Examen 1 (Solución)

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Ej. 1 (2.5 pts) Sean I, J, K conjuntos no vacíos y supongamos que $J \cup K = I$. Si $\{X_i \mid i \in I\}$ es una familia indexada de conjuntos, demuestra que:

$$\bigcap_{i \in I} X_i = \left(\bigcap_{i \in I} X_i\right) \cap \left(\bigcap_{i \in K} X_i\right)$$

Demostración. (\subseteq) Supongamos que $x \in \bigcap_{i \in I} X_i$, por definición de intersección (indexada):

$$\forall i \in I (x \in X_i) \equiv \forall (i \in I \to x \in X_i) \tag{1}$$

Veamos que $x \in \bigcap_{i \in J} X_i$ y $x \in \bigcap_{i \in K} X_i$. Para lo primero, sea $j \in J$ cualquier elemento, como $I = J \cup K$, entonces $j \in I$ y debido a la proposición $1, x \in X_j$, por lo tanto $x \in \bigcap_{j \in J} X_j = \bigcap_{i \in J} X_i$. Similarmente, si $k \in K$ es cualquiera, como $I = J \cup K$, entonces $k \in K$ y debido a la proposición 1, $x \in X_k$, por lo tanto $x \in \bigcap_{k \in K} X_k = \bigcap_{i \in K} X_i$. Así que $x \in (\bigcap_{i \in J} X_i) \cap (\bigcap_{i \in K} X_i)$, hemos mostrado que:

$$\forall x \Big(x \in \bigcap_{i \in I} X_i \to x \in \Big(\bigcap_{i \in I} X_i\Big) \cap \Big(\bigcap_{i \in K} X_i\Big)\Big)$$

es decir, $\bigcap_{i \in I} X_i \subseteq (\bigcap_{i \in J} X_i) \cap (\bigcap_{i \in K} X_i)$.

(⊇) Sea $x \in (\bigcap_{i \in J} X_i) \cap (\bigcap_{i \in K} X_i)$ cualquier elemento, entonces $x \in \bigcap_{i \in J} X_i$ y $x \in \bigcap_{i \in K} X_i$. Luego, por definición de intersección (indexada):

$$\forall (i \in J \to x \in X_i) \quad y \quad \forall (i \in K \to x \in X_i)$$
 (2)

Ahora, si $i \in I$ es cualquier elemento entonces $i \in J$ o $i \in K$, esto último se debe a que $I = J \cup K$. Por tanto, se sigue de la proposición 2, que (en cualquiera de estos dos casos) $x \in X_i$. Por tanto $x \in \bigcap_{i \in I} X_i$, probando que:

$$\forall x \Big(x \in \Big(\bigcap_{i \in J} X_i\Big) \cap \Big(\bigcap_{i \in K} X_i\Big) \to x \in \bigcap_{i \in J} X_i\Big)$$

es decir, $(\bigcap_{i \in I} X_i) \cap (\bigcap_{i \in K} X_i) \subseteq \bigcap_{i \in I} X_i$.

Ej. 2 (2.5 pts) Demuestra que $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$. Además da un ejemplo que muestre que la otra contención no siempre se cumple.

Demostración. Veamos primero la contención. Sea $x \in (A \times B) \cup (C \times D)$ cualquier elemento. Entonces $x \in A \times B$, o, $x \in C \times D$ (definición de unión) y existen dos casos.

- i) Supongamos que $x \in A \times B$; entonces, existen $a \in A$ y $b \in B$ de modo que x = (a, b) (definición de producto cartesiano). Como $a \in A$, entonces " $a \in A$ o $a \in C$ " es verdadera, por lo que $a \in A \cup C$. De manera similar, $b \in B \cup D$. Por lo tanto, $x = (a, b) \in (A \cup C) \times (B \cup D)$.
- ii) Supongamos que $x \in C \times D$; entonces, existen $c \in C$ y $d \in D$ de modo que x = (c, d) (definición de producto cartesiano). Como $c \in C$, entonces " $c \in A$ o $c \in C$ " es verdadera, por lo que $c \in A \cup C$. De manera similar, $d \in B \cup D$. Por lo tanto, $x = (c, d) \in (A \cup C) \times (B \cup D)$.

En los dos casos anteriores se tiene que $x \in (A \cup C) \times (B \cup D)$; por tanto, hemos probado que:

$$\forall x (x \in (A \times B) \cup (C \times D) \to x \in (A \cup C) \times (B \cup D))$$

es decir, $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.

Finalmente, veamos que en general, no se tiene la contención recíproca. Consideremos los conjuntos $A = B = \{0\}$ y $C = D = \{1\}$. De esta manera, por definición de producto cartesiano, $A \times B = \{(0,0)\}$ y $C \times D = \{(1,1)\}$; de donde:

$$(A \times B) \cup (C \times D) = \{(0,0),(1,1)\}\$$

Sin embargo, como $1 \in C$, entonces $1 \in A \cup C$; y, como $0 \in B$, entonces $0 \in B \cup D$. Consecuentemente $(1,0) \in (A \cup C) \times (B \cup D)$, pero, $(1,0) \notin (A \times B) \cup (C \times D) = \{(0,0),(1,1)\}$ (de lo contrario (1,0) = (0,0) o (1,0) = (1,1); y en ambos casos 0 = 1, lo cual es imposible). Por lo tanto:

$$\exists y \big(y \in (A \times B) \cup (C \times D) \land y \notin (A \cup C) \times (B \cup D) \big) \big)$$

es decir, $(A \cup C) \times (B \cup D) \not\subseteq (A \times B) \cup (C \times D)$.

Ej. 3 (2.5 pts) Si A, B y C son tales que $A \cap C = B \cap C$ y $A \cup C = B \cup C$, entonces A = B.

Demostración. Sean A, B, C conjuntos, supongamos que:

$$A \cap C = B \cap C, y: \tag{3}$$

$$A \cup C = B \cup C. \tag{4}$$

Probaremos A = B por doble contención.

- (⊆) Sea $x \in A$ arbitrario. Observamos que así, $x \in A \cup C$, y, de la igualdad 4, se obtiene que $x \in B \cup C$; es decir, $x \in B$ o $x \in C$. Y hay dos casos.
 - i) Si $x \in B$, entonces $x \in B$.
 - ii) Si $x \in C$, dado que $x \in A$, resulta que $x \in A \cap C$. Se sigue de lo anterior (y de 3) que $x \in B \cap C$; particularmente, $x \in B$.

En ambos casos $x \in B$; luego, hemos probado que $\forall x (x \in A \to x \in B)$, equivalentemente, $A \subset B$.

(⊇) Dado que las hipótesis (igualdad 3 e igualdad 4) son simétricas respecto a A y B, esta contención es análoga. Por lo tanto, $B \subseteq A$.

Por doble contención, se tiene que A = B.

Ej. 4 (2.5 pts) Sean A, B conjuntos. Demuestra que $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cap \mathcal{P}(B)$ implica A = B.

Demostración. Supongamos que $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cap \mathcal{P}(B)$. Nótese que $A \subseteq A \cup B$ (visto en clase). Entonces por definición del conjunto potencia, $A \in \mathcal{P}(A \cup B)$ y se sigue de la hipótesis que $A \in \mathcal{P}(A) \cap \mathcal{P}(B)$; particularmentem $A \in \mathcal{P}(B)$; es decir $A \subseteq B$.

Dado que las hipótesis son simétricas respecto a A y B, es análogo al párrafo anterior que $B \subseteq A$. Mostrando, por doble contencion, que A = B.

Ej. 5 (+1 pt) Este ejercicio es opcional y sólo se tomará en cuenta si no hay errores en la solución. Sean A un conjunto y $R \subseteq A \times A$ una relación sobre A. Demuestre que si R es reflexiva y transitiva, entonces $Q := R \cap R^{-1}$ es una relación de equivalencia.

Demostración. Supongamos que R es reflexiva y transitiva. Nótese que, como $R \subseteq A \times A$, entonces $R^{-1} \subseteq A \times A$, y así $Q \subseteq A \times A$ (es decir, Q es relación sobre A).

 $(Q ext{ es reflexiva}) ext{ Sea } x \in A ext{ cualquiera, entonces por ser } R ext{ reflexiva, } (x,x) \in R. ext{ Por definición de la relación inversa, } (x,x) \in R^{-1}, ext{ y entonces } (x,x) \in R \cap R^{-1} = Q, ext{ es decir:}$

$$\forall x \in A(x \ Q \ x)$$
 es decir, Q es reflexiva.

 $(Q \text{ es simétrica}) \text{ Sean } x, y \in A \text{ y supongamos que } (x, y) \in Q. \text{ Por definición de } Q, \text{ se tiene que } (x, y) \in R \text{ y } (x, y) \in R^{-1}. \text{ Como } (x, y) \in R, \text{ entonces } (y, x) \in R^{-1}; \text{ y, como } (x, y) \in R^{-1}, \text{ entonces } (y, x) \in R. \text{ Esto prueba que } (y, x) \in R \cap R^{-1} = Q. \text{ Por tanto:}$

$$\forall x, y \in A(x \ Q \ y \rightarrow y \ Q \ x)$$
 es decir, Q es simétrica.

(Q es transitiva) Sean $u, v, w \in A$ y supongamos que $(u, v) \in Q$ y $(v, w) \in Q$. Por definición de Q, resulta que $(u, v) \in R$, $(u, v) \in R^{-1}$, $(v, w) \in R$ y $(v, w) \in R^{-1}$. Dado que $(u, v) \in R$, $(v, w) \in R$ y R es transitiva, entonces $(u, w) \in R$. Además, como $(u, v) \in R^{-1}$ y $(v, w) \in R^{-1}$, por definición de relación inversa, se tiene $(v, u) \in R$ y $(w, v) \in R$. De nuevo, por transitividad de R, se da $(w, u) \in R$; esto es, $(u, w) \in R^{-1}$. Por lo tanto $(u, w) \in R \cap R^{-1} = Q$, probando que:

$$\forall u, v, w \in A((u \ Q \ v \land v \ Q \ w) \rightarrow u \ Q \ w)$$
 es decir, Q es transitiva.

Así que *Q* es de equivalencia.