Composability of quantum protocols

Applications to Quantum Key Distribution & Quantum Authentication

Debbie Leung, Caltech QIP 2004, Waterloo

Joint work with Ben-Or, Hayden, M. Horedecki, Mayers, Oppenheim

Composability: Motivation

QKD is "unconditionally secure":

 \forall Eve's strategy s.t. Pr(success) is non-negligible, key $k \approx k_A \approx k_B \& I(k_E:k) \le e^{-\alpha n}$.

Composability: Motivation

Is "QKD + encryption" secure ???

Criteria $I(k_E:k) \le e^{-\alpha n}$ applicable only if Eve measures to learn about k.

Composability: Motivation

more info than sum of info obtained from individual measurements

Composability: Motivation (scary story)

Possibility of unlocking information:

DiVincenzo, M. Horedecki, Leung, Smolin, Terhal 0303088, Hayden, Leung, Shor, Winter 0307104

Examples are found $I_2 \gg I_1 + \text{size(h)}$.

Outline:

- Universal composability theorem in quantum/classical case.
 - Statement & intuition
- Composability of QKD
 - Motivation (key degradation)
 - Usual security criteria implies composable security criteria
- Composability of QAuth
 - Motivation (key recycling)
 - Composability of BCGST02
 & related protocols

Reference:

Ben-Or, Mayers 02 (Inheriting much from the classical case, e.g. see Canetti 01.)

Qn:Bennett, Smolin, partial sol'n:Harrow

Ben-Or, M. Horedecki, Leung, Mayers, Oppenheim 02

0306161

Partial sol'n by M. Horedecki, Oppenheim

Hayden, Leung, Mayers 03

Universal composable security definition Universal composability theorem

Composability: general problem

Universal composability theorem:

- When is a subprotocol "secure enough" to be used in a larger protocol?
- When is the main protocol secure, given "enough security" of all constituent subprotocols?

Universal: independent of what subprotocols & how they are implemented (imperfectly).

Universal composable security definition

A real protocol " σ " imperfectly realizes an ideal protocol σ^{I} .

"Env": controls the use of σ (full access to its inputs/outputs), controls all corrupted parties in σ , & eavesdrops on communication in σ .

A "simulator" $S(\sigma)$, depending on the given Env, is added to σ^I . Env tries to distinguish between " σ " & " $\sigma^I + S(\sigma)$ ".

Let z be Env's 1-bit answer.

Universal composable security definition

A real protocol " σ " imperfectly realizes an ideal protocol σ^{I} .

"Env": controls the use of σ (full access to its inputs/outputs), controls all corrupted parties in σ , & eavesdrops on communication in σ .

A "simulator" $S(\sigma)$, depending on the given Env, is added to σ^I . Env tries to distinguish between " σ " & " $\sigma^I + S(\sigma)$ ".

Let z be Env's 1-bit answer.

Universal composable security definition

Env tries to distinguish between " σ " & " σ ^I+S(σ)", simulator tries to confuse Env. Let z be Env's 1-bit answer.

Universal composable security definition:

$$σ$$
 ε-s.r. $σ$ ^I if $∀$ Env (applications + adversaries + eavesdropping strategies) $∃$ S($σ$) s.t. $| Pr(z=0 | σ) - Pr(z=0 | σ$ ^I+S($σ$)) $| ≤ ε$.

Mediated by S:

Corrupted parties

Not mediated:

Let $\Pi(\sigma)$ be a real protocol that uses a real subprotocol σ .

If
$$\Pi(\sigma^I)$$
 ϵ_1 -s.r. Π^I and σ ϵ_2 -s.r. σ^I (to implement Π^I) then $\Pi(\sigma)$ $(\epsilon_1+\epsilon_2)$ -s.r. Π^I .

NB: Security definition crafted to make this hold.

Let $\Pi(\sigma)$ be a real protocol that uses a real subprotocol σ .

If
$$\Pi(\sigma^I)$$
 ϵ_1 -s.r. Π^I and σ ϵ_2 -s.r. σ^I then $\Pi(\sigma)$ $(\epsilon_1+\epsilon_2)$ -s.r. Π^I .

Universal composability theorem (II) (recursive use of (I))

- (i) no security deadlock (e.g. a tree-like subprotocol structure)
- (ii) for each node $\eta(\sigma^I, \mu^I, ...)$ s.r. η^I .
- (iii) each subprotocol is secure

Let $\Pi(\sigma)$ be a real protocol that uses a real subprotocol σ .

If
$$\Pi(\sigma^I)$$
 ϵ_1 -s.r. Π^I and σ ϵ_2 -s.r. σ^I then $\Pi(\sigma)$ $(\epsilon_1+\epsilon_2)$ -s.r. Π^I .

Universal composability theorem (II) (recursive use of (I))

- (i) no security deadlock (e.g. a tree-like subprotocol structure)
- (ii) for each node $\eta(\sigma^I, \mu^I, ...)$ s.r. η^I .
- (iii) each subprotocol is secure

Let $\Pi(\sigma)$ be a real protocol that uses a real subprotocol σ .

If
$$\Pi(\sigma^I)$$
 ϵ_1 -s.r. Π^I and σ ϵ_2 -s.r. σ^I then $\Pi(\sigma)$ $(\epsilon_1+\epsilon_2)$ -s.r. Π^I .

Universal composability theorem (II) (recursive use of (I))

- (i) no security deadlock (e.g. a tree-like subprotocol structure)
- (ii) for each node $\eta(\sigma^I, \mu^I, ...)$ s.r. η^I .
- (iii) each subprotocol is secure

Let $\Pi(\sigma)$ be a real protocol that uses a real subprotocol σ .

If
$$\Pi(\sigma^I)$$
 ϵ_1 -s.r. Π^I and σ ϵ_2 -s.r. σ^I then $\Pi(\sigma)$ $(\epsilon_1+\epsilon_2)$ -s.r. Π^I .

Universal composability theorem (II) (recursive use of (I))

- (i) no security deadlock (e.g. a tree-like subprotocol structure)
- (ii) for each node $\eta(\sigma^I, \mu^I, ...)$ s.r. η^I .
- (iii) each subprotocol is secure

Let $\Pi(\sigma)$ be a real protocol that uses a real subprotocol σ .

If
$$\Pi(\sigma^I)$$
 ϵ_1 -s.r. Π^I and σ ϵ_2 -s.r. σ^I then $\Pi(\sigma)$ $(\epsilon_1+\epsilon_2)$ -s.r. Π^I .

Universal composability theorem (II) (recursive use of (I))

- (i) no security deadlock (e.g. a tree-like subprotocol structure)
- (ii) for each node $\eta(\sigma^I, \mu^I, ...)$ s.r. η^I .
- (iii) each subprotocol is secure

Let $\Pi(\sigma)$ be a real protocol that uses a real subprotocol σ .

If
$$\Pi(\sigma^I)$$
 ϵ_1 -s.r. Π^I and σ ϵ_2 -s.r. σ^I then $\Pi(\sigma)$ $(\epsilon_1+\epsilon_2)$ -s.r. Π^I .

Universal composability theorem (II) (recursive use of (I))

Arbitrarily complicated protocol Π is secure if

- (i) no security deadlock (e.g. a tree-like subprotocol structure)
- (ii) for each node $\eta(\sigma^I, \mu^I, ...)$ s.r. η^I .
- (iii) each subprotocol is secure

Apply (I) to replacing σ_i one by one from bottom to top.

Punchline

Universal composable security definition:

 σ ε-s.r. σ^I if \forall Env (applications + adversaries + eavesdropping strategies) \exists S(σ) s.t. | Pr(z=0 | σ) – Pr(z=0 | σ^I +S(σ)) | \leq ϵ .

Universal composability theorem:

 Π is secure if

(i) no security deadlock

(ii) for each node $\eta(\sigma^I, \mu^I, ...)$ s.r. η^I .

(iii) each subprotocol satisfies composable security definition

Composability of QKD (usual security) composable security)

<u>Application 1: Motivation – key degradation of QKD</u>

QKD relies on authentication, authentication relies on sharing a key

Authentication α Ideal authentication: α^I QKD κ Ideal key distribution: κ^I

Composable security of auth (using perfect key) known classically

Application 1: Composability of QKD (security of $\kappa(\alpha^{I})$)

 $\begin{array}{ll} \text{Auth: } \alpha & \text{Ideal auth: } \alpha^I \\ \text{QKD: } \kappa & \text{Ideal KD: } \kappa^I \end{array}$

Ideal KD: κ^{I}

Real vs Ideal

Application 1: Composability of QKD (security of $\kappa(\alpha^{I})$)

 $\begin{array}{ll} \text{Auth: } \alpha & \text{Ideal auth: } \alpha^I \\ \text{QKD: } \kappa & \text{Ideal KD: } \kappa^I \end{array}$

QKD $\kappa(\alpha^I)$

If QKD fails,
$$k_A = k_B = F$$

else, $k_A \approx k_B = k \in \{0,1\}^{\otimes m}$
 $p_k \approx 2^{-m} (1-p_F)$

Env sees:

$$\rho_{QKD} = \sum_{k} p_{k} |k\rangle\langle k| \otimes \rho_{k} + p_{F} |F\rangle\langle F| \otimes \rho_{F}$$

Eve (Env) determines

$$p_k$$
 , ρ_k , p_F , ρ_F

Ideal KD: κ^{I}

If j=1,
$$k_A = k_B = F$$
,
else j=0, $k_A = k_B = k \in_R \{0,1\}^{\otimes m}$
 $p_k = 2^{-m} (1-p_{i=1})$

Application 1: Composability of QKD (security of $\kappa(\alpha^{I})$)

QKD $\kappa(\alpha^I)$

If QKD fails,
$$k_A = k_B = F$$

else, $k_A \approx k_B = k \in \{0,1\}^{\otimes m}$
 $p_k \approx 2^{-m} (1-p_F)$

Env sees:

$$\rho_{QKD} = \sum_{k} p_{k} |k\rangle\langle k| \otimes \rho_{k} + p_{F} |F\rangle\langle F| \otimes \rho_{F}$$

Eve (env) determines p_k , ρ_k , p_F , ρ_F

Given the Env, we construct simulator $S(\kappa)$, with known p_k , ρ_k , p_F , ρ_F .

If j=1,
$$k_A = k_B = F$$
, $\rho_j = \rho_F$
else j=0, $k_A = k_B = k \in_R \{0,1\}^{\otimes m}$
 $p_k = 2^{-m} (1-p_F)$
 $\rho_{j=0} = \rho = (1-p_F)^{-1} \Sigma_k p_k \rho_k$

Env sees:

$$\rho_{\kappa^{I}} = \sum_{k} p_{k} |k\rangle\langle k| \otimes \rho + p_{F} |F\rangle\langle F| \otimes \rho_{F}$$

Auth: α Ideal auth: α^{I} QKD: κ | Ideal KD: κ^{I}

Claim: QKD $\kappa(\alpha^I)$ ϵ -s.r. κ^I where $\epsilon = 2^m I_{eve}$

$$\begin{array}{ll} \text{Proof:} & |\operatorname{Pr}(\,\,\text{z=0}\,|\,\,\text{QKD}) - \operatorname{Pr}(\,\,\text{z=0}\,|\,\,\kappa^{\mathrm{I}} + S(\kappa(\alpha^{\mathrm{I}})))\,| \\ & \leq I_{acc}\,(\{\,\rho_{\text{QKD}}\,,\,\rho_{\kappa^{\mathrm{I}}}\}_{\text{equiprobable}}) \\ & \leq 2^{\,m}\,\,I(k_{\text{E}};k|\,j) \\ & \\ & \text{Mechanical} \\ & \text{"subtle-ss" calculation} \end{array}$$

 $I(k_F:k|j) \approx 2^{-\alpha n}$, n = message size.

$$\begin{split} &|\text{ Pr(z=0 \mid QKD)} - \text{Pr(z=0 \mid \kappa^I + S(\kappa(\alpha^I)))}| \\ &\leq I_{acc}\left(\{\left.\rho_{QKD}\right., \left.\rho_{\kappa^I}\right.\}_{equiprobable}\right) \\ &\leq 2^m \left.I(k_E : k \mid j) \end{split} \quad \text{where } I_{acc}\left(\{p_x, \xi_x\right.\}\right) = \max_{y=\text{outcome of meas } \xi_x} I(X : Y) \\ &\leq 2^m \left.I(k_E : k \mid j) \end{split} \quad \rho_{QKD} = \sum_k p_k \mid k \rangle \langle k \mid \otimes \rho_k \\ &+ p_F \mid F \rangle \langle F \mid \otimes \rho_F \end{split}$$

$$\rho_{K^I} = \sum_k p_k \mid k \rangle \langle k \mid \otimes \rho \\ &+ p_F \mid F \rangle \langle F \mid \otimes \rho_F \end{split}$$

NB In many known QKD protocols, can bound $I_{acc}(\{\rho_{QKD}, \rho_{\kappa^I}\}_{equiprob})$ directly (i.e. analyze composable security directly, not in terms of the usual security definition) without 2^m factor.

Punchline

Auth: α Ideal auth: α^I QKD: κ Ideal KD: κ^I

- 1. QKD does provide a key that can be safely used in both quantum & classical applications designed to use a perfect key !!!
- 2. Insecurity of QKD increases only linearly with # repetitions.

Composability of "Quantum Auth with key recycling"

Application 2: Motivation – key recycling using quantum authentication

Q_{enc}: Quantum encryption (Ambainis, deWolf, Mosca, Tapp 0003101, Boykin, Roychowdhury 0003059) Encrypts a quantum message by a shared classical key k.

QA: Quantum-message auth (Barnum, Crepeau, Gottesman, Smith, Tapp 0205128) Ensure vanishing probability of accepting a fabricated or tampered quantum message, using a classical key.

<u>Application 2: Motivation – key recycling using quantum authentication</u>

Q_{enc}: Encrypts a quantum message by a shared classical key k.

QA: Ensure vanishing prob of accepting a fabricated/tamper quantum message using classical key.

Eavesdropping a quantum state disturbs it.

When performing Q_{enc} , if we further apply QA to the cipher-text, accepting the message in QA *strongly suggests* no eavesdropping, begging possibility to recycle the key – but hard to prove.

Will focus on key recycling of BCGST02.

QA always requires Q_{enc} (BCGST 0205128).

2 pts of view:

"Adding QA to Q_{enc} for key recycling" ≈ "<u>recycling encryption key in QA."</u>

Will prove composable security of reuse the encryption key in QA with privacy amplification when QA accepts the message!

Application 2: Composability of "QA (BCGST02) with key reusing"

- 1. Review BCGST02 (& scenario).
- Show composable security of BCGST02 is equiv to that of TQA, another authentication protocol based on teleportation.
 (Similar equivalence for the usual security was used in BCGST02).
- 3. Prove composable security of TQA.

Bonus material:

- 1. Quantum authentication of pure states for half the price.
- 2. On the lower bound of key size of quantum authentication

Application 2: Scenario for QA & key recycling

What is available to Alice & Bob in BCGST02:

- 1. Classical key
- 2. Insecure quantum channel
- 3. Forward classical channel (from Alice to Bob) (WLOG authenticated)
- 4. No back communication noninteractive
 - 2-way classical comm + quantum comm ⇒ QKD
 - applications to authenticate quantum storage

Here we allow a little back classical comm – necessary in key recycling – to inform Alice whether the key is successfully recycled or not.

OK Θstill rule out QKD & applies to quantum storage.

\rightarrow time <u>Application 2: Review of BCGST02</u> == bits BCGST02: Alice & Bob share keys x, z, y, t qubits if pass m-qubit states Alice x or gates drawn Bob x as 1-qubit Alice/z Bob z Purity test (PT) σ_{x} m-bit ρ keys pass/fail Qenc insecure m-qubit message quantum given to Alice channel Encode with q. code C_t, obtain Decode & meas syndrome y' according to C_t. (m+s)-qubit state, add syndrome If $y \neq y$, outputs "fail", and $|0\rangle\langle 0|$ y. [t,y≈s-bit, s<<m.]. If y = y', outputs "pass" If pass PT, decode & output

$$\rho_{\text{out}} = \rho' \otimes |\text{pass}\rangle\langle \text{pass}| + |0\rangle\langle 0| \otimes |\text{fail}\rangle\langle \text{fail}|$$

Application 2: Review of BCGST02

$$\rho_{\text{out}} = \rho' \otimes |\text{pass}\rangle\langle \text{pass}| + |0\rangle\langle 0| \otimes |\text{fail}\rangle\langle \text{fail}|$$

Security (pure ρ for simplicity):

$$\text{Tr}\left[\;\rho_{\text{out}}\;\left(\rho\otimes|\text{pass}\rangle\langle\text{pass}|+I\otimes|\text{fail}\rangle\langle\text{fail}|\right)\;\right]\geq1-\epsilon\;,\;\;\epsilon=2^{\text{-(s-1)}}(\text{m+s})/\text{s}\;.$$

Teleportation

BBCJPW 93

Application 2: Reduction to teleportation with imperfect EPR pairs

Application 2: Reduction to teleportation with imperfect EPR pairs

TQA:

<u>Application 2: Teleportation with imperfect vs perfect EPR pairs</u>

Application 2: Composability of PT

EPR from PT

Ideal EPR : Φ

$$\begin{split} \eta^{\text{PT}} &= \; \mathsf{p}_{\mathsf{acc}} \; \rho^{\mathsf{ABE}} \otimes \mathsf{acc} \\ &+ \; \mathsf{p}_{\mathsf{rej}} \; |0\rangle\!\langle 0|^{\mathsf{AB}} \, \rho^{\mathsf{E}} \otimes \mathsf{fail} \end{split}$$

Tr [
$$\mathscr{P}$$
 tr_E(η^{PT})] $\geq 1 - \varepsilon$
for $\mathscr{P} = \Phi^{AB} \otimes acc + I^{AB} \otimes fail$

Application 2: Composability of PT

EPR from PT

Ideal EPR : Φ

$$\begin{split} \eta^{\text{PT}} &= \; \mathsf{p}_{\mathsf{acc}} \; \rho^{\mathsf{ABE}} \otimes \mathsf{acc} \\ &+ \; \mathsf{p}_{\mathsf{rej}} \; |0\rangle \! \langle 0|^{\mathsf{AB}} \, \rho^{\mathsf{E}} \! \otimes \mathsf{fail} \end{split}$$

$$\eta^{\text{EPR}} = p_{\text{acc}} \Phi^{\text{AB}} \rho^{\text{E}} \otimes \text{acc}$$

$$+ p_{\text{rej}} |0\rangle\langle 0|^{\text{AB}} \rho^{\text{E}} \otimes \text{fail}$$

Tr [
$$\mathscr{P}$$
 tr_E(η^{PT})] $\geq 1-\epsilon$
for $\mathscr{P} = \Phi^{AB} \otimes acc + I^{AB} \otimes fail$
| Pr(z=0|PT)-Pr(z=0|EPR) | \leq Tr| $\eta^{PT}-\eta^{EPR}$ | $\leq \epsilon^{1/4}$

Bonus materials: Lower bounds for QA & pure state authentication

 Q_{enc} : $\forall \rho$, $\Sigma_k p_k (U_k \rho U_k^{\dagger}) = I/2^m$

key size \geq 2m bits (ADMT00, BR00)

QA implies Q_{enc}:

key size $\geq 2m$ bits

NB Encryption key (2m bits) >> PT key (2s bits, s \approx log(1/ ϵ)) The main cost of QA, the encryption key is only "catalytic."

Approx Pure state

 $APQ_{enc} \leftrightarrow Remote state preparation$

 $Q_{enc} \leftrightarrow Teleportation$

Can we replace Q_{enc} in BCGST02 by APQ_{enc} securely?

(BCGST02)

Application 2: Reduction to teleportation with imperfect EPR pairs

Conclusion

Composability – gives a prescription for organizing our security proofs into components, each simple and well-defined.

To achieve composable security, we find out what will make the proof work – it is a systematic method to select secure variations.

QKD & BCGST02 work better than we thought. How do the difficulties disappear? (We have j

Let $\Pi(\sigma)$ be a real protocol that uses a real subprotocol σ .

If
$$\Pi(\sigma^I)$$
 ϵ_1 -s.r. Π^I and σ ϵ_2 -s.r. σ^I then $\Pi(\sigma)$ $(\epsilon_1+\epsilon_2)$ -s.r. Π^I .

Let $\Pi(\sigma)$ be a real protocol that uses a real subprotocol σ .

$$\begin{array}{lll} \text{If} & \Pi(\sigma^I) \ \epsilon_1\text{-s.r.} \ \Pi^I \ \text{ and } \ \sigma \ \epsilon_2\text{-s.r.} \ \sigma^I \\ \text{then} & \Pi(\sigma) \ (\epsilon_1 + \epsilon_2)\text{-s.r.} \ \Pi^I \ . \end{array}$$

Let $\Pi(\sigma)$ be a real protocol that uses a real subprotocol σ .

If
$$\Pi(\sigma^I)$$
 ϵ_1 -s.r. Π^I and σ ϵ_2 -s.r. σ^I then $\Pi(\sigma)$ $(\epsilon_1+\epsilon_2)$ -s.r. Π^I .

Let $\Pi(\sigma)$ be a real protocol that uses a real subprotocol σ .

If
$$\Pi(\sigma^I)$$
 ϵ_1 -s.r. Π^I and σ ϵ_2 -s.r. σ^I then $\Pi(\sigma)$ $(\epsilon_1+\epsilon_2)$ -s.r. Π^I .

