

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Lecture 15 - Numerical Examples on Superposition Theorem

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Numerical Example 1

Question:

Obtain voltage 'V' using Superposition Theorem.

Numerical Example 1

Solution:

Considering 32V source alone,

$$V' = 32V * \frac{40\Omega}{200\Omega} = 6.4V$$
(Voltage Division rule)

Numerical Example 1

Solution (Continued..):

Considering 6A source alone,

$$I = 6A * \frac{160\Omega}{200\Omega} = 4.8A$$

$$V'' = -4.8A*40\Omega = -192V$$

Numerical Example 1

Solution (Continued..):

Considering 20V source alone,

$$I = \frac{20V}{200\Omega} = 0.1A$$

$$V''' = -0.1A*40\Omega = -4V$$

Numerical Example 1

Solution (Continued..):

Considering 3A source alone,

By Superposition Theorem, V = V' + V''' + V'''' = -189.6V

Numerical Example 2

Question:

Find the power absorbed by 12Ω resistor using Superposition Theorem.

Numerical Example 2

Solution:

Let us consider individual current & Power responses due to 100V source acting alone as I' & P'

Let us consider individual current & Power responses due to 6A source acting alone as I" & P"

Numerical Example 2

Solution (Continued..):

Considering 100V source alone,

$$I' = \frac{100V}{180} = 5.56A$$

&
$$P' = (I')^{2*}12 = 370.96W$$

Numerical Example 2

Solution (Continued..):

Considering 6A source alone,

$$I'' = 6A* \frac{6\Omega}{18\Omega} = 2A$$
 & $P'' = (I'')^2*12 = 48W$

PES UNIVERSITY

Numerical Example 2

Solution (Continued..):

By Superposition, current in 12Ω resistor = I = I' + I'' = 7.56A

Hence, Power absorbed by 12Ω resistor = $I^{2}*12 = 685.84W$

Adding the individual Power responses, P' + P'' = 418.96W, which is not equal to the actual power absorbed.

Hence, individual power responses cannot be superposed to get total power because power is a quadratic term.

Thus, to get total power response, apply superposition principle to get total current or total voltage & using that find the power.

Numerical Example 1

Determine the current through 6Ω resistor in the given network using Superposition 6M Theorem. Ω E Ω E \$12Ω 6A .6Ω **12A 30V**

Numerical Example 1

Determine the current through 2Ω resistor in the given network using Superposition b) 6M Theorem. 1Ω 2Ω **20V** 10V

Text Book & References

Text Book:

"Electrical and Electronic Technology" E. Hughes (Revised by J. Hiley, K. Brown & I.M Smith), 11th Edition, Pearson Education, 2012.

Reference Books:

- 1. "Basic Electrical Engineering", K Uma Rao, Pearson Education, 2011.
- 2. "Basic Electrical Engineering Revised Edition", D. C. Kulshreshta, Tata- McGraw-Hill, 2012.
- 3. "Engineering Circuit Analysis", William Hayt Jr., Jack E. Kemmerly & Steven M. Durbin, 8th Edition, McGraw-Hill, 2012.

THANK YOU

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu