ANA2 Differential Gleichungen

John Truninger

LATEX

Definition

Gleichung, die Funktion f und Ableitungen von f enthält. Lösung von DGL ist differenzierbare Funktion, welche die Gleichung erfüllt.

- DGL aufgelöst nach y^n heisst explizit sonst implizit.

Beispiel:

$$y' = -\frac{x}{y} \quad \rightarrow \quad y = \pm \sqrt{c - x^2}$$

Lösung überprüfen

$$y' = x + y$$

$$y_1 = e^x - 1, \quad y_2 = -x - 1$$

Test:
$$y_1 = e^x - 1$$
 $y_1' = e^x$: $e^x = x + e^x - 1$ \rightarrow $x = 1$

→ keine Lösung

Test:
$$y_2 = -x - 1$$
 $y'_2 = -1$:

$$-1 = x - x - 1$$
 \rightarrow $-1 = -1$

 \rightarrow Lösung

Anfangswert Problem

$$y' = x - 4$$
 $y(2) = 9$

$$\rightarrow y = \frac{1}{2}x^2 - 4x + C$$

Einsetzen von y(2) = 9:

$$9 = \frac{1}{2} \cdot 2^2 - 4 \cdot 2 + C \rightarrow C = 15$$

Lösung: $y = \frac{1}{2}x^2 - 4x + 15$

Geometrische Betrachtung

Funktionswerte geben Steigungen an (2D)

Richtungsfelder

Vorgehen:

Nullstellen bilden konstante Lösungen

kleiner Funktionswert links von Nullstelle:

- y' negativ: → instabil (geht von Nullstelle weg) - y' positiv: → stabil (geht auf Nullstelle zu)

kleiner Funktionswert rechts von Nullstelle:

-y' negativ: \rightarrow stabil (geht auf Nullstelle zu) -y' positiv: \rightarrow instabil (geht von Nullstelle weg)

Semistabil: wenn eine Seite stabil und andere instabil

Separierbare DGL

$$y' = g(x) \cdot h(y)$$
 separierbar: $y' = g(x) \cdot h(y)$ autonom: $y' = h(y)$

Vorgehen:

$$\frac{dy}{dx} = g(x) \cdot h(y) \quad \to \quad \frac{1}{h(y)} \cdot dy = g(x) \cdot dx$$

$$\int \frac{1}{h(y)} \ dy = \int g(x) \ dx \quad \to \quad \text{nach } y \text{ auflösen und } +c$$

Beispiel:

Falls noch y(0) = 1: x = 0 einsetzen und c berechnen.

Lineare DGL 1. Ordnung

$$y'+f(x)\cdot y=g(x)$$
 homogen: $y'+f(x)y=0$ inhomogen: $y'+f(x)y=g(x)$

Vorgehen:

$$y = e^{-F(x)} \cdot \int g(x) \cdot e^{F(x)} dx$$

Beispiel:

Prio Partielle Integration (Reihenfolge für Ableiten):

- ln und log
 Polynome
- 2. Polynome

Numerisches Verfahren Eulerverfahren

- Für Anfangswert Probleme 1. Ordnung
- Möglichst kleiner Fehler (nahe Approximieren)

Approximations Schrittweite: $t_k = t_0 + k \cdot h$ Approximations Wert: $x_{k+1} = x_k + h \cdot f(t_k, x_k)$

Note: x_{k+1} Formel kürzen wenn möglich

Beispiel:

Verringerung des Fehlers:

- Schrittweite h verkleinern
- Fehler proportional zu \boldsymbol{h}