Équations Différentielles Linéaires d'ordre 1 $_{\text{Corrigé}}$

DARVOUX Théo

Novembre 2023

Crédits: Ibrahim pour 11.1, 11.2, 11.3

Exercices.

Exercice 11.	1.	 	 					 										 			2
Exercice 11.2	2 .	 	 					 	•									 			3
Exercice 11.3	3.	 	 					 										 			3
Exercice 11.4	4 .	 	 					 										 			4

Je rédige pas la variation de la constante parce que c'est trop long et toujours la même chose allez lire votre cours

Exercice 11.1 $[\Diamond \Diamond \Diamond]$

Résoudre les équations différentielles ci-dessous

1.
$$y' - 2y = 2 \operatorname{sur} \mathbb{R}$$
 2. $(x^2 + 1)y' + xy = x$ 3. $y' + \tan(x)y = \sin(2x) \operatorname{sur} \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ 4. $y' - \ln(x)y = x^x \operatorname{sur} \mathbb{R}_+^*$ 5. $(1 - x)y' - y = \frac{1}{1 - x} \operatorname{sur} \left[-\infty, 1 \right]$

1. Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda e^{2x} \mid \lambda \in \mathbb{R}\}$

Solution particulière, avec y constante : $S_p : x \mapsto -1$.

Ensemble de solutions : $S = \{\lambda e^{2x} - 1 \mid \lambda \in \mathbb{R}\}.$

2. L'équation se réecrit comme $y' + \frac{x}{x^2+1}y = \frac{x}{x^2+1}$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \frac{\lambda}{\sqrt{x^2+1}} \mid \lambda \in \mathbb{R}\}$

Solution particulière : $S_p: x \mapsto 1$ est solution évidente.

Ensemble de solutions : $S = \{x \mapsto \frac{\lambda}{\sqrt{x^2+1}} + 1 \mid \lambda \in \mathbb{R}\}.$

3.Soit $I =]-\frac{\pi}{2}, \frac{\pi}{2}[.$

Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda \cos x \mid \lambda \in \mathbb{R}\}.$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

z est solution
$$\iff \forall x \in I, \ \lambda'(x)\cos(x) = \sin(2x)$$

 $\iff \forall x \in I, \ \lambda'(x) = \frac{\sin(2x)}{\cos(x)} = 2\sin(x)$
 $\iff \lambda = -2\cos$

Ainsi, $z = -2\cos^2$.

Ensemble de solutions : $S = \{x \mapsto \lambda \cos x - 2\cos^2 x \mid \lambda \in \mathbb{R}\}.$

4. Soit $I = \mathbb{R}_+^*$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda \frac{x^x}{e^x} \mid \lambda \in \mathbb{R}\}$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

$$z$$
 est solution $\iff \forall x \in I, \ \lambda'(x) \frac{x^x}{e^x} = x^x$
 $\iff \forall x \in I, \ \lambda'(x) = e^x$
 $\iff \lambda = e^{\cdot}$

Ainsi, $z: x \mapsto x^x$

Ensemble de solutions : $S = \{x \mapsto \lambda \frac{x^x}{e^x} + x^x \mid \lambda \in \mathbb{R}\}$

5. Soit $I =]-\infty, 1[$. L'équation se réecrit comme $y' - \frac{1}{1-x}y = \frac{1}{(1-x)^2}$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \frac{\lambda}{1-x} \mid \lambda \in \mathbb{R}\}.$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

$$z$$
 est solution $\iff \forall x \in I, \ \frac{\lambda'(x)}{1-x} = \frac{1}{(1-x)^2}$ $\iff \forall x \in I, \ \lambda'(x) = \frac{1}{1-x}$ $\iff \forall x \in I, \ \lambda(x) = -\ln(1-x)$

Ainsi, $z: x \mapsto -\frac{\ln(1-x)}{1-x}$.

Ensemble de solutions : $S = \{x \mapsto \frac{\lambda}{1-x} - \frac{\ln(1-x)}{1-x} \mid \lambda \in \mathbb{R}\}$

Exercice 11.2 $[\Diamond \Diamond \Diamond]$

Résoudre sur R_+^* le problème de Cauchy $\begin{cases} y' - \frac{2}{x}y = x^2 \cos x \\ y(\pi) = 0 \end{cases}.$

Solution homogène : $S_0 = \{x \mapsto \lambda x^2 \mid \lambda \in \mathbb{R}\}.$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

z est solution
$$\iff \forall x \in I \ \lambda'(x)x^2 = x^2 \cos x$$

 $\iff \forall x \in I \ \lambda'(x) = \cos x$
 $\iff \lambda = \sin$

Ainsi, $z: x \mapsto x^2 \sin x$.

Ensemble de solutions : $S = \{x \mapsto \lambda x^2 + x^2 \sin x \mid \lambda \in \mathbb{R}\}$

Conditions initiales : Soit $y \in S$. On a :

$$y(\pi) = 0 \iff \exists \lambda \in \mathbb{R} \mid \lambda \pi^2 + \pi^2 \sin(\pi) = 0$$
$$\iff \lambda \pi^2 = 0$$
$$\iff \lambda = 0$$

L'unique solution de ce problème de Cauchy est donc : $y: x \mapsto x^2 \sin x$.

Exercice 11.3 $[\Diamond \Diamond \Diamond]$

Trouver toutes les fonctions f dérivables sur \mathbb{R} telles que

$$\forall x \in \mathbb{R} \ f'(x) + f(x) = \int_0^1 f(t)dt$$

Analyse.

On suppose qu'il existe y dérivable sur $\mathbb R$ solution de cette équation.

Soit $x \in \mathbb{R}$.

En dérivant l'égalité, on obtient : y''(x) + y'(x) = 0. On pose g(x) = y'(x).

On a : g'(x) + g(x) = 0.

Solution générale : $S = \{x \mapsto \lambda e^{-x} \mid x \in \mathbb{R}\}.$

Ainsi, $g \in S$ et $\exists (\lambda, \mu) \in \mathbb{R}^2 \mid y(x) = -\lambda e^{-x} + \mu$.

On a:

$$y'(x) + y(x) = \int_0^1 y(t)dt \iff \lambda e^{-x} - \lambda e^{-x} + \mu = \left[\lambda e^{-t} + \mu t\right]_0^1$$
$$\iff \mu = \lambda e^{-1} + \mu - \lambda$$
$$\iff \lambda (e^{-1} - 1) = 0$$
$$\iff \lambda = 0$$

Ainsi, l'ensemble des solutions est : $\{x \mapsto \mu \mid \mu \in \mathbb{R}\}$. Synthèse.

Soit $x \in \mathbb{R}$ et $\mu \in \mathbb{R} \mid y(x) = \mu$. On a $y'(x) + y(x) = \mu$ et $\int_0^1 y(t)dt = \int_0^1 \mu dt = \mu$

Exercice 11.4 $[\blacklozenge \blacklozenge \blacklozenge]$ «Recollement»

Soit l'équation différentielle $x^2y' - y = 0$.

- 1. Résoudre sur \mathbb{R}_{+}^{*} et sur \mathbb{R}_{-}^{*} .
- 2. Trouver toutes les solutions définies sur \mathbb{R}
- 1. On se ramène à l'équation : $y' \frac{1}{r^2}y = 0$.

Pour $x \in \mathbb{R}_+^*$, l'ensemble de solutions $S_+ = \{x \mapsto \lambda e^{-\frac{1}{x}} \mid \lambda \in \mathbb{R}\}.$

Pour $x \in \mathbb{R}_{+}^{*}$, l'ensemble de solutions $S_{-} = \{x \mapsto \mu e^{-\frac{1}{x}} \mid \mu \in \mathbb{R}\}.$

2. Une solution de y sur \mathbb{R} est solution sur \mathbb{R}_{+}^{*} et \mathbb{R}_{+}^{*} . Ainsi, $\exists (\lambda, \mu) \in \mathbb{R}^{2}$ tels que

$$\forall x \in \mathbb{R}, y(x) = \begin{cases} \lambda e^{-\frac{1}{x}} & \text{si } x > 0\\ \mu e^{-\frac{1}{x}} & \text{si } x < 0 \end{cases}$$

On a:

$$\mu e^{-\frac{1}{x}} \xrightarrow[x \to 0^-]{} + \infty \text{ et } \lambda e^{-\frac{1}{x}} \xrightarrow[x \to 0^+]{} 0$$

Donc y est prolongeable en 0 si et seulement si $\mu = 0$. On a alors y(0) = 0.

On a:

$$x > 0: \frac{y(x) - y(0)}{x - 0} = \frac{\lambda e^{-\frac{1}{x}}}{x} = -\lambda \left(-\frac{1}{x}\right) e^{-\frac{1}{x}} \xrightarrow[x \to 0^+]{} 0 \ c.c.$$

$$x < 0: \frac{y(x) - y(0)}{x - 0} = 0 \xrightarrow[x \to 0^-]{} 0$$

Donc y est dérivable en 0 et y'(0) = 0.

La fonction est alors continue et dérivable sur \mathbb{R} et on a $0^2y'(0) - y(0) = 0$, l'équation est donc satisfaite en 0.

Les solutions sont donc les fonctions :

$$y(x) = \begin{cases} \lambda e^{-\frac{1}{x}} & \text{si } x > 0\\ 0 & \text{si } x \le 0 \end{cases} \quad (\lambda \in \mathbb{R})$$