- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2010

			(Co	gnor	ne)						(No	me)			(Nı	ımer	o di	mat	rico	la)

 $\mathrm{CODICE} = 742718$

Α	В	С	D	\mathbf{E}	

1	0000
2	0000
3	0000
4	0000
5	00000
6	00000
7	00000
8	0000
9	0000
10	00000

1. Modulo e argomento del numero complesso $z=\left(1+i\right)^4$ sono

A: $(4,\pi)$ B: $(27,2\pi)$ C: $(3^4,\pi/2)$ D: $(3^5,0)$ E: N.A.

2. La funzione $f(x) = \begin{cases} e^x & \text{per } x < 1 \\ ax + b & \text{per } x \ge 1 \end{cases}$ è derivabile per

A: b = 0 e $a \ge 0$ B: (a, b) = (e, 0) C: (a, b) = (0, e) D: (a, b) = (1 + e, e) E: N.A.

3. Inf, min, sup e max dell'insieme

$$A = \{y = e^{-x^2}, x \in]1, 2]\}$$

valgono

A: N.A. B: $\{0, N.E., 1, 1\}$ C: $\{0, 0, e^{-4}, N.E.\}$ D: $\{1/e^4, 1/e^4, 1/e, N.E.\}$ E: $\{1/e^4, N.E., 1/e, 1/e\}$

4. Data $f(x) = (\log(x))^x$. Allora f'(e) è uguale a

A: N.A. B: 1 C: $3e^3$ D: e^2 E: $\log(2e)$

5. Dato $x \ge 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} 3^n \left(\frac{x}{x+1} \right)^n$$

converge per

A: x < 1/2 B: x > 0 C: 1 < x D: x < 1 E: N.A.

6. Una soluzione dell'equazione differenziale $y'(x) = x^2 e^{x^3}$ è

A: $\frac{1}{\cos(x)}$ B: N.A. C: $e^x - e^{-x}$ D: N.E. E: $\frac{e^{x^3} + \log(\log(e^{3^3}))}{3}$

7. Il limite

$$\lim_{x \to 0^+} \frac{\log(\sin(x^2))}{x^2}$$

vale

A: -1/2 B: N.A. C: $+\infty$ D: N.E. E: $-\infty$

8. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A: N.A. B: $\frac{\sin(\log(x))}{x}$ C: x - 1 D: 1 + x E: $1 + \frac{x - 1}{4\sqrt{2}}$

9. L'integrale

$$\int_{\pi/3}^{\pi/2} t \cos(t) dt$$

vale

A: $\frac{1}{6} \left(-6 + 3\sqrt{3} - \pi \right)$ B: N.A. C: $\sqrt{3}/4$ D: N.E. E: $\sqrt{e} + 1$

10. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x^2 - b^2|$ è derivabile in ogni punto per

A: b < 0 B: b > 0 C: b = 0 D: $b = \pm 1$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2010

			(Co	gnor	ne)						(No	me)			(N	umei	o di	ma	trico	la)

CODICE = 651249

A	В	\mathbf{C}	D	\mathbf{E}	
		_			

1	00000
2	00000
3	00000
4	00000
5	00000
6	00000
7	
8	00000
9	
10	0000

1. L'integrale

$$\int_{\pi/3}^{\pi/2} t \cos(t) dt$$

vale

A: $\sqrt{e} + 1$ B: N.E. C: $\sqrt{3}/4$ D: $\frac{1}{6}(-6 + 3\sqrt{3} - \pi)$ E: N.A.

2. Dato $x \geq 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} 3^n \left(\frac{x}{x+1} \right)^n$$

converge per

A: x < 1/2 B: x > 0 C: 1 < x D: N.A. E: x < 1

3. Modulo e argomento del numero complesso $z = (1+i)^4$ sono A: $(27, 2\pi)$ B: N.A. C: $(4, \pi)$ D: $(3^4, \pi/2)$ E: $(3^5, 0)$

4. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A:
$$x - 1$$
 B: $\frac{\sin(\log(x))}{x}$ C: $1 + \frac{x - 1}{4\sqrt{2}}$ D: N.A. E: $1 + x$

5. Il limite

$$\lim_{x \to 0^+} \frac{\log(\sin(x^2))}{x^2}$$

vale

A: $-\infty$ B: N.A. C: -1/2 D: $+\infty$ E: N.E.

6. Inf, min, sup e max dell'insieme

$$A = \{y = e^{-x^2}, x \in]1, 2]\}$$

valgono

A: N.A. B: $\{0, N.E., 1, 1\}$ C: $\{0, 0, e^{-4}, N.E.\}$ D: $\{1/e^4, 1/e^4, 1/e, N.E.\}$ E: $\{1/e^4, N.E., 1/e, 1/e\}$

7. La funzione $f(x) = \begin{cases} e^x & \text{per } x < 1 \\ & \text{è derivabile per } ax + b & \text{per } x \ge 1 \end{cases}$

A: N.A. B:
$$(a, b) = (0, e)$$
 C: $b = 0$ e $a \ge 0$ D: $(a, b) = (e, 0)$ E: $(a, b) = (1 + e, e)$

8. Una soluzione dell'equazione differenziale $y'(x) = x^2 e^{x^3}$ è

A:
$$\frac{1}{\cos(x)}$$
 B: N.E. C: $e^x - e^{-x}$ D: $\frac{e^{x^3} + \log(\log(e^{3^3}))}{3}$ E: N.A.

9. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x^2 - b^2|$ è derivabile in ogni punto per

A: $b = \pm 1$ B: b < 0 C: b > 0 D: b = 0 E: N.A.

10. Data $f(x) = (\log(x))^x$. Allora f'(e) è uguale a

A: e^2 B: $3e^3$ C: log(2e) D: N.A. E: 1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2010

(Cognome)	(Nome)	(Numero di matricola)

 ${\rm CODICE} = 939474$

A B C D E

1	0000
2	00000
3	
4	
5	
6	
7	
8	
9	
10	0000

1. La funzione
$$f(x) = \begin{cases} e^x & \text{per } x < 1 \\ & \text{e derivabile per } ax + b & \text{per } x \ge 1 \end{cases}$$

A:
$$(a,b) = (e,0)$$
 B: $(a,b) = (1+e,e)$ C: $(a,b) = (0,e)$ D: N.A. E: $b = 0$ e $a \ge 0$

2. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A:
$$1+x$$
 B: $1+\frac{x-1}{4\sqrt{2}}$ C: $\frac{\sin(\log(x))}{x}$ D: $x-1$ E: N.A.

3. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x^2 - b^2|$ è derivabile in ogni punto per

A:
$$b = 0$$
 B: $b > 0$ C: N.A. D: $b < 0$ E: $b = \pm 1$

4. Una soluzione dell'equazione differenziale $y'(x) = x^2 e^{x^3}$ è

A:
$$e^x - e^{-x}$$
 B: $\frac{e^{x^3} + \log(\log(e^{3^3}))}{3}$ C: N.A. D: N.E. E: $\frac{1}{\cos(x)}$

5. Inf, min, sup e max dell'insieme

$$A = \{y = e^{-x^2}, x \in]1, 2]\}$$

valgono

A:
$$\{1/e^4, 1/e^4, 1/e, N.E.\}$$
 B: N.A. C: $\{0, 0, e^{-4}, N.E.\}$ D: $\{0, N.E., 1, 1\}$ E: $\{1/e^4, N.E., 1/e, 1/e\}$

6. Data $f(x) = (\log(x))^x$. Allora f'(e) è uguale a

A:
$$3e^3$$
 B: e^2 C: $\log(2e)$ D: N.A. E: 1

7. L'integrale

$$\int_{\pi/3}^{\pi/2} t \cos(t) \, dt$$

vale

A:
$$\sqrt{e} + 1$$
 B: $\frac{1}{6} \left(-6 + 3\sqrt{3} - \pi \right)$ C: N.E. D: $\sqrt{3}/4$ E: N.A.

8. Il limite

$$\lim_{x\to 0^+}\frac{\log(\sin(x^2))}{x^2}$$

vale

A:
$$+\infty$$
 B: N.A. C: N.E. D: $-1/2$ E: $-\infty$

9. Dato $x \ge 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} 3^n \left(\frac{x}{x+1} \right)^n$$

converge per

A:
$$x > 0$$
 B: N.A. C: $x < 1$ D: $x < 1/2$ E: $1 < x$

10. Modulo e argomento del numero complesso $z = (1+i)^4$ sono

A:
$$(4,\pi)$$
 B: N.A. C: $(3^4,\pi/2)$ D: $(3^5,0)$ E: $(27,2\pi)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2010

(Cognome)	(Nome)	(Numero di matricola)

CODICE = 638851

A	В	С	D	Ε

1	0000
2	00000
3	
4	
5	0000
6	
7	
8	
9	
10	00000

1. La funzione
$$f(x) = \begin{cases} e^x & \text{per } x < 1 \\ & \text{è derivabile per } ax + b & \text{per } x \ge 1 \end{cases}$$

A: N.A. B:
$$(a, b) = (e, 0)$$
 C: $b = 0$ e $a \ge 0$ D: $(a, b) = (0, e)$ E: $(a, b) = (1 + e, e)$

2. Una soluzione dell'equazione differenziale $y'(x) = x^2 e^{x^3}$ è

A:
$$e^x - e^{-x}$$
 B: $\frac{e^{x^3} + \log(\log(e^{3^3}))}{3}$ C: $\frac{1}{\cos(x)}$ D: N.E. E: N.A.

3. Data $f(x) = (\log(x))^x$. Allora f'(e) è uguale a

A: 1 B:
$$e^2$$
 C: $log(2e)$ D: N.A. E: $3e^3$

4. Inf, min, sup e max dell'insieme

$$A = \{y = e^{-x^2}, x \in]1, 2]\}$$

valgono

$$A: \{1/e^4, N.E., 1/e, 1/e\} \quad B: N.A. \quad C: \{0, N.E., 1, 1\} \quad D: \{0, 0, e^{-4}, N.E.\} \quad E: \{1/e^4, 1/e^4, 1/e, N.E.\}$$

5. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x^2 - b^2|$ è derivabile in ogni punto per

A:
$$b > 0$$
 B: $b = 0$ C: $b = \pm 1$ D: $b < 0$ E: N.A.

6. Dato $x \ge 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} 3^n \left(\frac{x}{x+1}\right)^n$$

converge per

A: N.A. B:
$$x > 0$$
 C: $1 < x$ D: $x < 1/2$ E: $x < 1$

7. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A:
$$1 + \frac{x-1}{4\sqrt{2}}$$
 B: N.A. C: $1 + x$ D: $\frac{\sin(\log(x))}{x}$ E: $x - 1$

8. L'integrale

$$\int_{\pi/3}^{\pi/2} t \cos(t) dt$$

vale

A: N.E. B: N.A. C:
$$\sqrt{3}/4$$
 D: $\frac{1}{6}(-6+3\sqrt{3}-\pi)$ E: $\sqrt{6}+1$

9. Modulo e argomento del numero complesso $z=\left(1+i\right)^4$ sono

A:
$$(3^5, 0)$$
 B: $(3^4, \pi/2)$ C: $(4, \pi)$ D: N.A. E: $(27, 2\pi)$

10. Il limite

$$\lim_{x \to 0^+} \frac{\log(\sin(x^2))}{x^2}$$

vale

A:
$$-\infty$$
 B: $+\infty$ C: $-1/2$ D: N.A. E: N.E.

29 gennaio 2010

 (Cognome)	(Nome)	(Numero di matricola)

 $\mathrm{CODICE} = 742718$

A	В	С	D	\mathbf{E}	

1	
2	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	

29 gennaio 2010

 (Cognome)	(Nome)	(Numero di matricola)

 $\mathrm{CODICE} = 651249$

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

29 gennaio 2010

			(Co	gno	me)				 			(No	me)			_	(N	ume	ro d	i ma	trice	ola)

 $\mathrm{CODICE} = 939474$

A	В	\mathbf{C}	D	Ε	

1	$lackbox{0}$
2	
3	
4	
5	
6	
7	
8	
9	
10	

29 gennaio 2010

			(Co	gnoi	ne)				_			(No	me)			-	(N	ume	ro di	i ma	trico	la)

 $\mathrm{CODICE} = 638851$

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2010

(Cognome)	(Nome)	(Numero di matricola)

CODICE = 837339

A	В	С	D	\mathbf{E}
---	---	---	---	--------------

0000
00000
0000
00000
00000

1. Dire per quali valori di $\alpha \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^2} = \alpha$$

A: $\alpha \in [0,1]$ B: N.A. C: $\alpha \in (0,+\infty)$ D: Nessun valore di α E: $\alpha \in \mathbb{R}$

2. Si consideri la seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \sin(\frac{1}{n})$$

Dire quale delle seguenti affermazione è vera

A: La serie è convergente B: La serie è assolutamente convergente C: N.A. D: La serie è non convergente E: La serie è a termini positivi

3. Dire quanto vale il seguente integrale

$$\int_{\pi/3}^{\pi/2} \frac{\cos x}{\sin x} \, dx$$

A: $\log(\frac{\sqrt{3}}{2})$ B: 1 C: $\log(\pi)$ D: $\log(\frac{2}{\sqrt{3}})$ E: N.A.

4. Modulo e argomento del numero complesso $z = (1+i)^4$ sono

A:
$$(4,\pi)$$
 B: N.A. C: $(27,2\pi)$ D: $(3^4,\pi/2)$ E: $(3^5,0)$

5. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A:
$$1+x$$
 B: $1+\frac{x-1}{4\sqrt{2}}$ C: $\frac{\sin(\log(x))}{x}$ D: $x-1$ E: N.A.

6. Dire quali sono inf, min, sup e max del seguente insieme

$$A = \{x \in \mathbb{Q} : x^2 - 2 > 0\}$$

A: $\{-2, N.E., N.E., 2\}$ B: $\{-\sqrt{2}, N.E., \sqrt{2}, N.E.\}$ C: N.A. D: $\{N.E., -\sqrt{2}, N.E., \sqrt{2}\}$ E: $\{-\sqrt{2}, -\sqrt{2}, \sqrt{2}, \sqrt{2}\}$

7. Data $f(x) = x^{(\log(x))}$. Allora f'(e) è uguale a

A:
$$e^2$$
 B: $3e^3$ C: 1 D: N.A. E: $\log(2e)$

8. Una soluzione dell'equazione differenziale $y'(x) = x^2 e^{x^3}$ è

A: N.E. B:
$$\frac{e^{x^3 + \log(\log(e^{3^3}))}}{3}$$
 C: $\frac{1}{\cos(x)}$ D: N.A. E: $e^x - e^{-x}$

9. La funzione $f(x) = \begin{cases} e^x & \text{per } x < 1 \\ & \text{è derivabile per } ax + b & \text{per } x \ge 1 \end{cases}$

A:
$$(a, b) = (0, e)$$
 B: $b = 0$ e $a \ge 0$ C: N.A. D: $(a, b) = (e, 0)$ E: $(a, b) = (1 + e, e)$

10. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-1}} - e)$$

A: $\frac{e}{2}$ B: e C: 0 D: N.E. E: -e

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2010

(Cognome)	(Nome)	(Numero di matricola)
` - ',	* *	, ,

CODICE = 704328

A	В	С	D	\mathbf{E}	

1	00000
2	00000
3	0000
4	0000
5	00000
6	00000
7	00000
8	
9	0000
10	00000

1. Dire quali sono inf, min, sup e max del seguente insieme

$$A = \{x \in \mathbb{Q} : x^2 - 2 \ge 0\}$$

A: N.A. B:
$$\{-\sqrt{2}, -\sqrt{2}, \sqrt{2}, \sqrt{2}\}$$
 C: $\{-\sqrt{2}, N.E., \sqrt{2}, N.E.\}$ D: $\{-2, N.E., N.E., 2\}$ E: $\{N.E., -\sqrt{2}, N.E., \sqrt{2}\}$

2. Dire per quali valori di $\alpha \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^2} = \alpha$$

A: $\alpha \in (0, +\infty)$ B: Nessun valore di α C: N.A. D: $\alpha \in [0, 1]$ E: $\alpha \in \mathbb{R}$

3. Modulo e argomento del numero complesso $z = (1+i)^4$ sono

A: N.A. B:
$$(4,\pi)$$
 C: $(3^5,0)$ D: $(3^4,\pi/2)$ E: $(27,2\pi)$

4. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A:
$$1 + \frac{x-1}{4\sqrt{2}}$$
 B: $1 + x$ C: $x - 1$ D: N.A. E: $\frac{\sin(\log(x))}{x}$

5. Si consideri la seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \sin(\frac{1}{n})$$

Dire quale delle seguenti affermazione è vera

A: La serie è non convergente B: La serie è assolutamente convergente C: La serie è convergente D: N.A. E: La serie è a termini positivi

6. La funzione $f(x) = \begin{cases} e^x & \text{per } x < 1 \\ ax + b & \text{per } x \ge 1 \end{cases}$ è derivabile per

A: N.A. B:
$$b = 0$$
 e $a \ge 0$ C: $(a, b) = (1 + e, e)$ D: $(a, b) = (e, 0)$ E: $(a, b) = (0, e)$

7. Dire quanto vale il seguente integrale

$$\int_{\pi/3}^{\pi/2} \frac{\cos x}{\sin x} \, dx$$

A:
$$\log(\pi)$$
 B: $\log(\frac{2}{\sqrt{3}})$ C: $\log(\frac{\sqrt{3}}{2})$ D: N.A. E: 1

8. Una soluzione dell'equazione differenziale $y'(x) = x^2 e^{x^3}$ è

A: N.A. B:
$$\frac{e^{x^3} + \log(\log(e^{3^3}))}{3}$$
 C: $\frac{1}{\cos(x)}$ D: $e^x - e^{-x}$ E: N.E.

9. Data $f(x) = x^{(\log(x))}$. Allora f'(e) è uguale a

A:
$$e^2$$
 B: 1 C: $3e^3$ D: N.A. E: $log(2e)$

10. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-1}} - e)$$

A:
$$\frac{e}{2}$$
 B: e C: 0 D: N.E. E: $-e$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2010

(Cognome)	(Nome)	(Numero di matricola)

 ${\rm CODICE} = 098963$

1	00000
2	00000
3	
4	
5	
6	
7	
8	
9	
10	

 $A\quad B\quad C\quad D\quad E$

1. Si consideri la seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \sin(\frac{1}{n})$$

Dire quale delle seguenti affermazione è vera

A: La serie è assolutamente convergente B: La serie è a termini positivi C: La serie è non convergente D: N.A. E: La serie è convergente

2. Dire quanto vale il seguente integrale

$$\int_{\pi/3}^{\pi/2} \frac{\cos x}{\sin x} \, dx$$

A: N.A. B: 1 C: $\log(\frac{2}{\sqrt{3}})$ D: $\log(\pi)$ E: $\log(\frac{\sqrt{3}}{2})$

3. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A: N.A. B: $1 + \frac{x-1}{4\sqrt{2}}$ C: $\frac{\sin(\log(x))}{x}$ D: 1 + x E: x - 1

4. Data $f(x) = x^{(\log(x))}$. Allora f'(e) è uguale a

A: 1 B: e^2 C: N.A. D: $\log(2e)$ E: $3e^3$

5. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-1}} - e)$$

A: -e B: N.E. C: e D: 0 E: $\frac{e}{2}$

6. La funzione $f(x) = \begin{cases} e^x & \text{per } x < 1 \\ & \text{è derivabile per } ax + b & \text{per } x \ge 1 \end{cases}$

A: (a,b) = (0,e) B: (a,b) = (1+e,e) C: N.A. D: b = 0 e $a \ge 0$ E: (a,b) = (e,0)

7. Dire quali sono inf, min, sup e max del seguente insieme

$$A = \{x \in \mathbb{Q} : x^2 - 2 \ge 0\}$$

A: $\{-\sqrt{2}, -\sqrt{2}, \sqrt{2}, \sqrt{2}\}$ B: $\{-\sqrt{2}, N.E., \sqrt{2}, N.E.\}$ C: $\{-2, N.E., N.E., 2\}$ D: $\{N.E., -\sqrt{2}, N.E., \sqrt{2}\}$ E: N.A.

8. Dire per quali valori di $\alpha \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^2} = \alpha$$

A: Nessun valore di α B: $\alpha \in \mathbb{R}$ C: $\alpha \in [0,1]$ D: N.A. E: $\alpha \in (0,+\infty)$

9. Modulo e argomento del numero complesso $z=\left(1+i\right)^4$ sono

A: $(3^4, \pi/2)$ B: $(3^5, 0)$ C: $(27, 2\pi)$ D: $(4, \pi)$ E: N.A.

10. Una soluzione dell'equazione differenziale $y'(x) = x^2 e^{x^3}$ è

A: $e^x - e^{-x}$ B: N.A. C: N.E. D: $\frac{e^{x^3} + \log(\log(e^{3^3}))}{3}$ E: $\frac{1}{\cos(x)}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2010

		(Cognome)		(Nome)	(Numero di matricola)
	CODIC	E = 646556			
	CODIC	E = 040550			
		A B C D E			
			J		
			1		
1		0000			
2		$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$			
3					
4		0000			

567

8 9

10

1. Dire quali sono inf, min, sup e max del seguente insieme

$$A = \{x \in \mathbb{Q} : x^2 - 2 \ge 0\}$$

A:
$$\{-\sqrt{2}, -\sqrt{2}, \sqrt{2}, \sqrt{2}\}$$
 B: N.A. C: $\{-2, N.E., N.E., 2\}$ D: $\{-\sqrt{2}, N.E., \sqrt{2}, N.E.\}$ E: $\{N.E., -\sqrt{2}, N.E., \sqrt{2}\}$

2. Dire per quali valori di $\alpha \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^2} = \alpha$$

A: Nessun valore di α B: $\alpha \in [0,1]$ C: $\alpha \in (0,+\infty)$ D: N.A. E: $\alpha \in \mathbb{R}$

3. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-1}} - e)$$

A: $\frac{e}{2}$ B: N.E. C: 0 D: -e E: e

4. Modulo e argomento del numero complesso $z=\left(1+i\right)^4$ sono

A:
$$(3^4, \pi/2)$$
 B: N.A. C: $(27, 2\pi)$ D: $(3^5, 0)$ E: $(4, \pi)$

5. Una soluzione dell'equazione differenziale $y'(x) = x^2 e^{x^3}$ è

A:
$$\frac{e^{x^3} + \log(\log(e^{3^3}))}{3}$$
 B: $\frac{1}{\cos(x)}$ C: N.A. D: $e^x - e^{-x}$ E: N.E.

6. Dire quanto vale il seguente integrale

$$\int_{\pi/3}^{\pi/2} \frac{\cos x}{\sin x}$$

A:
$$\log(\frac{\sqrt{3}}{2})$$
 B: 1 C: $\log(\frac{2}{\sqrt{3}})$ D: $\log(\pi)$ E: N.A.

7. Data $f(x) = x^{(\log(x))}.$ Allora $f'(\mathbf{e})$ è uguale a

A:
$$3e^3$$
 B: e^2 C: 1 D: N.A. E: $\log(2e)$

8. Si consideri la seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \sin(\frac{1}{n})$$

Dire quale delle seguenti affermazione è vera

A: La serie è a termini positivi B: La serie è assolutamente convergente C: La serie è convergente D: La serie è non convergente E: N.A.

9. La funzione $f(x) = \begin{cases} e^x & \text{per } x < 1 \\ ax + b & \text{per } x \ge 1 \end{cases}$ è derivabile per

A:
$$(a,b) = (0,e)$$
 B: $(a,b) = (1+e,e)$ C: N.A. D: $b = 0$ e $a \ge 0$ E: $(a,b) = (e,0)$

10. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A:
$$x - 1$$
 B: N.A. C: $1 + \frac{x - 1}{4\sqrt{2}}$ D: $1 + x$ E: $\frac{\sin(\log(x))}{x}$

29 gennaio 2010

(Cognome)												(No	me)				Jun		ma	trice	ola)								

CODICE = 837339

A	В	С	D	E	
11	ט	\circ	ט	ш	

1	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
2	$lackbox{0}$
3	
4	
5	
6	
7	
8	
9	
10	

29 gennaio 2010

(Cognome)									_			(No	me)			_	(N	ume	ro d	i ma	trice	ola)						

CODICE = 704328

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

29 gennaio 2010

(Cognome)									(No	ome])			(N	ume	ro d	i ma	trice	ola)									

 ${\rm CODICE} = 098963$

A	В	\mathbf{C}	D	\mathbf{E}	
		_			

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

29 gennaio 2010

(Cognome)	(Nome)	(Numero di matricola)

 $\mathrm{CODICE} = 646556$

1	
2	
3	
4	
5	
6	\bigcirc
7	
8	
9	
10	

29 gennaio 2010

PARTE B

1. Studiare, al variare del parametro $\lambda \in \mathbb{R}$ il grafico della funzione

$$f(x) = x^{\lambda} \log(x), \quad \text{per } x > 0.$$

Soluzione: $Im(f) = [-1/(e\lambda), +\infty[$ se $\lambda > 0, Im(f) = \mathbb{R}$ se $\lambda = 0$ e $Im(f) =]-\infty, -1/(e\lambda)]$ se $\lambda < 0$

2. Trovare tutte le soluzioni dell'equazione differenziale

$$y'''(t) + y'(t) = t + te^t$$

Soluzione:

$$\frac{1}{2} (t^2 + e^t(t-2)) + c_1 + c_2 \sin(t) + c_3 \cos(t) \quad c_1, c_2, c_3 \in \mathbb{R}$$

3. Studiare la convergenza ed eventualmente calcolare l'integrale generalizzato

$$\int_0^1 \frac{x^3}{\sqrt{1 - x^4}} \, dx.$$

Cosa si può dire di

$$\int_0^{+\infty} \frac{x^3}{\sqrt{|1-x^4|}} \, dx.$$

Soluzione L'integrale converge perchè nell'intorno destro del punto x=1 dove la funzione integranda non è limitata si ha $\frac{x^3}{\sqrt{1-x^4}} \simeq (1-x)^{-1/2}$ per $x \to 1^-$. Con la sostituzione $t=x^4$ si ottiene subito

$$\int_0^1 \frac{x^3}{\sqrt{1 - x^4}} \, dx = \frac{1}{2}.$$

Il secondo integrale non converge perchè $\frac{x^3}{\sqrt{|1-x^4|}} \simeq x^{-1}$ per $x \to +\infty$.

4. Sia f definita da

$$f(x) = \sum_{n=0}^{+\infty} (n+1)x^n$$

si calcoli f'(0)

Soluzione La serie converge assolutamente per |x| < 1. In tale intervallo si può derivare termine a termine la serie di potenze e il raggio di convergenza della serie derivata è lo stesso della serie di partenza. Si ha pertanto

$$f'(x) = \sum_{n=1}^{+\infty} n(n+1)x^{n-1}$$

e sostituendo x = 0 si ha f'(0) = 2.