Engineering flow devices operating at steady state

Raj Pala,

rpala@iitk.ac.in

Department of Chemical Engineering,
Associate faculty of the Materials Science Programme,
Indian Institute of Technology, Kanpur.

1st Law of TD for flow systems

• Mass Balance, Flow work & enthalpy; Steady State

Engineering flow devices...Turbine...CV analysis

Figs: Cengel & Boles: TD

From Jets to Garden Hoses...Nozzles, Diffusers

Nozzle Diffuser $\rightarrow V_2 << V_1$

4

Figs: Cengel & Boles: TD

Turbines

$$w_{\text{out}} = -\left[(h_2 - h_1) + \frac{V_2^2 - V_1^2}{2} + g(z_2 - z_1) \right] = -(\Delta h + \Delta \text{ke} + \Delta \text{pe})$$

Figs: Cengel & Boles: TD

Throttling Value

$$h_2 \cong h_1$$

$$u_1 + P_1 v_1 = u_2 + P_2 v_2$$

Bathing in Thermodynamics

$$\dot{m}_1 h_1 + \dot{m}_2 h_2 = (\dot{m}_1 + \dot{m}_2) h_3$$

Heat Exchangers-CV Option 1

Figs: Cengel & Boles: TD

Heat Exchangers-CV Option 2

$$\dot{E}_{\rm in} - \dot{E}_{\rm out} = \underbrace{dE_{\rm system}/dt}^{0 \text{ (steady)}}_{= 0}$$
Rate of net energy transfer by heat, work, and mass Potential, etc., energies
$$\dot{E}_{\rm in} = \dot{E}_{\rm out}$$

$$\dot{Q}_{w, \, \rm in} + \dot{m}_w h_1 = \dot{m}_w h_2$$

$$\dot{Q}_{\rm w,in} = \dot{m}_{\rm w}(h_2 - h_1)$$

What's next?

• Applying 1st TD in engineering flow devices that do not operate at steady state