

Bloque V: El nivel de enlace

Tema 12: Tecnologías del nivel de enlace

Índice

- Bloque V: El nivel de enlace
 - Tema 12: Tecnologías del nivel de enlace
 - Introducción
 - Ethernet
 - CSMA/CD
 - Trama
 - Conmutadores
 - WiFi
 - Introducción
 - Capa física
 - CSMA/CA
 - Trama
 - Seguridad

Lecturas recomendadas:

- Capítulo 5, secciones 5.3, 5.5, 5.6 y 5.7, de "Redes de Computadores: Un enfoque descendente". James F. Kurose, Keith W. Ross. Addison Wesley.
- Capítulo 6, secciones 6.1 y 6.3, de "Redes de Computadores: Un enfoque descendente". James F. Kurose, Keith W. Ross. Addison Wesley.

Introducción

- Tecnologías punto a punto: un (único) emisor en un extremo y un (único) receptor en el otro extremo.
- Tecnologías de broadcast → Problema del acceso múltiple: coordinar el acceso de múltiples emisores y receptores a un canal de difusión compartido.
- Colisión: dos transmiten simultáneamente (total o parcialmente) → Los receptores no son capaces de recuperar el mensaje transmitido.
- Requisitos protocolos de acceso múltiple (canal a R bps):
 - Si sólo hay un nodo → Que transmita a R bps.
 - Si hay N nodos → De media, que transmitan a R/N bps.
 - Protocolo descentralizado y simple.
- Tipos de protocolos de acceso múltiple:
 - Protocolos de particionamiento del canal: http://www.youtube.com/watch?v=MxDeXZSfAzM
 - Protocolos de turnos: https://www.youtube.com/watch?v=7nl57gjhVd8
 - Protocolos de acceso aleatorio: http://www.youtube.com/watch?v=twMj9MTs3lw

Ethernet

- Protocolo de acceso aleatorio para canales de difusión.
- Se inventó a mediados de los 70 y se basaba en una topología en bus, con un cable **coaxial** conectando a todos los nodos.

- A mediados de los 90 se pasó a una topología en estrella basada en concentradores (hubs). Los equipos se conectaban con un cable de cobre de par trenzado (RJ-45) al concentrador.
- A principios de la década de 2000, se cambió el concentrador por un conmutador → Mayor velocidad efectiva.
- Va desde 10 Mbps hasta 10 Gbps hoy en día, todo sobre la misma trama Ethernet → Facilita la interconexión.
- Precursoras: ALOHA y ALOHA ranurado

- En las redes LAN (y de radio) el retardo de propagación entre las estaciones es mucho más pequeño que el tiempo de transmisión de las tramas:
 - Cuando una estación transmite una trama → El resto lo saben casi instantáneamente.
 - Si las estaciones pueden saber que otra estación está transmitiendo → Esperan para evitar la colisión.
 - Sólo habrá colisiones cuando dos estaciones empiecen a transmitir casi simultáneamente.
- Esta técnica se denomina de acceso múltiple sensible a la portadora (Carrier Sense Multiple Access): una estación escucha el medio antes de transmitir
 - Si está ocupado → Espera
 - Si está libre → Transmite
- Si dos estaciones intentan transmitir casi al mismo tiempo → Colisión
 - Es necesario una confirmación del receptor que también debe competir por el canal.
- Tiempo de espera después de una colisión:
 - CSMA 1-persistente: espera hasta que el canal esté libre y después transmite. Se produce colisión si hay dos o más estaciones esperando.
 - CSMA 0-persistente: espera un tiempo aleatorio y después vuelve a comprobar. Mayor tiempo de espera para retransmitir.

- En CSMA, si colisionan dos tramas → El medio está inutilizado durante la transmisión de esas tramas.
- Mejora: continuar escuchando el canal mientras dura la transmisión (Collision Detection) → No necesito recibir confirmación.
- Si el medio está libre → Transmite.
- Si no, continua escuchando hasta que esté libre → Transmite.
- Si se detecta una colisión durante la transmisión → Se transmite una señal corta de alerta y se corta la transmisión.
- Se espera un tiempo aleatorio, y después se intenta transmitir de nuevo (exponential backoff):
 - Tras cada colisión (sobre la misma trama) el tiempo de espera se duplica (1 seg, 2, 4, 8, 16, 32, ...)
 - Tras N intentos, no se retransmite más y se genera un mensaje de error.
 - Si se congestiona el sistema → Las estaciones deben esperar más y más para liberar al medio.

Tx. C

Tiempo: t₀

Tiempo: t₁

Tiempo: t₂

Tx. C

Tiempo: t₃

- ¿Cuánto tiempo se tarda en detectar una colisión, en el peor de los casos?
 - A transmite.
 - Justo antes de que llegue a D, D empieza a transmitir.
 - Casi inmediatamente → D detecta la colisión.
 - Pero la colisión se debe propagar hasta volver a A.
- El tiempo en detectar una colisión es <= dos veces el retardo de propagación extremo a extremo.
- Una trama debe ser suficientemente larga para detectar la colisión antes de que acabe su transmisión → Tamaño mínimo de trama (64 bytes) y tamaño máximo del medio (2500 m).
 - 2500 m → Aprox. 25 µsegs de retardo de propagación.
 - To detección colisión = 25 μsegs x 2 = 50 μsegs.
 - Enviar 64 bytes a 10 Mbps ⇒ 64 x 8 / 10 Mbps = 51.2 μ segs.
- https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiv eanimations/csma-cd/index.html

Ethernet: Trama

• Ethernet:

- Estándar definido por Xerox en 1982
- Método de acceso: CSMA/CD 1-persistente
- 10 Mbps

8 bytes	6 bytes	6 bytes	2	>= 0	>= 0	4 bytes
Preámbulo	Destino	Origen	Tipo	Datos	Relleno	FCS

• IEEE 802.3

 Estándar propuesto por la IEEE sobre el estándar Ethernet.

7 bytes	1	6 bytes	6 bytes	2	>= 0	>= 0	4 bytes
Preámbulo	S F D	Destino	Origen	Long.	Datos	Relleno	FCS

Ethernet: Trama

8 bytes	6 bytes	6 bytes	2	>= 0	>= 0	4 bytes
Preámbulo	Destino	Origen	Tipo	Datos	Relleno	FCS

- Preámbulo: patrón de 8 bytes, con 0's y 1's alternados, para sincronizar el emisor y el receptor:
 - El último byte es 01010111.
 - El receptor puede localizar el primer bit del resto de la trama.
- Dirección destino: puede ser una dirección única, de grupo o global.
- Dirección origen
- Tipo: indica el tipo de protocolo utilizado en el campo de datos.
 - En la cabecera IEEE 802.3 el campo Longitud indica la longitud (si <= 1500) o el tipo (si > 1500).
- Datos: máximo 1500 bytes
- Relleno: bytes añadidos para garantizar que la técnica de detección de colisiones pueda operar correctamente (mínimo 46 bytes)
- FCS (Frame Check Sequence): código CRC de detección de errores (incluye todos los campos, excepto el preámbulo, el SFD y el FCS).

- Concentrador (hub): repite las tramas recibidas por las interfaces de salida.
- Conmutador (switch): implementa el nivel físico y de enlace.
 - Dispone de **buffers** en las interfaces de salida → Evita las colisiones.
 - Puede combinar enlaces heterogéneos (distintas velocidades).
 - Tabla del conmutador: dirección MAC, interfaz en donde se encuentra y hora de alta.

Dirección	Interfaz	Hora
03:32:53:f3:b1:89	1	08:30
78:3a:b3:92:1b:7c	3	09:27
06:23:11:fc:87:9a	2	09:31

- Filtrado y reenvío:
 - Filtrado: determina si se debe reenviar la trama a alguna interfaz o debe ser descartada.
 - Reenvío: determina las interfaces a las que se debe enviar la trama y la envía.
- Funcionamiento: el conmutador recibe una trama para la dirección aa:aa:aa:aa:aa:aa por la interfaz x:
 - No existe la dirección en la tabla → Se reenvía por todas las interfaces, excepto la x (difusión).
 - Existe la dirección y está asociada a la interfaz x → Descarta la trama porque ya ha sido enviada a su segmento LAN.
 - Existe la dirección y está asociada a la interfaz y → Se envía la trama por la interfaz y.
- Los conmutadores son dispositivos plug&play → La tabla del conmutador se auto-aprende:
 - Por cada trama recibida, almacena la MAC origen y su interfaz.
 - Una dirección se borra si no se ha recibido ninguna trama de esa MAC (tiempo de envejecimiento).

- VLAN (Virtual Local Area Network): tecnología que permite definir múltiples LAN virtuales sobre un único conmutador.
 - Los hosts de una VLAN sólo se comunican entre sí.

- ¿Y si quiero comunicar dos hosts de dos VLANs distintas? ¡Necesito un router!
 - Los conmutadores suelen incorporar un router interno para esta situación.

 VLAN Trunking: permite conectar dos conmutadores y compartir las VLANs entre los conmutadores.

 Para saber a qué VLAN pertenece una trama, se modifica la cabecera Ethernet para incluir esta información (IEEE 802.1Q).

WiFi: Introducción

- Características de los sistemas de transmisión inalámbrica: Movilidad y flexibilidad.
- No son un sustituto de las redes "tradicionales":
 - Muchos equipos son estáticos (servidores).
 - Velocidad limitada por el ancho de banda.
 - Seguridad
- Sistemas de transmisión inalámbrica:
 - Satélites (a distintas órbitas)
 - Telefonía móvil: GSM, GPRS, UMTS (3G), 4G, 5G
 - Bluetooth
 - WiFi (Wireless Fidelity) o WLAN (Wireless LAN)
 - WiMAX
- Estándares para WiFi:
 - IEEE 802.11: hasta 2 Mbps. 2,4 GHz.
 - IEEE 802.11a: hasta 54 Mbps. 5 GHz.
 - IEEE 802.11b: hasta 11 Mbps. 2,4 GHz.
 - IEEE 802.11g: hasta 54 Mbps. 2,4 GHz. Compatible con b
 - IEEE 802.11n: hasta 600 Mbps. 2,4 y 5 GHz. Compatible con a/b/g
 - IEEE 802.11ac: hasta 1,3 Gbps. 5 GHz. Compatible con a/n
 - IEEE 802.11ad: hasta 7 Gbps. 2,4, 5 y 60 GHz. Compatible con a/b/g/n/ac

WiFi: Introducción

- Red de infraestructura: componente lógico de 802.11 para enviar las tramas a su destino (no se especifica una tecnología particular). Se suele usar Ethernet.
- Punto de acceso: responsable de enviar y recibir tramas de un host inalámbico asociado.
- Medio inalámbrico: radio frecuencia.
- Equipo inalámbrico: dispositivos con una interfaz de red inalámbrica (portátiles, tabletas, móviles, ...).

WiFi: Introducción

- Basic Service Set (BSS): grupo de estaciones que se comunican entre sí.
 - BSS independiente (o ad-hoc): se comunican directamente.
 - Grupo reducido
 - Carácter temporal (p.e. reunión)
 - BSS infraestructura: usan un punto de acceso.
 - Comunicaciones entre estaciones móviles pasan por el punto de acceso → Una estación se asocia a un punto de acceso.
 - Los puntos de acceso envían periódicamente una señal baliza.
 - Distancia de las estaciones al punto de acceso (no entre estaciones).
- Extended Service Set (ESS): asociación de BSSs. Se encadenan varias BSSs usando un backbone → Transición BSS.

WiFi: Capa física

- Problemas de los enlaces inalámbricos:
 - Intensidad decreciente de la señal.
 - Interferencias.
 - Propagación multicamino: la señal transmitida se refleja en los objetos → La señal recibida es menos limpia.
- Solución → Espectro expandido (Spread Spectrum): transmitir ocupando una banda de frecuencias mayor de la requerida para incrementar la resistencia a estos problemas.
- Espectro expandido salto de frecuencias (FHSS):
 - Se transmite en diferentes bandas de frecuencias, saltando de una a otra en forma aleatoria pero predecible.
 - Emisor y receptor deben compartir generador de números aleatorios y semilla.
- Espectro expandido de secuencia directa (DSSS) o CDMA:
 - El "espectro se expande" al transmitir varios bits por cada bit de información real.
 - En el emisor, cada bit a enviar se multiplica por un código (chipping code) generado pseudo-aleatoriamente.
 - El receptor genera el mismo código y recupera los bits originalmente enviados.
 - Aunque se corrompan varios bits, el receptor podrá recuperar la señal original.
- Además, se basa en técnicas de modulación y codificación adaptativas → En función del ruido, se aumenta o reduce la velocidad.

WiFi: Asociación

- SSID (Service Set Identifier): identifica la red inalámbrica asociada a un punto de acceso.
- Un equipo móvil debe asociarse con un punto de acceso (PA) → Los puntos de acceso envían periódicamente tramas baliza (MAC del PA + SSID).
 - Exploración pasiva: el equipo espera a recibir tramas baliza.
 - Exploración activa: el equipo solicita a los PA que se identifiquen.
- El equipo determina a que punto de acceso asociarse (p.e. mayor potencia).
- Seguridad:
 - Filtrado MAC
 - Login y password, sobre un servidor de autenticación (p.e. RADIUS).
- Después, configuración IP por DHCP.

- Una vez asociado, el equipo móvil puede transmitir y recibir tramas del PA → Subcapa MAC del nivel de enlace.
- Pero, otra vez, tenemos el problema del acceso múltiple → Solución: CSMA/CA (Collision Avoidance).
- ¿Por qué no CSMA/CD?
 - Problema del **nodo oculto** (no todas las estaciones reciben todo).

CSMA/CA:

- Cuando una estación empieza a transmitir, transmite la trama completa ... haya o no colisión.
- Necesita un ACK para confirmar recepción.

- Una colisión es muy costosa → La trama se transmite completa → Se intentan evitar las colisiones (CA).
- CSMA/CA emisor:
 - Si el canal está libre → Espera un tiempo corto (DIFS – Distributed Inter-Frame Space) y transmite la trama completa.
 - 2. Si está ocupado → Espera un tiempo aleatorio. ¡Mientras el canal está ocupado, el tiempo de espera se para!
 - 3. Cuando el contador llega a cero, se transmite la trama completa.
 - 4. Si se recibe ACK → ok y volver al paso 2 para transmitir más datos.
 - 5. Sino se recibe ACK → Volver al paso 2 para volver a intentarlo.
- CSMA/CA receptor: al recibir una trama, si está ok, se espera un tiempo corto (SIFS – Short Inter-Frame Spacing) y se envía un ACK.

- Solución al problema de los nodos ocultos: RTS/CTS.
 - Cuando un emisor quiere transmitir, primero envía un RTS (Request To Send) indicando el tiempo total que necesita.
 - Cuando el PA recibe el RTS, responde con un CTS (Clear To Send) indicando el tiempo restante que tiene reservado el canal → El emisor sabe que tiene el canal disponible + el resto saben que el canal estará ocupado.

Beneficios:

- Una trama sólo se enviará después de reservar el canal →
 Evita colisiones de nodos ocultos.
- Las colisiones se producen sobre las tramas RTS o CTS → Son tramas cortas.
- Desventajas: introduce un retardo (enviar RTS y CTS) y consume recursos del canal → Es opcional (se establece un umbral de tamaño de trama a partir del cual se usa).
- https://www.ccs-labs.org/teaching/rn/animations/csma/

WiFi: Seguridad

- El aire es un medio compartido → Muy sensible a escuchas.
 - No es muy distinto al cable → hay que alcanzar la misma seguridad.
 - Sin embargo se usan mecanismos adicionales.
- WEP (Wired Equivalent Privacy):
 - Clave estática → Hoy en día, muy fácil de romper
 - Computacionalmente eficiente (clave de 64-128 bits)
 - Exportable internacionalmente
 - Opcional
 - RC4 para cifrado y CRC-32 para integridad
- Mejor WPA (WiFi Protected Access):
 - Implementa TKIP (Temporal Key Integrity Protocol) para cifrado: cambia dinámicamente las claves según se utiliza el sistema.
 - MIC para integridad
- Mejor WPA2:
 - AES para cifrado y CCMP para integridad.
 - Método más seguro

WiFi: Otros

- Bluetooth: tecnología para sustitución de cables.
 - Corto alcance, baja potencia y bajo coste.
 - Permite crear redes inalámbricas de área personal
 WPAN.
- WiMAX World Interoperability for Microwave Access (IEEE 802.16):
 - Área extensa, alta velocidad (~ banda ancha).
 - Estándar IEEE 802.16e para soportar movilidad a velocidades elevadas (120 km/h).
- Acceso red telefonía móvil:
 - Aprovechar las redes de telefonía móvil para dar conectividad a Internet.
 - 3G, 4G, 5G.

 What is the Internet? https://www.youtube.com/watch?v=3YqGYvJkxoA

