

TRABALHO DE SISTEMAS DIGITAIS I - 2019-2

1. Apresentação

O trabalho consiste no **projeto, montagem e apresentação** de uma **cancela automática para estacionamento**. A Figura 1 mostra um exemplo.

Figura 1

2. Requisitos

Grupo de 5 integrantes.

Deverão ser utilizados circuitos digitais não programáveis (não poderão ser utilizados microcontroladores).

Funcionamento:

- Um sensor (botão), ao ser acionado, faz com que a cancela se abra por meio de um motor CC.
- Um sensor de fim de curso deve atuar quando a cancela abrir totalmente, parando o motor.
- Quando a cancela estiver totalmente aberta, um contador de 15 segundos deve ser acionado. Dois displays de 7 segmentos deverão ser utilizados para informar a contagem.
- Após o fim da contagem a cancela deve fechar automaticamente.
- Um sensor de fim de curso deve atuar quando a cancela fechar totalmente, parando o motor.
- Apenas enquanto a cancela estiver fechando, se um sensor de presença (botão) for acionado, a cancela deve voltar a se abrir.
- Um aviso luminoso (LED) deverá acender apenas durante a abertura e fechamento da cancela.
- Um LED deverá piscar na frequência do clock utilizado.
- Deve-se considerar um botão de reset, para reiniciar o sistema.

Sugestões de componentes a serem utilizados:

- Flip-Flop JK (74LS76);
- Ponte H (L293D);
- Gerador de clock (555);
- Contador de década (74LS90);
- Decodificador (4511).

Importante observar os datasheets dos componentes utilizados.

Sugere-se o uso de softwares de simulação (ex: Proteus) para testes do circuito ou partes do mesmo.

3. Avaliação

O projeto poderá ser apresentado em placa de circuito impresso ou em *protoboard*. Todo o circuito deverá estar visível e/ou de fácil acesso no dia da apresentação.

O esquemático do circuito construído deverá ser entregue impresso no dia da apresentação.

Cada grupo terá **7 minutos** para apresentar seu trabalho. A administração do tempo é de responsabilidade do grupo.

O objetivo da apresentação é verificar o funcionamento pleno do circuito, e serão avaliados itens como:

- Conhecimento do circuito;
- Funcionalidade:
- Estética/robustez;
- Fidelidade ao projeto.

Apesar do trabalho ser desenvolvido em grupo, cada integrante deve compreender todas as partes do trabalho, pois poderá ser arguido durante ou depois da apresentação.

4. Datas

Cada grupo deverá enviar, via ESO da disciplina (na seção "Trabalho", Semana 8), um documento informando o nome completo dos 5 integrantes do grupo, **até o dia 13/10/2019**.

A apresentação do trabalho será realizada no dia 03/12/2019.