Tel
$$(f \cdot g)(f) := \int_{0}^{f} f(t) g(t-t) dt = \int_{0}^{f} f(t-t) g(t) dt$$

(f \(g)(f) := \int f(t) g(t-t) dt = \int f(t-t) g(t) dt

Sole \(f \text{ skhig.} \) \(g \text{ skhig.} \) \(w \text{ exp ond } p \)

(f \(g \text{ lis} \) \(is \text{ skhig.} \)

(f \(g \text{ lis} \) \(is \text{ skhig.} \)

(f \(g \text{ lis} \) \(is \text{ skhig.} \)

(f \(g \text{ lis} \) \(is \text{ skhig.} \)

(f \(g \text{ lis} \) \(is \text{ skhig.} \)

(f \(g \text{ lis.} \) \(is \text{ skhig.} \)

(f \(g \text{ lis.} \) \(is \text{ skhig.} \)

(f \(g \text{ lis.} \) \(is \text{ skhig.} \)

(f \(g \text{ lis.} \) \(is \text{ skhig.} \)

(f \(g \text{ lis.} \) \(is \text{ skhig.} \)

(f \(g \text{ lis.} \) \(is \text{ lit.} \) \(lig(t) \)

(f \(g \text{ lis.} \)

(f \(g \text{ lis.} \) \(lig(t) \)

(f \(g \text{ lis.} \)

(f \(g \text{ lis.} \)

(f \(g \text{ lis.} \)

(g \(e^{t} \))

(g \(e^{t} \)

(g \(e^{t} \))

(g \(e^{t} \)

$$\chi^{(n)}(t) + \alpha_{1} \times^{(n-1)}(t) + \dots + \alpha_{n} \times (t) = \mu(t)$$

$$\chi^{(n)}(t) + \alpha_{1} \times^{(n-1)}(t) + \dots + \alpha_{n} \times (t) = \mu(t)$$

$$\chi^{(n)}(t) + \alpha_{1} \times^{(n-1)}(t) + \dots + \alpha_{n} \times (t) = \mu(t)$$

$$\chi^{(n)}(t) + \alpha_{1} \times^{(n-1)}(t) + \dots + \alpha_{n} \times (t) = \mu(t)$$

$$\chi^{(n)}(t) + \alpha_{1} \times^{(n-1)}(t) + \dots + \alpha_{n} \times (t) = \mu(t)$$

$$\chi^{(n)}(t) + \alpha_{1} \times^{(n-1)}(t) + \dots + \alpha_{n} \times (t) = \mu(t)$$

Sehe
$$\chi(s) := L[x](s)$$
. Cap(acetransformation lineal $H(s) := L[h](s)$

$$S^{n} \times (S) + \alpha_{1} S^{n-1} \times (S) + \cdots + \alpha_{n} \times (S) = H(S)$$

 $(S^{n} + \alpha_{1} S^{n-1} + \cdots + \alpha_{n}) + (S) = H(S)$
 $= > \times (S) = (S^{n} + \alpha_{1} S^{n-1} + \cdots + \alpha_{n}) + (S)$
 $= > G(S)$

$$=>$$
 $\times(+)=(g*h)(+)$
greensole Function

$$|G(s) = L[g](s)$$

Sobald wis q hasen, teornen wis dus AWP (x) für alle 4 stosen.

2.2 Fouriertransformation

Forevier reine: Gegeben
$$f: [-T/2, T/2] \longrightarrow \mathbb{C}$$

will $f(t+nT) = f(t)$ $u \in \mathbb{N}$
 $ST(T(t)) = \sum_{k=-\infty}^{\infty} C_{T,k}[f] e^{2\pi i \cdot kt} / T$
 $C_{T,k}[f] := \int_{-T/2}^{T/2} f(t) e^{-2\pi i \cdot kt} / T$
 $C_{T,k}[f] := \int_{-T/2}^{T/2} f(t) e^{-2\pi i \cdot kt} / T$

of

l ist assolut-interviews wenny

[The continue of the continue

-> 5197 honvigier 2,8 wenn 1 sluctureise stilig dilltransierbar. $S[f](+) = \frac{1}{2}(f(+) + f(+))$

Behank
$$f: R \longrightarrow C$$
, $f(x) = 0$

$$f(x) = 0$$

X \$ [- To/2]

Earlwich fant den luterval [-t2, t2] T>To in eine Fourierreile mil

$$C_{7/4}[f] = \frac{1}{T} \int_{-2\pi/4}^{\infty} f(t) e^{-2\pi/4} dt = \frac{1}{T} f\left(\frac{2\pi/4}{T}\right)$$

$$\hat{f}(\omega) := \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

 $f(\omega) := \int_{-i\omega t}^{\infty} f(t) e^{-i\omega t} dt$ Fourier in Figral landing in Fourier hors for masion

Einseken in SIPT, (f studense obeig, differ, STP] hongage)

$$f(+) := S[f](+) = \frac{1}{2\pi} \frac{2\pi}{T} \int_{4=-\infty}^{\infty} \hat{f}\left(\frac{2\pi 4}{T}\right) e^{2\pi i kt/T}$$

Milfelpunhl regul $\int_{0}^{\infty} f(t) dt = \sum_{k=1}^{n} f(\xi_{k}) \frac{5-\alpha}{n}$

Del 56 (Fourier bransformation) P: R -> C

$$\hat{f}(\omega) := \mathcal{F}[f](\omega) := \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt, \qquad \omega \in \mathbb{R}$$