

Edexcel A Level Maths: Pure

2.5 Polynomials

Contents

- * 2.5.1 Expanding Brackets
- * 2.5.2 Polynomial Division
- * 2.5.3 Factor Theorem
- ***** 2.5.4 Factorisation

2.5.1 Expanding Brackets

Your notes

Expanding Brackets

What do I need to know about expanding brackets?

• To expand brackets, the rule is that each term in one set of brackets must be multiplied by each term in the other set of brackets

$$(a+b)(x+y+z) = a(x+y+z) + b(x+y+z)$$

$$= ax + ay + az + bx + by + bz$$

$$(a + b + c)(x + y + z) = a(x + y + z) + b(x + y + z) + c(x + y + z)$$

$$= ax + ay + az + bx + by + bz + cx + cy + cz$$

Copyright © Save My Exams. All Rights Reserved

- 'FOIL' is a special case of this, when each set of brackets contains two terms you can mulitply in order
 - e.g. to multiply out or expand these brackets (2x + 3)(x 5)
 - First (2x + 3)(x 5) gives $2x^2$
 - Outside (2x + 3)(x 5) gives -10x
 - Inside (2x + 3)(x 5) gives +3x
 - Last $(2 \times + 3)(x 5)$ gives -15
 - $(2x + 3)(x 5) = 2x^2 10x + 3x 15 = 2x^2 7x 15$
- If you spot something like $(a + b)^2$ or $(a + b)^3$ just write the brackets out twice or three times respectively
 - e.g. $(3x+2)^2 = (3x+2)(3x+2) = 9x^2 + 6x + 6x + 4 = 9x^2 + 12x + 4$
- If you are trying to expand something like $(a + b)^n$ for powers of n greater than 2 or 3, use the **binomial** expansion
- If you have to expand more than two sets of brackets, just expand them two at a time

Worked example

Expand and simplify 4x(x-3y)(3x+2y-5).

Worked example

Expand
$$(x - 4)(x + 3)(x^2 + x - 1)$$

FIRST EXPAND $(x-4)(x+3) = x^2 - x - 12$

THEN CONTINUE: $(x^2 - x - 12)(x^2 + x - 1)$

 $= x^{2}(x^{2} + x - 1) - x(x^{2} + x - 1) - 12(x^{2} + x - 1)$

 $= x^4 + x^3 - x^2 - x^3 - x^2 + x - 12x^2 - 12x + 12$

 $= x^4 - 14x^2 - 11x + 12$

Save my exams

2.5.2 Polynomial Division

Your notes

Polynomial Division

What is a polynomial?

 A polynomial is an algebraic expression consisting of a finite number of terms, with non-negative integer indices only

What is polynomial division?

 Polynomial division is a method for splitting polynomials into factor pairs (with or without an accompanying remainder term)

 At A level you will most frequently use it to factorise polynomials, or when dealing with improper (ie 'top-heavy') algebraic fractions

How do I divide polynomials?

• The method used for polynomial division is just like the long division method (sometimes called 'bus stop division') used to divide regular numbers:

At A level you will normally be dividing a polynomial dividend of degree 3 or 4 by a divisor in the form (x ±
 p)

 The answer to a polynomial division question is built up term by term, working downwards in powers of the variable (usually x)

- Start by dividing by the highest power term
- Write out this multiplied by the divisor and subtract

Divide the polynomial $f(x) = x^3 + 6x^2 - 9x - 14$ by (x - 2).

Continue to divide by each reducing power term and subtracting your answer each time

Your notes

Continue until you are left with zero

Your notes

• If the divisor is not a factor of the polynomial then there will be a remainder term left at the end of the division

Worked example	

For the polynomial $f(x) = x^3 + 6x^2 - 9x - 14$:

- a) Divide f(x) by (x + 7).
- b) Find the remainder when f(x) is divided by (x + 3).

 $x^{2}-x-2$ $x+7 \qquad x^{3}+6x^{2}-9x-14$ $-(x^{3}+7x^{2})$ $-x^{2}-9x-14$ $-(-x^{2}-7x)$ -2x-14 -(-2x-14) 0 $x^{3}+6x^{2}-9x-14$ x+7 $x^{3}+6x^{2}-9x-14=(x+7)(x^{2}-x-2)$ $x^{3}+6x^{2}-9x-14=(x+7)(x^{2}-x-2)$ $x^{3}+6x^{2}-9x-14=(x+7)(x^{2}-x-2)$

Page 11 of 22

2.5.3 Factor Theorem

Your notes

Factor Theorem

What is the factor theorem?

- The factor theorem is a very useful result about polynomials
- A **polynomial** is an algebraic expression consisting of a finite number of terms, with non-negative integer indices only

 At A level you will most frequently use the factor theorem as a way to simplify the process of factorising polynomials

Save my exams

What do I need to know about the factor theorem?

- For a polynomial f(x) the factor theorem states that:
 - If f(p) = 0, then (x p) is a factor of f(x)AND
 - If (x p) is a factor of f(x), then f(p) = 0

$$g(x) = 2x^{3} - 7x^{2} + 9$$

$$g(3) = 2(3)^{3} - 7(3)^{2} + 9$$

$$= 54 - 63 + 9$$

$$= 0$$

$$g(3) = 0$$

BY (i) THE FACTOR THEOREM TELLS US THAT (x-3) IS A FACTOR OF g(x)

$$h(x) = 4x^{3} + 8x^{2} - 9x - 18$$

$$= (x + 2)(4x^{2} - 9)$$

$$(x+2) = (x-(-2))$$
IS A FACTOR

BY (ii) THE FACTOR THEOREM TELLS US THAT h(-2)=0 (TEST IT OUT!)

Copyright © Save My Exams. All Rights Reserved

Save my exams

Examiner Tip

- In an exam, the values of p you need to find that make f(p) = 0 are going to be integers close to
 - Try p = 1 and -1 first, then 2 and -2, then 3 and -3
 - It is very unlikely that you'll have to go beyond that.

Worked example

For the polynomial $f(x) = x^3 + 6x^2 - 9x - 14$:

- a) Use the factor theorem to show that (x 2) is a factor of f(x).
- b) Use the factor theorem to find another factor of f(x).

a)
$$f(2) = (2)^3 + 6(2)^2 - 9(2) - 14$$

 $= 8 + 24 - 18 - 14 = 0$

FOR $(x-2)$ TO BE A FACTOR,
 $f(2)$ MUST BE EQUAL TO ZERO,
NOT $f(-2)$

b)
$$f(1) = (1)^3 + 6(1)^2 - 9(1) - 14$$

 $= 1 + 6 - 9 - 14 = -16$

$$f(-1) = (-1)^3 + 6(-1)^2 - 9(-1) - 14$$

$$= -1 + 6 + 9 - 14 = 0$$
o TRY x=1 FIRST
$$f(1) \neq 0, \text{ SO TRY}$$

$$x = -1 \text{ NEXT}$$

SO (x+1) IS ANOTHER FACTOR OF f(x)

2.5.4 Factorisation

Your notes

Polynomial Factorisation

What is polynomial factorisation?

- Factorising a polynomial combines the **factor theorem** with the method of **polynomial division**
- The goal is to break down a polynomial as far as possible into a product of linear factors

How do I factorise a polynomial?

At A level you will usually be asked to factorise a cubic – i.e. a polynomial where the highest power of x is 3

Your notes

THESE ARE ALL EXAMPLES OF CUBICS:

$$x^{3} + 2x^{2} - 5x + 7$$
$$3 - x^{2} - 4x^{3}$$
$$x^{3} + 2x$$
$$2x^{3}$$

■ To factorise a cubic polynomial **f(x)** follow the following steps:

Fully factorise $x^3 + 4x^2 - 11x - 30$.

Copyright © Save My Exams. All Rights Reserved

Step 1. Find a value p that makes f(p) = 0

Step 2. Use polynomial division to divide f(x) by (x - p)

$$\begin{array}{r}
x^{2}+2x-15 \\
x+2 \overline{\smash)x^{3}+4x^{2}-11x-30} \\
\underline{-(x^{3}+2x^{2})} \\
2x^{2}-11x-30 \\
\underline{-(2x^{2}+4x)} \\
-15x-30 \\
\underline{-(-15x-30)} \\
0
\end{array}$$

Copyright © Save My Exams. All Rights Reserved

• Step 3. Use the result of your division to write

$$f(x) = (x - p)(ax^2 + bx + c)$$

SO $x^3 + 4x^2 - 11x - 30 = (x+2)(x^2 + 2x - 15)$ Copyright © Save My Exams. All Rights Reserved

Save my exams

■ Step 4. If the quadratic (ax² + bx + c) is factorisable, factorise it and write f(x) as a product of three linear factors (if the quadratic is not factorisable, then your result from Step 3 is the final factorisation)

$$x^{2}+2x-15 = (x+5)(x-3)$$

SO $x^{3}+4x^{2}-11x-30 = (x+2)(x+5)(x-3)$

Copyright © Save My Exams. All Rights Reserved

Save my exams

• The method outlined above can be logically extended to factorise a polynomial of any degree.

Worked example	

Fully factorise $x^3 + 6x^2 - 9x - 14$.

STEP 2:

$$x^{2} + 5x - 14$$

$$x+1 \quad x^{3} + 6x^{2} - 9x - 14$$

$$-(x^{3} + x^{2})$$

$$5x^{2} - 9x - 14$$

$$-(5x^{2} + 5x)$$

$$-14x - 14$$

$$-(-14x - 14)$$

$$0$$

STEP 3:

SO
$$x^3 + 6x^2 - 9x - 14 = (x+1)(x^2 + 5x - 14)$$

STEP 4:

$$(x^2 + 5x - 14) = (x+7)(x-2)$$

SO $x^3 + 6x^2 - 9x - 14 = (x+1)(x+7)(x-2)$
Copyright © Save My Exams. All Rights Reserved

