Модуль 6

Топология и архитектура сетей SDH

Функциональные задачи, решаемые сетью

Основные функциональные задачи, решаемы сетью SDH

- 1. Сбор входных потоков через каналы доступа в агрегатный блок, пригодный для транспортировки в сети SDH задача мультиплексирования
- 2. Транспортировка агрегатных потоков с возможностью ввода вывода входных потоков **задача транспортирования**
- 3. Перезагрузка VC в соответствие со схемой маршрутизации из одного сегмента сети в другой **задача коммутации**
- 4. Восстановление формы и амплитуды сигнала в оптической линии **задача регенерации**
- 5. Сопряжение сети пользователей с сетью SDH **задача сопряжения**

Терминальный мультиплексор

Мультиплексор ввода-вывода (Add/Drop Multiplexer – ADM)

Кросс-коннектор (xCross Connect)

Схема взаимодействия функциональных модулей

Топология «Точка – точка»

В основном используется в сетях доступа и в корпоративных сетях для связи офисов и технологических площадок

Топология «Последовательная линейная цепь»

Позволяет производить вставку/выделение каналов в промежуточных пунктах

Топология «Плоское кольцо»

Обладает теми же возможностями, что и «последовательная линейная цепь», но за счет организации резервного оптоволоконного соединения образуется кольцевая схема, повышающая надежность системы передачи. Рекомендуется резервный кабель прокладывать по другому маршруту, чем основной.

<u>Топология «Кольцо»</u>

Радиально- кольцевая архитектура

Используются две топологии — «кольцо» и «последовательная шина». Вместо последней может использоваться «точка-точка». Кольцо SDH образует ядро транспортной сети (Backbone), в которое стекаются цифровые потоки с периферии, распределяясь в необходимых направлениях

<u>Архитектура «кольцо – кольцо»</u>

Линейная архитектура для сети большой протяженности

Классификация стандартных оптических интерфейсов

Использование		Внутри	Между станциями						
		станции	Коротка	я секция	Длинная секция				
Номинальная длина волны источника (нм)		1310	1310 1550		1310	1550			
Тип волокна		Rec. G.652	Rec. G.652	Rec. G.652	Rec. G.652	Rec. G.652 Rec. G.654	Rec. G.653		
Расстояние (км) ^{а)}		≤ 2	- 15		- 40	- 80			
Уровни	STM-1	I-1	S-1.1	S-1.2	L-1.1	L-1.2	L-1.3		
STM	STM-4	1-4	S-4.1	S-4.2	L-4.1	L-4.2	L-4.3		
	STM-16	I-16	S-16.1	S-16.2	L-16.1	L-16.2	L-16.3		

S – short

L – long

S/L-x.y

х – уровень STM

у – длина волны (1 – 1310 нм, 2,3 – 1550 нм)

Архитектура разветвленной сети общего вида

Пример архитектуры сети, сочетающей SDH и PDH технологии

<u>Принцип защиты системы SDH</u>

MSP – Multiplex Section Protection – блок защиты секции мультиплексирования

MST – Multiplex Section Termination – оконечное оборудование секции мультиплексирования

Обмен информацией между MSP производится с помощью байтов К1 и К2

196

Режимы функционирования

С точки зрения режимов функционирования защита может быть двух типов:

- однонаправленная, когда переключение на резервный тракт осуществляется только в случае аварии в конкретном тракте направления;
- двунаправленная, когда в случае повреждения цифровой сигнал коммутируется на резервные тракты обоих направлений

Кроме того, возможна защита следующих видов:

- обратимая;
- необратимая

Для архитектуры n+1 предусмотрен только обратимый режим, в то время, как при архитектуре 1+1 могут быть использованы оба режима функционирования.

Способ переключения:

- ручной
- автоматический с временем переключения не более 50 мс

Размещение байт К1 и К2 в MSOH для автоматического переключения

A 1	A 1	A 1	A2	A2	A2	C 1	X	Х					
B1			E 1			F1	X	X					
D1			D2			D3							
B2	B2	B2	K 1			K2							
D4			D5			D6		//	K1,K2 – канал автоматич.				
D7			D8			D9			перекл.резервиро				
D10			D11			D12			вания APS				
Z 1	Z 1	Z 1	Z2	Z2	Z2	E2	X	X					

Структура байтов К1 и К2

Условия переключения по повреждению:

- отсутствие принимаемого сигнала;
- потеря указателя;
- авария в секции (AIS);
- вероятность ошибки, подсчитанная в байтах B2 заголовка MSOH, TE> 10⁻³.

Условие понижения качества:

• вероятность ошибки, подсчитанная с помощью байтов B2, 10⁻9<TE< 10⁻5.

Функционирование защиты в однонаправленном кольце

Защита в кольцевых сетях - автоматического типа (сети с самовосстановлением self-healing) с активизацией переключений в случаях повреждения и случайного понижения качества сигнала. Кольца с защитой SDH подразделяются на две категории, в зависимости от топологии переключений:

- кольцо с переключением тракта (Path Switched Ring);
- кольцо с переключением секции мультиплексирования (MS Switched Ring).

В случае однонаправленного кольца возможна как защита тракта, так и защита секции мультиплексирования.

Сеть с защитой тракта состоит из 2 колец, с маршрутами в противоположных направлениях, из которых одно передает трафик, в то время как второе предназначено для защиты.

Литература

- 1. Хмелёв К. Ф. Основы SDH: Монография. К.: ІВЦ «Видавництво "Політехніка"», 2003.-584 с.: ил.
- 2. Слепов Н.Н. Синхронные цифровые сети SDH. –М.: Эко Трендз, 1997

Вопросы для самоконтроля

- 1. Чем отличается терминальный мультиплексор от мультиплексора ADM?
- 2. Поясните назначение кросс-коннекотора
- 3. Назовите основные топологические схемы построения сетей SDH
- 4. Приведите примеры архитектурных решений сетей SDH
- 5. Поясните принцип защиты трафика в сетях SDH
- 6. Какие режимы функционирования системы защиты трафика Вы знаете?