Lecture 7: Multivariate Distributions

MATH 697

Omidali Jazi

September 25, 2018

McGill University

Goals for this Chapter

- Bivariate and multivariate probability distributions.
 - Bivariate normal distribution
 - Multinomial distribution
- Marginal and conditional distributions
- Independence, covariance and correlation
- Expected value & variance of a function of random variables.
 - Linear functions of random variables in particular
- Conditional expectation and variance

Bivariate and Multivariate Distributions

- A bivariate distribution is a probability distribution on two random variables.
 - I.e., it gives the probability on the simultaneous outcome of the random variables
- For example, we may want to know the probability that in the simultaneous roll of two dice each comes up 1
- A multivariate distribution is a probability distribution for more than two random variables.

Joint Probabilities

- Bivariate and multivariate distributions are joint probabilities
 - the probability that two or more events occur
 - It is the probability of the intersection of $n \ge 2$ events:

$$\{Y_1=y_1\}, \{Y_2=y_2\}, ..., \{Y_n=y_n\}$$

We denote the joint (discrete) probabilities as

$$P(Y_1 = y_1, Y_2 = y_2, ..., Y_n = y_n)$$

• We sometimes use the shorthand notation $p(y_1,y_2,...,y_n) \text{ which is the probability that the event } Y_1=y_1 \text{ and the event } Y_2=y_2, \, ..., \text{ and the event } Y_n=y_n \text{ all occurred simultaneously.}$

Bivariate and Multivariate Distributions

- Simple example of a bivariate distribution arises when rolling two dice:
 - Let Y_1 be the number on the first die.
 - Let Y_2 be the number on the second die.
- Then there are 36 possible joint outcomes (remember the mn rule: $6 \times 6 = 36$)
 - The outcomes (y_1,y_2) are (1,1),(1,2),(1,3),...,(6,6)
- Assuming the dice are independent, all the outcomes are equally likely, so

$$p(y_1,y_2) = P(Y_1 = y_1, Y_2 = y_2) = 1/36$$
 for $y_1 = 1,...,6$ and $y_2 = 1,...,6$.

Bivariate PMF for the Example

Defining Joint Probability Functions (Discrete Random Variables)

Definition 1

Let Y_1 and Y_2 be discrete random variables. The joint or bivariate pmf for (Y_1,Y_2) is $P(Y_1=y_1,Y_2=y_2)$ where $-\infty < y_1 < \infty$ and $-\infty < y_2 < \infty$.

Joint Probability Functions (Discrete Random Variables)

Theorem 2

If Y_1 and Y_2 are joint discrete random variables with joint probability function $p(y_1,y_2)$, then

- 1. $p(y_1, y_2) \ge 0$ for all (y_1, y_2) .
- 2. $\sum\limits_{y_1}\sum\limits_{y_2}p(y_1,y_2)=1$ where the sum is over all non-zero $p(y_1,y_2).$

Joint Distribution Functions

Definition 3

For any random variables (discrete or continuous) Y_1 and Y_2 , the joint or bivariate CDF is

$$F(y_1,y_2) = P(Y_1 \leq y_1, Y_2 \leq y_2)$$

for
$$-\infty < y_1 < \infty$$
 and $-\infty < y_2 < \infty$

 $\blacksquare \ \, \text{Note that for two discrete random variables } (Y_1,Y_2)\text{,}$

$$F(y_1,y_2) = \sum_{z_1 \leq y_1} \sum_{z_2 \leq y_2} p(z_1,z_2)$$

Example

Back to the Dice Example:

- Find F(2,3)
- Solution:

$$\begin{split} P(Y_1 \leq 2, Y_2 \leq 3) &= p(1,1) + p(1,2) + p(1,3) \\ &+ p(2,1) + p(2,2) + p(2,3) \\ &= 6/36 \\ &= 1/6 \end{split}$$

Properties of Joint CDFs

Theorem 4

If Y_1 and Y_2 are joint random variables with joint CDF ${\cal F}(y_1,y_2),$ then

1.
$$F(-\infty, -\infty) = F(y_1, -\infty) = F(-\infty, y_2) = 0$$

- 2. $F(\infty, \infty) = 1$
- 3. If $a \leq b$ and $c \leq d$ then

$$\begin{split} P(a \leq Y_1 \leq b, c \leq Y_2 \leq d) = \\ F(b,d) - F(b,c) - F(a,d) + F(a,c) \geq 0 \end{split}$$

Joint Probability Density Functions

Definition 5

Let Y_1 and Y_2 be continuous random variables with joint distribution function $F(y_1,y_2)$. If there exists a non-negative function $f(y_1,y_2)$ such that

$$F(y_1,y_2)=\int_{-\infty}^{y_1}\int_{-\infty}^{y_2}f(u,v)dudv$$

for all $-\infty < y_1 < \infty$, $-\infty < y_2 < \infty$, then (Y_1,Y_2) are said to be jointly continuous random variables. The function $f(y_1,y_2)$ is called the joint probability density function.

Properties of Joint PDFs

Theorem 6

If Y_1 and Y_2 are random variables with the joint pdf $f(y_1,y_2)$, then

- 1. $f(y_1, y_2) \ge 0$ for all (y_1, y_2) .
- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y_1, y_2) dy_1 dy_2 = 1$

Plot

An illustrative joint pdf which is a surface in 3 dimensions

Distribution Functions for Continuous R.V.s

- For jointly continuous random variables, volumes under the pdf surface correspond to probabilities
- For the pdf in the Figure, the probability $P(a_1 \leq Y_1 \leq a_2, b_1 \leq Y_2 \leq b_2) \text{ corresponds to the volume and it is obtained by}$

$$\int_{b_1}^{b_2} \int_{a_1}^{a_2} f(y_1,y_2) dy_1 dy_2$$

Example

Example 7

Suppose a radioactive particle is located in a square with sides of unit length. Let Y_1 and Y_2 denote the particle's location and assume it is uniformly distributed in square; $f(y_1,y_2)=1$ for $0\leq y_1\leq 1$ and $0\leq y_2\leq 1$ and 0 otherwise.

- Find F(0.2, 0.4)
- Solution: $\int_0^{0.4} \int_0^{0.2} 1 dy_1 dy_2 = 0.4 \times 0.2 = 0.08$
- $\quad \text{Find } P(0.1 \leq Y_1 \leq 0.3, 0 \leq Y_2 \leq 0.5) \\$
- Solution: $\int_0^{0.5} \int_{0.1}^{0.3} 1 dy_1 dy_2 = 0.5 \times 0.2 = 0.10$

Volumes Correspond to Probabilities

Example

Gasoline is stored on a FOB in a bulk tank. Let Y_1 denote the proportion of the tank available at the beginning of the week after restocking. Let Y_2 denote the proportion of the tank that is dispensed over the week. Note that Y_1 and Y_2 must be between 0 and 1 and y_2 must be less than or equal to y_1 . Let the joint pdf be $f(y_1,y_2)=3y_1$ for $0\leq y_2\leq y_1\leq 1$ and 0 otherwise.

- $\qquad \text{Find } P(0 \leq Y_1 \leq 0.5, 0.25 \leq Y_2)$
- Solution

$$\int_{0.25}^{0.5} \int_{0.25}^{y_1} 3y_1 dy_2 dy_1 = \int_{0.25}^{0.5} 3y_1 (y_1 - 0.25) dy_1 = \frac{5}{128}$$

Marginal and Conditional Distributions

- Marginal distributions connect the concept of (bivariate) joint distributions to univariate distributions.
 - As we will see, in the discrete case, the name "marginal distribution" follows from summing across rows or down columns of a table.
- Conditional distributions are what arise when, in a joint distribution, we fix the value of one of the random variables.

Defining Marginal Probability Functions

Definition 8

Let Y_1 and Y_2 be joint discrete random variables with the pmf $p(y_1,y_2)$. The marginal probability functions of Y_1 and Y_2 , respectively, are

$$p_1(y_1) = \sum_{y_2} p(y_1, y_2)$$

and

$$p_2(y_2) = \sum_{y_1} p(y_1, y_2)$$

Defining Marginal Density Functions

Definition 9

Let Y_1 and Y_2 be joint continuous random variables with the pdf $f(y_1,y_2)$. The marginal density functions of Y_1 and Y_2 , respectively, are

$$f_1(y_1) = \int_{-\infty}^{\infty} f(y_1,y_2) dy_2$$

and

$$f_2(y_2) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_1$$

Defining Conditional Probability Functions

Definition 10

If Y_1 and Y_2 are joint discrete random variables with the pmf $p(y_1,y_2)$ and marginal pmfs $p_1(y_1)$ and $p_2(y_2)$, respectively, then the conditional probability function of Y_1 given Y_2 is

$$p(y_1|y_2) = P(Y_1 = y_1|Y_2 = y_2) = \frac{p(y_1, y_2)}{p(y_2)}$$

- Note that $p(y_1|y_2)$ is not defined if $p_2(y_2)=0$.
- The conditional probability function of ${\cal Y}_2$ given ${\cal Y}_1$ is similarly defined.

Defining Conditional Distribution Functions

Definition 11

Let Y_1 and Y_2 be joint continuous random variables with the pdf $f(y_1,y_2)$. The conditional distribution function of Y_1 given $Y_2=y_2$ is

$$F(y_1|y_2) = \int_{-\infty}^{y_1} \frac{f(u, y_2)}{f_2(y_2)} du$$

Defining Conditional Density Functions

Definition 12

Let Y_1 and Y_2 be joint continuous random variables with pdf $f(y_1,y_2)$ and the marginal density functions $f_1(y_1)$ and $f_2(y_2)$ respectively. For any y_2 such that $f_2(y_2)>0$, the conditional density function of Y_1 given $Y_2=y_2$ is

$$f(y_1|y_2) = \frac{f(y_1, y_2)}{f_2(y_2)}$$

The conditional pdf of ${\cal Y}_2$ given ${\cal Y}_1=y_1$ is similarly defined as

$$f(y_2|y_1) = \frac{f(y_1, y_2)}{f_1(y_1)}$$

Example

A soft drink machine has a random amount Y_2 (in gallons) in supply at the beginning of the day and dispenses a random amount Y_1 during the day. It is not resupplied during the day, so $Y_1 \leq Y_2$, and the joint pdf is $f(y_1,y_2)=1/2$ for $0 \leq y_1 \leq y_2 \leq 2$ and 0 otherwise.

What is the probability that less than half gallon will be sold given that the machine containing 1.5 gallons at the start of the day?

Solution

Solution: First note that

$$f_2(y_2) = \int_0^{y_2} \frac{1}{2} dy_1 = \frac{y_2}{2} \qquad 0 \le y_2 \le 2$$

then

$$\begin{split} P(Y_1 \leq 0.5 | Y_2 = 1.5) &= \int_0^{0.5} \frac{f(y_1, y_2 = 1.5)}{f_2(y_2 = 1.5)} dy_1 \\ &= \int_0^{0.5} \frac{1/2}{0.75} dy_1 \\ &= \frac{1}{3} \end{split}$$

Expected Value of a Function of R.V.s

Definition 13

Let $g(Y_1,...,Y_k)$ be a function of the discrete random variables $Y_1,...,Y_k$, which have joint pmf $p(y_1,...,y_k)$. Then the expected value of $g(Y_1,...,Y_k)$ is

$$E\left[g(Y_1,...,Y_k)\right] = \sum_{y_1} ... \sum_{y_k} g(y_1,...,y_k) p(y_1,...,y_k)$$

If $Y_1,...,Y_k$ are continuous with joint pdf $f(y_1,...,y_k)$, then

$$E\left[g(Y_{1},...,Y_{k})\right] = \int_{-\infty}^{\infty}...\int_{-\infty}^{\infty}g(y_{1},...,y_{k})f(y_{1},...,y_{k})dy_{1}...dy_{k}$$

Example

An industrial chemical process yields a product with two types of impurities. In a given sample, let Y_1 denote the proportion of impurities in the sample and let Y_2 denote the proportion of "type I" impurities (out of all the impurities). The joint density function of (Y_1,Y_2) is $f(y_1,y_2)=2(1-y_1)$ for $0\leq y_1\leq 1$ and $0\leq y_2\leq 1$ and 0 otherwise.

- Find the expected value of the proportion of "type I" impurities in the sample.
- Solution: $E(Y_2) = \int_0^1 \int_0^1 y_2 2(1-y_1) dy_2 dy_1 = 0.5$
- Shortcut: We can show from the marginal distributions that Y_1 is Beta(1,2) and Y_2 is U(0,1). Therefore, $E(Y_2)=0.5$

28/59

Independent Random Variables

- We defined the independence of events
 - here we now extend that idea to the independence of random variables.
- For joint random variables (Y_1,Y_2) , the probabilities associated with Y_1 are the same regardless of the observed value of Y_2
 - The idea is that learning something about Y_2 does not tell you anything, probabilistically speaking, about the distribution of Y_1 .

Defining Independence for R.V.s

Definition 14

Let Y_1 have CDF $F_1(y_1)$, Y_2 have CDF $F_2(y_2)$, and Y_1 and Y_2 have joint CDF $F(y_1,y_2)$. Then Y_1 and Y_2 are independent if and only if

$$F(y_1,y_2) = F_1(y_1) F_2(y_2) \\$$

for every pair of real numbers $(y_1,y_2).$ If Y_1 and Y_2 are not independent, then they are said to be dependent.

Determining Independence

Theorem 15

• Let Y_1 and Y_2 be discrete random variables with the j oint pmf $p(y_1,y_2)$ and marginal pmfs $p_1(y_1)$ and $p_2(y_2)$ respectively. Then Y_1 and Y_2 are independent if and only if

$$p(y_1,y_2) = p_1(y_1)p_2(y_2) \\$$

for all pairs of real numbers (y_1, y_2) .

• Let (Y_1,Y_2) are continuous random variables with the joint pdf $f(y_1,y_2)$ and the marginal pdfs $f_1(y_1)$ and $f_2(y_2)$ respectively. Then Y_1 and Y_2 are independent if and only if

$$f(y_1,y_2) = f_1(y_1) f_2(y_2)$$

for all pairs of real numbers (y_1, y_2) .

Example

- Let $f(y_1,y_2)=6y_1y_2^2$ for $0 \le y_1 \le 1$, $0 \le y_2 \le 1$ and 0 otherwise. Show that Y_1 and Y_2 are independent.
- Solution: We can show that $f_1(y_1)=2y_1$ for $0\leq y_1\leq 1$ and $f_2(y_2)=3y_2^2$ for $0\leq y_2\leq 1$. Since for every y_1 and y_2 ,

$$f(y_1, y_2) = f_1(y_1) f_2(y_2)$$

By Theorem 15, Y_1 and Y_2 are independent.

Determining Independence of Two R.V.s

Theorem 16

Let Y_1 and Y_2 have joint density function $f(y_1,y_2)$ which is positive if and only if $a \leq y_1 \leq b$ and $c \leq y_2 \leq d$, for constants a,b,c,d and $f(y_1,y_2)=0$ otherwise. Then Y_1 and Y_2 are independent random variables if and only if

$$f(y_1, y_2) = g(y_1)h(y_2)$$

where $g(y_1)$ is a nonnegative function of y_1 alone and $h(y_2)$ is a nonnegative function of y_2 alone.

– Note that $g(y_1)$ and $h(y_2)$ do not have to be density functions.

Example

- Let Y_1 and Y_2 have joint density $f(y_1,y_2)=2y_1$ for $0\leq y_1\leq 1$ and $0\leq y_2\leq 1$ and 0 otherwise. Are Y_1 and Y_2 independent?
- Solution: Yes, because of Theorem 16.
- Let Y_1 and Y_2 have joint density $f(y_1,y_2)=2$ for $0\leq y_2\leq y_1\leq 1$ and 0 otherwise. Are Y_1 and Y_2 independent?
- Solution: No, because of Theorem 16.

Theorem

Theorem 17

Let Y_1 and Y_2 be independent random variables and $g(Y_1)$ and $h(Y_2)$ be functions of only Y_1 and Y_2 respectively. Then

$$E[g(Y_1)h(Y_2)] = E[g(Y_1)]E[h(Y_2)]$$

provided the expectations exist.

The Covariance of Two Random Variables

- When looking at two random variables, a common question is whether they are associated with one-another
 - That is, for example, as one tends to increase, does the other do so as well?
 - If so, the colloquial terminology is to say that the two variables are correlated
- Correlation is also a technical term used to describe the association.
 - But it has a precise definition (that is more restrictive than the colloquial use of the term)
 - And there is a second measure from which correlation is derived: covariance

Covariance and Correlation

- Covariance and correlation are measures of dependence between two random variables.
- The figure below shows two extremes: perfect dependence and independence.

Defining Covariance

Definition 18

If Y_1 and Y_2 are random variables with means μ_1 and μ_2 respectively. Then the covariance of Y_1 and Y_2 is defined as

$$\begin{split} Cov(Y_1,Y_2) &= E\left[(Y_1 - \mu_1)(Y_2 - \mu_2) \right] \\ &= E(Y_1Y_2) - \mu_1\mu_2 \end{split}$$

Understanding Covariance

- Covariance gives the strength and direction of linear relationship between Y_1 and Y_2 :
 - Strong-positive: large positive covariance
 - Strong-negative: large negative covariance
 - Weak positive: small positive covariance
 - Weak negative: small negative covariance
- But what is "large" and "small"?
 - It depends on the measurement units of ${\cal Y}_1$ and ${\cal Y}_2$

Drawback of Covariance

Same picture, different scale, different covariance

Correlation of Random Variables

 The correlation (coefficient) of two random variables is defined as:

$$\rho = \frac{Cov(Y_1,Y_2)}{\sigma_1\sigma_2}$$

As with covariance, correlation is a measure of the dependence of two random variables Y_1 and Y_2

- But note that it's re-scaled to be unit-free and measurement invariant
- In particular, for any random variables ${\cal Y}_1$ and ${\cal Y}_2$

$$-1 \le \rho \le 1$$

Interpreting the Correlation Coefficient

- A positive correlation coefficient $(\rho > 0)$ means there is a positive association between Y_1 and Y_2 .
 - As Y_1 increases Y_2 also tends to increase.
- A negative correlation coefficient ($\rho < 0$) means there is a negative association between Y_1 and Y_2 .
 - As Y_1 increases Y_2 tends to decrease.
- A correlation coefficient equal to 0 ($\rho=0$ means there is no linear association between Y_1 and Y_2 .
- Link: http://jose-coto.com/visualizing-bivariate-normal

Visulallization

Example

- Find the covariance between Y_1 and Y_2 , where $f(y_1,y_2)=3y_1 \text{ for } 0\leq y_2\leq y_1\leq 1 \text{ and 0 otherwise}.$
- Solution: By the definition, first

$$E(Y_1Y_2) = \int_0^1 \int_0^{y_1} y_1 y_2 3y_1 dy_2 dy_1 = \int_0^1 \frac{3}{2} y_1^4 dy_1 = \frac{3}{10}$$

- \bullet Further, $E(Y_1) = \int_0^1 \int_0^{y_1} y_1 3 y_1 dy_2 dy_1 = \frac{3}{4}$
- \bullet likewise, $E(Y_2) = \int_0^1 \int_0^{y_1} y_2 3 y_1 dy_2 dy_1 = \frac{3}{8}$
- Hence, $Cov(Y_1,Y_2) = \frac{3}{10} \frac{3}{4} \times \frac{3}{8} = \frac{3}{160}$

Correlation and Independence

Theorem 19

If Y_1 and Y_2 are independent random variables. Then $Cov(Y_1,Y_2)=0$. That is, independent random variables are uncorrelated.

Notes

- High correlation merely means that there is a strong linear relationship, not that Y_1 causes Y_2 or Y_2 causes Y_1 .
- \bullet E.g., there could be a third factor that causes both Y_1 and Y_2 to move in the same direction
 - No causal connection between ${\cal Y}_1$ and ${\cal Y}_2.$
- High correlation does not imply causation.
 - Zero correlation does not mean there is no relationship between ${\cal Y}_1$ and ${\cal Y}_2$
- Link: http://www.abs.gov.au/websitedbs/a3121120.nsf/home/

Mean, Variance, Covariance of Linear Combinations of R.V.s

Theorem 20

Let $Y_1,Y_2,...,Y_n$ and $X_1,X_2,...,X_m$ be random variables with $E(Y_i)=\mu_i$ and $E(X_i)=\xi_i$. Define $U_1=\sum\limits_{i=1}^n a_iY_i$ and

$$U_2 = \sum\limits_{j=1}^m b_j X_j$$
 for constants $a_1,...,a_n$ and $b_1,...,b_n$. Then:

$$\bullet \ E(U_1) = \sum\limits_{i=1}^n a_i \mu_i \ \text{and} \ E(U_2) = \sum\limits_{j=1}^m b_i \xi_j$$

•
$$V(U_1) = \sum_{i=1}^{n} a_i^2 V(Y_i) + 2 \sum_{1 \le i \le j \le 1} a_i b_j Cov(Y_i, Y_j)$$

- Similar expression for $V(U_2)$.
- $Cov(U_1, U_2) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j Cov(Y_i, X_j)$

Example (Exercise)

- Let Y_1 , Y_2 , and Y_3 be random variables, where $-E(Y_1) = 1, \ E(Y_2) = 2, \ E(Y_3) = -1$ $-V(Y_1) = 1, \ V(Y_2) = 3, \ \text{and} \ V(Y_3) = 5$ $-Cov(Y_1,Y_2) = -0.4, \ Cov(Y_1,Y_3) = 0.5, \ \text{and}$ $Cov(Y_2,Y_2) = -0.2$
- Find the expected value and variance of $U=Y_1-2Y_2-Y_3$.
- If $W = 3Y_1 + Y_2$, find Cov(U, W).

Defining a Multinomial Experiment

Definition 21

A multinomial experiment has the following properties:

- 1. The experiment consists of n identical trials.
- 2. The outcome of each trial falls into one of \boldsymbol{k} classes or cells.
- 3. The probability that the outcome of a single trial falls into cell $i,\ p_i,\ i=1,...,k$ remains the same from trial totrialand $p_1+p_2+\cdots+p_k=1.$
- 4. The trials are independent.
- 5. The random variables of interest are $Y_1, Y_2, ..., Y_k$, the number of outcomes that fall in each of the cells, where $Y_1 + Y_2 + \cdots + Y_k = n$.

Defining the Multinomial Distribution

Definition 22

Assume that $p_i>0$, i=1,...,k are such that $p_1+p_2+\cdots+p_k=1$. The random variables $(Y_1,Y_2,...,Y_k)$ have a multinomial distribution with parameters. $p_1,p_2,...,p_k$ if their joint distribution is

$$p(y_1,...,y_k) = \frac{n!}{y_1!...y_{k-1}!y_k!} p_1^{y_1}...p_{k-1}^{y_{k-1}} p_k^{y_k}$$

where,
$$y_k = (n - \sum\limits_{i=1}^{k-1} y_i)$$
 and $p_k = (1 - \sum\limits_{i=1}^{k-1} p_i).$

Further, for each i, $y_i = 0, 1, 2, ..., n$ and $\sum_{i=1}^{\kappa} y_i = n$.

Note that the binomial distribution is just a special case of the multinomial with $k=2. \label{eq:kappa}$

Expected Value, Variance, and Covariance of the Multinomial Distribution

Theorem 23

If $(Y_1, Y_2, ..., Y_k)$ have a multinomial distribution with parameters n and $p_1, p_2, ..., p_k$. Then

- $E(Y_i) = np_i$
- $V(Y_i) = np_i(1 p_i)$
- $\qquad \quad Cov(Y_i,Y_j) = -np_ip_j \ \text{for} \ i \neq j.$

The Multivariate Normal Distribution

• The multivariate normal distributions is a joint distribution for k>1 random variables

$$f(y) = \frac{1}{{{{(2\pi)}^{k/2}}{{|\Sigma |}^{1/2}}}}\exp \left\{ { - \frac{1}{2}{{(y - \mu)}^T}{\Sigma ^{ - 1}}(y - \mu)} \right\}$$

- The pdf for a multivariate normal is where
 - Y and μ are k dimensional vectors for the location at which to evaluate the pdf and the means, respectively.
 - Σ is the variance-covariance matrix.
 - For the bivariate normal: (Y_1,Y_2) with $\mu=(\mu_1,\mu_2)$ and

$$\Sigma = \left[\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array} \right]$$

Defining the Conditional Expectation

Definition 24

If Y_1 and Y_2 are any random variables, the conditional expectation of $g(Y_1)$ given that $Y_2=y_2$ is defined as - if Y_1 and Y_2 are jointly continuous

$$E(g(Y_1)|Y_2=y_2) = \int_{-\infty}^{\infty} g(y_1) f(y_1|y_2) dy_1$$

- if Y_1 and Y_2 are jointly discrete.

$$E(g(Y_1)|Y_2=y_2) = \sum_{y_1} g(y_1) p(y_1|y_2)$$

Example

For random variables Y_1 and Y_2 with the joint pdf $f(y_1,y_2)=1/2$ for $0\leq y_1\leq y_2\leq 2$ and 0 otherwise.

- Find the conditional expectation of Y_1 given $Y_2 = 1.5$.
- \bullet Solution: First, $f_2(y_2)=\int_0^{y_2}\frac{1}{2}dy_1=\frac{y_2}{2}$ for $0\leq y_2\leq 2$
- Therefore, $f(y_1|y_2)=\frac{1/2}{y_2/2}=\frac{1}{y_2}$. That is, Y_1 given Y_2 is a uniform distribution in $(0,y_2)$. Hence, $E(Y_1|Y_2=1.5)=\frac{1.5}{2}=0.75$
- Alternatively, using the definition

$$E(Y_1|Y_2) = \int_0^{y_2} y_1 f(y_1|y_2) dy_1 = \frac{y_2}{2}$$

So,
$$E(Y_1|Y_2=1.5)=0.75$$

Repeated Conditional Expectation Formula

Theorem 25

Let Y_1 and Y_2 denote random variables. Then

$$E(Y_1) = E[E(Y_1|Y_2)] \label{eq:energy}$$

where on the right-hand side the inside expectation is with respect to the conditional distribution of Y_1 given Y_2 and the outside expectation is with respect to the distribution of Y_2 .

Conditional Variance Formula

Theorem 26

Let Y_1 and Y_2 denote random variables. Then

$$V(Y_1) = E[V(Y_1|Y_2)] + V[E(Y_1|Y_2)] \\$$

Example

Let Y_1 have an exponential distribution with mean λ and the conditional density of Y_2 given $Y_1=y_1$ be $f(y_2|y_1)=1/y_1$ for $0\leq y_2\leq y_1$ and 0 otherwise.

- Find $E(Y_2)$ and $V(Y_2)$, the unconditional mean and variance of Y_2 .
- \bullet Solution: First note that Y_2 given Y_1 is a uniform distribution in $(0,y_1).$ Hence, $E(Y_2|Y_1)=\frac{Y_1}{2}$ and $V(Y_2|Y_1)=\frac{Y_1^2}{12}$
- Therefore from the pervious theorems, $E[Y_2] = E[E(Y_2|Y_1)] = E(\frac{Y_1}{2}) = \frac{\lambda}{2} \text{ and }$

$$V(Y_2) = E\left[\frac{Y_1^2}{12}\right] + V\left[\frac{Y_1}{2}\right] = \frac{5\lambda^2}{12}$$

What We Have Just Learned

- Bivariate and multivariate probability distributions
 - Bivariate normal distribution
 - Multinomial distribution
- Marginal and conditional distributions
- Independence, covariance and correlation
- Expected value and variance of a function of random variables
 - Linear functions of random variables in particular
- Conditional expectation and variance