This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-127210

(43)公開日 平成11年(1999)5月11日

(51) Int.Cl. ⁶	識別記号	ΡΙ	
H04L 27/227		H 0 4 L 27/22	В
H03L 7/08		H03L 7/08	M
H04L 27/38		H 0 4 L 27/00	Н

審査請求 未請求 請求項の数11 OL (全 10 頁)

(21)出願番号	特願平10-216243	(71)出顧人	598031992
(22)出顧日	平成10年(1998) 7月30日	,	ミクロナス・インターメタル・ゲーエムペ ーハー
(31)優先権主張番号 (32)優先日 (33)優先権主張国	97113212. 1 1997年7月31日 ドイツ (DE)	(72)発明者	ドイツ連邦共和国、デー - 79108 フライブルク・イム・プライスガウ、ハンス - プンテ - シュトラーセ 19 ミオトラーク・テメリナック ドイツ連邦共和国、デー - 79194 グンデルフィンゲン、クロシュターペーク 2アー
		(74)代理人	弁理士 鈴江 武彦 (外4名)

最終頁に続く

(54) 【発明の名称】 デジタル送信信号の受信機のための搬送波制御ループ

(57)【要約】

【課題】 本発明は、デジタル送信信号の受信機の干渉 に対する感度を少なくすることのできる搬送波制御ループを得ることを目的とする。

【解決手段】 信号の流れる方向に縦続的に配置された 直角位相信号復調器3 と、符号認識装置4 と、位相偏差 値と周波数偏差値の少なくとも一方を生成する検出器9 と、フィードバック装置10と、直角位相信号復調器に接 続されている可変周波数発振器11とを備えている搬送波制御ループ1 で、評価装置12が付加され、この評価装置12は搬送波制御ループの信号から、検出器で測定された それぞれの位相偏差値と周波数偏差値の少なくとも一方の信頼度値を決定し、決定された信頼度値にしたがって 搬送波制御ループを制御することを特徴とする。評価装置12は直角位相信号復調器3 により生成された同位相成分と直角位相成分からレゾルバ8 によって形成された位相値および/または絶対値を評価する。

【特許請求の範囲】

【請求項1】 信号の流れる方向に縦続的に配置された 直角位相信号復調器と、符号認識装置と、位相偏差値お よび/または周波数偏差値を生成する検出器と、フィー ドバック装置と、直角位相信号復調器に接続されている 可変周波数発振器とを具備しているデジタル送信された 信号の受信機用の搬送波制御ループにおいて、

搬送波制御ループはさらに評価装置を具備し、この評価 装置は、搬送波制御ループの信号から、検出器で測定さ れたそれぞれの位相偏差値および周波数偏差値の少なく とも一方の信頼度値を決定し、決定された信頼度値にし たがって搬送波制御ループを制御することを特徴とする 搬送波制御ループ。

【請求項2】 評価装置は直角位相信号復調器により生 成された同位相成分と直角位相成分からレゾルバによっ て形成された位相値および/または絶対値を評価するこ とを特徴とする請求項1記載の搬送波制御ループ。

【請求項3】 評価装置は位相値または位相偏差値のた めの第1のしきい検出器および/または絶対値または絶 対偏差値のための第2のしきい検出器を具備しているこ とを特徴とする請求項2記載の搬送波制御ループ。

【請求項4】 第1の遮断装置は第1のしきい検出器の 出力にしたがって制御され、および/または第2の遮断 装置は第2のしきい検出器の出力にしたがって制御され ることを特徴とする請求項3記載の搬送波制御ループ。

【請求項5】 第1の遮断装置により、位相偏差値のフ イードバック装置への転送が遮断され、第2の遮断装置 により、周波数偏差値のフィードバック装置への転送が 遮断されることを特徴とする請求項4記載の搬送波制御 ループ。

【請求項6】 フィードバック装置はPID制御装置に 対応し、位相偏差値は比例セクションおよび積分セクシ ョンに供給され、周波数偏差値は微分セクションに供給 されることを特徴とする請求項1記載の搬送波制御ルー プ。

【請求項7】 フィードバック装置は少なくとも1つの 乗算器を具備し、係数が乗算係数として乗算器へ与えら れることを特徴とする請求項1乃至6のいずれか1項記 載の搬送波制御ループ。

【請求項8】 同位相成分と直角位相成分とを供給され るレゾルバは変更されたCORDIC技術を使用し、そ れにおいて、第1、第2、第3または第4象限の位相値 は第1象限にミラーされ、それらは、

第1象限Q1=0乃至/2まで: $m=tan^{-1}(Q/I)$ 第2象限Q2=/2から:m=tan ⁻¹ (| I |/Q) 第3象限Q3=3/2まで:m=tan ⁻¹ (| Q | / | I 1)

第4象限Q4=3/2乃至0まで: m=tan ⁻¹ (I/| Q |)

とする請求項1乃至7のいずれか1項記載の搬送波制御 ループ。

【請求項9】 位相偏差値は変調依存性の位相補正値を ミラーされた位相値から減算することにより形成される ことを特徴とする請求項8記載の搬送波制御ループ。

【請求項10】 検出器はモジュロ減算により位相偏差 値または位相値から周波数偏差値を形成することを特徴 とする請求項1乃至9のいずれか1項記載の搬送波制御 ループ。

10 【請求項11】 フィードバック装置は少なくとも1つ のMTAフィルタを具備し、その制御クロックは十分な 信頼度値でエネーブルされ、不十分な信頼度値で禁止さ れることを特徴とする請求項1乃至10のいずれか1項 記載の搬送波制御ループ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、直角位相信号変調を使 用して符号として送信されるデジタル送信信号の受信機 のための搬送波制御ループに関する。

20 [0002]

【従来の技術】このような送信方法の例は次の略称、即 ちFSK(=Frequency Shift Keying:周波数シフトキ ーイング)、PSK(Phase Shift Keying:位相シフト キーイング)、BPSK(=Binary Phase Shift Keyin g:2進位相シフトキーイング)、QPSK (=Quater nary Phase Shift Keying : 4位相シフトキーイン グ)、QAM (=Quadrature Amplitude Modulation : 直角位相振幅変調)で知られている。これらの方法のた めの受信機回路は知られており通常設計上類似してい 30 る。重要な構成要素はアナログまたはデジタル搬送波制 御ループであり、これは直角位相信号復調器が正しい位 相および周波数で動作することを確証する。直角位相信 号復調器は直角位相信号変調信号を復調し、それによっ て所望のデータ流が最終的に再構成される個々の符号が 符号認識装置により別々の直交信号成分を経て決定され ることができる。これは搬送波制御ループの直角位相信 号復調器が正確な位相および周波数で動作することを必 要とし、それによって2つの直交位相信号成分は確実に 分割されることができる。

【0003】デジタル送信信号の受信機では、全てデジ 40 タル回路の技術を使用するものが増加しており、安定 性、再現、干渉に対する免疫(安定性)等に関するその 基本的な利点が知られている。アナログ段は信号周波数 がデジタル化するには非常に高い場合にのみ使用されて いる。デジタル化のためのそれぞれのインターフェイス が位置される場所は必要な特性と、関連する回路の複雑 性との妥協に決定され、重要な量は必要なデジタル化周 波数であり、これは通常受信機で使用されるシステムク ロックにより決定され、使用されるそれぞれの回路技術 のようにミラーされた位相値を形成していることを特徴 50 により限定される。回路の構成では、搬送波制御ループ

全体の信号処理は全てデジタルであるので、デジタル化がチューナまたは中間周波数段で搬送波制御ループの前で行われるならば有益である。

【0004】デジタル化された入力信号のデジタル直角位相信号復調は1対のデジタル変換信号を使用し、そのデジタル値の曲線は正弦および余弦の形状である。個々の正弦および余弦の値はオーバーフローアキュムレータと正弦および余弦テーブルを使用してデジタル発振器により形成される。デジタル発振器のオーバーフロー周波数は変換信号対の周波数と同一である。システムクロック周波数対変換周波数の比率が大きくなる程、オーバーフローアキュムレータの周波数の正確度は良好になり、分解能は累積される数字のピット数と、アキュムレータの対応するピット数によって基本的に決定される。

[0005]

【発明が解決しようとする課題】直角位相信号復調器の 復調の混合プロセスが正確な位相および周波数で行われ ることを確実にするため、周波数可変発振器の位相およ び周波数はフィードバック装置により制御される。これ を実現するため、エラー検出器が直角位相信号復調器お よび後続する段の出力から、位相および周波数偏差値を 決定し、これは変換信号対の位相および周波数がどの程 度ぞれぞれの所望値から偏移しているかを示している。 最終的に、可変周波数発振器の制御信号が形成される。 この位相ロック制御なしには、符号を予め定められた位 相位置または位相範囲に次に割当てることは可能ではな い。信号が帯域幅を限定され、インターフェイスまたは 雑音信号がそこに重畳されるとき、本来の点状の位相位 置は局部的な位相および振幅範囲へぼかされ、位相は不 適切な状況下で相互にオーバーラップを制限される。こ のデジタルコード化の既知の利点は、もとのデータ流が 受信機端で容易に復号できることであり、デジタルコー ド化は送信通路または受信機中の干渉に対して比較的鈍 感であることである。この既知の従来技術から出発し て、本発明の目的は受信機端において干渉に対する感度 を低下させることである。

[0006]

【課題を解決するための手段】この目的は、搬送波制御ループの信号、特に符号認識装置の信号から検出器で測定されたそれぞれの位相偏差値および/または周波数偏差値の信頼度値を決定する評価装置へ搬送波制御ループを結合し、決定された信頼度値にしたがって搬送波制御ループを制御することによって達成される。

【0007】本発明は、非常に妨害された信号の場合に、基本的な役目を行う符号認識不確定だけでなく不正確な認識に対する実質的な影響が搬送波制御ループ自体の制御動作により調整されるという認識に基づいている。非常に妨害された信号の場合、制御は非常に敏感に応答するか、雑音位相および/または周波数偏差値に不正確に応答し、常に位相を再調節しようとする。結果と 50

して、評価のための位相基準は非常に信頼性がなくな り、それぞれの符号の正確な認識は非常に劣化される。 信頼度値の導入により、搬送波制御ループは測定された 雑音または干渉レベルにしたがって適応して制御される ことができる。これを実現するため、小さい信頼度値 で、搬送波制御ループは全体的または非常に高い周波数 のスプリアス成分に対する感度が少なくなり、またはそ の制御時間を一定に適合する。それぞれの偏差値の個々 の処理は特に効果的であり、低い信頼性の値では、関連 10 する位相または周波数偏差値は制御にほとんど貢献せ ず、または遮断されるが、十分な信頼度値では、これら は制御に対して通常のまたは高い貢献を行う。この加重 または遮断は単一またはバースト状の妨害が特に現在の 位相状態を妨害せず、制御勾配も制御速度も変化される 必要がないので有効である。したがって、搬送波制御ル ープは信号が確実に認識されるならば、迅速な変化を容 易に追跡することができる。信頼度値を決定するため に、干渉により生じる特性信号の変化が評価される。前 述したように、符号に対して規定された位置が干渉の増 加と共に位相および振幅方向の両者で広くなる。相関さ れていない方法で2つの直交信号成分に重畳されたガウ ス分布を有する雑音が干渉モデルとして仮定されるなら ば、認識される符号が正しいか、または誤りであるかの 確率を計算することが可能である。測定された位相およ び振幅偏差値はまた数学的に決定可能な確率分布にした がって解釈され評価され、それによってこれらは信頼性 の尺度を表している。偏差値が小さい程、信頼性は大き くなり、評価が誤った符号を与えるという不確定性が低 くなる。搬送波制御ループにおける本発明の効果におい 30 て、測定可能な偏差値と計算可能な信頼度値の関係が正 確であるか否かは重要ではなく、これはそれぞれの干渉 モデルに依存し、実際の状況に対する近似として考慮さ れるだけである。それ故、例えば測定された偏差値のし きい値を設定することによって、信頼度値を比較的大ざ っぱに決定することにおいて十分に改良されている。

【0008】勿論、非常に複雑な回路により、または例えば復調された信号および復調されていない信号の雑音 誘起変化を評価する等の別の方法で信頼度値を形成する ことも可能である。フィルタ回路により、変調と十分に 40 無関係な周波数範囲に決定を限定することができる。

【0009】信頼性の評価の別の特徴は、制御ループにおける偏差値のそれぞれの効果である。偏差値が制御ループにその状態を変化させるかまたは現在の状態のままにさせるべきであるか?については、確率値を加重することにより、現在の状態または変化された状態は例えば強調されることができる。この加重は例えば確率値を、それぞれの所望な符号値からの測定された位相の距離により決定される索引力値で乗算することにより実現される。

50 【0010】偏差の決定が位相および振幅に関して別々

に行われることができるならば、特に有効である。これ を行うため、レゾルバは直交信号成分のデカルト座標を 極座標に変換する。デジタルシステムでは、CORDI C技術にしたがって相互作用レゾルバは特に適してい る。信頼度値は、制御に使用される個々の偏差値に新し い値を割当てる適切な特性または特性のファミリによっ て評価されることができる。特性または特性のファミリ は表に記憶されてもよい。最も簡単なケースでは、これ らは屈折特性、または1または2面の限定、或いは1ま たは2面の信号抑制により構成される。このような特性 はしきい値検出器で容易に実行されることができ、これ は特に遮断装置が制御される必要があるだけで、ウィン ドウ比較器として設計されることができる。

【0011】搬送波制御ループでは、フィードバック装 置は測定された位相および周波数偏差値を発振器のため の制御信号へ変換するループフィルタを具備している。 良好な制御作用はPID (=proportional-integral-de rivative)制御装置構造によって実現されることがで き、PID制御装置構造は入力信号として位相偏差値お よび周波数偏差値を使用する。信頼度値により制御され 20 るゲートまたは遮断装置により、これらの信号の処理は 中断される。別々のフィルタ回路を使用するフィードバ ック装置における処理の前に偏差値を平滑にするかまた は信号偏移を除くことが可能である。クロック信号の中 断はそれぞれの偏差値において抑止ゲートと同一の効果 をもつので、この目的にはMTA (=moving-time-avar ager) フィルタが特に適している。MTAフィルタは同 時にデータ速度減少が望まれる場合には特に適してい る。

【0012】座標変換では、直交信号成分が評価のため に第1象限にミラーされる変更されたCORDIC技術 を有効に使用する。これは符号の適切な反転および/ま たは直交信号成分の交換により実現される。符号が異な った位相だけでなく異なった振幅により限定されるなら ば、信頼度値の決定はレゾルバの前段に振幅の標準化を 必要とし、レゾルバは関連する符号の所望値と現在の直 交信号成分との複素数乗算を行う。変調に依存する位相 補正値をミラーされた位相値から滅算することによっ て、関連する位相偏差値が形成される。例えばQPSK 変調では、位相補正値は/4である。時間において相互 に続いている少なくとも2つの位相値から、周波数偏差 値はモジュロ滅算により形成される。モジュロ滅算はオ ーパーフローと符号ビットを無視することにより2つの 補数で行われる。

[0013]

【発明の実施の形態】本発明および好ましい実施形態を 添付図面を参照してより詳細に説明する。図1のブロッ ク図はデジタル送信信号の受信機における搬送波制御ル ープ1の機能装置を基本的に示している。入力はデジタ

信局により表されている。これは供給された信号をシス テムクロックによりデジタル化し、このデジタル化され た信号 s 1 を直角位相信号復調器 3 へ供給するアナログ デジタル変換器を含んでいる。直角位相信号復調器3の 出力は同位相成分i1と直角位相成分q1である。直交 信号成分i 1とq1は符号認識装置4へ供給され、符号 認識装置4は、サンプリング補間装置5と、ナイキスト 受信機フィルタ6と、符号決定段7と、通常は符号認識 装置4から同位相成分Ⅰおよび直角位相成分Qを供給さ 10 れるレゾルバ8とを含んでいる。前述したように複素数 乗算を行う標準化段がレゾルバ6に先行している。

【0014】搬送波制御ループ1はさらに位相偏差値 d と周波数偏差値 f d とを形成する検出器 9 を含んでい る。入力端で、検出器9にはレゾルバ8からの位相値が 与えられている。検出器9の後にはフィードバック装置 10が続いており、これは検出器9から位相および周波数 偏差値を供給され、可変周波数発振器11のための制御信 号 s t を与える。可変周波数発振器11は直角位相信号復 調器3に供給される1対の変換信号cosおよびsin を発生する。搬送波制御ループ1はこのようにして完結 されている。

【0015】以上説明した搬送波制御ループ1は通常の 回路に対応している。本発明にしたがった搬送波制御ル ープ1の改良された動作は、図1の実施形態ではその入 力端でレゾルバ8に結合されている評価加重装置12によ り実現され、それはレゾルバの出力信号からの信頼度値 を決定し、フィードバック装置10を制御するためこれら の信頼度値を使用する。評価装置12は検出装置9と類似 の方法で位相偏差値 d を発生しまたはこの値を与えられ る。第1象限にミラーされているレゾルバ8の振幅値お よび/または絶対値bは直接、評価装置12へ伝送され る。位相偏差値 d はしたがって 2 つの対称的なしきい値 1、2 (図12参照)を介して簡単な方法で評価される ことができる。絶対値bで、しきい値b1、b2は値1 (図12参照)を有する所望の振幅に関して対称的では ない。より大きなしきい値b2は絶対値bがほとんど超 過することがないような大きさに選択されることがで き、それ故、絶対値なしで済まされる。しきい値による 評価は第1のゲート信号g1と第2のゲート信号g2を 発生し、これはフィードバック装置10内の遮断装置30、 40 31、例えばゲートを制御する。係数メモリ13はPIDフ イードバック装置10にフィルタ係数 c 1 、 c 2 、 c 3 を 与える。

【0016】図1のブロック図では、符号認識装置4に は、認識された符号を直列データ流datへ変換する変 換器14が後続している。サンプリング補間装置5は符号 値が直交信号成分i1、q1から抽出されるべきである 最適の瞬間を決定する。デジタル構成では、サンプリン グ補間装置は補間により純粋に数学的に隣接した所定値 ル信号源2、例えばチューナ、変換器またはケーブル受 50 から正確なサンプリングの瞬間を形成する。その出力信

8

号はナイキスト受信機フィルタ6へ供給される直交信号 成分i2、q2であり、ナイキスト受信機フィルタ6は 通常システムクロックから符号周波数へのサンプリング 速度変換も行う。QPSK変調の場合、ナイキスト受信 機フィルタ6の後の直交信号成分i3、q3は成分i 3、q3の符号によって符号認識装置4で容易に復号化 されることができる。符号認識装置4の出力における直 交信号成分i4、a4は個々の符号を定める上位桁ピッ トのみを含んでいる。検出器9の偏差値d、fdの形成 と、偏差評価装置12の関連する信頼度値の形成のため に、1対の直交信号はできる限り多数の利用可能なビッ トを含むべきであり、その理由で低い符号周波数でも利 用可能な直交信号成分i3、q3が評価に使用される。 以下の説明において、基本的に信頼度値の形成に関し、 直交信号成分により一般的な参照符号IとQのみを使用 する。

【0017】図2はフィードバック装置10と評価装置12 の実施形態を概略プロック図で示している。フィードバ ック装置10は比例セクションPおよび積分セクション I rで位相偏差値dを処理し、微分セクションDで周波数 偏差値fdを処理するPID制御装置として設計されて いる。評価装置12は、絶対値 b に対するしきい検出器20 と、位相値または関連する偏差値はに対するしきい検出 器21とを入力セクションに含んでいる。関連するしきい 値はそれぞれ振幅しきい値b1、b2と位相しきい値 1、2である。2つのしきい値を有するしきい検出器は またウィンドウ比較装置と呼ばれる。図2の個々の機能 装置を評価装置12またはフィードバック装置10へ割当て ることはその相互動作には重要ではない。

【0018】位相偏差値dから、周波数偏差値fdは遅 延素子22と減算器23により形成される。例えば周波数偏 差値が一定して増加するならば、これは直交信号成分 I、Qにより規定されるベクトルが一定の周波数で回転 することを意味する。減算器23の出力における差は一定 のままであり、その値は周波数偏差の正確な尺度であ る。可変周波数発振器11が、丁度直交信号搬送波の周波 数と正確に同一の1対の変換信号cosおよびsinを 発生するならば、結果は停止し、それによって周波数偏 差値 f d は常にゼロである。しかしながら、適切な直角 位相信号復調は結果が位相偏差値vdを持たないことを 必要とし、その理由はそうでなければ基準位相が正確に ならないからである。位相の再調整は特に積分セクショ ンIrによりフィードバック装置10において行われ、延 長された位相偏差が正確にされる。 積分セクション Ir は加算器24と遅延素子25とを有する累算器ループからな る。積分セクションIrの制御勾配は、よく知られてい るように急峻であってはならず、その理由は、そうでな ければ乱闘が生じるからである。比較的短時間の位相偏 差値dに対しては、より急峻な制御勾配が望ましく、こ

例セクションPの比較的大きなリセットまたは索引力は それぞれの位相偏差値 d に比例する。個々の制御成分は 加算器24と加算器26により結合され、その合計値は可変 周波数発振器11の制御信号stを形成する。PIN制御 装置の個々の成分の貢献力は3個の乗算器27、28、29に より変更されることができ、それらの乗算器に対しては 係数c1、c2、c3が与えられる。

【0019】位相偏差値dと周波数偏差値fdの信号路 は、遮断装置30、31をそれぞれ含んでおり、これらはス 10 イッチとして示されており、これらによってそれぞれの 信号路が遮断される。信頼度値がそれぞれの偏差値 d、 f dに十分ではないことを評価装置12が決定する都度、 遮断が行われる。例えば、2つのしきい検出器20、21の うちの一方が、与えられた値が予めセットしたしきい値 外にあることを感知したならば、論理段32、例えばOR ゲートが遮断段30を遮断する。位相偏差値fdは位相差 の形成によって少なくとも2つの位相偏差値dと結合さ れる。これらのうち少なくとも1つの位相偏差値 d が信 頼性がないことが発見されたならば、論理段33は周波数 偏差値fdに対する遮断装置31を遮断する。この信頼度 値はしきい検出器20により2つの一時的に対応する振幅 値から得られる。一方または両方の値が予め定められた しきい値 b 1 、 b 2 にあるならば、またはこのしきい値 外にあるならば、現在の周波数偏差値fdは信頼性がな く、遮断装置31により遮断される。論理段33もORゲー トにより構成されてもよい。ゲート33の入力信号の時間 補償は遅延段34により行われる。

【0020】図2の評価装置12は多数の変形のうちの1 つのみを表していることに留意すべきである。これはた だ2個のしきい検出器20、21と、2個の簡単な論理段3 2、33と、2個の遮断装置33、31を制御するための1個 の遅延段34とを必要とするだけなので特に簡単である が、信頼度値を決定するために絶対値bと位相値または 位相偏差値 d の両者を使用するので非常に有効であり、 CORDIC技術を使用するレゾルバ8により、位相値 と絶対値 b の両者はこの目的では有効である。評価装置 12が信頼度値を形成するために2つの値dのうちの一方 のみを使用するならば、従来の回路にまさる改良が行わ れるが、容易に実現可能な利点は放棄される。

【0021】図3は第1象限Q1における現在の位相値 の関数としての位相偏差値 d の構成をベクトル図で示し ており、これは第1象限のミラーされた位相値mと同一 である。図4乃至6は3つの象限Q2乃至Q4を第1象 限Q1にミラーしていることを示したベクトル図であ る。ミラーまたは角度回転の表示を簡単にするために、 4つの符号S1乃至S4によるQPSK変調が仮定され る。符号番号、即ちアルファベットが大きくなる程、基 本的なミラー作用は変化しない。ミラーされる位相値は 2つの直交信号成分 I、Qにより定められる。位相値を れはPID制御装置の比例セクションPにより生じ、比 50 ミラーされた位相値mにミラーすることは絶対値の形成

およびまたは2つの直交信号成分I、Qの適切な交換に より実現される。この方法により、それぞれの象限Q 2、Q3、Q4に割当てられた位相偏差値dは、関連す る符号の象限の範囲内にあるならば、正確に同一の大き さおよび同一の符号で第1象限Q1にミラーされる。ミ ラーされた位相値mとミラーされた符号S2'、S3' またはS4′の間の角度関係が保持される。それぞれの 位相偏差値dをミラーされた位相値mから得るため、そ れぞれの変調に依存し関連する符号のミラーされた位相 偏差値に対応する前述の位相補正値cはミラーされた位 相値mから減算される。QPSK変調を使用している例 示では、位相補正値 c は第1の符号S1およびミラーさ れた符号S2'、S3'、S4'に対してc=/4値を 有する。以下、4つの全ての象限に対するミラーされた 位相値mの形成に関する法則を示す。

【0022】第1象限Q1=0乃至/2まで:m=tan $^{-1}$ (Q/I)

第2象限Q2=/2から:m=tan -1 (| I |/Q) 第3象限Q3=3/2まで: m=tan ⁻¹ (|Q|/|I 1)

第4象限Q4=3/2乃至0まで: $m=tan^{-1}$ (I/| ·Q |)

【0023】図7は、補正されていない雑音が重畳され ている場合のデカルト座標I-Q平面における直交信号 成分Ⅰ、Qの確率分布を示しており、雑音はガウス分布 を有する。IとQ成分の間の直角位相関係のために、ベ クトルの長さが正規化されるならば、結果的なベクトル の長さは常に値1を持たなければならない。図7は45 度の位相値で第1象限に位置する第1の符号S1が直交 信号成分I、Qにより表される場合を示している。干渉 がないならば、2つの成分I、Qに対する確率は符号S 1の座標 I = 0. 701およびQ = 0. 701で値= 1であり、その他は全て値ゼロを持たなければならない。 図7は、代わりにIおよびQ成分のガウス分布が存在 し、その最大値が符号S1にあることを示している。信 号対雑音比S/Nが増加したならば、符号S1における 確率分布は高くなり狭くなり、信号対雑音比が減少した ならば、符号S1の確率分布の最大値は減少し、ベル型 曲線がそれに対応して広くなる。

【0024】図8は、位相偏差値dと絶対値bにより規 定されたデカルト平面にそれ自身が存在するときの図7 に対応する確率分布を示している。確率分布から形成さ れたベル型曲線は図7のように回転的に対称ではない。 しかしながらこれは単なる絶対値 b と位相偏差値 d のス ケールの問題であり、 d は-180度から+180度ま で示されている。

【0025】図9は図7に類似した方法で、4つの等し い確率の符号S1、S2、S3、S4によるQPSK変 睭のI-Q平面上の確率分布を示している。 4つの符号

象限に位置する。象限の限界 I=0 および Q=0 に対し て隣接する符号のうちの1つが存在する確率値が非常に 大きいので、それぞれの象限を特定することによって4 つの符号を確実に分離することはもはや可能ではない。 これはまた図10からも明白であり、図10は第1象限 に対応し、これは第1の符号値81に加えて他の象限か ちの全てのミラーされた符号値Si'を含んでいる。図 10の空間的表示では、確率分布が位相偏差値 d と絶対 値bを表すデカルト座標で示されている。図10は拡散 10 位相偏差スケールで全ての4つの符号が同一の確率で生 じている点のみを除いて図8に対応している。

【0026】信頼性を決定するための確率分布の使用に よって、使用される偏差値は図10の最高の確率範囲に 割当てられている値に限定される。それぞれの確率値が 位相偏差値 d からのそれぞれの牽引力またはリセット力 と結合されるならば、測定された位相偏差値 d の信頼性 についてのより明白な情報が得られる。ミラーされた状 態だけでなく各4つの符号S1乃至S4の実際の貫献を 考慮しなければならない。これは図10を参照してそれ ぞれの符号に割当てられた確率値を実際の位相偏差値d により乗算し、これらの4つの積を加算することにより 行われる。結果は使用可能な信頼度値 z を形成し、これ は位相偏差値dと絶対値bを表すデカルト座標上の空間 表示で図11に示されている。4つの全ての確率を実際 の位相偏差値 d で加重することによって、信頼度値 z の "標準化"が得られ、これは正と負の値をもつことがで きる。正の信頼度値 z は正の牽引力に対応し、負の信頼 度値zは負の牽引力に対応する。図11の信頼分布zで は、牽引力符号がそれぞれの位相偏差値はに類似してい る範囲を明白に弁別することができる。信頼度値 z と牽 引方向との間の正確な関係を有する範囲が図11に鮮明 に示されており、誤った牽引方向を有する範囲は影付き で示され、中性の牽引方向を有する範囲はグレーのトー ンで示されている。適切な信頼度値zの決定は位相偏差 値dのみが搬送波制御ループの制御に使用される事実か らなり、搬送波制御ループの制御は正確な制御方向を生 じさせ、したがって正確な符号を有する信頼範囲に対応 する。反対に、少なくとも位相偏差値 d のこれらの範囲 はループの反転を生じさせる搬送波制御を除外されなけ 40 ればならず、これは図11の信頼図から明白である。

【0027】図12は図11に対応する信頼図を上面図 で示しており、グレーレベルの意味は図11から交換さ れている。示されているラインは等しい信頼度zのライ ンであり、外形線の表示に対応している。図面は小さい 絶対値bでは、信頼度は减少し、測定された位相偏差値 dで制御は行われないことを示している。図12では 0. 7のしきい値b1はこれらの信頼性のない範囲を大 きくカットオフする。大きい絶対値 b は非臨界的であ り、それ故、第2のスイッチングしきい値b2はなしで

値は直交信号成分 I 、 Q の符号により決定される 4 つの 50 済まされるか、例えば b 2 の 3 のように十分に高く選択

される。隣接する符号の影響が少ないので、位相偏差値 d に対して、信頼性 z の最大値は論理符号値+/-45 度ではなくこれらの値の下にある。これは図12の図から容易に明白である。十分な信頼性の可能な限界は例えば位相偏差値1=+35度と2=-35度である。

【0028】図13万至15は異なった信号対雑音比S /Nにおける信頼度値 zの平面図を示している。図13はS/N=9dBの図を示し、図14はS/N=6dBの図を示し、図15はS/N=3dBの図を示している。利用可能な信頼度範囲は勿論 S/N比の増加と共に増加する。信頼度値 zの最大値と、したがって評価の信頼性はそれに対応して増加する。劣化したS/N比のでは、信頼性の最大値が大きなb値へシフトする異なには、信頼性の最大値が大きなb値へシフトする。S/N=3dBである図15の図は、管頼性のない範囲が実質上信頼性のある範囲よりもようである。ここで搬送波制御ループによるが図12を示している。ここで搬送波制御ループによるが図12のグレーレベルには対応していないことに留意すべきである。

【0029】個々の確率の加重された重畳から信頼度値 zを決定することは図16乃至18から明白である。特 に、不連続が見られ、これは確率値とそれぞれの牽引力 との乗算から生じる。ここで使用されている用語"牽引 力"は第1象限の位相偏差値だけでなく、実際の符号ま での位相偏差値を意味するために使用される。各図1 6、17、18では、3つの信号対雑音比S/N、即ち S/N=9 dB, S/N=6 dB, S/N=3 dBいて信頼度値zが位相偏差値dに対して示されている。 図16は共通のパラメータとして絶対値b=1.5を有 30 する。図17の曲線の場合の共通のパラメータは絶対値 b=1であり、図18の曲線の場合の共通のパラメータ は絶対値 b = 0.5である。図16の信頼度特性 z は弱 い信号S/N=3dBではO度の小さい不連続性を示 し、絶対値 b = 1.5 であり、これはパラメータとして 作用する。図17を参照して、小さい絶対値 b=1で は、0度のこの不連続性は若干増加する。同時に、3d B 曲線全体が信頼性のない範囲に位置し、このことは 信頼度値 z がそこで誤った符号を有することを意味して いる。図18を参照して、さらに小さい値b=0.5で 40 【0030】搬送波制御ループと、関連する方法における改良は異なった回路技術に容易に適合されることができることに留意すべきである。特に、ループはこのような受信機で使用されることができるモノリシック集積回路として構成されるのに適している。機能の一部または全ての動作シーケンスがプログラム可能なプロセッサに構成されるか否かは当業者の判断に任せられる。プロセッサを有する構成は、よく知られているように、プログラム可能なパラメータによって種々の目的に適合されるとき回路がよりフレキシブルになるという利点を有する。さらに、適切なプログラムにより、集積化した後でさえも処理の介入が可能である。

【図面の簡単な説明】

【図1】デジタル送信信号の受信機のブロック図。

【図2】搬送波制御ループの部分的回路の概略図。

【図3】位相ミラーを示したベクトルの図。

【図4】位相ミラーを示したベクトルの図。

【図5】位相ミラーを示したベクトルの図。

【図6】位相ミラーを示したベクトルの図。

【図7】I-Q図の確率分布図。

【図8】位相の大きさの図における確率分布図。

【図9】QPSK変調におけるI-Q確率分布図。

【図10】第1象限における関連する位相の大きさの図。

【図11】牽引力力で加重された確率分布図。

【図12】d-b座標における信頼度の図。

【図13】異なったS/N値を有する信頼度の図。

【図14】異なったS/N値を有する信頼度の図。

【図15】異なったS/N値を有する信頼度の図。

【図16】臨界的な範囲の信頼決定の図。

【図17】臨界的な範囲の信頼決定の図。

【図18】臨界的な範囲の信頼決定の図。

[図3]

Ψm = Ψ=arctan (0/I)

[図4]

Ψm = Ψ - π/2 = arctan (111/a)

【図16】

【図17】

【図18】

フロントページの続き

(72)発明者 フランツ - オットー・ビッテ ドイツ連邦共和国、デー - 79312 エ ンメンディンゲン、アドルフ - コルピ ンク - シュトラーセ 2