

SEQUENCE LISTING

<110> Krueger, Bruce K.
Kingsbury, Tami J.
Bambrick, Linda L.
Dorsey, Susan G.

<120> Novel Treatment of Neurodegenerative Diseases by Altering
Levels of TrkB Isoforms and/or TrkC Isoforms

<130> 028754-042

<140> US 10/645,546
<141> 2003-08-22

<150> US 60/270,553
<151> 2001-02-22

<150> PCT/US02/05151
<151> 2002-02-22

<160> 22

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 3707
<212> DNA
<213> Homo sapiens

<300>
<308> NCBI/NM_006180
<309> 2000-11-01
<313> (1)..(3707)

<400> 1
cccccattcg catctaacaa ggaatctgcg ccccagagag tccccggacgc cgccggtcgg 60
tgcccgccgc gccgggccat gcagcgacgg ccgcgcggg gctccgagca gcgtagcgc 120
ccccctgtaa agcggttcgc tatgccgggaa ccactgtgaa ccctgccc tgccggaaaca 180
cttttcgctc cggaccagct cagcctctga taagctggac tcggcacgcc cgcaacaagc 240
accgaggagt taagagagcc gcaagcgcag ggaaggcctc cccgcacggg tggggaaag 300
cggccgggtgc agcgcgggga cagggactcg ggctggcact ggctgctagg gatgtcgatcc 360
tggataaggt ggcatggacc cggcatggcg cggctctggg gcttctgtc gctgggtgt 420
ggcttctgga gggccgctt cgcctgtccc acgtcctgc aatgcagtgc ctctcgatc 480
tggtgacgcg accctctcc tggcatcgta gcatctccgaa gattggagcc taacagtgt 540
gatcctgaga acatcaccga aatttcatc gcaaaccaga aaaggtaga aatcatcaac 600
gaagatgatg ttgaagctta tgtggactg agaaatctga caattgtgga ttctggatta 660
aaatttgtgg ctcataaaagc atttctgaaa aacagcaacc tgcaacat caattttacc 720
cgaaacaaac tgacgagtt gtcttagaaaa cattccgtc accttgactt gtctgaactg 780
atccctgggg gcaatccatt tacatgctcc tgtgacattt tgtggatcaa gactctccaa 840
gaggctaaat ccagtcaga cactcaggat ttgtactgcc tgaatgaaag cagcaagaat 900
attccccctgg caaacctgca gatacccaat tgtgtttgc catctgcaaa tctggccgca 960
cctaaccctca ctgtggagga aggaaagtct atcacattat cctgtatgtt ggcaggttat 1020
ccggttcccta atatgtattt ggtatgttggt aacctggttt ccaaacatata gaatgaaaca 1080
agccacacac agggctcctt aaggataact aacatttcattt ccgtatgacag tggaaagcag 1140
atctcttgc tggcgaaaaa tcttgcggatggaa gaagatcaag attctgtcaa cctcactgtg 1200

cattttgcac caactatcac atttctcgaa tctccaacct cagaccacca ctggcgcatt 1260
 ccattcactg tgaaaaggcaa ccccaaaccg gcgcttcagt ggttctataa cggggcaata 1320
 ttgaatgagt ccaaatacat ctgtactaaa atacatgtta ccaatcacac ggagtaccac 1380
 ggctgcctcc agctggataa tcccactcac atgaacaatg gggactacac tctaataagcc 1440
 aagaatgagt atggaaagga tgagaaaacag atttctgctc acttcatggg ctggcctgga 1500
 attgacgatg gtgcaaaccc aaatttatctt gatgtatTTT atgaagatta tggaaactgca 1560
 gogaatgaca tcggggacac cacgaacaga agtaatgaaa tcccttcac agacgtca 1620
 gataaaaaccg gtgggaaaca tctctcggtc tatgtgtgg tggtgattgc gtctgtgg 1680
 ggattttgcc ttttgtaat gctgtttctg cttaaagttgg caagacactc caagttggc 1740
 atgaaaggcc cagcctccgt tattcagcaat gatgtatgtc ctggcagcccc actccatcac 1800
 atctccaatg ggagtaacac tccatcttct tcggaaagggtg gcccagatgc tgtcattatt 1860
 ggaatgacca agatccctgt cattgaaaat ccccaactt ttggcatcac caacagttag 1920
 ctcaagccag acacatttgt tcagcacatc aagcgacata acattgttct gaaaaggag 1980
 ctaggcgaag gagccttgg aaaagtgttc ctactgtaat gctataacct ctgtcctgag 2040
 caggacaaga tcttggtggc agtgaagacc ctgaaggatg ccagtgacaa tgacgcag 2100
 gacttccacc gtgaggccga gctcctgacc aacccatccgc atgagcacat cgtcaagttc 2160
 tatggcgtct gcgtgaggg cgacccccc atcatggtct tttagtacat gaagcatggg 2220
 gacctcaaca agttcctcag ggcacacgcg cctgtatggc tgctgtatggc tgagggcaac 2280
 ccgcccacgg aactgacgca gtcgcagatg ctgcataatag cccagcagat cgcccgcccc 2340
 atggcttacc tggcgtccca gcaacttcgtg caccggatt tggccaccag gaactgcctg 2400
 gtcggggaga acttgcgtt gaaaatcggg gactttggga tggcccgatc cgtgtacagc 2460
 actgactact acagggtcgg tggccacaca atgcgtccca ttgcgttgat gcctccagag 2520
 agcatcatgt acagggaaatt cacgacggaa agcgcacgtct ggagcctggg ggtcgtgtt 2580
 tgggagattt tcacccatgg caaacagccc tggtaccagc tggtaaaaaaa tgaggtgata 2640
 gagtgtatca ctcagggccg agtcctgcag cgaccccgca cgtgccccca ggaggtgtat 2700
 gagctgtatgc tgggtgctg gcagcgagag ccccacatga ggaagaacat caagggcatc 2760
 cataccctcc ttcaaaactt ggcacccggc tctccggctc acctggacat tctaggctag 2820
 gccccttttccc cccagaccga tccttccca cgtactccctc agacggctg agaggatgaa 2880
 catcttttaa ctggcgtgg aggccaccaa gctgtctcc ttcaactctga cagattaaac 2940
 atcaaaagact ccgagaagct ctcgaggaa gcagtgtgtat cttcttcatttcatc catagacaca 3000
 gtattgactt cttttggca ttatctctt ctcttttcc atctccctt gttttccctt 3060
 ttctttttttaaattttct ttttcttctt ttttttgc tttccctgtt caccattttt 3120
 accctttctt ttgaatcaat ctggcgttctg cattactatt aactctgcattt aactctgcattt agacaaaggc 3180
 ctaaacaac gtaatttgtt atatcagcag acactccagt ttgcccacca caactaaca 3240
 tgccttggttg tattcctgccc tttgtatggg ataaaaaaa gggaaaacaa atatttact 3300
 taaactttgtt cacttcgtt gtacagatat cgagatggc tatggattca ctcttattttt 3360
 ttatttattttttaaattttttt tattttttt ggtatggctt aactctgcattt aactctgcattt agacaaaggc 3420
 aacttggttt caatctgttga agccctttatc tatgggagat taaaaccaga gagaagaag 3480
 atttattatg aaccgcaata tggggaggaac aaagacaacc actgggatca gctgggttca 3540
 gtccttactt agggaaatact cagcaactgt tagctgggaa gaatgttattc ggacaccccttcc 3600
 cctgaggacc tttctgagga gtaaaaaagac tactggccctc tttttttttt gttttttttt 3660
 tcccatcacc agaaatgata gcgtgcagta gagagcaaaatggctt 3707

<210> 2
 <211> 822
 <212> PRT
 <213> Homo sapiens

<300>
 <308> NCBI/NM_006180
 <309> 2000-11-01
 <313> (1)..(822)

<400> 2
 Met Ser Ser Trp Ile Arg Trp His Gly Pro Ala Met Ala Arg Leu Trp
 1 5 10 15
 Gly Phe Cys Trp Leu Val Val Gly Phe Trp Arg Ala Ala Phe Ala Cys

	20	25	30	
Pro	Thr Ser Cys Lys Cys Ser Ala Ser Arg Ile Trp Cys Ser Asp Pro			
35	35	40	45	
Ser	Pro Gly Ile Val Ala Phe Pro Arg Leu Glu Pro Asn Ser Val Asp			
50	50	55	60	
Pro	Glu Asn Ile Thr Glu Ile Phe Ile Ala Asn Gln Lys Arg Leu Glu			
65	65	70	75	80
Ile	Ile Asn Glu Asp Asp Val Glu Ala Tyr Val Gly Leu Arg Asn Leu			
85	85	90	95	
Thr	Ile Val Asp Ser Gly Leu Lys Phe Val Ala His Lys Ala Phe Leu			
100	100	105	110	
Lys	Asn Ser Asn Leu Gln His Ile Asn Phe Thr Arg Asn Lys Leu Thr			
115	115	120	125	
Ser	Leu Ser Arg Lys His Phe Arg His Leu Asp Leu Ser Glu Leu Ile			
130	130	135	140	
Leu	Val Gly Asn Pro Phe Thr Cys Ser Cys Asp Ile Met Trp Ile Lys			
145	145	150	155	160
Thr	Leu Gln Glu Ala Lys Ser Ser Pro Asp Thr Gln Asp Leu Tyr Cys			
165	165	170	175	
Leu	Asn Glu Ser Ser Lys Asn Ile Pro Leu Ala Asn Leu Gln Ile Pro			
180	180	185	190	
Asn	Cys Gly Leu Pro Ser Ala Asn Leu Ala Ala Pro Asn Leu Thr Val			
195	195	200	205	
Glu	Glu Gly Lys Ser Ile Thr Leu Ser Cys Ser Val Ala Gly Asp Pro			
210	210	215	220	
Val	Pro Asn Met Tyr Trp Asp Val Gly Asn Leu Val Ser Lys His Met			
225	225	230	235	240
Asn	Glu Thr Ser His Thr Gln Gly Ser Leu Arg Ile Thr Asn Ile Ser			
245	245	250	255	
Ser	Asp Asp Ser Gly Lys Gln Ile Ser Cys Val Ala Glu Asn Leu Val			
260	260	265	270	
Gly	Glu Asp Gln Asp Ser Val Asn Leu Thr Val His Phe Ala Pro Thr			
275	275	280	285	
Ile	Thr Phe Leu Glu Ser Pro Thr Ser Asp His His Trp Cys Ile Pro			
290	290	295	300	
Phe	Thr Val Lys Gly Asn Pro Lys Pro Ala Leu Gln Trp Phe Tyr Asn			
305	305	310	315	320
Gly	Ala Ile Leu Asn Glu Ser Lys Tyr Ile Cys Thr Lys Ile His Val			
325	325	330	335	
Thr	Asn His Thr Glu Tyr His Gly Cys Leu Gln Leu Asp Asn Pro Thr			
340	340	345	350	
His	Met Asn Asn Gly Asp Tyr Thr Leu Ile Ala Lys Asn Glu Tyr Gly			
355	355	360	365	
Lys	Asp Glu Lys Gln Ile Ser Ala His Phe Met Gly Trp Pro Gly Ile			
370	370	375	380	
Asp	Asp Gly Ala Asn Pro Asn Tyr Pro Asp Val Ile Tyr Glu Asp Tyr			
385	385	390	395	400
Gly	Thr Ala Ala Asn Asp Ile Gly Asp Thr Thr Asn Arg Ser Asn Glu			
405	405	410	415	
Ile	Pro Ser Thr Asp Val Thr Asp Lys Thr Gly Arg Glu His Leu Ser			
420	420	425	430	
Val	Tyr Ala Val Val Val Ile Ala Ser Val Val Gly Phe Cys Leu Leu			
435	435	440	445	
Val	Met Leu Phe Leu Leu Lys Leu Ala Arg His Ser Lys Phe Gly Met			
450	450	455	460	
Lys	Gly Pro Ala Ser Val Ile Ser Asn Asp Asp Asp Ser Ala Ser Pro			
465	465	470	475	480

Leu His His Ile Ser Asn Gly Ser Asn Thr Pro Ser Ser Ser Glu Gly
 485 490 495
 Gly Pro Asp Ala Val Ile Ile Gly Met Thr Lys Ile Pro Val Ile Glu
 500 505 510
 Asn Pro Gln Tyr Phe Gly Ile Thr Asn Ser Gln Leu Lys Pro Asp Thr
 515 520 525
 Phe Val Gln His Ile Lys Arg His Asn Ile Val Leu Lys Arg Glu Leu
 530 535 540
 Gly Glu Gly Ala Phe Gly Lys Val Phe Leu Ala Glu Cys Tyr Asn Leu
 545 550 555 560
 Cys Pro Glu Gln Asp Lys Ile Leu Val Ala Val Lys Thr Leu Lys Asp
 565 570 575
 Ala Ser Asp Asn Ala Arg Lys Asp Phe His Arg Glu Ala Glu Leu Leu
 580 585 590
 Thr Asn Leu Gln His Glu His Ile Val Lys Phe Tyr Gly Val Cys Val
 595 600 605
 Glu Gly Asp Pro Leu Ile Met Val Phe Glu Tyr Met Lys His Gly Asp
 610 615 620
 Leu Asn Lys Phe Leu Arg Ala His Gly Pro Asp Ala Val Leu Met Ala
 625 630 635 640
 Glu Gly Asn Pro Pro Thr Glu Leu Thr Gln Ser Gln Met Leu His Ile
 645 650 655
 Ala Gln Gln Ile Ala Ala Gly Met Val Tyr Leu Ala Ser Gln His Phe
 660 665 670
 Val His Arg Asp Leu Ala Thr Arg Asn Cys Leu Val Gly Glu Asn Leu
 675 680 685
 Leu Val Lys Ile Gly Asp Phe Gly Met Ser Arg Asp Val Tyr Ser Thr
 690 695 700
 Asp Tyr Tyr Arg Val Gly Gly His Thr Met Leu Pro Ile Arg Trp Met
 705 710 715 720
 Pro Pro Glu Ser Ile Met Tyr Arg Lys Phe Thr Thr Glu Ser Asp Val
 725 730 735
 Trp Ser Leu Gly Val Val Leu Trp Glu Ile Phe Thr Tyr Gly Lys Gln
 740 745 750
 Pro Trp Tyr Gln Leu Ser Asn Asn Glu Val Ile Glu Cys Ile Thr Gln
 755 760 765
 Gly Arg Val Leu Gln Arg Pro Arg Thr Cys Pro Gln Glu Val Tyr Glu
 770 775 780
 Leu Met Leu Gly Cys Trp Gln Arg Glu Pro His Met Arg Lys Asn Ile
 785 790 795 800
 Lys Gly Ile His Thr Leu Leu Gln Asn Leu Ala Lys Ala Ser Pro Val
 805 810 815
 Tyr Leu Asp Ile Leu Gly
 820

<210> 3
 <211> 1870
 <212> DNA
 <213> Homo sapiens

<300>
 <308> NCBI/S76474
 <309> 1995-07-25
 <313> (1)..(1870)

<400> 3

ggaaggttta aagaagaagc cgcaaagcgc agggaaaggcc tcccggcacg ggtggggaa 60
 agcggccggt gcagcgcggg gacaggcaact cgggctggca ctggctgcta gggatgtcgt 120
 cctggataag gtggcatgga cccgcacatgg cgcggctctg gggcttcgc tggctgggt 180
 tgggcttctg gaggggccgct ttgcgcctgtc ccacgtcctg caaatgcagt gcctctcgaa 240
 tctggtgca gacaccctct cctggcatcg tggcatttcc gagattggag cctaacaatgt 300
 tagatcctga gaacatcacc gaaattttca tcgcaaacc aaaaagggtta gaaatcatca 360
 agaagatga tggtgaagct tatgtgggac tgagaaatct gacaatttgt gattctggat 420
 taaaattttgt ggctcataaaa gcatttctga aaaacagcaa cctgcagcac atcaatttta 480
 cccgaaacaa actgacgagt ttgtcttaga aacatttccg tcacccctgac ttgtctgaac 540
 tgatcctggt gggcaatcca tttacatgtc cctgtgacat tatgtggatc aagactctcc 600
 aagaggctaa atccagtcca gacactcagg atttgtactg cctgaatgaa agcagcaaga 660
 atattccccct ggcaaacctg cagataccca attgtgggtt gccatctgca aatctggccg 720
 cacctaacct cactgtggag gaaggaaagt ctatcacatt atcctgttagt gtggcaggtg 780
 atccgggttcc taatatgtat tgggatgtt gtaacctggt ttccaaacat atgaatgaaa 840
 caagccacac acagggctcc ttaaggataa ctaacatttc atccgatgac agtgggaagc 900
 agatctcttgc tggtgggaa aatctttagt gagaagatca agattctgtc aacctcaactg 960
 tgcattttgc accaactatc acatttctcg aatctccaac ctcagaccac cactggtgca 1020
 ttccatttcac tgtgaaaggc aacccaaac cagcgttca gtggttctat aacggggcaa 1080
 tattgaatga gtccaaatac atctgtacta aaatacatgt taccaatcac acggagttacc 1140
 acggctgcct ccagctggat aatcccactc acatgaacaa tggggactac actctaata 1200
 ccaagaatga gtatggaaag gatgagaaac agattctgc tcacttcatg ggctggcctg 1260
 gaattgacga tggtgaaac ccaaatttac ctgatgtat ttatgaagat tatggactg 1320
 cagcgaatga catcggggac accacgaaca gaagtaatga aatcccttc acagacgtca 1380
 ctgataaaac cgggtgggaa catctctcgg tctatgtgt ggtggtgatt gcgtctgtgg 1440
 tgggattttg cttttggta atgctgtttc tgcttaagtt ggcaagacac tccaaagg 1500
 gcatgaaagg ttttgggg tttcataaga tcccactgg tggtagctg aaataaagg 1560
 aaagacagag aaaggggctg tggtgcttgc tggtgatgc tgccatgtaa gctggactcc 1620
 tgggactgtc gttggcttat cccggaaatg gctgcttac tggggtttc tggtagatgt 1680
 gggcggtgt tggaggtgt actatatgaa gcctgcatat actgtgagct gtgattgggg 1740
 aacaccaatg cagaggtAAC tctcaggcag ctaaggcagca cctcaagaaa acatgttaaa 1800
 ttaatgcttc tcttcttaca gtagttcaaa tacaaaactg aaatgaaatc ccattggatt 1860
 gtacttctc 1870

<210> 4
 <211> 477
 <212> PRT
 <213> Homo sapiens

<300>
 <308> NCBI/S76474
 <309> 1995-07-25
 <313> (1)..(477)

<400> 4
 Met Ser Ser Trp Ile Arg Trp His Gly Pro Ala Met Ala Arg Leu Trp
 1 5 10 15
 Gly Phe Cys Trp Leu Val Val Gly Phe Trp Arg Ala Ala Phe Ala Cys
 20 25 30
 Pro Thr Ser Cys Lys Cys Ser Ala Ser Arg Ile Trp Cys Ser Asp Pro
 35 40 45
 Ser Pro Gly Ile Val Ala Phe Pro Arg Leu Glu Pro Asn Ser Val Asp
 50 55 60
 Pro Glu Asn Ile Thr Glu Ile Phe Ile Ala Asn Gln Lys Arg Leu Glu
 65 70 75 80
 Ile Ile Asn Glu Asp Asp Val Glu Ala Tyr Val Gly Leu Arg Asn Leu
 85 90 95
 Thr Ile Val Asp Ser Gly Leu Lys Phe Val Ala His Lys Ala Phe Leu

100	105	110
Lys Asn Ser Asn Leu Gln His Ile	Asn Phe Thr Arg	Asn Lys Leu Thr
115 120	125	
Ser Leu Ser Arg Lys His Phe Arg	His Leu Asp Leu Ser	Glu Leu Ile
130 135	140	
Leu Val Gly Asn Pro Phe Thr Cys Ser Cys Asp	Ile Met Trp Ile Lys	
145 150	155	160
Thr Leu Gln Glu Ala Lys Ser Ser Pro Asp	Thr Gln Asp Leu Tyr Cys	
165 170	175	
Leu Asn Glu Ser Ser Lys Asn Ile Pro	Leu Ala Asn Leu Gln Ile Pro	
180 185	190	
Asn Cys Gly Leu Pro Ser Ala Asn Leu Ala Ala	Pro Asn Leu Thr Val	
195 200	205	
Glu Glu Gly Lys Ser Ile Thr Leu Ser Cys Ser	Val Ala Gly Asp Pro	
210 215	220	
Val Pro Asn Met Tyr Trp Asp Val Gly Asn Leu	Val Ser Lys His Met	
225 230	235	240
Asn Glu Thr Ser His Thr Gln Gly Ser Leu Arg	Ile Thr Asn Ile Ser	
245 250	255	
Ser Asp Asp Ser Gly Lys Gln Ile Ser Cys Val	Ala Glu Asn Leu Val	
260 265	270	
Gly Glu Asp Gln Asp Ser Val Asn Leu Thr Val	His Phe Ala Pro Thr	
275 280	285	
Ile Thr Phe Leu Glu Ser Pro Thr Ser Asp His	His Trp Cys Ile Pro	
290 295	300	
Phe Thr Val Lys Gly Asn Pro Lys Pro Ala	Leu Gln Trp Phe Tyr Asn	
305 310	315	320
Gly Ala Ile Leu Asn Glu Ser Lys Tyr Ile	Cys Thr Lys Ile His Val	
325 330	335	
Thr Asn His Thr Glu Tyr His Gly Cys	Leu Gln Leu Asp Asn Pro Thr	
340 345	350	
His Met Asn Asn Gly Asp Tyr Thr Leu Ile Ala	Lys Asn Glu Tyr Gly	
355 360	365	
Lys Asp Glu Lys Gln Ile Ser Ala His Phe Met	Gly Trp Pro Gly Ile	
370 375	380	
Asp Asp Gly Ala Asn Pro Asn Tyr Pro Asp Val	Ile Tyr Glu Asp Tyr	
385 390	395	400
Gly Thr Ala Ala Asn Asp Ile Gly Asp Thr	Thr Asn Arg Ser Asn Glu	
405 410	415	
Ile Pro Ser Thr Asp Val Thr Asp Lys	Gly Arg Glu His Leu Ser	
420 425	430	
Val Tyr Ala Val Val Val Ile Ala Ser Val Val	Gly Phe Cys Leu Leu	
435 440	445	
Val Met Leu Phe Leu Leu Lys Leu Ala Arg His	Ser Lys Phe Gly Met	
450 455	460	
Lys Gly Phe Val Leu Phe His Lys Ile Pro Leu	Asp Gly	
465 470	475	

<210> 5
 <211> 8192
 <212> DNA
 <213> Homo sapiens

<300>
 <308> NCBI/AF410900
 <309> 2002-01-25

<400> 5

gggagcagga gcctcgctgg ctgcttcgct cgcgtctac ggcgtca gcccgggtta 60
 gcaggagcc ggaccaggc gccggcgccg ggcgtgaggc gccggagccc ggcctcgagg 120
 tgcataccgg accccattc gcatctaaca aggaatctgc gccccagaga gtcccgacg 180
 ccggccgtcg gtgccggcg cgccgggcca tgacgcacg gccgcccgg agtccgagc 240
 agcgtagcg cccctgtta aagcggttcg ctatgcggg accactgtga accctgcgc 300
 ctgcccgaac actctcgct ccggaccagc tcagcctctg ataagctgaa ctccgcacgc 360
 ccgcaacaag caccgaggag ttaagagagc cgcaagcgca gggaaaggct cccgcacgg 420
 gtgggggaaa gcgccggcg cagcgccggg acaggcactc gggctggcac tggctgctag 480
 gatatgtcgct ctggataagg tggcatggac ccgcattggc gcccgtctgg ggcttctgct 540
 ggctgggtgt gggctctgg agggccgott tcgcctgtcc cacgtctgc aaatgcagt 600
 cctctcgat ctggcgcagc gacccttctc ctggcatctg ggcattttcg agattggagc 660
 ctaacagtgt agatctcgag aacatcaccg aaatttcat cgcaaaaccg aaaaggtag 720
 aaatcatcaa cgaagatgtat gttgaagctt atgtggact gagaaatctg acaattgtgg 780
 attctggatt aaaatttgtg gctcataaag catttctgaa aaacagcaac ctgcagcaca 840
 tcaattttac ccgaaacaaa ctgacgagtt tgtcttagaa acatttcgt caccctgact 900
 tgtctgaact gatccgttg ggcaatccat ttacatgctc ctgtgacatt atgtggatca 960
 agactctcca agaggctaaa tccagtcag acactcagga ttgtactgc ctgaatgaaa 1020
 gcagcaagaa tattccctg gcaaaccctgc agataccaa ttgtggtttgc ccatctgcaa 1080
 atctggccgc acctaaccctc actgtggagg aaggaaagtc tatcacatta tcctgttagt 1140
 tggcaggtga tccggttccct aatatgtatt gggatgttgg taacctgtt tccaaacata 1200
 tgaatgaaac aagccacaca cagggctctt taaggataac taacatttca tccgatgaca 1260
 gtggaaagca gatctttgt gtggcgaaa atctgttagg agaagatcaa gattctgtca 1320
 acctcaactgt gcatttgca ccaactatca catttctcga atctccaacc tcagaccacc 1380
 actggtgcat tccatttcact gtgaaaggca accccaaacc accgcgttcag tgggtctata 1440
 acggggcaat attgaatgag tccaaataca tctgtactaa aatacatgtt accaatcaca 1500
 cgaggtacca cggctgcctc cagctggata atccactca catgaacaat gggactaca 1560
 ctctaatacg caagaatgag tatggaaagg atgagaaaca gatttctgt cacttcatgg 1620
 gctggcctgg aattgacgat ggtgcaaaccaaaatttatcc tgatgttaatt tatgaagatt 1680
 atggaaactgc agcgaatgac atcggggaca ccacaacag aagtaatgaa atcccttcca 1740
 cagacgtcac tgataaaacc ggtcgccgaaatctctcggt ctatgtgttgc gcttaagtt gcaagacact 1800
 cgtctgtgtt gggattttgc cttttggtaa tgctgtttct tgatgttgc tctggatca 1860
 ccaagttgg catgaaaggc ccagcctccg ttatcagcaa tgatgtatgac tctggcagcc 1920
 cactccatca catctccaat gggagtaaca ctccatcttc ttccggaaatggccagatg 1980
 ctgtcattat tggaaatgacc aagatccctg tcattgaaaa tccccagtag tttggatca 2040
 ccaacagtc gctcaagcca gacacatggc ccagagggtc ccccaagacc gcctgataat 2100
 aatttggat ttggaggctc ctgtgtact gcagaaacta aaggaggcta aatccatgcc 2160
 tcatggatggaa gaagagttct atggttatct gcaaattctg gccagacaac atcttgacgt 2220
 cactcccttag ctccataaac ctggccaaac aagaagttgc ctttccaaga caaagcgtg 2280
 tgctctaattg actaaccctt caaagacta tgccacttta actatagacc catctcctcg 2340
 atcaatcagg atggcaagat ggagctgagg agctcagcaa catcaagtct ggagttggc 2400
 tttaactcaa ctggccgtt tagacgtgtc tgaacaccac atcacctgac agcacgggt 2460
 gttttcccaag taaaatttac aaactcagct caagggcagc tgggttgctt tccttcctt 2520
 gactgctgaa aaacttttgc acaggaaaca atggaaacac accttctgag ctgaaacaaa 2580
 caaacagaaa caaaacatac taaccagcaa aatccccaaa tcatcaatct tgggttctct 2640
 tgaagggca ggtgtgttt tatcttctcc cgtcgagca aacactatag atgtcctccc 2700
 taaaattctg tcttccttag agcagcctt gaaatttagct agggccctag ggttgaggcc 2760
 taaaatcaact taaaattgtc tctaaatatg tacctggatg tgggttgact tgccagagcat 2820
 gccccttca tggccctagg gctagtaact ccctgtggca gaggcatgta aagattctg 2880
 acttttttt tttcaactta attccatttc caatgaaatg gattttaaa aatttctcc 2940
 agagtgtgcc atactctcc agctattata gttaatgtgt gtgtatcctt gtgtatatgt 3000
 gtgtttgtgt gtgcataatgt gttttcctag tgggtacatg cttaactaggc aattatgtaa 3060
 ataaggcacaat attcataggc cagctaggcc tgagggaaaga agacattata aaggggaggga 3120
 gtatTTAAC attagctaaa gctatcacac aaggccacca ttctgtccc ctcaacagcc 3180
 acagcccact tcgtccttgt cttaccaata agggaaagg ctggaggta tattttcac 3240
 agaaccgcag aggtttgaa catatttgc acattacttt ggtacacat gagcaaaaaat 3300
 tctgaattac atccaggacc ccagaagctc attagatcaa agagtgcggg gcccctcaga 3360

gttaccagag attatctgca gacttcagtg caatcgaatg accatgggcc attttgcatt 3420
 tcagaggtag gactgaaaaa cgggtagaaa caattgcattt agcgcttcc tctgtacttt 3480
 gccttataat gtttgtctt tcaaaaat atttctcct aattgtttaa ttggccaaat 3540
 aatggctgct ttgggagttg tttgtatgcc ttggaaaggcc atggccgtca cttaaaaat 3600
 aagctaagtc catttcgccc agcacgagca ttaggacaga gaatgcacctt attttaggat 3660
 ccttaaaaat tgcttctttt atggcacact ggggtgacga ctcatctcg tggagccctc 3720
 atggcacatt gctgtgttc tgcagggtccc aatacaattc cttccccctc tcagtgcac 3780
 ggccccccca ttgctagcta cacaatttga tatcatattc cttttcaac tccaaaggag 3840
 atgataagaa gctatcaaata aatgttttaa aaaagcaact tgagtttctt aaaagaaagg 3900
 aaatgaatac atgctgcata attacattta aaatgttaagc catgttatta taagccgcac 3960
 tgagatgaag atttgttagc aaaccagtt caagcacact cacagtgaag taaaatcatg 4020
 ttttagcat ctgaccattt ggtaatattt ttcttgcattt tcaaaaagaga aatatcaccc 4080
 aagtataatgta tacttagacc tccttagagga aacactccag tccttaagctt ggtgtctgaa 4140
 aagaaaaaca aaaataaaaga ttatggattt aggtcaggaa gacagagtga tattctgaag 4200
 actgtgttta ctccctcattc atcggccaa ccaagatggag ttctgcattt tgacacatata 4260
 agacatttca gtccaaatttcc accaaagcat cagtgatgtt cttagaagcat cccagcagat 4320
 ggaggatccct aatgtatttgc ttctggat ttcccaaggc ccagcctgac tggagtgtgt 4380
 gtaccaacag gatgaatcca atcaagctac gccccattt tggttccgaa ttggccactc 4440
 ttgcattgtgc tagtagattt tggaccagga ccagctgagc aaacacagtt gcagagtagc 4500
 ctccatgtt gctaaagac tcctgttacc caggtgcattt gaacaatgaa gtgtccctc 4560
 tggtaatgta gagatggcac caccggagtt tttcttggat tgaggctca atccttacg 4620
 gcagcttattta taacaaatgt aaggtttctt cccttggaaa tgcaagctttt ctctgtctt 4680
 actaattctg ccagctgtt agagtaacca ccgtagctgg gcttcttctc agattaattg 4740
 tcatgccagg tctcatttcc ggggagctgt gatgtgttcc tgaggttgt tgctgagggt 4800
 gtagtgggtt tttgtttgtt tttgttttagt ttttcttgcattt tggttcttctt tctcttgaat 4860
 ggcaagagaa gaaacacttt ctctaaaccctt cggccaggaa gaaaatgggg agagagctac 4920
 ttcttagttc aacctgggtt ccacataaag gaatctctt ccttggactc agcccctaac 4980
 tggaaagcaag agccactgtt ccctgagact gagagagcag cccgaggagg agatgaatcc 5040
 attctgcctt ttgttgggtt ttgttccctt tcagtgagag aatgctgagg cagttcctgt 5100
 tatgtgaaac tttcattttt aaaaccagga cagtcctaaa cagactgaa tgagttggc 5160
 aatcccattt ggtataggcc caatgatttt tgcttagtaag ataggattgtt cttcctcacc 5220
 caaaaatgcct tcaagtgcctt taaaatgggtt atttttttt aagaataat aatgttagatt 5280
 tagtagaaaaa cctggaaaaac ataagaaaaca aagatgaaac gaaaagtccc atgttaattcc 5340
 accagtttaga gttaaccact gatatcgattt ggatatatgg ctttctagtc ttgtggatatt 5400
 ccttttaatc tcttgcattt taaaatgttgc ccataatgtt ctttgatgtt gtttgactg 5460
 gactctgttta atatttctat agtaatggctt cacttgggg agattgtgtt gcacagtgt 5520
 taggaagcac attgggtgtt ttattccctt ttttgcattt tggttcttctt tggagatgtg 5580
 cagggggttaa gagcgggggtt ctggccatag ctggccacgt cagactctca tatggtaagt 5640
 atcacagagc acatgaggcc tggatgtatgc gctgaaaga ctcaggaaat gagaggctct 5700
 ctgttctgttcaaggcaggc tgagagctt catttaggtt catcacttca gataacttca 5760
 aatgcattttt attgctcaac tgaagcagat gatctttt tggttcttctt tgccttcaaccc 5820
 tagctagctt ctttccaaaga gccgagtttgc ctggatcttta aaggccaaa ctagttacat 5880
 ctcatacattt tcctgtatgtt tagggatgcc ttcaatttca tcaaggatac cttggctgt 5940
 caaggacccctc tgatagctgg agtcttccattt tggttacttcc cagtttgc taaacttgc 6000
 ggagtttgcgt gtccagtgat ccccgatct ttcatcatgaa aagccttcc tccctccctg 6060
 atgtctcagg cctctagacc tagactgggg ttctggcaag gaggccctta tcaatagtt 6120
 gacatccaaat aatatgttag tggatattt ttgcacagta atattaatgtt taagagatta 6180
 taaaatggat ttcaatgaa taagttccattt tgatgttgc gatttagat tggatgtt 6240
 agaaccaaat ccaggggggaa atcccgaaaaa gaaaacaata atataatccctt agtttctata 6300
 tattatttt attcattactt gatatgggtt agatgttcaatt attctttctt atgtgttac 6360
 tattatattaa cacatttttt aaccatgccca ttgaactttt ggggtgcattt aagtggaaacc 6420
 caagctcctt attagataat atggcattt ggactgagtg ccatatttcc aaatttccaa 6480
 taaatgggtt gatatagaga ggacaggata aagccctata gttgtgcattt atatcaaaaac 6540
 agcttagtctt cacttttaggg aatgccttta cttagagatta catgaaatgtt ctgtttataa 6600
 aataagcaga gatggatcca ctaagcagcc acctgaattt ttttccttaca ggaatgatta 6660
 cttttcagat ccatttatgtt ttcatgttccattt aatacttactt ccccttccctt gcaacacccca 6720
 aagagtttac ttttgcaagt catttgggttctt tcagtcattt actgaggaat agagaggcac 6780

taactgctt acccaggatc agaactcatg ttcttacctt ctattaataag agtacttgag 6840
 ccagatggac taactggct cacattttct ctatcttggt tttacttcca taaaacatcaa 6900
 tatctttacc cacatgattt ttccatccct ccatatttttt ccatatgtat tagggttcag 6960
 gaactatgat gctaattgtac acatttcttc ctatgcctta atttcatttag tgccatttcc 7020
 tgatatctac agaaacaattt atcaatacat gtatgtcattt gagccttatt tagaaggcta 7080
 gcctttctttt tccaagtgcgt gtcagaatgt atacatttag tctgtctttt tcccttttag 7140
 gagtctttgt tctgggtga tggcaaaattt cctctttta catgtgagat ttttgatttc 7200
 actgaattctt accttagattt ttatggacat tggattttaa agagggaaac actcattttc 7260
 ttagtaagatt attgggtgata catacgatcatg ccattgattt ccatactcct gagctttggg 7320
 gagggagaca gtggccaagt agcaggcaga ataagatcat cactcatgtc ctgaatcaat 7380
 cacactttcc ttctcggtt gtgtatatgc tctgccactt cctacatattt acatcctgag 7440
 ttttaagta aagtggatct tagccagatt tgagtctaat ggctgattca tcggcatagt 7500
 tcttggcggtt aacatctcag tgcctctttt agttctctt gaggattcat gtcatggagg 7560
 gcctttgtgc ctccacttgtt ctcagttatga ggaagaactt tgggtgtgagg gcgagctat 7620
 gtgaagggtt gctgggttgg gggattttt catatggtcc ccatgccatc tatttacttt 7680
 tgagagaggg ggactttgag tgggtgggtt tggatagatg ttcctcaagg aaaccctgct 7740
 ggctaatggg cactacatct gtgtattact gtgattctctt ctgttaagctc cccatgtggc 7800
 caaggaccctt cctccatcca gggcacttcc tgccacctca ttgcactgtt ctcaaccatt 7860
 cagcctgctg ctgctgcacc atgttgggtt gcggttaggat agggaaagggg ttctgtttagt 7920
 tgctaaatgt tgcctaaactt tatttccctc tcccacattt catgcaaggg agcggaccta 7980
 acacatgact tgcattctct tcctatgttc agaaactcca gggcttggcc acgtgtatgt 8040
 atgagtgacc aatggagctt ggaattctttt atctatatga tctgtccgaa aatgagatct 8100
 ttgttactgg aatttgtatgtt gtagttgatc attcagagcc aaacgcataat accaataaaag 8160
 acaagactgt catataaaaaa aaaaaaaaaaa aa 8192

<210> 6
 <211> 537
 <212> PRT
 <213> Homo sapiens

<300>
 <308> NCBI/AF410900
 <309> 2002-01-25

<400> 6
 Met Ser Ser Trp Ile Arg Trp His Gly Pro Ala Met Ala Arg Leu Trp
 1 5 10 15
 Gly Phe Cys Trp Leu Val Val Gly Phe Trp Arg Ala Ala Phe Ala Cys
 20 25 30
 Pro Thr Ser Cys Lys Cys Ser Ala Ser Arg Ile Trp Cys Ser Asp Pro
 35 40 45
 Ser Pro Gly Ile Val Ala Phe Pro Arg Leu Glu Pro Asn Ser Val Asp
 50 55 60
 Pro Glu Asn Ile Thr Glu Ile Phe Ile Ala Asn Gln Lys Arg Leu Glu
 65 70 75 80
 Ile Ile Asn Glu Asp Asp Val Glu Ala Tyr Val Gly Leu Arg Asn Leu
 85 90 95
 Thr Ile Val Asp Ser Gly Leu Lys Phe Val Ala His Lys Ala Phe Leu
 100 105 110
 Lys Asn Ser Asn Leu Gln His Ile Asn Phe Thr Arg Asn Lys Leu Thr
 115 120 125
 Ser Leu Ser Arg Lys His Phe Arg His Leu Asp Leu Ser Glu Leu Ile
 130 135 140
 Leu Val Gly Asn Pro Phe Thr Cys Ser Cys Asp Ile Met Trp Ile Lys
 145 150 155 160
 Thr Leu Gln Glu Ala Lys Ser Ser Pro Asp Thr Gln Asp Leu Tyr Cys

	165	170	175
Leu Asn Glu Ser Ser Lys Asn Ile Pro	180	185	190
Asn Cys Gly Leu Pro Ser Ala Asn Leu Ala Ala Pro Asn Leu Thr Val	195	200	205
Glu Glu Gly Lys Ser Ile Thr Leu Ser Cys Ser Val Ala Gly Asp Pro	210	215	220
Val Pro Asn Met Tyr Trp Asp Val Gly Asn Leu Val Ser Lys His Met	225	230	235
Asn Glu Thr Ser His Thr Gln Gly Ser Leu Arg Ile Thr Asn Ile Ser	245	250	255
Ser Asp Asp Ser Gly Lys Gln Ile Ser Cys Val Ala Glu Asn Leu Val	260	265	270
Gly Glu Asp Gln Asp Ser Val Asn Leu Thr Val His Phe Ala Pro Thr	275	280	285
Ile Thr Phe Leu Glu Ser Pro Thr Ser Asp His His Trp Cys Ile Pro	290	295	300
Phe Thr Val Lys Gly Asn Pro Lys Pro Ala Leu Gln Trp Phe Tyr Asn	305	310	315
Gly Ala Ile Leu Asn Glu Ser Lys Tyr Ile Cys Thr Lys Ile His Val	325	330	335
Thr Asn His Thr Glu Tyr His Gly Cys Leu Gln Leu Asp Asn Pro Thr	340	345	350
His Met Asn Asn Gly Asp Tyr Thr Leu Ile Ala Lys Asn Glu Tyr Gly	355	360	365
Lys Asp Glu Lys Gln Ile Ser Ala His Phe Met Gly Trp Pro Gly Ile	370	375	380
Asp Asp Gly Ala Asn Pro Asn Tyr Pro Asp Val Ile Tyr Glu Asp Tyr	385	390	395
Gly Thr Ala Ala Asn Asp Ile Gly Asp Thr Thr Asn Arg Ser Asn Glu	405	410	415
Ile Pro Ser Thr Asp Val Thr Asp Lys Thr Gly Arg Glu His Leu Ser	420	425	430
Val Tyr Ala Val Val Val Ile Ala Ser Val Val Gly Phe Cys Leu Leu	435	440	445
Val Met Leu Phe Leu Leu Lys Leu Ala Arg His Ser Lys Phe Gly Met	450	455	460
Lys Gly Pro Ala Ser Val Ile Ser Asn Asp Asp Ser Ala Ser Pro	465	470	475
Leu His His Ile Ser Asn Gly Ser Asn Thr Pro Ser Ser Ser Glu Gly	485	490	495
Gly Pro Asp Ala Val Ile Ile Gly Met Thr Lys Ile Pro Val Ile Glu	500	505	510
Asn Pro Gln Tyr Phe Gly Ile Thr Asn Ser Gln Leu Lys Pro Asp Thr	515	520	525
Trp Pro Arg Gly Ser Pro Lys Thr Ala	530	535	

<210> 7
<211> 8240
<212> DNA
<213> Homo sapiens

<300>
<308> NCBI/AF410901
<309> 2002-01-25

<400> 7

gggagcagga gcctcgctgg ctgcttcgct cgcgctctac gcgctcagtc cccggcggta 60
 gcaggagcc ggaccaggc gccggcggcg ggcgtgagge gcccggagcc ggctcgagg 120
 tgcataccgg acccccattc gcatctaaca aggaatctgc gccccagaga gtcccgacg 180
 ccgcccgtcg gtgcccggcg cgccgggcca tgcaagcgacg gccgcccgg agctccgagc 240
 agcggttagcg cccccctgt aagcggttcg ctatgccggg accactgtga accctgccg 300
 ctgcccgaac actctcgct ccggaccaggc tcagcctctg ataagctgaa ctccgcacgc 360
 ccgcaacaag caccgaggag ttaagagagc cgcaagcgca gggaaaggct cccgcacgg 420
 gtgggggaaa gcgccgggtg cagcgcgggg acaggcactc gggctggcac tggctgctag 480
 ggatgtcgct ctggataagg tggcatggac ccgcattggc gcgctctgg ggcttctgct 540
 ggctgggtgt gggctctgg agggccgott tcgcctgtcc cacgtctgc aaatgcagt 600
 cctctcgat ctgggtcagc gacccttctc ctggcatctg ggcattttcg agattggagc 660
 ctaacagtgt agatcctgag aacatcaccg aaattttcat cgcaaaccag aaaaggtag 720
 aaatcatcaa cgaagatgtat gttgaagctt atgtggact gagaatctg acaattgtgg 780
 attctggatt aaaatttgtg gctcataaag catttctgaa aaacagcaac ctgcagcaca 840
 tcaatttac ccgaaacaaa ctgacgagtt tgtcttagaa acatttcgt caccctgact 900
 tgtctgaact gatcctggtg ggcaatccat ttacatgct ctgtgacatt atgtggatca 960
 agactctcca agaggctaaa tccagtcag acactcagga ttgtactgc ctgaatgaaa 1020
 gcagcaagaa tattccctg gcaaaccctgc agataacccaa ttgtggtttgc catctgcaa 1080
 atctggccgc acctaaccctc actgtggagg aaggaaagtc tatcacatta tcctgttagt 1140
 tggcaggtga tccgggtcct aatatgtatt gggatgttgg taacctgtt tccaaacata 1200
 tgaatgaaac aagccacaca cagggctctt taagataac taacatttc tccgatgaca 1260
 gtggaaagca gatctttgtgt gtggcgaaa atcttgttagg agaagatcaa gattctgtca 1320
 acctcaactgt gcattttgca ccaactatca catttctcga atctccaacc tcagaccacc 1380
 actggtgcat tccatttcact gtgaaaggca accccaaacc agcgcttcag tgggtctata 1440
 acggggcaat attgaatgag tccaaataca tctgtactaa aatacatgtt accaatcaca 1500
 cgaggtacca cggctgcctc cagctggata atccactca catgaacaat gggactaca 1560
 ctctaatacg caagaatgag tatggaaagg atgagaaaca gatttctgtc cacttcatgg 1620
 gctggcctgg aattgacgat ggtgcaaacca caaatttatcc tgatgtatt tatgaagatt 1680
 atggaactgc agcgaatgac atcggggaca ccacaacag aagtaatgaa atcccttcca 1740
 cagacgtcac tgataaaacc ggtcgggac atctctcggt ctatgtgt gtgtgattt 1800
 cgtctgtgtt gggattttgc cttttggtaa tgctgtttct gcttaagtt gcaagacact 1860
 ccaagttgg catgaaagat ttctcatggt ttgatttgg gaaagtaaaa tcaagacaag 1920
 gtgttggccc agcctccgtt atcagcaatg atgatgactic tgccagccca ctccatcaca 1980
 tctccatgg gagtaacact ccatctt cggaaagggtt cccagatgt gtatttattt 2040
 gaatgaccaa gatccctgtc attgaaaatc cccagttactt tggcatcacc aacagtca 2100
 tcaagccaga cacatggccc agaggttccc ccaagaccgc ctgataataa tttggatttt 2160
 ggaggctcct gtgtcaactgc aggaactaaa ggaggtctaa tccatgcctt atggaggaga 2220
 agagttctat gtttatctgc aaattctggc cagacaacat cttgacgtca ctcccttagt 2280
 tcataaacct agccaagcaa gaagttgcct ttccaaagaca aagcgtgtg ctctaatacg 2340
 taacccctca aagtactatg ccactttaac tatagacccca tctcctcgat caatcaggat 2400
 ggcaagatgg agctgaggag ctcagcaaca tcaagtctgg agttggctt taactcaact 2460
 agctcgttt gacgtgtctg aacaccacat cacctgacag cacgggtgg tttccagta 2520
 aaatttacaa actcaactca agggcagctg tggcttttgc ctttccttgc ctgtgagaa 2580
 acttttgac agggaaacaat gggaaacacac cttctgagct gaaacaaaca aacagaaaca 2640
 aaacatacta accagcaaaa tcccccaatc atcaatcttgc ggttcttgc aagggcagga 2700
 gtgtgtttt tcttcctccg tcggagcaaa cactatagat tccctccctt aaattctgtc 2760
 tttcccttagag cagccttgc tattagctg ggtcttaggg ttgaggccta aatcaactt 2820
 aaatttgtctc taaatatgtt cctggatgtt tttgtacttgc cagagcatgc ccttcattg 2880
 tgccttagggc tagtaactcc ctgtggcaga ggcgtttaaa gtattctgtc tttttttttt 2940
 tcaacttaat tccatttcca atgaaatggt tttttaaaaa ttttctccag agtgtgcccatt 3000
 acttctccag ctattatagt taatgtgtt gtatcttgc tttatgtgt gtttgtgtt 3060
 gcatatgtgt tttcttagt gttacatgt tactaggca ttatgttaat aagcacagat 3120
 tcataggcca gctaggccctg agggaaagaag acattataaa gggaggagttttaacat 3180
 tagctaaaggc tatcacacaa ggcacccatt ctgctcccctt caacagccac agcccacttc 3240
 gtccctgtct taccaataag gggaaaggct ggaggtgata ttttcacag aaccgcagag 3300
 gtttgaaca tatttgcaac attactttga gtacacatga gcaaaaatttca tgaattacat 3360

ccaggcccc agaagctcat tagatcaaag agtgcggggc ccctcaggt taccagagat 3420
tatctgcaga cttcagtgc atcgaatgac catggccat tttgatggc agaggttaga 3480
ctgaaaaacg ggtagaaaaca attgccttag cgcttcctc tgtacttgc ctattaatgt 3540
tttgtcttc aaaaatatat tttctctaa ttgtttaatt ggccaaataa tggctgctt 3600
gggagttgtt tgtagtcctt ggaagccat ggcctgcact taaaaataa gctaagtcca 3660
ttctgcccag cacgagcatt aggacagaga atgcacttat tttaggatcc taaaaattg 3720
cttctttat ggcacactgg gttgacgact catctcggtt gagccttcat ggcacatgc 3780
tgctgttctg caggtcccaa tacaattcct tcccccttc agtgcacgg cccccccat 3840
gctagctaca caatttgata tcataattccc tttcaactc caaaggagat gataagaagc 3900
tatcaaataa tgctttaaaa aagcaacttg agtttcttaa aagaaaggaa atgaatacat 3960
gctgcataat tacattnaa atgtaagcca ttttattata agccgcactg agatgaagat 4020
ttgttagcaa accagttca agcacactca cagtgaagta aaatcatgtt tttagcatct 4080
gaccattggg taatattatt ctttggttatc aaaagagaaa tatcacccaa gtatagtata 4140
cttagacctc ctagaggaaa cactccagtc ctaagcttgg ttttggaaa gaaaaacaaa 4200
aataaaagatt atggatttag gtcagggaga cagagtgata ttctgaagac ttttggttact 4260
ccctcatcat cgcccaacca agatgggat ctgcacatcc cacatatcag acatttcagt 4320
ccaatttcac caaagcatca gtgatgttctt aagacatcc cagcagatgg aggtttttttt 4380
tgtatttggt ctgggttattt cccaaaggccc agcctgactg gagggtgtt gccaacacca 4440
tgaatccaat caagctacgc ccccattttgg ttttggattt ggccacttgc gcatgtgcta 4500
gtagattgtt gaccaggacc agctgagcaa acacagttgc agagtagcct cctatgttgc 4560
taagaagctc ctgctaccca ggtgttttga acaatttgagt gctccctctg gtttaagttaga 4620
gatggcacca cccggagttt tcttggatgt gaggctcaat ctttacggc agctattata 4680
acaaaatgaa gttttctcc ctggggaaatg cagtttttctt ctgtctttac taattctgccc 4740
agcctgtgag agtaaccacc gttagtggc ttcttcttag attaattgtc atgcccaggc 4800
tccttcctgg gtagtgcgttgc tgctgctctg aggttgattt ctggggttttt 4860
tgtttggttt tgtagttt ttcttgattt ttcttcttctt tcttgaatgg caagagaaga 4920
aacactttct ctaacccacag gccaggaagg aaatggggag agagctactt cttagttcaa 4980
cctgggtgcc acataaagga atctctctcc ttggacttag cccctaactg gaagcaagag 5040
ccactgcctc ctgagactgat gagagcagcc cgaggaggag atgaatccat tctgcccctt 5100
gtttgggtt gtttgcgttgc agtggagagaa tgctgaggca gttctgttta tttttttttt 5160
tcatttttaa aaccaggaca gtcctaaaca gactggaaatg agtttgcattt tcccagttgg 5220
tataggccc aatgttttttgc ttagtaagat aggattgtct tcctcaccca aaatgccttc 5280
aagtgcctt aatgggtat tttaaaaataa gaataaataa tgtagattta gtagaaaacc 5340
tggaaaacat aagaaacaaa gatgaaacga aaagtcccat gtaattccac cagtttagt 5400
taaccactga ttcgtttgg atatatggct ttcttagtctt gtggatatcc ttttaatctc 5460
ttgttaatata aagtctgacc atatgtgtcc ttgcattttgt ttgtacttgg ctctgttaat 5520
atttctatag taatggctca ctttggggag attgtgctc acagtgtgtt ggaagcacat 5580
tgggtgtatt atttccagtt tgtagttttt tatttcttgc gagatgtgca ggggtaaga 5640
gcgggggtct ggcctatagct ggccacgtca gactctcata tgtaagat tttttttttt 5700
atgaggcctg tttatgcgc tggaaagact caggaaatga gaggtctctt tggtctgaca 5760
aggcaggctg agagctctca ttttaggtca tcactccaga taactccaaa tgcagtttat 5820
tgctcaactg aagcagatga tcacttttgc cttccaaatgtt cttagccctt 5880
ttcaaaagagc cgagtatgtt ggtatctttaa gggccaaact catacatattc 5940
ctgatgttta gggatgcctt cacttccatc aaggataacct tggctgtca aggacctctg 6000
atagctggag ttccttttgc gtcactccca gctttgccta aacttgcattt agtttgcgtt 6060
ccagtgatcc cccggatctt catcatgaaa gccttccttc ctctctgtt gtcctaggcc 6120
tcttagaccta gactgggtt ctggcaagga ggcctctatc aatagatgtt catccaataa 6180
tatgttagtgc ttgtatattttt gcacagtaat attaagtttta agagattataaaa 6240
caaataataa agttcctgtt atgtaagaga tttagatattgt tgatttcag aacccaaagcc 6300
agggggaaat cccagaaaga aaacaataat ataattcttag ttcttataataa ttatttttat 6360
tcattactgt atatgggtt agatcaatattt tttttcttgc gctgttactt ttaattaaca 6420
cattttttaa ccatggcattt gaaactttgg gtgcattttaa gttggaaacca agtcctctcat 6480
tagataataa tggcattttgg actgagtgcc atattcctaa atttccaataa aagtggttga 6540
tatagagagg acaggataaa gccctataatgtt gtgcagttt atcaaaaacag cttagtctcca 6600
ctttagggaa tgcctttactt agagattaca tgaaatgtt gtttataaaa taagcagaga 6660
tggtagggact aagcagccac ctgaattgtt ttcctacagg aatgattactt tttcagatcc 6720
atttatgttt tcatgctcaa tacttactcc cttcccttc aacacccaaa gagtttactt 6780

ttgcaagtca tttggcttca agtctactac tgaggaatag agaggcacta actgctttac 6840
 ccaggatca aactcatgtt cttaccttct attaatagag tacttgagcc agatggacta 6900
 actggctca cattttctct atcttggtt tactccata aacatcaata tctttaccca 6960
 catgattttt ccacccccc attttttcc atatgtatta gggttcgaa actatgatgc 7020
 taatgatcac atttcttcct agttccta attcatttagt ccatttcctg atatctacag 7080
 aaacaattat caatacatgt agctgcttga gccttattta gaaggctagc ctttctttc 7140
 caagtgcgt cagaatgtat acatttagtc tgtcttttc ccttttagga gtctttgttc 7200
 tgggttgatg gaaaaattcc tcttttaca tgtgagattt ttgatttcc tgaattctac 7260
 cttagttttt atggacattt gattttaaag aggaaaacac tcattttctt agtaagatata 7320
 tggtgataca tagctatgcc attgatttcc atactcctga gctttggga gggagacagt 7380
 ggccaagtag caggcagaat aagatcatca ctcatgtcct gaatcaatca cacttcctt 7440
 ctcggattgt gtatatgctc tgccacttcc tacatattac atcctgagtt tttaaatgtaaa 7500
 gttggatctta gccagattt ggtctaatgg ctgattcattt ggcataatggc ttggcgtaa 7560
 catctcagtg tcctctttag ttctcttga ggattcatgt cattgaggcc ctttgcct 7620
 ccacttgtct cagtagtggg aagaacttgc gtgtggggc ggagctatgt gaagggttgc 7680
 tgggttgggg gattagttca tatggcccccc atgcatttca tttactttt gggaggggg 7740
 actttggatgtt ggtgggtatg gatagatgtt cctcaaggaa accctgctgg ctaatggca 7800
 ctacatctgt gtattactgt gattctctt gtaagctccc catgtggccca aggacccccc 7860
 tcctaccagg gcacttcctg ccacccattt gcactggctt caaccattca gcctgctgt 7920
 gctgcaccat gttgggtgc ggttaggatag ggaagggtt ctgttgattt ctaatgttg 7980
 cctaacttta ttccctctc ccacatttca tgcaagggag cgacactaac acatgacttg 8040
 cattctcttc ctatgttcag aaactccagg gcttgcac gtttatgtat gagtgaccaa 8100
 tggagcttgg aattctttat ctatatgtatc tgtccggaaaa tgagatctt tgactggaa 8160
 tttgtatgtt agttgatcat tcagagccaa acgcatatac caataaaagac aagactgtca 8220
 tataaaaaaaaaaaaaaaa 8240

<210> 8
 <211> 553
 <212> PRT
 <213> Homo sapiens

<300>
 <308> NCBI/AF410901
 <309> 2002-01-25

<400> 8
 Met Ser Ser Trp Ile Arg Trp His Gly Pro Ala Met Ala Arg Leu Trp
 1 5 10 15
 Gly Phe Cys Trp Leu Val Val Gly Phe Trp Arg Ala Ala Phe Ala Cys
 20 25 30
 Pro Thr Ser Cys Lys Cys Ser Ala Ser Arg Ile Trp Cys Ser Asp Pro
 35 40 45
 Ser Pro Gly Ile Val Ala Phe Pro Arg Leu Glu Pro Asn Ser Val Asp
 50 55 60
 Pro Glu Asn Ile Thr Glu Ile Phe Ile Ala Asn Gln Lys Arg Leu Glu
 65 70 75 80
 Ile Ile Asn Glu Asp Asp Val Glu Ala Tyr Val Gly Leu Arg Asn Leu
 85 90 95
 Thr Ile Val Asp Ser Gly Leu Lys Phe Val Ala His Lys Ala Phe Leu
 100 105 110
 Lys Asn Ser Asn Leu Gln His Ile Asn Phe Thr Arg Asn Lys Leu Thr
 115 120 125
 Ser Leu Ser Arg Lys His Phe Arg His Leu Asp Leu Ser Glu Leu Ile
 130 135 140
 Leu Val Gly Asn Pro Phe Thr Cys Ser Cys Asp Ile Met Trp Ile Lys
 145 150 155 160

Thr Leu Gln Glu Ala Lys Ser Ser Pro Asp Thr Gln Asp Leu Tyr Cys
 165 170 175
 Leu Asn Glu Ser Ser Lys Asn Ile Pro Leu Ala Asn Leu Gln Ile Pro
 180 185 190
 Asn Cys Gly Leu Pro Ser Ala Asn Leu Ala Ala Pro Asn Leu Thr Val
 195 200 205
 Glu Glu Gly Lys Ser Ile Thr Leu Ser Cys Ser Val Ala Gly Asp Pro
 210 215 220
 Val Pro Asn Met Tyr Trp Asp Val Gly Asn Leu Val Ser Lys His Met
 225 230 235 240
 Asn Glu Thr Ser His Thr Gln Gly Ser Leu Arg Ile Thr Asn Ile Ser
 245 250 255
 Ser Asp Asp Ser Gly Lys Gln Ile Ser Cys Val Ala Glu Asn Leu Val
 260 265 270
 Gly Glu Asp Gln Asp Ser Val Asn Leu Thr Val His Phe Ala Pro Thr
 275 280 285
 Ile Thr Phe Leu Glu Ser Pro Thr Ser Asp His His Trp Cys Ile Pro
 290 295 300
 Phe Thr Val Lys Gly Asn Pro Lys Pro Ala Leu Gln Trp Phe Tyr Asn
 305 310 315 320
 Gly Ala Ile Leu Asn Glu Ser Lys Tyr Ile Cys Thr Lys Ile His Val
 325 330 335
 Thr Asn His Thr Glu Tyr His Gly Cys Leu Gln Leu Asp Asn Pro Thr
 340 345 350
 His Met Asn Asn Gly Asp Tyr Thr Leu Ile Ala Lys Asn Glu Tyr Gly
 355 360 365
 Lys Asp Glu Lys Gln Ile Ser Ala His Phe Met Gly Trp Pro Gly Ile
 370 375 380
 Asp Asp Gly Ala Asn Pro Asn Tyr Pro Asp Val Ile Tyr Glu Asp Tyr
 385 390 395 400
 Gly Thr Ala Ala Asn Asp Ile Gly Asp Thr Thr Asn Arg Ser Asn Glu
 405 410 415
 Ile Pro Ser Thr Asp Val Thr Asp Lys Thr Gly Arg Glu His Leu Ser
 420 425 430
 Val Tyr Ala Val Val Val Ile Ala Ser Val Val Gly Phe Cys Leu Leu
 435 440 445
 Val Met Leu Phe Leu Leu Lys Leu Ala Arg His Ser Lys Phe Gly Met
 450 455 460
 Lys Asp Phe Ser Trp Phe Gly Phe Gly Lys Val Lys Ser Arg Gln Gly
 465 470 475 480
 Val Gly Pro Ala Ser Val Ile Ser Asn Asp Asp Asp Ser Ala Ser Pro
 485 490 495
 Leu His His Ile Ser Asn Gly Ser Asn Thr Pro Ser Ser Ser Glu Gly
 500 505 510
 Gly Pro Asp Ala Val Ile Ile Gly Met Thr Lys Ile Pro Val Ile Glu
 515 520 525
 Asn Pro Gln Tyr Phe Gly Ile Thr Asn Ser Gln Leu Lys Pro Asp Thr
 530 535 540
 Trp Pro Arg Gly Ser Pro Lys Thr Ala
 545 550

<210> 9
 <211> 4351
 <212> DNA
 <213> Mus musculus

<300>
<308> NCBI/X17647
<309> 1995-03-22
<313> (1) ..(4351)

<400> 9
aggctgcggc ggcggcgccg cgttagagcc cagtcgctgc ttca gctgtt gttgtgc 60
ctgccaggct ctgtccctg cgttgctac gggaggccgg ggaagcccg cgacagtcc 120
tcggtgccct gggccggcac tgcctgtcta ccgcagttgc tccccagccc tgagggtgc 180
accgatatacg atattcggtc cggttagcg gtctgcgac ccaaagagtc cagggagatc 240
caccgagtgg tgcctgggt ataggactat gcagccgcot tgtggctcg agcagcggcc 300
cgcgatgtcc cagccactgt gaaccattt gtcagcgcca acctgtctcag ccccgacacc 360
gacaggctca gcctctggta cgctccactc cgccggaggc caccaggcacc aagcagcaag 420
agggcgcagg gaaggcctcc cccctccggc gggggacgccc tggtctcagcg tagggacacg 480
caactccgact gactggact ggcagctcg gatgtcgc 540
cgccatggcg cggtctggg gcttatgcct gtggcttgg ggttctgg 600
cgccctggcc acgtctcgaa aatgcagtt cgcttaggatt tggtgtactg agccttcctcc 660
aggcatctgt gcattcccgaa ggttggaaacc taacagcggtt gaccggaga acatcacgga 720
aattctcatt gcaaaccaga aaaggctaga aatcatcaat gaagatgacg ttgaagctta 780
cgtggggctg agaaaacctta caatttgga ttccggctta aagtttgtgg cttacaagc 840
gtttctgaaa aacagcaacc tgccggacat aaatttcaca cggaaacaagg tgacgagtt 900
gtccaggaga catttccggc accttgactt gtctgacccgtt atcctgcacgg gtaatccgtt 960
cacgtgtcc tgcgacatca tgcgtctcaa gactctccag gagactaaat ccagccccga 1020
caactcaggat ttgtactgcc tcaatgagag cagcaagaac atgcccctgg cgaacctgca 1080
gatacccaat tgcgtctgc catctgcacg tctggctgtc cctaaccctca ccgtggagga 1140
aggaaagtct gtgacccttt cctgcagtgt ggggggtgtac ccactcccca ccttgtactg 1200
ggacggttggg aatttggttt ccaagcacat gaatgaaaca agccacacac agggctcctt 1260
aaggataacg aacatttcat ctgatgacag tgaaaagcaa atctcttgg tggcagaaaa 1320
ccttgttagga gaagatcaag attctgtgaa cctcactgtg cattttgcgc caactatcac 1380
gtttctcgag tctccaaccc tcatcaccat cttggcattt ccatttactg tgagaggcaa 1440
cccccaagcct gcgcttcagt gtttctacaa tggggccata ctgaatgagt ccaagtacat 1500
ctgtactaag atccacgtca ccaatcacac ggagtaccat ggctgcctcc agctggataa 1560
ccccactcat atgaataacg gagactacac cctgatggcc aagaacgagt atggaaagga 1620
tgagagacag atctccgctc acttcatggg cccggcctgg gtcgactacg agacaaacccc 1680
aaatttacccct gaagtccctct atgaagactg gaccacgcca actgacattt gggataactac 1740
gaacaaaagt aatgaaatcc cttccacggg tttgtgtac caaagaatc gggagcatct 1800
ctcggtctat gccgtgggtgg tgattgcatt tgggtggga ttctgcctgc tgggtatgtt 1860
gctcctgctc aagtggcga gacattccaa gtttggcatg aaaggcccag ctccggcat 1920
cagcaacgac gatgactctg ccagccccct ccaccacatc tccaaatggga gtaacactcc 1980
atcttcttcg gagggcggtc ccgacgctgt cattattggaa atgaccaaga ttctgttat 2040
tgaaaacccc cagacttttgc gcatcacca cagtcagtc aagccagaca cattttttca 2100
gcacatcaag agacacaaca tcgttctgaa gagggaactt ggggaaggag cttcgggaa 2160
agttttcctt gccgagtgt acaacctctg cccagagcag gataagatcc tgggtgtgt 2220
gaagacgctg aaggacgcca ggcacaaatgc acgcaaggac tttcatcgaa aagctgagct 2280
gctgaccaac ctccagcactg agcacattgt caagttctac ggtgtctgtg tggagggcga 2340
cccactcatc atggcttttgc agtacatgaa gcacggggac ctcaacaagt tccttagggc 2400
acacggggcc gacgcgtgc tgatggcaga ggttaaccccg cccacagagc tgacgcagtc 2460
cgacatgtcg cacatcgctc agcaaatacg acgaggatgt gtctacctgg cgtcccaaca 2520
ctttgtgcac cgtgacctgg ccacccggaa ctgcctgggtg ggagagaacc tgctggtaa 2580
aattggggac tttggatgtt cccgagatgt gtacagcacc gactactatc ggggtgg 2640
ccacacaatg ttgcccattcc gatggatgcc tccagagac atcatgtata gaaattcac 2700
caccgagagc gacgtctggaa gcctggcgt tggatgtgtt gggatctca cctacggcaa 2760
gcagccctgg tatcagctat cgaacaatga ggtgatagag tgcatcaccc agggaaagagt 2820
ccttcagcgg cctcgaaacctt gtccccagga ggtgtatgt gtcatgtcg gatgtggca 2880
gcgggaacca cacacccggaa agaacatcaa gagcatccac accctccctc agaacttggc 2940
caaggcatct cccgtctacc tggatatcct aggctagggt cctccctctg cccagaccgt 3000
ccttcccaag gccctccctca gactggcct cagactggcc tacacgacga acctcttgcac 3060

tgccgctgac gtcatgacct tgctgtcctt cgctctgaca gagttgacag gaccaggagc 3120
 ggctctctgg gggaggcagt gtgtgcctt ccatccacag acagtattaa ctgcctctg 3180
 gcatcgcttc tttctctccc ttgggtttgt ttcttctt tgccccttcc ccttttatca 3240
 ttatttattt atttattttt tttctggct tcacgcttca cggccctcag tctctcctt 3300
 accaatctgg cttctgcatt cctattaact gtacatagac aaaggcccta acaaaccata 3360
 tttgttatat cagcagacac tccagttgc ccaccacaac taacaatgcc ttgttgtatt 3420
 cctgcctttg acgtggatga aaaaaagaga aaaaaggccg agactctcct gcaggaatcg 3480
 gatgaggccct ctgagctcaa gcccgtggaa ctggacactt ttgaaggaaa catcacaaag 3540
 caactggtga agaggctcac ctcggctgag gggcccgta ctactgacaa gctttctt 3600
 gaaggctctg ttggtagcga gtctgaggct gcccgtcct ttctggatgg caggctggaa 3660
 gatgccttca atggactctt cttgcatta gaccacaca agaagcgtca caaagagttc 3720
 caggatctga accaagaagt cactcacttg gatgatgttc tcaaagatgc taaacatctt 3780
 gaggatcaga gactcaatga tgctgttcc cgatggaga tcacagaggg tgaatgagac 3840
 aaccgagatt taaaagactg aaggacattt tcccatgtgc ttctgtgtca tcccaagtgt 3900
 ctgggacaga tcccccaag gcccttccta cttgtgtca agagtctgca agggatcct 3960
 ccttagccaga cagaggacac gcagggtct ctttgcag atttgcctt tcaacactac 4020
 ctcacgtcctt cttgaatatg tggatatgtct tttttctc caggctaaag cactggcata 4080
 gcagccacat agcaggcttc tgtgttggtc catgtcctgc aaacctgctg tagaaggaac 4140
 ttgtccccat aattccaggg cttgcccaggg gggtgatggg acttgtgcct ttcaccttca 4200
 ggggagtcgg gatcattgtc ccatcatgcc caagtcaccc atttgcctt ccgtgctcag 4260
 aaaaaaaaaagc atcctgaat ggaacatggt gatgcaggc tccgtgcca agcagcctag 4320
 ggccagggtgtt tttgagcagt ttccctttctt g 4351

<210> 10
 <211> 821
 <212> PRT
 <213> Mus musculus

<300>
 <308> NCBI/X17647
 <309> 1995-03-22
 <313> (1)..(821)

<400> 10
 Met Ser Pro Trp Leu Lys Trp His Gly Pro Ala Met Ala Arg Leu Trp
 1 5 10 15
 Gly Leu Cys Leu Leu Val Leu Gly Phe Trp Arg Ala Ser Leu Ala Cys
 20 25 30
 Pro Thr Ser Cys Lys Cys Ser Ser Ala Arg Ile Trp Cys Thr Glu Pro
 35 40 45
 Ser Pro Gly Ile Val Ala Phe Pro Arg Leu Glu Pro Asn Ser Val Asp
 50 55 60
 Pro Glu Asn Ile Thr Glu Ile Leu Ile Ala Asn Gln Lys Arg Leu Glu
 65 70 75 80
 Ile Ile Asn Glu Asp Asp Val Glu Ala Tyr Val Gly Leu Arg Asn Leu
 85 90 95
 Thr Ile Val Asp Ser Gly Leu Lys Phe Val Ala Tyr Lys Ala Phe Leu
 100 105 110
 Lys Asn Ser Asn Leu Arg His Ile Asn Phe Thr Arg Asn Lys Leu Thr
 115 120 125
 Ser Leu Ser Arg Arg His Phe Arg His Leu Asp Leu Ser Asp Leu Ile
 130 135 140
 Leu Thr Gly Asn Pro Phe Thr Cys Ser Cys Asp Ile Met Trp Leu Lys
 145 150 155 160
 Thr Leu Gln Glu Thr Lys Ser Ser Pro Asp Thr Gln Asp Leu Tyr Cys
 165 170 175
 Leu Asn Glu Ser Ser Lys Asn Met Pro Leu Ala Asn Leu Gln Ile Pro

	180	185	190												
Asn	Cys	Gly	Leu	Pro	Ser	Ala	Arg	Leu	Ala	Ala	Pro	Asn	Leu	Thr	Val
			195					200					205		
Glu	Glu	Gly	Lys	Ser	Val	Thr	Leu	Ser	Cys	Ser	Val	Gly	Gly	Asp	Pro
			210				215				220				
Leu	Pro	Thr	Leu	Tyr	Trp	Asp	Val	Gly	Asn	Leu	Val	Ser	Lys	His	Met
	225			230					235					240	
Asn	Glu	Thr	Ser	His	Thr	Gln	Gly	Ser	Leu	Arg	Ile	Thr	Asn	Ile	Ser
			245					250				255			
Ser	Asp	Asp	Ser	Gly	Lys	Gln	Ile	Ser	Cys	Val	Ala	Glu	Asn	Leu	Val
			260				265			270					
Gly	Glu	Asp	Gln	Asp	Ser	Val	Asn	Leu	Thr	Val	His	Phe	Ala	Pro	Thr
			275				280			285					
Ile	Thr	Phe	Leu	Glu	Ser	Pro	Thr	Ser	Asp	His	His	Trp	Cys	Ile	Pro
	290			295					300						
Phe	Thr	Val	Arg	Gly	Asn	Pro	Lys	Pro	Ala	Leu	Gln	Trp	Phe	Tyr	Asn
	305			310				315				320			
Gly	Ala	Ile	Leu	Asn	Glu	Ser	Lys	Tyr	Ile	Cys	Thr	Lys	Ile	His	Val
			325				330			335					
Thr	Asn	His	Thr	Glu	Tyr	His	Gly	Cys	Leu	Gln	Leu	Asp	Asn	Pro	Thr
			340				345			350					
His	Met	Asn	Asn	Gly	Asp	Tyr	Thr	Leu	Met	Ala	Lys	Asn	Glu	Tyr	Gly
			355				360			365					
Lys	Asp	Glu	Arg	Gln	Ile	Ser	Ala	His	Phe	Met	Gly	Arg	Pro	Gly	Val
			370				375			380					
Asp	Tyr	Glu	Thr	Asn	Pro	Asn	Tyr	Pro	Glu	Val	Leu	Tyr	Glu	Asp	Trp
	385			390				395			400				
Thr	Thr	Pro	Thr	Asp	Ile	Gly	Asp	Thr	Thr	Asn	Lys	Ser	Asn	Glu	Ile
					405			410			415				
Pro	Ser	Thr	Asp	Val	Ala	Asp	Gln	Ser	Asn	Arg	Glu	His	Leu	Ser	Val
				420				425			430				
Tyr	Ala	Val	Val	Val	Ile	Ala	Ser	Val	Val	Gly	Phe	Cys	Leu	Leu	Val
				435				440			445				
Met	Leu	Leu	Leu	Leu	Lys	Leu	Ala	Arg	His	Ser	Lys	Phe	Gly	Met	Lys
				450				455			460				
Gly	Pro	Ala	Ser	Val	Ile	Ser	Asn	Asp	Asp	Asp	Ser	Ala	Ser	Pro	Leu
	465			470				475			480				
His	His	Ile	Ser	Asn	Gly	Ser	Asn	Thr	Pro	Ser	Ser	Ser	Glu	Gly	Gly
					485			490			495				
Pro	Asp	Ala	Val	Ile	Ile	Gly	Met	Thr	Lys	Ile	Pro	Val	Ile	Glu	Asn
				500				505			510				
Pro	Gln	Tyr	Phe	Gly	Ile	Thr	Asn	Ser	Gln	Leu	Lys	Pro	Asp	Thr	Phe
				515				520			525				
Val	Gln	His	Ile	Lys	Arg	His	Asn	Ile	Val	Leu	Lys	Arg	Glu	Leu	Gly
				530				535			540				
Glu	Gly	Ala	Phe	Gly	Lys	Val	Phe	Leu	Ala	Glu	Cys	Tyr	Asn	Leu	Cys
	545			550					555			560			
Pro	Glu	Gln	Asp	Lys	Ile	Leu	Val	Ala	Val	Lys	Thr	Leu	Lys	Asp	Ala
					565				570			575			
Ser	Asp	Asn	Ala	Arg	Lys	Asp	Phe	His	Arg	Glu	Ala	Glu	Leu	Leu	Thr
					580				585			590			
Asn	Leu	Gln	His	Glu	His	Ile	Val	Lys	Phe	Tyr	Gly	Val	Cys	Val	Glu
					595			600			605				
Gly	Asp	Pro	Leu	Ile	Met	Val	Phe	Glu	Tyr	Met	Lys	His	Gly	Asp	Leu
				610				615			620				
Asn	Lys	Phe	Leu	Arg	Ala	His	Gly	Pro	Asp	Ala	Val	Leu	Met	Ala	Glu
	625				630				635			640			

Gly Asn Pro Pro Thr Glu Leu Thr Gln Ser Gln Met Leu His Ile Ala
 645 650 655
 Gln Gln Ile Ala Ala Gly Met Val Tyr Leu Ala Ser Gln His Phe Val
 660 665 670
 His Arg Asp Leu Ala Thr Arg Asn Cys Leu Val Gly Glu Asn Leu Leu
 675 680 685
 Val Lys Ile Gly Asp Phe Gly Met Ser Arg Asp Val Tyr Ser Thr Asp
 690 695 700
 Tyr Tyr Arg Val Gly Gly His Thr Met Leu Pro Ile Arg Trp Met Pro
 705 710 715 720
 Pro Glu Ser Ile Met Tyr Arg Lys Phe Thr Thr Glu Ser Asp Val Trp
 725 730 735
 Ser Leu Gly Val Val Leu Trp Glu Ile Phe Thr Tyr Gly Lys Gln Pro
 740 745 750
 Trp Tyr Gln Leu Ser Asn Asn Glu Val Ile Glu Cys Ile Thr Gln Gly
 755 760 765
 Arg Val Leu Gln Arg Pro Arg Thr Cys Pro Gln Glu Val Tyr Glu Leu
 770 775 780
 Met Leu Gly Cys Trp Gln Arg Glu Pro His Thr Arg Lys Asn Ile Lys
 785 790 795 800
 Ser Ile His Thr Leu Leu Gln Asn Leu Ala Lys Ala Ser Pro Val Tyr
 805 810 815
 Leu Asp Ile Leu Gly
 820

<210> 11
 <211> 2484
 <212> DNA
 <213> Mus musculus

<300>
 <308> NCBI/M33385
 <309> 1993-04-23
 <313> (1)..(2484)

<400> 11
 atgtcgccct ggctgaagtgcatggaccc gccatggcgc ggctctgggg cttatgcctg 60
 ctggcttgg gcttcggag ggcctctc gcctgcccga cgctctgcaa atgcagttcc 120
 gtaggattt ggtgtactga gccttctca ggcatcgtgg cattcccgag gttggAACCT 180
 aacagcgTTG acccgagaa catcacggaa atttcattt caaacccAGAA aaggctAGAA 240
 atcatcaatg aagatgacgt tgaagcttac gtggggctga gaaaccttac aatttggtat 300
 tccggctta agtttgtggc ttacaaagcg tttctgaaaa acagcaacct gcgacata 360
 aatttcacac gaaacaAGCT gacgagtttgc tccaggagac atttccGCCA ccttgacttg 420
 tctgaccta tcctgacggg taatccgttc acgtgcttcc gcgacatcat gtggctcaag 480
 actctccagg agactaaATC cagccccgac actcaggatt tgtactgcct caatgagAGC 540
 agcaagaaca tgccctggc gaacctgcag ataccaatt gtggctgccc atctgcacgt 600
 ctggctgctc ctaacctcac cgtggagggaa ggaaggcttg tgacccttc ctgcagtgtg 660
 gggggtgacc cactccccac cttgtactgg gacgttggga atttggttc caagcacatg 720
 aatgaaaaca gccacacaca gggctcctta aggataacga acatttcatc tgatgacagt 780
 gggaaAGCAA TCTCTGTGT ggcagAAAAC CTTGTAGGG aagatcaaga ttctgtGAAC 840
 ctcactgtgc attttgcGCC aactatcacg tttctcgagt ctccaaacctc agatcaccac 900
 tggtgcatTC cattcaCTGT gagaggcaac cccaaGCTG cgcttcagtg gttctacaat 960
 gggggccatac tgaatgagTC caagTACATC tgtactaaga tccacgtcac caatcacACG 1020
 gagtaccatg gctgcctcca gctggataac cccactcata tgaataAACGG agactacACC 1080
 ctgatggCCA agaACGAGTA tggGAAGGAT gagAGACAGA tctccgctca cttcatGGGC 1140
 cggcctggag tcgactacga gacAAACCCCA aattaccctg aagtccctta tgaagactgg 1200

accacgccaa ctgacattgg ggatactacg aacaaaagta atgaaatccc ctccacggat 1260
 gttgctgacc aaagcaatcg ggagcatctc tcggctatcg ccgtgggtt gattgcatt 1320
 gtggggat tctgcctgct ggtgatgtt ctcctgctca agttggcgag acattccaag 1380
 tttggcatga aaggtttgtt tttgtttcat aagatcccac tggatggta gctgagataa 1440
 aggaaagaca aaggctgggg ctgtggtgct tggtgcctga cgccctgtga gctgaactct 1500
 gggactgctg ttgcctatcc caggaagtgc tgcttatttg aggggtgtcg gtgaaaatgg 1560
 gtaatctccg aggatgtctg cagcctgctt gtttgagct gtgactgggg aaccccaagg 1620
 cagaggcagg ggtcaggcag ctgagaagca gcagaagaac acacttagat tcaccttctg 1680
 ttcttacaat agttcaaata tagaatcgaa gtgaaatctc attggattat gcctctctaa 1740
 tgaaaagcga gctgttgac tatacgaaa atgtgctgac attaattgtct tctgtttatt 1800
 aaaggtgatt tgcaaattaa aaactctgca tctatcatct atccatctat ctgtttgtct 1860
 atcataatcta tctgtctgtc tatctgtcta tcatctatct acctacctct ctatcatatc 1920
 tatctgtctg tctatctatc tatctatcta tctatctatc tatctatcta tctatctatc 1980
 tatctatcat ctatctacct atcatcgatc tacttatcta tcatctatct atctatctat 2040
 catcgattta ctatctatc atctatctat ctatctatct atctatctat ctatctatct 2100
 atctgtcattc tatctaaagt catacgtagg tctaagtgcacactaaaagt ctaatccaca 2160
 cataacaccc atttcagcaa catttctgt tctctaacctt tgcttaactt ctgtgatttc 2220
 cacctacaac cctgcgactg atagacttaa aggacacattt gtgggtgtcat tagtaggttc 2280
 tttgtttgc tggcagcaaa gacccaaact cttcgctaac gattgcttccaaatccacc 2340
 cggcaggttag aacggagcag caccaggac tggatggcca ggagtagtggaa cctgaattaa 2400
 ccacagcctg agaataaata atggtaggat atatgcataat aggaaattaa aatcttgcctc 2460
 ctttccattt ccctctgcta accg 2484

<210> 12
 <211> 476
 <212> PRT
 <213> Mus musculus

<300>
 <308> NCBI/M33385
 <309> 1993-04-27
 <313> (1)...(476)

<400> 12
 Met Ser Pro Trp Leu Lys Trp His Gly Pro Ala Met Ala Arg Leu Trp
 1 5 10 15
 Gly Leu Cys Leu Leu Val Leu Gly Phe Trp Arg Ala Ser Leu Ala Cys
 20 25 30
 Pro Thr Ser Cys Lys Cys Ser Ser Ala Arg Ile Trp Cys Thr Glu Pro
 35 40 45
 Ser Pro Gly Ile Val Ala Phe Pro Arg Leu Glu Pro Asn Ser Val Asp
 50 55 60
 Pro Glu Asn Ile Thr Glu Ile Leu Ile Ala Asn Gln Lys Arg Leu Glu
 65 70 75 80
 Ile Ile Asn Glu Asp Asp Val Glu Ala Tyr Val Gly Leu Arg Asn Leu
 85 90 95
 Thr Ile Val Asp Ser Gly Leu Lys Phe Val Ala Tyr Lys Ala Phe Leu
 100 105 110
 Lys Asn Ser Asn Leu Arg His Ile Asn Phe Thr Arg Asn Lys Leu Thr
 115 120 125
 Ser Leu Ser Arg Arg His Phe Arg His Leu Asp Leu Ser Asp Leu Ile
 130 135 140
 Leu Thr Gly Asn Pro Phe Thr Cys Ser Cys Asp Ile Met Trp Leu Lys
 145 150 155 160
 Thr Leu Gln Glu Thr Lys Ser Ser Pro Asp Thr Gln Asp Leu Tyr Cys
 165 170 175
 Leu Asn Glu Ser Ser Lys Asn Met Pro Leu Ala Asn Leu Gln Ile Pro

	180	185	190												
Asn	Cys	Gly	Leu	Pro	Ser	Ala	Arg	Leu	Ala	Ala	Pro	Asn	Leu	Thr	Val
	195					200					205				
Glu	Glu	Gly	Lys	Ser	Val	Thr	Leu	Ser	Cys	Ser	Val	Gly	Gly	Asp	Pro
	210				215					220					
Leu	Pro	Thr	Leu	Tyr	Trp	Asp	Val	Gly	Asn	Leu	Val	Ser	Lys	His	Met
	225				230				235				240		
Asn	Glu	Thr	Ser	His	Thr	Gln	Gly	Ser	Leu	Arg	Ile	Thr	Asn	Ile	Ser
						245			250			255			
Ser	Asp	Asp	Ser	Gly	Lys	Gln	Ile	Ser	Cys	Val	Ala	Glu	Asn	Leu	Val
					260			265			270				
Gly	Glu	Asp	Gln	Asp	Ser	Val	Asn	Leu	Thr	Val	His	Phe	Ala	Pro	Thr
					275			280			285				
Ile	Thr	Phe	Leu	Glu	Ser	Pro	Thr	Ser	Asp	His	His	Trp	Cys	Ile	Pro
	290					295				300					
Phe	Thr	Val	Arg	Gly	Asn	Pro	Lys	Pro	Ala	Leu	Gln	Trp	Phe	Tyr	Asn
	305					310			315			320			
Gly	Ala	Ile	Leu	Asn	Glu	Ser	Lys	Tyr	Ile	Cys	Thr	Lys	Ile	His	Val
					325			330			335				
Thr	Asn	His	Thr	Glu	Tyr	His	Gly	Cys	Leu	Gln	Leu	Asp	Asn	Pro	Thr
					340			345			350				
His	Met	Asn	Asn	Gly	Asp	Tyr	Thr	Leu	Met	Ala	Lys	Asn	Glu	Tyr	Gly
					355			360			365				
Lys	Asp	Glu	Arg	Gln	Ile	Ser	Ala	His	Phe	Met	Gly	Arg	Pro	Gly	Val
					370			375			380				
Asp	Tyr	Glu	Thr	Asn	Pro	Asn	Tyr	Pro	Glu	Val	Leu	Tyr	Glu	Asp	Trp
	385					390			395			400			
Thr	Thr	Pro	Thr	Asp	Ile	Gly	Asp	Thr	Thr	Asn	Lys	Ser	Asn	Glu	Ile
					405			410			415				
Pro	Ser	Thr	Asp	Val	Ala	Asp	Gln	Ser	Asn	Arg	Glu	His	Leu	Ser	Val
					420			425			430				
Tyr	Ala	Val	Val	Val	Ile	Ala	Ser	Val	Val	Gly	Phe	Cys	Leu	Leu	Val
					435			440			445				
Met	Leu	Leu	Leu	Lys	Leu	Ala	Arg	His	Ser	Lys	Phe	Gly	Met	Lys	
					450			455			460				
Gly	Phe	Val	Leu	Phe	His	Lys	Ile	Pro	Leu	Asp	Gly				
	465					470			475						

<210> 13
<211> 2838
<212> DNA
<213> Homo sapiens

<300>
<308> NCBI/XM_038336
<309> 2002-02-07

<400> 13

```

cgagccggcc accatgcccgc gtagaccgcg ccactaggcg ctcctcgccg ctccccacccg 60
gcggcggcg cgccgcgcgc ggcgtccgcg atggtttcag acgctgaagg attttgcattc 120
tgatcgctcg gcgttcaaa gaagcagcga tcggagatgg atgtctctt ttgcccgacc 180
aagtgttgtt tctggcgat tttcttgctg ggaagcgtct ggctggacta tggggctcc 240
gtgctggctt gcccgtcaaa ttgtgtctgc agcaagactg agatcaattt ccggcggccg 300
gacgatggaa acctttccc ctcctggaa gggcaggatt cagggAACAG caatggaaac 360
gcacgttatca acatcacgga catctcaagg aatatcactt ccatacacat agagaactgg 420
cgacgtcttc acacgctcaa cgccgtggac atggagctct acaccggact tcaaaagctg 480

```

accatcaaga actcaggact tcggagcatt cagccccagag cctttgccaa gaacccccc 540
 ttgcgttata taaacctgtc aagttaaccgg ctcaccacac tctcgtggca gctctccag 600
 acgctgagtc ttcggaatt gcagttggag cagaacttt tcaactgcag ctgtgacatc 660
 cgctggatgc agctctggca ggagcagggg gaggccaagc tcaacagcca gaacctctac 720
 tgcatcaacg ctgatggctc ccagcttct ctctccgca tgaacatcag tcagtgtgac 780
 cttcctgaga tcagcgtgag ccacgtcaac ctgaccgtac gagagggtga caacgctgtt 840
 atcacttgca atggotctgg atcaccctt cctgatgtgg actggatagt cactgggctg 900
 cagtccatca acactcacca gaccaatctg aactggacca atgttcatgc catcaacttg 960
 acgctggta atgtgacgag tgaggacaat ggcttcaccc tgacgtgcat tgcaaaaaac 1020
 gtggggca tgagcaatgc cagtgttgc ctcactgtct actatcccc acgtgtgg 1080
 agcctggagg agcctgagct ggcctggag cactgcatcg agtttgggtgc gctggcaac 1140
 cccccaccaa cgctgcactg gctgcacaat gggcagcctc tgccggagtc caagatcatc 1200
 catgtggaat actaccaaga gggagagatt tccgagggct gcctgcttt caacaagccc 1260
 acccaactaca acaatggcaa ctataccctc attgccaaaa acccactggg cacagccaaac 1320
 cagaccatca atggccactt cctcaaggag cccttccag agagcacgga taactttatc 1380
 ttgtttgacg aagttagtcc cacacctcct atcactgtga cccacaaacc agaagaagac 1440
 acttttgggg tatccatagc agttggactt gctgttttgc cctgtgtccct gttgggg 1500
 ctcttcgtca tgatcaacaa atatggtcga cggtccaaat ttggaaatgaa gggtcccgtg 1560
 getgtcatca gtggtgagga ggactcagcc agccactgc accacatcaa ccacggcatac 1620
 accacgcctc cgtaactgga tgccgggccc gacactgtgg tcattggcat gactcgcatac 1680
 cctgtcattt agaacccca gtacttcgtt cagggacaca actgccacaa gccggacacg 1740
 tatgtgcagc acattaagag gagagacatc gtgtgttgc gagaactggg tgagggagcc 1800
 tttggaaagg tcttcctggc cgagtgttac aacccatggc cgaccaagga caagatgttt 1860
 gtggctgtga aggccctgaa ggatcccacc ctggctgccc ggaaggattt ccagagggag 1920
 gccgagctgc tcaccaaccc gcacatgag cacattgtca agttctatgg agtgtgcggc 1980
 gatggggacc ccctcatcat ggtctttgaa tacatgttgc atggagaccc gaataagttc 2040
 ctcaggccc atggggcaga tgcaatgttcc cttgtggatg gacagccacg ccaggccaaag 2100
 ggtgagctgg ggctctccca aatgtccac attgtccatc agatgcctc gggtatgg 2160
 tacctggcct cccagcactt tttgttgcaccga gacccggca ccaggaactt cctgggttgg 2220
 gccaatctgc tagttaagat tggggacttc ggcattgttca gagatgtcta cagcacggat 2280
 tattacaggg tctttatcc atctggaaat gattttgttca tatgggtgtga ggtggggagga 2340
 cacaccatgc tccccattcg ctggatgttcc cctgttgcac tcatgttaccg gaagtttact 2400
 acagagagtg atgtatggag cttcggggtt atccctctggg agatcttcac ctatggaaag 2460
 cagccatggt tccaaacttcc aaacacggag gtcattgttgc gcattacccca aggtcgtgtt 2520
 ttggagcggc cccgagtcgtt ccccaaaagag gtgtacgttgc tcatgttggg gtgtggcag 2580
 agggaaaccac agcagcgggtt gaacatcaag gagatctaca aaatcttccca tgctttgggg 2640
 aaggccaccc caatcttaccc ggacattttt ggcttagtggt ggctgggttgc catgaattca 2700
 tactctgttgc ccttccttc cctgttgcctca catctccctt ccacccatcaca actccttccca 2760
 tccttgacttgc aaggcaacat cttcatataa actcaagtgc ctgttacaca tacaacactg 2820
 aaaaaaggaa aaaaaaaaaa 2838

<210> 14
 <211> 839
 <212> PRT
 <213> Homo sapiens

<300>
 <308> NCBI/XM_038336
 <309> 2002-02-07

<400> 14
 Met Asp Val Ser Leu Cys Pro Ala Lys Cys Ser Phe Trp Arg Ile Phe
 1 5 10 15
 Leu Leu Gly Ser Val Trp Leu Asp Tyr Val Gly Ser Val Leu Ala Cys
 20 25 30
 Pro Ala Asn Cys Val Cys Ser Lys Thr Glu Ile Asn Cys Arg Arg Pro
 35 40 45

Asp Asp Gly Asn Leu Phe Pro Leu Leu Glu Gly Gln Asp Ser Gly Asn
 50 55 60
 Ser Asn Gly Asn Ala Ser Ile Asn Ile Thr Asp Ile Ser Arg Asn Ile
 65 70 75 80
 Thr Ser Ile His Ile Glu Asn Trp Arg Ser Leu His Thr Leu Asn Ala
 85 90 95
 Val Asp Met Glu Leu Tyr Thr Gly Leu Gln Lys Leu Thr Ile Lys Asn
 100 105 110
 Ser Gly Leu Arg Ser Ile Gln Pro Arg Ala Phe Ala Lys Asn Pro His
 115 120 125
 Leu Arg Tyr Ile Asn Leu Ser Ser Asn Arg Leu Thr Thr Leu Ser Trp
 130 135 140
 Gln Leu Phe Gln Thr Leu Ser Leu Arg Glu Leu Gln Leu Glu Gln Asn
 145 150 155 160
 Phe Phe Asn Cys Ser Cys Asp Ile Arg Trp Met Gln Leu Trp Gln Glu
 165 170 175
 Gln Gly Glu Ala Lys Leu Asn Ser Gln Asn Leu Tyr Cys Ile Asn Ala
 180 185 190
 Asp Gly Ser Gln Leu Pro Leu Phe Arg Met Asn Ile Ser Gln Cys Asp
 195 200 205
 Leu Pro Glu Ile Ser Val Ser His Val Asn Leu Thr Val Arg Glu Gly
 210 215 220
 Asp Asn Ala Val Ile Thr Cys Asn Gly Ser Gly Ser Pro Leu Pro Asp
 225 230 235 240
 Val Asp Trp Ile Val Thr Gly Leu Gln Ser Ile Asn Thr His Gln Thr
 245 250 255
 Asn Leu Asn Trp Thr Asn Val His Ala Ile Asn Leu Thr Leu Val Asn
 260 265 270
 Val Thr Ser Glu Asp Asn Gly Phe Thr Leu Thr Cys Ile Ala Glu Asn
 275 280 285
 Val Val Gly Met Ser Asn Ala Ser Val Ala Leu Thr Val Tyr Tyr Pro
 290 295 300
 Pro Arg Val Val Ser Leu Glu Glu Pro Glu Leu Arg Leu Glu His Cys
 305 310 315 320
 Ile Glu Phe Val Val Arg Gly Asn Pro Pro Pro Thr Leu His Trp Leu
 325 330 335
 His Asn Gly Gln Pro Leu Arg Glu Ser Lys Ile Ile His Val Glu Tyr
 340 345 350
 Tyr Gln Glu Gly Glu Ile Ser Glu Gly Cys Leu Leu Phe Asn Lys Pro
 355 360 365
 Thr His Tyr Asn Asn Gly Asn Tyr Thr Leu Ile Ala Lys Asn Pro Leu
 370 375 380
 Gly Thr Ala Asn Gln Thr Ile Asn Gly His Phe Leu Lys Glu Pro Phe
 385 390 395 400
 Pro Glu Ser Thr Asp Asn Phe Ile Leu Phe Asp Glu Val Ser Pro Thr
 405 410 415
 Pro Pro Ile Thr Val Thr His Lys Pro Glu Glu Asp Thr Phe Gly Val
 420 425 430
 Ser Ile Ala Val Gly Leu Ala Ala Phe Ala Cys Val Leu Leu Val Val
 435 440 445
 Leu Phe Val Met Ile Asn Lys Tyr Gly Arg Arg Ser Lys Phe Gly Met
 450 455 460
 Lys Gly Pro Val Ala Val Ile Ser Gly Glu Glu Asp Ser Ala Ser Pro
 465 470 475 480
 Leu His His Ile Asn His Gly Ile Thr Thr Pro Ser Ser Leu Asp Ala
 485 490 495
 Gly Pro Asp Thr Val Val Ile Gly Met Thr Arg Ile Pro Val Ile Glu

	500	505	510
Asn Pro Gln Tyr Phe Arg Gln Gly His Asn Cys His Lys Pro Asp Thr			
515	520	525	
Tyr Val Gln His Ile Lys Arg Arg Asp Ile Val Leu Lys Arg Glu Leu			
530	535	540	
Gly Glu Gly Ala Phe Gly Lys Val Phe Leu Ala Glu Cys Tyr Asn Leu			
545	550	555	560
Ser Pro Thr Lys Asp Lys Met Leu Val Ala Val Lys Ala Leu Lys Asp			
565	570	575	
Pro Thr Leu Ala Ala Arg Lys Asp Phe Gln Arg Glu Ala Glu Leu Leu			
580	585	590	
Thr Asn Leu Gln His Glu His Ile Val Lys Phe Tyr Gly Val Cys Gly			
595	600	605	
Asp Gly Asp Pro Leu Ile Met Val Phe Glu Tyr Met Lys His Gly Asp			
610	615	620	
Leu Asn Lys Phe Leu Arg Ala His Gly Pro Asp Ala Met Ile Leu Val			
625	630	635	640
Asp Gly Gln Pro Arg Gln Ala Lys Gly Glu Leu Gly Leu Ser Gln Met			
645	650	655	
Leu His Ile Ala Ser Gln Ile Ala Ser Gly Met Val Tyr Leu Ala Ser			
660	665	670	
Gln His Phe Val His Arg Asp Leu Ala Thr Arg Asn Cys Leu Val Gly			
675	680	685	
Ala Asn Leu Leu Val Lys Ile Gly Asp Phe Gly Met Ser Arg Asp Val			
690	695	700	
Tyr Ser Thr Asp Tyr Tyr Arg Leu Phe Asn Pro Ser Gly Asn Asp Phe			
705	710	715	720
Cys Ile Trp Cys Glu Val Gly Gly His Thr Met Leu Pro Ile Arg Trp			
725	730	735	
Met Pro Pro Glu Ser Ile Met Tyr Arg Lys Phe Thr Thr Glu Ser Asp			
740	745	750	
Val Trp Ser Phe Gly Val Ile Leu Trp Glu Ile Phe Thr Tyr Gly Lys			
755	760	765	
Gln Pro Trp Phe Gln Leu Ser Asn Thr Glu Val Ile Glu Cys Ile Thr			
770	775	780	
Gln Gly Arg Val Leu Glu Arg Pro Arg Val Cys Pro Lys Glu Val Tyr			
785	790	795	800
Asp Val Met Leu Gly Cys Trp Gln Arg Glu Pro Gln Gln Arg Leu Asn			
805	810	815	
Ile Lys Glu Ile Tyr Lys Ile Leu His Ala Leu Gly Lys Ala Thr Pro			
820	825	830	
Ile Tyr Leu Asp Ile Leu Gly			
835			

<210> 15
<211> 1030
<212> DNA
<213> Homo sapiens

<300>
<308> NCBI/AJ224536
<309> 2000-11-29

<400> 15
ccgacacggta tctttccagg gcccacaaat gctgcattgtt ctccaaagga gatttcatcc 60
tcagaagcta caatgatatac tctttataga agttgtagtc ttcaggtctt cagttagct 120

acagcttttgc ttttccaat ggtttatgcc ctaacaatgg caaggaagat tttaaggaac 180
 ccaaaccac cacccctct catctcctca tcatccccgc cttgtcacat tgcttcctc 240
 ttgaaaattt gctgaatttt tttgatggg tattagaagc cagaaagagg gtcttgggtc 300
 caggattatc tcccaagtca gaagaaacat ccattccaggc ccaggaatga cactctgaat 360
 ggcaatgatg ggcaccattt tgagacattc tggccaaga agaaaaatgg gggcaaataat 420
 gtaggaaaaa gtgcaggaca gagttcatgg ttaggtgaa tctttcttct ctgactctaa 480
 cttgtccat ttctataatg ccagggtgag attcttagga tctagatttt atgcgtaaaa 540
 taaaccagct gccactacaag gcacagcaga gtgggtacag gagctgagaa acctggattt 600
 ctgttctgg cattgtcac ttaagaaaaa tactttccca tggttttgc acttgggtt 660
 taatactgac cattaattcc cccatgtctg cctcttctgc caggggtctt ttcaaacata 720
 gacaatcatg ggatattaaa cttgaaggac aatagagatc atctagtccc atcaactcac 780
 tatatatatg aggaacctga ggtccagagt ggggaagtgt cttacccaag gtcacatgg 840
 gagttacccc ctttgacgtc tttgtatgca gtaaaagatcc ctcccctaacc caattttgg 900
 tcttaagacc ttaagactca tcaagccccc atatatttcg tggactgagg tacgactagg 960
 tgcccagcac gggatttggg actaaaaaaaaa tcccttaaat taaaggatg tctccagg 1020
 gaggaaagctt 1030

<210> 16
 <211> 1113
 <212> DNA
 <213> Homo sapiens

<300>
 <308> NCBI/AJ224537
 <309> 2000-11-29

<400> 16
 cagtggaggc tgcaaaaaa tggagtgttt ccagtttctc tgaccatgca gggtttaag 60
 ttaatccccctt cctccatcc ttcccttttgc ctgacagttc ttcccttcc aagctccctc 120
 tctatttccc ctccctagttt tgatcttctt tgggggtttt ggttttact ttatttgct 180
 tttttctgtt ttttttctt tttgtttttt ataggtttca gagaaattat gttgaatcca 240
 ataaggcttc ccggacattc caaggcttca aaccatggca tctatgttga ggatgtcaat 300
 gtttatttca gcaaggacg tcatggctt taaaaactcc ttttaaggct ccttgggtt 360
 atgtcacccctt ggttaggctgg gccctctgag aggttggaaag ctctaggcat ttttctt 420
 ggatccagggt atgctaagta gaaactgcat gaggccaccag tgccccggca cccttaaca 480
 ccaccagatg ggtgtttcc cccatccacc actggcaggg ttgccccctc cctccaaatca 540
 tcactgtgttcc cggcctacga ggcagcttcc gccactatct ttagagccaa 600
 taaaagagaat taaaaacctg tgcaccagga gcatttttta aatacactag ccattctt 660
 gctttacaaa aacaacctaa ccatcacaag aaaggctgat gaagtccagc cgtgctccag 720
 cctcactttc cctgcttggaa agcgtgggtt ctccctggct ctcccaggat accatgctgt 780
 cctcttagtg acctcgctgc cctgcaacct ccagtggga agagtcacag agagcaccta 840
 agcagaggtt gagacggcgc ggttaagagga gggggagcca ggctcaagta ttggcacca 900
 gtttaggtctc agagggaaaga atggaaacca atcactttac atttttat tttatccgg 960
 tggaaaaatc atcctttttt gggacatact tgccccctac ttccttctt ctctggaaacg 1020
 gtcacaatg agtgtgacat tagaaaaactc cttgcagagg agagtttctc caggcttcc 1080
 ctggggcctt agatctgcag ttccgacaag ctt 1113

<210> 17
 <211> 1089
 <212> DNA
 <213> Mus musculus

<220>
 <221> misc_feature
 <223> Anti-sense RNA complementary to sequences specific
 for mouse TrkB.T1

<400> 17

cggtagcag agggcaatgg aaaggacaa gatttaatt ccctatatgc atatacccta 60
 ccattatta ttctcaggct gtggtaatt caggtccata ctccggcca cacagtccct 120
 ggtgctgctc cgttcacct gccgggtgga ctttcaaagc aatcgtagc gaagagttg 180
 ggtcttgct gccagcaaaa caaagaacct actaatgaca ccaccaatgt gccttaagt 240
 ctatcagtcg cagggttgta ggtggaaatc acagaagtt gcaaaggta gagaacagaa 300
 gatgttgctg aaataggtgt tatgttgta ttagacttt agtgtgcact tagacctagc 360
 tatgacttta gatagatgac agatagatag atagatagat agatagatag atagatagat 420
 agatgataga taagtaaatc gatgataggt agatagatag atgatagata agtagatcga 480
 tgataggtag atagatgata gatagataga tagatagata gatagataga tagatagata 540
 gatagataga tagacagaca gatagatatg atagagaggt aggtagatag atgatagaca 600
 gatagacaga cagatagata tgatagacaa acagatagat ggatagatga tagatgcaga 660
 gttttaatt tgcaaatacc taccaataaa cagaagcaat taatgtcagc acatttccg 720
 tatagtcaaa cagctcgctt ttcatttagag aggataatc caatgagatt tcacttcgat 780
 tctatattt aactatttta agaacagaag gtgaatctaa gtgtgttctt ctgctgcttc 840
 tcagctgcct gaccctgcc tctgccttgg ggccccccag tcacagctca caacaaggcag 900
 gctgcagaca tcctcggaga ttaccatcc ccaccagaca ccctcaaata agcagcactt 960
 cctggatag gcaacagcag tcccagagtt cagtcacag ggcgtcaggc aacaaggcacc 1020
 acagccccccag ccttgcctt tccttatct cagtcacca tccagtggta tcttatgaaa 1080
 caaaaacaaaa 1089

<210> 18

<211> 20

<212> RNA

<213> Mus musculus

<220>

<221> misc_feature

<223> Anti-sense RNA for mouse TrkB.T1

<400> 18

aagcaggcug cagacauccu

20

<210> 19

<211> 359

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Anti-sense RNA specific for human TrkB.T1

<400> 19

agagaagtac aatccaatgg gatttcattt cagtttgta tttgaactac tgtaagaaga 60
 gaagcattaa tttaacatgt tttcttgagg tgctgcttag ctgcctgaga gttacctctg 120
 cattgggttt ccccaatcac agtcacagt atatgcaggc ttcatatagt acgcctcca 180
 aacaccgccc acatctacca gaaaacccca gataagcagc acttcccccgg ataagccaaac 240
 agcagtccca ggagtccagc ttacatggca gcatcaacca acaagcacca cagccccctt 300
 ctctgtcttt tccttattt cagtcacca tccagtggta tcttatgaaa caaaaacaaaa 359

<210> 20

<211> 296

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Anti-sense RNA complementary to Exon 19 of Human
TrkB.Shc

<400> 20

ctccatcttg	ccatcctgat	tgatcgagga	gatgggtcta	tagttaaagt	ggcatagtagac	60
tttgagggggt	tagtcattag	agcacactgc	tttgtcttgg	aaaggcaact	tcttgcttgg	120
ctaggtttagt	gaagctaagg	agtgacgtca	agatgttgc	tggccagaat	ttgcagataa	180
ccatagaact	cttctccctcc	atcaggcatg	gatttagcct	cctttagttc	ctgcagtgac	240
acaggagcc	ccaaatacca	aattattatc	aggcggtctt	gggggaacct	ctgggc	296

<210> 21

<211> 1030

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Anti-sense RNA complementary to human truncated
TrkC exon 13B

<400> 21

aagcttcctc	cccttggaaaga	cactccttta	attnaaggga	tttttttagt	accaaattccc	60
gtgctggca	cctagtcgt	cctcagtcc	cgaaatata	ggaggcttga	ttagtcttaa	120
ggctttaaga	accaaaattt	gttagggggag	ggatctttac	tgcatacataa	gacgtcaaaag	180
gaggtaactc	accatgtgac	cttgggttaag	acacttcccc	actctggacc	tcagggttcc	240
catatatata	gtgagttgat	gggactagat	gatctctatt	gtccttcaag	tttaatatacc	300
catgattgtc	tatgtttgaa	aagacccttgc	gcagaagagg	cagacatggg	ggaattaatg	360
gtcagtattt	aaccccaagt	gcaaaaaaca	tggaaagta	tttttcttaa	gtgcacaatg	420
ccagaaacag	aaatccaggt	ttctcagctc	ctgtacccac	tctgctgtgc	ctgtagtgcc	480
agctggttt	ttttacgcatt	aaaatctaga	tcctttaaaat	ctcaccctgg	cattatagaa	540
atggcacaag	ttagagtcag	agaagaaaaga	ttcaccatca	ccatgaactc	tgtcctgcac	600
tttccttaac	atatttgc	ccatttctt	tcttggacca	aatgtctca	aaatggtgcc	660
catcatttgc	attcagagtg	tcatttctgg	gcctggatgg	atgtttcttc	tgacttggga	720
gataatcctg	gacccaaagac	ccttttctg	gttcttaata	tcccatcaaa	aaaattcagc	780
taattttcaa	gaggaaagca	atgtgacaag	gcggggatga	tgaggagatg	agaggaggtg	840
gtgggtttt	gttccttaaa	atcttcttgc	ccattgttag	ggcataaacc	atggaaaaaa	900
ccaaagctgt	tagctcactg	aagacctgaa	gactacaact	tctataaaga	gatatcattt	960
tagttctga	ggatgaaatc	tcctttggag	accatgcagc	atttgtggc	cctggaaaga	1020
						1030

<210> 22

<211> 1113

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Anti-sense RNA complementary to human truncated
TrkC exon 14B

<400> 22

aagcttgcgt	gaactgcaga	tctaaggccc	caggaagagc	ctggagaaac	tctcctctgc	60
aaggagttt	ctaatgtcac	actcattgtg	agccgttcca	gagagaagag	gaagtagggg	120
gcaagatatgt	ccaaaaaaag	gatgatttt	ccacccaaaa	taaaaataaa	aatgtaaagt	180
gattggttt	catttttcc	tctgagacct	aacttggtgc	caataacttga	gcctggctcc	240
ccctccttctt	accgcgcgt	ctccacctt	gcttaggtgc	tctctgtgac	tcttccccac	300
tggaggttgc	agggcgacga	ggtcaactaag	aggacagcat	ggtatcctgg	gagagccagg	360

gagaccccac gcttccaagc agggaaagtg aggctggagc acggctggac ttcatcaggc 420
tttcttgtga tggtaggtt gttttgtaa agcaagagaa tggctagtgt attaaaaga 480
tgctcctggt gcacaggttt ttaattctct ttattggctc taaagatagt ggcaggagct 540
gcctcgtagg ccggaaaaaa aggagcacag tgatgattgg agggaaagggg caaccctgcc 600
agtggtggat gggggaaaac acccatctgg tggtgtaaa gggtgccggg gcactggtgg 660
ctcatgcagt ttctacttag catccctgga tccaaagaga acaatgccta gagcttcaa 720
cctctcagag ggcccagcct accaaggtga catcaaaaca aggaggctt aaaggagttt 780
ttaaaaagcca tgacgtcctt tgctgaaata aacattgaca tcctcaacat agatgccatg 840
gttaagaggg ttggaatgtc cgggaaggct tattggattc aacataattt ctctgaaacc 900
tataaaaaac aaaaagaaaa aaaaacagaa aaaagcaaaa taaagtaaaa accaaaaacc 960
ccaaagaaga tcaaaaactag gaggggaaat agagagggag cttgaaaggg gaagaactgt 1020
cagcaaagg gaaggatagg aggagggat taactaaaa ccctgcattt tcagagaaac 1080
tgaaaacact ccattttgct gcagcctcca ctg 1113