# The Battle of the Neighborhoods Report By Eviatar Shemesh

### **Introduction & Business Problem**

The City of New York is the most populous city in the United States.

It is diverse and is the financial capital of USA.

It is multicultural.

It provides lot of business opportunities and business friendly environment.

It has attracted many different players into the market. It is a global hub of business and commerce.

The city is a major centre for banking and finance, retailing, world trade, transportation, tourism, real estate, new media, traditional media, advertising, legal services, accountancy, insurance, theatre, fashion, and the arts in the United States.

This also means that the market is highly competitive.

As it is highly developed city so cost of doing business is also one of the highest.

I was hired by a coffee shop named Devocion, a small company that makes the best and freshest coffee in New York.

We have 4 shops and we open a new one in Brooklyn, Cause the shop we opened there at Williamsburg was a hit, despite all the competition we made huge profits.

We want to collect data and get some few neighborhoods that coffee is popular at, but we believe that it'll be like the coffee shop we opened at Williamsburg.

## **Target Audience**

The objective is to locate and recommend to the Devocion which neighborhoods of Brooklyn will be best choice to start a Coffee Shop.

The Management also expects to understand the rationale of the recommendations made.

This would interest anyone who wants to start a new coffee shop in Brooklyn, in neighborhoods where coffee is very popular, and the competition is intense

## **Data**

Our data will be collected from 2 sources:

**1.** JSON File with New York Neighborhoods and borough, where we will extract only the relevant data, of Brooklyn.

The JSON file will be collected at: <a href="https://cocl.us/new\_york\_dataset">https://cocl.us/new\_york\_dataset</a> .

Gravesend 40.595260 -73.973471

We will organize it and extract only the Brooklyn data. This File contains 4 columns:

- 1)Borough
- 2)Neighbourhood
- 3)Latitude
- 4)Longitude

4 Brooklyn

#### Only Brooklyn Data

```
brooklyn_data = neighborhoods[neighborhoods['Borough'] == 'Brooklyn'].reset_index(drop=True)
brooklyn_data.head()

Borough Neighborhood Latitude Longitude

Brooklyn Bay Ridge 40.625801 -74.030621

Brooklyn Bensonhurst 40.611009 -73.995180

Brooklyn Sunset Park 40.645103 -74.010316

Brooklyn Greenpoint 40.730201 -73.954241
```

```
brooklyn_data.drop(['Borough'], axis = 1, inplace = True)
brooklyn_data.head()
```

|   | Neighborhood | Latitude  | Longitude  |
|---|--------------|-----------|------------|
| 0 | Bay Ridge    | 40.625801 | -74.030621 |
| 1 | Bensonhurst  | 40.611009 | -73.995180 |
| 2 | Sunset Park  | 40.645103 | -74.010316 |
| 3 | Greenpoint   | 40.730201 | -73.954241 |
| 4 | Gravesend    | 40.595260 | -73.973471 |

2. Foursquare API, to search for common venues around each neighbourhood, and cluster them into groups. Using it, we get the top 10 most common venues to each neighbourhood, which looks like that

|   | Neighborhood          | 1st Most Common<br>Venue | 2nd Most Common<br>Venue | 3rd Most Common<br>Venue | 4th Most Common<br>Venue | 5th Most Common<br>Venue | 6th Most Common<br>Venue | 7th Most Common<br>Venue   | 8th Most Common<br>Venue | 9th Most Common<br>Venue | 10th Most Common<br>Venue |
|---|-----------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|--------------------------|--------------------------|---------------------------|
| 0 | Bath Beach            | Pharmacy                 | Chinese Restaurant       | Pizza Place              | Gas Station              | Bubble Tea Shop          | Italian Restaurant       | Fast Food Restaurant       | Sushi Restaurant         | Deli / Bodega            | Dessert Shop              |
| 1 | Bay Ridge             | Italian Restaurant       | Pizza Place              | Spa                      | American Restaurant      | Greek Restaurant         | Bar                      | Bagel Shop                 | Thai Restaurant          | Ice Cream Shop           | Playground                |
| 2 | Bedford<br>Stuyvesant | Coffee Shop              | Café                     | Pizza Place              | Bar                      | Bagel Shop               | Fried Chicken Joint      | New American<br>Restaurant | Boutique                 | Gift Shop                | Gourmet Shop              |
| 3 | Bensonhurst           | Grocery Store            | Chinese Restaurant       | Flower Shop              | Ice Cream Shop           | Pizza Place              | Sushi Restaurant         | Donut Shop                 | Italian Restaurant       | Noodle House             | Liquor Store              |
| 4 | Bergen Beach          | Harbor / Marina          | Athletics & Sports       | Baseball Field           | Playground               | Donut Shop               | Farmers Market           | Fast Food Restaurant       | Field                    | Filipino Restaurant      | Fish & Chips Shop         |

## **Methodology**

In this section we will talk about the data processing and methods to get the wanted result.

First, we collect the New York data using the JSON file.

|   | Borough | Neighborhood | Latitude  | Longitude  |
|---|---------|--------------|-----------|------------|
| 0 | Bronx   | Wakefield    | 40.894705 | -73.847201 |
| 1 | Bronx   | Co-op City   | 40.874294 | -73.829939 |
| 2 | Bronx   | Eastchester  | 40.887556 | -73.827806 |
| 3 | Bronx   | Fieldston    | 40.895437 | -73.905643 |
| 4 | Bronx   | Riverdale    | 40.890834 | -73.912585 |

After that, we clean it by getting only the data where the Borough is Brooklyn, and drop the borough column cause it's irrelevant, all the boroughs are Brooklyn.

```
brooklyn_data = neighborhoods[neighborhoods['Borough'] == 'Brooklyn'].reset_index(drop=True)
brooklyn_data.head()
  Borough Neighborhood Latitude Longitude
0 Brooklyn
                Bay Ridge 40.625801 -74.030621
1 Brooklyn
              Bensonhurst 40.611009 -73.995180
2 Brooklyn
               Sunset Park 40.645103 -74.010316
3 Brooklyn
               Greenpoint 40.730201 -73.954241
  Brooklyn
                Gravesend 40.595260 -73.973471
brooklyn_data.drop(['Borough'], axis = 1, inplace = True)
brooklyn_data.head()
  Neighborhood Latitude Longitude
0
       Bay Ridge 40.625801 -74.030621
     Bensonhurst 40.611009 -73.995180
      Sunset Park 40.645103 -74.010316
2
3
      Greenpoint 40.730201 -73.954241
4
      Gravesend 40.595260 -73.973471
```

Then we move to our second resource, the Foursquare API, we right few functions.

The first one is to extract the category out of each venue

```
def get_category_type(row):
    try:
        categories_list = row['categories']
    except:
        categories_list = row['venue.categories']

if len(categories_list) == 0:
    return None
else:
    return categories_list[0]['name']
```

The second one is used to get nearby venues of each location

```
#function that gets the nearby venues
def getNearbyVenues(names, latitudes, longitudes, radius=500):
              venues_list=[]
              for name, lat, lng in zip(names, latitudes, longitudes):
                         print(name)
                            url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}\&client_secret={}\&v={}\&ll={},{}\&radius={}\&limit={}'.format(interpretable of the properties of the properti
                                      CLIENT ID.
                                        CLIENT SECRET.
                                        VERSION,
                                        lat,
                                       lng,
                                        radius,
                                        LIMIT)
                           results = requests.get(url).json()["response"]['groups'][0]['items']
                           # return only relevant information for each nearby venue
                           venues list.append([(
                                        name,
                                        lat,
                                        lng,
                                        v['venue']['name'],
v['venue']['location']['lat'],
v['venue']['location']['lng'],
                                        v['venue']['categories'][0]['name']) for v in results])
             nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list])
             nearby_venues.columns = ['Neighborhood',
                                                              'Latitude',
                                                             'Longitude',
                                                              'Venue',
                                                              'Venue Latitude',
                                                              'Venue Longitude'
                                                             'Venue Category']
```

We apply the methods on our data of Brooklyn neighborhoods, max 100 per neighborhood, and maximum distance of 500 meters.

The result of this run will be inserted into a new Data Frame

We use the one hot encoding method and inserting into a new Data Frame the top 10 most common category venues for each neighborhood



After we have This Data Frame, we use the KNN to cluster all of our Brooklyn neighborhoods into 5 groups, to find which neighborhoods are similar to our best shop neighborhood, Williamsburg



We put it on a map to show the cluster output



After that, we check which cluster group our Williamsburg neighborhood is, and inserting it into a new Data Frame.

| brookly          | ooklyn_merged.loc[brooklyn_merged['Neighborhood'] == 'killiamburg'] |                                     |                                        |                   |                                     |                                   |                                             |                                                          |                                                          |                         |                                                   |                                                          |                                            |                                                                           |
|------------------|---------------------------------------------------------------------|-------------------------------------|----------------------------------------|-------------------|-------------------------------------|-----------------------------------|---------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------|---------------------------------------------------|----------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------|
| Neig             | ighborhood                                                          | Latitude                            | Longitud                               | Cluster<br>Labels | 1st Most Common<br>Venue            | 2nd Most Common<br>Venue          | 3rd Most Common<br>Venue                    | 4th Most Common<br>Venue                                 | 5th Most Common<br>Venue                                 | 6th Most Common Venue   | 7th Most Common Venue                             | 8th Most Common Venue                                    | 9th Most Common Venue                      | 10th Most Common Venue                                                    |
| 15 W             | Villiamsburg                                                        | 40.707144                           | -73.95811                              | 5 0               | Coffee Shop                         | Bar                               | Bagel Shop                                  | Yoga Studio                                              | Greek Restaurant                                         | Korean Restaurant       | Tapas Restaurant                                  | Taco Place                                               | Event Space                                | Liquor Store                                                              |
| cluston          | r3 - brook)                                                         | lyn merge                           | ed[brookly                             | m_merged['Clus    | ter Labels'] 0 ].r                  | eset_index(drop = True            | )                                           |                                                          |                                                          |                         |                                                   |                                                          |                                            |                                                                           |
| cluster          | r3.head()                                                           | Latituda                            | Longitude                              | Chuster Labels    | 1st Most Common Vanue               | 2nd Mort Common Venue             | 2rd Mort Common Venue                       | 4th Most Common Venue                                    | 5th Mort Common Vanue                                    | 6th Mort Common Venue   | 7th Most Common Venue                             | 9th Most Common Venue                                    | Oth Most Common Venue                      | 10th Most Common Vanua                                                    |
| cluster<br>Neigl | hborhood                                                            |                                     |                                        |                   | 1st Most Common Venue               | 2nd Most Common Venue             |                                             |                                                          |                                                          | 6th Most Common Venue   |                                                   |                                                          |                                            |                                                                           |
| Cluster<br>Neigl |                                                                     | 40.625801                           | -74.030621                             | 0                 |                                     |                                   | 3rd Most Common Venue<br>Spa<br>Flower Shop | 4th Most Common Venue American Restaurant Ice Cream Shop | 5th Most Common Venue<br>Greek Restaurant<br>Pizza Place |                         | 7th Most Common Venue<br>Bagel Shop<br>Donut Shop | 8th Most Common Venue Thai Restaurant Italian Restaurant | Ice Cream Shop                             | Playground                                                                |
| Neight 0 1 Be    | hborhood<br>Bay Ridge 4                                             | 40.625801<br>40.611009              | -74.030621<br>-73.995180               | 0                 | Italian Restaurant                  | Pizza Place                       | Spa                                         | American Restaurant                                      | Greek Restaurant                                         | Bar                     | Bagel Shop                                        | Thai Restaurant                                          | Ice Cream Shop<br>Noodle House             | Playground<br>Liquor Store                                                |
| Neight 0 Be 2 Se | hborhood<br>Bay Ridge                                               | 40.625801<br>40.611009<br>40.645103 | -74.030621<br>-73.995180<br>-74.010316 | 0                 | Italian Restaurant<br>Grocery Store | Pizza Place<br>Chinese Restaurant | Spa<br>Flower Shop                          | American Restaurant<br>Ice Cream Shop                    | Greek Restaurant<br>Pizza Place                          | Bar<br>Sushi Restaurant | Bagel Shop<br>Donut Shop                          | Thai Restaurant<br>Italian Restaurant                    | Ice Cream Shop<br>Noodle House<br>Pharmacy | 10th Most Common Venue Playground Liquor Store Café Fumiture / Home Store |

As I mentioned above, our wanted neighborhoods are ones similar and where coffee shops are very popular, so into a new Data Frame we insert only the neighborhoods that are at the same cluster as our Williamsburg neighborhood is, and the most common venue category is coffee shop



So, those 4 neighborhoods are potential neighborhoods to open new Devocion Coffee Shop.

## Result

As I mentioned above, the result is list of 4 neighborhoods that are potential locations to open new Devocion Coffee Shop.

| Bedford<br>Stuyvesant | 40.687232 | -73.941785 |
|-----------------------|-----------|------------|
| Park Slope            | 40.672321 | -73.977050 |
| North Side            | 40.714823 | -73.958809 |
| Dumbo                 | 40.703176 | -73.988753 |

# **Discussion**

Based on the results, I'm recommending our company to open a new coffee shop at Bedford Stuyvesant, and I'll explain why.

Our Goals where to find similar neighbourhood to Williamsburg, where coffee is very popular.

As you can see in the results, in this neighborhood, the top 2 venues categories out there are connected to coffee, so this will be my recommendation.

## **Conclusion**

To conclude, I'm very happy with the results.

They came after a lot of work, clean data and the most important thing, a lot of data.

The list of neighborhoods is very small(Only 4 neighborhoods), so no much research will be needed to select the new location for our Devocion Coffee Shop.