CS294-158 (Spring 2020)

Deep unsupervised learning from @ucb

class video from(SP19) https://www.bilibili.com/video/BV1Eb411Y7J5?p=1

(SP20)https://www.bilibili.com/video/BV1oE411F7iz?p=2

Notes by Haotian Xue from @sjtu

homepage: https://htxue.info

email: xavihart@sjtu.edu.cn

Week 1

1.Motivation

- likelihood-based models: estimate p_{data} from samples $\{x^{(i)}\}$
- trade-off(to get the data distribution):
 - Efficient training and model representation
 - Expressiveness and generalization
 - Sampling quality and speed
 - Compression rate and speed

2. Simple generative models

- Just count it
 - JUST A histogram
 - fail in high dimension, poor in generalization
 - \circ Solutions : function approximation $p_{\theta}(x)$
- To get $p_{\theta}(x)$, maximum likelihood:

$$argmin_{ heta}loss(heta,x^{(1)},x^{(2)},\ldots,x^{(n)}) = rac{1}{n}\sum_{i=1}^n -log(p_{ heta}(x^{(i)}))$$

等价于计算数据01分布和 $p_{\theta}(x)$ 的KL散度最小

- -> Maximum likelihood + SGD
- (*) Bayes Network(Belif net / causal net)
 - DAG: vertex->property & edge->dependency & define parents and children
 - PGM(probability graph model) = Markov(无向) Net + Bayes Net(有向)
 - \circ sparsity the 2^i sized tabular

	В	P(B)		Е			
	+b	0.001	(B) (E)	+e			
	-b	0.999	*	÷			
	(<u>A</u>) =						
J		P(J A)		Α			
	+j	0.9		+a			
	-j	0.1		+a			
+j		0.05	(I) (M)	-a			
_							

	Α	М	P(M A)
	+a	+m	0.7
	+a	-m	0.3
	-a	+m	0.01
	-a	-m	0.99

P(E)

0.002

0.998

• Autoregressive Models

Α +a $\pm a$ -8

o a fully expressive Bayes Net

0.95

 \circ $logp(x) = \sum logp(x_i|x_{1:i-1})$

3.Modern NN-based autoregressive models

Week 2