P425/1 Pure Mathematics Paper 1 June 2024 3 hours

UGANDA ADVANCED CERTIFICATE OF EDUCATION

Pure Mathematics

Paper 1

3 hours

INSTRUCTIONS TO CANDIDATES

- Attempt all the questions in **Section A** and only five questions from **Section B**.
- *All working must be shown clearly.*
- Begin each answer on a fresh sheet of paper.
- *Mathematical tables with a list of formulae and squared papers are provided.*
- Silent, non-programmable scientific calculators may be used.
- State the degree of accuracy at the end of the answer to each question attempted using a calculator or tables and indicate "Cal" for calculator or "Tab" for Mathematical tables.

SECTION A (40 marks)

Attempt ALL the questions

1. Solve the simultaneous equations:

$$3y + x - 3z = -4$$
, $3x - y + 2z = 1$, $-2x + y + z = 7$ (05 marks)

- 2. Prove that $\tan^2\left(\frac{\pi}{4} + \theta\right) = \left(\frac{1 + \sin 2\theta}{1 \sin 2\theta}\right)$. (05 marks)
- 3. The first term of an Arithmetic progression and Geometric progression are each $\frac{2}{3}$. Their common difference and common ratio are each to x and the sum of their first three terms are also equal. Find the two possible values of x. (05 marks)
- 4. Find the point of intersection between the lines $\mathbf{r} = (-2\mathbf{i} + 5\mathbf{j} 11\mathbf{k}) + \lambda(3\mathbf{i} + \mathbf{j} + 3\mathbf{k})$, and $\mathbf{r} = (8\mathbf{i} + 9\mathbf{j}) + t(4\mathbf{i} + 2\mathbf{j} + 5\mathbf{k})$. (05 marks)
- 5. Evaluate $\int_{1}^{4} \left(\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{2}} \right) dx$, giving your answer in simplified surd. (05 marks)
- 6. A(-3, 0) and B(3, 0) are fixed points. Show that the locus of a point P(x, y) which moves such that PB = 2PA is a circle and find its centre and radius.

 (05 marks)
- 7. Air is pumped into a spherical balloon at a rate of $256\pi \text{ cm}^3 \text{s}^{-1}$. When the radius of the balloon is 15 cm, find the rate at which its radius is increasing. (05 marks)
- 8. Find the equation of the tangent to the curve $x^2y xy^2 = 12$ at the point where (4, 3).

SECTION B

Attempt FIVE the questions from this section

- 9. (a) Solve the equation: $\sqrt{(y+6)} \sqrt{(y+3)} = \sqrt{(2y+5)}$. Verify your answers. (06 marks)
 - (b) Solve for x and $y: \frac{\log(x+y) = 1}{2\log y \log(30 x) = 0}$. (06 marks)
- 10. (a) Show that 1 + 2i is a root of the equation $2z^3 z^2 + 4z + 15 = 0$, hence find the other roots. (06 marks)
 - (b) If z = 1 + 2i is a root of the equation $z^3 + az + b = 0$ where a and b are real, find the values of a and b. (06 marks)

- **11.** (a) Differentiate from first principles $y = \frac{1}{\sqrt{x}}$. (05 marks)
 - (b) A hemispherical bowl is being filled with water at a uniform rate. When the height of the water is $h \, cm$ the volume is $\pi \left(rh^2 \frac{1}{3}h^3\right)cm^3$, $r \, cm$ being the radius of the hemisphere. Find the rate at which the water level is rising when it is half way to the top, given that $r = 6 \, cm$ and the bowl fills in 1 min. (07 marks)
- **12.** (a) Prove that $\tan \frac{1}{2}(A-B) + \tan \frac{1}{2}(A+B) = \frac{2\sin A}{\cos A + \cos B}$. (05 marks)
 - (b) If $\tan \alpha = p$, $\tan \beta = q$, $\tan \gamma = r$, prove that $\tan(\alpha + \beta + \gamma) = \frac{p + q + r pqr}{1 pr rq pq}$, hence, show that $\tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{4} + \tan^{-1} \frac{2}{9} = \frac{\pi}{4}$. (07 marks)
- 13. (a) The profit y generated from the sale is given by the function $y = 72x + 3x^2 2x^3$. Calculate how many terms should be sold to receive maximum profit and determine the maximum profit. (05 marks)
 - (b) Find the area enclosed by the curve y = x(8-x) and the line y = 12. (07 marks)
- 14. Determine the turning points and asymptotes of the curve $y = \frac{4x^2 10x + 7}{(x 1)(x 2)}$ hence, sketch the curve. (12 marks)
- 15. (a) If the position vectors of points A and B are $2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}$ and $-3\mathbf{i} + 2\mathbf{j} + 8\mathbf{k}$ respectively, find the position vector of the point P which divides \mathbf{AB} externally in the ratio 5:3. (06 marks)
 - (b) Find the angle between the lines $\mathbf{r} = \begin{pmatrix} 3 \\ 3 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} 4 \\ -5 \\ -8 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 7 \\ -6 \end{pmatrix}$.

 (06 marks)
- 16. Given that the line y = mx + c is a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, show that $c^2 = a^2m^2 + b^2$. Hence, determine the equations of the tangents at the point (-3, 3) to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.

END

S.6 INTERNAL MOCK MARKING GUIDE

1.
$$x + 3y - 3z = -4, (i) \quad 3x - y + 2z = 1, (ii) - 2x + y + z = 7. (iii)$$

$$3 \text{ eqn } (i) - \text{ eqn } (ii), \quad 10y - 11z = 13 \dots (iv)$$

$$2 \text{ eqn } (iv) - 10\text{ eqn } (iv), \quad -2rz = -81, \quad z = 3, \quad y = 2, \quad x = -1.$$
2.
$$\tan^2\left(\frac{\pi}{4} + \theta\right) = \left(\frac{\tan\frac{\pi}{4} + \tan\theta}{1 - \tan\frac{\pi}{4} \tan\theta}\right)^2 = \left(\frac{1 + \tan\theta}{1 - \tan\theta}\right)^2 = \left(\frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta}\right)^2$$

$$= \left(\frac{\cos^2\theta + 2\cos\theta\sin\theta + \sin^2\theta}{\cos^2\theta - 2\sin\theta\cos\theta + \sin^2\theta}\right) = \left(\frac{1 + \sin2\theta}{1 - \sin2\theta}\right)$$
3.
$$a + a + x + a + 2x = a + ax + ax^2$$

$$3 \cdot \frac{1}{2} + 3x = \frac{2}{3}(1 + x + x^2)$$

$$2x^2 - 7x - 4 = 0, \quad \Leftrightarrow (x - 4)(2x + 1) = 0$$

$$x = 4, \quad x = -\frac{1}{2}$$
4.
$$\left(\frac{-2}{5}\right) + \left(\frac{3\lambda}{3\lambda}\right) = \left(\frac{8}{9}\right) + \left(\frac{4t}{5t}\right)$$

$$\Rightarrow -2 + 3\lambda = 8 + 4t \dots (i)$$

$$5 + \lambda = 9 + 2t \dots (ii)$$

$$-11 + 3\lambda = 5t \dots (iii)$$

$$= -17 = -19 - 2t$$

$$\Rightarrow t = -1 \text{ then from eqn}(i) \lambda = 2$$
Substitute $t \approx \lambda \lambda in (i)$, LHS. $-11 + 6 = -5 = RHS$

$$= 4i + 7j - 5k$$
5.
$$\int_{1}^{4} \left(\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{2}}\right) dx = \int_{1}^{4} \left(x^{-1/2} + \frac{1}{\sqrt{2}}\right) dx$$

$$= \left[2x^{\frac{1/2}{2}} + \frac{x}{\sqrt{2}}\right]^{\frac{1}{4}}$$

$$= \left[2\left(\sqrt{4} + \frac{4}{\sqrt{2}}\right) - \left(2\sqrt{1} + \frac{1}{\sqrt{2}}\right)$$

$$= 4 + 2\sqrt{2} - \left(\frac{4 + \sqrt{2}}{2}\right)$$

$$= 2 + \frac{3}{2}\sqrt{2}$$

6		
O	$\sqrt{(x-3)^2 + (y-0)^2} = 2\sqrt{(x+3)^2 + (y-0)^2}$	
	$x^{2} - 6x + 9 + y^{2} = 4(x^{2} + 6x + 9 + y^{2})$	
	$3x^2 + 3y^2 + 30x + 27 = 0$	
	$x^{2} + y^{2} + 10x + 9 = 0, (x+5)^{2} + (y-0)^{2} = 16$	
	Which is an equation of a circle with centre $(-5, 0)$ and $r = 4$	
7	Vol of a sphere is $V = \frac{4}{3}\pi r^3$ and the rate $\frac{dV}{dt} = 256\pi \text{ cm}^3 \text{ s}^{-1}$	
	Vol of hemisphere is $\frac{dV}{dr} = 4\pi r^2$, so $\frac{dr}{dt} = \frac{dr}{dV} \times \frac{dV}{dt}$	
	$\frac{dr}{dt} = \frac{1}{4\pi r^2} \times 256\pi \text{ for } r = 16, \frac{dr}{dt} = \frac{1}{4\pi (15)^2} \times 256\pi = \frac{64}{225} \text{ cm s}^{-1}$	
8	$2xy + x^{2} \frac{dy}{dx} - y^{2} - 2xy \frac{dy}{dx} = 0, \frac{dy}{dx} = \frac{y^{2} - 2xy}{x^{2} - 2xy}$	
	$(4, 3), \frac{dy}{dx} = \frac{9-24}{16-24} = \frac{-15}{-8} = \frac{15}{8}$	
	$(4, 3), \frac{1}{dx} - \frac{16 - 24}{16 - 24} - \frac{1}{8} - \frac{1}{8}$	
	Equation: $\frac{y-3}{x-4} = \frac{15}{8}$, $8y = 15x - 36$	
9.	$\sqrt{y+6} - \sqrt{y+3} = \sqrt{2y+5}$, square both sides	
	$y+6+y+3-2\sqrt{(y+6)(y+3)}=2y+5$, $\sqrt{y^2+9y+18}=2$	
	$y^2 + 9y + 18 = 4$, $y^2 + 9y + 14 = 0$, $(y+7)(y+2)=0$,	
	y = -7, y = -2	
	Check: $\sqrt{(y+6)} - \sqrt{(y+3)} = \sqrt{(2y+5)}$	
	$y = -7$, L.H.S = $\sqrt{-1} - \sqrt{-4} \neq \sqrt{-9} \neq R.H.S$	
	$x = -2$, L.H.S = $\sqrt{4} - \sqrt{1} = \sqrt{1} = R.H.S$	
	Therefore, $x = -2$, is the only correct solution.	
b)	$x + y = 10 \dots (i)$ $y = 10 - x$	
	$\frac{y^2}{30-x} = 1$, $y^2 = 30-x$ (ii)	
	$(10 - x)^2 = 30 - x$	
	$x^2 - 19x + 70 = 0$, $(x-5)(x-14) = 0$	
	x = 5, $x = 14$ corresponding values are $y = 5$, $y = -4$ respectively.	
10		
a)	If $z = 1 + 2i$ is a root, then $z = 1 - 2i$ the conjugate root is the other root.	
	Sum of roots is $1+2i+1-2i=2$ and product is $(1+2i)(1-2i)=5$ thus the equation is $z^2-2z+5=0$.	
	equation is $\zeta = 2\zeta + 3 = 0$.	

	$\frac{2z+3}{z^2-2z+5)2z^3-z^2+4z+15}$	
	By long division $2z^3 - 4z^2 + 10z$	
	$3z^2 - 6z + 15$	
	$3z^2 - 6z + 15$ $3z^2 - 6z + 15$	
	Thus 2 2 . 0 since us	
	Thus $2z + 3 = 0$ gives us $z = -\frac{3}{2}$	
	Other roots are $2+i$, $-\frac{3}{2}$	
b)	$(1+2i)^3 + a(1+2i) + b = 0$	
	-11 - 2i + a + 2ai + b = 0, (-11 + a + b) + (2a - 2)i = 0 Thus, 2 = 2 = 0	
	Thus, $2a - 2 = 0$, $a = 1$ (-11 + 1 + b) = 0, $b = 10$	
11		
a)	$y + \partial y = \frac{1}{\sqrt{x + \partial x}}, \partial y = \frac{1}{\left(\sqrt{x + \partial x}\right)} - \frac{1}{\sqrt{x}}$	
	$\partial y = \frac{\sqrt{x} - \sqrt{x + \partial x}}{\sqrt{x} \left(\sqrt{x + \partial x}\right)}, \partial y = \frac{\sqrt{x} - \sqrt{x + \partial x}}{\sqrt{x} \left(\sqrt{x + \partial x}\right)} \times \frac{\left(\sqrt{x} + \sqrt{x + \partial x}\right)}{\left(\sqrt{x} + \sqrt{x + \partial x}\right)}$	
	(x(yx+cx))	
	$\partial y = \frac{x - x - \partial x}{\sqrt{x} \left(\sqrt{x + \partial x} \right) \left(\sqrt{x} + \sqrt{x + \partial x} \right)}, \frac{\partial y}{\partial x} = \frac{-1}{\sqrt{x} \left(\sqrt{x + \partial x} \right) \left(\sqrt{x} + \sqrt{x + \partial x} \right)}$	
	As $\partial x \to 0$, $\frac{\partial y}{\partial x} \to \frac{dy}{dx}$, so $\frac{dy}{dx} = \frac{-1}{2x^{3/2}}$	
b)	Vol of hemisphere is $V = \frac{2}{3}\pi r^3$ and the rate $\frac{dV}{dt} = \frac{\pi r^3}{90}cm^3s^{-1}$	
	$V = \pi \left(rh^2 - \frac{1}{3}h^3\right), \frac{dV}{dh} = \pi \left(2rh - h^2\right)$	
	an	
	So, $\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$, $\frac{dh}{dt} = \frac{1}{\pi(2rh - h^2)} \times \frac{\pi r^3}{90}$ for $r = 6$, $h = 3$	
	$\frac{dh}{dt} = \frac{216}{90 \times 27} = \frac{4}{45} cm \ s^{-1}$	
10		
12 a)	From the L.H.S $\tan \frac{1}{2}(A-B) + \tan \frac{1}{2}(A+B) = \frac{\sin \frac{1}{2}(A-B)}{\cos \frac{1}{2}(A-B)} + \frac{\sin \frac{1}{2}(A+B)}{\cos \frac{1}{2}(A+B)}$	
	$= \frac{\cos \frac{1}{2}(A+B)\sin \frac{1}{2}(A-B) + \sin \frac{1}{2}(A+B)\cos \frac{1}{2}(A-B)}{\cos \frac{1}{2}(A+B)\cos \frac{1}{2}(A-B)}$	
	$=\frac{\frac{1}{2}\left(\sin A - \sin B\right) + \frac{1}{2}\left(\sin A + \sin B\right)}{\frac{1}{2}\left(\cos A + \cos B\right)}$	
	$= \frac{2\sin A}{\cos A + \cos B} \text{ as the R.H.S}$	

b) From the L.H.S,
$$\tan(\alpha + \beta + \gamma) = \tan((\alpha + \beta) + \gamma)$$

$$= \frac{\tan(\alpha + \beta) + \tan \gamma}{1 - \tan(\alpha + \beta)\tan \gamma}$$

$$= \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} + \tan \gamma$$

$$1 - \left[\frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}\right] \tan \gamma$$

$$= \frac{\tan \alpha + \tan \beta + \tan \gamma - \tan \alpha \tan \beta \tan \gamma}{1 - \tan \alpha \tan \gamma - \tan \alpha \tan \beta - \tan \beta \tan \gamma}$$

$$\tan(\alpha + \beta + \gamma) = \frac{p + q + r - pqr}{1 - pr - rq - pq}$$

$$\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \frac{\pi}{4}$$

$$\alpha + \beta + \gamma = \tan^{-1} \left(\frac{p + q + r - pqr}{1 - pr - rq - pq} \right), = \tan^{-1} \left(\frac{\frac{1}{3} + \frac{1}{4} + \frac{2}{9} - \frac{1}{3} \times \frac{1}{4} \times \frac{2}{9}}{1 - \frac{1}{3} \times \frac{1}{4} - \frac{1}{3} \times \frac{2}{9} - \frac{2}{9} \times \frac{1}{4}} \right) = \tan^{-1} \frac{\frac{85}{108}}{\frac{85}{108}}$$

$$= \tan^{-1} 1 = \frac{\pi}{4}$$

13
$$y = 72x + 3x^2 - 2x^3$$

a)
$$\frac{dy}{dx} = 72 + 6x - 6x^2$$
, for max $\frac{dy}{dx} = 0$

So,
$$72+6x-6x^2=0$$
, thus $x^2-x-12=0$

$$(x-4)(x+3)=0$$
 so $x=4$, $x \ne -3$

For
$$x = 4$$
, $y = 288 + 48 - 128 = 208$

b) For points of integration to get the limits of integration,

$$12 = x(8-x)$$
, $x^2 - 8x + 12 = 0$
 $(x-6)(x-2) = 0$ so $x = 6$, $x = 2$, points are $(2, 12)$, & $(6, 12)$

$$A = \int_{2}^{6} (8x - x^{2} - 12) dx$$
$$= \left[4x^{2} - \frac{x^{3}}{3} - 12x \right]_{2}^{6}$$

	$= (144 - 72 - 72) - (16 - \frac{8}{3} - 24) = \frac{32}{3} sq.units$
14	Turning points, $\frac{dy}{dx} = \frac{(x^2 - 3x + 2)(8x - 10) - (4x^2 - 10x + 7)(2x - 3)}{(x^2 - 3x + 2)^2}$
	For $\frac{dy}{dx} = 0$, we have,
	$8x^{3} - 10x^{2} - 24x^{2} + 30x + 16x - 20 - 8x^{3} + 12x^{2} + 20x^{2} - 30x - 14x + 21 = 0$
	To get, $-2x^2 + 2x + 1 = 0$
	$x = \frac{-2 \pm \sqrt{2^2 - (-4 \times 2 \times 1)}}{-4} = \frac{1}{2} \pm \frac{\sqrt{3}}{2} \text{so } x = -0.366, \ x = 1.366$
	Thus, $(1.366, -3.464)$ max, $(-0.366, 3.464)$ min
	Intercepts: $x = 0$, $y = \frac{7}{2}$ so $(0, 3.5)$
	$y = 0$, $4x^2 - 10x + 7 = 0$ has no real roots since $(-10)^2 - (16 \times 7) < 0$ Vertical asymptotes: $x = 1$, $x = 2$
	Horizontal asymptote, $y = 4$, $4x^2 - 12x + 8 = 4x^2 - 10x + 7$,
	$x = \frac{1}{2}$, thus curve crosses horizontal asymptote at (0.5, 4)
	$y = \frac{4x^2 - 10x + 7}{(x - 1)(x - 2)}$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	(-0.506, 5.404)
	-0.366 1 1.366 2 x
	-3.464
	x = 1
15	AP : PB = -5 : 3 or 5 : -3
a)	\Rightarrow +3 $\mathbf{AP} = -5\mathbf{PB}$, $3(\mathbf{AO} + \mathbf{OP}) = -5(\mathbf{PO} + \mathbf{OB})$
	$3\mathbf{OP} - 5\mathbf{OP} = -5\mathbf{OB} + 3\mathbf{OA}$
	$-2\mathbf{OP} = -5 \begin{pmatrix} -3\\2\\8 \end{pmatrix} + 3 \begin{pmatrix} 2\\4\\6 \end{pmatrix}, \mathbf{OP} = -\frac{1}{2} \begin{bmatrix} 15\\-10\\-40 \end{pmatrix} + \begin{pmatrix} 6\\12\\18 \end{bmatrix}$

$$\mathbf{OP} = \begin{pmatrix} -21/2 \\ -1 \\ 11 \end{pmatrix} \text{ so } \mathbf{OP} = \frac{-21}{2}\mathbf{i} - \mathbf{j} + 11\mathbf{k} .$$

$$\mathbf{D} \quad \mathbf{DP} = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \text{ and } \mathbf{v} = \begin{pmatrix} 3 \\ 7 \\ -6 \end{pmatrix} \text{ and let } \mathbf{a} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ be the normal to } \mathbf{u} & \mathbf{w} & \mathbf{v} .$$

$$\Rightarrow x - y - 2z = 0 \quad \dots(\mathbf{i}) \quad \text{and } 3x + 7y - 6z = 0 \quad \dots(\mathbf{i}\mathbf{i}\mathbf{i})$$

$$\mathbf{U} \text{ Sing } (\mathbf{i}) \text{ and } (\mathbf{i}\mathbf{i}\mathbf{i}\mathbf{i}\mathbf{i}\mathbf{j}) \quad \mathbf{v} = 0 \quad \mathbf{v} = 0 \quad \mathbf{v} \text{ oget } x = 2z \text{, thus from } (\mathbf{i}\mathbf{i}\mathbf{i}\mathbf{j}\mathbf{j}) \quad \mathbf{v} = 0 \quad \mathbf{v} = 0 \quad \mathbf{v} \quad \mathbf{v} = 0 \quad \mathbf{v} = 0 \quad \mathbf{v} \quad \mathbf{v} = 0 \quad \mathbf{v} = 0$$

Get your self a copy of

PURE MATHS CLINIC BY

SENTAMU GEOFREY

078762458

Phaneroo Make Manifest