Departamento de Informática Universidad Técnica Federico Santa María

Modelamiento y programación Lineal v. 1.0.0

Renata Mella renata.mella.12@sansano.usm.cl

August 11, 2016

Contenido

Modelamiento

Preámbulo

Programación Lineal

Definiciones Supuestos Ejemplo

Métodos de Resolución

Método Gráfico Simplex

Modelamiento Preámbulo

► Un modelo matemático es una representación idealizada de la realidad, es decir, es una abstracción de ésta.

- Un modelo matemático es una representación idealizada de la realidad, es decir, es una abstracción de ésta.
- Sus elementos característicos son:
 - Datos
 - Variables
 - Restricciones
 - Objetivo

Programación Lineal Definiciones

Definición 1: Sea x_1, x_2, \dots, x_n una serie de variables de decisión. Una función $f(x_1, x_2, \dots, x_n)$ es una función lineal sí y sólo sí para un conjunto de constantes c_1, c_2, \dots, c_n se tiene que:

$$f(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

Además, toda variable de decisión existe dentro de los valores reales positivos.

Programación Lineal Definiciones

Definición 1: Sea x_1, x_2, \dots, x_n una serie de variables de decisión. Una función $f(x_1, x_2, \dots, x_n)$ es una función lineal sí y sólo sí para un conjunto de constantes c_1, c_2, \dots, c_n se tiene que:

$$f(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

Además, toda variable de decisión existe dentro de los valores reales positivos.

Definición 2: Para cualquier función $f(x_1, x_2, \dots, x_n)$ y cualquier número b las desigualdades:

- $f(x_1, x_2, \cdots, x_n) \leq b$
- $f(x_1, x_2, \cdots, x_n) \geq b$

son desigualdades lineales.

Porblema de programación lineal (LP)

Es un problema de optimización para el cual debemos tener presente los siguientes elementos:

- Se definen variables de decisión a las cuales asignaremos un valor según las condiciones del problema.
- 2. Luego se determina una **función objetivo** como una función lineal de las variables de decisión que se desea optimizar, ya sea maximizando o minimizando.
- Los valores de las variables de decisión deben satisfacer un conjunto de restricciones. Éstas deben ser lineales, pudiendo ser una ecuación o desigualdad.
- 4. Existe una restricción de signo asociada a cada variable, la cual llamaremos **naturaleza de las variables**.
- Existen también parámetros preestablecidos que se pueden utilizar para armar las restricciones.

Programación Lineal Supuestos

Existen 4 supuestos respecto a la programación lineal:

Supuesto de Proporción: La contribución de cada variable a la función objetivo es proporcional al valor de la variable de decisión.

Existen 4 supuestos respecto a la programación lineal:

- Supuesto de Proporción: La contribución de cada variable a la función objetivo es proporcional al valor de la variable de decisión.
- Supuesto de Adición: La contribución de cada variable a la función objetivo es independiente de los valores de otras variables de decisión.

Existen 4 supuestos respecto a la programación lineal:

- Supuesto de Proporción: La contribución de cada variable a la función objetivo es proporcional al valor de la variable de decisión.
- Supuesto de Adición: La contribución de cada variable a la función objetivo es independiente de los valores de otras variables de decisión.
- Supuesto de Divisibilidad: Cada variable de decisión puede tomar valores fraccionarios.

Existen 4 supuestos respecto a la programación lineal:

- Supuesto de Proporción: La contribución de cada variable a la función objetivo es proporcional al valor de la variable de decisión.
- Supuesto de Adición: La contribución de cada variable a la función objetivo es independiente de los valores de otras variables de decisión.
- Supuesto de Divisibilidad: Cada variable de decisión puede tomar valores fraccionarios.
- Supuesto de Certeza: Cada parámetro del problema debe ser conocido con certeza.

Programación Lineal

La ciudad 1 produce 500 toneladas de basura por día y la ciudad 2 produce 400 toneladas por día. La basura debe ser incinerada en los incineradores 1 ó 2, y cada incinerador puede procesar hasta 500 toneladas de basura por día. El costo de incinerar la basura es US \$40/ton en el incinerador 1 y US \$30/ton en el incinerador 2. La incineración reduce cada tonelada de basura a 0.2 toneladas de cenizas, las cuales deben ser llevadas a uno de dos depósitos. Cada depósito puede recibir a lo más 200 toneladas de cenizas por día. El costo es de US \$3/milla para transportar una tonelada de material (ya sea ceniza o basura). Las distancias en millas se muestran en la tabla. Formule el problema de programación lineal que se puede usar para minimizar los costos.

	Incinerador 1	Incinerador 2
Ciudad 1	30	5
Ciudad 2	36	42
Botadero 1	5	9
Botadero 2	8	6

Pasos a seguir

- 1. Graficar las restricciones
- 2. Identicar la region factible. Entiéndase por región factible como el *área* donde las variables cumplen con las restricciones y con sus propios dominios.
- 3. Determinar el valor de la función objetivo en los vértices de la región factible e identicar la solucion óptima.
- 4. Determinar qué restricciones están activas.

Considere el siguiente modelo de programación lineal:

Min
$$z = x + 3y$$

Sujeto a:
 $2x + y \le 16$
 $x \ge 2$
 $x + y \ge 6$
 $x, y \ge 0$

Métodos de Resolución Método Gráfico

Modelo con óptimos Alternativos/Múltiples

Max
$$z = 3x + 2y$$

Sujeto a:
$$\frac{x}{40} + \frac{y}{60} \le 1$$
$$\frac{x}{50} + \frac{y}{50} \le 1$$
$$x, y > 0$$

Métodos de Resolución Método Gráfico

Modelo No Factible

Max
$$z = 3x + 2y$$

Sujeto a:

$$\frac{x}{40} + \frac{y}{60} \le 1$$

$$\frac{x}{50} + \frac{y}{50} \le 1$$

$$x \ge 30$$

$$y \ge 20$$

$$x, y \ge 0$$

Métodos de Resolución Método Gráfico

Modelo No Acotado

Max
$$z = 2x - y$$

Sujeto a:
 $x - y \le 1$
 $2x + y \ge 6$
 $x, y \ge 0$

Métodos de Resolución Método Gráfico

Paso 1: Estandarización

- ► Restricción ≤: Se agrega variable artificial de holgura s_i, que representa la cantidad de recurso no empleado de esa restricción.
- ▶ Restricción =: Se agrega variable artificial a_i.
- ▶ Restricción \geq : Se agrega restando una variable de exceso e_i , que representa la cantidad de sobresatisfacción de la restricción. También se agrega una variable artificial a_i .

Valores que adquieren estas variables artificiales:

- \triangleright s_i , $e_i = 0$
- ▶ a_i = M (minimización)
- ▶ $a_i = -M$ (maximización)

NOTA IMPORTANTE

El método simplex está hecho para realizar minimización. Si se desea maximizar, se pueden seguir 2 caminos:

- ▶ Multiplicar la función objetivo por -1 y mantener todo como antes (incluyendo $a_i = M$).
- Se pueden realizar modificaciones a las reglas del simplex, como por ejemplo: se incorpora a la base las variables que poseen precio sombra o costo de oportunidad más positivo. El óptimo se alcanza cuando todos los precios sombra son negativos (a diferencia de cuando minimizábamos). En este caso, debemos asignar $a_i = -M$.

Ejemplo

Considere el siguiente modelo lineal:

Min
$$z = x_1 + 3x_2$$

Sujeto a:
 $2x_1 + x_2 \le 16$
 $x_1 \ge 2$
 $x_1 + x_2 \ge 6$
 $x_1, x_2 \ge 0$

Utilice el método simplex para encontrar la solución.

Ejercicio Propuesto

Considere el siguiente modelo lineal:

Max
$$z = x_1 + 3x_2 + x_3 + 4x_4$$

Sujeto a:
 $x_1 + x_2 + x_3 + x_4 \le 35$
 $2x_1 + x_2 - x_3 - x_4 \le 20$
 $x_1 + 3x_2 \ge 4$
 $x_4 - x_2 \ge 10$
 $x_1, x_2, x_3, x_4 \ge 0$

Utilice el método simplex para encontrar la solución.