9. Steady state equations for the two-fluid model for stratified pipeflow

9.1. Governing equations

The two-fluid model for 1D isothermal two-phase stratified pipeflow reads:

$$\frac{\partial}{\partial t}(\rho_g A_g) + \frac{\partial}{\partial x}(\rho_g u_g A_g) = 0 \tag{9.1}$$

$$\frac{\partial}{\partial t}(\rho_l A_l) + \frac{\partial}{\partial x}(\rho_l u_l A_l) = 0 \tag{9.2}$$

$$\frac{\partial}{\partial t}(\rho_g u_g A_g) + \frac{\partial}{\partial x}(\rho_g u_g^2 A_g) + A_g \frac{\partial p}{\partial x} - \frac{\partial H_g}{\partial x} + S_1 = 0 \tag{9.3}$$

$$\frac{\partial}{\partial t}(\rho_l u_l A_l) + \frac{\partial}{\partial x}(\rho_l u_l^2 A_l) + A_l \frac{\partial p}{\partial x} - \frac{\partial H_l}{\partial x} + S_2 = 0 \tag{9.4}$$

The liquid holdup A_l and gas holdup A_g have to fill up the total area of the pipe A_{tot} , which allows a direct relation between A_g and A_l : $A_l + A_g = A_{tot}$. $\frac{\partial H_l}{\partial x}$ and $\frac{\partial H_g}{\partial x}$ represent the hydraulic gradients in conservative form where H_g and H_l are defined as:

$$H_g = ((R - h_{lg})A_g + (1/12)(P_{lg}^3))\rho_g g$$
(9.5)

$$H_l = ((R - h_{lq})A_l - (1/12)(P_{lq}^3))\rho_l g$$
(9.6)

Here R is the pipe radius, h_{lg} is the height of the gas-liquid interface and P_{lg} is the size of the gas-liquid interface. S_1 and S_2 contain source terms. For the moment we only consider horizontal pipe flow with no other source terms than frictional source terms. In that case S_1 and S_2 read:

$$S_1 = F_q + F_{lq} \tag{9.7}$$

$$S_2 = F_l - F_{lg} (9.8)$$

Here F_g is the friction of the gas with the wall, F_l is the friction of the liquid with the wall, and F_{lg} is the interfacial friction. The frictional terms are further discussed in section 9.1.2.

The model is closed by defining an equation of state for the gas density $\rho_g = \rho_g(p)$ (ρ_l is taken constant, $\rho_l = \rho_{l0}$):

$$\rho_g(p) = \frac{\rho_{norm} T_{norm}}{p_{norm}} \frac{p}{T} = \frac{p}{c_g^2}$$
(9.9)

Here c_g is the speed of sound in gas. We now will develop the steady state two-fluid model equations.

9.1.1. Steady state equations

As a first in reducing the governing equations 9.1, 9.2, 9.3, and 9.4 to their steady state form we drop the time dependent terms, and integrate equations 9.1, 9.2:

$$\rho_q u_q A_q = M_q \tag{9.10}$$

$$\rho_l u_l A_l = M_l \tag{9.11}$$

$$\frac{\partial}{\partial x}(\rho_g u_g^2 A_g) + A_g \frac{\partial p}{\partial x} - \frac{\partial H_g}{\partial x} + S_1 = 0$$
(9.12)

$$\frac{\partial}{\partial x}(\rho_l u_l^2 A_l) + A_l \frac{\partial p}{\partial x} - \frac{\partial H_l}{\partial x} + S_2 = 0 \tag{9.13}$$

Here M_g and M_l are the mass flow of the gas and liquid respectively. In steady state they are constant everywhere in the pipe, and they are considered as a known quantity. We use these definitions of the mass flow to simplify the first terms of equation 9.12 and 9.13:

$$M_g \frac{\partial u_g}{\partial x} + A_g \frac{\partial p}{\partial x} - \frac{\partial H_g}{\partial x} + S_1 = 0$$
(9.14)

$$M_l \frac{\partial u_l}{\partial x} + A_l \frac{\partial p}{\partial x} - \frac{\partial H_l}{\partial x} + S_2 = 0 \tag{9.15}$$

In addition we use equation 9.10 and 9.11 to express u_q and u_l as function of A_l and p, that is:

$$u_q(A_l, p) = M_q/(\rho_q(A_{tot} - A_l))$$
 (9.16)

$$u_l(A_l, p) = M_l/(\rho_l A_l) \tag{9.17}$$

We now substitute these expressions for u_g and u_l and the equation of state equation 9.9 into equation 9.14 and 9.15 to obtain two equations with two unknowns A_l and p. By collecting terms we can write equation 9.14 and 9.15 in the following form:

$$c_1 \frac{\partial p}{\partial x} + c_2 \frac{\partial A_l}{\partial x} + S_1 = 0 (9.18)$$

$$c_3 \frac{\partial p}{\partial x} + c_4 \frac{\partial A_l}{\partial x} + S_2 = 0 (9.19)$$

Here c_1 , c_2 , c_3 , and c_4 are coefficients which are a function of A_l and p. When neglecting the hydraulic gradients in equation 9.14 and 9.15, we find for c_1 , c_2 , c_3 , and c_4 :

$$c_1 = (A_{tot} - A_l) - \frac{c_g^2 M_g^2}{p^2 (A_{tot} - A_l)}$$
(9.20)

$$c_2 = \frac{c_g^2 M_g^2}{p(A_{tot} - A_l)^2} (9.21)$$

$$c_3 = A_l \tag{9.22}$$

$$c_4 = \frac{-M_l^2}{A_l^2 \rho_{l0}} \tag{9.23}$$

In principle the hydraulic gradients can be included, but this will lead to more complicated expressions for c_1 , c_2 , c_3 , and c_4 . As the hydraulic gradients have very little effect on a typical steady state pipeline calculation, we choose to neglect it here. We stress, however, that without loss of generality it is possible to include the hydraulic gradients.

We can manipulate equation 9.18 and 9.19 to write a system of two coupled ODE's for A_l and p.

$$\frac{\partial p}{\partial x} = \frac{S_2 c_2 - S_1 c_4}{c_1 c_4 - c_2 c_3} \tag{9.24}$$

$$\frac{\partial A_l}{\partial x} = \frac{-(S_2 c_1 - S_1 c_3)}{c_1 c_4 - c_2 c_3} \tag{9.25}$$

This set of two ODE's can be integrated along the pipe coordinate x with an appropriate initial condition for p and A_l . As an appropriate initial condition the value at the outlet boundary of the pipe can be taken were often the outlet pressure is known. The liquid hold up A_l for this outlet pressure can be estimated by neglecting velocity gradients as well as hydraulic gradients in equation 9.14 and 9.15, resulting in:

$$\frac{\partial p}{\partial x} - \frac{S_1}{(A_{tot} - A_l)} = 0 \tag{9.26}$$

$$\frac{\partial p}{\partial x} - \frac{S_2}{A_I} = 0 \tag{9.27}$$

Subtracting the two equations above leads to an equation which can be solved for A_l at the outlet.

9.1.2. Fluid friction model

The source terms S_1 and S_2 defined equation 9.7 and 9.8 in contain the fluid friction terms. They are expressed as:

$$F_g = P_g \frac{1}{2} f_g \rho_g u_g |u_g| \tag{9.28}$$

$$F_l = P_l \frac{1}{2} f_l \rho_l u_l |u_l| \tag{9.29}$$

$$F_{lg} = P_{lg} \frac{1}{2} f_{lg} \rho_g (u_g - u_l) |(u_g - u_l)|$$
(9.30)

Here f_g , f_l , and f_{lg} are the corresponding friction factors which are calculated with the Churchill correlation, which gives an explicit expression for the (Fanning) friction factor f.

$$f = 2\left(\left(\frac{8}{Re}\right)^{12} + (a+b)^{-1.5}\right)^{1/12} \tag{9.31}$$

where

$$a = \left(-2.457 \log \left(\left(\frac{7}{Re}\right)^{0.9} + 0.27 \frac{\epsilon}{D} \right) \right)^{16} \tag{9.32}$$

$$b = \left(\frac{37530}{Re}\right)^{16} \tag{9.33}$$

Here ϵ is the roughness of the pipe and D the pipe diameter. Re is the Reynolds number. To obtain the friction factor for the liquid f_l we insert for Re the liquid Reynolds number Re_l in the formula above, which is defined as:

$$Re_l = \frac{\rho_l u_l D_l}{\mu_l} \tag{9.34}$$

where D_l is hydraulic diameter for the liquid phase defined as:

$$D_l = \frac{4A_l}{P_l} \tag{9.35}$$

Similar, in order to obtain f_g we use the gas Reynolds number Re_g defined as:

$$Re_g = \frac{\rho_g u_g D_g}{\mu_g} \tag{9.36}$$

with D_g is hydraulic diameter for the liquid phase defined as:

$$D_g = \frac{4A_g}{P_q + P_{lq}} (9.37)$$

The interfacial friction factor f_{lg} is taken to be equal to f_g , that is $f_{lg} = f_g$, for $f_g \ge 0.014$. If $f_g < 0.014$, $f_{lg} = 0.014$.