## Aufgabe 1: Begriffe [Begriffe]

Begründen Sie, welche der folgenden Petri-Netze

- (a) beschränkt
- (b) lebendig
- (c) verklemmungsfrei



(a)



beschränkt ja, M = 2.

**lebendig** Nein, die Transition  $t_4$  kann maximal einmal schalten (z. B.  $t_1 \rightarrow t_4$ )

**verklemmungsfrei** Ja, mit  $t_1 \rightarrow t_3 \rightarrow t_2$  ist ein Zyklus gegeben.

**umkehrbar** Nein, nachdem  $t_4$  einmal geschaltet hat, wird dem Petri-Netz eine Markierung entzogen, welche nie wieder erzeugt werden kann.

## (b)

**beschränkt** Nein, solange in  $p_2$  mindestens eine Markierung ist, kann  $t_3$  beliebig oft schalten und somit die Anzahl der Markierungen in  $p_3$  beliebig erhöhen.

lebendig Nein, da es nicht verklemmungsfrei ist.

**verklemmungsfrei** Nein, nachdem 2019 mal  $t_2$  und anschließend  $t_1$  geschaltet haben, befindet sich in  $p_2$  keine Marke mehr. Daher können weder  $t_2$  noch  $t_3$  schalten.

umkehrbar Nein, da es nicht verklemmungsfrei ist.

## (c)

**beschränkt** Nein,  $t_1 \rightarrow t_5 \rightarrow t_3 \rightarrow t_6 \rightarrow t_7 \rightarrow t_2$  bildet einen Zyklus, der nach jedem Umlauf die Anzahl der Marken in  $p_1$  um eins erhöht.

lebendig Nein, da es nicht verklemmungsfrei ist.

**verklemmungsfrei** Nein, die Schaltfolge  $t_1 \to t_5 \to t_3 \to t_6 \to t_4 \to t_5 \to t_3 \to t_6 \to t_4$  führt zu einer Verklemmung.

umkehrbar Nein, da es nicht verklemmungsfrei ist.





## (d)

beschränkt Ja, mit M = 4.

lebendig Ja.

verklemmungsfrei Ja.

umkehrbar Ja.

 $sind.\ Im\ Falle\ der\ Beschränktheit\ soll\ ein\ minimales\ M\ gefunden\ werden, sodass\ jede\ Stelle\ zu\ jedem\ m\"{o}glichen\ Zeitpunkt\ h\"{o}chstens\ M\ Marken\ enthält.$ 

 $\tilde{G}ithub: \verb|Module|/40_SOSY/03_Projektplanung/10_Petri-Netze/Aufgabe_Begriffe.tex||$