The Image Cartoonifier SoC'23 Week 2 Assignment

PART I (Warm-up):

Q1: Consider the following function

$$f(x_1, x_2) = (x_1 - x_2)^4 + 8x_1x_2 - x_1 + x_2 + 3$$

Plot $f(x_1, x_2)$ versus x_1 for $x_2 = -1$ and $x_2 = +1$. Thus, there should be two curves in this same figure. (HINT: use matplotlib and numpy)

Q2. For the same function above, Generate a contour plot of the function.

PART II (Mandatory):

LINEAR REGRESSION

Q1.

A. Create a dataset containing no. of years of experience and corresponding salary of employees. There are three data points

No. of years experience	Salary
1	300
3	480
5	570

These three points will constitute our data or training set. scatter plot the dataset, by including axis labels and title of the plot.

You are given w = 200 and b = 100.

- B. Define a function <code>compute_cost</code> which implements cost function(J) for the above problem data (same training data and parameters) and returns the total cost
- C. Create a function compute_gradient which returns $\frac{dJ}{dw}$, $\frac{dJ}{db}$ for the above data. (All Notations are same as in the video lec's)

Q2.

A. Write a function named compute_gradient_descent using the functions you have created i.e, compute_cost, compute_gradient. Initialize the parameters w_init and b_init as '0'. You are given, number of iterations: 10000 and learning rate i.e, alpha =0.01.

(Hint: This function takes the arguments (x_train, y_train, w_init, b_init, alpha, num_iters) where x_train and y_train are the no. of years experience and salary respectively.)