# Feuille d'exercice n° 20 : Fonctions de plusieurs variables

#### I. Limite et continuité

Étudier la limite en 0 des applications suivantes : Exercice 1

- 1) Soit f définie par  $f(x,y) = \frac{|x|\sqrt{|y|}}{x^2+y^2}$  si  $(x,y) \neq (0,0)$ .
- 2) Soit f définie par  $f(x,y) = \begin{cases} \frac{x^2y^3}{x^4+y^6} & \text{si } x \neq (0,0), \\ 0 & \text{sinon } . \end{cases}$
- 3) Soit f définie par  $f(x,y) = \frac{((x-1)^2 + y^2) \ln((x-1)^2 + y^2)}{|x| + |y|}$ .

Étudier la continuité de l'application  $f: \mathbb{R}^2 \to \mathbb{R}$  définie par  $f(x,y) = \frac{x^3y^3}{x^2+y^4}$  pour  $(x,y) \neq (0,0)$  et f(0,0) = 0.

Soit f la fonction définie sur  $\mathbb{R}^2$  par : Exercice 3

$$\begin{cases} f(x,y) = \frac{x^2y}{x^4 - 2x^2y + 3y^2} & \text{si } (x,y) \neq (0,0) \\ f(0,0) = 0 & \end{cases}$$

- 1) Montrer que la restriction de f à toute droite passant par l'origine est continue.
- 2) Montrez que la fonction f n'est pas continue à l'origine.

Étudier l'existence et la valeur éventuelle d'une limite finie en (0,0) pour les fonctions f de deux variables réelles définies par les formules suivantes :

1) 
$$\frac{xy}{x^2 + xy + y^2}$$

3) 
$$\frac{x^3y^4}{x^4+y^6}$$

**5**) 
$$\frac{e^{xy}-1}{e^x-1}$$

1) 
$$\frac{xy}{x^2 + xy + y^2}$$
. 3)  $\frac{x^3y^4}{x^4 + y^6}$ . 2)  $\frac{x^2y}{x^2 - xy + y^2}$ . 4)  $\frac{xy^4}{x^4 + y^6}$ .

4) 
$$\frac{xy^4}{x^4+y^6}$$

On note  $U = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 \neq 0\}$ . Exercice 5 L'application  $f:U\longrightarrow \mathbb{R}, (x,y,z)\longmapsto \frac{x^4+y^4-z^4}{x^2+y^2-z^2}$  admet-elle une limite (finie ou infinie) en (0,0,0)?

II. Dérivées partielles d'ordre 1

Soit  $f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto \frac{\sin(xy)}{|x|+|y|} \text{ si } (x,y) \neq (0,0) \\ (0,0) \mapsto 0 \end{cases}$ . Exercice 6

Étudier la continuité de f et l'existence des dérivées partielles. f est-elle  $\mathscr{C}^1$  ?

**Exercice 7** Soit  $f: \mathbb{R}^2 \to \mathbb{R}$  définie par :

$$f(x,y) = \begin{cases} \frac{y^2}{x} & \text{si } x \neq 0\\ y & \text{sinon} \end{cases}$$

Montrer que f admet des dérivées dans toutes les directions en 0, mais n'est pas continue en 0.

#### Exercice 8

1) Donner l'ensemble de définition de la fonction f de  $\mathbb{R}^2$  dans  $\mathbb{R}$  définie par :

$$f(x,y) = \ln\left(x + \sqrt{x^2 + y^2}\right).$$

- 2) La fonction f est-elle continue? de classe  $\mathscr{C}^1$ ?
- 3) En C=(0,1), déterminer la dérivée de f dans la direction d'un vecteur unitaire  $\overrightarrow{n}=(a,b)$ . Comment choisir  $\overrightarrow{n}$  pour que cette dérivée soit maximale?

**Exercice 9** Soit  $f: \mathbb{R} \to \mathbb{R}$  dérivable. Calculer les dérivées partielles de :

$$g(x,y) = f(x+y)$$
  $h(x,y) = f(x^2 + y^2)$   $k(x,y) = f(xy)$ 

## III. Différentielle

**Exercice 10** Montrer que l'application  $P \mapsto \int_0^1 (P(t))^2 dt$  définie sur  $\mathbb{R}_n[X]$  est différentiable et calculer sa différentielle.

**Exercice 11** Soit f la fonction définie sur  $\mathbb{R}^2$  par :

$$\begin{cases} f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ f(0,0) = 0 & \end{cases}$$

Étudier la différentiabilité de f.

#### IV. Courbes et surfaces

**Exercice 12** On considère la surface (S) d'équation xyz = 1. Montrer que pour tout point  $M \in (S)$ , les intersections du plan tangent à (S) en M avec les plans xOy, yOz et xOz forment un tétraèdre de volume constant.

**Exercice 13** Trouver tous les plans tangents à la surface (S) d'équation  $x^2 - 4y^2 + z^2 = 1$  passant par des points A(a,0,0), B(0,b,0) et C(0,0,c) tels que c = 2a = 2b (on supposera a,b,c non nuls).

## V. Dérivées partielles d'ordre 2

**Exercice 14** Soit f la fonction définie sur  $\mathbb{R}^2$  par :

$$\begin{cases} f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ f(0,0) = 0 & \end{cases}$$

Montrez que f admet des dérivées partielles secondes en tout point. Que pouvez-vous déduire du calcul de  $\frac{\partial^2 f}{\partial x \partial y}(0,0)$  et de  $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ ?

## VI. Équations aux dérivées partielles

Exercice 15 En réalisant le changement de variables

$$\begin{cases} u = xy \\ v = x/y \end{cases}$$

déterminer les fonctions  $f: \mathbb{R}^{+\star} \times \mathbb{R}^{+\star} \to \mathbb{R}$  de classe  $\mathscr{C}^2$  solutions de l'équation aux dérivées partielles

$$x^2 \frac{\partial^2 f}{\partial x^2} - y^2 \frac{\partial^2 f}{\partial y^2} = 0$$

**Exercice 16** En réalisant le changement de variables  $\begin{cases} u = x \\ v = y - x \end{cases}$  déterminer les fonctions  $f: \mathbb{R}^2 \to \mathbb{R}$  de classe  $\mathscr{C}^1$  solutions de l'équation aux dérivées partielles

 $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = f.$ 

**Exercice 17** Résoudre sur  $\mathbb{R}_+^* \times \mathbb{R}_+^*$  l'équation aux dérivées partielles :

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = \sqrt{x^3 + y^3}$$

en utilisant les coordonnées polaires.

## VII. Extrema

**Exercice 18** Déterminer les extrema locaux des fonctions  $f: \mathbb{R}^2 \to \mathbb{R}$  suivantes :

- 1)  $f(x,y) = x^2 + xy + y^2 3x 6y$
- 2)  $f(x,y) = x^2 + 2y^2 2xy 2y + 5$
- 3)  $f(x,y) = x^3 + y^3$
- **4)**  $f(x,y) = (x-y)^2 + (x+y)^3$
- **5)**  $f(x,y) = x^3 + y^3 3xy$ .

**Exercice 19** Soit  $a \in \mathbb{R}_+^*$ . On pose  $f: (x,y) \mapsto x + y - (x^2 + y^2 + ay)$  et  $D = \{(x,y) \in ]0,1[^2, x+y<1\}.$ 

- 1) Représenter D dans le plan.
- 2) Discuter l'existence d'extrema locaux de f sur D en fonction de la valeur de a.

**Exercice 20** Calculer l'aire maximale d'un triangle inscrit dans un cercle de rayon r.

Exercice 21 Trouver les extremums de la fonction définie sur  $\mathbb{R}^2$  par :

$$f(x,y) = xe^y + ye^x.$$

**Exercice 22** Où sont les extremums de  $(x,y)\mapsto x^2+y^2$  sur  $[-1,1]\times[-1,1]$  ?

**Exercice 23** Déterminer les extrémums locaux des applications f suivantes, pour lesquelles on donne l'ensemble de départ et l'image f(x,y) de (x,y):

- 1)  $\mathbb{R}^2$ ,  $4x + 2y x^2 y^2 2x^3$ .
- **2)**  $\mathbb{R}^2$ ,  $xy + x^3y^2$ .



