预测 2022 年社会消费品零售总额的损失 基于季节性 ARIMA 模型

杨在洲

yangzzh@shanghaitech.edu.cn

June 2, 2022

目录

数据分析

数据来源 季节性分解

建立 ARIMA 模型

数据检验 参数估计 残差检验 未受疫情干预的预测

干预分析模型的建立 参数估计 预测结果

数据来源

- ▶ 采用的数据为 2012 年 1 月起至 2022 年 4 月的月度数据,来自国家统计局
- ▶ 选择 2022 年 2 月份以前的数据作为训练集

季节性分解

数据检验

- ▶ 数据平稳性检验
- ▶ 数据随机性检验

平稳性检验

平稳的时间序列

若时间序列 Xt 满足如下条件:

- ▶ 均值 $E(X_t) = \mu$, 均值 μ 是与时间 t 无关的常数
- ▶ 方差 $Var(X_t) = \sigma^2$, 方差 σ 是与时间 t 无关的常数
- ▶ 协方差 $Cov(X_t, X_{t+k}) = \gamma^2$, 协方差只与间隔 t 有关

则称时间序列 X_t 是平稳的时间序列

ADF 检验

$$\Delta X_t = \delta X_{t-1} + \sum_{i=1}^m \beta_i X_{t-i} + \epsilon_t$$

$$\Delta X_t = \alpha + \delta X_{t-1} + \sum_{i=1}^m \beta_i X_{t-i} + \epsilon_t$$

$$\Delta X_t = \alpha + \beta_t + \delta X_{t-1} + \sum_{i=1}^m \beta_i X_{t-i} + \epsilon_t$$

三个模型原假设都是 $H_0:\delta=0$. 若拒绝 H_0 则为平稳序列,否则为非平稳序列。通过 ADF 临界值表判断是否接受 H_0

ADF 检验

对原序列做 ADF 检验, 得到结果如下:

Table: 原时序 Xt 的 ADF 检验结果

Augmented Dickey-Fuller Test						
Lag Order:	1					
Dickey-Fuller:	0.3394					
P Value	0.7218					

p > 0.05 无法拒绝原假设,原时序非平稳

ADF 检验

为去掉了原序列线性的趋势因子,对原时序 X_t 进行一阶差分得到 $\hat{X_t}$

Table: 一阶差分时序 \hat{X}_t 的 ADF 检验结果

Augmented Dickey-Fuller Test					
Lag Order:	1				
Dickey-Fuller:	-7.5267				
P Value	0.01				

由于 p < 0.05 所以拒绝原假设,差分后的序列是平稳的,

随机性检验

采用 Ljung-Box 检验 \hat{X}_t 随机性, 假设 H_0 : 为对所有的 k>0, 样本的自相关系数服从:

$$\hat{
ho}_{k} pprox N(0, \frac{1}{n})$$

得到的 Ljung-Box 检验结果为:

Table: Ljung-Box 检验

Ljung-Box test						
X-squared	494.39					
df	6					
p-value	< 2.2e-16					

由于 p < 0.05 所以拒绝原假设,则 ΔX_t 为非随机序列,可进行下一步建模。

ARIMA 模型

ARIMA 模型

给定一个差分 d 阶的时间序列 y_t , ARIMA(p, d, q) 模型如下:

$$y_t' = c + \sum_{i=1}^{p} \phi_i y_{t-i}' + \sum_{i=1}^{q} \theta_i \varepsilon_{t-i} + \varepsilon_t$$

或者写为

$$(1 - \phi_1 B - \dots - \phi_p B^p)(1 - B)^d y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) \varepsilon_t$$

其中 ε_t 是白噪声序列, p 是自回归的阶数, q 是移动平均的阶数。

自相关系数

自相关系数 ACF

$$\rho_h = \rho(y_t, y_{t+k}) = \frac{\textit{Cov}(y_t, y_{t+k})}{\sigma_t \sigma_{t+k}}$$

平稳序列的自相关函数 ACF 与时间间隔 k 有关,ACF 图显示了 y_t 与 y_{t-k} 之间相关性, 可通过 ACF 相关系数决定 q_t

偏自相关系数

偏自相关系数 PACF

在计算相关性时移除了中间变量 $y_{t-1}, y_{t-2}, \cdots, y_{t-k+1}$ 的间接影响, 直接得到 y_t 与 y_{t-k} 之间的相关性, 通过 PACF 估计 P 值

参数估计

根据 ACF 和 PACF 图的拖尾情况选取合适的参数 p,q:

季节性 ARIMA 模型

将一阶差分序列 ΔX_t 进行分解,写成季节,部分与非季节部分的乘积

ARIMA
$$(p, d, q)$$
 $(P, D, Q)_m$

例如对于 $ARIMA(1,1,1)(1,1,1)_m$ 模型:

$$(1-\phi_1 B) \ (1-\Phi_1 B^{12}) \ (1-B) \ (1-B^{12}) y_t = (1+\theta_1 B) \ (1+\Theta_1 B^{12}) \varepsilon_t$$

季节性差分

观测周期为 12 个月,为先消除季节型波动,对 ΔX_t 再进行差分

$$X_t' = \Delta X_t - \Delta X_{t-12}$$

季节性差分

得到序列 X_t 的自相关图:

参数估计

参数确定

- ▶ 可确定季节部分相应系数 P=1, Q=1
- ▶ 非季节部分的 ACF 和 PACF 图较难判断产生拖尾的临界点

利用 AIC, AICc, BIC 准则定量的确定在何种系数下的模型最优

AIC (赤池信息准则)

$$AIC = -2log(L) + 2(p+q+k+1)$$

其中 L 数据的似然函数,最后一项为参数个数 (包含了余项的方差)k=0 若 c=0, k=1 若 $c\neq 0$ 对于 ARIMA 模型而言,修正过的 AIC 值可以被表示为:

$$AICc = AIC + \frac{2(p+q+k+1)(p+q+k+2)}{T - p - q - k - 2}$$

AICc (赤池信息量准则)

$$AICc = AIC + \frac{2(p+q+k+1)(p+q+k+2)}{T - p - q - k - 2}$$

BIC (贝叶斯信息准则)

$$\mathsf{BIC} = \mathsf{AIC} + [\log(\mathit{T}) - 2](\mathit{p} + \mathit{q} + \mathit{k} + 1)$$

模型选择

通过枚举 p,q 的值得到相应模型 AIC,AICc,BIC 如下:

相应的 ARIMA 模型	AIC	AICc	BIC
(0,1,0)(1,1,1)[12]	1876.32	1876.55	1884.4
(0,1,1)(1,1,1)[12]	1878.32	1878.7	1889.08
(0,1,2)(1,1,1)[12]	1877.96	1878.54	1891.41
(0,1,3)(1,1,1)[12]	1876.22	1877.04	1892.36
(1,1,1)(1,1,1)[12]	1880.27	1880.86	1893.73
(1,1,2)(1,1,1)[12]	1873.59	1874.41	1889.74
(1,1,3)(1,1,1)[12]	1875.51	1876.62	1894.35
(2,1,1)(1,1,1)[12]	1873.53	1874.36	1889.68
(2,1,2)(1,1,1)[12]	1875.02	1876.13	1893.86
(3,1,0)(1,1,1)[12]	1879.02	1879.84	1895.16
(3,1,1)(1,1,1)[12]	1875.53	1876.64	1894.37
(3,1,2)(1,1,1)[12]	1876.98	1878.79	1901.2

残差检验

从表20中看出,ARIMA $(2,1,1)(1,1,1)_{12}$ 是最优的 ARIMA 模型。对残 差 ϵ_t 做 Ljung-Box test 检验:

Table: 残差 Ljung – Box 检验结果

Ljung-Box test			
df	19		
p-value	0.90		

p>0.05 无法拒绝原假设,所得残差为白噪声序列,残差之间不存在自相关性。

残差检验

并且得到的残差图1, 残差基本符合正态分布要求:

Figure: $ARIMA(2,1,1)(1,1,1)_{12}$ 的残差图

残差检验

为进一步说明, 绘出正态 Q-Q 图

Figure: ARIMA(2,1,1)(1,1,1)12 的残差 Q-Q 图

Figure: ARIMA 模型得到的 12 步拟 合值

Figure: 2020 年社会消费品零售总额的损失

干预分析

持续性干预变量

$$S_t^T = \begin{cases} 0 & \text{ if } \text{ if$$

干预分析模型

设 ω 为干预未知的干预系数, Z_t 为疫情发生后所产生的损失的时间序列,通过一阶差分获得平稳序列,则干预后的模型可写为

$$Z_t = \delta Z_{t-1} + \omega$$

干预模型

用最小二乘法的到参数的估计值, $\delta=0.7328, \omega=72.1654$ 绘出回归拟合图像和残差图如下,残差符合正态分布要求,且通过 Ljung-Box 检验。:

Figure: 2020 年社会消费品零售总额的损失图 (红色为回归结果)

Figure: 回归结果的残差图

Table: 2022 年 3 月起社会消费品零售总额的损失(单位: 亿元)

月份	3	4	5	6	7	8	9	10	11	12
损失	3924	8587	6364	4735	3542	2667	2026	1557	1213	961

Figure: 2022 年 3 月起社会消费品零售总额的损失

Figure: 红色面积为预测损失

损失的社会消费品零售总额共计 35576.72 亿元

参考文献

- [1] CLEVELAND R B, CLEVELAND W S, MCRAE J E, et al. Stl: A seasonal-trend decomposition[J]. J. Off. Stat, 1990, 6(1): 3-73.
- [2] YANG L, WEI C, JIANG X, et al. Estimating the economic effects of the early covid-19 emergency response in cities using intracity travel intensity data[J]. International Journal of Disaster Risk Science, 2022, 13(1): 125-138.
- [3] HYNDMAN R J, ATHANASOPOULOS G. For further information on stationarity and differencing see[M]. [S.l.: s.n.], 2018.
- [4] TSAY R S. An introduction to analysis of financial data with r[M]. [S.I.]: Wiley Publishing, 2012.
- [5] 杨新洪. 新冠肺炎疫情与"烟斗形"经济运行模式分析及模型测算——以广东省 2020 年前三季度经济走势为例 [J]. 深圳社会科学, 2021, 4(1): 18-39.