Linear and Logistic Regression

Simple, yet powerful predictors

Yordan Darakchiev

Technical Trainer iordan93@gmail.com

sli.do #MachineLearning

Table of Contents

- Machine learning basics
 - Objective function, cost function, optimization
- Linear regression
 - Problem description, motivation
 - Algorithm
 - Usage
- RANSAC
- Extensions: polynomial regression
- Logistic regression
 - Problem description
 - Algorithm
 - Usage

Linear Regression

Predict continuous values...
and torture first-semester students

Linear Regression Intuition

- Regression predicting a continuous variable
- Problem statement
 - Given pairs of (x; y) points, create a model
 - Input x, output y; goal: predict y given x
 - Under the assumption that y depends linearly on x (and nothing else)
- Modelling function
 - $\bullet \ \tilde{y} = ax + b$
 - Many samples: for each sample $(x_1, y_1), ..., (x_m, y_m)$:
 - $\tilde{y}_i = ax_i + b, i \in [1; m]$
 - Many variables: $\tilde{y} = a_1x_1 + a_2x_2 + \cdots + a_nx_n + b \equiv a^TX + b$
 - Trick: $a_0 \equiv b$; $x_0 \equiv 1 \Rightarrow \tilde{y} = a_0 \cdot 1 + a_1 x_1 + \dots + a_n x_n = a^T x$

Training

- Loss function
 - For each sample $i, i \in [1, m]$
 - $d_i = (\tilde{y}_i y_i)^2$
- Total cost function
 - Also called simply "cost function"

- J depends on a, b, x, y
- Training process
 - Minimize the cost function
 - We're looking for parameters a, b that lead to min J
 - Written as $\underset{a,b}{\min} J$

Gradient Descent

- Input: *a*, *b*; output *J*
- Paraboloid (3D parabola)
 - It has exactly one min value
 - And we can see it
- Intuition
 - If the plot was a real object (say, a sheet of some sort), we could slide a ball bearing on it
 - After a while, the ball bearing will settle at the "bottom" due to gravity
 - We can "simulate" this: gradient descent
- Reminder: gradient
 - "Multi-dimensional derivative"

$$\nabla J = \begin{pmatrix} \frac{\partial J}{\partial a} \\ \\ \frac{\partial J}{\partial b} \end{pmatrix}$$

Gradient Descent (2)

- Iterative algorithm perform as long as needed
 - Start from some point in the (a; b) space: $(a_0; b_0)$
 - Decide how big steps to take: number α
 - Called learning rate in ML terminology
 - Use the current a, b and x, y to compute ∇J
 - $-\nabla J_a$ tells us how much to move in the a direction in order to get to the minimum
 - Similar for $-\nabla J_b$
 - Take a step with size α in each direction
 - $a_1 = a_0 \nabla J_a$; $b_1 = b_0 \nabla J_b$
 - $(a_1; b_1)$ are the new coordinates
 - Repeat the two preceding steps as needed
 - Usually, we do this for a fixed number of iterations

Example: Housing Prices

- Multiple linear regression
 - Many predictor variables
- Let's use this model to try and predict housing prices (a classical dataset located <u>here</u>)

```
housing.columns = ["crime_rate", "zoned_land", "industry", "bounds_river",
"nox_conc", "rooms", "age", "distance", "highways", "tax", "pt_ratio",
"b_estimator", "pop_status", "price"]
```

- First, we want to explore the datasets
 - A more thorough exploration is "left as an exercise to the reader"
 - But we want to see what model would be appropriate
 - In addition to usual data analysis techniques, let's plot all correlations between any pair of features

Creating a Model

- Modelling is very simple
 - Like in the 2D example

```
housing_model = LinearRegression()
predictor_attributes = housing.drop("price", axis = 1)
housing_model.fit(predictor_attributes, housing.price)
print(housing_model.coef_)
print(housing_model.intercept_)
```

- So what?
 - We might want to predict some prices
 - Let's just pass some random rows and see the result
 - Note: Never test on the training dataset!

```
test_houses = housing.sample(10)
predicted = housing_model.predict(
   test_houses.drop("price", axis = 1))
print(predicted)
print(test_houses.price)
```

Delving Deeper into Matrices

■ Dataset:
$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$
; $X = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1n} \\ 1 & x_{21} & x_{22} & \cdots & x_{2n} \\ 1 & x_{31} & x_{32} & \cdots & x_{3n} \\ 1 & x_{41} & x_{42} & \cdots & x_{4n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{m1} & x_{m2} & \cdots & x_{mn} \end{bmatrix}$ third observation second

variable

■ Parameters:
$$a = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{bmatrix}$$

• Modelling function: $\tilde{y} = aX$

Regression with Outliers

- As we saw, the data has outliers
 - A few points which are far from the others
- Our goal is to exclude outliers
 - There are several methods
 - One very common RANSAC (RANdom SAmple Consensus)
- Algorithm
 - 1. Fit a model to a random subsample ("inliers")
 - 2. Test all data points and include those which are "near" the model
 - Small enough error, tolerance provided by developer
 - 3. Fit the model again
 - 4. Estimate the error of the model (difference between first and second)
 - 5. Iterate steps 1-4 until performance reaches a threshold or number of iterations

Lab: RANSAC on the Housing Dataset

Usage: similar to the linear regression model

```
from sklearn.linear_model import RANSACRegressor
ransac = RANSACRegressor()
ransac.fit(housing.drop("price", axis = 1), housing.price)
print(ransac.estimator_.coef_, ransac.estimator_.intercept_)
```

- We can also provide parameters, e.g. min number of random samples, max iterations, threshold (to include data points)
 - We can also provide the type of model we want to perform RANSAC on
 - Linear regression by default but we may use other regression models

```
ransac = RANSACRegressor(LinearRegression(), min_samples = 50,
max_trials = 100, residual_threshold = 5.0)
```

View inliers and outliers

```
inliers = housing[ransac.inlier_mask_]
outliers = housing[~ransac.inlier_mask_]
plt.scatter(inliers.rooms, inliers.price)
plt.scatter(outliers.rooms, outliers.price)
```

Polynomial Regression

- Extension of the linear regression algorithm
 - We can use the linear regression algorithm to perform polynomial regression (e.g. fitting a quadratic curve)
 - Just precompute the columns
 - Example: if we have columns x, y and z, compute x * z, y * z, x * z and perform linear regression on these 6 features
 - Example 2: polynomial terms: multiply x by itself: x * x, x * x * x, etc.
- This can be achieved easily with scikit-learn

```
from sklearn.preprocessing import PolynomialFeatures

x = np.arange(6).reshape(3, 2)
poly = PolynomialFeatures(2)
x_transformed = poly.fit_transform(x)
print(poly.get_feature_names())
print(poly.n_input_features_)
print(poly.n_output_features_)
# Now we can perform linear regression with x_transformed as the input
```

Common Mistakes

- There are two main types of errors we can make while trying regression models
 - Use a wrong model
 - Anscombe's quartet

 Extrapolate without knowing (especially if we have interacting features)

MY HOBBY: EXTRAPOLATING

Logistic Regression Use a regression model to classify

Classification

- Predict one of several known classes
 - Based on the input parameters
 - Example: classify whether a picture is of a cat or a dog
- Regression and classification make up most of the machine learning problems
- Choosing an algorithm
 - "No free lunch": no single algorithm works best
 - It's best to compare some algorithms to select the best for a particular model
 - Also, we might want to tune them first
- Reminder: ML process
 - Select features, choose a performance metric (cost function), choose a classifier, evaluate and fine-tune the performance

Logistic Regression

- Classification algorithm (despite its name)
- Two classes: negative (0) and positive (1)
 - Can be extended to more classes
- How does it work?
 - Linear regression can give us all kinds of values
 - We want to constrain them between 0 and 1
 - Approach
 - Perform linear regression: $\tilde{y} = \beta x$
 - Use the sigmoid function to constrain the output:

$$\sigma(\tilde{y}) = \frac{1}{1 + e^{-\tilde{y}}} = \frac{1}{1 + e^{-\beta^T x}}$$

- Quantization: if $\sigma > 0.5$ return 1, and 0 otherwise
 - Remember that we only need to return 0 or 1
 - We can also use the raw values as probability measures

Example: Classifying Iris Flowers

- A classic dataset for classification is the Iris dataset
 - Located <u>here</u>
 - 3 classes (setosa, virginica, versicolor)
 - 4 attributes: petal width / height; sepal width / height (all in cm)
 - Some features are highly correlated to the class
 - Explore and inspect the data before modelling

Example: Classifying Iris Flowers (2)

Perform logistic regression

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(C = 1e6)
model.fit(iris_train_data, iris_train_labels)
```

Test (output classes or probabilities)

```
print(model.predict(iris_test))
print(model.predict_proba(iris_test))
```

- In the model, there's a "mysterious" parameter C
 - Regularization: how powerful the data is (more next time)
 - A large number means no regularization
 - We just take the data "as-is", with no other constraints

Many Classes

- Two main approaches
 - One-vs-all: several predictors
 - One predictor for each class vs. the others
 - Overall: calculate probabilities of each class
- scikit-learn takes care of multiple classes (multinomial logistic regression) by default
 - We don't even need to transform the labels
 - This applies to all algorithms in the library

Summary

- Machine learning basics
 - Objective function, cost function, optimization
- Linear regression
 - Problem description, motivation
 - Algorithm
 - Usage
- RANSAC
- Extensions: polynomial regression
- Logistic regression
 - Problem description
 - Algorithm
 - Usage

Questions?