Univariate Optimization 1

Exercise 1: Golden Ratio, Brent's Method

```
library(ggplot2)
set.seed(123)

X = matrix(runif(100), ncol = 2)
y = -((X %*% c(-1, 1) + rnorm(50, 0, 0.1) < 0) * 2 - 1)
df = as.data.frame(X)
df$type = as.character(y)

ggplot(df) +
   geom_point(aes(x = V1, y = V2, color=type)) +
   xlab(expression(theta[1])) +
   ylab(expression(theta[2]))</pre>
```


- (a) Since f is convex it holds for arbitrary $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2, t \in [0, 1]$ that $f(\mathbf{x} + t(\mathbf{y} \mathbf{x})) \leq f(\mathbf{x}) + t(f(\mathbf{y}) f(\mathbf{x}))$. This means this holds also for $\mathbf{x}_c = (x, c)^{\top}$ and $\mathbf{y}_c = (y, c)^{\top}$ with $x, y \in \mathbb{R}$ and fixed $c \in \mathbb{R}$: $f(\mathbf{x}_c + t(\mathbf{y}_c \mathbf{x}_c)) \leq f(\mathbf{x}_c) + t(f(\mathbf{y}_c) f(\mathbf{x}_c)) \iff g_c(x + t(y x)) \leq g_c(x) + t(g_c(y) g_c(x))$. $\Rightarrow g_c$ is convex.
- (b) The non-geometric primal linear SVM formulation is convex and unconstrained \Rightarrow For one parameter the objective is also convex (a)) and we can directly use GR . In contrast, the geometric formulation has linear constraints.

```
(c) # Define objective
   f <- function(theta) theta %*% theta +
       sum(sapply(1 - y * (X %*% theta), function(x) max(x, 0)))
   # Objective w.r.t theta_1 with fixed theta_2
   ft1 <- function(theta_1) f(c(theta_1, 2))</pre>
   phi = (sqrt(5) - 1)/2
   gr \leftarrow function(f, lx=-3, rx=3, abs\_error = 0.01)
     # initialize variables needed for stopping criterion
     fbest_old = Inf
     xbest_old = Inf
     xbest = NA
     # compute candidate xs
     dist = rx - lx
     cx = c(lx + (1-phi) * dist, rx - (1-phi) * dist)
     while(TRUE){
       fcx1 = f(cx[1])
       fcx2 = f(cx[2])
       # check which candidate is better and update cx
       if (fcx1 < fcx2){</pre>
        fbest = fcx1
        xbest = cx[1]
        rx = cx[2]
        cx[2] = cx[2] - (cx[1] - 1x)
       }else{
         fbest = fcx2
         xbest = cx[2]
         lx = cx[1]
        cx[1] = cx[1] + (rx - cx[2])
       # assure cx[1] < cx[2]
       cx = sort(cx)
       # check if we need to stop the loop depending on the termination criterion
       if (abs(xbest_old - xbest) < abs_error){</pre>
        return(c(xbest, fbest))
       fbest_old = fbest
       xbest_old = xbest
   gr(ft1)
   ## [1] -2.45898 29.91294
```

(d) We are given three equations:

```
ax_1^2 + bx_1 + c = y_1
ax_2^2 + bx_2 + c = y_2
```

 $ax_3^2 + bx_3 + c = y_3$. Which we can express equivalently as $\underbrace{\begin{pmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{pmatrix}}_{:-\mathbf{A}} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$. The result follows

straightforwardly assuming Λ is non-singular.

```
(e) gr_step <- function(f, lx, rx){</pre>
     dist = rx - lx
     # compute candidates
     cxs = c(lx + (1-phi) * dist,
      rx - (1-phi) * dist)
     fcx = sapply(cxs, f)
     # find best candidate
     if (fcx[1] < fcx[2]){
      fbest = fcx[1]
       cx = cxs[1]
      rx = cxs[2]
     }else{
       fbest = fcx[2]
       cx = cxs[2]
       lx = cxs[1]
     return(c(lx, rx, cx, fbest))
   brent <- function(f, lx = -3, rx = 3, abs_error = 0.01){
     fbest_old = Inf
     xbest = NA
     xbest_old = Inf
     # we do not have a valid candidate in the beginning
     cx = Inf
     while(TRUE){
       # if candidate is not valid do a golden ratio step
       if(cx \le lx \mid cx \ge rx)
         res = gr_step(f, lx, rx)
         lx = res[1]
         rx = res[2]
         cx = res[3]
         xbest = cx
         fbest = res[4]
       }else{ # try doing quadratic interpolation otherwise
         # compute objective values
         xs = c(lx, rx, cx)
         fxs = sapply(xs, ft1)
         # find parameters of the interpolating parabola
         params = solve(t(sapply(xs, function(x) c(x^2, x, 1))), fxs)
         # find minimum of the parabola
         cx_{new} = -params[2]/(2*params[1])
         # if candidate is valid do quadratic interpolation step
         if(cx_new < rx & cx_new > lx){
```

```
cxs = sort(c(cx, cx_new))
        fcx = sapply(cxs, f)
        # find best candidate
        if (fcx[1] < fcx[2]){</pre>
         fbest = fcx[1]
          cx = cxs[1]
         rx = cxs[2]
        }else{
          fbest = fcx[2]
          cx = cxs[2]
          lx = cxs[1]
        xbest = cx
  # check if we need to stop the loop depending on the termination criterion
  if (abs(xbest - xbest_old) < abs_error){</pre>
   return(c(xbest, fbest))
 fbest_old = fbest
 xbest_old = xbest
brent(ft1)
## [1] -2.409456 29.903281
```

```
(f) # intialize thetas
  t1 = 0
  t2 = 0
  for(i in 0:9){
    # alternate between univariately optimizing each parameter while the other
     # is fixed
    if(i %% 2 == 0){
      ft <- function(t) f(c(t, t2))
      res = gr(ft)
      t1 = res[1]
    }else{
      ft <- function(t) f(c(t1, t))
      res = gr(ft)
      t2 = res[1]
    print(c(t1, t2, f(c(t1, t2))))
   ## [1] -1.583592 0.000000 37.878640
   ## [1] -1.583592 1.583592 32.490253
  ## [1] -2.124612 1.583592 29.742862
  ## [1] -2.124612 1.583592 29.742862
  ## [1] -2.124612 1.583592 29.742862
  ## [1] -2.124612 1.583592 29.742862
```

```
## [1] -2.124612 1.583592 29.742862
## [1] -2.124612
                 1.583592 29.742862
## [1] -2.124612
                 1.583592 29.742862
## [1] -2.124612 1.583592 29.742862
x = seq(-3, 3, by=0.1)
xx = expand.grid(X1 = x, X2 = x)
fxx = apply(xx, 1, f)
df = data.frame(xx = xx, fxx = fxx)
ggplot() +
    geom_contour_filled(data = df, aes(x = xx.X1, y = xx.X2, z = fxx)) +
    xlab(expression(theta[1])) +
    ylab(expression(theta[2])) +
    geom_point(data = as.data.frame(t(c(t1, t2))), mapping = aes(x=V1, y=V2),
               color="red")
```


- (g) The trace looks like a orthogonal zig-zag line.
- (h) In theory, yes, since our objective is convex and hence the objective w.r.t. each parameter is convex \Rightarrow each step makes our objective as small as possible in this direction conditioned on the fixed parameters \Rightarrow the found objective values are monotonically decreasing. However, depending on the curvature of the objective function this can take a long time because we can only "walk" in the direction of the coordinate axes (g)).