1	2	3	4	5	6	7	8	9	CALIF

APELLIDO Y NOMBRE:

Condición: Libre Regular

Algebra III - Final 16 de diciembre de 2022

Justificar todas las respuestas. No se permite el uso de dispositivos electrónicos. Todos los resultados teóricos utilizados deben ser enunciados apropiadamente; en caso de utilizar resultados teóricos no dados en clase, los mismos deben demostrarse. Para aprobar se debe tener como mínimo 15 pts. en la parte teórica y 30 pts. en la parte práctica.

Parte Teórica (30 pts.)

- 1. (14 pts) Enunciar y demostrar el Teorema de Cayley-Hamilton generalizado.
- 2. (12 pts) Diagonal más nilpotente, enunciar y probar.
- 3. Determinar si cada una de las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso la respuesta dada.
 - (a) (3 pts) Sea V un \mathbb{R} -espacio vectorial de dimensión $n \geq 2$, $\lambda \in \mathbb{R}$ y $T : V \to V$ una transformación lineal tal que $m_T = (x \lambda)^n$. Entonces existen exactamente n + 1 subespacios T-invariantes.
 - (b) (3 pts) Sea V espacio vectorial con producto interno. Toda transformación lineal en V tiene adjunto.
 - (c) (3 pts) Si $T:V\to V$ tiene un vector cíclico, entonces los únicos subespacios T-invariantes son 0 v V.

Parte Práctica (70 pts.)

5. (15 pts) Sea V el \mathbb{C} -espacio vectorial de los polinomios de grado ≤ 4 , y $T:V\to\mathbb{C}^{2\times 2}$ la transformación lineal dada por $T(p)=\begin{pmatrix} p(1) & p'(1) \\ p''(1) & p'''(1) \end{pmatrix}$.

Probar que T es un isomorfismo. Hallar los polinomios minimal y característico de T. Decidir si es diagonalizable y si existe un vector cíclico.

- 6. (15 pts) Sean \mathbbm{k} un cuerpo y $T: \mathbbm{k}^5 \to \mathbbm{k}^5$ una transformación lineal tal que $T^5 = \mathrm{id}$.
 - (a) Hallar todas las posibles formas de Jordan y racionales cuando $\mathbb{k} = \mathbb{R}$.
 - (b) Hacer lo mismo para $\mathbb{k} = \mathbb{C}$ y $\mathbb{k} = \mathbb{Z}_5$.
- 7. (15 pts) Sea V un \mathbb{R} -espacio vectorial con producto interno, $T:V\to V$. Probar que $\langle T(v),v\rangle=0$ para todo $v\in V$ si y sólo si $T^*=-T$ (en particular, T tiene adjunto).
- 8. Para cada $A \in \mathbb{R}^{n \times n}$, sea $\phi_A : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ la función definida por $\phi_A(B) = A^t B A$.
 - (a) (10 pts) Probar que ϕ_A es una transformación lineal.
 - (b) (10 pts) Si fijamos $\langle \cdot | \cdot \rangle$ el producto interno de $\mathbb{R}^{n \times n}$ dado por $\langle B | C \rangle = \operatorname{tr}(B^t C)$ para cada par $B, C \in \mathbb{R}^{n \times n}$, probar que $(\phi_A)^* = \phi_{A^t}$.
- 9. Sean V, W dos k-espacios vectoriales de dimensión finita, $\mathcal{L}(V, W)$ el espacio vectorial de todas las transformaciones lineales de V en W y $\{w_1, \dots, w_n\}$ una base de W.
 - (a) (5 pts) Dados $f_1, \dots, f_n \in V^*$, definimos $T_{f_1,\dots,f_n}: V \to W, T_{f_1,\dots,f_n}(v) = \sum_{i=1}^n f_i(v)w_i$. Probar que T_{f_1,\dots,f_n} es una transformación lineal.
 - (b) (10 pts) Sea $\Phi: \underbrace{V^* \times \cdots \times V^*}_n \to \mathcal{L}(V, W)$ la función dada por $\Phi(f_1, \cdots, f_n) = T_{f_1, \cdots, f_n}$. Probar que Φ es un isomorfismo.