CV Project Evaluation

=3 Team ID - 26 Dheeraj, Kshitij, Trunapushpa

Paper

Learning a Deep Convolutional Network for Image Super-Resolution - Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang [ECCV 2014]

http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepresolution.pdf

- 1. CNN for image super resolution
- 2. Establish a relationship between the deep-learning-based super resolution method and the traditional sparse-coding-based super resolution methods. This guides the design of the network structure.

Method

Dataset

2 datasets were used in this project. The T91 database, which consists of 91 images is transformed into a dataset of 22,000 images for this project using overlapping 32x32 windows with stride 14. Furthermore, the 300 images from BSD 300 dataset are also used.

Results

		Input Image	Target Image	Network Output	PSNR value	
	T91 $f_1 = 9$ $f_3 = 5$ $n_1 = 64$ $n_2 = 32$ MSE Loss Y channel 50 epochs	0 0	0 0	0	Avg. PSNR: 28.1654 dB Bicubic Avg. PSNR: 26.4436 dB	
	T91 f ₁ = 9 f ₃ = 5 n ₁ = 64 n ₂ = 32 MSE Loss RGB channel 50 enochs	000	000		Avg. PSNR: 27.8857 dB Bicubic Avg. PSNR: 26.0454 dB	

Results

 $f_3 = 5$ n, = 64 $n_2 = 32$ Perceptual Loss Y channel 50 epochs T91 $f_1 = 9$ $f_3 = 5$ $n_1 = 64$ $n_2 = 32$ Perceptual Loss RGB channel 50 epochs

T91

 $f_1 = 9$

Avg. PSNR:

Bicubic Avg. PSNR: 26.0454 dB

Avg. PSNR:

24.4652 dB

Results

T91 $f_1 = 9$ $f_3 = 5$ $n_1 = 64$ $n_2 = 32$ Gram Matrix Perceptual Loss Y channel 50 epochs

Avg. PSNR: 26.7261 dB

Bicubic Avg. PSNR: 26.4436 dB

Future Work

A comparative study between super-resolution from a single image and current method implemented.

Codebase

GitHub repo - https://github.com/dheerajpreddy/image-super-resolution

Thank You