# Resetowanie Stochastyczne OMatKo 2023

Bartosz Żbik

UJ, Kraków

1-3 grudnia 2023

## Plan wystąpienia

- Proces Wienera
- 2 Problem pierwszej ucieczki
- Resetowanie
- 4 Współczynnik Zmienności CV (ang. Coefficient of Variation)

Zmienne losowe definiuję na przestrzeni probabilistycznej  $(\Omega, \mathcal{F}, \mathbb{P})$ .

Zmienne losowe definiuję na przestrzeni probabilistycznej  $(\Omega, \mathcal{F}, \mathbb{P})$ .

Zmienna losowa X, to intuicyjnie obiekt, który zachowuje się jak rzut kością (jest losowy).

Zmienne losowe definiuję na przestrzeni probabilistycznej  $(\Omega, \mathcal{F}, \mathbb{P})$ .

Zmienna losowa X, to intuicyjnie obiekt, który zachowuje się jak rzut kością (jest losowy).

Wartość oczekiwaną ze zmiennej losowej X oznaczam  $\mathbb{E}X$ . Intuicyjnie jest to średnia z X.

Zmienne losowe definiuję na przestrzeni probabilistycznej  $(\Omega, \mathcal{F}, \mathbb{P})$ .

Zmienna losowa X, to intuicyjnie obiekt, który zachowuje się jak rzut kością (jest losowy).

Wartość oczekiwaną ze zmiennej losowej X oznaczam  $\mathbb{E}X$ . Intuicyjnie jest to średnia z X.

Proces stochastyczny  $(X_t)_{t\in\mathfrak{T}}$ , to rodzina zmiennych losowych indeksowanych czasem  $t\in\mathfrak{T}$ . Intuicyjnie jest to losowy proces, który obserwujemy w czasie  $t\in\mathfrak{T}$ .

Zmienne losowe definiuję na przestrzeni probabilistycznej  $(\Omega, \mathcal{F}, \mathbb{P})$ .

Zmienna losowa X, to intuicyjnie obiekt, który zachowuje się jak rzut kością (jest losowy).

Wartość oczekiwaną ze zmiennej losowej X oznaczam  $\mathbb{E}X$ . Intuicyjnie jest to średnia z X.

Proces stochastyczny  $(X_t)_{t\in\mathfrak{T}}$ , to rodzina zmiennych losowych indeksowanych czasem  $t\in\mathfrak{T}$ . Intuicyjnie jest to losowy proces, który obserwujemy w czasie  $t\in\mathfrak{T}$ .

Różne znaczenia liter t, T i  $\tau$  (bo innych liter nie ma): t - czas, T - zmienna losowa,  $\tau$  - FPT,  $\mathcal T$  - MFPT i  $\mathfrak T$  - zbiór czasu.

# Proces Wienera (ruchy Browna) - definicja

#### Definicja

Proces  $W = (W_t)_{t \in [0,\infty)}$  nazywamy procesem Wienera jeśli:

- $W_0 = 0$ ,  $\mathbb{P}$  p.n.
- W ma przyrosty stacjonarne i niezależne
- W ma ciągłe trajektorie
- $W_t W_s \sim \mathcal{N}(0, t-s)$

#### Intuicja

Proces Wienera  $W=(W_t)_{t\in[0,\infty)}$ , to błądzenie przypadkowe w czasie ciągłym.

Dla wygody będziemy czasem zakładać, że  $W_0=x_0,\ \mathbb{P}$  - p.n.



# Proces Wienera - trajektorie



# Problem pierwszej ucieczki (ang. first passage time) FPT

#### Definicja

Niech  $(X_t)_{t\in\mathfrak{T}}$  - proces stochastyczny, A - podzbiór  $\mathbb{R}$ . Zmienną losową  $\tau:\Omega\to\mathfrak{T}$  nazwiemy czasem pierwszej ucieczki z A (w skrócie FPT) jeśli

$$\tau = \inf\{t : t \in \mathfrak{T}, X_t \notin A\}. \tag{1}$$

Jeśli dla pewnego  $\omega \in \Omega$  mamy  $\forall t \in \mathfrak{T} : X_t(\omega) \in A$ , to kładziemy  $\tau(\omega) = +\infty$ .

#### Intuicja

Czasem pierwszej ucieczki (FPT) nazywamy zmienną losową, która odpowiada chwili w czasie, w której proces po raz pierwszy uciekł z przedziału (ogólniej zbioru).

# Proces Wienera - ucieczka z przedziału (-0.6, 0.1)



W różnych zastosowaniach praktycznych interesuje nas średni czas ucieczki  $\mathcal T$  (ang. mean first passage time)

$$\mathcal{T} := \mathbb{E}\tau . \tag{2}$$

Skrótowo będziemy pisali MFPT.

W różnych zastosowaniach praktycznych interesuje nas średni czas ucieczki  $\mathcal T$  (ang. mean first passage time)

$$\mathcal{T} := \mathbb{E}\tau . \tag{2}$$

Skrótowo będziemy pisali MFPT.

Postawmy pytanie: Jak zminimalizować ten czas?

W różnych zastosowaniach praktycznych interesuje nas średni czas ucieczki  $\mathcal T$  (ang. mean first passage time)

$$\mathcal{T} := \mathbb{E}\tau . \tag{2}$$

Skrótowo będziemy pisali MFPT.

Postawmy pytanie: Jak zminimalizować ten czas?

Możliwe rozwiązanie: \title

## Resetowanie Stochastyczne - resetowanie procesu

Załóżmy, że mamy proces  $(X_t)_{t\in\mathfrak{T}}$ , który startuje w  $x_0$  (czyli  $X_0\equiv x_0$ ).

<sup>&</sup>lt;sup>1</sup>Bardziej formalnie można użyć ciągu i.i.d. zmiennych losowych o rozkładach jak R i ciągu procesów o rozkładach jak  $(X_t)_{t\in\mathfrak{T}}$ .

## Resetowanie Stochastyczne - resetowanie procesu

Załóżmy, że mamy proces  $(X_t)_{t\in\mathfrak{T}}$ , który startuje w  $x_0$  (czyli  $X_0\equiv x_0$ ).

Niech  $R:\Omega \to \mathfrak{T}$  (czas po jakim resetujemy), będzie niezależne od  $(X_t)_{t\in \mathfrak{T}}$ .

<sup>&</sup>lt;sup>1</sup>Bardziej formalnie można użyć ciągu i.i.d. zmiennych losowych o rozkładach jak R i ciągu procesów o rozkładach jak  $(X_t)_{t \in \Sigma}$ .

## Resetowanie Stochastyczne - resetowanie procesu

Załóżmy, że mamy proces  $(X_t)_{t\in\mathfrak{T}}$ , który startuje w  $x_0$  (czyli  $X_0\equiv x_0$ ).

Niech  $R:\Omega o\mathfrak{T}$  (czas po jakim resetujemy), będzie niezależne od  $(X_t)_{t\in\mathfrak{T}}$ .

#### Definicja

Zdefiniujmy<sup>1</sup>  $(X_t^*)_{t \in \mathfrak{T}}$  ("proces resetowany") jako

$$X_t^* = \begin{cases} X_t & , \text{ gdy } t < R \\ Y_{t-R}^* & , \text{ gdy } t \ge R \end{cases}$$
 (3)

gdzie  $(Y_t^*)_{t\in\mathfrak{T}}$  jest niezależną kopią procesu resetowanego  $(X_t^*)_{t\in\mathfrak{T}}$ .

<sup>&</sup>lt;sup>1</sup>Bardziej formalnie można użyć ciągu i.i.d. zmiennych losowych o rozkładach jak R i ciągu procesów o rozkładach jak  $(X_t)_{t \in \mathfrak{T}}$ .

## Resetowanie procesu - przykład dla procesu Wienera



# Resetowanie Stochastyczne - ogólniej

Załóżmy, że mamy pewną zmienną losową  $T:\Omega \to [0,\infty)$ , która ma interpretację jak FPT.

<sup>&</sup>lt;sup>2</sup>Bardziej formalnie można użyć ciągów i.i.d. zmiennych losowych o rozkładach jak rozkłady *T* i *R*.

# Resetowanie Stochastyczne - ogólniej

Załóżmy, że mamy pewną zmienną losową  $\mathcal{T}:\Omega \to [0,\infty)$ , która ma interpretację jak FPT.

Niech  $R:\Omega\to[0,\infty)$  będzie niezależne od T i ma interpretację czasu po jakim resetujemy.

<sup>&</sup>lt;sup>2</sup>Bardziej formalnie można użyć ciągów i.i.d. zmiennych losowych o rozkładach iak rozkłady T i R.

# Resetowanie Stochastyczne - ogólniej

Załóżmy, że mamy pewną zmienną losową  $\mathcal{T}:\Omega \to [0,\infty)$ , która ma interpretację jak FPT.

Niech  $R:\Omega\to[0,\infty)$  będzie niezależne od T i ma interpretację czasu po jakim resetujemy.

#### Definicja

Zdefiniujmy $^2$   $T_R$  ("T pod wpływem resetowania") jako

$$T_R = \begin{cases} T & , \text{ gdy } T < R \\ R + T_R' & , \text{ gdy } T \ge R \end{cases}$$

$$\tag{4}$$

gdzie  $T'_R$  jest niezależne od  $T_R$  i ma identyczny rozkład.

<sup>&</sup>lt;sup>2</sup>Bardziej formalnie można użyć ciągów i.i.d. zmiennych losowych o rozkładach jak rozkłady *T* i *R*.

# Resetowanie Stochastyczne - przykład optymalizacji MFPT



## Resetowanie Stochastyczne - przykład optymalizacji MFPT



Ile można powiedzieć na podstawie przyjętego modelu?

Znajdźmy wyrażenie na MFPT przy założeniu resetowania

$$\mathcal{T}_R = \mathbb{E}T_R = \mathbb{E}[T; T < R] + \mathbb{E}[R + T_R'; T \ge R]$$
(5)

## Ile można powiedzieć na podstawie przyjętego modelu?

Znajdźmy wyrażenie na MFPT przy założeniu resetowania

$$\mathcal{T}_R = \mathbb{E}T_R = \mathbb{E}[T; T < R] + \mathbb{E}[R + T_R'; T \ge R]$$
(5)

Wiemy, że  $T'_R$  nie zależy od T,R i ma ten sam rozkład co  $T_R$ 

$$\mathcal{T}_R = \mathbb{E}[T; T < R] + \mathbb{E}[R; T \ge R] + \mathcal{T}_R \mathbb{P}(T \ge R)$$
 (6)

# Ile można powiedzieć na podstawie przyjętego modelu?

Znajdźmy wyrażenie na MFPT przy założeniu resetowania

$$\mathcal{T}_R = \mathbb{E}T_R = \mathbb{E}[T; T < R] + \mathbb{E}[R + T_R'; T \ge R]$$
(5)

Wiemy, że  $T_R'$  nie zależy od T,R i ma ten sam rozkład co  $T_R$ 

$$\mathcal{T}_R = \mathbb{E}[T; T < R] + \mathbb{E}[R; T \ge R] + \mathcal{T}_R \mathbb{P}(T \ge R)$$
 (6)

Po dalszych przekształceniach

$$T_{R} = \frac{\mathbb{E}\min\left(T, R\right)}{\mathbb{P}(T < R)}$$
(7)

Załóżmy, że  $R \sim \operatorname{Exp}(\mathbf{r})$ , czyli  $f_R(t) = r e^{-rt} \cdot \chi_{[0,\infty)}(t)$ .

Jeśli tak jest, to mówimy że resetowanie jest Poissonowskie i parametr r nazywamy szybkością resetowania (ang. reset rate).

<sup>&</sup>lt;sup>3</sup>A. Pal and S. Reuveni, Phys. Rev. Lett. 118, 030603 (2017) → (3) (2017) → (3) (2017) → (3) (2017)

Załóżmy, że  $R \sim \operatorname{Exp}(\mathbf{r})$ , czyli  $f_R(t) = re^{-rt} \cdot \chi_{[0,\infty)}(t)$ .

Jeśli tak jest, to mówimy że resetowanie jest Poissonowskie i parametr r nazywamy szybkością resetowania (ang. reset rate).

Wówczas transformata Laplace'a  $T_R(s) \equiv \mathbb{E} e^{-sT_R}$  zmiennej  $T_R$  ma postać $^3$ 

$$\widetilde{T}_{R}(s) = \frac{T(r+s)}{\frac{s}{s+r} + \frac{r}{s+r}T(r+s)}$$
(8)

Zauważmy, że  $\lim_{s\to 0} \stackrel{\sim}{T_R}(s) = 1$  i zbadajmy momenty  $T_R$ .

<sup>&</sup>lt;sup>3</sup>A. Pal and S. Reuveni, Phys. Rev. Lett. 118, 030603 (2017) → (3) (2017) → (3) (2017) → (3) (2017)

$$\mathcal{T}_R = \mathbb{E} T_R = -\frac{d}{ds} \overset{\sim}{T_R}(s) \Big|_{s=0} = \frac{1}{r} \left( \frac{1}{\overset{\sim}{T}(r)} - 1 \right) \tag{9}$$

 $<sup>^4</sup>$ Zakładamy, że  $^{7}$  jest klasy  $\mathcal{C}^2$  na pewnym otoczeniu 0

$$\mathcal{T}_R = \mathbb{E} T_R = -\frac{d}{ds} \widetilde{T}_R(s) \Big|_{s=0} = \frac{1}{r} \left( \frac{1}{\widetilde{T}(r)} - 1 \right)$$
 (9)

Załóżmy, że dla dostatecznie małych r funkcję T(r) możemy aproksymować wielomianem<sup>4</sup> od zmiennej r

$$\widetilde{T}(r) = 1 - m_1 r + \frac{1}{2} m_2 r^2 + o(r^2),$$
 (10)

gdzie  $m_1 = \mathbb{E}[T]$  i  $m_2 = \mathbb{E}[X^2]$  z własności transformaty Laplace'a (związek z funkcją tworzącą).

Bartosz Żbik (UJ, Kraków) Resetowanie Stochastyczne 1-3 grudnia 2023

16 / 21

$$\mathcal{T}_R = \mathbb{E} T_R = -\frac{d}{ds} \widetilde{T}_R(s) \Big|_{s=0} = \frac{1}{r} \left( \frac{1}{\widetilde{T}(r)} - 1 \right)$$
 (9)

Załóżmy, że dla dostatecznie małych r funkcję  $\mathcal{T}(r)$  możemy aproksymować wielomianem $^4$  od zmiennej r

$$\widetilde{T}(r) = 1 - m_1 r + \frac{1}{2} m_2 r^2 + o(r^2),$$
 (10)

gdzie  $m_1=\mathbb{E}[T]$  i  $m_2=\mathbb{E}[X^2]$  z własności transformaty Laplace'a (związek z funkcją tworzącą). Wówczas

$$\mathcal{T}_R = \mathcal{T} + \left(\mathcal{T}^2 - \frac{1}{2}\mathbb{E}[\mathcal{T}^2]\right)r + o(r^2). \tag{11}$$

 $<sup>^4</sup>$ Zakładamy, że  $\, {\cal T}$  jest klasy  ${\cal C}^2$  na pewnym otoczeniu 0 ->  $\, _{-}$   $\, _{-}$   $\, _{-}$   $\, _{-}$   $\, _{-}$   $\, _{-}$   $\, _{-}$   $\, _{-}$   $\, _{-}$   $\, _{-}$   $\, _{-}$   $\, _{-}$   $\, _{-}$   $\, _{-}$   $\, _{-}$   $\, _{-}$ 

# Warunek bazujący na CV (ang. Coefficient of Variation)

$$\mathcal{T}_R = \mathcal{T} + \frac{1}{2} \left( \mathcal{T}^2 - \mathbb{E}[(\mathcal{T} - \mathcal{T})^2] \right) r + o(r^2)$$
 (12)

daje nam warunek wystarczający, aby wprowadzenie resetowania zmniejszało MFPT.

# Warunek bazujący na CV (ang. Coefficient of Variation)

$$\mathcal{T}_{R} = \mathcal{T} + \frac{1}{2} \left( \mathcal{T}^{2} - \mathbb{E}[(\mathcal{T} - \mathcal{T})^{2}] \right) r + o(r^{2})$$
 (12)

daje nam warunek wystarczający, aby wprowadzenie resetowania zmniejszało MFPT.

#### Wniosek (Twierdzenie)

Jeśli T ma interpretację jak FPT i CV(T) > 1, to istnieje r (małe) tże.:

$$\mathcal{T}_R < \mathcal{T}, \quad \mathsf{dla} \ R \sim \mathrm{Exp(r)} \,.$$
 (13)

W założeniach twierdzenia  $CV(\mathcal{T})$  oznacza współczynnik zmienności

$$CV(T) = \frac{\sigma(T)}{\mathbb{E}[T]} = \frac{\sqrt{\mathbb{E}[(T - T)^2]}}{T} = \sqrt{\frac{\mathbb{E}[T^2]}{T^2} - 1}$$
(14)

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - りへで

# Warunek bazujący na CV

#### Wniosek (Twierdzenie)

Jeśli T ma interpretację jak FPT i CV(T) > 1, to istnieje r (małe) tże.:

$$\mathcal{T}_R < \mathcal{T}, \quad \mathsf{dla} \ R \sim \mathrm{Exp(r)}.$$
 (15)

W założeniach twierdzenia CV(T) oznacza współczynnik zmienności

$$CV(T) = \frac{\sigma(T)}{\mathbb{E}[T]} = \frac{\sqrt{\mathbb{E}[(T-T)^2]}}{T} = \sqrt{\frac{\mathbb{E}[T^2]}{T^2}} - 1 \tag{16}$$

Ważne: Wystarczy zbadać własności procesu (ucieczek) bez resetowania, żeby powiedzieć coś o resetowaniu.

## Zastosowanie kryterium CV dla procesu Wienera



Rysunek: Znormalizowane minimalne MFPT (minimum po różnych *reset rate*) dla procesu Wienera startującego w  $x_0$  i uciekającego z przedziału (-1,1).

## Zastosowanie kryterium CV dla procesu Wienera



Rysunek: Znormalizowane minimalne MFPT (minimum po różnych *reset rate*) dla procesu Wienera startującego w  $x_0$  i uciekającego z przedziału (-1,1).

Aby zobaczyć kiedy resetowanie pomaga (i jak się ma do CV) definiujemy

$$\Lambda(x_0) = \frac{\min_{r \ge 0} (\mathcal{T}_R)}{\mathcal{T}}, \qquad (17)$$

czyli minimalne  $\mathcal{T}_R$  (dla resetowania Poissonowskiego) znormalizowane przez  $\mathcal{T}$ .

Ponadto MFPT dla ucieczki z (-L, L) kiedy proces startuje w  $x_0$  wynosi

$$\mathcal{T}(x_0) = \frac{L^2 - x_0^2}{2}$$
 (18)

#### Podsumowanie

Resetowanie stochastyczne może zmniejszyć MFPT.

#### Podsumowanie

Resetowanie stochastyczne może zmniejszyć MFPT.

Resetowanie stochastyczne można rozważać (i badać) w oderwaniu od procesu stochastycznego.

#### Podsumowanie

Resetowanie stochastyczne może zmniejszyć MFPT.

Resetowanie stochastyczne można rozważać (i badać) w oderwaniu od procesu stochastycznego.

Można formułować stosunkowo ogólne wnioski jak choćby

$$|\mathit{CV}(\mathit{T})>1 \implies \mathcal{T}_{\mathit{R}}<\mathcal{T}$$
 dla pewnego  $\mathit{R}\sim \mathsf{Exp}(\mathit{r})$ 

# Bibliografia

- 🗎 A. Pal and S. Reuveni, Phys. Rev. Lett. 118, 030603 (2017)
- A. Chechkin and I. M. Sokolov Phys. Rev. Lett. 121, 050601 (2018)
- 🖬 Arnab Pal and V. V. Prasad Phys. Rev. E 99, 032123 (2019)
- R. K. Getoor, Trans. Am. Math. Soc. 101, 75 (1961)