# DEVELOPMENT OF EXPERIMENT ENVIRONMENT FOR ACQUISITION OF EEG SIGNALS IN CONTEXT OF HUMAN-COMPUTER INTERACTION

M.Sc.Eng. Krzysztof Moskwa Faculty of Computer Science West Pomeranian University of Technology in Szczecin

#### MAIN POINTS

- Evolution of Human-Computer Interaction
- Origins of The Research
- Summary of Common Human Errors
- Preliminary Research Hypothesis
- Experiment Environment Setup
- Issues and Solutions
- How it works in practice

### THE EVOLUTION OF INTERATCTION WITH COMPUTER SYSTEMS

Computers of "yesterday"



ENIAC (circa 1947 to 1955 - Electronic Numerical Integrator And Computer) in Philadelphia, Pennsylvania. Glen Beck (background) and Betty Snyder (foreground) program the ENIAC in building 328 at the Ballistic Research Laboratory (BRL).

Source: Wikipedia (U.S. Army photo), Public Domain Photo

## THE EVOLUTION OF INTERATCTION WITH COMPUTER SYSTEMS

Computers of "today"



### THE EVOLUTION OF INTERACTION WITH COMPUTER SYSTEMS

- Big Machines with tons of wires (ENIAC)
- Smaller machines programmed with cards
- Desktops and Personal Computers
- Phones/Tablets

Yesterday's interaction

GOAL

Interaction expected today



#### THE ORIGINS OF RESEARCH

The story of "UNEMPATHIC BUTTON"



#### THE ORIGINS OF RESEARCH

• "UNEMPATHIC BUTTON" in closer look



#### TODAY'S PROBLEMS

 EXAMPLE FROM ONLINE SHOP AND MESSAGES FROM DESKTOP APPLICATION

"Available to ship:

Microsoft Visual Studio

Currently not available
Free Shipping"



The 'PackageManagementPackage' package did not load correctly.

The problem may have been caused by a configuration change or by

#### TO ERR IS HUMAN

#### EVERYDAY HUMAN ERRORS

#### MISTAKES



"mistakes are result from the choice of inappropriate goals and conscious deliberations"

#### SLIPS

"result from automatic behavior, when subconscious actions that are intended to satisfy our goals get waylaid en route"

Source: Norman, D. A. **The Design of Everyday Things.**, Basic Books 1988 11

# PRELIMINARY RESEARCH HYPOTHESIS

- Electroencephalography (EEG) allows to detect sources of slips and mistakes;
- That information allows such correction of the application that better adapts it to human cognitive capabilities;
- Changed user interface will be characterized by significantly fewer design flaws causing operational problems, than the original interface.

#### A TEST ENVIRONMENT SETUP

- a) Operator
- b) EEG Receiver
- c) Test Script
  (list of tasks for subject)
- d) VGA Monitor
- e) VGA and Screen Recorder
- f) Eye tracking System
- g) Video camera oriented on operator
- h) Tested GUI
- i) Signal and Recordings
- **Synchronisation**
- ii) TimeCode Camera Widget



#### SETUP DIAGRAM



#### SIGNAL SYNCHRONISATION

- EEG Signal (time 0 = beginning of session)
  - Synchronisation with Video Signal based on comparing time of stimulations with real time
- Tested Application
  - Sends information about stimulations to OpenVibe using VRPN protocol
- Video Signal (current time, as timecode)
  - Top part of the screen with timecode in mirror
- Eye Tracker (current time, as timecode)
  - Timecode saved together with rest of the screen

#### SIGNAL SYNCHRONISATION



Screen "timecode" in mirror

### OpenVibe Scenario



#### SEQUENCE DIAGRAM



#### EXPERIMENT WORKFLOW

- Laboratory preparation
  - Connect of all computers and devices
  - Peripheral configuration
  - Check connectivity and data recording
- Attach EEG equipment to operator
- EyeTracker callibration
- Start recording video signal, eye tracker system and EEG signal (with OpenVibe)
- Perform main experiment
- Disconnect operator from the EEG electrodes
- Save and preprocess signals from all sources
- Clean EEG equipment and lab
- Off-line signal processing

#### APPLICATIONS

Error Potential Stimulator

s2 17:51:49.06

s2 17:51:49.06



### APPLICATIONS

• Hell's Calc



#### APPLICATIONS

EEG Head Measure



#### HOW IT WORKS IN PRACTICE?



### HOW IT WORKS IN PRACTICE?



# OTHER TECHNICAL EXPERIMENT OBSTACLES

- GazePoint software on second monitor
- Issues with external keyboard connected to laptop
- Changes of machines IP numbers from session to session
- Low framerate of the camera and EyeTracker system

### THANK YOU

#### DISCUSSIONS

- Where EEG method may not be useful in context of testing Human-Computer Interaction
  - Areas where traditional methods are efficient and good enough
  - Situations, when cause and effect of the problem appear in significantly different time
  - When certain "obstacle" in human-computer interaction is implemented on purpose
  - When given problem is not notticed by operator

#### FIRST RESULTS

Average EEG for error, correct, simulated error and difference error-minus-correct at channels Fz, Cz, C3, C4 for one subject



C = Correct Response (blue); E = Wrong Response (red); fE = False Wrong Response (magenta); E-C = Wrong Response - Correct Response (black) time: -200 to 600ms (0s = time of feedback)