CHAPTER 2 随机变量

ZEYU XIE¹

[1]

1. 随机变量

Definition 1 (随机变量). 设 (Ω, \mathcal{F}, P) 为概率空间, $\xi = \xi(\omega): \Omega \to \mathbb{R}$, 若

(1)
$$\{\omega : \xi(\omega) < x\} \in \mathcal{F}, \quad \forall x \in \mathbb{R}$$

则称 ξ 为随机变量

注: $\xi(\omega)$ 可简写为 ξ , $\xi(\omega) < x$ 可简写为 $\xi < x$ 随机变量的逆变换有如下性质

Proposition 1. 设 ξ 为随机变量, 其逆变换为 ξ^{-1} , 则

- (a) $\xi^{-1}(\mathbb{R}) = \Omega$
- (b) $\forall B \subseteq C \Rightarrow \xi^{-1}(B) \subseteq \xi^{-1}(C)$
- (c) $\xi^{-1}(\overline{B}) = \overline{\xi^{-1}(B)}$
- (d) ξ 的 Borel 函数仍为随机变量

Proposition 2 (随机变量的结构). (a) (Ω, \mathcal{F}, P) 中 $E \in F$ 的示性函数 $\mathcal{V}_E(\omega)$ 为 随机变量

(b) 设 (Ω, \mathcal{F}, P) 为 $R.V. \Leftrightarrow \exists$ 简单随机变量列 $\{\xi_n\}_{n\geq 1}$ s.t. $\lim_{n\to\infty} \xi_n(\omega) = \xi(\omega), \forall \omega \in \Omega$ (此处极限为逐点收敛)

2. 随机分布(分布)

Definition 2 (分布). (Ω, \mathcal{F}, P) 为概率空间, $\mathbb{F}(B) = P\{\xi^{-1}(B)\} = P\{\xi \in B\}, \forall B \in \mathcal{B}, \ \mathbb{F}$ 为一个概率测度, 称作 ξ 的概率分布

 \mathbb{F} 刻画了 ξ 的分布规律

Definition 3 (相空间). $(\mathbb{R},\mathcal{B},\mathbb{F})$ 为 ξ 的相空间, \mathbb{F} 与 ξ 有关

Definition 4 (分布函数). $F(x) = \mathbb{F}((-\infty, x]) = P\{\xi \leq x\}, \forall x \in \mathbb{R}, \ \% \ F(x) \ 为 \ \xi$ 的分布函数

E-mail address: xie.zeyu20@gmail.com.

Date: 2024 年 4 月 7 日.

¹ Department of Mathematics, Tsinghua University, Beijing, China.

分布函数具有以下性质

Proposition 3. (a) F(x) 单调不减,即 $x_1 \leq x_2 \Rightarrow F(x_1) \leq F(x_2)$

$$(b)$$
 $F(x)$ 左连续,即 $x_0 \in \mathbb{R} \Rightarrow \lim_{x \to x_0^-} F(x) = F(x_0)$

(c)
$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0, F(+\infty) = \lim_{x \to +\infty} F(x) = 1$$

Definition 5 (离散型). (Ω, \mathcal{F}, P) 为概率空间, ξ 为随机变量,若 $\exists \{x_k\}, \{p_k\}$ 使得

(2)
$$p_k \ge 0, \sum_k p_k = 1, P\{\xi = x_k\} = p_k, \forall k$$

则称 & 为离散型随机变量, 其密度阵

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ p_1 & p_2 & \cdots & p_n \end{pmatrix}$$

Definition 6 (连续型). (Ω, \mathcal{F}, P) 为概率空间, ξ 为随机变量, 若 $\exists p(x)$ 使得

(4)
$$p(x) \ge 0, \int_{-\infty}^{+\infty} p(x)dx = 1, P\{\xi = a\} = 0, \forall a$$

则称 ξ 为连续型随机变量, 其密度函数为 p(x)

不管是什么类型的随机变量, 我们都有

Proposition 4 (Lebesgue 分解). 任意分布函数 F(x) 可分解为

(5)
$$F(x) = c_1 F_1(x) + c_2 F_2(x) + c_3 F_3(x)$$

其中 $F_1(x)$ 为纯条约分布函数, $F_2(x)$ 为连续型分布函数, $F_3(x)$ 为奇异分布函数

3.1. 二项分布. $\xi \sim B(n, p)$

Definition 7 (二项分布). 设 n 次独立重复试验,每次试验成功的概率为 p,失败的概率为 1-p,则 ξ 为成功次数, $\xi \sim B(n,p)$

Proposition 5 (二项分布的分布函数).

(6)
$$P\{\xi = k\} = \binom{n}{k} p^k (1-p)^{n-k}$$

3.2. **几何分布.** $\xi \sim G(p)$

Definition 8 (几何分布). 设独立重复试验,每次试验成功的概率为p,失败的概率为1-p,则 ξ 为第一次成功所需的试验次数, $\xi \sim G(p)$

Proposition 6 (几何分布的分布函数).

(7)
$$P\{\xi = k\} = (1-p)^{k-1}p$$

3.3. Pascal 分布. $\xi \sim P(n, p)$

Definition 9 (Pascal 分布). 设独立重复试验,每次试验成功的概率为p,失败的概率为1-p,则 ξ 为第n次成功所需的试验次数, $\xi \sim P(n,p)$

Proposition 7 (Pascal 分布的分布函数).

(8)
$$P\{\xi = k\} = {\binom{k-1}{n-1}} p^n (1-p)^{k-n}$$

3.4. Poisson 分布. $\xi \sim P(\lambda)$

Definition 10 (Poisson 分布). 设独立重复试验,每次试验成功的概率为 λ/n ,失败的概率为 $1-\lambda/n$,则 ξ 为成功次数, $\xi \sim P(\lambda)$

Proposition 8 (Poisson 分布的分布函数).

(9)
$$P\{\xi = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$$

3.5. 正态分布. $\xi \sim N(\mu, \sigma^2)$

Definition 11 (正态分布). 设 ξ 服从正态分布 $N(\mu, \sigma^2)$, 则其密度函数为

(10)
$$p(\xi) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\xi-\mu)^2}{2\sigma^2}}$$

Proposition 9 (正态分布的分布函数).

(11)
$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

3.6. Gamma 分布. $\xi \sim \Gamma(\alpha, \beta)$

Definition 12 (Gamma 分布). 设 ξ 服从 Gamma 分布 $\Gamma(\alpha, \beta)$, 则其密度函数为

(12)
$$p(\xi) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \xi^{\alpha - 1} e^{-\beta \xi}$$

Proposition 10 (Gamma 分布的分布函数).

(13)
$$F(x) = \frac{1}{\Gamma(\alpha)} \int_0^x \beta^{\alpha} t^{\alpha - 1} e^{-\beta t} dt$$

3.7. **指数分布.** $\xi \sim E(\lambda)$

Definition 13 (指数分布). 设 ξ 服从指数分布 $E(\lambda)$,则其密度函数为

(14)
$$p(\xi) = \lambda e^{-\lambda \xi}$$

Proposition 11 (指数分布的分布函数).

(15)
$$F(x) = \int_0^x \lambda e^{-\lambda t} dt$$

References

[1] 杨振明. 概率论(第二版). 北京: 科学出版社, 2007.