Détection de la coupe L3 par CNN et transfert learning

UCA Deep Learning School 2017 - Deep in France

S. Belharbi, C. Chatelain, R. Hérault, S. Adam, M. Chastan, S. Thureau, R. Modzelewski

LITIS - Équipe Apprentissage - Centre Henry Becquerel de Rouen

soufiane.belharbi@insa-rouen.fr

13 Juin 2017

À propos

Publication:

Belharbi Soufiane, Clément Chatelain, Romain Hérault, Sébastien Adam, Sébastien Thureau, Mathieu Chastan and Romain Modzelewski, "*Spotting L3 slice in CT scans using deep convolutional network and transfer learning*", Computers in Biology and Medicine, 2017.

Message à prendre avec vous

Plan

ı								
	n	۱۲.	rΛ	$\boldsymbol{\cap}$	ш	ct	\cap	n
ı	ш	ı	ıv	u	ıu	·ι	ıv	ш

Problématique

Approche proposée

Résultats

Sommaire

Introduction

Problématique

Approche proposée

Résultats

Introduction

- Sur une base de 642 CT scans on a obtenu une erreur moyenne de localisation < 1.82 coupes (< 5 mm).

Sommaire

Introduction

Problématique

Approche proposée

Résultats

Détection de la coupe L3

Étant donné un scan d'une partie du corps, trouver la coupe correspondante à la coupe L3 parmi quelques centaines de coupes

- variabilité inter-patients
 - ressemblances coupe L3 avec d'autres coupes
 - nécessité d'utiliser le contexte pour décider de la L3
- ⇒ Machine Learning

difficultés

Approches envisageables

Classification de coupes (prédire une valeur discrète)

Pour chaque coupe décider "L3"/"pas L3"

- ▶ Approche simple, ☺
- ▶ Pas de contexte ☺

Étiquetage de séquences

Chercher à trouver toutes les vertèbres L1, L2, L3, ...

- ▶ Analyse globale : contexte, ©
- ► Travaux existants semblent prometteurs, ②
- ► Nécessite étiquetage de chaque coupe ③

Regression (prédire une valeur continue)

Étant donnée toute la séquence, estimer la hauteur de la coupe L3

- ► Analyse globale : contexte, ©
- ▶ Pas de travaux existants,
- ► Nécessite seulement la position de la L3 en étiquetage ©

Sommaire

Introduction

Problématique

Approche proposée

Résultats

Regression pour la détection de la coupe L3

Choix du modèle statistique pour la regression

- Deep learning, Convolutional Neural Network (CNN)
- Pas de caractéristiques à extraire
- State-of-the-art sur l'image
- Modèle statique : requiert un espace d'entrée de taille fixe

Parlons chiffres

- ► Espace d'entrée : 1 scan = $N \times 512 \times 512$, avec 400 < N < 1200
- Scans avec L3 annotée et vérifiée : 642 patients
- ▶ La hauteur des scans N est variable d'un scan à un autre

Solution au problème N°1

Problème N°1 : dimension espace d'entrée

- ▶ 131 M entrées par exemple : ça fait beaucoup même pour un CNN!
- ► → Maximum Intensity Projection (MIP) facial ou latéral
- On passe de $512 \times 512 \times N$ à $512 \times N$
- ▶ Information pertinente a priori conservée

Solution au problème N°2

Problème N°2 : Peu de données annotées (642 patients)

- On a essayé quand même! → résultats mitigés
- Solution : utilisation de modèles pré-appris sur des grandes quantités de données
- AlexNet, GoogleNet, VGG16, VGG19, etc.
- Modèles appris sur ImageNet : 14 millions d'images naturelles annotées [Fei-Fei and Russakovsky 2013]

Solution au problème N°2 (suite)

Idée générale : Transfer Learning

Bénéficier des filtres convolutionnels préappris sur des images naturelles (!!!), qu'on affine ensuite sur nos données.

FIGURE 1 – Transfert des filtres

Solution au problème N°3

Problème N°3 : Espace d'entrée de taille variable

- Problème assez classique
- Utilisation d'une fenêtre glissante
- Post-traitement pour analyser la sortie du CNN aux différentes positions

Post-traitement

- Corrélation.

Système complet : Prédiction

FIGURE 2 - Système complet : Prédiction

Sommaire

Introduction

Problématique

Approche proposée

Résultats

Résultats quantitatifs

Erreur en cross validation : comparaison d'un CNN "maison" et des CNN pré-appris + transfer learning

	RF500	CNN4	Alexnet	VGG16	VGG19	Googlenet
fold 0	7.31 ± 6.52	2.85 ± 2.37	2.21 ± 2.11	2.06 ± 4.39	1.89 ± 1.77	1.81 ± 1.74
fold 1	11.07 ± 11.42	3.12 ± 2.90	2.44 ± 2.41	1.78 ± 2.09	1.96 ± 2.10	3.84 ± 12.86
fold 2	13.10 ± 13.90	3.12 ± 3.20	2.47 ± 2.38	1.54 ± 1.54	1.65 ± 1.73	2.62 ± 2.52
fold 3	12.03 ± 14.34	2.98 ± 2.38	2.42 ± 2.23	1.96 ± 1.62	1.76 ± 1.75	2.22 ± 1.79
fold 4	8.99 ± 7.83	1.87 ± 1.58	2.69 ± 2.41	1.74 ± 1.96	1.90 ± 1.83	2.20 ± 2.20
Average	10.50 ± 10.80	2.78 ± 2.48	2.45 ± 2.42	1.82 ± 2.32	1.83 ± 1.83	2.54 ± 4.22

TABLE 1 – L'erreur de test en cross validation (avec post-traitement) (coupes).

Comparaison avec Random Forests (RF) avec 500, 100, 10 arbres (Local Binary Patterns (LBP)).

Temps d'évaluation

	Nombre de paramètres	Temps moyen de traitement (seconds/CT scan)
CNN4	55 K	04.46
Alexnet	2 M	06.37
VGG16	14 M	13.28
VGG19	20 M	16.02
Googlenet	6 M	17.75

TABLE 2 – Nombres de paramètres et temps d'évaluation d'un scan sur un GPU (K40).

Résultats Qualitatifs

Erreur: 0 coupes.

Résultats Qualitatifs

Erreur: 6 coupes.

CNN vs. radiologistes

- Nouvelle base : 43 CT scans annotés par le radiologiste de référence.
- Faire prononcer 3 autres radiologistes sur la base.

Errors (slices) / operator	CNN4	VGG16	Ragiologist #1	Radiologist #2	Radiologist #3
Review1	2.37 ± 2.30	1.70 ± 1.65	0.81 ± 0.97	0.72 ± 1.51	0.51 ± 0.62
Review2	2.53 ± 2.27	1.58 ± 1.83	0.77 ± 0.68	0.95 ± 1.61	0.86 ± 1.30

TABLE 3 – Comparaison : CNN et radiologistes.

- 1.70/1.58 coupes ~ 5 mm.
- Nous avons perdu le combat avec les radiologistes mais avec les honneurs ©.

Accéleration de calcul (prédiction)

```
Réduire le taux d'échantillonnage \Rightarrow réduire le nombre des fenêtres à traiter. 
Exemple pour VGG16 : 1 fenêtres à chaque 1 pixel : 13.28 seconds/CT scan, erreur : 1.82 \pm 2.32. \Rightarrow 1 fenêtres à chaque 6 pixel : 2.36 seconds/CT scan, erreur : 1.91 \pm 2.69.
```

<u>Tendance actuelle</u>: (déploiement de deep learning)

Comment déployer VGG16 sur une machine à faible puissance de calcul (téléphone, cpu) et

 $\frac{\text{faire des prédictions sur plusieurs images}}{\text{sur cpu}} ? \ 1 \ \text{images} \sim 1 \ \text{second}$

⇒ Élagage des couches de convolution (filtre/cartes). (inclut le transfert learning)

<u>Tendance actuelle</u> : (déploiement de deep learning)

Comment déployer VGG16 sur une machine à faible puissance de calcul (téléphone, cpu) et

 $\frac{\text{faire des prédictions sur plusieurs images}}{\text{sur cpu}} ? 1 \text{ images} \sim 1 \text{ second}$

⇒ Élagage des couches de convolution (filtre/cartes). (inclut le transfert learning)

Références :

- ► Pruning Convolutional Neural Networks for Resource Efficient Transfer Learning. (https://arxiv.org/abs/1611.06440)
- ► Pruning Filters for Efficient ConvNets. (https://arxiv.org/abs/1608.08710)
- ► Faster CNNs with Direct Sparse Convolutions and Guided Pruning. (https://openreview.net/pdf?id=rJPcZ3txx)

FIGURE 3 – Élagage des carte caractéristiques dans VGG16 fine-tuné sur la base Birds-200. (https://arxiv.org/abs/1611.06440)

Sommaire

Introduction

Problématique

Approche proposée

Résultats

Conclusion

Conclusion

- Résultats intéressants
- Pipeline adapté : prétraitement / CNN / post traitement
- Généricité : utilisation du transfer learning requiert assez peu de données et de temps d'apprentissage. → test sur d'autres problèmes?
- Le déploiement est important (à réfléchir).

Questions?

```
soufiane.belharbi@insa-rouen.fr
https://sbelharbi.github.io
```