课外练习题 6

1. 当	常数 t 满足时,二次型 $f(x_1,$	$(x_2, x_3) = x_1^2 + 5x_2^2 + 4x_3^2 + 4x_1x_2 - 2tx_2x_3$
2.礻	与 $\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & k^2 + 1 & 0 \\ 0 & 0 & k + 1 \end{pmatrix}$ 是正定矩阵,「	则 <i>k</i> 应满足
3. 己	出知二次型 $f(x_1, x_2, x_3) = 2x_1^2 + ax_2^2 + 5x_3$	$x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$ 的秩为 2, 则 $a = $
4. E	已知二次型 $f(x_1, x_2, x_3) = (x_1 + ax_2)^2 +$	$(x_2 - ax_3)^2 + (x_1 + x_3)^2$ 正定,则常数 a 的取值范
	围为	
5. i	及二次型 $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + (1 - x_1^2)$	$(k)x_3^2 + 2kx_1x_2 + 2x_1x_3$ 是正定的,则 k 应满足的
Ź	条件是	
6. 如果二次型 $f(x_1, x_2, x_3) = x_1^2 + ax_2^2 + x_3^2 + 2bx_1x_2 + 2x_1x_3 + 2x_2x_3$ 经过正交变换 $\mathbf{x} = \mathbf{P}\mathbf{y}$		
化	为标准形 $f = y_2^2 + 4y_3^2$,则(
	(A) $a = 3, b = -1$	(B) $a = -3, b = -1$
	(C) $a = 3, b = 1$	(D) $a = -3, b = 1$
7. A	A 为 n 阶实对称矩阵,则 A 是正定矩阵 (A) 二次型 x^TAx 的负惯性指数为零 (C) A 没有负特征值	
8. 设	三次型 $f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_2 - x_3)^2$	$(-x_3)^2 + (x_3 + x_1)^2$,则下列结论正确的是().
9.	(A) f 是正定的 (B) f 的秩是 2 A 是 n 阶实对称矩阵,则 A 为正定的3	(C) <i>f</i> 的秩是 3 (D) <i>f</i> 的特征值是1,1,1 充要条件是 ().
	(A) $ A > 0$	(B) 存在 n 维列向量 $\alpha \neq 0$ 使 $\alpha^T A \alpha > 0$
	(C) 存在 n 阶可逆阵 C 使 $A = C^T C$	(D)对元素全不为零的向量 x ,总有 $x^T A x > 0$
10.	实二次型 $f(x_1, x_2, x_3) = ax_1^2 + bx_2^2 + ax_3$	$x_3^2 + 2cx_1x_3$ 是正定的充要条件是,实数 a,b,c 满
	足条件().	
	(A) $a > 0, b > 0, c > 0$	(B) $a > c, b > 0$

(D) a > |c|, b > 0

(C) |a| > |c|, b > 0

- 11. 设A是一个n阶矩阵,交换A的第i列和第j列后,再交换第i行和第j行得矩阵B,则A,B之间关系是().
 - (A) 等价但不相似

(B) 相似但不合同

(C) 相似, 合同但不等价

- (D) 等价,相似,合同
- 12. A 为实对称矩阵,则下列成立的是 ().
 - (A) 如行列式 |A| > 0,则 A 正定
 - (B) 如 A 的主对角线元素全为正,则 A 正定
 - (C) 如 A^{-1} 存在且正定,则A正交
 - (D) 如 P^TAP 正定,其中P为可逆矩阵,则A正定
- 13. (15 分) 求正交变换 x = Py, 将二次型

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3 + 4x_1x_3$$

化为标准形, 其中 $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}, \mathbf{y} = (y_1, y_2, y_3)^{\mathrm{T}}.$

- 14.(6分)设A 是n 阶方阵,矩阵 $B = (\alpha_1 \ \alpha_2 \ \alpha_3)$,其中 $\alpha_1,\alpha_2,\alpha_3$ 是n 维列向量, $\alpha_1 \neq \mathbf{0}$,且满足 $A(\alpha_1 \ \alpha_2 \ \alpha_3) = (\alpha_1 \ \alpha_1 + \alpha_2 \ \alpha_2 + \alpha_3)$,证明: (1) 齐次线性方程组 $Bx = \mathbf{0}$ 仅有零解; (2) B^TB 是正定矩阵,其中 B^T 是B 的转置矩阵.
- 15. (16 分)设有二次型 $f(x_1, x_2, x_3) = 4x_2^2 3x_3^2 + 2ax_1x_2 4x_1x_3 + 8x_2x_3$ (其中 a 为整数),通过正交变换化为标准形 $f = y_1^2 + 6y_2^2 + by_3^2$,(1)求常数 a,b;(2)求化二次型为标准形的正交变换.
- 16. (14 分) 已知二次型 $f(x_1, x_2, x_3) = ax_1^2 2x_1x_2 + 2x_1x_3 + 2x_2x_3$ 经过正交变换 $\mathbf{x} = \mathbf{P}\mathbf{y}$ 后 化为 $f = -2y_1^2 + y_2^2 + y_3^2$,其中 $\mathbf{x} = (x_1, x_2, x_3)^T$, $\mathbf{y} = (y_1, y_2, y_3)^T$.求(1)常数 a ;
 (2) 正交矩阵 \mathbf{P} .
- 17. (16 分) 设矩阵 $\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & a & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 与 $\mathbf{A} = \begin{pmatrix} 1 & & \\ & 2 & \\ & & b \end{pmatrix}$ 相似. (1) 确定 a,b 的值; (2) 求

正交矩阵 \mathbf{Q} , 使得 $\mathbf{Q}^T A \mathbf{Q} = \mathbf{\Lambda}$; (3) 判定二次型 $f = \mathbf{x}^T A \mathbf{x}$ 的正定性, 并指出方程

 $x^T A x = 1$ 表示何种二次曲面.

- 18. (16 分) 已知二次型 $f(x_1,x_2,x_3)=x_1^2+2x_2^2+ax_3^2-4x_1x_2-4x_2x_3$ 通过正交变换可化为标准形 $f(Y)=2y_1^2+5y_2^2+by_3^2$,求参数 a、b 及所用的正交矩阵,并判定二次型的正定性.
- 19. 设 \boldsymbol{A} 为 \boldsymbol{n} 阶正定矩阵, \boldsymbol{B} 为 \boldsymbol{n} 阶实反对称矩阵,证明 $\boldsymbol{A}-\boldsymbol{B}^2$ 为正定矩阵.
- 20. (6分)设A是n阶正定矩阵,E是n阶单位矩阵,证明: |E+A|>1.