EAS 508 Assignment 2– Kaushal Shivaprakashan-50608818

Remark:

- · Please change the file name when submitting your assignment
- · Only .html file is allowed to submit, any other form will not be graded
- · Any conclusions without evidence will be granted 0
- · Academic integrity

Question 1 [5 points]

Describe a situation or problem from your job, everyday life, current events, etc., for which a logistic regression model would be appropriate. List some (up to 5) predictors that you might use. Please show your work.- Answer:

The logistic regression model is fitted to problems where the outcome is binary, yes/no, or success/failure. The following everyday example describes an appropriate situation for logistic regression:

Scenario: Predict whether a student would pass or fail in a course.

The course outcome prediction as pass/fail in a college environment helps via early intervention and academic support. This target variable is binary: pass 1 or fail 0. A logistic regression model will help to show the relation of certain predictors on the likelihood of passing the course.

Predictors

- Study Hours per Week: Generally speaking, the time a student puts into studying every
 week is positively related to his or her academic achievement. Such a measure could
 provide an indication of the seriousness of the student regarding the course.
- 2. Attendance Rate: The attendance rate for the given student is another critical factor; class attendance often leads to better understanding and participation in class activities.
- Previous Scores on Exams: The average scores of previous exams or grades in related subjects can be a good predictor because it reflects the general academic aptitude of the student and his level of preparation.
- 4. Activity Level in Class: A record of the level of class participation by the student, through discussions, group activities, or assignments, may give a pointer to the student's mastery of the material and the confidence level in the subject.
- Availability of Academic Resources: This may relate to other resources, such as tutoring, study groups, or online course materials, depending on what is available since better support normally goes hand in hand with more conducive learning.

Question 2 [20 points]

In this problem, we will use the Naive Bayes algorithm to fit a spam filter by hand. This question does not involve any programming but only derivation and hand calculation. Spam filters are used in all email services to classify received emails as "Spam" or "Not Spam". A simple

approach involves maintaining a vocabulary of words that commonly occur in "Spam" emails and classifying an email as "Spam" if the number of words from the dictionary that are present in the email is over a certain threshold. We are given the vocabulary consists of 15 words

V =secret, offer, low, price, valued, customer, today, dollar, million, sports, is, for, play, healthy,

We will use V_i to represent the ith word in V . As our training dataset, we are also given 3 example spam messages,

- · million dollar offer for today
- secret offer today
- · secret is secret

and 4 example non-spam messages

- · low price for valued customer
- · play secret sports today
- · sports is healthy
- · low price pizza

Recall that the Naive Bayes classifier assumes the probability of an input depends on its input feature. The feature for each sample is defined as $x^{(i)} = [x_1^{(i)}, x_2^{(i)}, \cdots, x_p^{(i)}], i = 1, \cdots, m$ and the class of the ith sample is $y^{(i)}$. In our case the length of the input vector is p = 15, which is equal to the number of words in the vocabulary V (hint: recall that how did we define a dummy variable). Each entry $x_i^{(i)}$ is equal to the number of times word V_i occurs in the i-th message.

1.[5 points] Calculate class prior P(y=0) and P(y=1) from the training data, where y=0 corresponds to spam messages, and y=1 corresponds to non-spam messages. Note that these class prior essentially corresponds to the frequency of each class in the training sample. Write down the predictor vectors for each spam and non-spam messages.

Answer:

The prior probabilities, P(y=0) and P(y=1), are based on the proportion of spam and non-spam messages in the training dataset.

Count Spam Messages (y = 0): There are 3 spam messages. Count Non-Spam Messages (y = 1): There are 4 non-spam messages. Total Messages: There are 3 + 4 = 7 messages in total.

So, the priors are: P(y=0) = 3 / 7 P(y=1) = 4 / 7

Predictor Vectors Each email can be represented as a vector $x^{(i)}$ of length 15, corresponding to the frequency of each word in the vocabulary V in that email. Here's the feature vector for each message:

Spam messages (y = 0):

Non-spam messages (y = 1):

$$## P(y = 0) = 0.4285714$$

$$P(y = 1) = 0.5714286$$

2. [15 points] In the Naive Bayes model, assuming the keywords are independent of each other (this is a simplification), the likelihood of a sentence with its feature vector x given a class c is given by

$$P(x|y=c) = \prod_{i=1}^{15} P(x_i|y=c), c = \{0, 1\}.$$

Given a test message "today is secret", using the Naive Bayes classier to calculate the posterior and decide whether it is spam or not spam. Please show your work- The message "today is secret" is classified as spamm because the posterior probability for spam is higher than the posterior probability for non-spam. .

Answer:

Given the test message "today is secret," we need to calculate the posterior probabilities for each class using Naive Bayes.

Spam Messages:

∑(spam word occurrences) = 11 Non-spam Message Analysis:

Non-spam Messages:

"low price for valued customer": Vectors = [0,0,1,1,1,1,0,0,0,0,0,1,0,0,0] "play secret sports today": Vectors = [1,0,0,0,0,0,1,0,0,1,0,0,1,0,0] "sports is healthy": Vectors = [0,0,0,0,0,0,0,0,0,1,1,0,0,1,0] "low price pizza": Vectors = [0,0,1,1,0,0,0,0,0,0,0,0,0,0,1] Total occurrences in Non-spam messages: Vectors = [1,0,2,2,1,1,1,0,0,2,1,1,1,1,1]

\(\sum_{\text{(non-spam word occurrences)}} = 15 \text{ Laplace Smoothing Probability Computation:}

Spam Class (y = 0):

 $P(\text{secret}|y=0) = (3+1)/(11+15) = 0.15 \; P(\text{offer}|y=0) = (2+1)/(11+15) = 0.11 \; P(\text{low}|y=0) = (0+1)/(11+15) = 0.03 \; P(\text{price}|y=0) = (0+1)/(11+15) = 0.03 \; P(\text{valued}|y=0) = (0+1)/(11+15) = 0.03 \; P(\text{customer}|y=0) = (0+1)/(11+15) = 0.03 \; P(\text{today}|y=0) = (2+1)/(11+15) = 0.11 \; P(\text{dollar}|y=0) = (1+1)/(11+15) = 0.07 \; P(\text{million}|y=0) = (1+1)/(11+15) = 0.07 \; P(\text{sports}|y=0) = (0+1)/(11+15) = 0.03 \; P(\text{is}|y=0) = (1+1)/(11+15) = 0.07 \; P(\text{play}|y=0) = (0+1)/(11+15) = 0.03 \; P(\text{healthy}|y=0) = (0+1)/(11+15) = 0.03 \; P(\text{pizza}|y=0) = (0+1)/(11+15) = 0.03 \; P(\text{play}|y=0) = (0+1)/(11+15) = 0.03 \; P(\text{pizza}|y=0) = (0+1)/(11+15) = 0.03 \; P(\text{play}|y=0) = (0+1)/($

```
P(y = 0) = 3/7 = 0.42
```

Non-Spam Class (y = 1):

 $P(\text{secret}|y=1) = (1+1)/(15+15) = 0.06 \; P(\text{offer}|y=1) = (0+1)/(15+15) = 0.03 \; P(\text{low}|y=1) = (2+1)/(15+15) = 0.10 \; P(\text{price}|y=1) = (2+1)/(15+15) = 0.10 \; P(\text{valued}|y=1) = (1+1)/(15+15) = 0.06 \; P(\text{customer}|y=1) = (1+1)/(15+15) = 0.06 \; P(\text{today}|y=1) = (1+1)/(15+15) = 0.06 \; P(\text{dolar}|y=1) = (0+1)/(15+15) = 0.03 \; P(\text{million}|y=1) = (0+1)/(15+15) = 0.03 \; P(\text{sports}|y=1) = (2+1)/(15+15) = 0.10 \; P(\text{is}|y=1) = (1+1)/(15+15) = 0.06 \; P(\text{for}|y=1) = (1+1)/(15+15) = 0.06 \; P(\text{play}|y=1) = (1+1)/(15+15)$

```
P(y = 1) = 4/7 = 0.57
```

Probabilities of Words Given the Class (Spam vs Non-Spam):

Spam Example (y = 0):

P(today, is, secret|y = 0) = P(today|y = 0) x P(is|y = 0) x P(secret|y = 0) = (0.11) x (0.11) x (0.15) = 0.00202 P(y = 0|today is secret) = P(y = 0) x P(today, is, secret|y = 0) = (0.42) x (0.00202) = 0.00086 Non-Spam Example (y = 1):

P(today, is, secret|y = 1) = P(today|y = 1) \times P(is|y = 1) \times P(secret|y = 1) = (0.06) \times (0.06) \times (0.06) = 0.00028 P(y = 1|today is secret) = P(y = 1) \times P(today, is, secret|y = 1) = (0.57) \times (0.000287) = 0.00016 Conclusion:

Thereforee the P(y = 0|today is secret) > P(y = 1|today is secret), the message "Today is secret" is classified as SPAM.

```
spam_vectors <- sapply(spam_messages, create_feature_vector, vocab)</pre>
non_spam_vectors <- sapply(non_spam_messages, create_feature_vector, vocab)</pre>
num spam <- length(spam messages)</pre>
num_non_spam <- length(non_spam_messages)</pre>
total messages <- num spam + num non spam
P_y0 <- num_spam / total_messages
P y1 <- num non spam / total messages
N_spam <- sum(spam_vectors)</pre>
N_non_spam <- sum(non_spam_vectors)</pre>
V <- length(vocab)
calculate_likelihood <- function(word_count, total_words) {</pre>
  return((word_count + 1) / (total_words + V))
test_message <- "today is secret"</pre>
test_vector <- create_feature_vector(test_message, vocab)</pre>
P_x_given_y0 <- prod(sapply(1:length(vocab), function(i) {</pre>
  calculate_likelihood(sum(spam_vectors[i, ]) * (spam_vectors[i, ] > 0), N_
spam)
}))
P_x_given_y1 <- prod(sapply(1:length(vocab), function(i) {</pre>
 calculate_likelihood(sum(non_spam_vectors[i, ]) * (non_spam_vectors[i, ]
> 0), N_non_spam)
}))
P_y0_given_x <- P_x_given_y0 * P_y0
P_y1_given_x <- P_x given_y1 * P_y1
P_total <- P_y0_given_x + P_y1_given_x
P_y0_given_x_normalized <- P_y0_given_x / P_total</pre>
P_y1_given_x_normalized <- P_y1_given_x / P_total
cat("Posterior Probability of Spam (y=0):", P_y0_given_x_normalized, "\n")
```

```
## Posterior Probability of Spam (y=0): 1
```

```
cat("Posterior Probability of Not Spam (y=1):", P_y1_given_x_normalized, "\ n")
```

```
## Posterior Probability of Not Spam (y=1): 2.671386e-24
```

```
if (P_y0_given_x_normalized > P_y1_given_x_normalized) {
  cat("The message 'today is secret' is classified as: Spam\n")
} else {
  cat("The message 'today is secret' is classified as: Not Spam\n")
}
```

```
## The message 'today is secret' is classified as: Spam
```

Question 3 [16 points]

The provided dataset is a subset of the public data from the 2022 EPA Automotive Trends Report. It will be used to study the effects of various vehicle characteristics on CO2 emissions. The dataset consists of a dataframe with 1703 observations with the following 7 variables:

- Model. Year: year the vehicle model was produced (quantitative)
- Type: vehicle type (qualitative)
- MPG: miles per gallon of fuel (quantitative)
- Weight: vehicle weight in lbs (quantitative)
- Horsepower: vehicle horsepower in HP (quantitative)
- Acceleration: acceleration time (from 0 to 60 mph) in seconds (quantitative)
- CO2: carbon dioxide emissions in g/mi (response variable)

(1).[3 points] Read the data, Fit a multiple linear regression model called model1 using CO2 as the response and all predicting variables. Using $\alpha=0.05$, which of the estimated coefficients that were statistically significant.

```
Answer:
```

```
data <- read.csv("emissions.csv")
head(data, 3)</pre>
```

```
MPG
                                 Weight Horsepower Acceleration
                                                                       CO<sub>2</sub>
    Model.Year Type
## 1
           2008 Van 20.39302 4500.000
                                          241.8963
                                                          8.9064 435.7864
## 2
           2009 Van 20.39440 4835.321
                                          241.9881
                                                          9.0603 435.7570
## 3
           2010 Van 20.17616 4840.431
                                          244.0000
                                                          9.1116 440.4703
```

```
model1 <- lm(CO2 ~ Model.Year + Type + MPG + Weight + Horsepower + Accelera
tion, data = data)
summary(model1)</pre>
```

```
##
## Call:
## lm(formula = CO2 ~ Model.Year + Type + MPG + Weight + Horsepower +
      Acceleration, data = data)
##
##
## Residuals:
##
      Min
               1Q Median
                               30
## -49.969 -12.299 -4.040 6.126 242.173
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.250e+03 2.983e+02 4.190 2.94e-05 ***
## Model.Year -2.859e-01 1.525e-01 -1.875
                                               0.0609 .
## TypeSUV
               -1.594e+01 2.199e+00 -7.249 6.35e-13 ***
               -1.802e+01 2.201e+00 -8.186 5.24e-16 ***
## TypeTruck
## TypeVan
               -3.082e+01 2.397e+00 -12.854 < 2e-16 ***
               -1.749e+01 3.507e-01 -49.882 < 2e-16 ***
## MPG
## Weight
               4.978e-02 2.588e-03 19.235 < 2e-16 ***
## Horsepower -3.460e-01 2.918e-02 -11.858 < 2e-16 ***
## Acceleration 1.333e+00 5.516e-01
                                       2.417
                                              0.0158 *
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 23.3 on 1694 degrees of freedom
## Multiple R-squared: 0.9399, Adjusted R-squared: 0.9396
## F-statistic: 3309 on 8 and 1694 DF, p-value: < 2.2e-16
```

Statistical Significance of Coefficients: At a significance level of α =0.05, the statistically significant predictors are: -(Intercept), TypeSUV, TypeTruck, TypeVan, MPG, Weight, Horsepower, and Acceleration. The variable Model. The year is not statistically significant at α =0.05

(2).[2 points] Is the overall regression (model1) significant at an α -level of 0.05? Explain how you determined the answer.

```
Answer:
Testing Overall Model Significance
```

The overall regressionn model (model1) is significant at an α -level of 0.05. The F-statistic and its associated p-value in the model summary help determine if at least one of the predictors is significantly associated with the response variable (CO2 emissions). Here, the F-statistic is very high (3309), and the corresponding p-value is less than 2.2e-16, which is far below 0.05. Therefore, we reject the null hypothesis that all coefficients are zero and conclude that the predictors collectively explain a significant ammount of variation in CO2 emissions.

(3).[6 points] Identifying Influential Data Points Cook's Distances

The basic idea behind the measure is to delete the observations one at a time, each time refitting the regression model on the remaining n-1 observations. Then, we compare the results using all n observations to the results with the ith observation deleted to see how much influence the observation has on the analysis. Analyzed as such, we are able to assess the potential impact each data point has on the regression analysis. One of such a method is called cook's distance. To learn more on Cook's distance in R, see https://rpubs.com/DragonflyStats/Cooks-Distance (https://rpubs.com/DragonflyStats/Cooks-Distance).

Create a plot for the Cook's Distances (use model1). Using a threshold of 1, are there any outliers? If yes, which data points?

Answer:

```
cooksD <- cooks.distance(model1)
plot(cooksD, type = "h", main = "Cook's Distance for Each Observation", yla
b = "Cook's Distance")
abline(h = 1, col = "red")</pre>
```

Cook's Distance for Each Observation

Points with Cook's Distance greater than 1 are considered influential or outliers. In the plot of Cook's Distance, we observe that none of the points exceed the threshold of 1, which is marked by the red horizontal line. Cook's Distance values above this threshold would indicate potentially influential data points or outliers in the model. Since no points cross this threshold and,conclude that there are no significant outliers based on Cook's Distance at a threshold of 1.

(4).[5 points] Detecting Multicollinearity Using Variance Inflation Factors (VIF)

The effects that multicollinearity can have on our regression analyses and subsequent conclusions, how can we tell if multicollinearity is present in our data? A variance inflation factor exists for each of the predictors in a multiple regression model. For example, the variance inflation factor for the estimated regression coefficient β_j —denoted VIF_j —is just the factor by which the variance of β_j is "inflated" by the existence of correlation among the predictor variables in the model.

In particular, the variance inflation factor for the jth predictor is: \$ VIF_j=\$ where R_j^2 is the R^2 -value obtained by regressing the jth predictor on the remaining predictors.

A VIF of 1 means that there is no correlation among the jth predictor and the remaining predictor variables, and hence the variance of β_j is not inflated at all. The general rule of thumb is that VIFs exceeding 4 warrant further investigation, while VIFs exceeding 10 are signs of serious multicollinearity requiring correction. For more information, see https://search.r-project.org/CRAN/refmans/usdm/html/vif.html (https://search.r-project.org/CRAN/refmans/usdm/html/vif.html).

Calculate the VIF of each predictor (use model1). Using a threshold of $\max(10, \frac{1}{1-R^2})$ what conclusions can you make regarding multicollinearity?

```
library(car)

## Loading required package: carData
```

```
vif_values <- vif(model1)
print(vif_values)</pre>
```

```
##
                     GVIF Df GVIF<sup>(1/(2*Df))</sup>
## Model.Year
              11.158497 1
                                    3.340434
## Type
                 3.285619 3
                                    1.219278
                7.387342 1
                                    2.717967
## MPG
## Weight
               11.380489 1
                                    3.373498
## Horsepower 11.459304 1
                                    3.385159
## Acceleration 7.680964 1
                                    2.771455
```

```
r_squared <- summary(model1)$r.squared
threshold <- max(10, 1 / (1 - r_squared))
cat("VIF Threshold:", threshold, "\n")</pre>
```

```
## VIF Threshold: 16.62808
```

```
high_vif <- vif_values[vif_values > threshold]

if (length(high_vif) > 0) {
   cat("Predictors with high multicollinearity:\n")
   print(high_vif)
} else {
   cat("No predictors exceed the VIF threshold, indicating multicollinearity
is not a major issue.\n")
}
```

 $\ensuremath{\#\#}$ No predictors exceed the VIF threshold, indicating multicollinearity is not a major issue.

Conclusion regarding multicollinearity: The conclusion is while no predictors exceed the calculated VIF threshold of 16.62808, there are still signs of considerable multicollinearity in the model. Model. Year, Weight, and Horsepower all have VIF values above 11, indicating strong correlations with other predictors. MPG and Acceleration show moderate levels of multicollinearity with VIF values between 7 and 8. Although the output states that "multicollinearity is not a major issue" based on the high threshold, it's important to note that these VIF values are still above the commonly used threshold of 10 for several variables. This suggests that multicollinearity should not be completely dismissed. While the current model may be acceptable for predictive purposes, caution should be exercised when interpreting individual coefficient effects, particularly for Model. Year, Weight, and Horsepower. For inferential purposes,

the present multicollinearity could lead to unstable and potentially misleading coefficient estimates for the affected variables. It may be worthwhile to investigate the relationships between these highly correlated predictors and consider methods to address multicollinearity if precise individual coefficient estimates are crucial to the analysis.

Question 4 [16 points]

(1). Using the GermanCredit data set german.credit (Download the dataset from http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29 (http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29) and read the description), use logistic regression to find a good predictive model for whether credit applicants are good credit risks or not. Show your model (factors used and their coefficients), the output, and the quality of fit. You can use the glm function in R. To get a logistic regression (logit) model on data where the response is either zero or one, use family=binomial in your glm function call. Steps including:

a.[2 points] load the dataset

Answer:

url <- "http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/ge

rman/german.data"
german_credit <- read.table(url, header = FALSE)</pre>

b.[4 points] explore the dataset, including summary of dataset, types of predictors, if there are categorical predictors, convert the predictors to factors.

Answer:

summary(german_credit)

```
##
         V1
                              V2
                                             V3
                                                                 ٧4
##
   Length:1000
                               : 4.0
                                       Length: 1000
                                                           Length: 1000
                        Min.
##
    Class :character
                        1st Qu.:12.0
                                       Class :character
                                                           Class :character
    Mode :character
                        Median :18.0
                                       Mode :character
                                                           Mode :character
##
                        Mean
                               :20.9
##
                        3rd Qu.:24.0
##
                        Max.
                               :72.0
##
          V5
                          V6
                                              V7
                                                                   V8
##
    Min.
           : 250
                    Length: 1000
                                         Length:1000
                                                             Min.
                                                                    :1.000
    1st Qu.: 1366
##
                    Class :character
                                         Class :character
                                                             1st Qu.:2.000
##
    Median : 2320
                    Mode :character
                                        Mode :character
                                                             Median :3.000
##
    Mean
          : 3271
                                                             Mean
                                                                   :2.973
    3rd Qu.: 3972
                                                             3rd Qu.:4.000
##
##
           :18424
                                                                    :4.000
    Max.
                                                             Max.
         V9
##
                            V10
                                                 V11
                                                                 V12
##
    Length: 1000
                        Length:1000
                                            Min.
                                                   :1.000
                                                             Length: 1000
                                            1st Qu.:2.000
##
    Class :character
                        Class :character
                                                             Class :character
##
    Mode :character
                        Mode :character
                                            Median :3.000
                                                             Mode :character
##
                                            Mean
                                                  :2.845
##
                                            3rd Qu.:4.000
##
                                            Max.
                                                   :4.000
##
         V13
                         V14
                                             V15
                                                                  V16
##
                                         Length: 1000
    Min.
           :19.00
                    Length:1000
                                                             Min.
                                                                    :1.000
##
    1st Qu.:27.00
                    Class :character
                                         Class :character
                                                             1st Qu.:1.000
##
    Median :33.00
                    Mode :character
                                         Mode :character
                                                             Median :1.000
##
    Mean
                                                                    :1.407
          :35.55
                                                             Mean
##
    3rd Qu.:42.00
                                                             3rd Qu.:2.000
##
    Max.
           :75.00
                                                             Max.
                                                                    :4.000
##
        V17
                             V18
                                             V19
                                                                 V20
##
    Length:1000
                               :1.000
                                         Length:1000
                                                             Length: 1000
                        Min.
##
    Class :character
                        1st Ou.:1.000
                                         Class :character
                                                             Class :character
##
    Mode :character
                        Median :1.000
                                                             Mode :character
                                         Mode :character
##
                        Mean
                             :1.155
##
                        3rd Ou.:1.000
##
                        Max. :2.000
##
         V21
##
    Min.
           :1.0
##
    1st Qu.:1.0
##
    Median :1.0
##
    Mean
           :1.3
##
    3rd Qu.:2.0
    Max.
           :2.0
```

```
str(german_credit)
```

```
'data.frame':
                   1000 obs. of 21 variables:
##
   $ V1 : chr "A11" "A12" "A14" "A11" ...
   $ V2 : int 6 48 12 42 24 36 24 36 12 30 ...
   $ V3 : chr "A34" "A32" "A34" "A32" ...
   $ V4 : chr "A43" "A43" "A46" "A42" ...
   $ V5 : int 1169 5951 2096 7882 4870 9055 2835 6948 3059 5234 ...
   $ V6 : chr "A65" "A61" "A61" "A61" ...
   $ V7 : chr "A75" "A73" "A74" "A74" ...
   $ V8 : int 4 2 2 2 3 2 3 2 2 4 ...
               "A93" "A92" "A93" "A93"
   $ V9 : chr
   $ V10: chr "A101" "A101" "A101" "A103" ...
   $ V11: int 4 2 3 4 4 4 4 2 4 2 ...
   $ V12: chr "A121" "A121" "A121" "A122" ...
   $ V13: int 67 22 49 45 53 35 53 35 61 28 ...
##
   $ V14: chr "A143" "A143" "A143" "A143" ...
   $ V15: chr "A152" "A152" "A152" "A153" ...
##
   $ V16: int 2 1 1 1 2 1 1 1 1 2 ...
   $ V17: chr "A173" "A173" "A172" "A173" ...
   $ V18: int 1 1 2 2 2 2 1 1 1 1 ...
   $ V19: chr "A192" "A191" "A191" "A191" ...
   $ V20: chr "A201" "A201" "A201" "A201" ...
   $ V21: int 1 2 1 1 2 1 1 1 1 2 ...
```

```
german_credit$V1 <- as.factor(german_credit$V1)
german_credit$V4 <- as.factor(german_credit$V4)</pre>
```

c.[2 points] Column V21 represents the target, 1 = Good, 2 = Bad, convert value the values to 0 and 1, respectively.

```
answer:

german_credit$V21 <- ifelse(german_credit$V21 == 1, 0, 1)</pre>
```

d.[2 points] split the dataset to taining and test dataset with 90% and 10% of the data points, respectively.

```
Answer:
```

```
set.seed(123)

sample_index <- sample(seq_len(nrow(german_credit)), size = 0.9 * nrow(germ
an_credit))
train_data <- german_credit[sample_index, ]
test_data <- german_credit[-sample_index, ]</pre>
```

e.[3 points] use the training dataset to get a logistic regression (logit) model on data where the response is either zero or one, use family=binomial in your glm function call.

```
Answer:

credit_model <- glm(V21 ~ ., data = train_data, family = binomial)
summary(credit_model)</pre>
```

```
##
## Call:
## glm(formula = V21 ~ ., family = binomial, data = train_data)
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.917e-02 1.183e+00 -0.016 0.987074
## V1A12
              -3.695e-01 2.326e-01 -1.589 0.112109
## V1A13
              -9.616e-01 3.850e-01 -2.497 0.012514 *
## V1A14
              -1.733e+00 2.478e-01 -6.992 2.71e-12 ***
                                    3.001 0.002690 **
## V2
               2.934e-02 9.775e-03
## V3A31
               2.586e-01 5.831e-01 0.444 0.657366
## V3A32
              -6.742e-01 4.595e-01 -1.467 0.142289
## V3A33
              -7.987e-01 4.995e-01 -1.599 0.109803
## V3A34
              -1.365e+00 4.628e-01 -2.950 0.003179 **
## V4A41
              -1.569e+00 3.916e-01 -4.008 6.12e-05 ***
## V4A410
              -1.619e+00 8.619e-01 -1.879 0.060311 .
## V4A42
              -7.934e-01 2.804e-01 -2.830 0.004657 **
## V4A43
              -8.644e-01 2.652e-01 -3.260 0.001115 **
## V4A44
               3.993e-02 8.209e-01 0.049 0.961207
## V4A45
               5.813e-02 6.030e-01
                                    0.096 0.923197
## V4A46
              -2.251e-01 4.231e-01 -0.532 0.594736
## V4A48
              -2.077e+00 1.298e+00 -1.600 0.109540
## V4A49
              -8.363e-01 3.551e-01 -2.355 0.018505 *
## V5
              1.355e-04 4.669e-05 2.903 0.003700 **
              -4.701e-01 3.074e-01 -1.530 0.126119
## V6A62
## V6A63
              -3.594e-01
                         4.081e-01 -0.881 0.378553
## V6A64
              -1.347e+00 5.340e-01 -2.522 0.011656 *
## V6A65
              -9.795e-01 2.861e-01 -3.423 0.000618 ***
## V7A72
              -2.944e-02 4.612e-01 -0.064 0.949112
## V7A73
              -1.495e-01 4.455e-01 -0.336 0.737190
              -9.106e-01 4.797e-01 -1.898 0.057662
## V7A74
## V7A75
              -3.903e-01
                         4.479e-01 -0.871 0.383516
                                    4.327 1.51e-05 ***
## V8
               4.103e-01 9.484e-02
## V9A92
              -2.937e-01 4.151e-01 -0.708 0.479195
## V9A93
              -9.543e-01 4.113e-01 -2.320 0.020342 *
## V9A94
              -2.619e-01 4.908e-01 -0.534 0.593616
               3.632e-01 4.391e-01 0.827 0.408117
## V10A102
## V10A103
              -1.026e+00 4.564e-01 -2.249 0.024536 *
## V11
               1.706e-03 9.231e-02 0.018 0.985253
## V12A122
               2.874e-01 2.735e-01 1.051 0.293261
## V12A123
               3.396e-01 2.537e-01 1.339 0.180608
## V12A124
               9.598e-01 4.704e-01 2.040 0.041322 *
              -1.265e-02 9.786e-03 -1.292 0.196252
## V13
## V14A142
              -3.761e-01
                         4.556e-01 -0.825 0.409185
              -6.030e-01 2.521e-01 -2.391 0.016787 *
## V14A143
## V15A152
              -5.047e-01 2.510e-01 -2.011 0.044366 *
## V15A153
              -8.100e-01 5.160e-01 -1.570 0.116441
               2.892e-01 2.090e-01 1.384 0.166410
## V16
## V17A172
               5.343e-01 7.415e-01
                                    0.721 0.471172
## V17A173
               4.552e-01
                         7.156e-01
                                     0.636 0.524682
## V17A174
               1.752e-01 7.158e-01
                                     0.245 0.806650
## V18
               4.267e-01 2.623e-01
                                     1.627 0.103766
## V19A192
              -2.798e-01 2.145e-01 -1.304 0.192089
## V20A202
              -1.538e+00 7.191e-01 -2.138 0.032482 *
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
```

```
##
##
       Null deviance: 1090.95 on 899 degrees of freedom
## Residual deviance: 792.88 on 851 degrees of freedom
## AIC: 890.88
##
## Number of Fisher Scoring iterations: 5
```

f.[4 points] use the model to make prediction on the the training dataset, and test dataset, give

```
the confusion matrices and accuracy for each dataset.
 Answer:
 train pred <- predict(credit model, train data, type = "response")</pre>
 test_pred <- predict(credit_model, test_data, type = "response")</pre>
 train_pred_class <- ifelse(train_pred > 0.5, 1, 0)
 test_pred_class <- ifelse(test_pred > 0.5, 1, 0)
 print(length(train_pred_class))
 ## [1] 900
 print(length(train data$V21))
 ## [1] 900
 print(length(test_pred_class))
 ## [1] 100
 print(length(test_data$V21))
 ## [1] 100
 train_conf_matrix <- table(Predicted = train_pred_class, Actual = train_dat</pre>
 a$V21)
 test_conf_matrix <- table(Predicted = test_pred_class, Actual = test_data$V</pre>
 21)
 print("Training Confusion Matrix:")
 ## [1] "Training Confusion Matrix:"
 print(train_conf_matrix)
```

```
## Actual

## Predicted 0 1

## 0 566 122

## 1 69 143
```

print("Test Confusion Matrix:")

```
## [1] "Test Confusion Matrix:"
```

```
print(test_conf_matrix)
```

```
## Actual
## Predicted 0 1
## 0 58 17
## 1 7 18
```

```
train_accuracy <- sum(diag(train_conf_matrix)) / sum(train_conf_matrix)
test_accuracy <- sum(diag(test_conf_matrix)) / sum(test_conf_matrix)
cat("train accuracy",train_accuracy,"\n")</pre>
```

```
## train accuracy 0.7877778
```

```
cat("test accuracy",test_accuracy)
```

```
## test accuracy 0.76
```

(2). [4 points] Because the model gives a result between 0 and 1, it requires setting a threshold probability to separate between "good" and "bad" answers. In this data set, they estimate that incorrectly identifying a bad customer as good, is 5 times worse than incorrectly classifying a good customer as bad. Determine a good threshold probability based on your model (please demonstrate your reasoning- The optimal threshold of 0.1187497 has been selected based on the premise that misclassifying a bad customer as good is five times worse than misclassifying a good customer as bad. This imbalance in the cost of errors calls for an adjustment in the threshold to minimize the more severe consequence (false positives). A lower threshold increases the likelihoodd of misclassifying bad customers as good, which is a costly error. By setting the threshold at 0.1187497, the model minimizes the overall cost by reducing false positives while still balancing the risk of false negatives. This threshold is considered optimal as it accounts for the cost differential in misclassiffication, ensuring the most efficient performance under the given penalty structure.)

```
Answer:
```

```
library(ROCR)

pred <- prediction(train_pred, train_data$V21)
perf <- performance(pred, "tpr", "fpr")

thresholds <- perf@alpha.values[[1]]
costs <- 5 * (1 - perf@y.values[[1]]) + perf@x.values[[1]] # Assign cost r atio

optimal_threshold <- thresholds[which.min(costs)]
cat("optimal_threshold:",optimal_threshold)</pre>
```

```
## optimal_threshold: 0.1187497
```

Question 5 [28 points]

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

(1).[2 points] Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

```
Answer:
```

```
library(ISLR)
data("Auto")
head(Auto,5)
```

```
mpg cylinders displacement horsepower weight acceleration year origin
## 1 18
                 8
                            307
                                              3504
                                                           12.0
                                                                  70
                 8
                                                                  70
## 2 15
                            350
                                        165
                                              3693
                                                           11.5
                                                                          1
## 3
     18
                 8
                            318
                                       150
                                              3436
                                                           11.0
                                                                  70
                                                                          1
## 4
     16
                 8
                            304
                                       150
                                              3433
                                                           12.0
                                                                  70
                                                                          1
                 R
## 5 17
                            302
                                       140
                                              3449
                                                           10.5
                                                                          1
##
## 1 chevrolet chevelle malibu
## 2
            buick skylark 320
## 3
            plymouth satellite
## 4
                 amc rebel sst
## 5
                   ford toring
```

```
median_mpg <- median(Auto$mpg)
Auto$mpg01 <- ifelse(Auto$mpg > median_mpg, 1, 0)
```

(2).[4 points] Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

Question 1 [5 points]

Question 2 [20 points]

Question 3 [16 points]

Question 4 [16 points]

Question 5 [28 points]

Answer:

Weight vs mpg01


```
boxplot(Auto$horsepower ~ Auto$mpg01,
    main = "Horsepower vs mpg01",
    xlab = "mpg01",
    ylab = "Horsepower")
```

Horsepower vs mpg01


```
boxplot(Auto$displacement ~ Auto$mpg01,
    main = "Displacement vs mpg01",
    xlab = "mpg01",
    ylab = "Displacement")
```

Displacement vs mpg01


```
boxplot(Auto$acceleration ~ Auto$mpg01,
    main = "Acceleration vs mpg01",
    xlab = "mpg01",
    ylab = "Acceleration")
```

Acceleration vs mpg01

Scatterplot Matrix

Findinggs:- From the boxplots and scatterplot matrix provided, we can observe several important associations between mpg01 (a binary variable representing whether a car has high or low miles per gallon) and other features such as weight, horsepower, displacement, and acceleration. Displacement vs mpg01: The boxplot shows that cars with lower mpg01 (less fuel-efficient cars) tend to have significantly higher displacement. On the other hand, cars with higher mpg01 (more fuel-efficient cars) have much lower displacement. This suggests that displacement is a strong predictor of mpg01, with larger engine displacement associated with lower fuel efficiency. Acceleration vs mpg01: The boxplot for acceleration shows that the distribution of acceleration is somewhat similar between the two groups of mpg01. However, cars with higher mpg01 (more fuel-efficient) tend to have slightly higher acceleration on average. This indicates that acceleration may not be as strong a predictor of mpg01 compared to other features like weight or horsepower, but there is still a slight trend where more fuel-efficient cars have better acceleration. Weight vs mpg01: The boxplot for weight shows a clear distinction between the two categories of mpg01. Cars with lower mpg01 (less fuel-efficient) are significantly heavier, while cars with higher mpg01 (more fuel-efficient) are lighter. This suggests that weight is a strong predictor of mpg01, as heavier cars tend to have lower fuel efficiency. Horsepower vs mpg01: The boxplot for horsepower reveals that cars with lower mpg01 (less fuel-efficient) tend to have much higher horsepower compared to cars with higher mpg01. This suggests that horsepower is another strong predictor of mpg01, as more powerful engines are typically associated with lower fuel efficiency. Conclusion: From the boxplots, it is evident that weight, horsepower, and displacement are the most useful features in predicting mpg01. Heavier cars, those with higher horsepower, and those with larger engine displacement are generally less fuel efficient (mpg01 = 0). While acceleration shows some association, it appears to be a weaker predictor compared to the other features.

(3).[2 points] Split the data into a training set and a test set.

```
set.seed(123)

train_index <- sample(seq_len(nrow(Auto)), size = 0.8 * nrow(Auto))

train_data <- Auto[train_index, ]
test_data <- Auto[-train_index, ]

test_data</pre>
```

##		mpg	cylinders	displacement	horsepower	weight	acceleration	year	orig
in ##	1	18.0	8	307.0	130	3504	12.0	70	
1	-	10.0	· ·	307.0	130	3304	12.0	70	
##	3	18.0	8	318.0	150	3436	11.0	70	
1									
##	6	15.0	8	429.0	198	4341	10.0	70	
1 ##	15	24.0	4	113.0	95	2372	15.0	70	
3	13	21.0	•	113.0	,,,	2372	13.0	, 0	
##	17	18.0	6	199.0	97	2774	15.5	70	
1			_						
## 1	18	21.0	6	200.0	85	2587	16.0	70	
	19	27.0	4	97.0	88	2130	14.5	70	
3									
	28	11.0	8	318.0	210	4382	13.5	70	
1	2.0	14.0	0	250.0	1.65	4200	10.0	7.1	
## 1	39	14.0	8	350.0	165	4209	12.0	71	
	50	23.0	4	122.0	86	2220	14.0	71	
1									
	57	26.0	4	91.0	70	1955	20.5	71	
1	59	25.0	4	97.5	80	2126	17.0	72	
1	33	23.0	4	91.3	00	2120	17.0	12	
	61	20.0	4	140.0	90	2408	19.5	72	
1									
	63	13.0	8	350.0	165	4274	12.0	72	
1 ##	66	14.0	8	351.0	153	4129	13.0	72	
1									
	69	13.0	8	350.0	155	4502	13.5	72	
1	7.1	12.0	0	400.0	100	4400	10.5	7.0	
## 1	71	13.0	8	400.0	190	4422	12.5	72	
	72	19.0	3	70.0	97	2330	13.5	72	
3									
	76	14.0	8	318.0	150	4077	14.0	72	
1	0 N	26 0	А	06.0	69	2100	10 ^	72	
## 2	80	26.0	4	96.0	69	2189	18.0	12	
	89	14.0	8	302.0	137	4042	14.5	73	
1									
	100	18.0	6	232.0	100	2945	16.0	73	
1 ##	101	18.0	6	250.0	88	3021	16.5	73	
1/1/	101	10.0	0	230.0	00	JUZI	10.3	13	

1						
1 ## 104 11.0 1	8	400.0	150	4997	14.0	73
## 109 20.0 3	4	97.0	88	2279	19.0	73
## 115 26.0 2	4	98.0	90	2265	15.5	73
## 120 20.0 2	4	114.0	91	2582	14.0	73
## 123 24.0 2	4	121.0	110	2660	14.0	73
## 125 11.0 1	8	350.0	180	3664	11.0	73
## 133 25.0 1	4	140.0	75	2542	17.0	74
## 134 16.0	6	250.0	100	3781	17.0	74
1 ## 140 14.0 1	8	302.0	140	4638	16.0	74
## 141 14.0	8	304.0	150	4257	15.5	74
## 142 29.0 2	4	98.0	83	2219	16.5	74
## 149 26.0 2	4	116.0	75	2246	14.0	74
## 152 31.0 2	4	79.0	67	2000	16.0	74
## 164 18.0	6	225.0	95	3785	19.0	75
## 171 23.0	4	140.0	78	2592	18.5	75
## 172 24.0 3	4	134.0	96	2702	13.5	75
## 182 33.0 3	4	91.0	53	1795	17.5	75
## 183 28.0 2	4	107.0	86	2464	15.5	76
## 184 25.0 2	4	116.0	81	2220	16.9	76
## 191 14.5	8	351.0	152	4215	12.8	76
## 193 22.0	6	250.0	105	3353	14.5	76
## 194 24.0	6	200.0	81	3012	17.6	76
## 203 17.5	6	258.0	95	3193	17.8	76
## 205 32.0 3	4	85.0	70	1990	17.0	76
## 210 19.0 2	4	120.0	88	3270	21.9	76
## 227 20.5 1	6	231.0	105	3425	16.9	77
## 229 18.5 1	6	250.0	98	3525	19.0	77
## 230 16.0	8	400.0	180	4220	11.1	77
## 233 16.0	8	351.0	149	4335	14.5	77

	247	32.8	4	78.0	52	1985	19.4	78
	249	36.1	4	91.0	60	1800	16.4	78
3 ##	252	20.2	8	302.0	139	3570	12.8	78
1 ##	260	20.8	6	200.0	85	3070	16.7	78
1 ##	263	19.2	8	305.0	145	3425	13.2	78
1 ##	271	21.1	4	134.0	95	2515	14.8	78
3 ##	281	21.5	6	231.0	115	3245	15.4	79
1		20.2	6	232.0	90	3265	18.2	79
1								
2	294	31.9	4	89.0	71	1925	14.0	79
## 2	298	25.4	5	183.0	77	3530	20.1	79
##	299	23.0	8	350.0	125	3900	17.4	79
##	302	34.2	4	105.0	70	2200	13.2	79
	305	37.3	4	91.0	69	2130	14.7	79
##	317	19.1	6	225.0	90	3381	18.7	80
	324	27.9	4	156.0	105	2800	14.4	80
	327	43.4	4	90.0	48	2335	23.7	80
	334	32.7	6	168.0	132	2910	11.4	80
	346	35.1	4	81.0	60	1760	16.1	81
3 ##	357	32.4	4	108.0	75	2350	16.8	81
3 ##	366	20.2	6	200.0	88	3060	17.1	81
1 ##	367	17.6	6	225.0	85	3465	16.6	81
1		29.0	4	135.0	84	2525	16.0	82
1								
1		27.0	4	151.0	90	2735	18.0	82
3	381	36.0	4	107.0	75	2205	14.5	82
## 3	384	32.0	4	91.0	67	1965	15.7	82
##	390	32.0	4	144.0	96	2665	13.9	82
	393	27.0	4	140.0	86	2790	15.6	82
##					ame mpg01			
##			chevrolet che					
##				ıth satelli				
##	6 15			d galaxie 5 orona mark				
##	13		toyota co	orona mark	ii 1			

## 17	amc hornet	0
## 18	ford maverick	0
## 19	datsun pl510	1
## 28	dodge d200	0
## 39	chevrolet impala	0
## 50	mercury capri 2000	1
## 57	plymouth cricket	1
## 59	dodge colt hardtop	1
## 61	chevrolet vega	0
## 63	chevrolet impala	0
## 66	ford galaxie 500	0
## 69	buick lesabre custom	0
## 71	chrysler newport royal	0
## 72	mazda rx2 coupe	0
## 76	plymouth satellite custom (sw)	0
## 80	renault 12 (sw)	1
## 89	ford gran torino	0
## 100	amc hornet	0
## 101	ford maverick	0
## 104	chevrolet impala	0
## 109	toyota carina	0
## 115	fiat 124 sport coupe	1
## 120	audi 100ls	0
## 123	saab 991e	1
## 125	oldsmobile omega	0
## 133		1
## 134		0
## 140		0
## 141		0
## 142	•	1
## 149		1
## 152		1
## 164		0
## 171	1 1 1	1
## 172	-	1
## 182	•	1
## 183		1
## 184		1
## 191	ford gran torino	0
## 191 ## 193		0
## 194		1
## 203		0
## 205		1
## 210		0
## 227	1 3	0
## 229	•	0
## 230	-	0
## 233		0
## 233 ## 247		1
## 247 ## 249	_	1
## 252		0
## 252 ## 260	•	0
## 260 ## 263	1 1 1	0
## 263 ## 271		
## 271 ## 281	1	0
## 281 ## 284		
		0
## 294		1
## 298		1
## 299	cadillac eldorado	1

##	302	plymouth horizon	1	
##	305	fiat strada custom	1	
##	317	dodge aspen	0	
##	324	dodge colt	1	
##	327	vw dasher (diesel)	1	
##	334	datsun 280-zx	1	
##	346	honda civic 1300	1	
##	357	toyota corolla	1	
##	366	ford granada gl	0	
##	367	chrysler lebaron salon	0	
##	372	dodge aries se	1	
##	373	pontiac phoenix	1	
##	381	honda accord	1	
##	384	honda civic (auto)	1	
##	390	toyota celica gt	1	
##	393	ford mustang gl	1	

train_data

##		mpg	cylinders	displacement	horsepower	weight	acceleration	year	orig
in									
## 2	181	25.0	4	121	115	2671	13.5	75	
## 1	14	14.0	8	455	225	3086	10.0	70	
	197	24.5	4	98	60	2164	22.1	76	
	308	26.8	6	173	115	2700	12.9	79	
	119	24.0	4	116	75	2158	15.5	73	
	301	23.9	8	260	90	3420	22.2	79	
	231	15.5	8	350	170	4165	11.4	77	
	246	36.1	4	98	66	1800	14.4	78	
	396	28.0	4	120	79	2625	18.6	82	
	379	36.0	4	98	70	2125	17.3	82	
	155	15.0	6	250	72	3432	21.0	75	
	91	12.0	8	429	198	4952	11.5	73	
	92	13.0	8	400	150	4464	12.0	73	
	258	19.4	6	232	90	3210	17.2	78	
	199	33.0	4	91	53	1795	17.4	76	
	385	38.0	4	91	67	1995	16.2	82	
	352	34.4	4	98	65	2045	16.2	81	
##	139	14.0	8	318	150	4457	13.5	74	
1 ##	360	28.1	4	141	80	3230	20.4	81	

2							
## 330 3	44.6	4	91	67	1850	13.8	80
## 26 1	10.0	8	360	215	4615	14.0	70
## 7	14.0	8	454	220	4354	9.0	70
## 380	36.0	4	120	88	2160	14.5	82
## 256 1	25.1	4	140	88	2720	15.4	78
## 213 1	16.5	8	350	180	4380	12.1	76
## 79 2	21.0	4	120	87	2979	19.5	72
## 82	28.0	4	97	92	2288	17.0	72
## 44 1	13.0	8	400	170	4746	12.0	71
## 364	22.4	6	231	110	3415	15.8	81
## 335	23.7	3	70	100	2420	12.5	80
## 145 3	31.0	4	76	52	1649	16.5	74
## 32	25.0	4	113	95	2228	14.0	71
## 110 1	21.0	4	140	72	2401	19.5	73
## 265 1	18.1	8	302	139	3205	11.2	78
## 333	29.8	4	89	62	1845	15.3	80
## 23	25.0	4	104	95	2375	17.5	70
## 311 3	38.1	4	89	60	1968	18.8	80
## 137 1	16.0	8	302	140	4141	14.0	74
## 361 2	30.7	6	145	76	3160	19.6	81
## 226 1	17.5	6	250	110	3520	16.4	77
## 168 3	29.0	4	97	75	2171	16.0	75
## 219 2	36.0	4	79	58	1825	18.6	77
## 292 1	19.2	8	267	125	3605	15.0	79
## 70 1	12.0	8	350	160	4456	13.5	72
## 73	15.0	8	304	150	3892	12.5	72
## 77	18.0	4	121	112	2933	14.5	72
## 64	14.0	8	400	175	4385	12.0	72
## 143 2	26.0	4	79	67	1963	15.5	74

##	212	16.5	6	168	120	3820	16.7	76
##	387	38.0	6	262	85	3015	17.0	82
	296	35.7	4	98	80	1915	14.4	79
##	279	31.5	4	89	71	1990	14.9	78
	42	14.0	8	318	150	4096	13.0	71
	386	25.0	6	181	110	2945	16.4	82
	318	34.3	4	97	78	2188	15.8	80
	225	15.0	8	302	130	4295	14.9	77
	16	22.0	6	198	95	2833	15.5	70
	117	16.0	8	400	230	4278	9.5	73
	95	13.0	8	440	215	4735	11.0	73
	264	17.7	6	231	165	3445	13.4	78
	237	25.5	4	140	89	2755	15.8	77
1 ##	87	14.0	8	304	150	3672	11.5	73
	40	14.0	8	400	175	4464	11.5	71
1 ##	161	17.0	6	231	110	3907	21.0	75
1 ##	242	22.0	6	146	97	2815	14.5	77
	211	19.0	6	156	108	2930	15.5	76
	394	44.0	4	97	52	2130	24.6	82
2 ##	35	16.0	6	225	105	3439	15.5	71
	4	16.0	8	304	150	3433	12.0	70
	13	15.0	8	400	150	3761	9.5	70
	353	29.9	4	98	65	2380	20.7	81
	245	43.1	4	90	48	1985	21.5	78
	310	41.5	4	98	76	2144	14.7	80
	280	29.5	4	98	68	2135	16.6	78
	90	15.0	8	318	150	3777	12.5	73
	25	21.0	6	199	90	2648	15.0	70
	293	18.5	8	360	150	3940	13.0	79
1 ##	288	16.5	8	351	138	3955	13.2	79

ì									
	1 ## 3	332	33.8	4	97	67	2145	18.0	80
	##	122	15.0	8	318	150	3399	11.0	73
	1 ## 3	111	22.0	4	108	94	2379	16.5	73
	##	160	14.0	8	351	148	4657	13.5	75
	1 ## 1	65	15.0	8	318	150	4135	13.5	72
		201	18.0	6	250	78	3574	21.0	76
		68	11.0	8	429	208	4633	11.0	72
		153	19.0	6	225	95	3264	16.0	75
		86	13.0	8	350	175	4100	13.0	73
		167	13.0	8	302	129	3169	12.0	75
		138	13.0	8	350	150	4699	14.5	74
		52	30.0	4	79	70	2074	19.5	71
		75	13.0	8	302	140	4294	16.0	72
		180	22.0	4	121	98	2945	14.5	75
		238	30.5	4	98	63	2051	17.0	77
		99	16.0	6	250	100	3278	18.0	73
		216	13.0	8	318	150	3755	14.0	76
		129	15.0	6	250	100	3336	17.0	74
		214	13.0	8	350	145	4055	12.0	76
		176	29.0	4	90	70	1937	14.0	75
		275	20.3	5	131	103	2830	15.9	78
	##	234	29.0	4	97	78	1940	14.5	77
	2 ## 3	323	46.6	4	86	65	2110	17.9	80
		282	19.8	6	200	85	2990	18.2	79
		114	21.0	6	155	107	2472	14.0	73
		108	18.0	6	232	100	2789	15.0	73
		309	33.5	4	151	90	2556	13.2	79
		156	15.0	6	250	72	3158	19.5	75
		103	26.0	4	97	46	1950	21.0	73
	۷								

## 1	257	20.5	6	225	100	3430	17.2	78
	162	16.0	6	250	105	3897	18.5	75
	157	16.0	8	400	170	4668	11.5	75
	5	17.0	8	302	140	3449	10.5	70
	274	23.9	4	119	97	2405	14.9	78
##	342	23.5	6	173	110	2725	12.6	81
	345	39.0	4	86	64	1875	16.4	81
	56	27.0	4	97	60	1834	19.0	71
	240	30.0	4	97	67	1985	16.4	77
	254	20.5	6	200	95	3155	18.2	78
	363	24.2	6	146	120	2930	13.8	81
	375	36.0	4	105	74	1980	15.3	82
	228	19.0	6	225	100	3630	17.7	77
1 ##	49	18.0	6	250	88	3139	14.5	71
1 ##	78	22.0	4	121	76	2511	18.0	72
2 ##	84	28.0	4	98	80	2164	15.0	72
	186	26.0	4	98	79	2255	17.7	76
	277	21.6	4	121	115	2795	15.7	78
	198	29.0	4	90	70	1937	14.2	76
	259	20.6	6	231	105	3380	15.8	78
	170	20.0	6	232	100	2914	16.0	75
	338	32.4	4	107	72	2290	17.0	80
	20	26.0	4	97	46	1835	20.5	70
	395	32.0	4	135	84	2295	11.6	82
	166	20.0	8	262	110	3221	13.5	75
	53	30.0	4	88	76	2065	14.5	71
	22	24.0	4	107	90	2430	14.5	70
	179	23.0	4	120	88	2957	17.0	75
	43	12.0	8	383	180	4955	11.5	71
1 ##	60	23.0	4	97	54	2254	23.5	72

2 ## 85 3	27.0	4	97	88	2100	16.5	72
## 11	15.0	8	383	170	3563	10.0	70
	5 26.4	4	140	88	2870	18.1	80
## 185	5 25.0	4	140	92	2572	14.9	76
	5 28.4	4	151	90	2670	16.0	79
1 ## 47 1	22.0	4	140	72	2408	19.0	71
	36.4	5	121	67	2950	19.9	80
## 365	5 26.6	8	350	105	3725	19.0	81
	5 29.0	4	85	52	2035	22.2	76
	1 15.5	8	351	142	4054	14.3	79
1 ## 273 1	3 23.8	4	151	85	2855	17.6	78
## 297	7 27.4	4	121	80	2670	15.0	79
	0 20.0	6	225	100	3651	17.7	76
	2 18.5	6	250	110	3645	16.2	76
	4 24.0	4	119	97	2545	17.0	75
	5 17.0	8	305	130	3840	15.4	79
## 37	19.0	6	250	88	3302	15.5	71
## 175	5 18.0	6	171	97	2984	14.5	75
	4 26.0	4	97	78	2300	14.5	74
	26.6	4	151	84	2635	16.4	81
	7 31.5	4	98	68	2045	18.5	77
	6 20.0	6	198	95	3102	16.5	74
## 34	19.0	6	232	100	2634	13.0	71
## 41	14.0	8	351	153	4154	13.5	71
	7 30.0	4	98	68	2155	16.5	78
## 10	15.0	8	390	190	3850	8.5	70
	6 33.7	4	107	75	2210	14.4	81
	4 21.5	3	80	110	2720	13.5	77
## 348	37.0	4	85	65	1975	19.4	81

## 3	236	26.0	4	97	75	2265	18.2	77
	9	14.0	8	455	225	4425	10.0	70
	376	37.0	4	91	68	2025	18.2	82
	388	26.0	4	156	92	2585	14.5	82
	188	17.5	8	305	140	4215	13.0	76
	62	21.0	4	122	86	2226	16.5	72
	204	29.5	4	97	71	1825	12.2	76
	154	18.0	6	250	105	3459	16.0	75
	350	34.1	4	91	68	1985	16.0	81
	55	35.0	4	72	69	1613	18.0	71
	290	16.9	8	350	155	4360	14.9	79
	377	31.0	4	91	68	1970	17.6	82
	235	24.5	4	151	88	2740	16.0	77
	187	27.0	4	101	83	2202	15.3	76
	159	16.0	8	318	150	4498	14.5	75
	116	15.0	8	350	145	4082	13.0	73
	232	15.5	8	400	190	4325	12.2	77
	54	31.0	4	71	65	1773	19.0	71
	391	36.0	4	135	84	2370	13.0	82
	207	26.5	4	140	72	2565	13.6	76
	248	39.4	4	85	70	2070	18.6	78
	374	24.0	4	140	92	2865	16.4	82
	319	29.8	4	134	90	2711	15.5	80
	262	18.1	6	258	120	3410	15.1	78
	368	28.0	4	112	88	2605	19.6	82
	341	25.8	4	156	92	2620	14.4	81
	347	32.3	4	97	67	2065	17.8	81
	343	30.0	4	135	84	2385	12.9	81
	378	38.0	4	105	63	2125	14.7	82
	221	33.5	4	85	70	1945	16.8	77

3 ## 58 24.0 3	4	113	95	2278	15.5	72
## 106 13.0	8	360	170	4654	13.0	73
1 ## 102 23.0 1	6	198	95	2904	16.0	73
## 362 25.4	6	168	116	2900	12.6	81
3 ## 389 22.0 1	6	232	112	2835	14.7	82
## 314 28.0 1	4	151	90	2678	16.5	80
## 136 18.0	6	225	105	3613	16.5	74
## 382 34.0 3	4	108	70	2245	16.9	82
## 131 26.0	4	122	80	2451	16.5	74
1 ## 107 12.0 1	8	350	180	4499	12.5	73
## 354 33.0 2	4	105	74	2190	14.2	81
## 371 31.0 1	4	112	85	2575	16.2	82
## 29 9.0	8	304	193	4732	18.5	70
## 222 17.5	8	305	145	3880	12.5	77
## 27 10.0 1	8	307	200	4376	15.0	70
## 358 32.9 3	4	119	100	2615	14.8	81
## 289 18.2 1	8	318	135	3830	15.2	79
## 344 39.1 3	4	79	58	1755	16.9	81
## 192 22.0	6	225	100	3233	15.4	76
## 316 24.3	4	151	90	3003	20.1	80
## 94 14.0 1	8	318	150	4237	14.5	73
## 147 28.0	4	90	75	2125	14.5	74
1 ## 307 28.8 1	6	173	115	2595	11.3	79
## 269 27.2 3	4	119	97	2300	14.7	78
## 150 24.0 3	4	120	97	2489	15.0	74
## 165 21.0	6	231	110	3039	15.0	75
## 163 15.0	6	258	110	3730	19.0	75
## 67 17.0	8	304	150	3672	11.5	72
## 326 44.3 2	4	90	48	2085	21.7	80

## 304 3	31.8	4	85	65	2020	19.2	79
## 135 1	16.0	6	258	110	3632	18.0	74
## 118 2	29.0	4	68	49	1867	19.5	73
## 206	28.0	4	97	75	2155	16.4	76
3 ## 253	19.2	6	231	105	3535	19.2	78
1 ## 321	37.0	4	119	92	2434	15.0	80
3 ## 251	19.4	8	318	140	3735	13.2	78
	18.0	6	258	110	2962	13.5	71
1 ## 148	24.0	4	90	75	2108	15.5	74
2 ## 303	34.5	4	105	70	2150	14.9	79
1 ## 336	35.0	4	122	88	2500	15.1	80
2 ## 177	19.0	6	232	90	3211	17.0	75
1 ## 329	30.0	4	146	67	3250	21.8	80
2 ## 105	12.0	8	400	167	4906	12.5	73
1 ## 285	20.6	6	225	110	3360	16.6	79
1 ## 220	25.5	4	122	96	2300	15.5	77
1 ## 178	23.0	4	115	95	2694	15.0	75
2 ## 158	15.0	8	350	145	4440	14.0	75
1 ## 2	15.0	8	350	165	3693	11.5	70
1 ## 132	32.0	4	71	65	1836	21.0	74
3 ## 349	37.7	4	89	62	2050	17.3	81
3 ## 24	26.0	4	121	113	2234	12.5	70
2 ## 243	21.5	4	121	110	2600	12.8	77
2 ## 351	34.7	4	105	63	2215	14.9	81
1 ## 255	20.2	6	200	85	2965	15.8	78
1 ## 325	40.8	4	85	65	2110	19.2	80
3 ## 189	16.0	8	318	150	4190	13.0	76
1 ## 113	19.0	4	122	85	2310	18.5	73
1 ## 312	32.1	4	98	70	2120	15.5	80
1 ## 81	22.0	4	122	86	2395	16.0	72

ì									
	1 ## 2 2	41	30.5	4	97	78	2190	14.1	77
	## 3	6	17.0	6	250	100	3329	15.5	71
	1 ## 8 1	8	13.0	8	350	145	3988	13.0	73
	## 3	22	32.2	4	108	75	2265	15.2	80
	3 ## 2 1	83	22.3	4	140	88	2890	17.3	79
		.12	18.0	3	70	90	2124	13.5	73
	## 1	95	22.5	6	232	90	3085	17.6	76
	1 ## 2 1	23	17.0	8	260	110	4060	19.0	77
	## 2	70	30.9	4	105	75	2230	14.5	78
	1 ## 2 1	66	17.5	8	318	140	4080	13.7	78
	## 3 1	1	28.0	4	140	90	2264	15.5	71
		.30	31.0	4	79	67	1950	19.0	74
	3 ## 7 1	4	13.0	8	307	130	4098	14.0	72
		76	17.0	6	163	125	3140	13.6	78
		92	27.0	4	151	90	2950	17.3	82
		61	18.6	6	225	110	3620	18.7	78
	## 4 1	5	13.0	8	400	175	5140	12.0	71
		97	31.0	4	119	82	2720	19.4	82
	## 9 1	3	13.0	8	351	158	4363	13.0	73
		18	30.0	4	111	80	2155	14.8	77
		70	34.0	4	112	88	2395	18.0	82
	## 1	.90	15.5	8	304	120	3962	13.9	76
	1 ## 2 1	50	19.9	8	260	110	3365	15.5	78
	## 3 1	8	18.0	6	232	100	3288	15.5	71
		808	20.0	4	130	102	3150	15.7	76
		00	27.2	4	141	71	3190	24.8	79
		72	23.2	4	156	105	2745	16.7	78
		.2	14.0	8	340	160	3609	8.0	70
		24	20.0	6	156	122	2807	13.5	73
	J								

## 21 25.0 2	4	110	87	2672	17.5	70
## 215 13.0	8	302	130	3870	15.0	76
1 ## 146 32.0	4	83	61	2003	19.0	74
3 ## 128 19.0	6	232	100	2901	16.0	74
1 ## 173 25.0	4	90	71	2223	16.5	75
2 ## 30 27.0	4	97	88	2130	14.5	71
3 ## 320 31.3	4	120	75	2542	17.5	80
3 ## 51 28.0	4	116	90	2123	14.0	71
2 ## 48 19.0	6	250	100	3282	15.0	71
1 ## 313 37.2	4	86	65	2019	16.4	80
3 ## 83 23.0	4	120	97	2506	14.5	72
3 ## 97 13.0	8	360	175	3821	11.0	73
1 ## 224 15.5	8	318	145	4140	13.7	77
1 ## 268 27.5	4	134	95	2560	14.2	78
3 ## 295 34.1	4	86	65	1975	15.2	79
3 ## 96 12.0	8	455	225	4951	11.0	73
1 ## 278 16.2	6	163	133	3410	15.8	78
2 ## 239 33.5	4	98	83	2075	15.9	77
1					18.6	
## 369 27.0 1	4	112	88	2640		82
## 359 31.6 3	4	120	74	2635	18.3	81
1	8	302	129			
## 121 19.0 2	4	121	112	2868	15.5	73
## 8 14.0 1	8	440	215	4312	8.5	70
## 339 27.2 1	4	135	84	2490	15.7	81
## 169 23.0 1	4	140	83	2639	17.0	75
## 98 18.0 1	6	225	105	3121	16.5	73
## 383 38.0 3	4	91	67	1965	15.0	82
## 209 13.0 1	8	318	150	3940	13.2	76
## 151 26.0 3	4	108	93	2391	15.5	74
##			name mpg	01		
I						

## 101	gash 001a	1
## 181 ## 14	saab 991e buick estate wagon (sw)	1
## 14 ## 197	chevrolet woody	
## 197 ## 308	•	1 1
## 306 ## 119	oldsmobile omega brougham	
## 119 ## 301	opel manta oldsmobile cutlass salon brougham	1 1
## 301 ## 231	chevrolet monte carlo landau	0
## 231 ## 246	ford fiesta	1
## 240 ## 396	ford ranger	1
## 379	mercury lynx l	1
## 379 ## 155	mercury monarch	0
## 133 ## 91	mercury marquis brougham	0
## 91 ## 92	chevrolet caprice classic	0
## 92 ## 258	amc concord	0
## 238 ## 199	honda civic	1
## 199 ## 385	datsun 310 gx	1
## 352	ford escort 4w	1
## 332 ## 139	dodge coronet custom (sw)	0
## 139 ## 360	peugeot 505s turbo diesel	1
## 300 ## 330	honda civic 1500 gl	1
## 330 ## 26	ford f250	0
## 20 ## 7	chevrolet impala	0
## / ## 380	nissan stanza xe	1
## 360 ## 256	ford fairmont (man)	1
## 230 ## 213	cadillac seville	0
## 213 ## 79	peugeot 504 (sw)	0
## 82	datsun 510 (sw)	1
## 44	ford country squire (sw)	0
## 364	buick century	0
## 335	mazda rx-7 gs	1
## 333 ## 145	toyota corona	1
## 32	toyota corona	1
## 32 ## 110	chevrolet vega	0
## 265	ford futura	0
## 203 ## 333	vokswagen rabbit	1
## 23	saab 99e	1
## 23 ## 311	toyota corolla tercel	1
## 311 ## 137	ford gran torino	0
## 157 ## 361	volvo diesel	1
## 301 ## 226	chevrolet concours	0
## 168	toyota corolla	1
## 108 ## 219	renault 5 gtl	1
## 292	chevrolet malibu classic (sw)	0
## 232 ## 70	oldsmobile delta 88 royale	0
## 73	amc matador (sw)	0
## 77	volvo 145e (sw)	0
## 64	pontiac catalina	0
## 143	volkswagen dasher	1
## 212	mercedes-benz 280s	0
## 387	oldsmobile cutlass ciera (diesel)	1
## 307 ## 296	dodge colt hatchback custom	1
## 279	volkswagen scirocco	1
## 42	plymouth fury iii	0
## 386	buick century limited	1
## 318	audi 4000	1
## 225	mercury cougar brougham	0
## 16	plymouth duster	0
## 10 ## 117	pontiac grand prix	0
## 95	chrysler new yorker brougham	0
"" "	one joiner broadium	U

## 264	buick regal sport coupe (turbo)	0
## 237	ford mustang ii 2+2	1
## 87	amc matador	0
## 40	pontiac catalina brougham	0
## 161	buick century	0
## 242	datsun 810	0
## 211	toyota mark ii	0
## 394	vw pickup	1
## 35	plymouth satellite custom	0
## 4	amc rebel sst	0
## 13	chevrolet monte carlo	0
## 353	ford escort 2h	1
## 245	volkswagen rabbit custom diesel	1
## 310	vw rabbit	1
## 280	honda accord lx	1
## 90	dodge coronet custom	0
## 25	amc gremlin	0
## 293	chrysler lebaron town @ country (sw)	0
## 288	mercury grand marquis	0
## 332	mercury grand marquis subaru dl	1
## 332	dodge dart custom	0
## 122	_	
	datsun 610	0
## 160	ford ltd	0
## 65	plymouth fury iii	0
## 201	ford granada ghia	0
## 68	mercury marquis	0
## 153	plymouth valiant custom	0
## 86	buick century 350	0
## 167	ford mustang ii	0
## 138	buick century luxus (sw)	0
## 52	peugeot 304	1
## 75	ford gran torino (sw)	0
## 180	volvo 244dl	0
## 238	chevrolet chevette	1
## 99	chevrolet nova custom	0
## 216	dodge d100	0
## 129	chevrolet nova	0
## 214	chevy c10	0
## 176	volkswagen rabbit	1
## 275	audi 5000	0
## 234	volkswagen rabbit custom	1
## 323	mazda glc	1
## 282	mercury zephyr 6	0
## 114	mercury capri v6	0
## 108	amc gremlin	0
## 309	pontiac phoenix	1
## 156	ford maverick	0
## 103	volkswagen super beetle	1
## 257	plymouth volare	0
## 257 ## 162	chevroelt chevelle malibu	
## 162 ## 157	pontiac catalina	0
		0
## 5 ## 374	ford torino	0
## 274	datsun 200-sx	1
## 342	chevrolet citation	1
## 345	plymouth champ	1
## 56	volkswagen model 111	1
## 240	subaru dl	1
## 254	chevrolet malibu	0
## 363	datsun 810 maxima	1

## 375	volkswagen rabbit l	1
## 228	plymouth volare custom	0
## 49	ford mustang	0
## 78	volkswagen 411 (sw)	0
## 84	dodge colt (sw)	1
## 186	dodge colt	1
## 277	saab 99gle	0
## 198	vw rabbit	1
## 259	buick century special	0
## 170	amc gremlin	0
## 338	honda accord	1
## 20	volkswagen 1131 deluxe sedan	1
## 395	dodge rampage	1
## 166	chevrolet monza 2+2	0
## 53	fiat 124b	1
## 22	audi 100 ls	1
## 179	peugeot 504	1
## 43	dodge monaco (sw)	0
## 60	volkswagen type 3	1
## 85	toyota corolla 1600 (sw)	1
## 11	dodge challenger se	0
## 315	ford fairmont	1
## 185	capri ii	1
## 306	buick skylark limited	1
## 47	chevrolet vega (sw)	0
## 328	audi 5000s (diesel)	1
## 365	oldsmobile cutlass ls	1
## 196	chevrolet chevette	1
## 291	ford country squire (sw)	0
## 273	oldsmobile starfire sx	1
## 297	amc spirit dl	1
## 200	dodge aspen se	0
## 202	pontiac ventura sj	0
## 174	datsun 710	1
## 286	chevrolet caprice classic	0
## 37	ford torino 500	0
## 175	ford pinto	0
## 144	opel manta	1
## 340	buick skylark	1
## 217	honda accord cvcc	1
## 126	plymouth duster	0
## 34	amc gremlin	0
## 41	ford galaxie 500	0
## 267	chevrolet chevette	1
## 10	amc ambassador dpl	0
## 356	honda prelude	1
## 244	mazda rx-4	0
## 348	datsun 210 mpg	1
## 236	toyota corolla liftback	1
## 9	pontiac catalina	0
## 376	mazda glc custom 1	1
## 370	chrysler lebaron medallion	1
## 188	chevrolet chevelle malibu classic	0
## 100 ## 62	ford pinto runabout	0
## 02 ## 204	volkswagen rabbit	1
## 204 ## 154	chevrolet nova	0
## 154 ## 350	mazda glc 4	1
## 350 ## 55	datsun 1200	1
## 33 ## 290	buick estate wagon (sw)	0
11 L 200	buton escace wayon (sw)	J

## 377	mazda glc custom	1
## 235	pontiac sunbird coupe	1
## 187	renault 12tl	1
## 159	plymouth grand fury	0
## 116	chevrolet monte carlo s	0
## 232	chrysler cordoba	0
## 54	toyota corolla 1200	1
## 391	dodge charger 2.2	1
## 207	ford pinto	1
## 248	datsun b210 gx	1
## 374	ford fairmont futura	1
## 319	toyota corona liftback	1
## 262	amc concord d/l	0
## 368	chevrolet cavalier	1
## 341	dodge aries wagon (sw)	1
## 347	subaru	1
## 343	plymouth reliant	1
## 378	plymouth horizon miser	1
## 221	datsun f-10 hatchback	1
## 58	toyota corona hardtop	1
## 106	plymouth custom suburb	0
## 102	plymouth duster	1
## 362	toyota cressida	1
## 389	ford granada l	0
## 314	chevrolet citation	1
## 136	plymouth satellite sebring	0
## 382	toyota corolla	1
## 131	ford pinto	1
## 107	oldsmobile vista cruiser	0
## 354	volkswagen jetta	1
## 371	pontiac j2000 se hatchback	1
## 29	hi 1200d	0
## 222	chevrolet caprice classic	0
## 27	chevy c20	0
## 358	datsun 200sx	1
## 289	dodge st. regis	0
## 344	toyota starlet	1
## 192	plymouth valiant	0
## 316	amc concord	1
## 94	plymouth fury gran sedan	0
## 147	dodge colt	1
## 307	chevrolet citation	1
## 269	datsun 510	1
## 150	honda civic	1
## 165	buick skyhawk	0
## 163	amc matador	0
## 67	amc ambassador sst	0
## 326	vw rabbit c (diesel)	1
## 304	datsun 210	1
## 135	amc matador	0
## 118	fiat 128	1
## 206	toyota corolla	1
## 253	pontiac phoenix lj	0
## 321	datsun 510 hatchback	1
## 321 ## 251	dodge diplomat	0
## 46	amc hornet sportabout (sw)	0
## 148	fiat 128	1
## 303	plymouth horizon tc3	1
## 336	triumph tr7 coupe	1
,,, 550	criamph cr/ coupe	_

## 177	amc pacer	0
## 329	mercedes-benz 240d	1
## 105	ford country	0
## 285	dodge aspen 6	0
## 220	plymouth arrow gs	1
## 178	audi 100ls	1
## 158	chevrolet bel air	0
## 2	buick skylark 320	0
## 132	toyota corolla 1200	1
## 349	toyota tercel	1
## 24	bmw 2002	1
## 243	bmw 320i	0
## 351	plymouth horizon 4	1
## 255	ford fairmont (auto)	0
## 325	datsun 210	1
## 189	dodge coronet brougham	0
## 113	ford pinto	0
## 312	chevrolet chevette	1
## 81	ford pinto (sw)	0
## 241	volkswagen dasher	1
## 36	chevrolet chevelle malibu	0
## 88	chevrolet malibu	0
## 322	toyota corolla	1
## 283	ford fairmont 4	0
## 112	maxda rx3	0
## 195	amc hornet	0
## 223	oldsmobile cutlass supreme	0
## 270	dodge omni	1
## 266	dodge magnum xe	0
## 31	chevrolet vega 2300	1
## 130	datsun b210	1
## 130 ## 74	chevrolet chevelle concours (sw)	0
## 276	volvo 264ql	0
## 270 ## 392	chevrolet camaro	
## 392 ## 261	dodge aspen	1
## 201 ## 45		
	pontiac safari (sw)	0
## 397 ## 93	chevy s-10 ford ltd	1
		0
## 218 ## 270	buick opel isuzu deluxe	1
## 370	chevrolet cavalier 2-door	1
## 190	amc matador	0
## 250	oldsmobile cutlass salon brougham	0
## 38	amc matador	0
## 208	volvo 245	0
## 300	peugeot 504	1
## 272	plymouth sapporo	1
## 12	plymouth 'cuda 340	0
## 124	toyota mark ii	0
## 21	peugeot 504	1
## 215	ford f108	0
## 146	datsun 710	1
## 128	amc hornet	0
## 173	volkswagen dasher	1
## 30	datsun pl510	1
## 320	mazda 626	1
## 51	opel 1900	1
## 48	pontiac firebird	0
## 313	datsun 310	1
## 83	toyouta corona mark ii (sw)	1

##	97	amc ambassador brougham	0	
##	224	dodge monaco brougham	0	
##	268	toyota corona	1	
##	295	maxda glc deluxe	1	
##	96	buick electra 225 custom	0	
##	278	peugeot 604sl	0	
##	239	dodge colt m/m	1	
##	369	chevrolet cavalier wagon	1	
##	359	mazda 626	1	
##	287	ford ltd landau	0	
##	121	volvo 144ea	0	
##	8	plymouth fury iii	0	
##	339	plymouth reliant	1	
##	169	ford pinto	1	
##	98	plymouth valiant	0	
##	383	honda civic	1	
##	209	plymouth volare premier v8	0	
##	151	subaru	1	

Findiings:- The exploratory analysis reveals that certain features are strongly associated with whether a car's MPG is above or below the median (mpg01). Specifically, Weight appears to be a key predictor, as heavier cars generally have lower MPG values (mpg01 = 0), while lighter cars are more likely to achieve higher MPG (mpg01 = 1). This negative relationship suggests that the weight of the vehicle impacts fuel efficiency significantly.

Horsepower is another important predictor, with cars that have higher horsepower typically falling into the lower MPG category. This indicates that more powerful engines, while boosting performance, tend to consume more fuel, reducing efficiency. Similarly, Displacement shows a strong association with mpg01, as cars with larger engine displacement generally exhibit lower MPG, further suggesting that engine size and fuel efficiency are inversely related.

Together, these findings suggest that Weight, Horsepower, and Displacement are likely the most useful features for predicting mpg01. The clear separation in these features between high and low MPG groups indicates they could serve as strong predictors in a classification model aimed at identifying whether a car will have high or low fuel efficiency.

(4).[3 points] Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (2). What is the test error of the model obtained?

```
library(MASS)

lda_model <- lda(mpg01 ~ weight + horsepower + displacement, data = train_d
    ata)

lda_pred <- predict(lda_model, test_data)$class
lda_error <- mean(lda_pred != test_data$mpg01)
cat("lda Error:",lda_error)

## lda Error: 0.1392405</pre>
```

(5).[3 points] Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (2). What is the test error of the model obtained?

Answer:

```
qda_model <- qda(mpg01 ~ weight + horsepower + displacement, data = train_d
ata)</pre>
```

```
qda_pred <- predict(qda_model, test_data)$class
qda_error <- mean(qda_pred != test_data$mpg01)
cat("qda_Error:",qda_error)</pre>
```

```
## qda Error: 0.1139241
```

(6). [3 points] Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (2). What is the test error of the model obtained?

Answer:

```
logit_model <- glm(mpg01 ~ weight + horsepower + displacement, data = train
_data, family = binomial)</pre>
```

```
logit_pred <- predict(logit_model, test_data, type = "response")
logit_class <- ifelse(logit_pred > 0.5, 1, 0)
logit_error <- mean(logit_class != test_data$mpg01)
cat("Logit Error:",logit_error)</pre>
```

```
## Logit Error: 0.1518987
```

(7). [3 points] Perform naive Bayes on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (2). What is the test error of the model obtained?

Answer:

```
# Perform Naive Bayes on training data
nb_model <- naiveBayes(mpg01 ~ weight + horsepower + displacement, data = t
rain_data)
nb_pred <- predict(nb_model, test_data)
nb_error <- mean(nb_pred != test_data$mpg01)
cat("NB Error:",nb_error)</pre>
```

```
## NB Error: 0.1392405
```

(8). [5 points] Perform KNN on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (2). What is the test error of the model obtained? Which value of K seems to perform the best on this data set?

```
Answer:
```

```
library(class)

train_X <- train_data[, c("weight", "horsepower", "displacement")]

test_X <- test_data[, c("weight", "horsepower", "displacement")]

train_y <- train_data$mpg01

k_values <- c(1, 3, 5, 7, 9)

knn_errors <- sapply(k_values, function(k) {
    knn_pred <- knn(train_X, test_X, train_y, k = k)
    mean(knn_pred != test_data$mpg01)
})

best_k <- k_values[which.min(knn_errors)]

knn_error <- min(knn_errors)
cat("KNN ERROR:",knn_error,"\n")</pre>
```

```
## KNN ERROR: 0.1265823
```

```
cat("Best K value:",best_k)
```

```
## Best K value: 9
```

(9).[3 points] Compare the above models, which models do you think is the best, why?

```
Answer: Compare Models:
```

The best model for predicting mpg01 in this case is QDA (Quadratic Discriminant Analysis), as it achieved the lowest test error (0.1139) among all models tested. QDA's strength lies in its ability to capture non-linear relationships, which seems to suit this dataset better than models like LDA and logistic regression, which assume linear boundaries. Although KNN also performed well with a test error of 0.1266 at K=9 QDA is more efficient and interpretable as a parametric model. Therefore, Best Mode is QDA because of its Lowest test error, indicating it most effectively captures the structure in the data and it stands out as the most effective and accurate choice for this task.