Kompakte Rum

Benjamin Waziri - Mat S

Januar 2024 - Geotop

1 Kompakte Rum

Definition 1 Et topologisk rum X kaldes kompakt, hvis enhver åben overdækning $\{U_i : i \in I\}$ kan udtyndes til en endelig overdækning $\{U_i : i \in J, J \subseteq I, |J| < \infty\}$.

Proposition 1 (ikke del af præsentationen) Hvis $C \subseteq X$ er kompakt i et metrisk rum $(X, d) \Rightarrow C$ er begrænset.

Proposition 2 (ikke del af præsentationen) Hvis $C \subseteq X$ er kompakt i et Hausdorffrum $\Rightarrow C$ er lukket.

Proposition 3 (ikke del af præsentationen) Heine-Borel. Hvis $C \subseteq \mathbb{R}^n$ er lukket, begrænset $\Rightarrow C$ er kompakt.

Proposition 4 Et topologisk produkt $X \times Y$ er kompakt hvis og kun hvis X og Y er kompakte.

Bevis 1 " \Rightarrow ": Hvis $X \times Y$ er kompakt, er X det også, da projektionsafbildningen $p_x : X \times Y \to X$ er kontinuert og surjektiv, og kontinuerte afbildninger bevarer kompakthed. Tilsvarende for Y med p_y .

"\(\infty\)": Antag X og Y kompakte. Lad \mathcal{W} være en åben overdækning af $X \times Y$. Vi kalder $A \subseteq X$ for artig, hvis \mathcal{W} kan udtyndes til en endelig overdækning af $A \times Y$. Vis at X er artig.

Lemma 1 Vi viser, at $A_1, ...A_r$ artige $\Rightarrow A = \bigcup_{i=1}^r A_i$ er artig.

Hvis $A_1, ... A_r$ er artige, kan \mathcal{W} udtyndes til finitte overdækninger \mathcal{W}_i af hvert $A_i \times Y$. Så er $\bigcup_{i=1}^r \mathcal{W}_i$ en finit overdækning af $A \times Y$, dvs. A er artig.

Lemma 2 Vi viser, at der for alle $x \in X$ eksisterer en åben, artig delmængde $U(x) \subseteq X$, så $x \in U(x)$.

Lad $x \in X$. For alle $y \in Y$ må der så eksistere et $W(y) \in \mathcal{W}$, så $(x, y) \in W(y)$.

Jf. proposition 10.20 eksisterer så åbne mængder $U(y) \subseteq X$ og $V(y) \subseteq Y$, så $(x,y) \in U(y) \times V(y) \subseteq W(y)$.

Familien $\{V(y):y\in Y\}$ er så en åben overdækning af Y, som er kompakt, og kan derfor udtyndes til en finit overdækning $V(y_1)...V(y_r)$. Lad:

$$U(x) = \bigcap_{i=1}^{r} U(y_i).$$

Så har vi for alle $i \in \{1, ..., r\}$, at:

$$U(x) \times V(y_i) \subseteq U(y_i) \times V(y_i) \subseteq W(y_i)$$
.

Det medfører, at:

$$U(x) \times Y = U(x) \times \bigcup_{i=1}^{r} V(y_i) = \bigcup_{i=1}^{r} (U(x) \times V(y_i) \subseteq \bigcup_{i=1}^{r} W(y_i).$$

Så har vi vist, at U(x) er artig, da $U(x) \times Y$ kan overdækkes af en finit delfamilie af W. Vi bemærker, at $x \in U(x)$ og U(x) er åben i X, da det er et finit snit af åbne mængder.

Sidste del af beviset Vi anvender kompaktheden af X til at nå i mål med beviset.

Jf. lemma 2, må der for alle $x \in X$ eksistere en artig åben mængde U(x), så $x \in U(x)$. Så er:

$$\bigcup_{x \in X} U(x)$$

en åben overdækning af X. Jf. kompaktheden af X kan denne overdækning udtyndes til en finit overdækning:

$$X \subseteq \bigcup_{i=1}^{n} U(x_i).$$

Denne overdækning er artig jf. lemma 1, da alle $U(x_i)$ 'erne er artige. Da vi også har, at:

$$X \supseteq \bigcup_{i=1}^{n} U(x_i),$$

er X artig. Så har vi vist, at $X \times Y$ er kompakt, som er det, vi skulle vise.

Proposition 5 (ikke del af præsentationen) Lad $f: X \to Y$ være kontinuert, X kompakt. Så er f(X) kompakt.

Bevis 2 (ikke del af præsentationen) Lad

$$\mathcal{U} = \bigcup_{i \in I} U_i$$

være en åben overdækning af f(X). Da f er kontinuert, er $f^{-1}(U_i)$ åben for alle $U_i \in \mathcal{U}$. Så er

$$\bigcup_{i \in I} f^{-1}(U_i)$$

en åben overdækning af X, som er kompakt. Den overdækning kan udtyndes til en finit overdækning, så

$$X \subseteq \bigcup_{i=1}^{n} f^{-1}(U_i),$$

hvilket implicerer, at

$$f(X) \subseteq \bigcup_{i=1}^{n} U_i$$
.

Det betyder, at f(X) er kompakt, som er det vi skulle vise.

Proposition 6 (ikke del af præsentationen) Kompakthed er en topologisk egenskab.

Bevis 3 (ikke del af præsentationen) Lad $f: X \to Y$ være en homeomorfi. Så er f og f^{-1} kontinuerte og surjektive. Af proposition 5 følger det så, at X er kompakt hvis Y er det, og omvendt.