塞曼效应

- 塞曼效应
 - <center>【仪器】 </center>
 - <center>【原理】 </center>
 - 电子磁矩
 - 角动量耦合
 - 电子总磁矩和势能
 - 汞原子能级分裂
 - 塞曼效应
 - 法布里-玻罗标准具
 - 计算荷质比
 - <center>【实验步骤】 </center>
 - <center>【实验记录】 </center>
 - <center>【实验思考题】 </center>

教师签名 实验人签名

<center>【仪器】 </center>

- F-P标准具
- Capstone 软件
- 塞曼效应实验装置
- 546.1nm汞灯

.

<center>【原理】 </center>

电子磁矩

 $\gamma \equiv \frac{e}{2m_e}$ 为回旋磁比率。我们可以取轨道角动量的本征值 $L = \sqrt{l(l+1)}\hbar$

 $\label{eq:local_local_local_local_local_local} $$ \mu_I = \frac{2\pi r^2 \cdot r$

轨道角动量的z分量 $L_z=m$) $l\hbar$.自旋角动量的z分量 $S_z=m_s\hbar, m_s=\pm \frac{1}{2}$

角动量耦合

令两个电子的轨道角量子数和自选角量子数分别为 (l_1, s_1) , (l_2, s_2) ,则它们有 $C_4^2 = 6$ 种可能的相互作用。其中 (l_1, s_2) 和 (l_2, s_1) 的强度比较弱可忽略。对于其余四种,可以分为LS *耦合和JJ耦合*。

本实验考虑更常见的*LS耦合*。其最终的总轨道角量子数和自旋量子数,以及总角量子数分别为:

 $L=I_1+I_2,..., | L=I_1-I_2 \cdot S=s_1+s_2,..., | L=I_1+I_2,..., | L=I_1+I_$

本实验汞为放电管光源,研究汞原子在546.1nm普贤在外磁场种的分裂。是汞原子的外层两个电子从 $^3S_1(6s7s)$ 到 $^3P_2(6s7p)$ 的跃迁而产生的。

	$^3S_1(6s7s)$	$^3P_2(6s7p)$
L	0	1
S	1	1
J	1	2

电子总磁矩和势能

由前面所得。尝试计算汞原子总磁矩 $\vec{\mu}$ 和在外磁场\ $ext{vec}\{B\}$ 中的势能U\$。

我们是在一个弱外场中进行实验, $B_{ext} \ll E_{inn}$,核外电子自旋磁矩与核内磁场相互作用依然更显著,所以这里我们仍然假设总角动量LS 耦合。此时J 会绕外磁场慢速进洞。

S, vecJ会快速绕着J进动。电子总角动量守恒,L,S分量均不守恒。

通过

$$U == -\vec{\mu} \cdot \vec{B}$$

己知电子或原子系统的总磁矩,就可求得原子在外磁场中的势能。一般考虑电子总磁矩即可,是因为原子核磁矩在不考虑超精细结构时可以忽略。

我们先会要求磁矩,发现朗德因子需被表达:

下面继续考虑磁矩受力矩的拉莫尔进动。由拉莫尔进动我们可以得到若干物理量

$$\frac{d\vec{v}}{dt} = \vec{\omega} \times \vec{\mu} = \gamma \vec{B} \times \vec{\mu}$$

电子总磁矩在外磁场中:

$$U = -\mu_J \cdot \vec{B} = m_J g_J \mu_B B$$

汞原子能级分裂

原子在有 B_{ext} 时,能量发生附加的势能产生能级分裂。

 $h = E_2-E_1 + Delta E_1 - (E_1 + Delta E_1) = h + (M_2g_2 - M_1g_1) = B$

有频率差和波数差

原子态符号	$^{3}S_{1}$ (6s7s)	$^{3}P_{2}$ (6s7p)	
L	0	1	
S	1	1	
J	1	2	
$g_{_J}$	2	3/2	
m_{τ}	1, 0, -1	2, 1, 0, -1, -2	

2, 0, -2

3, 3/2, 0, -3/2, -3

表 3 汞原子 546.1nm 谱线对应的上下两个能级的量子数及朗德因子

图 9 汞原子 546.1nm 谱线与能级的关系(带箭头竖线上的数字代表(39)式所示的波数差(39)式)

由于跃迁的选择性:

 $m_{i}g_{i}$

\Delta L=0,\pm 1,\\ \Delta S = 0,\\ \Delta J = 0, \pm 1\\

塞曼效应

对于一个沿分传播的电磁波,分解其电场矢量:

$$E_x = A\cos\omega t, E_y = B\cos\omega t - \alpha$$

当 $\alpha = 0$.线偏光。 $\alpha = \frac{\pi}{2} \pm A = B$ 时,为圆偏振,其具有角动量,方向与电矢量旋转方向组成右手螺旋定则。

对于 $\Delta m = \pm 1$.考虑角动量守恒,可以得到光的角动量和光传播方向一致与相反的情况:

图 11 面对磁场方向观察到的 σ^{\pm} 谱线

对于 $\Delta m=0$,原子在磁场方向的角动量不变,光子具有固有角动量 \hbar 。实际上范式角动量方向在xy平面上任意光子都满足能级跃迁前后 $\Delta m=0$ 的条件。所以平均效果时 $E_v=0$ 。于是在垂直x的方向观察,只能看到 E_z 分量,观察到线偏振光pi.

法布里-玻罗标准具

谱线分裂的波长差很小。

v = \frac{1}{\lambda}(系数2\pi可以不用)\\ \mathrm{d}v = -\frac{1} {\lambda^2}\mathrm{d}\lambda \\ \mathrm{d} \rightarrow \Delta, \\

可以得到 $\Delta\lambda$ 极小。需要使用F-P标准具等仪器来测量:

由于两镀膜面平行,若使用扩展光源,则产生等倾干涉条纹。具有相同入射角的光线在垂直于观察方向的平面上的轨迹是一组同心圆。若在光路上放置透镜,则在透镜焦平面上得到一组同心圆环图样。在透射光束中,相邻光束的光程差为

F-P具的分辨本领

$$\eta = \frac{\lambda}{\Delta \lambda} = KN$$

K为干涉级次, N为精细度.

$$N = \frac{\pi^{\sqrt{R}}}{1 - R}$$

由F-P标准具,测量近似波长差:

如图 13 所示,出射角为 θ 的圆环直径D与透镜焦距f间的关系为 $an \theta = \frac{D}{2f}$,对于

近中心的圆环 θ 很小,可以认为 $\theta \approx \sin \theta \approx \tan \theta$,于是有

$$\cos\theta = 1 - 2\sin^2\frac{\theta}{2} \approx 1 - \frac{\theta^2}{2} = 1 - \frac{D^2}{8f^2}$$
 (50)

图 13 法布里—珀罗 (F-P) 标准具光路图 (图中的透镜指的是望远镜里的透镜)

计算荷质比 $f = \frac{e}{m}$

$$f = \frac{4\pi c}{ndB} \left(\frac{D_a^2 - D_k^2}{D_{k-1}^2} - D_k^2 \right)$$

<center>【实验步骤】 </center>

- 1. 准备工作
 - 1. 正确连线

- 2. 确保汞灯正常, 电流为0
- 3. 打开Capstone,观察实时采集图像,调整至分辨率最高
- 2. 光路调整
 - 1. 调整相机模块, 使汞灯位于屏幕中心, 图像清晰
 - 2. 调整聚光透镜和偏振片
 - 3. 调整F-P和干涉滤光片
 - 4. 获得清晰干涉图像
- 3. 观察谱线分裂
- 4. 计算荷质比 $\frac{e}{m}$
- 5. 平行于磁场方向观察
- 6. 调整光路
- 7. 观察到圆偏振

<center>【实验记录】 </center>

<center>【实验思考题】 </center>

1. 光子是否具有角动量? 试描述光子角动量方向与光的偏振方向之间的关系。

ANS

2. 用同一级条纹的内外圈分别计算电子的荷质比,结果一样吗?试简述原因。

ANS

3. 请利用(20)至(23)式,计算汞原子3S1(6s7s)和3P2(6s7p)能级所对应的量子数(见表 1),并给出详细的计算过程。

ANS

4. 请利用(2)、(8)和(20)式,并结合和(注意此时的是图 5 中的,详细见脚注 22),导出朗德因子的一般表达式(28)式,并给出详细的推导过程。

ANS

5. 请利用单电子情况下的(36)式,并结合钠双黄线的平均波长及其波长差(λ1 = 589.0 nm,λ2 = 589.6 nm),估算一下钠原子内部的磁感应强度 Bint的值(提示:单电子情况下,两谱线的能级差为势能的两倍,即有;另需要利用到光子波长和频率之间的关系式。答案:钠原子内部的磁感应强度 Bint的值为 18.5T)。

ANS

6. 请结合第 5 题的计算结果,说明弱外磁场 $B_{ext} << B_{int}$ 成立时弱外磁场 B_{ext} 的取值 范围,并确认本实验中电磁体的磁感应强度符合弱外磁场 $B_{ext} << B_{int}$ 条件。

ANS

7. 请结合力与势能的关系式并利用(11)式,试推导磁矩在非均匀外磁场中的受力大小为(设外磁场方向在 z 轴方向,Fz为力在 z 方向上分量的 大小)(提示:请利用郭硕鸿《电动力学》(第二版)一书附录中的矢量运算公式)。

ANS

8. 请结合朗德因子的一般表达式(28)式,以及两个角动量耦合的一般规则(20)至(23)式,计算表 3 中汞原子 546.1nm 谱线对应的上下两个能级的各量子数及不同谱线(能级跃迁)的朗德因子(见图 9)。用"格罗春图"33(Grotrain 图)来表示汞原子 546.1nm谱线不同能级之间可能的跃迁。

ANS

9. 请回答什么是"反常塞曼效应"和"正常塞曼效应",两者之间的区别是什么。请思考什么是"帕邢一巴克效应"及其形成的原因。

ANS

10. 请回答电子的"自旋—轨道耦合"的本质是什么?它与电子之间的"LS 耦合"的区别是什么?

ANS

11. 请结合多电子原子及电子组态的相关知识,思考为什么像汞原子一样有两个价电子的元素(氦 He 和镁 Mg 等第二族(碱土族)元素),会有两套不同的谱线(一套是单线结构,一套是双线结构)。

ANS

12. 设 F-P 标准具两反射面之间的距离为 d=2 mm,请根据(47)式估计汞原子 546.1nm 谱线的自由光谱范围。

ANS

13. 请根据(38)式,估计在外磁场为 B=1T 时观察汞原子 546.1nm 谱线分离所要求 的仪器分辨率的 η ,并讨论用 F-P 标准具观测的必要性(一般棱镜摄谱仪的理论分

辨率为 10^3 10^4 ,F-P 标准具的理论分辨率为 10^5 10^7 ,实际分辨率比理论值要略低一些)。

ANS

14. 仔细观察垂直磁场方向观察,旋转偏振片至 **450**角的纪录,会发现同一级条纹在磁场中分离成不只三条,请解释出现这一现象的原因。

ANS

15. 本实验要求精度为实验测量误差小于等于 **5%**,请分析本实验误差的主要来源,并 提出相应的修正方法。

ANS

16. 请尝试计算钠双黄线(又称"钠 D 线",是由钠原子从2P1/2, 3/2 到2S1/2态的跃迁 所产生)谱线的塞曼分裂(如图 21),可能的话,设计具体实验步骤并进行观察验证。

ANS