Exploiting Redundancy for Efficient Processing of RNA-seq Data

Hirak Sarkar

Paradigm of mapping in RNAseq

- Alignment is heavy, O(mn)
- Is it absolutely required?
- Where we don't need alignment.
- How mapping can be effective.

Fast map-based quantifiers

- Sailfish, Salmon and kallisto
- Make use of contiguous matches, and skip sequences of mismatch.
- Reports information about location and target transcript.
- Can simultaneously produce quantification result
- Substantially fast, and memory efficient.

```
(826 \text{ min}) \rightarrow (54 \text{ min}) \rightarrow (4 \text{ min})
```

Express Sailfish Salmon/kallisto

Paradigm of mapping

2

1

- 1. Snippet from **Sailfish** paper
- 2. Snippet from **Salmon** paper
- 3. Snippet from **kallisto** paper

Quasi-Mapping¹

Transcriptome (T) with separator \$ \$ t_2 t_1 Maximum Mappable Prefix — MMPi Next Informative Position — NIP(MMPi) k-mer -ATTGA GTATA Read Hash Table — h [b, e) Suffix Array(T) A A G G G G G G G CGAAAGGGGG CCCAACGT GTAGT TCA

Derivative of Quasi-Mapping

Why clustering is important

- In de novo world clustering related contigs together is crucial for gene-level analysis
- Can be thought of as a two step process
 - 1. Grouping contigs into transcript
 - 2. Grouping transcripts into gene
- Benefits of **gene-level** estimate:
 - 1. Ease the differential expression step
 - 2. Robust estimation
- Caveat: Due to absence of reference annotation paralogous genes get co-clustered

Challenges of clustering

- *De novo* transcriptome assembly is inherently difficult problem.
- Despite of rapid improvements assemblers (TRINITY, CD-HIT) often fail to recover full-length transcripts.
- fractured transcripts can be generated from
 - Insufficient data
 - Erroneous sequence variation
 - Overlap threshold

Challenges of clustering

figure from: Richard D Smith-Unna, Chris Boursnell, Rob Patro, Julian M Hibberd, and Steven Kelly. Transrate: reference free quality assessment of de-novo transcriptome assemblies. *BioRxiv*, page 021626, 2015.

Challenges of clustering

figure from: Richard D Smith-Unna, Chris Boursnell, Rob Patro, Julian M Hibberd, and Steven Kelly. Transrate: reference free quality assessment of de-novo transcriptome assemblies. *BioRxiv*, page 021626, 2015.

Ways of de novo clustering

- Search for similar sequences. (CD-HIT EST)
- Look for common subgraphs during assembly
- Cluster contigs that share reads and have similar expression

We follow a principle similar to CORSET

- We re-cast the clustering problem in the context graph (referred as ambiguity graph)
- We used contig-level expression value and along with graphs

RapClust Pipeline

RapClust Pipeline

RapClust: Graph Construction

RapClust: Graph Construction

Given: A collection of fragment/read equivalence class, defined on set of reads $\{r_i\}$ and set of contigs $\{t_k\}$.

Compute: A weighted, undirected graph G=(V,E,w) where,

- V: The set of all contigs with more than one read mapped to them, a subset of $\{t_k\}$
- E: There exits an edge (t_i, t_j) between a pair of contig that co-occur in the same equivalence class
- w: The weight of an edge is proportional to the fraction of multi-mapping reads between these contigs.

RapClust: Graph Clustering

RapClust: Graph Clustering

Given: The graph G

Compute: A set of partition on the nodes of G, i.e. clustering of vertices.

- We use off-the-shelf graph clustering tool MCL to achieve the clustering.
- Other techniques like label propagation can also be used in order to get clusters

Speed & accuracy of RapClust

Dataset

	Yeast	Human	Chicken
# contigs	7353	107,389	335,377
# samples	6	6	8
Total (paired-end) reads	~36,000,000	~116,000,000	\sim 181,402,780
Avg # eq. classes (across samples)	5197	100,535	222,216
# edges in mapping ambiguity graph	6195	212,481	2,063,524

We use the same data set from the *Corset* paper, which uses *Trinity** assembly

These assemblies are from organism with available reference genome which eases the evaluation of method.

Speed & accuracy of RapClust

	Yeast		Hum	an	Chicken		
	RapClust	Corset	RapClust	Corset	RapClust	Corset	
Time(min)	5.12	37.25	22.67	211.67	64.18	453	
Space(Gb)	0.005	5.7	0.092	22	0.49	145	
% of reads	88.17	62.32	93.04	77.94	88.80	60.99	

 RapClust & Corset both perform clustering and yield expression estimates. CD-Hit does not, and so is evaluated separately

RapClust:

- Is much faster than Corset
- The quantifier being used (Sailfish with quasimapping) maps substantially more reads
- Requires much less intermediate space (e.g. no BAM files)

RapClust: Clustering

	,	Yeast		Human		Chicken			
	RC	CD	CT	RC	CD	CT	RC	CD	CT
Time(min)	0.04	0.2	2.8	0.82	4.02	16.25	5.29	36.5	87

- If we consider only clustering we can include CD-HIT.
- The clustering step of RapClust which consists of graph construction and running MCL, is much faster than other two methods.

Given two contigs, we label them:

- TP: co-clustered and labeled with same gene
- FN: not co-clustered and labeled with same gene
- FP: co-clustered and labeled with different genes
- TN: not co-clustered and labeled with different gene

$$Precision = \frac{TP}{TP + FP} \qquad \qquad Recall = \frac{TP}{TP + FN}$$

$$F1 = 2\left(\frac{Precision.Recall}{Precision + Recall}\right)$$

$$\{C_1, C_2, C_3, C_4\}$$

$$\{c_5, c_6\}$$

$$\{c_7, c_8\}$$

True contig labels

Clusters

Scoring

$$Precision = \frac{4}{4+4} = 0.5$$
 $Recall = \frac{4}{4+8} = 0.33$

$$Recall = \frac{4}{4+8} = 0.33$$

$$F1 = 2\left(\frac{0.5 \times 0.33}{0.5 + 0.33}\right) = 0.398$$

RapClust has better accuracy than CD-HIT with other two tools

1,2,3,4,5,6,7,8,9,10,11

Clustering A

$$C(A,1) = \{1,2,4\}$$

 $C(A,2) = \{8,10,11\}$
 $C(A,3) = \{9\}$
 $C(A,4) = \{3,5,6,7\}$

Clustering B

$$C(B,1) = \{1,2,3\}$$

 $C(B,2) = \{8,10,11\}$
 $C(B,3) = \{4,5,6,7,9\}$

$$r_{ij} = \frac{|C(A,i) \cap C(B,j)|}{n} \qquad \text{r(1)}$$

$$r(1,1) = 2/11$$
; $r(1,3) = 1/11$; $r(2,2)$ 3/11 etc.

$$VI(A;B) = -\sum_{ij} r_{i,j} \left[\log\left(\frac{r_{ij}}{\frac{|C(A,i)|}{n}}\right) + \log\left(\frac{r_{ij}}{\frac{|C(B,i)|}{n}}\right) \right]$$

	RapClust	Corset	CD-HIT
Chicken	0.127	0.191	2.01
Human	0.712	0.735	1.24
Yeast	0.176	0.178	0.216

Variation of information (VI) between predicted and "true" clustering for all methods / datasets.

Transcripts that are not part of any clusters are put in a separate cluster.

Differential gene expression

In the process of contig clustering often we miss out differentially expressed genes, that remain hidden due problems in clustering.

- Over clustering increases false-positives, thereby decreases *precisions*.
 - If true differentially expressed genes are clusters they would never be detected
- Under clustering causes poor recall.

Differential gene expression

Data used to test DGE

Clustering Method

Quantification

Truth
RapClust
Corset
CD-Hit-EST

Sailfish (contig-level)
Sailfish (contig-level)
Corset (cluster count)
Sailfish(contig-level)

Differential gene expression

RapClust predictions are concordant with ground truth in terms of gene-level differential expression

Benefits of RapClust

- Fast & accurate clustering
- Works on results of contig-level quantification methods
- The contig-level expressions are not lost in case it is required
- The cluster-level quantification estimates can be used when an approximation of gene-level results are needed, as we saw aggregation worked!

Potential Improvements

Data-driven estimation and usage of clustering parameters (e.g. edge weight cutoffs in MCL):

We can obtain better results than shown here, but don't yet have a good way to find cutoffs automatically

Richer test for paralogs:

Instead of adopting the simple count-based paralog test of Corset, we can incorporate the variance information over counts that Sailfish (with quasi-mapping) can produce using posterior Gibbs sampling.

Richer notion of contig similarity:

For example, align co-clustered contigs & look for evidence of alternative splicing

Why Compress

- Size of sequencing databases, all over the world is increasing at a rapid pace.
- Although memory is getting cheaper, but the communication cost does not.
- Downloading a sequence file fastq.gz file ~ t seconds compressed file ~ t/k seconds You can essentially download k sequence files in same amount of time.

Why Compress?

Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxiang Zhai, Miles J. Efron, Ravishankar Iyer, Michael C. Schatz, Saurabh Sinha, Gene E. Robinson Big Data: Astronomical or Genomical? PLoS Biol. 2015 Jul; 13(7): e1002195. Published online 2015 Jul 7. doi: 10.1371/journal.pbio.1002195

Quark Compression*

- Reference based scheme where BAM file is compressed. Often specific aligners are also used to navigate meta-data problem.
- Reference-free scheme where similar sequence are put together in order to get.
 Often uses local assembly based approach
- Quark: semi-reference based compression, where, reference is used on compression end, not on the decompression end.

^{*} not released yet

Motivation

Transcriptome (T) with separator

Motivation

Transcriptome (T) with separator

Motivation

- 1. **Condition** for *mapping* a read to a target transcript is finding **at least** one *k-mer* that is shared between read and the target transcript. Moreover among all the matches, the set of maximally matched transcripts would be reported.
- 2. Reads that are *mapped* to same set of transcripts are put together in the same equivalence class.

All reads in one equivalence class share at least one *k-mer* with mapped transcript

Motivation

 Condition for Reads to be in the same equivalence class is that they share the same set of transcripts.

All reads in one equivalence share the same transcripts

Intuition of Quark

All reads in one equivalence class share at least one *k-mer* with mapped transcript

Encode all reads in that equivalence class with respect to that one transcript

All reads in one equivalence class share the *same* transcripts

Save one transcript for entire equivalence class

Challenges

Data specific

 Wide array of cases to handle. (orphan reads, partially mapped reads etc)

Computational

- Speed: We are not compressing a sam file. Our mapping method is streaming.
- Parallelization: We simultaneously encode several reads in a parallel fashion.

Looking closely at Quark

One end is Orphan

GAGGGGTAACGTGAAGCACCTGGTTCTCTTCCTCCATGAGGCTGTCCTGGTGCAGTATGTGGACACGCT

Looking closely at Quark

Closer look to islands

Do we need entire transcript?

We have observed that only some part of the transcript are responsible for a large proportion of reads.

Moreover we measured what percentage of a transcript is really ever act as a target sequence in an entire experiment

Do we need entire transcript?

Compression results

	fq.gz	Quark	leon	SCALCE
SRR635193	2,329,761,348	140,069,396	384,918,555	294,962,419
SRR445718	2,848,487,774	171,723,783	328,915,302	253,352,974
SRR490961	4,115,142,514	203,458,347	466,622,492	301,777,076

Quark compressed sequence size is smaller than leon and SCALCE on both paired end and single end data

Percentage of mapped read matters

The left bar shows the percent of mapped reads and unmapped reads before compression

Potential future work

- The concept of islands can be useful in finding out novel splicing sites.
- In ideal case islands should be exons, in de novo world.
- So islands from same equivalence class together can infer if a splicing event had happened.
- The ultimate goal is to allow the splicing analysis in de novo world.

Reference

- (a) Kallisto: Nicolas Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal rna-seq quantification. *arXiv preprint arXiv:* 1505.02710, 2015.,
- (b)Salmon: Rob Patro, Geet Duggal, and Carl Kingsford. Accurate, fast, and model-aware transcript expression quantification with salmon. *bioRxiv*, page 021592, 2015.,
- (c)RapMap: Avi Srivastava, Hirak Sarkar, Nitish Gupta, and Rob Patro. Rapmap: A rapid, sensitive and accurate tool for mapping rna-seq reads to transcriptomes. *bioRxiv*,
- (d) Corset: Davidson NM, Oshlack A. Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014;15:410.
- (e)CD-HIT Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006;22:1658-1659.

Paralog filter

All boils down to removal of an edge or not. If we remove an edge between two contigs, which are truly paralog then it would be a win. From biological properties we know that paralogs can develop different biological functions

$$X_a^i \sim \lambda_a^i$$
 $X_a^i \sim \lambda_a^j$ $X_b^i \sim \lambda_a^j$ $X_b^i \sim \lambda_b^j$

H₀: The constant of proportionality between abundance of t_i and t_j is the same

H₁: The constant of proportionality between abundance of t_i and t_j is different