ET720 - Sistemas de energia elétrica l Capítulo 1 – Introdução Exercícios

- 1.1 O script em MatlabTM mostrado no anexo contém as demandas de quatro consumidores em um período de 24 horas. Cada valor de demanda em kW corresponde ao valor médio em um intervalo de 15 minutos.
 - (a) Plote as curvas de demanda diárias dos consumidores.
 - (b) Calcule as energias consumidas pelos consumidores no período, em kWh.
 - (c) Obtenha as demandas máximas de cada consumidor e determine os horários em que as mesmas ocorreram.
 - (d) Calcule as demandas médias dos consumidores.
 - (e) Calcule os fatores de carga dos consumidores.
 - (f) Plote a curva de demanda diversificada do transformador que alimenta os quatro consumidores.
 - (g) Determine a demanda diversificada máxima e o horário em que esta ocorreu. Note que a demanda diversificada máxima não corresponde necessariamente à soma das demandas máximas e não ocorre necessariamente no mesmo horário que qualquer das demandas máximas individuais.
 - (h) Plote a curva de duração do transformador e determine a porcentagem de tempo em que a potência consumida é maior ou igual a 9 kW.

Anexo

```
clear all
close all
clc
% Consumidor 1
D1 = [2.5 \ 4 \ 4 \ 3.75 \ 3.5 \ 3 \ 3.55 \ 3 \ 3.25 \ 3.5 \ 2.75 \ 2.75 \ 2.5 \ 2.25 \ 2.25 \ 2.25 \ ...
                  2.25\ 1.5\ 1.5\ 3\ 1.75\ 1.75\ 1.5\ 1.5\ 1.5\ 1.5\ 1.5\ 3.5\ 1.5\ 1.5\ 1.5\ 1.5\ \dots
                   6.25\ 5\ 1.5\ 1.5\ 1.5\ 1.5\ 1.5\ 1.25\ 1.25\ 1.25\ 3\ 1.25\ 1.5\ 1.5\ 1.5\ 1.5\ \dots
                    6 \ 6 \ 6 \ 6 \ 2.75 \ 1.5 \ 3.75 \ 6 \ 5.5 \ 3.5 \ 0.75 \ 1 \ 0.75 \ 1 \ 1.75 \ 1.75 \ 2 \ 3 \ 1.5 \ 1.5 \ \dots 
                   1.25 1.25 1.25 1.25 1.25 1.5 1.25 1.5 ];
% Consumidor 2
\mathtt{D2} \ = \ [ \ 3.5 \ 4.5 \ 3.5 \ 2.5 \ 2 \ 3.5 \ 2 \ 2.5 \ 3 \ 3 \ 3 \ 0.75 \ .5 \ .5 \ .5 \ .5 \ .5 \ .25 \ .25 \ ...
                   .5 .25 1.75 .75 .25 .5 5.25 5.75 5.25 2 .75 .5 .25 2.5 .25 .25 .25 ...
                   .25 .25 .25 .25 .25 .5 5.5 7 7 1.75 .5 .5 2.5 2.5 1.5 .5 .5 .5 ...
                   2 2 2 1.25 .5 .5 .5 .5 1 1 1 1 1 1 .75 .75 1.5 2.25 .75 1 ...
                   .75 .75 .75 .75 .75 .75 1 1 2.25 6.5 1.25 1.25 1 1 1 1 1 1 1 3 1 ];
% Consumidor 3
\mathtt{D3} = [ \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.25 \ 4.
                   4.25 4.25 4.25 4.5 4 4 4.25 4 4.25 4.25 4.25 5 3.75 3.75 3.5 3 2.5 ...
                   3 2.75 2.5 2.5 2 3 3.5 3.75 3.5 4 3.75 4.5 3.25 3.5 4 4 3.75 3.5 ...
                  4.5\ 4.5\ 4.5\ 5.4.5\ 4.5\ 4.75\ 4.5\ 4.25\ 4.25\ 4.25\ 4.25\ 4.5\ 4.5\ 4.75\ 4.75\ \dots
                   3.5 \ 3.25 \ 3 \ 3.25 \ 3 \ 3.25 \ 3 \ 3.25 \ 4.5 \ 4.5 \ 4.5 \ 4.75 \ 4.5 \ 5 \ 4.75 \ 4.5 \ \dots
                   4.75 4.75 4.75 4.5 4.5 4.5 4.4 4.25 4.25 4.25 4.25 1:
% Consumidor 4
\mathsf{D4} = [ \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 
                  0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 
                   1.25\ 2.75\ .75\ 2\ 6.5\ 5.5\ 4.5\ .75\ 2.5\ 0.5\ 0.5\ 0.5\ 0.5\ 0.5\ 0.5\ 2\ 2.75\ \dots
                  5 3.25 1 1.75 1.75 0.5 0.5 1.5 1.5 1.5 4.5 5.5 5.25 1 0.5 0.5 .75 ...
                  4.75\ 6\ 2\ 1.5\ 1.5\ 1.25\ 1.25\ 4\ 3.25\ 2\ 1.25\ 1.25\ 6\ 7\ 3\ 4\ 5.75\ 2\ 1.25\ \dots
                   1.25 1.25 4.25 0.5 0.5 0.5 0.5 0.5 0.5 ];
```

Respostas

1.1

(a)
$$\begin{cases} E_1 = 58,6 \text{ kWh} \\ E_2 = 37,4 \text{ kWh} \\ E_3 = 96,9 \text{ kWh} \\ E_4 = 43,4 \text{ kWh} \end{cases}$$
(c)
$$\begin{cases} D_1^{max} = 6,25 \text{ kW às } 13:15 \\ D_2^{max} = 7 \text{ kW às } 11:15 \\ D_3^{max} = 5 \text{ kW às } 6:45 \\ D_4^{max} = 7 \text{ kW às } 20:30 \end{cases}$$
(d)
$$\begin{cases} Dm_1 = 2,44 \text{ kW} \\ Dm_2 = 1,56 \text{ kW} \\ Dm_3 = 4,04 \text{ kW} \\ Dm_4 = 1,81 \text{ kW} \end{cases}$$
(e)
$$\begin{cases} f_1 = 0,39 \\ f_2 = 0,22 \\ f_3 = 0,81 \\ f_4 = 0,26 \end{cases}$$
(f) (g) DMT = 19 kW às 21:15

(h) 52% do tempo.