Методы Оптимизации. Даниил Меркулов. Отделимость. Проекция. Опорная гиперплоскость

Interior

Внутренность множества

Внутренностью множества S называется следующее множество:

$$\mathbf{int}(S) = \{\mathbf{x} \in S \mid \exists \varepsilon > 0, B(\mathbf{x}, \varepsilon) \subset S\}$$
 (1) где

 $B(\mathbf{x}, arepsilon) = \mathbf{x} + arepsilon B$ - шар с центром в т. \mathbf{x} и радиусом arepsilon

Относительная внутренность множества

Относительной внутренностью множества \boldsymbol{S} называется следующее множество:

$$\mathbf{relint}(S) = \{ \mathbf{x} \in S \mid \exists \varepsilon > 0, B(\mathbf{x}, \varepsilon) \cap \mathbf{aff}(S) \subseteq S \}$$
 (2)

• Любое непустое выпуклое множество $S\subseteq \mathbb{R}^n$ имеет непустую относительную внутренность $\mathbf{relint}(S)$

Projection

Расстояние между точкой и множеством

Расстоянием d от точки $\mathbf{y} \in \mathbb{R}^n$ до замкнутого множества $S \subset \mathbb{R}^n$ является:

$$d(\mathbf{y}, S, \|\cdot\|) = \inf\{\|x - y\| \mid x \in S\}$$
 (3)

Проекция точки на множество

Проекцией точки $\mathbf{y} \in \mathbb{R}^n$ на множество $S \subseteq \mathbb{R}^n$ называется точка $\pi_S(\mathbf{y}) \in S$:

$$\|\pi_S(\mathbf{y}) - \mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\|, \forall \mathbf{x} \in S \tag{4}$$

- Если множество открыто, и точка в нем не лежит, то её проекции на это множество не существует
- Если точка лежит в множестве, то её проекция это сама точка

$$\pi_S(\mathbf{y}) = \underset{\mathbf{y}}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{y}\| \tag{5}$$

• Пусть $S \subseteq \mathbb{R}^n$ - выпуклое замкнутое множество. Пусть так же имеются точки $\mathbf{y} \in \mathbb{R}^n$ и $\pi \in S$. Тогда если для всех $\mathbf{x} \in S$ справедливо неравенство:

$$\langle \pi - \mathbf{y}, \mathbf{x} - \pi \rangle \geq 0,$$
 (6) то π является проекцией точки \mathbf{y} на S , т.е.

$$\pi_S(\mathbf{y}) = \pi$$

• Пусть $S \subseteq \mathbb{R}^n$ - афинное множество. Пусть так же имеются точки $\mathbf{y} \in \mathbb{R}^n$ и $\pi \in S$. Тогда π является проекцией точки \mathbf{y} на S, т.е. $\pi_S(\mathbf{y}) = \pi$ тогда и только тогда, когда для всех $\mathbf{x} \in S$ справедливо равенство: $\langle \pi - \mathbf{y}, \mathbf{x} - \pi \rangle = 0$ (7)

Пример 1

Найти
$$\pi_S(y)=\pi$$
, если $S=\{x\in\mathbb{R}^n\mid \|x-x_c\|\leq R\}$, $y\notin S$

Решение:

- ullet Из рисунка строим гипотезу: $\pi = x_0 + R \cdot rac{y x_0}{\|y x_0\|}$
- Проверяем неравенство для выпуклого замкнутого множества: $(\pi y)^T (x \pi) \geq 0$

$$\left(x_{0}-y+R\frac{y-x_{0}}{\|y-x_{0}\|}\right)^{T}\left(x-x_{0}-R\frac{y-x_{0}}{\|y-x_{0}\|}\right)=\tag{8}$$

$$\left(\frac{(y-x_0)(R-\|y-x_0\|)}{\|y-x_0\|}\right)^T\left(\frac{(x-x_0)\|y-x_0\|-R(y-x_0)}{\|y-x_0\|}\right) = \tag{9}$$

$$\frac{R - \|y - x_0\|}{\|y - x_0\|^2} (y - x_0)^T ((x - x_0) \|y - x_0\| - R (y - x_0)) =$$
(10)

$$\frac{R - \|y - x_0\|}{\|y - x_0\|} \Big((y - x_0)^T (x - x_0) - R \|y - x_0\| \Big) =$$
 (11)

$$(R - \|y - x_0\|) \left(\frac{(y - x_0)^T (x - x_0)}{\|y - x_0\|} - R \right)$$
 (12)

Первый сомножитель отрицателен по выбору точки y. Второй сомножитель так же отрицателен, если применить к его записи теорему Коши - Буняковского: $(y-x_0)^T(x-x_0) \leq \|y-x_0\| \|x-x_0\|$ (13)

$$\frac{(y-x_0)^T(x-x_0)}{\|y-x_0\|} - R \le \frac{\|y-x_0\|\|x-x_0\|}{\|y-x_0\|} - R = \|x-x_0\| - R \le 0$$
 (14)

Пример 2

Найти $\pi_S(y)=\pi$, если $S=\{x\in\mathbb{R}^n\mid c^Tx=b\}$, y
otin S

Решение:

• Из рисунка строим гипотезу: $\pi=y+\alpha c$. Коэффициент α подбирается так, чтобы $\pi\in S$: $c^T\pi=b$, т.е.: $c^T(y+\alpha c)=b$ (15) $c^Ty+\alpha c^Tc=b$ (16) $c^Ty=b-\alpha c^Tc$ (17)

$$ullet$$
 Проверяем неравенство для выпуклого замкнутого множества: $(\pi-y)^T(x-\pi) \geq 0$ $(y+\alpha c-y)^T(x-y-\alpha c)=\ (18)$ $\alpha c^T(x-y-\alpha c)=\ (19)$

$$egin{align} lpha(x-y-lpha c) &= (1s) \ lpha(c^Tx) - lpha(c^Ty) - lpha^2c^Tc) &= (20) \ lpha b - lpha(b - lpha c^Tc) - lpha^2c^Tc &= (21) \ lpha b - lpha b + lpha^2c^Tc - lpha^2c^Tc &= 0 > 0 \ \end{pmatrix}$$

Пример 3

Найти $\pi_S(y)=\pi$, если $S=\{x\in\mathbb{R}^n\mid Ax=b,A\in\mathbb{R}^{m imes n},b\in\mathbb{R}^m\}$, y
otin S

Решение:

• Из рисунка строим гипотезу: $\pi=y+\sum\limits_{i=1}^m \alpha_i A_i=y+A^T\alpha$. Коэффициент α подбирается так, чтобы $\pi\in S$: $A\pi=b$, т.е.: $c^T(y+A^T\alpha)=b$ (23) $A(y+A^T\alpha)=b$ (24) $Ay=b-AA^T\alpha$ (25)

• Проверяем неравенство для выпуклого замкнутого множества:
$$(\pi-y)^T(x-\pi) \geq 0$$
 $(y+A^T\alpha-y)^T(x-y-A^T\alpha)=\ (26)$ $\alpha^TA(x-y-A^T\alpha)=\ (27)$ $\alpha^T(Ax)-\alpha^T(Ay)-\alpha^TAA^T\alpha)=\ (28)$ $\alpha^Tb-\alpha^T(b-AA^T\alpha)-\alpha^TAA^T\alpha=\ (29)$ $\alpha^Tb-\alpha^Tb+\alpha^TAA^T\alpha-\alpha^TAA^T\alpha=0>0$

Separation

Отделимые множества

Множества S_1 и S_2 называются отделимыми, если существуют $\mathbf{p} \neq \mathbf{0} \in \mathbb{R}^n$ и $\beta \in \mathbb{R}$, что:

$$\langle \mathbf{p}, \mathbf{x_1} \rangle \le \beta \le \langle \mathbf{p}, \mathbf{x_2} \rangle, \ \forall \mathbf{x_1} \in S_1, \ \forall \mathbf{x_2} \in S_2$$
 (31)

Собственно отделимые множества

Множества S_1 и S_2 называются собственно отделимыми, если они отделимы и дополнительно можно указать такие $\mathbf{x_1} \in S_1, \mathbf{x_2} \in S_2$

$$\langle \mathbf{p}, \mathbf{x_1} \rangle < \langle \mathbf{p}, \mathbf{x_2} \rangle \tag{32}$$

Строго отделимые множества

Множества S_1 и S_2 называются строго отделимыми, если существует $\mathbf{p} \neq \mathbf{0} \in \mathbb{R}^n$, что:

$$x_{2}$$

$$S_{1} = \{x_{2} \geq 1/x_{1}\}$$

$$S_{2} = \{x_{2} \leq 0\}$$

$$(33)$$

Сильно отделимые множества

Множества S_1 и S_2 называются сильно отделимыми, если существуют $\mathbf{p} \neq \mathbf{0} \in \mathbb{R}^n$ и $\beta \in \mathbb{R}$, что:

$$\sup_{\mathbf{x_1} \in S_1} \langle \mathbf{p}, \mathbf{x_1} \rangle < \beta < \inf_{\mathbf{x_2} \in S_2} \langle \mathbf{p}, \mathbf{x_2} \rangle, \ \forall \mathbf{x_1} \in S_1, \ \forall \mathbf{x_2} \in S_2$$
 (34)

Расстояние между множествами

Расстоянием между множествами S_1 и S_2 называется число:

$$d(S_1, S_2, \|\cdot\|) = \inf_{\mathbf{x_1} \in S_1, \mathbf{x_2} \in S_2} \|\mathbf{x_1} - \mathbf{x_2}\|$$
(35)

- ullet Если X и Y непустые выпуклые множества в \mathbb{R}^n и $X\cap Y=\emptyset$, тогда X и Y отделимы.
- Если X непустое выпуклое замкнутое множество в \mathbb{R}^n и $\mathbf{y} \notin X$, тогда точку \mathbf{y} можно строго отделить от множества X.

Supporting hyperplane

Опорная гиперплоскость

Гиперплоскость $\Gamma_{p,\beta}=\{\mathbf{x}\in\mathbb{R}^n:\langle p,\mathbf{x}\rangle>\beta\}$ называется опорной к множеству S в граничной точке

$$\mathbf{a} \in \partial S$$
, если $\langle p, \mathbf{x} \rangle \geq \beta = \langle p, \mathbf{a} \rangle \ \ orall \mathbf{x} \in S$ (36)

Опорная гиперплоскость называется *собственно опорной*, если, кроме того, можно указать $\mathbf{x_0} \in S: \langle p, \mathbf{x_0} \rangle > \beta$

- В любой граничной (относительно граничной) точке выпуклого множества существует опорная (собственно опорная) гиперплоскость.
- Касательная плоскость к поверхности F(x)=0, где $F:\mathbb{R}^n o \mathbb{R}^1$ в точке x_0 определяется уравнением: $abla F(x_0)^T(x-x_0)=0$ (44)
- Касательная плоскость к графику функции f(x), где $f:\mathbb{R}^n \to \mathbb{R}^1$ в точке x_0 определяется уравнением: $\phi(x) = f(x_0) + \nabla f(x_0)^T (x-x_0) = 0$ (38)

Пример 4

Построить гиперплоскость, разделяющую S_1 и S_2 :

$$S_1 = \left\{ x \in \mathbb{R}^2 \mid x_1 x_2 \geq 1, x_1 > 0
ight\}, \quad S_2 = \left\{ x \in \mathbb{R}^2 \mid x_2 \leq rac{4}{x_1 - 1} + 9
ight\}$$
 (39)

Решение:

• Найдем $\partial S_1 \cap \partial S_2$:

$$\begin{cases} x_1 x_2 = 1 \\ x_2 = \frac{4}{x_1 - 1} + 9 \end{cases} \tag{40}$$

$$\begin{cases} x_1 = \frac{1}{3} \\ x_2 = 3 \end{cases} \tag{41}$$

т.е. множества пересекаются в точке $x_0 = (rac{1}{3}, 3)$

• Построим касательные плоскости к обеим поверхностям в точке пересечения:

$$\begin{cases} \nabla F_1(x_0)^T(x - x_0) = 0\\ \nabla F_2(x_0)^T(x - x_0) = 0 \end{cases}$$
(42)

$$\begin{cases} 3x_1 + \frac{1}{3}x_2 - 2 = 0\\ -6x_1 - \frac{2}{3}x_2 + 4 = 0 \end{cases}$$
 (43)

Итого, получаем: $9x_1 + x_2 = 6$, т.е. $p = (9,1), \beta = 6$

Пример 5

Построить опорную гиперплоскость для множества $S=\left\{x\in\mathbb{R}^2\mid e^{x_1}\leq x_2
ight\}$ в граничной точке $x_0=(0,1)$

Решение:

- ullet Имеем поверхность $F(x_1,x_2)=e^{x_1}-x_2, \;\;\;
 abla F=(e^{x_1},-1), \;\;\;
 abla F(x_0)=(1,-1)$
- ullet Тогда $abla F(x_0)^T(x-x_0) = 0$ (44) $(1,-1)^T(x_1,x_2-1) = 0$ (45)
- Искомая опорная гиперплоскость: $x_1 x_2 + 1 = 0$

Пример 6

Построить опорную гиперплоскость для множества $S=\left\{x\in\mathbb{R}^3\mid x_3\geq x_1^2+x_2^2\right\}$ так, чтобы она отделяла его от точки $x_0=\left(-\frac{5}{4},\frac{5}{16},\frac{15}{16}\right)$

Решение:

- Заметим, что здесь $x_0 \notin \partial S$. А значит, таких гиперплоскостей много. Возможный вариант: искать опорную гиперплоскость в точке $\pi_S(x_0) = \pi \in S$. Значит, $\Gamma_{p,\beta} = \{x \in \mathbb{R}^3 \mid p^Tx = \beta, p^T\pi = \beta\}$
- Будем искать π , решая задачу минимизации:

$$\min_{x \in \partial S} \|x - x_0\|^2 \tag{46}$$

$$\min_{x \in \partial S} (x - x_0)^T (x - x_0) \tag{47}$$

Учитывая структуру множества $\partial S = \{x \in \mathbb{R}^3 \mid x_3 = x_1^2 + x_2^2\}$, можем перейти к задаче безусловной минимизации.

$$\left(x_1 + \frac{5}{4}\right)^2 + \left(x_2 - \frac{5}{16}\right)^2 + \left(x_1^2 + x_2^2 - \frac{15}{16}\right)^2 \to \min$$
 (48)

Единственным решением которой является точка $\pi = \left(-1, \frac{1}{4}, \frac{17}{16}\right)$.

ullet Тогда $p=x_0-\pi=\left(-rac{1}{4},rac{1}{16},-rac{1}{8}
ight),\;\;eta=p^T\pi=rac{17}{128}$

Домашнее задание 3

- 0. Найти $\pi_S(y) = \pi$, если $S = \{x \in \mathbb{R}^n \mid c^T x \geq b\}$
- 1. Найти $\pi_S(y)=\pi$, если $S=\{x\in\mathbb{R}^n\mid x=x_0+Xy,X\in\mathbb{R}^{n imes m},y\in\mathbb{R}^m\}$, y
 otin S
- 2. Построить гиперплоскость, разделяющую S_1 и S_2 :

$$S_1 = \left\{x \in \mathbb{R}^n \mid x_1^2 + x_2^2 + \ldots + x_n^2 \le 1 \right\}, \quad S_2 = \left\{x \in \mathbb{R}^n \mid x_1^2 + x_2^2 + \ldots + x_{n-1}^2 + 1 \le x_n \right\} \ \ (49)$$

- 3. Построить опорную гиперплоскость для множества $S=\left\{x\in\mathbb{R}^3\mid \frac{x_1^2}{4}+\frac{x_2^2}{8}+\frac{x_3^2}{25}\leq 1\right\}$ в граничной точке $x_0=(-\frac{6}{5},\frac{12}{5},0)$
- 4. Пусть $X \subset \mathbb{R}^n$ замкнутое выпуклое множество, $\mathbf{x} \in S$. Найти множество $Y \subset \mathbb{R}^n$ такое, что $\forall \mathbf{y} \in Y$ выполнено $\mathbf{x} = \pi_X(\mathbf{y})$
- 5. Пусть даны $\mathbf{x} \in \mathbb{R}^n$ и выпуклый конус $K \subseteq \mathbb{R}^n$. Пусть $Y = \mathbf{x} + K$, $\mathbf{y} \in Y$. Найти множество $X \subset \mathbb{R}^n$, такое, что $\mathbf{x} \in X, \forall \mathbf{y} \in Y : x = \pi_X(\mathbf{y})$

В качестве решения необходимо предоставить либо:

- ullet .pdf файл, сверстанный с помощью $L\!\!\!/ T_E\!\!\! X$ с решениями задач
- .ipynb с оформленным решением