ACKNOWLEDGEMENT

It was a great experience to develop "Your project title". Many people helped us for this project, those must be appreciated.

We are profoundly grateful to **Prof.guide name** for her expert guidance and continuous encouragement throughout to see that this project achieves its target since its commencement to its completion.

We would like to express deepest appreciation towards **principal**, **Principal college city**, **Prof.HOD name**, **Head Of Department name and Prof.coordinator name** (**Project Coordinator**) whose invaluable guidance supported us in completing this project. At last we must express our sincere heartfelt gratitude to all the staff members of Department name who helped us directly or indirectly during this course of work.

Student name1 Student name2 Student name3

Abstract

YOUR ABSTRACT

Keywords some keywords, other keywords

Table Of Contents

	Abs	ract]
	List	of Figures	V
	List	of Tables	VII
1	Intr	duction	1
	1.1	Motivation	1
	1.2	Background	1
	1.3	The Concept	1
2	Lite	ature Survey	2
	2.1	paper 1	2
3	Prop	osed System	3
4	Rese	arch Methodology	4
5	Desi	gning	6
		5.0.1 System Architecture	7
	5.1	ER Diagram, example of ER daigram	8
	5.2	Data Flow Diagram, example	g
		5.2.1 Context level	g
	5.3	UML Modelling	10
		5.3.1 Usecase diagram	10
		5.3.2 State transition digram	11
		5.3.3 Sequence diagram	12
		5.3.4 Component Diagram	13
6	Imp	ementation	14
	6.1	Analysis	15
	62	Dagulto	17

7	Testing			
	7.1	Unit testing	18	
	7.2	integration testing	18	
	7.3	Acceptance testing	18	
8	Sche	duling	19	
	8.1	Work Breakdown Structure	21	
Ad	lvanta	nges	22	
Fu	ture S	Scope		
A	App	endix 1	24	
В	App	endix 2	25	

List of Figures

1	caption in LOF	2
2	caption	7
3	caption	8
4	DFD: Context level	9
5	Usecase diagram	10
6	State diagram	11
7	Sequence diagram	12
8	Component diagram	13
9	Venn diagram	16
10	Project planner	20
11	Work Breakdown Structure	21

List of Tables

Introduction

Intro to your project. Remember, first line of paragraph should not be indented From immediate next paragraph, use indent.

1.1 Motivation

ABC DEF...

1.2 Background

Why you implemented your system, describe in informal words.

1.3 The Concept

Your project concept in informal, concise words Example of bullet list

- item1
- item2
- item3

Literature Survey

2.1 paper 1

adding cross references (see Figure ??)

file_name.jpg

Figure 1: caption appear below the image

Proposed System

YOUR sections, according to your project

Research Methodology

Adding equation, Example:

RGB to HSV conversion formula is as follows[?].

R, G, B are values of pixel

$$R' = R/255$$

$$G' = G/255$$

$$B' = B/255$$

$$Cmax = max(R', G', B')$$

$$Cmin = min(R', G', B')$$

$$\Delta = Cmax - Cmin$$

Hue calculation

$$H = \begin{cases} 60^{\circ} \times \left(\frac{G' - B'}{\Delta} \mod 6\right) \text{ if Cmax=R'} \\ 60^{\circ} \times \left(\frac{B' - R'}{\Delta} + 2\right) \text{ if Cmax=G'} \\ 60^{\circ} \times \left(\frac{R' - G'}{\Delta} + 4\right) \text{ if Cmax=B'} \end{cases}$$

$$(4.1)$$

Saturation calculation

$$S = \begin{cases} 0 & \text{if } \Delta = 0\\ \frac{\Delta}{Cmax} & \text{if } \Delta \neq 0 \end{cases}$$
 (4.2)

Value calculation

$$V = Cmax (4.3)$$

Designing

Contains, SRS, UML diagrams, ER, DFDs

example of table

Hardware requirements

Processor	Intel® Core TM 2 Quad,Q8300, 2.50GHz
Memory	2048MB
Camera	Logitech c270 (3MP, 800x600 RGB @ 20 fps)
Display device	Dell 22" TFT-LCD Monitor
Other	othes

5.0.1 System Architecture

an example of Block diagram

Figure 2: caption

5.1 ER Diagram, example of ER daigram

Figure 3: caption

5.2 Data Flow Diagram, example

5.2.1 Context level

Figure 4: DFD: Context level

5.3 UML Modelling

5.3.1 Usecase diagram

Figure 5: Usecase diagram

5.3.2 State transition digram

Figure 6: State diagram

5.3.3 Sequence diagram

Figure 7: Sequence diagram

5.3.4 Component Diagram

Figure 8: Component diagram

Implementation

example of adding code snippet

```
<?xml version="1.0" encoding="UTF-8"?>
  <interface>
   <requires lib="qtk+" version="2.24"/>
   <!-- interface-naming-policy project-wide -->
   <object class="GtkAboutDialog" id="about_dia">
     can_focus">False
     cproperty name="border_width">5</property>
     cproperty name="title" translatable="yes">About VDR
     property name="modal">True
10
     property name="window_position">center
     cproperty name="type_hint">dialog/property>
11
     cproperty name="transient_for">vdr_main
12
13
     cproperty name="has_separator">True</property>
14
     property name="program_name">Virtual Dressing Room/property>
     property name="version">1.0
15
     16
        /property>
17
     comments" translatable="yes">The Virtual Mirror
        application</property>
     cyroperty name="license" translatable="yes">Virtual Dressing Room
18
19
20
21
  <object class="GtkListStore" id="ls1">
22
23
     <columns>
       <!-- column-name col1 -->
24
       <column type="GdkPixbuf"/>
2.5
26
       <!-- column-name template -->
27
       <column type="gint"/>
     </columns>
28
   </object>
29
   <object class="GtkListStore" id="ls2">
30
31
     <columns>
       <!-- column-name col2 -->
32
33
       <column type="GdkPixbuf"/>
34
       <!-- column-name temp_no -->
35
       <column type="gint"/>
36
     </columns>
   </object>
37
   <object class="GtkWindow" id="vdr_main">
38
39
     can_focus">False
```

Chapter 6 Implementation

```
40
        property>
     cproperty name="window_position">center
41
     property name="skip_taskbar_hint">True/property>
42.
     cproperty name="gravity">center</property>
43
     cproperty name="has resize grip">False</property>
44
     cproperty name="mnemonics_visible">False/property>
45
46
     <child>
47
       <object class="GtkHBox" id="hbox1">
         cproperty name="visible">True</property>
48
         cproperty name="can_focus">False/property>
49
         property name="spacing">9
50
51
52
53
54
         <packing>
             property name="expand">True/property>
55
             cproperty name="fill">True</property>
56
             cproperty name="position">2</property>
57
58
           </packing>
         </child>
59
60
       </object>
     </child>
61
    </object>
62
  </interface>
```

ui.xml

This Glade XML file clearly shows different widget included in GUI. For example, from line number 38 to 45 describes the main windows properties, its title, position on screen, etc.

6.1 Analysis

Mathematical model

Let S be the system that takes input image and updates it with the selected template.

```
S=\{I,O,F,Sc,Fc\} where, I=Input O=Ouput T=Templates Sc=Success\ case Fc=Failure\ case Dm=\{Dm1,Dm2,...,Dm_n|Dm_i\ is\ template\ applying\ function\} Dg=\{Dg1,Dg2,...,Dg_n|Dg_i\ is\ updated\ image\ representation\} Where,Dg_i=\{U\}\ U=\{U1,U2,...,Un\}\ Where,\ U\ is\ updated\ frames.
```

Chapter 6 Implementation

F1: template updation()

F1 :(Tm) Dgc

Tm selected template

Dgc updated image

Figure 9: Venn diagram

SuccessCases: $Sc=\{Sc1 \land Sc2 \land Sc3 \land Sc4\}$

Sc1 Input frame generated correctly

Sc2 Template selected correctly

Sc3 Template applied successfully

Sc4 Output frame generated successfully

Failure Cases: Fc= $\{Fc1, Fc2, Fc3, Fc4\}$, O= ϕ

Fc1 Camera error

Fc2 template not selected successfully

Fc3 errors while applying template.

Fc4 output file not displayed.

Chapter 6 Implementation

6.2 Results

Testing

- 7.1 Unit testing
- 7.2 integration testing
- 7.3 Acceptance testing

Scheduling

Example of Gantt chart

Chapter 8 Scheduling

Figure 10: Project planner Note: Designing & modelling phase includes information gathering also

8.1 Work Breakdown Structure

Figure 11: Work Breakdown Structure

Advantages

advantages

Appendix A

Appendix 1

Appendix B

Appendix 2