UNIVERSITY OF GHANA

(All rights reserved)

MATH 126: Algebra and Geometry (3 credits)

Matrices and Systems of Linear Equations (Module 1)

- 1. Show that
 - (a) If A and B are 2×2 matrices then the trace of AB BA is zero.
 - (b) If E is a 2×2 matrix and the trace of E is zero then $E^2 = \lambda I_2$ for some scalar λ .
- 2. If A is a square matrix such that $A^2 = A$ and $(A A^T)^2 = O$, prove that $(AA^T)^2 = AA^T$
- 3. Let A, B be square matrices with A symmetric and B skew-symmetric. Determine which of the following are symmetric or skew-symmetric.
 - (a) AB + BA
 - (b) AB BA
 - (c) $A^p B^q A^p$
- 4. Solve the following systems of linear equations using Gaussian elimination or Gauss-Jordan elimination.

$$3x - 2y + 2z = 6$$

(a) $7x - y + 2z = -1$

$$2x - 3y + 4z = 0$$

$$2x - 3y - z = 0$$

(b)
$$3x + 2y + 2z = 2$$

 $x + 5y + 3z = 2$

$$x + 5y + 3z = 2$$

5. Solve for x

(a)
$$\begin{vmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{vmatrix} = 0$$

6. Determine conditions for which the linear system

$$3x - y + z = 3$$

$$ax + u + z = 4$$

$$8x - y + 3z = b$$

has

- (a) a unique solution
- (b) infinitely many solutions
- (c) no solution
- 7. Calculate the inverse of the matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{pmatrix}$ using
 - (a) elementary row operations
 - (b) cofactors Hence, solve the system of linear equations

$$x + y + z = 1$$

 $x + 3y + 6z = 2$
 $x + 2y + 3z = 1$

8. Using Cramer's rule, solve the system