Subhayan Mukherjee

Edmonton, Canada* | subhayan012@gmail.com | 587.501.3435 | Portfolio

SKILLS

CODING LANGUAGES

C / C++ · Python · Matlab · Java

ML/CV LIBRARIES

Keras (Tensorflow) • OpenCV Scikit-Learn • Scikit-Image Numpy • Scipy • Tesseract OCR

DATABASES

MySQL · Oracle

PLATFORMS

Windows • Linux (Ubuntu)

DEV ENVIRONMENTS

Visual Studio • Spyder • Eclipse

VERSION CONTROL

Git · Perforce

BUILD MANAGEMENT

CMake · Maven

PACKAGE MANAGEMENT

Anaconda · pip · vcpkg · APT

EDUCATION

UNIVERSITY OF ALBERTA

PHD | COMPUTER SCIENCE MACHINE LEARNING & VISION 2015 - 2020 | Edmonton, CA GPA: 4.0 / 4.0

NATIONAL INST. OF TECH.

M-Tech | Computer Vision 2012 - 2014 | Surathkal, IN GPA: 8.33 / 10.0

HERITAGE INST. OF TECH.

B-TECH | IMAGE PROCESSING 2005 - 2009 | Kolkata, IN Major GPA: 8.16 / 10.0

PROFILES

LinkedIn://subhayanmukherjee Github://subhayanmukherjee Facebook://subhayan.mukherjee

LANGUAGES

Bengali Native or bilingual
English Full professional
Hindi Professional working
German Elementary

SUMMARY

- 3+ years industry and internship experience in developing, productionizing, and productizing end to end machine learning and computer vision pipelines.
- Designed machine learning systems that can process large volumes of data.
- Designed systems that run on-edge or in compute restrained environments.
- \cdot 3 years software engineering experience with code deployed in production.
- Start-up experience with rapid prototyping, experimentation and execution.
 Sound in fundamentals of machine learning, deep learning, computer vision.
- Self-motivated, detail-oriented and accountable quick learner; able to work independently and in a team on all aspects of the software when called upon.

EXPERIENCE

TETRATECH | Software Developer Level 2 (Scientist II)

- Deep Learning Computer Vision May 2020 Present | Edmonton, CA
- · High performance pattern segmentation on Depth data via Multi-Threading.
- Real-time feature extraction, object detection, localization and classification.
- Optical Character Recognition using LSTM trained on real & synthetic data.
- Script based reusable processing pipelines for rapid re-training & iteration.

3VGEOMATICS | Research Intern + University Collaborator

- Deep Learning Computer Vision Jul 2017 May 2020 | Vancouver, CA
- Extremely scalable filtering and per-pixel quality analysis for radar imagery.
- Research and prototype new unsupervised learning approaches to perform inference at scale on petabytes of unlabeled radar data using CNNs & GMMs.
- Reading and implementing current research papers on machine learning & computer vision; Understanding mathematical foundations of the algorithms.

DOLBY LABS | Video Imaging Research Intern

- HDR Patent US2017/0308996A1 Sep 2016 Apr 2017 | Sunnvvale. US
- Research and prototype high dynamic range (HDR) image enhancement for embedded platforms through perceptual masking of quantization artefacts.
- · Accelerating tone mapping interpolation via fewer points without artefacts.
- Subjective experiments on reference monitors using different color spaces.

SOFTWARE ENGINEERING | Systems / Software Engineer R&D

- Informatica (Java API development)
- Jul 2014 Jul 2015 | Bangalore, IN
- Infosys (Mainframes development)
- Dec 2009 Aug 2011 | Bhubaneswar, IN

AWARDS

- 2019 Graduate Excellence Scholarship (CAD 12,000) funded by Alberta Govt.
- 2017 Pansy and George Strange Graduate Scholarship (declined the offer)
- 2016 Runner-Up Certificate, PhD Early Achievement Award, Computer Science
- 2012 98 % tile in Graduate Aptitude Test in Engineering (Govt. funded M-Tech)
- 2007 3rd in pan-India C Programming contest organized by Jadavpur University

PHD ARTICLES

S. Mukherjee, A. Zimmer, X. Sun, P. Ghuman, and I. Cheng, "An unsupervised generative neural approach for insar phase filtering and coherence estimation," *IEEE Geoscience and Remote Sensing Letters*, vol. (Early Access), pp. 1–5, July 2020.

S. Mukherjee, I. Cheng, S. Miller, T. Guo, V. Chau, and A. Basu, "A fast segmentation-free fully automated approach to white matter injury detection in preterm infants," *Medical & Biological Engineering & Computing*, vol. 57, pp. 71–87, July 2018.

RESEARCH PROJECTS

DEEP FEATURES FOR IMAGE QUALITY ASSESSMENT • Kernel Density Estimation • Auto-Encoder

- · Opinion-Unaware, Distortion-Unaware, No-Reference IQA using learned deep features instead of hand-crafting.
- Unsupervised learning of image quality features from pristine images dataset using Convolutional Autoencoder.
- · Non-parametric pristine image model built by fitting arbitrary feature distributions via Kernel Density Estimation.

VERSATILE DEPTH-OF-FIELD EFFECT AND IMAGE AUTO-ROI • Compute-Efficient Stereo • Saliency

- Stereo disparity estimation based on interpolation from sparse disparity estimates on image segment boundaries.
- Disparity & Saliency used to auto-emphasize Regions-of-Interest in a scene by simulating Shallow Depth-of-Field effects via varying degrees of Gaussian Blur. Parallelizable computations accelerated using GPU & Multi-threading.

CNN-BASED PARAMETER-TUNING OF NOISE FILTER • Collaborative Filtering • Real-Time Conv-Net

- Image-based prediction of 3D decorrelating unitary transform coefficient threshold for stacks of matched blocks.
- Shallow Neural Network architecture with Separable Convolutions for fast convergence and real-time prediction.