REPUBLIQUE DU CAMEROUN

Paix-Travail-Patrie

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR

Université De Yaoundé 1

Institut Saint Jean

REPUBLIC OF CAMEROON

Peace-Work-Fatherland

MINISTRY OF HIHGHER EDUCATION

University of Yaounde 1

Institute Saint Jean

RAPPORT D'ANTENNE ET HYPERFREQUENCE AVEC SEAMCAT

THEME: SIMULATION AVEC LE LOGICIEL SEAMCAT

TP du 28 Octobre 2024 à Institut saint Jean

En vue de : Configurer un émetteur et un récepteur

Option : Système, Réseaux et Télécommunications

Rédigé et Présenté par

ELAT EGONG SYLVERE AIME JUNIOR

Etudiant en ING 4 SRT

Sous l'encadrement académique de :

Dr OSSONGO Eric

Responsable de la branche SRT

Sous l'encadrement professionnel de :

M. OSSOUBITA

Enseignant D'antenne et Hyperfréquence

DEDICACE

A ma famille.

SOMMAIRE

DEDICACE	
LISTE DE TABLEAUX	5
Tableau 4 Niveau de signal reçu DRSS	5
LISTE DES FIGURES	6
INTRODUCTION	7
I- OBJECTIFS	8
II- PROCEDURE EXPERIMENTALE	9
Figure 4 : Vertical en coordonnée polaire	
Figure 3 : Vertical en cordonnée cartésienne	
Figure 2 Horizontal en coordonné polaire	
Figure 1 Horizontal en coordonné cartésienne	
Figure 5: Renommer en VLR	11
Figure 6: fixation de la constante	
Figure 7: Free space	
Tableau 1 Coordonnée cartésienne plan E, H	
Tableau 2 Coordonnée POLAIRE plan E, H	
III- SIMULATION	
Figure 8 : VLR, VLT	
Tableau 3 Résultat simulation	
Figure 10 : 0°; 30°; 60°; 90°; 120°	
Niveau de signal reçu DRSS	
Point du recepteur	
0°	
30°	
60°	
90°	
120°	
Azimuth Selected	
-89,18	
-89,34	
-89,24	
-89,36	
Azimuth Unselected	
-105,43	
-105,43	15
-105,38	15
-105,42	15
-105,4	

Azimuth Unselected +60°	15
-105,39	15
-105,35	
-105,38	15
-105,39	15
-105,35	15

LISTE DE TABLEAUX

Tableau 1 Niveau de signal reçu DRSS	14
Tableau 3 Résultat simulation	14
III- SIMULATION:	14
Tableau 2 Coordonnée POLAIRE plan E, H	
Tableau 1 Coordonnée cartésienne plan E, H	
II- PROCEDURE EXPERIMENTALE	9

LISTE DES FIGURES

II- PROCEDURE EXPERIMENTALE	9
Figure 1 Horizontal en coordonné cartésienne	
Figure 2 Horizontal en coordonnée Polaire	
Figure 3 Vertical en cordonnée cartésienne	
Figure 4 Vertical en coordonnée polaire	
Figure 5 name VLR	11
Figure 6 fixation de la constante	
Figure 7 free space	
III- SIMULATION:	14
Figure 8 VLR,VLT	14
Figure 9 0° ,30° ,60°,90°,120°	

INTRODUCTION

SEAMCAT est un outil puissant et polyvalent conçu pour l'analyse et la modélisation de systèmes complexes. Ce rapport présente une étude de simulation réalisée à l'aide du dit logiciel. L'objectif de cette étude est de configurer un système d'émission et de réception, choisir un modèle de propagation et observer le diagramme de rayonnement. Les résultats de cette simulation seront détaillés dans les différentes sections de notre rapport.

I. OBJECTIFS

- Décrire le gain et le diagramme de rayonnement d'une antenne
- Configurer en émetteur et récepteur
- Poser et pointer les antennes dans une cellule
- Calculer un bilan de liaison pour une propagation en espace libre

II. PROCEDURE EXPERIMENTALE

Lancer le logiciel SEAMCAT et ouvrir un nouvel espace de travail. Dans l'onglet « *systems* », changer le nom BENERIE du système en BSM, dans l'onglet « *transmitter* » changé le nom DEFAULT-RX en VLT dans le système GSM sous l'onglet « *transmitter* » dans « Antenna Patterns Identification » sélectionnez dans « *Library* » l'antenne GSM LTE 800 MHz.

Diagramme de rayonnement

Visualisons le diagramme de rayonnement sur le plan horizontal et vertical en coordonnée cartésienne, puis polaire. On utilisera pour ce faire **show gain plot**.

Figure 3 Horizontal en coordonné cartésienne

Figure 2 : Vertical en cordonnée cartésienne

Figure 1 : Vertical en coordonnée polaire

Dans le système GSM sous l'onglet « Receiver », changeons DEFAULT-RX en VLR.

Figure 4: Renommer en VLR

Positionner le récepteur VLR à une distance de 2 km de rayon autour de l'émetteur VLT :

♣ Dans le systems GSM sous l'onglet « positioning and propagation » dans l'onglet coverage radius on met 2 km dans system GSM. Sous l'onglet positioning and propagation, sous l'onglet Relative location sur Path distance factor on sélectionne « constant » et on met à 1 :

Figure 5: fixation de la constante

♣ Choisir le modèle de propagation en espace libre :

Dans le systems GSM sous l'onglet « *positioning and propagation* » au niveau de la « Library » sous l'onglet « propagation model » on sélectionne **ITU-RP.525**(*free space*)

♣ Coordonnée cartésienne plan E et plan H :

Tableau 2 Coordonnée cartésienne plan E, H

Gain (dB)		
Angle (°)	Plan E	Plan H
0°	14,99	14,99
30°	-9,98	13,11
60°	-13,66	6,24
90°	/	-21,03

♣ Coordonnée polaire plan E et plan H :

Tableau 3 Coordonnée POLAIRE plan E, H

Gain (dB)		
Angle (°)	Plan E	Plan H
0°	14,99	14,99
30°	-10	13
60°	-14,5	6,1
90°	/	-21

III. SIMULATION

Sous l'onglet « scenario », on va dans « simulation control », on sélectionne run in debug mode, dans « Number of events » on entre la valeur 2000. On clique sur la petite icone

Figure 7: VLR, VLT

Tableau 4 Résultat simulation

	VLT	VLR
Puissance d'émission	33 dBm	/
Affaiblissement en espace libre en dB	137,008	I
VLT to VLR antenna gain	14,897 dB	0,0 dB
VLT to VLR azimut	0°	0°
Hauteur de L'antenne	30m	1,5m
Fréquence d'opération en MHz	900	900
Coordonnée de VLT ou VLR	(0,0)	(-15, 1.323)
DRSS (niveau de signal reçu)	I	-89,19

On positionne à un azimut de 30°, 60°, 90°, 120° de l'émetteur pour les scénarios si après :

- ❖ Dans onglet *system GSM* sous onglet **transmitter**, sous onglet **Antenna pointing** dans *Azimuth pointing reference*, sélectionnez *toward the RX*.
- ❖ Sélectionnez *toward EAST*
- ❖ Si toward EAST n'est pas sélectionné et que le paramètre Azimut Additionnal offset, cliquez sur distribution, cliquez sur constant et mettre la valeur à << 1>>

Figure 8: 0°; 30°; 60°; 90°; 120°

Niveau de signal reçu DRSS					
Point du récepteur	0°	30°	60°	90°	120°
Azimut Select	-89,18	-89,34	-89,24	-89,36	
Azimut Unselected	-105,43	-105,43	-105,38	-105,42	-105,4
Azimut Unselected +60°	-105,39	-105,35	-105,38	-105,39	-105,35

<u>Tableau 5</u>: Niveau de signal reçu DRSS

Table des matières

DEDICACE	
LISTE DE TABLEAUX	5
Tableau 4 Niveau de signal reçu DRSS.	5
LISTE DES FIGURES	6
INTRODUCTION	
I- OBJECTIFS	8
II- PROCEDURE EXPERIMENTALE	
Figure 4 : Vertical en coordonnée polaire	10
Figure 3 : Vertical en cordonnée cartésienne	10
Figure 2 Horizontal en coordonné polaire	10
Figure 1 Horizontal en coordonné cartésienne	10
Figure 5 : Renommer en VLR	11
Figure 6 : fixation de la constante	12
Figure 7: Free space	12
Tableau 1 Coordonnée cartésienne plan E, H	13
Tableau 2 Coordonnée POLAIRE plan E, H	13
III- SIMULATION	14
Figure 8 : VLR, VLT	14
Tableau 3 Résultat simulation	14
Figure 10 : 0°; 30°; 60°; 90°; 120°	15
Niveau de signal reçu DRSS	15
Point du recepteur	15
0°	15
30°	15
60°	
90°	
120°	
Azimuth Selected	
-89,18	
-89,34	
-89,24	
-89,36	
Azimuth Unselected	
-105,43	
-105,43	
-105,38	
-105,42	
-105,4	
Azimuth Unselected +60°	15
-105,39	
-105,35	
-105,38	
-105,39	
-105,35	