SOLUŢII ŞI BAREMURI ORIENTATIVE

Etapa judeţeană şi a municipiului Bucureşti 5 martie 2005

CLASA A XII-a

Subiectul 1. Concluzia problemei revine la a arăta că există o funcție $f: A_1 \cup \cdots \cup A_n \to \{0,1\}$ cu restricția la fiecare A_i surjectivă.

Vom demonstra acest rezultat prin nducție după n.

Pentru n=2 construcția este evidentă.

Fie $B = A_{n+1} \setminus (A_1 \cup A_2 \cup \cdots \cup A_n)$. Distingem cazurile

- i) $|B| \ge 1$ şi $a \in B$. Definim $f_{n+1}(x) = f_n(x)$ pentru $x \in A_1 \cup A_2 \cup \cdots \cup A_n$, $f_{n+1}(x) = 1$ pentru x = a şi $f_{n+1}(x) = 0$ în rest.
- ii) |B| = 1. Fie $a \in B$ şi $b \in A_{n+1} \cap (A_1 \cup A_2 \cup \cdots \cup A_n)$. Definim $f_{n+1}(x) = f_n(x)$ dacă $x \in A_1 \cup A_2 \cup \cdots \cup A_n$ şi $f_{n+1}(x) = 1 f_n(b)$ pentru x = a.

Rămâne să arătâm că f are proprietatea cerută. Pron construcție, f_{n+1} este surjectivă. Fie $j \in \{1, 2, ..., n\}$. Dacă $a \notin A_j$ atunci $f_{n+1|A_j} = f_{n|A_j}$. Dacă $a \in A_j$, cum $|A_j \cap A_{n+1}| \geq 2$ și $f_{n+1}(x) = f_n(x) = 0$ pentru orice $x \in A_{n+1} \setminus \{a\}$ rezultă că $f_{n+1|A_j}$ este surjectivă. 3 puncte

Observație: Orice argument de maximalitate care duce la o soluție a problemei va fi punctat corespunzător. De exemplu, demonstrarea faptului că o colorare poate fi extinsă cu unul sau mai multe elemente, aduce 1-3 puncte în funcție de completitudinea lui, conform soluției de mai sus.

Subjectul 2. a) Fie $a \in (0, 1]$. Cum

$$\left| \int_0^a (f(x) - a_n x - b_n) dx \right| \le \int_0^a |f(x) - a_n x - b_n| dx \le \int_0^1 |f(x) - a_n x - b_n| dx,$$

$$\int_0^1 |f(x) - ax - b| dx \le \int_0^1 |f(x) - a_n x - b_n| dx + \frac{1}{2} |a_n - a| + |b_n - b|$$

pentru orice $n \in \mathbb{N}$. Prin trecere la limită obținem

$$\int_{0}^{1} |f(x) - ax - b| \mathrm{d}x = 0,$$

iar continuitatea funției f atrage concluzia.......................4 puncte

b) Considerăm funcția $f:A\to A,\ f(x)=x^2.$ Deoarce egalitatea $a=-a\leftrightarrow 2a=0$ sau a=0, rezultă că $a\neq -a$ pentru orice $a\in A^*\ldots 1$ punct Obținem că pentru orice $b\in Imf,\ b\neq 0$ avem $|f^{-1}(b)|\geq 2$ și $|f^{-1}(0)|\geq 1$. Cum

$$n = \sum_{b \in Im f} |f^{-1}(b)| \ge \frac{n-1}{2} \cdot 2 + 1 = n,$$

rezultă că $|f^{-1}(b)|=2$ pentru orice $b\in Im\, f$ cu $b\neq 0$ și $|f^{-1}(0)|=1.$

Deci, pentru orice $x,y\in A$ din $x^2=y^2$ rezultă $x=\pm y...........1$ punct