අධායන පොදු සහතික පතු (උසස් පෙළ)

රසායන විදහාව

විෂය නිර්දේශය (පසු විමසුම් කළ)

2012 වර්ෂයේත්, ඉන් ඉදිරියටත් පැවැත්වෙන අ.පො.ස. (උසස් පෙළ) විභාග සඳහා

විදහා, සෞඛා හා ශාරීරික අධාාපන දෙපාර්තමේන්තුව විදහා හා තාක්ෂණ පීඨය ජාතික අධාාපන ආයතනය

1.0 හැඳින්වීම

මෙම විෂය නිර්දේශය උසස් අධාාපනය කරා යොමු වන පිරිසට මෙන් ම අ.පො.ස. උසස් පෙළ රසායන විදාාව දැනුම අනෙකුත් විවිධ ක්ෂේතු තුළ දී උපයෝගී කර ගනු ඇතැයි අපේක්ෂිත පිරිසට අවශා මූලික රසායන විදාා පසුබිම සැලසීම සඳහා සැලසුම් කර ඇත.

ඉගැන්වීමේ දී අනුගමනය කිරීමට උචිත (නමුත් අනිවාර්ය නො වන) අනුපිළිවෙළකට පෙළගැස්වූ ඒකක 16කින් මෙම විෂය නිර්දේශය සමන්විත වේ. එක් එක් ඒකකය යටතේ ඉගැන්වීය යුතු විෂය සන්ධාරය නිපුණතා පාදක ව සංවිධානය කර තිබේ.

උපඒකක අවසානයේ තද කළු අකුරින් මුදුණය කර දක්වා තිබෙන, සිද්ධාන්ත හා පරීක්ෂණ අතර සම්බන්ධය ඉස්මතු වන පුායෝගික පරීක්ෂණ විෂය නිර්දේශයේ අතාවශා සංරචකයකි.

2009 වර්ෂයේ දී හඳුන්වා දුන් විෂය නිර්දේශය පසු විපරම් කිරීමේ පුතිඵලය ලෙස මෙම විෂය නිර්දේශය සකස් විය. වර්ෂ 2012 සිට ඉදිරියට පැවැත්වෙන අ.පො.ස. (උ.පෙළ) විභාග සඳහා මෙය වලංගු වේ. මෙහි දී 2009 වර්ෂයේ හඳුන්වා දුන් විෂය නිර්දේශයේ පහත සඳහන් වෙනස්කම් සිදු කරන ලදී.

- É කාලච්ඡේද සංඛාාව 600 සිට 468 දක්වා අඩු කිරීම.
- É ඒකකය 01 ඒකක දෙකකට වෙන් කිරීම.
- $\acute{ ext{E}}$ ඒකකය 03 හි විෂය අන්තර්ගතය අඩු කිරීම හා නැවත සකස් කිරීම.
- $\acute{ ext{E}}$ පදාර්ථයේ වායු අවස්ථාව ලෙස ඒකකය 03 නම් කිරීම.
- É ඒකකය 14 හි වූ කැටායන හා ඇනායනවල ගුණාත්මක විශ්ලේෂණය ඒකකය 05 ට ගෙන ඒම, පැවති ඒකදායක ලිගනවලට අමතරව OHි අයනය එකතු කිරීම හා සැලිසිලික් අම්ලය සමඟ අයන් (III) අයන සිදු කරන පුතිකිුයාව පිළිබඳ පුායෝගික පරීක්ෂණය හඳුන්වාදීම.
- É ඒකකය 07 ට බෙන්සීන් ඇසිල්කරණය හඳුන්වාදීම.
- $\acute{ ext{E}}$ ඒකකය 10 ට එස්ටර ගීනාඩ් පුතිකාරකය හා $ext{LiAlH}_4$ සමඟ පුතිකිුයා සහ ඒමයිඩ $ext{LiAlH}_4$ සමඟ පුතිකිුයාව හඳුන්වාදීම.
- $\acute{ ext{E}}$ ඒකකය 11 හි නිපුණතා මට්ටම 11.1 සහ 11.6 යටතේ වූ විෂය සන්ධාරය ඉවත් කිරීම.
- $\acute{ extbf{E}}$ ඒකකය 12 හි සමහර විෂය කොටස් ඉවත් කර නැවත සකස් කිරීම.
- $\acute{ ext{E}}$ ඒකකය 13 හි පුායෝගික කිුියාකාරකම් හයක් සහ සමහර විෂය කොටස් ඉවත් කිරීම.

- $m \acute{E}$ ඒකකය 14 හි තෝරාගත් සමහර විෂය කොටස් වෙනත් ඒකකවලට ගෙනයාම හා ඉතිරිය විෂය නිර්දේශයෙන් ඉවත් කිරීම.
- $m \acute{E}$ ඒකකය m 15 හි තෝරාගත් කර්මාන්ත සමහරක් ඉවත් කිරීම සහ නිපුණතා මට්ටම m 15.5 නැවත සකස් කිරීම.
- É ඒකකය 16 න් සමහර විෂය කොටස් ඉවත්කිරීම හා නිපුණතා මට්ටම් සංඛ්‍යාව 7 සිට 4 දක්වා අඩු කිරීම.

2.0 විෂය නිර්දේශයේ අරමුණු

මෙම පාඨමාලාව අවසානයේ දී සිසුනු ,

- 1. රසායන විදහාවේ මූලික සංකල්ප පිළිබඳ අවබෝධය ලබා ගැනීමට සහ විෂයයේ ඒකාබද්ධ තේමා හා රටා අගයයි.
- 2. රසායන විදහාත්මක දැනුම හා සංකල්ප රසායනික සංසි්ද්ධි සඳහා යෙදවීම පිළිබඳ තර්කානුකූල හා පරිකල්පිත චින්තනය වැඩි දියුණු කර ගනියි.
- 3. සමාජයට රසායන විදහා දැනුමේ ඇති වටිනාකම හඳුනා ගැනීමට සහ තාක්ෂණික, ආර්ථික හා සමාජයීය සංවර්ධනය උදෙසා විදහාව යොදා ගැනීම පිළිබඳ අවබෝධයක් ලබා ගනියි.
- 4. ස්වභාවික සම්පත් පිළිබඳවත්, ස්වභාවික සම්පත් පරිභෝජනය සහ සංරක්ෂණය හා බැඳි ගැටලු පිළිබඳවත් අවබෝධයක් ඇති කර ගනියි.

ඒකක සහ කාලච්ඡේද

		මාතෘකාව	කාලච්ඡේද ගණන
01 ඒකකය		පරමාණුක වාූූහය	29
	-		
02 ඒකකය	-	වපුහය හා බන්ධන	26
03 ඒකකය	-	රසායනික ගණනය කිරීම්	15
04 ඒකකය	-	පදාර්ථයේ වායු අවස්ථාව	18
05 ඒකකය	-	ශක්ති විදහාව	26
06 ඒකකය	-	s, p හා d ගොනුවලට අයත් මූලදුවාවල රසායනය	69
07 ඒකකය		කාබනික රසායන විදාහවේ මූලික සංකල්ප	17
08 ඒකකය		හයිඩ්රොකාබන	26
09 ඒකකය		ඇල්කිල් හේලයිඩ	12
10 ඒකකය		ඔක්සිජන් අඩංගු කාබනික සංයෝග	35
11 ඒකකය		නයිට්රජන් අඩංගු කාබනික සංඛයාග	15
12 ඒකකය	-	චාලක රසායනය	27
13 ඒකකය		සමතුලිතතාව	62
14 ඒකකය	-	විදාුුත් රසායනය	26
15 ඒකකය	-	රසායන විදහාව හා කර්මාන්ත	41
16 ඒකකය	-	පාරිසරික රසායන විදහාව	24

විෂය නිර්දේශය පාසල් වාරවලට අනුව බෙදා ගැනීමට යෝජිත උපදෙස්

ලේණිය	වාරය	නිපුණතා හා නිපුණතා මට්ටම්
	පළමු වන වාරය	නිපුණතා මට්ටම 1.1 සිට නිපුණතා මට්ටම 4.5 දක්වා (නිපුණතා මට්ටම් 16)
12 වන ශුේණිිය	දෙ වන වාරය	නිපුණතා මට්ටම 5.1 සිට නිපුණතා මට්ටම 6.9 දක්වා (නිපුණතා මට්ටම් 13)
	තුන් වන වාරය	නිපුණතා මට්ටම 7.1 සිට නිපුණතා මට්ටම 10.7 දක්වා (නිපුණතා මට්ටම් 18)
	පළමු වන වාරය	නිපුණතා මට්ටම 11.1 සිට නිපුණතා මට්ටම 13.4 දක්වා (නිපුණතා මට්ටම් 11)
13 වන ශුේණිිය	ලද වන වා <i>ර</i> ය	නිපුණතා මට්ටම 13.5 සිට නිපුණතා මට්ටම 15.4 දක්වා (නිපුණතා මට්ටම් 12)
	තුන් වන වාරය	නිපුණතා මට්ටම 15.5 සිට නිපුණතා මට්ටම 16.4 දක්වා (නිපුණතා මට්ටම් 06)

3.0 විෂය නිර්දේශය

3.1 12 ලේණිය

1 ඒකකය - පරමාණුක වාූහය

කාලච්ඡේද 29

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධා ර ය	කාලච්ඡේද
1.0 පදාර්ථයේ ස්වභාවය නිර්ණය කිරීම සඳහා ඉලෙක්ටොනික සැකැස්ම හා ශක්ති හුවමාරු යොදා ගනියි.	1.1 පරමාණුක වහුහය පිළිබඳ ආකෘති විමසුමට ලක් කරයි.	 පරමාණුව හා උපපරමාණුක අංශු පිළිබඳ වීමසීම රදර්ෆඩ්ගේ නාෂ්ටික ආකෘතිය බෝර් ආකෘතිය සාපේකු පරමාණුක ස්කන්ධය හා සමස්ථානික විකිරණශීලතාව හැඳින්වීම α, β හා γ කිරණවල ගුණ කැතෝඩ කිරණවල ගුණ පරීක්ෂා කිරීම 	06
	1.2 විවිධ වර්ගවල විදහුත් චුම්බක විකිරණ විමර්ශනය කරයි.	 විදසුත් චුම්බක විකිරණ ගුණ [පුවේගය (c), ආයාමය (λ), සංඛ්‍යාතය (ν), ශක්තිය (E)] c = νλ E = hν විදසුත් චුම්බක වර්ණාවලිය විදසුත් චුම්බක වර්ණාවලියේ විවිධ පරාසවලට අයත් කිරණවල ගුණ හා ඒවායේ භාවිත දෘශ්‍ය පරාසයේ සංරචක නිරීක්ෂණය කිරීම 	03

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේ ද
	1.3 පරමාණුවල ඉලෙක්ටෝනික ශක්ති මට්ටම් පිළිබඳ සාක්ෂා විශ්ලේෂණය කරයි.	 මූලදුවාවල අනුයාත අයනීකරණ ශක්ති විචලනය හයිඩ්රජන් වර්ණාවලිය බෝර් වාදය ඇසුරෙන් හයිඩ්රජන් වර්ණාවලිය පැහැදිලි කිරීම \$\$, p, d\$ හා f\$ උපශක්ති මට්ටම් ඉලෙක්ටොනයේ තරංග - අංශුමය ස්වභාවය කාක්ෂිකවල හැඩ (\$\$ හා p\$ පමණි) ශක්තිය ක්වොන්ටමීකරණය ක්වොන්ටම් අංක හතර ලුහුඬින් හඳුන්වා දීම පුධාන ක්වොන්ටම් අංකය (\$n\$) උද්දිගංශ ක්වොන්ටම් අංකය (\$t\$) වුම්බක ක්වොන්ටම් අංකය (\$m_t\$) බැමුම් ක්වොන්ටම් අංකය (\$m_t\$) බැමුම් ක්වොන්ටම් අංකය (\$m_t\$) (දෙන ලද ඉලෙක්ටෝනයක් සඳහා වන කොවොන්ටම් අංක හතර විශේෂිත ව දැක්වීම පරීක්ෂාවට ලක් නො කෙරේ.) 	08
	1.4 හුදෙකලා වායුමය පරමාණුවල හා අයනවල භූමි අවස්ථාවේ ඉලෙක්ටෝන විනාහස විශ්ලේෂණය කරයි.	 උපශක්ති මට්ටම්වල පවතින උපරිම ඉලෙක්ටෝන සංඛාහ ඉලෙක්ටෝන පිරීමේ රටාවට අදාළ මූලධර්ම හා නීති හුන්ඩ් නීතිය පව්ලිගේ බහිෂ්කාර මූලධර්මය අවුෆ්බාවු මූලධර්මය පරමාණුක කුමාංකය 1 සිට 38 දක්වා වන මූලදුවාවල වායු අවස්ථාවේ පවතින හුදෙකලා පරමාණුවල සහ ඒවායේ අයනවල භූමි අවස්ථාවේ ඉලෙක්ටෝන විනාහසය 	04

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
		 උපශක්ති මට්ටම්වල ස්ථායී ඉලෙක්ටෝන විනාහස (\$s^1\$, \$s^2\$, \$p^0\$, \$p^3\$, \$p^6\$ d^5\$ හා \$d^{10}\$ පමණි.) මූලදුවාවල අනුයාත අයනීකරණ ශක්ති හා පුථම අයනීකරණ ශක්ති විචලනය පැහැදිලි කිරීම 	
	1.5 ආවර්තිතා වගුවෙහි මූලදවාවලට හිමි ස්ථාන නිර්ණය කරනු පිණිස ඒවායේ ඉලෙක්ටෝන විනාහස විශ්ලේෂණය කර පරමාණුක ගුණ ඉලෙක්ටෝන විනාහසය හා සම්න්ධ කරයි.	 ආවර්තිතා වගුව ගොඩනැංවීම ආවර්තිතා වගුවේ දීර්ඝ ආකාරය හැඳින්වීම \$\$\$, \$\$\$, \$\$\$ ගොනු 1 සිට 18 දක්වා කාණ්ඩවල මූලදවා ක්‍රියා ද්‍යා ද්‍ය	08

2 ඒකකය - වනුහය හා බන්ධන

කාලච්ඡේද 26

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
2.0 පදාර්ථයේ ගුණ සමඟ වහුහය හා බන්ධන සම්බන්ධ කර දක්වයි.	2.1 පදාර්ථයේ වහුහය හා ගුණ නිර්ණය කරනු පිණිස බහු-පරමාණුක පද්ධතිවල පවත්නා පුාථමික අන්තර්කියා විශ්ලේෂණය කරයි.	 රසායනික බන්ධන හට ගැනීම විදයුත්-ඎණතා වෙනස්කම් ඇසුරෙන් බන්ධන වර්ගය තීරණය කිරීම පාථමික අන්තර්කියා සහසංයුජ බන්ධන ඎසාසංයුජ බන්ධන ඛැවීය සහසංයුජ බන්ධන (නිද:-HCl, H₂O, NH₃) සංගත (දායක සහසංයුජ) බන්ධන (නිද:-H₃O⁺, NH₄⁺, NH₃·BF₃) අයනික පද්ධති අයනික බන්ධනවල සහසංයුජ ලක්ෂණ - කැටායනවල ධුැවීකරණ බලය හා ඇනායනවල ධුැවණශීලීතාව) ලෝහක බන්ධන 	06
	2.2 සහසංයුජ අණුවල, ධුැවීය සහසංයුජ අණුවල හා සරල අයන කාණ්ඩවල හැඩ විශ්ලේෂණය කරයි.	 අණු හා අයනවල වසුහ නිර්ණය කිරීම ලුවිස් වසුහ සංයුජතා කවච ඉලෙක්ටෝන යුගල් විකර්ෂණ (VSEPR) වාදය ලුවිස් වසුහ හා VSEPR වාදය භාවිතයෙන් අණු/අයනවල හැඩ පුරෝකථනය කිරීම (මධා පරමාණුව වටා පවතින උපරිම ඉලෙක්ටෝන යුගල් ගණන හය දක්වා පමණි.) ජානමිතික හැඩ තලීය තිකෝණාකාර චතුස්තලීය 	10

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
		 තිකෝණාකාර පිරමිඩීය කෝණික තිකෝණාකාර ද්විපිරමිඩීය විකෘති චතුස්තලීය හෙවත් සී-සෝ (see-saw) හැඩය T - හැඩය අෂ්ඨතලීය සමචතුරසාකාර පිරමිඩීය කලීය සමචතුරසාකාර මුහුම්කරණය (sp, sp², sp³ පමණි, ව්යුග්ම ඉලෙක්ටෝන සහිත සංයෝජන හැර) තෝරා ගත් අණු හා අයනවල සම්පුයුක්තතාව O₃, N₂O, CO₂, CO₃²⁻, NO₃⁻, NO₂⁻ සහ සමාන සරල අණු හා අයන) අණු හා අයනවල පවතින බන්ධන ආකාර (σ සහ π බන්ධන) ආකෘති සැකසීම මගින් හැඩ අවබෝධ කර ගැනීම 	
	2.3 පදාර්ථයේ වනුහය හා ගුණ නිර්ණය කරනු පිණිස විවිධ පද්ධති තුළ පවතින ද්විතියික අන්තර්කුියා විශ්ලේෂණය කරයි.	 ධැවිකරණය හා ද්විධුැව සූර්ණය ධැවණශීලතාව (Polarizability) ද්විතියික අන්තර්කියා (වැන් ඩ' වාල්ස් අන්තර්කියා) හයිඩ්රජන් බන්ධන ද්විධුැව-ද්විධුැව අන්තර්කියා අයන-ද්විධුැව අන්තර්කියා අයන-ලේරිත ද්විධුැව අන්තර්කියා ද්විධුැව-ලේරිත ද්විධුැව අන්තර්කියා අපකිරණ අන්තර්කියා (ලන්ඩන් බල) (සියල්ල ම ගුණාත්මක ව පමණක් සලකා බැලීම පුමාණවත් ය.) 	06

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
	2.4 පදාර්ථවල ඝන අවස්ථාවේ වසුහය ඒවායේ භෞතික ගුණ හා කෙසේ සම්බන්ධ වේ දැයි විශ්ලේෂණය කරයි.	 දවාවල භෞතික ගුණ, ඝන අවස්ථවේ ව්‍යුහය හා සම්බන්ධ කිරීම දවාංක විදයුත් සන්නායකතාව තාප සන්නායකතාව දෘඪතාව විවිධ වර්ගවල දැලිස් සමපරමාණුක (දියමන්ති, මිනිරන්) විෂමපරමාණුක (SiO₂) නිර්ධැවීය අණුක දැලිස (I₂) ධැවීය අණුක දැලිස (අයිස්) අයනික දැලිස (NaCI) ලෝහක දැලිස 	04

3 ඒකකය - රසායනික ගණනය කිරීම්

(කාලච්ඡේද 15)

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
3.0 රසායනික ගණනය නිවැරැදි ව සිදු කරයි.	3.1 අණු හා පරමාණු සම්බන්ධ භෞතික රාශි යොදා ගනිමින් රසායනික සූතු ගොඩ නැංවීම හා අදාළ නියත ආශිත ගණනයන් සිදු කරයි.	 ඇවගාඩ්රෝ නියතය ෆැරඩේ නියතය සංයුතිය ස්කන්ධ භාගය පරිමා භාගය මවුල භාගය අණුක සූතුය හා ආනුභවික සූතුය සංයුති හා සාන්දණය ප්‍රකාශ කරනු ලබන විවිධ ඒකක අතර සබඳතා ස්කන්ධ/පරිමා mg dm³ .00g dm³ මවුල/පරිමා mol dm³ mmol dm³ මලියනයකට කොටස් 	06
	3.2 තුලිත රසායනික සමීකරණ ආශිුත ගණනයන් සිදු කරයි.	 ස්කන්ධ හා ආරෝපණ සංස්ථිතිය තුලිත නාෂ්ටික සමීකරණ ලිවීම රසායනික සමීකරණ තුලනය කිරීම සෝදිසි කුමය ඔක්සිකරණ - ඔක්සිහරණ කුමය ඔක්සිකරණ අංකය ඔක්සිකරණය, ඔක්සිහරණය හා අර්ධ අයනික සමීකරණ අවක්ෂේපණය සම්බන්ධ ගණනය කිරීම Ba²⁺ භාවිතයෙන් SO₄²⁻ දාවණයක සාන්දණය පරික්ෂණාත්මක ව නිර්ණය කිරීම. 	09

(කාලච්ඡේද18)

4 ඒකකය - පදාර්ථයේ වායු අවස්ථාව

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
4.0 පදාර්ථයේ වායු අවස්ථාවේ හැසිරීම වීමර්ශනය කරයි.	4.1 පදාර්ථවලට ආවේණික ලාක්ෂණික විස්තර කිරීම සඳහා පදාර්ථයේ පුධාන අවස්ථා තුනෙහි අංශු සැකසී ඇති ආකාරය යොදා ගනියි.	 පදාර්ථයේ ප්‍රධාන අවස්ථා සන දව වායු අංශු සැකැස්ම හා ඒවායේ චලන ගුණ, ගුණාත්මක ව සංසන්දනය කිරීම පරිමාව සනත්වය හැඩය සම්පීඩානාව 	01
	4.2 තාත්ත්වික වායුවල හැසිරීම් රටා විස්තර කිරීම සඳහා පරිපූර්ණ වායු පිළිබඳ ආකෘතිය යොදා ගනියි.	 පරිපූර්ණ වායු හැඳින්වීම (P,V,T හා n විචලා ලෙස) පරිපූර්ණ වායු සමීකරණය බොයිල් නියමය, චාල්ස් නියමය හා ඇවගාඩ්රෝ නියමය පරිපූර්ණ වායු සමීකරණය සමඟ බොයිල් නියමය, චාල්ස් නියමය හා ඇවගාඩ්රෝ නියමය දක්වන සංගතභාවය මවුලික පරිමාව වායුවක මවුලික පරිමාව පරීක්ෂණාත්මක ව නිර්ණය කිරීම මැග්නීසියම්වල සාපේක්ෂ පරමාණුක ස්කන්ධය පරීක්ෂණාත්මක ව නිර්ණය කිරීම 	08

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේ ද
	4.3 තාත්ත්වික වායුවල හැසිරීම විස්තර කරනු පිණිස වායු පිළිබඳ අණුක චාලක වාදය යොදා ගනියි.	 වායු පිළිබඳ අණුක චාලක වාදය වායුවක පීඩනය වර්ග මධ්‍යනා මූල චේගය හා මධ්‍යනා චේගය අණුක චාලක සමීකරණය (ඔප්පු කිරීම අනවශා යි.) වායු විසරණය කෙරෙහි බලපාන සාධක මැක්ස්වෙල්-බෝල්ට්ස්මාන් වාාප්තිය (පුස්තාරික ව) උෂ්ණත්වය අනුව වාාප්තියේ විචලනය 	04
	4.4 වායු මිශුණයක හැසිරීම විගුහ කිරීමට ඩෝල්ටන් ගේ ආංශික පීඩන නියමය භාවිත කරයි.	මවුල භාගයමුළු පීඩනය හා අාංශික පීඩනයඩෝල්ටන් ගේ අාංශික පීඩන නියමය	03
	4.5 තාත්ත්වික වායු සඳහා යෙදිය හැකි වන සේ පරිපූර්ණ වායු සමීකරණය සඳහා සිදු කළ සංශෝධන විශ්ලේෂණය කරයි.	 සම්පීඩාන සාධකය (පරිපූර්ණතාව පරීක්ෂා කිරීමට පමණි.) තාත්ත්වික වායු පරිපූර්ණ වායු හැසිරීමෙන් අපගමනය වීම අණුක අන්තර්කියා අණුවල පරිමාව පරිපූර්ණ වායු සමීකරණයට සංශෝධන වැන් ඩ' වාල්ස් සමීකරණය (ගුණාත්මක විස්තරයක් පමණි.) 	02

5 ඒකකය - ශක්ති විදහාව

(කාලච්ඡේද 26)

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
5.0 එන්තැල්පි වෙනස් වීම් හා එන්ටොපි වෙනස් වීම් විමර්ශනය කරමින් රසායනික පද්ධතිවල ස්ථායීතාව හා විපර්යාස සිදු වීමට ඇති හැකියාව පිළිබඳ පෙරැයීම් කරයි.	5.1 එන්තැල්පි හා සම්බන්ධ සංකල්ප විමසා බලයි.	 සටනා ගුණ හා විත්ති ගුණ පද්ධතිය, පරිසරය හා මායිම සංශුද්ධ දුවාවල සම්මත අවස්ථා සම්මත තත්ත්ව පද්ධතියක අවස්ථාව හා අවස්ථා ශීත තාපය හා එන්තැල්පිය අවස්ථා විපර්යාස හා රාසයනික පුතිකියා ආශිත එන්තැල්පි විපර්යාස 	04
	5.2 ආශිුත එන්තැල්පි විපර්යාස විශ්ලේෂණය කරමින් පරිවර්තන සිදු වීමට ඇති හැකියාව පිළිබඳ පෙරැයීම් කරයි.	 තාප විපර්යාස හා ප්‍රතිකියා තාපය තාප අවශෝෂක (ශක්ති අවශෝෂක) හා තාප දායක (ශක්ති දායක) කි්යාවලි අවස්ථාවේ ශීතයක් ලෙස එන්තැල්පිය එන්තැල්පි විපර්යාස හා සම්මත එන්තැල්පි විපර්යාස උත්පාදන එන්තැල්පිය දහන එන්තැල්පිය බන්ධන විඝටන එන්තැල්පිය උදාසීනිකරණ එන්තැල්පිය දවණ එන්තැල්පිය (ජලීකරණය පමණි) දාවණ එන්තැල්පිය විවිධ කි්යාවලි ආශිත එන්තැල්පි රූප සටහන් හා එන්තැල්පි වකු හෙස් නියමය කියාවලි ආශිත එන්තැල්පි විපර්යාස ගණනය කිරීම අම්ලයක/හස්මයක උදාසීනකරණ එන්තැල්පිය පරීක්ෂණාත්මක ව නිර්ණය කිරීම හෙස් නියමය පරීක්ෂණාත්මක ව තහවුරු කිරීම 	14

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච් ඡේ ද
	5.3 බෝන් - හාබර් චකු යොදා ගනිමින් අයනික පද්ධතිවල ස්ථායීතාව පිළිබඳ පෙරැයීම් කරයි.	 බෝන්-හාබර් චක්‍රය සහ අයනික සංයෝගවල උත්පාදන එන්තැල්පිය ගණනය කිරීම ඌර්ධ්වපාතන එන්තැල්පිය වාෂ්පීකරණ එන්තැල්පිය විලයන එන්තැල්පිය පරමාණුකරණ එන්තැල්පිය අයනීකරණ එන්තැල්පිය ඉලෙක්ටෝන ලබා ගැනීමේ එන්තැල්පිය (ඉලෙක්ටෝන බන්ධුතාව) ඇලිස එන්තැල්පිය 	04
	5.4 රසායනික විපර්යාසවල ස්වයංසිද්ධතාව පිළිබඳ පෙරැයීම් කරයි.	• එන්ටොපිය S සහ එන්ටොපි විපර්යාසය ΔS • ගිබ්ස් ශක්තිය G සහ ගිබ්ස් ශක්ති විපර්යාසය ΔG • ΔG , ΔH සහ ΔS අතර සම්බන්ධතාව ලෙස • $\Delta G = \Delta H - T\Delta S$ • ΔG ඇසුරින් පුතිකිුයාවක ස්වයංසිද්ධතාව නිර්ණය කිරීම • $\Delta G = 0$, සමතුලිත වීම • $\Delta G < 0$, ස්වයංසිද්ධ වීම • $\Delta G > 0$, ස්වයංසිද්ධ නොවීම	04

ඒකකය - s, p හා d ගොනුවලට අයත් මූලදුවෳවල රසායනය

(කාලච්ඡේද 69)

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
6.0 s, p හා d ගොනුවලට අයත් මූලදුවාවල හා සංයෝගවල ගුණ හඳුනා ගැනීම සඳහා ඒවා විමර්ශනය කරයි.	6.1 s ගොනුවට අයත් මූලදුවාවල රසායනික ගුණ විමර්ශනය කරයි.	 \$ ගොනුවට අයත් තෝරාගත් මූලදුවාවල පුතිකිුයා ජලය සමඟ වාතය/ O₂ සමඟ අම්ල සමඟ N₂ සමඟ H₂ සමඟ ජලය සහ අම්ල සමග ලෝහ සිදුකරන පුතිකිුයා සැසැඳීම 	06
	6.2 s හා p ගොනුවලට අයත් සංයෝගවල ගුණ හා ඒවායේ විචලන රටා විමර්ශනය කරයි.	 ආවර්ත ඕස්සේ ඉදිරියට හා කාණ්ඩ ඔස්සේ පහළට s හා p ගොනුවලට අයත් මූලදුවා සාදන සංයෝග පෙන්වන වීචලන රටා s ගොනුවේ මූලදුවා සාදන හයිඩ්රොක්සයිඩ, කාබනේට, බයිකාබනේට, නයිට්රයිට, නයිට්රේට, හේලයිඩ, සල්ෆයිඩ, සල්ෆයිට සහ සල්ෆේටවල දාවාතා සැසැඳීම s ගොනුවේ නයිටේට, බයිකාබනේට හා කාබනේටවල තාප ස්ථායීතාව සැසැඳීම ඔක්සයිඩ, හේලයිඩ, හයිඩ්රොක්සයිඩ හා හයිඩ්රයිඩවල ආම්ලික/හාස්මික/උභයගුණී ස්වභාවය s හා p ගොනුවල මූලදුවා සාදන ලවණවල දාවාතා පරීක්ෂා කිරීම s ගොනුවේ මූලදුවා සාදන නයිට්රේට, බයිකාබනේට හා කාබනේටවල තාප ස්ථායීතාව පරීක්ෂා කිරීම 	08

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච් ඡේ ද
	6.3 p ගොනුවට අයත් මූලදුවා හා සංයෝග විමර්ශනය කරයි.	 p ගොනුවේ මූලදවා (13-18 කාණ්ඩ) තෝරාගත් මූලදවාවල ගුණ ඇලුමිනියම් උභයගුණි ලක්ෂණ ඇලුමිනියම් ක්ලෝරයිඩ්වල ඉලෙක්ටෝන ඌනතාව කාබන් බහුරුපී ආකාර කාබන්වල ඔක්සයිඩ කාබොනික් අම්ලය නයිට්රජන් ඔක්සො අම්ල ඇමෝනියා හා ඇමෝනියම් ලවණ ඔක්සිජන් හා සල්ෆර් බහුරුපී ආකාර චක්‍රීය නොවන ඔක්සො අම්ල H2O, H2O2 H2S, SO2, SO3 හැලජන 14 හා 15 කාණ්ඩවල ක්ලෝරයිඩ ජල විච්ඡේදනය ජලීය මාධායේ දී හයිඩ්රජන් හේලයිඩවල ආම්ලිකතාව ක්ලෝරින් හා ක්ලෝරේට්(I) අයනවල ද්විධාකරණය ඔක්සිකාරක ලෙස හැලජනවල සාපේක්ෂ පුබලතා උච්ච වායු සෙනොන් ෆ්ලුවොරයිඩ් 	16

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
		 සල්ෆර්වල බහුරුපී ආකාර පිළියෙල කිරීම සල්ෆර් ඩයොක්සයිඩ් පිළියෙල කිරීම සහ එහි ගුණ පරීක්ෂා කිරීම ක්ලෝරීන් පිළියෙල කිරීම සහ හැලජනවල ගුණ පරීක්ෂා කිරීම හේලයිඩ හඳුනා ගැනීම 	
	6.4 d ගොනුවේ මූලදුවාවල ගුණ හා ආවර්තයක් ඔස්සේ ඒවායේ විචලනය විමර්ශනය කරයි.	 d ගොනුවේ මූලදවාවල පහත සඳහන් ගුණ s හා p ගොනුවල මූලදවාවල එම ගුණ සමග සැසැඳීම ලෝහමය ගුණ විචලා ඔක්සිකරණ අවස්ථා විදුයුත්-සෑණතා අගය අයනීකරණ ශක්තිය අයනික අරය උත්පේරක කියාව වර්ණවත් සංයෝග නිපදවීම (වර්ණ ඇති වන අන්දම පැහැදිලි කිරීම අවශා නැත.) 	05
	6.5 d ගොනුවේ සංයෝගවල ගුණ විමර්ශනය කරයි.	 වැනේඩියම්, කෝමියම් සහ මැංගනීස්වල ඔක්සයිඩවල අාම්ලික/භාස්මික/උභයගුණි ස්වභාවය කෝමියම් හා මැංගනීස්වල ඔක්සො ඇනායන ඔක්සිකාරක ලෙස CrO₄²⁻, Cr₂O₇²⁻ හා MnO₄⁻ අයන 	06

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
		 ආම්ලික පොටෑසියම් ප්මැංගනේට් දුාවණයක් භාවිත කර ඔක්සලේට් අයන දුාවණයක සාන්දුණය නිර්ණය කිරීම. ආම්ලික පොටෑසියම් ප්මැංගනේට් දුාවණයක් භාවිත කර ෆෙරස් අයන දුාවණයක සාන්දුණය නිර්ණය කිරීම. 	
	6.6 d ගොනුවේ සංකීර්ණ සංයෝගවල ගුණ විර්ශනය කරයි.	 පහත සඳහන් ඒකදායක ලිගන සමග Cr, Mn, Fe, Co, Ni හා Cu සාදන සංකීර්ණ සංයෝග හා ඒවායේ වර්ණ H₂O, OH⁻, NH₃, Cl⁻ සංකීර්ණ සංයෝගවල වර්ණය කෙරෙහි බලපාන සාධක මධා ලෝහ පරමාණුව ඔක්සිකරණ අවස්ථාව ලිගන පද්ධතිය ඉහත මූලදවාවල හයිඩ්රොක්සයිඩ Cu(II), Ni(II) හා Co(II) ලවණ හයිඩ්රොක්ලෝරික් අම්ලය සහ ඇමෝනියා සමඟ දක්වන පුතිකියා නිරීක්ෂණය කිරීම ඔක්සිකරණ අංක +2, +4, +6 සහ +7 ට අදාළ මැංගනීස් අයනවල වර්ණ නිරීක්ෂණය කිරීම Fe(III) අයන සමඟ සැලිසිලික් අම්ලයේ පුතිකියාව (වර්ණාවලිමිතිය - දෘශා කුමය) 	10
	6.7 සරල අකාබනික සංයෝග හා d ගොනුවේ සංකීර්ණ සංයෝග නාමකරණය කරයි.	IUPAC නාමකරණය	03

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
	6.8 ගුණාත්මක විශ්ලේෂණය මගින් කැටායන හඳුනා ගනියි.	 පහන්සිළු පරීක්ෂාව මගින් හඳුනාගත හැකි කැටායන Li⁺, Na⁺, K⁺, Ca²⁺, Ba²⁺, Sr²⁺, Cu²⁺ අවක්ෂේපණය මගින් මිශුණයක අඩංගු කැටායන විශ්ලේෂණ කාණ්ඩ පහට වෙන් කිරීමේ කියා පිළිවෙළ (කිසියම් කාණ්ඩයකට අයත් කැටායන වෙන් කිරීම අවශා නැත.) කැටායන කාණ්ඩවලට වෙන්කිරීම හා සම්බන්ධ මූලධර්ම NH₄ අයන හඳුනා ගැනීම පහන් සිළු පරීක්ෂාවෙන් /අවකේෂ්පණ කුමයෙන් තෝරා ගත් කැටායන සඳහා පරීක්ෂා කිරීම 	10
	6.9 ඇනායන ගුණාත්මක ව හඳුනා ගනියි.	 අවක්ෂේපණ කුමයෙන් හඳුනා ගත හැකි ඇනායන හේලයිඩ, PO₄³⁻, SO₄²⁻,SO₃²⁻ වෙනත් කුම මගින් හඳුනා ගත හැකි ඇනායන S²⁻, CO₃²⁻, NO₃⁻, NO₂⁻, S₂O₃²⁻ තෝරා ගත් ඇනායන සඳහා පරීක්ෂා කිරීම 	05

7 ඒකකය - කාබනික රසායන විදාවේ මූලික සංකල්ප

(කාලච්ඡේද 17)

නිපුණතාව		නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේ ද
7.0 කාබනික සංයෝගවල විවිධත්වය විමසා බලයි.	7.1	රසායන විදාහාවේ විශේෂ කෙෂ්තුයක් ලෙස කාබනික රසායනයේ වැදගත්කම විමර්ශනය කරයි.	 කාබනික රසායනය හැඳින්වීම කාබනික සංයෝග විශාල සංඛ්‍යාවක් පැවැතීමට හේතු දෛනික ජීවිතයේ දී කාබනික සංයෝගවල වැදගත්කම 	02
	7.2	කියාකාරී කාණ්ඩ ඇසුරෙන් කාබනික සංයෝගවල විවිධත්වය විමර්ශනය කරයි.	 කාබනික සංයෝගවල විවිධත්වය ඇලිෆැටික(අවක්‍රීය) හයිඩ්රොකාබන හා ඇරෝමැටික හයිඩ්රොකාබන (බෙන්සීන් හා ආදේශිත බෙන්සීන් පමණි.) ඇල්කිල් හේලයිඩ හා ඇරිල් හේලයිඩ ඇල්කාහොල හා ෆීනෝල ඊතර ඇල්ඩිහයිඩ හා කීටෝන කාබොක්සිලික් අම්ල අම්ල ක්ලෝරයිඩ එස්ටර ඇලිෆැටික ඇමීන හා ඇරිල් ඇමීන ඇමයිනා අම්ල 	04
	7.3	ඇලිෆැටික කාබනික සංයෝග නාමකරණය කරයි.	 සුලබ කාබනික සංයෝගවල වාවහාරික නම් පහත සඳහන් වහුහමය සීමාවලට ඇතුළත් සංයෝග නාමකරණය සඳහා අදාළ IUPAC නීති පධාන කාබන් දාමයට ඇතුළත් කාබන් පරමාණු සංඛ්‍යාව හය නොඉක්මවිය යුතු ය. පධාන දාමයට සම්බන්ධ විය යුත්තේ සංකෘප්ත, ශාඛනය නො වූ හා ආදේශක නොමැති ශාඛා දාම පමණි. 	06

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
		 අසංතෘප්ත සංයෝගයක අන්තර්ගත ද්විත්ව හා තිත්ව බන්ධනවල මුළු එකතුව එකකට නොවැඩි විය යුතු ය. ද්විත්ව හා තිත්ව බන්ධන ආදේශිත කාණ්ඩ ලෙස නොගත යුතු අතර ප්‍රධාන දාමයෙහි කොටසක් විය යුතු ය. ප්‍රධාන කාබන් දාමයට සම්බන්ධ වී ඇති ආදේශිත කාණ්ඩ සංඛ්‍යාව දෙක නොඉක්මවිය යුතු ය. ආදේශිත කාණ්ඩ වශයෙන් පැවැතිය යුත්තේ පහත සඳහන් කාණ්ඩ පමණි. -F, -Cl, -Br, -I, -CH₃, -CH₂CH₃, -OH, -NH₂, -CN, -CHO, >C=O ප්‍රධාන කියාකාරී කාණ්ඩය වශයෙන් පැවැතිය යුත්තේ පහත සඳහන් කාණ්ඩ පමණි. -OH, -CHO, >C=O, -COOH, -COOR,-NH₂, -CONH₂ ප්‍රධාන කියාකාරී කාණ්ඩය එක් වරකට වඩා නොයේදිය යුතු ය. 	
	7.4 එක ම අණුක සූතුය සහිත අණුවල පරමාණු සකස් වී පැවැතිය හැකි විවිධ ආකාර විමර්ශනය කරයි.	 සමාවයවිකතාව වායුහ සමාවයවික දාම සමාවයවික ස්ථාන සමාවයවික කියාකාරී කාණ්ඩ සමාවයවික කිලාන සමාවයවිකතාව පාරතිමාන සමාවයවික (diastereomers) (ජහාමිතික සමාවයවික මගින් නිරූපිත ඒවා පමණි.) පුතිරූප අවයව (enatiomers) (එක් කයිරැල් මධාසේථානයක් සහිත පුකාශ සමාවයවික පමණි.) 	05

8 ඒකකය - හයිඩ්ඩොකාබන

(කාලච්ඡේද 26)

	නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
8.0	8.0 හයිඩ්රොකාබනවල 8.1 වයුහය හා ගුණ අතර සම්බන්ධතා විමර්ශනය කරයි.	8.1 ඇලිෆැටික හයිඩ්රොකාබනවල වාුහය, භෞතික ගුණ හා බන්ධන ස්වභාවය විමර්ශනය කරයි.	 පුතේදී ඇල්කේන ඇල්කින ඇල්කයින සදෘශා ශ්‍රෙණි භෞතික ගුණ අන්තර්-අණුක බල දවාංක හා තාපාංක කාබනික සංයෝගවල දී කාබන් පරමාණුවල මුහුම්කරණය (sp³, sp², හා sp) ඇල්කේන, ඇල්කීන සහ ඇල්කයිනවල ජාාමිතික හැඩ 	04
		8.2 බෙන්සීන්වල බන්ධන ස්වභාවය විමර්ශනය කරයි.	 බෙන්සීන්වල වුහුහය කාබන් පරමාණුවල මුහුම්කරණය ඉලෙක්ටෝන විස්ථානගත වීම සම්පුයුක්තතාව පිළිබඳ සංකල්පය බෙන්සීන්වල ස්ථායීතාව 	04
		8.3 ඇල්කේන, ඇල්කීන සහ ඇල්කයිනවල වාූහය ඇසුරෙන් ඒවායේ පුතිකිුයා විමර්ශනයේ හා සංසන්දනයේ යෙදෙයි.	 ඇල්කේනවල ප්‍රතිකියා සුලබ ප්‍රතිකාරක කෙරෙහි ඇල්කේනවල දුබල ප්‍රතිකියාකාරීත්වය මුක්ත ඛණ්ඩක සමඟ ප්‍රතිකියා ක්ලෝරීන් සහ බෝමීන් සමග ආදේශ ප්‍රතිකියා මෙතේන් ක්ලෝරිනිකරණයේ යන්තුණය බන්ධන සම විඛණ්ඩනය ප්‍රතිකියා අතරමැදි ලෙස මුක්ත ඛණ්ඩක 	10

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේ ද
		 ඇල්කීනවල ප්‍රතික්‍රයා ඇල්කීනවල ලාක්ෂණික ප්‍රතික්‍රයා ලෙස ඉලෙක්ටුාෆිලික ආකලනය සරල ඇල්කීනවලට හයිඩ්රජන් හේලයිඩ ආකලනය හා එහි යන්ත්‍රණය ප්‍රතික්‍රියා අතරමැදි ලෙස කාබොකැටායන ප්‍රාථමික, ද්විතියික හා තෘතීයික කාබොකැටායනවල සාපේක්ෂ ස්ථායීතාව පෙරොක්සයිඩ හමුවේ හයිඩ්රජන් බෝමයිඩ්වල අසාමනා හැසිරීම (යන්ත්‍රණය අවශා නො වේ.) සරල ඇල්කීනවලට බෝමීන් ආකලනය එතීන්වලට බෝමීන් ආකලනයේ යන්ත්‍රණය සල්ෆියුරික් අම්ලයේ ආකලනය හා ආකලන එලයේ ජල විච්ඡේදනය සිසිල් ක්ෂාරීය KMnO₄ සමග ප්‍රතික්‍රයාව (බේයර් පරීක්ෂාව) උත්පේරිත හයිඩ්රජන් ආකලනය ඇල්කයිනවල ප්‍රතික්‍රියා ඇල්කයිනවල ලාක්ෂණික ප්‍රතික්‍රයා ලෙස ඉලෙක්ටුාෆිලික ආකලනය ඉඩමීන් ආකලනය ඉයිඩ්රජන් හේලයිඩ් ආකලනය මර්කියුරික් අයන හා සල්ෆියුරික් අම්ලය හමුවේ ජලය ආකලනය 	

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
		 භාගික හයිඩ්රජනීකරණය ඇතුළු ව හයිඩ්රජන්වල උත්පේර්ත ආකලනය බන්ධන ස්වභාවය ඇසුරින් පැහැදිලි කරන ලද අගුස්ථ ඇල්කයිනවල ආම්ලික ස්වභාවය අගුස්ථ ඇල්කයිනවල පුතිකියා Na හෝ NaNH2 සමග ඇමෝනීය CuCl සමග ඇමෝනීය AgNO3 සමග ඇල්කීනවල සහ ඇල්කයිනවල පුතිකියා නිරීක්ෂණය කිරීම 	
	8.4 බෙන්සීන්වල ලාක්ෂණික පුතිකියා ඇසුරෙන් එහි ස්ථායීතාව විශ්ලේෂණය කරයි.	 ආකලන ප්‍රතික්‍රයාවලට වඩා ආදේශ ප්‍රතික්‍රයා කෙරෙහි දක්වන නැඹුරුතාව බෙන්සීන්වල ලාක්ෂණික ප්‍රතික්‍රයා ලෙස ඉලෙක්ටොෆිලික ආදේශ ප්‍රතික්‍රයා නයිවිරොකරණය හා එහි යන්තුණය ඇල්කිල්කරණය හා එහි යන්තුණය ඇසිල්කරණය හා එහි යන්තුණය FeX₃ හමුවේ හැලජනීකරණය හා එහි යන්තුණය (X = Cl, Br) ඔක්සිකරණයට දක්වන ප්‍රතිරෝධය ඇල්කිල් බෙන්සීන් ඔක්සිකරණය ඇල්කීනවලට සාපේක්ෂ ව හයිඩ්රජනීකරණය කිරීමේ අපහසුතාව උත්පේරිත හයිඩ්රජන් ආකලනය 	07

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
	8.5 ඒක ආදේශිත බෙන්සීන්වල ආදේශිත කාණ්ඩයේ දිශාභිමුඛ කිරීමේ හැකියාව විශ්ලේෂණය කරයි.	 ඕනො, පැරා යොමුකාරක කාණ්ඩ -OH, -NH₂, -NHR, -R, -Cl, -Br, -OCH₃ මෙටා යොමුකාරක කාණ්ඩ -COOH, -CHO, -COR, -NO₂ 	01

9 ඒකකය - ඇල්කිල් හේලයිඩ

(කාලච්ඡේද 12)

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච් ඡේ ද
9.0 ඇල්කිල් හේලයිඩවල වසුහය හා ගුණ අතර සම්බන්ධතා විමර්ශනය කරයි.	9.1 ඇල්කිල් හේලයිඩවල වනුහය, C – X බන්ධනයේ ධැවීය ස්වභාවය සහ පුතිකියා විමර්ශනය කරයි.	 පුහේද පුාථමික ද්විතීයික තෘතීයික C - X බන්ධනයේ ධැවීය ස්වභාවය (X= F, Cl, Br, I) ඇල්කිල් හේලයිඩවල නියුක්ලියොෆිලික ආදේශ පුතිකියා නියුක්ලියොෆයිලයක් ලෙස හයිඩ්රොක්සිල් අයනය තරගකාරී පුතිකියාවක් ලෙස ඉවත් වීම නියුක්ලියොෆයිලයක් ලෙස සයනයිඩ් අයනය නියුක්ලියෝෆයිලයක් ලෙස අගුස්ථ ඇල්කයිනවලින් වයුත්පන්න වූ ඇසිටිලයිඩ් (ඇල්කිනයිඩ්) අයනය නියුක්ලියෝෆයිලයක් ලෙස ඇල්කාක්සයිඩ් අයනය ඇල්කිල් හේලයිඩ නියුක්ලියොෆිලික ආදේශ පුතිකියාවලට සහභාගි වන තත්ත්ව යටතේ දී ක්ලෝරොබෙන්සීන් හා විනිල් ක්ලෝරයිඩ් පුතිකියාශීලී නොවීම ඇල්කිල් හේලයිඩවල මැග්නීසියම් සමග පුතිකියාව (ගීනාඩ් පුතිකාරකය පිළියෙල කිරීම) නිර්ජලීය තත්ත්වයක අවශාතාව ලෝහ-කාබන් බන්ධනයේ ස්වභාවය පෝටෝන දායකයින් සමග පුතිකියා අම්ල ඇල්කොහොල ඇමීන 	11

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
	9.2 බන්ධන ඇති වීම හා බන්ධන බිඳීම සිදු වන කාලය ඇසුරෙන් ඇල්කිල් හේලයිඩවල නියුක්ලියොෆිලික ආදේශ පුතිකියා විශ්ලේෂණය කරයි.	 තනි පියවර ප්‍රතික්‍රියාව (බන්ධන සෑදීමේ හා බිඳීමේ පියවර එක් වර ම සිදු වේ. ප්‍රතික්‍රියා අතරමැදි ඇති නො වේ.) ද්විත්ව පියවර ප්‍රතික්‍රියා (බන්ධන බිඳීම පළමු ව සිදු වේ. ප්‍රතික්‍රියා අතරමැදියක් ලෙස කාබොකැටායනයක් ඇති වේ. දෙ වන පියවරේ දී කාබොකැටායනය සමග නියුක්ලියොෆයිලය බන්ධනයක් සාදයි.) (මෙම යන්තුණ සඳහා සාක්ෂා සහ ඉහත ක්‍රියාවලි දෙක පදනම් කර ගනිමින් කරනු ලබන ප්‍රතික්‍රියා වර්ගීකරණය අවශා නැත.) 	01

10 ඒකකය - ඔක්සිජන් අඩංගු කාබනික සංයෝග

(කාලච්ඡේද 35)

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
10.0 ඔක්සිජන් අඩංගු කාබනික සංයෝගවල වපුහය හා ගුණ අතර සම්බන්ධතා විමර්ශනය කරයි.	10.1 ඇල්කොහොලවල ව්යුහය, එහි කාබන්-ඔක්සිජන් බන්ධනයේ ධුැවීය ස්වභාවය, ඔක්සිජන්-හයිඩ්රජන් බන්ධනයේ ධුැවීය ස්වභාවය සහ පුතිකිුයා විමර්ශනය කරයි.	 පුතේද පාථමික ද්විතියික තාතියික තොතික ගුණ තාපාංකය ජලයේ හා සුලබ කාබනික දාවකවල දාවහතාව O – H බන්ධනය බිඳීමෙන් සිදු වන පුතිකුියා (ඔක්සිජන් සමග බැඳුණු හයිඩ්රජන්වල ආම්ලික ස්වභාවය) කාබොක්සිලික් අම්ල සමග පුතිකුියාව (එස්ටර ලබා දීම සඳහා ඇල්කොහොල්වල ඇසිල්කරණය) C – O බන්ධනය බිඳීමෙන් සිදු වන නියුක්ලියොෆිලික ආදේශ පුතිකුියා පුතිකුියා පුතිකුියා HBr සමග HI සමග PCl₃ සමග ZnCl₃ හා සාන්දු HCl අම්ලය සමග පුතිකුියාව (ලූකස් පරීක්ෂාව) (C – O බන්ධනය බිඳීමෙන් ඇති වන කාබොකැටායනවල සාපේක්ෂ ස්ථායීතාව ඇසුරෙන් කෙරෙන පැහැදිලි කිරීම - බෙන්සිල් ඇල්කොහොලවල පුතිකුියා අවශා නො වේ.) 	08

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
	10.2 කාබන්-ඔක්සිජන් බන්ධනය හා ඔක්සිජන්-හයිඩ්රජන් බන්ධනය ඇසුරෙන් ෆීනෝල්වල ගුණ හා පුතිකිුයාවල ස්වභාවය පිළිබඳව විමසා බලයි.	 සාන්දු H₂SO₄ සමග ඉවත් වීමේ ප්‍රතික්‍රියා (ඇල්කීන ලබා දීම සඳහා විජලනය) ඔක්සිකරණය H+/KMnO₄ සමග H+/K2Cr₂O₇ සමග H5000 සමග පිරිඩීනියම් ක්ලෝරොකෝමේට් සමග (ප්‍රාථමික ඇල්කොහොල, ඇල්ඩිහයිඩ බවට සහ ද්විතීයික ඇල්කොහොලවල ගුණ පරීක්ෂා කිරීම සරල ම ෆීනෝලය වන හයිඩ්රොක්සි බෙන්සීන්වල වුහුහය ඇල්කොහොල්වලට සාපේක්ෂ ව ෆීනෝලවල ඉහළ ආම්ලිකතාව ෆීනෝලවල ප්‍රතිකියා සෝඩියම් ලෝහය සමග සෝඩියම් හයිඩ්රොක්සයිඩ් සමග ඇල්කොහොල නියුක්ලියොෆිලික ආදේශ ප්‍රතිකියාවලට සහභාගි වන තත්ත්ව යටතේ, ෆීනෝල ප්‍රතිකියා නොදැක්වීම ෆීනෝලවල ගුණ පරීක්ෂා කිරීම 	04
	10.3 ෆීනෝල්වල -OH කාණ්ඩය ඊට සම්බන්ධ බෙන්සීන් වලයෙහි පුතිකිුයතාව කෙරෙහි ඇති කරන බලපෑම විමර්ශනය කරයි.	1	02

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
	10.4 ඇල්ඩිහයිඩ් සහ කීටෝනවල පුතිකියා මගින් පෙන්නුම් කරන >C=O බන්ධනයේ ධුැවීය ස්වභාවය සහ අසංතෘප්ත ස්වභාවය වීමර්ශනය කරයි.	 ඇල්ඩිහයිඩ හා කීටෝනවල ලාක්ෂණික ප්‍රතික්‍රයා ලෙස නියුක්ලියොහිලික ආකලන ප්‍රතික්‍රයා HCN සමග ප්‍රතික්‍රයාව සහ එහි යන්තුණය ග්‍රිනාඩ් ප්‍රතිකාරකය සමග ප්‍රතික්‍රයාව සහ එහි යන්තුණය 2,4-ඩයිනයිට්රොෆීනයිල් හයිඩ්රසීන් (2,4-DNP හෙවත් බේඩි ප්‍රතිකාරකය) සමග (නියුක්ලියොහිලික ආකලනයකට පසු ව සිදු වන විජලනයක් ලෙස පහදන්න. විස්තරාත්මක යන්තුණය අවශා නැත.) ප්‍රතික්‍රයා NaBH₄ සමග LiAlH₄ සමග (විස්තරාත්මක යන්තුණය සහ අතරමැදි එල අවශා නැත.) Zn (Hg)/සාන්දු HCl සමග ප්‍රතික්‍රයාව (කාබනයිල් කාණ්ඩය මෙතිලින් කාණ්ඩයක් බවට ක්ලෙමන්සන් ඔක්සිහරණය) ඇල්ඩිහයිඩ ඔක්සිකරණය ඇල්ඩිහයිඩ ඔක්සිකරණය සැල්ඩිහයිඩ මක්සිකරණය H+/KMnO₄ මහින් H+/KMnO₄ මහින් H+/KMnO₄ මහින් H+/K_2Cr₂O₂ හෝ H+/CrO₃ හෝ මහින් (කීටෝන ප්‍රතික්‍රයාශීලී නොවීම සමග සසඳන්න.) ඇල්ඩිහයිඩ සහ කීටෝන සඳහා පරීක්ෂා 	08

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
	10.5 ස්වයං සංගණන පුතිකියා මගින් පෙන්නුම් කරන පරිදි ඇල්ඩිහයිඩ හා කීටෝනවල ඇල්ෆා ස්ථානයෙහි පුතිකියතාව හඳුනා ගනියි.	සෝඩියම් හයිඩ්රොක්සයිඩ් හමුවේ ඇසිටැල්ඩිහයිඩ්වල හා ඇසිටෝන්වල ස්වයං සංගණන පුතිකියා (පුතිකියා යන්තුණය අවශා නැත.)	04
	10.6 ඔක්සිජන් අඩංගු වෙනත් කාබනික සංයෝග සමග කාබොක්සිලික් අම්ලවල වහුහය සහ ගුණ සංසන්දනය කරයි.	 භෞතික ගුණ සම්බන්ධයෙන් හයිඩ්රජන් බන්ධනවල වැදගත්කම දවාංක/තාපාංක ජලයේ හා සුලබ කාබනික දාවකවල දාවහතාව - ද්විඅවයවික වපුහ පැවැතීම -COOH කාණ්ඩයේ ප්‍රතික්‍රියා රටා සමග ඇල්ඩිහයිඩ හා කීටෝනවල >C=O කාණ්ඩයේ සහ ඇල්කොහොල සහ ෆීනෝලවල -OH කාණ්ඩයේ ප්‍රතික්‍රියා රටා සැසැඳීම O-H බන්ධනය බිඳීමෙන් සිදු වන ප්‍රතික්‍රියා කාබොක්සිලික් අම්ලවල ඔක්සිජන් සමග බැඳුණු හයිඩ්රජන්වල ආම්ලික ස්වභාවය සංයුග්මක හස්මවල සාපේක්ෂ ස්ථායීතාව පදනම් කර ගනිමින් කාබොක්සිලික් අම්ලවල, ඇල්කොහොලවල සහ ෆීනෝලවල ආම්ලික ගුණ සැසැඳීම පුතික්‍රියා Na සමග NaOH සමග NaHCO₃ සමග 	06

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේ ද
		 C-O බන්ධනය බිඳීමෙන් සිදු වන පුතිකියා PCl₃ හෝ PCl₅ සමග ඇල්කොහොල සමග කාබොක්සිලික් අම්ල LiAlH₄ මගින් ඔක්සිහරණය කාබොක්සිලික් අම්ලවල සමහර ගුණ පරීක්ෂා කිරීම 	
	10.7 අම්ල වුහුත්පන්නවල ලාක්ෂණික පුතිකියා විමර්ශනය කරයි.	 අම්ල ක්ලෝරයිඩ ජලීය සෝඩියම් හයිඩ්රොක්සයිඩ් සමග පුතිකුියාව සහ එහි යන්තුණය පුතිකුියා ජලය සමග පුාථමික ඇමීන සමග ඇල්කොහොල සමග ලීනෝල සමග අැමෝනියා සමග එස්ටර තනුක බනිජ අම්ල සමග පුතිකුියාව ජලීය සෝඩියම් හයිඩ්රොක්සයිඩ් සමග ගීනාඩ් පුතිකාරකය සමඟ LiAlH₄ සමඟ අලයිඩ ජලීය සෝඩියම් හයිඩ්රොක්සයිඩ් සමග පුතිකුියාව පිලීය සෝඩියම් හයිඩ්රොක්සයිඩ් සමග පුතිකුියාව LiAlH₄ මගින් ඔක්සිහරණය 	03

13 වන ශේණිය

11 ඒකකය - නයිට්රජන් අඩංගු කාබනික සංයෝග

(කාලච්ඡේද 15)

	නිපුණතාව		නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
11.0	නයිට්රජන් අඩංගු කාබනික සංයෝගවල වසුහය හා ගුණ අතර සම්බන්ධතා වීමර්ශනය කරයි.	11.1	ලාක්ෂණික පුතිකියා සහ ගුණ ඇසුරින් ඇමීන සහ ඇනිලීන් පිළිබඳ විශ්ලේෂණයේ යෙදෙයි.	 පුතේද ඇලිෆැටික හා ඇරෝමැටික ඇමීන පාථමික ඇමීන ද්විතීයික ඇමීන තෘතීයික ඇමීන ඇරෝමැටික ඇමීනයක් ලෙස ඇනිලීන් ඇනිලීන් හා බෝමීන් අතර පුතිකියාව පාථමික ඇමීනවල පුතිකියා ඇල්කිල් හේලයිඩ සමග ඇල්ඩිහයිඩ සහ කීටෝන සමග අම්ල ක්ලෝරයිඩ් සමග නයිට්රස් අම්ලය සමග 	06
		11.2	වෙනත් කාබනික සංයෝග සමග ඇමීනවල භාස්මිකතාව සසඳයි.	 ඇල්කොහොල්වලට සාපේක්ෂ ව ඇමීනවල භාස්මිකතාව පුාථමික ඇලිෆැටික ඇමීනවල හා ඇනිලීන්වල භාස්මිකතාව සැසැඳීම ඇමයිඩවලට සාපේක්ෂ ව ඇමීනවල භාස්මිකතාව 	05
		11.3	ඩයැසෝනියම් ලවණවල පුතිකිුයා විමර්ශනය කරයි.	පරමාණුවකින් හෝ වෙනත් කාණ්ඩයකින් හෝ ඩයැසෝනියම් කාණ්ඩය පුතිස්ථාපනය වන පුතිකියා ජලය සමග	04

12 ඒකකය - චාලක රසායනය

(කාලච්ඡේද 27)

	නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
12.0	රසායනික පුතිකියාවක ශීසුතාව නිර්ණය කිරීමට හා පුතිකියා ශීසුතාව සුදුසු පරිදි පාලනය කිරීමට	12.1 රසායනික පුතිකියා සීඝුතාව කෙරෙහි බලපාන සාධක නිර්ණය කරයි.	 රසායනික ප්‍රතිකියා ශීඝ්‍රතාව කෙරෙහි බලපාන සාධක උෂ්ණත්වය සාන්දණය (පීඩනය) භෞතික ස්වභාවය (ප්‍රතිකියකවල පෘෂ්ඨ වර්ගඵලය) උත්ප්‍රේරක සමජාතීය විෂමජාතීය 	05
	වාලක රසායන විදහා මූලධර්ම යොදා ගනියි.	12.2 පුතිකියක සාන්දුණ උචිත පරිදි හසුරුවමින් පුතිකියා ශීඝුතාව පාලනය කරයි.	 පුතිකියා ශීඝුතාව සාන්දණය ඇසුරෙන් ශීඝුතාව aA + bB → cC + dD A පුතිකියකයට සාපේක්ෂ ව පුතිකියාවේ ශීඝුතාව = -(14

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච් ඡේ ද
		 පතිකියා පෙළ හා ශීඝුතා නියතය නිර්ණය කිරීමේ කුම ආරම්භක ශීඝුතා කුමය මැග්නීසියම් සහ අම්ල අතර පතිකියාව කෙරෙහි අම්ල සාන්දුණයේ බලපෑම පරීක්ෂණාත්මක ව නිර්ණය කිරීම සෝඩියම් තයෝසල්ෆේට් සහ නයිට්රික් අම්ලය අතර පතිකියාව කෙරෙහි පතිකියක සාන්දණයේ බලපෑම පරීක්ෂණාත්මක ව නිර්ණය කිරීම අයන්(III) අයන සහ පොටෑසියම් අයඩයිඩ් අතර පතිකියාව කෙරෙහි පතිකියක සාන්දුණයේ බලපෑම පරීක්ෂණාත්මක ව නිර්ණය කිරීම 	
	12.3 රසායනික පුතිකියා ශීඝුතාව කෙරෙහි විවිධ සාධකවල බලපෑම විගුහ කිරීමට අණුක චාලක වාදය යොදා ගනියි.	 තනි පියවර ප්‍රතිකියාව සඳහා ශක්ති සටහන සකියන ශක්තිය ප්‍රතිකියාවක් සිදු වීම සඳහා සප්‍රථා ලිය යුතු අවශ්‍යතා අණු ගැටීම උචිත දිශානතියකින් යුක්ත වීම සකියන ශක්තිය ඉක්මවා තිබීම ඉහත අවශ්‍යතා සප්‍රථාලීම කෙරෙහි උෂ්ණත්වයේ, සාන්දණයේ, උත්පේ්රකවල හා භෞතික ස්වභාවයේ බලපෑම (ආහීනියස් සමීකරණය අවශ්‍ය නො වේ.) 	04
	12.4 රසායනික පුතිකියාවක ශීඝුතාව විගුහ කිරීමට පුතිකියා යන්තුණ යොදා ගනියි.	 මූලික පුතිකියා බහු පියවර පුතිකියා ශක්ති සටහන් සංකුමණ අවස්ථාව සහ අතරමැදි ඵල ශීඝුතාව නිර්ණය කෙරෙන පියවර හා සමස්ත පුතිකියාවේ ශීඝුතාව කෙරෙහි එහි බලපෑම 	04

13 ඒකකය - සමතුලිතතාව

(කාලච්ඡේද 62)

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
13.0 ගතික සමතුලිතතාවේ පවතින සංවෘත පද්ධතිවල මහේක්ෂ ගුණ නිර්ණය කිරීම සඳහා සමතුලිතතාව පිළිබඳ සංකල්පය හා මූලධර්ම භාවිත කරයි.	13.1 සමතුලිකතාව පිළිබඳ සංකල්පය ඇසුරින් පද්ධතිවල මහේසු ගුණ පුමාණාත්මක ව නිර්ණය කරයි.	 පද්ධති (සංවෘත, විවෘත, ඒකලිත) අනවරත අවස්ථාවේ පවතින පද්ධති ගතික කියාවලි හා පුතිවර්තාතාව මහේසෂ ගුණ සමතුලිතතාවේ පවතින පද්ධති රසායනික කලාප අයනික ඉලෙක්ටෝඩ සමතුලිතතා නියමය සමතුලිතතා නියන රසායනික සමතුලිතතාව K සහ K () සමතුලිතතා ලක්ෂාය ලේ-චැටලියර් මූලධර්මය Fe³+/ SCN- පද්ධතිය ඇසුරෙන් ගතික සමතුලිත පද්ධතියක ලාක්ෂණික පරීක්ෂණාත්මක ව අධ්‍යයනය කිරීම ජලයෙහි හා බියුටනෝල්හි එතනොයික් අම්ලයේ වාාප්තිය සඳහා වාපප්ති සංගුණකය පරීක්ෂණාත්මක ව නිර්ණය කිරීම NO2/N2O4 සමතුලිත පද්ධතිය කෙරෙහි උෂ්ණත්වයේ බලපෑම පරීක්ෂණාත්මක ව අධ්‍යයනය කිරීම 	14

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
	13.2 ඒක සංරචක පද්ධතිවල දුව-වාෂ්ප සමතුලිතතාව විචලනය වන අන්දම විමර්ශනය කරයි.	 සංශුද්ධ දුව පද්ධති දුවය හා වාෂ්පය අතර සමතුලිතතාව අණුක චලිතය ඇසුරින් දුව-වාෂ්ප පද්ධතියක සමතුලිතතාව විස්තර කිරීම උෂ්ණත්වය අනුව ජලයේ හා වෙනත් දුවවල වාෂ්ප පීඩනය විචලනය වන අන්දම වාෂ්ප පීඩනය හා තාපාංකය දුවායක අවධි ලක්ෂාය තිුක ලක්ෂාය 	05
	13.3 ද්වයංගී දුව පද්ධතිවල දුව-වාෂ්ප සමතුලිතතාව විචලනය වන අන්දම විමර්ශනය කරයි.	 දව-දුව පද්ධති සම්පූර්ණයෙන් මිශු වන දව-දුව පද්ධති අාංශික ලෙස මිශු වන දව-දුව පද්ධති සම්පූර්ණයෙන් අමිශු දුව-දුව පද්ධති රඌල් නියමය පරිපූර්ණ දුව පද්ධති පරිපූර්ණ නොවන දුව පද්ධති එසියෝටොපික නොවන සම්පූර්ණයෙන් මිශු වන පද්ධති සඳහා කලාප සටහන් වාෂ්ප පීඩන - සංයුති කලාප සටහන් උෂ්ණත්ව- සංයුති කලාප සටහන් භාගික ආසවනය 	10

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේ ද
	13.4 අල්ප ලෙස දාවා අයනික සංයෝග හා සම්බන්ධ සමතුලිත පද්ධතිවල ගුණ පුමාණනය කරයි.	 අයනික ගුණිතය (K_{sp}) AgCl(s) Â Ag⁺(aq) + Cl⁻(aq) අවකේපණය දාවහතාව පොදු අයන ආචරණය කැටායන ගුණාත්මක විශ්ලේෂණයේ භාවිත Ca(OH)₂ වල දාවහතා ගුණිතය පරීක්ෂණාත්මක ව නිර්ණය කිරීම 	06
	13.5 දුබල ලෙස විසටනය වන අම්ල, හස්ම, ආම්ලික ලවණ සහ භාස්මික ලවණ සම්බන්ධ සමතුලිත පද්ධතිවල ගුණ පුමාණනය කරයි.	• බහු භාස්මික අම්ල	22

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේ ද
		 සපයන ලද මල් වර්ගයකින් දර්ශකයක් පිළියෙල කිරීම සහ එහි pH පරාසය පරීක්ෂණාත්මක ව නිර්ණය කිරීම pH අගය පරීක්ෂා කිරීමෙන් ලවණ දුාවණවල ආම්ලික/භාස්මික/උදාසීන ස්වභාවය පරීක්ෂණාත්මක ව නිර්ණය කිරීම pH දර්ශක භාවිත කරමින් දෙන ලද දුාවණයක දළ pH අගය නිර්ණය කිරීම 	
	13.6 අවශාතාවට සරිලන පරිදි ස්වාරක්ෂක දාවණ පිළියෙල කරයි.	 ස්වාරක්ෂක දාවණ (ගුණාත්මක ව හා පුමාණාත්මක ව) හෙන්ඩර්සන් සමීකරණය වායුත්පන්න කිරීම හා එහි භාවිත (ඒක භාස්මික පද්ධති පමණි. වර්ග සමීකරණ සහිත ගණනය කිරීම් අවශා නැත.) ස්වාරක්ෂක පද්ධතියක pH අගය 	05

			14 ඒකකය	- විදාුුත් රසායනය	(කාලච්ඡේද 26)
	නිපුණතාව		නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
14.0	විදාපුත් රසායනික පද්ධතිවල පුායෝගික වැදගත්කම විමර්ශනය කරයි.	14.1	ජලීය දුාවණයක දුාවාවල ස්වභාවය සහ ඒවායේ සාත්දුණ පිළිබඳ අවබෝධ කර ගැනීමට සත්නායකතාව යොදා ගනියි.	 සන්නයනතාව සන්නායකතාව සන්නායකතාව කෙරෙහි බලපාන සාධක දාවහයේ ස්වභාවය : පුබල හා දුබල විදහුත් විච්ඡේදහවල හා විදහුත් අවිච්ඡේදහවල ජලීය දාවණ, විලීන විදහුත් විච්ඡේදහ සාන්දුණය උෂ්ණත්වය 	04
		14.2	සමතුලිත ඉලෙක්ටුෝඩ හා ඒවාට අදාළ ඉලෙක්ටුෝඩ පුතිකියා විමර්ශනය කරයි.	 සමතුලිතතාවේ පවත්නා ප්‍රතිවර්තා ඉලෙක්ටුෝඩ හා ඉලෙක්ටුෝඩ ප්‍රතිකියා ලෝහ-ලෝහ අයන ලෝහ-අදාවා ලවණ වායු ඉලෙක්ටුෝඩ (O₂, H₂, Cl₂) රෙඩොක්ස් (ඔක්සිකරණ - ඔක්සිහරණ) ඉලෙක්ටුෝඩ නිද: Pt(s)/Fe²+(aq),Fe³+(aq) 	02

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
	14.3 විදයුත් රසායනික කෝෂවල ගුණ නිර්ණය කරයි.	 දව සන්ධිය ලවණ සේතුව වෙන්කරණය (separator) දව සන්ධියක් නොමැති කෝෂ ඉලෙක්ටෝඩ විභවය (E) සම්මත ඉලෙක්ටෝඩ විභවය (E^θ) 	06
		 විදුපුත් රසායනික ශේණිය ශේණියේ පිහිටන ස්ථානයට අනුරූප ව මූලදුවායට හිමි ගුණ ශේණියේ ලෝහ පිහිටන ස්ථානය, ස්වභාවයේ පවතින ආකාරයට හා නිස්සාරණය කරනු ලබන ආකාරයට දක්වන සම්බන්ධතාව කෝෂ පුතිකියා කෝෂයක විදුපුත්ගාමක බලය E cell = E RHS(cathode) - E LHS(anode) (න'න්ස්ට් සමීකරණය අවශා නැත.) විවිධ කෝෂවල විදුපුත්ගාමක බලය මැනීම 	
	14.4 විවිධ කෝෂ වර්ග පිළිබඳ විමර්ශනයේ යෙදෙයි.	 පාථමික කෝෂ ඩැනියෙල් කෝෂය ලෙක්ලාන්ච් කෝෂය ඉන්ධන කෝෂ (H₂/O₂ ඉන්ධන කෝෂය පමණි) ද්විතීයික කෝෂ ලෙඩ් ඇකියුමිලේටරය 	04

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
	14.5 විදයුත් විච්ඡේදන කියාවලියේ දී සපුරාලිය යුතු අවශාතා හඳුනා ගෙන පැරඩේ නියතය යෙදා ගනිමින් අදාළ ගණනයන් සිදු කරයි.	 විදහුත් විච්ඡේදනයේ මූලධර්ම ජලයේ විදහුත් විච්ඡේදනය කොපර් ඉලෙක්ටෝඩ යොදා ජලීය CuSO₄ දාවණයක විදහුත් විච්ඡේදනය ජලැටිනම් ඉලෙක්ටෝඩ යොදා ජලීය CuSO₄ දාවණයක විදහුත් විච්ඡේදනය කාබන් ඉලෙක්ටෝඩ යොදා ජලීය NaCl දාවණයක විදහුත් විච්ඡේදනය විලීන NaCl දාවණයක් විදහුත් විච්ඡේදනය කිරීම (මූලධර්මය පමණි) පැරඩේ නියමවල භාවිත ජලය විදහුත් විච්ඡේදනය මගින් හයිඩ්රජන් සහ ඔක්සිජන් වායු පිළියෙල කිරීම Cu හා Ag විදහුත් ලෝහාලේපනය 	06
	14.6 විබාදනය පාලනය කළ හැකි කුම විමසා බලයි.	 ද්විලෝහ විඛාදනය කැතෝඩීය ආරක්ෂණය අකර්මණා කිරීම විදහුත් රසායනික කියාවලියක් ලෙස මලබැඳීම පරීක්ෂණාත්මක ව අධායනය කිරීම. 	04

15 ඒකකය - රසායන විදහාව හා කර්මාන්ත

(කාලච්ඡේද 41)

	නිපුණතාව		නිපුණතා මට්ටම්	සන්ධා ර ය	කාලච්ඡේද
15.0	සමහර මූලදවා හා සංයෝග ස්වභාවයේ පවතින ආකාර, කාර්මික ව නිස්සාරණය/නිපදවීම සහ භාවිත විමර්ශනය කරයි.	15.1	s ගොනුවේ මූලදවා හා සංයෝග ස්වභාවයේ පවතින ආකාර, කාර්මික ව නිස්සාරණය/නිපදවීම සහ භාවිත විමර්ශනය කරයි.	 Na නිස්සාරණය (ඩවුන් කෝෂ කුමය) සහ භාවිත නිපදවීම ලුණු NaOH සබන් Na₂CO₃ (සොල්වේ කුමය) පිලිස්සූ හුනු, විරංජන කුඩු සහ CaC₂(අමු දුවායෙක් ලෙස CaCO₃ භාවිත කිරීම) 	08
		15.2	p ගොනුවේ මූලදුවා සහ සංයෝග කාර්මික ව නිස්සාරණය/නිපදවීම සහ භාවිත විමර්ශනය කරයි.	 නිපදවීම සහ භාවිත ඇමෝනියා (හේබර් කුමය) යුරියා නයිට්රික් අම්ලය (ඔස්වල්ඩ් කුමය) ෆොස්ෆේට් පොහොර සල්ෆියුරික් අම්ලය (ස්පර්ශ කුමය) 	06
		15.3	d ගොනුවේ මූලදුවා ස්වභාවයේ පවතින ආකාර, නිස්සාරණය සහ භාවිත වීමර්ශනය කරයි.	• යකඩ නිස්සාරණය	02

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
	15.4 බහුඅවයවික දුවා එදිනෙදා ජීවිතයේ දී එලදායී ව භාවිත කරයි.	 ආකලන සහ සංඝනන බහුඅවයවක සහ බහුඅවයවීකරණ කි්යාවලිය ස්වභාවික රබර්වල (NR) වුහුහය, ගුණ හා භාවිතය ස්වභාවික රබර් වල්කනයිස් කිරීම ස්වභාවික රබර් මිශුණ සකස් කිරීම (Compounding of natural rubber) කෘතුම බහුඅවයවකවල වුහුහය, ගුණ හා භාවිත පොලිඑකිලීන් (PE) පොලිවයිනයිල් ක්ලෝරයිඩ් (PVC) පොලිඒමයිඩ පොලිඑස්ටර ටෙෆ්ලෝන් බේක්ලයිට් යූරියා ෆෝමැල්ඩිහයිඩ් 	10
	15.5 ශාක දුවා මත පදනම් වූ සමහර රසායනික කර්මාන්ත වීමර්ශනය කරයි.	 කාබන් සංයෝගවල පුභවයක් ලෙස ශාක දවා පිළිබඳ විවරණය ශාක මත පදනම් වූ කර්මාන්ත සමහරක් (ආහාර කර්මාන්තයට අමතර ව) කඩදාසි - සෙලියුලෝස් භාවිතය සගන්ධ තෙල් - වාෂ්පශීලී සංයෝග භාවිතය සබන් - තෙල් හා මේද භාවිතය ඖෂධ - ඖෂධීය සංයෝග භාවිතය එතනෝල් - පිෂ්ටය හා සීනිවල භාවිතය 	10

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
		 ශාකවලින් සංයෝග නිස්සාරණය කිරීම හුමාල ආසවනය - සගන්ධ තෙල් දාවක නිස්සාරණය - ඖෂධීය සංයෝග (විශේෂිත සංයෝගවල වාහු සූතු පිළිබඳ ව පරික්ෂා නො කෙරේ) වර්ණලේඛ ශිල්පය භාවිත කර සංයෝග මිශුණයක් විශ්ලේෂණය කිරීම සහ වෙන් කර ගැනීම - අධිශෝෂණ හා විභේදන (partition) වර්ණලේඛ ශිල්ප පිළිබඳ මූලික මූලධර්ම සගන්ධ තෙල් සම්බන්ධ ව වායු වර්ණලේඛ ශිල්පයේ භාවිතය කඩදාසි වර්ණලේඛ ශිල්පය භාවිත කර ශාක වර්ණක මිශුණයක් වෙන් කිරීම. 	
	15.6 බනිජ සම්පත් මත පදනම් වූ සමහර රසායනික කර්මාන්ත විමර්ශනය කරයි.	සිමෙන්ති නිෂ්පාදනය හා සම්බන්ධ රසායනය රූටයිල් /ඉල්මනයිට් මඟින් Ti හා TiO₂ නිස්සාරණය බොර තෙල් සහ පැට්රෝලියම් නිෂ්පාදනය/බිඳීම	05

16 ඒකකය - පාරිසරික රසායන විදහාව

(කාලච්ඡේද 24)

	නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
16.0	රසායන විදහා දැනුම පෘථිවියේ පරිසරය අවබෝධ කර ගැනීම සඳහා යොදා ගනියි.	16.1 පෘථිවියේ ජීවය පවත්වා ගැනීම පිණිස පරිසර ගෝලයේ සංයුතිය හා එහි සම්බන්ධතාව විමර්ශනය කරයි.	 පරිසර ගෝලයේ සංරචක හා ඒවායේ වැදගත්කම වායුගෝලය ජලගෝලය ශිලාගෝලය පෘථිවිය මත ජිවය පවත්වා ගැනීම උදෙසා ජෛව භූ රසායනික කියාවලිවල කාර්යභාරය ඔක්සිජන් චකුය තාබන් චකුය නයිට්රජන් චකුය ජල චකුය 	06
		16.2 මානව කියාකාරකම් හේතුවෙන් වායුගෝලයේ සිදු වන වෙනස්කම් විමර්ශනය කරයි.	 CO_x, NO_x, SO_x, C_xH_y සහ අංශුමය පදාර්ථ හේතුවෙන් සිදු වන වායු දූෂණ සහ සෞඛ්‍ය බලපෑම් හරිතාගාර ආචරණය වායු දූෂණය හේතුවෙන් මතු ව ඇති ගැටලු අවබෝධ කර ගැනීම පෘථිවිගෝලය උණුසුම් වීම අම්ල වැස්ස පුකාශ රසායනික ධූමය ඕසෝන් වියන සුය වීම වැසි ජලයේ ආම්ලිකතාව වීමර්ශනය කිරීම 	06

නිපුණතාව	නිපුණතා මට්ටම්	සන්ධාරය	කාලච්ඡේද
	16.3 ජලගෝලය සහ පානීය ජලය අපවිතු වීම පිළිබඳ විමර්ශනය කරයි.	 ජල දූෂක පුභව ජලයේ ගුණාත්මකභාවය භෞතික පාරාමිති (උෂ්ණත්වය, pH, සන්නායකතාව, ආවිලතාව) දාවිත ඔක්සිජන් ජෙවීය ඔක්සිජන් ඉල්ලුම (BOD) දාවිත අයනික සංයෝග ජලය පිරිපහදු කිරීමේ කියාවලි අවසාදනය (Sedimentation) කැටිගැසීම (Coagulation) සම්පිණ්ඩනය (Flocculation) විෂබීජහරණ කියාවලි ක්ලෝරින් භාවිතය ඕසෝන් භාවිතය UV කිරණ භාවිතය වින්ක්ලර් කුමය මගින් දාවිත ඔක්සිජන් මට්ටම නිර්ණය කිරීම 	08
	16.4 පස අපවිතුවීම සහ ඝන අපදුවා පිළිබඳ විමර්ශනය කරයි.	 ස්වභාවික යෙදවුම් හා පසෙහි සරු බව පාංශු දූෂක පුභව ගෘහස්ථ අපදවාහ කෘෂි රසායන පසෙහි බැරලෝහ එක්රැස් වීම e - අපදවාහ (පරිගණක, ඉලෙක්ටොනික උපකරණ, ජංගම දුරකථන, බැටරි, සංගෘහිත පුතිදිප්ත විදුලි පහන් -CFL ආදිය) අපදවාහ කළමනාරකණය 3R පද්ධති කොම්පෝස්ට් සෑදීම ජීව වායුව නිපදවීම හෂ්මීකරණය 	04

එකතුව 468

4.0 ඉගෙනුම්-ඉගැන්වීම් කුමෝපාය

වත්මත් අධාාපනයේ ගෝලීය පුවණතාව වී ඇත්තේ ඉගැන්වීම අභිබවා ඉගෙනුම ඉස්මතු වන ශිෂා කේන්දීය කි්යාකාරකම් ඔස්සේ සහයෝගිතා ඉගෙනුම දිරි ගැන්වෙන නිපුණතාපාදක විෂයමාලා හඳුන්වා දීම යි. පුද්ගල, සමාජ සහ මානසික හැකියා සංවර්ධනය කෙරෙන කි්යාකාරකම්වල සිසුන් නිරත කරවීම මෙ මගින් අපේක්ෂා කෙරේ. මෙහි දී පහත සඳහන් දෑ අවධාරණය විය යුතු ය.

- හැකි සැම අවස්ථාවක ම්ඎ්ඩආකෘතියේ කිුිියාකාරකම් යොදා ගනිමින් සන්ධාරය ආවරණය කිරීම.
- ස්වයං පෙලඹවීමක් සහිත ව කිුිියාකාරකම්වල යෙදීමෙන් හැකි තාක් සෘජු අත්දැකීම් ලබා ගැනීමට සිසුන්ට අවස්ථාව සැලසීම.
- අවශා තැන්හි දී විශ්වසනීය පුභවවලින් දැනුම සහ තොරතුරු උකහා ගැනීමට සිසුන් යොමු කිරීම.

5.0 පාසල් පුතිපත්ති සහ වැඩසටහන්

- අදාළ ඉගෙනුම් ඵල සාක්ෂාත් කර ගැනීම සඳහා සුදුසු ඉගෙනුම්-ඉගැන්වීම් කිුිිියාවලියක් අනුගමනය කිරීමේ නිදහස ගුරුභවතා සතු ය.
- É විෂය නිර්දේශයේ සන්ධාරය යටතේ ම තද කළු 📭 කුරින් මුදුණය කර ඇති පුායෝගික කියාකාරකම් ද අදාළ අවස්ථාවන්හි දී ම සිදු කිරීම අපේක්ෂිත ය.
- É සිසු ශකාතා වර්ධනය සඳහා පරිගණක ආශිුත ඉගෙනුම් මෘදුකාංග වැනි ඉගෙනුම්-ඉගැන්වීම් ආධාරක, අතිරේක කියැවීම් දුවා සහ විෂය බාහිර කියාකාරකම් ආදිය යොදා ගත යුතු ය.
- É පන්ති කාමර ඉගෙනුම දීර්ඝ කිරීමට සහ සිසුන්ගේ සුවිශේෂ දක්ෂතා ඔප් නංවනු වස් පහත දැක්වෙන අන්දමේ විෂය සමගාමී කියාකාරකම් හඳුන්වා දීම අපේක්ෂිත ය.
 - $\acute{ ext{E}}$ රසායන විදාාවට අදාළ ව විවිධ අංග ආවරණය වන පරිදි පාසලේ සමිති හා සමාගම් පිහිටුවීම.

- \acute{E} රසායන විදාහව සම්බන්ධ විවිධ ක්ෂේතුවලට යොමු කිරීමක් වශයෙන්, රසායන විදාහත්මක වැදගත් කමක් ඇති ක්ෂේතු චාරිකාවල යෙදීම හා ඒ පිළිබඳ වාර්තා සකස් කිරීම.
- $m \acute{E}$ සුදුසු තේමා සඳහා අදාළ වෘත්තිකයින් හෝ විශේෂඥයින් හෝ සම්පත් පුද්ගලයින් හෝ යොදා ගනිමින් ආරාධිත දේශන පැවැත්වීම
- É පාසල් පුකාශන එළි දැක්වීම.
- $\acute{{
 m E}}$ විදාහ දින, විවාද, තරග සහ පුදර්ශන සංවිධානය කිරීම.
- $\acute{
 m E}$ රසායන විදහාවේ උන්නතිය සඳහා කටයුතු කරන බාහිර සංවිධාන සමග සබඳතා පවත්වා ගැනීම.
- É රසායනාගාර උපකරණ, පරිගණක හා අනිකුත් සම්පත් හා උපකරණ ආදියත්, පාසලින් හා ඉන් බැහැරින් ලබා දීමට කටයුතු කිරීම, පාසල් කළමනාකරණයේ වගකීමකි.
- É රසායන විදාහාවට අදාළ වැඩ සටහන් සංවර්ධනය කිරීම සඳහා සුදුසු ගුරු භවතුන්ගෙන් සහ සිසුන් ගෙන් සැදුම් ලත් කමිටුවක් පිහිටුවා ගැනීම යෝගා ය.
- $\acute{ ext{E}}$ පාසල, සිසුන්ට පරමාදර්ශී වීම ඉතා වැදගත් ය.
- É පුතිපත්තිමය ඉලක්ක සපුරා ගැනීම සඳහා පාසල මගින් විවිධ කිුිියාකාරකම් ඇතුළත් වාර්ෂික වැඩසටහනක් සකස් කළ යුතු ය. මෙහි දී නිශ්චිත වසරක් තුළ කළ හැකි කිුිියාකාරකම් නිර්ණය කිරීම උදෙසා පාසලෙහි පුමුබතා හඳුනා ගැනීමත්, කාලය සහ සම්පත්වල සීමා සලකා බලමින් පුායෝගිකතාව පිළිබඳ සැලැකිලිමත් වීමත්, ඉතා අවශා ය.

6.0 තක්සේරුව හා ඇගයීම

මෙම විභාගයේ පුශ්න පතුවල ආකෘතිය හා ස්වභාවය පිළිබඳ අවශා විස්තර විභාග දෙපාර්තමේන්තුව මගින් සැපයෙනු ඇත.