

School of Computer Science Engineering and Information Systems Department of Software and Systems Engineering,

Fall Semester –2024-25

SWE3004 – Internship -1 / Dissertation -1 1st Review

Register Number	20MIS0395				
Student Name	Yuvankumar L				
Internship / Disseration Domain (Capstone Project)	Machine Learning and Deep Learning				
Internship / Disseration Title (Capstone Project)	Intelligent System for Leaf Disease Identification and Health Scoring				

2.1 Literature Survey

S.n	Title & Year	Authors	Methodolo	System	Limitations	Performanc
0			gy	Description		e Analysis
1	Grape leaf disease prediction using Sine Cosine Butterfly Optimization-based deep neuro fuzzy network	Vaishali Bajait, N. Malarvizhi	SCBO-base d deep neuro fuzzy network	Pre-processing, segmentation, multi-class classification	Limited to grape leaf disease prediction, scalability to other crops not explored	Accuracy : 92%, Sensitivit y: 91.7%, Specificit y: 92%, Precision: 92.5%, F1- Score: 92.5%
2	Cosine Similarity Measures of (m, n)-Rung Orthopair Fuzzy Sets and Their Applications in Plant Leaf Disease Classification. (May 2023)	Arpan Singh Rajput, Shailja Shukla, Samajh Singh Thakur	Cosine similarity of (m,n)-rung orthopair fuzzy sets	Introducti on of similarity measures using cosine and cotangent functions for compariso n of fuzzy sets. Application in plant leaf disease classification.	Limited empirical validation beyond numerical example, sensitivity to noise	Accuracy: 95%, Sensitivit y: 93.6%, Specificit y: 95%, Precision: 93.2%, F1-Score: 90.8%
3	Novel modified kernel fuzzy c-means algorithm used for cotton leaf spot detection (January 2024)	Sarita Jibhau Wagh, Pradip Paithane	Modified Kernel Fuzzy C-Means algorithm	Image segmentation, Cotton leaf spot detection	Limited to cotton leaf spot detection, sensitivity to parameter tuning	IOU: 98.80, Precision: 94.51, Dice: 1.0000, BFScore: 98.81, Time: 54.46 seconds, Training Time: 4~6 seconds
4	Ensemble Technique of Deep	Yan Hang, Xiangyan Meng,	Improved Lightweight Network,	Classificatio n of soybean leaf diseases using	Limited evaluation beyond	Recogniti on Accuracy : 94.27%,

	Learning Model for Identifying Tomato Leaf Diseases Based on Choquet Fuzzy Integral (January 2024)	Qiufeng Wu	Choquet Fuzzy Ensemble Technology	lightweight networks for transfer learning. Choquet fuzzy ensemble strategy enhances identification accuracy.	soybean disease identification, complexity in training ensemble models	Average F1-score: 94%
5	Accurate Diagnosis of Leaf Disease Based on Unsupervis ed Learning Algorithms (November 2023)	Jacily Jemila, S. Mary Cynthia, L.M. Merlin Livingsto n	Clustering-based segmentatio n methods	Detection of disease-aff ected areas on plant leaves using clustering- based segmentati on methods. Comparison of K- means clustering, level set method, fuzzy C-means level set method, feature-redu ction FCM, and adaptively regularized kernel-based fuzzy C-means.	Potential sensitivity to parameter selection, limited to clustering-based approaches	Accuracy : 98%, Sensitivit y: 92%, F1-Score: 0.77, Precision: 0.81
6	Service Oriented Fuzzy Smart Model for Agriculture Investment of Hydroponic Green-Leaf Vegetable Plant	Ditdit Nugeraha Utama	Service- oriented fuzzy smart model	Integratio n of functional - structural plant modelling and fuzzy logic for agricultur e investmen	Potential complexity in model implementati on, limited to hydroponic green-leaf vegetable cultivation	Accuracy: 94.33%

	(October			t		
	2023)			decisions		
	2023)			in		
				hydroponi		
				c		
				green-leaf		
				vegetable		
				cultivation.		
7	Implementati	Kumar	Deep	Implementati	Potential	Precision:
	on of Deep	Ashok,	Convolution	on of a deep convolution	complexi	0.96,
	Convolution	Ashok	Neuro-Fuzz	neuro-fuzzy	ty in model	Accuracy:
	Neuro-Fuzzy	Koshariya,	y Network	network for	training	0.97,
	Network to	College		plant disease	and	F1-Score:
	Plant Disease	Bandipora,		detection, risk	paramete	0.96
	Detection,	Hod		assessment,	r tuning,	
	Risk			and	limited	
	Assessment,			classification.	evaluatio	
	and			Classification.	n beyond plant	
	Classification				disease	
					identification	
	(April 2023)					
8	Adaptive	Kalicharan	Adaptive	Adaptive	Potential	Precision:
	Segmentation	Sahu,	Segmentatio	thresholding	complexity in	14.1%
	with	Sonajharia	n with	- and	model	better
	Intelligent	Minz	Intelligent	adaptive Fuzzy C-	training and	than CNN,
	ResNet and		ResNet and	Means	parameter	14.07%
	LSTM-DNN		LSTM-DN	algorithm-	tuning,	better
	for Plant Leaf		N	based leaf	limited to	than
	Multi-disease			abnormality	plant leaf	DNN,
	Classification			segmentatio	multi- disease	12.03%
	Model			n.	classification	better
				Classificatio		than LSTM
	(July 2023)			n using ResNet150		LSTM, 11.2%
				replaced by		better
				LSTM and		than
				DNN		Ensemble
				ensemble		and
				approach.		ResNet-
				Parameter		150, 9.7%
				optimization with Hybrid		9.7% better than
				Barnacle		BMO-BS
				Mating-Bird		A-Res-
				Swam		LSTMDN
				Optimization.		for cherry
				1		leaf image

9	Plant disease	Reva Nagi,	Fuzzy	Extraction of	Limited to	Accuracy:
	identification	Sanjaya	feature	color and	PNN,	95.68%,
	using fuzzy	Shankar	extraction,	texture	potential	Precision:
	feature	Tripathy	PNN	features using	sensitivity to	93%,
	extraction and			fuzzy color	parameter	F1-Score:
	PNN			histogram and	tuning	93%
				fuzzy		
	(January			gray-level		
	2023)			co-occurrence		
				matrix.		
				Classification		
				using		
				Probabilistic		
				Neural		
				Network		
				(PNN)		
10	Prediction of	Shailendra	Deep	Automated	Limited	Accuracy:
	Plant Leaf	Sharma,	Learning	detection of	exploration	~90%
	Diseases	Ashish	Technique	crop diseases	of	
	using Drone	Gupta,		using CNN	other deep	
	and Image	Sudha		with	learning	
	Processing	Patel		an available	architectures,	
	Techniques			database.	potential bias	
					in	
	(January				available	
	2024)				database	

2. Gap Identification

Limited scalability: Many models focus on specific crops or diseases, limiting their application across different crops.

Parameter sensitivity: Techniques like Fuzzy C-Means and ensemble models are prone to sensitivity based on hyperparameters, making them difficult to generalize.

Real-time constraints: Most models do not address the need for real-time disease detection for large-scale farming.

User-friendliness: Many existing systems are not designed for direct use by non-experts, especially farmers, highlighting the need for an accessible interface.

3.1. Objectives

The objectives of the project titled "Leaf Disease and Health Severity Prediction" are as follows:

- 1. **Develop a Leaf Disease Detection System**: Create a system that can accurately detect various leaf diseases using advanced technologies such as image processing, machine learning, and fuzzy inference systems.
- 2. **Assess Disease Severity**: Implement a mechanism to not only detect the presence of a disease but also predict the severity of the disease, providing detailed insights into the health of the leaves.
- 3. **Empower Agricultural Stakeholders**: Provide actionable insights to farmers and other stakeholders in agriculture, enabling them to take timely and targeted actions to prevent crop losses.
- 4. **Promote Sustainable Agriculture**: By accurately identifying and assessing leaf diseases, the project aims to support sustainable agricultural practices and minimize the impact of diseases on crop yields.

These objectives collectively aim to enhance the efficiency and effectiveness of disease management in agriculture, ultimately contributing to increased productivity and sustainability.

Project Plan

The project plan outlines the key phases of the project:

- **Phase 1**: Literature review and requirement analysis (complete).
- **Phase 2**: Data collection and preprocessing (image augmentation, normalization, segmentation).
- **Phase 3**: Model development using ResNet9, CNN and Fuzzy Logic and integration of disease scoring mechanisms.
- Phase 4: System design (developing user interfaces, real-time API for farmers).
- **Phase 5**: Testing and validation on various crops and diseases.
- **Phase 6**: Final system deployment and feedback collection from stakeholders.

5. Implementation and Analysis

1. Data Preprocessing

First, you'll need to preprocess your data (image resizing, augmentation, and normalization) before training your model. Here's how you can handle that:

import torch

import torchvision.transforms as transforms

```
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
# Define data preprocessing
train transform = transforms.Compose([
  transforms.Resize((128, 128)),
  transforms.RandomHorizontalFlip(),
  transforms.RandomRotation(10),
  transforms.ToTensor(),
  transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
test_transform = transforms.Compose([
  transforms.Resize((128, 128)),
  transforms.ToTensor(),
  transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Load data
train dir = '/path to train data'
test dir = '/path to test data'
train data = ImageFolder(train dir, transform=train transform)
test data = ImageFolder(test dir, transform=test transform)
```

```
train loader = DataLoader(train data, batch size=32, shuffle=True)
test loader = DataLoader(test data, batch size=32, shuffle=False)
```

2. Model Definition

We'll implement the ResNet9 architecture for plant disease classification:

```
import torch.nn as nn
import torch.nn.functional as F
import torch
# Define ResNet9 architecture
class ResNet9(nn.Module):
  def init (self, in channels, num classes):
    super(ResNet9, self). init ()
    # First convolution block
    self.conv1 = nn.Sequential(
       nn.Conv2d(in channels, 64, kernel size=3, padding=1),
       nn.BatchNorm2d(64),
       nn.ReLU(inplace=True)
    )
    # More convolutional layers
    self.conv2 = nn.Sequential(
       nn.Conv2d(64, 128, kernel size=3, padding=1),
       nn.BatchNorm2d(128),
       nn.ReLU(inplace=True),
       nn.MaxPool2d(2)
```

```
)
self.res1 = nn.Sequential(
  nn.Conv2d(128, 128, kernel_size=3, padding=1),
  nn.BatchNorm2d(128),
  nn.ReLU(inplace=True),
  nn.Conv2d(128, 128, kernel_size=3, padding=1),
  nn.BatchNorm2d(128),
  nn.ReLU(inplace=True)
)
self.conv3 = nn.Sequential(
  nn.Conv2d(128, 256, kernel_size=3, padding=1),
  nn.BatchNorm2d(256),
  nn.ReLU(inplace=True),
  nn.MaxPool2d(2)
)
self.res2 = nn.Sequential(
  nn.Conv2d(256, 256, kernel_size=3, padding=1),
  nn.BatchNorm2d(256),
  nn.ReLU(inplace=True),
  nn.Conv2d(256, 256, kernel_size=3, padding=1),
  nn.BatchNorm2d(256),
  nn.ReLU(inplace=True)
```

```
)
     self.classifier = nn.Sequential(
       nn.AdaptiveAvgPool2d(1),
       nn.Flatten(),
       nn.Linear(256, num classes)
     )
  def forward(self, x):
     x = self.conv1(x)
     x = self.conv2(x)
     x = self.res1(x) + x
     x = self.conv3(x)
     x = self.res2(x) + x
     x = self.classifier(x)
     return x
# Initialize the model
num_classes = len(train_data.classes)
model = ResNet9(3, num classes)
```

3. Training the Model

Now that you have the data and model, here's the code for training import torch.optim as optim

```
# Define loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Training loop
epochs = 25
for epoch in range(epochs):
  model.train()
  train loss = 0
  correct = 0
  total = 0
  for images, labels in train loader:
    images, labels = images.to(device), labels.to(device)
    # Zero the gradients
    optimizer.zero grad()
    # Forward pass
    outputs = model(images)
    loss = criterion(outputs, labels)
```

```
# Backward pass
     loss.backward()
     optimizer.step()
     # Update metrics
     train loss += loss.item()
     _, predicted = torch.max(outputs.data, 1)
     total += labels.size(0)
     correct += (predicted == labels).sum().item()
  # Print training progress
   print(fEpoch [{epoch + 1}/{epochs}], Loss: {train loss / len(train loader)}, Accuracy:
{100 * correct / total}%')
4. Validation and Testing
Evaluate the model on the test data after each epoch.
# Evaluation on test data
model.eval()
with torch.no grad():
  test loss = 0
  correct = 0
  total = 0
  for images, labels in test loader:
     images, labels = images.to(device), labels.to(device)
```

```
outputs = model(images)
     loss = criterion(outputs, labels)
     test_loss += loss.item()
     _, predicted = torch.max(outputs.data, 1)
     total += labels.size(0)
     correct += (predicted == labels).sum().item()
  print(fTest Loss: {test_loss / len(test_loader)}, Test Accuracy: {100 * correct / total}%')
5. Save the Model
You can save the trained model so that it can be used later for predictions:
# Save the model
torch.save(model.state dict(), 'plant disease resnet9.pth')
6. Flask Web App for Prediction
Use Flask to deploy your model for real-time prediction. This is an example of how you can
integrate the model with a web application:
from flask import Flask, request, jsonify
from PIL import Image
import torchvision.transforms as transforms
app = Flask(__name__)
# Load the trained model
```

model = ResNet9(3, num classes)

```
model.load_state_dict(torch.load('plant_disease_resnet9.pth',
map_location=torch.device('cpu')))
model.eval()
# Define preprocessing
preprocess = transforms.Compose([
  transforms.Resize((128, 128)),
  transforms.ToTensor(),
  transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def predict image(image):
  img = preprocess(image).unsqueeze(0)
  with torch.no_grad():
     output = model(img)
  _, predicted = torch.max(output, 1)
  return train data.classes[predicted[0]]
@app.route('/predict', methods=['POST'])
def predict():
  if 'file' not in request.files:
     return jsonify({'error': 'No file uploaded'}), 400
  file = request.files['file']
```

```
image = Image.open(file)

prediction = predict_image(image)

return jsonify({'prediction': prediction})

if __name__ == '__main__':
    app.run(debug=True)
```

7. Automating the Prediction with Google Colab

You can automate the execution of a Colab notebook (for real-time model retraining or large batch processing) using the following command from within a Python script. Ensure that your Colab notebook is linked to Google Drive and accessible.

```
import requests
# Function to trigger the notebook run

def run_colab_notebook(notebook_url):
    response = requests.post(notebook_url + "/execute")
    if response.status_code == 200:
        print("Notebook executed successfully.")
    else:
        print("Error executing notebook:", response.text)

notebook_url = "https://colab.research.google.com/drive/your-notebook-id"
run_colab_notebook(notebook_url)
```

Conclusion

This code provides a complete flow from preprocessing and model training to serving predictions via a Flask web app. You can modify and adapt the code to suit your project requirements. Let me know if you need any additional details or modifications!

4. Proposed Architecture

Training design:

Neural Network (ResNet-9 Architecture)

Convolutional Neural Network(CNN) Architecture:

