

- 1. Problema
- 2. Representação
- 3. Decodificação
- 4. Avaliação
- 5. Seleção
- 6. Operadores
- 7. Técnicas
- 8. Parâmetros

Problema

•Estudo de Contexto do Problema: Conhecer regras, restrições, objetivos, procedimentos em uso, etc.

- •GAs são indicados em problemas difíceis de otimização:
 - muitos parâmetros e variáveis;
 - mal estruturados: com condições e restrições,
 difíceis de serem modeladas matematicamente;
 - # grandes espaços de busca onde não é possível a busca exaustiva.

Representação

- Consiste em uma maneira de traduzir a informação do problema em uma maneira viável de ser tratada pelo computador;
- Quanto mais ela for adequada ao problema, maior a qualidade dos resultados obtidos.

Decodificação

Construir a solução para o problema a partir de um cromossoma:

Cromossomas "representam" soluções.

 A decodificação é a etapa que permite que cada indivíduo seja efetivamente avaliado;

cromossomo

decodificação

Avaliação

- •É maneira utilizada para determinar a qualidade de um indivíduo como solução do problema em questão;
- A função de avaliação permite diferenciar entre as boas e más soluções para um problema;
- ■Devem embutir todo o conhecimento que se possui sobre o problema a ser resolvido, assim como, seus objetivos de qualidade.

Seleção

 O método de seleção de pais deve simular o mecanismo de seleção natural, onde pais mais capazes geram mais filhos, ao mesmo tempo em que os pais menos aptos também podem gerar descendentes.

Como funciona o processo evolutivo dos ALGORITMOS GENÉTICOS?

Prof^a Ana Carolina Abreu

Prof^a Ana Carolina Abreu

probabilidades de aplicação dos operadores genéticos de *cruzamento* e *mutação*

Prof^a Ana Carolina Abreu

gera a população inicial de indivíduos

Prof^a Ana Carolina Abreu

Prof^a Ana Carolina Abreu

Prof^a Ana Carolina Abreu

- 1. Problema
- 2. Representação
- 3. Decodificação
- 4. Avaliação
- 5. Seleção
- 6. Operadores
- 7. Técnicas
- 8. Parâmetros

Seleção

Método da roleta

Sorteio um número entre 0 e 1

0,8

0,8*62 = **49,6**

Nova população

0110

Prof^a Ana Carolina Abreu

Seleção

• Método da roleta

Nova população

0110

0100

SELEÇÃO PELA ROLETA

Objetivo: Selecionar indivíduos aleatoriamente, proporcionando maiores chances de reprodução aos mais aptos.

Método por Computador

•Encontre a soma da aptidão de todos os membros da população $A_T = \sum A_i$ (0 \Leftrightarrow i \Leftrightarrow pop_size-1)

- •Gere um número aleatório 0 ⇔ rand ⇔ A_T
- •Pegue o primeiro membro da população I_k cuja aptidão somada às aptidões dos membros precedentes é maior ou igual a rand.

 $\sum A_i \cdot \nabla$ rand (i \square k)

SELEÇÃO PELA ROLETA

Cromossoma

Aptidão

 $\sum A_i$

1	2	3	4	5	6	7	8	9	10
8	2	17	7	2	12	11	7	3	7
8	10	27	34	36	48	59	66	69	76

Número Aleatório

Selecionado

23	49	76	13	1	27	57
3	7	10	3	1	3	7

Operadores Genéticos

Os operadores genéticos tem a função de modificar os indivíduos e consequentemente gerar novos indivíduos;

- ■Para isso são utilizados dois tipos de operadores distintos:
 - cruzamento
 - mutação

Operadores Genéticos

Utilizando os operadores genéticos de cruzamento e de mutação, os Algoritmos Genéticos conseguem um equilíbrio entre:

- a capacidade de exploração do espaço de soluções; e
- o aproveitamento das melhores soluções ao longo da evolução;

Com isso, se mostram interessantes para a resolução de problemas complexos de otimização

Operadores Genéticos

- Cruzamento
 - ■consiste em recombinar o material genético de dois indivíduos a fim de criar dois novos indivíduos;
 - ■esse operador tem a função de extrair genes de diferentes indivíduos, e recombiná-los para formar novos indivíduos.

Operadores Genéticos

Cruzamento – 1 ponto de corte

 Existem outros operadores de cruzamento, como por exemplo, de 2 pontos de cortes, uniforme, baseado em maioria, etc.

Operadores Genéticos

Cruzamento – 2 pontos de corte

Operadores Genéticos

Cruzamento - uniforme

Operadores Genéticos

Cruzamento – baseado em maioria

Operadores Genéticos

- Mutação
 - ■introduz diversidade em uma população, ou seja, é responsável pela variação dos indivíduos;

■consiste em aplicar modificações aleatórias em uma ou mais características de um indivíduo para criar um novo.

Operadores Genéticos

Mutação

Operadores Genéticos

• Mutação - uniforme

1	0	1	0	1	→	1	1	1	0	0
	1									

Operadores Genéticos

- GAs podem incorporar diversos operadores genéticos.
- Qual operador usar a cada instante?
- Operadores não devem ser usados todos, com a mesma intensidade a cada fase da evolução
 - mais crossover no início e mais mutação no final da evolução.
- Solução: uma roleta sorteia um operador a cada reprodução.
- Pesos (chances) dos operadores são parâmetros do algoritmo.

Exercícios

Prof^a Ana Carolina Abreu

Técnicas e Parâmetros

Entre as gerações:

- É possível que todos os pais sejam descartados e seus filhos tornam-se os pais da nova geração, e com isso bons indivíduos se perdem ao longo das gerações;
- Ou que os indivíduos tenham uma "expectativa de vida" que seja proporcional a sua qualidade, o que faz com que o tamanho da população possa crescer caso a avaliação de todos os indivíduos seja muito boa;

Técnicas e Parâmetros

- Elitismo
- Reprodução Steady State
- Ajuste dos Parâmetros

Técnicas e Parâmetros

Entre as gerações:

- O melhor indivíduo da geração não "morre", passa para a geração seguinte - Elitismo;
- Um percentual dos melhores indivíduos da geração não "morrem", passam para a geração seguinte - Steady State;
- Um percentual dos melhores indivíduos da geração não "morrem", passam para a geração seguinte, contudo indivíduos idênticos são descartados - Steady State sem duplicados;

Elitismo

- Melhor cromossoma de P(t) é copiado em P(t+1), após o mutação e crossover.
- Reduz o efeito aleatório do processo seletivo.
- Garante que o melhor indivíduo da próxima geração é melhor ou igual ao da geração anterior.

Steady State

- •Substituição parcial de indivíduos a cada geração
- •Bons indivíduos (material genético) são preservados, garantindo mais chances de reprodução
- Indivíduos mantidos não precisam ser reavaliados
- •Método:
 - Crie n filhos (seleção+crossover+mutação)
 - Elimine os n piores membros da população
- Avalie e introduza os filhos na população
- •GAP = fração da população que é trocada

Prof^a Ana Carolina Abreu

Steady State

C19	120				
C18	110				
C17	100				
C16	99				
C15	95				
C14	81				
C18 C17 C16 C15 C14 C13 C12 C11 C10	76				
C12	67				
C11	58				
C10	44				
C9	42				
C8	36				
C7	22				
C6	20				
C5	19				
C4	17				
C9 C8 C7 C6 C5 C4 C3 C2	10				
C2	8 5				
C1	5				

Prof^a Ana Carolina Abreu

Master

avaliações de P(t)

crie n novos substitua os n piores

avaliações de P(t+1)

Steady State sem duplicados

- Substituição parcial de indivíduos com exclusão de duplicados
- Evita os **duplicados que são mais frequentes** com steady state (populações mais estáticas)
- Maior eficiência do paralelismo de busca, garantindo pop_size indivíduos diferentes
- Descendentes duplicados s\u00e3o desprezados

Ajuste dos parâmetros

- Variação dos parâmetros do GA durante a execução, de modo a alcançar maior desempenho.
- Parâmetros:
 - taxa de crossover
 - taxa de mutação
 - taxa incremento da normalização da aptidão
 - pesos dos operadores, etc
- Interpolação linear define:
 - valores inicial e final do parâmetro e frequência de ajuste.

Desempenho dos AGs

O desempenho do algoritmo genético pode ser medido pelo grau de evolução alcançado durante o processo evolucionário.

Para tanto, devido à natureza estocástica dos AGs é necessário avaliar o resultado médio de vários experimentos para se ter uma ideia do desempenho do algoritmo genético desenvolvido.

Evolução dos Indivíduos

Melhor Indivíduo

Desempenho dos AGs

- Aspectos importantes:
 - convergência do GA
 - proximidade dos melhores cromossomas a um mínimo local
 - diversidade da população

Exercícios

Prof^a Ana Carolina Abreu