# Hands-On

Davide Cozzi, Fabio Pirovano, Viola Rillosi, Giulia Sala20/04/2022

## Modello 1

$$\mathcal{S} = \{A, R_A, P_A\}$$

### Dove:

• A: gene A

•  $R_A$ : mRNA per A

•  $P_A$ : proteina A

| #     | Reagenti | Prodotti    | Costanti |
|-------|----------|-------------|----------|
| $r_1$ | A        | $A + R_A$   | -        |
| $r_2$ | $R_A$    | $R_A + P_A$ | -        |
| $r_3$ | $R_A$    | Ø           | -        |
| $r_4$ | $P_A$    | Ø           | -        |

## Modello 2

$$S = \{A, R_A, P_A, B, R_B, P_B, A \cdot P_B, B \cdot P_A\}$$

Dove:

• A: gene A

•  $R_A$ : mRNA per A

•  $P_A$ : proteina A

• B: gene B

•  $R_B$ : mRNA per B

•  $P_B$ : proteina B

-  $A \cdot P_B$ : composto di A e  $P_B$ 

•  $B \cdot P_A$ : composto di B e  $P_A$ 

| #        | Reagenti      | Prodotti            | Costanti |
|----------|---------------|---------------------|----------|
| $r_1$    | A             | $A + R_A$           | -        |
| $r_2$    | B             | $B + R_B$           | $k_1$    |
| $r_3$    | $R_A$         | $R_A + P_A$         | -        |
| $r_4$    | $R_B$         | $R_B + P_B$         | -        |
| $r_5$    | $A + P_B$     | $A \cdot P_B$       | -        |
| $r_6$    | $B + P_A$     | $B \cdot P_A$       | -        |
| $r_7$    | $B \cdot P_A$ | $R_B + B \cdot P_A$ | $k_2$    |
| $r_8$    | $A \cdot P_B$ | $A + P_B$           | -        |
| $r_9$    | $B \cdot P_A$ | $B + P_A$           | -        |
| $r_{10}$ | $R_A$         | Ø                   | -        |
| $r_{11}$ | $R_B$         | Ø                   | -        |
| $r_{12}$ | $P_A$         | Ø                   | -        |
| $r_{13}$ | $P_B$         | Ø                   | -        |

### ${\bf Assunzioni:}$

•  $k_2 > k_1$ 

### Modello 3

 $S = \{A, R_A, P_A, B, R_B, P_B, C, R_C, P_C, A \cdot P_B, B \cdot P_A, P_B^P, C \cdot P_B^P, C \cdot 2P_B^P, K, F\}$ Dove:

• A: gene A

•  $R_A$ : mRNA per A

•  $P_A$ : proteina A

• B: gene B

•  $R_B$ : mRNA per B

•  $P_B$ : proteina B

• C: gene C

•  $R_C$ : mRNA per C

•  $P_C$ : proteina C

•  $A \cdot P_B$ : composto di A e  $P_B$ 

•  $B \cdot P_A$ : composto di  $B \in P_A$ 

•  $P_B^P$ :  $P_B$  fosforilata

-  $C \cdot P_B^P$ : composto di C e  $P_B^P$ 

•  $C \cdot 2P_B^P$ : composto di  $C \cdot P_B^P$  e  $P_B^P$ 

• K: chinasi

• F: fosfatasi

| #                | Reagenti                         | Prodotti                                                | Costanti |
|------------------|----------------------------------|---------------------------------------------------------|----------|
| $\overline{r_1}$ | A                                | $A + R_A$                                               | -        |
| $r_2$            | B                                | $B + R_B$                                               | $k_1$    |
| $r_3$            | C                                | $C + R_C$                                               | $k_2$    |
| $r_4$            | $R_A$                            | $R_A + P_A$                                             | -        |
| $r_5$            | $R_B$                            | $R_B + P_B$                                             | -        |
| $r_6$            | $R_C$                            | $R_C + P_C$                                             | -        |
| $r_7$            | $A + P_B$                        | $A \cdot P_B$                                           | -        |
| $r_8$            | $B + P_A$                        | $B \cdot P_A$                                           | -        |
| $r_9$            | $B \cdot P_A$                    | $R_B + B \cdot P_A$                                     | $k_3$    |
| $r_{10}$         | $P_{\underline{B}} + K$          | $P_B^P + K$                                             | -        |
| $r_{11}$         | $P_B^P + C$                      | $C \cdot P_B^P$                                         | -        |
| $r_{12}$         | $C \cdot P_B^P$                  | $R_C + C \cdot P_B^P$                                   | $k_4$    |
| $r_{13}$         | $C \cdot P_B^P + P_B^P$          | $C \cdot 2P_B^P$                                        | -        |
| $r_{14}$         | $C \cdot 2P_B^P$ $C \cdot P_B^P$ | $C \cdot P_{\underline{B}}^{P} + P_{\underline{B}}^{P}$ | -        |
| $r_{15}$         |                                  | $P_B^P + C$                                             | -        |
| $r_{16}$         | $P_B^P + F$                      | $P_B + F$                                               | -        |
| $r_{17}$         | $A \cdot P_B$                    | $A + P_B$                                               | -        |
| $r_{18}$         | $B \cdot P_A$                    | $B+P_A$                                                 | -        |
| $r_{19}$         | $R_A$                            | Ø                                                       | -        |
| $r_{20}$         | $R_B$                            | Ø                                                       | -        |
| $r_{21}$         | $R_C$                            | Ø                                                       | -        |
| $r_{22}$         | $P_A$                            | Ø                                                       | -        |
| $r_{23}$         | $P_B$                            | Ø                                                       | -        |
| $r_{24}$         | $P_C$                            | Ø                                                       | -        |

#### Assunzioni:

- $k_3 > k_1$
- $k_4 < k_2$

Equazioni differenziali ottenute con COPASI (con i reaction rate "a caso" con il solo mantenimento "a spanne" delle due assunzioni):



Figura 1: Modello3 rappresentato graficamente con COPASI