Finite State Automatons

Dhruva Sambrani

January 27, 2020

Finite State Automaton

 $M = (Q, \Sigma, \delta, q0, f)$ There is a set of states Q which M manipulates by δ over Σ and the string is accepted if it lies in $f \subset Q$, starting from q0.

 $q0 \in Q, f \subset Q$

M always reads the entire input.

Accepting a string

Given a string, S = c0,c1...cn, M accepts S iff \exists r0, r1, ... $rn+1 \in Q$, st 1. r0 = q0 2. $ri + 1 = \delta(ri, ci)$ 3. $rn+1 \in f$

A language is recognized by M, iff $L = \{s \mid M \text{ accepts } s\}$.

Example

1. Define a Finite State Automaton that recognizes the language $L=101, \Sigma=\{0,1\}$. Look at Fig 1 for implementation.

Side note

FSAs can be implemented in more than one ways. Is there a minimal implementation?

2. Define a Finite State Automaton that recognizes the language $L = \{s \mid s \text{ has equal 0s and 1s}\}, \Sigma = \{0,1\}$

Pigeonhole Principle

$$r0 \rightarrow r1 \rightarrow ... \rightarrow ri \rightarrow ... \rightarrow rn$$

Continued in next class...

Figure 1: FSA