

BMS software specification

湖南宏迅亿安新能源科技有限公司 2019年1月8日

版本号: BMS_Software_V01

机密

项目代号 BMS_Software_V01

Project Number

校订

Revision

版本 YDL_BMS_SW01

Issue

日期

Date $2019/\ 1/\ 8$

作者 文字豪

参与 文明、刘栋、文宇豪

机密

目录

§1	壬务执行时序图	1
§ 1.1 方	女电时序说明	1
§ 1.2 3	它 电时序说明	2
	呈序主函数功能说明	
§ 2.1 n	nain 函数	3
§ 2.2 f	壬务时间函数	3
§ 2.3 =	工作状态判断函数	3
§ 2.4 🗿	系统初始化函数	4
§ 2.5 f	壬务轮询函数	4
§ 2.6 f	壬务初始化函数	5
§3	壬务函数	6
§ 3.1 🗦	长闭均衡函数	6
§ 3.2 _	上下电控制	7
§ 3.3 S	OC、SOH 计算任务	8
§ 3.4 ⋿	电压采集前发送命令任务	10
§ 3.5 ⋿	电压采集	11
§ 3.6 ½	温度采集前发送命令任务	12
§ 3.7 ½	温度采集	13
§ 3.8 ½	色缘检测	14
§ 3.9 娄	牧据处理	15
§ 3.10	开启均衡函数	16
§ 3.11	充放电电流限制	17
§ 3.12	系统时间/运行时间获取	18
§ 3.13	故障诊断	19
§ 3.14	充电任务	21
§ 3.15	故障代码存储	23
§ 3.16	EEPROM	24
§ 3.17	故障代码处理	25
§ 3.18	发送主板采集的电压温度数据至上位机	26
§ 3.19	发送 BMS 信息至上位机	27
§ 3.20	显示屏的任务	28
§ 3.21	Bootloader 任务	29
附录A目	l 流限制参数表	30
附录 B 」	上下电流程图	31

机密

§1 任务执行时序图

§ 1.1 放电时序说明

图1.1 放电任务时序图

为了更方便理解图 1.1, 此处举例: 用于计算 SOC 和 SOH 的任务函数(Task_SOCSOH), 其时间周期为 100ms, 在每个 100ms 中的第 50ms 执行一次。

该时序为放电工作模式:整个系统运行过程中,函数执行不会发生重合。

§1 任务执行时序图 1

机密

§ 1.2 充电时序说明

图1.2 充电任务时序图

由图 1.2 所示,在充电工作模式中,新增的充电任务函数(Task_Charge)的周期为500ms,在总任务时序中不与其他任务函数重合。

§1 任务执行时序图 2

机密

§ 2 程序主函数功能说明

§ 2.1 main 函数

概述

函数名	main	
功能	主函数	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
Init_Sys	系统初始化 (物理层初始化、数据初始化)	无	无
Task_Handle	任务轮询	无	无

§ 2.2 任务时间函数

概述

函数名	Task_Roll	
功能	任务计时	
周期	10ms	
参数	无	
返回	无	

§ 2.3 工作状态判断函数

概述

函数名	WokeModeJudgment	
功能	判断系统工作模式 (充电或放电)	
参数	无	
返回	工作模式(充电或放电)	

调用的子函数

调用的子函数	功能	参数	返回
ADC_CC2_State	采集 CC2 通道数据	无	CC2 的值
WorkMode_DelayTime	延时函数	延长时间	无

§2 程序主函数功能说明

版本号: BMS_Software_V01

机密

§ 2.4 系统初始化函数

概述

函数名	Init_Sys	
功能	系统初始化(初始化物理层、初始化数据)	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
DisableInterrupts	禁止中断	无	无
memset	数据清空	无	无
DS3231SN_INIT	初始化时钟 (若重置时钟使能)	无	无
Physic_Init	物理层初始化	无	无
Time_Init	获取系统时间	无	无
Init_TaskDataProcess	初始化数据处理	无	无
Init_TaskCurrLimit	初始化电流限制	无	无
Init_TaskFltLevJudg	初始化故障等级判断	无	无
Init_UpMonitor	始化与上位机通信	无	无
Get_EEprom_Value	读取 EEPROM 数据	无	无
Task_Init	创建任务并初始化	无	无
EnableInterrupts	使能中断	无	无

备注:

- a) 在物理层初始化(Physic_Init)中,每个模块初始化均未直接调用物理层中的初始化函数,而是将物理层的初始化函数向上层包裹中应用;每个模块的初始化均有返回值,返回值为该模块的初始化状态(0:成功;1:失败)。
- b) 应用层初始化时,对该应用功能进行初始化的同时,将对应应用功能中的数据清零(SOC、EEPROM 等需要经常存储的数据无需初始化)。

§ 2.5 任务轮询函数

概述

函数名	Task_Handle	
功能	当任务到达执行时间时,执行任务	
参数	无	
返回	五 无	

§2 程序主函数功能说明 4

版本号: BMS_Software_V01

机密

§ 2.6 任务初始化函数

概述

函数名	Task_Init	
功能	创建多个任务并初始化的函数	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
CreateTask	任务创建结构体	无	无

任务列表如下(任务顺序从0开始判断):

任务序号(从0开始)	任务名称	函数名
0	关闭均衡功能	Task_BalanceControl_OFF
1	上下电控制以及 BMS 自检	Task_PowerOnOff
2	SOC、SOH 计算	Task_SOCSOH
3	电压采集前发送的指令	Task_VoltCMDSend
4	电压采集	Task_VoltCollect
5	温度采集前发送的指令	Task_TempCMDSend
6	温度采集	Task_TempCollect
7	绝缘采集	Task_InsulationDetect
8	电压、温度、导线开路的数据处理	Task_DataProcess
9	开启均衡	Task_BalanceControl_ON
10	电流限制	Task_CurrLimit
11	系统时间获取、系统运行时间计算	Task_SysTimeGet
12	故障等级判断	Task_FltLevJudg
13	充电任务	Task_Charge
14	故障代码存储	Task_FltCodeStore
15	EEPROM 写入	Task_EEpromWrite
16	故障代码处理	Task_FltCodeProcess
17	上传主板采集电压、温度信息	Task_BMUToUpMonitor
18	BMS 向上位机发送信息	Task_BMSToUpMonitor
19	显示屏的任务	Task_ScreenTransfer
20	BootLoader 任务	Task_BootLoader

§2 程序主函数功能说明 5

机密

§ 3 任务函数

§ 3.1 关闭均衡函数

概述

函数名	Task_BalanceControl_OFF	
功能	关闭均衡功能	
周期	500ms	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
LTC6811_BalanceControl	6811 均衡控制	关闭均衡的参数	无
Light_Control	灯控制	Port 口及其控制 状态	无

图3.1 关闭均衡功能的流程图

版本号: BMS_Software_V01

机密

§ 3.2 上下电控制

概述

函数名	Task_PowerOnOff	
功能	对 BMS 系统的上下电进行控制,以及 BMS 自检	
周期	500ms	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
PowerOnOff_Control	上下电控制,BMS 自检	故障等级、 故障时间、 静态电流、 静态时间阈值	无
P	owerOnOff_Control 调用的子函数	文 文	
BMS_WorkModeCheckself	BMS 自检、读取工作模式	无	无
PositiveRelay_Control	主正继电器控制	控制继电器状态	无
Sleep_StaticTime	计算常电状态 系统 SOC 查表时间	实时时间、 实测电流、 静态电流设置、 满足条件的初始 时间、目标时间 (用户要求)	无
CSSUPowerRelay_Control	CSSU 对应继电器控制	控制继电器状态	无
ScreenPowerRelay_Control	显示屏对应继电器控制	控制继电器状态	无

上下电具体流程及详细的描述(参照附录 B)

机密

§ 3.3 SOC、SOH 计算任务

概述

函数名	Task_SOCSOH	
功能	计算 SOC 值、计算 SOH 值、计算充放电总能量	
周期	100ms	
输入	无	
输出	无	

调用的子函数

调用的子函数	功能	参数	返回
FilterFunction_Median	获取滤波处理后的电流	ADC 电流采集 函数指针、前 一次滤波电流	滤波电流
SOC_AhIntegral	SOC 安时积分计算	滤波电流、最 大最小电压、 SOC 计算周期	无
ADC_Current	采集霍尔电压,并计算出霍尔电流	无	霍尔电流
	SOC_AhIntegral 调用的子函数		
inition_soc	根据电压查 OCV 表获取 SOC 值	电压	SOC 值
Energy_TotalCal	充放电总能量计算	BMS 工作模 式、系统总压、 上次充放电总 能量、电流	充放总能量
ADC_Current 调用的子函数			
ADC_Value	对应 ADC 通道的采集	通道编号	采集的数据

备注: SOC 计算的变量存放于 g_SOCInfo 结构体中; 能量计算的变量存放于 g_EnergyInfo 结构体中。

任务流程概述:

a) SOC 计算函数的总流程图如图 3.2 所示,概述了 SOC 计算任务的主要流程;

图3.2 SOC 计算的流程图

b) SOC 计算与校正流程如图 3.3、图 3.4 所示, 其中图 3.3 中先进行 SOC 的初始化

机密

(主控板第一次下载程序或 EEPROM 内数据被清空时)或者查表(当 SOC 在 20%~90%不会进行 SOC 的查表操作);若此时为较大功耗工作时(充电或放电)进行 SOC 计算和校正。

图3.3 计算并校正 SOC 值 (a)

图 3.4 中,系统在充电(或放电)状态时,累计充电量(累计放电量)计算一直进行;充电(放电)过程中,进行 SOC 的校正;当单体电池电压达到最大值(低于最小值)时,会且只会进行一次防跳变处理。

图3.4 计算并校正 SOC 值 (b)

SOH 计算:单次满充占额定容量的百分比

机密

§ 3.4 电压采集前发送命令任务

概述

函数名	Task_VoltCMDSend	
功能	采集电压前发送的命令	
周期	500ms	
输入	无	
输出	无	

调用的子函数

调用的子函数	功能	参数	返回
LTC6811_VoltCMDSend	6811 采集电压前发送的命令	无	无
	LTC6811_VoltCMDSend 调用的子函:	数	
Ltc6804_Clrcell	6811 寄存器清零	无	无
LTC6804_adcv	启动 AD 转换,等待 2.4ms 后收集电 压值	无	无
	Ltc6804_Clrcell 调用的子函数		
pec15_calc	PEC 校验	数据长度、 数据指针	命令
LTC6811_Wakeup	唤醒 SPI 通信	无	无
Spi_LTC6811WriteRead	发送命令到 SPI	命令	无
LTC6811_DelayTime	6811 延时函数	延迟时间	无
	LTC6804_adcv 调用的子函数		
pec15_calc	PEC 校验	数据长度、 数据指针	命令
LTC6811_Wakeup	唤醒 SPI 通信	无	无
Spi_LTC6811Write	SPI 的写入	数据长度、 数据	无
LTC6811_DelayTime	6811 延时函数	延迟时间	无

如图 3.5 所示, 电压采集前需要先将 6811 的电压寄存器清零, 然后启动电池电压的 AD 转换

图3.5 电压采集前发送准备信息的流程图

机密

§ 3.5 电压采集

概述

函数名	LTC6811_VoltCollect	
功能	采集电压	
周期	500ms	
输入	无	
输出	无	

调用的子函数

调用的子函数	功能	参数	返回
LTC6811_VoltCollect	6811 采集电压	无	无
	LTC6811_VoltCollect 调用的子函数	Ţ	
LTC6811_Wakeup	6811 唤醒	无	无
LTC6804_rdcv	读取电池电压值及 PEC 校验	寄存器个数、 6811 个数、 12 个电压的存 储变量、 PEC 值	无
LTC6804_rdcv 调用的子函数			
LTC6804_rdcv_reg	读取电池电压寄存器组 ABCD	寄存器个数、 6811 个数、 电压寄存器数 据的内存	无

电压采集的准备信息发送完成后,进行电压信息的采集。

采集的信息包括:被采集的所有电池的单体电压、最高电压及对应电池节点,最低 电压及对应电池节点、单体电压总和

图3.6 电压采集的流程图

版本号: BMS_Software_V01

机密

§ 3.6 温度采集前发送命令任务

概述

函数名	Task_TempCMDSend	
功能	采集温度前发送的命令	
周期	500ms	
输入	无 无	
输出	无	

调用的子函数

调用的子函数	功能	参数	返回
LTC6811_TempCMDSend	6811 采集温度前发送的命令	无	无
	LTC6811_TempCMDSend 调用的子函	函数	
Ltc6804_clraux	清除辅助寄存器	无	无
LTC6804_adax	启动 GPIO、AD 转换	无	无
LTC6804_wrcfg	LTC6811 写配置寄存器函数	6811 的个数、 配置寄存器组	无
	Ltc6804_clraux 调用的子函数		
pec15_calc	PEC 校验	数据长度、 数据指针	命令
LTC6811_Wakeup	唤醒 SPI 通信	无	无
Spi_LTC6811WriteRead	LTC6811 通信函数(SPI1)	每次通信发送 数据、长度 每次通信接收 数据、长度	无
LTC6811_DelayTime	6811 延时函数	延迟时间	无
	LTC6804_adax 调用的子函数		
pec15_calc	PEC 校验	数据长度、 数据指针	命令
LTC6811_Wakeup	唤醒 SPI 通信	无	无
Spi_LTC6811Write	SPI 的写入	数据长度、 数据	无
LTC6811_DelayTime	6811 延时函数	延迟时间	无
LTC6804_wrcfg 调用的子函数			
LTC6811_Wakeup	唤醒 SPI 通信	无	无
Spi_LTC6811Write	SPI 的写入	数据长度、 数据	无
LTC6811_DelayTime	6811 延时函数	延迟时间	无

温度采集与温度采集前方法相似,不同的是采集温度前需要先将 6811 的辅助寄存器组 AB 清零,然后启动 GPIO 的 AD 转换;最后写配置寄存器。

版本号: BMS_Software_V01

机密

§ 3.7 温度采集

概述

函数名	Task_TempCollect	
功能	采集电压	
周期	500ms	
输入	无 无	
输出	无	

调用的子函数

调用的子函数	功能	参数	返回
LTC6811_TempCollect	6811 采集温度	无	无
	LTC6811_TempCollect 调用的子函数		
LTC6811_Wakeup	6811 唤醒	无	无
LTC6804_rdaux	读取辅助寄存器组 AB(GPIO 中的 ADC 值)	寄存器 AB 索引、6811 个数、辅助寄存器数据的内存	无
	LTC6804_rdaux 调用的子函数		
LTC6804_rdaux_reg	读取电池电压寄存器组 ABCD	寄存器 AB 索引、6811 个数、辅助寄存器数据的内存	无
pec15_calc	PEC 校验	数据长度、 数据指针	命令

温度采集前的准备信息发送完成后,进行温度信息的采集。温度采集依靠温度传感器采集,所以不需要考虑电池的连接方式。

采集的温度信息包括:每个温度传感器采集的温度(偏移量:-40),最高温度(偏移量:-40)及对应的传感器节点,最低温度(偏移量:-40)及对应的传感器节点,平均温度(偏移量:-40)。

版本号: BMS_Software_V01

机密

§ 3.8 绝缘检测

概述

函数名	Task_InsulationDetect	
功能	绝缘检测	
周期	500ms	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
ADC_Insul_HVPositive	正对地电压检测	无	无
ADC_Insul_HVNegative	负对地电压检测	无	无

备注:求得的关于绝缘检测的数据存放于结构体 IsoDetect 中,有绝缘故障等级、正极电阻、负极电阻、绝缘阻值、对地正电压,对地负电压、绝缘检测总压。

图3.7 绝缘检测流程图

版本号: BMS_Software_V01

机密

§ 3.9 数据处理

概述

函数名	Task_DataProcess	
功能	数据处理	
周期	500ms	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
DataProcess_Volt	电压数据处理	无	无
DataProcess_Temp	温度数据处理	无	无
DataProcess_OpenWire	导线开路数据处理	无	无

备注:处理的数据均为实时采集的数据。

图3.8 数据处理流程图

电压处理: 将不同子板采集的电压数据汇总, 计算出整个系统中单体电压的最高(低)电压及对应的最高(低)电池节点、整个系统单体电池最大压差、单体平均电压、系统总压等电压数据, 最终存放在 q VoltInfo 结构体中。

温度处理:将温度数据汇总,计算出最高(低)温度及对应最高(低)温度传感器节点、最大温差、平均温度等温度信息,存放在 g_TempInfo 结构体中。

导线开路处理:根据各子板采集的导线开路信息判断是否存在导线开路,若有则确定导线开路位置,存放在 g_OpenWireInfo 结构体中。

机密

§ 3.10 开启均衡函数

概述

函数名	Task_BalanceControl_ON	
功能	开启均衡功能	
周期	500ms	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
BalanceControl_Strategy	对电池组进行被动均衡 均衡控制策略:当最大单体大于平均电 压 balancevolt 时进行均衡	电流、 故障标志、 最大电压、 25 串电池总压、 均衡的节点	0: 表均 1: 表明 3: 表明 4: 表明 5: 表明 5: 表明 6: 表明 6: 表明 6: 表明 7: 表明 7: 大明 7: 大明 7
Light_Control	灯控制	Port 口及其控制 状态	无

图3.9 开启均衡功能的流程图

图3.10 获取均衡状态的流程图

版本号: BMS_Software_V01

机密

§ 3.11 充放电电流限制

概述

函数名	Task_CurrLimit	
功能	电流限制函数	
周期	500ms	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
ChagCurrLimit_Cons	根据电池平均温度,对充电持续最大 电流进行限制	电池平均温度	最大允许充电 电流

备注: 求得的限制电流值存放于 CurrLimit 结构体中,本项目只有充电最大持续电流。充电持续电流限制条件均按照电流限制表进行编写(参照附录 A)。

机密

§ 3.12 系统时间/运行时间获取

概述

函数名	Task_SysTimeGet	
功能	系统时间的获取、系统运行时间的计算	
周期	500ms	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
DS3231_Read_Time	读总时间	无	无
	DS3231_Read_Time 调用的子函数		
IIC_read	读取 IIC 数据	从器件的地址 模式、存储器 地址	IIC 的读取值
BCD2HEX	二进制转十进制任务	二进制数	十进制数
DS3231_DelayTimeus	DS3231 延时函数	延时时间	无

图3.11 系统时间的流程图

由图 3.10 所示, 先读取此时的时间(X年X月X日X时X分), 计算距上次记录的时间的时间差, 以此计算累计运行时间; 并记录本次的时间用来提供下次计算所需要的时间起点。

版本号: BMS_Software_V01

机密

§ 3.13 故障诊断

概述

函数名	Task_FltLevJudg	
功能	实时监测 BMS 是否出现故障	
周期	500ms	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
Fault_CSSU_OffLine	子板掉线判断	无	故障状态
Fault_Relay_BreakDown	继电器粘连故障	无	故障状态
Fault_DisChg_VoltSL	放电总压低判断	系统总压 平均温度	故障等级
Fault_DisChg_VoltCL	放电单体低判断	单体最低电压 平均温度	故障等级
Fault_DisChg_VoltCD	放电压差过高判断	单体压差	故障等级
Fault_DisChg_TempH	放电高温判断	最高温度	故障等级
Fault_DisChg_TempL	放电低温判断	最低温度	故障等级
Fault_DisChg_TempD	放电温差过高判断	温差	故障等级
Fault_DisChg_CurrH	放电过流判断	滤波电流	故障等级
Fault_DisChg_Insul	放电绝缘判断	绝缘电阻	故障等级
Fault_Charge_VoltSH	充电总压高判断	系统总压	故障等级
Fault_Charge_VoltCH	充电单体高判断	单体最低电压	故障等级
Fault_Charge_VoltCD	充电压差过高判断	单体压差	故障等级
Fault_Charge_TempH	充电高温判断	最高温度	故障等级
Fault_Charge_TempL	充电低温判断	最低温度	故障等级
Fault_Charge_TempD	充电温差过高判断	温差	故障等级
Fault_Charge_CurrH	充电过流判断	滤波电流	故障等级
Fault_Charge_Insul	充电绝缘判断	绝缘电阻	故障等级
Fault_DisChg_VoltSL 调用的子函数			
Fault1_VoltSys_DisCharge	根据温度判断1级放电总压低的故障 阈值(常温阈值/低温阈值)	温度	阈值
Fault2_VoltSys_DisCharge	根据温度判断2级放电总压低的故障 阈值(常温阈值/低温阈值)	温度	阈值
Recover1_VoltSys_DisChar ge	根据温度判断1级放电总压低的恢复 阈值(常温阈值/低温阈值)	温度	阈值
Fault_DisChg_VoltCL 调用的子函数			
Fault1_VoltCell_DisCharge	根据温度判断1级放电单体电压低的 故障阈值(常温阈值/低温阈值)	温度	阈值
Fault2_VoltCell_DisCharge	根据温度判断2级放电单体电压低的 故障阈值(常温阈值/低温阈值)	温度	阈值

机密

Recover1_VoltCell_DisChar	根据温度判断1级放电单体电压低的	温度	净估
ge	恢复阈值 (常温阈值/低温阈值)	温及	阈值

备注:故障诊断的变量存放于 g_Flt_Charge、g_Flt_DisChg 等结构体中。每个被调用的子函数的结果赋给对应故障变量, 0:表示无故障,1:表示一级故障,2:表示二级故障。

图3.12 故障诊断的流程图

图 3.11 中,所有执行框里均为需要进行判断的故障名。出现 1 级故障时,故障可恢复至正常;若故障等级为 2 级,断开主正继电器(充电模式还会关闭均衡功能),故障告警不可恢复,需要消除故障后,重新上电消除故障。

版本号: BMS_Software_V01

机密

§ 3.14 充电任务

概述

1. 函数名	Task_Charge	
功能	充电任务	
周期	500ms(工作模式为充电时)	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
Charge_Strategy	充电控制策略	无	无
	Charge_Strategy 调用的子函数		
Charge_VoltCurrRequest	搜集发送至充电机的信息	无	无
CAN_BMSToCharge	BMS 发送信息至充电机	无	无
	Charge_VoltCurrRequest 调用的子函	数	
Charge_CurrInit	充电电流的初始化	充电限制电流 充电桩输出电 流	充电桩电流值
ChargeEnd_CurrentOut	充电末端的变电流请求	单体最高电压 充电在电流	充电桩电流值
ChargeEndJudge	充电中止判断	SOC、电流、 最高单体电压、最高温度、 最低温度、充电故障信息	控制充电桩状 态
CAN_BMSToCharge 调用的子函数			
CAN1_SendMsg	CAN1 发送数据	需发送的数据	发送状态

充电流程如图 3.12 所示,

物理连接完成: 充电枪等有效连接。

低压辅助上电: 充电机辅助电源输出 12V 电压给 BMS, BMS 正常上电并自检自检通过后闭合继电器

BMS 采集发送至充电桩的信息: BMS 采集充电所需要的电压、温度、SOC 等信息。

BMS 与充电桩通信:详情请阅读《BMS 与充电机通讯协议(上海施能版) V3.2》。

充电阶段: BMS 与充电桩持续通信控制充电的状态。

充电结束阶段: 变电流充电。

机密

图3.13 充电过程的流程图

充电末期变电流充电

充电末期进行变电流充电能在充电末期保护电池。变电流充电的流程图如图 3.13 所示,当充电达到最高单体电压要求时,开始变电流充电,以当前电流的 70%进行充电;若未充满,3s 后再进行变电流处理框架。上述工程中,任何时刻充满,立即停止充电。

图3.14 变电流充电流程图

说明:在请求电流变为 70%之后,加了 3 秒的延时再重新检测,以防止电流和电压不稳定造成的干扰。

版本号: BMS_Software_V01

机密

§ 3.15 故障代码存储

概述

函数名	Task_FltCodeStore	
功能	故障代码存储	
周期	500ms(工作模式为充电时)	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
VoltSH	总压过压保护值存储		
VoltSL	总压欠压保护值存储		
VoltCH	单体过压保护值存储		
VoltCL	单体欠压保护值存储		
VoltCD	单体压差故障值存储		
CurrH_Charge	充电过流故障值存储		
CurrH_DisChg	放电过流故障存储		
TempH_DisChg	放电过温故障存储	— 对应的故障等	0: 正常
TempH_Charge	充电过温故障存储	级以及时间	1: 故障
TempL_DisChg	放电低温故障存储		
TempL_Charge	充电低温故障存储		
TempD_DisChg	放电温差故障存储		
TempD_Charge	充电温差故障存储		
InsulationNeg_Fault	正极绝缘故障存储		
InsulationPos_Fault	负极绝缘故障存储		
OpenWire_Fault	导线开路故障存储		

备注: 时间为故障存储时系统时间 (X年X月X日X时X分)

机密

§ 3.16 EEPROM

EEPROM 是一块掉电不易失的存储空间,单片机掉电之后,存储在里面的数据不会 丢失,重新启动之后可以通过访问地址重新读取存储在里面的值。对 EEPROM 的操作分 为写入和读取。

1. 写入操作

对 EEPROM 的写入操作分为两个部分:通过上位机的标定写入数据;实时存储到 EEPROM 中的操作。

上位机标定:程序刷进单片机运行后,修改电池包的参数或者阈值。上位机向主控板发送标定报文,主控板收到标定报文之后找到需要修改的值的地址,把修改后的数据写入该地址中,下次开机重启读取到的值即为新标定的值。

实时存储: 部分数据实时性较强, 需要实时更新, 例如 SOC, 运行时间等。目前程序运行时每 2 秒写入一次.

2. 读取操作

图3.15 EEprom 读取步骤

读取操作要比写入操作简单,分为两种情况。

- (1) 若标记位存储区只有一个有效值,则读取本次的值,
- (2) 若没有有效值,则说明芯片第一次写入程序,需要进行数据的初始化,

机密

§ 3.17 故障代码处理

概述

函数名	Task_FltCodeProcess	
功能	根据接收上位机的信息对故障代码进行处理(发送/清除)	
周期	500ms	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
ReadFltCodeFromEEE	读取/清除故障代码	"读取"标志位 "清除"标志位	0:成功 1:失败
ReadFltCodeFromEEE 调用的子函数			
CAN_ToUpMonitor	发送信息至上位机	需发送的信息	发送的结果
DisableInterrupts	禁止中断	无	无
EnableInterrupts	使能中断	无	无

备注: 当同时发送"读取"和"清除"需求时,轮询此任务两次完成此操作,先"读取",后"清除"。

图3.16 BMS 故障代码处理流程图

机密

§ 3.18 发送主板采集的电压温度数据至上位机

概述

函数名	Task_BMUToUpMonitor	
功能	发送主板采集的电压温度数据至上位机	
周期	1s	
参数	无	
返回	无	

备注:通讯内容请参考《BMS 内网的通讯协议》

调用的子函数

调用的子函数	功能	参数	返回
CAN_ToUpMonitor	发送信息至上位机	需发送的信息	发送的结果
UpMonitor_DelayTimeus	延时函数	延时时间	无

发送主板采集的电压温度数据至上位机,边采集边发送的方法;若本帧有大量信息,则按照协议分批次循环发送本帧,只有本帧报文发送完毕,才能发送下一帧报文。

机密

§ 3.19 发送 BMS 信息至上位机

概述

函数名	Task_BMSToUpMonitor
功能	发送 BMS 信息至上位机
周期	1s
参数	无
返回	无

备注:通讯内容请参考《BMS 内网的通讯协议》

调用的子函数

调用的子函数	功能	参数	返回
CAN_ToUpMonitorMsg	发送信息至上位机	无	无
CAN_ToUpMonitorMsg 调用的子函数			
CAN_ToUpMonitor	发送信息至上位机 需发送的信息 发送的		发送的结果
UpMonitor_DelayTimeus	延时函数	延时时间	无

首次发送需要接收到上位机请求, BMS 才开始发送信息给上位机(非经常类信息只发一次, 实时信息不停地发送); 若需要更新电池信息及与阈值信息给上位机等非经常发送数据, 需要再次请求。

图3.17 BMS 发送至上位机的流程图

机密

§ 3.20 显示屏的任务

概述

函数名	Task_ScreenTransfer	
功能	发送信息至显示屏	
周期	3s	
参数	无	
返回	无	

备注:通讯内容请参考《显示屏通讯协议》

调用的子函数

调用的子函数	功能	参数	返回
RS485_DataReceice	接收 SCI 数据	无	无
Screen_delay	显示屏延时函数	延时时间	无
SCI_ScreenTransfer	发送数据至显示屏	字节数量 数据指针	SCI 发送情况
SCI_ScreenTransfer 调用的子函数			
SCI1_Send_NByte	SCI 发送多个字节	字节数量 数据指针	SCI 发送情况

按照协议发送给显示屏的数据分单字节、双字节发送。

图3.18 BMS 发送至显示屏的流程图

机密

§ 3.21 Bootloader 任务

概述

函数名	Task_BootLoader	
功能	在应用程序中对软件进行升级	
周期	500ms	
参数	无	
返回	无	

调用的子函数

调用的子函数	功能	参数	返回
DisableInterrupts	禁止中断	无	无
Boot_DelayTime	Bootloader 延时函数	延时时间	无
EnableInterrupts	使能中断	无	无

图3.19 BootLoader 运行的流程图

机密

附录A 电流限制参数表

表3.1. 充电最大持续电流

温度(℃)	充电电流 (A)
<0	0
0~5	50
5~10	100
10~15	150
15~50	150
50~55	100
>55	0

机密

附录B 上下电流程图

