Reduced Basis methods: an introduction

Christophe Prud'homme prudhomme@unistra.fr

February 6, 2023

CeMosis - http://www.cemosis.fr IRMA Université de Strasbourg A Priori Reduced Basis Theory

1 A Priori Reduced Basis Theory

A Priori Reduced Basis Theory

So far we assumed S_N (and hence W_N) to be known. Problem: How do we (optimally) choose a sample set S_N , that provides rapid convergence of RB approximation?

Generic a priori recipes to generate $S_N(W_N)$ are available only for one-dimensional parameter problems (P = 1).

- For higher parameter dimensions we will use "adaptive" sampling procedures. We consider
 - **1** A priori convergence theory (P = 1), and
 - 2 A priori convergence theory (P > 1), and
 - 3 Adaptive sampling strategies.

Parameter domain and grids I

We recall

- ullet parameter μ and
- ullet closed, bounded and suitably regular parameter domain $\mathcal{D}\subset\mathbb{R}^P$ such that

$$\mu = (\mu_1, \ldots, \mu_P) \in \mathcal{D} \subset \mathbb{R}^P$$

We also define

$$\mu_p^{\mathsf{min}} = \min_{\mu \in \mathcal{D}} \mu_p, \quad , \mu_p^{\mathsf{max}} = \max_{\mu \in \mathcal{D}} \mu_p, \quad 1 \leq p \leq P$$

and the smallest parallel-" P "ped, $\mathcal{D}_{box} \subset \mathbb{R}^P$, such that

$$\mathcal{D} \subset \mathcal{D}_{\mathsf{box}} \, \equiv \left[\mu_1^{\mathsf{min}}, \mu_2^{\mathsf{max}} \right] \times \ldots \times \left[\mu_P^{\mathsf{min}}, \mu_P^{\mathsf{max}} \right]$$

Parameter domain and grids II

We introduce one-dimensional deterministic grids (for $z_2 \in \mathbb{R} > z_1 \in \mathbb{R}$, and $m \in \mathbb{N}$):

$$G_{[z_1,z_2;m]}^{\text{lin}} = \left\{ z_1 + \frac{i-1}{m-1} (z_2 - z_1), 1 \le i \le m \right\},$$

$$G_{[z_1,z_2;m]}^{\text{ln}} = \left\{ z_1 \exp \left\{ \frac{i-1}{m-1} \ln \left(\frac{z_2}{z_1} \right) \right\}, 1 \le i \le m \right\};$$

and note that $\ln(z_i)$ is equi-distributed for $G^{\ln}_{[z_1,z_2;m]}$. For $P\geq 2$: Grid of m^P points in \mathcal{D}_{box}

$$G_{\left[\mu_{\mathbf{1}}^{\min},\mu_{\mathbf{2}}^{\max};m\right]}^{\ln}\times\ldots\times G_{\left[\mu_{P}^{\min},\mu_{P}^{\max};m\right]}^{\ln}$$

Parameter domain and grids III

We also introduce the Monte-Carlo samples (of size $m \in \mathbb{N}$):

• $G_{[\mathrm{MC}:m]}^{\mathrm{lin}}$ with elements

$$\mu_{\textit{p}} = \mu_{\textit{p}}^{\min} + \operatorname{rand} \times \left(\mu_{\textit{p}}^{\max} - \mu_{\textit{p}}^{\min}\right), 1 \leq \textit{p} \leq \textit{P}$$

• $G^{\ln}_{[\mathrm{MC};m]}$ with elements

$$\mu_{p} = \mu_{p}^{\min} \exp \left\{ \mathrm{rand} \times \ln \left(\frac{\mu_{p}^{\max}}{\mu_{p}^{\min}} \right) \right\}, 1 \leq p \leq P;$$

where rand is a random variable uniformly distributed over [0,1] and we reject any $\mu = (\mu_1, \dots, \mu_P) \notin \mathcal{D}$.

Parameter domain and grids IV

We define

Train sample

$$\Xi_{\rm train} \ \equiv \left\{ \mu_{\rm train}^1 \ , \ldots, \mu_{\rm train}^{n_{\rm train}} \ \right\} \subset \mathcal{D},$$

with cardinality (size) $|\Xi_{train}| = n_{train}$;

Test sample

$$\Xi_{\mathrm{test}} \equiv \left\{ \mu_{\mathrm{test}}^1 \;, \ldots, \mu_{\mathrm{test}}^{n_{\mathrm{test}}} \; \right\} \subset \mathcal{D}$$
 ,

with cardinality (size) $|\Xi_{\text{test}}| = n_{\text{test}}$. $\Rightarrow \Xi_{\text{train}}$ and Ξ_{test} serve as our (finite) surrogates for \mathcal{D} .

Example: $\Xi_{\text{train}} = G_{[0.1,10;10^4]}^{\text{lin}} - \text{equi-distributed deterministic grid on } [0.1,10] \text{ of size } 10^4.$

Definitions

• Given $y: \mathcal{D} \to \mathbb{R}$, we define

$$\begin{split} \|y\|_{L^{\infty}(\Xi)} &\equiv \max_{\mu \in \Xi} |y(\mu)|, \\ \|y\|_{L^{p}(\Xi)} &\equiv \left(|\Xi|^{-1} \sum_{\mu \in \Xi} |y(\mu)|^{p} \right)^{1/p}. \end{split}$$

• Given $z: \mathcal{D} \to X^{\mathcal{N}}$, we define

$$||z||_{L^{\infty}(\Xi;X)} \equiv \max_{\mu \in \Xi} ||z(\mu)||_{X},$$

$$||z||_{L^{p}(\Xi;X)} \equiv \left(|\Xi|^{-1} \sum_{\mu \in \Xi} ||z(\mu)||_{X}^{p}\right)^{1/p}.$$

Also: $\Pi_{X_N}: X \to X_N$ projection in the X-inner product

We use $\mathcal{N}=1024$

We consider the case

$$B_1 = 2, \quad B_2 = 1,$$

and $\mu_r = 100$, thus and

$$\mu_{\min} = 1/\sqrt{\mu_r} = 0.1$$
 $\mu_{\max} = \sqrt{\mu_r} = 10.$

We thus have

$$\mu \in \mathcal{D} = [0.1, 10] \subset \mathbb{R}^{P=1}$$
.

For our inner product we choose

$$\bar{\mu}=1.$$

A Priori Theory: thermal block $P=1~\mathrm{Hz}$

Given $\mu \in \mathcal{D}$, evaluate

$$s(\mu) = f(u(\mu))$$

where $u(\mu) \in X \equiv \{v \in H^1(\Omega)|v|_{\Gamma_{\text{top}}} = 0\}$ satisfies

$$\mu_1 a^1(u(\mu), v) + a^2(u(\mu), v) = f(v), \quad \forall v \in X.$$

Here,

$$a^{q}(w,v) = \int_{\Omega} \nabla w \cdot \nabla v, \quad \forall w, v \in X, 1 \leq q \leq 2,$$

and

$$f(v) \equiv \int_{\Gamma_1} v, \quad \forall v \in X.$$

We obtain the inner product, $\forall w, v \in X$,

$$(w,v)_X = a^1(u(\mu),v) + a^2(u(\mu),v) \equiv \int_0^{\infty} \nabla w \cdot \nabla v$$

A Priori Theory: thermal block P=1 II

We next introduce the (in general) non-nested samples

$$S_N^{\mathrm{nh},\mathsf{ln}} = G_{[\mu_{\mathsf{min}},\mu_{\mathsf{max}};N]}^{\mathrm{ln}}, 2 \leq N \leq N_{\mathsf{max}}$$

and associated Lagrange Space

$$W_N^{\mathrm{nh}, \ln} = \operatorname{span} \left\{ u\left(\mu_N^n\right), 1 \le n \le N \right\}, 2 \le N \le N_{\max}$$

RB Approximation: Given $\mu \in \mathcal{D}$, evaluate

$$s_N^{\mathrm{nh},\mathsf{ln}}(\mu) = f\left(u_N^{\mathrm{nh},\mathsf{ln}}(\mu)\right)$$

where $u_{N}(\mu) \in \pmb{W}_{N}^{\mathrm{nh},\mathsf{ln}}$ satisfies

$$\mu a^1\left(u_N^{\mathrm{nh},\mathsf{ln}}(\mu),v\right) + a^2\left(u_N^{\mathrm{nh},\mathsf{ln}}(\mu),v\right) = f(v), \forall v \in W_N^{\mathrm{nh},\mathsf{ln}}.$$

A Priori Theory: thermal block P = 1 IV

Proposition (Patera Rozza 2007)

For any $f \in X'$, and for all $\mu \in \mathcal{D}$,

$$\frac{\left\|\left|u(\mu)-u_N^{\mathrm{nh},\ln}(\mu)\right\|\right|_{\mu}}{\||u(\mu)\||_{\mu}} \leq \exp\left\{-\frac{N-1}{N_{crit}-1}\right\},$$

and

$$\frac{s(\mu) - s_N^{\mathrm{nh,ln}}(\mu)}{s(\mu)} \le \exp\left\{-\frac{2(N-1)}{N_{\mathrm{crit}} - 1}\right\},\,$$

for
$$N \ge N_{crit} = 1 + [2e \ln \mu_r]_+$$
.

Here $[arg]_+$ returns the smallest integer greater than or equal to its real argument $arg \in \mathbb{R}$.

A Priori Theory: thermal block P=1 V

Figure 2: ThermalBlock P=1: Relative error in the output over $\Xi^0_{\mathsf{train}} = \mathcal{G}^{\mathsf{ln}}_{[\mu_{\mathsf{min}},\mu_{\mathsf{max};10^4}]}$ for $s_N^{\mathsf{nh},\mathsf{ln}}$: actual error (\star) and "pseudo" a priori bound (\diamond) . Source: PR (2007).

A Priori Theory: thermal block P=1 V

Remarks

- Convergence of reduced basis approximation relies on smoothness in parameter but not on spatial regularity -a priori result is valid for any $f \in X'$.
- Reduced basis convergence rate does not depend on $\mathcal{N}.$
- Reduced basis convergence rate depends quite weakly on the extent of \mathcal{D} (logarithmic in μ_r) global approximation.
- Reduced basis approximation can converge very quickly.

Problems:

- Spaces are non-hierachical and thus not very practical.
- For P > 1 a priori theory requires more general framework.

Next Steps

- Kolmogorov N-Width
- A priori theory result
- A POD Approach Method of Snapshots
- A Greedy Approach
 - X-norm bound
 - Energy norm bound
- Comparison
 - Greedy vs. log-Sample Greedy vs. POD

Kolmogorov N-Width

Concerning the approximability of the solution set, we start by asking how well $\mathcal M$ can be approximated (uniformly with respect to μ) by a finite-dimensional subspace of prescribed dimension. To answer this question, we recall the important notion of Kolmogorov n-width⁵.

Let K be a compact set of a generic Hilbert space X, and consider a generic n dimensional subspace $X_n \subset X$. If we define the distance between an element $x \in X$ and X_n as

$$d(x; X_n) = \inf_{x_n \in X_n} ||x - x_n||_X$$
 (6)

any element $\hat{x}_n \in X_n$ which realizes the infimum, that is

$$\|x - \hat{x}_n\|_X = d(x, X_n), \qquad (7)$$

is called the best approximation of x in X_n .

Kolmogorov N-Width I

A very natural question is whether the n-dimensional subspace is suitable to approximate all the elements $x \in K$.

To be precise, we quantify the worst possible best approximation as the angle between the subspace X_n and the set K, defined⁶ by

$$d(K; X_n) = \sup_{x \in K} d(x; X_n).$$
 (8)

Kolmogorov N-Width III

(9)

The distance between a subspace X_n and K is determined by the worst-case scenario.

Finding the best n-dimensional subspace of X for approximating K determines the minimum, over all possible n-dimensional subspaces of X, of the deviation 8, that is,

$$d_n(K;X) = \inf_{\substack{X_n \subset X \\ \dim(X_n) = n}} d(K;X_n) = \inf_{\substack{X_n \subset X \\ \dim(X_n) = n}} \sup_{x \in K} \inf_{x_n \in X_n} ||x - x_n||_V.$$

The number $d_n(K; X)$ is called the Kolmogorov *n*-width of K, first

Kolmogorov N-Width IV

introduced by Kolmogorov⁷. It represents the best achievable accuracy in the X-norm when all possible elements of K are approximated by elements belonging to a linear n dimensional subspace $X_n \subset X$. A subspace \hat{X}_n of dimension at most n such that

$$d\left(K;\hat{X}_{n}\right)=d_{n}(K;X)$$

is called an optimal *n*-dimensional subspace for $d_n(K; X)$.

Kolmogorov N-Width V

Replacing X by V_h and K by \mathcal{M} , we can now define the Kolmogorov n-width of the solution set \mathcal{M} as

$$d_{n}(\mathcal{M}; V_{h}) = \inf_{\substack{V_{n} \subset V_{h} \\ \dim(V_{n}) = n}} d(\mathcal{M}; V_{n}) = \inf_{\substack{V_{n} \subset V_{h} \\ \dim(V_{n}) = n}} \sup_{\mu \in \mathcal{D}} \inf_{v_{n} \in V_{n}} \left\| u_{h}(\mu) - v_{n} \right\|_{V}$$

$$(10)$$

Kolmogorov N-Width V

Since V_h is a Hilbert space, there exists an orthogonal projection operator $\Pi_{V_n}: V \to V_n$ such that

$$\|v - \Pi_{V_n}v\|_V = \min_{v_n \in V_n} \|v - v_n\|_V \quad \forall v \in V_h.$$

The Kolmogorov *n*-width of \mathcal{M}_h can thus be expressed as

$$d_n\left(\mathcal{M}; V_h\right) = \inf_{\substack{V_n \subset V_h \\ \dim(V_n) = n}} \|u_h - \Pi_{V_n} u_h\|_{L^{\infty}(\mathcal{D}; V)}. \tag{11}$$

For n=N, 11 corresponds to the best achievable error in a uniform sense when approximating the solution manifold $\mathcal M$ by elements of the RB space V_N . In this regard, the Kolmogorov n-width is relevant for deciding whether or not a given parametrized problem can be efficiently reduced. Evaluating this quantity is a hard task from a theoretical standpoint.

Kolmogorov N-Width VII

In some cases, the *n*-width of the solution manifold can be directly deduced from that of the space of the parametric coefficients (say, $\theta_q^a(\mu), q=1,\ldots,Q_a$ and $\theta_q^f(\mu), q=1,\ldots,Q_f$) of the affine expansions. See [Cohen-Devore-2015]⁸ for further details.

⁵Melenk, J.M.: On n-widths for elliptic problems. J. Math. Anal. Appl. 247, 272-289 (2000)

Pinkus, A.: n-Widths in Approximation Theory. Springer-Verlag, Ergebnisse (1985)

 $^{^{6}}$ We can refer to $d(K; X_n)$ as to the discrepancy or deviation between X_n and K as well.

⁷Kolmogorov, A.N.: Ber die beste annaherung von funktionen einer gegebenen funktionenklasse. Ann. of Math. 37, 107-110 (1936)

⁸Cohen, A., DeVore, R.: Approximation of high-dimensional parametric PDEs. ArXiv eprints 1502.06797 (2015)

A priori convergence P>1

Theorem (Buffa, Maday, Patera, Prud'homme⁹)

Assume that the set of all solutions $\mathcal{M}=\{u(\mu),\mu\in\mathcal{D}\}$ to has an exponentially small Kolmogorov n-width $d_k(\mathcal{M},X)\leq ce^{-\alpha k}$ with $\alpha>\log\left(1+\sqrt{\frac{\gamma}{\alpha_{coer}}}\right)$; then the reduced basis method converges exponentially in the sense that there exists $\beta>0$ such that

$$\forall \boldsymbol{\mu} \in \mathcal{D}, \quad \|\boldsymbol{u}(\boldsymbol{\mu}) - \boldsymbol{u}_{N}(\boldsymbol{\mu})\|_{X} \leq C e^{-\beta N}$$

Note that in practice the sup over \mathcal{D} is replaced with a sup over a very fine sample in \mathcal{D} , requiring nevertheless many expensive evaluations. In order to construct a computable algorithm, we need in addition to replace the theoretical error bound with a relatively cheap procedure that maintain the performance stated in the estimate. We thus use

$$\mu_i = rg \sup_{oldsymbol{\mu} \in D} \Delta_{i-1}(oldsymbol{\mu})$$

in the practical greedy procedure

⁹A priori convergence of the Greedy algorithm for the parametrized reduced basis method, ESAIM: M2AN Volume 46, Number 3, May-June 2012

Back to POD

Proper Orthogonal Decomposition (POD) (or Karhunen-Loève expansion) approach:

POD Spaces

$$X_N^{\mathrm{POD}} = \operatorname{arg} \operatorname{spaces} \ _{X_N \subset \operatorname{span}\{u(\mu) \mid \mu \in \Xi_{\operatorname{train}}\ \}} \|u - \Pi_{X_N} u\|_{L^2(\Xi_{\operatorname{train}}\ ; X)}$$

"Best" approximation error

$$\overline{\overline{\varepsilon}}_{N}^{\text{POD}} \equiv \left\| u - \Pi_{X_{N}^{\text{POD}}} u \right\|_{L^{2}(\Xi_{\text{train}}; X)}$$

Note:

- X_N^{POD} are hierarchical,
- Weaker norm over **Ξ**_{train.},
- Optimization can be solved using "method of snapshosts."

Greedy approach: W_N I

Given:

- desired error tolerance $\varepsilon_{\text{tol,min}}$
- initial sample $S_1=\mu_1^*$ (random or $\mu^{\mathsf{min},\mathsf{max}}$), and
- space $\boldsymbol{X}_1 = \operatorname{span}\left\{u\left(\mu_1^*\right)\right\}$

Greedy approach: W_N II

Greedy Algorithm

$$\begin{split} \text{while } \Delta_{N-1}^{\text{max}} &\geq \varepsilon_{\text{tol,min}} \\ N &= N+1; \\ \mu_N^* &= \arg\max_{\mu \in \Xi_{\text{train}}} \Delta_{N-1}(\mu); \\ \Delta_{N-1}^{\text{max}} &= \Delta_{N-1}\left(\mu_N^*\right); \\ S_N &= S_{N-1} \cup \mu_N^*; \\ \boldsymbol{X}_N &= \boldsymbol{X}_{N-1} + \operatorname{span}\left\{u^{\mathcal{N}}\left(\mu_N^*\right)\right\}; \\ \end{split}$$
 end

Greedy approach: W_N III

Comments

- $X_N = X_N^{\text{Greedy}}$ are hierarchical.
- Sub-optimal solution to $\boldsymbol{L}^{\infty}\left(\Xi_{\text{train}}\right)$ optimization problem.
- Define the "true" error, $1 \le N \le N_{\text{max}}$,

$$\bar{\varepsilon}_N^* = \arg\max_{\mu \in \Xi_{\mathsf{train}}} \|u(\mu) - u_N(\mu)\|_X$$

then $\bar{\varepsilon}_N^*$ is bounded by

$$\bar{\varepsilon}_N^* \le \Delta_N(\mu) \le \varepsilon_{\mathsf{tol,min}} \;, \quad \forall \mu \in \Xi_{\mathsf{train}}$$

- Condition on N_{max} possible (hp-Reduced Basis)¹⁰.
- Perform Gram-Schmidt orthogonalization on X_N .

Greedy approach: W_N IV

Greedy,
$$m{L}^{\infty}$$
 ($m{\Xi}_{\mathsf{train}}$, $m{X}$), space "economization" $m{n}_{\mathsf{train}}$ contestants \Rightarrow $m{N}_{\mathsf{max}} \ll m{n}_{\mathsf{train}}$ winners $\in m{\Xi}_{\mathsf{train}}$ $m{\mu}_1^*, \dots, m{\mu}_{N_{\mathsf{max}}}^*$

in which we never form/calculate most snapshots:

$$\|u(\mu) - u_N(\mu)\| X$$
 replaced $\Delta_N(\mu)$
 $n_{\mathsf{train}} \cdot O(\mathcal{N}^{\bullet})$ by $n_{\mathsf{train}} \cdot O(Q^2 N^2) \dagger$

note good effectivity of estimator is crucial.

¹⁰Eftang, Jens L.; Patera, Anthony T.; Ronquist, Einar M. "An "hp" Certified Reduced Basis Method for Parametrized Elliptic Partial Differential Equations." SIAM Journal on Scientific Computing, 32, pp. 3170-3200

Given:

- desired error tolerance $\varepsilon_{\text{tol,min}}$
- initial sample $S_1^{\text{out}} = \mu_1^{\text{out},*}$ (random or $\mu^{\text{min,max}}$), and
- space $X_1^{\text{out}} = \text{span} \left\{ u \left(\mu_1^{\text{out,*}} \right) \right\}$

Greedy Algorithm

$$\begin{split} \text{while } \Delta_{N-1}^{\text{out,max}} &\geq \varepsilon_{\text{tol,min}} \\ N &= N+1; \\ \mu_N^{\text{out,}} &= \arg\max_{\mu \in \Xi_{\text{train}}} \left((\omega(\mu))^{-1} \Delta_{N-1}^{\text{en}}(\mu) \; ; \right. \\ \Delta_{N-1}^{\text{out,max}} &= \left(\left(\omega\left(\mu_N^{\text{out}}, ^*\right) \right)^{-1} \Delta_{N-1}^{\text{en}}\left(\mu_N^{\text{out}}, ^*\right) \; ; \right. \\ S_N^{\text{out}} &= S_{N-1}^{\text{out}} \cup \mu_N^{\text{out,}} \; ^*; \\ X_N^{\text{out}} &= X_{N-1}^{\text{out}} + \operatorname{span} \left\{ u^N \left(\mu_N^{\text{out,}} \right) \right\} \\ \text{end} \end{split}$$

Greedy Approach : W_N^{out} II

Comments

- $\boldsymbol{X}_{N}^{\text{out}} = \boldsymbol{X}_{N}^{\text{out,Greedy}}$ are hierarchical.
- Sub-optimal solution to $\boldsymbol{L}^{\infty}\left(\boldsymbol{\Xi}_{\mathsf{train}}\right)$ optimization problem.
- Computational cost equivalent to W_{N*}-Greedy
- Define the relative "true" error, $1 \leq N \leq N_{\text{max}}$,

$$\bar{\varepsilon}_{\mathit{N}}^{\mathsf{out,}} \ = \arg\max_{\mu \in \Xi_{\mathsf{train}}} \big(\omega(\mu)\big)^{-1} |||u(\mu) - u_{\mathit{N}}(\mu)|||_{\mu},$$

then ε_N out,* is bounded by

$$\varepsilon_{\mathit{N}}^{\mathsf{out},} \ , \leq (\omega(\mu))^{-1} \Delta_{\mathit{N}}^{\mathrm{en}}(\mu) \leq \varepsilon_{\mathsf{tol},\mathsf{min}} \ , \quad \forall \mu \in \Xi_{\mathsf{train}}$$

Greedy Approach : W_N^{out} II

Comments

• Direct control of (relative) RB error (Galerkin optimality)

$$\omega(\mu) \equiv |||u_N(\mu)|||_{\mu}, \quad \forall \mu \in \mathcal{D}.$$

 Compliant case: direct control of (relative) error in the RB output prediction

$$\omega(\mu) \equiv |s_N(\mu)|, \quad \forall \mu \in \mathcal{D}.$$

- Use of sharper bound since $\eta_{\sf max,UB}^{
 m en} \leq \eta_{\sf max,UB}$.
- Perform Gram-Schmidt orthogonalization on X_N .
- \Rightarrow In this course we use $\omega(\mu) \equiv |||u_N(\mu)|||_{\mu}$

Greedy Approach vs $W_N^{nh,ln}$

Figure 3: ThermalBlock $P=1:L^{\infty}(\Xi)$ relative energy error as a function of N for the spaces $W_N^{\mathrm{nh},\ln}(\star)$ and $W_N^{\mathrm{Greedy,en}}$ (o).

Greedy Approach vs POD

- Greedy
 - heuristically minimizes RB error bound in L^{∞} (Ξ_{train} , X), at
 - cost

RB formation
$$N_{\max}\underline{A}^{\mathcal{N}}$$
-solve $+N_{\max}^2 Q X^{\mathcal{N}^{\mathcal{N}}\text{-inprod}}$ Δ_N formation $+N_{\max}Q \mathbb{X}^{\mathcal{N}}$ -solve $+N_{\max}^2 Q^2 X^{\mathcal{N}\text{-inprod}}$ Greedy $+n_{\min}O\left(N_{\max}^4+N_{\max}^3Q^2\right)$

- POD
 - truly minimizes projection error in $L^2(\Xi_{train}, X)$, at
 - cost RB formation $n_{\text{train}} \underline{A}^{\mathcal{N}}$ -solves $+n_{\text{train}}^2 X^{\mathcal{N}}$ -inprod $+\mathcal{C}$ -eigenvalue problem

$$\Rightarrow$$
 Cost(Greedy) \ll Cost(*POD*) for large n_{train}

Greedy Approach vs POD II

Figure 4: ThermalBlock P=1: RB error $\|u(\mu)-u_N(\mu)\|_{L^2(\Xi;X)}$ as a function of N for POD and Greedy sampling.

Greedy Approach vs POD III

Figure 5: ThermalBlock P=1: RB error $\|u(\mu)-u_N(\mu)\|_{L^\infty(\Xi;X)}$ as a function of N for POD and Greedy sampling.

Thermal Block P = 81

Figure 6: ThermalBlock P = 8.

We consider

$$B_1 = B_2 = 3$$

and thus

$$P = 8.$$

We choose

$$\Xi_{
m train} = G_{
m [MC;5000]}^{
m ln}$$
 and $\Xi_{
m test} = \Xi_{
m train}$

Thermal Block P = 8 II

Figure 7: ThermalBlock P=8: $L^{\infty}\left(\Xi_{\text{test}}\right)$ relative energy error as a function of N.

Thermal Block P = 8 III

10⁰

Figure 8: ThermalBlock $P=8:L^{\infty}\left(\Xi_{\text{test}}\right)$ relative energy error as a function of N for $\mathcal{N} = 137, \mathcal{N} = 137 \mathcal{N} = 453$, and $\mathcal{N} = 661, 1737, 2545, 6808$.