統計学2及び演習

第1種の誤り、第2種の誤り、検出力

東京理科大学 創域理工学部情報計算科学科 安藤宗司

2023年4月19日

Contents

- □仮説検定の誤り
 - ■第1種の誤り
 - ■第2種の誤り

- ■検定の大きさ
 - ■有意水準

- □検出力関数
 - ■検出力

仮説検定には誤りが存在する

- □帰無仮説のもとで5%未満の確率でしか起きない事象は 偶然ではないと考えて有意水準を設定
- ■裏を返せば、帰無仮説のもとでも、5%未満の確率で生じる事象ということになる
- ■第1種の過誤
 - ■帰無仮説が正しいときに、誤って帰無仮説を棄却する誤り
 - ■第1種の誤りを起こす確率を第1種の過誤確率という

		検定結果	
		帰無仮説が 正しいと判断	対立仮説が 正しいと判断
真	帰無仮説が正しい	正しい	第1種の誤り
実	対立仮説が正しい	第2種の誤り	正しい

2種類の誤り確率

□仮説検定では、第1種の誤りと第2種の誤りが存在

■有意水準を設定することで第1種の過誤確率を 制御している

■第2種の過誤確率はどのように制御するのか?

いかさまコインであると仮定

- □ これまでは、帰無仮説(いかさまコインではない)が 成り立つと仮定して議論してきた
- ■いかさまコインであると仮定して、表が出る回数の確率を求める

□検出力

- ■対立仮説が正しいとき、対立仮説が正しいと判断する確率
- ■1-第2種の過誤確率

表が出る確率が70%のいかさまコイン

いかさまコインではない場合

いかさまコインの場合

表の回数	確率		表の回数	確率	
0	0.1%	第1種の	0	0.0006%	検出力
1	0.98%	過誤確率	1	0.01%	(無視可能)
2	4.39%		2	0.15%	
3	11.72%		3	0.90%	
4	20.51%		4	3.68%	第2種の
5	24.51%		5	10.29%	過誤確率
6	20.51%		6	20.01%	
7	11.72%		7	26.68%	
8	4.39%		8	23.35%	
9	0.98%	第1種の	9	12.11%	検出力
10	0.1%	過誤確率	10	2.82%	6

表が出る確率が80%のいかさまコイン

いかさまコインではない場合

確率
0.1%
0.98%
4.39%
11.72%
20.51%
24.51%
20.51%
11.72%
4.39%
0.98%
0.1%

いかさまコインの場合

表の回数	確率
0	1.024e-05%
1	0.0004%
2	0.007%
3	0.08%
4	0.55%
5	2.64%
6	8.81%
7	20.13%
8	30.20%
9	26.84%
10	10.74%

表が出る確率が90%のいかさまコイン

いかさまコインではない場合

確率
0.1%
0.98%
4.39%
11.72%
20.51%
24.51%
20.51%
11.72%
4.39%
0.98%
0.1%

いかさまコインの場合

表の回数	確率
0	1.024e-05%
1	9e-07%
2	3.645e-05%
3	0.0009%
4	0.01%
5	0.15%
6	1.12%
7	5.74%
8	19.37%
9	38.74%
10	34.87%

12回コインを投げた結果

いかさまコインではない場合

表の回数	確率
0	0.02%
1	0.29%
2	1.61%
3	5.37%
4	12.08%
5	19.34%
6	22.56%
7	19.34%
8	12.08%
9	5.37%
10	1.61%
11	0.29%
12	0.02%

表が出る確率が80%のいかさまコインの場合

表の回数	確率
0	4.096e-07%
1	1.96608e-05%
2	0.0004%
3	0.006%
4	0.05%
5	0.33%
6	1.55%
7	5.32%
8	13.29%
9	23.62%
10	28.34%
11	20.62%
12	6.87%

検出力の特徴

- □帰無仮説からの乖離の程度に依存する
 - ■コインのいかさまの程度(表の出る確率)に依存する

表の出る確率	検出力
70%	14.93%
80%	37.58%
90%	73.61%

■サンプルサイズ N に依存する

コイン投げの回数	表の出る確率	検出力
10	80%	37.58%
12	80%	55.83%

検定結果の解釈

- ■10回コインを投げた結果
 - ■表の回数が1以下,または9回以上の場合
 - ▶ 統計学的に有意と判定
 - ▶帰無仮説を棄却して、対立仮説を採択する
 - \triangleright 「表が出る確率 π は1/2ではない」と判断する
 - ■表の回数が2以上、または8回以下の場合
 - ▶統計学的に有意でないと判定
 - ▶帰無仮説を採択する
 - \triangleright 「表が出る確率 π は1/2 ではない」とはいえないと判断する

「表が出る確率πは1/2である」とは判断できないことに注意!

統計的仮説検定の一般論

- □仮説の選択
 - ■標本の実現値 $(x_1, x_2, ..., x_n)$ が棄却域Wに属するか否か $(x_1, x_2, ..., x_n) \in W$ ならば帰無仮説を棄却する
- ■棄却域Wをどのように構成するかが重要

- ■第1種の誤り確率
 - 棄却域Wが与えられたもとで、標本を用いることにより、 $\theta_0 \in \Theta_0$ に対して、次のように計算できる

$$P_{\theta_0}\big((X_1, X_2, \dots, X_n) \in W\big)$$

2種類の誤り確率

- ■第1種の誤り確率
 - ■棄却域Wが与えられたもとで、標本を用いることにより、 $\theta_0 \in \Theta_0$ に対して、次のように計算できる

$$P_{\theta_0}\big((X_1, X_2, \dots, X_n) \in W\big)$$

- ■第2種の誤り確率
 - ■棄却域Wが与えられたもとで、標本を用いることにより、 $\theta_1 \in \Theta_1$ に対して、次のように計算できる

$$P_{\theta_1}\big((X_1,X_2,\ldots,X_n)\notin W\big)$$

誤り確率の最小化問題

- ■理想
 - ■第1種と第2種の誤り確率がともに小さくなる
 - ■これは可能か?
- ■現実
 - ■第1種と第2種の誤り確率には 片方の確率を小さくするともう片方が大きくなる という関係性がある
 - ■両方を同時に小さくすることはできない

誤り確率の制御

- ■第1種の過誤確率
 - ■検定の大きさ $\sup_{\theta_0 \in \Theta_0} P_{\theta_0}((X_1, X_2, ..., X_n) \in W)$
 - ■検定の大きさが α (0 ≤ α ≤ 1)より小さい検定を,有意水準 (significance level) α の検定という

$$\sup_{\theta_0 \in \Theta_0} P_{\theta_0} ((X_1, X_2, \dots, X_n) \in W) \le \alpha$$

この式を満たすようにWを定める

- ■第2種の過誤確率
 - ■検定の段階では制御していない
 - ■どのように制御するのか?
 - ■興味がある方は、3年後期の「データ解析」を受講

正当性

- ■医薬品開発の例
 - ■開発中の候補物質(新薬)のプラセボに対する優越性を評価
 - ■帰無仮説「新薬とプラセボの効果は同じ」
 - ■対立仮説「新薬はプラセボより効果がある」
- ■第1種の誤りを起こした場合
 - ■新薬に効果がないにも関わらず、効果があると判断する
 - ■効果がない薬を多くの患者に投与するため、影響大
- ■第2種の誤りを起こした場合
 - ■新薬に効果があるにも関わらず、効果がないと判断する
 - ■効果がある薬を患者に投与できない
 - ■開発した製薬企業、新薬を待っている患者に影響大

検出力関数

■任意の $\theta \in \Theta$ に対して、次式を検出力関数という

$$\beta_W(\theta) = P_{\theta}((X_1, X_2, \dots, X_n) \in W)$$

- ■第1種の過誤確率
 - $\blacksquare \theta_0 \in \Theta_0$ に対して

$$\beta_W(\theta_0) = P_{\theta_0}((X_1, X_2, \dots, X_n) \in W)$$

- □検出力
 - $\blacksquare \theta_1 \in \Theta_1$ に対して、次式を θ_1 に対する検出力という

$$\beta_W(\theta_1) = P_{\theta_1}((X_1, X_2, ..., X_n) \in W) = 1 - P_{\theta_1}((X_1, X_2, ..., X_n) \notin W)$$
 第2種の過誤確率 20

統計的仮説検定の手順

☐ Step1

- ■帰無仮説と対立仮説を設定し、有意水準を定める
- ■慣例的には、 $\alpha = 0.05$ を用いることが多い

☐ Step2

■検定統計量 $T = t(X_1, X_2, ..., X_n)$ を定める

☐ Step3

■ 棄却域 $W = \{(x_1, x_2, ..., x_n) \mid t(x_1, x_2, ..., x_n) \in R\}$ を求める

☐ Step4

- ■検定統計量Tの実現値 $t^* = t(x_1, x_2, ..., x_n)$
- ■ $t^* \in R$ ならば帰無仮説を棄却, $t^* \notin R$ ならば帰無仮説を採択

検定結果の解釈

- □帰無仮説を棄却し、対立仮説を支持
 - ■この判断が間違っている確率は*α*以下であることを保証

- □帰無仮説を採択し、帰無仮説を支持
 - ■この判断が間違っている確率は制御されていない
 - ■積極的に帰無仮説が正しいことを主張することは危険
 - ■帰無仮説が正しいことを主張するには, データ収集前にサンプルサイズ設計を行い 第2種の過誤確率を制御する必要がある