Supervised Learning

Beat US Stock Market (2019 edition)

Turma 3 - Grupo 22

Catarina Fernandes - up201806610@fe.up.pt

Diogo Almeida - up201806630@fe.up.pt

Pedro Queirós - up201806329@fe.up.pt

Specification of the work to be performed

Context

The algorithmic trading space is buzzing with new strategies. Companies have spent billions in infrastructures and R&D to be able to jump ahead of the competition and beat the market. Still, it is well acknowledged that the buy & hold strategy is able to outperform many of the algorithmic strategies, especially in the long-run. However, finding value in stocks is an art that very few mastered, can a computer do that?

The Problem Specification

The objective of a supervised learning model is to predict the correct label for newly presented input data.

Our goal is to correctly label stock as buy-worthy or not. In order to accomplish it, we'll use the entries from the <u>Beat US Stock market</u> (2019 edition) data set, which contains the 10-K filings of 638 Tech Companies, to train and test our predictive model.

As we intend to approximate a mapping function from input variables to discrete output variables we can classify this problem as a **classification problem**.

Related work with references to works found in a bibliographic search

- Exercises from the practical classes: https://moodle.up.pt/mod/resource/view.php?id=154306
- Beat US Stock market (2019 edition): https://www.kaggle.com/cnic92/beat-us-stock-market-data
- Data Preprocessing:
 https://moodle.up.pt/pluginfile.php/211571/mod_resource/content/0/IART_Lecture5c_MachineLearning_DataPreprocessing.pdf
- Machine learning tools:
 https://moodle.up.pt/pluginfile.php/211545/mod_resource/content/0/IART_Lecture5b_MachineLearning_Tools.pdf
- Machine learning classification:
 https://moodle.up.pt/pluginfile.php/213487/mod_resource/content/0/IART_Lecture5d_MachineLearning_Classification.pdf
- Decision Trees https://scikit-learn.org/stable/modules/tree.html
- K-Nearest Neighbor (K-NN): https://www.techopedia.com/definition/32066/k-nearest-neighbor-k-nn
- Support Vector Machine: https://www.techopedia.com/definition/30364/support-vector-machine-sym
- Multi-layer Perceptron: https://www.techopedia.com/definition/20879/multilayer-perceptron-mlp

Description of the tools and algorithms to use in the assignment

Development Environment:

- Jupyter Notebook
- Spyder (For algorithm testing)

Libraries/Tools:

- Pandas (Data Extraction);
- NumPy and SciPy (Data Manipulation);
- Seaborn and MatPlotLib (Data Visualization);
- Scikit-Learn (Learning Models).
- Imbalanced-learn (Oversampling and Undersampling)

Data Analysis & Pre-Processing

When we first looked at the data, it looked pretty decent, it had no empty cells and no wrong data. All we had to do was remove the stocks' names column, which was useless.

We then studied the influence of each feature in the price variation of the stocks of the companies and removed the columns that have a correlation greater than 95% with other columns (48). This way we only have the features that provides us with relevant information, so the models can be processed faster.

Furthermore, we also noticed that the dataset has more stocks that increased in value than stocks decreased in value. With that said, our models will naturally be better prepared for stocks that have gone up in price.

	Ticker	Revenue	Revenue Growth	Cost of Revenue	Gross Profit	SG&A Expense	Operating Expenses	Operating Income	Earnings before Tax	Net Income	 EPS Diluted Growth
0	INTC	7.084800e+10	0.1289	2.711100e+10	4.373700e+10	6.750000e+09	2.042100e+10	2.331600e+10	2.331700e+10	2.105300e+10	 1.2513
1	MU	3.039100e+10	0.4955	1.250000e+10	1.789100e+10	8.130000e+08	2.897000e+09	1.499400e+10	1.430300e+10	1.413500e+10	1.6100
2	AAPL	2.655950e+11	0.1586	1.637560e+11	1.018390e+11	1.670500e+10	3.094100e+10	7.089800e+10	7.290300e+10	5.953100e+10	0.2932
3	MSFT	1.103600e+11	0.1428	3.835300e+10	7.200700e+10	2.222300e+10	3.694900e+10	3.505800e+10	3.647400e+10	1.657100e+10	 -0.3446
4	HPQ	5.847200e+10	0.1233	4.780300e+10	1.066900e+10	4.859000e+09	6.605000e+09	4.064000e+09	3.013000e+09	5.327000e+09	1.2027

633	TRNS	1.551410e+08	0.0781	1.177000e+08	3.744100e+07	2.841500e+07	2.841500e+07	9.026000e+06	7.948000e+06	5.922000e+06	0.2656
634	TSRI	6.499000e+07	0.0386	5.460910e+07	1.038090e+07	9.471523e+06	9.471523e+06	9.093770e+05	8.672080e+05	4.862080e+05	0.7857
635	TZOO	1.113220e+08	0.0450	1.226800e+07	9.905400e+07	8.182300e+07	9.081600e+07	8.238000e+06	8.286000e+06	4.661000e+06	0.3704
636	WSTG	1.814440e+08	0.1300	1.545240e+08	2.692000e+07	2.031900e+07	2.276500e+07	4.155000e+06	5.117000e+06	3.538000e+06	-0.3097
637	WTT	5.278800e+07	0.1456	2.862100e+07	2.416700e+07	1.790100e+07	2.281000e+07	1.357000e+06	8.300000e+04	3.500000e+04	1.0000

```
clean data = ten k fillings data.drop(columns=["Ticker"])
# Create correlation matrix
corr matrix = clean data.corr().abs()
# Select upper triangle of correlation matrix
upper = corr matrix.where(np.triu(np.ones(corr matrix.shape), k=1).astype(bool))
# Find features with correlation greater than 0.95
to_drop = [column for column in upper.columns if any(upper[column] > 0.95)]
clean data.drop(to drop, axis=1, inplace=True)
print("{} Dropped columns: {}".format(len(to_drop), to_drop) )
48 Dropped columns: ['Cost of Revenue', 'Gross Profit', 'Earnings before Tax', 'Net Income', 'Net Income Com', 'EPS Diluted',
'Weighted Average Shs Out (Dil)', 'Profit Margin', 'EBITDA', 'EBIT', 'Consolidated Income', 'Earnings Before Tax Margin', 'Net
Profit Margin', 'Total current assets', 'Total assets', 'Total current liabilities', 'Total liabilities', 'Other Liabilities',
'Operating Cash Flow', 'Capital Expenditure', 'Free Cash Flow', 'priceToSalesRatio', 'ebitperRevenue', 'grossProfitMargin', 'pr
etaxProfitMargin', 'netProfitMargin', 'eBITperRevenue', 'quickRatio', 'operatingCashFlowSalesRatio', 'Revenue per Share', 'Oper
ating Cash Flow per Share', 'Free Cash Flow per Share', 'Cash per Share', 'Shareholders Equity per Share', 'Price to Sales Rati
o', 'Current ratio', 'SG&A to Revenue', 'Capex to Revenue', 'Return on Tangible Assets', 'Invested Capital', 'Average Receivabl
es', 'Average Payables', 'Days Sales Outstanding', 'Days Payables Outstanding', 'ROE', 'Capex per Share', 'EPS Diluted Growth',
'Weighted Average Shares Diluted Growth'l
```

Oversampling & Undersampling

To try to make the dataset balanced, we created 2 more sets from the original: one oversampled and the other undersampled.

To finalize the pre-processing stage, we also scaled/normalized the data since some of the algorithms used require it, like for example K-Nearest Neighbors (which needs to calculate distances).

```
os = SMOTE(random_state=1)
us = RandomUnderSampler(random_state=1)

os_inputs, os_labels = os.fit_resample(inputs_train, labels_train)
print(Counter(os_labels))

us_inputs, us_labels = us.fit_resample(inputs_train, labels_train)
print(Counter(us_labels))

Counter({1: 338, 0: 338})
Counter({0: 140, 1: 140})
```

```
scaler = StandardScaler()
scaler.fit(inputs_train)
inputs_train = scaler.fit_transform(inputs_train)
inputs_test = scaler.fit_transform(inputs_test)
scaler.fit(os_inputs)
os_inputs = scaler.fit_transform(os_inputs)
scaler.fit(us_inputs)
us_inputs = scaler.fit_transform(us_inputs)
```

Train Test Split & Classification

From the datasets we split 75% for training and 25% for testing with the stratify parameter to guarantee equal class ratio for both train and test. For the classification we used the following algorithms:

- Decision Trees
- Support Vector Machines
- K-Nearest Neighbors
- Multilayer Perceptron

We used K-Fold cross validation with 10 splits and grid search to do hyperparameter tuning for all algorithms.

These procedures were applied to all 3 datasets (original, undersampled and oversampled), so we can have more results to compare.

Results Analysis - Decision Trees

Best score: 0.7419896790748586						Decision Trees - Undersampled						
	<pre>Best parameters: {'criterion': 'gini', 'max_depth': 2,</pre>					Best score: 0.6998667169603702 Best parameters: {'criterion': 'entropy', 'max_depth':						
Accuracy Score: 0.7447698744769874 Precision Score: 0.742152466367713 Confusion Matrix: [[25 115]		TRAIN Accuracy Score: Precision Score Confusion Matri [[136 4] [314 24]] Classification	: 0.3347280 e: 0.857142 ix:	334728033 857142857	3		Best parameters: {'criterion': 'gini', 'ma				support	
ignore 0.78 0.18	.29 140	ignore	0.30	0.97	0.46	140	ignore	0.44	0.56	0.50	140	
	.84 338	buy	0.86	0.07	0.13	338	buy	0.80	0.70	0.75	338	
accuracy	.74 478	accuracy			0.33	478	accuracy			0.66	478	
0	.57 478	macro avg	0.58	0.52	0.30	478	macro avg	0.62	0.63	0.62	478	
weighted avg 0.75 0.74 0	.68 478	weighted avg	0.69	0.33	0.23	478	weighted avg	0.69	0.66	0.67	478	
TEST Accuracy Score: 0.7125 Precision Score: 0.7410071942446043 Confusion Matrix: [[11 36] [10 103]] Classification Report:	TEST Accuracy Score: Precision Score Confusion Matri [[40 7] [66 47]] Classification	370370370			TEST Accuracy Score Precision Scor Confusion Matr [[7 40] [22 91]] Classification	: 0.6125 e: 0.694656 ix:	488549618					
ignore 0.52 0.23 6	.32 47	ignore	0.38	0.85	0.52	47	ignore	0.24	0.15	0.18	47	
buy 0.74 0.91 6	.82 113	buy	0.87	0.42	0.56	113	buy	0.69	0.81	0.75	113	
	.71 160	accuracy			0.54	160	accuracy			0.61	160	
O	.57 160 .67 160	macro avg weighted avg	0.62	0.63	0.54	160 160	macro avg weighted avg	0.47 0.56	0.48 0.61	0.47 0.58	160 160	

Results Analysis - Support Vector Machines

Support Vector Machines - Original					Support Vector	Support Vector Machines - Oversampled										
					Best score: 0.6 Best parameters	7989087301 :: {'C': 16	L5873), 'gamma'	: 'scale',	'kernel':	Best score: 0.7632888533225565 Best parameters: {'C': 100, 'gamma': 'auto', 'kernel'						
					TRAIN Accuracy Score: Precision Score Confusion Matri [[118 22] [121 217]] Classification		TRAIN Accuracy Score: 0.8200836820083682 Precision Score: 0.9809160305343512 Confusion Matrix: [[135 5] [81 257]] Classification Report:									
ignore buy accuracy macro avg weighted avg	0.95 0.74 0.84 0.80	0.14 1.00 0.57 0.75	0.25 0.85 0.75 0.55 0.67	140 338 478 478 478	ignore buy accuracy macro avg weighted avg	0.49 0.91 0.70 0.79	0.84 0.64 0.74 0.70	0.62 0.75 0.70 0.69 0.71	140 338 478 478 478	ignore buy accuracy macro avg weighted avg	0.62 0.98 0.80 0.88	0.96 0.76 0.86 0.82	0.76 0.86 0.82 0.81 0.83	140 338 478 478 478		
TEST Accuracy Score: 0.7 Precision Score: 0.7152317880794702 Confusion Matrix: [[4 43]				TEST Accuracy Score: Precision Score Confusion Matri [[31 16] [58 55]] Classification	0.5375 e: 0.774647 x:	7887323943			TEST Accuracy Score: Precision Score Confusion Matri [[24 23] [34 79]] Classification	0.64375 2: 0.774509 ix:	9803921568					
ignore buy	0.44 0.72	0.09 0.96	0.14 0.82	47 113	ignore buy	0.35 0.77	0.66 0.49	0.46 0.60	47 113	ignore buy	0.41 0.77	0.51 0.70	0.46 0.73	47 113		
accuracy macro avg weighted avg	0.58 0.64	0.52 0.70	0.70 0.48 0.62	160 160 160	accuracy macro avg weighted avg	0.56 0.65	0.57 0.54	0.54 0.53 0.56	160 160 160	accuracy macro avg weighted avg	0.59 0.67	0.60 0.64	0.64 0.60 0.65	160 160 160		

Results Analysis - K-Nearest Neighbors

K-Nearest Neighbors - Original					K-Nearest Neigh	K-Nearest Neighbors - Oversampled								
Best score: 0.7179400084297429 Best parameters: {'n_neighbors': 18, 'p': 1, 'weights': TRAIN Accuracy Score: 0.7635983263598326 Precision Score: 0.7622377622377622 Confusion Matrix: [[38 102] [11 327]] Classification Report:				Best score: 0.6 Best parameters	57506082088 5: {'n_neig	.6, 'p': 2,	'weights'	Best score: 0.8231892163864876 Best parameters: {'n_neighbors': 1, 'p': 1, 'weights':						
				TRAIN Accuracy Score: Precision Score Confusion Matri [[95 45] [113 225]] Classification	TRAIN Accuracy Score: 1.0 Precision Score: 1.0 Confusion Matrix: [[140 0] [0 338]] Classification Report:									
ignore	0.78	0.27	0.40	140	ignore	0.46	0.68	0.55	140	ignore	1.00	1.00	1.00	140
buy	0.76	0.97	0.85	338	buy	0.83	0.67	0.74	338	buy	1.00	1.00	1.00	338
accuracy			0.76	478	accuracy			0.67	478	accuracy			1.00	478
macro avg	0.77	0.62	0.63	478	macro avg	0.65	0.67	0.64	478	macro avg	1.00	1.00	1.00	478
weighted avg 0.77 0.76 0.72 478				478	weighted avg	0.72	0.67	0.68	478	weighted avg	1.00	1.00	1.00	478
TEST Accuracy Score: 0.7125 Precision Score: 0.7310344827586207 Confusion Matrix: [[8 39]			TEST Accuracy Score: Precision Score Confusion Matri [[32 15] [43 70]] Classification	0.6375 e: 0.823529 x:	9411764705			TEST Accuracy Score Precision Score Confusion Matro [[21 26] [37 76]] Classification	e: 0.60625 re: 0.745098 rix:	8039215686		support		
ignore	0.53	0.17	0.26	47	ignore	0.43	0.68	0.52	47	ignore	0.36	0.45	0.40	47
buy	0.73	0.94	0.82	113	buy	0.82	0.62	0.71	113	buy	0.75	0.67	0.71	113
accuracy			0.71	160	accuracy			0.64	160	accuracy			0.61	160
macro avg	0.63	0.55	0.54	160	macro avg	0.63	0.65	0.62	160	macro avg	0.55	0.56	0.55	160
weighted avg	0.67	0.71	0.66	160	weighted avg	0.71	0.64	0.65	160	weighted avg	0.63	0.61	0.62	160

Results Analysis - Multilayer Perceptron

Multilayer Perceptron - Original					,	Multilayer Perceptron - Undersampled						Multilayer Perceptron - Oversampled						
Best score: 0.7 Best parameters 0.25, 'solver':	74095338503 6: {'activa 'adam'}	65232 Hion': 'l	ogistic',	'alpha': 0	Best score: 0.7 Best parameters 0.25, 'solver':	0514631953 : {'activa 'adam'}	87344 ntion': 't	anh', 'alph	na': 0.000	Best score: 0.8286409331661215 Best parameters: {'activation': 'relu 0.25, 'solver': 'lbfgs'}				lu', 'alpha': 0.000				
TRAIN Accuracy Score: 0.7824267782426778 Precision Score: 0.7839805825242718 Confusion Matrix: [[51 89] [15 323]] Classification Report:					TRAIN Accuracy Score: Precision Score Confusion Matri [[124 16] [141 197]] Classification	TRAIN Accuracy Score Precision Scor Confusion Matr [[140 0] [105 233]] Classification	Accuracy Score: 0.7803347280334728 Precision Score: 1.0 Confusion Matrix: [[140 0]											
ianono	0.77	0.26	0.50	140	ignoro	0.47	0.89	0.61	140	ignoro	0.57	1.00	0.73	140				
ignore buy	0.77 0.78	0.36 0.96	0.86	140 338	ignore buy	0.47	0.58	0.72	338	ignore buy	1.00	0.69	0.82	338				
			0.70	470	accuracy			0.67	478	accupacy			0.78	478				
accuracy macro avg	0.78	0.66	0.78 0.68	478 478	macro avg	0.70	0.73	0.66	478	accuracy macro avg	0.79	0.84	0.78	478				
weighted avg	0.78	0.78	0.75	478	weighted avg	0.79	0.67	0.68	478	weighted avg	0.87	0.78	0.79	478				
TEST Accuracy Score: 0.69375 Precision Score: 0.7758620689655172 Confusion Matrix: [[21 26] [23 90]] Classification Report:			TEST Accuracy Score: Precision Score Confusion Matri [[34 13] [56 57]] Classification	0.56875 : 0.814285 x:	714285714			TEST Accuracy Score Precision Scor Confusion Matr [[26 21] [41 72]] Classification	: 0.6125 e: 0.774193 ix:	548387096								
ignore	0.48	0.45	0.46	47	ignore	0.38	0.72	0.50	47	ignore	0.39	0.55	0.46	47				
buy	0.78	0.80	0.79	113	buy	0.81	0.50	0.62	113	buy	0.77	0.64	0.70	113				
accuracy macro avg weighted avg	0.63 0.69	0.62 0.69	0.69 0.62 0.69	160 160 160	accuracy macro avg weighted avg	0.60 0.69	0.61 0.57	0.57 0.56 0.59	160 160 160	accuracy macro avg weighted avg	0.58 0.66	0.60 0.61	0.61 0.58 0.63	160 160 160				

Oversampled and Undersampled data sets' problems

As we can see in the graph, the undersampled data set usually underperforms, which might be because of the lack of data, since we removed a lot earlier.

As for the oversampled set, although it makes some models achieve higher scores, it also makes them overfit, since we can see in the graph that the scores vary too much.

Best Model

To choose the best model, we first need to decide which metric (accuracy, precision, recall and F1) is the best for this context. Since the dataset is imbalanced, we can rule out accuracy, leaving us with 3 metrics, and from those 3 we can certainly say that precision is the most important since there is a cost associated with every **buy** prediction the model makes.

With that said, although all of the algorithms and resulting models (for the original dataset) presented us with good results (>70%), we can say that Multilayer Perceptron is the best performing model (74%), since it has the best precision/recall score.

TEST				
Accuracy Sco	re: 0.69375			
Precision Sc	ore: 0.775862	2068965517	2	
Confusion Ma	trix:			
[[21 26]				
[23 90]]				
Classificati	on Report:			
	precision	recall	f1-score	support
ignore	0.48	0.45	0.46	47
buy	0.78	0.80	0.79	113
accuracy	1		0.69	160
macro ave	0.63	0.62	0.62	160
weighted ave	0.69	0.69	0.69	160

Conclusion

When we first started this project we were going for an accuracy score of about 50-60%, our first experimentations with even the simplest algorithms (like Decision Trees and K-Nearest Neighbors) quickly exceeded our expectations, with results already close to 70%. With all the research and development we did to both the data and the algorithms we managed to get the accuracy of all the used algorithms to over 70%, which is very decent.

With this project we learned that Machine Learning algorithms are very powerful tools that can predict with decent accuracy even the very unpredictable thing that is the Stock Market. Although we achieved good results, these could've been better if more data had been provided, seeing that we only had 638 companies for 100+ features.

Finally, we had the opportunity to see how data analysis/preprocessing and other techniques like k-fold cross-validation and hyperparameter tuning are fundamental in guaranteeing a good Supervised Learning Model.