Bayesian model calibration using preposterior generalized cross-validation

Spencer Woody¹ Novin Ghaffari¹ Lauren Hund²

¹The University of Texas at Austin

²Sandia National Laboratories

September 14, 2018

Summary

- Address the problem of physical parameter identifiability by avoiding discrepancy terms
- Account for model discrepancy via power likelihood,

$$\pi_w(\theta \mid y) \propto [f(y \mid \theta)]^w \pi(\theta)$$

• Use preposterior generalized cross-validation (GCV) to select w by credible interval quantile matching

Problem set-up

(Brown and Hund, 2018)

Consider a dynamic materials experiment

- Apply a boundary condition to a system
- Measure a functional output
- Calibrate model input parameters

Here we study the compressibility properties of **tantalum** ($_{73}$ Ta) by applying to it a dynamic magnetic field

The data and parameters

For experiments $j = 1, \dots, 9$,

- $y(x_{ij})$: Observed time-velocity functional response resulting from impulse
- $\eta(x_{ij};\theta)$: Output of wave code simulator to model velocity
- θ : Calibration parameters for the simulator

The data and parameters

The data and parameters

The dark blue line is the observed y(x)Other lines represent model output $\eta(x;\theta)$ for different θ

Applications of BMC

- Prediction (interpolation or extrapolation)
- Assess level of misspecification in computer models
- Physical parameter estimation

Inferential goal

Inverse problem: back out $\theta = (\alpha, \gamma)$ calibration parameters using observed data

- $\alpha = (B_0, B_0')$ are parameters of interest, bulk modulus B_0 and its pressure derivative B_0'
- $\gamma = (\rho_0, x_{AI}, x_{Ta}, BC_{scale})$ are nuisance parameters

given that $\eta(x_{ij}, \theta)$ cannot perfectly describe $y(x_{ij})$

Only B_0 , B_0' , and ρ_0 are common to all experiments j

GP discrepancy term

Kennedy and O'Hagan (2002) [KOH]

$$y(x_{ij}) = \eta(x_{ij}; \theta) + \delta(x_{ij}) + \epsilon(x_{ij})$$

GP discrepancy with squared-exponential kernel

Power likelihood

$$\delta(x_j) \sim \mathcal{N}(0, \Sigma_j^{\delta})$$

$$\Sigma_j^{\delta}[i, i'] = \tau_1^2 \exp\left[-\frac{1}{2\tau_2^2}(x_{i'j} - x_{ij})^2\right]$$

ullet Observation error, for known $\Sigma_j^\epsilon = \mathrm{diag}(\{\sigma_{ij}^2\}_{i=1}^n)$

$$\epsilon(x_j) \sim \mathcal{N}(0, \Sigma_j^{\epsilon})$$

• Specifying prior $\pi(\theta)$ leads to posterior $\pi(\theta|y_i) \propto f(y_i|\theta)\pi(\theta)$ using MVN likelihood

GP discrepancy term

- Requires $\mathcal{O}(n^3)$ computation for covariance matrix inversion
- Has potential for numerical instability
- Difficult or impossible to jointly identify θ and $\delta(x)$
 - Exception if we have strong prior information on $\delta(x)$ (Brynjarsdóttir and O'Hagan, 2014)

Scaling likelihood by effective sample size

Brown and Hund (2018)

Drop the discrepancy term, so now the model is

$$y(x_{ij}) \mid \theta, \phi_j \stackrel{\text{iid}}{\sim} \mathcal{N}(\eta(x_{ij}; \theta), \phi_j)$$
$$\pi(\theta, \phi_j) \propto \pi(\theta) \cdot \phi_j^{-1},$$

and the sampling model is known to be misspecified.

Issues:

Introduction

- Model misspecification manifested through autocorrelation of residuals
- Because of functional nature of output, n may be chosen to be arbitrarily large

Solution: scale likelihood effective sample size (ESS), n_{ei} via

$$\pi(\theta|y_j) \propto \left[\prod_{i=1}^n f(y_{ij}|\theta,\phi_j)\right]^{n_{ej}/n} \pi(\theta),$$

calculated from autocorrelation of residuals τ_i by $n_{ei}/n = 1/\tau_i$.

- 1) Find MLE $\hat{\theta} = \arg\min_{\theta} \|\eta(x_i; \theta) y(x_i)\|_2$
- 2) Calculate resulting empirical discrepancy $\hat{\delta}(x_i) = y(x_i) - \eta(x_i; \hat{\theta})$
- 3) Calculate autocorrelation $\hat{\tau}_i$ from $\hat{\delta}(x_i)$
- **4)** $\hat{n}_{ei} = n/\hat{\tau}_{i}$

Uses concept of "information gain," similar to Holmes and Walker (2017) and Lyddon, Holmes, and Walker (2017).

This approach is used to retain correct variance in posterior

Conclusion

Generalized Bayesian posterior

Traditional Bayesian inference relies on the concept of well-specified models, which may be difficult, impossible, or inconvenient.

Much recent work has been conducted on power-likelihood methods, yielding the *generalized Bayesian posterior*, for $0 \le w \le 1$,

$$\pi_w(\theta \mid y) = \frac{[f(y \mid \theta)]^w \pi(\theta)}{\int [f(y \mid \theta)]^w \pi(\theta) d\theta}$$

Previously, Brown and Hund (2018) used $w = n_{ej}/n$ How else can we find w?

Our method

Conclusion

Power likelihood

Bissiri, Holmes, and Walker (2016) use a loss function $l(\theta, x)$ to connect observations x with parameters θ

They argue via a decision theory approach that "a valid and coherent update" to $\pi(\theta)$ exists in the posterior of the form

$$\pi_w(\theta \mid y) \propto \exp(-wl(\theta, x))\pi(\theta).$$

Conclusion

$\pi_{w}(\theta \mid y) \propto [f(y \mid \theta)]^{w} \pi(\theta)$

- Miller and Dunson (2018) determin w by assigning a prior to the KL-divergence between the "idealized data" $X_{1:n}$ under the misspecified model and the observed data $x_{1:n}$, $d_n(X_{1:n}, x_{1:n})$
- Grünwald and van Ommen (2017) select w to minimize posterior expected log-loss using a leave-one-out cross-validation method
- Syring and Martin (2018) use coverage based on bootstrap resampling to tune credible intervals to have nominal frequentist coverage rates

Power likelihood

Main idea of our method:

Let $C_{w,\alpha}(y)$ represent an equal-tailed $1-\alpha$ -level posterior credible interval for θ coming from $\pi_w(\theta \mid y) \propto [f(y \mid \theta)]^w \pi(\theta)$.

Select the power to be w^* , such that

$$\Pr(\theta \in C_{w^*,\alpha}(y)) = 1 - \alpha$$

Toy example

Prior:

$$\theta \sim \mathcal{N}(0,1)$$

Sampling model:

$$(y_i \mid \theta) \sim \mathcal{N}(\theta, 1)$$

Reality:

$$(y_i \mid \theta) \sim \mathcal{SN}(\xi = \theta, \omega = 1, \alpha = 1/2),$$

i.e. the skewed-normal with location θ , scale 1, and shape 1/2 (mean \approx 0.353, sd \approx 0.933)

Toy example

0.0 -

-2

Ö

theta

ż

Toy example

Take a sample $y_i \sim \mathcal{N}(\theta, 1)$ of size N = 25Generalized posterior:

$$\pi_w(\theta \mid y) \propto \prod_{i=1}^n [\mathcal{N}(y;\theta,1)]^w \pi(\theta)$$

Question: how much do we need to discount the likelihood (i.e. what to set w) to achieve nominal frequentist coverage of posterior credible intervals?

Toy example

For
$$k = 1, ..., K$$

- Generate $\theta_k \sim \mathcal{N}(0,1)$ for
- For each k, generate $y_{ki} \sim \mathcal{SN}(\theta_k, 1, 1/2)$, $i = 1, \dots, N$
- For each w on some grid, draw samples from $\pi_w(\theta \mid y)$, using misspecified normal likelihood
- Check whether a 90% credible interval covers θ

Get a Monte Carlo estimate of coverage probability for each \boldsymbol{w}

Toy example

Consider these cases:

- $w=0 \Rightarrow \pi_w(\theta \mid y) = \pi(\theta)$, (no update) \Rightarrow trivially have nominal coverage rate
- Small positive w ⇒ close to prior but favoring observed mean ⇒ coverage rate too high
- $w=1 \Rightarrow \pi_w(\theta \mid y)$ concentrates on (biased) empirical mean \Rightarrow low coverage

Toy example

Credible interval coverage, toy example N = 25, shape = 0. 5000

Toy example

Toy example

Comparing posteriors from toy example

Generalized cross-validation

Key idea: choose w such that we believe the credible intervals to have nominal frequentist coverage.

Preliminaries: empirical estimate of discrepancy

• Find MLE of θ ,

$$\hat{\theta} = \arg\min_{\theta} \|y(x_j) - \eta(x_j; \theta)\|_2$$

• Find MLE hyperparameters $\hat{\tau}_1^2$ and $\hat{\tau}_2^2$ for resulting empirical discrepancy,

$$\hat{\delta}(x_i) = y(x_i) - \eta(x_i; \hat{\theta})$$

These estimates will generally be different for each experiment

Conclusion

Preposterior analysis

Pseudodata generation:

- Generate $\tilde{\theta} \sim \pi(\tilde{\theta})$, calculate pseudotruth $\eta(x; \tilde{\theta})$
- Generate pseudodiscrepancy ¹

$$\tilde{\delta}(x) \sim \mathcal{N}(0, \hat{\Sigma}_{\delta}),$$

with $\hat{\Sigma}_{\delta}$ from estimated GP hyperparameters $\hat{ au}_1^2$ and $\hat{ au}_2^2$

Calculate pseudoexperimental data,

$$\tilde{y}(x) = \eta(x; \tilde{\theta}) + \tilde{\delta}(x)$$

Similar to Arendt et al. (2016), who use priors for GP parameters instead of estimating them

¹NB: Hats î represent estimates, tildes î represent simulated data

Preposterior analysis

For one value of w,

- (i) Generate pseudodata $\tilde{y}(x)$ for one $\tilde{\theta} \sim \pi(\tilde{\theta})$
- (ii) Sample from GBP $\pi_w(\theta|\tilde{y})$
- (iii) Check for coverage of $\tilde{\theta}$ in the credible interval $C_{w,\alpha}(\tilde{y})$ using draws from GBP
- (iv) Repeat for many $\tilde{\theta} \sim \pi(\tilde{\theta})$

This yields Monte Carlo estimates of frequentist coverage probabilities

Repeat this procedure along a grid of w

Preposterior analysis

We can also consider other cross-validation metrics

- MSE of estimating θ
- MSE of estimating $\eta(x; \tilde{\theta})$
- Posterior predictive coverage of $\tilde{y}(x)$

Preposterior analysis

Importantly, discrepancy function used in selecting w, but otherwise not included in the posterior for θ (avoid identifiability issue)

Example: one pseudo dataset

Results on one experiment

- 100 instantiations of $\tilde{\theta} \sim \pi(\tilde{\theta})$
- ullet Evaluate coverage estimate on a grid of w on a log-scale
- Compare optimal w^* to scaling factor chosen by Brown and Hund (2018)

Results on one experiment

GCV frequentist coverage of 90% credible intervals Experiment 2

GCV for selecting likelihood scaling

Experiment 2

GCV on $\eta(x;\theta)$ error for selecting likelihood scaling

Results

Is there general agreement with Brown and Hund (2018)?

Results

Comparing two empirical discrepancies

$$ESS_2 = 10.70$$
, $ESS_6 = 15.67$

Results for another experiment

GCV frequentist coverage of 90% credible intervals Experiment 6

Other considerations

We can consider other ways of generating $\tilde{\delta}$, and generating $\tilde{\theta}$

Open questions

- Can we show that a solution w* exists?
- Does w^{*} selected with this method scale with n?
- Show agreement with Brown and Hund (2018)?
- Can we extend this to predictive interval evaluation?
- What about extrapolation to other settings?

Conclusion

Email: spencer.woody@utexas.edu

References I

- Paul D. Arendt, Daniel W. Apley, and Wei Chen. A preposterior analysis to predict identifiability in the experimental calibration of computer models. *IIE Transactions*, 48(1):75–88, 2016. doi: 10.1080/0740817X.2015.1064554. URL https://doi.org/10.1080/0740817X.2015.1064554.
- P. G. Bissiri, C. C. Holmes, and S. G. Walker. A general framework for updating belief distributions. *Journal of the Royal Statistical Society: Series B* (Statistical Methodology), 78(5):1103–1130, 2016. doi: 10.1111/rssb.12158. URL
 - https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12158.
- J. L. Brown and L. B. Hund. Estimating material properties under extreme conditions by using Bayesian model calibration with functional outputs. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 67(4): 1023–1045, 2018. doi: 10.1111/rssc.12273. URL
 - https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssc.12273.

References II

- Jenn Brynjarsdóttir and Anthony O'Hagan. Learning about physical parameters: The importance of model discrepancy. *Inverse Problems*, 30, 11 2014.
- Peter Grünwald and Thijs van Ommen. Inconsistency of bayesian inference for misspecified linear models, and a proposal for repairing it. *Bayesian Anal.*, 12(4):1069–1103, 12 2017. doi: 10.1214/17-BA1085. URL https://doi.org/10.1214/17-BA1085.
- Chris Holmes and Stephen Walker. Assigning a value to a power likelihood in a general bayesian model. *Biometrika*, 104, 01 2017.
- Marc C. Kennedy and Anthony O'Hagan. Bayesian calibration of computer models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 63(3):425–464, 2002. doi: 10.1111/1467-9868.00294. URL https:
 - //rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00294.
- S. Lyddon, C. Holmes, and S. Walker. General Bayesian Updating and the Loss-Likelihood Bootstrap. *ArXiv e-prints*, September 2017.

References III

- Jeffrey W. Miller and David B. Dunson. Robust Bayesian inference via coarsening. *Journal of the American Statistical Association*, 0(ja):1–31, 2018. doi: 10.1080/01621459.2018.1469995. URL https://doi.org/10.1080/01621459.2018.1469995.
- N. Syring and R. Martin. Calibrating general posterior credible regions. *ArXiv* e-prints, September 2018.