

NUCL 511 Nuclear Reactor Theory and Kinetics

Lecture Note 10

Prof. Won Sik Yang

Purdue University
School of Nuclear Engineering

Reactivity Feedback Mechanism

- What is reactivity feedback?
 - Reactivity change induces changes in thermal condition which can affect back to the reactivity

 thermal feedback
- Feedback Mechanism

- Prompt feedback
 - Occurs immediately due to fuel temperature change
- Delayed feedback
 - Heat conduction to coolant takes time
 - Caused by coolant density change (thermal expansion) which changes moderation or leakage

Doppler Broadening

- The laboratory cross section should be defined to agree with the observed reaction rate.
 - The cross section is determined by the relative speed, as opposed to the laboratory speed of neutron
 - The Doppler broadened cross section will not generally be the same as the cold cross section
- If $P(\vec{V})d\vec{V}$ is the probability at temperature T that a nucleus (or atom) has velocity \vec{V} within $d\vec{V}$ about \vec{V} , the observed reaction rate that a neutron with velocity \vec{V} will collide with a nucleus is

$$R(v,T) = v\sigma(v,T) = \int [v_r \sigma(v_r,0)] P(\vec{V}) d\vec{V}$$

If the velocity distribution of the target nuclei is isotropic, we have

$$P(\vec{V})d\vec{V} = \frac{1}{4\pi}P(V)dVd\mu d\varphi$$

$$\sigma(v,T) = \frac{1}{2v} \int_{-1}^{1} d\mu \int_{0}^{\infty} dV[v_{r}\sigma(v_{r},0)]P(V)$$

Doppler Broadened U-238 Total XS

Free Gas Model

The relative speed can be written as

$$v_r = |\vec{v} - \vec{V}| = (v^2 + V^2 - 2vV\mu)^{1/2}$$

The Jacobian transformation from the cosine of scattering angle to the relative speed is given by

$$d\mu = v_r dv_r / vV$$

■ Changing the integration variable from μ to ν_r , we have

$$\sigma(v,T) = \frac{1}{2v^2} \int_{|v-V|}^{v+V} [v_r \sigma(v_r, 0)] v_r dv_r \int_0^{\infty} P(V) \frac{dV}{V}$$
$$= \frac{1}{2v^2} \int_0^{\infty} [v_r \sigma(v_r, 0)] v_r dv_r \int_{|v-v_r|}^{v+v_r} P(V) \frac{dV}{V}$$

For the Maxwellian monatomic (or free) gas model, the distribution of nuclei speed is given by

$$P(V)dV = 4\pi \left(\frac{a}{\pi}\right)^{3/2} V^2 e^{-aV^2} dV; \quad a = \frac{M}{2kT}$$

Doppler Broadened Cross Section

The Doppler broadened cross section is obtained as

$$\sigma(v,T) = \frac{2a^{3/2}}{\sqrt{\pi}v^2} \int_0^\infty [v_r \sigma(v_r, 0)] v_r dv_r \int_{|v-v_r|}^{v+v_r} V e^{-aV^2} dV$$

$$= \frac{a^{1/2}}{\sqrt{\pi}v^2} \int_0^\infty [v_r \sigma(v_r, 0)] v_r \left[e^{-a(v-v_r)^2} - e^{-a(v+v_r)^2} \right] dv_r$$

This can be rewritten in terms of energy as

$$\sigma(E,T) = \frac{\alpha^{1/2}}{2\sqrt{\pi}E} \int_0^\infty \left[\sqrt{E_r}\sigma(E_r,0)\right] \left[e^{-\alpha(\sqrt{E}-\sqrt{E_r})^2} - e^{-\alpha(\sqrt{E}+\sqrt{E_r})^2}\right] dE_r$$

$$E = \frac{1}{2}mv^2; \quad E_r = \frac{1}{2}mv_r^2; \quad \alpha = \frac{2a}{m} = \frac{M}{mkT} = \frac{A}{kT}$$

For large $\alpha \sqrt{EE_r}$ (~ AE/kT), the second exponential can be ignored, compared to the first

$$\sigma(E,T) = \frac{\alpha^{1/2}}{2\sqrt{\pi}E} \int_0^\infty \left[\sqrt{E_r}\sigma(E_r,0)\right] e^{-\alpha(\sqrt{E}-\sqrt{E_r})^2} dE_r$$

Single Level Breit-Wigner Formula

Doppler broadened cross section

$$\sigma(E,T) = \frac{1}{\Delta\sqrt{\pi E}} \int_{-\infty}^{\infty} [\sqrt{E_r} \sigma(E_r)] e^{-[(E_r - E)/\Delta]^2} dE_r$$

$$\Delta = \left(\frac{4kTE}{A}\right)^{1/2}$$
 (Doppler width)

Single level Breit-Wigner formula

$$\sigma_a(E_r) \approx \sigma_0 \frac{\Gamma_a}{\Gamma} \frac{1}{1+w^2} \quad (a=\gamma, f)$$

$$\sigma_n(E_r) \approx 4\pi a^2 + \sigma_0 \frac{\Gamma_n}{\Gamma} \frac{1}{1+w^2} + \sigma_0 ka \frac{2w}{1+w^2}$$

$$w = \frac{E_r - E_0}{\Gamma / 2}$$

$$\sigma_0 = \frac{4\pi}{k^2} g_J \frac{\Gamma_n}{\Gamma}$$
 (resonance peak), $k = \frac{2\pi}{\lambda}$ (wave number)

0.5

2

Doppler Broadened Line Shape Functions

Doppler broadened cross sections

$$\sigma_{a}(E,T) = \sigma_{0} \frac{\Gamma_{a}}{\Gamma} \sqrt{\frac{E_{0}}{E}} \psi(x,\xi), \quad (a = \gamma, f)$$

$$\sigma_{n}(E,T) = 4\pi a^{2} + \sigma_{0} \frac{\Gamma_{n}}{\Gamma} \psi(x,\xi) + 2\sigma_{0} ka \chi(x,\xi)$$

$$x = \frac{E - E_{0}}{\Gamma/2}, \quad \xi = \frac{\Gamma}{\Delta}, \quad \sqrt{\frac{E_{0}}{E}} \approx 1$$

 Symmetric and anti-symmetric Doppler broadened line shape functions

$$\psi(x,\xi) = \frac{\xi}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{1}{1+w^2} \exp\left[-\frac{\xi^2}{4}(x-w)^2\right] dw$$

$$\chi(x,\xi) = \frac{\xi}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{w}{1+w^2} \exp\left[-\frac{\xi^2}{4}(x-w)^2\right] dw$$

$$\sqrt{E_r} \approx \sqrt{E_0}$$

Psi-Chi Functions

Doppler broadened line shape functions can be represented as convolution integrals of Lorentzian L and Gaussian kernel G as

$$\psi(x,\xi) = \int_{-\infty}^{\infty} L(w)G(x-w;\xi)dw = L(x)*G(x,\xi)$$

$$\chi(x,\xi) = \int_{-\infty}^{\infty} 2wL(w)G(x-w,\xi)dw = [2xL(x)]*G(x,\xi)$$

$$L(x) = \frac{1}{1+x^2} \text{ (natural line shape)}, \quad G(x,\xi) = \frac{\xi}{2\sqrt{\pi}} \exp\left(-\frac{\xi^2}{4}x^2\right) \text{ (pure Doppler shape)}$$

At a very low temperature ($\xi = \Gamma_t / \Delta >> 1$), the Doppler broadened line shapes reduce to the natural line shapes

$$\lim_{\xi \to \infty} \psi(x, \xi) = \int_{-\infty}^{\infty} L(w)\delta(x - w)dw = L(x), \quad \lim_{\xi \to \infty} \psi(x, \xi) = \int_{-\infty}^{\infty} 2wL(w)\delta(x - w)dw = 2xL(x)$$

At a very high temperature ($\xi = \Gamma_t / \Delta << 1$), the Doppler broadened line shapes reduce to the pure Doppler shapes

$$\lim_{\xi \to 0} \psi(x,\xi) = \frac{\xi\sqrt{\pi}}{2} \int_{-\infty}^{\infty} \delta(t) \exp\left[-\frac{1}{4}(\xi x - t)^2\right] dt = \pi G(x,\xi)$$

$$\lim_{\xi \to 0} \chi(x, \xi) = \sqrt{\pi} \int_{-\infty}^{\infty} \delta(t) t \exp\left[-\frac{1}{4} (\xi x - t)^2\right] dt = 0$$

Self-Shielding Factor

Group-averaged cross section is computed

$$\sigma_{xg}^{i}(T,\sigma_{b}) = \frac{\int_{g} \sigma_{x}^{i}(E,T)\phi_{i}(E,T,\sigma_{b})dE}{\int_{g} \phi_{i}(E,T,\sigma_{b})dE} = \frac{\int_{g} \sigma_{x}^{i}(E,T)C(E)/[\sigma_{b} + \sigma_{t}^{i}(E,T)]dE}{\int_{g} C(E)/[\sigma_{b} + \sigma_{t}^{i}(E,T)]dE}$$

■ Traditional J-integral approach for SLBW resonances

$$I_k^i(T, \sigma_b) = C \int \frac{\sigma_t^i(E, T)}{\sigma_b + \sigma_t^i(E, T)} dE = C \frac{\Gamma}{2} \int \frac{\sigma_0^i \psi(x, \xi)}{\sigma_b + \sigma_0^i \psi(x, \xi)} dx = C \Gamma J(\beta, \xi)$$

$$J(\xi, \beta) = \int_0^\infty \frac{\psi(x, \xi)}{\beta + \psi(x, \xi)} dx, \quad \beta = \frac{\sigma_b}{\sigma_o^i}$$

$$\lim_{\beta \to \infty} J(\xi, \beta) = \frac{1}{2\beta} \int_{-\infty}^{\infty} \psi(x, \xi) dx = \frac{\pi}{2\beta}$$

Self-shielding factor

$$f(T, \sigma_b) = \frac{\sigma(T, \sigma_b)}{\sigma(0, \infty)} \approx \frac{2\beta}{\pi} J(\xi, \beta)$$

Background Cross Section Dependence

- Absorption decreases with increasing background cross section
 - Self-shielding factor increases

$$\frac{\partial J}{\partial \beta} = -\int_{0}^{\infty} \frac{\psi(x,\xi)}{\left[\beta + \psi(x,\xi)\right]^{2}} dx < 0$$

$$\frac{\partial f}{\partial \beta} = \frac{\partial}{\partial \beta} \left[\frac{2\beta}{\pi} J \right] = \frac{2}{\pi} \left[J + \beta \frac{\partial J}{\partial \beta} \right] = \int_{0}^{\infty} \left[\frac{\psi(x, \xi)}{\beta + \psi(x, \xi)} \right]^{2} dx > 0$$

Temperature Dependence

- Absorption increases with increasing temperature
 - Reactivity decreases and thus the Doppler coefficient is negative

$$\frac{\partial J}{\partial \xi} = \int_{0}^{\infty} \frac{\beta}{\left[\beta + \psi(x,\xi)\right]^{2}} \frac{\partial \psi}{\partial \xi} dx = \int_{0}^{x_{\xi}} f(x) \frac{\partial \psi}{\partial \xi} dx - \int_{x_{\xi}}^{\infty} f(x) \left| \frac{\partial \psi}{\partial \xi} \right| dx$$

$$< f(x_{\xi}) \int_{0}^{x_{\xi}} \frac{\partial \psi}{\partial \xi} dx - f(x_{\xi}) \int_{x_{\xi}}^{\infty} \left| \frac{\partial \psi}{\partial \xi} \right| dx = f(x_{\xi}) \int_{0}^{\infty} \frac{\partial \psi}{\partial \xi} dx = 0$$

$$\frac{\partial}{\partial T} J(\xi, \beta) = \frac{\partial J}{\partial \xi} \frac{d\xi}{dT} = -\frac{\Gamma_{t}}{2} \left(\frac{A}{4kE} \right)^{1/2} T^{-3/2} \frac{\partial J}{\partial \xi} > 0$$

$$0.3$$

$$\frac{\partial}{\partial \xi} dx = 0$$

$$0.3$$

$$0.2$$

$$0.15$$

$$0.05$$

$$0.05$$

- Self-shielding effect decreases with increasing temperature
 - Self-shielding factor increases

$$\frac{\partial f}{\partial T} = \frac{\partial}{\partial \xi} \left[\frac{2\beta}{\pi} J \right] \frac{d\xi}{dT} = -\frac{\beta \Gamma_t}{\pi} \left(\frac{A}{4kE} \right)^{1/2} T^{-3/2} \frac{\partial J}{\partial \xi} > 0$$

Low Temperature

- At a very low temperature, $\xi >> 1$ and the Doppler broadened line shape reduces to the natural line shape.
- In this case, the J function and self-shielding factor become

$$\lim_{\xi \to \infty} J(\xi, \beta) = \int_0^\infty \frac{L(x)}{\beta + L(x)} dx = \frac{1}{\beta} \int_0^\infty \frac{dx}{(1 + \beta^{-1}) + x^2} = \frac{\pi}{2\beta (1 + \beta^{-1})^{1/2}}$$

$$f(\infty, \beta) = \left(\frac{\beta}{1+\beta}\right)^{1/2} \approx \begin{cases} \sqrt{\beta} & \text{for small } \beta \\ 1 - \frac{1}{2\beta} & \text{for large } \beta \end{cases}$$

- This eliminates the temperature dependence from the self-shielding factor.
 - The resonance is un-broadened and has its maximum height.
 - This leads to the strongest self-shielding and thus to the smallest value of the self-shielding factor

High Resonances at Low Energies

- For high resonances (β <<1) at low energies, the integrand of the J function is close to 1 for the high part of the resonance. The integrand decreases on the resonance wings, becomes equal to 1/2 where $\psi(x_{\beta}, \xi) = \beta$, and vanishes asymptotically.
 - The J integral can be approximated by the area of the rectangle of height 1 and width x_{β}
 - x_{β} can be determined from the approximation for dominating Doppler broadening

$$\beta = \psi(x_{\beta}, \xi) \approx \frac{\sqrt{\pi}\xi}{2} \exp\left(-\frac{\xi^2}{4}x_{\beta}^2\right)$$

$$J(\xi, \beta) \approx x_{\beta} \approx \frac{2}{\xi} \sqrt{\ln \frac{\sqrt{\pi} \xi}{2\beta}} \propto \frac{1}{\xi} \propto \sqrt{T}, \quad \frac{\partial}{\partial T} J(\xi, \beta) \propto \frac{1}{\sqrt{T}}$$

Since high resonances dominate in the 1/E spectrum of thermal reactors, the resonance integral in thermal reactors depends on temperature through a \sqrt{T} term, and the Doppler coefficient has a temperature dependence as $1/\sqrt{T}$

Low Resonances at High Energies

■ For resonances which are much lower than the potential cross section, $\beta >> \psi$ and hence the J function can be approximated as

$$J(\xi,\beta) = \int_0^\infty \frac{\psi}{\beta + \psi} dx = \frac{1}{\beta} \int_0^\infty \frac{\psi}{1 + (\psi/\beta)} dx \approx \frac{1}{\beta} \int_0^\infty \psi \left(1 - \frac{\psi}{\beta}\right) dx = \frac{\pi}{2\beta} - \frac{\pi}{4\beta^2} \psi(0,\sqrt{2}\xi)$$

For low resonances at high energies, Doppler broadening generally dominates ($\xi >> 1$) and hence

$$\psi(x,\xi) \approx \pi G(x,\xi) = \frac{\xi\sqrt{\pi}}{2} \exp\left(-\frac{1}{4}\xi^{2}x^{2}\right) \implies \psi(0,\sqrt{2}\xi) \approx \sqrt{\frac{\pi}{2}}\xi = \frac{\sqrt{\pi}\Gamma_{t}}{\sqrt{2}} \left(\frac{A}{4kE}\right)^{1/2} \frac{1}{\sqrt{T}}$$

$$\frac{\partial}{\partial T} J(\xi,\beta) \approx \left(\frac{\pi}{2}\right)^{3/2} \frac{\Gamma_{t}}{4} \left(\frac{A_{t}}{4kE}\right)^{1/2} \left(\frac{N_{t}\sigma_{m}^{k}}{\Sigma_{p}}\right)^{2} T^{-3/2}$$

- In the very hard spectrum of small fast reactors, the temperature dependence is determined by the $T^{-3/2}$ contributions of the high energy resonances.
- In the relatively soft neutron spectra of large ceramic fueled fast reactors, it is between the two limiting cases of high resonances $(T^{-3/2})$ and low resonances $(T^{-1/2})$.
- A simple analytical evaluation of the medium height resonances is not feasible. A numerical evaluation of the high, medium, and low resonance contributions to the Doppler coefficient in large fast reactors yields an approximate proportionality to T⁻¹

Moderator Effects

- Change in moderator temperature induces changes in moderator density and scattering kernel
- Fuel-to-moderator ratio in under-moderated region for negative MTC
 - $T_m \uparrow \Rightarrow d_m \downarrow \Rightarrow$ spectrum hardening \Rightarrow resonance absorption $\uparrow \Rightarrow \rho \downarrow$
 - In PWR, $d_m \downarrow \Rightarrow$ boron concentration $\downarrow \Rightarrow \rho \uparrow$
 - MTC becomes less negative as boron concentration increases
 - Boron concentration is limited since MTC can be positive at very high concentration (2500 ppm)

Moderator Temperature Coefficient of PWR

 MTC becomes more positive with boron concentration because of larger reduction in poison content from reduced density (increased temperature)

- MTC becomes more negative with burnup primarily because of the reduction in boron concentration with burnup
- Large negative value would be limiting for a cold water injection incidence
- MTC becomes more negative with control rod insertion because of hardened neutron spectrum and increased leakage

Fuel Temperature and Power Coefficients of PWR

- Magnitude of fuel temperature coefficient decreases with increasing fuel temperature
- Becomes more negative with burnup because of Pu-240 contribution

- Power reactivity coefficient must be negative under all operating conditions
- Coefficient becomes more negative with burnup because of the MTC contribution

Reactivity Feedback Coefficients of BWR

- Coolant temperature coefficient is valid in the core heat-up range
- Void coefficient is valid in the power range of operation

Reactivity Feedback Coefficients of SFR

- The reactivity coefficients and kinetic parameters further define the physics of system
 - Response to a variety of perturbations
- Feedback coefficients are computed for a specific design (geometric and material) configuration
 - Typically evaluated for BOEC and EOEC compositions
- Typical set of whole-core reactivity coefficients
 - Delayed neutron fraction and prompt neutron lifetime
 - Coolant density coefficient and void worth
 - Fuel and structural Doppler coefficient
 - Fuel and structural worth distributions
 - Axial expansion
 - Radial expansion
 - Control rod driveline expansion
- Hummel and Okrent Reactivity Coefficients in Large Fast Power Reactors, ANS, 1970 is a good reference for underlying physics

Neutron Balances of Radial and Axial Expansions

	Base Case	Radial Expansion		Axial Expansion	
	balance	balance	Δρ (%)	balance	Δρ (%)
Fission source	100.00	100.00		100.00	
(n,2n) source	0.18	0.18		0.18	
Absorption	68.89	68.93	-0.04	69.06	-0.17
Leakage	31.54	32.16	-0.63	31.69	-0.16
Radial	17.49	17.72	-0.23	17.65	-0.15
Axial	14.05	14.45	-0.40	14.04	0.01
Sum			-0.67		-0.33

- To first order, radial expansion is an axial leakage effect, and axial expansion is a radial leakage effect
- Because the height is the shorter dimension (more axial than radial leakage), the radial expansion coefficient is more negative
- Axial expansion also give absorption effect from control rod insertion

Coolant Density and Void Coefficients

- Spectral effect
 - Reduced moderation as sodium density decreases
 - In fast regime, this is a positive reactivity effect
 - From Pu-239 excess neutrons and threshold fission effects
- Leakage effect
 - Sodium density reduction allows more neutron leakage
 - This is a negative reactivity effect in the peripheral regions
- Capture effect
 - Sodium density decrease results in less sodium capture
 - This is a relatively minor effect
- Coolant density coefficient is computed by first-order perturbation theory to evaluate small density (temperature variation) impacts
- Void worth is evaluated using exact perturbation theory to account for shift in flux distribution for voided condition
 - In general, 10% more positive than the first-order density worth

Sodium Void Worth by Components (\$)

		Capture	Spectral	Leakage	Total
1000 MWt ABR	ВОС	0.5	9.1	-5.2	4.4
(startup metal core)	EOC	0.5	9.9	-5.5	4.9
250 MWt ABTR	вос	0.4	6.4	-5.8	1.0
(startup metal core)	EOC	0.4	6.6	-5.8	1.1

- Flowing sodium was voided in active and above-core regions
- Void worth tends to increase with core size
- However, difficult to conceive transient situations that reach boiling
 - Low pressure system
 - More than 300°C margin to boiling
 - Other feedbacks are negative, inhibiting this temperature increase
- Extensive report on void worth reduction Khalil and Hill, NS&E, 109 (1995)

