Modern Academy

for Engineering and Technology in Maadi Computer Engineering and Information Technology Department

 Academic Year:
 2020-2021

 Semester:
 Spring

 Exam Date:
 24 / 6/ 2021

Level/Year: 4th

QUESTIONS FOR THE FINAL WRITTEN EXAMINATION

Subject: Languages and Compilers (CMP 523) Spec.: Computer Engineering

Examiner: Dr. Khaled Morsy Time: 2 hours

Dr. Seham Moawad

Number of Pages: 2 Number of Questions: 4 Attempt ALL questions

Question (1) [20 Marks]

a- Show using figure, the structure of a standard compilation system (3 Marks)

b- Discuss the roles of lexical and syntax analyzers (4 Marks)

c- given the following reg. expression , draw the equivalent NFA (01|10)*(110|011)* (7 Marks)

d- Write the regular expressions over alphabet {a,b} that represent the following: (6 Marks)

(1) All the string starting with a but not having consecutive b's

(2) All the string containing even consecutive number of b's and odd consecutive number of a's.

Ouestion (2) [15 Marks]

a- Convert the following NFA to DFA – show your work step-by-step

- b A grammar with $N = \{S, A, B\}, T = \{a, b\}$ and P are as follows: (7 Marks)
 - 1- S→ aAB
 - 2- A→bBb
 - 3- B→A
 - 4- B→ λ

Show **leftmost derivation and rightmost derivation** of the string a b⁴. Then choose **the correct answer** in the following :

(1) Number of applications of Rule number 2 is

A - ONE B- TWO C- Three D- FOUR

(2) Number of applications of Rule number 3 is only once
(A: TRUE / B: FALSE)

(3) Number of applications of rule number 4 is 3 times
(A: TRUE / B: FALSE)

(6 Marks)

Ouestion 3 [15 Marks]

a- Show the FIRST and FOLLOW sets using the following Grammar:

(5 Marks)

$$R \rightarrow +TR \mid \lambda$$

b- Given the following SLR table and Grammar G

(10 Marks)

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

$$(4) \quad T \to F$$

$$(5) \quad F \to (E)$$

(6)
$$F \rightarrow id$$

STATE	ACTION							GOTO		
	id	+	*	()	\$	E	T	F	
0	s5			s4			1	2	3	
1	1	s 6				acc				
2 3	1	r2	s7		r2	r2	1			
3		r-4	r-4		r4	r4	i			
4	85			84			8	2	3	
5		r6	r6		r6	r 6	10000			
6	s5			84				9	3	
7	s5			s4			1		10	
8		s6			s11		1			
9	1	r1	s7		r1	r1	1			
10	(r3	r3		r3	r3	1			
11	l	r5	r5		r5	r5				

Parsing table for expression grammar

Use them to parse the input (id1+id2) * id3

Ouestion 4 [20 Marks]

a- Use the following table and Grammar to perform the Non-recursive predictive parsing for id* (id+id) (8 Marks)

Non -	INPUT SYMBOL									
TERMINAL	id	+	*	()	\$				
E	$E \to TE'$			$E \to TE'$						
E'		$E' \rightarrow +TE'$			$E' \to \epsilon$	$E' \to \epsilon$				
T	$T \to FT'$			$T \to FT'$						
T'		$T' \to \epsilon$	$T' \to *FT'$		$T' \to \epsilon$	$T' \to \epsilon$				
F	$F o \mathbf{id}$			$F \rightarrow (E)$						

$$\begin{array}{cccc} E & \rightarrow & T \ E' \\ E' & \rightarrow & + T \ E' \ | \ \epsilon \\ T & \rightarrow & F \ T' \\ T' & \rightarrow & * F \ T' \ | \ \epsilon \\ F & \rightarrow & (E) \ | \ \mathbf{id} \end{array}$$

b- Given the grammar

(7 Marks)

c- Define the Term SDD, illustrate using simple example.

(5 Marks)