WEEK NINE- ASSIGNMENT

QUESTION 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Weather Forecast Website example

Soln:

Date: 03 December 2019

Piacenza Weather Data:

 $T_{out} = 6$ °c

Relative Humidity = 90%

Atmospheric pressure = 1017kpa

From the Graph:

Specific Humidity = 0.005
$$\left(\frac{gm \ of \ water}{gm \ of \ dry \ air}\right)$$

Wet bulb temperature = 5°c

Specific enthalpy of humid air = $19(\frac{KJ}{Kg \ of \ dry \ air})$

$$P_v = \frac{p.\omega}{0.622 + \omega} = 0.84 \ kg$$

$$V_{room\,A} = 20 \, x \, 6 \, x \, 6 = 720 \, m^2$$

$$m_v = \frac{p_v \cdot v}{R_v \cdot T} = \frac{0.84 \times 720}{0.4615 \times (273+6)} = 4.7 \text{ kg}$$

QUESTION 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy.

		BRINDISI, Italy														163200	
	Lat	40.65N	Long:	17.95E	Elev	r: 10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period	86-10	WBAN:	99999	
	Annual Heating and Humidification Design Conditions																
				1	Humidification DP/MCDB and HR					Coldest month WS/MCDB				MCWS	MCWS/PCWD		
	Coldest	Heating DB		99.6%			99%								6% DB		
	Month	99.6% 99%		DP			DP HR		MCDB WS MCDB		WS MCDB		MCWS PCWD				
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(0)	'	
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	oling, Dehu	ımidificati	on, and Enth	alpy Desig	n Condition	5										
																	,
	Hottest Hottest Cooling DB/MCWB									Evaporation WB/MCDB					MCWS		
	Month	Month	0.4%		1%		2%		0.4%		1%		2%		to 0.4		
		DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
													y/MCDB			Hours	
	0.4%				1%		2%			0.4%		1%		2%		8 to 4 &	
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	nnual Desi	gn Conditi	ons													
	Extr	Extreme Annual WS			ne Extreme Annual DB				n-Year Return Period Values of E								
	1% 2.5% 5		5%	Max WB	Min	fean Max	Standard deviation Min Max		n=5 Min	years n=10 Max Min		years Max	n=20 Min	years Max	n=50 Min	years Max	
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	1
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

Soln:

Number of occupants = 2

Number of bed rooms = 1

Height of the building = 2.5m

Area of the floor = 200 m^2

Internal gains:

$$\dot{Q}_{igsensible} = 136 + 2.2A_{cf} + 22Noc$$

$$= 136 + 2.2 (200) + 22(2)$$

$$= 620 \text{ W}$$
 $\dot{Q}_{iglatent} = 20 + 0.22A_{cf} + 12Noc$

$$= 20 + 0.22 (200) + 12(2)$$

$$= 88 \text{ W}$$

INFILTRATION

A house with good construction quality, $A_{ul} = 1.4 \frac{cm^2}{m^2}$

Table 3 Unit Leakage Areas A_{ul} , cm²/m² Construction Description Tight Construction supervised by air-sealing specialist Good Carefully sealed construction by 1.4 knowledgeable builder Average Typical current production housing 2.8 Leaky Typical pre-1970 houses Old houses in original condition Very leaky

$$A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 m^2$$

 $A_{L} = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 cm^2$

$$T_{cooling} = 24$$
°c

$$T_{heating} = 20$$
°c

$$\Delta T_{cooling} = 31.1$$
°c - 24°c = 7.1 °c

$$\Delta T_{heating} = 20$$
°c - (-4.1)°c = 24.1 °c

$$DR = 7.1$$
°c

Given
$$IDF_{heating} = 0.073 \frac{L}{s \times cm^2}$$

 $IDF_{cooling} = 0.033 \frac{L}{s \times cm^2}$

INFILTRATION AIRFLOW RATE

$$Q_{i.heating} = A_L x IDF_{heating} = 481.6 \times 0.073 = 35.15 \frac{L}{s}$$

 $Q_{i.cooling} = A_L x IDF_{cooling} = 481.6 \times 0.033 = 15.89 \frac{L}{s}$

VENTILATION

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05 \times 200 + 3.5(1 + 1) = 17\frac{L}{s}$$

$$Q_{i-v.heating} = Q_{i.heating} + Q_v = 35.15 + 17 = 52.15 \frac{L}{s}$$

$$Q_{i-v.cooling} = Q_{i.cooling} + Q_{v} = 15.89 + 17 = 32.89 \frac{L}{s}$$

Given that

 $C_{sensible} = 1.23$,

 $C_{latent} = 3010$,

 $\Delta\omega_{cooling}=0.0039$

 $q_{inf-ventilation\;cooling\;sensible} = C_{sensible} \, Q_{i-v.cooling} \, \Delta T_{cooling} \, = 1.23 \, x \, 32.89 \, x \, 7.1 = 287.25 W$

 $q_{inf-ventilation \ cooling \ latent} = C_{latent} Q_{i-v.cooling} \Delta \omega_{cooling} = 3010 \ x \ 32.89 \ x \ 0.0039 = 386.13 \ W$

 $q_{inf-ventilation\,heating\,latent} = C_{sensible}\,Q_{i-v.heating}\,\Delta T_{heating}\,= 1.23\,x\,52.15\,x\,24.1 = 1546W$