Quot Functor

Definition 1. Let X be a projective variety over \mathbf{k} with a very ample line bundle \mathcal{H} . A coherent sheaf \mathcal{F} on X is said to be m-regular (with respect to \mathcal{H}) if

$$H^i(X,\mathcal{F}\otimes\mathcal{H}^{\otimes (m-i)})=0\quad\text{for all }i>0.$$

Yang: To be continued.

1 Boundness of Quotients

Lemma 2. Let \mathcal{F} be a coherent sheaf of dimension d. Let s_1, \dots, s_d be an \mathcal{F} -regular sequence of global sections of $\mathcal{O}_X(1)$. Let $H_i = V(s_i)$ be the corresponding hyperplane sections. Let $\mathcal{F}_i = \mathcal{F}|_{H_1 \cap \dots \cap H_i}$ be the restriction of \mathcal{F} to the intersection. Assume that $h^0(\mathcal{F}_i) \leq b_i$. Then

$$h^0(\mathcal{F} \otimes \mathcal{H}^{\otimes m}) \leq \sum_{i=0}^d \binom{m+i-1}{i} b_i.$$

Proposition 3. There are universal polynomials $P_i \in \mathbb{Q}[T_0, \cdots, T_i]$ such that the following holds. Let \mathcal{F} be a coherent sheaf of dimension d. Let s_1, \cdots, s_d be an \mathcal{F} -regular sequence of global sections of $\mathcal{O}_X(1)$ and $H_i = V(s_i)$ the corresponding hyperplane sections. Set $\mathcal{F}_i = \mathcal{F}|_{H_1 \cap \cdots \cap H_i}$ and $h^0(\mathcal{F}_i) \leq b_i$. Suppose that $\chi(\mathcal{F}_i) = a_i$. Then \mathcal{F} is $P_d(a_0 - b_0, \cdots, a_d - b_d)$ -regular.

Theorem 4. Let S be a noetherian scheme, X a projective scheme over S with a relatively very ample line bundle $\mathcal{O}_X(1)$. Let $P \in \mathbb{Q}[T]$ be a polynomial of degree d. Let Σ be a set-theoretic family of coherent sheaves on the fibers of X/S with Hilbert polynomial P. TFAE:

- (a) Σ is bounded;
- (b) there are constant C_i such that for any $\mathcal{F} \in \Sigma$, there is an \mathcal{F} -regular sequence of global sections s_1, \dots, s_d of $\mathcal{O}_X(1)$ such that for each i,

$$h^0(\mathcal{F}|_{H_1\cap\cdots\cap H_i})\leq C_i;$$

- (c) there is m such that any $\mathcal{F} \in \Sigma$ is m-regular;
- (d) there is a coherent sheaf \mathcal{E} on X such that any $\mathcal{F} \in \Sigma$ is a quotient of \mathcal{E}_t for some $t \in S$.
- (e) there is a scheme T of finite type over S and a coherent sheaf G on X_T such that any $F \in \Sigma$ is isomorphic to G_t for some $t \in T$.

Yang: To be checked.

Date: October 22, 2025, Author: Tianle Yang, My Homepage