Algorithm 1: CountInversions.

Input: Array $A[0 \dots n-1]$.

Output: The number of inversions in A.

if n=1 then

return 0;

else

copy A[0...|n/2|-1] to B[0...|n/2|-1];

copy A[|n/2|...n-1] to C[0...[n/2]-1]; $il \leftarrow \mathbf{CountInversions}(B);$

 $ir \leftarrow \mathbf{CountInversions}(C);$ $im \leftarrow \mathbf{Merge}(B, C, A);$

return il + ir + im;

Algorithm 2: Merge.

Input: Two sorted arrays B[0...p-1] and C[0...q-1], and an array A[0..p+q-1]. **Output**: The number of inversions involving an element from B and an element from C.

• Line 1: $B[i] \leq C[j]$

• Line 2: p - i

Modifies: A.

 $count \leftarrow 0$:

 $i \leftarrow 0; j \leftarrow 0; k \leftarrow 0;$

while i < p and j < q do

if ... then

 $A[k] \leftarrow B[i]; i \leftarrow i+1;$

 $A[k] \leftarrow C[j]; j \leftarrow j + 1;$ $count \leftarrow count + \dots;$

 $k \leftarrow k + 1;$

if i = p then

copy $C[j \dots q-1]$ to $A[k \dots p+q-1]$; else

copy $B[i \dots p-1]$ to $A[k \dots p+q-1]$;

return count;