Izvješće o eksperimentima

Eksperimenti su dokumentirani tako da je naziv foldera u koji se spremaju logovi (ujedno i naziv modela) sljedeći:

- → D1/D2 označava na kojem je datasetu rađen (D1-NCBI-disease, D2-BC5CDR)
- → B/E/ftB označava koji je word embedding korišten (B-bioBERT, E-bioEMLo, ftB-*fine tuning* bioBERT-a)
- → C/_ označava koristi li se CNN char embedding (C-da, _-ne)
- → L/G označava vrstu ćelije RNN-a (L-BiLSTM, G-BiGRU)
- →
 →
 → sroj> broj koji označava konfiguraciju preostalih hiperparametara (svaki eksperiment u config.log datoteci sadrži sve parametre s kojima je pokrenut)
- → A A označava da se koristi attention

Primjeri:

D1_B_C_L_1 - označava eksperiment gdje je model treniran nad NCBI-disease datasetu, uz bioBERT embedding, koristeći char CNN i uz LSTM ćeliju, riječ je o prvoj kombinaciji hiperparametara i ne koristi se attention.

D2_E___G_1 - označava eksperiment gdje je model treniran nad BC5CDR datasetu, uz bioELMo embedding, ne koristeći char CNN i uz GRU ćeliju, riječ je o prvoj kombinaciji hiperparametara i NE koristi se attention.

D2_E___G_1_A - označava eksperiment gdje je model treniran nad BC5CDR datasetu, uz bioELMo embedding, ne koristeći char CNN i uz GRU ćeliju, riječ je o prvoj kombinaciji hiperparametara i koristi se attention.

Implementacijski detalji:

- Early stopping je postavljen tako da se gleda f1-mjera (strict) na validacijskom skupu podataka.
- Dodan je lr_scheduler ReduceLROnPlateau s parametrima (mode='max', factor=0.5, patience=2) koji isto gleda f1 (strict) na validacijskom skupu podataka i ako se dvije epohe za redom vrijednost ne poveća, smanjuje lr za faktor 0.5. (Napomena: probleme s ekplodirajućim loss-om koje ovo rješava sam uočila tek nakon implementacije attentiona pa je lr_sceduler prisutan samo u *_A modelima)
- Za sada je implementiran multi-head attention layer koji na ulazu ima skriveni sloj RNN-a (uzeta je Pytorch implementacija sloja) – 2 rada koja su koristila ovu vrstu attention-a i poslužila kao inspiracija: https://ieeexplore.ieee.org/document/8798611 i https://arxiv.org/pdf/2002.00735. Još je stavljena konkatenacija izlaza

- multi-head attention sloja i skrivenog sloja RNN-a (isprobano je sa i bez i malo bolji rezultat je kad se napravi konkatenacija pa je ovako trenutno implementirano) to su *_A modeli.
- Dodana je *fine tuning* opcija za bioBERT embedding. Dakle, u sklopu modela (BiRNN-CRF) ne uzimaju se samo statične reprezentacije riječi, nego se i one uče (propagira se gradijent i na bioBERT model). Korišteni lr za *fine tuning* BERT-a obično je 2e-5 pa je i tu tako stavljeno to su * ftB * modeli.

Postavke za konfiguraciju 1:

hidden_size: 512 num_layers: 1 dropout: 0.3

lr: 1e-3

batch_size: 32 optimizer: "adam"

epochs: 300

max_length: 256 max_grad_norm: 5.0 early_stopping: 10

cnn_vocab: "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:\"\\\|_@#\$

%\&*~`+-=<>()[]{}"
cnn_max_word_len: 20
cnn_embedding_dim: 256

feature_size: 256

att_num_of_heads: 16

ft_lr: 2e-5 #ovo je learning rate za *fine tuning* bioBERT-a

U tablici koja slijedi, prikazane su dobivene f1-mjere po skupovima podataka (Napomena: ovi rezultati dobiveni su za jedno pokretanje s istim postavljenim seedom za svaki eksperiment). Za bc5cdr prikazana je odvojena f1-mjera po entitetima (chem-kemikalija, dis-bolest) te mikro usrednjena f1-mjera na cijelom skupu podataka. Također, za oba skupa podataka, prikazan je i defaul i strict izračun. (Napomena: strict način rada osigurava da se predikcije entiteta računaju kao točne isključivo ako potpuno odgovaraju stvarnim granicama entiteta i njegovom tipu).

MODEL	BC5CDR-CHEM	BC5CDR-DIS	BC	C5CDR	NCBI-DIS	BC5CDR-CHEM (strict)	BC5CDR-DIS (strict)	BC5CDR (strict)	NCBI-DIS (strict)
B_C_G_1		0.84	0.78	0.81	0.76	0.38	0.74	0.64	0.73
BG_1		0.84	0.76	0.81	0.77	0.44	0.74	0.67	0.73
BL_1		0.85	0.77	0.81	0.78	0.41	0.74	0.66	0.75
B_C_L_1		0.85	0.78	0.82	0.79	0.46	0.75	0.68	0.75
BL_1_A		0.9	0.8	0.85	0.82	0.58	0.76	0.73	0.78
B_C_L_1_A		0.89	0.81	0.85	0.82	0.6	0.76	0.73	0.78
BG_1_A		0.9	0.8	0.86	0.77	0.56	0.76	0.72	0.75
B_C_G_1_A		0.9	0.82	0.86	0.82	0.61	. 0.78	0.74	0.79
EG_1		0.93	0.82	0.88	0.78	0.72	0.77	0.76	0.75
E_C_G_1		0.92	0.82	0.88	0.79	0.71	. 0.77	0.76	0.76
EL_1		0.93	0.82	0.88	0.8	0.79	0.76	0.77	0.76
E_C_L_1		0.93	0.82	0.88	0.82	0.79	0.77	0.77	0.79
E_C_L_1_A		0.93	0.84	0.89	0.84	0.79	0.78	0.79	0.79
EG_1_A		0.94	0.84	0.89	0.84	0.8	0.78	0.79	0.79
EL_1_A		0.94	0.84	0.89	0.84	0.81	0.78	0.79	0.8
E_C_G_1_A		0.94	0.84	0.89	0.85	0.81	0.79	0.79	0.8
ftBL_1		0.92	0.85	0.89	0.86	0.72	0.8	0.78	0.85
ftB_C_L_1		0.93	0.85	0.89	0.86	0.74	0.8	0.79	0.85
ftBG_1		0.93	0.85	0.89	0.87	0.72	0.8	0.79	0.86
ftB_C_G_1		0.93	0.85	0.89	0.87	0.72	0.8	0.78	0.86
ftBL_1_A		0.92	0.85	0.89	0.88	0.71	. 0.8	0.78	0.86
ftB_C_L_1_A		0.93	0.85	0.89	0.87	0.72	0.79	0.78	0.86
ftBG_1_A		0.93	0.85	0.89	0.87	0.74	. 0.8	0.79	0.86
ftB_C_G_1_A		0.93	0.85	0.89	0.88	0.71	. 0.81	0.79	0.87

Analiza i zaključci:

- -> Modeli koji koriste bioELMo imaju bolje performanse od bioBERT-a koji je korišten kao fiksni ekstraktor značajki (možda jer bioBERT nije large model, tu bi se to moglo još isprobati), a najbolji rezultati su dobiveni za modele kod kojih je rađen *fine tuning* bioBERT-a
- -> Dodavanje ovako definiranog char CNN embeddinga ne pomaže nešto puno
- -> Dodavanje ovako definiranog attention sloja isto ne pomaže puno
- -> Strict f1-mjere (očekivano) niže
- -> *Fine tuning* puno pomaže u odnosu na "fiksni" BERT na oba dataset-a, dok je u odnosu na ELMo poboljšanje vidljivo na NCBI-disease datasetu i za *strict* mjeru na BC5CDR datasetu kad se uz ELMo ne koristi attention, ostali slučajevi daju slične metrike. Zanimljivo je to da se bioBERT "muči" s chem entitetima u striktnom načinu rada te gledajući samo tu kolonu ELMo daje najbolje rezultate, a kod defaultnog načina rada, vrijednosti f1 za chem kolonu su veće nego za disease kof svih modela.
- -> BiLSTM i BiGRU daju uglavnom podjednake rezultate, BiGRU je možda malo bolji u nekim modelima pogotovo ako se uzima u obzir i činjenica da ima manje parametara
- -> Trenutno najbolji modeli ftB_C_G_1_A

Plan za dalje:

- -> isprobati još neke druge konfiguracije (mijenjat hidden_size, lr, itd.)
- -> (<u>Pitanje</u>: Jel bi imalo smisla napraviti fine tuning bioBERT-a na recimo BC5CDR datasetu (po originalnom paperu ili po ovako nekom tutorijalu koji ima jednostavniji klasifikacijski sloj https://medium.com/@whyamit101/fine-tuning-bert-for-named-entity-recognition-ner-b42bcf55b51d) i onda te težine

koristiti za "fiksni" bioBERT od kojeg uzimamo samo embedding za BiRNN-CRF model treniranog na drugom datasetu (NCBI-disease)?)

-> Proučiti i implementirati dice loss u sklopu multitask-a (po uzoru na https://aclanthology.org/2021.findings-acl.424.pdf)