Machine Learning Network-Constrained Regression of Epigenetic Data

Sivo Vladimirov Daskalov

Corpus Christi College

28 June 2017

Outline

Epigenetic background

Project goals

Penalized regression methods

Composite voting regression

Orchestrated hyperparameter tuning

Model evaluation

Regression method similarities

Breast cancer dataset

Epigenetic background

^{*}Figure is adapted from Luong, P. Basic Principles of Genetics

Project goals

Question:

How is the expression of each gene affected by the methylation of related genes?

 $\label{eq:proach:proach:} \mbox{Linear regression} \left\{ \begin{aligned} & \mbox{Predictors: methylation levels for all genes} \\ & \mbox{Target variable: expression level for gene of interest} \end{aligned} \right.$

Penalized regression methods

Lasso
$$\lambda \sum_{i=1}^{p} |\beta_i|$$

Elastic Net $\lambda_1 \sum_{i=1}^{p} |\beta_i| + \lambda_2 \sqrt{\sum_{i=1}^{p} \beta_i^2}$

Grace $\lambda_1 \sum_{i=1}^{p} |\beta_i| + \lambda_2 \sum_{u \sim v} \left(\frac{\beta_u}{\sqrt{d_u}} - \frac{\beta_v}{\sqrt{d_v}} \right)^2 w(u, v)$

aGrace $\lambda_1 \sum_{i=1}^{p} |\beta_i| + \lambda_2 \sum_{u \sim v} \left(\frac{sign(\tilde{\beta}_u)\beta_u}{\sqrt{d_u}} - \frac{sign(\tilde{\beta}_v)\beta_v}{\sqrt{d_v}} \right)^2 w(u, v)$

GBLasso $\lambda \sum_{u \sim v} \left[\left(\frac{|\beta_u|}{\sqrt{d_u}} \right)^{\gamma} + \left(\frac{|\beta_v|}{\sqrt{d_v}} \right)^{\gamma} \right]^{1/\gamma}$

Linf $\lambda \sum_{u \sim v} \max \left(\frac{|\beta_u|}{\sqrt{d_u}}, \frac{|\beta_v|}{\sqrt{d_v}} \right)$

aLinf $\lambda \sum_{u \sim v} \left| \frac{sign(\tilde{\beta}_u)\beta_u}{\sqrt{d_u}} - \frac{sign(\tilde{\beta}_v)\beta_v}{\sqrt{d_v}} \right|$

TTLP $\lambda_1 \sum_{i=1}^{p} J_{\tau} |\beta_i| + \lambda_2 \sum_{u \sim v} \left| J_{\tau} \left(\frac{|\beta_u|}{w_u} \right) - J_{\tau} \left(\frac{|\beta_v|}{w_v} \right) \right|$

LTLP $\lambda_1 \sum_{i=1}^{p} |\beta_i| + \lambda_2 \sum_{u \sim v} \left| J_{\tau} \left(\frac{|\beta_u|}{w_u} \right) - J_{\tau} \left(\frac{|\beta_v|}{w_v} \right) \right|$

Composite voting regression

	X_1	X_2	 X_p
Method 1	$M_1(\beta_1)$	$M_1(\beta_2)$	 $M_1(\beta_p)$
Method 1 Method 2	$M_2(\beta_1)$	$M_2(\beta_2)$	 $M_2(\beta_p)$
Method k	$M_k(\beta_1)$	$M_k(\beta_2)$	 $M_k(\beta_p)$

$$X_j = \begin{cases} important, & \text{if } \frac{\sum_{i=1}^k [M_i(eta_j) \neq 0]}{k} \geq \text{fraction of votes threshold} \\ unrelated, & \text{otherwise} \end{cases}$$

Final model obtained from OLSE on the set of important predictors

Orchestrated hyperparameter tuning

Model evaluation

Regression method similarities

CV-MSE tuning

Orchestrated tuning

Breast cancer dataset