Reaction-diffusion spatial modeling of COVID-19 in Chicago

Trent Gerew*

Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois

October 22, 2021

1 Model Setup

Figure 1: Schematic diagram of the model. The dashed lines indicate the interaction of the infected populations with the susceptible populations that leads to infection.

$$S_t = \mathfrak{D}_S \Delta S - \beta_{SA} S A - \beta_{SI} S I - \mu S, \tag{1}$$

$$E_t = \mathfrak{D}_E \Delta E + \beta_{SA} SA + \beta_{SI} SI - (\sigma_A + \sigma_I) E, \tag{2}$$

$$A_t = \mathfrak{D}_A \Delta A + \sigma_A E - M_{AR} A,\tag{3}$$

$$I_t = \sigma_I E - MI, \tag{4}$$

$$H_t = \gamma MI - (1 - \omega)\chi H - \omega \chi H, \tag{5}$$

$$R_t = (1 - \gamma)MI + (1 - \omega)\chi H,\tag{6}$$

$$D_t = \omega \chi H. \tag{7}$$

2 ODE Dynamics

We want to understand the trajectories of the dynamics of the ODE system under different initial conditions. To do this we first find the equilibrium points by solving

$$S_t = E_t = A_t = I_t = H_t = R_t = D_t = 0$$

^{*}tgerew@hawk.iit.edu

Table 1: Population values for Chicago.

		Population
Total population	N	2,695,598
Initial infected	I_0	127
Initial hospitalized	H_0	30
Initial deceased	D_0	6

Table 2: Parameters for Chicago: optimal (best-fitting), median and interquartile range, and variation range used in the optimization algorithm. Initial parameter guesses were uniformly sampled within these ranges.

		Median (interquartile range)	Initial value
Population	N	2,695,598	
Initial population	(I_0, R_0)	(127, 2)	
Transmission rate, $S \to I$ [per day]	eta^1	0.38206 (0.38204 - 0.38209)	$c \in U[0,1]$
Transition rate, $I \to R$ [per day]	γ	0.39656(0.39654 - 0.39659)	$c \in U[0.25, 0.75]$
Diffusivity, $S [\mathrm{km}^2/\mathrm{day}]$	\mathfrak{D}_S	10	
Diffusivity, $I [\mathrm{km}^2/\mathrm{day}]$	\mathfrak{D}_I	100	

simultaneously for $\mathbf{x} = (S, E, A, AR, I, H, R, D)$. The solutions of this system are of the form $\mathbf{x}^* = (0, 0, 0, AR, 0, 0, R, D)$. This implies there are infinitely many non-isolated equilibrium points. We determine the stability of these equilibrium points by analyzing the linearized system near the points. The Jacobian of the system is

Now evaluating J at the equilibrium point \mathbf{x}^* and calculating the eigenvalues, we have

$$\lambda = \{0, 0, 0, -M, -M_{AR}, -\mu, -\sigma_A - \sigma_I, -\chi + \chi \omega - \psi \omega\}. \tag{9}$$

Note that the first three eigenvalues are 0, which implies the equilibrium points are non-isolated. This agrees with our earlier observation.

The equilibrium points are stable when $\lambda_i < 0$ for $4 \le i \le 8$. Since all the system parameters are positive, this implies $\lambda_i < 0$ for $4 \le i \le 7$. Thus the stability depends on the sign of λ_8 . There are two cases when $\lambda_8 = -\chi + \chi \omega - \psi \omega < 0$ is true:

- 1. $0 < \omega \le 1$ implies $\lambda_8 < 0$, and
- 2. $\omega > 1$ and $\chi < \frac{\psi \omega}{\omega 1}$ implies $\lambda_8 < 0$.

That is, whenever we have either of these conditions the equilibrium points are stable. We call this situation endemic. If $\lambda_8 > 0$, the equilibrium points are unstable and the situation is an epidemic.

References