Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

ФАКУЛЬТЕТ АЭРОФИЗИКИ И КОСМИЧЕСКИХ ТЕХНОЛОГИЙ

Группа
Б03-908

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ - 2

Приближение функций (интерполяция)

D. mo mark		/	/
Выполнил:	$\overline{(no\partial nucb)}$	(∂ama)	
Агеев Рамиль Наильевич			

Долгопрудный 2021г.

Содержание

1	Условие задачи	3
2	Построение интерполяционного полинома	
	2.1 Полином в форме Ньютона	3
	2.2 Код алгоритма	5
	2.3 Код нахождения максимума	5
	2.4 Промежуточные значения	
3	Ответ	8
4	Вывод	8

1 Условие задачи

Вариант 4

При исследовании некоторой химической реакции через каждые 10 минут измерялась концентрация образующегося в ходе реакции вещества. Результаты измерений представлены в таблице.

<i>t</i> , мин	10	20	30	40	50	60	70
С,моль/литр	10	340	550	580	490	490	490

С помощью интерполяции найти максимальную концентрацию вещества.

Рис. 1: Условие задачи

2 Построение интерполяционного полинома

2.1 Полином в форме Ньютона

Теория

Интерполяция - способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.

Рис. 2: Задача интерполяции

Утверждение Если заданы N+1 узлов $x_0,...,x_N$, среди которых нет совпадающих, и значения функции в узлах $f(x_0),...,f(x_N)$, то существует 1 и только 1 многочлен степени не выше N принимающий в узлах x_i заданные значения $f(x_i)$.

Как мы можем заметить, в данной задачи ни один узел не равен иному(однако, на всякий случай я и в коде делаю проверку для большей универсальности кода). Следовательно, мы можем найти интерполяционныый многочлен.

Я ищу полином в форме Ньютона, т.к. этот метод является наиболее распространенным на практике.

Общая формула и таблица разделенных разностей

Интерполяционный полином в форме Ньютона - разностный аналог формулы Тейлора.

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2 f''(x_0)}{2!} + \cdots$$
 (1)

Разделенная разность первого порядка

$$f_{ij} = f(x_i, x_j) = \frac{f_i - f_j}{x_i - x_j}, \qquad i, j = 0, \dots, N \quad i \neq j$$
 (2)

Разделенная разность второго порядка

$$f_{j,j+1,j+2} = f(x_j, x_{j+1}, x_{j+2}) = \frac{f_{jj+1} - f_{j+1,j+2}}{x_j - x_{j+2}} = \frac{\frac{f_{j-1} - f_{j+1}}{x_j - x_{j+1}} - \frac{f_{j+1} - f_{j+2}}{x_{j+1} - x_{j+2}}}{x_j - x_{j+2}}$$
(3)

Разделенная разность *k*-го порядка

$$f_{j j+1 j+2 \dots j+k} = f(x_j, x_{j+1}, \dots, x_{j+k}) = \frac{f_{j+1 \dots j+k} - f_{j \dots j+k-1}}{x_{j+k} - x_j}$$
(4)

Интерполяционный многочлен в форме Ньютона

$$P_N = f_0 + (x - x_0)f_{01} + (x - x_0)(x - x_1)f_{012} + \dots + (x - x_0)\dots(x - x_{N-1})f_{012\dots N}$$
(5)

Давайте рассмотрим матрицу, которую используют для нахождения разделенных разностей полинома в форме Ньютона.

Рис. 3: Матрица

При написании кода я ориентировался на эту "таблицу". Однако, при выводе промежуточных значений ("разделенных разностей") вы будете наблюдать не очень красивую картинку. У меня не получилось ее привести к такому виду, но смысл там в следующем: самая верхняя линия матрицы выше это самая левая строчка в промежуточных таблицах.

2.2 Код алгоритма

2.3 Код нахождения максимума

```
def find_extremums(func, arg):
    dy = func.diff(arg)
    extremums = solve(dy, arg)
    return extremums

for el in find_extremums(f, x):
    print(f"f value and x: {f.subs(x, el), el}")
print("The max concentration is 591.198569714837")
```

В нахождении максимума функции - ответа на задачу, я использовал функцию f. Это и есть интерполяционный многочлен, который мы искали. Она имеет следующий вид:

Рис. 4: Функция

2.4 Промежуточные значения

k=0	10	340	550	580	490	490	490
k=1	33	21	3	-9	0	0	
k=2	0	0	0	0	0		
k=3	0	0	0	0			
k=4	0	0	0				
k=5	0	0					
k=6	0						

k=0	10	340	550	580	490	490	490
k=1	33	21	3	-9	0	0	
k=2	-0.6	-0.9	-0.6	0.45	0		
k=3	0	0	0	0			
k=4	0	0	0				
k=5	0	0					
k=6	0						

Рис. 5: Промежуточные таблицы 1

k=0	10	340	550	580	490	490	490
k=1	33	21	3	-9	0	0	
k=2	-0.6	-0.9	-0.6	0.45	0		
k=3	-0.01	0.01	0.035	-0.015			
k=4	0	0	0				
k=5	0	0					
k=6	0						

k=0	10	340	550 I	580	490	490	490
k=1	33	21	3	-9	0	0	
k=2	-0.6	-0.9	-0.6	0.45	0		
k=3	-0.01	0.01	0.035	-0.015			
k=4	0.0005	0.000625	-0.00125				
k=5	0	0					
k=6	0						

Рис. 6: Промежуточные таблицы 2

k=0	10		340	5!		9	580	9	496) 4	90	490	-
k=1	33		21	21		3 -9		9	6)	0		
k=2	-0.6		-0.9		-(9.6	(9.45	(
k=3	-0.01	1	0.01		01 0.035 -0.015		0.015						
k=4	0.00	905	(0.000625	-(9.00125							
k=5	2.5	e-06	-3	3.75e-05									
k=6	0												
k=0	10			340		550		580		490		490	490
k=1	33			21		3		-9		0		0	
k=2	-0.6			-0.9		-0.6		0.4	45	0			
k=3	-0.01			0.01		0.03	5	-0.0	915				
k=4	0.00	5		0.0006	625	-0.001	125						

Рис. 7: Промежуточные таблицы 3

Красная линия как раз показывает используемые разделенные разности в 5

-3.75e-05

3 Ответ

k=5

k=6

2.5e-06

Используя код, для нахождения максимума получаем ответ, что максимальная концентрация = 591.19моль/литр в точке 36.4191 мин.

4 Вывод

В данной задаче мы использовали 7 узлов, что позволило нам построить многочлен степени N=6. Благодаря этому мы достигли максимальной точности в построении интерполяционного многочлена. И, конечно же, решили поставленную задачу на нахождение максимальной концентрации