- 2023 Fall EECS598-007 -

Domain transfer of sketched facial image into realistic facial image

Wonseok Oh

Umich ECE master's student

Contents

- Introduction
- Related works
- Method
- Results
- Future work

- Prevent the criminal
 - I. CCTV videos for Dataset

- Prevent the criminal
 - II. Sketch Montage of a criminal

- Prevent the criminal
 - II. Sketch Montage of a criminal

• Prevent the criminal

Related Works

Pix2Pix: Requires paired data

Image-to-image translation with conditional adversarial networks, Isola, Phillip, et al. CVPR 2017

Related Works

CycleGAN: unpaired data

Unpaired image-to-image translation using cycle-consistent adversarial networks, Zhu, Jun-Yan, et al. ICCV 2017

1. Image2Image Translation

2. Image editing

Encoding in style: a stylegan encoder for image-to-image translation., Richardson, Elad, et al, CVPR 2021

Image2Image Translation

Encoding in style: a stylegan encoder for image-to-image translation., Richardson, Elad, et al, CVPR 2021

Image2Image Translation

Encoding in style: a stylegan encoder for image-to-image translation., Richardson, Elad, et al, CVPR 2021

Image editing

Instructpix2pix: Learning to follow image editing instructions., Brooks, Tim, et al, CVPR 2023

Method Image editing

Instructpix2pix: Learning to follow image editing instructions., Brooks, Tim, et al, CVPR 2023

Dataset – Preprocessing Sketches

Original Image

Black and White Image

Canny edge Image

Sketched Image

Instructpix2pix: Learning to follow image editing instructions., Brooks, Tim, et al, CVPR 2023

Encoder – loss function

Fig. 1: **The overview of CBAM**. The module has two sequential sub-modules: *channel* and *spatial*. The intermediate feature map is adaptively refined through our module (CBAM) at every convolutional block of deep networks.

$$\mathbf{F}''(\mathbf{x}) = \mathbf{M_s}(\mathbf{F}') \otimes \mathbf{F}$$

$$\mathcal{L}_{attention}(\mathbf{x}) = \lambda ||\mathbf{F}''(\mathbf{x}) - \mathbf{F}''(G(E(\mathbf{x})))||_2$$

$$\mathcal{L}_{total}(\mathbf{x}) = \lambda \mathcal{L}_E + \lambda_4 \mathcal{L}_{attention}(\mathbf{x})$$

CBAM: Convolutional Block Attention Module, Woo et al, ECCV 2018

Method Overview

psp with attention loss

Instruct pix2pix with editing

Make her hair and eye brown

Results

Qualitative comparisons

Results

Image editing

" Make her eyeballs brown "

Output I

Final Output

Ground Truth

Results

Multimodal + Real Case

Future work

Limitations

Future work

Hyperparameter tuning

Model	Runtime	MSE ↓	LPIPS ↓	Similarity ↑
pSp Ours ($\lambda = 1000$) Ours ($\lambda = ?$)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.0780 0.0773	0.291 0.288	0.340 0.341

Thank you

And thank you for your effort!