Prueba de evaluación

Muy importante: Escribir como máximo un folio por las dos caras

Topología. Curso 2015-16

Problema

Sean las familias de subconjuntos de R

$$B_1 = \{[a,b) \mid a,b \in \mathbb{R}, a < b\}$$
 y $B_2 = \{(p,q) \mid p,q \in \mathbb{R}, p < q\}.$

- a) Demostrar que B_1 y B_2 son bases de topologías de \mathbb{R} , a las que llamaremos T_1 y T_2 respectivamente.
 - b) Probar que $T_1 \neq T_2$.
 - c) Estudiar si (\mathbb{R} , T_1) verifica el l axioma de numerabilidad.

Demostración

a) Es inmediato porque ambas verifican las propiedades de ser bases, comprobemos con una de ellas.

$$1) \bigcup_{a < b, a, b \in \mathbb{R}} [a, b) = \mathbb{R}$$

II) Si [a,b) y [a',b') dos elementos de B_1 con itersección distinta del vacío, si t pertenece a esa intersección entonces $t \in [a'',b''] = [a,b) \cap [a',b']$.

b)
$$T_1 \neq T_2$$
, ya que $[\sqrt{2},2) \neq \bigcup_{p_i,q_i \in \mathbb{R}} (p_i,q_i]$, luego $[\sqrt{2},2) \notin T_2$.

c) Para cada $a \in \mathbb{R}, \ B = \{[a,p) : p \in \mathbb{Q}\}$ es una base numerable de entornos de a.