Conjuntos estadísticos

La cantidad

$$\rho(\{\vec{q}_i,\vec{p}_i\},t)d^{3N}qd^{3N}p$$

es el número de microestados en el elemento $d^{3N}qd^{3N}p$ al tiempo t centrado en q,p. Si los microestados son equiprobables $\rho\equiv cte$.. El conjunto $\{\vec{q}_i,\vec{p}_i\}$ son 6N coordenadas.

 $\Omega = \int p d^{3N} q d^{3N} p$

XXX Dibujos XXXX

el volumen en $\mathbb \Gamma$ es proporcional al número de microestados compatibles con E,N, el volumen $\mathbb \Gamma$ del macroestado es $\Omega\{n_i\}$

 $n_i=f_id^3qd^3p$ es el número de partículas en una celda i (con su $\vec p$ en $\vec p+d\vec p$ y con su $\vec q$ en $\vec q+d\vec q$)

Un microestados determina una distribución f que da un conjunto $\{n_i\}$. Pero una f determina muchos microestados porque la función de distribución no distingue entre partículas (importan los números de ocupación); entonces una f determina un volumen en \mathbb{F} .

Suponemos que todos los microestados en $\mathbb F$ son igualmente probables. La f que determina el mayor volumen en $\mathbb F$ es la más probable. Suponemos que en el equilibrio el sistema toma la f más probable. Si f_i es el valor de f en cada celda i

$$f_i = \frac{n_i}{d^3pd^3q} \quad \text{promediada en el ensamble} \quad \bar{f}_i = \frac{< n_i>}{d^3pd^3q} \quad \text{en el equilibrio}$$

La integral Ω es imposible porque es difícil determinar el volumen de integración.

Cada microestado tiene su f.

 f_i es la distribución para un miembro en el ensamble.

Necesito $\Omega = \Omega\{n_i\}$ para obtener el $\{\tilde{n}_i\}$.

Esta \bar{f}_i es la de equilibrio, pero la cuenta no es fácil. Asumiremos que la f de equilibrio es la más probable (la de mayor volumen en $\mathbb F$); entonces maximizaremos dicho volumen para hallarla.

Un microestado determina una f; diferentes microestados pueden determinar otras f pero muchos coincidirán en una misma f.

La f en el equilibrio es la que tiene mayor cantidad de microestados (la más probable) pero

$$\bar{f}_i = \frac{< n_i >}{d^3 p d^3 q}$$

es el promedio en el ensamble y no será exactamente igual a la f_i del mayor volumen, salvo que el volumen de f sea mucho mayor al ocupado por f', f'', etc.

Dado el volumen $\Omega\{n_i\}$ extremaremos el mismo sujeto a las condiciones

$$E = \sum_i^K n_i e_i \hspace{1cm} N = \sum_i^K n_i$$

y llegamos a la f de equilibrio que es f_{MB} .

El volumen Ω se escribe en función de los números de ocupación

$$\Omega\left(\left\{n_{i}\right\}\right) = \frac{N!}{\prod^{K} n_{i}!} \prod_{i}^{K} g_{i}^{n_{i}} \qquad (i = 1, 2, ..., K \quad \text{identifica celdas en } \mu)$$

$$\Omega\left(\left\{n_{i}\right\}\right)=N!\prod_{i}^{K}\frac{g_{i}^{n_{i}}}{n_{i}!}$$

donde g_i son los subniveles en que podríamos dividir la celda K; es por matemática conveniencia y para abarcar más casos (luego será $g_i=1 \forall i$).

El conjunto $\{\tilde{n}_i\}$ que extrema $\Omega\left(\{n_i\}\right)$ es el más probable y consideraremos

$$\{\tilde{n}_i\} = < n_i >$$

Estaremos pensando que cuando $N\to\infty$ la mayor parte de los microestados van a una distribución f_{MB}

1.1 Microcanónico

1.1.1 Solución de equilibrio

La solución de equilibrio satisfacía

$$f(p_1)f(p_2) = f(p_1^{\prime})f(p_2^{\prime})$$

$$\log f(p_1) + \log f(p_2) = \log f(p_1') + \log f(p_2')$$

que luce como una ley de conservación y admite como solución

$$\log f(p) = Am + \mathbf{B} \cdot \mathbf{p} + C|\mathbf{p}|^2$$
 (A, B, Cctes. adimensionales)

que lista los invariantes colisionales. Completando cuadrados

$$f \propto C_1 \, {\rm e}^{-C_2 ({\bf p} - {\bf p}_0)^2}$$

La expresión completa se ajusta con

$$n = \int f(\mathbf{p}, t) d^3 p$$

donde el p de una partícula es

$$<{f p}> = rac{\int f({f p}){f p} \; d^3p d^3q}{\int f({f p}) \; d^3p d^3q} = rac{1}{n} \int f({f p}) \; {f p} \; d^3p$$

y la energía por partícula

$$< e> = {\int f({f p}) \ {f p}^2/(2m) \ d^3p d^3q} \over \int f({f p}) d^3p d^3q} = {1\over n} \int f({f p}) {{f p}^2\over 2m} \ d^3p$$

Finalmente se llega a

$$f(\mathbf{p}) = \frac{n}{(2\pi mkT)^{3/2}} e^{-\frac{(\mathbf{p} - \mathbf{p}_0)^2}{2mkT}}$$

que es la función de distribución de momentos de Maxwell-Boltzmann.

(presión ideal)
$$p = \frac{2}{3} \frac{U}{V} = \frac{2}{3} n\epsilon = \frac{2}{3} n \frac{3}{2} kT = nkT$$

1.1.2 Método de la distribución más probable

Con este método también llegamos a f_{MB} pero extremandolo el volumen $\Omega(\{n_i\})$ que ocupa en el espacio $\mathbb F$ sujeto a los vínculos $E=\sum_i n_i e_i$ y $N=\sum_i n_i$.

Luego podemos estimar qué tan probable es la distribución de MB (la más probable) considerando (ASUMIMOS)

los # de ocupación de MB $~\tilde{n}_i\cong < n_i>$ el promedio en el ensamble pero esto sólo valdrá si las desviaciones son pequeñas; es decir si f_{MB} es muy muy probable.

El cociente es \mathbf{P}/N .

Solución de equilibrio de la ecuación de transporte

Calculamos la desviación cuadrática (varianza) se tiene

$$< n_i^2 > - < n_i >^2 = g_i \frac{\partial < n_i >}{\partial g_i}$$

donde se usó que

$$< n_i > = \frac{\sum_{\{n_j\}} n_i \Omega\{n_j\}}{\sum_{\{n_j\}} \Omega\{n_j\}}$$

Suponiendo que < $n_i > \approx \tilde{n}_i$ entonces < $n_i > \propto f_{MB}$ con lo cual se tiene también

$$< n_i^2 > - < n_i >^2 \cong \tilde{n}_i$$

como $g_i \frac{\partial \tilde{n}_i}{\partial g_i} = \tilde{n}_i$

y las fluctuaciones relativas

$$\sqrt{<\left(\frac{m_i}{N}\right)^2>-<\left(\frac{m_i}{N}\right)>^2}\cong\sqrt{\frac{\tilde{n}_i/N}{N}}\to_{N\to\infty}0$$

En el límite termodinámico MB es totalmente dominante.

1.1.3 Hipótesis ergódica

La trayectoria individual de casi cualquier punto en el Ω pasa, con el tiempo, a través de todos los puntos permitidos del espacio Γ . Si esperamos lo suficiente, todos los microestados posibles son visitados.

1.1.4 Observaciones sobre el microcanónico

$$\Gamma(E) = \int_{E < \mathcal{H} < E + \Delta \, E} \rho d^{3n} p d^{3n} q \qquad \Sigma(E) = \int_{\mathcal{H} < E} \rho d^{3n} p d^{3n} q$$

entonces

$$\Gamma(E) = \Sigma(E + \Delta E) - \Sigma(E) \cong \frac{\partial \Sigma(E)}{\partial E} \Delta E \qquad \text{si } \Delta E \ll E$$

 ΔE es el *paso* entre medidas de energía

$$\Gamma(E) = \Gamma_1(E_1) \Gamma_2(E_2) \qquad \text{(1 y 2 son subsistemas)}$$

$$E=E_1+E_2\Rightarrow \Gamma(E)=\sum_i^{E/\Delta E}\Gamma_1(E_i)\Gamma_2(E-E_i)$$

siendo $E/\Delta E$ el número de términos tales que se cumple $E=E_1+E_2.$ Si se da $N_1\to\infty$ y $N_2\to\infty$ será

$$\log \Gamma_1 \propto N_1 \quad \log \Gamma_2 \propto N_2 \quad E \propto N_1 + N_2$$

luego $\log(E/\Delta E)$ es despreciable pues ΔE es constante y entonces

 $\log(E/\Delta E) \propto \log(N)$ pues $E \propto N$ y ΔE cte.

$$S(E,V) = S(\tilde{E}_1,V_1) + S(\tilde{E}_2,V_2) + \mathcal{O}(\log[N])$$

con lo cual la mayoría de los microestados tienen los valores \tilde{E}_1 y \tilde{E}_2 de energía.

Asimismo

$$\begin{split} \delta(\Gamma_1(\bar{E}_1)\Gamma_2(\bar{E}_2)) &= 0 \qquad \delta(\bar{E}_1 + \bar{E}_2) = 0 \\ \delta\Gamma_1\Gamma_2 + \Gamma_1\delta\Gamma_2 &= 0 \quad \delta(\bar{E}_1) = -\delta(\bar{E}_2) \\ \frac{\delta\Gamma_1}{\bar{E}_1}\Gamma_2 &= \Gamma_1\frac{\delta\Gamma_2}{\bar{E}_2} \Rightarrow \frac{1}{\Gamma_1}\frac{\partial\Gamma_1}{\partial\bar{E}_1} = \frac{1}{\Gamma_2}\frac{\partial\Gamma_2}{\partial\bar{E}_2} \\ \frac{\partial}{\partial\bar{E}_1}\left(k\log\Gamma_1(\bar{E}_1)\right) &= \frac{\partial}{\partial\bar{E}_2}\left(k\log\Gamma_1(\bar{E}_2)\right) \\ \frac{\partial}{\partial E_1}S(E_1)\bigg|_{\bar{E}_1} &= \frac{\partial}{\partial E_2}S(E_2)\bigg|_{\bar{E}_2} \equiv \frac{1}{T} \qquad \text{en equilibrio } T_1 = T_2 \end{split}$$

La T es el parámetro que gobierna el equilibrio entre partes del sistema.

La idea es que dado un sistema de $E=E_1+E_2$, sistema compuesto de dos subsistemas, hay muchos valores 1,2 tales que $E=E_1+E_2$ pero hay una combinación que maximiza $\Gamma(E)$ y es

$$\Gamma_{Max}(E) = \Gamma_1(\bar{E}_1)\Gamma_2(\bar{E}_2)$$

Luego, con $N_1,N_2\to\infty$ se da que la mayoría de los sistemas tendrán $E_1=\bar E_1$ y $E_2=\bar E_2$. Esa configuración, por supuesto, maximiza la entropía $S=k\log(\Gamma)$.

El hecho de que $\Delta S>0$ para un sistema aislado lo vemos considerando que tal sistema sólo puede variar V (creciendo, como en la expansión libre de un gas), luego $V_F>V_I$ y entonces

$$\Sigma(E) = \int_{\mathcal{H} < E} \rho d^{3N} p d^{3N} q \underbrace{\longrightarrow}_{\text{Si aumento el volumen}} \Sigma(E)' = \int_{\mathcal{H} < E} \rho d^{3N} p d^{3N} q$$

$$\Sigma(E)' > \Sigma(E)$$
 \Rightarrow $\Delta S > 0$

El sistema es E,N,V y yo lo pienso compuesto de dos partes E_1,N_1,V_1 y E_2,N_2,V_2 .

Será un número mayor porque el dominio de integración en q es mayor.

Equipartición implica

$$\left\langle x_i \frac{\partial \mathcal{H}}{\partial x_j} \right\rangle = \delta_{ij} kT$$

y entonces

$$\left\langle p_i \frac{\partial \mathcal{H}}{\partial p_i} \right\rangle = \left\langle p_i \dot{q}_i \right\rangle = kT$$

y

$$\begin{split} \left\langle q_i \frac{\partial \mathcal{H}}{\partial q_i} \right\rangle &= \left\langle q_i \dot{p}_i \right\rangle = kT \\ \left\langle \sum_i^{3N} q_i \frac{\partial \mathcal{H}}{\partial q_i} \right\rangle &= \sum_i^{3N} \left\langle q_i \frac{\partial \mathcal{H}}{\partial q_i} \right\rangle = \sum_i^{3N} kT = 3NkT \end{split}$$

entonces llegamos al virial,

$$\sum_{i}^{3N} \langle q_i \dot{p}_i \rangle = 3NkT.$$

Considerando un hamiltoniano armónico,

$$\begin{split} \langle \mathcal{H} \rangle &= E \qquad \text{con} \quad \mathcal{H} = \sum_{i}^{3N} a_i p_i^2 + b_i q_i^2 \\ p_k \frac{\partial \mathcal{H}}{\partial p_k} &= 2 a_k p_k^2 \qquad q_k \frac{\partial \mathcal{H}}{\partial q_k} = 2 b_k q_k^2 \end{split}$$

de modo que

$$\begin{split} \mathcal{H} &= \sum_{i}^{3N} \frac{1}{2} p_{k} \frac{\partial \mathcal{H}}{\partial p_{k}} + \frac{1}{2} q_{k} \frac{\partial \mathcal{H}}{\partial q_{k}} \\ \left\langle \mathcal{H} \right\rangle &= \sum_{i}^{3N} \frac{1}{2} \left\langle p_{k} \frac{\partial \mathcal{H}}{\partial p_{k}} \right\rangle + \frac{1}{2} \left\langle q_{k} \frac{\partial \mathcal{H}}{\partial q_{k}} \right\rangle \end{split}$$

y si fes el número de constantes $\boldsymbol{a}_k, \boldsymbol{b}_k$ no nulos

$$\langle \mathcal{H} \rangle = \frac{1}{2} f k T$$

Si fuesen todas no nulas entonces

$$\langle \mathcal{H} \rangle = 3NkT.$$

1.1.5 Gas ideal (microcanónico)

$$\mathcal{H} = \sum_{i}^{N} \frac{p_i^2}{2m}$$

$$\Sigma(E) = \frac{1}{h^{3N}} \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_1 ... d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_N d^3q_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_N d^3q_N d^3q_N d^3q_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_N d^3q_N d^3$$

donde la integral en $\{q_i\}$ es inmediata porque no están los mismos en los límites y donde el límite de integración $\mathcal{H} < E$ implica la condición

$$p_1^2 + p_2^2 + \dots + p_N^2 < (\sqrt{2mE})^2$$

Es una especie de radio 2mE.

$$\Sigma(E) = C_{3N} \left[\frac{V}{h^3} (2mE)^{3/2} \right]^N$$

Luego,

$$S = k \log \left\{ C \left(\frac{V}{h^3} (2mE)^{3/2} \right)^N \right\}$$

$$S = k \log C + Nk \log \left[\frac{V}{h^3} (2mE)^{3/2} \right]$$

 $k \log C \approx -3/2Nk \log 3N/2$

$$\left. \frac{\partial S}{\partial E} \right|_{VN} = \frac{1}{T} \qquad \Rightarrow \qquad \frac{1}{T} = Nk \frac{3}{2} \frac{1}{E}$$

y entonces

$$E = \frac{3}{2}NkT$$
 gas ideal

Vemos que la termodinámica es bastante insensible a las aproximaciones.

1.1.6 Paradoja de Gibbs

$$S \propto Nk \log(V) + Nk \log(E^{3/2})$$

Supongamos dos gases idénticos con la misma ρ y T

Quitar la pared es una operación mental si los gases son idénticos (o al menos eso podemos pensar).

$$\Delta S = Nk \log V + Nk \log(E^{3/2}) - N_1 k \log V_1 - N_2 k \log(E_1^{3/2}) - N_1 k \log V_2 - N_2 k \log(E_2^{3/2})$$

$$\Delta S = N_1 k \log \left(\frac{V}{V_1}\right) + N_2 k \log \left(\frac{V}{V_2}\right) + N_1 k \log \left(\frac{E}{E_1}\right)^{3/2} + N_2 k \log \left(\frac{E}{E_2}\right)^{3/2}$$

$$\Delta S > 0 \quad \text{pues: } \frac{V}{V_1} = 1 + \frac{V_2}{V_1} > 1, \frac{V}{V_2} > 1, \frac{E}{E_1} > 1, \frac{E}{E_2} > 1$$

Podemos hacer algo menos cuentoso tomando

$$S \propto N k \log \left(V \left[\frac{4 \pi m E}{3 h^2 N} \right]^{3/2} \right)$$

donde la N viene de $k \log C_{3N}$ con $N \to \infty$. Vemos que E/N mantiene el cambio en S respecto de E igual, puesto que

$$\frac{E}{N} = \frac{E_1 + E_2}{N_1 + N_2} = \frac{E_1}{N_1} = \frac{E_2}{N_2} = \epsilon$$

pero V no balance. Luego la inclusión de 1/N! hará que

$$S = k \log(\frac{1}{N!}\Sigma(E, N, V)) = k \log(\Sigma) - k \log N!$$

de forma que resultará

$$S \propto N k \log \left(\frac{V}{N} \left[\frac{4\pi m E}{3h^2 N} \right]^{3/2} \right)$$

y esta S sí está libre de paradoja de Gibbs.

1.2 Canónico

Consideramos un microcanónico con

$$E = E_1 + E_2$$
, $N = N_1 + N_2$, $V = V_1 + V_2$

donde N_i, V_i están fijos y \boldsymbol{E}_i varían de acuerdo a

$$E = E_1 + E_2$$

Consideramos un microcanónico

$$\begin{split} \Gamma(E) &= \Sigma_{E_1} \Gamma_1(E_1) \Gamma_2(E-E_1) \leq C \Gamma_1(\bar{E}_1) \Gamma_2(E-\bar{E}_1) \approx C \Gamma_2(\bar{E}_1) \\ &S(E-\bar{E}_1) \approx k \log \Gamma_2(E-\bar{E}_1) \\ &S(E) + \left. \frac{\partial S(E)}{\partial E} \right|_E (-\bar{E}_1) \approx k \log \Gamma_2(E-\bar{E}_1) \end{split}$$

Si los gases son distintos está correcto $\Delta S>0$ pero si son idénticos no porque un estado como F podría provenir de infinitas compartimentacionales las cuales darían todas difrentes ΔS y entonces la entropía S no sería función de estado.

Imagen del microcanónico...

$$\mathrm{e}^{\frac{S(E)}{k}}\,\mathrm{e}^{-\frac{E_1}{kT}}\approx\Gamma_2(E-\bar{E}_1)$$

Claramente como '1' siempre está metido dentro de '2' entre mayor sea el Γ_2 mayor también el tamaño de '1' en \mathbb{F} , luego:

#de config en Γ del sistema '1+2' = #de config de '1' en '2'×#de config de '2' en Γ

$$\# \mbox{ config '1'} = \frac{\# \mbox{ config '1+2'}}{\# \mbox{ config '2'}} \approx \mbox{ e}^{-\frac{E_1}{kT}} = C \int \mbox{ e}^{-\mathcal{H}/kT} d^3p d^3q$$

$$Q_N(V,T) = \frac{1}{h^{3N}N!} \int \mbox{ e}^{-\mathcal{H}/kT} d^3p d^3q$$

1/N! es el factor de buen conteo.

La función de partición es el volumen ocupado en $\mathbb F$. El vínculo con la termodinámica viene de

$$Q_N(V,T) = e^{-\beta A}$$
$$A = -kT \log[Q_N(V,T)]$$

donde A=A(T,V,N)es la energía libre de Helmholtz. Podemos ver que se deduce esto de

$$<\mathcal{H}> = E = -\frac{\partial}{\partial\beta} \log[Q_N(V,T)] = A + TS = A - T \left. \frac{\partial A}{\partial T} \right|_{N,V}$$

pero

$$\begin{split} \frac{\partial}{\partial \beta} &= \frac{\partial}{\partial T} \frac{\partial T}{\partial \beta} = -kT^2 \frac{\partial}{\partial T}, \qquad \text{pues } \frac{\partial \beta}{\partial T} = -\frac{1}{kT^2} \\ &\frac{\partial}{\partial T} \left(\frac{A}{T}\right) = -\frac{A}{T^2} + \frac{1}{T} \frac{\partial A}{\partial T} \end{split}$$

de modo que

$$-T^2\frac{\partial}{\partial T}\left(\frac{A}{T}\right) = A - T\frac{\partial A}{\partial T}$$

 $S = -\partial A/\partial T|_{N,\,V}$

y entonces

$$E = -kT^2 \frac{\partial}{\partial T} \log Q_N = -T^2 \frac{\partial}{\partial T} \left(\frac{A}{T}\right)$$

de lo que se desprende

$$\log Q_N = -\frac{A}{kT}$$

Podemos usar E=A+TS y llegar a $Q_n=\exp(-\beta A)$ o bien $Q_N=\exp(-\beta A)$ y llegar a E=A+TS.

1.2.1 Equivalencia canónico y microcanónico

Vemos cómo son las fluctuaciones de energía en el canónico. Desde

$$\begin{split} U = <\mathcal{H}> &= \frac{\int \,\mathrm{e}^{-\beta\mathcal{H}}\mathcal{H}d^3pd^3q}{\int \,\mathrm{e}^{-\beta\mathcal{H}}d^3pd^3q} \\ &\int \,\mathrm{e}^{-\beta\mathcal{H}}Ud^3pd^3q = \int \,\mathrm{e}^{-\beta\mathcal{H}}\mathcal{H}d^3pd^3q \\ &\frac{\partial}{\partial\beta} \left[\int \,\mathrm{e}^{-\beta\mathcal{H}}(U-\mathcal{H})d^3pd^3q \right] = \frac{\partial}{\partial\beta} \left[0 \right] = 0 \\ &<\mathcal{H}^2> - <\mathcal{H}>^2 = kT^2C_V \end{split}$$

Las fluctuaciones van como el C_V , luego

$$<\mathcal{H}^2/N^2> - <\mathcal{H}/N>^2 = kT^2c_V/N \qquad \text{donde } c_V = C_V/N \\ <\mathcal{H}> \propto N \, \mathbf{v} \, C_V \propto N$$

de modo que las fluctuaciones relativas van a 0 con $N \to \infty$.

Otro modo de verlo es considerando

$$\frac{1}{h^{3N}N!}\int \mathrm{e}^{-\beta\mathcal{H}}d^3pd^3q = \int_0^\infty dE \frac{\partial\Sigma(E)}{\partial E} \mathrm{e}^{-\beta E} = \int_0^\infty dE \mathrm{e}^{-\beta E + \log(\partial\Sigma(E)/\partial E)}$$

donde

$$\frac{\partial \Sigma(E)}{\partial E} dE = \frac{d^3 p d^3 q}{h^{3N} N!}$$

y como $S/k = \beta TS$

$$Q_N = \int_0^\infty dE \, \mathrm{e}^{-\beta E + \beta TS}$$

Si suponemos que es S máxima en $E=\bar{E}$ entonces $S_{MAX}=S(\bar{E})$ y será

$$\left. \frac{\partial S}{\partial E} \right|_{\bar{E}} = 0$$

con lo cual

$$\begin{split} E + TS &\cong \bar{E} + TS(\bar{E}) + \frac{1}{2}(E - \bar{E})^2 T \left. \frac{\partial^2 S}{\partial E^2} \right|_{\bar{E}} \\ E + TS &\cong \bar{E} + TS(\bar{E}) - (E - \bar{E})^2 \frac{1}{2kTC_V} \end{split}$$

de modo que

$$Q_N = \int_0^\infty dE \, \mathrm{e}^{-\beta[\bar{E} + TS(\bar{E})] - \beta \frac{(E - \bar{E})^2}{2kTC_V}}$$

$$Q_N = \, {\rm e}^{-\beta [\bar{E} + TS(\bar{E})]} \int_0^\infty dE \, {\rm e}^{-\beta \frac{(E - \bar{E})^2}{2kTC_V}}$$

y vemos que la integral se va a una delta con $N \to \infty$ (pués $C_V \propto N)$ en cuyo caso

$$Q_N = e^{-\beta[\bar{E} + TS(\bar{E})]}$$

y la mayor parte de los estados tienen energía \bar{E} , que es la de un sistema aislado a temperatura T.

La densidad de estados va entonces de acuerdo al producto de dos efectos contrarios:

$$g(E) = \frac{\partial \Sigma(E)}{\partial E} e^{-\beta E}$$

1.2.2 Ejemplos sencillos

$$\mathcal{H} = \sum_i^N \frac{p_i^2}{2m} + \frac{m}{2} \omega_i^2 q_i^2 \qquad \text{oscilador clásico 1D}$$

$$\mathcal{H} = \sum_i^N \left(n_i + \frac{1}{2} \right) \hbar \omega \qquad \text{oscilador Schrödinger 1D}$$

$$\mathcal{H} = \sum_i^N n_i \hbar \omega \qquad \text{oscilador Planck 1D}$$

$$U = NkT \to C_V = Nk \qquad \text{Clásico}$$

$$U \approx \frac{N\hbar \omega}{2} \quad U \approx 0 (T \ll 1) \qquad \to C_V = 0 \quad \text{Schrödinger-Planck}$$

$$U \approx NkT \ (T \gg 1) \qquad \to C_V = Nk \quad \text{Schrödinger-Planck}$$
 Los casos Schrödinger y Planck aproximan al C_V clásico con T altas.

1.2.3 Una derivación más del canónico

El tamaño del sistema '1' en $\mathbb F$ (su volumen $\Gamma_1(E_1)$) será proporcional al tamaño del sistema '2' en $\mathbb F$ (su volumen $\Gamma_2(E-E_1)$) de manera que

$$\begin{split} \Gamma_1(E_1) &\propto \Gamma_2(E-E_1) \\ k\log\Gamma_1(E_1) &\approx S(E) + \left.\frac{\partial S}{\partial E}\right|_E (-E_1) = S(E) - \frac{E_1}{T} \text{ (del sistema '2')} \\ \Gamma_1(E_1) &\approx \,\mathrm{e}^{S(E)/k} \,\mathrm{e}^{-E_1/kT} \end{split}$$

$$\#$$
 conf '1' = $\#$ conf '2' \times densidad del '1' en el '2'

y finalmente

$$Q_N({\it V},{\it T}) = \frac{1}{h^{3N}N!} \int d^{3N}p d^{3N}q \, {\rm e}^{-\mathcal{H}(\{p_i,q_i\})/kT}$$

1.3 El gran canónico

- 1.3.1 Fluctuaciones de densidad
- 1.3.2 Fluctuaciones de energía
- 1.3.3 Gas ideal
- 1.3.4 Equivalencia canónico-gran canónico
- 1.3.5 Otra derivación del gran canónico

Podemos derivar el gran canónico desde

Es la probabilidad de hallar al sistema '1' en un estado con E_1, N_1 .

$${\rm Prob} \ \propto \Gamma_2(E-E_1,N-N_1)$$

$$\begin{split} \log \Gamma_2(E-E_1,N-N_1) &\cong \log \Gamma_2(E,N) + \frac{1}{k} \left. \frac{\partial S(E,N)}{\partial E} \right|_E (-E_1) + \frac{1}{k} \left. \frac{\partial S(E,N)}{\partial N} \right|_N (-N_1) \\ &\cong \log \Gamma_2(E,N) - \frac{E_1}{kT} + \frac{N_1\mu}{kT} \\ &\text{Prob } \propto \mathrm{e}^{-\beta E} \, \mathrm{e}^{\beta\mu N} = \mathrm{e}^{-\beta E} z^N \\ &\frac{\partial S(E,N)}{\partial N} \right|_{\partial S/\partial N} = -\mu/T. \end{split}$$

donde T y μ son las asociadas al baño.

1.4 Entropía de Gibbs

1.4.1 Observación promedios

$$< G> = \frac{\sum_N z^N GQ_N(V,T)}{\Xi} = \frac{\sum_N z^N \sum_{\nu} G(E_{\nu},N,T) Q_N(V,T)}{\Xi}$$

donde el último factor en la sumatoria es $< G >_{CAN} Q_N(V, T)$.

La parte crítica está en el pasaje de

$$\sum_{\nu} e^{-\beta E_{\nu}}$$

a algún índice útil que permite realizar la sumatoria. En el caso de cuasipartículas, como osciladores, tenemos

$$\hat{H} = \sum_{i}^{N} \left(n_i + \frac{1}{2} \right) \hbar \omega_i$$

donde n_i es el número de fotones del oscilador i-ésimo. Los fonones cumplen el rol de partículas 1 Un oscilador ddado puede tener en principio cualquier valor de energía (cualquier valor de n_i) y esto independientemente de los otros $N\!-\!1$ osciladores. El número total de fonones del sistema

$$\sum_{i}^{N} n_{i}$$

no es una constante del mismo con lo cual no hay vínculo. Entonces

$$\sum_{\nu} \qquad \rightarrow \qquad \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \dots \sum_{n_{\nu}=0}^{\infty}$$

 $^{^1}$ Porque podemos considerar que la \sum se hace en niveles energéticos en lugar de entre osciladores y tenemos un # indeterminado de "particulas" (fonones) distribuidas en 'N' niveles energéticos.