

IIC1253 — Matemáticas Discretas

EXAMEN

Preguntas en blanco: Preguntas entregadas en blanco se evaluarán con un 1.5.

Pregunta 1

Sea Σ un conjunto de formulas proposicionales y φ una formula proposicional. Demuestre que $\Sigma \models \varphi$ si, y sólo si, $\Sigma \cup \{\neg \varphi\}$ es incosistente (no-satisfacible).

Pregunta 2

Sea G = (V, E) un grafo no-dirigido tal que V es un conjunto finito de vértices y $E \subseteq 2^V$ es un conjunto de aristas tal que |e|=2 para todo $e\in E$. Un emparejamiento perfecto M de G es un subconjunto de aristas $M \subseteq E$ tal que todo vértice esta conectado a exactamente una arista en M, esto es, M es un emparejamiento perfecto si para todo $v \in V$, existe un único $v' \in V$ tal que $\{v, v'\} \in M$.

Para un grafo no-dirigido G = (V, E), escriba una formula proposicional φ_G tal que G tiene un emparejamiento perfecto si, y solo si, φ es satisfacible. Su formula φ_G tiene que tener tamaño polinomial con respecto al tamaño de G.

Pregunta 3

Sea $\mathcal{L} = \{f(\cdot), c\}$ un vocabulario con una función unaria f y una constante c. Considere las siguientes \mathcal{L} -oraciones:

 $\begin{array}{ll} \varphi_1: & \forall x. \ \forall y. \ f(x) = f(y) \rightarrow x = y \\ \varphi_2: & \forall x. \ \neg f(x) = c \\ \varphi_3: & \forall x. \ \neg x = c \rightarrow \exists y. f(y) = x \end{array}$

Para cada uno de los siguientes casos, de una \mathcal{L} -estructura \mathcal{A} tal que:

1. $\mathcal{A} \models \{\neg \varphi_1, \varphi_2, \varphi_3\}$

2. $\mathcal{A} \models \{\varphi_1, \neg \varphi_2, \varphi_3\}$

3. $\mathcal{A} \models \{\varphi_1, \varphi_2, \neg \varphi_3\}$

Pregunta 4

- 1. Sea $f: A \to B$ una función cualquiera de A a B. Sea $R \subseteq A \times A$ una relación binaria sobre A tal que $(x,y) \in R$ si, y sólo si, f(x) = f(y). Demuestre que R es refleja, simétrica y transitiva.
- 2. Demuestre que para todo conjunto A (finito o infinito), existe una relación de equivalencia \sim sobre A tal que A/\sim es un conjunto finito.

Pregunta 5

- 1. Sea A un conjunto finito de tamaño n y $\mathcal{P}(A)$ el conjunto potencia de A. Demuestre por inducción que $|\mathcal{P}(A)| = 2^n$.
- 2. Demuestre que el conjunto $\mathcal{F} = \{f : \mathbb{N} \to \{0,1\}\}\$ es NO numerable usando la demostración de Cantor.

Pregunta 6

- 1. Demuestre que si $f_1 \in \mathcal{O}(g_1)$ y $f_2 \in \mathcal{O}(g_2)$, entonces $f_1 + f_2 \in \mathcal{O}(\max\{g_1, g_2\})$.
- 2. Dado una matriz M de 2×2 y un número n, encuentre un algoritmo para calcular M^n usando la estrategia dividir para conquistar. Use el teorema maestro para calcular el tiempo de su algoritmo.