Lecture 1. Normalizing flows

Introduction to Bayesian Statistical Learning II

Brief recall on the Bayesian concepts

$$posterior = \frac{prior \times likelihood}{evidence}$$

$$P(A \mid X) = \frac{P(A)P(X \mid A)}{P(X)}$$

 $P(A \mid X) = \frac{P(A)P(X \mid A)}{P(X)}$ Where A are the parameters and X is the data (discrete case)

$$p(\theta \mid x) = \frac{p(x)p(x \mid \theta)}{\int p(x)p(x \mid \theta)dx}$$

Where θ are the parameters, and p(x) is a is a probability $p(\theta | x) = \frac{p(x)p(x|\theta)}{\int p(x)p(x|\theta)dx}$ density function (continuous case)

Generative models

GAN: generator and discriminator trained together No likelihood estimate

VAE: implicitly learns the distribution of the data Latent space has a **lower** than input dimension

Normalizing flows: learns exact likelihood estimate, uses
A chain of invertible functions. Latent space has the same
dimension as input

What do normalizing flows have to do with Bayesian inference?

- Normalizing flows are capable of learning exact likelihood estimate, and therefore can be a powerful tool in approximate Bayesian methods such as Simulation Based Inference, especially in cases when likelihood is intractable

What do normalizing flows have to do with Bayesian inference?

- Normalizing flows are capable of learning exact likelihood estimate, and therefore can be a powerful tool in approximate Bayesian methods such as Simulation Based Inference, especially in cases when likelihood is intractable

- Normalizing flows represent a series of transformations of an initial simple distribution - can be viewed as our **prior beliefs** on the posterior distribution

More concrete...

Main idea: We wish to map simple distributions with easy to sample and evaluate densities to complex ones (which are learned via data)

Change of variables

Let Z and X be random variables, such that $X = f(Z), Z = f^{-1}(X)$, where $f: \mathbb{R}^n \to \mathbb{R}$ then $p_X(x) = p_Z(f^{-1}(x)) | det(\frac{\partial f^{-1}(x)}{\partial x})|$ holds.

More concrete...

Main idea: We wish to map simple distributions with easy to sample and evaluate densities to complex ones (which are learned via data)

Change of variables

Let Z and X be random variables, such that $X = f(Z), Z = f^{-1}(X)$, where $f: \mathbb{R}^n \to \mathbb{R}$ then $p_X(x) = p_Z(f^{-1}(x)) | det(\frac{\partial f^{-1}(x)}{\partial x})|$ holds.

- x and z are continuous and of the same dimension

$$-\frac{\partial f^{-1}(x)}{\partial x}$$
 is a Jacobian $n \times n$ matrix, where each (i, j) entry is $\frac{\partial f^{-1}(x)_i}{\partial x_j}$

Normalizing flow models

Latent variables Z and observed variables X, $f_{\theta} : \mathbb{R}^n \to \mathbb{R}^n$ is a mapping between X and Z, which is deterministic and invertible.

Normalizing flow models

Latent variables Z and observed variables X, $f_{\theta} : \mathbb{R}^n \to \mathbb{R}^n$ is a mapping between X and Z, which is deterministic and invertible.

Using change of variables, the marginal likelihood p(x) is given by

$$p_X(x;\theta) = p_Z(f_{\theta}^{-1}(x)) \left| \det(\frac{\partial f_{\theta}^{-1}(x)}{\partial x}) \right|$$

Key requirements:

- 1. f_{θ} is invertible
- 2. *x* and *z* have the same dimension
- 3. Jacobian computation has to be efficient

Planar flow

$$x = f_{\theta}(z) = z + uh(w^Tz + b)$$
, where u , w , b are trainable parameters

$$|\det(\frac{\partial f_{\theta}(z)}{\partial z})| = |1 + h'(w^Tz + b)u^Tw|$$
 NB: $h'(w^Tz + b)u^Tw \ge -1$, h is invertible

- Illustration: affine shift

Transforming U[0,1] distribution using f(x) = 2x + 1

NB: we are dealing with probability density functions,

hence the transformed volume has to integrate to 1!

Nonlinear Independent Components Estimation (NICE)

Partitions z into two **disjoint subsets** z_1 and z_2

Forward mapping: $x_1 = z_1, x_2 = z_2 + m_{\theta}(z_1)$, where the first one is an identity mapping,

and m_{θ} is a **neural network**

Reverse mapping: $z_1 = x_1, z_2 = x_2 - m_{\theta}(x_1)$

The **Jacobian** of the forward mapping is **lower-triangular**, determinant is equal to 1 (volume preserving transform).

Nonlinear Independent Components Estimation (NICE)

Partitions z into two **disjoint subsets** z_1 and z_2

Forward mapping: $x_1 = z_1, x_2 = z_2 + m_{\theta}(z_1)$, where the first one is an identity mapping,

and m_{θ} is a **neural network**

Reverse mapping: $z_1 = x_1, z_2 = x_2 - m_{\theta}(x_1)$

The **Jacobian** of the forward mapping is **lower-triangular**, determinant is equal to 1 (volume preserving transform).

Real Non-Volume Preserving (RealNVP)

 $x_2 = \exp(s_{\theta}(z_1)) \odot z_2 + m_{\theta}(z_1)$ Will look closer in the jupyter notebook!

Jacobian is a product of the scaling factors!

Masked Autoregressive Flow (MAF)

$$p(x) = \prod_{i} p(x_i \mid x_{1:i-1})$$
 Target density is modelled as a product of one-dimensional densities, depending only on the previous values

$$p(x_i | x_{1:i-1}) = \mathcal{N}(x_i | \mu_i, (\exp s_i)^2), \ \mu_i = \mu_i(x_{1:i-1}), \ s_i = s_i(x_{1:i-1})$$
, where $\mu_i()$ and $s_i()$ are neural networks $x_i = z_i \exp s_i + \mu_i, \ z_i \sim \mathcal{N}(0,1)$ Inverse: $z_i = (x_i - \mu_i)/\exp s_i$ —> no need to compute μ_i^{-1} and s_i^{-1}

Masked Autoregressive Flow (MAF)

$$p(x) = \prod_{i} p(x_i | x_{1:i-1})$$
 Target density is modelled as a product of one-dimensional densities, depending only on the previous values

$$p(x_i | x_{1:i-1}) = \mathcal{N}(x_i | \mu_i, (\exp s_i)^2), \ \mu_i = \mu_i(x_{1:i-1}), \ s_i = s_i(x_{1:i-1})$$
 , where $\mu_i()$ and $s_i()$ are neural networks $x_i = z_i \exp s_i + \mu_i, \ z_i \sim \mathcal{N}(0,1)$ Inverse: $z_i = (x_i - \mu_i)/\exp s_i$ —> no need to compute μ_i^{-1} and s_i^{-1}

Masked Autoencoder for Distribution Estimation (MADE): allows to speed up MAF!

All conditional likelihoods $p(x_1), p(x_2 | x_1), \dots, p(x_D | x_{1:D-1})$ are estimated in a single pass of D threads

Masked Autoregressive Flow (MAF)

$$p(x) = \prod_{i} p(x_i \mid x_{1:i-1})$$
 Target density is modelled as a product of one-dimensional densities, depending only on the previous values

$$p(x_i | x_{1:i-1}) = \mathcal{N}(x_i | \mu_i, (\exp s_i)^2), \ \mu_i = \mu_i(x_{1:i-1}), \ s_i = s_i(x_{1:i-1}), \ \text{where } \mu_i() \ \text{and } s_i() \ \text{are neural networks}$$
 $x_i = z_i \exp s_i + \mu_i, \ z_i \sim \mathcal{N}(0,1)$ Inverse: $z_i = (x_i - \mu_i)/\exp s_i$ —> no need to compute μ_i^{-1} and s_i^{-1}

Masked Autoencoder for Distribution Estimation (MADE): allows to speed up MAF!

All conditional likelihoods $p(x_1), p(x_2 | x_1), \dots, p(x_D | x_{1:D-1})$ are estimated in a single pass of D threads

Inverse Autoregressive Flow (IAF): $\mu_i = \mu_i(z_{1:i-1}), \ s_i = s_i(z_{1:i-1})$

somewhat similar to RealNVP

Training Normalising flows

In reality we apply a chain of transformations $f_1, \ldots f_K$ to the prior density p(z)

Loss <--negative log-likelihood: $-\log p_z(f_K \circ f_{K-1} \circ \dots \circ f_1(z)) - \sum_i \log \det \left| \frac{a j_i(z_i)}{dz_i} \right|$

With respect to function (bijector) parameters

Dequantization

- Normalizing flows operate on continuous distributions
- Most of the data we work with have discrete nature
- Hence dequantization: converting discrete data into continuous by adding small amount of noise

Dequantization

- Normalizing flows operate on continuous distributions
- Most of the data we work with have discrete nature
- Hence dequantization: converting discrete data into continuous by adding small amount of noise
- 1. v = x + u, $u \sim U[0,1]$, where x is the original discrete input

$$p(x) = \int p(x+u)du = \int \frac{q(u|x)}{q(u|x)} p(x+u)du = E_{u \sim q(u|x)} \frac{p(x+u)}{q(u|x)} = E_{u \sim U[0,1]^d} p(x+u)$$

Dequantization

- Normalizing flows operate on continuous distributions
- Most of the data we work with have discrete nature
- Hence dequantization: converting discrete data into continuous by adding small amount of noise
- 1. v = x + u, $u \sim U[0,1]$, where x is the original discrete input

$$p(x) = \int p(x+u)du = \int \frac{q(u|x)}{q(u|x)} p(x+u)du = E_{u \sim q(u|x)} \frac{p(x+u)}{q(u|x)} = E_{u \sim U[0,1]^d} p(x+u)$$

Problems: uniform distribution has sharp boarders -> difficult to convert to normal

2. Solution: **Variational** dequantization. In the above formula use learnable distribution $q_{\theta}(u \mid x)$, modelled via an additional normalizing flow

Jupyter notebook