SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

ACADEMIC YEAR 2019-2020 SEMESTER 1 DIGITAL SIGNAL PROCESSING

- **TUTORIAL 11**
- 1. The z-transform $X(z) = \frac{7}{1 + 0.3z^{-1} 0.1z^{-2}}$ has three non-empty ROCs. Evaluate their respective inverse z-transforms corresponding to each ROC.
- 2. Use power series expansion to determine the inverse z-transform of $X(z) = \frac{1}{1-z^{-3}}$, |z| > 1.
- 3. Consider the digital filter structure of Figure 1, where $H_1(z) = 2.1 + 3.3z^{-1} + 0.7z^{-2}$, $H_2(z) = 1.4 5.2z^{-1} + 0.8z^{-2}$, $H_3(z) = 3.2 + 4.5z^{-1} + 0.9z^{-2}$. Determine the transfer function H(z) of the composite filter.

Figure 1

- 4. Let $H_{LP}(z)$ denote the transfer function of a real coefficient lowpass filter with a passband edge at ω_p , stopband edge at ω_s , passband ripple of δ_p , and stopband ripple of δ_s . Sketch the magnitude response of $G_1(z) = H_{LP}(-z)$, for $-\pi \le \omega \le \pi$. What type of filter is $G_1(z)$? Determine its impulse response $g_1[n]$ in terms of the impulse response $h_{LP}[n]$ of $H_{LP}(z)$. Determine the bandedge and ripple of $G_1(z)$ in terms of that of $H_{LP}(z)$.
- 5. Let $H_{LP}(z)$ denote the transfer function of an ideal real-coefficient lowpass filter having a cutoff frequency of ω_p , with $\omega_p < \frac{\pi}{2}$. Consider the complex coefficient transfer function $H_{LP}(e^{j\omega_0}z)$, where $\omega_p < \omega_0 < \pi \omega_p$. Sketch its magnitude response for $-\pi \le \omega \le \pi$. What type of filter does it represent? Now consider the transfer function $G(z) = H_{LP}(e^{j\omega_0}z) + H_{LP}(e^{-j\omega_0}z)$. Sketch its magnitude response for $-\pi \le \omega \le \pi$. Show that G(z) is a real-coefficient bandpass filter with a passband centered at ω_0 . Determine the width of its passband in terms of ω_p and its impulse response g[n] in terms of the impulse response of $h_{LP}[n]$ of the parent lowpass filter.
- 6. Consider the discrete-time system of Figure 2. For $H_0(z) = 1 + \alpha z^{-1}$, find a suitable $F_0(z)$ so that the output y[n] is a delayed and scaled replica of the input.

Figure 2

7. A causal FIR LTI discrete-time system is described by the difference equation

 $y[n] = a_1x[n+k+1] + a_2x[n+k] + a_3[n+k-1] + a_2[n+k-2] + a_1x[n+k-3]$ where y[n] and x[n] denote, respectively, the output and the input sequence. Determine the expression for its frequency response $H(e^{j\omega})$. For what value of the constant k will the system have a frequency response $H(e^{j\omega})$ that is real function of ω .

- 8. A Type 3 real-coefficient FIR with a transfer function H(z) has the following zeros: $z_1 = 0.1 j0.599$, $z_2 = -0.3 + j0.4$, $z_3 = 2$.
- (a) Determine the location of the remaining zeros of H(z) having the lowest order.
- (b) Determine the transfer function H(z) of the filter.