Exercice 1 - Eléments caractéristiques d'une projection

Soit f l'endomorphisme de \mathbb{R}^3 tel que f(x,y,z)=(-3x+2y-4z,2x+2z,4x-2y+5z). Montrer que f est la projection sur un plan P parallèlement à une droite D. Donner une équation cartésienne du plan P et un vecteur directeur de D.

Exercice 2 - Endomorphismes annulant un polynôme de degré 2

Soit $f \in \mathcal{L}(E)$ et soient α, β deux réels distincts.

1. Démontrer que $E = \text{Im}(f - \alpha I d_E) + \text{Im}(f - \beta I d_E)$. On suppose de plus que α et β sont non nuls et que

$$(f - \alpha Id_E) \circ (f - \beta Id_E) = 0.$$

- 2. Démontrer que f est inversible, et calculer f^{-1} .
- 3. Démontrer que $E = \ker(f \alpha I d_E) \oplus \ker(f \beta I d_E)$.
- 4. Exprimer en fonction de f le projecteur p sur $\ker(f \alpha Id_E)$ parallèlement à $\ker(f \beta Id_E)$.

Exercice 3 - Noyaux itérés

Soit E un espace vectoriel de dimension finie n et soit $f \in \mathcal{L}(E)$.

- 1. Soit $k \geq 1$. Démontrer que $\ker(f^k) \subset \ker(f^{k+1})$ et $\operatorname{Im}(f^{k+1}) \subset \operatorname{Im}(f^k)$.
- 2. (a) Démontrer que si $\ker(f^k) = \ker(f^{k+1})$, alors $\ker(f^{k+1}) = \ker(f^{k+2})$.
 - (b) Démontrer qu'il existe $p \in \mathbb{N}$ tel que
 - si k < p, alors $\ker(f^k) \neq \ker(f^{k+1})$;
 - si $k \ge p$, alors $\ker(f^k) = \ker(f^{k+1})$.
 - (c) Démontrer que $p \leq n$;
- 3. Démontrer que si k < p, alors $\operatorname{Im}(f^k) \neq \operatorname{Im}(f^{k+1})$ et si $k \ge p$, alors $\operatorname{Im}(f^k) = \operatorname{Im}(f^{k+1})$.
- 4. Démontrer que $\ker(f^p)$ et $\operatorname{Im}(f^p)$ sont supplémentaires.
- 5. Démontrer qu'il existe deux sous-espaces F et G de E tels que F et G sont supplémentaires, $f_{|F}$ est nilpotent et $f_{|G}$ induit un automorphisme de G.
- 6. Soit $d_k = \dim (\operatorname{Im}(f^k))$. Montrer que la suite $(d_k d_{k+1})$ est décroissante.

Cette feuille d'exercices a été conçue à l'aide du site https://www.bibmath.net