CSE 3400 - Introduction to Computer & Network Security (aka: Introduction to Cybersecurity)

Lecture 4
Encryption – Part III
(and Pseudo-randomness)

Ghada Almashaqbeh UConn

From Textbook Slides by Prof. Amir Herzberg
UConn

Outline

- Block ciphers.
- Pseudorandom permutations (PRPs).
- Defining security of encryption.
- Encryption modes.
- Concluding remarks.

Block Ciphers

- A pair of algorithms E_k and D_k (encrypt and decrypt with key k) with domain and range of $\{0,1\}^n$
 - Encrypt and decrypt data in blocks each of which is of size n bits.
- Conventional correctness requirement: m = Dk(Ek(m))
- Several schemes used in practice including DES and AES.
 - No security proofs, just resistance to cryptanalysis.
 - DES is insecure for short keys, replaced by AES.
- Security requirement of block ciphers is to be a pair of Pseudorandom Permutations (PRP).

So what is a Random Permutation?

And what is a PRP?

What is a random **permutation** ρ ?

- Random permutation ρ over finite domain D, usually: $\{0,1\}^m$
- How can we select a random permutation ρ ?
- Let $D = \{x_1, x_2, ..., x_n\}$
- For i = 1, ..., n:

$$\rho(x_i) \stackrel{\$}{\leftarrow} D - \{\rho(x_1), \rho(x_2), \dots, \rho(x_{i-1})\}$$

Examples:

		ho()
Domain D $\{0,1\}^2$	00	10
	01	11
	10	00
	11	01

Domain D $\{0,1\}^2$

	ρ ()
00	00
01	01
10	10
11	11

Pseudo-Random Permutation (PRP)

and their Indistinguishabity Test

- E is a PRP over domain D, if no distinguisher D:
 - Outputs 1 (signaling PRP) given oracle to $E_k()$, for random (n-bits) key k, and
 - Outputs 0 (signaling random) given oracle to $\rho()$, a random permutation (over D)

Pseudo-Random Permutation (PRP)

- Pseudo-Random Permutation (PRP) $E_k()$
 - Cannot be distinguished from truly random permutation over same domain
 - Against efficient adversaries (PPT), allowing negligible advantage
 - Yet practical, even efficient

Definition 2.9. A pseudo-random Permutation (PRP) is a polynomial-time computable function $E_k(x) : \{0,1\}^* \times D \to D \in PPT$ s.t. for all PPT algorithms A, $\varepsilon_{A,E}^{PRP}(n) \in NEGL(n)$, i.e., is negligible, where the advantage $\varepsilon_{A,E}^{PRP}(n)$ of the PRP E against adversary A is defined as:

$$\varepsilon_{\mathcal{A},E}^{PRP}(n) \equiv \Pr_{\substack{k \in \{0,1\}^n}} \left[\mathcal{A}^{E_k}(1^n) \right] - \Pr_{\substack{\rho \in Perm(D)}} \left[\mathcal{A}^{\rho}(1^n) \right]$$
 (2.16)

The probabilities are taken over random coin tosses of A, and random choices of the key $k \stackrel{\$}{\leftarrow} \{0,1\}^n$ and of the function $\rho \stackrel{\$}{\leftarrow} Perm(D)$.

Block Cipher: Invertible PRP (E, D)

- Common definition for <u>block cipher</u>
- Invertible Pseudo-Random Permutation (PRP):
 - A pair of PRPs (E,D), s.t.: $m=D_k(E_k(m))$
 - And (E,D) is indistinguishable from (π, π^{-1})
 - where π is a random permutation
 - Note: it is deterministic, stateless → not secure encryption!
 - But used to construct encryption (soon)

Example of a Block Cipher Security and Correctness

- $\Box E_k(m) = m + k \bmod 2^n$
- ☐ In class.
 - \Box $D_k(c)$?
 - Correctness.
 - ☐ Is it secure?

Constructing block-cipher, PRP

- \Box Focus: constructions from a PRF $f_k()$
 - ☐ PRFs seem easier to design (less restrictions)
- \square First: 'plain' PRP $E_k()$ (not a block cipher)
- ☐ What is the simplest construction to try? $E_k(x) = f_k(x)$

Lemma 2.4 (The PRP/PRF Switching Lemma). Let E be a polynomial-time computable function $E_k(x) : \{0,1\}^* \times D \to D \in PPT$, and let A be a PPT adversary, which is limited to at most q oracle queries. Then:

$$\left|\varepsilon_{\mathcal{A},E}^{PRF}(n) - \varepsilon_{\mathcal{A},E}^{PRP}(n)\right| < \frac{q^2}{2 \cdot |D|}$$
 (2.17)

Where the advantage functions are as defined in Equation 2.16 and Equation 2.13.

In particular, if the size of the domain D is exponential in the security parameter n (the length of key and of the input to A), e.g., $D = \{0,1\}^n$, then $\varepsilon_{A,E}^{PRF}(n) - \varepsilon_{A,E}^{PRP}(n) \in NEGL(n)$. In this case, E is a PRP over D, if and only if it is a PRF over D.

Constructing block-cipher, PRP

- \Box Focus: constructions from a PRF $f_k(\cdot)$
 - □ PRFs seem easier to design (less restrictions)
- \square Before: 'plain' PRP $E_k()$ (not a block cipher)
- \square Now: construct block cipher (invertible PRP) E_k , D_k
- Challenge: making it invertible...
- Solution: The Feistel Construction

The Feistel Block-cipher Construction

- Turn PRF F_k into a block cipher
 - Three 'rounds' suffice [LR88]

$$L_k(m) = m_{0,...,n-1} \oplus F_k(m_{n,...,2n-1})$$

 $R_k(m) = F_k(L_k(m)) \oplus m_{n,...,2n-1}$
 $g_k(m) = L_k(m) \oplus F_k(R_k(m)) \oplus R_k(m)$

- Used in DES (but not in AES)
 - With 16 'rounds'

Crypto Building Blocks Principle

- Design and focus cryptanalysis efforts on few basic functions: simple, easy to test, replaceable
- Construct schemes from basic functions
 - Provably secure constructions:
 attack on scheme → attack on function
 - Allows replacing broken/suspect functions
 - Allows upgrading to more secure/efficient function
- E.g., encryption from block cipher (or PRG/PRF/PRP)
 - Block-cipher, PRG,PRF,PRP: deterministic, stateless,
 FIL (Fixed-Input-Length)
 - Encryption: randomized/stateful,
 VIL (Variable-Input-Length)

We defined security for PRG, PRF and PRP. Block cipher too (informally).

But...

what about security of encryption?? A bit tricky, in fact.

Defining Secure Encryption

- Attacker capabilities:
 - Computational limitations → PPT
 - Ciphertext only (CTO), Known / chosen plaintext attack (KPA/CPA), Chosen ciphertext (CCA)?
- What's a successful attack?
 - Key recovery ?
 - May be impossible yet weak cipher...
 - (Full) Message recovery?
 - What of partial exposure, e.g., m∈{"Advance", "Retreat"}
 - Prudent: attacker 'wins' for any info on plaintext

Conservative Design Principle

- When designing, evaluating a cryptosystem...
 - Consider most powerful attacker (CTO< KPA< CPA < CCA)
 - Be as general as possible cover many applications
 - And `easiest' attacker-success criteria
 - Not full message/key recovery!
 - Make it easy to use securely, hard to use insecurely!
- When designing, evaluating a system (that uses some cryptographic primitives)
 - Restrict attacker's capabilities (e.g., avoid known/chosen plaintext)

Cryptanalysis Success Criteria for Encryption

- Learn anything at all about plaintext how to define? Can we achieve it?
 - Well-defined notion: 'semantic security' [crypto course]
- So an encryption scheme is secure if the attacker cannot learn anything about the plaintext that he did not know in advance.
- Indistinguishability: Eve 'wins' if she <u>distinguishes</u> between encryptions of (any) two messages
 - The attacker chooses these two messages.
 - We focus on indistinguishability for CPA attacker. In crypto course: equivalent to semantic security

IND-CPA-Encryption Test (1st try)

- Flip coins to select random bit b and key k
- \square \mathcal{A} (adversary) gives message m, receives $E_k(m)$
 - □ Repeat if desired (with different messages *m*)
 - Chosen Plaintext Attack
- □ \mathcal{A} gives two messages (m_0, m_1) , receives $c^* = E_k(m_b)$
- \square \mathcal{A} output b^* , and 'wins' if $b^*=b$

IND-CPA-Encryption Test (1st try): too easy

- This test is too easy!! The adversary can easily win!!
- How?
- Hint: messages can be arbitrary binary strings
 - □ Namely, $m_1, m_0, m_1 \in \{0,1\}^*$
 - □ Solution: let m_0 =0, m_1 =1111111111111111111
 - □ If $c^*=E_k(m_b)$ is `short', output $b^*=0$; if 'long', output $b^*=1$

IND-CPA-Encryption Test (fixed)

- Flip coins to select random bit b and key k
- \square \mathcal{A} (adversary) gives message m, receives $E_k(m)$
 - Repeat if desired (with another message)
 - Chosen Plaintext Attack
- \square A gives messages (m_0, m_1) s.t. $|m_0| = |m_1|$, receives $E_k(m_b)$
- \square \mathcal{A} output b^* , and 'wins' if $b^*=b$

IND-CPA-Encryption Test (fixed)

Or, as pseudo-code:

```
T_{\mathcal{A},\langle E,D\rangle}^{IND-CPA}(b,n) { Oracle notation k \leftarrow \{0,1\}^n (m_0,m_1) \leftarrow \mathcal{A}^{E_k(\cdot)}(\text{`Choose'},1^n) \text{ s.t. } |m_0| = |m_1| c^* \leftarrow E_k(m_b) b^* = \mathcal{A}^{E_k(\cdot)}(\text{`Guess'},c^*) Return b^* }
```


Definition: IND-CPA Encryption

Shared key cryptosystem (E,D) is **IND-CPA**, if every efficient adversary A has negligible advantage:

$$\varepsilon_{\langle E,D\rangle,\mathcal{A}}^{IND-CPA}(n) \equiv \Pr\left[T_{\mathcal{A},\langle E,D\rangle}^{IND-CPA}(1,n) = 1\right] - \Pr\left[T_{\mathcal{A},\langle E,D\rangle}^{IND-CPA}(0,n) = 1\right]$$

```
T_{\mathcal{A},\langle E,D\rangle}^{IND-CPA}(b,n) \{
k \stackrel{\$}{\leftarrow} \{0,1\}^n
(m_0,m_1) \leftarrow \mathcal{A}^{E_k(\cdot)}(\text{`Choose'},1^n) \text{ s.t. } |m_0| = |m_1|
c^* \leftarrow E_k(m_b)
b^* = \mathcal{A}^{E_k(\cdot)}(\text{`Guess'},c^*)
Return b^*
}
```

Can IND-CPA encryption be deterministic?

- □ No!! But why? Suppose $E_k(m)$ is deterministic...
- Assume messages are words.
- □ \mathcal{A} can ask E_k to encrypt m_0 and m_1 and then check which one is equal to the challenge ciphertext \rightarrow always wins!
- Conclusion: IND-CPA Encryption must be randomized

Even if you encrypt the same m over and over again, a new ciphertext will be produced.

What's next?

Present a secure cryptosystem?

... provably secure w/o assumptions? Unlikely: Proof of security \rightarrow P \neq NP

(similar argument to PRF)

Instead, let's build secure encryption from PRFs! (I.e.: PRF is secure → encryption is IND-CPA)

Actually, we'll use <u>block cipher</u> (recall the PRF/PRP switching lemma) to build encryption schemes under what is called "Modes of operation."

Examples

- Let F be a PRF.
 - $\Box E_k(m) = F_k(0^n) \text{ xor } m$
 - □ $E_k(m) = (r, F_k(r) xor m)$ where r is a random string freshly generated for each message.

Encryption: Modes of Operation

- Modes of operation': use block cipher (PRP), to encrypt long (Variable Input Length, VIL) messages
- Randomize/add state for security
 - Often: use random or stateful *Initialization Vector (IV)*
- Use long keys
 - Better security (at least against exhaustive search)
- □ Assume plaintext is in blocks: $m_0 ||m_1|| ...$
 - An integer number of blocks, each block is n bits.

Encryption Modes of Operation

Mode	Encryption	Flip $c_i[j] \Rightarrow$	Properties
Electronic code	$c_i = E_k(m_i)$	Corrupt m_i	Deterministic
book (ECB)			(distinguishable)
Per-Block Ran-	$r_i \stackrel{\$}{\leftarrow} \{0,1\}^n,$	Flip $m_i[j]$	Long cipher-
dom (PBR)	$c_i = (r_i, m_i \oplus E_k(r_i))$		text
Counter (CTR)	$c_i = m_i \oplus E_k(i)$	Flip $m_i[j]$	Fast online,
[simplified]			$\mathbf{stateful}\;(i)$
Output Feed-	$r_0 \stackrel{\$}{\leftarrow} \{0,1\}^n, r_i = E_k(r_{i-1}),$	Flip $m_i[j]$	Fast online
back (OFB)	$c_0 \leftarrow r_0, \ c_i \leftarrow r_i \oplus m_i$		(precompute)
Cipher Feedback	$c_0 \stackrel{\$}{\leftarrow} \{0,1\}^n,$	Corrupt m_i ,	Can decrypt
(CFB)	$c_i \leftarrow m_i \oplus E_k(c_{i-1})$	flip $m_{i+1}[j]$	in parallel
Cipher-Block	$c_0 \stackrel{\$}{\leftarrow} \{0,1\}^n,$	Flip $m_{i-1}[j]$,	Can decrypt
Chaining (CBC)	$c_i \leftarrow E_k(m_i \oplus c_{i-1})$	corrupt m_i	in parallel

Electronic Code Book mode (ECB) I

- Encryption $c_i = E_k(m_i)$, decryption $m_i = D_k(c_i)$
 - Each m_i is n bit block and same for ci

Electronic Code Book mode (ECB) II

■ Encryption $c_i = E_k(m_i)$, decryption $m_i = D_k(c_i)$

Insecure!! (do not use it!) Which of these is ECB encryption? Why?

Output-Feedback (OFB) Mode

- Goal: encrypt long (multi-block) messages, with less random bits
- How? Use random bits only for first block (`initialization vector')
 - To encrypt next blocks of message, use output of previous block
 - Namely, a block-by-block stream cipher
- Encryption: $pad_0 \leftarrow IV$, $pad_i \leftarrow E_k(pad_{i-1})$, $c_0 \leftarrow pad_{0}$, $c_i \leftarrow pad_i \oplus m_i$
- Decryption:

$$pad_0 \leftarrow c_{0,}$$

$$pad_i \leftarrow E_k(p_{i-1}),$$

$$m_i \leftarrow pad_i \oplus c_i$$

Output-Feedback (OFB) Mode

- Offline pad computation: compute pad in advance
 - Online computation: only (parallelizable) XOR!
- Bit errors are bitwise localized
 - Corrupting a one bit in the ciphertext corrupts only one bit in the plaintext.

Cipher Block Chaining (CBC) Mode

- Random first block c_{θ} (`initialization vector', IV)
- i > 0: $c_i = E_k(c_{i-1} \oplus m_i)$, $m_i = c_{i-1} \oplus D_k(c_i)$

Parallel decryption

- ☐ But no offline precomputing
- ☐ How about encryption? Sequential (it is a chain!)
- Error propagation:
 - If In $c[i] \rightarrow f$ If m[i+1] and corrupt m[i]

Security of CBC mode

- Theorem: If block-cipher E is a (strong) <u>pseudo-random permutation</u> → CBC is IND-CPA-secure encryption
- Proof: omitted (crypto course ©)
- Observation: CBC is Not IND-CCA-Secure
 - CCA (Chosen ciphertext attack), intuitively: attacker can choose ciphertext and get its decryption, except for the `challenge ciphertext'
 - Definition, details: crypto course
 - Exercise: show CBC is Not IND-CCA-Secure
 - Other variants of CBC exists that are CCA secure.

Counter (CTR) Mode

- Random counter (or `initialization vector', IV, or s)
 - i > 0: $c_i = E_k(s+i) \oplus m_i$
- Parallel encryption and decryption with offline precomputing

If a PRF is used for the PRP (for E_k), then it is CPA (provably secure).

- Error propagation:
 - If In $c_i \rightarrow f$ In bit in m_i

Encryption: Final Words

- Supports one of the basic goals of cryptography; confidentiality.
- Focus: computationally-limited adversaries
- Principles:
 - Kerckhoff's: Known Design
 - Sufficient Key Space
 - Crypto Building Block: build schemes from simple, standard functions
 - Constructions & reductions: PRG→PRF→PRP→Enc
 - Secure system design: easy to use securely, hard to use incorrectly!

Encryption: Final Words...

- Many variants...
- One important example is Homomorphic encryption:

$$E(m_1+m_2)=E(m_1)+E(m_2)$$

Fully-homomorphic: also

$$E(m_1*m_2)=E(m_1)*E(m_2)$$

Inefficient, huge keys and ciphertexts... but lots of advances and ongoing research!

Covered Material From the Textbook

- ☐ Sections 2.6, 2.7, 2.8, and 2.11 excluding:
 - \square 2.7.3
 - □ PBR from 2.8.2,
 - "Encode-then-Encrypt considered harmful." from 2.8.3
 - **2.8.4**,
 - **2.8.6.**

Thank You!

