

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiese: COMMISSIONER FOR PATENTS FO Box 1450 Alexandra, Virginia 22313-1450 www.webje.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.	
10/517,377	12/10/2004	Takayuki Furuta	043082	4713	
98834 7590 04/21/2010 WESTERMAN, HATTORI, DANIELS & ADRIAN, LLP 1250 CONNECTICUT A VENUE, NW			EXAM	EXAMINER	
			JEN, MINGJEN		
SUITE 700 WASHINGTO	N, DC 20036		ART UNIT	PAPER NUMBER	
			3664		
			NOTIFICATION DATE	DELIVERY MODE	
			04/21/2010	ELECTRONIC	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

patentmail@whda.com

Application No. Applicant(s) 10/517.377 FURUTA ET AL. Office Action Summary Examiner Art Unit IAN JEN 3664 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 28 January 2010. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-13 is/are pending in the application. 4a) Of the above claim(s) _____ is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-13 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) ☐ The drawing(s) filed on 28 January 2010 is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.

U.S. Patent and Trademark Office PTOL-326 (Rev. 08-06)

Attachment(s)

1) Notice of References Cited (PTO-892)

Paper No(s)/Mail Date

Notice of Draftsperson's Patent Drawing Review (PTO-948)

3) Information Disclosure Statement(s) (PTO/SB/08)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

5) Notice of Informal Patent Application

DETAILED ACTION

Response to Amendment

- 1. This office action is response to the communication entered on January 28th, 2010.
- Claims 1, 5 and 9 has been amended.
- 3. Claim 13 has been newly added.
- 4. Claims 1 13 are pending in current application.
- Receipt is acknowledged of papers submitted under 35 U.S.C. 119(a)-(d), which papers have been placed of record in the file.

Drawings

6. The drawings are objected to under 37 CFR 1.83(a). The drawings must show every feature of the invention specified in the claims. Therefore, a sensor axis must be shown or the feature(s) canceled from the claim(s). No new matter should be entered.

Corrected drawing sheets in compliance with 37 CFR 1.121(d) are required in reply to the Office action to avoid abandonment of the application. Any amended replacement drawing sheet should include all of the figures appearing on the immediate prior version of the sheet, even if only one figure is being amended. The figure or figure number of an amended drawing should not be labeled as "amended." If a drawing figure is to be canceled, the appropriate figure must be removed from the replacement sheet, and where necessary, the remaining figures must be renumbered and appropriate changes made to the brief description of the several views of the drawings for consistency. Additional replacement sheets may be necessary to show the

Art Unit: 3664

renumbering of the remaining figures. Each drawing sheet submitted after the filing date of an application must be labeled in the top margin as either "Replacement Sheet" or "New Sheet" pursuant to 37 CFR 1.121(d). If the changes are not accepted by the examiner, the applicant will be notified and informed of any required corrective action in the next Office action. The objection to the drawings will not be held in abeyance.

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
 obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 8. Claims 1-12 are rejected under 35 U.S.C. 103(a) as being unpatentable over Takenaka et al (US Pat No 5357433) in view of De Beaucourt et al (US Pat No 5421426) and further in view of Nishikawa et al (US Pat No 5255753).

As for claim 1, Takenaka et al shows a walking mobile system comprising: foot portion (
Fig 1, 16L, 16R, 22L,22R; Col 2, lines 66 - Col 3, liens 21), a main body having at both sides of
its lower part a plurality of leg portions attached thereto so as to be each pivotally movable
biaxially (Fig 1; Col 2, lines 66 - Col 3, liens 21), each of the leg portions having a knee portion
in its midway and a foot portion at its lower end (Fig 1, 16L, 16R, 22L,22R; Col 2, lines 66 Col 3, liens 21), the foot portions being attached to their corresponding leg portions so as to be
pivotally movable biaxially (Fig 1, 18R,18L, 20R, 20L, 22R, 22L; Col 3, lines 10-14), drive

Art Unit: 3664

means for pivotally moving respective leg, knee, and foot portions (Col 3, lines 1-2 where drive means are electric motors), a gait forming part for forming gait data including target angle path, target angle velocity, and target angle acceleration corresponding to a required motion(Abstract, where gait is generated such that a ZMP kinematically from the motion of the robot), and a walk controller for drive-controlling the drive means based on the gait data (Fig 1, Control unit 26; Fig 2, CPU 60; Col 4, lines 2-5), characterized in that, the walk controller comprises force sensors for detecting forces applied to soles of respective foot portions (Col 3, lines 35 - 58), and a compensation part for adjusting the gait data from the gait forming part based on horizontal floor reaction force among the forces detected by the force sensors (Col 4, lines 59- Col 4, lines 9), the force sensors are provided to regions, respectively, divided into a plurality at the soles of respective foot portions (Col 3, lines 44 - 45), the force sensors provided to the regions next to end edges of respective soles detect a contact of foot sides to an obstacle while the foot portion is moved (Col 3, lines 44 - 45), and the compensation part adjusts the gait data from the gait forming part, referring to the contact of foot sides (Fig 2, D/A 66, Servo amplifier, encoder/motor; Col 3, lines 59 - Col 4, lines 9 where the each servo amplifier connects to encoder/motor) and so as to maintain a robot's stability (intended use of gait compensation part). Takenaka et al is silent regarding an upper sole and a lower sole, and the force sensor is provided between the upper sole and the lower sole, and wherein the lower sole is provided with side wall rising upward at a part next to the outer edge of the foot portion and the force sensor includes a sensor axis and the lower sole is supported pivotally movably with the sensor axis of the force sensor.

Art Unit: 3664

De Beaucourt et al shows an upper sole and a lower sole ($Col\ 2$, lines 3-33, lower part 11, upper part 13; See Fig 1); the lower sole is provided with side wall rising upward at a part next to the outer edge of the foot portion ($Col\ 2$, lines 3-33, lower part 11, upper part 13; See Fig 1); the lower sole is supported pivotally movable with the force sensor (See $Col\ 2$, lines 54 $-Col\ 3$, lines 39, Pivot 16, Contact Sensor 23,24)

Nishikawa et al shows the force sensor is provided between the upper sole and the lower sole (Col 6,lines 50-65; See Fig 2, Upper Surface 62, Lower sole 54, Sensor 50) and the force sensor includes sensor axis (See Col 6, lines 53 – 65, six axis force sensor)

It would have been obvious for one of ordinary skill in the art to provide the robot foot structure of De Beaucourt, along with sensor of Nishikawa, in order to provide improved foot bearing action, with improved foot stability, as taught by De Beaucourt and Nishikawa, to Takenaka.

As for claim 2, Takenaka et al shows the force sensor is a 3-axis force sensor (Fig 2, Six dimensional force and torque sensor 36; Col 3, lines 35 - 55), and at least a part of a outer edge of the sole as a detection part of the corresponding force sensor (Fig 5; Col 5, lines 40-45), in the region next to the end edges of the respective soles (Fig 5, Col 5, lines 40 - Col 6, lines 35), forms a circular arc plane with the force sensor as the center(Fig 5, Col 5, lines 40 - Col 6, lines 35 where the circular arch plane is the robotic feet with sensor distributed around the feet including center).

Art Unit: 3664

As for claim 3, Takenaka et al shows the force sensor is a 3-axis force sensor, and the compensation part comprises a hexaxial force computing part for computing forces in the hexaxial direction based on detected signals from respective force sensors (Fig 4, E0, E1,E2 coordinates, X,Y,Z directions; Col 4 lines 35 - Col 5, lines 43), and a contact detection part for detecting the contact of a foot side by a decomposition of force components (Fig 5, dx dy; Col 5 4-34).

As for claim 4, Takenaka et al shows the contact detection part judges if the detected signals from respective force sensors are forces from a floor surface, or by the contact to a matter on the floor surface (Fig 4, Fig 5; Col 5, lines 5 - 35), and outputs flag information as to which force sensor detected the contact of a foot side to the compensation part (Fig 5; Col 1, lines 23 - 40 where convex polygon is distributed by force sensors, which connects to the control unit 26; Col 3, lines 59 - Col 4, lines 10).

As for claim 5, Takenaka et al shows a main body having at both sides of its lower part a plurality of leg portions attached thereto so as to be each pivotally movable biaxially (Fig 1; Col 2, lines 66 - Col 3, liens 21), each of the leg portions having a knee portion in its midway and a foot portion at its lower end (Fig 1, 16L, 16R, 22L, 22R; Col 2, lines 66 - Col 3, liens 21), the foot portions being attached to their corresponding leg portions so as to be pivotally movable biaxially (Fig 1, 18R, 18L, 20R, 20L, 22R, 22L; Col 3, lines 10-14), and drive means for pivotally moving respective leg, knee, and foot portions (Col 3, lines 1-2 where drive means are electric motors), the walk controller drive-controls the drive means in accordance with gait data

Art Unit: 3664

including target angle path, target angle velocity, and target angle acceleration formed from a gait forming part corresponding to a required motion (Abstract, where gait is generated such that a ZMP kinematically from the motion of the robot; Fig 1, Control unit 26; Fig 2, CPU 60; Col 4, lines 2-5), as well as comprises force sensors to detect forces applied to a sole of each foot portion (Col 3, lines 35 - 45), a compensation part to adjust the gait data from the gait forming part based on horizontal floor reaction force among the forces detected by the force sensor (Fig 2, Fig 4; Col 3, lines 59 - Col 4, lines 40),

the force sensors are provided to regions, respectively, divided into a plurality at the soles of respective foot portions (Fig 2, Fig 4; Col 3, lines 59 - Col 4, lines 40), the force sensors provided to the regions next to end edges of respective soles detect a contact of foot sides sensor to an obstacle while the foot portion is moved(Fig 2, Six dimensional force and torque sensor 36; Col 3, lines 35 - 55; Fig 5; Col 5, lines 40-45), the compensation part adjusts the gait data from the gait forming part, referring to the contact of foot sides (Fig 2, D/A 66, Servo amplifier, encoder/motor; Col 3, lines 59 - Col 4, lines 9 where the each servo amplifier connects to encoder/motor), so as to maintain robot's stability (intended use of gait compensation part). Takenaka et al is silent regarding an upper sole and a lower sole, and the force sensor is provided between the upper sole and the lower sole, and wherein the lower sole is provided with side wall rising upward at a part next to the outer edge of the foot portion.

De Beaucourt et al shows an upper sole and a lower sole (Col 2, lines 3 – 33, lower part 11, upper part 13; See Fig 1); the lower sole is provided with side wall rising upward at a part next to the outer edge of the foot portion (Col 2, lines 3 – 33, lower part 11, upper part 13; See

Art Unit: 3664

Fig 1); Nishikawa et la shows the force sensor is provided between the upper sole and the lower sole (Col 6.lines 50-65; See Fig 2, Upper Surface 62, Lower sole 54, Sensor 50)

It would have been obvious for one of ordinary skill in the art to provide the robot foot structure of De Beaucourt, along with sensor of Nishikawa, in order to provide improved foot bearing action, with improved foot stability, as taught by De Beaucourt and Nishikawa, to Takenaka.

As for claim 6, Takenaka et al shows the force sensor is a 3-axis force sensor (Fig 2, Six dimensional force and torque sensor 36; Col 3, lines 35 - 55), and at least a part of a outer edge of the sole as a detection part of the corresponding force sensor (Fig 5; Col 5, lines 40-45), in the region next to the end edges of the respective soles (Fig 5, Col 5, lines 40 - Col 6, lines 35), forms a circular arc plane with the force sensor as the center (Fig 5, Col 5, lines 40 - Col 6, lines 35 where the circular arch plane is the robotic feet with sensor distributed around the feet including center). Takenaka et al is silent regarding an upper sole and a lower sole, and the force sensor is provided between the upper sole and the lower sole, and wherein the lower sole is provided with side wall rising upward at a part next to the outer edge of the foot portion.

Yamajima shows an upper sole and a lower sole (Fig 1, platform 11 as lower sole, base 13 as upper sole; Col 2, lines 5-40), and the force sensor is provided between the upper sole and the lower sole (Col 2, lines 5 - Col 3, lines 30; Fig 2, Abstract; where the weight machine is the force sensor), and wherein the lower sole is provided with side wall rising upward at a part next to the outer edge of the foot portion (Fig 1, platform 11 as lower sole, base 13 as upper sole; Col 2, lines 5-40).

Art Unit: 3664

It would have been obvious for one of ordinary skill in the art, to provide the force sensor mechanism, as taught by Yamajima, to Takenaka et al, in order to provide a force detecting means for the force exerted on the robot foot.

As for claim 7, Takenaka et al shows the he force sensor is a 3-axis force sensor (Fig 2, Six dimensional force and torque sensor 36; Col 3, lines 35 - 55), and the compensation part comprises a hexaxial force computing part for computing forces in the hexaxial direction based on detected signals from respective force sensors (Fig 4, E0, E1,E2 coordinates, X,Y,Z directions; Col 4 lines 35 - Col 5, lines 43), and a contact detection part for detecting the contact of a foot side by a decomposition of force components (Fig 5, dx dy; Col 5 4- 34).

As for claim 8, Takenaka et al shows the contact detection part judges if the detected signals from respective force sensors are forces from a floor surface (Fig 4, Fig 5; Col 5, lines 5 - 35), or by the contact to a matter on the floor surface, and outputs flag information as to which force sensor detected the contact of a foot side to the compensation part (Fig 5; Col 1, lines 23 - 40 where convex polygon is distributed by force sensors, which connects to the control unit 26; Col 3, lines 59 - Col 4, lines 10).

As for claim 9, Takenaka et al shows a walk control method for a walking mobile system comprising a main body having at both sides of its lower part a plurality of leg portions attached thereto so as to be each pivotally movable biaxially (Fig 1; Col 2, lines 66 - Col 3, liens 21; 16L, 16R, 22L, 22R; Col 2, lines 66 - Col 3, liens 21), each of the leg portions having a knee portion

Art Unit: 3664

in its midway and a foot portion at its lower end (Fig 1; Col 2, lines 66 - Col 3, liens 21; 16L, 16R, 22L, 22R; Col 2, lines 66 - Col 3, liens 21), the foot portions being attached to their corresponding leg portions so as to be pivotally movable biaxially (Fig 1, 18R, 18L, 20R, 20L, 22R, 22L; Col 3, lines 10-14), drive means for pivotally moving respective leg, knee, and foot portions (Col 3, lines 1-2 where drive means are electric motors), the walk control method including drive-controlling the drive means based on gait data including target angle path, target angle velocity, and target angle acceleration formed from a gait forming part corresponding to a required motion (Abstract, where gait is generated such that a ZMP kinematically from the motion of the robot), as well as detecting forces applied to a sole of each foot portion (Fig 4, Fig 5; Col 3, lines 35 - 58), and also adjusting the gait data from the gait forming part by a compensation part based on horizontal floor reaction force among forces detected by force sensors (Fig 4, Fig 5; Col 4, lines 59- Col 4, lines 9), characterized in that it includes, a first step to detect the forces by respective force sensors in regions divided into a plurality at the soles of respective foot portions (Col 3, lines 44-45), a second step to detect a contact of respective foot sides to an obstacle while the foot portion is moved by detected signals from the force sensors provided to the regions next to end edges of respective soles (Col 3, lines 44-45), and a third step to adjust the gait data from the gait forming part by the compensation part, referring to the contact of foot sides (Fig 2, D/A 66, Servo amplifier, encoder/motor; Col 3, lines 59 - Col 4, lines 9 where the each servo amplifier connects to encoder/motor), so as to maintain a robot's stability (intended use of the gait compensation part). Takenaka et al is silent regarding an upper sole and a lower sole, and the force sensor is provided between the upper sole and the

Art Unit: 3664

lower sole, and wherein the lower sole is provided with side wall rising upward at a part next to the outer edge of the foot portion.

De Beaucourt et al shows an upper sole and a lower sole (Col 2, lines 3 – 33, lower part 11, upper part 13; See Fig 1); the lower sole is provided with side wall rising upward at a part next to the outer edge of the foot portion (Col 2, lines 3 – 33, lower part 11, upper part 13; See Fig 1); Nishikawa et la shows the force sensor is provided between the upper sole and the lower sole (Col 6,lines 50-65; See Fig 2, Upper Surface 62, Lower sole 54, Sensor 50)

It would have been obvious for one of ordinary skill in the art to provide the robot foot structure of De Beaucourt, along with sensor of Nishikawa, in order to provide improved foot bearing action, with improved foot stability, as taught by De Beaucourt and Nishikawa, to Takenaka.

As for claim 10, Takenaka et al shows the force sensor is a 3-axis force sensor (Fig 2, Six dimensional force and torque sensor 36; Col 3, lines 35 - 55), and at least a part of a outer edge of the sole as a detection part of the corresponding force sensor (Fig 5; Col 5, lines 40-45), in the region next to the end edges of the respective soles (Fig 5, Col 5, lines 40 - Col 6, lines 35), forms a circular arc plane with the force sensor as the center (Fig 5, Col 5, lines 40 - Col 6, lines 35 where the circular arch plane is the robotic feet with sensor distributed around the feet including center).

As for claim 11, Takenaka et al shows the force sensor is a 3-axis force sensor (Fig 2, Six dimensional force and torque sensor 36; Col 3, lines 35 - 55), and the compensation part

Art Unit: 3664

comprises a hexaxial force computing part for computing forces in the hexaxial direction based on detected signals from respective force sensors (Fig 4, E0, E1,E2 coordinates, X,Y,Z directions; Col 4 lines 35 - Col 5, lines 43), and a contact detection part for detecting the contact of a foot side by a decomposition of force components (Fig 5, dx dy; Col 5 4- 34).

As for claim 12, Takenaka et al shows the contact detection part judges if the detected signals from respective force sensors are forces from a floor surface, or by the contact to a matter on the floor surface (Fig 4, Fig 5; Col 5, lines 5 - 35), and outputs flag information as to which force sensor detected the contact of a foot side to the compensation part (Fig 5; Col 1, lines 23 - 40 where convex polygon is distributed by force sensors, which connects to the control unit 26; Col 3, lines 59 - Col 4, lines 10).

As for claim 13, Takenaka et al is silent regarding the force sensor between upper and lower sole.

Nishikawa et al shows the force sensor between upper and lower sole (Col 6,lines 50-65; See Fig 2, Upper Surface 62, Lower sole 54, Sensor 50). It would have been obvious for one of ordinary skill in the art to provide the robot foot structure of De Beaucourt, along with sensor of Nishikawa, in order to provide improved foot bearing action, with improved foot stability, as taught by De Beaucourt and Nishikawa, to Takenaka.

Art Unit: 3664

Response to Arguments

 Applicant's remark filed on September 24th, 209 have been fully considered and reviewed; applicant newly recited claim limitation has been addressed above.

Conclusion

 THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to IAN JEN whose telephone number is (571)270-3274. The examiner can normally be reached on Monday - Friday 9:00-6:00 (EST).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Khoi Tran can be reached on 571-272-6919. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 3664

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Ian Jen/ Examiner, Art Unit 3664 /KHOI TRAN/

Supervisory Patent Examiner, Art Unit 3664