

南周大學

第三章 功和能

本章目录

前言

- Δ3.1 功(书3.1)
- Δ3.2 动能定理(书3.3)
- 3.3 一对力的功(书3.2)
- 3.4 保守力的功(书3.2)
- Δ3.5 势能(书3.4)
- 3.6 由势能求保守力 (书3.4)
- 3.7 功能原理, 机械能守恒定律(书3.4节)
- 3.8 守恒定律的意义(书3.4节)
- ∆3.9 碰撞
- 3.10 质心系中的功能关系(书4.4节有一部分)
- 3.11 两体问题
- *蓝色部分归入第四章讲解

前言

本章讨论力对空间的积累效应 —— 功、动能、

势能、动能定理、机械能守恒定律。要求:

- 1. 深入理解以上概念, 搞清它们是属于质点、 还是属于系统? 与参考系的选择有无关系?
- 2. 搞清规律的内容、来源、对象、适用条件、 与参考系的关系等。
- 如: ▲ 功的计算是否依赖参考系?
 - ▲ 势能是否与参考系的选择有关?
 - ▲ 机械能守恒是否与惯性系的选择有关?
 - ▲ 能量的实质是什么? (代表什么)
 - ▲ 摩擦生热是否与参考系选择有关?

Δ 3.1 功 (mechanical work)

1. 恒力做功

■ 恒力对物体所作的功等于作用于物体的力 与物体沿力的方向所作位移大小的乘积。

 $A = F\Delta r$

■ 当力与物体的位移有一恒定夹角时

 $A = F_{r} \Delta r = F \cos \varphi \Delta r$

 \rightarrow 上式可记为 $A = \vec{F} \cdot \Delta \vec{r}$

称为矢量的点乘

- 功的单位:牛顿米(Nm),称为焦耳(J)
- 功的量纲: ML²T-²。
- 功的非SI单位:
 - ▶ 尔格 (erg) 1 erg = 10⁻⁷ J
 - ▶ 电子伏特(eV) 1 eV = 1.6×10⁻¹⁹ J
- 此外,在电工学上还常用千瓦小时作单位 (*KWh*):

 $1KWh = 3.6 \times 10^6 J$

$A = \vec{F} \cdot \Delta \vec{r} = F \Delta r \cos \varphi$

- 讨论
 - > 功是标量,但有正负。
 - $\varphi = \pi/2$,力与位移方向垂直,cos $\varphi = 0$,力不作功。
 - 如物体作圆周运动时,向心力不作功;
 - 人担水走平路时,支撑力不作功。
 - ρ q < π/2, $\cos \varphi > 0$, 力对物体作正功。
 - 如自由落体,重力作正功。

- $\varphi > \pi/2$, $\cos \varphi < 0$, 力对物体作负功,或物体反抗外力作正功。
 - 如竖直上抛,重力作负功。
 - > 功是力在空间上的累积效应。

2. 变力做功

- 力的大小或方向随时间而变化
 - ▶ 在物体运动轨道上任取一位移微元 则力作的功微元

物体从A运动到B, 变力作的总功为

 $A = \int dA = \int_{A}^{B} \vec{F} \cdot d\vec{r}$

元位移:

■ 在直角坐标系

$$\vec{F} = F_x \vec{i} + F_y \vec{j} + F_z \vec{k}$$

$$d\vec{r} = dx \vec{i} + dy \vec{j} + dz \vec{k}$$

$$A = \int_A^B \vec{F} \cdot d\vec{r}$$

$$= \int_{r_A}^{r_B} F_x dx + \int_{r_A}^{r_B} F_y dy + \int_{r_A}^{r_B} F_z dz$$

元功: dW

当质点同时受到几个力作用时

$$\begin{split} \vec{F} &= \sum_{i} F_{i} = \vec{F}_{1} + \vec{F}_{2} + \cdots \\ A &= \int_{A}^{B} \vec{F} \cdot d\vec{r} \\ &= \int_{r_{A}}^{r_{B}} (\vec{F}_{1} + \vec{F}_{2} + \cdots) \cdot d\vec{r} \\ &= \int_{r_{A}}^{r_{B}} \vec{F}_{1} \cdot d\vec{r} + \int_{r_{A}}^{r_{B}} \vec{F}_{2} \cdot d\vec{r} + \cdots \\ &= A_{1} + A_{2} + \cdots \end{split}$$

3、功率 力在单位时间内所作的功

平均功率:
$$\overline{P} = \frac{\Delta W}{\Delta t}$$

瞬时功率:
$$P = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t} = \frac{dW}{dt}$$

$$\therefore dW = \overrightarrow{F} \bullet d\overrightarrow{r} \therefore P = \overrightarrow{F} \bullet \frac{d\overrightarrow{r}}{dt} = \overrightarrow{F} \bullet \overrightarrow{v}$$

单位: W或Js⁻¹ **量纲:** ML²T⁻³ 功的其它单位: 1eV=1.6×10⁻¹⁹J

4. 小结

功:力和力所作用的质点(或质元)的位移的 标量积。

 $W_{12} = \int_{(1)}^{(2)} dW$ $= \int_{(1)}^{(2)} \vec{F} \cdot d\vec{r}$ $= \int_{(1)}^{(2)} F \cos \theta \cdot |d\vec{r}|$

▲功依赖于参考系;

▲ 功是标量,有正、负之分。

书中例题3.1 (P.95)

已知: F=6x; $\cos \theta = 0.70-0.02x$

求: 质点从 $x_1 = 10$ m到 $x_2 = 20$ m过程中F所作的功。

解: $dA = F \cos\theta dx = 6x (0.70 - 0.02) dx$

积分得:

$$A = \int_{x_1}^{x_2} 6x(0.70 - 0.02x) dx$$
$$= \int_{10}^{20} 4.2x dx - \int_{10}^{20} 0.12x^2 dx$$
$$= 350(1)$$