- 1. Calcule a área do paraboloide hiperbólico $z = (x^2 y^2)/2$ que fica dentro do cilindro $x^2 + y^2 = 1$.
- 2. Calcule as seguintes integrais de superfície:
 - a) $\iint_S (x^2 + y^2) dS$, onde S é a esfera de centro na origem e raio a.
 - b) $\iint_S \sqrt{x^2 + y^2} \, dS$, onde S é a superfície lateral do cone $\frac{x^2}{a^2} + \frac{y^2}{a^2} \frac{z^2}{b^2} = 0$, $0 \le z \le b$.
 - c) $\iint_S \sqrt{1+y^2} \, dS$, onde S é dada por $z=y^2/2$, $0 \le x \le 1$ e $0 \le y \le 1$.
- 3. Calcule $\iint_S f(x, y, z) dS$, onde:
 - a) f(x, y, z) = 1 e S é a porção do plano x + y + z 1 = 0 no primeiro octante;
 - b) $f(x, y, z) = x^2$ e S é a parte do plano z = x interior ao cilindro $x^2 + y^2 = 1$;
 - c) f(x,y,z) = x^2 e S é o hemisfério superior $z=\sqrt{a^2-x^2-y^2}$;
 - d) f(x,y,z) = x + y e S é a porção do plano 2x + 3y + z = 6 situada no primeiro octante;
- 4. Calcule o fluxo de \vec{F} na direção normal (escolha uma) à superfície S, isto é, calcule $\Phi = \iint_S \vec{F} \cdot \vec{n} \, dS$, nos seguintes casos:
 - a) $\vec{F}(x, y, z) = (x + 1)\vec{i} (2y + 1)\vec{j} + z\vec{k}$ e S é o triângulo de vértices (1, 0, 0), (0, 1, 0) e (0, 0, 1);
 - b) $\vec{F}(x,y,z) = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ e S é a parte do cone $z^2 = x^2 + y^2$, para z entre 1 e 2;
 - c) $\vec{F}(x,y,z) = xy\vec{i} + xz\vec{j} + yz\vec{k}$ e S é a parte do cilindro $y^2 = 2 x$, $x \ge 0$, cortado pelos cilindros $y^2 = z$ e $y = z^3$, $0 \le y \le 1$.

Respostas

- 1. $\frac{2}{3}\pi[2\sqrt{2}-1]$.
- 2. a) $\frac{8}{3}\pi a^4$ b) $\frac{2\pi a^2 \sqrt{a^2 + b^2}}{3}$ c) $\frac{4}{3}$
- 3. a) $\frac{\sqrt{3}}{2}$ b) $\frac{\sqrt{2}}{4}\pi$ c) $\frac{2\pi}{3}\alpha^4$ d) $5\sqrt{14}$
- 4. a) 0 b) $\frac{15}{2}\pi$ c) $\frac{1355}{2184}$