This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

AN 1994-252763 [31] WPIDS

DNC C1994-115374

New 5-(4-ethoxy carbonyl)oxy-3-methoxy phenyl)-2,4-penta di enoic chloride
useful as intermediates for e.g. antiallergic drugs.

DC B05

PA (HODO).HODOGAYA CHEM IND CO LTD; (TERU) TERUMO CORP

CYC 1

PI JP 06184054 A 19940705 (199431)*

4p <-

ADT JP 06184054 A JP 1992-279163 19920925

PRAI JP 1992-279163 19920925

AN___1994-252763 [31] WPIDS

AB JP 06184054 A UPAB: 19940921

5-(4-Ethoxycarbonyl)oxy-3-methoxyphenyl)-2,4-pentadienoic chloride of formula (I) is new.

USE/ADVANTAGE - (I) is useful as an intermediate of medicines such as antiallergic drugs and nephritis treatment agents.

In an example, ethyl chlorocarbonate (7.22 g.) was added to methylene chloride (94 ml.) and the soln. cooled to -12 deg.C. 5-(4-hydroxy-3-methoxyphenyl)-2,4-pentadienoic acid (6.57 g.) and a methylene chloride (45 ml.) soln. of triethylamine (6.21 g.) were added dropwise and stirred. The mixt. was stirred for 1 hr. with warming to room temp., washed with 1N HCl, satd. aq. NaHCO3 and satd. aq. NaCl (30 ml. respectively). The organic layer was dried with magnesium sulphate anhydride and conc. to approx. 50 g. Thionyl chloride (4.1 g.) and dimethylformamide (1 drop) were added and mixt. was stirred for 1 hr. at room temp. and left overnight. The solvent was evaporated and to the residue hexane (50 ml.) was added. The crystals were filtered and dried to give 5-(4-(ethoxycarbonyl)oxy-3-methoxyphenyl)-2,4-pentadienoic chloride (8.8 g., 95% yield, 99% purity), m.pt. 85-87 deg.C.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-184054

(43)公開日 平成6年(1994)7月5日

(51)Int.Cl.⁵ 識別記号 庁内整理番号 F I 技術表示箇所 C 0 7 C 69/96 Z 9279-4H 68/06 Z 9279-4H // A 6 1 K 31/265 AB F 9283-4 C A C V 9283-4 C

審査請求 未請求 請求項の数2(全 4 頁)

(21)出願番号	特願平4-279163	(71)出願人	000005315
			保土谷化学工業株式会社
(22)出願日	平成 4年(1992) 9月25日		東京都港区虎ノ門1丁目4番2号
(,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(71)出願人	000109543
		(13,13,5	テルモ株式会社
		,	
			東京都渋谷区幡ヶ谷2丁目44番1号
		(72)発明者	村岡 泰斗
			茨城県つくば市御幸が丘45番地 保土谷化
			学工業株式会社内
		(72)発明者	木村 育夫
			茨城県つくば市御幸が丘45番地 保土谷化
			学工業株式会社内
			1

(54) 【発明の名称 】 5-[4-(x)+2) カルボニル) オキシー3-3 トキシフェニル]-2 , 4-4 ンタジエン酸 クロリド及びその製造方法

(57)【要約】

[目的] 抗アレルギー剤や腎炎治療剤のような医薬の中間体として有用な化合物及び、その製造方法。

【構成】 構造式 [化2] で表される化合物を塩素化剤で処理する事を特徴とする構造式 [化1] の化合物及び、その製造方法。

【化1】

MeO COCOE t

【特許請求の範囲】

【請求項1】 構造式 [化1] で示される5 - [4- (エトキシカルボニル) オキシ-3 - メトキシフェニル) -2, 4 - ペンタジエン酸クロリド

【化1】

【請求項2】 構造式 [化2] で示される化合物を塩素 化剤で処理する事を特徴とする構造式 [化1] の化合物 の製造方法

【化2】

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は [化1] で示される化合物に関するものであり、抗アレルギー剤や腎炎治療剤のような医薬中間体として有用な化合物及び、その製造方法に関するものである。

[0002]

【従来の技術】医薬として有用なカルボン酸アミド誘導体の合成法として、混合酸無水物、活性エステルを経る製造法(特開昭62-228059)が知られているが、副生成物の生成が多く、その精製のために収率が低くなる。それゆえ工業化に際し更に簡便且つ効率的な合成法が望まれている。

[0003]

(B)

【発明が解決しようとする課題】本発明者等は、従来からの問題点を解決すべく検討した結果、 [化2] の化合物を塩素化剤で処理して酸クロリド化合物 [化1] を得る方法及びこの [化1] を用いる事により副生成物の生成を抑え、簡便且つ効率的にカルボン酸アミド誘導体に導く方法を見いだした。

[0004]

【課題を解決するための手段】本発明に係わる [化1]で示される酸クロリドは、 [化3]で示されるカルボン酸とクロロ炭酸エチルを反応する第一工程で得られる化合物 [化2]を、更に第二工程で塩素化剤で処理することにより製造することができる。

[化3]

[0005] 即ち、第一工程は、クロロ炭酸エチルを不 活性溶媒に溶解し、その中に塩基と[化3]で示される カルボン酸とを不活性溶媒に溶解した溶液を加えて反応 【0006】本発明方法の第二工程は、第一工程で得ら れた反応液を1N塩酸、飽和食塩水、飽和重曹水で洗浄 し有機層を無水硫酸マグネシウムで乾燥する。乾燥後、 溶媒を留去し [化2] で示される混合酸無水物を単離 し、それを第一工程で用いた不活性溶媒に再度溶解した 溶液とするか、あるいは [化2] を単離せず無水硫酸マ グネシウムでの乾燥後の溶液をそのまま用い、その中に 塩化チオニル、三塩化リンまたは五塩化リンなどの塩素 化剤 $1 \sim 5$ モル当量を加え $2 \sim 1$ 0 時間処理することに より [化1] で示される酸クロリドを製造する事ができ る。上記の [化2] と塩素化剤との反応で、反応温度は $0\sim50$ ℃好ましくは $10\sim30$ ℃であり、使用する塩 素化剤の量は1~2モル当量が好ましい。更に、この [化1] を上述の不活性溶媒に溶解し、-30~30℃ にて一級アミンあるいは二級アミンと反応させることに より簡便にかつ効率よくアミド化合物に誘導することが できる。ここでの不活性溶媒の使用量は [化1] が溶解 するに十分な量であるが好ましくは [化1] に対し3~ 10重量部である。また、上述のように-30~30℃ の範囲内で反応は進行するが−15~0℃が好ましい反 応温度である。一級アミンとしはアルキルアミン、置換 アルキルアミン、及びアリルアミンが例としてあげられ る。また、二級アミンとしては、一級アミンと同様アル キルアミン、置換アルキルアミン、及びアリルアミンが 例としてあげられるが二つの置換基は必ずしも同一であ る必要はない。

[0007]

【実施例】以下に本発明の実施例を示す。

[実施例1] 塩化メチレン94mlにクロロ炭酸エチル7.22gを加え、-12℃に冷却しておき次に、攪拌下、5-(4-ヒドロキシ-3-メトキシフェニル)-2,4-ペンタジエン酸6.57gとトリエチルアミン6.21gの塩化メチレン(<math>45ml)溶液を滴下した。滴下終了後、反応混合物の温度を室温に戻しながら1時間攪拌した。反応終了後、反応液を1N塩酸、飽和

重曹水、飽和食塩水各々30mlで洗浄した。有機層を 無水硫酸マグネシュウムで乾燥した後、全量が約50g になるまで減圧濃縮した。残った溶液に塩化チオニル 4. 1 g とジメチルホルムアミド1滴を加え、室温で1 時間攪拌の後一晩放置した。溶媒を減圧留去した後、残 渣にヘキサン50m1を加え、析出した結晶を♪過、減 圧乾燥して、5-[4-(エトキシカルボニル)オキシ -3-メトキシフェニル]-2, 4-ペンタジエン酸ク ロリド8.8g(収率95%, 純度99%)を得た。 【0008】本発明化合物の物理化学的データーを以下

に示す。

融点:85~87℃

0

(P)

IR (日立260-10型, KBr法) (cm-1):1 755 (C=O), 1620, 1595, 1275, 1 040, 1010

[0009] 以下に¹H-NMRのデータを示す(日本 電子製GSX-400型, 400MHz, 溶媒; CDC 13).

 $l_{H-NMR, \delta}$ (ppm) : 1. 38 (3H, t, J =7.1Hz, ⑨), 3.87(3H, s, まる10), 4. 31 (2H, q, J = 7. 1Hz, 8), 6. 18 (1H, d, J = 15.2 Hz, ①), 6.85 (1 H, dd, J = 15. 2 Hz, J = 11. 2 Hz, ③), 7. 03 (1H, d, J=15.2Hz, ④), 7. 07 (2H, m, \$and\$), 7. 10 (1 H, d, J=8.8 Hz, ⑦), 7.58(1 H,

dd, J = 15. 2Hz, J = 11. 2Hz, ②) [0010]

[化4]

【0011】以下に¹³C-NMRのデータを示した(日 本電子製GSX-400型, 100MHz, 溶媒; CD

13C-NMR (CDC13) δ (ppm) : 14. 03 (まる14), 55.85 (まる15), 65.05 (まる13), 110.93(まる11), 120.7 0 (⑦), 122.76(⑧), 124.83

134 . 30 125.25 (4), (2), 144.10 141.34(9), (6)

151.40 (まる 150.41(3), **(**(**5**) , 165.59 (1) 152.79 (\$\pi 312),

) [0012]

【化5】

(5)

【0013】本発明化合物を用い、以下に示す方法で、 医薬として有用なアミド化合物に誘導する事ができる。 [参考例1] 5-[4-(エトキシカルボニル)オキ シ-3-メトキシフェニル]-2,4-ペンタジエン酸 クロリド3.27gを塩化メチレン20m1に溶解し、 -12 ℃において、2-(4-ジフェニルメトキシー1-ピペリジニル)エチルアミン4.07gの塩化メチレ ン(15ml)溶液を滴下した。滴下後反応混合物を室 温に戻しながら2時間攪拌した。反応終了後、反応混合 物を1N塩酸、飽和重曹水、飽和食塩水各々10mlで 洗浄し、有機層を無水硫酸マグネシウムで乾燥した。溶 媒を留去後、エタノールで溶媒置換し残渣にヘキサンを 加え析出した結晶をろ取、粗結晶を得た。エタノール/ ヘキサンより再結晶して、炭酸=4- [5 - [[2-(4-ジフェニルメトキシ-1-ピペリジニル) エチ

ル] アミノ] -5-オキソ-1,3-ペンタジエニル] -2-メトキシフェニル=エチル=エステル4.09g を得た(収率70%,純度99%)。

[0014]

[発明の効果] 従来の方法(特開昭62-22805 9) でアミド化合物に誘導した場合、不純物除去のため に再結晶や有機溶剤による洗浄等数回にわたる精製を必 要としていたため収率が50~60%程度であったが、 本発明の方法の酸エチルエステル化合物 [化2] を塩素 化剤で処理して得られる本発明化合物を用いることによ り不純物の生成が少ない反応が可能となり多くの精製を 必要とせず、通常一回の再結晶のみで収率80%程度と 効率よく、かつ従来と同等な純度で医薬として有用なア ミド誘導体を合成できる。

【手続補正書】 【提出日】平成5年12月3日 【手続補正3】 【補正対象書類名】明細書 【補正対象項目名】0007 【補正方法】変更 【補正内容】 【0007】

Ò

 \odot

【実施例】以下に本発明の実施例を示す。

[実施例1] 塩化メチレン94mlにクロロ炭酸エチル7.22gを加え、-12℃に冷却しておき次に、提拌下、5-(4-ヒドロキシ-3-メトキシフェニル) -2, 4-ペンタジエン酸6.57gとトリエチルアミ

ン6.21gの塩化メチレン(45ml)溶液を滴下した。滴下終了後、反応混合物の温度を室温に戻しながら1時間攪拌した。反応終了後、反応液を1N塩酸、飽和重曹水、飽和食塩水各々30mlで洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、全量が約50gになるまで減圧濃縮した。残った溶液に塩化チオニル4.1gとジメチルホルムアミド1滴を加え、室温で1時間攪拌の後一晩放置した。溶媒を減圧留去した後、残渣にヘキサン50mlを加え、析出した結晶をろ過、減圧乾燥して、5-[4-(エトキシカルボニル)オキシー3ーメトキシフェニル]-2,4-ペンタジエン酸クロリド8.8g(収率95%,純度99%)を得た。