Analytical Method for First Order Rayleigh Scattering in CBCT Application

PHYS 4250 Project report

Yutong Zhao

Computed Tomography (CT) & Cone beam CT (CBCT)

CT: 2-D Picture CBCT:3-D Structure

Medical Imaging System

• Application:

Image Guided Radiotherapy (figure)

Tumor & Trauma Diagnosis
Nondestructive testing

Motivation

• Scatter correction in CBCT provide better anatomical image quality.

Current problem

• Scattering induced noise[1]

Campton scattering (solved)

Rayleigh scattering

(remain to be solved)

Radiation Interaction

Rayleigh scattering
 Energy range

Rayleigh Scattering[2]

• Scattering theory:

$$N_{S}(\theta,E) = N_{0}n_{S.c}\frac{d\sigma}{d\Omega}(\theta,E)\Delta\Omega$$
Detected Signal X-ray Intensity Differential Solid angle Cross section of detector

Differential Cross Section

$$\frac{d\sigma}{d\Omega} = \int_{2}^{r_0^2} (1 + \cos^2\theta) F_M^2(x)$$

Constant

Material Form Factors[2]

$$F_M^2(x) = W \times \sum \frac{\omega_i}{M_i} F^2(x, Z_i)$$

Chemical composite

Atomic Form Factors [3]

Transfered momentum: (in unit Å)

$$x(E,\theta) = \frac{E}{m_0 c^2} \sin\left(\frac{\theta}{2}\right)$$

Atomic Form Factors

Material Chemical Formulas (EGS data)

Human tissue/(mass fraction)		Water	Human Lung	Human Bone
Elements	Density $(g \cdot cm^{-3})$	1.0	0.26	1.85
Н		0.112	0.103	0.063984
C			0.105	0.278
N			0.031	0.027
О		0.888	0.749	0.410016
Na			0.002	
Mg				0.002
P			0.002	0.07
S			0.003	0.002
C1			0.003	
K			0.002	
Ca				0.147

Form Factor interpolation

Database #1

Mass attenuation coefficients and

interpolation

Simulation Setup (Parallel beam Geometry)

Simulation setup

MATLAB code

• main_r_1stScatteredFluence.m

Verification using Monte-Carlo method

- AMCcomparison.m
- Monte Carlo simulation
 - Modified Dosxyznrc user code (EGSnrc package)

Simulation phantom (Water)

Simulation Results (Water)

Compare with Monte-Carlo Method

Simulation phantom (half water half lung)

Simulation Results

Compare with Monte-Carlo Method

Discussion

• Limit 1: We do not have experiment data to validate our results.

• Limit 2: The X-ray is parallel. We need to generalize to divergent beam.

• Limit 3: Only apply to singly scatter.

Conclusion

• 1. A reliable analytical method for Rayleigh scattering has been build under parallel beam geometry.

- 2. Time-saving by utilizing pre-calculations (3.6s compare to 7 hours)
- 3. Combining with Compton scattering method, the total singly scattered fluence pattern can be obtained.

• 4. Beneficial to first order scatter correction in CBCT reconstruction

Thatsions?!

Reference

- [1] J. H. Siewerdsen and D. A. Jaffray, "Cone-beam computed tomography with a at-panel imager: Magnitude and effects of x-ray scatter," *Medical physics*, vol. 28, no. 2, pp. 220-231, 2001.
- [2]. H. Ingleby, J. Lippuner, D. W. Rickey, Y. Li, and I. Elbakri, "Fast analytical scatter estimation using graphics processing units," *Journal of X-ray science and technology*, vol. 23, no. 2, pp. 119-133, 2015.
- [3]. Hubbell, J. H., Veigele, W. J., Briggs, E. A., Brown, R. T., Cromer, D. T., & Howerton, R. J. "Atomic form factors, incoherent scattering functions, and photon scattering cross sections." *Journal of physical and chemical reference data* vol.4, no.3 pp.471-538,1975.