W04: Correctness and Divide & Conquer

CS3230 AY21/22 Sem 2

Table of Contents

- Recap: Proving Correctness of Iterative Algorithms
- Question 1: Dijkstra's
 - <u>Dijkstra's Algorithm walkthrough</u>
 - o Dijkstra's Correctness Proof:
 - Intuition & Formalisation
 - Maintenance Proof
- Question 2: 2D Peak-finding
- Question 3: Finding useful property for better 2D Peak-finding
- Question 4: Better 2D Peak-finding

First, you need to **define some invariants** (can be many and different things!)

First, you need to **define some invariants** (can be many and different things!). Choose some invariant which will be **useful** to show what we want **at the end of the loop**.

First, you need to **define some invariants** (can be many and different things!). Choose some invariant which will be **useful** to show what we want **at the end of the loop**.

Show:

• Initialisation: Invariant is true before the first iteration of the loop

First, you need to **define some invariants** (can be many and different things!). Choose some invariant which will be **useful** to show what we want **at the end of the loop**.

Show:

- Initialisation: Invariant is true before the first iteration of the loop
- Maintenance: If invariant true before an iteration, it remains true before the next iteration

First, you need to **define some invariants** (can be many and different things!). Choose some invariant which will be **useful** to show what we want **at the end of the loop**.

Show:

- Initialisation: Invariant is true before the first iteration of the loop
- Maintenance: If invariant true before an iteration, it remains true before the next iteration
- **Termination**: When the algorithm terminates, the invariant gives us a useful property for showing correctness

Question 1: Dijkstra's Correctness

G = (V, E) is an undirected graph. With s as the start node. All edges in **G** are positive weights.

```
def Dijkstra(G, s):
1. For all node u except s, d(u) = \inf
2. d(s) = 0; R = {};
3. while R != V:
   pick u not in R, with the smallest d(u)
4.
   R = R union \{u\}
    for v in neighbours(u):
6.
   d(v) = \min(d(v), d(u) + w(u, v))
```

G = (V, E) is an undirected graph. With s as the start node. All edges in G are positive weights.

```
def Dijkstra(G, s):
1. For all node u except s, d(u) = \inf
2. d(s) = 0; R = \{\};
3. while R != V:
    pick u not in R, with the smallest d(u)
4.
5.
    R = R union \{u\}
    for v in neighbours(u):
6.
7.
      d(v) = \min(d(v), d(u) + w(u, v))
```

Basic idea:

Start with an empty 'distance to everyone'
 I have no idea what's the distance to everyone - except myself!

G = (V, E) is an undirected graph. With s as the start node. All edges in **G** are positive weights.

```
def Dijkstra(G, s):
1. For all node u except s, d(u) = \inf
2. d(s) = 0; R = \{\};
3. while R != V:
     pick u not in R, with the smallest d(u)
4.
5.
    R = R union \{u\}
     for v in neighbours(u):
6.
            = \min(d(v), d(u) + w(u, v))
7.
         Also known as: Relaxation Step
```

- Start with an empty 'distance to everyone'
 I have no idea what's the distance to everyone except myself!
- Use d(u) as an estimate -- "Right now, I can get to d(u) with this much cost. Can it be better?"
- Repeat:
 - Consider the vertex with *minimum* estimate
 - Add it to our R (results, what we are sure of the distance)
 - Relax all outgoing edges -- maybe we can go to other nodes faster!

G = (V, E) is an undirected graph. With s as the start node. All edges in G are positive weights.

```
def Dijkstra(G, s):
1. For all node u except s, d(u) = inf
2. d(s) = 0; R = \{\};
3. while R != V:
     pick u not in R, with the smallest d(u)
4.
5.
    R = R union \{u\}
    for v in neighbours(u):
6.
       d(v) = \min(d(v), d(u) + w(u, v))
7.
```

- Start with an empty 'distance to everyone'
 I have no idea what's the distance to everyone except myself!
- Use d(u) as an *estimate* -- "Right now, I can get to d(u) with this much cost. Can it be better?"
- Repeat:
 - Consider the vertex with minimum estimate

G = (V, E) is an undirected graph. With s as the start node. All edges in **G** are positive weights.

```
def Dijkstra(G, s):
1. For all node u except s, d(u) = inf
2. d(s) = 0; R = \{\};
3. while R != V:
     pick u not in R, with the smallest d(u)
4.
5.
    R = R union \{u\}
    for v in neighbours(u):
6.
       d(v) = \min(d(v), d(u) + w(u, v))
7.
```

- Start with an empty 'distance to everyone'
 I have no idea what's the distance to everyone except myself!
- Use d(u) as an *estimate* -- "Right now, I can get to d(u) with this much cost. Can it be better?"
- Repeat:
 - Consider the vertex with minimum estimate
 - Add it to our R (results, what we are sure of the distance)

G = (V, E) is an undirected graph. With s as the start node. All edges in **G** are positive weights.

```
def Dijkstra(G, s):
1. For all node u except s, d(u) = inf
2. d(s) = 0; R = \{\};
3. while R != V:
     pick u not in R, with the smallest d(u)
4.
5.
    R = R union \{u\}
     for v in neighbours(u):
6.
7.
            = \min(d(v), d(u) + w(u, v))
         Also known as: Relaxation Step
```

- Start with an empty 'distance to everyone'
 I have no idea what's the distance to everyone except myself!
- Use d(u) as an *estimate* -- "Right now, I can get to d(u) with this much cost. Can it be better?"
- Repeat:
 - Consider the vertex with minimum estimate
 - Add it to our R (results, what we are sure of the distance)
 - Relax all outgoing edges -- maybe we can go to other nodes faster!

- 1. For all node u except s, $d(u) = \inf$
- 2. d(s) = 0; $R = {}$;
- 3. while R != V:
- 4. pick u not in R, with the smallest d(u)
- 5. $R = R \text{ union } \{u\}$
- 6. for v in neighbours(u):
- 7. d(v) = min(d(v), d(u) + w(u, v))

- 1. For all node u except s, d(u) = inf
- 2. d(s) = 0; $R = \{\}$;
- 3. while R != V:
- 4. pick u not in R, with the smallest d(u)
- 5. $R = R union \{u\}$
- 6. for v in neighbours(u):
- 7. d(v) = min(d(v), d(u) + w(u, v))

- 1. For all node u except s, $d(u) = \inf$
- 2. d(s) = 0; $R = {}$;
- 3. while R != V:
- 4. pick u not in R, with the smallest d(u)
- 5. $R = R \text{ union } \{u\}$
- 6. for v in neighbours(u):
- 7. d(v) = min(d(v), d(u) + w(u, v))


```
def Dijkstra(G, s):
```

- 1. For all node u except s, $d(u) = \inf$
- 2. d(s) = 0; $R = {}$;
- 3. while R != V:
- 4. pick u not in R, with the smallest d(u)
- 5. $R = R union \{u\}$
- 6. for v in neighbours(u):
- 7. $d(v) = \min(d(v), d(u) + w(u, v))$

Can do better by going through node u

- 1. For all node u except s, $d(u) = \inf$
- 2. d(s) = 0; $R = {}$;
- 3. while R != V:
- 4. pick u not in R, with the smallest d(u)
- 5. $R = R \text{ union } \{u\}$
- 6. for v in neighbours(u):
- 7. d(v) = min(d(v), d(u) + w(u, v))

Question 1 Relax neighbours of C - now note that we *think* we can get to D and F with cost 6 and 9 respectively

- 1. For all node u except s, $d(u) = \inf$
- 2. d(s) = 0; $R = {}$;
- 3. while R != V:
- 4. pick u not in R, with the smallest d(u)
- 5. $R = R union \{u\}$
- 6. for v in neighbours(u):
- 7. $d(v) = \min(d(v), d(u) + w(u, v))$

Existing estimate is good

Can do better by going through node u

- 1. For all node u except s, $d(u) = \inf$
- 2. d(s) = 0; $R = {}$;
- 3. while R != V:
- 4. pick u not in R, with the smallest d(u)
- 5. $R = R \text{ union } \{u\}$
- 6. for v in neighbours(u):
- 7. d(v) = min(d(v), d(u) + w(u, v))

Question 1 IMPORTANT: Now we have a **better** estimate to reach node D. Instead of going through C (prev estimate)

Can do better by going

through node u

- 1. For all node u except s, $d(u) = \inf$
- 2. d(s) = 0; $R = {}$;
- 3. while R != V:
- 4. pick u not in R, with the smallest d(u)
- 5. $R = R \text{ union } \{u\}$
- 6. for v in neighbours(u):
- 7. $d(v) = \min(d(v), d(u) + w(u, v))$

Question 1

G=(V,E) is an undirected graph.

Assume all edges in G are of positive weights.

s is the start node

Dijkstra(G, s)

- 1. For all $u \in V \setminus \{s\}$, $d(u) = \infty$;
- 2. d(s)=0; $R={}$;
- 3. While R≠V
- 4. pick u ∉R with the smallest d(u)
- 5. $R = R \cup \{u\}$
- 6. for all neighbor v of u,
- 7. $d(v) = min\{d(v), d(u)+w(u,v)\}$

What is the invariant for the while loop?

Can you show that this algorithm correctly compute the shortest distance from s to all nodes?

What happens when the algorithm terminates?

```
def Dijkstra(G, s):

1. For all node u except s, d(u) = inf

2. d(s) = 0; R = {};

3. while R != V:

4. pick u not in R, with the smallest d(u)

5. R = R union {u}

6. for v in neighbours(u):

7. d(v) = min(d(v), d(u) + w(u, v))
```

What happens when the algorithm terminates?

 We should have all d(u) correctly updated as our shortest path cost!

```
def Dijkstra(G, s):

1. For all node u except s, d(u) = inf

2. d(s) = 0; R = {};

3. while R != V:

4. pick u not in R, with the smallest d(u)

5. R = R union {u}

6. for v in neighbours(u):

7. d(v) = min(d(v), d(u) + w(u, v))
```

What happens when the algorithm terminates?

 We should have all d(u) correctly updated as our shortest path cost!

Why did the algorithm terminate?

```
def Dijkstra(G, s):

1. For all node u except s, d(u) = inf

2. d(s) = 0; R = {};

3. while R != V:

4. pick u not in R, with the smallest d(u)

5. R = R union {u}

6. for v in neighbours(u):

7. d(v) = min(d(v), d(u) + w(u, v))
```

What happens when the algorithm terminates?

 We should have all d(u) correctly updated as our shortest path cost!

Why did the algorithm terminate?

Because we have placed all the nodes in R

```
def Dijkstra(G, s):

1. For all node u except s, d(u) = inf

2. d(s) = 0; R = {};

3. while R != V:

4. pick u not in R, with the smallest d(u)

5. R = R union {u}

6. for v in neighbours(u):

7. d(v) = min(d(v), d(u) + w(u, v))
```

What happens when the algorithm terminates?

 We should have all d(u) correctly updated as our shortest path cost!

Why did the algorithm terminate?

- Because we have placed all the nodes in R
- Every iteration adds node u to R

```
def Dijkstra(G, s):

1. For all node u except s, d(u) = inf

2. d(s) = 0; R = {};

3. while R != V:

4. pick u not in R, with the smallest d(u)

5. R = R union {u}

6. for v in neighbours(u):

7. d(v) = min(d(v), d(u) + w(u, v))
```

What happens when the algorithm terminates?

 We should have all d(u) correctly updated as our shortest path cost!

Why did the algorithm terminate?

- Because we have placed all the nodes in R
- Every iteration adds node u to R

Invariant idea:

Relate the nodes already in R with "already have the correct shortest path cost"

```
def Dijkstra(G, s):

1. For all node u except s, d(u) = inf

2. d(s) = 0; R = {};

3. while R != V:

4. pick u not in R, with the smallest d(u)

5. R = R union {u}

6. for v in neighbours(u):

7. d(v) = min(d(v), d(u) + w(u, v))
```

Notice that all the nodes in set R would already have their true shortest path cost set!

Notice that all the nodes in set R would already have their true shortest path cost set!

Furthermore, recall that in the algorithm, we simply add the next node with the minimum estimate

- 3. while R != V:
- 4. pick u not in R, with the smallest d(u)
- 5. $R = R union \{u\}$

Let $\delta(a \rightarrow b)$ be the (true) shortest distance from a to b in G

Let $\delta(a \rightarrow b)$ be the (true) shortest distance from a to b in G

Invariant 1 (INV1):

For all node u in R, $d(u) = \delta(s \rightarrow u)$ [d(u) is the shortest distance from s to u already]

Let $\delta(a \rightarrow b)$ be the (true) shortest distance from a to b in G

Invariant 1 (INV1):

For all node u in R, $d(u) = \delta(s \rightarrow u)$ [d(u) is the shortest distance from s to u already]

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X }

Let $\delta(a \rightarrow b)$ be the (true) shortest distance from a to b in G

Invariant 1 (INV1):

For all node u in R, $d(u) = \delta(s \rightarrow u)$ [d(u) is the shortest distance from s to u already]

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X }

Read it as: "from all the nodes in X to me, take the **best estimate**". e.g. node D on the right can either have a distance 6 (through C) or 5 (through B)

Let $\delta(a \rightarrow b)$ be the (true) shortest distance from a to b in G

Invariant 1 (INV1):

For all node u in R, $d(u) = \delta(s \rightarrow u)$ [d(u) is the shortest distance from s to u already]

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X }

Read it as: "from all the nodes in X to me, take the **best estimate**". e.g. node D on the right can either have a distance 6 (through C) or 5 (through B)

Invariant 2 (INV2):

For every neighbour v of all nodes in R, $d(v) = \Delta(R, v)$

e.g. E is not a neighbour of node in R

Dijkstra Initialisation

Before the first iteration of the while loop, we set $R = {}$

INV1 and INV2 are trivially true (there is no node in R)

Let $\delta(\mathbf{a} \to \mathbf{b})$ be the (true) shortest distance from a to b in G

Invariant 1 (INV1):

For all node u in R, $d(u) = \delta(s \rightarrow u)$ [d(u) is the shortest distance from s to u already]

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X }

Invariant 2 (INV2):

- 1. For all node u except s, $d(u) = \inf$
- 2. d(s) = 0; $R = {}$;
- 3. while R != V:

Dijkstra **Maintenance** (INV1)

In steps 4 and 5, we add the node u with smallest d(u) into R

To maintain INV1, we need to show that this node u that we pick has $d(u) = \delta(s \rightarrow u)$ [Recall what it means to be inside R]

Let $\delta(a \rightarrow b)$ be the (true) shortest distance from a to b in G

Invariant 1 (INV1):

For all node u in R, $d(u) = \delta(s \rightarrow u)$ [d(u) is the shortest distance from s to u already]

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X}

Invariant 2 (INV2):

- 4. pick u not in R, with the smallest d(u)
- 5. $R = R \text{ union } \{u\}$

Dijkstra **Maintenance** (INV1)

In steps 4 and 5, we add the node u with smallest d(u) into R

To maintain INV1, we need to show that this node u that we pick has $d(u) = \delta(s \rightarrow u)$ [Recall what it means to be inside R]

Proof by Contradiction! Assume that the node u does not have $d(u) = \delta(s \rightarrow u)$

Let $\delta(a \rightarrow b)$ be the (true) shortest distance from a to b in G

Invariant 1 (INV1):

For all node u in R, $d(u) = \delta(s \rightarrow u)$ [d(u) is the shortest distance from s to u already]

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X}

Invariant 2 (INV2):

- 4. pick u not in R, with the smallest d(u)
- 5. $R = R \text{ union } \{u\}$

The set R

Let $\delta(a \to b)$ be the (true) shortest distance from a to b in G

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X }

Weight of Q: $\frac{\delta(s \to x)}{\delta(x \to x)} + \frac{\delta(y \to u)}{\delta(y \to u)} < \frac{\delta(u)}{\delta(u)}$ [by assumption]

The set R

Let $\delta(a \to b)$ be the (true) shortest distance from a to b in G

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X }

Weight of Q: $\delta(s \to x) + w(x, y) + \delta(y \to u) < d(u)$ [by assumption]

 $d(y) = \Delta(R, y) = min\{ \delta(s \rightarrow r) + w(r, y) \text{ for } r \text{ in } R \} \text{ [by invariant 2]}$

The set R

Let $\delta(a \rightarrow b)$ be the (true) shortest distance from a to b in G

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X }

Weight of Q: $\delta(s \to x) + w(x, y) + \delta(y \to u) < d(u)$ [by assumption]

$$d(y) = \Delta(R, y) = \min\{\delta(s \rightarrow r) + w(r, y) \text{ for } r \text{ in } R\} \text{ [by invariant 2]}$$

$$d(y) \le \delta(s \to x) + w(x, y)$$
 [d(y) is the min, so anything else must be \le]

e.g. $d(y) = min \{100, 3, 50, 42\}$ so $d(y) \le 100$ or $d(y) \le 3$ or $d(y) \le 50$ or $d(y) \le 42$

The set R

Let $\delta(a \to b)$ be the (true) shortest distance from a to b in G

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X }

Invariant 2 (INV2):

Weight of Q: $\delta(s \to x) + w(x, y) + \delta(y \to u) < d(u)$ [by assumption]

$$d(y) = \Delta(R, y) = min\{ \delta(s \rightarrow r) + w(r, y) \text{ for } r \text{ in } R \} \text{ [by invariant 2]}$$

$$d(y) \le \delta(s \to x) + w(x, y)$$
 [d(y) is the min, so anything else must be \le]

 $\leq \delta(s \to x) + w(x, y) + \delta(y \to u)$ [edges are positive. Just add them in]

The set R

Let $\delta(a \rightarrow b)$ be the (true) shortest distance from a to b in G

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X }

Invariant 2 (INV2): For every neighbour v of

Weight of Q: $\delta(s \to x) + w(x, y) + \delta(y \to u) < d(u)$ [by assumption]

$$d(y) = \Delta(R, y) = min\{ \delta(s \to r) + w(r, y) \text{ for } r \text{ in } R \} \text{ [by invariant 2]}$$

$$d(y) \le \delta(s \to x) + w(x, y) \text{ [d(y) is the min, so anything else must be } \le]$$

$$\le \delta(s \to x) + w(x, y) + \delta(y \to u) \text{ [edges are positive. Just add them in]}$$

$$< d(u)$$

The set R

Let $\delta(a \rightarrow b)$ be the (true) shortest distance from a to b in G

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X }

Weight of Q: $\delta(s \to x) + w(x, y) + \delta(y \to u) < d(u)$ [by assumption]

$$d(y) = \Delta(R, y) = min\{ \delta(s \rightarrow r) + w(r, y) \text{ for } r \text{ in } R \} \text{ [by invariant 2]}$$

$$d(y) \le \delta(s \to x) + w(x, y)$$
 [d(y) is the min, so anything else must be \le]

$$\leq \delta(s \to x) + w(x, y) + \delta(y \to u)$$
 [edges are positive. Just add them in]

Our algorithm: chooses smallest $d(u) \rightarrow d(u) \le d(y)$

Our math: d(y) < d(u)

Contradiction!

Thus, d(u) is already the shortest distance ($\delta(s \rightarrow u)$)

4. pick u not in R, with the smallest d(u)
5. R = R union {u}

The set R

Let $\delta(a \to b)$ be the (true) shortest distance from a to b in G

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X }

Invariant 2 (INV2):

Maintenance - Aside

You can also derive the contradiction by starting off with the fact that $d(y) \ge d(u)$ [by our algorithm].

Then show that d(y) + some edges > d(u) [bcs the edge are positive]

This implies that the path via y is longer (contradicting that we assumed there was a shorter path via y)

4. pick u not in R, with the smallest d(u)5. R = R union {u}

The set R

Let $\delta(a \to b)$ be the (true) shortest distance from a to b in G

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X }

Dijkstra **Maintenance** (INV2)

To maintain INV2, observe that we **just added** node u. Now we need to make sure all the neighbours of u are correctly updated

Let $\delta(\mathbf{a} \rightarrow \mathbf{b})$ be the (true) shortest distance from a to b in G

Invariant 1 (INV1):

For all node u in R, $d(u) = \delta(s \rightarrow u)$ [d(u) is the shortest distance from s to u already]

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X}

Invariant 2 (INV2):

- 6. **for** v **in** neighbours(u):
- 7. d(v) = min(d(v), d(u) + w(u, v))

Dijkstra **Maintenance** (INV2)

To maintain INV2, observe that we **just added** node u. Now we need to make sure all the neighbours of u are correctly updated

But hey! That's exactly our algorithm in steps 6-7

Let $\delta(\mathbf{a} \rightarrow \mathbf{b})$ be the (true) shortest distance from a to b in G

Invariant 1 (INV1):

For all node u in R, $d(u) = \delta(s \rightarrow u)$ [d(u) is the shortest distance from s to u already]

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X}

Invariant 2 (INV2):

- 6. for v in neighbours(u):
- 7. $d(v) = \min(d(v), d(u) + w(u, v))$

Dijkstra **Termination** (INV1)

After the last iteration of the loop, **R** includes all vertices in **G**.

Let $\delta(\mathbf{a} \rightarrow \mathbf{b})$ be the (true) shortest distance from a to b in G

Invariant 1 (INV1):

For all node u in R, $d(u) = \delta(s \rightarrow u)$ [d(u) is the shortest distance from s to u already]

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X }

Invariant 2 (INV2):

For every neighbour v of all nodes in R, $d(v) = \Delta(R, v)$

3. while R != V:

Dijkstra **Termination** (INV1)

After the last iteration of the loop, **R** includes all vertices in **G**.

So **d(u)** is the shortest distance from **s** for every node **u** in G (by INV1)

Let $\delta(\mathbf{a} \to \mathbf{b})$ be the (true) shortest distance from a to b in G

Invariant 1 (INV1):

For all node u in R, $d(u) = \delta(s \rightarrow u)$ [d(u) is the shortest distance from s to u already]

Let $\Delta(X, u)$ be min{ $\delta(s \rightarrow v) + w(v, u)$ for v in X }

Invariant 2 (INV2):

For every neighbour v of all nodes in R, $d(v) = \Delta(R, v)$

3. **while** R != V:

Question 2 - 2D Peak-finding

Question 2 - 2D Peak-finding

Given a 2D-array A of size m rows and n columns. A[i][j] is called a "peak" if it is greater than or equal to its adjacent neighbours

Note: just a peak is enough, it does not have to be a global peak!

n = 4

0	23	4	7
1	18	18	1
6	15	0	8

0	23	4	7
1	18	18	1
6	15	0	8

Question 2 - Proposed Pseudocode

```
def Find2DPeak(A):
    if num_of_cols(A) == 1:
        return max(A)
    else:
        mid col = middle column of A
        candidate peak = max(mid col)
        if candidate peak is peak:
            return candidate peak
        else:
            p1 = Find2DPeak(A, but only the right side)
            p2 = Find2DPeak(A, but only the left side)
            if p1 is a peak return p1 else return p2
```



```
def Find2DPeak(A):
    if num_of_cols(A) == 1:
        return max(A)
    else:
       mid col = middle column of A
        candidate_peak = max(mid_col)
        if candidate peak is peak:
            return candidate_peak
       else:
            p1 = Find2DPeak(A, but only the right side)
            p2 = Find2DPeak(A, but only the left side)
            if p1 is a peak return p1 else return p2
```

0	23	4	7	23	4	7
1	18	18	1	18	18	1
6	15	0	8	15	0	8


```
def Find2DPeak(A):
    if num_of_cols(A) == 1:
        return max(A)
    else:
        mid col = middle column of A
        candidate peak = max(mid col)
        if candidate peak is peak:
            return candidate_peak
        else:
            p1 = Find2DPeak(A, but only the right side)
            p2 = Find2DPeak(A, but only the left side)
            if p1 is a peak return p1 else return p2
```

0	23	4	7	23	4	7
1	18	18	1	18	18	1
6	15	0	8	15	0	8


```
def Find2DPeak(A):
    if num_of_cols(A) == 1:
        return max(A)
    else:
       mid_col = middle column of A
        candidate peak = max(mid col)
        if candidate peak is peak:
            return candidate_peak
       else:
            p1 = Find2DPeak(A, but only the right side)
            p2 = Find2DPeak(A, but only the left side)
            if p1 is a peak return p1 else return p2
```

0	23	4	7	23	4	7
1	18	18	1	18	18	1
6	15	0	8	15	0	8

```
Question 2

15 is greater than 8. 8 is not a peak!
```

```
def Find2DPeak(A):
    if num_of_cols(A) == 1:
        return max(A)
    else:
       mid col = middle column of A
        candidate peak = max(mid col)
        if candidate peak is peak:
            return candidate peak
        else:
            p1 = Find2DPeak(A, but only the right side)
            p2 = Find2DPeak(A, but only the left side)
            if p1 is a peak return p1 else return p2
```

0	23	4	7	23	4	7
1	18	18	1	18	18	1
6	15	0	8	15	0	8


```
def Find2DPeak(A):
    if num_of_cols(A) == 1:
        return max(A)
    else:
        mid col = middle column of A
        candidate_peak = max(mid_col)
        if candidate peak is peak:
            return candidate_peak
        else:
            p1 = Find2DPeak(A, but only the right side)
            p2 = Find2DPeak(A, but only the left side)
            if p1 is a peak return p1 else return p2
```

0	23	4	7	23	4	7
1	18	18	1	18	18	1
6	15	0	8	15	0	8


```
def Find2DPeak(A):
    if num_of_cols(A) == 1:
        return max(A)
    else:
       mid col = middle column of A
        candidate_peak = max(mid_col)
        if candidate peak is peak:
            return candidate_peak
        else:
            p1 = Find2DPeak(A, but only the right side)
            p2 = Find2DPeak(A, but only the left side)
            if p1 is a peak return p1 else return p2
```

0	23	4	7	23	4	7
1	18	18	1	18	18	1
6	15	0	8	15	0	8

Question 2

Suppose we are given a 2D-array A of size m rows by n columns. An element in the array A[i][j] is called a "peak" if it is **greater than or equal to** its adjacent neighbours (if they exist -- an element is always considered greater than or equal to non-existent elements). For example, the 8 in the middle is a peak in the following array.

```
* * 5 *

* 8 8 3

* * 2 *

Consider the following algorithm to return any "peak":

Find2DPeak(A):

If A only has a column, return the maximal element of the column

Otherwise:

Select the middle column of the A

Find the maximal element of the column

If the maximal element is a peak, return that element

Else

p1 = Find2DPeak(right half of A excluding middle col)

p2 = Find2DPeak(left half of A excluding middle col)
```

If pl or p2 is a peak, return either one, otherwise return None

What is the runtime of the algorithm?

- $\Theta(mn)$
- $\Theta(m \lg n)$
- $\Theta(\lg m \lg n)$
- $\Theta(m^2 \lg n)$

Time Complexity - Intuition

- You are dividing the array into two, but you are doing recursion on both sides
- You are still checking every columns!

Time Complexity - Method one

Recall: m rows and n columns.

Consider the **recurrence with two parameters**:

Time Complexity - Method one

m = 4

0 23 4 7

1 18 18 1

6 15 0 8

Recall: m rows and n columns.

Consider the **recurrence with two parameters**:

$$T(m, 1) = cm$$

```
def Find2DPeak(A):
    if num_of_cols(A) == 1:
        return max(A)

else:
        mid_col = middle column of A
        candidate_peak = max(mid_col)

    if candidate_peak is peak:
        return candidate_peak
    else:
        p1 = Find2DPeak(A, but only the right side)
        p2 = Find2DPeak(A, but only the left side)
        if p1 or p2 is a peak return p1 else None
```

Time Complexity - Method one

m = 4

0 23 4 7

1 18 18 1

6 15 0 8

Recall: m rows and n columns.

Consider the **recurrence with two parameters**:

$$T(m, 1) = cm$$

 $T(m, n) = 2T(m, n/2) + cm$

Possible to solve this with recursion tree! (Exercise)

```
def Find2DPeak(A):
    if num_of_cols(A) == 1:
        return max(A)

else:
    mid_col = middle column of A
    candidate_peak = max(mid_col)

if candidate_peak is peak:
    return candidate_peak
    else:
        p1 = Find2DPeak(A, but only the right side)
        p2 = Find2DPeak(A, but only the left side)
        if p1 or p2 is a peak return p1 else None
```

Time Complexity - Method two

m = 4

0 23 4 7

1 18 18 1

6 15 0 8

Observation: The time to process every column is the same: $\theta(m)$

```
def Find2DPeak(A):
    if num_of_cols(A) == 1:
        return max(A)

else:
    mid_col = middle column of A
    candidate_peak = max(mid_col)

if candidate_peak is peak:
    return candidate_peak
else:
    p1 = Find2DPeak(A, but only the right side)
    p2 = Find2DPeak(A, but only the left side)
    if p1 or p2 is a peak return p1 else None
```

Time Complexity - Method two

m = 4

0 23 4 7

1 18 18 1

6 15 0 8

Observation: The time to process every column is the same: $\theta(m)$

Idea: Count the number of columns processed! Multiply processing time later

```
def Find2DPeak(A):
    if num_of_cols(A) == 1:
        return max(A)

else:
    mid_col = middle column of A
    candidate_peak = max(mid_col)

if candidate_peak is peak:
    return candidate_peak
else:
    p1 = Find2DPeak(A, but only the right side)
    p2 = Find2DPeak(A, but only the left side)
    if p1 or p2 is a peak return p1 else None
```

Time Complexity - Method two

m = 4

0 23 4 7

1 18 18 1

6 15 0 8

Observation: The time to process every column is the same: $\theta(m)$

Idea: Count the number of columns processed! Multiply processing time later

- In the divide step, the middle column is processed, and no column is processed in the combined step $\theta(1)$
- Two subproblems each half the size!

Recurrence:

$$C(n) = 2C(n/2) + \theta(1)$$

Time Complexity - Method two

m = 4

0 23 4 7

m = 3 1 18 18 1

6 15 0 8

Observation: The time to process every column is the same: $\theta(m)$

Idea: Count the number of columns processed! Multiply processing time later

- In the divide step, the middle column is processed, and no column is processed in the combined step $\theta(1)$
- Two subproblems each half the size!

Recurrence:

Master Theorem (Case 1):
$$log_b a = log_b 2 = 1$$

$$C(n) = 2C(n/2) + \theta(1)$$

Time Complexity - Method two

m = 4

0 23 4 7

1 18 18 1

6 15 0 8

Observation: The time to process every column is the same: $\theta(m)$

Idea: Count the number of columns processed! Multiply processing time later

- In the divide step, the middle column is processed, and no column is processed in the combined step $\theta(1)$
- Two subproblems each half the size!

Recurrence:

Master Theorem (Case 1):
$$log_b a = log_2 2 = 1$$

$$C(n) = 2C(n/2) + \theta(1)$$

$$f(n) = \theta(1) = O(n^{1-\varepsilon})$$

Time Complexity - Method two

m = 4

0 23 4 7

1 18 18 1

6 15 0 8

Observation: The time to process every column is the same: $\theta(m)$

Idea: Count the number of columns processed! Multiply processing time later

- In the divide step, the middle column is processed, and no column is processed in the combined step $\theta(1)$
- Two subproblems each half the size!

Recurrence:

$$C(n) = 2C(n/2) + \frac{\theta(1)}{\theta(1)}$$

Master Theorem (Case 1): $log_b a = log_2 2 = \frac{1}{1}$

$$f(n) = \theta(1) = O(n^{1-\varepsilon})$$

Therefore, $C(n) = \theta(n^{1})$

Time Complexity - Method two

m = 4

0 23 4 7

1 18 18 1

6 15 0 8

Observation: The time to process every column is the same: $\theta(m)$

Idea: Count the number of columns processed! Multiply processing time later

- In the divide step, the middle column is processed, and no column is processed in the combined step $\theta(1)$
- Two subproblems each half the size!

Recurrence:

$$C(n) = 2C(n/2) + \theta(1)$$

Master Theorem (Case 1):

$$\log_b a = \log_2 2 = 1$$

$$f(n) = \theta(1) = O(n^{1-\varepsilon})$$

Total time:

 $\theta(mn)$

Therefore, $C(n) = \theta(n^1)$

Time Complexity - Method two

Total time of $\theta(mn)$ is **no better** than just iterating the 2D array normally! Does this mean that this algorithm is bad?

Time Complexity - Method two

Total time of $\theta(mn)$ is **no better** than just iterating the 2D array normally! Does this mean that this algorithm is bad?

Not exactly -- we can get **new ideas** from it on how to solve the problem!

Question 3: Finding useful property for better 2D Peak-finding

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

This question was added later on for completeness of q4. Hence it was not in the qn sheet

Question 3b (not in tutorial qn sheet)

Argue that this sub-array will always have a peak.

This question was added later on for completeness of q4. Hence it was not in the qn sheet

Question 3b (not in tutorial qn sheet)

Argue that this sub-array will always have a peak:

Any 2D array must have a peak. Simply take the maximum element in the 2D array, which will be a peak in this array.

Suppose we are given a 2D-array A of size m rows by n columns. An element in the array A[i][j] is called a "peak" if it is **greater than or equal to** its adjacent neighbours (if they exist -- an element is always considered greater than or equal to non-existent elements). For example, the 8 in the middle is a peak in the following array.

* * 5 * * 8 8 3 * * 2 *

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue that any peak in the the subarray A[1..m][j+1..n] that is the largest element in its column is also a peak of the entire array A.

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

Now back to the original question at hand!

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

A peak in the columns j + 2 onwards will be a peak in the overall array!

Intuition: Regardless of whether you add back the part you "removed", whether this is a peak or not is **unaffected**

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

A peak in the column **j + 1** needs a bit more work

Intuition: If you add back the part of A that you removed, will that peak still remain a peak?

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

Let's say that the element 100 (note, larger than 52) here is a peak. Within the subarray, it's clearly a peak

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any **peak that is the largest element in its column** is also a peak of the entire array A.

Let's say that the element 100 (note, larger than 52) here is a peak. Within the subarray, it's clearly a peak

But what about after considering the element to its left?? Will 100 stay a peak?

	1		
55	100	1	
	1		
50	52		

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

Observe: 50 is the largest element in column j. So '??' has to be ≤ 50

i

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

Observe: 50 is the largest element in column j. So '??' has to be ≤ 50

Let's say we put 42. Then 100 is **still a peak**, even when we consider the bigger array!

		1		
	42	100	1	
		1		
i	50	52		

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

Generalising: Let d be the peak in the subarray.

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

Generalising: Let d be the peak in the subarray.

d

≥ c (the peak should be the largest element in the column)

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

Generalising: Let d be the peak in the subarray.

```
d
```

≥ c (the peak should be the largest element in the column)

 \geq b $(A[i][j+1] \geq A[i][j])$

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

Generalising: Let d be the peak in the subarray.

```
d
```

≥ c (the peak should be the largest element in the column)

 \geq b $(A[i][j+1] \geq A[i][j])$

≥ a (A[i][j] is the largest in col j)

Thus, d ≥ a

Question 4: Better 2D Peak-finding

Suppose we are given a 2D-array A of size m rows by n columns. An element in the array A[i][j] is called a "peak" if it is **greater than or** equal to its adjacent neighbours (if they exist -- an element is always considered greater than or equal to non-existent elements). For example, the 8 in the middle is a peak in the following array.

* * 5 * * 8 8 3 * * 2 *

Using the idea in Question 3, describe an algorithm that is asymptotically faster that the one given in Question 2. What is it's runtime?

Question 4 (Solution)

```
def Find2DPeak(A):
    if num_of_cols(A) == 1:
        return max(A)
    else:
        mid col = middle column of A
        candidate peak = max(mid col)
        if candidate peak is peak:
            return candidate_peak
        else if candidate peak <= element to its right:</pre>
                                                                   Either side must contain
            return Find2DPeak(A, but only the right side)
                                                                   a peak, by qn 3b
        else:
            return Find2DPeak(A, but only the left side)
```

Question 4 (Solution)

```
def Find2DPeak(A):
    if num of cols(A) == 1:
        return max(A)
    else:
                                            If element to its left and to its right are smaller than
        mid col = middle column of A
                                            candidate peak, this case has been accounted for by
        candidate peak = max(mid col)
                                            the check if candidate peak is peak
        if candidate peak is peak:
            return candidate peak
        else if candidate peak <= element to its right:</pre>
             return Find2DPeak(A, but only the right side)
        else:
             return Find2DPeak(A, but only the left side)
```

Question 4 (Solution)

Let A[i][j] be the largest element in column j. Assume that $A[i][j+1] \ge A[i][j]$. Argue in the subarray B, where B is A but column j+1 onwards, any peak that is the largest element in its column is also a peak of the entire array A.

```
def Find2DPeak(A):
                                  Important: return the max in the
    if num of cols(A) == 1:
                                  column! Otherwise, claim in Q3
        return max(A)
                                  does not hold
    else:
        mid col = middle column of A
        candidate peak = max(mid col)
        if candidate peak is peak:
            return candidate peak
        else if candidate peak <= element to its right:</pre>
             return Find2DPeak(A, but only the right side)
        else:
            return Find2DPeak(A, but only the left side)
```

Similar as before, but this time the recurrence for the number of columns processed is: $C(n) = C(n/2) + \theta(1)$

2. f(n) = \Omega(n^{\logba} \logba \logba \logba \logba n) for some constant k ≥ 0.
• f(n) and n^{\logba} grow at similar rates.
Solution: T(n) = \Omega(n^{\logba} \logba \logba \logba \logba \logba n).

Similar as before, but this time the recurrence for the number of columns processed is: $C(n) = C(n/2) + \theta(1)$

By Master Theorem (case 2):

$$log_b a = log_2 1 = 0$$

```
2. f(n) = \Omega(n^{\logba} \logba \logba \logba \logba n) for some constant k ≥ 0.
• f(n) and n^{\logba} grow at similar rates.
Solution: T(n) = \Omega(n^{\logba} \logba \logba \logba \logba \logba n).
```

Similar as before, but this time the recurrence for the number of columns processed is: $C(n) = C(n/2) + \frac{\theta(1)}{\theta(1)}$

By Master Theorem (case 2):

$$log_b a = log_2 1 = 0$$

$$f(n) = \theta(1) = \theta(n^0 (logn)^0) = \theta(1) \text{ [our choice of k = 0]}$$

```
2. f(n) = \Omega(n^{\logba} \logba \logba \logba \logba n) for some constant k ≥ 0.
• f(n) and n^{\logba} grow at similar rates.
Solution: T(n) = \Omega(n^{\logba} \logba \logba \logba \logba \logba n).
```

Similar as before, but this time the recurrence for the number of columns processed is: $C(n) = C(n/2) + \frac{\theta(1)}{\theta(1)}$

By Master Theorem (case 2):

$$log_b a = log_2 1 = \frac{0}{0}$$

$$f(n) = \theta(1) = \theta(n^0 (logn)^0) = \theta(1) \text{ [our choice of k = 0]}$$

So $C(n) = \theta(n^0 (log n)^{0+1}) = \theta(log n)$ [the +1 is because of master theorem]

```
2. f(n) = \Omega(n^{\logba} \logba \logba \logba \logba n) for some constant k ≥ 0.
• f(n) and n^{\logba} grow at similar rates.
Solution: T(n) = \Omega(n^{\logba} \logba \logba \logba \logba \logba n).
```

Similar as before, but this time the recurrence for the number of columns processed is: $C(n) = C(n/2) + \frac{\theta(1)}{\theta(1)}$

By Master Theorem (case 2):

$$log_b a = log_2 1 = \frac{0}{0}$$

$$f(n) = \theta(1) = \theta(n^0 (logn)^0) = \theta(1) \text{ [our choice of k = 0]}$$

So $C(n) = \theta(n^0 (log n)^{0+1}) = \theta(log n)$ [the +1 is because of master theorem]

Total running time: $\theta(mlogn)$