Lecture 2: Convex functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is **convex** if $\operatorname{\mathbf{dom}} f$ is convex and for all $x,y \in \operatorname{\mathbf{dom}} f$, $\theta \in [0,1]$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

f is concave if -f is convex

examples (on R)

- $f(x) = x^2$ is convex
- $f(x) = \log x$ is concave $(\operatorname{dom} f = \mathbf{R}_{++})$ f(x) = 1/x is convex $(\operatorname{dom} f = \mathbf{R}_{++})$

Extended-valued extensions

for f convex, it's convenient to define the extension

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \text{dom } f \\ +\infty & x \not\in \text{dom } f \end{cases}$$

inequality

$$\tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

holds for all $x, y \in \mathbf{R}^n$, $0 \le \theta \le 1$ (as an inequality in $\mathbf{R} \cup \{+\infty\}$)

we'll use same symbol for f and its extension, $\it i.e.$, we'll implicitly assume convex functions are extended

Epigraph & sublevel sets

epigraph of a function f is

$$epi f = \{(x, t) \mid x \in dom f, f(x) \le t \}$$

f convex function $\Leftrightarrow \operatorname{epi} f$ convex set

the $(\alpha$ -)sublevel set of f is

$$C(\alpha) \stackrel{\Delta}{=} \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

f convex \Rightarrow sublevel sets are convex (converse false)

Differentiable convex functions

gradient of $f: \mathbf{R}^n \to \mathbf{R}$

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}^T$$
 (evaluated at x)

first order Taylor approximation at x_0 :

$$f(x) \simeq f(x_0) + \nabla f(x_0)^T (x - x_0)$$

first-order condition: for f differentiable,

f is convex \iff for all $x, x_0 \in \operatorname{dom} f$,

$$f(x) \ge f(x_0) + \nabla f(x_0)^T (x - x_0)$$

i.e., 1st order approx. is a *global underestimator*

epigraph interpretation

for all $(x,t) \in \operatorname{epi} f$,

$$\begin{bmatrix} \nabla f(x_0) \\ -1 \end{bmatrix}^T \begin{bmatrix} x - x_0 \\ t - f(x_0) \end{bmatrix} \le 0,$$

i.e., $(\nabla f(x_0), -1)$ defines supporting hyperplane to $\operatorname{epi} f$ at $(x_0, f(x_0))$

Hessian of a twice differentiable function:

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

(evaluated at x)

2nd order Taylor series expansion around x_0 :

$$f(x) \simeq f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0)$$

second order condition: for f twice differentiable, f is convex \iff for all $x \in \operatorname{dom} f$, $\nabla^2 f(x) \succeq 0$

Simple examples

- linear and affine functions are convex and concave
- quadratic function $f(x) = x^T P x + 2q^T x + r$ convex $\iff P \succeq 0$; concave $\iff P \preceq 0$ $(P = P^T)$
- any norm is convex

examples on R:

- x^{α} is convex on \mathbf{R}_{++} for $\alpha \geq 1$, $\alpha \leq 0$; concave for $0 \leq \alpha \leq 1$
- $\log x$ is concave on \mathbf{R}_{++} , $x \log x$ is convex on \mathbf{R}_{+}
- $e^{\alpha x}$ is convex
- |x|, $\max(0, x)$, $\max(0, -x)$ are convex
- $\log \int_{-\infty}^{x} e^{-t^2} dt$ is concave

Elementary properties

• a function is convex iff it is convex on all lines:

$$f$$
 convex $\iff f(x_0 + th)$ convex in t for all x_0, h

• positive multiple of convex function is convex:

$$f \text{ convex}, \alpha \geq 0 \Longrightarrow \alpha f \text{ convex}$$

• sum of convex functions is convex:

$$f_1, f_2 \text{ convex} \implies f_1 + f_2 \text{ convex}$$

extends to infinite sums, integrals:

$$g(x,y)$$
 convex in $x \Longrightarrow \int g(x,y)dy$ convex

• pointwise maximum:

$$f_1, f_2 \text{ convex} \implies \max\{f_1(x), f_2(x)\} \text{ convex}$$

(corresponds to intersection of epigraphs)

• pointwise supremum:

$$f_{lpha} \ {\sf convex} \ \Longrightarrow \sup_{lpha \in \mathcal{A}} f_{lpha} \ {\sf convex}$$

affine transformation of domain

$$f \text{ convex} \implies f(Ax+b) \text{ convex}$$

More examples

- piecewise-linear functions: $f(x) = \max_i \{a_i^T x + b_i\}$ is convex in x (epi f is polyhedron)
- ullet max distance to any set, $\sup_{s\in S}\|x-s\|$, is convex in x
- $f(x) = x_{[1]} + x_{[2]} + x_{[3]}$ is convex on \mathbf{R}^n ($x_{[i]}$ is the ith largest x_j)
- $f(x) = (\prod_i x_i)^{1/n}$ is concave on \mathbf{R}^n_+
- $f(x) = \sum_{i=1}^{m} \log(b_i a_i^T x)^{-1}$ is convex $(\mathbf{dom} \ f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\})$
- least-squares cost as functions of weights,

$$f(w) = \inf_x \sum_i w_i (a_i^T x - b_i)^2,$$

is concave in w

Convex functions of matrices

- $\operatorname{Tr} A^T X = \sum_{i,j} A_{ij} X_{ij}$ is linear in X on $\mathbf{R}^{n \times n}$
- $\log \det X^{-1}$ is convex on $\{X \in \mathbf{S}^n \mid X \succ 0\}$ **proof:** let λ_i be the eigenvalues of $X_0^{-1/2}HX_0^{-1/2}$

$$f(t) \stackrel{\Delta}{=} \log \det(X_0 + tH)^{-1}$$

$$= \log \det X_0^{-1} + \log \det(I + tX_0^{-1/2}HX_0^{-1/2})^{-1}$$

$$= \log \det X_0^{-1} - \sum_i \log(1 + t\lambda_i)$$

is a convex function of t

- $(\det X)^{1/n}$ is concave on $\{X \in \mathbf{S}^n \mid X \succ 0\}$
- $\lambda_{\max}(X)$ is convex on \mathbf{S}^n . **proof:** $\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$
- $\|X\|_2 = \sigma_1(X) = (\lambda_{\max}(X^TX))^{1/2}$ is convex on $\mathbf{R}^{m \times n}$ proof: $\|X\|_2 = \sup_{\|u\|_2 = 1} \|Xu\|_2$

Minimizing over some variables

if h(x, y) is convex in x and y, then

$$f(x) = \inf_{y} h(x, y)$$

is convex in \boldsymbol{x}

corresponds to projection of epigraph, $(x,y,t) \rightarrow (x,t)$

examples

• if $S \subseteq \mathbb{R}^n$ is convex then (min) distance to S,

$$\mathbf{dist}(x,S) = \inf_{s \in S} \|x - s\|$$

is convex in x

ullet if g is convex, then

$$f(y) = \inf\{g(x) \mid Ax = y\}$$

is convex in y

proof: (assume $A \in \mathbb{R}^{m \times n}$ has rank m)

find B s.t. $\mathcal{R}(B) = \mathcal{N}(A)$; then Ax = y iff

$$x = A^T (AA^T)^{-1} y + Bz$$

for some z, and hence

$$f(y) = \inf_{z} g(A^{T}(AA^{T})^{-1}y + Bz)$$

Composition — one-dimensional case

 $f(x) = h(g(x)) (g : \mathbf{R}^n \to \mathbf{R}, h : \mathbf{R} \to \mathbf{R})$ is convex if

- g convex; h convex, nondecreasing
- g concave; h convex, nonincreasing

proof: (differentiable functions, $x \in \mathbb{R}$)

$$f'' = h''(g')^2 + g''h'$$

examples

- $f(x) = \exp g(x)$ is convex if g is convex
- f(x) = 1/g(x) is convex if g is concave, positive
- $f(x) = g(x)^p$, $p \ge 1$, is convex if g(x) convex, positive
- $f(x) = -\sum_{i} \log(-f_i(x))$ is convex on $\{x \mid f_i(x) < 0\}$ if f_i are convex

Composition — *k*-dimensional case

$$f(x) = h(g_1(x), \dots, g_k(x))$$

with $h: \mathbf{R}^k \to \mathbf{R}$, $g_i: \mathbf{R}^n \to \mathbf{R}$ is convex if

- h convex, nondecreasing in each arg.; g_i convex
- h convex, nonincreasing in each arg.; g_i concave
- etc.

proof: (differentiable functions, n = 1)

$$f'' =
abla h^T \left[egin{array}{c} g_1'' \ dots \ g_k'' \end{array}
ight] + \left[egin{array}{c} g_1' \ dots \ g_k' \end{array}
ight]^T
abla^2 h \left[egin{array}{c} g_1' \ dots \ g_k' \end{array}
ight]$$

examples

- $f(x) = \max_i g_i(x)$ is convex if each g_i is
- $f(x) = \log \sum_{i} \exp g_i(x)$ is convex if each g_i is

Jensen's inequality

 $f: \mathbf{R}^n \to \mathbf{R}$ convex

- two points: $\theta_1 + \theta_2 = 1$, $\theta_i \geq 0 \implies f(\theta_1 x_1 + \theta_2 x_2) \leq \theta_1 f(x_1) + \theta_2 f(x_2)$
- more than two points: $\sum_i \theta_i = 1$, $\theta_i \geq 0 \implies f(\sum_i \theta_i x_i) \leq \sum_i \theta_i f(x_i)$
- continuous version: $p(x) \geq 0$, $\int p(x) dx = 1 \implies$

$$f(\int xp(x) \ dx) \le \int f(x)p(x) \ dx$$

 \bullet most general form: for any prob. distr. on x,

$$f(\mathbf{E} x) \le \mathbf{E} f(x)$$

these are all called Jensen's inequality

interpretation of Jensen's inequality:

(zero mean) randomization, dithering increases average value of a convex function

many (some people claim most) inequalities can be derived from Jensen's inequality

example: arithmetic-geometric mean inequality

$$a, b \ge 0 \Rightarrow \sqrt{ab} \le (a+b)/2$$

proof: $f(x) = \log x$ is concave on $\{x | x > 0\}$, so for a, b > 0,

$$\frac{1}{2}(\log a + \log b) \le \log \left(\frac{a+b}{2}\right)$$

Conjugate functions

the **conjugate** function of $f: \mathbf{R}^n \to \mathbf{R}$ is

$$f^*(y) = \sup_{x \in \text{dom } f} \left(y^T x - f(x) \right)$$

• f^* is convex (even if f isn't)

Examples

$$f(x) = -\log x \text{ (dom } f = \{x \mid x > 0\})$$
:

$$f^*(y) = \sup_{x>0} (xy + \log x)$$

$$= \begin{cases} -1 - \log(-y) & \text{if } y < 0 \\ +\infty & \text{otherwise} \end{cases}$$

$$f(x) = x^T P x (P \succ 0)$$
:

$$f^*(y) = \sup_{x} (y^T x - x^T P x) = \frac{1}{4} y^T P^{-1} y$$

Quasiconvex functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is *quasiconvex* if every sublevel set

$$S_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

is convex

- can have 'locally flat' regions
- ullet f is quasiconcave if -f is quasiconvex, i.e., superlevel sets $\{x\mid f(x)\geq \alpha\}$ are convex
- a function which is both quasiconvex and quasiconcave is called *quasilinear*
- f convex (concave) $\Rightarrow f$ quasiconvex (quasiconcave)

Examples

- $f(x) = \sqrt{|x|}$ is quasiconvex on **R**
- $f(x) = \log x$ is quasilinear on \mathbf{R}_+
- linear fractional function,

$$f(x) = \frac{a^T x + b}{c^T x + d}$$

is quasilinear on the halfspace $c^T x + d > 0$

- $f(x) = \frac{\|x-a\|_2}{\|x-b\|_2}$ is quasiconvex on the halfspace $\{x \mid \|x-a\|_2 \leq \|x-b\|_2\}$
- $f(a) = \operatorname{degree}(a_0 + a_1 t + \cdots + a_k t^k)$ on \mathbf{R}^{k+1}

Properties

- ullet f is quasiconvex if and only if it is quasiconvex on lines, i.e., $f(x_0+th)$ quasiconvex in t for all x_0,h
- ullet modified Jensen's inequality: f is quasiconvex iff for all $x,y\in {
 m dom}\, f$, $\theta\in [0,1]$,

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}\$$

ullet for f differentiable, f quasiconvex \Longleftrightarrow for all $x,y\in {f dom}\, f$

$$f(y) \le f(x) \Rightarrow (y - x)^T \nabla f(x) \le 0$$

• positive multiples

f quasiconvex, $\alpha \geq 0 \Longrightarrow \alpha f$ quasiconvex

• pointwise maximum

$$f_1, f_2$$
 quasiconvex $\Longrightarrow \max\{f_1, f_2\}$ quasiconvex (extends to supremum over arbitrary set)

affine transformation of domain

$$f$$
 quasiconvex $\Longrightarrow f(Ax + b)$ quasiconvex

linear-fractional transformation of domain

$$f \text{ quasiconvex} \Longrightarrow f\left(\frac{Ax+b}{c^Tx+d}\right) \text{ quasiconvex}$$
 on $c^Tx+d>0$

• composition with monotone increasing function

$$f$$
 quasiconvex, g monotone increasing $\Longrightarrow g(f(x))$ quasiconvex

- sums of quasiconvex functions are not quasiconvex in general
- ullet f quasiconvex in x, $y \Longrightarrow g(x) = \inf_y f(x,y)$ quasiconvex in x

Nested sets characterization

f quasiconvex \Rightarrow sublevel sets S_{α} are convex, nested, i.e.,

$$\alpha_1 \le \alpha_2 \Rightarrow S_{\alpha_1} \subseteq S_{\alpha_2}$$

converse: if T_{lpha} is a nested family of convex sets, then

$$f(x) = \inf\{\alpha \mid x \in T_{\alpha}\}\$$

is quasiconvex.

engineering interpretation: T_{lpha} are specs, tighter for smaller lpha

Example of Quasiconvex Functions via Nested Sets: Electron-beam Lithography

 $E\subseteq [0,1]\times [0,1]$: desired exposure region $E^c=[0,1]\times [0,1]\backslash E$: desired non-exposure region

I(p): e-beam intensity at position $p \in [0,1] \times [0,1]$

$$I(p) = \sum_{i} x_{i}g(p - p_{i}), \quad i = 1, \dots, N$$

 x_i : intensity of electron beam directed at pixel i

g(p): given (point-spread) function

pattern transition width

define $\phi(x)$ as minimum α s.t.

$$I(p) \ge 0.9$$
 for $\operatorname{dist}(p, E^c) \ge \alpha$
 $I(p) \le 0.1$ for $\operatorname{dist}(p, E) \ge \alpha$

 $\phi(x)$ is quasiconvex

Log-concave functions

 $f: \mathbf{R}^n \to \mathbf{R}_+$ is log-concave (log-convex) if $\log f$ is concave (convex)

 $log-convex \Rightarrow convex$; $concave \Rightarrow log-concave$

examples

- \bullet normal density, $f(x)=e^{-(1/2)(x-x_0)^T\Sigma^{-1}(x-x_0)}$
- erfc, $f(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt$
- indicator function of convex set C:

$$I_C(x) = \begin{cases} 1 & x \in C \\ 0 & x \notin C \end{cases}$$

Properties

- sum of log-concave functions not always log-concave (but sum of log-convex functions is log-convex)
- products

$$f, g \text{ log-concave } \Longrightarrow fg \text{ log-concave}$$

integrals

(immediate)

$$f(x,y)$$
 log-concave in $x,y \Longrightarrow \int f(x,y)dy$ log-concave

(not easy to show!)

convolutions

$$f,g \text{ log-concave} \Longrightarrow \int f(x-y)g(y)dy \text{ log-concave}$$

(immediate from the properties above)

Log-concave probability densities

many common probability density functions are log-concave

• normal $(\Sigma \succ 0)$

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

• exponential $(\lambda_i > 0)$

$$f(x) = \left(\prod_{i=1}^{n} \lambda_i\right) e^{-(\lambda_1 x_1 + \dots + \lambda_n x_n)}, \quad x \in \mathbf{R}_+^n$$

uniform distribution on convex (bounded) set C

$$f(x) = \begin{cases} 1/\alpha & x \in C \\ 0 & x \notin C \end{cases}$$

where lpha is Lebesgue measure of C (i.e., length, area, volume . . .)

Example: manufacturing yield

$$x_{\text{manu}} = x + v$$

- $x \in \mathbf{R}^n$: nominal value of design parameters
- $v \in \mathbf{R}^n$: manufacturing errors; zero mean random variable
- $S \subseteq \mathbb{R}^n$: specs, *i.e.*, acceptable values of x_{manu}

the yield $Y(x) = \mathbf{Prob}(x+v \in S)$ is log-concave if

- ullet S is a convex set
- ullet the probability density of v is log-concave

example

- $S = \{ y \in \mathbf{R}^2 \mid y_1 \ge 1, y_2 \ge 1 \}$
- v_1 , v_2 : independent, normal with $\sigma=1$

$${\rm yield}(x) = {\bf Prob}(x+v \in S) = \tfrac{1}{2\pi} \left(\int_{1-x_1}^{\infty} e^{-t^2/2} dt \right) \left(\int_{1-x_2}^{\infty} e^{-t^2/2} dt \right)$$

example (continued): max yield vs. cost

manufacturing cost $c = x_1 + 2x_2$; max yield for given cost is

$$Y^{\text{opt}}(c) = \sup_{x_1 + 2x_2 = c} Y(x)$$
$$x_1 + 2x_2 = c$$
$$x_1, x_2 \ge 0$$

Y(x) is log-concave

$$-\log Y^{\text{opt}}(c) = \inf_{\substack{x_1 + 2x_2 = c \\ x_1, x_2 \ge 0}} -\log Y(x_1, x_2)$$

K-convexity

cvx. cone $K \subseteq \mathbf{R}^m$ induces generalized inequality \preceq_K

 $f: \mathbf{R}^n \to \mathbf{R}^m$ is K-convex if $0 \le \theta \le 1$

$$f(\theta x + (1-\theta)y) \leq_K \theta f(x) + (1-\theta)f(y)$$

example. K is PSD cone (called *matrix convexity*). $f(X) = X^2$ is K-convex on \mathbf{S}^m let's show that for $\theta \in [0,1]$,

$$(\theta X + (1 - \theta)Y)^{2} \le \theta X^{2} + (1 - \theta)Y^{2} \tag{1}$$

for any $u \in \mathbf{R}^m$, $u^T X^2 u = \|Xu\|_2^2$ is a (quadratic) convex fct of X, so

$$u^{T}(\theta X + (1 - \theta)Y)^{2}u \leq \theta u^{T}X^{2}u + (1 - \theta)u^{T}Y^{2}u$$

which implies (1)