MOS Field-Effect Transistors (MOSFETs)

- A three-terminal device that uses the <u>voltages</u> of the two terminals to <u>control</u> the <u>current</u> flowing in the third terminal.
 - The basis for amplifier design.
 - The basis for <u>switch</u> design.
 - The basic element of integrated circuits.
- Applications
 - Signal amplification.
 - Digital logic.
 - Memory, and so on.
- Circuit symbol

Figure 6.1: (a) Circuit symbol for the n-channel enhancement-type MOSFET. (b) Modified circuit symbol. (c) Simplified circuit symbol.

Figure 6.2: (a) Circuit symbol for the p-channel enhancement-type MOSFET. (b) Modified circuit symbol. (c) Simplified circuit symbol.

Figure 6.3: Physical structure of the enhancement-type NMOS transistor.

6.1 Structure

6.1.1 Physical Structure

- Enhancement-type <u>NMOS</u> transistor (Figure 6.3)
 - Structure
 - * Body (B)
 - \cdot The device is fabricated on a *p-type* substrate.
 - * Source (S) and Drain (D)
 - · Two heavily doped n-type regions.
 - · Charges carriers are electrons.
 - · Current flows from drain to source.
 - * Gate electrode (G)
 - · A thin layer of silicon dioxide (SiO_2) , which is an electrical insulator.
 - · Polysilicon is deposited on top of the oxide layer.
 - * Mental contacts are made to the regions of source, drain, and body.
 - The <u>substrate</u> forms *pn*-junctions with the source and drain regions.
 - * The pn-junctions are reverse-biased.
 - · The drain (D) is at a positive voltage relative to the source (S).
 - · The pn-junctions is cut-off by connecting the body (B) to the source (S).
 - · The MOSFET is thus treated as a three-terminal device.
- Enhancement-type PMOS transistor
 - Structure
 - * Body (B)
 - \cdot The device is fabricated on a *n-type* substrate.
 - * Source (S) and Drain (D)
 - \cdot Two heavily doped *p-type* regions.

- · Charges carriers are holes.
- · Current flows from source to drain.
- * Gate electrode (G)
 - · A thin layer of silicon dioxide (SiO_2) , which is an electrical insulator.
 - · Polysilicon is deposited on top of the oxide layer.
- * Mental contacts are made to the regions of source, drain, and body.
- The source and drain regions form pn-junctions with the <u>substrate</u>.
 - * The pn-junctions are reverse-biased.
 - · The source (S) is at a positive voltage relative to the drain (D).
 - · The pn-junctions is cut-off by connecting the body (B) to the drain (D).
 - · The MOSFET is thus treated as a three-terminal device.
- NMOS transistor is smaller and faster than PMOS transistor.
- PMOS operates in the same manner as NMOS excepts that v_{GS} and v_{DS} are negative and the threshold voltage V_t is negative.
- Complementary MOS (CMOS, Figure 6.4)
 - CMOS employs MOS transistors of both polarities.
 - * NMOS is implemented directly in *p-type* substrate.
 - * PMOS is fabricated in a created n region, known as n well.
 - * The two devices are isolated by a thick region of SiO_2 .
 - CMOS is widely used in both analog and digital circuits and virtually replace designs based on NMOS alone.

6.2 Characteristics of NMOS Transistor

• Figure 6.5 depict the $i_D - v_{DS}$ characteristic of a NMOS transistor.

6.2.1 Cut-off Region $(v_{GS} < V_t)$

- When $v_{GS} < V_t$, the transistor is turned off.
 - No current flow from drain to source.
 - As $v_{GS} = 0$, two back-to-back diodes exists in series between source and drain.
- In reality, for values of v_{GS} smaller than V_t but close to V_t , a small drain current flows.
 - The subthreshold current is an exponential function of v_{GS} .

6.2.2 Triode $(v_{GS} > V_t, 0 < v_{DS} < v_{GS} - V_t)$

- $v_{GS} > 0$ (refer to Figure 6.6).
 - Holes in substrate.
 - * The holes are pushed downward, leaving behind a carrier-depletion region.

Figure 6.4: Corss-section of a CMOS integrated circuit and the layout mask (Courtesy of NCTU Si2 Lab).

Figure 6.5: $i_D - v_{DS}$ characteristic for a NMOS transistor .

Figure 6.6: The enhancement-type NMOS with $v_{GS} > V_T$ and with a small v_{DS} .

- * The depletion region is populated by the bound negative charge.
- Electrons in drain and source.
 - * Positive gate voltage attracts electrons from the n^+ source and drain.
 - * Electrons accumulate near the surface of the substrate under the gate and form a "channel" connecting the source and the drain.
- The threshold voltage V_t is the value of v_{GS} at which a sufficient number of electrons form a channel.
- The $i_D v_{DS}$ curve in triode region $(v_{GS} > V_t)$ is specified by Eq. (6.1).

$$i_D = k_n' \frac{W}{L} \left[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$
 (6.1)

- * L is the length of the channel.

- * W is the width of the channel.
- * k'_n is a constant (process transconductance parameter) determined by the process technology.
- Drain current is proportional to the aspect ratio W/L.
- For a given process technology, there is a minimum channel length L_{\min} and a minimum channel width W_{\min} .
- $v_{DS} \simeq 0$ (refer to Figure 6.6).
 - $-v_{DS}$ causes a current i_D to flow through the induced n channel from drain to source.
 - $-i_D$ depends on the density of electrons in the channel, which in turn depends on v_{GS} .
 - The transistor acts like a <u>resistor</u> with the resistance controlled by v_{GS} .
 - * The conductance of the channel is proportional to the excess gate voltage $(v_{GS} V_t)$, as shown in Figure 6.7 and Eq. (6.2).

$$r_{DS} = g_{DS}^{-1} = \left[\frac{\partial i_D}{\partial v_{DS}}\right]^{-1}$$

$$= \left[k'_n \frac{W}{L} \left[(v_{GS} - V_t) - v_{DS}\right]\right]^{-1}$$

$$\simeq \left[k'_n \frac{W}{L} (v_{GS} - V_t)\right]^{-1}$$

$$\simeq \frac{v_{DS}}{i_D}$$
(6.2)

Figure 6.7: The $i_D - v_{DS}$ characteristics of the MOSFET with small v_{DS} .

- $0 < v_{DS} < v_{GS} V_t$ (refer to Figure 6.8).
 - The voltage between the gate and points along the channel decreases from v_{GS} at the source to $v_{GS} v_{DS}$ at the drain, as shown in Figure 6.8.
 - * Channel becomes more tapered when v_{DS} is increased.
 - * Resistance of channel increases when v_{DS} is increased.

 $v_{OS} = v_{OS}$ $v_{DS} = v_{OS} - V_{t}$ Source Channel $v_{DS} = 0$ (b)

· The $i_D - v_{DS}$ curve bends as shown in Figure 6.5.

Figure 6.8: The change of channel shape when the drain-source voltage is increased.

6.2.3 Saturation $(v_{GS} > V_t, v_{DS} > v_{GS} - V_t)$

- As $v_{DS} = v_{GS} V_t$, the channel pinches-off.
 - The drain current i_D can be obtained by substituting $v_{DS} = v_{DS_{sat}} = v_{GS} V_t$ in Eq. (6.1).

$$i_D = k_n' \frac{W}{L} \frac{1}{2} (v_{GS} - V_t)^2 \tag{6.3}$$

- The drain current i_D is independent of the drain voltage v_{DS} (in a first-order approximation) and is determined by the gate voltage v_{GS} .
 - * Ideally, the <u>Large-Signal model</u> for NMOS is an <u>ideal current source</u> controlled by v_{GS} .
- Finite output resistance
 - In practice, increasing v_{DS} beyond v_{DSsat} does affect the channel.
 - Channel-length modulation (refer to Figure 6.10)
 - * As v_{DS} is increased, the depletion region increases and the pinch-off point moves toward the source.

Figure 6.9: The $i_D - v_{GS}$ characteristic for a NMOS transistor in saturation region.

* Eq (6.4) shows the $i_D - v_{DS}$ characteristic with channel-length modulation.

$$i_{D} = \frac{1}{2}k'_{n}\frac{W}{L - \Delta L}(v_{GS} - V_{t})^{2}$$

$$\simeq \frac{1}{2}k'_{n}\frac{W}{L}(1 + \frac{\Delta L}{L})(v_{GS} - V_{t})^{2}$$

$$= \frac{1}{2}k'_{n}\frac{W}{L}(1 + \frac{\lambda'v_{DS}}{L})(v_{GS} - V_{t})^{2}$$

$$= \frac{1}{2}k'_{n}\frac{W}{L}(v_{GS} - V_{t})^{2}(1 + \lambda v_{DS})$$
(6.4)

- * λ is a process technology parameter and can be obtained as in Figure 6.11.
 - · V_A is referred to as the Early voltage.
 - · V_A typically falls in the range of 0.9V 9V.

$$i_D \simeq \frac{1}{2}k'_n \frac{W}{L}(v_{GS} - V_t)^2 (1 + \lambda v_{DS}) = 0$$

$$\Rightarrow \lambda = -\frac{1}{v_{DS}} = \frac{1}{V_A}$$
(6.5)

Figure 6.10: As v_{DS} is increased beyond v_{DSsat} , the pinch-off point is moved toward the source.

Figure 6.11: Effect of v_{DS} on i_D in saturation region.

- - Equivalent output resistance r_o
 - * Inversely proportional to the drain current I_D without considering Early effect.

$$i_D = \frac{1}{2}k'_n \frac{W}{L}(v_{GS} - V_t)^2 (1 + \lambda v_{DS}) = I_D(1 + \lambda v_{DS})$$
(6.6)

* Controlled by $(v_{GS} - V_t)$.

$$r_o = \frac{\Delta v_{DS}}{\Delta i_D} = \frac{1}{\lambda I_D} = \frac{V_A}{I_D}$$

$$= \frac{V_A}{i_D} (1 + \lambda v_{DS})$$

$$= \frac{V_A}{i_D} + \frac{v_{DS}}{i_D}$$
(6.7)

- Figure 6.12 shows the large signal equivalent model of the NMOS in saturation region.

Figure 6.12: Large signal equivalent model of the NMOS in saturation region.

• Figure 6.13 recaps the relative levels of terminal voltage of the NMOS transistor for operation in different regions.

Figure 6.13: The relative levels of the terminal voltages of the NMOS transistor for operation in the triode region and in the saturation region.

6.3 Characteristics of PMOS Transistor

Figure 6.14: The PMOS with voltages applied and the directions of current flow indicated.

- The threshold voltage V_t (relative to the source terminal) is negative.
- Cut-off region
 - The gate voltage v_{GS} (relative to the source terminal) is greater than V_t .

$$v_{GS} > V_t = -|V_t|$$

$$\Rightarrow v_{SG} < |V_t| \tag{6.8}$$

- Triode region
 - To induce a channel, we apply a gate voltage that is more negative than V_t .

$$v_{GS} \le V_t = -|V_t|$$

$$\Rightarrow v_{SG} > |V_t| \tag{6.9}$$

- To prevent the channel from pinch-off, drain voltage v_{DS} must be higher than

Figure 6.15: The relative levels of the terminal voltages of the PMOS.

gate voltage v_{GS} by at least $|V_t|$.

$$v_{DS} > v_{GS} - V_t = v_{GS} + |V_t|$$

$$\Rightarrow v_{SD} \le v_{SG} - |V_t|$$
(6.10)

- The $i_D v_{DS}$ characteristic is exactly the same as the NMOS.
 - * $v_{DS}, v_{GS}, \text{and } V_t$ are negative values.

$$i_{D} = k'_{p} \frac{W}{L} \left[(v_{GS} - V_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$

$$= k'_{p} \frac{W}{L} \left[(v_{SG} - |V_{t}|) v_{SD} - \frac{1}{2} v_{SD}^{2} \right]$$
(6.11)

- Saturation
 - To operate in saturation, drain voltage v_{DS} must be <u>lower</u> than $(v_{GS} + |V_t|)$.

$$v_{DS} \le v_{GS} - V_t = v_{GS} + |V_t|$$

$$\Rightarrow v_{SD} > v_{SG} - |V_t|$$
(6.12)

- The $i_D v_{DS}$ characteristic is exactly the same as the NMOS.
 - * $\lambda, v_{DS}, v_{GS}, \text{and } V_t \text{ are negative values.}$

$$i_D \simeq \frac{1}{2} k_p' \frac{W}{L} (v_{GS} - V_t)^2 (1 + \lambda v_{DS})$$

$$= \frac{1}{2} k_p' \frac{W}{L} (v_{SG} - |V_t|)^2 (1 + |\lambda| v_{SD})$$
(6.13)

• Figure 6.15 recaps the relative levels of terminal voltage of the PMOS transistor for operation in different regions.

6.3.1 Body Effect

• In integrated circuits, the substrate (body) is common to many MOS transistors.

- To maintain cut-off for all the substrate-to-channel junctions
 - The body is connected to the most negative power supply in an NMOS circuit.
 - The body is connected to the most positive power supply in a PMOS circuit.
- The reverse bias voltage v_{SB} widens the depletion regions and decreases the depth of the channel.
 - The increasing of v_{SB} causes an <u>increase</u> in the threshold voltage V_t .
 - * V_{t0} is the threshold voltage with $v_{SB} = 0$.
 - * γ is the body effect parameter.
 - * 2ϕ is the surface potential parameter.

$$V_t = V_{t0} + \gamma \left[\sqrt{\left(2\phi_f + V_{SB}\right)} - \sqrt{2\phi_f} \right]$$
 (6.14)

- Body Effect (Back-Gate Effect)
 - The body acts as a second gate.
 - When v_{GS} is kept constant, $v_{SB} \uparrow \Rightarrow V_t \uparrow \Rightarrow i_D \downarrow$.

6.3.2 Internal Capacitances

- Device has internal capacitances
 - $-C_{qs}$: Gate to Source capacitance.
 - * The <u>source</u> diffusion extends slightly under the gate. (Overlap capacitance)
 - $-C_{qd}$: Gate to Drain capacitance.
 - * The <u>drain</u> diffusion extends slightly under the gate. (Overlap capacitance)
 - $-C_{ab}$: Gate to Body capacitance.
 - * The gate electrode forms a parallel plate capacitor with <u>channel</u>.
 - $-C_{sb}$: Source to Body capacitance.
 - * Depletion capacitance of the reverse-biased pn junction (Body to Source).
 - $-C_{db}$: Drain to Body capacitance.
 - * Depletion capacitance of the reverse-biased pn junction (Body to Drain).
- Gate capacitive effect (C_{qs}, C_{qd}, C_{qb})
 - Triode
 - * The gate-channel capacitance is WLC_{ox}
 - * Model

$$C_{gs} = C_{gd} = \frac{1}{2}WLC_{ox} + WL_{ov}C_{ox}$$
 (6.15)

- Saturation
 - * The gate-channel capacitance is $\frac{2}{3}WLC_{ox}$.

* Model

$$C_{gs} = \frac{2}{3}WLC_{ox} + WL_{ov}C_{ox}$$

$$C_{qd} = WL_{ov}C_{ox}$$
(6.16)

- Cut-off
 - * The gate-body capacitance is WLC_{ox} .
 - * Model

$$C_{gs} = C_{gd} = WL_{ov}C_{ox}$$

$$C_{gb} = WLC_{ox}$$
(6.17)

- Depletion layer capacitance (C_{sb}, C_{db})
 - Junction capacitances from the <u>bottom side</u> and the <u>side walls</u> of the diffusion.
 - Source to body depletion capacitance C_{sb} (assume small signal)
 - * C_{sb0} : The capacitance with zero voltage.
 - * V_0 : Junction built-in voltage.

$$C_{sb} = \frac{C_{sb0}}{\sqrt{1 + \frac{V_{SB}}{V_0}}} \tag{6.18}$$

- Source to body depletion capacitance C_{db} (assume small signal)
 - * C_{db0} : The capacitance with zero voltage.
 - * V_0 : Junction built-in voltage.

$$C_{db} = \frac{C_{db0}}{\sqrt{1 + \frac{V_{dB}}{V_0}}} \tag{6.19}$$

• Capacitance effects must be considered when the MOSFET is operated at high frequency.

6.3.3 Temperature Effect

- i_D decreases as temperature increases.
- Both V_t and k' are temperature sensitive.
 - V_t decreases by about 2mV for every 1 °C rise in temperature.
 - -k' decreases with temperature and its effect is a dominant one.

6.3.4 Summary

• The saturation region is used for the operation of amplifier.

• The triode and cut-off regions are used for the operation of <u>switch</u> .

Bipolar Junction Transistor (BJT)

- A three-terminal device that uses the <u>voltage</u> of the two terminals to <u>control</u> the <u>current</u> flowing in the third terminal.
 - The basis for amplifier design.
 - The basis for <u>switch</u> design.
 - The basic element of high speed integrated digital and analog circuits.
- Applications
 - Discrete-circuit design.
 - Analog circuits.
 - * High frequency application such as radio frequency analog circuit.
 - Digital circuits.
 - * High speed digital circuit such as emitter coupled circuit (ECC).
 - * Bi-CMOS (Bipolar+CMOS) circuits that combines the advantages of MOS-FET and bipolar transistors.
 - · MOSFET: high-input impedance and low-power.
 - · Bipolar transistors: <u>high-frequency-operation</u> and <u>high-current-driving</u> capabilities.
- Circuit symbol
 - The arrowhead on the emitter implies the polarity of the emitter-base voltage.
 - * NPN: $v_{BE} > 0$.
 - * PNP: $v_{EB} > 0$.

7.1 Structure

7.1.1 NPN Transistor

- Figure 7.2 depicts a simplified NPN transistor.
 - Emitter (E): heavily doped n-type region.
 - Base (B): lightly doped p-type region.
 - Collector (C): heavily doped n-type region.
 - Two diodes connected in series with opposite directions.
 - * EBJ: Emitter-Base junction.

Figure 7.1: Circuit symbols of (a) NPN and (b) PNP transistors.

Figure 7.2: A simplified structure of the NPN transistor.

- * CBJ: Collector-Base junction.
- Figure 7.3 shows the cross-section view of an NPN transistor.
 - The NPN transistor has asymmetrical structure.
 - $-\alpha$ and β parameters are different for forward active and reverse active modes.
- Modes of operations
 - Cutoff
 - * EBJ (Reverse), CBJ (Reverse)
 - * $v_{BE} < 0, v_{CB} > 0.$
 - Active (refer to Figure 7.7)
 - * EBJ (Forward), CBJ (Reverse)
 - * $v_{BE} > 0$, $v_{CB} > 0$.
 - Reverse Active
 - * EBJ (Reverse), CBJ (Forward)
 - * $v_{BE} < 0, v_{CB} < 0.$
 - Saturation
 - * EBJ (Forward), CBJ (Forward)
 - * $v_{BE} < 0, v_{CB} < 0.$

Figure 7.3: Cross-section of an NPN BJT.

• Figure 7.4 shows the voltage polarities and current flow in the NPN transistor biased in the active mode.

Figure 7.4: Voltage polarities and current flow in the NPN transistor biased in the active mode.

7.1.2 PNP Transistor

Figure 7.5: A simplified structure of the PNP transistor.

- Figure 7.5 depicts a simplified PNP transistor.
 - Emitter (E): heavily doped p-type region.

- Base (B): lightly doped n-type region.
- Collector (C): heavily doped p-type region.
- Two diodes connected in series with opposite directions.
 - * EBJ: Emitter-Base junction.
 - * CBJ: Collector-Base junction.
- Modes of operations
 - Cutoff
 - * EBJ (Reverse), CBJ (Reverse)
 - * $v_{EB} < 0, v_{BC} < 0.$
 - Active (refer to Figure 7.7)
 - * EBJ (Forward), CBJ (Reverse)
 - * $v_{EB} > 0$, $v_{BC} > 0$.
 - Reverse Active
 - * EBJ (Reverse), CBJ (Forward)
 - * $v_{EB} < 0, v_{BC} < 0.$
 - Saturation
 - * EBJ (Forward), CBJ (Forward)
 - * $v_{EB} > 0$, $v_{CB} > 0$.
- Figure 7.6 shows the voltage polarities and current flow in the PNP transistor biased in the active mode.

Figure 7.6: Voltage polarities and current flow in the PNP transistor biased in the active mode.

7.2 Operations of NPN Transistor

7.2.1 Active Mode

• Emitter-Base Junction

Figure 7.7: Current flow in an NPN transistor to operate in the active mode.

- Forward bias, $v_{BE} > 0$.
- Electrons in the emitter region are injected into the base causing a current i_{E1} .
- <u>Holes</u> in <u>the base</u> region are injected into <u>the emitter</u> region causing a current i_{E2} .
 - * Generally, $i_{E1} >> i_{E2}$.

$$i_E(t) = i_{E1} + i_{E2} (7.1)$$

• Base region

- Figure 7.8 depicts the concentration of <u>minority carriers</u> (electrons) in the <u>base</u> region.
- Tapered concentration causes the <u>electrons</u> to <u>diffuse</u> through the <u>base</u> region toward the <u>collector</u>.
 - * Some of the <u>electrons</u> may combine with the holes causing a concave shape of the profile.
 - * The recombination process is quite small due to lightly doped and thin base region.

$$n_p(0) = n_{p0}e^{v_{BE}/V_T} (7.2)$$

- Diffusion current I_n (flowing from right to the left) is proportional to the slope of the concentration profile.
 - * A_E is the cross-sectional area of the base-emitter junction.
 - * D_n is the electron diffusivity in the base region.
 - * W is the effective width of the base.

$$I_n = A_E q D_n \frac{dn_p(x)}{dx} = -A_E q D_n \frac{n_p(0)}{W}$$

$$(7.3)$$

- Collector-Base Junction
 - Reverse bias, $v_{BC} > 0$.
 - The <u>electrons</u> near the collector side are swept into the <u>collector</u> region causing <u>zero</u> concentration at the collector side.

Figure 7.8: Profiles of minority carrier concentrations in the base and in the emitter of an NPN transistor.

- Collector current, i_C .
 - Most of the diffusing <u>electrons</u> will reach the collector region, i.e., $i_C = -I_n$.
 - * Only a very small percentage of <u>electrons</u> are recombined with the holes in the base region.
 - As long as $v_{CB} > 0$, i_C is independent of v_{CB} .
 - * The <u>electrons</u> that reach the collector side of the base region will be swept into the collector as collector current.

$$i_{C} = -I_{n}$$

$$= A_{E}qD_{n}\frac{n_{p}(0)}{W}$$

$$= \frac{A_{E}qD_{n}n_{p0}}{W}e^{v_{BE}/V_{T}}$$

$$= \frac{A_{E}qD_{n}n_{i}^{2}}{WN_{A}}e^{v_{BE}/V_{T}}$$

$$= I_{S}e^{v_{BE}/V_{T}}$$

$$(7.4)$$

- Saturation current (also known as scale current) $I_S = (A_E q D_n n_i^2)/(W N_A)$
 - * A strong function of temperature.
 - * Proportional to the <u>cross-sectional area</u> of the <u>base-emitter</u> junction.
 - * Inverse proportional to the base width W.
- Base current i_B

- $-i_B$ is composed of two currents.
 - * The <u>holes</u> injected from the base region into the emitter region.

$$i_{B1} = \frac{A_E q D_p n_i^2}{N_D L_p} e^{v_{BE}/V_T} \tag{7.5}$$

- * The <u>holes</u> that have to be supplied by the external circuit due to the recombination.
 - \cdot τ_b is the average time for a minority electron to recombine with a majority hole.

$$i_{B2} = \frac{1}{2} \frac{A_E q W n_i^2}{\tau_b N_A} e^{v_{BE}/V_T} \tag{7.6}$$

- Formulation of i_B in terms of i_C .
 - * I_S is the saturation current of i_C (refer to Eq.(7.4))
 - * $\beta = 1/\left(\frac{D_p}{D_n}\frac{N_A}{N_D}\frac{W}{L_p} + \frac{1}{2}\frac{W^2}{D_n\tau_b}\right)$ is a constant (normally in the range $50 \sim 200$) for a given transistor.
 - * β is mainly influenced by (1) the width of the base region, and (2) the relative dopings of the base region and the emitter region $\frac{N_A}{N_D}$.
 - · To achieve high β values, the <u>base</u> should be <u>thin</u> (W small) and lightly doped, and the emitter heavily doped.

$$i_{B} = i_{B1} + i_{B2}$$

$$= I_{S} \left(\frac{D_{p}}{D_{n}} \frac{N_{A}}{N_{D}} \frac{W}{L_{p}} + \frac{1}{2} \frac{W^{2}}{D_{n} \tau_{b}} \right) e^{v_{BE}/V_{T}}$$

$$= \left(\frac{D_{p}}{D_{n}} \frac{N_{A}}{N_{D}} \frac{W}{L_{p}} + \frac{1}{2} \frac{W^{2}}{D_{n} \tau_{b}} \right) i_{C}$$

$$= \frac{1}{\beta} \times i_{C}$$
(7.7)

- Emitter current i_E
 - From KCL, the i_E and i_C can be related as follows:

$$i_{E} = i_{B} + i_{C}$$

$$= \frac{1}{\beta}i_{C} + i_{C}$$

$$= \frac{1+\beta}{\beta} \times i_{C}$$

$$= \frac{1}{\alpha} \times i_{C}$$

$$= \frac{1}{\alpha} \times I_{s}e^{v_{BE}/V_{T}}$$

$$(7.8)$$

* $\alpha = \beta/(1+\beta) \simeq 1$ is a constant for a given transistor.

- * Small change in α corresponds to large changes in β .
- Recapitulation
 - Configuration
 - * EBJ (Forward), CBJ (Reverse)
 - Relationship between i_C , i_B , and i_E .
 - * $i_C = \beta \times i_B$.
 - · β (normally in the range 50~200) is a constant for a given transistor.
 - * $i_C = \alpha \times i_E$.
 - · α ($\beta/(1+\beta) \lesssim 1$) is a constant for a given transistor.
 - * i_B , i_C , and i_E are all controlled by v_{BE} .

$$i_{C} = I_{S}e^{v_{BE}/V_{T}}$$

$$i_{B} = \frac{1}{\beta}I_{S}e^{v_{BE}/V_{T}}$$

$$i_{E} = \frac{1}{\alpha}I_{S}e^{v_{BE}/V_{T}}$$

$$(7.9)$$

- Figure 7.9 depicts the large signal equivalent model of the NPN transistor.
 - * In Figure 7.9 (a), i_C behaves as a voltage (v_{BE}) controlled current source.

$$i_C + i_B = i_E = \frac{1}{\alpha} i_C$$
 (7.10)

* In Figure 7.9 (b), i_C behaves as a current (i_E) controlled current source.

$$i_C + i_B = i_E$$

$$\Rightarrow \alpha i_E + i_B = i_E \tag{7.11}$$

* The diode D_E represents the forward base-emitter junction.

7.2.2 Reverse Active Mode

- The α and β in the reverse active mode are <u>much lower</u> than those in the forward active mode.
 - $-\alpha_R$ is in the range of 0.01 to 0.5.
 - * In <u>forward active mode</u>, <u>the collector</u> virtually surrounds <u>the emitter</u> region.
 - · Electrons injected into the thin base region are <u>mostly</u> captured by the collector.
 - * In <u>reverse active mode</u>, <u>the emitter</u> virtually surrounds <u>the collector</u> region.
 - · Electrons injected into the thin base region are partly captured by the

Figure 7.9: Large signal equivalent model of the NPN BJT operating in the forward active mode.

Figure 7.10: Large signal equivalent model of the NPN BJT operating in the reverse active mode.

collector.

- $-\beta_R$ is in the range of 0.01 to 1.
- CBJ has a much larger area than EBJ.
 - The diode D_C denotes the forward base-collector junction.
 - The diode D_C has larger scale current (I_{SC}) than D_E does.
 - * The diode D_C has lower voltage drop when forward biased.

7.2.3 Ebers-Moll (EM) Model

- A composite model that can be used to predict the operations of the BJT in all possible modes.
 - Combine Figure 7.9 (b) and Figure 7.10.
- α and β

Figure 7.11: Ebers-Moll model of the NPN transistor.

- α_F and β_F denotes the parameters in forward active mode.
- α_R and β_R denotes the parameters in reverse active mode.
- \bullet Equivalent saturation current I_{SE} and I_{SC}
 - From Figure 7.9 (b) and Figure 7.10, I_{SE} and I_{SC} are the equivalent saturation currents at the EBJ and CBJ, respectively.

$$I_{SE} = \frac{1}{\alpha_F} I_S$$

$$I_{SC} = \frac{1}{\alpha_R} I_S$$

$$\Rightarrow \alpha_F I_{SE} = \alpha_R I_{SC} = I_S$$
(7.12)

• i_C , i_B , and i_E in the EM model

$$i_{E} = i_{DE} - \alpha_{R}i_{DC}$$

$$i_{C} = -i_{DC} + \alpha_{F}i_{DE}$$

$$i_{B} = (1 - \alpha_{F})i_{DE} + (1 - \alpha_{R})i_{DC}$$

$$(7.13)$$

$$- i_{DE} = I_{SE} \left(e^{v_{BE}/V_T} - 1 \right).$$

- $i_{DC} = I_{SC} \left(e^{v_{BC}/V_T} - 1 \right).$

• By Eq. (7.12),

$$i_{E} = \frac{I_{S}}{\alpha_{F}} (e^{v_{BE}/V_{T}} - 1) - I_{S}(e^{v_{BC}/V_{T}} - 1)$$

$$i_{C} = I_{S}(e^{v_{BE}/V_{T}} - 1) - \frac{I_{S}}{\alpha_{R}} (e^{v_{BC}/V_{T}} - 1)$$

$$i_{B} = \frac{I_{S}}{\beta_{F}} (e^{v_{BE}/V_{T}} - 1) + \frac{I_{S}}{\beta_{R}} (e^{v_{BC}/V_{T}} - 1)$$
(7.14)

$$-\beta_F = \alpha_F/(1-\alpha_F).$$

$$-\beta_R = \alpha_R/(1-\alpha_R).$$

7.2.4 Saturation Mode

- CBJ is in forward bias, i.e., $v_{BC} > 0.4V$.
 - CBJ has larger junction area than EBJ.
 - * CBJ has larger saturation current I_S and <u>lower</u> cut-in voltage than EBJ.
 - * In forward bias,
 - The voltage drop across CBJ is 0.4V.
 - The voltage drop across EBJ is 0.7V.
 - As v_{BC} is increased, i_C will be decreased and eventually reach zero.

$$i_C \simeq I_S e^{v_{BE}/V_T} - \frac{I_S}{\alpha_R} e^{v_{BC}/V_T} \tag{7.15}$$

Figure 7.12: Concentration profile of the minority carriers in the base region of an NPN transistor.

Figure 7.13: Current flow in a PNP transistor biased to operate in the active mode.

7.3 Operations of PNP Transistor

7.3.1 Active Mode

- Current in a PNP transistor is mainly conducted by <u>holes</u>.
- Emitter-Base Junction
 - Forward bias, $v_{EB} > 0$.
 - Holes in the emitter region are injected into the base causing a current i_{E1} .
 - Electrons in the base region are injected into the emitter region causing a current i_{E2} .
 - * Generally, $i_{E1} >> i_{E2}$.

$$i_E(t) = i_{E1} + i_{E2} (7.16)$$

- Base region
 - Tapered concentration causes the <u>holes</u> to <u>diffuse</u> through the base region toward the collector.
 - * Some of the holes may combine with the electrons.
 - * The recombination process is quite small due to lightly doped and thin base region.
- Collector-Base Junction
 - Reverse bias, $v_{BC} > 0$.
 - The <u>holes</u> near the collector side are swept into the <u>collector</u> region causing <u>zero</u> concentration at the collector side.
- Collector current, i_C .
 - Most of the diffusing <u>holes</u> will reach collector region.
 - * Only a very small percentage of <u>holes</u> are recombined with the <u>electrons</u>

Figure 7.14: Large signal equivalent model of the PNP BJT operating in the forward active mode.

in the base region.

- As long as $v_{BC} > 0$, i_C is independent of v_{BC} .
 - * The <u>holes</u> that reach the collector side of the base region will be swept into the collector as collector current.
- Base current i_B
 - $-i_B$ is composed of two currents.
 - * The <u>electrons</u> injected from the base region into the emitter region.
 - * The <u>electrons</u> that have to be supplied by the external circuit due to the recombination.
- Emitter current i_E
 - From KCL, the i_E and i_C can be related as follows:

$$i_{E} = i_{B} + i_{C}$$

$$= \frac{1}{\beta}i_{C} + i_{C}$$

$$= \frac{1+\beta}{\beta} \times i_{C}$$

$$= \frac{1}{\alpha} \times i_{C}$$

$$= \frac{1}{\alpha} \times I_{s}e^{v_{EB}/V_{T}}$$

$$(7.17)$$

- * $\alpha = \beta/(1+\beta) \simeq 1$ is a constant for a given transistor.
- * Small change in α corresponds to large changes in β .
- Figure 7.14 depicts the large signal equivalent model of the PNP transistor.

Figure 7.15: Ebers-Moll model of the PNP transistor.

• Figure 7.15 shows the EM model of the NPN transistor.

7.3.2 Reverse Active Mode

• Similar to NPN transistor.

7.3.3 Saturation Mode

• Similar to NPN transistor.

7.3.4 Summary of the i_C , i_B , i_E Relationships in Active Mode

• NPN transistor

$$i_{c} = I_{s}e^{v_{BE}/V_{T}}$$

$$i_{B} = \frac{I_{s}}{\beta}e^{v_{BE}/V_{T}}$$

$$i_{E} = \frac{I_{s}}{\alpha}e^{v_{BE}/V_{T}}$$

$$(7.18)$$

Figure 7.16: The $i_C - v_{CB}$ characteristics of an NPN transistor.

$$i_{C} = \alpha i_{E}$$

$$i_{C} = \beta i_{B}$$

$$i_{B} = (1 - \alpha)i_{E} = \frac{i_{E}}{1 + \beta}$$

$$i_{E} = (1 + \beta)i_{B}$$

$$(7.19)$$

- PNP transistor.
 - The v_{BE} in Eq. (7.18) is replaced by v_{EB} .

7.4 The i-v Characteristics of NPN Transistor

7.4.1 Common Base $(i_C - v_{CB})$

- Figure 7.16 depicts the i_C versus v_{CB} for various i_E , which is also known as the <u>common-base</u> characteristics.
 - Input port: <u>emitter and base</u> terminals.
 - * Input current i_E .
 - Output port: <u>collector and base</u> terminals.
 - * Output current i_C .
 - The <u>base</u> terminal serves as a <u>common terminal</u> to both input port and output port.
- Active Region $(v_{CB} \ge -0.4V)$
 - $-i_C$ depends slightly on v_{CB} and shows a small positive slope.

- $-i_C$ shows a rapid increase, known as <u>breakdown phenomenon</u>, for a relatively large value of v_{CB} .
- Each $i_C v_{CB}$ curve intersects the vertical axis at a current level equal to αI_E .
 - * Total or large-signal α (common-base current gain)
 - $\alpha = i_C/i_E$, where i_C and i_E denote the total collector and emitter currents, respectively.
 - * Incremental or small-signal α
 - $\cdot \alpha = \Delta i_C / \Delta i_E$.
 - * Usually, the values of incremental and total α differs slightly.
- Saturation Region $(v_{CB} < -0.4V)$
 - CBJ is forward biased.
 - The EM model can be used to determine the v_{CB} at which i_C is zero.

7.4.2 Common Emitter $(i_C - v_{CE})$

- Figure 7.17 depicts the i_C versus v_{CE} for various v_{BE} , which is also known as the <u>common-emitter</u> characteristics.
 - Input port: <u>base and emitter</u> terminals.
 - * Input current i_B .
 - Output port: <u>collector and emitter</u> terminals.
 - * Output current i_C .
 - The <u>emitter</u> terminal serves as a <u>common terminal</u> to both input port and output port.
- Active Region $(v_{CB} \ge -0.4V)$
 - $-i_C$ increases as the v_{CE} is increased, which is known as Early Effect.
 - * At a given v_{BE} , increasing v_{CE} increases <u>the width</u> of the depletion region of the CBJ.
 - * The effective base width W is decreased.
 - * As shown in Eq. (7.4), I_S is inversely proportional to the base width W.
 - When extrapolated, the characteristics line meet at point on the negative v_{CE} (normally in the range of 50V to 100V), $-V_A$.
 - * V_A is a constant for a given transistor.
- Large signal equivalent circuit model in <u>active</u> mode.
 - The linear dependency of i_C on v_{CE} can be formulized as follows:

$$i_C = I_S e^{v_{BE}/V_T} \left(1 + \frac{v_{CE}}{V_A}\right) = I_C \left(1 + \frac{v_{CE}}{V_A}\right)$$
 (7.20)

- The output resistance looking into the collector-emitter terminals.
 - * Inversely proportional to the collector current I_C without considering Early effect.

Figure 7.17: The $i_C - v_{CE}$ characteristics of the BJT.

* Controlled by v_{BE} .

$$\Delta i_C = I_S e^{v_{BE}/V_T} \left(\frac{\Delta v_{CE}}{V_A}\right)$$

$$\Rightarrow r_o = \frac{\Delta v_{CE}}{\Delta i_C} = \frac{V_A}{I_C}$$
(7.21)

- Figure 7.18 depicts the large signal equivalent circuit model of an NPN BJT in the active mode and with the common emitter configuration.
 - * Figure 7.18 (a), voltage v_{BE} controls the collector current source.
 - * Figure 7.18 (b), the base current i_B controls the collector current source $\beta \times i_B$.
- Large signal or DC β
 - * The <u>ratio</u> of <u>total</u> current in the <u>collector</u> to the <u>total</u> current in the <u>base</u>, which represents the <u>ideal</u> current gain (where r_o is not present) of the common-emitter configuration.

$$\beta_{dc} = \frac{i_C}{i_B}|_{v_{CE} = \text{constant}} \tag{7.22}$$

- * β is also known as the common-emitter current gain.
- Incremental or AC β
 - * Short-circuit common-emitter current gain.
 - * AC β and DC β differ approximately 10% to 20%.

$$\beta_{ac} = \frac{\Delta i_C}{\Delta i_B}|_{v_{CE} = \text{constant}} \tag{7.23}$$

Figure 7.18: Large signal equivalent circuit model of an NPN BJT operating in the active mode and with common-emitter configuration.

Figure 7.19: An expanded view of the common-emitter characteristic in the saturation region.

- Saturation Region $(v_{CB} < -0.4V)$
 - Figure 7.19 depicts an expanded view of the <u>common-emitter</u> characteristic in the saturation region.
 - Analytical expressions of $i_C v_{CE}$ using EM model.
 - $* v_{BE} = v_{CE} + v_{CB}.$

$$i_C \simeq I_S(e^{v_{BE}/V_T}) - \frac{I_S}{\alpha_R}(e^{v_{BC}/V_T})$$

$$I_B \simeq \frac{I_S}{\beta_F}(e^{v_{BE}/V_T}) + \frac{I_S}{\beta_R}(e^{v_{BC}/V_T})$$
(7.24)

$$i_C \simeq (\beta_F I_B) \left(\frac{e^{v_{CE}/V_T} - \frac{1}{\alpha_R}}{e^{v_{CE}/V_T} - \frac{\beta_F}{\beta_R}} \right)$$
 (7.25)

Figure 7.20: Plot of normalized i_C versus v_{CE} for an NPN transistor with $\beta_F = 100$ and $\alpha_R = 0.1$.

- Large signal equivalent circuit model in <u>saturation</u> mode.
 - The saturation transistor exhibits a <u>low</u> collector-to-emitter resistance R_{CEsat} .

$$R_{CEsat} = \frac{\partial v_{CE}}{\partial i_C}|_{i_B = I_B, i_C = I_C} \simeq 1/10\beta_F I_B$$
 (7.26)

- At the collector side, the transistor is modeled as <u>a resistance</u> $R_{CE_{sat}}$ in series with <u>a battery</u> v_{CEoff} as shown in Figure 7.21 (c).
 - * V_{CEoff} is typically around 0.1V.
 - * V_{CEsat} is typically around $0.1 \sim 0.3V$.

$$V_{CEsat} = V_{CEoff} + I_{Csat}R_{CEsat} (7.27)$$

- For many applications, the even simpler model shown in Figure 7.21 is used.

Figure 7.21: Equivalent circuit representation of the saturated transistor.