Конспект лекции 22.11.16

Марданов Тимур

Упражнение 8. Пошла Маша в лес и собрала 100 грибов: L лисичек, R рыжиков и M мухоморов.

Пусть p_L, p_R, p_M - вероятности найти гриб определенного типа, такие что $\begin{cases} p_L, p_R, p_M > 0 \\ p_L + p_R + p_M = 1 \end{cases}$

Пусть также расположение каждого гриба не зависит от расположения других Найпите:

- 1. $E(R + L \mid M), E(M \mid R + L);$
- 2. E(R | L);
- 3. $Var(R \mid L)$;
- 4. $E(R + L \mid L + M)$;
- 5. $P(E(R \mid L)) = 0;$
- 6. $P(R = 0 \mid L)$;
- 7. $E((\frac{p_M}{p_R+p_L})^{100-L});$
- 8. $P(R = 7 \mid L)$.

Решение:

- 1. Если известно, что Маша собрала M мухоморов, то очевидно, что она собрала 100-M лисичек и рыжиков. $E(R+L\mid M)=100-M$. Аналогично $E(M\mid R+L)=100-R-L$.
- 2. Если Маша собрала L лисичек, то тогда $R \in \{0,1\dots,100-L\}$. Заметим, что случайная величина R имеет биномиальное распределение $R \sim Bin(n=100,p=p_R) \rightarrow (R\mid L) \sim Bin(n=100-L,p=\frac{p_R}{p_R+p_M})$. Матожидание биномиального распределения E(R)=np. Тогда $E(R\mid L)=(100-L)(\frac{p_R}{p_M+p_R})$.
- 3. Дисперсия биномиального распределения Var(R)=np(1-p). Тогда $Var(R\mid L)=(100-L)(\frac{p_R}{p_M+p_R})(1-\frac{p_R}{p_M+p_R})$.
- 4. $E(R+L\mid L+M)=E(R\mid L+M)+E(L\mid L+M)=(100-(L+M))+((L+M)\frac{p_L}{p_L+p_M})$. Здесь главное заметить, что $L\mid L+M$ имеет биномиальное распределние.
- 5. Необходимо просто подставить ответ из пункта 2) $P(E(R\mid L)=0)=P((100-L)(\frac{p_R}{p_M+p_R})=0)=P(L=100)=p_L^{100}.$
- 6. Иногда для нахождения общего решения удобно подставлять конкретные значения вместо случайных величин и находить частное решение. Попробуем найти не $P(R=0\mid L)$, а $P(R=0\mid L=7)=P(M=93\mid L=7)=(\frac{p_M}{p_M+p_R})^{93}$. Тогда $P(R=0\mid L)=(\frac{p_M}{p_M+p_R})^{100-L}$.
- 7. $E((\frac{p_M}{p_M + p_R})^{100 L}) = E(P(R = 0 \mid L)) = \{E(E(X \mid \mathcal{F})) = E(X)\} = P(R = 0) = (1 p_R)^{100}$.
- 8. Вспомнив формулу для биномиального распределения $P(R=x) = C_n^x p^x (1-p)^{n-x}$ и результаты пункта 2), получим $P(R=7\mid L) = \begin{cases} 0 & \text{if } L=93 \\ C_{100-L}^7 (\frac{p_R}{p_R+p_M})^7 (1-\frac{p_R}{p_R+p_M})^{100-L-7} & \text{if } L\neq 93 \end{cases}$

Упражнение 9 (8.58 из задачника).

 $x_1,\dots,x_{100}\sim\mathcal{U}[0;1]$ и независимые. $L=\max\{x_1,\dots,x_{80}\};\,R=\max\{x_{81},\dots,x_{100}\};\,M=\max\{L,R\}.$ Найдите:

- 1. $P(L > R \mid L)$;
- 2. $E(x_1 | L)$;

- 3. $E(min\{x_1,\ldots,x_{100}\} \mid M);$
- 4. $E(min\{x_1,\ldots,x_{100}\} \mid x_1)$.

Решение:

- 1. Предположим L=0.7. Тогда $P(L>R\mid L=0.7)=P(0.7>R\mid L=0.7)=\{R$ и L независимы $\}=P(R<0.7)=P(x_{81}<0.7,\dots,x_{100}<0.7)=\{x_i$ независимы $\}=P(x_{81}<0.7)*\dots*P(x_{100}<0.7)=0.7^{20}\to P(L>R\mid L)=L^{20}$ (*) $E(L^{20})=E(P(L>P\mid L))=\{E(E(X\mid \mathcal{F}))=E(X)\}=P(L>R)=\frac{80}{100}$.
- 2. Попробуем сначала найти $E(x_1\mid max\left\{x_1,x_2,x_3\right\}=0.7)=p_{x_1=max}0.7+p_{x_1\neq max}E(x_1)=\frac{1}{3}0.7++\frac{2}{3}0.35.$ Тогда $E(x_1\mid L)=\frac{1}{80}L+\frac{79}{80}\frac{L}{2}.$
- 3. Попробуем сначала найти $E(min\{x_1,\ldots,x_{100}\}\mid M=0.7)=\{y\sim\mathcal{U}[0;0.7]\}=E(min\{y_1,\ldots,y_{99}\}).$ Проведём мысленный эксперимент: возьмём отрезок [0,0.7] и отметим на нём 99 точек случайным образом. Так мы поделим отрезок на 100 маленьких отрезков. И хотя их длинна различна, в среднем она равна $\frac{0.7}{100}$. А величина, которую мы ищем, равна рсстоянию от нуля до первой точки = средняя длинна маленького отрезка. Тогда $E(min\{x_1,\ldots,x_{100}\}\mid M=0.7)=\frac{0.7}{100}$, а в общем случае $E(min\{x_1,\ldots,x_{100}\}\mid M)=\frac{M}{100}$.
- 4. $E(min\{x_1,\ldots,x_{100}\}\mid x_1) = p_{x_1=min}x_1 + p_{x_1\neq min}E(min\{x_2,\ldots,x_{100}\}) = \frac{1}{100}x_1 + \frac{99}{100}\frac{1}{100}$

Мартингалы

Определение. Фильтрация (\mathcal{F}_n) — последовательность σ -алгебр таких, что $\mathcal{F}_1\subseteq\mathcal{F}_2\subseteq\ldots\subseteq\mathcal{F}_n$. Иногда фильтрацию называют потоком σ -алгебр.

Определение. Случайный процесс (X_n) — последовательность случайных величин X_n .

Определение. Случайный процесс (X_n) адаптирован к фильтрации (\mathcal{F}_n) , если $\forall n$ величина X_n является \mathcal{F}_n -измеримой.

Определение. Случайный процесс (X_n) — мартингал по отношению к фильтрации (\mathcal{F}_n) , если

- 1. $E(X_n)$ существует $\forall n$;
- 2. (X_n) адаптирован к фильтрации (\mathcal{F}_n) ;
- 3. $\forall n \ E(X_{n+1} \mid \mathcal{F}_n) = X_n$ (лучший прогноз на завтра сегодняшнее значение).

<u>Пример 1.</u> Имеется колода из 52 карт. Достаем по очереди одну карту. $X_n \equiv$ доля тузов в неоткрытой части колоды после открытия n карт. Тогда:

Является ли X_n мартингалом? Первые два условия выполняются. Проверим третье:

	сейчас	следующий момент
извлечено карт	n	n+1
осталось карт	52 - n	51-n
доля тузов в колоде	X_n	X_{n+1}
штук тузов в колоде	$X_n(52-n)$	$X_{n+1}(51-n)$
тузов открыто	$4 - X_n(52 - n)$	$4-X_{n+1}(51-n)$

$$\begin{split} E(X_{n+1}\mid\mathcal{F}_n) &= \{X_n - \text{условная пвероятность извлечь туза}\} = X_n(\frac{X_n(52-n)-1}{51-n}) + (1-X_n)(\frac{X_n(52-n)}{51-n}) = \\ &= \frac{X_n(52-n)(X_n+1-X_n)-X_n}{51-n} = X_n \to X_n \text{ - мартингал.} \end{split}$$

<u>Пример 2.</u> $\mathcal{F}_n = \sigma(z_1,\dots,z_n); z_i$ — случайные величины, независимые и одинаково распределённые. $P(z_i=-1)=P(z_i=1)=\frac{1}{2}.$ Являются ли мартингалами следующие случайные процессы?

- 1. (z_n) ;
- 2. $(X_n), X_n = \sum_{i=1}^n z_i;$
- 3. $(R_n), R_n = X_n^2$;
- 4. (L_n) , $L_n = X_n^2 n$.

Решение: все процессы адаптированы к (\mathcal{F}_n)

- 1. $E(z_{n+1}\mid \mathcal{F}_n)=E(z_{n+1}\mid z_1,\ldots,z_n)=\{z_i$ независимы $\}=E(z_{n+1})=0\neq z_n=1$ $or-1\to (z_n)$ не мартингал.
- 2. $E(X_{n+1}\mid\mathcal{F}_n)=E(\sum_{i=1}^{n+1}z_i\mid z_1,\ldots,z_n)=\sum_{i=1}^nz_i+E(z_{n+1}\mid z_1,\ldots,z_n)=\sum_{i=1}^nz_i=X_n\to (X_n)$ мартингал.
- 3. $E(R_{n+1}\mid\mathcal{F}_n)=E(X_{n+1}^2\mid z_1,\ldots,z_n)=\{X_{n+1}=X_n+z_{n+1}\}=E((X_n+z_{n+1})^2\mid z_1,\ldots,z_n)=E(X_n^2\mid z_1,\ldots,z_n)+E(2X_nz_{n+1}\mid z_1,\ldots,z_n)+E(z_{n+1}^2\mid z_1,\ldots,z_n)=X_n^2+0+1\neq R_n\to (R_n)$ не мартингал.
- 4. $E(L_{n+1}\mid\mathcal{F}_n)=E(X_{n+1}^2-(n+1)\mid z_1,\ldots,z_n)=E(X_{n+1}^2\mid z_1,\ldots,z_n)-E((n+1)\mid z_1,\ldots,z_n)=E(R_{n+1}\mid z_1,\ldots,z_n)-n-1=X_n^2+1-n-1=X_n^2-n=L_n\to (L_n)$ мартингал.

Свойства мартингалов

Если (X_n) — мартингал, то:

- 1. $E(X_n) = const$ Доказательство: $E(X_{n+1} \mid \mathcal{F}_n) = X_n \to E(E(X_{n+1} \mid \mathcal{F}_n)) = E(X_n) \to E(X_{n+1}) = E(X_n)$ для $\forall n$.
- 2. $E(X_{n+k} \mid \mathcal{F}_n) = X_n$ для $\forall k \geq 1$ Доказательство:
 - Случай k=1: $E(X_{n+1} \mid \mathcal{F}_n) = X_n$
 - Предположим $E(X_{n+i} \mid \mathcal{F}_n) = X_n$: $E(X_{n+i+1} \mid \mathcal{F}_n) = \{\mathcal{F}_n \subseteq \mathcal{F}_{n+i}\} = E(E(X_{n+i+1} \mid \mathcal{F}_{n+i}) \mid \mathcal{F}_n) = \{E(X_{n+i+1} \mid \mathcal{F}_{n+i}) = X_{n+i}\} = E(X_{n+i} \mid \mathcal{F}_n) = X_n.$

Определение. Случайная величина τ называется моментом остановки (stopping time) по отношению к фильтрации (\mathcal{F}_n) , если:

- 1. $\tau \in \{0, 1, 2, 3, \ldots\} \cup \{+\infty\}.$
- 2. $\forall n$ индивид, различающий события из \mathcal{F}_n , способен понять: наступил момент τ или нет. Формально: событие $\{\tau \leq n\}$ лежит в σ -алгебре \mathcal{F}_n .

Пример: внук играет с кошкой во дворе. Предположим, что у внука есть часы и он знает, убежала ли кошка и во сколько. Бабушка может установить следующие правила, когда нужно идти домой:

- 1. $au_1 =$ вернуться через час после того, как кошка убежит.
- 2. $au_2 =$ вернуться за час до того, как кошка убежит.

Величина τ_1 является моментом остановки, так как внук всегда может сказать, когда убежала кошка и сколько времени прошло.

Величина τ_2 не является моментом остановки, так как внук не может сказать, когда убежит кошка, не заглядывая в будущее.

Теорема об остановке мартингала (теорема Дуба или stopping time theorem). Если $(X_n$ — мартингал по отношению к (\mathcal{F}_n) ; τ - момент остановки по отношению к (\mathcal{F}_n) и выполнено хотя бы одно из условий 1-3, то $E(X_{\tau})=E(X_1)$

Условия:

- 1. Существует число m такое, что $\tau < m$.
- 2. $P(\tau = +\infty) = 0$ и при это существует такое число m, что $|X_{min\{n,\tau\}}| < m$
- 3. $E(\tau) < \infty$ и существует такое число m, что $E(|X_{min\{n+1,\tau\}} X_{min\{n,\tau\}}|\mathcal{F}_n) < m$