Prova-1 Simulada

1) [2,0] Considere um fóton com comprimento de onda	$\lambda = 500$ nm e responda:	
a) Qual é o momento cinético do fóton?	<i>p</i> =	[kg m/s]
b) Qual é a energia do fóton?	<i>E</i> =	[eV]
2) [2,0] Um sensor Hall é construído com um material simpurezas doadoras $N_D = 10^{16}$ cm ⁻³ . Opera na temperationizadas.		
a) Qual o valor da concentração de equilíbrio dos <u>elétror</u>	$n_0 = \underline{\hspace{1cm}}$	[cm ⁻³]
b) Qual o valor do coeficiente Hall?	$R_H = \underline{\hspace{1cm}}$	[cm ³ /C]
3) [2,0] Um termistor construído com uma trilha de silíd dimensões: $L(\text{comprimento}) = 1 \text{cm}$; $W(\text{largura}) = 1 \text{mm}$; $(T = 300 \text{ K})$, com mobilidades $\mu_n = 1350 \text{ [cm}^2/\text{V.s]}$ e μ_p	t (espessura) = 1 μ m. Opera = 480 [cm ² /V.s]. Responda	na temperatura ambient a:
a) Qual é a condutividade do termistor?	σ =	$[\Omega^{-1} \text{cm}^{-1}]$
b) Qual é a resistência do termistor?	R =	[Ω]
4) [2,0] Um LDR iluminado apenas por um LED possui abaixo. Mantendo $V_{LDR} = 2V$, com o LED desligado (I_{LDR} com $I_{LED} = 10$ mA (ligado), temos $I_{LDR} = 30$ mA. Respon $I_{LDR} = \begin{bmatrix} C_1 J_{LED} + C_2 \end{bmatrix} V$	$I_{LDR} = 0$), obtemos $I_{LDR} = 1$ m. da:	1 1
$I_{LDR} = [C_1.I_{LED} + C_2]V$	LDR	
a) Qual o valor de C_1 ?	$C_I = \underline{\hspace{1cm}}$	[A/W]
b) Qual o valor de C_2 ?	$C_2 = $	$[\Omega^{-1}]$
5) [2,0] Dois diodos <u>idênticos</u> são conectados em série. O está numa temperatura T_2 desconhecida. Aplicam-se as te de saturação $I_{SI} = 1,0$ x 10^{-8} A (Com $T_I = 300$ K) e $I_{S2} = 3,0$	nsões $V_A = 1,2V e V_C = 0V$.	Sabendo que as corrente
a) Qual a temperatura do diodo-2?	$T_2 = \underline{\hspace{1cm}}$	[K]
b) Qual o valor da corrente através dos diodos?	<i>I</i> =	[A]
V_A D1 V_B	D2 V _C	
Nome:	Matrícula:	

Fórmulas e Constantes

$$c = 3 \times 10^8 \text{ [m/s]}$$

$$m_e = 9.10 \times 10^{-31} [kg]$$

$$A = \pi R^2 = \pi D^2/4$$

$$\sigma = (\sigma_n + \sigma_p) = en\mu_n + ep\mu_p$$

$$J = J_n + J_p = (\sigma_p + \sigma_n)\varepsilon$$

$$\mu = \frac{v}{\varepsilon}$$

$$R = \rho \frac{L}{A} = \rho \frac{L}{t.W} = R_S \frac{L}{W}$$

$$R = R_0 e^{-B\left(\frac{1}{T_0} - \frac{1}{T}\right)}$$

$$E_n = \frac{\hbar^2 \pi^2}{2m_e L^2} n^2$$

$$n_i = p_i = \sqrt{n_i p_i} = (N_c N_v)^{1/2} e^{-E_g/2k_B T}$$

$$J = I/A$$

$$\sigma = \frac{Ne^2\tau}{m^*}$$

$$I = I_S(e^{eV/k_BT} - 1)$$

$$k_B = 1.38 \times 10^{-23} [J/K]$$

$$h = 6,6262 \times 10^{-34} \text{ [J.s]}$$

$$e = 1,602 \times 10^{-19} [C]$$

$$\hbar = h/2\pi$$

$$\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{h}{\sqrt{2mE_c}}$$

$$E_c = \frac{mv^2}{2} = \frac{p^2}{2m}$$

$$E = hf = \frac{hc}{\lambda}$$

$$\varepsilon_{y} = R_{H} J_{x} B_{z}$$
 $R_{H} = \frac{p_{0} \mu_{p}^{2} - n_{0} \mu_{n}^{2}}{e(p_{0} \mu_{p} - n_{0} \mu_{n})^{2}}$

$$f(E) = \frac{1}{1 + e^{(E - E_f)/k_B T}}$$

$$v_n = J_n / e n_0$$

$$v_p = J_p / e p_0$$

$$E = mc^2$$

Nome: Matrícula: