Exercices de programmation 1

Fonction indicatrice d'Euler, exponentiation rapide

Exercice 1. Indicatrice d'Euler 1

- 1. Définir une fonction pgcd qui prend en paramètres deux entiers a et b et renvoie leur PGCD.
- 2. Définir une fonction $est_premier$ qui prend en paramètre deux entiers a et b, et qui renvoie 1 si a et b sont premiers entre eux, 0 sinon.
- 3. Définir une fonction indic_euler1 qui prend en paramètre un entier n, et qui renvoie la valeur de $\varphi(n)$, en considérant que c'est le nombre d'entiers inférieurs à n premiers avec n.

Exercice 2. Indicatrice d'Euler 2

1. Écrire une fonction $decomp_prem$ qui affiche la décomposition en facteurs premiers sous la forme d'une liste de couples (p_i, a_i) , par exemple:

$$decomp_prem(148) \rightarrow [(2,2), (37,1)]$$

 $decomp_prem(1092) \rightarrow [(2,2), (3,1), (7,1), (13,1)]$

car
$$148 = 2^2 \times 37$$
 et $1092 = 2^2 \times 3 \times 7 \times 13$.

- 2. Définir une fonction récursive indic_euler2 qui prend en paramètre un entier n, et qui renvoie la valeur de $\varphi(n)$, via les règles de calcul suivante :
 - si n = p est premier, alors

$$\varphi(p) = p - 1.$$

 $\bullet\,$ si $n=p^k$ est une puissance d'un nombre premier, alors

$$\varphi(p^k) = p^k - p^{k-1}.$$

• si $n = p_1 \times p_2$ est le produit de deux nombres **premiers entre eux**, alors

$$\varphi(p_1 \times p_2) = \varphi(p_1) \times \varphi(p_2).$$

• Comparer l'efficacité des deux fonctions indic_euler1 et indic_euler2 en temps d'exécution.

Exercice 3. Calcul de puissance modulaire naïf

Définir une fonction puissance_mod qui prend en paramètres un entier a, un entier k et un entier n, et qui calcule la quantité $a^k[n]$ par une fonction itérative naïve (dans une boucle, on multiplie par a à chaque passage).

Exercice 4. Calcul de puissance modulaire par exponentiation rapide

- 1. Définir une fonction $expo_rapide$ qui prend en paramètres un entier a, un entier k et un entier n, et qui calcule la quantité $a^k[n]$ par l'algorithme d'exponentiation rapide récursif.
- 2. Comparer les résultats obtenus avec l'instruction pow(a,k,n) de Python.
- 3. Comparer l'efficacité des fonctions puissance_mod et expo_rapide en temps d'exécution pour calculer des puissances modulaires de plusieurs très grands entiers.
- 4. Vérifier les valeurs obtenues à la main de :
 - $2^{65}[53]$,
 - $7^{231}[238]$.

On rappelle que pour mesurer le temps d'exécution d'une fonction en Python, on peut utiliser le module time et le code suivant :

```
import time

start = time.time()

# Instructions
send = time.time()
print("Temps d'execution :", end-start)
```