

EDUCACIÓN PROFESIONAL

Diplomado en Programación y Aplicaciones de Python

Aplicaciones en Ciencia de Datos e Inteligencia Artificial

Profesor:

Francisco Pérez Galarce

Evaluaciones

Evaluación escrita de conceptos	20%
• 2 controles (contenido teórico e implementación)	10% 2 de 2
Prueba final del curso	10% Próxima semana (hasta el 22/12)
Desarrollo de tareas de programación	80 %
• 2 actividades de implementación en clases	20% 2 de 2
• 2 Mini proyectos	40% 1 de 2 Próxima semana (hasta el 22/12)
Repositorio en Github	20% Próxima semana (hasta el 22/12)

Fechas de evaluaciones

Fecha	Actividad/Evaluación
29-10-24	Introducción al aprendizaje de máquina: exploración y procesamiento de datos con Python Actividad 1 (No evaluada)
05-11-24	Aprendizaje supervisado con Python : regresiones Actividad 2 (Evaluada)
12-11-24	Actividad 2 (Evaluada) Control 1
19-11-24	Aprendizaje supervisado con Python naive Bayes y métricas de evaluación Mini Proyecto 1
26-11-24	Aprendizaje supervisado con Python: decision tree, random forest Mini Proyecto 1
03-12-24	Aprendizaje no supervisado con Python: k-means Actividad 4 (Evaluada) – Control 2
10-12-24	Redes Neuronales I
17-12-24	Redes Neuronales II Mini Proyecto 2 / Prueba Final / Portafolio en Github

Introducción al aprendizaje de máquinas.

Procesamiento de Datos

Aprendizaje supervisado.

Aprendizaje no supervisado

Redes Neuronales

Hasta hoy!!

www.educacionprofesional.ing.uc.cl

Red neuronal artificial

www.educacionprofesional.ing.uc.cl

Neurona artificial

Inicialmente inspiradas en funcionamiento de una neurona humana

Emite señales como impulsos (modelo matemático trata de imitar)

Neurona

Neurona artificial

Redes neuronales artificiales

Neurona / perceptrón

El componente fundamental de una red neuronal es una neurona.

En ella, se multiplica cada valor de entrada por un peso entrenable y se suma una constante.

Luego se define una función que activa la reunona o no dado el producto obtenido previamente.

$$f(x_1 * w_1 + x_2 * w_2 + ... + x_m * w_m + b) = f(\sum_{i=1}^m w_i x_i + b)$$

f(s) = función de activación

Tipos de redes neuronales

Redes neuronales artificiales

Al valor obtenido se le suma una constante (bias).

$$W^TX + b$$

$$W^T \in \mathbb{R}^{1 \times 3} \quad X \in \mathbb{R}^{3 \times 1}$$

Al resultado se le aplica la función de activación f.

$$f(W^TX + b)$$

¿Qué pasa si agregamos otra neurona?

Al valor obtenido se le suma una constante (bias).

$$W^TX + b$$

$$W^T \in \mathbb{R}^{2 \times 3}$$
 $X \in \mathbb{R}^{3 \times 1}$

Al resultado se le aplica la función de activación f.

$$f(W^TX+b)$$

¿Qué pasa si agregamos n neurona?

Al valor obtenido se le suma una constante (bias).

$$W^TX + b$$

$$W^T \in \mathbb{R}^{n \times 3} \quad X \in \mathbb{R}^{3 \times 1}$$

Al resultado se le aplica la función de activación f.

$$f(W^TX + b)$$

Entendiendo los pesos

$$\begin{bmatrix} h_1^1 \\ h_2^1 \\ \dots \\ h_n^1 \end{bmatrix} = \begin{bmatrix} w_{11}^1 & w_{12}^1 & \dots & w_{1n}^1 \\ w_{21}^1 & w_{22}^1 & \dots & w_{2n}^1 \\ \vdots & \vdots & \ddots & \vdots \\ w_{m1}^1 & w_{m2}^1 & \dots & w_{mn}^1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

Redes neuronales artificiales

Al aumentar el número de neuronal se potencia su expresividad pudiendo ser considerado un excelente estimador de funciones de acuerdo al Teorema de Aproximación Universal (Cybenko, 1989).

www.educacionprofesional.ing.uc.cl

Redes neuronales artificiales

Salida del modelo

Usada para clasificación o regresión

Profundidad en una red neuronal

Lineal

$$h = \mathbf{w}^T \mathbf{x}$$

$$h = W^T x$$

$$\boldsymbol{h} = \boldsymbol{W}_2^T \boldsymbol{W}_1^T \boldsymbol{x}$$

$$\boldsymbol{h} = \boldsymbol{W}_3^T \boldsymbol{W}_2^T \boldsymbol{W}_1^T \boldsymbol{x}$$

$$\boldsymbol{h} = \boldsymbol{W}_N^T \dots \boldsymbol{W}_2^T \boldsymbol{W}_1^T \boldsymbol{x}$$

No lineal

$$h = f(\mathbf{w}^T \mathbf{x})$$

$$\mathbf{h} = f(\mathbf{W}^T \mathbf{x})$$

$$\mathbf{h} = f(\mathbf{W}_2^T f(\mathbf{W}_1^T \mathbf{x}))$$

$$\mathbf{h} = f(\mathbf{W}_3^T f(\mathbf{W}_2^T f(\mathbf{W}_1^T \mathbf{x})))$$

$$\mathbf{h} = f(\mathbf{W}_N^T ... f(\mathbf{W}_2^T f(\mathbf{W}_1^T \mathbf{x})))$$

Componentes de la red neuronal

Conceptos para la definición y entrenamiento de una red neuronal

www.educacionprofesional.ing.uc.cl

Algunos componentes de una red neuronal

Funciones de activación

Función de pérdida

Algoritmos de optimización

Batch y épocas

Tipo de capa

Backpropagation

Algunos componentes de una red neuronal

Funciones de activación

Función de pérdida

Algoritmos de optimización

Batch y épocas

Tipo de capa

Backpropagation

Funciones de activación

ReLU

Última capa

Para clasificación binaria, podemos usar la función sigmoide:

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Redes neuronales artificiales: Última capa

Para clasificación multiclase con K posibles categorías, Podemos usar la función softmax.

$$softmax(z)_{i} = \frac{e^{z_{i}}}{\sum_{j=1}^{K} e^{z_{j}}}$$

Algunos componentes de una red neuronal

Funciones de activación

Función de pérdida

Algoritmos de optimización

Batch y épocas

Tipo de capa

Backpropagation

Redes neuronales artificiales: Función de pérdida

Redes neuronales artificiales: Función de pérdida

Para clasificación se utiliza la entropía cruzada o "binary cross-entropy", que se define como

$$Loss = \sum_{i=1}^{N} y_i \log \widehat{y}_i$$

Donde y_i es el valor a observado e $\hat{y_i}$ es el valor de la predicción.

Redes neuronales artificiales: Función de pérdida

Para regresión se utiliza el "mean squared error" o MSE

$$Loss = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Donde y_i es el valor observado e $\hat{y_i}$ es el valor de la predicción.

Algunos componentes de una red neuronal

Funciones de activación

Función de pérdida

Algoritmos de optimización

Batch y épocas

Tipo de capa

Backpropagation

Redes neuronales artificiales: Entrenamiento

El learning rate, nos permite elegir cuánto avanzar en cada iteración del proceso de optimización.

Redes neuronales artificiales: Entrenamiento

El descenso de gradiente permite optimizar los parámetros, pero no es el único algoritmo.

Algunos son:

- Adam
- Adagrad
- RMSprop
- AdamW

Ver listado de optimizadores en pytorch: https://pytorch.org/docs/stable/optim.html

Algunos componentes de una red neuronal

Funciones de activación

Función de pérdida

Algoritmos de optimización

Batch y épocas

Tipo de capa

Backpropagation

Redes neuronales artificiales: Entrenamiento

Algunos componentes de una red neuronal

Funciones de activación

Función de pérdida

Algoritmos de optimización

Batch y épocas

Tipo de capa

Backpropagation

Redes neuronales artificiales

- Convolution layer
- Pooling layer
- Rectified Linear Unit
- Fully connected
- SoftMax

Algunos componentes de una red neuronal

Funciones de activación

Función de pérdida

Algoritmos de optimización

Batch y épocas

Tipo de capa

Backpropagation

Redes neuronales artificiales: Entrenamiento

Backpropagation nos permite encontrar los pesos de forma eficiente.

EDUCACIÓN PROFESIONAL

www.educacionprofesional.ing.uc.cl