zkLedger Privacy-preserving auditing for distributed ledgers

Neha Narula

Willy Vasquez Madars Virza

Structure of the financial system

- Dozens of large investment banks
- Trading:
 - Securities
 - Currencies
 - Commodities
 - Derivatives
- 40% unregulated
- Trillions of dollars
- Tens of trades/minute

A ledger records financial transactions

ID	Asset	From	То	Amount
90	\$	Citibank	Goldman Sachs	1,000,000
91	€	JP Morgan	UBS	200,000 g
92	€	JP Morgan	Barclays	3,000,000

Can verify important financial invariants

ID	Asset	From	То	Amount
90	\$	Citibank	Goldman Sachs	1,000,000
91	€	JP Morgan	UBS	200,000 g
92	€	JP Morgan	Barclays	3,000,000

Examining ledger

Verify

- ✓ Consent to transfer
- ✓ Has assets to transfer
- Assets neither created nor destroyed

Banks care about privacy

Trades reveal sensitive strategy information

Verifying invariants are maintained with privacy

ID	Asset	From	То	Amount
90	\$	Citibank	Goldman Sachs	1,000,000 Sin
91	€	JP Morgan	UBS	200,000
92	€	JP Morgan	Barclays	3,000,000

Verify

Consent to transfer
Has assets to transfer
Assets neither created nor
destroyed

Verifying invariants are maintained with privacy

Zerocash (zk-SNARKs) [S&P 2014] Solidus (PVORM) [CCS 2017]

<u>Verify</u>

- ✓ Consent to transfer
- ✓ Has assets to transfer
- Assets neither created nor destroyed

Problem

Regulators need insight into markets to maintain financial stability and protect investors

- Leverage
- Exposure
- Overall market concentration

How to confidently audit banks to determine risk?

zkLedger

A private, auditable transaction ledger

- Privacy: Hides transacting banks and amounts
- Integrity with public verification: Everyone can verify transactions are well-formed
- Auditing: Compute provably-correct linear functions over transactions

Outline

- System model
- zkLedger design
 - Hiding commitments
 - Ledger table format
 - Zero-knowledge proofs
- Evaluation

Outline

- System model
- zkLedger design
 - Hiding commitments
 - Ledger table format
 - Zero-knowledge proofs
- Evaluation

zkLedger system model

An auditor can obtain correct answers on ledger contents

Measurements zkLedger supports

- Ratios and percentages of holdings
- Sums, averages, variance, skew
- Outliers
- Approximations and orders of magnitude
- Changes over time
- Well-known financial risk measurements (Herfindahl-Hirschmann index)

Small amounts of well-defined leakage

Security goals

Privacy

 The auditor and non-involved parties cannot see transaction participants or amounts

Completeness

 Banks cannot lie to the auditor or omit transactions

Integrity

- Banks cannot violate financial invariants
 - Honest banks can always **convince** the auditor of a correct answer

Progress

 A malicious bank cannot block other banks from transacting

Threat model

Banks might attempt to steal or hide assets, manipulate balances, or lie to the auditor

Banks can arbitrarily collude

Banks or the auditor might try to learn transaction contents

Out of scope:

A ledger that omits transactions or is unavailable

An adversary watching network traffic

Banks leaking their own transactions

Outline

- System model
- zkLedger design
 - Hiding commitments
 - Ledger table format
 - Zero-knowledge proofs
- Evaluation

Example public transaction ledger

ID	Asset	From	То	Amount
1	€	Depositor	Goldman Sachs	30,000,000
2	€	Goldman Sachs	JP Morgan	10,000,000
3	€	JP Morgan	Barclays	1,000,000
4	€	JP Morgan	Barclays	2,000,000

Depositor injects assets to the ledger

ID	Asset	From	То	Amount
1	€	Depositor	Goldman Sachs	30,000,000
2	€	Goldman Sachs	JP Morgan	10,000,000
3	€	JP Morgan	Barclays	1,000,000
4	€	JP Morgan	Barclays	2,000,000

Goals: auditing + privacy

ID	Asset	From		То	Amount
1	€	Depositor		Goldman Sachs	30,000,000
2	€	Goldman Sachs		JP Morgan	10,000,000
3	€	JP Morgan		Barclays	1,000,000
4	€	JP Morgan		Barclays	2,000,000

Goals:

- Provably audit Barclays to find Euro holdings
- Hide participants, amounts, and transaction graph

Hide amounts with commitments

	ID	Asset	From	То	Amount
	1	€	Depositor	Goldman Sachs	30M
	2	€	Goldman Sachs	JP Morgan	comm(10M)
	3	€	JP Morgan	Barclays	comm(1M)
	4	€	JP Morgan	Barclays	comm(2M)
Ped	ersen	= comm(13M)			
Bank creates comm(v) $= e^{v} h^{r}$				Can achieve all	- Comm(13h)

<u>Important properties</u>

- Binding
- Homomorphically combined
- Fast

Can achieve all auditing functions with Pedersen Commitments! (see paper)

Hide participants with other techniques

ID	Asset	From	То	Amount
1	€	Depositor	Goldman Sachs	30M
2	€	Goldman Sachs	JP Morgan	comm(10M)
3	€	JP Morgan	Barclays	comm(1M)
4	€	JP Morgan	Barclays	comm(2M)

Strawman: audit by opening up combined commitments

A malicious bank could omit transactions

A malicious bank could omit transactions

ID	Asset	From	То	Amount
1	€	Depositor	Goldman Sachs	30M
2	€	Goldman Sachs	JP Morgan	comm(10M)
3	€	JP Morgan	Barclays	comm(1M)
4	€	JP Morgan	Barclays	comm(2M)

zkLedger design: an entry for every bank in every transaction

ID	Asset	Goldman Sachs	JP Morgan	Barclays
1 € Depositor, Goldman Sachs, 30M				
2	€	comm(-10M)	comm(10M)	comm(0)
3	€	comm(0)	comm(-1M)	comm(1M)
4	€	comm(0)	comm(-2M)	comm(2M)

Depositor transactions are public
Spender's column commits to negative value, receiver's positive value

For non-involved banks, entries commit to 0 Indistinguishable from commitments to non-zero values

Key insight: auditor audits *every* transaction

ID	Asset	Goldman Sachs	JP Morgan	Barclays
1	€	Depositor, Goldmar	n Sachs, 30M	
2	€	comm(-10M)	comm(10M)	comm(0)
3	€	comm(0)	comm(-1M)	comm(1M)
4	€	comm(0)	comm(-2M)	comm(2M)

A malicious bank can't produce a proof for a different answer

ID	Asset	Goldman Sachs	JP Morgan	Barclays
1	€	Depositor, Goldmar	n Sachs, 30M	
2	€	comm(-10M)	comm(10M)	comm(0)
3	€	comm(0)	comm(-1M)	comm(1M)
4	€	comm(0)	comm(-2M)	comm(2M)

Computing averages

ID	Asset	Goldman Sachs	JP Morgan	Barclays			
1	€	Depositor, Goldman Sachs, 30M					
2	€	comm(-10M)	comm(10M)	comm(0)			
3	€	comm(0)	comm(-1M)	comm(1M)			
4	€	comm(0)	comm(-2M)	comm(2M)			
		What is you	ır average				

Recommitments

Security goals

Privacy

Completeness

Integrity

Progress

The auditor and non-involved parties **cannot see** transaction participants, amounts, or transaction graph

Banks **cannot lie** to the auditor or **omit** transactions

- Banks cannot violate financial invariants
 - Honest banks can always **convince** the auditor of a correct answer
- A malicious bank cannot block other banks from transacting

Non-interactive zero-knowledge proofs (NIZKs)

- Short, binary strings
- True statements have proofs
- False statements only have proofs with negligible probability
- Proofs don't reveal why they are true

Achieving integrity and progress using NIZKs

- Transaction validity
 - Consent to transfer
 - Have assets to transfer
 - Assets neither create nor destroyed
- Honest banks can make progress
 - Non-interactive

Consent NIZK

Assets NIZK

Balance NIZK

Consistency NIZK

See paper for details

Proofs of transaction correctness

- Consent Knowledge of secret key sk spending
- **Assets** If spending, have assets to spend. Adding entry *i* for transaction *m*, new commitment comm_{aux}:

comm_{aux} commits to Spending: $\sum_{i=1}^{n} v_i$ OR Not spending: v_i and a proof that the value in comm_{aux} is in range

Borromean ring signatures, Confidential Assets

• **Balance** No funds created or destroyed (one per transaction):

Choose r's such that $\sum_{i=1}^{n} r_i$ is 0

Outline

- System model
- zkLedger design
 - Hiding commitments
 - Ledger table format
 - Zero-knowledge proofs
- Evaluation

Implementation

- zkLedger written in Go
- Elliptic curve library: btcec, secp256k1
- Range proofs to prevent overflow: Confidential Assets [FC 2017]
- ~4000 loc

Evaluation

- How fast is auditing?
- How does zkLedger scale with the number of banks?

Experiments on 12 4 core Intel Xeon 2.5Ghz VMs, 24 GB RAM

Simple auditing is fast and independent of ledger size

Auditing 4 banks measuring market concentration

More complex forms of auditing are linear in size of ledger

Auditing 4 banks measuring market concentration

Processing transactions scales linearly

One bank creating transactions. Includes ledger, auditor, and other banks verifying

Proof component sizes and times

#	Component	Create	Verify	Size	
-2k	Commitment	0.5 ms	0.5 ms	64 B	one elliptic
2k	Consistency	$0.7\mathrm{ms}$	$0.8\mathrm{ms}$	224 B	curve point
\boldsymbol{k}	Disjunctive	$0.9\mathrm{ms}$	$0.9\mathrm{ms}$	288 B	
\boldsymbol{k}	Range	4.7 ms	$3.5 \mathrm{ms}$	3936 B	2X slower
1					4.5X larger

Number in transaction for *k* participants

Cost in a transaction per bank

• Entry size: 4.5KB

• Creating an entry: **8ms**

× # banks

Verifying an entry: 7ms

Highly parallelizable

Significant opportunities for compression and speedup

Related Work

No private auditing

- Confidential Assets [FC 2017]
- Zerocash [S&P 2014]

<u>Cannot guarantee completeness</u>

- Privacy-preserving methods for sharing financial risk exposures
 [2011]
- Provisions [CCS 2015]

Our techniques might apply

Solidus [CCS 2017]

Accountable privacy for decentralized anonymous payments [FC 2016

Design for policy enforcement, not auditing

Future Work

- Other applications (public bulletin board)
- Beyond Pedersen commitments
- Optimize implementation (Bulletproofs)

Conclusion

zkLedger provides practical privacy and complete auditing on transaction ledgers

zkledger.org