Activités Mentales

24 Août 2023

On considère le vecteur
$$\overrightarrow{n} \begin{pmatrix} 3 \\ -5 \\ 1 \end{pmatrix}$$
 et le point $M(-7 \; ; \; -3 \; ; \; 9).$

Déterminer une équation cartésienne du plan $\mathscr P$ passant par M et de vecteur normal \overrightarrow{n} .

On considère le vecteur $\overrightarrow{n} \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$ et le point $M(-9 \; ; \; -5 \; ; \; -8)$.

Déterminer une équation cartésienne du plan $\mathscr P$ passant par M et de vecteur normal \overrightarrow{n} .

On considère le vecteur $\overrightarrow{n} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et le point $M(4 \; ; \; -9 \; ; \; 2).$

Déterminer une équation cartésienne du plan ${\mathscr P}$ passant par M et de vecteur normal \vec{n} .

On considère le vecteur $\overrightarrow{n} \begin{pmatrix} -5 \\ 3 \\ 0 \end{pmatrix}$ et le point M(-1; 7; 5).

Déterminer une équation cartésienne du plan $\mathscr P$ passant par M et de vecteur normal \overrightarrow{n} .

On considère le vecteur
$$\overrightarrow{n} \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}$$
 et le point $M(0 \; ; \; -4 \; ; \; -5)$.

Déterminer une équation cartésienne du plan ${\mathscr P}$ passant par M et de vecteur normal \vec{n} .

On a
$$\overrightarrow{n}$$
 $\begin{pmatrix} 3 \\ -5 \\ 1 \end{pmatrix}$ et $M(-7; -3; 9)$. Une équation cartésienne de \mathscr{P} est de

la forme

$$ax + by + cz + d = 0$$
 \Rightarrow $3x - 5y + z + d = 0$

avec $d \in \mathbb{R}$ un réel à déterminer. On a alors

$$M(-7; -3; 9) \in \mathscr{P} \Leftrightarrow 3 \times (-7) + (-5) \times (-3) + d = 0$$

 $\Leftrightarrow 3 + d = 0$
 $\Leftrightarrow d = -3.$

Finalement, on a \mathscr{P} : 3x-5y+z-3=0.

On a
$$\overrightarrow{n}$$
 $\begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$ et $M(-9; -5; -8)$. Une équation cartésienne de \mathscr{P} est de

la forme

$$ax + by + cz + d = 0$$
 \Rightarrow $x + 5y + z + d = 0$

avec $d \in \mathbb{R}$ un réel à déterminer. On a alors

$$M(-9; -5; -8) \in \mathscr{P} \Leftrightarrow -9+5 \times (-5)-8+d=0$$

 $\Leftrightarrow -42+d=0$
 $\Leftrightarrow d=42.$

Finalement, on a \mathscr{P} : x+5y+z+42=0.

On a
$$\overrightarrow{n}$$
 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et $M(4; -9; 2)$. Une équation cartésienne de \mathscr{P} est de la

forme

$$ax + by + cz + d = 0$$
 \Rightarrow $x + y + z + d = 0$

avec $d \in \mathbb{R}$ un réel à déterminer. On a alors

$$M(4; -9; 2) \in \mathcal{P} \Leftrightarrow 4-92+d=0$$

 $\Leftrightarrow -3+d=0$
 $\Leftrightarrow d=3.$

Finalement, on a \mathcal{P} : x+y+z+3=0.

On a
$$\overrightarrow{n} \begin{pmatrix} -5 \\ 3 \\ 0 \end{pmatrix}$$
 et $M(-1; 7; 5)$. Une équation cartésienne de \mathscr{P} est de la

forme

$$ax + by + cz + d = 0$$
 \Rightarrow $-5x + 3y + d = 0$

avec $d \in \mathbb{R}$ un réel à déterminer. On a alors

$$M(-1; 7; 5) \in \mathcal{P} \Leftrightarrow (-5) \times (-1) + 3 \times 7 + 0 \times 5 + d = 0$$

 $\Leftrightarrow 26 + d = 0$
 $\Leftrightarrow d = -26.$

Finalement, on a \mathcal{P} : -5x + 3y - 26 = 0.

On a
$$\overrightarrow{n}$$
 $\begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}$ et $M(0; -4; -5)$. Une équation cartésienne de \mathscr{P} est de

la forme

$$ax + by + cz + d = 0$$
 \Rightarrow $2x - 2z + d = 0$

avec $d \in \mathbb{R}$ un réel à déterminer. On a alors

$$M(0; -4; -5) \in \mathscr{P} \Leftrightarrow 2 \times 0 + (-2) \times (-5) + d = 0$$

 $\Leftrightarrow 10 + d = 0$
 $\Leftrightarrow d = -10.$

Finalement, on a \mathscr{P} : 2x-2z-10=0.