Организация поиска ограниченного по времени тестирования в случае непрерывного распределения вектора случайных параметров

Черыгова Е.Е. - студентка группы 80-204М Наумов А.В. - проф., д.ф.-м.н.

Московский авиационный институт Институт № 8 «Информационные технологии и прикладная математика» Кафедра «Теория вероятностей и компьютерное моделирование»

МАИ, 2020

1. Модели времени ответа пользователя СДО. Непрерывная модель ван дер Линдена

Логарифм времени ответа j-го пользователя на i-е задание имеет вид

$$\ln T_{ij} = \mu + \beta_i + \tau_j + \varepsilon_{ij}, \qquad \sum_{i=1}^{I} \beta_i = 0, \qquad \sum_{j=1}^{J} \tau_j = 0,$$

где T_{ij} - случайная величина, обозначающая время ответа j-го пользователя на i-ю задачу, β_i - параметр сложности задания, τ_j - физиологические особенности пользователя, μ - общая составляющая для всех пользователей и заданий, ε_{ij} - случайное отклонение, $\varepsilon_{ij}\sim N(0,\sigma^2),\ i=\overline{1,I},\ j=\overline{1,J}$ - независимые гауссовские случайные величины. Таким образом

$$T_{ij} \sim LogN(\mu + \beta_i + \tau_j, \sigma^2).$$

2. Модели времени ответа пользователя СДО. Непрерывная модель ван дер Линдена (продолжение)

Оценки параметров модели:

$$\hat{\mu} = \frac{\sum\limits_{j=1}^{J} \sum\limits_{i=1}^{I} \ln t_{ij}}{IJ}, \ \hat{\beta}_i = \frac{\sum\limits_{j=1}^{J} \ln t_{ij}}{J} - \hat{\mu},$$

$$\hat{\tau}_j = \frac{\sum_{i=1}^{I} \ln t_{ij}}{I} - \hat{\mu}, \ \hat{\sigma}^2 = \frac{\sum_{j=1}^{J} \sum_{i=1}^{I} (\ln t_{ij} - \hat{\tau}_j - \hat{\beta}_i - \hat{\mu})^2}{IJ}$$

Логнормальная модель времени ответа j-го пользователя на i-е задание имеет плотность вероятности вида:

$$f(t_{ij}, \hat{\mu}, \hat{\beta}_i, \hat{\tau}_j, \hat{\sigma}) = \frac{1}{t_{ij}\sqrt{2\pi\hat{\sigma}^2}} exp\left\{-\frac{1}{2} \left[\frac{\ln t_{ij} - (\hat{\mu} + \hat{\beta}_i + \hat{\tau}_j)}{\sqrt{\hat{\sigma}^2}}\right]^2\right\}$$

3. Постановка задачи определения оптимального набора ограниченных по времени тестовых заданий

Пусть существует множество $Z=(z_1,\dots,z_I)$ из I заданий, разделенных на M различных типов, I_m - число заданий m-го типа, тогда $\sum\limits_{m=1}^M I_m=I,\ m=\overline{1,M}.$ Для обозначения принадлежности задания к определенному типу введем матрицу A размерности $I\times M$:

$$A = || a_i^m ||, a_i^m = \begin{cases} 1, & z_i \in Z_m, \\ 0, & z_i \notin Z_m. \end{cases}$$

Пусть $u \in R^I$ вектор принадлежности задания к тесту:

$$u_i = egin{cases} 1, & \text{если задача } i \text{ попала в тестовый набор,} \\ 0, & \text{если задача } i \text{ не попала в тестовый набор.} \end{cases}$$

Определим вектор $w \in R^I$, i-я координата которого является сложностью i-го задания. Пусть c - суммарная сложность теста и k - количество заданий в тесте, $k \geqslant M$.

Пусть в тестировании участвуют N пользователей. Обозначим через T_i^n случайное время, которое потребуется пользователю n, на решение i задачи, где $i=\overline{1,I},\;n=\overline{1,N},\;T_i^n\sim LogN(\hat{\mu}+\hat{\beta}_i+\hat{\tau}_n,\hat{\sigma}^2).$ Рассмотрим матрицу T размерности $N\times I$:

$$T = \parallel T_i^n \parallel.$$

Будем предполагать, что случайные величины T_i^n являются независимыми.

Пусть общее время на выполнение теста неизвестно. Обозначим его через φ . Рассмотрим функцию квантили:

$$\Phi_{\alpha}(u) \stackrel{\triangle}{=} min\{\varphi \in R^1 : P\{\max_{n=\overline{1,N}} T_n u \leqslant \varphi\} \geqslant \alpha\}, \tag{1}$$

где T_n , n-я строка матрицы T.

В случае логнормального распределения времени ответа студентов, получить точное значение квантили заданного уровня не представляется возможным.

Преодолеть указанный недостаток предлагается использованием гамма-распределения в качестве модели времени ответа пользователя на задание, так как плотности вероятности логнормального и гамма-распределений имеют схожие структуры, и гамма-распределение обладает следующим свойством: Если Θ_1,\dots,Θ_I - независимые CB, такие что $\Theta_i\sim \Gamma(k_i,\theta),\ i=\overline{1,I},$ то

$$\vartheta = \sum_{i=1}^{I} \Theta_i \sim \Gamma(\sum_{i=1}^{I} k_i, \theta).$$

Необходимо подобрать параметр θ таким образом, чтобы он был одинаковым для всех задач, и при этом для максимального количества заданий принималась бы гипотеза о гамма-распределении времени ответа пользователя на это задание.

6. Постановка задачи. Алгоритм подбора параметров гамма-распределения.

0. Зафиксировать номер пользователя n и положить

$$\theta_n^* = 0, k_{in}^* = 0, S = 0, m = 0,$$

где θ_n^* - искомое значение параметра гамма-распределения, k_{in}^* - искомое значение второго параметра распределения, S - число задач, для которых принимается гипотеза о гамма-распределении, m - счётчик.

 $1.\ \forall i=\overline{1,I}$ сгенерировать выборки $t^
u_{in}$ CB T^n_i объёма u и методом максимального правдоподобия найти оценки $\widehat{ heta}_{in}$ параметра $heta_n$. Положить

$$\begin{split} \widehat{\theta}_{min\ n} &= \min_{i = \overline{1,I}} \{\widehat{\theta}_{in}\},\ \widehat{\theta}_{max\ n} = \max_{i = \overline{1,I}} \{\widehat{\theta}_{in}\},\\ h &= \frac{\widehat{\theta}_{max\ n} - \widehat{\theta}_{min\ n}}{I},\ \theta^m_n = \widehat{\theta}_{min\ n} - h, \end{split}$$

где h - шаг для варьирования $heta_n$, L - число шагов дискретизации.

2.
$$m:=m+1, \theta_n^m=\theta_n^{m-1}+h, \widehat{k}_{in}=rac{ar{t}_{in}^{
u}}{ heta_{in}^m},$$
 где $ar{t}_{in}^{
u}$ - выборочное MO.

- $3.\ \forall i=\overline{1,I}$ проверить гипотезу $H_0=t_{in}\sim \Gamma(\widehat{k}_{in},\theta_n^m)$ с помощью критерия Пирсона на выбранном уровне доверительной вероятности $1-\alpha$. Если число принятых гипотез S'>S, то положить $S=S',\theta_n^*=\theta_n^m,k_{in}^*=\widehat{k}_{in},i=\overline{1,I}$.
- \dot{a} . Если $m \leqslant L-1$, то перейти к шагу 2.
- 5. Окончание работы алгоритма.

Пусть $\Theta^n_i \sim \Gamma(\hat{k}_{in},\hat{\theta}_n)$, где Θ^n_i - случайное время, которое потребуется пользователю n на решение i задачи. Введём матрицу Θ размерности $N \times I$:

$$\Theta = \parallel \Theta_i^n \parallel$$
 .

В предположении, что случайные величины Θ_i^n являются независимыми, функция квантили (1) примет вид:

$$\Phi_{\alpha}(u) \stackrel{\triangle}{=} min\{\varphi \in R^{1} : P\{\max_{n=\overline{1,N}} \Theta_{n}u \leqslant \varphi\} \geqslant \alpha\},$$
 (2)

где $\Theta_n,\ n-$ я строка матрицы $\Theta.$

В силу свойств гамма-распределения, функцию в (2) можно записать в виде:

$$\Phi_{\alpha}(u) \stackrel{\triangle}{=} min\{\varphi \in R^{1} : P\{\vartheta_{1} \leqslant \varphi, \dots, \vartheta_{N} \leqslant \varphi\} \geqslant \alpha\} =$$

$$= min\{\varphi \in R^{1} : F_{\vartheta_{1}}(\varphi) \cdot \dots \cdot F_{\vartheta_{N}}(\varphi) \geqslant \alpha\}, \tag{3}$$

где
$$\vartheta_n = \Theta_n \cdot u, \ \vartheta_n \sim \Gamma(\hat{k}_n^T \cdot u, \ \hat{\theta}_n), \ n = \overline{1,N}$$
 - независимые CB, $\hat{k}_n = (\hat{k}_{1n},\ldots,\hat{k}_{In})^T, \ n = \overline{1,N}$.

$$u_{\alpha} = Arg \min_{u \in \{0,1\}^{I}} \left(\gamma \frac{\mid c - w^{T}u \mid}{\varepsilon} + (1 - \gamma) \frac{\Phi_{\alpha}(u)}{2700} \right), \tag{4}$$

$$\varphi_{\alpha} = \min_{u \in \{0,1\}^{I}} \left(\gamma \frac{\mid c - w^{T}u \mid}{\varepsilon} + (1 - \gamma) \frac{\Phi_{\alpha}(u)}{2700} \right), \tag{5}$$

$$c - w^T u \leqslant \varepsilon, \tag{6}$$

$$w^T u - c \leqslant \varepsilon, \tag{7}$$

$$A^T u \geqslant e_M, \tag{8}$$

$$e^T u = k, (9)$$

где $(\cdot)^T$ - операция транспонирования, $\gamma \in [0,1]$ - весовой коэффициент, $\alpha \in (0,1)$ - заданный уровень доверительной вероятности, $e \in R^I$, $e = (1,\dots,1)^T$, $e_M \in R^M$, $e_M = (1,\dots,1)^T$.

10. Алгоритм поиска оптимального набора заданий

1. Составить множество \overline{U} всех u, удовлетворяющих неравенствам (6) - (9):

$$\overline{U} \stackrel{\triangle}{=} \{u \in R^I : c - w^T u \leqslant \varepsilon, w^T u - c \leqslant \varepsilon, A^T u \geqslant e_M, e^T u = k, u \in \{0,1\}^I\};$$

2. Для каждого $u^s \in \overline{U}$ найти

$$\varphi_s^* \triangleq \min\{\varphi \in R^1 : F_{\vartheta_1}(\varphi) \cdot \ldots \cdot F_{\vartheta_N}(\varphi) \geqslant \alpha\}, \ n = 1, \ldots, N,$$

$$\psi_s^* = \gamma \frac{|c - w^T u^s|}{\varepsilon} + (1 - \gamma) \frac{\varphi_s^*}{2700}$$

- 3. Среди всех ψ_s^* выбираем наименьшее $(\psi_{s^*}^*)$;
- 4. Полагаем решение исходной задачи (3)-(9) равным $u^{s^*}, \psi_{s^*}^*, \varphi_{s^*}^*.$

11. Результаты численного эксперимента

Таблица 1 Наборы заданий для минимальных значений критериальной функции для разных значений допустимых отклонений от суммарной сложности теста

	Кол-во	$\gamma = 0$			$\gamma = 0.5$			$\gamma = 1$		
ε	реш-й, удовл. дет. огр.	φ^* (минуты)	ψ*	Номера заданий, вошедших в тест	φ^* (минуты)	ψ*	Номера заданий, вошедших в тест	<i>φ</i> * (минуты)	ψ*	Номера заданий, вошедших в тест
0.001	7	23.3651	0.5192	$z_6^1, z_1^2, z_2^2, z_9^2, z_5^3$	33.5329	0.5226	$z_6^1, z_{10}^1, z_5^2, z_6^3, z_7^3$	34.7905	0.3000	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$
								33.5329	0.3000	$z_6^1, z_{10}^1, z_5^2, z_6^3, z_7^3$
0.002	21	23.3651	0.5192	$z_6^1, z_1^2, z_2^2, z_9^2, z_5^3$	33.5329	0.5226	$z_6^1, z_{10}^1, z_5^2, z_6^3, z_7^3$	34.7905	0.1500	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$
								33.5329	0.1500	$z_6^1, z_{10}^1, z_5^2, z_6^3, z_7^3$
0.003	30	22.0362	0.4897	$z_7^1, z_{10}^1, z_1^2, z_4^2, z_5^3$	23.3651	0.3929	$z_6^1, z_1^2, z_2^2, z_9^2, z_5^3$	34.7905	0.1000	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$
								33.5329	0.1000	$z_6^1, z_{10}^1, z_5^2, z_6^3, z_7^3$
0.004	35	22.0362	0.4897	$z_7^1, z_{10}^1, z_1^2, z_4^2, z_5^3$	23.3651	0.3929	$z_6^1, z_1^2, z_2^2, z_9^2, z_5^3$	34.7905	0.0750	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$
								33.5329	0.0750	$z_6^1, z_{10}^1, z_5^2, z_6^3, z_7^3$
0.005	40	22.0362	0.4897	$z_7^1, z_{10}^1, z_1^2, z_4^2, z_5^3$	23.3651	0.3929	$z_6^1, z_1^2, z_2^2, z_9^2, z_5^3$	34.7905	0.0600	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$
								33.5329	0.0600	$z_6^1, z_{10}^1, z_5^2, z_6^3, z_7^3$

12. Результаты численного эксперимента (продолжение)

Таблица 2 Подбор оптимального набора заданий для $\varepsilon = 0.005$ и различных значений весового коэффициента γ

	Значение	Значение	Номера заданий,		Значение
γ	квантили φ^*	квантили φ^*	вошедших	$ c-w^Tu^* $	критерия
	(секунды)	(минуты)	в тест		ψ^*
0	1322.1736	22.0362	$z_7^1, z_{10}^1, z_1^2, z_4^2, z_5^3$	0.0024	0.4897
0.1	1401.9066	23.3651	$z_6^1, z_1^2, z_2^2, z_9^2, z_5^3$	0.0008	0.4833
0.2	1401.9066	23.3651	$z_6^1, z_1^2, z_2^2, z_9^2, z_5^3$	0.0008	0.4474
0.3	1401.9066	23.3651	$z_6^1, z_1^2, z_2^2, z_9^2, z_5^3$	0.0008	0.4115
0.4	1401.9066	23.3651	$z_6^1, z_1^2, z_2^2, z_9^2, z_5^3$	0.0008	0.3755
0.5	1401.9066	23.3651	$z_6^1, z_1^2, z_2^2, z_9^2, z_5^3$	0.0008	0.3396
0.6	1401.9066	23.3651	$z_6^1, z_1^2, z_2^2, z_9^2, z_5^3$	0.0008	0.3037
0.7	2011.9718	33.5329	$z_6^1, z_{10}^1, z_5^2, z_6^3, z_7^3$	0.0003	0.2656
0.8	2011.9718	33.5329	$z_6^1, z_{10}^1, z_5^2, z_6^3, z_7^3$	0.0003	0.1970
0.9	2011.9718	33.5329	$z_6^1, z_{10}^1, z_5^2, z_6^3, z_7^3$	0.0003	0.1285
1	2011.9718	33.5329	$z_6^1, z_{10}^1, z_5^2, z_6^3, z_7^3$	0.0003	0.0600
	2087.4279	34.7905	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0.0003	0.0600

13. Результаты численного эксперимента (продолжение)

Рисунок 1 Квантили времени выполнения подобранных тестов в зависимости от γ для $\varepsilon=0.005$

14. Основные результаты работы

- предложена постановка задачи формирования теста заданного уровня сложности с минимальным временем выполнения для группы студентов, задача сформулирована в терминах одноэтапной задачи квантильной оптимизации;
- представлен алгоритм решения сформулированной задачи, основанный на её декомпозиции;
- получены результаты численного эксперимента, подтверждающие адекватность предложенной модели;
- опубликована статья в журнале «Вестник компьютерных и информационных технологий» и тезисы в сборниках докладов «XLV Гагаринских чтений», 17-й и 18-й Международной конференции «Авиация и космонавтика».