

The Optimal Mechanism in Differential Privacy

Quan Geng

Advisor: Prof. Pramod Viswanath

Outline

- Background on differential privacy
- Problem formulation
- Main result on the optimal mechanism
- Extensions to other settings
- Conclusion and future work

Vast amounts of personal information are collected

Data analysis produces a lot of useful applications

 How to release the data while protecting individual's privacy?

Motivation: Netflix Prize

- (2006) Netflix hosted a contest to improve movie recommendation
- Released dataset
 - 100 million ratings
 - 500 thousand users
 - 18 thousand movies

Image Credit: Arvind Narayanan

Motivation: Netflix Prize

- (2006) Netflix hosted a contest to improve movie recommendation
- Released dataset
 - 100 million ratings
 - 500 thousand users
 - 18 thousand movies
- Anonymization to protect customer privacy

Image Credit: Arvind Narayanan

Motivation: Netflix Prize Dataset Release

[Narayanan, Shmatikov 2008]

Image Credit:
Arvind Narayanan

 How to protect PRIVACY resilient to attacks with arbitrary side information?

- How to protect PRIVACY resilient to attacks with arbitrary side information?
 - Ans: randomized releasing mechanism

- How to protect PRIVACY resilient to attacks with arbitrary side information?
 - Ans: randomized releasing mechanism
- How much randomness is needed?
 - completely random (no utility)
 - deterministic (no privacy)

- How to protect PRIVACY resilient to attacks with arbitrary side information?
 - Ans: randomized releasing mechanism
- How much randomness is needed?
 - completely random (no utility)
 - deterministic (no privacy)
- **Differential Privacy** [Dwork et. al. 06]: one way to quantify the level of randomness and privacy

 Database Curator: How to answer a query, providing useful data information to the analyst, while still protecting the privacy of each user.

dataset: D

Age

A: 20

B: 35

C: 43

D: 30

J. JU

query function: q (D)

q: How many people are older than 32?

$$q(D) = 2$$

randomized released mechanism: K(D)

$$K(D) = 1$$
 w.p. 1/8

$$K(D) = 2$$
 w.p. $1/2$

$$K(D) = 3$$
 w.p. $1/4$

$$K(D) = 4$$
 w.p. $1/8$

• Two neighboring datasets: differ only at one element

Age	
A: 20	
B: 35	
C: 43	
D: 30	

Age	
A: 20	
B: 35	
D: 30	

 D_1

 D_2

• Two neighboring datasets: differ only at one element

Age	
A: 20	
B: 35	
C: 43	
D: 30	

$$K(D_1) \approx K(D_2)$$

$$D_1$$

$$D_2$$

Differential Privacy: presence or absence of any individual record in the dataset should not affect the released information significantly.

• A randomized mechanism K gives ϵ -differential privacy, if for any two neighboring datasets D_1, D_2 , and all $S \subset \text{Range}(K)$,

$$Pr(K(D_1) \in S) \le e^{\epsilon} Pr(K(D_2) \in S)$$

(make hypothesis testing hard)

- *e* quantifies the level of privacy
 - $\epsilon \rightarrow 0$, high privacy
 - $\epsilon \to +\infty$, low privacy
 - a social question to choose ϵ (can be 0.01, 0.1, 1, 10 ...)

- Q: How much perturbation needed to achieve ϵ -DP?
- A: depends on how different $q(D_1)$, $q(D_2)$ are

- Q: How much perturbation needed to achieve ϵ -DP?
- A: depends on how different $q(D_1)$, $q(D_2)$ are

- Q: How much perturbation needed to achieve ϵ -DP?
- A: depends on how different $q(D_1)$, $q(D_2)$ are

- Q: How much perturbation needed to achieve ϵ -DP?
- A: depends on how different $q(D_1)$, $q(D_2)$ are

• Global Sensitivity Δ : how different when q is applied to neighboring datasets

$$\Delta \coloneqq \max_{(D_1,D_2) \text{ are neighbors}} |q(D_1) - q(D_2)|$$

• Example: for a count query, $\Delta = 1$

Laplace Mechanism:

$$K(D) = q(D) + Lap(\frac{\Delta}{\epsilon}),$$

$$Lap\left(\frac{\Delta}{\epsilon}\right)$$
 is a r.v. with p.d.f $f(x) = \frac{1}{2\lambda}e^{-\frac{|x|}{\lambda}}, \ \lambda = \frac{\Delta}{\epsilon}$

Basic tool in DP

Optimality of Existing work?

Laplace Mechanism:

$$K(D) = q(D) + Lap(\frac{\Delta}{\epsilon}),$$

- Two Questions:
 - Is data-independent perturbation optimal?
 - Assume data-independent perturbation, is Laplacian distribution optimal?

Optimality of Existing work?

Laplace Mechanism:

$$K(D) = q(D) + Lap(\frac{\Delta}{\epsilon}),$$

- Two questions:
 - Is data-independent perturbation optimal?
 - Assume data-independent perturbation, is Laplacian distribution optimal?
- Our results:
 - data-independent perturbation is optimal
 - Laplacian distribution is not optimal: the optimal is staircase distribution

Problem Formulation: DP constraint

• A generic randomized mechanism K is a family of noise probability measures (t is query output)

$$K = \{\nu_t : t \in R\}$$

• DP constraint: $\forall t_1, t_2 \in R, s.t. |t_1 - t_2| \leq \Delta$, $\mathbf{v}_{t_1}(S) \leq e^{\epsilon} \mathbf{v}_{t_2}(S + t_1 - t_2)$, \forall measurable set S

Problem Formulation: utility (cost) model

Cost function on the noise

$$L: R \to R$$

Given query output t,

$$Cost(v_t) = \int L(x)v_t(dx)$$

- Example
 - L(x) = |x|, noise magnitude $L(x) = |x|^2$, noise power
- Objective(minmax):

$$\underset{t \in R}{\text{minimize sup }} \int_{x \in R} L(x) \nu_t(dx)$$

Problem Formulation: put things all together

Minimize
$$\sup_{t \in R} \int_{x \in R} L(x) \nu_t(dx)$$

s.t.
$$\mathbf{v}_{t_1}(S) \leq e^{\epsilon} \mathbf{v}_{t_2}(S + t_1 - t_2)$$
, \forall measurable set S , $\forall t_1, t_2 \in R$, s.t. $|t_1 - t_2| \leq \Delta$,

Main Result: $v_t = v$

In the optimal mechanism, v_t is **independent** of t (under a technical condition).

Main Result: $v_t = v$

In the optimal mechanism, v_t is **independent** of t (under a technical condition).

Piecewise constant over t

Periodic over t

Main Result: $v_t = v$

Piecewise constant over t

Periodic over t

In the optimal mechanism among $\bigcup_{T>0} \bigcup_{n\geq 1} K_{T,n}$, ν_t is **independent** of t

Optimal noise probability distribution

$$K(D) = q(D) + X,$$

```
Minimize \int L(x)P(dx)

s.t. Pr(X \in S) \le e^{\epsilon} Pr(X \in S + d),

\forall |d| \le \Delta, measurable set S
```

Optimal noise probability distribution

$$K(D) = q(D) + X,$$

Minimize
$$\int L(x)P(dx)$$

s.t. $Pr(X \in S) \le e^{\epsilon} Pr(X \in S + d)$, $\forall |d| \le \Delta$, measurable set S

- L(x) satisfies:
 - symmetric, and increasing of |x|

•
$$\sup \frac{L(T+1)}{L(T)} < +\infty$$

Main Result

The optimal probability distribution has staircase-shaped p.d.f.

Main Result

Main Result

R.V. generation

- **Sign**: binary r.v.
- **Interval**: geometric r.v.
- **Segment**: binary r.v.

Proof Ideas

Key idea:

- Divide each interval $[k\Delta,(k+1)\Delta)$ into *i* bins
- Approximate using piecewise constant p.d.f.

Proof Ideas

• p.d.f. should be decreasing

Proof Ideas

- p.d.f. should be geometrically decreasing
 - Divide each interval $[k\Delta, (k+1)\Delta)$ into i bins

$$\bullet \frac{a_k}{a_{k+i}} = e^{\epsilon}$$

$$\frac{a_1}{a_3}=e^{\epsilon}, \qquad \frac{a_2}{a_4}=e^{\epsilon}$$

Proof Ideas

• The shape of p.d.f. in the first interval $[0, \Delta)$ should be a step function

Application: L(x) = |x|

 $\gamma^* = \frac{1}{1+a^{\frac{\epsilon}{2}}}$, and the minimum expectation of noise amplitude is

$$V(P_{\gamma^*}) = \Delta \frac{e^{\frac{\epsilon}{2}}}{e^{\epsilon}-1}$$

- $\epsilon \to 0$, the additive gap $\to 0$
- $\epsilon \to +\infty$, $V(P_{\gamma^*}) = \Theta(\Delta e^{-\frac{\epsilon}{2}})$

$$V_{Lap} = \frac{\Delta}{\epsilon}$$

Numeric Comparison with Laplacian Mechanism

3/29/2013 41

Numeric Comparison with Laplacian Mechanism

Application: $L(x) = x^2$

•
$$(b:=e^{-\epsilon})$$

$$\gamma^* = -\frac{b}{1-b} + \frac{(b-2b^2+2b^4-b^5)^{1/3}}{2^{1/3}(1-b)^2}$$

Minimum noise power

$$V(\mathcal{P}_{\gamma^*}) = \Delta^2 \frac{2^{-2/3}b^{2/3}(1+b)^{2/3} + b}{(1-b)^2}.$$

Application: $L(x) = x^2$

• $(b:=e^{-\epsilon})$ The minimum noise power is

$$V(\mathcal{P}_{\gamma^*}) = \Delta^2 \frac{2^{-2/3}b^{2/3}(1+b)^{2/3} + b}{(1-b)^2}.$$

$$V_{Lap} = \frac{2\Delta^2}{\epsilon^2}$$

- $\epsilon \to 0$, the additive gap $\leq c\Delta^2$
- $\epsilon \to +\infty$, $V(P_{\gamma^*}) = \Theta(\Delta^2 e^{-\frac{2\epsilon}{3}})$

Numeric Comparison with Laplacian Mechanism

3/29/2013 45

Numeric Comparison with Laplacian Mechanism

Properties of γ^*

$$\bullet L(x) = |x|^m,$$

$$\gamma^* \to \frac{1}{2}$$
, as $\epsilon \to 0$,
 $\gamma^* \to 0$, as $\epsilon \to +\infty$.

Also holds for cost functions which are positive linear combinations of momentum functions.

Extension to Discrete Setting

• Query function: q(D) is integer-valued

Extension to Discrete Setting

Query function: q(D) is integer-valued

Adding data-independent noise is optimal

Extension to Discrete Setting

Query function: q(D) is integer-valued

Adding data-independent noise is optimal

Extension to Abstract Setting

- $K: \mathbb{D} \to \mathbb{R}$ (can be arbitrary), with base measure μ .
- Cost function: $C: D \times R \to [0, +\infty]$
- Sensitivity

$$\Delta := \max_{r \in R, D_1, D_2: |D_1 - D_2| \le 1} |C(D_1, r) - C(D_2, r)|$$

Extension to Abstract Setting

- $K: D \to R$ (can be arbitrary), with base measure μ .
- Cost function: $C: D \times R \to [0, +\infty]$
- Sensitivity

$$\Delta := \max_{r \in R, D_1, D_2: |D_1 - D_2| \le 1} |C(D_1, r) - C(D_2, r)|$$

Staircase mechanism:

Random sampling over the output range with staircase distribution.

Extension to Abstract Setting

- $K: D \to R$ (can be arbitrary), with base measure μ .
- Cost function: $C: D \times R \to [0, +\infty]$
- Sensitivity

$$\Delta := \max_{r \in R, D_1, D_2: |D_1 - D_2| \le 1} |C(D_1, r) - C(D_2, r)|$$

Staircase mechanism:

Random sampling over the output range with staircase distribution.

• If R is real space, and $\mathcal{C}(d,r)=|r-q(d)|$, regular staircase mechanism

Conclusion

- Fundamental tradeoff between privacy and utility in DP
- Staircase Mechanism, optimal mechanism for single real-valued query
 - Huge improvement in low privacy regime
- Extension to discrete setting and abstract setting

Query output can have multiple components

$$q(D) = (q_1(D), q_2(D), ..., q_n(D))$$

Query output can have multiple components

$$q(D) = (q_1(D), q_2(D), ..., q_n(D))$$

• If all components are uncorrelated, perturb each component independently to preserve DP.

Query output can have multiple components

$$q(D) = (q_1(D), q_2(D), \dots, q_n(D))$$

For some query, all components are coupled together.

Histogram query: one user can affect only one component

Query output can have multiple components

$$q(D) = (q_1(D), q_2(D), ..., q_n(D))$$

- For some query, all components are coupled together.
- Global sensitivity

$$\Delta \coloneqq \max_{D_1,D_2 \text{ are neighbors}} ||q(D_1) - q(D_2)||_1$$

Histogram query: $\Delta = 1$

• Conjecture: for histogram-like query, optimal noise probability distribution is multidimensional staircase-shaped

59

Future Work: (ϵ, δ) -differential privacy

• (ϵ, δ) -differential privacy

$$Pr(K(D_1) \in S) \le e^{\epsilon} Pr(K(D_2) \in S) + \delta$$

The standard approach is to add Gaussian noise.

What is the optimal noise probability distribution in this setting?

Thank you!