

# Title: Leveraging GANs for Road Intersection Detection

Can you propose how to use generative adversarial networks to detect intersections on the road and eventually steer the car through driveway containing intersections?

## Introduction



## **cGAN**

☐ M. Mirza and S. Osindero, "Conditional generative adversarial nets," 2014, arXiv:1411.1784

#### **Generative Adversarial Nets**

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

#### **Conditional Adversarial Nets**

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x}|\boldsymbol{y})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z}|\boldsymbol{y})))].$$



# **Experimental Setup**

- Remove too small angles and too large angles
- For each angle, take no more than image\_num\_threshold images
- Replicate minority samples to alleviate the imbalance issue
- Normalize labels.





Fig 1. plot of normalized labels

## **Our Proposed framework**





Fig 2: Model Architecture

### **Our Proposed framework**







Fig 3: Discriminator and Generator

#### cGAN Framework

- ☐ CGAN framework implemented for a regression task, using Images as conditioning information for the generator.
- Training involved feeding both noise and Image as inputs to the generator, while the discriminator was also conditioned on the Image to distinguish between real and fake steering angles.
- Adam optimizer utilized with a batch size of 600, accompanied by a learning rate scheduler starting from 2e-4 with beta value 0.5.



#### **Results and Observations**





Fig 3: Loss graph



#### **Results and Conclusion**

Steering Value: [0.39369476], Prediction: [0.47111893]



Steering Value: [-0.00262786], Prediction: [-0.09399101]



Steering Value: [0.35761097], Prediction: [0.7823007]





#### **Results and Conclusion**

Steering Value: [-0.00268138], Prediction: [-0.03222457]



Steering Value: [-0.0062463], Prediction: [-0.04826191]



Steering Value: [0.4089193], Prediction: [0.75929344]



Mean Absolute Error (MAE): 0.8700878510395419 Standard Deviation: 0.6885516226660812

Variance: 0.4741033370760934

Mean Squared Error (MSE): 0.7574108999654883



# **Future Scope**

#### Vicinal Risk Minimization

- Olivier Chapelle, Jason Weston, Leon Bottou, and Vladimir Vapnik. Vicinal risk minimization. In 'Advances in neural information processing systems, pp. 416–422, 2001.
- X. Ding, Y. Wang, Z. Xu, W. J. Welch and Z. J. Wang, "Continuous Conditional Generative Adversarial Networks: Novel Empirical Losses and Label Input Mechanisms," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 7, pp. 8143-8158, 1 July 2023, doi: 10.1109/TPAMI.2022.3228915.



$$ext{VRM Loss} = rac{1}{|X|} \sum_{x_i \in X} \left( rac{1}{|N(x_i)|} \sum_{x_j \in N(x_i)} |\hat{y}_i - \hat{y}_j| 
ight)$$

#### References

- X. Ding, Y. Wang, Z. Xu, W. J. Welch and Z. J. Wang, "Continuous Conditional Generative Adversarial Networks: Novel Empirical Losses and Label Input Mechanisms," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 7, pp. 8143-8158, 1 July 2023, doi: 10.1109/TPAMI.2022.3228915.
- X. Ding, Y. Wang, Z. Xu, W. J. Welch and Z. J. Wang, "Continuous Conditional Generative Adversarial Networks: Novel Empirical Losses and Label Input Mechanisms," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 7, pp. 8143-8158, 1 July 2023, doi: 10.1109/TPAMI.2022.3228915.
- Olivier Chapelle, Jason Weston, Leon Bottou, and Vladimir Vapnik. Vicinal risk minimization. In ´Advances in neural information processing systems, pp. 416–422, 2001.
- X. Ding, Y. Wang, Z. Xu, W. J. Welch and Z. J. Wang, "Continuous Conditional Generative Adversarial Networks: Novel Empirical Losses and Label Input Mechanisms," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 7, pp. 8143-8158, 1 July 2023, doi: 10.1109/TPAMI.2022.3228915.
- S. Chen, "The Steering Angle dataset @ONLINE," 2018. [Online]. Available: https://github.com/SullyChen/driving-datasets



#### **THANK YOU**

