期末考试 (2024 秋)

Problem 1

计算 A 的 Moore-Penrose 伪逆:

$$A=egin{bmatrix}1&2&3&4\5&6&7&8\end{bmatrix}$$

Solution:

注意到实矩阵 A 行满秩, 故其 Moore-Penrose 伪逆为:

$$A^{\dagger} = A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1}$$

$$= \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}^{\mathrm{T}} \begin{pmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}^{\mathrm{T}} \end{pmatrix}$$

$$= \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix} \begin{bmatrix} 30 & 70 \\ 70 & 174 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix} \cdot \frac{1}{30 \times 174 - 70 \times 70} \begin{bmatrix} 174 & -70 \\ -70 & 30 \end{bmatrix}$$

$$= \frac{1}{320} \begin{bmatrix} -176 & 80 \\ -72 & 40 \\ 32 & 0 \\ 136 & -40 \end{bmatrix}$$

Problem 2

设矩阵 $A(\tau)$ 的每个元素都关于 $\tau \in [0,1]$ 连续,试证明:

$$\left\| \int_0^1 A(\tau) \mathrm{d}\tau \right\|_{\mathrm{F}} \leq \int_0^1 \|A(\tau)\|_{\mathrm{F}} \; \mathrm{d}\tau$$

Proof:

定义泛函 $\langle \cdot, \cdot \rangle_F$ 为:

$$\langle A,B
angle_{\mathrm{F}}:=\mathrm{tr}\left(A^{\mathrm{H}}B
ight)\quad (orall\ A,B\in\mathbb{C}^{m imes n})$$

对于任意 $A,B,C\in\mathbb{C}^{m\times n}$ 和 $\alpha\in\mathbb{C}$

- ① 非负性: $\langle A,A \rangle_{\mathrm{F}}=\mathrm{tr}\left(A^{\mathrm{H}}A\right)=\sum_{i=1}^{m}\sum_{j=1}^{n}|a_{ij}|^{2}\geq0$
- ② 正定性: $\langle A,A \rangle_{\mathrm{F}} = 0$ 当且仅当 $A = 0_{m imes n}$
- ③ 线性性: $\langle A+B,C \rangle_{\mathrm{F}} = \mathrm{tr}\left((A+B)^{\mathrm{H}}C\right) = \mathrm{tr}\left(A^{\mathrm{H}}C\right) + \mathrm{tr}\left(B^{\mathrm{H}}C\right) = \langle A,C \rangle_{\mathrm{F}} + \langle B,C \rangle_{\mathrm{F}}$
- ④ 齐次性: $\langle \alpha A, B \rangle_{\mathrm{F}} = \alpha \langle A, B \rangle_{\mathrm{F}}$

• ⑤ 共轭对称性: $\overline{\langle A,B\rangle_{\mathrm{F}}}=\langle B,A\rangle_{\mathrm{F}}$

因此泛函 $\langle \cdot, \cdot \rangle_F$ 是一个内积 (称为 Frobenius 内积)于是我们有:

$$\begin{split} \left\| \int_0^1 A(\tau) \mathrm{d}\tau \right\|_\mathrm{F}^2 &= \left\langle \int_0^1 A(x) \mathrm{d}x, \int_0^1 A(y) \mathrm{d}y \right\rangle_\mathrm{F} \\ &= \int_0^1 \int_0^1 \langle A(x), A(y) \rangle_\mathrm{F} \, \mathrm{d}x \mathrm{d}y \quad \text{(use Cauchy-Schwarz inequality)} \\ &\leq \int_0^1 \int_0^1 \|A(x)\|_\mathrm{F} \|A(y)\|_\mathrm{F} \, \mathrm{d}x \mathrm{d}y \\ &= \left(\int_0^1 \|A(x)\|_\mathrm{F} \, \mathrm{d}x \right) \left(\int_0^1 \|A(y)\|_\mathrm{F} \, \mathrm{d}y \right) \\ &= \left(\int_0^1 \|A(\tau)\|_\mathrm{F} \, \mathrm{d}\tau \right)^2 \end{split}$$

因此 $\left\| \int_0^1 A(\tau) \mathrm{d} \tau \right\|_{\mathrm{F}} \leq \int_0^1 \|A(\tau)\|_{\mathrm{F}} \; \mathrm{d} \tau$

Problem 3

证明 $S_1:=\{A^2:A\in\mathbb{R}^{2 imes 2},\det{(A)}\leq 0\}$ 是 $S_2:=\{B\in\mathbb{R}^{2 imes 2}:\mathrm{tr}\,(B)\geq 0\}$ 的真子集

Proof:

 $A\in\mathbb{R}^{2 imes2}$ 的特征方程为 $\lambda^2-\operatorname{tr}(A)\lambda+\det(A)=0$ 若 $\det(A)\leq 0$,则判别式 $\Delta=\operatorname{tr}^2(A)-4\det(A)\geq 0$,说明 A 具有两个实特征值 $\lambda_1,\lambda_2\in\mathbb{R}$ 因此 $\operatorname{tr}\left(A^2\right)=\lambda_1^2+\lambda_2^2\geq 0$ 这说明 $S_1\subset S_2$

考虑以下示例:

$$A = egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}$$
 $B = A^2 = egin{bmatrix} 1 & 2 \ 0 & 1 \end{bmatrix}$

显然 $\det\left(A\right)=1>0$,故 $B=A^2\notin S_1$ 但 $\operatorname{tr}\left(B\right)=2\geq0$,表明 $B\in S_2$ 这说明 S_1 是 S_2 的真子集.

Problem 4

设 $M\in\mathbb{C}^{n imes n}$ 为 Hermite 正定阵. 若 $A\in\mathbb{C}^{n imes n}$ 满足 $AMA^{\mathrm{H}}=A^{\mathrm{H}}MA$,试证明 A 可合同对角化.

Proof:

由于 $M\in\mathbb{C}^{n\times n}$ 为 Hermite 正定阵,故 $M^{\frac{1}{2}}\in\mathbb{C}^{n\times n}$ 是定义良好的,且是 Hermite 正定阵. 注意到:

$$egin{split} (M^{rac{1}{2}}AM^{rac{1}{2}})(M^{rac{1}{2}}AM^{rac{1}{2}})^{
m H} &= M^{rac{1}{2}}(AMA^{
m H})M^{rac{1}{2}} \ &= M^{rac{1}{2}}(A^{
m H}MA)M^{rac{1}{2}} \ &= (M^{rac{1}{2}}AM^{rac{1}{2}})^{
m H}(M^{rac{1}{2}}AM^{rac{1}{2}}) \end{split}$$

这表明 $M^{\frac12}AM^{\frac12}$ 是正规矩阵,等价于存在谱分解 $M^{\frac12}AM^{\frac12}=U\Lambda U^{
m H}$ 其中 $U\in\mathbb{C}^{n imes n}$ 为酉矩阵, Λ 为对角阵.

因此我们有:

$$(M^{rac{1}{2}}U)^{
m H}A(M^{rac{1}{2}}U) = U^{
m H}(M^{rac{1}{2}}AM^{rac{1}{2}})U \ = U^{
m H}(U\Lambda U^{
m H})U \ = \Lambda$$

这表明 A 可合同对角化.

Problem 5

试求 $x_0 \in \mathbb{R}^n$ 在超平面 $\{x \in \mathbb{R}^n : w^{\mathrm{T}}x + b = 0\}$ 上的正交投影.

Solution:

根据超平面的定义可知 $w \neq 0_n$

考虑以下优化问题:

$$\min_{w^{\mathrm{T}}x+b=0} rac{1}{2} \|x_0 - x\|_2^2$$

定义 Lagrange 函数:

$$L(x,\lambda) := rac{1}{2} \|x_0 - x\|_2^2 + \lambda (w^{ ext{T}} x + b)$$

其关于 x 的梯度为:

$$abla_x L(x,\lambda) := (x_0 - x) + \lambda w$$

根据 KKT 必要条件可列出以下方程:

물:
$$egin{cases}
abla_x L(x,\lambda) = (x_0-x) + \lambda w = 0_n \ w^{ ext{T}}x + b = 0 \end{cases}$$

将 $x=x_0+\lambda w$ 代入 $w^{\mathrm{T}}x+b=0$ 就得到:

$$w^{\mathrm{T}}x + b = w^{\mathrm{T}}(x_0 + \lambda w) + b = w^{\mathrm{T}}x_0 + \lambda \|w\|_2^2 + b = 0$$

解得 $\lambda = -rac{w^{\mathrm{T}}x_0 + b}{\|w\|_2^2}$

于是我们有:

$$egin{aligned} x &= x_0 + \lambda w \ &= x_0 - rac{w^{\mathrm{T}} x_0 + b}{\|w\|_2^2} w \end{aligned}$$

这是优化问题的最优解,也即 x_0 在超平面 $\left\{x\in\mathbb{R}^n:w^{\mathrm{T}}x+b=0\right\}$ 上的正交投影.

Problem 6

试证明 $\det (\exp (A + B)) = \det (\exp (A)) \det (\exp (B))$

• Lemma 1: (reference) 若 AB = BA,则 $\exp{(A)} \exp{(B)} = \exp{(A+B)}$ 取 B = -A 可得 $\exp{(A)} \exp{(-A)} = \exp{(A-A)} = 0_{n \times n}$ 这说明 $(\exp{(A)})^{-1} = \exp{(-A)}$

• Lemma 2: (行列式的导数/Jacobi 公式)

可以证明对于足够小的 t 我们有 $\det{(A+tB)}=\det{(A)}+t\operatorname{tr}\left(\operatorname{adj}(A)B\right)+O(t^2)$ 成立. 换言之,对于 A(t) 我们有:

$$\frac{\mathrm{d}}{\mathrm{d}t}\det\left(A(t)\right) = \operatorname{tr}\left(\operatorname{adj}(A)\frac{\mathrm{d}}{\mathrm{d}t}A(t)\right) \quad (\text{note that } \operatorname{adj}(X) = \det\left(X\right)X^{-1}\right)$$

$$= \operatorname{tr}\left(\det\left(X\right)X^{-1}\frac{\mathrm{d}}{\mathrm{d}t}A(t)\right)$$

$$= \det\left(X\right)\operatorname{tr}\left(X^{-1}\frac{\mathrm{d}}{\mathrm{d}t}A(t)\right)$$

• Lemma 3: $\det (\exp (A)) = \exp (\operatorname{tr} (A)) \underline{(reference)}$ 定义关于参数 t 的函数 $f(t) := \det (\exp (tA))$, 并对 t 求导:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}f(t) &= \frac{\mathrm{d}}{\mathrm{d}t}\{\det\left(\exp\left(tA\right)\right)\} \quad \text{(utilize Lemma 1)} \\ &= \det\left(\exp\left(tA\right)\right) \cdot \operatorname{tr}\left(\left(\exp\left(tA\right)\right)^{-1}\frac{\mathrm{d}}{\mathrm{d}t}\exp\left(tA\right)\right) \quad \text{(note that } \frac{\mathrm{d}}{\mathrm{d}t}\exp\left(tA\right) = \exp\left(tA\right) \odot A\right) \\ &= \det\left(\exp\left(tA\right)\right) \cdot \operatorname{tr}\left(\left(\exp\left(tA\right)\right)^{-1} \cdot \exp\left(tA\right) \odot A\right) \\ &= \det\left(\exp\left(tA\right)\right) \cdot \operatorname{tr}\left(A\right) \\ &= f(t)\operatorname{tr}\left(A\right) \end{split}$$

于是我们得到了常微分方程 $\frac{d}{dt}f(t) = f(t)\operatorname{tr}(A)$

其解为 $f(t) = C \exp(\operatorname{tr}(A)t)$

根据 f(0) = 1 可知常数 C = 1

因此我们有 $\det (\exp (tA)) = f(t) = \exp (\operatorname{tr} (A)t)$

取 t = 1 即有 det(exp(A)) = exp(tr(A))

Proof:

$$\det (\exp (A + B)) = \exp (\operatorname{tr} (A + B))$$

$$= \exp (\operatorname{tr} (A) \operatorname{tr} (B))$$

$$= \exp (\operatorname{tr} (A)) \exp (\operatorname{tr} (B))$$

$$= \det (\exp (A)) \det (\exp (B))$$

Problem 7

设 $A \in \mathbb{R}^{n imes n}$ 为非负矩阵. 试证明 $ho(A) \leq
ho(rac{1}{2}(A+A^{\mathrm{T}}))$

- (一般非负矩阵的 Perron 定理, Matrix Analysis 定理 8.3.1) 若 $A \in \mathbb{R}^{n \times n}$ 是非负矩阵,则 $\rho(A)$ 是 A 的一个特征值 (称为 Perron 根),且存在一个非负的非零向量 $x \in \mathbb{R}^n$ 使得 $Ax = \rho(A)x$
- (Rayleigh 商定理, Matrix Analysis 定理 4.2.2) 设 $A \in \mathbb{C}^{n \times n}$ 是 Hermite 阵,特征值按非减的次序排列: $\lambda_{\min} = \lambda_1(A) \leq \cdots \leq \lambda_n(A) = \lambda_{\max}$ 给定整数 $1 \leq i_1 < \cdots < i_m \leq n$,设 x_{i_1}, \ldots, x_{i_m} 是标准正交的,且 $Ax_{i_k} = x_{i_k}\lambda_{i_k}$ $(k = 1, \ldots, m)$ 记 $S := \operatorname{span}\{x_{i_1}, \ldots, x_{i_m}\}$,则我们有:

$$egin{aligned} \lambda_{i_1} &= \min_{0_n
eq x \in S} rac{x^{ ext{H}} A x}{x^{ ext{H}} x} \ &= \min_{\{x \mid x \in S ext{ such that } \|x\|_2 = 1\}} x^{ ext{H}} A x \ &\leq \max_{\{x \mid x \in S ext{ such that } \|x\|_2 = 1\}} x^{ ext{H}} A x \ &= \max_{0_n
eq x \in S} rac{x^{ ext{H}} A x}{x^{ ext{H}} x} \ &= \lambda_{i_m} \end{aligned}$$

对于任意满足 $\|x\|_2=1$ 的 $x\in S$ 都有 $\lambda_{i_1}\leq x^{\mathrm{H}}Ax\leq \lambda_{i_m}$ 成立. 左侧和右侧的不等号的取等条件分别为 $Ax=x\lambda_{i_1}$ 和 $Ax=x\lambda_{i_m}$

特殊地,对于任意满足 $\|x\|_2=1$ 的 $x\in\mathbb{C}^n$ 都有 $\lambda_{\min}\leq x^{\mathrm{H}}Ax\leq\lambda_{\max}$ 成立. 左侧和右侧的不等号的取等条件分别为 $Ax=x\lambda_{\min}$ 和 $Ax=x\lambda_{\max}$ (它可以根据 A 的谱分解直接证明,原理与一般情况的证明是一致的)

几何解释:

连续实值函数 $f(x)=x^{\mathrm{H}}Ax$ 在单位球面 $\{x\in\mathbb{C}^n:\|x\|_2=1\}$ (这是个紧集) 上的最大值为 λ_{\max} , 最小值为 λ_{\min}

Proof:

根据非负矩阵的 Perron 定理可知 ho(A) 是 A 的一个特征值 (即 Perron 根),且存在一个非负的非零向量 $x_0\in\mathbb{R}^n$ 使得 $Ax_0=
ho(A)x_0$. 根据 Rayleigh 商定理可知:

$$egin{split}
ho\left(rac{1}{2}(A+A^{\mathrm{T}})
ight) &\geq rac{x_{0}^{\mathrm{T}}\left(rac{1}{2}(A+A^{\mathrm{T}})
ight)x_{0}}{x_{0}^{\mathrm{T}}x_{0}} \ &= rac{1}{2} \cdot rac{x_{0}^{\mathrm{T}}Ax_{0} + x_{0}^{\mathrm{T}}A^{\mathrm{T}}x_{0}}{x_{0}^{\mathrm{T}}x_{0}} \quad ext{(note that } Ax_{0} =
ho(A)x_{0}) \ &= rac{1}{2} \cdot rac{
ho(A)x_{0}^{\mathrm{T}}x_{0} +
ho(A)x_{0}^{\mathrm{T}}x_{0}}{x_{0}^{\mathrm{T}}x_{0}} \ &=
ho(A) \end{split}$$

Problem 8

设 $A \in \mathbb{C}^{n \times n}$ 是 Hermite 正定阵. 试求:

$$\min_{V \in \mathbb{C}^{n imes k}: V^{\mathrm{H}}V = I_{k}} \det \left(V^{\mathrm{H}}AV
ight)$$

• (Cauchy 交错定理, Matrix Analysis 定理 4.3.17) 给定 Hermite 阵 $A \in \mathbb{C}^{n \times n}$,特征值按非减的次序排列: $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ 考虑 A 的 n-1 主子阵 $B = A_{(1:n-1,1:n-1)} \in \mathbb{C}^{(n-1) \times (n-1)}$,并记 $A = \begin{bmatrix} B & y \\ y^{\mathrm{H}} & a \end{bmatrix}$ 特征值按非减的次序排列: $\lambda_1(B) \leq \cdots \leq \lambda_{n-1}(B)$

则我们有如下的交错性质:

$$\lambda_1(A) \le \lambda_1(B) \le \lambda_2(A) \le \dots \le \lambda_{n-1}(A) \le \lambda_{n-1}(B) \le \lambda_n(A)$$
 \Leftrightarrow
 $\lambda_i(A) < \lambda_i(B) < \lambda_{i+1}(A) \quad (\forall i = 1, \dots, n-1)$

其中
$$\lambda_i(A)=\lambda_i(B)$$
 成立当且仅当存在非零向量 $z\in\mathbb{C}^{n-1}$ 使得
$$\begin{cases} Bz=z\lambda_i(B)\\ Bz=z\lambda_i(A)\\ y^{\mathrm{H}}z=0\\ Bz=z\lambda_i(B)\\ Bz=z\lambda_i(B)\\ Bz=z\lambda_i(B)\\ y^{\mathrm{H}}z=0\\ Bz=z\lambda_{i+1}(A)\\ y^{\mathrm{H}}z=0 \end{cases}$$

若 B 没有与 y 正交的特征向量,则上述不等式均为严格不等式.

上述定理表明:

Hermite 阵无论是加边扩充还是删边约简,其新旧特征值必定是交错的.

当然,加边扩充和删边约简不一定要在最后一行和最后一列进行,它可以在一行和对应的列进行.

归纳法指出:

考虑 Hermite 阵 A 的 n-m 主子阵 $B=A_{(1:n-m,1:n-m)}\in\mathbb{C}^{(n-m)\times(n-m)}$ 特征值按非减的次序排列: $\lambda_1(B) \leq \cdots \leq \lambda_{n-m}(B)$

并记
$$A=egin{bmatrix} B & C \\ C^{\mathrm{H}} & D \end{bmatrix}$$
 (其中 $C\in\mathbb{C}^{(n-m)\times m}, D\in\mathbb{C}^{m\times m}$)

则我们有如下的交错性质:

$$\lambda_i(A) \leq \lambda_i(B) \leq \lambda_{i+m}(A) \quad (orall \ i=1,\ldots,n-m)$$

其中
$$\lambda_i(A)=\lambda_i(B)$$
 成立当且仅当存在非零向量 $z\in\mathbb{C}^{n-m}$ 使得
$$\begin{cases} Bz=z\lambda_i(B)\\ Bz=z\lambda_i(A)\\ C^{\mathrm{H}}z=0_m\\ Bz=z\lambda_i(B) \end{cases}$$
 而 $\lambda_i(B)=\lambda_{i+m}(A)$ 成立当且仅当存在非零向量 $z\in\mathbb{C}^{n-m}$ 使得
$$\begin{cases} Bz=z\lambda_i(B)\\ Bz=z\lambda_i(B)\\ Bz=z\lambda_i(B)\\ Bz=z\lambda_{i+m}(A)\\ C^{\mathrm{H}}z=0 \end{cases}$$
 节 是公有是 C 的知识是我正式的特征中最一即 是法工作式的 为要核工作式

若B没有与C的列向量组正交的特征向量,则上述不等式均为严格不等式

Solution:

设 $A \in \mathbb{C}^{n \times n}$ 是Hermite正定阵,1 < k < n

设 $u_1,\ldots,u_n\in\mathbb{C}^n$ 标准正交

$$i \exists U - [u_1, u_1] \in \mathbb{C}^{n \times n} \text{ for } V - [u_1, u_2] \in \mathbb{C}^{n \times k}$$

记
$$U=[u_1,\ldots,u_n]\in\mathbb{C}^{n imes n}$$
 和 $V=[u_1,\ldots,u_k]\in\mathbb{C}^{n imes k}$ 记 $B:=V^{\mathrm{H}}AV=[u_i^{\mathrm{H}}Au_j]_{i,j=1}^k\in\mathbb{C}^{k imes k}$ (它就是 $U^{\mathrm{H}}AU$ 的 k 阶顺序主子阵)

注意到 $U^{H}AU$ 的特征值与 A 的特征值完全相同.

设 A,B 的特征值以非减次序排列,则根据 Cauchy 交错定理我们有:

$$0 < \lambda_i(A) \le \lambda_i(B) = \lambda_i(V^{\mathrm{H}}AV) \le \lambda_{i+(n-k)}(A) \quad (\forall \ i = 1, \dots, k)$$

这也说明对于任意列标准正交的 $V\in\mathbb{C}^{n imes k}$ 我们都有:

$$0 < \prod_{i=1}^k \lambda_i(A) \leq \prod_{i=1}^k \lambda_i(V^{\mathrm{H}}AV) = \det\left(V^{\mathrm{H}}AV
ight) \leq \prod_{i=1}^k \lambda_{n-k+i}(A)$$

注意到左右不等号均可取等,于是我们顺理成章地得到:

$$egin{aligned} \min_{V \in \mathbb{C}^{n imes k}: V^{ ext{H}}V = I_k} \det \left(V^{ ext{H}}AV
ight) &= \prod_{i=1}^k \lambda_i(A) \ \max_{V \in \mathbb{C}^{n imes k}: V^{ ext{H}}V = I_k} \det \left(V^{ ext{H}}AV
ight) &= \prod_{i=1}^k \lambda_{n-k+i}(A) \end{aligned}$$

The End