					٠.																		
GG	AGTY	CGAC	.ccı	ACGC	CTC	യവ	\GGG(CTGAC	GAAC	ያር አ ን	10 20 1 5	T C	P Ca 1	.cc	CCC	T OAC	C GC	. c	ic T	e . No 1	C GT	L CTT	1 6
G	į		Ċ	L	G	1		/, F		,		. ,	_	_		_							
Α	I		P	. s	s	1.		·					,	V	47		_	_		•			
							0 01	c cc	C Ch	C CA		ט ככ	A G	16	ACC	, CM	CG	c TG	C CA	CC	G٨	CCT	16
	-			GAC	CIC	, 1.V	c cc	CCT	G GA	G YY	c CI	G YC	T TO	CC .	λGC	AGC	TAC	C CY	G GY	TC	ÅG		7. 24
OTC	CT	: TT	LC 1	I ATC	CCG	S GC	ዘ ଫ ሊ ጋ	K G AA	S Y ČY	S A AG	L T CT	A G GC	T G	G GA (R CGC	Y	R CGC	C	s c rc	C T	Y NC	Q CAG	9:
И	G	S	•	L	W	s	Ţ,	Þ	~	n	0	τ.		-	•	**		_	٠	_	_		
λ	ĸ	P		s	L	s	А	0 0	Þ	c	p	A	ν	,	S	c	_	٠.	Ξ.			_	368
			_ 1		CIC	107	GCC	CAC	CCC	GGC	: ccc	GC	G GT	~ 1	rcg	TCA	GGA	GGG	GAG	GI	À	ycc	131 <28
CTA	cyc	TC	тс	Q 'AG .	XCT	CGG	Y TAT	G GGC	F TTT	GYC.	Q CAA	F	y So	T C	L TG	ΤλC Υ	K AAG	E GA	GGG	E GA	.C	P CCT	151 488
λ GCG (P CCC	Y		K AG 1	N TA	P CCC	E GAG	R AGA	, W	Y TAC	R CGG	A GC7	S DA 1	тт	F TC	P	I	I	T	v : cr	, YG	T	171 548
λ	А	н	:	s	G	T.	Y	R	c	Y	s	F	s		s	10	D	ъ	v	٠.		v. 1	191
s s																							608
200 0	.cc	CCC	: AC	SC C	AC .	ccc	CIG	GAG	CIT	CTC	GTC	ACA	. GG:	A A	CC	TCT	GTG	YCC	ccc	. AG	c ·	R CGG	211 668
TTA C	P CA	T ACA	GA		CY (P CCT	S TCC	S TCG	V GTA	GCY	E GAA	Lic.	S TC	. G.	E KA	A GCC	T ACC	A GCT	E GAA	CT	G Z	T NCĊ	231 728
v v	S	F TTC	AC		N AC :	K AAA	v GTC	F	T	.T ACT	E GAG	T	S	- a	R GG	S·	I	T	T	S	T 4	P.	· 251 788
x	E	s	. D) ;	s	P	A	G	P	a.	R	0	Y	,	Y	T	ĸ	G	N	۲.		v	271
MG G	YG	TCY	Gλ	C T	CT (CCY	GCT	GGT	CCT	CCC	CGC	CAG	TAC	T	AC :	XCC	YYC.	G GC	AAC	CI	'		848 291
R CGG A	TA	TCC	CI	c c	GG (CT	CIC V	YIC	CTA	a Ata	YIC	CIG	GCG	G	3 3G 1	F	CLC T	GCA •	GYQ • E	GA(e :	rgg Tgg	908
K OK	s GC (R CGG	R Age	เรา	K Ng c	R CCC	L CTG	.R.	CYC	R Agg	G GGC	R Agg	A GCT	G	r rg (Q ÇAG	R AGG	P	L CTT	P		DCC B	311 968
L 1	P	Þ	L	. ,	P	0	T	R	ĸ	s	H	G	G	_	1	'n.	G	G	-10			Ð	331 1028
V E	£	s	R		3	t.	C	s		1 CN			oor	<u>.</u>	.G C	JAT (GUA.	GGC	CGA	CAC	. (JA.	340
TT C	C 1	NGC	CGG	C GC	G 1	TA C	TOT	TCA	TGA														1055

FIGURE 1a

CCGCTGAACCCCAGGCACGGTCGTATCCAAGGGGGGGACTCATGGGAGGGGACTCAAAGACTGGCGTGTGTGGAGGGAG	
· · ·	1134
CGTGGAAGCAGGACGCCAGAGGCTACAGCTGTGGAAACGAGGCCATGCTGCTCCTCCTGGTGTTCCATCAGGGAGCCG	1213
TTCGGCCAGTGTCTGTCTGTCTGCCTCTCTGTCTGAGGGCACCCTCCATTTGGGATGGAAGGAA	1292
CCCATCCTCCTCCTGCACACTGTGGATGACATGGTACCCTGGCTGG	1371
ANTATOGGCTCCAGACGGATCTCTAAGGTTCCCAGCTCTCAGGGTTGACTCTGTTCCATCCTCTGTGCAAAATCCTCCT	1450
GTGCTTCCCTTTGGCCCTCTGTGCTCTTGTCTGGTTTTCCCCAGAAACTCTCACCCTCACTCCATCTCCCACTGCGGTC	1529
TAACAAATCTCCTTTCGTCTCTCAGAACGGGTCTTGCAGGCAG	. 1608
XGCXCGTTGCCCGCTTCCCTTCACATTAGAAAACAAGATCAGCCTGTGCAACATGGTGAAACCTCATCTCTACCAACAA	1687
XXCXXXXXXXCACXXXXXTTAGCCAGGTGGTGGTGGTGGATCCCTATACTCCCAGCAACTCGGGGGGCTGAGGTGGGAGA	1766
ATGGCTTGAGCCTGGGAGGCAGAGGTTGCAGTGAGCTGAGATCACACCACTGCACTCTAGCTCGGGTGACGAAGCCTGA	1845
CCTTGTCTCAAAAAATACAGGGATGAATATGTCAATTACCCTGATTTGATCATAGCACGTTGTATACATGTACTGCAAT	1924
KTTGCTGTCCACCCCATAAATATGTACAATTATGTATACATTTTTAAAAATCATAAAAAATAAGATAATGAAAAAAAA	2003
WWWWWAGGGCGGCCGCTAGACTAGTCTAGAGAACA	2047

MSPSPTALFCLGLCLGRVPAQSGPLPKPSLQALPSSLVPLEKPVTLRCQGPPGVDLYRLE KLSSSRYQDQAVLFIPAMKRSLAGRYRCSYQNGSLWSLPSDQLELVATGVFAKPSLSAQP GPAVSSGGDVTLQCQTRYGFDQFALYKEGDPAPYKNPERWYRASFPIITVTAAHSGTYRC YSFSSRDPYLWSAPSDPLELVVTGTSVTPSRLPTEPPSSVAEFSEATAELTVSFTNKVFT TETSRSITTSPKESDSPAGPARQYYTKGNLVRICLGAVILIILAGFLAEDWHSRRKRLRH RGRAVQRPLPPLPPLPQTRKSHGGQDGGRQDVHSRGLCS

```
ALIGN calculates a global alignment of two sequences
           version 2. OuPlease cite: Hyers and Hiller, CABIOS (1989)
          > U91928 ORF
         > hT268 ORF
                                                                                            1893 aa vs.
         scoring matrix: pam120.mat, gap penalties: -12/-4
         37.7% Identity;
                                               Global alignment score: -8
                                                                                             . 50
                                                 20
                                                                 30
        ente de la companie d
                   ATGTCTCCATCCCGACCGCCCTCTTCTGTCTTGGGGCTGTGTCTGGGGGCG-TGTGCCAGC--GCAGAGTG
                                                                                40
                                                                                                50
                                                90
                                                               100
                                                                                                 120 -
       inputs GGCCCTTCCCCAAACCCACCCTCTGGGCTGAGCCAGGCTCTGTGAT-CAGCTGGGGGAGCCCCGTGACCA
                  GACCGCTCCCCAAGCCCTCCAGGCTCTGCCCAGGTCCCTGGTGCCCCTGGAGAAGCCA-GTGACCC
                                                                  100
                                                                                 110
                                                                                                  120
                              150
                                               160
                                                               170
     inputs TCTGGTGTCAGGGGAGCCTGGAGGCCCAGGAGTACCGACTGGATAAAGAGGGGAAGCCCAGAGCCCTTGGA
                 TCCGGTGCCAGGG--ACCT-----CCGGGCGTG--GACCTGTA------CCGCCTGGAG-----AAG
                                                               160 -
                                                                                   170
             210
                            220
                                              230
                                                             240
    250
                CTGAGTT--CCAGCAGGTACC-AGGATCA-GGCAGTCCTCTTCATCCCGGCCATGAAGAGAAGTCTGGCT
                                                            210
                                                                                              230
                                                                                                              240
            280
                            290
                                             300
                                                             310
   inputs GGGAGATACCGCTGCCACTATTACAGCTCTGCAG--GCTGGTCAGAGCCCAGCGACCCCCTGGAGCTGGT
                                                                                320
               GGACGCTACCGCTGCTCCTAC--CAGAACGGAAGCCTCTGGTCCCTGCCCAGCGACCAGCTGGAGCTCGT
           250
                                                               280
                                                                                290
                                                                                                300
                              360
                                               370
                                                               380
  Inputs GATGACAGGATTCTACAACAAACCCACCCTCTCAGCCCTGCCCAGCCCTGTGGTCGCCTCAGGGGGAAT
                                                                               390
               350
                                                                               360
                                                                                                               380
             420
                             430
                                              440
 Inputs Atcaccoccatgraggereacagaacccatatcaccattttgttctgatgaaccagaacaccagc
                                                              450
             410
                                                             420 .
                                                                              430
                          500
                                             510
                                                             520
inputs Teccessacetesacteacasetecacastescassessessessessessessessesses
                                                                              S30
                     *******
                                                                                         :::::.
```

FIGURE 3a

FIGURE 3b

	CCTCC-C	CAGAC-		11 1.1	-11	22 2	• 8 8	tt.ti	TOUCA!	CAIGGA	CAC
-	11111 -	yclelcic 1910	GGGAAT	TCCTGGAG	CACAAAGG:	ACAGAĆ	AGGTGGA	AGAGGAA.		1740	~ ~
uts	1680	1690		1700	1710	7	720	1000			
										940	-
		:		930	CTC					-coc	
	TCC	}		::::	::		5.		mn100	CCTCTC	CTC:
	imonci	CCCCAGGC	AGTGAO	GTATGCCC	CCCTCAA	CACTO	CAGTOCT	OGDL *245ASSK	8 8 mc -	1670	
out.	. CAACA :	162	0	1630	1640		1650	1			
							S	10	920		
		-XCCCG		890	VICCCCV VV	CAGGG-	ccx	CCCTCTC	CAÇAG	CCCCT	
	YC	-xccc	- GAGGA	GOGC-	*** ** *	:::::	**.	::::::	-nonu :::::	CCCACA:	CONT
	- :	·crececto	FARGGA	CACACAGI	CTGAGG-A	CAGGG	GGAGCT	UVE1 —TOACAGO		1600	0015
put	S TCTATA	1550		1560	1570	1	LSBO	1600			•
	1540								870		٠.
		TGATCCTA 840		10010	≠==GCGGGG	STITCT	G	-CCAGA-C	GACTO	 5G	C
		TOATCCTA	: Atab	:::	: :::.	: ::.	:	:::::	. CCA	GGAAGA∐ ••	AAACC
	UNUAC	AGAGCCCI ::::::	WCCVC	CCCCCCT	CTGAGGA	GGTCCA	GCCCAG	1520 TGCTC1-		1530	
npul	1470 ts Gacac	1480	ס	1490	1500	1	510				
							8	20		83	0
		C	_	610010~.			CGGAT	ATGCC	TC		CTG
	GCAA	C		CTCCTC			: :::	.: ::	::	CAGGGG	CTGCG
-	::.	:	CACACA	CACCACA	TCTGACCA	GAGAAA	GACTGAT	OCP1 CONGODIT	TOOM	1460	
inpo	Lts TCLC	14)	0	1420	1430		1440	1465			
	1400							79	0		800
					TCC	TGC		-CCGCCAG	TA	-CTACA	1 : : :
				 -	:::	:::		:: ::.	:.	CCTCCT	CCGACG
	.,	TTTICATI	CCCCTC	TCCCTCC	CCTTCGTC	CTGCTG	CTCTTCC	TCCTCCTC	, TTCC=	1390	
ing	outs Acc	, 13 TTTTC: ~~	60	1350	136	o	1370	1200			
	1330					•	60	770			
			740		750		-GTCAGA: 160	CTCTCCAG.	CTG	c	
		AG	GAGTAT	XCCAC	CAGTCCL	1::.	::	CACACCIG		:	ANCCTGG
		ACAÇTCTG	::: :	·	CCYCCCY	CAGGGG	CCCCTC	CACACCIG	GTCTA	L320	T1.00===
ir	puts co	ACACTOTO	∡7U GAGGC±	1280	12	90	1300	ירן	^		
	126		220								730 .
		70	00		71	0	T-~CAC	₩ `	CTGA	GACT	TCT-
	C	CGTCTC.	ATTCA-	C ~ ~ A C -		.::::	: : :	:.	:::.	·:::	:
	:	:: :::	::.::	: :::	CCCACCIO	CTCTC	TTTCCCC	AGTGAGCC	CCTGG	AACTCS	0
i	inputs C	TACGGCTC :::::	ATACEC	121	0 1	220	1230	12			
	11	90									690
	,	STA			670		-NONAC(CCAC	ccc	TGA	-ACTG-
		CTA		GCAGA	MTTCCCCI			1:.:	:::	:.	• • • • • • • • • • • • • • • • • • •

FIGURE 3c

FIGURE 3d

```
ALIGN calculates a global alignment of two sequences
        version 2.0uPlease cite: Hyers and Hiller, CABIOS (1989)
       > hT268 a.a.
       > GenPept U91928 - Human clone HL9 monocyte inhib
       scoring matrix: pam120.mat, gap penalties: -12/-4
       23.01 identity;
                                            Global alignment score: -642
                                                                30
                                                                                  40
      Inputs HSPSPTALFCLGLCLG-RVPAQSGPLPRPSLQALPSSLVPLERPVTLRCQGPPGVDLYRLEKLSSS----
                                                                                               . 50
                 ter control of the experience of the control of the
                 MTPALTALLCLGLSLGPRTRVQAGPFPKPTLWAEPGSVISHGSPVTIHCQGSLEAQEYRLDKEGSPEPLD
                                          . 20
                                                          30
                                                                             40
                                                                                                50
                             70
                                              80
                                                                                          110 . -_ 120
                                                             90
                                                                            100
     Inputs RYQ-----DQAVLFIPA-KRSLAGRYRCSYQNGSLWSLPSDQLELVATGVFAKPSLSAQPGPAVSSGGDV
                RUMPLEPKNXARFSIPSHTEHHAGRYRCHYYSSAGHSEPSDPLELVHTGFYNKPTLSALPSPVVASGGM
                                       90 100
                                                                         110 120
    inputs TLQCQT-----RY-----RY------
               TLRCGSQKGYHHFVLKKEGEHQLPATLDSQQLHSGGFQALFPVGPVNPSHRWRFTCYYYYHNTPQVWSHP
                                        160
                                                                          180 190
                                                                              140
   inputs -----GFDQFALYKEGDP-----
                                                                               : - : - : - : : : : : .
              SDPLEILPSGVSRKPSLLTLQGPVLAPGQSLTLQGGSDVGYDRFVLYKEGERDFLQRPGQQPQAGLSQAN
                                   230 240 250
                                                                                                              270
  inputs -----APYK-----ERW--
              FILGPVSPSHGGQYRCYGAHNLSSEHSAPSDPLNILHAGQIYDTVSLSAQPGPTVASGENVTLLCQSHHQ
                                       300 310
                                                                    320 330 .340
                                                                    170
                                                                                     180
                                                                                                                          200
                                                                                                       190
                              fotflitkegaahpplrlrshygahkygaefphspytsahagtyrcygsyssnphllsfpseplelhysg
                        360
                                  370 380
                                                                 390
                                220 230
                 210
                                                                                    240
                                                                                                     250
HSGGSSLPPTGPPSTPGLGRYLEVLIGVSVAFVLLLFLLLFLLLRRQRHSKHRTSDQRKTDFQRPAGAAE
                                      440
                                                    450
                                                                 460
                                                                                   470
                     270
                                      280
                                                               290
inputs ROYYTKGHLVRICLGAVIL----IILAGFLAEDH-
                                                                                     -----HSRRKR----
                  .::: .:.
                                                    :: .:
```

FIGURE 4a


```
ig: domain 2 of 2, from 127 to 182: score 19.1, E = 0.1

*->GesvtLtCsvsgfgppgvsvtWyfkngk.lgpsllgysysrlesgek
G++vtL+C+++ + ++ y k+g++ + y+++
hT268 127 GGDVTLQCQTR---YGFDQFALY-KEGDpAP----YKNPERWYR-- 162

anlsegrfsissltLtissvekeDsGtYtCvv<-*
++++i++v++ sGtY+C
hT268 163 -------ASFPIITVTAAHSGTYRCYS 182
```

GAGTCGACCCACGCGTCCCGCTTCCCTGCTTGGCCACATAGCTCAGGACTGGGTTGCAGAACC ATG TCT CCA GCC 7
S P T F F C I G L C V L Q V I O T Q S G 2 TCA CCC ACT. TTC TCT ATT GGG CTG TGT GTA CTG CAA GTG ATC CAA ACA CAG AGT GGC 13
P L P K P S L Q A Q P S S L V P L G Q S CC CC CTC CCC CCC CCC CCC CCC CCC CCC
V I L R C Q G P P D V D L Y R L E K L K 60 GTT ATT CTG AGG TGC CAG GGA CCT CCA GAT GTG GAT TTA TAT CGC CTG GAG AAA CTG AAA 250
PEKYED Q DFLFIPTHERS NA BOCCG GAG AAG TAT GAA GAC TTT CTC TTC ATT CCA ACC ATG GAA AGA AGT AAT GCT 316
G. R Y R C S Y Q N G S H W S L P S D Q L 106 GGA CGG TAT CGA TGC TCT TAT CAG AAT GGG AGT CAC TGG TCT CTC CCA AGT GAC CAG CTT 376
E L I À T G V Y À K P S L S À H P S S À 126 GAG CTÀ ATT GCT ACA GGT GTG TAT GCT AAL CCC TCA CTC TCA GCT CAT CCC AGC TCA GCA 636
V P Q G R D V T L E C Q S P Y S F D E F 166 GTC CCT CAA GGC AGG GAT GTG ACT CTG AAG TGC CAG AGC CCA TAC AGT TTT GAT GAA TTC 696
V L Y K E G D T G P Y K R P E K W Y R A 166 GTT CTA TAC ANA GAA GGG GAT ACT GGG CCT TAT ANG AGA CCT GAG ANA TGG TAC CGG GCC 556
N F P I I T V T λ λ H S G T Y R C Y S F 184 AAT TTC CCC ATC ACA GTG ACT GCT GCT CAC AGT GGG ACG TAC GGG TGT TAC AGC TTC 614
S S S P Y L W S A P S D P L V L V V T 204 FCC AGC TCA TCT CCA TAC CTG TGG TCA GCC CCG AGT GAC CCT CTA GTG CTT GTG GTT ACT 674
G L S A T P S Q V P T E E S F P V T E S 224 GGA CTC TCT GCC ACT CCC AGC CAG GTA CCC ACG GAA GGA TCA TTT CCT GTG ACA GAA TCC 734
S R R P S I L P T N K I S T T E K P H H 244 CC AGG AGA CCT TCC ATC TTA CCC ACA AAC AAA ATA TCT ACA ACT GAA AAG CCT ATG AAT 794
I T A S P E G L S P P I G F A H Q H X A 264 TC ACT GCC TCT CCA GAG GGG CTG AGC CCT CCA ATT GGT TIT GCT CAT CAG CAC TAT GCC 854
X G N L V R I C L G A T I I I L L G L 284 AG GGG AAT CTG GTC CGG ATA TGC CTT GGT GCC ACG ATT ATA ATA ATT TTG TTG GGG CTT 914
L A E D W H S R K K C L Q H R H R A L Q 304 TA GCA GAG GAT TGG CAC AGT CGG AAG AAA TGC CTG CAA CAC AGG ATG AGA GCT.TTG CAA 974
GG CCA CTA CCA CCC CTC CCA CTG GCC TAG
LATAACTTGGCTTTCAGCAGAGGGATTGACCAGACATCCATGCACAACCATGGACATCACCACTAGAGCCACAGACAT _ 1083
ACATACTCAAGAGTGGGGAGGTTATÁTAAAAAAATGAGTGGAGAATAAATGCAGAGCCAACAAGGTGAAAAAAA 1162
1163

FIGURE 6

MSPASPTFFCIGLCVLQVIQTQSGPLPKPSLQAQPSSLVPLGQSVILRCQGPPDVDLYRL EKLKPEKYEDQDFLFIPTMERSNAGRYRCSYQNGSHWSLPSDQLELIATGVYAKPSLSAH PSSAVPQGRDVTLKCQSPYSFDEFVLYKEGDTGPYKRPEKWYRANFPIITVTAAHSGTYR CYSFSSSSPYLWSAPSDPLVLVVTGLSATPSQVPTEESFPVTESSRRPSILPTNKISTTE KPMNITASPEGLSPPIGFAHQHYAKGNLVRICLGATIIILLGLLAEDWHSRKKCLQHRM RALQRPLPPLPLA

FIGURE 8a

FIGURE 8b

```
Inputs GCTCATAAGTACCAGGCTGAATTCCCCATGAGCTCCTGTGACCTCAGCCCACGCGGGGACCTACAGGTGCT
                     i interpretation description in the contraction of 
                      G--AAATGGTACCGGGCCAATTTCCCCATCATCACAGTGACTGCTGCTCACAGTGGGACGTACCGGTGTT
                                                                                                       530
                               1200
                                             1210
         INDUL'S ACGGCTCATACAGCTCCAACCCCCACCTGCTGTCTTTCCCCAGTGAGCCCCTGGAACTCATGGTCTCAGG
                    ACAGCTTCTCCAGCTCATCTCCATACCTGTGGTCAGCCCCGAGTGACCCTCTAGTGCTTGTGGTTACTGG
                                                      570 580 590
               1260
                              1270 1280
        inputs ACACTCTGGAGGCTCCAGCCTCCACACGGGCCGCCTCCACACCTGGTCTGGGAAGATACCTGGAG
                   ACTOTOTG-----CCA--CTCCCAGCC--AGGT--ACCCAC------GGA-AGAATCATTTCCTG---
             1330 1340
                                            1350
       tit till til til till.
              ----TGA-----CAGAATCCT----CCAGGAGACCTTCCA----TCTTAC----CCACAAACAAA
                         1<10
                                    1420 1430
     inputs AGCGTCACAGCAAACACAGGACATCTGACCAGAGAAAGACTGATTTCCAGCGTCCTGCAGGGGCTGCGGA
               A---TATCTACA4---CTGAA----AAGCCTATGAATATC--ACTGCCT-C-TCCAG-AGGGGCTG----
                                                       730
                        1480 1490 1500
    Inputs GACAGAGCCCAAGGACAGGGGCCTGCTGAGGAGGTCCAGGCCCAGCTGCTGACGTCCAGGAAGAAAACCTC
                      ----AGCCCT----CC----AATTGGTTTTGCTCATCAGCA-----C
                                                                         780
         1540 1550
  Inputs TATGCTGCCGTGAAGGACACAGTCTGAGGACAGGGTGGAGGCTGGACAGTCAGAGCACACGATGAAG
                                      1560
                                                        ::.:: :.: ::::::
             TATGC-----CGGATATG
                                                                       800
                      1620 1630 1640 1650 1660
 Inputs Acceceageagtaacgtatgccccctgaaacactccagtcctaggagaaaatggcctctcctcctc
              ---CCTTGG-----TGCCACGAT-----TATAATAATTTTGT-----
                      1690
                                 1700 1710
Inputs CTCACTCTCCGGGAATTCCTGGACACAAAGGACAGACAGGTGGAAGAGGACAGGCAGATGGACACTGAG
                      .... .. ... ....
                 ----TGGGGCTT--CTAG---CAGAGGATTGGC---
                                                                             **** ******* *
                                                                            -----Acagtogaagaa---
                             850
                                                     860
                                                                                         870
```

FIGURE 8c


```
ALIGN calculates a global alignment of two sequences
           version 2. OuPlease cite: Hyers and Hiller, CABIOS (1989)
         > mT268 a.a.
         > GenPept U91928 - Human clone HL9 monocyte inhib. 631 aa
                                                                                                   313 aa vs.
         scoring matrix: pam120.mat, gap penalties: -12/-4
         20.31 Identity;
                                                Global alignment acore: -802
                                  10
        inputs HSPASPTFFCIGLCVLQVIQTQSGPLPKPSLQAQPSSLVPLGQSVILRCQGPPDVDLYRLEKL-KPZEYE
                                                                    30
                    ter contra d'accession d'accession d'accession de la contra del la contra del la contra del la contra de la contra del la contra de la contra de la contra del la contra de la contra del la contra de la contra de la contra del la 
                    HTPALTALLCLGLSLGPRTRVQAGPFPKPTLHAEPGSVISHGSPVTIHCQGSLEAQEYRLDKEGSPEPLD
                                                              30 40
                                                                                                    50
                                               80
       inputs DQDFL-----F-IPTHERSHAGRYRCSYQNGSHWSLPSDQLELIATGVYAKPSLSAHPSSAVPQGRDV
                                                                               100
                   RNNPLEPKNKARFS I PSHTEHHAGRYRCHYYSSAGHSEPSDPLELVHTGFYNKPTLSALPSPVVASGGIM
                                                                                           120 130
     inputs TLKC--QSPY-----
                 TLRCGSQKGYHHFVLHKEGEHQLPRTLDSQQLHSGGFQALFPVGPVNPSHRWRFTCYYYYMITPQVWSHP
                                                                                180
    inputs -----SFDEFVLYKEGO-----
                SDPLEILPSGVSRKPSLLTLQGPVLAPGQSLTLQCGSDVGYDRFVLYKEGERDFLQRPGQQPQAGLSQAM
                                                                                     ... :::::::
                                                              240
                                                                        250
                                                                                            260
   FTLGPV5P5HGGQYRCYGAHNLSSEHSAPSDPLNILHAGQIYDTV5L5AQPGPTVASGENVTLLCQSHXQ
                                           300 310 320 330 340
                                                                      170
                                                                                      180
                                                                                                        190
                                               -----Yranfpiitvtarhsgtyrcysfsssspylhsapsdplvlvvtg
                                                         FDTFLLTKEGAAHPPLRLRSHYGARKYQAEFPHSPVTSAHAGTYRCYGSYSSHPHLLSFPSEPLELHVSG
                          360 370
                                                                             390
                                                                                             400
                                                                                                                 410
                                                                220
inputs LSATPSQVPTEES-----FPV-----FPV-----
               3 · • 1 · 1 · .
             HSGGSSLPPTGPPSTPGLGRYLEVLIGVSVAFVLLLFLLLFLLLRRQRHSKHRTSDQRKTDFQRPAGAAE
                                         440 450 460 470
                                         230
                                                                 240
                                                                                   250
inputs TESS----RRPS---
                                                                                                        260
                                         ------ilpthkisttekphni-taspeglsp-pigfar--Qhyakghlvr---i
            ::.
                           ::.:
```

FIGURE 9a

	TEPKDROLLRR	SSPAADVQEENL	YAAVKDTQSE	DRVELDSQSP	HYTVAOGGGGG	APVESS PRI	FYASPPS
	500	510	520	530	540	550	560
f ===	280	290		3	00	•	310
Inputs	CLCATITILL	GLLAEDWH		SRKKCLQH	RHRALQRPL	PP	LPL
	SLSGEFLDTKD	: RQVEEDRQHDTE/		: :			
	570	580	590	600	610	620	630
inputs	A						
	Н						

FIGURE 9b

ig: domain 2 of 2, from 128 to 183: score 9.6, E = 1.6

"->GesvtLtCsvsgfgppgvsvtWyfkngk.lgpsllgysysrlesgek
G +vtL C++ ++ y k+g++ + y+r+e +
GRDVTLKCQSP---YSFDEFVLY-KEGDtGP------YKRPEKW-Y 162

anlsegrfsissltLtissvekeDsGtYtCvv<-+
++i++v++ sGtY+C

nT268 163 RA------NFPIITVTAAHSGTYRCYS 183

```
ALIGN calculates a global alignment of two sequences
   version 2.0uPlcase cite: Myers and Hiller, CABIOS (1989)
  > hT268 a.a.
                                           339 ac vs.
  > mT268 a.a.
                                           313 cc
  scoring matrix: pan120.mat, gap penalties: -12/- (K
  64.4% identity;
                Global alignment score: 1011
                      20
                              30
                                     40
 inputs HSPSPTALFCLGLCLGRV-PADSGPLPKPSLQALPSSLVPLEKPVTLRCQGPPGVDLYRLEKLSSSRYQD
                                             50
       HSPASPTFFCIGLCVLQVIQTDSGPLPKPSLQAQPSSLVPLGQSVILRCQGPPDVDLYRLEKLKPEKYED
                     20
                                    40
                                            50
      70
             03
                     90
                            100
                                    110
                                            120
 inputs QAVLFIPATRESLAGRYRCSYQNGSLHSLPSDQLELVATGVFAKPSLSAQPGPAVSSGGDVTLQCQTRYG
       QDFLF1PTHERSHAGRYRCSYQNGSHWSLPSDQLELIATGVYAKPSLSAMPSSAVPQGRDVTLKCQSPYS
            20
                    90
                           100
                                   110
                                           120
                                                   130 -
            150
                    160
                            170
                                    180
                                            190
inputs FDOFALYKEGDPAPYKNPERWYPASFPIITVTAAHSGTYRCYSFSSRDPYLWSAPSDPLELVVTGTSVTP
                                                    200
      FDEFVLYKEGDIGPYKRPEKWYRAITPIITVTAAHSGTYRCYSFSSSSPYLWSAPSDPLVLVVTGLSATP
                   160
                           170
                                   180
                                                   200
                   230
                            240
                                   250
                                           260
inputs splpteppssvaefseataeltvsftnkv77tetsrsittspkesdspagparqyytkgnlvkiclgavi
                                                   270
      ... : :.. :........
      SQVPTEESFPVTESSRRPSILP---TNKISTTEKPYNITASPEGLSPPIGFAHQHYAKGNLVRICLGATI
                   230
                             240
                                     250
                                             260
                                                     270
   280
            290
                    300
                           310
                                   320
                                           330
inputs liligelæedwhsrrkrlrhrgravorplpplpplpdtrkshggodggrodvhsrglcs
     IIILIGILAEDWHSRKKCLQHRHRALQRPLPPLP-LA----
     280
             290
                     300
                            310
```

FIGURE 11

FIGURE 12

FIGURE 13

FIGURE 14

 $\boldsymbol{\omega}$

FIGURE 15

FIGURE 16

FIGURE 17

FIGURE 18

FIGURE 19

FIGURE 20

FIGURE 21

FIGURE 22

FIGURE 23

FIGURE 24a

FIGURE 24b

FIGURE 25

FIGURE 26

FIGURE 27

FIGURE 28

