1. Carla treated her friend to lunch at Joey's in Wichita Falls. They ordered the #14 special plate for \$8.95, the #11 special plate for \$8.75, guacamole to share for \$4.65, and two drinks for \$2.25 each. The tax rate in Wichita Falls is 8.125%, Carla tipped 20% on the pre-tax total, and she paid with a \$50 bill. How much change did she receive?									
(A)	\$15.16	(B)	\$15.29	(C)	\$17.14	(1)	\$15.60	(E)	\$15.48
2. Consider the line segment with endpoints $A(-5, 3)$ and $B(6, 1)$. Which of the following is an equation of the perpendicular bias $A(-5, 3)$ and $B(6, 1)$.									

(A)	2x + 11y = 21 (B)	22x - 4y = 3 (C)	2x + 11y = 23	(D) 223	x-4y=19	(\mathbf{E}) 2	x - 11y = 23	
3. Lynn p	oilots her plane for 3	320 miles against t	he wind in 2 ho	urs. Th	ne same fligh	ıt woul	ld have taken 1	hr

36 min	if she flew v	vith a ta	ilwind of the	e same s _l	peed. Find the	he spee	d of the plane	e in still	air.	
							(s-t)2=>			44
((A))	180 mph	(B)	162 mph	(C)	198 mph	(D)	150 mph	(E)	172 mph	

5. Heather is solving the quadratic equation
$$x^2 - 5x + 8 = 0$$
 by completing the square. Her second step is $x^2 - 5x + c = -8 + c$. The value of c is _____. $(-\frac{5}{2})^1 = (-\frac{5}{2})^1 = (-\frac{5}{2})$

(C) 7 ft 11 in

8 ft 3 in

8 ft 9 in

Problems 6, 7, 8

(B) 7 ft 2 in

(A) 6 ft 8 in

(3,4)

(A)
$$-\frac{127}{27}$$
 (B) $-\frac{71}{54}$ (C) $-\frac{127}{54}$ (D) $-\frac{16}{27}$ (E) $-\frac{16}{54}$

(A) 0.173 (B) 0.346 (C) 0.209 (D) 0.413 (E) 0.827 A Hexagon = 6 (1/3) odds = 11-3/3 Actrole = 12 m: m

2022-2023 Virtual Challenge Meet #4 Mathematics - Page 2

7			×	24	$A = \frac{1}{2}$ is 432 in ² . The l	bh===(x)(x	(3) -432			
	19. The a	area of a 30°.	- 60°- 90	° triangle	is 432 in ² . The l	$X = \left(\frac{4}{3}\right)$ length of the sh	$\frac{32\cdot2}{\sqrt{3}}$			
	(A)	22.3	(B)	24.7	(C) 23.1	(D)	21.8			
	20. The diameter of each tire on my car is 27 inches. If I drive at a constant sp									

20. The diameter of each tire on my contact and the contact an	
20. The diameter of each tire on my car is 27 inches. If I drive at a constant speed of minutes, how many revolutions will each tire make during this 10.	f <u>100 kph</u> for 10
minutes, how many revolutions will each tire make during this 10-minute period number) Distance = 161cm or 163km Revolutions (163 · 100000)/(27x	? (nearest whole
(A) 76349 CE C.C. = 27 7 (2.54) cm (C) 25450 (D) 7736	r.2.59)
(B) 8483 (C) 25450 (D) 7736	(E) 8231

in. (nearest tenth)

22.0

(E)

21. Find the eccentricity of the ellipse $x^2 + 4y^2 - 6x - 16y - 11 = 0$. (nearest hundredth) $(x-3)^1 + 4(y-2)^2 = 36$ 0.82

(A) 0.71 (B) $0.87_{\frac{(x-3)^2}{3c}} = \frac{(x-3)^2}{\frac{(y-2)^2}{3c}} = \frac{(y-2)^2}{\frac{(y-2)^2}{3c}} = \frac{(y-2)^2}{\frac{(y-2)^2}{3c}} = \frac{(y-2)^2}{6c}$ 22. If $f(x) = \sqrt{x}$, then $\frac{f(x+h) - f(x)}{h} = \frac{(y-2)^2}{h} = \frac{(y-2)^2}{6c} = \frac{$

(A) $\frac{1}{\sqrt{x+h}-\sqrt{x}}$ (B) $\frac{h}{2\sqrt{x}}$ (C) $\frac{1}{\sqrt{x+h}+\sqrt{x}}$ (D) $\frac{1}{2\sqrt{x}}$ (E) $\frac{-h}{\sqrt{x+h}-\sqrt{x}}$

23. If $\log 9 = P$ and $\log 5 = Q$, then $\log 0.6 =$

(B) 2PQ (C) $\frac{\sqrt{P}}{Q}$ (D) $\log \frac{\sqrt{P}}{Q}$ (E) $\frac{P-2Q}{2}$ (A) $\frac{PQ}{2}$

24. Connie is one of the children in a large family. She has twice as many brothers as she has sisters. Another child, Paul, has the same number of brothers as he has sisters. How many children are in the family?

(A) 4 **(B)** 5 (C) 6 **(E)** 8

25. $\sum_{k=0}^{12} 2k(k+3) =$ _____.

(A) 1768
(B) 884
(C) 2184
(D) 1807
(E) 1416 $\frac{1-\cos 2\theta}{\sin 2\theta} = \frac{1-(\cos^2\theta - \sin^2\theta)}{2\sin \theta\cos \theta} = \frac{2\sin^2\theta}{2\sin \theta\cos \theta} = \frac{2\sin^2\theta}{\cos^2\theta} = \tan\theta$ (A) $\tan 2\theta$ (B) $\csc 2\theta$ (C) $\sec \theta$ (D) $\tan \theta$ (E) $\cos \theta$

27. If $\sec \theta = -3$ and $\sin \theta > 0$, then $\tan \theta =$. $\frac{5 | A|}{T | C|}$ & in CIII 25 $\frac{3}{1}$ (A) -2 (B) $2\sqrt{2}$ (C) $\frac{8}{2}$ (D) $-2\sqrt{2}$ **(E)**

28. An investor has \$12000 to split between two bonds that pay 10.5% and 12% simple interest. The investor wants annual interest of \$1400. What is the most that can be invested in the 10.5% bond?

(A) \$1444.00 (B) \$9333.33 (C) \$2666.66 (D) \$867.00 \$8667.00 (\mathbf{E}) (12000-x)(.17)+(x)(.105)=14002022-2023 Virtual Challenge Meet #4 Mathematics – Page 3

- 39. Assume that the earth rotates about its axis every 23 hours, 56 minutes and 4 seconds. Find the linear speed of a person sitting in a chair at 10° north latitude. The radius of the earth is 3960 miles. (nearest whole number)
 - 3960 ca(10°). 24 = Circumfaire = (86400-236)3600 (A) 1036 mph (B) 968 mph (C) 1016 mph (D) 1040 mph
- 40. Find the acute angle between the line 3y = x 7 and 2y = 3 4x. (nearest tenth) $t_{ane} = \frac{m_1 m_2}{|t_m|}$
 - (A) 81.9°
- (B) 79.8°
- (C) 80.7°
- (D) 81.2°
- (E) 82.1°
- 41. Find the length of the latus rectum of the parabola shown on the right.

- (A) $\frac{1}{16}$ (B) $\frac{1}{8}$ (C) $\frac{1}{4}$ (D) $\frac{1}{2}$

- (E) 1
- 42. The graph shown on the right is the graph of y = f'(x). If f(3) = 0, then $f(-3) = \frac{1}{2x^2 - 4x - 2}$

- (A) 0

- (B) -18 (C) -22 (D) -24 (E) -30

- Problems 41.42
- 43. Find the angle between the vectors $v_1 = \langle -3, 2 \rangle$ and $v_2 = \langle 5, -11 \rangle$. (nearest degree) $\cos \frac{\omega \cdot v}{|\omega| |\nabla|}$
 - (A) 32°
- (B) 122°
- (C) 77°
- (D) 148°
- **(E)** 103°
- 44. Evaluate $\lim_{\theta \to 0} \frac{\sin(2\theta)}{5\theta}$ $\lim_{\theta \to 0} \frac{\sin(2\theta)}{2\theta(\frac{5}{2})} = \lim_{\theta \to 0} \frac{2}{5} \left(\frac{\sin 2\theta}{2\theta}\right) = \frac{2}{5} \lim_{\theta \to 0} \frac{\sin 2\theta}{2\theta} = \frac{2}{5}(1)$
- (C) 1
- (D) $\frac{5}{2}$
- (E) does not exist
- 45. Given: $x^2 + y^2 = 64$, find the value of $\frac{d^2x}{dy^2}$ at the point $(2, -2\sqrt{15})$. (nearest hundredth) $2 \times \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + 2 \times \frac{\partial x}{\partial y}$

- $46. \frac{d}{d\theta} \sin(3\theta^2) = \underline{\qquad} \cdot = \cos(3\theta^2) \frac{\partial}{\partial \theta} (3\theta^2)$

- (A) $-3\cos(6\theta)$ (B) $6\theta\cos(3\theta^2)$ (C) $\cos(6\theta)$ (D) $3\theta\cos(3\theta^2)$ (E) $-3\theta\cos(3\theta^2)$

- 47-48. Consider the region bounded by the graphs of $y_1 = 0.5x^2 3$ and $y_2 = x + 1$.
 - 47. Find the area of the bounded region. (nearest tenth) $\int (\gamma_2 \gamma_1) d\chi$
 - 18.0
- (B) 16.3
- (C) 16.7
- (\mathbf{E}) 17.7
- 48. Find the volume of the solid generated by revolving the specified region about the line y = -3. (nearest whole number)
 - (A) 115
- (B) 82

- 278 (\mathbf{E})
- 49. A Ferris wheel is built so that the bottom is at ground level. It has a radius of 10 m is rotating at a rate of one revolution every 2 minutes. When a rider is 18 m above the ground on his way up, he is rising at a rate of ____ m/min.
 - (A) 20.5π
- (B) 16π
- (C) 15π

- 50. If $P_4(x)$ is the fourth degree Maclaurin polynomial for $f(x) = \cos x$, then $f\left(\frac{\pi}{3}\right) P_4\left(\frac{\pi}{3}\right) =$ _____. (nearest ten-thousandth) $P_4(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$
 - (A) -0.0016
- **(B)** -0.0018 (C) -0.0019
- (D) -0.0022
- (E) -0.0025
- 51. When evaluating $\int \frac{x}{\sqrt{1-4x^2}} dx \text{ using } u\text{-substitution, the best choice for } u \text{ is} \underline{\qquad} .$ $\partial_{u} = -g_{x} \partial_{x} \int_{\overline{S}} \frac{1}{\sqrt{1-4x^2}} dx$ (A) $\sqrt{1-4x^2}$ (B) $4x^2$ (C) $1-4x^2$ (D) x(E)

Game	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Points	49	55	73	52	68	64	35	47	37	45	27	42	17	52

Use the table above for problems 52, 53 and 54. 1-var state The table shows the season scores for 2022 5A Football State Champion Team from Aledo.

- 52. What is the difference in the mean score and the median score, a positive number. (nearest tenth)
 - (A) 1.7
- (B) 0.2
- (C) 1.3
- (D) 1.1
- 0.6

- 53. Find the interquartile range of the scores. IQR = Q, -Q,
 - (A) 20
- (B) 18
- (C) 11
- (D) 7
- 56 (\mathbf{E})
- 54. Calculate the standard deviation of the scores for Aledo's 2022 season, (nearest tenth)

(A)	14.8	(B)	15.4	(C)	15.0	(D)	14.9	(E)	15.2		
minu	tes and a stan	ıdard d	eviation of 6 m	inute	s. What is the	proba	distributed with ability that on a	singl 1 £99	e day her		
(A)	0.081	(B)	0.171	(C)	0.041	(D)			0.909		
(A) 0.081 (B) 0.171 (C) 0.041 (D) 0.091 K=32 (E) 0.909 - normologs 56. Three cards are dealt from a standard 52-card deck. What is the probability that the first is an ace, the second is a spade, and the third is black?											
(A)	$\frac{25}{2652}$	(B)	1 104	(C)	$\frac{613}{66300}$	(D)	$\frac{469}{66300}$	(E)	$\frac{13}{1275}$		
57. A fai							t least four con	secuti	ve heads?		
(A)	$\frac{11}{32}$	(B)	$\frac{3}{32}$	(C)	$\frac{11}{21}$	(D)	$\frac{15}{64}$	(E)	18		
58. Five professional drivers drove a course with speeds of 90 mph, 102 mph, 98 mph, 110 mph and 103 mph. The average speed for all of the trips was mph. (nearest tenth)											
(A)	100.6	(B)	100.4	©	100.2	(D)	100.0	Œ)	100.8		
59. In 20 of so	022, there wer	e 44 sta 43 stat	ites that had so es that had bot	me for	rm of casino ga nos and lottery	mblir . Hov	ng, 45 states tha v many states d	at sold lid not	l lottery tickets t have either?		
(A)	1	(B)	2	(C)	3	(D)	4	(E)	5		
60. A survey asked a random sample of 800 holiday grocery shoppers whether they would cut their grocery budgets in January. Of the sample, 675 said "yes." Construct a 95% confidence interval for the portion of the city's grocery shoppers who would say "yes." if asked this question. (nearest tenthousandth)											
57. 0- 00	neads SI		6 heads	(C) 58,	(.8116,.8758) 5 90-1+102+	(D) 48 ⁻¹	(.8142,.8693) 	(E)	(.8205,.8536)		
	+B = Ar	7B+,	Αυβ	x :	Stat → Tests 1-Prop Zj :675 :800	Inte					
A	UB = 46			C.	Level: 0,9	5					
5	0-46=4										