

Unit 3 布尔代数的应用、最小项、最大项展开式

张英涛

计算机科学与技术学院

哈尔滨工业大学

- 布尔代数的应用
 - ■最小项、最大项展开式
 - 不完全给定函数

组合逻辑电路的设计方法

已知——设计要求

待求——逻辑图

步骤:

- 1. 根据设计要求确定 → 真值表
- 2. 根据真值表 → 表达式 (卡诺图)
- 3. 化简
- 4. 按设计要求,变换逻辑表达式
- 5. 画出逻辑图

组合逻辑电路的设计方法

逻辑设计目标

- 实现逻辑功能
- 满足性能指标
- 综合考虑各项因素:

大小、功耗、价格、可靠性、

速度、易实现、易维修、美观等

注:设计不唯一,最佳设计方案随新技术

的不断推出而变化

布尔代数的应用——组合逻辑设计

How to design a combinational logic circuit?

- 1. 将文字描述的功能直接转换为真值表或表达式
- 2. 根据真值表,写出两种标准形式的逻辑表达式:

标准与或式 (minterm expansion: and-or)

标准或与式 (maxterm expansion: or-and)

组合逻辑设计——文字描述的功能直接转换为表达式

例:

逻辑关系

 $F = A \cdot B$

Mary watches TV if it is Monday night and she has finished her homework

定义:

F=1: 看电视; F=0: 不看电视.

A = 1: 周一晚上; A = 0: 不是周一晚上.

B=1: 完成作业; B=0: 没完成作业

组合逻辑设计——文字描述的功能直接转换为表达式

例:

The alarm will ring iff the alarm switch is on and

the door is not closed or it is after 6 P.M. and

the window is not closed

组合逻辑设计——文字描述的功能直接转换为表达式

例:

$$Z = AB' + CD'$$

The alarm will ring iff the alarm switch is on and

the door is not closed or it is after 6 P.M. and

the window is not closed

布尔代数的应用——组合逻辑设计

How to design a combinational logic circuit?

- 1. 将文字描述的功能直接转换为真值表或表达式
- 2. 根据真值表,写出两种标准形式的逻辑表达式:

标准与或式 (minterm expansion: and-or)

标准或与式 (maxterm expansion: or-and)

布尔代数的应用——组合逻辑设计

逻辑函数的表示方法

组合逻辑设计——根据真值表写出表达式

真值表 —— 表达式

真值表

AB C	F
000	0
001	0
010	0
011	1
100	0
101	1
110	1
111	1

① 写出标准与或式(乘积之和) 关注输出值为1的所有输入取值组合

组合逻辑设计——根据真值表写出表达式

真值表 —— 表达式

真值表

AB C	F
000	0
001	0
010	0
011	1 √
100	0
101	1 √
110	1 🇸
111	1 √

① 写出标准与或式(乘积之和) 关注输出值为1的所有输入取值组合

F=ABC+ABC+ABC+ABC

输入取值组合中

1——原变量

0——反变量

组合逻辑设计——根据真值表写出表达式

真值表 —— 表达式

真值表

②写出标准或与式(和之积) 关注输出值为0的所有输入取值组合

输入取值组合中

0——原变量

1——反变量

AB C	F
000	0 🇸
001	0 🗸
010	0 √
011	1
100	0 √
101	1
110	1
111	1

$$F = (A+B+C) \cdot (A+B+\overline{C}) \cdot (A+\overline{B}+C) \cdot (\overline{A}+B+C)$$

组合逻辑设计步骤

例:

某电路有三个输入端A, B, C, 当ABC ≥011时,输出 f = 1 ,否则 f = 0.

步骤:

- 1. 根据设计要求确定 —— 真值表
- 2. 根据真值表 表达式(卡诺图)
- 3. 化简
- 4. 按设计要求,变换逻辑表达式
- 5. 画出逻辑图

布尔代数的应用——组合逻辑设计例子

例:

某电路有三个输入端A, B, C, 当ABC ≥011时,输出 f = 1 ,否则 f = 0.

① 真值表

ABC	f
0 0 0	0
0 0 1	0
0 1 0	0
0 1 1	1
1 0 0	1
1 0 1	1
1 1 0	1
1 1 1	1

布尔代数的应用——组合逻辑设计例子

② 根据真值表写出表达式

$$f = A'BC + AB'C' + AB'C + ABC' + ABC'$$

A	В	C	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

③ 化简

$$f = A'BC + AB'C' + AB'C + ABC' + ABC'$$

$$= A'BC + AB' + AB$$

$$= A'BC + A = BC + A$$

④ 逻辑电路

■布尔代数的应用

■最小项、最大项展开式

不完全给定函数

■最小项、最大项展开式

- ->最小项、最大项的概念
 - ▶如何根据真值表写最小项、最大项展开式
 - ▶最小项、最大项的特性
 - > 如何将逻辑函数转换为最小项、最大项展开式
 - ightharpoonup F和 \overline{F} 的最小项、最大项展开式之间的转换

最小项和最大项

Row No.	ABC	Minterms	Maxterms
0	0 0 0	$A'B'C'=m_0$	$A+B+C=M_0$
1	0 0 1	$A'B'C = m_1$	$A + B + C' = M_1$
2	0 1 0	$A'BC' = m_2$	$A + B' + C = M_2$
3	0 1 1	$A'BC = m_3$	$A + B' + C' = M_3$
4	1 0 0	$AB'C' = m_4$	$A' + B + C = M_4$
5	1 0 1	$AB'C = m_5$	$A' + B + C' = M_5$
6	1 1 0	$ABC' = m_6$	$A' + B' + C = M_6$
7	1 1 1	$ABC = m_7$	$A' + B' + C' = M_7$

- n个变量组成的最小项:是一个与项(包含n个变量)
- n个变量组成的最大项:是一个或项(包含n个变量)
- ■每个变量或者以原变量的形式、或者以反变量的形式 出现,并且只出现一次。
- n个变量能组成的最小(大)项的个数是 2n

最小项和最大项

Row No.	ABC	Minterms	Maxterms
0	0 0 0	$A'B'C'=m_0$	$A + B + C = M_0$
1	0 0 1	$A'B'C = m_1$	$A + B + C' = M_1$
2	0 1 0	$A'BC' = m_2$	$A + B' + C = M_2$
3	0 1 1	$A'BC = m_3$	$A + B' + C' = M_3$
4	1 0 0	$AB'C' = m_4$	$A' + B + C = M_4$
5	1 0 1	$AB'C = m_5$	$A' + B + C' = M_5$
6	1 1 0	$ABC' = m_6$	$A' + B' + C = M_6$
7	1 1 1	$ABC = m_7$	$A' + B' + C' = M_7$

- 真值表的第i 行对应的 *最小项(minterm)* 记为 m_i (i 通常用十进制表示).
- *最大项(maxterm)* 记为 M_i.

例:
$$\overline{m_0} = \overline{\overline{ABC}} = A + B + C = M_0$$

■最小项、最大项展开式

▶最小项、最大项的概念

- →如何根据真值表写最小项、最大项展开式
 - ▶最小项、最大项的特性
 - ▶如何将逻辑函数转换为最小项、最大项展开式
 - $\triangleright F$ 和 \overline{F} 的最小项、最大项展开式之间的转换

最小项表达式

例:

011 101 110 111

$$F = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

$$= m_3 + m_5 + m_6 + m_7$$

$$= \Sigma m (3, 5, 6, 7)$$

Minterm expansion: 标准与或式

Minterm list.

list of 1

$$\overline{F} = \sum m(0,1,2,4)$$

ABC	F
000	0
001	0
010	0
011	1
100	0
101	1
110	1
111	1

最大项表达式

例:

000

001

010

100

$$F = (A+B+C) \cdot (A+B+\overline{C}) \cdot (A+\overline{B}+C) \cdot (\overline{A}+B+C)$$

$$= M_0 \bullet M_1 \bullet M_2 \bullet M_4$$

$$= \Pi M(0, 1, 2, 4)$$

Maxterm expansion: 标准或与式.

Maxterm list: list of 0

$$\overline{F} = \prod M(3,5,6,7)$$

F
0
0
0
1
0
1
1
1

■最小项、最大项展开式

- ▶最小项、最大项的概念
- ▶如何根据真值表写最小项、最大项展开式

- ▶最小项、最大项的特性
- > 如何将逻辑函数转换为最小项、最大项展开式
- ightharpoonup F和 \overline{F} 的最小项、最大项展开式之间的转换

最小项、最大项的特性

$$\sum_{i=0}^{2^n-1} m_i = 1$$

$$\prod_{i=0}^{2^n-1} M_i = 0$$

②
$$m_i \bullet m_j = 0, \quad i \neq j$$

$$M_i + M_j = 1, \quad i \neq j$$

$$\sum_{i=0}^{2^{n}-1} m_{i} = 1$$

③ 对于任意输入组合, ③ 只有一个最小项为 1 (m_i =1);

$$\therefore f + f' = 1$$

$$\therefore \sum_{i=0}^{2^n-1} m_i = 1$$

即*n*个变量的所有最小项之和恒等于1。

3 只有一个最小项为 1 (m_i =1);

1. 假设
$$i=0$$
, $m_i=1$, 则 $\overline{A} \cdot \overline{B} \cdot \overline{C} = 1$,

即
$$\overline{A} = \overline{B} = \overline{C} = 1,$$

$$A = B = C = 0;$$

2.
$$m_j(j \neq 0)$$
必包含

A、B、C中的1个或多个, 所以 $m_j = 0$,

$$m_i \cdot m_j = 0.$$

	\overline{ABC}	\overline{ABC}	\overline{ABC}	- ABC	\overline{ABC}	\overline{ABC}	$AB\overline{C}$	ABC
000	1	0	0	0	0	0	0	0
001	0	1	0	0	0	0	0	0
010	0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	0	0
100	0	0	0	0	1	0	0	0
101	0	0	0	0	0	1	0	0
110	0	0	0	0	0	0	1	0
111	0	0	0	0	0	0	0	1

$$\sum_{i=0}^{2^{n}-1} m_i = 1$$

对于任意输入组合, ③ 只有一个最小项为**1** (**m**_i =**1**);

n 变量的最小项有n个相邻项。

相邻项: 只有一个变量不同

(以相反的形式出现)。

一对相邻项可以消去一个变量。

ABC	$oldsymbol{F}$
000	0
001	0
010	0
011	1
100	0
101	1
110	1
111	1

BC	00	01	11	10
0	0	0	1	0
1	0	1	1	1

$$F = ABC + ABC + ABC + ABC$$
$$= BC + AC + AB$$

$$:: f \bullet f' = 0$$

$$\therefore \prod_{i=0}^{2^{-1}} M_i = 0$$

即*n*个变量的所有最大项之 积恒等于0。

$$\prod_{i=0}^{2^n-1} M_i = 0$$

$$M_i + M_j = 1$$

1. 假设i = 0, $M_i = 0$,则

$$A+B+C=0,$$

$$\mathbb{P} A = B = C = 0,$$

$$\overline{A} = \overline{B} = \overline{C} = 1;$$

2. $M_i(j \neq 0)$ 必包含

A、B、C中的一个或多个,

所以
$$M_i = 1$$
,

$$M_{i} + M_{i} = 1.$$

$$\prod_{i=0}^{2^n-1} M_i = 0$$

$$M_i + M_j = 1$$

	A+B+C	—— А+В+С		— А+В+С	A+B+C	_ A+B+C	A+B+C	A+B+C
000	1	1	1	1	1	1	1	0
001	1	1	1	1	1	1	0	1
010	1	1	1	1	1	0	1	1
011	1	1	1	1	0	1	1	1
100	1	1	1	0	1	1	1	1
101	1	1	0	1	1	1	1	1
110	1	0	1	1	1	1	1	1
111	0	1	1	1	1	1	1	1

$$\prod_{i=0}^{2^{n}-1} M_{i} = 0$$

$$M_i + M_j = 1, \quad i \neq j$$

■ n变量的最大项有n个相邻项。

相邻项: 只有一个变量不同 (以相反的形式出现)。

一对相邻项可以消去一个变量。

$oldsymbol{F}$
0
0
0
1
0
1
1
1

\boldsymbol{F}	= (A+B+C)(A+B+C)	(A+B+C)(A+B+C)
	= (A+B)(A+C)(B+C)	

BC	00	01	11	10	
0	0	0	1	0	
1	0	1	1	1	

■最小项、最大项展开式

- ▶最小项、最大项的概念
- ▶如何根据真值表写最小项、最大项展开式
- ▶最小项、最大项的特性
- →如何将逻辑函数转换为最小项、最大项展开式
 - ightharpoonup F和 \overline{F} 的最小项、最大项展开式之间的转换

逻辑函数表达式的转换

- 任何一个逻辑函数,总可以将其转换成 "最小项之和"及"最大项之积"的形式;
- 常用方法: 代数转换法、真值表转换法

一、代数转换法——最小项展开式

用代数法求一个函数"最小项之和"的形式,一般分为两步:

- 1. 将函数表达式变换成一般的"与或"式.
- 2. 反复使用 $X = X(Y + \overline{Y})$ 将非最小项的"与项"扩展为最小项。

如果给出的函数已经是"与或"式,则直接 进行第二步。

一、代数转换法——最小项展开式

例: 将 $F(A, B, C) = (A\overline{B} + B\overline{C}) \cdot \overline{AB}$ 转换成最小项展开式.

解:

1.
$$F(A, B, C) = A\overline{B} + B\overline{C} + AB$$

$$= \overline{AB \cdot BC} + AB$$

$$= \left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right) + AB$$

$$=\overline{AB}+\overline{AC}+BC+AB$$

一、代数转换法——最小项展开式

例: 将 $F(A, B, C) = (A\overline{B} + B\overline{C}) \cdot \overline{AB}$ 转换成最小项展开式.

解: 2. F(A,B,C)

$$= \overline{AB}\left(C + \overline{C}\right) + \overline{AC}\left(B + \overline{B}\right) + BC\left(A + \overline{A}\right) + AB\left(C + \overline{C}\right)$$
$$= \overline{AB}C + \overline{AB}C + \overline{AB}C + \overline{AB}C + \overline{AB}C + \overline{AB}C + ABC + \overline{AB}C + ABC + \overline{AB}C$$

$$=\overline{ABC}+\overline{ABC}+\overline{ABC}+\overline{ABC}+AB\overline{C}+ABC$$

$$F(A,B,C) = m_0 + m_1 + m_3 + m_6 + m_7$$
$$= \sum m(0,1,3,6,7)$$

一、代数转换法——最大项展开式

类似地,用代数法求一个函数"最大项之积"的形式,也可分为两步:

- 1: 将函数表达式转换成一般"或与"式;
- 2: 反复使用 $X = (X + Y)(X + \overline{Y})$ 项的"或项" 扩展成为最大项。

如果给出的函数已经是"或与"式,则可直接进行第二步。

一、代数转换法——最大项展开式

例:将F(A,B,C) = AB + AC转换成最大项展开式。

解:

$$X = (X + Y)(X + \overline{Y})$$

1.
$$F(A, B, C) = \overline{AB} \cdot \overline{\overline{AC}} = (\overline{A} + \overline{B}) \cdot (A + \overline{C})$$

$$2.F(A,B,C) = \left(\overline{A} + \overline{B} + \underline{C}\right) \cdot \left(\overline{A} + \overline{B} + \underline{\overline{C}}\right) \cdot \left(A + \underline{B} + \overline{C}\right) \cdot \left(A + \underline{B} + \overline{C}\right) \cdot \left(\overline{A} + \overline{B} + \overline{C}\right) \cdot \left(\overline{A} +$$

$$F(A, B, C) = M_1 \cdot M_3 \cdot M_6 \cdot M_7$$
$$= \prod M(1, 3, 6, 7)$$

二、真值表转换法

- 一个逻辑函数的真值表与它的最小项展开式、最 大项展开式均存在一一对应的关系。转换步骤:
- 1. 写出逻辑函数 F 的真值表。
- 2. 函数 F 的最小项展开式由使 F 取值 为1的全部最小项之和组成。
- 3. 函数 F 的最大项展开由使 F 取值为 0的全部最大项之积组成。

ABC	F
000	0
001	0
010	0
011	1
100	0
101	1
110	1
111	1

$$F = \sum m(3,5,6,7)$$

$$F = \sum m(3,5,6,7)$$
 $F = \prod M(0,1,2,4)$

■最小项、最大项展开式

- ▶最小项、最大项的概念
- ▶如何根据真值表写最小项、最大项展开式
- ▶最小项、最大项的特性
- > 如何将逻辑函数转换为最小项、最大项展开式

F和F的最小项\最大项展开式之间的转换

例:
$$F(A,B,C) = \overline{ABC} + \overline{ABC} + ABC + ABC$$

= $\sum m(2,3,6,7)$ $\Rightarrow \overline{F} = \sum m(0,1,4,5)$

$$\overline{F} = \overline{\overline{A}B\overline{C}} + \overline{\overline{A}BC} + \overline{ABC} + \overline{ABC}$$

$$= \overline{\overline{A}B\overline{C}} \cdot \overline{\overline{A}BC} \cdot \overline{\overline{A}BC} \cdot \overline{\overline{A}BC}$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)(\overline{A} + \overline{B} + \overline{C})$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)(\overline{A} + \overline{B} + \overline{C})$$

$$= \prod M(2,3,6,7) \qquad \Rightarrow F = \prod M(0,1,4,5)$$

F和F的最小项\最大项展开式之间的转换

	Minterm Expansion of <i>f</i>	Maxterm Expansion of <i>f</i>	Minterm Expansion of f'	Maxterm Expansion of f'
$f = \Sigma m(3, 4, 5, 6, 7)$		III <i>MI</i> (0, 1, 2)	$\sum m(0, 1, 2)$	П <i>М</i> (3, 4, 5, 6, 7)
f =		rot bookog i i ji zay	2 111(0) 1/2/	
Π M(0, 1, 2)	$\sum m(3, 4, 5, 6, 7)$		$\sum m(0, 1, 2)$	П <i>М</i> (3, 4, 5, 6, 7)

- 布尔代数的应用
- ■最大项、最小项展开式

■ 不完全给定函数

不完全给定函数

1. 无关项(Don't care terms)——

- 不可能存在的输入取值组合
- 虽然所有输入都可能出现,但对于某些输入组合, 我们不关心输出是0还是1

例:

ABC	F	无关项
0 0 0	1	
0 0 1	X	
0 1 0	0	
0 1 1	1	
100	0	无关项
1 0 1	0	
1 1 0	X	
111	1	

不完全给定函数

2. 不完全给定函数

$$F = \sum m(0, 3, 7) + \sum d(1, 6)$$

$$F = \prod M(2, 4, 5) \cdot \prod D(1, 6)$$

ABC	F
000	1
0 0 1	Χ
0 1 0	0
0 1 1	1
100	0
101	0
110	X
111	1

- ■布尔代数的应用
- ■最大项、最小项展开式
- 不完全给定函数