Shannon's Theory

Dr. Odelu Vanga

Computer Science and Engineering Indian Institute of Information Technology Sri City

odelu.vanga@iiits.in

Feb. 02, 2021

Assumptions:

1. Cryptosystem $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ is specified.

- 1. Cryptosystem $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ is specified.
- 2. A particular key $k \in \mathcal{K}$ is used for only one encryption.

- 1. Cryptosystem $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ is specified.
- 2. A particular key $k \in \mathcal{K}$ is used for only one encryption.
- 3. Plaintext \mathcal{P} defines a r.v. denoted by X, and a priory probability that plaintext occurs denoted by Pr[X = x].

- 1. Cryptosystem $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ is specified.
- 2. A particular key $k \in \mathcal{K}$ is used for only one encryption.
- 3. Plaintext \mathcal{P} defines a r.v. denoted by X, and a priory probability that plaintext occurs denoted by Pr[X = x].
- 4. The key chosen with some fixed probability distribution, so key also defines a r.v., denoted by K. Denote the probability that key K is chosen by pr[K = k].

- 1. Cryptosystem $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ is specified.
- 2. A particular key $k \in \mathcal{K}$ is used for only one encryption.
- 3. Plaintext \mathcal{P} defines a r.v. denoted by X, and a priory probability that plaintext occurs denoted by Pr[X = x].
- 4. The key chosen with some fixed probability distribution, so key also defines a r.v., denoted by K. Denote the probability that key K is chosen by pr[K = k].
- 5. The probability distributions on \mathcal{P} and \mathcal{K} induce a probability distribution on \mathcal{C} . So, ciphertext also a r.v., denoted by Y.

Assumptions:

- 1. Cryptosystem $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ is specified.
- 2. A particular key $k \in \mathcal{K}$ is used for only one encryption.
- 3. Plaintext \mathcal{P} defines a r.v. denoted by X, and a priory probability that plaintext occurs denoted by Pr[X = x].
- 4. The key chosen with some fixed probability distribution, so key also defines a r.v., denoted by K. Denote the probability that key K is chosen by pr[K = k].
- 5. The probability distributions on \mathcal{P} and \mathcal{K} induce a probability distribution on \mathcal{C} . So, ciphertext also a r.v., denoted by Y.

Note that key is chosen before the plaintext knows, so that plaintext and key are independent r.v.'s.

• For a key $k \in \mathcal{K}$, we define

$$C(k) = \{E_k(x) : x \in \mathcal{P}\}$$

The set of all possible ciphertexts if *k* is the key

• For a key $k \in \mathcal{K}$, we define

$$C(k) = \{E_k(x) : x \in \mathcal{P}\}$$

The set of all possible ciphertexts if *k* is the key

• For every $y \in C$, we have

$$Pr[Y = y] = \sum_{\{k: y \in C(k)\}} Pr[K = k] Pr[X = D_k(y)]$$

Note
$$x = D_k(E_k(x)) = D_k(y)$$

• For a key $k \in \mathcal{K}$, we define

$$C(k) = \{E_k(x) : x \in \mathcal{P}\}$$

The set of all possible ciphertexts if *k* is the key

• For every $y \in C$, we have

$$Pr[Y = y] = \sum_{\{k: y \in C(k)\}} Pr[K = k] Pr[X = D_k(y)]$$

Note
$$x = D_k(E_k(x)) = D_k(y)$$

• For $y \in \mathcal{C}$ and $x \in \mathcal{P}$, we have

$$Pr[Y = y | X = x] = \sum_{\{k: x = D_k(y)\}} Pr[K = k]$$

Bayes' Theorem

$$Pr[X = x | Y = y] = \frac{Pr[X = x] \sum_{\{k: x = D_k(y)\}} Pr[K = k]}{\sum_{\{k: y \in C(k)\}} Pr[K = k] Pr[X = D_k(y)]}$$

4/15

Bayes' Theorem

$$Pr[X = x | Y = y] = \frac{Pr[X = x] \sum_{\{k: x = D_k(y)\}} Pr[K = k]}{\sum_{\{k: y \in C(k)\}} Pr[K = k] Pr[X = D_k(y)]}$$

Example

Let $\mathcal{P} = \{a, b\}$ with Pr[a] = 1/4, Pr[b] = 3/4 $\mathcal{K} = \{k_1, k_2, k_3\}$ with $Pr[k_1] = 1/2$, $Pr[k_2] = Pr[k_3] = 1/4$, and $\mathcal{C} = \{1, 2, 3, 4\}$. Suppose encryption rule is defined as

$E_k(x)$	а	b
<i>k</i> ₁	1	2
k ₂	2	3
<i>k</i> ₃	3	4

Find the probability Pr[X = x | Y = y]

Definition

A cryptosystem has perfect secrecy if

$$Pr[X = x | Y = y] = Pr[X = x]$$

for all $x \in \mathcal{P}$ and $y \in \mathcal{C}$.

Definition

A cryptosystem has perfect secrecy if

$$Pr[X = x | Y = y] = Pr[X = x]$$

for all $x \in \mathcal{P}$ and $y \in \mathcal{C}$.

Theorem

Suppose the 26 keys in the Shift Cipher are used with equal probability 1/26. Then for any plaintext probability distribution, the Shift Cipher has perfect secrecy

Definition

A cryptosystem has perfect secrecy if

$$Pr[X = x | Y = y] = Pr[X = x]$$

for all $x \in \mathcal{P}$ and $y \in \mathcal{C}$.

Theorem

Suppose the 26 keys in the Shift Cipher are used with equal probability 1/26. Then for any plaintext probability distribution, the Shift Cipher has perfect secrecy

We have, $\mathcal{P} = \mathcal{C} = \mathcal{K} = Z_{26}$, and define encryption rule as

$$y = E_k(x) = (x+k) \pmod{26}$$

where $x \in \mathcal{P}$ and $k \in \mathcal{K}$.

10/09/2019

Theorem

Suppose $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ is a cryptosystem, where $|\mathcal{P}| = |\mathcal{C}| = |\mathcal{K}|$.

Then the cryptosystem provides perfect secrecy if and only if

10/09/2019

Theorem

Suppose $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ is a cryptosystem, where $|\mathcal{P}| = |\mathcal{C}| = |\mathcal{K}|$.

Then the cryptosystem provides perfect secrecy if and only if

ullet every key is used with equal probability $1/|\mathcal{K}|$, and

10/09/2019

Theorem

Suppose $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ is a cryptosystem, where $|\mathcal{P}| = |\mathcal{C}| = |\mathcal{K}|$.

Then the cryptosystem provides perfect secrecy if and only if

- ullet every key is used with equal probability $1/|\mathcal{K}|$, and
- for every $x \in \mathcal{P}$ and for every $y \in \mathcal{C}$, there is a unique key k such that $E_k(x) = y$

Proof.

Suppose the given cryptosystem provides perfect secrecy

Proof.

Suppose the given cryptosystem provides perfect secrecy

For each $x \in \mathcal{P}$ and $y \in \mathcal{C}$,

there must be at least one key k such that $E_k(x) = y$.

Proof.

Suppose the given cryptosystem provides perfect secrecy

For each $x \in \mathcal{P}$ and $y \in \mathcal{C}$,

there must be at least one key k such that $E_k(x) = y$.

So, we have the inequalities

$$|\mathcal{C}| = |\{E_k(x) : k \in \mathcal{K}\}| \le |\mathcal{K}|$$

Proof.

Suppose the given cryptosystem provides perfect secrecy

For each $x \in \mathcal{P}$ and $y \in \mathcal{C}$,

there must be at least one key k such that $E_k(x) = y$.

So, we have the inequalities

$$|\mathcal{C}| = |\{E_k(x) : k \in \mathcal{K}\}| \le |\mathcal{K}|$$

But, we assume that $|\mathcal{C}| = |\mathcal{K}|$.

Proof.

Suppose the given cryptosystem provides perfect secrecy

For each $x \in \mathcal{P}$ and $y \in \mathcal{C}$,

there must be at least one key k such that $E_k(x) = y$.

So, we have the inequalities

$$|\mathcal{C}| = |\{E_k(x) : k \in \mathcal{K}\}| \le |\mathcal{K}|$$

But, we assume that |C| = |K|. Hence, it must be the case that

$$|\{E_k(x):k\in\mathcal{K}\}|=|\mathcal{K}|$$

Proof.

Suppose the given cryptosystem provides perfect secrecy For each $x \in \mathcal{P}$ and $y \in \mathcal{C}$, there must be at least one key k such that $E_k(x) = y$. So, we have the inequalities

$$|\mathcal{C}| = |\{E_k(x) : k \in \mathcal{K}\}| \le |\mathcal{K}|$$

But, we assume that |C| = |K|. Hence, it must be the case that

$$|\{E_k(x):k\in\mathcal{K}\}|=|\mathcal{K}|$$

That is, there do not exist two distinct keys k_1 and k_2 such that $E_{k_1}(x) = E_{k_2}(x) = y$.

Proof.

Suppose the given cryptosystem provides perfect secrecy

For each $x \in \mathcal{P}$ and $y \in \mathcal{C}$,

there must be at least one key k such that $E_k(x) = y$.

So, we have the inequalities

$$|\mathcal{C}| = |\{E_k(x) : k \in \mathcal{K}\}| \le |\mathcal{K}|$$

But, we assume that $|\mathcal{C}| = |\mathcal{K}|$.

Hence, it must be the case that

$$|\{E_k(x):k\in\mathcal{K}\}|=|\mathcal{K}|$$

That is, there do not exist two distinct keys k_1 and k_2 such that $E_{k_1}(x) = E_{k_2}(x) = y$.

Hence, we have shown that for any $x \in \mathcal{P}$ and $y \in \mathcal{C}$, there is exactly one key k such that $E_k(x) = y$.

Continue.....

Denote $n = |\mathcal{K}|$.

Let $\mathcal{P} = \{x_i : 1 \leq i \leq n\}$ and fix a ciphertext element $y \in \mathcal{C}$.

Continue.....

Denote $n = |\mathcal{K}|$.

Let $\mathcal{P} = \{x_i : 1 \leq i \leq n\}$ and fix a ciphertext element $y \in \mathcal{C}$.

Suppose the keys are k_1, k_2, \ldots, k_n , such that $E_{k_i}(x_i) = y$, $1 \le i \le n$.

Continue.....

Denote $n = |\mathcal{K}|$.

Let $\mathcal{P} = \{x_i : 1 \leq i \leq n\}$ and fix a ciphertext element $y \in \mathcal{C}$.

$$Pr[x_i|y] = \frac{Pr[y|x_i]Pr[x_i]}{Pr[y]} = \frac{Pr[k_i]Pr[x_i]}{Pr[y]}$$

Continue.....

Denote $n = |\mathcal{K}|$.

Let $\mathcal{P} = \{x_i : 1 \leq i \leq n\}$ and fix a ciphertext element $y \in \mathcal{C}$.

Suppose the keys are $k_1, k_2, ..., k_n$, such that $E_{k_i}(x_i) = y$, $1 \le i \le n$. Using Bayes' theorem, we have

$$Pr[x_i|y] = \frac{Pr[y|x_i]Pr[x_i]}{Pr[y]} = \frac{Pr[k_i]Pr[x_i]}{Pr[y]}$$

• Consider the perfect secrecy condition $Pr[x_i|y] = Pr[x_i]$.

Continue.....

Denote $n = |\mathcal{K}|$.

Let $\mathcal{P} = \{x_i : 1 \leq i \leq n\}$ and fix a ciphertext element $y \in \mathcal{C}$.

$$Pr[x_i|y] = \frac{Pr[y|x_i]Pr[x_i]}{Pr[y]} = \frac{Pr[k_i]Pr[x_i]}{Pr[y]}$$

- Consider the perfect secrecy condition $Pr[x_i|y] = Pr[x_i]$.
- This implies that, $Pr[k_i] = Pr[y]$, for $1 \le i \le n$.

Continue.....

Denote $n = |\mathcal{K}|$.

Let $\mathcal{P} = \{x_i : 1 \leq i \leq n\}$ and fix a ciphertext element $y \in \mathcal{C}$.

$$Pr[x_i|y] = \frac{Pr[y|x_i]Pr[x_i]}{Pr[y]} = \frac{Pr[k_i]Pr[x_i]}{Pr[y]}$$

- Consider the perfect secrecy condition $Pr[x_i|y] = Pr[x_i]$.
- This implies that, $Pr[k_i] = Pr[y]$, for $1 \le i \le n$.
- This says that all keys are used with equal probability (namely, Pr[y]).

Continue.....

Denote $n = |\mathcal{K}|$.

Let $\mathcal{P} = \{x_i : 1 \leq i \leq n\}$ and fix a ciphertext element $y \in \mathcal{C}$.

$$Pr[x_i|y] = \frac{Pr[y|x_i]Pr[x_i]}{Pr[y]} = \frac{Pr[k_i]Pr[x_i]}{Pr[y]}$$

- Consider the perfect secrecy condition $Pr[x_i|y] = Pr[x_i]$.
- This implies that, $Pr[k_i] = Pr[y]$, for $1 \le i \le n$.
- This says that all keys are used with equal probability (namely, Pr[y]).
- Since the number of keys are $|\mathcal{K}|$, we must have that $Pr[k] = 1/|\mathcal{K}|$, for $k \in \mathcal{K}$.

Could you prove the converse of the theorem?

Continue.....

Given

- ullet every key is used with equal probability $1/|\mathcal{K}|$, and
- for every $x \in \mathcal{P}$ and for every $y \in \mathcal{C}$, there is a unique key k such that $E_k(x) = y$

Prove the cryptosystem provides perfect secrecy.

Bayes' theorem:

$$Pr[X = x | Y = y] = \frac{Pr[X = x] \sum_{\{k: x = D_k(y)\}} Pr[K = k]}{\sum_{\{k: y \in C(k)\}} Pr[K = k] Pr[X = D_k(y)]}$$

Latin Square

Let n be a positive integer. A Latin square of order n is an $n \times n$ array L of the integers $1, \ldots, n$ such that every one of the n integers occurs exactly once in each row and each column of L.

Latin Square

Let n be a positive integer. A Latin square of order n is an $n \times n$ array L of the integers $1, \ldots, n$ such that every one of the n integers occurs exactly once in each row and each column of L.

An example of a Latin square of order 3 is as follows:

2	3
1	2
3	1
	1

Latin Square

Let n be a positive integer. A Latin square of order n is an $n \times n$ array L of the integers $1, \ldots, n$ such that every one of the n integers occurs exactly once in each row and each column of L.

An example of a Latin square of order 3 is as follows:

1	2	3
3	1	2
2	3	1

Given any Latin square L of order n, we can define a related cryptosystem. Take $\mathcal{P} = \mathcal{C} = \mathcal{K}$. For $1 \le i \le n$, the encryption rule defined as

$$E_i(j) = L(i,j)$$

(Hence each row of L gives rise to one encryption rule.)

Latin Square

Let n be a positive integer. A Latin square of order n is an $n \times n$ array L of the integers $1, \ldots, n$ such that every one of the n integers occurs exactly once in each row and each column of L.

An example of a Latin square of order 3 is as follows:

1 2 3 3 1 2 2 3 1

Given any Latin square L of order n, we can define a related cryptosystem. Take $\mathcal{P} = \mathcal{C} = \mathcal{K}$. For $1 \le i \le n$, the encryption rule defined as

$$E_i(j) = L(i,j)$$

(Hence each row of L gives rise to one encryption rule.) Give a complete proof that this Latin square cryptosystem achieves perfect secrecy provided that every key is used with equal probability.

10/15

- One well-known realization of perfect secrecy is the Vernam One-time Pad.
- First described by Gilbert Vernam in 1917 for use in automatic encryption and decryption of telegraph messages.
- One-time Pad was thought for many years to be an "unbreakable" cryptosystem.
- But, there was no proof of this until Shannon developed the concept of perfect secrecy over 30 years later.

Definition (One-Time Pad)

Let $n \ge 1$ be an integer, and take $\mathcal{P} = \mathcal{C} = \mathcal{K} = (Z_2)^n$. If $k = (k_1, k_2, \dots, k_n)$ in \mathcal{K} , $x = (x_1, x_2, \dots, x_n)$ in \mathcal{P} , and $y = (y_1, y_2, \dots, y_n)$ in \mathcal{C} , we define

Definition (One-Time Pad)

Let $n \ge 1$ be an integer, and take $\mathcal{P} = \mathcal{C} = \mathcal{K} = (Z_2)^n$. If $k = (k_1, k_2, \dots, k_n)$ in \mathcal{K} , $x = (x_1, x_2, \dots, x_n)$ in \mathcal{P} , and $y = (y_1, y_2, \dots, y_n)$ in \mathcal{C} , we define

$$E_k(x) = (x_1 + k_1, x_2 + k_2, \dots, x_n + k_n) \pmod{2}$$

$$D_k(y) = (y_1 + k_1, y_2 + k_2, \dots, y_n + k_n) \pmod{2}$$

Decryption is also identical to the encryption.

Definition (One-Time Pad)

Let $n \ge 1$ be an integer, and take $\mathcal{P} = \mathcal{C} = \mathcal{K} = (Z_2)^n$. If $k = (k_1, k_2, \dots, k_n)$ in \mathcal{K} , $x = (x_1, x_2, \dots, x_n)$ in \mathcal{P} , and $y = (y_1, y_2, \dots, y_n)$ in \mathcal{C} , we define

$$E_k(x) = (x_1 + k_1, x_2 + k_2, \dots, x_n + k_n) \pmod{2}$$

 $D_k(y) = (y_1 + k_1, y_2 + k_2, \dots, y_n + k_n) \pmod{2}$

Decryption is also identical to the encryption.

Note that $\pmod{2}$ is equivalent to the exclusive-or (\oplus) .

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k		m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(7	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	15 10		17	18	1	9	20	21	22	23	24	25
plaintext (m)	,			. :		;	S	space		,				
Assigned No	. 26		27	27 2		29	3	30		31				

Assume 5-bit character representation

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	1	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	C	1	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	15 1		17	18	1	9	20	21	22	23	24	25
plaintext (m)	,		. :			;	S	spac		,	7			
Assigned No	lo. 26		27		28	29	3	80		31				

Assume 5-bit character representation

Example (One key for one encryption)

Generate a ciphertext with random key given by *I am good* for the message *it's true* using the above character encoding.

One-Time Pad - Perfect Secrecy

Definition

A cipher (E, D) over (K, P, C) has perfect secrecy if $\forall x_0, x_1 \in P$, $(|x_0| = |x_1|)$ and $\forall y \in C$

$$Pr[E_k(x_0) = y] = Pr[E_k(x_1) = y]$$

where $k \leftarrow_R \mathcal{K}$.

One-Time Pad - Perfect Secrecy

Definition

A cipher (E, D) over (K, P, C) has perfect secrecy if $\forall x_0, x_1 \in P$, $(|x_0| = |x_1|)$ and $\forall y \in C$

$$Pr[E_k(x_0) = y] = Pr[E_k(x_1) = y]$$

where $k \leftarrow_R \mathcal{K}$.

Theorem

The one-time pad encryption scheme is perfectly secure.

One-Time Pad - Perfect Secrecy

Definition

A cipher (E, D) over (K, P, C) has perfect secrecy if $\forall x_0, x_1 \in P$, $(|x_0| = |x_1|)$ and $\forall y \in C$

$$Pr[E_k(x_0) = y] = Pr[E_k(x_1) = y]$$

where $k \leftarrow_R \mathcal{K}$.

Theorem

The one-time pad encryption scheme is perfectly secure.

Proof(One-time pad : perfect secrecy).

We have to show $\forall x_0, x_1 \in \mathcal{P}$, $(|x_0| = |x_1|)$ and $\forall y \in \mathcal{C}$

$$Pr[E_k(x_0) = y] = Pr[E_k(x_1) = y]$$

- Vernam patented his idea in the hope that it would have widespread commercial use.
- The fact that $|\mathcal{K}| \ge |\mathcal{P}|$, means that the amount of key that must be communicated securely is at least as big as the amount of plaintext.
- This would not be a major problem if the same key could be used to encrypt different messages; however, the security of unconditionally secure cryptosystems depends on the fact that each key is used for only one encryption.

- Vernam patented his idea in the hope that it would have widespread commercial use.
- The fact that $|\mathcal{K}| \ge |\mathcal{P}|$, means that the amount of key that must be communicated securely is at least as big as the amount of plaintext.
- This would not be a major problem if the same key could be used to encrypt different messages; however, the security of unconditionally secure cryptosystems depends on the fact that each key is used for only one encryption.
- The One-time Pad is vulnerable to a known-plaintext attack