

DATA SCIENCE

Отборочное задание

Задача внешней баллистики с учетом влияния воздушных возмущений

Привет! Data Science – молодое и самое востребованное направление у работодателей на BEST HACK. Недаром говорят, что специалисты по Data Science никогда не останутся без работы. Для вас в этом году ребята из подразделения математического моделирования ОКБ Сухого (ПАО «Компания «Сухой», входит в Объединенную Авиастроительную Корпорацию) разработали кейс, близкий к реальным задачам подразделения. Мы предлагаем в качестве отборочного задания решить данную задачу.

Условие

Летательному аппарату (ЛА) воздушной доставки необходимо с заданной точностью сбросить груз (в форме шара) в расчетной области при текущей ветряной обстановке.

Задача для участников:

Создать математическую модель летящего груза, как материальной точки для определения начальных условий сброса: координат (X, Z) и направления вектора скорости (угол α изображен положительным на рисунке). При этом надо обеспечить ряд следующих условий:

- 1.Возможность задания начальных условий:
- Н_о высота сброса не более 1400 м;
- V₀⁄- начальная скорость груза не более 250м/с;
- m масса груза;
- F_a аэродинамическая сила на грузе, направление действия противоположно вектору скорости;

База данных (БД) ветров – зависимость направления ветра от высоты.

2.Обеспечить попадание груза в зону приземления, приветствуется большая точность.

Исходные данные для отпадки:

- **1.**Скорость $V_0 = 250$ м/с и высота во время сброса груза $H_0 = 1000$ м;
- **2.** Macca груза m=100 кг;
- 3.Аэродинамическая сила, действующая на груз $F_a = f(V)$ представлена в приложении «таблица 1», файл F.csv;
 - 4. Координаты точки приземления {0,0,0};
 - 5.Приемлемая зона приземления круг радиусом 5 м;
- 6.БД с направлением и скоростями ветра в расчётной области представлены в приложении «таблица 2», файл Wind.csv;
 - 7. Ускорение свободного падения принять g=9,81м/с².

*Рекомендуется применение следующих языков программирования Python, C, C++, MATLAB, также допускается применение программных продуктов SimInTech, MS excel.

Результат

- В результате выполнения задания необходимо получить приложение/код, позволяющий:
- 1.Определять начальные параметры сброса груза в виде координат и направления вектора скорости;
- 2. Рассчитать траекторию груза с учетом влияния на него аэродинамических сил, в том числе от порывов ветра;
- 3.Обеспечить вывод результатов в виде текстового файла с зависимостями координат и скорости от времени;
 - 4. Обеспечить попадание в зону приземления;
 - 5. Получить повышенную точность приземления (опционально).

Критерий оценки:

- 1. Время работы программы;
- 2.Обеспеченная точность приземления.

Сдача задания:

- 1. Подготовить презентацию продолжительностью до 2 минут.
- 2.Приложить информационное сопровождение в файле README.md, в котором будет описано, как проверить вашу программу с данными файлов F.csv и Wind.csv.
- 3.Разместить файлы проекта на вашем репозитории в GitHub и скинуть ссылку на репозиторий, который должен быть публичным.

Примечание:

Команды, прошедшие в финал, будут презентовать отборочное задание вместе с финальным. Подойдите к выполнению задания, а также к подготовке презентации, ответственно. Это может помочь вам заработать лишние баллы.

Последний день сдачи программы - 20 марта 2019 года. Желаем успехов в выполнении поставленной задачи!

Приложение

V, M/C	Fa, H	
0	0	
10	14.019	
20	80.836	
30	240.06	
40	449.91	
50	686.02	
60	983.3	
70	1361.6	
80	1804.9	
90	2289.1	
100	2807.5	
110	3361.5	
120	3961.7	
130	4633.8	
140	5373	
150	6166.7	
160	7014.9	
170	7917.5	
180	8874.5	
190	9886	
200	10952	
210	12072	
220	13246	
230	14475	
240	15757	
250	17094	
260	18486	
270	19931	
270	19931	

Таблица 1

Зависимость аэродинамической силы от скорости движения груза.

Таблица 2

Распределение поля ветров по высоте, где:

Y — высота над уровнем земли; Wx, Wz — проекции скорости ветра на ось X и Z соответственно.

Υ, Μ	Wx, m/c	Wz, m/c
0	3.38	-1.81
100	3.52	-2.88
200	3.84	-2.60
300	4.39	-1.18
400	4.75	-1.42
500	4.53	-1.94
600	3.58	-1.73
700	3.37	-2.25
800	4.37	-2.16
900	2.99	-2.42
1000	4.20	-1.97
1100	5.19	-2.40
1200	2.88	-1.55
1300	4.59	-1.40
1400	3.61	-3.13