# MAT-468: Sesión 8, Elementos de Simulación I

# Felipe Osorio

http://fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM



### Definición

# Simulación: [Del lat. simulatio]

1. Acción de simular. 2. Alteración aparente de la causa, la índole o el objeto verdadero de un acto o contrato.

Modelación. El acto de imitar el comportamiento de alguna situación o proceso por medio de algo análogo de forma adecuada.

Computación. Técnica de representación del mundo real usando una rutina computacional.

### Simulación Estocástica

Conjunto de herramientas (estadísticas) para generar muestras aleatorias por medio de un computador con el fin de usarlas para obtener resultados aproximados.



### Definición

# Simulación: [Del lat. simulatio]

1. Acción de simular. 2. Alteración aparente de la causa, la índole o el objeto verdadero de un acto o contrato.

Modelación. El acto de imitar el comportamiento de alguna situación o proceso por medio de algo análogo de forma adecuada.

Computación. Técnica de representación del mundo real usando una rutina computacional.

### Simulación Estocástica

Conjunto de herramientas (estadísticas) para generar muestras aleatorias por medio de un computador con el fin de usarlas para obtener resultados aproximados.



### Definición

### Simulación: [Del lat. simulatio]

1. Acción de simular. 2. Alteración aparente de la causa, la índole o el objeto verdadero de un acto o contrato.

Modelación. El acto de imitar el comportamiento de alguna situación o proceso por medio de algo análogo de forma adecuada.

Computación. Técnica de representación del mundo real usando una rutina computacional.

#### Simulación Estocástica

Conjunto de herramientas (estadísticas) para generar muestras aleatorias por medio de un computador con el fin de usarlas para obtener resultados aproximados.



# Aleatoriedad y Predictibilidad

- Un computador no puede generar dígitos aleatorios.
- Nos contentaremos con:

reglas para obtener números pseudo aleatorios, que parecen haber sido tomados al azar desde una distribución dada.





### Definición 1

Una colección de v.a.  $X_1, \ldots, X_n$  es una muestra aleatoria si son independientes y tienen la misma distribución de probabilidad.

#### Idea

La clave de los métodos de simulación es la producción de números (pseudo)aleatorios. Esto es, un procedimiento que produce una colección

$$U_1, U_2, \cdots \stackrel{\mathsf{iid}}{\sim} F.$$

La producción de v.a. será formalizada mediante definir un generador de dígitos pseudo-aleatorios (RNG).

RNG: U(0, 1)

Cuando  $F \stackrel{\text{d}}{=} \mathsf{U}(0,1)$ , el RNG se dice un generador de dígitos aleatorios uniformes (en el intervalo (0,1)).

### Definición 1

Una colección de v.a.  $X_1, \ldots, X_n$  es una muestra aleatoria si son independientes y tienen la misma distribución de probabilidad.

### Idea:

La clave de los métodos de simulación es la producción de números (pseudo)aleatorios. Esto es, un procedimiento que produce una colección

$$U_1, U_2, \cdots \stackrel{\mathsf{iid}}{\sim} F.$$

La producción de v.a. será formalizada mediante definir un generador de dígitos pseudo-aleatorios (RNG).

**RNG**: U(0, 1)

Cuando  $F \stackrel{\text{d}}{=} \mathsf{U}(0,1)$ , el RNG se dice un generador de dígitos aleatorios uniformes (en el intervalo (0,1)).

### Observación:

Muchos lenguajes de programación disponen de RNGs implementados (suelen no ser recomendables).

### Objetivo:

- Se desea una secuencia determinista de valores en (0,1) que imite una secuencia de v.a. IID U(0,1).
- ▶ RNGs requieren de valores iniciales o semillas para iniciar una recursión.

# Definición 2 (RNG)

Un RNG es un algoritmo que partiendo de una semilla (o semillas)  $u_0$  y una transformación D produce una secuencia

$$u_i = D^i(u_0), \qquad i = 1, \dots, n,$$

de valores en (0,1) tal que para todo n, la secuencia  $\{u_1,\dots,u_n\}$  se comporta como una muestra desde  $\mathrm{U}(0,1)$ .

### Observación:

La validez del algoritmo

$$u_i = D(u_{i-1}), \qquad i = 1, \dots, n,$$

depende de verificar que la secuencia  $u_1,\ldots,u_n$  permite aceptar la hipótesis,

$$H_0:U_1,\ldots,U_n$$
 son iid  $U(0,1)$ .

### Observación:

Es importante notar que en la práctica las secuencias generadas toman valores sobre el conjunto de enteros  $\{0,1,\ldots,M\}$ , donde M se escoge como el mayor entero que se puede representar en el computador (en arq. de 32 bits,  $M=2^{31}-1$ ).



### Observación:

Una manera de caracterizar el desempeño de un algoritmo RNG es a través de su periodo.

### Definición 3

El periodo  $T_0$  de un generador es el entero más pequeño T tal que

$$u_{i+T} = u_i, \quad \forall i.$$



### Características de un buen RNG

- Pasar test estadísticos (baterías de test Knuth-TAOCP, DIEHARD, TestU01).
- Soporte teórico.
- Reproducible.
- Rápido y eficiente.
- Periodo (extremadamente) grande.
- Múltiples hebras.
- ► No producir 0 ó 1.



#### Definición 4

Sea M un entero positivo  $\geq 2$ , una secuencia  $\{x_1,x_2,\dots\}$  en  $\{0,1,\dots,M-1\}$  se dice generada por un método congruencial lineal (Lehmer, 1949) de parámetros a y b con semilla  $x_0$  si

$$x_i = (ax_{i-1} + b) \mod M,$$

para a, b y  $x_0$  enteros en  $\{0, 1, \dots, M-1\}$ .

a es llamado multiplicador, b incremento y M el módulo. Cuando b=0 el RNG es llamado congruencial multiplicativo.

Para obtener dígitos en el intervalo (0,1) hacemos

$$u_i = \frac{x_i}{M}, \qquad i = 1, \dots, n.$$



### Ejemplo

Considere la secuencia:

$$0, 1, 6, 15, 12, 13, 2, \dots$$

generada con un RNG congruencial. ¿Cuál es el próximo número entre 0 y 15?

Mientras que la secuencia

$$1, 12, 1, 12, 1, 12, 1, \dots$$

también generada usando un RNG congruencial. Fácilmente intuímos que el próximo número es 12.

#### Observación:

Existe condiciones bastantes específicas para las cuales un RNG congruencial produce secuencias de números satisfactorias.



#### Previo

Dos números son relativamente primos si ellos tienen a 1 como su divisor común.

### Resultado 1

Si  $b \neq 0$ , el periodo del RNG congruencial  $x_i = (ax_{i-1} + b) \mod M$  es igual a M sólo si

- (a) b es relativamente primo a M.
- (b) a-1 es un múltiplo de todo primo que divide a M.
- (c) a-1 es múltiplo de 4, si M es múltiplo es multiplo de 4.

### Resultado 2

Sea  $x_i = (ax_{i-1} + b) \mod M$  con b = 0 y M > 2 es un número primo. Entonces

- (a) el periodo máximo es M-1.
- (b) el periodo máximo es alcanzado si  $a \mod M \neq 0$  y  $a^{(M-1)/q} \mod M \neq 1$  para todo divisor primo q de M-1.



### Resultado 3

Sea  $\{x_1,x_2,\dots\}$  una secuencia obtenida usando un generador con parámetros  $a,\,b$  y M, Sea  $k\geq 1$  y

$$A = \{(x_i, \dots, x_{i+k-1})^\top : i = 0, 1, \dots, M - k\}.$$

Entonces, A está contenido en una familia de a lo más  $(k!M)^{1/k}$  hiperplanos paralelos.

### Ejemplo: RANDU

El pésimo y (infelizmente) muy usado generador RANDU es un RNG tipo Lehmer con  $a=2^{16}+3$  y  $M=2^{31}$ , es decir

$$x_i = 65539x_{i-1} \mod 2^{31},$$

en cuyo caso tenemos que las tripletas  $(u_{i+1},u_i,u_{i-1})$  están en no más que 15 planos en  $\mathbb{R}^3$ .



# Estructura de un RNG congruencial

Considere el generador congruencial

$$x_i = 3x_{i-1} \mod 31$$

usando como semilla  $x_0=9$ . Usamos los siguientes conmandos en R para simular 30 dígitos.

```
> x \leftarrow rep(0.30)
> x[1] <- 9
> for (i in 2:30) x[i] = (3 * x[i-1]) \% 31
> x
 [1] 9 27 19 26 16 17 20 29 25 13 8 24 10 30 28 22
[17] 4 12 5 15 14 11 2 6 18 23 7 21 1 3
> u <- x / 31
> mean(u)
[1] 0.5
> var(u)
[1] 0.08064516
> plot(x[1:29], x[2:30])
Para Z \sim U(0,1) tenemos E(Z) = \frac{1}{2} y var(Z) = 1/12 = 0.08\overline{3}.
```



# Estructura de un RNG congruencial





# Estructura del RNG en runif





# Generadores congruenciales múltiples

### Definición 5

Un generador recursivo múltiple (MRG) de orden k es un generador tal que el conjunto de estados  $(x_{i-k+1},\dots,x_i)^{\top}\in\{0,1,\dots,M-1\}^k$  y es definido como:

$$x_i = (a_1 x_{i-1} + a_2 x_{i-2} \cdots + a_k x_{i-k}) \mod M,$$

para  $i=k,k+1,\ldots$  y los multiplicadores  $\{a_i\}_1^k$  están en el conjunto  $\{0,\ldots,M-1\}$ . La salida debe ser transformada como

$$u_i = \frac{x_i}{M}, \qquad i = 1, \dots, n.$$

El periodo máximo del generador es  $M^k-1$  (bajo ciertas condiciones).

#### Observación:

Para obtener algoritmos rápidos sólo unos pocos  $a_i$ 's deberían ser no nulos.



# Generador congruencial matricial

#### Observación:

MRGs son un caso particular de los generadores congruenciales matriciales, tal que

$$oldsymbol{A} = egin{pmatrix} 0 & 1 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 1 \ a_k & a_{k-1} & \cdots & a_1 \end{pmatrix}, \qquad oldsymbol{x}_i = egin{pmatrix} x_i \ x_{i+1} \ dots \ x_{i+k-1} \end{pmatrix}.$$

#### Observación:

La implementación de este tipo de generadores matriciales debe ser muy cuidadosa con el espacio de almacenamiento requerido.



### **Generador Wichman-Hill**

### Definición 6

Wichman y Hill (1982) describen un RNG que es una combinación de generadores congruenciales

$$\begin{aligned} x_i &= 171 x_{i-1} \mod 30269 \\ y_i &= 172 y_{i-1} \mod 30307 \\ z_i &= 170 z_{i-1} \mod 30323, \end{aligned}$$

y estos son combinados como

$$u_i = \left(\frac{x_i}{30269} + \frac{y_i}{30307} + \frac{z_i}{30323}\right) \mod 1$$

#### Observación:

Este RNG requiere una semilla  $(x_o, y_0, z_0)$  y su periodo es

$$(30269 - 1)(30307 - 1)(30323 - 1)/4 \approx 6.95 \cdot 10^{12}$$
.

Además, Zeisel (1986) mostró que el generador Wichman-Hill es equivalente a un RNG congruencial con

$$a = 16555425264690, \quad M = 27817185604309$$



# Combinando generadores

- El periodo y aleatoriedad de un RNGs puede ser mejorado mediante combinar más de un generador.
- Algunos generadores de este tipo:
  - Super-Duper (Reeds et al., 1982-4).
  - Wichmann-Hill (1982).
  - KISS Keep It Simple, Stupid (Marsaglia and Zaman, 1993).
  - MRG32ka (L'Ecuyer, 1999).



### **Generador KISS**

# Definición 7 (Marsaglia y Zaman, 1993)

KISS está basado en combinar un generador congruencial y dos LFSR, del siguiente modo:

a) Un generador congruencial:

$$w_{n+1} = (69069w_n + 23606797) \mod 2^{32}$$

b) Dos generadores LFSR

$$x_{n+1} = (I + L^{15})(I + R^{17})x_n \mod 2^{32}$$
  
 $y_{n+1} = (I + L^{13})(I + R^{18})y_n \mod 2^{32}$ 

c) Los que son combinados como:

$$z_{n+1} = (w_{n+1} + x_{n+1} + y_{n+1}) \mod 2^{32}.$$

El periodo de KISS es de orden  $2^{95}\ {\rm y}$  ha sido probado exitosamente por los criterios disponibles en Die Hard.

### **Generador KISS**

La definición del generador KISS está basado en las siguientes matrices:

$$m{T}_L = egin{pmatrix} 1 & 1 & 0 & \dots & 0 \ 0 & 1 & 1 & \dots & 0 \ dots & \ddots & \ddots & dots \ 0 & \dots & 0 & 1 \end{pmatrix}, \qquad m{T}_R = m{T}_L^ op,$$

que, en efecto, está relacionado con la operación

$$\mathbf{R}(e_1, \dots, e_k)^{\top} = (0, e_1, \dots, e_{k-1})^{\top}, \quad \mathbf{L}(e_1, \dots, e_k)^{\top} = (e_2, \dots, e_k, 0)^{\top}$$

y además

$$T_L = I + L, \qquad T_R = I + R.$$



### Generador MRG32ka

# Definición 8 (L'Ecuyer, 1999)

Este generador es definido como:

a) Dos generadores recursivos:

$$x_i=(1\,403\,580x_{i-2}-810\,728x_{i-3})\mod M_1$$
 
$$y_i=(527\,612y_{i-1}-1\,370\,589y_{i-3})\mod M_2$$
 donde  $M_1=2^{32}-209$  y  $M_2=2^{32}-22\,853.$ 

b) La salida es definida mediante la combinación:

$$z_{i} = \begin{cases} \frac{x_{i} - y_{i} + M_{1}}{M_{1} + 1}, & x_{i} \leq y_{i} \\ \frac{x_{i} - y_{i}}{M_{1} + 1}, & x_{i} > y_{i} \end{cases}$$

El periodo del generador es aproximadamente  $2^{191}$ . MRG32ka supera todos los test estadísticos conocidos (TestU01: L'Ecuyer y Simard, 2007).

# Métodos para generar variables no uniformes

- lacktriangle Sea F función de distribución definida en  $\mathbb R$  y  $\{X_1,X_2,\dots\}$  v.a. IID desde F.
- ▶ Se desea generar una realización  $\{x_1, x_2, ...\}$  desde  $\{X_1, X_2, ...\}$ .
- ▶ Suponga que tenemos una muestra  $\{u_1, u_2, \dots\}$  generada desde U(0, 1).
- Los siguientes métodos permiten transformar  $\{u_1, u_2, \dots\}$  en  $\{x_1, x_2, \dots\}$ .



### Métodos de Inversión

### Definición 9

Para  ${\cal F}$  función no decreciente, la inversa (generalizada) de  ${\cal F}$ , denotada por  ${\cal F}^-$  está definida por:

$$F^-(u) = \inf\{x : F(x) \ge u\}.$$

### Lema

Si  $U \sim \mathsf{U}(0,1)$ , entonces la variable aleatoria  $F^-(U)$  tiene distribución F. (

En efecto, basta notar que:

$$P(X \leq x) = P(F^-(U) \leq x) = P(U \leq F(x)) = F(x).$$



# Métodos de Inversión

### Definición 10

De este modo, para generar una v.a.  $X \sim F$  es suficiente generar  $U \sim \mathrm{U}(0,1)$  y hacer la transformación

$$x = F^{-}(u).$$

### *Ejemplo:* $X \sim \mathsf{Exp}(1)$

Suponga que  $X \sim \operatorname{Exp}(1)$ , es decir  $F(x) = 1 - e^{-x}$ . Entonces, resolviendo para x en:

$$u = 1 - e^{-x},$$

tenemos que  $x = -\log(1-u)$ . Note además que  $U \stackrel{d}{=} 1 - U$ .

Por tanto, para generar una observación desde  ${\rm Exp}(1)$ , basta hacer  $u \sim {\rm U}(0,1)$  y luego tomar  $x=-\log(u)$ .

### Observación:

Para  $X \sim \mathsf{Exp}(\lambda)$ , tenemos

$$F^{-1}(u) = -\frac{1}{\lambda}\log(1-u).$$



### Métodos de Inversión

### Observación:

Usualmente la evaluación de  ${\cal F}^-$  es lenta y computacionalmente costosa, así que otros métodos son preferidos.

### Ejemplo: $X \sim N(0,1)$

Si  $X \sim N(0,1)$  podríamos usar

$$X = \Phi^{-1}(U), \qquad U \sim \mathsf{U}(0,1).$$

Sin embargo, tanto  $\Phi$  como su inversa  $\Phi^{-1}$  (usualmente) son aproximados usando la función error

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, \mathrm{d}t.$$

que es evaluada usando fracciones continuas o expansiones en series.

#### Observación:

Otra alternativa es resolver la ecuación no lineal F(x)-u=0, usando métodos iterativos.



# Métodos de Inversión: Caso discreto

Si X es una v.a. discreta, y

$$\dots < x_{i-1} < x_i < x_{i+1} < \dots$$

son los puntos de discontinuidad de  ${\cal F}.$  Entonces la transformación inversa es dada por:

$$F^{-}(u) = x_i$$
, donde  $F(x_{i-1}) < u \le F(x_i)$ .

El algoritmo se reduce a los siguientes pasos:

- (a) Generar u desde U(0,1).
- (b) Devolver  $x_i$  donde  $F(x_{i-1}) < u \le F(x_i)$ .



<sup>&</sup>lt;sup>1</sup>Esto requiere de un algoritmo de búsqueda

# Generando dígitos por su definición\*

Este procedimiento es útil cuando F está relacionado con una distribución simple de simular. Lamentablemente este método es bastante caso-específico (no es recomendable).

# Ejemplo: basados en v.a. Exponenciales

Sabemos que es fácil generar v.a.  $X \sim \mathsf{Exp}(1)$ . De este modo,

$$\begin{split} Y &= 2\sum_{j=1}^{\nu} X_j \sim \chi_{2\nu}^2, \quad \nu \in \mathbb{N}, \\ Y &= \beta \sum_{j=1}^{a} X_j \sim \mathrm{Gama}(a,\beta), \quad a \in \mathbb{N}, \beta > 0, \\ Y &= \frac{\sum_{j=1}^{a} X_j}{\sum_{k=1}^{a+b} X_k} \sim \mathrm{Beta}(a,b), \quad a,b \in \mathbb{N}, \end{split}$$



# Generando dígitos por su definición\*

# Ejemplo: Método de Box-Muller

Considere generar v.a. desde  $\mathcal{N}(0,1)$  y suponga que R y  $\theta$  son las coordenadas polares de  $(X_1,X_2)$ . Entonces, dado que  $(X_1,X_2)$  es invariante por rotaciones

$$\begin{split} R^2 &= X_1^2 + X_2^2 \sim \chi^2(2) \stackrel{\mathrm{d}}{=} \mathrm{Exp}(\tfrac{1}{2}) \\ \theta &\sim U(0,2\pi). \end{split}$$

El algoritmo se puede escribir como:2

- (a) Generar  $u_1$  y  $u_2$  v.a. iid desde U(0,1).
- (b) Hacer

$$x_1 = \sqrt{-2\log(u_1)}\cos(2\pi u_2)$$
$$x_2 = \sqrt{-2\log(u_1)}\sin(2\pi u_2).$$



<sup>&</sup>lt;sup>2</sup>Usar una Transformación inversa 2D