Exercise 1 (1.29). Bow Tie Lemma.

Both angles subtend the same arc BC, so they are both equal to $\frac{1}{2}\angle BOC$ by the Star Trek lemma.

Exercise 2 (1.43). The Angle Bisector Theorem.

Construct the line ℓ_1 parallel to AD and going through B. Since AD and AC are not parallel, ℓ_1 intersects AC eventually. Call this intersection point E. Then by theorem 1.7.2,

$$\frac{|EC|}{|AC|} = \frac{|DC|}{|BC|}.$$

Now note that the angles θ and ϕ_1 are opposite interior angles, so $\theta = \phi$. The angle ψ is then equal to $180^{\circ} - 2\theta = 180^{\circ} - 2\phi$, so the last unmarked angle in triangle ΔEAB is also ϕ . This means ΔEAB is an isosceles triangle, i.e. |AE| = |AB|.

Because of this, |EC| = |EA| + |AC| = |AB| + |AC|. Since |BC| = |BD| + |DC|, we can combine this with our earlier equivalent ratios to get

$$\frac{|AB|+|AC|}{|AC|} = \frac{|BD|+|DC|}{|DC|} \implies \frac{|AB|}{|AC|} = \frac{|BD|}{|DC|}.$$

Exercise 3 (1.49). Show that |CD| is independent of the choice of P.

Case 1: Note that $\angle CPB = \angle APD$ must always pass through both A and B, which never change. Thus by the Star Trek lemma, $\angle CPB = \angle APD$ is constant when P is changed. Similarly, $\angle ACB = \angle ADB$ are also both constant.

Note that both pairs of angles are in triangles $\triangle PCB$ and $\triangle PAD$, respectively, which implies that $\angle PBC = \angle PAD$ are both constant. This in turn implies $\angle CAD = \angle CBD$ are both constant. Since these both subtend the arc CD, this means |CD| is constant.

Case 2: Without loss of generality, we consider just the case when C lies on AP, as the case when D lies on PB is symmetric. By a similar argument as in case $1, \angle APD, \angle ADP$ are constant. Thus $\angle PAD = \angle CAD$, as the last angle in ΔPAD , is also constant. But this subtends the arc CD, so |CD| is constant.

Exercise 4 (1.52). What is |DE|?

By the Star Trek theorem, since opposing angles of AEDB subtend disjoint arcs that span the whole circle, the opposing angles are supplementary. This implies that the blue angle is θ and the pink angle is ϕ . This further implies that $\Delta DEC \sim \Delta ABC$, which gives the ratio

$$\frac{|DE|}{|AB|} = \frac{|DC|}{|AC|} \implies \frac{|DE|}{5} = \frac{9}{13} \implies |DE| = \frac{45}{13}.$$

Exercise 5 (1.53). Tangential version of Power of the Point.

Draw the diameter through R and the origin O. Since PR is tangent to the circle, it forms a right angle with this diameter. Thus the pictured angle θ is complimentary to the green angle. Then by the Star Trek lemma, $\angle QOQ' = 180 \,^{\circ} - 2\theta$. The adjacent angle to this, since it's a long a line, is then just 2θ . Applying the Star Trek lemma again, the pink angle $\angle QQ'R = \theta$.

Note that ΔPQR and $\Delta PRQ'$ already share the blue angle ϕ , so they're similar. This gives the ratio

$$\frac{|PR|}{|PQ'|} = \frac{|PQ|}{|PR|} \implies |PR|^2 = |PQ| \; |PQ'|.$$

Exercise 6 (1.54). Use the tangential power of the point to prove the Pythagorean Theorem.

Fix the right triangle BAC, then construct the circle of radius a with center B. Since $\angle BCA = 90^{\circ}$, the line segement CA is tangent to the circle. Suppose the line extending AB intersects the circle as pictured, then by the tangential version of power of the point,

$$b^{2} = (c - a)(c + a)$$

 $b^{2} = c^{2} - a^{2}$,

which implies $a^2 + b^2 = c^2$.

Exercise 7 (1.57). Find the side lengths of the triangle $\triangle ABC$.

Since |AB'| = 4, B' is the midpoint of AC, and |AC| = |AB|, we know |AB| = |AC| = 8 and |CB'| = 4. Then by the power of the point (inside the circle), the dashed line has length d satisfying $5 \cdot 8 = 4d$, i.e. d = 10.

Then by the power of the point again (outside the circle), $18 \cdot 4 = |CA'| |CB| = 2|CA'|^2$, where the last equality follows from A' being a midpoint of CB. This implies |CA'| = 6, so |CB| = 12.

Thus the two equal sides of the triangle are length 8, and the base is length 12.