Predicting AIDS Progression with Data Insights

Shiva Bajelan Jeremy Hooper Rahul Gade Linh Doan

Table of contents

01

Project

Overview

04

Data

Examination

02

Data Cleaning

03

Visualizations

05

Machine

Learning

06

Recommendations

01

Project Overview

Objectives

A machine learning model capable of accurately predicting HIV progression to AIDS.

Dataset

Source: Kaggle – AIDS Clinical Trials Group

Task: to predict whether or not each patient is infected with AIDS at end of the trial

Target: infected – yes/no – a binary classification problem **Features**: current treatments, previous treatments, CD4/CD8 cell count at baseline and after 20 weeks (immunity measure), symptomatic, sex, age, weight, race, history of drug use, etc.

02

Data Cleaning

Extract, transform, and load (ETL)

Data cleaning

Connection to SQL Database

03

Visualisations

Data Insights

Infected vs Not infected Distribution

Categorical Variables

Numerical Variables

Data Insights

Variables affecting AIDS infection Rate

04 Data Examination

Box Plot cd4_base (Baseline count of cd4 cells in the blood)

Box Plot cd4_20wks (20 weeks count of cd4 cells in the blood)

Data Examination

Proportional CD4 Count Change (cd4_20wks - cd4_base)

Number of Participants Meeting Failure Conditions by Treatment (cd4 < 50%, Infected)

Data Examination

Total Participants vs Participant's Meeting Failure Conditions by Treatment

05

Machine Learning

KNN, SVM and Logistic Regression

Methodology

Dataset split into training and

testing sets using train-test split

ratios: 70:30, 50:50, and 30:70.

KNN, SVM and Logistic Regression

Consistent accuracy across models - approx. 81% to 88%

Logistic Regression: Balanced precision and recall for the "not infected" class; not so great for the "infected" class

→ challenges in correctly classifying infected individuals

KNN: Demonstrated relatively lower precision and recall for both classes

→ suboptimal performance in classification

SVM: Showed balanced precision and recall for both classes

→ effective classification performance.

Random Forest Decision Tree

Random Forest - Prediction Error

Accuracy: 0.8834890965732087 Precision: 0.7807017543859649 Recall: 0.7044854881266491 F1-score: 0.7406380027739251 Classification Report: recall f1-score support precision 0.91 0.94 0.92 1226 0.78 0.70 0.74 379 accuracy 0.88 1605 macro avg 0.85 0.82 0.83 1605 weighted avg 0.88 0.88 0.88 1605 Confusion Matrix: [[1151 75] [112 267]]

RandomForest - Prediction Error - 75%

RandomForest - Results Statistics

Random Forest

Random Forest - Features Importance

DNN Model

DNN Model (Attempt 1)

optimizer='adam' epochs=50

Measured metrics:

acc train: %99

acc test: %89

precision: %82

recall: %75

Model was over fitted

DNN Model (Attempt 2)

optimizer='adam' epochs=100

Measured metrics:

acc train: %95 acc test: %89

precision: %81

recall: %76

Model was less over fitted

• %1 increase in recall

DNN Model (Attempt 3)

The structure optimised using the Keras Tuner

acc test: %89

recall: %74

Precision: %84

optimizer='adam'
epochs= 25

Measured metrics:
acc train: %94

30 neuron

Relu

12 neuron

Relu

1 neuron

Sigmoid

24 neuron

Relu

- Model was less over fitted
- %3 increase in precision

DNN Model (Attempt 4)

We still use the structure offered by **Keras Tuner** In attempt 3

We just kept 7 first important features offered by Random Forest model.

Measured metrics:

acc train: %90

acc test: %90

precision: %86

recall: %76

30 neuron Relu 12 neuron Relu 24 neuron 1 neuron Relu Sigmoid

- Model was not over fitted
- This was the best model with highest accuracy, precision, and recall

Evaluation of Models

Logistic Regression

K-Nearest Neighbours

SVM

Random Forest

Deep Neural Network

Test Accuracy

Precision

Recall

Statistical Metrics Comparison - Test Accuracy

Accuracy Test Comparison - All Models

Statistical Metrics Comparison - Precision

Precision Comparison - All Models

Statistical Metrics Comparison - Recall

06

Predictive Machine

Learning Models

Discussion

Predictive Machine Learning Models Discussion

Handling Class Imbalance

The code used in our predictive learning models indicates that our classes are imbalanced. To handle this issue, we have used the following strategies:

- Using algorithmic techniques, adjusting the model's class weights to penalise misclassifications of the minority class more than the majority class.
- **Using ensemble methods,** such as Random Forest, which inherently handles class imbalance by combining multiple weak learners.
- Evaluation Metrics, using appropriate evaluation metrics less sensitive to class imbalance, such as precision and recall rather than accuracy.

Conclusions

Neural networks displays strong performance, with high accuracy and precision. Despite this, the fourth attempt of the Neural Network model shows promising performance, boasting high accuracy_train, accuracy_test, precision, and a recall of for the infected class (class 1).

Optimal Prioritisation: If maximising accuracy and precision is paramount, Neural Network is the top contender due to its impressive performance in these metrics.

Recall Priority: The Support Vector Machine (SVM) with recall stands out, making it the preferred choice for scenarios where maximising recall is crucial.

Conclusions

Random Forest Analysis: Random Forest yields high accuracy and precision but exhibits a lower recall. This suggests potential for precise predictions but with limitations capturing all relevant instances.

Alternative Options: Logistic Regression and KNN offer accuracy and recall. Both provide viable alternatives with balanced performance metrics for consideration.

Given the concept of our medical dataset and the importance of predicting individuals infected with AIDS in order to get timely treatment, Neural Network is the best model, with an accuracy of 89% and a recall of 78%.

