Trabajo práctico Nro 2

Materia: Hidrodinámica de cuerpos de agua, 2017.

Alumno. Emiliano López.

1) a- La dinámica de la vorticidad está dada por

$$\partial_t ec{\omega} + (ec{u} \cdot
abla) ec{\omega} = (ec{\omega} \cdot
abla) ec{u} +
u
abla^2 ec{\omega}$$

Para el problema visto en clase donde suponemos una vorticidad 1D tal que $\vec{\omega}=(\omega,0,0)$ y $\vec{\omega}=\omega(r,t)$ $\vec{u}=(u_x,u_r,u_\phi)$ $\vec{\omega}\cdot\nabla\vec{u}=0$

Continuidad

La ecuación de continuidad en coordenadas cilíndricas está dada por:

$$abla \cdot u = rac{1}{r}\partial_r(ru_r) + rac{1}{r}\partial_\phi(u_\phi) + \partial_z(u_z) \,.$$

Para el problema dado donde $u_x=lpha x$; $u_r=-lpha rac{r}{2}$; $u_\phi=?$

Calculamos

$$abla \cdot u = \partial_x [lpha x] + rac{1}{r} \partial_r [r(-lpha rac{r}{2})] + rac{1}{r} \partial_\phi [u_\phi]$$

y observamos que satisface continuidad $abla \cdot u = 0$ ya que:

$$egin{aligned} \partial_x [lpha x] &= lpha \ \partial_r \left[r \left(-lpha rac{r}{2}
ight)
ight] &= -lpha r \ \partial_\phi [u_\phi] &= 0 \end{aligned}$$

Aglutinando la ecuación nos queda:

$$lpha + rac{1}{r}(-lpha)r = lpha - lpha = 0$$

Por lo que se satisface continuidad. Teniendo en cuenta que se considera un flujo incompresible, la conservación de la cantidad de movimiento también es nula.

Resolución de los términos de la Ec. de vorticidad

El operador ∇ en coordenadas cilíndricas está dado por:

$$abla = rac{\partial}{\partial_r}ec{r} + rac{1}{r}rac{\partial}{\partial_\phi}ec{\phi} + rac{\partial}{\partial_z}ec{z}$$

• Resolvemos $(\vec{u} \cdot \nabla)w$:

$$(ec{u}\cdot
abla)w=\left(u_x,u_r,u_lpha
ight)\cdot\left(\partial_x,\partial_r,rac{1}{r}\partial_\phi
ight)\omega\overrightarrow{e_x}$$

$$u_x = \left(u_x \partial_x + u_r \partial_r + rac{1}{r} \partial_\phi
ight) \omega \overrightarrow{e_x}^{-1} \, .$$

ya que $\omega=\omega(r,t)$:

$$=u_rrac{dw}{dr}\stackrel{
ightarrow}{e_x}$$

• Resolvemos $\vec{\omega} \cdot \nabla \vec{u}$

$$ec{\omega}\cdot
ablaec{u}=\left(\omega,0,0
ight)\cdot\left(\partial_{x},\partial_{r},\partial_{lpha}
ight)ec{u} \ =\omega\partial_{x}ec{u} \ =\omega\partial_{x}\left[lpha x\overrightarrow{e_{x}}-rac{lpha r}{2}\overrightarrow{e_{r}}
ight] \ =lpha\omega\overrightarrow{e_{x}}$$

• Resolvemos $u
abla^2 \vec{\omega}$

$$u
abla^2ec{\omega}=
uigg[rac{\partial^2\omega}{\partial x^2}+rac{1}{r}rac{r\partial\omega}{\partial r}+rac{1}{r^2}rac{\partial^2\omega}{\partial\phi^2}igg]\stackrel{
ightarrow}{e_x}$$

El primer y último término se anulan ya que $ec{\omega}=\omega(r,t)$, por lo tanto:

$$=rac{
u}{r}rac{d}{dr}\left(rrac{d\omega}{dr}
ight)\overrightarrow{e_x}$$

Combinando los últimos items resueltos en la ecuación de vorticidad, nos queda:

$$\partial_t ec{\omega} + u_r rac{d\omega}{dr} \stackrel{
ightarrow}{e_x} = lpha \omega \stackrel{
ightarrow}{e_x} + rac{
u}{r} rac{d}{dr} igg(r rac{d\omega}{dr} igg) \stackrel{
ightarrow}{e_x}$$

Eliminando el término $\partial_t \vec{\omega}$ debido a que es un flujo estacionario y reemplazando $u_r=-\frac{\alpha r}{2}$ nos queda para la componente $\overrightarrow{e_x}$:

$$rac{lpha r}{2}rac{d\omega}{dr}+lpha\omega+rac{
u}{r}rac{d}{dr}igg(rrac{d\omega}{dr}igg)=0$$

$$lphaigg(\omega+rac{r}{2}rac{d\omega}{dr}igg)+rac{
u}{r}rac{d}{dr}igg(rrac{d\omega}{dr}igg)=0$$

Teniendo en cuenta que el primer término es la regla del producto de derivar $\frac{1}{2r}\frac{d}{dr}(r^2\omega)$, reacomodamos sacando como factor común $\frac{1}{r}$

$$rac{1}{r}igg[rac{lpha}{2}rac{d}{dr}igg(r^2\omegaigg)+rac{
u}{r}rac{d}{dr}igg(rrac{d\omega}{dr}igg)igg]=0$$

Integrando lo que se encuentra entre corchetes obtenemos:

$$rac{lpha}{2}r^2\omega +
u rrac{d\omega}{dr} = C_1$$

Haciendo $C_1=0$, reacomodando, nos queda

$$u r \frac{d\omega}{dr} = -\frac{\alpha}{2} r^2 \omega$$

Dividiendo ambos miembros por $r\omega$ y separando variables nos queda integrar

$$\int \frac{1}{\omega} d\omega = -\frac{\alpha}{2\nu} \int r dr$$

$$lnigg(rac{\omega}{\omega_0}igg) = rac{-lpha}{2
u}rac{r^2}{2}$$

$$\omega = \omega_0 e^{-lpha r^2/4
u}$$

Visualizamos la distribución de vorticidad en el siguiente gráfico

```
In [2]: %matplotlib inline
   plt.figure()
   r = np.arange(-2.5,2.5,0.1)
   w0 = 2
   w = w0 * np.exp(-(alpha*r**2)/(4*nu))
   plt.plot(r,w)
   plt.show()
```


Para obtener la componenente de la velocidad u_ϕ plateamos:

$$\omega = \nabla imes u \ = \overrightarrow{e_x} igg(rac{1}{r} rac{\partial r}{\partial r} u_\phi - rac{1}{r} rac{\partial u_r}{\partial \phi} igg) + \overrightarrow{e_r} igg(rac{1}{r} rac{\partial u_x}{\partial \phi} - rac{\partial u_\phi}{\partial x} igg) + \overrightarrow{e_\phi} igg(rac{u_r}{u_x} - rac{1}{r} rac{\partial u_x}{\partial r} igg)$$

Debido a que la única componente no nula de la vorticidad es $\vec{\omega}=\omega \overrightarrow{e_x}$ y que $u_x=\alpha x$ y $u_r=-\frac{\alpha r}{2}$, nos queda:

$$ec{\omega} = \overrightarrow{e_x} rac{1}{r} rac{\partial r u_\phi}{\partial r}$$

Igualando al resultado obtenido previamente (distribución gaussiana de vorticidad) tenemos:

$$\omega = rac{1}{r}rac{d(ru_\phi)}{dr} = \omega_0 e^{-lpha r^2/4
u}$$

Reorganizando nos queda la ecuación diferencial:

$$d(ru_{\phi})=\omega_{0}re^{-lpha r^{2}/4
u}dr$$

Aplicando integración a ambos lados obtenemos:

$$u_{\phi}=rac{\omega_0}{r}\int_0^r re^{-lpha r^2/4
u}dr$$

Aplicamos un cambio de variable para resolver la integral previa, haciendo:

$$u=-rac{lpha}{4
u}r^2 \ du=-rac{lpha}{2
u}r$$

Reemplazando, la integral queda del siguiente modo:

$$rac{-2
u}{lpha}\int e^u du =$$

Volviendo al valor de $u=-rac{lpha}{4
u}r^2$

$$egin{aligned} & rac{-2
u}{lpha}igg[e^{-rac{lpha}{4
u}r^2}igg]_0^r = \ & = rac{-2
u}{lpha}igg[e^{-rac{lpha}{4
u}r^2}-1igg] \end{aligned}$$

Incorporamos estos resultados en la ecuación de u_ϕ obtenemos:

$$u_{\phi} = rac{2
u\omega_0}{lpha r}igg[1-e^{-lpha r^2/4
u}igg]$$

1) b- Visualización

Teniendo las tres componenetes de velocidad u_x , u_r y u_ϕ visualizamos el campo vectorial haciendo las transformaciones a coordenadas cartesianas correspondientes. A continuación el código y su visualización correspondiente.

```
In [1]:
        %matplotlib inline
        from mpl toolkits.mplot3d import axes3d
        import matplotlib
        import numpy as np
        import matplotlib.pyplot as plt
        fig = plt.figure()
        ax = fig.gca(projection='3d')
        # Grilla espacial
        x, y, z = np.meshgrid(np.arange(0.1, 2, 0.2),
                               np.arange(0.1, 2, 0.2),
                               np.arange(-1, 1, 0.5))
        r = np.sqrt(x**2 + v**2)
        # Parametros
        alpha = 1
        nu
              = 0.25
              = 2
        w0
        # Make the direction data for the arrows
        ux
              = alpha * x
              = -(alpha/2) * r
        ur
        uphi = ((2 * nu * w0) / (alpha * r)) * (1-np.exp(-
        (alpha*r**2)/(4*nu)))
        u = ux
        v = r*np.sin(uphi)
        w = r*np.cos(uphi)
        ax.quiver(x, y, z, u, v, w, length=0.1, normalize=True)
        ax.set xlabel('X')
        ax.set ylabel('Y')
        ax.set zlabel('Z')
        plt.show()
```


2) Vórtice potencial

El vórtice potencial es un ejemplo de flujo irrotacional cuya componente angular u_{θ} se define por:

$$u_{ heta} = rac{C}{r}$$

a) Demostración de flujo irrotacional

Consideremos un sistema de coordenadas cilíndricas con el vector velocidad $\vec{u}=u_r\overrightarrow{e_r}+u_\theta\overrightarrow{e_\theta}+0\overrightarrow{e_z}$.

Debido a que el flujo es considerado irrotacional, todos los componentes del vector de vorticidad deben ser cero. La vorticidad en coordenadas cilíndricas está dada por:

$$ec{\omega} =
abla imes ec{u} \ = \left(rac{1}{r}rac{\partial u_z}{\partial heta} - rac{\partial u_ heta}{\partial z}
ight) \overrightarrow{e_r} + \left(rac{\partial u_r}{\partial z} - rac{\partial u_z}{\partial r}
ight) \overrightarrow{e_ heta} + \left(rac{1}{r}rac{\partial ru_ heta}{\partial r} - rac{1}{r}rac{\partial u_r}{\partial heta}
ight) \overrightarrow{e_z}$$

Debido a que el vórtice es 2D, la componente z de la velocidad y sus derivadas respecto a z son cero. Por lo tanto, para satisfacer la irrotacionalidad de un vórtice potencial solo nos queda la componente z de la vorticidad $(\overrightarrow{e_z})$:

$$rac{\partial r u_{ heta}}{\partial r} - rac{\partial u_r}{\partial heta} = 0$$

Debido a que el flujo es axial simétrico, todas las derivadas respecto a θ deben ser cero, entonces:

$$\frac{\partial r u_{ heta}}{\partial r} = \frac{\partial u_r}{\partial heta} = 0$$

Esta condición nos obliga a que ru_{θ} deba ser una constante, de aquí que la distribución de velocidad para un vórtice potencial está dada por:

$$u_{ heta}=rac{C}{r};u_{r}=0;u_{z}=0$$

La constance C puede ser expresada en función de la circulación ($\Gamma=2\pi K$), esto es:

$$C=rac{\Gamma}{2\pi}$$

por lo que nos queda:

$$u_{ heta} = rac{\Gamma}{2\pi r}$$

A continuación observamos la velocidad en función del radio. Observamos que en el origen la velocidad se hace infinita debido a la singularidad aunque esto no sucede en la realidad a causa de la viscocidad.

|--|