연습문제 11.5

2)
11.
$$f(x, y) = x^2 + y^2$$

$$\mathbf{u} = \frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$$

$$\nabla f = 2x\mathbf{i} + 2y\mathbf{j}$$

$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = \frac{2}{\sqrt{2}}x + \frac{2}{\sqrt{2}}y = \sqrt{2}(x + y)$$

19.
$$\overrightarrow{PQ} = 2\mathbf{i} + 4\mathbf{j}, \mathbf{u} = \frac{1}{\sqrt{5}}\mathbf{i} + \frac{2}{\sqrt{5}}\mathbf{j}$$

$$\nabla g(x, y) = 2x\mathbf{i} + 2y\mathbf{j}, \nabla g(1, 2) = 2\mathbf{i} + 4\mathbf{j}$$

$$D_{\mathbf{u}}g = \nabla g \cdot \mathbf{u} = \frac{2}{\sqrt{5}} + \frac{8}{\sqrt{5}} = \frac{10}{\sqrt{5}} = 2\sqrt{5}$$

21.
$$h(x, y) = x \tan y$$

 $\nabla h(x, y) = \tan y \mathbf{i} + x \sec^2 y \mathbf{j}$
 $\nabla h\left(2, \frac{\pi}{4}\right) = \mathbf{i} + 4\mathbf{j}$
 $\left\|\nabla h\left(2, \frac{\pi}{4}\right)\right\| = \sqrt{17}$
23. $g(x, y) = \ln \sqrt[3]{x^2 + y^2} = \frac{1}{3}\ln(x^2 + y^2)$
 $\nabla g(x, y) = \frac{1}{3}\left[\frac{2x}{x^2 + y^2} \mathbf{i} + \frac{2y}{x^2 + y^2} \mathbf{j}\right]$
 $\nabla g(1, 2) = \frac{1}{3}\left(\frac{2}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}\right) = \frac{2}{15}(\mathbf{i} + 2\mathbf{j})$
 $\left\|\nabla g(1, 2)\right\| = \frac{2\sqrt{5}}{15}$

연습문제 11.7

2-b)

9.
$$f(x, y) = -5x^2 + 4xy - y^2 + 16x + 10$$

 $f_x = -10x + 4y + 16 = 0$
 $f_y = 4x - 2y = 0$ Solving simultaneously yields $x = 8$ and $y = 16$.
 $f_{xx} = -10$, $f_{yy} = -2$, $f_{xy} = 4$

At the critical point (8, 16), $f_{xx} < 0$ and $f_{xx} f_{yy} - (f_{xy})^2 > 0$. Therefore, (8, 16, 74) is a relative maximum.

2-d)

13.
$$f(x, y) = 2\sqrt{x^2 + y^2} + 3$$

$$f_x = \frac{2x}{\sqrt{x^2 + y^2}} = 0$$

$$f_y = \frac{2y}{\sqrt{x^2 + y^2}} = 0$$

Since $f(x, y) \ge 3$ for all (x, y), (0, 0, 3) is a relative minimum.

4-a)

21.
$$h(x, y) = x^2 - y^2 - 2x - 4y - 4$$

 $h_x = 2x - 2 = 2(x - 1) = 0$ when $x = 1$.
 $h_y = -2y - 4 = -2(y + 2) = 0$ when $y = -2$.
 $h_{xx} = 2$, $h_{yy} = -2$, $h_{xy} = 0$

At the critical point (1, -2), $h_{xx}h_{yy} - (h_{xy})^2 < 0$. Therefore, (1, -2, -1) is a saddle point.

4-d)

27.
$$f(x, y) = 2xy - \frac{1}{2}(x^4 + y^2) + 1$$

 $f_x = 2y - 2x^3$ Solving by substitution yields 3 critical points:
 $f_y = 2x - 2y^3$ $(0, 0), (1, 1), (-1, -1)$
 $f_{xx} = -6x^2, f_{yy} = -6y^2, f_{xy} = 2$
At $(0, 0), f_{xx}f_{yy} - (f_{xy})^2 < 0 \implies (0, 0, 1)$ saddle point.
At $(1, 1), f_x = -(f_x)^2 > 0$ and $f_x < 0 \implies (1, 1, 2)$ relative maximum.

At
$$(1, 1)$$
, $f_{xx}f_{yy} - (f_{xy})^2 > 0$ and $f_{xx} < 0 \implies (1, 1, 2)$ relative maximum.

At
$$(-1,-1)$$
, $f_{xx}f_{yy}-(f_{xy})^2>0$ and $f_{xx}<0 \implies (-1,-1,2)$ relative maximum.

10-a)

53.
$$f(x, y) = 12 - 3x - 2y$$
 has no critical points. On the line $y = x + 1$, $0 \le x \le 1$,

$$f(x, y) = f(x) = 12 - 3x - 2(x + 1) = -5x + 10$$

and the maximum is 10, the minimum is 5. On the line y = -2x + 4, $1 \le x \le 2$,

$$f(x, y) = f(x) = 12 - 3x - 2(-2x + 4) = x + 4$$

and the maximum is 6, the minimum is 5. On the line $y = -\frac{1}{2}x + 1$, $0 \le x \le 2$,

$$f(x, y) = f(x) = 12 - 3x - 2(-\frac{1}{2}x + 1) = -2x + 10$$

and the maximum is 10, the minimum is 6.

Absolute maximum: 10 at (0, 1)

Absolute minimum: 5 at (1, 2)

10-c)

57.
$$f(x, y) = x^2 + xy, R = \{(x, y): |x| \le 2, |y| \le 1\}$$

$$\begin{cases}
f_x = 2x + y = 0 \\
f_y = x = 0
\end{cases} x = y = 0$$

$$f_y = x = 0$$

Along
$$y = 1, -2 \le x \le 2, f = x^2 + x, f' = 2x + 1 = 0 \implies x = -\frac{1}{2}$$

Thus,
$$f(-2, 1) = 2$$
, $f(-\frac{1}{2}, 1) = -\frac{1}{4}$ and $f(2, 1) = 6$.

Along
$$y = -1, -2 \le x \le 2, f = x^2 - x, f' = 2x - 1 = 0 \implies x = \frac{1}{2}$$
.

Thus,
$$f(-2, -1) = 6$$
, $f(\frac{1}{2}, -1) = -\frac{1}{4}$, $f(2, -1) = 2$.

Along
$$x = 2, -1 \le y \le 1, f = 4 + 2y \implies f' = 2 \ne 0.$$

Along
$$x = -2, -1 \le y \le 1, f = 4 - 2y \implies f' = -2 \ne 0$$
.

Along $x = -2, -1 \le y \le 1, f = 4 - 2y \implies f' = -2 \ne 0.$ Thus, the maxima are f(2, 1) = 6 and f(-2, -1) = 6 and the minima are $f(-\frac{1}{2}, 1) = -\frac{1}{4}$ and $f(\frac{1}{2}, -1) = -\frac{1}{4}$.

20)

85. Let
$$S(a, b) = \sum_{i=1}^{n} (ax_i + b - y_i)^2$$

The first partial derivatives of S are

$$S_a(a,b) = \sum_{i=1}^n 2x_i(ax_i + b - y_i) = 2a\sum_{i=1}^n x_i^2 + 2b\sum_{i=1}^n x_i - 2\sum_{i=1}^n x_i y_i$$

$$S_b(a, b) = \sum_{i=1}^{n} 2(ax_i + b - y_i) = 2a\sum_{i=1}^{n} x_i + 2nb - 2\sum_{i=1}^{n} y_i$$

Setting these equal to zero, you obtain

$$nb + \left(\sum_{i=1}^{n} x_i\right)a = \sum_{i=1}^{n} y_i$$

$$\left(\sum_{i=1}^{n}\right)b + \left(\sum_{i=1}^{n}x_{i}^{2}\right)a = \sum_{i=1}^{n}x_{i}y_{i}$$

Using the Second Partials Test, you can verify that this is a minimum.

연습문제 11.8

3-a)

Minimize f(x, y, z) = x² + y² + z².
 Constraint: x + y + z = 6

$$2x = \lambda$$

$$2y = \lambda$$

$$2z = \lambda$$

$$x + y + z = 6 \implies x = y = z = 2$$

$$f(2, 2, 2) = 12$$

4-b)

17. Maximize f(x, y, z) = xy + yz.

Constraints:
$$x + 2y = 6$$

$$x - 3z = 0$$

$$\nabla f = \lambda \nabla g + \mu \nabla h$$

$$y\mathbf{i} + (x + z)\mathbf{j} + y\mathbf{k} = \lambda(\mathbf{i} + 2\mathbf{j}) + \mu(\mathbf{i} - 3\mathbf{k})$$

$$\begin{cases}
 y = \lambda + \mu \\
 x + z = 2\lambda \\
 y = -3\mu
 \end{cases}
 y = \frac{3}{4}\lambda \implies x + z = \frac{8}{3}y$$

$$x + 2y = 6 \implies y = 3 - \frac{x}{2}$$

$$x - 3z = 0 \implies z = \frac{x}{3}$$

$$x + \frac{x}{3} = \frac{8}{3} \left(3 - \frac{x}{2} \right)$$

$$x = 3, y = \frac{3}{2}, z = 1$$

$$f\left(3,\frac{3}{2},1\right) = 6$$