Take Home Assignment 1

Due Monday, February 24

In this assignment, we will prove an important result called *Lagrange's Theorem*. It goes as follows.

Theorem 1 (Lagrange's Theorem).

If G is a finite group and H is a subgroup of G then |H| divides |G|.

With this result in hand, we will be able to deduce a celebrated result of Fermat, which is central to number theory.

Theorem 2 (Fermat's Little Theorem).

Let p be a prime number and a an integer. Then $a^p \equiv a \mod p$.

To do all this, we will need the following definition.

Definition 1.

Let H be a group acting on a set A and fix $a \in A$. The orbit of a under H is the set

$$H \cdot a = \{b \in A \mid b = h \cdot a \text{ for some } h \in H\}.$$

Lets begin!

- 1. Let H be a group acting on a set A.
 - (a) Show that the relation

$$a \sim b$$
 if and only if $a = h \cdot b$ for some $h \in H$

is an equivalence relation on the set A.

- (b) Show that the equivalence classes of this equivalence relation are precisely the orbits of the elements of A under the action of H.
- (c) Conclude that the orbits of A under the action of H form a partition of A.
- 2. Let H be a subgroup of a group G, and let H act on G by left multilication.

$$H \times G \rightarrow G$$

 $(h,g) \mapsto hg$

- (a) Fix $x \in G$, and consider its orbit $H \cdot x$. Show that H and $H \cdot x$ have the same cardinality. (Hint: build a bijective map $H \to H \cdot x$). Deduce that all the orbits of G under the action of H have the same cardinality.
- (b) Now suppose further that G is a finite group. Use part (a) and the exercise 1 to deduce Lagrange's theorem.
- 3. We can use Lagrange's theorem and what we know about cyclic groups to prove Fermat's little theorem.
 - (a) Let $|G| = n < \infty$. Fix some $x \in G$. Use Lagrange's theorem to show that $x^n = 1$.
 - (b) Let p be a prime number. Compute the order of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Fully justify your answer.
 - (c) Combine parts (a) and (b) to prove Fermat's little theorem.