coursera-solution

August 3, 2023

1 Task 4: Descriptive Analysis

[4]: boston_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	506 non-null	int64
1	CRIM	506 non-null	float64
2	ZN	506 non-null	float64
3	INDUS	506 non-null	float64
4	CHAS	506 non-null	float64
5	NOX	506 non-null	float64
6	RM	506 non-null	float64
7	AGE	506 non-null	float64
8	DIS	506 non-null	float64
9	RAD	506 non-null	float64
10	TAX	506 non-null	float64
11	PTRATIO	506 non-null	float64
12	LSTAT	506 non-null	float64
13	MEDV	506 non-null	float64

dtypes: float64(13), int64(1)

memory usage: 55.5 KB

```
[5]: boston_df.boxplot('MEDV')
plt.title('Boxplot of median value of owner occupied homes of the data')
plt.show()
```

Boxplot of median value of owner occupied homes of the data

From the boxplot we see a median of about 21, with most outliers above the maximum

```
[6]: boston_df.CHAS.value_counts().plot.barh()
plt.title('Barplot of Charles River Dummy variable of dataset')
plt.show()
```


We can see that this categorical field has most values to be 0

```
[7]: age_1 = '35 & younger'
age_2 = '35 to 70'
age_3 = '70 & over'
boston_df['AGE_GROUP'] = boston_df.AGE.apply(lambda x: age_1 if x<=35 else_u

age_2 if x< 70 else age_3)
boston_df.boxplot('MEDV', by='AGE_GROUP')
plt.show()
```


viewing the boxplot by age groups show a decline in median of MEDV and an increase in outliers as age group increases

```
[9]: boston_df.plot.scatter('INDUS', 'NOX')
plt.title('Scatter plot showing the relationship between NOX and INDUX')
plt.show()
```


There seems to be some correlation between the two variables

```
[10]: boston_df.PTRATIO.plot.hist()
   plt.title('Histogram of pupil teacher ratio')
   plt.show()
```


appears to have a skew to the right

2 Task 5: Hypothesis Testing

- 2.1 Is there a significant difference in MEDV for houses bounded by Charles River or not?
 - null hypothesis: u1 = u2
 - aplha = 0.05

```
[11]: stats.levene(boston_df.query('CHAS== 1').MEDV, boston_df.query('CHAS== 0').

GMEDV, center='mean')
```

[11]: LeveneResult(statistic=8.75190489604598, pvalue=0.003238119367639829)

p-val < alpha, we can assume unequal variance

[13]: Ttest_indResult(statistic=3.113291312794837, pvalue=0.003567170098137517)

Conclusion: p-val < alpha, hence we reject the null hypothesis as there is enough evidence that the means of the two groups differ

2.2 Is there a difference in Median values of houses for each proportion of owner coupied units build prior to 1940?

- null hypothesis: u1 = u2 = u3
- alpha = 0.05

```
[15]: stats.levene(
    boston_df.query(f"AGE_GROUP == '{age_1}'").MEDV,
    boston_df.query(f"AGE_GROUP == '{age_2}'").MEDV,
    boston_df.query(f"AGE_GROUP == '{age_3}'").MEDV,
    center='mean'
)
```

[15]: LeveneResult(statistic=2.7806200293748304, pvalue=0.06295337343259205)

hence we can assume equal variance

```
[16]: stats.f_oneway(
    boston_df.query(f"AGE_GROUP == '{age_1}'").MEDV,
    boston_df.query(f"AGE_GROUP == '{age_2}'").MEDV,
    boston_df.query(f"AGE_GROUP == '{age_3}'").MEDV
)
```

[16]: F_onewayResult(statistic=36.40764999196599, pvalue=1.7105011022702984e-15)

Conclusion: The p-val * 2 < alpha, hence we reject the null hypothesis as there is enough evidence that at less one group mean differs

2.3 Can we conclude that there is no relationship between NOX and INDUS?

- null hypothesis: there is no correlation between NOX and INDUS
- alpha = 0.05

```
[17]: stats.pearsonr(boston_df.NOX, boston_df.INDUS)
```

[17]: PearsonRResult(statistic=0.7636514469209151, pvalue=7.913361061239527e-98)

Conclusion: p-val is less than alpha, we reject the null hypothesis and coclude that there is a relationship between NOX and INDUS

3 What is the impact of an additional DIS on the MEDV?

```
[18]: X = sm.add_constant(boston_df.DIS)
y = boston_df.MEDV
```

```
model = sm.OLS(y, X).fit()
model.summary()
```

[18]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	MEDV	R-squared:	0.062
Model:	OLS	Adj. R-squared:	0.061
Method:	Least Squares	F-statistic:	33.58
Date:	Thu, 03 Aug 2023	Prob (F-statistic):	1.21e-08
Time:	09:18:09	Log-Likelihood:	-1823.9
No. Observations:	506	AIC:	3652.
Df Residuals:	504	BIC:	3660.
Df Modol:	1		

Df Model: 1
Covariance Type: nonrobust

========		========			========	========		
	coef	std err	t	P> t	[0.025	0.975]		
const DIS	18.3901 1.0916	0.817 0.188	22.499 5.795	0.000	16.784 0.722	19.996 1.462		
========	========	========		========	========	========		
Omnibus:		139.	779 Durb	in-Watson:		0.570		
Prob(Omnibus):		0.	000 Jarq	ue-Bera (JB)	:	305.104		
Skew:		1.	466 Prob	(JB):		5.59e-67		
Kurtosis:		5.	5.424 Cond			9.32		

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

Conclusion: An additional DIS will lead to an increase of 1.0916 in MEDV according to the regression model

[]: