I wear a chain complex now. Chain complexes are cool

27.01.2017

27 January 2017

Kristin Krogh Arnesen

Oystein Skartsaeterhagen

Kamal Saleh

Kristin Krogh Arnesen

Email: kristink@math.ntnu.no

Homepage: http://www.math.ntnu.no/~kristink

Address: Trondheim

Oystein Skartsaeterhagen

Email: oysteini@math.ntnu.no

Homepage: http://www.math.ntnu.no/~oysteini

Address: Trondheim

Kamal Saleh

Email: kamal.saleh@uni-siegen.de

Homepage: https://github.com/kamalsaleh/complex

Address: Siegen

Contents

1	Con	Complexes			
	1.1	Categories and filters			
	1.2	Creating chain and cochain complexes			
	1.3	Attributes			
	1.4	Operations			
	1.5	Truncations			
	1.6	Examples			
2	Complexes morphisms 1				
	2.1	Categories and filters			
	2.2	Creating chain and cochain morphisms			
	2.3	Attributes			
	2.4	Operations			
In	dov	1			

Chapter 1

Complexes

1.1 Categories and filters

1.1.1 IsChainOrCochainComplex (for IsCapCategoryObject)

▷ IsChainOrCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.2 IsChainComplex (for IsChainOrCochainComplex)

▷ IsChainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.3 IsCochainComplex (for IsChainOrCochainComplex)

 \triangleright IsCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.4 IsBoundedBelowChainOrCochainComplex (for IsChainOrCochainComplex)

▷ IsBoundedBelowChainOrCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.5 IsBoundedAboveChainOrCochainComplex (for IsChainOrCochainComplex)

▷ IsBoundedAboveChainOrCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.6 IsBoundedChainOrCochainComplex (for IsBoundedBelowChainOrCochainComplex and IsBoundedAboveChainOrCochainComplex)

▷ IsBoundedChainOrCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.7 IsBoundedBelowChainComplex (for IsBoundedBelowChainOrCochainComplex and IsChainComplex)

▷ IsBoundedBelowChainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.8 IsBoundedBelowCochainComplex (for IsBoundedBelowChainOrCochainComplex and IsCochainComplex)

▷ IsBoundedBelowCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.9 IsBoundedAboveChainComplex (for IsBoundedAboveChainOrCochainComplex and IsChainComplex)

▷ IsBoundedAboveChainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.10 IsBoundedAboveCochainComplex (for IsBoundedAboveChainOrCochain-Complex and IsCochainComplex)

▷ IsBoundedAboveCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.11 IsBoundedChainComplex (for IsBoundedChainOrCochainComplex and Is-ChainComplex)

▷ IsBoundedChainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.12 IsBoundedCochainComplex (for IsBoundedChainOrCochainComplex and Is-CochainComplex)

▷ IsBoundedCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.2 Creating chain and cochain complexes

1.2.1 ChainComplex (for IsCapCategory, IsZList)

▷ ChainComplex(A, diffs)

(operation)

▷ CochainComplex(A, diffs)

(operation)

Returns: a chain complex

The input is category A and an infinite list diffs. The output is the chain (resp. cochain) complex $M_{\bullet} \in \operatorname{Ch}(A)$ ($M^{\bullet} \in \operatorname{CoCh}(A)$) where $d_i^M = \operatorname{diffs}[i](d_M^i = \operatorname{diffs}[i])$.

1.2.2 ChainComplex (for IsDenseList, IsInt)

▷ ChainComplex(diffs, n)

(operation)

▷ CochainComplex(diffs, n)

(operation)

Returns: a (co)chain complex

The input is a finite dense list diffs and an integer n. The output is the chain (resp. cochain) complex $M_{\bullet} \in \operatorname{Ch}(A)$ ($M^{\bullet} \in \operatorname{CoCh}(A)$) where $d_n^M := \operatorname{diffs}[1](d_M^n := \operatorname{diffs}[1]), d_{n+1}^M = \operatorname{diffs}[2](d_M^{n+1} := \operatorname{diffs}[2])$, etc.

1.2.3 ChainComplex (for IsDenseList)

▷ ChainComplex(diffs)

(operation)

▷ CochainComplex(diffs)

(operation)

Returns: a (co)chain complex

The same as the previous operations but with n = 0.

1.2.4 StalkChainComplex (for IsCapCategoryObject, IsInt)

▷ StalkChainComplex(diffs, n)

(operation)

▷ StalkCochainComplex(diffs, n)

(operation)

Returns: a (co)chain complex

The input is an object $M \in A$. The output is chain (resp. cochain) complex $M_{\bullet} \in Ch(A)(M^{\bullet} \in CoCh(A))$ where $M_n = M(M^n = M)$ and $M_i = 0(M^i = 0)$ whenever $i \neq n$.

1.2.5 ChainComplexWithInductiveSides (for IsCapCategoryMorphism, IsFunction, IsFunction)

▷ ChainComplexWithInductiveSides(d, G, F)

(operation)

Returns: a chain complex

The input is a morphism $d \in A$ and two functions F, G. The output is chain complex $M_{\bullet} \in \operatorname{Ch}(A)$ where $d_0^M = d$ and $d_i^M = G^i(d)$ for all $i \leq -1$ and $d_i^M = F^i(d)$ for all $i \geq 1$.

1.2.6 CochainComplexWithInductiveSides (for IsCapCategoryMorphism, IsFunction, IsFunction)

▷ CochainComplexWithInductiveSides(d, G, F)

(operation)

Returns: a cochain complex

The input is a morphism $d \in A$ and two functions F,G. The output is cochain complex $M^{\bullet} \in \text{CoCh}(A)$ where $d_M^0 = d$ and $d_M^i = G^i(d)$ for all $i \le -1$ and $d_M^i = F^i(d)$ for all $i \ge 1$.

1.2.7 ChainComplexWithInductiveNegativeSide (for IsCapCategoryMorphism, Is-Function)

▷ ChainComplexWithInductiveNegativeSide(d, G)

(operation)

Returns: a chain complex

The input is a morphism $d \in A$ and a functions G. The output is chain complex $M_{\bullet} \in \operatorname{Ch}(A)$ where $d_0^M = d$ and $d_i^M = G^i(d)$ for all $i \leq -1$ and $d_i^M = 0$ for all $i \geq 1$.

1.2.8 ChainComplexWithInductivePositiveSide (for IsCapCategoryMorphism, IsFunction)

▷ ChainComplexWithInductivePositiveSide(d, F)

(operation)

Returns: a chain complex

The input is a morphism $d \in A$ and a functions F. The output is chain complex $M_{\bullet} \in \operatorname{Ch}(A)$ where $d_0^M = d$ and $d_i^M = F^i(d)$ for all $i \ge 1$ and $d_i^M = 0$ for all $i \le 1$.

1.2.9 CochainComplexWithInductiveNegativeSide (for IsCapCategoryMorphism, Is-Function)

▷ CochainComplexWithInductiveNegativeSide(d, G)

(operation)

Returns: a cochain complex

The input is a morphism $d \in A$ and a functions G. The output is cochain complex $M^{\bullet} \in \operatorname{CoCh}(A)$ where $d_M^0 = d$ and $d_M^i = G^i(d)$ for all $i \le -1$ and $d_M^i = 0$ for all $i \ge 1$.

1.2.10 CochainComplexWithInductivePositiveSide (for IsCapCategoryMorphism, IsFunction)

▷ CochainComplexWithInductivePositiveSide(d, F)

(operation)

Returns: a cochain complex

The input is a morphism $d \in A$ and a functions F. The output is cochain complex $M^{\bullet} \in \operatorname{CoCh}(A)$ where $d_M^0 = d$ and $d_M^i = F^i(d)$ for all $i \ge 1$ and $d_M^i = 0$ for all $i \le 1$.

1.3 Attributes

1.3.1 Differentials (for IsChainOrCochainComplex)

 \triangleright Differentials(C)

(attribute)

Returns: an infinite list

The command returns the differentials of the chain or cochain complex as an infinite list.

1.3.2 Objects (for IsChainOrCochainComplex)

▷ Objects(C)

(attribute)

Returns: an infinite list

The command returns the objects of the chain or cochain complex as an infinite list.

1.3.3 CatOfComplex (for IsChainOrCochainComplex)

▷ CatOfComplex(C)

Returns: a Cap category

The command returns the category in which all objects and differentials of C live.

1.4 Operations

1.4.1 \[\] (for IsChainOrCochainComplex, IsInt)

 $\triangleright \setminus [\setminus] (C, i)$ (operation)

Returns: an object

The command returns the object of the chain or cochain complex in index i.

1.4.2 \^ (for IsChainOrCochainComplex, IsInt)

Returns: a morphism

The command returns the differential of the chain or cochain complex in index i.

1.4.3 CertainCycle (for IsChainOrCochainComplex, IsInt)

▷ CertainCycle(C, n)

Returns: a morphism

The input is a chain or cochain complex C and an integer n. The output is the kernel embedding of the differential in index n.

1.4.4 CertainBoundary (for IsChainOrCochainComplex, IsInt)

▷ CertainBoundary(C, n)

(operation)

(operation)

(attribute)

Returns: a morphism

The input is a chain (resp. cochain) complex C and an integer n. The output is the image embeddin of i + 1'th (resp. i - 1'th) differential of C.

1.4.5 DefectOfExactness (for IsChainOrCochainComplex, IsInt)

▷ DefectOfExactness(C, n)

(operation)

Returns: a object

The input is a chain (resp. cochain) complex C and an integer n. The outout is the homology (resp. cohomology) object of C in index n.

1.4.6 IsExactInIndex (for IsChainOrCochainComplex, IsInt)

▷ IsExactInIndex(C, n)

(operation)

Returns: true or false

The input is a chain or cochain complex C and an integer n. The outout is true if C is exact in i. Otherwise the output is false.

1.4.7 SetUpperBound (for IsChainOrCochainComplex, IsInt)

▷ SetUpperBound(C, n)

(operation)

Returns: Side effect

The command sets an upper bound n to the chain (resp. cochain) complex C. This means $C_{i \ge n} = 0$ ($C^{\ge n} = 0$). This upper bound will be called *active* upper bound of C. If C already has an active upper bound m, then m will be replaced by n only if n is better upper bound than m, i.e., $n \le m$. If C has an active lower bound l and $n \le l$ then the upper bound will set to equal l and as a consequence C will be zeroised.

1.4.8 SetLowerBound (for IsChainOrCochainComplex, IsInt)

▷ SetLowerBound(C, n)

(operation)

Returns: Side effect

The command sets an lower bound n to the chain (resp. cochain) complex C. This means $C_{i \le n} = 0$ ($C^{\le n} = 0$). This lower bound will be called *active* lower bound of C. If C already has an active lower bound m, then m will be replaced by n only if n is better lower bound than m, i.e., $n \ge m$. If C has an active upper bound u and $n \ge u$ then the lower bound will set to equal u and as a consequence C will be zeroised.

1.4.9 HasActiveUpperBound (for IsChainOrCochainComplex)

(operation)

Returns: true or false

The input is chain or cochain complex. The output is *true* if an upper bound has been set to *C* and *false* otherwise.

1.4.10 HasActiveLowerBound (for IsChainOrCochainComplex)

(operation)

Returns: true or false

The input is chain or cochain complex. The output is *true* if a lower bound has been set to *C* and *false* otherwise.

1.4.11 ActiveUpperBound (for IsChainOrCochainComplex)

▷ ActiveUpperBound(C)

(operation)

Returns: an integer

The input is chain or cochain complex. The output is its active upper bound if such has been set to *C*. Otherwise we get error.

1.4.12 ActiveLowerBound (for IsChainOrCochainComplex)

▷ ActiveLowerBound(C)

(operation)

Returns: an integer

The input is chain or cochain complex. The output is its active lower bound if such has been set to *C*. Otherwise we get error.

1.4.13 Display (for IsChainOrCochainComplex, IsInt, IsInt)

$$\triangleright$$
 Display(C , m , n) (operation)

Returns: nothing

The input is chain or cochain complex C and two integers m and n. The command displays all components of C between the indices m, n.

1.5 Truncations

1.5.1 GoodTruncationBelow (for IsChainComplex, IsInt)

▷ GoodTruncationBelow(C, n)

(operation)

Returns: chain complex

Let C_{\bullet} be chain complex. A good truncation of C_{\bullet} below n is the chain complex $\tau_{\geq n}C_{\bullet}$ whose differentials are defined by

$$d_i^{\tau_{\geq n}C_{\bullet}} = \begin{cases} 0: 0 \leftarrow 0 & \text{if} \quad i < n, \\ 0: 0 \leftarrow Z_n & \text{if} \quad i = n, \\ \text{KernelLift}(d_n^C, d_{n+1}^C): Z_n \leftarrow C_{n+1} & \text{if} \quad i = n+1, \\ d_i^C: C_{i-1} \leftarrow C_i & \text{if} \quad i > n+1. \end{cases}$$

where Z_n is the cycle in index n. It can be shown that $H_i(\tau_{\geq n}C_{\bullet}) = 0$ for i < n and $H_i(\tau_{\geq n}C_{\bullet}) = H_i(C_{\bullet})$ for $i \geq n$.

$$C_{\bullet}$$
 $\cdots \leftarrow C_{n-1} \leftarrow C_n \leftarrow C_{n+1} \leftarrow C_{n+2} \leftarrow \cdots$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

1.5.2 GoodTruncationAbove (for IsChainComplex, IsInt)

▷ GoodTruncationAbove(C, n)

(operation)

Returns: chain complex

Let C_{\bullet} be chain complex. A good truncation of C_{\bullet} above n is the quotient chain complex $\tau_{< n}C_{\bullet} = C_{\bullet}/\tau_{\geq n}C_{\bullet}$. It can be shown that $H_i(\tau_{< n}C_{\bullet}) = 0$ for $i \geq n$ and $H_i(\tau_{< n}C_{\bullet}) = H_i(C_{\bullet})$ for i < n.

1.5.3 GoodTruncationAbove (for IsCochainComplex, IsInt)

▷ GoodTruncationAbove(C, n)

(operation)

Returns:

Let C^{\bullet} be cochain complex. A good truncation of C^{\bullet} above n is the cochain complex $\tau_{\leq n}C^{\bullet}$ whose differentials are defined by

$$d_{\tau_{\leq n}C^{\bullet}}^{i} = \begin{cases} 0: 0 \to 0 & \text{if} \quad i > n, \\ 0: Z_{n} \to 0 & \text{if} \quad i = n, \\ \text{KernelLift}(d_{C}^{n}, d_{C}^{n-1}): C_{n-1} \to Z_{n} & \text{if} \quad i = n-1, \\ d_{C}^{i}: C_{i} \to C_{i+1} & \text{if} \quad i < n-1. \end{cases}$$

where Z_n is the cycle in index n. It can be shown that $H^i(\tau_{\leq n}C^{\bullet}) = 0$ for i > n and $H^i(\tau_{\leq n}C^{\bullet}) = H_i(C^{\bullet})$ for $i \leq n$.

1.5.4 GoodTruncationBelow (for IsCochainComplex, IsInt)

▷ GoodTruncationBelow(C, n)

(operation)

Returns: cochain complex

Let C^{\bullet} be cochain complex. A good truncation of C^{\bullet} above n is the quotient cochain complex $\tau_{>n}C^{\bullet} = C^{\bullet}/\tau_{\leq n}C^{\bullet}$. It can be shown that $H^{i}(\tau_{>n}C^{\bullet}) = 0$ for $i \leq n$ and $H^{i}(\tau_{>n}C^{\bullet}) = H_{i}(C^{\bullet})$ for i > n.

1.5.5 BrutalTruncationBelow (for IsChainComplex, IsInt)

▷ BrutalTruncationBelow(C, n)

(operation)

Returns: chain complex

Let C_{\bullet} be chain complex. A brutal truncation of C_{\bullet} below n is the chain complex $\sigma_{\geq n}C_{\bullet}$ where $(\sigma_{\geq n}C_{\bullet})_i = C_i$ when $i \geq n$ and $(\sigma_{\geq n}C_{\bullet})_i = 0$ otherwise.

1.5.6 BrutalTruncationAbove (for IsChainComplex, IsInt)

▷ BrutalTruncationAbove(C, n)

(operation)

Returns: chain complex

Let C_{\bullet} be chain complex. A brutal truncation of C_{\bullet} above n is the chain quotient chain complex $\sigma_{< n} C_{\bullet} := C_{\bullet} / \sigma_{> n} C_{\bullet}$. Hence $(\sigma_{< n} C_{\bullet})_i = C_i$ when i < n and $(\sigma_{< n} C_{\bullet})_i = 0$ otherwise.

1.5.7 BrutalTruncationAbove (for IsCochainComplex, IsInt)

▷ BrutalTruncationAbove(C, n)

(operation)

Returns: chain complex

Let C^{\bullet} be cochain complex. A brutal truncation of C_{\bullet} above n is the cochain complex $\sigma_{\leq n}C^{\bullet}$ where $(\sigma_{\leq n}C^{\bullet})_i = C_i$ when $i \leq n$ and $(\sigma_{\leq n}C^{\bullet})_i = 0$ otherwise.

1.5.8 BrutalTruncationBelow (for IsCochainComplex, IsInt)

▷ BrutalTruncationBelow(C, n)

(operation)

Returns: chain complex

Let C^{\bullet} be cochain complex. A brutal truncation of C^{\bullet} bellow n is the quotient cochain complex $\sigma_{>n}C^{\bullet} := C^{\bullet}/\sigma_{< n}C_{\bullet}$. Hence $(\sigma_{>n}C^{\bullet})_i = C_i$ when i > n and $(\sigma_{< n}C^{\bullet})_i = 0$ otherwise.

1.6 Examples

bla latex code here.

```
Example
gap> Q := HomalgFieldOfRationals();;
gap> matrix_category := MatrixCategory( Q );
Category of matrices over Q
gap> cochain_cat := CochainComplexCategory( matrix_category );
Cochain complexes category over category of matrices over Q
gap> A := VectorSpaceObject( 1, Q );
<A vector space object over Q of dimension 1>
gap> B := VectorSpaceObject( 2, Q );
<A vector space object over Q of dimension 2>
gap> f := VectorSpaceMorphism( A, HomalgMatrix( [ [ 1, 3 ] ], 1, 2, Q ), B );
<A morphism in Category of matrices over Q>
gap> g := VectorSpaceMorphism( B, HomalgMatrix( [ [ 0 ], [ 0 ] ], 2, 1, Q ), A );
<A morphism in Category of matrices over Q>
gap> C := CochainComplex( [ f,g,f ], 3 );
<A bounded object in cochain complexes category over category of matrices over Q
with active lower bound 2 and active upper bound 7.>
gap> ActiveUpperBound( C );
gap> ActiveLowerBound( C );
gap> C[ 1 ];
<A vector space object over Q of dimension 0>
gap> C[ 3 ];
<A vector space object over Q of dimension 1>
gap> C^3;
<A morphism in Category of matrices over Q>
gap> C^3 = f;
true
gap> Display( CertainCycle( C, 4 ) );
[[1, 0],
  [ 0, 1]]
A split monomorphism in Category of matrices over Q
gap> diffs := Differentials( C );
<An infinite list>
gap> diffs[ 1 ];
<A zero, isomorphism in Category of matrices over Q>
gap> diffs[ 10000 ];
<A zero, isomorphism in Category of matrices over Q>
gap> objs := Objects( C );
<An infinite list>
gap> DefectOfExactness( C, 4 );
<A vector space object over Q of dimension 1>
gap> DefectOfExactness( C, 3 );
<A vector space object over Q of dimension 0>
gap> IsExactInIndex( C, 4 );
false
gap> IsExactInIndex( C, 3 );
true
gap> C;
<A not cyclic, bounded object in cochain complexes category over category of
matrices over Q with active lower bound 2 and active upper bound 7.>
```

```
gap> T := ShiftFunctor( cochain_cat, 3 );
Shift (3 times to the left) functor in cochain complexes category over category
 of matrices over Q
gap> C_3 := ApplyFunctor( T, C );
<A not cyclic, bounded object in cochain complexes category over category of
matrices over Q with active lower bound -1 and active upper bound 4.>
gap> P := CochainComplex( matrix_category, diffs );
<An object in Cochain complexes category over category of matrices over Q>
gap> SetUpperBound( P, 15 );
gap> P;
<A bounded from above object in cochain complexes category over category of
matrices over Q with active upper bound 15.>
gap> SetUpperBound( P, 20 );
gap> P;
<A bounded from above object in cochain complexes category over category of
matrices over Q with active upper bound 15.>
gap> ActiveUpperBound( P );
15
gap> SetUpperBound( P, 7 );
gap> P;
<A bounded from above object in cochain complexes category over category of
matrices over Q with active upper bound 7.>
gap> ActiveUpperBound( P );
```

bla latex code here.

```
Example
gap> S := KoszulDualRing( HomalgFieldOfRationalsInSingular()*"x,y,z" );;
gap> right_pre_category := RightPresentations( S );;
gap> m := HomalgMatrix( "[ [ e0, e1, e2 ],[ 0, 0, e0 ] ]", 2, 3, S );;
gap> M := AsRightPresentation( m );;
gap> F := FreeRightPresentation( 2, S );;
gap> f_matrix := HomalgMatrix( "[ [ e1, 0 ], [ 0, 1 ] ]",2, 2, S );;
gap> f := PresentationMorphism( F, f_matrix, M );;
gap> g := KernelEmbedding( f );;
gap> K := Source( g );;
gap> h := ZeroMorphism( M, K );;
gap> 1 := RepeatListZ( [ h, f, g ] );;
gap> C := ChainComplex( right_pre_category, 1 );;
gap> Display( C, 0, 1 );
In index 0
Object is
e0,e1,e2,
0, 0, e0
An object in Category of right presentations of Q{e0,e1,e2}
Differential is
0,0,
0,0,
```

```
A zero morphism in Category of right presentations of Q{e0,e1,e2}

In index 1

Object is
(an empty 2 x 0 matrix)

An object in Category of right presentations of Q{e0,e1,e2}

Differential is
e1,0,
0, 1

A morphism in Category of right presentations of Q{e0,e1,e2}

app> C[2];;
gap> C^2;;
```

Chapter 2

Complexes morphisms

2.1 Categories and filters

2.1.1 IsChainOrCochainMorphism (for IsCapCategoryMorphism)

▷ IsChainOrCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

2.1.2 IsBoundedBelowChainOrCochainMorphism (for IsChainOrCochainMorphism)

▷ IsBoundedBelowChainOrCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

2.1.3 IsBoundedAboveChainOrCochainMorphism (for IsChainOrCochainMorphism)

▷ IsBoundedAboveChainOrCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

2.1.4 IsBoundedChainOrCochainMorphism (for IsBoundedBelowChainOrCochain-Morphism and IsBoundedAboveChainOrCochainMorphism)

▷ IsBoundedChainOrCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

2.1.5 IsChainMorphism (for IsChainOrCochainMorphism)

▷ IsChainMorphism(phi)

(filter)

Returns: true or false

bla bla

2.1.6 IsBoundedBelowChainMorphism (for IsBoundedBelowChainOrCochainMorphism and IsChainMorphism)

▷ IsBoundedBelowChainMorphism(phi)

(filter)

Returns: true or false

bla bla

2.1.7 IsBoundedAboveChainMorphism (for IsBoundedAboveChainOrCochainMorphism and IsChainMorphism)

▷ IsBoundedAboveChainMorphism(phi)

(filter)

Returns: true or false

bla bla

2.1.8 IsBoundedChainMorphism (for IsBoundedChainOrCochainMorphism and Is-ChainMorphism)

▷ IsBoundedChainMorphism(phi)

(filter)

Returns: true or false

bla bla

2.1.9 IsCochainMorphism (for IsChainOrCochainMorphism)

▷ IsCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

2.1.10 IsBoundedBelowCochainMorphism (for IsBoundedBelowChainOrCochain-Morphism and IsCochainMorphism)

▷ IsBoundedBelowCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

2.1.11 IsBoundedAboveCochainMorphism (for IsBoundedAboveChainOrCochain-Morphism and IsCochainMorphism)

▷ IsBoundedAboveCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

2.1.12 IsBoundedCochainMorphism (for IsBoundedChainOrCochainMorphism and IsCochainMorphism)

▷ IsBoundedCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

2.2 Creating chain and cochain morphisms

2.2.1 ChainMorphism (for IsChainComplex, IsChainComplex, IsZList)

▷ ChainMorphism(C, D, 1)

(operation)

Returns: a chain morphism

The input is two chain complexes C,D and an infinite list l. The output is the chain morphism $\phi: C \to D$ defined by $\phi_i := l[i]$.

2.2.2 ChainMorphism (for IsChainComplex, IsChainComplex, IsDenseList, IsInt)

 \triangleright ChainMorphism(C, D, 1, k)

(operation)

Returns: a chain morphism

The input is two chain complexes C,D, dense list l and an integer k. The output is the chain morphism $\phi: C \to D$ such that $\phi_k = l[1], \phi_{k+1} = l[2]$, etc.

2.2.3 ChainMorphism (for IsDenseList, IsInt, IsDenseList, IsInt, IsDenseList, IsInt)

▷ ChainMorphism(c, m, d, n, 1, k)

(operation)

Returns: a chain morphism

The output is the chain morphism $\phi : C \to D$, where $C_m = c[1], C_{m+1} = c[2]$, etc. $D_n = d[1], D_{n+1} = d[2]$, etc. and $\phi_k = l[1], \phi_{k+1} = l[2]$, etc.

2.2.4 CochainMorphism (for IsCochainComplex, IsCochainComplex, IsZList)

 \triangleright CochainMorphism(C, D, 1)

(operation)

Returns: a cochain morphism

The input is two cochain complexes C, D and an infinite list l. The output is the cochain morphism $\phi: C \to D$ defined by $\phi_i := l[i]$.

2.2.5 CochainMorphism (for IsCochainComplex, IsCochainComplex, IsDenseList, IsInt)

 \triangleright CochainMorphism(C, D, 1, k)

(operation)

Returns: a chain morphism

The input is two cochain complexes C,D, dense list l and an integer k. The output is the cochain morphism $\phi: C \to D$ such that $\phi^k = l[1]$, $\phi^{k+1} = l[2]$, etc.

2.2.6 CochainMorphism (for IsDenseList, IsInt, IsDenseList, IsInt, IsDenseList, IsInt)

 \triangleright CochainMorphism(c, m, d, n, 1, k)

(operation)

Returns: a cochain morphism

The output is the cochain morphism $\phi: C \to D$, where $C^m = c[1], C^{m+1} = c[2]$, etc. $D^n = d[1], D^{n+1} = d[2]$, etc. and $\phi^k = l[1], \phi^{k+1} = l[2]$, etc.

2.3 Attributes

2.3.1 Morphisms (for IsChainOrCochainMorphism)

Returns: infinite list

The output is morphisms of the chain or cochain morphism as an infinite list.

2.3.2 MappingCone (for IsChainOrCochainMorphism)

▷ MappingCone(phi)

(attribute)

Returns: complex

The input a chain (resp. cochain) morphism $\phi : C \to D$. The output is its mapping cone chain (resp. cochain) complex Cone (ϕ) .

2.3.3 NaturalInjectionInMappingCone (for IsChainOrCochainMorphism)

▷ NaturalInjectionInMappingCone(phi)

(attribute)

Returns: chain (resp. cochain) morphism

The input a chain (resp. cochain) morphism $\phi: C \to D$. The output is the natural injection $i: D \to \operatorname{Cone} \phi$).

2.3.4 NaturalProjectionFromMappingCone (for IsChainOrCochainMorphism)

NaturalProjectionFromMappingCone(phi)

(attribute)

Returns: chain (resp. cochain) morphism

The input a chain (resp. cochain) morphism $\phi: C \to D$. The output is the natural projection $\pi: \operatorname{Cone}(\phi) \to C[u]$ where u = -1 if ϕ is chain morphism and u = 1 if ϕ is cochain morphism.

2.4 Operations

2.4.1 SetUpperBound (for IsChainOrCochainMorphism, IsInt)

▷ SetUpperBound(phi, n)

(operation)

Returns: a side effect

The command sets an upper bound to the morphism ϕ . An upper bound of ϕ is an integer u with $\phi_{i \ge u} = 0$. The integer u will be called *active* upper bound of ϕ . If ϕ already has an active upper bound, say u', then u' will be replaced by u only if $u \le u'$.

2.4.2 SetLowerBound (for IsChainOrCochainMorphism, IsInt)

▷ SetLowerBound(phi, n)

(operation)

Returns: a side effect

The command sets an lower bound to the morphism ϕ . A lower bound of ϕ is an integer l with $\phi_{i \leq l} = 0$. The integer l will be called *active* lower bound of ϕ . If ϕ already has an active lower bound, say l', then l' will be replaced by l only if $l \geq l'$.

2.4.3 HasActiveUpperBound (for IsChainOrCochainMorphism)

▷ HasActiveUpperBound(phi)

(operation)

Returns: true or false

The input is chain or cochain morphism ϕ . The output is *true* if an upper bound has been set to ϕ and *false* otherwise.

2.4.4 HasActiveLowerBound (for IsChainOrCochainMorphism)

▷ HasActiveLowerBound(phi)

(operation)

Returns: true or false

The input is chain or cochain morphism ϕ . The output is *true* if a lower bound has been set to ϕ and *false* otherwise.

2.4.5 ActiveUpperBound (for IsChainOrCochainMorphism)

▷ ActiveUpperBound(phi)

(operation)

Returns: an integer

The input is chain or cochain morphism. The output is its active upper bound if such has been set to ϕ . Otherwise we get error.

2.4.6 ActiveLowerBound (for IsChainOrCochainMorphism)

▷ ActiveLowerBound(phi)

(operation)

Returns: an integer

The input is chain or cochain morphism. The output is its active lower bound if such has been set to ϕ . Otherwise we get error.

2.4.7 \[\] (for IsChainOrCochainMorphism, IsInt)

▷ \[\](phi, n)

(operation)

Returns: an integer

The input is chain (resp. cochain) morphism and an integer n. The output is the component of ϕ in index n, i.e., $\phi_n(\text{resp. }\phi^n)$.

Index

\[\]	for IsChainComplex, IsChainComplex, Is-
for IsChainOrCochainComplex, IsInt, 7	ZList, 16
for IsChainOrCochainMorphism, IsInt, 18	for IsDenseList, IsInt, IsDenseList, IsInt, Is- DenseList, IsInt, 16
for IsChainOrCochainComplex, IsInt, 7	CochainComplex
· · · · · · · · · · · · · · · · · · ·	for IsCapCategory, IsZList, 5
ActiveLowerBound	for IsDenseList, 5
for IsChainOrCochainComplex, 8	for IsDenseList, IsInt, 5
for IsChainOrCochainMorphism, 18	CochainComplexWithInductiveNegative-
ActiveUpperBound	Side
for IsChainOrCochainComplex, 8	for IsCapCategoryMorphism, IsFunction, 6
for IsChainOrCochainMorphism, 18	CochainComplexWithInductivePositive-
	Side
BrutalTruncationAbove	for IsCapCategoryMorphism, IsFunction, 6
for IsChainComplex, IsInt, 10	CochainComplexWithInductiveSides
for IsCochainComplex, IsInt, 10	for IsCapCategoryMorphism, IsFunction, Is-
BrutalTruncationBelow	Function, 5
for IsChainComplex, IsInt, 10	CochainMorphism
for IsCochainComplex, IsInt, 10	for IsCochainComplex, IsCochainComplex,
G-+0fG]	IsDenseList, IsInt, 16
CatOfComplex	for IsCochainComplex, IsCochainComplex,
for IsChainOrCochainComplex, 7	IsZList, 16
CertainBoundary	for IsDenseList, IsInt, IsDenseList, IsInt, Is-
for IsChainOrCochainComplex, IsInt, 7	
CertainCycle	DenseList, IsInt, 16
for IsChainOrCochainComplex, IsInt, 7	DefectOfExactness
ChainComplex	for IsChainOrCochainComplex, IsInt, 7
for IsCapCategory, IsZList, 5	Differentials
for IsDenseList, 5	for IsChainOrCochainComplex, 6
for IsDenseList, IsInt, 5	Display
ChainComplexWithInductiveNegativeSide	for IsChainOrCochainComplex, IsInt, IsInt,
for IsCapCategoryMorphism, IsFunction, 6	9
${\tt Chain Complex With Inductive Positive Side}$	
for IsCapCategoryMorphism, IsFunction, 6	GoodTruncationAbove
ChainComplexWithInductiveSides	for IsChainComplex, IsInt, 9
for IsCapCategoryMorphism, IsFunction, Is-	for IsCochainComplex, IsInt, 9
Function, 5	GoodTruncationBelow
ChainMorphism	for IsChainComplex, IsInt, 9
for IsChainComplex, IsChainComplex, Is-	for IsCochainComplex, IsInt, 10
DenseList, IsInt, 16	r - ,, -

HasActiveLowerBound	IsBoundedChainOrCochainComplex
for IsChainOrCochainComplex, 8	for IsBoundedBelowChainOrCochainCom-
for IsChainOrCochainMorphism, 18	plex and IsBoundedAboveChainOr-
HasActiveUpperBound	CochainComplex, 4
for IsChainOrCochainComplex, 8	IsBoundedChainOrCochainMorphism
for IsChainOrCochainMorphism, 18	for IsBoundedBelowChainOrCochainMor-
	phism and IsBoundedAboveChainOr-
IsBoundedAboveChainComplex	CochainMorphism, 14
for IsBoundedAboveChainOrCochainCom-	IsBoundedCochainComplex
plex and IsChainComplex, 4	for IsBoundedChainOrCochainComplex and
${\tt IsBoundedAboveChainMorphism}$	IsCochainComplex, 4
for IsBoundedAboveChainOrCochainMor-	IsBoundedCochainMorphism
phism and IsChainMorphism, 15	for IsBoundedChainOrCochainMorphism
${\tt IsBoundedAboveChainOrCochainComplex}$	and IsCochainMorphism, 15
for IsChainOrCochainComplex, 3	IsChainComplex
${\tt IsBoundedAboveChainOrCochainMorphism}$	for IsChainOrCochainComplex, 3
for IsChainOrCochainMorphism, 14	IsChainMorphism
${\tt IsBoundedAboveCochainComplex}$	for IsChainOrCochainMorphism, 14
for IsBoundedAboveChainOrCochainCom-	IsChainOrCochainComplex
plex and IsCochainComplex, 4	for IsCapCategoryObject, 3
${\tt Is Bounded Above Cochain Morphism}$	IsChainOrCochainMorphism
for IsBoundedAboveChainOrCochain-	for IsCapCategoryMorphism, 14
Morphism and IsCochainMorphism,	IsCochainComplex
15	for IsChainOrCochainComplex, 3
IsBoundedBelowChainComplex	IsCochainMorphism
for IsBoundedBelowChainOrCochainCom-	for IsChainOrCochainMorphism, 15
plex and IsChainComplex, 4	IsExactInIndex
IsBoundedBelowChainMorphism	for IsChainOrCochainComplex, IsInt, 7
for IsBoundedBelowChainOrCochainMor-	101 10 014411 01 00 014411 0145, 10111, 7
phism and IsChainMorphism, 15	MappingCone
IsBoundedBelowChainOrCochainComplex	for IsChainOrCochainMorphism, 17
for IsChainOrCochainComplex, 3	Morphisms
IsBoundedBelowChainOrCochainMorphism	for IsChainOrCochainMorphism, 17
for IsChainOrCochainMorphism, 14	
IsBoundedBelowCochainComplex	${\tt NaturalInjectionInMappingCone}$
for IsBoundedBelowChainOrCochainCom-	for IsChainOrCochainMorphism, 17
plex and IsCochainComplex, 4	${\tt Natural Projection From Mapping Cone}$
IsBoundedBelowCochainMorphism	for IsChainOrCochainMorphism, 17
for IsBoundedBelowChainOrCochain-	Objects
Morphism and IsCochainMorphism,	Objects for LoChair Or Carbair Countley (
15	for IsChainOrCochainComplex, 6
IsBoundedChainComplex	SetLowerBound
for IsBoundedChainOrCochainComplex and	for IsChainOrCochainComplex, IsInt, 8
IsChainComplex, 4	for IsChainOrCochainMorphism, IsInt, 17
IsBoundedChainMorphism	SetUpperBound
for IsBoundedChainOrCochainMorphism	for IsChainOrCochainComplex, IsInt, 8
and IsChainMorphism, 15	for IsChainOrCochainMorphism IsInt 17

StalkChainComplex for IsCapCategoryObject, IsInt, 5 StalkCochainComplex for IsCapCategoryObject, IsInt, 5