1. MATRİSLER ve VEKTÖRLER

Bölüm Hedefi

Bu bölümde;

- Matrislerle ilgili temel tanımları,
- Matrislerde Toplama, Çıkarma ve Skaler ile Çarpma İşlemlerini,
- Matrislerin transpozunu,
- Matrislerin çarpımını,
- Parçalanmış matrisleri,
- Parçalanmış matrisler üzerinde toplama işlemini,
- Parçalanmış matrisler üzerinde skaler ile çarpma işlemini,
- Parçalanmış Matrisler Üzerinde Çarpma İşlemini,
- Vektörler ile ilgili temel tanımları,
- Vektörlerin toplamını,
- Vektörlerin skaler ile çarpımını,
- Vektörlerde çıkarma işlemini,
- Üç ve daha çok sayıda vektörlerin toplamını,
- Vektörlerin toplamının n-boyutlu uzaya genellemesini,
- Vektörlerin eşit olma şartlarını,
- Bir vektörün normunun nasıl hesaplandığını,
- Birim Vektörü,
- Standart birim vektörleri,

öğrenmiş olacaksınız.

Matrisler ve vektörler lineer cebirin temel konularındandır. Bu bölüm matrisler ve vektörler ile ilgili temel konuları içermektedir.

1.1. Matrisler

Bu kısımda matrislerle ilgili temel bilgiler anlatılacaktır.

Tanım. Sayıların dikdörtgen şeklinde bir diziliş ile

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

şeklinde dizilişine <u>matris</u> denir. Matrisler alfabenin büyük harfleri ile adlandırılırlar. Matrisin elemanları ise küçük harflerle gösterilirler. a_{ij} elemanı matrisin *i.satır* ve *j.sütun* elemanıdır. Matriste bulunan satır ve sütün sayısına göre matrisler m satır n sütuna sahip bir matristir veya kısaca $m \times n$ mertebesinden bir matristir diye söylenir. Matrisler gösterilirken [] işareti yerine () veya || || işaretleri de kullanılabilir.

Örneğin 2x3 mertebesinden bir matris

2 satır
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

şeklindedir. Şimdi bazı örnekler verelim.

Örnek. $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 5 & 3 \end{bmatrix}_{2\times 3}$ matrisi 2 satır ve 3 sütundan oluşan bir matristir (2×3

mertebesindendir) ve elemanları

$$a_{11} = 1, a_{12} = -1, a_{13} = 2$$
 olan bir matristir. $a_{21} = 0, a_{22} = 5, a_{23} = 3$

Örnek.

$$B = \begin{bmatrix} 0 & 2 & 1 \\ 3 & 4 & -2 \\ 0 & 1 & 0 \end{bmatrix}_{3\times3}$$
 matrisi 3 satır ve 3 sütundan oluşan bir matristir (3×3 mertebesindendir)

ve elemanları

$$\begin{aligned} b_{11} &= 0, b_{12} = 2, b_{13} = 1 \\ b_{21} &= 3, b_{22} = 4, b_{23} = -2 \text{ olan bir matristir.} \\ b_{31} &= 0, b_{32} = 1, b_{33} = 0 \end{aligned}$$

Örnek.

 $C = \begin{bmatrix} 5 \end{bmatrix}_{1 \times 1}$ matrisi 1 satır ve 1 sütundan oluşan bir matristir (1×1 mertebesindendir) ve elemanları $c_{11} = 5$ tir. Bu örnek tek bir sayıdan oluşan bir matris olabileceğini bize göstermiş oluyor.

Tanım.

Bütün elemanları sıfır olan matrise sıfır matrisi denir. A bir sıfır matrisi ise A = 0 yazılır.

Örnek.

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0$$

Tanım. İki matrisin birbirine <u>eşit</u> olması için her iki matrisinde aynı mertebeden olması ve aynı adreslerde bulunan elemanların birbirine eşit olması gerekir. Yani, A ve B matrisleri aynı $m \times n$ mertebeden iki matris olsun,

$$A = B \Leftrightarrow a_{ii} = b_{ii}; i = 1, 2, \dots, m; j = 1, 2, \dots, n.$$

Örnek.

$$K = \begin{bmatrix} 1 & x & 3 \\ y & -2 & -4 \end{bmatrix} \text{ ve } L = \begin{bmatrix} z & 5 & t \\ 6 & -2 & -4 \end{bmatrix} \text{ matrislerinin eşit olması için } x, y, z, t \text{ ne olmalıdır?}$$

İki matrisin eşit olması için karşılıklı elemanların birbirine eşit olması gerekir. Buna göre x = 5, y = 6, z = 1, t = 3 olmalıdır.

Tanım.

Bir satır ve n sütundan oluşan yani $1 \times n$ mertebesinden olan $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix}$ matrisine satır matris denir.

Tanım.

$$m$$
 satır ve 1 sütundan oluşan yani $m \times 1$ mertebesinden olan $A = \begin{bmatrix} a11 \\ a21 \\ ... \\ am1 \end{bmatrix}$ matrisine sütun

matris denir.

Tanım.

 $m \times n$ mertebesinden olan bir A matrisinde m = n ise yani satır sayısı sütun sayısına eşit ise A matrisine n. Mertebeden bir kare matris denir.

Tanım.

A bir kare matris ise onun esas köşegeni üzerinde bulunan $a_{11}, a_{22}, \dots, a_{nn}$ elemanlarına onun köşegen elemanları denir.

Tanım.

A bir kare matris ise onun köşegen elemanlarının toplamına A nın izi denir ve

$$IzA = a_{11} + a_{22} + \dots + a_{nn}$$

şeklinde yazılır.

Tanım.

A bir kare matris olmak üzere, eğer A matrisin elemanları i > j için $a_{ij} = 0$ olursa A matrisine <u>üst üçgen matris</u>, i < j için $a_{ij} = 0$ olursa A matrisine <u>alt üçgen matris</u> denir.

Örnek.

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
 matrisi bir üst üçgen matristir ve
$$B = \begin{bmatrix} -1 & 0 & 0 \\ 8 & -2 & 0 \\ 7 & 3 & 0 \end{bmatrix}$$
 matrisi bir alt üçgen
$$5$$

matristir.

Tanım.

A bir kare matris olmak üzere asli köşegen haricindeki elemanlar sıfır yani $a_{ij} = 0$, $(i \neq j)$ ise bu matrise köşegen matris denir. Eğer A bir köşegen matris ise;

$$A = \begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ 0 & 0 & a_{33} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

dir. Bir köşegen matris hem üst üçgen hem de alt üçgen matristir.

Tanım.

A bir köşegen matris olsun. Eğer $a_{11} = a_{22} = \cdots = a_{nn} = c$ ise bu köşegen matrise **skaler** matris denir.

Örnek.
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 ve $B = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ matrisleri birer skaler matristir.

Tanım.

A skaler matrisinde köşegen elemanlarının hepsi 1' e eşit ise yani $a_{11} = a_{22} = \cdots = a_{nn} = 1$ ise

A matrisine <u>birim matris</u> denir. Birim matrisler n matrisin mertebesini göstermek üzere I_n ile gösterilir.

Örnek.
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1.2. Matrislerde Toplama, Çıkarma ve Skaler ile Çarpma İşlemi

Eğer A ve B matrisleri aynı $m \times n$ mertebeden iki matris ise onların A + B toplamı, A - B farkı ve bir λ skaleri ile çarpımı hesaplanabilir. A + B toplamı, A - B farkı ve bir λ skaleri ile çarpımı da yine $m \times n$ mertebesinden bir matris olur.

Tanım.

A ve B matrisleri aynı $m \times n$ mertebeden iki matris matris olsun. A ve B matrislerinin toplamı karşılıklı elemanların toplanmasıyla elde edilir. Yani;

$$A + B = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

seklinde hesaplanır.

Örnek.

$$A = \begin{bmatrix} 1 & -2 & 4 \\ 2 & 0 & 3 \end{bmatrix} \text{ ve } B = \begin{bmatrix} 4 & 0 & 3 \\ 1 & -1 & 3 \end{bmatrix} \text{ olduğuna göre bu iki matrisin toplamı;}$$

$$A + B = \begin{bmatrix} 1 & -2 & 4 \\ 2 & 0 & 3 \end{bmatrix} + \begin{bmatrix} 4 & 0 & 3 \\ 1 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 1+4 & -2+0 & 4+3 \\ 2+1 & 0+(-1) & 3+3 \end{bmatrix} = \begin{bmatrix} 5 & -2 & 7 \\ 3 & -1 & 6 \end{bmatrix}$$

olur.

Tanım.

A ve B matrisleri aynı $m \times n$ mertebeden iki matris matris olsun. A ve B matrislerinin farkı karşılıklı elemanların çıkarılmasıyla elde edilir. Yani;

$$\mathbf{A} - \mathbf{B} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \dots & \mathbf{a}_{2n} \\ \dots & \dots & \dots & \dots \end{bmatrix} - \begin{bmatrix} \mathbf{b}_{11} & \mathbf{b}_{12} & \dots & \mathbf{b}_{1n} \\ \mathbf{b}_{21} & \mathbf{b}_{22} & \dots & \mathbf{b}_{2n} \\ \dots & \dots & \dots & \dots \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{11} - \mathbf{b}_{11} & \mathbf{a}_{12} - \mathbf{b}_{12} & \dots & \mathbf{a}_{1n} - \mathbf{b}_{1n} \\ \mathbf{a}_{21} - \mathbf{b}_{21} & \mathbf{a}_{22} - \mathbf{b}_{22} & \dots & \mathbf{a}_{2n} - \mathbf{b}_{2n} \\ \dots & \dots & \dots & \dots \\ \mathbf{b}_{m1} & \mathbf{b}_{m2} & \dots & \mathbf{b}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{11} - \mathbf{b}_{11} & \mathbf{a}_{12} - \mathbf{b}_{12} & \dots & \mathbf{a}_{1n} - \mathbf{b}_{1n} \\ \mathbf{a}_{21} - \mathbf{b}_{21} & \mathbf{a}_{22} - \mathbf{b}_{22} & \dots & \mathbf{a}_{2n} - \mathbf{b}_{2n} \\ \dots & \dots & \dots & \dots \\ \mathbf{a}_{m1} - \mathbf{b}_{m1} & \mathbf{a}_{m2} - \mathbf{b}_{m2} & \dots & \mathbf{a}_{mn} - \mathbf{b}_{mn} \end{bmatrix}$$

şeklinde hesaplanır.

Örnek.

$$A - B = \begin{bmatrix} 1 & -2 & 4 \\ 2 & 0 & 3 \end{bmatrix} - \begin{bmatrix} 4 & 0 & 3 \\ 1 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 - 4 & -2 - 0 & 4 - 3 \\ 2 - 1 & 0 - (-1) & 3 - 3 \end{bmatrix} = \begin{bmatrix} -3 & -2 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

olur.

Matrislerin toplamına ait bazı özellikler

A, B ve C aynı mertebeden matrisler olmak üzere aşağıdaki özellikler sağlanır.

- $\bullet \quad A + 0 = 0 + A = A$
- $\bullet \quad A + B = B + AA + B = B + A$
- (A+B)+C=A+(B+C)
- A+B=C olacak şekilde bir C matrisi vardır.

Tanım.

A, $m \times n$ mertebeden bir matris ve λ da bir skaler(sayı) olsun. A matrisinin elemanlarının tek tek λ sayısı ile çarpımından elde edilen yeni matrise, A matrisi ile λ sayısının çarpımı denir ve $\lambda A = A \lambda$ şeklinde gösterilir.

Örnek.

$$A = \begin{bmatrix} 1 & -2 & 4 \\ 2 & 0 & 3 \end{bmatrix}$$
 olsun. Bu durumda

$$2.A = 2.\begin{bmatrix} 1 & -2 & 4 \\ 2 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 2.1 & 2.(-2) & 2.4 \\ 2.2 & 2.0 & 2.3 \end{bmatrix} = \begin{bmatrix} 2 & -4 & 8 \\ 4 & 0 & 6 \end{bmatrix}$$

$$-3.A = -3.\begin{bmatrix} 1 & -2 & 4 \\ 2 & 0 & 3 \end{bmatrix} = \begin{bmatrix} (-3).1 & (-3).(-2) & (-3).4 \\ (-3).2 & (-3).0 & (-3).3 \end{bmatrix} = \begin{bmatrix} -3 & 6 & -12 \\ -6 & 0 & -9 \end{bmatrix}$$

olur.

8

Örnek.

$$A = \begin{bmatrix} 1 & -2 & 4 \\ 2 & 0 & 3 \end{bmatrix}$$
 olsun. Bu durumda

$$(-1).A = -A = \begin{bmatrix} -1 & 2 & -4 \\ -2 & 0 & -3 \end{bmatrix}$$

$$A + (-A) = \begin{bmatrix} 1 & -2 & 4 \\ 2 & 0 & 3 \end{bmatrix} + \begin{bmatrix} -1 & 2 & -4 \\ -2 & 0 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0$$

Matrislerin skalerle çarpımına ait bazı özellikler

A ve B aynı mertebeden matrisler, r ve s birer skaler olmak üzere aşağıdaki özellikler sağlanır.

- $\bullet \quad r.(A+B)=r.A+r.B$
- $\bullet \quad (r+s).A = r.A + s.A$
- $\bullet \quad (r.s).A = r.(s.A)$

1.3. Matrisin Transpozu

Tanım.

A, $m \times n$ mertebeden bir matris olsun. A matrisinin satırlarını sütunlar olarak yazmakla elde edilen $n \times m$ mertebeden olan matrise A matrisinin transpozu adı verilir ve A^T ile gösterilir.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \text{ ise } A^T = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix} \text{ dir.}$$

Örnek.

$$A = \begin{bmatrix} 2 & -1 & 7 & 0 \\ 3 & 5 & 6 & 0 \\ 1 & 4 & 0 & 2 \end{bmatrix}_{3\times 4}$$
 matrisinin transpozunu bulalım.

$$A^{T} = \begin{bmatrix} 2 & 3 & 1 \\ -1 & 5 & 4 \\ 7 & 6 & 0 \\ 0 & 0 & 2 \end{bmatrix}_{4 \times 3}$$

Tanım.

Eğer $A^T = A$ ise A matrisine simetrik matris denir.

Tanım.

Eğer $A^T = -A$ ise A matrisine ters simetrik matris denir.

Örnek.

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 5 & 6 \\ 4 & 6 & 7 \end{bmatrix}$$
 matrisi $A^T = A$ olduğundan bir simetrik matristir.

Örnek.

$$B = \begin{bmatrix} 1 & 3 & 2 \\ -3 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}$$
 matrisi $B^T = -B$ olduğundan bir ters simetrik matristir.

1.4. Matris Çarpımı

Tanım.

 $A \mid n \times m$ mertebeden, $B \mid m \times k$ mertebeden bir matris bir matris. A ve B matrislerinin çarpılabilmesi için A matrisinin sütun sayısının B matrisinin satır sayısına eşit olması

gerekir. Bu tür matrislere çarpılabilir matrisler denir. Bu durumda elde edilen çarpım matrisinin mertebesi $n \times k$ olur. Yani A matrisinin satır sayısı ve B matrisinin sütun sayısı çarpım matrisinin mertebesini belirtir.

A ve B matrislerinin çarpım matrisinin elemanları, A matrisinin satırlarının sırasıyla B matrisinin sütunları ile eleman elemana çarpımlarının toplamları ile elde edilir. Böyle bir carpım asağıdaki sekilde elde edilebilir.

$$A.B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1k} \\ b_{21} & b_{22} & \cdots & b_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mk} \end{bmatrix}_{m \times k}$$

$$=\begin{bmatrix} a_{11}.b_{11} + a_{12}.b_{21} + \dots + a_{1m}.b_{m1} & a_{11}.b_{12} + a_{12}.b_{22} + \dots + a_{1m}.b_{m2} & \dots & a_{11}.b_{1k} + a_{12}.b_{2k} + \dots + a_{1m}.b_{mk} \\ a_{21}.b_{11} + a_{22}.b_{21} + \dots + a_{2m}.b_{m1} & a_{21}.b_{12} + a_{22}.b_{22} + \dots + a_{2m}.b_{m2} & \dots & a_{21}.b_{1k} + a_{22}.b_{2k} + \dots + a_{2m}.b_{mk} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}.b_{11} + a_{n2}.b_{21} + \dots + a_{nm}.b_{m1} & a_{n1}.b_{12} + a_{n2}.b_{22} + \dots + a_{nm}.b_{m2} & \dots & a_{n1}.b_{1k} + a_{n2}.b_{2k} + \dots + a_{nm}.b_{mk} \end{bmatrix}_{n \times k}$$

Örnek.

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & -1 \end{bmatrix}_{2\times 3} \text{ ve } B = \begin{bmatrix} 1 & 0 & 1 & -2 \\ 2 & 1 & 3 & 0 \\ 0 & 4 & 3 & 2 \end{bmatrix}_{3\times 4} \text{ olduğuna göre}$$

$$A.B = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 & -2 \\ 2 & 1 & 3 & 0 \\ 0 & 4 & 3 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1.1+2.2+0.0 & 1.0+2.1+0.4 & 1.1+2.3+0.3 & 1.(-2)+2.0+0.2 \\ 0.1+2.2+(-1).0 & 0.0+2.1+(-1).4 & 0.1+2.3+(-1).3 & 0.(-2)+2.0+(-1).2 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 2 & 7 & -2 \\ 4 & -2 & 3 & -2 \end{bmatrix}_{2 \times 4}$$

olur.

Örnek.

$$A.B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 7 & 7 \end{bmatrix}$$

$$B.A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 4 & 6 \end{bmatrix}$$

Örnek.

$$A.B = \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 10 \end{bmatrix}$$

$$B.A = \begin{bmatrix} -1 \\ 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \end{bmatrix} = \begin{bmatrix} -2 & -3 \\ 8 & 12 \end{bmatrix}$$

Örnek.

$$\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Matrislerin Çarpımına Ait Bazı Özellikler

A, B ve C matrisleri uygun şekilde toplanabilir ve çarpılabilir matrisler ise aşağıdaki özellikler sağlanır:

- A.(B+C) = A.B + A.C (Birinci dağılma özelliği)
- (A+B)C = AC + BC (İkinci dağılma özelliği)
- A(BC) = (AB)C (Birleşme özelliği)
- $A.B \neq B.A$ (Genel olarak)
- A.B = 0 ise A = 0 veya B = 0 olması gerekmez.
- AB = AC ise B = C olması gerekmez.

Bu özelliklerin haricinde bir A matrisi ile birim matrisin çarpımı yine A matrisine eşittir. Yani A bir n×m mertebeden bir matris ise $A.I_m = A$ ve $I_n.A = A$ dır.

Gerçekten;

$$A.I_{m} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}_{n \times m} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}_{n \times m}$$

$$=\begin{bmatrix} a_{11}.1+a_{12}.0+\cdots+a_{1m}.0 & a_{11}.0+a_{12}.1+\cdots+a_{1m}.0 & \cdots & a_{11}.0+a_{12}.0+\cdots+a_{1m}.1 \\ a_{21}.1+a_{22}.0+\cdots+a_{2m}.0 & a_{21}.0+a_{22}.1+\cdots+a_{2m}.0 & \cdots & a_{21}.0+a_{22}.0+\cdots+a_{2m}.1 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}.1+a_{n2}.0+\cdots+a_{nm}.0 & a_{n1}.0+a_{n2}.1+\cdots+a_{nm}.0 & \cdots & a_{n1}.0+a_{n2}.0+\cdots+a_{nm}.1 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix} = A$$

olur. $I_n.A = A$ olduğu da gösterilebilir.

Örnek.

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 3 \end{bmatrix} \text{ olsun. } I_2.A = A \text{ olduğunu gösterelim.}$$

$$I_2.A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1.1 + 0.2 & 1.0 + 0.1 & 1.2 + 0.3 \\ 0.1 + 1.2 & 0.0 + 1.1 & 0.2 + 1.3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 3 \end{bmatrix} = A$$

Tanım.

A ve B aynı mertebeden iki kare matris olsun. Eğer A.B = B.A bağıntısı sağlanıyorsa A ve B kare matrislerine **komütatif kare matrisler** denir.

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
 ve $B = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ olsun. A ve B matrislerinin komütatif kare matrisler olduğunu

gösterelim.

$$A.B = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix}$$

$$B.A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix}$$

A.B = B.A bağıntısı sağlandığından A ve B kare matrisleri komütatif kare matrislerdir.

Soru.

$$A = \begin{bmatrix} k & l \\ l & k \end{bmatrix}$$
 ve $B = \begin{bmatrix} m & n \\ n & m \end{bmatrix}$ matrislerinin, *k.l.m.n* nin bütün değerleri için komütatif kare

matris olduklarını gösteriniz.

Örnek.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 3 & 4 \\ 0 & 2 & 1 \end{bmatrix}$$
 matrisleri için $A.B \neq B.A$ olduğunu gösterelim.

$$A.B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ -1 & 3 & 4 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 13 & 13 \\ -1 & 5 & 8 \\ 0 & 1 & -1 \end{bmatrix}$$

$$B.A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 3 & 4 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

Böylece genelde $A.B \neq B.A$ olduğunu görmüş olduk. Ancak özel durumlarda A.B = B.A olabilir.

Örnek.

Şimdi vereceğimiz örnekte $A \neq 0$ ve $B \neq 0$ olduğu halde A.B = 0 olabileceğini gösterelim.

$$A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & -1 & 1 \\ 2 & 0 & 1 \end{bmatrix} \text{ ve } B = \begin{bmatrix} 1 & 2 & -3 \\ -3 & -6 & 9 \\ -2 & -4 & 6 \end{bmatrix} \text{ olsun bu durumda}$$

$$A.B = \begin{bmatrix} 1 & 1 & -1 \\ -1 & -1 & 1 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -3 \\ -3 & -6 & 9 \\ -2 & -4 & 6 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0 \text{ olur.}$$

Tanım.

A bir kare matris olsun. A matrisinin p defa kendisi ile çarpımına A matrisinin p- inci kuvveti denir. Eğer A, $n \times n$ mertebesinden bir kare matris ise $A^0 = I_n$ olur.

$$A^p = \underbrace{A.A.\cdots A}_{p \tan e}$$

A bir kare matris olmak üzere

$$A^{p}A^{q} = A^{p+q}$$
 ve $(A^{p})^{q} = A^{p,q}$

dir.

Örnek.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$
 olsun A^3 matrisini hesaplayalım.

$$A^{3} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}^{3} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}^{2} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 4 & 5 & 6 \\ -2 & -2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 8 & 12 \\ 8 & 13 & 18 \\ -4 & -6 & -8 \end{bmatrix}$$

14

Tanım.

A, n. mertebeden bir kare matris olsun. $A.B = B.A = I_n$ eşitliğini sağlayan B matrisine A matrisinin tersi adı verilir ve A^{-1} ile gösterilir. Bu durumda A matrisine terslenebilir (singüler olmayan veya regüler) matris aksi takdirde yani $A.B = B.A = I_n$ eşitliğini sağlayan B matrisi yoksa A matrisine singüler matris adı verilir.

Örnek.

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 5 & -3 \\ -3 & 2 & -4 \end{bmatrix}$$
 matrisinin tersi
$$A^{-1} = \begin{bmatrix} 14 & -8 & -1 \\ -17 & 10 & 1 \\ -19 & 11 & 1 \end{bmatrix}$$
 matrisidir. Çünkü

$$A.A^{-1} = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 5 & -3 \\ -3 & 2 & -4 \end{bmatrix} \begin{bmatrix} 14 & -8 & -1 \\ -17 & 10 & 1 \\ -19 & 11 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

ve

$$A^{-1}.A = \begin{bmatrix} 14 & -8 & -1 \\ -17 & 10 & 1 \\ -19 & 11 & 1 \end{bmatrix}. \begin{bmatrix} 1 & 3 & -2 \\ 2 & 5 & -3 \\ -3 & 2 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

dir.

Teorem.

A matrisi n. mertebeden bir kare matris olsun. Eğer A.B = C.A = I olacak şekilde B ve C matrisleri varsa bu durumda B = C dir. Yani A matrisinin tersi varsa tekdir.

Teorem.

 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ matrisinin terslenebilir olması için gerek ve yeter şart $ad - bc \neq 0$ olmasıdır. Bu

durumda A^{-1} ters matrisi

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

formülü ile verilir.

Örnek.

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$$
 ise A^{-1} matrisini bulunuz.

Çözüm.

$$A^{-1} = \frac{1}{2 \cdot 2 - 3 \cdot 1} \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$$

Teorem.

A ve B matrisleri terslenebilir (regüler) $n \times n$ matrisler olsun. Bu durumda A.B de terslenebilirdir ve

$$(A.B)^{-1} = B^{-1}.A^{-1}$$

dir.

Teorem.

Eğer A terslenebilir bir matris ve n negatif olmayan bir tam sayı ise bu durumda;

i.
$$A^{-1}$$
 terslenebilirdir ve $(A^{-1})^{-1} = A$ dır.

ii.
$$A^n$$
 terslenebilirdir ve $(A^n)^{-1} = A^{-n} = (A^{-1})^n$ dir.

iii.
$$c$$
 bir skaler olmak üzere $c.A$ terslenebilirdir ve $(c.A) = c^{-1}.A^{-1}$ dir.

Örnek.

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}, \ A^{-1} = \begin{bmatrix} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{bmatrix}$$

$$A^{-4} = \left(A^{-1}\right)^4 = \begin{bmatrix} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{317}{8} & -\frac{435}{16} \\ -\frac{145}{8} & \frac{199}{16} \end{bmatrix}$$

$$A^{4} = \begin{bmatrix} 199 & 435 \\ 290 & 634 \end{bmatrix}, (A^{4})^{-1} = \begin{bmatrix} \frac{317}{8} & -\frac{435}{16} \\ -\frac{145}{8} & \frac{199}{16} \end{bmatrix}$$