Алгебра Билеты к Экзамену

Роман Сергеевич Авдеев Иван Владимирович Аржанцев

21 июня 2018 г.

Содержание

1	Бинарные операции. Полугруппы, моноиды и группы. Коммутативные группы. Порядок группы. Примеры групп. Порядок группы. Подгруппы. Описание всех подгрупп в группе $(\mathbb{Z},+)$	4
2	Подгруппы. Циклические подгруппы. Циклические группы. Порядок элемента. Связь между порядком элемента и порядком порождаемой им циклической подгруппы	6
3	Смежные классы. Индекс подгруппы. Теорема Лагранжа.	7
4	Пять следствий из теоремы Лагранжа.	8
5	Нормальные подгруппы и факторгруппы.	9
6	Гомоморфизм групп. Простейшие свойства гомоморфизмов. Изоморфизмы группы. Ядро и образ гомоморфизма группы, их свойства	10
7	Теорема о гомоморфизме для групп	12
8	Классификация циклических групп	13
9	Прямое произведение групп. Разложение конечной циклической группы.	14
10	Примарные абелевы группы. Теорема о строении конечно порождённых абелевых групп, доказательство единственности.	15
11	Экспонента конечной абелевой группы и критерий цикличности.	17
12	Криптография с открытым ключом. Задача дискретного логарифмирования. Система Диффи-Хеллмана обмена ключами. Криптосистема Эль-Гамаля	18

10	нильпотенты. Примеры колец. Поля. Критерий того, что кольцо вычетов является полем	19
14	Идеалы колец. Факторкольцо кольца по идеалу. Гомоморфизмы и изоморфизмы колец. Ядро и образ гомоморфизма колец. Теорема о гомоморфизме для колец	21
15	Делимость и ассоциированные элементы в коммутативных кольцах без делителей нуля. Наибольший общий делитель. Кольца главных идеалов. Существование наибольшего общего делителя и его линейного выражения в кольце главных идеалов	
16	Простые элементы. Факториальные кольца. Факториальность колец главных идеалов: доказательство существования разложения на простые множители	
17	Простые элементы. Факториальные кольца. Факториальность колец главных идеалов: доказательство единственности разложения на простые множители	
18	Теорема о том, что кольцо многочленов над полем является кольцом главных идеалов	27
19	Лексикографический порядок на множестве одночленов от нескольких переменных. Лемма о конечности убывающих цепочек одночленов	28
20	Старший член многочлена от нескольких переменных. Элементарная редукция многочлена относительно другого многочлена. Лемма о конечности цепочек элементарных цепочек относительно системы многочленов.	29
21	Остаток многочлена относительно заданной системы многочленов. Системы Грёбнера. Характеризация систем Грёбнера в терминах цепочек элементарных редукций.	30
22	S-многочлены. Критерий Бухбергера.	31
23	Базис Грёбнера идеала в кольце многочленов от нескольких переменных, теорема о трех эквивалентных условиях. Решение задачи вхождения многочлена в идеал	32
24	Лемма о конечности цепочек одночленов, в которых каждый следующий элемент не делится ни на один из предыдущих. Алгоритм Бухбергера построения базиса Грёбнера идеала	
25	Лемма Диксона. Теорема о существовании конечного базиса Грёбнера в идеале многочленов от нескольких переменных. Теорема Гильберта о базисе идеала	34
26	Характеристика поля и простое подполе	35

27	Расширение полей. Конечное расширение и его степень. Степень композиции двух расширений.	37
28	Критерий того, что фактокольцо кольца многочленов над полем является полем. Степень расширения этого поля.	38
29	Существование конечного расширения исходного поля, в котором заданный многочлен (a) имеет корень; (б) разлагается на линейные множители. Поле разложения многочлена	39
30	Алгебраические и трансцендентные элементы. Минимальный многочлен алгебраического элемента и его свойства.	41
31	Подполе в расширении полей, порожденное алгебраическим элементом.	42
32	Порядок конечного поля. Автоморфизм Фробениуса.	43
33	Теорема о существовании и единственности для конечных полей.	44
34	Цикличность мультипликативной группы конечного поля и неприводимые многочлены над \mathbb{Z}_p .	45
35	Подполя конечного поля.	46
36	Коды над конечным алфавитом. Расстояние Хэмминга. Минимальное расстояние кода. Коды, исправляющие t ошибок: определение, эквивалентные формулировки. Код с повторением.	47
37	Линейные коды. Проверочная матрица. Связь минимального расстояния линейного кода с его проверочной матрицей. Бинарный код Хэмминга, его минимальное расстояние и число ошибок, которое он может исправлять	49
38	Коды БЧХ. Теорема о количестве ошибок, исправляемых кодом БЧХ. Оценка на размерность кода БЧХ	51

1 Бинарные операции. Полугруппы, моноиды и группы. Коммутативные группы. Порядок группы. Примеры групп. Порядок группы. Подгруппы. Описание всех подгрупп в группе $(\mathbb{Z}, +)$

Определение 1.1. *Множество с бинарной операцией* — это множество M с заданным отображением

$$M \times M \to M$$
, $(a,b) \mapsto a \circ b$.

Множество с бинарной операцией обычно обозначают (M, \circ) .

Определение 1.2. Множество с бинарной операцией (M,\circ) называется *полугруппой*, если данная бинарная операция *ассоциативна*, т. е.

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 для всех $a,b,c \in M$.

Не все естественно возникающие операции ассоциативны. Например, если $M=\mathbb{N}$ и $a\circ b:=a^b$, то

$$2^{(1^2)} = 2 \neq (2^1)^2 = 4.$$

Другой пример неассоциативной бинарной операции: $M = \mathbb{Z}$ и $a \circ b := a - b$ (проверьте!). Полугруппу обычно обозначают (S, \circ) .

Определение 1.3. Полугруппа (S, \circ) называется *моноидом*, если в ней есть *нейтральный* элемент, т. е. такой элемент $e \in S$, что $e \circ a = a \circ e = a$ для любого $a \in S$.

Замечание 1. Если в полугруппе есть нейтральный элемент, то он один. В самом деле, $e_1 \circ e_2 = e_1 = e_2$.

Определение 1.4. Моноид (S, \circ) называется *группой*, если для каждого элемента $a \in S$ найдется *обратный элемент*, т. е. такой $b \in S$, что $a \circ b = b \circ a = e$.

Обратный элемент обозначается a^{-1} .

Группу принято обозначать (G, \circ) или просто G, когда понятно, о какой операции идёт речь. Обычно символ \circ для обозначения операции опускают и пишут просто ab.

Определение 1.5. Группа G называется коммутативной или абелевой, если групповая операция коммутативна, т. е. ab = ba для любых $a,b \in G$.

Если в случае произвольной группы G принято использовать мультипликативные обозначения для групповой операции — gh, e, g^{-1} , то в теории абелевых групп чаще используют аддитивные обозначения, т.е. a+b, 0, -a.

Определение 1.6. Порядок группы G — это число элементов в G. Группа называется конечной, если её порядок конечен, и бесконечной иначе.

Порядок группы G обозначается |G|.

Приведём несколько серий примеров групп.

1. Числовые аддитивные группы: $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+), (\mathbb{Z}_n,+).$

- 2. Числовые мультипликативные группы: $(\mathbb{Q} \setminus \{0\}, \times), (\mathbb{R} \setminus \{0\}, \times), (\mathbb{C} \setminus \{0\}, \times), (\mathbb{Z}_p \setminus \{\overline{0}\}, \times), p$ простое.
- 3. Группы матриц:

$$GL_n(\mathbb{R}) = \{ A \in Mat(n \times n, \mathbb{R}) \mid \det(A) \neq 0 \};$$

$$SL_n(\mathbb{R}) = \{ A \in Mat(n \times n, \mathbb{R}) \mid \det(A) = 1 \}.$$

4. Группы подстановок:

симметрическая группа S_n — все подстановки длины n, $|S_n| = n!$; знакопеременная группа A_n — чётные подстановки длины n, $|A_n| = n!/2$.

5. Группы преобразований: симметрия, движение.

Определение 1.7. Подмножество H группы G называется noderpynnoй, если выполнены следующие три условия:

- $(1) e \in H;$
 - (2) $ab \in H$ для любых $a,b \in H$;
 - (3) $a^{-1} \in H$ для любого $a \in H$.

В каждой группе G есть *несобственные* подгруппы $H = \{e\}$ и H = G. Все прочие подгруппы называются *собственными*. Например, чётные числа $2\mathbb{Z}$ образуют собственную подгруппу в $(\mathbb{Z},+)$.

Предложение 1.1. Всякая подгруппа в $(\mathbb{Z},+)$ имеет вид $k\mathbb{Z}$ для некоторого целого неотрицательного k.

Доказательство. Очевидно, что все подмножества вида $k\mathbb{Z}$ являются подгруппами в \mathbb{Z} .

1. Пусть $H\subseteq \mathbb{Z}$ подгруппа. Если $H=\{0\}$, то $H=0\mathbb{Z}$. Иначе положим $k=min(H\cap \mathbb{N})(\neq 0)$. Тогда $k\mathbb{Z}\subseteq H$.

2. Покажем, что $k\mathbb{Z} = H$. Пусть $a \in H$. Поделим на k с остатком.

$$a=qk+r$$
, где $q\in H, 0\leq r\leq k$ $\Rightarrow r=a-qk\in H$

В силу выбора k получаем $r=0. \Rightarrow a=qk$

2 Подгруппы. Циклические подгруппы. Циклические группы. Порядок элемента. Связь между порядком элемента и порядком порождаемой им циклической подгруппы

$$g^{n} = \begin{cases} \underbrace{g...g}_{n}, & n > 0 \\ e, & n = 0 \\ \underbrace{g^{-1}...g^{-1}}_{n}, & n < 0 \end{cases}$$

Свойства:

1.
$$g^m \cdot g^n = g^{m+n}, \forall n, m \in \mathbb{Z}$$

2.
$$(q^k)^{-1} = q^{-k}, \forall k \in \mathbb{Z}$$

3.
$$(q^n)^m = q^{nm}, \forall n, m \in \mathbb{Z}$$

Определение 2.1. Пусть G — группа и $g \in G$. *Щиклической подгруппой*, порождённой элементом g, называется подмножество $\{g^n \mid n \in \mathbb{Z}\}$ в G.

Циклическая подгруппа, порождённая элементом g, обозначается $\langle g \rangle$. Элемент g называется порождающим или образующим для подгруппы $\langle g \rangle$.

Например, подгруппа $2\mathbb{Z}$ в $(\mathbb{Z},+)$ является циклической, и в качестве порождающего элемента в ней можно взять g=2 или g=-2. Другими словами, $2\mathbb{Z}=\langle 2\rangle=\langle -2\rangle$.

Определение 2.2. Группа G называется $uu\kappa nuческой$, если найдётся такой элемент $g \in G$, что $G = \langle g \rangle$.

Определение 2.3. Пусть G — группа и $g \in G$. Порядком элемента g называется такое наименьшее натуральное число m, что $g^m = e$. Если такого натурального числа m не существует, говорят, что порядок элемента g равен бесконечности.

Порядок элемента обозначается $\operatorname{ord}(g)$. Заметим, что $\operatorname{ord}(g)=1$ тогда и только тогда, когда g=e.

Следующее предложение объясняет, почему для порядка группы и порядка элемента используется одно и то же слово.

Предложение 2.1. Пусть $G - \operatorname{группa} u \ g \in G$. Тогда $\operatorname{ord}(g) = |\langle g \rangle|$.

Доказательство. Заметим, что если $g^k = g^s$, то $g^{k-s} = e$. Поэтому если элемент g имеет бесконечный порядок, то все элементы g^n , $n \in \mathbb{Z}$, попарно различны, и подгруппа $\langle g \rangle$ содержит бесконечно много элементов. Если же порядок элемента g равен m, то из минимальности числа m следует, что элементы $e = g^0, g = g^1, g^2, \ldots, g^{m-1}$ попарно различны. Далее, для всякого $n \in \mathbb{Z}$ мы имеем n = mq + r, где $0 \leqslant r \leqslant m - 1$, и

$$g^n=g^{mq+r}=(g^m)^qg^r=e^qg^r=g^r.$$

П

Следовательно, $\langle g \rangle = \{e,g,\ldots,g^{m-1}\}$ и $|\langle g \rangle| = m.$

Ясно, что всякая циклическая группа коммутативна и не более чем счётна. Примерами циклических групп являются группы $(\mathbb{Z},+)$ и $(\mathbb{Z}_n,+)$, $n\geq 1$.

3 Смежные классы. Индекс подгруппы. Теорема Лагранжа.

Определение 3.1. Пусть G — группа, $H \subseteq G$ — подгруппа и $g \in G$. Левым смежным классом элемента g группы G по подгруппе H называется подмножество

$$gH = \{gh \mid h \in H\}.$$

Наряду с левым смежным классом можно определить npaвый смежный класс элемента q группы G по подгруппе H:

$$Hg = \{hg \mid h \in H\}.$$

Все дальнейшие доказательства для правых смежных классов формулируются и доказываются аналогично.

Лемма 3.1. Пусть G — группа, $H \subseteq G$ — $e\ddot{e}$ подгруппа и $g_1, g_2 \in G$. Тогда либо $g_1H = g_2H$, либо $g_1H \cap g_2H = \varnothing$.

Доказательство. Предположим, что $g_1H \cap g_2H \neq \emptyset$, т.е. $g_1h_1 = g_2h_2$ для некоторых $h_1,h_2 \in H$. Нужно доказать, что $g_1H = g_2H$. Заметим, что $g_1H = g_2h_2h_1^{-1}H \subseteq g_2H$. Обратное включение доказывается аналогично.

Лемма 3.2. Пусть G — конечная группа и $H \subseteq G$ — конечная подгруппа. Тогда |qH| = |H| для любого $q \in G$.

Доказательство. Поскольку $gH = \{gh \mid h \in H\}$, в gH элементов не больше, чем в H. Если $gh_1 = gh_2$, то домножаем слева на g^{-1} и получаем $h_1 = h_2$. Значит, все элементы вида gh, где $h \in H$, попарно различны, откуда |gH| = |H|.

Определение 3.2. Пусть G — группа и $H \subseteq G$ — подгруппа. Индексом подгруппы H в группе G называется число левых смежных классов G по H.

Индекс группы G по подгруппе H обозначается [G:H].

Теорема 3.1. Теорема Лагранжа.

 Π усть G — конечная группа и $H \subseteq G$ — подгруппа. Тогда

$$|G| = |H| \cdot [G:H].$$

Доказательство. Каждый элемент группы G лежит в (своём) левом смежном классе по подгруппе H, разные смежные классы не пересекаются (лемма 1) и каждый из них содержит по |H| элементов (лемма 2).

4 Пять следствий из теоремы Лагранжа.

Теорема Лагранжа. Пусть G — конечная группа и $H \subseteq G$ — подгруппа. Тогда

$$|G| = |H| \cdot [G:H].$$

Рассмотрим некоторые следствия из теоремы Лагранжа.

Следствие 4.1. Пусть G — конечная группа u $H \subseteq G$ — подгруппа. Тогда |H| делит |G|.

Следствие 4.2. Пусть G — конечная группа $u \in G$. Тогда $\operatorname{ord}(g)$ делит |G|.

Доказательство. Это вытекает из следствия 1 и $|\langle g \rangle| = ord(g)$

Следствие 4.3. Пусть G — конечная группа $u \ g \in G$. Тогда $g^{|G|} = e$.

Доказательство. Пусть k = ord(g). Тогда из следствия 2: $\mid G \mid = k \cdot s$ $\Rightarrow g^{\mid G \mid} = (g^{ks}) = (g^k)^s = e^s = e$

Следствие 4.4. (малая теорема Ферма)

p - простое число, $HOД(a,p)=1\Rightarrow a^{p-1}\equiv 1\mod p$

Доказательство. Применим следствие 3 к группе $(\mathbb{Z}_p/\{0\},\times)$.

Следствие 4.5. Пусть G — группа. Предположим, что |G| — простое число. Тогда G — циклическая группа, порождаемая любым своим неединичным элементом.

Доказательство. Пусть $g \in G$ — произвольный неединичный элемент. Тогда циклическая подгруппа $\langle g \rangle$ содержит более одного элемента и $|\langle g \rangle|$ делит |G| по следствию 1. Значит, $|\langle g \rangle| = |G|$, откуда $G = \langle g \rangle$.

5 Нормальные подгруппы и факторгруппы.

Определение 5.1. Подгруппа H группы G называется *нормальной*, если gH = Hg для любого $g \in G$.

Предложение 5.1. Для подгруппы $H \subseteq G$ следующие условия эквивалентны:

- (1) *H* нормальна;
- (2) $gHg^{-1} \subseteq H$ для любого $g \in G$;
- (3) $gHg^{-1} = H$ для любого $g \in G$.

Доказательство. Докажем циклом.

- (1) \Rightarrow (2) Пусть $h \in H$ и $g \in G$. Поскольку gH = Hg, имеем gh = h'g для некоторого $h' \in H$. Тогда $ghg^{-1} = h'gg^{-1} = h' \in H$.
- (2)⇒(3) Так как $gHg^{-1} \subseteq H$, остаётся проверить обратное включение. Для $h \in H$ имеем $h = gg^{-1}hgg^{-1} = g(g^{-1}hg)g^{-1} \subseteq gHg^{-1}$, поскольку $g^{-1}hg \in H$ в силу пункта (2), где вместо g взято g^{-1} .
- (3)⇒(1) Для произвольного $g \in G$ в силу (3) имеем $gH = gHg^{-1}g = Hg$.

Рассмотрим множество (неважно, левых или правых) смежных классов по нормальной подгруппе G/H.

Определим на G/H бинарную операцию, полагая $(g_1H)(g_2H) = (g_1g_2)H$

Корректность:

Пусть $g_1'H = g_1H$ и $g_2'H = g_2H$.

Тогда $g_1'=g_1h_1, g_2'=g_2h_2$, где $h_1,h_2\in H$.

$$(g_1'H)(g_2'H) = (g_1'g_2')H = (g_1h_1g_2h_2)H = (g_1g_2(g_2^{-1}h_1g_2)h_2)H \subseteq (g_1g_2)H \Rightarrow (g_1'g_2')H = (g_1g_2)H \Rightarrow (g_1'g_2')H = (g_1g_2)H \Rightarrow (g_1'g_2')H = (g_1'g_2')H \Rightarrow (g_1'g_2')H = (g_1'g_2')H \Rightarrow (g_1'g_2')$$

Структура группы G/H.

- 1. ассоциативность: очевидна.
- 2. нейтральный элемент: eH.
- 3. обратный к $gH: g^{-1}H$.

Определение 5.2. Множество G/H с указанной операцией называется факторгруппой группы G по нормальной подгруппе H.

Пример 1. Если $G=(\mathbb{Z},+)$ и $H=n\mathbb{Z}$, то G/H — это в точности группа вычетов $(\mathbb{Z}_n,+)$.

6 Гомоморфизм групп. Простейшие свойства гомоморфизмов. Изоморфизмы группы. Ядро и образ гомоморфизма группы, их свойства

Определение 6.1. Пусть (G, \circ) и (F, *) две группы.

Отображение $\varphi: G \to F$ называется гомоморфизмом, если

$$\varphi(g_1 \circ g_2) = \varphi(g_1) * \varphi(g_2), \forall g_1, g_2 \in G$$

Замечание 2. Подчеркнём, что в этом определении произведение ab берётся в группе G, в то время как произведение $\varphi(a)\varphi(b)$ — в группе F.

Лемма 6.1. Пусть $\varphi: G \to F$ — гомоморфизм групп, и пусть e_G и e_F — нейтральные элементы групп G и F соответственно.

Тогда:

(a) $\varphi(e_G) = e_F$;

(б)
$$\varphi(a^{-1}) = \varphi(a)^{-1}$$
 для любого $a \in G$.

Доказательство. По пунктам:

- (а) Имеем $\varphi(e_G) = \varphi(e_G e_G) = \varphi(e_G) \varphi(e_G)$. Теперь умножая крайние части этого равенства на $\varphi(e_G)^{-1}$ (например, слева), получим $e_F = \varphi(e_G)$.
- (б) Имеем $\varphi(a^{-1})\varphi(a) = \varphi(a^{-1}a) = \varphi(e_G) = e_F$, откуда $\varphi(a^{-1}) = \varphi(a)^{-1}$.

Определение 6.2. Гомоморфизм групп $\varphi \colon G \to F$ называется *изоморфизмом*, если отображение φ биективно.

П

Упражнение 1. Пусть $\varphi \colon G \to F$ — изоморфизм групп. Проверьте, что обратное отображение $\varphi^{-1} \colon F \to G$ также является изоморфизмом.

Определение 6.3. Группы G и F называют uзомор ϕ нымu, если между ними существует изоморфизм.

Обозначение: $G \cong F$ (или $G \simeq F$).

В алгебре группы рассматривают с точностью до изоморфизма: изоморфные группы считаются «одинаковыми».

Определение 6.4. С каждым гомоморфизмом групп $\varphi: G \to F$ связаны его ядро

$$Ker(\varphi) = \{ g \in G \mid \varphi(g) = e_F \}$$

и образ

$$\operatorname{Im}(\varphi) = \{ a \in F \mid \exists g \in G : \varphi(g) = a \}.$$

Ясно, что $\operatorname{Ker}(\varphi) \subseteq G$ и $\operatorname{Im}(\varphi) \subseteq F$ — подгруппы.

Лемма 6.2. Гомоморфизм групп $\varphi \colon G \to F$ инъективен тогда и только тогда, когда $\mathrm{Ker}(\varphi) = \{e_G\}.$

Доказательство. Ясно, что если φ инъективен, то $\mathrm{Ker}(\varphi) = \{e_G\}$. Обратно, пусть $g_1, g_2 \in G$ и $\varphi(g_1) = \varphi(g_2)$. Тогда $g_1^{-1}g_2 \in \mathrm{Ker}(\varphi)$, поскольку $\varphi(g_1^{-1}g_2) = \varphi(g_1^{-1})\varphi(g_2) = \varphi(g_1)^{-1}\varphi(g_2) = e_F$. Отсюда $g_1^{-1}g_2 = e_G$ и $g_1 = g_2$.

Следствие 6.1. Гомоморфизм групп $\varphi \colon G \to F$ является изоморфизмом тогда и только тогда, когда $\mathrm{Ker}(\varphi) = \{e_G\}\ u\ \mathrm{Im}(\varphi) = F$.

Предложение 6.1. Пусть $\varphi \colon G \to F$ — гомоморфизм групп. Тогда подгруппа $\mathrm{Ker}(\varphi)$ нормальна в G.

Доказательство. Достаточно проверить, что $g^{-1}hg\in \mathrm{Ker}(\varphi)$ для любых $g\in G$ и $h\in \mathrm{Ker}(\varphi)$. Это следует из цепочки равенств

$$\varphi(g^{-1}hg) = \varphi(g^{-1})\varphi(h)\varphi(g) = \varphi(g^{-1})e_F\varphi(g) = \varphi(g^{-1})\varphi(g) = \varphi(g)^{-1}\varphi(g) = e_F.$$

7 Теорема о гомоморфизме для групп

Теорема 7.1. Теорема о гомоморфизме.

Пусть $\varphi \colon G \to F$ — гомоморфизм групп. Тогда группа $\mathrm{Im}(\varphi)$ изоморфна факторгруппе $G/\mathrm{Ker}(\varphi)$.

Доказательство. Рассмотрим отображение $\psi \colon G/\mathrm{Ker}(\varphi) \to \mathrm{Im}(\varphi)$, заданное формулой $\psi(g\mathrm{Ker}(\varphi)) = \varphi(g)$.

1. Корректность

$$g_1Ker\varphi=g_2Ker\varphi\Rightarrow g_1h_1=g_2h_2$$
 для некоторых $h_1,h_2\in Ker\varphi$ $\psi(g_1Ker\varphi)=\varphi(g_1)=\varphi(g_1h_1)=\varphi(g_2h_2)=\varphi(g_2)=\psi(g_2Ker\varphi)$

 $2. \ \psi$ гомоморфизм.

$$\psi((g_1Ker\varphi)(g_2Ker\varphi)) = \psi((g_1g_2)Ker\varphi) = \varphi(g_1g_2) = \varphi(g_1)\varphi(g_2) = \psi(g_1Ker\varphi)\psi(g_2Ker\varphi)$$

- 3. Сюрьективность из построения.
- 4. Инъективность.

$$\psi(g_1Ker\varphi) = \psi(g_2Ker\varphi) \Rightarrow \varphi(g_1) = \varphi(g_2) \Rightarrow \varphi(g_1)\varphi(g_2)^{-1} = e_F \Rightarrow \varphi(g_1g_2^{-1}) = e_F$$
$$\Rightarrow g_1g_2^{-1} \in Ker\varphi \Rightarrow g_1Ker\varphi = g_2Ker\varphi$$

Тем самым, чтобы удобно реализовать факторгруппу G/H, можно найти такой гомоморфизм $\varphi \colon G \to F$ в некоторую группу F, что $H = \operatorname{Ker}(\varphi)$, и тогда $G/H \cong \operatorname{Im}(\varphi)$.

 Π ример 2. Пусть $G=(\mathbb{R},+)$ и $H=(\mathbb{Z},+)$. Рассмотрим группу $F=(\mathbb{C}\setminus\{0\},\times)$ и гомоморфизм

$$\varphi \colon G \to F, \quad a \mapsto e^{2\pi\imath a} = \cos(2\pi a) + i\sin(2\pi a).$$

Тогда $\mathrm{Ker}(\varphi)=H$ и факторгруппа G/H изоморфна окружности S^1 , рассматриваемой как подгруппа в F, состоящая из комплексных чисел с модулем 1.

8 Классификация циклических групп

Классификация циклических групп. Пусть G – циклическая группа. Тогда:

- 1. Если $|G| = \infty$, то $G \simeq (\mathbb{Z}, +)$
- 2. Если $|G| < \infty$, то $G \simeq (\mathbb{Z}_n, +)$

Доказательство. По определению, если G – циклическая, то $G=\langle g \rangle$ для некоторого $g \in G$.

- 1. $\varphi: \mathbb{Z} \mapsto G, \varphi: k \mapsto g^k$ Это гомоморфизм и биекция \Rightarrow изоморфизм.
- 2. $\varphi: \mathbb{Z}_n \mapsto G, \varphi: k \mapsto g^k$ Рассмотрим, куда переходит k+ns, где $0 \le k \le n-1$. $k+ns \mapsto g^{k+ns}=g^kg^{ns}=g^k(g^n)^s=g^k$

9 Прямое произведение групп. Разложение конечной циклической группы.

Определение 9.1. Прямым произведением групп G_1, \ldots, G_m называется множество

$$G_1 \times \ldots \times G_m = \{(g_1, \ldots, g_m) \mid g_1 \in G_1, \ldots, g_m \in G_m\}$$

с операцией $(g_1,\ldots,g_m)(g'_1,\ldots,g'_m)=(g_1g'_1,\ldots,g_mg'_m).$

Ясно, что эта операция ассоциативна, обладает нейтральным элементом $(e_{G_1}, \ldots, e_{G_m})$ и для каждого элемента (g_1, \ldots, g_m) есть обратный элемент $(g_1^{-1}, \ldots, g_m^{-1})$.

Замечание 3. Группа $G_1 \times \ldots \times G_m$ коммутативна в точности тогда, когда коммутативна каждая из групп G_1, \ldots, G_m .

3амечание 4. Если все группы G_1,\ldots,G_m конечны, то $|G_1\times\ldots\times G_m|=|G_1|\cdot\ldots\cdot|G_m|$.

Определение 9.2. Группа G раскладывается в прямое произведение своих подгрупп H_1, \ldots, H_m , если отображение $H_1 \times \ldots \times H_m \to G$, $(h_1, \ldots, h_m) \mapsto h_1 \cdot \ldots \cdot h_m$, является изоморфизмом.

Теорема 9.1. Пусть n = ml - pазложение натурального числа n на два взаимно простых множителя. Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \cong \mathbb{Z}_m \times \mathbb{Z}_l$$
.

Доказательство. Рассмотрим отображение

$$\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_m \times \mathbb{Z}_l, \quad (k \mod n) \mapsto (k \mod m, k \mod l).$$

Поскольку m и l делят n, отображение φ определено корректно. Ясно, что φ — гомоморфизм. Далее,

 $a \mod n \in \operatorname{Ker} \varphi \Rightarrow a \mod m = 0, a \mod l = 0 \Rightarrow a \stackrel{\cdot}{:} m, a \stackrel{\cdot}{:} k$

Так как HOД(m,l)=1, то $a : (n=ml) \Rightarrow a \mod n=0 \Rightarrow Ker\varphi=\{0\}$

Отсюда следует, что гомоморфизм φ инъективен.

Поскольку множества \mathbb{Z}_n и $\mathbb{Z}_m \times \mathbb{Z}_l$ содержат одинаковое число элементов, отображение φ биективно.

Следствие 9.1. Пусть $n \geqslant 2$ — натуральное число и $n = p_1^{k_1} \dots p_s^{k_s}$ — его разложение в произведение простых множителей (где $p_i \neq p_j$ при $i \neq j$). Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{k_1}} \times \ldots \times \mathbb{Z}_{p_s^{k_s}}.$$

10 Примарные абелевы группы. Теорема о строении конечно порождённых абелевых групп, доказательство единственности.

Теорема 10.1. A – конечная абелева группа. Тогда A изоморфна произведению циклических групп.

$$A \simeq C_1 \times \ldots \times C_s$$

 $r\partial e\ C_i$ – конечная циклическая группа

Эта теорема приводится без доказательства.

Определение 10.1. Конечная абелева группа A называется **примарной**, если $|A| = p^k$ для некоторого простого р.

Пример 3.
$$A = \mathbb{Z}_p \times \mathbb{Z}_p \times \ldots \times \mathbb{Z}_p$$

 $A = \mathbb{Z}_{p^k}$

Теорема 10.2. Всякая конечная абелева группа изоморфна прямому произведению примарных циклических групп, причем число и порядки множителей определяются однозначно.

$$A \simeq \mathbb{Z}_{p_1^{k_1}} \times \ldots \times \mathbb{Z}_{p_s^{k_s}},$$

 $\it rde\ p_i$ – $\it npocmue\ числа\ (нe\ обязятельно\ nonapho\ paзличные).$

Доказательство. По предыдущей теореме получаем:

$$A \simeq C_1 \times \ldots \times C_t$$

где C_i – циклическая.

Теперь применим следствие, которое гласит, что всякая циклическая группа раскладывается на произведение примарных циклических.

$$A \simeq \mathbb{Z}_{p_1^{k_1}} \times \ldots \times \mathbb{Z}_{p_s^{k_s}},$$

Теперь докажем единственность.

Зафиксируем простое p. Положим $T_p(A):=\{a\in A\mid \exists k\in \mathbb{N}: p^ka=0\}$ (запись аддитивная).

Нетрудно заметить, что $T_p(A)$ – подгруппа в A. Тогда очевиден следующий факт:

$$\prod_{p_i=p} \mathbb{Z}_{p_i^{k_i}} \subseteq T_p(A)$$

Пусь $a=(a_1,\ldots,a_s)\in A.$ Пусть $p^k\cdot a=0$ для некоторого k. Тогда для каждого множителя верно:

$$p^k a \equiv 0 \mod p_i^{k_i}$$

Если $p_i \neq p$, то получаем, что $a_i \equiv 0 \mod p_i^{k_i}$. Отсюда следует противоположное включение:

$$T_p(A) \subseteq \prod_{p_i=p} \mathbb{Z}_{p_i^{k_i}} \Rightarrow T_p(A) = \prod_{p_i=p} \mathbb{Z}_{p_i^{k_i}}$$

Теперь будет достаточно показать, что разложение опеределено однозначно для каждого $T_p(A)$, поскольку сами $T_p(A)$ определены явно и однозначно.

Для сокращения записи обозначим $T_p(A)$ как B.

Знаем, что $B \simeq \mathbb{Z}_{p^{m_1}} \times \ldots \times \mathbb{Z}_{p^{m_r}}$, из чего следует достаточно простой факт: $|B| = p^m, \ m = m_1 + \ldots + m_r$.

Теперь докажем единственность разложения индукцией по m.

База: m=1. Тогда $|B|=p\Rightarrow B\simeq \mathbb{Z}_p$ по следствию 5 теоремы Лагранжа.

Шаг: Рассмотрим группы $pB\simeq p\mathbb{Z}_{p^{m_1}}\times p\mathbb{Z}_{p^{m_r}},$ при этом если $\exists i:m_i=1,$ то множитель $\mathbb{Z}_{p^{m_i}}$ исчезает.

 $|pB| < |B| \Rightarrow$ применяем предположение индукции. Тогда для каждого $i: m_i > 1$ однозначно определены числа $m_i - 1$, а значит, однозначно определены и они сами. Оставшиеся m_i , которые были равны 1, мы можем восстановить из равенства $m = m_1 + \ldots + m_r$. \square

11 Экспонента конечной абелевой группы и критерий цикличности.

Определение 11.1. Экспонентой конечной абелевой группы A называется число $\exp A$, равное наименьшему общему кратному порядков элементов из A. Легко заметить, что это равносильно следующему условию:

$$\exp A = \min\{n \in \mathbb{N} \mid na = 0$$
для всех $a \in A\}$

Замечание 5. $\forall a \in A, ord(a)$ делит $|A| \Rightarrow |A|$ это общее кратное множества $\{ord(a) \mid a \in A\} \Rightarrow expA$ делит |A|.

В частности $expA \leq |A|$

Предложение 11.1. $expA = |A| \iff A$ циклическая группа

 $\Leftarrow A$ цикличесая \Rightarrow ее порождающая имеет порядок $n \Rightarrow expA = n$.

 $\Rightarrow expA=n.\ \forall i\ \exists a_i\in A,$ такое что $ord(a_i)=p_i^{k_i}\cdot m_i,$ (в аддитивной запись группы) где $m_i\in\mathbb{N}$

Положим $c_i = m_i \cdot a_i$, тогда $ord(c_i) = p_i^{k_i} \ (p_i^k \cdot (m_i \cdot a_i) = p_i^k \cdot c_i = 1$ – минимальное такое по определению порядка a_i , значит, порядок c_i именно такой).

Возьмем $c = c_1 + \ldots + c_s$.

Пусть mc = 0 для некоторого $m \in \mathbb{N}$, то есть $mc_1 + \ldots + mc_s = 0$.

Для фиксированного $i=1,\ldots,s$ умножим выражение на $\frac{n}{p_i^{k_i}}$.

При $j \neq i$:

$$\frac{n}{p_i^{k_i}} \cdot m \cdot c_j = 0.$$

(потому что в $n/p_i^{k_i}$ присутствуют все порядки как множители, кроме i).

Тогда отдельно рассмотрим наше равенство с полученным знанием:

$$\frac{n}{p_i^{k_i}} \cdot m \cdot c_i = 0 \Rightarrow \frac{n}{p_i^{k_i}} \cdot m : p_i^{k_i} \Rightarrow m : p_i^{k_i}$$

Предпоследний переход связан с опеределением порядка, последний переход верен потому что в левом множителе заведомо нет делящихся множителей.

Тогда получаем: $m : p_i^{k_i}, \forall i \Rightarrow m : n \Rightarrow ord(c) = n \Rightarrow A = \langle c \rangle.$

12 Криптография с открытым ключом. Задача дискретного логарифмирования. Система Диффи-Хеллмана обмена ключами. Криптосистема Эль-Гамаля

Пусть у нас есть G - конечная абелева группа. И так же есть элемент $g \in \mathbb{G}$, для которого ord(g) будет достаточно большим значением.

Задача 12.1. Задача дискретного логаримирования

Дано: $h \in \langle g \rangle$. Найти такое α , что $g^{\alpha} = h$.

Возведение в степень, задача более "простая" с технической стороны реализации – существует алгоритм бинарного возведения в степень: $g^{16} = (((g^2)^2)^2)^2$. А сама же задача нахождения степени решается только переборными и близкими к перебору способами.

Задача 12.2. Система Диффи-Хеллмана обмена ключами

G,g - известно всем, причем g имеет достаточно большой порядок.

Пусть есть два пользователя системы - A и B.

A фиксирует свое секретное $\alpha \in \mathbb{N}$ и сообщает всем пользователям g^{α} . B совершает аналогичные действия, $\beta \in \mathbb{N}, q^{\beta}$.

Теперь A и B опять совершают аналогичные действия - каждый из них возводит элемент другого в свою секретную степень, они оба получают элемент $g^{\alpha\beta}$, который известен только им двоим.

Теперь по этому ключу можно устроить шифрованный канал связи, к которому никто не имеет доступа. При этом действительно в силу сложности задачи дискретного логарифмирования по g^{α} и g^{β} нельзя быстро получить $g^{\alpha\beta}$.

Задача 12.3. Криптография Эль-Гамаля

 \mathbb{G}, g - известно всем, причем g имеет достаточно большой порядок.

A фиксирует свое секретное $\alpha \in \mathbb{N}$ и сообщает всем пользователям g^{α} .

B хочет передать для A элемент $h \in G$.

Для этого B фиксирует какое-то $k \in \mathbb{N}$ и объявляет пару $\{g^k, h \cdot (g^\alpha)^k\}$. Отсюда $h = (h \cdot (g^\alpha)^k) \cdot ((g^k)^\alpha)^{-1} = (h \cdot (g^\alpha)^k) \cdot (g^k)^{|G|-\alpha}$, то есть зная α можно легко получить h отсюда следует, что получить его может A, а всем остальным придется решать задачу дискретного логарифмирования.

13 Кольца. Коммутативные кольца. Обратимые элементы, делители нуля и нильпотенты. Примеры колец. Поля. Критерий того, что кольцо вычетов является полем

Определение 13.1. *Кольцом* называется множество R с двумя бинарными операциями *+* (сложение) и ** (умножение), обладающими следующими свойствами:

- 1. (R,+) является абелевой группой (называемой аддитивной группой кольца R);
- 2. выполнены левая и правая дистрибутивности, т.е.

$$a(b+c) = ab + ac$$
 if $(b+c)a = ba + ca$ $\forall a,b,c \in R$.

В этом курсе мы рассматриваем только ассоциативные кольца с единицей, поэтому дополнительно считаем, что выполнены ещё два свойства:

- 3. a(bc) = (ab)c для всех $a,b,c \in R$ (ассоциативность умножения);
- 4. существует такой элемент $1 \in R$ (называемый единицей), что

$$a1 = 1a = a \ \forall \ a \in R.$$

3амечание 6. В произвольном кольце R выполнены равенства

$$a0 = 0a = 0$$
 для всякого $a \in R$.

В самом деле, имеем a0 = a(0+0) = a0 + a0, откуда 0 = a0. Аналогично устанавливается равенство 0a = 0.

Замечание 7. Если кольцо R содержит более одного элемента, то $0 \neq 1$. Это следует из соотношений выше.

Примеры колец:

- (1) числовые кольца \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ;
- (2) кольцо \mathbb{Z}_n вычетов по модулю n;
- (3) кольцо $Mat(n \times n, \mathbb{R})$ матриц с коэффициентами из \mathbb{R} ;
- (4) кольцо $\mathbb{R}[x]$ многочленов от переменной x с коэффициентами из \mathbb{R} ;
- (5) кольцо $\mathbb{R}[[x]]$ формальных степенных рядов от переменной x с коэффициентами из \mathbb{R} :

$$\mathbb{R}[[x]] := \{ \sum_{i=0}^{\infty} a_i x^i \mid a_i \in \mathbb{R} \};$$

(6) кольцо $\mathcal{F}(M,\mathbb{R})$ всех функций из множества M во множество \mathbb{R} с операциями поточечного сложения и умножения:

$$(f_1+f_2)(m):=f_1(m)+f_2(m); \quad (f_1f_2)(m):=f_1(m)f_2(m)$$
 для всех $f_1,f_2\in\mathcal{F}(M,\mathbb{R}), m\in M.$

Замечание 8. В примерах вместо \mathbb{R} можно брать любое кольцо, в частности \mathbb{Z} , \mathbb{Q} , \mathbb{C} , \mathbb{Z}_n . Замечание 9. Обобщая пример, можно рассматривать кольцо $\mathbb{R}[x_1, \dots, x_n]$ многочленов от нескольких переменных x_1, \dots, x_n с коэффициентами из \mathbb{R} .

Определение 13.2. Кольцо R называется *коммутативным*, если ab = ba для всех $a,b \in R$.

Все перечисленные в примерах кольца, кроме $\mathrm{Mat}(n\times n,\mathbb{R})$ при $n\geqslant 2$, коммутативны. Пусть R — кольцо.

Определение 13.3. Элемент $a \in R$ называется *обратимым*, если найдётся такой $b \in R$, что ab = ba = 1. Такой элемент b обозначается классическим образом через a^{-1} .

Замечание 10. Все обратимые элементы кольца R образуют группу относительно операции умножения.

Определение 13.4. Элемент $a \in R$ называется левым (соответственно правым) делителем нуля, если $a \neq 0$ и найдётся такой $b \in R$, $b \neq 0$, что ab = 0 (соответственно ba = 0).

Замечание 11. В случае коммутативных колец понятия левого и правого делителей нуля совпадают, поэтому говорят просто о делителях нуля.

Замечание 12. Все делители нуля в R необратимы: если $ab=0, a\neq 0, b\neq 0$ и существует a^{-1} , то получаем $a^{-1}ab=a^{-1}0$, откуда b=0 — противоречие.

Определение 13.5. Элемент $a \in R$ называется *нильпотентом*, если $a \neq 0$ и найдётся такое $m \in \mathbb{N}$, что $a^m = 0$.

Замечание 13. Всякий нильпотент в R является делителем нуля: если $a \neq 0, a^m = 0$ и число m наименьшее с таким свойством, то $m \geqslant 2$ и $a^{m-1} \neq 0$, откуда $aa^{m-1} = a^{m-1}a = 0$.

Определение 13.6. *Полем* называется коммутативное ассоциативное кольцо K с единицей, в котором всякий ненулевой элемент обратим.

Замечание 14. Тривиальное кольцо $\{0\}$ полем не считается, поэтому $0 \neq 1$ в любом поле. Примеры полей: \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_2 .

Предложение 13.1. Кольцо вычетов \mathbb{Z}_n является полем тогда и только тогда, когда n- простое число.

 \mathcal{A} оказательство. Если число n составное, то n=mk, где 1< m, k< n. Тогда $\overline{mk}=\overline{n}=\overline{0}$. Следовательно, \overline{k} и \overline{m} — делители нуля в \mathbb{Z}_n , ввиду чего не все ненулевые элементы там обратимы.

Если n=p — простое число, то возьмём произвольный ненулевой вычет $\overline{a}\in\mathbb{Z}_p$ и покажем, что он обратим. Тогда $\mathrm{HOД}(a,p)=1\Rightarrow \ \exists r,s\in\mathbb{Z},$ такие что $ar+sp=1\Rightarrow \overline{ar}+\overline{sp}=\overline{1}\Rightarrow \overline{ar}=\overline{1}\ (\overline{sp}=0)$

Определение 13.7. Π одкольцом кольца R называется всякое подмножество $R' \subseteq R$, замкнутое относительно операций сложения и умножения (т. е. $a+b \in R'$ и $ab \in R'$ для всех $a,b \in R'$) и являющееся кольцом относительно этих операций. Π одполем называется всякое подкольцо, являющееся полем.

Например, $\mathbb Z$ является подкольцом в $\mathbb Q$, а скалярные матрицы образуют подполе в кольце $\mathrm{Mat}(n\times n,\mathbb R).$

14 Идеалы колец. Факторкольцо кольца по идеалу. Гомоморфизмы и изоморфизмы колец. Ядро и образ гомоморфизма колец. Теорема о гомоморфизме для колец

Определение 14.1. Подмножество I кольца R называется ($\partial \textit{вусторонним}$) u деалом, если оно является подгруппой по сложению и $ra \in I$, $ar \in I$ для любых $a \in I$, $r \in R$.

В каждом кольце R есть neco6cmeenhue идеалы I=0 и I=R. Все остальные идеалы называются co6cmeenhumи.

Замечание 15. Пусть R — коммутативное кольцо. С каждым элементом $a \in R$ связан идеал $(a) := \{ra \mid r \in R\}$.

Определение 14.2. Идеал I называется *главным*, если существует такой элемент $a \in R$, что I = (a). (В этой ситуации говорят, что I порождён элементом a.)

Пример. В кольце \mathbb{Z} подмножество $k\mathbb{Z}$ ($k \in \mathbb{Z}$) является главным идеалом, порождённым элементом k. Более того, все идеалы в \mathbb{Z} являются главными.

Замечание 16. Главный идеал (a) является несобственным тогда и только тогда, когда a=0 или a обратим.

Более общо, с каждым подмножеством $S \subseteq R$ связан идеал

$$(S) := \{r_1 a_1 + \ldots + r_k a_k \mid a_i \in S, r_i \in R, k \in \mathbb{N}\}.$$

(Проверьте, что это действительно идеал!) Это наименьший по включению идеал в R, содержащий подмножество S. В этой ситуации говорят, что идеал I=(S) порождён подмножеством S.

Вернёмся к случаю произвольного кольца R. Поскольку любой идеал I является подгруппой абелевой группы (R,+), мы можем рассмотреть факторгруппу R/I. Введём на ней умножение по формуле

$$(a+I)(b+I) := ab + I.$$

Покажем, что это определение корректно. Пусть элементы $a',b'\in R$ таковы, что a'+I=a+I и b'+I=b+I. Проверим, что a'b'+I=ab+I. Заметим, что a'=a+x и b'=b+y для некоторых $x,y\in I$. Тогда

$$a'b' + I = (a+x)(b+y) + I = ab + ay + xb + xy + I = ab + I,$$

поскольку $ay, xb, xy \in I$ в силу определения идеала.

Замечание 17. Множество R/I является кольцом относительно имеющейся там операции сложения и только что введённой операции умножения.

Определение 14.3. Кольцо R/I называется факторкольцом кольца R по идеалу I.

Пример. $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$.

Определение 14.4. *Гомоморфизм* колец $f:A\to B$ это отображение, для которого выполнены свойства:

- 1. $f(a+b) = f(a) + f(b), \forall a, b \in A$
- 2. $f(ab) = f(a)f(b), \forall a, b \in A$
- 3. $f(1_A) = 1_B$

Определение 14.5. *Изоморфизмом* колец называется всякий гомоморфизм, являющийся биекцией.

Пусть $\varphi \colon R \to R'$ — гомоморфизм колец. Тогда определены его ядро $\operatorname{Ker} \varphi = \{r \in R \mid \varphi(r) = 0\}$ и образ $\operatorname{Im} \varphi = \{\varphi(r) \mid r \in R\} \subseteq R'$.

Лемма 14.1. \mathcal{A} дро $\text{Ker}\varphi$ является идеалом в R.

Доказательство. Так как φ — гомоморфизм абелевых групп, то $\ker \varphi$ является подгруппой в R по сложению. Покажем теперь, что $ra \in \ker \varphi$ и $ar \in \ker \varphi$ для произвольных элементов $a \in \ker \varphi$ и $r \in R$.

Имеем $\varphi(ra)=\varphi(r)\varphi(a)=\varphi(r)0=0,$ откуда $ra\in \mathrm{Ker}\varphi.$ Аналогично получаем $ar\in \mathrm{Ker}\varphi.$

3амечание 18. $\text{Im}\varphi$ — подкольцо в R'.

Теорема 14.1. Теорема о гомоморфизме для колец.

Пусть $\varphi \colon R \to R'$ – гомоморфизм колец. Тогда имеет место изоморфизм

$$R/\operatorname{Ker}\varphi\cong\operatorname{Im}\varphi.$$

$$\pi: R/I \to \operatorname{Im}\varphi, \quad a+I \mapsto \varphi(a).$$

Из доказательства теоремы о гомоморфизме для групп следует, что отображение π корректно определено и является изоморфизмом абелевых групп (по сложению). Покажем, что π — изоморфизм колец. Для этого остаётся проверить, что π сохраняет операцию умножения:

$$\pi((a+I)(b+I)) = \pi(ab+I) = \varphi(ab) = \varphi(a)\varphi(b) = \pi(a+I)\pi(b+I).$$

 Π ример 4.

- 1. Пусть $R = \mathcal{F}(M, \mathbb{R})$. Зафиксируем произвольную точку $m_0 \in M$ и рассмотрим гомоморфизм $\varphi \colon R \to \mathbb{R}, f \mapsto f(m_0)$. Ясно, что гомоморфизм φ сюръективен. Его ядром является идеал I всех функций, обращающихся в нуль в точке m_0 . По теореме о гомоморфизме получаем $R/I \cong \mathbb{R}$.
- 2. Рассмотрим отображение $\varphi \colon \mathbb{R}[x] \to \mathbb{C}$, $f \mapsto f(i)$. Очевидно, что φ гомоморфизм, причем сюръективный. Если многочлен f принадлежит ядру φ , то есть f(i) = 0, то $(x-i) \mid f$ в кольце $\mathbb{C}[x]$. Но и сопряженный к корню также будет являться корнем многочлена, так что дополнительно $(x+i) \mid f$. Итого, получаем, что $f \in (x-i)(x+i) = (x^2+1)$ и, соответственно, $\operatorname{Ker} \varphi \subseteq (x^2+1)$. В обратную сторону включение тем более очевидно. Далее, по теореме о гомоморфизме получаем $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$.

15 Делимость и ассоциированные элементы в коммутативных кольцах без делителей нуля. Наибольший общий делитель. Кольца главных идеалов. Существование наибольшего общего делителя и его линейного выражения в кольце главных идеалов

Далее в этой лекции всюду предполагается, что R — коммутативное кольцо без делителей нуля.

Определение 15.1. Говорят, что элемент $b \in R$ делит элемент $a \in R$ (b — делитель a, a делится на b; пишут $b \mid a$) если существует элемент $c \in R$, для которого a = bc.

Определение 15.2. Два элемента $a, b \in R$ называются *ассоциированными*, если a = bc для некоторого обратимого элемента c кольца R.

Пример 5. В кольце \mathbb{Z} ассоциированными элементами являются a и -a (-1 обратим). Замечание 19.

- 1. Легко видеть, что отношение ассоциированности является отношением эквивалентности на кольце R.
- 2. a, b ассоциированы $\Leftrightarrow a \mid b$ и $b \mid a$

Определение 15.3. *Наибольшим общим делителем* элементов a и b кольца R называется их общий делитель, который делится на любой другой их общий делитель. Он обозначается (a,b).

Определение 15.4. Кольцо R называется *кольцом главных идеалов*, если всякий идеал в R является главным.

Пример 6. Кольцо \mathbb{Z} , в котором все идеалы выглядят как $\langle k \rangle$.

Замечание 20. Если наибольший общий делитель двух элементов $a,b \in R$ существует, то он определён однозначно с точностью до ассоциированности, т.е. умножения на обратимый элемент кольца R.

Теорема 15.1. Пусть R — кольцо главных идеалов и a,b — произвольные элементы. Тогда:

- 1. существует наибольший общий делитель (a,b);
- 2. существуют такие элементы $u,v \in R$, что (a,b) = ua + vb.

Доказательство.

<u>Способ 1</u>: утверждение (1) получается применением (прямого хода) алгоритма Евклида, а утверждение (2) — применением обратного хода в алгоритме Евклида.

Способ 2: рассмотрим идеал I=(a,b). Так как R — кольцо главных идеалов, то существует такой элемент $d \in R$, что I=(d). Тогда $a=da',b=db'\Rightarrow d$ общий делитель элементов a,b. Также так как (d)=(a,b), то получим, что всякий элемент (d) выражется какой-то комбинацией элементов a и b, то есть d=ax+by для некоторых $x,y\in R$.

Теперь пусть d' — другой общий делитель a и b, тогда d' | a и d' | b. Из линейного выражения понятно, что в таком случае d' | d, из чего нетрудно сделать вывод о том, что d действительно наибольший общий делитель.

16 Простые элементы. Факториальные кольца. Факториальность колец главных идеалов: доказательство существования разложения на простые множители

Здесь R коммутативное кольцо без делителей нуля.

Определение 16.1. Ненулевой необратимый элемент p кольца R называется *простым*, если он не может быть представлен в виде p = ab, где $a, b \in R$ — необратимые элементы.

Замечание 21. Простые элементы в кольце многочленов K[x] над полем K принято называть henpusodumыми многочленами.

Пемма 16.1. Если простой элемент p евклидова кольца R делит произведение $a_1 a_2 \dots a_n$, то он делит один из сомножителей.

Доказательство. Индукция по n. Пусть n=2 и предположим, что p не делит a_1 . Тогда $(p,a_1)=1$ и по теореме о НОД найдутся такие элементы $u,v\in R$, что $1=up+va_1$. Умножая обе части этого равенства на a_2 , получаем

$$a_2 = upa_2 + va_1a_2.$$

Легко видеть, что p делит правую часть последнего равенства, поэтому p делит и левую часть, т. е. a_2 .

При n > 2 применяем предыдущее рассуждение к $(a_1 \dots a_{n-1})a_n$.

- $p \mid a_1 a_2 \dots a_n \Rightarrow p \mid (a_1 \dots a_{n-1}) a_n$
- \Rightarrow либо $p \mid a_n$, либо $p \mid a_1 \dots a_{n-1}$
- ⇒ применяем предположение индукции.

Определение 16.2. Кольцо R называется факториальным, если всякий его ненулевой необратимый элемент «разложим на простые множители», т. е. представим в виде произведения (конечного числа) простых элементов, причём это представление единственно с точностью до перестановки множителей и ассоциированности.

Более формально единственность разложения на простые множители следует понимать так: если для элемента $a \in R$ есть два представления

$$a = p_1 p_2 \dots p_n = q_1 q_2 \dots q_m,$$

где все элементы p_i, q_j простые, то n=m и q_j можно переставить так, что $\forall q_i=\varepsilon_i p_i$, где $\varepsilon_i\in R$ обр. элемент.

Докажем вспомогательную лемму:

Лемма 16.2. R – кольцо главных идеалов и $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$ – бесконечная цепь вложенных идеалов.

Тогда
$$\exists k : I_k = I_{k+1} = I_{k+1} = \dots$$

Доказательство. Положим $I = \bigcup_{i=1}^{\infty} I_i$. Можно понять (это упражнение), что I – идеал. Тогда $\forall i: I_i \subseteq I$.

Так как R – кольцо главных идеалов, то $\exists a: I = (a)$. Из этого следует, что $\exists k: a \in I_k$. Тогда верна следующая цепочка:

$$I = (a) \subseteq I_k \subseteq I_{k+1} \subseteq \dots$$

В силу обратного включения получаем:

$$I = I_k = I_{k+1} = \dots$$

Теорема 16.1. R – кольцо главных идеалов $\Rightarrow R$ – факториально.

Доказательство. Пусть $a \in R$ – необратимый ненулевой.

Покажем существование разложения на простые.

От противного – предположим, что a нельзя разложить на простые. Тогда a сам не является простым, из чего следует, что $a=a_1b_1$. Теперь либо a_1 , либо b_1 не разлагается на простые. Для определенности предположим, что a_1 .

В таком случае он сам не является простым и $a_1=a_2b_2$ и так далее. Получаем бесконечную цепочку:

$$a, a_1, a_2, \ldots$$

Причем её особенностью является то, что $a : a_1, a_1 : a_2, \dots$ Тогда у нас есть бесконечная цепочка вложенных и не совпадающих идеалов:

$$(a) \subset (a_1) \subseteq (a_2) \subseteq \dots$$

что является противоречием с предыдущей леммой.

17 Простые элементы. Факториальные кольца. Факториальность колец главных идеалов: доказательство единственности разложения на простые множители

Теорема 17.1. R – кольцо главных идеалов $\Rightarrow R$ – факториально.

Доказательство. Докажем единственность разложения.

Пусть $a = p_1 p_2 \dots p_n = q_1 q_2 \dots q_m$ – два разложения на простые.

Индукция по n:

База: n=1, то $a=p_1$ – простое, тогда и m=1: $p_1=q_1$.

Шаг: $n \geqslant 2$. $p_1 \mid q_1 \dots q_m \Rightarrow \exists i : p_1 \mid q_i$ Поставим элемент i на первое место. В силу простоты q_1 получаем $q_1 = \varepsilon \cdot p_1$, где $\varepsilon \in R$ – обратимый.

Так как в R нет делителей нуля, то можем сократить по делителю:

$$ab = ac \Rightarrow ab - ac = 0 \Rightarrow a(b - c) = 0, \ a \neq 0 \Rightarrow b = c$$

В таком случае применяем предположение индукции и побеждаем.

Далеко не все кольца факториальны:

 Π ример 7. $R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a,b \in \mathbb{Z}\}$ не факториально:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

Можно убедиться, что это конечные разложения.

Но при этом не все факториальные кольца являются кольцами главных идеалов:

 Π ример 8. $R=K[x_1,x_2,\ldots,x_k]$ не является кольцом главных идеалов: идеал (x_1,x_2) не главный.

18 Теорема о том, что кольцо многочленов над полем является кольцом главных идеалов

K – поле. Рассмотрим $K[x] := \{a_n x^n + \dots a_1 x + a_0 \mid a_i \in K\}$ Для любого $f \in K[x]$ определена его степень $\deg f$.

Теорема 18.1. Деление с остатком

 $\forall f,g \in K[x], g \neq 0, \exists !q,r \in K[x], maxue \ umo:$

$$f = q \cdot q + r$$

где r называется остатком и либо r=0, либо $\deg r < \deg g$.

Доказательство. Следует из алгоритма деления в столбик.

Теорема 18.2. K – *поле* $\Rightarrow K[x]$ – *кольцо главных идеалов.*

Доказательство. Рассмотрим $I \subseteq K[x]$ – произвольный идеал.

Если $I = \{0\} \Rightarrow I = (0)$ – главный.

Теперь рассмотрим $I \neq \{0\}$. Рассмотрим элемент наименьшей степени $g \in I \Rightarrow (g) \subseteq I$. Рассмотрим какой-то другой элемент $f \in I$. Поделим на g с остатком:

$$f = q \cdot q + r$$

В силу линейного выражения $q,r \in I$.

В силу минимальности степени g получаем, что r=0, из чего следует, что I=(g). \square

Следствие 18.1. $\forall f,g \in K[x] \ \exists u,v:$

$$(f,g) = u \cdot f + v \cdot g$$

3амечание 22. (f,g) и линейное выражение можем находить при помощи алгоритма Евклида.

Следствие 18.2. K – *поле. Тогда* K[x] – факториально.

 $3амечание\ 23.\ f$ – многочлен.

- 1. Если $\deg f = 1 \Rightarrow f$ неприводимый.
- 2. $\deg f\geqslant 2, f$ неприводим, тогда f не имеет корней (простое следствие из теоремы Безу).
- $3. \deg f \in \{2,3\} \iff f$ не имеет корней.

19 Лексикографический порядок на множестве одночленов от нескольких переменных. Лемма о конечности убывающих цепочек одночленов

Предлагается воспользоваться более адекватными конспектами. Здесь 20 Старший член многочлена от нескольких переменных. Элементарная редукция многочлена относительно другого многочлена. Лемма о конечности цепочек элементарных цепочек относительно системы многочленов.

21 Остаток многочлена относительно заданной системы многочленов. Системы Грёбнера. Характеризация систем Грёбнера в терминах цепочек элементарных редукций.

	22	S-многочлены.	Критер	оий Бу	ухберг	epa
--	----	---------------	--------	--------	--------	-----

23 Базис Грёбнера идеала в кольце многочленов от нескольких переменных, теорема о трех эквивалентных условиях. Решение задачи вхождения многочлена в идеал

24 Лемма о конечности цепочек одночленов, в которых каждый следующий элемент не делится ни на один из предыдущих. Алгоритм Бухбергера построения базиса Грёбнера идеала

25 Лемма Диксона. Теорема о существовании конечного базиса Грёбнера в идеале многочленов от нескольких переменных. Теорема Гильберта о базисе идеала

Характеристика поля и простое подполе 26

Мы знаем не так много примеров полей. Это бесконечные поля \mathbb{Q} , \mathbb{R} , \mathbb{C} и конечные поля \mathbb{Z}_p , где p- простое число. Конструкция поля отношений позволяет строить новые поля из уже имеющихся. А именно, если K- произвольное поле, то можно рассмотреть поле отношений K(x) кольца многочленов K[x] (это поле называется *полем рациональных* дробей над K). Элементами поля K(x) являются дроби f(x)/g(x), где $f(x), g(x) \in K[x]$ и $g(x) \neq 0$.

Несколько других примеров полей:

$$\mathbb{Q}(\sqrt{2}) = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \},$$

$$\mathbb{Q}(\sqrt[3]{2}) = \{ a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q} \},$$

$$\mathbb{Q}(\sqrt{-1}) = \{ a + b\sqrt{-1} \mid a, b \in \mathbb{Q} \}.$$

Определение 26.1. Пусть K — произвольное поле. Xарактеристикой поля K называется такое наименьшее натуральное число p, что $\underbrace{1+\ldots+1}_p=0.$ Если такого натурального p не существует, говорят, что характеристика поля равна нулю. Обозначение: charK.

Например, $\operatorname{char} \mathbb{Q} = \operatorname{char} \mathbb{R} = \operatorname{char} \mathbb{C} = 0$ и $\operatorname{char} \mathbb{Z}_p = \operatorname{char} \mathbb{Z}_p(x) = p$.

Из определения следует, что всякое поле характеристики нуль бесконечно. Примером бесконечного поля характеристики p > 0 является поле $\mathbb{Z}_p(x)$.

Предложение 26.1. Характеристика произвольного поля K либо равна нулю, либо является простым числом.

Доказательство. Положим p = char K и предположим, что p > 0. Так как $0 \neq 1$ в K, то $p \ge 2$. Если число p не является простым, то p = mk для некоторых $m,k \in \mathbb{N}, 1 < m,k < p$. Tогда в K верно равенство

$$0 = \underbrace{1 + \ldots + 1}_{mk} = \underbrace{(1 + \ldots + 1)}_{m} \underbrace{(1 + \ldots + 1)}_{k}.$$

В силу минимальности числа p в последнем выражении обе скобки отличны от нуля, но такое невозможно, так как в поле нет делителей нуля.

3амечание 24. Пересечение любого семейства подполей фиксированного поля K является подполем в K. В частности, для всякого подмножества $S \subseteq K$ существует наименьшее по включению подполе в K, содержащее S. Это подполе совпадает с пересечением всех подполей в K, содержащих S.

Из приведённого выше замечания следует, что в каждом поле существует наименьшее по включению подполе, оно называется простым подполем.

Предложение 26.2. Пусть K — поле и K_0 — его простое подполе. Тогда:

- 1. $ecnu \operatorname{char} K = p > 0$, $mo K_0 \cong \mathbb{Z}_n$;
- 2. $ecnu \operatorname{char} K = 0$, $mo K_0 \cong \mathbb{Q}$.

Доказательство. Пусть $\langle 1 \rangle \subseteq K$ — циклическая подгруппа по сложению, порождённая единицей. Заметим, что $\langle 1 \rangle$ — подкольцо в K. Поскольку всякое подполе поля K содержит единицу, оно содержит и множество $\langle 1 \rangle$. Следовательно, $\langle 1 \rangle \subseteq K_0$.

Если $\operatorname{char} K = p > 0$, то мы имеем изоморфизм колец $\langle 1 \rangle \simeq \mathbb{Z}_p$. Но, как мы уже знаем, кольцо \mathbb{Z}_p является полем, поэтому $K_0 = \langle 1 \rangle \simeq \mathbb{Z}_p$.

Если же $\operatorname{char} K = 0$, то мы имеем изоморфизм колец $\langle 1 \rangle \cong \mathbb{Z}$. Тогда, в силу того, что K_0 – поле, для любого $a \in \langle 1 \rangle \subseteq K_0$ существует обратный элемент 1/a. Следовательно, K_0 содержит все дроби вида a/b, где $a,b \in \langle 1 \rangle$ и $b \neq 0$. Ясно, что все такие дроби образуют поле, изоморфное полю \mathbb{Q} .

27 Расширение полей. Конечное расширение и его степень. Степень композиции двух расширений.

Определение 27.1. Если K — подполе поля F, то говорят, что F — pacuupehue поля K. Например, всякое поле есть расширение своего простого подполя.

Определение 27.2. Ственью расширения полей $K \subseteq F$ называется размерность поля F как векторного пространства над полем K. Обозначение [F:K].

Например, $[\mathbb{C} : \mathbb{R}] = 2$ и $[\mathbb{R} : \mathbb{Q}] = \infty$.

Определение 27.3. Расширение полей $K \subseteq F$ называется конечным, если $[F:K] < \infty$.

Предложение 27.1. Пусть $K \subseteq F$ и $F \subseteq L$ — конечные расширения полей. Тогда расширение $K \subseteq L$ также конечно и [L:K] = [L:F][F:K].

Доказательство. Пусть e_1, \ldots, e_n — базис F над K и f_1, \ldots, f_m — базис L над F. Достаточно доказать, что множество

$$\{e_i f_i \mid i = 1, \dots, n; j = 1, \dots, m\}$$

является базисом L над K. Для этого сначала покажем, что произвольный элемент $a \in L$ представим в виде линейной комбинации элементов с коэффициентами из K.

$$a = \sum_{i=1}^{m} \alpha_i f_i,$$

где $\alpha_i \in F$,

$$\alpha_i = \sum_{j=1}^n \beta_{ij} e_j,$$

где $\beta_{ij} \in K$. Тогла

$$a = \sum_{i=1}^{m} (\sum_{j=1}^{n} \beta_{ij} e_j) f_i = \sum_{i=1}^{m} \sum_{j=1}^{n} \beta_{ij} (e_j f_i).$$

Теперь проверим линейную независимость элементов.

Пусть

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \gamma_{ij}(e_j f_i) = 0,$$

где $\gamma_{ij} \in K$. Переписав это равенство в виде

$$\sum_{j=1}^{m} \left(\sum_{i=1}^{n} \gamma_{ij} e_i \right) f_j = 0$$

и воспользовавшись тем, что элементы f_1, \ldots, f_m линейно независимы над F, мы получим $\sum_{i=1}^n \gamma_{ij} e_i = 0$ для каждого $j = 1, \ldots, m$. Теперь из линейной независимости элементов e_1, \ldots, e_n над K вытекает, что $\gamma_{ij} = 0$ при всех i,j. Таким образом, элементы базиса линейно независимы.

28 Критерий того, что фактокольцо кольца многочленов над полем является полем. Степень расширения этого поля.

K – поле. $h = a_n x^n + \ldots + a_1 x + a_0 \in K[x], \deg h = n > 0.$ Положим $F := K[x]/(h). f \in K[x], \bar{f} = f + (h) \in F.$

Предложение 28.1. F – none \iff h – неприводим.

Доказательство.

- \Rightarrow Пусть приводим, то есть $h = h_1 \cdot h_2$, $\deg h_i < \deg h$. Тогда $\bar{h}_1 \cdot \bar{h}_2 = \bar{h} = \bar{0}$. В связи с тем, что $\deg h_i < \deg h$ получем, что $h_1, h_2 \not\in (h)$, откуда следует, что $\bar{h}_1, \bar{h}_2 \neq \bar{0}$, что означает существование делителей нуля, противоречие.
- \Leftarrow Известно, что F коммутативное кольцо с единицей. Достаточно показать, что всякий элемент обратим.

Рассмотрим $f \in K[x], \bar{f} \neq 0$. Так как $f \not h \Rightarrow (f,h) = 1 \Rightarrow \exists u, v \in K[x]$:

$$uf + vh = 1 \Rightarrow \bar{u}\bar{f} + \bar{v}\bar{h} = \bar{1} \Rightarrow \bar{u}\bar{f} = \bar{1}.$$

Отсюда видно, что f обратим.

Пример 9.

1. $\mathbb{R}[x]/(x^2+1)$ – поле ($\simeq \mathbb{C}$).

2. $\mathbb{R}[x]/(x^2+x)$ – не поле.

Предложение 28.2. $\bar{1}, \bar{x}, \dots, \bar{x}^{n-1}$ – базис F_K , в частности, расширение конечно и [F:K]=n.

Доказательство.

1) $f \in K[x]$. Разделим на h с остатком:

$$f = g \cdot h + r, \begin{cases} r = 0 \\ \deg r < \deg h \end{cases}$$

Отсюда видно, что $\bar{f} = \bar{r} \in \langle \bar{1}, \bar{x}, \dots, \bar{x}^{n-1} \rangle$.

Теперь покажем линейную независимость.

$$\beta_0 \bar{1} + \ldots + \beta_{n-1} \bar{x}^{n-1} = 0 \Rightarrow$$
$$\overline{\beta_0 + \ldots + \beta_{n-1} x^{n-1}} = \bar{0}.$$

Тогда $g = \beta_0 + \ldots + \beta_{n-1} x^{n-1} \in (h)$. Но поскольку $\deg g < \deg h \Rightarrow \beta_0 + \ldots + \beta_{n-1} x^{n-1} = 0$, откуда следует, что $\beta_i = 0$.

2) Покажем, что в F корнем многочлена h будет \bar{x} :

$$h(\bar{x}) = a_n \bar{x}_n^n + \dots + a_1 \bar{x} + a_0 \bar{1} = \overline{a_n x_n^n + \dots + a_1 x + a_0} = \bar{h}(x) = 0$$

29 Существование конечного расширения исходного поля, в котором заданный многочлен (а) имеет корень; (б) разлагается на линейные множители. Поле разложения многочлена

Теорема 29.1. Пусть K — произвольное поле u $f(x) \in K[x]$ — многочлен положительной степени. Тогда существует конечное расширение $K \subseteq F$, в котором многочлен f(x) имеет корень.

Рассмотрим случай, когда f – неприводим. Тогда мы знаем, что K[x]/(f) – поле, которое является конечным расширением K. Покажем, что его корнем будет \bar{x} :

$$h(\bar{x}) = a_n \bar{x}^n + \dots + a_1 \bar{x} + a_0 = \overline{(a_n x^n + \dots + a_0)} = \bar{h}(x) = 0$$

Следствие 29.1. $\forall f \in K[x] \exists F \subseteq K$ – конечное расширение, что f разлагается на линейные множители.

Доказательство. Индукция по $\deg f$.

База: $\deg f = 1$ – уже разлагается,

Шаг: Если у f есть корень α , то поделим многочлен на $x-\alpha$ и применим предположение индукции. Если же корня нет, то расширим поле и получим, что у него есть корень и снова применим предположение индукции. Так как на каждом из конечного числа шагов расширение конечное, то итоговое расширение также конечно.

Говорят, что поле K[x]/(p(x)) получено из поля K присоединением корня неприводимого многочлена p(x). Нетрудно проверить, что если α — некоторый корень многочлена p(x) в K[x]/(p(x)), то поле K[x]/(p(x)) совпадает с подполем $K(\alpha)$.

Определение 29.1. Пусть K — некоторое поле и $f(x) \in K[x]$ — многочлен положительной степени. Полем разложения многочлена f(x) называется такое расширение F поля K, что

- (1) многочлен f(x) разлагается над F на линейные множители;
- (2) в F нет меньших подполей со свойством 1) \Leftrightarrow корни многочлена f(x) не лежат ни в каком меньшем подполе.

Пример 10. Рассмотрим многочлен $f(x) = x^4 + x^3 + x^2 + x + 1$ над \mathbb{Q} . Так как $(x-1)f(x) = x^5 - 1$, корнями многочлена f(x) являются все корни степени 5 из единицы, отличные от единицы. Если присоединить к \mathbb{Q} один из корней ϵ многочлена f, то его остальные корни можно получить, возводя число ϵ в натуральные степени. Таким образом, присоединение одного корня сразу приводит к полю разложения многочлена.

Пример 11. Многочлен $f(x) = x^3 - 2$ неприводим над полем \mathbb{Q} . Присоединение к полю \mathbb{Q} корня этого многочлена приводит к полю $\mathbb{Q}[x]/(x^3-2) \cong \mathbb{Q}(\sqrt[3]{2})$. Данное поле не является

полем разложения многочлена f(x), поскольку в нём f(x) имеет только один корень и не имеет двух других корней. Поскольку корнями данного многочлена являются числа

$$\sqrt[3]{2}$$
, $\sqrt[3]{2}(-\frac{1}{2} + \frac{\sqrt{-3}}{2})$, $\sqrt[3]{2}(-\frac{1}{2} - \frac{\sqrt{-3}}{2})$,

полем разложения многочлена f(x) является поле

$$F = \{\alpha_0 + \alpha_1 \sqrt[3]{2} + \alpha_2 \sqrt[3]{4} + \alpha_3 \sqrt{-3} + \alpha_4 \sqrt[3]{2} \sqrt{-3} + \alpha_5 \sqrt[3]{4} \sqrt{-3} \mid \alpha_i \in \mathbb{Q}\},\$$

которое имеет над \mathbb{Q} степень 6.

Теорема 29.2. Поле разложения любого многочлена $f(x) \in K[x]$ существует и единственно с точностью до изоморфизма.

30 Алгебраические и трансцендентные элементы. Минимальный многочлен алгебраического элемента и его свойства.

Пусть $K \subseteq F$ — расширение полей.

Определение 30.1. Элемент $\alpha \in F$ называется алгебраическим над подполем K, если существует ненулевой многочлен $f(x) \in K[x]$, для которого $f(\alpha) = 0$. В противном случае α называется трансцендентным элементом над K.

```
\Piример 12. \sqrt{2},\sqrt{5} – алгебраические над \mathbb{Q}. e,\pi – транцендентные над \mathbb{Q}
```

Определение 30.2. Минимальным многочленом алгебраического элемента $\alpha \in F$ над подполем K называется ненулевой многочлен $h_{\alpha}(x)$ наименьшей степени, для которого $h_{\alpha}(\alpha) = 0$.

Лемма 30.1. Пусть $\alpha \in F$ — алгебраический элемент над K и $h_{\alpha}(x)$ — его минимальный многочлен. Тогда:

- (a) $h_{\alpha}(x)$ определён однозначно с точностью до пропорциональности;
- (б) для произвольного многочлена $f(x) \in K[x]$ равенство $f(\alpha) = 0$ имеет место тогда и только тогда, когда $h_{\alpha}(x)$ делит f(x);
- (в) $h_{\alpha}(x)$ является неприводимым многочленом над полем K (то есть, $h_{\alpha}(x)$ простой элемент в поле K[x]).

Доказательство.

```
Пусть I \subseteq K[x] - идеал, состоящий из всех многочленов f(x), таких что f(\alpha) = 0.
```

Т.к. K[x] – кольцо главных идеалов, то $\exists g(x) \in K[x]$, такой что $I=(g(x)) \Rightarrow h \vdots g$ $\Rightarrow g=c\cdot h$ для некоторого $c\in K/\{0\}$

Отсюда сразу следуют (а) и (б).

Пусть $h(x) = h_1(x) \cdot h_2(x)$, где $degh_i(x) < degh(x)$.

Тк $h(\alpha) = 0$, то $\exists i$, такое что $h_i(\alpha) = 0$, что противоречит с минимальностью.

31 Подполе в расширении полей, порожденное алгебраическим элементом.

Для каждого элемента $\alpha \in F$ обозначим через $K(\alpha)$ наименьшее подполе в F, содержащее K и α .

Предложение 31.1. Пусть $\alpha \in F$ — алгебраический элемент над K и n — степень его минимального многочлена над K. Тогда

$$K(\alpha) = \{ \beta_0 + \beta_1 \alpha + \ldots + \beta_{n-1} \alpha^{n-1} \mid \beta_0, \ldots, \beta_{n-1} \in K \}.$$

Кроме того, элементы $1, \alpha, \alpha^2, \dots, \alpha^{n-1}$ линейно независимы над K. В частности, $[K(\alpha):K]=n$.

Иными словами, любой элемент из наименьшего подполя, содержащего K и α , представим в виде линейной комбинации степеней α , и степень расширения $K \subseteq K(\alpha)$ равна степени минимального многочлена.

Доказательство. Легко видеть, что

$$K(\alpha) = \{ \frac{f(\alpha)}{g(\alpha)} \mid f(x), g(x) \in K[x], g(\alpha) \neq 0 \}.$$

Действительно, такие элементы лежат в любом подполе поля F, содержащем K и α , и сами образуют поле. Теперь возьмём произвольный элемент $\frac{f(\alpha)}{g(\alpha)} \in K(\alpha)$ и покажем, что он представим в виде, указанном в условии. Пусть $h_{\alpha}(x) \in K[x]$ — минимальный многочлен элемента α над K. Поскольку $g(\alpha) \neq 0$, многочлен $h_{\alpha}(x)$ не делит g(x). Но $h_{\alpha}(x)$ неприводим, поэтому $(g(x), h_{\alpha}(x)) = 1$. Значит, существуют такие многочлены $u(x), v(x) \in K[x]$, что $u(x)g(x)+v(x)h_{\alpha}(x)=1$. Подставляя в последнее равенство $x=\alpha$, мы получаем $u(\alpha)g(\alpha)=1$. Отсюда $\frac{f(\alpha)}{g(\alpha)}=f(\alpha)u(\alpha)$, и мы избавились от знаменателя. Теперь уменьшим степень числителя. Пусть r(x) — остаток от деления f(x)u(x) на $h_{\alpha}(x)$. Тогда $f(\alpha)u(\alpha)=r(\alpha)$ и, значит, $\frac{f(\alpha)}{g(\alpha)}=r(\alpha)$, что показывает представимость элемента $\frac{f\alpha}{g(\alpha)}$ в требуемом виде.

Остаётся показать, что элементы $1,\alpha,\dots,\alpha^{n-1}$ поля F линейно независимы над K. Если

$$\gamma_0 + \gamma_1 \alpha + \ldots + \gamma_{n-1} \alpha^{n-1} = 0$$

для некоторых $\gamma_0, \gamma_1, \ldots, \gamma_{n-1} \in K$, то для многочлена $w(x) = \gamma_0 + \gamma_1 x + \ldots + \gamma_{n-1} x^{n-1} \in K[x]$ получаем $w(\alpha) = 0$. Тогда из условия $\deg w(x) < \deg h_{\alpha}(x)$ вытекает, что w(x) = 0, то есть $\gamma_0 = \gamma_1 = \ldots = \gamma_{n-1} = 0$.

32 Порядок конечного поля. Автоморфизм Фробениуca.

Будем использовать следующее обозначение: $K^{\times} = (K \setminus \{0\}, \times)$ — мультипликативная группа поля K.

Пусть K — конечное поле. Тогда его характеристика отлична от нуля и потому равна некоторому простому числу p. Значит, K содержит поле \mathbb{Z}_p в качестве простого подполя.

Теорема 32.1. K - конечное поле, $char K = p \Rightarrow |K| = p^n$ для некоторого $n \in \mathbb{N}$

Доказательство. $char K = p \Rightarrow$ простое подполе в K есть \mathbb{Z}_p

 $\Rightarrow K$ векторное пространство над \mathbb{Z}_p , оно конечномерно

пусть $n = dim_{\mathbb{Z}_p} K$ и $(e_1, ..., e_n)$ базис k.

Тогда $K = \{a_1 e_1 + \dots + a_n e_n | a_i \in \mathbb{Z}_p\}.$

Для каждого a_i есть ровно p возможностей $\Rightarrow |K| = p^n$.

Пусть K — произвольное поле характеристики p > 0. Рассмотрим отображение

$$\varphi \colon K \to K, \quad a \mapsto a^p.$$

Покажем, что φ — гомоморфизм. Для любых $a,b \in K$ по формуле бинома Ньютона имеем

$$(a+b)^p = a^p + \binom{p}{1}a^{p-1}b + \binom{p}{2}a^{p-2}b^2 + \dots + \binom{p}{p-1}ab^{p-1} + b^p.$$

Так как p — простое число, то все биномиальные коэффициенты $\binom{p}{i}$ при $1 \leqslant i \leqslant p-1$ делятся на p. Это значит, что в нашем поле характеристики p все эти коэффициенты обнуляются, в результате чего получаем $(a+b)^p = a^p + b^p$. Ясно, что $(ab)^p = a^p b^p$, так что φ — гомоморфизм.

 $\varphi(1)=1\neq 0\Rightarrow Ker \varphi\neq K$ Ядро любого гомоморфизма колец является идеалом, поэтому $Ker \varphi$ — идеал в K. Но в поле нет собственных идеалов, поэтому $Ker \varphi=\{0\}$, откуда φ инъективен.

Если поле K конечно, то инъективное отображение из K в K автоматически биективно. В этой ситуации φ называется автоморфизмом Фробениуса поля K.

Предложение 32.1. Пусть K — произвольное поле u ψ — произвольный автоморфизм (m. e. u зоморфизм на ceбя) поля K. Тогда множество неподвижных точек $K^{\psi} = \{a \in K \mid \psi(a) = a\}$ является подполем в K.

Доказательство. Проверим выполнение всех свойств подполя по определению:

Так как ψ – изоморфизм полей (колец), то $\psi(a+b)=\psi(a)+\psi(b)$ и $\psi(ab)=\psi(a)\psi(b)$. Отсюда следует, что если элементы a и b являются неподвижными $(a,b\in K^{\psi})$, то $\psi(a)+\psi(b)=a+b\in K^{\psi}$ и $\psi(a)\psi(b)=ab\in K^{\psi}$, значит, множество K^{ψ} замкнуто по сложению и умножению.

При любом гомоморфизме 0 переходит в 0, а 1 в 1, отсюда 1 и 0 лежат в K^{ψ} . Осталось проверить, что для любого ненулевого $a \in K^{\psi}$ существует обратный в K^{ψ} . Заметим, что в исходном поле K для a существует обратный элемент a^{-1} . Тогда $\psi(a \cdot a^{-1}) = \psi(a)\psi(a^{-1}) = a\psi(a^{-1})$. С другой стороны, по определению обратного элемента $\psi(a \cdot a^{-1}) = \psi(1) = 1$, откуда $a\psi(a^{-1}) = 1$. Следовательно, $\psi(a^{-1}) = a^{-1}$ и $a^{-1} \in K^{\psi}$.

Таким образом, K^{ψ} – подполе в K.

33 Теорема о существовании и единственности для конечных полей.

Прежде чем перейти к следующей теореме, обсудим понятие формальной производной многочлена. Пусть K[x] — кольцо многочленов над произвольным полем K. Формальной производной называется отображение $K[x] \to K[x]$, которое каждому многочлену $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ сопоставляет многочлен $f'(x) = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \ldots + a_1$. Из определения следует, что это отображение линейно. Легко проверить, что для любых $f,g \in K[x]$ справедливо привычное нам равенство (fg)' = f'g + fg' (в силу дистрибутивности умножения проверка этого равенства сводится к случаю, когда f,g — одночлены).

Теорема 33.1. Для всякого простого числа p и натурального числа n существует единственное (c точностью до изоморфизма) поле из p^n элементов.

Доказательство. Положим $q = p^n$ для краткости.

 $E \partial u$ нственность. Пусть поле K содержит $p^n = q$ элементов. Тогда мультипликативная группа K^{\times} имеет порядок q-1. По следствию 3 из теоремы Лагранжа ($|G| < \infty \Rightarrow g^{|G|} = e \ \forall \ g \in G$) мы имеем $a^{q-1} = 1$ для всех $a \in K^{\times} = K \setminus \{0\}$, откуда $a^q - a = 0$ для всех $a \in K$. Это значит, что все элементы поля K являются корнями многочлена $x^q - x \in \mathbb{Z}_p[x]$. Отсюда следует, что K является полем разложения многочлена $x^q - x$ над \mathbb{Z}_p . Из теоремы о полях разложения, следует, что поле K единственно с точностью до изоморфизма.

Существование. Пусть K — поле разложения многочлена $f(x) = x^q - x \in \mathbb{Z}_p[x]$. Тогда имеем $f'(x) = qx^{q-1} - 1 = -1$ (qx^{q-1} обнуляется, так как q делится на p, а p — характеристика поля \mathbb{Z}_p).

Покажем, что многочлен f(x) не имеет кратных корней в K. Действительно, если α — корень кратности $m \geqslant 2$, то $f(x) = (x-\alpha)^m g(x)$ для некоторого многочлена $g(x) \in \mathbb{Z}_p[x]$. Но тогда $f'(x) = m(x-\alpha)^{m-1}g(x) + (x-\alpha)^m g'(x)$, откуда видно, что f'(x) делится на $(x-\alpha)$. Но последнее невозможно, ибо f'(x) = -1 — многочлен нулевой степени.

Обозначим $K_f \subset K$ множество всех корней в K многочлена f.

```
У f нет кратных корней в K \Rightarrow |K_f| = q.
```

$$a \in K_f \Leftrightarrow a^q = a \Leftrightarrow a^{p^n} = a \Leftrightarrow (((a^p)^p)...)^p = a \Leftrightarrow \varphi^n(a) = a,$$

где φ автоморфизм Фробениуса, $\psi = \varphi^n$ тоже автоморфизм

 $\Rightarrow K_f = K^{\psi} \Rightarrow K_f$ поле, оно содержит все корни f

$$\Rightarrow K_f = K$$
 (т.к. K – поле разложения)

 Π ример 13. Построим явно поле из четырёх элементов. Многочлен x^2+x+1 неприводим над \mathbb{Z}_2 . Значит, факторкольцо $\mathbb{Z}_2[x]/(x^2+x+1)$ является полем и его элементы — это классы $\overline{0}, \overline{1}, \overline{x}, \overline{x+1}$ (запись \overline{a} означает класс элемента a в факторкольце $\mathbb{Z}_2[x]/(x^2+x+1)$). Например, произведение $\overline{x} \cdot \overline{x+1}$ — это класс элемента x^2+x , который равен $\overline{1}$.

34 Цикличность мультипликативной группы конечного поля и неприводимые многочлены над \mathbb{Z}_p .

Предложение 34.1. K - конечное поле \Rightarrow группа K^{\times} является циклической

Доказательство. Пусть q=|K|. Пусть $m=exp(K^{\times})$. Тогда $a^m=1, \forall a\in K^{\times}$.

Но тогда все элементы из K^{\times} являются корнями многочлена x^m-1 .

Если $m < q-1 = |K^{\times}|$, то этот многочлен имеет q-1 > m корней (что больше, чем его степень). Противоречие.

Тогда $m=q-1\Rightarrow exp(K^{\times})=|K^{\times}|\Rightarrow K^{\times}$ является циклической.

Теорема 34.1. Конечное поле F_q , где $q = p^n$, можно реализовать в виде $\mathbb{Z}_p[x]/(h(x))$, где h(x) неприводимый многочлен степени n над \mathbb{Z}_p . В частности, для всякого $n \in \mathbb{N}$ в кольце $\mathbb{Z}_p[x]$ есть неприводимый многочлен степени n.

Доказательство. Пусть α – порождающий элемент группы F_q^{\times} . Тогда минимальное подполе $\mathbb{Z}_p(\alpha)$ поля F_q , содержащее α , совпадает с F_q (так как содержит K^{\times} и 0).

Значит поле F_q изоморфно полю $\mathbb{Z}_p[x]/(h(x))$, где h(x) минимальный многочлен элемента α над \mathbb{Z}_p . Пусть d – степень h. Тогда $\mathbb{Z}_p[x]/(h)$ содержит p^d элементов, то n=d. \square

35 Подполя конечного поля.

Теорема 35.1. Пусть $q = p^n$, p - простое.

- 1) $F \subseteq \mathbb{F}_q$ подполе $\Rightarrow F \simeq \mathbb{F}_{p^m}$, где $m \mid n$.
- 2) $m \mid n \Rightarrow s \mathbb{F}_q \exists ! \text{ nodnose } F, \text{ make umo } |F| = p^m.$

Доказательство. 1) $F \subseteq \mathbb{F}_q$ - подполе. Положим $s = [\mathbb{F}_q : F]$. Так как поле конечное, то $|F| = p^m$ для некоторого m. Тогда $p^n = (p^m)^s = p^{ms} \Rightarrow m \mid n$.

2) Пусть $m \mid n, n = m \cdot s$.

Рассмотрим многочлены:

$$f(x) = x^{p^n} - x = x(x^{p^n - 1} - 1) \in \mathbb{Z}_p[x],$$

$$g(x) = x^{p^m} - x = x(x^{p^m - 1} - 1) \in \mathbb{Z}_p[x]$$

Заметим, что $p^n - 1 = p^{ms} - 1 : p^m - 1 \Rightarrow x^{p^n} - 1 : x^{p^m} - 1 \Rightarrow f(x) \lor g(x)$

f(x) над \mathbb{F}_{p^n} разлагается на линейные множители (без кратностых корней), значит, g(x) как его делитель также разлагается на линейные множители без корней. Тогда g в \mathbb{F}_{p^n} имеет ровно p^m корней.

Тогда $g(a)=0 \iff a^{p^m}=a \iff \varphi^m(a)=a$, где φ – автоморфизм Фробениуса. Тогда корни g образуют подполе в \mathbb{F}_{p^m}

Отсюда сразу единственность, так как все элементы \mathbb{F}_{p^m} должны быть корнями многочлена g(x).

36 Коды над конечным алфавитом. Расстояние Хэмминга. Минимальное расстояние кода. Коды, исправляющие t ошибок: определение, эквивалентные формулировки. Код с повторением.

 Σ – конечный алфавит, $|\Sigma| = q$ (крайне важен случай, когда $\Sigma = \{0, 1\}$.

Информация разбита на блоки длины k. Мы хотим её передавать по каналу связи с шумом.

Основная идея – передавать информацию с избытком.

$$\underbrace{a}_{\Sigma^k} \xrightarrow{f, \ k < n} \underbrace{c}_{\Sigma^n} \xrightarrow{errors} \underbrace{c'}_{\Sigma^n} \xrightarrow{g} \underbrace{a}_{\Sigma^k}$$

Ошибками в нашем случае является искажение символов, то есть замена буквы на другую произвольную.

Пример 14. Пусть в канале связи может быть не больше 1 ошибки. Тогда $w \to www$ отличный способ кодирования для исправления этой ошибки.

Определение 36.1. *Расстояние Хэмминга* между словами a и b – это количество отличающихся символов между a и b:

$$\rho(a,b) := |\{i \mid a_i \neq b_i\}|$$

Пример 15. a – исходное сообщение, b – полученное сообщение $\Rightarrow \rho(a,b)$. Тогда $\rho(a,b)$ это в точности количество ошибок при передаче сообещния.

Замечание 25. ρ является метрикой в Σ^n .

Определение 36.2. Кодом длины n (над Σ) называется всякое подмножество $C \subseteq \Sigma^n$.

Определение 36.3. Говорят, что код $C \subseteq \Sigma^n$ исправляет t ошибок, если $\forall x \in \Sigma^n \exists$ не более одного $c \in C$, такого что $\rho(x,c) \leqslant t$.

Задача 36.1. Строить такие коды, у которых слова находились бы на большем расстоянии друг от друга.

Определение 36.4. Число $d_{:=\min_{x\neq y\in \rho(x,y)}}$ называется минимальным расстоянием кода .

Определение 36.5. Шаром радиуса t с центром в точке x называется множество

$$B_t(x) := \{ y \in \Sigma^n \mid \rho(x,y) \leqslant t \}$$

Теорема 36.1. Для кода $C \subseteq \Sigma^n$ следующие условия эквивалентны:

- 1. С исправляет t ошибок.
- 2. $\forall x \neq y \in C : B_t(x) \cap B_t(y) = \emptyset$
- 3. $d_C \ge 2t + 1$

Доказательство.

 $(1)\Leftrightarrow (2)$ C исправляет t ошибок $\iff \forall x\in \Sigma^n\ \exists_{\leqslant 1}y\in C:\ x\in B_t(y)\iff B_t(x)\cap B_t(y)=\varnothing\ \forall x\neq y\in C.$

Можно представить геометрически: точка лежит не более чем в одном шаре размера t с центром в кодовом слове тогда и только тогда, когда эти шары не пересекаются — в противного случае точка пересечения будет покрыта хотя бы двумя кодовыми словами и мы не сможем определить, как его расшировать.

 $(2) \Rightarrow (3)$ От противного: пусть $\exists a \neq b \in C : \rho(a,b) \leqslant 2t$.

Без ограничения общности можно считать, что $a_i=b_i$ при i>2t, то есть мы перенумеровали координаты так, что они слова различаются только в первых $\leqslant 2t$ координатах.

Тогда рассмотрим следующий $x = (a_1, \ldots, a_t, b_{t+1}, \ldots, b_n).$

$$\begin{cases} \rho(x,b) \leqslant t \\ \rho(x,a) \leqslant t \end{cases} \Rightarrow B_t(a) \cap B_t(b) \neq \emptyset$$

 $(3) \Rightarrow (2)$ От противного: пусть $\exists a \neq b \in C$, такие что $B_t(a) \cap B_t(b) \neq \emptyset$.

Тогда $\exists x : \rho(a,x) \leqslant t, \ \rho(b,x) \leqslant t.$

Тогда по неравенству треугольника получаем, что $\rho(a,b) \leqslant 2t$ – противоречие.

Пример 16. Код с повторениями.

$$C = \{(a, \dots, a) \mid a \in \Sigma\} \subseteq \Sigma^n.$$

Можно понять, что $d_C = n \Rightarrow C$ исправляет (n-1)/2 ошибок.

Линейные коды. Проверочная матрица. Связь ми-37 нимального расстояния линейного кода с его проверочной матрицей. Бинарный код Хэмминга, его минимальное расстояние и число ошибок, которое он может исправлять

Считаем, что Σ – конечное поле \mathbb{F}_q . Тогда Σ^n – векторное пространство над \mathbb{F}_q . Идея: строить коды, являющиеся подпространствами в \mathbb{F}_a^n .

Определение 37.1. Код $C \subseteq (\mathbb{F}_q)^n$ называется линейным, если C является подпространством в $(\mathbb{F}_q)^n$.

 $\dim C$ называется размерностью линейного кода.

 $C \subseteq (\mathbb{F}_q)^n$ – линейный код, dim C = k. Тогда C можно обозначит как (n,t), где первой координатой стоит длина, а второй – размерность.

Определение 37.2. Норма векттора $x \in \mathbb{F}_q^n$ – это число ненулевых координат:

$$||x|| := |\{i \mid x_i \neq 0\}|$$

Лемма 37.1. $C \subseteq \mathbb{F}_q^n$ – линейный ко $\partial \Rightarrow d_c = \min_{x \neq 0 \in C} ||x||$

Определение 37.3. $d_C = \min \rho(x,y) = \min ||x-y|| = \min ||x||$. Все переходы за счет линейности.

Определение 37.4. $C\subseteq \mathbb{F}_q^n$ – линейный (n,k) код. Матрица $H\subseteq Mat_{(n-k)\times n}(\mathbb{F}_q)$ называется проверочной матрицей кода C если rk(H)=n-k и $\forall x=(x_1,\ldots,x_n)\in\mathbb{F}_q^n$ верно:

$$x \in C \iff H \cdot x^t = 0$$

Пример 17. С – код с повтрениями. Тогда

$$H = \begin{pmatrix} -1 & 1 & 0 & \cdots & 0 \\ -1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Это – линейный (n,1) код.

Предложение 37.1. C – линейный код c проверочной матрицей H.

Тогда следующие условия эквивалентны:

- 1. $d_C \geqslant s + 1$
- 2. Любые s столбцов матрицы H линейно независимы.

Доказательство. $d_C \leqslant s \iff \exists x \in C : ||x|| \leqslant s \iff \mathsf{B} \ H$ есть s линейно зависимых столбцов. Пример 18. (бинарный код Хэмминга)

q=2 фиксировано, $k\in\mathbb{N}.$

 $H_k \in Mat_{k \times (2^k-1)}(\mathbb{F}_2).$

Столбца H_k – это бинарная запись всех чисел от 1 до 2^k-1 .

Пример: k=3

$$H_3 = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Так как любые два стольца различны, а значит, линейно независимы (\mathbb{F}_2), то получаем, что $d_C=3$. Первые 3 столбца линейно зависимы $\Rightarrow d_C=3\Rightarrow C$ исправляет 1 ошибку.

38 Коды БЧХ. Теорема о количестве ошибок, исправляемых кодом БЧХ. Оценка на размерность кода БЧХ

Отождествим \mathbb{F}_q^n с кольцом $\mathbb{F}_q[x]/(x^m-1)$. Тогда:

$$(c_0, c_1, \dots, c_{n-1}) \mapsto c_0 + c_1 x + \dots c_{n-1} x^{n-1}$$

Зафиксируем параметры n,q,m так, чтобы $n=q^m$.

Мы знаем, что группа \mathbb{F}_{q^m} – циклическая, пусть α – её порождающий.

Зафиксируем t – количество ошибок, которые мы хотим исправлять. Теперь $\forall i \in \{1,\ldots,2t\}$ положим $h_i(x) \in \mathbb{F}_q[x]$ – минимальный многочлен для α^i . Будем считать, что 2t < n, так как в ином случае у нас бы некоторые α повторились бы.

Важно: $x^n - 1 : h_i(x)$ (малая теорема Ферма).

Теперь положим $g(x) = HOK(h_1(x), \dots, h_{2t}(x))$. Понятно, что $x^n - 1 \\\vdots g(x)$.

Определим БЧХ код так:

$$C = \{ f \in \mathbb{F}_q[x]/(x^n - 1) \mid f \stackrel{.}{\cdot} g \}$$

Теорема 38.1. БЧХ код исправляет t ошибок.

Доказательство. $f \in C \iff f : g \iff \forall i \in \{1, \dots, 2t\} : f(\alpha^i) = 0.$

В общем виде f записывается так:

$$f = c_0 + c_1 x + \ldots + c_{n-1} x^{n-1}$$

Тогда $f \in C \iff H \cdot c = 0$, где

$$H = \begin{pmatrix} 1 & \alpha & \alpha^2 & \alpha^3 & \cdots & \alpha^{n-1} \\ 1 & \alpha^2 & \alpha^4 & \cdots & \cdots & \alpha^{2n-2} \\ 1 & \alpha^3 & \cdots & \cdots & \cdots & \alpha^{3n-3} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & \alpha^{2t} & \cdots & \cdots & \cdots & \alpha^{2t(n-1)} \end{pmatrix}$$

Достаточно показать, что любые 2t столбцов линейно независимы. Возьмем столбца i_1, \ldots, i_{2t} . Посчитаем определитель получившейся матрицы:

$$\begin{vmatrix} \alpha^{i_1} & \cdots & \alpha^{i_{2t}} \\ \alpha^{2i_1} & \cdots & \alpha^{2i_{2t}} \\ \vdots & \ddots & \vdots \\ \alpha^{2t(i_1)} & \cdots & \alpha^{2t(i_{2t})} \end{vmatrix} = \alpha^{i_1} \cdot \ldots \cdot \alpha^{i_{2t}} \cdot \begin{vmatrix} 1 & \cdots & 1 \\ \alpha^{i_1} & \cdot & \alpha^{i_{2t}} \\ \vdots & \ddots & \vdots \\ \alpha^{(2t-1)(i_1)} & \cdots & \alpha^{(2t-1)(i_{2t})} \end{vmatrix}$$

Это ничто иное, как определитель Вандермонда. Его мы знаем. Получаем:

$$\alpha^{i_1} \cdot \ldots \cdot \alpha^{i_{2t}} \cdot \prod_{k,l \in [1,2t]} (\alpha^{i_l} - \alpha^{i_k}) \neq 0$$

Последний переход верен так как 2t < n, а так как α – порождающий мультипликативной группы поля, то все степени, < n, попарно различны.

Таким образом, действительно любые 2t столбцом линейно независимы. Больше быть не может, так как всего в матрице 2t строк. Итого получаем, что $d_c = 2t + 1$.

Предложение 38.1. C – $\kappa o \partial$ B YX. $Tor \partial a \dim C \geqslant n-2tm=n-2t\log_q(n+1)$.

 \mathcal{A} оказательство. Из определения проверочной матрицы можно понять, что $\dim C = n - \deg g$. Имеем: $[\mathbb{F}_{q^m}:\mathbb{F}_q] = m$. Тогда $\forall i \in \{1,\ldots,2t\}: [\mathbb{F}_{q^m}:\mathbb{F}_q] \leqslant m \Rightarrow \deg h_i \leqslant m \Rightarrow \deg h \leqslant 2tm$.