1

8

9

10

11

1

6

7

1

What is claimed is:

1	An apparatus	comprising
1.	All apparatus	comprising.

2	an initialization storage to initialize a chipset in a secure environment for an
3	isolated execution mode, the secure environment having a plurality of executive entities
1	and being associated with an isolated memory area accessible by at least one processor,
5	the at least one processor having a plurality of threads and operating in one of a normal
6	execution mode and the isolated execution mode, the executive entities including a
7	processor executive (PE) handler; and

a PE handler storage to store PE handler data corresponding to the PE handler, the PE handler data including a PE handler image to be loaded into the isolated memory area after the chipset is initialized, the loaded PE handler image corresponding to the PE handler.

- 2. The apparatus of claim 1 further comprises:
- 2 a thread count storage to store a thread count indicating number of threads 3 currently operating in the isolated execution mode;
- a thread count updater coupled to the thread count storage to update the thread count when the initialization storage is accessed;
 - a mode storage to store a chipset mode indicating a mode of operation of the chipset; and
- a mode write circuit coupled to the mode storage to write the chipset mode to the mode storage.
 - 3. The apparatus of claim 2 further comprising:

2.	an identifier log storage to store identifiers of the executive entities operating in
3	the isolated execution mode, the identifiers being read only when in lock;
4	a log lock storage to store a lock pattern indicating the identifiers in lock; and
5	a lock circuit coupled to the identifier log storage and the log lock storage to lock
6	the identifiers based on the lock pattern.
1	4. The apparatus of claim 3 further comprising:
2	a fused key storage to store a fused key used in handling the executive entities;
3	and
4	a scratch storage to store isolated settings used to configure the isolated execution
5	mode.
1	5. The apparatus of claim 4 wherein the executive entities further include a
2	processor executive (PE) and an operating system executive (OSE).
1	6. The apparatus of claim 5 wherein the chipset mode is one of an
2	initialization waiting mode to indicate the chipset is waiting for initialization, a PE
3	initialization in-progress mode to indicate the PE is being executed, a PE initialization
4	completion mode to indicate the PE is completed, an OSE loaded mode to indicate the
5	OSE has been loaded, a closing mode to indicate the isolated execution mode is closed,
6	and a failure mode to indicate a failure.
1	7. The apparatus of claim 6 wherein the initialization storage returns an
2	updated thread count when the chipset mode does not represent the failure mode and to
3	return a current thread count when the chipset mode represents the failure mode, the

updated thread count being one of an incremented thread count and a decremented thread

count.

4

1	8. Th	ne apparatus of claim 7 wherein the initialization storage comprises:
2	an enrolln	nent storage to return the incremented thread count when one of the
3	threads enrolls in	the isolated execution mode; and
4	a withdra	wal storage to return the decremented thread count when one of the
5	enrolled threads	withdraws from the isolated execution mode.
1	9. Th	ne apparatus of claim 8 wherein the mode write circuit writes the chipset
2	mode correspond	ing to a failure mode into the mode storage when the thread count
3	reaches a thread l	imit.
1	10. Th	ne apparatus of claim 1 wherein the PE handler data further include a PE
2	handler identifier	, a PE handler size, and a PE handler address.
1	11. Tł	ne apparatus of claim 6 wherein the PE handler storage is a non-volatile
2	memory.	
1	12. Th	ne apparatus of claim 6 wherein the fused key is returned when the fused
2	key storage is rea	d in the initialization waiting mode.
1	13. Th	ne apparatus of claim 12 wherein the fused key is programmed at
2	manufacturing tir	me∙to a random value.
1	14. Th	ne apparatus of claim 13 further comprising:
2	a status st	orage to store a status value of an isolated unlock pin used in restoring a

root key from the fused key.

1	15.	The apparatus of claim 4 wherein the isolated settings include an isolated
2	base value, an	isolated mask value, and a processor executive entry address, the isolated
3	base and mask	values defining the isolated memory area.
1	16.	A method comprising:
2	initializ	zing a chipset in a secure environment for an isolated execution mode by an
3	initialization st	torage, the secure environment having a plurality of executive entities and
4	being associated with an isolated memory area accessible by at least one processor, the at	
5	least one proce	essor having a plurality of threads and operating in one of a normal
6	execution mod	e and the isolated execution mode, the executive entities including a
7	processor exec	utive (PE) handler; and
8	_	PE handler data corresponding to the PE handler in a PE handler storage,
9		data including a PE handler image to be loaded into the isolated memory
10	area after the c	hipset is initialized, the loaded PE handler image corresponding to the PE
11	handler.	
1	17.	The method of claim 16 further comprises:
2	storing	a thread count in a thread count storage indicating number of threads
3	currently opera	ating in the isolated execution mode;
4	updatir	ng the thread count when the initialization storage is accessed;
5	storing	a chipset mode indicating a mode of operation of the chipset in a mode
6	storage; and	
7	writing	the chipset mode into the mode storage.

The method of claim 17 further comprising:

18.

2	storing identifiers of the executive entities operating in the isolated execution		
3	mode, the identifiers being read only when in lock;		
4	storing a lock pattern indicating the identifiers in lock; and		
5	locking the identifiers based on the lock pattern.		
1	19. The method of claim 18 further comprising:		
2	storing a fused key used in handling the executive entities in a fused key storage		
3	and		
4	storing isolated settings used to configure the isolated execution mode.		
1	20. The method of claim 19 wherein the executive entities further include a		
2	processor executive (PE) and an operating system executive (OSE).		
1	21. The method of claim 20 wherein the chipset mode is one of an		
2	initialization waiting mode to indicate the chipset is waiting for initialization, a PE		
3	initialization in-progress mode to indicate the PE is being executed, a PE initialization		
4	completion mode to indicate the PE is completed, an OSE loaded mode to indicate the		
5	OSE has been loaded, a closing mode to indicate the isolated execution mode is closed,		
6	and a failure mode to indicate a failure.		
1	22. The method of claim 21 wherein initializing the chipset comprises		
2	returning an updated thread count when the chipset mode does not represent the		
3	failure mode, the updated thread count being one of an incremented thread count and a		
4	decremented thread count; and		
5	returning a current thread count when the chipset mode represents the failure		
6	mode.		

1	23.	The method of claim 22 wherein initializing the chipset further comprises:
2	returnin	ng the incremented thread count when one of the threads enrolls in the
3	isolated executi	ion mode; and
4	returnin	ng the decremented thread count when one of the enrolled threads
5	withdraws fron	n the isolated execution mode.
1	24.	The method of claim 23 wherein writing the chipset mode comprises
2	writing the chip	pset mode corresponding to a failure mode when the thread count reaches a
3	thread limit.	
1	25.	The method of claim 16 wherein the PE handler data further include a PE
2	handler identifi	ier, a PE handler size, and a PE handler address.
1	26.	The method of claim 21 wherein the PE handler storage is a non-volatile
2	memory.	
1	27.	The method of claim 21 wherein the fused key is returned when the fused
2	key storage is r	read in the initialization waiting mode.
1	28.	The method of claim 27 wherein the fused key is programmed at
2	manufacturing	time to a random value.
1	29.	The method of claim 28 further comprising:
2	storing	a status value of an isolated unlock pin used in restoring a root key from
3	the fused key.	

1	30.	The method of claim 19 wherein the isolated settings include an isolated
2	base value, an	isolated mask value, and a processor executive entry address, the isolated
3	base and mask	values defining the isolated memory area.
1	31.	A computer program product comprising:
2	a mach	nine useable medium having computer program code embedded therein, the
3	computer prog	gram product having:
4	•	ter readable program code for initializing a chipset in a secure environment
5	for an isolated	execution mode by an initialization storage, the secure environment having
6	a plurality of executive entities and being associated with an isolated memory area	
7	accessible by at least one processor, the at least one processor having a plurality of	
8	threads and operating in one of a normal execution mode and the isolated execution	
9	mode, the exe	cutive entities including a processor executive (PE) handler; and
10	compu	ter readable program code for storing PE handler data corresponding to the
11	PE handler in	a PE handler storage, the PE handler data including a PE handler image to
12	be loaded into	the isolated memory area after the chipset is initialized, the loaded PE
13	handler image	corresponding to the PE handler.
1	32.	The computer program product of claim 31 further comprises:
2	compu	ter readable program code for storing a thread count in a thread count
3	storage indica	ting number of threads currently operating in the isolated execution mode;
4	•	ter readable program code for updating the thread count when the
5	ınitialization s	storage is accessed;

6	computer readable program code for storing a chipset mode indicating a mode of		
7	operation of the chipset in a mode storage; and		
8	computer readable program code for writing the chipset mode into the mode		
9	storage.		
1	33. The computer program product of claim 32 further comprising:		
2	computer readable program code for storing identifiers of the executive entities		
3	operating in the isolated execution mode, the identifiers being read only when in lock;		
4	computer readable program code for storing a lock pattern indicating the		
5	identifiers in lock; and		
6	computer readable program code for locking the identifiers based on the lock		
7	pattern.		
1	34. The computer program product of claim 33 further comprising:		
2	computer readable program code for storing a fused key used in handling the		
3	executive entities in a fused key storage; and		
4	computer readable program code for storing isolated settings used to configure the		
5	isolated execution mode.		
1	35. The computer program product of claim 34 wherein the executive entities		
2	further include a processor executive (PE) and an operating system executive (OSE).		
1	36. The computer program product of claim 35 wherein the chipset mode is		
2	one of an initialization waiting mode to indicate the chipset-is waiting for initialization, a		
3	PE initialization in-progress mode to indicate the PE is being executed, a PE initialization		
4	completion mode to indicate the PE is completed, an OSE loaded mode to indicate the		

1

2

3

- OSE has been loaded, a closing mode to indicate the isolated execution mode is closed, 5 and a failure mode to indicate a failure. 6 The computer program product of claim 36 wherein the computer readable 1 37. 2 program code for initializing the chipset comprises computer readable program code for returning an updated thread count when the 3 chipset mode does not represent the failure mode, the updated thread count being one of 4 an incremented thread count and a decremented thread count; and 5 computer readable program code for returning a current thread count when the 6 7 chipset mode represents the failure mode. The computer program product of claim 37 wherein the computer readable 1 38. 2 program code for initializing the chipset further comprises: computer readable program code for returning the incremented thread count when 3 one of the threads enrolls in the isolated execution mode; and 4 computer readable program code for returning the decremented thread count when 5 6 one of the enrolled threads withdraws from the isolated execution mode.
 - 39. The computer program product of claim 38 wherein the computer readable program code for writing the chipset mode comprises computer readable program code for writing the chipset mode corresponding to a failure mode when the thread count reaches a thread limit.
- 1 40. The computer program product of claim 31 wherein the PE handler data 2 further include a PE handler identifier, a PE handler size, and a PE handler address.

1	The computer program product of claim 36 wherein the PE handler
2	storage is a non-volatile memory.
1	42. The computer program product of claim 36 wherein the fused key is
2	returned when the fused key storage is read in the initialization waiting mode.
1	43. The computer program product of claim 42 wherein the fused key is
2	programmed at manufacturing time to a random value.
1	44. The computer program product of claim 43 further comprising:
2	computer readable program code for storing a status value of an isolated unlock
3	pin used in restoring a root key from the fused key.
1	The computer program product of claim 34 wherein the isolated settings
2	include an isolated base value, an isolated mask value, and a processor executive entry
3	address, the isolated base and mask values defining the isolated memory area.
1	46. A system comprising:
2	at least one processor having a plurality of threads and operating in one of a
3	normal execution mode and an isolated execution mode;
4	a memory having an isolated memory area accessible to the at least one processor
5	in the isolated execution mode; and
6	a chipset circuit coupled to the at least one processor and the memory comprising
7	an initialization storage to initialize a chipset in a secure environment for
Q	the isolated execution mode, the secure environment having a niurality of

9	executive entities and being associated with the isolated memory area, the
10	executive entities including a processor executive (PE) handler, and
11	a PE handler storage to store PE handler data corresponding to the PE
12	handler, the PE handler data including a PE handler image to be loaded
13	into the isolated memory area after the chipset is initialized, the loaded PE
14	handler image corresponding to the PE handler.
1	47. The system of claim 46 wherein the chipset circuit further comprises:
2	a thread count storage to store a thread count indicating number of threads
3	currently operating in the isolated execution mode,
4	a thread count updater coupled to the thread count storage to update the thread
5	count when the initialization storage is accessed;
6	a mode storage to store a chipset mode indicating a mode of operation of the
7	chipset; and
8	a mode write circuit coupled to the mode storage to write the chipset mode into
9	the mode storage.
1	48. The system of claim 47 wherein the chipset circuit further comprises:
2	an identifier log storage to store identifiers of the executive entities operating in
3	the isolated execution mode, the identifiers being read only when in lock;
4	a log lock storage to store a lock pattern indicating the identifiers in lock; and
5	a lock circuit coupled to the identifier log storage and the log lock storage to lock
6	the identifiers based on the lock pattern.

1	49. The system of claim 48 wherein the chipset circuit further comprises:
2	a fused key storage to store a fused key used in handling the executive entities;
3	and
4	a scratch storage to store isolated settings used to configure the isolated execution
5	mode.
1	50. The system of claim 49 wherein the executive entities further include a
2	processor executive (PE) and an operating system executive (OSE).
1	51. The system of claim 50 wherein the chipset mode is one of an
2	initialization waiting mode to indicate the chipset is waiting for initialization, a PE
3	initialization in-progress mode to indicate the PE is being executed, a PE initialization
4	completion mode to indicate the PE is completed, an OSE loaded mode to indicate the
5	OSE has been loaded, a closing mode to indicate the isolated execution mode is closed,
6	and a failure mode to indicate a failure.
1	52. The system of claim 51 wherein the initialization storage returns an
2	updated thread count when the chipset mode does not represent the failure mode and to
3	return a current thread count when the chipset mode represents the failure mode, the
4	updated thread count being one of an incremented thread count and a decremented thread
5	count.
1	53. The system of claim 52 wherein the initialization storage comprises:
2	an enrollment storage to return the incremented thread count when one of the
3	threads enrolls in the isolated execution mode; and

1

4	a withdrawal storage to return the decremented thread count when one of the
5	enrolled threads withdraws from the isolated execution mode.

- The system of claim 53 wherein the mode write circuit writes the chipset mode corresponding to a failure mode into the mode storage when the thread count reaches a thread limit.
- 1 55. The system of claim 46 wherein the PE handler data further include a PE handler identifier, a PE handler size, and a PE handler address.
- 1 56. The system of claim 51 wherein the PE handler storage is a non-volatile 2 memory.
- The system of claim 51 wherein the fused key is returned when the fused key storage is read in the initialization waiting mode.
 - 58. The system of claim 57 wherein the fused key is programmed at manufacturing time to a random value.
- 1 59. The system of claim 58 wherein the chipset circuit further comprises:
- a status storage to store a status value of an isolated unlock pin used in restoring a root key from the fused key.
- 1 60. The system of claim 49 wherein the isolated settings include an isolated 2 base value, an isolated mask value, and a processor executive entry address, the isolated 3 base and mask values defining the isolated memory area.