

ACHTUNG: Eine Verbreitung der Unterlagen außerhalb der Vorlesung bzw. der dazugehörigen Übungen ist nicht gestattet!

Diese Vorlesung basiert auf: Hering et al., "Physik für Ingenieure"

ISSN 0937-7433 ISBN 978-3-642-22568-0 e-ISBN 978-3-642-22569-7 DOI 10.1007/978-3-642-22569-7 Springer Heidelberg Dordrecht London New York

Egbert Zojer

Physik ET / Physik TE

3. Thermodynamik

- Thermodynamische Grundbegriffe
- Temperatur
- Thermische Ausdehnung
- Zustandsgleichung idealer Gase
- Hauptsätze der Thermodynamik
- Wärmeübertragung

Ziel:

- Beschreibung der Zustände von kompliziert zusammengesetzten makroskopischen Systemen
- und deren Änderung infolge der Wechselwirkung mit der Umgebung
- durch eine geringe Anzahl makroskopischer Variablen (Druck, Temperatur, thermodynamische Potentiale)

Phänomenologische Thermodynamik:

makroskopisch messbare Systemeigenschaften

Statistische Thermodynamik:

mikroskopische Betrachtung; Zurückführung auf Wechselwirkungen der Atome und Moleküle.

Egbert Zojer Physik ET / Physik TE

3.1.2 Thermodynamische Grundbegriffe

System:

Räumlich abgegrenzter Bereich, der herausgelöst von seiner Umgebung betrachtet wird.

Tabelle 3.1 Thermodynamische Systeme

Thermodynamisene systeme					
Bezeichnung des Systems	Kennzeichen der Systemgrenzen	Beispiele			
offen geschlossen	durchlässig für Materie und Energie durchlässig für Energie, undurchlässig für Materie	Wärmeübertrager, Gasturbine geschlossener Kühlschrank, Warmwasserheizung, Heißluftmotor			
abgeschlossen adiabat	undurchlässig für Energie und Materie undurchlässig für Materie und Wärme, durchlässig für mechanische Arbeit	verschlossenes Thermosgefäß rasche Kompression in einem Gasmotor			
Aus: Hering et al., "Physik für Ingenieure"					
Egbert Zojer		Physik ET / Physik TE			

Mechanik: Lage eines Punktes durch drei Koordinaten

Thermodynamik: Zustand eines Systems durch Zustandsgrößen beschrieben

Thermische Zustandsgrößen (direkt messbar)

Druck (p), Volumen (V), Temperatur (T)

Kalorische Zustandsgrößen (abgeleitet)

Innere Energie (U), Enthalpie (H), Entropie (S)

Gleichgewichtszustand:

- Situation eines Systems, wenn die Zustandsgrößen zeitlich konstant bleiben.
- Im Gleichgewicht: Zustandsgrößen durch Zustandsgleichung verknüpft

Egbert Zojer

Physik ET / Physik TE

Übergang von Gleichgewichtszustand 1 zu Gleichgewichtszustand 2:

Änderung der Zustandsgrößen hängt nur vom Anfangsund Endzustand ab (Art der Prozessführung irrelevant)

$$\Delta Z = Z_2 - Z_1$$

Prozessgrößen:

Wärme (Q), mechanische Arbeit (W)

Vom Verlauf des Prozesses abhängig!

Thermodynamische Größen häufig:

Extensive Größen:

- Hängen von Substanzmenge des Systems (Masse, m; Stoffmenge, v) ab
- z.B.: innere Energie, Enthalpie

Intensive Größen:

- Von Substanzmenge unabhängig
- Extensive Größen werden zu intensiven, wenn man sie durch die Substanzmenge dividiert

Spezifische Größe:

Molare Größe:

$$x = \frac{X}{m}$$

$$X_m = \frac{X}{V}$$

Egbert Zojer

Physik ET / Physik TE

Umrechnung:

$$X_m = x \frac{m}{v} = xM$$

M ... molare Masse

Molare Masse bestimmt aus relativer Atommasse, A_r , bzw. Molekülmasse, M_r , aus dem Periodensystem!

$$M = M_r \frac{g}{mol}$$

Teilchenzahl: 6,0221 10²³ mol⁻¹ (Avogadro'sche Konstante)

Beispiel: Um 2 kg H₂O zu verdampfen ist eine Verdampfungswärme Q= 4,512 MJ erforderlich. Wie hoch sind die spezifische und molare Verdampfungswärme von Wasser

Egbert Zojer

3.1.3 Temperatur

- > Der menschlichen Empfindung direkt zugänglich.
- Exakte Definition (= Messvorschrift) über Wirkungsgrad einer idealen Wärmekraftmaschine
- Verknüpft mit kinetischer Energie der Teilchen in einem System

Zwischen zwei in Kontakt befindlichen Körpern unterschiedlicher Temperatur: Temperaturausgleich (wärmerer wird kälter und kälter wird wärmer)

Im thermodynamischen Gleichgewicht haben alle Bestandteile eines Systems dieselbe Temperatur (nullter Hauptsatz der Thermodynamik)

Egbert Zojer

Physik ET / Physik TE

Temperaturskalen:

Festlegung von 2 Fixpunkten der Temperatur und Unterteilung des Bereichs dazwischen in bestimmte Zahl von Skalenteilen.

Celsius Skala (9 in °C):

Schmelz und Siedepunkt des Wassers unter Normaldruck \rightarrow 0 °C bis 100 °C

Absolute Temperaturskala (T in Kelvin):

Absoluter Temperaturnullpunkt (0 Kelvin) und Tripelpunkt des Wassers (273,15 Kelvin)

$$\frac{9}{{}^{\circ}C} = \frac{T}{K} - 273,15$$

Zustand in dem fester, flüssiger und gasförmiger Aggregatzustand miteinander im Gleichgewicht sind

Egbert Zojer

Temperaturmessung:

Temperaturabhängige Eigenschaften von Gasen, Flüssigkeiten und Festkörpern!

- > Thermische Ausdehnung einer Flüssigkeit oder eines Gases
- Dampfdruck einer Flüssigkeit
- > Thermische Ausdehnung eines Metallstabs
- > Verbiegung eines Bimetallstreifens
- Thermospannung zwischen zwei Verbindungsstellen verschiedener Metalle (Seebeck-Effekt)
- Temperaturabhängigkeit des Widerstandes von Metallen und Halbleitern
- > Energiestromdichte oder "Farbe" der von einem Körper abgegebenen elektromagnetischen Strahlung (Pyrometer)
- **>**

Egbert Zojer

Physik ET / Physik TE

3.1.4 Thermische Ausdehnung

Festkörper:

Längenausdehnung

$$\frac{d l}{l} = \alpha(T)dT$$

 α ... koeffizient α einiger I Längenausdehnungskoeffizient Temperaturbereichen

Aus: Hering et al., "Physik für Ingenieure"
Tabelle 3.4 Mittlerer linearer Längenausdehnungskoeffizient α einiger Festkörper in verschiedenen
Temperaturbereichen

Für kleine Temperaturbereiche mit α = konstant:

$$\frac{\Delta l}{l} = \alpha \Delta T$$

l_2	$= l_1$	[1+	$\alpha(T_2)$	$-T_1$
ert Zo	oier			

Ten	nperaturbereich	$ \begin{array}{l} 10^6 \alpha \\ \text{in K}^{-1} \\ 0 ^{\circ}\text{C} \leq \vartheta \\ \leq 100 ^{\circ}\text{C} \end{array} $	$ \begin{array}{l} 10^6 \alpha \\ \text{in K}^{-1} \\ 0 ^{\circ}\text{C} \leq \vartheta \\ \leq 500 ^{\circ}\text{C} \end{array} $
Alu	minium	23,8	27,4
Kup	ofer	16,4	17,9
Stal	hl C 60	11,1	13,9
ros	tfreier Stahl	16,4	18,2
Inv	arstahl	0,9	
Qua	arzglas	0,51	0,61
gew	öhnliches Glas	9	10,2

Volumenausdehnung:

$$V_{2} = l_{2}^{3} = l_{1}^{3} [1 + \alpha (T_{2} - T_{1})]^{3} =$$

$$= V_{1} [1 + 3\alpha (T_{2} - T_{1}) + 3\alpha^{2} (T_{2} - T_{1})^{2} + \alpha^{3} (T_{2} - T_{1})^{3}] \approx$$

$$\approx V_{1} [1 + 3\alpha (T_{2} - T_{1})]$$

$$\boxed{\frac{\Delta V}{V} = \gamma \, \Delta T \; mit \; \gamma = 3\alpha} \quad {\text{Raumausdehnungskoeffizient}}$$

Beispiel: Messingkugel (α = 19x10⁻⁶ K⁻¹) hat bei ϑ = 20°C den Durchmesser d_1 = 20,00 mm. Auf welche Temperatur muss man sie erwärmen, damit sie in einem Ring mit Innendurchmesser d_2 = 20,03 mm steckenbleibt. Wie hat sich ihr Volumen verändert?

Egbert Zojer Physik ET / Physik TE

Flüssigkeiten:

Lediglich Volumsausdehnung relevant

$$\boxed{\frac{\Delta V}{V} = \gamma \, \Delta T}$$

Tabelle 3.5 Raumausdehnungskoeffizient γ einiger Flüssigkeiten bei der Temperatur $\theta = 20 \,^{\circ}\text{C}$

Stoff	$10^3 \gamma$ in K^{-1}
Wasser	0,208
Quecksilber	0,182
Pentan	1,58
Ethylalkohol	1,10
Heizöl	0,9 bis 1,0

Aus: Hering et al., "Physik für Ingenieure"

Anomalie des Wassers:

Wasser hat bei ϑ = 4 °C seine größte Dichte von ρ_{max} = 0.999973 kg/dm³

Egbert Zojer Physik ET / Physik TE

7

Graza Institut für Festkörperphysik

Gase:

$$\boxed{\frac{\Delta V}{V} = \gamma \, \Delta T}$$

V außerdem von p abhängig!

- > γ für alle Gase fast gleich
- \triangleright Insbesondere für p \rightarrow 0 (ideales Gas): γ = 1/273,15 K⁻¹
- ightharpoonup Ideales Gas würde bei T ightharpoonup 0 kein Volumen einnehmen

Je geringer der Druck und je höher die Temperatur, umso ähnlicher wird ein reales Gas einem idealen Gas!

Egbert Zojer

Physik ET / Physik TE

3.1.5 Zustandsgleichung des idealen Gases

Kombination der Gesetze von Boyle-Mariotte, Gay-Lussac und Charles (die jeweils 2 der Zustandsgrößen kombinieren) ergibt:

Für eine bestimmte Stoffmenge eines idealen Gases gilt:

$$\frac{pV}{T} = konst.$$

Satz von Avogadro:

v = 1 mol eines idealen Gases nimmt beim Normzustand (p = 1 bar, $\theta = 0$ °C) das Volumen von 22,414 dm³ ein.

$$pV = vR_mT$$

mit der universellen Gaskonstante: R = 8,3145 J/(mol K)

Egbert Zojer

Umrechnung auf Teilchenzahl:

$$pV = v N_A \frac{R_m}{N_A} T = N k T$$

Avogadro'sche Konstate: N_A = 6,0221 10²³ mol⁻¹

Boltzmann-Konstante: k = 1,38065 10⁻²³ J/K

Beispiel: Gefäß mit 2 I Inhalt wird bei 9=22 °C evakuiert und dann bei gleichbleibender Temperatur bis zu einem Überdruck von 2 bar (Luftdruck p_L = 1016 hPa) mit He gefüllt. Wie groß ist die im Gefäß enthaltene Teilchenzahl, Teilchenmenge und Masse ?

Egbert Zojer

Physik ET / Physik TE

3.2 Kinetische Gastheorie

Ableitung der thermodynamischen Eigenschaften der Gase aus der Bewegung der Gasmoleküle unter Verwendung der Gesetze der klassischen Mechanik.

Modellsubstanz ideales Gas:

- große Anzahl gleichartiger Teilchen (Atome, Moleküle);
- deren räumliche Ausdehnung ist vernachlässigbar (punktförmig);
- keine Wechselwirkung zwischen Teilchen außer bei Stößen;
- Stöße zwischen Teilchen und mit Gefäßwänden elastisch und von vernachlässigbarer Dauer

Erfüllt wenn: Teilchendichte gering; T weit über Siedetemperatur

3.2.1 Druck auf Gefäßwand:

Annahme: Ein Teilchen der Masse m_M im Würfel

Reflexion an Wand bewirkt Δp :

$$\Delta p_i = 2m_M v_{xi}$$

Mittlerer Kraftstoß auf rechte Wand:

$$\overline{F}_{i} = \frac{\Delta p_{i}}{\Delta t} = \frac{2m_{M}v_{xi}}{2a/v_{xi}} = \frac{m_{M}v_{xi}^{2}}{a}$$
Abb. 3.5 Zur kinetischen Gastheorie: Würfel mit einem Molekül der Geschwindigkeit v_{i} .

x, y, z Koordinaten, a Kantenlänge

Druck durch ein Teilchen (Achtung, p hier Druck!):

$$\overline{p}_i = \frac{\overline{F}_i}{a^2} = \frac{m_M v_{xi}^2}{V}$$

Aus: Hering et al., "Physik für Ingenieure"

Physik ET / Physik TE

Egbert Zojer

Institut für Festkörperphysik

durch N Teilchen:

$$p = \frac{m_M}{V} \left(v_{x1}^2 + v_{x2}^2 + v_{x3}^2 + \dots v_{xn}^2 \right) = \frac{m_M}{V} \sum_{i=1}^{N} v_{xi}^2$$

Typische Situation im Normalzustand bei Luft: 3·10²³ Treffer/s/cm²

Lediglich statistische Aussagen möglich!

Mittleres Geschwindigkeitsquadrat:

$$\overline{v_x^2} = \frac{1}{N} \sum_{i=1}^N v_{xi}^2$$

Druck:
$$p = \frac{m_M}{V} N \overline{v_x^2}$$
 weiters gilt: $v^2 = v_x^2 + v_y^2 + v_z^2$

weiters gilt:
$$v^2$$
 =

$$v^2 = v_x^2 + v_y^2 + v_z^2$$

und (Gleichverteilung der Raumrichtungen): $\overline{v_x^2} = \overline{v_y^2} = \overline{v_z^2} = \frac{1}{2}\overline{v^2}$

Egbert Zojer

Grundgleichung der kinetischen Gastheorie:

$$p = \frac{1}{3} \frac{m_M}{V} N \overline{v^2} = \frac{1}{3} \rho \overline{v^2}$$
 $\rho \dots$ Dichte

mittlere Geschwindigkeit: $v_m = \sqrt{\overline{v^2}} = \sqrt{\frac{3p}{\rho}}$

Im Bereich der Schallgeschwindigkeit!

Beispiel: Wie hoch ist die mittlere Geschwindigkeit der Gasmoleküle in N_2 ($\rho=1,2505$ kg/m³) im Normzustand (p=1,013 bar, $\vartheta=20$ °C)

Egbert Zojer Physik ET / Physik TE

3.2.2 Thermische Energie und Temperatur

Definition der mittleren kinetische Energie: $\overline{E}_{kin} = \frac{1}{2} m_{M} \, \overline{v^{2}}$

$$\overline{E}_{kin} = \frac{3}{2} \, k \, T \qquad \begin{array}{c} \text{T ist ein Maß für die mittlere} \\ \text{kinetische Energie der} \\ \text{Moleküle} \end{array}$$

Absoluter Nullpunkt der Temperatur → Teilchen in Ruhe (aber: Nullpunktsenergie – QM Effekt)

Teilchen des idealen Gases hat 3 Freiheitsgrade → Faktor 3/2 Gleichverteilungssatz:

Thermische Energie eines Moleküls verteilt sich gleichmäßig auf alle seine Freiheitsgrade. Pro Freiheitsgrad Energie von ½ kT.

$$\overline{E}_{\it kin} = rac{f}{2} \, k \, T$$
 f ... Zahl der Freiheitsgrade

Beispiel - N₂ Molekül:

- 3 Translationsfreiheitsgrade,
- 2 Rotationsfreiheitsgrade,
- 1 Schwingungsfreiheitsgrad

Egbert Zojer

Physik ET / Physik TE

Verteilung der Geschwindigkeiten folgt Maxwell'scher Verteilungsfunktion (hier nicht behandelt)

Entscheidend: Wahrscheinlichkeit, Pi, dass Zustand mit Ei besetzt (Boltzmann Faktor):

$$P_i \propto e^{-rac{E_i}{kT}}$$

Boltzmann Faktor und Gleichverteilungssatz gelten im Bereich der klassischen Physik; z.B., bei niedrigen Temperaturen: Quantenstatistik!

Physik ET / Physik TE Egbert Zojer

3.3 Hauptsätze der Thermodynamik

3.3.1 Wärme

- Maß für Energie, die in ungeordneter thermischer **Bewegung steckt**
- → Temperaturausgleich = Energieübertrag
- Flüssigkeiten und Gase: kinetische Energie der Translation und Rotation, Moekülschwingungen
- Festkörper: Schwingung der Atome um Ruhelage

Wärme (Q) = Energie, die aufgrund eines Temperaturunterschieds übertragen wird Wärme fließt stets in Richtung niedrigerer Temperatur Wärmeübertrag = Energieübertrag

Egbert Zojer Physik ET / Physik TE

Wärmeübertrag → Temperaturerhöhung (Ausnahme -Phasenübergang: z.B.: Schmelzen, Verdampfen ...)

c(T) ... spezifische Wärmekapazität; $C_m(T)$... molare Wärmekapazität

für kleine
$$\Delta$$
T: c bzw. \mathbf{C}_{m} ~ konstant $\rightarrow Q_{12} = m\,c\,ig(T_2-T_1ig)$

Beispiel: Wie groß ist die Wärme, die einem Stück Eisen (0,8 kg) zugeführt werden muss, um es von $\theta = 20^{\circ}$ C auf $\theta = 400^{\circ}$ C zu erwärmen (mittlere spezifische Wärmekapazität, c = 540 J/(kg K). Auf welche Geschwindigkeit könnte man Stück Eisen damit beschleunigen?

Physik ET / Physik TE Egbert Zojer

3.3.2 Erster Hauptsatz der Thermodynamik (Energieerhaltungssatz)

Wärme = Energieform (nicht ein Stoff = "Phlogiston", wie bis zur Mitte des 19. Jhd. angenommen)

- In einem abgeschlossenen System bleibt die Energie erhalten
- Energie kann nicht vernichtet und nicht erzeugt, sondern nur umgewandelt bzw. zwischen verschiedenen Teilen des Systems ausgetauscht werden.
- Es gibt kein Perpetuum mobile erster Art (= Maschine, die Arbeit verrichtet ohne, dass ihr von außen Energie zugeführt wird).

Egbert Zojer

Physik ET / Physik TE

Innere Energie, U:

Gesamte thermische Energie, die in der ungeordneten Bewegung der Teilchen steckt

$$dU = \delta Q + \delta W$$
Zustandsgröße Prozessgrößen

Geschlossenes System: Änderung der inneren Energie = Summe von übertragener Wärme und Arbeit (positiv: Wärme und Arbeit dem System zugeführt; negativ: Energie nach außen abgegeben)

$$U = N \frac{f}{2} kT = v \frac{f}{2} R_m T$$

Egbert Zojer

Weitere nützliche Zustandsgröße: Enthalpie, H

$$\boxed{H = U + pV} \qquad dH = dU + p\,dV + V\,dp$$

3.3.6 Zweiter Hauptsatz der Thermodynamik - Reversibilität

Reversible (umkehrbare) Prozesse: Bei Umkehr des Prozesses wird der Ausgangszustand wieder erreicht, ohne dass Änderungen in der Umgebung zurückbleiben.

z.B.: Stoß von Billardkugeln, Vorgänge in der Mechanik ohne Wärmeentwicklung

Egbert Zojer

Physik ET / Physik TE

Irreversible (unumkehrbare) Prozesse: Umkehr des Prozesses nur unter äußerer Einwirkung möglich, wobei eine Veränderung in der Umgebung zurückbleibt.

z.B.: Apfel fällt vom Baum und stößt inelastisch mit der Erde (Umwandlung in thermische Energie); Umkehrung verletzt 1. Hauptsatz nicht, wurde aber trotzdem noch nie beobachtet ... Diffusion, Wärmeübergang, ...

Reversible Prozesse: eigentlich idealisierte Grenzfälle ...

Thema des 2. Hauptsatzes: Vorgabe der Richtung von selbst ablaufender Prozesse

Aus: Hering et al., "Physik für Ingenieure"

2. Hauptsatz der Wärmelehre:

- a. Es gibt keine periodisch arbeitende Maschine, die Wärme aus einer Wärmequelle entnimmt und vollständig in mechanische Arbeit umwandelt
- b. Es gibt kein Perpetuum mobile 2. Art
- c. Wärme geht nicht von selbst von einem kalten auf einen warmen Körper über.
- @ a: Wärmekraftmaschine muss immer Wärme an Senke tieferer Temperatur abgeben
- @ b: man kann z. B. nicht einfach die Wärme der Meere in Energie verwandeln
- @ c: unter Arbeitsaufwand ist das möglich! (siehe Kühlschrank)

Egbert Zojer

TU Institut für Festkörperphysik

Weitere essentielle Zustandsgröße: Entropie, S

Gestattet Berechnung der "Irreversibilität" eines Vorganges.

Definition: $dS = \frac{\delta Q_{rev}}{T} \Rightarrow \Delta S = S_2 - S_1 = \int_1^2 \frac{\delta Q_{rev}}{T}$

Für adiabatische Systeme gilt: In irreversiblen Prozessen steigt die Entropie, bei reversiblen bleibt S = konst.

Statistische Deutung der Entropie

Entropie steht in engem Zusammenhang mit der Wahrscheinlichkeit mit der sich ein Zustand realisieren lässt! Entropie ist ein Maß für den Grad der Unordnung.

$S = k \ln W$

W ... thermodynamische Wahrscheinlichkeit (= Zahl der Mikrozustände, die denselben Makrozustand ergeben)

Beispiel:	Makrozustand Komplexi	Komplexionenzahl	
	$n_1:n_2$	W	
	0:4	W=1	
Der Makrozustand, der sich durch die meisten	1:3	W=4	
Mikrozustände erreichen lässt, ist der	2:2	w=6	
Wahrschenlichste (Boltzmann)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	W=4	
(Boltzmann)	4:0	W=1	
Aus: Hering et al., "Physik für	Abb. 3.38 Verschiedene Mikrozustände bei de	r	
Ingenieure"	Verteilung von $N=4$ Molekülen auf die zwei H	Iälften	
Egbert Zojer	eines Gefäßes	k TE	

3.7 Freie Energie, F, und Gibb'sche freie Enthalpie, G

In welche Richtung verlaufen Prozesse jetzt wirklich?

$$\boxed{F = U - T S}$$

Isotherm-isochore Isotherm-isobare Systeme

Systeme (V,T=konst.): (p,T=konst.):

Reversible Prozesse: Reversible Prozesse:

dF=0 (F konst.) dG=0 (F konst.)

Irreversible Prozesse: Irreversible Prozesse:

dF negativ. dG negativ.

Gleichgewichtszustand: Gleichgewichtszustand:

F = Minimum. G = Minimum.

Mathematisch aus 1. und 2. Hauptsatz der Wärmelehre ableitbar!

3.3.8 Dritter Hauptsatz der Thermodynamik

Für reine Stoffe gilt: S=0 für T=0

Dies führt zu einem Widerspruch für den idealen (Carnot'schen) Kreisprozess → Der absolute Temperaturnullpunt lässt sich nicht erreichen!

Egbert Zojer Physik ET / Physik TE

3.5 Wärmeübertragung

Wärmeübertragungsmechanismen:

Wärmeleitung Konvektion Wärmestrahlung

Festkörper (für ET/E am relevantesten !): Wärmeleitung durch Übertragung von Schwingungsenergie und kinetischer Energie der Leitungselektronen in Stößen.

Flüssigkeiten: Zusätzlich Strömungen erwärmter Teilmengen (freie oder erzwungene Konvektion)

Gase: Konvektion und Wärmestrahlung dominant.

3.5.1 Wärmeleitung

Wärmestromdichte: Pro Zeit ∆t durch Fläche A transportierte Wärme ∆Q

$$ec{j}_q = rac{\Delta Q}{\Delta t\,A}\,ec{e}_A = rac{\dot{Q}}{A}\,ec{e}_A \ ec{e}_A \ldots$$
 Einheitsvektor senkrecht auf A

Verknüpfung mit Ursache (= Temperaturgradient): Fourier'sches Grundgesetz des Wärmetransports

Egbert Zojer

Wärmeleitfähigkeit, λ :

- λ besonders niedrig in ruhenden Gasen (z.B.: Luft bei $20^{\circ}\text{C} - \lambda = 0.026 \text{ W/(mK)}$
- λ besonders hoch in Metallen (z.B.: Kupfer bei 20 °C λ = 393 W/(mK)); hier direkt verknüpft mit elektrischer Leitfähigkeit
- λ auch niedrig in Baustoffen mit Poren (z.B.: Ziegelstein - $\lambda = 0.5 \text{ W/(mK)}$

Hauptfrage: Wie ändert sich nun die Temperatur an einem Ort, wenn dort eine Wärmequelle mit Energiedichte f vorliegt und gleichzeitig Wärme zu- bzw. abfließt?

Egbert Zojer Physik ET / Physik TE

19

Aus: Hering et al., "Physik für Ingenieure"

Betrachte: Infinitesimales Volumselement dV mit Masse dm

Zu- bzw. Abnahme der inneren Energie pro Zeit

$$c dm \frac{\partial T}{\partial t} = \dot{f} dV$$

$$- \left[j_{qx}(x + dx) - j_{qx}(x) \right] dy dz$$

$$- \left[j_{qy}(y + dy) - j_{qy}(y) \right] dx dz$$

$$- \left[j_{qz}(z + dz) - j_{qx}(z) \right] dx dy$$

$$\mathbf{mit} \quad j_{qx} \big(x + dx \big) = j_{qx} \big(x \big) + \frac{\partial j_{qx}}{\partial x} \, dx$$

und nach Division durch dx dy dz

$$c \rho \frac{\partial T}{\partial t} = \dot{f} - \left\{ \frac{\partial j_{qx}}{\partial x} + \frac{\partial j_{qy}}{\partial y} + \frac{\partial j_{qz}}{\partial z} \right\}$$
Abb. 3.52 Wärmeströme durch die Oberfläche eines Volumenelements dV = dx dy dz mit der Wärmequellendichte \dot{f}

Physik ET / Physik TE

Egbert Zojer

Eliminierung der Wärmestromdichte mittels Grundgesetz des Wärmetransports:

$$j_{x} = -\lambda \frac{\partial T}{\partial x}, j_{y} = -\lambda \frac{\partial T}{\partial y}, j_{z} = -\lambda \frac{\partial T}{\partial z}$$

$$c \rho \frac{\partial T}{\partial t} = \dot{f} + \lambda \left\{ \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right\}$$

Stationärer Fall (Temperatur zeitlich konstant) ohne Wärmequellen:

$$\boxed{\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0}$$

Analoge Differentialgleichung auch für Potential in Elektrostatik!

Physik ET / Physik TE Egbert Zojer

$j_{qx} = -\lambda \frac{dT}{dx}$ Fourier-**Eindimensionale** Grundgleichung **Situation** $\mathbf{\dot{Q}} = \mathbf{j}_{qx} \mathbf{A}$ (3.138)Temperaturprofil $T = T_1 - \frac{T_1 - T_2}{s} x$ (3.139)planparallele Platte (eindimensionaler Fall) $j_{\rm qx} = \frac{\lambda}{s} \left(T_1 - T_2 \right)$ Wärmestrom, (3.140)einschichtige Trennwand Wärmestrom, mehrschichtige Trennwand (3.141)

Aus: Hering et al., "Physik für Ingenieure"

Physik ET / Physik TE

Egbert Zojer