Insuperability of the Standard Versus Ideal Model Gap for Tweakable Blockcipher Security

Bart Mennink Radboud University (The Netherlands)

> CRYPTO 2017 August 21, 2017

Tweakable Blockciphers

Tweakable Blockciphers

- Tweak: flexibility to the cipher
- Each tweak gives different permutation

Tweakable Blockciphers in OCBx

• Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]

Tweakable Blockciphers in OCBx

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable blockcipher \widetilde{E}
 - Tweak (N, tweak) is unique for every evaluation
 - Different blocks always transformed under different tweak

Dedicated Tweakable Blockciphers

- Hasty Pudding Cipher [Sch98]
 - AES submission, "first tweakable cipher"
- Mercy [Cro01]
 - Disk encryption
- Threefish [FLS+07]
 - SHA-3 submission Skein
- TWEAKEY framework [JNP14]
 - Four CAESAR submissions
 - SKINNY & MANTIS

Modular Designs

• LRW1 and LRW2 by Liskov et al. [LRW02]:

- h is XOR-universal hash
- Related: XEX
- Secure up to $2^{n/2}$ queries

Modular Designs

- LRW2[σ]: concatenation of σ LRW2's
- k_1,\ldots,k_σ and h_1,\ldots,h_σ independent

Modular Designs

- LRW2[σ]: concatenation of σ LRW2's
- k_1, \ldots, k_{σ} and h_1, \ldots, h_{σ} independent
- $\sigma=2$: secure up to $2^{2n/3}$ queries [LST12,Pro14]
- $\sigma \geq 2$ even: secure up to $2^{\sigma n/(\sigma+2)}$ queries [LS13]
- Conjecture: optimal $2^{\sigma n/(\sigma+1)}$ security

State of the Art

scheme	security	key	cost	
	(\log_2)	length	\overline{E}	\otimes/h
LRW1	n/2	n	2	0
LRW2	n/2	2n	1	1
XEX	n/2	n	2	0
LRW2[2]	2n/3	4n	2	2
$LRW2[\sigma]$	$\sigma n/(\sigma\!+\!2)$	$2\sigma n$	σ	σ

Optimal 2^n security only if key length and $\cos t \to \infty$?

Tweak-Dependent Keys

Efficiency

tweak schedule lighter than key schedule

Tweak-Dependent Keys

Efficiency

tweak schedule lighter than key schedule

Security

tweak schedule stronger than key schedule

Tweak-Dependent Keys

Efficiency

tweak schedule lighter than key schedule

Security

tweak schedule stronger than key schedule

Tweak and key change approximately equally expensive (as is e.g. done in TWEAKEY [JNP14])

Tweak-Dependent Keys: Modular Designs

Minematsu [Min09]:

- Secure up to $\max\{2^{n/2}, 2^{n-\ell_t}\}$ queries
- Beyond birthday bound for $\ell_t < n/2$
- Security gain using XTX [MI15]

Tweak-Dependent Keys: Modular Designs

Mennink [Men15]:

- Secure up to $2^{2n/3}$ and 2^n queries
- Generalized by Wang et al. [WGZ+16]
- Proof in ideal cipher model

Tweak-Dependent Keys: State of the Art

security (\log_2)	key length	cost		
		\overline{E}	\otimes/h	tdk
n/2	n	2	0	0
n/2	2n	1	1	0
n/2	n	2	0	0
2n/3	4n	2	2	0
$\sigma n/(\sigma\!+\!2)$	$2\sigma n$	σ	σ	0
$\max\{n/2, n{-} t \}$	n	2	0	1
2n/3 *	n	1	1	1
n *	n	2	0	1
	(\log_2) $n/2$ $n/2$ $n/2$ $2n/3$ $\sigma n/(\sigma+2)$ $\max\{n/2, n- t \}$ $2n/3 *$	$\begin{array}{ccc} (\log_2) & \text{length} \\ \\ n/2 & n \\ n/2 & 2n \\ n/2 & n \\ 2n/3 & 4n \\ \sigma n/(\sigma + 2) & 2\sigma n \\ \\ \hline \max\{n/2, n - t \} & n \\ 2n/3 & n \\ \end{array}$	$\begin{array}{c ccccc} (\log_2) & \text{length} & \overline{E} \\ \hline & n/2 & n & 2 \\ & n/2 & 2n & 1 \\ & n/2 & n & 2 \\ & 2n/3 & 4n & 2 \\ & \sigma n/(\sigma + 2) & 2\sigma n & \sigma \\ \hline & \max\{n/2, n - t \} & n & 2 \\ & 2n/3 & & n & 1 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*} ideal cipher model

Two Extremes

LRW2[σ] (conjectured):

Two Extremes

LRW2[σ] (conjectured):

Men2:

Somewhat Tweak-Rekeyability

• Tweak influence to key present but limited

Somewhat Tweak-Rekeyability

- Tweak influence to key present but limited
- Say λ different E-instances

$$\mathbf{Adv}_{\bar{E}}^{\mathrm{sprp}}(q,t) \leq \underbrace{\mathbf{Adv}_{E}^{\mathrm{rk}}(\sigma q,t)}_{\text{(close to optimal)}} + \underbrace{O(q/2^{n})}_{\text{hopefully optimal}}$$

$$\mathbf{Adv}_{\tilde{E}}^{\widetilde{\mathrm{SPP}}}(q,t) \leq \underbrace{\mathbf{Adv}_{E}^{\mathrm{rk}}(nq,t)}_{\approx \ \lambda t/2^{n}} + \underbrace{O(??)}_{\substack{\mathsf{hopefully}\\ \mathsf{optimal}}}$$

$$\mathbf{Adv}_{\tilde{E}}^{\widetilde{\mathrm{SPTP}}}(q,t) \leq \underbrace{\mathbf{Adv}_{E}^{\mathrm{rk}}(nq,t)}_{\approx \ \lambda t/2^{n}} + \underbrace{O(??)}_{\substack{\mathsf{hopefully}\\ \mathsf{optimal}}}$$

• $\lambda = 2$ different *E*-instances

$$\mathbf{Adv}_{\tilde{E}}^{\widetilde{\mathrm{sprp}}}(q,t) \leq \underbrace{\mathbf{Adv}_{E}^{\mathrm{rk}}(nq,t)}_{\text{(optimal)}} + \underbrace{O(??)}_{\text{hopefully optimal}}$$

• $\lambda = 2$ different *E*-instances

$$\mathbf{Adv}_{\tilde{E}}^{\widetilde{\mathrm{SPPp}}}(q,t) \leq \underbrace{\mathbf{Adv}_{E}^{\mathrm{rk}}(nq,t)}_{\text{(optimal)}} + \underbrace{\underbrace{O(1)}_{\text{insecure}}}_{\text{(optimal)}}$$

- $\lambda = 2$ different *E*-instances
- ullet is of course generically insecure

$$\mathbf{Adv}_{\tilde{E}}^{\widetilde{\mathrm{sprp}}}(q,t) \leq \underbrace{\mathbf{Adv}_{E}^{\mathrm{rk}}(nq,t)}_{\substack{\text{optimal})}} + \underbrace{O(1)}_{\substack{\text{insecure}}}$$

- $\lambda = 2$ different *E*-instances
- ullet \widetilde{E} is of course generically insecure
- Moreover: n blockcipher calls

Generalized Design

- A_i need to be invertible
- Some uniformity conditions on B_i apply
- Mixing functions can be anything otherwise

If the generic standard-to-ideal reduction is employed, optimal standard-model security with tweak-rekeying is at least as hard as without tweak-rekeying

If the generic standard-to-ideal reduction is employed, optimal standard-model security with tweak-rekeying is at least as hard as without tweak-rekeying

Proof Idea

Consider any reasonable tweak-rekeyable scheme

If the generic standard-to-ideal reduction is employed, optimal standard-model security with tweak-rekeying is at least as hard as without tweak-rekeying

- Consider any reasonable tweak-rekeyable scheme
- Threshold for $\lambda = \# E$ -instances:

If the generic standard-to-ideal reduction is employed, optimal standard-model security with tweak-rekeying is at least as hard as without tweak-rekeying

- Consider any reasonable tweak-rekeyable scheme
- Threshold for $\lambda = \# E$ -instances:
 - ullet Too high: $\mathbf{Adv}_E^{\mathrm{rk}}$ -term dominates and is non-optimal

If the generic standard-to-ideal reduction is employed, optimal standard-model security with tweak-rekeying is at least as hard as without tweak-rekeying

- Consider any reasonable tweak-rekeyable scheme
- Threshold for $\lambda = \# E$ -instances:
 - ullet Too high: $\mathbf{Adv}_E^{\mathrm{rk}}$ -term dominates and is non-optimal
 - Too low:
 - For large set of tweaks: there is no tweak-rekeying
 - Scheme behaves like non-tweak-rekeyable one

If the generic standard-to-ideal reduction is employed, optimal standard-model security with tweak-rekeying is at least as hard as without tweak-rekeying

- Consider any reasonable tweak-rekeyable scheme
- Threshold for $\lambda = \# E$ -instances:
 - ullet Too high: $\mathbf{Adv}_E^{\mathrm{rk}}$ -term dominates and is non-optimal
 - Too low:
 - For large set of tweaks: there is no tweak-rekeying
 - Scheme behaves like non-tweak-rekeyable one
- Even best trade-off will not be optimal!

Conclusion

Impossibility Result

- does not say that
 - the generic standard-to-ideal reduction is unavoidable
 - LRW2[σ]-conjecture holds
 - optimal security cannot be achieved
- but that provable optimality is very unlikely

Conclusion

Impossibility Result

- does not say that
 - the generic standard-to-ideal reduction is unavoidable
 - LRW2[σ]-conjecture holds
 - optimal security cannot be achieved
- but that provable optimality is very unlikely

Further Questions

- What does this mean for existing x-model results?
- Is the LRW2[σ]-conjecture reasonable?
- Can we salvage the generic standard-to-ideal reduction?

Thank you for your attention!