#### What is Materials Science and Engineering?

- Materials Science –
   emphasis on
   relationships
   between synthesis
   and processing,
   structure and
   properties
- Materials

   Engineering –
   emphasis on
   transforming
   materials into useful
   devices or
   structures.



# Why do engineers need to study materials engineering?

- Design and innovation
  - Materials selection
    - Improvement
    - Failure analysis

#### **Production of Iron & Steel**

#### **Learning objectives:**

- Introduction,
- Production of Pig Iron process,
- Steel Production Process,
  - Bessemer
  - Open hearth
  - LD (Linz Donawitz) converters
  - Electrical Ultra High Power (UHP) electric furnace
  - the ladle steelmaking processes and continuous casting.
- Steel introduction
  - Carbon steel
  - Classification of carbon Steel

#### **Production of Iron & Steel**

#### What is Iron?

- Iron is a chemical element. It is a strong, hard, heavy gray metal,
- Iron is produced by melting iron ore (mineral compounds in the earth's crust – 5% of the Earth's crust is iron ) and removing impurities.
  - Pig iron
  - Wrought iron

#### What is steel?

- Steel is simply a purer form of iron with lower carbon content.
- Steel can be produced from molten iron ore with blast of air (BOF), Electric furnace, Bessemer converter.

# Introduction - Iron and steel

#### Applications:

 Cutting tools, pressure vessels, bolts, hammers, gears, cutlery, jet engine parts, car bodies, screws, concrete reinforcement, 'tin' cans, bridges...

#### Why? (advantages)

- Ore is cheap and abundant
- Processing techniques are economical (extraction, refining, alloying, fabrication)
- High strength
- Very versatile metallurgy a wide range of mechanical and physical properties can be achieved, and these can be tailored to the application

#### Disadvantages:

- Low corrosion resistance
- High density: 7.9 g cm<sup>-3</sup>

## Introduction - Iron and steel

- Iron is allotropic / polymorphic
  - i.e. exhibits different crystal structures at different temperatures

Most importantly: bcc fcc transformation at 912°C (for pure iron)

- Solubility of carbon:
  - in ferrite ( $\alpha$ -iron, bcc): 0.02 wt%
  - austenite ( $\gamma$ -iron, fcc): 2.1 wt%
- What happens to carbon when crystal structure transforms from fcc to bcc? ---

#### 1. Raw materials procurement



#### 2. Pig iron production



# Blast Furnace





#### 3. Steel production





## **IRON MAKING -- summary**

- Vertical shaft furnace, called a blast furnace
  - •Iron ore, coke, and limestone are charged,
  - •Hot air (~1200 °C) is pumped into the bottom of the blast furnace,
  - •Limestone attracts impurities, a "slag" forms and floats on top of the molten iron,
  - Iron is drawn off, or "tapped", and poured into moulds, known as pig iron

# **IRON MAKING -- summary**



#### Iron ore

#### Common iron ores include:

Hematite - Fe<sub>2</sub>O<sub>3</sub> - 70 % iron (a common iron ore)



Magnetite - Fe<sub>3</sub>O<sub>4</sub> - 72 % iron

Limonite -  $Fe_2O_3$  +  $H_2O$  - 50 % to 66 % iron

Siderite - FeCO<sub>3</sub> - 48 percent iron

To create a ton of pig iron, you start with 2 tons of ore, 1 ton of coke and half-ton of limestone. The fire consumes 5 tons of air. The temperature reaches almost 1600 °C at the core of the blast furnace!

#### **Process: Iron Ore** → **Steel**



#### Extraction of iron in a blast furnace



At 500 °C  $3Fe_2O_3 +CO \rightarrow 2Fe_3O_4 + CO_2$  $Fe_2O_3 +CO \rightarrow 2FeO + CO_2$ 

At 850 °C  $Fe_3O_4$  +CO  $\rightarrow$  3FeO + CO<sub>2</sub>

At 1000 °C FeO +CO  $\rightarrow$  Fe + CO<sub>2</sub>

At 1300 °C  $CO_2 + C \rightarrow 2CO$ 

At 1900 °C  $C + O_2 \rightarrow CO_2$  FeO +C  $\rightarrow$  Fe + CO

# Liquid iron flow in to channel, Pig Iron





# Introduction - Production of Iron & Steel



# Introduction - Production of Iron & Steel

- √ Steel is essential to everyday life
  - ✓ cars, trains, buildings, ships, bridges, refrigerators, medical equipment, for example, are all made with steel.
- ✓ Raw Materials A blast furnace
  - ✓ Uses iron ore, coke (made from specialist coking coals) and small quantities of limestone (iron ore, coke and fluxes).

# Manufacturing process for iron and steel



### **Steel Production Process-BOF**



# Basic-oxygen Furnace













4/27/2015

Engineering Materals II (MEng 2122)

#### **Steel Production Process- EAF**



# Electric Furnace











# Casting of Ingots

- Traditionally, the next step in the steelmaking process is the shaping of the molten steel into a solid form (ingot) for such further processing as rolling, casting, or forging.
- Reactions which takes place during the solidification of an ingot,
  - Significant amounts of oxygen and other gases can dissolve in the molten metal during steel-making. Most of these gases are rejected during the solidification of the metal, because the solubility limit of the gases in the metal decreases sharply as its temperature decreases.
  - Rejected oxygen combines with carbon to form carbon monoxide, which causes porosity in the solidified ingot.
  - Depending on the amount of gas evolved during solidification hree types of steel ingots can be produced: killed, semi-killed, and rimmed.

# Continuous Casting

- The inefficiencies and the problems involved in making steels in the traditional form of ingots are alleviated by the continuous-casting process, which produces higher quality steels at reduced costs
- In addition to costing less, continuously cast metals have more uniform compositions and properties than those obtained by ingot casting.
- The continuously cast metal may be cut into desired lengths by shearing or computer-controlled torch cutting, or
- it may be fed directly into a rolling mill for further reduction in thickness and for the shaping of products such as channels and I-beams.

# Continuous Casting....



















Blooms containing by mass 0,25% or more of carbon























#### **Steel - Introduction**

Steels can be classified by a variety of different systems depending on:

- The composition,
  - such as carbon, low-alloy or stainless steel.
- The manufacturing methods,
  - such as open hearth, basic oxygen process, or electric furnace methods.
- The finishing method,
  - such as hot rolling or cold rolling
- The product form,
  - such as bar plate, sheet, strip, tubing or structural shape

#### Steel - Introduction .... Contd.

- The deoxidation practice,
  - such as killed, semi-killed capped, and rimmed steel



- The microstructure,
  - such as ferritic, pearlitic and martensitic
- The required strength level,
  - as specified in ASTM standards
- The heat treatment,
  - such as annealing, quenching and tempering, and thermomechanical processing
- Quality descriptors,
  - such as forging quality and commercial quality

### **Carbon Steel**

 The American Iron and Steel Institute (AISI) defines carbon steel as follows:

- Steel is considered to be carbon steel when no minimum content is specified or required for chromium, cobalt, columbium [niobium], molybdenum, nickel, titanium, tungsten, vanadium or zirconium, or any other element to be added to obtain a desired alloying effect.

### Carbon steels

 Steels whose alloying elements do not exceed the following limits:

| Element | Max weight % |
|---------|--------------|
| С       | 1.00 (2%)    |
| Cu      | 0.60         |
| Mn      | 1.65         |
| Р       | 0.40         |
| Si      | 0.60         |
| S       | 0.05         |

## The Iron-Iron Carbide Phase Diagram





### Carbon steels

- Effects of carbon in the carbon steel,
  - +increased hardness
  - +increased strength
  - +decreased weldability
  - +decreased ductility
  - Machinability about 0.2 to 0.25%
     C provides the best machinability

# Classification scheme for ferrous alloys



## Classification of ferrous alloys





## Carbon steel

- increasing carbon content leading to,
  - increased hardness and strength
  - increases brittleness and reduces weldability .
- Carbon steels (Max 2% C) are generally categorized according to their carbon content.
  - low-carbon steels ( < 0,30 % C)</p>
  - medium-carbon steels ( 0,30% 0,45% C)
  - high-carbon steels( 0,45% 0,75% C)
  - ultrahigh-carbon steels (Up to 1,5 % C)

### Classification of carbon steel-Designation system:

 American Iron and Steel Institute (AISI) together with Society of Automotive Engineers (SAE) have established four-digit (with additional letter prefixes) designation system:

#### SAE 1XXX

- First digit 1 indicates carbon steel (2-9 are used for alloy steels);
- Second digit indicates modification of the steel.
  - 0 Plain carbon, non-modified
  - 1 Resulfurized
  - 2 Resulfurized and rephosphorized
  - 5 Non-resulfurized, Mn over 1.0%
- Last two digits indicate carbon concentration in 0.01%.

## Designation system - modification of the steel

|      |          | XX                                         | :0.xx% average carbon content |
|------|----------|--------------------------------------------|-------------------------------|
|      |          | <b>†</b>                                   |                               |
| AISI | 10       | 60                                         |                               |
|      | <b>+</b> |                                            |                               |
|      | 10       | :Nonresulfurized grades                    |                               |
|      | 11       | :Resulfurized grades                       |                               |
|      | 12       | :Resulfurized and rephosphorized grades    |                               |
|      | 15       | :Nonsulfurized grades; max Mn content > 1% |                               |

### Classification of carbon steel-Designation system:

 A letter prefix before the four-digit number indicates the steel making technology:

- A Alloy, basic open hearth
- B Carbon, acid Bessemer
- C Carbon, basic open hearth
- D Carbon, acid open hearth
- E Electric furnace

## Example: Designation system SAE 1040?



# Example: Designation system:

### SAE 1030

- means non modified carbon steel( Plain carbon),
- containing 0.30% of carbon.

### AISI B1020

- means non-modified carbon steel,
- produced in acid Bessemer and
- containing 0.20% of carbon