

# INF6803 - Traitements vidéo et applications

Département de génie informatique et génie logiciel Hiver 2015 3 Crédits 3/1.5/4.5 http://moodle.polymtl.ca

#### **Professeur**

| Nom           | Guillaume-Alexandre Bilodeau            |
|---------------|-----------------------------------------|
| Bureau        | M-3420                                  |
| Téléphone     | (514) 340-4711 – 5064                   |
| Courriel      | Guillaume-alexandre.bilodeau@polymtl.ca |
| Disponibilité | À déterminer X                          |

# Description de l'annuaire

Architecture et caractéristiques des caméras vidéo. Compression, décompression et mise à l'échelle d'une séquence vidéo. Estimation du mouvement. Détection des frontières entre deux scènes d'une séquence vidéo. Extraction et représentation de l'information d'une séquence vidéo. Détection du mouvement dans une séquence vidéo: caméras fixes et caméras en déplacement. Modélisation des objets dans les séquences vidéo. Suivi des objets en mouvement. Description et reconnaissance d'activités.

| Cours préalables      | Cours corequis | Cours subséquents |
|-----------------------|----------------|-------------------|
| INF1010 ou équivalent |                |                   |

## **Objectifs**

#### Ce cours vise à:

- présenter les caractéristiques des capteurs vidéo et leurs différences ;
- montrer des techniques utilisées en traitement vidéo, c'est-à-dire les traitements de bases et les traitements de haut niveau pour l'analyse intelligente d'une séquence vidéo;
- présenter les méthodes les plus utilisées pour détecter les changements dans une séquence d'images ;
- présenter les méthodes pour décrire les objets en mouvement et leurs interactions ;
- présenter les méthodes pour faire le suivi des objets en mouvement, et développer chez l'étudiant des capacités de synthèse et d'évaluation ainsi que de communication orale.



#### Utilité du cours

Au terme de ce cours, l'étudiant :

- sera conscient des besoins spécifiques des applications de traitement vidéo ;
- aura mis en pratique certaines techniques d'analyse vidéo ;
- saura identifier les différentes étapes de conception et de développement d'une application de traitement vidéo et choisir les outils de traitement adéquats, et
- sera conscient des limites des systèmes de traitement vidéo existant et saura identifier des directions de recherche dans le domaine.

# Méthodes d'enseignement

L'étudiant est responsable de la lecture préalable des chapitres portant sur les sujets indiqués à la section *Programme du cours*. Ceci lui assure le maximum de disponibilité pour les heures passées en contact avec son professeur. Les sujets du cours seront présentés par des cours magistraux. La compréhension étant toujours facilitée par la pratique, des travaux pratiques permettront à l'étudiant de mettre en pratique certaines méthodes vues au cours. Finalement, les étudiants participeront au cours en présentant et en faisant l'analyse d'un article.

#### Évaluation

| Nature                         | Nombre | Pondération              | Date                                                                 |
|--------------------------------|--------|--------------------------|----------------------------------------------------------------------|
| Travaux pratiques              | 3      | 12%<br>14%<br>14%<br>14% | 6 février 2015, à 12h<br>13 mars 2015, à 12h<br>17 avril 2015, à 12h |
| Analyse et exposé d'un article | 1      | 20%                      | 12, 19 et 26 mars<br>2015                                            |
| Examen final                   | 1      | 40%                      | Durant les semaines d'examen                                         |

## Description des évaluations

## Travaux pratiques

Les travaux pratiques se font en laboratoire durant les trois heures réservées à cette fin ou à la maison et se déroulent sur quelques semaines. Ces travaux permettent à l'étudiant de se familiariser avec les méthodes de traitement vidéo vues en classe. L'étudiant devra implanter avec MATLAB des algorithmes vus au cours.

# Analyse et exposé d'un article

Pour cette activité, les étudiants devront lire un article et en faire la présentation en expliquant la ou les méthodes utilisées et les avantages et les inconvénients de celles-ci.

## **Examen final**

L'examen final a lieu durant les semaines d'examen. Il porte sur toute la matière étudiée pendant le trimestre. On demandera des questions sur les méthodes vues tout au long du trimestre. Durant l'examen, aucune documentation n'est autorisée.

# **Documentation**

# **Notes de cours**

Des notes de cours sont disponibles sur le site Moodle du cours: moodle.polymtl.ca

# Livres obligatoire

Aucun

# Ouvrages de référence

D.A. Forsyth, J. Ponce, Computer vision: A modern approach, Prentice-Hall, 2003 L.G. Shapiro, G.C. Stockman, Computer vision, Prentice-Hall, 2001

# Programme du cours

| Introduction                                                                        | 1 |
|-------------------------------------------------------------------------------------|---|
| Présentation du cours                                                               |   |
| Caractéristiques des capteurs vidéo                                                 | 2 |
| Capteurs visibles                                                                   |   |
| <ul> <li>Technologies et spécifications</li> </ul>                                  |   |
| <ul> <li>Vitesse d'acquisition vs résolution, échantillonnage, lentilles</li> </ul> |   |
| Extraction des régions d'intérêt                                                    | 3 |
| Par soustraction d'arrière-plan                                                     |   |
| Par segmentation                                                                    |   |
| <ul> <li>Composantes connectées, élimination des ombres</li> </ul>                  |   |
| Description des régions d'intérêt                                                   | 9 |
| Descripteurs de base                                                                |   |
| <ul> <li>Couleurs, formes, textures</li> </ul>                                      |   |
| Descripteurs avancés                                                                |   |
| <ul> <li>Méthodes globales (descripteurs de forme)</li> </ul>                       |   |
| <ul> <li>Méthodes locales (descripteurs locaux)</li> </ul>                          |   |
| Suivi des régions d'intérêt                                                         | 5 |
| <ul> <li>Modèle génératif vs modèle discriminatif</li> </ul>                        |   |
| Suivi par détection                                                                 |   |
| <ul> <li>Suivi par estimation de la densité de probabilité</li> </ul>               |   |
| Modélisation d'humains                                                              | 3 |
| <ul> <li>Modèle par contour, par région, et par bâtonnets</li> </ul>                |   |
| Reconnaissance de démarches                                                         |   |
| Reconnaissance d'activités/actions                                                  |   |
| Par détection et suivi                                                              |   |
| Par historique de mouvement                                                         |   |
| Par approche sac de mots visuels                                                    |   |
| Reconnaissance du transport d'un objet                                              |   |
| Capteurs infrarouges                                                                |   |
| Technologies et caractéristiques                                                    |   |
| Présentation par les étudiants                                                      |   |