Curso de Tecnologia em Sistemas de Computação 2º Avaliação a Distância de Física para Computação – 2007/II

Nome:			
Pólo:	 	 	

Questão	Valor	Nota
1ª Questão	1,5	
2ª Questão	1,0	
3ª Questão	1,5	
4ª Questão	1,5	
5ª Questão	1,0	
6ª Questão	1,0	
7ª Questão	1,0	
8ª Questão	1,5	
TOTAL	10,0	

Observações gerais: (1) A AD pode e deve ser objeto de conversas entre os alunos da disciplina; (2) a entrega é, porém, individual e, portanto, cada prova é única por expressar a maneira de pensar e escrever de quem a fez; (3) jamais ocorrem provas idênticas por acaso; (4) desenvolva com todos os detalhes a solução de cada problema, sem esquecer das unidades das grandezas envolvidas.

1ª Questão:

(a) Determine a corrente em cada ramo do circuito mostrado abaixo. Faça um esquema do circuito com o módulo e a orientação correta da corrente em cada ramo;

(b) Considere que o potencial seja nulo no ponto c e, em seguida, defina o potencial nos demais pontos de a até f.

Solução:

Primeiramente substituímos os dois resistores em paralelo por um equivalente,

$$R_{eq} = \frac{3*6}{3+6} = 2\Omega$$
. Em seguida, denominamos I a corrente que passa pela bateria

de 8V, I₂ a corrente que passa na bateria de 28V e I₁ a corrente orientada de b para e . Assim podemos aplicar a lei dos nós e aplicar a regra das malhas a cada malha (a-b-e-f-a; b-c-d-e-b):

Lei dos nós (em b): $I = I_1 + I_2$

Regra das malhas:

Malha a-b-e-f-a (obtemos uma relação envolvendo I e I₁):

$$8V - (6\Omega)I - (3\Omega)(I - I_2) = 0$$

Malha bcdeb (obtemos uma relação envolvendo I_2 e I):

$$-(2\Omega)I_2 + 28V - (2\Omega)I_2 + (3\Omega)(I - I_2) = 0$$

Resolvendo as equações provenientes da regra das malhas obtemos :

$$I = 2,6A$$
 e $I_2 = 5,1A$

E pela lei dos nós temos: I_1 = - 2,5A (ou seja, a orientação da corrente é oposta ao que supusemos inicialmente, assim o sentido é de e para b).

Agora calculamos a queda de potencial entre os terminais dos resistores em paralelo pela relação $V=I_2R_{eq}$, que nos dá V=10,2V. Donde obtemos a intensidade da corrente em cada resistor:

$$I_{3\Omega} = 3.4A$$
 e $I_{6\Omega} = 1.7A$

(b) Colocando o potencial nulo no ponto c (V = 0) e calculando o potencial nos pontos d, e, f, a, b, obtemos os valores representados na figura abaixo, que apresenta também as correntes em cada ramo do circuito:

2ª Questão:

A queda de potencial através de um indutor de 50mH é senoidal, com um pico de queda de potencial de 110V. Encontre a reatância indutiva e o pico de corrente quando a freqüência é (a) 70Hz; (b) 2000Hz.

Solução:

a) Como
$$I_{pico} = \frac{V_{Lpico}}{wL} = \frac{V_{Lpico}}{X_L}$$
e tem-se
$$X_{L,a} = w_a XL = 2\pi f_a L = (2\pi)(70Hz)(50X10^{-3}H) = 22\Omega$$
 resultando $I_{pico} = \frac{V_{Lpico}}{X_L} = \frac{110V}{22\Omega} = 5A$

b) De maneira análoga temos:

$$I_{pico} = \frac{V_{Lpico}}{X_L} = \frac{110V}{(2\pi)(2000Hz)(50X10^{-3}H)} = 0.175A$$

3ª Questão:

Uma corrente $i=i_0sen(\omega t)$ percorre um solenóide extenso que possui n espiras por unidade de comprimento. Uma espira circular de área A está no interior do solenóide e seu eixo coincide com o eixo do solenóide. Ache a FEM induzida na espira.

Solução:

$$\varepsilon = -\frac{d\Phi_m}{dt} = -\frac{d}{dt}(B.A) = -A\frac{dB}{dt} = -A\frac{d}{dt}(\mu_0 in)$$

$$= -A\mu_0 n \frac{d}{dt}(i_0 sen\omega t)$$

$$= -A.\mu_0 .n.i_0 .\cos(\omega t)$$

$$= -\varepsilon_0 \cos(\omega t)$$

Com
$$\varepsilon_0 = A\mu_0 ni_0 \omega$$

4ª Questão:

Uma superfície Gaussiana tem a forma de um cilindro reto, de raio igual a 12cm e comprimento de 80cm. Através de uma de suas extremidades, penetra um fluxo magnético de 25 µWb. Na outra extremidade existe um campo magnético uniforme de 1.6mT, normal à superfície e orientado para fora dela. Qual é o fluxo magnético liquido através da superfície lateral do cilindro?

Solução:

Usando a Lei de Gauss do magnetismo, $\oint BdA = 0$ podemos escrever $\oint BdA = \Phi_1 + \Phi_2 + \Phi_C$ onde Φ_1 é o fluxo magnético através da primeira extremidade mencionada, Φ_2 é o fluxo através da segunda extremidade mencionada

 $e\Phi_C$ é o fluxo através da terceira da superfície lateral (curva) do cilindro. Sobre a primeira extremidade existe um fluxo direcionado para dentro de modo que $\Phi_1 = -25 \mu Wb$. Sobre a segunda extremidade o campo magnético é uniforme, normal à superfície e direcionado para fora, de modo que o fluxo é $\Phi_2 = BA = B(\pi r^2)$, onde A é a área da extremidade e r é o raio do cilindro. Portanto,

$$\Phi_{\gamma} = (1.6X10^{-3})\pi(0.12)^2 = +7.24X10^{-5}Wb.$$

Como a soma dos três fluxos deve ser zero, temos

$$\Phi_c = -\Phi_1 - \Phi_2 = 25\mu - 72,4\mu = -47,4\mu Wb.$$

O sinal negativo indica que o fluxo está direcionado para dentro da superfície lateral. Observe que o comprimento de 80cm é uma informação totalmente supérflua para o cálculo pedido.

5ª Questão:

Prove que a corrente de deslocamento em um capacitor de placas paralelas pode ser escrita como

$$i_d = C \frac{dV}{dt}$$

Solução:

A corrente de deslocamento é dada por: $i_d = \varepsilon_0 A \frac{dE}{dt}$

Onde A é a área de uma das placas e E é a magnitude do campo elétrico entre as placas. O campo entre as placas é uniforme, de modo que E = V/d, onde V é a diferença de potencial entre as placas e d é a separação das placas. Portanto

$$i_d = \frac{\varepsilon_0 A}{d} \frac{dV}{dt} = C \frac{dV}{dt}$$

Uma vez que $\frac{\mathcal{E}_0 A}{d}$ é a capacitância C de um capacitor de placas paralelas "cheio de vácuo".

6ª Questão:

Em um experimento de Young, a distância entre as fendas é de 1000 vezes o valor do comprimento de onda da luz usada para iluminá-las. (a) Qual é a separação angular em radianos entre o máximo de interferência central e o mais próximo? (b) Qual é a distância entre estes máximos se a tela de observação estiver a 5cm de distância das fendas?

Solução:

(a) O máximo adjacente ao máximo central é o que corresponde a m=1 de modo que

$$\theta_1 = sen^{-1} \left(\frac{m\lambda}{d} \right)$$
$$= sen^{-1} \left(\frac{(1)\lambda}{1000\lambda} \right) = 0.001 rad$$

(b) Como

$$y_1 = Dsen\theta_1 = (5cm)sen(0,001rad) = 0,5mm$$

A separação é

$$\Delta y = y_1 - y_0 = y_1 - 0 = 0.5mm$$

7^a Questão:

Uma lâmpada de bulbo emite ondas eletromagnéticas esféricas uniformemente em todas as direções. Encontre (a) a intensidade, (b) a pressão de radiação e (c) os módulos dos campos elétricos e magnéticos a uma distância de 2m da lâmpada, admitindo que 60W de radiação eletromagnética são emitidos.

Solução:

A uma distância r da lâmpada, a energia está distribuída uniformemente sobre a área $4\pi r^2$. A intensidade é a potência dividida pela área. A pressão de radiação pode então ser encontrada a partir de $P_r = \frac{I}{c}$.

(a)
$$I = \frac{60W}{4\pi r^2} = \frac{60W}{4\pi 2^2} = 1{,}19W/m^2$$

(b)
$$P_r = \frac{I}{c} = \frac{1,19W/m^2}{3X10^8 m/s} = 3,0X10^{-9} Pa$$

(c)
$$B_0 = \sqrt{2\mu_0 P_r} = \sqrt{[2(4\pi X 10^{-7} Tm/A)(3.0X 10^{-9} Pa)]} = 8.68X 10^{-8} T$$

$$E_0 = cB_0 = (3X10^8 \, m \, / \, s)(8,68X10^{-8}T) = 26,05V \, / \, m$$

Os módulos dos campos elétrico e magnético naquele ponto são da forma:

$$E = E_0 \text{ sen}(wt)$$
 e $B = B_0 \text{ sen}(wt)$
com $E_0 = 26,05V/m$ e $B_0 = 8,68X10^{-8}T$

8ª Ouestão:

Determine as funções de onda correspondentes a um elétron confinado em uma região unidimensional de comprimento L e as energias correspondentes. Calcule a probabilidade de encontrar a partícula em uma faixa de largura 0,02 L centrada no meio da caixa, nos estados correspondentes aos números quânticos 1,2,3 e 4.

Solução:

As funções de onda normalizadas do elétron na caixa são:

$$\Psi_n(x) = \sqrt{\frac{2}{L}} \operatorname{sen}\left(n\pi \frac{x}{L}\right).$$

Já a energia total do elétron é dado pela sua energia cinética:

$$E_{cin} = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$

E pela relação de Broglie temos:

$$E_{cin} = E_n = \frac{h^2}{2m\lambda_n^2}$$

Considerando que a função de onda seja contínua e portanto nula nos extremos x = 0 e x = L. Temos a mesma situação das ondas estacionárias numa corda fixa em x = 0 e x = L, e os resultados são os mesmos, portanto o comprimento de onda é dado por $\lambda_n = 2L/n$. e portanto as energias permitidas são dadas por:

$$E_n = n^2 \frac{h^2}{8mL^2} = n^2 E_1$$

Agora vamos admitir que o elétron esteja no estado fundamental e a probabilidade P de se encontrar o elétron em um intervalo infinitesimal dx é $\Psi^2 dx$ onde Ψ é dada pela relação anterior. Nesse caso a probabilidade nesse caso é dada por $\Psi^2 \Delta x$ onde $\Delta x = 0.02L$. Assim,

$$\Psi_n(x) = \sqrt{\frac{2}{L}} \operatorname{sen}\left(n\pi \frac{x}{L}\right)$$

Logo

$$\Psi_n^2(\frac{L}{2}) = \frac{2}{L} \operatorname{sen}^2 \left(n\pi \frac{\frac{L}{2}}{L} \right) = \frac{2}{L} \operatorname{sen}^2 \left(\frac{n\pi}{2} \right)$$

E a probabilidade é dada por:

$$P_n = \Psi_n^2(\frac{L}{2})\Delta x = \frac{2}{L}\operatorname{sen}^2\left(\frac{n\pi}{2}\right)\Delta x$$

E como $\Delta x = 0.02L$, temos:

$$P_n = \frac{2}{L} \operatorname{sen}^2 \left(\frac{n\pi}{2} \right) 0.02L = 0.04 \operatorname{sen}^2 \left(\frac{n\pi}{2} \right)$$

Portanto para cada número quântico:

$$P_1 = 0.04 \, \text{sen}^2 \left(\frac{\pi}{2} \right) = 0.04$$

$$P_2 = 0.04 \, \mathrm{sen}^2(\pi) = 0$$

$$P_3 = 0.04 \operatorname{sen}^2 \left(\frac{3\pi}{2} \right) = 0.04$$

$$P_4 = 0.04 \operatorname{sen}^2(2\pi) = 0$$