Aktiven Konturen in MATLAB

Projektarbeit

Autor: Sven Osterwalder

Betreuer: Prof. Marx Stampfli

Datum: 2015-01-07

Ziel der Projektarbeit

- Prototyp einer Applikation
 - Erkennung aktiver Konturen
 - Mittels MATLAB
- Vergleich mit bestehenden Methoden
- Regionen als zusammenhängend erkennen

Ausgangslage (1)

Quellbild

Quelle: http://upload.wikimedia.org/wikipedia/commons/3/3d/Patella_bipartita.jpg

Ausgangslage (2)

Zielregion

Quelle: http://upload.wikimedia.org/wikipedia/commons/3/3d/Patella_bipartita.jpg

Aktive Konturen

Eine Art
"Gummiband"

Aktive Konturen

- Art der Segmentierung
 - modellbasiert
- Unterteilung in Regionen
 - Zuweisung der Pixel
- Parametrisierte, geschlossene Kurve
 - o $r(s) = (x(s), y(s)), s \in [0, 1]$
- B-Spline-Kurve

Kräfte

Elastizität, Kurvatur und Bild

Energiefunktion

Berechnung der Kräfte

$$E_{snake}^* = \int_0^1 E_{snake}(v(s)) ds$$

$$= \int_0^1 E_{int}(v(s)) + E_{image}(v(s)) + E_{con}(v(s)) ds$$

$$E_{snake} = \sum_{i=1}^{n} (\alpha * E_{elas}(p_i) + \beta * E_{curv}(p_i) + \gamma * E_{img}(pv_i))$$

Umsetzung

Herausforderungen

MATLAB

Klassen

Programmier-Konzepte

Globals

Parameter

Elastizität

Kurvatur

Bildkräfte

Bildverarbeitung

Graustufen

Gauss

Kantenbasiert

Fazit & Ausblick

Vertiefung

MATLAB

Experimentieren

MATLAB

Vergleich(e)

Chan & Vese

Danke!

Fragen?

