QAF: Quantitative Forschungsmethoden

Tarek Carls

29. Oktober 2024

Agenda

- **Session 1:** Grundlagen, induktive Statistik, Konfidenzintervalle
- **Session 2:** t-Tests, einfaktorielle ANOVA
- Session 3: Mehrfaktorielle ANOVA
- Session 4: Lineare Regression, logistische Regression
- Session 5: Fragen und Wiederholung

Agenda - Session 3

- Morrelation
- 2 Lineare Regression

Agenda - Session 3

Morrelation

- 2 Lineare Regression
- 3 Logistische Regression

Einführung in die Korrelation

Korrelation ist ein statistisches Maß, das die Stärke und Richtung einer linearen Beziehung zwischen zwei Variablen misst.

- Zeigt, wie sich eine Variable ändert, wenn eine andere variiert
- Wichtig für die Vorhersage und Modellierung in vielen Forschungsfeldern
- Nicht gleichzusetzen mit Kausalität

Der Korrelationskoeffizient

Der Korrelationskoeffizient (üblicherweise Pearson's r) quantifiziert die Korrelation.

- Wertebereich: -1 bis 1
- Interpretation der Werte:
 - Nahe 0: Schwache Korrelation
 - Nahe +1: Starke positive Korrelation
 - Nahe -1: Starke negative Korrelation

Formel für Pearson's r

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

Typen von Korrelation

- Pearson-Korrelation: Misst lineare Beziehungen zwischen metrischen Variablen.
- Spearman-Korrelation: Eignet sich f
 ür rangbasierte Daten oder nicht-lineare Beziehungen.
- Kendall-Tau: Eine weitere Rangkorrelation für ordinalskalierte Daten.
- Grafische Darstellung über Streudiagramme: Visualisieren die Beziehung zwischen zwei Variablen.
- Korrelationsmatrix: Nützlich bei der Untersuchung mehrerer Variablen.

Agenda - Session 3

Morrelation

- 2 Lineare Regression
- 3 Logistische Regression

Einführung in die lineare Regression

Lineare Regression ist eine statistische Methode zur Modellierung der Beziehung zwischen einer abhängigen Variable und einer oder mehreren unabhängigen Variablen.

• Ziel: Vorhersage oder Erklärung der abhängigen Variable (Y) basierend auf den unabhängigen Variablen (X).

Das lineare Regressionsmodell

Das grundlegende lineare Regressionsmodell für eine abhängige Variable und eine unabhängige Variable ist:

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- β_0 (Achsenabschnitt) und β_1 (Steigung): Zu schätzende Parameter.
- $oldsymbol{\epsilon}$: Zufallsfehlerterm, der die Abweichung der Datenpunkte von der Regressionslinie darstellt.

Lineare Beziehung im Koordinatensystem

 $Y = \beta_0 + \beta_1 X$

Bestimmung der Regressionskoeffizienten

Die Koeffizienten β_0 und β_1 werden durch die Methode der kleinsten Quadrate (OLS) bestimmt.

- OLS minimiert die Summe der quadrierten Differenzen zwischen beobachteten und vorhergesagten Werten.
- Mathematische Optimierung führt zu den besten Schätzern für β_0 und β_1 .

Interpretation der Koeffizienten

- β_0 : Wert von Y, wenn alle X gleich null sind.
- β_1 : Durchschnittliche Änderung in Y für eine Einheitsänderung in X.
- Wichtig: Kausalinterpretation nur zulässig, wenn bestimmte Bedingungen erfüllt sind (z.B. keine Verzerrung durch ausgelassene Variablen).

Voraussetzungen für lineare Regression

Wichtige Annahmen für die Anwendung der linearen Regression:

- Linearität: Die Beziehung zwischen X und Y ist linear.
- Unabhängigkeit: Beobachtungen sind unabhängig voneinander.
- Homoskedastizität: Konstante Varianz der Fehler über alle Werte von X.
- Normalverteilung der Fehler: Die Residuen (Fehler) sind normalverteilt.
- Keine perfekte Multikollinearität: Bei mehreren unabhängigen Variablen sollten diese nicht perfekt korrelieren.

Güte des Modells

Die Güte des Modells wird durch mehrere Statistiken bewertet:

- Bestimmtheitsmaß (R²): Anteil der Varianz von Y, der durch das Modell erklärt wird.
- Adjustiertes R²: Berücksichtigt die Anzahl der Prädiktoren im Modell.
- F-Test: Prüft, ob das Modell insgesamt signifikant ist.
- p-Werte der Koeffizienten: Testen die Hypothese, dass einzelne Koeffizienten gleich null sind.

Agenda - Session 3

Morrelation

- 2 Lineare Regression
- 3 Logistische Regression

Einführung in die logistische Regression

Die logistische Regression wird zur Vorhersage der Wahrscheinlichkeit eines binären Ergebnisses genutzt.

- Geeignet für abhängige Variablen mit zwei Kategorien (z.B. Ja/Nein, Erfolg/Misserfolg).
- Im Gegensatz zur linearen Regression, wo die abhängige Variable kontinuierlich ist.
- Anwendungen umfassen Medizin, Finanzen, Marketing und mehr.

Das logistische Regressionsmodell

Die logistische Funktion (auch Logit-Funktion genannt) wird verwendet, um die Wahrscheinlichkeit zu modellieren.

$$\log\left(\frac{P(Y=1)}{1-P(Y=1)}\right) = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k$$

- Link-Funktion: Verbindet die lineare Kombination der Prädiktoren mit der Wahrscheinlichkeit des Ergebnisses.
- Die rechte Seite der Gleichung ist ein lineares Modell.

Interpretation der Koeffizienten

Koeffizienten in der logistischen Regression haben eine spezifische Interpretation.

(Chancen) des Ereignisses.

Anderungen der unabhängigen Variablen beeinflussen die Odds

- Ein positiver Koeffizient erhöht die Odds, ein negativer verringert sie.
- Odds Ratio: Exponent der Koeffizienten zeigt die Veränderung der Odds für eine Einheitsänderung der unabhängigen Variable.

Voraussetzungen und Herausforderungen

Einige wichtige Aspekte und Herausforderungen bei der logistischen Regression:

- Keine Multikollinearität: Unabhängige Variablen sollten nicht hochkorreliert sein.
- Große Stichprobengrößen sind oft erforderlich, um genaue Schätzungen zu erhalten.
- Überanpassung (Overfitting) und Unteranpassung (Underfitting) des Modells müssen berücksichtigt werden.
- Auswahl relevanter Variablen und Interaktionen ist entscheidend.

Modellbewertung und Validierung

Methoden zur Bewertung der Güte und Validierung des logistischen Regressionsmodells:

- Konfusionsmatrix: Gibt Einblick in die Leistung des Modells (z.B. Sensitivität, Spezifität).
- Pseudo-R²: Bietet eine Einschätzung der Erklärungskraft des Modells.
- AUC-ROC-Kurve: Bewertet die Leistungsfähigkeit des Modells über verschiedene Klassifizierungsschwellen.
- Kreuzvalidierung: Beurteilt die Generalisierbarkeit des Modells auf neue Daten.