Deduction: Quotient Remainder

 $\forall n \in \mathbb{Z}, d \in \mathbb{N}^{\geq 1}, \exists !q, r \in \mathbb{Z} \text{ such that } n = dq + r \ \& \ 0 \leq r < d$

- Proof -

• Let $n \in \mathbb{Z}, d \in \mathbb{N}^{\geq 1}$ and set

$$S = \{n - dk : n - dk \in \mathbb{N} \land k \in \mathbb{Z}\}\$$

- Claim $|S| \ge 1$
 - If $n \geq 0$, them $n = n d0 \in \mathbb{N}$, so $n \in S$
 - Else n < 0, $n nd = n(1 d) \ge 0$
 - * Because $d > 1 \Leftrightarrow 0 > 1 d$, and n < 0
 - * So $n nd \in S$
- By the principle of well ordering there is a least element $r \in S$ and therefore we have $q \in \mathbb{Z}$ such that $r = n dq \Leftrightarrow n = r + dq$ (α)
- One must show that r < d
 - But if $r \ge d$ (β) , then $n d(q + 1) = n dq d \stackrel{\alpha}{=} r d \stackrel{\beta}{\ge} 0$
 - Then $n d(q + 1) \in S$, but n d(q + 1) < n dq = r, so then r would not have been the smallest element in S
 - That is a contradiction, therefore r < d

Uniqueness

• Note without assumption on $n \in \mathbb{Z}$ by the above prove we get $q_1, r_1, q_2, r_2 \in \mathbb{Z}$ such that $n = dq_1 + r_1$ and $n = dq_2 + r_2$, then we obtain:

$$r_1 - r_2 = d(q_1 - q_2)$$

- so $q \mid (r_1 - r_2)$, then since $0 \le r_1, r_2 < d$ then we know that

$$-d < r_1 - r_2 < d$$

- But since $d \mid r_1 - r_2$ then $r_1 - r_2 = 0$ and we get $r_1 = r_2$, if that's the case then $d(q_1 - q_2) = 0$ but d > 0 so similarly we have $q_1 = q_2$