Overview

- Exploratory Data Analysis (EDA)
- Data Exploration: Descriptive Statistics
- Data Exploration: Visualizations

Why?

- EDA encompasses the "explore data" part of the data science process
- EDA is crucial but often overlooked:
 - If your data is bad, your results will be bad
 - Conversely, understanding your data well can help you create smart, appropriate models

What?

- 1. Store data in data structure(s) that will be convenient for exploring/processing (Memory is fast. Storage is slow)
- 2. Clean/format the data so that:
 - Each row represents a single object/observation/entry
 - Each column represents an attribute/property/feature of that entry
 - Values are numeric whenever possible
 - Columns contain atomic properties that cannot be further decomposed

What? (continued)

- 3. Explore **global** properties: use histograms, scatter plots, and aggregation functions to summarize the data
- 4. Explore **group** properties: group like-items together to compare subsets of the data (are the comparison results reasonable/expected?)

This process transforms your data into a format which is easier to work with, gives you a basic overview of the data's properties, and likely generates several questions for you to follow-up in subsequent analysis.

Purposes of EDA:

- Maximize insight into a dataset
- Uncover underlying structure
- Detect outliers
- Test underlying assumptions
- Develop parsimonious models

Data Exploration: Descriptive Statistics

Basics of Sampling

- Population versus sample:
- A population is the entire set of objects or events under study.
 Population can be hypothetical "all students" or all students in this class.
- A sample is a "representative" subset of the objects or events under study. Needed because it's impossible or intractable to obtain or compute with population data.
- Biases in samples:
- **Selection bias**: some subjects or records are more likely to be selected
- Volunteer/nonresponse bias: subjects or records who are not easily available are not represented

Sample mean

• The **mean** of a set of n observations of a variable is denoted \bar{x} and is defined as:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- The mean describes what a "typical" sample value looks like, or where is the "center" of the distribution of the data.
- Key theme: there is always uncertainty involved when calculating a sample mean to estimate a population mean.

Sample median

• The **median** of a set of n number of observations in a sample, ordered by value, of a variable is is defined by

Median =
$$\begin{cases} x_{(n+1)/2} & \text{if } n \text{ is odd} \\ \frac{x_{n/2} + x_{(n+1)/2}}{2} & \text{if } n \text{ is even} \end{cases}$$

- Example (already in order):
 - Ages: 17, 19, 21, <u>22, 23</u>, 23, 23, 38
- Median = (22+23)/2 = 22.5
- The median also describes what a typical observation looks like, or where is the center of the distribution of the sample of observations.

Mean vs. Median

• The mean is sensitive to extreme values (outliers)

Mean, median, and skewness

• The mean is sensitive to outliers:

• The above distribution is called **right-skewed** since the mean is greater than the median. Note: **skewness** often "follows the longer tail".

Regarding Categorical Variables...

• For categorical variables, neither mean or median make sense.

Why?

• The mode might be a better way to find the most "representative" value.

Measures of Spread: Range

- The spread of a sample of observations measures how well the mean or median describes the sample.
- One way to measure spread of a sample of observations is via the range.

•

Range = Maximum Value - Minimum Value

Measures of Spread: Variance

• The (sample) **variance**, denoted s^2 , measures how much on average the sample values deviate from the mean:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} |x_{i} - \bar{x}|^{2}$$

- Note: the term $|x_i \bar{x}|$ measures the amount by which each x_i deviates from the mean \bar{x} . Squaring these deviations means that s^2 is sensitive to extreme values (outliers).
- Note: s^2 doesn't have the same units as the x_i : (
- What does a variance of 1,008 mean? Or 0.0001?

Measures of Spread: Standard Deviation

- The (sample) **standard deviation**, denoted s, is the square root of
- the variance

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} |x_i - \bar{x}|^2}$$

• Note: s does have the same units as the x_i . Phew!

Data Exploration: Visualizations

Four Data Sets

• The following four data sets have identical simple summary statistics.

	Dataset I		Dataset II		Dataset III		Dataset IV	
	X	у	Х	у	Х	у	Х	у
	10	8.04	10	9.14	10	7.46	8	6.58
	8	6.95	8	8.14	8	6.77	8	5.76
	13	7.58	13	8.74	13	12.74	8	7.71
	9	8.81	9	8.77	9	7.11	8	8.84
	11	8.33	11	9.26	11	7.81	8	8.47
	14	9.96	14	8.1	14	8.84	8	7.04
	6	7.24	6	6.13	6	6.08	8	5.25
	4	4.26	4	3.1	4	5.39	19	12.5
	12	10.84	12	9.13	12	8.15	8	5.56
	7	4.82	7	7.26	7	6.42	8	7.91
	5	5.68	5	4.74	5	5.73	8	6.89
Sum:	99.00	82.51	99.00	82.51	99.00	82.51	99.00	82.51
Avg:	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50
Std:	3.32	2.03	3.32	2.03	3.32	2.03	3.32	2.03

• Summary statistics clearly don't tell the story of how they differ. But a picture can be worth a thousand words:

More Visualization Motivation

• If I tell you that the average score for Homework 0 was: 7.64/15 = 50.9% last year, what does that suggest?

And what does the graph suggest?

More Visualization Motivation

- Visualizations help us to analyze and explore the data. They help to:
- Identify hidden patterns and trends
- Formulate/test hypotheses
- Communicate any modeling results
 - Present information and ideas succinctly
 - Provide evidence and support
 - Influence and persuade
- Determine the next step in analysis/modeling

Types of Visualizations

- What do you want your visualization to show about your data?
- **Distribution:** how a variable or variables in the dataset distribute over a range of possible values.
- Relationship: how the values of multiple variables in the dataset relate
- Composition: how the dataset breaks down into subgroups
- Comparison: how trends in multiple variable or datasets compare

Chart Suggestions—A Thought-Starter

http://extremepresentation.typepad.com/blog/files/choosing_a_good_chart.pdf

Displays: comparisons

Bars vs. Lines

Histograms to visualize distribution

• A **histogram** is a way to visualize how 1-dimensional data is distributed across certain values.

Note: Trends in histograms are sensitive to number of bins.

Displays: distributions

Displays: distributions

Bin Width

Displays: density plots

Pie chart for a categorical variable?

• A **pie chart** is a way to visualize the static composition (aka, distribution) of a variable (or single group).

• Pie charts are often frowned upon (and bar charts are used instead). Why?

Displays: hands-on exercise

How do you feel about doing science?

Table

Interest	Before	After
Excited	19	38
Kind of interested	25	30
OK	40	14
Not great	5	6
Bored	11	12

Data courtesy of Cole Nussbaumer

Displays: exercise options

Displays: exercise options

Displays: exercise options

Stacked bar, not very useful

Displays: perceptual effectiveness

Pie vs. Bar Charts

65% of the market is controlled by companies B and C

Scatter plots to visualize relationships

• A **scatter plot** is a way to visualize the relationship between two different attributes of multi-dimensional data.

Stacked area graph to show trend over time

 A stacked area graph is a way to visualize the composition of a group as it changes over time (or some other quantitative variable). This shows the relationship of a categorical variable (AgeGroup) to a quantitative variable (year).

Displays: proportions

Displays: proportions

Multiple histograms

• Plotting multiple histograms (and kernel density estimates of the distribution, here) on the same axes is a way to visualize how different variables compare (or how a variable differs over specific groups).

Boxplots

• A **boxplot** is a simplified visualization to compare a quantitative variable across groups. It highlights the range, quartiles, median and any outliers present in a data set.

Communication

Key Considerations

- Who is your audience
- What questions are you answering?
- Why should the audience care?
- What are your major insights and surprises?
- What change do you want to affect?

Communication

Don't Make Them Think!

- Your audience does not want to spend cognitive effort on things you know and can just show them
- Lead them through the major steps of your story
- Point out interesting key facts and insights using captions and annotations

Communication

Final Takeaways

- How you choose to display your data greatly influences how people interpret the data
- Humans are visual, emotional creations; make graphs that don't make others feel confused, insulted, etc
- Your graphs should illicit good feelings and effectively convey your narrative