

Robotics – Planning and Motion

Manipulator Kinematics

COMP52815

Prof Farshad Arvin & Dr Junyan Hu

Email: farshad.arvin@durham.ac.uk

Room: MCS 2058

Lecture 5: Learning Objectives

The aim of this lecture is to build a model which will lead to the kinematics.

- Objectives
 - Link Description
 - Denavit-Hartenberg (D-H parameters)
 - Manipulator Kinematics
- John J. Craig, "Introduction to Robotics- Mechanics & Control", 3rd
 Edition, Pearson Education International, 2005, C3, p.62

Manipulator:

 \vec{a}_{i-1} : Link Length – mutual perpendicular

 $\vec{\alpha}_{i-1}$: Link Twist – angle between axes i and i-1

End-effector

First and last links:

 a_i and α_i depend on joint axes *i* and *i*+1

Axes 1 to n:

$$a_1, a_2, \cdots, a_{n-1}$$
 and,

$$\alpha_1, \alpha_2, \cdots, \alpha_{n-1}$$

Convention:

Axis
$$i$$
 a_i

Axis i+1

$$a_0 = a_n = 0$$
 and $\alpha_0 = \alpha_n = 0$

First link:

Denavit-Hartenberg (D-H) Parameters:

```
Four D-H parameters are (\alpha_i, a_i, d_i, \theta_i)
```

- Three fixed link parameters and
- One joint variable: $\begin{cases} \theta_i & \text{Revolute joint} \\ d_i & \text{Prismatic joint} \end{cases}$
- α_i and α_i describe the link i
- d_i and θ_i describe connection between the links

Frame attachment:

Frame attachment:

- 1. Common Normals
- 2. Origins
- 3. Z-axis
- 4. X-axis

Intersecting Joint Axes:

Example, First Link:

Revolute:

$$z_0 = z_1$$

- Set: $a_0 = 0$, $a_0 = 0$, $d_1 = 0$
- θ_1 is <u>variable</u>

Prismatic:

$$z_0 = z_1$$

- Set: $a_0 = 0$, $a_0 = 0$, $\theta_1 = 0$
- **d**₁ is <u>variable</u>

Example, Last Link:

Revolute:

- Set: $d_n = 0$
- θ_n is <u>variable</u>

Prismatic:

- Set: $\theta_n = 0$
- d_n is <u>variable</u>

Summary:


```
\alpha_i
: angle between z_i and z_{i+1} about x_i
a_i: distance between z_i and z_{i+1} along x_i
```

 d_i : distance between x_{i-1} and x_i along z_i θ_i : angle between x_{i-1} and x_i about z_i

Example, RRR manipulator:

- Z axes
- X and Y axes
- D-H parameters:

i	α_{i-1}	a_{i-1}	d_i	θ_{i}
1	0	0	0	$\theta_{\scriptscriptstyle 1}$
2	0	L_1	0	θ_2
3	0	L ₂	0	θ_3

D-H parameter:

 α_i : angle between z_i and z_{i+1} about x_i

 a_i : distance between z_i and z_{i+1} along x_i

 d_i : distance between x_{i-1} and x_i along z_i

 θ_i : angle between x_{i-1} and x_i about z_i

Forward Kinematics:

$$_{i}^{i-1}T = _{R}^{i-1}T R_{Q}^{R}T P_{P}^{P}T$$

Forward Kinematics:

$${}_{N}^{0}T = {}_{1}^{0}T \quad {}_{2}^{1}T \quad \cdots \quad {}_{N}^{N-1}T$$

Symbols:

Revolute Joints:

Prismatic joints:

Forward Kinematics

• Example, RPP:

D-H parameter:

 α_i : angle between z_i and z_{i+1} about x_i

 \mathbf{a}_i : distance between \mathbf{z}_i and \mathbf{z}_{i+1} along \mathbf{x}_i

 d_i : distance between x_{i-1} and x_i along z_i

 Θ_i : angle between X_{i-1} and X_i about Z_i

i	α_{i-1}	a_{i-1}	d _i	θ_{i}
1	0	0	L1	θ_1
2	0	0	d_2	0
3	-90°	0	d_3	0

$$_{N}^{0}T = _{1}^{0}T$$
 $_{2}^{1}T$ \cdots $_{N}^{N-1}T$

$${}_{2}^{0}T = {}_{1}^{0}T {}_{2}^{1}T \qquad {}_{2}^{0}T = {}_{1}^{0}T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c1 & -s1 & 0 & 0 \\ s1 & c1 & 0 & 0 \\ 0 & 0 & 1 & L1 + d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{0}T = {}_{2}^{0}T {}_{3}^{2}T \quad {}_{3}^{0}T = {}_{2}^{0}T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c1 & 0 & -s1 & -s1d_{3} \\ s1 & 0 & c1 & c1d_{3} \\ 0 & -1 & 0 & L1 + d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example- RPRR:

- (a) Find DH parameters
- (b) Find each $i-1 \atop i$ T
- (c) Find ${}_5^0\mathrm{T}$

D-H parameter:

 $egin{aligned} & oldsymbol{lpha_i} : \mbox{angle between } oldsymbol{z_i} \mbox{ and } oldsymbol{z_{i+1}} \mbox{ about } oldsymbol{x_i} \\ & oldsymbol{a_i} : \mbox{distance between } oldsymbol{x_{i-1}} \mbox{ and } oldsymbol{x_i} \mbox{ along } oldsymbol{z_i} \end{aligned}$

 θ_i : angle between x_{i-1} and x_i about z_i

i	α_{i-1}	a _{i-1}	d _i	θ_{i}
1	0	0	0	θ_{1}
2	-90°	0	d_2	-90°
3	-90°	L_2	0	θ_3
4	90°	0	0	θ_4
5	0	L_4	L ₅	0

$${}_{1}^{0}T = \begin{bmatrix} c1 & -s1 & 0 & 0 \\ s1 & c1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}_{2}^{1}T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}_{3}^{2}T = \begin{bmatrix} c3 & -s3 & 0 & L_{2} \\ 0 & 0 & 1 & 0 \\ -s3 & -c3 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} cs & -ss & 0 & L_{2} \\ 0 & 0 & 1 & 0 \\ -ss & -cs & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{4}^{3}\mathbf{T} = \begin{bmatrix} c4 & -s4 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s4 & c4 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}_{5}^{4}\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & L_{4} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & L_{5} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{5}^{4}\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & L_{4} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & L_{5} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$_{\mathrm{N}}^{0}\mathrm{T}=_{1}^{0}\mathrm{T}$$
 $_{2}^{1}\mathrm{T}$ $_{1}^{\mathrm{N}}\mathrm{T}$

$${}^{0}_{1}T = \begin{bmatrix} c1 & -s1 & 0 & 0 \\ s1 & c1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{1}_{2}T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{0}_{2}T = \begin{bmatrix} 0 & c1 & -s1 & -s1d_{2} \\ 0 & s1 & c1 & c1d_{2} \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{5}^{0}\text{T} = \begin{bmatrix} s1s3c4 + c1s4 & c1c4 - s1s3s4 & -c3s1 & L_{4}s1s3c4 + ((-L_{5}c3 - d_{2})s1 + L_{4}c1s4) \\ -c1s3c4 + s4s1 & s1c4 + c1s3s4 & c1c3 & -L_{4}c1s3c4 + (L_{4}s1s4 + (L_{5}c3 + d_{2})c1) \\ c3c4 & -c3s4 & s3 & L_{4}c3c4 + (L_{5}s3 + L_{2}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x = \begin{bmatrix} x_p \\ r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} L_4 s 1 s 3 c 4 + ((-L_5 c 3 - d_2) s 1 + L_4 c 1 s 4) \\ -L_4 c 1 s 3 c 4 + (L_4 s 1 s 4 + (L_5 c 3 + d_2) c 1 \\ L_4 c 3 c 4 + (L_5 s 3 + L_2) \\ s 1 s 3 c 4 + c 1 s 4 \\ -c 1 s 3 c 4 + s 4 s 1 \\ c 3 c 4 \\ c 1 c 4 - s 1 s 3 s 4 \\ s 1 c 4 + c 1 s 3 s 4 \\ -c 3 s 4 \\ -c 3 s 1 \\ c 1 c 3 \\ s 3 \end{bmatrix}$$

Example A, RRR:

- (a) Find DH parameters
- (b) Find each ${}^{i-1}T$ (${}^{0}T$, ${}^{1}T$, ${}^{2}T$, ${}^{3}T$, ${}^{3}T$)
- (c) Find ${}_{5}^{0}T$

$${}_{1}^{0}T = \begin{bmatrix} c1 & -s1 & 0 & 0 \\ s1 & c1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}_{2}^{1}T = \begin{bmatrix} c2 & -s2 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ -s2 & -c2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}_{3}^{2}T = \begin{bmatrix} c3 & -s3 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ s3 & c3 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}_{4}^{3}T = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{4}^{0}T = \begin{bmatrix} c1c2c3 - s1s3 & -c1s2 & -c1c2s3 - s1c3 & c1c2c3 - s1s3 + c1c2 + c1 \\ s1c2c3 + c1s3 & -s1s2 & -s1c2s3 + c1c3 & s1c2c3 + c1s3 + s1c2 + s1 \\ -s2c3 & -c2 & s2s3 & s2c3 - s2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Assignment: ightharpoonup Find ${}_{2}^{0}T$, ${}_{3}^{0}T$, ${}_{4}^{0}T$

Example B, RPR:

- (a) Find DH parameters
- (b) Find each i-1_iT
- (c) Find ${}_{5}^{0}T$

$${}_{3}^{2}T = \begin{bmatrix} c3 & -s3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s3 & -c3 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{4}^{3}\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & L_{4} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

i	α_{i-1}	a_{i-1}	d _i	θ_{i}
1				
2				
3				<u> </u>
4				

$${}^{0}_{1}T = \begin{bmatrix} c1 & -s1 & 0 & 0 \\ s1 & c1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{1}_{2}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -d_{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{2}_{3}T = \begin{bmatrix} c3 & -s3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s3 & -c3 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{3}_{4}T = \begin{bmatrix} 1 & 0 & 0 & L_{4} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{0}T = \begin{bmatrix} c1 & 0 & s1 & s1d2 \\ s1 & 0 & -c1 & -c1d_2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}_{3}^{0}T = \begin{bmatrix} c1c3 - s1s3 & -c1s3 & 0 & s1d2 \\ c1s3 + s1c3 & c1c3 - s1s3 & 0 & -c1d_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{4}^{0}\text{T} = \begin{bmatrix} c1c3 - s1s3 & -c1s3 & 0 & L4c1c3 - L4s1s3 + s1d2 \\ c1s3 + s1c3 & c1c3 - s1s3 & 0 & L4s1c3 + L4c1s3 - c1d2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Lecture 5 Summary

- Link Description
- D-H Parameters
- Forward Kinematics

