Topologia

27.03.2020

Zad 2/ lista 2

(a)

Rozpatrzmy nierówności: $|y|<\frac{1}{2}|x| \ |x|<\frac{1}{2}|y|$. Zauważmy, że każda z tych nierówności opisuje zbiór należący do \mathcal{T} . Nazwijmy zbiór rozwiązań pierwszej nierówności jako A, a drugiej jako B. Zauważmy, że zbiór $X=A\cup B\cup \{(0,0)\}\in \mathcal{T}$: Jeśli $(0,0)\in L$, to $X\cap L=L$, co jest zbiorem otwartym na L, jeśli natomiast $(0,0)\not\in L$, to $L\cap X$ jest sumą zbiorów $L\cap A$ i $L\cap B$, które są otwarte, zatem jest zbiorem otwartym. X natomiast nie jest otwarty w \mathbb{R}^2 - rozpatrzmy kulę o środku w (0,0) $((0,0)\in X)$ i promieniu $\delta>0$. Wówczas $B((0,0),\delta)\cap(\mathbb{R}^2\backslash X)\neq\emptyset$, więc X nie jest otwarty w \mathbb{R}^2 .

(b)

 \mathcal{T} jest topologia

- (i) $\emptyset \in \mathcal{T}$ i $\mathbb{R}^2 \in \mathcal{T}$. Istotnie dla dowolnej prostej L zachodzi: $\emptyset \cap L = \emptyset$ oraz $\mathbb{R}^2 \cap L = L$, a zarówno \emptyset jak i L są otwarte ze względu na metrykę euklidesową w L. Zatem
- (ii) Jeśli $A \in \mathcal{T}$ oraz $B \in \mathcal{T}$, to $A \cap B \in \mathcal{T}$. Niech L będzie prostą równoległą do osi x lub równoległą do osi y. Wówczas $L \cap (A \cap B) = (L \cap A) \cap (L \cap B)$, zatem jest przekrojem dwóch zbiorów otwartych ze względu na metrykę euklidesową w L, więc jest zbiorem otwartym ze względu na metrykę euklidesową w L. W związku z tym $A \cap B \in \mathcal{T}$.
- (iii) Jeśli $\mathcal{A}\subseteq\mathcal{T}$ jest rodziną zbiorów otwartych, to $\bigcup_{A\in\mathcal{A}}A\in\mathcal{T}$ Niech L będzie prostą równoległą do osi x lub równoległą do osi y. Wówczas

$$L\cap\bigcup_{A\in\mathcal{A}}A=\bigcup_{A\in\mathcal{A}}L\cap A$$

Zatem jest sumą zbiorów otwartych ze względu na metrykę euklidesową w L, więc jest zbiorem otwartym ze względu na metrykę euklidesową w L. W związku z tym $\bigcup_{A\in\mathcal{A}}A\in\mathcal{T}$.

(iv) $(\mathbb{R}^2, \mathcal{T})$ jest przestrzenią Hausdorffa

Zauważmy, że dla dowolnej prostej L oraz dowolnej kuli B_E z przestrzeni euklidesowej $B_E \cap L$ jest zbiorem otwartym ze względu na metrykę euklidesową w L, zatem $B_E \in \mathcal{T}$. Weźmy dowolne 2 punkty $x,y \in \mathbb{R}^2$. Niech d_E będzie euklidesową odległością pomiędzy punktami x i y. Wówczas kule $B_E(x,\frac{d_E}{2})$ i $B_E(y,\frac{d_E}{2})$ są rozłączne i zawerają odpowiednio x oraz y, więc $(\mathbb{R}^2,\mathcal{T})$ jest przestrzenią Hausdorffa.

(c)

- 1. Jeżeli dla pewnego r > 0, $C \setminus B(0, r)$ jest nieskończony, to weźmy U = B(0, r).
- 2. W przeciwnym wypadku, weźmy $U = B(0,1) \setminus C$.

Zad 3/ lista 2

Chcemy pokazać ciągłość w x_0 . Niech $\delta > 0$ i niech $x \in X$ będzie taki, że $\rho(x,x_0) < \delta$. Niech $a \in A$. Z nierówności trójkąta $\rho(x,a) \leq \rho(x,x_0) + \rho(x_0,a)$ oraz $\rho(x_0,a) \leq \rho(x,x_0) + \rho(x,a)$.

Zatem jeśli a jest takie, że $\rho(x_0, a) < \rho(x_0, A) + \delta$ to $\rho(x, A) \leqslant \rho(x, a) \leqslant \rho(x, x_0) + \rho(x_0, a) < 2\delta + \rho(x_0, A)$, czyli $\rho(x, A) \leqslant 2\delta + \rho(x_0, A)$. Zatem $\lim_{x \to x_0} \rho(x, A) \leqslant \rho(x_0, A)$.

Podobnie, jeśli a jest takie, że $\rho(x,a) < \rho(x,A) + \delta$ to $\rho(x_0,A) \leqslant \rho(x_0,a) \leqslant \rho(x,x_0) + \rho(x,a) < 2\delta + \rho(x,A)$, czyli $\rho(x_0,A) \leqslant 2\delta + \rho(x,A)$. Zatem $\rho(x_0,A) \leqslant \lim_{x \to x_0} \rho(x,A)$.

Aby uzasadnić, że $x \in \overline{A}$ iff $\rho(x, A) = 0$ możemy skorzystać z faktu, że $x \in \overline{A}$ iff istnieje ciąg (x_n) elementów z A taki, że $\lim x_n = x$.

2/4

Weźmy $Y\subseteq X$ nieskończony oraz $x\not\in Y$. Niech $U\in \mathcal{T}$ to otoczenie x. Skoro dopełnienie U jest skończone, to $U\cap Y\neq\emptyset$. Stąd każdy $x\in X$ należy do \overline{Y} , czyli $\overline{Y}=X$.

2/6

Mamy $A \cap B = \emptyset$, $A \in \mathcal{T}$. Załóżmy nie wprost, że $x \in \text{Int}(\overline{B}) \cap \overline{A}$. Istnieje otoczenie $x \in U_x \subseteq \overline{B}$. Istnieje $y \in U_x \cap A$ t. że $y \in \overline{B}$. Istnieje otoczenie $U_y \subseteq A$ (ponieważ A jest otwarty). Zatem istnieje $z \in U_y \cap B$, czyli $z \in A \cap B$. Sprzeczność.

2/7

f(x) = (0, x)