Chapitre 3 Série d'exercices de TD 2020/2021

Présenté par :

H. BENKAOUHA

Bureau 222, Département Informatique, USTHB hbenkaouha@usthb.dz haroun.benkaouha@gmail.com

H. BENKAUUHA

Exercice 1

- · Montrer que:
 - la moyenne des degrés des sommets d'un arbre
 - est strictement inférieure à 2.

H. BENKAOUHA

Exercice 1 - Solution

- Par définition, dans un graphe d'ordre n et de taille m qui est un arbre, on a *m*=*n* 1
- D'un autre coté on a la somme des degrés est 2m
- Donc la moyenne est 2m/n
- On remplace m par n-1
- Moyenne_degrés = 2(n-1)/n = 2n/n 2/n= 2 - 2/n < 2

H. BENKAOUHA

Exercice 2

• Trouver l'arbre de poids minimum puis l'arbre de poids maximum.

 Donner le codage de Prufer correspondant à l'arbre trouvé

H. BENKAOUHA

Exercice 2 – Solution

- On applique l'algorithme de Kruksal pour trouver l'arbre de couverture de poids min.
- Tri par ordre croissant des arêtes (7)

Arête	Poids	Décision	Arête	Poids	Décision
{2,7}	1		{3,8}	3	
{5,6}	1		{4,8}	3	
{1,6}	2		{3,5}	4	
{3,6}	2		{4,5}	4	
{7,8}	2		{1,2}	5	
{1,5}	3		{3,4}	5	
{1,7}	3		{4,7}	5	
{2,3}	3				•

1

(2)(8)

4

TH. BENKAQUHA 5

Exercice 2 – Solution

• Algo. de Kruksal (1/7)

Arête	Poids	Décision	Arête	Poids	Décision
{2,7}	1	Oui	{3,8}	3	
{5,6}	1		{4,8}	3	
{1,6}	2		{3,5}	4	
{3,6}	2		{4,5}	4	
{7,8}	2		{1,2}	5	
{1,5}	3		{3,4}	5	
{1,7}	3		{4,7}	5	
{2,3}	3				•

6

(8)

5 4

Exercice 2 – Solution

- Codage de Prufer de l'arbre de couverture de poids minimal
 - Supprimer 5 et l'arête incidente
 - Sommets de degré 1 :
 - -6, 7, 8
 - Le min : 6
 - 6 est relié à 3
 - P=2 3 4 3

Exercice 2 – Solution

- Codage de Prufer de l'arbre de couverture de poids minimal
 - Supprimer 6 et l'arête incidente
 - Sommets de degré 1 :
 - -3, 7, 8
 - Le min : 3
 - 3 est relié à 4
 - P=2 3 4 3 4

3

. BENKAOUHA

Exercice 2 – Solution

- Codage de Prufer de l'arbre de couverture de poids minimal
 - Supprimer 3 et l'arête incidente
 - Sommets de degré 1 :
 - **−**7,8
 - Le min : 7
 - 7 est relié à 4
 - P=2 3 4 3 4 4

H. BENKAOUHA

Exercice 2 – Solution

- Codage de Prufer de l'arbre de couverture de poids minimal
 - Supprimer 7 et l'arête incidente
 - Il ne reste que 2 sommet
 - Fin
 - P=2 3 4 3 4 4

40

7

(8)

Exercice 3

- On désire installer au moindre coût un réseau de communication entre divers sites.
- Les coûts des connexions intersites sont les suivants (symétriques) :

iivants (symetriques).							
	В	\boldsymbol{C}	D	\boldsymbol{E}	F	\boldsymbol{G}	\boldsymbol{H}
A	5	18	9	13	7	38	22
	В	17	11	7	10	38	15
		C	27	23	15	20	25
			D	20	15	40	25
				E	15	40	30
					F	35	10
H. BENKAOUHA					G	45	

Exercice 3 - Suite

- 1. Identifier le problème associé.
- 2. Déterminer la solution optimale.

H. BENKAOUHA

Exercice 3 - Solution

- 1. Identifier le problème associé.
- Modélisation
 - Chaque sommet x représente un site x, x de A à H.
 - Chaque arête {i, j} représente une connexion intersites.
 - Le coût de la connexion intersites est représenté par le poids de l'arête correspondante.

Exercice 3 - Solution

- 1. Identifier le problème associé.
- Identification
 - Tous les sites connectés : graphe connexe
 - Coût minimal: graphe connexe minimal avec somme de poids des arêtes minimal
 - Revient à trouver l'arbre de couverture maximal de poids minimal.

H. BENKAOUHA

Exercice 3 - Solution 2. Déterminer la solution optimale.

- On applique l'algorithme de Kruksal
- Tri par ordre croissant des arêtes

{ <i>A</i> , <i>B</i> }	5		-
{ <i>A,F</i> }	7		•
{ <i>B,E</i> }	7		
{ <i>A</i> , <i>D</i> }	9		
{ <i>D,F</i> }	10		-
{ <i>F,H</i> }	10		+

{*C,F*} 15

Arête	Poids	Décision	Arête	Poids	Décision
{ <i>A</i> , <i>B</i> }	5		{ <i>D,F</i> }	15	
{ <i>A,F</i> }	7		{ <i>E,F</i> }	15	
{ <i>B,E</i> }	7		{ <i>B,C</i> }	17	
{A,D}	9		{ <i>A</i> , <i>C</i> }	18	
{ <i>D,F</i> }	10		{ <i>C,G</i> }	20	
{ <i>F,H</i> }	10		{ <i>D,E</i> }	20	
{B,D}	11		{ <i>A,H</i> }	22	
{ <i>A,E</i> }	13		{ <i>C,E</i> }	23	
{ <i>B,H</i> }	15		{ <i>C,H</i> }	25	

{D,H}	25	
{ <i>C,D</i> }	27	
{ <i>E</i> , <i>H</i> }	30	
{ <i>F,G</i> }	35	
{ <i>A</i> , <i>G</i> }	38	
{ <i>B,G</i> }	38	
{D,G}	40	
{ <i>E</i> , <i>G</i> }	40	
{ <i>G,H</i> }	45	

Arête Poids Décision

Exercice 3 - Solution 2. Déterminer la solution optimale. (H)Arête Poids Décision (A){A,B} 5 $\{A,F\}$ 7 {*B,E*} 9 $\{A,D\}$ $\{D,F\}$ 10 **(***c***)** (B) (D) {*F,H*} 10 {*B,D*} 11 $\{A,E\}$ 13 {B,H} 15 {C,F} 15 **G** E

Exercice 4

- Un arbre est dit binaire, s'il est constitué :
 - d'un unique sommet de degré 2 (appelé racine de l'arbre)
 - et tout autre sommet est soit de degré 3, soit de degré 1.
- Les sommets de degré 1 sont appelés les feuilles de l'arbre.
- Exemple de 9 sommets et 5 feuilles

Exercice 4 - Suite

- 1. Énumérez (à isomorphisme près) tous les arbres binaires ayant exactement 7 feuilles.
- 2. Combien de sommets peut avoir un arbre binaire ayant exactement 7 feuilles.
- 3. Combien de sommets peut avoir un arbre binaire ayant exactement k feuilles (avec $k \ge 2$).

IKAOUHA

Exercice 4 - Solution

1. Énumérez (à isomorphisme près) tous les arbres binaires ayant exactement 7 feuilles.

H. BENKAOUHA

Exercice 4 - Solution

1. Énumérez (à isomorphisme près) tous les arbres binaires ayant exactement 7 feuilles.

Exercice 4 - Solution

1. Énumérez (à isomorphisme près) tous les arbres binaires ayant exactement 7 feuilles.

Exercice 4 – Solution

1. Énumérez (à isomorphisme près) tous les arbres binaires ayant exactement 7 feuilles.

H. BENKAOUHA

Exercice 4 - Solution

- 2. Combien de sommets peut avoir un arbre binaire ayant exactement 7 feuilles.
- Il y a 13 sommets selon la question précédente.

H. BENKAOUHA

Exercice 4 – Solution

- 3. Combien de sommets peut avoir un arbre binaire ayant exactement k feuilles (avec $k \ge 2$).
- On pose *n* le nombre de sommets et *m* le nombre d'arêtes
- On a k feuilles (degré 1), 1 racine (degré 2) et p autres sommets (degré 3)
- *n=k+p+*1
- 2*1 + 1*k + 3*p = 2m (formule des degrés)
- *m*=*n*−1 (propriété d'un arbre)

I. BENKAOUHA

61

Exercice 4 – Solution

- 3. Combien de sommets peut avoir un arbre binaire ayant exactement k feuilles (avec $k \ge 2$).
- *n=k+p+1* ... (1)
- $k + 3p + 2 = 2m \dots (2)$
- m=n-1...(3)
- De (2) et (3) $\Rightarrow k + 3p + 2 = 2 (n-1) \dots (4)$
- De (1) $\Rightarrow p=n-k-1$
- On remplace dans (4) \Rightarrow k+3(n-k-1)+2=2(n-1)
- $\Rightarrow k+3n-3k-3+2=2n-2 \Rightarrow n-2k=-1 \Rightarrow n=2k-1$

H. BENKAOUHA

62