Test Report of FCC Part 15 C for FCC Certificate On Behalf of

SHENZHEN PENGHONG TECHNOLOGY MANUFACTORY

Product description: Bluetooth USB Adapter

Model No.: PH-0161F

FCC ID: UK6-PH-0161

Prepared for: SHENZHEN PENGHONG TECHNOLOGY MANUFACTORY

Blg.1, 2th Industrial Zone, Bai Shi Long, Minzhi, Longhua, Shenzhen,

Guangdong, China

Prepared by: Bontek Compliance Laboratory Ltd

Rm 802~804, 8/F, Jinmin Bld., Zizhu 6th Rd., Zhuzi Lin, Futian,

Shenzhen 518040, P.R. China.

Tel: 86-755-82871080 Fax: 86-755-82871368

Issue Date: September 15, 2006

Test Date: September 9~13, 2006

Test by: Reviewed By:

Kendy Wang

Kendy Wana

Tony Wu

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.3 TEST METHODOLOGY	
2. SYSTEM TEST CONFIGURATION	6
2.1 EUT CONFIGURATION	
2.2 EUT EXERCISE	
2.3 GENERAL TEST PROCEDURES	6 7
3. SUMMARY OF TEST RESULTS	
4. ANTENNA REQUIREMENT	9
4.1 STANDARD APPLICABLE	9
4.2 ANTENNA CONNECTED CONSTRUCTION	9
5. TEST OF CONDUCTED EMISSION	10
5.1 APPLICABLE STANDARD	
5.2 TEST SETUP DIAGRAM	
5.3 TEST RESULT	
6. TEST OF HOPPING CHANNEL BANDWIDTH	
6.1 APPLICABLE STANDARD	
6.2 EUT SETUP	12 12
6.4 TEST PROCEDURE	
6.5 TEST RESULT	12
7. TEST OF HOPPING CHANNEL SEPARATION	
7.1 APPLICABLE STANDARD	
7.2 EUT SETUP 7.3 TEST EQUIPMENT LIST AND DETAILS	
7.4 TEST PROCEDURE	
7.5 TEST RESULT	
8. TEST OF NUMBER OF HOPPING FREQUENCY	20
8.1 APPLICABLE STANDARD	20
8.2 EUT SETUP	
8.3 TEST EQUIPMENT LIST AND DETAILS	
8.5 Test Result	
9. TEST OF DWELL TIME OF EACH FREQUENCY	22
9.1 APPLICABLE STANDARD	22
9.2 EUT SETUP	
9.3 TEST EQUIPMENT LIST AND DETAILS	
9.5 TEST RESULT	
10. TEST OF MAXIMUM PEAK OUTPUT POWER	27
10.1 Applicable Standard	
10.2 EUT SETUP	27
10.3 TEST EQUIPMENT LIST AND DETAILS	
10.4 Test Procedure	
11. TEST OF BAND EDGES EMISSION	
11.1 APPLICABLE STANDARD	
11.2 EUT SETUP	

11.3 TEST EQUIPMENT LIST AND DETAILS	29
11.4 Test Procedure	29
11.5 Test Result	
12. TEST OF SPURIOUS RADIATED EMISSION	32
12.1 APPLICABLE STANDARD	32
12.2 EUT SETUP	
12.3 TEST EQUIPMENT LIST AND DETAILS	33
12.4 Test Procedure	33
12.5 Test Result	34

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Applicant: SHENZHEN PENGHONG TECHNOLOGY MANUFACTORY

Address of applicant: Blg.1, 2th Industrial Zone, Bai Shi Long, Minzhi, Longhua,

Shenzhen, Guangdong, China

Manufacturer: SHENZHEN PENGHONG TECHNOLOGY MANUFACTORY

Address of manufacturer: Blg.1, 2th Industrial Zone, Bai Shi Long, Minzhi, Longhua,

Shenzhen, Guangdong, China

Equipment Under Test: Bluetooth USB Adapter

Model No.: PH-0161F

Type of Modulation: FHSS

Frequency Band: 2401 MHz ~ 2480 MHz
Bluetooth Specification: Bluetooth V1.2 Compliant

Number of Channels: 31

Channel Bandwidth: 2 MHz

Range of operation: Max 100m

Antenna Type: Built-in Antenna

Power Supply: 5 V DC from PC system

Remark: * The test data gathered are from the production sample provided by the manufacturer.

1.2 Related Submittal(s) / Grant (s)

This submittal(s) is a test report based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4 - 2003.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.207, and 15.247 rules.

1.3 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 - 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. Radiated testing was performed at an antenna to EUT distance 3 meters.

Report No.:BCT06IC-029E Page 4 of 41

1.4 Test Facility

All measurement required was performed at laboratory of Shenzhen Huatongwei International Inspection Co., Ltd at Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China and SGS-CSTC Standards Technical Services Co., Ltd ShenZhen Branch EMC Lab at No.1 Workshop, M-10, Middle Section, Science&Technology Park, Shenzhen 518057, Cina

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 662850

Shenzhen Huatongwei International Inspection Co., Ltd, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 662850, November 17, 2003.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd ShenZhen Branch EMC Lab, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 556682.

Report No.:BCT06IC-029E Page 5 of 41

2. SYSTEM TEST CONFIGURATION

The tests documented in this report were performed in accordance with ANSI C63.4-2003 and FCC CFR 47 Part 15 Subpart C.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 3 or 10 meters from the leading edge of the turntable.

2.3 General Test Procedures

Conducted Emissions The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 7.1 of ANSI C63.4-2003. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak detector mode.

Radiated Emissions The EUT is a placed on as turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4-2003.

Report No.:BCT06IC-029E Page 6 of 41

2.4 List of Measuring Equipments Used

Items	Equipment	Manufacturer	Model No.	Serial No.	Last Cal	Calibration Period
For Rad	iated Spurious Emissi	on (30~25GHz) t	test: SGS-CS	TC Shenzhen	Branch	
1	EMI Test Receiver	ROHDE & SCHWARZ	ESI 26	100079	2005/6	1 year
2	Horn Antenna	R/S	CH14-H052	1091698	2006/2	1 year
3	3m Semi- Anechoic Chamber	ETS	N/A	N/A	2005/6	1 year
For other	test: Shenzhen Huatonç	gwei International I	nspection Co.,	Ltd		
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCS30	100038	2005/11	1 year
2	EMI Test Receiver	ROHDE & SCHWARZ	ESI 26	100009	2005/11	1 year
3	Receiver/ Spectrum Analyzer	ROHDE & SCHWARZ	ESCI	100106	2005/3	1 year
4	Spectrum Analyzer	HP	8593EM	3536A00107	2005/11	1 year
5	Spectrum Analyzer	HP	7405	US39440156	2005/11	1 year
6	Artificial Mains	ROHDE & SCHWARZ	ESH2-Z5	100028	2005/11	1 year
7	Pulse Limiter	ROHDE & SCHWARZ	ESHSZ2	100044	2005/11	1 year
8	LISN	COM Power	LI-200	12212	2005/11	1 year
9	LISN	COM Power	LI-200	12019	2005/11	1 year
10	3m/5m Semi- Anechoic Chamber	ETS	N/A	N/A	2005/11	1 year
11	Ultra-Broadband Antenna	R/S	HL562	100015	2005/11	1 year
12	Horn Antenna	R/S	HF906	100039	2005/11	1 year
13	Horn Antenna	R/S	CH14-H052	1091698	2006/2	1 year
14	RF Test Panel	R/S	TS / RSP	335015/ 0017	N/A	N/A
15	Turntable	ETS	2088	2149	N/A	N/A
16	Antenna Mast	ETS	2075	2346	N/A	N/A

Report No.:BCT06IC-029E Page 7 of 41

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
15.203/15.247(b)/(c)	Antenna Requirement	Pass
15.207	AC Power Line Conducted Emission	Pass
15.247(a)(1)	Hopping Channel Bandwidth	Pass
15.247(a)(1)	Hopping Channel Separation	Pass
15.247(a)(1)	Number of Hopping Frequency Used	Pass
15.247(a)(1)(iii)	Dwell Time of Each Frequency	Pass
15.247(b)(1)	Maximum Peak Output Power	Pass
15.247(d)	Band Edges Emission	Pass
15.247(d)	Spurious Radiated Emission	Pass

Report No.:BCT06IC-029E Page 8 of 41

4. ANTENNA REQUIREMENT

4.1 Standard Applicable

Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 15.247(b)/(c):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

4.2 Antenna Connected Construction

The antenna connector is designed with permanent attachment and no consideration of replacement.

Report No.:BCT06IC-029E Page 9 of 41

5. TEST OF CONDUCTED EMISSION

5.1 Applicable Standard

Section 15.207: For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency Range (MHz)	Limits	(dBuV)
r requeitcy Range (Wiriz)	Quasi-Peak	Average
0.150~0.500	66∼56	56∼46
0.500~5.000	56	46
5.000~30.00	60	50

5.2 Test Setup Diagram

Remark: 1. The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC 15.207 limits.

2. The EUT was connected to a 120 VAC/ 60Hz power source

Report No.:BCT06IC-029E Page 10 of 41

5.3 Test Result

Temperature ($^{\circ}$ C): 22~23 EUT: Bluetooth USB Adapter

Humidity (%RH): 50~54 M/N: PH-0161F

Frequency (MHz)	Level (dBuV)	Margin (dB)	Limit Line (dBuV)	Read Level (dBuV)	LISN Factor (dB)	Cable Loss (dB)	Remark	Line
0.15	33.81	-32.01	65	33.4	0.1	0.31	QP	L
0.15	12.72	-43.10	55	12.31	0.1	0.31	AV	L
0.28	25.24	-35.35	60	25.03	0.1	0.11	QP	L
0.28	9.99	-40.60	50	9.78	0.1	0.11	AV	L
1.68	30.58	-25.42	56	30.35	0.1	0.13	QP	L
1.68	19.98	-26.02	46	19.75	0.1	0.13	AV	L
4.01	23.74	-32.26	56	23.44	0.2	0.10	QP	L
4.01	14.74	-31.26	46	14.44	0.2	0.10	AV	L
10.68	31.3	-28.70	60	30.61	0.2	0.49	QP	L
10.68	25.77	-24.23	50	25.08	0.2	0.49	AV	L
15.55	25.81	-34.19	60	25.06	0.2	0.54	QP	L
15.55	20.14	-29.86	50	19.39	0.2	0.54	AV	L

Frequency (MHz)	Level (dBuV)	Margin (dB)	Limit Line (dBuV)	Read Level (dBuV)	LISN Factor (dB)	Cable Loss (dB)	Remark	Line
0.25	42.59	-18.89	61	42.41	0.10	0.08	QP	N
0.25	33.50	-17.98	51	33.32	0.10	0.08	AV	N
1.03	36.34	-19.66	56	35.82	0.10	0.42	QP	N
1.03	22.58	-23.42	46	22.06	0.10	0.42	AV	N
1.40	32.61	-23.39	56	32.28	0.10	0.23	QP	N
1.40	18.24	-27.76	46	17.91	0.10	0.23	AV	N
7.33	29.69	-30.31	60	29.47	0.17	0.05	QP	N
7.33	16.88	-33.12	50	16.66	0.17	0.05	AV	N
12.74	44.09	-15.91	60	43.06	0.20	0.83	QP	N
12.74	43.47	-6.53	50	42.44	0.20	0.83	AV	N
23.12	42.90	-17.10	60	42.35	0.36	0.19	QP	N
23.12	42.51	-7.49	50	41.96	0.36	0.19	AV	N

Report No.:BCT06IC-029E Page 11 of 41

6. Test of Hopping Channel Bandwidth

6.1 Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

6.2 EUT Setup

6.3 Test Equipment List and Details

See section 2.4.

6.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 30KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is Auto.
- 4. The spectrum width with level higher than 20dB below the peak level.
- 5. Repeat above 1~3 points for the middle and highest channel of the EUT.

6.5 Test Result

Temperature (°C): 22~23 EUT: Bluetooth USB Adapter

Humidity (%RH): 50~54 M/N: PH-0161F

Barometric Pressure (mbar): 950~1000 Operation Condition: Tx/Rx Mode

Modulation Type	Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	Min. Limit (kHz)
FHSS	LOW	2401.84	516	>25
FHSS	MID	2440.83	789	>25
FHSS	HIG	2479.41	817	>25

Report No.:BCT06IC-029E Page 12 of 41

Channel Low:

Date: 13.SEP.2006 08:34:45

Report No.:BCT06IC-029E Page 13 of 41

Channel MID:

Date: 13.SEP.2006 09:00:38

Report No.:BCT06IC-029E Page 14 of 41

Channel HIG:

Date: 13.SEP.2006 08:58:06

Report No.:BCT06IC-029E Page 15 of 41

7. Test of Hopping Channel Separation

7.1 Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

7.2 EUT Setup

7.3 Test Equipment List and Details

See section 2.4.

7.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is Auto.
- 4. The Hopping Channel Separation is defined as the separation between 2 neighboring hopping frequencies.
- 5. Repeat above 1~3 points for the middle and highest channel of the EUT.

7.5 Test Result

Temperature (°C): 22~23 EUT: Bluetooth USB Adapter

Humidity (%RH): 50~54 M/N: PH-0161F

Barometric Pressure (mbar): 950~1000 Operation Condition: Tx/Rx Mode

Report No.:BCT06IC-029E Page 16 of 41

Channel Low:

Date: 13.SEP.2006 09:16:25

Channel MID:

Date: 13.SEP.2006 09:27:37

Report No.:BCT06IC-029E Page 18 of 41

Channel HIG:

Report No.:BCT06IC-029E Page 19 of 41

8. Test of Number of Hopping Frequency

8.1 Applicable Standard

Section 15.247(a)(1)(iii): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 15 non-overlapping hopping channels. Frequency hopping system which use fewer than 75 hopping frequencies may employ intelligent hopping techniques to avoid interference to other transmissions. Frequency hopping system may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non-overlapping channels are used.

8.2 EUT Setup

8.3 Test Equipment List and Details

See section 2.4.

8.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is Auto.
- 4. Observe frequency hopping in 2400MHz~2483.5MHz, there are at least 32 non-overlapping channels.
- 5. Repeat above 1~3 points for the middle and highest channel of the EUT.

8.5 Test Result

Temperature (°C): 22~23 EUT: Bluetooth USB Adapter

Humidity (%RH): 50~54 M/N: PH-0161F

Barometric Pressure (mbar): 950~1000 Operation Condition: Tx/Rx Mode

Report No.:BCT06IC-029E Page 20 of 41

Modulation Type	Frequency (MHz)	Number of Hopping Channel (Channels)	Min. Limit (kHz)
FHSS	2401.8~2479.40	31	>15

Date: 13.SEP.2006 09:04:45

Report No.:BCT06IC-029E Page 21 of 41

9. Test of Dwell Time of Each Frequency

9.1 Applicable Standard

Section 15.247(a)(1)(iii): For frequency hopping systems operating in the 2400-2483.5 MHz band The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4seconds multiplied by the number of hopping channels employed.

9.2 EUT Setup

9.3 Test Equipment List and Details

See section 2.4.

9.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 1000kHz and VBW to 1000kHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is more than once pulse time.
- 4. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- 5. Measure the maximum time duration of one single pulse.

9.5 Test Result

Temperature (°C): 22~23 EUT: Bluetooth USB Adapter

Humidity (%RH): 50~54 M/N: PH-0161F

Barometric Pressure (mbar): 950~1000 Operation Condition: Tx/Rx Mode

Report No.:BCT06IC-029E Page 22 of 41

Modulation Type	Channel No.	Frequency (MHz)	Dwell Time (ms)	Limit (ms)
FHSS	LOW	2401.84	19.8	400
FHSS	MID	2440.79	20.9	400
FHSS	HIG	2479.41	22.9	400

The period is 0.4(Sec)*31(Channels)=12.4sec 12.4(Sec)*10(hoping/sec)=124(hops)

Per one period of On time is: 0.160ms(Channel Low), 0.168ms (Channel MID), 0.185ms(Channel HIG)

The Result is:

Channel Low the dwell time is 0.160*124=19.8ms
Channel MID the dwell time is 0.168*124=20.9ms
Channel HIG the dwell time is 0.185*124=22.9ms

Report No.:BCT06IC-029E Page 23 of 41

Channel Low:

Date: 12.SEP.2006 19:22:55

Report No.:BCT06IC-029E Page 24 of 41

Channel MID:

Date: 12.SEP.2006 19:27:59

Report No.:BCT06IC-029E Page 25 of 41

Channel HIG:

Date: 12.SEP.2006 19:24:12

10. Test of Maximum Peak Output Power

10.1 Applicable Standard

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels and The maximum peak output power shall not exceed 1 watt. For all other frequency hopping systems in this frequency band, The maximum peak output power shall not exceed 0.125 watt.

10.2 EUT Setup

10.3 Test Equipment List and Details

See section 2.4.

10.4 Test Procedure

- 1. The transmitter output was connected to the peak power meter and recorded the peak value.
- 2. Peak power meter parameter set to auto attenuator and filter is the same as.
- 3. Repeated the 1 for the middle and highest channel of the EUT.

10.5 Test Result

Temperature (°C): 22~23 EUT: Bluetooth USB Adapter

Humidity (%RH): 50~54 M/N: PH-0161F

Barometric Pressure (mbar): 950~1000 Operation Condition: Tx/Rx Mode

Modulation Type	Channel No.	Frequency (MHz)	Output Power (dBm)	Limits (dBm)	Margin (dB)
FHSS	Low	2401.84	-26.5	20.9	47.4
FHSS	MID	2440.79	-27.1	20.9	48.0
FHSS	HIG	2479.41	-25.7	20.9	46.6

Report No.:BCT06IC-029E Page 27 of 41

11. Test of Band Edges Emission

11.1 Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

11.2 EUT Setup

Radiated Measurement Setup

Conducted Measurement Setup

Report No.:BCT06IC-029E Page 28 of 41

11.3 Test Equipment List and Details

See section 2.4.

11.4 Test Procedure

Conducted Measurement

- 1. The transmitter is set to the lowest channel.
- 2. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.
- 3. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100MHz bandwidth from lower band edge. Then detector set to peak and max hold this trace.
- 4. The lowest band edges emission was measured and recorded.
- 5. The transmitter set to the highest channel and repeated 2~4.

Radiated Measurement

- 1. Configure the EUT according to ANSI C63.4.
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For band edge emission, use 10Hz VBW and 1MHz RBW for reading under AV and use 1MHz VBW and 1MHz RBW for reading under PK.

11.5 Test Result

Temperature (°C): 22~23 EUT: Bluetooth USB Adapter

Humidity (%RH): 50~54 M/N: PH-0161F

Barometric Pressure (mbar): 950~1000 Operation Condition: Tx/Rx Mode

Report No.:BCT06IC-029E Page 29 of 41

Radiated Test Result

Frequency (MHz)	Antenna Polarization	Emission Read Value (dBµV/m)	Limits (dBµV/m)
<2400	Н	21.8	54
>2483.5	Н	22.4	54

Conducted Test Result

Date: 12.SEP.2006 19:13:32

Report No.:BCT06IC-029E Page 30 of 41

Date: 12.SEP.2006 19:09:40

Report No.:BCT06IC-029E Page 31 of 41

12. Test of Spurious Radiated Emission

12.1 Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

12.2 EUT Setup

Radiated Measurement Setup

Figure 1: Frequencies measured below 1 GHz configuration

Report No.:BCT06IC-029E Page 32 of 41

Figure 2: Frequencies measured above 1 GHz configuration

Conducted Measurement Setup

12.3 Test Equipment List and Details

See section 2.4.

12.4 Test Procedure

Radiated Measurement

- 1. Configure the EUT according to ANSI C63.4.
- 2. The EUT was placed on the top of the turntable 0.8 meter above ground.
- 3. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 4. Power on the EUT and all the supporting units.
- 5. The turntable was rotated by 360 degrees to determine the position of the highest radiation.

Report No.:BCT06IC-029E Page 33 of 41

- 6. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 7. For each suspected emission, the antenna tower was scanned (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 8. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.

Conducted Measurement

- 1. For emission above 1GHz, conducted measurement method is used.
- 2. The transmitter is set to the lowest channel.
- 3. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.
- 4. Set RBW to 1 MHz and VBW to 3 MHz, Then detector set to peak and max hold this trace.
- 5. The lowest band edges emission was measured and recorded.
- 6. The transmitter set to the highest channel and repeated 2~4.

12.5 Test Result

Temperature (°C): 22~23 EUT: Bluetooth USB Adapter

Humidity (%RH): 50~54 M/N: PH-0161F

Barometric Pressure (mbar): 950~1000 Operation Condition: Tx / Rx & ChaegingMode

Report No.:BCT06IC-029E Page 34 of 41

Spurious Emission (30~1000MHz)

Maximum Frequency (MHz)	Polarity and Level				Limit	Margin
	Polarity	Value dBµV/m	Transd	Result dBµV/m	dBμV/m	dBμV/m
30.00	V	47.37	11.72	35.65	40	4.35
158.00	V	38.40	13.14	25.26	43.5	18.24
363.37	V	38.13	13.82	24.31	46	21.69
480.01	V	36.21	17.29	18.92	46	27.08
500.06	V	35.24	18.50	16.74	46	29.26
30.00	Н	55.20	19.01	36.19	40	3.81
158.00	Н	41.89	14.67	27.22	43.5	16.28
363.37	Н	38.67	13.51	25.16	46	20.84
400.00	Н	36.20	17.42	18.78	46	27.22
480.01	Н	37.60	17.71	19.89	46	26.11
500.06	Н	34.97	18.23	16.74	46	29.26

Remark: Transd.=Antenna Factor+Cable Loss-Pre-amplifier

Report No.:BCT06IC-029E Page 35 of 41

Harmonics

Channel HIG							
Maximum Frequency (MHz)		Polarity	Limit	Margin			
	Polarity	Value dBµV/m	Transd	Result dBµV/m	dBμV/m	dBμV/m	
4958.78	Н	49.3	24.1	25.2	54.0	28.8	
4958.78	V	50.2	24.5	25.7	54.0	28.3	
7438.21	Н	49.8	24.6	25.2	54.0	28.8	
7438.21	V	52.4	24.8	27.6	54.0	26.4	
9917.63	Н	46.2	27.7	18.5	54.0	35.5	
9917.63	V	50.6	28.2	22.4	54.0	31.6	
12397.05							
14876.38							
17355.73							
19835.32							
22314.57							
24794.41							

Remark: 1. Transd.=Antenna Factor+Cable Loss-Pre-amplifier

2. Datas of measurement within this frequency range shown " -" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Channel MID						
Maximum Frequency (MHz)	Position and Level				Limit	Margin
	Polarity	Value dBµV/m	Transd	Result dBµV/m	dBμV/m	dBμV/m
4883.65	Н	48.3	24.1	24.2	54.0	29.8
4883.65	V	49.2	24.6	24.6	54.0	29.4
7325.42	Н	50.7	24.9	25.8	54.0	28.2
7325.42	V	51.0	24.7	26.3	54.0	27.7
9767.23	Н	46.2	27.5	18.7	54.0	35.3
9767.23	V	47.3	28	19.3	54.0	34.7
12209.51						
14650.80						
17092.62						
19229.17						
21632.82						
24418.80						

Report No.:BCT06IC-029E Page 36 of 41

Remark: 1. Transd.=Antenna Factor+Cable Loss-Pre-amplifier

2. Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

	Channel Low						
Maximum Frequency (MHz)	Polarity and Level				Limit	Margin	
	Polarity	Value dBµV/m	Transd	Result dBµV/m	dBμV/m	dBμV/m	
4803.68	Н	48.0	24.2	23.8	54.0	30.2	
4803.68	V	49.5	24.4	25.1	54.0	28.9	
7205.49	Н	48.6	24.6	24.0	54.0	30	
7205.49	V	50.0	24.8	25.2	54.0	28.8	
9607.24	Н	49.7	27.5	22.2	54.0	31.8	
9607.24	V	50.4	28.1	22.3	54.0	31.7	
12009.34							
14410.74							
16812.68							
19214.72							
21616.56							
24018.40							

Remark: 1. Transd.=Antenna Factor+Cable Loss-Pre-amplifier

2. Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Report No.:BCT06IC-029E Page 37 of 41

CONDUCTED TEST RESULT(1~10GHz)

Channel Low:

Date: 13.5E1.2000 13.05.40

Report No.:BCT06IC-029E Page 38 of 41

Channel MID:

Date: 13.SEP.2006 15:01:17

Report No.:BCT06IC-029E Page 39 of 41

Channel HIG:

Date: 13.SEP.2006 14:53:45

CONDUCTED TEST RESULT (10~25GHz)

Date: 13.SEP.2006 16:32:48

Report No.:BCT06IC-029E Page 41 of 41