

# 학습 **내용**

- 01 R 프로그램 개요
- 02 데이터의 입력과 출력
- 03 데이터 구조

# 학습 **목표**

- R 프로그램의 특징을 이해하고 R 프로그램의 설치 방법을 설명할 수 있다.
- R 프로그램을 이용하여 데이터를 읽고 쓰는 방법을 설명할 수 있다.
- R 프로그램에서 사용하는 데이터 구조를 세분화하여 설명할 수 있다.

## **생각** 해보기

## 오픈소스(Opensource)





# R 프로그램 개요

- 1) R 프로그램의 개요
- 2) R 프로그램 설치
- 3) R의 실행
- 4) 변수의 활용

#### 1) R 프로그램의 개요

● R 프로그램이란?

R 프로그램

데이터 분석과 시각화 등을 위해 개발된 오프소스 프로그램





- 벨 연구소에서 개발된 S언어를 바탕으로 만들어짐
- 뉴질랜드 오클랜드 대학의 로스 이하카와 로버트 젠틀맨에 의해 개발됨
- 현재는 R 코어팀에 의해 지속적으로 유지되고 있음

#### 1) R 프로그램의 개요

- R 프로그램의 특징
  - 01 통계, 머신 러닝, 금융, 시각화 등의 다양한 패키지를 갖추고 있으며 무료로 제공됨
  - 02 오픈 소스로 수많은 R 사용자들이 자유롭게 분석 기법을 추가하는 것이 가능함
  - 03 Windows, MacOS, Linux 등 여러 운영체제에서 구동이 가능함
  - 04 메모리 기반으로 동작됨
  - 05 도움말 기능이 뛰어나므로 새로운 기능을 익히기가 쉬움

● R의 설치

R은 CRAN(the Comprehensive R Archive Network)을 통해 최신 버전을 다운로드 할 수 있음

http://www. r-project.org/ 접속 "Download R"을 클릭 Korea https://cran.seoul. go.kr/ 클릭

"Download R 3.6.3 for Windows" 클릭

"base" 클릭

"Download R for Windows" 클릭

※ 사용자 계정은 반드시 영문으로 되어 있을 것

● R Studio의 설치

#### R Studio

R을 편리하게 사용할 수 있는 사용자 인터페이스를 제공하는 프로그램





● R Studio의 설치

http://www.rstudio .com/ 접속

"Download" 클릭

"DOWNLOAD RSTUDIO FOR WINDOWS" 클릭 "RStudio Desktop Free DOWNLOAD" 클릭

● R 프로그램의 화면



R 프로그램은 바탕화면에 생성된 아이콘을 더블 클릭하여 실행함



R 콘솔(Console) 창은 대화식 화면으로 프롬프트 뒤에 명령어를 입력하고 [Enter]를 눌러 실행함



R Studio의 화면
 다음과 같이 구성되어 있음



#### 환경 설정

Tools-Global Options

● 명령문 실행

한 줄만 실행 시 Ctrl + Enter 여러 줄 실행 시 블록 지정 후 Ctrl + Enter 여러 명령어를 세미콜론(;)으로 구분함 한 줄에 입력 시 주석문 #을 이용함

● 명령문 실행

작업 디렉토리 확인 getwd()
작업 디렉토리 지정 setwd("D:/Rdata")

도움말 ? 명령어 또는 help(명령어)

● 명령문 실행

13+2

▶ # 더하기

13-2

▶ # 빼기

13\*2

▶ # 곱하기

13/2

▶ # 나누기

13%%2

▶ # 나머지

● 명령문 실행

getwd()

▶ # 작업 디렉토리 확인

setwd("D:/Rdata")

▶ # 작업 디렉토리 지정

? getwd

▶ # 도움말

help(sum)

▶ # 도움말

● 변수의 활용



문자 a~z, A~Z, 숫자 0~9, \_(언더스코어), .(마침표)의 조합으로 구성함



첫 글자는 알파벳 또는 .(마침표)로 시작함



대문자와 소문자는 서로 구분함



변수에 값을 할당하려면 '<-' 또는 '=' 기호를 이용함

## ● 변수의 활용

x <- 5

y <- -3

z <- sqrt(9)

x+y-z

a <- "hello"

a

b <- 'good'

b

● R 패키지

#### R패키지

특정 분석을 수행할 수 있는 함수, 객체, 데이터, 도움말 등의 집합





● R 패키지

#### 패키지 설치

install.packages ("패키지명") 명령문을 사용함

#### 패키지 활성화

library(패키지명) 명령문을 사용함



● R 패키지

library()

▶ # 설치된 라이브러리 확인

install.packages ("ggplot2")

▶ # 패키지 설치

library(ggplot2)

▶ # 패키지 활성화



# 데이터의 입력과 출력

- 1) 기본 데이터 사용
- 2) 데이터의 입력
- 3) 데이터의 출력

### 1) 기본 데이터 사용

● R이 제공하는 기본 데이터

R에서는 여러 분야에서 수집한 데이터를 기본으로 제공함

data()

▶ # R이 제공하는 기본 데이터 목록

iris

▶ # 붓꽃의 품종에 관한 데이터

str(iris)

▶ 데이터의 형식과 내용을 요약

#### 1) 기본 데이터 사용

● R이 제공하는 기본 데이터

R에서는 여러 분야에서 수집한 데이터를 기본으로 제공함

women

▶ # 미국 30대 여성의 평균 키와 몸무게 데이터

str(women)

# 데이터 구조, 변수 개수, 변수명, 관찰치 개수, 관찰치의 미리보기

- 키보드를 이용한 데이터의 입력
  - " c() 함수를 이용하여 데이터를 입력함"

v1 <- c(10,30,80,20)

# 벡터 v1에
10, 30, 80, 20을 입력함

● 외부 파일을 이용한 데이터 입력



read.table() 함수를 이용하여 데이터 불러오기

• 변수명이 있는 경우 header=T라는 옵션을 지정함

data1 <- read.table("ex-1.txt",header = T)
data1</pre>

● 외부 파일을 이용한 데이터 입력



read.csv() 함수를 이용하여 데이터 불러오기

- CSV는 구분기호로 콤마(,)를 사용하는 파일의 형식으로 Excel에서 저장할 수 있는 형식으로 많이 사용됨
- read.csv() 함수는 header=T 옵션을 디폴트로 가짐

data2 <- read.csv("ex-2.csv")
data2</pre>

● 외부 파일을 이용한 데이터 입력

#### 웹사이트에서 데이터 불러오기

- http://archive.ics.uci.edu/ml/index.php로 이동
- Wine 클릭
- Data Folder 클릭
- wine.data의 링크 주소 복사

● 외부 파일을 이용한 데이터 입력

```
website="http://archive.ics.
uci.edu/ml/machine-learning-
databases/wine/wine.data"
```

```
data3 <- read.table
(website,header=T,sep=",")</pre>
```

data3

View(data3)

▶ # 해당 데이터셋 출력

## 3) 데이터의 출력

● 데이터의 출력



write.table() 함수를 이용한 데이터 출력

• 생성된 데이터를 외부 파일로 저장함

write.table(iris,"iris1.txt")

▶ # 각 행마다 행 번호 부여

write.table(iris, "iris2.txt", row.name=F,sep="\tilde{\text{t}}")

▶ # 행 번호 삭제, 구분기호로 탭 사용

write.table(iris,"iris3.txt", row.name=F,sep=",")

▶ # 행 번호 삭제, 구분기호로 콤마 사용



# 데이터 구조

- 1) R의 데이터 구조
- 2) 벡터
- 3) 행렬
- 4) 배열

- 5) 데이터 프레임
- 6) 리스트
- 7) 공공 데이터 분석

벡터(Vector) 행렬(Matrix) 배열(Array) 데이터프레임 (Data Frame) 리스트(List)

벡터(Vector)

행렬(Matrix)

배열(Array)

데이터프레임 (Data Frame)

리스트(List)



벡터(Vector)

행렬(Matrix)

배열(Array)

데이터프레임 (Data Frame)

리스트(List)



벡터(Vector)

행렬(Matrix)

배열(Array)

데이터프레임 (Data Frame)

리스트(List)





### 2) 벡터

#### 벡터(Vector)

R의 가장 기본이 되는 자료 객체로 1차원 데이터 구조

- ✓ 1개 이상의 원소로 구성된 자료 구조
- ✓ 한 가지 형태만 입력이 가능함

벡터를 만드는 방법

c(), rep(), seq()

## 2) 벡터

v1 <- c(1, 2, 3, 4, 5)

▶ # v1에 1, 2, 3, 4, 5로 구성된 벡터를 입력함

**v1** 

v2 <- c(1:5)

▶ # v2에 1, 2, 3, 4, 5로 구성된 벡터를 입력함

v2

rep(c(1,2), times=2)

▶ # 1과 2로 구성된 벡터를 2회 반복함

### 2) 벡터

rep(c(2,4), length=6)

# 2와 4로 구성된 벡터를 반복하되 크기는 6으로 지정함

seq(1, 10, by=2)

▶ # 1에서 10까지 2씩 증가되는 벡터를 작성함

x <- c(10,35,20,80,90)

▶ # x에 벡터를 입력함

sum(x)

▶ # x의 합계를 구함

mean(x)

▶ # x의 평균을 구함

## 3) 행렬

#### 행렬(Matrix)

동일한 형태로 구성된 2차원 데이터 구조



행과 열로 이루어짐

행렬을 만드는 방법

matrix()

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)

# 3) 행렬

m1 <- matrix(1:12, nrow=3) ▶ # 3행 4열 행렬

m1

m1[2,3]

▶ # 2행 3열의 원소 출력

### 3) 행렬

```
m2 <- matrix(1:9, ncol=3) ▶ # 3행 3열 행렬
```

m2

```
m3 <- matrix(1:9, nrow=3, dimnames = list(c("r1","r2","r3"), c("c1","c2","c3")))
```

▶ # 행과 열에 이름 지정

**m**3

### 4) 배열

#### 배열(Array)

동일한 형으로 구성된 2차원 이상의 데이터 구조

배열 만드는 방법

array()

array(data = NA, dim=c(행 개수, 열 개수, 행렬 개수, ...), dim. names = NULL)

## 4) 배열

array(1:6)

▶ # 1차원 배열 생성

array(1:6,c(2,3))

▶ # 2차원 배열 생성

array(1:8,c(2,2,2))

▶ # 3차원 배열 생성

#### 5) 데이터 프레임

#### 데이터 프레임(Data Frame)

데이터베이스에서 테이블과 유사한 데이터 객체



각 열들이 서로 다른 형태의 객체를 가질 수 있음

데이터 프레임 만드는 방법

data.frame()

data.frame(객체1, 객체2, ...)

#### 5) 데이터 프레임

name <- c("LEE","KIM","BONG","PARK")</pre>

kor <- c(100,50,88,75)

eng <- c(95, 68, 90, 100)

mat <- c(100, 45, 75, 80)

data.frame(name, kor, eng, mat)

▶ # name, kor, eng, mat로 데이터 프레임 생성

# 6) 리스트

리스트(List)

서로 다른 유형의 데이터 구조 결합

리스트 만드는 방법

list()

## 6) 리스트

v <- c(1:6)

▶ # 벡터 생성

m <- matrix(c(1:12), nrow=3)

▶ # 행렬 생성

I <- list(v,m)</pre>

▶ # 리스트 생성

### 7) 공공 데이터 분석

- 공공 데이터 읽어서 확인하기
  - 공공데이터포털(https://www.data.go.kr/) 접속
  - '기장 인구' 검색
  - 다운로드 후 필드명을 영문으로 변경
  - 숫자의 콤마(,)를 없앰

#### 7) 공공 데이터 분석

pop\_gijang <- read.csv("gijang.csv")</pre>

▶ # gijang.csv를 읽어옴

pop\_gijang

head(pop\_gijang)

▶ # 상위 6개의 데이터 확인

tail(pop\_gijang)

▶ # 하위 6개의 데이터 확인

#### 7) 공공 데이터 분석

class(pop\_gijang)

▶ # 데이터 프레임 구조임을 확인함

str(pop\_gijang)

▶ # 행, 변수, 각 변수의 구조를 확인

summary(pop\_gijang)

▶ # 데이터 요약

Q1 다음 중 R에서 명령어에 대한 도움말을 보기 위한 함수에 해당하는 것은?

- 1 example() 3 q()
- 2 help() 4 manual()

Q1 다음 중 R에서 명령어에 대한 도움말을 보기 위한 함수에 해당하는 것은?

- 1 example() 3 q()
- help()
  4 manual()

정답

2 help()

해설

R에서 도움말을 보기 위해서는 ? 또는 help()를 사용합니다. Q2

다음 명령문을 실행한 결과로 옳은 것은?

rep(c(2,4), times=3)

- 1 242424
- 2 234234
- 3 24
- 4 234234234

Q1 Q2

Q2 다음 명령문을 실행한 결과로 옳은 것은?

rep(c(2,4), times=3)

- 242424
- 2 234234
- 3 24
- 4 234234234

정답

1 242424

해설

2 4로 구성된 벡터를 3회 반복합니다.

#### R 프로그램 개요

- ✓ R 프로그램의 개요
  - R 프로그램은 로스 이하카와 로버트 젠틀맨에 의해 개발됨
  - R 프로그램은 통계, 머신 러닝, 금융, 시각화 등의 다양한 패키지를 갖추고 있으며 무료로 제공됨
  - R 프로그램은 오픈 소스로 수많은 R 사용자들이 자유롭게 분석 기법을 추가하는 것이 가능함

#### R 프로그램 개요

# 정리 하기

#### ✓ R 프로그램 설치

- R은 CRAN (The Comprehensive R Archive Network)을 통해 최신 버전을 다운로드할 수 있음
- R Studio는 R을 편리하게 사용할 수 있는 사용자 인터페이스를 제공하는 프로그램

#### 데이터의 입력과 출력

- ✓ 데이터의 입력
  - c() 함수를 이용함
  - read.table() 함수를 이용함
  - read.csv() 함수를 이용함
- ✓ 데이터의 출력
  - write.table() 함수를 이용함

#### 데이터 구조

- √ 벡터
  - R의 가장 기본이 되는 자료 객체로 1차원 데이터 구조
- √ 행렬
  - 동일한 형태로 구성된 2차원 데이터 구조
- √ 배열
  - 동일한 형으로 구성된 2차원 이상의 데이터 구조

#### 데이터 구조

- ✓ 데이터 프레임
  - 데이터베이스에서 테이블과 유사한 데이터 객체
- ✓ 리스트
  - 서로 다른 유형의 데이터 구조 결합



수고하셨습니다.