1995-07-27

(19) SE

(51) Internationall klass 6 B27N 3/18

PATENT- OCH REGISTRERINGSVERKET

(45) Patent meddelat 1997-03-24 (41) Ansökan allmänt tillgänglig 1997-01-28

(22) Patentansökan inkom

(24) Löpdag

(62) Stamansökans nummer

(86) Internationall ingivningsdag

(86)Ingivningsdag för ansökan om europeisk patent

(83) Deposition av mikroorganism

(30) Prioritetsuppgifter

(21) Patentansökningsnummer

9502713-2

1995-07-27 Ansökan inkommen som:

svensk patentansökan

fulliföljd internationell patentansökan

med nummer

omvandlad europeisk patentansökan

med nummer

- (73) PATENTHAVARE Sunds Defibrator Industries AB, 851 94 Sundsvall SE
- (72) UPPFINNARE N Lennart Eriksson, Sundsvall SE, Göran Lundgren, Alnö SE, Kurt Schedin, Sundsvall SE, Kjell Sjödin, Bergeforsen SE
- (74) OMBUD
- L A Groth & Co KB
- (54) BENÄMNING Förfarande för framställning av lignocellulosahaltiga skivor
- (56) ANFÖRDA PUBLIKATIONER:
- (57) SAMMANDRAG:

Förfarande för kontinuerlig framställning av skivor av lignocellulosahaltigt fibermaterial där materialet sönderdelas till partiklar och/eller fibrer. Dessa torkas, belimmas och formas till en matta. Mattan pressas under ångtillförsel till en färdig skiva. Enligt uppfinningen sker pressningen i ett enda steg och ångan tillföres genom en eller flera pressvalsar. Genom ånginjiceringen på detta sätt erhålles tillräcklig härdning för motverkande av den inneboende fiberspänsten, så att det blir möjligt att erhålla sluttjocklek på skivan i endast ett pressningssteg.

Föreliggande uppfinning hänför sig till ett för framställning av lignocellulosahaltiga skivor avsett förfarande av det slag som anges i patentkravets 1 ingress.

Metoder att tillverka skivor av lignocellulosabaserade råvaror är välkända och har vunnit stor praktisk tillämpning. Vid tillverkningen ingår följande huvudsteg: sönderdelning av råvaran till lämpligt stora partiklar och/eller fiber, torkning till en bestämd fuktkvot och belimning av materialet före eller efter torkningen, formning av det belimmade materialet till en matta, som kan vara uppbyggd av flera skikt, eventuellt kallförpressning, förvärmning, vattenbedysning av ytor etc samt en varmpressning under samtidigt tryck och värme i en taktpress eller kontinuerlig press till en färdig skiva.

5

10

⊥5

20

25

30

. :

35

Vid den konventionella varmpressningen uppvärms det pressade materialet huvudsakligen med hjälp av värmeledning från de intilliggande värmeplattorna eller stålbanden, som har en temperatur av 150-250°C beroende på typ av produkt som pressas, använd limtyp, önskad kapacitet etc. Härigenom förångas materialets fukt närmast värmekällorna varvid ett torrskikt utvecklas där och en ångfront successivt förflyttar sig in mot skivmitten från vardera sidan allteftersom pressningen fortgår. När torrskiktet utvecklas innebär det att minst 100°C uppnåtts i detta skikt, vilket initierar normala lims uthärdning. När ångfronten nått mitten har minst 100°C nåtts där och skivan börjar även att härda ut i mitten varefter pressningen kan avslutas inom ett antal sekunder. Detta gäller vid användning av konventionella ureaformaldehydlim (UF) och liknande, såsom melaminförstärkt (MUF) lim. Vid användning av andra lim med högre uthärdningstemperatur måste en högre temperatur och ett högre ångtryck utbildas i skivan innan härdning kan ske.

För att åstadkomma den önskade densiteten måste en press kunna applicera höga yttryck vid hög temperatur. Detta är i sig inget problem vid icke-kontinuerlig pressning i en s.k. taktpress, men sådana uppvisar andra nackdelar såsom sämre tjocklekstoleranser etc. I fallet kontinuerliga pressar

5

10

15

20

25

30

35

har kravet på höga yttryck och samtidigt hög temperatur lett till dyrbara precisionslösningar vad gäller rullbädd mellan stålband och underliggande värmeplatta. Metoden att införa värme till skivan via värmeledning gör också att uppvärmningen tar relativt lång tid vilket resulterar i långa presslängder (stora pressytor).

Uppvärmningen kan även åstadkommas genom att ånga tillföres mattan som skall pressas. Därmed förkortas uppvärmningstiden radikalt och dessutom minskar det motstånd som materialet gör mot kompression mycket kraftigt när ånga har tillförts så att mindre presskraft och mindre pressyta erfordras. Då ångan injiceras i materialmattan kan en injektionslåda användas, vilket dock medför vissa nackdelar. För att undanröja dessa har utvecklats en anordning där själva komprimeringsvalsarna är perforerade, och utgör ångtillförselorgan. En sådan anordning beskrives i SE 502 810

SE 502 272 beskriver ett förfarande där fördelarna med ånguppvärmning utnyttjas för att åstadkomma önskade
densitetsprofiler hos den färdiga skivan, där pressningen
genomföres i två steg, varvid mattan i det första steget
komprimeras till måttlig densitet med i huvudsak jämn densitetsprofil över dess tjocklek, och i det andra steget komprimeras till högre densitet där densitetsprofilen är heterogen
med ett ytskikt av högre densitet än skivans mittskikt.
Mellan de båda stegen härdas skivan helt eller delvis.

Ehuru representerande ett framsteg inom området för tillverkning av spånskivor, speciellt sådana med skikt av olika densitet, har förfarandet enligt SE 502 272 den nackdelen att pressning i två steg med mellanhärdning gör tillverkningsprocessen förhållandevis komplicerad.

Utnyttjandet av ånginjektion för uppvärmning av materialet är i sig väl känt inom området. Bl.a. visar US 2 480 851, GB 999 696, DE 2 058 820, DE 36 40 682, DE 4 009 883 och AU 57390/86 olika exempel på hur ånga injiceras vid kontinuerliga processer för framställning av fiberskivor. Även vid dessa beskrivna processer förutsättes pressning i två eller flera steg.

Vidare beskrives i EP 383 572 en process som arbetar med endast ett pressningssteg. Ångan tillföres vid denna process i ett ånginjiceringssegment som uppenbarligen innefattar någon form av konventionell ångtillförsel genom ånglåda el. dyl. Vid ångtillförsel på detta sätt föreligger glidning mellan mattan/viran och ånglådan, varvid ett betydande slitage uppkommer, som innebär att åtminstone lådans glidytor måste bytas ut med jämna mellanrum. Vidare uppkommer då ofta problem med kantavtätningen till följd av glidningen mellan mattan/viran och ånglådan.

Ändamålet med föreliggande uppfinning är att åstadkomma ett förfarande av ifrågavarande slag som är enklare än kända förfaranden och som undviker de nackdelar som är förknippade med konventionell ångtillförsel.

Detta har enligt uppfinningen ernåtts genom att ett förfarande av det i kravets 1 ingress angivna slaget innefattar de i kravets 1 kännetecknande del angivna åtgärderna.

Vid en analys som gjorts av försök med det i SE 502 272 beskrivna förfarandet har det visat sig att det tillförda limmet redan vid ånginjiceringen i samband med det första pressningssteget kan fås att härdas till tillräcklig styrka för att motverka den inneboende-spänsten hos-de i materialet ingående partiklarna/fibrerna. Det är därför möjligt att redan i ett första steg erhålla en skiva med tjocklek som i huvudsak motsvarar den som-önskas för den färdiga skivan under beaktande av eventuell konditionering efter pressningen.

Genom att åstadkomma den ånginjicerade pressningen i endast ett pressningssteg erhålles en avsevärt enklare och billigare tillverkning.

Genom att dessutom tillföra ånga i detta enda pressningssteg genom pressvalsarna undvikes vidare de problem som är förknippade med konventionella ångtillförselmetoder.

Lämpligtvis får den pressade skivan passera genom en varmhällningszon. Därmed uppnås att limmet, som vanligtvis inte härdats till full styrka vid pressning n, kan härda till full styrka i denna.

15

10

5

20

25

30

35

5

.0

5

5

5

Före och efter pressningen vidtages lämpligtvis konditioneringsåtgärder med mattan/skivan.

Ovanstående och övriga fördelaktiga utföringsformer av det uppfunna förfarandet anges i de efterföljande under-kraven.

Uppfinningen förklaras närmare genom efterföljande beskrivning av föredragna utföringsformer av densamma under hänvisning till medföljande ritningar, i vilka

fig. 1 är ett snitt som schematiskt visar pressningssteget enligt en första utföringsform av uppfinningen,

Γ

fig. 2 är ett snitt motsvarande fig. 1 men visar en andra utföringsform av uppfinningen,

fig. 3 är ett schematiskt snitt genom en vals genom vilken ånga tillföres,

fig. 4 är ett snitt genom en del av valsen i fig. 3,

fig. 5 är ett axiellt snitt genom valsen i fig. 4, fig. 6 är ett schematiskt snitt som illustrerar de olika behandlingsstegen enligt en föredragen utföringsform av uppfinningen.

Fig. 1 illustrerar pressning av en materialmatta 1 som bl.a. innehåller fibrer och lim i ett enda steg till en fiberskiva som har en tjocklek som i huvudsak motsvarar den önskade tjockleken för den färdiga skivan. Pressning av mattan 1 åstadkommes mellan två komprimeringsvalsar, vilka innefattar organ för tillförsel av ånga till mattan i samband med komprimeringen. Genom tillförseln av ånga till mattan kommer limkomponenterna i denna att härda till en tillräcklig styrka för att också motverka fiberspänsten, vilket möjliggör att skivan pressas i detta enda steg. Ångan pressas bakåt i materialet, dvs. motsatt dess rörelseriktning.

Fig. 2 visar ett alternativt utförande av uppfinningen där vardera vals 2, 3 är försedd med omgivande vira 19 respektive 20, alternativt hålat stålband med vira.

Valsarna 2 och 3 med ångtillförsel kan vara utförda på ett sätt som beskrives i SE $502\ 810$ och som illustreras i fig. 3, 4 och 5.

Den i fig. 4 visade komprimerings- och injiceringsvalsen 2 är utformad med en perforerad mantelyta 6 för tillförsel av ånga till mattan 1. Runt valsen 2 innanför mantelytan 6 är ett axiellt kanalsystem 7 anordnat för fördelning
av ångan över valsens 2 och därmed mattans 1 bredd. Vidare är
en inställbar glidsko (fig. 5) anordnad att tätande anligga
mot valsens 2 gavel för tillförsel av ånga till kanalsystemet 7. Tillförseln sker därvid till en begränsad sektor (fig.
3) av valsen 2 där mattan 1 komprimeras. Denna begränsade
sektor 9 omges på båda sidor, i omkretsriktningen räknat, av
avtätningszoner 10 där valsen 2 är i kontakt med mattan 1.
Kanalsystemet 7 kan vara tillslutet vid valsens 2 motsatta
gavel. Alternativt kan en glidsko 8 anordnas vid vardera

5

10

∡′5

20

25

30

35

Glidskon 8 hålls på plats med ett ställbart stativ så att glidskon kan förskjutas i omkretsriktningen. Därigenom kan injektionssektorns 9 läge varieras. Glidskon 8 är lämpligen utformad med en utbytbar slitdel 14 av lågfriktionsmaterial som anligger mot en bearbetad yta på valsens 2 gavel. Därvid hålls glidskon 8 tryckt mot valsens gavel, exempelvis medelst fjädrar, tryckluft eller hydrauliskt, så att läckaget i tätningsytan minimeras.

Glidskon 8 kan vara utformad med en eller flera kanaler 11, 12, 13 som kan ha olika area. Även utbytbara slitdelar 14 med olika hålarea kan användas, exempelvis en glidplatta vars hålöppning kan varieras. Därigenom kan injektionssektorns 9 storlek varieras. Vidare kan olika flöden och tryck upprätthållas i olika delar av injektionssektorn 9. Glidskons 8 kanaler kan också utnyttjas för renblåsning och avsugning.

I fig. 5 visas schematiskt glidskons 8 anliggningsyta mot valsens 2 gavel. Därvid är glidskon 8 försedd med injektionskanaler 11 för ånga, renblåsningskanal 12 och avsugningskanal 13.

Den perforerade mantelytan 6 på valsen 2 kan utgöras av stansad eller borrad hålplåt som i form av ringar krympts fast på valsen. Axiella stödlister 15 för hålplåten 5

5

)

5

kan därvid vara utformade i en mantelplåt 16 på valsen genom fräsning eller gjutning eller utgöras av separata lister som fästs i urtag i mantelplåten 16. Dessa lister 15 kan samtidigt avgränsa kanalsystemet 7 innanför mantelytan 6.

De öppningar i kanalsystemet 7 som i valsens 2 gavel inte täcks av glidskon 8 kan tätas genom att en ställbar glidring av lågfriktionsmaterial hålls tryckt mot gaveln.

Fig. 6 visar enstegspressningen enligt uppfinningen med de olika behandlingssteg som företrädesvis föregår och efterföljer själva komprimeringen. Materialmattan 1 passerar först en förkonditioneringszon 21 där mattan 1 bibringas förutbestämd temperatur, fukthalt och densitet.

Efter komprimeringen mellan valsarna 2, 3 passerar den pressade skivan 4 en varmhållningszon 22. I denna får limmet, som i samband med pressningen endast härdats till-räckligt mycket för att att styrka nog att motverka fiberspänsten, härda till full styrka. För att uppnå optimal styrka i den färdiga skivan 4 hålles temperaturen i varmhållningszonen vid eller mycket nära den i pressnypet erhållnatemperaturen.

Den sålunda fullt härdade skivan passerar slutligen en efterkonditioneringszon 23. I denna bibringas skivan den fukthalt som önskas för den färdiga produkten. Vidare uppsamlas i denna zon gaser, t.ex. formaldehyd som avges från den pressade skivan. Skivan får också avkylas i konditioneringszonen, eftersom den höga temperaturen hos skivan från varmhållningszonen 22 gör att den i viss grad blir plastisk, vilket gör att den får dålig hanterbarhet.

PATENTRKRAV

5

10

11

20

30

35

- 1. Förfarande för kontinuerlig framställning av skivor av lignocellulosahaltigt fibermaterial där materialet sönderdelas till partiklar och/eller fibrer, torkas, belimmas och formas till en matta som medelst minst en pressvals pressas till en färdigformad skiva, varvid den formade mattan tillföres ånga, k ä n n e t e c k n a t av att pressningen sker i ett enda steg, vid vilket nämnda ånga tillföres genom nämnda minst en pressvals.
- 2. Förfarande enligt patentkrav 1, vid vilket ångan tillföres i en sådan mängd att i mattan innesluten luft pressas bakåt genom mattan.
- 3. Förfarande enligt patentkrav 1 eller 2, vid vilket mattan före pressningen förkonditioneras.
- 4. Förfarande enligt patentkrav 3, vid vilket nämnda förkonditionering innefattar konditionering till förutbestämd temperatur, fukthalt och densitet.
- 5. Förfarande enligt något av patentkraven 1 4, vid vilket den pressade skivan passerar en varmhållningszon.
- 6. Förfarande enligt patentkrav 5, vid vilket den pressade skivan kvarhålles tillräckligt länge i nämnda varmhållningszon att i skivan innehållet lim härdar till full styrka.
- 7. Förfarande enligt patentkrav 5 eller 6, vid vilket den pressade skivan i nämnda varmhållningszon hålles vid en temperatur som i huvudsak överensstämmer med den temperatur skivan bibringas under pressningen.
 - 8. Förfarande enligt något av patentkraven 1 7, vid vilket den pressade skivan efter nämnda åtgärder passerar en efterkonditioneringszon.
 - 9. Förfarande enligt patentkrav 8, vid vilket behandlingen i nämnda efterkonditioneringszon innefattar förändring av den pressade skivans fukthalt och avskiljning av från den pressade skivan avgivna gaser.
 - 10. Förfarand nligt patentkrav 8 ell r 9, vid vilket den pressade skivan kyles i nämnda efterkonditioneringszon.

٠٠;