

Document Classification via Stable Graph Patterns and Conceptual AMR Graphs

CONCEPTS conference, Cadiz, Spain, September 12, 2024

By Eric George Parakal, **Egor Dudyrev**, Sergei O. Kuznetsov, Amedeo Napoli

Authors statuses Not arrived Student Arrived Not Student Eric George Sergei O. Amedeo Egor

Eric George's thesis

Document Classification Stable Graph Patterns and Conceptual

Egor's thesis

How to classify documents

Explainable Document Classification

S.O. Kuznetsov, E.G. Parakal, 2023

Abstract Meaning Representation Graph

Problems to study

Problem1

AMR Graph for a sentence

Doc2Graph algorithm

Algorithm 1 DocToGraph

```
Input: a document g_i
Output: a graph description \delta(g_i)
T_i \leftarrow \text{findSentences}(g_i)
for all t_{ji} \in T_i do
\text{AMR}_{ji} \leftarrow \text{AMRParser}(t_{ji})
\text{MOD}_{ji} \leftarrow \text{ModifyGraph}(\text{AMR}_{ji})
\text{REF}_{ji} \leftarrow \text{refineGraph}(\text{MOD}_{ji})
end for
\delta(g_i) \leftarrow \text{mergeGraphs}(\{\text{REF}_{ji}\})
\text{return } \delta(g_i)
```

Problem 2

Use pattern structures

Attributes
$$\longrightarrow$$
 Description space $\underline{\mathbb{D}} = (2^M, \subseteq)$ \longrightarrow Description space \longrightarrow Description space $\underline{\mathbb{D}} = (\mathbb{D}, \sqsubseteq)$

Select only interesting patterns

Frequent Concepts/Iceberg Lattice
Stable Concept Mining

Δ Stability

FCA

$$\Delta(B) = \operatorname{supp}(B)$$

$$- \max_{B_2 \subseteq M} \operatorname{supp}(B_2)$$

$$B \subset B_2$$

$$\Delta(D) = \operatorname{supp}(D)$$

$$- \max_{D_2 \in \mathbb{D}} \operatorname{supp}(D_2)$$

$$D \sqsubseteq D_2$$

Stability of graphs

A small problem

Graphs do not form a lattice

$$\left\{ \begin{array}{c} \\ \\ \end{array} \right\} \cap \left\{ \begin{array}{c} \\ \\ \end{array} \right\} = \left\{ \begin{array}{c} \\ \\ \end{array} \right\}$$

Antichains of graphs do

Stability of sets of graphs

Projection monotonicity

Sub-attributes $P \subseteq M$

$$\Delta(B \mid P) = \operatorname{supp}(B \cap P)$$
$$- \max_{B_2 \subseteq P} \operatorname{supp}(B_2)$$
$$B \subset B_2$$

Attributes M

$$\Delta(B) = \operatorname{supp}(B)$$

$$- \max_{B_2 \subseteq M} \operatorname{supp}(B_2)$$

$$B \subset B_2$$

$$\Delta(B \mid P) \geq \Delta(B)$$

$$\Delta(B \mid P) < \Delta_{\min} \implies \Delta(B) < \Delta_{\min}$$

SOFIA algorithm

	m1	m2	m3	m4	 m_n
g1	X	X	X		
g2	X	X	Χ	X	
g3	X	X	Χ		
g4	X	X	X	X	
g5	X	X	X		
g6	X	X	X	X	
g7	X	X	X		
g8	X	X			X

1. Start with
$$M_0 = \{\}, L_0 = \{\emptyset\}$$

2. For
$$i = 1, ..., n$$
:

1.
$$L_i = L_{i-1} \cup L_{i-1} \times \{m_i\}$$

2.
$$\Delta_i(B) = \operatorname{supp}(B) - \max_{m \in M_i \setminus B} \operatorname{supp}(B \cup \{m\})$$

3.
$$L_i = \{B \in L_i \mid \Delta_i(B) \geq \Delta_{\min}\}$$

+ an optimisation of Δ Stability computation

19 A. Buzmakov et al., ECML PKDD, 2015

Chain of projections

$$\psi_0: D \mapsto \mathsf{T} < \psi_1 < \psi_2 < \dots < \psi_n: D \mapsto D$$

Every projection ψ is a mapping $\psi: \mathbb{D} \to \mathbb{D}$ on the partial order $(\mathbb{D}, \sqsubseteq)$, which is a kernel (interior) operator, i.e. ψ is:

- Monotone $(x \sqsubseteq y) \mapsto (\psi(x) \sqsubseteq \psi(y))$
- Contractive $(\psi(x) \sqsubseteq x)$, and
- Idempotent $(\psi(\psi(x)) = \psi(x))$

gSOFIA algorithm

	•				
g1	X	X	X		
g2	X	X	X	X	
g3	X	X	X		
g4	X	X	X	X	
g5	X	X	X		
g6	X	X	X	X	
g7	X	X	X		
g8	X	X			X

- 1. Start with $M_0 = \{\}, L_0 = \{ T \}$
- 2. For i = 1, ..., n:

1.
$$L_i = L_{i-1} \cup L_{i-1} \times \{m\}$$

2.
$$\Delta_i(D) = \operatorname{supp}(D) - \max_{m \in M_i \setminus B} \operatorname{supp}(D \sqcup \{m\})$$

3.
$$L_i = \{D \in L_i \mid \Delta_i(D) \geq \Delta_{\min}\}$$

- + an optimisation of ΔStability computation
- + an optimisation of attribute iteration
- 1 A. Buzmakov et al., ICDM, 2017

Problem 3

1. How to get AMR graph?

Document.txt-

2. How to mine reference graphs?

AMR Graph

Business

Food

Others

Food

Others

3. How to classify

accurately?

How to make a prediction?

For a graph

Step 0. Compute a score for every description

Step 1. Select applicable descriptions

Step 2. Compute integral score per class

Step 3. Select the class with the maximal score

Experiments

1. How to get AMR graph?

Document.txt-

AMR Graph

3. How to classify accurately?

Sports Business Food Others

2. How to mine reference graphs?

Business Sports

Food

Others

Datasets

10 newsgroups data

1000 documents

10 classes

BBC Sport data

737 documents

5 classes

Results

Software

Software 2025

Caspailleur

Characteristic Attribute Sets -pailleur

Paspailleur

Pattern Structures -pailleur

Expailleur

Examples -pailleur

Ready to use

In active development

Examples of using Caspailleur and

Paspailleur

GitHub PyPI

GitHub PyPI

GitHub

E.g.: <u>Bob Ross Paintings (TD DM</u> IDMC) via Google Colab

E.g.: Mining stable patterns in complex data (TD DM IDMC) via Google Colab

Next release: v0.1.4 "Human API"

(this Sunday)

Next release: v0.1.0 "Pattern Keys and Human API" (October ?)

Document Classification via Stable Graph Patterns and Conceptual AMR Graphs

CONCEPTS conference, Cadiz, Spain, September 12, 2024

By Eric George Parakal, **Egor Dudyrev**, Sergei O. Kuznetsov, Amedeo Napoli