Exercices quantificateurs

- 1) Soit P(x): $x^2 + x = 6$, R(x): $x^2 + x = 1$ et $U = \{1,2,3,4,5,6,7,8,9\}$. Exprimer les formes propositionnelles suivantes en langage ordinaire (traduire) et donner leur valeur de vérité.
 - a) $\exists x \in U, P(x)$
 - b) $\forall x \in U, \neg P(x)$
 - c) $\forall x \in U, \neg R(x)$
 - d) $\exists x \in U, R(x)$
- 2) Soit P(x): x = 2n et R(x): x = 4n où $n \in \mathbb{N}$ et soit $U = \{0,1,2,3,4,5,6,7,8,9,10\}$. Exprimer les formes propositionnelles suivantes en langage ordinaire et donner leur valeur de vérité.
 - a) P(3)
 - b) $P(8) \wedge R(8)$
 - c) $\exists x \in U, \neg P(x) \lor R(x)$
- 3) Soit P(x,y): « $\frac{x}{y} \in \mathbb{Z}$ ». Donner la valeur de vérité des formes propositionnelles suivantes :
 - a) P(2,7)
 - b) $\forall x \in \mathbb{Z}, P(x, 0)$
 - c) $\exists y \in \mathbb{Z}, P(9, y)$
 - d) $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, P(x, y)$
 - e) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, P(x, y)$
- 4) Soit P(x): « x étudie au moins trois heures par semaine en mathématiques » et U l'ensemble des étudiants de la classe.
 - a) Quantifier existentiellement cette fonction propositionnelle et décrire en langage ordinaire.
 - b) Quantifier universellement cette fonction propositionnelle et décrire en langage ordinaire
 - c) Exprimer en langage ordinaire la proposition $\exists x \in U, \neg P(x)$.
 - d) Exprimer en langage ordinaire la proposition $\forall x \in U, \neg P(x)$.
- 5) Utiliser les quantificateurs pour exprimer les énoncés suivants :
 - a) Tous les étudiants d'informatique ont réussi le cours de mathématiques de secondaire 5.
 - b) Un étudiant de la classe porte des lunettes.
 - c) Tous les étudiants de la classe possèdent un ordinateur.

6) (DÉFI!) Pour modéliser le jeu de Sudoku, il faut d'abord un ensemble d'objets :

 $S = \{1,2,3,4,5,6,7,8,9\}$. Le prédicat suggéré est le suivant : X(i,j,k): «objet $k \in S$ sur la ligne i et la colonne j».

On peut exprimer sous forme de formule logique les contraintes suivantes :

- a) Il doit y avoir au plus un chiffre sur une case.
- **b)** Il doit y avoir au moins un chiffre par case.

c) Un chiffre apparaît une seule fois sur une même ligne.

d) Un chiffre apparaît une seule fois sur une même colonne.

Solution de l'exercice DÉFI:

- a) $\forall i \ j \ k \ l \in S$, $X(i,j,k) \land X(i,j,l) \rightarrow (k=l)$
- b) $\forall i \ j \in S, \ \exists k \in S, \quad X(i,j,k)$
- c) $\forall i \ j \ k \ l \in S$, $X(i,j,k) \land X(i,l,k) \rightarrow (j=l)$
- d) $\forall i \ j \ k \ l \in S$, $X(i,j,k) \land X(l,j,k) \rightarrow (i = l)$

Corrigé

#1

- a) Vraie pour x=2, donc il en existe un!
- b) Faux, contre-exemple avec x=2
- c) Vraie, pour tous les x, l'équation ≠ est toujours respectée
- d) Faux, il n'y a aucun x qui fonctionne

#2

- a) 3=2n, 3 s'exprime comme la multiplication de 2 par un entier, Faux
- b) 8=2n et 8=4n, Vraie
- c) Il existe un nombre entre 0 et 10 qui n'est pas un multiple de 2 ou qui est un multiple de 4. Vraie

#3

- a) 2/7 est un entier, Faux
- b) Pour tout x entier, x/0 est entier aussi, Faux
- c) Il existe un y entier tel que 9/y est entier. Vraie! X=3 par exemple
- d) Pour tout x entier et pour tout y entier, x/y est entier. Faux
- e) Pour tout x entier, il existe un y entier tel que x/y est entier. Vraie

#4

- a) $\exists x \in U, P(x)$. Il existe un étudiant de la classe qui étudie au moins trois heures par semaine en mathématiques.
- b) $\forall x \in U, P(x)$. Tous les étudiants de la classe étudient au moins trois heures par semaine en mathématiques.
- c) Il existe un étudiant de la classe qui n'étudie pas au moins trois heures par semaine en mathématiques.
- d) Aucun étudiant de la classe n'étudie au moins trois heures par semaine en mathématiques.

#5

- a) ∀x ∈ I, P(x) où I est l'ensemble des étudiants en informatique et P(x) : « x a réussi le cours de mathématiques de secondaire 5 ».
- b) $\exists x \in C$, P(x) où C est l'ensemble des étudiants de la classe et P(x): « x porte des lunettes ».
- c) $\forall x \in C, P(x)$ où C est l'ensemble des étudiants de la classe et P(x): « x possède un ordinateur ».