Writing Mathematical Expressions with LaTeX

LaTeX is extensively used in Python. In this appendix there are many examples that can be useful to represent LaTeX expressions inside Python implementations. This same information can be found at the link http://matplotlib.org/users/mathtext.html.

With matplotlib

You can enter the LaTeX expression directly as an argument of various functions that can accept it. For example, the title() function that draws a chart title.

```
import matplotlib.pyplot as plt
%matplotlib inline
plt.title(r'$\alpha > \beta$')
```

With IPython Notebook in a Markdown Cell

You can enter the LaTeX expression between two '\$\$'.

$$c = \sqrt{a^2 + b^2}$$

With IPython Notebook in a Python 2 Cell

You can enter the LaTeX expression within the Math() function.

```
from IPython.display import display, Math, Latex display(Math(r'F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx')
```

Subscripts and Superscripts

To make subscripts and superscripts, use the '_' and '^' symbols:

$$r'$$
alpha_i > \beta_i\$'

$$\alpha_i > \beta_i$$

This could be very useful when you have to write summations: $r's\sum_{i=0}^{i=0} x_i$

$$\sum_{i=0}^{\infty} x_i$$

Fractions, Binomials, and Stacked Numbers

Fractions, binomials, and stacked numbers can be created with the \frac{}{}, \binom{}{}, and \stackrel{}{} commands, respectively:

 $r'\$ frac{3}{4} \land m{3}{4} \land stackrel{3}{4}$'$

$$\frac{3}{4} \binom{3}{4}^{4}$$

Fractions can be arbitrarily nested:

$$\frac{5-\frac{1}{x}}{4}$$

Note that special care needs to be taken to place parentheses and brackets around fractions. You have to insert \left and \right preceding the bracket in order to inform the parser that those brackets encompass the entire object:

$$\left(\frac{5-\frac{1}{x}}{4}\right)$$

Radicals

Radicals can be produced with the $\sqrt[]{}$ command.

$$r'$$
\$\sqrt{2}\$'

 $\sqrt{2}$

Fonts

The default font is italics for mathematical symbols. To change fonts, for example with trigonometric functions as sin:

$$s(t) = Asin(2\omega t)$$

The choices available with all fonts are

```
from IPython.display import display, Math, Latex
display(Math(r'\mathrm{Roman}'))
display(Math(r'\mathit{Italic}'))
display(Math(r'\mathtt{Typewriter}'))
display(Math(r'\mathcal{CALLIGRAPHY}'))
```

Roman

Italic

Typewriter

CALLIGRAPHY

Accents

An accent command may precede any symbol to add an accent above it. There are long and short forms for some of them.

\acute a or \'a	\acute{a}
\bar a	\bar{a}
\breve a	$reve{a}$
\ddot a or \"a	\ddot{a}
\dot a or \.a	\dot{a}
\grave a or \`a	\grave{a}
\hat a or \^a	\hat{a}
\tilde a or \~a	\tilde{a}
\vec a	\vec{a}
\overline{abc}	\overline{abc}

Symbols

You can also use a large number of the TeX symbols.

Lowercase Greek

$lpha$ \alpha	$oldsymbol{eta}$ \beta	χ \chi	δ \delta	F\digamma
$\epsilon_{ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$	$\eta_{ ackslash$ eta	γ \gamma	$oldsymbol{\iota}$ \iota	κ \kappa
$\lambda_{ackslash{lambda}}$	μ \mu	$ u$ \nu	ω \omega	ϕ \phi
π \pi	ψ \psi	$ ho$ $_{ ext{ho}}$	σ \sigma	$ au$ \tau
$ heta$ \theta	v \upsilon	$arepsilon$ \varepsilon		$arphi$ \varphi
 w√varpi	$arrho_{ackslash ext{varrho}}$	√ \varsigma	$artheta$ \vartheta	$\xi_{ ackslash ext{xi}}$
ζ ∖zeta				

Uppercase Greek

∆\Delta	Γ \Gamma	Λ \Lambda	Ω \0mega	Φ \Phi	П \Рі
Ψ \Psi	Σ \Sigma	⊖ \Theta	Υ \Upsilon	Ξ _{\Xi}	℧ ∖mho
∇\nabla					

Hebrew

□ \beth	7 \daleth	入 \gimel
	□ \beth	□ \beth □ \daleth

Delimiters

Big Symbols

Standard Function Names

Pr \Pr	arccos\arccos	arcsin\arcsin	arctan\arctan
rg $_{ar{}$ arg	COS \cos	$\cosh_{\setminus cosh}$	$f cot \setminus f cot$
coth \coth	CSC \csc	\deg_{\deg}	\det \det
$\dim \dim$	exp \exp	$\gcd_{\setminus gcd}$	hom \hom
\inf \inf	ker \ker	$\lg_{ackslash \lg}$	$\lim_{ a \in B} a $
$\underline{liminf} \setminus liminf$	$\limsup_{ ext{limsup}}$	${f ln}$ ${f ln}$	$\log_{ackslash \log}$
max \max	\min \min	Sec \sec	\sin \sin
\sinh \sinh	\sup_{Sup}	tan \tan	$ anh$ \tanh

Binary Operation and Relation Symbols

⇒ \Bumpeq	⋓ ∖Cap	⋒ /Cup
≑ ∖Doteq	⋈ ∖Join	
⇒ \Supset	I⊢ \Vdash	II⊢ \Vvdash
≈ \approx	≊ \approxeq	* \ast
≍ \asymp	∃ \backepsilon	
≤ \backsimeq	$ar{w}edge$ $ar{b}$ arwedge	•• \because
≬ \between	○ \bigcirc	∇\bigtriangledown
△\bigtriangleup	\blacktriangleleft	\blacktriangleright
⊥ \bot	⋈ \bowtie	□ \boxdot
□\boxminus	⊞ \boxplus	
\bullet	≏ \bumpeq	∩ \cap
_ \cdot	○ \circ	≗ \circeq
:= \coloneq	≅ \cong	U \cup
⟨curlyeqprec		
人 ∖curlywedge	† _{\dag}	⊣ \dashv

(continued)

‡ _{\ddag}	♦ \diamond	÷ \div
X \divideontimes	$\dot{e}q$ $_{ ext{ lambda}}$	$\dot{e}qdot$ \doteqdot
$\dot{p}lus$ $_{ackslash$ dotplus	₹ \doublebarwedge	≖ \eqcirc
≕ \eqcolon	≂ \eqsim	>\eqslantgtr
√eqslantless	≡ \equiv	≒ \fallingdotseq
_ \frown	≥\geq	≧ \geqq
≥ \geqslant	≫ \gg	>>> \ggg
	≩ \gneqq	
≷ \gtrapprox	> \gtrdot	≥ \gtreqless
≷ \gtreqqless	≷∖gtrless	≳ \gtrsim
∈∖in	T \intercal	≻\leftthreetimes
≤ \leq	≦ ∖leqq	≤ \leqslant
≅ \lessapprox	✓ \lessdot	≤ \lesseqgtr
	≶ ∖lessgtr	≲ ∖lesssim
« \	In the content of the content o</td <td>≋ ∖Inapprox</td>	≋ ∖Inapprox
≨ ∖Ineqq	≨∖Insim	
\mid	⊨∖models	∓ \mp
⊮ \nVDash	⊮ \nVdash	≉ \napprox
≇ \ncong	≠ \ne	≠ \neq
≠ \neq	≢ \nequiv	≱ ∖ngeq
≯ \ngtr	∋ \ni	≰ ∖nleq
≮ \nless	$+$ $_{nmid}$	∉ ∖notin
∦ ∖nparallel	⊀ \nprec	~ \nsim

(continued)

APPENDIX A WRITING MATHEMATICAL EXPRESSIONS WITH LATEX

⊄ \nsubset	⊈ ∖nsubseteq	
		4
→ \nsupset		^\ntriangleleft
⊅ \ntrianglelefteq		∠ ∖ntrianglerighteq
⊭ \nvDash	√ \nvdash	⊙ \odot
⊖ \ominus	⊕ \oplus	
⊗ \otimes	\parallel	⊥ \perp
↑ \pitchfork	$\pm \pm$	≺\prec
≈ \precapprox		≤\preceq
≨ \precnapprox	≯ \precnsim	≾ ∖precsim
∝ \propto	√\rightthreetimes	≓ \risingdotseq
	~ \sim	$\simeq \$
/\slash		□\sqcap
□ \sqcup	□ \sqsubset	□ \sqsubset
	□ \sqsupset	□ \sqsupset
	★ \star	⊂\subset
⊆\subseteq	⊆\subseteqq	⊊ \subsetneq
≨∖subsetneqq	≻\succ	≈ \succapprox
≥ \succcurlyeq	≿\succeq	≈ \succnapprox
	≿\succsim	⊃\supset
⊇∖supseteq	⊇ \supseteqq	⊋ \supsetneq
 ≥ \supsetneqq	· · \therefore	× \times
⊤ \top	√ \triangleleft	≤\trianglelefteq
≜ \triangleq	\triangleright	
⊎ \uplus	⊨ \vDash	∝ \varpropto
√\vartriangleleft	▶\vartriangleright	⊢ \vdash
∨ \vee		^ \wedge
∕ \wr		

Arrow Symbols

↓ \Downarrow	← \Leftarrow
♦ \Leftrightarrow	← \Lleftarrow
← \Longleftarrow	\iff \Longleftrightarrow
⇒ \Longrightarrow	¶ ∖Lsh
	Nwarrow Nwarrow
⇒ \Rightarrow	⇒ \Rrightarrow
\Rsh	
	↑\Uparrow
1 \Updownarrow	
ひ \circlearrowright	
→ \curvearrowright	← \dashleftarrow
> \dashrightarrow	↓ \downarrow
	1
↓ \downdownarrows	\downharpoonleft
\downharpoonright	← \hookleftarrow
\hookrightarrow	→ \leadsto
← \leftarrow	← \leftarrowtail
	\leftharpoonup
← \leftleftarrows	↔ \leftrightarrow
⇒ \leftrightarrows	⇒ \leftrightharpoons
√ \leftrightsquigarrow	\leftsquigarrow
← \longleftarrow	$\longleftrightarrow \setminus longleftrightarrow$
→ \longmapsto	→ \longrightarrow
√P \looparrowleft	→ \looparrowright
→ \mapsto	→ \multimap
⟨ \nLeftarrow	♦ \nLeftrightarrow
≯\nRightarrow	
← \nleftarrow	√ \nleftrightarrow

(continued)

APPENDIX A WRITING MATHEMATICAL EXPRESSIONS WITH LATEX

→ \nrightarrow	\\nwarrow
→ \rightarrow	→ \rightarrowtail
→ \rightharpoondown	\rightharpoonup
→ \rightleftarrows	→ \rightleftarrows
⇒ \rightleftharpoons	⇒ \rightleftharpoons
⇒ \rightrightarrows	⇒ \rightrightarrows
→ \rightsquigarrow	>\searrow
√\swarrow	\rightarrow \to
← \twoheadleftarrow	> \twoheadrightarrow
↑\uparrow	↑ \updownarrow
↑ \updownarrow	$1_{\text{upharpoonleft}}$
\upharpoonright	11 \upuparrows

Miscellaneous Symbols

\$ \\$	Å VAA	Ⅎ ∖Finv
9 \Game	③ ∖Im	$\P_{\setminus P}$
ℜ \Re ■ \backprime	§ \S ★ \bigstar	∠ \angle ■\blacksquare
▲\blacktriangle	▼\blacktriangledown	\cdots
✓ \checkmark	® \circledR	S \circledS
♣ \clubsuit	C \complement	© \copyright
$\ddot{s}_{ ext{ \ddots}}$	♦ \diamondsuit	$oldsymbol{\ell}$ \ell
	$oldsymbol{\check{\partial}}$ \eth	∃∖exists
b \flat	∀ \forall	\hbar \hbar
♡ \heartsuit	ħ ∖hslash	∭ \iiint

(continued)

APPENDIX A WRITING MATHEMATICAL EXPRESSIONS WITH LATEX

∬ \iint	∬ \iint	$oldsymbol{\imath}_{ ext{ innath}}$
∞ \infty	${\cal J}_{\ ext{ iny jmath}}$	··· \Idots
✓\measuredangle	h \natural	¬ \neg
∄ ∖nexists	∰ ∖oiiint	$oldsymbol{\partial}$ \partial
/ \prime	\sharp	♠\spadesuit
√\sphericalangle	$oldsymbol{eta}$ \ss	√\triangledown
Ø \varnothing	△ \vartriangle	\vdots
√wp	¥ _{\yen}	

APPENDIX B

Open Data Sources

Political and Government Data

Data.gov

http://data.gov

This is the resource for most government-related data.

Socrata

http://www.socrata.com/resources/

Socrata is a good place to explore government-related data. Furthermore, it provides some visualization tools for exploring data.

US Census Bureau

http://www.census.gov/data.html

This site provides information about US citizens covering population data, geographic data, and education.

UN3ta

https://data.un.org/

UNdata is an Internet-based data service which brings UN statistical databases.

European Union Open Data Portal

http://open-data.europa.eu/en/data/

This site provides a lot of data from European Union institutions.

Data.gov.uk

```
http://data.gov.uk/
```

This site of the UK Government includes the British National Bibliography: metadata on all UK books and publications since 1950.

The CIA World Factbook

```
https://www.cia.gov/library/publications/the-world-factbook/
```

This site of the Central Intelligence Agency provides a lot of information on history, population, economy, government, infrastructure, and military of 267 countries.

Health Data

Healthdata.gov

```
https://www.healthdata.gov/
```

This site provides medical data about epidemiology and population statistics.

NHS Health and Social Care Information Centre

```
http://www.hscic.gov.uk/home
```

Health data sets from the UK National Health Service.

Social Data

Facebook Graph

```
https://developers.facebook.com/docs/graph-api
```

Facebook provides this API which allows you to query the huge amount of information that users are sharing with the world.

Topsy

```
http://topsy.com/
```

Topsy provides a searchable database of public tweets going back to 2006 as well as several tools to analyze the conversations.

Google Trends

http://www.google.com/trends/explore

Statistics on search volume (as a proportion of total search) for any given term, since 2004.

Likebutton

http://likebutton.com/

Mines Facebook's public data—globally and from your own network—to give an overview of what people "Like" at the moment.

Miscellaneous and Public Data Sets

Amazon Web Services public datasets

http://aws.amazon.com/datasets

The public data sets on Amazon Web Services provide a centralized repository of public data sets. An interesting dataset is the 1000 Genome Project, an attempt to build the most comprehensive database of human genetic information. Also a NASA database of satellite imagery of Earth is available.

DBPedia

http://wiki.dbpedia.org

Wikipedia contains millions of pieces of data, structured and unstructured, on every subject. DBPedia is an ambitious project to catalogue and create a public, freely distributable database allowing anyone to analyze this data.

Freebase

http://www.freebase.com/

This community database provides information about several topics, with over 45 million entries.

Gapminder

http://www.gapminder.org/data/

This site provides data coming from the World Health Organization and World Bank covering economic, medical, and social statistics from around the world.

Financial Data

Google Finance

https://www.google.com/finance

Forty years' worth of stock market data, updated in real time.

Climatic Data

National Climatic Data Center

http://www.ncdc.noaa.gov/data-access/quick-links#loc-clim

Huge collection of environmental, meteorological, and climate data sets from the US National Climatic Data Center. The world's largest archive of weather data.

WeatherBase

http://www.weatherbase.com/

This site provides climate averages, forecasts, and current conditions for over 40,000 cities worldwide.

Wunderground

http://www.wunderground.com/

This site provides climatic data from satellites and weather stations, allowing you to get all information about the temperature, wind, and other climatic measurements.

Sports Data

Pro-Football-Reference

http://www.pro-football-reference.com/

This site provides data about football and several other sports.

Publications, Newspapers, and Books

New York Times

http://developer.nytimes.com/docs

Searchable, indexed archive of news articles going back to 1851.

Google Books Ngrams

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

This source searches and analyzes the full text of any of the millions of books digitized as part of the Google Books project.

Musical Data

Million Song Data Set

http://aws.amazon.com/datasets/6468931156960467

Metadata on over a million songs and pieces of music. Part of Amazon Web Services.

Index

A	В
Accents, LaTeX, 540-547	Bar chart
Advanced Data aggregation	3D, 306–307
apply() functions, 225	error bars, 281
transform() function, 226	horizontal, 281–282
Anaconda, 24, 88	matplotlib, 278
Anderson Iris Dataset, see Iris flower	multiserial, 282-284
dataset	multiseries stacked bar, 286-290
Array manipulation	pandas DataFrame, 285–286
joining arrays	representations, 291
column_stack() and row_stack(), 72	stacked bar charts, 290
hstack() function, 71	x-axis, 280
vstack() function, 71	xticks() function, 279
splitting arrays	Bayesian methods, 4
hsplit() function, 72	Big Data, 353
split() function, 73-74	Bigrams, 498
vsplit() function, 72	Biological neural networks, 361
Artificial intelligence, 5, 350	Blending operation, 520
schematization of, 352	
Artificial neural networks	•
biological networks, 361	С
edges, 356	Caffe2, 355
hidden layer, 357	Chart typology, 267
input and output layer, 357	Choropleth maps
multi layer perceptron, 360	D3 library, 459
nodes, 356	geographical representations, 459
schematization of, 355–356	HTML() function, 461–462
SLP (see Single layer perceptron (SLP))	jinja2, 462–463
weight, 356	JSON and TSV, 463

Choropleth maps (<i>cont</i> .)	Cross-validation, 13
JSON TopoJSON, 460	Cython, 22
require.config(), 461	
results, 464	D
US population, 2014	U
data source census.gov, 467	Data aggregation
file TSV, codes, 466	apply() functions, 226, 228–229
HTML() function, 468	GroupBy, 217
jinja2.Template, 469	groupby() function, 219
pop2014_by_county	operations, 218
dataframe, 465–466	output of, 220
population.csv, 467-468	SPLIT-APPLY-COMBINE, 218
render() function, 470-471	hierarchical grouping, 220–221
SUMLEV values, 464	merge(), 226
Classification and regression trees, 12	numeric and string values, 219
Classification models, 12	price1 column, 219
Climatic data, 552	transform() function, 225
Clustered bar chart	Data analysis
IPython Notebook, 454-455	charts, 2
jinja2, 455, 457-458	data visualization, 2
render() function, 458–459	definition, 1
Clustering models, 4, 11-12	deployment phase, 2
Collocations, 498	information, 6
Computer vision, 507	knowledge, 6
Concatenation	knowledge domains
arrays, 188	computer science, 3
combining, 191, 193	disciplines, 3
concat() function, 189-190	fields of application, 5
dataframe, 191	machine learning and artificial
keys option, 190	intelligence, 5
pivoting, 193	mathematics and statistics, 4
hierarchical indexing, 193	problems of, 3
long to wide format, 195	open data, 15–16
stack() function, 194	predictive model, 2
unstack() function, 194	process
removing, 196	data sources, 9
Correlation, 129–131	deployment, 13
Covariance, 129–131	exploration/visualization, 10–11

extraction, 9–10	pandas.merge(), 182
model validation, 13	procedures of, 181
planning phase, 9	Data structures, operations
predictive modeling, 12	DataFrame and series, 121-122
preparation, 10	flexible arithmetic
problem definition, 8	methods, 120-121
stages, 6-8	Data transformation
purpose of, 1	drop_duplicates() function, 199
Python and, 17	mapping
quantitative and qualitative, 14	adding values, 201
types	axes, 202
categorical data, 6	dict objects, 199
numerical data, 6	replacing values, 199
DataFrame	remove duplicates, 198–199
pandas	Data visualization
definition, 103–105	adding text
nested dict, 111	axis labels, 251-252
operations, 121	informative label, 254
structure, 103	mathematical expression, 254-255
transposition, 111	modified of, 252
structure, 102	text() function, 253
Data manipulation	bar chart (see Bar chart)
aggregation (see Data aggregation)	chart typology, 267
concatenation, 188	contour plot/map, 297–299
discretization and binning, 204	data analysis, 231
group iteration, 222	3D surfaces, 302, 304
permutation, 210	grid, 256
phases of, 181	grids, subplots, 309
preparation (see Data preparation)	handling date values, 264-267
string (see String manipulation)	histogram, 277-278
transformation, 197	installation, 233
Data preparation, 181	IPython and IPython
DataFrame, 182	QtConsole, 233, 235
merging operation, 182	kwargs
pandas.concat(), 182	figures and axes, 249
pandas.DataFrame.combine_	horizontal subplots, 249-250
first(), 182	linewidth, 248

Data visualization (cont.)	Deep learning, 349, 532
plot() function, 249	artificial (see Artificial neural
vertical subplots, 250–251	networks)
legend	artificial intelligence, 350
chart of, 258	data availability, 353
legend() function, 257, 258	machine learning, 351
multiseries chart, 259	neural networks and GPUs, 352
upper-right corner, 257	Python
line chart (see Line chart)	frameworks, 354
matplotlib architecture and	programming language, 354
NumPy, 247	schematization of, 352
matplotlib library (see matplotlib	TensorFlow (see TensorFlow)
library)	Digits dataset
mplot3d, 302	definition, 475
multi-panel plots	digits.images array, 477
grids, subplots, 309, 311	digit.targets array, 478
subplots, 307-309	handwritten digits, 477
pie charts, 292	handwritten number images, 475
axis() function, 293	matplotlib library, 477
modified chart, 294	scikit-learn library, 476
pandas Dataframe, 296	Discretization and binning, 204
pie() function, 292	any() function, 210
shadow kwarg, 295	categorical type, 206
plotting window	cut() function, 205-206, 208-209
buttons of, 241	describe() function, 209
commands, 241	detecting and filtering
matplotlib and NumPy, 246	outliers, 209
plt.plot() function, 242, 243	qcut(), 208-209
properties, 243	std() function, 210
QtConsole, 241-242	value_counts() function, 206
polar chart, 299, 301	Django, 17
pyplot module, 239	Dropping, 117–118
saving, charts	
HTML file, 262-263	_
image file, 264	E
source code, 260-261	Eclipse (pyDev), 41-42
scatter plot, 3D, 304-305	Element-wise computation, 47
Decision trees, 11	Expression-oriented programming, 33

F	I
Financial data, 552	IDEs, see Interactive development
Flexible arithmetic methods, 120-121	environments (IDEs)
Fonts, LaTeX, 539	Image analysis
	concept of, 521
G	convolutions, 523
	definition, 507
Gradient theory, 523	edge detection, 522, 525
Graphics Processing Unit (GPU), 353	blackandwhite.jpg
Grouping, 11	image, 526–529, 531
Group iteration	black and white system, 525
chain of transformations, 222, 224	filters function, 528
functions on groups	gradients.jpg image, 532
mark() function, 224–225	gray gradients, 525
quantiles() function, 224	Laplacian and Sobel filters, 531
GroupBy object, 222	results, 528
	source code, 530
Н	face detection, 532
Handwriting recognition	gradient theory, 523
digits dataset, 475–478	OpenCV (see Open Source Computer
handwritten digits, matplotlib	Vision (OpenCV))
library, 478	operations, 508
learning and predicting, 478, 480, 482	representation of, 522
OCR software, 473	Indexing functionalities
scikit-learn, 474–475	arithmetic and data
svc estimator, 480	alignment, 118, 120
TensorFlow, 480	dropping, 117–118
validation set, six digits, 479	reindexing, 114, 116
Health data, 550	Integration, 47
Hierarchical indexing	Interactive development environments
arrays, 136–137	(IDEs)
DataFrame, 135	Eclipse (pyDev), 41-42
reordering and sorting levels, 137-138	Komodo, 45
stack() function, 136	Liclipse, 43–46
statistic levels, 138	NinjaIDE, 44–45
structure, 134	Spyder, 41
two-dimensional structure, 134	Sublime, 42–43

Interactive programming language, 20	IPython Notebooks, 449
Interfaced programming language, 20	Jinja2 library, 451–453
Internet of Things (IoT), 353	pandas dataframe, 453
Interpreted programming language, 20	render() function, 453
Interpreter	require.config() method, 450
characterization, 21	web chart creation, 450
Cython, 22	Jinja2 library, 451–453
Jython, 22	Jython, 22
PVM, 21	
PyPy, 22	
tokenization, 21	K
IPython	K-nearest neighbors classification
and IPython QtConsole, 233–234	decision boundaries, 325–326
Jupyter project logo, 37	2D scatterplot, sepals, 324
Notebook, 39, 474	predict() function, 323
DataFrames, 420	random.permutation(), 323
QtConsole, 38	training and testing set, 322
shell, 36	
tools of, 35	
Iris flower dataset	L
Anderson Iris Dataset, 316	LaTeX
IPython QtConsole, 316	accents, 540-547
Iris setosa features, 318–319	fonts, 539
length and width,	fractions, binomials, and stacked
petal, 319–320	numbers, 538-539
matplotlib library, 318	with IPython Notebook
PCA decomposition, 320	in Markdown Cell, 537
target attribute, 317	in Python 2 Cell, 538
types of analysis, 316	with matplotlib, 537
variables, 319–320	radicals, 539
	subscripts and superscripts, 538
	symbols
J	arrow symbols, 540, 545–546
JavaScript D3 Library	big symbols, 542
bar chart, 454	binary operation and relation
CSS definitions, 450-451	symbols, 542–543
data-driven documents, 449	Delimiters, 540–541
HTML importing library, 450	Hebrew, 541

lowercase Greek, 540	coef_ attribute, 329
miscellaneous symbols, 540	fit() function, 329
standard function names, 542	linear correlation, 330
uppercase Greek, 541	parameters, 328
Learning phase, 378	physiological factors and
Liclipse, 43–46	progression of diabetes, 332–333
Linear regression, 12	single physiological factor, 330
Line chart	schematization of, 352
annotate(), 274	supervised learning, 314
arrowprops kwarg, 274	SVM (see Support vector machines
Cartesian axes, 273	(SVMs))
color codes, 270–271	training and testing set, 315
data points, 267	unsupervised learning, 314–315
different series, 269	Mapping
gca() function, 273	adding values, 201–202
Greek characters, 272	inplace option, 204
LaTeX expression, 274	rename() function, 204
line and color styles, 270	renaming, axes, 202, 204
mathematical expressions, 275	replacing values, 199, 201
mathematical function, 268	Mathematical expressions with LaTeX,
pandas, 276	see LaTeX
plot() function, 268	MATLAB, 17
set_position() function, 273	matplotlib, 48
xticks() and yticks() functions, 271	matplotlib library
Linux distribution, 90	architecture
LOD cloud diagram, 16	artist layer, 236-238
Logistic regression, 12	backend layer, 236
	functions and tools, 235
B.A.	layers, 235
M	pylab and pyplot, 238–239
Machine learning (ML), 5	scripting layer (pyplot), 238
algorithm development process, 313	artist layer
deep learning, 351	graphical representation, 237
diabetes dataset, 327-328	hierarchical structure, 236
features/attributes, 314	primitive and composite, 237
Iris flower dataset, 316	graphical representation, 231, 233
learning problem, 314	LaTeX, 232
linear/least square regression	NumPy, 246

Matrix product, 60	Jupyter Notebook, 415
Merging operation	access internal data, 417
DataFrame, 183-184	command line, 415
dataframe objects, 183	dataframe, 419–420
index, 187	extraction procedures, 418
join() function, 187–188	Ferrara, 416
JOIN operation, 182	JSON file, 416
left_index/right_index	json.load() function, 415
options, 187	parameters, 419
left join, right join and	prepare() function, 420
outer join, 186	RoseWind (see RoseWind)
left_on and right_on, 185, 187	wind speed, 441
merge() function, 183, 184	Microsoft excel files
Meteorological data, 409	dataframe, 162
Adriatic Sea and Po Valley, 410	data.xls, 160, 162
cities, 412	internal module xlrd, 160
Comacchio, 413	read_excel() function, 161
image of, 411	MongoDB, 178–179
mountainous areas, 410	Multi Layer Perceptron (MLP)
reference standards, 412	artificial networks, 360
TheTimeNow website, 413	evaluation of, 404
climate, 409	experimental data, 404
data source	hidden layers, 397
JSON file, 414	IPython session, 387
Weather Map site, 414	learning phase, 389
IPython Notebook	model definition, 387
chart representation, 425, 429, 431	test phase and accuracy
CSV files, 421	calculation, 395, 402
DataFrames, 422, 432	Musical data, 553
humidity function, 433-435	
linear regression, 431	NI.
matplotlib library, 423	N
Milan, 423	Natural Language Toolkit (NLTK)
read_csv() function, 421	bigrams and collocations, 498
result, 423	common_contexts() function, 493
shape() function, 422	concordance() function, 493
SVR method, 428-429	corpora, 488
temperature, 424, 426-427, 432	downloader tool, 489

21 . 1 () 2	
fileids() function, 491	increment and decrement
HTML pages, text, 501	operators, 60–61
len() function, 491	matrix product, 59-60
library, 489	ufunc, 61
macbeth variable, 491	broadcasting
Python library, 488	compatibility, 77
request() function, 502	complex cases, 78–79
selecting words, 497	operator/function, 76
sentimental analysis, 502	BSD, 50
sents() function, 492	conditions and Boolean arrays, 69
similar() function, 494	copies/views of objects, 75
text, network, 500	data analysis, 49
word frequency, 494	indexing, 63
macbeth variable, 495	bidimensional array, 64
most_common() function, 494	monodimensional ndarray, 63
nltk.download() function, 495	negative index value, 63
nltk.FreqDist() function, 494	installation, 50
stopwords, 495	iterating an array, 67–69
string() function, 496	ndarray (see Ndarray)
word search, 493	Numarray, 49
Ndarray, 47	python language, 49
array() function, 51–53	reading and writing array data, 82
data, types, 53-54	shape manipulation, 70–71
dtype (data-type), 50, 54	slicing, 65–66
intrinsic creation, 55–57	structured arrays, 79
type() function, 51–52	vectorization, 76
NOSE MODULE, 91	
"Not a Number" data	0
filling, NaN occurrences, 133	0
filtering out NaN	Object-oriented programming language, 20
values, 132–133	OCR, see Optical Character Recognition
NaN value, 131–132	(OCR) software
NumPy library	Open data, 15–16
array manipulation (see Array	Open data sources, 353
manipulation)	climatic data, 552
basic operations	demographics
aggregate functions, 62	IPython Notebook, 446
arithmetic operators, 57–59	matplotlib, 449
<u>-</u>	

Open data sources (cont.)	Optical Character Recognition (OCR)
pandas dataframes, 446-447	software, 473
pop2014_by_state dataframe, 448	order() function, 127
pop2014 dataframe, 447-448	
United States Census	Р
Bureau, 445-446	r
financial data, 552	Pandas dataframes, 446, 453
health data, 550	Pandas data structures
miscellaneous and public	DataFrame, 102–105
data sets, 551–552	assigning values, 107–109
musical data, 553	deleting column, 110
political and government	element selection, 105–107
data, 549-550	filtering, 110
publications, newspapers,	membership value, 109-110
and books, 553	nested dict, 111
social data, 550-551	transposition, 111
sports data, 553	evaluating values, 98–99
Open Source Computer Vision (OpenCV)	index objects, 112
deep learning, 509	duplicate labels, 112-113
image processing and analysis, 509	methods, 112
add() function, 515	NaN values, 99, 101
blackish image, 518	NumPy arrays and existing
blending, 520	series, 96–97
destroyWindow() method, 512	operations, 120–122
elementary operations, 514	operations and mathematical
imread() method, 510	functions, 97-98
imshow() method, 511	series, 93
load and display, 510	assigning values, 95
merge() method, 513	declaration, 94
NumPy matrices, 519	dictionaries, 101
saving option, 514	filtering values, 97
waitKey() method, 511	index, 93
working process, 512	internal elements, selection, 95
installation, 509	operations, 102
MATLAB packages, 508	Pandas library, 87
start programming, 510	correlation and covariance, 129-131
Open-source programming	data structures (see Pandas data
language, 21	structures)

function application and mapping	PostgreSQL, 174
element, 123	Principal component analysis
row/column, 123, 125	(PCA), 320, 322
statistics, 125	Public data sets, 551–552
getting started, 92	PVM, see Python virtual machine (PVM)
hierarchical indexing and	pyplot module
leveling, 134-135, 137-138	interactive chart, 239
indexes (see Indexing functionalities)	Line2D object, 240
installation	plotting window, 240
Anaconda, 88–89	show() function, 240
development phases, 91	PyPy interpreter, 22
Linux, 90	Python, 17
module repository, Windows, 90	data analysis library, 87-88
PyPI, 89	deep learning, 354
source, 90	frameworks, 354
testing, 91	module, 91
"Not a Number" data, 131–134	OpenCV, 508
python data analysis, 87–88	Python Package Index (PyPI), 39, 89
sorting and ranking, 126–129	Python's world
Permutation	code implementation, 28
new_order array, 211	distributions, 24
np.random.randint() function, 211	Anaconda, 24
numpy.random.permutation()	Enthought Canopy, 26
function, 210	Python(x,y), 26
random sampling, 211	IDEs (see Interactive development
DataFrame, 211	environments (IDEs))
take() function, 211	installation, 23-24
Pickle—python object serialization	interact, 28
cPickle, 168	interpreter (see Interpreter)
frame.pkl, 170	IPython (see IPython)
pandas library, 169	programming language, 19–21
stream of bytes, 168	РуРІ, 39
Political and government	Python 2, 23
data, 549-550	Python 3, 23
pop2014_by_county dataframe, 465	running, entire program code, 27
pop2014_by_state dataframe, 448-449	SciPy
pop2014 dataframe, 447-448	libraries, 46
Portable programming language, 20	matplotlib, 48

Python's world (cont.)	myCSV_03.csv, 145
NumPy, 47	names option, 145
pandas, 47	read_csv() function, 143, 145
shell, 26	read_table() function, 143
source code	.txt extension, 142
data structure, 30	databases
dictionaries and lists, 31	create_engine() function, 171
functional programming, 33	dataframe, 175
Hello World, 28	pandas.io.sql module, 171
index, 32	pgAdmin III, 175–176
libraries and functions, 30	PostgreSQL, 174
map() function, 33	read_sql() function, 172
mathematical operations, 29	read_sql_query() function, 177
print() function, 29	read_sql_table() function, 177
writing python code,	sqlalchemy, 171
indentation, 34-35	sqlite3, 171
Python virtual machine (PVM), 21	DataFrame objects, 141
PyTorch, 355	functionalities, 141
	HDF5 library
0	data structures, 167
Q	HDFStore, 167
Qualitative analysis, 14	hierarchical data format, 166
Quantitative analysis, 14	mydata.h5, 167
	HTML files
R	data structures, 152
	read_html (), 155
R, 17	web_frames, 156
Radial Basis Function (RBF), 340	web pages, 152
Radicals, LaTeX, 539	web scraping, 152
Ranking, 128–129	I/O API Tools, 141–142
Reading and writing array	JSON data
binary files, 82	books.json, 164
tabular data, 83–84	frame.json, 164
Reading and writing data	json_normalize() function, 165
CSV and textual files	JSONViewer, 162–163
header option, 144	normalization, 164
index_col option, 145	read_json() and to_json(), 162
myCSV_01.csv, 143	read_json() function, 164–165

Microsoft excel files, 159	Sentimental analysis, 502
NoSQL database	document_features()
insert() function, 179	function, 504
MongoDB, 178-180	documents, 503
pickle—python object serialization, 168	list() function, 504
RegExp	movie_reviews, 503
metacharacters, 146	negative/positive opinion, 505
read_table(), 146	opinion mining, 502
skiprows, 148	Shape manipulation
TXT files, 147-148	reshape() function, 70
nrows and skiprows options, 149	shape attribute, 70
portion by portion, 149	transpose() function, 71
writing (see Writing data)	Single layer perceptron (SLP), 371
XML (see XML)	accuracy, 359
Regression models, 4, 12	activation function, 358, 359
Reindexing, 114–116	architecture, 357
RoseWind	cost optimization, 382
DataFrame, 436–437	data analysis, 372
hist array, 438–439	evaluation phase, 359
polar chart, 438, 440-441	learning phase, 359, 378
scatter plot representation, 438	model definition, 374
showRoseWind() function, 439, 441	explicitly, 376
	implicitly, 376
S	learning phase, 375
3	placeholders, 376
Scikit-learn library, 473	tf.add() function, 377
data analysis, 474	tf.nn.softmax() function, 377
k-nearest neighbors classification, 322	modules, 372
PCA, 320	representation, 358
Python module, 313	testing set, 385
sklearn.svm.SVC, 475	test phase and accuracy
supervised learning, 315	calculation, 383
svm module, 475	training sets, 359
SciPy	Social data, 550
libraries, 46	sort_index() function, 126-128, 138
matplotlib, 48	Sports data, 553
NumPy, 47	SQLite3, 171
pandas, 47	stack() function, 136

String manipulation	decision boundaries, 342
built-in methods	linear decision boundaries, 342–343
count() function, 214	polynomial decision boundaries, 344
error message, 214	polynomial kernel, 343-344
index() and find(), 213	RBF kernel, 344
join() function, 213	training set, 342
replace() function, 214	SVC (see Support vector classification
split() function, 212	(SVC))
strip() function, 212	SVR (see Support vector regression
regular expressions	(SVR))
findall() function, 215-216	Support vector regression (SVR)
match() function, 216	curves, 347
re.compile() function, 215	diabetes dataset, 345
regex, 214	linear predictive model, 345
re.split() function, 215	test set, data, 345
split() function, 215	swaplevel() function, 137
Structured arrays	
dtype option, 79, 81	Т
structs/records, 79	1
Subjective interpretations, 14	TensorFlow, 349, 354, 362, 480
Subscripts and superscripts,	data flow graph, 362
LaTeX, 538	Google's framework, 362
Supervised learning	installation, 363
machine learning, 314	IPython QtConsole, 364
scikit-learn, 315	MLP (see Multi Layer Perceptron
Support vector classification (SVC), 475	(MLP))
decision area, 336	model and sessions, 364
effect, decision boundary, 338-339	SLP (see Single layer perceptron (SLP))
nonlinear, 339–341	tensors
number of points, C parameter, 337-338	operation, 370
predict() function, 336-337	parameters, 366
regularization, 337	print() function, 368
support_vectors array, 337	representations of, 367
training set, decision space, 334-336	tf.convert_to_tensor() function, 368
Support vector machines (SVMs)	tf.ones() method, 369
decisional space, 334	tf.random_normal() function, 369
decision boundary, 334	tf.random_uniform() function, 369
Iris Dataset	tf.zeros() method, 368

Text analysis techniques
definition, 487
NLTK (see Natural Language Toolkit
(NLTK))
techniques, 488
Theano, 355
trigrams() function, 499

U, V

United States Census Bureau, 445–446 Universal functions (ufunc), 61 Unsupervised learning, 314

W

Web Scraping, 4, 10
Wind speed
polar chart representation, 442
RoseWind_Speed() function, 441
ShowRoseWind() function, 442

ShowRoseWind_Speed() function, 442
to_csv () function, 443
Writing data
HTML files
myFrame.html, 155
to_html() function, 153-154
na_rep option, 151
to_csv() function, 150-151

X, **Y**, **Z**

XML

books.xml, 157–158
getchildren(), 158
getroot() function, 158
lxml.etree tree structure, 159
lxml library, 157
objectify, 158
parse() function, 158
tag attribute, 158
text attribute, 159