® Offenlegungsschrift

₀₀ DE 3434082 A1

(5) Int. Cl. 4:

C 08 B 37/08

C 08 L 5/08 A 61 L 27/00

DEUTSCHES PATENTAMT

2) Aktenzeichen: P 34 34 082.3
 2) Anmeldetag: 17. 9.84
 3) Offenlegungstag: 11. 7.85

30 Unionspriorität: 32

@ 33 3

15.12.83 US 561 818

Anmelder:
 Biomatrix Inc., Ridgefield, N.J., US

(74) Vertreter:

Zipse, E., Dipl.-Phys., 7570 Baden-Baden; Habersack, H., Dipl.-Ing., Pat.-Anw., 8000 München

② Erfinder:

Balazs, Endre A., Riverdale, N.Y., US; Leshchiner, Adolf, Brooklyn, N.Y., US

(Masserunlösliche Zubereitung von Hyaluronsäure

Wasserunlösliche, bioverträgliche Hyaluronsäure-Zubereitungen werden dadurch hergestellt, daß Hyaluronsäure einer Behandlung mit einem Vernetzungsmittel unterzogen wird.

Zipse&Habersack

Kemnatenstraße 49, D-8000 München 19 Telefon (089) 17 01 86, Telex (07) 81 307

Patentanwälte

beim Europäischen Patentamt zugelassene Vertreter

3434082

Biomatrix, Inc. USA-Ridgefield, New Jersey 07657 PM 03 16. Sept.1984

Patentansprüche

5

10

15

20

Verfahren zur Herstellung einer wasserunlöslichen Hyaluronsäure-Zubereitung, dadurch gekennzeichnet, daß Hyaluronsäure in Form eines Pulvers, eines
Films oder Gels einer Behandlung mit einem Vernetzungsmittel unterzogen wird, das aus der Gruppe ausgewählt
wird, die aus Formaldehyd, Dimethylolharnstoff,
Dimethyloläthylenharnstoff, Äthylenoxid, einem Polyaziridin, einem Folyisocyanat und Divinylsulfon besteht.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Vernetzungsmittel Formaldehyd ist und daß die Behandlung in einem wäßrigen Medium bei Rücklaufbzw. Rektifikationstemperatur bewirkt wird.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Vernetzungsmittel ein Polyaziridin ist und daß die Behandlung unter trockenen Bedingungen bei Umgebungstemperatur bewirkt wird.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Vernetzungsmittel ein Polyisocyanat ist und daß die Behandlung in Aceton bei Rücklauf- bzw. Rektifikationstemperatur bewirkt wird.

5

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Vernetzungsmittel Cimethyloläthylenharnstoff ist und daß die Behandlung bei etwa 110 °C bewirkt wird.

10

6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Vernetzungsmittel Divinylsulfon ist und daß die Behandlung bei etwa 60 bis 65 °C bewirkt wird.

15

7. Produkt, dadurch gekennzeichnet, daß es nach dem Verfahren gemäß Anspruch 1 hergestellt ist. 5

10

Wasserunlösliche Zubereitung von Hyaluronsäure

Die vorliegende Erfindung bezieht sich auf biokompatibele, wasserunlösliche Zubereitungen der Hyaluronsäure ("HA"), welche - wegen deren Biokompatibilität die Möglichkeit für diese schafft, bei zahlreichen
In-vivo-Anwendungen, beispielsweise verschiedenen prothetischen Vorrichtungen und Mittel, einschließlich künstlichen Herzklappen, vaskulären Transplantaten etc., verwendet zu werden. Die wasserunlösliche (oder vernetzte)
HA kann auch benutzt werden, um verschiedene polymere
Artikel zu modifizieren, die ebenfalls in zahlreichen
In-vivo-Anwendungen verwendet werden können.

Hyaluronsäure ist eine bekannte, natürlich vorkommende Substanz, welche viele Anwendungen in Medizin und Biologie aufweist. Es sei zum Beispiel auf die US-Patentschrift 4 272 522 und die darin angegebenen Veröffentlichungen hingewiesen. Vernetzte Gele der Hyaluronsäure sind bekannt; sie wurden durch Laurent et al in Acta Chem. Scand. 18 (1964) No. 1, Seiten 274 bis 275, beschrieben.

Die vorliegende Erfindung ist auf wasserunlösliche Zubereitungen der Hyaluronsäure gerichtet, die biokompatibel sind. Wegen ihrer Biokompatibilität können sie sowohl bei zahlreichen In-vivo-Anwendungen per se als auch in Kombination mit verschiedenen polymeren Materia-lien verwendet werden, welche durch den Einschluß derartiger wasserunlöslichen Zubereitungen darin modifiziert wurden.

Genauer ausgedrückt, ist die Erfindung auf wasser-15 unlösliche Zubereitungen von Hyaluronsäure, einschließlich der folgenden Arten von Materialien, gerichtet:

- 1.) Vernetztes Hyaluronsäure-Fulver;
- 2.) Vernetzter Hyaluronsäure-Film bzw. vernetzte Hyaluronsäure-Membrane;
- 3.) Vernetztes Gel der Hyaluronsäure;
- 4.) Vernetzter Hyaluronsäure-Film, durch ein Folyäthylen-Terephthalat -Gewirke verst≘ärkt, und
- 5.) Partikuläre Materialien, mit vernetzter Hya... luronsäure bedeckt.

Die Vernetzungsmittel, die verwendet werden können, um die raschen Zubereitungen (Instant-Präparationen) herzustellen, schließen ein:

Formaldehyd;

20

25

- 2.) Dimethylolharnstoff;
- Dimethyloläthylenharnstoff;
- 4.) Polyaziridinylverbindung;
- 35 5.) Äthylenoxid;

- 6.) Polyisocyanat und
- 7.) Divinylsulfon.

Die folgenden Beispiele, (bei welchen alle angegebenen Teile gewichtsmäßig angegeben sind, wenn nicht anders spezifiziert), veranschaulichen die verschiedenen Ausführungsformen der Erfindung, ohne jedoch eine Einschränkung derselben darzustellen, wobei die Erfindung allein durch die Patentansprüche umrissen ist.

Beispiel 1

5

10

15

20

25

30

35

Einem Wasser-Aceton-Gemisch wurde eine 37 gewichtsprozentige Wasserlösung von Formaldehyd und konzentrierter Salzsäure beigemischt. Das erhaltene Gemisch bestand
aus folgenden Zusammensetzungen (Gewichtsprozent):
CH₂O, O,27; HCl, O,19; Wasser/Aceton-Verhältnis 1: 28.
Natriumhyaluronatpulver (O,5 g) wurde zum Rückfließen
gebracht: 10 Minuten lang in 50 ml des Gemisches. Dann
wurde das Pulver abgefiltert, mit einem Wasser/AcetonGemisch 1: 3 sorgfältig gewaschen, dann mit Aceton und
schließlich in einem Vakuumofen getrocknet. Das erhaltene Hyaluronsäurepulver war in Wasser unlöslich und enthielt 1,41 % kombiniertes CH₂O.

Beispiel 2

Das obige Beispiel wurde mit dem vernetzenden Gemisch der folgenden Zusammensetzung (Gewichtsprozent) wiederholt: CH₂O, 2,5; HCl, 0,38; Wasser/Aceton-Verhältnis 1: 2. Der CH₂O-Gehalt des Produktes war 5,3 %.

Bei den Beispielen 1 und 2 wurde die Vernetzung eines Hyaluronsäurepulvers in Wasser-Aceton-Gemischen durchgeführt. Durch Änderung des Wasser/Aceton-Verhältnisses und der CH₂O-Konzentration ist es möglich, das Quellungsverhältnis des Produktes zu steuern und zu regeln. Somit war das Quellungsverhältnis 178 % für das Produkt des Beispiels 1 und 230 % für das Produkt des Beispiels 2. Das Quellungsverhältnis kann dadurch reduziert werden, daß der Betrag des Acetons in dem Gemisch und die CH₂O-Konzentration erhöht werden.

Die folgenden Beispiele veranschaulichen die Verwendung einer Polyaziridin-Verbindung als Vernetzungsmittel. Diese Verbindung des Polyaziridin-Typs vernetzt
Hyaluronsäure unter Trockenbedingungen und bei Umgebungstemperatur, was bei Hyaluronsäure sehr wichtig ist, da
es sich bei letzterer um ein wärmeempfindliches Polymer
handelt.

Beispiel 3

5

10

15

30

35

113,0 gm einer Hyaluronsäurelösung in Wasser

(Konzentration 14,2 mg/ml) wurden 0,42 g einer Polyaziridin-Verbindung - Cross-Linker CX-100 (Polyvinyl-Chemikalie) beigemischt. Das Molverhältnis des Vernetzungsmittels zu Hyaluronsäure war 0,5. Das Gemisch wurde in
eine Glasplatte als eine 5 mm dicke Schicht gegossen und
bei Raumtemperatur 2 Tage lang trocknen gelassen. Ein
klarer Film aus vernetzter Hyaluronsäure wurde erhalten,
der in Wasser nicht löslich war und ein Quellungsverhältnis in Wasser von 160 % hatte.

Beispiel 4

0,5 g eines trockenen Hyaluronsäurepulvers wurden mit 50 ml einer 1%igen Lösung von Cross-Linker CX-100 in Aceton vermischt, 5 Minuten lang gelassen und abgefiltert. Das Pulver wurde an der Luft 2 Stunden lang getrocknet, dann mehrmals mit Wasser gewaschen und in einem Vakuumofen bei 40 °C 4 Stunden lang getrocknet. Das Quellungsverhältnis des vernetzten Pulvers in Wasser war 135 %.

5 .

15

20

Das folgende Beispiel veranschaulicht die Verwendung der Polyaziridin-Verbindung zur Erzielung vernetzter Hyaluronsäure mit einem hohen Grad an Quellung.

10 Beispiel 5

O,6 g festes Natriumhyaluronat wurde mit 9,2 g einer O,6%igen Lösung, gewichtsmäßig, von Cross-Linker CX-100 in Wasser gemischt. Die erhaltene Lösung hatte ein Molverhältnis von CX-100 zu Natriumhyaluronat = 0,1. Der Natriumhyaluronatgehalt in der Lösung war 6,04 Gewichtsprozent. Der pH-Wert des erhaltenen sehr viskosen Gemisches wurde mit 2 % HCL auf 2,5 eingeregelt. Der sich ergebende Film war in Wasser leicht löslich. Der Film wurde bei 60 °C 30 Minuten lang erwärmt. Die Wärmebe-