# Project 5: Correlation Bivariate Regression

03/17/2021

Ellen Rodberg

## Background

- Alcohol consumption patterns vary by individuals
- Previously, in our lab we have found that chronic stress and alcohol exposure has been shown to decrease cognitive performance (Rodberg et al., 2017)
- Attentional set shifting task (ASST) measures behavioral flexibility and cognitive ability in rodents

Is there a relationship between baseline cognitive performance and future alcohol consumption?

#### Methods

- 16 mice (10 female, 9 male)
- Attentional set shifting
- Cognitive ability measured by performance index
- Baseline drinking (1hr, 15%)
- Drinking is calculated as grams EtOH/kg of bodyweight
  - Daily EtOH consumption averaged across last 2 weeks of baseline drinking





## Attentional Set Shifting Task



| Task     | Dimension    |                    |
|----------|--------------|--------------------|
|          | Relevant     | Irrelevant         |
| SD<br>CD | Odor<br>Odor | Texture<br>Texture |
| CDR      | Odor         | Texture            |
| ID       | Odor         | Texture            |
| IDR      | Odor         | Texture            |
| ED       | Texture      | Odor               |
|          |              |                    |

| Combinations               |                            |  |  |
|----------------------------|----------------------------|--|--|
| Correct                    | Incorrect                  |  |  |
| Cloves                     | Sage                       |  |  |
| Cloves and Velvet          | Sage and Silk              |  |  |
| Cloves and Silk            | Sage and Velvet            |  |  |
| Sage and Velvet            | Cloves and Silk            |  |  |
| Sage and Silk              | Cloves and Velvet          |  |  |
| Basil and Tinfoil          | Cumin and Coarse Sandpaper |  |  |
| Basil and Coarse sandpaper | Cumin and Tinfoil          |  |  |
| Cumin and Tinfoil          | Basil and Coarse Sandpaper |  |  |
| Cumin and Coarse Sandpaper | Basil and Tinfoil          |  |  |
| Burlap and Cinnamon        | Fine Sandpaper and Thyme   |  |  |
| Burlap and Thyme           | Fine Sandpaper and Cinnamo |  |  |

(Rodberg et al., 2017)

#### Variables

- X variable: Cognitive performance (performance index) Calculate performance index for each animal:
  - 1) Stage reached
  - 2) Average trials per stage
  - 3) Average % incorrect

Higher performance index (PI) = better cognitive performance

- Y variable : Average g/kg EtOH consumed at baseline
- Nuisance variable: Sex

## Apriori power analysis for bivariate regression

Assuming:

Slope H1: -0.25

Power: 0.95

Std dev of x & y: 10

Sample size: 197



Linearity: Harvey-Collier test
p-value = 0.004825
violation of linearity – we could transform the data



Homoscedasticity: Non-constant Variance Score Test

p-value = 0.62855

Equal variance is not violated



Normality: Anderson-Darling normality test p-value = 0.8115 Normality is not violated



Independence: D-W test p-value = 0.432 Independence is not violated

Homoscedasticity: Non-constant Variance Score Test p-value = 0.62855

Equal variance is not violated

Normality: Anderson-Darling normality test p-value = 0.8115 Normality is not violated

Linearity: Harvey-Collier test
p-value = 0.004825
Violation of linearity – we could transform the data



## Outliers and influential points

#### Outliers:

Studentized residuals : No studentized residuals with Bonferroni p < 0.05



## Outliers and influential points

**Outliers:** 

Studentized residuals : No studentized residuals with Bonferroni p < 0.05

Leverage – Predictor Outlier: Two data points 3 and 5



## Outliers and influential points

**Outliers:** 

Studentized residuals: No studentized residuals with Bonferroni p < 0.05

Leverage – Predictor Outlier:

Two data points 3 and 5

Influential Points:

Cooks Distance: Data point 5



#### Correlation



Correlation: -0.1442282

P-value: 0.558

Increased performance index (higher cognitive performance) has a negative linear relationship with ethanol consumed. This correlation is not significant.

#### Partial Correlation

- Correlation of PI and average EtOH consumption controlling for maximum EtOH consumption
- There is a negative correlation for PI and average EtOH consumption when controlling for maximum EtOH consumption
- This correlation is not significant

Partial Correlation:-0.210261

P-value: 0.4005948

> pcor.test(data\$PI, data\$DRINK, data\$MAX)
 estimate p.value statistic n gp Method
1 -0.2110261 0.4005948 -0.8635512 19 1 pearson



## Inference for two independent slopes



- Female & male mice will consume and escalate drinking at different rates
- There is a small positive correlation for PI and ethanol consumption for males and females
- The slopes are not significantly different from 0 or each other Females:

correlation: 0.4054454

slope: 0.005261402

intercept: 1.337423

p-value: 0.2451

Males:

correlation: 0.1913489

slope: 0.008643212

intercept: - 0.282670

p-value: 0.6219

P-value: 1.009534

#### Bivariate Regression

**Slope**: -0.002862312

95% CI: (-0.0129113, 0.007186675)

P-value: 0.5507259

Fail to reject the null hypothesis that the slope is not different than 0

**Intercept**: 2.901429

95% CI: (0.5027159, 5.300142490)

P-value: 0.0206325

Reject the null hypothesis that the intercept is not different than 0

If we had a PI of 210 we would expect:

Avg EtOH consumption = 2.300343g/kg



#### Conclusions

- This study was underpowered
- There was a negative correlation between PI and EtOH consumption
  - Not significant
- There was a partial negative correlation between PI and EtOH consumption when controlling for maximum EtOH consumption
  - Not significant
- There was no significant difference between the slopes of female and male PI x EtOH consumption