Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Física Prof. Dr. Alan Barros de Oliveira

Prova 2 - FIS110-73 - 17/06/2022

- 1. Uma partícula de massa 1,1 kg, lançada sobre um trilho retilíneo com velocidade de 3,8 m/s, está sujeita a uma força F(x)=-bx, onde b=0,7 N/m e x é o deslocamento, em m, a partir da origem. Sabendo-se que a partícula para em dois pontos do trilho, a saber, $+x_0$ e $-x_0$, determine x_0 em metros. (a)6,3 (b)1,4 (c)3,1 (d)4,8 (e)8,2
- 2. Uma pequena aranha de peso P_a está pendurada na ponta de um fio de teia, no teto de um elevador. Sabendo-se que o fio suporta uma tensão máxima de $8.0P_a$, qual seria a mínima aceleração (em m/s²) de subida do elevador para que o fio se partisse?

(a)40.5 (b)54.5 (c)8.5 (d)26.6 (e)70.0

3. Considere uma colisão frontal elástica entre duas partículas de massas m e m'=14m. A partícula de massa m se move inicialmente com velocidade v, enquanto a outra encontra-se em repouso. Qual é a fração de energia cinética transferida de m para m' durante a colisão? (a)0.84 (b)0.25 (c)0.01 (d)0.34 (e)0.54

4. Um rifle, que atira balas a 445 m/s, é apontado para um alvo situado a 76 m de distância. Se o centro do alvo está na mesma altura do rifle, para que altura (**em centímetros**) acima do alvo o cano do rifle deve ser apontado para que a bala atinja o seu centro?

(a) 61,0 (b) 14,6 (c) 84,6 (d) 100,6 (e) 27,6

5. Considere um objeto que se move em uma dimensão de acordo com a equação horária $x=v_0te^{-t/t_0}$, onde t é o tempo, $v_0=11,2$ m/s e $t_0=1,4$ s. Qual é a distância, em metros, que o objeto se encontra da origem quando para momentaneamente?

(a)12,1 (b)5,8 (c)5,0 (d)7,8 (e)9,6

6. Na figura abaixo, um pequeno bloco de 58 g desliza para baixo em uma superfície curva sem atrito a partir de uma altura h=15 cm e depois adere a uma barra uniforme de massa 122 g e comprimento 75 cm. A barra gira em torno do ponto O antes de parar momentaneamente. Determine θ em graus.

(a)11,8 (b)33,5 (c)30,2 (d)19,5 (e)45,0

- 7. Considere um corpo de massa m, sob a ação de um campo de forças F conservativo, cuja energia mecânica é E=K+U, onde K e U são as energias cinética e potencial. Considerando que o movimento do corpo é restrito a uma dimensão, pode-se afirmar que
- (a) necessariamente dE/dt = 0.
- (b) K = U apenas em pontos de retorno.
- (c) U > E é condição de flutuação mega dissonante.
- (d) quando U=0, tem-se um ponto de equilíbrio instável.
- (e) quando K=0, tem-se um ponto de equilíbrio estável.
- 8. Duas partículas, de massas m_1 e m_2 , são empurradas uma contra a outra, comprimindo uma mola colocada entre elas. Quando são liberadas, a mola as arremessa em sentidos opostos. A relação entre as massas das partículas é $m_2/m_1=4$ e a energia armazenada na mola é de 68 J. Suponha que a mola tenha massa desprezível e que toda a energia armazenada seja transferida para as partículas. Após terminada essa transferência, qual é a energia cinética **da partícula 1** em J? (a)19,4 (b)31,8 (c)39,5 (d)54,4 (e)7,8
- 9. Um metrô percorre uma curva plana de raio 19 m a 18 km/h. Qual o ângulo, em graus, que as alças de mão penduradas no teto fazem com a vertical? (a)78.0 (b)49.7 (c)38.4 (d)69.8 (e)59.6
- 10. A figura abaixo mostra um corpo rígido formado por um aro fino (de massa m, raio R=0.14 m e momento de inércia em relação ao diâmetro $mR^2/2$) e uma barra fina radial (de massa m, comprimento L=2.00R e momento de inércia em relação ao seu CM $mL^2/12$). O conjunto está na vertical, mas se recebe um pequeno empurrão começa a girar em torno de um eixo horizontal no plano do aro e da barra, que passa pela extremidade inferior da barra. Supondo que a energia fornecida ao sistema pelo pequeno empurrão é desprezível, qual é a velocidade angular em rad/s do conjunto quando ele passa pela posição invertida (de cabeça para baixo)?

(a)9,46 (b)5,36 (c)8,17 (d)10,27 (e)6,45

Fórmulas e Constantes

$$\begin{split} I &= \frac{P_s}{4\pi r^2}; \quad E = hf; \quad p = \frac{hf}{c} = \frac{h}{\lambda} \\ hf &= K_{\text{max}} + \Phi; \quad \Delta \lambda = \frac{h}{mc} (1 - \cos \phi) \\ \frac{d^2 \psi}{dx^2} + \frac{8\pi^2 m}{h^2} [E - U(x)] \psi = 0 \\ T &\approx e^{-2bL}, \text{ onde } b = \sqrt{\frac{8\pi^2 m (U_b - E)}{h^2}} \\ E_n &= \left(\frac{h^2}{8mL^2}\right) n^2, \text{ para } n = 1, 2, 3 \dots \\ \psi_n(x) &= A \sin \left(\frac{n\pi}{L}x\right), \text{ para } n = 1, 2, 3 \dots \\ \Delta x \Delta p &= h/2\pi \\ \epsilon_0 &= 8, 854 \times 10^{12} \text{ F/m}; \quad \mu_0 = 1, 257 \times 10^{-6} \text{ H/m} \\ c &= 3, 0 \times 10^8 \text{ m/s}; \quad h = 6, 63 \times 10^{-34} \text{ J/s} = 4, 14 \times 10^{-15} \text{ eV.s} \end{split}$$

Eletron: $mc^2 = 511 \text{ keV}$

hc = 1240 eV.nm

Por exemplo, se seu número de matrícula for 12.1.3579, temos que

e a tabela deve ser preenchida assim:

XX	0	1	2	3	4	5	6	7	8	9
1°										
2°										
3°										
4°										
5°										
6°										
7°										

NÃO MARCAR											
un	_		_	_	_	_	_	_	_	_	
GABARITO											
_	1	2	3	4	5	6	7	8	9	10	
a											
b											
$^{\mathrm{c}}$											
d											
е											
MATRÍCULA											
_	0	1	2	3	4	5	6	7	8	9	
1°											
2°											
3°											
4°											
5°											
6°											
7°											

MATRÍCULA:

NOME:

TURMA: