Määrittelydokumentti

Aion toteuttaa matriisilaskimen, joka osaa laskea vähimmillään determinantin, transpoosin, yhteen-, vähennys- ja kertolaskun sekä kertolaskun Strassenin algoritmilla. Determinantin laskemiseksi on olemassa useita algoritmeja; ensisijainen valintani on Laplacen algoritmi, joka vaikutti toteutuskelpoisimmalta. (Cormen et al., 2009:75-82; Wikipedia, 2014a) Jos aika sallii, olisi toki mielenkiintoista verrata eri algoritmeja. Lisäksi, jos jää aikaa, laskin voisi tarkistaa, onko matriisi kääntyvä, mahdollisesti Gauss-Jordan -algoritmin avulla (Wikipedia, 2014b). Tietorakenteina tulen käyttämään kaksiulotteisia tauluja. Yritin valita toteutettaviksi algoritmeja, jotka ovat toisaalta sopivan haastavia, mutta toteutettavissa kurssin aikataulun puitteissa.

Taulukko 1 kokoaa operaatioiden aika- ja tilavaativuudet.

Taulukko 1 Operaatioiden aika- ja tilavaativuudet. Wikipedia (2014a) mukaillen.

Operaatio	Syöte	Algoritmi	Aikavaativuus	Tilavaativuus
Yhteen- ja vähennyslasku	Kaksi n*m matriisia	Perus	O(nm)	O(nm)
Kertolasku	Yksi n*m matriisi ja yksi m*p matriisi	Perus	O(nmp)	O(max(n*m,m*p, n*p))
Kertolasku	Kaksi n*n matriisia	Perus	O(n³)	O(n²)
		Strassen	O(n ^{2.81})	
Transpoosi	Kaksi n*m matriisia	Perus	O(nm)	O(nm)
Determinantti	Yksi n*n matriisi	Laplace	O(n!)	O(n²)

Ohjelma tulee toimimaan tekstikäyttöliittymällä. Käyttäjä valitsee haluamansa operaation ja matriisien alkiot syötetään todennäköisesti riveittäin. Käyttöliittymä tarkentuu työn edetessä.

Lähteet:

Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L. ja Stein, Clifford. *Introduction to algorithms*. 3. painos. Cambridge, MA: MIT Press, 2009.

Wikipedia (2014a). *Computational complexity of mathematical operations*, http://en.wikipedia.org/w/index.php? title=Computational_complexity_of_mathematical_operations&oldid=595993721 [14.5.2014]

Wikipedia (2014b). *Invertible matrix*, http://en.wikipedia.org/wiki/Invertible_matrix [15.5.2014]