18.100A: Complete Lecture Notes

Lecture 15

Uniform Continuity and the Definition of the Derivative

Uniform Continuity

Recall 1

Recall the definition of continuity: $f: S \to \mathbb{R}$ is continuous on S if $\forall c \in S$ and $\forall \epsilon > 0$, $\exists \delta = \delta(\epsilon, c) > 0$ such that $\forall x \in S$, $|x - c| < \delta \implies |f(x) - f(c)| < \epsilon$.

Here, $\delta(\epsilon, c)$ denotes the fact that δ can depend on ϵ and c.

Example 2

Consider the function $f(x) = \frac{1}{x}$. f is continuous on (0,1).

Proof: Let $\epsilon > 0$. Choose $\delta = \min\left\{\frac{c}{2}, \frac{c^2}{2}\epsilon\right\}$. Suppose $|x - c| < \delta$. Then, $|x - c| < \frac{c}{2} \implies |x| > c - |x - c| > \frac{c}{2}$. Thus, $\frac{1}{|x|} < \frac{2}{c}$. Therefore,

$$\left| \frac{1}{x} - \frac{1}{c} \right| = \frac{|x - c|}{|xc|}$$

$$< \frac{\delta}{|x||c|}$$

$$< \frac{2}{c^2} \delta$$

$$\leq \frac{2}{c^2} \frac{c^2 \epsilon}{2} = \epsilon.$$

As shown in the previous example. δ depended on **both** ϵ and c.

Definition 3 (Uniformly Continuous)

Let $f: S \to \mathbb{R}$. Then, f is uniformly continuous on S if $\forall \epsilon > 0$, $\exists \delta = \delta(\epsilon) > 0$ such that $\forall x, c \in S$,

$$|x - c| < \delta \implies |f(x) - f(c)| < \epsilon.$$

Remark 4. Thus, in the definition of uniform continuity, δ only depends on ϵ !

Example 5

The function $f(x) = x^2$ is uniformly continuous on [0, 1].

Proof: Let $\epsilon > 0$. Choose $\delta = \frac{\epsilon}{2}$. Then, if $x, c \in [0, 1]$ then $|x - c| < \delta$ implies that

$$|x^2 - c^2| = |x + c||x - c| \le 2|x - c| < 2\delta = \epsilon.$$

However, there are of course continuous functions that are not uniformly continuous. For example, we will show that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1), but first we consider the negation of the definition.

Negation 6 (Not Uniformly Continuous)

Let $f: S \to \mathbb{R}$. Then, f is not uniformly continuous on S if $\exists \epsilon_0 > 0, \forall \delta > 0$ such that $\exists x, c \in S$ with

$$|x - c| < \delta$$
 and $|f(x) - f(c)| \ge \epsilon_0$.

Proof: Choose $\epsilon_0 = 2$ (in fact, any $\epsilon_0 > 0$ will show that $\frac{1}{x}$ is not uniformly continuous on (0,1)). Then, let $\delta > 0$. Choose $c = \min \left\{ \delta, \frac{1}{2} \right\}$ and $x = \frac{c}{2}$. Then, $|x - c| = \frac{c}{2} \le \frac{\delta}{2} < \delta$ and

$$\left| \frac{1}{x} - \frac{1}{c} \right| = \left| \frac{2}{c} - \frac{1}{c} \right| = \frac{1}{c} \ge \frac{1}{\frac{1}{2}} = 2.$$

Theorem 7

Let $f:[a,b]\to\mathbb{R}$. Then, f is continuous if and only if f is uniformly continuous.

Proof: (\Leftarrow) This direction is left as an exercise to the reader.

(\Longrightarrow) Suppose f is continuous and assume for the sake of contradiction that f is not uniformly continuous. Then, $\exists \epsilon_0 > 0$ such that for all $n \in \mathbb{N}$, $\exists x_n, c_n \in [a, b]$ such that

$$|x_n - c_n| < \frac{1}{n}$$
 and $|f(x_n) - f(c_n)| > \epsilon_0$.

By Bolzano-Weierstrass, \exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and $x \in [a,b]$ such that $\lim_{k\to\infty} x_{n_k} = x$. Similarly, by Bolzano-Weierstrass, \exists a subsequence $\{c_{n_k}\}$ of $\{c_n\}$ and $c \in [a,b]$ such that $\lim_{k\to\infty} c_{n_k} = c$. Note that subsequence $\{x_{n_{k_j}}\}$ of $\{x_{n_k}\}$ satisfies $\lim_{j\to\infty} x_{n_{k_j}} = x$. Then,

$$|x - c| = \lim_{j \to \infty} |x_{n_{k_j}} - c_{n_{k_j}}| \le \lim_{j \to \infty} \frac{1}{n_{k_j}} - 0.$$

Thus, x = c. But, since f is continuous at c,

$$0 = |f(c) - f(c)| = \lim_{j \to \infty} |f(x_{n_{k_j}}) - f(c_{n_{k_j}})| \ge \epsilon_0.$$

This is a contradiction.

Derivative

Definition 8

Let I be an interval, let $f: I \to \mathbb{R}$, and let $c \in I$. We say that f is differentiable at c if the limit

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists.

Notation 9

If f is differentiable at c, we write

$$f'(c) := \lim_{x \to c} \frac{f(x) - f(c)}{x - c}.$$

Furthermore, if f is differentiable at every $c \in I$, we write f' or $\frac{\mathrm{d}f}{\mathrm{d}x}$ for the function f'(x).

Example 10

Consider the function f(x) = ax + b. Then, for all $c \in \mathbb{R}$, f'(c) = a.

Proof: This follows as

$$\lim_{x\to c}\frac{f(x)-f(c)}{x-c}=\lim_{x\to c}\frac{ax+b-(ac+b)}{x-c}=a\lim_{x\to c}\frac{x-c}{x-c}=\lim_{x\to c}a=a.$$

Example 11 (The Power Rule)

For all $n \in \mathbb{N}$, if $f(x) = \alpha x^n$, then for all $c \in \mathbb{R}$,

$$f'(c) = \alpha n c^{n-1}.$$

Proof: We note that for all $n \in \mathbb{N}$,

$$(x-c)\sum_{j=0}^{n-1}x^{n-1-j}c^j = \sum_{j=0}^{n-1}x^{n-j}c^j - \sum_{j=0}^{n-1}x^{n-1-j}c^{j+1}.$$

Letting $\ell = j + 1$, we obtain

$$(x-c)\sum_{j=0}^{n-1} x^{n-1-j}c^j = \sum_{j=0}^{n-1} x^{n-j}c^j - \sum_{\ell=1}^n x^{n-\ell}c^\ell$$
$$= x^{n-0}c^0 - x^{n-n}c^n$$
$$= x^n - c^n.$$

Therefore,

$$\lim_{x \to c} \frac{\alpha x^n - \alpha c^n}{x - c} = \alpha \lim_{x \to c} \sum_{j=0}^{n-1} x^{n-1-j} c^j = \alpha \sum_{j=0}^{n-1} c^{n-1-j} c^j = \alpha n c^{n-1}.$$

MIT OpenCourseWare https://ocw.mit.edu

18.100A / 18.1001 Real Analysis Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.