CS 70 Discrete Mathematics and Probability Theory Spring 2015 Vazirani Discussion 6W

1. CRT Decomposition

In this problem we use the Chinese Remainder Theorem to compute 3³⁰² mod 385.

(a) Write 385 as a product of prime numbers in the form $385 = p_1 \times p_2 \times p_3$.

Answer: $385 = 5 \times 7 \times 11$.

(b) Use Fermat's Little Theorem to find $3^{302} \mod p_1$, $3^{302} \mod p_2$, and $3^{302} \mod p_3$.

```
Answer: Since 3^4 \equiv 1 \pmod{5}, 3^{302} \equiv 3^{4 \times 75} \cdot 3^2 \equiv 4 \pmod{5}. Since 3^6 \equiv 1 \pmod{7}, 3^{302} \equiv 3^{6 \times 50} \cdot 3^2 \equiv 2 \pmod{7}. Since 3^{10} \equiv 1 \pmod{11}, 3^{302} \equiv 3^{10 \times 30} \cdot 3^2 \equiv 9 \pmod{11}.
```

(c) Let $x = 3^{302}$. Use part (b) to express the problem as a system of congruences. Argue that there is a unique solution mod 385, and find it. What is the final answer 3^{302} mod 385?

Answer: The system of congruences is:

```
x \equiv 4 \pmod{5}x \equiv 2 \pmod{7}x \equiv 9 \pmod{11}
```

By the CRT, we know there is a unique solution $x \pmod{385}$. By inspection, we see that $x \equiv 9 \pmod{385}$ satisfies the system of congruences above, hence it must be the unique solution. So $3^{302} \equiv 9 \pmod{385}$.

2. Roots

Let's make sure you're comfortable with roots of polynomials in the familiar real numbers \mathbb{R} . Recall that a polynomial of degree d has at most d roots. In this problem, assume we are working with polynomials over \mathbb{R} .

(a) Suppose p(x) and q(x) are two different nonzero polynomials with degrees d_1 and d_2 respectively. What can you say about the number of solutions of p(x) = q(x)? How about $p(x) \cdot q(x) = 0$?

Answer: A solution of p(x) = q(x) is a root of the polynomial p(x) - q(x), which has degree at most $\max(d_1, d_2)$. Therefore, the number of solutions is also at most $\max(d_1, d_2)$.

A solution of $p(x) \cdot q(x) = 0$ is a root of the polynomial $p(x) \cdot q(x)$, which has degree $d_1 + d_2$. Therefore, the number of solutions is at most $d_1 + d_2$.

(b) Consider the degree 2 polynomial $f(x) = x^2 + ax + b$. Show that, if f has exactly one root, then $a^2 = 4b$.

Answer: If there is a root c, then the polynomial is divisible by x-c. Therefore it can be written as f(x) = (x-c)g(x). But g(x) is a degree one polynomial and by looking at coefficients it is obvious that its leading coefficient is 1. Therefore g(x) = x - d for some d. But then d is also a root, which means that d = c. So $f(x) = (x-c)^2$ which means that a = -2c and $b = c^2$, so $a^2 = 4b$.

(c) What is the *minimal* number of real roots that a nonzero polynomial of degree d can have? How does the answer depend on d?

Answer: If d is even, the polynomial can have 0 roots (e.g., consider $x^d + 1$, which is always positive for all $x \in \mathbb{R}$). If d is odd, the polynomial must have at least 1 root (a polynomial of odd degree takes on arbitrarily large positive and negative values, and thus must pass through 0 inbetween them at least once).

3. Roots: The Next Generations

Which of the facts from Problem 2 stay true when \mathbb{R} is replaced by GF(p) (i.e., if you are working modulo a prime number p)? Which change, and how?

Answer: 2(a) and 2(b) continue to hold in any field, but 2(c) is different: Even degree polynomials can still have 0 roots, for example $x^2 + 1 \pmod{3}$. However, we lose the guarantee that every odd degree polynomial must have a root (though we are still assured of this at degree 1, i.e., linear polynomials). For example, $x^3 + x + 1 \pmod{5}$ has no roots.

4. Interpolation Practice

(a) Find a linear polynomial p(x) over \mathbb{R} such that p(1) = 1 and p(3) = 4.

Answer: We can find $p(x) = a_1x + a_0$ by solving the system of linear equations

$$p(1) = a_1 + a_0 = 1$$

 $p(3) = 3a_1 + a_0 = 4$

However, let us use Lagrange interpolation to illustrate the difference with part (b).

We know the polynomial passes through $(x_1, y_1) = (1, 1)$ and $(x_2, y_2) = (3, 4)$. We form the following Delta functions:

$$\Delta_1(x) = \frac{x - x_2}{x_1 - x_2} = \frac{x - 3}{1 - 3} = -\frac{1}{2}x + \frac{3}{2} \qquad \text{(note that } \Delta_1(x_1) = 1, \Delta_1(x_2) = 0\text{)}$$

$$\Delta_2(x) = \frac{x - x_1}{x_2 - x_1} = \frac{x - 1}{3 - 1} = \frac{1}{2}x - \frac{1}{2} \qquad \text{(note that } \Delta_2(x_1) = 0, \Delta_2(x_2) = 1\text{)}$$

Then the polynomial p is given by

$$p(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) = 1 \cdot \left(-\frac{1}{2}x + \frac{3}{2} \right) + 4 \cdot \left(\frac{1}{2}x - \frac{1}{2} \right) = \frac{3}{2}x - \frac{1}{2}.$$

Note that p(1) = 1 and p(3) = 4, as desired.

(b) Find a linear polynomial q(x) over GF(5) such that $q(1) \equiv 1 \pmod{5}$ and $q(3) \equiv 4 \pmod{5}$.

Answer: We use Lagrange interpolation. The Delta functions are:

$$\Delta_1(x) = \frac{x - x_2}{x_1 - x_2} = \frac{x - 3}{1 - 3} \equiv -2^{-1}(x - 3) \equiv -3(x - 3) \equiv 2x + 4 \pmod{5},$$

$$\Delta_2(x) = \frac{x - x_1}{x_2 - x_1} = \frac{x - 1}{3 - 1} \equiv 2^{-1}(x - 1) \equiv 3(x - 1) \equiv 3x + 2 \pmod{5}$$

In the calculation above we have used the fact that dividing by 2 is equivalent to multiplying by $2^{-1} \equiv 3 \pmod{5}$. Then the polynomial q is given by

$$q(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) \equiv 1 \cdot (2x+4) + 4 \cdot (3x+2) \equiv 14x + 12 \equiv 4x + 2 \pmod{5}.$$

Note that $q(1) \equiv 6 \equiv 1 \pmod{5}$ and $q(3) \equiv 14 \equiv 4 \pmod{5}$, as desired. Also note that unlike in part (a), here the polynomials Δ_1 , Δ_2 , and q all have integer coefficients.