Basics of longitudinal vehicle dynamics

Comere	miletence raper · May 2015		
CITATIONS		NDS	
2	14	,805	
1 autho	author:		
	Mario Hirz	Mario Hirz	
S.	Graz University of Technology		
	180 PUBLICATIONS 298 CITATIONS	CATIONS 298 CITATIONS	
	SEE PROFILE		
Some of the authors of this publication are also working on these related projects:			
Robot Charging View project			
Project Multi-Objective Gearbox Design Optimization for xEV-Axle Drives under Consideration of Package Restrictions View project			

Automotive Engineering

Focus: Basics of longitudinal vehicle dynamics

Mario Hirz
Institute of Automotive Engineering
Graz University of Technology

Content

- 1.1 Classification of vehicle dynamics
- 1.2 Longitudinal vehicle dynamics
 - Longitudinal forces and resistances
 - Driving power demand
 - Internal combustion engines
 - Stationary driving force diagram
 - Layout processes of different propulsion concepts

1.1 Classification of vehicle dynamics

Longitudinal vehicle dynamics

Topics: - Driving resistances

- Driving performance

- Acceleration and braking

- Fuel consumption, emissions

- Longitudinal tire slip

- Propulsion layout

Lateral vehicle dynamics

Topics: - Steering system (e.g. kinematics)

- Cornering, driving agility

Oversteering, understeering behavior

Lateral tire behavior

Vertical vehicle dynamics

Topics: - Axle & suspension system

- Comfort behavior

- Driving in uneven roads

There are several interconnections of the three disciplines.

Longitudinal forces and resistances of a car

 F_{DF} and F_{DR} ... driving forces [N]

 F_{BF} and F_{BR} ... braking forces [N] m_{To} ... total vehicle mass [kg]

 R_{RF} and R_{RR} ... rolling resistances [N] β_C ... climbing angle [deg]

 R_{Air} ... aerodynamic drag [N] v ... vehicle speed [m/s]

 R_C ... climbing resistance [N] r_W ... dynamic wheel radius [m]

M. Hirz

Automotive Engineering

Simplified equation for longitudinal motion under steady state conditions (slip neglected):

$$m^* \dot{v} = \frac{M_D - M_B - M_R}{r_W} - R_{Air} - R_C$$

$$M_D = (F_{DF} + F_{DR}) \; r_W$$
 ... driving torque [Nm] $M_B = (F_{BF} + F_{BR}) \; r_W$... braking torque [Nm] $M_R = (R_{RF} + R_{RR}) \; r_W$... rolling resistance torque [Nm] \dot{v} ... vehicle acceleration [m/s²] m^* ... generalized vehicle mass [kg]

Vehicle mass and inertia

$$m^* = m_{To} + \frac{\sum I_{Red}}{r_W^2}$$

$$I_{Red} = I_{Axis} + i_{Axis}^{2} \left(I_{Trans} + i_{Trans}^{2} I_{Eng} \right)$$

 I_{Red} ... drivetrain moment of inertia at the driving axle [kgm²]

 I_{Axis} ... axis moment of inertia [kgm²]

 I_{Trans} ... transmission moment of inertia [kgm²]

 I_{Eng} ... engine moment of inertia [kgm²]

i_{Axis}, i_{Trans} ... gear ration @ axis & transmission [-]

Typical gear ratios including axle transmission factor (midsize car):

1st gear: 0.25, 2nd gear: 0.15, 3rd gear: 0.10, 4th gear: 0.075

Estimation of the generalized mass m^* for layout purposes:

highest gear: $1.05 \ m_{To} < m^* < 1.08 \ m_{To}$ lowest gear: $1.25 \ m_{To} < m^* < 1.60 \ m_{To}$

Simplified forces, acting at a car in motion

$$F_B = (F_{BF} + F_{BR})$$

$$R_R \approx c_R m_{To} g \cos \beta_c \operatorname{sign}(v)$$

$$R_{Air} = \frac{1}{2} c_{Air} A_F \rho_L v |v|$$

$$R_C = m_{To} g \sin \beta_c$$

 c_R ... rolling resistance factor [-]

$$c_R \approx 0.01$$
 for car tires

 c_{Air} ... aerodynamic resistance factor [-]

$$c_{Air} \approx 0.27 - 0.35$$
 for modern cars

 A_F ... longitudinal airflow surface [m²]

$$A_F \approx 2 - 4 \text{ m}^2 \text{ for cars}$$

 ρ_L ... air density [kg/m³]

$$\rho_I \approx 1.25 \text{ kg/m}^3$$

Driving power demand

$$P_D = F_D v$$

$$P_D = P_E \eta$$

 F_D ... summarized driving force [N]

 P_D ... driving power [W], [kW]

 P_E ... engine power [W], [kW]

η ... overall drivetrain efficiency [-]

Estimation:

2WD: $0.95 < \eta < 0.98$

4WD: $0.92 < \eta < 0.96$

Example:

Driving resistances of a compact car ($m_{To} = 1500 \text{ kg}$)

Example:

Driving power demand of a compact car ($m_{To} = 1500 \text{ kg}$)

Example:

Driving power demand distribution for different vehicle masses

R_{Air} R_{C} $R_$

Theoretical maximum speed of a car

$$\frac{P_E \eta \, 10^3}{v} = c_R \, m_{To} \, g \, \cos \beta_c + \frac{1}{2} \, c_{Air} \, A_F \, \rho_L \, v^2 + m_{To} \, g \, \sin \beta_c + m^* \, \dot{v}$$

For an estimation of the vehicle maximum speed on a horizontal road, the climbing resistance and the acceleration resistance are set to zero. The engine power demand as a function of the rolling resistance, the aerodynamic drag and the power train efficiency factor can be expressed as

$$P_E = \frac{c_R m_{To} g}{\eta} v + \frac{c_{Air} A_F \rho_L}{\eta} v^3$$

Example:

Influence of the aerodynamic resistance factor on the engine power demand at different vehicle speeds

Comparison of internal combustion engine and electric drivetrain

Characteristic figures of a concept vehicle, including the stationary maximum torque output characteristics of a synchronous motor

Analyzed vehicle type:

Concept car based on a mass-production car Synchronous type electric motor

Vehicle characterisitcs

$$m_{To} = 1300 \text{ kg}$$

$$c_{Air} = 0.32$$

$$c_R = 0.01$$

$$A_F = 2.2 \text{ m}^2$$

$$P_{\rm El} = 55 \, \mathrm{kW}$$

$$r_w = 0.315 \text{ m}$$

$$i_{total} = 12.05$$

Internal combustion engines (ICE)
Schematic stationary engine full load and trailing characteristics

$$M_D = \eta i_{Trans} i_{Axle} M_E$$

... driving torque [Nm], M_E ... engine torque [Nm]

$$F_D = M_D / r_W$$

... driving force [N]

Drivetrain with internal combustion engines
Stationary steady state driving force diagram

$$n_W = n_E / (i_{Trans} i_{Axle})$$

... wheel speed [rps, rpm], n_E ... engine speed [rps, rpm]

$$v = 1/30 (\pi n_w r_W)$$

... vehicle speed [m/s, km/h]

Drivetrain with internal combustion engines

Example: Stationary steady state driving force diagram, Climbing force characteristics in each gear

M. Hirz

Drivetrain with internal combustion engines

Example: Stationary steady state driving force diagram,

Maximum acceleration potential across the entire drive train operating range

Comparison of ICE and Electric drivetrain

Acceleration comparison of a concept vehicle driven by two different propulsion technologies

Drivetrain with internal combustion engines

Schematic layout process of an ICE and an appropriate gearbox

Drivetrain with internal combustion engines, parameters of simulation

Electric drivetrain layout

Schematic layout process of an electric drivetrain

Excurse: Hybrid drivetrain layout

Schemata of hybrid drive train configurations

Excurse: Hybrid drivetrain layout

Schematic layout process of y hybrid drivetrain

fine

M. Hirzw publication stats