BECA / Huson / Precalculus: 3. Complex numbers First and last name: 11 December 2024 Section:

3.18 PreTest: Rational exponents and complex numbers

A2.A.APR.6

A2-APR.1 Perform operations with polynomials

1. Find the sum in standard form:

$$(2x^2 - 3x - 5) + (x^2 - 6x + 9).$$

2. Find the difference f(x) - g(x) as a polynomial in standard form, given:

$$f(x) = 4x^4 - x^3 + 6x^2 - 2x + 3$$
 and $g(x) = x^4 + 3x^2 - 2x - 4$.

3. Select each correct equation.

(a)
$$x^2 - 16 = x^2 - 4^2$$

(d)
$$x^2 - 8x + 16 = (x - 4)^2$$

(b)
$$x^2 - 16 = (x - 4)(x + 4)$$

(e)
$$x^2 + 8x + 16 = (x+4)^2$$

(c)
$$x^2 + 16 = (x - 4)(x + 4)$$

(f)
$$x^2 - 8x - 16 = (x - 4)^2$$

4. Which equations represent correct polynomial identities?

(a)
$$x^3 + y^3 = (x+y)^3$$

(c)
$$x^3 - y^3 = (x+y)(x^2 - xy + y^2)$$

(b)
$$x^3 + y^3 = (x - y)(x^2 + xy + y^2)$$
 (d) $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$

(d)
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

A2-F.IF.7a Graph linear and quadratic functions, show key features

- 5. One equation of a system is graphed.
 - (a) Graph the second equation, labeling the intersections as ordered pairs.
 - (b) Find the value of the leading coefficient a of the quadratic equation.

$$y = ax^2 + 3x - 7$$

$$3x - y = -3$$

BECA / Huson / Precalculus: 3. Complex numbers First and last name: 11 December 2024 Section:

A2-A.APR.3 Identify zeros of polynomials given suitable factorizations

- 6. Write down the solutions to the equation x(x-1)(2x+5)(x+4)=0.
- 7. The polynomial p is a function of x. The graph of p has three zeros at -5, $\frac{3}{2}$, and -1. Select **all** the expressions that could represent p.

(a)
$$(x-5)(x-\frac{3}{2})(x+1)$$

(e)
$$(x-5)(x+\frac{2}{3})(x-1)$$

(b)
$$(x+5)(3x-2)(x+1)$$

(f)
$$(x+5)(2x-3)(x+1)$$

(c)
$$3(x+5)(x-\frac{3}{2})(x+1)$$

(g)
$$3(x-5)(x-\frac{2}{3})(x-1)$$

(d)
$$3x(x+5)(x+\frac{2}{3})(x-1)^2$$

(h)
$$3x(x+5)(x-\frac{3}{2})(x+1)^2$$

8. Select the expression that is equivalent to $\frac{3x^2 + 10x - 18}{x - 2}$ for $x \neq 2$.

(a)
$$3x + 4 + \frac{16}{x - 2}$$

(b)
$$3x + 16 + \frac{10}{x-2}$$

(c)
$$3x + 4 + \frac{8}{x-2}$$

(d)
$$3x + 16 + \frac{14}{x-2}$$

A2-F.BF.2 Write arithmetic and geometric sequences with recursive formulas

- 9. Write a recursive definition of the sequence $a_1=-3,\ a_2=2,\ a_3=7,\ a_4=12,\ldots$
- 10. Write a recursive definition of the arithmetic sequence b.

n	b_n
1	12
2	1.2
3	0.12

A2-F.IF.7c Graph polynomials, identify zeros, end behavior

- 11. Below is a graph of the polynomial f(x).
 - (a) Is the leading coefficient positive or negative?
 - (b) Which of the following could be its equation?

i.
$$f(x) = (x+2)(x-4)(x-2)^2$$

ii.
$$f(x) = (x-2)(x-4)(x+2)^2$$

iii.
$$f(x) = (x+2)(x+4)(x-2)^2$$

iv.
$$f(x) = (x-2)(x+4)(x+2)^2$$

- 12. The graph of the polynomial $f(x) = x^4 9x^2 4x + 12$ is shown.
 - (a) What is the degree of the function?
 - (b) What are the zeros of the function?
 - (c) Which factor has a multiplicity of 2?
 - (d) Write down the y-intercept as an ordered pair.
 - (e) Three points are marked on the graph, p, q, and r. Which one is a local minimum?

13. The graph of the function $f(x) = x^3 - 3x^2 - 10x + 24$ is shown. Write the function in factored form.

14. Let $j(x) = (x+4)(x+1)(x-4)^2$ be a polynomial function.

- (a) Sketch a graph of the function. Label the x-intercepts.
- (b) Find the value of the y-intercept and mark it on the graph.
- (c) Identify the end behavior of the function.

i. As
$$x \to +\infty$$
, $y \to +\infty$;
as $x \to -\infty$, $y \to -\infty$

iii. As
$$x \to +\infty$$
, $y \to +\infty$; as $x \to -\infty$, $y \to +\infty$

ii. As
$$x \to +\infty$$
, $y \to -\infty$; as $x \to -\infty$, $y \to +\infty$

iv. As
$$x \to +\infty$$
, $y \to -\infty$;
as $x \to -\infty$, $y \to -\infty$

HSN.RN.2 Expressions with radicals and rational exponents

- 15. Simplify each radical expression.
 - (a) $\sqrt{49} =$

(c) $\sqrt{-45} =$

(b) $\sqrt{32} =$

(d) $\frac{\sqrt{-12}}{\sqrt{3}} =$

- 16. Simplify each expression.
 - (a) $8^{\frac{2}{3}} =$

(b) $\left(\sqrt{\frac{4}{9}}\right)^3 =$

- 17. Rewrite each expression as a fractional exponent in simplest terms.
 - (a) $\sqrt[3]{3} =$

(c) $\sqrt[4]{x^3} =$

(b) $\frac{1}{\sqrt[2]{3}} =$

- (d) $\frac{1}{(\sqrt[4]{x})^2} =$
- 18. Rewrite each expression with fractional exponent as a radical.
 - (a) $3^{\frac{1}{2}} =$

(c) $x^{\frac{1}{3}} =$

(b) $3^{-\frac{2}{3}} =$

(d) $x^{-\frac{2}{3}} =$

A2-A.SSE.3c Apply the properties of exponents

19. Identify the expressions that are equal to $\frac{3^3}{3^5}$

20. Identify the expressions that are equal to 5^{-2}

(a)	$\frac{1}{5^2}$	(d)	$\frac{1}{25}$
(b)	5.5	(e)	0.04
(c)	$\sqrt{5}$	(f)	10

21. Identify the expressions that are equal to $16^{\frac{1}{4}}$

(a) 2	(d) $\sqrt[4]{16}$
(b) 4	(e) 16.25
(c) $\sqrt{4}$	(f) 256

BECA / Huson / Precalculus: 3. Complex numbers First and last name: 11 December 2024 Section:

- 22. If $(6 ki)^2 = 27 36i$, the value of k is
 - (a) -36
 - (b) -3
 - (c) 3
 - (d) 6
- 23. Does the equation $x^2 4x + 13 = 0$ have imaginary solutions? Justify your answer.

6.EE.b Reason about and solve one-variable equations and inequalities

- 24. Use the function $f(x) = \frac{1}{2}x + 11$ to answer the questions.
 - (a) Find the value of f(4).

(b) Solve for x if f(x) = 2.

25. Solve each equation for x.

(a)
$$x^2 + 5x + 6 = 0$$

(b)
$$x^3 - 7x^2 + 6x = 0$$

- 26. The expression $2 \frac{x-1}{x+2}$ is equivalent to
 - (a) $1 \frac{3}{x+2}$

(c)
$$1 - \frac{1}{x+2}$$

(b) $1 + \frac{3}{x+2}$

- (d) $1 + \frac{1}{x+2}$
- 27. Find all of the values of x that make the equation true.

$$\frac{3}{x-4} = \frac{x-5}{x}$$

28. Given the rational function $r(x) = 3 - \frac{x-1}{x+2}$.

(a) Sketch a graph of the function.

(b) Mark the vertical asymptote as dotted line and label it with its equation.

(c) Explain why the asymptote is located there.

