Криптография, Лекция № 4

29 сентября 2014 г.

Продолжение доказательства теоремы о существовании генератора псевдослучайных чисел, если существует односторонняя перестановка.

Сперва построим генератор псевдо-случайных числе, отображающий n битов в p(n), имея генератор псевдо-случайных чисел $(n \mapsto n+1)$.

По генератору G(x) = g(x)h(x) построим $G'(x) = h(x)h(g(x))h(g(g(x)))\dots$

Claim 1

Eсли G(x) - генератор псевдо-случайных чисел, то G'(x) - генератор псевдослучайных чисел.

Доказательство.

Метод гибридного аргумента:

$$G_{k+1}(x) = h(x)h(g(x))h(g(g(x))) \dots h(g^k(x))g^{k+1}(x)$$

$$G_k(x, r_1) = r_1h(x)h(g(x))h(g(g(x))) \dots h(g^{k-1}(x))g^k(x)$$

$$G_k(x, r_1, r_2) = r_1r_2h(x)h(g(x))h(g(g(x))) \dots h(g^{k-2}(x))g^{k-1}(x)$$

$$G_1(x, r) = r_1r_2 \dots r_{k+1}x$$

$$G_0(x, r) = r_1r_2 \dots r_kh(x)g(x)$$

 G_0 - истинно случайные биты. G_k - претендент на генератор.

Если $G_{k+1}=G^{\prime}$ - не генератор, то

$$\exists D \ \exists q(\cdot) \ \forall N \ \exists n > N \ |Pr_{x,r}\{D(G_0(x,r)) = 1\} - Pr_{x,r}\{D(G_k(x,r)) = 1\}| \ge \frac{1}{q(n)}$$

$$\Rightarrow \exists q' \,\forall N \,\exists n > N \,\exists i | Pr_{x,r} \{ D(G_i(x,r)) = 1 \} - Pr_{x,r} \{ D(G_{i+1}(x,r)) = 1 \} | \geq \frac{1}{q'(n)}$$

Тогда G - не генератор:

отличили

$$r_1r_2...r_{k-i+1}h(x)h(g(x))...h(g^{i-1}(x))g^i(x)$$

от

$$r_1 r_2 \dots r_{k-i} h(x) h(g(x)) \dots h(g^i(x)) g^{i+1}(x)$$

Переобозначим: $y = g^i(x)$, $s = r_1 \dots r_{k-i}$, $T(x) = h(x) \dots h(g^{i-1}(x))g^i(x)$.

В этих обозначения мы отличили $sr_{k-i+1}T(x)$ от sh(x)T(g(x)).

Фиксируя s, отличили rT(x) от h(x)T(g(x)).

$$D'(x,r) = D(srT(x))$$

D' будет оличать xr от g(x)h(x). Что привододит к противоречию с тем, что g(x)h(x) - генератор псевдо-случайных чисел.

Осталось по односторонней перестановке построить одностороннюю перестановку с трудным битом. Но сперва поговорим немного о кодах Адамара.

Definition 1. Kod Adamapa $H: \{0,1\}^n \to \{0,1\}^{2^n}$.

$$H(x_1, \dots, x_n) = (x_1 y_1 + \dots + x_n y_n)|_{(y_1, \dots, y_n) \in \{0,1\}^n}$$

Коды Адамара могут быть декодированы списком:

Если расстояние Хэминга $\rho_H(z,\bar{z}) \leq \frac{1}{2} - \varepsilon$, то за время $poly(\frac{n}{\varepsilon})$ можно выдать полиномиальный список, содержащий прообраз $z.\ z,\bar{z} \in \{0,1\}^{2^n};\ z \in ImH(z- кодовое слово <math>H)$.

Доказательство. (Существования декодирования)

Definition 2.

Расстояние Хэмминга $\rho_H(t,t') = \frac{\#\{i: t_i \neq t'_i\}}{2^n}$

К \bar{z} произвольный доступ: по j за константное время можно найти \bar{z}_j

Без искажений достаточно запросить n битов с номерами $(1,0,\ldots,0),\ldots,(0,\ldots,0,1)$

Обозначим z(y) - соответствующий бит z.

Claim 2.

$$z(y+r) = z(y) + z(r)$$

Из утверждения z(y)=z(y+r)+z(r)= большинство из $\bar{z}(y+r)+z(r)$

Idea 1.

Выберем специальным образом попарно независимые r_1, \ldots, r_s ; выберем z_y как большинство из $\bar{z}(y+r_i)+z(r_i)$

Выбор r_1, \ldots, r_s :

A - матрица размера $(2^m-1)\times m$, строки - ненулевые элементы $\{0,1\}^m$. Пусть $s=2^m-1$.

Claim 3.

u - случайный вектор $m \times 1 \Rightarrow$ величины Au попарно независимы.

Возьмем u_1,\dots,u_n - случайные векторы размера $m\times 1.$ U - случайная матрица размера $m\times n.$

$$R = (r_1, \dots, r_s)^T = AU$$
, матрица рамера $(2^m - 1) \times n$.

$$r_i = A_i U = (A_{i_1} e_1 + \ldots + A_{i_m} e_m) U = A_{i_1} e_1 U + \ldots + A_{i_m} e_m U = A_{i_1} \bar{U}_1 + \ldots + A_{i_m} \bar{U}_m$$
$$z(r_i) = A_{i_1} z(\bar{U}_1) + \ldots + A_{i_m} z(\bar{U}_m)$$

То есть достаточно задать $z(\bar{U}_1),\ldots,z(\bar{U}_m)$ чтобы вычислить $z(r_i)$. Но все эти 2^m вариантов можно перебрать. Для каждого варианта вычисляем $z(r_i)$ и имея \bar{z} с произвольным доступом, вычисляем значения по большинству.

Еще раз конструкция: для фиксированного набора $z(\bar u_1),\dots,z(\bar u_m)$ при $j=1,\dots,n$. $z(e_j)$ выбирается как большинство из $\bar z(e_j+r_i)+z(r_i)$ ξ_i - случайная величина равная 1, если и только если $z(y)\neq \bar z(y+r_i)+z(r_i)$

$$Pr\{\xi_i = 1\} \le \frac{1}{2} - \varepsilon$$

Нужно посчитать вероятность $Pr\{\frac{1}{s}(\xi_1+\ldots+\xi_s)\leq \frac{1}{2}\}$ для попарно независимых ξ_1,\ldots,ξ_s