Exercise 4 - Finite Fields

Q1. Consider \mathbb{F}_{17}

- i) What is the sum of all the elements?
- ii) What is the product of the nonzero elements?
- iii) What is the order of 2?
- iv) What are the possible orders of the elements?
- v) Determine for all the possible orders an element of that order.
- vi) How many primitive elements are there?
- vii) Try to solve the equation $x^2 + x + 1 = 0$.
- Q2. Determine all binary irreducible polynomials of degree 3.
- Q3. How many zeros of the polynomial $z^4 + z^3 + 1$ in \mathbb{F}_{16} ?
- Q4. How many zeros of $z^4 + z^2 + z$ in \mathbb{F}_{16} ?
- Q5. Consider the finite fields \mathbb{F}_{q^m} and \mathbb{F}_q . Define the mapping $\operatorname{Tr}: \mathbb{F}_{q^m} \to \mathbb{F}_q$ by

$$Tr(x) = x + x^q + x^{q^2} + \dots + x^{q^{m-1}}$$

- i) Show that $Tr(x) \in \mathbb{F}_q$
- ii) Show that Tr(x+y) = Tr(x) + Tr(y)
- iii) Show that $Tr(\gamma x) = \gamma Tr(x)$ for $\gamma \in \mathbb{F}_q$
- Q6. Show that $f(x) = x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{F}_2[x]$.
- Q7. Let C be a linear (n, k, d) code over \mathbb{F}_q .
 - i) Show that d equals the minimal number of linearly dependent columns of a parity matrix H.
 - ii) What is the maximal length of an (n, k, 3) code over \mathbb{F}_q ?

^{*}The above questions are taken from the textbook Ch. 2.

Programming Tasks

- T1. Use SageMath to check whether $x^5 + x^3 + x^2 + 1$ is irreducible over \mathbb{F}_2 .
- T2. Use SageMath to create $\mathbb{F}_{2^{10}}$ based on a polynomial $f(x) = x^{10} + x^6 + x^5 + x^3 + x^2 + x + 1$. Suppose α is a root of f(x). Use Sagemath to answer the following questions:
 - i) the vectorial form of α^{18}
 - ii) the vectorial form of α^{36}
 - iii) $\alpha^{18} + \alpha^{36}$
 - iv) $\alpha^{18}(\alpha^5 + \alpha^{36})$
- T3. Use SageMath to create $\mathbb{F}_{2^{10}}$ based on a polynomial $f(x) = x^{10} + x^6 + x^2 + x + 1$. Suppose β is a root of f(x). Use Sagemath to answer the following questions:
 - i) the vectorial form of β^{18}
 - ii) the vectorial form of β^{36}
 - iii) $\beta^{18} + \beta^{36}$
 - iv) $\beta^{18}(\beta^5 + \beta^{36})$