#

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification /:	
C12N 15/12, C07K 14/47, C12N 9/12, 5/10, C07K 16/18, A61K 38/17	

(11) International Publication Number:

WO 00/06728

A2 (43) International Publication Date:

10 February 2000 (10.02.00)

(21) International Application Number:

PCT/US99/17132

(22) International Filing Date:

28 July 1999 (28.07.99)

(30) Priority Data:

09/123,494	28 July 1998 (28.07.98)	US
Not furnished	28 July 1998 (28.07.98)	US
09/152,814	14 September 1998 (14.09.98)	US
Not furnished	14 September 1998 (14.09.98)	US
09/173,482	14 October 1998 (14.10.98)	US
Not furnished	14 October 1998 (14.10.98)	US
60/106,889	3 November 1998 (03.11.98)	US
60/109,093	19 November 1998 (19.11.98)	US
60/113,796	22 December 1998 (22.12.98)	US
09/229,005	12 January 1999 (12.01.99)	US
Not furnished	12 January 1999 (12.01.99)	US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

US	Not furnished (CIP)
Filed on	28 July 1998 (28.07.98)
US	09/123,494 (CIP)
Filed on	28 July 1998 (28.07.98)
US	09/152,814 (CIP)
Filed on	14 September 1998 (14.09.98)
US	Not furnished (CIP)
Filed on	14 September 1998 (14.09.98)
US	09/173,482 (CIP)
Filed on	14 October 1998 (14.10.98)
US	Not furnished (CIP)
Filed on	14 October 1998 (14.10.98)
US	60/106,889 (CIP)
Filed on	3 November 1998 (03.11.98)
US	60/109,093 (CIP)
Filed on	19 November 1998 (19.11.98)
US	60/113,796 (CIP)
Filed on	22 December 1998 (22.12.98)
US	09/229,005 (CIP)
Filed on	12 January 1999 (12.01.99)
US	Not furnished (CIP)
Filed on	12 January 1999 (12.01.99)

(71) Applicant (for all designated States except US): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US). (72) Inventors; and

(75) Inventors/Applicants (for US only): HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12, Mountain View, CA 94040 (US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). CORLEY, Neil, C. [US/US]; 1240 Dale Avenue #30, Mountain View, CA 94040 (US). GUEGLER, Karl, J. [CH/US]; 1048 Oakland Avenue, Menlo Park, CA 94025 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). PATTERSON, Chandra [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). AU-YOUNG, Janice [US/US]; 1419 Kains Avenue, Berkeley, CA 94709 (US). GORGONE, Gina, A. [US/US]; 1253 Pinecrest Drive, Boulder Creek, CA 95006 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). AZIMZAI, Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA 94545 (US). REDDY, Roopa [IN/US]; 1233 W. McKinley Drive, Sunnyvale, CA 94086 (US). LU, Dyung, Aina, M. [US/US]; 55 Park Belmont Place. San Jose, CA 95136 (US). SHIH, Leo, L. [US/US]; Apt. B, 1081 Tanland Drive, Palo Alto, CA 94303 (US).

(74) Agents: BILLINGS, Lucy, J. et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ÉS, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: PHOSPHORYLATION EFFECTORS

(57) Abstract

The invention provides human phosphorylation effectors (PHSP) and polynucleotides which identify and encode PHSP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of PHSP.

Best Available Copy

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВЈ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	1L	Israel	MR	Mauritania	υG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	Pl,	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PHOSPHORYLATION EFFECTORS

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of phosphorylation effectors and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative, immune, and neuronal disorders.

Kinases and phosphatases are critical components of intracellular signal transduction 10 mechanisms. Kinases catalyze the transfer of high energy phosphate groups from adenosine triphosphate (ATP) to various target proteins. Phosphatases, in contrast, remove phosphate groups from proteins. Reversible protein phosphorylation is the main strategy for regulating protein activity in eukaryotic cells. In general, proteins are activated by phosphorylation in response to extracellular signals such as hormones, neurotransmitters, and growth and differentiation factors. 15 Protein dephosphorylation occurs when down-regulation of a signaling pathway is required. The coordinate activities of kinases and phosphatases regulate key cellular processes such as proliferation, differentiation, and cell cycle progression. Kinases comprise the largest known enzyme superfamily and are widely varied in their substrate specificities. Kinases may be categorized based on the specific amino acid residues that are phosphorylated in their substrates: 20 protein tyrosine kinases (PTK) phosphorylate tyrosine residues, and protein serine/threonine kinases (STK) phosphorylate serine and/or threonine residues. Almost all kinases contain a conserved 250-300 amino acid catalytic domain. This domain can be further divided into 11 subdomains. N-terminal subdomains I-IV fold into a two-lobed structure which binds and orients the ATP donor molecule, and subdomain V spans the two lobes. C-terminal subdomains VIA-XI bind the protein substrate and transfer the gamma phosphate from ATP to the hydroxyl group of a serine, threonine, or tyrosine residue. Each of the 11 subdomains contains specific catalytic residues or amino acid motifs characteristic of that subdomain. For example, subdomain I contains an 8-amino acid glycine-rich ATP binding consensus motif, subdomain II contains a critical lysine residue required for maximal catalytic activity, and subdomains VI and IX comprise 30 the highly conserved catalytic core. Kinases may also be categorized by additional amino acid sequences, generally between 5 and 100 residues, which either flank or occur within the kinase domain. These additional amino acid sequences regulate kinase activity and determine substrate specificity. (Reviewed in Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Books, Vol I:7-20 Academic Press, San Diego, CA.)

35 STKs include both protein kinase A (PKA) and calcium-dependent protein kinase C

(PKC), both of which transduce signals from plasma membrane receptors. The activities of PKA and PKC are directly regulated by second messenger signaling molecules such as cyclic AMP and diacylglycerol, respectively. A novel kinase identified by genetic analysis in the fission yeast Schizosaccharomyces pombe is encoded by the cek1⁺ gene and is related to both PKA and PKC
(Samejima, I. and Yanagida, M. (1994) Mol. Cell. Biol. 14:6361-6371). cek1⁺ encodes an unusually large kinase of 1309 amino acids. The kinase domain spans residues 585 to 987, and 112 additional amino acids are present in this domain between subdomains VII and VIII. Overexpression of cek1⁺ suppresses mutations in cut8⁺, a gene required for chromosome segregation during mitosis. Therefore, cek1⁺ may encode a unique member of the PKA/PKC
protein family with a role in mitotic signaling and cell cycle progression.

PTKs may be classified as either transmembrane or nontransmembrane proteins.

Transmembrane tyrosine kinases function as receptors for most growth factors. Binding of growth factor to the receptor activates the transfer of a phosphate group from ATP to selected tyrosine side chains of the receptor itself and other specific second messenger proteins. Growth factors

(GF) that associate with receptor PTKs include epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor. Nontransmembrane PTKs form signaling complexes with the cytosolic domains of plasma membrane receptors. Receptors that signal through nontransmembrane PTKs include cytokine, hormone, and antigen-specific lymphocytic receptors. Many PTKs were first identified as oncogene products in cancer cells in which PTK activation was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs.

Furthermore, cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Charbonneau, H. and Tonks, N. K. (1992) Annu. Rev. Cell Biol. 8:463-93). Regulation of PTK activity may therefore be an important strategy in controlling some types of cancer.

Some kinases utilize carbohydrates as their substrates and are important for glucose metabolism. For example, glycolysis employs four distinct kinases to effect the conversion of glucose to pyruvate, a key metabolite in the production of ATP. One of these enzymes is phosphofructokinase (PFK) which catalyzes the transfer of phosphate from ATP to fructose 6-phosphate. PFK is an allosteric enzyme and a key regulator of glycolysis. In certain genetic muscle disorders, such as muscle phosphofructokinase deficiency type VII, phosphofructokinase activity is absent in muscle and deficient in red blood cells. As a result, afflicted individuals suffer from mild hemolytic anemia and muscle pain (Isselbacher, K.J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York, NY, p. 2102).

Kinase-mediated phosphorylation is antagonized by the activity of phosphatases, which

35

remove phosphate groups by hydrolysis. Phosphatases are classified into one of three evolutionarily distinct families: the protein serine/threonine phosphatases (PPs), the protein tyrosine phosphatases, and the acid/alkaline phosphatases. PPs may be further categorized into four distinct groups: PP-I, PP-IIA, PP-IIB, and PP-IIC. (Cohen, P. (1989) Annu. Rev. Biochem. 58:453-508). PP-I, in particular, dephosphorylates many of the proteins phosphorylated by PKA and is therefore an important regulator of signal transduction pathways. Kinase-activated proteins which bind to and inhibit PP-I have been identified. These inhibitors potentiate the activity of kinases such as PKA by allowing protein substrates to remain in their phosphorylated, activated state. A novel inhibitor of PP-I has been purified from porcine aorta (Eto, M. et al. (1995) J. Biochem. 118:1104-1107; Eto, M. et al. (1997) FEBS Lett. 410:356-360). This inhibitor, called CPI17, is 147 amino acids in length and is activated by PKC. CPI17 expression is restricted to smooth muscle tissues such as aorta and bladder, suggesting that CPI17 functions in PKC-mediated signal transduction pathways in these tissues, possibly through a calcium-dependent mechanism.

The discovery of new phosphorylation effectors and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative, immune, and neuronal disorders.

SUMMARY OF THE INVENTION

20

25

15

The invention features substantially purified polypeptides, phosphorylation effectors, referred to collectively as "PHSP" and individually as "PHSP-1 to PHSP-31",. In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof.

The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-31, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 80% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof.

Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments

thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof.

The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:32-62, and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 80% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:32-62, and fragments thereof. The invention also provides an 15 isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:32-62, and fragments thereof.

10

The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof. In another aspect, the expression vector is contained within a host cell.

The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and 25 (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEO ID NO:1-31, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-31, and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

The invention also provides a method for treating or preventing a disorder associated with . decreased expression or activity of PHSP, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group

-:-

consisting of SEQ ID NO:1-31, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of PHSP, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof.

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows nucleotide and polypeptide sequence identification numbers (SEQ ID NO), clone identification numbers (clone ID), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding PHSP.

Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods and algorithms used for identification of PHSP.

Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as

determined by northern analysis, diseases, disorders, or conditions associated with these tissues,
and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding PHSP were isolated.

Table 5 shows the tools, programs, and algorithms used to analyze PHSP, along with applicable descriptions, references, and threshold parameters.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods

25 described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a,"

"an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for

example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an
antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled
in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention

35 belongs. Although any machines, materials, and methods similar or equivalent to those described

herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be 5 construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

15

"PHSP" refers to the amino acid sequences of substantially purified PHSP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, 10 and preferably the human species, from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which, when bound to PHSP, increases or prolongs the duration of the effect of PHSP. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of PHSP.

An "allelic variant" is an alternative form of the gene encoding PHSP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or 20 substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding PHSP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as PHSP or a polypeptide with at least one functional characteristic of PHSP. Included within this 25 definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding PHSP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding PHSP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change 30 and result in a functionally equivalent PHSP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of PHSP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with 35 uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine,

and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine.

The terms "amino acid" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of PHSP which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity or immunological activity of PHSP. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence.

Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

15

The term "antagonist" refers to a molecule which, when bound to PHSP, decreases the amount or the duration of the effect of the biological or immunological activity of PHSP.

Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of PHSP.

The term "antibody" refers to intact molecules as well as to fragments thereof, such as

20 Fab, F(ab')₂, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind PHSP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules

may be produced by any method including synthesis or transcription. Once introduced into a cell,

the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.

The term "biologically active," refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic PHSP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" or "complementarity" refer to the natural binding of
polynucleotides by base pairing. For example, the sequence "5' A-G-T 3" bonds to the
complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules
may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that
total complementarity exists between the single stranded molecules. The degree of
complementarity between nucleic acid strands has significant effects on the efficiency and strength
of the hybridization between the nucleic acid strands. This is of particular importance in
amplification reactions, which depend upon binding between nucleic acids strands, and in the
design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding PHSP or fragments of PHSP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using the XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.

The term "correlates with expression of a polynucleotide" indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence encoding PHSP, by

northern analysis is indicative of the presence of nucleic acids encoding PHSP in a sample, and

thereby correlates with expression of the transcript from the polynucleotide encoding PHSP.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to the chemical modification of a polypeptide sequence, or a

5 polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for
example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide
encodes a polypeptide which retains at least one biological or immunological function of the
natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any
similar process that retains at least one biological or immunological function of the polypeptide

10 from which it was derived.

The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

The phrases "percent identity" and "% identity" refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison WI) which creates alignments between two or more sequences according to methods selected by the user, e.g., the clustal method. (See, e.g., Higgins, D.G. and P.M. Sharp (1988) Gene 73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence A

and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between 5 sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

The term "humanized antibody" refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

10

15

"Hybridization" refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., Cot or Rot analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate 20 substrate to which cells or their nucleic acids have been fixed).

The words "insertion" or "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

"Immune response" can refer to conditions associated with inflammation, trauma, immune 25 disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.

The terms "element" or "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

The term "modulate" refers to a change in the activity of PHSP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of PHSP.

The phrases "nucleic acid" or "nucleic acid sequence," as used herein, refer to a 35 nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to

DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material. In this context, "fragments" refers to those nucleic acid sequences which, comprise a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:32-62, for example, as distinct from any other sequence in the same genome. For example, a fragment of SEQ ID NO:32-62 is useful in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:32-62 from related polynucleotide sequences. A fragment of SEQ ID NO:32-62 is at least about 15-20 nucleotides in length. The precise length of the fragment of SEQ ID NO:32-62 and the region of SEQ ID NO:32-62 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment. In some cases, a fragment, when translated, would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length polypeptide

The terms "operably associated" or "operably linked" refer to functionally related nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide. While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.

The term "oligonucleotide" refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or microarray. "Oligonucleotide" is substantially equivalent to the terms "amplimer," "primer," "oligomer," and "probe," as these terms are commonly defined in the art.

20

25

30

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding PHSP, or fragments thereof, or PHSP itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" or "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon

the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "stringent conditions" refers to conditions which permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt concentration, the concentration of organic solvent, e.g., formamide, temperature, and other conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

"Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "variant" of PHSP polypeptides refers to an amino acid sequence that is altered by one or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). More rarely, a variant may have "nonconservative" changes (e.g., replacement of

glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).

The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to PHSP. This definition may also include, for example, "allelic" (as defined above), "splice," "species," or "polymorphic" variants, A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The 10 corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide 15 polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

THE INVENTION

5

30

The invention is based on the discovery of new human phosphorylation effectors (PHSP), 20 the polynucleotides encoding PHSP, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, immune, and neuronal disorders.

Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding PHSP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte 25 clones in which nucleic acids encoding each PHSP were identified, and column 4 shows the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries. The clones in column 5 were used to assemble the consensus nucleotide sequence of each PHSP and are useful as fragments in hybridization technologies.

The columns of Table 2 show various properties of each of the polypeptides of the invention: column 1 references the SEQ ID NO and column 2 shows the number of amino acid residues in each polypeptide. Columns 3 and 4 show potential phosphorylation sites and potential glycosylation sites, respectively. Column 5 shows the amino acid residues comprising signature sequences and motifs. Column 6 shows homelogous sequences as identified by BLAST analysis, 35 while column 7 shows analytical methods used to identify each polypeptide through sequence

homology and protein motifs.

The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding PHSP. The first column of Table 3 lists the SEQ ID NOs. Column 2 lists tissue categories which express PHSP as a fraction of total tissue categories expressing PHSP. Column 3 lists diseases, disorders, or conditions associated with those tissues expressing PHSP. Column 4 lists the vectors used to subclone the cDNA library.

The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding PHSP were isolated. Column 1 references the SEQ ID NO, column 2 shows the cDNA libraries from which these clones were isolated, and column 3 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2.

The following fragments of the nucleotide sequences encoding PHSP are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO:32-62 and to distinguish between SEQ ID NO:32-62 and related polynucleotide sequences. The useful 15 fragments include, the fragment of SEQ ID NO:32 from about nucleotide 81 to about nucleotide 110; the fragment of SEQ ID NO:33 from about nucleotide 323 to about nucleotide 352; the fragment of SEQ ID NO:34 from about nucleotide 83 to about nucleotide 112; the fragment of SEQ ID NO:35 from about nucleotide 524 to about nucleotide 553; the fragment of SEO ID NO:36 from about nucleotide 275 to about nucleotide 346; the fragment of SEQ ID NO:37 from 20 about nucleotide 1328 to about nucleotide 1396; the fragment of SEQ ID NO:38 from about nucleotide 245 to about nucleotide 304; the fragment of SEO ID NO:39 from about nucleotide 1253 to about nucleotide 1312; the fragment of SEQ ID NO:41 from about nucleotide 117 to about nucleotide 170; the fragments of SEQ ID NO:42 from about nucleotide 109 to about nucleotide 153, and from about nucleotide 325 to about nucleotide 369; the fragments of SEQ ID NO:43 from 25 about nucleotide 380 to about nucleotide 424, and from about nucleotide 1190 to about nucleotide 1234; the fragment of SEQ ID NO:44 from about nucleotide 1 to about nucleotide 46; the fragment of SEQ ID NO:45 from about nucleotide 533 to about nucleotide 577; the fragments of SEQ ID NO:46 from about nucleotide 109 to about nucleotide 153, and from about nucleotide 379 to about nucleotide 423; the fragment of SEQ ID NO:47 from about nucleotide 1730 to about 30 nucleotide 1774; the fragment of SEQ ID NO:48 from about nucleotide 433 to about nucleotide 477; the fragment of SEQ ID NO:49 from about nucleotide 1117 to about nucleotide 1155; the fragment of SEQ ID NO:50 from about nucleotide 166 to about nucleotide 213; the fragment of SEQ ID NO:51 from about nucleotide 60 to about nucleotide 95; the fragment of SEO ID NO:52 from about nucleotide 326 to about nucleotide 370; the tragment of SEQ ID NO:53 from about nucleotide 25 to about nucleotide 66; the fragment of SEQ ID NO:54 from about nucleotide 55 to

about nucleotide 102; the fragment of SEQ ID NO:55 from about nucleotide 138 to about nucleotide 167; the fragment of SEQ ID NO:56 from about nucleotide 29 to about nucleotide 58; the fragment of SEQ ID NO:57 from about nucleotide 455 to about nucleotide 484; the fragment of SEQ ID NO:58 from about nucleotide 226 to about nucleotide 255; the fragment of SEQ ID NO:59 from about nucleotide 557 to about nucleotide 598; the fragment of SEQ ID NO:60 from about nucleotide 284 to about nucleotide 325; the fragment of SEQ ID NO:61 from about nucleotide 1043 to about nucleotide 1090; and the fragment of SEQ ID NO:62 from about nucleotide 84 to about nucleotide 132. The polypeptides encoded by the fragments of SEQ ID NO:32-62 are useful, for example, as immunogenic peptides.

The invention also encompasses PHSP variants. A preferred PHSP variant is one which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% amino acid sequence identity to the PHSP amino acid sequence, and which contains at least one functional or structural characteristic of PHSP.

The invention also encompasses polynucleotides which encode PHSP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:32-62, which encodes PHSP.

10

The invention also encompasses a variant of a polynucleotide sequence encoding PHSP. In particular, such a variant polynucleotide sequence will have at least about 80%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding PHSP. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:32-62 which has at least about 80%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:32-62. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of PHSP.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding PHSP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring PHSP, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode PHSP and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring PHSP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding

PHSP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding PHSP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode PHSP and PHSP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding PHSP or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEO ID 15 NO:32-62 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low 20 stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30°C, more preferably of at least about 37°C, and most preferably of at least about 42°C. Varying additional parameters, such as hybridization time, the 25 concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred embodiment, hybridization will occur at 30°C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37°C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 µg/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42°C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50 % formamide, and 200 μ g/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

The washing steps which follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can

be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least about 25°C, more preferably of at least about 42°C, and most preferably of at least about 68°C. In a preferred embodiment, wash steps will occur at 25°C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 (Hamilton, Reno NV), Peltier thermal cycler 200 (PTC200; MJ Research, Watertown MA) and the ABI CATALYST 800 (Perkin-Elmer). Sequencing is then carried out using the ABI 373 or 377 DNA sequencing systems (Perkin-Elmer), or the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding PHSP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions

25

and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-306). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCENAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode PHSP may be cloned in recombinant DNA molecules that direct expression of PHSP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express PHSP.

25

30

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter PHSP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction

sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding PHSP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucl. Acids Res. Symp. Ser. 215-223, and Horn, T. et al. (1980) Nucl. Acids Res. Symp. Ser. 225-232.)

5 Alternatively, PHSP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of PHSP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g, Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.)

The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY.)

In order to express a biologically active PHSP, the nucleotide sequences encoding PHSP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and 20 inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding PHSP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding PHSP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding PHSP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression-vectors containing sequences encoding PHSP and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory

Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding PHSP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

10

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding PHSP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding PHSP can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or pSPORT1 plasmid (Life Technologies). Ligation of sequences encoding PHSP into the vector's multiple cloning site 15 disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of PHSP are needed, e.g. for the production of antibodies, 20 vectors which direct high level expression of PHSP may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of PHSP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct 25 either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Grant et al. (1987) Methods Enzymol. 153:516-54; and Scorer, C. A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of PHSP. Transcription of sequences encoding PHSP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science. 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, 35 e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY,

pp. 191-196.)

10

15

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding PHSP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader 5 sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses PHSP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of PHSP in cell lines is preferred. For example, sequences encoding PHSP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before 20 being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These 25 include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk or apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides, neomycin and G-418; and als or pat 30 confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; 35 Clontech), B glucuronidase and its substrate B-glucuronide, or luciferase and its substrate luciferin may

be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding PHSP is inserted within a marker gene sequence, transformed cells containing sequences encoding PHSP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding PHSP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding PHSP and that express PHSP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of PHSP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on PHSP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St Paul MN, Sect. IV; Coligan, J. E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ).

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding PHSP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.

30 Alternatively, the sequences encoding PHSP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega

35 (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for

ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding PHSP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode PHSP may be designed to contain signal sequences which direct secretion of PHSP through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC, Bethesda MD) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding PHSP may be ligated to a heterologous sequence resulting in translation of a 20 fusion protein in any of the aforementioned host systems. For example, a chimeric PHSP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of PHSP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST). maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metalchelate resins, respectively. FLAG, c-mvc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies 30 that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the PHSP encoding sequence and the heterologous protein sequence, so that PHSP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

- ز ی -

In a further embodiment of the invention, synthesis of radiolabeled PHSP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract systems (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid 5 precursor, preferably 35S-methionine.

Fragments of PHSP may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, supra, pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Various fragments 10 of PHSP may be synthesized separately and then combined to produce the full length molecule.

THERAPEUTICS

20

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of PHSP and protein phosphatases. In addition, the expression of PHSP is closely associated with reproductive tissue, nervous tissue, gastrointestinal tissue, cell proliferation, cancer, 15 inflammation, and immune response. Therefore, PHSP appears to play a role in cell proliferative, immune, and neuronal disorders. In the treatment of disorders associated with increased PHSP expression or activity, it is desirable to decrease the expression or activity of PHSP. In the treatment of disorders associated with decreased PHSP expression or activity, it is desirable to increase the expression or activity of PHSP.

Therefore, in one embodiment, PHSP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PHSP. Examples of such disorders include, but are not limited to, a cell proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary 25 thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an immune disorder, such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, enthroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis,

hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a neuronal disorder, such as akathesia, Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, dementia, depression, diabetic neuropathy, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, peripheral neuropathy, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, postherpetic neuralgia, schizophrenia, and Tourette's disorder.

In another embodiment, a vector capable of expressing PHSP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PHSP including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified

15 PHSP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PHSP including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of PHSP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PHSP including, but not limited to, those listed above.

In a further embodiment, an antagonist of PHSP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of PHSP. Examples of such disorders include, but are not limited to, those described above. In one aspect, an antibody which specifically binds PHSP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express PHSP.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding PHSP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of PHSP including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of PHSP may be produced using methods which are generally known in the art. In particular, purified PHSP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind PHSP. Antibodies to PHSP may also be generated using methods that are well known in the art. Such antibodies may include, but are not 5 limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with PHSP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols. polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to PHSP have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of PHSP amino acids may be 20 fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

15

Monoclonal antibodies to PHSP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma 25 technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate 30 antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce PHSP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton

D.R. (1991) Proc. Natl. Acad. Sci. 88:10134-10137.)

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86: 3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for PHSP may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between PHSP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering PHSP epitopes is preferred, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for PHSP. Affinity is expressed as an association constant, K_a, which is defined as the molar concentration of PHSP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple PHSP epitopes, represents the average affinity, or avidity, of the antibodies for PHSP. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular PHSP epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10° to 10¹² L/mole are preferred for use in immunoassays in which the PHSP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 106 to 10° L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of PHSP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington, DC; Liddell, J. E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For

example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is preferred for use in procedures requiring precipitation of PHSP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding PHSP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding PHSP may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding PHSP. Thus, complementary molecules or fragments may be used to modulate PHSP activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding PHSP.

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding PHSP. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)

Genes encoding PHSP can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding PHSP. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding PHSP. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA

by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding PHSP.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding PHSP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nature Biotechnology 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such

therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of PHSP, antibodies to PHSP, and mimetics, agonists, antagonists, or inhibitors of PHSP. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of <u>Remington's Pharmaceutical Sciences</u> (Maack Publishing, Easton PA).

15

20

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees. capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions; which may also contain gum arabic, tale, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.

Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of PHSP, such labeling would include amount, frequency, and method of administration.

30

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example PHSP or fragments thereof, antibodies of PHSP, and agonists, antagonists or inhibitors of PHSP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such 15 compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the 20 active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 μ g to 100,000 μ g, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

25

In another embodiment, antibodies which specifically bind PHSP may be used for the diagnosis of disorders characterized by expression of PHSP, or in assays to monitor patients being treated with PHSP or agonists, antagonists, or inhibitors of PHSP. Antibodies useful for diagnostic

purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for PHSP include methods which utilize the antibody and a label to detect PHSP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring PHSP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of PHSP expression. Normal or standard values for PHSP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to PHSP under conditions suitable 10 for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of PHSP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding PHSP may be used for 15 diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences. complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of PHSP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of PHSP, and to monitor regulation of PHSP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding PHSP or closely related molecules may be used to identify nucleic acid sequences which encode PHSP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification (maximal, high, 25 intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding PHSP, allelic variants, or related sequences.

20

Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the PHSP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:32-30 62 or from genomic sequences including promoters, enhancers, and introns of the PHSP gene.

Means for producing specific hybridization probes for DNAs encoding PHSP include the cloning of polynucleotide sequences encoding PHSP or PHSP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a

variety of reporter groups, for example, by radionuclides such as ³²P or ³⁵S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding PHSP may be used for the diagnosis of disorders associated with expression of PHSP. Examples of such disorders include, but are not limited to, a cell 5 proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an immune disorder. such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-15 candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a neuronal disorder, such as akathesia, 25 Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, dementia, depression, diabetic neuropathy, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, peripheral neuropathy, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, postherpetic neuralgia, schizophrenia, and Tourette's disorder. The polynucleotide sequences encoding PHSP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISAlike assays; and in microarrays utilizing fluids or tissues from patients to detect altered PHSP expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding PHSP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding PHSP may be labeled by standard methods and added to a fluid or tissue sample

from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding PHSP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of PHSP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding PHSP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding PHSP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding PHSP, or a fragment of a polynucleotide complementary to the polynucleotide encoding PHSP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

35 Methods which may also be used to quantify the expression of PHSP include radiolabeling

or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding PHSP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome

25 mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra,
pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the
Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene
encoding PHSP on a physical chromosomal map and a specific disorder, or a predisposition to a
specific disorder, may help define the region of DNA associated with that disorder. The nucleotide

30 sequences of the invention may be used to detect differences in gene sequences among normal,
carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known.

New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, PHSP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between PHSP and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds

having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT

application WO84/03564.) In this method, large numbers of different small test compounds are

synthesized on a solid substrate. The test compounds are reacted with PHSP, or fragments thereof,

and washed. Bound PHSP is then detected by methods well known in the art. Purified PHSP can also

be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively,

non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding PHSP specifically compete with a test compound for binding PHSP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with PHSP.

In additional embodiments, the nucleotide sequences which encode PHSP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

25

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications, and publications mentioned above and below, in particular U.S. Ser. No. 09/173,482, 09/123,494, 09/152,814, 09/229,005, 60/106,889, 60/109,093, and 60/113,796, are hereby expressly incorporated by reference.

EXAMPLES

I. Construction of cDNA Libraries

10

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some 5 tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA 15 purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 20 5.1-6.6). Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs 25 were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), pSPORT1 plasmid (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent E. coli cells including XL1-BLUE, XL1-BLUEMRF, or SOLR from Stratagene or DH5a, DH10B, or ELECTROMAX DH10B from Life Technologies.

30 II. Isolation of cDNA Clones

Plasmids were recovered from host cells by in vivo excision, using the UNIZAP vector system (Stratagene) or cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD), and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, 35 QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid kit from QIAGEN.

Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a Fluoroskan II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Perkin-Elmer) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing systems (Perkin-Elmer) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the

25 art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions, references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software. (DNASTAR).

The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST,

dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases, such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS to acquire annotation using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) Curr. Opin. Str. Biol. 6:361-365.)

The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:32-62. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

IV. Northern Analysis

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, <u>supra</u>, ch. 7; Ausubel, 1995, <u>supra</u>, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ database (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

% sequence identity x % maximum BLAST score

100

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding PHSP occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic,

developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation/trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories.

5 Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3.

V. Extension of PHSP Encoding Polynucleotides

The full length nucleic acid sequences of SEQ ID NO:32-62 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 µl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 µl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 µl to 10 µl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent <u>E. coli</u> cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulphoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequences of SEQ ID NO:32-62 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

VI. Labeling and Use of Individual Hybridization Probes

20

Hybridization probes derived from SEQ ID NO:32-62 are employed to screen cDNAs,
genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ-32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba1, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon

membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40 °C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are compared.

5 VII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, supra.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

25 VIII. Complementary Polynucleotides

Sequences complementary to the PHSP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring PHSP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of PHSP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomai binding to the PHSP-encoding transcript.

IX. Expression of PHSP

Expression and purification of PHSP is achieved using bacterial or virus-based expression

systems. For expression of PHSP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express PHSP upon induction with isopropyl beta-Dthiogalactopyranoside (IPTG). Expression of PHSP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is 10 replaced with cDNA encoding PHSP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. 15 et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, PHSP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-20 kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from PHSP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch 10 and 16). Purified PHSP obtained by these methods can be used directly in the following activity assay.

X. Demonstration of PHSP Activity

30

PHSP protein kinase is measured by the phosphorylation of a substrate in the presence of gamma-labeled ³²P-ATP. PHSP is incubated with an appropriate substrate and ³²P-ATP in a buffered solution. ³²P-labeled product is separated from free ³²P-ATP by gel electrophoresis or chromatographic procedures, and the incorporated ³²P is quantified by phosphorimage analysis or using a scintillation counter. The amount of ³²P detected is proportional to the activity of PHSP in this assay. The specific amino acid residue phosphorylated by PHSP may be determined by

phosphoamino acid analysis of the labeled, hydrolyzed protein.

PHSP phosphatase activity is measured by the removal of phosphate from a [32P]-labelled substrate. PHSP is incubated with an appropriate [32P]-labelled substrate in a buffered solution. Reaction products are separated by gel electrophoresis or chromatographic procedures, and the level 5 of ³²P associated with the substrate molecule is quantified by phospho-image analysis or scintillation counting. The difference in 32P associated with untreated substrate versus PHSP-treated substrate is a measure of phosphatase activity and is proportional to PHSP activity.

XI. **Functional Assays**

30

PHSP function is assessed by expressing the sequences encoding PHSP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 μ g of recombinant vector are transiently transfected into a human cell line, preferably of endothelial or hematopoietic origin, using either liposome 15 formulations or electroporation. 1-2 μ g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-20 based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate properties, for example, their apoptotic state. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation 25 of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of PHSP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding PHSP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success 35 NY). mRNA can be purified from the cells using methods well known by those of skill in the art.

Expression of mRNA encoding PHSP and other genes of interest can be analyzed by northern analysis or microarray techniques.

XII. Production of PHSP Specific Antibodies

PHSP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the PHSP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIII. Purification of Naturally Occurring PHSP Using Specific Antibodies

Naturally occurring or recombinant PHSP is substantially purified by immunoaffinity chromatography using antibodies specific for PHSP. An immunoaffinity column is constructed by covalently coupling anti-PHSP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing PHSP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of PHSP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/PHSP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and PHSP is collected.

30 XIV. Identification of Molecules Which Interact with PHSP

PHSP, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled PHSP, washed, and any wells with labeled PHSP complex are assayed. Data obtained using different concentrations of PHSP are used to calculate values for the number, affinity, and association of PHSP with the candidate molecules.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

TABLE

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
1	32	132240	BMARNOT02	132240H1 and 132240R1 (BMARNOT02), 3254142H1 (OVARTUN01), 1453821X14F1 and 1453821F6 (PENITUT01)
2	33	2180116	SININOT01	2180116H1 and 2180116T6 (SININOT01), 3046645H1 (HEAANOT01), 1918183H1 (PROSNOT06), and 1482405F1 (CORPNOT02)
· ·	34	2197671	SPLNFET02	2197671H1 (SPLNFET02), 666366X22R1 (SCORNOT01), 693783X14 (SYNORAT03), 824265X33F1 (PROSNOT06), 039482R1 and 039482F1 (HUVENOB01), 1453984T6 (PENITUT01), 1663987H1 (BRSTNOT09), and 125901R1 (LUNGNOT01)
Ų	35	2594943	OVARTUT02	2594943H1 (OVARTUT02), 3617557H1 (EPIPNOT01), 2269005R6 (UTRSNOT02), 1307764F6 (COLNFET02), 1377794F6 (LUNGNOT10), and 1286608H1 (BRAINOT11)
S	36	1513871	PANCTUT01	754239R6 (BRAITUT02), 1513871H1 (PANCTUT01), 2414420F6 (HNT3AZT01), 3291775F6 (BONRFET01), 3821451F6 (BONSTUT01)
9	37	156108	тнр1ргв02	156108F1 and 156108H1 (THP1PLB02), 336346R6 (EOSIHET02), 1319528F1 (BLADNOT04), 2375549F6 (ISLTNOT01), SBFA04563F1, SBFA04977F1
7	38	2883243	UTRSTUT05	1342082F6 (COLNTUTO3), 1933387T6 (COLNNOT16), 2766460F6 (BRSTNOT12), 2883243H1 (UTRSTUTO5), 3524262H1 (ESOGTUN01), 3766487F6 (BRSTNOT24)

TABLE 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
	39	3173355	UTRSTUT04	1300803F6 and 1300803T6 (BRSTNOT07), 2477542F6 (SMCANOT01), 2477542T6 (SMCANOT01), 2875968H1 (THYRNOT10), 3173355F6 and 3173355H1 (UTRSTUT04), 3290825H1 (BONRFET01), 5192561H1 (OVARDIT06)
6	40	5116906	SMCBUNT01	267517F1 (HNT2NOT01), 263823R1 (HNT2AGT01), 5116906H1 (SMCBUNT01)
10	41	940589	ADRENOT03	029801R6 (SPLNFET01), 940589H1 (ADRENOT03), 1737403T6 (COLNNOT22), 1805477F6 and 1805477T6 (SINTNOT13), 2447613H1 (THP1NOT03), 3408563H1 (PROSTUS08), 3519506H1 (LUNGNON03), 3637343T6 (LUNGNOT30)
11	42	304421	TESTNOT04	304421H1, 304421X318B2, and 304421X323B2 (TESTNOT04), 2639579F6 (BONTNOT01), 2951859H1 (KIDNFET01)
12	43	1213802	BRSTTUT01	894574R1 (BRSTNOT05), 1213802H1 (BRSTTUT01), 1233414F1 and 1234238H1 (LUNGFET03), 1255782F2 and 1255782T1 (MENITUT03), 1455429F1 (COLNFET02), 1576102T1 (LNODNOT03), 2189267F6 (PROSNOT26), 2748179F6 (LUNGTUT11), 2831667H1 (TLYMNOT03), 3031229H1 (TLYMNOT05), 3054893H1 (LNODNOT08), 3797030F6 (SPLNNOT12), 3880154H1 (SPLNNOT11), 4852525H1 (TESTNOT10), 5514137H1 (BRADDIR01), 5518378H1
13	44	1378134	LUNGNOT10	1378134H1 and 1378134X11 (LUNGNOT10), 2205185F6 (SPLNFET02), 4959694H1 (TLYMNOT05), SAMA00107F1, SAMA00160F1, SAMA00020F1

TABLE 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
14	45	1490070	UCMCL5T01	432218H1 (BRAVUNTO2), 1490070H1 (UCMCL5T01), 1535394F1 (SPLNNOTO4), 1616509F6 and 1616509T6 (BRAITUT12), 2490845H1 (EOSITXT01), 2723789F6 (LUNGTUT10), SAOA00263F1
15	46	1997814	BRSTTUT03	855350R1 (NGANNOT01), 875417R1 (LUNGAST01), 895096R1 (BRSTNOT05), 1271348F1 (TESTTUT02), 1331289F6 (PANCNOT07), 1359243F1 (LUNGNOT12), 1540824T1 (SINTTUT01), 1839828H1 (EOSITXT01), 1997814H1 (BRSTTUT03), 2170638F6 (ENDCNOT03), 3751363F6 (UTRSNOT18)
16	47	2299715	BRSTNOT05	637354R6 and 637354T6 (NEUTGMT01), 1852144F6 (LUNGFET03), 2172576F6 (ENDCNOT03), 2232449F6 (PROSNOT16), 2299715H1 (BRSTNOT05), 2509737X325D2 (CONUTUT01), 2606210F6 (LUNGTUT07), 2692024F6 (LUNGNOT23), 2805893F6 (BLADTUT08), 2986160H1 (CARGDIT01), 3085382H1 (HEAONOT03), 3136101F6 and 3136587H1 (SMCCNOT01), 4249977H1 (BRADDIR01)
17	48	209854	SPLNNOT02	209854H1 and 209854T6 (SPLNNOT02), 3152165R6 and 3152165T6 (ADRENON04)
18	49	1384286	BRAITUT08	676123R6 and 676123T6 (CRBLNOT01), 989218X11 and 989218X12 (LVENNOT03), 1384286H1 (BRAITUT08), 3099868H1 (PROSBPT03), 4693167H1 (BRAENOT02)
19	50	1512656	PANCTUT01	322847X5 (EOSIHET02), 1253795T6 (LUNGFET03), 1512656H1 (PANCTUT01), 1561686X303D1 (SPLNNOT04), 2212305H1 (SINTFET03), 2697679H1 (UTRSNOT12), 3205172H1 (PENCNOT03), 5313318H1 (KIDETXS02)

TABLE 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
20	51	2098635	BRAITUT02	1268848T1, 1268848X301F1, and 2157157H1 (BRAINOT09), 2098635H1 and 2098635K6 (BRAITUT02), 2198819F6, 2198819X301D4, 2198819X303D1, 2198819X309D2, and 2198819X309D4 (SPLNFET02), 2784975H2 (BRSTNOT13), 3320340H1 (PROSBPT03)
21	52	2446646	THP1NOT03	000297R6 and 000297X61 (U937NOT01), 2446646H1 (THP1NOT03), 2557274F6 (THYMNOT03)
22	53	2764911	BRSTNOT12	678618T6 and 678618X14 (UTRSNOT02), 2304126R6 (BRSTNOT05), 2764911H1 (BRSTNOT12), 2834475F6 (TLYMNOT03), 2915803F6 (THYMFET03), 3035012F6 (TLYMNOT05), SAFC00027F1, SAFC00254F1, SAFC02376F1, SAFC01609F1
23	54	3013946	MUSCNOT07	673753H1 (CRBLNOT01), 989218X11 and 989218X14 (LVENNOT03), 2821720F6 (ADRETUT06), 3013946F6, 3013946H1, and 3013946T6 (MUSCNOT07), 4693167H1 (BRAENOT02)
24	55	067967	HUVESTB01	067967X92, 067966R1, and 067967H1 (HUVESTB01), SAIA02074F1, SAIA03254F1, SAIA03603F1, and SAIA02259F1
25	56	346275	THYMNOT02	346275H1 (THYMNOT02), 609792X12 (COLNNOT01), SAGA03543F1, SAGA02528F1, and SAGA00285F1
26	57	283746	CARDNOT01	283746H1 and 283746X10 (CARDNOTO1), 4903108H1 (TLYMNOTO8), 557918X15 (MPHGLPT02), and 2379045F6 (ISLTNOT01)
27	58	2696537	UTRSNOT12	2696537H1 (UTRSNOT12), 3173337F6 (UTRSTUT04), 082658X100 (HUVESTB01), and 603219T6 (BRSTTUT01)

TABLE 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID Library	Library	Fragments
28	59	551178	BEPINOT01	551178H1 (BEPINOTO1), 861522R1 (BRAITUTO3), 965838R1 (BRSTNOT05), 1574007F1 and 1574007T1 (LNODNOT03), 1830083T6 and 1831194T6 (THP1AZT01), 3098496H1 (CERVNOT03), 3293481H1 (TLYJINT01)
59	09	619292	PGANNOT01	613165F1 (COLNTUT02), 619292H1 and 619292X13 (PGANNOT01)
30	61	2054049	BEPINOT01	1736355F6 (COLNNOT22), 2054049H1 (BEPINOT01), 2379092T6 (ISLTNOT01), 3127284T3 (LUNGTUT12), 3136377F6 (SMCCNOT01), SBMA00545F1, SBMA00827F1, SBMA02930F1, SBMA02853F1
31	62	2843910	DRGLNOT01	036294X71 (HUVENOB01), 066017X102, 068399R1, and 068399X3 (HUVESTB01), 1527276H1 (UCMCL5T01), 1846570T6 (COLNNOT09), 2843910H1 (DRGLNOT01)

TABLE 2

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Potential Phosphorylation Glycosylation Sites Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
ſ	300	S3 S15 S19 S20 S24 T98 S125 S231 T238 S257 S282 S12 S41 S70 T120 T143 S146 T242	N85 N88 N96	Protein kinase motifs: G161-F256 catalytic tk domain IX: V180-E202	Protein kinase	BLAST PFAM PRINTS
2	147	S85 T38 S90		Calcium-binding repeat motifs: G28-L115	PKC- potentiated inhibitory protein of PP1 (CP117)	BLAST PRINTS BLOCKS
~	431	T178 S282 T25 S34 S75 S106 S194 S198 T208 T264 S299 S303 S304 S308 T328 S345 S388 T46 S137 S260	N44 N242	PTK signatures: A18-Y283 ATP-binding site: I30-K53, E127-G164. Y196-H219 PK catalytic subdomains: M99-E112, Y134-L152 G181-I191, Y243-	Ste20-like protein kinase	BLOCKS PRINTS PROFILESCAN BLAST
4	218	S108 S68 S90 T133 T170 S172 T34 T123 T207		Phosphofructokinase domains: I47, V177-Q195 L148-Y164		PRINTS

ABLE 2 cont.

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
S	474	S14 S89 S98 S132 S472 T22 S26 S62 S66 T204 T320 T345 T359 S427 S443 S94 S128 T211 T336 S443 Y155		Protein kinase family signature: Y144-F425	serine /threonine protein kinase	MOTIFS PFAM BLOCKS PRINTS ProfileScan BLAST
v	540	S102 S183 S267 T296 T301 S442 S34 S58 S180 S207 S224 T360 S374 S401 S428 S478 T484 Y23	N100 N391 N457 N537	Protein kinase family signature: L18-L287	serine /threonine protein kinase	MOTIFS PFAM BLOCKS PRINTS PROFILESCAN BLAST
7	454	S57 S69 S130 T203 T212 S338 S420 S91 T101 T220 S271 S295 T315 S359 S381	NSS N140 N218 N403 N437 N441	SH2 domain: W63-Y138, W354-Y428 PI 3 kinase P85 regulator: K153-G176, A216- N257, R287-N332	phosphatidyl- inositol 3- kinase	PFAM BLOCKS PRINTS BLAST
ω	502	S246 T498 T21 S65 S76 T193 T203 S275 S312 S355 T484 S106 T222 S323 T498	N302 N414	Signal petide: M1-T21 SH2 domain: V70-E80 ER targeting signal: K499-L502	tyrosine kinase	SigPept BLOCKS MOTIFS BLAST

_	_
,	ز
5	Ξ
٢	
ر ر	1
I	ļ
AR	3
٥	

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Potential Phosphorylation Glycosylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
თ	281	T66 T140 T141 T182 S210	N117 N139	Signal peptide: M1-I76	calcium /calmodulin- dependent protein kinase	PFAM BLAST
10	510	T297 S323 S358 S51 T312 S323 T325 S329 T377 T390 T483 S24 S152 T201 S210 S247 T292 T406 T407	N185 N349 N381 N405	Protein kinase family signature: R52-V261	Serine /threonine protein kinase	PFAM BLOCKS PRINTS MOTIFS BLAST
11	248	S5 S20 S36 T210 T245	N208	Tyrosine specific phosphatase active site: F166-A220 Dual specificity phosphatase: H95-R240	Tyrosine phosphatase or Dual specificity phosphatase	BLAST, MOTIFS BLOCKS, PRINTS PROFILESCAN PFAM

cont.
2
LE
YB.
7

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
12	810	\$62 \$290 T429 \$758 T17 T104 \$108 T216 \$279 T316 \$330 T360 \$386 T473 \$425 \$465 T473 \$497 T547 T561 T715 \$733 \$738 \$768 \$196 \$222 \$229 \$267 T281 T321 T347 \$370 T400 T512 \$534 T609 \$617 \$63 \$751 T754 T762 Y67	2 33		Protein kinase	BLAST, MOTIFS
13	549	S6 T502 T21 T116 S125 S320 T417 S46 S87 T240 S390 S397 S405 S430 S497	N238	ATP/GTP-binding site (p-loop): G58-T65 Protein kinase signature: 1176-K199 I292-L304 Y347-L370 F456-L483	Dual specificity tyrosine /serine protein kinase	BLAST, MOTIFS BLOCKS, PRINTS PFAM
14	416	S312 T20 T97 S104 S183 T185 T211 T274 S381 S411 S72 S79 S140 S318 Y53		SH3 domain: A366-D384 N402-E414	PEST phosphatase interacting protein	BLAST, MOTIFS BLOCKS, PRINTS PFAM

,		ز
	Ç	3
	C	2
	Č	ذ
(1
C	I	נ
-	_	3
Ć	Y	ì
•	1	ä
C	_	3

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
	425	T34 S233 S234 S25 S107 T144 T198 T250 S251 S258 S282 S300 S324 S345 T390 T51 T133 S365 S383 Y71	N23 N176 N362		SH3 binding protein	BLAST, MOTIFS
	1135	S77 T187 S259 S554 S815 S9 S17 T59 S112 T124 T222 S264 T319 S324 S326 S550 T572 S625 S681 S682 T688 T689 S706 S720 T931 S958 S978 S999 S255 T309 T351 T543 S550 S624 S632 S726 T811 S898 S1012 S1113 Y321 Y323	N33 N570 N718	Protein kinase signature: V31-K54 V149-L161 W129-V182 Tyrosine kinase catalytic site: G190-I200 S214-M236 NIK1-like kinase domain: Y836-R1115	NIK kinase	BLAST. MOTIFS PROFILESCAN BLOCKS, PRINTS PFAM
17	228	T163 S60 T78 T68 S88 S147	N19 N100 N114		Interferon- induced PK regulator (P52rIPK)	BLAST

TABLE 2 cont.

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential ation Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
	503	S51 T262 T36 S79 T94 S109 T361 T362 T403 S472 T47 S334 S343 Y17	N313 N333 N360	Protein kinase signature: I20-K43 V132-L144 V195-E217 Protein kinase domain: Y14-V272	calcium /calmodulin- dependent protein kinase II, beta 3	BLAST, BLOCKS, PRINTS, MOTIFS, PFAM, PROFILESCAN
19	433	S12 S77 S124 S131 S255 S290 T327 S365 S402 T70 Y88			Choline kinase isolog 384D8_3	BLAST, MOTIFS
20		S417 S154 S199 T367 S453 T120 S178 S413 T447 S473	N470	Protein kinase signature: 1144-K167 1260-V172 ATP-binding site: Q247-G284 Y318-F341 Protein kinase domain: 1138-L427	MAP-related protein kinase	BLAST, BLOCKS MOTIFS, PFAM, PROFILESCAN

TABLE 2 cont.

Polypeptide	Amino	Potential		Signature Sequence	Homologous	Analytical
SEQ 1D NO:	Residues	Phosphorylation Sites	Glycosylation Sites		sedneuces	Methods
21	322	S19 S122 T198	N196 N249	Protein kinase	Protein	BLAST, BLOCKS,
				signature:	tyrosine	PRINTS,
		64		L163-I175	kinase	MOTIFS, PFAM,
		S14 S52 T181		ATP-binding site:		PROFILESCAN
		T225		M150-V187		
				I224-H247		
				Protein kinase domain: S32-E316		
22	802	S70 T87 S750	N36 N655	Protein kinase	Ribosomal S6	BLAST. BLOCKS.
		T14 T98 S144		signature:	٠,٣	
		T150 S230 S263		L55-K81, L432-K455		MOTIFS, PFAM.
		T465		ATP-binding site:		
		S517 S633 T751		E160-G197, H232-F255		
		T27 1	-	PTK catalytic domain:		
				H534-F552, C603-H625		
		S368 S458		Protein kinase domains:		
				F49-F318, L427-L687		
				Protein kinase C		
				domain:		
				Q319-I382		
23	641	S51 T262 S398	N313 N332	Protein kinase	Ca2+	BLAST, BLOCKS.
		S436 S479 T36	N374	signature:	/calmodulin	
		_		I20-K43	dependent	MOTIFS, PFAM.
		T37		V132-L144	protein kinase	
		T47 S		ATP-binding site:		
		S342		Q119-A156		
		S431		Y191-F214		
		S474 S508 Y17		Protein kinase domain:		
				Y14-V272		

_:
Ξ
\overline{a}
ၓ
_
(1
田
ヿ
-
m
⋖
_

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Potential Phosphorylation Glycosylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
24	588	\$106 T155 \$359 T388 T456 T531 T4, \$58 \$108 T126 \$132 T279 \$350 \$436 \$469 \$508 \$537 Y32	N63 N130 N574	Protein kinase catalytic domain: Y209-S445, F495-I522 ATP-binding site: I215-K238 STK core catalytic motif: I331-L343	Protein kinase Dyrk2	MOTIFS PFAM BLOCKS PRINTS BLAST
25	389	S31 T301 S56 S96 S134 T149 S186 S201 S283 S358 S375 Y148 Y165	N257 N343 N364	Protein kinase catalytic domain: E73-1311 STK core catalytic motif: 1172-Y184 PTK core domain: D152-D208	CaM-like protein kinase	BLAST PFAM MOTIFS BLOCKS PRINTS PROFILESCAN
. 26	343	S68 S81 S137 S184 T219 S276 S297 T29 T125 Y86 Y211	N332	EF hand calcium-binding signature: D176-L188	protein phosphatase 2A (PR72)	BLAST MOTIFS BLOCKS
27	184	S36 T105 S40 S70 T117 Y50	N62	Tyrosine phosphatase active site domain: L63-V118	MAP kinase phosphatase (X17C)	BLAST PROFILESCAN BLOCKS PRINTS MOTIFS

FABLE 2 cont.

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Wethods
28	367	S10 S21 S44 S103 T116 T267 T309 S191 S213 S218 S256 T305 S352 Y159 Y344	N16 N17		protein phosphatase 2A, A-subunit	BLAST
29	118	S34 S84	N43	Signal peptide: M1-A27 PDZ domain: H8-S73	tyrosine phosphatase	SPScan PFAM BLAST
30	356	S9 S94 T209 T220 S259 S337 S5 S26 S75 S121 T154 S282 S332 S339 Y15 Y84	N333	tyrosine-specific protein phosphatase active site: I108-K164	tyrosine phosphatase (myotubularin)	PROFILESCAN MOTIFS BLOCKS PRINTS BLAST
31	453	\$38 \$73 \$119 \$131 \$193 \$200 \$1236 \$293 \$341 \$1379 \$1124 \$173 \$1214 \$252 \$1256 \$282 \$302 \$313 \$391 \$397	N43 N67 N357	protein phosphatase 2A p55 subunit: P10-K451	protein phosphatase 2A p55 regulatory subunit, alpha isoform	PFAM MOTIFS BLOCKS PRINTS BLAST
			7			

FABLE 3

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
32	Hematopoietic/Immune (0.333) Reproductive (0.333)	Cell proliferation (0.500) Inflammation (0.333)	PBLUESCRIPT
33	Nervous (0.216) Reproductive(0.235) Cardiovascular (0.118)	Cell proliferation (0.530) Inflammation (0.352)	pINCY
34	Reproductive (0.293) Gastrointestinal (0.192)	Cell proliferation (0.641) Inflammation (0.335)	pINCY
35	Reproductive (0.284) Nervous (0.210) Cardiovascular (0.1213)	Cell proliferation (0.729) Inflammation (0.272)	pINCY
36	Nervous (0.529) Developmental (0.118) Gastrointestinal (0.118)	Cell proliferation (0.588) Neurological (0.118) Inflammation (0.118)	pINCY
37	Hematopoietic/Immune (0.268) Reproductive (0.244) Nervous (0.122)	Inflammation (0.488) Cell Proliferative (0.415)	PBLUESCRIPT
38	Reproductive (0.400) Hematopoietic/Immune (0.160) Nervous (0.160)	Cell proliferation (0.600) Inflammation (0.320)	pINCY
39	Cardiovascular (0.312) Reproductive (0.312) Developmental (0.188)	Cell proliferation (0.938) Inflammation (0.125)	pINCY
40	Nervous (0.400) Gastrointestinal (0.267) Developmental (0.133)	Cell proliferation (0.733) Neurological (0.133) Inflammation (0.133)	pINCY
41	Gastrointestinal (0.267) Nervous (0.233) Reproductive (0.167)	Inflammation (0.533) Cell proliferation (0.534)	pSPORT1

Table 3 cont.

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
42	Musculoskeletal (0.500) Developmental (0.167) Gastrointestinal (0.167)	Cancer (0.834) Inflammation (0.167)	PBLUESCRIPT
43	Reproductive (0.240) Nervous (0.151) Gastrointestinal (0.135)	Cell proliferation (0.536) Inflammation (0.417)	psport1
44	Hematopoietic/Immune (0.278) Nervous (0.222) Dermatologic (0.111)	Cell proliferation (0.444) Inflammation (0.389)	pINCY
45	Hematopoietic/Immune (0.500) Gastrointestinal (0.125) Nervous (0.125)	Inflammation (0.500) Cell proliferative (0.500)	PBLUESCRIPT
46	Nervous (0.220) Reproductive (0.213) Hematopoietic/Immune (0.140)	Cell proliferation (0.573) Inflammation (0.380)	psport1
47	Hematopoietic/Immune (0.190) Gastrointestinal (0.165) Nervous (0.139)	Cell proliferation (0.582) Inflammation (0.354)	pSPORT1

Table 3 cont.

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
48	Nervous (0.333) Reproductive (0.333) Hematopoietic/Immune (0.111)	Cancer (0.444) Inflammation (0.222) Neurological (0.111)	PBLUESCRIPT
49	Nervous (0.724) Cardiovascular (0.103)	Inflammation (0.276) Cancer (0.241) Neurological (0.172)	pINCY
50	Reproductive (0.235) Hematopoietic/Immune (0.188) Gastrointestinal (0.129)	Cancer (0.447) Inflammation (0.282) Fetal (0.153)	PINCY
51	Nervous (0.368) Developmental (0.158) Gastrointestinal (0.105)	Cancer (0.368) Fetal (0.211) Inflammation (0.105)	pSPORT1
52	Cardiovascular (0.312) Hematopoietic/Immune (0.312) Reproductive (0.158)	Fetal (0.688) Cancer (0.421) Inflammation (0.125)	pincy
53	Reproductive (0.412) Nervous (0.235) Developmental (0.118)	Cancer (0.471) Fetal (0.235) Inflammation (0.235)	pINCY
54	Nervous (0.714) Cardiovascular (0.107)	Cancer (0.250) Inflammation (0.250) Neurological (0.179)	pINCY

Table 3 cont.

Nucleotide	Tissue Expression	Disease or Condition	DBLITECCETER
SEQ ID NO:	(Fraction of Total)	(Fraction of Total)	FEROESCALFI
55	Reproductive (0.533) Nervous (0.133)	Cell proliferation (0.601) Inflammation (0.270)	PBLUESCRIPT
95	Hematopoietic/Immune (0.278) Nervous (0.222) Reproductive (0.154)	Cell proliferation (0.388) Inflammation (0.333) Neurological (0.111)	PBLUESCRIPT
57	Hematopoietic/Immune (0.211) Cardiovascular (0.193) Nervous (0.175)	Cell proliferation (0.474) Inflammation (0.491)	PBLUESCRIPT
5.8	Reproductive (0.286) Cardiovascular (0.229) Musculoskeletal (0.143)	Cell proliferation (0.715) Inflammation (0.200)	pINCY
	Reproductive (0.253) Gastrointestinal (0.211) Nervous (0.147)	Cancer and Cell proliferation (0.684) Inflammation and Immune Response (0.242)	psporti
09	Nervous (0.667) Reproductive (0.333)	Cancer (1.000)	pSPORT1
61	Reproductive (0.357) Cardiovascular (0.179) Nervous (0.125)	Cancer and Cell proliferation (0.642) Inflammation and Immune Response (0.232)	pSPORT1
62	Nervous (0.228) Reproductive (0.175) Cardiovascular (0.158) Hematopoietic/Immune (0.158)	Cancer (0.368) Inflammation and Immune Response (0.263) Fetal (0.211)	pINCY

TABLE 4

Polynucleotide SEQ ID NO:	Library	Library Comment
32	BMARNOT02	Library was constructed using RNA isolated from the bone marrow of 24 male and female Caucasian donors, 16 to 70 years old.
33	SININOT01	Library was constructed using RNA isolated from ileum tissue removed from the small intestine of a 4-year-old Caucasian female, who died from a closed head injury. Patient history included jaundice as a baby. Previous surgeries included a double hernia repair
34	SPLNFET02	Library was constructed using RNA isolated from spleen tissue removed from a Caucasian male fetus, who died at 23 weeks' gestation from premature birth. Family history included diabetes.
3.5	OVARTUT02	Library was constructed using RNA isolated from ovarian tumor tissue removed from a 51-year-old Caucasian female during an exploratory laparotomy, total abdominal hysterectomy, salpingo-oophorectomy, and an incidental appendectomy. Pathology indicated mucinous cystadenoma presenting as a multiloculated neoplasm involving the entire left ovary. The right ovary contained a follicular cyst and a hemorrhagic corpus luteum. The uterus showed proliferative endometrium and a single intramural leiomyoma. The peritoneal biopsy indicated benign glandular inclusions consistent with endosalpingiosis. The patient presented with abnormal weight gain and ascites. Patient history included depressive disorder, joint pain, allergies, alcohol use, and a normal delivery. Family history included atherosclerotic coronary artery disease, benign hypertension, breast cancer and uterine cancer.

TABLE 4 cont.

Polynucleotide		
SEQ ID NO:	Library	Library Comment
36	PANCTUTO 1	library was constructed using RNA isolated from pancreatic tumor tissue removed from a 65-year-old Caucasian female during radical subtotal pancreatectomy. Pathology indicated an invasive grade 2 adenocarcinoma. Patient history included type II diabetes, osteoarthritis, cardiovascular disease, and benign neoplasm in the large bowel. Previous surgeries included a total splenectomy, cholecystectomy, and abdominal hysterectomy. Family history included cardiovascular disease, type II diabetes, and stomach cancer.
37	SMCBUNT01	library was constructed using RNA isolated from bronchial smooth muscle cell tissue removed from a 21-year-old Caucasian male.
38	UTRSTUT05	Library was constructed using RNA isolated from uterine tumor tissue removed from a 41-year-old Caucasian female during a vaginal hysterectomy with dilation and curettage. Pathology indicated uterine leiomyoma. The endometrium was secretory and contained fragments of endometrial polyps. Benign endo- and ectocervical mucosa were identified in the endocervix. Patient history included a ventral hernia and a benign ovarian neoplasm.
39	UTRSTUT04	library was constructed using RNA isolated from uterine tumor tissue removed from a 34-year-old Caucasian female during a hysteroscopy and an exploratory laparotomy with dilation and curettage. Pathology indicated an endometrial polyp, subserosal leiomyoma, and fragments of leiomyoma. Family history included hyperlipidemia, depressive disorder, benign hypertension, cerebrovascular disease, arteriosclerotic cardiovascular disease, and type II diabetes.

TABLE 4 cont.	Library Library Comm	SMCBUNTO1 library was constructed using RNA isolated from bronchial smooth missing teamored.	ADRENOTO3 library was constructed using RNA isolated from the adrenal tissue of 2 17	ar tissue remove	BRSTTUT01 library was constructed	from a 55-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated invasive grade 4 mammary adenocarcinoma of tumor was identified in the deep dermis near the lactiferous ducts with were positive for tumor. Seven mid and low and five high axillary lymph nodes characterized by apocrine metaplasia, sclerosing adenosis, cyst formation, tachycardia, blood in the stool, and a benign breast neoplasm. Family history cerebrovascular disease.	LUNGNOTIO library was constructed using RNA isolated from the lung riseme of	UCMCL5T01 library was constructed using RNA isolated from mononuclear cells obtained 12 days with it is load of 12 individuals. The cells were constructed to the cells were constructed t	and a mich in-5 before RNA was isolated from the pooled lysates.
	Polynucleotide SEQ ID NO:	40	41	42	43		ም	45	

TABLE 4 cont.

Polynucleotide SEQ ID NO:	Library	Library Comment
46	BRSTTUT03	library was constructed using RNA isolated from breast tumor tissue removed from a 58-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated multicentric invasive grade 4 lobular carcinoma. The mass was identified in the upper outer quadrant, and three separate nodules were found in the lower outer quadrant of the left breast. Patient history included skin cancer, rheumatic heart disease, osteoarthritis, and tuberculosis. Family history included cerebrovascular disease, coronary artery aneurysm, breast cancer, prostate cancer, atherosclerotic coronary artery disease, and type I diabetes.
47	BRSTNOTO5	library was constructed using RNA isolated from breast tissue removed from a 58-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated multicentric invasive grade 4 lobular carcinoma. Patient history included skin cancer, rheumatic heart disease, osteoarthritis, and tuberculosis. Family history included cerebrovascular and cardiovascular disease, breast and prostate cancer, and type I diabetes.

TABLE 4 cont.

Polynucleotide SEQ ID NO:	Library	Library Comment
48	SPLMNOT02	The library was constructed using RNA isolated from the spleen tissue of a 29-year-old Caucasian male, who died from head trauma. Serologies were positive for cytomegalovirus (CMV). Patient history included alcohol, marijuana, and tobacco use.
49	BRAITUT08	The library was constructed using RNA isolated from brain tumor tissue removed from the left frontal lobe of a 47-year-old Caucasian male during excision of cerebral meningeal tissue. Pathology indicated grade 4 fibrillary astrocytoma with focal tumoral radionecrosis. Patient history included cerebrovascular disease, deficiency anemia, hyperlipidemia, epilepsy, and tobacco use. Family history included cerebrovascular disease and a malignant prostate neoplasm.
20	PANCTUT01	The library was constructed using RNA isolated from pancreatic tumor tissue removed from a 65-year-old Caucasian female during radical subtotal pancreatectomy. Pathology indicated an invasive grade 2 adenocarcinoma. Patient history included type II diabetes, osteoarthritis, cardiovascular disease, benign neoplasm in the large bowel, and a cataract. Previous surgeries included a total splenectomy, cholecystectomy, and abdominal hysterectomy. Family history included cardiovascular disease, type II diabetes, and stomach cancer.
51	BRAITUT02	The library was constructed using RNA isolated from brain tumor tissue removed from the frontal lobe of a 58-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated a grade 2 metastatic hypernephroma. Patient history included a grade 2 renal cell carcinoma, insomnia, and chronic airway obstruction. Family history included a malignant neoplasm of the kidney.

TABLE 4 cont.

Polymucleotide SEQ ID NO:	Library	Library Comment
52	THP1NOT03	The library was constructed using RNA isolated from untreated THP-1 cells. THP-1 (ATCC TIB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia (ref: Int. J. Cancer (1980) 26:171).
53	BRSTNOT12	The library was constructed using RNA isolated from diseased breast tissue removed from a 32-year-old Caucasian female during a bilateral reduction mammoplasty. Pathology indicated nonproliferative fibrocystic disease. Family history included cardiovascular disease.
4.0	MUSCNOT07	The library was constructed using RNA isolated from muscle tissue removed from the forearm of a 38-year-old Caucasian female during a soft tissue excision. Pathology for the associated tumor tissue indicated intramuscular hemangioma. Family history included breast cancer, benign hypertension, cerebrovascular disease, colon cancer, and type II diabetes.
55	HUVESTB01	Library was constructed using RNA isolated from shear-stressed HUV-EC-C (ATCC CRL 1730) cells. HUV-EC-C is an endothelial cell line derived from the vein of a normal human umbilical cord (ref:PNAS 81:6413).
56	THYMNOT02	ibrary was constructed using polyA RNA isolated from thymus tissue removed from a 3-year-old Caucasian male, who died from drowning.
57	CARDNOT01	Library was constructed using RNA isolated from the cardiac muscle of a 65-year-old Caucasian male, who died from a self-inflicted gunshot wound.

TABLE 4 cont.

SEQ ID NO:	Library	Library Comment
5.8	UTRSNOT12	Library was constructed using RNA isolated from uterine myometrial tissue removed from a 41-year-old Caucasian female during a vaginal hysterectomy with a dilatation and curettage. The endometrium was secretory and contained fragments of endometrial polyps. Benign endo- and ectocervical mucosa were identified in the endocervix. Pathology for the associated tumor tissue indicated uterine leiomyoma. The patient presented with an unspecified menstrual disorder. Patient history included ventral hernia, normal delivery, a benign ovarian neoplasm, and tobacco abuse. Previous surgeries included a bilateral destruction of fallopian tubes, removal of a solitary ovary, and an exploratory laparotomy.
59	BEPINOT01	Library was constructed using RNA isolated from a bronchial epithelium primary cell line derived from a 54-year-old Caucasian male.
60	PGANNOT 01	Library was constructed using RNA isolated from paraganglionic tumor tissue removed from the intra-abdominal region of a 46-year-old Caucasian male during exploratory laparotomy. Pathology indicated a benign paraganglioma and association with a grade 2 renal cell carcinoma, clear cell type.
61	BEPINOT01	Library was constructed using RNA isolated from a bronchial epithelium primary cell line derived from a 54-year-old Caucasian male.
62	DRGLNOT01	Library was constructed using RNA isolated from dorsal root ganglion tissue removed from the low thoracic/high lumbar region of a 32-year- old Caucasian male who died from acute pulmonary edema and bronchopneumonia, bilateral pleural and pericardial effusions, and malignant lymphoma (natural killer cell type). Patient history included probable cytomegalovirus infection, hepatic congestion and steatosis, splenomegaly, hemorrhagic cystitis, thyroid hemorrhage, and Bell's palsy.

Table,

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25: 3389-3402.	ESTs: Probability value= 1.0E-8 or less Full Length sequences: Probability value= 1.0E-10 or less
FASIA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, tfasta, fastx, tfastx, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad Sci. 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183: 63-98; and Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489.	ESTs: fasta E value=1.06E-6 Assembled ESTs: fasta Identity= 95% or greater and Match length=200 bases or greater, fastx E value=1.0E-8 or less Full Length sequences: fastx score=100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S and J.G. Henikoff, Nucl. Acid Res., 19:6565-72, 1991. J.G. Henikoff and S. Henikoff (1996) Methods Enzymol. 266:88- 105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37: 417-424.	Score=1000 or greater; Ratio of Score/Strength = 0.75 or larger; and, if applicable, Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol., 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322.	Score=10-50 bits for PFAM hits, depending on individual protein families

Table 5 (cont.)

	Program	Description	Reference	Parameter Threshold
ii.	ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221.	Normalized quality score>GCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
a.	Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186- 194.	
<u>-74-</u>	Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M. S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
C	Consed	A graphical tool for viewing and editing Phrap assemblies	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
S	SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12: 431-439.	Score=3.5 or greater
2	Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch et al. supra; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, W1.	

What is claimed is:

30

1. A substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof.

- 5 2. A substantially purified variant having at least 90% amino acid sequence identity to the amino acid sequence of claim 1.
 - 3. An isolated and purified polynucleotide encoding the polypeptide of claim 1.
 - 4. An isolated and purified polynucleotide variant having at least 80% polynucleotide sequence identity to the polynucleotide of claim 3.
- 10 5. An isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide of claim 3.
 - 6. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 3.
 - 7. A method for detecting a polynucleotide, the method comprising the steps of:
- 15 (a) hybridizing the polynucleotide of claim 6 to at least one nucleic acid in a sample, thereby forming a hybridization complex; and
 - (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of the polynucleotide in the sample.
- 8. The method of claim 7 further comprising amplifying the polynucleotide prior to hybridization.
 - 9. An isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:32-62 and fragments thereof.
 - 10. An isolated and purified polynucleotide variant having at least 80% polynucleotide sequence identity to the polynucleotide of claim 9.
- 25 11. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 9.
 - 12. An expression vector comprising at least a fragment of the polynucleotide of claim3.
 - 13. A host cell comprising the expression vector of claim 12.
 - 14. A method for producing a polypeptide, the method comprising the steps of:
 - a) culturing the host cell of claim 13 under conditions suitable for the expression of the polypeptide; and
 - b) recovering the polypeptide from the host cell culture.
- 15. A pharmaceutical composition comprising the polypeptide of claim 1 in conjunction35 with a suitable pharmaceutical carrier.
 - 16. A purified antibody which specifically binds to the polypeptide of claim 1.

- 17. A purified agonist of the polypeptide of claim 1.
- 18. A purified antagonist of the polypeptide of claim 1.
- 19. A method for treating or preventing a disorder associated with decreased expression or activity of PHSP, the method comprising administering to a subject in need of such treatment an
 5 effective amount of the pharmaceutical composition of claim 15.
 - 20. A method for treating or preventing a disorder associated with increased expression or activity of PHSP, the method comprising administering to a subject in need of such treatment an effective amount of the antagonist of claim 18.

SEQUENCE LISTING

```
<110> INYCTE PHARMACEUTICALS, INC.
      HILLMAN, Jennifer L.
      LAL, Preeti
      TANG, Y. Tom
      CORLEY, Neil C.
      GUEGLER, Karl J.
      BAUGHN, Mariah R.
      PATTERSON, Chandra
      BANDMAN, Olga
      AU-YOUNG, Janice
      GORGONE, Gina A.
      YUE, Henry
      AZIMZAI, Yalda
      REDDY, Roopa
      LU, Dyung Aina M.
      SHIH, Leo L.
<120> PHOSPHORYLATION EFFECTORS
<130> PF-0565 PCT
<140> To Be Assigned
<141> Herewith
<150> 09/123,494; unassigned; 09/152,814; unassigned; 09/173,482;
      unassigned; 60/106,889; 60/109,093; 60/113,796;
<151> 1998-07-28; 1998-07-28; 1998-09-14; 1998-09-14; 1998-10-14;
      1998-10-14;1998-11-03; 1998-11-19; 1998-12-22
<160> 61
<170> PERL Program
<210> 1
<211> 300
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 132240
<400> 1
Met Glu Ser Pro Leu Glu Ser Gln Pro Leu Asp Ser Asp Arg Ser
                  5
                                     10
Ile Lys Glu Ser Ser Phe Glu Glu Ser Asn Ile Glu Asp Pro Leu
                                     25
Ile Val Thr Pro Asp Cys Gln Glu Lys Thr Ser Pro Lys Gly Val
                 35
                                     40
Glu Asn Pro Ala Val Gln Glu Ser Asn Gln Lys Met Leu Gly Pro
                 50
Pro Leu Glu Val Leu Lys Thr Leu Ala Ser Lys Arg Asn Ala Val
                 65
                                     70
```

```
Ala Phe Arg Ser Phe Asn Ser His Ile Asn Ala Ser Asn Asn Ser
 Glu Pro Ser Arg Met Asn Met Thr Ser Leu Asp Ala Met Asp Ile
                                     100
 Ser Cys Ala Tyr Ser Gly Ser Tyr Pro Met Ala Ile Thr Pro Thr
                                     115
 Gln Lys Arg Arg Ser Cys Met Pro His Gln Thr Pro Asn Gln Ile
                                     130
Lys Ser Gly Thr Pro Tyr Arg Thr Pro Lys Ser Val Arg Arg Gly
                                     145
Val Ala Pro Val Asp Asp Gly Arg Ile Leu Gly Thr Pro Asp Tyr
                 155
                                     160
Leu Ala Pro Glu Leu Leu Gly Arg Ala His Gly Pro Ala Val
                 170
                                     175
Asp Trp Trp Ala Leu Gly Val Cys Leu Phe Glu Phe Leu Thr Gly
                 185
                                     190
Ile Pro Pro Phe Asn Asp Glu Thr Pro Gln Gln Val Phe Gln Asn
                 200
                                     205
Ile Leu Lys Arg Asp Ile Pro Trp Pro Glu Glu Glu Lys Leu
                 215
                                     220
Ser Asp Asn Ala Gln Ser Ala Val Glu Ile Leu Leu Thr Ile Asp
                 230
                                     235
Asp Thr Lys Arg Ala Gly Met Lys Glu Leu Lys Arg His Pro Leu
                245
                                     250
Phe Ser Asp Val Asp Trp Glu Asn Leu Gln His Gln Thr Met Pro
                                     265
Phe Ile Pro Gln Pro Asp Asp Glu Thr Asp Thr Ser Tyr Phe Glu
                 275
                                     280
Ala Arg Asn Thr Ala Gln His Leu Thr Val Ser Gly Phe Ser Leu
<210> 2
<211> 147
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 2180116
<400> 2
Met Ala Ala Gln Arg Leu Gly Lys Arg Val Leu Ser Lys Leu Gln
                                     10
Ser Pro Ser Arg Ala Arg Gly Pro Gly Gly Ser Pro Gly Gly Met
                                     25
Gln Lys Arg His Ala Arg Val Thr Val Lys Tyr Asp Arg Glu
                 35
Leu Gln Arg Arg Leu Asp Val Glu Lys Trp Ile Asp Gly Arg Leu
                 50
Glu Glu Leu Tyr Arg Gly Met Glu Ala Asp Met Pro Asp Glu Ile
Asn Ile Asp Glu Leu Leu Glu Leu Glu Ser Glu Glu Glu Arg Ser
Arg Lys Ile Gln Gly Leu Leu Lys Ser Cys Gly Lys Pro Val Glu
```

100

Asp Phe Ile Gln Glu Leu Leu Ala Lys Leu Gln Gly Leu His Arg

```
115
 Gln Pro Gly Leu Arg Gln Pro Ser Pro Ser His Asp Gly Ser Leu
                 125
                                     130
 Ser Pro Leu Gln Asp Arg Ala Arg Thr Ala His Pro
                 140
 <210> 3
 <211> 431
 <212> PRT
 <213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 2197671
<400> 3
Met Ala His Ser Pro Val Gln Ser Gly Leu Pro Gly Met Gln Asn
                                      10
Leu Lys Ala Asp Pro Glu Glu Leu Phe Thr Lys Leu Glu Lys Ile
                                      25
Gly Lys Gly Ser Phe Gly Glu Val Phe Lys Gly Ile Asp Asn Arg
                                      40
Thr Gln Lys Val Val Ala Ile Lys Ile Ile Asp Leu Glu Glu Ala
                                     55
Glu Asp Glu Ile Glu Asp Ile Gln Glu Ile Thr Val Leu Ser
                 65
                                     70
Gln Cys Asp Ser Pro Tyr Val Thr Lys Tyr Tyr Gly Ser Tyr Leu
                 80
                                     85
Lys Asp Thr Lys Leu Trp Ile Ile Met Glu Tyr Leu Gly Gly
                                    100
Ser Ala Leu Asp Leu Leu Glu Pro Gly Arg Leu Asp Glu Thr Gln
                                    115
Ile Ala Thr Ile Leu Arg Glu Ile Leu Lys Gly Leu Asp Tyr Leu
His Ser Glu Lys Lys Ile His Arg Asp Ile Lys Ala Ala Asn Val
                                    145
Leu Leu Ser Glu His Gly Glu Val Lys Leu Ala Asp Phe Gly Val
                                    160
Ala Gly Gln Leu Thr Asp Thr Gln Ile Lys Arg Asn Thr Phe Val
                170
                                    175
Gly Thr Pro Phe Trp Met Ala Pro Glu Val Ile Lys Gln Ser Ala
                185
                                    190
Tyr Asp Ser Lys Ala Asp Ile Trp Ser Leu Gly Ile Thr Ala Ile
                200
                                    205
Glu Leu Ala Arg Gly Glu Pro Pro His Ser Glu Leu His Pro Met
                215
                                    220
Lys Val Leu Phe Leu Ile Pro Lys Asn Asn Pro Pro Thr Leu Glu
                230
                                    235
Gly Asn Tyr Ser Lys Pro Leu Lys Glu Phe Val Glu Ala Cys Leu
                245
                                    250
Asn Lys Glu Pro Ser Phe Arg Pro Thr Ala Lys Glu Leu Leu Lys
                260
                                    265
His Lys Phe Ile Leu Arg Asn Ala Lys Lys Thr Ser Tyr Leu Thr
                275
                                    280
```

```
Glu Leu Ile Asp Arg Tyr Lys Arg Trp Lys Ala Glu Gln Ser His
                 290
                                     295
Asp Asp Ser Ser Ser Glu Asp Ser Asp Ala Glu Thr Asp Gly Gln
                 305
                                     310
Ala Ser Gly Gly Ser Asp Ser Gly Asp Trp Ile Phe Thr Ile Arg
                                     325
Glu Lys Asp Pro Lys Asn Leu Glu Asn Gly Ala Leu Gln Pro Ser
                                     340
Asp Leu Asp Arg Asn Lys Met Lys Asp Ile Pro Lys Arg Pro Phe
                                     355
Ser Gln Cys Leu Ser Thr Ile Ile Ser Pro Leu Phe Ala Glu Leu
                365
                                     370
Lys Glu Lys Ser Gln Ala Cys Gly Gly Asn Leu Gly Ser Ile Glu
                380
                                     385
Glu Leu Arg Gly Ala Ile Tyr Leu Ala Glu Glu Ala Cys Pro Gly
                395
                                     400
Ile Ser Asp Thr Met Val Ala Gln Leu Val Gln Arg Leu Gln Arg
                410
                                     415
Tyr Ser Leu Ser Gly Gly Gly Thr Ser Ser His
                425
<210> 4
<211> 218
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 2594943
<400> 4
Met Asn Cys Arg Ser Glu Val Leu Glu Val Ser Val Glu Gly Arg
                                     10
Gln Val Glu Glu Ala Met Leu Ala Val Leu His Thr Val Leu Leu
                                     25
His Arg Ser Thr Gly Lys Phe His Tyr Lys Lys Glu Gly Thr Tyr
                 35
Ser Ile Gly Thr Val Gly Thr Gln Asp Val Asp Cys Asp Phe Ile
                                     55
Asp Phe Thr Tyr Val Arg Val Ser Ser Glu Glu Leu Asp Arg Ala
                 65
                                     70
Leu Arg Lys Val Val Gly Glu Phe Lys Asp Ala Leu Arg Asn Ser
                 80
Gly Gly Asp Gly Leu Gly Gln Met Ser Leu Glu Phe Tyr Gln Lys
                 95
                                    100
Lys Lys Ser Arg Trp Pro Phe Ser Asp Glu Cys Ile Pro Trp Glu
                110
                                    115
Val Trp Thr Val Lys Val His Val Val Ala Leu Ala Thr Glu Gln
                125
Glu Arg Gln Ile Cys Arg Glu Lys Val Gly Glu Lys Leu Cys Glu
Lys Ile Ile Asn Ile Val Glu Val Met Asn Arg His Glu Tyr Leu
                155
Pro Lys Met Pro Thr Gln Ser Glu Val Asp Asn Val Phe Asp Thr
```

175

180

```
Gly Leu Arg Asp Val Gln Pro Tyr Leu Tyr Lys Ile Ser Phe Gln
                   185
                                        190
   Ile Thr Asp Ala Leu Gly Thr Ser Val Thr Thr Met Arg Arg
                   200
                                        205
   Leu Ile Lys Asp Thr Leu Ala Leu
                   215
   <210> 5
   <211> 474
   <212> PRT
   <213> Homo sapiens
  <220>
  <221> misc_feature
  <223> Incyte Clone Number: 1513871
  <400> 5
  Met Ile Met Asn Lys Met Lys Asn Phe Lys Arg Arg Phe Ser Leu
  Ser Val Pro Arg Thr Glu Thr Ile Glu Glu Ser Leu Ala Glu Phe
                   20
                                       25
 Thr Glu Gln Phe Asn Gln Leu His Asn Arg Arg Asn Glu Asn Leu
                   35
                                       40
 Gln Leu Gly Pro Leu Gly Arg Asp Pro Pro Gln Glu Cys Ser Thr
 Phe Ser Pro Thr Asp Ser Gly Glu Glu Pro Gly Gln Leu Ser Pro
                                       55
                   65
                                       70
 Gly Val Gln Phe Gln Arg Arg Gln Asn Gln Arg Arg Phe Ser Met
                   80
                                       85
 Glu Asp Val Ser Lys Arg Leu Ser Leu Pro Met Asp Ile Arg Leu
                   95
                                      100
 Pro Gln Glu Phe Leu Gln Lys Leu Gln Met Glu Ser Pro Asp Leu
                 110
                                     115
 Pro Lys Pro Leu Ser Arg Met Ser Arg Arg Ala Ser Leu Ser Asp
                 125
                                     130
 Ile Gly Phe Gly Lys Leu Glu Thr Tyr Val Lys Leu Asp Lys Leu
                 140
                                     145
Gly Glu Gly Thr Tyr Ala Thr Val Phe Lys Gly Arg Ser Lys Leu
                                     160
Thr Glu Asn Leu Val Ala Leu Lys Glu Ile Arg Leu Glu His Glu
                 170
                                     175
Glu Gly Ala Pro Cys Thr Ala Ile Arg Glu Val Ser Leu Leu Lys
                                     190
Asn Leu Lys His Ala Asn Ile Val Thr Leu His Asp Leu Ile His
                                     205
Thr Asp Arg Ser Leu Thr Leu Val Phe Glu Tyr Leu Asp Ser Asp
                215
                                     220
Leu Lys Gln Tyr Leu Asp His Cys Gly Asn Leu Met Ser Met His
                230
                                     235
Asn Val Lys Ile Phe Met Phe Gln Leu Leu Arg Gly Leu Ala Tyr
                245
                                    250
Cys His His Arg Lys Ile Leu His Arg Asp Leu Lys Pro Gln Asn
                260
                                    265
Leu Leu Ile Asn Glu Arg Gly Glu Leu Lys Leu Ala Asp Phe Gly
                275
                                    280
```

```
Leu Ala Arg Ala Lys Ser Val Pro Thr Lys Thr Tyr Ser Asn Glu
                290
Val Val Thr Leu Trp Tyr Arg Pro Pro Asp Val Leu Leu Gly Ser
                                     310
Thr Glu Tyr Ser Thr Pro Ile Asp Met Trp Gly Val Gly Cys Ile
                320
                                     325
His Tyr Glu Met Ala Thr Gly Arg Pro Leu Phe Pro Gly Ser Thr
Val Lys Glu Glu Leu His Leu Ile Phe Arg Leu Leu Gly Thr Pro
                350
                                     355
Thr Glu Glu Thr Trp Pro Gly Val Thr Ala Phe Ser Glu Phe Arg
                365
                                     370
Thr Tyr Ser Phe Pro Cys Tyr Leu Pro Gln Pro Leu Ile Asn His
                380
                                     385
Ala Pro Arg Leu Asp Thr Asp Gly Ile His Leu Leu Ser Ser Leu
                395
                                    400
Leu Leu Tyr Glu Ser Lys Ser Arg Met Ser Ala Glu Ala Ala Leu
                410
                                    415
Ser His Ser Tyr Phe Arg Ser Leu Gly Glu Arg Val His Gln Leu
                425
                                    430
Glu Asp Thr Ala Ser Ile Phe Ser Leu Lys Glu Ile Gln Leu Gln
                440
                                    445
Lys Asp Pro Gly Tyr Arg Gly Leu Ala Phe Gln Gln Pro Gly Arg
                455
Gly Lys Asn Arg Arg Gln Ser Ile Phe
                470
```

<210> 6
<211> 540
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 156108

<400> 6

Met Asn Gly Glu Ala Ile Cys Ser Ala Leu Pro Thr Ile Pro Tyr 10 His Lys Leu Ala Asp Leu Arg Tyr Leu Ser Arg Gly Ala Ser Gly 20 25 Thr Val Ser Ser Ala Arg His Ala Asp Trp Arg Val Gln Val Ala 35 40 Val Lys His Leu His Ile His Thr Pro Leu Leu Asp Ser Glu Arg 50 55 Lys Asp Val Leu Arg Glu Ala Glu Ile Leu His Lys Ala Arg Phe 65 70 Ser Tyr Ile Leu Pro Ile Leu Gly Ile Cys Asn Glu Pro Glu Phe 85 Leu Gly Ile Val Thr Glu Tyr Met Pro Asn Gly Ser Leu Asn Glu 95 100 Leu Leu His Arg Lys Thr Glu Tyr Pro Asp Val Ala Trp Pro Leu 110 Arg Phe Arg Ile Leu His Glu Ile Ala Leu Gly Val Asn Tyr Leu

```
125
                                    130
His Asn Met Thr Pro Pro Leu Leu His His Asp Leu Lys Thr Gln
                                    145
Asn Ile Leu Leu Asp Asn Glu Phe His Val Lys Ile Ala Asp Phe
                155
                                     160
Gly Leu Ser Lys Trp Arg Met Met Ser Leu Ser Gln Ser Arg Ser
                                     175
Ser Lys Ser Ala Pro Glu Gly Gly Thr Ile Ile Tyr Met Pro Pro
                                    190
Glu Asn Tyr Glu Pro Gly Gln Lys Ser Arg Ala Ser Ile Lys His
                                    205
Asp Ile Tyr Ser Tyr Ala Val Ile Thr Trp Glu Val Leu Ser Arg
                215
                                    220
Lys Gln Pro Phe Glu Asp Val Thr Asn Pro Leu Gln Ile Met Tyr
                230
                                    235
Ser Val Ser Gln Gly His Arg Pro Val Ile Asn Glu Glu Ser Leu
                245
                                    250
Pro Tyr Asp Ile Pro His Arg Ala Arg Met Ile Ser Leu Ile Glu
                260
                                    265
Ser Gly Trp Ala Gln Asn Pro Asp Glu Arg Pro Ser Phe Leu Lys
                                    280
                275
Cys Leu Ile Glu Leu Glu Pro Val Leu Arg Thr Phe Glu Glu Ile
                290
                                    295
Thr Phe Leu Glu Ala Val Ile Gln Leu Lys Lys Thr Lys Leu Gln
                305
                                    310
Ser Val Ser Ser Ala Ile His Leu Cys Asp Lys Lys Met Glu
                320
                                    325
Leu Ser Leu Asn Ile Pro Val Asn His Gly Pro Gln Glu Glu Ser
                335
                                    340
Cys Gly Ser Ser Gln Leu His Glu Asn Ser Gly Ser Pro Glu Thr
Ser Arg Ser Leu Pro Ala Pro Gln Asp Asn Asp Phe Leu Ser Arg
                                    370
Lys Ala Gln Asp Cys Tyr Phe Met Lys Leu His His Cys Pro Gly
                380
                                    385
Asn His Ser Trp Asp Ser Thr Ile Ser Gly Ser Gln Arg Ala Ala
                395
                                    400
Phe Cys Asp His Lys Thr Thr Pro Cys Ser Ser Ala Ile Ile Asn
                410
                                    415
Pro Leu Ser Thr Ala Gly Asn Ser Glu Arg Leu Gln Pro Gly Ile
                425
                                   430
Ala Gln Gln Trp Ile Gln Ser Lys Arg Glu Asp Ile Val Asn Gln
                440
                                    445
Met Thr Glu Ala Cys Leu Asn Gln Ser Leu Asp Ala Leu Leu Ser
                455
                                    460
Arg Asp Leu Ile Met Lys Glu Asp Tyr Glu Leu Val Ser Thr Lys
                470
                                    475
Pro Thr Arg Thr Ser Lys Val Arg Gln Leu Leu Asp Thr Thr Asp
                485
                                    490
Ile Gln Gly Glu Glu Phe Ala Lys Val Ile Val Gln Lys Leu Lys
                500
                                    505
Asp Asn Lys Gln Met Gly Leu Gln Pro Tyr Pro Glu Ile Leu Val
                515
                                    520
Val Ser Arg Ser Pro Ser Leu Asn Leu Leu Glm Asn Lys Ser Met
                530
```

```
<210> 7
<211> 454
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 2883243
<400> 7
Met Tyr Asn Thr Val Trp Asn Met Glu Asp Leu Asp Leu Glu Tyr
Ala Lys Thr Asp Ile Asn Cys Gly Thr Asp Leu Met Phe Tyr Ile
                 20
Glu Met Asp Pro Pro Ala Leu Pro Pro Lys Pro Pro Lys Pro Thr
                                      40
Thr Val Ala Asn Asn Gly Met Asn Asn Met Ser Leu Gln Asp
                 50
                                     55
Ala Glu Trp Tyr Trp Gly Asp Ile Ser Arg Glu Glu Val Asn Glu
                 65
Lys Leu Arg Asp Thr Ala Asp Gly Thr Phe Leu Val Arg Asp Ala
                 80
                                     85
Ser Thr Lys Met His Gly Asp Tyr Thr Leu Thr Leu Arg Lys Gly
                 95
                                    100
Gly Asn Asn Lys Leu Ile Lys Ile Phe His Arg Asp Gly Lys Tyr
                110
Gly Phe Ser Asp Pro Leu Thr Phe Ser Ser Val Val Glu Leu Ile
                                    130
Asn His Tyr Arg Asn Glu Ser Leu Ala Gln Tyr Asn Pro Lys Leu
                140
Asp Val Lys Leu Leu Tyr Pro Val Ser Lys Tyr Gln Gln Asp Gln
Val Val Lys Glu Asp Asn Ile Glu Ala Val Gly Lys Lys Leu His
                170
                                    175
Glu Tyr Asn Thr Gln Phe Gln Glu Lys Ser Arg Glu Tyr Asp Arg
                185
                                    190
Leu Tyr Glu Glu Tyr Thr Arg Thr Ser Gln Glu Ile Gln Met Lys
                200
                                    205
Arg Thr Ala Ile Glu Ala Phe Asn Glu Thr Ile Lys Ile Phe Glu
                215
                                    220
Glu Gln Cys Gln Thr Gln Glu Arg Tyr Ser Lys Glu Tyr Ile Glu
                230
                                    235
Lys Phe Lys Arg Glu Gly Asn Glu Lys Glu Ile Gln Arg Ile Met
                245
                                    250
His Asn Tyr Asp Lys Leu Lys Ser Arg Ile Ser Glu Ile Ile Asp
                260
                                    265
Ser Arg Arg Leu Glu Glu Asp Leu Lys Lys Gln Ala Ala Glu
                275
                                    280
Tyr Arg Glu Ile Asp Lys Arg Met Asn Ser Ile Lys Pro Asp Leu
                290
                                    295
Ile Gln Leu Arg Lys Thr Arg Asp Gln Tyr Leu Met Trp Leu Thr
                305
Gln Lys Gly Val Arg Gln Lys Lys Leu Asn Glu Trp Leu Gly Asn
                320
Glu Asn Thr Glu Asp Gln Tyr Ser Leu Val Glu Asp Asp Glu Asp
                335
                                    340
```

```
Leu Pro His His Asp Glu Lys Thr Trp Asn Val Gly Ser Ser Asn
                 350
                                     355
 Arg Asn Lys Ala Glu Asn Leu Leu Arg Gly Lys Arg Asp Gly Thr
                 365
                                     370
 Phe Leu Val Arg Glu Ser Ser Lys Gln Gly Cys Tyr Ala Cys Ser
                 380
                                     385
 Val Val Val Asp Gly Glu Val Lys His Cys Val Ile Asn Lys Thr
                 395
                                     400
 Ala Thr Gly Tyr Gly Phe Ala Glu Pro Tyr Asn Leu Tyr Ser Ser
                                     415
Leu Lys Glu Leu Val Leu His Tyr Gln His Thr Ser Leu Val Gln
His Asn Asp Ser Leu Asn Val Thr Leu Ala Tyr Pro Val Tyr Ala
                                     445
Gln Gln Arg Arg
<210> 8
<211> 502
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 3173355
<400> 8
Met Phe Gly Thr Leu Leu Leu Tyr Cys Phe Phe Leu Ala Thr Val
Pro Ala Leu Ala Glu Thr Gly Gly Glu Arg Gln Leu Ser Pro Glu
Lys Ser Glu Ile Trp Gly Pro Gly Leu Lys Ala Asp Val Val Leu
Pro Ala Arg Tyr Phe Tyr Ile Gln Ala Val Asp Thr Ser Gly Asn
Lys Phe Thr Ser Ser Pro Gly Glu Lys Val Phe Gln Val Lys Val
Ser Ala Pro Glu Glu Gln Phe Thr Arg Val Gly Val Gln Val Leu
                                     85
Asp Arg Lys Asp Gly Ser Phe Ile Val Arg Tyr Arg Met Tyr Ala
                 95
                                    100
Ser Tyr Lys Asn Leu Lys Val Glu Ile Lys Phe Gln Gly Gln His
                                    115
Val Ala Lys Ser Pro Tyr Ile Leu Lys Gly Pro Val Tyr His Glu
                125
                                    130
Asn Cys Asp Cys Pro Leu Gln Asp Ser Ala Ala Trp Leu Arg Glu
                140
                                    145
Met Asn Cys Pro Glu Thr Ile Ala Gln Ile Gln Arg Asp Leu Ala
                155
                                    160
His Phe Pro Ala Val Asp Pro Glu Lys Ile Ala Val Glu Ile Pro
                170
                                    175
Lys Arg Phe Gly Gln Arg Gln Ser Leu Cys His Tyr Thr Leu Lys
                185
                                    190
Asp Asn Lys Val Tyr Ile Lys Thr His Gly Glu His Val Gly Phe
                200
                                    205
Arg Ile Phe Met Asp Ala Ile Leu Leu Ser Leu Thr Arg Lys Val
```

```
215
                                     220
Lys Met Pro Asp Val Glu Leu Phe Val Asn Leu Gly Asp Trp Pro
                230
                                     235
Leu Glu Lys Lys Ser Asn Ser Asn Ile His Pro Ile Phe Ser
                245
                                     250
Trp Cys Gly Ser Thr Asp Ser Lys Asp Ile Val Met Pro Thr Tyr
                260
Asp Leu Thr Asp Ser Val Leu Glu Thr Met Gly Arg Val Ser Leu
                                     280
Asp Met Met Ser Val Gln Ala Asn Thr Gly Pro Pro Trp Glu Ser
                290
                                     295
Lys Asn Ser Thr Ala Val Trp Arg Gly Arg Asp Ser Arg Lys Glu
                305
                                     310
Arg Leu Glu Leu Val Lys Leu Ser Arg Lys His Pro Glu Leu Ile
                320
                                    325
Asp Ala Ala Phe Thr Asn Phe Phe Phe Phe Lys His Asp Glu Asn
                335
                                     340
Leu Tyr Gly Pro Ile Val Lys His Ile Ser Phe Phe Asp Phe Phe
                350
                                     355
Lys His Lys Tyr Gln Ile Asn Ile Asp Gly Thr Val Ala Ala Tyr
                365
                                     370
Arg Leu Pro Tyr Leu Leu Val Gly Asp Ser Val Val Leu Lys Gln
                380
                                    385
Asp Ser Ile Tyr Tyr Glu His Phe Tyr Asn Glu Leu Gln Pro Trp
                395
Lys His Tyr Ile Pro Val Lys Ser Asn Leu Ser Asp Leu Leu Glu
                410
                                     415
Lys Leu Lys Trp Ala Lys Asp His Asp Glu Glu Ala Lys Lys Ile
                425
Ala Lys Ala Gly Gln Glu Phe Ala Arg Asn Asn Leu Met Gly Asp
Asp Ile Phe Cys Tyr Tyr Phe Lys Leu Phe Gln Glu Tyr Ala Asn
                455
                                    460
Leu Gln Val Ser Glu Pro Gln Ile Arg Glu Gly Met Lys Arg Val
                470
                                    475
Glu Pro Gln Thr Glu Asp Asp Leu Phe Pro Cys Thr Cys His Arg
                485
Lys Lys Thr Lys Asp Glu Leu
                500
<210> 9
<211> 282
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 5116906
<400> 9
Met Trp Ala Cys Gly Val Ile Leu Tyr Ile Leu Leu Val Gly Tyr
Pro Pro Phe Trp Asp Glu Asp Gln His Arg Leu Tyr Gln Gln Ile
Lys Ala Gly Ala Tyr Asp Phe Pro Ser Pro Glu Trp Asp Thr Val
```

Thr Pro Glu Ala Lys Asp Leu Ile Asn Lys Met Leu Thr Ile Asn

```
Pro Ala Lys Arg Ile Thr Ala Ser Glu Ala Leu Lys His Pro Trp
Ile Cys Gln Arg Ser Thr Val Ala Ser Met Met His Arg Gln Glu
Thr Val Asp Cys Leu Lys Lys Phe Asn Ala Arg Arg Lys Leu Lys
                                    100
Gly Ala Ile Leu Thr Thr Met Leu Ala Thr Arg Asn Phe Ser Ala
                110
                                    115
Ala Lys Ser Leu Leu Lys Lys Pro Asp Gly Val Lys Glu Ser Thr
                125
                                    130
Glu Ser Ser Asn Thr Thr Ile Glu Asp Glu Asp Val Lys Ala Arg
                140
                                    145
Lys Gln Glu Ile Ile Lys Val Thr Glu Gln Leu Ile Glu Ala Ile
                155
                                    160
Asn Asn Gly Asp Phe Glu Ala Tyr Thr Lys Ile Cys Asp Pro Gly
                170
                                    175
Leu Thr Ala Phe Glu Pro Glu Ala Leu Gly Asn Leu Val Glu Gly
                185
                                    190
Met Asp Phe His Arg Phe Tyr Phe Glu Asn Ala Leu Ser Lys Ser
                                    205
                200
Asn Lys Pro Ile His Thr Ile Ile Leu Asn Pro His Val His Leu
                215
                                    220
Val Gly Asp Asp Ala Ala Cys Ile Ala Tyr Ile Arg Leu Thr Gln
                230
                                    235
Tyr Met Asp Gly Ser Gly Met Pro Lys Thr Met Gln Ser Glu Glu
                                    250
Thr Arg Val Trp His Arg Arg Asp Gly Lys Trp Gln Asn Val His
                260
                                    265
Phe His Arg Ser Gly Ser Pro Thr Val Pro Ile Asn
<210> 10
<211> 510
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 940589
<400> 10
Met Lys Ala Asp Ile Lys Ile Trp Ile Leu Thr Gly Asp Lys Gln
Glu Thr Ala Ile Asn Ile Gly His Ser Cys Lys Leu Leu Lys Lys
                 20
                                     25
Asn Met Gly Met Ile Val Ile Asn Glu Gly Ser Leu Asp Ser Phe
                 35
                                     40
Ser Asn Thr Gln Asn Ser Arg Lys Glu Ala Val Leu Leu Ala Lys
Met Lys His Pro Asn Ile Val Ala Phe Lys Glu Ser Phe Glu Ala
Glu Gly His Leu Tyr Ile Val Met Glu Tyr Cys Asp Gly Gly Asp
```

85

```
Leu Met Gln Lys Ile Lys Gln Gln Lys Gly Lys Leu Phe Pro Glu
                  95
Asp Met Ile Leu Asn Trp Phe Thr Gln Met Cys Leu Gly Val Asn
His Ile His Lys Lys Arg Val Leu His Arg Asp Ile Lys Ser Lys
Asn Ile Phe Leu Thr Gln Asn Gly Lys Val Lys Leu Gly Asp Phe
                                     145
Gly Ser Ala Arg Leu Leu Ser Asn Pro Met Ala Phe Ala Cys Thr
                 155
                                     160
Tyr Val Gly Thr Pro Tyr Tyr Val Pro Pro Glu Ile Trp Glu Asn
                170
                                     175
Leu Pro Tyr Asn Asn Lys Ser Asp Ile Trp Ser Leu Gly Cys Ile
                185
                                     190
Leu Tyr Glu Leu Cys Thr Leu Lys His Pro Phe Gln Ala Asn Ser
                200
                                     205
Trp Lys Asn Leu Ile Leu Lys Val Cys Gln Gly Cys Ile Ser Pro
                215
                                     220
Leu Pro Ser His Tyr Ser Tyr Glu Leu Gln Phe Leu Val Lys Gln
                230
                                     235
Met Phe Lys Arg Asn Pro Ser His Arg Pro Ser Ala Thr Thr Leu
                245
                                     250
Leu Ser Arg Gly Ile Val Ala Arg Leu Val Gln Lys Cys Leu Pro
                260
Pro Glu Ile Ile Met Glu Tyr Gly Glu Glu Val Leu Glu Glu Ile
Lys Asn Ser Lys His Asn Thr Pro Arg Lys Lys Thr Asn Pro Ser
                290
                                     295
Arg Ile Arg Ile Ala Leu Gly Asn Glu Ala Ser Thr Val Gln Glu
                305
Glu Glu Gln Asp Arg Lys Gly Ser His Thr Asp Leu Glu Ser Ile
Asn Glu Asn Leu Val Glu Ser Ala Leu Arg Arg Val Asn Arg Glu
                335
                                     340
Glu Lys Gly Asn Lys Ser Val His Leu Arg Lys Ala Ser Ser Pro
                350
                                     355
Asn Leu His Arg Arg Gln Trp Glu Lys Asn Val Pro Asn Thr Ala
                365
                                     370
Leu Thr Ala Leu Glu Asn Ala Ser Ile Leu Thr Ser Ser Leu Thr
                380
                                     385
Ala Glu Asp Asp Arg Gly Gly Ser Val Ile Lys Tyr Ser Lys Asn
                395
                                     400
Thr Thr Arg Lys Gln Trp Leu Lys Glu Thr Pro Asp Thr Leu Leu
                410
                                     415
Asn Ile Leu Lys Asn Ala Asp Leu Ser Leu Ala Phe Gln Thr Tyr
                425
                                     430
Thr Ile Tyr Arg Pro Gly Ser Glu Gly Phe Leu Lys Gly Pro Leu
                440
                                     445
Ser Glu Glu Thr Glu Ala Ser Asp Ser Val Asp Gly Gly His Asp
                455
Ser Val Ile Leu Asp Pro Glu Arg Leu Glu Pro Gly Leu Asp Glu
                470
Glu Asp Thr Asp Phe Glu Glu Glu Asp Asp Asn Pro Asp Trp Val
Ser Glu Leu Lys Lys Arg Ala Gly Trp Gln Gly Leu Cys Asp Arg
                500
```

```
<210> 11
 <211> 248
 <212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 304421
<400> 11
Met Ala Glu Thr Ser Leu Pro Glu Leu Gly Gly Glu Asp Lys Ala
                  5
                                      10
Thr Pro Cys Pro Ser Ile Leu Glu Leu Glu Glu Leu Leu Arg Ala
                                      25
Gly Lys Ser Ser Cys Ser Arg Val Asp Glu Val Trp Pro Asn Leu
                  35
                                      40
Phe Ile Gly Asp Ala Met Asp Ser Leu Gln Lys Gln Asp Leu Arg
                                      55
Arg Pro Lys Ile His Gly Ala Val Gln Ala Ser Pro Tyr Gln Pro
                  65
                                      70
Pro Thr Leu Ala Ser Leu Gln Arg Leu Leu Trp Val Arg Gln Ala
                 80
                                      85
Ala Thr Leu Asn His Ile Asp Glu Val Trp Pro Ser Leu Phe Leu
                 95
                                    100
Gly Asp Ala Tyr Ala Ala Arg Asp Lys Ser Lys Leu Ile Gln Leu
                110
                                    115
Gly Ile Thr His Val Val Asn Ala Ala Ala Gly Lys Phe Gln Val
                125
                                    130
Asp Thr Gly Ala Lys Phe Tyr Arg Gly Met Ser Leu Glu Tyr Tyr
                                     145
Gly Ile Glu Ala Asp Asp Asn Pro Phe Phe Asp Leu Ser Val Tyr
                                     160
Phe Leu Pro Val Ala Arg Tyr Ile Arg Ala Ala Leu Ser Val Pro
                170
                                     175
Gln Gly Arg Val Leu Val His Cys Ala Met Gly Val Ser Arg Ser
                                    190
Ala Thr Leu Val Leu Ala Phe Leu Met Ile Tyr Glu Asn Met Thr
                                    205
Leu Val Glu Ala Ile Gln Thr Val Gln Ala His Arg Asn Ile Cys
                215
                                    220
Pro Asn Ser Gly Phe Leu Arg Gln Leu Gln Val Leu Asp Asn Arg
                230
                                    235
                                                         240
Leu Gly Arg Glu Thr Gly Arg Phe
                245
<210> 12
<211> 810
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 1213802
```

<400> 12 Met Pro Asn Gln Gly Glu Asp Cys Tyr Phe Phe Phe Tyr Ser Thr Cys Thr Lys Gly Asp Ser Cys Pro Phe Arg His Cys Glu Ala Ala Ile Gly Asn Glu Thr Val Cys Thr Leu Trp Gln Glu Gly Arg Cys Phe Arg Gln Val Cys Arg Phe Arg His Met Glu Ile Asp Lys Lys 55 Arg Ser Glu Ile Pro Cys Tyr Trp Glu Asn Gln Pro Thr Gly Cys 65 Gln Lys Leu Asn Cys Ala Phe His His Asn Arg Gly Arg Tyr Val 85 Asp Gly Leu Phe Leu Pro Pro Ser Lys Thr Val Leu Pro Thr Val 95 100 Pro Glu Ser Pro Glu Glu Glu Val Lys Ala Ser Gln Leu Ser Val 110 115 Gln Gln Asn Lys Leu Ser Val Gln Ser Asn Pro Ser Pro Gln Leu 125 130 Arg Ser Val Met Lys Val Glu Ser Ser Glu Asn Val Pro Ser Pro 140 145 Thr His Pro Pro Val Val Ile Asn Ala Ala Asp Asp Asp Glu Asp 155 Asp Asp Asp Gln Phe Ser Glu Glu Gly Asp Glu Thr Lys Thr Pro 170 Thr Leu Gln Pro Thr Pro Glu Val His Asn Gly Leu Arg Val Thr 185 Ser Val Arg Lys Pro Ala Val Asn Ile Lys Gln Gly Glu Cys Leu 200 Asn Phe Gly Ile Lys Thr Leu Glu Glu Ile Lys Ser Lys Lys Met 220 Lys Glu Lys Ser Lys Lys Gln Gly Glu Gly Ser Ser Gly Val Ser 230 235 Ser Leu Leu His Pro Glu Pro Val Pro Gly Pro Glu Lys Glu 245 250 Asn Val Arg Thr Val Val Arg Thr Val Thr Leu Ser Thr Lys Gln 260 265 Gly Glu Glu Pro Leu Val Arg Leu Ser Leu Thr Glu Arg Leu Gly 275 280 Lys Arg Lys Phe Ser Ala Gly Gly Asp Ser Asp Pro Pro Leu Lys 290 295 Arg Ser Leu Ala Gln Arg Leu Gly Lys Lys Val Glu Ala Pro Glu 305 310 Thr Asn Ile Asp Lys Thr Pro Lys Lys Ala Gln Val Ser Lys Ser 320 325 Leu Lys Glu Arg Leu Gly Met Ser Ala Asp Pro Asp Asn Glu Asp 335 340 Ala Thr Asp Lys Val Asn Lys Val Gly Glu Ile His Val Lys Thr 350 355 Leu Glu Glu Ile Leu Leu Glu Arg Ala Ser Gln Lys Arg Gly Glu 370 Leu Gln Thr Lys Leu Lys Thr Glu Gly Pro Ser Lys Thr Asp Asp 380 Ser Thr Ser Gly Ala Arg Ser Ser Ser Thr Ile Arg Ile Lys Thr 400 Phe Ser Glu Val Leu Ala Glu Lys Lys His Arg Gln Gln Glu Ala

```
410
                                     415
Glu Arg Gln Lys Ser Lys Lys Asp Thr Thr Cys Ile Lys Leu Lys
Ile Asp Ser Glu Ile Lys Lys Thr Val Val Leu Pro Pro Ile Val
Ala Ser Arg Gly Gln Ser Glu Glu Pro Ala Gly Lys Thr Lys Ser
Met Gln Glu Val His Ile Lys Thr Leu Glu Glu Ile Lys Leu Glu
Lys Ala Leu Arg Val Gln Gln Ser Ser Glu Ser Ser Thr Ser Ser
                                     490
Pro Ser Gln His Glu Ala Thr Pro Gly Ala Arg Arg Leu Leu Arg
                                     505
Ile Thr Lys Arg Thr Gly Met Lys Glu Glu Lys Asn Leu Gln Glu
                515
                                     520
Gly Asn Glu Val Asp Ser Gln Ser Ser Ile Arg Thr Glu Ala Lys
                530
                                     535
Glu Ala Ser Gly Glu Thr Thr Gly Val Asp Ile Thr Lys Ile Gln
                545
                                     550
Val Lys Arg Cys Glu Thr Met Arg Glu Lys His Met Gln Lys Gln
                                     565
                560
Gln Glu Arg Glu Lys Ser Val Leu Thr Pro Leu Arg Gly Asp Val
                                    580
                575
Ala Ser Cys Asn Thr Gln Val Ala Glu Lys Pro Val Leu Thr Ala
                590
                                     595
Val Pro Gly Ile Thr Arg His Leu Thr Lys Arg Leu Pro Thr Lys
                                     610
Ser Ser Gln Lys Val Glu Val Glu Thr Ser Gly Ile Gly Asp Ser
                                     625
Leu Leu Asn Val Lys Cys Ala Ala Gln Thr Leu Glu Lys Arg Gly
                                     640
Lys Ala Lys Pro Lys Val Asn Val Lys Pro Ser Val Val Lys Val
                                     655
Val Ser Ser Pro Lys Leu Ala Pro Lys Arg Lys Ala Val Glu Met
                                    670
His Ala Ala Val Ile Ala Ala Val Lys Pro Leu Ser Ser Ser
                680
                                    685
Val Leu Gln Glu Pro Pro Ala Lys Lys Ala Ala Val Ala Val Val
                                    700
Pro Leu Val Ser Glu Asp Lys Ser Val Thr Val Pro Glu Ala Glu
                710
                                    715
Asn Pro Arg Asp Ser Leu Val Leu Pro Pro Thr Gln Ser Ser Ser
                725
                                    730
Asp Ser Ser Pro Pro Glu Val Ser Gly Pro Ser Ser Ser Gln Met
                740
                                    745
Ser Met Lys Thr Arg Arg Leu Ser Ser Ala Ser Thr Gly Lys Pro
                755
                                    760
Pro Leu Ser Val Glu Asp Asp Phe Glu Lys Leu Ile Trp Glu Ile
                770
                                    775
Ser Gly Gly Lys Leu Glu Ala Glu Ile Asp Leu Asp Pro Gly Lys
                785
                                    790
Asp Glu Asp Asp Leu Leu Leu Glu Leu Ser Glu Met Ile Asp Ser
                                    805
```

```
<211> 549
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 1378134
<400> 13
Met Arg Arg Ala Ser Asn Ala Ala Ala Ala His Thr Ile
                  5
                                     10
Gly Gly Ser Lys His Thr Met Asn Asp His Leu His Val Gly Ser
                                     25
His Ala His Gly Gln Ile Gln Val Arg Gln Leu Phe Glu Asp Asn
                 35
                                      40
Ser Asn Lys Arg Thr Val Leu Thr Thr Gln Pro Asn Gly Leu Thr
                 50
                                      55
Thr Val Gly Lys Thr Gly Leu Pro Val Val Pro Glu Arq Gln Leu
Asp Ser Ile His Arg Arg Gln Gly Ser Ser Thr Ser Leu Lys Ser
                 80
                                     85
Met Glu Gly Met Gly Lys Val Lys Ala Thr Pro Met Thr Pro Glu
                 95
                                    100
Gln Ala Met Lys Gln Tyr Met Gln Lys Leu Thr Ala Phe Glu His
His Glu Ile Phe Ser Tyr Pro Glu Ile Tyr Phe Leu Gly Leu Asn
Ala Lys Lys Arg Gln Gly Met Thr Gly Gly Pro Asn Asn Gly Gly
Tyr Asp Asp Asp Gln Gly Ser Tyr Val Gln Val Pro His Asp His
Val Ala Tyr Arg Tyr Glu Val Leu Lys Val Ile Gly Lys Gly Ser
                170
                                    175
Phe Gly Gln Val Val Lys Ala Tyr Asp His Lys Val His Gln His
                185
                                    190
Val Ala Leu Lys Met Val Arg Asn Glu Lys Arg Phe His Arg Gln
                200
                                    205
Ala Ala Glu Glu Ile Arg Ile Leu Glu His Leu Arg Lys Gln Asp
                215
                                    220
Lys Asp Asn Thr Met Asn Val Ile His Met Leu Glu Asn Phe Thr
                230
                                    235
Phe Arg Asn His Ile Cys Met Thr Phe Glu Leu Leu Ser Met Asn
                245
                                    250
Leu Tyr Glu Leu Ile Lys Lys Asn Lys Phe Gln Gly Phe Ser Leu
                260
                                    265
Pro Leu Val Arg Lys Phe Ala His Ser Ile Leu Gln Cys Leu Asp
                275
                                    280
Ala Leu His Lys Asn Arg Ile Ile His Cys Asp Leu Lys Pro Glu
                290
                                    295
Asn Ile Leu Leu Lys Gln Gln Gly Arg Ser Gly Ile Lys Val Ile
                305
Asp Phe Gly Ser Ser Cys Tyr Glu His Gln Arg Val Tyr Thr Tyr
                320
                                    325
Ile Gln Ser Arg Phe Tyr Arg Ala Pro Glu Val Ile Leu Gly Ala
Arg Tyr Gly Met Pro Ile Asp Met Trp Ser Leu Gly Cys Ile Leu
```

```
350
                                       355
   Ala Glu Leu Leu Thr Gly Tyr Pro Leu Leu Pro Gly Glu Asp Glu
                   365
                                       370
  Gly Asp Gln Leu Ala Cys Met Ile Glu Leu Leu Gly Met Pro Ser
                   380
                                       385
  Gln Lys Leu Leu Asp Ala Ser Lys Arg Ala Lys Asn Phe Val Ser
                   395
                                       400
  Ser Lys Gly Tyr Pro Arg Tyr Cys Thr Val Thr Thr Leu Ser Asp
                  410
                                       415
  Gly Ser Val Val Leu Asn Gly Gly Arg Ser Arg Arg Gly Lys Leu
                  425
                                      430
  Arg Gly Pro Pro Glu Ser Arg Glu Trp Gly Asn Ala Leu Lys Gly
                  440
                                      445
  Cys Asp Asp Pro Leu Phe Leu Asp Phe Leu Lys Gln Cys Leu Glu
                  455
                                      460
  Trp Asp Pro Ala Val Arg Met Thr Pro Gly Gln Ala Leu Arg His
                  470
                                      475
  Pro Trp Leu Arg Arg Leu Pro Lys Pro Pro Thr Gly Glu Lys
                                      490
 Thr Ser Val Lys Arg Ile Thr Glu Ser Thr Gly Ala Ile Thr Ser
                                      505
 Ile Ser Lys Leu Pro Pro Pro Ser Ser Ser Ala Ser Lys Leu Arg
                  515
                                     520
 Thr Asn Leu Ala Gln Met Thr Asp Ala Asn Gly Asn Ile Gln Gln
                  530
                                     535
 Arg Thr Val Leu Pro Lys Leu Val Ser
                 545
 <210> 14
 <211> 416
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> misc feature
 <223> Incyte Clone Number: 1490070
<400> 14
Met Met Pro Gln Leu Gln Phe Lys Asp Ala Phe Trp Cys Arg Asp
Phe Thr Ala His Thr Gly Tyr Glu Val Leu Leu Gln Arg Leu Leu
                                     25
Asp Gly Arg Lys Met Cys Lys Asp Met Val Glu Leu Leu Trp Gln
                                     40
Arg Ala Gln Ala Glu Glu Arg Tyr Gly Lys Glu Leu Val Gln Ile
                 50 -
                                     55
Ala Arg Lys Ala Gly Gly Gln Thr Glu Ile Asn Ser Leu Arg Ala
                                     70
Ser Phe Asp Ser Leu Lys Gln Gln Met Glu Asn Val Gly Ser Ser
                 80
                                     85
His Ile Gln Leu Ala Leu Thr Leu Arg Glu Glu Leu Arg Ser Leu
                 95
                                    100
Glu Glu Phe Arg Glu Arg Gln Lys Glu Gln Arg Lys Lys Tyr Glu
                110
                                    115
Ala Val Met Asp Arg Val Gln Lys Ser Lys Leu Ser Leu Tyr Lys
```

130

```
Lys Ala Met Glu Ser Lys Lys Thr Tyr Glu Gln Lys Cys Arg Asp
                140
                                     145
Ala Asp Asp Ala Glu Gln Ala Phe Glu Arg Ile Ser Ala Asn Gly
                155
                                     160
His Gln Lys Gln Val Glu Lys Ser Gln Asn Lys Ala Arg Gln Cys
                170
                                     175
Lys Asp Ser Ala Thr Glu Ala Glu Arg Val Tyr Arg Gln Ser Ile
                185
                                     190
Ala Gln Leu Glu Lys Val Arg Ala Glu Trp Glu Gln Glu His Arg
                200
Thr Thr Cys Glu Ala Phe Gln Leu Gln Glu Phe Asp Arg Leu Thr
Ile Leu Arg Asn Ala Leu Trp Val His Ser Asn Gln Leu Ser Met
Gln Cys Val Lys Asp Asp Glu Leu Tyr Glu Glu Val Arg Leu Thr
                                     250
Leu Glu Gly Cys Ser Ile Asp Ala Asp Ile Asp Ser Phe Ile Gln
                260
                                     265
Ala Lys Ser Thr Gly Thr Glu Pro Pro Ala Pro Val Pro Tyr Gln
                275
                                    280
Asn Tyr Tyr Asp Arg Glu Val Thr Pro Leu Thr Ser Ser Pro Gly
                290
                                    295
Ile Gln Pro Ser Cys Gly Met Ile Lys Arg Phe Ser Gly Leu Leu
                305
                                    310
His Gly Ser Pro Lys Thr Thr Ser Leu Ala Ala Ser Ala Ala Ser
                320
                                    325
Thr Glu Thr Leu Thr Pro Thr Pro Glu Arg Asn Glu Gly Val Tyr
                335
                                    340
Thr Ala Ile Ala Val Gln Glu Ile Gln Gly Asn Pro Ala Ser Pro
                350
                                    355
Ala Gln Glu Tyr Arg Ala Leu Tyr Asp Tyr Thr Ala Gln Asn Pro
                365
                                     370
Asp Glu Leu Asp Leu Ser Ala Gly Asp Ile Leu Glu Val Ile Leu
                                    385
Glu Gly Glu Asp Gly Trp Trp Thr Val Glu Arg Asn Gly Gln Arg
                395
Gly Phe Val Pro Gly Ser Tyr Leu Glu Lys Leu
                410
<210> 15
<211> 425
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 1997814
<400> 15
Met Glu Gln Gly Leu Glu Glu Glu Glu Glu Val Asp Pro Arg Ile
                                     10
Gln Gly Glu Leu Glu Lys Leu Asn Gln Ser Thr Asp Asp Ile Asn
                                     25
Arg Arg Glu Thr Glu Leu Glu Asp Ala Arg 31n Lys Phe Arg Ser
                                     40
```

```
Val Leu Val Glu Ala Thr Val Lys Leu Asp Glu Leu Val Lys Lys
Ile Gly Lys Ala Val Glu Asp Ser Lys Pro Tyr Trp Glu Ala Arg
                  65
                                      70
Arg Val Ala Arg Gln Ala Gln Leu Glu Ala Gln Lys Ala Thr Gln
                  80
                                      85
Asp Phe Gln Arg Ala Thr Glu Val Leu Arg Ala Ala Lys Glu Thr
                  95
                                     100
Ile Ser Leu Ala Glu Gln Arg Leu Leu Glu Asp Asp Lys Arg Gln
                                     115
Phe Asp Ser Ala Trp Gln Glu Met Leu Asn His Ala Thr Gln Arg
                                     130
Val Met Glu Ala Glu Gln Thr Lys Thr Arg Ser Glu Leu Val His
                                     145
Lys Glu Thr Ala Ala Arg Tyr Asn Ala Ala Met Gly Arg Met Arg
                155
                                     160
Gln Leu Glu Lys Lys Leu Lys Arg Ala Ile Asn Lys Ser Lys Pro
                170
                                    175
Tyr Phe Glu Leu Lys Ala Lys Tyr Tyr Val Gln Leu Glu Gln Leu
                                    190
Lys Lys Thr Val Asp Asp Leu Gln Ala Lys Leu Thr Leu Ala Lys
                200
                                    205
Gly Glu Tyr Lys Met Ala Leu Lys Asn Leu Glu Met Ile Ser Asp
                215
                                    220
Glu Ile His Glu Arg Arg Ser Ser Ala Met Gly Pro Arg Gly
                230
                                    235
Cys Gly Val Gly Ala Glu Gly Ser Ser Thr Ser Val Glu Asp Leu
                245
                                    250
Pro Gly Ser Lys Pro Glu Pro Asp Ala Ile Ser Val Ala Ser Glu
                260
                                    265
Ala Phe Glu Asp Asp Ser Cys Ser Asn Phe Val Ser Glu Asp Asp
                275
                                    280
Ser Glu Thr Gln Ser Val Ser Ser Phe Ser Ser Gly Pro Thr Ser
                                    295
Pro Ser Glu Met Pro Asp Gln Phe Pro Ala Val Val Arg Pro Gly
                305
                                    310
Ser Leu Asp Leu Pro Ser Pro Val Ser Leu Ser Glu Phe Gly Met
                320
Met Phe Pro Val Leu Gly Pro Arg Ser Glu Cys Ser Gly Ala Ser
                                    340
Ser Pro Glu Cys Glu Val Glu Arg Gly Asp Arg Ala Glu Gly Ala
                350
                                    355
Glu Asn Lys Thr Ser Asp Lys Ala Asn Asn Asn Arg Gly Leu Ser
                365
                                    370
Ser Ser Ser Gly Ser Gly Ser Ser Lys Ser Gln Ser Ser Thr
                380
                                    385
Ser Pro Glu Gly Gln Ala Leu Glu Asn Arg Met Lys Gln Leu Ser
                395
                                    400
Leu Gln Cys Ser Lys Gly Arg Asp Gly Ile Ile Ala Asp Ile Lys
                410
Met Val Gln Ile Gly
```

<210> 16 <211> 1135

```
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 2299715
Met Ala Asn Asp Ser Pro Ala Lys Ser Leu Val Asp Ile Asp Leu
                                      10
Ser Ser Leu Arg Asp Pro Ala Gly Ile Phe Glu Leu Val Glu Val
                 20
                                     25
Val Gly Asn Gly Thr Tyr Gly Gln Val Tyr Lys Gly Arg His Val
                                     40
Lys Thr Gly Gln Leu Ala Ala Ile Lys Val Met Asp Val Thr Glu
                 50
                                     55
Asp Glu Glu Glu Glu Ile Lys Leu Glu Ile Asn Met Leu Lys Lys
Tyr Ser His His Arg Asn Ile Ala Thr Tyr Tyr Gly Ala Phe Ile
                 80
                                     85
Lys Lys Ser Pro Pro Gly His Asp Asp Gln Leu Trp Leu Val Met
                 95
                                    100
Glu Phe Cys Gly Ala Gly Ser Ile Thr Asp Leu Val Lys Asn Thr
                110
Lys Gly Asn Thr Leu Lys Glu Asp Trp Ile Ala Tyr Ile Ser Arg
                125
                                    130
Glu Ile Leu Arg Gly Leu Ala His Leu His Ile His His Val Ile
                140
                                     145
His Arg Asp Ile Lys Gly Gln Asn Val Leu Leu Thr Glu Asn Ala
Gly Val Lys Leu Val Asp Phe Gly Val Ser Ala Gln Leu Asp Arg
                170
                                     175
Thr Val Gly Arg Arg Asn Thr Phe Ile Gly Thr Pro Tyr Trp Met
                185
                                    190
Ala Pro Glu Val Ile Ala Cys Asp Glu Asn Pro Asp Ala Thr Tyr
                200
                                    205
Asp Tyr Arg Ser Asp Leu Trp Ser Cys Gly Ile Thr Ala Ile Glu
                215
                                    220
Met Ala Glu Gly Ala Pro Pro Leu Cys Asp Met His Pro Met Arg
                230
                                    235
Ala Leu Phe Leu Ile Pro Arg Asn Pro Pro Pro Arg Leu Lys Ser
                245
                                    250
Lys Lys Trp Ser Lys Lys Phe Phe Ser Phe Ile Glu Gly Cys Leu
                260
                                     265
Val Lys Asn Tyr Met Gln Arg Pro Ser Thr Glu Gln Leu Leu Lys
                275
                                     280
His Pro Phe Ile Arg Asp Gln Pro Asn Glu Arg Gln Val Arg Ile
                290
                                     295
Gln Leu Lys Asp His Ile Asp Arg Thr Arg Lys Lys Arg Gly Glu
                305
                                     310
Lys Asp Glu Thr Glu Tyr Glu Tyr Ser Gly Ser Glu Glu Glu Glu
                320
Glu Glu Val Pro Glu Gln Glu Gly Glu Pro Ser Ser Ile Val Asn
                                     340
```

Val Pro Gly Glu Ser Thr Leu Arg Arg Asp Phe Leu Arg Leu Gln

				350)				355					360
Glr	ı Glu	Asn	Lys		ı Arç	, Ser	Glu	Ala		Arg	Arg	Glr.	Gln	Jeu 375
Lev	Gln	Glu	Gln		Leu	Arg	Glu	Gln		Glu	Туг	Lys	Arg	Gln 390
Leu	Leu	Ala	Glu		, Gln	Lys	Arg	Ile		Gln	Gln	Lys	Glu	Gln 405
Arg	Arg	Arg	Leu		Glu	Gln	Gln	Arg			Arg	Glu	Ala	Arg 420
Arg	Gln	Gln	Glu		Glu	Gln	Arg	Arg			Gln	Glu	Glu	Lys 435
Arg	Arg	Leu	Glu	Glu 440		Glu	Arg	Arg			Glu	Glu	Glu	
Arg	Arg	Arg	Ala	Glu 455		Glu	Lys	Arg	Arg 460	Val	Glu	Arg	Glu	
Glu	Tyr	Ile	Arg	Arg 470		Leu	Glu	Glu		Gln	Arg	His	Leu	
Val	Leu	Gln	Gln	Gln 485	Leu	Leu	Gln	Glu	Gln 490	Ala	Met	Leu	Leu	
Asp	His	Arg	Arg	Pro 500	His	Pro	Gln	His	Ser 505	Gln	Gln	Pro	Pro	
Pro	Gln	Gln	Glu	Arg 515	Ser	Lys	Pro	Ser	Phe 520	His	Ala	Pro	Glu	Pro 525
Lys	Ala	His	Tyr	Glu 530	Pro	Ala	Asp	Arg	Ala 535	Arg	Glu	Val	Pro	Val 540
Arg	Thr	Thr	Ser	Arg 545	Ser	Pro	Val	Leu	Ser 550	Arg	Arg	Asp	Ser	Pro 555
Leu	Gln	Gly	Ser	Gly 560	Gln	Gln	Asn	Ser	Gln 565	Ala	Gly	Gln	Arg	Asn 570
Ser	Thr	Ser	Ile	Glu 575	Pro	Arg	Leu	Leu	Trp 580	Glu	Arg	Val	Glu	Lys 585
				590				Ser	595					600
				605				Pro	610					615
				620				Ser	625					630
				635				Val	640					645
				650					655					660
				665				Asp	670					675
				680				Glu	685					Asp 690
				695				Glu	700					Thr 705
				710				Ala	715					720
				725				Thr	730					735
				740				Pro	745					750
				755					760					765
ьуs	Ser	Ser	Ser	Ser	Phe	Thr	Pro	Phe	Ile	Asp	Pro	Arg	Leu	Leu

```
770
                                    775
Gln Ile Ser Pro Ser Ser Gly Thr Thr Val Thr Ser Val Val Gly
                                    790
Phe Ser Cys Asp Gly Met Arg Pro Glu Ala Ile Arg Gln Asp Pro
                800
                                    805
Thr Arg Lys Gly Ser Val Val Asn Val Asn Pro Thr Asn Thr Arg
Pro Gln Ser Asp Thr Pro Glu Ile Arg Lys Tyr Lys Lys Arg Phe
                                    835
Asn Ser Glu Ile Leu Cys Ala Ala Leu Trp Gly Val Asn Leu Leu
                845
                                    850
Val Gly Thr Glu Ser Gly Leu Met Leu Leu Asp Arg Ser Gly Gln
                                    865
Gly Lys Val Tyr Pro Leu Ile Asn Arg Arg Arg Phe Gln Gln Met
                875
                                    880
Asp Val Leu Glu Gly Leu Asn Val Leu Val Thr Ile Ser Gly Lys
                890
                                    895
Lys Asp Lys Leu Arg Val Tyr Tyr Leu Ser Trp Leu Arg Asn Lys
                905
                                    910
Ile Leu His Asn Asp Pro Glu Val Glu Lys Lys Gln Gly Trp Thr
                920
                                    925
Thr Val Gly Asp Leu Glu Gly Cys Val His Tyr Lys Val Val Lys
                935
                                    940
Tyr Glu Arg Ile Lys Phe Leu Val Ile Ala Leu Lys Ser Ser Val
                950
                                    955
Glu Val Tyr Ala Trp Ala Pro Lys Pro Tyr His Lys Phe Met Ala
                                    970
Phe Lys Ser Phe Gly Glu Leu Val His Gly Ser Cys Ala Gly Phe
                980
                                    985
His Ala Val Asp Val Asp Ser Gly Ser Val Tyr Asp Ile Tyr Leu
                                  1000
Pro Thr His Ile Gln Cys Ser Ile Lys Pro His Ala Ile Ile Ile
               1010
                                  1015
Leu Pro Asn Thr Asp Gly Met Glu Leu Leu Val Cys Tyr Glu Asp
               1025
                                  1030
Glu Gly Val Tyr Val Asn Thr Tyr Gly Arg Ile Thr Lys Asp Val
               1040
                                  1045
Val Leu Gln Trp Gly Glu Met Pro Thr Ser Val Ala Tyr Ile Arg
               1055
                                  1060
Ser Asn Gln Thr Met Gly Trp Gly Glu Lys Ala Ile Glu Ile Arg
               1070
                                 1075
Ser Val Glu Thr Gly His Leu Asp Gly Val Phe Met His Lys Arg
               1085
                                  1090
Ala Gln Arg Leu Lys Phe Leu Cys Glu Arg Asn Asp Lys Val Phe
              1100
                                  1105
Phe Ala Ser Val Arg Ser Gly Gly Ser Ser Gln Val Tyr Phe Met
              1115
                                  1120
Thr Leu Gly Arg Thr Ser Leu Leu Ser Trp
               1130
```

<210> 17

<211> 228

<212> PRT

<213> Homo sapiens

```
<220>
<221> misc feature
<223> Incyte Clone Number: 209854
<400> 17
Met Pro Thr Asn Cys Ala Ala Ala Gly Cys Ala Thr Thr Tyr Asn
                   5
                                      10
Lys His Ile Asn Ile Ser Phe His Arg Phe Pro Leu Asp Pro Lys
Arg Arg Lys Glu Trp Val Arg Leu Val Arg Arg Lys Asn Phe Val
                                      40
Pro Gly Lys His Thr Phe Leu Cys Ser Lys His Phe Glu Ala Ser
                  50
Cys Phe Asp Leu Thr Gly Gln Thr Arg Arg Leu Lys Met Asp Ala
                 65
                                     70
Val Pro Thr Ile Phe Asp Phe Cys Thr His Ile Lys Ser Met Lys
                 80
                                     85
Leu Lys Ser Arg Asn Leu Leu Lys Lys Asn Asn Ser Cys Ser Pro
                 95
                                    100
Ala Gly Pro Ser Asn Leu Lys Ser Asn Ile Ser Ser Gln Gln Val
                110
                                    115
Leu Leu Glu His Ser Tyr Ala Phe Arg Asn Pro Met Glu Ala Lys
                125
                                    130
Lys Arg Ile Ile Lys Leu Glu Lys Glu Ile Ala Ser Leu Arg Arg
                140
                                    145
Lys Met Lys Thr Cys Leu Gln Lys Glu Arg Arg Ala Thr Arg Arg
                155
                                    160
Trp Ile Lys Ala Thr Cys Leu Val Lys Asn Leu Glu Ala Asn Ser
                170
                                    175
Val Leu Pro Lys Gly Thr Ser Glu His Met Leu Pro Thr Ala Leu
                185
                                    190
Ser Ser Leu Pro Leu Glu Asp Phe Lys Ile Leu Glu Gln Asp Gln
                200
                                    205
Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu Lys Gln Thr Lys Ser
                215
                                    220
Thr Phe Ile
<210> 18
<211> 503
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 1384286
Met Ala Thr Thr Val Thr Cys Thr Arg Phe Thr Asp Glu Tyr Gln
                                     10
Leu Tyr Glu Asp Ile Gly Lys Gly Ala Phe Ser Val Val Arg Arg
                 20
                                     25
Cys Val Lys Leu Cys Thr Gly His Glu Tyr Ala Ala Lys Ile Ile
                                     40
```

Asn Thr Lys Lys Leu Ser Ala Arg Asp His Gln Lys Leu Glu Arg

```
55
Glu Ala Arg Ile Cys Arg Leu Leu Lys His Ser Asn Ile Val Arg
Leu His Asp Ser Ile Ser Glu Glu Gly Phe His Tyr Leu Val Phe
Asp Leu Val Thr Gly Gly Glu Leu Phe Glu Asp Ile Val Ala Arg
                 95
Glu Tyr Tyr Ser Glu Ala Asp Ala Ser His Cys Ile Gln Gln Ile
                                     115
Leu Glu Ala Val Leu His Cys His Gln Met Gly Val Val His Arg
                 125
                                     130
Asp Leu Lys Pro Glu Asn Leu Leu Leu Ala Ser Lys Cys Lys Gly
                140
Ala Ala Val Lys Leu Ala Asp Phe Gly Leu Ala Ile Glu Val Gln
                155
                                     160
Gly Asp Gln Gln Ala Trp Phe Gly Phe Ala Gly Thr Pro Gly Tyr
                170
                                     175
Leu Ser Pro Glu Val Leu Arg Lys Glu Ala Tyr Gly Lys Pro Val
                185
                                     190
Asp Ile Trp Ala Cys Gly Val Ile Leu Tyr Ile Leu Leu Val Gly
                200
                                     205
Tyr Pro Pro Phe Trp Asp Glu Asp Gln His Lys Leu Tyr Gln Gln
                215
                                    220
Ile Lys Ala Gly Ala Tyr Asp Phe Pro Ser Pro Glu Trp Asp Thr
                230
Val Thr Pro Glu Ala Lys Asn Leu Ile Asn Gln Met Leu Thr Ile
Asn Pro Ala Lys Arg Ile Thr Ala His Glu Ala Leu Lys His Pro
                260
Trp Val Cys Gln Arg Ser Thr Val Ala Ser Met Met His Arg Gln
Glu Thr Val Glu Cys Leu Lys Lys Phe Asn Ala Arg Arg Lys Leu
                                    295
Lys Gly Ala Ile Leu Thr Thr Met Leu Ala Thr Arg Asn Phe Ser
                305
                                    310
Ala Ala Lys Ser Leu Leu Asn Lys Lys Ala Asp Gly Val Lys Pro
                320
                                    325
His Thr Asn Ser Thr Lys Asn Ser Ala Ala Ala Thr Ser Pro Lys
                                    340
Gly Thr Leu Pro Pro Ala Ala Leu Glu Ser Ser Asp Ser Ala Asn
                350
                                    355
Thr Thr Ile Glu Asp Glu Asp Ala Lys Ala Arg Lys Gln Glu Ile
                365
                                    370
Ile Lys Thr Thr Glu Gln Leu Ile Glu Ala Val Asn Asn Gly Asp
                380
                                    385
Phe Glu Ala Tyr Ala Lys Ile Cys Asp Pro Gly Leu Thr Ser Phe
                395
                                    400
Glu Pro Glu Ala Leu Gly Asn Leu Val Glu Gly Met Asp Phe His
                410
                                    415
Arg Phe Tyr Phe Glu Asn Leu Leu Ala Lys Asn Ser Lys Pro Ile
                425
His Thr Thr Ile Leu Asn Pro His Val His Val Ile Gly Glu Asp
Ala Ala Cys Ile Ala Tyr Ile Arg Leu Thr Gln Tyr Ile Asp Gly
Gln Gly Arg Pro Arg Thr Ser Gln Ser Glu Glu Thr Arg Val Trp
```

```
His Arg Arg Asp Gly Lys Trp Gln Asn Val His Phe His Cys Ser 485 490 495
Gly Ala Pro Val Ala Pro Leu Gln 500
```

<210> 19 <211> 433 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone Number: 1512656 <400> 19 Met Thr Gly Glu Ala Gln Ala Gly Arg Lys Arg Ser Arg Ala Arg 10 Pro Glu Gly Thr Glu Pro Val Arg Arg Glu Arg Thr Gln Pro Gly Leu Gly Pro Gly Arg Ala Arg Ala Met Ala Ala Glu Ala Thr Ala 40 Val Ala Gly Ser Gly Ala Val Gly Gly Cys Leu Ala Lys Asp Gly 50 55 Leu Gln Gln Ser Lys Cys Pro Asp Thr Thr Pro Lys Arg Arg Arg Ala Ser Ser Leu Ser Arg Asp Ala Glu Arg Arg Ala Tyr Gln Trp Cys Arg Glu Tyr Leu Gly Gly Ala Trp Arg Arg Val Gln Pro Glu 100 Glu Leu Arg Val Tyr Pro Val Ser Gly Gly Leu Ser Asn Leu Leu 115 Phe Arg Cys Ser Leu Pro Asp His Leu Pro Ser Val Gly Glu Glu 130 Pro Arg Glu Val Leu Leu Arg Leu Tyr Gly Ala Ile Leu Gln Gly 140 145 Val Asp Ser Leu Val Leu Glu Ser Val Met Phe Ala Ile Leu Ala 155 160 Glu Arg Ser Leu Gly Pro Gln Leu Tyr Gly Val Phe Pro Glu Gly 170 175 Arg Leu Glu Gln Tyr Ile Pro Ser Arg Pro Leu Lys Thr Gln Glu 185 190 Leu Arg Glu Pro Val Leu Ser Ala Ala Ile Ala Thr Lys Met Ala 200 205 Gln Phe His Gly Met Glu Met Pro Phe Thr Lys Glu Pro His Trp 215 220

 Pro
 Pro
 Thr
 Gly
 Leu
 Pro
 Glu
 Met
 Asn
 Leu
 Leu
 Leu
 Glu
 Met
 Tyr
 Ser

 Leu
 Lys
 Asp
 Glu
 Met
 Gly
 Asn
 Leu
 Arg
 Lys
 Leu
 Leu
 Glu
 Ser
 Thr

 260
 265
 265
 270

Leu Phe Gly Thr Met Glu Arg Tyr Leu Lys Gln Ile Gln Asp Leu

230

Pro Ser Pro Val Val Phe Cys His Asn Asp Ile Gln Glu Gly Asn

```
275
                                    280
Ile Leu Leu Ser Glu Pro Glu Asn Ala Asp Ser Leu Met Leu
                290
Val Asp Phe Glu Tyr Ser Ser Tyr Asn Tyr Arg Gly Phe Asp Ile
                                    310
Gly Asn His Phe Cys Glu Trp Val Tyr Asp Tyr Thr His Glu Glu
                320
Trp Pro Phe Tyr Lys Ala Arg Pro Thr Asp Tyr Pro Thr Gln Glu
                                    340
Gln Gln Leu His Phe Ile Arg His Tyr Leu Ala Glu Ala Lys Lys
                350
                                    355
Gly Glu Thr Leu Ser Gln Glu Glu Gln Arg Lys Leu Glu Glu Asp
                365
                                    370
Leu Leu Val Glu Val Ser Arg Tyr Ala Leu Ala Ser His Phe Phe
                380
                                    385
Trp Gly Leu Trp Ser Ile Leu Gln Ala Ser Met Ser Thr Ile Glu
                395
                                    400
Phe Gly Tyr Leu Asp Tyr Ala Gln Ser Arg Phe Gln Phe Tyr Phe
                410
                                    415
Gln Gln Lys Gly Gln Leu Thr Ser Val His Ser Ser Ser
                425
                                    430
<210> 20
<211> 527
<212> PRT
```

<213> Homo sapiens

<220>

<221> misc feature

<223> Incyte Clone Number: 2098635

<400> 20

Met Ser Leu Cys Gly Ala Arg Ala Asn Ala Lys Met Met Ala Ala 10 Tyr Asn Gly Gly Thr Ser Ala Ala Ala Ala Gly His His His 25 His His His Leu Pro His Leu Pro Pro Pro His Leu Leu His 35 40 His His Pro Gln His His Leu His Pro Gly Ser Ala Ala Ala 50 55 Val His Pro Val Gln Gln His Thr Ser Ser Ala Ala Ala Ala Ala 65 70 Ala Ala Ala Ala Ala Ala Met Leu Asn Pro Gly Gln Gln 80 85 Gln Pro Tyr Phe Pro Ser Pro Ala Pro Gly Gln Ala Pro Gly Pro 95 100 Ala Ala Ala Pro Ala Gln Val Gln Ala Ala Ala Ala Thr 110 115 Val Lys Ala His His Gln His Ser His His Pro Gln Gln Gln 125 Leu Asp Ile Glu Pro Asp Arg Pro Ile Gly Tyr Gly Ala Phe Gly 145 Val Val Trp Ser Val Thr Asp Pro Arg Asp Gly Lys Arg Val Ala 160 Leu Lys Lys Met Pro Asn Val Phe Gln Asn Leu Val Ser Cys Lys

```
175
Arg Val Phe Arg Glu Leu Lys Met Leu Cys Phe Phe Lys His Asp
                 185
                                     190
Asn Val Leu Ser Ala Leu Asp Ile Leu Gln Pro Pro His Ile Asp
                 200
                                     205
Tyr Phe Glu Glu Ile Tyr Val Val Thr Glu Leu Met Gln Ser Asp
                 215
                                     220
Leu His Lys Ile Ile Val Ser Pro Gln Pro Leu Ser Ser Asp His
                                     235
Val Lys Val Phe Leu Tyr Gln Ile Leu Arg Gly Leu Lys Tyr Leu
                                     250
His Ser Ala Gly Ile Leu His Arg Asp Ile Lys Pro Gly Asn Leu
                                     265
Leu Val Asn Ser Asn Cys Val Leu Lys Ile Cys Asp Phe Gly Leu
                                     280
Ala Arg Val Glu Glu Leu Asp Glu Ser Arg His Met Thr Gln Glu
                290
                                    295
Val Val Thr Gln Tyr Tyr Arg Ala Pro Glu Ile Leu Met Gly Ser
                305
                                    310
Arg His Tyr Ser Asn Ala Ile Asp Ile Trp Ser Val Gly Cys Ile
                320
                                    325
Phe Ala Glu Leu Leu Gly Arg Arg Ile Leu Phe Gln Ala Gln Ser
                335
                                    340
Pro Ile Gln Gln Leu Asp Leu Ile Thr Asp Leu Leu Gly Thr Pro
                350
                                    355
Ser Leu Glu Ala Met Arg Thr Ala Cys Glu Gly Ala Lys Ala His
                365
                                    370
Ile Leu Arg Gly Pro His Lys Gln Pro Ser Leu Pro Val Leu Tyr
                380
                                    385
Thr Leu Ser Ser Gln Ala Thr His Glu Ala Val His Leu Leu Cys
                395
                                    400
Arg Met Leu Val Phe Asp Pro Ser Lys Arg Ile Ser Ala Lys Asp
                                    415
Ala Leu Ala His Pro Tyr Leu Asp Glu Gly Arg Leu Arg Tyr His
                                    430
Thr Cys Met Cys Lys Cys Cys Phe Ser Thr Ser Thr Gly Arg Val
                440
Tyr Thr Ser Asp Phe Glu Pro Val Thr Asn Pro Lys Phe Asp Asp
                                    460
Thr Phe Glu Lys Asn Leu Ser Ser Val Arg Gln Val Lys Glu Ile
                470
                                    475
Ile His Gln Phe Ile Leu Glu Gln Gln Lys Gly Asn Arg Val Pro
                485
                                    490
Leu Cys Ile Asn Pro Gln Ser Ala Ala Phe Lys Ser Phe Ile Ser
                                    505
Ser Thr Val Ala Gln Pro Ser Glu Met Pro Pro Ser Pro Leu Val
                515
                                    520
                                                         525
Trp Glu
```

<210> 21

<211> 322

<212> PRT

<213> Homo sapiens

<220>

```
<221> misc feature
<223> Incyte Clone Number: 2446646
<400> 21
Met Glu Gly Ile Ser Asn Phe Lys Thr Pro Ser Lys Leu Ser Glu
Lys Lys Lys Ser Val Leu Cys Ser Thr Pro Thr Ile Asn Ile Pro
Ala Ser Pro Phe Met Gln Lys Leu Gly Phe Gly Thr Gly Val Asn
Val Tyr Leu Met Lys Arg Ser Pro Arg Gly Leu Ser His Ser Pro
Trp Ala Val Lys Lys Ile Asn Pro Ile Cys Asn Asp His Tyr Arg
                 65
                                     70
Ser Val Tyr Gln Lys Arg Leu Met Asp Glu Ala Lys Ile Leu Lys
Ser Leu His His Pro Asn Ile Val Gly Tyr Arg Ala Phe Thr Glu
                 95
                                    100
Ala Asn Asp Gly Ser Leu Cys Leu Ala Met Glu Tyr Gly Glu Glu
                110
                                    115
Lys Ser Leu Asn Asp Leu Ile Glu Glu Arg Tyr Lys Ala Ser Gln
                125
                                    130
Asp Pro Phe Pro Ala Ala Ile Ile Leu Lys Val Ala Leu Asn Met
                140
                                    145
Ala Arg Gly Leu Lys Tyr Leu His Gln Glu Lys Lys Leu Leu His
                155
                                    160
Gly Asp Ile Lys Ser Ser Asn Val Val Ile Lys Gly Asp Phe Glu
                                    175
Thr Ile Lys Ile Cys Asp Val Gly Val Ser Leu Pro Leu Asp Glu
                185
                                    190
Asn Met Thr Val Thr Asp Pro Glu Ala Cys Tyr Ile Gly Thr Glu
Pro Trp Lys Pro Lys Glu Ala Val Glu Glu Asn Gly Val Ile Thr
Asp Lys Ala Asp Ile Phe Ala Phe Gly Leu Thr Leu Trp Glu Met
                                    235
Met Thr Leu Ser Ile Pro His Ile Asn Leu Ser Asn Asp Asp
                245
                                   250
Asp Glu Asp Lys Thr Phe Asp Glu Ser Asp Phe Asp Asp Glu Ala
                260
                                   265
Tyr Tyr Ala Ala Leu Gly Thr Arg Pro Pro Ile Asn Met Glu Glu
                275
                                    280
Leu Asp Glu Ser Tyr Gln Lys Val Ile Glu Leu Phe Ser Val Cys
                290
                                    295
Thr Asn Glu Asp Pro Lys Asp Arg Pro Ser Ala Ala His Ile Val
                305
Glu Ala Leu Glu Thr Asp Val
                320
<210> 22
<211> 802
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
```

<223> Incyte Clone Number: 2764911

<400> 22 Met Glu Glu Gly Gly Ser Ser Gly Gly Ala Ala Gly Thr Ser Ala Asp Gly Gly Asp Gly Glu Gln Leu Leu Thr Val Lys His Glu Leu Arg Thr Ala Asn Leu Thr Gly His Ala Glu Lys Val Gly Ile Glu Asn Phe Glu Leu Leu Lys Val Leu Gly Thr Gly Ala Tyr Gly Lys Val Phe Leu Val Arg Lys Ile Ser Gly His Asp Thr Gly Lys Leu Tyr Ala Met Lys Val Leu Lys Lys Ala Thr Ile Val Gln 85 Lys Ala Lys Thr Thr Glu His Thr Arg Thr Glu Arg Gln Val Leu 95 100 Glu His Ile Arg Gln Ser Pro Phe Leu Val Thr Leu His Tyr Ala 110 115 Phe Gln Thr Glu Thr Lys Leu His Leu Ile Leu Asp Tyr Ile Asn 125 130 Gly Gly Glu Leu Phe Thr His Leu Ser Gln Arg Glu Arg Phe Thr 140 145 Glu His Glu Val Gln Ile Tyr Val Gly Glu Ile Val Leu Ala Leu 155 160 Glu His Leu His Lys Leu Gly Ile Ile Tyr Arg Asp Ile Lys Leu 170 175 Glu Asn Ile Leu Leu Asp Ser Asn Gly His Val Val Leu Thr Asp 190 Phe Gly Leu Ser Lys Glu Phe Val Ala Asp Glu Thr Glu Arg Ala 205 Tyr Ser Phe Cys Gly Thr Ile Glu Tyr Met Ala Pro Asp Ile Val 220 Arg Gly Gly Asp Ser Gly His Asp Lys Ala Val Asp Trp Trp Ser 235 Leu Gly Val Leu Met Tyr Glu Leu Leu Thr Gly Ala Ser Pro Phe 245 250 Thr Val Asp Gly Glu Lys Asn Ser Gln Ala Glu Ile Ser Arg Arg 260 265 Ile Leu Lys Ser Glu Pro Pro Tyr Pro Gln Glu Met Ser Ala Leu 275 280 Ala Lys Asp Leu Ile Gln Arg Leu Leu Met Lys Asp Pro Lys Lys 290 295 Arg Leu Gly Cys Gly Pro Arg Asp Ala Asp Glu Ile Lys Glu His 305 310 Leu Phe Phe Gln Lys Ile Asn Trp Asp Asp Leu Ala Ala Lys Lys 320 325 Val Pro Ala Pro Phe Lys Pro Val Ile Arg Asp Glu Leu Asp Val 335 340 Ser Asn Phe Ala Glu Glu Phe Thr Glu Met Asp Pro Thr Tyr Ser 350 355 Pro Ala Ala Leu Pro Gln Ser Ser Glu Lys Leu Phe Gln Gly Tyr 370 Ser Phe Val Ala Pro Ser Ile Leu Phe Lys Arg Asn Ala Ala Val 385

Ile Asp Pro Leu Gln Phe His Met Gly Val Glu Arg Pro Gly Val

```
395
                                     400
Thr Asn Val Ala Arg Ser Ala Met Met Lys Asp Ser Pro Phe Tyr
                                     415
Gln His Tyr Asp Leu Asp Leu Lys Asp Lys Pro Leu Gly Glu Gly
                                     430
Ser Phe Ser Ile Cys Arg Lys Cys Val His Lys Lys Ser Asn Gln
Ala Phe Ala Val Lys Ile Ile Ser Lys Arg Met Glu Ala Asn Thr
                                     460
Gln Lys Glu Ile Thr Ala Leu Glu Leu Cys Glu Gly His Pro Asn
                470
                                     475
Ile Val Lys Leu His Glu Val Phe His Asp Gln Leu His Thr Phe
                485
                                     490
Leu Val Met Glu Leu Leu Asn Gly Gly Glu Leu Phe Glu Arg Ile
                500
                                     505
Lys Lys Lys His Phe Ser Glu Thr Glu Ala Ser Tyr Ile Met
                515
                                     520
Arg Lys Leu Val Ser Ala Val Ser His Met His Asp Val Gly Val
                530
                                     535
Val His Arg Asp Leu Lys Pro Glu Asn Leu Leu Phe Thr Asp Glu
                545
                                     550
Asn Asp Asn Leu Glu Ile Lys Ile Ile Asp Phe Gly Phe Ala Arg
                560
                                    565
Leu Lys Pro Pro Asp Asn Gln Pro Leu Lys Thr Pro Cys Phe Thr
                575
                                     580
Leu His Tyr Ala Ala Pro Glu Leu Leu Asn Gln Asn Gly Tyr Asp
                                     595
Glu Ser Cys Asp Leu Trp Ser Leu Gly Val Ile Leu Tyr Thr Met
                605
                                     610
Leu Ser Gly Gln Val Pro Phe Gln Ser His Asp Arg Ser Leu Thr
                                     625
Cys Thr Ser Ala Val Glu Ile Met Lys Lys Ile Lys Lys Gly Asp
                635
                                     640
Phe Ser Phe Glu Gly Glu Ala Trp Lys Asn Val Ser Gln Glu Ala
                650
                                    655
Lys Asp Leu Ile Gln Gly Leu Leu Thr Val Asp Pro Asn Lys Arg
                665
                                    670
Leu Lys Met Ser Gly Leu Arg Tyr Asn Glu Trp Leu Gln Asp Gly
                680
                                    685
Ser Gln Leu Ser Ser Asn Pro Leu Met Thr Pro Asp Ile Leu Gly
                695
                                    700
Ser Ser Gly Ala Ala Val His Thr Cys Val Lys Ala Thr Phe His
                710
                                    715
Ala Phe Asn Lys Tyr Lys Arg Glu Gly Phe Cys Leu Gln Asn Val
                725
                                    730
Asp Lys Ala Pro Leu Ala Lys Arg Arg Lys Met Lys Lys Thr Ser
                740
                                    745
Thr Ser Thr Glu Thr Arg Ser Ser Ser Ser Glu Ser Ser His Ser
                755
                                    760
Ser Ser Ser His Ser His Gly Lys Thr Thr Pro Thr Lys Thr Leu
                                    775
Gln Pro Ser Asn Pro Ala Asp Ser Asn Asn Pro Glu Thr Leu Phe
                785
                                    790
Gln Phe Ser Asp Ser Val Ala
                800
```

```
<210> 23
<211> 641
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 3013946
<400> 23
Met Ala Thr Thr Val Thr Cys Thr Arq Phe Thr Asp Glu Tyr Gln
Leu Tyr Glu Asp Ile Gly Lys Gly Ala Phe Ser Val Val Arg Arg
                                      25
Cys Val Lys Leu Cys Thr Gly His Glu Tyr Ala Ala Lys Ile Ile
                                      40
Asn Thr Lys Lys Leu Ser Ala Arg Asp His Gln Lys Leu Glu Arg
                 50
                                     55
Glu Ala Arg Ile Cys Arg Leu Leu Lys His Ser Asn Ile Val Arg
                                     70
                 65
Leu His Asp Ser Ile Ser Glu Glu Gly Phe His Tyr Leu Val Phe
                 80
                                      85
Asp Leu Val Thr Gly Gly Glu Leu Phe Glu Asp Ile Val Ala Arg
                                    100
Glu Tyr Tyr Ser Glu Ala Asp Ala Ser His Cys Ile Gln Gln Ile
                110
                                    115
Leu Glu Ala Val Leu His Cys His Gln Met Gly Val Val His Arq
                125
                                    130
Asp Leu Lys Pro Glu Asn Leu Leu Leu Ala Ser Lys Cys Lys Gly
                                    145
Ala Ala Val Lys Leu Ala Asp Phe Gly Leu Ala Ile Glu Val Gln
                                    160
Gly Asp Gln Gln Ala Trp Phe Gly Phe Ala Gly Thr Pro Gly Tyr
                                    175
Leu Ser Pro Glu Val Leu Arg Lys Glu Ala Tyr Gly Lys Pro Val
                                    190
Asp Ile Trp Ala Cys Gly Val Ile Leu Tyr Ile Leu Leu Val Gly
                200
                                    205
Tyr Pro Pro Phe Trp Asp Glu Asp Gln His Lys Leu Tyr Gln Gln
                215
                                    220
Ile Lys Ala Gly Ala Tyr Asp Phe Pro Ser Pro Glu Trp Asp Thr
                                    235
                230
Val Thr Pro Glu Ala Lys Asn Leu Ile Asn Gln Met Leu Thr Ile
                245
                                    250
Asn Pro Ala Lys Arg Ile Thr Ala His Glu Ala Leu Lys His Pro
                260
                                    265
Trp Val Cys Gln Arg Ser Thr Val Ala Ser Met Met His Arg Gln
                275
                                    280
Glu Thr Val Glu Cys Leu Lys Lys Phe Asn Ala Arg Arg Lys Leu
                290
                                    295
Lys Gly Ala Ile Leu Thr Thr Met Leu Ala Thr Arg Asn Phe Ser
                305
                                    310
Ala Lys Ser Leu Leu Asn Lys Lys Ala Asp Gly Val Lys Pro Gln
                                    325
Thr Asn Ser Thr Lys Asn Ser Ala Ala Ala Thr Ser Pro Lys Gly
                335
                                    340
```

```
Thr Leu Pro Pro Ala Ala Leu Glu Pro Gln Thr Thr Val Ile His
                                     355
Asn Pro Val Asp Gly Ile Lys Glu Ser Ser Asp Ser Ala Asn Thr
                                     370
Thr Ile Glu Asp Glu Asp Ala Lys Ala Pro Arg Val Pro Asp Ile
                                     385
Leu Ser Ser Val Arg Arg Gly Ser Gly Ala Pro Glu Ala Glu Gly
                 395
                                     400
Pro Leu Pro Cys Pro Ser Pro Ala Pro Phe Gly Pro Leu Pro Ala
                 410
                                     415
Pro Ser Pro Arg Ile Ser Asp Ile Leu Asn Ser Val Arg Arg Gly
                425
                                     430
Ser Gly Thr Pro Glu Ala Glu Gly Pro Leu Ser Ala Gly Pro Pro
                440
                                    445
Pro Cys Leu Ser Pro Ala Leu Leu Gly Pro Leu Ser Ser Pro Ser
                 455
                                     460
Pro Arg Ile Ser Asp Ile Leu Asn Ser Val Arg Arg Gly Ser Gly
                470
                                     475
Thr Pro Glu Ala Lys Gly Pro Ser Pro Val Gly Pro Pro Pro Cys
                485
                                     490
Pro Ser Pro Thr Ile Pro Gly Pro Leu Pro Thr Pro Ser Arg Lys
                500
                                     505
Gln Glu Ile Ile Lys Thr Thr Glu Gln Leu Ile Glu Ala Val Asn
                                     520
Asn Gly Asp Phe Glu Ala Tyr Ala Lys Ile Cys Asp Pro Gly Leu
                                     535
Thr Ser Phe Glu Pro Glu Ala Leu Gly Asn Leu Val Glu Gly Met
Asp Phe His Arg Phe Tyr Phe Glu Asn Leu Leu Ala Lys Asn Ser
                                    565
Lys Pro Ile His Thr Thr Ile Leu Asn Pro His Val His Val Ile
                575
                                    580
Gly Glu Asp Ala Ala Cys Ile Ala Tyr Ile Arg Leu Thr Gln Tyr
                590
                                    595
Ile Asp Gly Gln Gly Arg Pro Arg Thr Ser Gln Ser Glu Glu Thr
                605
                                    610
Arg Val Trp His Arg Arg Asp Gly Lys Trp Gln Asn Val His Phe
                620
                                    625
His Cys Ser Gly Ala Pro Val Ala Pro Leu Gln
                635
<210> 24
<211> 588
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 067967
<400> 24
Met Gly Gly Thr Ala Arg Gly Pro Gly Arg Lys Asp Ala Gly Pro
                  5
Pro Gly Ala Gly Leu Pro Pro Gln Gln Arg Arg Leu Gly Asp Gly
                                     25
```

Val Tyr Asp Thr Phe Met Met Ile Asp Glu Thr Lys Cys Pro Pro

```
40
Cys Ser Asn Val Leu Cys Asn Pro Ser Glu Pro Pro Ser Pro Arq
                                      55
Arg Leu Asn Met Thr Thr Glu Gln Phe Thr Gly Asp His Thr Gln
                                      70
His Phe Leu Asp Gly Glu Met Lys Val Glu Gln Leu Phe Gln
Glu Phe Gly Asn Arg Lys Ser Asn Thr Ile Gln Ser Asp Gly Ile
                                     100
Ser Asp Ser Glu Lys Cys Ser Pro Thr Val Ser Gln Gly Lys Ser
                                     115
Ser Asp Cys Leu Asn Thr Val Lys Ser Asn Ser Ser Ser Lys Ala
                                     130
Pro Lys Val Val Pro Leu Thr Pro Glu Gln Ala Leu Lys Gln Tyr
                140
                                     145
Lys His His Leu Thr Ala Tyr Glu Lys Leu Glu Ile Ile Asn Tyr
                155
                                     160
Pro Glu Ile Tyr Phe Val Gly Pro Asn Ala Lys Lys Arg His Gly
                170
                                     175
Val Ile Gly Gly Pro Asn Asn Gly Gly Tyr Asp Asp Ala Asp Gly
                185
                                     190
Ala Tyr Ile His Val Pro Arg Asp His Leu Ala Tyr Arg Tyr Glu
                200
                                     205
Val Leu Lys Ile Ile Gly Lys Gly Ser Phe Gly Gln Val Ala Arq
                215
                                     220
Val Tyr Asp His Lys Leu Arg Gln Tyr Val Ala Leu Lys Met Val
                230
                                    235
Arg Asn Glu Lys Arg Phe His Arg Gln Ala Ala Glu Glu Ile Arg
                245
                                    250
Ile Leu Glu His Leu Lys Lys Gln Asp Lys Thr Gly Ser Met Asn
                                     265
Val Ile His Met Leu Glu Ser Phe Thr Phe Arg Asn His Val Cys
                275
                                    280
Met Ala Phe Glu Leu Leu Ser Ile Asp Leu Tyr Glu Leu Ile Lys
Lys Asn Lys Phe Gln Gly Phe Ser Val Gln Leu Val Arg Lys Phe
                                    310
Ala Gln Ser Ile Leu Gln Ser Leu Asp Ala Leu His Lys Asn Lys
                320
                                    325
Ile Ile His Cys Asp Leu Lys Pro Glu Asn Ile Leu Leu Lys His
                335
His Gly Arg Ser Ser Thr Lys Val Ile Asp Phe Gly Ser Ser Cys
                                    355
Phe Glu Tyr Gln Lys Leu Tyr Thr Tyr Ile Gln Ser Arg Phe Tyr
                365
                                    370
Arg Ala Pro Glu Ile Ile Leu Gly Ser Arg Tyr Ser Thr Pro Ile
                380
                                    385
Asp Ile Trp Ser Phe Gly Cys Ile Leu Ala Glu Leu Leu Thr Gly
                395
                                    400
Gln Pro Leu Phe Pro Gly Glu Asp Glu Gly Asp Gln Leu Ala Cys
                410
                                    415
Met Met Glu Leu Gly Met Pro Pro Pro Lys Leu Leu Glu Gln
                425
                                    430
Ser Lys Arg Ala Lys Tyr Phe Ile Asn Ser Lys Gly Ile Pro Arg
Tyr Cys Ser Val Thr Thr Gln Ala Asp Gly Arg Val Val Leu Val
```

```
460
Gly Gly Arg Ser Arg Arg Gly Lys Lys Arg Gly Pro Pro Gly Ser
                 470
Lys Asp Trp Gly Thr Ala Leu Lys Gly Cys Asp Asp Tyr Leu Phe
                                     490
Ile Glu Phe Leu Lys Arg Cys Leu His Trp Asp Pro Ser Ala Arg
                 500
                                     505
Leu Thr Pro Ala Gln Ala Leu Arg His Pro Trp Ile Ser Lys Ser
                515
                                     520
Val Pro Arg Pro Leu Thr Thr Ile Asp Lys Val Ser Gly Lys Arg
                530
                                     535
Val Val Asn Pro Ala Ser Ala Phe Gln Gly Leu Gly Ser Lys Leu
                545
                                     550
Pro Pro Val Val Gly Ile Ala Asn Lys Leu Lys Ala Asn Leu Met
                560
                                     565
Ser Glu Thr Asn Gly Ser Ile Pro Leu Cys Ser Val Leu Pro Lys
                575
                                     580
Leu Ile Ser
<210> 25
<211> 389
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 346275
<400> 25
Met Ser Asp Val Cys Ser Ser Gln Arg Ala Glu His Glu His Leu
                  5
Pro Gly Leu Val Pro Pro Pro Ser Gly Met Gly Val Arg Lys Gly
Ser Ser Pro Leu Lys Ser His Pro Cys Arg Glu Lys Ser Val Ser
                 35
Asn Arg Arg Ser Gly Lys Thr Ile Val Arg Ser Ala Val Glu Glu
                 50
                                      55
Val Arg Thr Ala Gly Leu Phe Arg Ser Gly Phe Ser Glu Glu Lys
                 65
                                      70
Ala Thr Gly Lys Leu Phe Ala Val Lys Cys Ile Pro Lys Lys Ala
                 80
                                      85
Leu Lys Gly Lys Glu Ser Ser Ile Glu Asn Glu Ile Ala Val Leu
                 95
                                     100
Arg Lys Ile Lys His Glu Asn Ile Val Ala Leu Glu Asp Ile Tyr
                110
Glu Ser Pro Asn His Leu Tyr Leu Val Met Gln Leu Val Ser Gly
                                     130
Gly Glu Leu Phe Asp Arg Ile Val Glu Lys Gly Phe Tyr Thr Glu
                140
Lys Asp Ala Ser Thr Leu Ile Arg Gln Val Leu Asp Ala Val Tyr
                155
                                     160
Tyr Leu His Arg Met Gly Ile Val His Arg Asp Leu Lys Pro Glu
                170
                                     175
Asn Leu Leu Tyr Tyr Ser Gln Asp Glu Glu Ser Lys Ile Met Ile
                185
                                     190
                                                         195
```

```
Ser Asp Phe Gly Leu Ser Lys Met Glu Gly Lys Gly Asp Val Met
Ser Thr Ala Cys Gly Thr Pro Gly Tyr Val Ala Pro Glu Val Leu
                 215
                                     220
Ala Gln Lys Pro Tyr Ser Lys Ala Val Asp Cys Trp Ser Ile Gly
                 230
                                     235
Val Ile Ala Tyr Ile Leu Leu Cys Gly Tyr Pro Pro Phe Tyr Asp
                 245
                                     250
Glu Asn Asp Ser Lys Leu Phe Glu Gln Ile Leu Lys Ala Glu Tyr
                 260
                                     265
Glu Phe Asp Ser Pro Tyr Trp Asp Asp Ile Ser Asp Ser Ala Lys
                 275
                                     280
Asp Phe Ile Arg Asn Leu Met Glu Lys Asp Pro Asn Lys Arg Tyr
                 290
                                     295
Thr Cys Glu Gln Ala Ala Arg His Pro Trp Ile Ala Gly Asp Thr
                305
                                     310
Ala Leu Asn Lys Asn Ile His Glu Ser Val Ser Ala Gln Ile Arg
                320
                                     325
Lys Asn Phe Ala Lys Ser Lys Trp Arg Gln Ala Phe Asn Ala Thr
                335
                                     340
Ala Val Val Arg His Met Arg Lys Leu His Leu Gly Ser Ser Leu
                350
                                     355
Asp Ser Ser Asn Ala Ser Val Ser Ser Ser Leu Ser Leu Ala Ser
                365
                                     370
Gln Lys Asp Cys Ala Tyr Val Ala Lys Pro Glu Ser Leu Ser
                380
<210> 26
<211> 343
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 283746
<400> 26
Met Ile Gly Glu Glu Ala Met Ile Asn Tyr Glu Asn Phe Leu Lys
                                     10
Val Gly Glu Lys Ala Gly Ala Lys Cys Lys Gln Phe Phe Thr Ala
                                     25
Lys Val Phe Ala Lys Leu Leu His Thr Asp Ser Tyr Gly Arg Ile
                 35
                                     40
```

Ser Ile Met Gln Phe Phe Asn Tyr Val Met Arg Lys Val Trp Leu

His Gln Thr Arg Ile Gly Leu Ser Leu Tyr Asp Val Ala Gly Gln

Gly Tyr Leu Arg Glu Ser Asp Leu Glu Asn Tyr Ile Leu Glu Leu

50

55

70

85

```
Cys Ser Phe Leu Asp Asp Leu Leu Glu Leu Arg Asp Glu Glu Leu
                140
                                    145
Ser Lys Glu Ser Gln Glu Thr Asn Trp Phe Ser Ala Pro Ser Ala
                                    160
Leu Arg Val Tyr Gly Gln Tyr Leu Asn Leu Asp Lys Asp His Asn
                170
                                    175
Gly Met Leu Ser Lys Glu Glu Leu Ser Arg Tyr Gly Thr Ala Thr
                185
                                    190
Met Thr Asn Val Phe Leu Asp Arg Val Phe Gln Glu Cys Leu Thr
                200
                                    205
Tyr Asp Gly Glu Met Asp Tyr Lys Thr Tyr Leu Asp Phe Val Leu
                215
                                    220
Ala Leu Glu Asn Arg Lys Glu Pro Ala Ala Leu Gln Tyr Ile Phe
                230
                                    235
Lys Leu Leu Asp Ile Glu Asn Lys Gly Tyr Leu Asn Val Phe Ser
                245
                                    250
Leu Asn Tyr Phe Phe Arg Ala Ile Gln Glu Leu Met Lys Ile His
                260
                                    265
Gly Gln Asp Pro Val Ser Phe Gln Asp Val Lys Asp Glu Ile Phe
                275
                                    280
Asp Met Val Lys Pro Lys Asp Pro Leu Lys Ile Ser Leu Gln Asp
                290
                                    295
Leu Ile Asn Ser Asn Gln Gly Asp Thr Val Thr Thr Ile Leu Ile
                305
                                    310
Asp Leu Asn Gly Phe Trp Thr Tyr Glu Asn Arg Glu Ala Leu Val
Ala Asn Asp Ser Glu Asn Ser Ala Asp Leu Asp Asp Thr
```

<210> 27

<211> 184

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone Number: 2696537

<400> 27

Met Gly Asn Gly Met Asn Lys Ile Leu Pro Gly Leu Tyr Ile Gly 10 Asn Phe Lys Asp Ala Arg Asp Ala Glu Gln Leu Ser Lys Asn Lys 20 25 Val Thr His Ile Leu Ser Val His Asp Ser Ala Arg Pro Met Leu 40 Glu Gly Val Lys Tyr Leu Cys Ile Pro Ala Ala Asp Ser Pro Ser Gln Asn Leu Thr Arg His Phe Lys Glu Ser Ile Lys Phe Ile His Glu Cys Arg Leu Arg Gly Glu Ser Cys Leu Val His Cys Leu Ala Gly Val Ser Arg Ser Val Thr Leu Val Ile Ala Tyr Ile Met Thr 95 100 Val Thr Asp Phe Gly Trp Glu Asp Ala Leu His Thr Val Arg Ala 110 115 120

```
Gly Arg Ser Cys Ala Asn Pro Asn Val Gly Phe Gln Arg Gln Leu
                125
                                    130
Gln Glu Phe Glu Lys His Glu Val His Gln Tyr Arg Gln Trp Leu
                140
                                     145
Lys Glu Glu Tyr Gly Glu Ser Pro Leu Gln Asp Ala Glu Glu Ala
                155
                                    160
Lys Asn Ile Leu Ala Ala Pro Gly Ile Leu Lys Phe Trp Ala Phe
Leu Arg Arg Leu
<210> 29
<211> 118
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 619292
<400> 29
Met Gly Leu Ile Asp Gly Met His Thr His Leu Gly Ala Pro Gly
                                     10
Leu Tyr Ile Gln Thr Leu Leu Pro Gly Ser Pro Ala Ala Asp
                 20
                                     25
Gly Arg Leu Ser Leu Gly Asp Arg Ile Leu Glu Val Asn Gly Ser
                 35
                                     40
Ser Leu Leu Gly Leu Gly Tyr Leu Arg Ala Val Asp Leu Ile Arg
                 50
                                     55
His Gly Gly Lys Lys Met Arg Phe Leu Val Ala Lys Ser Asp Val
                 65
                                     70
Gly Lys Gln Pro Arg Arg Ser Ile Ser Ala Arg Pro Leu Ser Arg
                                     85
Gly Ala Ala Arg Thr Pro Pro Gln Ala Arg His Pro Val Pro Pro
                 95
                                    100
Gly Asp Thr Gly Leu Pro Pro Ala Phe Val Pro Val Leu
                110
<210> 30
<211> 356
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 2054049
<400> 30
Met Val Gly Val Ser Gly Lys Arg Ser Lys Glu Asp Glu Lys Tyr
                  5
                                     10
Leu Gln Ala Ile Met Asp Ser Asn Ala Gln Ser His Lys Ile Phe
                 20
                                     25
Ile Phe Asp Ala Arg Pro Ser Val Asn Ala Val Ala Asn Lys Ala
                 35
                                     ÷ 0
```

Lys Gly Gly Gly Tyr Glu Ser Glu Asp Ala Tyr Gin Asn Ala Glu

```
50
 Leu Val Phe Leu Asp Ile His Asn Ile His Val Met Arg Glu Ser
 Leu Arg Lys Leu Lys Glu Ile Val Tyr Pro Asn Ile Glu Glu Thr
                   80
                                      85
 His Trp Leu Ser Asn Leu Glu Ser Thr His Trp Leu Glu His Ile
                   95
                                     100
 Lys Leu Ile Leu Ala Gly Ala Leu Arg Ile Ala Asp Lys Val Glu
                                     115
 Ser Gly Lys Thr Ser Val Val Val His Cys Ser Asp Gly Trp Asp
                 125
                                     130
 Arg Thr Ala Gln Leu Thr Ser Leu Ala Met Leu Met Leu Asp Gly
                 140
                                     145
 Tyr Tyr Arg Thr Ile Arg Gly Phe Glu Val Leu Val Glu Lys Glu
                 155
                                     160
 Trp Leu Ser Phe Gly His Arg Phe Gln Leu Arg Val Gly His Gly
                 170
                                     175
 Asp Lys Asn His Ala Asp Ala Asp Arg Ser Pro Val Phe Leu Gln
                 185
                                     190
 Phe Ile Asp Cys Val Trp Gln Met Thr Arg Gln Phe Pro Thr Ala
                 200
                                     205
Phe Glu Phe Asn Glu Tyr Phe Leu Ile Thr Ile Leu Asp His Leu
                 215
                                     220
Tyr Ser Cys Leu Phe Gly Thr Phe Leu Cys Asn Ser Glu Gln Gln
                 230
                                     235
Arg Gly Lys Glu Asn Leu Pro Lys Arg Thr Val Ser Leu Trp Ser
                 245
Tyr Ile Asn Ser Gln Leu Glu Asp Phe Thr Asn Pro Leu Tyr Gly
                260
                                     265
Ser Tyr Ser Asn His Val Leu Tyr Pro Val Ala Ser Met Arg His
                275
                                    280
Leu Glu Leu Trp Val Gly Tyr Tyr Ile Arg Trp Asn Pro Arg Met
                                    295
Lys Pro Gln Glu Pro Ile His Asn Arg Tyr Lys Glu Leu Leu Ala
                305
                                    310
Lys Arg Ala Glu Leu Gln Lys Lys Val Glu Glu Leu Gln Arg Glu
                320
                                    325
Ile Ser Asn Arg Ser Thr Ser Ser Ser Glu Arg Ala Ser Ser Pro
                335
                                    340
Ala Gln Cys Val Thr Pro Val Gln Thr Val Val
                350
```

```
<210> 31

<211> 453

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone Number: 2843910
```

```
Val Ala Glu Ala Asp Ile Ile Ser Thr Val Glu Phe Asn Tyr Ser
                                      40
Gly Asp Leu Leu Ala Thr Gly Asp Lys Gly Gly Arg Val Val Ile
                  50
                                      55
Phe Gln Arg Glu Gln Glu Asn Lys Ser Arg Pro His Ser Arg Gly
                  65
                                      70
Glu Tyr Asn Val Tyr Ser Thr Phe Gln Ser His Glu Pro Glu Phe
                  80
                                      85
Asp Tyr Leu Lys Ser Leu Glu Ile Glu Glu Lys Ile Asn Lys Ile
                                    100
Arg Trp Leu Pro Gln Gln Asn Ala Ala His Phe Leu Leu Ser Thr
                                     115
Asn Asp Lys Thr Ile Lys Leu Trp Lys Ile Ser Glu Arg Asp Lys
                                    130
Arg Ala Glu Gly Tyr Asn Leu Lys Asp Glu Asp Gly Arg Leu Arg
                140
                                    145
Asp Pro Phe Arg Ile Thr Ala Leu Arg Val Pro Ile Leu Lys Pro
                155
                                    160
Met Asp Leu Met Val Glu Ala Ser Pro Arg Arg Ile Phe Ala Asn
                                    175
Ala His Thr Tyr His Ile Asn Ser Ile Ser Val Asn Ser Asp His
                185
                                    190
Glu Thr Tyr Leu Ser Ala Asp Asp Leu Arg Ile Asn Leu Trp His
                200
                                    205
Leu Glu Ile Thr Asp Arg Ser Phe Asn Ile Val Asp Ile Lys Pro
                215
                                    220
Ala Asn Met Glu Glu Leu Thr Glu Val Ile Thr Ala Ala Glu Phe
                230
                                    235
His Pro His Gln Cys Asn Val Phe Val Tyr Ser Ser Ser Lys Gly
                245
                                    250
Thr Ile Arg Leu Cys Asp Met Arg Ser Ser Ala Leu Cys Asp Arg
                                    265
His Ser Lys Phe Phe Glu Glu Pro Glu Asp Pro Ser Ser Arg Ser
                                    280
Phe Phe Ser Glu Ile Ile Ser Ser Ile Ser Asp Val Lys Phe Ser
                290
                                    295
His Ser Gly Arg Tyr Met Met Thr Arg Asp Tyr Leu Ser Val Lys
                                    310
Val Trp Asp Leu Asn Met Glu Ser Arg Pro Val Glu Thr His Gln
                320
                                    325
Val His Glu Tyr Leu Arg Ser Lys Leu Cys Ser Leu Tyr Glu Asn
                335
                                    340
Asp Cys Ile Phe Asp Lys Phe Glu Cys Cys Trp Asn Gly Ser Asp
                350
                                    355
Ser Ala Ile Met Thr Gly Ser Tyr Asn Asn Phe Phe Arg Met Phe
                365
                                    370
Asp Arg Asp Thr Arg Arg Asp Val Thr Leu Glu Ala Ser Arg Glu
                380
                                    385
Ser Ser Lys Pro Arg Ala Ser Leu Lys Pro Arg Lys Val Cys Thr
                395
                                    400
Gly Gly Lys Arg Arg Lys Asp Glu Ile Ser Val Asp Ser Leu Asp
                410
                                    415
Phe Asn Lys Lys Ile Leu His Thr Ala Trp His Pro Val Asp Asn
                425
                                    430
Val Ile Ala Val Ala Ala Thr Asn Asn Leu Tyr Ile Phe Gln Asp
```

```
440
                                     445
                                                         450
Lys Ile Asn
 <210> 32
 <211> 1221
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 132240
<400> 32
cttttcctgg aatttctata atggaaagtc cattagaaag tcagccctta gattcagata 60
gaagcatcaa agaatcctct tttgaagaat caaatattga agatccactt attgtaacac 120
cagattgcca agaaaagacc tcaccaaaag gtgtcgagaa ccctgctgta caagagagta 180
accaaaaaat gttaggteet eetttggagg tgetgaaaac gttageetet aaaagaaatg 240
ctgttgcttt tcgaagtttt aacagtcata ttaatgcatc caataactca gaaccatcca 300
gaatgaacat gacttettta gatgeaatgg atatttegtg tgeetacagt ggtteatate 360
ccatggctat aacccctact caaaaaagaa gatcctgtat gccacatcag accccaaatc 420
agatcaagtc gggaactcca taccgaactc cgaagagtgt gagaagaggg gtggcccccg 480
ttgatgatgg gcgaattcta ggaaccccag actaccttgc acctgagctg ttactaggca 540
gggcccatgg tcctgcggta gactggtggg cacttggagt ttgcttgttt gaatttctaa 600
caggaattcc ccctttcaat gatgaaacac cacaacaagt attccagaat attctgaaaa 660
gagatatece ttggccagaa ggtgaagaaa agttatetga taatgeteaa agtgcagtag 720
aaatactttt aaccattgat gatacaaaga gagctggaat gaaagagcta aaacgtcatc 780
ctctcttcag tgatgtggac tgggaaaatc tgcagcatca gactatgcct ttcatccccc 840
agccagatga tgaaacagat acctcctatt ttgaagccag gaatactgct cagcacctga 900
ctgtatctgg atttagtctg tagcacaaaa attttccttt tagtctagcc ttgtgttata 960
gaatgaactt gcataattat atactcctta atactagatt gatctaaggg ggaaagatca 1020
ttatttaacc tagttcaatg tgcttttaat gtacgttaca gctttcacag agttaaaagg 1080
ctgaaaggaa tatagtcagt aatttatctt aacctcaaaa ctgtatataa atcttcaaag 1140
cttttttcat ttatttattt tgtttattgc actttatgaa aactgaagca tcaataaaat 1200
tagaggacac taaaaaaaaa a
                                                                   1221
<210> 33
<211> 542
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 2180116
<400> 33
tggccaggct gggtccagca gcgcgatggc agctcagcgg ctgggcaagc gcgtgctgag 60
caagetgeag tetecatege gggeeegegg geeaggggge agteeegggg ggatgeagaa 120
gcggcacgcg cgcgtcaccg tcaagtatga ccggcgggag ctgcagcggc ggctggacgt 180
ggagaagtgg atcgacggc gcctggagga gctgtaccgc ggcatggagg cagacatgcc 240
cgatgagatc aacattgatg aattgttgga gttagagagt gaagaggaga gaagccggaa 300
aatccaggga ctcctgaagt catgtgggaa acctgtcgag gacttcatcc aggagctgct 360
ggcaaagctt caaggcctcc acaggcagcc cggcctccgc cagccaagcc cctcccacga 420
eggeageete ageceetee aggaceggge eeggactget caceeetgae eetettgeae 480
tetecetgee eeeeggacge egeccagett gettgtgtat aagttgtatt taatggatte 540
```

<210> 34 <211> 2778 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> 2548, 2557, 2645, 2722, 2557, 2762, 2765 <223> Incyte Clone Number: 2197671 <400> 34 egeggategt egeggeeegg cegteeegte eeaggaagtg geegteetga gegeeatgge 60 tcactccccg gtqcaqtcqq qcctqcccqq catqcaqaac ctaaaqqcaq acccaqaaqa 120 gctttttaca aaactagaga aaattgggaa qqqctccttt qqaqaqqtqt tcaaaqqcat 180 tgacaatcgg actcagaaag tggttgccat aaagatcatt gatctggaag aagctgaaga 240 tgagatagag gacattcaac aagaaatcac agtgctgagt cagtgtgaca gtccatatgt 300 aaccaaatat tatggatcct atctgaaqqa tacaaaatta tqqataataa tqqaatatct 360 tggtggaggc tccgcactag atctattaga acctggccga ttagatgaaa cccagatcgc 420 tactatatta agagaaatac tqaaaqqact cqattatctc cattcggaga agaaaatcca 480 cagagacatt aaaqcqqcca acqtcctqct qtctqaqcat qqcqaqqtqa aqctqqcqqa 540 ctttggcgtg gctggccagc tgacagacac ccagatcaaa aggaacacct tcgtgggcac 600 cccattctgg atggcacccg aggtcatcaa acagtcggcc tatgactcga aggcagacat 660 ctggtccctg ggcataacag ctattgaact tgcaagaggg gaaccacctc attccgagct 720 gcaccccatg aaagttttat tcctcattcc aaaqaacaac ccaccqacqt tqqaaqqaaa 780 ctacagtaaa cccctcaaqq aqtttqtqqa qqcctqtttq aataaqqaqc cqaqctttaq 840 acccactgct aaggagttat tgaagcacaa qtttatacta cgcaatgcaa agaaaacttc 900 ctacttgacc gagctcatcg acaggtacaa gagatggaag gccgagcaga gccatqacqa 960 ctcgagctcc gaggattccg acgcggaaac agatggccaa gcctcggggg gcagtgattc 1020 tggggactgg atcttcacaa tccgagaaaa agatcccaag aatctcgaga atggagctct 1080 tcagccatcg gacttggaca gaaataagat gaaagacatc ccaaagaggc ctttctctca 1140 gtgtttatct acaattattt ctcctctgtt tqcaqaqttq aaqqaqaaqa qccaqqcqtq 1200 cggagggaac ttggggtcca ttgaagagct gcgaggggcc atctacctag cggaggagc 1260 gtgccctggc atctccgaca ccatggtggc ccagctcgtg cagcggctcc agagatactc 1320 totttttttc ottottcatc otcotoottt tttaaaagtc aacgagagcc ttcgctgact 1440 ccaccgaaga ggtgcgccac tgggagccac cccagtgcca ggcgcccgtc cagggacaca 1500 cacagtette actgtgetge agecagatga agteteteag atgggtgggg agggteaget 1560 ccttccagcg atcatttat tttattttat tacttttqtt tttaatttta accataqtqc 1620 acatattcca ggaaagtgtc tttaaaaaaca aaaacaaacc ctgaaatgta tatttqqqat 1680 tatgataagg caactaaaga catgaaacct caggtatcct gctttaagtt gataactccc 1740 totgggaget ggagaatege totggtggat qqgtqtacaq atttqtatat aatqteattt 1800 ttacggaaac cctttcggcg tgcataagga atcactgtgt acaaactggc caagtgcttc 1860 tgtagataac qtcaqtqqaq taaatattcq acaqqccata acttqaqtct attqccttqc 1920 ctttattaca tgtacatttt gaattetgtg accagtgatt tgggttttat tttgtatttg 1980 cagggtttgt cattaataat taatgcccct ctcttacaga acactcctat ttgtacctca 2040 acaaatgcaa attttccccg tttgccctac gccccttttg gtacacctag aggttgattt 2100 cctttttcat cgatggtact atttcttagt gttttaaatt ggaacatatc ttgcctcatg 2160 aagctttaaa ttataatttt cagtttctcc ccatqaaqcq ctctcqtctg acatttqttt 2220 ggaatcqtqc cactqctqqt ctqcqccaqa tqtaccqtcc tttccaatac qattttctqt 2280 tqcaccttqt aqtqqattct qcatatcatc tttcccacct aaaaatgtct gaatgcttac 2340 acaaataaat tttataacac gcttattttg catactcctt gaaatgtgac tcttcagagg 2400 acagggtacc tgctgtgtat gtgtggccgt gcgtgtgtac tcgtggctgt gtgtgtgtaa 2460

```
tgagacactt tggaagactc cagggagaag ttcccagggc tggagctgcc gagtqcccag 2520
gtcagcgccc tgggctgctt gcgcaatngc tcaccgngat gatgcattgg aggttgctga 2580
cctgtgcgat tgctgtagcg gttgccaggg accttaaggg gttattttgc ttccctggga 2640
ggggncctat gtttctaggc aagcagccat gtgtctaatt ttctgggttt gctgtgggga 2700
cctgattggg ggagggggaa anctttgggg ttcttggagt gggagggttc gtgccancaa 2760
tnttncctgg taaaaaag
<210> 35
<211> 1424
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 2594943
ggctcagcct ccgacccagg tggtctggag cctgccggga gagtggtggc atctgagagg 60
ctggtcgtgg actgtggttg ggggaggtgg gagctgtttt aaccgtgtgc cccctctcct 120
gtgccggcgt gggcatcccc cggggcagtg gaacgcgggc gctcctccag cttccgagtc 180
cagecagect gggegeggg egeegeece gagacacecg aggagteegt tecteeetgg 240
ttacgtggac tgtggagctg gtctcttgtg gctcagcgcc gtgcggaggt tgaagcgtac 300
ctgcggaggt cgcaccaggg cgtgaggagg aggaggaagg gcatgagccg agcttgagga 360
atccgtgctc caaactctac actcaagggt ggcccttggg tagggtgaag atcccctgtc 420
tttatcctag ttccacacct tggtgtgggt tactgggtgc aggatgaact gtcgctcgga 480
ggtgctggag gtgtcggtgg aggggcggca ggtggaggag gccatgctgg ctgtgctgca 540
cacggtgctt ctgcaccgca gcacaggcaa gttccactac aagaaggagg gcacctactc 600
cattggcacc gtgggcaccc aggatgttga ctgtgacttc atcgacttca cttatgtgcg 660
tgtetettet gaggaaetgg ategtgeeet gegeaaggtt gttggggagt teaaggatge 720
actgcgcaac tctggtggcg atgggctggg gcagatgtcc ttggagttct accagaagaa 780
gaagtetege tggeeattet cagacgagtg cateceatgg gaagtgtgga eggteaaggt 840
gcatgtggta gccctggcca cggagcagga gcggcagatc tgccgggaga aggtgggtga 900
gaaactctgc gagaagatca tcaacatcgt ggaggtgatg aatcggcatg agtacttgcc 960
caagatgccc acacagtcgg aggtggataa cgtgtttgac acaggcttgc gggacgtgca 1020
gccctacctg tacaagatct ccttccagat cactgatgcc ctgggcacct cagtcaccac 1080
caccatgege aggeteatea aagacaeeet tgeeetetga gegtegetgg atetetggga 1140
geteettgat ggeteeeaga eettggettt tgggaattge aettttggge etttgggete 1200
tggaacctgc tctgggtcat tggtgagact tggaaggggc agccccgct ggcttcttgg 1260
ttttgtggtt gccagcctca ggtcatcctt ttaatctttg ctgatggttc agtcctgcct 1320
ctactgtete tecatageee tggtggggte eccettett etceaetgta cagaagagee 1380
accactggga tggggaataa agttgagaac atgaaaaaaa aaaa
<210> 36
<211> 1839
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 1513871
<400> 36
cctcctcctc ggccagctca ggttgcagct tctctgggga actgctcacc tttccggagc 60
aggggaaget geecegtgee egggagggag egggegeace geggeececa ggacaegege 120
tgacccggct gcccagtccc tcatgatcat gaacaagatg aagaacttta agcgccgttt 180
ctccctgtca gtgccccgca ctgagaccat tgaagaatcc ttggctgaat tcacggagca 240
```

atteaaceag etecacaace ggeggaatga gaacttgeag eteggteete ttggeagaga 300

```
ecceeegeag gagtgeagea cetteteece aacagacage ggggaggage eggggcaget 360
ctcccctggc gtgcagttcc agcggcggca gaaccagcgc cgcttctcca tggaggacgt 420
cagcaagagg ctctctctgc ccatggatat ccgcctgccc caggaattcc tacagaagct 480
acagatggag agcccagate tgcccaagec getcageege atgtecegec gggcctccct 540
gtcagacatt ggctttggga aactggaaac atacgtgaaa ctggacaaac tgggagaggg 600
cacctatgcc acagtettca aagggegeag caaactgaeg gagaacettg tggeeetgaa 660
agagateegg etggageacg aggagggage geeetgeact gecateegag aggtgtetet 720
gctgaagaac ctgaagcacg ccaatattgt gacctgcat gacctcatcc acacagatcg 780
gtccctcacc ctggtgtttg agtacctgga cagtgacctg aagcagtatc tggaccactg 840
tgggaacctc atgagcatgc acaacgtcaa gattttcatg ttccagctgc tccggggcct 900
cgcctactgt caccaccgca agatectgca ccgggacctg aagecccaga acctgctcat 960
caacgagagg ggggagctga agctggccga ctttggactg gccagggcca agtcagtgcc 1020
cacaaagact tactccaatg aggtggtgac cetgtggtac aggeeeeeg atgtgetget 1080
gggatccaca gagtactcca cccccattga tatgtggggc gtgggctgca tccactacga 1140
gatggccaca gggaggcccc tcttcccggg ctccacagtc aaggaggagc tgcacctcat 1200
etttegeete etegggaece ceacagaaga gaegtggeee ggegtgaeeg eettetetga 1260
gttccgcacc tacagcttcc cctgctacct cccgcagccg ctcatcaacc acgcgcccag 1320
gttggatacg gatggcatcc acctcctgag cagcctgctc ctgtatgaat ccaagagtcg 1380
catgtcagca gaggetgeec tgagtcacte ctaetteegg tetetgggag agegtgtgea 1440
ccagettgaa gacactgeet ecatettete ectgaaggag atecagetee agaaggacee 1500
aggetacega ggettggeet tecageagee aggacgaggg aagaacagge ggeagageat 1560
cttctgagcc acgcccacct tgctgtggcc aagggacaag agatcacatg gagcacaaat 1620
tcgggtagga tggagcctgt gtggccctcg gaggactgaa gaacgagggc tgacagcagc 1680
ctggaagacc gcttggcagg cttttggcca agtgtttttc tttgtggttt cgatctgctg 1740
ccagtagttt cagtggatac aacgtgcttt aggagttggg tgggaaagtc ttgctagagg 1800
gtttaggggg aggtttctac cgttgactcg gtttagggc
<210> 37
<211> 2024
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 156108
<400> 37
gtcagctctg gttcggagaa gcagcggctg gcgtgggcca tccggggaat gggcgccctc 60
gtgacctagt gttgcggggc aaaaagggtc ttgccggcct cgctcgtgca ggggcgtatc 120
tgggcgcctg agcgcggcgt gggagccttg ggagccgccg cagcaggggg cacacccgga 180
accggcctga gcgcccggga ccatgaacgg ggaggccatc tgcagcgccc tgcccaccat 240
tecetaceae aaactegeeg acetgegeta cetgageege ggegeetetg geactgtgte 300
gtccgcccgc cacgcagact ggcgcgtcca ggtggccgtg aagcacctgc acatccacac 360
teegetgete gacagtgaaa gaaaggatgt ettaagagaa getgaaattt tacacaaage 420
tagatttagt tacattette caattttggg aatttgcaat gageetgaat ttttgggaat 480
agttactgaa tacatgccaa atggatcatt aaatgaactc ctacatagga aaactgaata 540
tectgatgtt gettggeeat tgagattteg cateetgeat gaaattgeee ttggtgtaaa 600
ttacctgcac aatatgactc ctcctttact tcatcatgac ttgaagactc agaatatctt 660
attggacaat gaatttcatg ttaagattgc agattttggt ttatcaaagt ggcgcatgat 720
gtccctctca cagtcacgaa gtagcaaatc tgcaccagaa gqaqqqacaa ttatctatat 780
gccacctgaa aactatgaac ctggacaaaa atcaagggcc agtatcaagc acgatatata 840
tagctatgca gttatcacat gggaagtgtt atccagaaaa cagccttttg aagatgtcac 900
caatcetttg cagataatgt atagtgtgtc acaaggacat cgacctgtta ttaatgaaga 960
aagtttgcca tatgatatac ctcaccgagc acgtatgatc tctctaatag aaagtggatg 1020
```

```
ggcacaaaat ccagatgaaa gaccatcttt cttaaaatgt ttaatagaac ttgaaccagt 1080
tttgagaaca tttgaagaga taacttttct tgaagctgtt attcagctaa agaaaacaaa 1140
gttacagagt gtttcaagtg ccattcacct atgtgacaag aagaaaatgg aattatctct 1200
gaacatacct gtaaatcatg gtccacaaga ggaatcatgt ggatcctctc agctccatga 1260
aaatagtggt tctcctgaaa cttcaaggtc cctgccagct cctcaagaca atgattttt 1320
atctagaaaa gctcaagact gttattttat gaagctgcat cactgtcctg gaaatcacag 1380
ttgggatage accatttetg gateteaaag ggetgeatte tgtgateaca agaceaetee 1440
atgetettea geaataataa ateeaetete aactgeagga aacteagaac gtetgeagee 1500
tggtatagcc cagcagtgga tccagagcaa aagggaagac attgtgaacc aaatgacaga 1560
agectgeett aaccagtege tagatgeeet tetgteeagg gaettgatea tgaaagagga 1620
ctatgaactt gttagtacca agcctacaag gacctcaaaa gtcagacaat tactagacac 1680
tactgacatc caaggagaag aatttgccaa agttatagta caaaaattga aagataacaa 1740
acaaatgggt cttcagcctt acccggaaat acttgtggtt tctagatcac catctttaaa 1800
tttacttcaa aataaaagca tgtaagtgac tgtttttcaa gaagaaatgt gtttcataaa 1860
aggatattta tatetetgtt getttgaett titttatata aaateegtga gtattaaage 1920
tttattgaag gttctttggg taaatattag tctccctcca tgacactgca gtatttttt 1980
taattaatac aagtaaaaag tttgaatttt qctacataaa aaaa
<210> 38
<211> 1861
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 2883243
<400> 38
gcttcttagt gaggttggca ttatgttaag gctggtatgg aagacaactg atgaagcagg 60
agtggtctgg tgacattttt ctgacttgat tggctggggc gtgtgatgta ataggtttca 120
gtgcagcccc ttataggttt taaaatgaat tccaagacac cattacaaag aaagccggac 180
tetttetta taactgaget cagecaagga aactettgea caaatgtaca atactgtttg 240
gaatatggaa gacctggatt tagaatatgc caagacagat ataaattgtg gcacagactt 300
gatgttttat atagaaatgg acccaccagc actgcctcct aaaccaccaa aacctactac 360
tgtagccaac aacggtatga ataacaatat gtccttacaa gatgctgaat ggtactgqqq 420
agatateteg agggaagaag tgaatgaaaa aettegagat acageagaeg ggaeettttt 480
ggtacgagat gcgtctacta aaatgcatgg tgattatact cttacactaa ggaaaggggg 540
aaataacaaa ttaatcaaaa tatttcatcg agatgggaaa tatggcttct ctgacccatt 600
aaccttcagt tctgtggttg aattaataaa ccactaccgg aatgaatctc tagctcagta 660
taatcccaaa ttggatgtga aattacttta tccagtatcc aaataccaac aggatcaagt 720
tgtcaaagaa gataatattg aagctgtagg gaaaaaatta catgaatata acactcagtt 780
tcaagaaaaa agtcgagaat atgatagatt atatgaagaa tatacccgca catcccagga 840
aatccaaatg aaaaggacag ctattgaagc atttaatgaa accataaaaa tatttgaaga 900
acagtgccag acccaagagc ggtacagcaa agaatacata gaaaagttta aacgtgaagg 960
caatgagaaa gaaatacaaa ggattatgca taattatgat aagttgaagt ctcgaatcag 1020
tgaaattatt gacagtagaa gaagattgga agaagacttg aagaagcagg cagctgagta 1080
tcgagaaatt gacaaacgta tgaacagcat taaaccagac cttatccagc tgagaaagac 1140
gagagaccaa tacttgatgt ggttgactca aaaaggtgtt cggcaaaaga agttgaacga 1200
gtggttgggc aatgaaaaca ctgaagacca atattcactg gtggaagatg atgaagattt 1260
gececateat gatgagaaga catggaatgt tggaagcage aacegaaaca aagetgaaaa 1320
cctgttgcga gggaagcgag atggcacttt tcttgtccgg gagagcagta aacagggctg 1380
ctatgcctgc tctgtagtgg tggacggcga agtaaagcat tgtgtcataa acaaaacagc 1440
aactggctat ggctttgeeg agccctataa cttgtacage tetetgaaag aactggtget 1500
acattaccaa cacacctccc ttgtgcagca caacgactcc ctcaatgtca cactagccta 1560
```

cccagtatat gcacagcaga ggcgatgaag cgcttactct ttgatccttc tcctgaagtt 1620

```
cagccaccct gaggcctctg gaaagcaaag ggctcctctc cagtctgatc tgtgaattga 1680
 gctgcagaaa cgaagccaac tttttttgga tgggactagt gctttctttc acaaaaaaga 1740
 agtaggggaa gacatgcagc ctaaggctgt atgatgacca cacgttccta agctggagtg 1800
 C
                                                                 1861
 <210> 39
 <211> 2045
 <212> DNA
 <213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 3173355
cttggctgga acctgagacg gattcgctcc caaatgatgc tccagtggca ggagcaactc 60
aagttcatca ttgtcctgag agagaggagc agcgcggttc tcggccggga cagcagaacg 120
ccaggggacc ctcacctggg cgcgccgggg cacgggcttt gattgtcctg gggtcgcgga 180
gaccegegeg cetgeeetge acgeegggeg geaacetttg cagtegegtt ggetgetgeg 240
ateggeegge gggteeetge egaaggeteg getgettetg tecacetett acaettette 300
atttatcggt ggatcatttc gagagtccgt cttgtaaatg tttggcactt tgctacttta 360
ttgcttcttt ctggcgacag ttccagcact cgccgagacc ggcggagaaa ggcagctgag 420
cccggagaag agcgaaatat ggggacccgg gctaaaagca gacgtcgtcc ttcccgcccg 480
ctatttctat attcaggcag tggatacatc agggaataaa ttcacatctt ctccaggcga 540
aaaggtcttc caggtgaaag tctcagcacc agaggagcaa ttcactagag ttggagtcca 600
ggttttagac cgaaaagatg ggtccttcat agtaagatac agaatgtatg caagctacaa 660
aaatctgaag gtggaaatta aattccaagg gcaacatgtg gccaaatccc catatatttt 720
aaaagggccg gtttaccatg agaactgtga ctgtcctctg caagatagtg cagcctggct 780
acgggagatg aactgccctg aaaccattgc tcagattcag agagatctgg cacatttccc 840
tgctgtggat ccagaaaaga ttgcagtaga aatcccaaaa agatttggac agaggcagag 900
cctatgtcac tacaccttaa aggataacaa ggtttatatc aagactcatg gtgaacatgt 960
aggttttaga attttcatgg atgccatact actttctttg actagaaagg tgaagatgcc 1020
agatgtggag ctctttgtta atttgggaga ctggcctttg gaaaaaaaga aatccaattc 1080
aaacatccat ccgatctttt cctggtgtgg ctccacagat tccaaggata tcgtgatgcc 1140
tacgtacgat ttgactgatt ctgttctgga aaccatgggc cgggtaagtc tggatatgat 1200
gtccgtgcaa gctaacacgg gtcctccctg ggaaagcaaa aattccactg ccgtctggag 1260
agggcgagac agccgcaaag agagactcga gctggttaaa ctcagtagaa aacacccaga 1320
actcatagac gctgctttca ccaacttttt cttctttaaa cacgatgaaa acctgtatgg 1380
tcccattgtg aaacatattt cattttttga tttcttcaag cataagtatc aaataaatat 1440
cgatggcact gtagcagctt atcgcctgcc atatttgcta gttggtgaca gtgttgtgct 1500
gaagcaggat tccatctact atgaacattt ttacaatgag ctgcagccct ggaaacacta 1560
cattccagtt aagagcaacc tgagcgatct gctagaaaaa cttaaatggg cgaaagatca 1620
cgatgaagag gccaaaaaga tagcaaaagc aggacaagaa tttgcaagaa ataatctcat 1680
gggcgatgac atattctgtt attatttcaa acttttccag gaatatgcca atttacaagt 1740
gagtgagccc caaatccgag agggcatgaa aagggtagaa ccacagactg aggacgacct 1800
cttcccttgt acttgccata ggaaaaagac caaagatgaa ctctgatatg caaaataact 1860
tctattagaa taatggtgct ctgaagactc ttcttaacta aaaagaagaa tttttttaag 1920
tattaattcc atggacaata taaaatctgt gtgattgttt gcagtatgaa gacacatttc 1980
tacttatgca gtattctcat gactgtactt taaagtacat ttttagaatt ttataataaa 2040
accac
```

```
<211> 1260
 <212> DNA
 <213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 5116906
<400> 40
cgatattttt ctttcttagt ttcccatttc atattgtttt gtcaaatcaa ctgtgactca 60
ttaacatete tttteectag gttttgetgg cacacetgga tatetttete cagaagtttt 120
acgtaaagat ccttatggaa agccagtgga tatgtgggca tgtggtgtca ttctctatat 180
tctacttgtg gggtatccac ccttctggga tgaagaccaa cacagactct atcagcagat 240
caaggctgga gcttatgatt ttccatcacc agaatgggac acggtgactc ctgaagccaa 300
agaceteate aataaaatge ttaetateaa eeetgeeaaa egeateacag eetcagagge 360
actgaagcac ccatggatct gtcaacgttc tactgttgct tccatgatgc acagacagga 420
gactgtagac tgcttgaaga aatttaatgc tagaagaaaa ctaaagggtg ccatcttgac 480
aactatgctg gctacaagga atttctcagc agccaagagt ttgttgaaga aaccagatgg 540
agtaaaggag tcaactgaga gttcaaatac aacaattgag gatgaagatg tgaaagcacg 600
aaagcaagag attatcaaag tcactgaaca actgatcgaa gctatcaaca atggggactt 660
tgaagectac acaaaaatet gtgacccagg cettactget tttgaacetg aagetttggg 720
taatttagtg gaagggatgg attttcaccg attctacttt gaaaatgctt tgtccaaaag 780
caataaacca atccacacta ttattctaaa ccctcatgta catctggtag gggatgatgc 840
cgcctgcata gcatatatta ggctcacaca gtacatggat ggcagtggaa tgccaaagac 900
aatgcagtca gaagagactc gtgtgtggca ccgccgggat ggaaagtggc agaatgttca 960
ttttcatcgc tcggggtcac caacagtacc catcaactaa atttcaacag tgccacttct 1020
gcattetetg tteteaagge acetggatgg tgaeeetggg cegteetete eteetettea 1080
tgcatgtttc tgagtgcatg aagttgtgaa ggtcctacat gtaatgcata tgtgatgcat 1140
catcttatca tatattcctt cctatacatt gtttacactt caactacggg gatgttccac 1200
<210> 41
<211> 2059
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 940589
<400> 41
aaaccataga aacgctaatg aaagcagaca tcaaaatctg gatccttaca ggggacaagc 60
aagaaactgc cattaacatc ggacactcct gcaaactgtt gaagaagaac atgggaatga 120
ttgttataaa tgaaggctct cttgattctt tctctaatac acagaattct aggaaggagg 180
ctgttctttt agccaaaatg aaacacccta atattgttgc cttcaaagaa tcatttgaag 240
ctgaaggaca cttgtatatt gtgatggaat actgtgatgg aggggatcta atgcaaaaga 300
ttaaacagca gaaaggaaag ttatttcctg aagacatgat acttaattgg tttacccaaa 360
tgtgccttgg agtaaatcac attcacaaga aacgtgtgct acacagagat atcaagtcca 420
agaatatett eeteacteag aatggaaaag tgaaattggg agaetttgga tetgeeegte 480
ttetetecaa teegatggea tttgettgta eetatgtggg aacteettat tatgtgeete 540
cagaaatttg ggaaaacctg ccttataaca ataaaagtga catctggtcc ttgggttgca 600
tectgtatga actetgtace ettaageate cattteagge aaatagttgg aaaaatetta 660
tectcaaagt atgtcaaggg tgeatcagte cactgeegte teattactee tatgaactte 720
agtteetagt caageagatg titaaaagga atcectcaca tegeceeteg getacaaege 780
tteteteteg aggeategta geteggettg tecagaagtg ettaceece gagateatea 840
```

```
tggaatatgg tgaggaaqta ttagaagaaa taaaaaattc gaagcataac acaccaaqaa 900
aaaaaacaaa ccccagcaga atcaggatag ctttgggaaa tgaagcaagc acagtgcaag 960
aggaagaaca agatagaaaq gqtagccata ctgatttgga aagcattaat gaaaatttag 1020
ttqaaaqtqc attqaqaaqa qtaaacaqaq aaqaaaaaqq taataaqtca qtccatctqa 1080
qqaaaqccaq ttcaccaaat cttcataqac qacaqtqqqa qaaaaatqta cccaatacaq 1140
ctcttacagc tttqqaaaat qcatccatac tcacctccag tttaacagca qaggacgata 1200
qaqqtqqttc tqtaataaaq tacaqcaaaa atactactcq taaqcaqtqq ctcaaaqaqa 1260
ccccggacac tttgttgaac atccttaaga atgctgatct cagcttggct tttcaaacat 1320
acacaatata taqaccaqqt tcaqaaqqqt tcttqaaaqq ccccctqtct qaaqaaacaq 1380
aagcatcgga cagtgttgat ggaggtcacg attctqtcat tttggatcca gagcgacttg 1440
agcctqqqct agatqaqqaq qacacqqact ttqaqqaqqa agatqacaac cccqactqqq 1500
tqtcaqaqct qaaqaaqcqa qctqqatqqc aaqqcctqtq cqacaqataa tqcctqaqqa 1560
aatgttcctg agtcacgctg aggagagcct tcactcagga gttcatgctg agatgatcat 1620
gaqttcatqc qacqtatatt ttcctttgga aacaqaatqa aqcagaggaa actcttaata 1680
cttaaaatcg ttcttgatta gtatcgtgag tttgaaaagt ctagaactcc tgtaagtttt 1740
tqaactcaaq qqaqaaqqta taqtqqaatq aqtqtqaqca tcqqqctttq caqtcccata 1800
qaacaqaaat qqqatqctaq cqtqccacta cctacttqtq tqattqtqqq aaattactta 1860
acctetteaa geeceaattt eeteaaceat aaaatgaaga taataatgee taeeteagag 1920
qqatqctqac cacaqacctt tataqcaqcc cqtatqatat tattcacatt atqatatqtq 1980
tttattatta tgtgactctt tttacatttc ctaaaggttt gagaattaaa tatatttaat 2040
tatgaaaaaa aaaaaaaaa
<210> 42
<211> 1023
```

<210> 42
<211> 1023
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 304421

gaggcagagg ggtggggggg ctggcccatg gctgagacct ctctcccaga gctgggggga 60 gaggacaaag ccacqccttq cccaqcatc ctqqaqctqq aqqaqctcct qcqqqcaqqq 120 aagtettett geageegtgt ggacgaagtt tggeecaace tttteatagg agatgegatg 180 gactcactgc agaagcagga cctccggagg cccaagatcc atggggcagt ccaggcatct 240 ccctaccage egeceacatt ggettegetg eagegettge tgtgggteeg teaggetgee 300 acactgaacc atategatga ggtetggeec agestettes tgggagatge gtacgeages 360 cgggacaaga gcaagctgat ccagctggga atcacccacg ttgtgaatgc cgctgcaggc 420 aagttccagg tggacacagg tgccaaattc taccgtggaa tgtccctgga gtactatggc 480 ategaggegg atgacacce ettettegae eteagtgtet aetttetgee tgttgetega 540 tacatccgag ctgccctcag tgttccccaa ggccgcgtgc tggtacactg tgccatgggg 600 gtaagccgct ctqccacact tqtcctqqcc ttcctcatqa tctatqaqaa catgacqctg 660 gtagaggcca tecagacggt gcaggcccac cqcaatatct gccctaactc aggcttcctc 720 eggeagetee aggttetgga caacegactg gggegggaga eggggeggtt etgatetgge 780 aggcaqccaq gatccctgac ccttqqccca accccaccaq cctqqccctq qqaacaqcaq 840 gctctgctgt ttctagtgac cctgagatgt aaacaqcaag tgggggctga ggcagaggca 900 gggatagctg ggtggtgacc tcttagcggg tggatttccc tgacccaatt cagagattct 960 ttatgcaaaa gtgagttcag tccatctcta taataaaata ttcatcgtca taaaaaaaaa 1020 1023 aaa

<210> 43. <211> 4416 <212> DNA

<213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone Number: 1213802 <400> 43 gaaatttttt totgootcat tattattaat toatggattg agtgttggtt cgacctacag 60 gcgtaataga ttggaactca gtgaagacac agatgttcct gttcagagca accagctaat 120 gattacagtt taaagacaat ttctgtgatc aagttgtcat ttggaagatt aaacccattt 180 cacgaggact tggagcctgg tccttgcttt gaggaagcag tggcttgttt caagaagcca 240 cttctgatct aagaatctac ccagcatgcc taatcaagga gaagactgct attttttt 300 ctattccaca tgtaccaaag gcgacagctg cccattccgt cactgtgaag ctgcaatagg 360 aaatgaaact gtttgcacat tatggcaaga agggcgctgt tttcgacagg tgtgcaggtt 420 teggeacatg gagattgata aaaaacgeag tgaaatteet tgttattggg aaaatcagee 480 aacaggatgt caaaaattaa actgcgcttt ccatcacaat agaggacgat atgttgatgg 540 ccttttccta cctccgagca aaactgtgtt gcccactgtg cctgagtcac cagaagagga 600 agtgaagget agecaacttt cagtteagea gaacaaattg tetgteeagt ceaateette 660 ccctcagctg cggagcgtta tgaaagtaga aagttccgaa aatgttccta gccccacgca 720 tccaccagtt gtaattaatg ctgcagatga tgatgaagat gatgatgatc agttttctga 780 ggaaggtgat gaaaccaaaa cacctaccct gcaaccaact cctgaagttc acaatggatt 840 acgagtgact tctgtccgga aacctgcagt caatataaag caaggtgaat gtttgaattt 900 tggaataaaa actcttgagg aaattaagtc aaagaaaatg aaggaaaaat ctaagaagca 960 aggtgagggt tetteaggag tttecagtet tttactecae cetgageeeg ttecaggtee 1020 tgaaaaagaa aatgtcagga ctgtggtgag gacagtaact ctctccacca aacaaggaga 1080 agaaccettg gttagattga gtettaetga gagactgggg aaacgaaaat tttcagcagg 1140 cggtgacagt gatcctccat taaagcgtag cctggcacag aggctaggga agaaagttga 1200 agetecagaa aetaaeattg acaaaaeaee aaagaaaget caagttteca agtetettaa 1260 ggagcgatta ggcatgtcag ctgatccaga taatgaggat gcaacagata aagttaataa 1320 agttggtgag atccatgtga agacattaga agaaattctt cttgaaagag ccagtcagaa 1380 acgtggagaa ttgcaaacta aactcaagac agaaggacct tcaaaaactg atgattctac 1440 ttcaggagca agaagctcct ccactatccg tatcaaaacc ttctctgagg tcctggctga 1500 aaaaaaacat cggcagcagg aagcagagag acaaaaaagc aaaaaggata caacttgcat 1560 caagctaaag attgatagtg aaattaaaaa aacagtagtt ttgccaccca ttgttgccag 1620 cagaggacaa tcagaggagc ctgcaggtaa aacaaagtct atgcaggagg tgcacatcaa 1680 gacgctggaa gaaattaaac tggagaaggc actgagggtg cagcagagct ctgagagcag 1740 caccagetee cegteteaac acgaggeeae tecaggggea aggeggetge tgegaateae 1800 caaaagaaca gggatgaaag aagagaagaa ccttcaggaa ggaaatgaag ttgattctca 1860 gagcagtatt agaacagaag ctaaagaggc ttcaggtgag accacaggag ttgacatcac 1920 taaaattcaa gtcaagagat gtgagaccat gagagagaag cacatgcaga aacagcagga 1980 gagggaaaaa tcagtcttga cacctcttcg gggagatgta gcctcttgca atacccaagt 2040 ggcagagaaa ccagtgctca ctgctgtgcc aggaatcaca cggcacctga ccaagcggct 2100 tcccacaaag tcatcccaga aggtggaggt agaaacctca gggattggag actcattatt 2160 gaatgtgaaa tgtgcagcac agaccttgga aaaaaggggt aaagctaaac ccaaagtgaa 2220 cgtgaagcca tctgtggtta aagttgtgtc atcccccaaa ttggccccaa aacgtaaggc 2280 agtggagatg cacgetgetg teattgeege tgtgaageea eteageteea geagtgteet 2340 acaggaaccc ccagccaaaa aggcagctgt ggctgttgtc ccgcttgtct ctgaggacaa 2400 atcagtcact gtgcctgaag cagaaaatcc tagagacagt cttgtgctgc ctccaaccca 2460 gtcctcttca gattcctcac ccccggaggt gtctggccct tcctcatccc aaatgagcat 2520 gaaaactcgc cgactcagct ctgcctcaac aggaaagccc ccactctctg tggaggatga 2580 ttttgagaaa ctaatatggg agatttcagg aggcaaattg gaagctgaga ttgacctgga 2640 tcctgggaaa gatgaagatg accttctgct tgagctatca gaaatgattg atagctgaag 2700 gtggtagtga ggacacttta aaaaaaaaat cgccaaaaaa stggacttag tttcatctat 2760 tgtaacattt acctgagatg atcatttett tagtetagaa tttgeeccaa atcagaagta 2820

tacctctgaa ttatctgtat gtgtcctgga ttccttgggg tcagattttt aaagttactt 2880

```
tataaccatt ttgtccattt gatgccattg tttatcatct tttgagaaaa aagttctgtc 2940
ataccettet etecacaaaa aagagaetga gagggagate aagtgaaagg gtgcaagega 3000
acttagtgac teettgaggt gtttgteagt tttggttttt ttettetttg ttgtattett 3060
tatgtattgt cttgatgtac ttaatattac ctgagtttga aatggatgaa gacagctgct 3120
accattaagg accaaatttt atgctaccac taaacaaaaa tacccactca gtctgtgtta 3180
aattgtatgt ctttttaaag gtatttaaag attcaactaa gctttaaaga gggctgagca 3240
gctcaggaag cctgtaatgt gggcataact ctttggacct gatcttgatg cttctgctgc 3300
tetgttagee tetgaagage aatatetaat ttattattae tgtaattttt taaaaggett 3360
taaagtgcct caggggtccc ctgaaactaa ttttctattt ctgggattcc ctggattcat 3420
tatatgagat ggtgacatga ttagaggaat tcttttttag tatgaaaatt gtcccttttc 3480
ttcttcagta cttgcctcct tgctggcatt gaattaacac agggacaaaa tttggttaat 3540
tttttatttc taacteteec aacaaaceec tgttgeecag tatttgtttg gtggeettta 3600
accacctgag ggaaaaaatg agcttattca agctgccaat atttatctat gggctgtagc 3660
agtacactga attgtactgt gccagggata ttgagatgct ctgggggtgt attgtatacc 3720
cacctcaagg tttagatttg tgaaggaata agcatgatgg aaataatagt cttgaaagga 3840
gatatgttgt atataatcag gaggaagagg aaggaaggac ttacccattt tgatattttg 3900
ctgtaggtgg ccagttttgt ttctcatagg gaaatctgac ccacctgtca tgttggctcc 3960
taaggaactg ctgttgtaag cggctcatca agagttgaac ttcacgtagc cttgttggga 4020
atatggaaaa ggaagaaagc cacaggactg cccattcagt cttgggaaga ttgggatgat 4080
tctgcacaag caaaaatgac tgaagtttat gtatagacac acctctacca atccatcttc 4140
agetgaetga atgttgtatg atageeette tecaaageag aggtagaatg tteaggttte 4200
accatggatt ttctacttat ttcgtttttg gaatcagctt acagattcca ggtccctttt 4260
gtatatattc tttattcttt tgctttttta aaaaataatt ttgtttcata tttaaagcac 4320
ttgtattagt caatgtttcg tgttccgcat tatttgaacc atttgccctt acagaaagag 4380
aaatacttgt ttgtgtttta aataaaactg atgtag
                                                                 4416
<210> 44
<211> 2068
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 1378134
<400> 44
geagtecate agteegetga tgegtegeeg ggeeageaae getgeegeeg cageecaeae 60
gattggcggc agtaagcaca caatgaatga tcacctgcat gtcggcagcc acgctcacgg 120
acagatccag gttcgacagt tgtttgagga taacagtaac aagcggacag tgctcacgac 180
acaaccaaat gggcttacaa cagtgggcaa aacgggcttg ccagtggtgc cagagcggca 240
gctggacagc attcatagac ggcaggggag ctccacctct ctaaagtcca tggaaggcat 300
ggggaaggtg aaagccaccc ccatgacacc tgaacaagca atgaagcaat acatgcaaaa 360
actcacagec ttegaacace atgagatttt cagetacect gaaatatatt tettgggtet 420
aaatgctaag aagcgccagg gcatgacagg tgggcccaac aatggtggct atgatgatga 480
ccagggatca tatgtgcagg tgccccacga tcacgtggct tacaggtatg aggtcctcaa 540
ggtcattggg aaggggagct ttgggcaggt ggtcaaggcc tacgatcaca aagtccacca 600
gcacgtggcc ctaaagatgg tgcggaatga gaagcgcttc caccggcaag cagcggagga 660
gateegaate etggaacace tgeggaagea ggacaaggat aacacaatga atgteateea 720
tatgctggag aatttcacct tccgcaacca catctgcatg acgtttgagc tgctgagcat 780
gaacctctat gagctcatca agaagaataa attccagggc ttcagtctgc ctttggttcg 840
caagtttgcc cactegatte tgcagtgett ggatgetttg cacaaaaaca gaataattca 900
ctgtgacctt aagcccgaga acattttgtt aaagcagcag ggtagaagcg gtattaaagt 960
```

aattgatttt ggctccagtt gttacgagca tcagcgtgtc tacacgtaca tccagtcgcg 1020 tttttaccgg gctccagaag tgatccttgg ggccaggtat ggcatgccca ttgatatgtg 1080

```
gagcctgggc tgcattttag cagagctect gacgggttac cccctcttgc ctggggaaga 1140
tgaaggggac cagetggeet gtatgattga actgttggge atgeceteae agaaactget 1200
ggatgcatcc aaacgagcca aaaattttgt gagctccaag ggttatcccc gttactgcac 1260
tgtcacgact ctctcagatg gctctgtggt cctaaacgga ggccgttccc ggagggggaa 1320
actgaggggc ccaccggaga gcagagagtg ggggaacgcg ctgaaggggt gtgatgatcc 1380
cetttteett gaettettaa aacagtgttt agagtgggat eetgeagtge geatgaeece 1440
aggccagget ttgcggcacc cetggetgag gaggeggttg ccaaageetc ccaeegggga 1500
gaaaacgtca gtgaaaagga taactgagag caccggtgct atcacatcta tatccaagtt 1560
acctccacct tctagctcag cttccaaact gaggactaat ttggcgcaga tgacagatgc 1620
caatgggaat attcagcaga ggacagtgtt gccaaaactt gttagctgag ctcacgtccc 1680
ctgatgctgg taacctgaaa gatacgacat tgctgagcct tactgggttg aaaaggagta 1740
gctcagacct gtttttattt gctcaataac tctactcatt tgtatctttt cagcacttaa 1800
ttttaatgta agaaagttgt tcattttgtt tttataaaaat acatgaggac aatgctttaa 1860
gtttttatac tttcagaaac tttttgtgtt ctaaaagtac aatgagcctt actgtattta 1920
gtgtggcaga ataataacat cagtggcagg ccactgatta cttcatgact gccacgcatt 1980
tacagattgg tgtcaaagac attcactatg tttttatggt tcatgttata tcctccccag 2040
ggtgacagcc ccttaaggcc ctcctttt
<210> 45
<211> 1850
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 1490070
<400> 45
gggctgcctg cctgcctgcc tgcctgcctg gcccggcccg agctccagcc tgcctcttcc 60
actggccact gcctcccacc cagggctggc atccctgctc cctgccctgg gtcccagact 120
atcactgage tecacteett ceteattttg etgetgatte tageeceaaa caaaacaggt 240
tgagettttt ceteceetca gaageteete tetggetegt ggetgeette tgagtgttgc 300
agacggcgcc ggccgggaag gggggcctgg gccagccctg ccaggactgg gacgctgctg 360
ctggcgcctg gccctccatc aggccagcct gtggcaggag agtgagcttt gccgcggcag 420
acgcctgagg atgatgcccc agctgcagtt caaagatgcc ttttggtgca gggacttcac 480
agcccacacg ggctacgagg tgctgctgca gcggcttctg gatggcagga agatgtgcaa 540
agacatggtg gagctactgt ggcagagggc ccaggcggag gagcggtacg ggaaggagct 600
ggtgcagatc gcacggaagg caggtggcca gacggagatc aactccctga gggcctcctt 660
tgactccttg aagcagcaaa tggagaatgt gggcagctca cacatccagc tggccctgac 720
cctgcgtgag gagctgcgga gtctcgagga gtttcgtgag aggcagaagg agcagaggaa 780
gaagtatgag gccgtcatgg accgggtcca gaagagcaag ctgtcgctct acaagaaggc 840
catggagtcc aagaagacat acgagcagaa gtgccgggac gcggacgacg cggagcaggc 900
cttcgagcgc attagcgcca acggccacca gaagcaggtg gagaagagtc agaacaaagc 960
caggcagtgc aaggactcgg ccaccgaggc agagcgggta tacaggcaga gcattgcgca 1020
gctggagaag gtccgggctg agtgggagca ggagcaccgg accacctgtg aggcctttca 1080
gctgcaagag tttgaccggc tgaccattct ccgcaacgcc ctgtgggtgc acagcaacca 1140
gctctccatg cagtgtgtca aggatgatga gctctacgag gaagtgcggc tgacgctgga 1200
aggetgeage atagaegeeg acategaeag tttcateeag geeaagagea egggeaeaga 1260
gccccccgct ccggtgccct accagaacta ttacgatcgg gaggtcaccc cgctgaccag 1320
cagccctggc atacagccgt cctgcggcat gataaagagg ttctctggac tgctgcacgg 1380
aagtcccaag accacttcgt tggcagcttc tgctgcgtcc acagagaccc tgacccccac 1440
ccccgagcgg aatgagggtg tctacacagc catcgcagtg caggagatac agggaaaccc 1500
ggcctcacca gcccaggagt accgggcgct ctacgattat acagcgcaga acccagatga 1560
gctggacctg tccgcgggag acatcctgga ggtgatcctg gaaggggagg atggctggtg 1620
```

gactgtggag aggaacgggc agcgtggctt cgtccctggt tcctacctgg agaagctttg 1680

```
aggaagggcc aggagcccct teggacetgc cetgecagtg gagecageag tgeececage 1740
actgtcccca ccttgctagg gcccagaacc aagcgtcccc cagccccgag agggagcctq 1800
<210> 46
<211> 2534
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 1997814
gaagagggga tggagcaggg gctggaggag gaagaagagg tggatccccg gatccaggga 60
gaactggaga agttaaatca gtccacggat gatatcaaca gacgggagac tgaacttgag 120
gatgetegte agaagtteeg etetgttetg gttgaageaa eggtgaaact ggatgaactg 180
gtgaagaaaa ttggcaaagc tgtggaagac tccaagccct actgggaggc acggagggtg 240
gcgaggcagg ctcagctgga agctcagaaa gccacgcagg acttccagag ggccacagag 300
gtgctccgtg ccgccaagga gaccatctcc ctggccgagc agcggctgct ggaggatgac 360
aageggeagt tegaeteege etggeaggag atgetgaate aegeeaetea gagggteatg 420
gaggeggage agaceaagae caggagegag etggtgcata aggagaegge agecaggtae 480
aatgccgcca tgggccgcat gcgacagctg gagaagaaac tcaagagagc catcaacaag 540
tccaagcctt attttgaact caaggcaaag tactatgtgc agctcgagca actgaaaaag 600
actgtggatg acctgcaggc caaactgacc ctggcaaaag gcgagtacaa gatggccctq 660
aagaacctgg agatgatete agatgagate cacgagegge ggegeteeag tgeeatgggg 720
cctcggggat gcggtgttgg tgctgagggc agcagcacat ctgtggagga tctgccaggg 780
agcaaacctg agcctgatgc catttctgtg gcctcggagg cctttgaaga tgacagctgt 840
agcaactttg tgtctgaaga tgactcggaa acccagtccg tgtccagctt tagttcagga 900
ccaacaagcc cgtctgagat gcctgaccag ttccctgcgg ttgtgaggcc tggcagcctg 960
gatctgccca gccctgtgtc cctgtcagag tttgggatga tgttcccagt gttgggccct 1020
cgaagtgaat gcagcggggc ctcctccct gaatgtgaag tagaacgagg agacagggca 1080
gaaggggcag agaataaaac aagtgacaaa gccaacaaca accggggcct cagcagtagc 1140
agtggcagtg gtggcagcag taagagccaa agcagcacct cccctgaggg ccaggccttg 1200
gagaaccgga tgaagcagct ctccctacag tgctcaaagg gaagagatgg aattattgct 1260
gacataaaaa tggtgcagat tggctgattc atcctgggcc ctggccgatg tgcatatcaa 1320
catttataca tggaactgga gaacattgtg ccaataatca tttaatatat gccaaatctt 1380
acacgtctac tctaaactgc tctaatgaag tttcagtgac cttgagggct aaagattgtt 1440
cttctgggta agagetettg ggetggtttt teagageaga gttettgttg tgggtagaet 1500
gtgactaggt tcacagcctt tgtggaacat tccgtataac ggcattgtgg aagcaataac 1560
tagttcctat gaaagaacca gagctgggaa gatggctggg aagccaggcc aaagtggggg 1620
caacagettg ettetette tetteteace etcagtttgt atgggaaaat ggagatgtee 1680
tetecaettt ateceaegat atetaaatga aaaagaaaga aaaeceaeae acaaageaaa 1740
aactcaagta ttaagagcac atatttttga cccagtggag gcttaaaaaa aaaaaaatcc 1800
aagaacacaa ttcattttca ccacctctgg tgttcagagg gggcttttaa aaaagcgtgt 1860
atgctgggat acccattaaa accattttct agaaggctac catgagctgc actttttggg 1920
gtgggaaagg tgaatgccag tggggatgcg gggggatgag ggtaggaggg acttatagaa 1980
ggggatttgt ggctgtgggg gagaaggttc tacagcataa gccttatcct gccagccaag 2040
gggatttatt ctaagagaag tgcatgtgaa gaatggttgc cactgttatt agattgacaa 2100
gatgttaatt tctctgtagg ttgtaacttt aaaaataaat gaaattattt aagggttatg 2160
ctgcactagt attccttaga ggaaacagtt ctttaaagtt aggaaaggga gtaggcaggc 2220
atgtgttggc aaaggetgtt aatagtagtt aagtgttaag actgetttte tttaacgttt 2280
tcatggtaat gcatatttag agcactgtat ttttgtcttg ttaagaaaat ttagcatttc 2340
taaaagaaaa aagcaaccct ctttcaaact gttaattctg tcacagcctg tatattttag 2400
```

tcatttgtaa atctcttcat acaatagtga cttcttttt gactgataca gtatcttaat 2460

```
tacaaggtta ttttgtactt gtcttaatac actaagtgta ataaaaacgg cttgagaaaa 2520
gttaaaaaaa aaaa
                                                                   2534
<210> 47
<211> 3786
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 2299715
<400> 47
ccgtcctcga ggcgaggaga gtaccgggcc ggcccggctg ccgcgcgagg agcgcggtcg 60
gcggcctggt ctgcggctga gatacacaga gcgacagaga catttattgt tatttgtttt 120
ttggtggcaa aaagggaaaa tggcgaacga ctcccctgca aaaagtetgg tggacatcga 180
ceteteetee etgegggate etgetgggat ttttgagetg gtggaagtgg ttggaaatgg 240
cacctatgga caagtctata agggtcgaca tgttaaaacg ggtcagttgg cagccatcaa 300
agttatggat gtcactgagg atgaagagga agaaatcaaa ctggagataa atatgctaaa 360
gaaatactct catcacagaa acattgcaac atattatggt gctttcatca aaaagagccc 420
tccaggacat gatgaccaac tctggcttgt tatggagttc tgtggggctg ggtccattac 480
agaccttgtg aagaacacca aagggaacac actcaaagaa gactggatcg cttacatctc 540
cagagaaatc ctgaggggac tggcacatct tcacattcat catgtgattc accgggatat 600
caagggccag aatgtgttgc tgactgagaa tgcaggggtg aaacttgttg actttggtgt 660
gagtgctcag ctggacagga ctgtggggcg gagaaatacg ttcataggca ctccctactg 720
gatggctcct gaggtcatcg cctgtgatga gaacccagat gccacctatg attacagaag 780
tgatctttgg tcttgtggca ttacagccat tgagatggca gaaggtgctc cccctctctg 840
tgacatgcat ccaatgagag cactgtttct cattcccaga aaccctcctc cccggctgaa 900
gtcaaaaaaa tggtcgaaga agttttttag ttttatagaa gggtgcctgg tgaagaatta 960
catgeagegg cectetacag ageagetttt gaaacateet tttataaggg ateagecaaa 1020
tgaaaggcaa gttagaatcc agcttaagga tcatatagat cgtaccagga agaagagagg 1080
cgagaaagat gaaactgagt atgagtacag tgggagtgag gaagaagagg aggaagtgcc 1140
tgaacaggaa ggagagccaa gttccattgt gaacgtgcct ggtgagtcta ctcttcgccg 1200
agatttcctg agactgcagc aggagaacaa ggaacgttcc gaggctcttc ggagacaaca 1260
gttactacag gagcaacagc tccgggagca ggaagaatat aaaaggcaac tgctggcaga 1320
gagacagaag cggattgagc agcagaaaga acagaggcga cggctagaag agcaacaaag 1380
gagagagcgg gaagctagaa ggcagcagga acgtgaacag cgaaggagag aacaagaaga 1440
aaagaggcgt ctagaggagt tggagagaag gcgcaaagaa gaagaggaga ggagacgggc 1500
agaagaagaa aagaggagag ttgaaagaga acaggagtat atcaggcgac agctagaaga 1560
ggagcagcgg cacttggaag teetteagea geagetgete eaggageagg ceatgttaet 1620
gcatgaccat aggaggeege accegeagea etegeageag eegeeaceae egeageagga 1680
aaggagcaag ccaagcttcc atgeteeega geecaaagee cactaegage etgetgaeeg 1740
agegegagag gtteetgtga gaacaacate tegeteeeet gttetgteee gtegagatte 1800
cccactgcag ggcagtgggc agcagaatag ccaggcagga cagagaaact ccaccagtat 1860
tgagcccagg cttctgtggg agagagtgga gaagctggtg cccagacctg gcagtggcag 1920
ctcctcaggg tccagcaact caggatecca gcccgggtct caccctgggt ctcagagtgg 1980
ctccggggaa cgcttcagag tgagatcatc atccaagtct gaaggctctc catctcagcg 2040
cctggaaaat gcagtgaaaa aacctgaaga taaaaaggaa gttttcagac ccctcaagcc 2100
tgctgatctg accgcactgg ccaaagaget tcgagcagtg gaagatgtac ggccacctca 2160
caaagtaacg gactactect catccagtga ggagtcgggg acgacggatg aggaggacga 2220
cgatgtggag caggaagggg ctgacgagtc cacctcagga ccagaggaca ccagagcagc 2280
gtcatctctg aatttgagca atggtgaaac ggaatctgtg aaaaccatga ttgtccatga 2340
tgatgtagaa agtgagccgg ccatgacccc atccaaggag ggcactctaa tcgtccgcca 2400
gactcagtcc gctagtagca cactccagaa acacaaatct tcctcctct ttacaccttt 2460
```

```
tatagacccc agattactac agatttctcc atctagcgga acaacagtga catctqtqqt 2520
gggattttcc tgtgatggga tgagaccaga agccataagg caagatccta cccggaaagg 2580
ctcagtggtc aatgtgaatc ctaccaacac taggccacag agtgacaccc cggagattcg 2640
taaatacaag aagaggttta actctgagat tctgtgtgct gccttatggg gagtgaattt 2700
gctagtgggt acagagagtg gcctgatgct gctggacaga agtggccaag ggaaggtcta 2760
tectettate aacegaagae gattteaaca aatggaegta ettgaggget tgaatgtett 2820
ggtgacaata tctggcaaaa aggataagtt acgtgtctac tatttgtcct ggttaagaaa 2880
taaaatactt cacaatgatc cagaagttga gaagaagcag ggatggacaa ccgtagggga 2940
tttggaagga tgtgtacatt ataaagttgt aaaatatgaa agaatcaaat ttctggtgat 3000
tgctttgaag agttctgtgg aagtctatgc gtgggcacca aagccatatc acaaatttat 3060
ggcctttaag tcatttggag aattggtaca tggatcctgt gctggattcc atgctgttga 3120
tgtggattca ggatcagtct atgacattta tctaccaaca catatccagt gtagcatcaa 3180
accecatgea atcateatee tecceaatae agatggaatg gagettetgg tgtgetatga 3240
agatgagggg gtttatgtaa acacatatgg aaggatcacc aaggatgtag ttctacaqtg 3300
gggagagatg cctacatcag tagcatatat tcgatccaat cagacaatgg gctggggaga 3360
gaaggccata gagatccgat ctgtggaaac tggtcacttg gatggtgtgt tcatgcacaa 3420
aagggctcaa agactaaaat tettgtgtga acgcaatgac aaggtgttet ttgcetetgt 3480
tcggtctggt ggcagcagtc aggtttattt catgacctta ggcaggactt ctcttctqag 3540
ctggtagaag cagtgtgatc cagggattac tggcctccag agtcttcaag atcctgagaa 3600
cttggaattc cttgtaactg gagctcggag ctgcaccgag ggcaaccagg acagctqtqt 3660
gtgcagacct catgtgttgg gttctctccc ctccttcctg ttcctcttat ataccagttt 3720
ctgtta
<210> 48
<211> 1182
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 209854
gttggtgaag tcaagcgaag gcgactagag ctccaqqaqq qccaqttctq tqqqctctaq 60
teggecatat taataaagag aaagggaagg etgacegtee ttegeeteeg eecceacata 120
cacacccctt cttcccactc cgctctcacg actaagctct cacgattaag gcacgcctgc 180
ctcgattgtc cagcctctgc cagaagaaag cttagcagcc agcgcctcag tagagaccta 240
agggcgctga atgagtggga aagggaaatg ccqaccaatt qcqctqcqqc qqqctqtqcc 300
actacctaca acaagcacat taacatcage ttccacaggt ttcctttgga tcctaaaaga 360
agaaaagaat gggttcgcct ggttaggcgc aaaaattttg tgccaggaaa acacactttt 420
ctttgttcaa agcactttga agcctcctgt tttgacctaa caggacaaac tcgacgactt 480
aaaatggatg ctgttccaac catttttgat ttttgtaccc atataaagtc tatgaaactc 540
aagtcaagga atcttttgaa gaaaaacaac agttgttctc cagctggacc atctaattta 600
aaatcaaaca ttagtagtca gcaagtacta cttgaacaca gctatgcctt taggaatcct 660
atggaggcaa aaaagaggat cattaaactg gaaaaagaaa tagcaagctt aagaagaaaa 720
atgaaaactt gcctacaaaa ggaacgcaga gcaactcgaa gatggatcaa agccacgtgt 780
ttggtaaaga atttagaagc aaatagtgta ttacctaaag qtacatcaga acacatgtta 840
ccaactgcct taagcagtct tcctttggaa gattttaaga tccttgaaca agatcaacaa 900
gataaaacac tgctaagtct aaatctaaaa cagaccaaga gtaccttcat ttaaatttag 960
cttgcacaga gcttgatgcc tatccttcat tcttttcaga aqtaaaqata attatqqcac 1020
ttatgccaaa attcattatt taataaagtt ttacttqaaq taacattact qaatttgtga 1080
```

agacttgatt acaaaagaat aaaaaacttc atatggaaat tttatttgaa aatgagtgga 1140

agtgccttac attagaatta cggactttca aaactatgat aa

```
<210> 49
 <211> 1676
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte Clone Number: 1384286
 <400> 49
 tegeegagee egteegeege egeeatggee accaeggtga eetgeaceeg etteacegae 60
 gagtaccage tetacgagga tattggcaag ggggetttet etgtggteeg acgetgtgte 120
 aagetetgea eeggeeatga gtatgeagee aagateatea acaccaagaa getgteagee 180
 agagatcacc agaagctgga gagagagct cggatctgcc gccttctgaa gcattccaac 240
 ategtgcgtc tecaegacag cateteegag gagggettee actaeetggt ettegatetg 300
 gtcactggtg gggagctctt tgaagacatt gtggcgagag agtactacag cgaggctgat 360
gccagtcact gtatccagca gatcctggag gccgttctcc attgtcacca aatgggggtc 420
gtccacagag acctcaagcc ggagaacctg cttctggcca gcaagtgcaa aggggctgca 480
gtgaagetgg cagaettegg cetagetate gaggtgeagg gggaecagea ggeatggttt 540
ggtttcgctg gcacaccagg ctacctgtcc cctgaggtcc ttcgcaaaga ggcgtacggc 600
aagecegtgg acatetggge atgtggggtg atcetgtaca teetgetegt gggetaceca 660
cccttctggg acgaggacca gcacaagctg taccagcaga tcaaggctgg tgcctatgac 720
ttcccgtccc ctgagtggga caccgtcact cctgaagcca aaaacctcat caaccagatg 780
ctgaccatca accetgecaa gegeatcaca geceatgagg ceetgaagea eeegtgggte 840
tgccaacgct ccacggtagc atccatgatg cacagacagg agactgtgga gtgtctgaaa 900
aagttcaatg ccaggagaaa gctcaaggga gccatcctca ccaccatgct ggccacacgg 960
aatttctcag cagccaagag tttactcaac aagaaagcag atggagtcaa gccccatacg 1020
aatagcacca aaaacagtgc agccgccacc agccccaaag ggacgcttcc tcctgccgcc 1080
ctggagtctt ctgacagtgc caataccacc atagaggatg aagacgctaa agcccggaag 1140
caggagatca ttaagaccac ggagcagctc atcgaggccg tcaacaacgg tgactttgag 1200
geetaegega aaatetgtga eccagggetg acetegtttg ageetgaage actgggeaac 1260
ctggttgaag ggatggactt ccacagattc tacttcgaga acctgctggc caagaacagc 1320
aagcegatcc acacgaccat cetgaaccca cacgtgcacg teattggaga ggatgeegee 1380
tgcatcgctt acatccggct cacgcagtac attgacggc agggccggcc ccgcaccagc 1440
cagtetgagg agaccegegt gtggcacege egegacggca agtggcagaa egtgcactte 1500
cactgctcgg gcgcgcctgt ggccccgctg cagtgaagag ctgcgccctg gtttcgccgg 1560
acagagttgg tgtttggagc ccgactgccc tcgggcacac ggcctgcctg tcgcatgttt 1620
gtgtctgcct cgttccctcc cctggtgcct gtgtctgcag aaaaacaagc ccgact
<210> 50
<211> 1597
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 1512656
<400> 50
teggeetteg gaaagaeeee egggeegggg eaeggagaga geegagegee geageegtga 60
gccgaataga gccggagaga cccgagtatg accggagaag cccaggccgg ccggaagagg 120
gggcccggtc gagcccgcgc catggcggcc gaggcgacag ctgtggccgg aagcggggct 240
gttggcggct gcctggccaa agacggcttg cagcagtcta agtgcccgga cactacccca 300
aaacggcggc gcgcctcgtc gctgtcgcgt gacgccgagc gccgagccta ccaatggtgc 360
```

cgggagtact tgggcggggc ctggcgccga gtgcagcccg aggagctgag gqtttacccc 420

```
gtgageggag geeteageaa cetgetette egetgetege teeeggaeea cetgeeeage 480
gttggcgagg agccccggga ggtgcttctg cggctgtacg gagccatctt gcagggcgtq 540
gactccctgg tgctagaaag cgtgatgttc gccatacttg cggagcggtc gctqqqqccc 600
cagetgtacg gagtetteec agagggeegg etggaacagt acateceaag teggeeattg 660
aaaactcaag agcttcgaga gccagtgttg tcagcagcca ttgccacgaa gatggcgcaa 720
tttcatggca tggagatgcc tttcaccaag gagccccact ggctgtttgg gaccatqqaq 780
cggtacctaa aacagatcca ggacctgccc ccaactggcc tccctgagat gaacctgctq 840
gagatgtaca gcctgaagga tgagatgggc aacctcagga agttactaga gtctacccca 900
tegecagteg tettetgeca caatgacate caggaaggga acatettget geteteagag 960
ccagaaaatg ctgacagcct catgctggtg gacttcgagt acagcagtta taactatagg 1020
ggctttgaca ttgggaacca tttttgtgag tgggtttatg attatactca cgaggaatgg 1080
cctttctaca aagcaaggcc cacagactac cccactcaag aacagcagtt gcattttatt 1140
cgtcattacc tggcagaggc aaagaaaggt gagaccctct cccaagagga gcagagaaaa 1200
ctggaagaag atttgctggt agaagtcagt cggtatgctc tggcatccca tttcttctqq 1260
ggtctgtggt ccatcctcca ggcatccatg tccaccatag aatttggtta cttggactat 1320
gcccagtctc ggttccagtt ctacttccag cagaaggggc agctgaccag tgtccactcc 1380
teatestgas tesacestes castesttgg attitutestg gagestesag ggcaggaset 1440
tggagggagg aacaacgagc agaaggccct ggcgactggg ctgagcccc aagtgaaact 1500
gaggttcagg agaccggcct gttcctgagt ttgagtaggt ccccatggct ggcaggccag 1560
agccccgtgc tgtgtatgta acacaataaa caagctg
<210> 51
<211> 2145
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 2098635
cccacgcgtc cggacagctt gacccagttt gctttccaat caaagggcat ttattttgaa 60
tgtctctttg tggcgcaaga gccaacgcaa aaatgatggc ggcttacaat ggcggtacat 120
ctgcagcagc agcaggtcac caccaccacc atcaccacca cettecacac eteceteete 180
ctcacctgct tcaccaccac caccctcaac accatcttca tccggggtcg gctgccgctg 240
tacaccetgt acageageae acctettegg cagetgegge ageegeagea geggetgeag 300
ctgcagccat gttaaaccct gggcaacaac agccatattt cccatcaccg gcaccggggc 360
aggeteetgg accagetgea geageeceag eteaggtaea ggetgeegea getgetaeag 420
ttaaggcgca ccatcatcag cactcgcatc atccacagca gcagctggat attgagccgg 480
atagacctat tggatatgga gcctttggtg ttgtctggtc aqtaacagat ccaaqagatg 540
gaaagagagt agcgctcaaa aagatgccca acgtcttcca gaatctggtc tcttgcaaaa 600
gggtcttccg ggaattgaag atgttgtgtt tttttaagca tgataatgta ctctctgccc 660
ttgacatact ccaacctcca cacattgact attttgaaga aatatatgtt gtcacagaat 720
tgatgcagag tgacctacat aaaattatcg tctctcctca accactcagc tcagatcatg 780
tcaaagtttt tctttatcag attttgcgag gtttgaaata tctccattca gctggcattt 840
tacatcgaga cattaagcca gggaatctcc ttgtgaacaq caactgtgtt ctaaaqattt 900
gtgattttgg attggccaga gtggaagagt tagatgaatc ccgtcatatg actcaggaag 960
ttgttactca gtattatcgg gctccagaaa tcctgatggg cagccgtcat tacagcaatg 1020
ctattgacat ctggtctgtg ggatgtatct ttgcagaact actaggacga agaatattgt 1080
ttcaggcaca gagtcccatt cagcagttgg atttgatcac ggatctgttg ggcacaccat 1140
cactggaage aatgaggaca gcttgtgaag gcgctaagge acatatactc aggggtcctc 1200
ataaacagcc atctcttcct gtactctata ccctgtctag ccaggctaca catgaagctg 1260
ttcatctcct ttgcaggatg ttggtctttg atccatccaa aagaatatcc gctaaggatg 1320
ccttagccca cccctaccta gatgaagggc gactacgata tcacacatgt atgtgtaaat 1380
```

```
gttgcttttc cacctccact ggaagagttt ataccagtga ctttgagcct gtcaccaatc 1440
 ccaaatttga tgacactttc gagaagaacc tcagttctgt ccgacaggtt aaagaaatta 1500
 ttcatcagtt cattttggaa cagcagaaag gaaacagagt gcctctctgc atcaaccctc 1560
 agtotgotgo ttttaagago tttattagtt coactgttgo tcagcoatct gagatgocco 1620
 catctcctct ggtgtgggag tgatggtgga agataatgta ctactgaaga tgtaatgtag 1680
ctttccactg gagtctggga tttgcaattc tggaggttaa tcatgcttgt actgtaattt 1740
 tactaatgaa gttttaaatt aacaaccact acttgtatga tatgaataat atttagaaat 1800
 gttactagac ttttaatctt gtaaagtggt tgtgctttta gaagaaaaat attttaccca 1860
gagttgcaca tgttttatga atttagtgca gctgttatgg ctcacctcag aacaaaagag 1920
tgagattgtt cacacacaca cacacacaca cacacacaca cacaaacaca aaggacagtc 2040
atacattttg atatttgagc cattcctaaa gatttggggt tttctaaaac taaagaatct 2100
aggaaccttg cctgcgacca atcatggagc cacgtgagct gatcg
<210> 52
<211> 1454
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 2446646
<400> 52
gggttcgaat tgcaacggca gctgccgggc gtatgtgttg gtgctagagg cagctgcagg 60
gtetegetgg gggeegeteg ggaccaattt tgaagaggta ettggeeaeg aettatttte 120
acctccgacc tttccttcca ggcggtgaga ctctggactg agagtggctt tcacaatgga 180
agggatcagt aatttcaaga caccaagcaa attatcagaa aaaaagaaat ctgtattatg 240
ttcaactcca actataaata tcccggcctc tccgtttatg cagaagcttg gctttggtac 300
tggggtaaat gtgtacctaa tgaaaagatc tccaagaggt ttgtctcatt ctccttgggc 360
tgtaaaaaag attaatccta tatgtaatga tcattatcga agtgtgtatc aaaagagact 420
aatggatgaa gctaagattt tgaaaagcct tcatcatcca aacattgttg gttatcgtgc 480
ttttactgaa gccaatgatg gcagtctgtg tcttgctatg gaatatggag gtgaaaagtc 540
tctaaatgac ttaatagaag aacgatataa agccagccaa gatccttttc cagcagccat 600
actgcttcat ggagacataa agtcttcaaa tgttgtaatt aaaggcgatt ttgaaacaat 720
taaaatctgt gatgtaggag tctctctacc actggatgaa aatatgactg tgactgaccc 780
tgaggcttgt tacattggca cagagccatg gaaacccaaa gaagctgtgg aggagaatgg 840
tgttattact gacaaggcag acatatttgc ctttggcctt actttgtggg aaatgatgac 900
tttatcgatt ccacacatta atctttcaaa tgatgatgat gatgaagata aaacttttga 960
tgaaagtgat tttgatgatg aagcatacta tgcagcgttg ggaactaggc cacctattaa 1020
tatggaagaa ctggatgaat cataccagaa agtaattgaa ctcttctctg tatgcactaa 1080
tgaagaccct aaagatcgtc cttctgctgc acacattgtt gaagctctgg aaacagatgt 1140
ctagtgatca tctcagctga agtgtggctt gcgtaaataa ctgtttattc caaaatattt 1200
acatagttac tatcagtagt tattagactc taaaattggc atatttgagg accatagttt 1260
cttgttaaca tatggataac tatttctaat atgaaatatg cttatattgg ctataagcac 1320
ttggaattgt actgggtttt ctgtaaagtt ttagaaacta gctacataag tactttgata 1380
ctgctcatgc tgacttaaaa cactagcagt aaaacgctgt aaactgtaac attaaattga 1440
atgaccatta cttt
                                                               1454
<210> 53
```

<211> 3225 <212> DNA

<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 2764911

<400> 53

tggagcaggg ggcggtttgg ttgcgcggta ctagcggtgc ccgccgaatg gggaggaggc 60 gaggagcgag ccgtgcggcc agagcgggaa agagactcgt ctttgcgtcc gagttctgga 120 geogeogeae eccgaeteet ggggeegegg cageggetge gaggggaegg gegteegetg 180 teteetgggt teeectegta gegaceegeg ggateggaaa aaaaggagaa gatggaggag 240 gagggtggca gcagcggcgg cgccgcgggg accagcgcgg acggcggcga cggaggagaq 300 cageteetea etgteaagea egagetgegg aetgetaatt tgacaggaca tgetgagaaq 360 gtgggaatag aaaattttga gctcctgaag gtcctaggaa ctggagctta tggaaaagta 420 tttctagttc gtaaaataag tggccatgat actggaaagc tgtatgccat gaaagttttg 480 aaaaaggcaa caatcgttca aaaggccaaa accacagagc atacaaggac agaacgacaa 540 gtcctggaac acattaggca gtcgccattt ttggtaacat tacattatgc tttccagaca 600 gaaaccaaac ttcatctcat tttagattat ataaatggtg gtgaactttt tacccatctt 660 tetcaaagag agegttteac agageatgag gtgeagattt atgttggaga gattgtgett 720 gecetegaae atetecaeaa gttggggatt atatategtg atattaaget tgagaatatt 780 ctacttgatt ctaatggcca tgtggtgctg acagattttg gtctgagtaa ggagtttgtg 840 gctgatgaaa ctgaaagagc atattccttt tgtggaacta ttgaatacat ggcaccagat 900 attgtcagag ggggagattc aggacatgac aaggcagttg actggtggag tttgggtgtt 960 ctaatgtatg aattactaac tggagcatct cctttcactg ttgatggaga aaaaaattcc 1020 caagctgaga tatctaggag aatattaaaa agtgagcctc catatcccca agaaatgagt 1080 gctttagcga aagacctaat tcagcgtctt ttgatgaaag atcccaagaa gagattggga 1140 tgtggtccac gtgatgcaga tgaaatcaaa gaacatctct tctttcagaa aataaattgg 1200 gatgatttag ccgccaaaaa agtgcctgca ccatttaagc cagtcattcg agatgaatta 1260 gatgtgagta actttgcaga agagttcaca gaaatggatc ccacttattc tcccgcagcc 1320 ctgccccaga gttctgagaa gctgtttcag ggctattcct ttgttgctcc ttccatccta 1380 ttcaagcgta atgcagctgt catagaccct cttcagtttc acatgggagt tgaacgtcct 1440 ggagtgacaa atgttgccag gagtgcaatg atgaaggact ctccattcta tcaacactat 1500 gacctagatt tgaaggacaa acccctggga gaaggtagtt tttcaatttg tcgaaagtgt 1560 gtgcataaaa aaagtaacca agcttttgca gtcaaaataa tcagcaaaag gatggaagcc 1620 aatactcaaa aggaaataac agctctggaa ctctgtgaag gacaccccaa tattgtgaag 1680 ttgcatgaag tttttcatga tcagcttcac acgtttctag tgatggaact tctgaatgga 1740 ggagaactgt ttgagcgcat taagaaaaag aagcacttca gtgagacgga agccagctac 1800 atcatgagga agcttgtttc agctgtaagc cacatgcatg atgttggagt ggtgcacagg 1860 gatetgaaac etgagaattt attgtteace gatgaaaatg acaatttgga aattaaaata 1920 attgattttg gatttgcacg gctaaagcca ccggataatc agcccctgaa gactccatgc 1980 ttcaccette attatgeege eccagagete ttgaatcaga acggetacga tgagteetgt 2040 gacctgtgga gcttgggcgt cattttgtac acaatgttgt caggacaggt tcccttccaa 2100 tctcatgacc gaagtttgac gtgtaccagc gcggtggaaa tcatgaagaa aattaaaaag 2160 ggagatttct cctttgaagg agaagcctgg aagaatgtat cccaagaggc taaagatttg 2220 atccaaggac ttctcacagt agatccaaac aaaaggctta aaatgtctgg cttgaggtac 2280 aatgaatggc tacaagatgg aagtcagctg teeteeaate etetgatgae teeggatatt 2340 ctaggatett ceggagetge egtgeatace tgtgtgaaag caacetteca egeetttaac 2400 aaatacaaga gagaggggtt ttgccttcag aatgttgata aggccccttt ggctaaqaqa 2460 agaaaaatga aaaagactag caccagtacc gagacacgca gcagttccag tgagagttcc 2520 cattettett ceteteatte teaeggtaaa actacaeeca ecaagaeaet geageecage 2580 aatcctgccg acagcaataa cccggagacc ctcttccagt tctcggactc agtagcttag 2640 gcatggtagg agtgtatcag tgatccattg cacctttatt ccctcagcat atgcctgagg 2700 cgatcttta tgcttttaaa aatgtttccc gttggtctca ttggaatctg cctcctaatg 2760 attititica ggaaaacctg titiggitate eteatteaaa ageactggae agagaatgtt 2820 actgtgaata gagcacatat tactcttttt agcaacctag catgatgcca acaagactat 2880 tcttgaaaga gcaaaggttc ctgtaaattt aattagggct agatttgagc tgcttgtaag 2940 tracaggttt tracagatgtr tgccaacaag aaatgarra tartgtgatg atacettttg 3000 ctttgccttg tggacaatgt gggtttttga aatttgcacc cttcaaacaa tgatttatca 3060

```
gagaaagggg tetgttttea aaaaagatte tgtaatgaat tttatgtgtg geatataett 3120
 atttettgag agaagatttt aacttattgt ttttatttta tggttacata tgatgataac 3180
 ctgctattat taaacttttt ctaaaaagtg aaaaaaaaa aaaaa
                                                                 3225
 <210> 54
 <211> 2110
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte Clone Number: 3013946
<400> 54
tegeegagee egteegeege egeeatggee accaeggtga cetgeaceeg etteacegae 60
gagtaccagc tctacgagga tattggcaag ggggctttct ctgtggtccg acgctgtgtc 120
aagetetgea eeggeeatga gtatgeagee aagateatea acaccaagaa getgteagee 180
agagateace agaagetgga gagagagget eggatetgee geettetgaa geatteeaae 240
atcgtgcgtc tccacgacag catctccgag gagggcttcc actacctggt cttcgatctg 300
gtcactggtg gggagctctt tgaagacatt gtggcgagag agtactacag cgaggctgat 360
gecagteact gtatecagea gateetggag geegttetee attgteacea aatgggggte 420
gtccacagag acctcaagcc ggagaacctg cttctggcca gcaagtgcaa aggggctgca 480
gtgaagetgg cagaettegg cetagetate gaggtgcagg gggaccagea ggcatggttt 540
ggtttcgctg gcacaccagg ctacctgtcc cctgaggtcc ttcgcaaaga ggcgtatggc 600
aagcctgtgg acatctgggc atgtggggtg atcctgtaca tcctgctcgt gggctaccca 660
cccttctggg acgaggacca gcacaagctg taccagcaga tcaaggctgg tgcctatgac 720
tteccgtccc ctgagtggga caccgtcact cctgaagcca aaaacctcat caaccagatg 780
ctgaccatca accetgecaa gegeateaca geceatgagg ceetgaagea eeegtgggte 840
tgccaacgct ccacggtagc atccatgatg cacagacagg agactgtgga gtgtctgaaa 900
aagttcaatg ccaggagaaa gctcaaggga gccatcctca ccaccatgct ggccacacgg 960
aatttctcag ccaagagttt actcaacaag aaagcagatg gagtcaagcc ccagacgaat 1020
agcaccaaaa acagtgcagc cgccaccagc cccaaaggga cgcttcctcc tgccgccctg 1080
gagecteaaa ceaeegteat eeataaceea gtggaeggga ttaaggagte ttetgaeagt 1140
gccaatacca ccatagagga tgaagacgct aaagccccca gggtccccga catcctgagc 1200
geteeetttg geceeetgee ageteeatee eccaggatet etgacateet gaactetgtg 1320
agaaggggtt caggaacccc agaagccgag gggcccctct cagcggggcc cccgcctgc 1380
ctgtctccgg ctctcctagg ccccctgtcc tccccgtccc ccaggatctc tgacatcctg 1440
aactetgtga ggaggggete agggacceca gaagceaagg geeeetegee agtggggeee 1500
ccgccctgcc catctccgac tatccctggc cccctgccca ccccatcccg gaagcaggag 1560
atcattaaga ccacggagca gctcatcgag gccgtcaaca acggtgactt tgaggcctac 1620
gcgaaaatct gtgacccagg gctgacctcg tttgagcctg aagcactggg caacctggtt 1680
gaagggatgg acttccacag attctacttc gagaacctgc tggccaagaa cagcaagcca 1740
atccacacga ccatcctgaa cccacacgtg cacgtcattg gagaggatgc cgcctgcatc 1800
gettacatec ggeteacgea gtacattgac gggcagggec ggeecegeac cagecagtet 1860
gaggagaccc gcgtgtggca ccgccgcgac ggcaagtggc agaatgtgca cttccactgc 1920
tegggegege etgtggeece getgeagtga agagetgege eetggttteg eeggacagag 1980
ttggtgtttg gagcccgact gccctcgggc acacggcctg cctgtcgcat gtttgtgtct 2040
gcctcgttcc ctcccctggt gcctgtgtct gcagaaaaac aagaccagat gtgatttgtt 2100
aaaaaaaaa
                                                                2110
<210> 55
```

<211> 2140 <212> DNA

```
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 067967
<400> 55
gtgcgctgag ctgcagtgtc tggtcgagag tacccgtggg agcgtcgcgc cgcggaggca 60
geogteeegg egtaggtgge gtggeegaee ggaeeeceaa etggegeete teeeegegeg 120
gggtcccgag ctaggagatg ggaggcacag ctcgtgggcc tgggcggaag gatgcgqqqc 180
cgcctggggc cgggctcccg ccccagcagc ggaggttggg ggatggtgtc tatgacacct 240
tcatgatgat agatgaaacc aaatgtcccc cctgttcaaa tgtactctgc aatccttctg 300
aaccaccttc acccagaaga ctaaatatga ccactgagca gtttacagga gatcatactc 360
agcacttttt ggatggaggt gagatgaagg tagaacagct gtttcaagaa tttggcaaca 420
gaaaatccaa tactattcag tcagatggca tcagtgactc tgaaaaatgc tctcctactq 480
tttctcaggg taaaagttca gattgcttga atacagtaaa atccaacagt tcatccaagg 540
cacccaaagt ggtgcctctg actccagaac aagccctgaa gcaatataaa caccacctca 600
ctgcctatga gaaactggaa ataattaatt atccagaaat ttactttgta ggtccaaatg 660
ccaagaaaag acatggagtt attggtggtc ccaataatgg agggtatgat gatgcagatg 720
gggcctatat tcatgtacct cgagaccatc tagcttatcg atatgaggtg ctgaaaatta 780
ttggcaaggg gagttttggg caggtggcca gggtctatga tcacaaactt cgacagtacg 840
tggccctaaa aatggtgcgc aatgagaagc gctttcatcg tcaagcagct gaggagatcc 900
ggattttgga gcatcttaag aaacaggata aaactggtag tatgaacgtt atccacatgc 960
tggaaagttt cacattccgg aaccatgttt gcatggcctt tgaattgctg agcatagacc 1020
tttatgagct gattaaaaaa aataagtttc agggttttag cgtccagttg gtacgcaagt 1080
ttgcccagtc catcttgcaa tctttggatg ccctccacaa aaataagatt attcactgcg 1140
atotgaagoo agaaaacatt otootgaaac accaogggog cagttoaacc aaggtoattg 1200
actttgggtc cagctgtttc gagtaccaga agctctacac atatatccag tctcggttct 1260
acagagetee agaaateate ttaggaagee getacageae accaattgae atatggagtt 1320
ttggctgcat ccttgcagaa cttttaacag gacagcctct cttccctgga gaggatgaag 1380
gagaccagtt ggcctgcatg atggagcttc tagggatgcc accaccaaaa cttctggagc 1440
aatccaaacg tgccaagtac tttattaatt ccaagggcat accccgctac tgctctgtga 1500
ctacccaggc agatgggagg gttgtgcttg tggggggtcg ctcacgtagg ggtaaaaagc 1560
ggggtccccc aggcagcaaa gactggggga cagcactgaa agggtgtgat gactacttgt 1620
ttatagagtt cttgaaaagg tgtcttcact gggacccctc tgcccgcttg accccagctc 1680
aagcattaag acaccettgg attagcaagt etgteeceag aceteteace aceatagaca 1740
aggtgtcagg gaaacgggta gttaatcctg caagtgcttt ccagggattg ggttccaagc 1800
tgcctccagt tgttggaata gccaataagc ttaaagctaa cttaatgtca gaaaccaatg 1860
gtagtatacc cctatgcagt gtattgccaa aactgattag ctagtggaca gagatatgcc 1920
cagagatgca tatgtgtata tttttatgat cttacaaacc tgcaaatgga aaaaatgcaa 1980
gcccattggt ggatgttttt gttagagtag actttttta aacaagacaa aacattttta 2040
tatgattata aaagaattct tcaagggcta attacctaac cagcttgtat tggccatctg 2100
gaatatgcat taaatgactt tttataggtc aaaaaaaaa
                                                                  2140
<210> 56
<211> 1728
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 346275
<400> 56
gacagacaaa gcgccgccac gcgtccgcat gtcggatgtt tgtagcagtc agagagcaga 60
```

```
acatgagcat ctgccaggtc tggttccccc accatcaggg atgggagtga gaaaggggag 120
ttcccctctg aagagccacc cctgcaggga gaaatctgtc tccaacagga gatctgggaa 180
gaccatagtg agaagtgctg tegaagaggt cegeacageg ggccttttce gaagtggttt 240
tagcgaagag aaggcaactg gcaagctctt tgctgtgaag tgtatcccta agaaggcgct 300
gaagggcaag gaaagcagca tagagaatga gatagccgtc ctgagaaaga ttaagcatga 360
aaatattgtt gccctggaag acatttatga aagcccaaat cacctgtact tggtcatgca 420
gctggtgtcc ggtggagagc tgtttgaccg gatagtggag aaggggtttt atacagagaa 480
ggatgccagc actotgatcc gccaagtott ggacgccgtg tactatotcc acagaatggg 540
catcgtccac agagacctca agcccgaaaa tctcttgtac tacagtcaag atgaggagtc 600
caaaataatg atcagtgact ttggattgtc aaaaatggag ggcaaaggag atgtgatgtc 660
cactgcctgt ggaactccag gctatgtcgc tcctgaagtc ctcgcccaga aaccttacag 720
caaagccgtt gactgctggt ccatcggagt gattgcctac atcttgctct gcggctaccc 780
teetttttat gatgaaaatg acteeaaget etttgageag ateeteaagg eggaatatga 840
gtttgactct ccctactggg atgacatctc cgactctgca aaagacttca ttcggaacct 900
gatggagaag gacccgaata aaagatacac gtgtgagcag gcagctcggc acccatggat 960
cgctggtgac acagccctca acaaaaacat ccacgagtcc gtcagcgccc agatccggaa 1020
aaactttgcc aagagcaaat ggagacaagc atttaatgcc acggccgtcg tgagacatat 1080
gagaaaacta cacctcggca gcagcctgga cagttcaaat gcaagtgttt cgagcagcct 1140
cagtttggcc agccaaaaag actgtgcgta tgtagcaaaa ccagaatccc tcagctgaca 1200
ctgaagacga gcctggggtg gagaggaggg agccggcatc tgccgagcac ctcctgtttg 1260
ccaggcgctt tctatactta atcccatgtc atgcgaccct aggacttttt ttaacatgta 1320
atcactgggc cgggtgcagt ggctcacgcc tgtaatccca acactttggg aggctgaggc 1380
aggaggactg tttgagttca ggagttttaa gaccagcctg accaacatgg tgaaacccca 1440
tctctactaa aatataaaaa ttagccgggt gtggtggcga gcacctgtaa tgtcagctac 1500
ttgggagget gaggeaggag aateaettga aeeeaggaag eggaggttge aatgagetga 1560
gatcacacca ctgcactcca gcctgggtga cagattgaga ctccctctca aaaaaaaaag 1620
ggaaatcatt gaacactcgt ggaaccctag gtattgcata ttccatttac ggtttgggaa 1680
tecagggete aagteetege aggggtaceg agetegagat egtaatea
                                                                  1728
<210> 57
<211> 1610
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 283746
<400> 57
gtegeetetg aaggagaace atttteeate tettteatag tttttteece cagteagegt 60
ggtageggta ttctccgcgg cagtgacagt aattgttttt gcctctttag ccaagacttc 120
cgccctcgat caagatggtg gttggacggc cttcctaacc tttacggggc ctggcggtgc 180
tgacgcctga gctggtaggg gtggagcagg taggaaacag caaatgcaga agctgctgcg 240
cggaagtcgg ccatggactg gaaagaagtt cttcgtcggc gcctagcgac gcccaacacc 300
tgtccaaaca ctgcctgctg aagatgaagt cttactacag aaattaagag aggaatcaag 360
agctgtcttt ctacaaagaa aaagcagaga actgttagat aatgaagaat tacagaactt 420
atggtttttg ctggacaaac accagacacc acctatgatt ggagaggaag cgatgatcaa 480
ttacgaaaac tttttgaagg ttggtgaaaa ggctggagca aagtgcaagc aatttttcac 540
agcaaaagtc tttgctaaac tccttcatac agattcatat ggaagaattt ccatcatgca 600
gttctttaat tatgtcatga gaaaagtttg gcttcatcaa acaagaatag gactcagttt 660
atatgatgtc gctgggcagg ggtaccttcg ggaatctgat ttagaaaact acatattgga 720
acttatccct acgttgccac aattagatgg tctggaaaaa tctttctact ccttttatgt 780
ttgtacagca gttaggaagt tcttcttctt tttagatcct ttaagaacag gaaagataaa 840
aattcaagat attttagcat gcagcttcct agatgattta ttggagctaa gggatgagga 900
```

```
actgtccaag gagagtcaag aaacaaattg gttttctgct ccttctgccc taagagttta 960
tggccagtac ttgaatcttg ataaagatca caatggcatg ctcagtaaag aagaactctc 1020
acgctatgga acagctacca tgaccaatgt cttcttagac cgtgttttcc aggagtgtct 1080
cacttatgat ggagaaatgg actataagac ctacttggac tttqtccttg cattaqaaaa 1140
cagaaaggaa cctgcagctc tacaatatat tttcaaactg cttgatattg agaacaaagg 1200
atacctgaat gtcttttcac ttaattattt ctttagggcc atacaggaac taatgaaaat 1260
ccatggacaa gatcctgttt catttcaaga tgtcaaggat gaaatctttg acatggtaaa 1320
accaaaggat cctttgaaaa tctctcttca ggatttaatc aacagtaatc aaggagacac 1380
agtaaccacc attctaatcg atttgaatgg cttctggact tacgagaaca gagaggctct 1440
tgttgcaaat gacagtgaaa actctgcaga ccttgatgat acatgatctc tgaaagacta 1500
gactgtctta tattatgaga tacttgaatg ctgcatgtaa agcctttaaa gcaaaatcct 1560
<210> 58
<211> 1290
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 2696537
<400> 58
coggeteccg cogggaagtt ctaqqeeqec qcacaqaaaq ccctqeectc cacqeeqqqt 60
ctctggagcg ccctgggttg cccggccggt ccctqccqct qacttqttqa cactqcqaqc 120
tgccatagtg cgcctgcgac cacacggccg gggcgctagc gttcgccttc agccaccatg 240
gggaatggga tgaacaagat cctgcccggc ctqtacatcg gcaacttcaa agatqccaqa 300
gacgcggaac aattgagcaa qaacaaqqtq acacatattc tqtctqtcca tqataqtqcc 360
aggectatgt tggagggagt taaatacctg tgcateccaq caqcqqattc accatetcaa 420
aacctgacaa gacatttcaa agaaagtatt aaattcattc acgagtgccg gctccgcggt 480
gagagetgee ttgtacaetg eetggeeggg gteteeagga gegtgacaet ggtgategea 540
tacatcatga ccgtcactga ctttggctgg gaggatgccc tgcacaccgt gcgtgctggg 600
agatectgtg ccaaceccaa egtgggette cagagacage tecaggagtt tgagaageat 660
gaggtccatc agtatcggca gtggctgaag gaaqaatatq qaqaqaccc tttqcaqqat 720
gcagaagaag ccaaaaacat tctggccgct ccgggaattc tgaagttctg ggcctttctc 780
agaagactgt aatgtacctg aagtttctga aatattgcaa acccacagag tttaggctgg 840
tgctgccaaa aagaaaagca acatagagtt taagtatcca gtagtgattt gtaaacttgt 900
ttttcatttg aagctgaata tatacgtagt catqtttatq ttqaqaacta aqqatattct 960
ttagcaagag aaaatatttt ccccttatcc ccactgctgt ggaggtttct gtacctcgct 1020
tggatgcctg taaggatccc gggagccttg ccgcactgcc ttgtgggtgg cttggcgctc 1080
gtgattgctt cctgtgaacg cctcccaagg acqaqcccaq tqtaqttqtq tqqcqtqaac 1140
tetgecegtg tgtteteaaa tteeceaget tgggaaatag ceettggtgt gggttttate 1200
tetggtttgt gtteteegtg gtggaattga eegaaagete tatgtttteg ttaataaagg 1260
gcaacttagc caagtttaaa aaaaaaaaa
<210> 59
<211> 2281
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 551178
```

```
<400> 59
 tgatgatcca gatgttaaag cacaagtgga agtgctgtcc gctgcactac gtgcttccag 60
 cctggatgca catgaagaga ccatcagtat agaaaagaga agtgatttgc aagatgaact 120
 ggatataaat gagctaccaa attgtaaaat aaatcaagaa gattctgtgc ctttaatcag 180
 cgatgctgtt gagaatatgg actccactct tcactatatt cacagcgatt cagacttgag 240
 caacaatagc agttttagcc ctgatgagga aaggagaact aaagtacaag atgttgtacc 300
 tcaggcgttg ttagatcagt atttatctat gactgaccct tctcgtgcac agacggttga 360
 cactgaaatt gctaagcact gtgcatatag cctccctggt gtggccttga cactcggaag 420
 acagaattgg cactgcctga gagagacgta tgagactctg gcctcagaca tgcagtggaa 480
 agttcgacga actctagcat tctccatcca cgagcttgca gttattcttg gagatcaatt 540
 gacagetgca gatetggtte caattttaa tggatttta aaagaceteg atgaagteag 600
 gataggtgtt cttaaacact tgcatgattt tctgaagctt cttcatattg acaaaagaag 660
 agaatatett tateaaette aggagttttt ggtgacagat aatagtagaa attggeggtt 720
 tegagetgaa etggetgaac agetgatttt aettetagag ttatatagte ecagagatgt 780
 ttatgactat ttacgtccca ttgctctgaa tctgtgtgca gacaaagttt cttctgttcg 840
 ttggatttcc tacaagttgg tcagcgagat ggtgaagaag ctgcacgcgg caacaccacc 900
 aacgttcgga gtggacctca tcaatgagct tgtggagaac tttggcagat gtcccaagtg 960
 gtetggtegg caageetttg tetttgtetg ceagaetgte attgaggatg aetgeettee 1020
catggaccag tttgctgtgc atctcatgcc gcatctgcta accttagcaa atgacagggt 1080
tcctaacgtg cgagtgctgc ttgcaaagac attaagacaa actctactag aaaaagacta 1140
tttettggcc tetgecaget gecaccagga ggetgtggag cagaccatca tggetettea 1200
gatggaccgt gacagcgatg tcaagtattt tgcaagcatc caccctgcca gtaccaaaat 1260
ctccgaagat gccatgagca cagcgtcctc aacctactag aaggcttgaa tctcggtgtc 1320
tttcctgctt ccatgagagc cgaggttcag tgggcattcg ccacgcatgt gacctgggat 1380
agettteggg ggaggagaga cetteetete etgeggaett eattgeaggt geaagttgee 1440
tacacccaat accagggatt tcaagagtca agagaaagta cagtaaacac tattatctta 1500
tettgaettt aaggggaaat aattteteag aggattataa ttgteacega ageettaaat 1560
cettetgtet teetgactga atgaaacttg aattggcaga geatttteet tatggaaggg 1620
atgagattcc cagagacctg cattgetttc teetggtttt atttaacaat egacaaatga 1680
aattettaca geetgaagge agaegtgtge eeagatgtga aagagaeett eagtateage 1740
cctgtgtgtg aatcgtttgt gacgtgtgca aatgggaaag gaggggtttt tacatctcct 1860
aaaggacctg atgccaacac aagtaggatt gacttaaact cttaagcgca gcatattgct 1920
gtacacattt acagaatggt tgctgagtgt ctgtgtctga ttttttcatg ctggtcatga 1980
cctgaaggaa atttattaga cgtataatgt atgtctggtg tttttaactt gatcatgatc 2040
agetetgagg tgcaacttet teacatactg tacatacetg tgaccactet tgggagtget 2100
gcagtcttta atcatgctgt ttaaactgtt gtggcacaag ttctcttgtc caaataaaat 2160
ttattaataa gatctataga gagagatata tacacttttg attgttttct agatgtctac 2220
caataaatgc aatttgtgac ctgtattaat gatttaaagt gggaaactag attaaaatat 2280
<210> 60
<211> 632
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone Number: 619292
<400> 60
cggacgcgtg gggtccagcc gcagctccag caccgaggac ttctgctacg tcttcacggt 60
ggagctggaa cgaggcccct ccgggctggg gatgggcctg atcgacggga tgcacacgca 120
cctgggcgcc cccgggctct acatccagac cctgctcccg ggcagccccg cagcggccga 180
cgggcgcctg tcgctggggg accgtatect ggaggtgaat ggcagcagcc tcctgggcct 240
```

```
tggctacctg agagctgtgg acctgatccg tcatggcggg aagaagatgc ggttcctgqt 300
cgcgaagtcc gacgttggga aacagccaag aagatccatt tccgcacgcc ccctctctag 360
gggggctgcg aggacaeccc cacaggcccg gcacccggtc ccacctggtg acactgqqct 420
tectecegee ttegtecetg ttttgtaact gaccaagttg ggtecegggt ggggageete 480
accetgggga catgeetgtt gataacatge ateteagtgt aggttetatt tatatggcag 540
atgacgtgaa attgtgatgt ttgttacaga gcttttatgt ttaaagactt caatggagaa 600
gtacggttca ataaactatt tttcccgttc tt
<210> 61
<211> 2347
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 2054049
<400> 61
cccagtttta tcatggattc atcctgaaag tcaagccaca atcactcggt gtagccagcc 60
catggttgga gtgagtggaa agcgaagcaa agaagatgaa aaataccttc aagctatcat 120
ggattccaat gcccagtctc acaaaatctt tatatttgat gcccggccaa gtgttaatgc 180
tgttgccaac aaggcaaagg gtggaggtta tgaaagtgaa gatgcctatc aaaatgctqa 240
actagttttc ctggatatcc acaatattca tgttatgaga gaatcattac gaaaacttaa 300
ggagattgtg taccccaaca ttgaggaaac ccactggttg tctaacttgg aatctactca 360
ttggctagaa catattaagc ttattcttgc aggggctctt aggattgctg acaaggtaga 420
cacttccctt gccatgctca tgttggatgg atactatcga accatccgag gatttgaagt 540
ccttqtqqaq aaaqaatqqc taaqttttqq acatcqattt caactaaqaq ttqqccatqq 600
agataagaac catgcagatg cagacagatc gcctgttttt cttcaattta ttgactqtqt 660
ctggcagatg acaagacagt ttcctaccgc atttgaattc aatgagtatt ttctcattac 720
cattttggac cacctataca gctgcttatt cggaacattc ctctgtaata gtgaacaaca 780
gagaggaaaa gagaatette etaaaaggae tgtgteactg tggtettaca taaacageca 840
gctggaagac ttcactaatc ctctctatgg gagctattcc aatcatgtcc tttatccagt 900
agecageatg egecacetag agetetgggt gggatattae ataaggtgga atecaeggat 960
gaaaccacag gaacctattc acaacagata caaagaactt cttgctaaac gagcagagct 1020
tcagaaaaaa gtagaggaac tacagagaga gatttctaac cgatcaacct catcctcaga 1080
gagagecage teteetgeac agtgtgteac teetgteeaa aetgttgtat aaaggaetgt 1140
aagatcaggg gcatcattgc tatacactct tgattacact ggcagctcta tgagtagaaa 1200
gtcttcggaa tttagaaccc atctatgaga gaaagttcag tcactttatt tattttaaat 1260
ctctctagga tgagtttaga actgtagcag tgcaggtggc ttaagtgaag taactccata 1320
tgtaattaca tgattatgat actaatcttt taagtatcca aagaatatta aaatacttca 1380
atcctggatt cacagtggga acaagtttct attaaaaggc aaatgctgtt acaaattttt 1440
ggcatctggt aatattaaaa ccattttaga aatacactct gtgctcactg tgcagaggaa 1500
catcagtttt caaaccaaca ctgaaattct gtggcatcac atatattggg ccttgatgtc 1560
atgacagate aaaateattt gatateeett teteeattet aggtttttet tttttteagt 1620
aactqattta ccttqatcac ttttcaactt ccatattctt catataqtaa aaggcaaagt 1680
gttgaagata ctacggtgtg gtagtagttg aaaattattg ccgtcattat ttacatactt 1740
aagacatatt agcaagttga tccaaaatgg gaggccttat agatgtgctt gggggaaaat 1800
gaaggggaga aagtagccat acaggagttc aaagaattcc atgcccttca gattagccca 1860
attaccagaa acatcatgaa agatatttta aaaactaatt atttactaca gtgtatttca 1920
cttgtcttgt gtgtctgaac acacagaagc taattagcaa gtttttaaga agtatttaaa 1980
aatettaeta ggattgaeat tttttetgaa ttetgtataa atagettata gtgagaagta 2040
ctgtgctcaa attttacatt tttttccttt gcaaattctg taatttcact caacgattaa 2100
gtctaccaaa gaacacactg catgtaaaag atgtattaca atctcaaagc cagtaaaaga 2160
aatottgott cactgitcac cigciacaag taagagittig gigciggiag aaacattiga 2220
```

```
ctctgatgtc tattttattc tacataagag ccatatgtaa tgtactgtaa caaaggagct 2280
tettgteece ttggtetttt aattaaaaga aatteeaact gaettttaaa etttaaaaaa 2340
aaaaaaa
                                                                  2347
<210> 62
<211> 1737
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone Number: 2843910
<400> 62
ceggggetga gegetegget geageggege ggaggeegte teeetggtet geegeggtee 60
ccgcccgtcc cgccgcggc tgccatggca ggagccggag ggttcggctg ccccgcgggc 120
ggcaacgact tccagtggtg cttctcgcag gtcaaggggg ccatcgacga ggacgtggcc 180
gaagcggaca tcatttccac cgttgagttt aattactctg gagatcttct tgcaacagga 240
gacaagggcg gcagagttgt tatttttcag cgtgaacaag agaataaaag ccgccctcat 300
tctaggggag aatataatgt ttacagcacc tttcaaagtc atgaaccgga gtttgactat 360
ttgaaaagtc tagaaattga ggaaaaaatt aataaaatta ggtggttacc acaacagaat 420
gctgctcatt ttctactgtc tacaaatgat aaaactataa aattatggaa aataagtgaa 480
cgggataaaa gagcagaagg ttataacctg aaagacgaag atggaagact tcgagaccca 540
tttaggatca cggcgctacg ggtcccaata ttgaagccca tggatcttat ggtagaagcg 600
agtccacggc gaatttttgc aaatgctcac acatatcata taaattccat ttcagtaaat 660
agtgatcatg aaacatatct ttctgcagat gacctgagaa ttaatttatg gcacttagaa 720
atcacagata gaagetttaa categtggae atcaageetg ctaacatgga ggagetgace 780
gaagtcatca ctgcagccga gttccacccg caccagtgca acgtgttcgt ctacagcagt 840
agcaaaggga ccatccgcct gtgtgacatg cgctcctcgg ccctgtgcga cagacactcc 900
aagttttttg aagageetga agateeeage agtaggteet tetteteaga aataatttea 960
tocatatoog atgtaaaatt cagtcatagt gggcggtaca tgatgaccag agactacctg 1020
teggtgaagg tgtgggacct caacatggag agcaggcegg tggagaccca ccaggtccac 1080
gagtacctgc gcagcaagct ctgctctctc tatgagaacg actgcatctt tgacaagttt 1140
gagtgttgct ggaacggttc ggatagcgcc atcatgaccg ggtcctataa caacttcttc 1200
aggatgtttg atagagacac gcggagggat gtgaccctgg aggcctcgag agagagcagc 1260
aaaccgcgcg ccagcctcaa accccggaag gtgtgtacgg ggggtaagcg gaggaaagac 1320
gagatcagtg tggacagtct ggacttcaac aagaagatcc tgcacacage ctggcacccc 1380
gtggacaatg tcattgccgt ggctgccacc aataacttgt acatattcca ggacaaaatc 1440
aactagagac gcgaacgtga ggaccaagtc ttgtcttgca tagttaagcc ggacattttt 1500
ctgtcagaga aaaggcatca ttgtccgctc cattaagaac agtgacgcac ctgctacttc 1560
ccttcacaga cacaggagaa agccgcctcc gctggaggcc cggtgtggtt ccgcctcggc 1620
gaggegegag acaggegetg etgeteaegt ggagaegete tegaageaga gttgaeggae 1680
actgctccca aaaggtcatt actcagaata aatgtattta tttcaaaaaa aaaaaaa
```

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

4 May 2000 (04.05.00)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:		(11)	International Publication Number: WO 00/06728
C12N 15/12, C07K 14/47, C12N 9/12 5/10, C07K 16/18, A61K 38/17	2, A3	(43)	International Publication Date: 10 February 2000 (10.02.00)
(22) International Filing Date: 28 July (30) Priority Data:	.98) (14.09.98) (14.09.98)	JS JS JS JS JS JS JS	 (2) Inventors; and (5) Inventors/Applicants (for US only): HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12, Mountain View, CA 94040 (US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). CORLEY, Neil, C. [US/US]; 1240 Dale Avenue #30, Mountain View, CA 94040 (US). GUEGLER, Karl, J. [CH/US]; 1048 Oakland Avenue, Menlo Park, CA 94025 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). PATTERSON, Chandra [US/US]; 490 Sherwood
09/173,482 14 October 1998 (14 Not furnished 60/106,889 3 November 1998 (0 60/109,093 19 November 1998 (0 60/113,796 22 December 1998 (0 09/229,005 12 January 1999 (12 Not furnished 12 January 1999 (12 (63) Related by Continuation (CON) or Continuation (CON)	1.10.98) 03.11.98) (19.11.98) 22.12.98) .01.99)	18 18 18 18 18 18	Way #1, Menlo Park, CA 94025 (US). BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). AU-YOUNG, Janice [US/US]; 1419 Kains Avenue, Berkeley, CA 94709 (US). GORGONE, Gina, A. [US/US]; 1253 Pinecrest Drive, Boulder Creek, CA 95006 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). AZIMZAI, Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA 94545 (US). REDDY, Roopa [IN/US]; 1233 W. McKinley Drive, Sunnyvale, CA 94086 (US). LU,
(CIP) to Earlier Applications US Not Filed on 28 July US C Filed on 28 July US Filed on 28 July US Thiled on 14 September	t furnished (C 1998 (28.07.5 09/123,494 (C 1998 (28.07.5 09/152,814 (C 1998 (14.09.5 t furnished (C	8) P) 8) (7: P) 8)	 Dyung, Aina, M. [US/US]; 55 Park Belmont Place, San Jose, CA 95136 (US). SHIH, Leo, L. [US/US]; Apt. B, 1081 Tanland Drive, Palo Alto, CA 94303 (US). 4) Agents: BILLINGS, Lucy, J. et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).
Filed on 14 September US 0 Filed on 14 October US Not Filed on 14 October US 6 Filed on 3 November US 6 Filed on 19 November US 6 Filed on 22 December US 0 Filed on 12 January	1998 (14.09.5) 1998 (14.10.5) 1998 (14.10.5) 1998 (14.10.5) 1998 (03.11.5) 1998 (03.11.5) 1998 (19.11.5) 1998 (22.12.5) 1998 (22.12.5) 1999 (12.01.5)	8) (8 P) 8) P) 88) P) 88) P) 88) P) 88) P) P) 99) P)	1) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
	furnished (C) 1999 (12.01.9		blished With international search report.

(71) Applicant (for all designated States except US): INCYTE (88) Date of publication of the international search report: PHARMACEUTICALS, INC. [US/US]; 3174 Poner Drive,

Palo Alto, CA 94304 (US).

(54) Title: PHOSPHORYLATION EFFECTORS

(57) Abstract

The invention provides human phosphorylation effectors (PHSP) and polynucleotides which identify and encode PHSP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of PHSP.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fl	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	A zerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	ΥU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR.	Liberia	SG	Singapore		

Interr nal Application No PCT/US 99/17132

a. classification of subject matter IPC 7 C12N15/12 C07K14/47 C12N5/10 CO7K16/18 C12N9/12 A61K38/17 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07K C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. HILLIER, L., ET AL.: "WashU-NCI human EST Х 5,6,10, project⁶ EMBL SEQUENCE DATA LIBRARY, 6 February 1998 (1998-02-06), XP002121148 heidelberg, germany accession no. AA780791 ISHIKAWA, K., ET AL.: "prediction of the 1-5,9,10 Х coding sequences of unidentified human genes. X. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro" DNA RESEARCH, vol. 5, no. 3, 30 June 1998 (1998-06-30), pages 169-176, XP002121149 the whole document -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international *X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. document published prior to the international filing date but later than the priority date claimed '3" document member of the same patent family Date of the actual completion of the international search Date of making of the international search report 17.02.00 9 November 1999 Name and mailing address of the ISA European Patent Office, P. B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,

Fax: (+31-70) 340-3016

Holtorf, S

Intern: ial Application No
PCT/US 99/17132

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98 11234 A (HAWKINS PHILLIP R ;INCYTE PHARMA INC (US); AU YOUNG JANICE (US); G) 19 March 1998 (1998-03-19) the whole document	1-19
Α .	WO 97 02347 A (INCYTE PHARMA INC) 23 January 1997 (1997-01-23) the whole document	1-19
A	WALDEN, P.D. AND COWAN, N.J.: "a novel 205-kilodalton testis-specific serine/threonine protein kinase associated with microtubules of the spermatid manchette" MOLECULAR AND CELLULAR BIOLOGY, vol. 13, 1993, pages 7625-7635, XP002121150 the whole document	1-19
A .	NAGASE, T., ET AL.: "prediction of the coding sequences of unidentified human genes. IX. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro" DNA RESEARCH, vol. 5, 1998, pages 31-39, XP002121152 especially Table 2 + 3 the whole document	1-19
A	HILLIER, L., ET AL.: "the WashU-Merck EST project" EMBL SEQUENCE DATA LIBRARY, 25 March 1995 (1995-03-25), XP002121151 heidelberg, germany accession no. t77135	1-19
4	WO 97 48802 A (HAWKINS PHILLIP R ;INCYTE PHARMA INC (US); AU YOUNG JANICE (US); H) 24 December 1997 (1997-12-24) the whole document	1-19
P,X	WO 99 04265 A (SAHIN UGUR ;TURECI OZLEM (DE); PFREUNDSCHUH MICHAEL (DE); GOUT IVA) 28 January 1999 (1999-01-28) pages 1-7,537,578,709 claims claims 1-117	1-7, 9-16,19

Ints...ational application No.

PCT/US 99/17132

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 19 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. X Claims Nos.: 17, 18, 20 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: See FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: See additional sheets
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-20 partially
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

1. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to Protein Kinases; especially SEQIDs 1,12 and 32,43; the recombinant expression of the same and uses thereof.

2. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to PKC-potentiated inhibitory protein of PP1; especially SEQIDs 2 and 33; the recombinant expression of the same and uses thereof.

3. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to STE20-like Protein Kinases; especially SEQIDs 3 and 34; the recombinant expression of the same and uses thereof.

4. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to Phosphofructokinases; especially SEQIDs 4 and 35; the recombinant expression of the same and uses thereof.

5. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to Serin/Threonine Protein Kinases; especially SEQIDs 5,6,10 and 36,37,41; the recombinant expression of the same and uses thereof.

6. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to Phosphatidylinositol-3-kinases; especially SEQIDs 7 and 38; the recombinant expression of the same and uses thereof.

7. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to Tyrosine or Tyrosine/serine Protein Kinases; especially SEQIDs 8,13,21 and 39,44,52; the recombinant expression of the same and uses thereof.

8. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology

to Calcium /Calmodulin dependent Protein Kinases; especially SEQIDs 9,18,23,25 and 40,49,54,56; the recombinant expression of the same and uses thereof.

9. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to Tyrosine Phosphatases or Dual specificity phosphatases; especially SEQIDs 11,29,30 and 42,60,61; the recombinant expression of the same and uses thereof.

10. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to PEST phosphatase interacting protein; especially SEQIDs 14 and 45; the recombinant expression of the same and uses thereof.

11. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to SH3-binding proteins; especially SEQIDs 15 and 46; the recombinant expression of the same and uses thereof.

12. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to NIK-kinases; especially SEQIDs 16 and 47; the recombinant expression of the same and uses thereof.

13. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to Inferferon-induced PK regulators; especially SEQIDs 17 and 48; the recombinant expression of the same and uses thereof.

14. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to Choline-kinases; especially SEQIDs 19 and 50; the recombinant expression of the same and uses thereof.

15. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to MAP-related Protein kinases; especially SEQIDs 20 and 51; the recombinant expression of the same and uses thereof.

16. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to Ribosomal S6 Protein kinases; especially SEQIDs 22 and 53; the recombinant expression of the same and uses thereof.

17. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to Protein kinases Dyrk2; especially SEQIDs 24 and 55; the recombinant expression of the same and uses thereof.

18. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to Protein Phosphatases 2A; especially SEQIDs 26,28,31 and 57,59,62; the recombinant expression of the same and uses thereof.

19. Claims: 1-20 partially

Polynucleotide and polypeptide sequences that show homology to MAP-kinase Phosphatases; especially SEQIDs 27 and 58; the recombinant expression of the same and uses thereof.

Continuation of Box I.2

Glaims Nos.: 17,18,20

Claims 17,18 and in part 20 refer to an antagonist and agonist of the polypeptides without giving a true technical characterization. Moreover, no such compounds are defined in the application. In consequence, the scope of said claims is ambiguous and vague, and their subject-matter is not sufficiently disclosed and supported (Art. 5 and 6 PCT). No search can be carried out for such purely speculative claims whose wording is, in fact, a mere recitation of the reults to be achieved.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

mormation on patent family members

Inter anal Application No PCT/US 99/17132

Patent document cited in search report		Publication date		atent family nember(s)	Publication date		
WO	9811234 A 19-03-1998		19-03-1998	US US AU EP	5773699 A 5863780 A 4261197 A 0927257 A	30-06-1998 26-01-1999 02-04-1998 07-07-1999	
WO	9702347	A	23-01-1997	AU CA EP JP US	6405996 A 2198729 A 0781336 A 10505510 T 5846778 A	05-02-1997 23-01-1997 02-07-1997 02-06-1998 08-12-1998	
WO	9748802	Α	24-12-1997	US AU EP US	5648239 A 3401497 A 0910639 A 5922844 A	15-07-1997 07-01-1998 28-04-1999 13-07-1999	
WO	9904265	Α	28-01-1999	AU	8571598 A	10-02-1999	