Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi 6 giugno 2016

Il parametro b è uguale a:

(il resto della divisione del proprio numero di matricola per 4)+2.

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (8 punti)

Sia

$$W = \left\{ \begin{pmatrix} r & s \\ t & u \end{pmatrix} \middle| s^2 = 0, bu + t = 0 \right\} \subseteq M_2(\mathbb{R}).$$

- a) Si verifichi che W è un sottospazio di $M_2(\mathbb{R})$ e se ne determini una base.
- b) Si determinino, se possibile, 3 vettori di W che non siano multipli l'uno dell'altro e che non generino W.
- c) Si stabilisca per quali valori di k è possibile completare l'insieme

$$\mathcal{A} = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & k \end{pmatrix}, \begin{pmatrix} k & 0 \\ 2 & 2k \end{pmatrix}, \begin{pmatrix} 2 & k+1 \\ 2 & 2k \end{pmatrix} \right\}$$

ad una base di $M_2(\mathbb{R})$.

Esercizio 2. (11 punti)

Sia $F_k: \mathbb{R}^3 \to \mathbb{R}^4$ l'applicazione lineare definita da:

$$F_k(x, y, z) = (x - 3y + kz, 2x - 3y, -x + ky, 2x - 6y + 2kz).$$

- a) Si stabilisca per quali valori di k si ha che F_k è iniettiva.
- b) Scelto un valore a per cui F_a non è iniettiva, si determini una base di Ker F_a .
- c) Per il valore di a scelto al punto b), si determini, se possibile, una applicazione $G: \mathbb{R}^3 \to \mathbb{R}^4$ tale che $\mathbf{e}_2 \in \operatorname{Ker} G$ e Im $G = \operatorname{Im} F_a$.
- d) Sia $\mathcal{B} = \{\mathbf{e}_4, \mathbf{e}_2 \mathbf{e}_3, \mathbf{e}_3, \mathbf{e}_1 + b\mathbf{e}_4\}$ un'altra base di \mathbb{R}^4 . Si determini la matrice $A_{\mathcal{C},\mathcal{B}}$ associata a F rispetto alla base canonica \mathcal{C} di \mathbb{R}^3 nel dominio e alla base \mathcal{B} nel codominio.

Esercizio 3. (7 punti)

Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$T(\mathbf{e}_1) = -6\mathbf{e}_1 + \mathbf{e}_2 \ T(\mathbf{e}_2) = 5\mathbf{e}_1 - 2\mathbf{e}_2,$$

 $T(\mathbf{e}_3) = -3\mathbf{e}_1 - 3\mathbf{e}_2 - 7\mathbf{e}_3.$

- a) Si stabilisca se (-4, -4, 0) è autovettore di T.
- b) Si stabilisca se T è diagonalizzabile, e in caso affermativo, detta A la matrice associata a T rispetto alla base canonica si determinino una matrice diagonale D simile ad A e due matrici distinte P_1, P_2 tali che $P_1^{-1}AP_1 = P_2^{-1}AP_2 = D$.

Esercizio 4. (4 punti)

a) Si determinino, se possibile, le soluzioni della congruenza:

$$23x \equiv_{102} 12$$

b) Si stabilisca se $[27]_{57}$ è invertibile in \mathbb{Z}_{57} .