Math 1800-C Handout 9: Summary of Chapter 8 - How to calculate line integrals

Subhadip Chowdhury

§1. Summary of Chapter 8

We learned the following theorems in chapter 8.

Parametrized Curves: If the curve *C* can be parametrized as $\vec{\mathbf{r}}(t)$, $a \leq t \leq b$, then

$$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{a}^{b} \vec{\mathbf{F}}(\vec{\mathbf{r}}(t)) \cdot \vec{\mathbf{r}}'(t) dt$$

Fundamental Theorem of Line Integrals: If the vector field $\vec{\mathbf{F}}$ is a gradient vector field i.e. $\vec{\mathbf{F}} = \nabla f$, and the curve C starts at P and ends at Q, then

$$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{C} \nabla f \cdot d\vec{\mathbf{r}} = f(Q) - f(P)$$

Green's Theorem: If C is a *simple, closed, oriented* curve and the vector field $\vec{\mathbf{F}}$ is *smooth* over the simply-connected region R enclosed by C (oriented so that R is always to the left of C), then

 $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \iint_R \operatorname{curl} \vec{\mathbf{F}} \, dA$

§2. Vector Fields Venn Diagram

§3. Calculating Line Integral - a flowchart

§4. Practice Problems

■ Exercise 1.

Figure 1

Suppose $\vec{\mathbf{f}}$ is an irrotational vector field in the plane (that is, its curl is everywhere zero) that is not defined at the origin O = (0,0). See figure 1. Suppose the line integral of $\vec{\mathbf{f}}$ along the path p from A to B is 5 and the line integral of $\vec{\mathbf{f}}$ along the path q from A to B is -4. Find the line integral of F along the paths a,b and c.

■ Exercise 2.

Evaluate the following line integrals.

- (a) $\oint_C y dx + (x + y^2) dy$ where *C* is the ellipse $4x^2 + 9y^2 = 36$ with counterclockwise orientation.
- (b) $\int \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where $\vec{\mathbf{F}}(x,y) = xy\vec{\mathbf{i}} + x^2\vec{\mathbf{j}}$ and C is given by $\vec{\mathbf{r}}(t) = \sin t\vec{\mathbf{i}} + (1+t)\vec{\mathbf{j}}$, $0 \le t \le \pi$
- (c) $\int \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where $\vec{\mathbf{F}}(x,y) = (4x^3y^2 2xy^3) \vec{\mathbf{i}} + (2x^4y 3x^2y^2 + 4y^3) \vec{\mathbf{j}}$ and C is given by $\vec{\mathbf{r}}(t) = (t + \sin \pi t) \vec{\mathbf{i}} + (2t + \cos \pi t) \vec{\mathbf{j}}$, $0 \le t \le 1$
- (d) $\int \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where $\vec{\mathbf{F}}(x,y,z) = \sin y \vec{\mathbf{i}} + x \cos y \vec{\mathbf{j}} \sin z \vec{\mathbf{k}}$, and C is the helix $x = 3 \cos t$, y = t, $z = 3 \sin t$ from (3,0,0) to $(0,\pi/2,3)$
- (e) $\oint_C \sqrt{1+x^3}dx + 2xydy$ where *C* is the triangle with vertices (0,0), (1,0), and (1,3)
- (f) $\int \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where $\vec{\mathbf{F}}(x,y,z) = (3x^2yz 3y)\vec{\mathbf{i}} + (x^3z 3x)\vec{\mathbf{j}} + (x^3y + 2z)\vec{\mathbf{k}}$ and C is the curve shown in figure 2.

Figure 2

(g) $\int \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where

$$\vec{\mathbf{F}}(x,y,z) = \left\langle 4xe^{2x^2+3y^2+4z^2}, 6ye^{2x^2+3y^2+4z^2}, 8ze^{2x^2+3y^2+4z^2} \right\rangle$$

and C is

$$\vec{\mathbf{r}}(t) = \langle (2 + \cos(7t))\cos(t), (2 + \cos(7t))\sin(t), \sin(7t) \rangle$$

parametrized by $0 \le t \le \pi$ starting at t = 0 and ending at $t = \pi$.

Figure 3

- (h) $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where $\vec{\mathbf{F}}(x,y) = \frac{(2x^3 + 2xy^2 2y)\vec{\mathbf{i}} + (2y^3 + 2x^2y + 2x)\vec{\mathbf{j}}}{x^2 + y^2}$ and C is the curve shown in figure 3.
- (i) $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where $\vec{\mathbf{F}}(x,y,z) = \langle y \cos x xy \sin x, xy + x \cos x \rangle$, and C is the triangle from (0,0) to (0,4) to (2,0) to (0,0).
- (j) $\int \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where $\vec{\mathbf{F}}(x,y) = xy^2\vec{\mathbf{i}} + x^2y\vec{\mathbf{j}}$, and C is $\vec{\mathbf{r}}(t) = \cos t\vec{\mathbf{i}} + 2\sin t\vec{\mathbf{j}}$, $0 \le t \le \pi/2$
- (k) $\int \vec{\mathbf{f}} \cdot d\vec{\mathbf{r}}$, where $\vec{F}(x,y,z) = \langle yz + x^2, xz + y^2 + \sin(y), xy + \cos(z) \rangle$, and $\vec{\mathbf{r}}(t) = \langle \cos(20t)\sin(t), \sin(20t)\sin(t), \cos(t) \rangle$ with $0 \le t \le \pi$

■ Exercise 3.

- (a) A **160** lb man carries a **25** lb can of paint up a helical staircase that encircles a silo with a radius of **20** ft. If the silo is **90** ft high and the man makes exactly three complete revolutions climbing to the top, how much work is done by the man against gravity?
- (b) Suppose there is a hole in the can of paint and 9 lb of paint leaks steadily out of the can during the mans ascent. How much work is done?

■ Exercise 4.

Compute the line integral of the vector field

$$\vec{\mathbf{F}}(x,y,z) = \langle \cos(x), 2 + \cos(y), e^z + x(y^2 + z^2) \rangle$$

along the curve

$$\vec{\mathbf{r}}(t) = \langle t, \cos(t), \sin(t) \rangle$$
 with $0 \le t \le 3\pi$.

HINT: Write \vec{F} as $\vec{G} + \vec{H}$ where \vec{G} is a gradient vector field. Then do the two integrals separately.

■ Exercise 5.

Look at the shaded region G bounded by a circle of radius $\mathbf{2}$ and an inner *figure eight lemniscate* (see figure $\mathbf{4}$) with parametric equation

$$\vec{\mathbf{r}}(t) = \langle \sin(t), \sin(t)\cos(t) \rangle$$

with $0 \le t \le 2\pi$. The picture shows the curve and the arrows indicate some of the velocity vectors of the curve. Find the area of this region *G*.

[HINT: Use Green's theorem and the vector field $x\hat{j}$.]

Figure 4

■ Exercise 6.

What is the line integral $\int_{\mathcal{C}} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$ of the vector field

$$\vec{\mathbf{F}}(x,y) = \langle 1 + y + 2xy, y^2 + x^2 \rangle$$

along the boundary *C* of the planar castle region shown in the picture 5. Each of the 5 windows is a unit square and the base of the castle has length 9. The boundary consists of 6 curves which are all oriented so that the region is to the left.

Figure 5

■ Exercise 7.

Let *C* be the boundary curve of the white Yang part of the Ying-Yang symbol in the disc of radius **6**. You can see in figure **6** that the curve *C* has three parts, and that the orientation of each part is given. Find the line integral of the vector field

$$\vec{F}(x,y) = \langle -y + \sin(e^x), x \rangle$$

around *C*. Notice that the Ying and the Yang have the same area.

Figure 6