ЗАНЯТИЕ 5.

5. НЕПРЕРЫВНОСТЬ ФУНКЦИЙ. ТОЧКИ РАЗРЫВА 5.1 Непрерывность функции в точке

Определение 5.1.1. Пусть функция y = f(x) определена в точке x_0 и некоторой её окрестности. Функция y = f(x) называется непрерывной в точке x_0 , если:

- 1. существует $\lim_{x \to x_0} f(x)$;
- 2. этот предел равен значению функции в точке x_0 : $\lim_{x \to x_0} f(x) = f(x_0)$.

При определении предела подчёркивалось, что f(x) может быть не определена в точке x_0 , а если она определена в этой точке, то значение $f(x_0)$ никак не участвует в определении предела. При определении непрерывности принципиально, что $f(x_0)$ существует, и это значение должно быть равно $\lim_{x \to x_0} f(x)$.

Определение 5.1.2. Пусть функция y = f(x) определена в точке x_0 и некоторой её окрестности. Функция f(x) называется непрерывной в точке x_0 , если для $\forall \varepsilon > 0$ существует положительное число δ , такое что для всех x из δ – окрестности точки x_0 (т.е. $|x-x_0| < \delta$) выполняется неравенство

$$|f(x)-f(x_0)|<\varepsilon$$
.

Здесь учитывается, что значение предела должно быть равно $f(x_0)$, поэтому, по сравнению с определением предела, снято условие проколотости δ – окрестности $0 < |x - x_0|$.

Дадим ещё одно (равносильное предыдущим) определение в терминах приращений. Обозначим $\Delta x = x - x_0$, эту величину будем называть приращением аргумента. Так как $x \to x_0$, то $\Delta x \to 0$, т.е. $\Delta x - 6$.м. (бесконечно малая) величина. Обозначим $\Delta y = f(x) - f(x_0)$, эту величину будем называть приращением функции, так как $|\Delta y|$ должно быть (при достаточно малых $|\Delta x|$) меньше произвольного числа $\varepsilon > 0$, то $\Delta y -$ тоже б.м. величина, поэтому

Определение 5.1.3. Пусть функция y = f(x) определена в точке x_0 и некоторой её окрестности. Функция f(x) называется непрерывной в точке x_0 ,

если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Ещё одно равносильное определение на языке последовательностей:

Определение 5.1.4. Функция f(x) называется непрерывной в точке x_0 , если для любой последовательности $\{x_n\}$ точек области определения, сходящейся к x_0 , последовательность соответствующих значений функции $\{f(x_n)\}$ сходится к $f(x_0)$: $\lim_{n\to\infty} f(x_n) = f\left(\lim_{n\to\infty} x_n\right) = f(x_0)$.

Определение 5.1.5. Функция f(x) не являющаяся непрерывной в точке x_0 , называется разрывной в этой точке.

Определение 5.1.6. Функция f(x) называется непрерывной на множестве X, если она непрерывна в каждой точке этого множества.

5.2. Основные теоремы о непрерывных функциях

Теорема 5.2.1. (О непрерывности суммы, произведения, частного). Пусть функции f(x) и g(x) непрерывны в точке x_0 . Тогда в этой точке непрерывны функции $f(x) \pm g(x)$, $f(x) \cdot g(x)$, $\frac{f(x)}{g(x)}$ (частное - в случае, когда $g(x_0) \neq 0$).

Теорема 5.2.2. (О переходе к пределу под знаком непрерывной функции). Пусть функция $x = \varphi(t)$ определена в некоторой окрестности точки t_0 и имеет $\lim_{t \to t_0} \varphi(t)$, равный x_0 . Пусть точка $x_0 = \varphi(t_0)$ принадлежит области определения функции y = f(x), и f(x) непрерывна в точке x_0 .

Тогда существует
$$\lim_{t \to t_0} f(\varphi(t))$$
, и $\lim_{t \to t_0} f(\varphi(t)) = f\left(\lim_{t \to t_0} \varphi(t)\right) = f(x_0)$.

Теорема 5.2.3. (О непрерывности суперпозиции непрерывных функций). Пусть функция $x = \varphi(t)$ непрерывна в точке t_0 . Пусть точка $x_0 = \varphi(t_0)$ принадлежит области определения функции $y = f\left(x\right)$ и $f\left(x\right)$ непрерывна в точке x_0 . Тогда сложная функция $y = f\left(\varphi(t)\right)$ непрерывна в точке t_0 .

5.3. Односторонняя непрерывность

Определение 5.3.1. Функция f(x) называется непрерывной в точке x_0 слева,

если $\exists f(x_0 - 0) = \lim_{x \to x_0 - 0} f(x) = f(x_0).$

Определение 5.3.2. Функция f(x) называется непрерывной в точке x_0 справа, если $\exists f(x_0+0) = \lim_{x\to x_0+0} f(x) = f(x_0)$.

Определение 5.3.3. Если одно из этих условий не выполнено, то функция f(x) имеет в точке x_0 разрыв, соответственно, слева или справа.

Если функция определена на отрезке [a,b], то в левом конце отрезка $x_0 = a$ можно говорить только о непрерывности справа, в правом конце $(x_0 = b)$ — о непрерывности слева. Для внутренней точки отрезка функция f(x) непрерывна в точке x_0 тогда и только тогда, когда она непрерывна в этой точке слева и справа (доказать самостоятельно).

5.4. Непрерывность и разрывы монотонной функции.

Свойства функций, непрерывных на отрезке

Теорема 5.4.1. Пусть функция f(x) определена на отрезке [a,b] и монотонна на этом отрезке. Тогда f(x) может иметь на этом отрезке только точки разрыва первого рода.

Следствие 1. Если множество значений монотонно возрастающей на отрезке [a,b] функции f(x) полностью заполняет отрезок [f(a),f(b)] (т.е. для $\forall y \in [f(a),f(b)]$ $\exists x \in [a,b]$ такой, что f(x)=y), то эта функция непрерывна, легко доказать теперь от противного. Если в точке x_0 имеется скачок, то f(x) не может принимать значений, попадающих в интервал $(f(x_0-0),f(x_0))$.

Теорема 5.4.2. (**Об обращении функции в нуль**). Если функция f(x) непрерывна на отрезке [a,b] и принимает на концах этого отрезка значения **разных** знаков, то найдётся точка $c \in [a,b]$, в которой функция обращается в нуль: f(c) = 0, a < c < b.

Теорема 5.4.3. (**О промежуточном значении**). Если функция f(x) непрерывна на отрезке, и в двух точках a и b(a < b) принимает **неравные** значения $A = f(a) \neq B = f(b)$, то для любого числа C, лежащего между A и B, найдётся точка $c \in [a,b]$, в которой значение функции равно $C \colon f(c) = C$

Теорема 5.4.4. (Об ограниченности непрерывной функции на отрезке). Если функция f(x) непрерывна на отрезке, то она ограничена на этом отрезке.

Теорема 5.4.5. (О достижении минимального и максимального значений). Если функция f(x) непрерывна на отрезке, то она достигает на этом отрезке свои нижнюю и верхнюю грани.

Следствие 2. Из предыдущих теорем следует: множество значений непрерывной на отрезке [a,b] функции заполняет весь отрезок [m,M], где $M = \sup_{[a,b]} \{f(x)\} = \max_{[a,b]} \{f(x)\}$, а $m = \inf_{[a,b]} \{f(x)\} = \min_{[a,b]} \{f(x)\}$.

Теорема 5.4.6. (О непрерывности обратной функции). Пусть функция y = f(x) непрерывна и строго возрастает (убывает) на отрезке [a,b]. Тогда на отрезке [m,M] существует обратная функция x = g(y), также монотонно возрастающая (убывающая) на [m,M] и непрерывная.

5.5. Решение некоторых типовых задач, рассматриваемых в аудитории

5.5.1. Исследовать на непрерывность функцию
$$f(x) = \begin{cases} x^2, & 0 \le x \le 1, \\ 2 - x^2, & 1 < x \le 2. \end{cases}$$

Решение. Функция непрерывна при $0 \le x < 1$ и при $1 < x \le 2$, а так как f(1-0) = f(1+0) = f(0) = 1, то функция непрерывна и при $x = 1 \Rightarrow$ Функция непрерывна на всей числовой оси.

5.5.2. Построить пример функции, определенной для всех значений x и непрерывной только при x = 0.

Решение. Функция $f(x) = \begin{cases} x, & \text{если } x - \text{рационально}, \\ -x, & \text{если } x - \text{иррационально} \end{cases}$

будет непрерывна при x = 0 и разрывна во всех остальных точках, т.к. f(0) = 0, $\lim_{x \to 0} f(x) = 0$, следовательно функция непрерывна при x = 0.

Пусть $x=x_0$ – любое рациональное число. Тогда $\lim_{x\to x_0} f(x)=x_0$, если x стремясь к x_0 принимает рациональные значения, и $\lim_{x\to x_0} f(x)=-x_0$, если x стремясь к x_0 принимает иррациональные значения. Но т.к. $x_0\neq -x_0$, то функция разрывна в точке x_0

.

функция $f(x) = \begin{cases} x, & \text{если } x - \text{рационально}, \\ -x, & \text{если } x - \text{иррационально} \end{cases}$ непрерывна только при x = 0.

5.5.3. При каком значении числа a функция $f(x) = \begin{cases} e^x, & x < 0, \\ a + x, & x \ge 0 \end{cases}$

будет непрерывной?

Решение. Очевидно, что функция f(x) непрерывна при x < 0 и при x > 0, а так как f(+0)=1, f(-0)=a, f(0)=a, то функция f(x) будет непрерывной и в точке x=0, если a=1.

5.5.4. Исследовать на непрерывность функцию

$$f(x) = \begin{cases} 0, 2 \cdot (2x^2 + 3), & -\infty < x \le 1, \\ 6 - 5x, & 1 < x < 3 \\ x - 3, & 3 \le x < \infty \end{cases}$$

Решение. На интервалах $(-\infty,1)$, (1,3) и $(3,\infty)$ функция непрерывна. Поэтому разрывы возможны только в точках x = 1и x = 3, в которых изменяется аналитическое задание функции. В x=1 $f\left(1-0\right) = \lim_{x \to 1-0} \frac{1}{5} \left(2x^2 + 3\right) = 1, \ f\left(1+0\right) = \lim_{x \to 1+0} \left(6-5x\right) = 1, \ \text{поэтому в точке} \ \ x = 0$ функция непрерывна. Рассмотрим точку x=3: $f(3-0)=\lim_{x\to 3-0}(6-5x)=-9$ и $f(3+0) = \lim_{x\to 3+0} (x-3) = 0$, поэтому в точке x=3 функция терпит разрыв первого рода (односторонние пределы в точке x = 3 конечны, но не равны между собой). Скачок функции В точке разрыва равен f(3+0)-f(3-0)=0-(-9)=9.

5.5.5. Исследовать на непрерывность функцию $f(x) = \begin{cases} 4 \cdot 3^x, & x < 0, \\ 2a + x, & x \ge 0 \end{cases}$ Решение. Так как f(-0) = 4, а f(+0) = 2a, то равенство f(-0) = f(+0) = f(0) будет выполнено, если положить 2a = 4, т.е. a = 2.

5.5.6. При каком значении числа a функция $f(x) = \begin{cases} x+a, & x \ge 5, \\ x^2 - 3x, & x < 5 \end{cases}$

будет непрерывной?

Решение. Областью определения функции является все множество действительных чисел, причем по обе стороны точки x = 5 функция является

элементарной, то есть непрерывной. Для обеспечения непрерывности в точке x = 5 поставим условие $5 + a = 25 - 15 \Rightarrow a = 5$.

5.5.1. Каким числом можно доопределить функцию $f(x) = \frac{\sin 3x}{x}$ при x = 0, чтобы она стала непрерывной в этой точке?

Решение. Найдем предел данной функции в точке x = 0: $\lim_{x\to 0} \frac{\sin 3x}{x} = 3 \Rightarrow$ если принять f(0) = 3, функция станет непрерывной точке x = 0.

5.5.8. Каким числом можно доопределить функцию $f(x) = x \sin \frac{x^2 - 3x + 2}{x}$ при x = 0, чтобы она стала непрерывной в этой точке?

При
$$x \to 0$$
 $\lim_{x \to 0} x = 0 \Rightarrow x - \delta.м.$,
 Pешение.
$$\left| \sin \frac{x^2 - 3x + 2}{x} \right| \le 1 \Rightarrow \sin \frac{x^2 - 3x + 2}{x} -$$
 ограниченная функция.

Как известно, произведение бесконечно малой функции на ограниченную есть бесконечно малая, поэтому $\lim_{x\to 0} \left(x\sin\frac{x^2-3x+2}{x}\right) = 0$, то есть предел существует и конечен. Поэтому можно доопределить функцию так: f(0) = 0.

5.5.9. Каким числом можно доопределить функцию $f(x) = arcctg \frac{3}{x}$ при x = 0, чтобы она стала непрерывной в этой точке? Решение.

Найдем односторонние пределы данной функции в точке x = 0:

$$\lim_{x \to -0} \operatorname{arcct} g \frac{3}{x} = \lim_{t \to -\infty} \operatorname{arcct} g t = \pi \quad \left(t = \frac{3}{x} \right),$$

$$\lim_{x \to +0} \operatorname{arcct} g \frac{3}{x} = \lim_{t \to +\infty} \operatorname{arcct} g t = 0 \neq \lim_{x \to -0} \operatorname{arcct} g \frac{3}{x}.$$

Следовательно, предел данной функции в точке x = 0 в обычном смысле не существует, поэтому добиться ее непрерывности в этой точке невозможно.

5.5.10. Определить значения параметров s и t, при которых функция

$$f(x) = \begin{cases} x, & |x| \le 1, \\ x^2 + sx + t, |x| > 1 \end{cases}$$
 непрерывна на **R**.

Решение. Функция f(x) непрерывна в точке a, если предел справа равен пределу слева и равен значению функции в этой точке: $\lim_{x\to a+0} f(x) = \lim_{x\to a-0} f(x) = f(a)$. Данная функция неэлементарная и на трех интервалах меняет свое аналитическое выражение: при $|x| \le 1$ $(-1 \le x \le 1)$ задана функция вида x, на интервалах |x| > 1 (x > 1 и x < -1) функция имеет вид $x^2 + sx + t$ (см. схему на рис. 5.1).

Рис. 5.1

Вычислим односторонние пределы: $\lim_{x\to -1-0} (x^2 + sx + t) = 1 - s + t$,

$$\lim_{x \to -1+0} x = -1, \lim_{x \to 1-0} x = 1, \lim_{x \to 1+0} \left(x^2 + sx + t \right) = 1 + s + t.$$

Так как для непрерывной функции выполняются условия

$$\lim_{x \to -1-0} \left(x^2 + sx + t \right) = \lim_{x \to -1-0} x \, \text{ II} \lim_{x \to 1+0} \left(x^2 + sx + t \right) = \lim_{x \to 1+0} x,$$

то, приравнивая значения односторонних пределов, получим систему

$$\begin{cases} 1-s+t=-1,\\ 1+s+t=1, \end{cases}$$
 решив которую получим $s=1,\ t=-1.$

5.6 Точки разрыва и их классификация

Определение 5.6.1. Точка разрыва x_0 называется точкой устранимого разрыва, если существуют односторонние пределы $f(x_0 - 0)$, $f(x_0 + 0)$ и они равны между собой (т.е. $\exists \lim_{x \to x_0} f(x)$).

Определение 5.6.2. Точка разрыва x_0 называется точкой разрыва первого рода (иногда применяется термин «скачок»), если существуют односторонние пределы $f(x_0 - 0)$, $f(x_0 + 0)$, но они не равны между собой.

Определение 5.6.3. Точка разрыва x_0 называется точкой разрыва второго рода, если хотя бы один из односторонних пределов $f(x_0 - 0)$, $f(x_0 + 0)$ не существует (в частности, он может быть бесконечным).

5.1. Решение некоторых типовых задач, рассматриваемых в аудитории

5.1.1. Исследовать на непрерывность функцию $y = \frac{x^2 - 3x + 2}{x - 1}$.

Рис. 5.2

Решение. Функция не определена при x = 1, а для остальных значений аргумента может быть представлена как y = x - 2. Следовательно,

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x - 1} = 1 - 2 = -1,$$

то есть x = 1 – устранимая особенность.

 $y = \frac{|x|}{x}$. 5.1.2. Исследовать на непрерывность функцию

Решение.

Рис. 5.3

Решение. Из определения модуля следует, что y = 1 при x > 0, y = -1 при x < 0, а при x = 0 функция не определена. При этом

$$\lim_{x \to +0} \frac{|x|}{x} = 1, \quad \lim_{x \to -0} \frac{|x|}{x} = -1.$$

Следовательно, x = 0 —точка разрыва 1-го рода.

5.1.3. Исследовать на непрерывность функцию

Рис. 5.4

Решение. Функция не определена при x = 0, и

$$\lim_{x\to 0}\frac{1}{x^2}=\infty.$$

Поэтому x = 0 — точка разрыва 2-го рода.

5.1.4. Исследовать на непрерывность функцию

Рис. 5.5

 $\lim_{x \to 0} e^{\frac{1}{x}} = 0, \quad \lim_{x \to +0} e^{\frac{1}{x}} = \infty,$ Решение.

то есть правосторонний предел не является конечным. Значит, x = 0 — точка разрыва 2-го рода.

5.1.5. Исследовать на непрерывность функцию $y = \sin \frac{1}{x}$

Рис. 5.6

Решение. Функция не определена при x = 0 и не имеет предела при $x \to 0$. Следовательно, x = 0 — точка разрыва 2-го рода.

5.1.6. Найти количество точек разрыва функции $y = \frac{2x-3}{\log_2 |x|}$.

Решение. Функция не существует при трех значениях аргумента: x = 0 (знаменатель не существует) и $x = \pm 1$ (он равен 0). Все три точки являются внутренними точками области определения и, поэтому, точками разрыва.

Исследуем характер точек разрыва:

1)
$$\lim_{x\to 0} \frac{2x-3}{\log_2|x|} = \lim_{x\to 0} (2x-3) \cdot \lim_{x\to 0} \frac{1}{\log_2|x|} = -3 \cdot 0 = 0.$$

Следовательно, x = 0 – устранимая особенность.

2)
$$\Pi pu \quad x \to \pm 1 \quad |x| \to 1 \Rightarrow \log_2 |x| \to 0 \Rightarrow \frac{1}{\log_2 |x|} \Rightarrow \infty.$$

Следовательно, $\lim_{x\to\pm 1} \frac{2x-3}{\log_2|x|} = \infty$, и $x = \pm 1$ — точки разрыва 2-го рода

 \Rightarrow 3 точки разрыва.

5.1.1. Среди функций 1)
$$f(x) = \frac{\cos x}{x}$$
, 2) $f(x) = \frac{5}{1 - 3^{\frac{1}{x}}}$, 3) $f(x) = \frac{1}{(x - 5)^2}$,

4)
$$f(x) = \frac{|2x+1|}{2x+1}$$
 точки разрыва 1-го рода имеют?

Решение. Найдем точки разрыва каждой функции и исследуем их характер.

 $f(x) = \frac{\cos x}{x}$ не определена при x =1) 0.

 $\lim_{x\to 0}\frac{\cos x}{x}=\lim_{x\to 0}\cos x\cdot\lim_{x\to 0}\frac{1}{x}=\infty,$ следовательно, единственная точка разрыва этой функции – это точка разрыва 2-го рода.

2) Функция $f(x) = \frac{5}{1 - \frac{1}{2^{\frac{1}{x}}}}$ не определена при x = 0 (заметим, что знаменатель

основной дроби не равен нулю ни при каком значении x).

Найдем односторонние пределы f(x) в точке x = 0:

$$\lim_{x \to -0} \frac{5}{1 - 3^{\frac{1}{x}}} = \frac{5}{1 - 3^{-\infty}} = \frac{5}{1 - 0} = 5; \quad \lim_{x \to +0} \frac{5}{1 - 3^{\frac{1}{x}}} = \frac{5}{1 - 3^{+\infty}} = \frac{5}{-\infty} = 0 \neq 5.$$

Следовательно, x = 0 — точка разрыва 1-го рода.

3) Функция $f(x) = \frac{1}{(x-5)^2}$ не определена при x = 5. $\lim_{x \to 5} \frac{1}{(x-5)^2} = \infty$,

следовательно, точка x = 5 — точка разрыва 2-го рода.

4) Функция $f(x) = \frac{|2x+1|}{2x+1}$ не определена при x = -0.5. При этом

$$f(x) = \frac{2x+1}{2x+1} = 1$$
, $x > -0.5 \text{ H} = -\frac{2x+1}{2x+1} = -1$, $x < -0.5$.

Таким образом, односторонние пределы в точке x = -0.5 равны соответственно 1 и -1, то есть эта точка – точка разрыва 1-го рода \Rightarrow 2,4.

Рис. 5.7

5.1.8. Найти точки разрыва функции
$$f\left(x\right) = \begin{cases} 2x + 5 & \text{при } -\infty < x < -1, \\ \frac{1}{x} & \text{при } -1 \le x < +\infty \end{cases}$$

Решение. Неэлементарная функция f(x) определена на всей числовой оси, кроме точки x = 0 (Рис. 5.7).

Так как $f(0-)=\lim_{x\to 0-}f(x)==\lim_{x\to 0-}\frac{1}{x}=-\infty$, $f(0+)=\lim_{x\to 0+}f(x)==\lim_{x\to 0+}\frac{1}{x}=+\infty$, то в точке x=0 функция терпит разрыв второго рода. Исследуем поведение функции в точках, где меняется аналитическое выражение функции:

$$f(-1-0) = \lim_{x \to -1-0} f(x) = \lim_{x \to -1-0} (2x+5) = 3, \ f(-1+0) = \lim_{x \to -1+0} f(x) = \lim_{x \to -1+0} \frac{1}{x} = -1.$$

Найденные односторонние пределы функции конечны, но не равны между собой, поэтому в точке x=-1 функция имеет разрыв первого рода. Скачок функции в точке разрыва равен

$$f(-1+0)-f(-1-0) = \lim_{x\to -1+0} f(x) - \lim_{x\to -1-0} f(x) = -4.$$

5.1.9. Найти точки разрыва функции $f(x) = \frac{|x-a|}{x-a}$ и определить их характер.

Решение. Функция $f(x) = \frac{|x-a|}{x-a} = \begin{cases} 1, & x > a, \\ -1, & x < a, \end{cases}$ следовательно, функция f(x)

определена и непрерывна на всей числовой оси, кроме точки x = a. Так как $f(a+0) = \lim_{x \to a+0} f(x) = 1$, $f(a-0) = \lim_{x \to a-0} f(x) = -1$, то в точке x = a функция имеет разрыв первого рода. Скачок функции в точке разрыва x = a равен

 $f(a+0)-f(a-0) = \lim_{x\to a+0} f(x) - \lim_{x\to a-0} f(x) = 1-(-1) = 2.$

- **5.1.10.** Функция задается различными аналитическими выражениями для различных областей независимой переменной. Требуется:
- 1) найти точки разрыва функции, если они существуют;
- 2) найти скачок функции в каждой точке разрыва;
- 3) сделать схематический чертеж.

$$y = \begin{cases} x - 1, & x < 0, \\ x^2 - 1, & 0 \le x \le 1, \\ 2, & x > 1. \end{cases}$$

Решение. Функция $y_1 = x - 1$ непрерывна для x < 0, функция $y_2 = x^2 - 1$ непрерывна в каждой точке из [0,1], функция $y_3 = 2$ непрерывна в каждой точке интервала $(1,\infty)$. Точки, в которых функция может иметь разрыв, это точки x = 0 и x = 1, где функция меняет свое аналитическое выражение.

Исследуем точку x = 0: $\lim_{x \to 0-0} y = \lim_{x \to 0-0} (x-1) = -1$, $\lim_{x \to 0+0} y = \lim_{x \to 0+0} (x^2-1) = -1$, $y(0) = -1 \Rightarrow$ точка x = 0 есть точка непрерывности функции y(x).

Исследуем точку
$$x=1$$
: $\lim_{x\to 1-0}y=\lim_{x\to 1-0}\left(x^2-1\right)=0$, $\lim_{x\to 1+0}y=\lim_{x\to 1+0}2=2$, $y\left(1\right)=0$.

Таким образом, односторонние пределы существуют, конечны, но не равны между собой. По определению, исследуемая точка — точка разрыва первого рода. Величина скачка функции в точке разрыва x=1 равен $d=\left|\lim_{x\to 1+0}y-\lim_{x\to 1-0}y\right|=\left|2-0\right|=2$.

Сделаем схематический чертеж

Рис. 5.5

5.8. Задачи для самостоятельного решения

5.8.1. Функция $f(x) = \frac{x^2 - 9}{x^2 - 3}$ не определена при x = 3. Как следует доопределить функцию в точке x = 3, чтобы она стала непрерывной?

5.8.2. Функция $f(x) = arctg \frac{1}{x-1}$ не определена при x = 1. Можно ли доопределить функцию в точке x = 1 так, чтобы она стала непрерывной?

5.8.3. Подобрать числа a и b такие, чтобы функция f(x) была непрерывной, если:

a)
$$f(x) =\begin{cases} x^2 + ax, & 0 \le x \le 1, \\ 2 + bx, & 1 < x \le 2 \end{cases}$$
 6) $f(x) =\begin{cases} (x-1)^3, & x \le 0, \\ ax + b, & 0 < x < 1, \\ \sqrt{x}, & x \ge 1. \end{cases}$

5.8.4. Функция f(x) не определена при x = 0. Определить значение f(0) так, чтобы функция стала непрерывной при x = 0, если:

a)
$$f(x) = \frac{\sqrt{1+x}-1}{\sqrt[3]{1+x}-1}$$
, 6) $f(x) = \frac{\arcsin x}{2tgx}$

Найти точки разрыва функции и установить их характер:

5.8.5.
$$f(x) = \frac{\sin x}{x}$$
. **5.8.6.** $f(x) = \frac{\cos x}{x}$. **5.8.1.** $f(x) = \frac{1}{\lg |x|}$.

5.8.8.
$$f(x) = \begin{cases} \frac{x - |x|}{x}, & x \neq 0, \\ 2, & x = 0. \end{cases}$$
 5.8.9. $f(x) = \frac{2^{\frac{1}{x}} - 1}{2^{\frac{1}{x}} + 1}$. **5.8.10.** $f(x) = 3^{\frac{2}{1+x}}$.

5.8.11.
$$f(x) = \frac{x^3 - 27}{x^2 - 9}$$
. **5.8.12.** $f(x) = \begin{cases} \frac{1}{x - 2}, & x < 0, \\ (x + 2)^2, & 0 \le x \le 1, . \\ 2 - x, & x > 1. \end{cases}$

Ответы. 5.8.1. y(3) = 6. **5.8.2.** HeT. **5.8.3.** a) a = 0, b = -1. 6) a = 2, b = -1 **5.8.4.** a) f(0) = 3/2. 6) f(0) = 1/2.

5.8.5. x = 0 — устранимый разрыв; **5.8.6.** x = 0 — разрыв 2-го рода; **5.8.1.** x = 0 — устранимый разрыв, $x = \pm 1$ — разрыв 2-го рода; **5.8.8.** x = 0 — разрыв 1-го рода; **5.8.9.** x = 0 — разрыв 1-го рода; **5.8.10.** x = -1 — разрыв 2-го рода; **5.8.11.** x = 3 — устранимый разрыв, x = -3 — разрыв 2-го рода; **5.8.12.** x = 0 и x = 1 — разрывы 1-го рода.