# Multilayer Survivable Optical Network Design

S. Borne<sup>1</sup>, V. Gabrel<sup>2</sup>, A.R. Mahjoub<sup>2</sup>, R. Taktak<sup>2</sup>

(1) LIPN, Paris-13 University

(2) LAMSADE, Paris Dauphine University





Physical layer





#### **MSOND**

## Data

- ullet a bilayer network  $(G_1=(V_1,E_1)$  and  $G_2=(V_2,E_2))$ ;
- to every router  $v_i \in V_1$  corresponds an optical switch  $w_i \in V_2$ ;
- a set K of demands between pairs  $(O_k, D_k)$ ;
- for each demand, we know two routing paths L<sub>k</sub><sup>1</sup> et L<sub>k</sub><sup>2</sup>
   node-disjoint in the higher layer;
- for each physical edge  $e \in E_2$  in the lower layer  $\longmapsto$  an installation cost  $c_e$ :
- $\bullet$   $G_2$  complete, infinite capacities on the edges.

#### **MSOND**

## Data

- ullet a bilayer network  $(G_1=(V_1,E_1))$  and  $G_2=(V_2,E_2)$ ;
- to every router  $v_i \in V_1$  corresponds an optical switch  $w_i \in V_2$ ;
- a set K of demands between pairs  $(O_k, D_k)$ ;
- for each demand, we know two routing paths L<sub>k</sub><sup>1</sup> et L<sub>k</sub><sup>2</sup>
   node-disjoint in the higher layer;
- for each physical edge  $e \in E_2$  in the lower layer  $\longmapsto$  an installation cost  $c_e$ :
- $\bullet$   $G_2$  complete, infinite capacities on the edges.

# Objective

find for each demand two elementary physical node-disjoint paths respecting the routers order in  $L_k^1$  and  $L_k^2$  such as installation's total cost is minimum.

## Example(1)



# Example(1)



# Example(2)



## **Motivations**

• importance of survivability in the telecommunication context;

## **Motivations**

- importance of survivability in the telecommunication context;
- tight relationship with some classical problems and in particular the TSP problem;

# Example(2)



# Example(2)



## Example(3)



## **Particularities**

- Elementarity;
- Steiner and terminal nodes;
- Precedence constraint.

# Classical Related Problems (1)

| Problem                                                                                | elementarity | Steiner | Order | Complexity                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------|--------------|---------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shortest Path Problem with specified nodes                                             |              | х       |       | polynomial (special cases) Bajaj (1971),<br>Ibaraki (1973), Laporte (1984), Volgenant<br>(1987)                                                                                              |
| Steiner cycle<br>Steiner TSP                                                           |              | ×       |       | - polynomial (series-parallel graphs, gra-<br>phical case) Cornuejols and al. (1985)                                                                                                         |
|                                                                                        | x            | х       |       | <ul> <li>complete polyhedral description (seriesparallel graphs) Baiou and Mahjoub (2002)</li> <li>NP-hard Salazar-Gonzalez (2003)</li> <li>approximation results Steinová (2009)</li> </ul> |
| TSP with precedence constraints Sequential Ordering Problem (Hamiltonian Path with PC) | х            |         | ×     | NP-hard Balas and al. (1993), Ruland<br>(1997), Gouveia and pesneau (2006), Du-<br>mitrescu and al. (2005, 2008), Acheuer<br>and al. (1995, 2000)                                            |

# Classical Related Problems (1)

| Problem                                                                                | elementarity | Steiner | Order | Complexity                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------|--------------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shortest Path Problem with specified nodes                                             |              | х       |       | polynomial (special cases) Bajaj (1971),<br>Ibaraki (1973), Laporte (1984), Volgenant<br>(1987)                                                                                                                                                                    |
| Steiner cycle<br>Steiner TSP                                                           | x            | x<br>x  |       | - polynomial (series-parallel graphs, gra-<br>phical case) Cornuejols and al. (1985)<br>- complete polyhedral description (series-<br>parallel graphs) Baiou and Mahjoub<br>(2002)<br>- NP-hard Salazar-Gonzalez (2003)<br>- approximation results Steinová (2009) |
| TSP with precedence constraints Sequential Ordering Problem (Hamiltonian Path with PC) | х            |         | х     | NP-hard Balas and al. (1993), Ruland<br>(1997), Gouveia and pesneau (2006), Du-<br>mitrescu and al. (2005, 2008), Acheuer<br>and al. (1995, 2000)                                                                                                                  |
| SC-MSOND                                                                               | х            | х       | х     | complexity?                                                                                                                                                                                                                                                        |

### **Motivations**

- importance of survivability in the telecommunication context;
- tight relationship with classical problems and in particular the TSP problem;
- NP-hard even for a single commodity (except for some special cases).