Foundation of Cryptography (0368-4162-01), Lecture 2 Pseudorandom Generators

Iftach Haitner, Tel Aviv University

November 8, 2011

Section 1

Distributions and Statistical Distance

Distributions and Statistical Distance

Let P and Q be two distributions over a finite set \mathcal{U} . Their statistical distance (also known as, variation distance), denoted by SD(P,Q), is defined as

$$SD(P,Q) := \frac{1}{2} \sum_{x \in \mathcal{U}} |P(x) - Q(x)| = \max_{S \subseteq \mathcal{U}} P(S) - Q(S)$$

We will only consider finite distributions.

Claim 1

For any pair of (finite) distribution P and Q, it holds that such

$$SD(P,Q) = \max_{D} Pr_{x \leftarrow P}[D(x) = 1] - Pr_{x \leftarrow Q}[D(x) = 1]$$

where D is any algorithm.

Distributions and Statistical Distance

Let P and Q be two distributions over a finite set \mathcal{U} . Their statistical distance (also known as, variation distance), denoted by SD(P,Q), is defined as

$$SD(P,Q) := \frac{1}{2} \sum_{x \in \mathcal{U}} |P(x) - Q(x)| = \max_{S \subseteq \mathcal{U}} P(S) - Q(S)$$

We will only consider finite distributions.

Claim 1

For any pair of (finite) distribution P and Q, it holds that such

$$SD(P,Q) = \max_{D} Pr_{x \leftarrow P}[D(x) = 1] - Pr_{x \leftarrow Q}[D(x) = 1],$$

where D is any algorithm.

Some useful facts

Let *P*, *Q*, *R* be finite distributions, then

Triangle inequality:

$$SD(P,R) \leq SD(P,Q) + SD(Q,R)$$

Repeated sampling:

$$SD((P, P), (Q, Q)) \leq 2 \cdot SD(P, Q)$$

Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

 $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$ is a distribution ensemble, if P_n is a (finite) distribution for any $n \in \mathbb{N}$.

 \mathcal{P} is efficiently samplable (or just efficient), if $\exists \ \mathsf{PPT} \ \mathsf{Samp}$ with $\mathsf{Sam}(1^n) \equiv P_n$.

Definition 3 (statistical indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are statistically indistinguishable, if $SD(P_n, Q_n) = neg(n)$.

Alternatively, if $\left|\Delta^{\mathbb{D}}_{(\mathcal{P},\mathcal{Q})}(n)\right|=\operatorname{neg}(n)$, for *any* algorithm D where

$$\Delta_{(\mathcal{P},\mathcal{Q})}^{D}(n) := \Pr_{x \leftarrow P_n}[D(1^n, x) = 1] - \Pr_{x \leftarrow Q_n}[D(1^n, x) = 1]$$

Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

 $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$ is a distribution ensemble, if P_n is a (finite) distribution for any $n \in \mathbb{N}$.

 \mathcal{P} is efficiently samplable (or just efficient), if $\exists PPT$ Samp with $Sam(1^n) \equiv P_n$.

Definition 3 (statistical indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are statistically indistinguishable, if $SD(P_n, Q_n) = neg(n)$.

$$\Delta^{\mathbb{D}}_{(\mathcal{P},\mathcal{Q})}(n) := \mathsf{Pr}_{x \leftarrow P_n}[\mathsf{D}(1^n,x) = 1] - \mathsf{Pr}_{x \leftarrow Q_n}[\mathsf{D}(1^n,x) = 1]$$

Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

 $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$ is a distribution ensemble, if P_n is a (finite) distribution for any $n \in \mathbb{N}$.

 \mathcal{P} is efficiently samplable (or just efficient), if $\exists \ \mathsf{PPT} \ \mathsf{Samp}$ with $\mathsf{Sam}(1^n) \equiv P_n$.

Definition 3 (statistical indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are statistically indistinguishable, if $SD(P_n, Q_n) = neg(n)$.

Alternatively, if $\left|\Delta_{(\mathcal{P},\mathcal{Q})}^{\mathsf{D}}(n)\right| = \mathsf{neg}(n)$, for *any* algorithm D, where

$$\Delta^{\mathsf{D}}_{(\mathcal{P},\mathcal{Q})}(n) := \mathsf{Pr}_{x \leftarrow P_n}[\mathsf{D}(1^n,x) = 1] - \mathsf{Pr}_{x \leftarrow Q_n}[\mathsf{D}(1^n,x) = 1].$$

Section 2

Computational Indistinguishability

Definition 4 (computational indistinguishability)

$$(\Delta^{\mathsf{D}}_{(\mathcal{P},\mathcal{Q})}(n) := \mathsf{Pr}_{x \leftarrow P_n}[\Delta \mathsf{D}(1^n, x) = 1] - \mathsf{Pr}_{x \leftarrow Q_n}[\mathsf{D}(1^n, x) = 1])$$

- Can it be different from the statistical case?
- Non uniform variant
- Sometime behaves different then expected!

Definition 4 (computational indistinguishability)

$$(\Delta^{\mathsf{D}}_{(\mathcal{P},\mathcal{Q})}(n) := \mathsf{Pr}_{x \leftarrow P_n}[\Delta \mathsf{D}(1^n, x) = 1] - \mathsf{Pr}_{x \leftarrow Q_n}[\mathsf{D}(1^n, x) = 1])$$

- Can it be different from the statistical case?
- Non uniform variant
- Sometime behaves different then expected

Definition 4 (computational indistinguishability)

$$(\Delta^{\mathsf{D}}_{(\mathcal{P},\mathcal{Q})}(n) := \mathsf{Pr}_{\mathsf{x} \leftarrow P_n}[\Delta \mathsf{D}(\mathsf{1}^n,\mathsf{x}) = \mathsf{1}] - \mathsf{Pr}_{\mathsf{x} \leftarrow Q_n}[\mathsf{D}(\mathsf{1}^n,\mathsf{x}) = \mathsf{1}])$$

- Can it be different from the statistical case?
- Non uniform variant
- Sometime behaves different then expected!

Definition 4 (computational indistinguishability)

$$(\Delta^{\mathsf{D}}_{(\mathcal{P},\mathcal{Q})}(n) := \mathsf{Pr}_{\mathsf{x} \leftarrow P_n}[\Delta \mathsf{D}(1^n,\mathsf{x}) = 1] - \mathsf{Pr}_{\mathsf{x} \leftarrow Q_n}[\mathsf{D}(1^n,\mathsf{x}) = 1])$$

- Can it be different from the statistical case?
- Non uniform variant
- Sometime behaves different then expected!

Definition 4 (computational indistinguishability)

$$(\Delta^{\mathsf{D}}_{(\mathcal{P},\mathcal{Q})}(n) := \mathsf{Pr}_{\mathsf{x} \leftarrow P_n}[\Delta \mathsf{D}(1^n,\mathsf{x}) = 1] - \mathsf{Pr}_{\mathsf{x} \leftarrow Q_n}[\mathsf{D}(1^n,\mathsf{x}) = 1])$$

- Can it be different from the statistical case?
- Non uniform variant
- Sometime behaves different then expected!

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2=(\mathcal{P},\mathcal{P})$ and $\mathcal{Q}^2=(\mathcal{Q},\mathcal{Q})$ are?

So either $|\Delta^{\mathbb{D}}_{(\mathcal{P}^2,(\mathcal{P},\mathcal{Q})}(n)| \geq \delta(n)/2$, or $|\Delta^{\mathbb{D}}_{((\mathcal{P},\mathcal{Q}),\mathcal{Q}^2)}(n)| \geq \delta/2$

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2=(\mathcal{P},\mathcal{P})$ and $\mathcal{Q}^2=(\mathcal{Q},\mathcal{Q})$ are?

Assume that
$$\left|\Delta_{(\mathcal{P}^2,\mathcal{Q}^2)}^{\mathsf{D}}(n)\right| = \delta(n)$$
 for some PPT D, we would like to prove that \exists PPT D' with $\left|\Delta_{(\mathcal{P},\mathcal{Q})}^{\mathsf{D}}(n)\right| \geq \delta(n)/2$ for every $n \in \mathbb{N}$. Indeed
$$\delta(n) = \left|\Pr_{x \leftarrow P_n^2}[\mathsf{D}(x) = 1] - \Pr_{x \leftarrow Q_n^2}[\mathsf{D}(x) = 1]\right| \\ \leq \left|\Pr_{x \leftarrow P_n^2}[\mathsf{D}(x) = 1] - \Pr_{x \leftarrow (P_n,Q_n)}[\mathsf{D}(x) = 1]\right| \\ + \left|\Pr_{x \leftarrow (P_n,Q_n)}[\mathsf{D}(x) = 1] - \Pr_{x \leftarrow Q_n^2}[\mathsf{D}(x) = 1]\right| \\ = \left|\Delta_{(\mathcal{P}^2,(\mathcal{P},\mathcal{Q})}^{\mathsf{D}}(n)\right| + \left|\Delta_{(\mathcal{P},\mathcal{Q}),\mathcal{Q}^2}^{\mathsf{D}}(n)\right|$$

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2=(\mathcal{P},\mathcal{P})$ and $\mathcal{Q}^2=(\mathcal{Q},\mathcal{Q})$ are?

Assume that $\left|\Delta^{\mathsf{D}}_{(\mathcal{P}^2,\mathcal{Q}^2)}(n)\right|=\delta(n)$ for some PPT D, we would like to prove that $\exists \ \mathsf{PPT} \ \mathsf{D}'$ with $\left|\Delta^{\mathsf{D}}_{(\mathcal{P},\mathcal{O})}(n)\right| \geq \delta(n)/2$ for every $n \in \mathbb{N}$. Indeed $\delta(n) = |\Pr_{x \leftarrow P^2}[D(x) = 1] - \Pr_{x \leftarrow Q^2}[D(x) = 1]|$ $\leq \left| \mathsf{Pr}_{x \leftarrow P_n^2}[\mathsf{D}(x) = 1] - \mathsf{Pr}_{x \leftarrow (P_n, Q_n)}[\mathsf{D}(x) = 1] \right|$ $+\left|\operatorname{Pr}_{x\leftarrow(P_n,Q_n)}[\operatorname{D}(x)=1]-\operatorname{Pr}_{x\leftarrow Q_n^2}[\operatorname{D}(x)=1]\right|$ $= \left| \Delta^{\mathsf{D}}_{(\mathcal{P}^2,(\mathcal{P},\mathcal{Q})}(n) \right| + \left| \Delta^{\mathsf{D}}_{((\mathcal{P},\mathcal{Q}),\mathcal{Q}^2)}(n) \right|$

So either $|\Delta^{
m D}_{(\mathcal P^2,(\mathcal P,\mathcal O)}(n)|\geq \delta(n)/2$, or $|\Delta^{
m D}_{((\mathcal P,\mathcal O),\mathcal O^2)}(n)|\geq \delta/2$

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2=(\mathcal{P},\mathcal{P})$ and $\mathcal{Q}^2=(\mathcal{Q},\mathcal{Q})$ are?

Assume that $\left|\Delta^{\mathsf{D}}_{(\mathcal{P}^2,\mathcal{Q}^2)}(n)\right|=\delta(n)$ for some PPT D, we would like to prove that $\exists \ \mathsf{PPT} \ \mathsf{D}'$ with $\left|\Delta^{\mathsf{D}}_{(\mathcal{P},\mathcal{O})}(n)\right| \geq \delta(n)/2$ for every $n \in \mathbb{N}$. Indeed $\delta(n) = |\Pr_{x \leftarrow P^2}[D(x) = 1] - \Pr_{x \leftarrow Q^2}[D(x) = 1]|$ $\leq \left| \mathsf{Pr}_{x \leftarrow P_n^2}[\mathsf{D}(x) = 1] - \mathsf{Pr}_{x \leftarrow (P_n, Q_n)}[\mathsf{D}(x) = 1] \right|$ $+\left|\operatorname{Pr}_{x\leftarrow(P_n,Q_n)}[\operatorname{D}(x)=1]-\operatorname{Pr}_{x\leftarrow Q_n^2}[\operatorname{D}(x)=1]\right|$ $= \left| \Delta^{\mathsf{D}}_{(\mathcal{P}^2,(\mathcal{P},\mathcal{Q})}(n) \right| + \left| \Delta^{\mathsf{D}}_{((\mathcal{P},\mathcal{Q}),\mathcal{Q}^2)}(n) \right|$

So either $|\Delta^{
m D}_{(\mathcal P^2,(\mathcal P,\mathcal O)}(n)|\geq \delta(n)/2$, or $|\Delta^{
m D}_{((\mathcal P,\mathcal O),\mathcal O^2)}(n)|\geq \delta/2$

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2=(\mathcal{P},\mathcal{P})$ and $\mathcal{Q}^2=(\mathcal{Q},\mathcal{Q})$ are?

Assume that
$$\left|\Delta_{(\mathcal{P}^2,\mathcal{Q}^2)}^{D}(n)\right| = \delta(n)$$
 for some PPT D, we would like to prove that \exists PPT D' with $\left|\Delta_{(\mathcal{P},\mathcal{Q})}^{D}(n)\right| \geq \delta(n)/2$ for every $n \in \mathbb{N}$. Indeed
$$\delta(n) = \left|\Pr_{x \leftarrow P_n^2}[D(x) = 1] - \Pr_{x \leftarrow Q_n^2}[D(x) = 1]\right|$$

$$\leq \left|\Pr_{x \leftarrow P_n^2}[D(x) = 1] - \Pr_{x \leftarrow (P_n,Q_n)}[D(x) = 1]\right|$$

$$+ \left|\Pr_{x \leftarrow (P_n,Q_n)}[D(x) = 1] - \Pr_{x \leftarrow Q_n^2}[D(x) = 1]\right|$$

$$= \left|\Delta_{(\mathcal{P}^2,(\mathcal{P},\mathcal{Q})}^{D}(n)\right| + \left|\Delta_{((\mathcal{P},\mathcal{Q}),\mathcal{Q}^2)}^{D}(n)\right|$$
 So either $|\Delta_{(\mathcal{P}^2,\mathcal{Q})}^{D}(n)| \geq \delta(n)/2$, or $|\Delta_{((\mathcal{P},\mathcal{Q}),\mathcal{Q}^2)}^{D}(n)| \geq \delta/2$

- Assume that $\left|\Delta^{\mathbb{D}}_{(\mathcal{P}^2,\mathcal{Q}^2)}(n)\right| \geq 1/p(n)$ for some $p \in \mathsf{poly}$ and infinitely many n's, and assume wlg. that $\left|\Delta^{\mathbb{D}}_{\mathcal{P}^2,(\mathcal{P},\mathcal{Q})}(n)\right| \geq 1/2p(n)$ for infinitely many n's.
- Can we use D to contradict the fact that P and Q are computationally close?
- Assuming that P and Q are efficiently samplable
- Non-uniform settings

- Assume that $\left|\Delta^{\mathbb{D}}_{(\mathcal{P}^2,\mathcal{Q}^2)}(n)\right| \geq 1/p(n)$ for some $p \in \mathsf{poly}$ and infinitely many n's, and assume wlg. that $\left|\Delta^{\mathbb{D}}_{\mathcal{P}^2,(\mathcal{P},\mathcal{Q})}(n)\right| \geq 1/2p(n)$ for infinitely many n's.
- Can we use D to contradict the fact that P and Q are computationally close?
- ullet Assuming that ${\mathcal P}$ and ${\mathcal Q}$ are efficiently samplable
- Non-uniform settings

- Assume that $\left|\Delta^{\mathbb{D}}_{(\mathcal{P}^2,\mathcal{Q}^2)}(n)\right| \geq 1/p(n)$ for some $p \in \mathsf{poly}$ and infinitely many n's, and assume wlg. that $\left|\Delta^{\mathbb{D}}_{\mathcal{P}^2,(\mathcal{P},\mathcal{Q})}(n)\right| \geq 1/2p(n)$ for infinitely many n's.
- Can we use D to contradict the fact that P and Q are computationally close?
- Assuming that P and Q are efficiently samplable
- Non-uniform settings

- Assume that $\left|\Delta^{\mathbb{D}}_{(\mathcal{P}^2,\mathcal{Q}^2)}(n)\right| \geq 1/p(n)$ for some $p \in \mathsf{poly}$ and infinitely many n's, and assume wlg. that $\left|\Delta^{\mathbb{D}}_{\mathcal{P}^2,(\mathcal{P},\mathcal{Q})}(n)\right| \geq 1/2p(n)$ for infinitely many n's.
- Can we use D to contradict the fact that P and Q are computationally close?
- Assuming that \mathcal{P} and \mathcal{Q} are efficiently samplable
- Non-uniform settings

Repeated sampling cont.

Given $t = t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$, let $\mathcal{P}^t = \{P_n^{t(n)}\}_{n \in \mathbb{N}}$

Question 6

Let $t = t(n) \leq \operatorname{poly}(n)$ be an eff. computable integer function. Assume that $\mathcal P$ and $\mathcal Q$ are eff. samplable and computationally indistinguishable, does it mean that $\mathcal P^t$ and $\mathcal Q^t$ are?

Proof:

- Induction?
- Hybrid

Repeated sampling cont.

Given $t = t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$, let $\mathcal{P}^t = \{P_n^{t(n)}\}_{n \in \mathbb{N}}$

Question 6

Let $t = t(n) \leq \operatorname{poly}(n)$ be an eff. computable integer function. Assume that $\mathcal P$ and $\mathcal Q$ are eff. samplable and computationally indistinguishable, does it mean that $\mathcal P^t$ and $\mathcal Q^t$ are?

Proof:

- Induction?
- Hybrid

Repeated sampling cont.

Given $t = t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$, let $\mathcal{P}^t = \{P_n^{t(n)}\}_{n \in \mathbb{N}}$

Question 6

Let $t = t(n) \leq \operatorname{poly}(n)$ be an eff. computable integer function. Assume that \mathcal{P} and \mathcal{Q} are eff. samplable and computationally indistinguishable, does it mean that \mathcal{P}^t and \mathcal{Q}^t are?

Proof:

- Induction?
- Hybrid

Hybrid argument

Let D be an algorithm, and for $n \in \mathbb{N}$ let

$$\delta(n) = \left| \Delta^{\mathsf{D}}_{(\mathcal{P}^{t(n)}, \mathcal{Q}^{t(n)})}(t(n)) \right|.$$

- For $i \in \{0, ..., t = t(n)\}$, let $H^i = (p_1, ..., p_i, q_{i+1}, ..., q_t)$, where the p's [resp., q's] are uniformly (and independently) chosen from P_n [resp., from Q_n].
- Since $\delta(n) = \left| \Delta_{H^n, H^0}^{\mathsf{D}}(t) \right| = \left| \sum_{i \in [t]} \Delta_{H^i, H^{i-1}}^{\mathsf{D}}(t) \right|$, there exists $i \in [t]$ with

$$\left|\Delta_{H^i,H^{i-1}}^{\mathsf{D}}(t)\right| \geq \delta(n)/t(n)$$

How do we use it?

Hybrid argument

Let D be an algorithm, and for $n \in \mathbb{N}$ let

$$\delta(n) = \left| \Delta^{\mathsf{D}}_{(\mathcal{P}^{t(n)}, \mathcal{Q}^{t(n)})}(t(n)) \right|.$$

- For $i \in \{0, ..., t = t(n)\}$, let $H^i = (p_1, ..., p_i, q_{i+1}, ..., q_t)$, where the p's [resp., q's] are uniformly (and independently) chosen from P_n [resp., from Q_n].
- Since $\delta(n) = \left| \Delta^{\mathsf{D}}_{H^n, H^0}(t) \right| = \left| \sum_{i \in [t]} \Delta^{\mathsf{D}}_{H^i, H^{i-1}}(t) \right|$, there exists $i \in [t]$ with $\left| \Delta^{\mathsf{D}}_{H^i, H^{i-1}}(t) \right| \geq \delta(n)/t(n)$

How do we use it?

Hybrid argument

Let D be an algorithm, and for $n \in \mathbb{N}$ let

$$\delta(n) = \left| \Delta^{\mathsf{D}}_{(\mathcal{P}^{t(n)}, \mathcal{Q}^{t(n)})}(t(n)) \right|.$$

- For $i \in \{0, ..., t = t(n)\}$, let $H^i = (p_1, ..., p_i, q_{i+1}, ..., q_t)$, where the p's [resp., q's] are uniformly (and independently) chosen from P_n [resp., from Q_n].
- Since $\delta(n) = \left| \Delta^{\mathsf{D}}_{H^n,H^0}(t) \right| = \left| \sum_{i \in [t]} \Delta^{\mathsf{D}}_{H^i,H^{i-1}}(t) \right|$, there exists $i \in [t]$ with $\left| \Delta^{\mathsf{D}}_{H^i,H^{i-1}}(t) \right| \geq \delta(n)/t(n)$
- How do we use it?

Using hybrid argument via estimation

Algorithm 7 (D')

- Find $i \in [t]$ with $\left| \Delta_{H^i, H^{i-1}}^{D}(t) \right| \geq \delta(n)/2t(n)$
- **2** Return $D(1^t, p_1, ..., p_{i-1}, x, q_{i+1}, ..., q_t)$,.
- how do we find i?
- Easy in the non-uniform case

Using hybrid argument via estimation

Algorithm 7 (D')

- Find $i \in [t]$ with $\left| \Delta^{\mathsf{D}}_{H^i,H^{i-1}}(t) \right| \geq \delta(n)/2t(n)$
- 2 Return $D(1^t, p_1, ..., p_{i-1}, x, q_{i+1}, ..., q_t)$,.
- how do we find i?
- Easy in the non-uniform case

Using hybrid argument via estimation

Algorithm 7 (D')

- Find $i \in [t]$ with $\left| \Delta_{H^i, H^{i-1}}^{D}(t) \right| \geq \delta(n)/2t(n)$
- **2** Return $D(1^t, p_1, ..., p_{i-1}, x, q_{i+1}, ..., q_t)$,.
- how do we find *i*?
- Easy in the non-uniform case

Algorithm 8 (D')

- **①** Sample $i \leftarrow [t = t(n)]$
- 2 Return $D(1^t, p_1, ..., p_{i-1}, x, q_{i+1}, ..., q_t)$.

$$\begin{aligned} \left| \Delta_{(\mathcal{P},\mathcal{Q})}^{\mathsf{D}}(n) \right| &= \left| \Pr[\mathsf{D}'(p) = 1] - \Pr[\mathsf{D}'(q) = 1] \right| \\ &= \left| \frac{1}{t} \sum_{i \in [t]} \Pr[\mathsf{D}(p_1, \dots, p_i, q_{i+1}, \dots, q_t) = 1] \right| \\ &- \frac{1}{t} \sum_{i \in [t]} \Pr[\mathsf{D}(p_1, \dots, p_{i-1}, q_i, \dots, q_t) = 1] \right| \\ &= \left| \frac{1}{t} \left(\mathsf{D}(p_1, \dots, p_t) - \mathsf{D}(q_1, \dots, q_t) \right) \right| = \delta(n) / t(n) \end{aligned}$$

Algorithm 8 (D')

- Sample $i \leftarrow [t = t(n)]$
 - **2** Return $D(1^t, p_1, \dots, p_{i-1}, x, q_{i+1}, \dots, q_t)$.

$$\begin{aligned} \left| \Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathsf{D}'}(n) \right| &= \left| \mathsf{Pr}[\mathsf{D}'(p) = 1] - \mathsf{Pr}[\mathsf{D}'(q) = 1] \right| \\ &= \left| \frac{1}{t} \sum_{i \in [t]} \mathsf{Pr}[\mathsf{D}(p_1, \dots, p_i, q_{i+1}, \dots, q_t) = 1] \right| \\ &- \frac{1}{t} \sum_{i \in [t]} \mathsf{Pr}[\mathsf{D}(p_1, \dots, p_{i-1}, q_i, \dots, q_t) = 1] \right| \\ &= \left| \frac{1}{t} \left(\mathsf{D}(p_1, \dots, p_t) - \mathsf{D}(q_1, \dots, q_t) \right) \right| = \delta(n) / t(n) \end{aligned}$$

Algorithm 8 (D')

- Sample $i \leftarrow [t = t(n)]$
 - **2** Return $D(1^t, p_1, \dots, p_{i-1}, x, q_{i+1}, \dots, q_t)$.

$$\begin{aligned} \left| \Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathsf{D}'}(n) \right| &= \left| \mathsf{Pr}[\mathsf{D}'(p) = 1] - \mathsf{Pr}[\mathsf{D}'(q) = 1] \right| \\ &= \left| \frac{1}{t} \sum_{i \in [t]} \mathsf{Pr}[\mathsf{D}(p_1, \dots, p_i, q_{i+1}, \dots, q_t) = 1] \right| \\ &- \frac{1}{t} \sum_{i \in [t]} \mathsf{Pr}[\mathsf{D}(p_1, \dots, p_{i-1}, q_i, \dots, q_t) = 1] \right| \\ &= \left| \frac{1}{t} \left(\mathsf{D}(p_1, \dots, p_t) - \mathsf{D}(q_1, \dots, q_t) \right) \right| = \delta(n) / t(n) \end{aligned}$$

Algorithm 8 (D')

- Sample $i \leftarrow [t = t(n)]$
 - **2** Return $D(1^t, p_1, \dots, p_{i-1}, x, q_{i+1}, \dots, q_t)$.

$$\begin{aligned} \left| \Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathsf{D}'}(n) \right| &= \left| \mathsf{Pr}[\mathsf{D}'(p) = 1] - \mathsf{Pr}[\mathsf{D}'(q) = 1] \right| \\ &= \left| \frac{1}{t} \sum_{i \in [t]} \mathsf{Pr}[\mathsf{D}(p_1, \dots, p_i, q_{i+1}, \dots, q_t) = 1] \right| \\ &- \frac{1}{t} \sum_{i \in [t]} \mathsf{Pr}[\mathsf{D}(p_1, \dots, p_{i-1}, q_i, \dots, q_t) = 1] \right| \\ &= \left| \frac{1}{t} \left(\mathsf{D}(p_1, \dots, p_t) - \mathsf{D}(q_1, \dots, q_t) \right) \right| = \delta(n) / t(n) \end{aligned}$$

Section 3

Pseudorandom Generators

A distribution ensemble $\mathcal P$ over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb N}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb N}$.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs)

An efficiently computable function $g: \{0,1\}^n \mapsto \{0,1\}^{e(n)}$ is a pseudorandom generator, if

- g is length extending (i.e., $\ell(n) > n$ for any n)
- g(U_n) is pseudorandom
- Do such generators exist?
- Imply one-way functions
- Do they have any use?

A distribution ensemble $\mathcal P$ over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb N}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb N}$.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs)

An efficiently computable function $g: \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ is a pseudorandom generator, if

- g is length extending (i.e., $\ell(n) > n$ for any n)
- g(U_n) is pseudorandom
- Do such generators exist?
- Imply one-way functions
- Do they have any use?

A distribution ensemble \mathcal{P} over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb{N}}.$

PRGs from OWPs

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function $g: \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ is a pseudorandom generator, if

- g is length extending (i.e., $\ell(n) > n$ for any n)
- $g(U_n)$ is pseudorandom

A distribution ensemble $\mathcal P$ over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb N}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb N}$.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function $g:\{0,1\}^n\mapsto\{0,1\}^{\ell(n)}$ is a pseudorandom generator, if

- g is length extending (i.e., $\ell(n) > n$ for any n)
- $g(U_n)$ is pseudorandom
- Do such generators exist?
- Imply one-way functions
- Do they have any use?

A distribution ensemble $\mathcal P$ over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb N}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb N}$.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function $g:\{0,1\}^n\mapsto\{0,1\}^{\ell(n)}$ is a pseudorandom generator, if

- g is length extending (i.e., $\ell(n) > n$ for any n)
- $g(U_n)$ is pseudorandom
- Do such generators exist?
- Imply one-way functions
- Do they have any use?

A distribution ensemble $\mathcal P$ over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb N}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb N}$.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function $g:\{0,1\}^n\mapsto\{0,1\}^{\ell(n)}$ is a pseudorandom generator, if

- g is length extending (i.e., $\ell(n) > n$ for any n)
- $g(U_n)$ is pseudorandom
- Do such generators exist?
- Imply one-way functions
- Do they have any use?

Section 4

Hardcore Predicates

Hardcore predicates

Building blocks in constructions of PRGS from OWF

$$\Pr[P(f(U_n)) = b(U_n)] \le \frac{1}{2} + \operatorname{neg}(n)$$

Hardcore predicates

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function $b: \{0,1\}^n \mapsto \{0,1\}$ is an hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr[P(f(U_n)) = b(U_n)] \le \frac{1}{2} + \operatorname{neg}(n),$$

- Does the existence of an hardcore predicate for f, implies that f is one way? If f is a (one-way) permutation?
- Fact: any PRG has HCP (HW)
- Fact: any OWF has an hardcore predicate (next class)

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function $b:\{0,1\}^n\mapsto\{0,1\}$ is an hardcore predicate of $f:\{0,1\}^n\mapsto\{0,1\}^n$, if

$$\Pr[P(f(U_n)) = b(U_n)] \le \frac{1}{2} + \operatorname{neg}(n),$$

- Does the existence of an hardcore predicate for f, implies that f is one way?
- Fact: any PRG has HCP (HW)
- Fact: any OWF has an hardcore predicate (next class)

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function $b: \{0,1\}^n \mapsto \{0,1\}$ is an hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr[P(f(U_n)) = b(U_n)] \le \frac{1}{2} + \operatorname{neg}(n),$$

- Does the existence of an hardcore predicate for f, implies that f is one way? If f is a (one-way) permutation?
- Fact: any PRG has HCP (HW)
- Fact: any OWF has an hardcore predicate (next class)

Hardcore predicates

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function $b: \{0,1\}^n \mapsto \{0,1\}$ is an hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr[P(f(U_n)) = b(U_n)] \le \frac{1}{2} + \operatorname{neg}(n),$$

- Does the existence of an hardcore predicate for f, implies that f is one way? If f is a (one-way) permutation?
- Fact: any PRG has HCP (HW).
- Fact: any OWF has an hardcore predicate (next class)

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function $b: \{0,1\}^n \mapsto \{0,1\}$ is an hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr[P(f(U_n)) = b(U_n)] \le \frac{1}{2} + \operatorname{neg}(n),$$

- Does the existence of an hardcore predicate for f, implies that f is one way? If f is a (one-way) permutation?
- Fact: any PRG has HCP (HW).
- Fact: any OWF has an hardcore predicate (next class)

Section 5

PRGs from OWPs

PRGs from OWPs

OWP to PRG

Claim 12

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a permutation and let $b: \{0,1\}^n \mapsto \{0,1\}$ be an hardcore predicate for f, then g(x) = (f(x), b(x)) is a PRG.

OWP to PRG

Claim 12

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a permutation and let $b: \{0,1\}^n \mapsto \{0,1\}$ be an hardcore predicate for f, then g(x) = (f(x), b(x)) is a PRG.

Proof: Assume \exists a PPT D, and infinite set $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ with $\left|\Delta_{g(U_n),U_{n+1}}^{D}\right| > \varepsilon(n) = 1/p(n)$ for any $n \in \mathcal{I}$. We use D for breaking the hardness of b.

• We assume wlg. that $\Pr[\mathsf{D}(g(U_n)) = 1] - \Pr[\mathsf{D}(U_{n+1}) = 1] \ge \varepsilon(n)$ for any $n \in \mathcal{I}$ (can we do it?), and fix $n \in \mathcal{I}$.

PRGs from OWPs

OWP to PRG

Claim 12

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a permutation and let $b: \{0,1\}^n \mapsto \{0,1\}$ be an hardcore predicate for f, then g(x) = (f(x), b(x)) is a PRG.

Proof: Assume \exists a PPT D, and infinite set $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ with $\left|\Delta_{g(U_n),U_{n+1}}^{\mathsf{D}}\right| > \varepsilon(n) = 1/p(n)$ for any $n \in \mathcal{I}$. We use D for breaking the hardness of b.

 We assume wlg. that $\Pr[\mathsf{D}(g(U_n)) = 1] - \Pr[\mathsf{D}(U_{n+1}) = 1] \ge \varepsilon(n)$ for any $n \in \mathcal{I}$ (can we do it?), and fix $n \in \mathcal{I}$.

- Let $\delta(n) = \Pr[D(U_{n+1}) = 1]$ (note that $Pr[D(G(U_n)) = 1] = \delta + \varepsilon$).

$$\delta = \Pr[D(f(U_n), U_1) = 1]$$

$$= \Pr[U_1 = b(U_n)] \cdot \Pr[D(f(U_n), U_1) = 1 \mid U_1 = b(U_n)]$$

$$+ \Pr[U_1 = \overline{b(U_n)}] \cdot \Pr[D(f(U_n), U_1) = 1 \mid U_1 = \overline{b(U_n)}]$$

$$= \frac{1}{2}(\delta + \varepsilon) + \frac{1}{2} \cdot \Pr[D(f(U_n), U_1) = 1 \mid U_1 = \overline{b(U_n)}].$$

$$\Pr[\mathsf{D}(f(U_n), \overline{b(U_n)}) = 1] = \delta - \varepsilon \tag{1}$$

- Let $\delta(n) = \Pr[D(U_{n+1}) = 1]$ (note that $Pr[D(G(U_n)) = 1] = \delta + \varepsilon$).
- Compute

$$\begin{array}{lll} \delta & = & \Pr[\mathsf{D}(f(U_n),U_1)=1] \\ & = & \Pr[U_1=b(U_n)] \cdot \Pr[\mathsf{D}(f(U_n),U_1)=1 \mid U_1=b(U_n)] \\ & + & \Pr[U_1=\overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n),U_1)=1 \mid U_1=\overline{b(U_n)}] \\ & = & \frac{1}{2}(\delta+\varepsilon)+\frac{1}{2} \cdot \Pr[\mathsf{D}(f(U_n),U_1)=1 \mid U_1=\overline{b(U_n)}]. \end{array}$$

$$\Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta - \varepsilon \tag{1}$$

- Let $\delta(n) = \Pr[D(U_{n+1}) = 1]$ (note that $Pr[D(G(U_n)) = 1] = \delta + \varepsilon$).
- Compute

$$\begin{array}{lll} \delta & = & \Pr[\mathsf{D}(f(U_n),U_1)=1] \\ & = & \Pr[U_1=b(U_n)] \cdot \Pr[\mathsf{D}(f(U_n),U_1)=1 \mid U_1=b(U_n)] \\ & + & \Pr[U_1=\overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n),U_1)=1 \mid U_1=\overline{b(U_n)}] \\ & = & \frac{1}{2}(\delta+\varepsilon)+\frac{1}{2} \cdot \Pr[\mathsf{D}(f(U_n),U_1)=1 \mid U_1=\overline{b(U_n)}]. \end{array}$$

$$\Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta - \varepsilon \tag{1}$$

- Let $\delta(n) = \Pr[D(U_{n+1}) = 1]$ (note that $Pr[D(G(U_n)) = 1] = \delta + \varepsilon$).
- Compute

$$\delta = \Pr[D(f(U_n), U_1) = 1]
= \Pr[U_1 = b(U_n)] \cdot \Pr[D(f(U_n), U_1) = 1 \mid U_1 = b(U_n)]
+ \Pr[U_1 = \overline{b(U_n)}] \cdot \Pr[D(f(U_n), U_1) = 1 \mid U_1 = \overline{b(U_n)}]
= \frac{1}{2}(\delta + \varepsilon) + \frac{1}{2} \cdot \Pr[D(f(U_n), U_1) = 1 \mid U_1 = \overline{b(U_n)}].$$

Hence.

$$\Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta - \varepsilon \tag{1}$$

- Consider the following algorithm for predicting b

Algorithm 13 (P)

Input: $y \in \{0, 1\}^T$

- Flip a random coin $c \leftarrow \{0, 1\}$.
- ② If D(y,c) = 1 output c, otherwise, output \overline{c} .
- It follows that

$$Pr[P(f(U_n)) = b(U_n)]$$

$$= Pr[c = b(U_n)] \cdot Pr[D(f(U_n), c) = 1 \mid c = b(U_n)]$$

$$+Pr[c = \overline{b(U_n)}] \cdot Pr[D(f(U_n), c) = 0 \mid c = \overline{b(U_n)}]$$

$$= \frac{1}{2} \cdot (\delta + \varepsilon) + \frac{1}{2}(1 - \delta + \varepsilon) = \frac{1}{2} + \varepsilon.$$

- $Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta \varepsilon$
- Consider the following algorithm for predicting b:

Algorithm 13 (P)

Input: $y \in \{0, 1\}^n$

- Flip a random coin $c \leftarrow \{0, 1\}$.
- 2 If D(y, c) = 1 output c, otherwise, output \overline{c} .
- It follows that

$$Pr[P(f(U_n)) = b(U_n)]$$

$$= Pr[c = b(U_n)] \cdot Pr[D(f(U_n), c) = 1 \mid c = b(U_n)]$$

$$+Pr[c = \overline{b(U_n)}] \cdot Pr[D(f(U_n), c) = 0 \mid c = \overline{b(U_n)}]$$

$$= \frac{1}{c} \cdot (\delta + \varepsilon) + \frac{1}{c} (1 - \delta + \varepsilon) = \frac{1}{c} + \varepsilon.$$

- Onsider the following algorithm for predicting b:

Algorithm 13 (P)

Input: $y \in \{0, 1\}^n$

- Flip a random coin $c \leftarrow \{0, 1\}$.
- If D(y,c)=1 output c, otherwise, output \overline{c} .
- It follows that

$$\begin{aligned} & \Pr[\mathsf{P}(f(U_n)) = b(U_n)] \\ &= & \Pr[c = b(U_n)] \cdot \Pr[\mathsf{D}(f(U_n), c) = 1 \mid c = b(U_n)] \\ &+ \Pr[c = \overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n), c) = 0 \mid c = \overline{b(U_n)}] \\ &= & \frac{1}{2} \cdot (\delta + \varepsilon) + \frac{1}{2} (1 - \delta + \varepsilon) = \frac{1}{2} + \varepsilon. \end{aligned}$$

- Onsider the following algorithm for predicting b:

Algorithm 13 (P)

Input: $y \in \{0, 1\}^n$

- Flip a random coin $c \leftarrow \{0, 1\}$.
- If D(y,c)=1 output c, otherwise, output \overline{c} .
- It follows that

$$\begin{aligned} & \Pr[\mathsf{P}(f(U_n)) = b(U_n)] \\ &= & \Pr[c = b(U_n)] \cdot \Pr[\mathsf{D}(f(U_n), c) = 1 \mid c = b(U_n)] \\ &+ \Pr[c = \overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n), c) = 0 \mid c = \overline{b(U_n)}] \\ &= & \frac{1}{2} \cdot (\delta + \varepsilon) + \frac{1}{2} (1 - \delta + \varepsilon) = \frac{1}{2} + \varepsilon. \end{aligned}$$

Remark 14

- Prediction to distinguishing (HW)
- PRG from any OWF: (1) Regular OWFs, first use pairwise hashing to convert into "almost" permutation. (2) Any OWF harder

Remark 14

- Prediction to distinguishing (HW)
- PRG from any OWF: (1) Regular OWFs, first use pairwise hashing to convert into "almost" permutation. (2) Any OWF, harder

Section 6

PRG Length Extension

Pseudorandom Generators

Construction 15 (iteration)

Given a function $g: \{0,1\}^n \mapsto \{0,1\}^\ell$ be a length increasing function, and let $i \in \mathbb{N}$. Define $g^i : \{0,1\}^n \mapsto \{0,1\}^{n+i(\ell-n)}$ as

$$g^{i}(x) = x_{n+1,\dots,|x^{i-1}|}^{i-1}, g(x_{1,\dots,n}^{i-1}),$$

where $x^{i-1} = g^{i-1}(x)$ and $g^0(x) = x$.

PRG Length Extension

Construction 15 (iteration)

Given a function $g: \{0,1\}^n \mapsto \{0,1\}^\ell$ be a length increasing function, and let $i \in \mathbb{N}$. Define $g^i: \{0,1\}^n \mapsto \{0,1\}^{n+i(\ell-n)}$ as

$$g^{i}(x) = x_{n+1,\dots,|x^{i-1}|}^{i-1}, g(x_{1,\dots,n}^{i-1}),$$

where $x^{i-1} = g^{i-1}(x)$ and $g^0(x) = x$.

Claim 16

Let $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ be a PRG, then $g^t: \{0,1\}^n \mapsto \{0,1\}^{n+t(n)}$ is a PRG, for any $t \in \text{poly}$.

Proof: Assume \exists a PPT D, and infinite set $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ with $\left|\Delta_{g^t(U_n),U_{n+t(n)}}^{\mathsf{D}}\right| > \varepsilon(n) = 1/p(n)$, for any $n \in \mathcal{I}$. We use D for breaking the hardness of a.

PRG Length Extension

Pseudorandom Generators

Construction 15 (iteration)

Given a function $g: \{0,1\}^n \mapsto \{0,1\}^\ell$ be a length increasing function, and let $i \in \mathbb{N}$. Define $g^i : \{0,1\}^n \mapsto \{0,1\}^{n+i(\ell-n)}$ as

$$g^{i}(x) = x_{n+1,\dots,|x^{i-1}|}^{i-1}, g(x_{1,\dots,n}^{i-1}),$$

where $x^{i-1} = g^{i-1}(x)$ and $g^0(x) = x$.

Claim 16

Let $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ be a PRG, then $a^t: \{0,1\}^n \mapsto \{0,1\}^{n+t(n)}$ is a PRG, for any $t \in \text{poly}$.

Proof: Assume \exists a PPT D, and infinite set $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ with $\left|\Delta_{g^t(U_n),U_{n+t(n)}}^{\mathsf{D}}\right| > \varepsilon(n) = 1/p(n)$, for any $n \in \mathcal{I}$. We use D for breaking the hardness of q.

PRGs from OWPs

PRG Length Extension cont.

- Fix $n \in \mathbb{N}$, and for $i \in \{0, \ldots, t = t(n)\}$, let $H^{i} = X_{n+1}^{i}$ $|X^{i}|, g^{i}(X_{1,...,n}^{i}), \text{ where } X^{i} = U_{n+t-i}$

$$\left|\Delta_{g(U_n),U_{n+1}}^{\mathsf{D}'}\right| > \varepsilon(n)/t(n)$$

PRG Length Extension cont.

- Fix $n \in \mathbb{N}$, and for $i \in \{0, ..., t = t(n)\}$, let $H^i = X^i_{n+1,...,|X^i|}, g^i(X^i_{1,...,n})$, where $X^i = U_{n+t-i}$
- Note that $H^0 \equiv U_{n+t}$ and $H^t \equiv g^t(U_n)$.

Algorithm 17 (D')

Input: 1^n and $y \in \{0, 1\}^{n+1}$

- **○** Sample $i \leftarrow \{0, ..., t-1\}$
- ② Return D(1ⁿ, $U_{n-i-1}, y_{n+1}, g^i(y_{1,...,n}))$

Claim 18

$$\left|\Delta_{g(U_n),U_{n+1}}^{\mathsf{D}'}\right| > \varepsilon(n)/t(n)$$

Proof: at home...

PRGs from OWPs

PRG Length Extension cont.

- Fix $n \in \mathbb{N}$, and for $i \in \{0, \ldots, t = t(n)\}$, let $H^{i} = X_{n+1}^{i}$ $|X^{i}|, g^{i}(X_{1,...,n}^{i}), \text{ where } X^{i} = U_{n+t-i}$
- Note that $H^0 \equiv U_{n+t}$ and $H^t \equiv g^t(U_n)$.

Algorithm 17 (D')

Input: 1^n and $y \in \{0, 1\}^{n+1}$

- **●** Sample $i \leftarrow \{0, ..., t-1\}$
- 2 Return D(1ⁿ, U_{n-i-1} , y_{n+1} , $g^i(y_{1,...,n})$).

PRG Length Extension cont.

- Fix $n \in \mathbb{N}$, and for $i \in \{0, ..., t = t(n)\}$, let $H^i = X^i_{n+1,...,|X^i|}, g^i(X^i_{1,...,n})$, where $X^i = U_{n+t-i}$
- Note that $H^0 \equiv U_{n+t}$ and $H^t \equiv g^t(U_n)$.

Algorithm 17 (D')

Input: 1^n and $y \in \{0, 1\}^{n+1}$

- **●** Sample $i \leftarrow \{0, ..., t 1\}$
- **2** Return D(1ⁿ, $U_{n-i-1}, y_{n+1}, g^i(y_{1,...,n})$).

Claim 18

$$\left|\Delta_{g(U_n),U_{n+1}}^{\mathsf{D}'}\right| > \varepsilon(n)/t(n)$$

PRG Length Extension cont.

- Fix $n \in \mathbb{N}$, and for $i \in \{0, ..., t = t(n)\}$, let $H^i = X^i_{n+1,...,|X^i|}, g^i(X^i_{1,...,n})$, where $X^i = U_{n+t-i}$
- Note that $H^0 \equiv U_{n+t}$ and $H^t \equiv g^t(U_n)$.

Algorithm 17 (D')

Input: 1^n and $y \in \{0, 1\}^{n+1}$

- **••** Sample i ← {0, . . . , t − 1}
- **2** Return D(1ⁿ, U_{n-i-1} , y_{n+1} , $g^i(y_{1,...,n})$).

Claim 18

$$\left|\Delta_{g(U_n),U_{n+1}}^{\mathsf{D}'}\right| > \varepsilon(n)/t(n)$$

Proof: at home...