

BENCHMARKING ROBUSTNESS METRICS

Clara Pereira - 99405 Joana Correia - 100412 Vasco Gameiro - 110881

WHAT IS IT ROBUSTNESS?

A model's ability to maintain accurate predictions under out-of-distribution inputs.

WHY IS IT IMPORTANT?

- 1. Machine learning systems are deployed in high-stakes domains.
- 2. Criminals exploit small perturbations to mislead these systems.
- 3. Models must be robust to these attacks while guaranteeing performance over long-term changes in the data.

OUR HYPOTHESIS

There is a single metric that could holistically measure robustness against these adversarial attacks and natural changes in the data

THE ROAD TO ROBUSTNESS

DATASET

IMAGENET

OR

CIFAR-10

- 200 classes (62 used)
- 30000 images used
- Higher resolution (64)
- Higher computational cost

- 10 classes
- 30000 images used
- Lower resolution (32)
- Lower computational cost

DATASET OOD TEST SETS

CIFAR-10.1 CIFAR-10C Attacked

DATASET OOD TEST SETS

CIFAR-10.1

CIFAR-10C

Attacked

FSGM

PGD

BIM

DeepFool

CW

x
"panda"
57.7% confidence

 $+.007 \times$

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode" 8.2% confidence

 $x + \epsilon \operatorname{sign}(\nabla_{x} J(\boldsymbol{\theta}, x, y))$ "gibbon"
99.3 % confidence

MODELS

Custom CNN

HYPERPARAMETERS

- 1. Optimizer
- 2. Learning Rate
- 3. Depth
- 4. Width
- 5. Dropout

VGG Inspired

HYPERPARAMETERS

- 1. Optimizer
- 2. Learning Rate

Result: > 50 models

METRICS

Performance

Sharpness

Norm-Based

METRICS PERFORMANCE

Directly drawn from the network output

Classification:

- Accuracy
- Precision
- Recall
- F1-Score

Uncertainty?

METRICS

IMPORTANCE OF UNCERTAINTY

"All models are wrong but some are useful."

George Box

METRICS NORM-BASED

Weight norms reveal insights into model behavior

- Spectral Norm
- Frobeneous Norm
- Trace Norm
- Path Norm

Over the Margin....

METRICS

SHARPNESS

Looking for the right sigmas

METRICS SHARPNESS A CRITIQUE

- Requires arbitrary hyperparameters
- "Source" code and literature
 Pseudo-code don't match
- LONG computational times (~2h per model)

```
"""Algorithms for searching sigmas'"""
import numpy as np
import tensorflow as tf
def add noise to variables (variables):
  """Create tf ops for adding noise to a list of variables."""
  perturbation ph = {}
  add perturbation op = []
  subtract perturbation op = []
  for v in variables:
   perturbation ph[v] = tf.placeholder(
       tf.float32, shape=v.get shape().as list())
   add perturbation op.append(tf.assign add(v, perturbation ph[v]))
    subtract perturbation op.append(tf.assign add(v, -perturbation ph[v]))
  return perturbation ph, add perturbation op, subtract perturbation op
def get gaussian noise feed dict(ph_list, scale):
  """Get noise with standard deviation of scale."""
  feed dict = {}
  for ph in ph list:
    feed dict[ph] = np.random.normal(
       scale=scale, size=ph.get shape().as list())
  return feed dict
def flatten and concat(variable list):
 variable list = [tf.reshape(v, [-1]) for v in variable list]
  return tf.concat(variable list, axis=0)
def norm of weights (weights):
  flat weights = [np.reshape(w, -1)] for w in weights
  concat weight = np.concatenate(flat weights)
 weight norm = np.linalg.norm(concat weight)
  return weight norm
#################################PacBayes##################
```

RESULTS HOW DID ROBUSTNESS PERFORM?

Not well....

RESULTS

However!

The standard notion of robustness - Accuracy Gap - is limiting. We decided to assess robustness in **two** alternative ways

RESULTS UPDATED DEFINITION

Uncertainty Robustness: How does the model certainty (Log-Loss) change in out-of-distribution scenarios?

Relative Robustness: What is the proportional drop in Accuracy/Certainty?

RESULTS NEW INSIGHTS!

1. In-distribution
Performance and Model
Weight Norms over Margin
moderately predict relative
robustness.

RESULTS NEW INSIGHTS!

2. Margin and Entropy are moderately correlated with uncertainty robustness.

RESULTS NEW INSIGHTS!

3. Sharpness moderately predicts relative robustness to adversarial attacks.

NEXT STEPS?

New data

More Models

Different Metrics

Black-Box Attacks

THANKYOU! QUESTIONS?