

CONTROL ACUMULATIVO # 25

NOMBRES:		CURSO:	FECHA:
1.		1° medio	/ X / MMXXIV
_		PUNTAJE TOTAL:	PUNTAJE OBTENIDO:
2.		18 puntos @ 60 %	
UNIDAD	Geometría		
CONTENIDOS	Cilindro y cono		
OBJETIVOS	• Determinar el área del cilindro y el cono a partir de sus medidas usando la fórmula apropiada.		
INSTRUCCIONES	• Resuelva cada ejercicio en el espacio debajo del enunciado de la forma más detallada posible.		
	Enumere los pasos que realizó y encierre su r	espuesta final con lápiz de	e color (no destacador).

Formulario

Cilindro	Cono	Fórmulas alternativas	Otras fórmulas
$\bullet A = 2\pi r^2 + 2\pi rh$	$\bullet A = \pi r^2 + \pi r g$	$\bullet A_{\rm co} = \pi r(r+g)$	$\bullet g = \sqrt{r^2 + h^2}$
$\bullet A_B = \pi r^2$	$\bullet A_B = \pi r^2$		$\bullet h = \sqrt{g^2 - r^2}$
• $A_L = 2\pi rh$	$\bullet A_L = \pi r g$		$\bullet r = \sqrt{g^2 - h^2}$
$\bullet V = \pi r^2 h$	$V = \frac{\pi r^2 h}{2}$		$I = \sqrt{g} - h$
	3		

Problemas

En cada caso, determine correctamente qué debe calcular (1 p), haga las figuras 3D (1 p), escriba la o las fórmulas que utilizará (1 p), reemplace los valores que le proporciona el enunciado (1 p), realice los cálculos correspondientes (1 p) y elabore una respuesta a la pregunta (1 p). Cada problema tiene un total de 6 puntos.

1.	Un recipiente cilíndrico y otro cónico tienen una capacidad de 628 cm³. Considerando que ambos tienen un radio de 10 cm, ¿cuál es la altura de cada uno de los recipientes?

2.	una empresa de diseño grafico se encuentra trabajando en la etiqueta que adosaran al costado de un recipiente con forma cilíndrica y que ocupará la mitad de la altura de este. Si el diámetro del tarro es de 4,6 cm y su altura es de 16,2 cm. ¿Cuánto papel (en cm²) se necesita para imprimir 1000 etiquetas?
3.	Un cono con un radio de 5 cm y una altura de 12 cm está inscrito dentro de un cilindro que tiene la misma altura y
Э.	radio. ¿Cuál es la diferencia de volumen entre el cono y el cilindro?