Problem A. Hopscotch Addict

Time limit 2000 ms **Mem limit** 1048576 kB

Problem Statement

Ken loves ken-ken-pa (Japanese version of hopscotch). Today, he will play it on a directed graph G. G consists of N vertices numbered 1 to N, and M edges. The i-th edge points from Vertex u_i to Vertex v_i .

First, Ken stands on Vertex S. He wants to reach Vertex T by repeating ken-ken-pa. In one ken-ken-pa, he does the following exactly three times: follow an edge pointing from the vertex on which he is standing.

Determine if he can reach Vertex T by repeating ken-ken-pa. If the answer is yes, find the minimum number of ken-ken-pa needed to reach Vertex T. Note that visiting Vertex T in the middle of a ken-ken-pa does not count as reaching Vertex T by repeating ken-ken-pa.

Constraints

- $2 < N < 10^5$
- $0 \le M \le \min(10^5, N(N-1))$
- $1 \leq u_i, v_i \leq N (1 \leq i \leq M)$
- $u_i \neq v_i (1 \leq i \leq M)$
- If $i \neq j$, $(u_i, v_i) \neq (u_j, v_j)$.
- $1 \le S, T \le N$
- $S \neq T$

Input

Input is given from Standard Input in the following format:

Output

If Ken cannot reach Vertex T from Vertex S by repeating ken-ken-pa, print -1. If he can, print the minimum number of ken-ken-pa needed to reach vertex T.

Sample 1

Input	Output
4 4	2
4	
2 3	
3 4	
4 1	
1 3	

Ken can reach Vertex 3 from Vertex 1 in two ken-ken-pa, as follows: $1 \to 2 \to 3 \to 4$ in the first ken-ken-pa, then $4 \to 1 \to 2 \to 3$ in the second ken-ken-pa. This is the minimum number of ken-ken-pa needed.

Sample 2

Input	Output
3 3	-1
1 2	
2 3	
3 1	
1 2	

Any number of ken-ken-pa will bring Ken back to Vertex 1, so he cannot reach Vertex 2, though he can pass through it in the middle of a ken-ken-pa.

Sample 3

Input	Output
2 0 1 2	-1

Vertex \boldsymbol{S} and Vertex \boldsymbol{T} may be disconnected.

Sample 4

Input	Output
6 8	2
1 2	
2 3	
3 4	
4 5	
5 1	
1 4	
1 5	
4 6	
1 6	