Package 'CopulaInference'

April 21, 2023

Type Package
Title Estimation and Goodness-of-Fit of Copula-Based Models with Arbitrary Distributions
Version 0.5.0
Description Estimation and goodness-of-fit functions for copula-based models of bivariate data with arbitrary distributions (discrete, continuous, mixture of both types). The copula families considered here are the Gaussian, Student, Clayton, Frank, Gumbel, Joe, Plackett, BB1, BB6, BB7,BB8, together with the following non-central squared copula families in Nasri (2020) <doi:10.1016 j.spl.2020.108704="">: ncs-gaussian, ncs-clayton, ncs-gumbel, ncs-frank, ncs-joe, and ncs-plackett. For theoretical details, see, e.g., Nasri and Remillard (2023) <arxiv:2301.13408>.</arxiv:2301.13408></doi:10.1016>
License GPL-3
Encoding UTF-8
LazyData true
Depends R (>= 3.5.0), doParallel, parallel, foreach, stats, rvinecopulib, Matrix
RoxygenNote 7.2.3
NeedsCompilation yes
Author Bouchra R. Nasri [aut, cre, cph], Bruno N Remillard [aut]
Maintainer Bouchra R. Nasri Masri @umontreal.ca>
Repository CRAN
Date/Publication 2023-04-21 07:32:37 UTC
R topics documented:
AuxFun 2 AuxFunC 3 BiEmpCdf 4 CdfInv 4 dncs 5

2 AuxFun

AuxFi	un	Auxiliary functions	
Index			23
	•		
	-		
	taucop		21
	•		
	rncs		18
	rhoplackett		18
	pplac		16
	identifiability		15
	-		
	- ·		
	•		
	•		
	•		
	dplac		- (

Description

This function computes the empirical margins, their left-limits, Kendall's tau and Spearman's rho for arbitrary data. Slower than AuxFunC based on C.

Usage

AuxFun(data)

Arguments

data Matrix (x,y) of size n x 2

Value

tau	Kendall's tau
rho	Spearman's rho
Fx	Empirical cdf of x
Fxm	Left-limit of the empiricial cdf of x
Fy	Empirical cdf of y
Fym	Left-limit of the empiricial cdf of y

AuxFunC 3

References

Nasri (2022). Test of serial dependence for arbitrary distributions. JMVA

Nasri & Remillard (2023). Tests of independence and randomness for arbitrary data using copulabased covariances, arXiv 2301.07267.

Examples

```
data(simgumbel)
out=AuxFun(simgumbel)
```

AuxFunC

Auxiliary functions using C

Description

This function computes the empirical margins, their left-limits, Kendall's tau and Spearman's rho for arbitrary data

Usage

AuxFunC(data)

Arguments

data Matrix (x,y) of size $n \times 2$

Value

tau	Kendall's tau
rho	Spearman's rho
Fx	Empirical cdf of x

Fxm Left-limit of the empirical cdf of x

Fy Empirical cdf of y

Fym Left-limit of the empirical cdf of y

References

Nasri (2022). Test of serial dependence for arbitrary distributions. JMVA

Nasri & Remillard (2023). Tests of independence and randomness for arbitrary data using copula-based covariances, arXiv 2301.07267.

4 CdfInv

Examples

```
data(simgumbel)
out=AuxFunC(simgumbel)
```

BiEmpCdf

Empirical bivariate cdf

Description

This function computes the empirical joint cdf evaluated at all points (y1,y2)

Usage

```
BiEmpCdf(data, y1, y2)
```

Arguments

data Matrix (x1,x2) of size n x 2

y1 Vector of size n1 y2 Vector of size n2

Value

cdf Empirical cdf

Examples

```
\label{eq:data} $$ data(simgumbel) $$ out=BiEmpCdf(simgumbel,c(0,1),c(-1,0,1)) $$ $$
```

CdfInv

Quantile function

Description

This function computes the inverse of the cdf of a finite distribution for a vector of probabilities.

```
CdfInv(u, y, Fn)
```

dnes 5

Arguments

u Vector of probabilities

y Ordered values

Fn Cdf

Value

x Vector of quantiles

Examples

```
y=c(0,1,2)
Fn = c(0.5,0.85,1)
out=CdfInv(c(1:9)/10,y,Fn)
```

dncs

Density of non-central squared copula

Description

This function computes the density of the non-central squared copula (ncs) associated with a one-parameter copula with parameter cpar, and parameters a1, a2 > 0.

Usage

```
dncs(data, family, rotation = 0, par)
```

Arguments

data Matrix (x,y) of size n x 2

family Copula family: "ncs-gaussian", "ncs-clayton", "ncs-frank", "ncs-gumbel", "ncs-

joe", "ncs-plackett".

rotation Rotation: 0 (default value), 90, 180, or 270.

par vector of copula parameter and non-centrality parameter a1,a2 >0

Value

pdf Density

References

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

6 EmpCdf

Examples

```
dncs(c(0.5,0.8),"ncs-clayton",par=c(2,1,2))
```

dplac

Density of Plackett copula

Description

This function computes the density of the Plackett copula with parameter par>0.

Usage

```
dplac(data, rotation = 0, par)
```

Arguments

data Matrix (x,y) of size n x 2

rotation Rotation: 0 (default value), 90, 180, or 270.

par Copula parameter >0

Value

pdf Density

Examples

```
dplac(c(0.5,0.8),par=3,rotation=270)
```

EmpCdf

Empirical univariate cdf

Description

This function computes the empirical cdf evaluated at all sample points

Usage

EmpCdf(x)

Arguments

Χ

Observations

EstBiCop 7

Value

Fx Empirical cdf

Fxm Left limit of the empirical cdf

Ix Indicator of atoms

Examples

```
data(simgumbel)
out=EmpCdf(simgumbel[,1])
```

EstBiCop

Parameter estimation for bivariate copula-based models with arbitrary distributions

Description

Computes the estimation of the parameters of a copula-based model with arbitrary distributions, i.e, possibly mixtures of discrete and continuous distributions. Parametric margins are allowed. The estimation is based on a pseudo-likelihood adapted to ties.

Usage

```
EstBiCop(
  data = NULL,
  family,
  rotation = 0,
  Fx = NULL,
  Fxm = NULL,
  Fy = NULL,
  Fym = NULL)
```

Arguments

data	Matrix or data	frame with 2	columns (X	K,Y). Can be	pseudo-observations.	If
------	----------------	--------------	------------	--------------	----------------------	----

NULL, Fx and Fy must be provided.

family Copula family: "gaussian", "t", "clayton", "frank", "gumbel", "joe", "plackett",

"bb1", "bb6", "bb7", "bb8", "ncs-gaussian", "ncs-clayton", "ncs-gumbel", "ncs-

frank", "ncs-joe", "ncs-plackett".

rotation Rotation: 0 (default value), 90, 180, or 270.

Fx Marginal cdf function applied to X (default is NULL).

Fxm Left-limit of marginal cdf function applied to X default is NULL).

Fy Marginal cdf function applied to Y (default is NULL).

Fym Left-limit of marginal cdf function applied to Y (default is NULL).

8 EstBiCop

Value

par Copula parameters

family Copula family rotation Rotation value

tauth Kendall's tau corresponding to the estimated parameter

tauemp Empirical Kendall's tau (from the multilinear empirical copula)

rhoSth Spearman's rho corresponding to the estimated parameter

rhoSemp Empirical Spearman's tau (from the multilinear empirical copula)

loglik Log-likelihood

aic Aic value bic Bic value

data Matrix of values (could be (Fx,Fy))

F1 Cdf of X (Fx if provided, empirical otherwise)

F1m Left-limit of F1 (Fxm if provided, empirical otherwise)

F2 Cdf of Y (Fy if provided, empirical otherwise)

F2m Left-limit of F2 (Fym if provided, empirical otherwise)

ccdfx Conditional cdf of X given Y and it left limit

ccdfxm Left-limit of ccdfx

ccdfy Conditional cdf of Y given X and it left limit

ccdfym Left-limit of ccdfy

References

Nasri & Remillard (2023). Identifiability and inference for copula-based semiparametric models for random vectors with arbitrary marginal distributions. arXiv 2301.13408.

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Examples

```
set.seed(2)
data = matrix(rpois(20,1),ncol=2)
out0=EstBiCop(data,"gumbel")
```

EstDep 9

E .D	72 1 11) . 1 (2) 1	
EstDep	Kendall's tau and Spearman's rho	

Description

This function computes Kendall's tau and Spearman's rho for arbitrary data. These are invariant by increasing mappings.

Usage

```
EstDep(data)
```

Arguments

data Matrix or data frame with 2 columns (X,Y). Can be pseudo-observations.

Value

tau Kendall's tau rho Spearman's rho

References

Nasri (2022). Test of serial dependence for arbitrary distributions. JMVA

Nasri & Remillard (2023). Tests of independence and randomness for arbitrary data using copulabased covariances, arXiv 2301.07267.

Examples

```
data(simgumbel)
out=EstDep(simgumbel)
```

est_options Options for the estimation of the parameters of bivariate copula-based models

Description

Sets starting values, upper and lower bounds for the parameters. The bounds are based on those in the rvinecopulib package.

```
est_options(family, tau = 0.5)
```

10 Finv

Arguments

family Copula family: "gaussian", "t", "clayton", "frank", "gumbel", "joe", "plackett",

"bb1", "bb6", "bb7", "bb8", "ncs-gaussian", "ncs-clayton", "ncs-gumbel", "ncs-

frank", "ncs-joe", "ncs-plackett".

tau Estimated Kendall's tau to compute a starting point (default is 0.5)

Value

LB Lower bound for the parameters
UB Upper bound for the parameters
start Starting point for the estimation

References

Nagler & Vatter (2002). rvinecopulib: High Performance Algorithms for Vine Copula Modeling. Version 0.6.2.1.3

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Nasri (2022). Test of serial dependence for arbitrary distributions. JMVA.

Nasri & Remillard (2023). Copula-based dependence measures for arbitrary data, arXiv 2301.07267.

Examples

```
out = est_options("bb8")
```

Finv

Quantile function of margins

Description

This function computes the quantile of seven cdf used in Nasri (2022).

Usage

Finv(u, k)

Arguments

u V	ector	ΟI	probabilities

k Marginal distribution: [1] Bernoulli(0.8), [2] Poisson(6), [3] Negative binomial with r = 1.5, p = 0.2, [4] Zero-inflated Poisson (10) with w = 0.1 and P(6.67)

otherwise, [5] Zero-inflated Gaussian, [6] Discretized Gaussian, [7] Discrete

Pareto(1)

fnumber 11

Value

x Vector of quantiles

Author(s)

Bouchra R. Nasri January 2021

References

B.R Nasri (2022). Tests of serial dependence for arbitrary distributions

Examples

```
x = Finv(runif(40), 2)
```

fnumber

Family number corresponding to VineCopula package

Description

Computes the number associated with a copula family (without rotation)

Usage

```
fnumber(family)
```

Arguments

family Copula family: "gaussian", "t", "clayton", "frank", "gumbel", "joe", "plackett'', "bb1", "bb6", "bb7", "bb8".

Value

fnumber Number

References

Nagler et al. (2023). VineCopula: Statistical Inference of Vine Copulas, version 2.4.5.

Examples

```
fnumber("bb1")
```

12 GofBiCop

GofBiCop Goodness-of-fit for bivariate copula-based models with tributions	th arbitrary dis-
--	-------------------

Description

Goodness-of-fit tests for copula-based models for data with arbitrary distributions. The tests statistics are the Cramer-von Mises statistic (Sn), the difference between the empirical Kendall's tau and the theoretical one, and the difference between the empirical Spearman's rho and the theoretical one.

Usage

```
GofBiCop(
  data = NULL,
  family,
  rotation = 0,
  Fx = NULL,
  Fxm = NULL,
  Fy = NULL,
  Fym = NULL,
  B = 100,
  n_cores = 1
)
```

Arguments

data	Matrix or data frame with 2 columns (X,Y). Can be pseudo-observations. If NULL, Fx and Fy must be provided.
family	Copula family: "gaussian", "t", "clayton", "frank", "gumbel", "joe", "plackett", "bb1", "bb6", "bb7", "bb8", "ncs-gaussian", "ncs-clayton", "ncs-gumbel", "ncs-frank", "ncs-joe", "ncs-plackett".
rotation	Rotation: 0 (default value), 90, 180, or 270.
Fx	marginal cdf function applied to X (default is NULL).
Fxm	left limit of marginal cdf function applied to X default is NULL).
Fy	marginal cdf function applied to Y (default is NULL).
Fym	left limit of marginal cdf function applied to Y (default is NULL).
В	Number of bootstrap samples (default 100)
n_cores	Number of cores to be used for parallel computing (default is 1).

Value

pvalueSn	Pvalue of Sn in percent
pvalueTn	Pvalue of Tn in percent

hncs 13

pvalueRn Pvalue of Rn in percent

Sn Value of Cramer-von Mises statistic Sn

Tn Value of Kendall's statistic Tn
Rn Value of Spearman's statistic Rn

cpar Copula parameters family Copula family rotation Rotation value

tauth Kendall's tau (from the multilinear theoretical copula)

tauemp Empirical Kendall's tau (from the multilinear empirical copula)

rhoth Spearman's rho (from the multilinear theoretical copula)

rhoemp Empirical Spearman's rho (from the multilinear empirical copula)

parB Bootstrapped parameters

loglik Log-likelihood
aic AIC value
bic BIC value

References

Nasri & Remillard (2023). Identifiability and inference for copula-based semiparametric models for random vectors with arbitrary marginal distributions. arXiv 2301.13408.

Nasri & Remillard (2023). Goodness-of-fit and bootstrapping for copula-based random vectors with arbitrary marginal distributions.

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Examples

```
data = rvinecopulib::rbicop(10, "gumbel", rotation=0,2)
out=GofBiCop(data, family="gumbel", B=10)
```

hncs

Conditional distribution of non-central squared copula

Description

This function computes the conditional distribution of the non-central squared copula (ncs) associated with a one-parameter copula with parameter cpar, and parameters a1, a2 > 0.

```
hncs(data, cond_var, family, rotation = 0, par)
```

14 hplac

Arguments

data Matrix (x,y) of size n x 2 cond_var Conditioning variable (1 or 2)

family Copula family: "ncs-gaussian", "ncs-clayton", "ncs-frank", "ncs-gumbel", "ncs-

joe", "ncs-plackett".

rotation Rotation: 0 (default value), 90, 180, or 270.

par vector of copula parameter and non-centrality parameter a1,a2 >0

Value

h Conditional cdf

References

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Examples

```
hncs(c(0.5,0.8),1,"ncs-clayton",270,c(2,1,2))
```

hplac Conditional distribution of Plackett copula

Description

This function computes the conditional distribution of the Plackett copula with parameter par>0.

Usage

```
hplac(data, cond_var, rotation = 0, par)
```

Arguments

data Matrix (x,y) of size n x 2 cond_var Conditioning variable (1 or 2)

rotation Rotation: 0 (default value), 90, 180, or 270.

par Copula parameter >0

Value

h Conditional cdf

identifiability 15

Examples

```
hplac(c(0.5,0.8),1,270,3)
```

identifiability

Identifiability of two-parameter copula families

Description

Determines if a copula family is identifiable with respect to the empirical margins. One-parameter copula families ("gaussian", "gumbel", "clayton", "frank", "plackett", "joe") are identifiable whatever the margins. The rank of the gradient of the copula on the range of the margins is evaluated at 10000 parameter points within the lower and upper bounds of the copula family.

Usage

```
identifiability(data = NULL, family, rotation = 0, Fx = NULL, Fy = NULL)
```

Arguments

data	Matrix or data frame with 2 columns (X,Y). Can be pseudo-observations. If NULL, Fx and Fy must be provided.
family	Copula family: "gaussian", "t", "clayton", "frank", "gumbel", "joe", "plackett", "bb1", "bb6", "bb7", "bb8", "ncs-gaussian", "ncs-clayton", "ncs-gumbel", "ncs-frank", "ncs-joe", "ncs-plackett".
rotation	Rotation: 0 (default value), 90, 180, or 270.
Fx	Marginal cdf function applied to X (default is NULL).
Fy	Marginal cdf function applied to Y (default is NULL).

Value

out True or False

References

Nasri & Remillard (2023). Identifiability and inference for copula-based semiparametric models for random vectors with arbitrary marginal distributions. arXiv 2301.13408.

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Examples

```
set.seed(1)
data = matrix(rpois(20,1),ncol=2)
out = identifiability(data, "gumbel")
```

16 pplac

pncs Cdf for non-central squared copula	
---	--

Description

This function computes the distribution function of the non-central squared copula (ncs) associated a with one-parameter copula with parameter cpar, and parameters a 1, a 2 > 0.

Usage

```
pncs(data, family, rotation = 0, par)
```

Arguments

data	Matrix (x,y) of size n x 2
family	Copula family: "ncs-gaussian", "ncs-clayton", "ncs-frank", "ncs-gumbel", "ncs-joe", "ncs-plackett".
rotation	Rotation: 0 (default value), 90, 180, or 270.

par vector of copula parameter and non-centrality parameter a1,a2 >0

Value

cdf Value of cdf

References

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Examples

```
pncs(c(\emptyset.5,\emptyset.8),"ncs-clayton", par=c(2,1,2),rotation=270)
```

pplac Cdf for Plackett copula

Description

This function computes the distribution function of the Plackett copula with parameter par>0.

```
pplac(data, rotation = 0, par)
```

preparedata 17

Arguments

data Matrix (x,y) of size $n \times 2$

rotation Rotation: 0 (default value), 90, 180, or 270.

par Copula parameter >0

Value

cdf Value of cdf

Examples

```
pplac(c(0.5,0.8),270,3)
```

preparedata

Computes unique values, cdf and pdf

Description

This function computes the unique values, cdf and pdf for a series of data.

Usage

preparedata(x)

Arguments

x Vector

Value

values Unique (sorted) values

m Number of unique values

Fn Empirical cdf of the unique values fn Empirical pdf of the unique values

References

B.R. Nasri (2022). Tests of serial dependence for arbitrary distributions

C. Genest, J.G. Neslehova, B.N. Remillard and O. Murphy (2019). Testing for independence in arbitrary distributions.

```
#'@examples x = c(0,0,0,2,3,1,3,1,2,0) out = prepare_data(x)
```

18 rncs

rhoplackett

Spearman's rho for Plackett copula

Description

Computes the theoretical Spearman's rho for Plackett copula

Usage

```
rhoplackett(cpar, rotation = 0)
```

Arguments

cpar

Copula parameter; can be a vector.

rotation

Rotation: 0 (default value), 90, 180, or 270.

Value

rho

Spearman's rho

References

Remillard (2013). Statistical Methods for Financial Engineering. CRC Press

Examples

```
rhoplackett(3,rotation=90)
```

rncs

Simulation of non-central squared copula

Description

This function computes generates a bivariate sample from a non-central squared copula (ncs) associated with a one-parameter copula with parameter cpar, and parameters a1, a2 >0.

```
rncs(n, family, rotation = 0, par)
```

rplac 19

Arguments

n Number of observations

family Copula family: "ncs-gaussian", "ncs-clayton", "ncs-frank", "ncs-gumbel", "ncs-

joe", "ncs-plackett".

rotation Rotation: 0 (default value), 90, 180, or 270.

par vector of copula parameter and non-centrality parameter a1,a2 >0

Value

U Observations

References

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Examples

```
rncs(100,"ncs-clayton",par=c(2,1,2))
```

rplac

Generates observations from the Plackett copula

Description

This function generates observations from a Plackett copula with parameter par>0.

Usage

```
rplac(n, rotation = 0, par)
```

Arguments

n Number of pairs to be generated

rotation Rotation: 0 (default value), 90, 180, or 270.

par Copula parameter >0

Value

U Matrix of observations

Examples

```
rplac(10,rotation=90,par=2)
```

20 statevm

simgumbel

Simulated data

Description

Simulated data from a Gumbel copula with parameter 2, Bernoulli margin for X1 and zero-inflated Gaussian margin for X2.

Usage

```
data(simgumbel)
```

Format

Data frame of numerical values

Examples

```
data(simgumbel)
plot(simgumbel,xlab="X1", ylab="X2")
```

statcvm

Goodness-of-fit statistics

Description

Computation of goodness-of-fit statistics (Cramer-von Mises and the Kendall's tau)

Usage

```
statcvm(object)
```

Arguments

object Object of class 'EstBiCop'.

Value

Sn Cramer-von Mises statistic

Tn Kendall's statistic
Rn Spearman's statistic
tauemp Empirical Kendall's tau

tauth Kendall's tau of the multilineat theoretical copula

rhoemp Empirical Spearman's rho

taucop 21

rhoth	Spearman's rho of the multilineat theoretical copula
Y1	Ordered observed values of X1
F1	Empirical cdf of Y1
Y2	Ordered observed values of X2
F2	Empirical cdf of Y2
cpar	Copula parameters
family	Copula family
rotation	Rotation value
n	Sample size

References

Nasri & Remillard (2023). Identifiability and inference for copula-based semiparametric models for random vectors with arbitrary marginal distributions. arXiv 2301.13408.

Examples

```
set.seed(2)
data = matrix(rpois(20,1),ncol=2)
out0 = EstBiCop(data,"gumbel")
out = statcvm(out0)
```

taucop

Kendall's tau for a copula family

Description

This function computes Kendall's tau for a copula family

Usage

```
taucop(family_number, cpar, rotation = 0)
```

Arguments

family_number Integer from 1 to 10 cpar Copula parameters

rotation Rotation: 0 (default value), 90, 180, or 270.

Value

tau Kendall's tau

22 tauplackett

Examples

```
taucop(4,2,270) # Gumbel copula
```

tauplackett

Kendall's tau for Plackettfamily

Description

This function computes Kendall's tau for Plackett family using numerical integration

Usage

```
tauplackett(cpar, rotation = 0)
```

Arguments

cpar Copula parameter >0

rotation Rotation: 0 (default value), 90, 180, or 270.

Value

tau Kendall's tau

Examples

tauplackett(2,270)

Index

```
\ast datasets
      simgumbel, 20
AuxFun, 2
AuxFunC, 3
{\tt BiEmpCdf}, \color{red} 4
CdfInv, 4
dncs, 5
dplac, 6
EmpCdf, 6
{\sf est\_options}, 9
EstBiCop, 7
EstDep, 9
Finv, 10
fnumber, 11
{\tt GofBiCop},\, \textcolor{red}{12}
hncs, 13
hplac, 14
identifiability, \\ \textcolor{red}{15}
pncs, 16
pplac, 16
preparedata, 17
\verb|rhoplackett|, 18
rncs, 18
rplac, 19
\verb|simgumbel|, 20|
{\it statcvm}, {\it 20}
taucop, 21
{\tt tauplackett}, {\color{red} 22}
```