Drug Discovery

Lecture 26

 Drug: A chemical substance of known structure (other than a nutrient or an essential dietary ingredient) which, when administered to a living organism, produces a biological effect.

- Discovery phase: Identification of a new chemical entity as a potential therapeutic agent.
- Development phase: Compound is tested for safety and efficacy for one or more clinical indications, and in suitable formulations and dosage form.

Major Stages of the New drug synthesis

- Drug discovery: Candidate molecules are chosen on the basis of their pharmacological properties.
- Preclinical development: Non-human studies (e.g. toxicity testing, pharmacokinetic analysis and formulation) are performed.
- Clinical development: The selected compound is tested for efficacy, side effects and potential dangers

Drug discovery

- Drug discovery is the process through which potential new medicines are identified.
- It involves a wide range of scientific disciplines, including biology, chemistry and pharmacology.

Drug development process

Schematic representation of the drug development process with timeline

Target Selection & Validation

- Define the disease
- Understand the molecular mechanism of the disease
- Identify a therapeutic target in that pathway (e.g gene, key enzyme, receptor, ion-channel, nuclear receptor)
- Demonstrate that target is relevant to disease mechanism using genetics, animal models, lead compounds, antibodies, RNAi, etc.

Discovery

Develop an assay to evaluate activity of compounds on the target

- - in vitro (e.g. enzyme assay)
- - in vivo (animal model or pharmacodynamic assay)

Identify a lead compound

Screen collection of compounds ("compound library")

Structure-based design ("rational drug design")

Screen Natural Products

Compound from published literature

Optimize to give a "proofof-concept" molecule one that shows efficacy in an animal disease model

Optimize to give drug-like properties—
pharmacokinetics, metabolism, off-target activities

Safety assessment, Preclinical Candidate

Drug Discovery Methods

Docking

- A method which predicts the preferred orientation of one molecule to another when bound to each other to form a stable complex.
 - Ex: Autodock

Protein Ligand Docking

Computational method which mimics the binding of a ligand to a protein.

In silico screening with Autodock Gleevec (Imatinib) bound to BCR-Abl Protein

Rational Drug design for HIV Protease

Rational drug design refers to the development of medications based on the study of the structures and functions of target molecules.

ADMET: Ideal Properties of Drugs

Absorption – From GI track into blood stream Distribution Gets to target
tissue (blood
brain barrier)

Metabolism – Not readily metabolized

Excretion – Not readily secreted

Toxicity – Not toxic to other cells or tissues

Chris Lipinski's Rule of Five

- H-bond donors <5.
- Molecular weight <500.
- Partitioning coefficient (Log P) <5. (The partition coefficient is the measure of the lipophilicity of a drug and an indication of its ability to cross the cell membrane.)
- H-bond acceptors <10 (=5x2).
- The "rule of five" name came from the cutoffs all being multiples of five.

Development

Pre-Clinical

Safety Assessment Toxicology

Drug Metabolism (ADME)

Process R&D
Chem Eng. R&D
Manufacturing

Pharmaceutical R&D Formulation

Clinical Investigator & patient

Clinical Pharmacology Clinical Research

Regulatory Affairs
Project Planning & Management
Marketing

Statistics & Epidemiology
Data Coordination
Research Information Systems
Information Services

Phase I

Product Profile

20 - 100 healthy volunteers take drug for about one month

Remote data entry

Information Learned

- 1. Absorption and metabolism
- 2. Effects on organs and tissue
- 3. Side effects as dosage is increased

Clinical Trials

Phase II

Several hundred health-impaired patients

Treatment Group

Information Learned

- 1. Effectiveness in treating disease
- 2. Short-term side effects in health -impaired patients
- 3. Dose range

Phase III

Hundreds or thousands of health-impaired patients

Information Learned

- 1. Benefit/risk relationship of drug
- 2. Less common and longer term side effects
- 3. Labeling information

Compassionate Use

Clinical Trials Continued

Advisory Committee

Regulatory Review Team

APPROVAL PROCESS (Ex. FDA)

Reviews, comments, and discussions

Submit to Regulatory Agencies

New Drug Application (NDA)

APPROVAL

Drug Discovery—Convergence of Disciplines

Genetic and Biomarker Followup

But why stop learning when the drug is on the market?

