

Базовая математика

Урок 14. Векторы в пространстве и действия над ними

Определение 1. *Вектор* — это направленный прямолинейный отрезок, то есть отрезок, имеющий определённую длину и определённое направление.

Пусть точка A — начало вектора, а точка B — его конец. Тогда вектор обозначается символом \overline{AB} или \overline{a} .

Вектор \overline{BA} называется противоположным вектору \overline{AB} и может быть обозначен $-\overline{a}$.

Сформулируем ряд базовых определений.

Определение 2. Длиной или модулем вектора \overline{AB} называется длина отрезка и обозначается $|\overline{AB}|$.

Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат Oxyz. Пусть в ней задан некоторый вектор \overline{AB} с координатами (x;y;z). Тогда формула для нахождения длины вектора:

$$|\overline{AB}| = \sqrt{x^2 + y^2 + z^2}$$

Определение 3. Вектор нулевой длины (его суть — точка) называется *нулевым* и обозначается как $\overline{0}$. Нулевой вектор не имеет направления.

Определение 4. Вектор единичной длины называется $e\overline{\partial}$ иничным. Единичные векторы обычно обозначают \overline{e} . Единичный вектор, направление которого совпадает с направлением заданного вектора \overline{a} , называется opmom вектора \overline{a} .

Определение 5. Векторы \bar{a} , \bar{b} называются *коллинеарными*, если они лежат на одной прямой или на параллельных прямых. Обозначение: $\bar{a}||\bar{b}$.

Коллинеарные векторы могут иметь совпадающие или противоположные направления. Нулевой вектор считают коллинеарным любому вектору.

Определение 6. Векторы называются pавными ($\overline{a}=\overline{b}$), если они коллинеарны, одинаково направлены и имеют одинаковые длины.

Пусть в трёхмерном пространстве заданы векторы

$$\overline{a} = (x_1; y_1; z_1), \overline{b} = (x_2; y_2; z_2), \overline{c} = (x_3; y_3; z_3)$$

Имеют место следующие операции над ними:

- линейные: сложение, вычитание, умножение на число и проектирование вектора на ось или другой вектор
- нелинейные: скалярное произведение векторов

Основные операции над векторами.

1. Сложение двух векторов производится покоординатно:

$$\overline{a} + \overline{b} = (x_1 + x_2; y_1 + y_2; z_1 + z_3)$$

Данная формула имеет место для произвольного конечного числа слагаемых. Геометрически два вектора складываются по двум правилам:

- (а) Правило треугольника. Откладываем второй вектор от конца первого. Тогда вектор суммы двух векторов имеет начало в начале первого вектора, а конец в конце второго вектора. Если векторов больше двух, следует последовательно отложить каждый следующий вектор от конца предыдущего. Тогда сумма векторов вектор с началом в начале первого вектора и концом в конце последнего.
- (b) Правило параллелограмма. Параллелограмм строится на векторах-слагаемых как на сторонах, приведённых к одному началу. Теперь диагональ параллелограмма, исходящая из их общего начала, является суммой векторов.

Рис. 1: Правило треугольника

Рис. 2: Правило параллелограмма

2. Вычитание двух векторов производится покоординатно, аналогично сложению:

$$\overline{a} - \overline{b} = (x_1 - x_2; y_1 - y_2; z_1 - z_3)$$

Важным следствием вычитания векторов является следующее: если известны координаты начала и конца вектора, то для вычисления координат вектора необходимо из координат его конца вычесть координаты его начала.

3. Умножение вектора на число λ покоординатно:

$$\lambda \cdot \overline{a} = (\lambda x_1; \lambda y_1; \lambda z_1)$$

При $\lambda>0$ вектор $\lambda\cdot\overline{a}$ сонаправлен; $\lambda<0$ — вектор $\lambda\cdot\overline{a}$ противоположно направлен; $|\lambda|>1$ — длина вектора \overline{a} увеличивается в λ раз; $|\lambda|<1$ — длина вектора \overline{a} уменьшается в λ раз.

Определение 7. *Скалярным произведением* векторов $\overline{a} \cdot \overline{b}$ называется число (скаляр), равное произведению длин этих векторов на косинус угла между ними:

$$\overline{a} \cdot \overline{b} = |\overline{a}| \cdot |\overline{b}| \cdot \cos \widehat{ab},$$

где \widehat{ab} — угол между векторами.

Скалярное произведение двух векторов, заданных своими координатами, равно сумме произведений их одноимённых координат:

$$\overline{a} \cdot \overline{b} = x_1 x_2 + y_1 y_2 + z_1 z_2$$

Зная скалярное произведение векторов, можно вычислить угол между ними. Если заданы два ненулевых вектора с координатами

$$\overline{a} = (x_1; y_1; z_1), \ \overline{b} = (x_2; y_2; z_2),$$

то косинус угла \widehat{ab} между ними:

$$\cos \widehat{ab} = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}| \cdot |\overline{b}|}$$

Необходимым и достаточным условием перпендикулярности двух векторов является равенство нулю их скалярного произведения.

Пример 1. Вычислить: $\overline{a} + \overline{b}$; $\overline{a} - \overline{b}$; $\lambda \overline{a} + \mu \overline{b}$, если $\overline{a} = (1; 2; 5)$, $\overline{b} = (4; 8; 1)$, $\lambda = 3$; $\mu = 1/2$.

Решение.

1.
$$\overline{a} + \overline{b} = (1+4; 2+8; 5+1) = (5; 10; 6)$$

2.
$$\overline{a} - \overline{b} = (1 - 4; 2 - 8; 5 - 1) = (-3; -6; 4)$$

3.
$$\lambda \overline{a} = 3 \cdot (1; 2; 5) = (3; 6; 15)$$

 $\mu \overline{b} = 1/2 \cdot (4; 8; 1) = (2; 4; 1/2)$
 $\Rightarrow \lambda \overline{a} + \mu \overline{b} = (3 + 2; 6 + 4; 15 + 1/2) = (5; 10; 15.5)$

Пример 2. Найти длину вектора $\bar{a} = (2; 4)$.

Решение.

$$|\overline{a}| = \sqrt{x^2 + y^2} = \sqrt{2^2 + 4^2} = \sqrt{4 + 16} = 2\sqrt{5}$$

Omeem: $2\sqrt{5}$.

Пример 3. Найти длину вектора $\bar{a} = (2; 4; 4)$.

Решение.

$$|\overline{a}| = \sqrt{x^2 + y^2 + z^2} = \sqrt{2^2 + 4^2 + 4^2} = \sqrt{4 + 16 + 16} = \sqrt{36} = 6$$

Omeem: 6.

Пример 4. Найти угол между векторами $\overline{a}=(3;4;0)$ и $\overline{b}=(4;4;2).$

Решение. Найдём скалярное произведение векторов:

$$\overline{a} \cdot \overline{b} = 3 \cdot 4 + 4 \cdot 4 + 0 \cdot 2 = 12 + 16 + 0 = 28$$

Найдём длины векторов:

$$|\overline{a}| = \sqrt{x^2 + y^2 + z^2} = \sqrt{3^2 + 4^2 + 0^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$
$$|\overline{b}| = \sqrt{x^2 + y^2 + z^2} = \sqrt{4^2 + 4^2 + 2^2} = \sqrt{16 + 16 + 4} = \sqrt{36} = 6$$

Итак, угол между векторами:

$$\cos \widehat{ab} = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}| \cdot |\overline{b}|} = \frac{28}{5 \cdot 6} = \frac{14}{15}$$
$$\widehat{ab} = \arccos \frac{14}{15}$$

Omeem: $arccos \frac{14}{15}$.

Домашнее задание

- 1. Вычислить: а) $\overline{a}+\overline{b}$; b) $\overline{a}-\overline{b}$; c) $\lambda\overline{a}+\mu\overline{b}$, если $\overline{a}=(4;2;6), \ \overline{b}=(3;-1;1), \ \lambda=1/2; \ \mu=-1.$ 2. Найти длину вектора \overline{a} , если: а) $\overline{a}=(1;-3;3)$, b) $\overline{a}=(0;-4;6)$.
- 3. Найти угол между векторами $\overline{a}=(1;2;-5)$ и $\overline{b}=(4;8;1).$