Ex2.1 $(D(f), \mathcal{O}_X|_{D(f)}) \approx (\operatorname{Spec} A_f, \mathcal{O}_{\operatorname{Spec} A_f})$

A :: ring, $X = \operatorname{Spec} A$, $f \in A$ とし, $D(f) = (V((f)))^c$ とする. $S = \{1, f, f^2, \dots\}$ とし,以下のように写像を定める.

$$\begin{array}{cccc} \phi: & D(f) & \to & \operatorname{Spec} A_f \\ & \mathfrak{p} & \mapsto & S^{-1}\mathfrak{p} \\ & \mathfrak{q} \cap A & \longleftrightarrow & \mathfrak{q} \end{array}$$

 $\mathfrak p$ は S と共通部分を持たない素イデアルだから、 $\mathsf{Ati} ext{-Mac}$ $\mathsf{Prop}3.11$ より、 ϕ は全単射.

C:: open in D(f) とする. この時,

$$C = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{I} \subseteq \mathfrak{p}, (f) \not\subseteq \mathfrak{p} \}$$

となるイデアル $\mathfrak{I}\subset A$ が存在する. Ati-Mac Prop3.3 より、 ϕ は単射を保つから、 $\phi(C)$ も closed. 逆に D:: open in Spec A_f をとる. 再び Ati-Mac Prop3.11 より、Spec A_f の任意の元は拡大イデアルだから、

$$D = \{ \phi(\mathfrak{p}') \in \operatorname{Spec} A_f \mid \phi(\mathfrak{I}') \subseteq \phi(\mathfrak{p}'), \phi(f) \not\subseteq \phi(\mathfrak{p}') \}$$

と書ける. つまり, $D=\phi(V(\mathfrak{I}'))$. ϕ は全単射なので $\phi^{-1}(D)=V(\mathfrak{I}')$ となり, これは closed. 以上より ϕ が同相写像であることがわかった.

Prop2.3 と同様に locally ringed space の射を構成しておく. これは

$$f: \mathfrak{p} \mapsto \phi^{-1}(\mathfrak{p}), \quad f^{\#}: \mathcal{O}_{\operatorname{Spec} A_f}(-) \mapsto \mathcal{O}_X|_{D(f)}(\phi(-))$$

で定義される.

Ex2.2 IF X :: scheme, and U :: open in X, then $(U, \mathcal{O}_X|_U)$:: scheme.

X は scheme だから、開被覆 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ が存在し、 $(U_{\lambda},\mathcal{O}_{X}|_{U_{\lambda}})$ は affine scheme となる. すなわち、 R_{λ} :: ring が存在して

$$(U_{\lambda}, \mathcal{O}_X|_{U_{\lambda}}) \approx (\operatorname{Spec} R_{\lambda}, \mathcal{O}_{\operatorname{Spec} R_{\lambda}})$$

と書ける.

 $V_{\lambda}=U\cap U_{\lambda}$ とすると、 $\{V_{\lambda}\}$ は U の開被覆である。そして各 $V_{\lambda}\subseteq U_{\lambda}$ は affine scheme の開集合。教科書 pp.70-71 から、affine scheme の open base は D(f) $(f\in R_{\lambda})$ の形の開集合全体である。したがって、各 V_{λ} について、以下のような条件を満たす R_{λ} の部分集合 F_{λ} が取れる.

$$V_{\lambda} = \bigcup_{f \in F_{\lambda}} D(f).$$

まとめると,

$$U = \bigcup_{\lambda \in \Lambda} V_{\lambda} = \bigcup_{\lambda \in \Lambda} \bigcup_{f \in F_{\lambda}} D(f).$$

 $f \in R_{\lambda}$ であるとき, $D(f) \subseteq U_{\lambda} = \operatorname{Spec} R_{\lambda}$ と Ex2.1 より $(D(f), \mathcal{O}_{U_{\lambda}}|_{D(f)})$ は affine. よって U は affine scheme で被覆される. $(\mathcal{O}_{U} := \mathcal{O}_{X}|_{U}$ に注意.)

Ex2.3 Reduced Schemes.

scheme (X, \mathcal{O}_X) が reduced とは、任意の開集合 $U \subseteq X$ について $\mathcal{O}_X(U)$ がべキ零元を持たない、すなわち $\mathcal{O}_X(U)$ が reduced ring である、ということ、 (X, \mathcal{O}_X) の reduced scheme $(X, (\mathcal{O}_X)_{\mathrm{red}})$ を、presheaf $U \mapsto \mathcal{O}_X(U)/\operatorname{Nil}(\mathcal{O}_X(U))$ の sheafification とする.この X から得られた reduced scheme を X_{red} と書く.

- (a) (X, \mathcal{O}_X) :: reduced $\iff {}^\forall P \in X, \ \mathcal{O}_{X,P}$:: reduced. 両者の対偶を示す.
- **■**(\iff) U :: open in $X, s \in \mathcal{O}_X(U), s \neq 0$ とする. s t nilpotent であったと仮定すると, $s^n = 0$ となる $n \in \mathbb{N}$ が存在する. $s \neq 0$ から,ある点 $P \in U$ においては $s(P) \neq 0$. しかし $s^n(P) = 0 = (s(P))^n$ なので, $s(P) \in \mathcal{O}_{X,P}$ は nilpotent.
- \blacksquare (\Longrightarrow). ある点 P において, $a/f \in \mathcal{O}_{X,P} \cong A_{\mathfrak{p}_P}$ が nilpotent であったとする.この時,P の開近 傍 D(f) 上で定義される定値写像 c(*)=a/f が取れる.明らかにこの写像は $\mathcal{O}_X(D(f))$ の元で,しかも nilpotent.
- (b) $(X, (\mathcal{O}_X)_{red})$:: scheme.

 (X, \mathcal{O}_X) が affine scheme だと仮定して証明する. 調べる必要があるのは, $(\mathcal{O}_X)_{\mathrm{red}}$ は sheaf of ring on Spec A であること, すなわち以下が成り立つことである.

$$\forall U :: \text{ open in } X, \quad \forall s \in (\mathcal{O}_X)_{\text{red}}(U), \quad \forall \mathfrak{P} \in X, \quad P \in \exists V \subseteq U \forall \mathfrak{q} \in V, \quad s(Q) \in A_{\mathfrak{q}}.$$

 $s \in (\mathcal{O}_X)_{\mathrm{red}}(U)$ を任意に取る. sheafification のやり方から、点 P の十分小さな開近傍 V について $s \in \mathcal{O}_X(U)/\operatorname{Nil}(\mathcal{O}_X(U))$ と言える(正確には presheaf を sheaf に埋め込む射が必要).(TODO)

(c) If X :: reduced scheme, then $X \to Y$ is uniquely factored into $X \to Y_{\mathsf{red}} \to Y$.

Ex2.4 Functor Γ and Affine Schemes.

 $A:: \operatorname{ring}, X:: \operatorname{scheme}$ とする. 写像 α を以下で定める.

$$\alpha: \operatorname{Hom}_{\mathbf{Sch}}(X, SpecA) \to \operatorname{Hom}_{\mathbf{Rings}}(A, \Gamma(X, \mathcal{O}_X))$$

$$(f, f^{\#}) \mapsto f^{\#}_{\operatorname{Spec} A}.$$

これが bijective であることを示す.

■Definition of β : Hom $(A, \Gamma(X, \mathcal{O}_X)) \to \text{Hom}(X, Spec A)$. X \mathcal{O} open affine cover \mathfrak{F} $\{U_i\}_{i\in I}$ とおく、また、 B_i :: ring \mathfrak{F}

$$(U_i, \mathcal{O}_X|_{U_i}) \equiv (\operatorname{Spec} B_i, \mathcal{O}_{\operatorname{Spec} B_i})$$

となるものとして定める. この時,写像 β を次のように定める. $\phi \in \operatorname{Hom}(A,\Gamma(X,\mathcal{O}_X))$ とすると,

$$\phi_i := \operatorname{res}_X^{U_i} \circ \phi : A \to \Gamma(U_i, \mathcal{O}_X) = B_i$$

が得られる. ここから誘導される morphism of schemes $(f_i, f_i^\#): U_i \to \operatorname{Spec} A$ を用いて、 $(f, f^\#): (X, \mathcal{O}_X) \to (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ を

$$f(x) = x \in U_i$$
 となる i について $f_i(x); f_U^\#(s) = s \circ f$

とおく.ここまでの ϕ から $(f,f^{\#})$ を得る操作を,まとめて β とおく.

- $\blacksquare \beta \circ \alpha = id.$
- $\blacksquare \alpha \circ \beta = id.$

Ex2.5 Spec \mathbb{Z} is the Final Object in Sch.

 \mathbb{Z} は次元 1 の環だから、 $\operatorname{Spec} \mathbb{Z}$ は以下の図のようになる.

任意の環 R について、homomorphism $\phi: \mathbb{Z} \to R$ を考える.準同型だから $\phi(0) = o, \phi(1) = e, \phi(-1) = -e$ (ただし o, e はそれぞれ R の加法/乗法単位元.)となる.そして \mathbb{Z} は無限巡回群だから、 $\phi(n-m) = \sum_{i=1}^n e + \sum_{i=1}^m (-e)$ となり、よって準同型 $\mathbb{Z} \to R$ はただひとつ.つまり $|\operatorname{Hom}(\mathbb{Z},R)| = 1$. Spec \mathbb{Z} は affine space だから、Ex2.4 より、任意の scheme X について $|\operatorname{Hom}(X,\operatorname{Spec}\mathbb{Z})| = 1$. すなわち、Spec \mathbb{Z} は Sch \mathbb{O} final object となる.

Ex2.6 Spec $\{0\}$ is the Initial Object in Sch.

零環 $\{0\}$ はただひとつのイデアル(したがって素イデアル)(0) を持つから, $\operatorname{Spec}\{0\}$ は 1 点集合.零環から別の環への準同型写像は $0\mapsto 0$ なるものしか無い.scheme の間の射は環の間の準同型から作られるものしかないから($\operatorname{Prop2.3c}$), $\operatorname{Spec}\{0\}$ から別の scheme への射は $0\mapsto 0$ から得られるものしか無い.よって $\operatorname{Spec}\{0\}$ は initial object.

Ex2.7 Residue Field.

Residue field of x on X とは、剰余体 $k(x) := \mathcal{O}_{X,x}/\mathfrak{m}_{X,x}$ のことである.

K:: field, $O := (0) \subset K$ とする. すると $\operatorname{Spec} K = \{O\}$ であり、開集合は \emptyset , $\operatorname{Spec} K = \{O\}$ の二つのみ. したがって $\mathcal{O}_{\operatorname{Spec} K,O} = \mathcal{O}_{\operatorname{Spec} K}(\operatorname{Spec} K) = K$ となる. $\mathcal{O}_{\operatorname{Spec} K,O}$ は $\mathcal{O}_{\operatorname{Spec} K}(\operatorname{Spec} K)$ のみからなる direct system \mathcal{O} direct limit だから、これらは厳密に等しい.

 $\blacksquare(f, f^{\#}) \to (x, \phi)$ $(f, f^{\#}) : (\operatorname{Spec} K, \mathcal{O}_{\operatorname{Spec} K}) \to (X, \mathcal{O}_X)$ を考えよう。 $f : \operatorname{Spec} K \to X$ は、 $\operatorname{Spec} K$ が 1 点空間であることから,f(O) の値のみで定まる.この値を x := f(O) としておこう. $f_*\mathcal{O}_{\operatorname{Spec} K}$ は

$$f_*\mathcal{O}_{\operatorname{Spec} K}(U) = \begin{cases} K & (x \in U) \\ 0 & (x \notin U) \end{cases}$$

で定まる. これは K の skyscraper sheaf (Ex.1.17) である. すると, $f^\#: \mathcal{O}_X \to f_*\mathcal{O}_{\operatorname{Spec} K}$ は

$$(f^{\#})_x: \mathcal{O}_{X,x} \to \mathcal{O}_{\operatorname{Spec} K, f^{-1}(x)} = \mathcal{O}_{\operatorname{Spec} K,O} = K$$

を誘導する†1.これは以下の図式を可換にする射である.

$$\mathcal{O}_{X,x} \xrightarrow{(f^{\#})_{x}} \mathcal{O}_{\operatorname{Spec} K,O}$$

$$\uparrow^{\mu_{U}} \qquad \qquad \parallel$$

$$\mathcal{O}_{X}(U) \xrightarrow{(f^{\#})_{U}} \mathcal{O}_{\operatorname{Spec} K}(\{O\})$$

ただしこの図式では $x \in U \subseteq X$. $\operatorname{im}(f^{\#})_x \subseteq K$ は体だから,第一同型定理より, $\ker(f^{\#})_x$ は極大イデアル.よって $(f^{\#})_x$ は

$$\mathcal{O}_{X,x} \longrightarrow \mathcal{O}_{X,x}/\mathfrak{m}_{X,x} = k(x) > \xrightarrow{\phi} K$$

へと分解される. こうして $(f, f^{\#})$ から $x \in X$ と $\phi_f : k(x) \to K$ が得られた.

 $\blacksquare(x,\phi) \to (f,f^\#)$ 逆に $x \in X$ と $\phi: k(x) \to K$ から $(f,f^\#)$ を作る.これには以上の手順を逆にたどればよい.まず f は以下のものになる.

$$f: \operatorname{Spec} K \to X$$

$$O \mapsto x$$

 $\phi: k(x) \to K$ から $f^{\#}$ を復元するには、以下のようにする.

$$f_U^{\#}: \mathcal{O}_X(U) \to (f_*\mathcal{O}_{\operatorname{Spec} K})(U)$$

$$s \mapsto \begin{cases} \Phi_U(s) & (x \in U) \\ 0 & (x \notin U) \end{cases}$$

ここでの Φ_U (with $x \in U$) は,以下のような写像の結合である.

$$\mathcal{O}_X(U) \longrightarrow \varinjlim_{x \in V} \mathcal{O}_X(V) = \mathcal{O}_{X,x} \longrightarrow \mathcal{O}_{X,x}/\mathfrak{m}_{X,x} = k(x) \stackrel{\phi}{\longrightarrow} K = (f_*\mathcal{O}_{\operatorname{Spec} K})(U)$$

 $f^{\#}$ から ϕ を作った時, ϕ から再び $f^{\#}$ に戻ることは, 前段落で見た二つの図式から分かる.

Ex2.8 Hom(Spec $k[\epsilon]/(\epsilon^2), X$) $\cong \text{Rat}(X) \times T_x X$.

Ex2.9 Uniquely-Existence of Generic Point.

X を scheme とし,Z をその nonempty irreducible closed subset とする. この時,Z がただひとつの generic point を持つことを示す.

■Affine Case. affine scheme Spec A の irreducible closed subset C を考えよう。これは $\{\mathfrak{p}\in \operatorname{Spec} A\mid \mathfrak{a}\subseteq\mathfrak{p}\}$ のように表される素イデアルの集合である。Ati-Mac Exc1.8 $^{\dagger 2}$ から,C は包含関係に関しての極小元を持つ。この極小元全体を G とおくと,これは 1 点からなる。これを示すため,G が 2 点以上からなると仮定しよう。すると G は空でない二つの真の部分集合の和 $G=G_0\cup G_1$ として書くことが出来る。すると G,G_0,G_1 の定義から

$$\operatorname{cl}_C(G_0), \operatorname{cl}_C(G_1) \subsetneq C$$
 and $\operatorname{cl}_C(G) = C$.

 $^{^{\}dagger 1}(f_*\mathcal{O})_P = \mathcal{O}_{f^{-1}(P)}$ を使った.

 $^{^{\}dagger 2}$ これは以下のように解く. C の全順序部分集合 Γ を考え, $\gamma = \bigcap \Gamma$ とする. $\gamma \in C$ を示せば良い. 非自明な部分は $\gamma \in \operatorname{Spec} A$ のみ. $x,y \in A$ について $x,y \notin \gamma$ であったと仮定しよう. すると $x \notin \mathfrak{p}, y \notin \mathfrak{q}$ となる $\mathfrak{p}, \mathfrak{q} \in \Gamma$ が存在する. Γ は全順序なので, $\mathfrak{p} \subseteq \mathfrak{q}$ と仮定できる. すると $x,y \notin \mathfrak{p}$. \mathfrak{p} は素イデアルなので $xy \notin \mathfrak{p}$ が得られる. よって $x,y \notin \gamma$ ならば $xy \notin \gamma$.

閉包に関する general topology の結果から

$$C = \operatorname{cl}_C(G) = \operatorname{cl}_C(G_0 \cup G_1) = \operatorname{cl}_C(G_0) \cup \operatorname{cl}_C(G_1) = C.$$

こうして C は空でない真の閉部分集合の和で書けることがわかった.これは C は irreducible であることに反する.よって背理法により C が 1 点集合であることがわかった.これは C がただ 1 つの generic point を持つことを意味する.

- ■Useful Fact (!). 一般に, $D \subset X$ が X の dense subset ならば, $X \setminus D$ は空集合の他に開集合を含まない. これは直ちに理解できるが重要なので記しておく.
- ■General Case. affine open subset $U \subseteq X$ であって, $U \cap Z \neq \emptyset$ であるものをとる.この時, $U \cap Z$ (:: closed in U) は affine scheme σ closed subset だから,前段落より,必ず generic point ζ を持つ.この ζ は Z の generic point でもある.このことを示すために, $\{\zeta\}$ が Z で dense でないとしよう.すると $Z \setminus \{\zeta\}$ は $V(\neq \emptyset)$:: open in Z を含む.Z は irreducible だから $V \cap U \neq \emptyset$.今 ζ は $Z \cap U$ の generic point としたから, $(U \cap Z) \setminus \{\zeta\} = U \cap (Z \setminus \{\zeta\})$ は $U \cap Z$ の開集合を含まない.しかし今

$$V \subseteq Z \setminus \{\zeta\}$$
 robb, $\emptyset \neq U \cap V \subseteq U \cap (Z \setminus \{\zeta\})$.

これは ζ が $U\cap Z$ の generic point で無いことを意味し, ζ のとり方に反する.よって $\zeta\in U\cap Z$ は Z の generic point である.また, ζ の他に generic point ζ' が存在したとしよう. $\zeta'\not\in Z\cap U$ であれば $Z\setminus\{\zeta'\}$ は空でない開集合 $Z\cap U$ を含むことになるので, $\zeta,\zeta'\in Z\cap U$.前段落の結果より, $\zeta=\zeta'$ が 得られる.

Ex2.10 Spec $\mathbb{R}[x]$

 $\operatorname{Spec}\mathbb{R}[x]$ の元は、既約多項式または0 が生成する単項イデアルである。 $\mathbb{R}[x]$ の既約多項式は、一次式または二次式に限られる(代数学の基本定理の初期バージョン)。 したがって $\mathbb{R}[x]$ の既約多項式は

$$\mathbb{C}_{\mathfrak{F}>0} = \{x + iy \mid y \ge 0\}$$

の元と一対一に対応する.

Ex2.11 Spec $\mathbb{F}_p[x]$

図を書くと次のようになる.この円錐は上へ限りなく続く.

- Ex2.12 Gluing Lemma.
- Ex2.13 Quasi-Compact/Noetherian Space.
- (a) Noethrian \iff Every Open Subset is Quasi-Compact.
- ■(\Longrightarrow). Ch.I, Ex1.7 ですべて示した.
- ■(\longleftarrow). 可算開集合族 $\mathfrak{U} = \{U_i\}_{i \in \mathbb{N}}$ が昇鎖 $U_0 \subseteq U_1 \subseteq \ldots$ をなすとしよう. $U = \bigcup_{i \in \mathbb{N}} U_i$ とすると、 \mathfrak{U} は U の open cover である. なので仮定より finite sub-cover \mathfrak{U}_{fin} が存在する. \mathfrak{U} は昇鎖なので、 \mathfrak{U}_{fin} も有限昇鎖をなす. その有限昇鎖の中でもっとも大きい物をとれば、それは U と一致する. これで主張が示せた.

(b)

 $X = \operatorname{Spec} A$ とする. 以下を示す: X の開集合 U が quasi-compact $\iff U$ は基本開集合 D(f) の有限和で表せる.

- \blacksquare (\Longrightarrow).
- **■**(<==).
- (c) $A :: Noethrian \implies \operatorname{Spec} A :: Noethrian.$
- (d) Give Example: $A :: Noethrian \not\longleftarrow Spec A :: Noethrian.$

 x_1,x_2,\ldots を不定元とし, $A=\mathbb{Z}[x_1,x_2,\ldots]/(x_1,x_2,\ldots)^2$ を考える. x_i の R における像を e_i とすると,任意の i,j について $e_ie_j=0$.イデアル (e_1,e_2,\ldots) は有限生成でないから,この環は Noethrian ring でない.Spec A が Noethrian であることを示そう.実は,Spec A の任意の開集合は基本開集合 D(f) の形に書ける. $V(\mathfrak{a})=V(\sqrt{\mathfrak{a}})$ だから,任意のイデアル $\mathfrak{a}\subset A$ について, $\sqrt{(f)}=\sqrt{\mathfrak{a}}$ となる元 $f\in A$ が存在することを示せば良い.

A の元は、 $e_ie_j=0$ より、 $1,e_1,e_2,\ldots$ の有限線形和で表される。 $\mathfrak a$ の元 a をとると、これは定義より生成元の有限線形和。なので結局、以下のように表される。

$$a = c_0 + c_1 e_1 + \dots + c_r e_r$$
 where $r \in \mathbb{N}, \{c_i\}_{i=0}^r \subseteq \mathbb{Z}$.

n > 0 について a^n は,

$$a^n = c_0^n + nc_0^{n-1}(c_1e_1 + \dots + c_re_r).$$

- Ex2.14 $\operatorname{Proj} S$
- Ex2.15 The Fuctor t.
- Ex2.16 X_f .

X :: scheme, $f \in \Gamma(X, \mathcal{O}_X) =: A$ について, X_f を次のように定める.

$$x \in X_f \iff f_x :: \text{ unit in } \mathcal{O}_{X,x}.$$

(a) For $X \supseteq U = \operatorname{Spec} B$, $X_f \cap U = D(\bar{f})$.

 $U\subseteq X$ を open affine subscheme とし, $U=\operatorname{Spec} B$ とする. さらに \bar{f} で $f|_U\in\Gamma(U,\mathcal{O}_X|_U)=B$ を表す.この時,以下が成り立つ.

$$x \in X_f \cap U$$

$$\iff [f_x :: \text{ unit in } \mathcal{O}_{X,x}] \wedge [x \in U]$$

$$\iff \bar{f}_x = \frac{\bar{f}}{1} :: \text{ unit in } B_{\mathfrak{p}_x}$$

$$\iff \bar{f} \notin \mathfrak{p}_x$$

$$\iff x \in D(\bar{f})$$

ただし $\mathfrak{p}_x \subseteq B$ は点 x に対応する素イデアル. よって $X_f \cap U = D(\bar{f})$.

U :: open in X かつ $X_f \cap U = D(\bar{f})$:: open in U なので、 $X_f \cap U$:: in X. X の open affine cover を考えれば、 X_f :: open in X が分かる.

(b) For $a \in A$, If X :: quasi-compact and $a|_{X_f} = 0$ then $\exists n > 0, f^n a = 0$.

 $\{U_i\}_{i\in I}$ を X の open affine cover とする. X :: quasi-compact という仮定から, I は有限であると仮定して構わない. また, $U_i=\operatorname{Spec} B_i$ とする.

 $a \in A$ をとり、 $a|_{X_f} = 0$ であるとする.すると任意の i について $a|_{U_i} = 0 = 0/1$)、 $a|_{U_i} \in B_i$.前 section から $X_f \cap U = D(f|_{U_i})$ なので、以下が成り立つ $^{\dagger 3}$.

$$\forall i \in I, \quad \exists n_i > 0, \quad (f|_{U_i})^{n_i} (a|_{U_i} \cdot 1 - 1 \cdot 0) = (f^{n_i}a)|_{U_i} = 0.$$

I は有限だから、 $n=\max_{i\in I}n_i$ が存在する.明らかに任意の i について $(f^na)|_{U_i}=0$ だから,Identity Axiom により $f^na=0$ in A.

(c) Under Some Assumption, $\forall b \in \Gamma(X_f, \mathcal{O}_{X_f}), \exists n > 0, \exists a \in A, f^nb = a|_{X_f}.$

X は finite affine open cover $\{U_i\}_{i=1}^r$ を持ち、任意の i,j について $U_i \cap U_j$:: quasi-compact であるとする. $U_i = \operatorname{Spec} B_i$ とする. (次の問題 (d) でも X にこの仮定を置く)

(a) より $U_i \cap X_f = D(f|_{U_i})$, かつ $\operatorname{Prop} 2.2$ より $\mathcal{O}_{U_i}(D(f|_{U_i})) = (B_i)_{f|_{U_i}}$. なので $b|_{D(f|_{U_i})} \in (B_i)_{f|_{U_i}}$ について以下が成り立つ. ただし $f_i = f|_{U_i}$ とした.

$$\exists m_i > 0, \quad \exists b_i \in B_i, \quad (f^{m_i}b)|_{D(f_i)} = b_i|_{D(f_i)}.$$

 $m = \max_i m_i$ とすれば以下のようにまとめられる.

$$\exists a_i \in B_i, \ (f^m b)|_{D(f_i)} = a_i|_{D(f_i)}.$$

次に $a_i \in B_i = \Gamma(U_i, \mathcal{O}_{U_i})$ を貼りあわせる.そのために (b) を, $X = U_i \cap U_i$ として利用しよう. $X_{ij} = U_i \cap U_j, f_{ij} = f|_{U_i \cap U_j} \in \Gamma(U_{ij}, \mathcal{O}_{U_{ij}})$ とおく.すると $(X_{ij})_{f_{ij}} = X_f \cap X_{ij}$ となる. $a_i - a_j \in \Gamma(U_{ij}, \mathcal{O}_{U_ij})$ を $(X_{ij})_{f_{ij}} \subset D(f_i)$ に制限すると 0 になるから,(b) より,以下が成り立つ.

$$\exists n_{ij} > 0, \ (f_{ij})^{n_{ij}} (a_i - a_j) = 0.$$

 $^{^{\}dagger 3}$ 商環の等号の定義からは $n_i \geq 0$ であるが, $n_i > 0$ としても問題ない.

これをすべての組(i,j)について考えれば、以下が得られる.

$$\exists n > 0, (f^n a_i)|_{U_{i,i}} = (f^n a_i)|_{U_{i,i}} \text{ in } \Gamma(U_{i,i}, \mathcal{O}_{U_{i,i}}).$$

よって Gluability Axiom により、 $(f^na)|_{U_i}=f^na_i$ となる $a\in A$ がある. もとの f^mb へ戻ると、今以下が成り立つ.

$$(f^{m+n}b)|_{D(f_i)} = (f^na)|_{D(f_i)}.$$

(d) $\Gamma(X_f, \mathcal{O}_{X_f}) = A_f$.

(c) から,以下が成り立つ.

$$\forall b \in \Gamma(X_f, \mathcal{O}_{X_f}), \quad \exists a \in A, \quad \exists n > 0, \quad b = \frac{a}{f^n}.$$

よって $\Gamma(X_f, \mathcal{O}_{X_f}) \subseteq A_f$. \supseteq は明らかなので、 $\Gamma(X_f, \mathcal{O}_{X_f}) \subseteq A_f$.

Ex2.17 A Criterion for Affineness.

(a) $f|_{f^{-1}(U_i)}$:: iso $\Longrightarrow f$:: iso.

 $f: X \to Y$:: morphism of schemes について, open cover $\{U_i\}$ が存在し、各 i について $f_i := f|_{f^{U_i}}: f^{-1}(U_i) \to U_i$ が iso であったとする.この時 f:: iso を示す. $V_i = \{f^{-1}(U_i)\}$ としておく.これは X を被覆する.

$$f_i|_{V_i\cap V_i} = (f|_{V_i})|_{V_i\cap V_i} = (f|_{V_i})|_{V_i\cap V_i} = f_i|_{V_i\cap V_i}$$

なので,f は f_i 達の張り合わせとして矛盾なく書くことが出来る.つまり,「 $f(x)=f_i(x)$ (ここでのi は $x\in V_i$ を満たすもの)」と書くことが出来る.さらに V,U :: open in X,Y について,以下が成り立つ.

$$f(V) = f(\bigcup (V \cap V_i)) = \bigcup f(V \cap V_i); \quad f^{-1}(U) = f^{-1}(\bigcup (U \cap U_i)) = \bigcup f^{-1}(U \cap U_i).$$

 f_i :: homeo からこの二つは開集合. よって f:: homeo. $f^\#: \mathcal{O}_Y \to f_*\mathcal{O}_X$ も次のように $f_i^\#$ で書ける.

$$\mathcal{O}_Y(U) \to f_*\mathcal{O}_Y(U): \ s \longmapsto \bigoplus (s|_{U \cap U_i}) \stackrel{\bigoplus (f_i^\#)_{U \cap U_i}}{\longmapsto} \bigoplus (f_i^\#)_{U \cap U_i}(s|_{U \cap U_i}) = \bigoplus t_i \longmapsto t$$

 $(f_i^\#)_{U\cap U_i}$ が iso なのでこの写像は iso.

(b) For scheme X, X :: affine \iff

X :: scheme を考える. $A := \Gamma(X, \mathcal{O}_X)$ とする. 以下を条件 (*) と呼ぶ.

$$\exists f_1, \ldots, f_r \in A = \Gamma(X, \mathcal{O}_X), \ \ [\forall i = 1, \ldots, r, \ X_{f_i} :: affine] \land [(f_1, \ldots, f_r) = (1) = A.]$$

X :: affine \iff (*), ということを示す. Affine scheme は quasi-compact である (Ex2.13b), ということを何度も使う.

 $\blacksquare \Longrightarrow$. この時 $X = \operatorname{Spec} A$ である. 主張の成立は自明.

lacktriangledown = \leftarrow . 核心となるのは, $\{X_{f_i}\}$ が $\mathrm{Ex2.16c}$ で $\{U_i\}$ に課せられている条件を満たす, ということ. $X=\bigcup X_{f_i}$ は

$$\left(\bigcup X_{f_i}\right)^c = \left(\bigcap \{x \mid (f_i)_x \in \mathfrak{m}_{X,x} \subset \mathcal{O}_{X,x}\}\right)^c$$

と $(f_1,\ldots,f_r)=(1)$ から得られる. $X_{f_i}\cap X_{f_j}$::quasi-compact は, $X_{f_i}=\operatorname{Spec} F_i$ とすると,

$$X_{f_i} \cap X_{f_j} = D(f_j|_{X_{f_i}}) = \operatorname{Spec}(F_i)_{f_j}$$

は affine scheme だから quasi-compact. 以上から Ex2.16d, Ex2.4, Ex2.17a が全部使えて,この順に使えば $X=\operatorname{Spec} A$ が示せる.

- Ex2.18 Ring Homomorphism vs. the Induced Morphism of the Spectra.
- Ex2.19 Spec A :: disconnected \iff