IIR Filter IP

□ System Design

- □ System Design
- □ IIR IP

- □ System Design
- □ IIR IP
- □ Zynq Communication

- □ System Design
- □ IIR IP
- □ Zynq Communication
- Example Outputs

# System Design



### IIR IP — Hardware Only



## IIR IP — Zynq Fed



#### IIR IP — Data Input Process

```
70--- Data input ---
71
72    p_data_input : process (i_rstb,i_clk)
73    begin
74    if(i_rstb='1') then
75    p_data <= (others=>(others=>'0'));
76    p_fdata <= (others=>(others=>'0'));
77    elsif(rising_edge(i_clk)) then
78    p_data <= signed(i_data)&p_data(0 to p_data'length-2);
79    p_fdata <= signed(i_fdata)&p_fdata(0 to p_fdata'length-2);
80    end if;
81    end process p_data_input;
```

#### IIR IP — Arithmetic

#### IIR IP — Arithmetic

```
if(i rstb='l') then
        r add st0 <= (others=>(others=>'0')):
       r fadd st0 <= (others=>(others=>'0'));
        elsif(i clk='1') then
                                r \text{ add } st0(k) \ll resize(r \text{ mult}(2*k).33) + resize(r \text{ mult}(2*k+1).33);
                               r = \frac{1}{2} r = 
end process p add st0:
  p add stl : process (i rstb,i clk,r add st0,r fadd st0)
    if(i rstb='l') then
                      r add st1 <= (others=>'0');
                         r fadd stl <= (others=>'0');
    elsif(i clk='1') then
                         <u>r add stl <= resize(r_add_st0(0),34) + resize(r_add_st0(1),34);</u>
                         r = fadd = st1 <= resize(r = fadd = st0(0),34) + resize(r = fadd = st0(1),34);
  end process p add stl;
```

#### IIR IP — Arithmetic

#### IIR IP — Data Output

#### IIR IP — IIR Troubles

□ Single Stage vs BiQuad

#### IIR IP — IIR Troubles

- ☐ Single Stage vs BiQuad
- □ Floating Point to Fixed Point

#### IIR IP — IIR Troubles

- ☐ Single Stage vs BiQuad
- ☐ Floating Point to Fixed Point
- ☐ Gains and Scaling

□ Number of coefficients increases dramatically

- Number of coefficients increases dramatically
- ☐ Numerator coefficients approach zero

- □ Number of coefficients increases dramatically
- □ Numerator coefficients approach zero
- Denominator coefficients approach infinity

- Number of coefficients increases dramatically
- Numerator coefficients approach zero
- Denominator coefficients approach infinity

```
Numerator:
0.067504806016373181
0.27001922406549272
0.40502883609823914
0.27001922406549272
0.067504806016373181
Denominator:
1
-0.39064145319446159
0.53430063715423204
-0.04233712203843125
0.020651424506043823
```

- Number of coefficients increases dramatically
- Numerator coefficients approach zero
- Denominator coefficients approach infinity

```
Numerator:
0.067504806016373181
0.27001922406549272
0.40502883609823914
0.27001922406549272
0.067504806016373181
Denominator:
1
-0.39064145319446159
0.53433063715423204
-0.084233712203843125
0.0206518245806043823
```

# Numerator: 0.00041659920440659937 0.0016663568176263975 0.0024995952264395961 0.0016663968176263975 0.00041659920440659937 Denominator: 1 -3.1806385488747191 3.8611943489942142 -2.1121563551109691 0.48826514226197993

- Number of coefficients increases dramatically
- □ Numerator coefficients approach zero
- □ Denominator coefficients approach infinity

```
Numerator:
0.067504806016373181
0.27001922406549272
0.40502883609823914
0.27001922406549272
0.067504806016373181
Denominator:
1
-0.39064145319446159
0.53430063715423204
-0.084233712203843125
```

```
Numerator:
0.00041659920440659937
0.0016663968176263975
0.0024995952264395961
0.0016663968176263975
0.00041659920440659937
Denominator:
-3.1806385488747191
 3 8611943489942142
-2 1121553551109691
 0.43826514226197993
0.0047786506212785162
0.0047786506212785162
Denominator:
 0.42215843994659008
 0.033379585260840769
-0 0039477257655511615
```

0.00030769332294375583

#### Pros

■ Number of coefficients never change

#### Pros

- Number of coefficients never change
- ☐ Small coefficient magnitudes

#### Pros

- □ Number of coefficients never change
- Small coefficient magnitudes
- ☐ Easy to make generic

#### Pros

- Number of coefficients never change
- Small coefficient magnitudes
- □ Easy to make generic

#### Cons

 Numerator coefficients need scaled

#### Pros

- □ Number of coefficients never change
- Small coefficient magnitudes
- □ Easy to make generic

#### Cons

- Numerator coefficients need scaled
- □ Requires more hardware

#### Pros

- Number of coefficients never change
- Small coefficient magnitudes
- □ Easy to make generic

#### Cons

- Numerator coefficients need scaled
- □ Requires more hardware

| Section #1           |
|----------------------|
| Numerator:           |
| 1                    |
| 2                    |
| 1                    |
| Denominator:         |
| 1                    |
| -0.22705028708083497 |
| 0.4514083390923061   |
| Gain:                |
| 0.30608951300286774  |
|                      |
| Section #2           |
| Vumerator:           |
| L                    |
|                      |
|                      |
| Denominator:         |
| 1                    |
| -0.16359116611362662 |
| 0.045748876831938463 |
| Gain:                |
|                      |
| 0.22053942767957796  |

#### IIR IP — Fixed Point

| Quantisation 1.15 |              |           |  |  |
|-------------------|--------------|-----------|--|--|
| Numerator:        | Fixed Point: | Hex:      |  |  |
| 1                 | 32768        | 8000      |  |  |
| 2                 | 65536        | 10000     |  |  |
| 1                 | 32768        | 8000      |  |  |
| Denominator:      |              |           |  |  |
| 1                 | 32768        | 8000      |  |  |
| -0.262322431      | -8596        | FFFFFDE6C |  |  |
| 0.676883869       | 22180        | 56A4      |  |  |
|                   |              |           |  |  |

### IIR IP — Scaling



#### IIR IP — Scaling



# IIR IP — Scaling

| Scaled with l1 |              |            |  |
|----------------|--------------|------------|--|
| Numerator:     | Fixed Point: | Hex:       |  |
| 0.380710926    | 12475        | 30BB       |  |
| 0.761421852    | 24950        | 6176       |  |
| 0.380710926    | 12475        | 30BB       |  |
| Denominator:   |              |            |  |
| 1              | 32768        | 8000       |  |
| -0.262322431   | -8596        | FFFFFFDE6C |  |
| 0.676883869    | 22180        | 56A4       |  |
| Gain:          | 2.329372168  |            |  |
|                |              |            |  |

| Scaled with L2 |              |           |  |  |
|----------------|--------------|-----------|--|--|
| Numerator:     | Fixed Point: | Hex:      |  |  |
| 0.408937915    | 13400        | 3458      |  |  |
| 0.817875829    | 26800        | 68B0      |  |  |
| 0.408937915    | 13400        | 3458      |  |  |
| Denominator:   |              |           |  |  |
| 1              | 32768        | 8000      |  |  |
| -0.262322431   | -8596        | FFFFFDE6C |  |  |
| 0.676883869    | 22180        | 56A4      |  |  |
| Gain:          | 1.212884367  |           |  |  |
|                |              |           |  |  |

#### Zynq Communication — Outside the IP



#### Zynq Communication — Inside the IP

```
53p_coeff_input : process (i_rstb, i_coeff_clk,coeff_ready)
      if(coeff ready='1') then
        r_bcoeff <= (others=>(others=>'0'));
r_acoeff <= (others=>(others=>'0'));
        coeff loop <= 0;
      elsif(rising_edge(i_coeff_clk)) then
        if(coeff loop /= 4) then
           r_bcoeff(coeff_loop) <= signed(i_bcoeff);
          r_acoeff(coeff_loop) <= signed(i_acoeff);
          coeff loop <= coeff loop + 1;
        elsif(coeff loop = 4) then
```

## Zynq Communication — Inside the Zynq

## Example Outputs — Lowpass



 $F_s = 48 \text{kHz}, F_c = 10.8 \text{kHz}$ 

## Example Outputs — Highpass



 $F_s = 48 \mathrm{kHz}, \; F_c = 10.8 \mathrm{kHz}$ 

### Example Outputs — Bandpass



 $F_s = 48$ kHz, Pass band = 8.4kHz to 13.2kHz

## Conclusion

