Annale UE "Vision industrielle"

On désire effectuer des mesures sur objets plans sur une ligne de production afin d'en vérifier la conformité. Le système d'inspection est construit autour d'un micro-ordinateur de type PC équipé d'une caméra vidéo DFW-V500 dont les caractéristiques sont dans la documentation technique jointe. Cette caméra est fixée à 5 cm au dessus du plan supportant les objets à contrôler. Les objets de dimensions 6×5 mm ont une orientation quelconque.

- 1. La caméra est CCD. Rappeler le principe de cette technologie CCD ? Les pixels sont carrés (square pixel). Expliquer. Est-ce important dans le contexte applicatif ?
- 2. On souhaite effectuer une balance des blancs sur cette image RVB. Le principe est de calculer trois LUTs à partir de trois gains notés k_R , k_V , k_B (coefficients de Von Kries) tels que :

$$k_R = \frac{White_R}{R_{avg_W}}, \ k_V = \frac{White_V}{V_{avg_W}}, \ k_B = \frac{White_B}{B_{avg_W}}$$

où $White_R$, $White_G$, $White_B$ est le blanc de référence d'une région image supposée blanche et de moyenne $(R_{avg_W}, G_{avg_W}, B_{avg_W})$ sur les trois canaux RVB. Expliquer la démarche. Considérer plusieurs régions serait-il utile ici ? Justifier.

- 3. Calculer la focale. En déduire la profondeur de champ minimale.
- 4. Pour contrôler la pièce, il faut au préalable calculer la position puis l'orientation des pièces dans l'image. On s'appuie ici sur l'image de luminance. Comment obtenir une image de luminance à partir du signal vidéo délivré par le capteur ?
- 5. Soit l'imagette de luminance suivante \mathcal{I} de résolution 6×6 pixels correspondant à une région d'intérêt incluant la pièce à contrôler.

3	3	4	4	3	4
4	4	5	10	4	5
3	5	10	11	10	7
3	12	10	12	4	5
5	5	10	7	6	6
4	6	6	5	5	5

Binariser l'imagette en justifiant le seuil utilisé. La position image de la pièce est définie par son barycentre de coordonnées $(x_g, y_g)^t$. Celle-ci peut se calculer à l'aide des moments M_{pq} d'ordre p,q donnés par :

$$M_{pq} = \sum_{x=0}^{L-1} \sum_{y=0}^{C-1} f(x, y) . x^{p} . y^{q}$$

f(x,y) est la valeur du pixel (x,y) dans l'image binarisée tandis que L et C sont les dimensions de l'image. Justifier les relations :

$$aire = M_{00}, \ M_{01} = M_{00}.y_a, \ M_{10} = M_{00}.x_a$$

Faire l'application numérique pour l'image \mathcal{I} binarisée.

6. L'orientation θ de l'objet (par rapport à l'axe horizontal de l'image) peut se déduire de la matrice d'inertie $M=\begin{pmatrix} \mu_{20} & \mu_{11} \\ \mu_{11} & \mu_{02} \end{pmatrix}$ où μ_{pq} sont les moments centrés d'ordre p,q donnés par :

$$\mu_{pq} = \sum_{x=0}^{L-1} \sum_{y=0}^{C-1} f(x,y) \cdot (x - x_g)^p \cdot (y - y_g)^q$$

La direction θ est donnée par le vecteur propre correspondant à la plus grande valeur propre de M. Montrer que les valeurs propres λ vérifient la relation :

$$\lambda = F(\theta) = \mu_{20} \cdot \cos^2(\theta) + 2 \cdot \mu_{11} \cdot \cos(\theta) \cdot \sin(\theta) + \mu_{02} \cdot \sin^2(\theta)$$

Déduire, en posant $\alpha=2.\theta,$ que : $\alpha=arctg\frac{2.\mu_{11}}{\mu_{20}-\mu_{02}}$, $\alpha\in]\frac{-\pi}{2},\frac{\pi}{2}[$ Faire l'application numérique pour l'image $\mathcal I$ binarisée.

7. Pour améliorer la précision des mesures effectuées sur les objets par le système d'inspection proposé, on suggère d'utiliser la caméra DFW-VL500. Justifier. Proposer une autre alternative pour résoudre le problème.

CORRECTION DU SUJET (version courte)

- 1. Mécanisme de transfert de charges par des registres à décalage. Les pixels sont carrés donc pas de déformation de l'image. Ceci est indispensable car on veut faire de la métrologie...
- 2. On calcule trois LUTs : $R_a = k_R.R$, $V_a = k_V.V$, $B_a = k_B.B$. Oui on pourrait faire des LUTs par partie et donc la correction est plus précise. Une alternative est de permettre un moyennage sur plusieurs fenêtres.
- 3. L'orientation de l'objet est a priori quelconque. On place donc la diagonale de l'objet $(7.81 \ mm)$ dans les $3.6 \ mm$ de la rétine. Application numérique : On a donc : $G_t = \frac{3.6}{7.81} = \frac{p_1}{p_0}$ et on déduit : $p_1 \sim 23 \ mm$. La relation de conjugaison donne alors : $f = 15.75 \ mm$.

On calcule la profondeur de champ avec : $a_i = \frac{3.6}{480} = \frac{4.8}{640} = 0.0075$, $f = 15.75 \ mm$, (n.o) = 1.2, $P_0 = 50 \ mm$. (n.o) = 1.2 correspond à l'ouverture maximale *i.e.* le (n.o) minimal puisque on mesure la sensibilité minimale. Application numérique : $PdC = 0.128 \ mm$.

- 4. Il faut un espace colorimétrique découplant luminance et chrominance. Le capteur délivre ici un signal vidéo en (Y, U, V) donc on récupère la composante Y.
- 5. On trace l'histogramme $h(n_k)$ pour chaque niveau n_k de l'image \mathcal{I} , soit :

	n_k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ſ	$h(n_k)$	0	0	0	5	8	9	4	2	0	0	5	1	2	0	0	0

On binarise l'image \mathcal{I} avec un seuil de 8, soit :

0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	1	1	0
0	1	1	1	0	0
0	0	1	0	0	0
0	0	0	0	0	0

 M_{00} est la somme des pixels à 1 dans l'image binarisée. x_g et y_g sont les moyennes resp. en ligne et colonne des pixels à 1. Application numérique avec l'origine en (0,0): $x_g=2.5,\ y_g=2.5$.

6. On part de la relation:

$$\left(\begin{array}{cc} \mu_{20} & \mu_{11} \\ \mu_{11} & \mu_{02} \end{array}\right) \cdot \left(\begin{array}{c} \cos \theta \\ \sin \theta \end{array}\right) = \lambda \cdot \left(\begin{array}{c} \cos \theta \\ \sin \theta \end{array}\right)$$

On obtient le système :

$$\begin{cases} \mu_{20}\cos\theta + \mu_{11}\sin\theta = \lambda\cos\theta \\ \mu_{11}\cos\theta + \mu_{02}\sin\theta = \lambda\sin\theta \end{cases}$$

On multiplie la première équation par $\cos\theta$ et la seconde par $\sin\theta$ puis on les additionne. On pose $\alpha=2.\theta$ soit : $\sin\alpha=2\cos\theta\sin\theta$, $\cos\alpha=\cos^2\theta-\sin^2\theta=1-2\sin^2\theta=2\cos^2\theta-1$. Donc : $\cos^2\theta=\frac{\cos\alpha+1}{2}$, $\sin^2\theta=\frac{1-\cos\alpha}{2}$.

$$\lambda = \mu_{20} \cos^2 \theta + \mu_{02} \sin^2 \theta + \mu_{11} \sin \alpha$$
$$\lambda = \mu_{20} \left(\frac{\cos \alpha + 1}{2}\right) + \mu_{02} \left(\frac{1 - \cos \alpha}{2}\right) + \mu_{11} \sin \alpha$$

$$\lambda = F(\alpha) = \frac{1}{2} \left[\mu_{20} + \mu_{02} + (\mu_{20} - \mu_{02}) \cos \alpha + 2\mu_{11} \cdot \sin \alpha \right]$$

En dérivant par rapport à α , on déduit la relation demandée.

$$\frac{\partial \lambda}{\partial \alpha} = -(\mu_{20} - \mu_{02}) \sin \alpha + 2\mu_{11} \cos \alpha = 0$$

Application numérique : $\theta=45^{\circ}.$

7. Oui car elle est équipée d'un zoom. L'autre solution est d'augmenter la résolution du capteur.

CORRECTION DU SUJET (version longue)

- 1. Mécanisme de transfert de charges par des registres à décalage. Les pixels sont carrés donc pas de déformation de l'image. Ceci est indispensable car on veut faire de la métrologie...
- 2. L'intérêt est la compression des images. On passe de l'espace YUV à l'espace RVB par une matrice de passage. Pour conserver la même résolution, on utilise une technique de moyennage ou d'interpolation bilinéaire qui est plus juste mais plus coûteuse.
- 3. On calcule trois LUTs : $R_a = k_R.R$, $V_a = k_V.V$, $B_a = k_B.B$. Oui on pourrait faire des LUTs par partie et donc la correction est plus précise. Une alternative est de permettre un moyennage sur plusieurs fenêtres.
- 4. L'orientation de l'objet est a priori quelconque. On place donc la diagonale de l'objet (7.81 mm) dans les 3.6 mm de la rétine. On a donc : $G_t = \frac{3.6}{7.81} = \frac{p_1}{p_0}$ et on déduit : $p_1 \sim 23 \ mm$. La relation de conjugaison donne alors :

$$f = \frac{p_1 \cdot p_0}{p_1 + p_0} = \frac{23.50}{23 + 50} = 15.75 \ mm$$

On calcule la profondeur de champ avec : $a_i = \frac{3.6}{480} = \frac{4.8}{640} = 0.0075$, $f = 15.75 \ mm$, (n.o) = 1.2, $P_0 = 50 \ mm$. (n.o) = 1.2 correspond à l'ouverture maximale *i.e.* le (n.o) minimal puisque on mesure la sensibilité minimale. Application numérique :

$$PdC = 2.(0.0075).(1.2).\frac{50^2}{18.75^2} = 0.128 \ mm$$

- 5. Il faut un espace colorimétrique découplant luminance et chrominance. Le capteur délivre ici un signal vidéo en (Y, U, V) donc on récupère la composante Y.
- 6. On trace l'histogramme $h(n_k)$ pour chaque niveau n_k de l'image \mathcal{I} , soit :

	n_k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
h	(n_k)	0	0	0	5	8	9	4	2	0	0	5	1	12	0	0	0

On binarise l'image \mathcal{I} avec un seuil de 8, soit :

0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	1	1	0
0	1	1	1	0	0
0	0	1	0	0	0
0	0	0	0	0	0

 M_{00} est la somme des pixels à 1 dans l'image binarisée. x_g et y_g sont les moyennes resp. en ligne et colonne des pixels à 1. Avec l'origine en (0,0), on calcule : $M_{00}=8$, $M_{01}=20$, $M_{10}=20$ et donc : $x_g=2.5$, $y_g=2.5$.

7. On part de la relation:

$$\left(\begin{array}{cc} \mu_{20} & \mu_{11} \\ \mu_{11} & \mu_{02} \end{array}\right). \left(\begin{array}{c} \cos \theta \\ \sin \theta \end{array}\right) = \lambda. \left(\begin{array}{c} \cos \theta \\ \sin \theta \end{array}\right)$$

On obtient le système :

$$\begin{cases} \mu_{20}\cos\theta + \mu_{11}\sin\theta = \lambda\cos\theta \\ \mu_{11}\cos\theta + \mu_{02}\sin\theta = \lambda\sin\theta \end{cases}$$

On multiplie la première équation par $\cos\theta$ et la seconde par $\sin\theta$ puis on les additionne. On pose $\alpha=2.\theta$ soit : $\sin\alpha=2\cos\theta\sin\theta$, $\cos\alpha=\cos^2\theta-\sin^2\theta=1-2\sin^2\theta=2\cos^2\theta-1$. Donc : $\cos^2\theta=\frac{\cos\alpha+1}{2}$, $\sin^2\theta=\frac{1-\cos\alpha}{2}$.

$$\lambda = \mu_{20} \cos^2 \theta + \mu_{02} \sin^2 \theta + \mu_{11} \sin \alpha$$

$$\lambda = \mu_{20}(\frac{\cos\alpha + 1}{2}) + \mu_{02}(\frac{1 - \cos\alpha}{2}) + \mu_{11}\sin\alpha$$

$$\lambda = F(\alpha) = \frac{1}{2} \left[\mu_{20} + \mu_{02} + (\mu_{20} - \mu_{02}) \cos \alpha + 2\mu_{11} \cdot \sin \alpha \right]$$

En dérivant sur α , on déduit la relation demandée

sachant que:

$$\frac{\partial \lambda}{\partial \alpha} = -(\mu_{20} - \mu_{02}) \sin \alpha + 2\mu_{11} \cos \alpha = 0$$

Application numérique : $\theta = 45^{\circ}$.

8. Oui car elle est équipée d'un zoom. L'autre solution est d'augmenter la résolution du capteur.