2.6 可逆矩阵与伴随矩阵

1、知有变换如下:

$$\begin{cases} y_1 = 3x_1 - 2x_2 + x_3, \\ y_2 = x_1 + 3x_2 + 2x_3, \\ y_3 = 3x_1 + 7x_2 + 5x_3, \end{cases}$$

试问是否有逆变换,若有逆 变换,则逆变换是什么?

2、有矩阵方程如下:

$$\begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & -3 & 2 \end{pmatrix} X = \begin{pmatrix} 2 & 1 & 3 \\ 2 & 1 & 1 \\ -3 & -1 & 2 \end{pmatrix}$$
 试问什么样的3阶矩阵X满足上述方程?

解决上述问题需要可逆矩阵、逆矩阵的相关知识

定义2.6.1 (逆矩阵) 对于n阶方阵A,如果存在同阶方阵B,使得 AB=BA=E,

则称A是可逆矩阵,并称B是A的逆矩阵,简称逆阵,记为 A^{-1} .

变换:
$$\begin{cases} y_1 = 3x_1 - 2x_2 + x_3, \\ y_2 = x_1 + 3x_2 + 2x_3, \\ y_3 = 3x_1 + 7x_2 + 5x_3, \end{cases}$$
 的矩阵形式为: $y = Ax$, 其中 $A = \begin{pmatrix} 3 & -2 & 1 \\ 1 & 3 & 2 \\ 3 & 7 & 5 \end{pmatrix}$

$$A$$
有逆矩阵, A 的逆矩阵为: $A^{-1} = \begin{pmatrix} -1 & -17 & 7 \\ -1 & -12 & 5 \\ 2 & 27 & -11 \end{pmatrix}$

于是:
$$A^{-1}y=A^{-1}Ax=Ex=x$$
,即有逆变换
$$\begin{cases} x_1 = -y_1 - 17y_2 + 7y_3, \\ x_2 = -y_1 - 12y_2 + 5y_3, \\ x_3 = 2y_1 + 27y_2 - 11y_3. \end{cases}$$

BX=C两边左乘**B-1**,得:
$$X = B^{-1}C = \begin{pmatrix} 2 & -3 & -1 \\ -2 & 4 & 1 \\ -3 & 6 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 3 \\ 2 & 1 & 1 \\ -3 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

逆矩阵有什么特点

注: 逆矩阵是唯一的

特殊矩阵的逆矩阵:

$$E^{-1}=E, (kE)^{-1}=(1/k)E,$$

$$\operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)^{-1}=\operatorname{diag}(1/\lambda_1, \dots, 1/\lambda_n) \mathbb{P} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}^{-1}=\begin{bmatrix} \frac{1}{\lambda_1} & & & \\ & \frac{1}{\lambda_2} & & \\ & & \ddots & \\ & & & \frac{1}{\lambda} \end{bmatrix}$$

直接验证:

(*kE*)-1=(1/*k*)*E*:
$$(kE)(\frac{1}{k}E) = \begin{pmatrix} k & & & \\ & k & & \\ & & \ddots & \\ & & & k \end{pmatrix} \begin{pmatrix} 1/k & & & \\ & 1/k & & \\ & & \ddots & \\ & & & 1/k \end{pmatrix} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} = E, 同理(\frac{1}{k}E)(kE) = E.$$

diag $(\lambda_1, \lambda_2, ..., \lambda_n)^{-1}$ = diag $(1/\lambda_1, 1/\lambda_2, ..., 1/\lambda_n)$:

$$\begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \begin{pmatrix} 1/\lambda_1 & & & \\ & 1/\lambda_2 & & \\ & & & \ddots & \\ & & & 1/\lambda_n \end{pmatrix} = \begin{pmatrix} 1/\lambda_1 & & & \\ & 1/\lambda_2 & & \\ & & & \ddots & \\ & & & 1/\lambda_n \end{pmatrix} \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \ddots & \\ & & & \lambda_n \end{pmatrix} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} = E.$$

可逆矩阵的基本性质:

- (1) 若A可逆,则 A^{-1} 也可逆,且(A^{-1}) $^{-1}$ =A; 还有 | A^{-1} |=|A| $^{-1}$.
- (2) 若A可逆,数 $k\neq 0$,则kA可逆,且 $(kA)^{-1}=k^{-1}A^{-1}$.
- (3) 若A可逆,则AT也可逆,且 (AT)-1=(A-1)T.
- (4) 若A, B为同阶的可逆矩阵,则AB也可逆,且 $(AB)^{-1}=B^{-1}A^{-1}$.

证明:用定义验证

- (1) $A^{-1}A = AA^{-1} = E$,故(A^{-1})⁻¹=A;还有 $|A||A^{-1}| = |AA^{-1}| = |E| = 1$.
- (2) $(kA)(k^{-1}A^{-1}) = (k \times k^{-1})(AA^{-1}) = 1 \cdot E = E$, 同理 $(k^{-1}A^{-1})(kA) = E$.
- (3) $(A^{T})(A^{-1})^{T}=(A^{-1}A)^{T}=E^{T}=E$, 同理 $(A^{-1})^{T}(A^{T})=E$.
- (4) $(AB)(B^{-1}A^{-1})=A(BB^{-1})A^{-1}=AEA^{-1}=AA^{-1}=E$,同理 $(B^{-1}A^{-1})(AB)=E$. 故 AB 可逆,且逆矩阵为 $B^{-1}A^{-1}$.

性质(4) 可推广到有限个同阶可逆矩阵的乘积:

求逆矩阵的三个途径: 定义、公式、算法

1、利用定义求逆矩阵: AB=E

例2.6.1 试证明下列矩阵为可逆矩阵,并求其逆矩阵:

(1)
$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$$
 为对角矩阵,其中 λ_i ($i=1,2,...,n$)为非零数.

(2) $B = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$, 其中a,c为非零实数.

证明 (1) 由于

$$\begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \begin{pmatrix} \lambda_1^{-1} & & & \\ & & \lambda_2^{-1} & & \\ & & & \ddots & \\ & & & & \lambda_n^{-1} \end{pmatrix} = E = \begin{pmatrix} \lambda_1^{-1} & & & \\ & \lambda_2^{-1} & & \\ & & & \ddots & \\ & & & & \lambda_n^{-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & & & \\ & & \lambda_2 & & \\ & & & \ddots & \\ & & & & \lambda_n^{-1} \end{pmatrix},$$

所以对角矩阵
$$\Lambda$$
可逆,且其逆矩阵 $\Lambda^{-1} = \begin{pmatrix} \lambda_1^{-1} & & & \\ & \lambda_2^{-1} & & \\ & & \ddots & \\ & & & \lambda_n^{-1} \end{pmatrix} = E.$

(2) 设矩阵
$$C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$
,使得 $BC = E$,得关系式:
$$\begin{cases} ac_{11} = 1, \\ ac_{12} = 0, \\ bc_{11} + cc_{21} = 0, \\ bc_{11} + cc_{21} = 1, \end{cases}$$

解得
$$c_{11}=1/a$$
, $c_{12}=0$, $c_{21}=-b/ac$, $c_{22}=1/c$, 即 $C=\begin{pmatrix} 1/a & 0 \\ -b/(ac) & 1/c \end{pmatrix}$.

易于验证BC=CB=E,故B可逆,且逆矩阵 $B^{-1}=C$.

(2) 解法二: 设矩阵 $C = \begin{pmatrix} x_1 & x_2 \\ y_2 & y_2 \end{pmatrix}$, 使得 BC = E,

用行列式解方程组:
$$B\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 和 $B\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$,

因为 | B|=ac≠0,故有唯一解:
$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \frac{1}{ac} \begin{pmatrix} c \\ -b \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \frac{1}{ac} \begin{pmatrix} 0 \\ a \end{pmatrix}$$
. $\Leftrightarrow C = \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = \begin{pmatrix} 1/a & 0 \\ -b/(ac) & 1/c \end{pmatrix}$,

易于验证 BC=CB=E,故B可逆,且逆矩阵 $B^{-1}=C$.

* 此法可最终得出求逆矩阵的公式

例2.6.2 A满足方程: A^2 -3A-10E=O. 证明A和A-4E都可逆,并求A-1和(A-4E)-1. 证明 由 A^2 -3A-10E=O 得 A(A-3E)=10E=(A-3E)A,

立得
$$A(\frac{1}{10}(A-3E)) = E = (\frac{1}{10}(A-3E))A.$$

由逆矩阵定义知 A 可逆,且有 $A^{-1} = \frac{1}{10}(A-3E)$.

再由 A²-3A-10E=O 得

$$(A-4E)(A+E) = 6E = (A+E)(A-4E),$$
 即 $(A-4E)(\frac{1}{6}(A+E)) = E = (\frac{1}{6}(A+E))(A-4E).$ 故知 $A-4E$ 可逆,且 $(A-4E)^{-1} = \frac{1}{6}(A+E).$

注 A, B 可逆, A+B 也不一定可逆; 即使A+B可逆, 一般 $(A+B)^{-1} \neq A^{-1}+B^{-1}$.

$$(1)A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, 则A + B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, A + B$$
不可逆;

2、利用公式求逆矩阵

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
 矩阵A求逆矩阵

求A的逆就是求X满足:

$$E = AX = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

解下列方程组可得到X的第j列(j=1,2,...,n):

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1j} \\ x_{2j} \\ \vdots \\ x_{nj} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 1_{j} \\ \vdots \\ 0 \end{pmatrix}$$

利用行列式解方程组:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1j} \\ \vdots \\ x_{ij} \\ \vdots \\ x_{nj} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 1_{j} \\ \vdots \\ 0 \end{pmatrix}, \quad \text{##} \mathcal{H} \quad x_{1j} = \frac{D_{1}}{|A|}, x_{2j} = \frac{D_{2}}{|A|}, \cdots, x_{ij} = \frac{D_{i}}{|A|}, \cdots, x_{nj} = \frac{D_{n}}{|A|}$$

$$|A| = \begin{vmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{j1} & \cdots & a_{ji} & \cdots & a_{jn} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{nn} \end{vmatrix} \qquad D_{i} = \begin{vmatrix} a_{11} & \cdots & \mathbf{0} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{j1} & \cdots & \mathbf{1}_{ji} & \cdots & a_{jn} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & \mathbf{0} & \cdots & a_{nn} \end{vmatrix}$$

$$= a_{1i}A_{1i} + \cdots + a_{ji}A_{ji} + a_{ni}A_{ni} \qquad = 0A_{1i} + \cdots + 1_{ji}A_{ji} + 0A_{ni} = A_{ji}$$

故有
$$x_{ij} = \frac{D_i}{|A|} = \frac{A_{ji}}{|A|}, i = 1, 2, \dots, n, j = 1, 2, \dots, n$$

$$A^{-1} = X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix} = \frac{1}{|A|} \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \frac{1}{|A|} \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix}^{T}, \stackrel{\square}{=} |A| \neq 0$$

伴随矩阵

$$= \frac{1}{|A|} \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}^{T}, \stackrel{\square}{=} |A| \neq 0$$

验证:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \frac{1}{|A|} \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \frac{1}{|A|} \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \stackrel{\cong}{=} |A| \neq 0$$

三角矩阵的逆矩阵:上(下)三角阵的逆矩阵是上(下)三角阵

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}, \quad A^{-1} = \frac{1}{|A|} \begin{pmatrix} A_{11} & A_{21} & A_{31} & \cdots & A_{n1} \\ A_{12} & A_{22} & A_{32} & \cdots & A_{n2} \\ A_{13} & A_{23} & A_{33} & \cdots & A_{n3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & A_{3n} & \dots & A_{nn} \end{pmatrix} = \frac{1}{|A|} \begin{pmatrix} A_{11} & A_{21} & A_{31} & \cdots & A_{n1} \\ 0 & A_{22} & A_{32} & \cdots & A_{n2} \\ 0 & 0 & A_{33} & \cdots & A_{n3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & A_{nn} \end{pmatrix}$$

$$i < j: A_{ij} = \pm$$

三角矩阵相乘:上(下)三角阵乘以上(下)三角阵仍是上(下)三角阵

定义2.6.2 (方阵的伴随矩阵) 设 $A=(a_{ij})$ 为n阶方阵, A_{ij} 是 |A| 中元素 a_{ij} 的 代数余子式,则称矩阵

$$A^* = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix}^{T} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

为A的伴随矩阵.

例2.6.3 求A的伴随矩阵A*, 其中
$$A = \begin{pmatrix} 1 & -2 & 5 \ -3 & 0 & 4 \ 2 & 1 & 6 \end{pmatrix}$$
.

解 因为 $A_{11} = \begin{vmatrix} 0 & 4 \ 1 & 6 \end{vmatrix} = -4, A_{21} = -\begin{vmatrix} -2 & 5 \ 1 & 6 \end{vmatrix} = 17, A_{31} = \begin{vmatrix} -2 & 5 \ 0 & 4 \end{vmatrix} = -8,$
 $A_{12} = -\begin{vmatrix} -3 & 4 \ 2 & 6 \end{vmatrix} = 26, A_{22} = \begin{vmatrix} 1 & 5 \ 2 & 6 \end{vmatrix} = -4, A_{32} = -\begin{vmatrix} 1 & 5 \ -3 & 4 \end{vmatrix} = -19,$
 $A_{13} = \begin{vmatrix} -3 & 0 \ 2 & 1 \end{vmatrix} = -3, A_{23} = -\begin{vmatrix} 1 & -2 \ 2 & 1 \end{vmatrix} = -5, A_{33} = \begin{vmatrix} 1 & -2 \ -3 & 0 \end{vmatrix} = -6.$

所以 $A^* = \begin{pmatrix} -4 & 17 & -8 \ 26 & -4 & -19 \ -3 & -5 & -6 \end{pmatrix}$.

例2.6.4 证明: $AA^*=A^*A=|A|E$.

证明 设 $A=(a_{ij})_{n\times n}$

$$AA^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| & 0 & \cdots & 0 \\ 0 & |A| & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & |A| \end{pmatrix} = |A|E.$$

同理可证 $A^*A=|A|E$.

注 此处用到行列式的重要公式

$$\sum_{k=1}^{n} a_{ik} A_{jk} = |A| \delta_{ij} = \begin{cases} |A|, & i = j, \\ 0, & i \neq j. \end{cases}$$

 δ_{ij} 称为Kronecker常数,规定 δ_{ii} =1, δ_{ij} =0,($i\neq j$).

定理2.6.1 (矩阵可逆的条件) 矩阵A可逆的充要条件是 $|A| \neq 0$,且 $A^{-1} = \frac{1}{|A|} A^*$.

证明 必要性. 设 A可逆,即存在 A^{-1} ,使 $AA^{-1}=E$,则 $|AA^{-1}|=|A||A^{-1}|=|E|=1$.所以 $|A|\neq 0$. 充分性. 由例2.6.4 可知 $AA^*=A^*A=|A|E$,因为 $|A|\neq 0$,所以 $A(\frac{1}{|A|}A^*)=(\frac{1}{|A|}A^*)A=E$. 由逆矩阵的定义即知 $A^{-1}=\frac{1}{|A|}A^*$.

AB=E 不一定有 BA=E,如 $A=\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $B=\begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 3 & 4 \end{pmatrix}$,AB=E, $BA=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 3 & 0 \end{pmatrix}$.

但是,对于方阵 AB=E 等价于 BA=E . 见如下推论

推论2.6.3 设A,B 都是n阶方阵, 若AB=E,则BA=E,且 $A^{-1}=B$, $B^{-1}=A$.

证明 由 |A||B|=|AB|=|E|=1可得 $|A|\neq 0$, $|B|\neq 0$,故 A^{-1} , B^{-1} 存在,且有 $B=(A^{-1}A)B=A^{-1}(AB)=A^{-1}E=A^{-1}$, $A=A(BB^{-1})=(AB)B^{-1}=EB^{-1}=B^{-1}$. 即 A, B 可逆,且 A, B 互为逆矩阵 .

例2.6.5 判断下列矩阵 A, B, C 是否可逆 . 若可逆,求其逆矩阵.

$$A = \begin{pmatrix} 1 & -2 & 5 \\ -3 & 0 & 4 \\ 2 & 1 & 6 \end{pmatrix}, B = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}, C = \begin{pmatrix} 2 & 3 & -1 \\ -1 & -3 & 5 \\ 1 & 5 & -11 \end{pmatrix}$$
, 其中 a,c 为非零实数.

解 因为
$$|A| = \begin{vmatrix} 1 & -2 & 5 \\ -3 & 0 & 4 \\ 2 & 1 & 6 \end{vmatrix} = -71 \neq 0,$$

所以 A 可逆. 再由例2.6.3已求得的A的伴随矩阵 A^* ,立即得到

$$A^{-1} = \frac{1}{|A|}A^* = -\frac{1}{71} \begin{pmatrix} -4 & 17 & -8 \\ 26 & -4 & -19 \\ -3 & -5 & -6 \end{pmatrix}.$$

因为 $|B| = \begin{vmatrix} a & 0 \\ b & c \end{vmatrix} = ac \neq 0,$

因为
$$|B| = \begin{vmatrix} a & b \\ b & c \end{vmatrix} = ac \neq 0,$$
所以**B**可逆,且 $B^{-1} = \frac{1}{|B|}B^* = \frac{1}{ac} \begin{pmatrix} c & 0 \\ -b & a \end{pmatrix} = \begin{pmatrix} a^{-1} & 0 \\ -\frac{b}{ac} & c^{-1} \end{pmatrix}.$

最后,因为 |C|=0,所以C不可逆.

例2.6.6 设
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 4 & 5 \end{pmatrix}$$
, A^* 是A的伴随矩阵,求(A^*)-1.

解
$$|A| = \begin{vmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 4 & 5 \end{vmatrix} = 10 \neq 0$$
,而 $AA^* = |A|E = 10E$,即有 $\frac{1}{10}AA^* = E$,从而

$$(A^*)^{-1} = \frac{1}{10} A = \frac{1}{10} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 0.1 & 0 & 0 \\ 0.2 & 0.2 & 0 \\ 0.3 & 0.4 & 0.5 \end{pmatrix}.$$

例2.6.7 证明:设A为 $n(n \ge 2)$ 阶方阵,则 $|A^*| = |A|^{n-1}$,这里 A^* 为A的伴随矩阵.

- 证明 (1) 若 $|A|\neq 0$,则A可逆. 由逆矩阵公式知 $A^*=|A|A^{-1}$,从而 $|A^*|=|A|A^{-1}|=|A|^n|A^{-1}|=|A|^{n-1}$.
- (2) 若 |A|=0,则一定有 $|A^*|=0$. 否则若 $|A^*|\neq 0$,则 A^* 可逆. 由于 $AA^*=|A|E=O$,两边右乘 $(A^*)^{-1}$ 得 $A=O\cdot (A^*)^{-1}=O$,于是 $A^*=O$. 这 与 $|A^*|\neq 0$ 矛盾,故 $|A^*|=0$.

综上(1),(2)得, $|A^*|=|A|^{n-1}$.

伴随矩阵相当于比较粗略的逆: $AA^*=A^*A=|A|E$, $A^*=|A|A^{-1}$

分块对角矩阵的可逆及逆矩阵

$$A = \begin{pmatrix} A_{11} & & & \\ & A_{22} & & \\ & & \ddots & \\ & & & A_{ss} \end{pmatrix}, A_{ii} (i = 1, 2, \dots, s)$$
可逆,则 A 可逆且 $A^{-1} = \begin{pmatrix} A_{11}^{-1} & & \\ & A_{22}^{-1} & \\ & & & \ddots & \\ & & & A_{ss}^{-1} \end{pmatrix}.$

因为:

$$\begin{pmatrix} A_{11} & & & \\ & A_{22} & & \\ & & \ddots & \\ & & & A_{ss} \end{pmatrix} \begin{pmatrix} A_{11}^{-1} & & \\ & A_{22}^{-1} & \\ & & & \ddots \\ & & & & A_{ss} \end{pmatrix} = \begin{pmatrix} A_{11}A_{11}^{-1} & & \\ & & A_{22}A_{22}^{-1} & \\ & & & & \ddots \\ & & & & A_{ss}A_{ss}^{-1} \end{pmatrix} = E,$$
同样
$$\begin{pmatrix} A_{11}^{-1} & & & \\ & A_{22}^{-1} & & \\ & & & & \ddots \\ & & & & & A_{ss} \end{pmatrix} = E.$$

例2.6.8 设
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix}$$
, 求 A^{-1} .

解
$$A$$
 的分块矩阵为 $\begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \\ 0 & A_{33} \end{pmatrix}$, 其中 $A_{11} = \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix}$, $A_{22} = 2$, $A_{33} = \begin{pmatrix} 2 & 4 \\ 0 & -2 \end{pmatrix}$.

容易计算
$$A_{11}^{-1} = \begin{pmatrix} 1 & 0 \\ -\frac{3}{4} & \frac{1}{4} \end{pmatrix}, A_{22}^{-1} = \frac{1}{2}, A_{33}^{-1} = \begin{pmatrix} \frac{1}{2} & 1 \\ 0 & -\frac{1}{2} \end{pmatrix}.$$

故
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -3/4 & 1/4 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1 \\ 0 & 0 & 0 & 0 & -1/2 \end{pmatrix}.$$

例2.6.9 已知非齐次线性方程组 Ax=b 的系数矩阵

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & 0 & 4 \end{pmatrix},$$

 $b=(5,1,1)^{T}$. 问方程组是否有解? 若有, 求出其解.

分析: 若有 A^{-1} , 则有 $A^{-1}Ax=A^{-1}b$, 即 $x=A^{-1}b$

解 因为 $|A|=1\neq0$,所以A可逆,且其逆矩阵 A^{-1} 唯一. 因此在 等式 Ax=b 的两端左乘 A^{-1} ,即 A^{-1} (Ax)= $A^{-1}b$. 得 $x=A^{-1}b$,即 该方程组有唯一解. 用伴随矩阵法求得

$$A^{-1} = \begin{pmatrix} 4 & 4 & -3 \\ 2 & 3 & -2 \\ -1 & -1 & 1 \end{pmatrix},$$

进一步计算得

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 & 4 & -3 \\ 2 & 3 & -2 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 21 \\ 11 \\ -5 \end{pmatrix}.$$

补充例2C 已知方阵 $A^{T}A=E$, $B^{T}B=E$, |A|+|B|=0, 证明 |A+B|=0. 证明 由于 $B^{T}B=E$, 故 $B^{-1}=B^{T}$, 从而有 $BB^{T}=E$. 于是有 $A^{T}(A+B)B^{T}=B^{T}+A^{T}=(A+B)^{T}$, 两边取行列式得, $|A|\cdot|B|\cdot|A+B|=|A^{T}|\cdot|A+B|\cdot|B^{T}|=|A^{T}(A+B)B^{T}|=|(A+B)^{T}|=|A+B|$, 故有 $0=|A+B|(1-|A|\cdot|B|)$. 由 |A|+|B|=0可得 |B|=-|A|, 于是 $0=|A+B|(1+|A|^{2})$,由于 $1+|A|^{2}>0$,故 |A+B|=0.

补充例2D 若AB=A+2B, 证明AB=BA.

证明 AB=A+2B可得 (A-2E)(B-E)=2E,即 (A-2E)(0.5(B-E))=E,故 0.5(B-E)为A-2E的逆矩阵,于是 (0.5(B-E))(A-2E)=E,此即 BA=A+2B=AB.

补充例2E 已知3阶非零方阵 A,满足 A_{ij} =2 a_{ij} ,i,j=1,2,3,求 |A|. 证明 AA^* = $A(2A^T)$ =2 AA^T ,故 AA^* =|A|E=2 AA^T ,取行列式得, $|A|^3$ =|A|E=|A|E= $|A|A^T$ = $|A|A^T$ =

补充例2F 设为方阵,证明 $(A^T)^*=(A^*)^T$.

证明 A可能不可逆,故不能使用求逆运算,只能通过比较 (i,j) 元素证明. $(A^{T})^{*}$ 的(i,j)元素,即 A^{T} 的(j,i)位置的代数余子式,即A的(i,j)位置的代数余子式的转置 $A_{ij}' = A_{ij}$, $(A^{*})^{T}$ 的(i,j)元素,即 A^{*} 的(j,i)位置的元素,即 A_{ij} . 故 $(A^{T})^{*} = (A^{*})^{T}$.