Assignment 3

BY DANKO DANILA, BS19-RO1

Problem 1

Answer

We will use the **Theorem 3.3** and the **Definition 3.7** from [1] to check global stability

Theorem 3.3 (Global Stability) Assume that there exists a scalar function V of the state \mathbf{x} , with continuous first order derivatives such that

- V(x) is positive definite
- $\dot{V}(\mathbf{x})$ is negative definite
- $V(\mathbf{x}) \to \infty$ as $\|\mathbf{x}\| \to \infty$

then the equilibrium at the origin is globally asymptotically stable.

Definition 3.7 A scalar continuous function $V(\mathbf{x})$ is said to be <u>locally positive</u> <u>definite</u> if $V(\mathbf{0}) = 0$ and, in a ball \mathbf{B}_{R_-}

$$\mathbf{x} \neq \mathbf{0} => V(\mathbf{x}) > 0$$

If $V(\mathbf{0}) = 0$ and the above property holds over the whole state space, then $V(\mathbf{x})$ is said to be globally positive definite.

- V(x) is globally positive definite
 - V(x) is defined for all $x_1, x_2 \in \mathbb{R}$ and is positive unless x = 0
- $\dot{V}(x)$ is **not negative definite** unless there is some appropriate connection between x_1 and x_2 :

$$\dot{V}(\boldsymbol{x}) = \left(\frac{x_1^2}{(1+x_1^2)^2} + x_2^2\right)_t' = 2x_2\dot{x}_2 + \frac{2x_1\dot{x}_1}{(x_1^2+1)^2} - \frac{4x_1^3\dot{x}_1}{(x_1^2+1)^3}$$

Problem 2

Answer 1

We will use the **Definition 3.7**, **Definition 3.8**, **Theorem 3.2** from [1] to check local stability.

Definition 3.8 If, in a ball \mathbf{B}_{R_o} , the function $V(\mathbf{x})$ is positive definite and has continuous partial derivatives, and if its time derivative along any state trajectory of system (3.2) is negative semi-definite, i.e.,

$$\dot{V}(\mathbf{x}) \le 0$$

then $V(\mathbf{x})$ is said to be a <u>Lyapunov function</u> for the system (3.2).

Theorem 3.2 (Local Stability) If, in a ball \mathbf{B}_{R_o} , there exists a scalar function $V(\mathbf{x})$ with continuous first partial derivatives such that

- $V(\mathbf{x})$ is positive definite (locally in $\mathbf{B}_{R_{-}}$)
- $\dot{V}(\mathbf{x})$ is negative semi-definite (locally in $\mathbf{B}_{R_{-}}$)

then the equilibrium point 0 is stable. If, actually, the derivative $\dot{V}(\mathbf{x})$ is locally negative definite in \mathbf{B}_{R_0} , then the stability is asymptotic.

1

We select as a Lyapunov candidate function which is **globally positive definite**:

$$V(\mathbf{x}) = x_1^2 + x_2^2$$

Its derivative

$$\dot{V}({\bm x}) = - \, 2 \, (x_1^2 + x_2^2) \, (c - x_1^2 - x_2^2)$$

is locally negative definite for $x_1^2 + x_2^2 < c$. Therefore, the given system is **locally asymptotically stable** near the origin.

Answer 2

Let Ω_c be the region where $V(x) = x_1^2 + x_2^2 < c$. Then only $\mathbf{0} \in \mathbf{R}$, where \mathbf{R} is the set of all points of Ω_c where $\dot{V}(x) = 0$. Hence, the largest invariant set in \mathbf{R} is $\mathbf{M} = \{\mathbf{0}\}$, the region of attraction.

Problem 3

Answer 1

$$V = \frac{1}{2}\tilde{H}^2 \succ 0$$

Let $u = \ddot{\theta} + \sin(\theta) - \tanh(k\theta)\sqrt{2H_d}$. We will use $\tanh(k\theta)$ with some large k to have a differentiable, $\operatorname{sign}(\theta)$ -like function. While in theory $\tanh(0) = 0$, it may not be noticeable with finite-precision numbers.

Then $\dot{\theta} = -\tanh(k\theta)\sqrt{2H_d}$ and $H = \frac{1}{2}\dot{\theta}^2 + 1 - \cos(\theta) = H_d \cdot \tanh^2(k\theta) + 1 - \cos(\theta)$. We want that $\tilde{H} = H_d - H = H_d(1 - \tanh^2(k\theta)) + \cos(\theta) - 1 \cos(\theta) - 1$ converges to zero. In fact, we want that θ converges to 0.

Approximately, $\dot{\theta} = \begin{cases} -H_d & \theta > 0 \\ H_d & \theta < 0 \end{cases}$, which will drive θ to 0 in case it switches the sign

But I get that

$$\dot{V} = \frac{\sqrt{2}\sqrt{H_d}\left(2\,H_d\,k\tanh\left(\theta\,k\right) + \sin\left(\theta\right)\cosh^2(\theta\,k)\right)\left(H_d + \cos\left(\theta\right)\cosh^2(\theta\,k\right) - \cosh^2(\theta\,k)\right)\tanh\left(\theta\,k\right)}{\cosh^4(\theta\,k)}$$

is always positive definite in the neighborhood of zero. I don't know why:(

Answer 2

Unfortunately, I was unable to plot the phase plot properly due to some float errors:(

Problem 4

Answer

Phase portraits for different values of α of the system $\dot{x} = -x + x^3 + \alpha$

1 Option

Let $V = \frac{1}{2}x^2$ and $\dot{V} = x \dot{x} = x(-x+x^3+\alpha) = -x^2+x^4+\alpha x$. Suppose $x^2 < 1$ and $|\alpha| < \frac{1}{4}$ (by given region).

$$\begin{array}{l} \text{Let us inspect } \left(-x + x^3 + \alpha \right) = E; \\ \begin{cases} E < 0 \;\; 0.269594 < x < 0.837565, \, \alpha = \frac{1}{4} \\ E < 0 \;\; x < 1, \, \alpha < 0 \\ E < 0 \;\; -0.269594 < x < 0, \, \alpha = -\frac{1}{4} \\ E > 0 \;\; -1 < x < 0, \, \alpha > 0 \\ \end{cases}$$

As E is a subexpression of \dot{V} , we see that Lyapunov function \dot{V} is not very conclusive and may have several zeros. On the other hand, the plots show that robust invariant set is |x| < 1.

2 Option

Let
$$V = \frac{1}{2}\dot{x}^2$$
.

Then
$$V = \dot{x}\ddot{x} = \dot{x}(-\dot{x} + 3x^2\dot{x}) = (-x + x^3 + \alpha)^2(-1 + 3x^2)$$

Then $\dot{V} = \dot{x}\ddot{x} = \dot{x}(-\dot{x} + 3x^2\dot{x}) = (-x + x^3 + \alpha)^2(-1 + 3x^2)$ This function is negative definite on $(-1 + 3x^2) < 0$, or $x^2 < \frac{1}{3}$. Possibly, it can be extended to include the whole |x| < 1 region.

Bibliography

[1] J.J.E. Slotine, J.J.E. Slotine, and W. Li. Applied Nonlinear Control. Prentice Hall, 1991.