frequency of frequent transactions of the
      # customer in ordering/buying some product from the company.
      frequency_df = df.drop_duplicates().groupby(
          by=['FullName'], as_index=False)['OrderDate'].count()
      frequency_df.columns = ['CustomerName', 'Frequency']
      # frequency_df.head()
```

```
[62]: monetary_df = df.groupby(by='FullName', as_index=False)['SalesAmount'].sum()
      monetary_df.columns = ['CustomerName', 'Monetary']
      # monetary_df.head()
```

```
[63]: # merging dataset
      rf_df = df_recency.merge(frequency_df, on='CustomerName')
      rfm_df = rf_df.merge(monetary_df, on='CustomerName').drop(
          columns='LastPurchaseDate')
```

```
[64]: rfm_df['R_rank'] = rfm_df['Recency'].rank(ascending=False)
      rfm_df['F_rank'] = rfm_df['Frequency'].rank(ascending=True)
      rfm_df['M_rank'] = rfm_df['Monetary'].rank(ascending=True)
      # normalizing the rank of the customers
      rfm_df['R_rank_norm'] = (rfm_df['R_rank']/rfm_df['R_rank'].max())*100
      rfm_df['F_rank_norm'] = (rfm_df['F_rank']/rfm_df['F_rank'].max())*100
      rfm_df['M_rank_norm'] = (rfm_df['F_rank']/rfm_df['M_rank'].max())*100
      rfm_df.drop(columns=['R_rank', 'F_rank', 'M_rank'], inplace=True)
      # rfm_df.head()
[65]: rfm_df['RFM_Score'] = 0.15*rfm_df['R_rank_norm']+0.28 * \
          rfm_df['F_rank_norm']+0.57*rfm_df['M_rank_norm']
      rfm_df['RFM_Score'] *= 0.05
      rfm_df = rfm_df.round(2)
      # rfm_df[['CustomerName', 'RFM_Score']].head(7)
[66]: rfm_df["Customer_segment"] = np.where(rfm_df['RFM_Score'] >
                                             4.5, "Top Customers",
                                             (np.where(
                                               rfm_df['RFM_Score'] > 4,
                                               "High value Customer".
                                               (np.where(
          rfm_df['RFM_Score'] > 3,
                                    "Medium Value Customer",
                                    np.where(rfm_df['RFM_Score'] > 1.6,
                                   'Low Value Customers', 'Lost Customers'))))))
      # rfm_df[['CustomerName', 'RFM_Score', 'Customer_segment']].head(20)
[67]: plt.pie(rfm_df.Customer_segment.value_counts(),
              labels=rfm_df.Customer_segment.value_counts().index,
              autopct='%.0f%%')
      plt.show()
```

rfm_df.head()

According to the customer segmentation described above, approximately 15% of our clients
are high value clients, whereas the majority of our clientele are low value and lost
clients

1.3.6 Cohort Analysis

```
[68]: # create an invoice month
      # Function for month
      def get_month(x):
        return dt.datetime(x.year, x.month,1)
      # apply the function
      df['InvoiceMonth'] = df['OrderDate'].apply(get_month)
      # create a column index with the minimum invoice date aka first time customer.
       ⇔was aquired
      df['CohortMonth'] = df.groupby('CustomerKey')['InvoiceMonth'].transform('min')
[69]: # create a date element function to get a series for subtranction
      def get_date_elements(data,column):
        day = data[column].dt.day
        month = data[column].dt.month
        year = data[column].dt.year
        return day, month, year
[70]: # get date elements for our cohort and invoice columns(one dimentional Series)
      _, Invoice_month, Invoice_year = get_date_elements(df, 'InvoiceMonth')
```

```
_, Cohort_month, Cohort_year = get_date_elements(df, 'CohortMonth')
      # create a cohort index
      year_diff = Invoice_year - Cohort_year
      month_diff = Invoice_month - Cohort_month
      df['CohortIndex'] = year_diff*12+month_diff+1
      # count the customer ID by grouping by Cohort Month and Cohort index
      cohort_data = df.groupby(['CohortMonth','CohortIndex'])['CustomerKey'].apply(pd.
      Series.nunique).reset_index()
      # create pivot table
      cohort_table = cohort_data.pivot(index='CohortMonth',_
      # change index
      cohort_table.index = cohort_table.index.strftime('%B %Y')
      # cohort table for percentage
      new_cohort_table = cohort_table.divide(cohort_table.iloc[:,0],axis=0)
[71]: # create percentages
      plt.figure(figsize=(25,25))
      sns.heatmap(new_cohort_table, annot=True, cmap='Blues',fmt='.0%')
```


- We can infer from the heatmap above that client retention in 2014 was subpar
- Since August of 2015, we have noticed some customers returning, though not in large numbers
- 2016 brought about a slight improvement in retention

2 Upload to jovian

[72]: jovian.commit(project="adventure-works-eda")