Программирование, ориентированное на планирование: рабочий процесс программирования на большом языковой модели

Дата: 2025-01-09 00:00:00

Ссылка на исследование: https://arxiv.org/pdf/2411.14503

Рейтинг: 85 Адаптивность: 90

Ключевые выводы:

Исследование представляет новый рабочий процесс программирования с использованием больших языковых моделей (LPW), состоящий из двух фаз: генерации решения и реализации кода. Основная цель - улучшить как начальную генерацию кода, так и последующие уточнения. Результаты показывают значительное улучшение точности Pass@1 до 16.4% на различных бенчмарках по сравнению с существующими методами.

Объяснение метода:

Исследование предлагает двухфазный подход к генерации кода - планирование решения с верификацией и последующую реализацию с отладкой. Метод значительно повышает точность кода, легко адаптируется к стандартным чатам без API, помогает пользователям структурировать запросы и понимать ошибки. Подход применим не только к программированию, но и к другим задачам, требующим пошагового планирования и проверки.

Ключевые аспекты исследования: 1. **Двухфазный рабочий процесс для генерации кода (LPW)**: Исследование представляет структурированный подход к генерации кода с помощью больших языковых моделей (LLM), разделенный на фазу генерации решения и фазу реализации кода.

Верификация плана решения: Ключевая инновация заключается в проверке плана решения на тестовых примерах перед написанием кода. Это позволяет LLM понять логику решения и проверить ее корректность.

Пошаговая отладка на основе плана: При возникновении ошибок в коде, система сравнивает фактическое выполнение с ожидаемым поведением из верифицированного плана, что позволяет точно локализовать и исправить ошибки.

Автономная генерация информации для обратной связи: Вся дополнительная информация (план решения, верификация, объяснение кода) генерируется самой моделью LLM без необходимости в дополнительном обучении или аннотированных корпусах.

Значительное улучшение точности генерации кода: На различных бенчмарках метод демонстрирует существенное повышение точности (Pass@1) по сравнению с существующими подходами, особенно для сложных задач.

Дополнение:

Применимость методов исследования в стандартном чате

Исследование LPW (Large Language Model Programming Workflow) представляет методы, которые **не требуют дообучения или специального API** и могут быть полностью реализованы в стандартном чате с LLM.

Ключевые концепции, которые можно применить:

Двухфазный подход: Разделение работы на планирование решения и реализацию кода. Пользователь может явно запросить: "Сначала составь пошаговый план решения задачи" "Теперь проверь этот план на следующем тестовом примере..." "Теперь напиши код, основываясь на проверенном плане"

Верификация плана перед написанием кода:

Попросить LLM проверить план на конкретных примерах с пошаговым выполнением Запросить анализ промежуточных значений, чтобы убедиться в правильности логики

Структурированная отладка:

При ошибках в коде, попросить LLM сравнить фактическое выполнение с ожидаемым поведением из верифицированного плана Запросить анализ расхождений и предложения по исправлению

Объяснение кода:

Запрашивать подробные объяснения каждой строки кода для лучшего понимания Ожидаемые результаты от применения этих концепций: - Значительное повышение качества генерируемого кода - Меньшее количество итераций отладки - Лучшее понимание логики решения - Более точная локализация ошибок

Эти подходы особенно полезны для сложных задач программирования, но концепция "план \rightarrow верификация \rightarrow реализация \rightarrow отладка на основе плана" может быть адаптирована практически для любой сложной задачи, где важна точность выполнения.

Анализ практической применимости: 1. Двухфазный рабочий процесс для генерации кода - Прямая применимость: Высокая. Пользователи могут адаптировать этот подход в обычных чатах с LLM, сначала запрашивая план решения, затем его проверку на тестовых случаях, и только потом генерацию кода. - Концептуальная ценность: Очень высокая. Подход демонстрирует, что разбиение сложной задачи на этапы планирования и реализации значительно повышает качество результата. - Потенциал для адаптации: Высокий. Пользователи могут применять эту концепцию не только для программирования, но и для других задач, требующих пошагового планирования и проверки.

Верификация плана решения Прямая применимость: Высокая. Пользователи могут запрашивать LLM проверить предложенный план на конкретных примерах перед реализацией. Концептуальная ценность: Исключительная. Этот подход демонстрирует важность проверки логики решения до начала его реализации, что помогает избежать ошибок на ранних стадиях. Потенциал для адаптации: Высокий. Концепцию можно применять в различных областях, где требуется проверка логики рассуждений.

Пошаговая отладка на основе плана

Прямая применимость: Средняя. Требует структурированного подхода к отладке, но может быть реализована в стандартном чате. **Концептуальная ценность**: Высокая. Подход показывает, как можно эффективно использовать информацию о желаемом поведении для точной локализации ошибок. **Потенциал для адаптации**: Средний. Требует некоторых технических знаний для применения в других контекстах.

Автономная генерация информации для обратной связи

Прямая применимость: Высокая. Не требует дополнительных инструментов или обучения. **Концептуальная ценность**: Высокая. Демонстрирует, как можно использовать сами LLM для генерации вспомогательной информации. **Потенциал для адаптации**: Высокий. Подход можно применять в различных задачах, где требуется детальное объяснение или проверка.

Значительное улучшение точности генерации кода

Прямая применимость: Высокая. Подход непосредственно повышает качество генерируемого кода. **Концептуальная ценность**: Высокая. Показывает, насколько важен структурированный подход к сложным задачам. **Потенциал для адаптации**: Средний. Конкретные улучшения точности специфичны для программирования, но общий принцип применим шире.

Prompt:

Использование исследования LPW в промптах для GPT ## Ключевые идеи исследования для промптов

Исследование "Программирование, ориентированное на планирование" предлагает двухфазный подход к генерации кода с использованием LLM: 1. Фаза планирования - создание и верификация плана решения 2. Фаза реализации - написание кода на основе плана и его итеративное улучшение

Пример промпта на основе методологии LPW

[=====] # Задача программирования: [описание задачи]

Инструкции: Я хочу, чтобы ты решил эту задачу программирования, используя двухфазный подход:

ФАЗА 1: ПЛАНИРОВАНИЕ РЕШЕНИЯ 1. Проанализируй задачу и создай детальный план решения 2. Определи ключевые алгоритмы и структуры данных 3. Перечисли шаги с ожидаемыми промежуточными результатами 4. Верифицируй план на примерах из условия задачи, "пройдя" через него вручную

ФАЗА 2: РЕАЛИЗАЦИЯ КОДА 1. Напиши код на [язык программирования] в соответствии с планом 2. Добавь комментарии, объясняющие ключевые части кода 3. Проверь код на тестовых примерах 4. Если найдены ошибки, локализуй их точно и предложи исправления

Примеры для проверки: [Входные данные 1] -> [Ожидаемый результат 1] [Входные данные 2] -> [Ожидаемый результат 2] [=====]

Как работает этот подход

Улучшение понимания задачи: Заставляя модель сначала создать и верифицировать план, мы помогаем ей лучше понять суть проблемы до начала кодирования.

Локализация ошибок: Сравнивая ожидаемые промежуточные результаты из плана с фактическими результатами кода, модель может точнее определить источник ошибок.

Структурированное мышление: Двухфазный подход предотвращает "прыжки к решению" и заставляет модель мыслить более методично.

Эффективное использование токенов: Такой подход демонстрирует лучшее соотношение точности к затратам токенов, особенно для сложных задач.

Этот промпт можно адаптировать для различных сценариев программирования, от простых алгоритмических задач до сложных проектов разработки.