Temporal Time Series Analysis

Joaquín Rapela

Gatsby Computational Neuroscience Unit University College London

January 12, 2025

- Course notes
- 2 Time series analysis
 - Introduction to time series analysis
 - Generation of time series
 - Population measures used to describe time series
 - Stationarity
 - Sample measures used to describe time series
 - Forecasting
- 3 Appendix

- Course notes

Background

- Last Spring 2023 I helped in the discussion sessions of this course.
- Suggested to Klara Olofsdotter (SWC PhD program coordinator) and Sonja Hofer (SWC PhD program faculty coordinator) to ask SWC PhD students to take this course. They liked the idea.
- I volunteered to lead discussions and do grading with Gatsby Unit PhD students and postdoctoral scholars.

A few motivations to run this course

- Gain more teaching experience.
- 2 Provide SWC PhD students with essential neural data-analysis tools.
- Ontribute to better interactions between the SWC and the Gatsby Unit.

Course structure

Week 01	Jan 11	The t-test and randomisation tests	Joaquin Rapela	tutorial
Week 02	Jan 18	Power spectra	Joaquin Rapela	tutorial
			Yousef Mohammadi	
			Joe Zimminski	
Week 03	Jan 25	Spectrograms	Joaquin Rapela	tutorial
		and coherence	Yousef Mohammadi	
			Joe Zimminski	
Week 04	Feb 01	Circular statistics	Joaquin Rapela	tutorial
Week 05	Feb 08	Singular value decomposition	Will Dorrell	tutorial
Week 06	Feb 15	Linear regression	Lior Fox	lecture
	Feb 16			tutorial
Week 07	Feb 22	Linear dynamical systems	Aniruddh Galgali	lecture
			Joaquin Rapela	
	Feb 23			tutorial
Week 08	Feb 29	no class (CoSyNe)		
Week 09	Mar 07	Artificial neural networks	Erin Grant	lecture
	Mar 08			tutorial
Week 10	Mar 14	Experimental control with Bonsai	Goncalo Lopes	lecture
			Joaquin Rapela	
	Mar 15			tutorial
Week 11	Mar 21	Reinforcement learning		lecture
	Mar 22			tutorial
Week 12	Mar 28	Project development		
Week 15	Apr 25			
Week 16	May 02	Project presentations		

Teaching assistants: Kira Dusterwald, Sihao (Daniel) Liu

Graded worksheets

Every Thursday we will assign you a worksheet that is due on the second Monday after the assignment.

- Course notes
- 2 Time series analysis
- 3 Appendix

- Time series analysis
 - Introduction to time series analysis
 - Generation of time series
 - Population measures used to describe time series
 - Stationarity
 - Sample measures used to describe time series
 - Forecasting

What is time series analysis?

- Time series analysis characterizes data that is correlated in time.
- These correlations serverly restrict the applicability of conventional technniques assuming data samples that are independent and identically distributed.
- These correlations allow to forecast future values of a time series based on present and past values.

Relevance of time series analysis

economics daily stock market quotations, monthly unemployment figures.

social scientists birthrates, school enrollment.

epidemology number of influenza cases observed over some time period.

medicine blood pressure measurements traced over time.

Temporal vs spectral time series analysis

termporal time series analysis focuses on the analysis of lagged relationship (e.g., how does what happened today affect what will happen tomorrow?).

spectral time series analysis centers on the analysis of rhythms (e.g., can we observe rhythmic activity in local field potentials recorded from human brains?)

An example time series

In the examples below we will use spontaneous EEG (i.e., no task) recorded from a human subject (Liu et al., 2024).

- Time series analysis
 - Introduction to time series analysis
 - Generation of time series
 - Population measures used to describe time series
 - Stationarity
 - Sample measures used to describe time series
 - Forecasting

Generation of time series: white noise

The first step to generate time series is to generate **white noise**, $\{w_t\}$ (i.e., independent Gaussian random variables with zero mean and fixed variance, example).

$$\begin{split} E\{w_t\} &= 0 \\ \text{Cov}\{w_t, w_s\} &= \left\{ \begin{array}{ll} \sigma_w^2 & s = t \\ 0 & s \neq t \end{array} \right. \end{split}$$

Generation of time series: moving average model

In a white noise stochastic process x, for any pairs of time points, t_1 and t_2 , the random variables x_{t_1} and x_{t_2} are uncorrelated. The **moving** average model adds serial correlation to white noise (example).

$$\nu_t = \frac{1}{3}(w_{t-1} + w_t + w_{t+1}) \tag{1}$$

Generation of time series: autoregressive model

Many neural time series, like local field potential recordings, exhibit oscillations of the type of sine waves. The **autoregressive model** generates oscillations (example). Lecture on linear dynamical systems.

$$x_t = x_{t-1} - 0.9x_{t-2} + w_t$$

Generation of time series: random walk with drift

The **random walk with noise** model is used to characterize trends in time series (example).

$$x_t = \delta + x_{t-1} + w_t \tag{2}$$

Generation of time series: signal plus noise

Many realistic models of time series assume an underlying signal with a periodic variation contaminated by adding a random noise (example).

$$x_t = 2\cos(2\pi\frac{t}{50} + 2\pi\frac{15}{50}) + w_t$$

$$A\cos(2\pi\omega t + \phi)$$

where $A=2, \omega=1/50, \phi=2\pi15/50$. Lecture on spectral analysis of time series.

- Time series analysis
 - Introduction to time series analysis
 - Generation of time series
 - Population measures used to describe time series
 - Stationarity
 - Sample measures used to describe time series
 - Forecasting

Mean function

Definition 1 (Mean function)

The mean function, μ_t , is defined as $\mu_t = E\{x_t\}$.

Example (Mean function of a moving average model)

Calculate the mean function of the moving average model in Eq. 5.

$$E\{\nu_t\} = \frac{1}{3}(E\{w_{t-1}\} + E\{w_t\} + E\{w_{t+1}\}) = \frac{1}{3}(0+0+0) = 0$$

Mean function

Example (Mean function of the autoregressive model of order 1)

Calculate the mean function of the autoregressive model of order 1, AR(1), in Eq. 3.

$$x_t = \phi x_{t-1} + w_t \tag{3}$$

An AR(1) model (Eq. 3) can be represented as a moving average of ininite order MA(∞). See MA(∞) representation of AR(1) random process in Appendix. Then

$$x_t = \sum_{i=0}^{\infty} \phi^i w_{t-i}$$

$$E\{x_t\} = \sum_{i=0}^{\infty} \phi^i E\{w_{t-i}\} = \sum_{i=0}^{\infty} \phi^i 0 = 0$$

Mean function

Example (Mean function of the random walk with drift model)

Calculate the mean function of the random noise with drift model, in Eq. 2.

The random noise with drift model in Eq. 2 can be represented as

$$x_t = t\delta + \sum_{i=0}^{\infty} w_{t-i}$$

$$E\{x_t\} = \delta t + \sum_{i=0}^{\infty} E\{w_{t-i}\} = \delta t + \sum_{i=0}^{\infty} 0 = \delta t$$

See the figure of samples of the random noise with drift random process.

Definition 2 (Autocovariance function)

The autocovariance function is defined as

$$\gamma(s,t) = cov(x_s, x_t) = E\{(x_s - \mu_s)(x_t - \mu_t)\}.$$

Note

For s = t the autocovariance reduces to the variance, because

$$\gamma(t,t) = E\{(x_t - \mu_t)^2\} = var(x_t).$$

Definition 3 (Autocorrelation function)

The autocorrelation function is defined as $\rho(s,t) = \frac{\gamma(t,s)}{\sqrt{\gamma(t,t)\gamma(s,s)}}$.

Example (Autocovariance function of moving average)

Calculate the autocovariance function of the moving average model in Eq. 5.

$$\gamma_{\nu}(s,t) = cov(\nu_{s},\nu_{t}) = cov(\frac{1}{3}(w_{s-1} + w_{s} + w_{s+1}), \frac{1}{3}(w_{t-1} + w_{t} + w_{t+1}))$$

If s=t:

$$\gamma_{\nu}(t,t) = cov(\nu_{t},\nu_{t}) = cov(\frac{1}{3}(w_{t-1} + w_{t} + w_{t+1}), \frac{1}{3}(w_{t-1} + w_{t} + w_{t+1}))$$

$$= \frac{1}{9}(cov(w_{t-1}, w_{t-1}) + cov(w_{t}, w_{t}) + cov(w_{t+1}, w_{t+1}))$$

$$= \frac{1}{9}(\sigma_{w}^{2} + \sigma_{w}^{2} + \sigma_{2}^{2}) = \frac{3}{9}\sigma_{w}^{2}$$

Example (Autocovariance function of moving average)

If s=t+1:

$$\begin{split} \gamma_{\nu}(t+1,t) &= cov(\nu_{t+1},\nu_t) \\ &= cov(\frac{1}{3}(w_t + w_{t+1} + w_{t+2}), \frac{1}{3}(w_{t-1} + w_t + w_{t+1})) \\ &= \frac{1}{9}\left(cov(w_t,w_t) + cov(w_{t+1},w_{t+1})\right) \\ &= \frac{1}{9}\left(\sigma_w^2 + \sigma_w^2\right) = \frac{2}{9}\sigma_w^2 \end{split}$$

Example (Autocovariance function of moving average)

If s=t+2:

$$\begin{split} \gamma_{\nu}(t+2,t) &= cov(\nu_{t+2},\nu_t) \\ &= cov(\frac{1}{3}(w_{t+1} + + w_{t+2} + w_{t+3}), \frac{1}{3}(w_{t-1} + w_t + w_{t+1})) \\ &= \frac{1}{9}(cov(w_{t+1}, w_{t+1})) \\ &= \frac{1}{9}\sigma_w^2 \end{split}$$

Example (Autocovariance function of moving average)

$$\gamma_{
u}(s,t) = \left\{ egin{array}{ll} rac{3}{9}\sigma_{w}^{2} & ext{if} \quad s=t, \ rac{2}{9}\sigma_{w}^{2} & ext{if} \quad |s-t|=1, \ rac{1}{9}\sigma_{w}^{2} & ext{if} \quad |s-t|=2, \ 0 & ext{if} \quad |s-t|>2. \end{array}
ight.$$

Example (Autocovariance function of AR(1))

Calculate the autocovariance function of the autoregressive model of order 1 in Eq. 4.

An AR(1) model (Eq. 3) can be represented as a moving average of ininite order MA(∞). See MA(∞) representation of AR(1) random process in Appendix.

$$x_t = \sum_{i=0}^{\infty} \phi^i w_{t-i}$$

Example (Autocovariance function of AR(1))

$$\begin{split} \gamma(t-h,t) &= E\{(x_{t-h} - \mu_{t-h})(x_t - \mu_t)\} = E\{x_{t-h}x_t\} = E\left\{\left(\sum_{i=0}^{\infty} \phi^i w_{t-h-i}\right) \left(\sum_{j=0}^{\infty} \phi^j w_{t-j}\right)\right\} \\ &= E\left\{\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \phi^i \phi^j w_{t-h-i} w_{t-j}\right\} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \phi^i \phi^j E\{w_{t-h-i} w_{t-j}\} \\ &= \sum_{i=0}^{\infty} \phi^i \phi^{i+h} E\{w_{t-h-i}^2\} = \phi^h \sigma_w^2 \sum_{i=0}^{\infty} \phi^{2i} = \phi^h \sigma_w^2 \frac{1}{1 - \phi^2}, \quad \text{if } |\phi| < 1 \end{split}$$

- Time series analysis
 - Introduction to time series analysis
 - Generation of time series
 - Population measures used to describe time series
 - Stationarity
 - Sample measures used to describe time series
 - Forecasting

Strictly stationary time series

Definition 4 (Strict stationarity)

A **strictly stationary time series** is one for which the probabilistic behavior of every collection of values

$$\{x_{t_1},\ldots,x_{t_n}\}$$

is identical to that of any shifted set

$$\{x_{t_1+h},\ldots,x_{t_n+h}\}$$

That is

$$P(x_{t_1} < c_1, \ldots, x_{t_k} < c_k) = P(x_{t_1+h} < c_1, \ldots, x_{t_k+h} < c_k)$$

for all $k=1,2,\ldots$, all time points t_1,t_2,\ldots,t_k , all numbers c_1,c_2,\ldots,c_k , and all time shifts $h=0,\pm 1,\pm 2,\ldots$

Weakly stationary time series

Definition 5 (Weak or wide-sense stationarity)

A weakly or wide-sense stationary time series is a finite-variance process such that:

- lacktriangledown the mean function, μ_t , is contant and does not depend on time t, and
- **1** the autocovariance function, $\gamma(s,t)$, depends on s and t only through their difference |s-t|.

- Time series analysis
 - Introduction to time series analysis
 - Generation of time series
 - Population measures used to describe time series
 - Stationarity
 - Sample measures used to describe time series
 - Forecasting

Sample mean, autocovariance and autocorrelation

Definition 6 (Sample mean)

Let x_1, \ldots, x_n be observations from a time series. The **sample mean** of x_1, \ldots, x_n is

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Definition 7 (Sample autocovariance)

The sample autocovariance function is

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{i=1}^{n-|h|} (x_{i+|h|} - \bar{x})(x_i - \bar{x}), \quad -n < h < n$$

Sample mean, autocovariance and autocorrelation

Definition 6 (Sample autocorrelation)

The sample autocorrelation function is

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}$$

Theorem 7 (Distribution of sample autocorrelation for white noise)

For white noise, and a sample of size n, the sample autocorrelations, $\hat{\gamma}(h), h>0$, are approximately independent and identically distributed $N(0,1/\sqrt{n})$, for large n (Brockwell and Davis, 1991). Hence 95% of the sample autocorrelations should fall between the bound $\pm 1.96/\sqrt{n}$

Analytical and estimated autocorrelation function for white noise

Simulate a white noise time series with N=100 and N=100,000 samples. For each N, plot the analytical and estimated autocorrelation function. Include the 95% confidence interval of the autocorrelation function. Solution.

Analytical and estimated autocovariance function for MA

Simulate the previous moving average time series with N=100 and N=100,000 samples. For each N, plot the analytical and estimated autocovariance function.

33 / 39

Analytical and estimated autocovariance function for AR(1)

Simulate an AR(1) time series with N=100 and N=100,000 samples, $\phi = 0.9$ and $\sigma_w = 1.0$. For each N, plot the analytical and estimated autocovariance function.

Contents

- Time series analysis
 - Introduction to time series analysis
 - Generation of time series
 - Population measures used to describe time series
 - Stationarity
 - Sample measures used to describe time series
 - Forecasting

Forecasting

Forecasting is the problem of predicting the value of X_{n+h} , h>0, of a stationary time series, in term of the previous m values $\{X_n,\ldots,X_{n-(m-1)}\}$. The mean of such predictor is

$$\mathsf{mean}(\mathsf{pred}(X_{m+h}|X_n,\ldots,X_{n-(m-1)})) = \mu + \mathbf{a_m}^\intercal \left[\begin{array}{c} x_n - \mu \\ \ldots \\ x_{n-(m-1)} - \mu \end{array} \right]$$

and its variance is

$$\operatorname{var}(\operatorname{pred}(X_{n+h}|X_n,\ldots,X_{n-(m-1)})) = \gamma(0) - \mathbf{a_m}^{\mathsf{T}} \gamma_m(h)$$

Forecasting

with

$$\Gamma_{m} = \gamma_{m}(h)$$

$$\Gamma_{m} = [\gamma(i-j)]_{i,j=1}^{m} = \begin{bmatrix}
\gamma(0) & \gamma(1) & \gamma(2) & \gamma(3) & \dots & \gamma(m-1) \\
\gamma(1) & \gamma(0) & \gamma(1) & \gamma(2) & \dots & \gamma(m-2) \\
\gamma(2) & \gamma(1) & \gamma(0) & \gamma(1) & \dots & \gamma(m-3) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\gamma(m-1) & \gamma(m-2) & \gamma(m-3) & \gamma(m-4) & \dots & \gamma(0)
\end{bmatrix}$$

$$\mathbf{a_m} = [a_1, \dots, a_m]^\mathsf{T}$$

$$\gamma_m(h) = [\gamma(h), \gamma(h+1), \dots, \gamma(h+m-1)]^\mathsf{T}$$

AR(p) forecasting example

Example (Forecasting with an AR(p) model)

Simulate N=10,000 samples from an AR(7) stochastic process with $\phi = [5.0/6, -1.0/6, 0.5/6, -0.25/6, 0.5/6, -0.1/6, 0.05/6]$ and $\sigma_w = 5.0$. Use the last 500 samples to forecast 50 samples (i.e., n = 10,000, m = 500, h = 1,...,50).

Summary

Contents

- Course notes
- 2 Time series analysis
- 3 Appendix

Claim 1

Let $|\phi| < 1$, then

$$x_t = \phi x_{t-1} + w_t \quad \text{if and only if} \tag{4}$$

$$x_t = \sum_{i=0}^{\infty} \phi^i w_{t-i} \tag{5}$$

Proof.

We first show that x_t , as defined in Eq. 5, satisfies Eq. 4.

$$\phi x_{t-1} = \phi \sum_{i=0}^{\infty} \phi^i w_{t-1-i} = \phi \sum_{j=1}^{\infty} \phi^{j-1} w_{t-j} = \sum_{j=1}^{\infty} \phi^j w_{t-j}$$
$$\phi x_{t-1} + w_t = \sum_{i=0}^{\infty} \phi^j w_{t-j} = x_j$$

Proof.

We now show that Eq. 5 is the unique solution to Eq. 3. Suppose y_t is stationary and satisfies Eq. 3, then

$$\begin{aligned} y_t &= \phi y_{t-1} + w_t \\ &= \phi (\phi y_{t-2} + w_{t-1}) + w_t = \phi^2 y_{t-2} + \phi w_{t-1} + w_t \\ &= \phi^{t+1} y_{t-(t+1)} + \phi^t w_t + \dots + \phi w_{t-1} + w_t \\ &= \phi^{k+1} y_{t-(t+1)} + \sum_{i=0}^k \phi^k w_{t-i} \\ E\left\{ \left(y_t - \sum_{i=0}^k \phi^i w_{t-i} \right)^2 \right\} = \phi^{2k+2} E\{ y_{t-(k+1)}^2 \} = \phi^{2k+2} \sigma^2 \\ E\left\{ \left(y_t - \sum_{i=0}^\infty \phi^i w_{t-i} \right)^2 \right\} = \lim_{k \to \infty} \phi^{2k+2} \sigma^2 = 0 \end{aligned}$$

Proof.

Thus y_t equals $\sum_{i=0}^{\infty} \phi^i w_{t-i}$ in the mean-squared sense.

- Brockwell, P. J. and Davis, R. A. (1991). *Time series: Theory and methods*. Springer-Verlag, 2nd edition.
- Liu, Q., Jia, S., Tu, N., Zhao, T., Lyu, Q., Liu, Y., Song, X., Wang, S., Zhang, W., Xiong, F., et al. (2024). Open access eeg dataset of repeated measurements from a single subject for microstate analysis. *Scientific Data*, 11(1):379.