

ScotiaShield: Protecting Your Assets with AI-Powered Anomaly Detection

Team 19

THE TEAM

Nikaran K M

Kevin Abdo

Ruiyun (Tracy) Chao

Olivia Woodman

TABLE OF CONTENTS

01

PROBLEM & APPROACH

02

METHODOLOGY

03

RESULTS

04

CONCLUSIONS & NEXT STEPS

01

PROBLEM & APPROACH

THE NEED FOR MONEY LAUNDERING DETECTION

Protecting Scotiabank & Customers

Safeguard assets, reputation, and customer trust.

Regulatory Compliance

Stringent regulations (FINTRAC, international bodies).

Moving Targets

Detecting evolving tactics threatening Scotiabank.

Our Solution for Scotiabank: A sophisticated Anti-Money Laundering system designed for comprehensive anomaly detection, tailored to the needs of a major financial institution.

ANALYTICAL CHALLENGES

WHAT ARE THE KEY MOTIVATIONS AND CHALLENGES?

THE COST OF FALSE POSITIVES

Labour & time to review flagged customers

Negative customer experience if falsely identified as fraudulent

UNLABELED DATA

A lack of labelled datasets necessitates unsupervised learning

Algorithmic performance is not easily measured

THE INTERPRETABILITY TRADE-OFF

Interpretability is beneficial to investigators, regulators, and customer experience

The most interpretable methods are the most inaccurate

We are closing the loop between human insight and AI in money laundering detection

USER INTERFACE: Employee Login

Streamlined Web App

Developed using Python Flask, HTML, CSS, SQLite

Secure Access

Hashing, role-based permissions, session management

Easy Onboarding

Minimal steps, guided registration, automated welcome

USER INTERFACE: Alert Dashboard

ML-Selected Customers

View thousands of machine learning identified suspicious customer transactions

Flagging Transactions

Human agents can flag certain transactions to review them further

Easy Filtering

View transactions that fulfill specified criteria

Rule-based flags

Further classify suspicious transactions using risk factors

USER INTERFACE: Save Session & Exit

Easy Navigation

Navigation bar allows for easy and intuitive website use

About Section

Raise awareness of the institutions involved and their importance

Logout and Save Session

Agents can come back and further investigate the transactions they have flagged

02

METHODOLOGY

SOLUTION OVERVIEW

AI METHODS

ANOMALY DETECTION

CLUSTERING & K-Means

By clustering similar customers, we can find outliers that from any other points, or use clusters for segmentation

ISOLATION FORESTS

A binary tree method that can be applied to each customer to find anomalies. The level of "contamination" is set by the user.

AUTO-ENCODERS

A neural network that encodes then decodes the input. Anomalies are points that are difficult to reconstruct.

Reinforcement Learning

RL Overview

- RL agents learn to assign risk scores based on historical data and predefined rules.
- The goal is to maximize the detection of fraudulent transactions while **minimizing false positives**.
- Agents continuously update their policies based on feedback (rewards) from the environment.

RL Rules – What makes a customer high risk?*

- Time-Based: Late-night/weekend transactions
- Frequency: High-frequency or sudden changes
- Geography: Non-Canada/USA or country mismatch
- **Amount**: Large transactions
- Industry: High industry risk scores (> 0.7)
- Statistical Features: Unusual average, maximum, or standard deviation of transaction amounts
- * For full list of rules, see Appendix

ENGINEERED FEATURES

Transaction Aggregates

Aggregated for each transaction type

Separate counts for credit and debit transactions

30-day and 7day rolling averages and sums

Time-Based

Days since account establishment

Days since the last transaction

Logtransformed active days for each transaction method

Risk Scores

Integrated risk scores based on KYC and industry codes

Incorporating customer data (e.g., employee count, sales volume)

Ratios

For all payment channels

Transaction count to active days, max to average transaction amounts

Atypical Activity

Identifying unusually high or low transaction amounts

Highlighting accounts with minimal transaction behavior

ANOMALY DETECTION - VARIABLE SELECTION

Iteration 1

Logical/Mathematical Approach Based on transaction counts, amounts, timing, ratios, and active days.

Iteration 2

Money Laundering Theory Focused on placement, layering, integration, and credit/debit ratios.

Iteration 3

Data-Driven/ Unconventional Insights Examines channel profiles, intensity versus duration, ratio-based metrics, extreme values, and low activity indicators.

03

RESULTS

You can enter a subtitle here if you need it

DETECTED ANOMALIES TO FEED INTO RL

2484

Companies identified

Algorithm	Common Anomalies	Iteration 1 - Unique Anomalies	Iteration 2 - Unique Anomalies	Iteration 3 - Unique Anomalies
Auto-encoder	160	129	89	280
Birch	269	285	175	794
K-means	270	251	242	762

Comparison	Embeddings As Inputs To Cluster	Regular Cluster Models
Common Anomalies	342	342
Unique Anomalies	896	1246

ANOMALIES BY INDUSTRY

TOP 5 INDUSTRIES BY SIZE

- 1. Other 285
- 2. Holding Companies 140
- 3. Management Consulting Services 118
- 4. General Freight Trucking Industry 93
- 5. Offices of Lawyers and Notaries 78

TOP 5 INDUSTRIES BY %

- 1. Drugs, Wholesale 45.4%
- 2. Sheet Metal and Built-Up Roofing 41.7%
- 3. Other Truck Transport Industries 39.1%
- 4. Jewellery Stores 36.8%
- 5. Disinfecting and Exterminating Services 31.2%

Chi-squared Test Results

Purpose: Test the association between anomaly status and industry codes.

Findings: Statistically significant association between anomaly status and industry codes (p < 0.05).

Interpretation: Anomalies are not evenly distributed across different industry sectors; there is a potential relationship between industry and the likelihood of anomalous behavior.

RL Result

Using the subset for **200** / 2484 customers detected by clustering method

Risk Flags

SYNCID0000008332 SYNCID0000004200 SYNCID0000009041 SYNCID0000003996 SYNCID0000008301 SYNCID0000014643 SYNCID0000014643 SYNCID0000014811 SYNCID0000011844 SYNCID0000011844	297 198 134 87 84 63 63 52 48 48	
SYNCID0000014637	15	
SYNCID0000007445	13	
SYNCID0000002597 SYNCID0000009755 etc	1 1	

Number of Risk Flags	Count
297	1
198	1
134	1
87	1
84	1
1	23

False Positive Rate

46 / 200 = 77%

estimated ML rate

15.3% * **8.5%** = **1.3%**

SPOTLIGHT: LIKELY FRAUD

04

CONCLUSIONS

You can enter a subtitle here if you need it

CONCLUSIONS

Diverse Anomaly Detection

K-Means, Birch, and Autoencoder algorithms to find unusual activities.

Catch All True Positives

Focus on finding all real money laundering cases.

Reduce False Positive

Reinforcement Learning helps us avoid wasting time on false alarms.

Unique Findings

Our method finds many unique cases of suspicious behavior.

Industry Matters

The type of industry can affect the chance of money laundering.

Complete Solution

A thorough and effective way to find and stop money laundering.

NEXT STEPS

Key Features of the Website

- **Case Management:** User-friendly interface for reviewers to view flagged cases, access relevant data, and make decisions.
- **Feedback Mechanisms:** Capture reviewer feedback through categorization, explanations, review time, and agreement metrics.
- Automated Reporting: Generate standardized reports for suspicious cases,

Rule Generation with RAG and LLM

- **Retrieval-Augmented Generation (RAG):** Extract relevant AML regulations and guidelines from websites and internal documents.
- Large Language Model (LLM): Generate new rules or refine existing ones based on retrieved information and human feedback.
- **RL Agent Integration:** Update the RL agent's knowledge base with the new or updated rules.

Thank You!

Appendix

RL Policy

ABM

- · Cash Indicator
- Debit/Credit ratio
- Transaction Amount & period
- Frequency of Transactions
- Duplicate
 Transactions
- Country Risk
- Industry Risk Scores
- Statistical Features

Card

- Merchant Category
- E-commerce Indicator
- Transaction Amount
- Country Mismatch
- Spending Pattern Changes
- Frequent Transactions
- Industry Risk Scores
- Statistical Features

Cheque

- Transaction Amount
- Weekend Transactions
- Frequency of Transactions
- Quick Succession
- Industry Risk Scores
- Statistical Features

EMT & EFT

- Transaction Amount
- Weekend / Late-Night Transactions
- Industry Risk Scores
- Statistical Features
- Frequency of Transactions

Cheque

- Transaction Amount
- Weekend Transactions
- Frequent Large Transfers
- Industry Risk Scores
- Statistical Features

CUSTOMERS TO INVESTIGATE

8%

15.3% 1.3%

IDENTIFIED BY **ANOMALY DETECTION**

The combined list of all outliers from multiple methods of clustering

IDENTIFIED BY EMBEDDINGS

Combination of clustering and embeddings

HIGHLIGHTED BY RL

Further investigation for human review