Analysis of A* algorithmic design and implementation

- Chebyshev method was used to calculate the time to find the shortest path.
- As the methodology **Doubling Hypothesis** was used since it is easy to use.

Grid	Attempt	Attempt	Attempt	Average	Average	Ratio	Log ratio
Size(N)	1 Time(s)	2 Time(s)	3 Time(s)	Time(s)	Time(ms)		(base 2)
5	0.008	0.007	0.009	0.008	8		
10	0.016	0.015	0.015	0.015	15	1.86	0.90
20	0.032	0.031	0.033	0.032	32	2.13	1.01
40	0.066	0.064	0.065	0.066	65	2.03	1.02
80	0.109	0.109	0.110	0.109	109	1.68	0.75
160	0.172	0.187	0.156	0.171	171	1.73	0.80

The estimated time complexity in N is linear. Since the ratio of change converges towards 2, two times more time spent once the grid size is doubled. So, the Big-O notation will be O(N).

Appendix:

Date: 2017-04-03

Date: 2017-04-03

