Privacy-Preserving Computation

Always encrypted processing

Communicate, store, and compute with encrypted data

Schemes for privacy-preserving Computation

- Homomorphic Encryption
- Secret Sharing
- Garbled Circuits

Garbled Circuits Support Arbitrary Computation

- Arithmetic and Boolean logic
- Conditionals (e.g., ReLU in deep learning)

Garbled Circuits (GCs)

Garbling Phase

Generator Garbler (Alice)

Evaluator Eval (Bob)

XOR in GCs

AND in GCs

Evaluating Phase

HAAC: A Garbled Circuits Half-Gate Accelerator

Custom Logic

Speeds up GCs gate computations by 153.8 ×

Architecture

Parallel gate processing, provides additional 13.7 × speedup

Compiler

Automatic programming, performance optimizations, eliminating data dependence and bank conflicts

Hardware Architecture

- Pipeline: 18 stages for Garbler Half-Gate
- A small Forwarding logic enables fast data reuse

- Multi-core performs instruction level parallelism
- 1 MB on-chip memory, multi-bank improves memory access

Compiler – Reorder & Rewire

Resolve Gates Dependencies

Resolve Memory Bank Conflicts

Instructions

Performance

Optimized Compiler

- Reorder: 2.3× overall speedup (geomean), but 5.5× more memory stalls
- Reorder + Rewire: 4.04× overall speedup

Multi-Core Scaling (1, 2, 4, 8, 16)

- Overall 1→16 cores speedup: 2.76×
- Comparing with software: overall 97.8× speedup (only a single GCcore), 258× speedup (16-core)

How HAAC achieves ADA goals

HAAC Goals

- Wide-scale deployment of practical privacy-preserving computation
- Cryptographically secure

Aligns with ADA Task 2.7 – Privacy-Enhanced Computation

Hardware-software co-designed GC accelerator achieving an average speedup of 258×

Joint University Microelectronics Program

www.src.org/program/jump

Semiconductor Research Corporation

@srcJUMP

