Φροντιστήριο 3 ΦΥΣ112

25/9/2024

23.2) Ένα ηλεκτρικό πεδίο δίνεται να είναι $\vec{E}=4.0\hat{i}-3.0(y^2+2.0)\hat{j}$ και διαπερνά Γκαουσιανό κύβο ακμής $2.0\,m$ όπως φαίνεται στο πιο κάτω σχήμα. Ποια είναι η ηλεκτρική ροή στην (a) πάνω επιφάνεια, (b) κάτω επιφάνεια, (c) αριστερή επιφάνεια και (d) πίσω επιφάνεια; (e) Ποια είναι η συνολική ροή που διαπερνά ολόκληρο τον κύβο;

- 23.21) Ένας απομονωμένος αγωγός έχει συνολικό φορτίο $+10 \times 10^{-6}\,C$ και μία κοιλότητα που εμπεριέχει σημειακό φορτίο $q=+3.0 \times 10^{-6}\,C$. Ποιο είναι το επαγόμενο φορτίο (a) στο τοίχωμα της κοιλότητας και (b) στην εξωτερική επιφάνεια;
- 22.30) Στο κάτωθι σχήμα φαίνονται μικρά τμήματα δύο πολύ μακρών παράλληλων γραμμών τοποθετημένων σε απόσταση $L=8.0\,cm$ μεταξύ τους. Οι ομοιόμορφες γραμμικές πυκνότητες φορτίου είναι $+6.0\,\mu C/m$ για την γραμμή 1 και $-2.0\,\mu C/m$ για την γραμμή 2. Σε ποιο σημείο στον άξονα x το συνολικό ηλεκτρικό πεδίο από τις δύο γραμμές γίνεται 0;

22.40) Το πιο κάτω σχήμα δείχνει μια πολύ μεγάλη μη αγώγιμη πλάκα με ομοιόμορφη επιφανειακή πυκνότητα φορτίου $\sigma=-2.00\,\mu C/m^2$, καθώς και ένα σημειακό φορτίο $Q=6.00\,\mu C$ σε απόσταση d από την πλάκα. Αν $d=0.200\,m$, σε ποια (a) θετική και (b) αρνητική θέση στον άξονα x (πέραν του απείρου) το συνολικό ηλεκτρικό πεδίο από την πλάκα και το σωματίδιο γίνεται 0; (c) Αν τώρα $d=0.800\,m$, σε ποια θέση στον άξονα x έχουμε μηδενικό συνολικό ηλεκτρικό πεδίο;

22.55) Μία κατανομή φορτίου με σφαιρική συμμετρία αλλά όχι ομοιόμορφη παράγει ηλεκτρικό πεδίο μεγέθους $E=Kr^4$, κατευθυνόμενη ακτινικά προς τα έξω από το κέντρο της σφαίρας. Εδώ r είναι η ακτινική απόσταση από το κέντρο και K κάποια σταθερά. Ποια είναι η χωρική πυκνότητα φορτίου ρ της κατανομής;

(24.26) Το πιο κάτω σχήμα δείχνει μία λεπτή ράβδο με ομοιόμορφη κατανομή φορτίου $(2.00 \, \mu C/m)$. Υπολογίστε το ηλεκτρικό δυναμικό στο σημείο (P) αν (D) αν (D) (D) (D) (D) το δυναμικό στο άπειρο είναι (D) (D)

24.38) Στο σχήμα φαίνεται μια λεπτή πλαστική ράβδος μήκους $L=13.5\,cm$ και ομοιόμορφα κατανεμημένο φορτίο $43.6\,fC$. (a) Βρείτε μια έκφραση για το ηλεκτρικό δυναμικό στο σημείο P_1 συναρτήσει της απόστασης d. (b) Έπειτα αντικαταστήστε το d στην σχέση αυτή με την μεταβλητή x και εξάγετε μια σχέση για το μέγεθος της συνιστώσας E_x του ηλεκτρικού πεδίου στο P_1 . (c) Ποια είναι η κατεύθυνση του E_x σε σχέση με την θετική φορά του άζονα x; (d) Ποια είναι η τιμή του E_x στο P_1 για $d=6.20\,cm$; (e) Εκμεταλλευόμενοι την συμμετρία του σχήματος, βρείτε το E_y στο P_1 .

24.43) Πόσο έργο απαιτείται ώστε να κατασκευάσουμε την διάταξη του σχήματος που φαίνεται πιο κάτω αν $q=2.30\,pC,\,a=64.0\,cm$ και τα σωματίδια ξεκινούν από την ηρεμία πολύ μακριά το ένα από το άλλο;

Πρόβλημα: Δύο λεπτά ομόκεντρα σφαιρικά κελύφη ακτίνας r_1 και r_2 $(r_1 < r_2)$ είναι φορτισμένα και περιέχουν ίδιου πρόσημου ομοιόμορφη επιφανειακή πυκνότητα φορτίου σ_1 και σ_2 αντίστοιχα, όπως φαίνεται στο σχήμα. Υπολογίστε το ηλεκτρικό πεδίο (α) $0 < r < r_1$ (β) $r_1 < r < r_2$ και (γ) $r > r_2$. (δ) Βρείτε την συνθήκη για την οποία E = 0 για $r > r_2$. (ε) Βρείτε την συνθήκη για την οποία E = 0 για γ γ γ γ γ ν σφαιρικών κελυφών.