

Ph.D Jorge Mario García Usuga Licenciatura en matemáticas Universidad del Quindío

Universidad del Quindío Licenciatura en matemáticas

El método de Gauss-Seidel

Métodos iterativos

Presentado por: Ph.D Jorge Mario García Usuga

September 10, 2023

OUTLINE

- 1 El método de Gauss Seidel
- 2 Ejemplo
- 3 Otro ejemplo
- 4 Forma Iterativa
- 5 Ejemplo forma matricial

El método de Gauss-Seidel es una versión mejorada del método de Jacobi; básicamente, consiste en la actualización de las componentes del vector solución en el mismo momento que se esta calculando.

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots = \vdots$$

$$a_{i1}x_{1} + a_{i2}x_{2} + \dots + a_{in}x_{n} = b_{i}$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots = \vdots$$

$$a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = b_{n}$$

Ahora, como en el método de Jacobi, despejaremos la variable x_i de la fila i:

$$x_{1} = \frac{b_{1} - (a_{12}x_{2} + \dots + a_{1n}x_{n})}{a_{11}}$$

$$x_{2} = \frac{b_{2} - (a_{21}x_{1} + a_{23}x_{3} + \dots + a_{2n}x_{n})}{a_{22}}$$

$$\vdots = \vdots \qquad \vdots \qquad \vdots$$

$$x_{i} = \frac{b_{i} - (a_{i1}x_{1} + a_{i2}x_{2} + \dots + a_{i(j-1)}x_{(j-1)} + a_{i(j+1)}x_{(j+1)} + \dots + a_{in}x_{n})}{a_{ii}}$$

$$\vdots = \vdots \qquad \vdots \qquad \vdots$$

$$x_{n} = \frac{b_{n} - (a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{n(n-1)}x_{(n-1)})}{a_{nn}}$$

September 10, 2023

(2)

Aquí es donde reside la diferencia, pues, para construir la versión iterativa, debemos tener en cuenta que la primera componente x_1 se actualiza con las componentes del vector $x^{(0)}$, pero las siguientes componentes se actualizan con los valores ya calculados. Nuestra versión iterativa quedaría de la siguiente forma:

Vemos que:

$$x_{1}^{(k)} = \frac{b_{1} - \left(a_{12}x_{2}^{(k-1)} + \dots + a_{1n}x_{n}^{(k-1)}\right)}{a_{11}}$$

$$x_{2}^{(k)} = \frac{b_{2} - \left(a_{21}x_{1}^{(k)} + a_{23}x_{3}^{(k-1)} + \dots + a_{2n}x_{n}^{(k-1)}\right)}{a_{22}}$$

$$\vdots = \vdots \qquad \vdots \qquad \vdots$$

$$x_{i}^{(k)} = \frac{b_{i} - \left(a_{i1}x_{1}^{(k)} + a_{i2}x_{2}^{(k)} + \dots + a_{i(j-1)}x_{(j-1)}^{(k)} + a_{i(j+1)}x_{(j+1)}^{(k-1)} + \dots + a_{in}x_{n}^{(k-1)}\right)}{a_{ii}}$$

$$\vdots = \vdots \qquad \vdots \qquad \vdots$$

$$x_{n}^{(k)} = \frac{b_{n} - \left(a_{n1}x_{1}^{(k)} + a_{n2}x_{2}^{(k)} + \dots + a_{n(n-1)}x_{(n-1)}^{(k)}\right)}{a_{nn}}$$

OUTLINE

- 1 El método de Gauss Seidel
- 2 Ejemplo
- 3 Otro ejemplo
- 4 Forma Iterativa
- 5 Ejemplo forma matricial

Para ver el funcionamiento del método de Gauss-Seidel, tomemos el ejemplo del sistema descrito con el método de Jacobi:

$$5x + 2y + z = 1$$

 $x - 7y - 2z = 2$
 $x - y + 6z = -1$
(4)

Recordemos que este sistema es diagonalmente dominante. Ahora, implementaremos la versión iterativa:

$$x^{(k)} = \frac{1 - (2y^{(k-1)} + z^{(k-1)})}{5}$$

$$y^{(k)} = \frac{2 - (x^{(k)} - 2z^{(k-1)})}{-7}$$

$$z^{(k)} = \frac{-1 - (x^{(k)} - y^{(k)})}{6}$$

Tomaremos como $x^{(0)}=\begin{pmatrix}0\\0\\0\end{pmatrix}$, y con una tolerancia inferior a 0.01. En la forma

iterativa podemos ver la diferencia con el método de Jacobi.

-)) Para calcular la variable $x^{(k)}$ usamos las componentes $v^{(k-1)}$ v $z^{(k-1)}$, en este punto es exactamente igual a Jacobi.
-)) Pero, en el calculo de $y^{(k)}$, se usa la variable $x^{(k)}$ que se calculo en el paso inmediatamente anterior v la variable $z^{(k-1)}$ como en Jacobi.
-)) Finalmente, el cálculo de $z^{(k)}$ se toman los valores ya calculados de $x^{(k)}$ y $y^{(k)}$.

Iteración 1:

$$x^{(2)} = \frac{1 - (2y^{(1)} + z^{(1)})}{5} = \frac{1 - (2(-0.2571429) + (-0.24285714))}{5} = 0.34761905$$

$$y^{(2)} = \frac{2 - (x^{(2)} - 2z^{(1)})}{-7} = \frac{2 - ((0.34761905) - 2(-0.24285714))}{-7} = -0.16612245$$

$$z^{(2)} = \frac{-1 - (x^{(2)} - y^{(2)})}{6} = \frac{-1 - ((0.34761905) - (-0.16612245))}{6} = -0.25292517$$

Iteración 2:

$$x^{(2)} = \frac{1 - (2y^{(1)} + z^{(1)})}{5} = \frac{1 - (2(-0.2571429) + (-0.24285714))}{5} = 0.34761905$$

$$y^{(2)} = \frac{2 - (x^{(2)} - 2z^{(1)})}{-7} = \frac{2 - ((0.34761905) - 2(-0.24285714))}{-7} = -0.16612245$$

$$z^{(2)} = \frac{-1 - (x^{(2)} - y^{(2)})}{6} = \frac{-1 - ((0.34761905) - (-0.16612245))}{6} = -0.25292517$$

Veamos con Jacobi:

	x ⁽⁰⁾	_X (1)	_X (2)	_X (3)	_X (4)	_X (5)	_X (6)
X	0.00	0.200000	0.347619	0.333333	0.318027	0.315533	0.316966
У	0.00	-0.285714	-0.209524	-0.165306	-0.163946	-0.168918	-0.170068
Z	0.00	-0.166667	-0.247619	-0.259524	-0.249773	-0.246995	-0.247408
Error		1.0	0.3886	0.1057	0.0417	0.0142	0.0043

Table 1: Seis primeras iteraciones usando Jacobi, para solucionar el sistema de la ecuación (4), usando $x^{(0)}$ como el vector nulo.

Veamos con Gauss - Seidel

	_X (0)	_X (1)	_X (2)	_X (3)	_X (4)
X	0.000000	0.200000	0.351429	0.317034	0.316770
У	0.000000	-0.257143	-0.166122	-0.168159	-0.169738
Z	0.000000	-0.242857	-0.252925	-0.247532	-0.247751
Error		1.0	0.3815	0.0799	0.0037

Table 2: Cuatro primeras iteraciones usando Gauss-Seidel, para solucionar el sistema de la ecuación (4), usando $x^{(0)}$ como el vector nulo.

OUTLINE

- 1 El método de Gauss Seidel
- 2 Ejemplo
- 3 Otro ejemplo
- 4 Forma Iterativa
- 5 Ejemplo forma matricial

Resuelva el sistema:

$$12.34x - 3.528y + 1.112z - 0.019w = 0.0123$$

$$4.532x + 1.982y + 13.45z - 1.607w = 3.489$$

$$7.501x + 23.389y - 1.177z + 2.203w = 2.561$$

$$0.012x + 3.66y - 7.372z + 56.322w = -9.98$$
(5)

Usando el vector $x^{(0)}$ como el vector nulo y con una tolerancia menor a 0.01.

La solución:

	x ⁽⁰⁾	x ⁽¹⁾	_X (2)	x ⁽³⁾	_X (4)
X	0.00	0.000997	-2.442896	318.764963	-41310.826083
У	0.00	1.758064	-211.766727	27462.785450	-3559271.990349
Z	0.00	32.766214	-4218.429069	546753.714398	-70861480.575521
W	0.00	3.997337	-538.566520	69779.851259	-9043773.544408
Error		1.0	1.0077	1.0077	1.0077

Table 3: Cuatro primeras iteraciones usando Gauss-Seidel, para solucionar el sistema de la ecuación (5), usando $x^{(0)}$ como el vector nulo.

Como vimos, el sistema (5) no es diagonalmente dominante y en la Tabla 3, podemos ver que en la cuarta iteración los resultados son completamente diferentes a la solución real, la cual es:

$$x = \begin{pmatrix} 0.01830965 \\ 0.12928865 \\ 0.21537638 \\ -0.15741028 \end{pmatrix}$$

Para solucionar este inconveniente, podemos intercambiar las filas dos y tres. Con este cambio, el sistema (5), se transforma en el sistema (6), el cual, si es diagonalmente dominante:

$$12.34x - 3.528y + 1.112z - 0.019w = 0.0123$$

$$7.501x + 23.389y - 1.177z + 2.203w = 2.561$$

$$4.532x + 1.982y + 13.45z - 1.607w = 3.489$$

$$0.012x + 3.66y - 7.372z + 56.322w = -9.98$$
(6)

16 / 28

	_X (0)	_X (1)	_X (2)	_X (3)	x ⁽⁴⁾
X	0.00	0.000997	0.028148	0.035312	0.034571
У	0.00	0.148853	0.164135	0.160750	0.160871
Z	0.00	0.168138	0.137040	0.134519	0.134738
W	0.00	-0.164861	-0.169930	-0.170042	-0.170021
Error		1.0	0.1613	0.0305	0.00287

Table 4: Cuatro primeras iteraciones usando Gauss-Seidel, para solucionar el sistema de la ecuación (6), usando $x^{(0)}$ como el vector nulo.

OUTLINE

- 1 El método de Gauss Seidel
- 2 Ejemplo
- 3 Otro ejemplo
- 4 Forma Iterativa
- 5 Ejemplo forma matricial

El método de Gauss-Seidel también lo podemos representar con la descomposición matricial como lo hicimos con el método de Jacobi. Se parte de la descomposición de la matriz A en las matrices L. D v U.

$$x_{i}^{(k)} = \frac{b_{i} - \left(a_{i1}x_{1}^{(k)} + a_{i2}x_{2}^{(k)} + \dots + a_{i(j-1)}x_{(j-1)}^{(k)} + a_{i(j+1)}x_{(j+1)}^{(k-1)} + \dots + a_{in}x_{n}^{(k-1)}\right)}{a_{ii}}$$
(7)

- » En la ecuación (7), podemos ver que la variable x_i se despeja de la ecuación i del sistema.
- En el paréntesis podemos apreciar términos que usan las variables de la iteraciones que se han calculado hasta el momento $a_{i1}x_1^{(k)} + a_{i2}x_2^{(k)} + \cdots + a_{i(j-1)}x_{(i-1)}^{(k)}$;
- » Luego aparecen los términos de las variables que para calcularse requieren de la iteración anterior $a_{i(i+1)}x_{(i+1)}^{(k-1)}+\cdots+a_{in}x_{n}^{(k-1)}$.
- » Esta división nos permite visualizar la forma general del método de Gauss-Seidel.

El método de Gauss-Seidel:

$$x_{i}^{(k)} = \frac{b_{i} - \left(\sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} + \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)}\right)}{a_{ii}}$$
(8)

-)) Podemos ver que la primera sumatoria $\sum_{i=1}^{k-1} a_{ij} x_j^{(k)}$, relaciona los elementos que están por debajo de la diagonal principal de la matriz de coeficientes.
-)) La otra sumatoria $\sum a_{ij}x_i^{(k-1)}$, relaciona los elementos que están por encima de la diagonal.
- Entonces, la forma iterativa matricial se tomará de acuerdo a esta observación:

La forma iterativa matricial:

$$(D-L)x^{(k)} = Ux^{(k-1)} + b$$

La matriz (D-L) es invertible, es es la diferencia de una matriz diagonal con una matriz triangular inferior; entonces, usamos la inversa de (D-L) para despeiar $x^{(k)}$:

$$(D-L)^{-1}(D-L)x^{(k)} = (D-L)^{-1} \left[Ux^{(k-1)} + b \right]$$
$$x^{(k)} = (D-L)^{-1} Ux^{(k-1)} + (D-L)^{-1} b$$

21 / 28

A la matriz $(D-L)^{-1}U$ la llamaremos T_G y al vector $(D-L)^{-1}b$ lo llamaremos c_G . La forma general iterativa del método de Gauss-Seidel esta dad por:

$$x^{(k)} = T_G x^{(k-1)} + c_G$$

Con $T_G = (D-L)^{-1}U$ y $c_G = (D-L)^{-1}b$. El siguiente ejemplo, muestra como plantear el problema en forma matricial:

OUTLINE

- 1 El método de Gauss Seidel
- 2 Ejemplo
- 3 Otro ejemplo
- 4 Forma Iterativa
- 5 Ejemplo forma matricial

Resuelva el sistema

$$12.34x - 3.528y + 1.112z - 0.019w = 0.0123$$

$$7.501x + 23.389y - 1.177z + 2.203w = 2.561$$

$$4.532x + 1.982y + 13.45z - 1.607w = 3.489$$

$$0.012x + 3.66y - 7.372z + 56.322w = -9.98$$
(9)

Usando el vector $x^{(0)} = (-1, -1, 0, 0)$ y con una tolerancia menor a 0.0001.

23 / 28

Para este ejemplo hemos cambiado el vector inicial, sin embargo, el resultado es el mismo, tenemos las matrices:

$$L = \begin{pmatrix} 0.0 & 0.0 & 0.0 & 0.0 \\ 7.501 & 0.0 & 0.0 & 0.0 \\ 4.532 & 1.982 & 0.0 & 0.0 \\ 0.012 & 3.66 & -7.372 & 0.0 \end{pmatrix}, D = \begin{pmatrix} 12.34 & 0.0 & 0.0 & 0.0 \\ 0.0 & 23.389 & 0.0 & 0.0 \\ 0.0 & 0.0 & 13.450000 & 0.0 \\ 0.0 & 0.0 & 0.0 & 56.322 \end{pmatrix}$$

$$U = \begin{pmatrix} 0.0 & -3.528000 & 1.112000 & -0.019000 \\ 0.0 & 0.0 & -1.177000 & 2.203000 \\ 0.0 & 0.0 & 0.0 & -1.607000 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{pmatrix}$$

Con ellos construimos la matriz T_G :

$$T_G = \begin{pmatrix} 0.0 & 0.285900 & -0.090113 & 0.001540 \\ 0.0 & -0.091690 & 0.079223 & -0.094683 \\ 0.0 & -0.082823 & 0.018690 & 0.132913 \\ 0.0 & -0.004943 & -0.002683 & 0.023550 \end{pmatrix}$$

y el vector c_G :

$$c_G = \left(\begin{array}{c} 0.000997\\0.148853\\0.168138\\-0.164861 \end{array}\right)$$

La forma iterativa esta definida de la siguiente forma:

$$\begin{pmatrix} x^{(k)} \\ y^{(k)} \\ z^{(k)} \\ w^{(k)} \end{pmatrix} = \begin{pmatrix} 0.0 & 0.285900 & -0.090113 & 0.001540 \\ 0.0 & -0.091690 & 0.079223 & -0.094683 \\ 0.0 & -0.082823 & 0.018690 & 0.132913 \\ 0.0 & -0.004943 & -0.002683 & 0.023550 \end{pmatrix} \begin{pmatrix} x^{(k-1)} \\ y^{(k-1)} \\ z^{(k-1)} \\ w^{(k-1)} \end{pmatrix} + \begin{pmatrix} 0.000997 \\ 0.148853 \\ 0.168138 \\ -0.164861 \end{pmatrix}$$

	_X (0)	x ⁽¹⁾	_x (2)	_x (3)	_X (4)	_X (5)
X	-1.000000	-0.284903	0.046907	0.035135	0.034523	0.034589
У	-1.000000	0.240543	0.161821	0.160588	0.160886	0.160875
Z	0.000000	0.250961	0.131651	0.134536	0.134753	0.134734
w	0.000000	-0.159918	-0.170489	-0.170029	-0.170020	-0.170022
Error		3.065	1.3217	0.0448	0.0026	0.0002
			_X (6)	_X (7)	_	
		X	0.034588	0.034588		
		У	0.160875	0.160875	_	

Table 5: Siete primeras iteraciones usando Gauss-Seidel, para solucionar el sistema de la ecuación (9), usando $x^{(0)} = (-1, -1, 0, 0).$

0.134734

-0.170022

5.4117e-06

Error

0.134734

-0.170022

5.328e-07

GRACIAS

Ph.D Jorge Mario García Usuga Programa de Licenciatura en Matemáticas Universidad del Quindío jmgarcia@uniquindio.edu.co