SHINNOSUKE KIKUCHI (UTOKYO) JUNE 16, 2019 ASIAN MTG ECONOMETRIC SOCIETY

TECHNOLOGY, INEQUALITY, & AGGREGATE DEMAND

Motivation

Motivation

- Technological Progress: Efficiency (+) v.s. Inequality (-)
 - Labor-Enabling v.s. Labor-Replacing (Acemoglu)
 - Productivity/New task v.s. Displacement (Acemoglu-Restrepo)
 - Routine-Biased Technological Change (RBTC) and Polarization: (Autor-Dorn 2013, Barany-Siegel 2018)
 - Technology and expanding income inequality

Motivation

- Technological Progress: Efficiency (+) v.s. Inequality (-)
 - Labor-Enabling v.s. Labor-Replacing (Acemoglu)
 - Productivity/New task v.s. Displacement (Acemoglu-Restrepo)
 - Routine-Biased Technological Change (RBTC) and Polarization: (Autor-Dorn 2013, Barany-Siegel 2018)
 - Technology and expanding income inequality
- Question: How technological progress, if biased, impacts
 - labor market
 - aggregate demand
 - economic growth

Fact 1: Routine Biased Tech. Change and Polarization

	Low skill service	Manufacturing	High skill service
Wage 1980	Low	Middle	High
Routineness	Low	High	Low

Fact 1: Routine Biased Tech. Change and Polarization

	Low skill service	Manufacturing	High skill service
Wage 1980	Low	Middle	High
Routineness	Low	High	Low
RBTC ¹	1	† † †	↑

Fact 1: Routine Biased Tech. Change and Polarization

	Low skill service	Manufacturing	High skill service
Wage 1980	Low	Middle	High
Routineness	Low	High	Low
RBTC ¹	†	† † †	↑
Wage	† †	†	11

Fact 1: Routine Biased Tech. Change and Polarization

	Low skill service	Manufacturing	High skill service
Wage 1980	Low	Middle	High
Routineness	Low	High	Low
RBTC ¹	†	† † †	↑
Wage	↑ ↑	1	↑ ↑
Emp. Share	11	<u> </u>	†
	Polarization ²		

Fact 2: Secular, declining trend in interest rate

US Natural Rate of Interest,

% Laubach and Williams estimates

Potential causes:

- ▶ Capital Demand ↓
 - ▶ TFP growth ↓
 - ▶ Population growth ↓
 - ▶ Capital good price ↓
- Asset Demand 1
 - Aging
 - ▶ Inequality ↑ (?)
- Summer 2015, Eggertsson et al 2018

What/how I do in this paper

What

- Examine impact of Routine Biased Technological
 Change on
 - labor market polarization, inequality
 - interest rate aggregate demand

How

- Quantitative model to account for these facts:
 - OLG with skill heterogeneity and non-homothetic bequest motive (Benhabib-Bisin-Luo 2019 + Straub 2018) - The rich save more
 - 3-sectors, Occupational choice (Barany-Siegel 2018)
- Calibrate to the US economy from 1980 to 2010

Preview of the result

- 1. How does RBTC impact labor market?
 - RBTC leads to Job/Wage polarization consistent with previous literature
- 2. What are the macro implications for interest rate and economic growth?
 - RBTC/Polarization accounts for more than half of the decline in interest rate
 - It can suppress growth under ZLB (WIP, not covered today)

Related Literature (can skip)

- Tech Impacts on Labor Market (Automation, Polarization)
 - **Theory:** Zeira (1998), Acemoglu-Restrepo (2017,18,19...)
 - Empirics: Autor-Dorn (2013), Goos et al (2014)
 - Quantitative: Buera-Kaboski (2012), Barany-Siegel (2018)...
- Evolution of Inequality:
 - Kaymak-Poschke (2016), Benhabib et al (2019)
- Inequality and Aggregate Demand:
 - De Nardi (2004), Saez-Zucman (2014), Straub (2018), Auclert-Rognile (2018)
- Secular Stagnation (Decline in Interest Rate):
 - Summers (2014, 2015), Eggertsson et al (2018)

Plan for talk (20 min)

1. General Framework

2. Results (Theoretical/Quantitative)

3. Conclusion

4. Appendix + Empirical Follow-ups

GENERAL FRAMEWORK

Model Overview

Model Overview

Production

- Barany-Siegel 2018 + capital
- Final Good Producer

$$Y = K^{\alpha}X^{1-\alpha}$$

▶ Each Sector j = h, m, l

$$y_j = A_j N_j$$

Aggregation

$$X = \left(y_h^{\frac{\epsilon - 1}{\epsilon}} + y_m^{\frac{\epsilon - 1}{\epsilon}} + y_l^{\frac{\epsilon - 1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon - 1}}$$

- \bullet ϵ : Elasticity of Substitution between factors (sectors)
 - $\epsilon < 1$: Sectors are compliment
- Labor Demand Function is derived

Household

- Benhabib et al 2019 + Straub 2018 + Occupational choice
- OLG with Deterministic Life-time with Roy
- ▶ Heterogeneous in age and skill endowment $(s_{i,h}, s_{i,m}, s_{i,l})$
- Households do
 - Choose the best occupation given their skill endowment
 - Receive labor/capital income
 - Consume and Save
 - Leave bequest to their children (warm-glow)

Household: Recursive Problem

Recursive Problem at the age of t

$$V_{t}(a) = \max_{c,a'} u(c) + \beta V_{t+1}(a') \quad t = 1, ... T - 1$$

$$V_{T}(a) = \max_{c,a'} u(c) + e(a') \qquad t = T$$

$$s.t. \quad a' = (1 + r)a - c + x$$

$$c \ge 0, \quad a' \ge 0$$

Household: Recursive Problem

Recursive Problem at the age of t

$$V_t(a) = \max_{c,a'} u(c) + \beta V_{t+1}(a') \quad t = 1, ... T - 1$$

$$V_T(a) = \max_{c,a'} u(c) + e(a') \qquad t = T$$

$$s.t.$$
 $a' = (1+r)a - c + x$
 $c \ge 0, \ a' \ge 0$

Non-homothetic utility

$$u(c) = \frac{(c/z)^{1-\sigma} - 1}{1 - \sigma}$$

$$e(a) = \gamma \frac{(a/z)^{1-\Sigma} - 1}{1 - \Sigma}$$

$$\Sigma/\sigma \equiv \phi < 1$$

Bequest is luxury good, and the rich save more

Stationary Equilibrium

- Household Optimization:
 Life-time path of Consumption, Saving, and Bequest
- Firm Optimization:Capital-Labor and Labor Allocation
- Market Clearing:
 - Goods Market
 - Asset Market: Asset Demand, Capital Supply (HH)=Capital Demand (Firm)
 - Labor Market: (Occupational Choice)

RBTC impact on Labor Market and Interest Rate

RESULT

Prop. 1: If goods for three sectors are complements, rapid productivity growth in manufacturing sector leads to Job/ Wage Polarization

Prop. 1: If goods for three sectors are complements, rapid productivity growth in manufacturing sector leads to Job/ Wage Polarization

Manuf. sector becomes more productive

Prop. 1: If goods for three sectors are complements, rapid productivity growth in manufacturing sector leads to Job/ Wage Polarization

- Manuf. sector becomes more productive
- Need more labor in Service (= less labor in manuf.)

Empirically yes

Prop. 1: If goods for three sectors are complements rapid productivity growth in manufacturing sector leads to Job/ Wage Polarization

- Manuf. sector becomes more productive
- Need more labor in Service (= less labor in manuf.)

Empirically yes

Prop. 1: If goods for three sectors are complements rapid productivity growth in manufacturing sector leads to Job/ Wage Polarization

- Manuf. sector becomes more productive
- Need more labor in Service (= less labor in manuf.)
- Relative wage in service sector must increase

Consistent with literature
 (Autor-Dorn 2013, Goos et al 2014, Barany-Siegel 2018...)

Theoretical Result 2: Higher Saving Rate for the Rich

• Prop. 2: If $\Sigma/\sigma \equiv \phi < 1$, saving rate is increasing function of income level (MPC is decreasing in income level)

 Consistent with literature (Dynan et al 2004, Saez-Zucman 2016, Straub 2018, Benhabib et al 2019...)

Quantitative analysis: What to see

Only Exogenous Path: Biased Labor Productivity Growth

- Relative Wage
- Employment Share
- Interest Rate

Barany and Siegel 2018

>> Sector Definition

Quantitative analysis: Parameter

Target: Initial moments of labor market and interest rate

Table 2: Calibration for time-invariant parameters

Parameter	Description	Value	Source/Target
Production			
f(a)	Skill endowment distribution	log-normal	Bárány and Siegel (2018)
ϵ	CES between L, M, and H	0.002	Bárány and Siegel (2018)
α	Capital share	0.36	Standard. De Nardi (2004)
δ	Depreciation rate	0.06	Standard. De Nardi (2004)
Preference			
β	Discount rate	0.97	Benhabib et al. (2018)
σ	EIS for u	2	Benhabib et al. (2018)
Σ	EIS for e	0.6	Benhabib et al. (2018)
ϕ	Weight on Bequest Motive	0.006	Target $r_{1980} = 0.043$

Technological Progress

- Technological Progress
- More Productive

- Technological Progress
- More Productive
- Higher Output

- Technological Progress
- More Productive
- Higher Output
- Higher Capital Demand

- Technological Progress
- More Productive
- Higher Output
- Higher Capital Demand
- Higher Interest Rate

- Technological Progress
- More Productive
- Higher Output
- Higher Capital Demand
- Her Interest Rate Why?

- Technological Progress
- More Productive
- Higher Output
- Higher Capital Demand
- Her Interest Rate

Why?

if biased

- Expanding Inequality
- Higher Asset Demand (=Capital Supply)

- Technological Progress
- More Productive
- Higher Output
- Higher Capital Demand
- Her Interest Rate Why?

if biased

- Expanding Inequality
- Higher Asset Demand (=Capital Supply)

Lower Interest Rate!

CONCLUSION

Theoretically discuss the relationship between RBTC, Job/ Wage Polarization and Declining Interest Rate

- Theoretically discuss the relationship between RBTC, Job/ Wage Polarization and Declining Interest Rate
- Quantitatively assess that mechanism under a very simple model with a very small # of calibrated parameters
 - ⇒ plausibly account for the US economy from 1980-2010

- Theoretically discuss the relationship between RBTC, Job/ Wage Polarization and Declining Interest Rate
- Quantitatively assess that mechanism under a very simple model with a very small # of calibrated parameters
 ⇒ plausibly account for the US economy from 1980-2010
- Next...
 - Impact on Economic growth
 - More (empirically) Realistic Life-cycle Features
 (Demographics, Income profile, Age-specific EIS)
 - Optimal Policy to Biased Tech Progress/Shock

APPENDIX

Fact: Technological change is routine-biased

Fact: Labor market is polarized (Autor-Dorn 2013)

Figure from Autor-Dorn 2013

Sectoral Definition

- Low-skill Service: personal services, entertainment, low-skilled transport (bus service and urban transit, taxicab service, trucking service, warehousing and storage, services incidental to transportation), low-skilled business and repair services (automotive rental and leasing, automobile parking and carwashes, automotive repair and related services, electrical repair shops, miscellaneous repair services), retail trade, wholesale trade
- Manufacturing: mining, construction, manufacturing
- High-skill Service: professional and related services, finance, insurance and real estate, communications, high-skilled business services (advertising, services to dwellings and other buildings, personnel supply services, computer and data processing services, detective and protective services, business services not elsewhere classified), communications, utilities, high-skilled transport (railroads, U.S. Postal Service, water transportation, air transportation), public administration.

EMPIRICAL FOLLOW-UPS

Driving Forces for Decline in the Natural Rate of Interest

What I am doing: Panel Data Analysis (Fixed Effect*)

Sample: 36 OECD countries from 1980-2016

1. First Differences
$$\Delta r_{i,t} = \Delta X_{i,t} \beta + c_i + year_t + u_{i,t}$$

2. 5-year average
$$\overline{r_{i,\tau}} = \overline{X_{i,\tau}}\beta + c_i + period_{\tau} + u_{i,\tau}$$

Variable	Explanation	Source
r	Real interest rate (%)	World Bank
top10share	income share of top 10%	World Inequality Database
top1share	income share of top 1%	World Inequality Database
nca	Net capital account (BoP, current US\$)	World Bank
debt	DEBT (% of GDP)	IMF
prod	GDP per hour worked, constant prices	OECD
pg	Population growth (annual %)	World Bank
Life	Life expectancy at birth, total (years)	World Bank
frate	Fertility rate, total (births per woman)	World Bank

^{*}I choose FE over RE model after Hausman test

To the	(1) dif_r	(2) dif_r	(3) dif_r	(4) dif_r	(5) dif_r	(6) dif_r	_
D.dif_r	0.492*** (0.018)	0.493*** (0.017)	0.491*** (0.025)	0.487*** (0.025)	0.491*** (0.025)	0.487*** (0.025)	
year	-0.004 (0.006)	-0.002 (0.006)	-0.013 (0.013)	-0.014 (0.013)	-0.015 (0.013)	-0.017 (0.013)	
dif_top10share	-0.102 (0.078)		-0.206** (0.100)		-0.202** (0.100)		
dif_top1share		-0.162* (0.097)		-0.456*** (0.121)		-0.454*** (0.121)	J
dif_ncagrowth			-0.000* (0.000)	-0.000* (0.000)	-0.000 (0.000)	-0.000* (0.000)	
dif_debt			0.003 (0.023)	-0.010 (0.023)	0.006 (0.023)	-0.006 (0.023)	
dif_prod			0.070* (0.042)	0.058 (0.041)	0.073* (0.042)	0.061 (0.041)	<
dif_pg			0.257 (0.391)	0.310 (0.384)			
dif_Life					0.003 (0.480)	0.036 (0.472)	
dif_frate					1.728 (2.084)	2.005 (2.046)	<
_cons	7.828 (12.575)	3.805 (12.871)	25.881 (25.998)	28.437 (25.568)	30.309 (26.866)	33.472 (26.430)	
N	506	528	312	312	312	312	
R^2	0.604	0.615	0.601	0.614	0.601	0.615	=
Standard errors in	parentheses	\$					_

First Difference

Inequality matters

Slow Tech Growth pushes down interest rate

Low Fertility rate insignificantly decrease interest rate

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

	(1)	(2)	(3)	(4)	(5)	(6)
	r5	r5	r5	r5	r5	r5
period	0.077***	0.073***	0.022	0.056	0.017	0.157
	(0.025)	(0.026)	(0.046)	(0.052)	(0.122)	(0.131)
top10share5	-0.307***		-0.556***		-0.559***	
•	(0.110)		(0.170)		(0.177)	
top1share5		-0.482***		-0.890***		-0.884***
topishares		(0.182)		(0.256)		(0.260)
		(0.102)		(0.250)		(0.200)
ncagrowth5			0.002	0.002	0.002	0.002
			(0.002)	(0.002)	(0.002)	(0.002)
debt5			0.016	0.011	0.021	0.015
			(0.016)	(0.016)	(0.015)	(0.015)
prod5			0.262	0.368	0.289	0.294
prodo			(0.235)	(0.230)	(0.262)	(0.259)
			(0.250)	(0.230)	(0.202)	(0.200)
pg5			-1.990*	-2.252**		
			(1.002)	(1.006)		
Life5					-0.040	-0.539
111100					(0.540)	(0.528)
						2 2224
frate5					-3.565	-3.989*
					(2.154)	(2.152)
_cons -	-139.050***	-136.565***	-21.462	-97.521	-3.253	-254.227
	(47.082)	(50.484)	(88.116)	(101.086)	(204.508)	(222.694)
N	137	142	93	93	93	93

Inequality matters

Opposite?

⁵year average

Standard errors in parentheses

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

US Data from 1980

