Direct Sum Definition

Definition. Summation of Sets If S_1 and S_2 are nonemtpy subsets of a vector space V, then the sum of S_1 and S_2 , denoted $S_1 + S_2$, is the set

$$\{x+y:x\in S_1\ and\ y\in S_2\}$$

- 1. $W_1 + W_2$ is a subspace of V containing both W_1 and W_2
- 2. If for a subset $S \subseteq V$, $W_1 \subseteq S$ and $W_2 \subseteq S$, then $W_1 + W_2 \subseteq S$

Definition. Direct Sum A vector space V is called the direct sum of W_1 and W_2 if W_1 and W_2 are subspaces of V such that $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$. We denote that V is the direct sum of W_1 and W_2 by writing $V = W_1 + W_2$. We denote V is the direct sum of W_1 and W_2 by writing $V = W_1 \oplus W_2$

- 1. Direct sum of the set of upper triangular like matrices and lower triangular matrices is $M_{m\times n}(F)$
- 2. The trick of decomposing vector space into direct sums is that the intersection of subsets yield the zero vector

5.4 Invariant Subspaces and Direct Sum

Chapter 7 Canonical Forms

7.1 The Jordan Canonical Form

Definition. Jordan Block and Jordan Canonical Form Select ordered basis whose union is an ordered basis β , the Jordan caconical basis for T, for V such that

$$[T]_{\beta} = \begin{pmatrix} A_1 & O & \cdots & O \\ O & A_2 & \cdots & O \\ \vdots & \vdots & & \vdots \\ O & O & \cdots & A_k \end{pmatrix}$$

where A_i are jordan block corresponding to λ

$$A_{i} = (\lambda) \qquad or \qquad A_{i} = \begin{pmatrix} \lambda & 1 & O & \cdots & O & O \\ O & \lambda & 1 & \cdots & O & O \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ O & O & O & \cdots & \lambda & 1 \\ O & O & O & \cdots & O & \lambda \end{pmatrix}$$

Definition. Generalized Eigenvector Let T be a linear operator on a vector space V, and let λ be a scalar. A nonzero vector x in V is called a generalized eigenvector of T corresponding to λ if $(T - \lambda I)^p(x) = 0$ for some positive integer p

- 1. For v in a Jordan canonical basis for T, $(T \lambda I)^p(v) = 0$ for sufficiently large p. Eigenvectors satisfy this condition for p = 1
- 2. If x is a generalized eigenvector of T corresponding to λ , and p is smallest positive integer for which $(T \lambda I)^p(x) = 0$, then $(T \lambda I)^{p-1}(x) = 0$ is an eigenvector of T corresponding to λ

$$(T - \lambda I)(v) = 0$$
 where eigenvector $v = (T - \lambda I)^{p-1}(x) \neq 0$

Definition. Generalized Eigenspace Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. The generalized eigenspace of T corresponds to λ , denoted K_{λ} , is the subset of V defined by

$$K_{\lambda} = \{x \in V : (T - \lambda I)^p(x) = 0 \text{ for some positive integer } p\} = N((T - \lambda I)^p)$$

Theorem. 7.1 Properties of Generalized Eigenspace Let T be linear operator on a vector space V, and let λ be an eigenvalue of T. Then

- 1. K_{λ} is a T-invariant subspace of V containing E_{λ} (the eigenspace of T corresponding to λ)
- 2. For any scalar $\mu \neq \lambda$, the restiction $T \mu I$ to K_{λ} is one-to-one.

Note

- 1. Second property implies $E_{\mu} = N(T \mu I) = 0$ for all $\mu \neq \lambda$, so K_{λ} contains only one eigenspace E_{λ} and λ is the only eigenvalue of T_{λ_k}
- 2. Proof of one-to-one relies on proving $N(T \mu I) = 0$, i.e. any $x \in K_{\lambda}$, x = 0, by contradiction.

Theorem. 7.2 Property of Generalized Eigenspace When Characteristic Polynomial Splits Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Suppose that λ is an eigenvalue of T with multiplicity m. Then

- 1. $dim(K_{\lambda}) \leq m$
- 2. $K_{\lambda} = N((T \lambda I)^m)$

For proofs

1. Use theorem 5.21 T-invariant $W \subseteq V$ have $P_{T_W}(t) \mid P_T(t)$, we have $[T_W]_{\beta}$ in the form of a Jordan Block, therefore

$$h(t) = P_{T_W}(t) = (-1)^d (t - \lambda)^d$$

2. Prove forward direction (\Rightarrow) Use theorem 5.23 Cayley-Hamilton $f(T) = T_0$, i.e. linear operator satisfies its characteristic equation, on T_W

$$h(T_W) = (-1)^d (T - \lambda I)^d = T_0$$

So
$$(T - \lambda I)^d(x) = 0$$
 for all $x \in W$ where $d \leq m$, so $K_\lambda \subseteq N((T - \lambda I)^m)$

Theorem. 7.3 Lemma for Proving That Basis for $E_{\lambda}s$ ' Spans Entire Space Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits, and let $\lambda_1, \lambda_2, \dots, \lambda_k$ be the distinct eigenvalues of T. Then for every $x \in V$, there exists vectors $v_1 \in K_{\lambda_i}$, $1 \le i \le k$, such that

$$x = v_1 + v_2 + \dots + v_k$$

Proof. Cayley-Hamilton theorem works on some special case of characteristic polynomial of the form $(t - \lambda)^d$ yields the zero transformation, which makes some subset of the vector space satisfy condition for generalized eigenspace, i.e. $(T - \lambda I)(x) = 0$

Theorem. 7.4 Basis for Generalized Eigenspace

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits, and let $\lambda_1, \dots, \lambda_k$ be the distinct eigenvalues of T with corresponding multiplicity m_1, \dots, m_k . For $1 \leq i \leq k$, let β_i be an ordered basis for K_{λ_i} . Then the following statements are true

- 1. $\beta_i \cap \beta_i = \emptyset$ for $i \neq j$
- 2. $\beta = \beta_1 \cap \beta_2 \cap \cdots \cap \beta_k$ is an ordered basis for V
- 3. $dim(K_{\lambda_i}) = m_i$ for all i

Corollary. Assumption for Diagonalizability Let T be a linear operator on a finitedimensional vector space V such that the characteristic polynomial of T splits. Then T is diagonalizable if and only if $E_{\lambda} = K_{\lambda}$ for every eigenvalue λ of T

Definition. Cycle of Generalized Eigenvectors Let T be a linear operator on a vector space V, and let x be a generalized eigenvector of T corresponding to the eigenvalue λ . Suppose that p is the smallest positive integer for which $(T - \lambda I)^p(x) = 0$. Then the ordered set

$$\{(T - \lambda I)^{p-1}(x), (T - \lambda I)^{p-2}(x), \cdots, (T - \lambda I)(x), x\}$$

is called a cycle of generaliezd eigenvectors of T corresponding to λ . The vectors $(T - \lambda I)^{p-1}(x)$ and x are called the initial vector and the end vector of the cycle, respectively. We say that the length of the cycle is p.