AI 010 A A10/11 (Al-share mana	:11: -	·	`				A DDI	71 I O	. C			D	19 (T: 20	111
AL210 AA10/11 (Algebra: grup COGNOME Risolvere il massimo numero di e spazi predisposti. NON SI ACCI ore. Nessuna domanda durante	esercizi acco ETTANO R	NOM mpagr ISPOS	$\begin{array}{c} IE \ . \ . \ . \ . \end{array}$	o le ri	spost	e con	\sup_{LTR}	 gazior I FO	MA ni chia	TRICC are ed es	0LA .	ali. <i>Inse</i>	erire le	risposte n	egli
	FIRMA	1	2	3	4	5	6	7	8	TOT.					
1. Rispondere alle sequenti do	$\frac{}{}$ mande forne	ndo u	na gi	ustifi	cazio	ne di	una 1	riga:							
a. È vero che esistono alm	neno due gru	ıppi ne	on iso	omori	fi con	49 el	emen	ti?							
b. È vero che se $n \ge k + 1$	l C continu	o gom	nno r	ın got	ttoon	inno	icomo	orfo o	C	9					
b. E vero che se $n \geq k+1$	S_n confidence	ie sem	трге с	ili soi	uogri	црро	isome	шо а	\mathcal{S}_{n-1}	ę :					
														• • • • • • • • • • • • • • • • • • • •	• • •
c. È vero esistono domini	di integrità	finiti	che n	on so	ono ca	ampi?	,								

d. È vero che se A è un anello, allora U(A[X]) = U(A)?

2.	Dimostrare che se G è un gruppo ciclico e $n \mid G $, allora G ammette un unico sottogruppo con n elementi.
3.	Sull'insieme $\mathbf{Z}\times\mathbf{Z}$ consideriamo la legge di composione (*) definita nel modo seguente:(1)
	$(a;b)*(c;d) = (a+c;(-1)^cb+d)$
	Dimostrare che ($\mathbf{Z} \times \mathbf{Z}; *$) è un gruppo (non commutativo) determinandone il centro.

6.	Dopo aver fornito la definizione di caratteristica di un anello commutativo con unità, si determini la caratteristica dei seguenti anelli: $\mathbf{Z}_{12} \times \mathbf{Z}_{28}$, $\mathbf{Z} \times \mathbf{Z}_{8}$, \mathbf{F}_{81} (\mathbf{F}_{81} indica un campo con 81 elementi).
7.	Dopo aver fornito la definizione di anello a ideali principali (PID), si dimostri che $\mathbf{Z}[i]$ è un PID.
8.	Sia dato linsieme delle matrici ad elementi reali, quadrate dordine $n>1$ e triangolari superiori:
	 T = {A ∈ M_n(R) : A = [a_{ij}], a_{ij} = 0 ∀i > j}. a) Si dimostri che costituisce un anello rispetto alle consuete operazioni di addizione e di moltiplicazione righe per colonne fra matrici. b) Si tratta di un dominio d'integrità?.