

INT247 (MACHINE LEARNING FOUNDATION) ACADEMIC TASK 2

on

Census Income Report

Submitted by

Name: Satya Chandra Reddy Sabbella

Registration No: 11805549

Section and Roll No: KM007 – A16

Parent Section: K18GR

Programme Name: B.Tech - CSE

Under the Guidance of

Dr. Aditya Khamparia

School of Computer Science & Engineering
Lovely Professional University, Phagwara

Adult UCI Dataset (Census Income) Analysis with Python

Adult UCI dataset is one of the popular datasets for practice. It is a **Supervised binary classification problem**.

Aim is to predict whether a person makes over 50k a year

Details of the Dataset

The dataset contains a mix of categorical and numeric type data.

Categorical Attributes

- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.
 - Individual work category
- **education**: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
 - Individual's highest education degree
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
 - Individual marital status
- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspect, Adm-clerical, Farming-fishing, Transportmoving, Priv-house-serv, Protective-serv, Armed-Forces.
 - Individual's occupation
- relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
 - Individual's relation in a family
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
 - Race of Individual
- **sex**: Female, Male.
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany,
 Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras,
 Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, DominicanRepublic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua,
 Scotland, Thailand, Yugoslavia, El-Salvador, Trinidad Tobago, Peru, Hong, HollandNetherlands.
 - Individual's native country

Continuous Attributes

- age: continuous.
 - Age of an individual
- **fnlwgt**: final weight, continuous.

- The weights on the CPS files are controlled to independent estimates of the civilian noninstitutional population of the US. These are prepared monthly for us by Population Division here at the Census Bureau.
- capital-gain: continuous.
 capital-loss: continuous.
 hours-per-week: continuous.
 - Individual's working hour per week

Sample of the dataset-

4	А	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0
1	age	workclass		education	education	marital-sta	occupation	relationshi	race	gender	capital-gai	capital-los	hours-per-	native-cou	income
2	25	Private	226802	11th	7	Never-mai	Machine-c	Own-child	Black	Male	0	0	40	United-Sta	<=50K
3	38	Private	89814	HS-grad	9	Married-ci	Farming-fi	Husband	White	Male	0	0	50	United-Sta	<=50K
4	28	Local-gov	336951	Assoc-acd	12	Married-ci	Protective	Husband	White	Male	0	0	40	United-Sta	>50K
5	44	Private	160323	Some-colle	10	Married-ci	Machine-c	Husband	Black	Male	7688	0	40	United-Sta	>50K
6	18	?	103497	Some-colle	10	Never-mai	?	Own-child	White	Female	0	0	30	United-Sta	<=50K
7	34	Private	198693	10th	6	Never-mai	Other-serv	Not-in-fan	White	Male	0	0	30	United-Sta	<=50K
8	29	?	227026	HS-grad	9	Never-mai	?	Unmarried	Black	Male	0	0	40	United-Sta	<=50K
9	63	Self-emp-r	104626	Prof-schoo	15	Married-ci	Prof-specia	Husband	White	Male	3103	0	32	United-Sta	>50K
10	24	Private	369667	Some-colle	10	Never-mai	Other-serv	Unmarried	White	Female	0	0	40	United-Sta	<=50K
11	55	Private	104996	7th-8th	4	Married-ci	Craft-repa	Husband	White	Male	0	0	10	United-Sta	<=50K
12	65	Private	184454	HS-grad	9	Married-ci	Machine-c	Husband	White	Male	6418	0	40	United-Sta	>50K
13	36	Federal-go	212465	Bachelors	13	Married-ci	Adm-cleric	Husband	White	Male	0	0	40	United-Sta	<=50K
14	26	Private	82091	HS-grad	9	Never-mai	Adm-cleric	Not-in-fan	White	Female	0	0	39	United-Sta	<=50K
15	58	?	299831	HS-grad	9	Married-ci	?	Husband	White	Male	0	0	35	United-Sta	<=50K
16	48	Private	279724	HS-grad	9	Married-ci	Machine-c	Husband	White	Male	3103	0	48	United-Sta	>50K
17	43	Private	346189	Masters	14	Married-ci	Exec-mana	Husband	White	Male	0	0	50	United-Sta	>50K
18	20	State-gov	444554	Some-colle	10	Never-mai	Other-serv	Own-child	White	Male	0	0	25	United-Sta	<=50K
19	43	Private	128354	HS-grad	9	Married-ci	Adm-cleric	Wife	White	Female	0	0	30	United-Sta	<=50K
20	37	Private	60548	HS-grad	9	Widowed	Machine-c	Unmarried	White	Female	0	0	20	United-Sta	<=50K
21	40	Private	85019	Doctorate	16	Married-ci	Prof-specia	Husband	Asian-Pac-	Male	0	0	45	?	>50K
22	34	Private	107914	Bachelors	13	Married-ci	Tech-supp	Husband	White	Male	0	0	47	United-Sta	>50K
23	34	Private	238588	Some-colle	10	Never-mai	Other-serv	Own-child	Black	Female	0	0	35	United-Sta	<=50K
24	72	?	132015	7th-8th	4	Divorced	?	Not-in-fan	White	Female	0	0	6	United-Sta	<=50K
25	25	Private	220931	Bachelors	13	Never-mai	Prof-specia	Not-in-fan	White	Male	0	0	43	Peru	<=50K
26	25	Private	205947	Bachelors	13	Married-ci	Prof-specia	Husband	White	Male	0	0	40	United-Sta	<=50K
27	45	Self-emp-r	432824	HS-grad	9	Married-ci	Craft-repa	Husband	White	Male	7298	0	90	United-Sta	>50K

Loading basic libraries for the data-

```
In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns
```

Exploring the data -

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per-week	native- country	income
0	25	Private	226802	11th	7	Never- married	Machine-op- inspct	Own-child	Black	Male	0	0	40	United- States	<=50K
1	38	Private	89814	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	Male	0	0	50	United- States	<=50K
2	28	Local-gov	336951	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	Male	0	0	40	United- States	>50K
3	44	Private	160323	Some- college	10	Married-civ- spouse	Machine-op- inspct	Husband	Black	Male	7688	0	40	United- States	>50K
4	18	?	103497	Some- college	10	Never- married	?	Own-child	White	Female	0	0	30	United- States	<=50K
5	34	Private	198693	10th	6	Never- married	Other-service	Not-in-family	White	Male	0	0	30	United- States	<=50K
6	29	?	227026	HS-grad	9	Never- married	?	Unmarried	Black	Male	0	0	40	United- States	<=50K
7	63	Self-emp- not-inc	104626	Prof- school	15	Married-civ- spouse	Prof-specialty	Husband	White	Male	3103	0	32	United- States	>50K
8	24	Private	369667	Some- college	10	Never- married	Other-service	Unmarried	White	Female	0	0	40	United- States	<=50K
9	55	Private	104996	7th-8th	4	Married-civ- spouse	Craft-repair	Husband	White	Male	0	0	10	United- States	<=50K
4						spouse								States	

This dataset contains few unwanted values ('?') but it doesn't contain any null values in it but is filled with **question marks** as highlighted above. I have replaced the values with the mode values as shown below.

Understanding the data -

```
| Total | Content | Conten
```

This data contains 48,842 rows and 15 columns. This data type is a mixture of categorical and numerical data.

Counting the '?' values -

We can see that only three columns have '?' values and I cleaned it up using feature engineering.

Preparing Data -

```
In [16]: df['workclass'] = df['workclass'].replace('?', 'Private')
    df['occupation'] = df['occupation'].replace('?', 'Prof-specialty')
    df['native-country'] = df['native-country'].replace('?', 'United-State')
             s')
In [17]: df.head(10)
Out[17]:
                                                             educational-
                                                                              marital-
                 age workclass fnlwgt
                                                education
                                                                                          occupation relationsh
                                                             num
                                                                              status
                                                                              Never-
                                                                                          Machine-
                25
                       Private
                                     226802 11th
                                                             7
              0
                                                                                                         Own-child
                                                                              married
                                                                                          op-inspct
                                                                              Married-
                                                                                          Farming-
              1 38
                       Private
                                     89814
                                               HS-grad
                                                             9
                                                                              civ-
                                                                                                         Husband
                                                                                          fishing
                                                                              spouse
                                                                              Married-
                                                Assoc-
                                                                                          Protective-
                                                                              civ-
              2 28
                       Local-gov
                                     336951
                                                             12
                                                                                                         Husband
                                                acdm
                                                                                          serv
                                                                              spouse
                                                                              Married-
                                                                                          Machine-
                                                Some-
              3 44
                       Private
                                      160323
                                                             10
                                                                              civ-
                                                                                                         Husband
                                                college
                                                                                          op-inspct
                                                                              spouse
```

Some-

college

10

6

9

15

10

103497

104626

369667

198693 10th

227026 HS-grad

Prof-

school

Some-

college

Private

Private

Private

Self-emp-

not-inc

Private

4 18

5 34

7 63

8 24

6 29

Never-

married Never-

married

Never-

married Married-

spouse Never-

married

civ-

Prof-

specialty

Other-

service Prof-

specialty

specialty

Other-

service

Prof-

Own-child

Not-in-fami

Unmarried

Husband

Unmarried

The '?' values have been handeled and the obtained new dataset I have cleaned furthur more usinf feature engineering.

Feature Engineering -

```
df.education= df.education.replace(['Preschool', '1st-4th', '5th-6th',
In [18]:
           '7th-8th', '9th', '10th', '11th', '12th'], 'School')
           df.education = df.education.replace('HS-grad', 'High school')
           df.education = df.education.replace(['Assoc-voc', 'Assoc-acdm', 'Prof-sc
          hool', 'Some-college'], 'High-Educ')
          df.education = df.education.replace('Bachelors', 'Undergrad')
df.education = df.education.replace('Masters', 'Grad')
In [19]: df['marital-status']= df['marital-status'].replace(['Married-civ-spous
          e', 'Married-AF-spouse'], 'Married')
df['marital-status']= df['marital-status'].replace(['Never-married'], 'N
          ot-married')
          df['marital-status']= df['marital-status'].replace(['Divorced', 'Separat
          ed','Widowed',
                                                                     'Married-spouse-absen
          t'], 'other')
In [20]: df.income = df.income.replace('<=50K', 0)</pre>
          df.income = df.income.replace('>50K', 1)
```

By doing this I've simplified the data in the rows more simpler than before.

Data Visualization –

In [28]: sns.countplot(df['education'], hue='gender', data=df, palette='seismi
 c');

In [25]: sns.heatmap(df.corr(), annot=True);

Key Findings

- The minimum age is 17 and the maximum is 90 years, most of the working age group lies between 20-40
- The minimum hours-per-week is 1 and maximum is 90, with most of the count lying between 30-40
- outliers observed in almost all the numeric features, these are the extreme values that are present in the data.
- Not very strong correlation observed among variables

Scaling the data-

```
In [29]: from sklearn.preprocessing import StandardScaler, LabelEncoder
In [30]:
         df1= df.copy()
          df1= df1.apply(LabelEncoder().fit_transform)
          df1.head()
Out[30]:
                                             educational-
                                                         marital-
                 workclass fnlwgt education
                                                                  occupation relationship
                                             num
                                                         status
          0 8
                 3
                            19329 4
                                             6
                                                         1
                                                                  6
                                                                             3
          1 21
                 3
                            4212
                                  2
                                             8
                                                         0
                                                                  4
                                                                             0
                                                                             0
          2
            11
                 1
                            25340 3
                                             11
                                                         0
                                                                  10
          3
            27
                 3
                                             9
                                                         0
                            11201
                                  3
                                                                  6
                                                                             0
            1
                 3
                                  3
                                             9
                                                          1
                                                                  9
                                                                             3
          4
                            5411
In [31]: ss= StandardScaler().fit(df1.drop('income', axis=1))
In [32]: X= ss.transform(df1.drop('income', axis=1))
         y= df['income']
         Χ
Out[32]: array([[-0.99512893, -0.08972675, 0.70632366, ..., -0.20508013,
                  -0.03226706, 0.25969378],
                 [-0.04694151, -0.08972675, -1.19627994, ..., -0.20508013,
                   0.78106212, 0.25969378],
                 [-0.77631645, -1.8902337]
                                             1.46285937, ..., -0.20508013,
                  -0.03226706, 0.25969378],
                 [ 1.41180837, -0.08972675, -0.42803939, ..., -0.20508013,
                  -0.03226706, 0.25969378],
                 [-1.21394141, -0.08972675, 0.38966357, ..., -0.20508013,
                 -1.65892543, 0.25969378],
[ 0.97418341, 0.81052673, 1.20875097, ..., -0.20508013,
                  -0.03226706, 0.25969378]])
```

- Create X and y object to store the independent variable (X) and dependent variable(y).
- Perform Standard Scaling to scale the data
- Label Encoding is performed to convert the categorical data into numeric format
- Label Encoder makes the data suitable for machine
- Perform fit and Transform
- Split the dataset into train and test split

Hyperparameter Tuning –

```
from sklearn.model_selection import train test split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
         random state=40)
In [34]:
         from sklearn.linear_model import LogisticRegression
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.metrics import accuracy score
         model params = {
              'random forest': {
                 'model': RandomForestClassifier(),
'params' : {
                     'n_estimators': [1,5,10]
             'model': LogisticRegression(solver='liblinear',multi_class='aut
         o'),
                  'params': {
                     'C': [1,5,10]
In [35]: from sklearn.model_selection import GridSearchCV
         scores = []
         for model_name, mp in model_params.items():
             clf = GridSearchCV(mp['model'], mp['params'], cv=10, return_train_s
         core=False)
             clf.fit(X, y)
             scores.append({
                 'model': model_name,
                  'best_score': clf.best_score_,
                 'best_params': clf.best_params_
             })
         df2 = pd.DataFrame(scores,columns=['model','best_score','best_params'])
         df2
```

Out[35]:		model	best_score	best_params
	0	random_forest	0.852361	{'n_estimators': 10}
	1	logistic_regression	0.838172	{'C': 1}
	4			

Hyperparameter Tuning is done to find out the best parameters for a certain models to train data, it is done using GridSearchCV, it is a special module specifically used for Hyperparameter Tuning.

Choosing on 3 models and training them and reiterating –

```
In [36]: lr = LogisticRegression(C=1)
         model = lr.fit(X_train, y_train)
         prediction = model.predict(X_test)
         print("Acc on training data: {:,.3f}".format(lr.score(X_train, y_trai)
         print("Acc on test data: {:,.3f}".format(lr.score(X test, y test)))
         Acc on training data: 0.838
         Acc on test data: 0.839
In [37]: rfc = RandomForestClassifier(n estimators=10)
         model1 = rfc.fit(X_train, y_train)
         prediction1 = model1.predict(X test)
         print("Acc on training data: {:,.3f}".format(rfc.score(X_train, y_trai
         print("Acc on test data: {:,.3f}".format(rfc.score(X test, y test)))
         Acc on training data: 0.989
         Acc on test data: 0.851
In [38]: dtc = DecisionTreeClassifier()
         model2 = dtc.fit(X_train, y_train)
         prediction2 = model2.predict(X_test)
         accuracy_score(y_test, prediction2)
         print("Accuracy on training set: {:.3f}".format(dtc.score(X_train, y tra
         print("Accuracy on test set: {:.3f}".format(dtc.score(X test, y test)))
         Accuracy on training set: 1.000
         Accuracy on test set: 0.814
```

Using Hyperparameter Tuning I have set the parameters for the models I have chose to train my data and I have use 3 models

- Logistic Regression
- Random Forest Classifier
- Decision Tree Classifier

By training the module and predicting their accuracy I've concluded that Random Forest Classifier is a better Machine Learning model than the rest two because the accuracy on training it gave me is 85%.

Confusion Matrix (Evaluation / Highest accuracy)-

```
In [39]: from sklearn.metrics import confusion matrix
         from sklearn.metrics import classification report
In [40]: print(confusion_matrix(y_test, prediction))
         [[10380
                   758]
          [ 1608 1907]]
In [41]: print(classification_report(y_test, prediction))
                       precision
                                    recall f1-score
                                                        support
                            0.87
                                      0.93
                                                 0.90
                                                          11138
                    1
                            0.72
                                      0.54
                                                 0.62
                                                           3515
             accuracy
                                                 0.84
                                                          14653
                            0.79
                                      0.74
                                                 0.76
            macro avg
                                                          14653
                                                0.83
         weighted avg
                            0.83
                                      0.84
                                                          14653
In [42]: print(confusion matrix(y test, prediction1))
         print(classification_report(y_test, prediction1))
         [[10379
                   759]
          [ 1424 2091]]
                       precision
                                    recall f1-score
                                                        support
                    0
                            0.88
                                      0.93
                                                 0.90
                                                          11138
                                                 0.66
                                                           3515
                    1
                            0.73
                                      0.59
                                                 0.85
                                                          14653
             accuracy
            macro avg
                            0.81
                                      0.76
                                                 0.78
                                                          14653
         weighted avg
                            0.84
                                      0.85
                                                 0.85
                                                          14653
In [43]:
         print(confusion matrix(y test, prediction2))
         print(classification_report(y_test, prediction2))
          [[9709 1429]
           [1297 2218]]
                        precision
                                     recall f1-score
                                                         support
                     0
                             0.88
                                        0.87
                                                  0.88
                                                           11138
                     1
                             0.61
                                        0.63
                                                  0.62
                                                            3515
              accuracy
                                                  0.81
                                                           14653
                             0.75
                                       0.75
                                                  0.75
                                                           14653
             macro avg
          weighted avg
                             0.82
                                       0.81
                                                  0.82
                                                           14653
```