$$\langle h, \phi \rangle = \int h(x) d\phi(x)$$

for every bounded Borel function $\,h\,$ on $\,X\,$ and every $\,\phi\,\in\,M\,(X)\,$.

After these preparations we now can show that the lattice property |T(t)f| = T(t)|f| of the semigroup corresponds to the identity (2.9) below for the generator, which we call Kato's equality (cf. Remark 2.7).

<u>Theorem</u> 2.5. A strongly continuous semigroup $(T(t))_{t\geq 0}$ on $C_{o}(X)$ is a lattice semigroup if and only if its generator A satisfies

(2.9)
$$\begin{array}{ll} \langle \operatorname{Re}[\{\operatorname{si\hat{g}n}\ \overline{f}\} \ (\operatorname{Af})\], \phi \rangle = \langle |f|, A' \phi \rangle \\ \text{for all } f \in D(A), \phi \in D(A') \end{array}$$
 (Kato's equality).

From the proof of the theorem we isolate the following lemma.

<u>Lemma</u> 2.6. Let $(T(t))_{t\geq 0}$ be a semigroup on $C_{o}(X)$ with generator A . Then for every $f\in D(A)$, $\phi\in M(X)$,

(2.10)
$$\frac{d}{dt}_{t=0} < |T(t)f|, \phi> = < Re[(sign \overline{f})(Af)], \phi> .$$

<u>Proof.</u> Let $f \in D(A)$ and $x \in X$. Define the function k(t) = (T(t)f)(x) ($t \ge 0$). Then k is right-sided differentiable in 0 with derivative k'(0) = (Af)(x). It follows from the chain rule Prop. 2.3 that

(2.11)
$$d/dt_{|t=0|} |(T(t)f)(x)| = Re[(sign \overline{f})(Af)](x)$$
.

Moreover, $1/t \mid |T(t)f| - |f| \mid \le 1/t \mid T(t)f - f \mid$. Thus $\sup_{1 \ge t > 0} 1/t \mid |T(t)f| - |f| \mid < \infty$; i.e., the functions $k_t \in C_0(X)$ given by

(2.12)
$$k_{t}(x) = 1/t (|(T(t) f)(x)| - |f(x)|)$$
 $(x \in X)$

(t > 0) are uniformly dominated by a constant. The dominated convergence theorem and (2.11) imply that

<u>Proof of Theorem</u> 2.5. Assume that $(T(t))_{t \ge 0}$ is a lattice semigroup. Let $f \in D(A)$, $\phi \in D(A')$. It follows from the preceding lemma that