Um Estudo sobre a Evolução Temporal de Comunidades Científicas

Bruno Leite Alves

Orientador: Alberto H. F. Laender

Coorientador: Fabrício Benevenuto

A sociedade está Organizada em Comunidades

- Existem vários tipos de comunidade
- Em uma rede social, indivíduos influenciam e são influenciados por outros indivíduos
- Comunidades têm líderes de opinião

Um grupo de líderes ou membros influentes afeta a dinâmica de toda uma comunidade

Objetivos

- Estudar a dinâmica de comunidades científicas
- Identificar os líderes de um comunidade científica (Núcleo da Comunidade)
- Investigar as propriedades do Núcleo

Sumário

- Trabalhos Relacionados
- Contribuições
- Visão Geral de Redes Complexas
- Comunidades Científicas
 - Comunidades Consideradas
 - CoScore
 - Determinação do Núcleo de uma Comunidade
- Evolução das Comunidades Científicas
- Visualização
- Conclusões

Trabalhos Relacionados

- Análises de estruturas de comunidades [Ducheneaut et al., 2007; Kumar et al., 2006; Patil et al., 2012]
- Caracterização de comunidades científicas [Backstrom et al., 2006; Huang et al., 2008]
- Investigação sobre as evoluções de redes [Leskovec et al., 2005, 2008; Viswanath et al., 2009]
- Modelos de geração de grafos [Ducheneaut et al., 2007; Kumar et al., 2006; Leskovec et al., 2005, 2008]
- Extração do núcleo com base nas propriedades estruturais da rede

[Chakrabarti et al., 2006; Hopcroft et al., 2004; Leskovec et al., 2010, Sachan et al., 2012; Seifi et al., 2012]

Contribuições

- Definição de uma métrica capaz de quantificar a importância de um pesquisador
- Definição do conceito de núcleo de uma comunidade a partir da métrica proposta
- Caracterização de comunidades científicas e discussões de como nossa métrica afeta as propriedades das redes
- Visualização das comunidades estudadas

Redes Complexas

- Uma rede é geralmente modelada como um grafo
- Vários tipos de rede são tratadas na literatura: redes sociais online, redes biológicas, redes de computadores, redes de colaboração científica etc.
- Redes de colaboração científica são formadas por pesquisadores que publicam trabalhos científicos

Grau dos Nodos

Número de arestas incidentes àquele nodo

Coeficiente de Agrupamento

O CA informa o quão agrupados os vizinhos de um dado nodo se encontram na rede

Componentes

Um componente é um subconjunto de nodos interligados entre si

Caminho Mínimo Médio e Diâmetro

Caminho Mínimo Médio: 1,66

Caminho Mínimo: 1

O caminho mínimo médio é a média do número de arestas em todos os caminhos mínimos existentes

Caminho Mínimo Médio e Diâmetro

Diâmetro: 3 Caminho Mínimo Médio: 1,66

Diâmetro é o maior caminho mínimo existentes

Caminho Mínimo: 1

Betweenness

Mede a centralidade de um nodo considerando o número de caminhos mínimos que por ele passam

Assortatividade

Indica se os nodos tendem a estabelecer conexões com outros nodos de mesmo grau ou não

Assortatividade

Indica se os nodos tendem a estabelecer conexões com outros nodos de mesmo grau ou não

Comunidades Científicas

dblp computer science bibliography

2,2 milhões de publicações

de 1,2 milhões de autores

22 conferências principais dos maiores SIGs da ACM

Consideramos cada conferência como uma comunidade científica

SIGs da ACM Considerados

SIGACT	SIGDOC	SIGMOD
SIGAPP	SIGGRAPH	SIGOPS
SIGARCH	SIGIR	SIGPLAN
SIGBED	SIGKDD	SIGSAC
SIGCHI	SIGMETRICS	SIGSOFT
SIGCOMM	SIGMICRO	SIGWEB
SIGCSE	SIGMM	
SIGDA	SIGMOBILE	

CoScore

- Estima a importância de um pesquisador dentro de uma comunidade
- O CoScore de um pesquisador p com um índice h h em uma comunidade c em um período de tempo t é dado por:

$$CoScore_{p,c,t} = h_{p,t} \times \#publica ilde{coes}_{p,c,t}$$

Como estimar o Índice H

Somente 30%
dos autores da DBLP possuem um perfil no
Google Scholar

Como estimar o Índice H

Somente 30%
dos autores da DBLP possuem um perfil no
Google Scholar

Alternativa:

www.shine.icomp.ufam.edu.br

Reúne as publicações de mais de 1800 veículos referentes ao período de 2000 a 2012

Shine vs. Google Scholar

Shine oferece uma boa estimativa para o índice h

Evolução do Índice H

O índice h tende, no geral, a manter uma evolução linear

Escolha dos Parâmetros que Definem o Núcleo da Comunidade

Tamanho da Janela Deslizante Temporal

SIGMOD

Escolha dos Parâmetros que Definem o Núcleo da Comunidade

Tamanho da Janela Deslizante Temporal

SIGMOD

Comunidades de Luis von Ahn

Alto CoScore nas comunidades CHI e SIGCSE

Comunidades de Luis von Ahn

Membro do núcleo da CHI

Comunidades de Jon Kleinberg

Alto CoScore em várias comunidades

Comunidades de Jon Kleinberg

Mudança da STOC para KDD

Pesquisadores Premiados

Membros dos núcleos das comunidades que receberam prêmios

29/45

Pesquisadores Premiados

Membros da POPL foram premiados com o *ACM A.M. Turing Award*

30/45

Evolução das Comunidades Científicas

Ano a ano acumulando nodos e arestas

Evolução das Comunidades Científicas

Instância (3 anos) construída com base em nodos e arestas

Membros do Núcleo vs. Não Membros

O grau médio dos membros do núcleo é maior que os dos não membros

Membros do Núcleo vs. Não Membros

O núcleo pode atuar como *hub*, conectando diferentes grupos com pequenas interseções

34/45

Membros do Núcleo vs. Não Membros

O núcleo inclui um grande número de caminhos mínimos

Influência dos Membros do Núcleo

O CoScore médio de uma comunidade, em geral, aumenta ao longo do seu tempo de vida 36/45

Influência dos Membros do Núcleo

Como isso afeta a rede?

Forte Correlação com o CoScore Médio

Visualização das Redes

Grande número de membros do núcleo no maior CFC

Visualização das Redes

Não possui um grande CFC bem definido

Visualização das Redes

Maior CFC claramente definido

Conclusões

- O núcleo da comunidade:
 - É fortemente correlacionado com a variação das propriedades da rede
 - Atuam como pontes que conectam grupos
 - Aumenta o grau médio
 - Diminui a assortatividade

Conclusões

- Trabalhos Futuros:
 - Aplicação do estudo a outros contextos
 - Utilização de outras métricas de prolificidade
 - Avaliação do CoScore em outros contextos
 - Geração de modelos de formação de comunidades

Publicação

Alves, B. L.; Benevenuto, F. & Laender, A. H. (2013). The Role of Research Leaders on the Evolution of Scientific Communities. In Proceedings of the 22nd International Conference on World Wide Web (Companion Volume), pp. 649-656, Rio de Janeiro, Brazil.

Obrigado!

Um Estudo sobre a Evolução Temporal de Comunidades Científicas

Bruno Leite Alves

Orientador: Alberto H. F. Laender

Coorientador: Fabrício Benevenuto

