Database Systems (CS F212) MidSem Solutions

Q1. (a) If all sets of attributes are closed, then there cannot be any nontrivial functional dependencies. For suppose A1A2...An->B is a nontrivial dependency. Then A1A2...An+ contains B and thus A1A2...An is not closed.

Non trivial FDs – **3 marks** Contradiction – **2 marks**

(b) Let R(A,B) be a 2-attribute relation. The possibilities for keys are A, B, both A & B are keys separately, & composite AB. – 1 mark If A (or B) is the only key (therefore PK), then the only FD is A \rightarrow B (or B \rightarrow A). So BCNF. – 1 +1 mark

If AB is the composite key, then the only trivial FD is AB \rightarrow AB. So BCNF. – 1 mark

If A and B, both are CKs, then the FDs are $A \rightarrow B$, and $B \rightarrow A$. Determinants in both FDs are CKs. So BCNF. – 1 mark

Attendance (sid, cid, fid, rid, date, day, hour) (2 Marks, If PK not specified deduct 1 Q2 Marks)(If finest granuality not considered, 1 marks deducted) student(Sid, name,...) (1/2 Marks, If PK not specified 0 Marks) course(cid, name,...) (1/2 Marks, If PK not specified 0 Marks)

faculty(fid, name,...) (1/2 Marks, If PK not specified 0 Marks) room(rid,...) (1/2 Marks, If PK not specified 0 Marks)

b) Functional Dependencies

PK Dependency (2 Marks)

(If a) is not correct/ there is a problem with functional dependencies 1Marks)

c) Normalize it to BCNF

Already in BCNF (2 Marks) (If a) is not correct/ there is a problem with normalization 1 Marks)

d) Referential Integrity Diagram

(2 Marks)

(1/2 Marks each of the table, with PK mentioned)

Q6 (a) FD_s for the relation:

Primary Key Dependency

sub category -> category (1 mark)

category -> department (1 mark)

(If PK not written ½ marks deducted)

(b) Identifying all redundancies:

Category and Department information getting repeated for each product which should not be the case.

with reason for both is given (1 mark + 1 mark)

(c) Normalized relation:

Table1: prod key, prod name, prod decription, sub category

Table2: sub category, category

Table3: category, department

(For All three tables 2 Marks, For 2 correct tables 1 marks)

Tables are normalized to BCNF Form (1 Marks)

(d) Space Saving:

Before Normalization: $60,000 \times 25 \times 6 = 9,000,000$ bytes (1 marks)

After Normalization: $(60,000 \times 25 \times 4) + (600 \times 25 \times 2) + (60 \times 25 \times 2) =$

6033000 bytes (1 marks)

Space Saving: 2967000 bytes (1 Marks)

```
Create FDs - 2 marks
    R.A → R.BC as R.FD.1 (name optional) – 1 mark
    R.C → R.D as. R.FD.2
    R.C → R.E as R.FD.3
 (can be done at the time of creation of R or any time later using Alter Table) - 1 mark
 Any FD violations are flagged and corresponding update operation is denied.
 Every FD on every relation is stored in the metadata, like any other DB Object. - 2 marks
Normalize R into R1, R2 using R.C → R.D (or using name R.FD.1) – 2 marks
 Dropping a FD – 1 mark
 Drop R.FD.1 - 1 mark
Q4
     Given:
     Block Size (B) = 512 Bytes
     Block Pointer (P) = 6 Bytes
     Record Pointer (P_R) = 7 Bytes
     Record Size (R) = 114 Bytes
     No. of Records (r) = 30,000
        (a) Taking 'SSN' as the key field
           (i) Index Blocking factor:
              For an index on the SSN field, field size V_{SSN} = 9 bytes, block
               pointer size P=6 bytes.
               Then: index entry size R_i = (V_{SSN} + P) = (9+6) = 15 bytes
               Index blocking factor Bfr_i = B/R_i = 512/15 = 34 entries/block
           (ii) Number of First Level Index Entries:
               Bfr = 512/114 = 4 records/block
               number of file blocks b = (r/Bfr) = (30000/4) = 7500
               Therefore, r_1 = 7500 entries
               Number of First level index Blocks:
              number of index blocks b_1 = (r_1/Bfr_1) = (7500/34) = 221 blocks
           (iii) Number of levels needed if we make it into a multi-level
            index:
               Number of First level index Blocks:
               number of index blocks b_1 = (r_1/Bfr_i) = (7500/34) = 221 blocks
               Number of Second level index Blocks:
              number of index blocks b_1 = (r_2/Bfr_i) = (221/34) = 7 blocks
```

num	nber of Third level index Blocks: aber of index blocks $b_1 = (r_3/Bfr_i) = (7/34) = 1$ block refore, 3 levels
` /	Number of Blocks required by the multi-level index: aber of blocks = 1+7+221 = 229 blocks 1M
reco inde	nber of block accesses needed to search for and retrieve a ord from the file –given its SSN value—using the primary
(b) Using s	secondary index on SSM
For poin The	ex Blocking factor: an index on the SSN field, field size $V_{SSN} = 9$ bytes, block atter size $P = 6$ bytes. n: index entry size $R_i = (V_{SSN} + P_R) = (9+7) = 16$ bytes ex blocking factor $Bfr_i = B/R_i = 512/16 = 32$ entries/block
The: Nur	nber of First Level Index Entries: refore, r_1 = 30,000 entries nber of First level index Blocks: aber of index blocks b_1 = (r_1 / Bf r_i)= (30000/32) = 938 blocks
index: Nun num Nun num	imber of levels needed if we make it into a multi-level
The	refore, 3 levels
` /	Number of Blocks required by the multi-level index: aber of blocks = 1+27+938 = 966 block1/2M
reco inde	mber of block accesses needed to search for and retrieve a ord from the file –given its SSN value—using the primary ex: dex block accesses + 1 data block = 4

	Primary index is better than secondary index
Q5	Given:
	R(A, B, C, D)
	$FD_s(A\rightarrow AC, B\rightarrow ABC, D\rightarrow ABC)$
	Steps to find F _c :
	1. Simpleton RHS
	{A->A, A->C, B->A, B->B, B->C, D->A, D->B, D->C}
	Therefore,
	$F = \{ A->C, B->A, B->C, D->A, D->B, D->C \}$
	$F = \{ A->C, B->AC, D->ABC \}$
	2M
	2. Removal of Extraneous attributes
	Checking for A in B->AC (A is not extraneous)
	Checking for C in B->AC (C is extraneous)
	3M
	Checking for A in D->ABC (A is extraneous)
	Checking for B in D->ABC (B is not extraneous)
	Checking for B in D->ABC (A is extraneous)
	3. Removal of redundant FD _s
	Therefore, $F_c(A\rightarrow C, B\rightarrow A, D\rightarrow B)$
	2M