Floating-Point Numbers

Z. Jerry Shi
Department of Computer Science and Engineering
University of Connecticut

CSE3666: Introduction to Computer Architecture

Outline

- Real numbers in binary
 - Decimal to binary
 - Binary to decimal
- IEEE 754 floating-point number standards
 - Single precision and double precision
- RISC-V support for floating-point numbers

Reading: Section 3.5, excluding hardware support for floating-point numbers.

Real numbers

- Computers need to deal with
 - Numbers with fractions (not just whole numbers)
 - Very big numbers
 - Very small numbers

Example of real numbers in decimal:

? 3.14159...

not normalized

 $\sim -0.002 \times 10^{-20}$

9.4607 \times 10¹⁵ (meters in a light year)

Normalized scientific notation:

Only one non-zero digit to the left of the decimal point.

Binary number with fraction exact Match

To represent fractions in binary, we use bits after the binary point

What is the value of the following binary number?

Binary to decimal

bits	1	0	1	1	1	0	1
weights	2^2	21	2^0	2-1	2-2	2-3	2-4

(ration)

Multiply each bit with weight:

Decimal to binary

Example:

Convert the decimal number 0.8 to a binary number

0						
2^0	2-1	2-2	2-3	2-4	2-5	2-6

Converting decimal to binary

08	0-11001100-5
0-8	1

Decimal	Binary
0.8	
0.8 * 2 = 1.6	0.1
0.6 * 2 = 1.2	0.11
0.2 * 2 = 0.4	0.110
0.4 * 2 = 0.8	0.1100
0.8 * 2 = 1.6	0.11001
Continue	0.1100110011001100

Fraction .8 appears again. The pattern 1100 will repeat forever.

Normalized notation of binary numbers

• There are many representations as we move the binary point

$$101.1101 = 10.11101 \times 2^{1} = 1.011101 \times 2^{2} = 0.1011101 \times 2^{3}$$

Normalized binary representation

The normalized binary representation has a single 1 before the point


```
python
>>> float.hex(float.fromhex('5.d'))
'0x1.7400000000000p+2'
```

Encode floating-point numbers

• Given a number of bits, how do we represent

Floating Point Standard (single and double precisions)

- Defined by IEEE Std 754-1985
 - Developed in response to divergence of representations
 - Solve the portability issues for scientific code
 - Now almost universally adopted

- Double have more bits to represent exponent and fraction
- They are types float and double in C
- Later versions of the standard include more types
 - E.g., 128-bit quad-precision

IEEE Floating-Point Format: single-precision

value =
$$(-1)^S \times (1$$
. Fraction) $\times 2^E$

Exponent is in excess-127 representation. The Bias = 127.

Exponent field in single-precision

- The exponent field has 8-bit, keeping a value in [0, 255]
 - 0(1, 254): A normal SP number
 - We will discuss 0 and 255 soon = denormal
- The range of actual exponent: [-126, 127] : Act Exp
 - Excess-127 representation!

$$\pm 1.x \times 2^{E}$$
 and $E \in [-126,127]$

Encoded =
$$E + 127$$

Bits in the exponent field 1.. 254

Questions: Excess-127

• Given the eight bits in the exponent field of single-precision FP numbers, find the actual exponents in decimal.

Example: Read Single-Precision FP numbers

• What number (in decimal) is represented by the following single-precision floating-point number?

110000001010 0000 0000 0000 0000 En Exp Action

$$\sqrt{\text{Fraction}} = 01000...00_2$$

Encoded exponent = 10000001_2 = 129 (as 8-bit unsigned number)

Actual exponent
$$\neq 129 - 127 = 2$$

$$(-1)^{1} \times (1 + 0.01_{2}) \times 2^{(129 - 127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

Question

What is the actual exponent of the following single-precision floating-point number?

What is its value in decimal?

Ox C1CO 0000

bin

Carp Frac

Act Exp

Example: Convert to Single-Precision FP numbers

Represent 4.75 with a single precision floating-point number

Solutions

Represent 4.75 with a single precision floating-point number

$$4.75 = 100.11_2 = (-1)^0 \times 1.0011_2 \times 2^2$$

$$S = 0$$

Fraction = $0011000...00_2$

EncodedExponent = $2 + Bias = 2 + 127 = 129 = 10000001_2$

0 10000001 001 1000 0000 0000 0000 0000

0x4098 0000

Single-Precision Range (Normal Numbers)

- In normal SP FP numbers, encoded exponents are in [1, 254]
 - -00000000_2 and 111111111_2 are reserved
- What is the smallest positive value of normal SP FP numbers?
 What is the largest positive value of normal SP FP numbers?
- What is the <u>largest positive value of normal SP FP numbers?</u>

Single-Precision Range (Normal Numbers)

- In normal SP FP numbers, exponents are from 1 to 254
 - 00000000₂ and 11111111₂ are reserved
- Smallest positive value
 - Exponent: $00000001_2 \Rightarrow \text{actual exponent} = 1 127 = -126$
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$

$$1.0 \times 2^{-126} \approx 1.2 \times 10^{-38}$$

How do we represent 0.0?

- Largest positive value
 - Exponent: $111111110_2 \Rightarrow \text{actual exponent} = 254 127 = 127$
 - Fraction: 111...11 ⇒ significand ≈ 2.0

$$2.0 \times 2^{+127} \approx 3.4 \times 10^{+38}$$

Denormalized/subnormal Numbers

- Denormalized number: the exponent field is 0
 - The actual exponent is always -126 for single precision numbers
 - The hidden bit is 0

$$v = (-1)^{S} \times (0. \text{ Fraction}) \times 2^{-126}$$

- Denormalized numbers can represent numbers smaller than normal numbers
 - Allow for gradually approaching to 0, with diminishing precision

Representation of 0

• 0 is a denormalized number !

All bits in exponent and fraction are 0.

But the sign can be 0 or 1. So we have two 0's!

0 0000 0000 000 0000 0000	0000 0000
1 0000 0000 0000 0000	0000 0000

$$x = (-1)^{S} \times (0.0) \times 2^{-126} \neq \pm 0.0$$

Infinities and NaN

Exponent = $1111 \ 1111 \ (255)$

- If fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- If fraction $\neq 000...0$
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Try these in Python:

```
float('inf') + 1.0
float('inf') + float('-inf')
```

IEEE Floating-Point Format: double precision

value =
$$(-1)^S \times (1. Fraction) \times 2^{(EncodedExponent-Bias)}$$

Exponent in single-precision: excess-127: Bias = 127.

Exponent in double-precision: excess-1023: Bias = 1023

Single precision vs double precision IEEE FP

	Single	Double
Total number of bits	32)	64
Number of bits in exponent	8	11
Number of bits in fraction	23	52
Bias	127	1023
Smallest positive value (normal values)	1.0×2^{-126} $\approx 1.18 \times 10^{-38}$	1.0×2^{-1022} $\approx 2.2 \times 10^{-308}$
Largest positive value	$2.0 \times 2^{+127}$ $\approx 3.4 \times 10^{+38}$	$2.0 \times 2^{+1023}$ $\approx 1.8 \times 10^{+308}$
Precision	23 bits \approx 6 dec. digits	52 bits $\approx 16 \text{ dec. digits}$

Fand D Extensions in RISC-V

- F for float and D for double
 - D is a superset. If D is supported, F is supported

- Separate FP register file (RF) consisting of 32 FP registers
 - In F, each register can hold a float
 - In D, each register can hold a float or a double

f0 is not a special register

- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact

FP register name and calling convention

FP Registers	Name	Usage
f0 - f7	ft0 - ft7	FP temporary registers. Not preserved
f8 - f9	fs0 - fs1	Callee saved registers. Preserved
f10 - f11	fa0 - fa1	First 2 arguments. Return values. Not preserved
f12 - f17	fa2 - fa7	6 more arguments. Not preserved
f18 - f27	fs2 - fs11	Callee saved registers. Preserved
f28 - f31	ft8 - ft11	FP temporary registers

¹² callee saved registers. 12 temporary registers. 8 argument registers.

Load/store for FP numbers

- FP load and store instructions
 - w for SP and d for DP

```
# same memory addressing modes

# base address is an integer

flw f8, 0(sp) # single-precision

fsw f8, 4(sp)

fld f9, 8(s1) # double-precision

fsd f9, 16(s1)
```

FP Arithmetic

• Single-precision arithmetic

Double-precision arithmetic

FP Comparison and Branch

of for sure

• Single- and double-precision comparison

```
f.eq.s, f.lt.s, f.le.s
f.eq.d, f.lt.d, c.le.d
```

- Result, 0 or 1, is saved in an integer destination register
 - Use beq or bne to branch on comparison result

Compare with x0
No need to compare with 1

Floating point precision

• Be mindful when you compare two FP numbers for equal

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail
 - Need to validate parallel programs under varying degrees of parallelism

Example

$$(x+y) + z \neq x + (y+z)$$

1/

If (x + y) is computed first, the result is 0. After adding z, the result is 1.

If (y + z) is computed first, the result is y (because y is much larger than z).

After adding *x*, the result is 0.

			V	
			(x+y)+z	x+(y+z)
	$\int x$	-1.50E+38		-1.50E+38
1	\mathcal{Y}	1.50E+38	(0.00E+00	Y+2
	Z	1.0	1.0	1.50E+38
			1.00E+00	0.00E+00

FP Example: °F to °C

C code:

```
float f2c (float fahr)
{
   return ((5.0/9.0)*(fahr - 32.0));
}
r in f10 return value in f10
```

fahr in f10, return value in f10.

Constants 5.0, 9.0, and 32.0 are stored in (global) memory.

gp ---

RISC-V code:

```
f2c: flw f0, 0(gp)  # load 5
  flw f1, 4(gp)  # load 9
  fdiv.s f0, f0, f1  # compute 5/9
  flw f1, 8(gp)  # load 32
  fsub.s f10, f10, f1  # compute fahr - 32
  fmul.s f10, f0, f10  # multiply with 5/9
  jalr x0, 0(ra)
```

32.0

9.0

5.0

Frequency of RISC-V instructions in SPEC CPU2006

Figure 3.22

17 most popular instructions 76% of all instr. executed

RISC-V Instruction	Name	Frequency	Cumulative
Add immediate	addi	14.36%	14.36%
Load doubleword	1d	8.27%	22.63%
Load fl. pt. double	fld	6.83%	29.46%
Add registers	add	6.23%	35.69%
Load word	lw	4.38%	40.07%
Store doubleword	sd	4.29%	44.36%
Branch if not equal	bne	4.14%	48.50%
Shift left immediate	slli	3.65%	52.15%
Fused mul-add double	fmadd.d	3.49%	55.64%
Branch if equal	beg	3.27%	58.91%
Add immediate word	addiw	2.86%	61.77%
Store fl. pt. double	fsd	2.24%	64.00%
Multiply fl. pt. double	fmul.d	2.02%	66.02%
Load upper immediate	lui	1.56%	67.59%
Store word	SW	1.52%	69.10%
Jump and link	jal	1.38%	70.49%
Branch if less than	blt	1.37%	71.86%
Add word	addw	1.34%	73.19%
Subtract fl. pt. double	fsub.d	1.28%	74.47%
Branch if greater/equal	bge	1.27%	75.75%

Summary

- Support for data types and arithmetic are part of ISA design
- RISC-V
 - Base supports integer add and sub
 - M extension supports mul and div
 - F and D extensions support FP operations
- Exceptions during arithmetic
 - Operations can overflow
 - Need to handle error with hardware and/or software
 - Floating-point has bounded range and precision
- Bits can be interpreted in many ways
 - Signed, unsigned, instruction, characters, FP numbers

Denormalized Numbers Examples

In the table, only the first number is a normal number

Exponent	Fraction	Actual exponent in decimal	Value
0000 0001	0000000	-126	1.0 x 2 ⁻¹²⁶ (normal number)
0000 0000	1000000	-126	$0.1 \times 2^{-126} = 2^{-127}$
0000 0000	0100000	-126	$0.01 \times 2^{-126} = 2^{-128}$
•••			
0000 0000	0000001	-126	$0.001 \times 2^{-126} = 2^{-149}$
0000 0000	0000000	-126	$0.000 \times 2^{-126} = 0$

Conversion between datatypes

• Many conversion instructions. Study the reference card

```
fcvt.s.w, fcvt.d.w, fcvt.d.s, ...
```

```
addi t0, x0, 5

fcvt.s.w ft0, t0 # word to single-precision

fcvt.d.w ft1, t0 # word to double-precision

# ft0 is a single-precision 5.0

# ft1 is a double-precision 5.0
```

Loading constants from memory:

cse3666/91-f2c.s at master · zhijieshi/cse3666 (github.com)

Using conversion instructions:

cse3666/91-f2c-v2.s at master · zhijieshi/cse3666 (github.com)

Question

Convert the decimal number 0.9 to a binary number

0						
2^0	2-1	2-2	2-3	2-4	2-5	2-6

Converting decimal to binary Example

Decimal	Binary
0.9	0.
0.9 * 2 = 1.8	0.1
0.8 * 2 = 1.6	0.11
0.6 * 2 = 1.2	0.111
0.2 * 2 = 0.4	0.1110

We can find the first 4 digits after the binary point by the following steps:

 $0.9 * 2^4 = 14.4$

Convert 14 to 4-bit binary number and we get 1110.

Example: Convert to Single-Precision FP numbers

Represent –0.75 with a single precision floating-point number

$$-0.75 = -0.11_2 = (-1)^1 \times 1.1_2 \times 2^{-1}$$

$$S = 1$$

Fraction = $1000...00_2$

EncodedExponent = $-1 + Bias = -1 + 127 = 126 = 011111110_2$

1 01111110 100 0000 0000 0000 0000 0000

0xBF40 0000

Reading Single-Precision FP Number - Solutions

0x C1C0 0000

1100 0001 1100 0000 0000 0000 0000 0000

$$S = 1$$

Fraction = $10000...00_2$

Encoded Exponent = $10000011_2 = 131$ (as unsigned)

Actual exponent = 131 - 127 = 4

The value is

$$(-1)^1 \times (1 + 0.1_2) \times 2^{(131 - 127)}$$

= $-1 \times 1.5 \times 2^4$
= -24