

Content Based Filtering

Estimated time needed: 25 minutes

Objectives

After completing this lab you will be able to:

• Create a recommendation system using collaborative filtering

Recommendation systems are a collection of algorithms used to recommend items to users based on information taken from the user. These systems have become ubiquitous, and can be commonly seen in online stores, movies databases and job finders. In this notebook, we will explore Content-based recommendation systems and implement a simple version of one using Python and the Pandas library.

Table of contents

- 1. Acquiring the Data
- 2. Preprocessing
- 3. Content-Based Filtering

Acquiring the Data

To acquire and extract the data, simply run the following Bash scripts:\ Dataset acquired from GroupLens. Let's download the dataset. To download the data, we will use !wget to download it from IBM Object Storage.\ Did you know? When it comes to Machine Learning, you will likely be working with large datasets. As a business, where can you host your data? IBM is offering a unique opportunity for businesses, with 10 Tb of IBM Cloud Object Storage: Sign up now for free

```
In [1]:
         !wget -O moviedataset.zip https://cf-courses-data.s3.us.cloud-object-storage.appdoma
         print('unziping ...')
         !unzip -o -j moviedataset.zip
        --2021-11-07 02:56:22-- https://cf-courses-data.s3.us.cloud-object-storage.appdomai
        n.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/Module%205/data/movied
        ataset.zip
        Resolving cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses-dat
        a.s3.us.cloud-object-storage.appdomain.cloud)... 198.23.119.245
        Connecting to cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses
        -data.s3.us.cloud-object-storage.appdomain.cloud)|198.23.119.245|:443... connected.
        HTTP request sent, awaiting response... 200 OK
        Length: 160301210 (153M) [application/zip]
        Saving to: 'moviedataset.zip'
        moviedataset.zip
                            100%[=========>] 152.88M 28.5MB/s in 5.4s
        2021-11-07 02:56:28 (28.5 MB/s) - 'moviedataset.zip' saved [160301210/160301210]
        unziping ...
        Archive: moviedataset.zip
          inflating: links.csv
          inflating: movies.csv
          inflating: ratings.csv
          inflating: README.txt
          inflating: tags.csv
```

Now you're ready to start working with the data!

Preprocessing

First, let's get all of the imports out of the way:

```
In [2]: #Dataframe manipulation library
   import pandas as pd
   #Math functions, we'll only need the sqrt function so let's import only that
   from math import sqrt
   import numpy as np
   import matplotlib.pyplot as plt
   %matplotlib inline
```

Now let's read each file into their Dataframes:

```
#Storing the movie information into a pandas dataframe
movies_df = pd.read_csv('movies.csv')
#Storing the user information into a pandas dataframe
ratings_df = pd.read_csv('ratings.csv')
#Head is a function that gets the first N rows of a dataframe. N's default is 5.
movies_df.head()
```

Out[3]:		movield	title	genre		
	0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy		
	1	2	Jumanji (1995)	Adventure Children Fantasy		
	2	3	Grumpier Old Men (1995)	Comedy Romance		
	3	4	Waiting to Exhale (1995)	Comedy Drama Romance		
	4	5	Father of the Bride Part II (1995)	Comedy		

Let's also remove the year from the **title** column by using pandas' replace function and store in a new **year** column.

<ipython-input-4-2517c676119f>:7: FutureWarning: The default value of regex will cha
nge from True to False in a future version.

movies_df['title'] = movies_df.title.str.replace('(\(\d\d\d\d\))', '')

```
Out[4]:
             movield
                                          title
                                                                                    genres year
          0
                    1
                                      Toy Story Adventure | Animation | Children | Comedy | Fantasy 1995
          1
                    2
                                       Jumanji
                                                                  Adventure|Children|Fantasy 1995
          2
                    3
                             Grumpier Old Men
                                                                           Comedy|Romance 1995
                                                                    Comedy|Drama|Romance 1995
          3
                    4
                              Waiting to Exhale
                    5 Father of the Bride Part II
                                                                                   Comedy 1995
```

With that, let's also split the values in the **Genres** column into a **list of Genres** to simplify for future use. This can be achieved by applying Python's split string function on the correct column.

```
movies_df['genres'] = movies_df.genres.str.split('|')
movies_df.head()
```

		title	[5]: movield	0+[[].
year	genres	title	movieia	Out[5]:
1995	[Adventure, Animation, Children, Comedy, Fantasy]	Toy Story	0 1	
1995	[Adventure, Children, Fantasy]	Jumanji	1 2	
1995	[Comedy, Romance]	Grumpier Old Men	2 3	
1995	[Comedy, Drama, Romance]	Waiting to Exhale	3 4	
1995	[Comedy]	Father of the Bride Part II	4 5	

Since keeping genres in a list format isn't optimal for the content-based recommendation system technique, we will use the One Hot Encoding technique to convert the list of genres to a vector where each column corresponds to one possible value of the feature. This encoding is needed for feeding categorical data. In this case, we store every different genre in columns that contain either 1 or 0. 1 shows that a movie has that genre and 0 shows that it doesn't. Let's also store this dataframe in another variable since genres won't be important for our first recommendation system.

ο.	. 4-	$\Gamma \subset \Gamma$	1.
Uι	ı.	10	Li

•	movield	title	genres	year	Adventure	Animation	Children	Comedy	Fantasy	Romai
0	1	Toy Story	[Adventure, Animation, Children, Comedy, Fantasy]	1995	1.0	1.0	1.0	1.0	1.0	
1	2	Jumanji	[Adventure, Children, Fantasy]	1995	1.0	0.0	1.0	0.0	1.0	
2	3	Grumpier Old Men	[Comedy, Romance]	1995	0.0	0.0	0.0	1.0	0.0	
3	4	Waiting to Exhale	[Comedy, Drama, Romance]	1995	0.0	0.0	0.0	1.0	0.0	

	movield	title	genres	year	Adventure	Animation	Children	Comedy	Fantasy	Romai
4	5	Father of the Bride Part II	[Comedy]	1995	0.0	0.0	0.0	1.0	0.0	
5 r	ows × 24	columns								
4										•

Next, let's look at the ratings dataframe.

```
In [7]: ratings_df.head()
```

Out[7]:		userId	movield	rating	timestamp
	0	1	169	2.5	1204927694
	1	1	2471	3.0	1204927438
	2	1	48516	5.0	1204927435
	3	2	2571	3.5	1436165433
	4	2	109487	4.0	1436165496

Every row in the ratings dataframe has a user id associated with at least one movie, a rating and a timestamp showing when they reviewed it. We won't be needing the timestamp column, so let's drop it to save memory.

```
In [8]:
#Drop removes a specified row or column from a dataframe
ratings_df = ratings_df.drop('timestamp', 1)
ratings_df.head()
```

		1011163_	ar •neau(. /
Out[8]:		userId	movield	rating
O)	1	169	2.5
1	1	1	2471	3.0
2	2	1	48516	5.0
3	3	2	2571	3.5
4	4	2	109487	4.0

Content-Based recommendation system

Now, let's take a look at how to implement **Content-Based** or **Item-Item recommendation systems**. This technique attempts to figure out what a user's favourite aspects of an item is,

and then recommends items that present those aspects. In our case, we're going to try to figure out the input's favorite genres from the movies and ratings given.

Let's begin by creating an input user to recommend movies to:

Notice: To add more movies, simply increase the amount of elements in the **userInput**. Feel free to add more in! Just be sure to write it in with capital letters and if a movie starts with a "The", like "The Matrix" then write it in like this: 'Matrix, The'.

Out[9]:		title	rating
	0	Breakfast Club, The	5.0
	1	Toy Story	3.5
	2	Jumanji	2.0
	3	Pulp Fiction	5.0
	4	Akira	4.5

Add movield to input user

With the input complete, let's extract the input movie's ID's from the movies dataframe and add them into it.

We can achieve this by first filtering out the rows that contain the input movie's title and then merging this subset with the input dataframe. We also drop unnecessary columns for the input to save memory space.

```
In [10]: #Filtering out the movies by title
    inputId = movies_df[movies_df['title'].isin(inputMovies['title'].tolist())]
    #Then merging it so we can get the movieId. It's implicitly merging it by title.
    inputMovies = pd.merge(inputId, inputMovies)
    #Dropping information we won't use from the input dataframe
    inputMovies = inputMovies.drop('genres', 1).drop('year', 1)
    #Final input dataframe
    #If a movie you added in above isn't here, then it might not be in the original
    #dataframe or it might spelled differently, please check capitalisation.
    inputMovies
```

	movield	title	rating
0	1	Toy Story	3.5
1	2	Jumanji	2.0
2	296	Pulp Fiction	5.0
3	1274	Akira	4.5
4	1968	Breakfast Club, The	5.0

We're going to start by learning the input's preferences, so let's get the subset of movies that the input has watched from the Dataframe containing genres defined with binary values.

In [11]:

#Filtering out the movies from the input
userMovies = moviesWithGenres_df[moviesWithGenres_df['movieId'].isin(inputMovies['moviesMovies]).isin(inputMovies['moviesMovies['moviesMovies]).isin(inputMovies['moviesMovies['moviesMovies]).isin(inputMovies['moviesMovies['moviesMovies['movi

Out[11]:

	movield	title	genres	year	Adventure	Animation	Children	Comedy	Fantasy	Ro
0	1	Toy Story	[Adventure, Animation, Children, Comedy, Fantasy]	1995	1.0	1.0	1.0	1.0	1.0	
1	2	Jumanji	[Adventure, Children, Fantasy]	1995	1.0	0.0	1.0	0.0	1.0	
293	296	Pulp Fiction	[Comedy, Crime, Drama, Thriller]	1994	0.0	0.0	0.0	1.0	0.0	
1246	1274	Akira	[Action, Adventure, Animation, Sci-Fi]	1988	1.0	1.0	0.0	0.0	0.0	
1885	1968	Breakfast Club, The	[Comedy, Drama]	1985	0.0	0.0	0.0	1.0	0.0	

5 rows × 24 columns

4

We'll only need the actual genre table, so let's clean this up a bit by resetting the index and dropping the movield, title, genres and year columns.

In [12]:

```
#Resetting the index to avoid future issues
userMovies = userMovies.reset_index(drop=True)
#Dropping unnecessary issues due to save memory and to avoid issues
```

```
userGenreTable = userMovies.drop('movieId', 1).drop('title', 1).drop('genres', 1).dr
userGenreTable
```

Out[12]:

	Adventure	Animation	Children	Comedy	Fantasy	Romance	Drama	Action	Crime	Thriller	ŀ
0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	
1	1.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	
2	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	1.0	
3	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	
4	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	
4											•

Now we're ready to start learning the input's preferences!

To do this, we're going to turn each genre into weights. We can do this by using the input's reviews and multiplying them into the input's genre table and then summing up the resulting table by column. This operation is actually a dot product between a matrix and a vector, so we can simply accomplish by calling the Pandas "dot" function.

```
In [13]:
          inputMovies['rating']
               3.5
Out[13]:
         1
               2.0
         2
               5.0
         3
              4.5
               5.0
         Name: rating, dtype: float64
In [14]:
          #Dot produt to get weights
          userProfile = userGenreTable.transpose().dot(inputMovies['rating'])
          #The user profile
          userProfile
         Adventure
                                 10.0
Out[14]:
         Animation
                                 8.0
         Children
                                 5.5
         Comedy
                                 13.5
                                 5.5
         Fantasy
         Romance
                                 0.0
         Drama
                                 10.0
         Action
                                 4.5
                                 5.0
         Crime
         Thriller
                                 5.0
         Horror
                                 0.0
         Mystery
                                 0.0
         Sci-Fi
                                 4.5
         IMAX
                                 0.0
         Documentary
                                 0.0
         War
                                 0.0
         Musical
                                 0.0
```

```
Western 0.0 Film-Noir 0.0 (no genres listed) 0.0 dtype: float64
```

Now, we have the weights for every of the user's preferences. This is known as the User Profile. Using this, we can recommend movies that satisfy the user's preferences.

Let's start by extracting the genre table from the original dataframe:

```
In [15]:
#Now let's get the genres of every movie in our original dataframe
genreTable = moviesWithGenres_df.set_index(moviesWithGenres_df['movieId'])
#And drop the unnecessary information
genreTable = genreTable.drop('movieId', 1).drop('title', 1).drop('genres', 1).drop('genreTable.head()
```

Out[15]:

Adventure	Animation	Children	Comedy	Fantasy	Romance	Drama	Action	Crime	Thr

movield										
1	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
2	1.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	
3	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	
4	0.0	0.0	0.0	1.0	0.0	1.0	1.0	0.0	0.0	
5	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	

```
In [16]: genreTable.shape
```

Out[16]: (34208, 20)

With the input's profile and the complete list of movies and their genres in hand, we're going to take the weighted average of every movie based on the input profile and recommend the top twenty movies that most satisfy it.

```
In [17]:
          #Multiply the genres by the weights and then take the weighted average
          recommendationTable_df = ((genreTable*userProfile).sum(axis=1))/(userProfile.sum())
          recommendationTable df.head()
         movieId
Out[17]:
              0.594406
         1
         2
              0.293706
         3
              0.188811
         4
              0.328671
         5
              0.188811
         dtype: float64
```

In [18]: #Sort our recommendations in descending order

recommendationTable_df = recommendationTable_df.sort_values(ascending=False)
#Just a peek at the values
recommendationTable_df.head()

Out[18]: movieId

5018 0.748252 26093 0.734266 27344 0.720280 148775 0.685315 6902 0.678322 dtype: float64

Now here's the recommendation table!

In [19]:

#The final recommendation table
movies_df.loc[movies_df['movieId'].isin(recommendationTable_df.head(20).keys())]

Out[19]:	movield		title	genres	year
	664 673		Space Jam	[Adventure, Animation, Children, Comedy, Fanta	1996
	1824	1907	Mulan	[Adventure, Animation, Children, Comedy, Drama	1998
	2902	2987	Who Framed Roger Rabbit?	[Adventure, Animation, Children, Comedy, Crime	1988
	4923	5018	Motorama	[Adventure, Comedy, Crime, Drama, Fantasy, Mys	1991
	6793	6902	Interstate 60	[Adventure, Comedy, Drama, Fantasy, Mystery, S	2002
	8605	26093	Wonderful World of the Brothers Grimm, The	[Adventure, Animation, Children, Comedy, Drama	1962
	8783	26340	Twelve Tasks of Asterix, The (Les douze travau	[Action, Adventure, Animation, Children, Comed	1976
	9296	27344	Revolutionary Girl Utena: Adolescence of Utena	[Action, Adventure, Animation, Comedy, Drama,	1999
	9825	32031	Robots	[Adventure, Animation, Children, Comedy, Fanta	2005
	11716	51632	Atlantis: Milo's Return	[Action, Adventure, Animation, Children, Comed	2003
	11751	51939	TMNT (Teenage Mutant Ninja Turtles)	[Action, Adventure, Animation, Children, Comed	2007
	13250	64645	The Wrecking Crew	[Action, Adventure, Comedy, Crime, Drama, Thri	1968
	16055	81132	Rubber	[Action, Adventure, Comedy, Crime, Drama, Film	2010
	18312	91335	Gruffalo, The	[Adventure, Animation, Children, Comedy, Drama]	2009

year	genres	title	movield	
2012	[Adventure, Animation, Children, Comedy, Drama	Ernest & Célestine (Ernest et Célestine)	108540	22778
2014	[Action, Adventure, Animation, Children, Comed	The Lego Movie	108932	22881
2000	[Action, Adventure, Comedy, Drama, Fantasy, Th	Dragonheart 2: A New Beginning	117646	25218
1959	[Action, Adventure, Comedy, Crime, Drama, Thri	The 39 Steps	122787	26442
2000	[Animation, Children, Comedy, Drama, Fantasy,	Princes and Princesses	146305	32854
2009	[Adventure, Children, Comedy, Drama, Fantasy,	Wizards of Waverly Place: The Movie	148775	33509

Advantages and Disadvantages of Content-Based Filtering

Advantages

- Learns user's preferences
- Highly personalized for the user

Disadvantages

- Doesn't take into account what others think of the item, so low quality item recommendations might happen
- Extracting data is not always intuitive
- Determining what characteristics of the item the user dislikes or likes is not always obvious

Want to learn more?

IBM SPSS Modeler is a comprehensive analytics platform that has many machine learning algorithms. It has been designed to bring predictive intelligence to decisions made by individuals, by groups, by systems – by your enterprise as a whole. A free trial is available through this course, available here: SPSS Modeler

Also, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache Spark and popular libraries pre-packaged in the cloud, Watson Studio enables data scientists to collaborate on their projects without having to install anything. Join the fast-growing community of Watson Studio users today with a free account at Watson Studio

Thank you for completing this lab!

Author

Saeed Aghabozorgi

Other Contributors

Joseph Santarcangelo

Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2020-11-03	2.1	Lakshmi	Updated URL of csv
2020-08-27	2.0	Lavanya	Moved lab to course repo in GitLab

© IBM Corporation 2020. All rights reserved.