Система обслуживания с ветвящимися потоками вторичных требований

Alexander S. Baklashov

07 November, 2023

RUDN University, Moscow, Russian Federation

Введение

В работе "Система обслуживания с ветвящимися потоками вторичных требований" рассматривается однолинейная система обслуживания с простейшим первичным и ветвящимся вторичным потоком требований нескольких типов и произвольной длительностью обслуживания.

Цель исследования:

Оптимизация приоритетного обслуживания для эффективного управления разнообразными требованиями в системах

Основные задачи и актуальность

Основные задачи и актуальность

В данной работе рассматримается задача определения оптимальной дисциплины обслуживания в системе с несколькими типами требований и ветвящимися потоком вторичных требований.

Актуальность работы становится понятна при исследовании работы ЭВМ в различных режимах, исследовании информационно-поисковых и др. систем. Примеры и прикладное значение

Примеры и прикладное значение

Значимость в реальных приложениях:

1. Пакетный режим рабоыт компьютера:

Программа o стандартные программы, оперативная память, внешние устройства.

2. Поиск информации в массивах данных:

Анализ массивов для эффективного обнаружения информации.

Постановка задачи

Постановка задачи (1)

Характеристики системы обслуживания:

- \cdot Однолинейная система обслуживания (CO) с r типами операций.
- · Первичные требования пуассоновский поток с интенсивностью $\lambda_i, \lambda_i \geq 0, i=\overline{1,r}.$

Постановка задачи (2)

Особенности системы:

- · Возможность появления вторичных требований с вероятностью $q_i(n)$ после выполнения операции типа i.
- \cdot Функция управления u(l) выбирает требование на обслуживание в зависимости от числа требований в каждой очереди.
- Простои прибора при наличии требований не допускаются

Постановка задачи (3)

Задача и функционал потерь:

Задача: Стремление к минимизации потерь в единицу времени в стационарном режиме.

Функционал $J = \sum_{i=1}^r c_i L_i$ описывает средние потери,

где L_i - среднее число требований типа i в системе в стационарном режиме, c_i — стоимость единицы времени пребывания в системе требования типа r.

Вводится производящая функция (ПФ) числа вторичных требований, возникающих в результате выполнения операции типа i:

$$Q_i(z) = \sum_{n \geq 0} q_i(n) z^n \equiv \sum_{n_1 \geq 0,...,n_r \geq 0} q_i(n_1,...,n_r) z_1^{n_1}...z_r^{n_r}$$

Предположения

Предположение 1: Свойства распределения вторичных требований

1. Первые два момента распределения числа вторичных требований конечны при всех i:

$$q_{ij} = \frac{\partial}{\partial z_j} Q_i(z)|_{z=1} < \infty$$

$$q^i_{jk} = \frac{\partial^2}{\partial z_j \partial z_k} Q_i(z)|_{z=1} < \infty$$

2. Из теории Фробениуса известно, что у матрицы $Q=||q_{ij}||$ с неотрицательными элементами существует единственное собственное значение $\xi>0$, такое, что модули всех остальных собственных значений не превосходят ξ .

Предположение 2 (Часть 1: Условия вырождения)

Условия вырождения ветвящегося процесса:

- $\cdot \xi < 1$
- Ветвящийся процесс вторичных требований вырождается с вероятностью 1.

Предположение 2 (Часть 2: Доказательство)

1. Условия для определения вектора f:

$$\lambda = (\lambda_1, ..., \lambda_r)$$

$$b = (b_1, ..., b_r)$$

- 2. Доказательство: вектор $f = (I Q)^{-1}b$ определен и имеет положительные компоненты f > 0.
 - . Из условия $\xi < 1$ и сходимости ряда $1+x+x^2+\dots$ на спектре матрицы Q следует, что матрица I-Q обратима.
 - Справедливо представление:

$$(I-Q)^{-1}=I+Q+Q^2+\dots$$

 \cdot Вектор $f = (I - Q)^{-1}b$ положителен (покомпонентно), если положителен b.

Предположение 3: Условия эргодичности процесса L(t)

Определение ho и условия эргодичности:

- $\cdot \rho < 1$
- \cdot $ho = \lambda' f$, где ho загрузка системы.

Предположение 3: Доказательство эргодичности процесса L(t) (1)

Доказательство эргодичности процесса L(t):

1. Ограничение на точки регенерации типа 0:

- Использование теоремы Смита.
- Периоды регенерации циклы занятости с абсолютно непрерывной ФР.

2. Утверждение в предположениях 1, 2, 3:

а) ПЛС ФР периода занятости удовлетворяет системе уравнений:

$$\pi_i(s) = \beta_i(s + \sum_{i=1}^r \lambda_i[1 - \pi_i(s)])Q_i[\pi_1(s), ..., \pi_r(s)], i = \overline{1, r}$$

б) Система имеет единственное решение, где каждая $\pi_i(s)$ - ПЛС собственной ФР

12/35

Предположение 3: Доказательство эргодичности процесса L(t) (2)

- 3. Уравнение для первых моментов π_i :
 - · Дифференцирование с-мы при s=0 и решение уравнения $A\pi=b.$
 - Существование и единственность конечного решения.
- 4. Вектор вторых моментов π_2 :
 - \cdot Уравнение $A\pi_2=arphi$, где arphi определено.
- 5. Существование двух первых моментов цикла занятости и эргодичность процесса L(t):
 - Доказательство вытекает из утверждений выше.
- 6. Смысл ρ :
 - ho имеет смысл загрузки системы.
 - \cdot Матрица Q может быть как неразложимой, так и разложимой.

Предположение 4.

В каждом диагональном блоке матрицы Q найдется такой индекс i, что $\lambda_i>0$. Это предположение обеспечивает возможность появления в системе требований всех типов.

Основные соотношения

Вычисление вероятностных характеристик процесса L(t)

- Для удобства используется аппарат регенерирующих процессов с несколькими типами точек регенерации.
- · Поведение процесса после t_n зависит от состояния $L(t_n)$ в момент t_n и значения функции переключения.
- · Моменты регенерации типа i: t_n такие, что $u(L(t_n))=i$.

Эргодичность процесса L(t)

- Вероятности не зависят от начального состояния (L(0) = 0).
- · Введены функции $H_0(t)$, $H_i(t,z)$ с рядами:

$$H_0(t) = \sum_{n=0}^{\infty} P\{t_n < t, L(t_n) = 0\} \tag{1a}$$

$$H_i(t,z) = z_i^{-1} \sum_{l: u(l)=i} z^l \sum_0^\infty P\{t_n \leq t, L(t_n) = l\}, i = \overline{1,r} \tag{1b}$$

 \cdot Связь с производящей функцией L(t): $P(t,z) = E\{z^{L(t)}\}$.

Теорема 1: Основные соотношения

- 1. Связь между функциями и производящей функцией L(t).
 - $\cdot p(s,z)$, $\chi_0(s)$, $\chi_i(s,z)$.
- 2. Соотношения:

$$\begin{array}{l} \cdot \ p(s,z) = \sum_{i=1}^r \left(\frac{\lambda_i}{s+\lambda_0}\chi_0(s) + \chi_i(s,z)\right) z_i \frac{1-\beta_i(s+\lambda_0-\lambda'z)}{s+\lambda_0-\lambda'z} \\ \cdot \ \chi_0(s) + \sum_{i=1}^r z_i\chi_i(s,z) = \sum_{i=1}^r \left(\frac{\lambda_i}{s+\lambda_0}\chi_0(s) + \chi_i(s,z)\right) \times \\ \beta_i(s+\lambda_0-\lambda'z)Q_i(z) : \chi_0(s) + \sum_{i=1}^r z_i\chi_i(s,z) \end{array}$$

- 3. Пределы:
 - · $\lim_{s\to 0} sp(s,z) = P(z)$
 - · $\lim_{s\to 0} s\chi_i(s,z) = \chi_i(z)$

- \cdot Существование пределов следствие эргодичности процесса L(t).
- Из пределов следуют соотношения:

$$\begin{split} P(z) &= \textstyle\sum_{i=1}^r [\lambda_i(1-\rho) + \chi_i(z)] \frac{1-\beta_i(\lambda_0-\lambda'z)}{\lambda_0-\lambda'z} \\ (1-\rho) \textstyle\sum_{i=1}^r \lambda_i(z_i-1) = \textstyle\sum_{i=1}^r [z_i-b_i(z)] [\lambda_i(1-\rho) + \chi_i(z)] \end{split}$$

- · Представляющие характеристики процесса L(t).
- Задача оптимизации в виде задачи линейного программирования.

программирования

Задача линейного

Связь с функционалом и функцией управления

· Связь между функционалом и функцией управления через переменные x_{ij} .

$$x_{ij} = \frac{\partial}{\partial z_j} \chi_i(z)|_{z=1} = \sum_{l: u(l)=i} l_i h_i(l)$$

· Важное свойство: $x_{ij}=0$ тогда и только тогда, когда требования типа j имеют приоритет перед требованиями типа i.

Задача минимизации

• Задача минимизации функционала потерь сводится к задаче линейного программирования.

$$J = \sum_{i,j=1}^{r} b_i c_i x_{ij} \to \min$$

Ограничения

• Ограничения задачи линейного программирования.

$$\sum_{i=1}^r (a_{ij}x_{ik} + a_{ik}x_{ij}) = \gamma_{ik}, \quad j,k = 1,r$$

 \cdot Вывод формул $J = \sum_{i,j=1}^r b_i c_i x_{ij} => min$

И

$$\sum_{i=1}^{r} (a_{ij}x_{ik} + a_{ik}x_{ij}) = \gamma_{ik}, \quad j, k = 1, r.$$

· Обозначим интенсивность выполнения операций типа i $R_i = \lambda_i (1-\rho) + \chi_i (1).$

Теорема 2

 Существует оптимальное управление системой, которое осуществляется с помощью приоритетной дисциплины обслуживания. Алгоритм назначения приоритетов

Шаг 1

· Строится последовательность индексов $i_1,...,i_r$.

 \cdot На каждом шаге $m,m=\overline{0,r}$ вычисляется вектор f^{r-m} из уравнения

$$(I - Q_{r-m})f^{r-m} = b^{r-m} \tag{2}$$

где Q_{r-m} и b_{r-m} составлены из строк и столбцов Q и b с индексами, не совпадающими с $i_r,...,i_{r-m+1}.$

· Вычисление c_i^m по формуле:

$$c_i^m = c_i^{m-1} - \frac{f_i^{r-m+1}}{f_{i_{r-m+1}}^{r-m+1}} c_{i_{r-m+1}}^{m-1}, \ i \neq i_r, ..., i_{r-m+1} \ (c_i^0 = c_i)$$
(3)

· Выбор индекса i_{r-m} из условия:

$$\frac{c_{i_{r-m}}^m}{f_{i_{r-m}}^{r-m}} \le \frac{c_i^m}{f_i^{r-m}}, \ i \ne i_r, ..., i_{r-m+1} \tag{4}$$

 \cdot Переход на шаг m+1.

Завершение

· Оптимальной является дисциплина, при которой $i_1 \succ \ldots \succ i_r$.

Обсуждение и примеры

Зависимость от матрицы Q

- В зависимости от вида матрицы Q, рассмотренная модель включает в себя многофазные системы и системы с обратной связью [7].
- Решение задачи, поставленной в [12], также может быть получено с использованием данного алгоритма.

Пример 1: Q=0

- \cdot Если Q=0, на каждом шаге алгоритма имеем $f^m=b^m$.
- Условие оптимальности дисциплины: $i_1 \succ i_2 \succ ... \succ i_r$, что соответствует хорошо известному результату [5].

Пример 2: Модельный пример

- Однопроцессорная система в пакетном режиме.
- 3 операции: ввод пакета и его обработка, счет по каждой программе, выдача результатов счета.
- \cdot Матрица Q:

$$Q = \begin{bmatrix} 0 & 10 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

- \cdot Весовые коэффициенты: $c_1 = 1, c_2 = c_3 = 10$.
- Расчет по алгоритму требует всего 2 шага, оптимальная дисциплина: $3 \succ 2 \succ 1$.

Замечания

· Условия оптимальности зависят от b_i, c_i и Q, но также необходимо существование вторых моментов b_{i2}, q_{ij}^k и выполнение условия $\rho < 1$.

Программа

 Разработана программа по предложенному алгоритму, подготовленная для передачи в фонд алгоритмов и программ по ТМО.

Вывод

- Модель массового обслуживания успешно оптимизирована с использованием линейного программирования.
- Разработан эффективный алгоритм назначения приоритетов для оптимизации систем обслуживания.
- Примеры и обсуждение подчеркивают практическую применимость методов.
- Результаты обещающи и подтверждаются готовой программой для передачи в фонд алгоритмов по теории массового обслуживания.