CHAPTER 6

GRAPHS

All the programs in this file are selected from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed "Fundamentals of Data Structures in C", Computer Science Press, 1992.

Definition

- A graph G consists of two sets
 - a finite, nonempty set of vertices V(G)
 - a finite, possible empty set of edges E(G)
 - G(V,E) represents a graph
- An undirected graph is one in which the pair of vertices in a edge is unordered, $(v_0, v_1) = (v_1, v_0)$
- A directed graph is one in which each edge is a directed pair of vertices, $\langle v_0, v_1 \rangle != \langle v_1, v_0 \rangle$

ta<u>il</u> head

Examples for Graph

complete graph

$$V(G_1)=\{0,1,2,3\}$$

 $V(G_2)=\{0,1,2,3,4,5,6\}$
 $V(G_3)=\{0,1,2\}$

incomplete graph

$$E(G_1) = \{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$$

$$E(G_2) = \{(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)\}$$

$$E(G_3) = \{<0,1>,<1,0>,<1,2>\}$$

complete undirected graph: n(n-1)/2 edges complete directed graph: n(n-1) edges

Complete Graph

- A complete graph is a graph that has the maximum number of edges
 - for undirected graph with n vertices, the maximum number of edges is n(n-1)/2
 - for directed graph with n vertices, the maximum number of edges is n(n-1)
 - example: G1 is a complete graph

Adjacent and Incident

- If (v₀, v₁) is an edge in an undirected graph,
 - v₀ and v₁ are adjacent
 - The edge (v₀, v₁) is incident on vertices v₀ and v₁
- If $\langle v_0, v_1 \rangle$ is an edge in a directed graph
 - v₀ is adjacent to v₁, and v₁ is adjacent from v₀
 - The edge $\langle v_0, v_1 \rangle$ is incident on v_0 and v_1

*Figure 6.3: Example of a graph with feedback loops and a multigraph (p.260)

Subgraph and Path

- A subgraph of G is a graph G' such that V(G') is a subset of V(G) and E(G') is a subset of E(G)
- A path from vertex v_p to vertex v_q in a graph G, is a sequence of vertices, v_p , v_{i1} , v_{i2} , ..., v_{in} , v_q , such that (v_p, v_{i1}) , (v_{i1}, v_{i2}) , ..., (v_{in}, v_q) are edges in an undirected graph
- The length of a path is the number of edges on it

Figure 6.4: Subgraphs of G_1 and G_3 (p.201)

Simple Path and Style

- A simple path is a path in which all vertices, except possibly the first and the last, are distinct
- A cycle is a simple path in which the first and the last vertices are the same
- In an undirected graph G, two vertices, v₀ and v₁, are connected if there is a path in G from v₀ to v₁
- An undirected graph is connected if, for every pair of distinct vertices v_i, v_j, there is a path from v_i to v_j

connected

tree (acyclic graph)

Connected Component

- A connected component of an undirected graph is a maximal connected subgraph.
- A tree is a graph that is connected and acyclic.
- A directed graph is strongly connected if there is a directed path from v_i to v_j and also from v_j to v_i.
- A strongly connected component is a maximal subgraph that is strongly connected.

*Figure 6.5: A graph with two connected components (p.262)

connected component (maximal connected subgraph)

*Figure 6.6: Strongly connected components of G₃ (p.262)

strongly connected component

not strongly connected (maximal strongly connected subgraph)

Degree

- The degree of a vertex is the number of edges incident to that vertex
- For directed graph,
 - the in-degree of a vertex v is the number of edges that have v as the head
 - the out-degree of a vertex v is the number of edges that have v as the tail
 - if di is the degree of a vertex i in a graph G with n vertices and e edges, the number of edges is

$$e = \left(\sum_{i=0}^{n-1} d_i\right)/2$$

14

undirected graph

ADT for Graph

structure Graph is

objects: a nonempty set of vertices and a set of undirected edges, where each edge is a pair of vertices

functions: for all $graph \in Graph$, v, v_1 and $v_2 \in Vertices$

Graph Create()::=return an empty graph

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no incident edge.

Graph InsertEdge(graph, v1,v2)::= return a graph with new edge between v1 and v2

Graph DeleteVertex(*graph*, *v*)::= return a graph in which *v* and all edges incident to it are removed

Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2) is removed

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE else return FALSE

List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v

Graph Representations

- Adjacency Matrix
- Adjacency Lists
- Adjacency Multilists

Adjacency Matrix

- Let G=(V,E) be a graph with n vertices.
- The adjacency matrix of G is a two-dimensional n by n array, say adj_mat
- If the edge (v_i, v_j) is in E(G), adj_mat[i][j]=1
- If there is no such edge in E(G), adj_mat[i][j]=0
- The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

Merits of Adjacency Matrix

- From the adjacency matrix, to determine the connection of vertices is easy
- The degree of a vertex is $\sum_{i=0}^{\infty} adj_{-i} mat[i][j]$
- For a digraph, the row sum is the out_degree, while the column sum is the in degree

$$ind(vi) = \sum_{j=0}^{n-1} A[j,i]$$
 outd $(vi) = \sum_{j=0}^{n-1} A[i,j]$

Data Structures for Adjacency Lists

Each row in adjacency matrix is represented as an adjacency list.

```
#define MAX VERTICES 50
typedef struct node *node pointer;
typedef struct node {
    int vertex;
    struct node *link;
};
node pointer graph[MAX VERTICES];
int n=0; /* vertices currently in use *
```

21

An undirected graph with n vertices and e edges ==> n head nodes and 2e list nodes

Interesting Operations

- •degree of a vertex in an undirected graph
 - —# of nodes in adjacency list
- •# of edges in a graph
 - -determined in O(n+e)
- out-degree of a vertex in a directed graph
 - —# of nodes in its adjacency list
- •in-degree of a vertex in a directed graph
 - -traverse the whole data structure

Compact Representation

node[0] ... node[n-1]: starting point for vertices node[n]: n+2e+1

node[n+1] ... node[n+2e]: head node of edge

[0]	9		[8]	23		[16]	2	
[1]	11	0	[9]	1	4	[17]	5	
[2]	13		[10]	2	5	[18]	4	
[3]	15	1	[11]	0		[19]	6	
[4] [5]	17		[12]	3	6	[20]	5	
[5]	18	2	[13]	0		[21]	7	
[6]	20		[14]	3	7	[22]	6	
[7]	22	3	[15]	1				

CHAPTER 6

24

Figure 6.10: Inverse adjacency list for G₃

Determine in-degree of a vertex in a fast way.

Figure 6.13: Alternate order adjacency list for G₁ (p.268)

Order is of no significance.

Adjacency Multilists

- •An edge in an undirected graph is represented by two nodes in adjacency list representation.
- Adjacency Multilists
 - -lists in which nodes may be shared among several lists.

(an edge is shared by two different paths)

11.0	vertex1	vertex2	path1	
path2	•	-		•

Example for Adjacency Multlists

Lists: vertex 0: M1->M2->M3, vertex 1: M1->M4->M5

vertex 2: M2->M4->M6, vertex 3: M3->M5->M6

Adjacency Multilists

```
typedef struct edge *edge_pointer;
typedef struct edge {
    short int marked;
    int vertex1, vertex2;
    edge_pointer path1, path2;
};
edge_pointer graph[MAX_VERTICES];
```

1.0	vertex1	vertex2	path1	
path2	-	-		

Some Graph Operations

Traversal

Given G=(V,E) and vertex v, find all $w \subseteq V$, such that w connects v.

- Depth First Search (DFS)preorder tree traversal
- Breadth First Search (BFS)
 level order tree traversal
- Connected Components
- Spanning Trees

*Figure 6.19:Graph G and its adjacency lists (p.274)

depth first search: v0, v1, v3, v7, v4, v5, v2, v6

breadth first search: v0, v1, v2, v3, v4, v5, v6, v7

Depth First Search

```
#define FALSE 0
            #define TRUE 1
            short int visited[MAX VERTICES];
void dfs(int v)
  node pointer w;
  visited[v] = TRUE;
  printf("%5d", v);
  for (w=graph[v]; w; w=w->link)
     if (!visited[w->vertex])
       dfs(w->vertex);
                           Data structure
                           adjacency list: O(e)
                           adjacency matrix: O(n<sup>2</sup>)
                CHAPTER 6
```

Breadth First Search

```
typedef struct queue *queue pointer;
typedef struct queue {
    int vertex;
    queue pointer link;
};
void addq(queue pointer *,
          queue pointer *, int);
int deleteq(queue pointer *);
```

Breadth First Search (Continued)

```
void bfs(int v)
  node pointer w;
  queue pointer front, rear;
  front = rear = NULL;
                               adjacency list: O(e)
  printf("%5d", v);
                               adjacency matrix: O(n<sup>2</sup>)
  visited[v] = TRUE;
  addq(&front, &rear, v);
```

```
while (front) {
  v= deleteq(&front);
  for (w=graph[v]; w; w=w->link)
    if (!visited[w->vertex]) {
      printf("%5d", w->vertex);
      addq(&front, &rear, w->vertex);
      visited[w->vertex] = TRUE;
```

CHAPTER 6

35

Connected Components

```
void connected(void)
     for (i=0; i<n; i++) {
           if (!visited[i]) {
                dfs(i);
                printf("\n");
                          adjacency list: O(n+e)
                         adjacency matrix: O(n<sup>2</sup>)
```

Spanning Trees

- When graph G is connected, a depth first or breadth first search starting at any vertex will visit all vertices in G
- A spanning tree is any tree that consists solely of edges in G and that includes all the vertices
- E(G): T (tree edges) + N (nontree edges)
 where T: set of edges used during search
 N: set of remaining edges

Examples of Spanning Tree

 G_1

CHAPTER 6 38

Possible spanning trees

Spanning Trees

- Either dfs or bfs can be used to create a spanning tree
 - When dfs is used, the resulting spanning tree is known as a depth first spanning tree
 - When bfs is used, the resulting spanning tree is known as a breadth first spanning tree
- While adding a nontree edge into any spanning tree, this will create a cycle

DFS VS BFS Spanning Tree

A spanning tree is a minimal subgraph, G', of G such that V(G')=V(G) and G' is connected.

Any connected graph with n vertices must have at least n-1 edges.

A biconnected graph is a connected graph that has

no articulation points.

biconnected graph

CHAPTER 6

41

two connected components

one connected graph

biconnected component: a maximal connected subgraph H (no subgraph that is both biconnected and properly contains H)

biconnected components

Find biconnected component of a connected undirected graph by depth first spanning tree

If u is an ancestor of v then dfn(u) < dfn(v).

*Figure 6.24: dfn and low values for dfs spanning tree with root =3(p.281)

Vertax	0	1	2	3	4	5	6	7	8	9
dfn	4	3	2	0	1	5	6	7	9	8
low	4	0	0	0	0	5	5	5	9	8

u: articulation point $low(child) \ge dfn(u)$

46