Baselines for

Chest X-Ray Report Generation

William Boag¹, Tzu-Ming Harry Hsu¹, Matthew McDermott¹, Gabriela Berner², Emily Alsentzer¹, Peter Szolovits¹

1. MIT CSAIL, 2. Harvard

https://github.com/wboag/cxr-baselines

Generating Radiology Reports

Text Generation could have huge benefits in clinical practice, including:

- + Increasing the speed and consistency of interpretations.
- Scaling to under-resourced areas (rural America; developing countries).
- Decrease amount of time documenting patient info in records.
- + Text can be more expressive than structured data (e.g. slight vs mild vs moderate).

Importance of Baselines

Baselines are essential to progress, and honestly they're just good science. They:

- Diagnose poor performance by isolating different parts of a model.
- Help "debug" the complexity of a dataset.
- Some authomatically-generated datasets prove to be simpler than expected.
- Ground our understanding in how "hard" a task is. - Your model gets 80%. Is that good? How well would a model do by chance?
- Help us test intuition-based hypotheses.
 - We assume the structure of the space looks a certain way. - If we probe that, does it behave the way we expect?

Blog Post: tinyurl.com/baseline-blog

Sample Output

Dataset

Access the Data: https://mimic-cxr.mit.edu/

Basics from Alistair: https://github.com/mlhc19mit/recitations/blob/master/rec4-slides.pdf

Choice of Baselines

Random Train Report

- Irrelevant

+ Grammatical

Nearest Neighbor + Grammatical Decently relevant

- Might ignore specifics of the particular image

Figure from https://arxiv.org/pdf/1505.04467.pdf

Show-and-Tell + Relevant + Most grammatical baseline model

Generated Report

Evaluation and Results

Natural Language Generation Metrics

Clinical Correctness

	Observation	Labeler Output
	No Finding	
1. unremarkable <u>cardiomediastinal silhouette</u>	Enlarged Cardiom.	0
	Cardiomegaly	
2. diffuse <u>reticular pattern</u> , which can be	Lung Opacity	1
	Lung Lesion	
seen with an atypical <u>infection</u> or chronic	Edema	
fibrotic change. <i>no</i> focal <u>consolidation</u> .	Consolidation	0
	Pneumonia	u
3. no pleural effusion or pneumothorax	Atelectasis	
5. No <u>piediai endsion</u> of <u>priedinotnorax</u>	Pneumothorax	0
	Pleural Effusion	0
4. mild degenerative changes in the lumbar	Pleural Other	
spine and old right rib fractures.	Fracture	1
	Support Devices	

Table 2: Automatic evaluation metrics of baseline methods for image captioning task.

						CheXpert	CheXpert	CheXpert
Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	CIDEr	Accuracy	Precision	F1
Random	0.265	0.137	0.070	0.036	0.570	0.770	0.146	0.148
1-gram	0.196	< 0.001	< 0.001	< 0.001	0.348	0.742	0.206	0.174
2-gram	0.194	0.098	0.043	0.013	0.404	0.764	0.225	0.193
3-gram	0.206	0.107	0.057	0.031	0.435	0.782	0.225	0.185
1-NN	0.305	0.171	0.098	0.057	0.755	0.818	0.253	0.258
CNN-RNN	0.004	< 0.001	< 0.001	< 0.001	0.066	0.822	0.144	0.067
CNN-RNN + Beam	0.305	0.201	0.137	0.092	0.850	0.837	0.304	0.186

Neural Network method (even this simple kind) performed the best.

1-NN has decent performance & should be included as a baseline comparison in more generation work.

BLEU and CIDEr score Random (irrelevant-but-gramatical) higher than 3-gram (relevant-but-ungrammatical). But 3-gram had higher clinical correctness. That cannot be right. Standard general domain metrics are insufficient.

Future Work: Need Better Metrics!

Metrics like CIDEr and BLEU were not validated on clinical data, and they account don't for correctness (just surface-level similarities).

Need to collect clinical judgments from doctors in order to develop new metric which better aligns with "right" thing.

Thanks

This research was funded in part by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1122374, NIH National Institutes of Mental Health grant P50-MH106933, a Mitacs Globalink Research Award, and Harvard Medical School Biomedical Informatics and Data Science Research Training Grant T15LM007092 (Co-PIs: Alexa T. McCray, PhD and Nils Gehlenborg, PhD).