

Developing Technology in Competition

1 INDEX

			. 1
1		<u>-</u> X	
		2D Profile	
		Masses	
		Loaded Radius & Rolling Circumference	
		Calculation Boundaries	
	1.3.	NEW Loaded Radius Equation	. 4
	1.3.	B Loaded Radius coefficients	. 5
	1.3.		. 6
	1.3	Rolling Radius Coefficients	. 7
		Cornering Stiffness	
	1.5	Lateral Rigidity	. ç

1.1 2D Profile

1.2 Masses

	Masse (kg)
297R	10.74

1.3 Loaded Radius & Rolling Circumference

1.3.1 Calculation Boundaries

These parameters are extracted from a complete rig test based on:

- Speed scan
- Vertical load scan
- Camber angle scan
- Slip angle scan
- Pressure scan

1.3.2 NEW Loaded Radius Equation

$$\begin{split} Re(P,V,\gamma,F_{Y}) &= Re_{0} + Re_{P} \cdot P + Re_{V} \cdot V^{2} + Re_{\gamma 1} \cdot \gamma^{2} + Re_{\gamma 2} \cdot |\gamma| + Re_{Y} (F_{Y} - F_{0})^{2} - \frac{F_{Z}}{K_{ZZ}} \\ K_{ZZ}(P,V,\gamma,F_{Y},F_{X}) &= \left(K_{ZZ_{0}} + K_{ZZ_{P}} \cdot P + K_{ZZ_{V1}} \cdot V^{2} + K_{ZZ_{V2}} \cdot V + K_{ZZ_{Y}} \cdot \gamma^{2} \right) \\ R_{libre} &= Re_{0} + Re_{P} \cdot P + Re_{V} \cdot V^{2} + Re_{\gamma 1} \cdot \gamma^{2} + Re_{\gamma 2} \cdot |\gamma| + Re_{Y} (F_{Y} - F_{0})^{2} \end{split}$$

With:

Re: Loaded radius [m]
Kzz: Vertical Stiffness [N/m]

R_{libre}: Free geometrical radius [m]

F_Y: Lateral force [N]
F_Z: Vertical load [N]
V: Velocity [m/s]
γ: Camber [°]

P: Pressure [bar]

1.3.3 Loaded Radius coefficients

Note 1: The critical difference is roughly ±0.6% on KZZ at 2b. Vref is 150km/h

Note 2: (Speeds must be used in m/s in the calculation).

	Fr Casing
	297R
KzzP	1.53E+05
Kzz0	3.99E+04
ReP	6.46E-04
KzzV1	0.7907
KzzV2	681.845
ReV	2.28E-07
KzzGamma	-3.71E+03
ReGamma1	2.18E-04
ReGamma2	-6.82E-05
Fy0	79.3946
ReY	-2.64E-11
Re0	0.35

Vertical Stiffness - Kzz [N/m] 375543

Loaded Radius - Re [m]	0.33333
------------------------	---------

Pressure [bar]	2.0
Fz [N]	8000.0
IA [deg] (absolute value)	3.0
Fy [N]	0.0
V [m/s]	83.3333

Please find in the file "20210305_Kzz_LR_297R_348R.xlsx" an excel sheet to calculate tyre loaded radius with the coefficients above.

Competition

1.3.4 NEW Rolling Radius Equation

$$\begin{split} R_{roul} &= R_{Nappes} + \left(\ Re_0 + Re_P \cdot P - R_{Nappes} \right) * \exp(-\alpha * fleche) + R_{roul_{D2}} * \delta^2 + R_{roul_{D1}} * \delta + R_{roul_{V2}} * V^2 \\ &+ R_{roul_{V1}} * V + R_{roul_{G2}} * \gamma^2 + R_{roul_{G1}} * \gamma \end{split}$$

where:

$$fleche = f = \frac{F_z}{K_{zz}}$$

And:

$$K_{ZZ}(P, V, \gamma, F_Y, F_X) = \left(K_{ZZ_0} + K_{ZZ_P} \cdot P + K_{ZZ_{V_1}} \cdot V^2 + K_{ZZ_{V_2}} \cdot V + K_{ZZ_{\gamma}} \cdot \gamma^2\right)$$

NB: Kzz is calculated with loaded radius coefficients.

With:

Rroul: Rolling radius [m]
Kzz: Vertical Stiffness [N/m]

F_z: Vertical load [N] V: Velocity [m/s] γ: Camber [°] P: Pressure [bar] δ: Slip Angle [°]

For calculation of Rolling Circumference (C_{Roll}), use $C_{Roll} = R_{Roll} \times (2\pi)$

1.3.5 Rolling Radius Coefficients

	Fr Casing
	297R
RroulNappes	0.3467
RroulAlpha: exponential coefficient	82.4063
RroulDelta1: slip angle dependancy	3.62E-05
RroulDelta2 : square slip angle dependancy	-8.24E-06
RroulV1 : speed dependency	-1.48E-05
RroulV2 : square speed dependency	3.29E-07
RroulGamma1 : camber dependency	-1.92E-05
RroulGamma2 : square camber dependency	-4.28E-05
ReO	0.35
ReP	6.46E-04

Pressure [bar]	2.0
Fz [N]	8000.0
Camber gamma [deg]	-3.0
SlipAngle [deg]	0.0000
V [m/s]	83.3

Kzz (N/m)	379731
fleche (m) = Fz / Kzz (droop)	0.0211
Rolling radius - Rroul [m]	0.3482

Please find in the file "20210305_RollingRadius_297R_348R.xlsx" an excel sheet to calculate tyre rolling radius with the coefficients above.

1.4 Cornering Stiffness

The critical difference is about ±1.5% on Cornering Stiffness at 5000N. The results shown are based on flattrack machine testing.

	Cornering Stiffness [N/°]
Vertical Load [N]	297R
2500	-1842.9
5000	-3354.6
7500	-4166.3

<u> 297R :</u>

1.5 Lateral Rigidity

The results shown below are based on flattrack machine testing.

Lateral Rigidity [N/mm]		
Fz=5000N / carro / pression	297R	
Fz=5000N / 0° / 1b7	257.5	
Fz=5000N / 0° / 1b9	281.5	
Fz=5000N / -3° / 1b7	222.3	
Fz=5000N / -3° / 1b9	250.2	

<u> 297R :</u>

