```
In [481]: ▶ pip install opency-python
              Requirement already satisfied: opencv-python in c:\users\hp\anaconda3\lib\site-packages (4.6.0.66)Note: you may need to rest
              art the kernel to use updated packages.
              Requirement already satisfied: numpy>=1.17.3 in c:\users\hp\anaconda3\lib\site-packages (from opency-python) (1.21.5)
In [482]: ▶ import numpy as np
              import pandas as pd
In [483]: ▶ import os
              for dir_name,_,file_names in os.walk('C:/Users/hp/Downloads/traffic_Data'):
                  for filename in file_names:
                      print(os.path.join(dir_name, filename))
              C:/Users/hp/Downloads/traffic_Data\traffic_sign_labels.csv
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0001.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0002.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0003.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0004.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0005.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0006.png
              C:/Users/hp/Downloads/traffic Data\DATA\0\000 0007.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0008.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0008_j.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0009.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0010.png
              C:/Users/hp/Downloads/traffic Data\DATA\0\000 0011.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0012.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0013.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0014.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0015.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0016.png
              C:/Users/hp/Downloads/traffic_Data\DATA\0\000_0017.png
In [499]: ▶ from pathlib import Path
              images = list(Path('C:/Users/hp/Downloads/traffic_Data/DATA/').glob(r'**/*.png'))
              labels = list(map(lambda path: os.path.split(os.path.split(path)[0])[1], images))
              classes=len(set(labels))
              train_images = pd.Series(images).astype(str)
              train_labels = pd.Series(labels).astype(str)
              print(classes)
              58
In [500]: ► import cv2
              size=128
              train data=[]
              for elem in range(len(train_images)):
                  image = cv2.imread(train_images[elem])
                  image_resized = cv2.resize(image, (size, size), interpolation = cv2.INTER_AREA)
                  train_data.append(np.array(image_resized))
In [502]:  data = np.array(train_data)
              data = data.reshape((data.shape[0], 128*128*3))
              data_scaled = data.astype(float)/255
              labels = np.array(train_labels)
              from \ sklearn.model\_selection \ \underline{import} \ train\_test\_split
              X_train, X_val, y_train, y_val = train_test_split(data_scaled, labels, test_size=0.20, random_state=65)
In [503]: M classifier = RandomForestClassifier(min_samples_split=10,n_estimators=1400, max_depth=10,criterion = 'entropy', random_state
              classifier.fit(X_train, y_train)
   Out[503]: RandomForestClassifier(criterion='entropy', max_depth=10, min_samples_split=10,
                                     n_estimators=1400, random_state=65)
In [504]:  y_pred = classifier.predict(X_val)
```

In [505]: ▶ from sklearn.metrics import classification_report print(classification_report(y_val, y_pred))

pr inc(ciassii	Teacton_i cpoi	c(y_vai,	y_pr cu//	
	precision	recall	f1-score	support
0	1.00	1.00	1.00	30
1	1.00	1.00	1.00	11
10	1.00	1.00	1.00	13
	1.00		1.00	
11		1.00		30
12	1.00	1.00	1.00	24
13	1.00	1.00	1.00	9
14	1.00	1.00	1.00	25
15	1.00	1.00	1.00	7
16	1.00	1.00	1.00	33
17	0.90	1.00	0.95	18
18	0.00	0.00	0.00	4
2	0.89	1.00	0.94	17
20	1.00	1.00	1.00	5
21	1.00	1.00	1.00	2
22	1.00	1.00	1.00	3
	1.00		0.50	3
23		0.33		
24	0.91	1.00	0.95	20
26	1.00	1.00	1.00	25
27	1.00	1.00	1.00	9
28	1.00	1.00	1.00	81
29	1.00	1.00	1.00	4
3	0.89	1.00	0.94	47
30	1.00	1.00	1.00	31
31	1.00	1.00	1.00	8
32	1.00	1.00	1.00	5
33	1.00	1.00	1.00	2
34	1.00	1.00	1.00	6
35	1.00	1.00	1.00	34
36	1.00	1.00	1.00	7
37	1.00	1.00	1.00	10
				5
38	1.00	1.00	1.00	
39	1.00	1.00	1.00	3
4	1.00	1.00	1.00	21
40	1.00	1.00	1.00	4
41	0.50	1.00	0.67	2
42	1.00	0.56	0.71	9
43	0.88	1.00	0.94	15
44	1.00	1.00	1.00	5
45	0.75	1.00	0.86	6
46	1.00	0.25	0.40	8
47	1.00	0.50	0.67	4
48	1.00	1.00	1.00	4
49	0.56	1.00	0.71	5
5	1.00	1.00	1.00	38
50	1.00	1.00	1.00	10
51	1.00	0.50	0.67	4
52	1.00	1.00	1.00	10
54	1.00	1.00	1.00	63
55			1.00	27
	1.00	1.00		
56	1.00	1.00	1.00	20
57	1.00	1.00	1.00	2
6	1.00	0.88	0.93	16
7	1.00	1.00	1.00	28
8	1.00	1.00	1.00	2
accuracy			0.97	834
macro avg	0.95	0.93	0.92	834
weighted avg	0.97	0.97	0.97	834
- 0				

C:\Users\hp\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-sco re are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this b

_warn_prf(average, modifier, msg_start, len(result))

 ${\tt C:\overline{Users}\ hp\ anaconda3\ lib\ site-packages\ sklearn\ metrics\ _classification.py: 1318:\ Undefined Metric Warning:\ Precision\ and\ F-sconda3\ lib\ site-packages\ sklearn\ metrics\ _classification.py: 1318:\ Undefined Metric Warning:\ Precision\ and\ F-sconda3\ lib\ site-packages\ sklearn\ metrics\ _classification.py: 1318:\ Undefined Metric Warning:\ Precision\ and\ F-sconda3\ lib\ site-packages\ sklearn\ metrics\ _classification.py: 1318:\ Undefined Metric Warning:\ Precision\ and\ F-sconda3\ lib\ site-packages\ sklearn\ metrics\ _classification.py: 1318:\ Undefined Metric Warning:\ Precision\ and\ F-sconda3\ lib\ site-packages\ sklearn\ metrics\ _classification.py: 1318:\ Undefined Metric Warning:\ Precision\ and\ F-sconda3\ lib\ site-packages\ sklearn\ metrics\ _classification\ precision\ and\ precision\ precisio$ re are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this b

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\hp\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-sco re are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this b

_warn_prf(average, modifier, msg_start, len(result))

```
In [506]: ▶ from sklearn import metrics
             print(metrics.accuracy_score(y_pred, y_val))
```

0.973621103117506

0.5175526579739218

. ,		• –		
	precision	recall	f1-score	support
0	0.25	0.71	0.37	14
1	1.00	0.17	0.29	12
10	1.00	0.90	0.95	60
11	0.85	0.77	0.81	130
12	1.00	1.00	1.00	22
13	1.00	0.17	0.30	92
14	0.36	0.67	0.47	12
15	0.00	0.00	0.00	36
16	0.68	0.71	0.69	76
17	0.62	0.90	0.74	84
2	0.71	0.17	0.27	60
20	0.00	0.00	0.00	2
21	0.00	0.00	0.00	12
22	0.00	0.00	0.00	8
23	0.00	0.00	0.00	10
24	0.18	0.31	0.23	26
25	0.00	0.00	0.00	2
26	0.87	0.70	0.78	134
27	1.00	0.42	0.59	24
28	0.67	0.53	0.59	68
29	0.62	1.00	0.76	26
3	0.39	0.86	0.53	84
30	0.60	0.35	0.44	34
31	0.50	0.22	0.31	18
32	0.00	0.00	0.00	2
34	0.00	0.00	0.00	8
35	0.13	0.61	0.21	46
36	1.00	0.01	0.21	12
37	0.33	0.17	0.32	
				26
38	0.00	0.00	0.00	40
39	1.00	0.20	0.33	30
4 40	0.63	0.41	0.50	58
41	1.00 0.00	0.50	0.67 0.00	8 8
		0.00		
42 43	1.00	0.11	0.20	18
44	0.23 0.00	0.14 0.00	0.17 0.00	116 24
45	0.03		0.06	24
		1.00	0.00	
46 47	0.00	0.00		14
	1.00	0.40	0.57	10
48	1.00	1.00	1.00	6
49	0.40	0.10	0.15	42
5	0.36	0.40	0.38	50
50	0.00	0.00	0.00	20
51	1.00	0.50	0.67	4
52	0.75	0.20	0.32	30
53	1.00	1.00	1.00	2
54	0.60	0.94	0.73	176
55	0.85	0.97	0.90	58
56	0.23	0.50	0.32	40
57	1.00	1.00	1.00	4
6	0.63	0.80	0.71	30
7	0.25	0.16	0.20	50
8	1.00	0.29	0.44	14
				400
accuracy			0.52	1994
macro avg	0.51	0.41	0.39	1994
weighted avg	0.58	0.52	0.49	1994

 $\verb|C:\Users\hp\anaconda3\lib\site-packages\sklearn\metrics\classification.py:1318: Undefined \texttt{MetricWarning: Precision and F-scool} | Precision and F-scool under the following of the packages for the packages of the pack$ re are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this b ehavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\hp\anaconda3\Jib\site-packages\sklearn\metrics\classification.py:1318: UndefinedMetricWarning: Precision and F-sco re are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this b

_warn_prf(average, modifier, msg_start, len(result))
C:\Users\hp\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-sco re are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this b

_warn_prf(average, modifier, msg_start, len(result))

```
print('original: ', test_labels[i], ' predicted: ', test_pred[i])
            original: 0 predicted: 56
            original: 0 predicted: 0
            original: 0 predicted: 4
            original: 0 predicted: 0
            original: 0 predicted: 0
            original: 0 predicted: 0
            original: 0 predicted: 0
            original: 0 predicted: 56 original: 0 predicted: 0
            original: 0 predicted: 4
            original: 0 predicted: 0 original: 0 predicted: 0
            original: 0 predicted: 0 original: 0 predicted: 0
            original: 1 predicted: 6
            original: 1 predicted: 1 original: 1 predicted: 4
            original: 1 predicted: 5
            original: 1 predicted: 56
In [514]: | #classifier.save("C:/Users/hp/Downloads/traffic_Data/traffic_recognition.h5")
            import pickle
            pickle.dump(classifier, open('C:/Users/hp/Downloads/traffic_Data/model.pkl', 'wb'))
test_pred=pickled_model.predict(test_data)
            print(metrics.accuracy_score(test_pred, test_labels))
            0.5175526579739218
```