(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 24 February 2005 (24.02.2005)

PCT

(10) International Publication Number WO 2005/016952 A2

(51) International Patent Classification7:

C07K

(21) International Application Number:

PCT/US2004/015735

(22) International Filing Date: 19 May 200

19 May 2004 (19.05.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/471,327

19 May 2003 (19.05.2003) US

- (71) Applicant (for all designated States except US): DUKE UNIVERSITY [US/US]; Office of Science and Technology, Box 90083, Durham, NC 27708-0083 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): HAYNES, Barton [US/US]; c/o Duke University, Box 90083, Office of Science and Technology, Durham, NC 27708-0083 (US). SPICER, Leonard, D. [US/US]; c/o Duke University, Box 90083, Office of Science and Technology, Durham, NC 27708-0083 (US).
- (74) Agent: WILSON, Mary, J.; Nixon & Vanderhye P.C., 1100 North Glebe Road, Suite 800, Arlington, VA 22201-4714 (US).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

٠.

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: POLYVALENT IMMUNOGEN

5

POLYVALENT IMMUNOGEN

This application claims priority from Provisional Application No. 60/471,327, filed May 19, 2003, the content of which is incorporated by reference.

TECHNICAL FIELD

The present invention relates, generally, to a polyvalent immunogen and, more particularly, to a method of inducing neutralizing antibodies against HIV and to a polyvalent immunogen suitable for use in such a method.

BACKGROUND

Immunogenic peptides have been developed that elicit B and T cell responses to various strains of human immunodeficiency virus (HIV) (Palker et al, J. Immunol. 142:3612-3619 (1989), Haynes et al, Trans. Am. Assoc. Physician 106:31-41 (1993), Haynes et al, J. Immunol. 151:1646-1653 (1993), 10 Haynes et al, AID Res. Human Retroviruses 11:211-221 (1995)) (see also WO 97/14436). These peptides consist of two components, each derived from noncontiguous regions of the HIV gpl20 envelope protein. One envelope component consists of 16 amino acid residues from the fourth constant (C4) domain of HIV gpl20, and includes a T-helper epitope (Cease et al, Proc. Natl. 15 Acad. Sci. USA 84:4249-4253 (1987)). Linked to the carboxyl terminus of this gpl20 C4 region peptide is a 23 amino acid segment from the third variable (V3) domain of gpl20, that includes a B cell neutralizing antibody epitope for cell line-adapted HIV strains (Palker et al, J. Immunol. 142:3612-3619 (1989), (Palker et al, Proc. Natl. Acad. Sci. USA 85:1932-1936 (1988), 20 Rusche et al, Proc. Natl. Acad. Sci. USA 85:3198-3202)), a T-helper epitope (Palker et al, J. Immunol. 142:3612-3619 (1989)), and two cytotoxic Tlymphopoietic (CTL) epitopes (Clerici et al, J. Immunol. 146:2214-2219 (1991), Safrit et al, 6th NCVDG Meeting, Oct. 30 to Nov. 4, 1993)). In mice and rhesus monkeys, these C4-V3 hybrid peptides have induced antibodies 25 that bind to native gpl20 and neutralize the particular cell line-adapted strain of HIV from which the V3 segment was derived, as well as induce T helper

³ WO 2005/016952 PCT/US2004/015735

cell proliferative responses and MHC Class I-restricted CTL responses that kill HIV or HIV protein expressing target cells (Palker et al, J. Immunol. 142:3612-3619 (1989), Haynes et al, AID Res. Human Retroviruses 11:211-221 (1995)). Recently, it was shown that this gpl20 peptide design can induce antibodies that neutralize primary HIV isolates and simian-human immunodeficiency viruses (SHIV) expressing primary HIV isolate envelopes (Liao et al, J. Virol. 74:254-263 (2000)). Moreover, in a challenge trial of this immunogen in rhesus monkeys, it was shown that C4-V3 peptides from the gpl20 of the pathogenic SHIV 89.6P, induced neutralizing antibodies that prevented the fall in CD4 counts after challenge with SHIV 89.6P (Letvin et al, J. Virol. 75:4165-4175 (2001)). Therefore, anti-V3 antibodies can protect primates against primary isolate SHIV-induced disease.

10

20

25

30

A prototype polyvalent HIV experimental immunogen comprised of the conserved C4 region of gpl20 and the V3 regions of HIV isolates MN, CANO(A), EV91 and RF has been constructed and has been found to be highly immunogenic in human clinical trials (Bartlett et al, AIDS 12:1291-1300 (1998), Graham et al, Abstract, AIDS Vaccine (2001)). Thus, understanding secondary and higher order structures of the components of this polyvalent immunogen, as well as defining strategies to optimize gpl20 immunogen antigenicity, is important to HIV vaccine design efforts. In addition, recent data suggest that the HIV V3 region may be involved in regulating gpl20 interactions with HIV co-receptors, CXC chemokine receptor 4 (CXCR4) and chemokine receptor type 5 (CCR5) (Berger, AIDS Suppl. A:53-56 (1997)).

In previous studies, nuclear magnetic resonance (NMR) has been used to characterize conformations of the multivalent immunogen C4-V3 peptides in solution (de Lorimier et al, Biochemistry 33:2055-2062 (1994), Vu et al, Biochemistry 35:5158-5165 (1996), Vu et al, J. Virol. 73:746-750 (1999)). It as been found that the V3 segments of each of the four C4-V3 peptides displayed evidence of preferred solution conformations, with some features

shared, and other features differing among the four peptides. The C4 segment, which is of identical sequence in all the peptides, showed in each case a tendency to adopt nascent helical conformations (de Lorimier et al, Biochemistry 33:2055-2062 (1994), Vu et al, Biochemistry 35:5158-5165 (1996), Vu et al, J. Virol. 73:746-750 (1999)).

5

10

15

20

25

The C4 sequence as a peptide does not elicit antibodies that bind native gp120 (Palker et al, J. Immunol. 142:3612-3619 (1989), Haynes et al, J. Immunol. 151:1646-1653 (1993), Ho et al, J. Virol. 61:2024-2028 (1987), Robey et al, J. Biol. Chem. 270:23918-23921 (1995)). This led to the speculation that the nascent helical conformations exhibited by the C4 segment might reflect a conformation not native to HIV gp120. Amino-acid sequence homology between the gp120 C4 region and a human IgA CH1 domain has been noted (Maddon et al, Cell 47:333-348 (1986)). By comparison to the structure of mouse IgA (Segal et al, Proc. Natl. Acad. Sci. USA 71:4298-4302 (1974)), the C4-homologous region of IgA has a β strand secondary structure (de Lorimier et al, Biochemistry 33:2055-2062 (1994)). Therefore, while the C4 gp120 peptide in solution adopts nascent helical conformations, the native structure of this gp120 C4 region may be quite different (ie, in the context of gp 120 have a β strand secondary structure).

The present invention results, at least in part, from the results of a study with a three-fold purpose. First, C4-V3HIVRF peptides with amino acid substitutions designed to minimize C4 α -helical peptide conformation and promote β strand C4 secondary structures were constructed in order to induce anti-native gpl20 antibodies with the modified C4 peptide. Second, tests were made to determine if any of these mutated C4-V3RF peptides would enhance gpl20 V3 region peptide immunogenicity, and therefore augment anti-HIVRF gpl20 V3 loop antibody responses. Finally, the solution conformers of each peptide studied immunologically were also solved using NMR to correlate peptide conformers with peptide immunogenicity.

SUMMARY OF THE INVENTION

The present invention relates to a method of inducing neutralizing antibodies against HIV and to peptides, and DNA sequences encoding same, that are suitable for use in such a method.

5

10

15

20

25

In one embodiment, the invention relates to a composition comprising a multiplicity of immunogenic peptides comprising a first and a second component, the first component comprising a T-helper epitope, the second component comprising residues of the V3 domain of gp120 and including a B cell neutralizing antibody epitope. The first component can be a human immunodeficiency virus (HIV) T helper epitope. The first component can comprise residues of the C4 domain of HIV gp120, for example, at least 16 contiguous residues of the C4 domain of HIV gp120 (e.g., residues 421 to 436 of the C4 domain of HIV gp120). The first component can comprise residues of HIV p24 gag (e.g., GTH1 (residues 262-278 of HIV gag)). The first component can be a non-HIV T helper epitope. The second component can comprise at least 23 contiguous residues of the V3 domain of HIV gp120 (e.g., residues 297 to 322 of the V3 domain of HIV gp120)). The first component can comprise at least 16 contiguous residues of the C4 domain of HIV gp120 and the second component can comprise at least 23 contiguous residues of the V3 domain of HIV gp120 (e.g., residues 421 to 436 of the C4 domain of HIV gp120 and residues 297 to 322 of the V3 domain of HIV gp120). The second component can be linked C terminal to the first component. The first component can be linked to the second component via a linker. The composition can comprise at least 5 immunogenic peptides (e.g., C4-V3 36.29, C4-V3 34.29, C4-V3 62.19, C4-V3 74.17 and C4-V3 162.7 from Table 7). The composition can comprise at least 10, or at least 25 immunogenic peptides. The composition can further comprise a carrier and/or an adjuvant. The first component can comprise the sequence YKRWIILGLNKIVRM. The second components can be selected so as to be

5

10

15

20

25

representative of higher order structural motifs present in a population, which motifs mediate V3 functions in the course of envelope mediated HIV interaction with host cells. The composition can comprise about 25-30 immunogenic peptides the second components of which are selected so as to be representative of infected individuals within a subtype. At least one of the first components can comprise the sequence KQIINMWQVVGKAMYA. This aspect of the invention further relates to a method of inducing the production of neutralizing antibodies in a patient comprising administering to the patient an amount of the above composition sufficient to effect the production. In another aspect of this embodiment, the invention relates to a formulation comprising at least one nucleic acid sequence encoding the above composition and to a method of inducing the production of neutralizing antibodies in a patient comprising administering to the patient an amount of the formulation sufficient to effect the production.

In another embodiment, the invention relates to a composition comprising at least one peptide from Table 6 or Table 7 and a carrier. This composition can further comprise an adjuvant. In another embodiment, the invention relates to a nucleic acid encoding a peptide in Table 6 or Table 7.

In a further embodiment, the invention relates to an isolated polypeptide comprising a V3 sequence shown in Table 10, 11 or 12 (e.g., polypeptide 62.19) and to an isolated nucleic acid sequence encoding at least one such polypeptide. The invention further relates to a vector comprising such a nucleic acid. Additionally the invention relates to a method of inducing the production of neutralizing antibodies in a mammal comprising administering to the mammal an amount of such a polypeptide or nucleic acid sequence sufficient to effect the induction (e.g., the V3 sequence can be administered in a DNA prime with the V3 sequence in a gp140 or gp160 boost (or a gp120, gp140 or gp160 replication vector boost) (a replicating vector comprising the V3 sequence in envelope can be administered as prime and

boost). The invention further relates to a composition comprising such a polypeptide or nucleic acid sequence and a carrier.

Other embodiment, objects and advantages of the present invention will be clear from the description that follows.

5

10

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1: Summary of antibody binding titers to immunizing peptide after 2 or 3 boosts of 3 mice in each group with immunizing peptide. There was a slight enhancement of levels of antibody induced by the E9G variant after 2 but not 3 boosts, while the E9V variant significantly boosted antibody levels compared to the C4-V3RF(A) peptide after 2 and 3 boosts. Antibody to the K12E variant induced by the K12E peptide was significantly lower than C4-V3RF(A) induced antibody levels after both 2 and 3 boosts.

Figures 2A, 2B, 2C, 2D: NMR spectra of the four C4-V3RF variant peptides.

Figures 3A, 3B, 3C, 3D: C4_{E9V}-V389.6 peptides bound better to human PB

lymphocytes and monocytes than did the C4-V3 89.6 peptides. Similar data
were obtained with the C4-V3 89.6P and C4-E9V-89.6P peptides. Sequence
of the C4-V389.6 peptide form HIV89.6 isolate was:

KQIINMWQEVGKAMYA-TRPNNNTRRLSIGPGRAFYARR; the
sequence of the C4_{E9V}-V389.6 peptide was: KQIINMWQVVGKAMYATRPNNNTRRLSIGPGRAFYARR; the sequence of the C4-V389.6P peptide
was: KQIINMWQEVGKAMYA-TRPNNNTRERLSIGPGRAFYARR; the
sequence of the C4E9V-V389.6P peptide was: KQIINMWQVVGKAMYATRPNNNTRERLSIGPGRAFYARR.

Figure 4: Neutralization of BAL in PBMC.

5

20

25

Figure 5: Neutralization of HIV primary isolates by sera from guinea pig (GP) 469 immunized with the C4-V3 peptide 62.19. The isolates tested are listed on the right side. The grey and white areas indicate no neutralization. The red boxes indicate >50% neutralization. The titers are 1:10, 1:30, 1:90 and 1:270 going across in each column.

Figure 6: C4-V3 sequences tested.

Figure 7: Strategy for design of HIV gp120 immunogens with higher order structures.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates, at least in part, to a composition comprising a multiplicity of immunogenic hybrid peptides, each comprising two components. One component includes a T-helper epitope and can comprise residues from the C4 domain of HIV gp120. The second component comprises residues from the V3 domain of gp120 and includes a B cell neutralizing antibody epitope.

Advantageously, the first component comprises about 16 contiguous residues from the C4 domain (about residues 421 to 436) and the second component comprises about 23-25 contiguous residues from the V3 domain (about residues 297 to 322). The components can, however, be longer, and can comprise, for example, the entirety of the cysteine to cysteine V3 loop region, or be shorter. Preferably, the V3 component is linked C terminal to the C4 component peptide. The hybrid peptides can include additional sequences (e.g., linkers (e.g., cysteine, serine or lysine linkers) between the C4 and V3 components). The composition can, for example, comprise 5 to 10 hybrid peptides, 10 to 15 hybrid peptides or 25 to 30 hybrid peptides. The number of hybrid peptides used will depend, at least in part, on the target population.

Preferred first components comprising residues from the C4 domain are shown in the Tables that follow (see particularly Tables 6 and 7). Other T helper determinants from HIV or from non-HIV proteins can also be used. For example, a further T helper epitope suitable for use in the invention is from HIV gag (e.g., residues 262-278). One such sequence, designated GTH1, is YKRWIILGLNKIVRMYS (from HIV p24 gag). Variants of this sequence can also be used. Alternatively, or in addition, a carbohydrate such as the outer membrane protein of pneumococcus, or another carbohydrate or protein with immunogenic, T helper activity can be used.

The V3 components of the hybrid peptides present in the instant composition are selected so as to be representative of higher order structural motifs present in a population, which motifs mediate V3 functions in the course of envelope mediated HIV interaction with host cells. The Los Alamos National Laboratories Human Retroviruses and AIDS Database (Human Retroviruses and AIDS, 2000, Published by the Theoretical Biology and Biophysics G T-10, Mail Stop K710, LANL, Los Alamos, NM) presently contains over 14,000 HIV V3 envelope sequences, showing the extraordinary diversity the virus has obtained since originating in man in Africa approximately 50 years ago. For example, among 432 HIV-1 V3 sequences derived from individuals infected with subtype C (designated "Clade C") in Africa currently available in the HIV database, 176 distinct variants of a 23 amino acid stretch at the tip of the V3 loop have been found. Similarly, among 6870 B subtype (designated "Clade B") V3 sequences from the US, 1514 unique forms have been found.

A method has been developed to organize short antigenic domains by protein similarity scores using maximum-linkage clustering. This method enables the visualization of the clustering patterns as a dendrogram, and the splitting patterns in the dendrogram can be used to define clusters of related sequences (Korber et al, J. Virol. 68:6730-6744 (1994)). The method allows the use of several different amino acid similarity scoring schemes available in

10

15

20

the literature, preferred is the amino acid substitution matrix developed by Henikoff and Henikoff (see Advances in Protein Chemistry 54:73-97 (2000) and Proteins: Structure, Function and Genetics 17:49-61 (1993)), designed to give substitutions that are well tolerated in conserved protein structural elements a high score, and a low score to those that are not. Typically excluded from consideration very rare, highly divergent peptides, and favored are peptides found in many individuals within the population. In a selected set of sequences, most of the unique forms are within one or two amino acids from a least one other of the peptides chosen. This method has been applied to clustering the large number of variants of the antigenic tip of the V3 domain within Clade B and Clade C into groups (about 25) that are likely to be crossreactive within the group. Based on these clustering patterns, variants (e.g., about 25-30) are selected that are representative or "central" to each group, for testing for antigenicity. The HIV Clade B and Clade C gp120 envelope V3 sequences have been analyzed, as described above, for groups of V3 sequences predicted to have structural similarities. Twenty five Clade C and 30 Clade B groups have been defined, and chosen out of each group is a common, or the most common, sequence as a representative of that group. The selected V3 sequences have been included in a C4-V3 design thereby providing a 25 peptide Clade C immunogen, and a 30 peptide Clade B immunogen (see Tables 6 and 7).

Table 6

C4-V3-C1 KQIINMWQVVGKAMYA-trpnnntrksirigpGqtfyatg
C4-V3-C2 KQIINMWQVVGKAMYA-trpnnntrksirigpGqtfyaRg
C4-V3-C3 KQIINMWQVVGKAMYA-trpnnntrksirigpGqtfyaAg
C4-V3-C4 KQIINMWQVVGKAMYA-IrpnnntrksVrigpGqtfyatg
C4-V3-C5 KQIINMWQVVGKAMYA-trpnnntrksirigpGqtfYatg
C4-V3-C6 KQIINMWQVVGKAMYA-trpnnntrksirigpGqtfyatg

C4-V3 design of Clade C V3 sequences

C4-V3-C8 KQIINMWQVVGKAMYA-trpnnntrRsirigpGqAfyatg
C4-V3-C9 KQIINMWQVVGKAMYA-trpnnntrkGirigpGqtfyatg
C4-V3-C10 KQIINMWQVVGKAMYA-trpSnntrksirigpGqAfyatg
C4-V3-C11 KQIINMWQVVGKAMYA-trpSnntrksirigpGqtfyatN
C4-V3-C12 KQIINMWQVVGKAMYA-trpSnntrEsirigpGqtfyatg

C4-V3-C13 KQIINMWQVVGKAMYA-trpnnntrksMrigpGqtfyatg
C4-V3-C14 KQIINMWQVVGKAMYA-trpGnntrksMrigpGqtfyatg
C4-V3-C15 KQIINMWQVVGKAMYA-trpGnntrksirigpGqtLyatg
C4-V3-C16 KQIINMWQVVGKAMYA-VrpnnntrksVrigpGqtSyatg
C4-V3-C17 KQIINMWQVVGKAMYA-trpGnntrRsirigpGqtfyatg

C4-V3-C18 KQIINMWQVVGKAMYA-IrpGnntrksVrigpGqtfyatg
C4-V3-C19 KQIINMWQVVGKAMYA-trpnnntrksirigpGqAfyatN
C4-V3-C20 KQIINMWQVVGKAMYA-trpnnntrQsirigpGqAfyatK
C4-V3-C21 KQIINMWQVVGKAMYA-trpGnntrksirigpGqAfFatg
C4-V3-C22 KQIINMWQVVGKAMYA-trpGnntrksVrigpGqAfyatN

C4-V3-C23 KQIINMWQVVGKAMYA-trpnnntrkGiHigpGqAfyaAg
C4-V3-C24 KQIINMWQVVGKAMYA-trpnnntrkGiGigpGqtfFatE
C4-V3-C25 KQIINMWQVVGKAMYA-trpGnntrEsiGigpGqAfyatg

25

Table 7

C4-V3 peptides Clade B

- C4-V3-396.2 KQIINMWQVVGKAMYA-RPNNNTRRNIHIGLGRRFYAT-*
- C4-V3-170.6 KQIINMWQVVGKAMYA-RPNNNTRRSVRIGPGGAMFRTG*
- 5 C4-V3-82.15 KQIINMWQVVGKAMYA-RPNNNTRRSIPIGPGRAFYTTG*
 - C4-V3-144.8 KQIINMWQVVGKAMYA-RPDNNTVRKIPIGPGSSFYTT-*
 - C4-V3-23.38 KQIINMWQVVGKAMYA-RPIKIERKRIPLGLGKAFYTTK*
 - C4-V3-365.2 KQIINMWQVVGKAMYA-RPSNNTRKGIHLGPGRAIYATE*
 - C4-V3-513.2 KQIINMWQVVGKAMYA-RPSNNTRKGIHMGPGKAIYTTD*
- 10 C4-V3-1448.1 KQIINMWQVVGKAMYA-RPGNTTRRGIPIGPGRAFFTTG*
 - C4-V3-69.18 KQIINMWQVVGKAMYA-RPNNNTRKSIRIGPGRAVYATD*
 - C4-V3-146.8 KQIINMWQVVGKAMYA-RPGNNTRRRISIGPGRAFVATK*
 - C4-V3-113.1 KQIINMWQVVGKAMYA-RPNNNTRRSIHLGMGRALYATG-*
 - C4-V3-51.23 KQIINMWQVVGKAMYA-RPSNNTRRSIHMGLGRAFYTTG-*
- 15 C4-V3-72.18 KQIINMWQVVGKAMYA-RPNNNTRKGINIGPGRAFYATG-*
 - C4-V3-36.29 **KQIINMWQVVGKAMYA-**RPNNNTRKGIHIGPGRTFFATG-* C4-V3-70.18 **KQIINMWQVVGKAMYA-**RPNNNTRKRIRIGHIGPGRAFYATG*
 - C4-V3-89.14 KQIINMWQVVGKAMYA-RPSINKRRHIHIGPGRAFYAT-*
 - C4-V3-163.7 KQIINMWQVVGKAMYA-RLYNYRRKGIHIGPGRAIYATG*
- 20 C4-V3-57.20 KQIINMWQVVGKAMYA-RPNRHTGKSIRMGLGRAWHTTR*
 - C4-V3-11.85 KQIINMWQVVGKAMYA-RPNNNTRKSINIGPGRAFYTTG---*
 - C4-V3-34.29 KQIINMWQVVGKAMYA-RPNNNTRKSIQIGPGRAFYTTG---*
 - C4-V3-1.481 KQIINMWQVVGKAMYA-RPNNNTRKSIHIGPGRAFYTTG---*
 - C4-V3-85.15 KQIINMWQVVGKAMYA-RPNNNTRKSIHIAPGRAFYTTG---*
 - C4-V3-62.19 **KQIINMWQVVGKAMYA-**RPNNNTRKSIHIGPGRAFYATE-----*
 C4-V3-125.9 **KQIINMWQVVGKAMYA-**RPNNNTRRISMGPGRVLYTTG*
 - C4-V3-35.29 KQIINMWQVVGKAMYA-RPNNNTRKRISLGPGRVYYTTG*
 - C4-V3-74.17 KQIINMWQVVGKAMYA-RPNNNTRKRMTLGPGKVFYTTG*
 - C4-V3-46.26 KQIINMWQVVGKAMYA-RPDNTIKQRIIHIGPGRPFYTT-*
- C4-V3-122.9 KQIINMWQVVGKAMYA-RPNYNETKRIRIHRGYGRSFVTVR*
 C4-V3-162.7 KQIINMWQVVGKAMYA-RPGNNTRGSIHLHPGRKFYYSR*
 - C4-V3-3.323 KQIINMWQVVGKAMYA-RPNNNTRKSINMGPGRAFYTTG

While the above is offered by way of example, it will be appreciated that the same analyses can by performed for HIV Clades A, D, E, F, G, H, M, N, O, etc, to design V3 immunogens that react with HIV primary isolates from these Clades.

5

10

15

20

25

30

In addition to the sequences described in Tables 6 and 7, a substitution has been made in the C4 sequence at position 9 from E to V to enhance the binding of the C4 region to human immune cell membranes, and to increase immunogenicity (see Example that follows). Substituting V for E at position 9 of C4 results in the C4-E9V-V3RF(A) peptide inducing 2-3 logs higher antigp 120 V3 region antibody levels compared with the original C4-V3RFA(A) peptide. The effect of the E9V substitution is not species specific. While not wishing to be bound by theory, the data may indicate that the ability of the E9V variant peptide to enhance B cell antibody production is not MHC specific but rather it relates in some manner to non-MHC specific factors, such as the ability of the peptides to bind to the lipid bilayer of immune cells. The data presented in Figure 3 demonstrate the ability of C4_{E9V}-V389.6 peptides to bind to human PB lymhocytes and monocytes. The ability of the C4 and C4E9V "T helper" determinants to facilitate immunogenicity of the V3 region may be due to the ability of helical amphipathic structures to interact with lipid bilayers in a non-MHC related manner and promote peptide internalization. The invention encompasses the use of C4 sequences in addition to those described above.

In addition to the composition described above, the invention encompasses each of the hybrid peptides disclosed as well as each of the components (C4 and V3), alone or in covalent or non-covalent association with other sequences, as well as nucleic acid sequences encoding any and all such peptides. The invention provides an HIV immunogen that can induce broadly reactive neutralizing antibodies against HIV of multiple quasispecies, and across clades. With reference to Example 3, the "dual D" HIV isolate, neutralized by serum from GP 469 immunized with peptide 62.19 to a titer of

1:30, is a Clade A/G recombinant HIV isolate. This demonstrates that this peptide (62.19), for example, can induce antibodies against a non-B HIV isolate. The 62.19 and other V3 sequences in Figure 6 and Tables 10, 11 and 12 can be expressed either alone or, for example, as a C4-V3 sequence, as in Figure 6. It will be appreciated that the same analysis described in Example 3 can by performed for any of HIV Clades A, D, E, F, G, H, M, N, O, etc, to identify V3 immunogens that react with HIV primary isolates from one or more of these Clades.

5

30

The peptide immunogens of the invention can be chemically synthesized and purified using methods which are well known to the 10 ordinarily skilled artisan. (See, for example, the Example that follows.) The composition can comprise the peptides linked end to end or can comprise a mixture of individual peptides. The peptide immunogens can also be synthesized by well-known recombinant DNA techniques. Recombinant synthesis may be preferred when the peptides are covalently linked. Nucleic 15 acids encoding the peptides of the invention can be used as components of, for example, a DNA vaccine wherein the peptide encoding sequence(s) is/are administered as naked DNA or, for example, a minigene encoding the peptides can be present in a viral vector. The encoding sequence(s) can be present, for example, in a replicating or non-replicating adenoviral vector, an adeno-20 associated virus vector, an attenuated mycobacterium tuberculosis vector, a Bacillus Calmette Guerin (BCG) vector, a vaccinia or Modified Vaccinia Ankara (MVA) vector, another pox virus vector, recombinant polio and other enteric virus vector, Salmonella species bacterial vector, Shigella species bacterial vector, Venezuelean Equine Encephalitis Virus (VEE) vector, a 25 Semliki Forest Virus vector, or a Tobacco Mosaic Virus vector. The encoding sequence(s), can also be expressed as a DNA plasmid with, for example, an active promoter such as a CMV promoter. Other live vectors can also be used to express the sequences of the invention. Expression of the immunogenic peptides of the invention can be induced in a patient's own cells, by

introduction into those cells of nucleic acids that encode the peptides, preferably using codons and promoters that optimize expression in human cells. Examples of methods of making and using DNA vaccines are disclosed in U.S. Pat. Nos. 5,580,859, 5,589,466, and 5,703,055.

5

10

15

20

25

30

The composition of the invention comprises an immunologically effective amount of the peptide immunogens of this invention, or nucleic acid sequence(s) encoding same, in a pharmaceutically acceptable delivery system. The compositions can be used for prevention and/or treatment of immunodeficiency virus infection. The compositions of the invention can be formulated using adjuvants, emulsifiers, pharmaceutically-acceptable carriers or other ingredients routinely provided in vaccine compositions. Optimum formulations can be readily designed by one of ordinary skill in the art and can include formulations for immediate release and/or for sustained release, and for induction of systemic immunity and/or induction of localized mucosal immunity (e.g., the formulation can be designed for intranasal administration). The present compositions can be administered by any convenient route including subcutaneous, intranasal, oral, intramuscular, or other parenteral or enteral route. The immunogens can be administered as a single dose or multiple doses. Optimum immunization schedules can be readily determined by the ordinarily skilled artisan and can vary with the patient, the composition and the effect sought. By way of example, it is noted that approximately 50µg-100µg of each hybrid peptide can be administered, for example, intramuscularly (e.g. 3x).

The invention contemplates the direct use of both the peptides of the invention and/or nucleic acids encoding same and/or the peptides expressed as minigenes in the vectors indicated above. For example, a minigene encoding the peptides can be used as a prime and/or boost. Importantly, it has been recently shown that recombinant gp120 is not efficacious as a vaccine for HIV in phase III trials (Elias, P., Durham Morning Herald, Feb. 25, 2003; VaxGen News Conference, February 24, 2003). Thus, it would be advantageous to

express, for example, the 62.19 V3 loop and/or other V3 loops in Table 11 or 12 in the context of gp120 molecules or gp160 or gp140 molecules, either as expressed soluble recombinant proteins, or expressed in the context of one of the vectors described above. This strategy takes advantage of the ability to express native V3 conformations within a whole gp120 or gp140 or gp160 HIV envelope protein.

5

10

15

2.0

25

One of the preferred gp120, gp140 or gp160 envelopes that, for example, 62.19 V3 loops can be expressed with is that of consensus or ancestral HIV envelope artificial sequences (Gaaschen et al, Science 296:2354-2360 (2002)). Although artificial and computer designed, one such sequence (the consensus of consensus envelope) gp120 (con 6) has been shown to bind soluble CD4 and anti-gp120 mabs A32, 1b12, 2G12. After binding mab A32 or soluble CD4, the con 6 gp120 binds the CCR5 binding site mab 176 – indicating a "native" gp120 conformation.

Thus, the entire V3 loops from the Los Alamos Database from the sequences of one or more of the peptides in Table 11 or 12 can be expressed in the consensus (con 6) or other consensus or ancestral gp120, gp140, or gp160 envelope protein, or expressed in a native gp120, gp140, or gp160, such as HIV BAL or HIV JRFL, and used as an immunogen as a recombinant envelope protein, or used as an immunogen expressed in one of the vectors above.

The V3 peptides or recombinant proteins can be used as primes or boosts with the V3 peptides or recombinant gp120s, gp140s or gp160s expressed in the above vectors used as primes or boosts.

A preferred immunogen is the consensus 6 gp120 expressing the full-length 62.19 V3 loop, expressed as a DNA plasmid as a primary immunization, followed by adenovirus expressing the Con 6 envelope expressing the 62.19 V3 sequence from the Los Alamos Database as a booster immunization.

In addition to the polypeptides described above and in the Examples that follow, the invention further relates to modified forms thereof (and nucleic acid sequences encoding same) wherein negatively charged amino acids are added/substituted on the right hand side of the loop and positively charged amino acids are added/substituted on the left hand side. Such additions/substitutions can serve to stabilize the "hairpin" as a result of hydrogen bonding between the oppositely charged amino acids. Conversely, negatively charged amino acids can be added/substituted on the left hand side of the loop and positively charged on the right. Examples of such sequences are as follows (in the "B" and "C" type polypeptides shown below, it will be appreciated that the D and the E can be reversed as well at the ends of the peptides – further, for example, DDD can be present at the right hand side of the loop, as can EEE):

5

10

Table 5

For 62.19 15 C4-TRPNNNTRKSIHIGPGRAFYATED 62.19A C4-TRPNNNTRKSIHIGPGRAFYATEDE 62.19B 62.19C C4-TRPNNNRRKSIHIGPGRAFYATEDE 62.19D TRPNNNTRKSIHIGPGRAFYATED 20 TRPNNNTRKSIHIGPGRAFYATEDE 62.19E 62.19F TRPNNNRRKSIHIGPGRAFYATEDE C4-TRPNNNRRKSIHIGPGRAFYATEEE 62.19G 62.19H TRPNNNRRKSIHIGPGRAFYATEEE 25 For 1.481 C4-R P N N N T R K S I H I G P G R A F Y T T GD 1.481A 1.481B C4-R P N N N T R K S I H I G P G R A F Y T T G D E 1.481C C4-R P N N N R R K S I H I G P G R A F Y T T G D E 30 C4-R P N N N R R K S I H I G P G R A F Y T T G E E 1.481D RPNNNTRKSIHIGPGRAFYTTGD 1.481E 1.481F RPNNNTRKSIHIGPGRAFYTTGDE RPNNNRRKSIHIGPGRAFYTTGDE 1.481G RPNNNRRKSIHIGPGRAFYTTGEE 35 1.481H

40

36.29E

36.29F

36.29G

36.29H

For 11.85 C4-RPNNNTRKSINIGPGRAFYTTGD 11.85A C4-RPNNNTRKSINIGPGRAFYTTGDE 11.85B C4-RPNNRTRKSINIGPGRAFYTTG DE 5 11.85C C4-RPNNRTRKSINIGPGRAFYTTG E E 11.85D 11.85E RPNNNTRKSINIGPGRAFYTTGD RPNNNTRKSINIGPGRAFYTTGDE 11.85F RPNNRTRKSINIGPGRAFYTTG DE 11.85G 10 11.85H RPNNRTRKSINIGPGRAFYTTG E E For 513.2 (RPSNNTRKGIHMGPGKAIYTTD) ·C4-RPSNNTRKGIHMGPGKAIYTTDD 513.2A C4-RPSNNTRKGIHMGPGKAIYTTDDE 15 513.2B 513.2C C4-RPSNNRRKGIHMGPGKAIYTTDE 513.2 D C4- R P S N N N R R K G I H M G P G K A I Y T T D E E RPSNNTRKGIHMGPGKAIYTTDD 513.2E 513.2F RPSNNTRKGIHMGPGKAIYTTDDE 20 513.2G RPSNNRRKGIHMGPGKAIYTTDE RPSNNNRRKGIHMGPGKAIYTTDEE 513.2 H For 74.17 25 C4-R P N N N T R K R M T L G P G K V F Y T T G D 74.17A 74.17B C4-R P N N N T R K R M T L G P G K V F Y T T G D E 74.17C C4-R P N N N R R K R M T L G P G K V F Y T T G D E 74.17D C4-RPNNNRRKRMTLGPGKVFYTTG EE 74.17E RPNNNTRKRMTLGPGKVFYTTGD 74.17F 3.0 RPNNNTRKRMTLGPGKVFYTTGDE 74.17G RPNNNRRKRMTLGPGKVFYTTGDE 74.17H RPNNNRRKRMTLGPGKVFYTTG EE For 36.29 35 C4-RPNNNTRKGIHIGPGRTFFATGD 36.29A C4-RPNNNTRKGIHIGPGRTFFATG DE 36.29B 36.29C C4-RPNNNRRKGIHIGPGRTFFATG DE 36.29B C4-RPNNNRRKGIHIGPGRTFFATG EE

RPNNTRKGIHIGPGRTFFATGD

RPNNNTRKGIHIGPGRTFFATG DE

RPNNNRRKGIHIGPGRTFFATG DE

RPNNNRRKGIHIGPGRTFFATG EE

For 34.29

10

15

20

25

30

	34.29A	C4-RPNNNTRKSIQIGPGRAFYTTG D
	34.29B	CALRPHINTRKSIOIGPGRAFYIIG DE
	34.29C	CA PPNNNRRKSIOIGPGRAFYIIG DE
	34.29D	C4-RPNNNTRRKSIQIGPGRAFYIIGEE
5	34.29E	RPNNNTRKSIOIGPGRAFYIIG D
	34.29F	RPNNNTRKSIQIGPGRAFYTTG DE
	34.29G	RPNNNRRKSIQIGPGRAFYTTG DE
	34.29H	RPNNNTRRKSIQIGPGRAFYTTG EE

In the context of the modified forms of 62.19 depicted above, the invention further includes peptides wherein in the R in ...GPGR... (designated with an asterisk) can be substituted with any one of Q, G, K, S, A, L or H.

It will be appreciated from a reading of this disclosure that the foregoing, like others described herein, can be expressed, for example, in gp120, gp140 and that the vectors described above are equally applicable here.

Certain aspects of the invention can be described in greater detail in non-limiting Example that follows. (See also Figure 7.)

EXAMPLE 1

Experimental Details

Peptide design, synthesis and purification.

Peptides were designed, as shown in Table 1. It was hypothesized that alteration of the C4 sequence to reduce its helical conformational tendency in peptides might cause enrichment of solution conformers resembling a β strand conformation. This in turn might cause C4 to be immunogenic for antibodies recognizing the native conformation of the C4 (part of the CD4 binding site) region of gpl20. The present work describes tests of this hypothesis in chimeric peptide C4-V3 RF, which has a V3 segment from gpl20 of HIV strain RF, and three sequence variants wherein single amino-acid replacements have been introduced at position 9 in the C4 segment, Glu (E) to Gly (G), Glu (E) to Val (V), and at position 12, Lys (K) to Glu (E) (Table 1). These replacements were made in part to disrupt possible stabilization of helical conformations due to side-chain (i, i+3) charge interaction between E9 and K12 (Scholtz et al, Biochemistry 32:9668-9676 (1993)). In addition, the

substitution in C4_{E9G}-V3RF(A) was expected to disfavor helix formation by introducing greater main-chain flexibility (Chakrabartty et al, Adv. Protein Chem. 46:141-176 (1995)). Furthermore the substitution in C4_{E9G}-V3RF(A) introduced two adjacent valine residues which has been hypothesized to favor extended conformations. Thus, the parent peptide, C4-V3RF(A) (Haynes et al, AID Res. Human Retroviruses 11:211-221 (1995)) contained 16 N-terminal residues from the C4 domain of gp120_{IIIB} and 23 C-terminal residues from the V3 domain of gp120 of HIVRF.

TABLE 1

Peptides Used in This Study

Pentide	S	Sequence
	C4	V3
	16	17 39
C4-V3RF(A)	KQIINMWQEVGKAMYA	TRPNNNTRKSITKGPGRVIYATG
$C4_{E9G}$ -V3RF(A)	KQIINMWQGVGKAMYA	TRPNNNTRKSITKGPGRVIYATG
$C4_{E9V}$ -V3RF(A)	KQJINMWQVVGKAMYA	TRPNNNTRKSITKGPGRVIYATG
$C4_{K12E}$ -V3RF(A)	KQIIINMWQEVGEAMYA	TRPNNNTRKSITKGPGRVIYATG

All sequences from Los Alamos National Laboratory AIDS Sequence Database.

Peptides were synthesized by fluorenylmethoxycarbonyl chemistry on an ABI 43 lA peptide synthesizer (Applied Biosystems, Inc., Foster City, CA), then purified by reverse-phase high performance liquid chromatography. The purity and identity of the product were confirmed by determining molecular mass by electrospray mass spectrometry.

Immunization methods.

5

10

15

Mice were immunized with 50µg of the indicated peptide in incomplete Freund's adjuvant (1SA51, Seppic Inc., Paris France) at weeks 0, 3, and 7 and bled at weeks 2, (bleed 1 after boost 1), week 5 (bleed 2 after boost 2) and week 8 (bleed 3 after boost 3). Immune responses were seen after bleed 2 in most animals and data are reported from bleeds 2 and 3.

Guinea pigs were immunized intranasally with 200µg of C4-V3 peptide in saline with lµg of cholera toxin as adjuvant as described. Guinea pigs were immunized on day 0, day 14 and day 21 and serum samples before and 1 week following each immunization obtained by cardiac puncture.

ELISA Assay.

Anti-HIV env peptide ELISA assays were performed as previously described (Haynes et al, J. Immunol. 151:1646-1653 (1993), Haynes et al, AID Res. Human Retroviruses 11:211-221 (1995)).

20 Splenocyte Proliferation Assay.

Mouse splenocyte proliferation assay using ³H-thymidine incorporation was performed as previously described (Haynes et al, AID Res. Human Retroviruses 11:211-221 (1995)).

Neutralizing Antibody Assays.

Assays for ability of anti-HIV antisera to neutralize HIV were performed as described (Palker et al, J. Immunol. 142:3612-3619 (1989), Haynes et al, Trans. Am. Assoc. Physician 106:31-41 (1993), Haynes et al, J.

^a WO 2005/016952 PCT/US2004/015735

Immunol. 151:1646-1653 (1993), Haynes et al, AID Res. Human Retroviruses 11:211-221 (1995)).

NMR spectroscopy.

5

10

15

20

25

Peptides were dissolved to 4 mM in a solution of 90% ¹H₂0, 10% ²H₂0, 20 mM NaCl, 5 mM KH₂PO₄, 1 mM sodium azide, 0.5 mM sodium 3-(trimethylsilyl) propionate, at a pH of 4.2. The methyl resonance of the latter component served as a chemical shift reference.

Spectra of samples prepared in this way were acquired with a Varian Unity 500 MHz spectrometer at a temperature of 278 K. The lock signal was from deuterium in the sample. The following two-dimensional spectra were obtained: (a) double-quantum-filtered correlation spectroscopy (DOF-COSY) (Piantini et al, J. Am. Chem. Soc. 104:6800-6801 (1982), Rance et al, Biochem. Biopiys. Res. Commun. 117:479-485 (1983)); (b) total correlation spectroscopy (TOCSY) (Bax et al, J. Magn. Reson. 65:355-360 (1985), Levitt et al, J. Magn. Reson. 47:328-330 (1982)) with a mixing time of 150 ins; and (c) nuclear Overhauser exchange spectroscopy (NOESY) (Jeener et al, J. Phys. Chem. 71:4546-4553 (1979)) with a mixing time of 300 ins. Water resonance was suppressed by selective saturation during the relaxation delay, and, for NOESY, during the mixing period. The spectral width was 6700 Hz, with the indirectly acquired dimension collected as 750 (COSY), 512 (TOCSY), or 350 (NOESY) complex increments; and the directly acquired dimension containing 1024 complex points. Data were processed with FELIX 2.3 software (Biosym, San Diego, CA). Directly acquired free-induction decays were corrected for base-line offset. Decays in both dimensions were multiplied by a sinebell-squared function (phase shifted by 75°) and zero-filled to 2048 points before Fourier-transformation.

Peptide Membrane Binding Assay.

Peptides at 100ng/ml were incubated with 106 peripheral blood mononuclear cells for 1 hour at 4°C, washed x3 with phosphate buffered saline

PHz 7.0, contained 0.1% sodium azide, then incubated guinea pig anti-HIV 89.6 V3 antisera (xlhr) (Liao et al, J. Virol. 74:254-263 (2000)), wash as above and then incubated with FITC-conjugated goat anti-guinea pig IgG. After a final wash as alone, the cells were analyzed for the relative amount of peptide bound to either PB lymphocytes or PB monocytes as reflected in the mean fluorescent channel (MFC) of reactivity of the anti-HIV 89.6 V3 antisera.

Results

5

Anti-gpl20 V3 Antibody Responses Following Immunization of Mice With C4-V3RF, $C4_{E9V}$ -V3RF(A), $C4_{E9G}$ -V3RF(A) and $C4_{K12E}$ -V3RF(A) Peptides.

First, the ability of C4-V3HIVRF variants to modulate the 10 immunogenicity of the peptide with regard to antibodies to the V3 portion of the C4-V3 immunogen were assayed. The results (Figure 1, Table 2) show differences among the four peptides in their ability to induce anti-HIVRF V3 antibody responses. Sera from C4_{E9V}-V3RF(A)-immunized mice had a log higher anti-V3 antibody titer than either mice immunized with the native C4-V3RF(A) peptide or the C4E9V-V3RF(A) peptide variant. After one immunization, no anti-V3RF antibody response was seen in mice immunized with either C4-V3RF(A), C4_{E9G}-V3RF(A), or C4_{K12E}-V3RF(A) peptides. However, after only one immunization with $50\mu g$ of the $C4_{E9V}$ -V3 peptide, the geometric mean titer to V3RF(A) peptide was 1:5012 (n =3 mice), with titers 20 of 1:3200, 1:3200 and 1:12,800 in each of the three mice tested, respectively. Thus, the E9V C4-V3RF(A) variant induced a higher titer and earlier anti-gp 120 V3 antibody responses than the other C4-V3RF(A) peptides tested. After 2 boosts, C4_{E9V}-V3RF(A)-immunized mice had 2 logs higher anti-V3 antibody responses than did C4-V3RF(A) immunized mice (Figure 1, Table 2). 25

TABLE 2

Comparison of the Ability of C4-V3 Peptides To Induce HIV gp120 Anti-C4 and Anti-V3 Antibodies in Balb/c Mice

	Number of					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Peptide Immunogen Animals	Animals			Peptide on Plate	in ELISA For Anti-P	Peptide on Plate in ELISA For Anti-Peptide Antibody Assay	
		7	V3RF(A)	C4-V3RF(A)	C4E9G-V3RF(A)	V3RF(A) C4-V3RF(A) C4E9G-V3RF(A) C4E9V-V3RF(A)	C412EV3RF(A)
	Geometric Mean Titer	lean Tit	er				
C4-V3RF(A)	9	2	1,584	2,239	1,195	1,584	1,412
				1			, , ,
$C4_{E9G}$ -V3RF(A)	9	7	6,310	7,079	5,623	3,162	3,548
$C4_{E9V}$ -V3RF(A)	5	14	151,356	131,825	87,096	87,096	114,815
							•
C4KIZE-V3RF(A)	9	-	∞	, . ∞	_	~	
				-			

3.0 in anti-peptide ELISA after two Data represent the reciprocal of endpoint dilutions at which the E/C was immunizations.

The C4_{K12E}-V3RF(A) peptide variant induced anti-V3 antibody responses 3 logs lower than the C4-V3RF(A) peptide after 2 immunizations (Figure 1, Table 2). Thus, single amino-acid replacements in the C4 T helper region had extraordinary effects on immunogenicity of the HIVRF gp120 V3 domain.

Comparison of the Ability of C4-V3RF(A) Peptides to Induce Anti-HIVgpl20 Peptide 3H-Thymidine Incorporation in Splenocytes From Naive and Peptide-Immunized Mice.

Next, C4-V3 peptides were tested for their ability to stimulate proliferation of splenocytes from peptide-immunized mice. Balb/c mice were sacrificed after the third peptide immunization and their splenocytes assayed for the ability to proliferate to PHA and to each peptide type (Table 3). It was found that C4-V3RF(A), C4_{E9V}-V3RF(A), and C4_{K12E}-V3RF(A) peptides all induced *in vitro* proliferative responses to the immunizing peptides, whereas the C4_{E9G}-V3RF(A) variant peptide did not induce proliferative responses in E9G-primed mice significantly over responses of naive mice (Table 3). Regarding the ability of the E9V peptide variant to induce earlier and greater anti-V3 antibody responses compared to the other peptides tested, the C4_{E9V}-V3RF(A) peptide-primed splenocytes for proliferation to the immunizing peptide only minimally better than did each of the other three peptides (Table 3). Thus, altered induction of T helper cell proliferative responses did not explain the differences in peptide immunogenicity.

TABLE 3

Comparison of the Ability of C4-V3 Peptides To Induce Anti-HIV gp120 Peptide ³H-Thymidine Incorporation in Splenocytes from Naïve and Immunized Mice

ו כליוות חווות הווול ביו	z	C4	V3RF(A)	C4-V3RF(A)	C4-V3RF(A) C4E9G-V3RF(A) C4E9v-V3RF(A)	C4Egv-V3RF(A)	C4K12E-V3RJF(A)
	Mean	Mean ± SEM CPM per	or 10° Splenocytes in Culture	Culture			1
None (Naïve	9	613 ± 322		149 ± 84	114 ± 85	74 ± 47	187±165
Balb/c)							
C4-V3RF(A)	9	2,289 ±	955± 353	8,390 ± 1,424	8,067 ± 1,728	$6,242 \pm 1,787$	$6,198 \pm 1,343$
		1,332		æ			
C4 _{E9G} -V3RF(A)	9	408 ± 95	708 ± 325	$2,103 \pm 1,170$	3,559 ± 2,310 b	988±340	1,101 ± 399
C4 _{E9v} -V3RF(A)	5	84 ± 52	1,463 ± 473	933 ± 4,528	$11,743 \pm 3,830$	24,824 ± 5,581 c	10,269 ± 3,592
C4k12E-V3RF(A)	9	3,430 ±	4,417 ± 2,217	$8,670 \pm 3,865$	13,237 ± 8,563	7,513 ± 2,951	12,644 ± 4,138 d
		2,796					

Data represent peak 3H-thymidine responses at 7 days.

 $^{a}p < .001$ vs naïve mice; p = NS vs C4-V3RF(A) or C4K12E-V3RF(A) stimulated C4K12E-V3RF(A) immunized splenocytes. $^{b}p = NS$ vs naïve mice. $^{c}p < .001$ vs naïve mice. $^{d}p < .02$ vs naïve mice. CPM = CPM experimental - experimental - experimental control.

The lower antibody titer induced by the $C4_{K12E}$ -V3 peptide against V3RF(A) was not an artifact attributable to lack of ability of the V3 peptide not binding to the ELISA plate, as sera from $C4_{E9V}$ -V3RF(A)-induced antisera had high reactivity to the V3RF(A) peptide on the ELISA plate. Similarly, the $C4_{K12E}$ -V3RF(A) peptide could bind anti-V3RF antibody, as multiple antisera raised against C4-V3 peptides bound the $C4_{K12E}$ -V3 variant (Table 2).

Antibody levels to the C4 region were also tested. The C4 region induced only a minimal antibody response compared to the V3 region, with all the C4-V3 peptides tested (Table 2).

Anti-gp 120 V3 Antibody Responses Following Immunization of Guinea Pigs.

Next, 2 guinea pigs were immunized each with 200µg of C4-V3RF(A), C4_{E9G}-V3 RF(A), C4_{E9G}-V3 RF(A) or C4_{K12E}-V3 RF(A) peptide intranasally with lµg cholera toxin adjuvant in saline. Intranasal immunization of peptides with cholera toxin has been previously shown to result in CTL and titers of anti-peptide antibody similar in levels to titers induced by initial antigens administered subcutaneously or intramuscularly in oil in water adjuvants such as complete and incomplete Freund's adjuvant. In addition, it was desirable to determine the ability of C4-V3 peptides in an aqueous solution (such as in saline for intranasal immunization) to induce anti-HIV antibody responses in order to correlate reactivity of antibodies generated against peptide in an aqueous adjuvant with peptide conformers solved in an aqueous solution. Finally, there was interest in determining if the amino acid substitutions in the C4 region conferred on the C4-V3 peptides the same pattern of immunogenicity as seen in oil in water adjuvant in mice.

It was found that after 2 immunizations the C4-V3 RF(A) peptide induced a mean anti-HIV peptide antibody titer of 3981, peptide induced titers of 1 log (GMT = 31,623) higher. As in mice, substituting the Glu (E) for Lys (K) at position 12 in the C4 peptide abrogated peptide immunogenicity in guinea pigs (GMT = 16) (Table 4).

TABLE 4

Titers of C4-V3 HIV Envelope Antibodies Induced by C4-V3RF(A) Peptides in Guinea Pigs

Immunizing Peptide	Titer Against Immunizing Peptide*
C4-V3RF(A)	3,981
$C4{E9G}-V3RF(A)$	2,818
C4-E9V-V3RF(A)	31,623
C4-K12E-V3RF(A)	16

^{*}Data represent the mean titers from 2 animals after 2-3 immunizations intranasally with 400ug of the indicated peptide formulated in saline with cholera toxin as an adjuvant.

Ability of Antibodies Against C4- V3 Peptides to Induce Neutralizing
Antibodies.

In order to induce high levels of neutralizing antibodies with C4-V3 peptides, usually 5 immunizations are given (Palker et al, J. Immunol. 142:3612-3619 (1989), Haynes et al, J. Immunol. 151:1646-1653 (1993), Palker et al, Proc. Natl. Acad. Sci. USA 85:1932-1936 (1988), Liao et al, J. Virol. 74:254-263 (2000)). The guinea pig sera from the experiment presented in Table 4 were tested for ability to neutralize HIVRF. It was found that one sera from the C4-V3RF(A)-immunized animals (after 3 injections) had a neutralizing antibody titer of 1:40 against HIVRF, while one animal of the C4_{E9V}-V3RF(A)-injected animals had a neutralizing titer of 1:340 after only 2 injections. Thus, antibodies induced by the C4_{E9V}-V3RF(A) peptide can bind to native gpl20 and neutralize HIVRF.

Inability of the C4-E9V-RF(A) Sera to Bind to gpl20 from HIV_{IIIB}.

The V3 loop sequence of HIV_{IIIB} is different from that of HIVRF, and thus HIVRF anti-V3 neutralizing antibodies do not neutralize HIV_{IIIB}. To determine if any antibodies were generated by any of the C4-V3RF(A) variant peptides, all the mouse sera in Table 2 were tested, as were the guinea pig sera in Table 4, for the ability to bind to native recombinant HIV_{IIIB} gp120 in ELISA. Since anti-HIVRF V3 antibodies do not bind to the HIV_{IIIB} V3 loop, any binding activity of these anti-C4-V3 sera would be to the C4 region of HIV_{IIIB}, which is conserved between HIV_{IIIB} and HIVRF. No binding of any mouse or guinea pig anti-C4-V3 sera to HIV_{IIIB} gp120 was seen, indicating the inability of these peptides to induce antibodies against the native gp120 C4 region.

Conformational Propensities of C4- V3 RF Sequence Variants in Aqueous Solution.

Next, the peptides were examined by NMR to determine whether conformational changes had been induced by amino-acid sequence alteration. It was hypothesized that specific amino-acid substitutions in the C4 segment would lead to a decrease in the tendency of this region to adopt transient helical conformations. To test this hypothesis, each of the four peptides, C4-V3RF and variants E9G, E9V and K12E, was subjected to ¹H NMR spectroscopy to assign resonances and to analyze nuclear Overhauser effects between hydrogen nuclei on separate residues.

Resonance assignments for nearly all ¹H were determined from TOCSY, DQF-COSY, and NOESY spectra by standard methods (Wuthrich, NMR of Proteins and Nucleic Acids, John Wiley and Sons, New York (1986)), and are shown in Figure 2. The value of the chemical shift for a main-chain ¹H, for example, the a carbon C^aH, is correlated with secondary structure in the case of proteins or well structured peptides (Wishart et al, J. Mol. Biol. 222:311-333 (1991)). Hence, strong tendencies among C4-V3RF

peptides to adopt secondary structure in solution may be manifested in chemical shift values. This was examined by calculating for each peptide the difference in chemical shift between the C-H of each residue and a shift value representing the average for all secondary structures in proteins (Wishart et al, J. Mol. Biol. 222:311-333 (1991)). In no peptide were there stretches of sequence with high or low values of the chemical shift difference that would be evidence of stable secondary structure, for example helix or β strand.

NMR parameters such as chemical shift and coupling constants are often insensitive indicators of weak preferences for particular conformations since their values are the average of the entire population, thus obscuring the contribution of a slight bias for populating certain conformations. The nuclear Overhauser effect (NOE) is often more sensitive at revealing conformational propensities because it may give rise to a unique signal, although weak, on a background consisting only of random noise. Hence, NOESY spectra of C4-V3RF and its variants were characterized to identify each signal and evaluate its relative intensity. Sequential and medium range NOEs involving mainchain NH or CaH are listed in Figure 2. These NOEs and the possible conformational propensities they represent are discussed as follows for C4_{E9G}-V3RF(A) and C4_{E9V}-V3RF(A). Variant C4_{K12E}-V3RF(A)K12E is discussed separately below because it was studied under different conditions.

In terms of overall conformation, all four peptides showed NOE patterns suggesting no tendency to adopt stable structure. For example, sequential daN(i, i+1) and dNN(i, i+1) NOEs were usually both present for each sequential pair of residues, with the former typically more intense, indicating that f and j main-chain dihedral bond angles varied and maintained on average an extended conformation (Dyson et al, Ann. Rev. Biophys. Chem. 20:519-538 (1991)). Also the absence of long range NOEs [(i, i+5)] or greater and the few and generally weak medium-range NOEs suggested no significant population of higher order structure.

However, the fact that some medium range NOEs were detected is evidence of propensity to adopt non-random conformations in certain regions (Dyson et al, Ann. Rev. Biophys. Chem. 20:519-538 (1991)). Although only one mixing time was used for NOESY spectra (300 ins), previous studies of a related C4-V3 RF peptide (de Lorimier et al, Biochemistry 33:2055-2062 (1994)) showed that medium range NOEs were still observable at shorter (75 and 150 ins) mixing times. Hence, the NOEs indicating medium range interactions are not likely due to spin-diffusion.

Within the C4 segment C4-V3RF and C4_{E9V}-V3RF(A) showed numerous medium range NOEs which are consistent with a tendency of this region to populate nascent helical conformations. The presence of contiguous or overlapping daN(i,i+2) NOEs from Trp⁷to Tyr¹⁵ (C4-V3RF) and from lle^4 to Lys¹² (E9V) indicates a propensity for nascent helical turns in these regions (Dyson et al, Ann. Rev. Biophys. Chem. 20:519-538 (1991), Dyson et al, J. Mol. Biol. 201:201-217 (1988)). A dNN(i,i+2) NOE in this region in C4-V3 RF (between Lys¹² and Met¹⁴) is also consistent with main-chain f and j dihedral angles representative of helical turns (Dyson et al, Ann. Rev. Biophys. Chem. 20:519-538 (1991)). C4-V3 RF shows three consecutive daN(i,i+3) NOEs from residues Val¹⁰ to Tyr¹⁵, which is highly indicative of full helical turns. The presence of equivalent NOEs in E9V could not be ascertained due to overlap with other NOEs. However both C4-V3RF and E9V show two dab(i,i+3) NOEs, between Val¹⁰ and Ala¹³ and between Ala¹³ and Met14. This type of NOE is also highly suggestive of full helical turns in these regions of C4.

Variant C4_{E9G}-V3RF(A)on the other hand showed no evidence, in terms of medium range NOEs, for preferential population of certain conformations in C4. This absence of medium range NOEs was not due merely to ambiguities caused by signal overlap, because there were at least five positions where an NOE was unambiguously absent in C4_{E9G}-V3RF(A),

but present in the parent peptide C4-V3 RF. Thus, the E to G substitution in the C4 peptide appeared to prevent helical conformer formation in the peptide.

In the V3 segment of the three peptides, C4-V3 RF, C4_{E9G}-V3RF(A) and C4_{E9V}-V3RF(A), were medium range NOEs suggesting preferred solution conformations in certain RE regions. All three peptides showed evidence of a reverse turn in the sequence Arg^{18} -Pro¹⁹-Asn²⁰-Asn²¹, where these residues comprised positions 1 to 4, respectively, of the turn. The NOE pattern consistent with a reverse turn included a weak dNd(i,i+1) between Arg^{18} and Arg^{19} , undetectable ddN(i,i+1) between Arg^{19} and Arg^{19} , weak dad(i,i+1) between Arg^{18} and Arg^{19} , strong daN(i,i+1) between Arg^{19} and Arg^{19} , and detectable daN(i,i+2) between Arg^{19} and Arg^{19} (Dyson et al, J. Mol. Biol. 201:161-200 (1988)). The detection of the weak dNd(i,i+1) NOE (Arg^{18} to Arg^{19}) suggested that a Type I turn may be the preferred conformation (Dyson et al, J. Mol. Biol. 201:161-200 (1988)).

All three peptides also showed evidence of preferred conformers at the sequence Ser^{26} - Ile^{27} - Thr^{28} - Lys^{29} . There were two consecutive daN(i,i+2) NOEs, between Ser^{26} and Thr^{28} and between $11e^{27}$ and Lys^{29} , as well as medium range NOEs not shown in Figure 2. The latter included a dbN(i,i+2) NOE between Ser^{26} and Thr^{28} , and a dba(i,i+2) NOE between these same residues. The conformational preferences giving rise to these NOEs did not fit a typical secondary structure, and suggested an unusual turn that placed the side-chain of Ser^{26} in close proximity to the main-chain groups of Thr^{28} . This type of conformation has been described as a kink in the context of a helical region (Osterhout et al, Biochemistry 28:7059-7064 (1989)).

A third conformational feature in the V3 segments of C4-V3RF, C4_{E9V}-V3RF(A) and C4_{E9G}-V3RF(A)occurred in the sequence G1 y^{30} -Pro³¹-G1 y^{32} -Arg³³. In E9G the NOEs between these residues resembled the pattern described above that was consistent with a reverse turn (Dyson et al, J. Mol. Biol. 201:161-200 (1988)). This included a weak dNd(i,i+1) NOE between G1 y^{30} and Pro³¹, a weak ddN(i,i-1-i) NOE between Pro³¹ and Gly³², a weak dad(i,i+1) NOE between G1 y^{30}

and Pro^{31} , a strong daN(i,i+1) NOE between Pro^{31} and Gly^{32} , and a detectable daN(i,i+2) NOE between Pro^{31} and Arg^{33} . In the C4-V3RF peptide, the pattern of (i,i+1) NOE intensities was the same but no daN(i,i+2) NOE was detected between Pro^{31} and $Pro^{$

Another region in V3 where conformational preferences could be inferred from NOEs occurs in residues Val³⁴-Ile³⁵-Tyr³⁶. In all three peptides NOEs were observed between the upfield methyl resonance (~0.67 ppm) of Val³⁴ and the ring hydrogens, both dH and eH, of Tyr³⁶. Weaker NOEs are also seen between the downfield methyl resonance (~0.89 ppm) of Val³⁴ and the ring hydrogens of Tyr³⁶. Further evidence of close proximity between the side-chains of Val³⁴ and Tyr³⁶ was the fact that the two methyl resonances of the former had disparate chemical shifts, compared to Val¹⁰, consistent with a ring-current shift induced by the aromatic side-chain of Tyr. One peptide, C4-V3RF(A) had another NOE in this region, daN(i,i+2) between Ile³⁵ and Ala³⁷, that was unambiguously absent in the C4_{E9G}-V3RF(A) and C4_{E9V}-V3RF(A) peptides. This observation likely represented a poorly populated conformation, perhaps related to that which gives rise to the Val³⁴-Tyr³⁶ side-chain interaction, or from an independent conformational propensity.

Substitution of Lys¹² with Glu yielded a poorly immunogenic peptide (C4_{K12E}-V3RF(A)) that, interestingly had solution properties different from the

other three peptides studied. Under the conditions used for NMR studies of other C4-V3 peptides, the solution of the C4_{K12E}-V3RF(A) peptides was highly viscous, and viscosity increased with pH in the vicinity of pH 4, implicating ionization of the Glu¹² side-chain in this phenomenon. NMR spectra of K12E at 278 K in aqueous buffer showed a much lower signal-to-noise ratio than the other three peptides. Increasing the temperature to 318 K or decreasing the pH to 3.5 yielded improved but still inadequate signal. Suitably high signal for resonance assignment and NOE analysis was obtained at 318 K, pH 3.5, 20% v/v trifluoroethanol (d_3). Even under this condition the NOEs for the C4_{K12E}-V3RF(A) were less intense than for other peptides.

NOE connectivities in the C4 segment of C4_{K12E}-V3RF(A) (Fig. 2) show evidence of nascent helical turns in the region between Ile3 and Gly11 as inferred from dNN(i, i+2) and daN(i,i+2) NOEs. The stretch from Val^{10} to Thr^{17} has two daN(i,i+3) and two dab(i,i+3) NOEs suggesting the presence of a significant population with full helical turns. Within the V3 segment only two medium range NOEs are observed, both daN(i,i+2). Neither corresponds to NOEs observed in the other three peptides, but both NOEs involve residues of the Ser²⁶-Ile²⁷-Thr²⁸ sequence, for which there is evidence of conformational preferences in the other three peptides. A dbN(i,i+2) NOE between Ser²⁶ and Thr²⁸, observed in C4_{E9V}-V3RF(A)) and C4_{E9G}-V3RF(A), is also observed in the K12E peptide. Also observed are NOEs between the side-chains of Val³⁴ and Tyr³⁶. Hence the conformations giving rise to these two features are at least partially preserved under the solution conditions employed for K12E. Differences in the V3 segment between K12E and all of the other three peptides include the absence of detectable daN(i, 1+2) NOE between Pro19 and Asn21 and between Ser²⁶ and Thr²⁸. The failure to detect these NOEs may be due to the overall weaker signals of this sample, or to depopulation of the relevant conformations by the solution conditions.

EXAMPLE 2

The peptides in Table 7 have been studied in groups of 5 peptides as indicated in Table 9, and each group of 5 peptides has been injected into each of three guinea pigs in Freund's complete then incomplete adjuvant. After 4 immunizations, the animals were bled, and heat inactivated serum was pooled from each animal or tested separately as indicated in Table 8, for the ability to neutralize HIV. Single numbers per group indicate that the results are those of pooled sera from the group. Individual results per animal indicate that each serum was tested individually. Table 8 shows that all the sera neutralized to varying degrees the T cell line adapted HIV isolate MN and poorly neutralized the TCLA HIV isolate IIIB. Regarding the rest of the isolates in Table 8, all of which are HIV primary isolates (89.6, BAL ADA, SF162, 5768, QH0515, PVO, JRFL, BX08, 6101, SS1196), Group C sera from C4-V3 subtype B peptides neutralized 4/11 (36%) and Group F sera from subtype B peptides neutralized 5/11 primary isolates (45%). Figure 4 shows that for the HTV CCR5 utilizing primary isolate, BAL, that the individual peptides in the 5valent mixture absorbed out the neutralizing activity against HIV BAL to varying degrees, whereas the mixture of all the peptides completely absorbed out the neutralizing activity.

Neutralization Of HIV-1 Isolates By Sera From Guinea Pigs Immunized With C4-V3 Clade B Peptides

417	1		HVASBIN	WIII/III	#9 6871112	SHIVE9.6#	HIVHAL! ADA	11 SF162*	\$ 168*	9110315	. A.D.	JRFF.	. 8 . 7 .	, 1 11 1 1	.961188
A 1,354 0 96 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		n demonstration													
A 1,157 0 HA 15 0 0 9 90 H A 4,012 6A NA 0 0 0 0 90 H H 1,174 0 HA 27 84 0 96 0 C 969 0 HA 98 80 0 99 0 C 842 0 226 80 0 98 0 D 1,184 0 HA 98 80 0 98 0 D 2,184 0 HA 98 80 0 98 0 E 3,221 0 HA 255 0 0 92 0 E 3,221 0 HA 255 0 0 92 0 E 1,159 15 NA 0 HA 14A		<	2,238	=	96		C		(=	5	=	ر غ
A 4,612 68 BA 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8/1	<	1,157	=	ΗA	35		2	=	=	=	=	=	=	-
11 1158	<u> </u>	<	4,612	5	NA		0								
1	DK.	=	8311	=	ΝA		9				3		;	-	=
11	<u>-</u>	· =	17.11	=	114	1.1		96	=	=	=	=	=	=	=
C 969 0 112 95 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~	=	4,241	0	7.9	1	٠ (1								
C S42 O 220 97 84 O 99 O	3		969	=	711		9.5			;	:	=	1	=	=
1,488	<u> </u>	ن.	908	0	02	1.6		96	=	=	-	=	<u> </u>	=	=
1,488	<u> </u>	ن د	2+5	0	977		RO R								
1) 2,184 0 11A 98 80 0 98 11 1) 575 0 14A 0 188 0 92 0 1) 1,184 0 14A 14A 181 0 1) 1,184 0 14A 1	98	3	1 488	9	MA				;	Ş	5	=	5	=	5
10 175 0 14A 0 88 88 1 1 1 1 1 1 1	<u> </u>	=	7,184	=	ΗA	986		86	=	=	=	=	-	=	=
	32.	=	\$7.5	=	LIV		=							İ	
	10.8		1771	0	NA		88	, .		;	5		:	=	5
F	=	- 11	¥2	=	V.	255		7.6	=	=	=	=	=	= .	=
F NA 0 HA 114 BA 0 BA 0 BA 0 BA 1159 15 HA 1159 15 HA	<u> </u>	: <u></u>	519	=	NA				Ì	-				}	
F 910 B NA 0 91 G 84 U	16	-	NA NA	Ċ	IVA		HA		3	S	=	5	ā	-	Ē
F 1,159 35 MA	<u> </u>	-	910	=	NA	0		Ē	=	=	=	=	5	ξ.	
-	16	<u>`</u>	1,159	£	NA		νŅ			1		1			

-Table

Absseytaters are recipioneal acroun dilutions at which 50% of 141.7 cells were protected from virus-induced killing as measured by neutral red uptake. "Macduation in p14 syndicsis relative to the amound of p24 syndicsized in the presence of corresponding prebleed samples. Values 2003, are proutive. 11A = 11ct available.

\sim
f'ur
Totacal
ication
finaminiz
G. Pig

	Tide Namu	Peptide Sequence	
KQTHRINGOVGRANYA RUMINTINSTHI GPGRAFTTING KQTHRINGOVGRANYA - RUMINTINGSTHI GPGRAFTING KQTHRINGOVGRANYA - RUMINTINGSTHI GPGRAFTING KQTHRINGOVGRANYA - RUMINTINGSTH	V. neutide		Code GP 66
RQTHINDQVGKANYA REPRIETRES UTGGGAFYTYGG KQTHINDQVGKANYA REPRIETRES UTGGGAFYTYGG	V) 21 (II	:	
KQT HINNQVOCKANYA—HUHUTUKS HUGUCIA PYPTOG KQT HUNNQVOCKANYA—HUHUTUKS HUKUKANYA—HUHUTUKS HUKUKANYA—HUHUTUKS HUKUKANYA—HUHUTUKS HUKUKANYA—HUHUTUKS HUKUKANYA—HUHUTUKS HUKUKANYA—HUHUTUKS HUKUKANYA—HUHUTUKS HUKUKANYA—HUHUTUKS HUKUKANYA—HUHUTUKS	V1 11 85		A 111.4111.11
A KOLTHINGOVGKANYA - RPHINTYRKS TOTGRCIAAFYTEG A KOLTHINGOVGKANYA - RPHINTYRKS TOTGRCIAFYTEG A KOLTHINGOVGKANYA - RPHINTYRKS TOTGRCIAFYTEG B KOLTHINGOVGKANYA - RPHINTYRK TOTGRCIAFYTEG B KOLTHINGOVGKANYA - RPHINTYRK TOTGRCIAFYTA - RPH	01 14 10	:	~
KQT HIMMQVOCKARIYA - HPHHIPTIKKE HINGPGIAFYTTG KQT HIMMQVOCKARIYA - HPHHIPTIKKE HINGPGIAFYTTG KQT HIMMQVOCKARIYA - RESHIFTIKKE HINGPGIAFYTTG KQT HIMMQVOCKARIYA - REPHHIPTIKKE HINGPGIAFYTTG KQT HIMMQVOCKARIYA - HPHHIPTIKKE HINGPGIAFYTTG KQT HIMMQVOCKARIYA - HPHHIPTIKH HINGPGIAFTTTG KQT	62 86 63		<
KOTTHHNQVOGRAHYA - REHIRITRIKS THIGICIAR FYFTG KQTHHNQVOGRAHYA - REGIRTRIKG THIGICIAR FYFTG KQTHNNQVOGRAHYA - REGIRTRIKG THIGICIAR FYFTG KQTHNAC FYFTG KQTHNAC FYFTG KQTHNAC FYFTG KQTHNAC FYFTG KQTHNAC FYFTG KQTHNAC FYFTG			. Φ
КОТ ПИНИДУУСКАЙТУ - RESHIFTRAES HAGLCHAMPETH 8 КОТ ПИНИДУУСКАЙТУ - REPHRITTRES HAGLCHAMPETH 8 КОТ ПИНИДУУСКАЙТУ - REPHRITTRES HAGLCHAMPETH 8 КОТ ПИНИДУУСКАЙТУ - REPHRITTRES HAGE GRAVYATO 6 КОТ ПИНИДУУСКАЙТУ - REPHRITTRES HAGE HAGE YATO 7 КОТ ПИНИДУУСКАЙТУ - REPHRITTRES HAGE HAGE YATO 6 КОТ ПИНИДУУСКАЙТУ - REPHRITTRES HAGE HAGE REPAYENT 7 КОТ ПИНИДУУСКАЙТА - REPHRITTRES HAGE REPAYENT 6 КОТ ПИНИДУУСКАНТА - REPHRITTRES HAGE REPAYENT 7	17.1.1.1		. ~
KQ 11HHQQVGKAHYA - HPHHHTTGKTH IGPGREFFATG	V3 51 23		
KQT HIRIQOVGKARYA - RPINIPERKI EJGPGRAVYTTG KQT HIRIQOVGKARYA - RPINIPERKI EJGPGRAVYTTG KQT HIRIQOVGKARYA - RPINIPERKI EGIGRAVYATO KQT HIRIQOVGKARYA - RPINIPERKI EGIGRAVYATO KQT HIRIQOVGKARYA - RPINIPERKI EGIGRAVYATG KQT HIRIQOVGKARYA - RPINIPERKI EGIGRAVATK KQT HIRIQOVGKARYA - RPINIPERKI EGIGRAFYATG KQT HIRIQOVGKARYA - RPINIPERKI EGIGRAFYATT	V3-36 29		180,181,187
KÖTTIHHÄQVVCKAHYA-HPIHITHKRITALGEGRUFYTTG KÖTTIHHÄQVVCKAHYA-HPIHITHKRITHGEGRUFYTTG KÖTTIHHÄQVVCKAHYA-HPIHITHKRITHGGRUFYTTG KÖTTIHHÄQVVCKAHYA-HPIHITHKRITHGGRUFYTTG KÖTTIHHÄQVVCKAHYA-HPIHITHKRITHGGRUFYTTG KÖTTIHHÄQVVCKAHYA-HPIHITHKRITHGGRUFYTTG KÖTTIHHÄQVVCKAHYA-HPIHITHKRITHGGRUFYTTG KÖTTIHHÄQVVCKAHYA-HPIHITHKRITHGGRUFYTTG KÖTTIHHÄQVVCKAHYA-HPIHITHKRITHGGRUFYTTG KÖTTIHHÄQVVCKAHYA-HPIHITHKRITHGGRUFYTTG KÖTTIHHÄQVVCKAHYA-HPIHITHKGTHGGRUFYTTG KÖTTIHHÄ	V 1 57 70		
KÖTTHINGOVGKANYA-RUTHITTIKGE THEGERAVYATO KQTTHINGOVGKANYA-RUTHITTIKGE THEGERAVYATO KQTTHINGOVGKANYA-RUTHITTIKGE THEGERAVYATO KQTTHINGOVGKANYA-RUTHITTIKGE THEGIGAETYATO	V 1 15 29		= :
KQ1 THRIQOVGKARIYA RPHIHITRESTE GEGRAVYATO KQ1 HIRIQOVGKARIYA - REHIHITREGTH GEGRAVYATO KQ1 HIRIQOVGKARIYA - REHIHITREGTH GEGRAVYATO KQ1 HIRIQOVGKARIYA - REHIHITREGTH GEGRAFYATO KQ1 HIRIQOVGKARIYA - REHIHITREGTH FOR GEORGEVIVE KQ1 HIRIQOVGKARIYA - REHIHITREGTH FOR GEORGEVIVE KQ1 HIRIQOVGKARIYA - REHIHITREGTH FOR GEORGEVIVE KQ1 HIRIQOVGKARIYA - REHIHITREGTH GEGRAFYATO KQ1 HIRIQOVGKARIYA - REHIHITREGTH FOR GEORGEVIVE KQ1 HIRIQOVGKARIYA - REHIHITREGTH FOR GEORGEVIVE KQ1 HIRIQOVGKARIYA - REHIHITREGTH GEGRAFYATO KQ1 HIRIQOVGKARIYA - REGHIPTREGTH GEGRAFYATO KQ1 HIRICOVGKARIYA - REGHIPTREGTH GEGRAFYATO KQ1	VI 46.26	:	= :
KQ1 HIRINQVGKARIYA-REHIHETRIKU IN GEGRAFYATG KQ1 HIRINGVGKARIYA-REHIHETRIKU IN GULGEGRAFYATG KQ1 HIRINGVGKARIYA-REHIHETRIKSTHTGEGRAFYATG KQ1 HIRINGVGKARIYA-REHIHETRIKSTHTGEGRAFYATG KQ1 HIRINGVGKARIYA-REHIHETRIKSTHTGEGRAFYATG KQ1 HIRINGVVGKARIYA-REHIHETRIKSTHTGEGRAFYATG KQ1 HIRINGVVGKARIYA-REHIHETRIKSTHTGEGRAFYATG KQ1 HIRINGVVGKARIYA-REHIHETRIKSTHTGEGRAFYATG KQ1 HIRINGVVGKARIYA-REHIHETRIKSTHTGEGRAFYATK KQ1 HIRINGVVGKARIYA-REHIHETRIKSTHTGEGRAFIYATK KQ1 HIRINGVVGKARIYA-REHIHETRIKSTHTGEGRAFIYATG KQ1 HIRINGVVGKARIYA-REHIHETRIKSTHTGEGRAFIYATG KQ1 HIRINGVVGKARIYA-REHIHETRIKSTHTGEGRAFIYATG KQ1 HIRINGVVGKARIYA-REHIHETRIKSTHTGEGRAFIYATG KQ1 HIRINGVVGKARIYA-REGIHETRIKSTHTGEGRAFIYATG KQ1 HIRINGVVGKARIYA-REGIHETRIKSTHTGEGRAFIYATG KQ1 HIRINGVVGKARIYA-REGIHETRIKSTHTGEGRAFIYATG KQ1 HIRINGVVGKARIYA-REGIHETRIKSTHTGEGRAFITATG	V3 66 16	:	= -
KOT HIRMQVVGKANYA- RPHHIPTRKET KTGHTGFCHAFYATG KOT HIRMQVVGKANYA- RPHHIPTRKET HTGFGRAFYATG KOT HIRMQVVGKANYA- RPHHIPTRKET FTGPGRAFYTTG KOT HIRMQVVGKANYA- RPHHIPTRKET FTGPGRAFYTTG KOT HIRMQVVGKANYA- RPHHIPTRKET HTGRGRAFYTTG KOT HIRMQVVGKANYA- RPHHIPTRHUT ETGGRAFYTTG KOT HIRMQVVGKANYA- RPHHIPTRHUT ETGGREFYTTG KOT HIRMQVVGKANYA- RPHHIPTRHUT GRGGREFYTTG KOT HIRMQVVGKANYA- RPHHIPTRHUT GRGGREFTTGG KOT HIRMQVVGKANYA- RPHHIPTRHUT GRGGREFTTGG	V 1 72 18		". Vr tfr i fr ')
KQT THEMQVVGKANYA-NPHINTRKSTHTGPGRAFYATE KQT THEMQVVGKANYA-NPHINTRRSTHTGPGRAFYATE KQT THEMQVVGKANYA-NPHINTRRSTHTGPGRAFYATE KQT THEMQVVGKANYA-RPHINTRRSTHTGPGRAFYATE KQT THEMQVVGKANYA-RPHINTRRSTHTGTPGRAFYATE	73-70,18		
KQT HIMAQVOGKAMYA REHINITRIGS TE TGEGRAFYTEG KQT HIMAQVOGKAMYA REHINITRIGS TE TGEGRAFYTEG KQT HIMAQVOGKAMYA REHINITRIKS HITAPGRAFYTEG KQT HIMAQVOGKAMYA REHINITRIRIS HIGAGRAFYTEG KQT HIMAQVOGKAMYA REHINITRIRIS HIGAGRAFYTEG KQT HIMAQVOGKAMYA REGINITRIGS HIGAGRAFYTEG KQT HIMAQVOGKAMYA REGINITRIKG HIGAGRAFITTEG KQT HIMAQVOGKAMYA REGINITRIKG HIGAGRAFITEG KQT HIMAQVOGKAMYA REGINITRIKG HIGAGRAFITEG KQT HIMAQVOGKAMYA REGINITRIKG HIGAGRAFITEG KQT HIMAQVOGKAMYA REGINITRIKG HIGAGRAFITEG	7) 62,19		.، ت
KÖTTIIMÄÇVÖGKANYA-RPUMITTRIGSTPTGPGHAFYTTG KÖTTIIMÄÇVÖGKANYA-RPUMITTRIGSTHLCHGHAFYTTG KÖTTIIMÄÇVÖGKANYA-RPUMITTRIGSTHLCHGHAFYTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHLGPGGANTTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHLGPGGANTTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHLIPGGRAFYTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHLIPGGRAFYTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHLIPGGRAFYTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHLIPGGRAFYTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHLIPGGRAFYTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHLIPGGRAFYTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHLGPGRAFTTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHLGPGRAFTTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHLGPGRAFTTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHLGPGRAFTTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHLGPGRAFTTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHTGPGRAFTTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHTGPGRAFTTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHTGTGRAFTTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHTGTGRAFTTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHTGTGRAFTTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHTGTGRAFTTTG KÖTTIIMÄÇVVGKANYA-RPUMITTRIGSTHTGTGRAFTTTG	71.11.17		_ :
KQT HIRIQOVGKANYA- REHINTERRE THI GREHAFYAT KQT HIRIQOVGKANYA- RPHINTIAKE HI TAPGRAFYTCG KQT HIRIQOVGKANYA- RPHINTIAKE HI THIGOGRAFYTCG KQT HIRIQOVGKANYA- RPHINTIAKEJU HI GREGAFVATK KQT HIRIQOVGKANYA- RPHINTIARI I STEGRAFYATK KQT HIRIQOVGKANYA- RPHINTIARI I STEGRAFYAT KQT HIRIQOVGKANYA- RPHINTIARI I STEGRAFYATE KQT HIRIQOVGKANYA- RPHINTIARI I STEGRAFYTCG	7.82.15	_	:
KQTTIRRQVVGKARYA RPHINTREGITATAPGGAFTTG KQTTIRRQVVGKARYA RPHINTREGITATAPGGAFTTG KQTTIRRQVVGKARYA RPHINTREGITATAPGGAFTTG KQTTIRRQVVGKARYA RPHINTREGITATAPGGAFTK KQTTIRRQVVGKARYA RPHINTREGITATAPG KQTTIRRQVVGKARYA RPHINTREGITATAPG KQTTIRRQVVGKARYA RPHINTREGITATAPGAFTY KQTTIRRQVVGKARYA RPHINTREGITATAGGREFYAT KQTTIRRQVVGKARYA RPHINTREGITATAGGREFYAT KQTTIRRQVVGKARYA RPHINTREGITATAGGREFYAT KQTTIRRQVVGKARYA RPHINTREGITATAGGREFYAT KQTTIRRQVVGKARYA RPHINTREGITAGGREFYAT KQTTIRRAQVVGKARYA RPHINTREGITAGGREFYTTG KQTTIRRAQVVGKARYA RPHINTREGITAGGREFYTTG KQTTIRRAQVVGKARYA RPHINTREGITAGGREFYTTG		. :	- 180 181 181 A
KQT THEMQOVGKARYA REHITFRES HETAPGRAFYTEG KQT HEMQOVGKARYA REHITFRES HESCHAFTEG KQT HEMQOVGKARYA REHITFRES HESCHAFTEG KQT HEMQOVGKARYA REHITFRES HESCHAFTEG KQT HEMQOVGKARYA REGUITTRUCK STATEG KQT HEMQOVGKARYA REGUITTRUCK THEOGRAFYAT KQT HEMQOVGKARYA REGUITTRUCK HEGGRAFYAT KQT HEMQOVGKARYA REGUITTRUCK HEGGRAFYAT KQT HEMQOVGKARYA REGUITTRUCK HEGGRAFYTEG	<u>-</u> - 600		
KQTTHINIQOVGKANYA-REHYHETKHTILIHKGYGRGEVTVH KQTTHINIQOVGKANYA-REHHITTRIRIL B.TGPGRALYETG KQTTHINIQOVGKANYA-REHHITTRIRIL B.TGPGRALYETG KQTTHINIQOVGKANYA-REHHITTRIRIL B.TGPGRALYETG KQTTHINIQOVGKANYA-REHHITTRIRIL B.TGPGREYAT KQTTHINIQOVGKANIYA-REHHITTRIRIL B.TGPGREYAT KQTTHINIQOVGKANIYA-REHHITTRIRIL B.TGPGREYAT KQTTHINIQOVGKANIYA-REHHITTRIRIL B.TGPGREYATE KQTTHINIQOVGKANIYA-REHHITTRIRIL B.TGPGREYATE KQTTHINIQOVGKANIYA-REHHITTRIRIC B.TGPGREYATT KQTTHINIQOVGKANIYA-REHHITTRIRIC B.TGPGREYATTG KQTTHINIQOVGKANIYA-REHHITTRIRIC B.TGPGRAFETTG	S		
KQT HHHIQOVGKAHYA-RPHHIPPRESON LISPGGRAFVATG KQT HHIQOVGKAHYA-RPGHIPTRULI BIGPGRAFVATK KQT HHIQOVGKAHYA-RPHHIPTRULI BIGPGRAFYSTG KQT HHIQOVGKAHYA-RPHHIPTRULI BIGPGRAFYTG KQT HHINQOVGKAHYA-RPHHIPTRULI BIGPGRAFYTT KQT HHINQOVGKAHYA-RPHHIPTRULI BIGPGRAFYTT KQT HINDQVGKAHYA-RPHHIPTRUKI PIGPGRAFYTT KQT HINDQVVGKAHYA-RPHHIPTRUKI PIGPGRAFYTTG KQT HINDQVVGKAHYA-RPHHIPTRUKI PIGPGRAFYTTG KQT HINDQVVGKAHYA-RPHHIPTRUKI PIGPGRAFYTTG	1729		
KQT HIBBQVGKABYA- REGHITHBILL GEGRAFVATK KQT HIBBQVGKABYA- REGHITHBILL GEGRAFVATC KQT HIBBQVGKABYA- REHIBITHBILL SHGEGRAFVASB KQT HIBBQVGKABYA- REHIBITHBILL GEGREFYAT KQT HIBBQVGKABYA- REHIBITHBILL GEGREFYAT KQT HIBBQVGKABYA- REHIBITHBILL GEGREFYAT KQT HIBBQVVGKABYA- REHIBITHBILL GEGREFYAT KQT HIBBQVVGKABYA- REHIBITHBILL GEGRAFFTGG KQT HIBBQVVGKABYA- REHIBITHBILL GEGRAFFTGG	3 2 6		
KQT HINIQUVGKANYA- HLYNYRHKGTHTGPGRATYATG KQT HINIQUVGKANYA- REGINTRIGISHGPGRATYTTG KQT HINIQUVGKANYA- REGINTRIGISHGPGRATYTTG KQT HINIQUVGKANYA- REDINTRIGITGGGRATYTT KQT HINIQUVGKANYA- REDINTRIKGTHTGPGRATYTT KQT HINIQUVGKANYA- REDINTRIKGTHTGPGRATYTTG KQT HINIQUVGKANYA- REDINTRIKGTHTGPGRAFTTTG	=		185 450 451
KOT HIMBOVGKAMYA- REGILITRIRI SHCPGRAFTTG KOT HIMBOVGKAMYA- REGILITRIS HIMPGRETYSH KOT HIMBOVGKAMYA- REDILITRIRI HIGEGRETYTT KOT HIMBOVGKAMYA- REDILITRIC HIGEGRETYTT KOT HIMBOVGKAMYA- REDILITRIC HIGEGRETYTT KOT HIMBOVGKAMYA- REDILITRIC HIGEGRATYTTD	1637		
KQT HUNGQVGKAMYA REGULTRAGI HI IPGREEYAT KQT HUNGQVGKAHYA HUHHURHI HI GEGSEEYTE KQT HUNGQVGKAHYA REDHITVAR IT I GEGSEEYTE KQT HUNGQVGKAHYA REDHITIKG HI GEGRATYTE KQT HUNGQVGKAHYA REDHITIKGI INGEGRATYTE	175.9		
KOLTHINQVVČKANYA RPIHHTRINITTGGGREFYAT KOTTHINGVVGKAHYA RPIHHTVURTFGGGGEFYTT KOTTHINGVVGRAHYA RESHITTIKGTHLGFGRATYTE KOTTHINGVVGRAHYA RESHITTIKGTHRGFGKATYTTE KOTTHINGVVGKAHYA RESHITTIKGTHRGFGKATYTTE	3 fn2.7		
КОТЛИНИОУ СКАНУА - ИГЛИНТУКИ ГР ГЕРЕЗЕРУТТ КОТЛИНО УСКАНУА - ИГЛИТИКСТИГСРСИРТТЕ КОТЛИНО УСКАНУА - ИГЛИКСТИКСТИКСТИТЕС КОТЛИНО УСКАНУА - ИГЛИСТИКСТИТЕСТЕС	1361		
	1118		
	165.2		
	513.2		
	14:18 1		

Table 9

It is important to be able to use T helper determinants with the V3 portion of the peptides shown in Table 7, both to expand the T helper activity in the immunogen, and in case any of the T helper peptides should be found to have any deleterious effects in the course of human trials. For example, it has recently been found in vitro that in culture of HIV and T cells, that the C4 portion of the C4-V3 peptide can augment HIV induced syncytium formation. However, peptides of this general design have been studied in vitro in HIVinfected humans (AIDS 12: 1291-1300, 1998) and no subjects developed a > 10 fold change in plasma HIV RNA levels from baseline. Moreover, the primary use of these peptides is as an immunogen in HIV- subjects as a preventive vaccine, and not in doses that one would consider for therapy, which would be in milligram amounts daily. A T helper determinant from HIV gag, termed GTH1 with the sequence of YKRWIILGLNKIVR M Y S has been conjugated to the V3 of HIV MN and found to induce anti-HIV MN titers of 1:3200. Similarly, GTH1 conjugated to a V3 sequence of a HIV primary isolate DU179 induced antibodies that neutralized HIV MN (1:192) and neutralized the HIV primary isolate JR-FL (90% p24 reduction in PBMC cultures). Thus, the GTH1 T helper sequence can substitute for the C4 sequence in the peptides in Table 7.

Finally, a panel of monovalent serum from individual guinea pigs immunized with each of the peptides in Table 7 has been screened. Whereas most of the peptides in the list only induced neutralizing antibodies that neutralized 0 to 6 out of 19 primary isolates, 5 peptides were found that neutralized from 14 to 19 out of 19 primary isolates tested. These peptides were C4-V3 36.29, C4-V3 34.29, C4-V3 62.19, C4-V3 74.17, and C4-V3 162.7. The sequences of these peptides are all listed in Table 7.

Thus, sufficient breadth has been observed both in mixtures of C4-V3 peptides and in select individual peptides for the immunogen to be practical with regard to induction of neutralizing antibodies against HIV primary isolates. By performing the same immunization studies with the similarly

designed HIV subtype (clade) C peptides in Table 6, that a similar immunogen(s) can be developed for HIV subtype C viruses.

While individual peptides can be used to achieve the breadth of neutralizing activity needed to protect against HIV primary isolates, advantageously, mixtures of multiple peptides are used, such as the combination of group C, or group F or the combination of C4-V3 36.29, C4-V3 34.29, C4-V3 62.19, C4-V3 74.17, and C4-V3 162.7 peptides described above.

EXAMPLE 3

HIV-1 Clade B V3-Based Polyvalent Immunogen

Anti-HIV gp120 V3 antibodies can neutralize some HIV primary isolates ((Hioe et al, Internat. Immunology 9:1281 (1997), Liao et al, J. Virol. 74:254 (2000), Karachmarov et al, AIDS Res. Human Retrovirol. 17:1737 (2001), Letvin et al, J. Virol. 75:4165 (2001)). The hypothesis for these studies was that sequence variation found among HIV primary isolates need not reflect the diversity of HIV serotypes, and antibodies can cross-react with groups of similar viruses. Data from comparison of NMR structures of several V3 loops and their immunogenicity patterns indicate that there are conserved higher order structures of the V3 that are similar in antigenicity regardless of primary amino acid heterogeneity (Vu et al, J. Virol. 73:746 (1999)).

1514 unique clade B V3 sequences in the Los Alamos National Laboratory HIV Database were analyzed by the following methods. Short antigenic domains were organized by protein similarity scores using maximum-linkage clustering (Korber et al, J. Virol. 68:6730 (1994)). This enabled visualization of clustering patterns as a dendritogram, and the splitting pattern in the dendritogram could be used to define clusters of related sequences. This method allows the use of several different amino acid scoring

schemes. The amino acid substitution matrix of Henikoff and Henikoff was used which was designed to give amino acid substitutions well tolerated in conserved protein structural elements a high score, and those that were not, a low score (Henikoff and Henikoff, Protein Structure Function and Genetics 17:49 (1993)). Based on these clustering patterns, a variant was selected that was most representative of each group. Excluded were very rare, highly divergent sequences, and favored were sequences found in many different individuals. This method allowed for most of the unique V3 sequences to be within one or two amino acids from at least one of the peptides in the cocktail. Thus, 1514 clade B V3 sequences were clustered into 30 groups. The consensus peptide of each group was synthesized, purified to homogeneity by HPLC and confirmed to be correct by mass spectrometry. Each peptide was immunized into a guinea pig (GP) in Incomplete Freunds Adjuvant (IFA), and each sera was tested after the fifth immunization by a single infection cycle neutralization assay preformed by ViroLogics, South San Francisco, CA, or by a fusion from without HIV fusion inhibition assay using aldrithiol-2 inactivated HIV_{ADA}, HIV_{MN} and HIV_{AD8} virons (Rosio et al, J. Virol. 72:7992) (1998)).

The criteria established for acceptable neutralization of primary isolates was the ability of a serum to neutralize at least 25% of the HIV primary isolates tested. Using these criteria, 7 peptides were found that induced neutralizing antibodies against >25% of isolates tested. One of these peptides, peptide 62.19, neutralized 19/19 HIV primary isolates tested, even when the criteria were increased to greater than 80% neutralization vs. 50% neutralization (see Figure 5 and Table 11).

When the sequences of 6 peptides that induced no (0/19) neutralization of the 19 primary HTV isolates were evaluated, it was found that they were all unusual sequences at the tip of the V3 loop, with sequences such as GLGR, GPGG, GLGK. GLGL, and GLGR present (see Table 10). Only 1 of the 19 isolates tested had one of the these V3 sequences, a GPGG sequence, that was

not neutralized by the serum from the GPGG-immunized guinea pig. Therefore, one serologic defined group of Clade B HIV isolates may be defined by the primary amino acid sequences at the tip of the loop of GLGR, GPGG, GLGK, GLGL.

5

Table 10

Sequences of Peptides That Induced No Neutralization at 50% Inhibition (All Dilutions) Criteria

GP No.	Peptide No.	V2.0-
447	C4-V3 396.2	V3 Sequence(s) RPNNNTRRNIHIGLGRRFYAT
448	C4-V3 170.6	RPNNNTRRSVRI <u>GPGG</u> AMFRTG
451	C4-V3 23.38	RPIKIERKRIPLGLGKAFYTTK
458	C4-V3 51.23	RPSVNNTRRSIHMGLGRAFYTTG
404	C4-V3 57.20	RPNRHTGKSIRMGLGLRAWHTTR
432	396.2/170.6	RRNIHIGLGRRF RRSVRIGPGGAM

10

15

Table 11

Sequences of Peptides That Best Neutralized Clade B Isolates at 50% Inhibition (All Dilutions) Criteria

GP No.	Peptide No.	V3 Sequence(s)
436	69.18/146.8	RKSIRI <u>GPGR</u> AV RRRISI <u>GPGR</u> AF
442	1.481/85.15	RKSIHI <u>GPGR</u> AF RKSIHI <u>APGR</u> AF
460 (B)	C4-V3 36.29	RPNNNTRKGIHI <u>GPGR</u> TFFATG
465 (A)	C4-V3 11.85	RPNNNTRKSINI <u>GPGR</u> AFYTTG
466 (A)	C4-V3 34.29	RPNNNTRKSIQIGPGRAFYTTG
467 (A)	C4-V3 1.481	RPNNNTRKSIHI <u>GPGR</u> AFYTTG
469 (C)	C4-V3 62.19	RPNNNTRKSIHI <u>GPGR</u> AFYATE
472 (C)	C4-V3 74.17	RPNNNTRKRMTL <u>GPGK</u> VFYTTG
475 (E)	C4-V3 162.7	RPGNNTRGSIHLHPGRKFYYSR

When the peptide sequences that induced neutralization of >25% of primary isolates were examined, it was found that the sequences were all similar and were all clustered around the Clade B V3 consensus sequence of IHIGPGRAFYTTG (see Table 11). However, not all peptides with this type of sequence induced good neutralizing antibodies-15 peptides had this type of sequence and did not induce good neutralizing antibodies. Thus, a "computer guided proteomic screen of the V3 loop" has been performed and V3 peptides have been identified that express higher order conformers that mirror the native functionally active motif of the V3 that is both available and capable of being bound by neutralizing antibodies. In particular, peptide 62.19 induced neutralizing antibodies against 19 of 19 HIV isolates. Expression of the consensus B V3 sequences in Table 11, and expression of certain of the unusual V3 sequences in Table 10, can define a "bivalent" clade B immunogen for use world wide where those sequences are present in the resident HIV quasispecies, likewise, the sequences shown in Table 12. Table 12 shows full V3 consensus sequences for the V3 loops of the indicated

10

15

peptides. By placing these full length V3 loop sequences into a full length HIV envelope gp120 or gp160/gp140 molecule, the ability of these peptides to induce neutralizing activity is transferred to the HIV envelope containing these sequences. Thus, for example, for the artifically designed consensus of consensus HIV envelope with less divergence from other HIV isolates compared to native HIV envelopes (Gaschen et al, Science 296: 2354-2360 (2002)), inclusion of one of the V3 sequences in Table 12 that has been shown to induce neutralizing activity against HIV primary isolates would augment the ability of the consensus of consensus artifical envelope to induce neutralizing antibodies. Further, expressing the V3 sequences in Table 12 would augment their immunogenicity by combining the V3 with other neutralizing sites on an immunogen (the intact envelope monomer or trimer).

Immunization with a replicating vector, expressing partial or entire (C to C) segments of these V3 loops, can be used to induce long lasting immunity to HIV.

TABLE 12

V3 Consensus Sequence Name of Total Seg Secuce in Database Amino Acid Sequence SVEINCTRPNNNTRKSIHIGPGRAFYTTGEIIGDIRCAHCNISRA 1.-81 345 SVEINCTRPNNNTRKSIHIGPGRAFYATERIIGDIRCAHCNISRT 52.19C 952 SVEINCTRPNNNTRKSIHIGPGRAFYATETTRIIGDIRCAHCNISRT 52, 1947 SVEINCTRPGNNTRGSIHLHPGRKFYYSRGIIGDIREAHCAINIP :62.7 SVEINCTRPNNNTRRSVRIGPGGAMERTGDIIGCIRCAHCNLSRT 170.5 34 29 SIEINCTRPNNNTRKSIQIGPGRAFYTTGEIIGDIRCAHCNUSRA 39 SVEINCTRPNNNTRKRMTLGPGKVF/TTGEIIGDIRKAHCNISRA 74:7 34 SVAINCTRRNNNTRRNIHIGLGARFYATEIIGDTKKADCNISRA 396.2 2 SVEINCTRPIKIERKRIPLGLGKAF/TTKQVGDIKQAHC 23.23 25 PVEINCTRENNNTRRSIHIAPGRAFYTTGGIIGDIRRAHCNISRT 32.15 TYVINCTRPNRHTGKSIRMGLGRAWHTTREIIGDIRKAYCTLNGT 57 Z 21 SVNINCTRPNNNTRKGIHIGPGRTFFATGDIIGDIRQAHCNLSRT 36.29 46 BAL VZ CTRPNNNTRKSIHIGPGRAFYTTGE!IGDIRICAHC

All documents cited herein are incorporated in their entirety by reference.

⁹ WO 2005/016952 PCT/US2004/015735

WHAT IS CLAIMED IS:

1. A method of stabilizing a hairpin loop structure of a peptide that comprises residues of the V3 domain of gp120 and that includes a B cell neutralizing antibody epitope, said method comprising

adding or substituting on the C-terminal or N-terminal end of said hairpin loop one or more positively or negatively charged amino acids so that said stabilization is effected by hydrogen bonding between oppositely charged amino acids present at the C- and N-terminal ends of said hairpin loop.

- 2. The method according to claim 1 wherein at least one negatively charged amino acid is added on the C-terminal end of said loop.
- 3. The method according to claim 2 wherein from one to three negatively charged amino acids are added on the C-terminal end of said loop.
- 4. A peptide comprising a sequence selected from the group consisting of:

X1-SIHIGPGRAFY-X2

X¹-SINIGPGRAFY-X²

X1-GIHMGPGKAIY-X2

X¹-MTLGPGKVFY-X²

X¹-GIHIGPGRTFF-X²

X1-SIOIGPGRAFY-X2.

wherein X^1 comprises at least two contiguous negatively or positively charged amino acids and X^2 comprises at least two contiguous amino acids bearing a charge opposite to that of the amino acids of X^1 .

5. The peptide according to claim 4 wherein said peptide comprises an amino acid sequence set forth in Table 5.

- 6. A composition comprising a multiplicity of immunogenic polypeptides, each of said polypeptides comprising the peptide according to claim 4.
- 7. The composition according to claim 6 wherein said composition further comprises a carrier.
- 8. The composition according to claim 6 wherein said composition further comprises an adjuvant.
- 9. An isolated nucleic acid sequence encoding the peptide according to claim 4.
- 10. A vector comprising the nucleic acid sequence according to claim 9.
- 11. A composition comprising at least one nucleic acid sequence according to claim 9 and a carrier.
- 12. A method of inducing an immune response in a mammal comprising administering to said mammal an amount of at least one peptide according to claim 4 in an amount sufficient to effect said induction.

13. A method of inducing an immune response in a mammal comprising administering to said mammal an amount of at least one nucleic acid sequence according to claim 9 in an amount sufficient to effect said induction.

Log of Reciprocal of Endpoint heriT (A)9RV-iInA

Figure L

≅c

Esv

Kizz

The One 5

C4-V3 62.19 (GP 469)

					mizanon			2.5	: 2 ::::	-	
112	160		. 20- 702	-	- 23 - 3	2121		.:5			
::#6j	i i j	1 13		_		1821	-69		. :-}	- ::	_
5736	463		92.			::52	460			- ;;	-1
9121	:69		Tes.	· • • • • • • • • • • • • • • • • • • •		57467	-63				_;
341	-69		72			1101	269			;8	- ;
June Lan	.43		. 1		112	344	-60	- ::			
EUAL H	:63	3				JUAL -	14.9	_ :: _ :		-12	-11
TUAL OF	:69	15			- 1	SUAL 3	-03	-3 -			-
DUAL TI	:63	7	5	- 61	100	DUAL	69	-10			- ::
JUAL 3	461	3	-	uei		DU4L 2	:69		.1-		,
AFL.	-63	-		; 60h		DUAL E		-32		1	
DAVOI	-69		- 16			.RFL	49	- 23		.1	:6
:ORHO!	482	1	3.)	.3		PAVE	-63	- (3	:5		
A 6 m	269	1	72		2.2	"CRNO	169	:-		-11 .	
(4 a)	+69	7		-1)		(4.4)	-69	15			
	-41	1		-1	- 7	t+ ai	:69				_ :
(4.5)	484	10.00		- :3		44.3	443				_ }

Priside Name	nces of 30 HIV Clade B C4- V3 Pe	ptides
C4-V3 C4-V3-2338	Perstide Servense	
C4-V5-11.85	KOTINHUOVUGKANYA RPIKIERKRIPLGLGKAFYTIK	Group
E4-V3-34-79	KOLINDAQVVGKANYA-RPUMBITIKZIHIGPGRAFYIIK KOLINDAQVVGKANYA-RPUMBITIKZIHIGPGRAFYIIG	A
C4-V3-1.481	KATINIMAVVEKANYA-RPHINITRKITHIGPGRAFYTIG KATINIMAVVEKANYA-RPHINITRKITATEPERAFYTIG	3
C4-V3-7 777	KOTINHAQUUGKANYA RPANNITRKITOTGPGRAFYTTG KOTINHAQUUGKANYA RPANNITRKIHIGPGRAFYTTG	Ä
C4-V3-31.23	KOTTNIMAQUUGKANYA-REMINITRKSTHIGEGRAFYTTG	
C4-V3-36-29.	KOLINIMOVVGKATTA-MUSTINITARITARIA TITO	
CI-V3-5720	EQIINTIMQVVGEATYA-RPNINTRESIMTEPGRAFYTTG EQIINTIMQVVGEATYA-RPNINTRESIMTGLGRAFYTTG EQIINTIMQVVGEATYA-RPNINTRESIMTCPGRAFFATG	ii ii
C4-V3-35-20	EGITINHAUVUGKAHYA-RPURHTGKIRHIGPGRTFFATG KGITINHAUVUGKAHYA-RPURHTGKIRHIGLGRAUHTTR	i
C4-V3-46.26		B#-
	KALINHHAVVEKANTA REPORT TERESLE RAUNT TR KALINHHAVVEKANTA REPORT TERESLE PERVYYTTE KALINHHAVVEKANTA REPORT TERESLE PERVYYTTE	1
C4-V3-69.18.		îr-
C4-V3-73-11 C4-V3-70-11	KALLINIMAYVAKANYA-RPININTRESIRLAPARAYATD KALLINIMAYVAKANYA-RPININTREGINTAPARAYATA KALLINIMAYVAKANYA-RPININTREGINTAPARAYATA KALLINIMAYVAKANYA-RPININTRESIRLAHLAPARAYATA KALLINIMAYVAKANYA-RININTRESIRLAHLAPARAYATA	
C4-V3-62.19	EGI I NUMBER A CONTRACTOR AND A CONTRACT	Ē
C4-V5-74.17	KOLINIMOUVEKATYA ETTENITEKKIRIGHIEPERAFYATE	⊆
		Ē
C4-V3-K2.15		5
C4-V3-113.1	KOLINIMAYVAKANYA-RPWINTRRZIPLEPERAFYTIG KOLINIMAYVAKANYA-RPWINTRRZIHLENGARALYATO KOLINIMAYVAKANYA-RIZIHKRIPHHLEPERAFYAT KOLINIMAYVAKANYA-RIZIHKRIPHHLEPERAFYAT	
C1-V3-X9.11		13
C1-V3-45.15	KOTINGWOVOCKATYA RESURTRESHHITGPGRAFYAT KOTINGWOVOCKATYA RESURTRESHTAPGRAFYTTG	Dia.
C1-V5-1274		D
L4-V3-1700	EGAL COMPAGNIC MARCHES TO THE CANADA THE HEIGH GRANT TOP	U
CL-V3-I4h H	EGITTHUM OUR CRAIN TO WITH THE VEHICLE CAMED TO)
C4-V3-165.7		6
C4-V3-125.0		Ε.
C4-V3-1627		E
C4-V3-396-2	KALLMHEAVVGEATTA-RPUNDELTRIRETZHEHPGREVETTG KALLMHEAVVGEATTA-RPUNDETTRINITHELGREYTYZE KALLMHAAVVGEATTA-RPUNDETTRINITHELGREYTYAT KALLMHAAVVGEATTA-RPUNDETTRINITHELGREZEFYTT KALLMHAAVVGEATTA-RPUNDETTRINITHELGREZEFYTT	8
C4-V3-144 N.	COLUMN CONTRACTOR OF THE COLUMN COLUM	€
C4-V3-366_7	EGITMENTAL REPUBLICACIONES PROSTEVATA	F
C4-1/3-515.2		F
CLVS-144E1	KOLLOWAGOVCKANTA RPSHINIREGIHMEPOKATTITO KOLLOWAGOVCKANTA RPSHINIREGIHMEPOKAFFITG	F
	THE PARTY OF THE P	22

Facre

FIGURE 7

nogens With Strategy For Design of HIV gp120 V3 Immunogens With

FIGURE 7 (CONTD) 1

Approaches to Develop Immunogens That Broadly Neutralize Primary Isolate HIV

Variable Region Subunit Immunogens

Constrained Envelope Immunogens

Choice of "Best Env" Immunogen

Survey of a large panel of expressed Envs

Expression of consensus and ancestral "artificial" Envs

FIGURE 7 (CONT'D) 2

FIGURE 7 (CONT'D) 3

FIGURE 7 (CONTO) 4

FIGURE 7 (CONT'D) 5

gp120 V3 Loop are Type Specific and Poorly Antibodies to Linear Determinants of the HIV Neutralize HIV Primary Isolates

HIV-1 grown in T cell lines (TCLA viruses) tend to have basic V3 loops and utilize CXCR4 as receptor.

isolates grown only in PBMC. Antibodies to TCLA V3 Health Dept and Tom Matthews at Duke began to In the early 1990s, Carl Hanson at the California perform neutralizing assays against HIV primary loops did not neutralize HIV-1 primary isolates.

FIGURE 7 (CONTD) 6

IGURE 7 (CONT'D) 7

FIGURE 7 (CONTD) 9

Hioe, C.E., Zolla-Pazner, S. et al. Neutralization of HIV-1 Anti-V3 Antibodies Neutralize A Subset of HIV Primary Isolates Primary Isolates by Polyclonal and Monoclonal Human Antibodies, Int. Immunol. 9: 1281, 1997.

Antibodies Affinity Purified from Sera of Infected Humans Krachmarov, C.P., Pinter, A. et al. V3-specific Polyclonal Effectively Neutralize Primary Isolates of HIV-1. AIDS Res. Human Retrovirol. 17: 1737, 2001. FIGURE 7 (CONT'D) 9

Effect of HIV Envelope gp120 V3 Antibodies

- Neutralize most laboratory adapted HIV
- Neutralize a subset of HIV primary isolates
- Neutralization of HIV to date has been extremely type specific

FIGURE 7 (CONTD) 10

Vol. 74, No.

JOURNAL OF VIROLOGY, Jan. 2000, p. 254-263 0022-538X/00/\$04.00+0

Copyright @ 2000, American Society for Microbiology. All Rights Reserved.

against the Human Immunodeficiency Virus Type 1 Envelope: Induction of Antibodies in Guinea Pigs and Rhesus Monkeys Neutralization of Nonpathogenic and Pathogenic Primary Isolate Simian/Human Immunodeficiency Virus Strains

IOSEPH SODROSKI, 3 RICHARD M. SCEARCE, 1,2 ROBERT W. DOMS, 5 JAMES R. THOMASCH, 1,2 HUA-XIN LIAO, 1.24 BIJAN ETEMAD-MOGHADAM, 3 DAVID C. MONTEFIORI, 2.4 YING SUN, 3

SUZANNE ROBINSON, NORMAN L. LETVIN, AND BARTON F. HAYNES^{1,2}+

FIGURE 7 (CONT'D) //

JOURNAL OF VIROLOGY, May 2001, p. 4165–4175 0022-538X/01/504.In+0 DOI: 10.1128/JVI.75.9.4165–4175.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved.

Vol. 75, No. 9

Vaccine-Elicited V3 Loop-Specific Antibodies in Rhesus Monkeys and Control of a Simian-Human Immunodeficiency Virus Expressing a Primary Patient Human Immunodeficiency Virus Type 1 Isolate Envelope

NORMAN L. LETVIN, 1* SUZANNE ROBINSON, 1 DANIELA ROHNE, 1 MICHAEL K. AXTHELM, 2 JOHN W. FANTON, 2 MIROSLAWA BILSKA, 3 THOMAS J. PALKER, 34 HUA-XIN LIAQ, 3 BARTON F. HAYNES, AND DAVID C. MONTEFIORI³

FIGURE 7 (CONT'D) 12

FIGURE 7 (CONT'D) /3

FIGURE 7 (CONT'D)

FIGURE 7 (CONTD) 15

Neutralizing Antibodies in Rhesus Monkeys to Ability of C4-V3 Peptides to Induce Anti-HIV TCLA HIV Isolates After Two or Three **Immunizations**

		HIVSF2 993	<20	<20	<20	<20
Neutralization Titor	1111/	>6,400	<20	>6,400	<20	<20
Z	HIVAIN	>5,000	>5,000	<20	442	4,197.
Immunogen		Polyvalent	C4-V3 _{MN}	C4-V3RF	C4-V3Ev91	C4-V3ConA
Rhesus No.		26252	26424	26716	26906	27094

Vu. et al., J. Virol. 73:746-750, 1999.

FIGURE 7 (CONTD)

432 CLADE C V3 SEQUENCES = 176 UNIQUE FORMS 6870 CLADE B V3 SEQUENCES = 1514 UNIQUE **FORMS**

HYPOTHESIS:

SEQUENCE VARIATION FOUND AMONG HIV THE DIVERSITY OF HIV SEROTYPES, AND PRIMARY ISOLATES NEED NOT REFLECT ANTIBODIES MAY CROSS-REACT WITH GROUPS OF SIMILAR VIRUSES. FIGURE 7 (CONT'D) /7

WE ORGANIZED SHORT ANTIGENIC DOMAINS BY PROTEIN SIMILARITY SCORES USING MAXIMUM-LINKAGE CLUSTERING. METHODS

PATTERN IN THE DENDRITOGRAM CAN BE **USED TO DEFINE CLUSTERS OF RELATED** DENDRITOGRAM, AND THE SPLITTING THIS ENABLES VISUALIZATION OF **CLUSTERING PATTERNS AS A** SEQUENCES. KORBER, B.T., ET AL., J. VIROL., 68:6730-6744, 1994. FIGURE 7 (CONT'D) 18

METHODS

•METHOD ALLOWS THE USE OF SEVERA DIFFERENT AMINO ACID SCORING SCHEMES. AA SUBSTITUTION MATRIX (HENIKOFF AND FUNCTION AND GENETICS, 17:49-61, 1993) ELEMENTS A HIGH SCORE, AND THOSE SUBSTITUTIONS WELL TOLERATED IN CONSERVED PROTEIN STRUCTURAL HENIKOFF, PROTEIN STRUCTURE THAT WERE NOT, A LOW SCORE **WAS DESIGNED TO GIVE AA**

FIGURE 7 (CONTD) 19

•BASED ON THESE CLUSTERING PATTERNS, WE SELECTED A VARIANT THAT WAS MOST REPRESENTATIVE OF EACH GROUP.

METHODS

SEQUENCES, AND FAVORED SEQUENCES FOUND •WE EXCLUDED VERY RARE, HIGHLY DIVERGENT IN MANY DIFFERENT INDIVIDUALS.

TWO AA FROM AT LEAST ONE OF THE PEPTIDES UNIQUE V3 SEQUENCE TO BE WITHIN ONE OR THIS METHOD ALLOWED FOR MOST OF THE IN THE COCKTAIL

METHODS

•CLUSTERED 1514 CLADE B V3
SEQUENCES INTO 30 GROUPS.

•CLUSTERED 176 CLADE C V3 SEQUENCES INTO 25 GROUPS.

FIGURE 7 CONTID) 2/

KQIINMWQVVGKAMYP KQIINMWQVVGKAMYP	Pptide Name		
23 23 23 23 23 23 23 23 23 23 23 23 23 2		Peptide Sequence	Croun
23.23.23.23.23.23.23.23.23.23.23.23.23.2			dnoro
23 23 23 23 23 23 23 23 23 23 23 23 23 2		I K I ERKRI PLGLGKAFYTTK	∢
23.33.33.33.33.33.33.33.33.33.33.33.33.3		NNNTRKSINIGPGRAFYTTG	∢
23.33.33.33.33.33.33.33.33.33.33.33.33.3		NNNTRKSIQIGPGRAFYTTG	∢
26.00.00.00.00.00.00.00.00.00.00.00.00.00		NYNTRKSIIIGPGRAFYTYG	∢
200000000000000000000000000000000000000		NNNTRKSINMGPGRAFYTTG	₹
2 0 6 0 9 8 8 8 6 C S - 1 + 12		SINITRRSTIIMGLGRAFYTTG	a
26.99 88 80 7 8 - 4 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10		NNNTRKGIHIGPGRIFFATG	a cc
99 8 8 8 6 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		NRHTGKSIRMGLGRAWHTTR	a ee
8 8 8 6 7 8 - 4 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10		NNNTRKKISLGPGRVYYTTG	, c
0 8 8 6 7 9 - 4 10 10 10 10 10 10 10 10 10 10 10 10 10		DMTIKORIIHIGPGRPFYTT	∞
28672		NANTRKSIRIGPGRAVYATD	٥
		WINTRKGINIGPGRAFYATG	, C
		WINTRKRIRIGHIGPGRAFYATG	
N-4103 10m2 -1		WINTRKSIHIGPGRAFYATE	O
		INNTRKRMTLGPGKVEYTTG	C
		NNTRRSIPIGPGRAFYTTG	Q
		UNNTRRSIHLGMGRALYATG	۵
		LNKRRHIHIGPGRAFYAT	۵
		INNTRKSIHIAPGRAFYTTG	۵
		IXNETKRIRIIRGYGRSFVTVR	Q
		INNTRRSVRIGPGGAMFRTG	ш
		INNTRRISIGPGRAFVATK	ш
		NYRREGIHIGPGRAIYATG	ш
_		NNT'RKRISMGPGRVI,YTTG	ш
		MITRGSTHLHPGRKFYYSR	ш
_		NNTRRNIHIGLGRRFYAT	L.
_		NNTVRKIPIGPGSSFYTT	u
		NNTRKGIHLGPGRAIYATE	
LINEANY VUNCTURE		NNTRKGIHMGPGKAIYTTD	u.
	LINITMANATORNIAN	KFGNTTRRGIPIGPGRAFFTTG	ı

HPLC Profile of Purified HIV Clade B C4-V3 Peptide 46.26

FIGURE 7 (CONT'D) 2 2

Molecular Weight

FIGURE 7 (CONTD) 23

Sequences of 30 HIV Clade B C4- V3 Peptides

FIGURE 7 (CONTD) 24

Pptide Name C4-V3	Peptide Sequence	Group
C4-V3-23.38	KOTINMWOVVGKAMYA-RPIKIERKRIPLGLGKAFYTTK	∢
74-V3-11.85	KOIINMWOVVGKAMYA-RPNNNTRKSINIGPGRAFYTTG	∢
C4-V3-34.29	KÕI INMMÕVVGKAMYA-RPNNNTRKSIQIGPGRAFYTTG	∢ '
CA-V3-1.481	KÕIINMMÕVVGKAMYA-RPNNNIIRKSIIIIGPGRAFYIIIG	4
C4-V3-3.323	KOTINMOVVGKAMYA-RPININTRKSINMGPGRAFYTTG	٧
C4-V3-51.23.	KOIINMWOVVGKAMYA-RPSNNTRRSIHMGLGRAFYTTG	ano.
C4-V3-36.29	KOIINMMÕVVGKAMYA-RPNNNTRKGIHIGPGRTFFA'TG	.
C4-V3-57.20	KOIINMWOVVGKAMYA-RPNRHTGKSIRMGIGRAWHTTR	~
C4-V3-35.29	KÕIINMMÕVVGKAMYA-RPNNNTRKRISLGPGKVYY1"1'G	c a (
C4-V3-46.26	KÕIINMMÕVVGKAMYA-RPDNTIKORIIHIGPGRPFYTT	8
C4-V3-69.18	KOIINMMOVVGKAMYA-RPNNNTRKSIRIGPGRAVYATD	U
C4-V3-72.18	KOIINMMOVUCKAMYA-RPNNNTRKCINICPCRAFYATG	ပ
C4-V3-70.18	KOIINMOVVGKAMYA-RPNNNTRKRIRIGHIGPGRAFYATG	<u>ن</u>
C4-V3-62.19	KOIINMMOVVGKAMYA-RPNNNTRKSIHIGPGRAFYATE	U i
C4-V3-74.17	KÖI INMMÖVVGKAMYA-RPNNNTRKRMTLGPGKVFYTTG	O
C4-V3-R2.15	KOIINMWOVVGKAMYA-RPNNNTRRSIPIGPGRAFYTTG	۵
C4-V3-113.1	KÕIINMMÕVVGKAMYA-RPNNNTRRSIHLGMGRALYATG	۱
C4-V3-89.14	KOIINMMOVVGKAMYA-RPSINKRRHIHIGPGRAFYAT	Q i
C4-V3-85.15	KOIINMWOVVGKAMYA-RPNNNTRKSIHIAPGRAFYTTG	م ا
C4.V3 122.9	KÕI INMÕVVGKAMYA-RPNYNETKRIRIIRGYGRGEVTVR	٥
C4-V3-170.6	KOIINMWQVVGKAMYA RPNNNTRRSVRIGPGGAMFRTC	w i
C4-V3-146.8	KÕIINMMÕVVGKAMYA-RPGNNTRRRISIGPGRAFVATK	ш,
C4-V3-163.7	KÕIINMMÕVVGKAMYA-RLYNYRRKGIHIGPGRAIYATG	ш (
C4-V3-125.9	KOIINMWOVVGKAMYA-RPNNNTRRRISMGPGRVLYTTG	ושו
24-V3-162.7	KOIINMMOVVGKAMYA-RPGNNTRGSIHLHPGRKFYYSR	4
C4-V3-396.2	KOIINMMOVVGKAMYA-RPNNNTRRNIHIGLGRRFYAT	LL 1
C4-V3-144.8	KQT INMWQVVGKAMYA-RPINNYTVRKIPTGPGSSFYTT	. .
C4-V3-365.2	KQLINMWQVVGKAMYA-RPSNNTRKGIHLGPGRAIYATE	4 . 1
C4-V3-513.2	KÕI INMMÕVVGKAMYA-RPSNNTRKGIHMGPGKAIYTTD	L L
C4.V3.1448		_

FIGURE 7 (CONTD) 25

FIGURE 7 (CONTO) 26

FIGURE 7 (CONTD) 27

FIGURE 7 (CONTD) 2 Y

Sequences Of HIV Isolates Used To Screen Clade B V3 Peptide Immunogens

V3 loop sequence	CTRPNNNTRKGIHIGPGGAFYATGDIIGDIRQAHC	CTRPNNNTRKSVTLGPGRVWYTTGQIVGDIRXAHC	CTRPSNNTRKSVHMGWRRTFFXTEKIIGDVRKAHC	CERPAINTEXSVRIGEGOTFYATGDXIGDIRQAHC	CTERMINITERSHING GENERALING GENER		CTRXHNSKKI KIKIGFGROTTI I I KAIAGI I GGATIO	CTRPSNNTRKGIYIGPGRKVYIXENIGDIMNNATO	CTRPSNHTQRRIAIGPGRSFYATURIXGULKUAHU	CIRPNNYSAKAIRIGPGRAVIATKRXIGNIRQAHC	CTRPNNNTRKSIHIGPGRAFYATGEVIGDIRQAHC	CTRPNNNTRKSIHIGPGRAXYXTGEIIGDIRQAHC	CTRPNNNTRKSIHIGPGRAFYTTGEIIGDIRQAHC	CTRENNITRESITXGPGRXFYATGDIIGDIRQAHC	CTIN HINTEDSTILISES AFVATGRIGORGAHC	CIRPININI FROM INC. CONTRACTOR OF THE CONTRACTOR	CTRPNINITERSISIGFGRAFIALGUIGUIAGAIG	CTRPNNNTRKSIHMGPGAAFYARGEVIGDIRGATIC	CTRPGNNTRKSIHIGPGRAFYATGDIIGDIIRGAHC	CTRPNNNTRKSIHMGPGKVFYTTGEIIGDIRGAHC	AFTERNATION OF THE COURT OF THE STATE OF THE	CERPINAL FINAL CONTROL OF THE POWER OWN OF THE POWER OF T	CTRPNNNIRKSIHIGAGNALTIGERGDRAATIG
Clade	8	n 01	o 0	ם כ	AG	1	۵	Ø	6	80	CZ	S	Ž	2 2		ON N	Q	QN	QN	CN		QN	Q
Virus	Dual A			Dual C	Dual D	Dual E	X4 A	X4 B	X4 C	X4D	1196	D B	100	JN L	SF162	TORNO	PAVO	6101 (P15)	692	5768 (P27)	117 1) 00 10	1168	515
Troniem	leido) Car	Duai C	Dual	Dual	Dual	X4	X4	×4	× ×	, v	2 0	ה א א	מ צו	R5	R5	R5	R.5	R5	90	Ĉ.	R5	R5

Rank Order of V3 Sequences Based on Ability to 19 Clade B HIV Primary Isolates Neutralize

RPNNNTRKGINIGPGRAFYATG RPNNNTRKRIRIGHIGPGRAFYATG RPNYNETKRIRIHRGYGRSFVTVR RPNNNTRRSIHLGMGRALYATG RPNNNTRRSVRIGPGGAMFRTG RPNRHTGKSIRMGLGRAWHTTR RPSNNTRRSIHMGLGRAFYTTG BPSNNTRKGIHLGPGRAIYATE RPNNNTRRRISMGPGRVLYTTG RPGNNTRGSIHLHPGRKFYYSR PNNNTRKRISLGPGRVYYTTG **RPNNNTRKSINMGPGRAFYTTG** RPGNTTRRGIPIGPGRAFFTTG RPNNNTRKSIRIGPGRAVYATD **RPNNNTRKRMTLGPGKVFYTTG** RPIKIERKRIPLGLGKAFYTTK RPDNNTVRKIPIGPGSSFYTT. RPDNTIKQRIIHIGPGRPFYTT. RPNNNTRRSIPI GPGRAFYTTG RPSNNTRKGIHMGPGKAIYTTD PNNNTRRNIHIGLGRRFYAT RPNNNTRKSIHIAPGRAFYTTG RPNNNTRKSINIGPGRAFYTTG **ALYNVRRKGIHIGPGRAIYATG** RPSINKRRHIHIGPGRAFYAT 113,1 51,23 35,29 122,9 144,8 365,2 125,9 162,7 46,26 3,323 82,15 1448,1 69,18 70,18 89,14 163,7

FIGURE 7 (CONT'D) 30

FIGURE 7 (CONT'D) 3/

equences Based on Ability to ade B HIV Primary Isolates	VR G MFRTG VR L TTK L M L ATG R HR V S VTVR RM L WHTTR SL VY TTG M L TTG M L TTG M L TTG M L TTG V TTG NM TTG SM VL TTG TTG R V SR TTG SM VL TTG ATTG A	
	L R AT. L TTK L TTK L WHTTR L WHTTR L WHTTR L WHTTR L WHTTR L WY TTG M L TTG M L TTG M VL TTG G FTTG G FTTG G FTTG A TTG	

FIGURE 7 (CONTO) 32

To Induce Antibodies That Neutralize HIV Primary Isolates Ability of HIV ADA gp120 and gp140 Envelope Proteins

Immunogen MN** SHIV 89.6** ADA ADA gp120 8,900 43 <20 ADA gp120 5,700 <20 <20 ADA gp120 5,700 <20 <20 ADA gp120 1,863 30 <20 GMT 2,555* 6 <20 ADA gp140 14,614 <20 NT ADA gp140 15,788 85 <20 ADA gp140 15,788 85 <20 ADA gp140 15,788 85 <20 ADA gp140 18,667 43 61 ADA gp140 18,667 43 61					Neutra	Neutralizing Titer Against HIV-1 isolates	r Again	st HIV-1 is	olates	
ADA gp120 8,900 43 ADA gp120 451 <20 ADA gp120 5,700 <20 ADA gp120 1,863 30 GMT 2,555* 6 ADA gp140 14,614 <20 ADA gp140 21,492 48 ADA gp140 15,788 85 ADA gp140 15,788 85 ADA gp140 15,788 85	Guinea Pig No.	Immunogen	MN**	SHIV 89.6**		SS1196 JRFL	JRFL	SF162	BAL	BX08
ADA gp120 8,900 43 <20 ADA gp120 451 <20 <20 ADA gp120 5,700 <20 <20 ADA gp120 1,863 30 <20 GMT 2,555 6 <20 ADA gp140 14,614 <20 NT ADA gp140 21,492 48 58 ADA gp140 15,788 85 <20 ADA gp140 15,788 85 <20 ADA gp140 15,788 85 <20 ADA gp140 15,788 20 <20				Recip	rocal Di	lution of n	eutraliz	ing antibo	dy titer	
ADA gp120 451 <20 <20 ADA gp120 5,700 <20 <20 ADA gp120 1,863 30 <20 GMT 2,555 6 <20 ADA gp140 14,614 <20 NT ADA gp140 21,492 48 58 ADA gp140 15,788 85 <20	518A	ADA gp120	8,900	43	<20	183	<20	<20	53	171
ADA gp120 5,700 <20 <20 ADA gp120 1,863 30 <20 GMT 2,555 6 <20 ADA gp140 14,614 <20 NT ADA gp140 21,492 48 58 ADA gp140 15,788 85 <20 ADA gp140 15,788 85 <20 ADA gp140 15,788 20 <20	531	ADA gp120	451	<20	<20	<20	<20	^ 50	<20	202
ADA gp120 1,863 30 <20 GMT 2,555* 6 <20 ADA gp140 14,614 <20 NT ADA gp140 21,492 48 58 ADA gp140 15,788 85 <20 ADA gp140 15,788 85 <20 ADA gp140 15,788 20 <20	532	ADA gp120	5,700	<20	<20	200	<20	<20	<20	9/
GMT 2,555* 6 <20 ADA gp140 14,614 <20 NT ADA gp140 21,492 48 58 ADA gp140 15,788 85 <20 ADA gp140 15,788 85 61 GMT 17,378⁺ 20 <20	533	ADA gp120	1,863	30	<20	146	<20	<20	<20	197
ADA gp140 14,614 <20 NT ADA gp140 21,492 48 58 ADA gp140 15,788 85 <20 ADA gp140 18,667 43 61 GMT 17,378⁴ 20 <20		GMT	2,555*	9	<20	48	<20	<20	5	126
ADA gp140 21,492 48 58 ADA gp140 15,788 85 <20 ADA gp140 18,667 43 61 GMT 17,378* 20 <20	519	ADA gp140	14,614	<20	K	259	<20	<20	34	168
ADA gp140 15,788 85 <20 ADA gp140 18,667 43 61 GMT 17,378* 20 <20	520	ADA gp140	21,492	48	58	237	<20	24	28	224
ADA gp140 18,667 43 61 GMT 17,378⁺ 20 <20	521	ADA gp140	15,788	85,	<20	441	<20	<20	84	192
17,378* 20 <20	522	ADA gp140	18,667	43	61	237	<20	46	34	238
		GMT	17,378*	20	<20	280	<20	9	39‡	203

**MT-2 Assay; all other HIV-1 isolates tested in the M7-Luciferase Assay. Values are the reciprocal serum at which infectivity reduced by 80% relative to no sample (50% for ADA).

 $^{*}p = .029; ^{\ddagger} = p = .017$

FIGURE 7 (CONTO) 33

Ability of HIV ADA gp120 and gp140 Envelope Proteins To Induce Antibodies That Inhibit Syncytium Formation From Without

Reciprocal Dilution Of GP Serum To Inhibit ≥ 90% of Syncytium Formation Induced by AT-2-Inactivated HIV-1 ADA	2,430 270 810 810	2,430 >2,430 2,430 2,430
Immunogen	ADA gp120 ADA gp120 ADA gp120 ADA gp120	ADA gp140 ADA gp140 ADA gp140 ADA gp140
Guinea Pig No.	518A 531 532 533	519 520 521 522

FIGURE 7 (CONT'D) 34

Subunit Immunogen to Neutralize HIV Primary Isolates							
Immunogen	GP#	ž	eutralizin	ig Titer Ag	ainst HI	Neutralizing Titer Against HIV Primary Isolates	solates
¥		BAL	BX08	BX08 QH0692	6101	BG1168	SF162
C4-V3	609	293	172	286	89	50	119
62.19	610	211	220	103	35	<20	21
+ ;	119	981	98	125	38	54	124
ЬA	612	129	49	338	20	30	390
C4-V3	909	88	254	148	20	26	413
34.29	909	41	156	144	<20	56	>540
+	209	30	71	26	23	34	>540
FΑ	809	46	29	163	31	26	240
Positive Control LEH03 HIV+	lo	2401	1846	978	1618	217	>5400
Human Serum	_						

FIGURE 7 (CONTD) 3.5

Ability of C4-V3 36.29 and 1.481 HIV ENV gp120 Subunit Immunogen to Neutralize HIV Primary Isolates
--

Immunogen	en GP#	BAL	Neutraliz BX08	ing Titer A	gainst H 6101	Neutralizing Titer Against HIV Primary Isolates BX08 QH0692 6101 BG1168 SF162	Isolates SF162	S1196
C4-V3 36.29 + FA	618 619 620	233 183 121 166	196 108 95 214	72 90 62 40	<20 23 <20 <20	<20 30 <20 <20	158 >540 48 65	245 130 56 161
C4-V3 1.481 + FA	597 598 599 600	98 167 65 99	167 230 195 119	72 90 62 40	39 44 <20 20	<20 <20 <20 <20 <20	63 21 244 178	66 99 68 141
C4-V3 57.20 + FA	464	<20	22	<20	<20	<20	<20	<20
Positive Control LEH03 HIV+ Human Serum	ntrol	3,665	1,514	624	F	404	3,535	3,129

FIGURE 7 (CONTD) 34

Comparison of C4-V3 62.19 HIV ENV Immunogen Serum Neutralizing Antibody Titers When Formulated n Freunds Adjuvant Versus RC529 + Mutant Cholera Toxin	Comparison of C4-V3 62.19 HIV ENV Immunogen rum Neutralizing Antibody Titers When Formulat sunds Adjuvant Versus RC529 + Mutant Cholera	f C4-V ng An t Vers	3 62.1 tibody sus RC	9 HIV E / Titers :529 + N	NV In When Mutani	Formut Choler	en lated a Toxin
Immunogen	GP#	Ž	eutralizin	g Titer Ag	ainst HIV	Neutralizing Titer Against HIV Primary Isolates	solates
		BAL	BX08	BX08 QH0692	6101	BG1168	SF162
C4-V3	609	293	172	286	89	50	119
62.19	610	211	220	103	35	<20	21
+	611	186	98	125	38	24	124
FA	612	129	49	338	20	30	390
C4-V3	634	446	386	249	35	37	172
62.19	635	119	44	127	21	<20	516
+	636	319	179	221	<20	22	31
RC529	637	100	213	116	51	<20	438
+ C							
5							
Positive Control LEH03 HIV+	rol	2401	1846	978	1618	217	>5400
Human Serum	u						

HIV gp120 V3 Sequences of HIV Bal, HIV 89.6 and HIV ADA Compared to C4 -V3 Peptides

CTRPNNNTRKSIHIGPGRAFYTTGEIIGDIRIQAHC CTRPNNNTRKSIHIGPGRAFYTTGE**I**GDIR-QAHC HIV ADA V3 HIV Bal V3

TRPNNNTRKSIHIGPGRAFYTTG TRPNNNTRKSIHIGPGRAFYATE TRPNNNTRKGIHIGPGRTFFATG TRPNNNTRKSIQIGPGRAFYTTG V3 62.19 V3 36.29 V3 34.29 36.29 34.29 V3 1.481

TRPNRHTGKSIRMGLGLRAWHTTR TRPNYNKRKRIHIGPGRAFYTT V3 MN

V3 57.20

FIGURE 7 (CONTID) 3 8

HIV gp120 V3 Sequences of HIV Bal, HIV 89.6 and HIV **ADA Compared to C4-V3 Peptides** HIV Bal V3 CTRPNNNTRKSIHIGPGRAFYTTGEIIGDIRIQAHC HIV ADA V3 CTRPNNNTRKSIHIGPGRAFYTTGEIIGDIR-QAHC HIV 89.6 V3 CTRPNNNTRRRLSIGPGRAFYARRNIIGDIR-QAHC

TRPNNNTRKSIHIGPGRAFYA TRPNNNTRKGIHIGPGRTFFA TRPNNNTRKSIQIGPGRAFYT HIGPG NTRKS NN V3 36.29 V3 34.29 V3 62.19

†E †G

TRPNYNKRKRIHIGPGRAFYTTK NE

TRPNRHTGKSIRMGLGLRAWHTTR

V3 57.20

٧3

FIGURE 7 (CONTD) 39

Comparison of HIV gp120 Bal, gp120 89.6, and V3 Bal to Induce Antibodies that Neutralize HIV Primary Isolates

Guinea Pig No. Immunogen

Neutralizing Titer Against HIV Primary Isolates

	OHOUGS	150 86	267 378	20 38 38
	SS1196	>540	295 380 70	<20 47 <20
•	SF162	324 39	>540 >540 352	>540 >540 386
	6101	110 99	<20 <20 <20	<20 <20 <20
	BG1168	25 28	<20 <20 <20	<20 <20 <20
	BX08	>540 487	>540 >540 479	102 189 <20
	Bai	404	>540 >540 >540	<20 <20 <20
		C4-V3 Bai C4-V3 Bai	gp120 Bal gp120 Bal gp120 Bal	gp 120 89.6 gp 120 89.6 gp 120 89.6
		21 22	573 574 575	507 508 509

Assays performed in the M7-Luciferase assay and are titers at which 50% neutralization occurs.

FIGURE 7 (CONTO) 40

Induce Antibodies that Neutralize HIV Primary Isolate

Ability of HIV BAL and HIV 89.6 gp120 Envelopes to

Guinea Pig No.	lmmunogen				HIV Isolate	ite		
		Bal	9.68	SF162	SF162 JRCSF	BL01	BR07	6101
573	HIV Bal gp120*	82	06	80	88	29	8	24
574	HIV Bal gp120*	100	29	85	77	0	75	0
829	HIV Bal gp120*	66	89	85	64	32	30	0
568	HIV 89.6 gp120#	0	86	81	. 0	0	72	39
507	HIV 89.6 gp120 [‡]	0	66	84	47	0	66	22
508	HIV 89.6 gp120 [‡]	35	6	81	73	36	98	41
609	HIV 89.6 gp120 ⁴	0	96	73	48	20	06	42
U								

* RiBi - CWS Adjuvant

RiBi – MPL-SE + MCT Adjuvant

CFA / IFA - Adjuvant

Assays is single round infection assay of intracellular p24 determined by flow cytometry. All sera tested at 1:10 dilution, and data are percent reduction of p24. FIGURE 7 (CONTD) 4/

HIV Bal V3	HIV gp120 V3 Sequences of HIV Bal, HIV 89.6 and HIV ADA Compared to C4-V3 Peptides HIV Bal V3 CTRP N N TRKSIHIGP GRAFYTIGELIGD ID 10 A HIV
V3 1.481	V3 1.481 TRENNNTRKSIHIGPGRAFYTTGELIGDIR-QAHC
V3 62.19	TRPNNNTRKSIHIGPGRAFYTTG
V3 36.29 V3 34 29	TRPNNNTRKGIHIGPGRTFFATG
	INFINNIERSIQIGPGRAFYTTG

TRPNRHTGKSIRMGLGLRAWHTTR

V3 57.20

HIV BaI V3 CTRPNNNTRKSIHIGPGRAFYTTGEIIGDIRIQAHC HIV ADA V3 CTRPNNNTRKSIHIGPGRAFYTTGEIIGDIR-QAHC HIV 89.6 V3 CTRPNNNTRRRLSIGPGRAFYARRNIIGDIR-QAHC HIV gp120 V3 Sequences of HIV Bal, HIV 89.6 and HIV **ADA Compared to C4-V3 Peptides** TRPNRHTGKSIRMGLGLRAWHTTR TRPNNNTRKSIHIGPGRAFYATE TRPNNNTRKGIHIGPGRTFFATG TRPNNNTRKSIQIGPGRAFYTTG RKSIHIGPGR V3 62.19 V3 36.29 V3 34.29 V3 57.20

HIV gp120 V3 Sequences of HIV Bal, HIV 89.6 and HIV ADA Compared to C4-V3 Peptides CTRPNNNTRKSIHIGPGRAFYTTGEIIGDIRIQAHC CTRPNNNTRKSIHIGPGRAFYTTGEIIGDIR-QAHC HIV Bal V3 HIV ADA V3

TRPNNNTRKSIHIGPGRAFYTTG

V3 1.481

FIGURE 7 (CONTO) +4

HIV gp120 V3 Sequences of HIV Bal, HIV 89.6 and HIV ADA Compared to C4V3 Peptides HIV Bal V3 CTRPN NNTRK SIHIGPGRAFYTTGEIIGDIRIQAHC

V3 1.481

TRPNNNTRKSIHIGPGRAFYTTG

89.6 and HIV ADA Compared to C4-V3 HIV gp120 V3 Sequences of HIV Bal, HI Peptides

N N N T R K S I H I G P G R A F Y T T G E I I G D I R I Q A H C N N N T R K S I H I G P G R A F Y T T G E I I G D I R - Q A H C N N N T R R R L S I G P G R A F Y A R R N I I G D I R - Q A H CTRP HIV Bal V3 HIV ADA V3 HIV 89.6 V3 89.6 V3

V3 1.481 TRPNNNTRKSIHIGPGRAFYTTG
V3 62.19 TRPNNNTRKSIHIGPGRAFYATE
V3 36.29 TRPNNNTRKGIHIGPGRTFFATG
V3 34.29 TRPNNNTRKSIQIGPGRAFYTTG
V3 57.20 TRPNRHTGKSIRMGLGLRAWHTTR

V3 MN TRPNYNKRKRIHIGPGRAFYTTK

V3 MN + Sharon, M. et al. Structure 11: 223, 2003

TTKNIIG

D V3 Sequences of HIV B6 I HIV ADA Compared to C Peptides Peptides Prigeligd Print S Print	al, HIV 4-V3	IRIQAHC IR-QAHC DIR-QAHC			
120 V3 Sequence and HIV ADA Correction Peptide Peptide STRPNNNTR STRPNNNTR STRPNNNTR STRPNNNTR STRPNNNTR SQUERENNNTR SQUERENNTR SQUEREN SQUERENNTR SQUEREN SQUEREN SQUEREN SQUEREN SQU	es of HIV Bangared to C	TTGENGO TTGENGO ARRNNG	TTG ATE T FATG YTTG	LRA	TTKNIIG
TEPNNNTE	equenc DA Cor Peptide	S S R L S		R	
	120 V3 Se and HIV Al	2	TRPNNNTR TRPNNNTR TRPNNNTR	PNRHT PNYNK	KR

HIV gp120 V3 Sequences of HIV Bal, HIV 89.6 and HIV ADA Compared to C4-V3 **Peptides**

CTRPNNNTRKSI 3 CTRPNNNTRKSI 3 CTRPNNNTRRRLS S HIV ADA V3 (HIV 89.6 V3 HIV Bal V3

TTGEIIGDIRIQAHC TTGEIIGDIR-QAHC ARRNIIGDIR-QAHC ᄔᄔᄔ **民民**民

TTG ATE FATG ш

TRPNNNTRKS-TRPNNNTRKS-TRPNNNTRKG-TRPNNNTRKG-

V3 1.481 V3 62.19 V3 36.29 V3 34.29

Ö

LRAWHTTR Y 7

TRPNRHTGKSIRM

V3 57.20

TRPNYNKRK I

R

Sharon, M. et al. Structure 11: 223, 2003

V3 MN +

V3 MN

V3 Amino Acids Important For CCR5 Binding Wang, W. Et al. Proc. Natl. Acad. Sci, USA 96: 4558, 1999.

KRIHIGPGRAFY

447 MAB region

HIGURE 7 (CONTD) 48

Neutralize	rde	r of ze	Rank Order of V3 Sequences Based on Ability to Neutralize 19 Clade B HIV Primary Isolates	ences Based on Ability to B HIV Primary Isolates
	Peptide Neutralized	le ed	V3 Sequence	Isolatés
		A A A A A A A A A A A A A A A A A A A	NNNTRRNIHIGLGRRFYAT. NNNTRRSVRIGPGGAMFRTG IKIERKRIPLGLGKAFYTTK	0 0 0
	113.1 51.23		RPNNNTRRSIHLGMGRALYATO RPSNNTRRSIHMGLGRAFYTTG RPNRHTGKSIRMGLGRAWHTTR	c 0 0
		R R R R R R R R R R R R R R R R R R R	NNTRKRISLGPGRVYYTTG Ynetkririhrgygrsfytvr	. 0
		RPONNT	NTVRKIPIGPGSSFYTT. Ntrkgihlgpgraiyate Ntrbpismgpgruiyttg	
	162.7 46.26	R P O A A	PONTIKORIIHIGPGREYTT.	
	3.323 82.15	X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	NTRKSINMGPGRAFYTTG NTRRSIPI GPGRAFYTTG TTBPG DIGPGRAFFTTG	N mm (
	69.18 72.18 70.18	K	RPNNNTRKSIRIGPGRAVYATO RPNNNTRKSIRIGPGRAVYATO RPNNNTRKSIRIGPGRAFYATG	
		RPSIN	PSINKRRHIHIGPGRAFYAT Lynyrrkgihigpgraiyatg	er er (
	85.15 513.2	R P N N N N N N N N N N N N N N N N N N	NTRKSIHIAPGRAFTIIG NTRKGIHMGPGKAIYTD	D 4 4
	1.481 11.85 74.17	X	NIKKSINIGPGRAFYTTG NTRKRMTLGPGKVFYTTG	1 r2 r2
	36.29 34.29 82.19	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NTRKGIHIGPGRTFFATG NTRKSIQIGPGRAFYTTG NTRKSIHIGPGRAFYATE	6 8 16

This Page Blank (uspto)