Time Series Modeling and Forecasting Final Exam

rinai Exal

Instructions

- Answer the questions below on the answer sheet provided. Write only on the fronts of the pages.
- Organize your answers logically. Use scratch paper to work them out ahead of time if needed.
- Be NEAT! If it is too hard to read, it is wrong.
- Be concise. You will lose points for saying incorrect things as well as for not saying correct things.
- 1. Consider part 1 of the output provided. Interpret the PACs and Dickey-Fuller results. What do they imply for modeling average weekly earnings?
- 2. Part 2 of the output gives results for a "baseline" model. Why would we think of this as the baseline model for a one-step forecast in this case?
- 3. Consider the baseline model in part 2 of the output and the alternative model in part 3 of the output. Argue that the alternative model with a window size of 60 months is best.
- 4. Suppose you want to know the confidence interval for the change in next month's average weekly earnings associated with a change in the share of employment in leisure and hospitality. Should you use the output in part 3 or the output in part 4? Why?
- 5. Using the information in part 5 of the output, calculate the 90% empirical forecast interval for March 2019 average weekly earnings. Why not use the coefficients from part 3 of the output?
- 6. To keep work on question 5 simple, all variables are untransformed. Why would it make sense to take the log before modeling average weekly earnings? If we were working in logs what additional steps would you need to perform in the previous question?
- 7. Out of sample validation is crucial to protect against over fitting. What is overfitting? Why is standard K-fold cross validation potentially troublesome in a time series context? What is rolling window estimation and validation? How does it avoid the trouble suffered by with K-fold cross validation?
- 8. Suppose we want to explore models with alternative predictors and various lags. We used the GSREG package to do such things. Why did we use AIC, BIC, and out of sample RMSE to rank models with GSREG instead of the regular RMSE or R-Squared?
- 9. How would we best go about making a forecast for average weekly earnings for horizons 2, and 3?
- 10. What is a fan chart, and how would we make one for our forecasts?
- 11. How would the baseline model above be used to make a dynamic forecast for horizons 1, 2, and 3? What are the advantages and disadvantages of this relative to the method in the previous question?
- 12. How would a Vector Autoregressive Model (VAR) be used to make a dynamic forecast for horizons 1, 2, and 3?
- 13. Briefly, what does Christopher Sims have to do with VAR models and what was his critique about?
- 14. Rewrite the AR(1) model $y_t = ay_{t-1} + e_t$ (e is white noise and 0<a<1) as an infinite MA model.
- 15. What is the Wold Representation Theorem and why is it foundational for forecasting?

The Stata output below pertains to models of monthly average weekly earnings for private sector employees in Florida (awe_priv). The baseline model is purely autoregressive. The alternative model includes the share of leisure and hospitality employment in total nonfarm employment (share_lh). All models include month indicators.

1. Assessing Stationarity

Dickey-Ful	ler Test for Averag	ge Weekly Earnings		
Augmented	Dickey-Fuller test	for unit root	Number of obs	= 133
		Inter	rpolated Dickey-Ful	ler
	Test	1% Critical	5% Critical	10% Critical
	Statistic	Value	Value	Value
Z(t)	0.332	-4.029	-3.446	-3.146

MacKinnon approximate p-value for Z(t) = 0.9964

Dickey-Ful	ler Test for Diffe	rence in Average	Weekly Earnings		
Augmented	Dickey-Fuller test	for unit root	Number of obs	=	132
		Int	terpolated Dickey-Ful	ller	
	Test	1% Critical	5% Critical	10%	Critical
	Statistic	Value	Value		Value
Z(t)	-3.625	-4.029	-3.446		-3.146

MacKinnon approximate p-value for Z(t) = 0.0278

2. Baseline Model

Source	SS	df	MS	Number of ob	s =	133
	+			F(23, 109)	=	7.00
Model	8709.027	717 23	378.653355	Prob > F	=	0.0000
Residual	5898.443	378 109	54.1141631	R-squared	=	0.5962
	+			Adj R-square	d =	0.5110
Total	14607.4	171 132	110.662659	Root MSE	=	7.3562

D.awe_priv	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
awe_priv LD. L2D. L3D. L4D. L5D. L6D.	6011393 5196872 0015883 0460876 .0929756 .2451245 .2386793	.094644 .1092459 .1198929 .1160451 .1156809 .1134313 .110899	-6.35 -4.76 -0.01 -0.40 0.80 2.16 2.15	0.000 0.000 0.989 0.692 0.423 0.033 0.034	7887205 736209 2392122 2760853 1363003 .0203074 .0188812	413558 3031654 .2360356 .1839101 .3222514 .4699417 .4584775
L8D. L9D. L10D. L11D.	.154619 .282376 .0314288 .170758	.1099346 .1093647 .1116487 .1010646	1.41 2.58 0.28 1.69	0.162 0.011 0.779 0.094	0632678 .0656187 1898554 0295488	.3725059 .4991332 .252713 .3710647
L12D.	0850619	.0875797	-0.97	0.334	258642	.0885182

Note: Coefficients for month indicators and constant not shown to save space.

Akaike's information criterion and Bayesian information criterion

Model	Obs ll(null)	ll(model)	df	AIC	BIC
.	133 -501.1983	-440.8931	24	929.7862	999.1546

Note: N=Obs used in calculating BIC; see [R] BIC note.

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	8.966	1	0.0028
12	26.578	12	0.0089

HO: no serial correlation

RWrmse72 = 8.86RWrmse60 = 10.46 RWrmse48 = 11.16 RWrmse36 = 13.91

^{. /*}Rolling window results - Baseline Model

^{*}Windows over 6 years not considered as there are only 12 years of data and leaving out one year of lags plus a 6 year window leaves only 60 observations to fit.

3. Alternative Model

J. 111 001114 01 10							
Source	SS	df	MS	Numk	per of obs	=	133
+				- F(14	1, 118)	=	9.17
Model	7610.72315	14	543.623082	•	> F	=	0.0000
Residual	6996.74781	118	59.294473	R-sc	quared	=	0.5210
+				- Adj	R-squared	=	0.4642
Total	14607.471	132	110.662659	Root	MSE	=	7.7003
D.awe_priv	Coef.	Std. Err.	t	P> t	[95% Con	nf.	<pre>Interval]</pre>
share_lh LD.		17.45171	-1.62	0.107	-62.87161	-	6.246678
awe_priv LD. L2D.	6954472 5477598	.0751745		0.000	8443131 6897783		5465812 4057412

Note: Coefficients for month indicators and constant not shown to save space.

Akaike's information criterion and Bayesian information criterion

Model	Obs ll(null)	ll(model)	df	AIC	BIC
.	133 -501.1983	-452.2485	15 	934.4969	977.8521

Note: N=Obs used in calculating BIC; see [R] BIC note.

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	2.512	1	0.1130
12	23.524	12	0.0236

HO: no serial correlation

RWrmse72 = 8.58

RWrmse60 = 9.24

RWrmse48 = 10.04

RWrmse36 = 10.57

4. Alternative Model with Robust Standard Errors

Regression wit maximum lag: 1	-	standard e	rrors		of obs = 118) = F =	
	Coef.		t		[95% Conf.	Interval]
share_lh	-28.31247		-1.76		-60.12016	3.495226
	6954472 5477598	.0859604	-8.09 -7.30	0.000	8656722 6962884	5252222 3992311

Note: Coefficients for month indicators and constant not shown to save space.

[.] /*Rolling window results for - Alternative Model

^{*}Windows over 6 years not considered as there are only 12 years of data and leaving out one year of lags plus a 6 year window leaves only 60 observations to fit.

5. Results for Forecasting March 2019

Estimated only Source		df	MS	Numk	per of obs		60 3 . 88
	3843.16422			•	1, 45) > F		3.88
Residual	3181.89571	45	70.7087935	5 R-sc	quared	=	0.5471
+	7025.05993		110 06001		R-squared	=	
TOLAI	7025.05993	59	119.008812	2 R001	MSE	=	8.4089
D.awe_priv	Coef.	Std. Err.	t	P> t	[95% Con	ıf.	<pre>Interval]</pre>
share lh							
	-38.43324	26.61219	-1.44	0.156	-92.03294	ļ	15.16647
. !							
awe_priv	6407784	1/1007/	- 4 52	0 000	- 9265542	,	3550025
		.1275719	-3.72	0.000	7315959		2177099
1120.	.4/40323	.12/3/13	3.72	0.001	. /313333	,	.2111099
md2	14.53186	8.573556	1.69	0.097	-2.736166	5	31.79989
md3	-1.158425	5.805917	-0.20	0.843	-12.85214		10.53529
_cons	1.325165	3.898538	0.34	0.736	-6.526894		9.177224

Note: Coefficients for month indicators 4-12 not shown to save space.

Summary Statistics

Rolling Window	Residuals	for w	=60
Obs			84
Mean		2	.22
Median		0	.79
5 th Percentile		-9	.06
95 th Percentile		19	.54

Last	3 months of	data
Date	awe_priv	share_lh
Dec 2018	878.60	13.79
Jan 2019	874.45	13.40
Feb 2019	878.58	13.94