

Orthogonalization of Fermion k-Body Operators and Representability

Joint work with V. Bach (arXiv:1807.05299)

R. Rauch, Montréal, July 21, 2018

Section 1

Motivation: The Representability Problem

Quantum Systems in Theoretical Chemistry

 Quantum chemistry: molecules as non-relativistic, many-fermion quantum systems (Born-Oppenheimer approximation)

Quantum Systems in Theoretical Chemistry

- Quantum chemistry: molecules as non-relativistic, many-fermion quantum systems (Born-Oppenheimer approximation)
 - Hilbert space: Fermion Fock space

Quantum Systems in Theoretical Chemistry

- Quantum chemistry: molecules as non-relativistic, many-fermion quantum systems (Born-Oppenheimer approximation)
 - Hilbert space: Fermion Fock space

■ Hamiltonian: a 2-body operator $\mathbb{H} = \mathbb{H}^* = \bigoplus_{N \ge 0} \mathbb{H}_N$, e.g.

$$\mathbb{H}_{N} = \underbrace{\sum_{i=1}^{N} \left(-\Delta_{i} - \sum_{j=1}^{K} \frac{Z_{j}}{|x_{i} - R_{j}|} \right)}_{\text{1-particle "free part"}} + \underbrace{\sum_{1 \leqslant i < j \leqslant N} \frac{1}{|x_{i} - x_{j}|}}_{\text{2-particle "interaction part"}} . \tag{2}$$

Key Problem: Compute the ground state energy

$$E_0 = \inf_{\rho \in \mathcal{DM}} \text{tr}\{\rho \mathbb{H}\}, \quad \mathcal{DM} \doteq \{\text{density matrices on } \mathfrak{F}\}. \tag{3}$$

Key Problem: Compute the ground state energy

$$E_0 = \inf_{\rho \in \mathcal{DM}} \text{tr}\{\rho \mathbb{H}\}, \quad \mathcal{DM} \doteq \{\text{density matrices on } \mathfrak{F}\}. \tag{3}$$

■ **Observe**: For 2-body Hamiltonians $\mathbb H$ the variation over $\mathfrak D\mathfrak M$ is very inefficient

Key Problem: Compute the ground state energy

$$E_0 = \inf_{\rho \in \mathcal{DM}} \text{tr}\{\rho \mathbb{H}\}, \quad \mathcal{DM} \doteq \{\text{density matrices on } \mathfrak{F}\}. \tag{3}$$

- **Observe**: For 2-body Hamiltonians $\mathbb H$ the variation over $\mathfrak D\mathfrak M$ is very inefficient
 - general density matrix ρ contains "too much" information
 - only need expectation values of 2-body operators

Key Problem: Compute the ground state energy

$$\textit{E}_0 = \inf_{\rho \in \mathcal{DM}} \text{tr}\{\rho \mathbb{H}\}, \quad \mathcal{DM} \doteq \{\text{density matrices on } \mathfrak{F}\}. \tag{3}$$

- **Observe**: For 2-body Hamiltonians $\mathbb H$ the variation over $\mathcal D \mathcal M$ is very inefficient
 - general density matrix ρ contains "too much" information
 - only need expectation values of 2-body operators
- More generally: practically all physical relevant information can be obtained by 2-body expectation values.

Reducing Density Matrices

Idea: Replace density matrix $\rho \in \mathfrak{B}(\mathfrak{F})'$ by its 2-body reduction

$$R_2(\rho) \doteq \rho|_{\mathcal{O}_2(\mathfrak{F})} \in \mathcal{O}_2(\mathfrak{F})'.$$
 (4

Reducing Density Matrices

Idea: Replace density matrix $\rho \in \mathfrak{B}(\mathfrak{F})'$ by its 2-body reduction

$$R_2(\rho) \doteq \rho|_{\mathcal{O}_2(\mathcal{F})} \in \mathcal{O}_2(\mathcal{F})'.$$
 (4)

■ Advantage: If $\mathbb{H} \in \mathcal{O}_2(\mathfrak{F})$ then

$$E_0 = \inf_{\rho \in \mathfrak{DM}} \rho(\mathbb{H}) = \inf_{r \in R_2(\mathfrak{DM})} r(\mathbb{H}). \tag{5}$$

Reducing Density Matrices

Idea: Replace density matrix $\rho \in \mathfrak{B}(\mathfrak{F})'$ by its 2-body reduction

$$R_2(\rho) \doteq \rho|_{\mathcal{O}_2(\mathcal{F})} \in \mathcal{O}_2(\mathcal{F})'.$$
 (4)

■ Advantage: If $\mathbb{H} \in \mathcal{O}_2(\mathfrak{F})$ then

$$E_0 = \inf_{\rho \in \mathcal{DM}} \rho(\mathbb{H}) = \inf_{r \in R_2(\mathcal{DM})} r(\mathbb{H}). \tag{5}$$

■ **Drawback:** We need an efficient way of varying over $R_2(\mathfrak{D}\mathfrak{M})$.

The Representability Problem

Representability Problem (for $R_2(\mathfrak{DM})$)

Find a *computationally efficient* characterization of $R_2(\mathfrak{DM})$:

Given $r \in \mathcal{O}_2(\mathfrak{F})'$, is there $\rho \in \mathfrak{DM}$ with $r = R_2(\rho)$?

The Representability Problem

Representability Problem (for $R_2(\mathfrak{DM})$)

Find a *computationally efficient* characterization of $R_2(\mathfrak{DM})$:

Given
$$r \in \mathcal{O}_2(\mathfrak{F})'$$
, is there $\rho \in \mathfrak{DM}$ with $r = R_2(\rho)$?

■ Generalization: $\mathfrak{DM} \leadsto \mathfrak{S} \subseteq \mathfrak{B}(\mathfrak{F})'$ and $k = 2 \leadsto k \in \mathbb{N}_0$: representability problem for $R_k(\mathfrak{S})$.

The Representability Problem

Representability Problem (for $R_2(\mathfrak{DM})$)

Find a *computationally efficient* characterization of $R_2(\mathfrak{DM})$:

Given
$$r \in \mathcal{O}_2(\mathfrak{F})'$$
, is there $\rho \in \mathfrak{DM}$ with $r = R_2(\rho)$?

- Generalization: $\mathfrak{DM} \leadsto \mathfrak{S} \subseteq \mathfrak{B}(\mathfrak{F})'$ and $k = 2 \leadsto k \in \mathbb{N}_0$: representability problem for $R_k(\mathfrak{S})$.
- Representability conditions (i.e. necessary conditions for representability) yield lower bounds on E₀.

Geometric Interpretation

Note: If dim $\mathfrak{h} < \infty$, then $R_k : \mathfrak{B}(\mathfrak{F})' \to \mathfrak{O}_k(\mathfrak{F})'$ can be interpreted as the *orthogonal projection*

$$\pi_k : \mathcal{L}^2(\mathfrak{F}) \to \mathcal{O}_k(\mathfrak{F}) \subseteq \mathcal{L}^2(\mathfrak{F}).$$
 (6)

Geometric Interpretation

Note: If dim $\mathfrak{h} < \infty$, then $R_k : \mathfrak{B}(\mathfrak{F})' \to \mathfrak{O}_k(\mathfrak{F})'$ can be interpreted as the *orthogonal projection*

$$\pi_k : \mathcal{L}^2(\mathfrak{F}) \to \mathcal{O}_k(\mathfrak{F}) \subseteq \mathcal{L}^2(\mathfrak{F}).$$
 (6)

Some History of Representability Methods

- **1940**: Idea to replace $\mathfrak{D}\mathfrak{M}$ by $R_2(\mathfrak{D}\mathfrak{M})$ (Husimi)
- 1950/60s: First systematic analysis (Coleman, Coulson, Garrod, Percus, Löwdin, Yang)
 - GPQ-conditions lead to inaccurate lower bounds
 - solved Representability Problem for R₁(SD_N)
- **1978:** *T*₁- and *T*₂-conditions (Erdahl)
- **2005**: Representability of $R_1(\mathcal{P}_N)$ solved (Klyachko)
- **2006:** Highly accurate lower bounds exploiting Erdahls *T*₁- and *T*₂-conditions (Cancés, Lewin, Stoltz)
- 2012: Derivation of HF error estimates from *G* and *P*-condition (Bach, Bretaux, Knörr, Menge)

Section 2

Orthogonalization of *k***-body Operators**

Goal of Present Work

Wanted: more explicit formula for π_k , e.g., by diagonalization:

Goal of Present Work

■ **Wanted**: more explicit formula for π_k , e.g., by diagonalization:

Goal

Construct an explicit orthonormal basis of $\mathcal{O}_k(\mathcal{F})$.

Goal of Present Work

■ **Wanted**: more explicit formula for π_k , e.g., by diagonalization:

Goal

Construct an explicit orthonormal basis of $\mathcal{O}_k(\mathcal{F})$.

- Approach:
 - 1. Apply Gram-Schmidt orthogonalization in low dimensions
 - 2. Find and prove a general conjecture

Main Result

Theorem 1 (Bach and Rauch 2018)

Let dim $\mathfrak{h}\doteq n<\infty$ and ϕ_1,\ldots,ϕ_n an ONB of $\mathfrak{h}.$ Then an orthogonal basis of $\mathcal{L}^2(\mathfrak{F})$ is given by

$$\mathfrak{B} \doteq \left\{ \left(\prod_{k \in K} [c_k, c_k^*] \right) c_l^* c_J \middle| \begin{array}{c} I, J, K \subseteq \{1, \dots, n\} \\ mutually \ disjoint \end{array} \right\}, \tag{7}$$

where for $I = \{i_1 < \cdots < i_l\} \subseteq \{1, \ldots, n\}$ we define

$$c_{l}^{*} \doteq c^{*}(\varphi_{i_{1}}) \cdots c^{*}(\varphi_{i_{l}}), \qquad c_{l} \doteq (c_{l}^{*})^{*} = c(\varphi_{i_{l}}) \cdots c(\varphi_{i_{1}}).$$
 (8)

Main Result

Theorem 1 (Bach and Rauch 2018)

Let dim $\mathfrak{h} \doteq n < \infty$ and ϕ_1, \ldots, ϕ_n an ONB of \mathfrak{h} . Then an orthogonal basis of $\mathcal{L}^2(\mathfrak{F})$ is given by

$$\mathfrak{B} \doteq \left\{ \left(\prod_{k \in K} [c_k, c_k^*] \right) c_l^* c_J \middle| \begin{array}{c} I, J, K \subseteq \{1, \dots, n\} \\ \text{mutually disjoint} \end{array} \right\}, \tag{7}$$

where for $I = \{i_1 < \cdots < i_l\} \subseteq \{1, \ldots, n\}$ we define

$$c_{l}^{*} \doteq c^{*}(\varphi_{i_{1}}) \cdots c^{*}(\varphi_{i_{l}}), \qquad c_{l} \doteq (c_{l}^{*})^{*} = c(\varphi_{i_{l}}) \cdots c(\varphi_{i_{1}}).$$
 (8)

Theorem 2 (Bach and Rauch 2018)

An orthogonal basis of $\mathcal{O}_k(\mathfrak{F})$ is given by $\mathfrak{B} \cap \mathcal{O}_k(\mathfrak{F})$.

Main Result: Geometric Interpretation

■ **To Summarize:** We have constructed an ONB $\mathfrak B$ of $\mathcal L^2(\mathfrak F)$ adapted to the study of representability and related questions.

Current Research

- 1. Characterize $\pi_k(\mathfrak{DM}) \subseteq \mathfrak{O}_k(\mathfrak{F})$ using the ONB $\mathfrak{B} \cap \mathfrak{O}_k(\mathfrak{F})$
- 2. Identify classical representability conditions as boundary conditions
- 3. Obtain new representability conditions
- 4. Study action of Bogoliubov transformations on representability conditions

Possible Application

■ Consider a 2-body Hamiltonian \mathbb{H} , fix an ONB ϕ_1, \ldots, ϕ_n of \mathfrak{h} and write

$$\mathbb{H} = \sum_{i,j} t_{ij} c_i^* c_j + \frac{1}{2} \sum_{i,j,k,l} V_{ij;kl} c_i^* c_j^* c_l c_k, \tag{9}$$

- Let ${\mathfrak B}$ be the associated ONB of ${\mathcal L}^2({\mathfrak F})$ as given by Theorem 1
- For $\mathfrak{A} \subseteq \mathfrak{B}$ define $P_{\mathfrak{A}} \doteq \sum_{\theta \in \mathfrak{A}} |\theta\rangle\langle\theta| \leqslant 1_{\mathcal{L}^2(\mathfrak{F})}$.
- Then, under suitable positivity requirements on V,

$$\mathbb{H} \geqslant \sum_{i,j} t_{ij} c_i^* c_j + \frac{1}{2} \sum_{i,j,k,l} V_{ij,kl} c_i^* c_j^* \frac{P_{\mathfrak{A}}}{P_{\mathfrak{A}}} c_l c_k \doteq \mathbb{H}_{\mathfrak{A}}.$$
 (10)

■ **Idea:** by a suitable choice of the orbital basis $\varphi_1, \ldots, \varphi_n$ and $\mathfrak{A} \subseteq \mathfrak{B}$ one obtains nontrivial lower bound $E_0(\mathbb{H}_{\mathfrak{A}})$ of $E_0(\mathbb{H})$.

Section 3

Appendix

k-Body Operators

Definition 3

A k-body operator on ${\mathfrak F}$ is a ${\mathbb C}$ -linear combination of elements of the form

$$c^{\sharp}(f_1)\cdots c^{\sharp}(f_{2l}) \qquad f_1,\ldots,f_{2\ell}\in \mathfrak{h} \text{ and } 0\leqslant \ell\leqslant k,$$
 (11)

with $c^*(f)$, $c(f) \in \mathcal{B}(\mathcal{F})$ the creation- and annihilation operators on \mathcal{F} .

Representability of $R_2(\mathfrak{D}\mathfrak{M}_N)$

Let $\rho\in\mathcal{DM}_{\textit{N}}\doteq\{\rho\in\mathcal{DM}\mid \hat{\mathbb{N}}\rho=\textit{N}\rho\}$. Then $\textit{R}_{2}(\rho)\in\mathcal{O}_{2}(\mathfrak{F})'$ is characterized by

$$\gamma_{\rho} \in \mathcal{B}(\mathfrak{h}),$$
 (1-RDM)
 $\Gamma_{\rho} \in \mathcal{B}(\mathfrak{h} \wedge \mathfrak{h}).$ (2-RDM)

• *N*-Representability Problem: Given $\gamma \in \mathcal{B}(\mathfrak{h})$ and $\Gamma \in \mathcal{B}(\mathfrak{h} \wedge \mathfrak{h})$, is there $\rho \in \mathcal{DM}$ with $\hat{\mathbb{N}}\rho = N\rho$ such that

$$\gamma = \gamma_{\rho} \qquad \qquad \Gamma = \Gamma_{\rho} \qquad \qquad (12)$$

Examples of N-Representability conditions:

$$0\leqslant \gamma_{\rho}\leqslant 1,\quad tr\{\gamma_{\rho}\}=\textit{N},\quad \Gamma_{\rho}\geqslant 0. \tag{13}$$

References

- Bach, V., H. K. Knörr, and E. Menge (2012). "Fermion Correlation Inequalities derived from G- and P-Conditions". In: *Documenta Mathematica* 17.14, pp. 451–481.
- Bach, V. and R. Rauch (2018). "Orthogonalization of Fermion k-Body Operators and Representability". In: arXiv: 1807.05299.
- Cancès, E., G. Stoltz, and M. Lewin (2006). "The electronic ground-state energy problem: A new reduced density matrix approach". In: *Journal of Chemical Physics* 125.
- Coleman, A. J. (J. and V. I. Yukalov (2000). *Reduced density matrices* : Coulson's challenge. Springer, p. 282.
- Erdahl, R. M. (1978). "Representability". In: *International Journal of Quantum Chemistry* 13.6, pp. 697–718.

