Universidad Externado de Colombia Ciencia de Datos

Métodos numéricos Actividad 1

202410

Calentamiento

¿Cuántos triángulos hay en la imagen de la derecha?

1. Utilizando el método de eigenvalores diga si las siguientes matrices son definidas positivas o no lo son.

(a)
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} -10 & 2\\ 2 & -10 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} -10 & 2 \\ 2 & -10 \end{bmatrix}$$

(c) $A = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3 \end{bmatrix}$
(d) $A = \begin{bmatrix} 3 & 1 & 0 & 1 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 3 & 1 \\ 1 & 0 & 1 & 3 \end{bmatrix}$

(e)
$$A = \begin{bmatrix} 0 & 4 & -2 & -2 & -2 \\ 4 & -4 & -2 & -3 & 2 \\ -2 & -2 & -4 & 0 & 2 \\ -2 & -3 & 0 & -4 & 2 \\ -2 & 2 & 2 & 2 & -4 \end{bmatrix}$$

(f)
$$A = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 \end{bmatrix}$$

2. Diga si los siguientes conjuntos son convexos.

- (a) $\{x \in \mathbb{R} : |x+1| \ge 3\}$
- (b) $\{x \in \mathbb{R} : x^2 4x + 4 \ge 0\}$
- (c) $\{x \in \mathbb{R}^2 : x^2 4x + 4 \le y\}$
- (d) $\{x \in \mathbb{R}^2 : (x_1 + 2)^2 + (x_2 1)^2 \le 4\}$
- (e) $\{x \in \mathbb{R}^2 : |x_1 + 1| + |x_2 + 3| \le 1\}$
- (f) $\{x \in \mathbb{R}^2 : x_1 \cdot x_2 \ge 10\}$
- (g) $\{x: ||x+1||_1 \ge 3\}$
- (h) $\{x: ||x-2||_{\infty} \le 2\}$

- 3. Si $f(x) = x^3$
 - (a) Determine el segundo polinomio de Taylor $P_2(x)$ alrededor de $x_0 = 0$
 - (b) Determine el error real al utilizar $P_2(0.5)$ para aproximar f(0.5)
 - (c) Vuelva a repetir el numeral a usando $x_0 = 1$
 - (d) Encuentre el error.

- 4. Encuentre el segundo polinomio de Taylor $P_2(x)$ para la función $f(x) = e^x \cos x$ alrededor de $x_0 = 0$
 - (a) Utilice $P_2(0.5)$ para aproximar f(0.5). Encuentre un límite superior para el error $|f(0.5) P_2(0.5)|$ por medio de la fórmula de error y compárela con el error real.
 - (b) Aproxime $\int_0^1 f(x)dx$ por medio de $\int_0^1 P_2(x)dx$
- 5. Encuentre el tercer polinomio de Taylor $P_3(x)$ para la función $f(x)=(x-1)\ln x$ alrededor de $x_0=1$
 - (a) Utilice $P_3(0.5)$ para aproximar f(0.5). Encuentre un límite superior para el error $|f(0.5) P_3(0.5)|$ por medio de la fórmula de error y compárela con el error real.
 - (b) Aproxime $\int_{0.5}^{1.5} f(x)dx$ por medio de $\int_{0.5}^{1.5} P_3(x)dx$