# 统计分析与建模

期末项目说明

## 选题一基于驾驶任务数据的疲劳定级

#### • 背景

• 基于司机的驾驶任务统计数据(当前驾驶时长、累计行车告警等数据,详见选题一数据说明),完成对驾驶员的疲劳定级,分为二分类定级和三分类定级

#### • 建模数据

- 二分类数据集
- 三分类数据集

#### • 方法

- 逻辑回归模型 (二分类)
- 朴素贝叶斯模型(三分类)

#### • 模型指标

- (1) 准确率 (Accuracy)
- (2) 查全率 (Recall) 查准率 (Precision) F1指标
- (3) ROC曲线(接受者操作特征曲线)下的面积AUC(Area Under Curve)

#### • 评分要点

- 数据预处理
- 建模过程与分析
- 模型指标

| speed | fatigue_res dr | iver_age age_level | continuous | continuousa | larm_time | circadian_i | depart_tim to | otal_alarm tota | al_alarm | alarm_betv | alarm_betvalar | m_face alar | m_face : | spare_time | total_fatigua | accumulatin | nax_spare. |
|-------|----------------|--------------------|------------|-------------|-----------|-------------|---------------|-----------------|----------|------------|----------------|-------------|----------|------------|---------------|-------------|------------|
| 4     | 0 1            | 47 B               | 7537       | 33.37291    | 29315     | 13.62842    | 21778         | 21              | 0        | 0.00013    | 0.012346       | 1           | 1        | 8.44E-06   | 46.85027      | 0           | 86400      |
| 6     | B 2            | 53 B               | 3312       | 13.90755    | 46722     | 40.74108    | 43410         | 11              | 0        | 0.000329   | 0.005464       | 2           | 0        | 1.95E-05   | 54.49756      | 16799       | 51360      |
| 8:    | 3 1            | 41 A               | 501        | 0.628664    | 31256     | 11.79223    | 30755         | 2               | 0        | 0.015152   | 0.026316       | 2           | 2        | 7.63E-06   | 12.26983      | 0           | 86400      |
| 5     | 0 1            | 49 B               | 665        | 1.405774    | 45296     | 32.49836    | 44631         | 1               | 0        | 0.029412   | 0.029412       | 1           | 1        | 5.74E-05   | 33.75308      | 3895        | 17412      |
| 7:    | 2 1            | 40 A               | 4207       | 18.09814    | 49748     | 58.47664    | 45541         | 12              | 0        | 0.000417   | 0.022222       | 1           | 1        | 0.001639   | 76.42372      | 11885       | 73441      |
| 5     | 4 2            | 40 A               | 1692       | 6.268669    | 49236     | 55.65854    | 47544         | 4               | 0        | 0.002165   | 0.025641       | 2           | 2        | 8.50E-05   | 61.77614      | 13894       | 47793      |
| 7     | 9 1            | 49 B               | 1197       | 3.925874    | 49807     | 58.79175    | 48610         | 7               | 0        | 0.000905   | 0.037037       | 3           | 3        | 0.000267   | 62.56656      | 5386        | 7237       |
| 7     | 9 2            | 37 A               | 1338       | 4.59347     | 53848     | 71.76977    | 52510         | 4               | 0        | 0.004464   | 0.013889       | 4           | 3        | 1.42E-05   | 76.21217      | 7508        | 70562      |
| 6.    | 1 0            | 45 B               | 1751       | 6.547722    | 45408     | 33.12014    | 43657         | 11              | 0        | 0.001742   | 0.017544       | 4           | 3        | 0.000119   | 39.5168       | 2816        | 8423       |
| 5-    | 4 2            | 52 B               | 1221       | 4.03952     | 45614     | 34.27746    | 44393         | 4               | 0        | 0.005181   | 0.02           | 4           | 3        | 7.41E-05   | 38.16592      | 11921       | 52425      |
| 5     | B 1            | 53 B               | 995        | 2.969186    | 45285     | 32.43759    | 44290         | 6               | 0        | 0.001479   | 0.029412       | 4           | 3        | 0.000119   | 35.25572      | 3690        | 8374       |
| 8     | 3 1            | 54 B               | 2615       | 10.62776    | 59229     | 52.06902    | 56614         | 3               | 0        | 0.000433   | 0.003831       | 1           | 0        | 0.000102   | 62.54573      | 7332        | 17759      |
| 4     | 3 2            | 44 A               | 2571       | 10.42033    | 24304     | 32.86144    | 21733         | 5               | 0        | 0.000402   | 0.018182       | 1           | 1        | 8.12E-06   | 43.1307       | 0           | 86400      |
| 5-    | 4 2            | 47 B               | 2835       | 11.6643     | 41361     | 15.69927    | 38526         | 14              | 0        | 0.000453   | 0.000627       | 0           | 0        | 5.98E-05   | 27.2125       | 2400        | 16709      |
| 5     | В 1            | 52 B               | 2958       | 12.24331    | 24513     | 31.66991    | 21555         | 7               | 0        | 0.000614   | 0.002227       | 0           | 0        | 8.04E-06   | 43.76216      | 0           | 86400      |
| 4     | 0 1            | 54 B               | 3048       | 12.66674    | 23202     | 39.43148    | 20154         | 4               | 0        | 0.000445   | 0.010989       | 1           | 1        | 8.46E-06   | 51.94716      | 0           | 86400      |
| 7.    | 2 1            | 38 A               | 1439       | 5.071563    | 54171     | 71.79976    | 52732         | 12              | 0        | 0.001344   | 0.025641       | 5           | 3        | 0.000131   | 76.72026      | 6112        | 17486      |
| 6     | 5 1            | 51 B               | 2874       | 11.84793    | 45923     | 36.04361    | 43049         | 15              | 0        | 0.000413   | 0.006173       | 2           | 1        | 0.000128   | 47.74047      | 12754       | 59590      |
| 6     | В 1            | 49 B               | 1427       | 5.014765    | 45323     | 32.64776    | 43896         | 1               | 0        | 0.027778   | 0.027778       | 1           | 1        | 0.00011    | 37.51146      | 10100       | 55768      |
| 6.    | 1 1            | 44 A               | 715        | 1.642684    | 44310     | 27.29174    | 43595         | 4               | 0        | 0.002268   | 0.006211       | 2           | 1        | 1.44E-05   | 28.78336      | 4212        | 69401      |
| 6     | 5 2            | 44 A               | 1669       | 6.159873    | 45141     | 31.6471     | 43472         | 7               | 0        | 0.00068    | 0.018868       | 3           | 1        | 9.60E-06   | 37.65591      | 0           | 86400      |
| -     | -1             |                    |            |             |           |             |               |                 | -        |            |                | -           | -        |            |               |             |            |

## 选题二基于面部时序特征的疲劳定级

#### • 背景

• 基于司机的驾驶面部时序特征(详见选题二数据说明), 完成对驾驶员的疲劳定级

#### • 建模数据

• 三分类驾驶眼部时序数据集,每一个事件包含若干秒内的眼部关键点坐标信息

#### 方法

- 非时序模型: 从眼部关键点中提取出统计特征, 如(PERCLOS、左右眼平均睁开百分比等), 之后构建分类模型
- 时序分类模型(如RNN、LSTM等)

#### • 模型指标

- · (1) 准确率 (Accuracy)
- (2) 查全率(Recall) 查准率(Precision) F1指标
- (3) ROC曲线(接受者操作特征曲线)下的面积AUC(Area Under Curve)

#### • 评分要点

- 特征提取方法
- 建模过程与分析
- 模型指标





# PERCLOS介绍

卡内基梅隆研究所提出的度量疲劳/瞌睡的物理量 PERCLOS (Percentage of Eyelid Closure over the Pupil over Time, 简称PERCLOS)。其定义为单位时间内 (一般取1 分钟或者 30 秒) 眼睛闭合一定比例 (70% 或80%) 所占的时间

PERCLOS 的计算公式如下: 4

P7O:指眼睑遮住瞳孔的面积超过70%就计为眼睛闭合,统计在一定时间内眼睛闭合时所占的时间比例。 P80:指眼睑遮住瞳孔的面积超过80%就计为眼睛闭合,统计在一定时间内眼睛闭合时所占的时间比例。

## 选题三碰撞事故的时序数据分析预测

- 背景
  - 基于两份时序数据(详见选题三数据说明), 完成对时序数据的分析与预测
- 建模数据
  - 上海快速路交通事故数据集
  - 污染物浓度监测数据
- 方法
  - ARIMA
  - 其他时序预测模型 (LSTM等)
- 模型指标
  - (1) 均方误差 (MSE)
- 评分要点
  - 数据预处理
  - 时序数据分析(两份时序数据对比)
  - 建模预测

| day |            | crash_number |
|-----|------------|--------------|
|     | 2011/10/1  | 62           |
|     | 2011/10/2  | 47           |
|     | 2011/10/3  | 56           |
|     | 2011/10/4  | 59           |
|     | 2011/10/5  | 59           |
|     | 2011/10/6  | 50           |
|     | 2011/10/7  | 45           |
|     | 2011/10/8  | 63           |
|     | 2011/10/9  | 64           |
|     | 2011/10/10 | 87           |
|     | 2011/10/11 | 72           |
|     | 2011/10/12 | 109          |
|     | 2011/10/13 | 91           |
|     | 2011/10/14 | 87           |
|     | 2011/10/15 | 130          |
|     | 2011/10/16 | 54           |
|     | 2011/10/17 | 85           |
|     | 2011/10/18 | 98           |
|     | 2011/10/19 | 97           |
|     | 2011/10/20 | 96           |
|     | 2011/10/21 | 108          |
|     | 0044440400 | ^^           |

# LSTM介绍



- 遗忘门
- 记忆门
- 输出门

### LSTM代码示例

#### Pytorch

#### Keras

```
model = Sequential()
model.add(LSTM(32, input_dim=64, input_length=10, return_sequences=True))
# note that you only need to specify the input size on the first layer.
# for subsequent layers, no need to specify the input size:
model.add(LSTM(16, return_sequences=True))
model.add(LSTM(10))
```

# 项目要求

- 自由组队, 3-4人为一组
- 字体、字号按模板要求
- 不超过10页

# 提交方式与给分

- 分组(共享文档,截止日期:本周末12.12 23:59前)
- 小组成员按百分比分配(上限为40分满分)
- 每个选题评优数目上限: 小组数/3
- 评分标准
  - 文献检索 25%
  - 数据分析与建模 25%
  - 评估与解读 25%
  - 答辩 25%
- 参与荣誉计划的同学需额外采用一种扩展方法





- 腾讯文档 -可多人实时在线编辑,权限安全可控