Cluster 2010 Presentation

Optimization Techniques at the I/O Forwarding Layer

Kazuki Ohta (presenter):

Preferred Infrastructure, Inc., University of Tokyo

Dries Kimpe, Jason Cope, Kamil Iskra, Robert Ross: Argonne National Laboratory

Yutaka Ishikawa: University of Tokyo

Contact: kazuki.ohta@gmail.com

Background: Compute and Storage Imbalance

- Leadership-class computational scale:
 - 100,000+ processes
 - Advanced Multi-core architectures, Compute node OSs
- Leadership-class storage scale:
 - 100+ servers
 - Commercial storage hardware, Cluster file system
- Current leadership-class machines supply only 1GB/s of storage throughput for every 10TF of compute performance. This gap grew factor of 10 in recent years.
- Bridging this imbalance between compute and storage is a critical problem for the large-scale computation.

Previous Studies: Current I/O Software Stack

Challenge: Millions of Concurrent Clients

- 1,000,000+ concurrent clients present a challenge to current I/O stack
 - e,g. metadata performance, locking, network incast problem, etc.
- I/O Forwarding Layer is introduced.
 - All I/O requests are delegated to dedicated I/O forwarder process.
 - I/O forwarder reduces the number of clients seen by the file system for all applications, without collective I/O.

I/O Software Stack with I/O Forwarding

Example I/O System: Blue Gene/P Architecture

I/O Forwarding Challenges

Large Requests

- Latency of the forwarding
- Memory limit of the I/O
- Variety of backend file system node performance
- Small Requests
 - Current I/O forwarding mechanism reduces the number of clients, but does not reduces the number of requests.
 - Request processing overheads at the file systems
- We proposed two optimization techniques for the I/O forwarding layer.
 - Out-Of-Order I/O Pipelining, for large requests.
 - I/O Request Scheduler, for small requests.

Out-Of-Order I/O Pipelining

- Split large I/O requests into small fixed-size chunks
- These chunks are forwarded in an out-of-order way.
- Good points
 - Reduce forwarding latency, by overlapping the I/O requests and the network transfer.
 - I/O sizes are not limited by the memory size at the forwarding node.
 - Little effect by the slowest file system node.

I/O Request Scheduler

- Scheduling and Merging the small requests at the forwarder
 - Reduce number of seeks
 - Reduce number of requests, the file systems actually sees
- Scheduling overhead must be minimum
 - Handle-Based Round-Robin algorithm for the fairness between files
 - Ranges are managed by Interval Tree
 - The contiguous requests are merged

I/O Forwarding and Scalability Layer (IOFSL)

- IOFSL Project [Nawab 2009]
 - Open-Source I/O Forwarding Implementation
 - http://www.iofsl.org/
- Portable on most HPC environment
 - Network Independent
 - All network communication is done by BMI [Carns 2005]
 - TCP/IP, Infiniband, Myrinet, Blue Gene/P Tree, Portals, etc.
 - File System Independent
 - MPI-IO (ROMIO) / FUSE Client

IOFSL Software Stack

- Out-Of-Order I/O Pipelining and the I/O request scheduler have been implemented in the IOFSL, and evaluated on two environments.
 - T2K Tokyo (Linux Cluster), and ANL Surveyor (Blue Gene/P)

Evaluation on T2K: Spec

- T2K Open Super Computer, Tokyo Sites
 - http://www.open-supercomputer.org/
 - 32 node Research Cluster
 - 16 cores: 2.3 GHz Quad-Core Opteron*4
 - 32GB Memory
 - 10Gbps Myrinet Network
 - SATA Disk (Read: 49.52 MB/sec, Write 39.76 MB/sec)
- One IOFSL, Four PVFS2, 128 MPI Processes
- Software
 - MPICH2 1.1.1p1
 - PVFS2 CVS (almost 2.8.2)

Evaluation on T2K: IOR Benchmark

- Each process issues the same amount of I/O
- Gradually increasing the message size, and see the bandwidth change
 - Note: modified to do fsync() for MPI-IO

Evaluation on T2K: IOR Benchmark, 128procs

Evaluation on T2K: IOR Benchmark, 128procs

Evaluation on T2K: IOR Benchmark, 128procs

Evaluation on Blue Gene/P: Spec

- Argonne National Laboratory BG/P "Surveyor"
 - Blue Gene/P platform for research and development
 - 1024 nodes, 4096-core
 - Four PVFS2 servers
 - DataDirect Networks S2A9550 SAN
- 256 compute nodes, with 4 I/O nodes were used.

Node Card: 4 core

Node Board: 128 core

Rack: 4096 core

Evaluation on BG/P: BMI PingPong

Evaluation on BG/P: IOR Benchmark, 256nodes

Evaluation on BG/P: IOR Benchmark, 256nodes

Evaluation on BG/P: IOR Benchmark, 256nodes

Evaluation on BG/P: Thread Count Effect

Evaluation on BG/P: Thread Count Effect

Related Work

- Computational Plant Project @ Sandia National Laboratory
 - First introduced I/O Forwarding Layer
- IBM Blue Gene/L, Blue Gene/P
 - All I/O requests are forwarded to I/O nodes
 - Compute OS can be stripped down to minimum functionality, and reduces the OS noise
 - ZOID: I/O Forwarding Project [Kamil 2008]
 - Only on Blue Gene
- Lustre Network Request Scheduler (NRS) [Qian 2009]
 - Request scheduler at the parallel file system nodes
 - Only simulation results

Future Work

- Event-driven server architecture
 - reduced thread contension
- Collaborative Caching at the I/O forwarding layer
 - multiple I/O forwarder works collaboratively for caching data and also metadata
- Hints from MPI-IO
 - Better cooperation with collective I/O
- Evaluation on other leadership scale machines
 - ORNL Jaguar, Cray XT4, XT5 systems

Conclusions

- Implementation and evaluation of two optimization techniques at the I/O Forwarding Layer
 - <u>I/O pipelining</u> that overlaps the file system requests and the network communication.
 - <u>I/O scheduler</u> that reduces the number of independent, non-contiguous file systems accesses.
- Demonstrating portable I/O forwarding layer, and performance comparison with existing HPC I/O software stack.
 - Two Environments
 - T2K Tokyo Linux cluster
 - ANL Blue Gene/P Surveyor
 - First I/O forwarding evaluations on linux cluster and Blue Gene/P
 - First comparison between BG/P IBM stack with OSS stack

Thanks!

Kazuki Ohta (presenter):

Preferred Infrastructure, Inc., University of Tokyo

Dries Kimpe, Jason Cope, Kamil Iskra, Robert Ross: Argonne National Laboratory

Yutaka Ishikawa: University of Tokyo

Contact: <u>kazuki.ohta@gmail.com</u>