

Topics to be covered

- 1) # * (M/W) & Revision of Dot Product
- 2 # Cross-product
- # Lamis theorem.
- 4

V 0.59 = q

If $\vec{A} = 0.5\hat{\imath} + 0.4\hat{\jmath} - \alpha \hat{k}$ then find α if \vec{A} is unit vector.

If $\vec{A} = \sin \theta \,\hat{\imath} + \cos \theta \,\hat{\jmath}$ then prove that \vec{A} is a unit vector.

If $\vec{A} = 2\hat{\imath} + 3\hat{\jmath} + \alpha \hat{k}$ and $\vec{B} = \hat{\imath} - 2\hat{\jmath} + 4\hat{k}$ find α . If \vec{A} is perpendicular to \vec{B} .

$$A \cdot B = 0$$

$$2 - 6 + 4x = 0$$

$$-4 + 4x = 0$$

$$x = + 4$$

$$x = + 4$$

$$x = + 4$$

If
$$\vec{A} = 2\hat{\imath} + 6\hat{\jmath} + 3\hat{k}$$
 and $\vec{B} = 4\hat{\imath}$. Find angle between \vec{A} and \vec{B} .

$$\vec{A} \cdot \vec{B} = (2\hat{i} + 6\hat{j} + 3\hat{k}) \cdot (4\hat{i})$$
= 8

$$\cos Q = \frac{8^2}{7xy} = \frac{2}{7}$$
 $\theta = (05^{1}(2/7))$

If a vector $2\hat{\imath} + 3\hat{\jmath} + 8\hat{k}$ is perpendicular to the vector $3\hat{\jmath} - 4\hat{\imath} + \alpha\hat{k}$, then the value of α is

- 1/2
- 2 -1/2
- 3 1
- 4 -1/8

The angle between the two vectors $\vec{A} = 3\hat{\imath} + 4\hat{\jmath} + 5\hat{k}$ and $\vec{B} = 3\hat{\imath} + 4\hat{\jmath} - 5\hat{k}$ will be

[1994]

$$\vec{A} \cdot \vec{B} = 9 + 16 - 25 = 0$$

$$3$$
 zero $A^{\prime} \downarrow_{\delta} B$

A particle moves with velocity $\vec{v} = 5\hat{\imath} + 2\hat{\jmath} - \hat{k}$ under the influence of the constant force $\vec{f} = 2\hat{\imath} + 5\hat{\jmath} - 10\hat{k}$ of the instantaneous power applied is $(P = \vec{f} \cdot \vec{\lambda})$

$$P = \vec{F} \cdot \vec{k}$$

$$= (2i + 5\hat{J} - 10\hat{K}) \cdot (5i + 27 - \hat{K})$$

$$= 10 + 10 + 10 = 30 \text{ Walk}$$

A body, constrained to move in <u>y</u>-direction, is subjected to a force given by $\vec{F} = (-2\hat{\imath} + 15\hat{\jmath} + 6\hat{k})$ N. The work done by this force in moving the body through a distance of along $10\hat{\jmath}$ m *y*-axis, is

Two forces $\vec{F}_1 = \hat{\imath} + 2\hat{\jmath} - 2\hat{k}$ and $\vec{F}_2 = 2\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ are acting on a particle and it's displacement is $-\hat{\imath} + 2\hat{\jmath} + \hat{k}$. Find work done on the particle

- 1 2J
- **2** 6J
- **3** –3J
- 4 zero

$$\begin{cases}
\vec{f_1} + \vec{f_2} = 3\hat{i} + 4\hat{j} + \hat{k} \\
\vec{s} = -\hat{i} + 2\vec{j} + \hat{k}
\end{cases}$$

Revision Dot Product

Psino
$$\overrightarrow{B}$$

Brino \overrightarrow{A}

Brino \overrightarrow{A}

Brino \overrightarrow{A}

Brino \overrightarrow{A}

Brino \overrightarrow{A}

Brino \overrightarrow{A}

Any le \overrightarrow{B} brino \overrightarrow{A}

Any le \overrightarrow{B} brino \overrightarrow{A}

Any le \overrightarrow{B} brino \overrightarrow{A}

Fig. \overrightarrow{B}

Any le \overrightarrow{B} brino \overrightarrow{A}

Fig. \overrightarrow{B}

Any le \overrightarrow{B} brino \overrightarrow{A}

Fig. \overrightarrow{B}

Any le \overrightarrow{B}

Any \overrightarrow{A}

Any \overrightarrow{B}

Any le \overrightarrow{B}

Any \overrightarrow{A}

Any \overrightarrow{B}

(ompor of
$$\overrightarrow{B}$$
 alog $A = \overrightarrow{A \cdot B} = \overrightarrow{A \cdot B} = \overrightarrow{A \cdot B}$ (Salar) $A = \overrightarrow{A \cdot B} = \overrightarrow{A$

ProJetion of B alyA = AB Projeth of A alf = Arg Component of Baloy A in vector form =

Kisi bhi vector ke magniture Ko unit vector

Se multiply Kiya (Not dot Product) to Net

Magnitude Same Rahega but ush magnitur

Ka diretia Unit vector Ki tarfaayga

5 SS SS

· Dot Product [scalar Product]

· Cross Product

(vector Product)

10 2 PM

Kisi Vecto Ka Scaloz

Ke Sath dot Pooduct

and cross product

Nahi ho

Sakta.

If velocity $\vec{V} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$ and acceleration $\vec{a} = 2\hat{\imath} + \hat{\jmath} + 2\hat{k}$ then find component of velocity along acceleration?

$$\overrightarrow{V} = i - 2\widehat{J} + \widehat{K}$$

$$\overrightarrow{a} = 2i + 7 + 2\widehat{K}$$

$$= (i - 2\widehat{J} + \widehat{K}) \cdot (2i + 7 + 2\widehat{K})$$

$$= (i - 2\widehat{J} + \widehat{K}) \cdot (2i + 7 + 2\widehat{K})$$

$$= (3)$$

$$= (3)$$
Ay

Find the projection of $\vec{A} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$ along the vector $\vec{B} = \hat{\imath} + \hat{\jmath} + \hat{k}$.

$$\frac{1}{\sqrt{3}}$$

$$\frac{2}{\sqrt{3}} \int_{\text{Avs}}$$

$$\frac{4}{\sqrt{3}}$$

$$\Rightarrow A \cos 0 = \overrightarrow{A \cdot b} = \frac{2 - 1 + 1}{B} = \frac{2}{53}$$

A vector perpendicular to $\hat{i} + \hat{j} - \hat{k}$ and $\hat{i} - \hat{j} - \hat{k}$ is:

- $\hat{j} + \hat{k} 2\hat{i}$

If resultant of \vec{A} and \vec{B} is perpendicular to \vec{A} then angle between \vec{A} and \vec{B} will be:

- 3 sin⁻¹ (A/B)
- 4 sin⁻¹ (-A/B)

$$(\overrightarrow{A'} + \overrightarrow{B}) \cdot \overrightarrow{A'} = 0$$

$$\overrightarrow{A'} \cdot \overrightarrow{A'} + \overrightarrow{B} \cdot \overrightarrow{A'} = 0$$

$$AA \cos + BA \cos = 0$$

$$A^2 + BA \cos = 0$$

$$OA \cos = -AA$$

$$OA \cos = -AA$$

$$OB \cos = -AA$$

$$O = -AB$$

$$O = -AB$$

$$\overrightarrow{A} = 2i + 3\widehat{J} + 5\widehat{K}$$

$$\overrightarrow{B} = 4i + 6\widehat{J} + 10\widehat{K}$$

$$\overrightarrow{C} = -4i - 6\overline{J} - 10\widehat{K}$$
is Paralle to \overrightarrow{O}

$$\vec{B} = 2(2i+37+5\hat{r})$$

$$\overrightarrow{A} = 2i + 3\widehat{J} + 5\widehat{X}$$

$$\overrightarrow{B} = 4i + 6\widehat{J} + 15\widehat{X}$$

$$\overrightarrow{B} = 4i + 6\widehat{J} + 15\widehat{X}$$

Example-1 $\vec{A} = 2i - 4J + 3\hat{K}$ $\vec{B} = 6\hat{i} - 12\hat{j} + 9\hat{K}$ -> A's B' are Parallel $\vec{A} = 2i - 4J - 3\hat{\kappa}$ B=-6i+12j+9K

 $A^2 = 2i - 3T + 4R$ $\frac{1}{2}B = 8i + 12\hat{j} - 16\hat{k}$ A is not paral & paral &

8 = Position rector 2=0 Cross Product

=8 Fsim θ vector product 2 = 8 FSINO Ŷ

. 1

Cross Vector (Vector Product)

* cross product ka use to Resunt Vector me auta hick

え=マメディング アンデータ(アメロ) V= WX8

dirn of AXB is perpendice to A3B AXB Perpendicula to Plane of

Angle Blw AXB & A is 90°
Angle Blw AXB & B is 90°

 $(\vec{A} + \vec{B}) \cdot (\vec{A} \times \vec{B}) = ??$ In the Plane of TX to A SE ASB

$$\begin{aligned}
\hat{1} \times \hat{1} &= 1 \times 1 \text{ simo } = 0 \\
\hat{3} \times \hat{3} &= 1 \times 1 \text{ simo } = 0 \\
\hat{3} \times \hat{3} &= 0
\end{aligned}$$

$$\begin{vmatrix} i \cdot i &= 1 \\ j \cdot j &= 1 \\ k \cdot k &= 1 \end{vmatrix}$$

 $i \rightarrow T \rightarrow R \rightarrow i$

$$A = 2i - 3$$

$$B = 2i + 3$$

$$A \times B$$

$$(2i - 3) \times (2i + 3)$$

$$= 0 + 6x - 2(-x) + 0$$

$$= 6x + 2x$$

$$A \times B = + 8x$$

$$\Rightarrow \text{ feel } \text{ Kar}$$

$$\vec{B} \times \vec{A} = (2i+3\hat{I}) \times (2i-\hat{I})$$

$$= 6 - 2(\hat{K}) + 6(\hat{K}) + 6$$

$$= -2\hat{K} - 6\hat{K}$$

$$= -8\hat{K}$$

$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$$

AXB = - BXA

Direction of $\overrightarrow{A} \times \overrightarrow{B}$:

$$\vec{R} = \vec{A} \times \vec{B}$$
 $\uparrow \qquad \uparrow \qquad \uparrow$

result 1st 2nd

vector vector

Place four finger in the director of 1st vector and then slap in the direction of \vec{B} (2nd vector) then thumb represent direction of $(\vec{A} \times \vec{B})$

If $|\vec{A} \times \vec{B}| = \sqrt{3} (\vec{A} \cdot \vec{B})$ then find angle between \vec{A} and \vec{B} .

If $|\vec{A} \times \vec{B}| = \sqrt{3} \vec{A} \cdot \vec{B}$, then the value of $|\vec{A} + \vec{B}|$ is:

[AIPMT 2007]

 \bigcirc A + B

$$(A^2 + B^2 + \sqrt{3}AB)^{1/2}$$

$$(A^2 + B^2 + AB)^{1/2}$$

matrix method of cross-Product

$$\overrightarrow{A} = A_{\chi} i + A_{\gamma} j + A_{z} k$$

$$\overrightarrow{B} = B_{\chi} i + B_{\gamma} j + B_{z} k$$

$$\overrightarrow{A} \times \overrightarrow{B} = A_{\chi} A_{\gamma} A_{z}$$

9 with cyclec ordn i-st-sk

Area of Triange = 1 (A XB)

As a of Triange = 1 (A XB)

A & B are Two side of Participa

$$\overline{A}^{\gamma} \times \overline{B}^{\gamma} = \begin{vmatrix} i & J & K \\ An & Ay & A2 \\ Bn & By & B2 \end{vmatrix}$$

$$R \times \hat{C} = +\hat{J}$$

Physis 5/517

1

The torque of force $5\hat{i} + 3\hat{j} - 7\hat{k}$ about the origin is τ . If the force acts on a particle whose position vector is $2\hat{i} + 2\hat{j} - \hat{k}$ then the value of τ will be:

[NEET 2022]

- $11\hat{\imath} + 19\hat{\jmath} 4\hat{k}$
- $\begin{array}{c|c} \hline 2 \\ \hline -11\hat{\imath} + 9\hat{\jmath} \forall \hat{k} \\ \hline \end{array}$
- $3 -17\hat{\imath} + 19\hat{\jmath} 4\hat{k}$
- $\boxed{4} \quad 17\hat{\imath} + 9\hat{\jmath} 16\hat{k}$

$$= i \left(-44 - t^{3} \right)$$

$$+ f \left(-5 - (-14) \right)$$

$$+ f \left(6 - 10 \right)$$

$$= -11 i + 9 j - 9 k$$

Find torque $(\vec{\tau} = \vec{r} \times \vec{F})$ of a force $\vec{F} = -3\hat{\imath} + \hat{\jmath} + 5\hat{k}$ acting at the point $\vec{r} = 7\hat{\imath} + 3\hat{\jmath} + \hat{k}$. [AIIMS 2009]

11
$$14\hat{i} - 38\hat{j} + 16\hat{k}$$

$$2) 4\hat{\imath} + 4\hat{\jmath} + 6\hat{k}$$

$$(3)$$
 $-14\hat{i} + 38\hat{j} - 16\hat{k}$

$$-21\hat{\imath} + 3\hat{\jmath} - 5\hat{k}$$

If the angle between the vector \vec{A} and \vec{B} is θ , the value of the product $(\vec{B} \times \vec{A})$. \vec{A} is equal to

- 1 Zero
- BA² sin θ cos θ

- \bigcirc BA² cos Θ
- \bigcirc BA² sin Θ

Find the torque of force $\vec{F} = 5\hat{\imath} + 3\hat{\jmath} - 7\hat{k}$ about origin if the force acts on the particle whose position vector is $2\hat{\imath} + 2\hat{\jmath} + \hat{k}$. (use torque = $\vec{r} \times \vec{F}$) [JEE Main 2022]

- $11\hat{\imath} + 19\hat{\jmath} 4\hat{k}$
- (2) $-11\hat{i} + 9\hat{j} 16\hat{k}$
- $(3) -17\hat{\imath} + 19\hat{\jmath} 4\hat{k}$
- $\boxed{4} -17\hat{\imath} + 9\hat{\jmath} + 16\hat{k}$

The angle between vectors $(\vec{A} \times \vec{B})$ and $(\vec{B} \times \vec{A})$ is

- 1 zero
- **2** π
- $3 \pi/4$
- $4 \pi/2$

Find the torque about the origin when a force of $3\hat{j}$ N acts on a particle whose position vector is $2\hat{k}$ m. [NEET 2020]

- 6 î Nm
- 2 6 ĵ Nm
- 3 −6 î Nm
- 4 6 \hat{k} Nm

For a plane electromagnetic wave propagation in *x*-direction, which one of the following combination gives the correct possible directions for electric field (E) and magnetic field (B) respectively?

- $\hat{j} \times \hat{k}, \hat{j} + \hat{k}$
- $\hat{j} \times \hat{k}, -\hat{j} \hat{k}$
- $(4) \quad -\hat{\jmath} \times \hat{k}, -\hat{\jmath} + \hat{k}$

Vector $a\hat{\imath} + b\hat{\jmath} + \hat{k}$ and $2\hat{\imath} - 3\hat{\jmath} + 4\hat{k}$ are perpendicular to each other when 3a + 2b = 7, the ratio of a to b is:

- 1/2
- 2 2
- 3 3
- 4 3/2

If \vec{F} is the force acting on particle having position vector \vec{r} and $\vec{\tau}$ to the torque of this force about origin, then

- $\vec{r} \cdot \vec{\tau} > 0$ and $\vec{f} \cdot \vec{\tau} < 0$
- $\vec{r} \cdot \vec{\tau} = 0 \text{ and } \vec{f} \cdot \vec{\tau} \neq 0$
- $\vec{r} \cdot \vec{\tau} = 0$ and $\vec{f} \cdot \vec{\tau} = 0$
- $\vec{r} \cdot \vec{\tau} \neq 0 \text{ and } \vec{f} \cdot \vec{\tau} = 0$

Position of particle is given by $\vec{r} = \hat{\imath} + 2\hat{\jmath} - \hat{k}$ and momentum $\vec{p} = 3\hat{\imath} + 4\hat{\jmath} - 2\hat{k}$. The angular momentum is perpendicular to

- 1 x-axis
- 2 z-axis
- y-axis
- Line at equal to all three axis

Find the torque of force $\vec{F} = 5\hat{\imath} + 3\hat{\jmath} - 7\hat{k}$ about origin if the force acts on the particle whose position vector is $2\hat{\imath} + 2\hat{\jmath} + \hat{k}$. (use torque = $\vec{r} \times \vec{F}$) [JEE Main 2022]

- $11\hat{\imath} + 19\hat{\jmath} 4\hat{k}$
- (2) $-11\hat{i} + 9\hat{j} 16\hat{k}$
- $(3) -17\hat{\imath} + 19\hat{\jmath} 4\hat{k}$
- $\boxed{4} -17\hat{\imath} + 9\hat{\jmath} + 16\hat{k}$

Maha-Mantha Sheet

MahaManthan ASSIGNMENT

Basic Mathematics

Assignment-01 By: M.R. Sir

1. $\int 0 dx = C$, where C is the constant of integration.

True/False

2. $\int x^n dx = \frac{x^{n+1}}{n+1} + C \text{ is valid for all real values of } n.$

True/False

3. The area under the curve can be negative.

True/False

- If a function f(x) is always positive, then its integral is always increasing. True/False
- 5. $\int \frac{1}{r^2} dr = -\frac{1}{r} + C \text{ which is used in both electrostatics}$ and gravitation. True/False
- The area under a sine wave over a complete cycle is zero.

 True/False
- Integrating the square of sine or cosine over a full period gives a nonzero average. True/False
- 8. The area under a curve y = f(x) from x = a to x = b is given by $\int_{a}^{0} f(x)dx$. True/False
- 9. $\int k.f(x)dx = k \int f(x)dx$, where k is a constant.

True/False

- Integration is a way to add small pieces together to find a total. True/False
- Integration is only used in maths, not in real life.
 True/False
- Learning integration now will help me later in physics.

 True/False
- The slope of the line y = -2x + 3 is negative, so it goes downward from left to right.
 True/False

14. The x-intercept of the line y = mx + c is x = c/m.

True/False

15. Two lines are parallel if their slopes are equal.

True/False

- Two lines are perpendicular if product of their slopes is equal to 1.
 True/False
- A line passing through origin always has y-intercept 0. True/False
- 18. The equation 3x + 4y = 0 represents a line that passes through the origin. True/False
- 19. For the parabola $y = ax^2$, the axis of symmetry is the y-axis. True/False
- 20. The graph of $y = -x^2$ is concave upward.

True/False

- 21. The graph of $y = x^2$ is a U-shape. True/False
- All parabolas open upwards. True/False
- Parabolas are important in physics because projectiles follow this path.

 True/False
- A circle can intersect the x-axis at more than 2 points.

 True/False
- 25. The graph of $x^2 + y^2 = 0$ represents a point of zero radius at the origin. True/False
- 26. The diameter of the circle $x^2 + y^2 = 49$ is 7.

True/False

27. All circles are symmetric about both x and y-axes.

True/False

 An ellipse has two foci and two axes (major and minor).

True/False

- A circle is a special case of an ellipse when a = b.
 True/False
- The distance between the foci increases as the ellipse becomes more stretched. True/False
- The ellipse can never pass through the origin.
 True/False

- The rectangular hyperbola never touches either axis.
 True/False
- 33. As $x \to 0^+$, $y \to \infty$ in the graph of xy = c.

True/False

- The rectangular hyperbola passes through the origin.
 True/False
- The rectangular hyperbola always lies in only one quadrant.

 True/False
- 36. The identity $\sin^2 \theta + \cos^2 \theta = 1$ holds for all real values of θ .

 True/False
- 37. The maximum value of $sin(\theta)$ and $cos(\theta)$ is 2.

True/False

The function sin(θ) is periodic with period 360°.

True/False

- 39. $tan(\theta)$ is undefined at $\theta = 90^{\circ}$. True/False
- The graph of sin(θ) oscillates between -1 and +1.

True/False

41. If $sin(\theta) = 3/5$, then $cos(\theta) = 4/5$. True/False

- 42. tan(θ) = sin(θ)/cos(θ) is undefined when cos(θ) = 0.
 True/False
- 43. $\sin(2\theta) = 2\sin\theta$ co $s\theta$ is valid only for acute angles. True/False
- For θ in the third quadrant, both sine and cosine are positive. True/False
- 45. If $\sin (\theta) + \cos (\theta) = 1$, then $\sin^2 (\theta) + \cos^2 (\theta) = 1$ still holds. True/False
- The derivative of a constant function is zero.

True/False

- 47. If $f(x) = \sin(x^2)$, then $f'(x) = 2x \cos(x^2)$.

 True/False
- 48. If f(x) is increasing, then f'(x) > 0 for all x.

 True/False
- 49. The product rule states that $\frac{d}{dx}(uv) = u'v + uv'$.

True/False

- 50. The derivative of tan(x) is $sec^2(x)$. True/False
- 51. If f'(x) = 0 and f''(x) > 0, then x is a local minimum. True/False
- If f '(x) = 0 and f "(x) < 0, then x is a local minimum.
 True/False
- The point where a function changes from increasing to decreasing is called a maximum. True/False
- Slope of upward parabola is positive and increasing.
 True/False

- 55. Sum of root of quadratic equation $ax^2 + bx + c = 0$ is | 60. Differentiation of e^x is e^x . True/False True/False
- 56. Differentiation of sin 30° is cos 30°. True/False
- 57. Integration of constant function is zero. True/False
- 58. Magnitude of slope of rectangular hyperbola is True/False decreasing
- 59. $y = 2x^2 4x$ slope of slope at x = 1 is positive.

True/False

- True/False

ANSWER KEY

			141 110 11 4044 4440 4		
1.	True	22.	False (If $a < 0$, it opens	42.	True
2.	False	100000	downwards)	43.	False (valid for all θ)
3.	True	23.	True	44.	False (both are negative)
4.	True	24.	False	45.	True
5.	True	25.	True	46.	True
6.	True	26.	False (Diameter is 14)	47.	True
7.	True	27.	True	48.	False (It can be 0 at some
8.	True	28.	True	5455-000	points)
9.	True	29.	True	49.	True
10.	True	30.	True	50.	True
11.	False	31.	False	51.	True
12.	True	32.	True	52.	True
13.	True	33.	True	53.	True
14.	False (It's $x = -c/m$)	34.	False	54.	True
15.	True	35.	False	55.	False
16.	False	36.	True	56.	False
17.	True	37.	False (maximum is 1)	57.	False
18.	True	38.	True	58.	True
19.	True	39.	True	59.	True
20.	False (It's downward)	40.	True	60.	False
21.	True	41.	False (depends on quadrant,	61.	False
			and Pythagorean identity)	62.	False

Check which of the following is a unit vector:

1.
$$\vec{A} = \frac{1}{\sqrt{3}}\hat{\imath} + \frac{1}{\sqrt{3}}\hat{\jmath}$$

2.
$$\vec{B} = \sin \theta \hat{\imath} - \cos \theta \hat{\jmath}$$

3.
$$\vec{C} = \frac{\hat{\imath}}{\sqrt{3}} - \frac{\hat{\jmath}}{\sqrt{3}} + \frac{\hat{k}}{\sqrt{3}}$$

$$4. \ \overrightarrow{D} = 0.8\hat{\imath} - 0.6\hat{\jmath}$$

5.
$$\vec{E} = \frac{3}{5}\hat{\imath} + \frac{4}{5}\hat{\jmath}$$

Draw given vector in graphical representation: Force 10 N 30° North of East

Find component of gravitational force along inclined plane and perpendicular to inclined plane.

Component of velocity along x and y-axis.

Find unit vector of given vector:

$$\vec{A} = 3\hat{\imath} + 4\hat{\jmath}$$

$$\vec{B} = -3\hat{\imath} + 4\hat{\jmath} - 5\hat{k}$$

$$\vec{C} = 2\hat{\imath} + 3\hat{\jmath} - \hat{k}$$

$$\vec{D} = \hat{\imath} + \hat{\jmath} - 2\hat{k}$$

Following vector are given:

Then write it in vector form

Following vector are given:

Then write it in vector form

Following vector are given: Then write it in vector form

Following vector are given:

Then write it in vector form

Draw given vector in graphical representation:

Object is moving with velocity 60 m/s at 60° South of west

Draw given vector in graphical representation: 30 N force at 53° North of West

Draw given vector in graphical representation:

Force 40 N 53° South of East

A null vector is defined as a vector having:

- 2ero Direction
- 2 Zero magnitude and undefined direction
- 3 Maximum magnitude and fixed direction
- Zero magnitude and fixed direction

Which of the following sets can never represent a system of collinear vectors?

- 2 N right, 3 N right, 5 N left
- 2 N up, 4 N up, 6 N down
- 3 2 N right, 3 N up, 4 N down
- 5 N left, 5 N right

If $\vec{A} + \vec{B} = 0$, what is the value of $|\vec{A}| + |\vec{B}|$?

- |A + B|
- 3 2|A|
- |A| |B|

Which of the following sets of components gives a vector of zero magnitude?

- (0,0)
- (3, -3)
- 3 (1, -1)
- (2, 2)

A vector \vec{A} has a magnitude of 5. You are told that the *x*-component of this vector is also 5. What can you conclude about the *y*-component?

- 1 It is zero
- 2 It is positive
- 3 It is imaginary
- 4 It is negative

A vector \vec{V} has a magnitude of 1 and makes equal angles with x, y and z axes. What is each component?

- $\frac{1}{\sqrt{3}}$
- $\frac{2}{3}$
- 3 1
- $\frac{1}{\sqrt{2}}$

A person walks 1 m east, then 1 m north. What is the unit vector in the direction of net displacement?

$$\frac{1}{\sqrt{2}}(\hat{\imath}+\hat{\jmath})$$

$$\frac{1}{2}(\hat{\imath}+\hat{\jmath})$$

$$(\hat{i}+\hat{j})$$

$$\frac{1}{\sqrt{3}}(\hat{\imath}+\hat{\jmath})$$

Let $\vec{A} = a\hat{\imath} + b\hat{\jmath}$ be a unit vector. If $a = \frac{3}{5}$, find b.

- $\frac{4}{5}$
- $\frac{2}{5}$
- $\sqrt{\left(\frac{1-9}{25}\right)}$
- 4 1

Assertion (A): The sum of two unit vectors can never be a unit vector.

Reason (R): The magnitude of the sum of two unit vectors is always greater than 1.

- Both A and R are true, and R is the correct explanation of A.
- 2 Both A and R are true, but R is not the correct explanation of A.
- 3 A is false, but R is true.
- Both A and R are false.

Three equal vectors are placed head to tail forming a triangle. What is the resultant vector?

- Equal to each vector
- **2** (
- 3 Double of one vector
- (4) Cannot be determined

Two vectors are added and the resultant is smaller than both. What must be the angle between them?

Vector addition is commutative.

- (1) True
- (2) False

Vector addition violates the triangle inequality.

- (1) True
- (2) False

Assertion (A): The direction of the vector $\vec{A} + \vec{B}$ lies between the directions of \vec{A} and \vec{B} . **Reason** (R): Vector addition follows the triangle law or parallelogram law of vectors.

- Both A and R are true, and R is the correct explanation of A.
- 2 Both A and R are true, but R is not the correct explanation of A.
- A is false, but R is true.
- Both A and R are false.

Triangle law of vector addition holds when vectors are:

- Collinear
- 2 Coplanar and in same direction
- Represented as two adjacent sides of a triangle taken in same order
- Draw from the same origin

A particle undergoes two displacements represented by vectors \vec{A} and \vec{B} , making an angle θ between them. If resultant displacement is less than both A and B, what can be said about θ ?

- $\theta = 0^{\circ}$
- $\theta = 90^{\circ}$
- $\theta > 90^{\circ}$
- $\theta = 180^{\circ}$

Two forces of magnitude 8 N and 15 N respectively act at a point. If the resultant forces is 17 N, the angle between the forces has to be

- (1) 60°
- 2 45°
- 3 90°
- 4 30°

Two \vec{F}_1 = 5 N due to east and F_2 = 10 N due north then resultant of these two force is

- 1 5√5 N
- 2 15 N
- 3 5 N
- $\sqrt{5}$ N

Find net force =
$$(\vec{F}_1 + \vec{F}_2)$$
?

Two forces of 10 N and 6 N act upon a body. The direction of the forces are unknow. The resultant forces on the body may be

- 15 N
- 2 3 N
- 3 17 N
- 4 2 N

If $\vec{R} = \vec{A} + \vec{B}$ and R = A + B then angle between \vec{A} and \vec{B} must be

- 1 90°
- **2** 60°
- 3 0°
- 4 180°

If $\vec{R} = \vec{A} + \vec{B}$ and $R^2 \pm A + B$ then angle between \vec{A} and \vec{B} may be

- 1 90°
- **2** 60°
- 3 120°
- 4 80°

Two vector of magnitude 2 then resultant of these two vector may be?

- **1** 2
- 2 8
- 3 5
- 4 6

Two force 5N and 2N acting on object then net force on object must not be:

- 1 2N
- 2 1N
- (3) 6N
- 4 Both (1) and (2)

Vector \vec{A} is 2m long at 60° above the +x-axis and \vec{B} is 2m long at 60° below the +x-axis then resultant will be:

If vector sum of two unit vector is a unit vector then:

The ratio of maximum and minimum magnitude of resultant of two vectors \vec{a} and \vec{b} is 3:1, then \vec{b} in term of |B|.

Find angle between force 2P and $\sqrt{2}P$ act so that resultant force is $P\sqrt{10}$.

Two vector of magnitude 2 and 4 and resultant is $2\sqrt{3}$ find angle between vectors.

The sum of the magnitude of two force is 18 and magnitude of their resultant is 12. If resultant is at 90° with the force of smaller magnitude, then what is magnitude of force

Which of the combination of three force can give zero resultant.

- (2, 4, 7)
- (3, 1, 5)
- (2, 8, 11)
- (3, 4, 2)

