Condición:....

JUSTIFIQUE TODAS SUS AFIRMACIONES

NOTA: El examen se aprueba sumando 60 puntos como mínimo.

Los alumnos regulares cuentan con los 10 pts del Ejercicio 1 (no deben resolverlo).

1. (10 puntos, SÓLO PARA LIBRES)

Dadas las funciones $f(x) = e^{x+1}$ y $g(x) = x^2 - 1$.

- (a) Obtener $f \circ g$.
- (b) Decidir si f es biyectiva y, en caso de ser posible, obtener su inversa.
- 2. (10 puntos) Resolver la siguiente inecuación; escribir el conjunto solución como un intervalo o unión de intervalos y representarlo en la recta real:

$$x < \frac{2}{|x-1|}.$$

- **3.** (15 puntos) Sea $f(x) = \begin{cases} x & x < 1, \\ \frac{1}{x} & x \ge 1. \end{cases}$ (a) Determinar si f es continua en x = 1.

 - (b) Calcular la ecuación de la recta tangente a la gráfica de f en el punto $(2, \frac{1}{2})$.
- 4. (14 puntos) Calcular los siguientes límites:

(a)
$$\lim_{x \to 0} \frac{\tan(x)}{x^2 + 5x}$$

(b)
$$\lim_{x\to 2} \frac{\sqrt{2+x}-2}{x-2}$$

- **5.** (9 puntos)
 - (a) Enunciar el Teorema del Valor Medio.
 - (b) Cumple la función $f(x) = \ln(x)$ en el intervalo [1,2] con las hipótesis del Teorema del Valor Medio? En caso afirmativo, encuentre al menos un valor de x para el que se cumpla el teorema.
- **6.** (28 puntos) Dada la función $f(x) = \frac{x^2}{(x-2)^2}$:
 - (a) Determinar su dominio.
 - (b) Obtener las rectas asíntotas verticales y horizontales, en caso de existir.
 - (c) Calcular los puntos críticos de la función.
 - (d) Determinar intervalos de crecimiento y decrecimiento de f.
 - (e) Determinar, si los hay, máximos y mínimos locales de f.
 - (f) Determinar intervalos de concavidad hacia arriba y hacia abajo.
 - (g) Obtener, si los hay, los puntos de inflexión de f.
 - (h) Esbozar el gráfico de la función f.
- **7.** (14 puntos)
 - (a) Calcular el área de la región encerrada por la gráfica de $f(x) = \cos(x)$, el eje x y las rectas verticales $x = -\pi/2$ y $x = \pi/2$.
 - (b) Calcular la siguiente integral indefinida:

$$\int \frac{e^{\sqrt{x+1}}}{\sqrt{x+1}} \ dx.$$

1a	1b	2	3a	3b	4a	4b	5a	5b	6a	6b	6c	6d	6e	6f	6g	6h	7a	7b	Tot	NOTA