Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej

Teoria Algorytmów i Obliczeń Laboratorium - Etap 1 Specyfikacja wstępna

Adrian Bednarz, Bartłomiej Dach, Tymon Felski

Wersja 1.0

17.10.2017

Lista zmian:

Data	Autor	Opis	Wersja
15.10.2017	Tymon Felski	Stworzenie szablonu dokumentu	1.0

Spis treści

1	Opis problemu	3
2	Algorytm	3
3	Dowód poprawności	3

1 Opis problemu

2 Algorytm

3 Dowód poprawności

W tym rozdziale wykażemy związek między postawionym problemem a zagadnieniem wyznaczania przepływu maksymalnego oraz równoważność rozwiązań obu zadań.

Na początek zdefiniujmy w sposób formalny pojęcia użyte w zadaniu. Załóżmy, że dane są następujące zbiory:

- zbiór ekspertów, oznaczony E,
- zbiór umiejętności, oznaczony S,
- zbiór projektów, oznaczony P.

Definicja 1. Funkcją umiejętności nazywamy funkcję

ability :
$$E \times S \rightarrow \{0, 1\}$$

gdzie dla eksperta $e \in E$ oraz umiejętności $s \in S$ zachodzi ability(e, s) = 1 wtedy i tylko wtedy, gdy ekspert e posiada umiejętność s, zaś 0 w przeciwnym przypadku.

Definicja 2. Zapotrzebowaniem projektu nazywamy funkcję

$$\mathrm{need}: P \times S \to \mathbb{N}$$

gdzie dla projektu $p \in P$ i umiejętności $s \in S$ zachodzi need(p, s) = n wtedy i tylko wtedy, gdy w projekcie p liczba potrzebnych ekspertów w dziedzinie umiejętności s wynosi n.

Definicja 3. Przyporządkowaniem eksperta nazywamy funkcję

assign:
$$E \to P \times S$$

gdzie dla projektu $p \in P$ i umiejętności $s \in S$ zachodzi assign(e) = (p, s) wtedy i tylko wtedy, gdy:

- ekspert e posiada umiejętność s (tj. ability(e, s) = 1),
- ekspert e został przyporządkowany do pracy w projekcie p w dziedzinie umiejętności s.

Ponadto, dla każdego projektu p i umiejętności s musi zachodzić

$$\left|\operatorname{assign}^{-1}[p,s]\right| \le \operatorname{need}(p,s)$$

gdzie assign $^{-1}[p,s]$ jest przeciwobrazem funkcji assign dla argumentów p,s.

Definicja 4. Liczbą braków w projekcie p dla danego przyporządkowania assign nazywamy liczbę

$$\operatorname{missing}(p, \operatorname{assign}) = \sum_{s \in S} \left(\operatorname{need}(p, s) - \left| \operatorname{assign}^{-1}[p, s] \right| \right)$$

Definicja 5. Całkowitą liczbą braków dla danego przyporządkowania assign nazywamy liczbę

$$M(assign) = \sum_{p \in P} missing(p, assign)$$

3

Widoczne jest, że M jest parametrem minimalizowanym w postawionym problemie, zależnym od końcowego przyporządkowania.

Na podstawie powyższych definicji skonstruujemy teraz sieć, której użyjemy do wyznaczenia rozwiązań problemu.

Definicja 6. Siecią przydziałów nazwiemy sieć $N = (G, c, s_G, t_G)$, gdzie:

- $G = (V_G, E_G)$ jest grafem skierowanym takim, że:
 - $-V_G = E \cup S \cup P \cup \{s_G, t_G\},\$
 - $-E_G = \{(e, s) : \text{ability}(e, s) = 1, e \in E, s \in S\} \cup \{(s, p) : \text{need}(s, p) > 0, s \in S, p \in P\},$ tj. krawędziami połączeni są eksperci z ich opanowanymi umiejętnościami, oraz projekty z potrzebnymi do ich realizacji umiejętnościami.
- $c: E_G \to \mathbb{N}$ jest funkcją pojemności zdefiniowaną następująco:
 - jeżeli $e = s_G u, u \in E$, to c(e) = 1,
 - jeżeli $e = es, e \in E, s \in S$, to c(e) = ability(e, s) = 1,
 - jeżeli $e = sp, s \in S, p \in P$, to c(e) = need(p, s),
 - jeżeli $e = pt_G, p \in P$, to

$$c(e) = \sum_{sp \in E_G} c(up)$$

(tj. pojemność tej krawędzi jest równa sumie pojemności krawędzi wchodzących do wierzchołka p).

 $\bullet \ s_G, t_G$ są wyróżnionymi wierzchołkami z V_G — kolejno źródłem i ujściem.

Lemat 1. Dla dowolnego przyporządkowania assign mamy

$$M(\text{assign}) \ge \left(\sum_{p \in P} \sum_{s \in S} \text{need}(p, s)\right) - |E|$$

Dowód. Mamy

$$\begin{split} M(\operatorname{assign}) &= \sum_{p \in P} \operatorname{missing}(p, \operatorname{assign}) = \\ &= \sum_{p \in P} \left(\sum_{s \in S} \operatorname{need}(p, s) - \left| \operatorname{assign}^{-1}[p, s] \right| \right) = \\ &= \left(\sum_{p \in P} \sum_{s \in S} \operatorname{need}(p, s) \right) - \left(\sum_{p \in P} \sum_{s \in S} \left| \operatorname{assign}^{-1}[p, s] \right| \right) = \\ &\geq \left(\sum_{p \in P} \sum_{s \in S} \operatorname{need}(p, s) \right) - |E| \end{split}$$

na mocy rozłączności przeciwobrazów funkcji assign.

Twierdzenie 1. Przepływ maksymalny w sieci przydziałów wyznacza przyporządkowanie o minimalnej możliwej wartości parametru M.

 $Dow \acute{o}d.$