Course 3: Unsupervised Learning

Summary

Last session

- Supervised learning learning from labeled examples
- Bias/variance tradeoff
- Overfitting and cross-validation
- 4 VC Dimension and curse of dimensionality

Today's session

- Learning from Unlabeled examples
- Clustering, decomposition and dimensionality reduction

Notations

Notations

Vector space
$$(\mathbb{R}^d)$$

Vector $\mathbf{x} \ (\in \mathbb{R}^d)$

Notations

Vector space (\mathbb{R}^d)

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K
 subsets
 - Decomposition using K vectors.
- Applications :
 - Quantization
 - Visualization...

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
- Applications :
 - Quantization
 - Visualization

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K subsets.
 - Decomposition using K vectors.
- Applications :
 - Quantization
 - Visualization...

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
- Applications :
 - Quantization
 - Visualization...

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
- Applications :
 - Quantization,
 - Visualization...

Example: clustering using L_2 norm (1/6)

An example to perform clustering is to rely on distances to centroids. We define K cluster centroids $\Omega_k, \forall k \in [1..K]$

Definitions

We denote $q : \mathbb{R}^d \to [1..K]$ a function that associates a vector \mathbf{x} with the index of (one of) its closest centroid $q(\mathbf{x})$. Formally:

- $\forall k \in [1..K], \Omega_k \in \mathbb{R}^d$
- $\forall \mathbf{x} \in X, \forall j \in [1..K], \|\mathbf{x} \Omega_{q(\mathbf{x})}\|_2 \le \|\mathbf{x} \Omega_j\|_2$
- Error $E(q) \triangleq \sum_{\mathbf{x} \in X} \|\mathbf{x} \Omega_{q(\mathbf{x})}\|_2$
- $X = \bigcup_k \{ \mathbf{x} \in X, q(\mathbf{x}) = k \}$

cluster k

Example: clustering using L_2 norm (2/6)

Example: clustering using L_2 norm (2/6)

Clustering using L_2 norm (3/6)

MNIST Dataset

- "Toy" dataset (=small and easy)
- 60000 + 10000 handwritten digits

Clustering MNIST

Using K-means algorithm with K = 10

- 00011112223
- 33444555666
- 6771888999

Clustering using L_2 norm (4/6)

Quantizing MNIST

- Replace **x** by $\Omega_{k(\mathbf{x})}$
- Compression factor $\kappa = 1 K/N$

Clustering using L_2 norm (5/6)

Optimal clustering

- Define $E_{opt_{\mathcal{K}}}(q^*) \triangleq \arg\min_{q:\mathbb{R}^d o [1..\mathcal{K}]} E(q)$,
- Finding an optimal clustering is an NP-hard problem.

Properties

- $lacksquare 0 = E_{opt_N}(q^*) \le E_{opt_{N-1}}(q^*) \le \cdots \le E_{opt_1}(q^*) = var(X),$
 - Proof: monotonicity by particularization, extremes with identity function (left) and variance (right).
- $0 \le \kappa \le \frac{N-1}{N}$.

Clustering using L_2 norm (6/6)

Choosing K

- Finding a compromise between error and compression,
- Simple practical method : "elbow".

Example 2: Sparse Dictionary Learning (1/4)

Definitions

Dictionary learning solves the following matrix factorization problem:

- The set X is considered as a matrix $X \in \mathcal{M}_{N \times d}(\mathbb{R})$,
- We consider decompositions using a dictionary $V \in \mathcal{M}_{K \times d}(\mathbb{R})$ and a code $U \in \mathcal{M}_{N \times k}(\mathbb{R})$, with the lines of V being with norm 1,
- Error $E(U, V) \triangleq ||X UV||_2 + \alpha ||U||_1$
- Training: find U^* , V^* that minimizes $E(U^*, V^*)$
- lpha is a sparsity control parameter that enforces codes with soft (ℓ_1) sparsity

Example: Sparse Dictionary Learning (2/4)

Learning a dictionary on MNIST with K=64

Example 2: Sparse Dictionary Learning (3/4)

Reconstruction $\tilde{\mathbf{x}} = UV$ of \mathbf{x}

8 atoms with largest absolute values:

Example 2: Sparse Dictionary Learning (4/4)

Optimal error

■ $E_{opt}(K) \triangleq \arg \min_{U,V} E(U,V)$.

Some results

- For $\alpha = 0$ and $K \ge d$, $E_{opt}(K) = 0$,
 - One can choose any completion of a basis.
- For K = N, $\forall \alpha, E_{opt}(K) = \alpha N$,
 - If vectors of X are with norm 1, one can choose V = X and $U = I_N$.

Example 3: Manifold Learning

Approaches to uncover lower dimensional structure of high dimensional data. Source: Manifold module, sklearn website

Non-symmetric PyRat without walls / mud

Can you find patterns in Lost and Draw games using Unsupervised learning?

Lab Session 3 and assignments for Session 5

TP Unsupervised Learning (TP2)

- K-means, Dictionary Learning and Manifold Learning
- Application on Digits and PyRat

Project 2 (P2)

You will choose an unsupervised learning method. You have to prepare a Jupyter Notebook on this method, including:

- A brief description of the theory behind the method,
- Advanced tests and analysis on your own PyRat Datasets.

During Session 5 (May 16) you will have 7 minutes to present your notebook.