ATAC-seq Data Pre-processing Pipeline

Chao-Jen Wong October 1, 2018

Overview

Buenrostro 2015:

Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) is a method for mapping chromatin accessibility genome-wide.

Data analysis

Data Pre-processing: make clean BAM files

- · Adpator removel
- Alignments
- PCR duplicates
- Exclude chrM
- Sanity check

Downstream analysis

- Peaking calling
- Annotation
- · Differential binding

Data analysis

Software requirement

- · cutadapt
- picard
- samtools
- bowtie2
- FASTQC
- MACS2

BioConductor

- ChIPseeker or ChIPpeakAnno
- DiffBind

Pre Pre-Processing

Quality Control

FASTQC

Chasity filtering

Tips: Hutbase.org offers FASTQC+Filtering pipeline

Pre Pre-Processing

Concatenate sequence reads on multiple lanes

Genomic Core sequence samples on multiple lanes may have separate files for each lane.

```
cat $(ls * R1 *.fastq.gz) > sampleName R1.fastq.gz
```

or

```
zcat $(ls *_R1_*.fastq.gz) > sampleName_R1.fastq
```

Apater removal

cutadapt searches input reads for a given adapter sequence and removes it.

Usual parameters

- · -a to remove 3' adapter
- · -g to remove 5' adapter
- -0 to give minimal length of the provided adapter sequence.

Adapter removal

Illumina Nextera Transposase Adapters

```
Read 1
5' TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG
Read 2
5' GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

ml cutadapt
cutadapt -g TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG \
        -0 5 -e 0.2 \
        input_R1.fastq > output_R1.fastq 2> report_R1.txt
gzip output.fastq
```

Genomic indexes

Pre-build reference are available from iGenome

```
cd /shared/biodata/ngs/Reference/iGenomes
cwon2@rhino2:/shared/biodata/ngs/Reference/iGenomes$ ls -lt
total 682
                                 22 Dec 6
drwxrwsr-x 3 rbasom
                     biodata adm
                                             2017 Bos taurus
drwxrwsr-x 7 mfitzgib biodata adm 155 Jul 27
                                              2017 Homo sapiens
drwxrwsr-x 4 rbasom
                     biodata adm 47 Aug 22
                                             2016 Rattus norvegicus
drwxrwsr-x 3 rbasom
                     biodata adm 25 Jun 8
                                             2016 Macaca mulatta
drwxrwsr-x 4 rbasom
                     biodata adm 47 Jan 26
                                             2016 Caenorhabditis elegans
                                              2016 Saccharomyces cerevisiae
drwxrwsr-x 4 rbasom
                     biodata adm
                                   47 Jan 14
drwxrwsr-x 3 rbasom
                     biodata adm 22 Nov 4
                                             2015 Danio rerio
drwxrwsr-x 3 rbasom
                     biodata adm
                                   22 Sep 1
                                             2015 Gallus gallus
drwxrwsr-x 4 rbasom
                     biodata adm
                                   47 May 18
                                             2015 Canis familiaris
drwxrwsr-x 4 mfitzgib biodata adm
                                   44 Oct 30
                                              2014 Drosophila melanogaster
```

Usual paramters

parameter	description	default
-X <int></int>	Maximum DNA fragment length	500
very-sensitive	better alignment results are frequently achieved with it	-sensitive
-p <int></int>	Number of cores on which to run	1
seed <int></int>	number used to initialize a pseudorandom number generator	
-k <int></int>	Search for one or more alignments, report aligments	
-a	Search for and report all alignments	

```
ml bowtie2/2.2.5  # if not already loaded
ml samtools/1.0
bowtie2 --very-sensitive -p 4 \
    -I 20 -X 1000 -x $hg38_genomeBuild \
    -1 $trim1.gz -2 $trim2.gz \
    | samtools view -Sb - > $sampleName.bam
```

Why setting **-x 1000** is reasonable?

- necleosome (~147bps) + space in between (~20bps) ~= 160 bps
- cover up at least three size of nucleosomes ~= 600 bps
- cover up possible sikpped nucleosoms at TSS
- just to loosen up

Sort BAM

```
# sort
samtools sort -@ 4 $sampleName.bam $sampleName.bam.sorted
mv $sampleName.bam.sorted.bam
```

Exclude chrM

ATAC-seq datasets usually contain decent among of reads derived from chrM.

Very slow. Better way: write a python package or use picard(?) to remove chrM.

PCR duplicates

PCR duplicates are exact copy of fragments and are artifacts of the library preparation.

Index BAM

Finish up!

samtools index \$sampleName.bam
touch \$sampleName.bowtie2Done.txt

Peak Calling using MACS2

Example of using proper paired reads and real insert size:

```
ml MACS2/2.1.1.20160309-foss-2015b-Python-2.7.9
macs2 callpeak -f BAMPE -t $sampleName.bam \
    -g hs \
    -outdir <output_dir> -n <file_prefix> -q 0.05 \
    -keep-dup all
```

Peak Calling using MACS2

Hints

- If PCR duplicates are not removed already, use default setting -keep-dup 1 to keep one tag of at the sample position.
- If looking for enriched cutting sites. Assuming 200 is the average fragment size:

```
--nomodel --shift -100 --extsize 200
```

Annotation

Biocondutor ChIPseeker or ChIPpeakAnno packages

```
library(ChIPseeker)
library(plyranges)
library(ggplot2)
library(org.Hs.eg.db)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
```

Annotaion

Bridge MACS2's narrowPeaks bed file to ChIPseeker

Annotation

Example using ChIPseeker::annotatePeak() and ChIPseeker::plotAnnoBar().

Annotation

Example using ChIPseeker::annotatePeak() and ChIPseeker::plotAnnoBar()

