Exercises from the HoTT Book

John Dougherty

July 20, 2014

Introduction

The following are solutions to exercises from *Homotopy Type Theory: Univalent Foundations of Mathematics*. The Coq code given alongside the by-hand solutions requires the HoTT version of Coq, available at the HoTT github repository. It will be assumed throughout that it has been imported by

Require Import HoTT.

Each part of each exercise has its own Section in the Coq file, so Context declarations don't extend beyond the exercise, and sometimes they're even more restricted than that.

Contents

1 Type Theory	2
Exercise 1.1 (p. 56)	2
Exercise 1.2 (p. 56)	2
Exercise 1.3 (p. 56)	3
Exercise 1.4 (p. 56)	5
Exercise 1.5 (p. 56)	8
Exercise 1.6 (p. 56)	9
Exercise 1.7 (p. 56)	12
Exercise 1.8 (p. 56)	13
Exercise 1.9 (p. 56)	21
Exercise 1.10 (p. 56)	22
Exercise 1.11 (p. 56)	24
Exercise 1.12 (p. 56)	24
Exercise 1.13 (p. 57)	25
Exercise 1.14 (p. 57)	26
Exercise 1.15 (p. 57)	26
- 11011101017	27
Exercise 2.1 (p. 103)	
Exercise 2.2 (p. 103)	
Exercise 2.3 (p. 103)	
Exercise 2.4 (p. 103)	
\mathbf{u}	30
Exercise 2.6 (p. 103)	
Exercise 2.7 (p. 104)	32
Exercise 2.8 (p. 104)	
Exercise 2.9 (p. 104)	
Exercise 2.10 (p. 104)	36
Exercise 2.11 (p. 104)	36

*Exercise 2.12 (p. 104)) .		 		 													 		
*Exercise 2.13 (p. 104)) .				 											 				
Exercise 2.14 (p. 104)					 											 				
*Exercise 2.15 (p. 105)) .				 											 				
*Exercise 2.16 (p. 105)) .				 											 				
*Exercise 2.17 (p. 105)) .				 											 				

1 Type Theory

Exercise 1.1 (p. 56) Given functions $f: A \to B$ and $g: B \to C$, define their **composite** $g \circ f: A \to C$. Show that we have $h \circ (g \circ f) \equiv (h \circ g) \circ f$.

Solution Define $g \circ f :\equiv \lambda(x : A) . g(f(x))$. Then if $h : C \to D$, we have

$$h \circ (g \circ f) \equiv \lambda(x : A) \cdot h((g \circ f)x) \equiv \lambda(x : A) \cdot h((\lambda(y : A) \cdot g(fy))x) \equiv \lambda(x : A) \cdot h(g(fx))$$

and

$$(h \circ g) \circ f \equiv \lambda(x:A). (h \circ g)(fx) \equiv \lambda(x:A). (\lambda(y:A).h(gy))(fx) \equiv \lambda(x:A).h(g(fx))$$

So $h \circ (g \circ f) \equiv (h \circ g) \circ f$. In Coq, we have

Definition compose {A B C : Type} $(g: B \rightarrow C)$ $(f: A \rightarrow B) := \text{fun } x \Rightarrow g$ (f x).

Goal \forall (A B C D : Type) ($f:A \rightarrow B$) ($g:B \rightarrow C$) ($h:C \rightarrow D$),

compose h (compose gf) = compose (compose h g) f.

Proof. trivial. Qed.

Exercise 1.2 (p. 56) Derive the recursion principle for products $rec_{A\times B}$ using only the projections, and verify that the definitional equalities are valid. Do the same for Σ -types.

Solution The recursion principle states that we can define a function $f: A \times B \to C$ by giving its value on pairs. Suppose that we have projection functions $\operatorname{pr}_1: A \times B \to A$ and $\operatorname{pr}_2: A \times B \to B$. Then we can define a function of type

$$\operatorname{rec}_{A \times B} : \prod_{C \in \mathcal{U}} (A \to B \to C) \to A \times B \to C$$

in terms of these projections as follows

$$\operatorname{rec}'_{A \times B}(C, g, p) :\equiv g(\operatorname{pr}_1 p)(\operatorname{pr}_2 p)$$

or, in Coq,

Definition recprod (C: Type) $(g: A \rightarrow B \rightarrow C)$ $(p: A \times B) := g$ (fst p) (snd p).

We must then show that

$$\operatorname{rec}'_{A \times B}(C, g, (a, b)) \equiv g(\operatorname{pr}_1(a, b))(\operatorname{pr}_2(a, b)) \equiv g(a)(b)$$

which in Coq is also trivial:

Goal $\forall C g \ a \ b$, recprod $C g \ (a, b) = g \ a \ b$. trivial. Qed.

Now for the Σ -types. Here we have a projection

$$\operatorname{pr}_1:\left(\sum_{x:A}B(x)\right)\to A$$

and another

$$\operatorname{pr}_2: \prod_{p: \sum_{(x:A)} B(x)} B(\operatorname{pr}_1(p))$$

Define a function of type

$$\operatorname{rec}_{\sum_{(x:A)} B(x)} : \prod_{C:\mathcal{U}} \left(\prod_{(x:A)} B(x) \to C \right) \to \left(\sum_{(x:A)} B(x) \right) \to C$$

by

$$\mathsf{rec}_{\Sigma_{(x:A)}B(x)}(C,g,p) :\equiv g(\mathsf{pr}_1p)(\mathsf{pr}_2p)$$

Definition recsm (
$$C$$
: Type) (g : \forall (x : A), B $x \to C$) (p : { x : A & B x }) := g (p . 1) (p . 2).

We then verify that

$$\mathsf{rec}_{\sum_{(x:A)} B(x)}(C, g, (a, b)) \equiv g(\mathsf{pr}_1(a, b))(\mathsf{pr}_2(a, b)) \equiv g(a)(b)$$

which is again trivial in Coq:

Goal $\forall C g a b$, recsm C g (a; b) = g a b. trivial. Qed.

Exercise 1.3 (p. 56) Derive the induction principle for products $\operatorname{ind}_{A \times B}$ using only the projections and the propositional uniqueness principle uppt. Verify that the definitional equalities are valid. Generalize uppt to Σ -types, and do the same for Σ -types.

Solution The induction principle has type

$$\operatorname{ind}_{A\times B}: \prod_{C: A\times B\to \mathcal{U}} \left(\prod_{(x:A)} \prod_{(y:B)} C((x,y))\right) \to \prod_{z: A\times B} C(z)$$

For a first pass, we can define

$$\operatorname{ind}_{A\times B}(C,g,z):\equiv g(\operatorname{pr}_1 z)(\operatorname{pr}_2 z)$$

However, we have $g(pr_1x)(pr_2x) : C((pr_1x, pr_2x))$, so the type of this ind_{$A \times B$} is

$$\mathsf{ind}_{A\times B}: \prod_{C: A\times B\to \mathcal{U}} \left(\prod_{(x:A)} \prod_{(y:B)} C((x,y))\right) \to \prod_{z: A\times B} C((\mathsf{pr}_1 z, \mathsf{pr}_2 z))$$

To define $ind_{A \times B}$ with the correct type, we need the transport operation from the next chapter. The uniqueness principle for product types is

$$\mathsf{uppt}: \prod_{x:A\times B} \left((\mathsf{pr}_1 x, \mathsf{pr}_2 x) =_{A\times B} x \right)$$

By the transport principle, there is a function

$$(\mathsf{uppt}\,x)_*:C((\mathsf{pr}_1x,\mathsf{pr}_2x))\to C(x)$$

so

$$\operatorname{ind}_{A\times B}(C,g,z) :\equiv (\operatorname{uppt} z)_*(g(\operatorname{pr}_1 z)(\operatorname{pr}_2 z))$$

has the right type. In Coq we first define uppt, then use it with transport to give our $\operatorname{ind}_{A \times B}$.

Definition uppt $(x : A \times B)$: (fst x, snd x) = x. destruct x; reflexivity. Defined.

Definition indprd
$$(C: A \times B \rightarrow \text{Type})$$
 $(g: \forall (x:A) (y:B), C(x, y))$ $(z: A \times B) := (\text{uppt } z) \# (g \text{ (fst } z) \text{ (snd } z)).$

We now have to show that

$$\operatorname{ind}_{A\times B}(C, g, (a, b)) \equiv g(a)(b)$$

Unfolding the left gives

$$\begin{split} \operatorname{ind}_{A\times B}(C,g,(a,b)) &\equiv (\operatorname{uppt}(a,b))_*(g(\operatorname{pr}_1(a,b))(\operatorname{pr}_2(a,b))) \\ &\equiv \operatorname{ind}_{=_{A\times B}}(D,d,(a,b),(a,b),\operatorname{uppt}((a,b)))(g(a)(b)) \\ &\equiv \operatorname{ind}_{=_{A\times B}}(D,d,(a,b),(a,b),\operatorname{refl}_{(a,b)})(g(a)(b)) \\ &\equiv \operatorname{id}_{C((a,b))}(g(a)(b)) \\ &\equiv g(a)(b) \end{split}$$

which was to be proved. In Coq, it's as trivial as always:

Goal $\forall C g \ a \ b$, indprd $C g \ (a, b) = g \ a \ b$. trivial. Qed.

For Σ -types, we define

$$\operatorname{ind}_{\sum_{(x:A)}B(x)}: \prod_{C:(\sum_{(x:A)}B(x))\to \mathcal{U}} \left(\prod_{(a:A)} \prod_{(b:B(a))} C((a,b))\right) \to \prod_{p:\sum_{(x:A)}B(x)} C(p)$$

at first pass by

$$\operatorname{ind}_{\sum_{(x:A)} B(x)}(C,g,p) :\equiv g(\operatorname{pr}_1 p)(\operatorname{pr}_2 p)$$

We encounter a similar problem as before. We need a uniqueness principle for Σ -types, which would be a function

$$\mathsf{upst}: \prod_{p: \sum_{(x:A)} B(x)} \left((\mathsf{pr}_1 p, \mathsf{pr}_2 p) =_{\sum_{(x:A)} B(x)} p \right)$$

As for product types, we can define

$$upst((a,b)) :\equiv refl_{(a,b)}$$

which is well-typed, since $pr_1(a, b) \equiv a$ and $pr_2(a, b) \equiv b$. Thus, we can write

$$\operatorname{ind}_{\sum_{(x:A)}B(x)}(C,g,p) :\equiv (\operatorname{upst} p)_*(g(\operatorname{pr}_1p)(\operatorname{pr}_2p)).$$

and in Coq,

Definition upst $(p: \{x: A \& B x\}): (p.1; p.2) = p$. destruct p; reflexivity. Defined. Definition indsm $(C: \{x: A \& B x\} \rightarrow \text{Type}) (g: \forall (a:A) (b:B a), C (a; b)) (p: \{x: A \& B x\}) := (\text{upst } p) \# (g (p.1) (p.2)).$

Now we must verify that

$$\operatorname{ind}_{\sum_{(x:A)} B(x)}(C, g, (a, b)) \equiv g(a)(b)$$

We have

$$\begin{split} \operatorname{ind}_{\Sigma_{(x:A)}B(x)}(C,g,(a,b)) &\equiv (\operatorname{uppt}(a,b))_*(g(\operatorname{pr}_1(a,b))(\operatorname{pr}_2(a,b))) \\ &\equiv \operatorname{ind}_{=_{\Sigma_{(x:A)}B(x)}}(D,d,(a,b),(a,b),\operatorname{uppt}(a,b))(g(a)(b)) \\ &\equiv \operatorname{ind}_{=_{\Sigma_{(x:A)}B(x)}}(D,d,(a,b),(a,b),\operatorname{refl}_{(a,b)})(g(a)(b)) \\ &\equiv \operatorname{id}_{C((a,b))}(g(a)(b)) \\ &\equiv g(a)(b) \end{split}$$

which Coq finds trivial:

Goal $\forall C g \ a \ b$, indsm $C g \ (a; b) = g \ a \ b$. trivial. Qed.

Exercise 1.4 (p. 56) Assuming as given only the *iterator* for natural numbers

iter :
$$\prod_{C:\mathcal{U}} C \to (C \to C) \to \mathbb{N} \to C$$

with the defining equations

$$iter(C, c_0, c_s, 0) :\equiv c_0,$$

 $iter(C, c_0, c_s, succ(n)) :\equiv c_s(iter(C, c_0, c_s, n)),$

derive a function having the type of the recursor $rec_{\mathbb{N}}$. Show that the defining equations of the recursor hold propositionally for this function, using the induction principle for \mathbb{N} .

Solution Fix some $C: \mathcal{U}$, $c_0: C$, and $c_s: \mathbb{N} \to C \to C$. iter(C) allows for the n-fold application of a single function to a single input from C, whereas $\text{rec}_{\mathbb{N}}$ allows each application to depend on n, as well. Since n just tracks how many applications we've done, we can construct n on the fly, iterating over elements of $\mathbb{N} \times C$. So we will use the iterator

$$iter_{\mathbb{N}\times C}: \mathbb{N}\times C \to (\mathbb{N}\times C \to \mathbb{N}\times C) \to \mathbb{N}\to \mathbb{N}\times C$$

to derive a function

$$\Phi: \prod_{C:\mathcal{U}} C \to (\mathbb{N} \to C \to C) \to \mathbb{N} \to C$$

which has the same type as rec_N .

The first argument of $\mathbb{N} \times \mathbb{C}$ is the starting point, which we'll make $(0, c_0)$. The second input takes an element of $\mathbb{N} \times \mathbb{C}$ as an argument and uses c_s to construct a new element of $\mathbb{N} \times \mathbb{C}$. We can use the first and second elements of the pair as arguments for c_s , and we'll use succ to advance the first argument, representing the number of steps taken. This gives the function

$$\lambda x. (\operatorname{succ}(\operatorname{pr}_1 x), c_s(\operatorname{pr}_1 x, \operatorname{pr}_2 x)) : \mathbb{N} \times C \to \mathbb{N} \times C$$

for the second input to iter_{N×C}. The third input is just n, which we can pass through. Plugging these in gives

$$\operatorname{iter}_{\mathbb{N}\times C}((0,c_0),\lambda x.(\operatorname{succ}(\operatorname{pr}_1 x),c_s(\operatorname{pr}_1 x,\operatorname{pr}_2 x)),n):\mathbb{N}\times C$$

from which we need to extract an element of C. This is easily done with the projection operator, so we have

$$\Phi(C, c_0, c_s, n) :\equiv \operatorname{pr}_2\bigg(\operatorname{iter}_{\mathbb{N} \times C}\big((0, c_0), \lambda x. (\operatorname{succ}(\operatorname{pr}_1 x), c_s(\operatorname{pr}_1 x, \operatorname{pr}_2 x)), n\big)\bigg)$$

which has the same type as rec_N . In Coq we first define the iterator and then our alternative recursor:

```
Fixpoint iter (C: Type) (c0: C) (cs: C \rightarrow C) (n: nat): C:=

match n with

|O \Rightarrow c0|
|S n' \Rightarrow cs(\text{iter } C c 0 c s n')
end.

Definition Phi (C: Type) (c0: C) (cs: nat \rightarrow C \rightarrow C) (n: nat):=

snd (iter (nat \times C)

(O, c0)
(fun x \Rightarrow (S (fst x), cs (fst x) (snd x)))

n).
```

Now to show that the defining equations hold propositionally for Φ . For clarity of notation, define

$$\Phi'(n) = \mathsf{iter}_{\mathbb{N} \times \mathcal{C}} ((0, c_0), \lambda x. (\mathsf{succ}(\mathsf{pr}_1 x), c_s(\mathsf{pr}_1 x, \mathsf{pr}_2 x)), n)$$

Definition Phi' $(n : nat) := iter (nat \times C) (O, c0) (fun x \Rightarrow (S (fst x), cs (fst x) (snd x))) n.$

So the propositional equalities can be written

$$\begin{aligned} \operatorname{pr}_2 \Phi'(0) &=_{C} c_0 \\ \prod_{n:\mathbb{N}} \operatorname{pr}_2 \Phi'(\operatorname{succ}(n)) &=_{C} c_s(n, \operatorname{pr}_2 \Phi'(n)). \end{aligned}$$

The first is straightforward:

$$\operatorname{pr}_2\Phi'(0) \equiv \operatorname{pr}_2\operatorname{iter}_{\mathbb{N}\times C}((0,c_0),\lambda x.(\operatorname{succ}(\operatorname{pr}_1x),c_s(\operatorname{pr}_1x,\operatorname{pr}_2x)),0) \equiv \operatorname{pr}_2(0,c_0) \equiv c_0$$

so $\operatorname{refl}_{c_0} : \operatorname{pr}_2 \Phi'(0) =_C c_0$. To establish the second, we use induction on a strengthened hypothesis involving Φ' . We will establish that for all $n : \mathbb{N}$,

$$P(n) :\equiv \Phi'(\operatorname{succ}(n)) =_C (\operatorname{succ}(n), c_s(n, \operatorname{pr}_2\Phi'(n)))$$

is inhabited. For the base case, we have

$$\begin{split} \Phi'(\mathsf{succ}(0)) &\equiv \mathsf{iter}_{\mathbb{N} \times C} \big((0, c_0), \lambda x. \, (\mathsf{succ}(\mathsf{pr}_1 x), c_s(\mathsf{pr}_1 x, \mathsf{pr}_2 x)), \mathsf{succ}(0) \big) \\ &\equiv \Big(\lambda x. \, (\mathsf{succ}(\mathsf{pr}_1 x), c_s(\mathsf{pr}_1 x, \mathsf{pr}_2 x)) \Big) \mathsf{iter}_{\mathbb{N} \times C} \big((0, c_0), \lambda x. \, (\mathsf{succ}(\mathsf{pr}_1 x), c_s(\mathsf{pr}_1 x, \mathsf{pr}_2 x)), 0 \big) \\ &\equiv \Big(\lambda x. \, \big(\mathsf{succ}(\mathsf{pr}_1 x), c_s(\mathsf{pr}_1 x, \mathsf{pr}_2 x) \big) \Big) \big(0, c_0 \big) \\ &\equiv \big(\mathsf{succ}(0), c_s(0, c_0) \big) \\ &\equiv \big(\mathsf{succ}(0), c_s(0, \mathsf{pr}_2 \Phi'(0)) \big) \end{split}$$

using the derivation of the first propositional equality. So P(0) is inhabited, or $p_0 : P(0)$. For the induction hypothesis, suppose that $n : \mathbb{N}$ and that $p_n : P(n)$. A little massaging gives

$$\begin{split} \Phi'(\mathsf{succ}(\mathsf{succ}(n))) &\equiv \mathsf{iter}_{\mathbb{N} \times C} \big((0, c_0), \lambda x. \, (\mathsf{succ}(\mathsf{pr}_1 x), c_s(\mathsf{pr}_1 x, \mathsf{pr}_2 x)), \mathsf{succ}(\mathsf{succ}(n)) \big) \\ &\equiv \Big(\lambda x. \, (\mathsf{succ}(\mathsf{pr}_1 x), c_s(\mathsf{pr}_1 x, \mathsf{pr}_2 x)) \Big) \Phi'(\mathsf{succ}(n)) \\ &\equiv (\mathsf{succ}(\mathsf{pr}_1 \Phi'(\mathsf{succ}(n))), c_s(\mathsf{pr}_1 \Phi'(\mathsf{succ}(n)), \mathsf{pr}_2 \Phi'(\mathsf{succ}(n)))) \end{split}$$

We now apply based path induction using p_n . Consider the family

$$D: \prod_{z: \mathbb{N} \times C} \left(\Phi'(\mathsf{succ}(n)) = x \right) \to \mathcal{U}$$

given by

$$D(z) :\equiv \Big(\mathsf{succ}(\mathsf{pr}_1 \Phi'(\mathsf{succ}(n))), c_s(\mathsf{pr}_1 \Phi'(\mathsf{succ}(n)), \mathsf{pr}_2 \Phi'(\mathsf{succ}(n))) \Big) = (\mathsf{succ}(\mathsf{pr}_1 z), c_s(\mathsf{pr}_1 z, \mathsf{pr}_2 \Phi'(\mathsf{succ}(n))))$$

Clearly, we have

$$\mathsf{refl}_{\Phi'(\mathsf{succ}(\mathsf{succ}(n)))} : D(\Phi'(\mathsf{succ}(n)), \mathsf{refl}_{\Phi'(\mathsf{succ}(n))})$$

so by based path induction, there is an element

$$\begin{split} f((\mathsf{succ}(n), c_s(n, \mathsf{pr}_2\Phi'(n))), p_n) : \Big(\mathsf{succ}(\mathsf{pr}_1\Phi'(\mathsf{succ}(n))), c_s(\mathsf{pr}_1\Phi'(\mathsf{succ}(n)), \mathsf{pr}_2\Phi'(\mathsf{succ}(n))) \Big) \\ &= (\mathsf{succ}(\mathsf{pr}_1(\mathsf{succ}(n), c_s(n, \mathsf{pr}_2\Phi'(n)))), \\ &c_s(\mathsf{pr}_1(\mathsf{succ}(n), c_s(n, \mathsf{pr}_2\Phi'(n))), \mathsf{pr}_2\Phi'(\mathsf{succ}(n)))) \end{split}$$

Let $p_{n+1} := f((\operatorname{succ}(n), c_s(n, \operatorname{pr}_2\Phi'(n))))$. Our first bit of massaging allows us to replace the left hand side of this by $\Phi'(\operatorname{succ}(\operatorname{succ}(n)))$. As for the right, applying the projections gives

$$p_{n+1}: \Phi'(\mathsf{succ}(\mathsf{succ}(n))) = (\mathsf{succ}(\mathsf{succ}(n)), c_s(\mathsf{succ}(n), \mathsf{pr}_2\Phi'(\mathsf{succ}(n)))) \equiv P(\mathsf{succ}(n))$$

Plugging all this into our induction principle for \mathbb{N} , we can discharge the assumption that $p_n: P(n)$ to obtain

$$q :\equiv \operatorname{ind}_{\mathbb{N}}(P, p_0, \lambda n. \lambda p_n. p_{n+1}, n) : P(n)$$

The propositional equality we're after is a consequence of this, which we again obtain by based path induction. Consider the family

$$E: \prod_{z:\mathbb{N}\times C} (\Phi'(n) = z) \to \mathcal{U}$$

given by

$$E(z, p) :\equiv \operatorname{pr}_2 \Phi'(\operatorname{succ}(n)) = \operatorname{pr}_2 z$$

Again, it's clear that

$$\mathsf{refl}_{\mathsf{pr}_2\Phi'(\mathsf{succ}(n))} : E(\Phi'(\mathsf{succ}(n)), \mathsf{refl}_{\Phi'(\mathsf{succ}(n))}$$

So based path induction gives us a function

$$g((\operatorname{succ}(n), c_s(n, \operatorname{pr}_2\Phi'(n))), q) : \operatorname{pr}_2\Phi'(\operatorname{succ}(n)) = \operatorname{pr}_2(\operatorname{succ}(n), c_s(n, \operatorname{pr}_2\Phi'(n)))$$

and by applying the projection function on the right and discharging the assumption of n, we have shown that

$$\prod_{n:\mathbb{N}} \operatorname{pr}_2 \Phi'(\operatorname{succ}(n)) = c_s(n, \operatorname{pr}_2 \Phi'(n))$$

is inhabited. Next chapter we'll prove that functions are functors, and we won't have to do this based path induction every single time. It'll be great. Repeating it all in Coq, we have

```
Goal snd (Phi' 0) = c0. auto. Qed.
```

```
Goal \forall n, Phi'(S n) = (S n, cs n (snd (Phi' n))).

Proof.

intros. induction n. reflexivity.

assert (Phi' (S (S n))) = (S (fst (Phi' (<math>S n)))),

cs (fst (Phi' (<math>S n)))))))).

reflexivity.

rewrite X. rewrite IHn. reflexivity.

Qed.
```

Exercise 1.5 (p. 56) Show that if we define $A + B :\equiv \sum_{(x:2)} rec_2(\mathcal{U}, A, B, x)$, then we can give a definition of ind A + B for which the definitional equalities stated in §1.7 hold.

Solution Define A + B as stated. We need to define a function of type

$$\operatorname{ind}_{A+B}': \prod_{C: (A+B) \to \mathcal{U}} \left(\prod_{(a:A)} C(\operatorname{inl}(a)) \right) \to \left(\prod_{(b:B)} C(\operatorname{inr}(b)) \right) \to \prod_{(x:A+B)} C(x)$$

which means that we also need to define inl': $A \rightarrow A + B$ and inr' $B \rightarrow A + B$; these are

$$\operatorname{inl}'(a) :\equiv (0_2, a) \qquad \operatorname{inr}'(b) :\equiv (1_2, b)$$

In Coq, we can use sigT to define coprd as a Σ -type:

Definition coprd := $\{x : Bool \& if x then B else A\}$.

Definition myinl $(a:A) := existT (fun x:Bool \Rightarrow if x then B else A)$ false a.

Definition myinr $(b:B) := \text{existT} (\text{fun } x : \text{Bool} \Rightarrow \text{if } x \text{ then } B \text{ else } A) \text{ true } b.$

Suppose that $C: A + B \to \mathcal{U}$, $g_0: \prod_{(a:A)} C(\mathsf{inl'}(a))$, $g_1: \prod_{(b:B)} C(\mathsf{inr'}(b))$, and x: A + B; we're looking to define

$$\operatorname{ind}_{A+B}'(C, g_0, g_1, x)$$

We will use $\operatorname{ind}_{\Sigma_{(x:2)}\operatorname{rec}_2(\mathcal{U},A,B,x)}$, and for notational convenience will write $\Phi :\equiv \Sigma_{(x:2)}\operatorname{rec}_2(\mathcal{U},A,B,x)$. $\operatorname{ind}_{\Phi}$ has signature

$$\mathsf{ind}_{\Phi}: \prod_{C: \Phi \to \mathcal{U}} \Big(\prod_{(x: \mathbf{2})} \prod_{(y: \mathsf{rec}_{\mathbf{2}}(\mathcal{U}, A, B, x))} C((x, y)) \Big) \to \prod_{(p: \Phi)} C(p)$$

So

$$\operatorname{ind}_{\Phi}(C): \left(\prod_{(x:\mathbf{2})}\prod_{(y:\operatorname{rec}_{\mathbf{2}}(\mathcal{U},A,B,x))}C((x,y))\right) \to \prod_{(p:\Phi)}C(p)$$

To obtain something of type $\prod_{(x:2)} \prod_{(y:\text{rec}_2(\mathcal{U},A,B,x))} C((x,y))$ we'll have to use ind₂. In particular, for $B(x) := \prod_{(y:\text{rec}_2(\mathcal{U},A,B,x))} C((x,y))$ we have

$$\operatorname{ind}_{\mathbf{2}}(B): B(0_{\mathbf{2}}) \to B(1_{\mathbf{2}}) \to \prod_{x:\mathbf{2}} B(x)$$

along with

$$g_0: \prod_{a:A} C(\mathsf{inl'}(a)) \equiv \prod_{a: \mathsf{rec}_2(\mathcal{U}, A, B, 0_2)} C((0_2, a)) \equiv B(0_2)$$

and similarly for g_1 . So

$$\mathsf{ind_2}(B,g_0,g_1): \prod_{(x:\mathbf{2})} \prod_{(y:\mathsf{rec}_2(\mathcal{U},A,B,x))} C((x,y))$$

which is just what we needed for $\mathsf{ind}_{\Phi}.$ So we define

$$\operatorname{ind}_{A+B}'(C,g_0,g_1,x) :\equiv \operatorname{ind}_{\sum_{(x:2)}\operatorname{rec}_2(\mathcal{U},A,B,x)} \left(C,\operatorname{ind}_2\left(\prod_{y:\operatorname{rec}_2(\mathcal{U},A,B,x)}C((x,y)),g_0,g_1\right),x\right)$$

and, in Coq, we use sigT_rect, which is the built-in $\operatorname{ind}_{\sum_{(x:A)} B(x)}$:

Definition indcoprd ($C: coprd \rightarrow Type$) ($g0: \forall a: A, C \text{ (myinl } a$)) ($g1: \forall b: B, C \text{ (myinr } b$)) (x: coprd) :=

Now we must show that the definitional equalities

$$\operatorname{ind}'_{A+B}(C, g_0, g_1, \operatorname{inl}'(a)) \equiv g_0(a)$$

 $\operatorname{ind}'_{A+B}(C, g_0, g_1, \operatorname{inr}'(b)) \equiv g_1(b)$

hold. For the first, we have

$$\begin{split} \operatorname{ind}_{A+B}'(C,g_0,g_1,\operatorname{inl}'(a)) &\equiv \operatorname{ind}_{A+B}'(C,g_0,g_1,(0_2,a)) \\ &\equiv \operatorname{ind}_{\sum_{(x:2)}\operatorname{rec}_2(\mathcal{U},A,B,x)} \left(C,\operatorname{ind}_2 \left(\prod_{y:\operatorname{rec}_2(\mathcal{U},A,B,x)} C((x,y)),g_0,g_1 \right),(0_2,a) \right) \\ &\equiv \operatorname{ind}_2 \left(\prod_{y:\operatorname{rec}_2(\mathcal{U},A,B,x)} C((x,y)),g_0,g_1,0_2 \right) (a) \\ &\equiv g_0(a) \end{split}$$

and for the second,

$$\begin{split} \operatorname{ind}_{A+B}'(C,g_0,g_1,\operatorname{inr}'(b)) &\equiv \operatorname{ind}_{A+B}'(C,g_0,g_1,(1_2,b)) \\ &\equiv \operatorname{ind}_{\sum_{(x:2)}\operatorname{rec}_2(\mathcal{U},A,B,x)} \left(C,\operatorname{ind}_2 \left(\prod_{y:\operatorname{rec}_2(\mathcal{U},A,B,x)} C((x,y)),g_0,g_1 \right),(1_2,b) \right) \\ &\equiv \operatorname{ind}_2 \left(\prod_{y:\operatorname{rec}_2(\mathcal{U},A,B,x)} C((x,y)),g_0,g_1,1_2 \right) (b) \\ &\equiv g_1(b) \end{split}$$

Trivial calculations, as Coq can attest:

Goal \forall C g0 g1 a, indcoprd C g0 g1 (myinl a) = g0 a. trivial. Qed. Goal \forall C g0 g1 b, indcoprd C g0 g1 (myinr b) = g1 b. trivial. Qed.

Exercise 1.6 (p. 56) Show that if we define $A \times B := \prod_{(x:2)} rec_2(\mathcal{U}, A, B, x)$, then we can give a definition of ind $A \times B$ for which the definitional equalities stated in §1.5 hold propositionally (i.e. using equality types).

Solution Define

$$A\times B:\equiv \prod_{x:\mathbf{2}}\,\mathrm{rec}_{\mathbf{2}}(\mathcal{U},A,B,x)$$

Supposing that a: A and b: B, we have an element $(a, b): A \times B$ given by

$$(a,b) :\equiv \operatorname{ind}_2(\operatorname{rec}_2(\mathcal{U},A,B),a,b)$$

Defining this type and constructor in Coq, we have

Definition prd := $\forall x : Bool, if x then B else A$.

Definition mypair (a:A) $(b:B) := Bool_rect (fun x:Bool <math>\Rightarrow$ if x then B else A) b a.

An induction principle for $A \times B$ will, given a family $C: A \times B \to \mathcal{U}$ and a function

$$g: \prod_{(x:A)} \prod_{(y:B)} C((x,y)),$$

give a function $f: \prod_{(x:A\times B)} C(x)$ defined by

$$f((x,y)) :\equiv g(x)(y)$$

So suppose that we have such a C and g. Writing things out in terms of the definitions, we have

$$C: \left(\prod_{x:2} \operatorname{rec}_{2}(\mathcal{U}, A, B, x)\right) \to \mathcal{U}$$

$$g: \prod_{(x:A)} \prod_{(y:B)} C(\operatorname{ind}_{2}(\operatorname{rec}_{2}(\mathcal{U}, A, B), x, y))$$

We can define projections by

$$\operatorname{pr}_1 p :\equiv p(0_2)$$
 $\operatorname{pr}_2 p :\equiv p(1_2)$

Since p is an element of a dependent type, we have

$$p(0_2) : rec_2(\mathcal{U}, A, B, 0_2) \equiv A$$

$$p(1_2) : rec_2(\mathcal{U}, A, B, 1_2) \equiv B$$

Definition myfst (p : prd) := p false.

Definition mysnd (p : prd) := p true.

Then we have

$$g(\mathsf{pr}_1p)(\mathsf{pr}_2p): C(\mathsf{ind}_2(\mathsf{rec}_2(\mathcal{U}, A, B), (\mathsf{pr}_1p), (\mathsf{pr}_2p))) \equiv C((p(0_2), p(1_2)))$$

So we have defined a function

$$f': \prod_{p:A \times B} C((p(0_2), p(1_2)))$$

But we need one of the type

$$f: \prod_{p:A\times B} C(p)$$

To solve this problem, we need to appeal to function extensionality from §2.9. This implies that there is a function

$$\mathsf{funext}: \left(\prod_{x : 2} \left((\mathsf{pr}_1 p, \mathsf{pr}_2 p)(x) =_{\mathsf{rec}_2(\mathcal{U}, A, B, x)} p(x) \right) \right) \to \left((\mathsf{pr}_1 p, \mathsf{pr}_2 p) =_{A \times B} p \right)$$

We just need to show that the antecedent is inhabited, which we can do with ind2. So consider the family

$$E := \lambda(x:2). ((p(0_2), p(1_2))(x) =_{\mathsf{rec}_2(\mathcal{U}, A, B, x)} p(x)))$$

= $\lambda(x:2). (\mathsf{ind}_2(\mathsf{rec}_2(\mathcal{U}, A, B), p(0_2), p(1_2), x) =_{\mathsf{rec}_2(\mathcal{U}, A, B, x)} p(x))$

We have

$$\begin{split} E(0_2) & \equiv (\mathsf{ind_2}(\mathsf{rec_2}(\mathcal{U}, A, B), p(0_2), p(1_2), 0_2) =_{\mathsf{rec_2}(\mathcal{U}, A, B, 0_2)} p(0_2)) \\ & \equiv (p(0_2) =_{\mathsf{rec_2}(\mathcal{U}, A, B, 0_2)} p(0_2)) \end{split}$$

Thus $\operatorname{refl}_{p(0_2)}: E(0_2)$. The same argument goes through to show that $\operatorname{refl}_{p(1_2)}: E(1_2)$. This means that

$$h :\equiv \operatorname{ind}_{\mathbf{2}}(E,\operatorname{refl}_{p(0_{\mathbf{2}})},\operatorname{refl}_{p(1_{\mathbf{2}})}) : \prod_{x:\mathbf{2}} \left((\operatorname{pr}_{1}p,\operatorname{pr}_{2}p)(x) =_{\operatorname{rec}_{\mathbf{2}}(\mathcal{U},A,B,x)} p(x) \right)$$

and thus

funext(h):
$$(p(0_2), p(1_2)) =_{A \times B} p$$

This allows us to define the uniqueness principle for products:

$$\mathsf{uppt} :\equiv \lambda p.\,\mathsf{funext}(h) : \prod_{p:A\times B} (\mathsf{pr}_1 p,\mathsf{pr}_2 p) =_{A\times B} p$$

where funext implicitly depends on p in the way we've been assuming. Now we can define $ind_{A\times B}$ as

$$\operatorname{ind}_{A\times B}(C, g, p) :\equiv (\operatorname{uppt} p)_*(g(\operatorname{pr}_1 p)(\operatorname{pr}_2 p))$$

In Coq we can repeat this construction using Funext.

```
Definition myuppt '{Funext} (p : prd) : mypair (myfst p) (mysnd p) = p. apply path_forall.
```

unfold pointwise_paths; apply Bool_rect; reflexivity.

Defined.

```
Definition indprd' (C: prd \rightarrow Type) (g: \forall (x:A) (y:B), C (mypair x y)) (z: prd) := (myuppt z) # (g (myfst z) (mysnd z)).
```

Now, we must show that the definitional equality holds propositionally. That is, we must show that the type

$$\operatorname{ind}_{A\times B}(C, g, (a, b)) =_{C((a,b))} g(a)(b)$$

is inhabited. Unfolding the left gives

$$\begin{aligned} \operatorname{ind}_{A\times B}(C,g,(a,b)) &\equiv (\operatorname{uppt}(a,b))_*(g(\operatorname{pr}_1(a,b))(\operatorname{pr}_2(a,b))) \\ &\equiv \operatorname{ind}_{=_{C((a,b))}}(D,d,(a,b),(a,b),\operatorname{uppt}(a,b))(g(a)(b)) \end{aligned}$$

where $D: \prod_{(x,y:A\times B)}(x=y) \to \mathcal{U}$ is given by $D(x,y,p) :\equiv C(x) \to C(y)$ and

$$d :\equiv \lambda x. \operatorname{id}_{C(x)} : \prod_{x: A \times B} D(x, x, \operatorname{refl}_x)$$

Now,

$$uppt(a, b) \equiv funext(h) : (a, b) =_{A \times B} (a, b)$$

and, in particular, we have $h: x \mapsto \mathsf{refl}_{(a,b)(x)}$, so $\mathsf{funext}(h) = \mathsf{refl}_{(a,b)}$. Plugging this into $\mathsf{ind}_{=_{C((a,b))}}$ and applying its defining equality gives

$$\begin{aligned} \operatorname{ind}_{A \times B}(C, g, (a, b)) &= \operatorname{ind}_{=_{C((a, b))}}(D, d, (a, b), (a, b), \operatorname{refl}_{(a, b)})(g(a)(b)) \\ &= d((a, b))(g(a)(b)) \\ &= \operatorname{id}_{C((a, b))}(g(a)(b)) \\ &= g(a)(b) \end{aligned}$$

Verifying that the definitional equality holds propositionally. The reason we can only get propositional equality, not judgemental equality, is that $\operatorname{funext}(h) = \operatorname{refl}_{(a,b)}$ is just a propositional equality. Understanding this better requires stuff from next chapter.

Exercise 1.7 (p. 56) Give an alternative derivation of $\operatorname{ind}_{=_A}'$ from $\operatorname{ind}_{=_A}$ which avoids the use of universes.

Solution To avoid universes, we follow the plan from p. 53 of the text: show that $ind_{=A}$ entails Lemmas 2.3.1 and 3.11.8, and that these two principles imply $ind'_{=A}$ directly.

First we have Lemma 2.3.1, which states that for any type family P over A and $p: x =_A y$, there is a function $p_*: P(x) \to P(y)$. The proof for this can be taken directly from the text. Consider the type family

$$D: \prod_{x,y:A} (x=y) \to \mathcal{U}, \qquad D(x,y,p) :\equiv P(x) \to P(y)$$

which exists, since $P(x): \mathcal{U}$ for all x: A and these can be used to form function types. We also have

$$d :\equiv \lambda x. \operatorname{id}_{P(x)} : \prod_{x:A} \, D(x,x,\operatorname{refl}_x) \equiv \prod_{x:A} \, P(x) \to P(x)$$

We now apply $ind_{=_A}$ to obtain

$$p_* :\equiv \operatorname{ind}_{=_A}(D, d, x, y, p) : P(x) \to P(y)$$

establishing the Lemma.

Next we have Lemma 3.11.8, which states that for any A and any a:A, the type $\sum_{(x:A)}(a=x)$ is contractible; that is, there is some $w:\sum_{(x:A)}(a=x)$ such that w=w' for all $w':\sum_{(x:A)}(a=x)$. Consider the point $(a, \mathsf{refl}_a):\sum_{(a:A)}(a=x)$ and the family $C:\prod_{(x,y:A)}(x=y)\to \mathcal{U}$ given by

$$C(x,y,p) :\equiv ((x,\mathsf{refl}_x) =_{\sum_{(z:A)}(x=z)} (y,p))$$

Take also the function

$$\mathsf{refl}_{(x,\mathsf{refl}_x)}: \prod_{x:A} \left((x,\mathsf{refl}_x) =_{\sum_{(x:A)} (x=z)} (x,\mathsf{refl}_x) \right)$$

By path induction, then, we have a function

$$g: \prod_{(x,y:A)} \prod_{(p:x=_Ay)} \left((x,\mathsf{refl}_x) =_{\sum_{(z:A)}(x=z)} (y,p) \right)$$

such that $g(x, x, refl_x) :\equiv refl_{(x, refl_x)}$. This allows us to construct

$$\lambda p.\, g(a,\mathsf{pr}_1p,\mathsf{pr}_2p): \prod_{p: \sum_{(x:A)}(a=x)} \left(a,\mathsf{refl}_a\right) =_{\sum_{(z:A)}(a=z)} \left(\mathsf{pr}_1p,\mathsf{pr}_2p\right)$$

And upst lets us transport this, using the first lemma, to the statement that $\sum_{(x:A)} (a = x)$ is contractible:

$$\mathsf{contr} :\equiv \lambda p. \left((\mathsf{upst} \, p)_* g(a, \mathsf{pr}_1 p, \mathsf{pr}_2 p) \right) : \prod_{p: \sum_{(x:A)} (a=x)} \left(a, \mathsf{refl}_a \right) =_{\sum_{(z:A)} (a=z)} p$$

With these two lemmas we can derive based path induction. Fix some a:A and suppose we have a family

$$C: \prod_{x:A} (a=x) \to \mathcal{U}$$

and an element

$$c: C(a, refl_a).$$

Suppose we have x:A and p:a=x. Then we have $(x,p):\sum_{(x:A)}(a=x)$, and because this type is contractible, an element $\mathsf{contr}_{(x,p)}:(a,\mathsf{refl}_a)=(x,p)$. So for any type family P over $\sum_{(x:A)}(a=x)$, we have the function $(\mathsf{contr}_{(x,p)})_*:P((a,\mathsf{refl}_a))\to P((x,p))$. In particular, we have the type family

$$\tilde{C} :\equiv \lambda p. C(\operatorname{pr}_1 p, \operatorname{pr}_2 p)$$

so

$$(\mathsf{contr}_{(x,p)})_* : \tilde{C}((a,\mathsf{refl}_a)) \to \tilde{C}((x,p)) \equiv C(a,\mathsf{refl}_a) \to C(x,p).$$

thus

$$(\operatorname{contr}_{(x,p)})(c):C(x,p)$$

or, abstracting out the x and p,

$$f :\equiv \lambda x.\,\lambda p.\,(\mathsf{contr}_{(x,p)})_*(c) : \prod_{(x:A)} \prod_{(p:x=y)} C(x,p).$$

We also have

$$\begin{split} f(a,\mathsf{refl}_a) &\equiv (\mathsf{contr}_{(a,\mathsf{refl}_a)})_*(c) \\ &\equiv ((\mathsf{upst}\,(a,\mathsf{refl}_a))_*g(a,a,\mathsf{refl}_a))_*(c) \\ &\equiv ((\mathsf{upst}\,(a,\mathsf{refl}_a))_*\mathsf{refl}_{(a,\mathsf{refl}_a)})_*(c) \\ &\equiv (\mathsf{ind}_{\equiv}(\lambda x.\,((a,\mathsf{refl}_a) = x),\lambda x.\,\mathsf{id}_{(a,\mathsf{refl}_a) = x},(a,\mathsf{refl}_a),(a,\mathsf{refl}_a),\mathsf{refl}_{(a,\mathsf{refl}_a)})\mathsf{refl}_{(a,\mathsf{refl}_a)})_*(c) \\ &\equiv (\mathsf{id}_{(a,\mathsf{refl}_a) = (a,\mathsf{refl}_a)}\mathsf{refl}_{(a,\mathsf{refl}_a)})_*(c) \\ &\equiv (\mathsf{refl}_{(a,\mathsf{refl}_a)})_*(c) \\ &\equiv \mathsf{ind}_{\equiv}(\tilde{C},\lambda x.\,\mathsf{id}_{\tilde{C}(x)},(a,\mathsf{refl}_a),(a,\mathsf{refl}_a),\mathsf{refl}_{(a,\mathsf{refl}_a)})(c) \\ &\equiv \mathsf{id}_{\tilde{C}((a,\mathsf{refl}_a))}(c) \\ &\equiv \mathsf{id}_{C(a,\mathsf{refl}_a)}(c) \end{split}$$

So we have derived based path induction.

Exercise 1.8 (p. 56) Define multiplication and exponentiation using $rec_{\mathbb{N}}$. Verify that $(\mathbb{N}, +, 0, \times, 1)$ is a semiring using only $ind_{\mathbb{N}}$.

Solution For multiplication, we need to construct a function mult : $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$. Defined with pattern-matching, we would have

$$\mathsf{mult}(0,m) :\equiv 0$$
 $\mathsf{mult}(\mathsf{succ}(n),m) :\equiv m + \mathsf{mult}(n,m)$

so in terms of rec_N we have

$$\operatorname{mult} : \equiv \operatorname{rec}_{\mathbb{N}}(\mathbb{N} \to \mathbb{N}, \lambda n. 0, \lambda n. \lambda g. \lambda m. \operatorname{add}(m, g(m)))$$

For exponentiation, we have the function $\exp : \mathbb{N} \to \mathbb{N}$, with the intention that $\exp(e,b) = b^e$. In terms of pattern matching,

$$\begin{split} \exp(0,b) &:\equiv 1 \\ \exp(\operatorname{succ}(e),b) &:\equiv \operatorname{mult}(b,\exp(e,b)) \end{split}$$

or, in terms of $rec_{\mathbb{N}}$,

$$\exp : \equiv \operatorname{rec}_{\mathbb{N}}(\mathbb{N} \to \mathbb{N}, \lambda n. 1, \lambda n. \lambda g. \lambda m. \operatorname{mult}(m, g(m)))$$

In Coq, we can define these by

```
Fixpoint mult (n \ m : nat) :=  match n with 0 \Rightarrow 0 S \ n' \Rightarrow m + (mult \ n' \ m) end.

Notation "x * y" := (mult \ x \ y) : nat\_scope.

Fixpoint myexp (e \ b : nat) :=  match e \ with  0 \Rightarrow S \ 0 S \ e' \Rightarrow mult \ b \ (myexp \ e' \ b) end.
```

To verify that $(\mathbb{N}, +, 0, \times, 1)$ is a semiring, we need stuff from Chapter 2. In particular, we need the following properties of the identity. First, for all types A and x, y : A, we have the inversion mapping, with type

$$p \mapsto p^{-1} : (x = y) \to (y = x)$$

and such that $\operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$ for each x : A. Second, for x, y, z : A we have concatenation:

$$p \mapsto q \mapsto p \cdot q : (x = y) \to (y = z) \to (x = z)$$

such that $\operatorname{refl}_x \cdot \operatorname{refl}_x \equiv \operatorname{refl}_x$ for any x : A. To show that $(\mathbb{N}, +, 0, \times, 1)$ is a semiring, we need to verify that for all $n, m, k : \mathbb{N}$,

- (i) $\prod_{(n:\mathbb{N})} 0 + n = n = n + 0$
- (ii) $\prod_{(n:\mathbb{N})} 0 \times n = 0 = n \times 0$.
- (iii) $\prod_{(n:\mathbb{N})} 1 \times n = n = n \times 1$
- (iv) $\prod_{(n,m:\mathbb{N})} n + m = m + n$
- (v) $\prod_{(n,m,k:\mathbb{N})} (n+m) + k = n + (m+k)$
- (vi) $\prod_{(n,m,k:\mathbb{N})} (n \times m) \times k = n \times (m \times k)$
- (vii) $\prod_{(n,m,k:\mathbb{N})} n \times (m+k) = (n \times m) + (n \times k)$

(viii)
$$\prod_{(n,m,k:\mathbb{N})} (n+m) \times k = (n \times k) + (m \times k)$$

For (i)–(iii), we show each equality separately and then use concatenation to show the implicit third equality. We dream of next chapter, where we obtain the function ap.

(i) For all $n : \mathbb{N}$, we have

$$0+n \equiv \mathsf{add}(0,n) \equiv n$$

so refl : $\prod_{(n:\mathbb{N})} 0 + n = n$. For the other equality we'll need induction on n. For the base case, we have

$$0+0 \equiv \mathsf{add}(0,0) \equiv 0.$$

so $refl_0 : 0 = 0 + 0$. Fix n and suppose for the induction step that $p_n : n = n + 0$. Then we have

$$succ(n) + 0 \equiv add(succ(n), 0) \equiv succ(add(n, 0))$$

so we turn again to based path induction, with the family

$$C: \prod_{m:\mathbb{N}} (n=m) \to \mathcal{U}$$
 $C(m,p) :\equiv (\operatorname{succ}(n) = \operatorname{succ}(m))$

and the element $\operatorname{refl}_{\operatorname{\mathsf{succ}}(n)}:C(n,\operatorname{\mathsf{refl}}_n).$ So we have

$$\operatorname{ind}'_{=}(n, C, \operatorname{refl}_{\operatorname{succ}(n)}, \operatorname{refl}_n, \operatorname{add}(n, 0), p_n) : \operatorname{succ}(n) = \operatorname{succ}(\operatorname{add}(n, 0))$$

and discharging our induction step gives

$$q :\equiv \mathsf{ind}_{\mathbb{N}}(\lambda n.\,(n=n+0),\mathsf{refl}_0,\lambda n.\,\mathsf{ind}'_{=}(n,\mathsf{C},\mathsf{refl}_{\mathsf{succ}(n)},\mathsf{refl}_n,\mathsf{add}(n,0))) : \prod_{n:\mathbb{N}} (n=n+0)$$

For the final equality, we use concatenation. From $refl_n : 0 + n = n$ and $q_n : n = n + 0$, we have $refl_n \cdot q_n : 0 + n = n + 0$.

(ii) For all $n : \mathbb{N}$,

$$0 \times n \equiv \mathsf{mult}(0, n) \equiv 0$$

so λn . refl₀ : $\prod_{(n:\mathbb{N})} 0 \times n = 0$. For the other direction, induction on n. The base case is

$$0\times 0=\mathsf{mult}(0,0)=0$$

so $\text{refl}_0: 0 = 0 \times 0$. Fixing *n* and supposing for the induction step that $p_n: 0 = n \times 0$, we have

$$\mathsf{mult}(\mathsf{succ}(n),0) \equiv 0 + \mathsf{mult}(n,0) \equiv \mathsf{add}(0,\mathsf{mult}(n,0)) \equiv \mathsf{mult}(n,0)$$

so $p_n : 0 = \operatorname{succ}(n) \times 0$. Thus

$$q :\equiv \operatorname{ind}_{\mathbb{N}}(\lambda n. (0 = n \times 0), \operatorname{refl}_0, \lambda n. \operatorname{id}_{n=n \times 0}) : \prod_{n : \mathbb{N}} (n = n \times 0).$$

And again, refl₀ • $q_n : 0 \times n = n \times 0$ gives us the last equality.

(iii) For all $n : \mathbb{N}$,

$$1 \times n \equiv \operatorname{succ}(0) \times n \equiv n + (0 \times n) \equiv n + 0$$

so, recalling q_n from (i), we have $\operatorname{refl}_{1\times n} \cdot q_n^{-1} : 1 \times n = n$. For the other direction, we proceed by induction on n. For the base case we have

$$0 \times 1 \equiv \mathsf{mult}(0,1) \equiv 0$$

so refl₀ : $0 = 0 \times 1$. Fixing *n* and supposing for induction that $p_n : n = n \times 1$, we have

$$\mathsf{mult}(\mathsf{succ}(n),1) \equiv 1 + \mathsf{mult}(n,1) \equiv \mathsf{succ}(0) + \mathsf{mult}(n,1) \equiv \mathsf{succ}(n \times 1)$$

So we turn to based path induction again. Let $C(m) = \operatorname{succ}(n) = \operatorname{succ}(m)$; then

$$\operatorname{ind}'_{=}(n, C, \operatorname{refl}_{\operatorname{succ}(n)}, n \times 1, p_n) : \operatorname{succ}(n) = \operatorname{succ}(n \times 1)$$

and

$$r :\equiv \mathsf{ind}_{\mathbb{N}}(\lambda n.\,(n=n\times 1),\mathsf{refl}_0,\lambda n.\,\mathsf{ind}'_=(n,\mathsf{C},\mathsf{refl}_{\mathsf{succ}(n)},n\times 1)): \prod_{n:\mathbb{N}}(n=n\times 1)$$

For the third equality, finally, $\operatorname{refl}_{1\times n} \cdot q_n^{-1} \cdot r_n : 1 \times n = n \times 1$.

(iv) We first prove an auxiliary lemma by induction: $\prod_{(n,m:\mathbb{N})} \operatorname{succ}(n+m) = n + \operatorname{succ}(m)$. For the base case, we have $\operatorname{succ}(0+m) \equiv \operatorname{succ}(m) \equiv 0 + \operatorname{succ}(m)$, so $\operatorname{refl}_{\operatorname{succ}(m)} : \operatorname{succ}(0+m) = 0 + \operatorname{succ}(m)$. Fix $n:\mathbb{N}$, and suppose for induction that $p_n: \operatorname{succ}(n+m) = n + \operatorname{succ}(m)$. Then

$$succ(succ(n) + m) \equiv succ(succ(n + m))$$

and based path induction on $C(m) :\equiv \operatorname{succ}(\operatorname{succ}(n+m)) = \operatorname{succ}(m)$ gives

$$\operatorname{ind}'_{=}(\operatorname{succ}(n+m),C,\operatorname{refl}_{\operatorname{succ}(\operatorname{succ}(n+m))},n+\operatorname{succ}(m),p_n):\operatorname{succ}(\operatorname{succ}(n+m))=\operatorname{succ}(n+\operatorname{succ}(m))$$
 so letting $D(n):\equiv\prod_{(m:\mathbb{N})}(\operatorname{succ}(n+m)=n+\operatorname{succ}(m)),$

$$r :\equiv \mathsf{ind}_{\mathbb{N}}(D, \mathsf{refl}_{\mathsf{succ}(m)}, \lambda n. \, \mathsf{ind}'_{=}(\mathsf{succ}(n+m), C, \mathsf{refl}_{\mathsf{succ}(\mathsf{succ}(n+m))}, n + \mathsf{succ}(m))) : \prod_{n : \mathbb{N}} D(n)$$

We now proceed by induction on n to show (iv). For the base case, recalling q_n from (i), we have $refl_m \cdot q_m : 0 + m = m + 0$. Fixing n and supposing for induction that $p_n : n + m = m + n$, we have

$$succ(n) + m \equiv succ(n + m)$$

We then apply based path induction on $E(k) :\equiv \operatorname{succ}(n+m) = \operatorname{succ}(k)$ to obtain

$$\operatorname{ind}'_{=}(n+m, E, \operatorname{refl}_{\operatorname{succ}(n+m)}, m+n, p_n) : \operatorname{succ}(n) + m = \operatorname{succ}(m+n)$$

$$\operatorname{ind}'_{=}(n+m, E, \operatorname{refl}_{\operatorname{succ}(n+m)}, m+n, p_n) \cdot r_{m,n} : \operatorname{succ}(n) + m = m + \operatorname{succ}(n)$$

and, finally, for the family F(n) = n + m = m + n,

$$\mathsf{ind}_{\mathbb{N}}(F,\mathsf{refl}_m \bullet q_m, \lambda n. \, \lambda p. \, (\mathsf{ind}'_=(n+m,E,\mathsf{refl}_{\mathsf{succ}(n+m)}, m+n,p) \bullet r_{m,n})) : \prod_{n:\mathbb{M}} \, n+m = m+m$$

Abstracting out the *m* gives us (iv).

(v) Fix *m* and *k*. We proceed by induction on *n*. For the base case,

$$(0+m) + k \equiv m + k \equiv 0 + (m+k)$$

By the definition of add. Fix n, and suppose that $p_n: (n+m) + k = n + (m+k)$. We have

$$(\operatorname{succ}(n) + m) + k \equiv \operatorname{succ}(n + m) + k \equiv \operatorname{succ}((n + m) + k)$$

So based path induction on $C(\ell) = \operatorname{succ}((n+m) + k) = \operatorname{succ}(\ell)$ gives

$$\operatorname{ind}'_{=}((n+m)+k,C,\operatorname{refl}_{\operatorname{succ}((n+m)+k)},n+(m+k),p_n):\operatorname{succ}((n+m)+k)=\operatorname{succ}(n+(m+k))$$

which is equivalently the type $(\operatorname{succ}(n) + m) + k = \operatorname{succ}(n) + (m + k)$. So induction over D(n) = (n + m) + k = n + (m + k) gives

$$\mathsf{ind}_{\mathbb{N}}(D,\mathsf{refl}_{(0+m)+k},\lambda n.\,\lambda p.\,\mathsf{ind}'_{=}((n+m)+k,C,\mathsf{refl}_{\mathsf{succ}((n+m)+k)},n+(m+k),p)):\prod_{n:\mathbb{N}}D(n)$$

and abstracting out the m and k gives us (v).

(vi) Fix m and k. First an auxiliary lemma; we show that $(n + m) \times k = (n \times k) + (m \times k)$ by induction on n. For the base case,

$$(0+m) \times k \equiv m \times k \equiv 0 + (m \times k) \equiv (0 \times k) + (m \times k)$$

Now fix *n* and suppose that $p_n : (n + m) \times k = n \times k + m \times k$.

$$(\operatorname{succ}(n) + m) \times k \equiv \operatorname{succ}(n + m) \times k \equiv k + (n + m) \times k$$

and

$$succ(n) \times k + m \times k \equiv (k + n \times k) + m \times k$$

Using based path induction over $C(\ell) :\equiv k + (n+m) \times k = k + \ell$, we get

$$\operatorname{ind}'_{=}((n+m)\times k, C, \operatorname{refl}_{k+(n+m)\times k}, n\times k+m\times k, p_n): k+(n+m)\times k=k+(n\times k+m\times k)$$

We established in (v) that addition is associative, so we have some

$$r_{k,n\times k,m\times k}^{-1}: k + (n\times k + m\times k) = (k+n\times k) + m\times k$$

and concatenating this with the result of the based path induction gives something of type

$$k + (n + m) \times k = (k + n \times k) + m \times k$$

Our two strings of judgemental equalities mean that this is the same as the type

$$(\operatorname{succ}(n) + m) \times k = \operatorname{succ}(n) \times k + m \times k.$$

So we can now perform the induction over $D(\ell) = (n + m) \times k = n \times k + m \times k$ to obtain

$$\mathsf{ind}_{\mathbb{N}}(D,\mathsf{refl}_{(0+m)\times k},\lambda n.\,\lambda p.\,(\mathsf{ind}'_{=}((n+m)\times k,\mathsf{C},\mathsf{refl}_{k+(n+m)\times k},n\times k+m\times k,p_n)\bullet r_{k,n\times k,m\times k}^{-1}))$$

which is of type

$$\prod_{n:\mathbb{N}} (n+m) \times k = n \times k + m \times k$$

abstracting out the *m* and *k* give the final result (i.e., that multiplication on the right distributes over addition).

Now, for (vi). As always, it's induction on n. For the base case

$$(0 \times m) \times k \equiv 0 \times k \equiv 0 \equiv 0 \times (m \times k)$$

Now fix *n* and assume that $p_n : (n \times m) \times k = n \times (m \times k)$. We have

$$(\operatorname{succ}(n) \times m) \times k \equiv (m + n \times m) \times k$$

and

$$succ(n) \times (m \times k) \equiv m \times k + n \times (m \times k)$$

From our lemma, then, there is a function

$$q: \prod_{n:\mathbb{N}} (\operatorname{succ}(n) \times m) \times k = m \times k + (n \times m) \times k$$

we use based path induction over $E(\ell) :\equiv m \times k + \ell$ to obtain

$$\operatorname{ind}'_{=}((n \times m) \times k, E, \operatorname{refl}_{m \times k + (n \times m) \times k}, n \times (m \times k), p_n) : m \times k + (n \times m) \times k = m \times k + n \times (m \times k)$$

which, concatenated with q_n and altered by the second judgemental equality, gives something of type

$$(\operatorname{succ}(n) \times m) \times k = \operatorname{succ}(n) \times (m \times k)$$

So our induction principle over $F(\ell) :\equiv (n \times m) \times k = n \times (m \times k)$ gives

$$\operatorname{ind}_{\mathbb{N}}(F,\operatorname{refl}_{(0\times m)\times k},\lambda n.\lambda p.(q_n \cdot \operatorname{ind}'_{=}((n\times m)\times k,E,\operatorname{refl}_{m\times k+(n\times m)\times k},n\times (m\times k),p_n)))$$

of type

$$\prod_{n:\mathbb{N}} (n \times m) \times k = n \times (m \times k)$$

and abstracting out the m and k gives (vi).

(vii) Fix m and k. We proceed by induction on n. For the base case we have

$$0 \times (m+k) \equiv 0 \equiv 0 + 0 \equiv (0 \times m) + (0 \times k)$$

So fix $n : \mathbb{N}$ and suppose that $p_n : n \times (m + k) = (n \times m) + (n \times k)$. We have

$$succ(n) \times (m+k) \equiv (m+k) + n \times (m+k)$$

and

$$(\operatorname{succ}(n) \times m) + (\operatorname{succ}(n) \times k) \equiv (m + n \times m) + (k + n \times k)$$

Now by (iv) and (v) we have the following two functions

$$q:\prod_{n,m:\mathbb{N}}n+m=m+n$$
 $r:\prod_{n,m,k:\mathbb{N}}(n+m)+k=n+(m+k)$

A long chain of based path inductions allows us to construct an object of type

$$(\operatorname{succ}(n) \times m) + (\operatorname{succ}(n) \times k) = (m+k) + (n \times m + n \times k)$$

In the interest of masochism, I'll do them explicitly. We start with

$$r_1 :\equiv r_{m,n \times m,k+n \times k} : (m+n \times m) + (k+n \times k) = m + (n \times m + (k+n \times k))$$

Based path induction over $C_1(\ell) :\equiv m + (n \times m + (k + n \times k)) = m + \ell$ and using

$$r_2 :\equiv r_{n \times m, k, n \times k} : n \times m + (k + n \times k) = (n \times m + k) + n \times k$$

gives

$$\langle r_2 \rangle :\equiv \operatorname{ind}'_{=}(n \times m + (k + n \times k), C_1, \operatorname{refl}_{m+(n \times m + (k+n \times k))}, (n \times m + k) + n \times k, r_2)$$

which results in

$$r_1 \cdot \langle r_2 \rangle : (m + n \times m) + (k + n \times k) = m + ((n \times m + k) + n \times k)$$

Next consider

$$q_1 :\equiv q_{n \times m,k} : n \times m + k = k + n \times m$$

which is passed through a based path induction on $C_2(\ell) :\equiv m + ((n \times m + k) + n \times k) = m + (\ell + n \times k)$ to get

$$\langle q_1 \rangle :\equiv \operatorname{ind}'_{=}(n \times m + k, C_2, \operatorname{refl}_{m+((n \times m + k) + n \times k)}, k + n \times m, q_1)$$

which adds to our chain, giving

$$r_1 \cdot \langle r_2 \rangle \cdot \langle q_1 \rangle : (m + n \times m) + (k + n \times k) = m + ((k + n \times m) + n \times k)$$

Now just two applications of associativity are left. We have

$$r_3 :\equiv r_{k,n \times m,n \times k} : (k + n \times m) + n \times k = k + (n \times m + n \times k)$$

so for $C_3(\ell) :\equiv m + ((k + n \times m) + n \times k) = m + \ell$, we have

$$\langle r_3 \rangle :\equiv \operatorname{ind}'_{=}((k+n\times m)+n\times k, C_3, \operatorname{refl}_{m+((k+n\times m)+n\times k)}, k+(n\times m+n\times k), r_3)$$

making our chain of type

$$r_1 \cdot \langle r_2 \rangle \cdot \langle q_1 \rangle \cdot \langle r_3 \rangle : (m + n \times m) + (k + n \times k) = m + (k + (n \times m + n \times k))$$

Finally, take

$$r_4 :\equiv r_{m,k,n \times m+n \times k}^{-1} : m + (k + (n \times m + n \times k)) = (m+k) + (n \times m + n \times k)$$

so after applying the last judgemental equality above, we have

$$f :\equiv r_1 \cdot \langle r_2 \rangle \cdot \langle q_1 \rangle \cdot \langle r_3 \rangle \cdot r_4 : (\operatorname{succ}(n) \times m) + (\operatorname{succ}(n) \times k) = (m+k) + (n \times m + n \times k)$$

Now, consider the family $D(\ell) :\equiv (m+k) + n \times (m+k) = (m+k) + \ell$. Based path induction once more gives us

$$\operatorname{ind}'_{=}(n\times(m+k), D, \operatorname{refl}_{(m+k)+n\times(m+k)}, n\times m+n\times k, p_n) \cdot f^{-1}$$

which, after application of our judgemental equalities, is of type

$$succ(n) \times (m+k) = (succ(n) \times m) + (succ(n) \times k)$$

So we can at last apply induction over \mathbb{N} , using the family $E(n): n \times (m+k) = (n \times m) + (n \times k)$, giving

$$\operatorname{ind}_{\mathbb{N}}(E,\operatorname{refl}_{0\times(m+k)},\lambda n.\lambda p.(\operatorname{ind}'_{=}(n\times(m+k),D,\operatorname{refl}_{(m+k)+n\times(m+k)},n\times m+n\times k,p) \cdot f^{-1}))$$

which is of type

$$\prod_{n:\mathbb{N}} n \times (m+k) = (n \times m) + (n \times k)$$

and m and k may be abstracted out to give (vii).

(viii) This was shown as a lemma in proving (vi).

In Coq we'll do things a touch out of order, so as to appeal to (viii) in the proof of (vi).

Theorem plus_0_r: \forall (n: nat), n = n + 0.

Proof.

induction n; [| simpl; rewrite $\leftarrow IHn$]; reflexivity.

Qed.

Theorem $ex1_8_i : \forall (n : nat),$

$$(0+n=n) \wedge (n=n+0) \wedge (0+n=n+0).$$

Proof.

 $\label{eq:split} \begin{aligned} \text{split}; & [\mid \text{split}; \text{rewrite} \leftarrow plus_0_r]; \text{reflexivity}. \end{aligned}$ Qed.

Theorem mult_0_r: \forall (n: nat), $0 = n \times 0$.

```
Proof.
  induction n; [| simpl; rewrite \leftarrow IHn]; reflexivity.
Theorem ex1_8_{ii} : \forall (n : nat),
  (0 \times n = 0) \wedge (0 = n \times 0) \wedge (0 \times n = n \times 0).
  split; [| split; rewrite \leftarrow mult_0_r]; reflexivity.
Qed.
Theorem mult_1_r: \forall (n: nat), n = n \times 1.
Proof.
  induction n; [| simpl; rewrite \leftarrow IHn]; reflexivity.
Qed.
Theorem mult_1_1: \forall (n: nat), 1 \times n = n.
  simpl; intro n; rewrite \leftarrow plus_0_r; reflexivity.
Qed.
Theorem ex1_8_iii: \forall (n: nat),
  (1 \times n = n) \wedge (n = n \times 1) \wedge (1 \times n = n \times 1).
Proof.
     split; [rewrite mult_1_l
  | split; rewrite \leftarrow mult_1_r;
          [| rewrite mult_1_l]];
  reflexivity.
Qed.
Theorem plus_n_Sm: \forall (n \ m : nat), S(n + m) = n + (S \ m).
Proof.
  intros n m.
  induction n; [| simpl; rewrite IHn]; reflexivity.
Theorem ex1_8_iv : \forall (n m : nat), n + m = m + n.
Proof.
  intros n m.
  induction n; [rewrite \leftarrow plus_0_r
                   | simpl; rewrite ← plus_n_Sm; rewrite IHn];
  reflexivity.
Qed.
Definition plus_comm := ex1_8_iv.
Theorem ex1_8_v : \forall (n \ m \ k : nat),
  (n+m) + k = n + (m+k).
Proof.
  intros n m k.
  induction n; [ | simpl; rewrite IHn]; reflexivity.
Qed.
Theorem ex1_8-viii : \forall (n \ m \ k : nat),
  (n+m) \times k = (n \times k) + (m \times k).
Proof.
  induction n; [| simpl; rewrite IHn; rewrite ex1_8_v]; reflexivity.
Qed.
```

```
Theorem ex1_8_vi: \forall (n m k: nat),
  (n \times m) \times k = n \times (m \times k).
Proof.
  intros n m k.
  induction n; [| simpl; rewrite \leftarrow IHn; rewrite \leftarrow ex1_8-viii]; reflexivity.
Theorem ex1_8_vii : \forall (n m k : nat),
  n \times (m+k) = (n \times m) + (n \times k).
Proof.
  intros n m k.
  induction n; [reflexivity | ].
  simpl. rewrite IHn. rewrite \leftarrow ex1_8_v. rewrite \leftarrow ex1_8_v.
  cut (m + n \times m + k = m + k + n \times m). intro H. rewrite H. reflexivity.
  rewrite ex1_8_v.
  cut (n \times m + k = k + n \times m). intro H. rewrite H. rewrite \leftarrow ex1_8v. reflexivity.
  rewrite ex1_8_iv. reflexivity.
Qed.
```

Exercise 1.9 (p. 56) Define the type family Fin : $\mathbb{N} \to \mathcal{U}$ mentioned at the end of §1.3, and the dependent function fmax : $\prod_{(n:\mathbb{N})} \mathsf{Fin}(n+1)$ mentioned in §1.4.

Solution Fin(n) is a type with exactly n elements. Consider Fin(n) from the types-as-propositions point of view: Fin(n) is a predicate that applies to exactly n elements. Recalling that $\sum_{(m:\mathbb{N})} (m < n)$ may be regarded as "the type of all elements m: \mathbb{N} such that (m < n)", we note that there are n such elements, and define

$$\mathsf{Fin}(n) \vcentcolon\equiv \sum_{m : \mathbb{N}} (m < n) \equiv \sum_{m : \mathbb{N}} \sum_{k : \mathbb{N}} (m + \mathsf{succ}(k) = n)$$

And in Coq,

```
Definition le (n m : nat): Type := \{k : nat \& n + k = m\}.
Notation "n <= m" := (le n m) : type\_scope.
Definition lt (n m : nat) : Type := \{k : nat \& n + (S k) = m\}.
Notation "n < m" := (lt n m) : type\_scope.
Definition Fin (n:nat) : Type := \{m : nat \& m < n\}.
```

To prove that this definition is correct, we should show that for every $n : \mathbb{N}$, $\mathsf{Fin}(n)$ has n elements. This is just to say that there is a bijection between the set of numbers less than n and the elements of $\mathsf{Fin}(n)$. One direction is obvious: for any $m : \mathsf{Fin}(n)$, $\mathsf{pr}_2(\mathsf{pr}_2(m)) : (\mathsf{pr}_1(m) < n)$. For the other direction, suppose that $m : \mathbb{N}$ and that p : (m < n). Then

$$(m,p): \sum m: \mathbb{N}(m < n) \equiv \mathsf{Fin}(n)$$

Moreover, these two constructions are clearly inverses, so we have our bijection. It's not clear how to even formulate this correctness claim in Coq, since the only obvious way to define the bijection involves taking the domain and codomain to be the same, trivializing the problem. The real problem, I think, is that the notion of "exactly *n* elements" is too squishy here.

To define fmax, note that one can think of an element of Fin(n) as a tuple (m, (k, p)), where p: m + succ(k) = n. The maximum element of Fin(n + 1) will have the greatest value in the first slot, so

$$\mathsf{fmax}(n) :\equiv n_{n+1} :\equiv (n, (0, \mathsf{refl}_{n+1})) : \sum_{(m:\mathbb{N})} \sum_{(k:\mathbb{N})} (m + \mathsf{succ}(k) = n+1) \equiv \mathsf{Fin}(n+1)$$

```
Definition fmax (n:nat): Fin(n+1) := (n; (0; 1)).
```

Fully verifying that this definition is correct is tedious but straightforward. We need to show that

$$\prod_{(n:\mathbb{N})} \prod_{(m_{n+1}: \mathsf{Fin}(n+1))} (\mathsf{pr}_1(m_{n+1}) \leq \mathsf{pr}_1(\mathsf{fmax}(n)))$$

is inhabited. Unfolding this a bit, we get

$$\prod_{(n:\mathbb{N})} \prod_{(m_{n+1}:\mathsf{Fin}(n+1))} (m \leq n) \equiv \prod_{(n:\mathbb{N})} \prod_{(m_{n+1}:\mathsf{Fin}(n+1))} \sum_{(k:\mathbb{N})} (m+k=n)$$

Fix some such n and m_{n+1} . By the propositional uniqueness principle for Σ -types, we can write $m_{n+1} = (m^1, (m^2, m^3))$, where $m^3 : m^1 + \operatorname{succ}(m^2) = n + 1$. Using the results of the previous exercise, we can obtain from m^3 a proof $p : m^1 + m^2 = n$. So (m^2, p) is a witness to our result. Coq requires a bit of finagling, since inversion isn't available.

```
Definition pred (n: nat): nat :=
     match n with
       | 0 \Rightarrow 0
       |Sn' \Rightarrow n'|
Theorem S_inj: \forall (n m : nat), S n = S m \rightarrow n = m.
Proof.
  intros.
  cut (pred (S n) = pred (S m)). intros.
  simpl in X. apply X.
  rewrite H. reflexivity.
Qed.
Theorem plus_1_r: \forall n, S n = n + 1.
Proof.
  intros. rewrite plus_comm. reflexivity.
Qed.
Theorem fmax_correct: \forall (n:nat) (m:Fin(n+1)),
m.1 < (fmax n).1.
Proof.
  unfold Fin, lt, le. intros. simpl.
  \exists m.2.1.
  apply S_inj. rewrite plus_n_Sm.
  rewrite plus_1_r.
  apply m.2.2.
Qed.
```

Exercise 1.10 (p. 56) Show that the Ackermann function ack : $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$, satisfying the following equations

```
\begin{aligned} \operatorname{ack}(0,n) &\equiv \operatorname{succ}(n), \\ \operatorname{ack}(\operatorname{succ}(m),0) &\equiv \operatorname{ack}(m,1), \\ \operatorname{ack}(\operatorname{succ}(m),\operatorname{succ}(n)) &\equiv \operatorname{ack}(m,\operatorname{ack}(\operatorname{succ}(m),n)), \end{aligned}
```

is definable using only $rec_{\mathbb{N}}$.

Solution ack must be of the form

$$\mathsf{ack} : \equiv \mathsf{rec}_{\mathbb{N}}(\mathbb{N} \to \mathbb{N}, \Phi, \Psi)$$

with

$$\Phi: \mathbb{N} \to \mathbb{N}$$
 $\Psi: \mathbb{N} \to (\mathbb{N} \to \mathbb{N}) \to (\mathbb{N} \to \mathbb{N})$

which we can determine by their intended behaviour. We have

$$ack(0, n) \equiv rec_{\mathbb{N}}(\mathbb{N} \to \mathbb{N}, \Phi, \Psi, 0)(n) \equiv \Phi(n)$$

So we must have $\Phi :\equiv \mathsf{succ}$, which is of the correct type. The next equation gives us

$$\begin{aligned} \mathsf{ack}(\mathsf{succ}(m),0) &\equiv \mathsf{rec}_{\mathbb{N}}(\mathbb{N} \to \mathbb{N},\mathsf{succ}, \Psi,\mathsf{succ}(m))(0) \\ &\equiv \Psi(m,\mathsf{rec}_{\mathbb{N}}(\mathbb{N} \to \mathbb{N},\mathsf{succ}, \Psi,m))(0) \\ &\equiv \Psi(m,\mathsf{ack}(m,-),0) \end{aligned}$$

Suppose that Ψ is also defined in terms of $rec_{\mathbb{N}}$. We know its signature, giving the first arg, and this second equation gives its behavior on 0, the second arg. So it must be of the form

$$\Psi = \lambda m. \, \lambda r. \, \mathrm{rec}_{\mathbb{N}}(\mathbb{N}, r(1), \Theta(m, r)) \qquad \Theta : \mathbb{N} \to (\mathbb{N} \to \mathbb{N}) \to \mathbb{N} \to \mathbb{N}$$

The final equation fixes Θ :

```
\begin{split} &\operatorname{\mathsf{ack}}(\operatorname{\mathsf{succ}}(m),\operatorname{\mathsf{succ}}(n)) \\ &\equiv \operatorname{\mathsf{rec}}_{\mathbb{N}}(\mathbb{N} \to \mathbb{N},\operatorname{\mathsf{succ}},\lambda m.\,\lambda r.\operatorname{\mathsf{rec}}_{\mathbb{N}}(\mathbb{N},r(1),\Theta(m,r)),\operatorname{\mathsf{succ}}(m))(\operatorname{\mathsf{succ}}(n)) \\ &\equiv \operatorname{\mathsf{rec}}_{\mathbb{N}}(\mathbb{N},\operatorname{\mathsf{ack}}(m,1),\Theta(m,\operatorname{\mathsf{ack}}(m,-)),\operatorname{\mathsf{succ}}(n)) \\ &\equiv \Theta(m,\operatorname{\mathsf{ack}}(m,-),n,\operatorname{\mathsf{rec}}_{\mathbb{N}}(\mathbb{N},\operatorname{\mathsf{ack}}(m,1),\Theta(m,\operatorname{\mathsf{ack}}(m,-)),n)) \\ &\equiv \Theta(m,\operatorname{\mathsf{ack}}(m,-),n,\Psi(m,\operatorname{\mathsf{ack}}(m,-),n)) \end{split}
```

Looking at the second equation again suggests that the final argument to Θ is really ack(succ(m), n). Supposing this is true,

$$\Theta :\equiv \lambda m. \lambda r. \lambda n. \lambda s. r(s)$$

should work. Putting it all together, we have

$$ack :\equiv rec_{\mathbb{N}}(\mathbb{N} \to \mathbb{N}, succ, \lambda m. \lambda r. rec_{\mathbb{N}}(\mathbb{N}, r(1), \lambda n. \lambda s. r(s)))$$

In Coq, we define

Definition ack:
$$nat \rightarrow nat \rightarrow nat :=$$
 $nat_rect (fun _ \Rightarrow nat \rightarrow nat)$
S
 $(fun \ m \ r \Rightarrow nat_rect (fun _ \Rightarrow nat)$
 $(r \ (S \ 0))$
 $(fun \ n \ s \Rightarrow (r \ s))).$

Now, to show that the three equations hold, we just calculate

$$\operatorname{ack}(0, n) \equiv \operatorname{rec}_{\mathbb{N}}(\mathbb{N} \to \mathbb{N}, \operatorname{succ}, \lambda m. \lambda r. \operatorname{rec}_{\mathbb{N}}(\mathbb{N}, r(1), \lambda n. \lambda s. r(s)), 0)(n) \equiv \operatorname{succ}(n)$$

for the first,

$$\begin{aligned} \mathsf{ack}(\mathsf{succ}(m),0) &\equiv \mathsf{rec}_{\mathbb{N}}(\mathbb{N} \to \mathbb{N}, \mathsf{succ}, \lambda m. \, \lambda r. \, \mathsf{rec}_{\mathbb{N}}(\mathbb{N}, r(1), \lambda n. \, \lambda s. \, r(s)), \mathsf{succ}(m))(0) \\ &\equiv \mathsf{rec}_{\mathbb{N}}(\mathbb{N}, \mathsf{ack}(m,1), \lambda n. \, \lambda s. \, \mathsf{ack}(m,s), 0) \\ &\equiv \mathsf{ack}(m,1) \end{aligned}$$

for the second, and finally

$$\begin{aligned} \mathsf{ack}(\mathsf{succ}(m),\mathsf{succ}(n)) &\equiv \mathsf{rec}_{\mathbb{N}}(\mathbb{N} \to \mathbb{N},\mathsf{succ},\lambda m.\,\lambda r.\,\mathsf{rec}_{\mathbb{N}}(\mathbb{N},r(1),\lambda n.\,\lambda s.\,r(s)),\mathsf{succ}(m))(\mathsf{succ}(n)) \\ &\equiv \mathsf{rec}_{\mathbb{N}}(\mathbb{N},\mathsf{ack}(m,1),\lambda n.\,\lambda s.\,\mathsf{ack}(m,s),\mathsf{succ}(n)) \\ &\equiv \mathsf{ack}(m,\mathsf{rec}_{\mathbb{N}}(\mathbb{N},\mathsf{ack}(m,1),\lambda n.\,\lambda s.\,\mathsf{ack}(m,s),n)) \end{aligned}$$

Focus on the second argument of the outer ack. We have

$$\begin{aligned} \mathsf{ack}(\mathsf{succ}(m), n) &\equiv \mathsf{rec}_{\mathbb{N}}(\mathbb{N} \to \mathbb{N}, \mathsf{succ}, \lambda m. \, \lambda r. \, \mathsf{rec}_{\mathbb{N}}(\mathbb{N}, r(1), \lambda n. \, \lambda s. \, r(s)), \mathsf{succ}(m))(n) \\ &\equiv \mathsf{rec}_{\mathbb{N}}(\mathbb{N}, \mathsf{ack}(m, 1), \lambda n. \, \lambda s. \, \mathsf{ack}(m, s), n) \end{aligned}$$

and so we may substitute it back in to get

$$ack(succ(m), succ(n)) \equiv ack(m, ack(succ(m), n))$$

which is the third equality. In Coq,

Goal \forall n, ack 0 n = S n. auto. Qed.

Goal $\forall m$, ack (S m) 0 = ack m (S 0). auto. Qed.

Goal $\forall m \ n$, ack $(S \ m)$ $(S \ n) = ack \ m$ (ack $(S \ m) \ n$). auto. Qed.

Exercise 1.11 (p. 56) Show that for any type A, we have $\neg \neg \neg A \rightarrow \neg A$.

Solution Suppose that $\neg\neg\neg A$ and A. Supposing further that $\neg A$, we get a contradiction with the second assumption, so $\neg\neg A$. But this contradicts the first assumption that $\neg\neg\neg A$, so $\neg A$. Discharging the first assumption gives $\neg\neg\neg A \rightarrow \neg A$.

In type-theoretic terms, the first assumption is $x : ((A \to \mathbf{0}) \to \mathbf{0}) \to \mathbf{0}$, and the second is a : A. If we further assume that $h : A \to \mathbf{0}$, then $h(a) : \mathbf{0}$, so discharging the h gives

$$\lambda(h:A\to\mathbf{0}).h(a):(A\to\mathbf{0})\to\mathbf{0}$$

But then we have

$$x(\lambda(h:A\to\mathbf{0}).h(a)):\mathbf{0}$$

so discharging the *a* gives

$$\lambda(a:A).x(\lambda(h:A\to\mathbf{0}).h(a)):A\to\mathbf{0}$$

And discharging the first assumption gives

$$\lambda(x:((A \to \mathbf{0}) \to \mathbf{0}) \to \mathbf{0}).\lambda(a:A).x(\lambda(h:A \to \mathbf{0}).h(a)):(((A \to \mathbf{0}) \to \mathbf{0}) \to \mathbf{0}) \to (A \to \mathbf{0})$$

This is automatic for Coq, though not trivial:

Goal
$$\forall A, \neg \neg \neg A \rightarrow \neg A$$
. auto. Qed.

We can get a proof out of Coq by printing this Goal. It returns

fun
$$(A: Type)$$
 $(X: \neg \neg \neg A)$ $(X0: A) \Rightarrow X$ (fun $X1: A \rightarrow Empty \Rightarrow X1 X0$) $: \forall A: Type, \neg \neg \neg A \rightarrow \neg A$

which is just the function obtained by hand.

Exercise 1.12 (p. 56) Using the propositions as types interpretation, derive the following tautologies.

- (i) If *A*, then (if *B* then *A*).
- (ii) If A, then not (not A).
- (iii) If (not A or not B), then not (A and B).

Solution (i) Suppose that *A* and *B*; then *A*. Discharging the assumptions, $A \rightarrow B \rightarrow A$. That is, we have

$$\lambda(a:A).\lambda(b:B).a:A\to B\to A$$

and in Coq,

Goal $A \rightarrow B \rightarrow A$. trivial. Qed.

(ii) Suppose that A. Supposing further that $\neg A$ gives a contradiction, so $\neg \neg A$. That is,

$$\lambda(a:A).\lambda(f:A\to\mathbf{0}).f(a):A\to(A\to\mathbf{0})\to\mathbf{0}$$

Goal $A \to \neg \neg A$. auto. Qed.

(iii) Finally, suppose $\neg A \lor \neg B$. Supposing further that $A \land B$ means that A and that B. There are two cases. If $\neg A$, then we have a contradiction; but also if $\neg B$ we have a contradiction. Thus $\neg (A \land B)$.

Type-theoretically, we assume that $x : (A \to \mathbf{0}) + (B \to \mathbf{0})$ and $z : A \times B$. Conjunction elimination gives $\operatorname{pr}_1 z : A$ and $\operatorname{pr}_2 z : B$. We can now perform a case analysis. Suppose that $x_A : A \to \mathbf{0}$; then $x_A(\operatorname{pr}_1 z) : \mathbf{0}$, a contradicton; if instead $x_B : B \to \mathbf{0}$, then $x_B(\operatorname{pr}_2 z) : \mathbf{0}$. By the recursion principle for the coproduct, then,

$$f(z) :\equiv \mathsf{rec}_{(A \to \mathbf{0}) + (B \to \mathbf{0})}(\mathbf{0}, \lambda x. \, x(\mathsf{pr}_1 z), \lambda x. \, x(\mathsf{pr}_2 z)) : (A \to \mathbf{0}) + (B \to \mathbf{0}) \to \mathbf{0}$$

Discharging the assumption that $A \times B$ is inhabited, we have

$$f: A \times B \rightarrow (A \rightarrow \mathbf{0}) + (B \rightarrow \mathbf{0}) \rightarrow \mathbf{0}$$

So

$$swap(A \times B, (A \rightarrow \mathbf{0}) + (B \rightarrow \mathbf{0}), \mathbf{0}, f) : (A \rightarrow \mathbf{0}) + (B \rightarrow \mathbf{0}) \rightarrow A \times B \rightarrow \mathbf{0}$$

```
\texttt{Goal}\;(\neg\,A + \neg\,B) \,\rightarrow\, \neg\; (A \times B)\,.
```

Proof.

unfold not.

intros H x.

apply H.

 $\mathtt{destruct}\ x.$

constructor. exact a.

Qed.

Exercise 1.13 (p. 57) Using propositions-as-types, derive the double negation of the principle of excluded middle, i.e. prove *not* (*not* (*P or not P*)).

Solution Suppose that $\neg(P \lor \neg P)$. Then, assuming P, we have $P \lor \neg P$ by disjunction introduction, a contradiction. Hence $\neg P$. But disjunction introduction on this again gives $P \lor \neg P$, a contradiction. So we must reject the remaining assumption, giving $\neg \neg(P \lor \neg P)$.

In type-theoretic terms, the initial assumption is that $g: P + (P \to \mathbf{0}) \to \mathbf{0}$. Assuming p: P, disjunction introduction results in $\mathsf{inl}(p): P + (P \to \mathbf{0})$. But then $g(\mathsf{inl}(p)): \mathbf{0}$, so we discharge the assumption of p: P to get

$$\lambda(p:P).g(\mathsf{inl}(p)):P\to\mathbf{0}$$

Applying disjunction introduction again leads to contradiction, as

$$g(\operatorname{inr}(\lambda(p:P),g(\operatorname{inl}(p)))):\mathbf{0}$$

So we must reject the assumption of $\neg (P \lor \neg P)$, giving the result:

$$\lambda(g\colon P+(P\to\mathbf{0})\to\mathbf{0}) \cdot g(\operatorname{inr}(\lambda(p\colon P),g(\operatorname{inl}(p)))) \colon (P+(P\to\mathbf{0})\to\mathbf{0})\to\mathbf{0}$$
 Finally, in Coq, Goal $\neg \neg (P+\neg P)$. Proof. unfold not. intro H . apply H . right. intro p . apply H . left. apply p . Qed.

Exercise 1.14 (p. 57) Why do the induction principles for identity types not allow us to construct a function $f: \prod_{(x:A)} \prod_{(p:x=x)} (p = refl_x)$ with the defining equation

```
f(x, refl_x) :\equiv refl_{refl_x}
```

Solution The problem is that *f* is not well-typed in general; i.e., its purported type is not inhabited for all A, x, and p. Read propositionally, $f:\prod_{(x:A)}\prod_{(p:x=x)}(p=\mathsf{refl}_x)$ means that for all x:A, the only witness to x = x is refl_x, and this is not true. One can have nontrivial homotopies, leading to p : x = x such that $\neg(p = \text{refl}_x).$

Coq prevents this construction for this reason. Attempting it would proceed as

```
Definition f: \forall (A: Type) (x:A) (p: x = x), p = 1.
  intros. path_induction.
  exact 1.
```

which returns the error message

The term "1" has type "p = p" while it is expected to have type "p = 1".

Because of the possiblity of nontrivial homotopies, one might fail to have $(p = p) = (p = refl_x)$.

Exercise 1.15 (p. 57) Show that indiscernability of identicals follows from path induction.

Solution Consider some family $C: A \to \mathcal{U}$, and define

tion Consider some family
$$C: A \to \mathcal{U}$$
, and define
$$D: \prod_{x,y:A} (x =_A y) \to \mathcal{U}, \qquad D(x,y,p) :\equiv C(x) \to C(y)$$

Note that we have the function

$$\lambda x. \operatorname{id}_{C(x)} : \prod_{x:A} C(x) \to C(x) \equiv \prod_{x:A} D(x, x, \operatorname{refl}_x)$$

So by path induction there is a function

$$f: \prod_{(x,y:A)} \prod_{(p:x=Ay)} D(x,y,p) \equiv \prod_{(x,y:A)} \prod_{(p:x=Ay)} C(x) \rightarrow C(y)$$

such that

$$f(x, x, refl_x) :\equiv id_{C(x)}$$

But this is just the statement of the indiscernability of identicals: for every such family C, there is such an f.

2 Homotopy type theory

Exercise 2.1 (p. 103) Show that the three obvious proofs of Lemma 2.1.2 are pairwise equal.

Solution Lemma 2.1.2 states that for every type A and every x, y, z: A, there is a function

$$(x = y) \rightarrow (y = z) \rightarrow (x = z)$$

written $p \mapsto q \mapsto p \cdot q$ such that $refl_x \cdot refl_x = refl_x$ for all x : A. Each proof is an object \cdot_i of type

$$\bullet_i: \prod_{x,y,z:A} (x=y) \to (y=z) \to (x=z)$$

So we need to show that $\cdot_1 = \cdot_2 = \cdot_3$.

The first proof is induction over p. Consider the family

$$C_1(x,y,p) :\equiv \prod_{z:A} (y=x)(x=z)$$

we have

$$\lambda z. \lambda q. q: \left(\prod_{z:A} (x=z) \to (x=z)\right) \equiv C_1(x, x, \text{refl}_x)$$

So by path induction, there is a function

$$p \cdot_1 q : (x = z)$$

such that $\operatorname{refl}_x \cdot_1 q \equiv q$.

For the shorter version, we say that by induction it suffices to consider the case where y is x and p is refl_x. Then given some q: x=z, we want to construct an element of x=z; but this is just q, so induction gives us a function $p \cdot_1 q: x=z$ such that refl_{$x \cdot_1 q: x=z$} q: x=z.

Definition cat' $\{A: \text{Type}\}\ \{x\ y\ z: A\}\ (p: x=y)\ (q: y=z): x=z.$ induction p. apply q. Defined.

For the second, consider the family

$$C_2(y,z,q) :\equiv \prod_{z:A} (x=y) \to (x=z)$$

and element

$$\lambda z. \, \lambda p. \, p: \left(\prod_{z:A} (x=z) \to (x=z)\right) \equiv C_2(z,z,\mathsf{refl}_z)$$

Induction gives us a function

$$p \cdot _{2} q : (x = z)$$

such that

$$p \cdot_2 \operatorname{refl}_z = \operatorname{refl}_z$$

Definition cat" $\{A: \texttt{Type}\}\ \{x\ y\ z: A\}\ (p: x=y)\ (q: y=z): x=z.$ induction q. apply p.

Defined.

Finally, for •3, we have the construction from the text. Take the type families

$$D(x, y, p) :\equiv \prod_{z:A} (y = z) \to (x = z)$$

and

$$E(x,z,q) :\equiv (x=z)$$

Since $E(x, x, \text{refl}_x) \equiv (x = x)$, we have $e(x) :\equiv \text{refl}_x : E(x, x, \text{refl}_x)$, and induction gives us a function

$$d: \left(\prod_{(x,z:A)} \prod_{(q:x=z)} (x=z)\right) \equiv \prod_{x:A} D(x,x,\mathsf{refl}_x)$$

So path induction again gives us a function

$$f: \prod_{x,y,z:A} (x=y) \to (y=z) \to (x=z)$$

Which we can write $p \cdot_3 q : (x = z)$. By the definitional equality of f, we have that $\text{refl}_x \cdot q \equiv d(x)$, and by the definitional equality of d, we have $\text{refl}_x \cdot \text{refl}_x \equiv \text{refl}_x$.

Definition cat''' $\{A: \text{Type}\}\ \{x\ y\ z: A\}\ (p: x = y)\ (q: y = z): x = z.$

induction p, q. reflexivity.

Defined.

Now, to show that $p \cdot_1 q = p \cdot_2 q = p \cdot_3 q$, which we will do by induction on p and q. For the first pair, we want to construct for every x, y, z : A, p : x = y, and q : y = z, an element of $p \cdot_1 q = p \cdot_2 q$. By induction on p, it suffices to assume that y is x and p is refl_x ; similarly, by induction on q it suffices to assume that z is also x and q is refl_x . Then by the computation rule for \cdot_1 , $\text{refl}_x \cdot_1 \text{refl}_x \equiv \text{refl}_x$, and by the computation rule for \cdot_2 , $\text{refl}_x \cdot_2 \text{refl}_x \equiv \text{refl}_x$. Thus we have

$$\mathsf{refl}_{\mathsf{refl}_x} : (\mathsf{refl}_x \bullet_1 \mathsf{refl}_x = \mathsf{refl}_x \bullet_2 \mathsf{refl}_x)$$

which provides the necessary data for induction.

Writing this out a bit more fully for practice, we have the family

$$C: \prod_{x,y:A} (x=y) \to \mathcal{U}$$

defined by

$$C(x,y,p) := \prod_{(z:A)} \prod_{(q:y=z)} (p \cdot_1 q = p \cdot_2 q)$$

and in order to apply induction, we need an element of

$$\prod_{x:A} C(x,x,\mathsf{refl}_x) \equiv \prod_{(x,z:A)} \prod_{(q:x=z)} (\mathsf{refl}_x \bullet_1 q = \mathsf{refl}_x \bullet_2 q) \equiv \prod_{(x,z:A)} \prod_{(q:x=z)} (q = \mathsf{refl}_x \bullet_2 q)$$

Define $D(x, z, q) :\equiv (q = \operatorname{refl}_x \cdot_2 q)$. Then

$$\operatorname{refl}_{refl_x} : D(x, x, \operatorname{refl}_x) \equiv (\operatorname{refl}_x = \operatorname{refl}_x) \equiv (\operatorname{refl}_x = \operatorname{refl}_x)$$

So by induction we have a function $f: \prod_{(x,z:A)} \prod_{(p:x=z)} (q = \text{refl}_x \cdot_2 q)$ with $f(x,x,\text{refl}_x) :\equiv \text{refl}_{\text{refl}_x}$. Thus we have the element required for induction on p, and there is a function

$$f': \prod_{(x,y,z:A)} \prod_{(p:x=y)} \prod_{q:y=z} (p \cdot_1 q = p \cdot_2 q)$$

which we wanted to show.

```
Theorem cat'_eq_cat'' : \forall {A:Type} {x \ y \ z : A} (p : x = y) (q : y = z), (cat' p \ q) = (cat'' p \ q).

Proof.
induction p, q. reflexivity.

Defined.
```

For the next pair, we again use induction. For all x, y, z : A, p : x = y, and q : y = z, we need to construct an element of $p \cdot_2 q = p \cdot_3 q$. By induction on p and q, it suffices to consider the case where y and z are x and y and q are refl_x. Then (refl_x \cdot_2 refl_x = refl_x) \equiv (refl_x = refl_x), and refl_{refl_x inhabits this type.}

```
Theorem cat''_eq_cat''': \forall {A:Type} {x y z : A} (p : x = y) (q : y = z), (cat'' p q) = (cat''' p q). Proof. induction p, q. reflexivity. Defined.
```

The third proof goes exactly the same.

```
Theorem cat'_eq_cat''': \forall {A:Type} {x \ y \ z : A} (p : x = y) (q : y = z), (cat' p \ q) = (cat''' p \ q).

Proof.
induction p, q. reflexivity.

Defined.
```

Note that all three of these proofs must end with Defined instead of Qed if we want to make use of the computational identity (e.g., $p \cdot_1 refl_x \equiv p$) that they produce, as we will in the next exercise.

Exercise 2.2 (p. 103) Show that the three equalities of proofs constructed in the previous exercise form a commutative triangle. In other words, if the three definitions of concatenation are denoted by $(p \cdot_1 q)$, $(p \cdot_2 q)$, and $(p \cdot_3 q)$, then the concatenated equality

$$(p \cdot_1 q) = (p \cdot_2 q) = (p \cdot_3 q)$$

is equal to the equality $(p \cdot_1 q) = (p \cdot_3 q)$.

Solution Let x, y, z : A, p : x = y, q : y = z, and let $r_{12} : (p \cdot_1 q = p \cdot_2 q)$, $r_{23} : (p \cdot_2 q = p \cdot_3 q)$, and $r_{13} : (p \cdot_1 q = p \cdot_3 q)$ be the proofs from the last exercise. We want to show that $r_{12} \cdot r_{23} = r_{13}$, where $\cdot = \cdot_3$ is the concatenation operation from the book. By induction on p and q, it suffices to consider the case where p and p are p and p are refl_p. Then we have p are refl_p p refl_p p and p are refl_p by the definitions. But then the type we're trying to witness is

```
(\text{refl}_{\text{refl}_r} \cdot \text{refl}_{\text{refl}_r} = \text{refl}_{\text{refl}_r}) \equiv (\text{refl}_{\text{refl}_r} = \text{refl}_{\text{refl}_r})
```

from the definition of •, so refl_{refl_{refl_r}} is our witness.

```
Theorem comm_triangle: \forall (A:Type) (x y z : A) (p : x = y) (q : y = z), (cat'_eq_cat'' p q) @ (cat''_eq_cat''' p q) = (cat'_eq_cat''' p q). Proof. induction p, q. reflexivity. Qed.
```

Exercise 2.3 (p. 103) Give a fourth, different proof of Lemma 2.1.2, and prove that it is equal to the others.

Solution Let x, y : A and p : x = y. Rather than fixing some q and constructing an element of x = z out of that, we can directly construct an element of

$$\prod_{z:A} (y=z) \to (x=z)$$

by induction on p. It suffices to consider the case where y is x and p is a refl $_x$, which then makes it easy to produce such an element; namely,

$$\lambda z. \operatorname{id}_{x=z} : \prod_{z:A} (x=z) \to (x=z)$$

Induction then gives us a function $p \cdot_4 q : (x = z)$ such that $\lambda q \cdot (\text{refl}_x \cdot_4 q) :\equiv \text{id}_{x=z}$.

```
Definition cat'''' {A:Type} \{x \ y \ z : A\} (p : x = y) (q : y = z) : x = z. generalize q. generalize z. induction p. trivial. Defined.
```

To prove that it's equal to the others, we can just show that it's equal to \cdot and then use concatenation. Again by induction on p and q, it suffices to consider the case where y and z are x and p and q are $refl_x$. Then we have

```
((\mathsf{refl}_x \, {}^{\bullet}_3 \, \mathsf{refl}_x) = (\mathsf{refl}_x \, {}^{\bullet}_4 \, \mathsf{refl}_x)) \equiv (\mathsf{refl}_x = \mathsf{id}_{x=x}(\mathsf{refl}_x)) \equiv (\mathsf{refl}_x = \mathsf{refl}_x)
```

So $refl_{refl_r}$ is again our witness.

```
Theorem cat'''_eq_cat'''': \forall {A:Type} {x y z : A} (p : x = y) (q : y = z), (cat''' p \ q) = (cat'''' p \ q).

Proof.

induction p, q. reflexivity.

Qed.
```

Exercise 2.4 (p. 103) Define, by induction on n, a general notion of n-dimensional path in a type A, simultaneously with the type of boundaries for such paths.

Solution A 0-path in A is an element x : A, so the type of 0-paths is just A. If p and q are n-paths, then so is p = q. In the other direction, the boundary of a 0-path is empty, and the boundary of an n + 1 path is an n-path.

```
Fixpoint npath (A:Type) (n:nat): Type := match n with | O \Rightarrow A  | S n' \Rightarrow \{p : (boundary A n') \& \{q : (boundary A n') \& p = q\}\} end with boundary (A:Type) (n:nat): Type := match n with | O \Rightarrow Empty  | S n' \Rightarrow (npath A n') end.
```

Exercise 2.5 (p. 103) Prove that the functions

$$(f(x) = f(y)) \to (p_*(f(x)) = f(y))$$
 and $(p_*(f(x)) = f(y)) \to (f(x) = f(y))$

are inverse equivalences.

Solution I take it that "inverse equivalences" means that each of the maps is the quasi-inverse of the other. Suppose that x, y : A, p : x = y, and $f : A \rightarrow B$. Then we have the objects

$$\mathsf{ap}_f(p): (f(x) = f(y)) \qquad \qquad \mathsf{transportconst}_p^B(f(x)): (p_*(f(x)) = f(x))$$

thus

$$\left(\mathsf{transportconst}_p^B(f(x)) \cdot - \right) : (f(x) = f(y)) \to (p_*(f(x)) = f(y)) \\ \left((\mathsf{transportconst}_p^B(f(x)))^{-1} \cdot - \right) : (p_*(f(x)) = f(y)) \to (f(x) = f(y)) \\$$

Which are our maps. Composing the first with the second, we obtain an element

$$\left(\mathsf{transportconst}_p^B(f(x)) \cdot \left((\mathsf{transportconst}_p^B(f(x)))^{-1} \cdot - \right) \right)$$

of f(x) = f(y). Using Lemma 2.1.4, we can show that this is homotopic to the identity:

$$\begin{split} &\prod_{q:f(x)=f(y)} \left(\mathsf{transportconst}_p^B(f(x)) \cdot \left((\mathsf{transportconst}_p^B(f(x)))^{-1} \cdot q \right) = q \right) \\ &= \prod_{q:f(x)=f(y)} \left(\left(\mathsf{transportconst}_p^B(f(x)) \cdot (\mathsf{transportconst}_p^B(f(x)))^{-1} \right) \cdot q = q \right) \\ &= \prod_{q:f(x)=f(y)} \left(q = q \right) \end{split}$$

which is inhabited by $refl_q$. The same argument goes the other way, so this concatenation is an equivalence.

```
Definition eq2_3_6 {A B : Type} {x y : A} (f : A \rightarrow B) (p : x = y) (q : f x = f y) :
     (@transport \_ (fun \_ \Rightarrow B) \_ \_ p (f x) = f y) :=
     (transport\_const p (f x)) @ q.
Definition eq2_3_7 {AB: Type} {xy: A} (f: A \rightarrow B) (p: x = y)
  (q: @transport \_ (fun \_ \Rightarrow B) \_ \_ p (f x) = f y):
  (f \ x = f \ y) :=
  (transport\_const p (f x))^0 q.
Definition alpha2_5: \forall {A B:Type} {x y : A} (f: A \rightarrow B) (p:x=y) q,
  (eq2_3_6 f p (eq2_3_7 f p q)) = q.
  unfold eq2_3_6, eq2_3_7. path_induction. reflexivity.
Defined.
Definition beta2_5 : \forall {A B:Type} {x y : A} (f: A \rightarrow B) (p:x=y) q,
  (eq2_3_7 f p (eq2_3_6 f p q)) = q.
  unfold eq2_3_6, eq2_3_7. path_induction. reflexivity.
Defined.
Lemma isequiv_transportconst (A B:Type) (x y z : A) (f : A \rightarrow B) (p : x = y) :
  IsEquiv (eq2_3_6 f p).
  apply (isequiv_adjointify \_ (eq2_3_7 f p) (alpha2_5 f p) (beta2_5 f p)).
Qed.
```

Exercise 2.6 (p. 103) Prove that if p: x = y, then the function $(p \cdot -): (y = z) \to (x = z)$ is an equivalence.

Solution Suppose that p: x = y. To show that $(p \cdot -)$ is an equivalence, we need to exhibit a quasi-inverse to it. This is a triple (g, α, β) of a function $g: (x = z) \to (y = z)$ and homotopies $\alpha: (p \cdot -) \circ g \sim \operatorname{id}_{x=z}$ and

 β : $g \circ (p \cdot -) \sim \mathrm{id}_{y=z}$. For g, we can take $(p^{-1} \cdot -)$. For the homotopies, we can use the results of Lemma 2.1.4. So we have

$$((p \boldsymbol{\cdot} -) \circ g) \sim \operatorname{id}_{x=z} \equiv \prod_{q: x=z} (p \boldsymbol{\cdot} (p^{-1} \boldsymbol{\cdot} q) = q) = \prod_{q: x=z} ((p \boldsymbol{\cdot} p^{-1}) \boldsymbol{\cdot} q = q) = \prod_{q: x=z} (\operatorname{refl}_x \boldsymbol{\cdot} q = q) = \prod_{q: x=z} (q = q)$$

which is inhabited by refl_q and

$$(g\circ(p\boldsymbol{\cdot}-))\sim\operatorname{id}_{y=z}\equiv\prod_{q:y=z}(p^{-1}\boldsymbol{\cdot}(p\boldsymbol{\cdot}q)=q)=\prod_{q:y=z}((p^{-1}\boldsymbol{\cdot}p)\boldsymbol{\cdot}q=q)=\prod_{q:y=z}(\operatorname{refl}_y\boldsymbol{\cdot}q=q)=\prod_{q:y=z}(q=q)$$

which is inhabited by refl_q. So $(p \cdot -)$ has a quasi-inverse, hence it is an equivalence.

Definition alpha2_6 {A:Type} $\{x \ y \ z:A\}\ (p:x=y)\ (q:x=z): p @ (p^@ q) = q.$ path_induction. reflexivity.

Defined.

Definition beta2_6 {A:Type} $\{x \ y \ z:A\}$ (p:x=y) $(q:y=z): p^0 (p q) = q.$ path_induction. reflexivity.

Defined.

Lemma isequiv_eqcat (A:Type) (x y z : A) (p : x = y) : IsEquiv (fun $q:(y=z) \Rightarrow p @ q$).

apply (isequiv_adjointify _ (fun $q:(x=z) \Rightarrow p^0 Q$) (alpha2_6 p) (beta2_6 p)). Qed.

Exercise 2.7 (p. 104) State and prove a generalization of Theorem 2.6.5 from cartesian products to Σ -types.

Solution Suppose that we have types A and A' and type families $B:A\to \mathcal{U}$ and $B':A'\to \mathcal{U}$, along with a function $g:A\to A'$ and a dependent function $h:\prod_{(x:A)}B(x)\to B'(f(x))$. We can then define a function $f:(\sum_{(x:A)}B(x))\to (\sum_{(x:A')}B'(x))$ by $f(x):\equiv (g(\operatorname{pr}_1x),h(\operatorname{pr}_1x,\operatorname{pr}_2x))$. Let $x,y:\sum_{(a:A)}B(a)$, and suppose that $p:\operatorname{pr}_1x=\operatorname{pr}_1y$ and that $g:p_*(\operatorname{pr}_2x)=\operatorname{pr}_2y$. The left-side of Theorem 2.6.5 generalizes directly to $f(\operatorname{pair}^=(p,q))$, where now $\operatorname{pair}^=$ is given by the backward direction of Theorem 2.7.2.

The right hand side is trickier. It ought to represent the application of g and h, followed by the application of pair⁼, as Theorem 2.6.5 does. Applying g produces the first argument to pair⁼, $ap_g(p) \equiv g(p)$. For h, we'll need to construct the right object. We need one of type

$$(g(p))_*(h(\mathsf{pr}_1x,\mathsf{pr}_2x)) = h(\mathsf{pr}_1y,\mathsf{pr}_2y)$$

Which we'll construct by induction. It suffices to consider the case where $x \equiv (a, b)$, $y \equiv (a', b')$, $p \equiv \text{refl}_a$, and $q \equiv \text{refl}_b$. Then we need an object of type

$$\left[(g(\mathsf{refl}_a))_*(h(a,b)) = h(a',b') \right] \equiv \left[h(a,b) = h(a',b') \right]$$

which we can easily construct by applying h to p and q. So by induction, we have an object

$$T(h, p, q) : (g(p))_*(h(pr_1x, pr_2x)) = h(pr_1y, pr_2y)$$

such that $T(h, \text{refl}_a, \text{refl}_b) \equiv \text{refl}_{h(a,b)}$.

Now we can state the generalization. We show that

$$f(\mathsf{pair}^{=}(p,q)) = \mathsf{pair}^{=}(g(p), T(h, p, q))$$

by induction. So let $x \equiv (a, b)$, $y \equiv (a', b')$, $p \equiv \text{refl}_a$, and $q \equiv \text{refl}_b$. Then we need to show that

$$\operatorname{refl}_{f((a,b))} = \operatorname{refl}_{(g(a),h(a,b))}$$

But from the definition of f, this is a judgemental equality. So we're done.

Coq takes of a bit of coaxing to get the types right.

```
Definition T \{A \ A' : \text{Type}\}\ \{B : A \to \text{Type}\}\ \{B' : A' \to \text{Type}\}
                \{g: A \rightarrow A'\}\ (h: \forall a, B \ a \rightarrow B'\ (g\ a))
               \{x y : \{a : A \& B a\}\}\
               (p:x.1=y.1)(q:p\#x.2=y.2)
   (ap g p) # (h x.1 x.2) = h y.1 y.2.
   transitivity (h y.1 (p \# x.2));
   destruct x; destruct y; simpl in *; induction p; [|rewrite q]; reflexivity.
Defined.
Theorem ex2_7: \forall {A A': Type} {B : A \rightarrow \text{Type}} {B' : A' \rightarrow \text{Type}}
                                 (g: A \rightarrow A') (h: \forall a, B a \rightarrow B' (g a))
                                 (x y : \{a : A \& B a\})
                                 (p:x.1=y.1)(q:p\#x.2=y.2),
let f z := (g z.1; h z.1 z.2) in
   ap f (path_sigma B \times y p q) = path_sigma B' (f \times y) (ap g \times p) (T \cdot h \cdot p \cdot q).
intros. unfold f, T.
destruct x. destruct y. simpl in *. induction p. rewrite \leftarrow q. reflexivity.
Defined.
```

Exercise 2.8 (p. 104) State and prove an analogue of Theorem 2.6.5 for coproducts.

Solution Let A, A', B, B': \mathcal{U} , and let g: $A \to A'$ and h: $B \to B'$. These allow us to construct a function f: $A + B \to A' + B'$ given by

```
f(\mathsf{inl}(a)) :\equiv \mathsf{inl}'(g(a)) f(\mathsf{inr}(b)) :\equiv \mathsf{inr}'(h(b))
```

Now, we want to show that ap_f is functorial, which requires something corresponding to $pair^=$. The type of this function will vary depending on which two x, y : A + B we consider. Suppose that p : x = y; there are four cases:

• $x = \text{inl}(a_1)$ and $y = \text{inl}(a_2)$. Then pair⁼ is given by ap_{inl} , and we must show that f(inl(p)) = inl'(g(p))

which is easy with path induction; it suffices to consider $p \equiv \text{refl}_a$, which reduces our equality to

```
\mathsf{refl}_{f(\mathsf{inl}(a))} = \mathsf{refl}_{\mathsf{inl}'(g(a))}
```

and this is a judgemental equality, given the definition of f.

- $x = \operatorname{inl}(a)$ and $y = \operatorname{inr}(b)$. Then by 2.12.3 $(x = y) \simeq \mathbf{0}$, and p allows us to construct anything we like.
- x = inr(b) and y = inl(a) proceeds just as in the previous case.
- x = inr(b) and y = inr(b) proceeds just as in the first case.

Since these are all the cases, we've proven the analogue to Theorem 2.6.5 for coproducts (though it was stated rather implicitly). I'll have to state it more explicitly in Coq, though the proof is verbatim the same as the one by hand.

```
Definition code {A B : Type} (x : A + B) (y : A + B) := match x with | \text{inl } a \Rightarrow \text{match } y \text{ with} | \text{inl } a' \Rightarrow (a = a') | \text{inr } b \Rightarrow \text{Empty} end
```

```
|\inf b \Rightarrow \text{match } y \text{ with }
                        | \text{ inl } a \Rightarrow \text{Empty} 
                        |\inf b' \Rightarrow (b = b')
   end.
Theorem ex2_8: \forall (A A' B B': Type)
                                          (g: A \rightarrow A') (h: B \rightarrow B')
                                          (x y : A+B) (p : code x y),
   let f z := match z with
                       |\inf a \Rightarrow \inf (g a)
                       | \operatorname{inr} b \Rightarrow \operatorname{inr} (h b) |
   in
   ap f (path_sum x y p) = path_sum (f x) (f y) (
              (match x return code xy \to \operatorname{code}(fx)(fy) with
                | \text{inl } a \Rightarrow \text{match } y \text{ return code (inl } a) y \rightarrow \text{code (inl } (g a)) (f y) \text{ with }
                                    | \text{inl } a' \Rightarrow \text{ap } g
                                     | inr b \Rightarrow idmap
                |\inf b \Rightarrow \text{match } y \text{ return code (inr } b) y \rightarrow \text{code (inr } (h b)) (f y) \text{ with }
                                    | \text{inl } a \Rightarrow \text{idmap}
                                    |\inf b' \Rightarrow ap h
                                    end
                end) p).
Proof.
   intros. destruct x; destruct y; simpl in *;
       try (path_induction; reflexivity);
       try (destruct p).
Qed.
```

Exercise 2.9 (p. 104) Prove that coproducts have the expected universal property,

$$(A + B \rightarrow X) \simeq (A \rightarrow X) \times (B \rightarrow X).$$

Can you generalize this to an equivalence involving dependent functions?

Solution To define the ex2_9_f map, let $h: A+B \to X$ and define $f: (A+B \to X) \to (A \to X) \times (B \to X)$ by

$$f(h) :\equiv (\lambda a. h(\mathsf{inl}(a)), \lambda b. h(\mathsf{inr}(b)))$$

To show that *f* is an equivalence, we'll need a quasi-inverse, given by

$$g(h) :\equiv \operatorname{rec}_{A+B}(X, \operatorname{pr}_1 h, \operatorname{pr}_2 h)$$

As well as the homotopies $\alpha: f \circ g \sim \operatorname{id}_{(A \to X) \times (B \to X)}$ and $\beta: g \circ f \sim \operatorname{id}_{A+B \to X}$. For α we need a witness to

$$\begin{split} &\prod_{h:(A\to X)\times(B\to X)} (f(g(h)) = \operatorname{id}_{(A\to X)\times(B\to X)}(h)) \\ &\equiv \prod_{h:(A\to X)\times(B\to X)} \left((\lambda a.\operatorname{rec}_{A+B}(X,\operatorname{pr}_1h,\operatorname{pr}_2h,\operatorname{inl}(a)),\lambda b.\operatorname{rec}_{A+B}(X,\operatorname{pr}_1h,\operatorname{pr}_2h,\operatorname{inr}(b))) = h \right) \\ &\equiv \prod_{h:(A\to X)\times(B\to X)} \left((\operatorname{pr}_1h,\operatorname{pr}_2h) = h \right) \end{split}$$

and this is inhabited by uppt. For β , we need an inhabitant of

```
\begin{split} &\prod_{h:A+B\to X} (g(f(h)) = \mathrm{id}_{A+B\to X}(h)) \\ &\equiv \prod_{h:A+B\to X} (\mathrm{rec}_{A+B}(X,\lambda a.\, h(\mathrm{inl}(a)),\lambda b.\, h(\mathrm{inr}(b))) = h) \end{split}
```

Definition ex2_9_f $\{A \ B \ X : \text{Type}\}\ (h : (A+B \to X)) : (A \to X) \times (B \to X) :=$

which, assuming function extensionality, is inhabited. So (g, α, β) is a quasi-inverse to f, giving the universal property.

```
(h \circ inl, h \circ inr).
Definition ex2_9_g {A B X : Type} (h : (A \rightarrow X) \times (B \rightarrow X)) : A+B \rightarrow X :=
   fun x \Rightarrow \text{match } x \text{ with }
                    | \text{ inl } a \Rightarrow (\text{fst } h) | a
                    | \text{inr } b \Rightarrow (\text{snd } h) b
Lemma alpha2_9 {A B X: Type}: \forall (h: (A \rightarrow X) \times (B \rightarrow X)),
   ex2_9_f(ex2_9_g h) = h.
Proof.
   unfold ex2_9_f, ex2_9_g. destruct h as (x, y). reflexivity.
Lemma beta2_9 '{Funext} {A B X: Type} : \forall (h : A+B \rightarrow X),
   ex2_{9_g}(ex2_{9_f}h) = h.
Proof.
   intros. apply H. unfold pointwise_paths. intros. destruct x; reflexivity.
Theorem ex2_9: \forall A B X, (A+B\rightarrow X) \simeq (A\rightarrow X) \times (B\rightarrow X).
   intros. apply (equiv_adjointify ex2_9_f ex2_9_g alpha2_9 beta2_9).
Qed.
    All of this generalizes directly to the case of dependent functions.
Definition ex2_9_f' {A B : Type} {C: A+B \rightarrow Type} (h: \forall (p:A+B), C p)
   : (\forall a:A, C(\text{inl }a)) \times (\forall b:B, C(\text{inr }b)) :=
(\text{fun } \_ \Rightarrow h \text{ (inl } \_), \text{ fun } \_ \Rightarrow h \text{ (inr } \_)).
Definition ex2_9_g' {AB: Type} {C: A+B \rightarrow Type}
                 (h: (\forall a:A, C(\mathsf{inl}\, a)) \times (\forall b:B, C(\mathsf{inr}\, b))):
   \forall (p:A+B), C p :=
 fun \_ \Rightarrow \text{match} \_ \text{ as } s \text{ return } (C s) \text{ with }
                  | \text{ inl } a \Rightarrow \text{fst } h a
                  | \text{inr } b \Rightarrow \text{snd } h b
               end.
Theorem ex2_9': \forall ABC,
   (\forall (p:A+B), C(p)) \simeq (\forall a:A, C(\text{inl } a)) \times (\forall b:B, C(\text{inr } b)).
Proof.
   intros.
   refine (equiv_adjointify ex2_9_f' ex2_9_g' _ _); unfold ex2_9_f', ex2_9_g'.
   intro. destruct x. apply path_prod; simpl;
   apply path_forall; unfold pointwise_paths; reflexivity.
   intro. apply path_forall; intro p. destruct p; reflexivity.
Qed.
```

Exercise 2.10 (p. 104) Prove that Σ -types are "associative", in that for any $A : \mathcal{U}$ and families $B : A \to \mathcal{U}$ and $C : (\sum_{(x:A)} B(x)) \to \mathcal{U}$, we have

$$\left(\sum_{(x:A)} \sum_{(y:B(x))} C((x,y))\right) \simeq \left(\sum_{p:\sum_{(x:A)} B(x)} C(p)\right)$$

Solution The map

$$f(a,b,c) :\equiv ((a,b),c)$$

where a:A, b:B(a), and c:C((a,b)) is an equivalence. For a quasi-inverse, we have

$$g(p,c) :\equiv (\operatorname{pr}_1 p, \operatorname{pr}_2 p, c)$$

As proof, by induction we can consider the case where $p \equiv (a, b)$. Then we have

$$f(g((a,b),c)) = f(a,b,c) = ((a,b),c)$$

and

$$g(f(a,b,c)) = g((a,b),c) = (a,b,c)$$

So *f* is an equivalence.

```
Definition ex2_10_f \{A : \mathtt{Type}\}\ \{B : A \to \mathtt{Type}\}\ \{C : \{x : A \& B x\} \to \mathtt{Type}\}\ :
   \{x: A \& \{y: B x \& C (x; y)\}\} \rightarrow \{p: \{x: A \& B x\} \& C p\}.
   intro abc. destruct abc as [a [b c]]. apply ((a; b); c).
Defined.
Definition ex2_10_g {A : \text{Type}} {B : A \rightarrow \text{Type}} {C : \{x : A \& B x\} \rightarrow \text{Type}} :
   \{p: \{x: A \& B x\} \& C p\} \rightarrow \{x: A \& \{y: B x \& C (x; y)\}\}.
   intro abc. destruct abc as [[a \ b] \ c].
   \exists a; \exists b; apply c.
Defined.
Theorem ex2_10: \forall ABC, IsEquiv(@ex2_10_f ABC).
Proof.
   refine (isequiv_adjointify ex2_10_f ex2_10_g _ _);
   unfold ex2_10_f, ex2_10_g; intro abc;
   [ destruct abc as [[ab] c] | destruct abc as [a [b c]]];
  reflexivity.
Qed.
```

Exercise 2.11 (p. 104) A (homotopy) commutative square

$$P \xrightarrow{h} A$$

$$\downarrow k \qquad \qquad \downarrow f$$

$$B \xrightarrow{g} C$$

consists of functions f, g, h, and k as shown, together with a path $f \circ h = g \circ k$. Note that this is exactly an element of the pullback $(P \to A) \times_{P \to C} (P \to B)$ as defined in 2.15.11. A commutative square is called a (homotopy) pullback square if for any X, the induced map

$$(X \to P) \to (X \to A) \times_{(X \to C)} (X \to B)$$

is an equivalence. Prove that the pullback $P :\equiv A \times_C B$ defined in 2.15.11 is the corner of a pullback square.

Solution To show that *P* is the corner of a pullback square, we need to produce the three other corners and show that it is a pullback. Given $f: A \to C$ and $G: B \to C$, we define

$$P := \sum_{(a:A)} \sum_{(b:B)} (f(a) = g(b))$$

This is the corner of the following pullback square:

To show that it's commutative, it suffices to consider an element (a, b, c) of P. We then have

$$g(pr_1(pr_2(a,b,c))) = g(b) = f(a) = f(pr_1(a,b,c))$$

making the square commutative.

To show that the square is a pullback square, suppose that $h: X \to P$. Then we obtain maps $\operatorname{pr}_1 \circ h: X \to A$ and $\operatorname{pr}_1 \circ \operatorname{pr}_2 \circ h: X \to B$, which in turn give the functions

$$f \circ \operatorname{pr}_1 \circ h : X \to C$$
 $g \circ \operatorname{pr}_1 \circ \operatorname{pr}_2 \circ h : X \to C$

If we can show that these two maps are equal, then we've constructed the forward direction of the equivalence. For this we just need to consider any element x : X. Then h(x) : P, and by induction we can assume that h(x) = (a, b, c). But in this case the goal reduces to f(a) = g(b), and this is proven by c.

To show that this is an equivalence, we need to exhibit a quasi-inverse. So suppose that $h:(X \to A) \times_{(X \to C)} (X \to B)$. By induction, we can assume that h is (h_A, h_B, p) , where $p: f \circ h_A = g \circ h_B$. We need to construct a map $h': X \to P$, which we can do as follows:

$$h(x) :\equiv (h_A(x), h_B(x), q)$$

where q is a proof that $f(h_A(x)) = g(h_B(x))$. But this is just the result of using happly on p, so we've constructed our map.

To show that this is really a quasi-inverse, let $h: X \to P$, and run the first construction. This gives an element $(\operatorname{pr}_1 \circ h, \operatorname{pr}_1 \circ \operatorname{pr}_2 \circ h, p)$, where $p: f \circ \operatorname{pr}_1 \circ h = g \circ \operatorname{pr}_1 \circ \operatorname{pr}_2 \circ h$. By induction, we may suppose that p is a reflexivity. Running the backwards construction, we define

$$h'(x) \equiv (\operatorname{pr}_1 \circ h, \operatorname{pr}_1 \circ \operatorname{pr}_2 \circ h, \operatorname{happly}(\operatorname{refl}, x))$$

By function extensionality, h' = h. For the other direction, it suffices to consider an element (h_A, h_B, p) with $p : f \circ h_A = g \circ h_B$, which we may assume is a reflexivity. Then the second construction gives a function

$$h(x) \equiv (h_A(x), h_B(x), \mathsf{happly}(q)(x))$$

and running the first construction on this gives

$$(h_A(x), h_B(x), p)$$

thus establishing the equivalence.

For the Coq solution, I needed some help from ezyang's solutions, since I was struggling with the second part of the proof.

Definition P := pullback f g.

Definition funpull := pullback (@compose X = f) (@compose X = g).

```
Definition ex2_11_f: (X \rightarrow P) \rightarrow \text{funpull}.
  intro h. unfold funpull.
  refine (fun x:X \Rightarrow (h x).1;_).
  refine (fun x:X \Rightarrow (h x).2.1; _).
  apply path_forall; intro.
  unfold compose. apply (h x) . 2.2.
Defined.
Definition ex2_11_g: funpull \rightarrow (X \rightarrow P).
  intros z x.
  refine (z.1 x; (z.2.1 x; \_)).
  exact (apD10 z. 2. 2 x).
Defined.
Theorem ex2_11: (X \rightarrow P) \simeq \text{funpull}.
Proof.
  refine (equiv_adjointify ex2_11_f ex2_11_g _ _).
  intro h. destruct h as [hA [hB p]].
  unfold ex2_11_f, ex2_11_g. simpl. f_ap. f_ap.
  apply eta_path_forall.
  intro h. apply path_forall; intro. simpl.
  repeat (apply path_sigma_uncurried; ∃ 1; simpl).
  change (h x).2.2 with ((\text{fun } x' \Rightarrow (h x').2.2) x); f_ap.
  apply eisretr.
Qed.
```

*Exercise 2.12 (p. 104) Suppose given two commutative squares

and suppose that the right-hand square is a pullback square. Prove that the left-hand square is a pullback square if and only if the outer rectangle is a pullback square.

Solution The good ol' pullback lemma. Suppose we have such a commutative diagram, and that the square on the right is a pullback, or

$$(X \to C) \simeq (X \to E) \times_{(X \to F)} (X \to D)$$

For the forward direction, suppose that the left-hand square is also a pullback, so that

$$(X \to A) \simeq (X \to C) \times_{(X \to D)} (X \to B)$$

We need to show that the full square is a pullback; i.e. that

$$(X \to A) \simeq (X \to E) \times_{(X \to F)} (X \to B)$$

which we'll do by showing that

$$(X \to C) \times_{(X \to D)} (X \to B) \simeq (X \to E) \times_{(X \to F)} (X \to B)$$

and then composing. To build this equivalence, it suffices by induction to consider an element of the form (f, g, p), where $f: X \to C$, $g: X \to B$, and $p: cd \circ f = bd \circ g$, where the functions with two-letter names

denote the obvious arrows in the diagram. We can then obtain an element $(ce \circ f, g, q)$ on the right hand side, where $q : ef \circ ce \circ f = df \circ bd \circ g$, by using p and the equality $ef \circ ce = df \circ cd$ arising from the right square.

To show that this is an equivalence, suppose that (f',g',p) is an element of the codomain. Then $(f',bd \circ g,p')$ is an element of the right side of the equivalence making the right-hand square a pullback, so we obtain an arrow $h: X \to A$ by transporting along the equivalence. Then $(ac \circ h, g, p'')$ is an element of the left-hand side of our purported equivalence, and we just need to show that these procedures are homotopic to the identity.

Suppose we have $f: X \to C$, $g: X \to B$, and that $cd \circ f = bd \circ g$. Then $ce \circ f: X \to E$ is such that $ef \circ ce \circ f = df \circ bd \circ g$. Running the second construction, the other way, we obtain an arrow $h: X \to A$ such that $ab \circ h = g$ and $ce \circ ac \circ h = ce \circ f$. We need to show that $bd \circ g = ac \circ h$.

```
*Exercise 2.13 (p. 104) Show that (2 \simeq 2) \simeq 2.
```

Solution The result essentially says that **2** is equivalent to itself in two ways: the identity provides one equivalence, and negation gives the other. So we first define these. id_2 is its own quasi-inverse; we have $id_2 \circ id_2 \equiv id_2$, so $id_2 \sim id_2$ easily. \neg is also its own quasi-inverse, since for any x, $\neg \neg x = x$. Now we need to show that these are the only two elements of **2** \simeq **2**. That is, we want to show that

$$\prod_{x: \sum_{(f:2 \rightarrow 2)} \mathsf{isequiv}(f)} \left(f = (\mathsf{id}_{\mathbf{2}}, q) \right) + \left(f = (\neg, q') \right)$$

where q and q' are the appropriate proofs of equivalence. So suppose that $x:(\mathbf{2} \simeq \mathbf{2})$; by induction, it suffices to consider the case where x is (f,p), with $f:\mathbf{2} \to \mathbf{2}$ and p: isequiv(f).

```
Lemma id_isequiv : Bool \simeq Bool.
Proof.
  refine (equiv_adjointify idmap idmap _ _).
  intro; reflexivity.
  intro; reflexivity.
Defined.
Lemma negb_isequiv : Bool \simeq Bool.
Proof.
  refine (equiv_adjointify negb negb _ _);
  intro; destruct x; reflexivity.
Defined.
Definition ex2_13_g: Bool \rightarrow (Bool \simeq Bool).
  intros. destruct H.
  refine (equiv_adjointify idmap idmap _ _); intro; reflexivity.
  refine (equiv_adjointify negb negb _ _); intro; destruct x; reflexivity.
Defined.
```

Exercise 2.14 (p. 104) Suppose we add to type theory the equality reflection rule which says that if there is an element p: x = y, then in fact $x \equiv y$. Prove that for any p: x = x we have $p \equiv \text{refl}_x$.

Solution Suppose that p : x = x; we show that $p = \text{refl}_x$, by path induction. It suffices to consider the case where $p \equiv \text{refl}_x$, in which case we have $\text{refl}_x : \text{refl}_x = \text{refl}_x$. Thus $p = \text{refl}_x$ is inhabited, so by the equality reflection rule, $p \equiv \text{refl}_x$.

*Exercise 2.15 (p. 105) Show that Lemma 2.10.5 can be strengthened to

$$\mathsf{transport}^B(p,-) =_{B(x) \to B(y)} \mathsf{idtoeqv}(\mathsf{ap}_B(p))$$

without using function extensionality.

*Exercise 2.16 (p. 105) Suppose that rather than function extensionality, we suppose only the existence of an element

$$\mathsf{funext}: \prod_{(A:\mathcal{U})} \prod_{(B:A \to \mathcal{U})} \prod_{f,g: \prod_{(x:A)} B(x)} (f \sim g) \to (f = g)$$

(with no relationship to happly assumed). Prove that in fact, this is sufficient to imply the whole function extensionality axiom (that happly is an equivalence).

Solution Suppose that we have such an element, and let $A : \mathcal{U}$, $B : A \to \mathcal{U}$, and $f,g : \prod_{(x:A)} B(x)$. We need to construct a quasi-inverse for the function

happly :
$$(f = g) \rightarrow (f \sim g)$$

and this is given by funext. Suppose that p: f=g; then we can show funext(happly(p)) = p. By induction, we can assume that p is refl_f. Then by definition, happly(refl_f) $\equiv \lambda x$. refl_{f(x)}: $\prod_{(x:A)} f(x) = f(x)$.

*Exercise 2.17 (p. 105)

- (i) Show that if $A \simeq A'$ and $B \simeq B'$, then $(A \times B) \simeq (A' \times B')$.
- (ii) Give two proofs of this fact, one using univalence and one not using it, and show that the two proofs are equal.
- (iii) Formulate and prove analogous results for the other type formers: Σ , \rightarrow , Π , and +.

Solution (i) Suppose that $g: A \simeq A'$ and $h: B \simeq B'$. By the univalence axiom, this means that A = A' and B = B'. But then $A \times B = A' \times B'$, so again by univalence $(A \times B) \simeq (A' \times B')$.

```
Theorem ex2_17_i '{Univalence}: \forall (A A' B B' : Type),
  A \simeq A' \rightarrow B \simeq B' \rightarrow (A \times B) \simeq (A' \times B').
Proof.
  intros A A' B B' HA HB.
  apply equiv_path_universe in HA.
  apply equiv_path_universe in HB.
  apply equiv_path_universe.
  rewrite HA, HB. reflexivity.
Defined.
(ii) To prove this without univalence
Theorem ex2_17_maps '{Univalence}: \forall (A A' B B' : Type),
  A \simeq A' \to B \simeq B' \to (A \to B) \simeq (A' \to B').
Proof.
  intros A A' B B' HA HB.
  apply equiv_path_universe in HA.
  apply equiv_path_universe in HB.
  apply equiv_path_universe.
  rewrite HA, HB. reflexivity.
Theorem ex2_17_sum '{Univalence}: \forall (A A' B B' : Type),
  A \simeq A' \rightarrow B \simeq B' \rightarrow (A + B) \simeq (A' + B').
Proof.
```

intros A A' B B' HA HB.
apply equiv_path_universe in HA.
apply equiv_path_universe in HB.
apply equiv_path_universe.
rewrite HA, HB. reflexivity.
Qed.