Resolución de Sudokus utilizando Bases de Gröbner

Lucía Jiang Jaime Lucía

Trabajo de Modelización ETSIINF

1/26

Contents

- Introducción
- Restricciones suma-producto
- Coloración de grafos
- Wariables booleanas
- Interfaz
- 6 Bases de Gröbner
- Resultados

Introducción

Ejemplo Shidoku y Sudoku

2	3	4	1
4	1	3	2
1	4	2	3
3	2	1	4

2	5			3		9		1
	1				4			
4		7				2		8
		5	2					
				9	8	1		
	4				3			
			3	6			7	2
	7							3
9		3				6		4

Restricciones suma-producto

Shidoku

Sea el valor de cada casilla denotada como $x_{i,j}$.

Sean $\{w,x,y,z\}$ cuatro celdas en la misma fila, columna o cuadrado.

Soluciones enteras

$$(x_{i,j}-1)\cdot(x_{i,j}-2)\cdot(x_{i,j}-3)\cdot(x_{i,j}-4)=0$$
 con $i,j=1,2,3,4$

Restricciones suma

$$w + x + y + z - 10 = 0$$

Restricciones producto

$$wxyz - 24 = 0$$

40 ecuaciones + datos iniciales

Grupo B5

Sudoku

Sea el valor de cada casilla denotada como $x_{i,j}$.

Consideramos el conjunto $\{-2,-1,1,2,3,4,5,6,7\}$ y hacemos corresponder $-2 \to 8$ y $-1 \to 9$

Soluciones enteras

$$(x_{i,j}+2)\cdot(x_{i,j}+1)\cdot(x_{i,j}-1)\cdot(x_{i,j}-2)\cdot(x_{i,j}-3)\cdot(x_{i,j}-4)\cdot(x_{i,j}-5)$$
$$\cdot(x_{i,j}-6)\cdot(x_{i,j}-7)=0$$

con
$$i, j = 1, ..., 9$$

Sudoku

Restricciones suma

$$x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 - 25 = 0$$

Restricciones producto

$$x1 \cdot x2 \cdot x3 \cdot x4 \cdot x5 \cdot x6 \cdot x7 \cdot x8 \cdot x9 - 10080 = 0$$

135 ecuaciones + datos iniciales

Grupo B5

Resolución de Sudokus

Coloración de grafos

Shidoku

1	2	3	4
3	4		
2			
4			

Figura: Grafo relacionado con el Shidoku

Shidoku

Cada color es un valor del $\{1, 2, 3, 4\}$

Correspondencia de $\{1,2,3,4\}$ a las raíz 4-ésima de la unidad: $\{1,-1,i,-i\}$

Definir colores

$$x_{i,j}^4 - 1 = 0$$
 con $i, j = 1, ..., 4$

• Restricciones 2 a 2: sean x, y dos vértices conectados por alguna arista.

$$x^4-1=0 \qquad \text{y} \qquad y^4-1=0$$

$$x^4-y^4=(x^2-y^2)(x^2+y^2)=(x-y)(x+y)(x^2+y^2)=0$$

$$x\neq y \qquad (x+y)(x^2+y^2)=0$$

72 ecuaciones + datos iniciales

Sudoku

Figura: Versión simplificada del grafo relacionado con el Sudoku

Sudoku

Correspondencia de los números 1-9 con la raíz 9-ésima de la unidad

Definir colores

$$x_{i,j}^9 - 1 = 0$$
 con $i, j = 1, ..., 9$

• Restricciones 2 a 2:

$$x^{9} - y^{9} = (x - y)(x^{2} + xy + y^{2})(x^{6} + x^{3}y^{3} + y^{6})$$
$$x - y \neq 0$$
$$(x^{2} + xy + y^{2})(x^{6} + x^{3}y^{3} + y^{6})$$

891 ecuaciones + datos iniciales.

Grupo B5

Variables booleanas

Variables booleanas

Sea n el número de lados

Booleanas

$$(x_{i,j,k})(x_{i,j,k}-1)=0$$
 $i,j,k\in\{1,...,n\}$

Cada celda un único valor

$$\sum_{k=1}^{n} x_{i,j,k} = 1 \qquad i, j \in \{1, ..., n\}$$

• Dos celdas en misma región, diferentes valores

$$\sum_{k=1}^{n} x_{i,j,k} \cdot y_{i',j',k} = 0$$

Shidoku: 136 ecuaciones + datos iniciales

Sudoku: 1620 ecuaciones + datos iniciales

Interfaz

Shidoku 4x4

Sudoku 6x6 y 9x9

O Sudoku					- o ×
3	4	2	6		5
	4 5				
	2	4			
	3	4 6		5	
2			4	5 6	
4	6	3	5	2	
So	ive	Other se	olutions	а	ear

O Santon					- o x
3	4	2	6	1	5
6	5	1	3	4	2
5	2	4	1	3	6
1	3	6	2	5	4
2	1	5	4	6	3
4	6	3	5	2	1
So	thre	Others	olutions	a	ear

⊙ Sudoku							-	D ×
	3	4	6	7	9	8	1	
6		2	1	8	5	3		9
1	8		3	4	2		6	7
9	5	8		6		4	2	3
4	2	6	9		3	7	8	1
7	1	3		2		9	5	6
8 2	6		5	3	7		9	4
2		7	4	1	8	6		5
	4	5	2	9	6	1	7	
	Solve			Ther solution			Clear	

O Sudaku							-	D ×
5	3	4	6	7	9	8	1	2
6	7	2	1	8	5	3	4	9
1	8	9	3	4	2	5	6	7
9	5	8	7	6	1	4	2	3
4	2	6	9	5	3	7	8	1
7	1	3	8	2	4	9	5	6
8	6	1	5	3	7	2	9	4
8 2 3	9	7	4	1	8	6	3	5
3	4	5	2	9	6	1	7	8
	Solve			Other solution			Clear	

イロト (間) ((量) ((量)

Interfaz en el móvil

13:06		ê	48 til €0
1	2	3	4
3	4	1	2
2	Tiempo	: 2.75s 4	3
4	3	2	1
Resolver	Otras so	luciones	Borrar

17	07 🦲					# E3	육 11	Ð
7	7	7	7	7	7	7	7	7
7	7	7	7	7	7	7	7	7
7	7	7	7	7		7		7
	7		7		7		7	
7		7	hov n	nás so	olucion	7		7
7	7	,,,,	/	′			7	7
7		7	7	7	7	7	7	7
	7		7		7	7	7	7
7		7		7			7	
F	esolve	er	Otras	soluc	iones		Borra	

Bases de Gröbner

Obtención base de Gröbner

- Librería Sympy de Python
- Utiliza método de Buchberger y lexicográfico
- Orden de los elementos acotado a

$$2 \cdot \left(\frac{d^2}{2} + d\right)^{2^{n-2}}$$

siendo n el número de variables y d el grado total de los polinomios de entrada (5).

Grupo B5 Resolución de Sudokus Modelización 21/26

Resultados

Comparación resultados

		Nº ecuaciones	Nº variables	Tiempo promedio
	Shidoku 4x4	40	16	1s
	Sudoku 6x6	72	36	1.2s
Suma- producto	Sudoku 9x9	135	81	5.5s
	Shidoku 4x4	72	16	0.7s
	Sudoku 6x6	240	36	29s
Coloración de grafos	Sudoku 9x9	891	81	990s
	Shidoku 4x4	136	64	154s
	Sudoku 6x6	492	216	193s
Variables booleanas	Sudoku 9x9	1620	729	2486s

Explosión combinatoria

n	Número de tableros de orden $n \times n$
1	1
4	288
9	6,670,903,752,021,072,936,960
16	$5{,}96\cdot10^{98}$ (estimado)
25	$4,\!36\cdot 10^{308}$ (estimado)

Figura: Número de tableros existentes para cada n

Observaciones

- Orden de las ecuaciones relevante
- La complejidad depende de la colocación de las pistas, más que del número de pistas

Referencias

- [1] Decker, W., & Pfister, G. (2013). A First Course in Computational Algebraic Geometry (AIMS Library of Mathematical Sciences).
- [2] Gimenez, Philippe. (2014). Una introducción a las bases de Gröbner y algunas de sus aplicaciones.
- [3] David A. Cox, John Little, and Donal O'Shea. 2007. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra.
- [4] Bruno Buchberger and Manuel Kauers (2011) Buchberger's algorithm. Scholarpedia, 6(10)
- [5] Dubé, T. (1990). The Structure of Polynomial Ideals and Gröbner Bases. SIAM J. Comput., 19, 750-773.
- [6] Arnold, Elizabeth & Lucas, Stephen & Taalman, Laura. (2010). Gröbner Basis Representations of Sudoku. The College Mathematics Journal.

26 / 26