

文档名称	MotorControlBoard Hardware Spec
文档版本	V17_1
制作日期	2017.02.05
项目名称	

文档历史管理:

版本	日期	修改人	修改说明
V16_1	2017.02.05	徐影	First issued
		/	
		*	

MotorControlBoard 规格书

1. 目的

- ◆ 直流无刷霍尔传感方波速度闭环控制
- ◆ 直流无刷无霍尔传感方波速度闭环控制
- ◆ 永磁同步正交编码器正弦波速度闭环控制
- ◆ 永磁同步霍尔传感正弦波速度闭环控制
- ◆ 永磁同步无感正弦波速度闭环控制
- ◆ 三相交流异步 VF 调速控制程序

MotorControlBoard 电路板用于控制直流无刷电机,永磁同步电机,三相交流异步电机,主要面向学习电机控制,实现或验证电机控制算法,开发电机类产品项目的用户。

2. 系统框图

3. 主要元器件列表

名称	型 号	描述	备注
CPU	STM32F103	LQFP48	64KB
IC	IR2101	MOS 驱动芯片	
MOS	IRF540	典型	T0-220
Power	LM2596	Buck 电源电路	
IC	LM358	运算放大器	
IC	MAX232	串口通信芯片	
IC	LM393	比较器	
IC	SN65HVD230	CAN 通讯芯片	
IC	MAX485	RS485 通讯芯片	
光耦	NEC6001	高速光耦	

电机控制交流 QQ 群: 314306105

3.1、STM32F103 -CPU 控制芯片

STM32F103 增强型系列由意法半导体集团设计,使用高性能的 ARMCortex-M332 位的 RISC 内核,工作频率为 72MHz,内置高速存储器(高达 128K 字节的闪存和 20K 字节的 SRAM),丰富的增强 I/O 端口和联接到两条 APB 总线的外设。所有型号的器件都包含 2个 12 位的 ADC、3 个通用 16 位定时器和一个 PWM 定时器,还包含标准和先进的通信接口:多达 2 个 I2C 和 SPI、3 个 USART、一个 USB 和一个 CAN。

STM32作为电机控制,具有高级定时器1驱动三相电机,2个12位高精度AD作为相电流采样,高达72M时钟可以为FOC提供高效运行速率。支持单周期乘法和高速硬件除法器,更好的是价格优势,STM32F103C8T6以1美金内的价格优势。

资源如下表:

性能	内容	备注
CPU	32 位 ARM/M3 处理器	
系统频率	72MHz	
片内 FLSH	64KB	
系统外部接口 XNTF	有	
通用 IO	37个	
AD转换	12位8个通1us	
	高级定时器 1: 6 路对	
	称互补 PWM,2	A
 电机控制外设	路独立 PWM	
3,02,03	 QEP:组正交编码器通	
	道 (定时器)	
SPI	2个	
USART	3	
CAN	1.7	
IIC	2个	
外部中断	8个	
USB2.0 全速接口	1个	
DMA	通道	

3.2、IR2101-驱动芯片

MOS 管驱动芯片,参数如下

● 功耗:625Mw

● 供电电压: 10V-20V

● 工作温度:-40℃-125℃

● 封装:8-SOIC

Typical Connection

3.3、IRF540-MOS 开关管

N沟道-MOS管参数如下:

- 最大耐压值 Vds: 100V
- 最大漏极电流 Id: 23A
- 栅源极电压:20V
- 阀门电压 Vgs: 3V
- 开启上升时间: 39ns
- 关闭下降时间: 24ns
- 工作温度: -55°C-175°C
- 封装: TO-220

INTERNAL SCHEMATIC DIAGRAM

3.4、LM2596-电源芯片

斩波电源芯片

- 输入电压范围 Vin: 4.5V-40V
- 输出电压范围 Vout: 3.3V-37V
- 输出电流 Iout: 3A
- 开关频率范围:110KHz-173KHz
- 工作温度:-40℃-125℃
- 封装:TO-263

3.5、LM358-放大器

LM358运算放大器

● 通道数:2通道

● 供电电压:双电源±1.5-±15V 单电源 3V-30V

● 功耗:500mW

● 工作温度: -25℃-125℃

● 封装: SOP8

- 1 Output 1
- 2 Inverting input
- 3 Non-inverting input
- 4 V_{CC}
- 5 Non-inverting input 2
- 6 Inverting input 2
- 7 Output 2
- 8 V_{CC}⁺

3.6、 RS-232 串口通信芯片

与外部单片机或 PC 通信 (TTL 电平)

● 功耗:375mW

● 供电电源:3V-6V

● 工作温度:-25℃-125℃

● 封装: SOP-8

3.7 RS-485 串口通信芯 MAX3485

- 半双工;
- 限摆率: NO;
- 低电流关断模式:NO;
- 接收允许控制: YES;
- 静态电流 300uA;
- 封装: SOP-8

3.9 CAN2.0B 通信芯 SN65HVD230

SN65HVD230可用于较高干扰环境下。该器件在不同的速率下均有良好的

收发能力,其主要特点如下:

- ·完全兼容 ISO11898 标准;
- 高輸入阻抗,允许120个节点;
- ·低电流等待模式,典型电流为370μA;
- ·信号传输速率最高可达 1Mb/s;
- ·具有热保护,开路失效保护功能;
- ·具有抗瞬间干扰,保护总线的功能;
- ·斜率控制,降低射频干扰(RFI);
- ·差分接收器,具有抗宽范围的共模干扰、电磁干扰(EMI)能力。
- 封装: SOP-8

3.10、AMS117-5 和 AMS117-3.3 电源芯片

● 输出电压: 4.75-5.25V / 3.3 芯片

输出电流: 0.8A内含限流保护;内含过温保护;封装: SOT-223

4. 接口定义说明

4.1 连接图

4.2 接口定义

J2 - 串口通信接口定义

引脚序号	定义	备注
2	RS-TXDB	发送数据
3	RS-RXDB	接受数据
5	RS-GND	
1, 4, 6—11	NC	暂未用

J4- RS485HRCAN 通讯接口

引脚序号	定义	备注
1	CANL	
2	CANH	
3	485B	
4	485A	
5	GND	

J3-逆变输出(驱动电机)接口定义:

引脚序号	定义	<u>备</u> 注
1	GND	
2	W	W相輸出
3	V	W相輸出
4	U	W相输出
5	DC24V	直流母线供电脚 24V

J1- DA 转换输出接口定义:

引脚序号	定义	备注
1	GND	5V 电源
2	DAC1	
3	DAC2	
4	VCC	

J13-正交编码器输入接口定义:

引脚序号	定义	备注
	V12	12V 电源
2	QEP1A	
3	QEP1B	
4	QEP1Z	
5	GND	

J15-霍尔传感器输入接口定义:

引脚序号	定义	备注
1	VCC	5V 电源
2	НА	
3	НВ	
4	НС	
5	GND	

5. 主要参数

● 供电电压: 24VDC

● 工作电流:80mA 左右

● 工作温度:-20℃-75℃

6. 功能介绍

6.1、电机控制

■ 直流无刷无霍尔传感方波速度闭环控制

通过 J6 接入霍尔传感器到 CPU,用以控制直流无刷电机转动;

- 直流无刷无霍尔传感方波速度闭环控制
 通过采集反电动势进入 CPU,用以控制直流无刷电机转动;
- 永磁同步正交编码器正弦波速度闭环控制
 通过 J6 接入正交编码器到 CPU,用以控制永磁同步电机转动;
- 永磁同步霍尔传感正弦波速度闭环控制

通过 J6 接入霍尔传感器反馈计算出电角度,用以控制永磁同步电机转动;

■ 永磁同步无感正弦波速度闭环控制

通过采集 U、V、W 三相电流计算出电角度,用以控制永磁同步电机转动;

■ 三相交流异步 VF 调速控制程序

V/f 是在改变逆变输出电压频率的同时改变输出相电压的幅值,用以控制交流异步电机转动; V/F 运行曲线如下图:频率 f_N 以前为恒转矩运行, f_N 以后为恒功率运行。

6.2、串口通信

RS232 串口通信,可以与外部设备进行通信,也可打印机及其它 PC 外设之间的通信。

RS485 串口通信, RS-485 与 RS-232 不一样,数据信号采用差分传输方式,也称作平衡传输,它使用一对双绞线,将其中一线定义为 A,另一线定义为 B。可以实现一控多。

CAN 通信是控制器局域网络(Controller Area Network, CAN)的简称,是由以研发和生产汽车电子产品著称的德国 BOSCH 公司开发的,并最终成为国际标准(ISO 11898),是国际上应用最广泛的现场总线之一。

5.3、报警功能

利用三极管驱动控制蜂鸣器,实现报警功能。

5.4、工作状态指示

MCU正常工作, D1则以1HZ的频率闪烁,

5.5、 过流保护功能

逆变输出具有过电流保护功能。

5.6 DA 转换

2路数字量转换模拟量。

- ◆ 欢迎提出文档编写错误,<u>投稿邮箱 616264123@qq.com</u>
- ◆ 盗版举报电话 13816643017
- ◆ 电机控制交流 QQ 群:314306105
- ◆ 购买网址:

https://item.taobao.com/item.htm?spm=a1z0d.6639537.19971966 01.34.cSKlrG&id=545752085093

附件1

附件 2

