

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 March 2006 (23.03.2006)

PCT

(10) International Publication Number
WO 2006/029889 A1

(51) International Patent Classification⁷: **F01D 25/24, 9/04**

(21) International Application Number:
PCT/EP2005/009997

(22) International Filing Date:
14 September 2005 (14.09.2005)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
MI2004A 001780
17 September 2004 (17.09.2004) IT

(71) Applicant (for all designated States except US): **NUOVO PIGNONE S.P.A.** [IT/IT]; Via F. Matteucci, 2, I-50127 Firenze (IT).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **BIGI, Manuele** [IT/IT]; Via Luigi Cadorna 28, I-50019 Sesto Fiorentino (IT). **IACOPETTI, Piero** [IT/IT]; Via Aldo Moro, 8, I-51010 Uzzano (IT). **CIANI, Alessandro** [IT/IT]; Via Ponte di Mezzo 30, I-50127 Firenze (IT).

(74) Agents: **DE GREGORI, Antonella et al.**; Ing. Barzanò & Zanardo Milano S.p.A., Via Borgonuovo 10, I-20121 Milano (IT).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROTECTION DEVICE FOR A TURBINE STATOR

(57) Abstract: Protection device for a stator of a turbine comprising a series of annular sectors (12) which can be coupled by connection means, each sector (12) comprising a first side surface (13) which has at least one cavity (14) equipped with a bottom (15), each bottom (15) of the at least one cavity (14) is convex and each sector (12) comprises at least one stiffening rib (16) positioned inside the at least one cavity (14) and having a variable section in a longitudinal direction to modulate the rigidity of each sector (12).

PROTECTION DEVICE FOR A TURBINE STATOR

The present invention relates to a protection device for a turbine stator.

10 A gas turbine is a rotating thermal machine which converts the enthalpy of a gas into useful work, using gases coming from a combustion and which supplies mechanical power on a rotating shaft.

15 The turbine therefore normally comprises a compressor or turbo-compressor, inside which the air taken from the outside is brought under pressure.

Various injectors feed the fuel which is mixed with the air to form a air-fuel ignition mixture.

20 The axial compressor is entrained by a so-called turbine, or turbo-expander, which supplies mechanical energy to a user transforming the enthalpy of the gases combusted in the combustion chamber.

25 In applications for the generation of mechanical energy, the expansion jump is subdivided into two partial jumps, each of which takes place inside a turbine. The

high-pressure turbine, downstream of the combustion chamber, entrains the compression. The low-pressure turbine, which collects the gases coming from the high-pressure turbine, is then connected to a user.

5 The turbo-expander, turbo-compressor, combustion chamber (or heater), outlet shaft, regulation system and ignition system, form the essential parts of a gas turbine plant.

As far as the functioning of a gas turbine is concerned, it is known that the fluid penetrates the compressor through a series of inlet ducts.

10 In these canalisations, the gas has low-pressure and low-temperature characteristics, whereas, as it passes through the compressor, the gas is compressed and its 15 temperature increases.

It then penetrates into the combustion (or heating) chamber, where it undergoes a further significant increase in temperature.

The heat necessary for the temperature increase of 20 the gas is supplied by the combustion of gas fuel introduced into the heating chamber, by means of injectors.

The triggering of the combustion, when the machine is activated, is obtained by means of sparking plugs.

At the outlet of the combustion chamber, the high-25 pressure and high-temperature gas reaches the turbine,

through specific ducts, where it gives up part of the energy accumulated in the compressor and heating chamber (combustor) and then flows outside by means of the discharge channels.

5 In the inside of a turbine there is a stator, equipped with a series of stator blades in which a rotor, also equipped with a series of blades (rotor), is housed and is capable of rotating, said stator being rotated as a result of the gas.

10 The protection device of the stator, also known as "shroud", together with the platform of stator blades, defines the main gas flow.

15 The function of the shroud is to protect the outer cases, which are normally made of low-quality materials and therefore have a low resistance to corrosion, from oxidation and deterioration.

The shroud generally consists of a whole ring, or is suitably divided into a series of sectors, each of which is cooled with a stream of air coming from a compressor.

20 The cooling can be effected with various techniques which essentially depend on the combustion temperature and temperature decrease to be obtained.

25 The type of protection device to which the present invention relates comprises a series of sectors, assembled to form a ring, each of which has a cavity situated

on the outer surface of each sector.

In the case of machines with a high combustion temperature, the most widely used cooling technique is that known as "impingement".

5 According to this technique, a sheet is fixed, preferably by means of brazing, on each cavity of each sector, said sheet equipped with a series of pass-through holes through which fresh air coming from a compressor is drawn for the cooling of the shroud itself, in particular
10 by the impact of said air on the bottom surface of said cavity and its subsequent discharge from a series of outlet holes situated in each sector, not shown in the figures.

In spite of these expedients, even if an efficient
15 cooling is effected, the shroud and therefore also each of its sectors, is subject to deformation due to thermal gradients and to the operating temperature of the turbine which create a deformed configuration different from that at room temperature, i.e. with respect to a rest configuration
20 in which the turbine is not operating.

As a result of the thermal gradients which develop during the functioning of the turbine, a non-uniform deformation is created of the shroud and in particular of each of its sectors.

25 Shrouds are therefore normally produced using super-

alloys coated with suitable materials for limiting the temperatures thereon.

A first disadvantage is that this causes deformations at the operating temperatures which limit deformations but do not allow the clearances to be reduced to the minimum for the danger of possible friction between the shroud and blades with which the rotor is equipped.

Another disadvantage is that by increasing the rigidity of the shroud, the stress increased by the thermal gradients also increases, with a consequent brusque reduction in the useful life of the shroud itself.

This causes a deterioration in the reliability of the gas turbine in which the shroud is installed and also the maintenance costs as the shroud must be substituted more frequently to keep the turbine in a good state and avoid sudden stoppages.

An objective of the present invention is to provide a protection device for a turbine stator which allows a reduction in the clearances and at the same time maintains a high useful life.

A further objective is to provide a protection device for a turbine stator which has a high rigidity maintaining low stress on the protection device itself.

Another objective is to provide a protection device for a turbine stator which increases the performances of

the turbine itself.

Yet another objective is to provide a protection device for a turbine stator which is simple and economical.

These objectives according to the present invention
5 are achieved by providing a protection device for a stator of a gas turbine as specified in claim 1.

Further characteristics of the invention are indicated in the subsequent claims.

The characteristics and advantages of a protection
10 device of a stator of a gas turbine according to the present invention will appear more evident from the following illustrative and non-limiting description, referring to the schematic drawings enclosed, in which:

figure 1 is a raised longitudinal sectional view of
15 a sector of a preferred embodiment of a protection device of a gas turbine rotor according to the present invention;

figure 2 is a raised sectional radial view of the sector of figure 1;

20 figure 3 is a raised sectional side view according to the line III-III of figure 2.

With reference to the figures, these show a protection device for a turbine stator comprising a series of annular sectors 12 which can be coupled by connection
25 means, each sector 12 comprising a first side surface 13

which has at least one cavity 14 having a bottom 15, each sector 12 comprises at least one stiffening rib 16 positioned inside said at least one cavity 14 and having a variable section in a longitudinal direction to modulate
5 the rigidity of each sector 12.

Furthermore, each bottom 15 of said at least one cavity 14 is also convex to modulate the rigidity of each sector 12.

Said bottom 15 is preferably convex in a circumferential and/or axial direction, so as to obtain a variable
10 section of the shroud.

This produces a variable rigidity of the shroud which, during the functioning of the turbine, has a uniform circumferential and/or axial deformation and therefore
15 a low state of stress.

At the same time, minimum clearances are obtained, which are such as to guarantee an increase in the efficiency of the turbine, also maintaining a high useful life of the shroud.

Said convex bottom 15 preferably has an apex which,
20 in an axial section, has an axial curvature radius 70 which, adimensionalised with respect to the radius of the rotor, i.e. divided by the radius of the rotor, has a value preferably ranging from 0.221 to 0.299.

Said adimensionalised axial curvature radius 70 is
25

preferably 0.260.

In a radial section, said apex preferably has a circumferential curvature radius 60 which, adimensionalised with respect to the radius of the rotor, i.e. divided by 5 the radius of the rotor, has a value preferably ranging from 0.365 to 0.494.

Said adimensionalised circumferential curvature radius 60 is preferably 0.429.

Said apex in an axial section preferably has a distance 80 from one end of said at least one cavity 14, said distance 80 adimensionalised with respect to an axial length of said at least one cavity 14, has a value ranging from 0.142 to 0.192.

Said adimensionalised distance 80 is preferably 15 0.167.

With respect to the axis of the turbine 70, said rib 16 along an axial direction is preferably tilted by an angle 50 preferably ranging from 3.162° to 4.278° .

Said angle 50 is preferably 3.72° .

20 In other words, a resistant axial section of the rib 16 varies linearly along the axis of the turbine 70, so as to balance the thermal gradient along the axis 70 of the turbine.

Said rib 16 has a maximum axial height 90 which, 25 adimensionalised with respect to the axial length of the

at least one cavity 14, i.e. divided by said axial length, has a value preferably ranging from 0.133 to 0.180.

Said adimensionalised maximum axial height 90 is 5 preferably 0.156.

Each sector 12 also comprises a sheet 20 equipped with a series of pass-through holes 21 for the introduction of air for the cooling of the sector 12 itself.

Said sheet is fixed to the corresponding sector 12, 10 or is preferably integral therewith, so as to cover the at least one cavity 14.

It can thus be seen that a protection device for a turbine stator according to the present invention achieves the objectives specified above.

15 The protection device for a turbine stator of the present invention thus conceived can undergo numerous modifications and variants, all included in the same inventive concept.

Furthermore, in practice, the materials used, as 20 also the dimensions and components, can vary according to technical demands.

CLAIMS

1. A protection device for a stator of a turbine comprising a series of annular sectors (12) which can be coupled by means of connection means, each sector (12) comprising a first side surface (13) which has at least one cavity (14) equipped with a bottom (15), characterized in that each bottom (15) of said at least one cavity (14) is convex and in that each sector (12) comprises at least one stiffening rib (16) positioned inside said at least one cavity (14) and having a variable section in a longitudinal direction to modulate the rigidity of each sector (12).
2. The protection device (10) according to claim 1, characterized in that said bottom (15) is convex in a circumferential and/or axial direction.
3. The protection device (10) according to claim 1 or 2, characterized in that said convex bottom (15) has an apex which in an axial section has an axial curvature radius 70 which, divided by the radius of the rotor, has a value preferably ranging from 0.221 to 0.299.
4. The protection device (10) according to claim 3, characterized in that said axial curvature radius (70), divided by the radius of the rotor, has a value equal to 0.260.
- 25 5. The protection device (10) according to claim 3 or

4, characterized in that said apex in a radial section has a circumferential curvature radius (60) which, divided by the radius of the rotor, has a value preferably ranging from 0.365 to 0.494.

5 6. The protection device (10) according to claim 5, characterized in that said circumferential curvature radius (60), divided by the radius of the rotor, has a value equal to 0.429.

7. The protection device (10) according to any of the
10 claims from 3 to 6, characterized in that said apex in an axial section has a distance (80) from one end of said at least one cavity (14), said distance (80) divided by an axial length of said at least one cavity (14) has a value ranging from 0.142 to 0.192.

15 8. The protection device (10) according to claim 7, characterized in that said distance (80) divided by an axial length of said at least one cavity (14) has a value equal to 0.167.

9. The protection device (10) according to any of the
20 claims from 1 to 8, characterized in that with respect to the axis of the turbine (70), said rib (16) along an axial direction is tilted by an angle (50) which ranges from 3.162° to 4.278°.

10. The protection device (10) according to claim 9,
25 characterized in that said angle (50) is 3.72°.

11. The protection device (10) according to any of the claims from 1 to 10, characterized in that said rib (16) has a maximum axial height (90) which, divided by the axial length of said at least one cavity (14) has a value 5 ranging from 0.133 to 0.180.

12. The protection device (10) according to claim 11, characterized in that said maximum axial height (90), divided by the axial length of said at least one cavity (14) has a value equal to 0.156.

10 13. The protection device (10) according to any of the claims from 1 to 12, characterized in that each sector (12) comprises a sheet (20) equipped with a series of pass-through holes (21) which is fixed to said at least one cavity (14).

15 14. The protection device (10) according to claim 13, characterized in that said sheet (20) is integral with the corresponding sector (12) of said series of sectors (12).

1/2

Fig. 3Fig. 1

2/2

Fig. 2

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2005/009997

A. CLASSIFICATION OF SUBJECT MATTER
F01D25/24 F01D9/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F01D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 1 162 346 A (GENERAL ELECTRIC COMPANY) 12 December 2001 (2001-12-12) column 8, paragraph 25; figures 2,7,8 -----	1,2, 11-14
X	EP 1 154 126 A (GENERAL ELECTRIC COMPANY) 14 November 2001 (2001-11-14) column 3, paragraph 15 column 4, paragraph 19 – column 4, paragraph 20; figures 3,4 -----	1,2, 11-14
X	US 5 127 793 A (WALKER ET AL) 7 July 1992 (1992-07-07) column 5, line 6 – column 5, line 15; figures 4,4c ----- -/-	1,2, 11-14

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

1 December 2005

Date of mailing of the international search report

13/12/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Rau, G