ChIP-seq 检测报告

2018-08-21

Pan

一、 样本信息

本次分析使用数据集为 NCBI SRA 编号 <u>SRP065184</u>。实验目的:在 T-ALL 细胞系 LOUCY 中产生针对 H3K27ac 的 ChIP 测序数据。

表 1-1 样本信息

SRA 编号	类型	上传时间	其他信息	检测平台	
SRR2774675	H3K27ac ChIP- seq	2016-05-17	H3K27ac	Illumina	
SRR2774676	input DNA	2016-05-17	input	Illumina	

二、 数据质量统计

2.1 测序数据情况汇总

使用 fastp(S Chen,et al.)进行统计。

表 2-1 测序情况汇总

SRA ID	Sample Name	Row reads Raw base		GC%	Q20%	Q30%	
SRR2774675	H3K27ac	66830848	5613791232	45.18	94.76	92.70	
SRR2774676	input	81856618	6875955912	38.62	94.80	92.72	

注:

(1) SRA ID:数据在 SRA 数据库中的 ID;

(2) Sample Name:数据在实验中的命名;

(3) Row reads: 原始数据 reads 数;

(4) Raw bases: 原始数据的碱基数;

(5) GC%: GC 碱基占总碱基数的比例;

(6) Q20%: phred 得分达到 20 的碱基数的比例;

(7) Q30%: phred 得分达到 30 的碱基数的比例。

2.2 测序质量分布图

使用 FastQC(Andrews S, et al.)以及 MultiQC(Ewels P, et al.)进行统计。

图 2-1 序列测序质量分布图

可以看出,大多数 reads 的 phred 得分在 20 以上。

2.3 碱基比例

图 2-2 input DNA 各碱基比例图

图 2-3 H3k27ac 各碱基比例图

三、 ChIP 分析

使用 Bowtie2(Langmead B and Salzberg SL)将原始数据比对到参考基因组(ucsc.hg19.fa)后,使用 MACS2(Zhang Y, et al.)进行 peak calling。其中 input 为 control 组,H3k27ac 为 treated 组。再使用 ChlPseeker(Yu G, et al.)进行分析。

3.1 查看 peaks 在基因组中的位置

图 3-1 peaks 在基因组中的位置(需横向查看)

3.2 与 TSS 区域结合的 peaks 的概况

TSS 为转录起始位点,下图为落在转录起始位点前后的 peaks 数目的统计图。

图 3-2 TSS 距离图

3.3 与 TSS 区域结合的 peaks 的热图

图 3-3 TSS 热图

四、 ChIP 注释

4.1 ChIP 注释结果

使用 ChIPseeker 进行 ChIP 注释。得到以下结果(只显示前 10 行。)

表 4-1 ChIP 注释结果

seqnam es	start	end	width	V5	annotati on	geneChr	geneSta rt	geneEn d	geneld	SYMBO L
chr1	20591	20958	368	18	Promot er (<=1kb)	1	16858	19759	653635	WASH7
chr1	21067	22121	1055	90	Promot er (1- 2kb)	1	16858	19759	653635	WASH7 P
chr1	22220	22815	596	45	Promot er (2- 3kb)	1	16858	19759	653635	WASH7 P
chr1	28149	30442	2294	2044	Promot er (<=1kb)	1	14362	29370	653635	WASH7 P
chr1	383656	384290	635	498	Distal Interge nic	1	367659	368597	729759	OR4F29
chr1	416732	417294	563	177	Distal Interge nic	1	367659	368597	729759	OR4F29
chr1	440422	443000	2579	1196	Distal Interge nic	1	367659	368597	729759	OR4F29
chr1	539841	542733	2893	1156	Distal Interge nic	1	621096	622034	729759	OR4F29
chr1	605225	606042	818	379	Distal Interge nic	1	621096	622034	729759	OR4F29
chr1	712917	715476	2560	2010	Promot er (<=1kb)	1	700245	714068	1E+08	LOC100 288069

4.2 注释结果可视化

图 4-1 注释结果比例图

由于 UpSet 适用于多于 5 个集合的情况,而本次实验只有单个 ChIP 样本,因此下图仅供参考。

图 4-2 UpSet 图

4.3 富集分析

使用 clusterProfiler (Yu G, et al.) 对 peaks 所在基因进行富集分析,得到以下结果。

图 4-3 富集分析

五、 参考文献

- Long noncoding RNA signatures define oncogenic subtypes in T-cell acute lymphoblastic leukemia. Wallaert A, et al. Leukemia. 2016 Sep;30(9):1927-30. doi: 10.1038/leu.2016.82. Epub 2016 Apr 22.
- 2. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Leggett RM, et al. Front Genet. 2013 Dec 17;4:288. doi: 10.3389/fgene.2013.00288.
- 3. Quality control of next-generation sequencing data without a reference. Trivedi UH, et al. Front Genet. 2014 May 6;5:111. doi: 10.3389/fgene.2014.00111. eCollection 2014.
- MultiQC: summarize analysis results for multiple tools and samples in a single report.
 Ewels P, et al. Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354. Epub 2016 Jun 16.
- 5. Fast gapped-read alignment with Bowtie 2. Langmead B and Salzberg SL Nat Methods. 2012 Mar 4;9(4):357-9. doi: 10.1038/nmeth.1923.
- 6. Model-based analysis of ChIP-Seq (MACS). Zhang Y, et al. Genome Biol. 2008;9(9):R137. doi: 10.1186/gb-2008-9-9-r137. Epub 2008 Sep 17.
- 7. Identifying ChIP-seq enrichment using MACS. Feng J, et al. Nat Protoc. 2012 Sep;7(9):1728-40. doi: 10.1038/nprot.2012.101. Epub 2012 Aug 30.
- 8. ChlPseeker: an R/Bioconductor package for ChlP peak annotation, comparison and visualization. Yu G, et al. Bioinformatics. 2015 Jul 15;31(14):2382-3. doi: 10.1093/bioinformatics/btv145. Epub 2015 Mar 11.
- 9. clusterProfiler: an R package for comparing biological themes among gene clusters. Yu G, et al. OMICS. 2012 May;16(5):284-7. doi: 10.1089/omi.2011.0118. Epub 2012 Mar 28.