

Софийски Университет "Св. Климент Охридски"

Първа и втора лема на Щолц

Изготвил: Минко Гечев

Ръководител: доц. Първан Първанов

1 Теореми и доказателства

Лема 1. $Heкa \{y_n\}_{n=1}$ е строго монотонна, а

$$\lim_{x \to \infty} \frac{x_{n+1} - x_n}{y_{n+1} - y_n} = l \ (1)$$

 $зa \ \forall \varepsilon > 0, \exists N_1 : \forall k > n > N_1 :$

$$\left|\frac{x_k - x_n}{y_k - y_n} - l\right| < \varepsilon_1 \ (2)$$

Доказателство: За да докажем лемата ще разгледаме два случая, съответно, когато редицата е строго растяща и строго намаляваща.

1 сл. Нека y_n е строго растяща. От $(1) \Rightarrow \exists N_1 : \forall n > N_1, n \in \mathbb{N}$ е изпълнено:

$$\left|\frac{x_{n+1} - x_n}{y_{n+1} - y_n} - l\right| < \varepsilon_1 \ (3)$$

Ще докажем, че това е търсеното N_1 . Нека $n,k\in\mathbb{N}\ u\ k>n>N_1$. Понеже $y_i>y_i$ за $\forall j>i$

$$\left|\frac{x_j - x_i}{y_i - y_i} - l\right| < \varepsilon_1 \Leftrightarrow (l - \varepsilon_1)(y_j - y_i) < x_j - x_i < (l + \varepsilon_1)(y_j - y_i) \tag{4}$$

Aко приложим (4) за i=n, j=n+1 и j=n+2, i=n+1 и т.н. получаваме:

$$+ \begin{cases} (l - \varepsilon_1)(y_{n+1} - y_n) < x_{n+1} - x_n < (l + \varepsilon_1)(y_{n+1} - y_n) \\ \dots \\ (l - \varepsilon_1)(y_k - y_{k-1}) < x_k - x_{k-1} < (l + \varepsilon_1)(y_k - y_{k-1}) \end{cases}$$

$$(l-\varepsilon_1)(y_{n+1}-y_n+y_{n+2}-y_{n+1}+\ldots+y_k-y_{k-1}) < \\ x_{n+1}-x_n+x_{n+2}-x_{n-1}+\ldots+x_k-x_{k-1} < (l+\varepsilon_1)(y_{n+1}-y_n+y_{n+2}-y_{n+1}+\ldots+y_k-y_{k-1})$$

$$(l - \varepsilon_1)(y_k - y_n) < x_k - x_n < (l - \varepsilon_1)(y_k - y_n)(5)$$

от тук намерихме $N_1: k > n > N_1$ и

$$|rac{x_k-x_n}{y_k-y_n}-l|, защото (5) е еквивалентно на (2).$$

Случаят за монотонно намаляваща редица се доказва аналогично.

Първа лема на Щолц. $Heкa\ \{y_n\}_{n=1}^{\infty}\ e\ cmporo\ монотонна.$

$$\lim_{n\to\infty}x_n=0, \lim_{n\to\infty}y_n=0 \ u \lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=l, \ \text{moraea} \lim_{n\to\infty}\frac{x_n}{y_n}=l$$

Доказателство: Нека $\varepsilon > 0, \varepsilon_1 \in (0,\varepsilon), \ mo \ om \ Лема \ 1 \Rightarrow \exists N: k > n > N$

$$\left|\frac{x_k - x_n}{y_k - y_n} - l\right| < \varepsilon$$

Нека фиксираме n > N и направим граничен преход при $k \to \infty$ в горното неравенство. По условие $\{x_n\}_{n=0}^{\infty}$ и $\{y_n\}_{n=0}^{\infty}$ са намаляващи и клонят към 0 при $n \to \infty \Rightarrow |\frac{x_n}{y_n} - l| \le \varepsilon_1 < \varepsilon$ m.e.:

$$\forall n > N \Rightarrow \left| \frac{x_n}{y_n} - l \right| < \varepsilon \Rightarrow \lim_{n \to \infty} \frac{x_n}{y_n} = l.$$

Втора лема на Щолц. Нека $\{y_n\}_{n=1}^{\infty}$ е строго растяща - $\lim_{n\to\infty} y_n = \infty$ и $\lim_{n\to\infty} \frac{x_{n+1}-x_n}{y_{n+1}-y_n} = l$. Тогава:

$$\lim_{n \to \infty} \frac{x_n}{y_n} = l$$

Доказателство: Нека $\varepsilon > 0$ и $\varepsilon_1 \in (0,\varepsilon)$. От Лема 1 следва, че $\exists N_1 : k > m > N_1$:

$$\left|\frac{x_k - x_m}{y_k - y_m} - l\right| < \varepsilon_1$$

 $m.e.\ (l-arepsilon_1)(y_k-y_m) < x_k-x_m < (l+arepsilon_1)(y_k-y_m).$ Нека $m>N_1,y_m>0.$ Нека разделим на $y_k>0$:

$$(l-\varepsilon_1)(l-\frac{y_m}{y_k}) < \frac{x_k}{y_k} - \frac{x_m}{y_k} < (l+\varepsilon_1)(1-\frac{y_m}{y_k})$$

Kamo прехвърлим $\frac{x_m}{y_n}$ получаваме:

$$(l-\varepsilon_1)(1-\frac{y_m}{y_k}) + \frac{x_m}{y_k} < \frac{x_k}{y_k} < (l+\varepsilon_1)(1-\frac{y_m}{y_k}) + \frac{x_m}{x_k}$$
 (7).

Нека $k \to \infty$, понеже $y_k \to \infty$, при $k \to \infty$:

$$\lim_{k \to \infty} ((l - \varepsilon_1)(1 - \frac{y_m}{y_k}) + \frac{x_m}{y_k}) = l - \varepsilon_1 < l - \varepsilon, \ u$$

$$\lim_{k \to \infty} ((l + \varepsilon_1)(1 - \frac{y_m}{y_k}) + \frac{x_m}{y_k}) = l + \varepsilon_1 < l + \varepsilon$$

Следователно съществува N, такова че за всяко k>N е изпълнено:

$$l - \varepsilon < (l - \varepsilon_1)(1 - \frac{y_m}{y_k}) + \frac{x_m}{y_k} u (l + \varepsilon_1)(1 - \frac{y_m}{y_k}) + \frac{x_m}{y_k} < l + \varepsilon$$

Като се върнем в (7) получаваме:

$$|l - \varepsilon| < \frac{x_k}{y_k} < l + \varepsilon \text{ unu } \forall n > N \Rightarrow |\frac{x_n}{y_n} - l| < \varepsilon$$

Теорема 1. Нека (a_n) е редица от реални числа, $\{b_n\}_{n=0}^{\infty}$: $\lim_{n\to\infty} b_n = \infty$. Ако:

$$\lim_{n \to \infty} \frac{b_n}{b_{n+1}} = b, b \in \mathbb{R}$$

To:
$$\lim_{n \to \infty} \frac{a_n}{b_n} = l \Rightarrow \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = l$$

Теорема 2. Нека е дадена редицата $\{x_n\}$. Ако $\lim_{n\to\infty}x_n=x, x\in(-\infty,\infty)$, тогава:

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = x$$

Доказателство: Нека $b_n = n, a_n = x_1 + x_2 + ... + x_n,$ тогава $\frac{a_{n+1} - a_n}{b_{n+1} - b_n} = x_{n+1} \to x.$

2 Примери

Пример 1. Оценете $\lim_{n\to\infty} \frac{1^k+2^k+...+n^k}{n^{k+1}}$, където $k\in\mathbb{N}$. Решение: Нека $a_n=1^k+2^k+...+n^k, b_n=n^{k+1}$. Ясно е, че редицата b_n е с

положителни членове, строго растяща и неограничена. Сега:

$$\lim_{n \to \infty} \frac{a_{n+} - a_n}{b_{n+1} - b_n} = \lim_{n \to \infty} \frac{(n+1)^k}{(n+1)^{k+1} - n^{k+1}} = \lim_{n \to \infty} \frac{(n+1)^k}{(1 + \binom{k+1}{1}n + \binom{k+1}{2}n^2 + \dots + \binom{k+1}{k}n^k + n^{k+1}) - n^{k+1}} = \lim_{n \to \infty} \frac{(n+1)^k/n^k}{(1 + \binom{k+1}{1}n + \binom{k+1}{2}n^2 + \dots + \binom{k+1}{k}n^k)/n^k} = \lim_{n \to \infty} \frac{(1 + 1/n)^k}{\binom{k+1}{k}} = \frac{1}{k+1}.$$

 $Om\ my\kappa\ uзползвайки\ лемата\ на\ Щоли,\ получаваме,\ че\ границата\ e\ rac{1}{k+1}.$

Пример 2. Оценете $\lim_{n\to\infty}\frac{\sum_{k=1}^n ka_n}{n^2}$, $npu\lim_{n\to\infty}a_n=L$.

Решение: От втората лема на Щоли следва, че горната редица има същата граница като:

$$\frac{\sum_{k=1}^{n} k a_k - \sum_{k=1}^{n-1} k a_k}{n^2 - (n-1)^2} = \frac{n a_n}{2n-1} = \frac{a_n}{2-1/n} \to \frac{L}{2}$$

Пример 3. Нека $\{x_n\}$ е редица от реални числа и нека: $x_{n+1} = x_n + e^{-x_n}, \forall n \geq 0$. Оценете: $\lim_{n \to \infty} (x_n - \ln(n+1))$. Решение: Тъй като x_n е растяща и $x_n \to \infty$.

Означаваме $y_n = e^{x_n - \ln(n+1)} = \frac{e^{x_n}}{n+1}$. Нека приложим лемата на Щоли:

$$\frac{e^{x_{n+1}} - e^{x_n}}{n+2 - (n+1)} = e^{x_n} (e^{x_{n+1} - x_n} - 1) = \frac{e^{e^{-x_n}} - 1}{e^{-x_n}} \to 1$$

Təŭ $kamo \lim_{y\to 0} \frac{e^y - 1}{y} = 1 \ u \ e^{-x_n} \to 0.$

Om Щоли следва, че $y_n \to 1$, което означава, че $\lim_{n \to \infty} x_n - \ln(n+1) = 0$.

Пример 4. Hamepeme:

$$\lim_{n\to\infty}\frac{1!+2!+\cdots+n!}{n!}$$

Решение: Като приложим лемата на Щоли получаваме:

$$\lim_{n \to \infty} \frac{1! + 2! + \dots + n!}{n!} = \lim_{n \to \infty} \frac{(n+1)!}{(n+1)! - n!} = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

Пример 5. Дадена е редицата: $a_1=1, a_{n+1}=a_n+\frac{1}{a_n},$ намерете $\lim_{n\to\infty}\frac{a_n}{n}.$ Решение: Прилагайки лемата на Щолц получаваме:

$$\lim_{n \to \infty} \frac{a_n}{n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{(n+1) - n} = \lim_{n \to \infty} \frac{\frac{1}{a_n}}{1} = \lim_{n \to \infty} \frac{1}{a_n} = 0.$$

Литература:

- 1. Уикипедия en.wikipedia.org/wiki/Stolz theorem
- 2. Marian Mureşan: A Concrete Approach to Classical Analysis. Springer $2008\,$