Problem Set 9 (Answer Key)

Problem 1

We want to compute the Average Treatment Effect for a bunch of different subgroups.

```
Call:
lm(formula = response ~ cond, data = filter(d, cond %in% c(0,
    1), male == 1))
Coefficients:
(Intercept)
                    cond
      36.04
                    9.61
  # women
  lm(response ~ cond,
     data = d > filter(cond \%in\% c(0,1),
                        male == 0))
Call:
lm(formula = response ~ cond, data = filter(d, cond %in% c(0,
    1), male == 0))
Coefficients:
(Intercept)
                    cond
      43.25
                   12.44
  # public institutions
  lm(response ~ cond,
     data = d \gg filter(cond \%in\% c(0,1),
                         public == 1))
Call:
lm(formula = response ~ cond, data = filter(d, cond %in% c(0,
    1), public == 1))
Coefficients:
(Intercept)
                   cond
     41.531
                   9.566
  # understood what the experimenter was asking
  lm(response ~ cond,
     data = d |> filter(cond %in% c(0,1),
```

```
understood_situation >= 3))
```

```
Call:
lm(formula = response ~ cond, data = filter(d, cond %in% c(0,
    1), understood_situation >= 3))
Coefficients:
(Intercept)
                   cond
     39.30
                 10.71
  lm(response ~ cond,
     data = d |> filter(cond %in% c(0,1),
                        understood_situation == 6))
Call:
lm(formula = response ~ cond, data = filter(d, cond %in% c(0,
    1), understood_situation == 6))
Coefficients:
(Intercept)
                   cond
     41.92
                   11.32
```

Problem 2

We want to estimate the incumbency advantage/disadvantage in all the non-Brazil countries in the Klasnja & Titiunik dataset.

Sharp RD estimates using local polynomial regression.

Number of Obs.	775				
BW type	mserd				
Kernel	Triangular				
VCE method	NN				
Number of Obs.	567	208			
Eff. Number of Obs.	144	107			
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	6.953	6.953			
BW bias (b)	11.789	11.789			
rho (h/b)	0.590	0.590			
Unique Obs.	567	199			

===========			=======	=======	=======================================
Method	Coef. St	td. Err.	z	P> z	[95% C.I.]
Conventional Robust	-0.028 -	0.081 -	-0.338 -0.046	0.735 0.963	[-0.187 , 0.132] [-0.187 , 0.179]

You can do that for all of the countries to get the incumbency advantage estimates.