Lab 8- Logistic Regression

In []: N01419700 Harini Rajarathinam

Import Libraries

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline
```

Get the Data

*Read in the Import Libraries.csv file *

```
In [2]: data = pd.read_csv(r'C:\Users\rcher\Documents\Humber work\Semester 2\Intro to Dat
data.head()
```

Out[2]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0

Check the head of data

In [4]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	User ID	400 non-null	int64
1	Gender	400 non-null	object
2	Age	400 non-null	int64
3	EstimatedSalary	400 non-null	int64
4	Purchased	400 non-null	int64

dtypes: int64(4), object(1)
memory usage: 15.8+ KB

In [5]: data.describe()

Out[5]:

	User ID	Age	EstimatedSalary	Purchased
count	4.000000e+02	400.000000	400.000000	400.000000
mean	1.569154e+07	37.655000	69742.500000	0.357500
std	7.165832e+04	10.482877	34096.960282	0.479864
min	1.556669e+07	18.000000	15000.000000	0.000000
25%	1.562676e+07	29.750000	43000.000000	0.000000
50%	1.569434e+07	37.000000	70000.000000	0.000000
75%	1.575036e+07	46.000000	88000.000000	1.000000
max	1.581524e+07	60.000000	150000.000000	1.000000

In [10]: #Write the code to show the result(below)

Out[10]:

	User ID	Age	EstimatedSalary	Purchased
count	4.000000e+02	400.000000	400.000000	400.000000
mean	1.569154e+07	37.655000	69742.500000	0.357500
std	7.165832e+04	10.482877	34096.960282	0.479864
min	1.556669e+07	18.000000	15000.000000	0.000000
25%	1.562676e+07	29.750000	43000.000000	0.000000
50%	1.569434e+07	37.000000	70000.000000	0.000000
75%	1.575036e+07	46.000000	88000.000000	1.000000
max	1.581524e+07	60.000000	150000.000000	1.000000

In [8]: data['Age'].hist(bins=30, color='c', alpha=0.5)

Out[8]: <AxesSubplot:>

In [12]: #Write the code to show the result(below)

Out[12]: Text(0.5, 0, 'Age')

In [9]: sns.pairplot(data)

Out[9]: <seaborn.axisgrid.PairGrid at 0x1f7d5447790>

In [14]: #Write the code to show the result(below)

Out[14]: <seaborn.axisgrid.PairGrid at 0x20141e07608>

Logistic Regression

Now it's time to do a train test split, and train our model. Check for categorical and Numerical values and buil the model based on your data type.

```
In [10]: Gender = pd.get dummies(data['Gender'],drop first=True)
         data.drop(['Gender'],axis=1,inplace=True)
         data = pd.concat([data, Gender],axis=1)
         data.head()
```

0

1

1

Out[10]: User ID Age EstimatedSalary Purchased Male 15624510 19 19000

15810944 35 20000 0 1 15668575 43000 0 26 15603246 57000 27 0

15804002 19 76000

```
In [8]: from sklearn.model selection import train test split
```

```
In [16]: X_train, X_test, y_train, y_test = train_test_split(data.drop('Purchased',axis=1)
                                                               data['Purchased'], test_size
                                                               random state=101)
```

```
Traceback (most recent call last)
NameError
~\AppData\Local\Temp/ipykernel 40744/4083481156.py in <module>
----> 1 X_train, X_test, y_train, y_test = train_test_split(data.drop('Purchase
d',axis=1),
                                                              data['Purchased'],
      2
test size = 0.30,
                                                              random_state=101)
```

NameError: name 'data' is not defined

```
In [10]: from sklearn.linear model import LogisticRegression
```

Predictions and Evaluations

```
In [21]: logmodel = LogisticRegression()
         logmodel.fit(X_train,y_train)
```

```
Traceback (most recent call last)
NameError
~\AppData\Local\Temp/ipykernel 64980/2572600564.py in <module>
      1 logmodel = LogisticRegression()
----> 2 logmodel.fit(X_train,y_train)
NameError: name 'X_train' is not defined
```

Classification Report