Całkowanie numeryczne

Oskar Gawryszewski

Maj 2024

1 Wstęp

Obliczanie wartości całki oznaczonej jest fundamentalnym zagadnieniem analizy matematycznej, istotnym również w innych dziedzinach nauki, takich jak fizyka czy inżynieria. Problem ten bywa skomplikowany do rozwiązania analitycznego, gdyż funkcje pierwotne wielu funkcji elementarnych nie są elementarne. Dlatego w praktyce często stosuje się metody numeryczne.

W niniejszym projekcie zajmę się implementacją i analizą trzech metod całkowania numerycznego: metodą prostokątów, trapezów oraz Simpsona. Metody te pozwalają na przybliżone obliczenie wartości całki oznaczonej poprzez odpowiednie podzielenie przedziału całkowania i sumowanie wynikowych pól figur.

Naszym celem będzie przetestowanie tych metod dla różnych funkcji, obliczenie pól powierzchni i długości krzywych dla wybranych figur geometrycznych oraz porównanie uzyskanych wyników z wartościami analitycznymi.

Przeprowadzone eksperymenty pozwolą na ocenę dokładności i praktycznych zastosowań poszczególnych metod całkowania numerycznego

2 Metody

W tej sekcji zajmę się testowaniem i omówieniem wyników dla danej metody.

2.1 Metoda prostokątów

Metoda prostokątów polega na przybliżeniu całki oznaczonej poprzez sumowanie pól prostokątów, które tworzymy wzdłuż przedziału całkowania. Przedział [a,b] dzielimy na n równych części, a następnie dla każdej części obliczamy pole prostokąta, którego wysokość odpowiada wartości funkcji w wybranym punkcie przedziału (np. w lewym, prawym lub środkowym punkcie). Suma pól tych prostokatów daje przybliżona wartość całki.

Matematycznie wyrażamy to jako:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} f(x_i) \Delta x$$

gdzie $\Delta x = \frac{b-a}{n}$ jest szerokością każdego prostokąta, a x_i to wybrany punkt w i-tym przedziale.

2.1.1 Pole powierzchni

Pole koła o promieniu 1 (i przybliżona wartość π)

Wykres obrazujący problem dla n=30 $\,$

W celu otrzymania przybliżonej wartości π przeprowadziłem obliczenia dla następująch liczb przedziałów: 10000, 10000000, 100000000. Wyniki prezentują się następująco:

Przybliżenie π	n	Czas [s]	Błąd
3.1412751	10,000	4.1×10^{-5}	3.17×10^{-4}
3.1415895	1,000,000	0.010	3.14×10^{-6}
3.1415926	100,000,000	2.157	3.14×10^{-8}

Table 1: Porównanie przybliżeń wartości liczby π metodą prostokątów

Pole pod wykresem paraboli na przedziale [0, 1]

Wykres obrazujący problem dla n=30 $\,$

Analogicznie, przeprowadziłem test dla różnych wartości n-przedziałów. Wyglądają one następująco:

Przybliżenie	n	Czas [s]	Błąd
0.3333500	10,000	2.7×10^{-5}	1.67×10^{-5}
0.333335	1,000,000	0.0021	1.67×10^{-7}
0.3333333	100,000,000	1.562	1.67×10^{-9}

Table 2: Porównanie przybliżeń wartości całki metodą prostokątów

Pole elipsy (dla kilku elips różnych wartościach półosi a oraz b)

Wtej sekcji obliczę polę elipsy, dla różnych wartości a i b. Dla a=3, b=1 elipsa wygląda następująco:

Wykres obrazujący problem dla n=30 $\,$

Dla zadanej elipsy wyniki wyglądają następująco:

Przybliżenie	Błąd	Czas [s]	n
9.4238255	0.0009524	4.506×10^{-5}	10,000
9.4247685	9.434×10^{-6}	0.0079	1,000,000
9.4247778	9.426×10^{-8}	3.36	100,000,000

Table 3: Porównanie przybliżeń pola elipsy

Inna elipsa, o wymiarach a=5, b=8:

Wykres obrazujący problem dla n=30 $\,$

Przybliżenie	liżenie Błąd Czas [s]		n
125.6510	0.0127	5.20×10^{-5}	10,000
125.6635	0.0001	0.0088	1,000,000
125.6637	1.26×10^{-6}	2.79	100,000,000

Table 4: Porównanie przybliżeń pola elipsy

Ostatecznie, elipsa o wymiarach a=10, b=3.

Wykres obrazujący problem dla n=30 $\,$

Wyniki:

Przybliżenie	Błąd	Czas [s]	n
94.238	0.0095	7.03×10^{-5}	10,000
94.247	9.43×10^{-5}	0.0079	1,000,000
94.247	9.43×10^{-7}	2.83	100,000,000

Table 5: Porównanie przybliżeń pola elipsy

Pole pod wykresem funkcji sinus na przedziale $[0,\,\pi]$

Teraz zajmiemy się badaniem pola pod wykresem funkcji sinus na przedziale od 0 do $\pi.$

Wykres obrazujący problem dla n=30 $\,$

Uzyskane wyniki wyglądają następująco:

Przybliżenie	Błąd	n	Czas [s]
1.999799	0.0002	10,000	6.70×10^{-5}
1.999997	2.00×10^{-6}	1,000,000	0.00898
1.999999	2.00×10^{-8}	100,000,000	2.34

Table 6: Porównanie przybliżeń wartości całki

2.1.2 Długość krzywej

Długość krzywej jest jednym z zastosowań całek oznaczonych. Jeśli krzywa jest wyznaczona przez funkcję y=f(x) na przedziale [a,b], to jej długość L jest dana wzorem:

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \, dx$$

gdzie $\frac{dy}{dx}$ oznacza pochodną funkcji f(x).

Obwód koła o promieniu 1 (i wyznaczenie z niego przybliżenia wartości liczby π)

n	Obwód koła	Przybliżenie π	Time (s)	Błąd
10000	6.2661	3.1330	8.61×10^{-5}	0.0171
1000000	6.2815	3.1407	0.024	0.0017
100000000	6.2830	3.1415	4.99	0.0002

Table 7: Porównanie wyników dla obwodu koła oraz przybliżenia liczby π

Obwód elipsy (dla kilku elips różnych wartościach półosi a oraz b)

Do weryfikacji wyników, będę korzystać z biblioteki **scipy.special**, a konkretniej z funkcji ellipe. Funkcja 'ellipe', oznaczona jako E(k), oblicza całkę eliptyczną drugiego rodzaju. Całka eliptyczna drugiego rodzaju, nazywana kompletną, oznaczana jest jako E(k) i definiowana jest jako

$$E(k) = \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - k^2 \sin^2 \theta}} d\theta = \int_0^1 \frac{\sqrt{1 - k^2 t^2}}{\sqrt{1 - t^2}} dt,$$

gdzie θ jest kątem w radianach, a tjest zmienną całkowania. Źródło: Wkipedia Elliptic Integral

Na początku rozpocznę od sprawdzenia obwodu dla elipsy o półosiach a=3 i b=1. Elipsa po przekształceniu wygląda następująco:

Wyniki przybliżania wartości obwodu:

n	Obwód elipsy	Time	Error
10000	13.3407	0.000160	0.024192
1000000	13.3625	0.016643	0.002420
100000000	13.3647	3.525105	0.000242

Table 8: Porównanie wyników dla obwodu elipsy

Elipsa a=5, b=8: Wyniki:

n	Obwód elipsy	Time	Error
10000	41.1927	0.000201	0.193569
1000000	41.3669	0.023425	0.019357
100000000	41.3843	5.518048	0.001936

Table 9: Porównanie wyników dla obwodu elipsy

Elipsa a=10, b=3:

n	Obwód elipsy	Time	Error
10000	43.7865	0.000235	0.072573
1000000	43.8518	0.01109	0.007259
100000000	43.8584	5.484216	0.000726

Table 10: Porównanie wyników dla obwodu elipsy

długość krzywej sinus na przedziale $[0, 2\pi]$

Do weryfikacji wyników, będę korzystać z funkcji **quad** z pakietu **scipy.itegrate**. KKorzysta ona z metody kwadratury Gaussa-Kronroda. Metoda ta polega na przybliżaniu całki, poprzez sumę wartości funkcji w określonych punktach, zwanych węzłami, pomnożonych przez odpowiednie wagi. Węzły i wagi są dobierane tak, aby metoda była jak najbardziej dokłana. Źródła: Dokumentacja scipy.integrate, Kwadratury Gaussa.

Funkcja dla długości $\sin(x)$, na przedziale od 0 do 2π .

Wyniki testu prezentują się następująco:

n	Wynik	Error	Time (s)
10	7.640334	6.09859×10^{-5}	1.17×10^{-4}
100	7.640395	8.88×10^{-16}	2.00×10^{-4}
1000	7.640395	2.66×10^{-15}	1.27×10^{-4}

Table 11: Porównanie wyników dla różnych wartości n

2.2 Metoda trapezów

Metoda trapezów polega na przybliżeniu całki oznaczonej poprzez sumowanie pól trapezów, które tworzymy wzdłuż przedziału całkowania. Przedział [a,b] dzielimy na n równych części, a następnie dla każdej części obliczamy pole trapezu, którego podstawy odpowiadają wartościom funkcji na końcach danego przedziału. Suma pól tych trapezów daje przybliżoną wartość całki.

Matematycznie wyrażamy to jako:

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{2} \left(f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right)$$

gdzie $\Delta x = \frac{b-a}{n}$ jest szerokością każdego trapezu, $x_0 = a, x_n = b,$ a x_i to punkty podziału w przedziałe [a,b].

2.2.1 Pole powierzchni

Pole koła o promieniu 1

Wykres obrazujący problem dla n=30 $\,$

Wyniki:

n	Błąd	Czas [s]	Przybliżona wartość π
30	0.0202	6.82×10^{-5}	3.121
10000	3.33×10^{-6}	2.09×10^{-4}	3.141589
1000000	3.33×10^{-9}	0.0166	3.14159265
100000000	3.33×10^{-12}	1.8618	3.141592653

Table 12: Wyniki obliczeń przybliżenia wartości π metodą Trapezów dla różnych n

Możemy już na tym etapie zaobserwować, że wyniki wyglądają lepiej niż dla metody prostokątów.

Pole pod wykresem paraboli na przedziale [0, 1]

Wykres obrazujący problem dla n=30 $\,$

Wyniki:

n	Wynik	Błąd	Czas [s]
30	0.3335	1.85×10^{-4}	6.60×10^{-5}
10000	0.333333	1.67×10^{-9}	0.0038
1000000	0.333333333335	1.67×10^{-13}	2.024

Table 13: Wyniki obliczeń przybliżenia wartości całki metodą Trapezów dla różnych n

Pole elipsy (dla kilku elips różnych wartościach półosi a oraz b)

Elipsa a=3, b=1:

Wykres obrazujący problem dla n=30 $\,$

n	Wynik	Błąd	Czas [s]
10000	9.4247	9.98×10^{-6}	1.93×10^{-4}
1000000	9.424777	9.98×10^{-9}	9.58×10^{-3}
100000000	9.4247779607	1.00×10^{-11}	2.419

Table 14: Wyniki obliczeń przybliżenia wartości całki dla elipsy z $a=3,\,b=1$ Elipsa a=5, b=8:

Wykres obrazujący problem dla n=30 $\,$

Wyniki:

n	Wynik	Błąd	Czas [s]
10000	125.6635	1.33×10^{-4}	2.31×10^{-4}
1000000	125.663706	1.33×10^{-7}	9.72×10^{-3}
100000000	125.6637061434	1.33×10^{-10}	1.777

Table 15: Wyniki obliczeń przybliżenia wartości całki dla elipsy z $a=5,\,b=8$ Elipa a=10, b=3:

Wykres obrazujący problem dla n=30

n	Wynik	Błąd	Czas [s]
10000	94.2476	9.98×10^{-5}	3.06×10^{-4}
1000000	94.247779	9.98×10^{-8}	1.13×10^{-2}
100000000	94.2477796075	1.00×10^{-10}	1.876

Table 16: Wyniki obliczeń przybliżenia wartości całki dla elipsy z $a=10,\,b=3$

Pole pod wykresem funkcji sinus na przedziale $[0,\,\pi]$

Wykres obrazujący problem dla n=30 $\,$

Wyniki:

n	Wynik	Błąd	Czas [s]
10000	1.99999998	1.64×10^{-8}	2.20×10^{-4}
1000000	1.999999999	1.64×10^{-12}	1.04×10^{-2}
100000000	2.0	0.0	7.27×10^{-1}

Table 17: Wyniki obliczeń przybliżenia wartości całki dla funkcji sinus

2.2.2 Długość krzywej

Obwód koła o promieniu 1 (i wyznaczenie z niego przybliżenia wartości liczby $\pi)$

n	Obwód koła	Przybliżona wartość π	Błąd	Czas [s]
10000	6.2421629	3.1210814	0.020511	0.000422
1000000	6.2790576	3.1395288	0.002063	0.023324
100000000	6.2827722	3.1413861	0.000206	3.815373

Table 18: Wyniki obliczeń przybliżenia obwodu koła

Obwód elipsy (dla kilku elips różnych wartościach półosi a oraz b)

Elipsa o półosiach a=3, b=1: Wyniki:

n	Obwód elipsy	Błąd	Czas [s]
10000	13.31026	0.05463	0.019196
1000000	13.35908	0.00580	0.017487
100000000	13.36430	0.00058	3.696031

Table 19: Wyniki obliczeń przybliżenia obwodu elipsy dla a=3, b=1

Elipsa o półosiach a=5, b=8: Wyniki:

\mathbf{n}	Obwód elipsy	Błąd	Czas [s]
10000	40.92916	0.45711	0.016350
1000000	41.33964	0.04662	0.015760
100000000	41.38160	0.00467	3.697970

Table 20: Wyniki obliczeń przybliżenia obwodu elipsy dla a=5, b=8

Elipsa o półosiach a=10, b=3: Wyniki:

n	Obwód elipsy	Błąd	Czas [s]
10000	43.72400	0.13509	0.016338
1000000	43.84197	0.01712	0.017903
100000000	43.85734	0.00175	3.725843

Table 21: Wyniki obliczeń przybliżenia obwodu elipsy dla a=10, b=3

Wyniki:

n	Długość krzywej	Błąd	Czas [s]
10000	7.6403955	8.88×10^{-16}	0.000316
1000000	7.6403955	8.88×10^{-16}	0.012858
100000000	7.6403955	2.66×10^{-14}	0.951313

Table 22: Wyniki obliczeń długości krzywej sinus

2.3 Metoda Simpsona

Metoda Simpsona polega na przybliżeniu całki oznaczonej przez zastąpienie odcinków funkcji parabolami, które tworzymy wzdłuż przedziału całkowania. Przedział [a,b] dzielimy na parzystą liczbę n równych części, a następnie dla każdej pary sąsiednich punktów podziału dopasowujemy parabolę przechodzącą

przez trzy punkty: na początku, środku i końcu tego podprzedziału. Suma pól tych parabol daje przybliżoną wartość całki.

Matematycznie wyrażamy to jako:

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{3} \left(f(x_0) + 4 \sum_{i=1,3,5,\dots}^{n-1} f(x_i) + 2 \sum_{i=2,4,6,\dots}^{n-2} f(x_i) + f(x_n) \right)$$

gdzie $\Delta x = \frac{b-a}{n}$ jest szerokością każdego podprzedziału, $x_0 = a, x_n = b,$ a x_i to punkty podziału w przedziałe [a, b].

Metoda Simpsona jest bardziej dokładna niż metoda trapezów, szczególnie dla funkcji, które są gładkie i dobrze przybliżane przez funkcje kwadratowe. Wymaga jednak podziału przedziału całkowania na parzystą liczbę części, co może być ograniczeniem w pewnych zastosowaniach.

2.3.1 Pole powierzchni

Pola koła o promieniu 1 (i wyznaczenie z niego przybliżenia wartości liczby π)

Wykres obrazujący problem dla n=30

n	Przybliżona wartość π	Błąd	Czas [s]
10000	3.141591	1.298×10^{-6}	0.00019
1000000	3.141592	1.298×10^{-9}	0.00560
100000000	3.141592	1.296×10^{-12}	1.7698

Table 23: Przybliżenie wartości π metodą Simpsona

Pole pod wykresem paraboli na przedziale [0, 1]

Wykres obrazujący problem dla n=30 $\,$

Wyniki:

n	Wynik	Błąd	Czas [s]
30	0.33333	5.551×10^{-17}	0.00026
10000	0.33333	5.551×10^{-17}	0.00068
1000000	0.33333	1.110×10^{-16}	0.00542
100000000	0.33333	4.996×10^{-16}	1.5095

Table 24: Przybliżenie wartości całki metodą Simpsona dla różnych n

Jak widać, w tym przypadku zwiększenie liczby przedziałów niekoniecznie przekłada się na dokładność wyników. W tym przypadku celowo zachowałem wyniki dla n=30, żeby pokazać, że już dla tak małej liczby przedziałów program osiągnął najbardziej zbliżony wynik.

Pole elipsy (dla kilku elips różnych wartościach półosi a oraz b)

Elipsa a=3, b=1:

Wykres obrazujący problem dla n=30 $\,$

Wyniki:

n	Pole elipsy	Błąd	Czas [s]
10000	9.42477	3.897×10^{-6}	0.00049
1000000	9.42477	3.897×10^{-9}	0.0152
100000000	9.42477	3.888×10^{-12}	2.4340

Table 25: Przybliżenie pola elipsy metodą Simpsona $(a=3,\,b=1)$

Elipsa a=5, b=8:

Wykres obrazujący problem dla n=30 $\,$

Wyniki:

n	Pole elipsy	Błąd	Czas [s]
10000	125.6636	5.196×10^{-5}	0.00031
100000	0 125.6637	5.196×10^{-8}	0.0121
1000000	00 125.6637	5.183×10^{-11}	1.7376

Table 26: Przybliżenie pola elipsy metodą Simpsona $(a=5,\,b=8)$

Elipsa a=10, b=3:

Wykres obrazujący problem dla n=30 $\,$

n	Pole elipsy	Błąd	Czas [s]
10000	94.2477	3.897×10^{-5}	0.00017
1000000	94.2477	3.897×10^{-8}	0.00776
100000000	94.2477	3.892×10^{-11}	1.6196

Table 27: Przybliżenie pola elipsy metodą Simpsona ($a=10,\,b=3$)

Pole pod wykresem funkcji sinus na przedziale $[0, \pi]$

Wykres obrazujący problem dla n=30

Wyniki: W tym przypadku najbardziej zbliżony wynik uzyskaliśmy dla n =

n	Wynik	Błąd	Czas [s]
30	2.000001	1.338×10^{-6}	1.3772
10000	2.0	0.0	0.00037
1000000	2.0	8.882×10^{-16}	0.0137
100000000	2.0	3.109×10^{-15}	0.5901

Table 28: Przybliżenie długości krzywej metodą Simpsona dla sinusoidy

10000, wyższa liczba przedziałów okazała się wygenerować mniej dokładne wyniki.

2.3.2 Długość krzywej

Obwód koła o promieniu 1 (i wyznaczenie z niego przybliżenia wartości liczby $\pi)$

n	Obwód koła	π approx	Błąd	Czas [s]
10000	6.2478	3.1239	0.0177	0.0002
1000000	6.2796	3.1398	0.0018	0.0180
100000000	6.2828	3.1414	0.0002	3.3258

Table 29: Wyniki dla obliczeń obwodu koła

Obwód elipsy (dla kilku elips różnych wartościach półosi a oraz b)

Tabela wyników dla elipsy (a = 3, b = 1):

n	Obwód elipsy	Błąd	Czas [s]
10000	13.3171	0.0478	0.0008
1000000	13.3599	0.0050	0.0173
100000000	13.3644	0.0005	3.3136

Table 30: Wyniki dla obliczeń obwodu elipsy (a = 3, b = 1)

Tabela wyników dla elipsy (a = 5, b = 8):

n	Obwód elipsy	Błąd	Czas [s]
10000	40.9903	0.3960	0.0007
1000000	41.3461	0.0402	0.0166
100000000	41.3822	0.0040	2.8285

Table 31: Wyniki dla obliczeń obwodu elipsy (a = 5, b = 8)

Tabela wyników dla elipsy (a = 10, b = 3):

n	Obwód elipsy	Błąd	Czas [s]
10000	43.7348	0.1243	0.0002
1000000	43.8443	0.0148	0.0129
100000000	43.8576	0.0015	2.9529

Table 32: Wyniki dla obliczeń obwodu elipsy (a = 10, b = 3)

Długość krzywej sinus na przedziale $[0, 2\pi]$

n	Długość krzywej	Błąd	Czas [s]
30	7.6404	2.46×10^{-13}	0.4836
10000	7.6404	0.0	0.0002
1000000	7.6404	1.78×10^{-15}	0.0108
100000000	7.6404	1.07×10^{-14}	0.8553

Table 33: Wyniki dla obliczeń długości krzywej sinusoidalnej

2.4 Metoda całkowania analitycznego wielomianów trzeciego stopnia uzyskane z interpolacji funkcjami sklejanymi

Metoda spline polega na przybliżeniu funkcji na przedziale całkowania za pomocą odcinków wielomianów trzeciego stopnia (splines). W przeciwieństwie

do metod bazujących na wielomianach niskiego stopnia (jak metoda trapezów czy metoda Simpsona), spline cubiczna tworzy gładkie połączenia między odcinkami, zapewniając ciągłość zarówno funkcji, jak i jej pierwszej oraz drugiej pochodnej.

Aby zastosować metodę spline cubicznej, przedział [a,b] dzielimy na n równych części, co daje n+1 punktów podziału x_0, x_1, \ldots, x_n . Następnie konstruujemy funkcję sklejającą S(x), która jest wielomianem trzeciego stopnia na każdym z podprzedziałów $[x_i, x_{i+1}]$, spełniającą warunki:

- 1. S(x) jest ciągła na całym przedziale [a, b],
- 2. S'(x) (pierwsza pochodna) jest ciągła na całym przedziale [a, b],
- 3. S''(x) (druga pochodna) jest ciągła na całym przedziale [a, b],
- 4. $S(x_i) = f(x_i)$ dla i = 0, 1, ..., n.

Matematycznie wyrażamy to jako:

$$S(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i$$
 dla $x \in [x_i, x_{i+1}]$

gdzie współczynniki a_i, b_i, c_i i d_i są wyznaczane na podstawie wartości funkcji $f(x_i)$ oraz dodatkowych warunków ciągłości pierwszej i drugiej pochodnej.

Aproksymacja całki $\int_a^b f(x) dx$ przy użyciu tej metody polega na całkowaniu poszczególnych odcinków wielomianów trzeciego stopnia i zsumowaniu otrzymanych wyników:

$$\int_{a}^{b} f(x) \, dx \approx \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} S(x) \, dx$$

Metoda spline jest szczególnie użyteczna w przypadkach, gdy funkcja podcałkowa jest gładka, ale nie może być dobrze przybliżona przez wielomiany niskiego stopnia na dużych przedziałach. Zapewnia wysoki poziom dokładności, zachowując ciągłość i gładkość przybliżenia, co sprawia, że jest efektywna w wielu zastosowaniach numerycznych.

W dalszej części sekcji przedstawione zostaną wyniki obliczeń dla różnych funkcji i przedziałów, uzyskane przy użyciu tej metody.

2.4.1 Pole powierzchni

Pola koła o promieniu 1 (i wyznaczenie z niego przybliżenia wartości liczby $\pi)$

Wykres obrazujący problem dla n=30

n	Przybliżona wartość π	Błąd	Czas [s]
1000	3.14153	5.67e-05	0.0089
10000	3.14159	1.79e-06	0.0393
100000	3.14159	5.67e-08	0.2873

Table 34: Wyniki dla obliczania pola półokręgu

Pole pod wykresem paraboli na przedziale [0, 1]

Wykres obrazujący problem dla n=30 $\,$

Wyniki:

	n	Pole	Błąd	Czas [s]
ĺ	1000	0.33333	9.62e-11	0.0042
	10000	0.33333	9.60e-14	0.0328
İ	100000	0.33333	4.99e-16	0.2723

Table 35: Wyniki dla obliczania pola paraboli

Pole elipsy (dla kilku elips różnych wartościach półosi a oraz b)

Tabela wyników dla elipsy (a = 3, b = 1):

Wykres obrazujący problem dla n=30 $\,$

Wyniki:

n	Pole	Błąd	Czas [s]
1000	4.7123	8.50e-05	0.0068
10000	4.7123	2.68e-06	0.0310
100000	4.7123	8.49e-08	0.2844

Table 36: Wyniki dla obliczania pola elipsy (a=3, b=1)

Tabela wyników dla elipsy (a = 5, b = 8):

Wykres obrazujący problem dla n=30 $\,$

Wyniki:

n	Pole	Błąd	Czas [s]
1000	62.8307	0.0011	0.0063
10000	62.8318	3.58e-05	0.0416
100000	62.8318	1.13e-06	0.3086

Table 37: Wyniki dla obliczania pola elipsy (a=5, b=8)

Tabela wyników dla elipsy (a = 10, b = 3):

Wykres obrazujący problem dla n=30 $\,$

n	Pole	Blad	Czas [s]
1000	47.1230	0.0008	0.0068
10000	47.1238	2.68e-05	0.0333
100000	47.1238	8.49e-07	0.2863

Table 38: Wyniki dla obliczania pola elipsy (a=10, b=3)

Pole pod wykresem funkcji sinus na przedziale $[0,\,\pi]$

Wykres obrazujący problem dla n=30 $\,$

Wyniki:

n	Pole	Błąd	Czas [s]
1000	1.9999	2.69e-13	0.0050
10000	1.9999	8.88e-16	0.0327
100000	2.0000	3.55e-15	0.2884

Table 39: Wyniki dla obliczania pola sinusa na przedziale $[0, \pi]$

2.4.2 Długość krzywej

Obwód koła o promieniu 1 (i wyznaczenie z niego przybliżenia wartości liczby $\pi)$

n	Obwód koła	Przybliżona wartość π	Błąd	Czas [s]
1000	6.2831	3.1415	3.07e-09	0.0028
10000	6.2831	3.1415	3.08e-12	0.0276
100000	6.2831	3.1415	1.19e-14	0.2732

Table 40: Wyniki dla obliczania długości krzywej półokręgu

Obwód elipsy (dla kilku elips różnych wartościach półosi a oraz b)

Tabela wyników dla elipsy (a = 3, b = 1):

n	Obwód elipsy	Błąd	Czas [s]
1000	13.2241	0.1407	0.0031
10000	13.3139	0.0509	0.0278
100000	13.3481	0.0167	0.2697

Table 41: Wyniki dla obliczania długości krzywej elipsy (a=3, b=1)

Tabela wyników dla elipsy (a = 5, b = 8):

n	Obwód elipsy	Błąd	Czas [s]
1000	40.1034	1.2828	0.0027
10000	40.9632	0.4230	0.0274
100000	41.2507	0.1355	0.2704

Table 42: Wyniki dla obliczania długości krzywej elipsy (a=5, b=8)

Tabela wyników dla elipsy (a = 10, b = 3):

	n	Obwód elipsy	Błąd	Czas [s]
	1000	43.6640	0.1950	0.0027
ĺ	10000	43.7291	0.1299	0.0294
ı	100000	43.8111	0.0479	0.2727

Table 43: Wyniki dla obliczania długości krzywej elipsy (a=10, b=3)

Długość krzywej sinus na przedziale $[0, 2\pi]$

Wyniki:

n	Długość	Błąd	Czas [s]
1000	7.6403	8.43e-09	0.0059
10000	7.6403	8.44e-12	0.0410
100000	7.6403	6.03e-14	0.2886

Table 44: Wyniki dla obliczania długości krzywej sinusa na przedziale $[0, 2\pi]$

3 Hipotezy badawcze

W tej sekcji zajmę się badaniem różnych hipotez dotyczących skuteczności i wydajności różnych algorytmów całkowania numerycznego. Będę porównywać błędy i czasy obliczeń dla kilku wybranych funkcji testowych, przy użyciu różnych metod aproksymacji całek. Hipotezy te zostaną przetestowane przy

użyciu wyników wygenerowanych za pomocą kalkulatora MathDF, który dostarcza przybliżone wartości całek.

Do testowania hipotez wykorzystamy następujące funkcje testowe:

- $f_1(x) = 4\sin(2x) + 2e^3$, której przybliżona wartość całki na przedziale [0,2] wynosi 83.649435.
- $f_2(x) = 13\sin(x) \cdot 12\cos(x) \cdot 11\tan(x)$, której przybliżona wartość całki na przedziale [0, 2] wynosi 2040.6683.
- $f_3(x) = -(3^{1+2\cos(3x)})\log(9)\sin(3x)$, której przybliżona wartość całki na przedziałe [0,2] wynosi -0.7541524.

Błąd wyliczeń będę wyliczać jako wartość bezwzględną z różnicy między moimi wynikiami, a wynikami kalkulatora MathDf.

Aby zbadać skuteczność różnych algorytmów, będę korzystać z następujących metod numerycznych:

- A1 Metoda prostokatów
- A2 Metoda trapezów
- A3 Metoda Simpsona
- A4 Metoda interpolacji spline'ów

Dla każdej z funkcji testowych przeprowadzę obliczenia całki na przedziale [0,2] przy użyciu powyższych metod. Każda metoda będzie testowana dla różnych liczby segmentów n, od 100 do 10000, zwiększając n o 1000 na każdym kroku. Dla każdej z funkcji będziemy mierzyć zarówno błąd aproksymacji, jak i czas obliczeń dla każdej z metod.

3.1 Metoda A2 daje dokładniejsze wyniki niż metoda A1

Wyniki dla f1

Wyniki dla f2

Wyniki dla f3

Jak widać, dla każdej z funkcji algorytm A2 okazał się być bardziej skuteczny. Nie tylko w czasie, jak i w wartości błędu. Potwierdza to naszą hipotezę.

3.2 Metoda A3 daje dokładniejsze wyniki niż metoda A2

Wyniki dla f1

Wyniki dla f2

W tym przypadku nasza hipoteza również się sprawdza, metoda Simpsona wygenerowała wyniki z mniejszym błędęm, uzyskując zarówno mniejszy czas

wykonywania. Dowodzi to poprawności naszej hipotezy.

3.3 Metoda A4 daje dokładniejsze wyniki niż metoda A3

Wyniki dla f1

Wyniki dla f2

W ramach eksperymentu H3 porównaliśmy skuteczność metody interpolacji spline'ów (A4) z metoda Simpsona (A3) w obliczaniu całek dla wybranych funkcji testowych. Analiza wyników wykazała, że metoda Simpsona (A3) jest bardziej efektywna niż metoda interpolacji spline'ów (A4), zarówno pod względem dokładności, jak i czasu obliczeń.

Uzyskane wyniki wskazują, że metoda Simpsona charakteryzuje się mniejszymi błędami aproksymacji dla wszystkich testowanych funkcji, a także krótszym czasem obliczeń w porównaniu z metodą spline'ów.

Jest to wynik sprzeczy z naszą hipotezą, więc ją odrzucam.

Dla wszystkich metod błędy maleją wraz ze wzrostem 3.4 liczby punktów węzłowych rozmieszczonych równomiernie na zadanym przedziale

Sprzeczność tej tezy udowodniłem już kilkokrotnie w tym sprawozdaniu, badając pola powierzchni i długości krzywej dla różnych metod. Przykładowy wynik:

n	Wynik	Błąd	Czas [s]
30	2.000001	1.338×10^{-6}	1.3772
10000	2.0	0.0	0.00037
1000000	2.0	8.882×10^{-16}	0.0137
100000000	2.0	3.109×10^{-15}	0.5901

Table 45: Przybliżenie długości krzywej metodą Simpsona dla sinusoidy

Jak widać w tym przypadku, najmniejszy błąd był dla wartości n=10000, po późniejszej inkrementacji n, błąd wzrastał. Dowodzi to niesłuszności naszej tezy.

3.5 Zastosowanie metod całkowania numerycznego pozwalają przybliżyć wartość liczby π z większą dokładnością niż metody z projektu 1

W projekcie numer 1 przybliżaliśmy wartość π na dwa sposoby: obliczając obwód wielokąta n-foremnego i stosując symulację Monte Carlo, gdzie generowaliśmy n próbek, losowo rozmieszczonych w kwadracie, a następnie sprawdzaliśmy, które punkty mieszczą się w okręgu.

W hipotezach badawczych z projektu 1, dowiodłem, że metoda sumowania wektorów obwodu jest bardziej skuteczna od metody Monte Carlo, więc to na niej skupię się w tej hipotezie.

Wyniki z metody prostokątów

n	Przybliżona wartość π	Błąd	Czas [s]
10,000	3.1412751	3.17×10^{-4}	4.1×10^{-5}
1,000,000	3.1415895	3.14×10^{-6}	0.010
100,000,000	3.1415926	3.14×10^{-8}	2.157

Table 46: Porównanie przybliżeń wartości liczby π metodą prostokątów

Wyniki z metody trapezów

n	Przybliżona wartość π	Błąd	Czas [s]
10000	3.141589	3.33×10^{-6}	2.09×10^{-4}
1000000	3.14159265	3.33×10^{-9}	0.0166
100000000	3.141592653	3.33×10^{-12}	1.8618

Table 47: Wyniki obliczeń przybliżenia wartości π metodą trapezów dla różnych n

Wyniki z metody Simpsona

n	Przybliżona wartość π	Błąd	Czas [s]
10000	3.141591	1.298×10^{-6}	0.00019
1000000	3.141592	1.298×10^{-9}	0.00560
100000000	3.141592	1.296×10^{-12}	1.7698

Table 48: Przybliżenie wartości π metodą Simpsona

Wyniki z metody spline

n	Przybliżona wartość π	Błąd	Czas [s]
1000	3.14153	5.67e-05	0.0089
10000	3.14159	1.79e-06	0.0393
100000	3.14159	5.67e-08	0.2873

Table 49: Wyniki dla obliczania pola półokręgu metodą spline

Wyniki dla metody sumowania wektorów:

n	Przybliżona wartość π	Błąd	Czas [s]
1000	3.141587	5.1677×10^{-6}	0.0066
10000	3.141592	5.1678×10^{-8}	0.0619
100000	3.141592	5.2938×10^{-10}	0.6120
1000000	3.141592	1.1551×10^{-11}	6.0268
10000000	3.141592	5.5940×10^{-10}	63.8797

Table 50: Przybliżenie wartości π dla różnych n

Możemy zauważyć, że po przekroczeniu n=1000000 błąd zaczął wzrastać. Najmniejszy wynosił wartość 1.1551×10^{-11} . Dla metod trapezów i Simpsona, udało nam się uzyskać jeszcze mniejsze błędzy o wartościach 3.33×10^{-12} i 1.296×10^{-12} . Pokazuje to, że badane przeze mnie metody w tym sprawozdaniu, są skuteczniejsze niż metoda sumowania wektorów.

4 Wnioski

Przeprowadzone badanie miało na celu porównanie skuteczności różnych metod numerycznego całkowania w przybliżaniu wartości liczby π . Zastosowano cztery różne techniki: metodę prostokątów, trapezów, Simpsona oraz spline.

Wyniki pokazały, że metoda Simpsona okazała się najbardziej precyzyjna, charakteryzując się najmniejszym błędem przy stosunkowo krótkim czasie obliczeń. Już dla stosunkowo niewielkiej liczby podziałów n metoda Simpsona osiągała bardzo niskie wartości błędu, co świadczy o jej wysokiej skuteczności w porównaniu z innymi metodami.

Metoda prostokątów i trapezów, mimo że łatwiejsze w implementacji, były mniej dokładne i wymagały większej liczby podziałów, aby osiągnąć podobny poziom dokładności jak metoda Simpsona. Metoda spline, choć bardziej zaawansowana, nie przyniosła równie dobrych wyników jak metoda Simpsona, zwłaszcza w kontekście czasu obliczeń dla dużych wartości n.

Podsumowując, metoda Simpsona okazała się najlepszym wyborem dla precyzyjnego przybliżania wartości liczby π w naszym badaniu, łącząc wysoką dokładność z efektywnością czasową.