在线点餐系统的设计与实现

徐玲利1,李唯2

(1. 武汉华工激光工程有限责任公司, 湖北 武汉 430223; 2. 武汉软件工程职业学院 信息学院, 湖北 武汉 430205)

摘要:该文给出了在线点餐系统的设计与实现方案。系统使用JAVA Web 技术的 SSM(Spring+SpringMVC+MyBaits)框架进行便捷的开发与部属,实现了表示层和逻辑层的分离,在开发上具有通用性和实用性。系统力求适应在线点餐的业务需要,有普通用户和管理员两种用户,可以对菜品进行增删改查,对投诉建议进行回复,对订单进行查看,修改订单状态等,既方便了顾客客点餐,同时也有利于餐饮企业的管理和售后服务,提高了企业的信息化程度。

关键词:在线点餐系统;JAVA Web;SSM;B/S

中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2018)31-0096-02

DOI:10.14004/j.cnki.ckt.2018.3641

当今社会的生活节奏越来越快,人们对就餐的时间和方式 也有了更高的要求,这样就产生了对快捷订餐的需求,最快的 方式莫过于利用计算机网络,将餐饮业和计算机网络结合起 来,就形成了在线订餐系统。餐饮企业对餐品提供在线订餐服 务,不仅提高餐饮企业的服务质量,扩大知名度,也为用户了提 供方便快捷的服务。

本在线点餐系统使用 JAVA Web 技术的 SSM(Spring+SpringMVC+MyBaits)框架实现便捷的开发与部属,可以最大限度地保证系统的稳定性。系统方便了顾客点餐,同时能帮助餐饮企业扩大营业范围,增加知名度。

1系统需求与功能模块的设计

1.1 系统需求

系统的用户有普通用户和管理员。普通用户有登录注册、 投诉建议、修改密码、订购菜品等功能。管理员可以对菜品进 行增删改查,对投诉建议进行回复,对订单进行查看,修改订单 状态等。系统需求的用例模型如图1所示。

图1 系统需求的用例模型

1.2 系统的功能模块设计

系统包括如下的功能模块:

1)用户注册登录

用户访问本网站直接进入本网站可直接进入网站主页,可 选择登录,只有用户登录后才可以进行点餐以及其他操作,否 则只能进行菜品浏览操作。

2)浏览菜品

显示菜品的各种信息,可在左侧菜系分类点击显示不同菜系的菜品,以方便用户浏览选择。

3)菜品详细信息

显示菜品中某一菜品的详细信息,包括菜名,配料,做法,价格等,以供用户更高的了解该菜品信息。

4)购物车

实现对已定菜品的管理,包括删除菜品。

5) 生成订单

接受购物车信息,获取账户原来基本信息,用户可修改收货人姓名,联系方式,收货地址,配送方式等信息。

6)提交订单

将订单信息传至后台。

7)管理员操作

在后台系统管理用户、菜品、订单、留言。

系统的功能划分如图2所示。

1.3 系统流程图

系统流程图如图3所示。

收稿日期:2018-09-15

基金项目:武汉市教育科学规划重点课题(编号:2016A119)

作者简介:徐玲利(1979—),女,湖北武汉人,学士,主要研究方向为光电子;李唯(1978—),男,湖北武汉人,副教授,硕士,主要研究方向为软件工程、职业教育。

本栏目责任编辑:谢媛媛

图3 系统流程图

2 数据库设计

2.1 数据库概念设计

在完成了需求分析之后,就需要在需求分析的基础之上分析数据库的概念结构。E-R图是描述概念结构的有力工具,本系统的E-R图如图4所示。

图4 系统E-R图

2.2 数据库逻辑设计

通过E-R图得到本系统主要的数据表有:菜品表(t_dishes)、消息表(t_message)、用户表(t_user)、订单表(t_orders) 和用户订单表(t_user_orders)等。下面给出部分表结构图。

表1 菜品表t_dishes

字段名称	数据类型	是否为空	是否主键	描述
dishesid	varchar(30)	No	Yes	菜品编号
dishesname	varchar(30)	Yes	No	菜品名称

dishescategory	varchar(30)	Yes	No	菜品分类
dishesfeatures	varchar(30)	Yes	No	菜系特色
dishesprice	int(11)	Yes	No	菜品价格
dishesdiscount	double	Yes	No	菜品折扣
dishesdescription	text	Yes	No	菜品描述
dishesimage	varchar(200)	Yes	No	菜品图片
dishesnumber	int(11)	Yes	No	菜品销量
dishesstatus	varchar(20)	Yes	No	菜品状态
isdelete	int(11)	Yes	No	删除标识符

表2 订单表t_orders

字段名称	数据类型	是否为空	是否主键	描述
ordersid	varchar(30)	No	Yes	订单号
allprice	double	Yes	No	合计价格
ordersdate	date	Yes	No	订单日期
ordersstatus	varchar(30)	Yes	No	订单状态
usernote	varchar(200)	Yes	No	用户备注
ordersaddress	varchar(200)	Yes	No	收货地址
ordersway	varchar(50)	Yes	No	配送方式
isdelete	int(11)	Yes	No	删除标识符

3 系统的实现

系统设计和数据库设计完成之后,就需要编码实现了,本系统实现之后菜品列表页面如图5所示,订单结算页面如图6所示。

图5 菜品列表页面

图 6 订单结算页面

下面是部分订单管理功能的代码。

本栏目责任编辑:谢媛媛 1 97

$$\frac{1}{3}e^{-(x+1)^2-y^2}$$

起点选择(-0.5,3,0)。终点选为(-2.5,-2.5,0)。经过仿真结 果如图3:

图 3 航迹规划的结果

算法通过适应度排序,删除相同路径。保证了全局更新信 息素时,同一条路径的信息素不会重复增加,抑制算法早熟。

同时通过一号蚂蚁与二号蚂蚁的配合,与模仿染色体单点 交叉的航迹交叉,可以持久寻求全局最优解。

比较来说,本文算法比传统蚁群算法更简单高效。局部避 障算法经过无人机测试,切实有效,避障比较迅速。

4 结论

本文结合超声波传感器 KS103、数据传输模块、开发板 Arduino Mega2560和 pixhawk飞控芯片完成对避障无人机核心硬 件的开发。无人机的机械结构,使其拥有较强防撞能力以及较 轻的质量和良好的散热能力。无人机全局避障算法有良好效 果。算法经过仿真与无人机验证,切实可行。

参考文献:

- [1] 李彦苍,彭扬.基于信息熵的改进人工蜂群算法[J].控制与决 策,2015,30(6):1121-1125.
- [2] 吕甜甜. 四旋翼无人机航迹规划技术研究[D]. 哈尔滨:哈尔 滨工程大学,2015.
- [3] 冯国强,赵晓林,高关根,等.基于A~*蚁群算法的无人机航路 规划[J].飞行力学,2018(5):1-5.

【通联编辑:梁书】

(上接第97页)

model.addAttribute("suc", "发货成功");

} else if (("DeleteOrders").equals(temp)) {

model.addAttribute("suc", "成功删除" + length + "条数据 ");}

return "Orders/OrdersList";}

@RequestMapping("OrderDishes")

@ResponseBody //订单下的菜品列表

public List<Dishes> toordersdishes(User_Orders user_orders) {

List<Dishes> dishes = ordersListService.OrdersDishes(user_orders);

return dishes;}

@RequestMapping("UpdateOrders") //更改订单状态

public String toupdateorders(Orders orders, Model model) {

int rows = ordersListService.updateOrders(orders);

if (rows > 0) {

if (orders.getOrdersstatus().equals("已送出")) {

return "redirect:OrdersList?temp=UpdateOrders";}}

return "redirect:OrdersList";}}

4 小结

本系统是基于JAVA开发的B/S软件,系统不需要安装,只

要客户端有浏览器就可以访问。本系统由多个独立的模块组 成,采用分模块开发,可以保证整体功能的实现,同时只要前期 对模块进行合理的规划,在开发过程中,个别模块有问题时,只 针对该模块查找问题,无须整体进行调试,最大程度地做到规 范性和可维护性。本系统力求适应在线点餐的业务需要,可以 对菜品进行增删改查,对投诉建议进行回复,对订单进行查看, 修改订单状态等,在开发上具有通用性、可移植性和实用性,将 大大的方便顾客客点餐,同时也有利于餐饮企业的管理和售后 服务,提高了企业的信息化程度。

参考文献:

- [1] 章胜江,刘萍.基于SSM的网上评教系统的设计与实现[J].电 脑知识与技术,2018,14(17):132-134,139.
- [2] 周国华.基于SSM框架学习平台的设计与实现[J].信息与电 脑:理论版,2017(24):138-139.
- [3] 曹珍,杨帆.基于SSM框架的商户管理平台设计与实现[J].计 算技术与自动化,2017,36(4):119-121.
- [4] 王樱,李锡辉,赵莉.基于SSM框架的高校在线考试系统研究 [J]. 电脑编程技巧与维护,2017(20):32-34.
- [5] 刘昊,李民.基于SSM框架的客户管理系统设计与实现[J].软 件导刊,2017,16(7):87-89.

【通联编辑:朱宝贵】

本栏目责任编辑:谢媛媛