Parametric model fitting: autoregressive processes

centrate on zero-mean models of the form Here we con

$$X_t - \phi_{1,p} X_{t-1} - \ldots - \phi_{p,p} X_{t-p} = \epsilon_t.$$

As we have seen the corresponding sdf is

$$\sigma_{\epsilon}^{f} = rac{\sigma_{\epsilon}^{2}}{|1 - \phi_{1,p} e^{-i2\pi f} - \dots - \phi_{p,p} e^{-i2\pi fp}|^{2}}.$$

This class of models is appealing to use for time series analysis for several reasons:

- approximated well by an AR(p) model if p is large enough. [1] Any time series with a purely continuous sdf can be
- [2] There exist efficient algorithms for fitting AR(p) models to time series.
- few physical phenomena are reverberant and hence an del is naturally appropriate. [3] Quite a AR mo

A method for estimating the $\{\phi_{j,p}\}$ – Yule-Walker multiplying the defining equation by X_{t-k} : We start by

$$X_t X_{t-k} = \sum_{j=1}^{p} \phi_{j,p} X_{t-j} X_{t-k} + \epsilon_t X_{t-k}.$$

Taking expectations, for k > 0:

$$S_k = \sum_{j=1}^p \phi_{j,p} S_{k-j}.$$

Let $k=1,2,\ldots,p$ and recall that $s_{- au}=s_{ au}$ to obtain

$$s_1 = \phi_{1,p}s_0 + \phi_{2,p}s_1 + \dots + \phi_{p,p}s_{p-1}$$

 $s_2 = \phi_{1,p}s_1 + \phi_{2,p}s_0 + \dots + \phi_{p,p}s_{p-2}$
 \vdots

 $\phi_{1,p}s_{p-1} + \phi_{2,p}s_{p-2} + \cdots + \phi_{p,p}s_0$

Yule-Walker

... or in matrix notation,

$$\gamma_{
ho} = \Gamma_{
ho} \phi_{
ho},$$

where $\gamma_p = [s_1, s_2, \ldots, s_p]'$; $\phi_p = [\phi_{1,p}, \phi_{2,p}, \ldots, \phi_{p,p}]^T$ and

$$= \begin{vmatrix} S_0 & S_1 & \cdots & S_{p-1} \\ S_1 & S_0 & \cdots & S_{p-2} \\ \vdots & \vdots & \vdots \\ S_{p-1} & S_{p-2} & \cdots & S_0 \end{vmatrix}$$

Note: this is a symmetric Toeplitz matrix which we have met already. All elements on a diagonal are the same.

Yule-Walker

don't know the $\{s_{\tau}\}$, but the mean is zero, then take Suppose we

$$\hat{S}_{ au} = rac{1}{N} \sum_{t=1}^{N-| au|} X_t X_{t+| au|},$$

Ite these for the s_{τ} 's in γ_{ρ} and Γ_{ρ} to obtain $\hat{\gamma}_{\rho},\hat{\Gamma}_{\rho}$, we estimate $\phi_{
ho}$ as $\hat{\phi}_{
ho}$: and substitu from which

$$\hat{\phi}_{
ho} = \hat{\mathsf{\Gamma}}^{-1} \hat{\gamma}_{
ho}.$$

096/80

Yule-Walker

need to estimate σ_{ϵ}^2 . To do so, we multiply the defining equation by X_t and take expectations to obtain Finally, we r

so that as an estimator for σ_{ϵ}^2 we take

$$\hat{\sigma}_{\epsilon}^2 = \hat{s}_o - \sum_{j=1}^{p} \hat{\phi}_{j,p} \hat{s}_j.$$

The estimators $\hat{m{\phi}}_{m{
ho}}$ and $\hat{\sigma}_{\epsilon}^2$ are called the Yule-Walker estimators of the AR(p) parameters.

Yule-Walker

The estimate of the sdf resulting is

$$(f) = \frac{\hat{\sigma}_{\epsilon}^{2}}{\left|1 - \sum_{j=1}^{p} \hat{\phi}_{j,p} e^{-i2\pi f j}\right|^{2}}.$$

There are two important modifications which we can make to this approach:

In the second of the second o incorporating tapering: [1] We cou

$$\hat{s}_{\tau} = \sum_{t=1}^{N-|\tau|} h_t X_t h_{t+|\tau|} X_{t+|\tau|}.$$

operations. Fortunately, there is an algorithm due to Levinson of the Toeplitz matrix, and carries out the estimation [2] To invert $\hat{\Gamma}_{\rho}$ by brute force matrix inversion requires $O(p^3)$ and Durbin which takes advantage of the highly structured in $O(p^2)$ or fewer operations. nature

Examples:

process again.

32: Shows simulations from the AR(4) process defined The AR(4) |

► Figure by,

 $7607X_{t-1} - 3.8106X_{t-2} + 2.6535X_{t-3} - 0.9258X_{t-3} + \epsilon_t$ $X_t = 2$.

► Figure 33: Shows AR(4) processes fitted to the AR(4) data using Yule-Walker method and

$$\hat{S}_{ au} = rac{1}{N} \sum_{t=1}^{N-| au|} X_t X_{t+| au|}.$$

Very poor, even for N=1024.

34: Shows AR(8) processes fitted to the AR(4) data using Yule-Walker method and Figure

$$\hat{S_ au} = rac{1}{N} \sum_{t=1}^{N-| au|} X_t X_{t+| au|}.$$

Although the process fitted is not the correct one, the extra parameters have improved the fit.

using Yule-Walker, but with the 50% split cosine bell taper used: 35: Shows AR(4) process fitted to the AR(4) data, Figure

$$\hat{S}_{ au} = \sum_{t=1}^{N-| au|} h_t X_t h_{t+| au|} X_{t+| au|}.$$

The improvement over the other Yule-Walker estimates is dramatic.

The parameter estimates for the fitted $\mathsf{AR}(4)$ models when $\mathsf{N}{=}1024$ are:

tapered Y-W	2.7636	-3.8108	2.6502	-0.9211	1.0841
Yule-Walker	1.8459	-1.7138	0.6200	-0.1437	14.9758
true	2.7607	-3.8106	2.6535	-0.9258	1.0
	$\phi_{1,4}$	$\phi_{2,4}$	$\phi_{3,4}$	$\phi_{4,4}$	σ_{ϵ}^2

200/269

Least squares estimation of the $\{\phi_{j,p}\}$

a zero-mean AR(p) process, i.e., Let $\{X_t\}$ be

$$X_t - \phi_{1,p} X_{t-1} - \phi_{2,p} X_{t-2} + \dots - \phi_{p,p} X_{t-p} = \epsilon_t.$$

We can formulate an appropriate least squares model in terms of data X_1, X_2, \ldots, X_N as follows:

$$\mathbf{X}_F = F\phi + \epsilon_F,$$

where,

and,

$$\left[\begin{array}{ccc} X_{p+1} \\ X_{p+2} \\ \vdots \\ X_{N} \end{array} \right] ; \quad \phi = \left[\begin{array}{ccc} \phi_{1,p} \\ \phi_{2,p} \\ \vdots \\ \phi_{p,p} \end{array} \right] ; \quad \epsilon_F = \left[\begin{array}{ccc} \epsilon_{p+1} \\ \epsilon_{p+2} \\ \vdots \\ \vdots \\ \epsilon_{N} \end{array} \right].$$

We can thus estimate ϕ by finding that ϕ such that

$$SS_{F}(\phi) = \sum_{t=p+1}^{N} \left(X_{t} - \sum_{k=1}^{p} \phi_{k,p} X_{t-k} \right)^{2} = \sum_{t=p+1}^{N} \epsilon_{t}^{2}$$
$$= (\mathbf{X}_{F} - F\phi)^{T} (\mathbf{X}_{F} - F\phi)$$

is minimized.

the vector that minimizes the above as $\hat{\phi}_F$, standard least squares theory tells us that it is given by If we denote

$$\hat{\phi}_F = (F^T F)^{-1} F^T X_F.$$

Note: convince yourselves of this using the fact that:

$$\frac{\partial}{\partial \mathbf{x}}(A\mathbf{x} + \mathbf{b})^{\mathsf{T}}(A\mathbf{x} + \mathbf{b}) = 2A^{\mathsf{T}}(A\mathbf{x} + \mathbf{b}).$$

We can estimate the innovations variance σ_{ϵ}^2 by the usua estimator of the residual variation, namely

$$\hat{\sigma}_F^2 = \frac{(\mathbf{X}_F - F\hat{\phi}_F)^T (\mathbf{X}_F - F\hat{\phi}_F)}{(N-2p)}$$

(Note: there are N-p effective observations, and p parameters are estimated). The estimator $\hat{\phi}_F$ is known as the forward least squares estimator of ϕ .

reversed" formulation, so we could rewrite the least squares But a stationary Gaussian AR(p) process also has a "time problem as

$$old X_B = B\phi + \epsilon_B,$$

where,

$$B = \begin{bmatrix} X_2 & X_3 & \cdots & X_{p+1} \\ X_3 & X_4 & \cdots & X_{p+2} \\ \vdots & \vdots & \ddots & \vdots \\ X_{N-p+1} & X_{N-p+2} & \cdots & X_N \end{bmatrix}$$

and,

The function of ϕ to be minimized is now

$$SS_B(\phi) = \sum_{t=1}^{N-p} \left(X_t - \sum_{k=1}^p \phi_{k,p} X_{t+k} \right)^2$$
$$= \left(\mathbf{X}_B - B\phi \right)^T (\mathbf{X}_B - B\phi)$$

The backward least squares estimator of ϕ is then given by

$$\hat{\boldsymbol{\phi}}_B = (B^T B)^{-1} B^T \boldsymbol{X}_B.$$

The corresponding estimator of the innovations variance is

$$\hat{\sigma}_B^2 = \frac{(\mathbf{X}_B - B\phi)^T (\mathbf{X}_B - B\phi)}{(N-2p)}$$

The vector $\hat{\phi}_{FB}$ that minimizes

$$SS_F(\phi) + SS_B(\phi)$$

studies indicate that it performs better than forward forward/backward least squares estimator, and least squares. Monte-Carlo is called the or backward

forward/backward least squares estimates of ϕ and tapered Yule-Walker estimates for comparison. Figure 36 shows the AR(4) spectra corresponding to the

sdf (i.e., nonnegative everywhere, symmetric about the for spectral estimation, the parameter values will still produce a valid sdf (i.e., nonnegative everywhere, symmetric about the origin and integrates to a finite number). $[1] \ \hat{\phi}_{FB}, \hat{\phi}_{B} \ \text{and} \ \hat{\phi}_{F} \ \text{produce estimated models which need not}$ be stationary. This may be a concern for prediction, however,

[2] The Yule-Walker estimates can be formulated as a least squares problem. Consider adding zeros to our observations X_1, X_2, \ldots, X_N , both at the beginning and end of the data, to give:

$$oldsymbol{\chi}_{YW} = W\phi + \epsilon_{YW},$$

where,

0	0	0	 0	$\stackrel{X}{X}$	 X_{N-p+1}	X_{N-p+2}	 X
•	•	•		•	•		
•	•	•		•	•		
0	0	0		•	•		
0	0	\times	 	χ_{p-1}	 X_{N-1}	×	 0
0	$\stackrel{X}{\sim}$	\times_2	 $\chi_{\rho-1}$	X	 X	0	 0
				M = M			

F 61		0	 0
		C Y W —	
	2	<u></u>	
X X	··· >	₹ 0	 0
		- MX	

and,

Note that,

$$\frac{1}{N} W^{T} W = \begin{bmatrix} \hat{s}_{0}^{(p)} & \hat{s}_{1}^{(p)} & \cdots & \hat{s}_{p-1}^{(p)} \\ \hat{s}_{1}^{(p)} & \cdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \hat{s}_{p-1}^{(p)} & \vdots & \ddots & \ddots & \vdots \\ \hat{s}_{p-1}^{(p)} & \vdots & \ddots & \ddots & \vdots \\ \hat{s}_{p-1}^{(p)} & \vdots & \ddots & \ddots & \vdots \\ \hat{s}_{p-1}^{(p)} & \vdots & \ddots & \ddots & \vdots \\ \hat{s}_{p-1}^{(p)} & \vdots & \ddots & \ddots & \vdots \\ \hat{s}_{p-1}^{(p)} & \vdots & \ddots & \ddots & \vdots \\ \hat{s}_{p-1}^{(p)} & \vdots & \ddots & \ddots & \vdots \\ \hat{s}_{p-1}^{(p)} & \vdots & \ddots & \vdots \\ \hat{s$$

and

$$rac{1}{N} oldsymbol{N}^T oldsymbol{X}_{YW} = \left[egin{array}{c} \hat{s}_1^{(p)} \ dots \ \hat{s}_p^{(p)} \end{array}
ight] = \hat{\gamma}_p,$$

so that

$$(W^T W)^{-1} W^T \mathbf{X}_{YW} = (\hat{\Gamma}_{\rho})^{-1} \hat{\gamma}_{\rho}.$$

which is identical to the Yule-Walker estimate.