# Welcome to the RNASeq Workshop/Course

#### Instructors





- Meg Staton
- Abdullah Almsaeed, mobile and web developer
- Matt Huff, researcher
- Fang Liu, PhD student in EPP
- Jiali Yu, PhD student in GST

 Nick Csercsevits, Joint Institute for Computational Sciences (JICS)

### Learning Objectives

- Students will be able to apply basic bioinformatic theory and tools to analyze transcriptome datasets
- Students will be able to effectively communicate and critically assess the application of bioinformatic tools to transcriptome data
- Students will have basic competence in the UNIX shell and usage of bioinformatic tools from the command line

## Syllabus Review

#### Course website:

https://github.com/statonlab/rnaseq\_workshop/wiki

- Office hours 1:30 2:30
- Additional Linux command line practice today, if anyone requests it

#### Other Stuff

- Help is available!
- Ask questions, have discussion with your neighbors
- Use your stickies



# Basics of RNASeq

#### Outline

- The Big Picture
- Illumina platform
- Fasta format
- Fastq format
- RNASeq
- Data set for the class

The Big Picture





## The Big Picture



# illumina

# Illumina Sequencing Technology

#### \$3.3 billion in revenue in 2018

Market share (estimated):

90% in 2016

75% in 2018

Why are they so popular?

- Low price
- High throughput
- High base calling fidelity
- Paired end sequencing

Announced acquisition of PacBio in late 2018 - may or may not go through.



More info: https://www.fool.com/investing/2019/07/22/what-happens-if-pacific-biosciences-isnt-acquired.aspx



# **DNA Sequencing Economics**



Sequencing cost dropping ~5x per year

Informatics cost dropping ~2x per year

Informatics is now the bottleneck

#### How does it work?

#### Targeting coding RNA for sequencing

1. Poly-A enrichment - purify the poly-A containing mRNA molecules using poly-T oligo attached magnetic beads (eukaryotes)



2. Riboremoval - rRNA depletion

### **Basics of Library Prep**



# Final library fragments that are sequenced.

Library construction can vary by kit TruSeq Example:



You will need the adapter sequences and a good understanding of adapter locations to later trim them out of your data

#### **Videos**

Illumina Sequencing by Synthesis by Illumina <a href="https://www.youtube.com/watch?v=fCd6B5HRaZ8">https://www.youtube.com/watch?v=fCd6B5HRaZ8</a>

Illumina Sequencing Technology by Illumina <a href="https://www.youtube.com/watch?v=womKfikWlxM">https://www.youtube.com/watch?v=womKfikWlxM</a>

Library Prep by ThermoFisher
<a href="https://www.youtube.com/watch?v=\_yC0Bzw3WbQ">https://www.youtube.com/watch?v=\_yC0Bzw3WbQ</a>

Also many platform specific videos

# Paired End Sequencing



Devon Ryan https://www.biostars.org/p/267167/

# Paired End Sequencing

#### Why?

- Overcome lack of length.
- Map accurately to repetitive regions.
- Identify insertion/deletion mutations
- Better assembly.



Alignment to the Reference Sequence

https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/paired-end-vs-single-read.html



#### Multiplexing

Loading many samples into one lane.



Pink Sample With CGATGT





Green Sample with TGACCA





## Price and Throughput







HiSeq 4000 System



HiSeq X Series‡



NovaSeq 6000 System

| Instrument    | NextSeq    | HiSeq 2500  | NovaSeq | NextSeq     | NovaSeq    |          |         |
|---------------|------------|-------------|---------|-------------|------------|----------|---------|
| Run           | Mid-output | High-output | S Prime | High-output | <b>S</b> 1 | 52       | 54      |
| Read Length   | 2 x 150    | 2 x 125     | 2 x 150 | 2 x 150     | 2 x 150    | 2 x 150  | 2 x 150 |
| Unit          | Lane       | Lane        | Lane    | Lane        | Lane       | Lane     | Lane    |
| # of reads    | 130 M      | 220 M       | 375 M   | 400 M       | 750 M      | 1,800 M  | 2,250 M |
| Output        | 39 Gb      | 55 Gb       | 112 Gb  | 120 Gb      | 225 Gb     | 540 Gb   | 675 Gb  |
| Costs         | \$1,581    | \$3,044     | \$2,957 | \$5,629     | \$4,715    | \$10,034 | \$8,764 |
| Costs/M reads | \$12.16    | \$13.84     | \$7.89  | \$14.07     | \$6.29     | \$5.57   | \$3.90  |



## Price and Throughput

Companies offer regular deals:

RNASeq library prep + sequencing of 20 million reads per library \$189





# Experimental Goals for mRNA Seq

- Catalog of genes
- Gene expression levels
- Differential gene expression levels
- All of the above for alleles and splice variants
- Annotating the genes in a reference genome
- Variant (Genetic marker) discovery
- Post-transcriptional modifications, RNA-editing

#### Limitations

- Reverse transcription, PCR and fragmentation steps can introduce biases
  - Depletion of reads at both 5' and 3' ends
    - Difficult to identify the true start and end of novel transcripts
    - May underestimate expression level of short genes
    - PCR-free preps are available
  - GC bias, length bias
- Some genes are difficult to accurately quantify too short, overlapping, gene family members
- Experimental design!

# Long Read Technologies





#### PacBio (IsoSeq for RNA) and Nanopore

- full length transcripts
- no fragmentation, no amplification
- more expensive
- great if you don't have a reference genome
- great for discovering and profiling alternative splicing variants

## File Formats

>gi|31563518|ref|NP\_852610.1| microtubule-associated proteins 1A/1B light chain 3A isoform b [Homo sapiens]

MKMRFFSSPCGKAAVDPADRCKEVQQIRD QHPSKIPVIIERYKGEKQLPVLDKTKFLVPDHV NMSELVKIIRRRLQLNPTQAFFLLVNQHSMV SVSTPIADIYEQEKDEDGFLYMVYASQETFGF >FN640832

CCTGGTAGCTATGGCTTGCCTTTACTAAGA CCCATCTCAAACAGGCTCAATTATTTTGGT TCCAAGGGCCTGAAACATTCTTAAAGAAGC GAATAGAGAAACACAGGAGCACAGTTTTT CGCACCAATATCCCTCCAACTTTCCCTTTCT TCTCCAATGTTAATCCCAGCGTTGTTGCTGT CCTTGACACCAAGTCTTTTGCACACCTC A sequence must start with a header line

- Begins with a >
- First "word" is the sequence id
- Rest of line may contain more sequence descriptors

>gi|31563518|ref|NP\_852610.1| microtubule-associated proteins 1A/1B light chain 3A isoform b [Homo sapiens]

MKMRFFSSPCGKAAVDPADRCKEVQQIRD QHPSKIPVIIERYKGEKQLPVLDKTKFLVPDHV NMSELVKIIRRRLQLNPTQAFFLLVNQHSMV SVSTPIADIYEQEKDEDGFLYMVYASQETFGF

>FN640832

CCTGGTAGCTATGGCTTGCCTTTACTAAGA CCCATCTCAAACAGGCTCAATTATTTTTGGT TCCAAGGGCCTGAAACATTCTTAAAGAAGC GAATAGAGAAACACAGGAGCACAGTTTTT CGCACCAATATCCCTCCAACTTTCCCTTTCT TCTCCAATGTTAATCCCAGCGTTGTTGCTGT CCTTGACACCAAGTCTTTTGCACACCTC The header is followed by the sequence

- May be amino acid or nucleotide
- May be a single line or multiple lines
- Should be consistent within a file

No empty line between sequence entries

```
@SRR070570.1 HWUSI-EAS455:3:1:1:1388 length=41
CAGCACTAATGCACCGGATCCCATCAGAACTCCGCAGTTAA
+SRR070570.1 HWUSI-EAS455:3:1:1:1388 length=41
BACBC9BCC@.>C>96;CB@:?BB7@5>BA=:4.:B9>BB@
@SRR070570.2 HWUSI-EAS455:3:1:1:1785 length=41
CCAGAACACAAAGCTCATGACACGTTCACCTCCTGGAAGTT
+SRR070570.2 HWUSI-EAS455:3:1:1:1785 length=41
>AB@ACBB<BCA:>B; AA; @<B=; -=; <?@?<?=1-?B<8A
@SRR070570.3 HWUSI-EAS455:3:1:1:1679 length=41
ATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAAT
+SRR070570.3 HWUSI-EAS455:3:1:1:1679 length=41
BA = := = 4? : 8 > A : 8 : > 6 : 4 : ; 2 < 07, < : @582 + 22' - '; @ >
```

Sequence Identifier

↓

@SRR070570.1 HWUSI-EAS455:3:1:1:1388 length=41

CAGCACTAATGCACCGGATCCCATCAGAACTCCGCAGTTAA
+SRR070570.1 HWUSI-EAS455:3:1:1:1388 length=41

BACBC9BCC@.>C>96;CB@:?BB7@5>BA=:4.:B9>BB@

The Sequence

```
@SRR070570.1 HWUSI-EAS455:3:1:1:1388 length=41
```

#### CAGCACTAATGCACCGGATCCCATCAGAACTCCGCAGTTAA

```
+SRR070570.1 HWUSI-EAS455:3:1:1:1388 length=41
```

BACBC9BCC@.>C>96;CB@:?BB7@5>BA=:4.:B9>BB@

Totally useless line that begins with a + but does not need anything else; id and description are sometimes repeated.

```
@SRR070570.1 HWUSI-EAS455:3:1:1:1388 length=41 CAGCACTAATGCACCGGATCCCATCAGAACTCCGCAGTTAA
```

```
+SRR070570.1 HWUSI-EAS455:3:1:1:1388 length=41
```

BACBC9BCC@.>C>96; CB@:?BB7@5>BA=:4.:B9>BB@

Quality values for each base.

```
@SRR070570.1 HWUSI-EAS455:3:1:1:1388 length=41 CAGCACTAATGCACCGGATCCCATCAGAACTCCGCAGTTAA +SRR070570.1 HWUSI-EAS455:3:1:1:1388 length=41 BACBC9BCC@.>C>96;CB@:?BB7@5>BA=:4.:B9>BB@
```

### **FASTQ Quality Scores**

Scores are encoded as a single character. From lowest score to highest score:

Can calculate the likelihood of a base being wrong with a logarithmic formula.

An I is 99.99% likely be correct.

A \* is only 90% likely to be correct.

https://en.wikipedia.org/wiki/Phred\_quality\_score Ewing et al, 1998

#### Data



- USDA grant "Abiotic Stress Response And Adaptive Phenology In Fruit Trees"
- Dormancy in apricots (Prunus armeniaca) and peaches (Prunus persica)
- Late blooming (high chill) variety adapted to northern climates
- Early blooming (low chill) variety adapted to southern climates

•



# Questions before we begin?