(在本试卷上答题无效)

山顶·大联考 2025 届新高考限时训练试题 (二)

数学

	TITL	

		选题:王良涛 排版、校双	付:山河文化试题研究中心	3		
注意	意事项:					
7	2. 回答选择题 如需改动,用橡皮排 写在本试卷上无效。 3. 考试结束后	5,将试卷和答题卡一并 5 8 小题,每小题 5 分,	用铅笔把答题卡上对, 案标号。回答非选择题 交回。	应题目的答案标号涂黑。 时,将案写在答题卡上。		
1. 已知集合 $A = \{x \mid 0 < x \le 3\}$, $B = \{x \mid x^2 \le 4\}$, 则 $A \cap B =$						
	A. Ø	B. $\{x \mid -2 \le x \le 3\}$	C. $\{x \mid 0 \le x \le 2\}$	D. $\{x \mid -2 \le x < 0\}$		
2.	已知 $x\log_2 3 = 1$,	则 $3^x + 3^{-x} =$				
	A. $\frac{3\sqrt{2}}{2}$	B. $\frac{5}{2}$	C. $\frac{10}{3}$	D. $\frac{17}{4}$		
3.	. 设严格单调递减数列 $\{a_n\}$ 满足 $2a_{n+1}=a_n+1$,则 a_1 的值可以为					
	A. 0	В1	C. 1	D. 2		
4.	设 $X \sim B(99,0.7)$, 若对任意的 $k \in \{0,1,299\}$ 都有 $P(X=k) \leq P(X=k_0)$,则 $k_0 =$					
	A. 64 或 65	B. 69 或 70	C. 67	D. 72		
5.	已知向量 α , b , c 满足 $\alpha+b+c=0$, 且 $ \alpha =1$, $ b =2$, $ c =\sqrt{3}$, 则 α 与 b 的夹					
	为					
	A. $\frac{\pi}{6}$	B. $\frac{\pi}{3}$	$C. \frac{5\pi}{6}$	D. $\frac{2\pi}{3}$		
6.	已知 $\tan \alpha = 2$,见	$\lim_{n \to \infty} \frac{1 + \sin 2\alpha}{\cos 2\alpha} =$				
	A. $-\frac{1}{3}$	В3	C. 3	D. ±3		

7. 已知 P 为圆 $O: x^2 + y^2 = 1$ 上的动点 (不在坐标轴上), 过 P 作 $PQ \perp x$ 轴, 垂足为 Q, 将 $\triangle OPQ$ 绕y 轴旋转一周,所得几何体的体积最大时,线段 OQ 的长度为

C. $\frac{\sqrt{6}}{3}$ D. $\frac{2\sqrt{2}}{3}$ B. $\frac{\sqrt{3}}{3}$ A. $\frac{1}{3}$

8. 函数 $f(x) = |\sin 2x| + 2\sin x$ 的值域为

A. [-2,3] B. $\left[-2,\frac{3\sqrt{3}}{2}\right]$ C. $\left[-\frac{3}{2},\frac{3\sqrt{3}}{2}\right]$ D. $\left[-\frac{3}{2},\frac{3}{2}\right]$

- 二、选择题: 本题共 3 小题, 每小题 6 分, 共 18 分。在每小题所给的四个选项中, 有 多项是符合题目要求的。全部选对得6分,部分选对得部分分,有选错的得0分。 9. 在正方体 $ABCD-A_1B_1C_1D_1$ 中,P 是棱 C_1D_1 上的动点(不含端点),则 A. DC//平面 BPD₁ B. $B_1C \perp BP$ C. 四面体 PAB_1C 的体积为定值 D. 存在点 P, 使得平面 $BB_1P \perp$ 平面 AA_1P 10. 已知 A_1 , A_2 为样本空间 Ω 的非空子集, 设随机变量 $X_i: \Omega \to \{0,1\}, \ X_i(\omega) = \begin{cases} 1, & \omega \in A_i \\ 0, & \omega \notin A \end{cases}, \ i=1,2$ 若 $P(A_1 \mid A_2) = P(A_1 \mid \overline{A_2}), P(A_i) = p_i(i = 1, 2),$ 则 A. $P(A_1 \cup A_2) = P(A_1) + P(A_2)$ B. $P(\overline{A_2} \mid A_1) + P(A_2) = 1$ C. $E[(X_1 - p_1)^2] \le E[(X_1 - p_2)^2]$ D. $D(|X_1-X_2|) > D(X_1+X_2)$ 可能成立 11. 我们把既有对称中心又有对称轴的曲线称为"优美曲线", "优美曲线"与其对称 轴的交点称为"优美曲线"的顶点,已知"优美曲线" $C: x^2 + 25x^2y^2 + y^2 - 9 = 0$, 则 A. 曲线 C 关于直线 v=x 对称 B. 曲线 C 有 4 个顶点 C. 曲线 C 与直线 y = -x + 3 有 4 个交点 D. 曲线 C 上的点到原点距离的最小值为 $\frac{2\sqrt{7}}{5}$ 三、填空题:本题共3小题,每小题5分,共15分。 12. 在 $(1-2x)^5$ 的展开式中, x^3 的系数为 . (用数字作答) 13. 设复平面的上半平面内有一菱形 OABC,且 $\angle AOC = \frac{2\pi}{3}$. 若 A 对应的复数为 2+i,则 B 对应的复数为 ... 14. 已知抛物线 $C: v^2 = 2px(p>0)$ 的焦点为 F,准线为 I. 过 F 的直线交 C 于 A,B 两点, 过 A, B 分别作 l 的垂线, 垂足分别为 M, N, 若 $\overrightarrow{AF} = \sqrt{2}\overrightarrow{FB}$, 则 $\frac{S_{\triangle MNF}}{S_{\triangle MNF}} =$ _______
- 四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步骤。
- 15. (13 分)

在 $\triangle ABC$ 中,角A, B, C所对的边分别为a, b, c, 已知. $a+b=2c\cos B$.

- (1) 求证: C = 2B:
- (2) 若 $\triangle ABC$ 为锐角三角形,求 $\frac{c}{h\sin B}$ 的取值范围.

16. (15分)

已知在正三棱台 $ABC-A_1B_1C_1$ 中,AB=6, $A_1B_1=4$.

- (1) 若 $CC_1 = \sqrt{2}$, 求证: $CC_1 \perp$ 平面 $AA_1B_1B_3$;
- (2) 若三棱台的高为 $\frac{2\sqrt{6}}{3}$, 求平面 AA_1B_1B 与平面 BB_1C_1C 夹角的余弦值.

17. (15分)

已知函数 $f(x) = \ln x - a(x - \frac{1}{x})$, 其中 a > 0.

- (1) 讨论 f(x) 的单调性;
- (2) 若函数 f(x) 有两个极值点 x_1 , $x_2(x_1 < x_2)$, 求证:

$$f(x_1) + f(x_2) + f(x_1 + x_2) > \ln 2 - \frac{3}{4}$$
.

18. (17分)

已知 A, B 为椭圆 C : $\frac{x^2}{4}$ + y^2 = 1 的上,下顶点,点 $M(2\lambda,0)$, $N(2,\lambda-1)$,其中 $\lambda \in \mathbf{R}$ 且 $\lambda \neq 1$,直线 AM 与 BN 交于点 P.

- (1) 求证: 点 P 在 C 上;
- (2) 若直线 MN 交 C 于 S, T 两点,且 $|MS| \cdot |MT| = \frac{15}{8}$,求|ST|.

19. (17分)

正整数的划分在置换群及其表示理论研究中有着重要应用.设 k,n 为正整数,正整数序列 $(\lambda_1,\lambda_2,...\lambda_k)$ 满足 $\lambda_1+\lambda_2+...+\lambda_k=n$,且 $\lambda_1\geq \lambda_2\geq ...\geq \lambda_k\geq 1$, $1\leq k\leq n$.则称 $(\lambda_1,\lambda_2,...\lambda_k)$ 为 n 的一个 k 部划分.记 $p_k(n)$ 为 n 的所有 k 部划分的个数.

- (1) $\Re p_3(6)$, $p_2(5)$;
- (2) 求证: $p_k(n) = p_{k-1}(n-1) + p_k(n-k) (k \ge 2)$;
- (3) 求证: $p_k(n) = \sum_{i=1}^k p_i(n-k)$.