A.A. 2021-2022

Elementi di Elettronica (INF) Prof. Paolo Crippa

Circuiti Logici a MOSFET

Logica Random nMOS

Logica Random CMOS

Strutture Complesse nMOS

$$f = \overline{(u+v+z)\cdot y + x}$$

Pseudo nMOS

$$f = \overline{A \cdot B + C \cdot (D + E)}$$

Strutture Complesse CMOS

Strutture Complesse CMOS

Elementi di Elettronica (INF) A.A. 2021-22

Elementi di Elettronica (INF) A.A. 2021-22

Pass Transistor nMOS

$$V_{L} = 0 V$$
$$V_{H} = 5 V$$

$$V_{TH} = 0.7 V$$

$$v_{I} \circ \longrightarrow \stackrel{V_{G}}{\longrightarrow} M_{1} C \stackrel{+}{\longrightarrow} v_{O}$$

Pass-Transistor nMOS

Caso A)

$$V_{TH} = 0.7 V$$

$$\mathbf{v}_{\mathbf{G}} = \mathbf{V}_{\mathbf{H}} = 5 \, \mathbf{V}$$

$$v_{IN} = V_{L} = 0 V$$

$$v_{O}(0) = V_{L} = 0 V$$

$$+ 5 V$$

$$\downarrow$$

$$V_{DS}$$

$$+ V_{O}(0) = 0$$

$$v_{DS} = 0$$
 , $v_{GS} > v_{TH}$, $M_1 = ON$

$$V_{O}(t=\infty) = V_{L} = 0 V$$

Pass-Transistor nMOS

$$V_{TH} = 0.7 \text{ V}$$

$$V_{IN} = V_{H} = 5 \text{ V}$$

$$V_{O}(0) = V_{L} = 0 \text{ V}$$

$$+ 5 \text{ V}$$

2)
$$v_{DS}(0) = V_{H} > v_{GS} - V_{TH} = V_{H} - V_{TH}$$
 M₁ in saturazione

$$I_D = \frac{\beta}{2} \cdot (v_{GS} - V_{TH})^2 \rightarrow C \text{ si carica}, C \text{ smette di caricarsi quando } I_D = 0$$

$$\Rightarrow v_G - v_{OM} - V_{TH} = 0 \Rightarrow v_{OM} = v_G - V_{TH} = 5 - V_{TH}$$
 Valore massimo di v_O

$$v_{O}(t = \infty) = V_{H} - V_{TH} = 5 \text{ V} - 0.7 \text{ V} = 4.3 \text{ V}$$

 $V_{TH} = 0.7 V$

$$v_{IN} = V_{L} = 0 V$$

$$v_{O}(0) = V_{H} = 5 V$$

C si scarica attraverso M₁

Inizialmente con $v_O \ge v_{GS} - V_{TH}$ M_1 è in saturazione

$$I_{D} = \frac{\beta}{2} \cdot \left(v_{GS} - V_{TH}\right)^{2} = -C \cdot \frac{dv_{O}}{dt}$$

poi con $V_O \le V_{GS} - V_{TH}$ M_1 è in triodo

$$I_{D} = \beta \cdot \left[\left(v_{GS} - V_{TH} \right) \cdot v_{O} - \frac{{v_{O}}^{2}}{2} \right] = -C \cdot \frac{dv_{O}}{dt}$$

al termine del triodo $v_0 = 0$.

$$V_{O}(t=\infty) = V_{L} = 0 V$$

Pass-Transistor nMOS

Elementi di Elettronica (INF) A.A. 2021-22

$$V_{TH} = 0.7 V$$

$$v_{IN} = V_{H} = 5 V$$

$$v_{O}(0) = V_{H} = 5 V$$

$$\mathbf{v}_{\mathrm{DS}} = 0 \, \mathbf{V}$$
 $\mathbf{v}_{\mathrm{GS}} = 0 \, \mathbf{V} < V_{TH}$

$$V_O(t=\infty) = V_H = 5 V$$

Caso B)

$$\mathbf{v}_{\mathrm{G}} = \mathbf{V}_{\mathrm{L}} = \mathbf{0} \; \mathbf{V}$$

 $v_{GS} = v_G - v_S$ dove $v_S \ge 0 \implies v_{GS} \le 0 V$

quindi $v_{GS} < V_{TH} \rightarrow M_1 = OFF$

Qualsiasi sia il valore di $V_{IN} v_O = v_O(0)$

$$\mathbf{v}_{\mathrm{O}}(t=\infty) = \mathbf{v}_{\mathrm{O}}(0)$$

Pass-Transistor nMOS

\mathbf{v}_{I}	V_{G}	$V_{O}(t=\infty)$	V _I	V_{G}	$\mathbf{v}_{\mathrm{O}}\left(t=\infty\right)$
0 V	5 V	0 V	$V_{_{ m L}}$	$V_{\rm H}$	$V_{\rm L}$
5 V	5 V	∫5 V {4.3 V	$V_{\rm H}$	$V_{_{\rm H}}$	$egin{aligned} V_{\mathrm{H}} & \left\{ egin{aligned} V_{\mathrm{H}} \ V_{\mathrm{H}} - V_{\mathrm{TH}} \end{aligned} ight. \end{aligned}$
0 V	0 V	$v_{o}(0)$	$V_{_{\rm L}}$	$V_{_{\rm L}}$	$v_o(0)$
5 V	0 V	${ m v}_{ m o}(0)$	$V_{\rm H}$	$V_{_{ m L}}$	$v_o(0)$

Circuito non rigenerativo!

Pass Transistor pMOS

$$V_{L} = 0 V$$
$$V_{H} = 5 V$$

$$V_{TH} = -0.7 V$$

Pass-Transistor pMOS

\mathbf{v}_{I}	V_G	$\mathbf{v}_{\mathrm{O}}(t=\infty)$	V _I	V_{G}	$v_{O}(t=\infty)$
0 V	5 V	$v_{o}(0)$	$V_{_{ m L}}$	$V_{_{ m H}}$	$v_o(0)$
5 V	5 V	$v_{o}(0)$	$V_{_{ m H}}$	$V_{_{\rm H}}$	$v_o(0)$
0 V	0 V	$\begin{cases} 0 V \\ 0.7 V \end{cases}$	$V_{_{ m L}}$	V_{L}	$egin{array}{c} V_L & V_L \ V_L - V_{TH} \end{array}$
5 V	0 V	5 V	V_{H}	$V_{\rm L}$	$V_{\rm H}$
		Circuito non riger	$\left \mathbf{V}_{\mathrm{TH}} ight $		

Elementi di Elettronica (INF) A.A. 2021-22

Logica a Pass-Transistor (Trasmission Gate) o Steering Logic

IN	CONT	OUT
0	0	X
1	0	X
0	1	0
1	1	1

	CONT	
IN °	<u>}</u>	OUT

IN	CONT	OUT
0	0	0
1	0	1
0	1	X
1	1	X

Circuiti non rigenerativi

Selettore con Pass-Transistor

circuito rigenerativo

AND, OR, NAND, NOR a Pass-Transistor

AND

NAND

OR

NOR

Pass-Transistor CMOS

è un circuito rigenerativo: es. trasferimento di un 1

Full Adder con Pass-Transistor

Input	Control			
A	В	C_{i}	$\bar{\mathbf{S}}$	$\overline{\mathbf{C}_{o}}$
0	0	0	1	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	0	0

con pass-transistor NMOS e PMOS

Full Adder con Pass-Transistor

control input					
В	Ci	Α	S'		
0	0	0	1	A'	
0	0	1	0	A	
0	1	0	0	٨	
0	1	1	1	Α	
1	0	0	0		
1	0	1	1	Α	
1	1	0	1	۸ ۱	
1	1	1	0	Α'	

control	input
COTTCTOT	IIIPat

В	Ci	Α	Co'		
0	0	0	1	1	
0	0	1	1	T	
0	1	0	1	A'	
0	1	1	0	A	
1	0	0	1	Α'	
1	0	1	0	A	
1	1	0	0	0	
1	1	1	0	0	

con pass-transistor NMOS e PMOS

Catene pMOS e nMOS

catene di pMOS: 1 trasferito senza perdite, 0 perde una Vth

catene di nMOS: 0 trasferito senza perdite, 1 perde una Vth

Esempio

Catene Miste pMOS e nMOS

catene miste

Transistor Switch Array

Transistor Switch Array

Esempio: XOR o OR-esclusivo	Α	В	$Z = A \oplus B$
	0	0	0
	0	1	1
	1	0	1
$ m V_{ m DD}$	1	1	0
A A B		3	—.•A ⊕ B

Realizzazione CMOS

Decoder

A	В	
A	В	Out ₀
A	$\overline{\mathrm{B}}$	Out ₁
\overline{A}	В	Out ₂
\overline{A}	$\overline{\mathrm{B}}$	Out ₃

Elementi di Elettronica (INF) A.A. 2021-22

struttura ad albero

Decoder a NOR

Realizzazione con NOR

Elementi di Elettronica (INF) A.A. 2021-22

PLA in Logica nMOS

$$\begin{cases} Z_1 = A \\ Z_2 = A + \overline{A} \cdot \overline{B} \cdot C \end{cases}$$

$$Z_3 = \overline{B} \cdot \overline{C}$$

$$Z_4 = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C}$$

$$\begin{cases} R_1 = A = \overline{\overline{A}} \\ R_2 = \overline{A} \cdot \overline{B} \cdot C = \overline{A + B + \overline{C}} \\ R_3 = \overline{B} \cdot \overline{C} = \overline{B + C} \\ R_4 = \overline{A} \cdot B \cdot \overline{C} = \overline{A + \overline{B} + C} \end{cases}$$

I singoli prodotti (minterm) possono essere realizzati con NOR.

$$\begin{cases}
Z_1 = \overline{\overline{A}} = \overline{\overline{R}_1} \\
Z_2 = A + R_2 = \overline{\overline{R}_1 + R_2} \\
Z_3 = R_3 = \overline{\overline{R}_3} \\
Z_4 = R_2 + R_4 = \overline{\overline{R}_2 + R_4}
\end{cases}$$

Le funzioni negate possono considerarsi come NOR dei prodotti.

PLA in Logica nMOS

Full Adder con PLA

$$\begin{cases} S = \overline{x} \cdot \overline{y} \cdot C_i + \overline{x} \cdot y \cdot \overline{C_i} + x \cdot \overline{y} \cdot \overline{C_i} + x \cdot y \cdot C_i \\ C_o = x \cdot C_i + x \cdot y + y \cdot \overline{C_i} \end{cases}$$

$$R_1 = \overline{x} \cdot \overline{y} \cdot C_i = \overline{x + y + \overline{C_i}}$$

$$R_2 = \overline{x} \cdot y \cdot \overline{C_i} = \overline{x + \overline{y} + C_i}$$

$$R_3 = x \cdot \overline{y} \cdot \overline{C_i} = \overline{x + y + C_i}$$

$$R_4 = x \cdot y \cdot C_i = \overline{\overline{x} + \overline{y} + \overline{C}_i}$$

$$R_5 = x \cdot C_i = \overline{\overline{x} + \overline{C_i}}$$

$$R_6 = x \cdot y = \overline{x + y}$$

$$R_7 = y \cdot C_i = \overline{\overline{y} + \overline{C_i}}$$

$$S = R_1 + R_2 + R_3 + R_4$$

$$C_0 = R_5 + R_6 + R_7$$

Full Adder con PLA

PLA in Logica Pseudo nMOS

 $OUT_3 = R_2 + R_3 + R_4 = I_{n1} \cdot I_{n3} \cdot I_{n4} + I_{n2} \cdot I_{n3} + I_{n1} \cdot I_{n2}$