Einführung in die Algebra

BLATT 10

Jendrik Stelzner

7. Januar 2014

Aufgabe 10.4.

Für einen beliebigen Körper K und beliebige
s $g\in K[X]$ mit deg $g\geq 1$ gilt, d
aK[X]ein Hauptidealring ist, bekanntermaßen

K[X]/(g) ist ein Körper $\Leftrightarrow (g)$ ist maximal $\Leftrightarrow g$ ist irreduzibel.

Da das Polynom $f=X^3-2$ irreduzibel in $\mathbb{Q}[X]$ ist, nicht jedoch in $\mathbb{R}[X]$, ist $\mathbb{Q}[X]/(f)$ ein Körper, $\mathbb{R}[X]/(f)$ jedoch nicht.

Aufgabe 10.5.

(i)

Da α und β algebraisch über K sind, ist die Körpererweiterung $K(\alpha,\beta)/K$ algebraisch und $K(\alpha,\beta)=K[\alpha,\beta]$. Insbesondere ist daher $(\alpha^k\beta^l)_{k,l\in\mathbb{N}}$ ein K-Erzeugendensystem von $K(\alpha,\beta)$.

Sei nun $x_1,\ldots,x_m\in K(\alpha)$ eine K-Basis von $K(\alpha)$ und $y_1,\ldots,y_n\in K(\beta)$ eine K-Basis von $K(\beta)$. Es ist $(x_iy_j)_{i=1,\ldots,m,j=1,\ldots,n}$ ein K-Erzeugendensystem von $K(\alpha,\beta)$, und damit insbesondere

$$K[(\alpha, \beta) : K] = \dim_K(K(\alpha, \beta)) \le mn$$

Für alle $k,l\in\mathbb{N}$ gibt es nämlich (eindeutige) $\lambda_1^k,\ldots,\lambda_m^k\in K$ mit $\alpha^k=\sum_{i=1}^m\lambda_i^kx_i$ und $\mu_1^l,\ldots,\mu_n^l\in K$ mit $\beta^l=\sum_{j=1}^n\mu_j^ly_j$, weshalb

$$\alpha^k \beta^l = \left(\sum_{i=1}^m \lambda_i^k x_i\right) \left(\sum_{j=1}^n \mu_j^l y_j\right) = \sum_{i=1}^m \sum_{j=1}^n \lambda_i^k \mu_j^l x_i y_j.$$

da $(\alpha^k\beta^l)_{k,l\in\mathbb{N}}$ ein K-Erzeugendensystem von $K(\alpha,\beta)$ ist, ist es daher auch $(x_iy_j)_{i,j}$.

(ii)

Aus der Kette von Körpererweiterungen

$$K \subseteq K(\alpha) \subseteq K(\alpha, \beta)$$

ergibt sich durch den Gradsatz, dass

$$[K(\alpha,\beta):K] = [K(\alpha,\beta):K(\alpha)] \cdot [K(\alpha):K],$$

also

$$m = [K(\alpha) : K] \mid [K(\alpha, \beta) : K]$$

Analog ergibt sich, dass auch $n \mid [K(\alpha, \beta) : K]$. Folglich ist auch

$$kgV(m, n) \mid [K(\alpha, \beta)].$$

Dabei ist kgV(m,n)=mn, dam und n teilerfremd sind. Mit $[K(\alpha,\beta):K]\geq 1$ ergibt sich damit, dass $mn\leq [K(\alpha,\beta):K]$. Da auch $[K(\alpha,\beta):K]\leq mn$ ist also

$$[K(\alpha,\beta):K]=mn.$$