Multicommodity Flow on Connection Graph in Time Schedule Networks

I. All-or-Nothing Splittable Multi-Commodity Flow

In this section, we will describe in details of the proposed random rounding based approach for solving the multicommodity flow problem.

Formulation 1: Maximize the total number of commodities that can be successfully delivered.

We use a variable f_i to represent whether or not F_i is successfully delivered. For the sake of simplicity, we rescale each commodity size and edge capacity in the network by s so that this problem thus becomes an unit flow multi-commodity problem.

Input: Directed graph G(V, E), Commodities $\mathcal{F} = \{F_1, ..., F_n\}$ Source-sink pair: (sv_i, dv_i) , $\forall F_i \in \mathcal{F}$ Capacity: c(u, v), $\forall (u, v) \in E$ Variable: Flow $f_{i,(u,v)}$, $\forall F_i \in \mathcal{F}, (u,v) \in E$ f_i , $\forall F_i \in \mathcal{F}$

$$\begin{aligned} & \text{Maximize } \sum_{i=1}^n f_i \\ & \text{Subject to } \sum_{(sv_i,v) \in E} f_{i,(sv_i,v)} = f_i, \quad \forall F_i \in \mathcal{F} \\ & \sum_{(u,v) \in E} f_{i,(u,v)} = \sum_{(v,u) \in E} f^i_{v,u}, \\ & \forall F_i \in \mathcal{F}, \ \forall v \in V - \{sv_i, dv_i\} \\ & \sum_{i=1}^f f_{i,(u,v)} \leq c_{(u,v)}, \quad \forall (u,v) \in E \\ & f^i_{(u,v)} \geq 0, \quad \forall F_i \in \mathcal{F}, \forall (u,v) \in E \\ & f_{i,(u,v)} \leq f_i \cdot c_{(u,v)}, \quad \forall F_i \in \mathcal{F}, \forall (u,v) \in E \\ & f_i \in \{0,1\}, \quad \forall F_i \in \mathcal{F} \end{aligned}$$

Let OPT_i be the optimal solution of the IP in Formulation 1, and let OPT_f be the total amount of commodities delivered by solving the linear relaxation LP of IP in Formulation 1 where the variables f_i are relaxed to assume any value in [0,1]. It is obvious to see that $OPT_f = \sum \tilde{f}_i$. Define the solution from the above algorithm as ALG, and total amount of commodities delivered by ALG as OPT_{ALG} .

We use Chernoff Bound over continuous random variables to bound the probability of achieving a fraction of the optimal solution. Algorithm 1 Random Rounding Algorithm for Formulation 1 Input:

Directed Connection Graph G(V, E);

Commodities $\mathcal{F} = \{F_1, ..., F_n\};$

Source-sink pair (sv_i, dv_i) for each $F_i \in \mathcal{F}$;

Capacity $c(u, v), \forall (u, v) \in E$;

Output: OPT_{ALG}

- 1: Change the last constraint to be $0 \le f_i \le 1$;
- 2: Then it is relaxed to an LP, solve this LP and get optimal solution \tilde{f}_i ;
- 3: With probability f_i , set $f_i = 1$, otherwise set it to 0;
- 4: Scale up the fractional flow $f_{i,e}$ from the LP solution on edge e for commodity i by $\frac{1}{f_i}$, i.e., $f_{i,e} = f_{i,e} \times \frac{1}{f_i}$, for i s.t. $f_i = 1$;
- 5: If the solution is within a certain fraction of the optimal solution, return this solution, otherwise, repeat step 3 and 4, at most N times.

Fact 1 (Chernoff-Bound) . Let $X=\sum_{i=1}^n X_i$ be a sum of n independent random variables $X_i\in [0,1], 1\leq i\leq n$. Then $P(X<(1-\epsilon)\cdot E(X))\leq exp(-\epsilon^2\cdot E(X)/2)$ holds for $0<\epsilon<1$.

Since we have already scaled down the flow by s_r , thus the variables are between 0 and 1 so that we can apply the above Chernoff Bound.

Claim 2.
$$Pr[OPT_{ALG} < (1 - \epsilon) \cdot OPT_f] \le e^{-\epsilon^2 \cdot OPT_f/2}$$

Proof: For each commodity i, the expectation of f_i is $E(f_i) = 1 \cdot \tilde{f}_i + 0 \cdot (1 - \tilde{f}_i) = \tilde{f}_i$. Recall that $OPT_f = \sum \tilde{f}_i$, and let $OPT_{ALG} = \sum f_i$.

$$Pr[OPT_{ALG} < (1 - \epsilon) \cdot OPT_f]$$

$$= Pr[\sum_{i} f_i < (1 - \epsilon) \cdot OPT_f]$$

$$< e^{-\epsilon^2 \cdot OPT_f/2}$$

Since we also assume that all commodity can be fully fractionally delivered alone, therefore, we get:

$$OPT_f \ge 1$$
 (2)

Since we have proved that the optimal fractional solution is an upper bound on optimal solution for the ILP problem, by taking $\epsilon = 2/3$ in the Chernoff Bound, we get,

Theorem 3. The probability of achieving less than 1/3 of the profit of an optimal solution is upper bounded by $e^{-2/9} \approx 0.8007$.

Proof. By taking $\epsilon = 2/3$, Equation 1 becomes:

Algorithm 2 De-randomize Algorithm for Formulation 1

Input:

Directed Connection Graph G(V, E);

Commodities $\mathcal{F} = \{F_1, ..., F_n\};$

Source-sink pair (sv_i, dv_i) for each $F_i \in \mathcal{F}$;

Capacity $c(u, v), \forall (u, v) \in E$;

Output: OPT_{ALG}

- 1: Change the last constraint to be $0 \le f_i \le 1$;
- 2: Then it is relaxed to a linear programming formulation denoted by LP, solve this LP and get optimal solution $OPT_f = \sum f_i$;
- 3: Sort all f_i by descending order and remark each commodity i accordingly from 1 to n, repeat step 4 to 13 for each i:
- 4: Set $f_i = 1$ and get a new formulation $LP_1 = LP$.
- 5: In LP_1 , scale up the fractional flow $f_{i,e}$ from the LP solution on edge e for commodity i by $\frac{1}{f_i}$, i.e., $f_{i,e} = \tilde{f_{i,e}} \times \frac{1}{f_i}$, for i s.t.
- 6: In LP_1 , add constraint $f_i=1$, $f_{i,e}=f_{i,e}^*\times\frac{1}{f_i}$, and replace the capacity constraints $\sum_{j=i}^n f_{j,e} \leq c_e^*$ by $\sum_{j=i+1}^n f_{j,e} \leq c_e^* f_{i,e}$ to current LP_1 formulation (note that c_e^* denote the right side of the capacity constraints and now $c_e^* = c_e^* - f_{i,e}$ is the new c_e^* of
- 7: In LP_1 , check for each edge e, if $\sum_{j=1}^i f_{j,e} \geq \gamma \cdot c_e$ where $\gamma = (1 + \epsilon' \cdot \sqrt{2 \log |V| |\Delta_{F,e}|})$ and ϵ' is as chosen in Theorem 5, then set $OPT_{f1} = 0$ and directly go to step 9.
- 8: Calculate the LP_1 solution $OPT_{f1} = \sum \tilde{f}_i$; 9: Set $f_i = 0$ and get a new formulation $LP_2 = LP$;
- 10: Add constraint $f_i = 0$, $f_{i,e} = 0$ to current LP_2 formulation.
- 11: Calculate the LP_2 solution $OPT_{f2} = \sum \tilde{f}_i$;
- 12: If $OPT_{f1} > OPT_{f2}$, set $LP = LP_1$.
- 13: Otherwise set $LP = LP_2$;

$$Pr[OPT_{ALG} < \frac{1}{3} \cdot OPT_f] \leq e^{-(\frac{2}{3})^2 \cdot OPT_f/2}$$
 (3)

$$= e^{-2 \cdot OPT_f/9} \tag{4}$$

By Equation 2, we know that the minimum value of OPT_f is 1, by taking $OPT_f = 1$, we get the upper bound of $e^{-\epsilon^2 \cdot OPT_f/2}$. Therefore,

$$Pr[OPT_{ALG} < \frac{1}{3} \cdot OPT_f] \le e^{-2/9} \tag{5}$$

Since $OPT_i \leq OPT_f$, thus we get,

$$Pr[OPT_{ALG} < \frac{1}{3} \cdot OPT_i] \le e^{-2/9}$$

Fact 4 (Hoeffding's Inequality)[?] . Let $\{X_i\}$ be independent random variables, s.t. $X_i \in [a_i,b_i]$, then $Pr(\sum_i X_i - E(\sum_i X_i) \ge t) \le exp(-2t^2/\sum_i (b_i - a_i)^2)$ holds.

Theorem 5 Given a single edge e with capacity c_e , and let $\Delta_{F,e}$ be the commodities going through edge e. For all the commodity $i \in \Delta_{F,e}$, choose ϵ' such that $\max \frac{f_{i,e}}{\tilde{\epsilon}} \leq \epsilon' \cdot c_e$.The probability that ALG exceeds the edge capacity constraint by a factor of $\gamma = (1 + \epsilon' \cdot \sqrt{2 \log |V| |\Delta_{F,e}|})$ is bounded by $|V|^{-4}$.

We analyze the probability that our algorithm violates capacity constraints by a certain factor, by employing Hoeffding's Inequality.

Proof: Fix an edge $e \in E$, for commodity i, with probability $1 - f_i$, the flow on edge e for commodity i is set to 0, i.e., $f_{i,e} = 0$, with probability \tilde{f}_i , the flow on edge e for commodity i is set to $f_{i,e} \cdot \frac{1}{\tilde{f}_i}$.

Then the expectation of $f_{i,e}$ is

$$E(f_{i,e}) = \tilde{f_{i,e}} \cdot \frac{1}{\tilde{f}_i} \cdot \tilde{f}_i + 0 \cdot (1 - \tilde{f}_i) = \tilde{f_{i,e}}$$
 (6)

Let F_e denotes the flow on edge e by ALG, then F_e $\sum_{i,f_{i,e}\neq 0} f_{i,e}$ and the expectation of F_e is

$$E[F_e] = \sum_{i, f_{i,e} \neq 0} \tilde{f}_{i,e} \cdot \frac{1}{\tilde{f}_i} \cdot \tilde{f}_i = \sum_{i, f_{i,e} \neq 0} \tilde{f}_{i,e} \tag{7}$$

Since we relax the LP, and a feasible solution must obey edge capacity constraint, so the cumulative load on edge e is equal or less than the capacity of e:

$$\sum_{i, f_{i,e} \neq 0} \tilde{f_{i,e}} \le c_e \tag{8}$$

Therefore, we can get the following:

$$E[F_e] \le c_e \tag{9}$$

Let $t = \epsilon' \cdot \sqrt{2 \log |V| |\Delta_{F,e}|} \cdot c_e$, by applying Hoeffding's Inequality and the assumption of $\max \frac{f_{i,e}}{\tilde{f}_i} \leq \epsilon' \cdot c_e$, we get:

$$Pr[F_e - E(F_e) \ge t] \le exp(\frac{-2t^2}{\sum_i (\frac{f_{i,e}}{f_i})^2})$$

$$\le exp(\frac{-2 \cdot \epsilon'^2 \cdot \log |V| \cdot |\Delta_{F,e}| \cdot c_e^2}{\epsilon'^2 \cdot c_e^2 \cdot |\Delta_{F,e}|})$$

$$= |V|^{-4}$$
(10)

Given Equation 9, and let $\gamma = (1 + \epsilon' \cdot \sqrt{2 \log |V| |\Delta_{F,e}|})$,

$$Pr[F_e - c_e \ge \epsilon' \cdot \sqrt{2 \log |V| |\Delta_{F,e}|}]$$

$$= Pr[F_e \ge (1 + \epsilon' \cdot \sqrt{2 \log |V| |\Delta_{F,e}|}) \cdot c_e]$$

$$= Pr[F_e \ge \gamma \cdot c_e]$$

$$< |V|^{-4}$$

There are at most $|V|^2$ edges, by applying union bound over all edges using Theorem 5, hence we obtain the following corollary.

Corollary 6 The probability that ALG exceeds any of the edge capacity constraints by a factor of $\gamma = (1 + \epsilon' \cdot \sqrt{2 \log |V|})$ is upper bounded by $|V|^{-2}$.

Based on Theorem 3 and Corollary 6, if $|V| \geq 3$ holds, the probability of not finding a suitable solution, satisfying the objective and the capacity constraint, within a single round is therefore upper bounded by $exp(2/9)+1/9 \leq 11/12$, . The probability to find a suitable solution within N many rounds is then lower bounded by $1-(11/12)^N$ for $|V|\geq 3$ and hence the randomized rounding scheme yields a solution with high probability.