3.2 Fermat's little theorem

June 3, 2015

Abstract

Exercices de la section 3.2 Fermat's little theorem

1

[1] p premier

[2] pgdc(p,n) = 1

$$\diamond p|n^{p-1}-1$$

Car $p|n^p-n$ (**FLT**), donc $p|n(n^{p-1}-1)$. Or, pgdc(p,n)=1 implique que $p \not | n$. Donc $p|n^{p-1}-1$ (**thm. 2.3**).

2

[1] pgdc(6,n) = 1

$$\diamond 6|n^2-1$$

Car de [1] ont déduit que 2 divise (n-1) et (n+1). De plus, 3 doit diviser (n-1), n ou (n+1).

Il suit de la que $2 \cdot 3 = 6|(n-1)(n+1) = n^2 - 1$.

3

 $\diamond n^5$ et n possèdent le même dernier chiffre

Car 5 divise $n^5 - n$ (**FLT**) et donc soit $n^5 - n$ finit par 0, soit il finit par 5.

S'il finit par 0, alors c'est que les derniers chiffres sont égaux.

Supposons alors qu'il finit par 5 et notons b,d les derniers chiffre de n^5,n respectivement.

Alors |b-d|=5, et b,d doivent nécessairement avoir parité différente. Or, b est le dernier chiffre de d^5 , et doit donc avoir même parité, une contradiction.