第 1 章

表現行列と基底変換

基底に関する座標ベクトル

V を線形空間とし、 $\mathcal{V} = \{ oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_n \}$ をその基底とする V の任意のベクトル $oldsymbol{v}$ は、

$$oldsymbol{v} = \sum_{i=1}^n x_i oldsymbol{v}_i$$

と一意的に書ける

ここで、Φν を座標写像とすると、その定義から、

$$\Phi_{\mathcal{V}}^{-1}(oldsymbol{v}) = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} \in \mathbb{R}^n$$

このベクトルを \mathbf{v} に関する \mathbf{v} の座標ベクトルあるいは成分表示と呼び、

$$oldsymbol{v} = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}_{\mathcal{N}}$$

と書くことにする

ref: 行列と行列式の基

礎 p10

ref: 図で整理!例題で

納得!線形空間入門 p95

一般の基底に関する表現行列

V, W をそれぞれ次元が n, m の線形空間とし、f を V から W への線形写像とする

また、V, W をそれぞれ V, W の基底とする

座標写像が線形同型写像であることは、任意の部分空間が数ベクトル空間 と同型であることを意味していた

よって、V から W への線形写像 f は、数ベクトル空間との線形同型写像 (座標写像) $\Phi_{\mathcal{V}}$, $\Phi_{\mathcal{W}}$ を合成すれば、

$$f' = \Phi_{\mathcal{W}}^{-1} \circ f \circ \Phi_{\mathcal{V}} : \mathbb{R}^n \to \mathbb{R}^m$$

として、数ベクトル空間の間の写像と考えることができる

この合成を図で整理して、次のように表す

$$\begin{array}{ccc}
V & \xrightarrow{f} & W \\
 & & & & \downarrow \\
 & & & & & \downarrow \\
 & \downarrow$$

このような図を図式という

下辺の矢印は、合成写像

$$\Phi_{\mathcal{W}}^{-1} \circ f \circ \Phi_{\mathcal{V}} : \mathbb{R}^n \to \mathbb{R}^m$$

を表していて、この写像は \mathbb{R}^n から \mathbb{R}^m への線形写像である

左下の \mathbb{R}^n から右上の W への 2 通りの合成写像が一致するという意味 で、この図式は可換であるという

数ベクトル空間の間の写像は、行列が定める線形写像であることから、この写像 f は $m \times n$ 型行列 A により表現される

ref: 行列と行列式の基 礎 p104~106

ref: 図で整理!例題で 納得!線形空間入門 p95

~96

$$V \xrightarrow{f} W$$

$$\downarrow^{\Phi_{\mathcal{V}}} \qquad \downarrow^{\Phi_{\mathcal{W}}}$$

$$\mathbb{R}^{n} \xrightarrow{A} \mathbb{R}^{m}$$

座標ベクトルの記法を用いると、写像 f は次で与えられる

$$f: egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}_{\mathcal{V}} \mapsto egin{pmatrix} A egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}_{\mathcal{W}}$$

このように、座標写像を用いることで、V から W への線形写像 f から、 $m \times n$ 型行列が得られるこの行列 A を、基底 V, W に関する f の表現行列というつまり、

基底 \mathcal{V} , \mathcal{W} を固定して考えるときは、f を A と同一視できる

ということになり、このとき、

表現行列は線形写像の「成分表示」

と解釈できる

表現行列の構成

数ベクトル空間の間の線形写像を定める行列は、各基本ベクトル e_j の f による像

$$f(m{e}_j) = m{a}_j = egin{pmatrix} a_{1j} \ a_{2j} \ dots \ a_{mj} \end{pmatrix} \quad (1 \leq j \leq n)$$

ref: 行列と行列式の基 礎 p105

ref: 図で整理!例題で 納得!線形空間入門 p96

~97

を用いて、

$$(f(e_1), \ldots, f(e_n)) = (a_1, \ldots, a_n) = A$$

のように構成された

この表現行列の構成を、部分空間 V, W の基底をそれぞれ $V = \{ \boldsymbol{v}_1, \ldots, \boldsymbol{v}_n \}$, $\mathcal{W} = \{ \boldsymbol{w}_1, \ldots, \boldsymbol{w}_m \}$ として一般化する

このとき、 \mathbf{a}_j は座標写像 Φ_W によって、

$$\Phi_{\mathcal{W}}(\boldsymbol{a}_j) = \sum_{i=1}^m a_{ij} \boldsymbol{w}_i \quad (1 \leq j \leq n)$$

のように W に写される

また、 e_i は座標写像 Φ_{ν} によって、

$$\Phi_{\mathcal{V}}(oldsymbol{e}_j) = \sum_{i=1}^n e_{ij} oldsymbol{v}_i \quad (1 \leq j \leq n)$$

のように V に写されるが、これは $oldsymbol{v}_j$ そのものであるたとえば、j=1 のときは、

$$\Phi_{\mathcal{V}}(oldsymbol{e}_1) = \sum_{i=1}^n e_{i1} oldsymbol{v}_i = oldsymbol{v}_1$$

となる

よって、 $e_i \mapsto a_i$ という写像は、

$$\boldsymbol{v}_i \mapsto \Phi_{\mathcal{W}}(\boldsymbol{a}_i)$$

という V から W への写像 f に対応する (この対応は、可換図式からも明らか)

記号を書き換えると、

$$f(\boldsymbol{v}_j) = \Phi_{\mathcal{W}}(\boldsymbol{a}_j) = \sum_{i=1}^m a_{ij} \boldsymbol{w}_i$$

となり、右辺はさらに、

$$\sum_{i=1}^m a_{ij} oldsymbol{w}_i = (oldsymbol{w}_1, \ldots, oldsymbol{w}_m) egin{pmatrix} a_{1j} \ dots \ a_{mj} \end{pmatrix}$$

と変形できるので、まとめると、

$$(f(\boldsymbol{v}_1),\ldots,f(\boldsymbol{v}_n))=(\boldsymbol{w}_1,\ldots,\boldsymbol{w}_m)A$$

と表せる

線形変換の表現行列

V を n 次元の線形空間とし、f を V の線形変換、すなわち V から V 自 身への線形写像とする

ref: 行列と行列式の基 礎 p106~107

V の基底 V を選ぶとき、次の可換図式によって n 次正方行列 A が定め られる

$$\begin{array}{ccc}
V & \xrightarrow{f} & V \\
 & & \downarrow \\
 &$$

写像の定義される空間と、写す先の空間が同じなので、どちらに対しても 同じ基底を用いることができる

もちろん、考える問題によっては別な基底を用いても構わないが、線形変 換に対しては 1 つの基底を用いるのが自然である

数ベクトル空間の基底変換行列

 $V=\mathbb{R}^n$ とし、標準基底 $oldsymbol{\mathcal{E}}$ によって行列 A で表現される線形変換を f と ref: 行列と行列式の基 する

礎 p108~109

別な基底 V によって f を表現する行列を B とするとき、B をどうやっ て計算すればよいかを考える

B を定める原理は、表現行列の構成で議論したように、

$$(f(\boldsymbol{v}_1),\ldots,f(\boldsymbol{v}_n))=(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n)B$$

ここで、 $m{v}_i$ や $f(m{v}_i)$ は \mathbb{R}^n の元なので、 $(f(m{v}_1),\dots,f(m{v}_n))$ や $(m{v}_1,\dots,m{v}_n)$ は n 次の正方行列であるとみなせる そこで、

$$P = (\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n)$$

とおくとき、次に示すように P は正則行列である

🕹 基底変換行列の正則性 基底の変換行列は正則行列である

P の列ベクトルは基底であるため、線形独立である 列ベクトルの線型独立性による正則の判定で示したように、正則行列 であることは、列ベクトルが線形独立であることと同値である

また、B を決める式

$$(f(\boldsymbol{v}_1),\ldots,f(\boldsymbol{v}_n))=(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n)B$$

の左辺は、次のように書ける

$$(f(\boldsymbol{v}_1), \dots, f(\boldsymbol{v}_n)) = (A\boldsymbol{v}_1, \dots, A\boldsymbol{v}_n)$$

= $A(\boldsymbol{v}_1, \dots, \boldsymbol{v}_n)$
= AP

よって、Bを決める式は、

$$AP = PB$$

となり、P は正則である(逆行列が存在する)ので、両辺に左から P^{-1} をかけて、

$$B = P^{-1}AP$$

が得られる

行列 P は、標準基底 \mathcal{E} から基底 \mathcal{V} への基底変換行列と呼ばれる

★ 行列の相似 正方行列 A, B に対して、正則行列 P が存在して、

$$B = P^{-1}AP$$

が成り立つとき、A と B は<mark>相似</mark>であるという

A と B が相似であるとき、A と B は 1 つの線形変換 f を異なる基底によって表現して得られた行列であるという関係にある

線形空間の基底変換行列

ref: 行列と行列式の基

礎 p110~111