Cryptology 4

Ryan Kellar

February 2024

1	${\bf Problem}$	1
1.1 6	a)	
1.2 ₄	b)	
1.3 10	c)	
1.4 8	d)	
2	Problem	2
3	Problem	3
4	Problem	4

11

5 Problem 5

```
2k \mod 9 = 1

\phi(9) = 6

2^6 \mod 9 = 1

2 * 2^5 \mod 9 = 1

= 32 (However, this is not in \mathbb{Z}_32)

32 \mod 9 = 5
```

6 Problem 6

6.1 a)

```
5x \mod 14 = 3 x \mod 14 = 3*3 (3 is the multiplicative inverse of 5 in mod 14) x \mod 14 = 9 x = 9
```

6.2 b)

```
4x \mod 15 = 7
 x \mod 15 = 7*4 (4 is the multiplicative inverse of 4 in mod 15)
 x \mod 15 = 28
 x = 28 \mod 15
 x = 13
```

6.3 c)

```
3x \mod 16 = 5 x \mod 16 = 5*5.6667 (5.6667 is APPROXIMATELY the multiplicative inverse of 3 in mod 16) x \mod 16 = 28.3333 = 28.3333 \mod 16 = 12.3333
```

7 Problem 7

If p and q are primes, that means that $\phi(p) = p - 1$ (by definition of Euler's totient function), and therefore $\phi(q) = q - 1$ as well, since for both p and q all of $\forall x | x \in \mathbb{Z}_p$ each factor will be coprime with p (or q).

Since we can assume that $\phi(x)$ is a multiplicative function, that means $\phi(pq) = \phi(p) * \phi(q)$. Using the identity I stated earlier, we can also re-write this as (p-1)(q-1), or in polynomial form, pq-p-q+1.