A szállítási réteg

A szállítási réteg az OSI modell negyedik szintjén található, ahogy az a következő ábrán is látható:

A szállítási réteg feladatai

- Az alkalmazási rétegből fogadja az adatokat.
- A hálózat rétegbe továbbítja a szegmenseket.
- Szegmentálás.
- Adatok megérkezésének kezelése.
- Hibajavítás.

Két legfontosabb protokoll

A szállítási rétegben általában két protokoll fordul elő. Ezek a TCP és az UDP:

- TCP Transmission Control Protocol
- UDP User Datagram Protocol

TCP kapcsolat esetén, minden elküldött csomagról visszaigazolást vár a küldő fél. Az UDP esetén elküldjük a csomagokat, de nem várunk visszaigazolást.

Adatfolyam-vezérlés

Egy adatfolyamban az adatok több darabra osztva utaznak, mint azt a következő ábra is mutatja.

A küldő csoportokra bontja a csomagokat és így küldi el azokat a hálózatra.

A darabonként küldött csomagokat ez után a fogadó oldal összerakja, és továbbítja azokat a megfelelő alkalmazásokhoz.

TCP/IP rétegeiben

TCP - UDP szegmens

TCP csomagformátum

			TCP Segme	ent	Heade	r Forma	ıt		
Bit #	0	7	8	15	16	23	24	31	
0		Sour	ce Port	Destination Port					
32	Sequence Number								
64	Acknowledgment Number								
96	Data Offset	Res	es Flags Window Size						
128	H	eader and	Data Checksum	Urgent Pointer					
160	Options								

UDP Datagram Header Format										
Bit #	0	7	8	15	16	23	24	31		
0		Source	e Port		Destination Port					
32		Lei	ngth		Header and Data Checksum					

Egy webes kapcsolat

Egy webes kapcsolat

Szoftveres portok osztályozása

A szoftveres portokat osztályokba soroljuk. Az alábbi táblázat mutatja a három osztályt:

0 – 1023 jól ismert portok 1024 – 49 151 regisztrált portok 49 152 – 65 535 dinamikus és privát portok

Ismert TCP portok

- 21 FTP
- 23 telnet
- 25 SMTP
- 80 HTTP
- 143 IMAP
- 194 IRC
- **443 HTTPS**

Regisztrált portok

8008 alternatív HTTP

8080 alternatív HTTP

1863 MSN messanger

2000 Cisco SCCP (VoIP)

5060 SIP (VoIP

1812 RADIUS azonosítás

3306 MariaDB, MySQL

5004 RTP Voice and Video Transport Protocol

Ismert UDP portok

69 TFTP520 RIP

Ismert TCP/UDP portok

53 DNS161 SNMP531 AOL Instant Messenger, IRC

Regisztrált TCP/UDP portok

1433 MS SQL 29048 WAP (MMS)

TCP fejléc jelzői

- URG sürgősségi jelző
- ACK nyugtázás
- PSH áttöltési funkció
- RST kapcsolat alaphelyzetbe
- SYN sorszámok szinkronizálása
- FIN nincs több adat

TCP kapcsolat

TCP kapcsolat kiépülése

TCP kapcsolat esetén a küldő a TCP fejlécben beállítja a SYN jelzőt. A fogadó visszaküld egy csomagot, amelyben be van állítva a SYN és az ACK jelző. A küldő ezek után ACK jelzővel beállított csomagot küld.

Szegmensek összerakása

A szegmensekre bontott csomagok nem mindig ugyanazon az útvonalon közlekednek. Ezért előfordulhat, hogy nem sorrendhelyesen érkeznek a fogadó oldalon. A sorszámok lehetővé teszik a sorrendhelyes összeállítást.

A cél gép mindig egy ACK mezőben jelzi, hogy melyikre van szükség.

Ablakméret

Az ablakméret az a méret, amit forrás átküldhet, mielőtt nyugtát kaphatna. Az ablakméret a TCP-fejlécben egyik mezőjében kerül átküldésre.

UDP kommunikáció

UDP-t használó protokollok

- DNS
- SNMP Simple Network Management Protocol
- DHCP
- RIP Routing Information Protocol
- TFTP
- VoIP
- Online játékok

UDP jellemzők

- munkamenet nem jön létre
- tranzakció alapú ha egy alkalmazás küldeni akar, akkor elkezdi a küldést
- alternatív név datagram

Az UDP adatokat küld

Az UDP átküldi a csomagokat, de nem érdekli, hogy helyes sorrendben érkezett-e.

UDP portválasztás

A kliens UDP csomagot küld

A kommunikációban a választott port lesz a forrásport.

Célport

A célport általában egy szerveren egy szoftveres port, amely egy folyamatot azonosít.

TCP-UDP választás

