

METODI ED ALGORITMI DI OTTIMIZZAZIONE PER IL PROBLEM SOLVING

Docente: Aristide Mingozzi Adattamento: Edoardo Rosa

INDICE

1	Mod	delli e formulazioni matematiche	1
	1.1	The Traveling Salesman Problem	1
		1.1.1 Formulazioni Matematiche del TSP	2
		1.1.2 Eliminazione subtours di Miller, Tucker, Zemlin (1960)	3
		1.1.3 Il Traveling salesman problem con time windows (TSPTW)	4
	1.2	Project scheduling with resource constraints (PSR)	6
		1.2.1 Esempio di PSR	6
		1.2.2 Formulazione del PSR	6
	1.3	Fixed Charge Transportation Problem (FCTP)	8
		1.3.1 Descrizione del FCTP	8
		1.3.2 Formulazione del FCTP	8
	1.4	Assegnamento dei veicoli alle baie di carico	9
		1.4.1 Formulazione matematica F	9
	1.5	Lot Sizing Problem	11
		1.5.1 Lot sizing senza vincoli di capacità	11
2	Intr	roduzione alla programmazione lineare a numeri interi	15
	2.1	Arrotondamento ad una soluzione non-intera	16
	2.2	Unimodularità	19
\mathbf{A}	Pro	ova	21
	A.1	Pippo	21

ELENCO DELLE FIGURE

1.1	Grafo orientato	3
1.2	Grafo H delle precedenze	6
1.3	Esempio della rete di flusso (modello di Wagner-Whitin)	13
1.4		13
1.5		14

Copertina: http://commons.wikimedia.org/wiki/File:Minimum_spanning_tree.svg

ELENCO DELLE TABELLE

CAPITOLO 1

MODELLI E FORMULAZIONI MATEMATICHE

1.1 The Traveling Salesman Problem

Il Traveling Salesman Problem (TSP) è il problema più noto dell'ottimizzazione combinatoria. Siano date n città e i costi c_{ij} per andare dalla città i alla città j. Si vuole determinare un cammino che parte da una città (diciamo i_1), visitare una ed una sola volta tutte le rimanenti città e terminare nella città di partenza i_1 . Inoltre si vuole che il costo di tale cammino sia minimo.

Ha molteplici applicazioni pratiche e teoriche perche è la struttura di molti problemi pratici. Si è soliti modella il TSP come segue:

• è dato un grafo orientato (o non orientato) G = (N, A) dove N è un insieme di n vertici e A è un insieme di m archi.

Ad ogni arco $(i,j) \in A$ è associato un costo c_{ij} .

Un circuito hamiltoniano di G è un circuito che passa per ogni vertice una ed una sola volta

Il costo di un circuito hamiltoniano di G è pari alla somma dei costi degli archi che compongono il circuito;

• il problema del TSP è di trovare un grafo G, con una data matrice dei costi $[c_{ij}]$, un circuito hamiltoniano di costo minimo.

1.1.1 Formulazioni Matematiche del TSP

In letteratura esistono molteplici (e a volte fantasiose) formulazioni del TSP. Presentiamo le due formulazioni più note e su cui si basano i metodi esatti più efficienti.

1.1.1.1 TSP asimmetrico

I costi c_{ij} non verificano $c_{ij} = c_{ji} \ \forall \ i, j \ \text{con} \ i < j$.

Sia x_{ij} una variabile (0-1) associata ad ogni arco $(i,j) \in A$ dove $x_{ij} = 1$ se l'arco (i,j) è nella soluzione ottima e $x_{ij} = 0$ altrimenti.

$$Min \sum_{i \in N} \sum_{j \in N} c_{ij} x_{ij} \tag{1.1}$$

$$s.t. \sum_{i \in N} x_{ij} = 1, \quad \forall j \in N$$
 (1.2)

$$\sum_{i \in N} x_{ij} = 1, \ \forall i \in N$$
 (1.3)

$$\sum_{i \in S} \sum_{j \in N \setminus S} x_{ij} \ge 1, \quad \forall S \subset N \tag{1.4}$$

$$x_{ij} \in \{0,1\} , \ \forall (i,j) \in A$$
 (1.5)

Il vincolo 1.4 impone che ogni soluzione ammissibile debba contenere almeno un arco (i, j) con $i \in S$ e $j \in N \setminus S$ per ogni sottoinsieme S di N. Un'alternativa al vincolo 1.4 è:

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1, \quad \forall S \subset N$$

$$\tag{1.4'}$$

1.1.1.2 TSP simmetrico

Sia dato un grafo non-orientato G = (N, A) con $c_{ij} = c_{ji}$, $\forall i, j \in N$.

Gli archi di A sono numerati da 1 a m. L'arco di indice l corrisponde a (α_l, β_l) con $\alpha_l < \beta_l$. A_i è il sottoinsieme degli indici degli archi che incidono sul vertice i:

$$A_i = \{l : l = 1, m \text{ s.t. } \alpha_l = i \text{ or } \beta_l = i\}$$

Per una dato $S \in N$ e $\bar{S} = N \setminus S$ indichiamo con (S, \bar{S}) il sottoinsieme degli indici degli archi per cui $\alpha_l \in S$ e $\beta_l \in \bar{S}$ oppure $\alpha_l \in \bar{S}$ e $\beta_l \in S$.

Ad ogni arco di incide l è associato un costo $d_l = c_{\alpha_l \beta_l}$ e $x_l \in \{0, 1\}$ è una variabile che vale 1 se e solo se l'arco di indice l è nella soluzione ottima.

$$Min \sum_{l=1}^{\infty} d_l x_l \tag{1.6}$$

$$s.t. \sum_{l \in A_i} x_l = 2, \ \forall i \in N$$
 (1.7)

$$\sum_{l \in (S,\bar{S})} x_l \ge 1, \ \forall S \subset N \tag{1.8}$$

$$x_l \in \{0, 1\}, \ l = 1, ..., m$$
 (1.9)

1.1.2 Eliminazione subtours di Miller, Tucker, Zemlin (1960)

Sia u_i una variabile intera il cui valore sappresenta la posizione che il vertice i occupa nel tour.

Es. tour (1,4,5,3,2,1) per TSP con n=5 vertici, si ha $u_1=1,\ u_2=5,\ u_3=4,\ u_4=2,\ u_5=3$

Miller, Tucker e Zemlin propongono in alternativa a:

$$\sum_{i \in S} \sum_{j \in N \setminus S} x_{ij} \ge 1, \ \forall S \subset N \tag{*}$$

hanno imposto i seguenti vincoli:

$$u_i - u_j + nx_{ij} \le n - 1, \quad i = 1, ..., n, \quad j = 2, ..., n$$
 (1.10)

Ogni tour hamiltoniano soddisfa questi vincoli e ogni subtour li viola.

Figura 1.1: Grafo orientato

$$u_2 - u_6 + n \cdot x_{2,6} \le n - 1$$

 $u_6 - u_3 + n \cdot x_{6,3} \le n - 1$
 $u_3 - u_2 + n \cdot x_{3,2} \le n - 1$
 \downarrow
 $3n < 3(n - 1)$

1.1.3 Il Traveling salesman problem con time windows (TSPTW)

È una variante del TSP che ha molte applicazioni.

Sia dato un grafo orientato G = (V, A) di n + 1 vertici $(V = \{0, 1, ..., n\})$. Ad ogni arco $(i, j) \in A$ sono associati

- un costo $c_{ij} \geq 0$
- un tempo di percorrenza $\theta_{ij} \geq 0$

Ad ogni vertice è associato un intervallo $[r_i, d_i]$ chiamato "time window" che rappresenta l'orario in cui il vertice i può essere vistato dal "salesman".

Ovvero il salesman può visitare i ad ogni tempo $t \in \mathbb{Z}^+$ con $r_i \leq t \leq d_i$.

Il problema consiste nel trovare una sequenza dei vertici di G che parte dal vertice 0 al tempo 0 e finisce al nodo 0 tale che sia il minimo il costo del circuito e il tempo di arrivo al nodo i sia nell'intervallo $[r_i, d_i], \forall i \in V$.

Si consideri la sequenza $(0, i, ..., i_{k-1}, i_k, ..., i_n, 0)$ e sia t_{i_k} il tempo di arrivo al vertice i_k , k = 0, 1, ..., n + 1.

I tempi di arrivo sono calcolati come:

$$t_0 = 0 \tag{1.11}$$

$$t_{i_k} = \max\{t_{i_{k-1}} + \theta_{i_{k-1}} \cdot i_k, \ r_{i_k}\}$$
(1.12)

1.1.3.1 Formulazione del TSPTW

Sia x_{ij} una variabile binaria intera che assume il valore 1 se il vertice i è visitato immediatamente prima di i e $x_{ij} = 0$ altrimenti.

$$Min \sum_{(i,j)\in A} c_{ik} x_{ij} \tag{1.13}$$

$$s.t. \quad \sum_{i \in A_j^-} x_{ij} = 1, \quad \forall j \in V$$
 (1.14)

$$\sum_{j \in A_i^+} x_{ij} = 1, \quad \forall i \in V \tag{1.15}$$

$$t_i + \theta_{ij} - t_j \le M(1 - x_{ij}, \ \forall (i, j) \in A, \ j \ne 0)$$
 (1.16)

$$t_i \le d_i, \ \forall i \in V \tag{1.17}$$

$$t_i \ge r_i, \ \forall i \in V \tag{1.18}$$

$$x_{ij} \in \{0, 1\}, \ \forall \in A$$
 (1.19)

$$t_i \in \mathbb{N}^+, \ \forall i \in V$$
 (1.20)

dove

$$A_i^+ = \{j \in V : (i, j) \in A\}$$

$$A_i^- = \{j \in V : (i, j) \in A\}$$

$$M \text{ un intero grande a piacere}$$

$$r_0 = d_0 = 0$$

1.2 Project scheduling with resource constraints (PSR)

È dato un insieme $\mathbb{X} = \{1, ..., n\}$ di n jobs.

Sono disponibili m risorse dove ogni risorsa k ha una disponibilità b_k ad ogni istante del periodo di scheduling.

Ogni job i ha un tempo di processo d_i e la sua esecuzione, una volta iniziata, non può essere interrotta.

Il job i per essere eseguito richiede b_{ik} unità della risorsa k per ciascun intervallo di tempo in cui rimane in esecuzione.

È dato un grafo G = (X, H) di precedenze, dove ogni arco $(i, j) \in H$ impone che il job j può iniziare solo dopo che il job i è stato completato.

• Si vuole determinare il tempo di inizio di processo di ogni job in modo che siano soddisfatti i vincoli di precedenza, i vincoli sulle risorse e sia minima la durata complessiva del progetto

1.2.1 Esempio di PSR

Siano dati n=11 jobs e m=3 risorse con $b_1=b_2=b_3=4$ e un grafo H delle precedenze corrispondenti agli archi della figura 1.2.

Si osservi che i jobs 2 e 3 non possono essere eseguiti in parallelo poiché $r_{2,1} + r_{3,1} = 5 > b_1!$

Figura 1.2: Grafo H delle precedenze

1.2.2 Formulazione del PSR

Sia ξ_{it} una variabile binaria 0-1 che vale 1 se e solo se il job i viene messo in esecuzione al tempo t.

Sia T_{max} un upper bound sulla durata del progetto.

$$Min\sum_{t=1}^{T_{max}} t \, \xi_{nt} \tag{1.21}$$

$$s.t. \sum_{t=1}^{T_{max}} t \, \xi_{it} = 1, \quad i = 1, ..., n$$
 (1.22)

$$\sum_{t=1}^{T_{max}} t \, \xi_{jt} - \sum_{t=1}^{T_{max}} t \, \xi_{it} \ge d_i, \quad \forall (i,j) \in H$$
 (1.23)

$$\sum_{i=1}^{n} r_{ik} \sum_{\tau=t-d_i+1}^{t} \xi_{i\tau} \le b_k, \quad t = 1, ..., T_{max} \ e \ k = 1, ..., m$$
(1.24)

$$\xi_{it} \in \{0, 1\}, \quad i = 1, ..., n \ e \ t = 1, ..., T_{max}$$
 (1.25)

Si osservi che:

$$\sum_{\tau=t-d_i+1}^{t} \xi_{i\tau} = 1 \quad se \ il \ job \ i \quad in \ esecuzione \ al \ tempo \ t$$

1.2.2.1Esempio

Sia $d_i = 4$.

Se
$$\xi_{i3} = 1$$
, allora i è in esecuzione nei tempi 3,4,5 e 6. Infatti avremo:
$$\sum_{\tau=t-d_i+1}^{t} \xi_{i\tau} = 1 \text{ per } t = 3,4,5,6 \text{ e} \sum_{\tau=t-d_i+1}^{t} \xi_{i\tau} = 0 \text{ per } t < 3 \text{ e } t > 6$$

1.3 Fixed Charge Transportation Problem (FCTP)

Il Problema del Trasporto di Carico Fisso è una generalizzazione del classico Problema del Trasporto.

Si differenzia nel definire che il costo per la spedizione di una quantità non-zero di beni, da ogni origine alla sua destinazione, è composto da un costo proporzionale all'ammontare dei beni inviati più un costo fisso.

1.3.1 Descrizione del FCTP

Il FCTP è definito su un grafo completo e bipartito G = (S, T, A) dove S = 1, 2, ..., m è un insieme di m sorgenti e T = 1, 2, ..., n è un insieme di n destinazioni.

Per ogni sorgente $i \in S$ è disponibile è una quantità intera $a_i > 0$ di merce e per ogni destinazione $j \in T$ è necessaria una quantità intera $b_i > 0$ di merce dalle sorgenti.

L'insieme A degli archi è definito come: $A = \{(i,j) : i \in S, j \in T\}$; ogni arco $(i,j) \in A$ è associato ad un costo unitario c_{ij} per il trasporto di una unità della merce dalla sorgente i alla destinazione j più un costo fisso f_{ij} for usare l'arco (i,j).

Senza perdere di generalità si assume che:

$$\sum_{i \in S} a_i = \sum_{j \in T} b_j$$

1.3.2 Formulazione del FCTP

Sia x_{ij} una variabile rappresentante la quantità di merce trasportata dalla sorgente i alla destinazione j e y_{ij} una variabile (0-1) che vale 1 se e solo se $x_{ij} > 0$.

Sia $m_{ij} = mina_i, b_j, (i, j) \in A$.

Una semplice formulazione matematiche del FCTP è:

$$z(F0) = \min \sum_{i \in S} \sum_{j \in T} (c_{ij} x_{ij} + f_{ij} y_{ij})$$
(1.26)

$$s.t. \quad \sum_{i \in T} x_{ij} = a_i, \quad i \in S$$
 (1.27)

$$\sum_{i \in S} x_{ij} = b_j, \quad j \in T \tag{1.28}$$

$$x_{ij} \le m_{ij} y_{ij}, \quad (i,j) \in A \tag{1.29}$$

$$x_{ij} \ge 0, \qquad (i,j) \in A \tag{1.30}$$

$$y_{ij} \in \{0, 1\} \tag{1.31}$$

Si denota con LF0 il rilassamento lineare del problema F0 e con z(LF0) il costo della soluzione ottima. Notare che, per ogni soluzione ottima di LF0, le variabili $x_{ij} > 0$ corrispondono ad una soluzione base fattibile dei vincoli 1.27 e 1.28, e $y_{ij} = x_{ij}/m_{ij}$ con $(i, j) \in A$.

1.4 Assegnamento dei veicoli alle baie di carico

Sia dato un insieme N di veicoli che devono scaricare presso un deposito che ha un insieme L di linee di scarico.

Per ogni linea di scarico $j \in L$ è definito l'insieme degli istanti di tempo T_i in cui è operativa. Per ogni veicolo $i \in N$ sono noti:

- il sottoinsieme di linee $L_i \subseteq L$ compatibili con le operazioni di scarico richieste dal veicolo;
- iltempo di arrivo a_i del veicolo al deposito;
- la durata dello scarico d_{ij} sulla linea $j \in L_i$.

Si assume che lo scarico di un veicolo non possa essere interrotto, ovvero, se lo scarico del veicolo i sulla linea $j \in L_i$ inizia al tempo t, allora la linea j deve essere disponibile per tutti gli istanti di tempo $\tau=t,...,t+d_{ij}-1$ (ovvero $\tau\in T_j$ per ogni $\tau=t,...,t+d_{ij}-1$). Indichiamo con I_{ij} l'insieme degli istanti di tempo in cui può iniziare lo scarico del veicolo i sulla linea $j \in L_i$, ovvero per ogni $t \in I_{ij}$ si assume che la linea j disponibile per ogni istante $\tau = i, ..., d_{ij} - 1$.

Sia c_{ijt} è il costo per iniziare lo scarico del veicolo $i \in N$ sulla linea $j \in Li$ al tempo $t \in I_{ij}$. Il problema richiede che ogni veicolo sia assegnato ad una linea di scarico compatibile in modo che ogni scarico sia fatto senza interruzioni e sia minimo il costo dell'assegnamento.

Formulazione matematica F 1.4.1

Per ogni $i\in N,\,j\in L_i$ e $t\in I_{ij}$ poniamo $\delta_{ijt\tau}=1$ per $\tau=t,...,t+d_{ij}-1$ e $\delta_{ijt\tau}=0$ per ogni $\tau \in T_i$ tale che $\tau < t$ oppure $\tau > t + d_{ij} - 1$.

Indichiamo con $N_j \subseteq N$ il sottoinsieme di veicoli che possono essere scaricati sulla linea j, ovvero $N_j = \{i \in N : j \in L_i\}.$

1.4.1.1 Variabili

 x_{ijt} è una variabile (0-1) che vale 1 se e solo se il veicolo $i \in N$ inizia lo scarico sulla linea $j \in L_i$ al tempo $t \in I_{ij}$.

 $s_{i\tau}$ è una variabile (0-1) che vale 1 se e solo se la linea j non viene utilizzata nell'istante di

La formulazione matematica F del problema è la seguente.

$$z(F) = \min \sum_{j \in L} \sum_{i \in N_j} \sum_{t \in I_{ij}} c_{ijt} + x_{ijt} + \sum_{j \in L} \sum_{\tau \in T_j} g_{j\tau} s_{j\tau}$$
 (1.32)

s.t.
$$\sum_{j \in L_i} \sum_{t \in I_{ij}} x_{ijt} = 1, \quad i \in N$$
 (1.33)

$$\sum_{i \in N_j} \sum_{t \in I_{ij}} \delta_{ijt\tau} x_{ijt} + s_{j\tau} = 1, \quad j \in L, \ \tau \in T_j$$

$$\tag{1.34}$$

$$x_{ijt} \in 0, 1, \qquad i \in N, \ j \in L_i, \ t \in I_{ij}$$
 (1.35)

$$x_{ijt} \in 0, 1,$$
 $i \in N, j \in L_i, t \in I_{ij}$ (1.35)
 $s_{j\tau} \in 0, 1,$ $j \in L, \tau \in T_j$ (1.36)

Il vincolo 1.33 impone che ad ogni veicolo venga assegnato una linea compatibile ed un tempo di scarico a sua volta compatibile sia con il veicolo stesso che con la linea a lui assegnata.

Il vincolo 1.34 impone che per ogni linea ed ogni istante di tempo compatibile con la linea vi sia in scarico al più un solo veicolo.

La formulazione \hat{F} richiede $\hat{n} = |N| \times |L| \times \hat{I}$ variabili, dove $\hat{I} = max|I_{ij}| : i \in N, j \in L_i$ e al più $\hat{m} = |N| + |L| \times \hat{T}$ vincoli, dove $\hat{T} = max|T_j| : j \in L$.

Supponiamo di discretizzare il tempo a 5 minuti, che ogni linea sia disponibile al più 10 ore (i.e. $\hat{T}=120$) e che un veicolo quando arriva non possa aspettare più di 5 ore (i.e. $\hat{I}=60$). Avremo $\hat{n}=200\cdot 20\cdot 60=240.000$ e $\hat{m}=200+20\cdot 120=2600$.

1.5 Lot Sizing Problem

Il termine *Lot Sizing* indica il processo decisionale mediante il quale un'azienda definisce la politica ottima di investimenti, produzione e stoccaggio dei prodotti per soddisfare le richieste dei clienti nel rispetto dei vincoli di produzione e di magazzino.

Non esiste un unico modello di lot sizing che rappresenti in modo generale le varie realtà operative. Sistemi di produzione anche marginalmente diversi possono richiedere modelli aventi complessità computazionale molto diverse.

Non esiste in letteratura un modello generale che contenga come sottocasi tutti i problemi reali noti di lot sizing.

Per questi motivi non esistono software commerciali general pourpose.

Diverse aziende di consulenze nel settore della supply chain vendono software basati su modelli semplificati che non necessariamente producono soluzioni operative ma lasciano all'utente il compito di modificare manualmente la soluzione prodotta per tener conto delle specifiche complessità del problema reale.

I problemi reali sono varianti complesse delle seguenti tre classi di lot sizing problem di un singolo prodotto che sono risolvibili in tempo polinomiale:

- lot sizing senza vincoli di capacità produttiva;
- lot sizing con back logging senza vincoli di capacità;
- lot sizing con vincoli di capacità.

Molti problemi reali possono essere risolti rilassando in modo lagrangiano i vincoli reali per cui il problema lagrangiano risultante corrisponde ad uno dei tre problemi suddetti.

1.5.1 Lot sizing senza vincoli di capacità

Si consideri un'azienda che deve pianificare la propria produzione per un orizzonte temporale di T periodi (ad esempio, T mesi).

Per ciascun periodo t = 1, ..., T sono noti:

 d_t domanda complessiva dei clienti;

 A_t costo fisso di set up per attivare la produzione;

 p_t costo per produrre un'unità di prodotto;

 h_t costo per unità di prodotto presente nel magazzino alla fine del periodo t.

Per ciascun periodo t, deve essere deciso il numero di unità che devono essere prodotto al fine di soddisfare la domanda in ciascun periodo.

Si suppone che la quantità prodotto nel periodo t sia subito disponibile e che la quantità non venduta alla fine di ogni mese viene depositata in magazzino. L'obiettivo è di minimizzare i costi complessivi di set up, produzione e stoccaggio.

1.5.1.1 Formulazione Matematica (modello di Wagner-Whitin)

Variabili decisonali associate a ciascun periodo t=1,...,T

 x_t quantità prodotta all'inizio del periodo t;

 I_t livello del magazzino alla fine del periodo t;

 $y_i \in (0,1): y_t = 1$ se nel periodo t vi è produzione, $y_t = 0$ altrimenti.

$$Min z = \sum_{t=1}^{T} (p_t x_t + h_t I_t + A_t y_t)$$
 (1.37)

$$x_t + I_{t-1} = I_t + d_t, \ t = 1, ..., T$$
 (1.38)

$$x_t \le M y_t, \ t = 1, ...,$$
 (1.39)

$$x_t, I_t \ge 0, t = 1, ..., T$$
 (1.40)

$$y_t \in \{0, 1\}, \ t = 1, ..., T$$
 (1.41)

dove
$$M = \sum_{t=1}^{T} d_t e$$
, per semplicit, si; suppone che $I_0 = 0$. (1.42)

1.5.1.2 Metodo di soluzione

Al modello si associa il grafo R=(N,A) senza vincoli di capacità sugli archi tale che ogni soluzione del problema corrisponde ad un flusso in R. Il grafo R si compone di 2T+1 nodi:

- $\bullet\,$ nodo sorgente S da cui parte un flusso pari a $\sum_{t=1}^T d_t;$
- per ciascun periodo t una coppia di nodi U_t , V_t dove:

 U_t rappresenta il magazzino,

 V_t corrisponde alla domanda.

Per ciascun periodo t = 1, ..., T vi sono gli archi:

 (S, U_t) il cui flusso corrisponde alla produzione x_t ;

 (U_t, U_{t+1}) il cui flusso è pari al livello I_t del magazzino alla fine del periodo t;

 (U_t, V_t) il cui flusso deve essere pari alla domanda d_t .

Figura 1.3: Esempio della rete di flusso (modello di Wagner-Whitin)

1.5.1.3 Proprietà della soluzione ottima

Teorema. In una soluzione ottima non può mai avvenire che la domanda del periodo t venga soddisfatta sia dalla produzione che dal magazzino, ovvero:

$$I_{t-1} \cdot x_t = 0; \ t = 1, ..., T$$

1.5.1.4 Algoritmo di soluzione (di complessità $O(T^2)$)

Si costruisca un grafo aciclico di T+1 vertici.

Si definiscano gli archi j, k) per j = 0, ..., T - 1 e k = j + 1, ..., T.

L'arco (j, k) rappresenta la decisione di produrre all'inizio del periodo j + 1 quanto serve per soddisfare le domanda complessiva dei periodo j + 1, j + 2, ..., k.

Il costo M_{jk} dell'arco (j,k) è pari al costo per produrre nel periodo j+1 la quantità $\sum_{r=j+1}^k d_r$ più i costi di stoccaggio:

$$M_{jk} = A_{j+1} + p_{j+1} \sum_{r=j+1}^{k} d_r + \sum_{t=j+1}^{k-1} h_t (\sum_{r=t+1}^{k} d_r)$$

Figura 1.5

Ogni soluzione del modello di Wagner-Whitin corrisponde ad un cammino da 0 a t in questo grafo aciclico.

Il cammino di costo minimo fornisce la soluzione ottima.

CAPITOLO 2

INTRODUZIONE ALLA PROGRAMMAZIONE LINEARE A NUMERI INTERI

Si consideri il seguente problema.

$$Min cx$$
 (2.1)

$$Ax = b (2.2)$$

$$x \ge 0 \tag{2.3}$$

$$x intero$$
 (2.4)

Le variabili devono assumere valori interi:

Es:
$$x_i = Numero di uomini che devono essere assegnati al lavoro i.$$
 (2.5)

 $= Numero\ di\ automezzi\ che\ devono\ operare\ il\ trasporto\ lungo\ la\ "tratta\ i". \eqno(2.6)$

(2.7)

Arrotondamento ad una soluzione non-intera 2.1

Si risolva il problema ignorando i vincoli [x:intero]. Le variabili che risultano non intere, nella soluzione ottima del problema continuo, vengano arrotondate al valore intero più vicino.

Es:
$$Min z = -2x_1 + 3x_2$$
 (2.8)

$$x_1 + x_2 \ge 3 \tag{2.9}$$

$$3x_1 + x_2 \le 6 \tag{2.10}$$

$$x_2 \le 5 \tag{2.11}$$

$$x_1, x_2 \ge 0 \text{ ed intere}$$
 (2.12)

Figura 2.1: Soluzione continua: $z=\frac{3}{4};$ $x_1=\frac{3}{2},$ $x_2=\frac{3}{2}$ Soluzione intera: z=4; $x_1=1,$ $x_2=2$

In questo esempio la soluzione arrotondata coincide con la soluzione ottima.

Es:
$$Min z = 8x_1 + 6x_2$$
 (2.13)

$$4x_1 + 3x_2 \ge 6 \tag{2.14}$$

$$x_1, x_2 \ge 0 \ ed \ intere$$
 (2.15)

Figura 2.2:

Soluzione continua: $z=12; x_1=1,5, x_2=0$ Soluzione arrotondata $z=8; x_1=1, x_2=0$ Soluzione intera: $z=10; x_1=0, x_2=2$

La soluzione arrotondata si discosta notevolmente dalla soluzione ottima.

Es:
$$Min z = 8x_1 + 6x_2$$
 (2.16)

$$4x_1 + 3x_2 \ge 6 \tag{2.17}$$

$$x_1, x_2 \ge 0 \ ed \ intere$$
 (2.18)

I quattro punti interi più vicini alla soluzione continua non sono ammissibili.

2.2 Unimodularità 19

2.2 Unimodularità

La matrice intera A di m righe ed n colonne è totalmente unimodulare se ogni sua sottomatrice quadrata B non singolare è unimodulare, ovvero $det(B) = \pm 1$.

Teorema. Se la matrice intera A è totalmente unimodulare allora tutti i punti estremi dell'insieme pd. convesso X = x: Ax = b, $x \ge 0$ sono interi per ogni vettore intero b.

Dimostrazione. Sia B una base ammissibile e x_b le variabili base: $Bx_B = b$. Per la regola di Cramer:

$$x_{b_i} = \frac{\det(B_i)}{\det(B)} \tag{2.19}$$

Dove B_i si ottiene da B sostituendo la i-esima colonna di B con b. È ovvio che $det(B_i)$ è un numero intero e quindi anche ciascun x_{B_i} è intero.

Teorema. Una matrice intera A i cui elemento sono 0, +1, -1 è totalmente unimodulare se:

- 1. In ogni colonna A compaiono al più due elementi non-nulli ($cio\tilde{A}$ " 1, -1);
- 2. L'insieme delle righe R può essere suddiviso in due insieme disgiunti R_1 e R_2 $(R_1 \cup R_2 = R)$ per cui:
 - (a) Se una colonna contiene due elementi non-nulli dello stesso segno allora la riga corrispondente ad uno dei due elementi appartiene a R_1 mentre la riga relativa all'altro elemento è in R_2 ;
 - (b) Se una colonna contiene due elementi di segno opposto entrambe le righe appartengono allo stesso insieme.

Esempi.

$$A = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 & 0 \end{bmatrix}$$
$$R = 1, 2, 3, 4$$
$$R_1 = 1, 2, 3, 4$$
$$R_2 = \emptyset$$
$$R_2 = 4, 5$$

2.2 Unimodularità

La totale unimodularità della matrice A è **condizione sufficiente** affinchè la soluzione ottima x^* sia intera per

$$\begin{aligned} Min \ cx \\ Ax &= b \ (bintero) \\ x &\geq 0 \end{aligned}$$

La condizione non è **necessaria**.

Esempio:

dato il sistema di vincoli

$$6x_1 + x_2 = 7$$
$$2x_1 + x_2 = 3$$

L'unica soluzione è $(x_1=1,\ x_2=1)$ mentre la matrice

$$A = \begin{bmatrix} 6 & 1 \\ 2 & 1 \end{bmatrix}$$

non risulta essere totalmente unimodulare.

APPENDICE A

PROVA

A.1 Pippo