Analisis Data Eksploratif & Statistika Inferensia Dasar

Pertemuan 14

Regresi Linear Sederhana

- Analisis regresi merupakan sebuah model yang berusaha menjelaskan hubungan fungsional antara dua variabel, dimana satu variabel bertindak sebagai prediktor terhadap variabel respon.
- Metode Korelasi membahas keeratan hubungan antara dua variabel. Sedangkan metode Regresi membahas pengaruh dari variabel independen terhadap variabel dependen.
- □ Tujuan analisis regresi secara umum ada tiga, yaitu untuk mengukur kekuatan hubungan, uji pengaruh dan peramalan/prediksi.
- □ Sebagai contoh ada dua variabel, yaitu Penjualan dan Biaya Promosi.

 Dalam praktek, akan dibahas bagaimana pengaruh antara biaya promosi terhadap penjualan. Di sini berarti ada variabel dependen yaitu penjualan, sedangkan variabel independennya adalah biaya promosi.

Hubungan Dua Peubah atau Lebih

PEUBAH	KASUS	PENGUMPULAN DATA	JENIS HUBUNGANNYA
1.Dosis pupuk 2.Banyaknya padi yg di- hasilkan /ha	Diduga dosis pupuk mempengaruhi banyaknya padi yg dihasilkan/ha	Dosis pupuk ditentukan dahulu, faktor-faktor lain yg mempengaruhi banyaknya padi dikendalikan sehingga pengaruhnya konstan, ke-mudian diamati banyaknya padi yg dihasilkan	Perubahan banyaknya padi yg dihasilkan/ha dipengaruhi oleh perubahan dosis pupuk → HUB SEBAB AKIBAT
1.Tinggi badan 2.Berat badan	Diduga tinggi badan dan berat badan memiliki hubungan	Dimulai dengan mengamati tinggi badan da-hulu, disusul mengamati peubah yg dianggap relevan (berat badan), atau sebaliknya.	Pengamatan thdp kedua peubah dilakukan secara bersamaan. Sulit untuk mengatakan bahwa perubahan satu peubah disebabkan oleh perubahan peubah lainnya → bukan HUB SEBAB AKIBAT Ingin diketahui kekuatan dan arah hubungannya

Hubungan Dua Peubah atau Lebih (2)

PEUBAH	KASUS	PENGUMPULAN DATA	JENIS HUBUNGANNYA
1.Banyaknya barang terju- al/minggu 2.Adanya hari libur/tidak 3.Harga barang	Diduga banyaknya ba- rang terjual/minggu dipe-ngaruhi oleh berbagai peubah, misalnya harga barang, ada/ tidaknya hari libur dlm minggu tsb	Harga barang ditentukan lebih dahulu, faktor-faktor lain yg mempengaruhi banyaknya barang terjual dikendalikan sehingga pengaruhnya konstan, kemudian diamati banyaknya barang yg terjual pada minggu ada hari libur dan minggu tanpa hari libur	Perubahan banyaknya barang yg terjual dipengaruhi oleh perubahan harga dan ada/tidaknya hari libur → Hub SEBAB AKIBAT
1.Bobot badan 2.Bobot jantung	Diduga bobot badan dan bobot jantung memiliki hubungan	Dimulai dengan mengamati bobot badan terlebih dahulu, segera disusul mengamati peubah yg dianggap relevan (dalam hal ini bobot jantung), atau sebaliknya.	Pengamatan thdp kedua peubah dilakukan secara bersamaan. Sulit untuk mengatakan bahwa perubahan satu peubah disebabkan oleh peubah lainnya. → bukan SEBAB AKIBAT. Ingin diketahui model matematisnya (HUB KUANTITATIF)

Syarat Variabel Dalam Regresi

- Variabel X dan Y memiliki skala pengukuran sekurang-kurangnya interval
- □ Data yang terkumpul harus memenuhi model dasar
- Pengumpulan datanya bisa dilakukan melalui dua cara :
 - ❖ Variabel X ditentukan terlebih dahulu
 - Sekaligus dihitung X dan Y
- \Box Karena harga variabel X fixed, maka distribusi variabel Y sama dengan variabel ε yaitu mengikuti distribusi normal dengan rata-rata nol dan varians σ^2 (homoscedasticity)

Diagram Pencar / Scatter Plot

Menunjukkan Hubungan Antara Variabel Independen (X) dan Variabel Dependen (Y)

Regresi Linear Sederhana

Regresi Linear sederhana atau tunggal digunakan apabila peneliti ingin mengetahui linearitas hubungan satu variable bebas (X) dan satu variable terikat (Y) serta dapat pula digunakan untuk memprediksi kenaikan variable dependen jika variable independent diketahui

Persamaan Umum Model Regresi Linear Sederhana:

$$Y = a + bX + \varepsilon$$

Dengan:

Y: Variabel Dependen / Nilai Prediksi

a : Intercept (Nilai Y saat X = 0)

b : Slope (Kemiringan)

X : Variabel Bebas/ Prediktor

 ε : Eror/ Residu

Menentukan Koefisien Regresi Linear Sederhana

Rumus Koefisien Regresi Linear Sederhana:

$$b = \frac{n\sum X_iY_i - (\sum X_i)(\sum Y_i)}{n\sum X_i^2 - (\sum X_i)^2}$$

$$a = \overline{Y} - b\overline{X}$$

Dengan

$$\overline{Y} = \frac{\sum Y_i}{n}; \ \overline{X} = \frac{\sum X_i}{n}$$

Contoh

Diberikan Data Hubungan Antara Biaya Promosi (X dalam juta rupiah) dan volume penjualan (Y dalam ratusan juta liter) sbb :

Tahun	Biaya Produksi (X)	Volume Penjualan (Y)
1992	2	5
1993	4	6
1994	5	8
1995	7	10
1996	8	11

- a. Tentukan Persamaan Regresi Linear Sederhana dari data tersebut dan jelaskan maknanya!
- b. Prediksilah volume penjualan apabila biaya produksi ditingkatkan menjadi Rp 10.000.000,00 pada tahun 1997!

Penyelesaian

Tahun	Biaya Produksi (X)	Volume Penjualan (Y)	XY	X ²
1992	2	5	10	4
1993	4	6	24	16
1994	5	8	40	25
1995	7	10	70	49
1996	8	11	88	64
Jumlah	26	40	232	158

$$b = \frac{n \sum X_i Y_i - \sum X_i \sum Y_i}{n \sum X_i^2 - (\sum X_i)^2}$$

$$= \frac{5 \cdot (232) - (26)(40)}{5 \cdot (158) - (26)^2} = 1,053$$

$$\bar{X} = \frac{\sum X_i}{n} = \frac{26}{5} = 5.2$$
; $\bar{Y} = \frac{\sum Y_i}{n} = \frac{40}{5} = 8$

Sehingga

$$a = \overline{Y} - b\overline{X} = 8 - 1,053(5,2) = 8 - 5,476 = 2,524$$

Jadi persamaan Regresinya adalah

$$Y = 2,524 + 1,053X$$

Lanjutan..

Selanjutnya, X = 10 sehingga diperoleh Y = 2,524 + 1,053(10) = 13,054.

Jadi, prediksi volume penjualan untuk biaya promosi sebesar 10 juta pada tahun 1997 adalah 13,054 juta liter.

Uji Signifikansi Parsial Hasil Penaksiran Parameter

- ✓ Digunakan untuk menguji signifikansi parameter apakah nilai konstanta (a) dan koefisien (b) berpengaruh terhadap variabel respon/dependen.
- ✓ Sebelumnya perlu dihitung nilai varians dari x, y dan error.

$$s_x^2 = \frac{n\Sigma X_i^2 - (\Sigma X_i)^2}{n(n-1)} \qquad s_y^2 = \frac{n\Sigma Y_i^2 - (\Sigma Y_i)^2}{n(n-1)}$$

$$s_e^2 = \frac{n-1}{n-2} \left(s_y^2 - b^2 s_x^2 \right)$$

A. Uji Signifikansi Konstanta a

- Hipotesis:
 - H_0 : $\alpha = 0 \rightarrow$ konstanta tidak berpengaruh signifikan
 - $H_1: \alpha \neq 0 \rightarrow$ konstanta berpengaruh signifikan
- Tentukan taraf signifikansi α {Mencari tabel t dengan df = n - 2}
- Statistika Uji :

$$t = \frac{(a - \alpha_0)s_x \sqrt{n(n-1)}}{s_e \sqrt{\sum X_i^2}}$$
 α_0 = tergantung pada hipotesis awal atau asumsikan nol (0)

- ➤ Kriteria Uji : Jika $|t_{hitung}| \ge t_{tabel}$, maka H_o ditolak Jika $|t_{hitung}| < t_{tabel}$, maka H_o diterima
- Kesimpulan

t Table

one-tail	t.50 0.50	t.75	0.20	t.ss 0.15	0.10	t.95 0.05	t.975 0.025	0.01	0.005	f ,999 0.001	t .9995 0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df	- 0.00		171	- A. S. S. S. S. S.	0.05.05.0	74 53 55 5 67	0.00-0.00		0.000 V 10		
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31,599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1,119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1,100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2,485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2,473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646

Contoh (Gunakan Contoh Sebelumnya)

Tahun	Biaya Produksi (X)	Volume Penjualan (Y)	XY	X^2	Y ²
1992	2	5	10	4	25
1993	4	6	24	16	36
1994	5	8	40	25	64
1995	7	10	70	49	100
1996	8	11	88	64	121
Jumlah	26	40	232	158	346

$$S_X^2 = \frac{n \sum X_i^2 - (\sum X_i)^2}{n(n-1)} = \frac{5(158) - (26)^2}{5(5-1)} = \frac{790 - 676}{20} = 5,7$$

$$S_X = \sqrt{5,7} = 2,387$$

$$S_X = \sqrt{5.7} = 2.387$$

$$S_Y^2 = \frac{n\sum Y_i^2 - (\sum Y_i)^2}{n(n-1)} = \frac{5(346) - (40)^2}{5(5-1)} = \frac{1730 - 1600}{20} = 6.5$$

$$S_Y = \sqrt{6.5} = 2.55$$

$$S_Y = \sqrt{6.5} = 2.55$$

$$S_e^2 = \frac{n-1}{n-2} [S_Y^2 - b^2 S_X^2] = \frac{4}{3} [6,5 - (1,053)^2 (5,7)] =$$

$$S_e = \sqrt{0.2397} = 0.4896$$

Uji Signifikansi Untuk Koefisien $oldsymbol{a}$

• Hipotesis:

 H_0 : $\alpha = 0 \rightarrow$ konstanta tidak berpengaruh secara signifikan

 H_1 : $\alpha \neq 0 \rightarrow$ konstanta berpengaruh signifikan

- Tingkat signifikansi : $\alpha = 0.05$
- Statistik Penguji:

$$t = \frac{(a - \alpha_0)S_X \sqrt{n(n-1)}}{S_e \sqrt{\sum X_i^2}} = \frac{(2,524 - 0) \cdot 2,387\sqrt{20}}{0,4896 \cdot \sqrt{158}} = 4,378$$

• Kriteria Penolakan:

 H_0 ditolak jika $\left|t_{hitung}\right| \geq t_{\frac{\alpha}{2},df}$, dengan df=n-2. Karena df=3 sehingga $t_{0,025\,;3}=3,182$.

Dengan demikian, $|t_{hitung}| = |4,378| = 4,378 > 3,182 = t_{tabel}$ maka H_0 ditolak.

• Kesimpulan :

Jadi, konstanta a berpengaruh secara signifikan.

B. Uji Signifikansi Koefisien b

- Hipotesis:
 - $H_0: \beta = 0 \rightarrow \text{Koefisien tidak berpengaruh signifikan}$
 - $H_1: \beta \neq 0$; $\beta < 0$; $\beta > 0 \rightarrow$ Koefisien berpengaruh signifikan
- Tentukan taraf signifikanssi α {Mencari tabel t dengan df = n - 2}
- Statistika Uji :

$$t = \frac{(b - \beta_0)s_x \sqrt{n - 1}}{s_a}$$
 β_0 = tergantung pada hipotesis awal atau asumsikan nol (0)

- ➤ Kriteria Uji : Jika |t_{hitung}| ≥ t_{tabel}, maka H_o ditolak
 Jika |t_{hitung}| < t_{tabel}, maka H_o diterima
- Kesimpulan

Uji Signifikansi Untuk Koefisien $oldsymbol{b}$

• Hipotesis:

 H_0 : $\beta = 0 \rightarrow$ konstanta tidak berpengaruh secara signifikan

 H_1 : $\beta \neq 0 \rightarrow$ konstanta berpengaruh signifikan

- Tingkat signifikansi : $\alpha = 0.05$
- Statistik Penguji:

$$t = \frac{(b - \beta_0)S_X\sqrt{(n-1)}}{S_e} = \frac{(1,053 - 0) \cdot 2,387\sqrt{4}}{0,489} = 10,28$$

• Kriteria Penolakan:

 H_0 ditolak jika $\left|t_{hitung}\right| \geq t_{lpha,df}$, dengan df=n-2. Karena df=3 sehingga $t_{0,025\,;3}=3,182$. Dengan demikian, $\left|t_{hitung}\right|=|10,28|=10,28\geq 3,182=t_{tabel}$ maka H_0 ditolak.

• Kesimpulan :

Jadi, konstanta b berpengaruh secara signifikan.

C. Uji Simultan Signifikansi Hasil Penaksiran Parameter

> Hipotesis:

H₀: Variabel independen tidak berpengaruh terhadap variabel dependen

H₁: Variabel independen berpengaruh terhadap variabel dependen

- \triangleright Tentukan taraf signifiknasi α {Mencari tabel F dengan df₁ = 1, df₂ = n 2}
- > Statistika Uji:

Jumlah Variasi	Jumlah Kuadrat	Derajat Kebebasan	Rata-rata Jumlah Kuadrat	F Hitung
Regresi	JKR	1	RJKR	F
Galat	JKG	n – 2	RJKG	Fhitung
Total	JKT	n – 1		

JKT = Jumlah Kuadrat Total =
$$\Sigma Y_i^2 - \frac{(\Sigma Y_i)^2}{n}$$

JKR = Jumlah Kuadrat Regresi = $b\left(\Sigma X_i Y_i - \frac{\Sigma X_i \Sigma Y_i}{n}\right)$

JKG = Jumlah Kuadrat Galat = JKT – JKR

RJKR = Rata-rata Jumlah Kuadrat Regresi = $\frac{JKR}{1}$

RJKG = Rata-rata Jumlah Kuadrat Galat =
$$\frac{JKG}{n-2}$$

 $F_{hitung} = \frac{RJKR}{RJKG}$

Fixed Fraction
$$F_{tabel}$$
, F_{tabel}

Tabel F dengan lpha=0, 05

df untuk		df untuk pembilang (N1)													
penyebut (N2)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	161	199	216	225	230	234	237	239	241	242	243	244	245	245	246
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.40	19.41	19.42	19.42	19.43
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	8.74	8.73	8.71	8.70
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94	5.91	5.89	5.87	5.86
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70	4.68	4.66	4.64	4.62
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	4.00	3.98	3.96	3.94
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.60	3.57	3.55	3.53	3.51
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.31	3.28	3.26	3.24	3.22
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.10	3.07	3.05	3.03	3.01
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94	2.91	2.89	2.86	2.85
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82	2.79	2.76	2.74	2.72
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.72	2.69	2.66	2.64	2.62
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63	2.60	2.58	2.55	2.53
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.57	2.53	2.51	2.48	2.46
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.51	2.48	2.45	2.42	2.40
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.46	2.42	2.40	2.37	2.35
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.41	2.38	2.35	2.33	2.31
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.37	2.34	2.31	2.29	2.27
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.34	2.31	2.28	2.26	2.23

Contoh Uji Simultan Signifikansi Hasil Penaksiran Parameter

•
$$JKT = \sum Y_i^2 - \frac{(\sum Y_i)^2}{n} = 346 - \frac{40^2}{5} = 346 - 320 = 26$$

•
$$JKR = b\left(\sum X_i Y_i - \frac{\sum X_i \sum Y_i}{n}\right) = 1,053 \cdot \left(232 - \frac{26 \cdot 40}{5}\right) = 1,053 \cdot (232 - 208) = 25,272$$

•
$$JKG = JKT - JKR = 26 - 25,272 = 0,728$$

•
$$RJKR = \frac{JKR}{1} = \frac{25,272}{1} = 25,272$$

•
$$RJKG = \frac{JKG}{n-2} = \frac{0.728}{3} = 0.243$$

• Hipotesis:

 H_0 : Variabel independent X tidak mempengaruhi variable dependen Y

 H_1 : Variabel independent X mempengaruhi variable dependen Y

• Tingkat signifikansi : $\alpha = 0.05$

• Statistik Penguji:

$$F_{hitung} = \frac{RJKR}{RJKG} = \frac{25,272}{0,243} = 104$$

• Kriteria Penolakan:

 H_0 ditolak jika $F_{hitung} \geq F_{tabel}$, dengan df1=1, df2=n-2=3. Berdasarkan tabel F diperoleh $F_{0,05;1;3}=F_{tabel}=10$,13. Dengan demikian, $F_{hitung}=104\geq 10$,13 = F_{tabel} maka H_0 ditolak.

Kesimpulan :

Jadi, Variabel independent X mempengaruhi variable dependen Y

D. Koefisien Korelasi & Koefisien Determinasi

- ✓ Koefisien korelasi digunakan untuk mengukur derajat keeratan hubungan antara variabel independen terhadap variabel dependen
- ✓ Koefisien determinasi digunakan untuk mengukur seberapa besar pengaruh yang diberikan variabel independen terhadap variabel dependen.
- ✓ Pengukurannya dapat digunakan rumus korelasi pearson atau dengan rumus di bawah ini :

Koefisien Korelasi
$$r_{xy} = b \frac{S_x}{S_y} \Rightarrow r_{xy}^2$$
 Koefisien Determinasi

Contoh Koefisien Korelasi & Koefisien Determinasi

Koefisien Korelasi:

$$r_{XY} = b \cdot \frac{S_X}{S_Y} = 1,053 \cdot \frac{2,387}{2,55} = 0,9857$$

Menurut Kriteria Korelasi, hubungan antara X dan Y sangat kuat.

Koefisien Determinasi:

$$r_{XY}^2 = (0.9857)^2 = 0.972 = 97.2\%$$

Artinya biaya promosi (X) mempengaruhi volume penjualan sebesar 97,2% sedangkan 2,8% sisanya dipengaruhi oleh variable yang lain.

Contoh

Ingin diketahui pengaruh nilai ujian terhadap nilai akhir, untuk itu diambil sampe sebanyak 12 orang dan dicatat nilai ujian dan nilai akhir masing-masing, berikut adalah datanya:

No	Nilai Ujian (X)	Nilai Akhir (Y)
1	65	85
2	50	74
3	55	76
4	65	90
5	55	85
6	70	87
7	65	94
8	70	98
9	55	81
10	70	91
11	50	76
12	55	74

Hitung:

- 1. <u>Tuliskan persamaan regresinya, lalu jelaskan maksud</u> <u>dari persamaan tersebut ?</u>
- 2. Gambarkan Kelinieritasan dari data, lalu simpulkan!
- 3. <u>Uji signifikansi parsial nilai Konstanta dan koefisien</u> regresinya ? gunakan taraf nyata 0.05
- 4. <u>Uji signifikansi simultan hasil penaksiran parameter?</u> gunakan taraf nyata 0.05
- 5. Berapa kuatkah hubungan yang terjadi antara nilai ujian dengan nila akhir ?
- 6. <u>Berapakah nilai Koefisien Determinasinya? Jelaskan</u> maksud dari nilai tersebut!
- 7. Berapa perkiraan nilai akhir seorang mahasiswa jika nilai ujiannya adalah 75 ?

1. Persamaan Regresinya dan Interpretasinya

No	Nila	i Ujian	(X)	Nila	ai Akhi	r (Y)		\mathbf{X}^2		Y ²		X*Y	
1		65			85			4225		7225		5525	
2		50			74			2500		5476		3700	
3		55			76			3025		5776		4180	
4		65			90			4225		8100		5850	
5		55			85			3025		7225		4675	
6		70			87			4900		7569		6090	
7		65			94			4225		8836		6110	
8		70			98			4900		9604		6860	
9		55			81			3025		6561		4455	
10		70			91			4900		8281		6370	
11		50			76			2500		5776		3800	
12		55			74			3025		5476		4070	
Jumlah		725			1011		4	14475	;	85905	5	61685	

$$\Sigma X_{i} = 725$$

$$\Sigma Y_{i} = 1011$$

$$\Sigma X_{i}^{2} = 44475$$

$$\Sigma Y_{i}^{2} = 85905$$

$$\Sigma X_{i} Y_{i} = 61685$$

$$n = 12$$

$$\overline{X} = \frac{\sum X_{i}}{n} = \frac{725}{12} = 60.42$$

$$\overline{Y} = \frac{\sum Y_{i}}{n} = \frac{1011}{12} = 84.25$$

<u>Jawaban</u>

$$\Sigma X_i = 725$$
 $\Sigma Y_i = 1011$ $\Sigma X_i^2 = 44475$
 $\Sigma Y_i^2 = 85905$ $\Sigma X_i Y_i = 61685$ $n = 12$
 $\overline{X} = 60.42$ $\overline{Y} = 84.25$

1. Persamaan Regresinya dan Interpretasinya

$$Y = a + bX$$

$$b = \frac{n\Sigma X_i Y_i - (\Sigma X_i)(\Sigma Y_i)}{n\Sigma X_i^2 - (\Sigma X_i)^2} = \frac{(12)(61685) - (725)(1011)}{(12)(44475) - (725)^2} = \frac{(740220) - (732975)}{(533700) - (525625)} = \frac{7245}{8075} = \mathbf{0.897}$$

$$a = \overline{Y} - b\overline{X} = (84.25) - (0.897)(60.42) = (84.25) - (54.197) = 30.053$$

Maka persamaan regresi linier yang didapat adalah:

$$Y = a + bX =$$
 30.053 + **0.897** X

Dari persamaan di atas, dapat diinterpretasikan:

- ➤ Konstanta a = 30.053 → Menyatakan rata-rata nilai akhir mahasiswa saat nilai ujian (X) nol (0) adalah sebesar 30.053.
- ➤ Koefisien b = 0.897 → Setiap kenaikan sebesar 1 pada nilai ujian (X), maka nilai akhir (Y) mahasiswa kemungkinan akan bertambah sebesar 0.897.

2. Diagram Pencar (Scatter Plot) kelinieritasan data

Y = 30.053 + 0.897 X

No	Nilai Ujian	Nilai Akhir
INO	(X)	(Y)
1	65	85
2	50	74
3	55	76
4	65	90
5	55	85
6	70	87
7	65	94
8	70	98
9	55	81
10	70	91
11	50	76
12	55	74

 $\bar{X} = 60.42 \ \bar{Y} = 84.25$

3. Uji Signifikansi Parsial Parameter Konstanta a dan Koefisien b

 $\Sigma X_{i} = 725$

 $\Sigma Y_{i} = 1011$

 $\Sigma X_1^2 = 44475$

$$n = 12$$

Sebelumnya perlu dihitung nilai varians dari x, y dan error.

$$n\Sigma X^2 - (\Sigma X)^2$$
 (12)(44475) $- (725)^2$ 533700 $- 525625$

$$s_x^2 = \frac{n\Sigma X_i^2 - (\Sigma X_i)^2}{n(n-1)} = \frac{(12)(44475) - (725)^2}{12(12-1)} = \frac{533700 - 525625}{(12)(11)} = \frac{8075}{132} = 61.174$$

$$\frac{\Sigma Y_i^2 = 85905}{\Sigma X_i Y_i} = 61685$$

$$\Rightarrow s_x = \sqrt{s_x^2} = \sqrt{61.174} = 7.821$$

$$s_y^2 = \frac{n\Sigma Y_i^2 - (\Sigma Y_i)^2}{n(n-1)} = \frac{(12)(85905) - (1011)^2}{12(12-1)} = \frac{1030860 - 1022121}{(12)(11)} = \frac{8739}{132} = 66.205$$

$$\Rightarrow s_y = \sqrt{s_y^2} = \sqrt{66.205} = 8.137$$

$$s_e^2 = \frac{n-1}{n-2} \left(s_y^2 - b^2 s_x^2 \right) = \frac{12-1}{12-2} \left(66.205 - (0.897^2)(61.174) \right) = \frac{11}{10} \left(66.205 - (0.805)(61.174) \right)$$

$$=(1.1)(66.205-49.245)=(1.1)(16.96)=18.66$$

$$\Rightarrow s_e = \sqrt{s_e^2} = \sqrt{18.656} =$$
4.319

a) Uji Signifikansi Konstanta a

1) Hipotesis:

 H_0 : $\alpha = 0$: Konstanta tidak berpengaruh signifikan terhadap nilai akhir

 $H_1: \alpha \neq 0$: Konstanta berpengaruh signifikan terhadap nilai akhir

a = 30.053 $S_x = 7.821$ $S_e = 4.319$ $\Sigma X_i^2 = 44475$

2) Taraf Signifikansi

$$\alpha = 5\% = 0.05/2 = 0.025$$
Lihat Tabel t
$$df = n - 2 = 12 - 2 = 10$$
 $t_{tabel} = 2.228$

3) Statistik Uji

$$t = \frac{(a - \alpha_0)s_x \sqrt{n(n-1)}}{s_e \sqrt{\Sigma x_i^2}} = \frac{(30.053 - 0)(7.821)\sqrt{12(12-1)}}{(4.319)\sqrt{44475}} = \frac{(30.053)(7.821)\sqrt{132}}{(4.319)(210.891)}$$
$$= \frac{(30.053)(7.821)(11.489)}{(910.838)} = \frac{2700.426}{910.838} = \frac{2.965}{910.838} \rightarrow t_{\text{hitung}}$$

4) Kriteria uji

Jika $|t_{hitung}| > t_{tabel}$, maka H_0 ditolak Jika $|t_{hitung}| < t_{tabel}$, maka H_0 diterima

5) Kesimpulan

Karena 2.965 > 2.228 \Rightarrow maka H_0 ditolak " H_1 " \rightarrow Konstanta berpengaruh signifikan terhadap nilai akhir

b) Uji Signifikansi Koefisien b

b = 0.897

$S_x = 7.821$

$S_{e} = 4.319$

1) Hipotesis:

 $H_0:\beta=0:$ Koefisien nilai ujian tidak berpengaruh signifikan terhadap nilai akhir

 $H_1: \beta \neq 0$: Koefisien nilai ujian berpengaruh signifikan terhadap nilai akhir

2) Taraf Signifikansi

$$\alpha = 5\% = 0.05/2 = 0.025$$
Lihat Tabel t
$$df = n - 2 = 12 - 2 = 10$$
 $t_{tabel} = 2.228$

3) Statistik Uji

$$t = \frac{(b - \beta_0)s_x \sqrt{n - 1}}{s_e} = \frac{(0.897 - 0)(7.821)\sqrt{12 - 1}}{(4.319)} = \frac{(0.897)(7.821)(3.317)}{(4.319)} = \frac{(23.270)}{(4.319)}$$

$$= 5.388 \rightarrow t_{hitung}$$

4) Kriteria uji

Jika
$$|t_{hitung}| > t_{tabel}$$
, maka H_0 ditolak
Jika $|t_{hitung}| < t_{tabel}$, maka H_0 diterima

5) Kesimpulan

Karena 5.388 > 2.228 ⇒ maka H₀ ditolak

"H₁" → Koefisien nilai ujian berpengaruh signifikan terhadap nilai akhir

4. Uji Signifikansi Simultan Hasil Penaksiran Parameter

b = 0.897

$$\Sigma X_i Y_i = 61685$$

 $\Sigma X_i = 725$
 $\Sigma Y_i = 1011$

$$JKR = b\left(\Sigma X_i Y_i - \frac{\Sigma X_i \Sigma Y_i}{n}\right) = (0.897)\left[(61685) - \frac{(725)(1011)}{12}\right] = (0.897)\left[(61685) - \frac{732975}{12}\right] = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_$$

$$= (0.897)[61685) - (61081.25)] = (0.897)[603.75] = 541.564$$

$$JKG = JKT - JKR = 728.25 - 541.564 = 186.686$$

$$RJKR = \frac{JKR}{1} = \frac{541.564}{1} = 541.564$$
 $RJKG = \frac{JKG}{n-2} = \frac{186.686}{12-2} = 18.669$

$$RJKG = \frac{JKG}{n-2} = \frac{186.686}{12-2} = 18.669$$

$$F_{hitung} = \frac{RJKR}{RJKG} = \frac{541.564}{18.669} = 29.009$$

Jumlah Variasi	Jumlah Kuadrat	Derajat Kebebasan	Rata-rata Jumlah Kuadrat	F Hitung
Regresi	541.564	1	541.564	20.000
Galat	186.686	10	18.669	29.009
Total	728.25	11		

4) Kriteria uji

Jika $F_{hitung} \ge F_{tabel}$, maka H_0 ditolak **Total** Jika $F_{hitung} < F_{tabel}$, maka H_0 diterima

5) <u>Kesimpulan</u>

Karena 29.009 > 4.96 \Rightarrow maka H₀ ditolak

" H_1 " \rightarrow Variabel independen berpengaruh terhadap variable dependen

5. Koefisien Korelasi antara Nilai Ujian (X) dengan Nilai Akhir (Y)

Untuk mengukur derajat keeratan hubungan, dapat menggunakan rumur korelasi pearson atau dengan rumus di bawah ini:

$$r_{xy} = b \frac{s_x}{s_y} = \frac{(0.897)(7.821)}{8.137} = \frac{7.015}{8.137} =$$
0.862

Berdasarkan kriteria Guilford, hubungan yang terjadi antara nilai ujian dan nilai akhir adalah **"kuat"**

6. Koefisien Determinasi (R²)

Koefisien determinasi merupakan kuadrat dari korelasi r_{xy}

$$r_{xy} \Rightarrow r_{xy}^2$$

$$r_{xy}^2 = 0.862^2 = 0.743 = 74.3\%$$

Nilai ujian berpengaruh terhadap nilai akhir sebesar 74.3%. Sisanya (100%-74.3% = 25.7%) nilai akhir dipengaruhi oleh faktor lain yang tidak dijelaskan dalam model.

7. Prediksi

Berapa perkiraan nilai akhir seorang mahasiswa jika nilai ujiannya adalah 75 ?

$$X = 75$$

 $Y = a + b X$
 $Y = 30.053 + 0.897 X$
 $Y = 30.053 + 0.897 (75)$
 $Y = 30.053 + 67.275$
 $Y = 97.328$

Jika mahasiswa memiliki nilai ujian sebesar 75, maka perkiraan nilai akhirnya adalah sebesar 97.328

Latihan

Diberikan data mengenai tingkat penggunaan pupuk (X) dan hasil panen padi (Y).

Penggunaan Pupuk (X)	Panen Padi (Y)
2	8
4	9
5	11
7	11
10	12
11	14
12	15
15	16

- 1. Buatlah diagram pencar dari data tersebut
- 2. Tentukan persamaan regresi linear sederhana dari masalah tersebut dan interpretasikan
- 3. Uji signifikansi masing-masing koefisien a dan b nya
- 4. Apakah variable independent berpengaruh terhadap variable dependen? Ujilah!
- 5. Bagaimana kekuatan hubungan antara variable X dengan Y?
- 6. Seberapa besar pengaruh penggunaan pupuk terhadap panenan padi?
- 7. Prediksilah hasil panen padi apabila penggunaan pupuk sebanyak 9 unit dan 25 unit!

Regresi Linear Berganda

Pendahuluan

- Pada sesi sebelumnya kita hanya menggunakan satu buah X, dengan model Y = α+ βX
- Dalam banyak hal, yang mempengaruhi Y bisa lebih dari satu.
 Model umum regresi linear berganda adalah

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p$$

Regresi Linear Berganda 2 Variabel Bebas

Bentuk Umum:

$$\hat{Y} = a + b_1 X_1 + b_2 X_2 + \varepsilon$$

Dengan nilai koefisien regresi sbb:

$$a = \overline{Y} - b_1 \overline{X_1} - b_2 \overline{X_2}$$

$$b_1 = \frac{\left(\sum x_2^2\right)(\sum x_1 y) - (\sum x_1 x_2)(\sum x_2 y)}{\left(\sum x_1^2\right)\left(\sum x_2^2\right) - (\sum x_1 x_2)^2}$$

$$b_2 = \frac{\left(\sum x_1^2\right)(\sum x_2 y) - (\sum x_1 x_2)(\sum x_1 y)}{\left(\sum x_1^2\right)\left(\sum x_2^2\right) - (\sum x_1 x_2)^2}$$

$$\sum x_1^2 = \sum X_1^2 - \frac{(\sum X_1)^2}{n}$$

$$\sum x_2^2 = \sum X_2^2 - \frac{(\sum X_2)^2}{n}$$

$$\sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{n}$$

$$\sum x_1 x_2 = \sum X_1 X_2 - \frac{(\sum X_1)(\sum X_2)}{n}$$

$$\sum x_1 y = \sum X_1 Y - \frac{(\sum X_1)(\sum Y)}{n}$$

$$\sum x_2 y = \sum X_2 Y - \frac{(\sum X_2)(\sum Y)}{n}$$

Korelasi & Koefisien Determinasi Regresi Linear Berganda

Koefisien Determinasi untuk Regresi Linear Berganda 2 Variabel Bebas yaitu

$$r^2 = \frac{b_1 \sum x_1 y + b_2 \sum x_2 y}{\sum y^2}$$

Korelasi dari Regresi Linear Berganda:

$$r = \sqrt{r^2}$$

$$\sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{n}$$

$$\sum x_1 y = \sum X_1 Y - \frac{(\sum X_1)(\sum Y)}{n}$$

$$\sum x_2 y = \sum X_2 Y - \frac{(\sum X_2)(\sum Y)}{n}$$

Uji Signifikansi Parsial untuk $oldsymbol{b}_i$

Hipotesis

 $H_0: \beta = 0$ (tidak ada pengaruh yang signifikan)

 $H_1: \beta \neq 0$ (ada pengaruh yang signifikan)

- Tingkat Signifikansi : α
- Uji Statistik:

$$t=rac{b_i}{S_{b_i}}$$
 Jika koefisien korelasi tidak diketahui

Dengan b_i adalah koefisien regresi dan S_{b_i} adalah standar eror dari koefisien regresi

Atau

$$t=r\sqrt{rac{n-2}{1-r^2}}$$
 Jika koefisien korelasi sudah diketahui

Dengan

$$S_{b_i} = \frac{S_y}{\sqrt{\sum x^2}}$$

Dan $S_{\mathcal{V}}$ adalah simpangan baku dari penduga nilai y yang dirumuskan dengan

$$S_y = \sqrt{\frac{\sum (y - \bar{y})^2}{n - 2}}$$

• Kriteria penolakan H_0

$$H_0$$
 ditolak jika $\left|t_{hitung}\right| \geq t_{\frac{\alpha}{2};df}$ dengan $df = n-2$

Kesimpulan

Uji Signifikansi Simultan Hasil Penaksiran

Hipotesis

 H_0 : Tidak Ada perbedaan yang signifikan

 H_1 : Ada Perbedaan Yang Signifikan

• Tingkat Signifikansi : α

Uji Statistik

Sumber Variabilitas	Derajat Kebebasan (df)	Jumlah Kuadrat (JK)	Rata-Rata Hitung	Nilai F_{hitung}
Regresi	k	$r^2\left(\sum y^2\right)$	$JKR = \frac{r^2(\sum y^2)}{k}$	JKR
Residu/Eror	n-k-1	$(1-r^2)\left(\sum y^2\right)$	$JKG = \frac{(1 - r^2)(\sum y^2)}{n - k - 1}$	$F_{Hitung} = \frac{1}{JKG}$
Total	n-1	$\sum y^2$		

$$r^2 = \frac{b_1 \sum x_1 y + b_2 \sum x_2 y}{\sum y^2}$$

$$\sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{n}$$

k: banyaknya variable predictor/bebas

n: banyak data

• Kriteria penolakan H_0

$$|H_0|$$
 ditolak jika $|F_{hitung}| \ge F_{\alpha;df_1;df_2}$ dengan $df_1 = k \operatorname{dan} df_2 = n - k - 1$

Kesimpulan

Contoh

Misalnya dalam satu perusahaan ingin melihat hubungan antara pengeluaran untuk iklan (X_1) dan pengeluaran untuk quality control (X_2) dengan penerimaan melalui penjualan (sales revenue) (Y) sbb:

Waktu	1	2	3	4	5	6	7	8	9	10
X ₁	10	9	11	12	11	12	13	13	14	15
X ₂	3	4	3	3	4	5	6	7	7	8
Υ	44	40	42	46	48	52	54	58	56	60

Tentukan:

- a. Bentuklah Model Regresi Linear Berganda
- b. Interpretasikan model yang diperoleh
- Koefisien determinasi dan korelasi
- d. Uji Parsial untuk mengukur seberapa signifikan pengaruh dari koefisien regresinya
- e. Uji Simultan dari hasil penaksiran regresi
- f. Prediksi penerimaan sales revenue apabila biaya iklan 20 juta dan biaya quality control 12 juta

Penyelesaian

Waktu	<i>X</i> ₁	<i>X</i> ₂	Y	X_1^2	X_2^2	<i>Y</i> ²	X_1Y	X_2Y	X_1X_2
1	10	3	44	100	9	1936	440	132	30
2	9	4	40	81	16	1600	360	160	36
3	11	3	42	121	9	1764	462	126	33
4	12	3	46	144	9	2116	552	138	36
5	11	4	48	121	16	2304	528	192	44
6	12	5	52	144	25	2704	624	260	60
7	13	6	54	169	36	2916	702	324	78
8	13	7	58	169	49	3364	654	406	78
9	14	7	56	196	49	3136	784	392	98
10	15	8	60	225	64	3600	900	480	120
Jumlah	120	50	500	1470	282	25440	6006	2610	613

$$\sum x_1^2 = \sum X_1^2 - \frac{(\sum X_1)^2}{n} = 1470 - \frac{120^2}{10} = 1470 - 1440 = 30$$

$$\sum x_2^2 = \sum X_2^2 - \frac{(\sum X_2)^2}{n} = 282 - \frac{50^2}{10} = 282 - 250 = 32$$

$$\sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{n} = 25440 - \frac{500^2}{10} = 25440 - 25000 = 440$$

$$\sum x_1 x_2 = \sum X_1 X_2 - \frac{(\sum X_1)(\sum X_2)}{n} = 613 - \frac{120.50}{10} = 613 - 600 = 13$$

$$\sum x_1 y = \sum X_1 Y - \frac{(\sum X_1)(\sum Y)}{n} = 6006 - \frac{120.500}{10} = 6006 - 6000 = 6$$

$$\sum x_2 y = \sum X_2 Y - \frac{(\sum X_2)(\sum Y)}{n} = 2610 - \frac{50.500}{10} = 2610 - 2500 = 110$$

$$\bar{Y} = \frac{\sum Y_i}{n} = \frac{500}{10} = 50$$

$$\overline{X_1} = \frac{\sum X_1}{n} = \frac{120}{10} = 12$$

$$\overline{X_2} = \frac{\sum X_2}{n} = \frac{50}{10} = 5$$

Dengan demikian didapat nilai koefisien regresi sbb:

$$b_1 = \frac{(\sum x_2^2)(\sum x_1 y) - (\sum x_1 x_2)(\sum x_2 y)}{(\sum x_1^2)(\sum x_2^2) - (\sum x_1 x_2)^2} = \frac{32 \cdot 6 - 13 \cdot 110}{30 \cdot 32 - (13)^2} = \frac{192 - 1430}{960 - 169} = -\frac{1238}{791} = -1,5651$$

$$b_2 = \frac{(\sum x_1^2)(\sum x_2 y) - (\sum x_1 x_2)(\sum x_1 y)}{(\sum x_1^2)(\sum x_2^2) - (\sum x_1 x_2)^2} = \frac{30 \cdot 110 - 13 \cdot 6}{30 \cdot 32 - (13)^2} = \frac{3300 - 78}{791} = \frac{3222}{791} = 4,073$$

$$a = \overline{Y} - b_1 \overline{X_1} - b_2 \overline{X_2} = 50 + 1,5651(12) - 4,073(5) = 48,4162$$

Model Regresi Linear Berganda:

$$\hat{Y} = 48,4162 - 1,5651X_1 + 4,073X_2$$

Interpretasi:

Nilai awal sale revenue adalah sebesar 48,4162. Ketika biaya iklan meningkat maka nilai sale revenue akan menurun sebesar 1,5651 dan Ketika biaya quality control diperbesar maka nilai Sale revenue akan meningkat sebesar 4,073.

Koefisien Determinasi: $r^2 = \frac{b_1 \sum x_1 y + b_2 \sum x_2 y}{\sum y^2} = \frac{-1,5651 (6) + 4,073 (110)}{440} = \frac{438,64}{440} = 0,9969$

Artinya variable X_1 dan X_2 memberikan pengaruh yang sangat kuat terhadap Y yaitu sebesar 99,69% sedangkan sisanya sebesar 0,31% dipengaruhi oleh variable yang lain.

Koefisien Korelasi $r=\sqrt{r^2}=\sqrt{0.9969}=0.9984$ artinya hubungan antara variable X_1,X_2 dan Y sangat kuat.

Uji Signifikansi Parsial untuk $oldsymbol{b}_1$

Hipotesis

 $H_0: \beta = 0$ (tidak ada hubungan yang signifikan)

 $H_1: \beta \neq 0$ (ada hubungan yang signifikan)

- Tingkat Signifikansi : $\alpha = 0.05$
- Uji Statistik:

$$S_y = \sqrt{\frac{\sum (y - \bar{y})^2}{n - 2}} \Longrightarrow S_Y^2 = \frac{n \sum Y_i^2 - (\sum Y_i)^2}{n(n - 2)} = \frac{10(440) - 500^2}{10 \cdot 8} = 23,75$$

Sehingga
$$S_Y = \sqrt{23,75} = 4,873$$

$$S_{b_1} = \frac{S_y}{\sqrt{\sum x_1^2}} = \frac{4,873}{\sqrt{30}} = 0,8897$$

Dengan demikian, didapat

$$t = \frac{b_1}{S_{b_1}} = -\frac{1,5651}{0,8897} = -1,7591$$

Kriteria penolakan H_0

 H_0 ditolak jika $\left|t_{hitung}\right| \geq t_{\frac{\alpha}{2};df}$ dengan df=n-2=8. Karena |-1,7591|=1,7591<2,306 maka H_0 tidak ditolak.

Kesimpulan

Jadi, b_1 memberikan pengaruh yang cukup signifikan.

Uji Signifikansi Parsial untuk $oldsymbol{b}_2$

Hipotesis

 $H_0: \beta = 0$ (tidak ada hubungan yang signifikan)

 $H_1: \beta \neq 0$ (ada hubungan yang signifikan)

- Tingkat Signifikansi : $\alpha = 0.05$
- Uji Statistik:

$$S_y = \sqrt{\frac{\sum (y - \bar{y})^2}{n - 2}} \Longrightarrow S_Y^2 = \frac{n \sum Y_i^2 - (\sum Y_i)^2}{n(n - 2)} = \frac{10(440) - 500^2}{10 \cdot 8} = 23,75$$

Sehingga
$$S_Y = \sqrt{23,75} = 4,873$$

$$S_{b_2} = \frac{S_y}{\sqrt{\sum x_2^2}} = \frac{4,873}{\sqrt{32}} = 0,861$$

Dengan demikian, didapat

$$t = \frac{b_2}{S_{b_2}} = \frac{4,073}{0,861} = 4,7305$$

Kriteria penolakan H_0

 H_0 ditolak jika $\left|t_{hitung}\right| \ge t_{\frac{\alpha}{2};df}$ dengan df = n - 2 = 8. Karena |4,7305| = 4,7305 > 2,306 maka H_0 ditolak.

Kesimpulan

Jadi, b_2 tidak memberikan pengaruh yang cukup signifikan.

Uji Signifikansi Simultan Hasil Penaksiran

Hipotesis

 H_0 : Tidak Ada perbedaan yang signifikan

 H_1 : Ada Perbedaan Yang Signifikan

• Tingkat Signifikansi : $\alpha = 0.05$

Uji Statistik

Sumber Variabilitas	Derajat Kebebasan (df)	Jumlah Kuadrat (JK)	Rata-Rata Hitung	Nilai $oldsymbol{F}_{hitung}$
Regresi	k = 2	$ r^{2}(\sum y^{2}) $ = 0,9969(440) = 438,636	$JKR = \frac{r^2(\sum y^2)}{k}$ $= \frac{438,636}{2} = 219,318$	$F_{Hitung} = \frac{JKR}{JKG}$ 219,318
Residu/Eror	n-k-1 = 10 - 2 - 1 = 7	$(1-r^2)\left(\sum y^2\right)$ = (1-0,9969)(440) = 1,364	$JKG = \frac{(1 - r^2)(\sum y^2)}{n - k - 1}$ $= \frac{1,364}{7} = 0,195$	$= {0,195}$ $= 1124,7077$
Total	n - 1 = 9	$\sum y^2 = 440$		

• Kriteria penolakan H_0

 H_0 ditolak jika $\left|F_{hitung}\right| \geq F_{\alpha\;;df1;df_2}$ dengan $df_1=k=2$ dan $df_2=n-k-1=7$. Karena $F_{hitung}=1124,7077>4,74$ maka H_0 ditolak.

Kesimpulan

Jadi, Hasil penaksiran sales revenue ada perbedaan yang cukup signifikan dengn hasil sesungguhnya.

Hasil Prediksi dengan $X_1 = 20 \operatorname{dan} X_2 = 12 \operatorname{adalah}$

$$\hat{Y} = 48,4162 - 1,5651(20) + 4,073(12) = 65,9902$$

Jadi, diprediksikan hasil sales revenue saat biaya iklan 20 juta dan biaya quality control 12 juta adalah sebesar 65,9902.