06/23/21

1)
$$\tilde{\sigma} = 2\tilde{\epsilon}_{2z} \left[C_{13}(S_{ij}) \left(g(S_{ij}) \right) \frac{I_{1}[V_{i}]/V_{f}}{\hat{\epsilon}(S_{ij})I_{0}[V_{f}] - 2I_{1}[V_{f}]/V_{f}} \right] + C_{33}(S_{ij}) + f_{1}(S_{ij})f_{2}(C_{1}T_{1},T_{2}) \frac{I_{0}[V_{f}] - 2I_{1}[V_{f}]/V_{f}}{2(\hat{\epsilon}(S_{ij})I_{0}[f] - I_{1}[f]/V_{f}} \right]$$

2)
$$\mathcal{E}_{ZZ} = \mathcal{E}_{otg} \frac{1 - \ell^{\frac{to}{sg}}}{52}$$

4)
$$C_{13}(S_{ij}) = \frac{S_{rz}}{d(S_{ij})}$$
, $C_{33} = -\frac{(S_{rr} + S_{rg})}{d(S_{ij})}$, $d(S_{ij}) = 2S_{rz}^{2}$.

5)
$$g(S_{ij}) = -\frac{(2S_{rz} + S_{zz})(S_{rr} - S_{rp})}{\lambda(S_{ii})}$$

6)
$$f_1(Sij) = \frac{1}{E}(2S_{rz} + S_{zz})$$
, $\hat{F} = 2(S_{rr}S_{zz} - S_{rz}^2)$
7) $f = \frac{r_0^2 S}{E K f_2(C, T_{zz}^2)}$, $f = \frac{r_0^2}{E K}$

Invert & interms of t/tg. Use the following parameters:

	Er	Ezz	Vro	Vrz	tg	TI	T 2	C	to/tg	Ė
+	8.5 KPa	109 KPal	0.75	0.24	405	0,15	105	1	0,1	5-1

?