

Proof: A function of is "nice" with respect	y" := anguin g(y)
to x1,, X7 if:	
1. $f(x_{i+1}) \leq f(x_i) + \langle \nabla f(x_i), x_{i+2} - x_i \rangle$	y: g(y) \(g(y) + \(\frac{2}{2} \)
$\frac{+\frac{\beta}{2}\ x_{i+2}-x_i\ _2^2}{2^{\frac{1}{2}}\left(x_i\right) \leq f(x^*) + \frac{1}{2\alpha}\ \nabla f(x_i)\ _2^2}$	$f(y) \leq g(y^{-}) + \frac{2}{6} = f(y^{-}) + \frac{2}{6} \cdot \ x_0 - y^{-}\ _2^2 + \frac{2}{6}$
	$\leq f(y^{2}) + \frac{\epsilon}{28}\epsilon \cdot 8^{2} + \frac{\epsilon}{2} = f(y^{2}) + \epsilon $ (1)
GD update rule: $x_{i+1} = x_i - \gamma \cdot \nabla f(x_i)$	
(A) Charles (The D) (The D) and The Charles	$f(y^{n}) \leq f(y^{n}) + \frac{\epsilon}{28^{2}} \ x_{0} - y^{n}\ _{2}^{2} \leq f(x^{n}) + \frac{\epsilon}{28^{2}} \ x_{0} - x^{n}\ _{2}^{2}$
(1) implies: f(xi+1) ≤ f(xi)+ ⟨∇f(xi),-7.∇f(xi)⟩ + \frac{1}{8} \ \ - \partial \nabla f(xi) \ \frac{1}{2}	g(y*)
	$\leq f(x^4) + \frac{\varepsilon}{28^2} \cdot 8^2 = f(x^2) + \varepsilon/2 \qquad (2)$
$= f(x_1) - \chi \cdot \ \nabla f(x_1)\ _2^2 + \frac{\beta}{2} \cdot \chi^2 \ \nabla f(x_1)\ _2^2$	Plug (2) into (1).
$= f(x_1) - \ \nabla f(x_1)\ _2^2 \left(\chi - \frac{g}{2} \chi^2 \right)$	$f(y) \leq f(y^2) + \epsilon \leq (f(x^2) + \epsilon) + \epsilon = f(x^2) + \frac{3\epsilon}{2}$ (1)
(2) $\ \nabla f(x_i)\ _2^2 \geq 2\lambda (f(x_i) - f(x_i))$	Next: Approximately minimite 7.
$\leq f(x_i) - 2\alpha \left[f(x_i) - f(x^{-1}) \right] \left[1 - \frac{\beta}{2} \eta^2 \right]$	Remember: If g was "nice" with respect to X1,,X7, and X1,,X7 are the
$f(x_{i+1}) - f(x^2) \leq f(x_i) - f(x^2) - 2x[f(x_i) - f(x^2)][y - \frac{1}{2}y^2]$	Herates from gradient denset, then $g(x_{i+1}) - g(x_{i}) \leq \left[g(x_{i}) - g(x_{i})\right] \cdot \left[1 - \frac{x_{i}}{B_{i}}\right] \leq \left[g(x_{i}) - g(x_{i})\right] \cdot \exp\left(-\frac{x_{i}}{B_{i}}\right)$
$S_i := f(x_i) - f(x_i)$	We can choose $\alpha' = \frac{e}{B^2}$ $1-x \leq e^{-x}$
Si+1 ≤ Si - 2a. Si (y- \chi^2)= Si [1-2a(1- \chi^2\chi^2)]	$\beta' = \beta + \frac{\epsilon}{8^2}$.
It is enough to minimize $1-2\alpha(\gamma-\frac{g}{2}\gamma^2)$ over γ .	=> A+knz $\frac{g^2}{k_1}$ log $\left(\frac{g(x_0)-g(x^2)}{\epsilon}\right)$ skps, we had
	g(x112)-g(x") 4 E.
	$\frac{R}{R} = 1 + R \cdot \frac{R^2}{4}$
$\Rightarrow 1-2\alpha\left(\eta-\frac{\beta}{2}\eta^{2}\right)=1-2\alpha\left(\frac{1}{\beta}-\frac{\beta}{2},\frac{1}{\beta^{2}}\right)=1-\frac{\alpha}{\beta},$	
-> δ _{i+1} ≤ δi (1 - 🕏) D.	of gradient descent on g, you can ensure
	f(x7) ≤ f(x3) + ε. □
Theorem: If f is convex and iterates $x_2,, x_7$	
are s.t.	<u>Remark</u> : Running GD directly on f gets the same rote.
$f(x_{i+1}) \leq f(x_i) + \langle \nabla f(x_i), x_{i+2} - x_i \rangle + \frac{\pi}{2} \ x_{i+2} - x_i\ _2^2$ and, if you know to such that for all	Remark: 1. $f(x_{i+1}) \leq f(x_i) + \langle \nabla f(x_i), x_{i+2} - x_i \rangle$
x with $f(x) \leq f(x_0)$, you had	$\frac{+\frac{8}{2}\ x_{i_12}-x_i\ _2^2}{2. f(x_i) \leq f(x^*) + \frac{1}{2x}\ \nabla f(x_i)\ _2^2}$
x₀ - x ₂ ≤ B ,	20, 11, 12, 11, 12, 11, 11, 11, 11, 11, 11
then with $T = O\left(\beta \cdot \frac{\beta^2}{\epsilon} \cdot \log\left(\frac{f(\kappa_0) - f(\kappa^2)}{\epsilon}\right)\right)$	Definition: f is B-smooth if for all x:
	for all $y: f(y)-f(x)-\langle \nabla f(x),y-x\rangle \leq \frac{\beta}{2} x-y _2^2$ (check that β -shooth \Rightarrow quadratic UB)
we have $f(x_T) - f(x_T) \leq \varepsilon.$	Definition: f is α -PL (Polyak-Lejaskwice) if for
xo 1 1 -	$f(x) \le f(x^{-\alpha}) + \frac{1}{2^{\alpha}} \ \nabla^{f}(x)\ _{2}^{2}.$
	(share a series)
	(Strong convexity => PK)
<u> </u>	
$p_{root}: f(x_{i+2}) \neq f(x_i) - \ \nabla f(x_i) \ _2^2 \left(\sqrt{-\frac{p}{2}} \right)^2$	
Run 60 on $g(x) := f(x) + \frac{e}{28^2} \cdot x_0 - x _2^2$	
Plan: approximately minimizing g => approximately minimizing f.	

Two convex sets

<u>Definition</u>: A function is convex if for every x, there is some $\nabla f(x)$ such that for all y

fly) = flx) + (>f(x), y-x)

The set of all valid $\nabla f(x)$ is called the subgradient and It is denoted as $\partial f(x)$.

Fact: At xx, O & Of(x).

Exercise: Colomode $\partial f(x)$ when $f(x) = ||x||_1 = \sum_{i=1}^{d} |x_i|_i$

LASSO: fx(w)=||XW-y||2 + a:||M1

 $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^{n}$. $X = \begin{bmatrix} -x_{2} \\ -x_{n} \end{bmatrix}$

W only depends on very tew features (sporse).