EXPERIMENT: 3 ADDERS AND SUBTRACTORS

AIM: To realize

- i) Half Adder and Full Adder
- ii) Half Subtractor and Full Subtractor by using Basic gates and NAND gates

LEARNING OBJECTIVE:

- To realize the adder and subtractor circuits using basic gates and universal gates
- To realize full adder using two half adders
- To realize a full subtractor using two half subtractors

COMPONENTS REQUIRED:

IC 7400, IC 7408, IC 7486, IC 7432, Patch Cords

THEORY:

Half-Adder: A combinational logic circuit that performs the addition of two data bits, A and B, is called a half-adder. Addition will result in two output bits; one of which is the sum bit, S, and the other is the carry bit, C. The Boolean functions describing the half-adder are:

$$S = A \oplus B$$
 $C = A B$

Full-Adder: The half-adder does not take the carry bit from its previous stage into account. This carry bit from its previous stage is called carry-in bit. A combinational logic circuit that adds two data bits, A and B, and a carry-in bit, Cin , is called a full-adder. The Boolean functions describing the full-adder are:

$$S = (x \oplus y) \oplus Cin$$
 $C = xy + Cin (x \oplus y)$

Half Subtractor: Subtracting a single-bit binary value B from another A (i.e. A-B) produces a difference bit D and a borrow out bit B-out. This operation is called half subtraction and the circuit to realize it is called a half subtractor. The Boolean functions describing the half-Subtractor are:

$$S = A \oplus B$$
 $C = A'B$

Full Subtractor: Subtracting two single-bit binary values, B, Cin from a single-bit value A produces a difference bit D and a borrow out Br bit. This is called full subtraction. The Boolean functions describing the full-subtracter are:

$$D = (x \oplus y) \oplus Cin$$
 $Br = A'B + A'(Cin) + B(Cin)$

I. TO REALIZE HALF ADDER

TRUTH TABLE

INPUTS		OUTPUTS		
A	В	S	C	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

BOOLEAN EXPRESSIONS:

$$S=A \oplus B$$

 $C=A B$

i) Basic Gates

ii) NAND Gates

II. FULL ADDER

TRUTH TABLE

INPUTS		OUTPUTS		
A	В	Cin	S	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

BOOLEAN EXPRESSIONS:

$$S = A \oplus B \oplus C$$

$$C=A B + B Cin + A Cin$$

i)BASIC GATES

ii) NAND GATES

III. HALF SUBTRACTOR

TRUTH TABLE

INPUTS		OUTPUTS		
A	В	D	Br	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

BOOLEAN EXPRESSIONS:

$$D = A \oplus B$$

$$Br = AB$$

i)BASIC GATES

ii) NAND Gates

IV. FULL SUBTRACTOR

TRUTH TABLE

INPUTS		OUTPUTS			
A	В	Cin	D	Br	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

BOOLEAN EXPRESSIONS:

 $D=A \oplus B \oplus C$ $Br=\bar{A} B+B Cin + \bar{A} Cin$

i) BASIC GATES

Digital Logic Design and Analysis

ii) To Realize the Full subtractor using NAND Gates only

PROCEDURE:

- 1. Check the components for their working.
- 2. Insert the appropriate IC into the IC base.
- 3. Make connections as shown in the circuit diagram.
- 4. Verify the Truth Table and observe the outputs.