Math 325 Problem Set 3

Starred (*) problems are due Friday, September 14.

(*) 11. Show that the <u>maximum</u> of two numbers $x, y \in \mathbb{R}$ can be computed by

$$\max(x,y) = \frac{x+y+|x-y|}{2} .$$

[That is, if $x \leq y$ then $\frac{x+y+|x-y|}{2} = y$, while if $y \leq x$ then it equals x.]

Find a similar formula which gives the minimum of x and y.

Given $x, y \in \mathbb{R}$, by trichotomy we know that either x < y, x = y, or x > y. We look at each case separately.

If x < y, then $\max(x, y) = y$. But then x - y < 0, so |x - y| = -(x - y) = y - x, and so $\frac{x + y + |x - y|}{2} = \frac{x + y + (y - x)}{2} = \frac{2y}{2} = y$, so the two quantities agree.

If x = y, then $\max(x, y) = x = y$. But then x - y = 0, so |x - y| = 0, and so $\frac{x + y + |x - y|}{2} = \frac{x + y + 0}{2} = \frac{2x}{2} = x = y$, and so the two quantities again agree.

Finally, if x > y, then $\max(x, y) = x$. But then x - y > 0, so |x - y| = x - y, and so $\frac{x + y + |x - y|}{2} = \frac{x + y + (x - y)}{2} = \frac{2x}{2} = x$, so the two quantities again agree.

So, for any choice of x and y, we find that $\max(x,y) = \frac{x+y+|x-y|}{2}$, which is what we wished to show.

A formula fo $\min(x, y)$ can be found similarly; we want the exact opposite result (for x < y versus x > y), so we want the exact opposite (i.e., negative) result to occur with |x - y|. We can do this by subtracting |x - y| intead of adding it; so

$$\min(x,y) = \frac{x+y-|x-y|}{2}$$

which we can verify by the same "case analysis".

- (*) 14. (Belding and Mitchell, p.36, #17) Use the triangle inequality to establish that for every $x, y \in \mathbb{R}$ we have
- (*) (a) $|x| |y| \le |x y|$

If we start by making what we want look 'more' like the triangle inequality, we would like to show that $|x| \leq |x-y| + |y|$. but since (x-y) + y = x, we can express this as $|(x-y) + y| \leq |x-y| + |y|$. But this does look exactly like the triangle inequality, just with different names... Making this a bit more formal, we know that $a, b \in \mathbb{R}$ implies that $|a+b| \leq |a| + |b|$. But then if we have $x, y \in \mathbb{R}$, then a = x - y and b = y are real numbers and so we have, by the triangle inequality, $|a+b| \leq |a| + |b|$, that is, $|(x-y) + y| \leq |x-y| + |y|$. This means that $|x| \leq |x-y| + |y|$, so $|x| - |y| \leq |x-y|$. So for every $x, y \in \mathbb{R}$ we have $|x| - |y| \leq |x-y|$, as desired.

(*) (b) $|x| - |y| \le |x + y|$

This looks close to the previous problem, except that x+y=x=(-y). But |-y|=|y| for every $y \in \mathbb{R}$, since $y \geq 0$ means that $-y \leq 0$ and so |y|=y=-(-y)=|-y|, while if $y \leq 0$ then $-y \geq 0$ and so |y|=-y=|-y|. But by problem (a) we know that for every $x,y \in \mathbb{R}$ we have $x,-y \in \mathbb{R}$ and so $|x|-|-y| \leq |x-(-y)|$, that is, $|x|-|y| \leq |x-(-y)| = |x+y|$, as desired.

(*) (d)
$$||x| - |y|| \le |x - y|$$

We know that |x| - |y| is equal to either |x| - |y| or -(|x| - |y|) = |y| - |x|. If we can show that both of these numbers are $\leq |x - y|$, then now matter which value the left-hand side takes, we will have $|x| - |y| \leq |x - y|$.

But! ' $|x|-|y|\leq |x-y|$ for every $x,y\in\mathbb{R}$ ' is precisely part (a) above. So what we want to be true work in the case that $\Big||x|-|y|\Big|=|x|-|y|$. But by exchanging the roles of x and y, we know, by (a), that for every $x,y\in\mathbb{R}$ we have $|y|-|x|\leq |y-x|$. But as part of part (b) we showed that |y|=|-y| which means that for every $x,y\in\mathbb{R}$ we have |x-y|=|-(x-y)|=|y-x|. Putting these two facts together we get: for $x,y\in\mathbb{R}$ we have $|y|-|x|\leq |y-x|=|x-y|$, so $|y|-|x|\leq |x-y|$.

So no matter which value |x| - |y| has, it is $\leq |x - y|$. SO for all $x, y \in \mathbb{R}$ we have $|x| - |y| \leq |x - y|$, as desired.

(*) 15. (a) Show that if $B \subseteq \mathbb{R}$ is bounded, and $A \subseteq B$, then A is bounded.

Since B is bounded, it has both an upper and a lower bound, so there are $N, M \in \mathbb{R}$ with $x \leq N$ for every $x \in B$, and $M \leq x$ for every $x \in B$. But since $A \subseteq B$, if $x \in A$ then $x \in B$ (and so $x \leq N$ and $M \leq x$. So $x \leq N$ for every $x \in A$, so N is an upper bound for A. Also, $M \leq x$ for every $x \in A$, so M is a lower bound for A. So, A has both an upper and a lower bound, so A is bounded!

(*) (b) If $S \subseteq \mathbb{R}$, then we define the set |S| as $|S| = \{|s| : s \in S\}$. Show that if S is bounded, then |S| is bounded.

As above, since S is bounded, there are $N, M \in \mathbb{R}$ so that $x \leq N$ and $M \leq x$ for every $x \in S$. But now if we pick $y \in |S|$, then y = |x| for some $x \in S$. So $y = |x| \geq 0$ for every $y \in |S|$, so 0 is a lower bound for |S|.

But we also know that either y = |x| = x (if $x \ge 0$) or y = |x| = -x (if $x \le 0$). If y = x, then $y \le N$ since $x \in S$ so $x \le N$. But if y = -x, then $y \le -M$, since $x \in S$ so $M \le x$, so $x \ge M$, so $-x \le -M$ (since negating both sides of an inequality reverses the inequality). So for any $y \in |S|$ we have either $y \le N$ or $y \le -M$. So if we set $K = \max(N, -M)$, then $N \le K$ and $-M \le K$, and so no matter which one of $y \le N$ or $y \le -M$ is true, we can conclude that $y \le N \le K$ or $y \le -M \le K$, so $y \le K$ in both cases. So for every $y \in |S|$ we have $y \le K$; so K is an upper bound for |S|.

So since |S| has both an upper (K) and a lower (0) bound, |S| is bounded.

A selection of further solutions

10. Show, by induction, that the (ordinary) triangle inequality extends to show that for any $n \ge 2$ we have

$$|\sum_{k=1}^{n} a_k| \le \sum_{k=1}^{n} |a_k|$$
.

Arguing by induction, our base case is n = 2, where $x_1 + x_2 \le |x_1| + |x_2|$ is true, because this is the triangle inequality that we established in class.

If we then assume that for some $n \geq 2$ we have $|\sum_{k=1}^n a_k| \leq \sum_{k=1}^n |a_k|$ when $a_1, \ldots, a_n \in \mathbb{R}$, then if we have $a_1, \ldots, a_{n+1} \in \mathbb{R}$, then $|\sum_{k=1}^{n+1} a_k| = |(\sum_{k=1}^n a_k) + a_{n+1}|$. but $\sum_{k=1}^n a_k$ is a real number, so the ordinary triangle inequality tells us that $|(\sum_{k=1}^n a_k) + a_{n+1}| \leq |(\sum_{k=1}^n a_k)| + |a_{n+1}|$. Then our inductive hypothesis tells us that $|\sum_{k=1}^n a_k| \leq \sum_{k=1}^n |a_k|$, and so, putting everything together,

$$|\sum_{k=1}^{n+1} a_k| = |(\sum_{k=1}^n a_k) + a_{n+1}| \le |(\sum_{k=1}^n a_k)| + |a_{n+1}| \le \sum_{k=1}^n |a_k| + |a_{n+1}| = \sum_{k=1}^{n+1} |a_k|.$$
 So $|\sum_{k=1}^n a_k| \le \sum_{k=1}^n |a_k|$ implies that $|\sum_{k=1}^{n+1} a_k| \le \sum_{k=1}^{n+1} |a_k|$. This gives us our inductive step, and so, by induction, we have $|\sum_{k=1}^n a_k| \le \sum_{k=1}^n |a_k|$ for any $n \ge 2$.

16. For each of the following sets, either show that it is bounded (and find bounds), or explain why it isn't. [You can appeal to results from calculus in your answers.]

(a)
$$A = \left\{ \sum_{k=1}^{n} \frac{1}{k} : n \in \mathbb{N} \right\}$$

Every term in each sum is greater than 0, so each sum is greater than 0, so 0 is a lower bound for the set. But since $\sum_{k=1}^{\infty} \frac{1}{k}$ is a divergent series, calculus tells us that the partial sums tend to ∞ as $n \to \infty$, and so for any $N \in \mathbb{R}$ there is a partial sum $\sum_{k=1}^{n} \frac{1}{k} > N$ (you may recall a certain 'useless' fact from class about when this first exceeds 100...), and so no number can be an upper bound for the set, so A is not bounded from above. So A is not bounded.

(b)
$$B = \left\{ \sum_{k=1}^{n} \frac{1}{2^k} : n \in \mathbb{N} \right\}$$

Again, each term in a sum is positive, so each sum is posisitve, so 0 is a lower bound. In this case, though, the related infinite series is $\sum_{k=1}^{\infty} \frac{1}{2^k} = \frac{1}{2} \sum_{k=0}^{i} nfty(\frac{1}{2})^k$ is a geometric series, which converges (by calculus) to $\frac{1}{2}1/(1-\frac{1}{2})=1$.

Since the terms being added are positive, each element of B is larger than the previous one, so the infinite sum is larger than them all. So the limit, 1, is an upper bound for all of the elements. [An alternative proof: use induction to show that $\sum_{k=1}^{n} \frac{1}{2^k} = 1 - \frac{1}{2^n} < 1$, for every n.] So since B has both an upper (1, or anything larger than that!) bound and a lower 0, or anything further to the left than that!) bound, B is bounded.