

TEMA: GEOMETRIA NO PLANO E NO ESPAÇO. RADICAIS. POLINÓMIOS. FUNÇÕES.

TIPO: FICHAS DE REVISÕES N°4 - 2° PERÍODO

LR MAT EXPLICAÇÕES

1. Na figura ao lado estão representados um triângulo equilátero e três círculos com centro nos vértices do triângulo e diâmetro igual ao lado do triângulo. Fixada uma unidade de comprimento e sendo a medida da área dos três círculos igual a 3 unidades quadradas, qual é a medida da área do triângulo?

(A)
$$\frac{\sqrt{3}}{\pi}$$

(B)
$$6\sqrt{\pi}$$

(C)
$$\sqrt{\frac{3}{\pi}}$$
 (D) $\frac{\sqrt{\pi}}{\pi}$

(D)
$$\frac{\sqrt{\pi}}{\pi}$$

Considera o polinómio $A(x) = 2x^3 + 7x^2 - 3x - 18$.

Sabendo que -2 é zero de A(x), decomponha o polinómio A(x) num produto de polinómios de grau menor ou igual a 1.

- **3.** Considera o polinómio: $P(x) = 2x^4 + 11x^3 + 18x^2 + 4x 8$.
 - **3.1** Utiliza o teorema do resto para verificar que -2 é uma raiz de P(x).
 - **3.2** Determina o grau de multiplicidade de raiz -2 do polinómio P(x).
 - **3.3** Decomponha P(x) num produto de polinómios de grau menor ou igual a 1.
 - **3.4** Resolve a inequação $P(x) \ge 0$.
- **4.** Na figura está representada, em referencial o.n. x0y, uma semicircunferência de centro na origem e que passa nos pontos P e Q. O ponto P tem coordenadas (-3,4) e o ponto Q tem coordenadas (3,4).

Na figura está também representado o segmento de reta [PQ].

Qual das condições seguintes define o domínio plano sombreado?

(B)
$$x^2 + y^2 \le 25 \land y \ge 4$$

(C)
$$x^2 + y^2 \le 16 \land -3 \le x \le 3$$

(D)
$$x^2 + y^2 \le 16 \land y \ge 4$$

5. Num referencial ortonormado $(0, \vec{e_1}, \vec{e_2})$ determina o parâmetro real λ de modo que os vetores $\vec{a} = (3,5)$ e $\vec{b} = (\lambda + 2, -2)$ sejam colineares.

- **6.** Considera a reta s que passa pelos pontos: $A\left(-\frac{1}{2},2\right)$ e B(3,0).
 - **6.1** Escreve a equação vetorial da reta s.
 - **6.2** Determina a abcissa do ponto C da reta s que tem ordenada -2.
 - **6.3** Verifique que o ponto D(10, -4) pertence à reta s.
 - **6.4** A reta s interseta a bissetriz dos quadrantes pares no ponto E.

Determina as coordenadas de E.

7. Considera, num referencial o.n. do espaço, o vetor $\vec{u} = (-1,2,1)$.

Determina as coordenadas de um vetor \vec{w} de norma $3\sqrt{6}$ colinear com o vetor \vec{u} , mas com sentido oposto.

8. A proposição $p \lor q$ é equivalente à proposição

(A)
$$\sim (\sim p \lor \sim q)$$

(B)
$$\sim (p \land \sim q)$$

(B)
$$\sim (p \land \sim q)$$
 (C) $\sim (\sim p \land \sim q)$

$$(D) \sim (\sim p \land q)$$

9. Mostra, utilizando as propriedades das operações com radicais e a definição de potência de expoente racional, que:

$$\frac{2^{-\frac{1}{3}} \times 3^{-\frac{1}{4}}}{{}^{6}\sqrt{4^{-1}}} \times 9^{\frac{1}{4}} = \sqrt[4]{3}$$

10. Considera as proposições:

$$p: \exists x \in \mathbb{R}: x^2 - \frac{1}{4} = 0$$

$$q: \forall x \in \mathbb{Z}: x^2 + 4 \neq 0$$

- 10.1 Indica o valor lógico das proposições dadas.
- **10.2** Escreve a negação de cada uma das proposições.
- 11. Considera, num referencial ortonormado Oxyz, um paralelepípedo, como o que se apresenta na figura.

Sabe-se que:

- a face [BCFE] está contida no plano de equação y = -3;
- a face [DEFG] está contida no plano de equação z = 2.

A condição que define a aresta [EF] é:

(A)
$$y = -3 \land z = 2 \land 0 \le x \le 2$$
 (B) $y = -3 \land z = 2$

(B)
$$v = -3 \land z = 2$$

(C)
$$x = 2 \land z = 2 \land -3 \le y \le 0$$

(D)
$$x = 2 \land y = -3 \land 0 \le z \le 2$$

12. No referencial o.n. *Oxyz* da figura, está representada a pirâmide quadrangular regular [*ABCDV*].

Sabe-se que:

- a base [ABCD] está contida no plano x0y;
- o vértice A pertence ao eixo Oy e tem ordenada 3;
- o vértice B pertence ao eixo Ox e tem abcissa 3;
- a altura da pirâmide é igual a 6.
- **12.1** Determina o volume da pirâmide.

Fórmula do volume da pirâmide: $V_{pir\hat{a}mide} = \frac{A_b \times h}{3}$

- **12.2** Escreve uma equação vetorial que defina a reta *VD*.
- **12.3** Escreve as equações paramétricas da reta *BD*.
- **12.4** Determina:

12.4.1
$$\overrightarrow{BA} + \overrightarrow{BC}$$

12.4.2
$$\|\vec{CA} - \vec{VA}\|$$

- **12.5** Escreve uma condição cartesiana do plano mediador de [BV].
- **12.6** Escreve a inequação reduzida da esfera de diâmetro [AC].

14. Quais das correspondências seguintes não representam funções? Justifica a tua resposta.

С

15. Considera a função f definida pelo diagrama de setas da figura.

Indica:

15.1
$$D_f$$

15.3 o conjunto de chegada de f

15.4
$$f(1)$$

15.5 x, tal que f(x) = 4

16. Sabe-se que f é uma função afim tal que f(-1) = 0 e f(0) = 1.

Então:

(A)
$$f(x) = x + 1$$

(B)
$$f(x) = -x - 1$$

(C)
$$f(x) = -x + 1$$

(D)
$$f(x) = x - 1$$