

NiMARE: Neuroimaging Meta-Analysis Research Environment

Salo T¹, Yarkoni T², Kent JD³, Gorgolewski KJ⁴, Glerean E⁵, Bottenhorn KL¹, Bilgel M⁶, Wright J⁴, Reeders P¹, Nielson DN⁷, Nichols TE⁸, Riedel MC¹, Sutherland MT¹, and Laird AR¹

¹Florida International University,²UT Austin,³University of Iowa,⁴Stanford University, ⁵Aalto University,⁶National Institute on Aging,⁷National Institute of Mental Health,⁸University of Oxford

Motivation

- fMRI research is subject to low signal-to-noise, low power, and high analytic flexibility.
- Meta-analysis helps alleviate these issues.
- Meta-analytic databases make large-scale meta-analysis possible.
- Meta-analytic algorithms have been extended for a range of interesting derivative analyses.

The Problem

Meta-analytic methods are spread out across a range of UIs and languages. Many never even make it from the paper to a useable implementation.

The Solution

An open-source, collaboratively developed, Python package with a standardized interface and extensive documentation.

Getting involved

We welcome new contributors!

If you know Python or are interested in neuroimaging meta-analysis, check out the contributing guidelines on the project website.

Objectives

- 1. A command line interface for common workflows, with citable write-ups of the methods used!
- 2. Interoperability with existing databases like BrainMap, Neurosynth, and NeuroVault.
- 3. Methods for database extraction, automated, annotation, meta-analysis, parcellation, and functional decoding.

Features

- Dataset conversion tools
- Image-based meta-analysis
- Activation likelihood estimation
- Multilevel kernel density analysis
- peaks2maps
- Meta-analytic coactivation modeling
- Discrete functional decoding
- Continuous functional decoding
- Generalized correspondence latent Dirichlet allocation

Position within the meta-analytic ecosystem

