Contents

1	General Background	3
	1.1 Notation	3

2 CONTENTS

Chapter 1

General Background

1.1 Notation

- 1. Notation
- 2. That isn't obvious
- 3. Goes here

Definition 1.1.1.

Theorem 1.1.2 (First derivative of a Dirichlet Eigenvalue). Let Ω be a bounded open set. We assume that $\lambda_k'(\Omega)$ is simple. Then, the functions $t \to \lambda_k(t), t \to u_t \in L^2(\mathbb{R}^N)$ are differentiable at t=0 with

$$\lambda'_k(0) := -\int_{\Omega} \operatorname{div}(|\nabla u|^2 V) \, \mathrm{d}x.$$

If, moreover, Ω is of class C^2 or if Ω is convex, then

$$\lambda'_k(0) := -\int_{\Omega} \left(\frac{\partial u}{\partial n}\right)^2 V.n \,\mathrm{d}\sigma$$

and the derivative u' of u_t is the solution of

$$\begin{cases} -\Delta u' = \lambda_k u' + \lambda'_k u & \text{in } \Omega \\ u' = -\frac{\partial u}{\partial n} V. n & \text{on } \partial \Omega \\ \int_{\Omega} u u' \, d\sigma = 0. \end{cases}$$