FRIEDRICH-SCHILLER-UNIVERSITÄT JENA PHYSIKALISCH-ASTRONOMISCHE-FAKULTÄT

WINTERSEMESTER 2023/24

Mathematik - Ein Vorkurs für Studienanfänger

MARTIN BEYER

La Extra Land Design von Martin Beyer

Inhaltsverzeichnis

1	Grundrechnungsarten	3
	1.1 Addition und Subtraktion	3
	1.2 Multiplikation und Division	4
	1.3 Bruchrechnung	5
	1.4 Potenzen und Wurzeln	6
	1.4.1 Potenzen	6
	1.4.2 Wurzeln	7
	1.5 Gleichungen	8
2	Lineare Gleichungssysteme	9
	2.1 Mengen und Intervalle	9
	2.2 Lineare Funktionen	12
	2.3 Lineare Gleichungssysteme mit 2 Unbekannten	15
	2.4 Lineare Gleichungssysteme mit 3 Unbekannten	17
3	Quadratische Gleichungssysteme	20
	3.1 Die quadratische Gleichung	20
	3.2 Quadratische Funktionen	22
	3.3 Quadratische Gleichungssystem mit zwei Unbekannten	23
4	Umgang mit beliebigen Potenzen	25
	4.1 Polynome und Polynomdivision	25
	4.2 Partialbruchzerlegung	26
	4.3 Potenzfunktionen	
5	Das Summenzeichen	29
6	Exponentialfunktionen und Logarithmen	32
	6.1 Logarithmen	32

6 Exponentialfunktionen und Logarithmen

Wir wollen uns nun mit Funktionen beschäftigen, die exponentielles Wachstum beschreiben. *Exponentialfunktionen* sind Funktionen, deren Variable im Exponenten steht $f(x) = a^x$. Hierbei muss die Basis a > 0 sein. Unabhängig von a gilt dann $a^0 = 1$, d. h. alle Exponentialfunktionen schneiden die y-Achse im Punkt (0,1).

Wir können, abhängig von a, drei Fälle unterscheiden

- a > 1: $\lim_{x \to -\infty} a^x = 0$, asymptotische Annäherung an x-Achse von rechts
- a < 1: $\lim_{x \to \infty} a^x = 0$, asymptotische Annäherung an x-Achse von links
- a = 1: y = 1 für alle x

Abb. 4: Darstellung von Exponentialfunktionen für verschiedene Werte von a.

Die Funktionen sind spiegelbildlich zur x-Achse, denn

$$\begin{cases}
f_1(x) = a^x \\
f_2(x) = \left(\frac{1}{a}\right)^x = a^{-x} = f_1(-x)
\end{cases} \text{ wenn } a > 1, \text{ dann } \frac{1}{a} < 1.$$
(6.1)

Das heißt, zu jeder blauen Funktion mit Basis a, findet man eine spiegelsymmetrische orangene Funktion mit Basis $\frac{1}{a}$.

6.1 Logarithmen

Wir wollen uns nun die Frage stellen, welchen Wert n ein Exponent zu einer gegebenen Basis b haben muss, damit der Potenzwert a herauskommt. Also es gelte $a = b^n$ für ein bekanntes a und b, was ist dann n?

Die Antwort auf diese Frage liefert die Logarithmusfunktion:

Exponent
$$\longrightarrow n = \log_b(a)$$
. Numerus (Potenzwert) (6.2)

Radikand