次の複体のホモロジー群を求めよ。

例 1 (円周) S^1

 $C_1(K) = \{\alpha_1 a_0 a_1 + \alpha_2 a_1 a_2 + \alpha_3 a_2 a_0 ; \alpha_1, \alpha_2, \alpha_3 \in \mathbb{Z} \} \cong \mathbb{Z} \oplus \mathbb{Z} \oplus$

 $C_0(K)=\{eta_0a_0+eta_1a_1+eta_2a_2\;;\;eta_0,eta_1,eta_2\in\mathbb{Z}\;\}\cong\mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Z}$ である。

このとき $Z_1(K)=\{\alpha(a_0a_1+a_1a_2+a_2a_0)\;;\;\alpha\in\mathbb{Z}\}$ であることが分かる。なぜなら

示せ。

 $C_2(K) = 0$ より $B_1(K) = \partial_2(C_2(K)) = 0$ なので

$$H_1(K) = Z_1(K)/B_1(K) = Z_1(K) \cong \mathbb{Z}$$

であり, $Z_0(K)=C_0(K)$ であり $(\partial_0(C_0(K))=0$ より), $B_0(K)$ の元は 0 とホモローグなので, $\partial_1(a_0a_1),\partial_1(a_1a_2),\partial_1(a_2a_0)\in B_0(K)$ だから, $a_0\sim a_1$, $a_1\sim a_2$ で $a_2\sim a_0$ である。すなわち $[a_0]=[a_1]=[a_2]$ であるから

$$H_0(K) = Z_0(K)/B_0(K) \cong \mathbb{Z}$$

である。きちんと証明するには

$$\varphi: Z_0(K) \to \mathbb{Z}$$

を $c=\alpha_0a_0+\alpha_1a_1+\alpha_2a_2\in Z_0(K)$ に対して, $\varphi(c)=\alpha_0+\alpha_1+\alpha_2\in\mathbb{Z}$ と定めると. φ は 全射準同型写像で, $\ker\varphi=B_0(K)$ であることが示される

示せ。

ので準同型定理より

$$H_0(K) = Z_1(K)/B_1(K) \cong Z_1(K)/\ker \varphi \cong \mathbb{Z}$$

となる。

例 2 (円盤) D²

 $C_2(K) = \{ \gamma a_0 a_1 a_2 ; \ \gamma \in \mathbb{Z} \}$

 $C_1(K) = \{\alpha_1 a_0 a_1 + \alpha_2 a_1 a_2 + \alpha_3 a_2 a_0 ; \alpha_1, \alpha_2, \alpha_3 \in \mathbb{Z} \} \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$

 $C_0(K)=\{eta_0a_0+eta_1a_1+eta_2a_2\;;\;eta_0,eta_1,eta_2\in\mathbb{Z}\;\}\cong\mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Z}$ である。

 $Z_2(K) = 0$ が分かるので

示せ。

$$H_2(K) = Z_2(K)/B_2(K) = 0$$

である。

また, 例 1 と同様に

 $Z_1(K) = \{\alpha(a_0a_1 + a_1a_2 + a_2a_0) ; \alpha \in \mathbb{Z} \}$ であることが分かる。

しかし $C_2(K)$ が 0 でないので $B_1(K)$ を求めると, $B_1(K)=\{\gamma(a_0a_1+a_1a_2+a_2a_0)\;;\;\gamma\in\mathbb{Z}\}$ なので示せ。

$$H_1(K) = Z_1(K)/B_1(K) = 0$$

であり, $Z_0(K)=C_0(K)$ であり, $B_0(K)$ も例1と同様であるから, $H_0(K)=Z_0(K)/B_0(K)\cong \mathbb{Z}$ である。

例 3

 $C_1(K) = \langle a_0 a_1, a_1 a_2, a_2 a_0, a_3 a_0, a_2 a_3 \rangle \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ \mathfrak{T}

 $C_0(K) = \langle a_0, a_1, a_2, a_3 \rangle \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ である。

例 4 球面 S^2

 $C_2(K) = \langle a_0 a_1 a_2, a_0 a_2 a_3, a_0 a_2 a_1, a_1 a_2 a_3 \rangle \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z},$

 $C_1(K) = \langle a_0 a_1, a_1 a_2, a_2 a_0, a_3 a_0, a_2 a_3, a_3 a_1 \rangle \cong \mathbb{Z} \oplus \mathbb{$

 $C_0(K)=\langle a_0,a_1,a_2,a_3
angle\cong \mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Z}$ である。

例 5 アニュラス (Anulus) A

 $C_2(K) = \langle a_3 a_0 a_4, a_4 a_0 a_1, a_4 a_1 a_5, a_5 a_1 a_2, a_5 a_2 a_3, a_3 a_2 a_0 \rangle \cong \mathbb{Z}^6$ \mathcal{C}

 $C_1(K) = \langle a_0a_1, a_1a_2, a_2a_0, a_3a_4, a_4a_5, a_5a_3, a_3a_0, a_4a_1, a_5a_2, a_0a_4, a_1a_5, a_2a_3 \rangle \ \cong \ \mathbb{Z}^{12} \ \ \overline{\mathsf{C}}$

 $C_0(K)=\langle a_0,a_1,a_2,a_3a_4,a_5
angle\cong \mathbb{Z}^6$ である。

例 6 メビュスの帯 M

 $C_2(K) = \langle a_3 a_0 a_4, a_4 a_0 a_1, a_4 a_1 a_5, a_5 a_1 a_2, a_5 a_2 a_0, a_0 a_2 a_3 \rangle \cong \mathbb{Z}^6$ \mathcal{T}

 $C_1(K) = \langle a_0a_1, a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_0, a_3a_0, a_4a_1, a_5a_2, a_0a_4, a_1a_5, a_2a_0 \rangle \ \cong \ \mathbb{Z}^{12} \ \ \mathfrak{T}$

 $C_0(K)=\langle a_0,a_1,a_2,a_3a_4,a_5
angle\cong\mathbb{Z}^6$ である。

例 7 アニュラス (Anulus) A — 別の単体分解

 $C_2(K) = \langle a_3 a_0 a_4, a_4 a_0 a_1, a_4 a_1 a_5, a_5 a_1 a_2, a_5 a_2 a_3, a_3 a_2 a_0, a_0 a_6 a_1, a_1 a_6 a_7, a_1 a_7 a_2, a_2 a_7 a_8, a_2 a_8 a_0, a_0 a_8 a_6 \rangle \cong \mathbb{Z}^{12} \ \mathcal{T}$

 $C_1(K) = \langle a_0a_1, a_1a_2, a_2a_0, a_3a_4, a_4a_5, a_5a_3, a_6a_7, a_7a_8, a_8a_6, a_3a_0, a_0a_6, a_4a_1, a_1a_7, a_5a_2, a_2a_8, a_0a_4, a_6a_1, a_1a_5, a_7a_2, a_2a_3, a_8a_0 \rangle \cong \mathbb{Z}^{21} \ \overline{\mathbb{C}}$

 $C_0(K) = \langle a_0, a_1, a_2, a_3 a_4, a_5, a_6, a_7, a_8 \rangle \cong \mathbb{Z}^9$ である。

例 7 トーラス (Torus) T^2

 $C_2(K) = \langle a_0 a_3 a_1, a_1 a_3 a_4, a_1 a_4 a_2, a_2 a_4 a_5, a_2 a_5 a_0, a_0 a_5 a_3, a_3 a_6 a_4, a_4 a_6 a_7, a_4 a_7 a_5, a_5 a_7 a_8, a_5 a_8 a_3, a_3 a_8 a_6, a_6 a_0 a_7, a_7 a_0 a_1, a_7 a_1 a_8, a_8 a_1 a_2, a_8 a_2 a_6, a_6 a_2 a_0 \rangle \cong \mathbb{Z}^{18} \ \mathfrak{C}$ $C_1(K) = \langle a_0 a_1, a_1 a_2, a_2 a_0, a_3 a_4, a_4 a_5, a_5 a_3, a_6 a_7, a_7 a_8, a_8 a_6, a_0 a_3, a_3 a_6, a_6 a_0, a_1 a_4, a_4 a_7, a_7 a_1, a_2 a_5, a_5 a_8, a_8 a_2, a_3 a_1, a_6 a_4, a_4 a_2, a_0 a_7, a_7 a_5, a_5 a_0, a_1 a_8, a_8 a_3, a_2 a_6 \rangle \cong \mathbb{Z}^{27} \ \mathfrak{C}$

 $C_0(K) = \langle a_0, a_1, a_2, a_3 a_4, a_5, a_6, a_7, a_8
angle \cong \mathbb{Z}^9$ である。

例 8 トーラス (Torus) T^2 — 別の単体分割

 $C_2(K) = \langle a_0a_3a_4, a_0a_4a_1, a_1a_4a_2, a_3a_5a_4, a_4a_5a_6, a_2a_4a_6, a_2a_6a_3, a_2a_3a_0,$ $a_5a_0a_6, a_6a_0a_1, a_6a_1a_3, a_3a_1a_5, a_5a_1a_2, a_5a_2a_0 \rangle \cong \mathbb{Z}^{14}$ で $C_1(K) = \langle a_0a_1, a_1a_2, a_2a_0, a_0a_3, a_3a_5, a_5a_0, a_3a_4, a_4a_2, a_2a_3, a_0a_4, a_4a_6, a_5a_4, a_4a_1, a_5a_6, a_6a_3, a_0a_6,$ $a_6a_2, a_6a_1, a_1a_3, a_1a_5, a_2a_5 \rangle \cong \mathbb{Z}^{21}$ で $C_0(K) = \langle a_0, a_1, a_2, a_3a_4, a_5, a_6 \rangle \cong \mathbb{Z}^7$ である。

例 9 (実) 射影平面 P^2

 $C_2(K) = \langle a_0a_4a_1, a_1a_4a_5, a_1a_5a_2, a_2a_5a_6, a_2a_6a_3, a_3a_6a_7, a_4a_7a_5, a_5a_7a_8, a_5a_8a_6, a_6a_8a_9, a_6a_9a_7, a_7a_9a_4, a_7a_3a_8, a_8a_3a_2, a_8a_2a_9, a_9a_2a_1, a_9a_1a_4, a_4a_1a_0 \rangle \cong \mathbb{Z}^{18}$ で $C_1(K) = \langle a_0a_1, a_1a_2, a_2a_3, a_4a_5, a_5a_6, a_6a_7, a_7a_8, a_8a_9, a_9a_4, a_0a_4, a_4a_7, a_7a_3, a_1a_5, a_5a_8, a_8a_2, a_2a_6, a_6a_9, a_9a_1, a_4a_1, a_7a_5, a_5a_2, a_3a_8, a_8a_6, a_6a_3, a_2a_9, a_9a_7, a_1a_4 \rangle \cong \mathbb{Z}^{27}$ で $C_0(K) = \langle a_0, a_1, a_2, a_3a_4, a_5, a_6, a_7, a_8, a_9 \rangle \cong \mathbb{Z}^{10}$ である。

例 10 (実) 射影平面 P^2 — 別の単体分割

 $C_2(K) = \langle a_0a_3a_1, a_1a_3a_2, a_0a_4a_3, a_0a_2a_4, a_3a_4a_5, a_3a_5a_2, a_2a_5a_0, a_4a_2a_1, a_4a_1a_5, a_5a_1a_0 \rangle \cong \mathbb{Z}^{10}$ で $C_1(K) = \langle a_0a_1, a_1a_2, a_0a_2, a_0a_3, a_3a_2, a_1a_3, a_2a_4, a_4a_3, a_3a_5, a_5a_0, a_4a_5, a_0a_4, a_4a_1, a_1a_5, a_5a_2 \rangle \cong \mathbb{Z}^{15}$ で $C_0(K) = \langle a_0, a_1, a_2, a_3a_4, a_5 \rangle \cong \mathbb{Z}^6$ である。

例 11 クラインの壷 (Klein's bottle) K

 $C_2(K) = \langle a_0a_3a_1, a_1a_3a_4, a_1a_4a_2, a_2a_4a_5, a_2a_5a_0, a_0a_5a_6, a_3a_6a_4, a_4a_6a_7, a_4a_7a_5, a_5a_7a_8, a_5a_8a_6, a_6a_8a_3, a_6a_0a_7, a_7a_0a_1, a_7a_1a_8, a_8a_1a_2, a_8a_2a_3, a_3a_2a_0 \rangle \cong \mathbb{Z}^{18}$ で $C_1(K) = \langle a_0a_1, a_1a_2, a_2a_0, a_3a_4, a_4a_5, a_5a_6, a_6a_7, a_7a_8, a_8a_3, a_0a_3, a_3a_6, a_6a_0, a_1a_4, a_4a_7, a_7a_1, a_2a_5, a_5a_8, a_8a_2, a_3a_1, a_6a_4, a_4a_2, a_0a_7, a_7a_5, a_5a_0, a_1a_8, a_8a_6, a_2a_3 \rangle \cong \mathbb{Z}^{27}$ で $C_0(K) = \langle a_0, a_1, a_2, a_3a_4, a_5, a_6, a_7, a_8 \rangle \cong \mathbb{Z}^9$ である。

例 12 種数 2 の向き付けられた閉曲面 K

例 14 種数 4 の向き付け不可能な閉曲面 K

