CSE 331L / EEE 332L

Microprocessor Interfacing & Embedded System

Section: 5 & 6, Summer 2020

Lab- 04: Flow-Control Instructions

Example2: Write a program to take 8 single-key inputs	Example3: write a program to print the first five digits (0,1,2,3,4)		
MOV AH, 1 MOV CX, 8 INPUT: INT 21H LOOP INPUT	MOV AH, 2 MOV CX, 5 MOV DL, 30H _LOOP: INT 21H INC DL LOOP _LOOP		

Example 4: Declare an array of size 10 without any initial data. Prompt the user to enter a line of text and store it into the array.

```
02 .MODEL SMALL
03 .STACK 100H
04 .DATA
05 MSG DB "
               MSG DB "Enter a text$"
ARRAY DB 10 DUP(?), '$'
NEWL DB OAH, ODH, '$'
06
07
08 . CODE
09
               MOV AX, @DATA
MOV DS, AX
10
11
12 13 14
               MOV CX, 10
MOV AH, 1
LEA SI, ARRAY
15
               _IN:
INT 21H
MOV [SI], AL
INC SI
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
               LOOP _IN
               MOV AH, 9
               LEA DX, NEWL
INT 21H
               LEA DX,
INT 21H
                                 ARRAY
               MOV AH, 4CH
INT 21H
31
```

Instructions:

Instruction	Algorithm (= is assignment)		
XCHG	XCHG Destination, Source Algorithm: exchanges the contents between two registers, or a register and a memory location.		
NEG	NEG Destination Algorithm: Destination = 2's complement of destination. Destination: register or memory location only.		
СМР	CMP Destination, Source Algorithm: Computes destination-source to compare the operands and thus the flags are affected.		

MUL (unsigned multiplication)	MUL Source (register/memory loc) Algorithm (byte): AX = AL x Source Algorithm (word): DX:AX = AX x Source (register/memory loc)		
IMUL (unsigned multiplication)	IMUL Source (register/memory loc) Algorithm (byte): AX = AL x Source Algorithm (word): DX:AX = AX x Source		
DIV (unsigned multiplication)	DIV divisor (register/memory loc) Algorithm (byte): AL (quotient) = AX / divisor AH (remainder) = AX % divisor Algorithm (word): AX (quotient) = (DX:AX) / divisor DX (remainder) = (DX:AX) % divisor		
IDIV (unsigned multiplication)	IDIV divisor (register/memory loc) Algorithm (byte): AL (quotient) = AX / divisor AH (remainder) = AX % divisor Algorithm (word): AX (quotient) = (DX:AX) / divisor DX (remainder) = (DX:AX) % divisor		

Logic Instructions

а	b	a AND b	a OR b	a XOR b	NOT a	Instructions
0	0	0	1	0	1	Opcode destination, source
0	1	0	1	1	1	•
1	0	0	1	1	0	
1	1	1	0	0	0	

Example 5: Factorial of 5 02 .model small 03 .stack 100h 04 .data n db 5 05 06 .code 07 mov ax, @data mov ds, ax 08 09 10 xor cx, cx mov cl, n mov al, 1 11 12 ;holds the product 13 factorial: 14 15 mul cx 16 loop factorial 17 18 mov dx, ax mov ah, 2 int 21h 19 20 21 22 23 mov ah, 4ch int 21h 24 I

```
Example 6: division
                02 .model small
                03 .stack 100h
                04 .data
                          n db 4
                05
                06 .code
                          mov ax, @data
mov ds, ax
                07
                08
                09
                10
                          mov ax, 25
                11
                12
                          div n
                13
                          mov dl, al
mov dh, ah
                14
                                           ; quotient in dl
                15
                                           ; remainder in dh
                16
                          mov ah, 2
add dl, 30h
int 21h
                17
                18
                19
                                           ; display quotient
                20
                21
                          mov dl, 20h
int 21h
                22
23
24
25
                                           ;print space
                          mov dl, dh
add dl, 30
int 21h
                                      30h
                26
                                           ; display remainder
                27
                          mov ah, 4ch
int 21h
                29
```