FACULDADE DE COMPUTAÇÃO E INFORMÁTICA CIÊNCIA DA COMPUTAÇÃO E SISTEMAS DE INFORMAÇÃO Algoritmos e Programação I

AULA 06: ESTRUTURAS CONDICIONAIS ENCADEADAS - Parte I

Nossos **objetivos** nesta aula são:

- Conhecer as equivalências entre expressões lógicas.
- Utilizar as estruturas condicionais encadeadas.
- Exercitar a habilidade de escrever programas que empregam estruturas condicionais.

A referência para esta aula são as seções 3.2.3 (Expressões booleanas equivalentes) e 3.3 (Controle de Seleção) do Capítulo 3 (Control Structures) do livro:

DIERBACH, C. Introduction to Computer Science Using Python: A Computational Problem Solving Focus. 1st Edition, New York: Wiley, 2012.

Expressões Booleanas Equivalentes

Assim como na matemática existe equivalência de expressões aritméticas. Por exemplo, x(y + z)
é equivalente a xy + xz, para valores numéricos x, y e z. Existe equivalência lógica de expressões
booleanas.

Expressões Booleanas Equivalentes Logicamente		
x < y		not(x >= y)
x <= y	é equivalente a	not(x > y)
x == y	e equivalente a	not(x != y)
x != y		not(x == y)
not(x and y)		(not x) or (not y)
not(x or y)		(not x) and (not y)

EXERCÍCIO TUTORIADO 1

O que será exibido ao digitarmos as seguintes linhas de comando?

ESTRUTURA DE SELEÇÃO ENCADEADA

- Na estrutura de seleção simples, temos apenas um caminho ou uma possibilidade, para a condição ou expressão avaliada. Na seleção composta, temos duas possibilidades ou dois caminhos, um caminho para a condição verdadeira, chamamos de bloco verdade e um bloco para a condição falsa, chamado de bloco da falsidade.
- A estrutura de seleção encadeada ocorre quando uma seleção tem como ação uma outra seleção.
 A seleção encadeada ou aninhada é o agrupamento de várias seleções (internas) a uma seleção.
- A linguagem Python nos fornece duas formas de estruturas com múltiplos possibilidades:
 - o Estrutura com múltiplas condições aninhadas ou encadeadas if-else
 - o Estrutura com uma única condição if e uso de múltiplas cláusulas elif
- Veremos primeiro, a primeira forma, com múltiplas condições aninhadas.

Seleção Aninhadas ou Encadeadas (Múltiplos if-else aninhados)

- Quando temos mais de duas possibilidades ou múltiplos caminhos, temos a seleção encadeada, que não tem uma sintaxe fixa, mas uma combinação de estruturas simples e compostas, a depender da lógica do problema.
- Sintaxe:

```
if condição:
    bloco instruções
else:
    if condição:
        bloco instruções
    else:
        if condição:
            bloco instruções
        ...
```

■ Exemplo 1:

```
if nota >= 7.5 and frequencia >=0.75:
    print("Aprovado direto")
else:
    if nota >= 6.0 and frequencia >=0.75:
        print("Aprovado com Exame")
    else:
        print("Reprovado")
```

- Neste caso, será avaliada a condição nota >= 7.5 e frequência >=0.75 e se o resultado for verdadeiro então será apresentado o texto "Aprovado direto". Portanto o else, contendo o restante das outras condições, não será executado. Por outro lado, se a condição nota >= 7.5 e frequência >=0.75 for falsa, executaremos o bloco após o primeiro (else) mas, como ainda temos duas possibilidades, precisamos avaliar a condição nota >= 6.0 e frequência >=0.75 será apresentado o texto "Aprovado com Exame", caso essa segunda condição for verdadeira. Caso contrário será executado o bloco após o segundo (else), e será apresentada a mensagem de texto "Reprovado".
- Exemplo 2: Nesse caso, temos 5 possibilidades para a variável grade.

```
if grade >= 90:
    print("Grade de A")
else:
    if grade >= 80:
        print("Grade de B")
    else:
        if grade >= 70:
            print("Grade de C")
        else:
            if grade >= 60:
                 print("Grade de D")
        else:
                 print("Grade de F")
```

- Observem que a última cláusula será executada somente se todas as outras falharem.
- As indentações tornam-se cruciais em uma estrutura encadeada, uma vez que cada declaração if-else é um bloco de código diferente e deve ter uma quantidade de espaços diferentes. Portanto, muita atenção!

EXERCÍCIO TUTORIADO 2

1) Faça um programa que leia três números inteiros e encontra o menor deles. Sugestão: Sejam 3 números A, B e C. A ideia principal é: verificar se A é menor que B e C e se não for, verificar entre B e C

EXERCÍCIO TUTORIADO 3

Faça um programa que leia três números inteiros e colocá-los em ordem crescente.

Sugestão: Sejam 3 números A, B e C. A ideia principal é:

- armazenar em A o menor valor
- armazenar em B o valor intermediário
- armazenar em C o maior valor

EXERCÍCIO COM DISCUSSÃO EM DUPLA 1

- 1) Faça um programa que faz a leitura de três valores reais (A, B e C), representando os coeficientes de uma equação do 20. grau, calcula o valor do delta e os valores das raízes reais, caso existam. Considere que:
 - se A for igual a zero, exiba a mensagem "Não é equação de 2º grau!" e encerre;
 - se o delta for negativo, exiba a mensagem "Não existem raízes reais" e encerre.
 - Se o delta for zero ou positivo, exibe a raiz ou as raízes e encerre.

EXERCÍCIO COM DISCUSSÃO EM DUPLA 2

Ler três valores para os lados de um triângulo, considerando os lados como: A, B e C. Verificar se os lados fornecidos formam realmente um triângulo. Se afirmativo, deverá ser indicado qual tipo de triângulo foi formado: isósceles, escaleno ou equilátero.

Orientações:

Devemos saber primeiramente qual a definição de um triângulo.

Triângulo é uma forma geométrica (polígono) composta de três lados, onde cada lado é menor que a soma dos outros dois lados.

Perceba que isto é uma regra (uma condição) e deverá ser considerada. É um triângulo quando A < B + C, quando B < A + C e quando C < A + B.

Tendo certeza que os valores informados para os três lados formam um triângulo, serão então, analisados os valores para se estabelecer qual tipo de triângulo será formado: isósceles, escaleno ou equilátero.

- isósceles quando possui dois lados iguais e um diferente, sendo A=B ou A=C ou B=C;
- escaleno quando possui todos os lados diferentes, sendo A < > B e B < > C; e
- equilátero quando possui todos os lados iguais, sendo A=B e B=C.

Etapas principais do algoritmo:

- Ler três valores para os lados de um triângulo: A, B e C;
- Verificar se cada lado é menor que a soma dos outros dois lados
 Se sim, saber se A=B e se B=C, sendo verdade o triângulo é equilátero
 Se não, verificar se A=B ou se A=C ou se B=C, sendo verdade o triângulo é isósceles, caso contrário o triângulo é escaleno.
- Caso os lados fornecidos não caracterizem um triângulo, avisar a ocorrência.

ATIVIDADES DE LABORATÓRIO - DESAFIOS E/OU JOGOS

As atividades de jogos aqui propostas envolvem a geração de um número aleatório. Vamos ver como fazer isso em Python, usando o módulo random e algumas funções. Exemplo:

```
#importando o módulo random
import random

#exemplos
valor1 = random.randint(65, 300)
#a função randint retornará um número inteiro aleatório.
# Nesse caso, no intervalo [65,300]
print("valor1 = ", valor1)

valor2 = random.randrange(80, 121, 2)
#a função randrange retornará um número inteiro aleatório
# Neste caso, de 80 a 120 de 2 em 2
print("valor2 = ", valor2)

valor3 = random.random()
#a função random retornará um número real no intervalo [0, 1)
print("valor3 = ", valor3)
```


1) Esse é o jogo dos dados, muito usado em Las Vegas nos cassinos, aposte em um número que seja o resultado da soma deles e ganhe o seu dinheiro. Crie duas variáveis para representar os dados e uma para sua aposta, crie uma para armazenar o resultado e faça a verificação.

2) O Jogo do par ou ímpar é usado onde duas pessoas jogam geralmente para decidir um impasse, cada um escolhe entre par ou ímpar e mostra o seu número, a soma entre eles resulta em um número par ou ímpar e assim é decidido o vencedor. Aqui faremos com a máquina, ela escolherá um número randômico entre 0 e 10 e você escolherá o seu. Vamos ver quem é o vencedor!!!!

3) Um dos jogos sugeridos para crianças acima de 6 anos é o **PEDRA, PAPEL E TESOURA**

Como jogar:

Dois participantes ficam um de frente para o outro e, ao mesmo tempo, jogam uma das mãos para frente representando um dos três símbolos: pedra (mão fechada), papel (mão aberta) ou tesoura (dedos indicador e médio estendidos).

Para definir o vencedor segue-se a seguinte regra: pedra 'quebra' a tesoura; tesoura 'corta' o papel e papel 'embrulha' a pedra. Se ambas escolhem a mesma, há empate.

Este jogo também chama-se Joquempô, jo-quem-pô.

Sabendo como funciona o jogo crie uma variável para cada jogador que deve armazenar a opção escolhida pela criança (Pedra, Papel ou Tesoura) e apresente o resultado da jogada.

EXERCÍCIOS EXTRAS

- 1) Considere o problema de conversão de temperatura: celsius para fahrenheit (usuário deve digitar "F"), fahrenheit para celsius (usuário deve digitar "C") e a terceira possibilidade de digitar um valor inválido. Faça um programa que mostra a temperatura convertida ou uma mensagem de opção inválida.
- 2) Um posto de combustível vende três tipos de combustível: álcool, diesel e gasolina. O preço de cada litro dos combustíveis é apresentado na tabela abaixo. Faça um programa que leia um caracter que representa o tipo de combustível comprado (a, d ou g) e a quantidade em litros. O programa deve imprimir o valor em reais a ser pago pelo combustível.

Combustível	Preço por Litro
A – Álcool	1,7997
D – Diesel	0,9798
G – Gasolina	2,1009

3) Um banco concederá um crédito especial aos seus clientes de acordo com o saldo médio no último ano. Receba o saldo médio de um cliente, calcule e mostre o valor do crédito, de acordo com a tabela a seguir.

Saldo Médio	Percentual
Acima de R\$ 4.000,00	30% do saldo médio
De R\$ 3.000,01 a R\$ 4.000,00	25% do saldo médio
De R\$ 2.000,01 a R\$ 3.000,00	20% do saldo médio
Até R\$ 2.000,00	10% do saldo médio

4) Escreva um programa que tendo como entrada o tipo do vôo ('N' para noturno / 'D' para diurno) e a quantidade de pessoas; calcula e mostra a tarifa e o total a pagar de acordo com as condições abaixo:

Tipo de Vôo	Quantidade	Tarifa
Diurno	<= 50	R\$ 200,00
Diurno	> 50	R\$ 120,00
Noturno	<= 50	R\$ 100,00
Noturno	> 50	R\$ 80,00

Total a pagar = quantidade de pessoas x tarifa

5) Faça um programa para resolver o valor de f(x) dependendo da entrada do usuário.

$$f(x) = \begin{cases} 1, \text{ se } x \le 1 \\ 2, \text{ se } 1 < x \le 2 \\ x^2, \text{ se } 2 < x \le 3 \\ x^3, \text{ se } x > 3 \end{cases}$$

6) Um endocrinologista deseja controlar a saúde de seus pacientes e, para isso, utiliza o Índice de Massa Corpórea (IMC). Sabendo-se que o IMC é calculado através da seguinte fórmula: IMC = peso/(altura)², em que: peso é dado em Kg e altura é dada em metros. Escreva um programa que, tendo do informação de entrada o peso e a altura, apresenta o IMC da pessoa e sua faixa de risco, baseando-se na seguinte tabela:

IMC	Faixa de risco
Abaixo de 20	Abaixo do peso
A partir de 20 até 25	Normal
Acima de 25 até 30	Excesso de peso
Acima de 30 até 35	Obesidade
Acima de 35	Obesidade mórbida

7) Escreva um programa que recebe dois números, executa e mostra o resultado das operações listadas a seguir de acordo com a escolha do usuário.

Opção	Operação
1	Média entre os números digitados
2	Diferença do maior pelo menor
3	Produto entre os números digitados
4	Divisão do primeiro pelo segundo

Se a opção digitada for inválida, mostrar uma mensagem de erro e encerrar a execução do programa. Lembre-se de que, na opção 4, o segundo número deve ser diferente de zero.