This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

FIG. 6

FIG. 7

FIG. 8

FIG. 14

FIG. 27A

Column	Variable Name	Definition
	Point ID	A unique point identifier that describes the
		location of the point in the pupil sampling map.
		The point (0,0) is given a Point ID of 0.
2	X coordinate (mm)	Horizontal location in entrance pupil where the
		acquisition occurred.
3	Y coordinate (mm)	Vertical location in entrance pupil where the
		acquisition occurred.
4	dx (milliradians)	Horizontal compensation measurement to nullify
		wavefront error at (x, y).
5	dy (milliradians)	Vertical compensation measurement to nullify
		wavefront error at (x, y).

Variables	Definition
(x, y)	Coordinate system of wavefront measurement with respect to
	pupillary centroid. (0, 0) corresponds to centroid of
	pharmacologically dilated pupil in mesopic illumination conditions.
(X, Y)	Coordinate system of ablation profile with respect to corneal vertex.
	(0, 0) corresponds to corneal vertex.

Variable Name	Definition
R_{OZ}	Radius of optical zone.
R_{TZ}	Radius of transition zone.
W_{min}	Minimum value of the wavefront error over the optical zone area (the most negative value).
D _{Mes}	Diameter of the natural pupil under mesopic illumination conditions.
D_{Dil}	Diameter of the pharmacologically dilated pupil under mesopic illumination conditions.
h	Ablation rate efficacy factor, $\eta = 1.0$ (for corneal tissue), $\eta \approx 0.3$ (for polymethylmethacrylate, PMMA).
	Radius from the pupillary centroid to the point (X,Y) , $r = \sqrt{x^2 + y^2}$.
n_c	Index of refraction of cornea $(n_c = 1.3771)$, according to reference 4.

Emory Vision Term Index	Zemax Term Number	OSA Term Number (Thibos, et. al.)	Zernike Function Term = $F_n(\rho, \theta)$
Unused	1	0	1
3 1 4 3	2		·
2	3	· 1	4^(1/2) (ρ) * COS (θ) 4^(1/2) (ρ) * SIN (θ)
3	6	5	6^(1/2) (ρ^2) * COS (2θ)
4	4	4	3^(1/2) (2p^2 - 1)
5	5	3	6^(1/2) (ρ^2) * SIN (2θ)
* 6	10	9	* 8^(1/2) (p^3) * COS (30)
7	8	8	8^(1/2) (3ρ^3 - 2ρ) * COS (θ)
* *8	7 **	7	* 8^(1/2) (3ρ^3 - 2ρ) * SIN (θ)
* *9	9 **	6	8^(1/2) (ρ^3) * SIN (3θ)
10	14	14	10^(1/2) (ρ^4) * COS (4θ)
11	12	13	10^(1/2) (4ρ^4 - 3ρ^2) * COS (2θ)
12	11	12	5^(1/2) (6p^4 - 6p^2 + 1)
13	13	11	10^(1/2) (4ρ^4 - 3ρ^2) * SIN (2θ)
14	15	10	10^(1/2) (ρ^4) * SIN (4θ)
15	. 20	20	12^(1/2) (ρ^5) * COS (5θ)
16	18		12 ^(1/2) (5ρ ⁵ - 4ρ ³) [†] COS (3θ)
17	16		12\(1/2)\(10\rho\5 - 12\rho\3 + 3\rho) * COS (θ).
18	17	17 6	» 412^(1/2) (10ρ^5 - 12ρ^3 + 3ρ) * SIN (θ)
*19***	19	16 🦠	12^(1/2) (5p^5 - 4p^3) * SIN (3e)
*20 *	21		//12^(1/2) (p^5) * SIN (50)
21	28	27	14^(1/2) (ρ^6) * COS (6θ)
22	26	26	14^(1/2) (6ρ^6 - 5ρ^4) * COS (4θ)
23	24	25	$14^{(1/2)} (15\rho^{6} - 20\rho^{4} + 6\rho^{2}) * COS (2\theta)$
24	22	24	7^(1/2) (20p^6 - 30p^4 + 12p^2 - 1)
25	23	23	14^(1/2) (15ρ^6 - 20ρ^4 + 6ρ^2) * SIN (2θ)
26	25	22	14^(1/2) (6ρ^6 - 5ρ^4) * SIN (4θ)
27	27	21	14^(1/2) (ρ^6) * SIN (6θ)
28	36	35	16^(1/2) (ρ^7) * COS (7θ)
29	34	34	16^(1/2) (7ρ^7 - 6ρ^5) * COS (5θ)
30 🗼 🗼	32	33	16^(1/2) (21ρ^7 - 30ρ^5 + 10ρ^3) * COS (3θ)
- 31 🚛 -	-30	32	16^(1/2) (35ρ^7 - 60ρ^5 + 30ρ^3 - 4ρ) * COS (θ)
32 🗼	29	31 🗼	16^(1/2) (35ρ^7 - 60ρ^5 + 30ρ^3 - 4ρ) * SIN (θ)
∗33 ∗ ∗	31	- 30 🚜 ↓	16^(1/2) (21ρ^7 - 30ρ^5 + 10ρ^3) * SIN (3θ)
	× 33	29	16^(1/2) (7ρ^7 - 6ρ^5) *SIN (5θ)
35	35	28	16^(1/2) (ρ^7) * SIN (7θ)