A Fresh Look at Teaching Trigonometry

23rd Annual CMC³-South Conference Doubletree Hotel Anaheim March 1, 2008

> Kathy Yoshiwara Bruce Yoshiwara Los Angeles Pierce College

Why is trig so hard?

- Trigonometry inherently involves a great deal of technical detail, which can be allowed to obscure the main ideas.
- Trigonometry is often taught with the analytical rigor appropriate to a precalculus course, before students have acquired the necessary facility with functions.

What Are the Important Ideas?

- Triangles and trigonometric ratios
- Trigonometric functions of angles
- Radians
- Graphs of trigonometric functions
- · Solving trigonometric equations
- · Using trigonometric identities

No wonder the students can't see the forest for the trees!

"Before we get started..."

An introductory chapter often includes some or all of

- coterminal and reference angles, minutes and seconds, radians, arc length, angular velocity,
- domain and range,
- symmetry, transformations, composition, inverse functions

Blocks for Students?

- ratio and proportion
- irrational numbers: exact values vs approximations
- fractional multiples of $\boldsymbol{\pi}$
- · function notation
- connection between graphs and equations

What Are Some Stumbling

Fundamental Strategies

- Begin with concrete ideas before introducing abstractions.
- · Keep the calculations simple.
- Introduce ideas by level of complexity, not by topic
- Return to each skill several times in different contexts.

Effective Mathematics Teaching: What does the Research Say?

James Hiebert
University of Delaware
October 2, 2007
presentation at
California State University Northridge

Guiding Principles

- Teaching matters.
- Effective teaching depends on a few key features.

Features of Effective Teaching

•Make conceptual relationships clear.

Attend explicitly to connections between ideas.

•Allow students to wrestle with ideas.

Avoid reducing conceptual problems to procedural problems.

Example: Transforming a Problem From Making Connections ⇒ Using Procedures

- Problem: Find a pattern for the sum of the interior angles of polygons
- Worked on as Making Connections
- Measure the sum of the angles for 3-, 4-, and 5-sided polygons; predict for 6-sided polygons; for n-sided polygons; develop a general formula
- Worked on as Using Procedures
- Present formula [Sum = 180(n 2)] and ask students to practice

Resources

- Complete TIMSS Video report plus video clips http://nces.ed.gov/timss/Video.asp
- Public release videos http://lessonlab.com/bkstore/
- Slides available at http://www.udel.edu/soe/mathed/

Important Ideas (again)

- Triangles and trigonometric ratios
- Trigonometric functions of angles
- Radians
- Graphs of trigonometric functions
- Solving trigonometric equations
- Using trigonometric identities

Trigonometric ratios

To start the course:

- Begin with properties of triangles.
- Define sine, cosine, and tangent as ratios of sides of right triangles.
- Consider only three trig ratios and only one quadrant.

Trigonometric Functions of Angles

- Begin with obtuse angles and laws of sines and cosines.
- Introduce standard position and reference angles.
- Graph trigonometric functions of degrees.

Radians

- Motivate radian measure by arclength.
- Discuss radians in both decimal form and as multiples of π .
- Connect graphs of sine and cosine with the unit circle.

Thank you!

www.piercecollege.edu/faculty/yoshibw/Talks/

yoshiwka@piercecollege.edu

yoshiwbw@piercecollege.edu

Identities

- Begin with the Pythagorean and tangent identities only.
- Increase the algebraic complexity gradually.
 Emphasize using identities rather than proving them.

Graphing

- Graph trig functions in degrees before considering radians.
- Emphasize finding an equation for a given graph.
- Use graphs for solving equations and verifying identities.