Solutions to J/STOW #4: Prime Numbers, Greatest Common Divisor, and Least Common Multiple

Zed Li

November 8, 2019

1. Prove that the fraction $\frac{4k+7}{7k+12}$ is reduced to lowest terms.

Solution:

Since 7(4k+7)-4(7k+12)=1, Bézout's identity tells us that 4k+7 and 7k+12 are coprime, so $\frac{4k+7}{7k+12}$ is reduced to lowest terms.

2. Prove that the number of positive factors of positive integer n is less than $2\sqrt{n}$.

Proof:

Consider every positive factor d of n greater than \sqrt{n} . Let's say there are k of those. Then n/d is also a positive factor of n and $n/d < n/\sqrt{n} = \sqrt{n}$. So there are k positive factors of n less than \sqrt{n} , so $k < \sqrt{n}$. Then there are $2k < 2\sqrt{n}$ positive factors of n less than or greater than \sqrt{n} . If n is not a perfect square, \sqrt{n} cannot be a factor of n, so there are $2k < 2\sqrt{n}$ positive factors of n in total. If n is a perfect square, then \sqrt{n} is also a factor of n. Therefore, $k < \sqrt{n}$ means that $k \le \sqrt{n} - 1$, so there are $2k + 1 = 2\sqrt{n} - 1 < 2\sqrt{n}$ positive factors of n. In conclusion, the number of positive factors of n is less than $2\sqrt{n}$.

3. Prove Bézout's general identity from the special identity. In other words, prove that there exist integers x, y such that $ax + by = \gcd(a, b)$ assuming we already know that there exist integers x, y such that a'x + b'y = 1 if a', b' are coprime.

Proof:

Let $a = a' \gcd(a, b)$ and $b = b' \gcd(a, b)$. Then $\gcd(a', b') = 1$, so there exist integers x, y such that a'x + b'y = 1. Therefore, $a'x \gcd(a, b) + b'y \gcd(a, b) = \gcd(a, b)$, i.e. $ax + by = \gcd(a, b)$.

4. Given that $a \mid bc$ for positive a, b, c, prove that: i) a is composite if a > b, c; ii) $\frac{bc}{a}$ is composite if a < b, c.

Proof:

i) If a is prime, then either $a \mid b$ or $a \mid c$, so $a \leq b$ or $a \leq c$, contradicting the fact that a > b, c. Hence, we must have a is composite.

- ii) Let $\frac{bc}{a} = d$. Then bc = ad so $d \mid bc$. Since $d = \frac{b}{a} \cdot c > c$ and $d = \frac{c}{a} \cdot b > b$, part i) tells us that d is composite, i.e. $\frac{bc}{a}$ is composite.
- 5. Given that $a+b \mid a^3-b^3$ for positive integers a,b satisfying $a \neq b$ and a+b is prime, prove that $a+b \mid ab$. (SJAMMO 2019 Senior level Q1)

Proof:

$$a + b \mid a^3 - b^3 = (a - b)(a^2 + ab + b^2).$$

But since a-b, b-a < a+b, meaning that |a-b| < a+b, and since $a \neq b$, we cannot have $a+b \mid a-b$.

Since a + b is prime, we must have $a + b \mid a^2 + ab + b^2$.

Since $a^2 + ab + b^2 = (a + b)^2 - ab$, we get $a + b \mid ab$.

6. Prove that $2^{2^a} + 1$ and $2^{2^b} + 1$ are coprime for distinct non-negative a, b.

Proof:

WLOG (without loss of generality), assume that a < b. (The case for b < a follows the same logic.) Then $a + 1 \le b$ and hence $2^{a+1} \mid 2^b$. This means that

$$2^{2^{a+1}} - 1 \mid 2^{2^b} - 1.$$

Hence,

$$\gcd\left(2^{2^{a+1}} - 1, 2^{2^b} + 1\right) = \gcd\left(2^{2^{a+1}} - 1, \left(2^{2^b} - 1\right) + 2\right)$$
$$= \gcd\left(2^{2^{a+1}} - 1, 2\right)$$
$$= 1.$$

Now, $2^{2^a} + 1 \mid (2^{2^a} + 1)(2^{2^a} - 1) = 2^{2^{a+1}} - 1$, meaning that $\gcd(2^{2^a} + 1, 2^{2^b} + 1) = 1$.

7. Prove that positive integers a, b, c are mutually coprime if and only if

$$\operatorname{lcm}(a,b) \cdot \operatorname{lcm}(b,c) \cdot \operatorname{lcm}(c,a) = [\operatorname{lcm}(a,b,c)]^{2}.$$

Proof 1: (Cristian)

If a, b, c are mutually coprime, then

$$lcm(a,b) \cdot lcm(b,c) \cdot lcm(c,a) = (ab)(bc)(ca)$$
$$= (abc)^{2}$$
$$= [lcm(a,b,c)]^{2}.$$

On the other hand, if

$$\operatorname{lcm}(a,b) \cdot \operatorname{lcm}(b,c) \cdot \operatorname{lcm}(c,a) = [\operatorname{lcm}(a,b,c)]^{2},$$

let the prime factorizations of a,b,c be $p_1^{\alpha_1}p_2^{\alpha_2}\ldots,p_1^{\beta_1}p_2^{\beta_2}\ldots,p_1^{\gamma_1}p_2^{\gamma_2}\ldots$ where p_1,p_2,\ldots are all prime numbers in ascending order and all exponents are non-negative integers. Then, for each integer $k\geq 1$, we have

$$\max(\alpha_k, \beta_k) + \max(\beta_k, \gamma_k) + \max(\gamma_k, \alpha_k) = 2\max(\alpha_k, \beta_k, \gamma_k).$$

WLOG, let $\alpha_k \geq \beta_k \geq \gamma_k$. Then

$$\alpha_k + \beta_k + \alpha_k = 2\alpha_k$$
$$\beta_k = 0.$$

Since $\beta_k \geq \gamma_k$, we also have $\gamma_k = 0$. So $\min(\alpha_k, \beta_k) = \min(\beta_k, \gamma_k) = \min(\gamma_k, \alpha_k) = 0$ for all $k \geq 1$, i.e. a, b, c are mutually coprime.

Proof 2 (Zed):

If a, b, c are mutually coprime, then

$$lcm(a,b) \cdot lcm(b,c) \cdot lcm(c,a) = (ab)(bc)(ca)$$
$$= (abc)^{2}$$
$$= [lcm(a,b,c)]^{2}.$$

On the other hand, if

$$\operatorname{lcm}(a,b) \cdot \operatorname{lcm}(b,c) \cdot \operatorname{lcm}(c,a) = [\operatorname{lcm}(a,b,c)]^{2}.$$

then

$$\frac{(ab)(bc)(ca)}{\gcd(a,b) \cdot \gcd(b,c) \cdot \gcd(c,a)} = [\operatorname{lcm}(\operatorname{lcm}(a,b),c)]^{2}$$

$$\frac{a^{2}b^{2}c^{2}}{\gcd(a,b) \cdot \gcd(b,c) \cdot \gcd(c,a)} = \frac{[\operatorname{lcm}(a,b)]^{2}c^{2}}{[\gcd(\operatorname{lcm}(a,b),c)]^{2}}$$

$$\frac{a^{2}b^{2}c^{2}}{\gcd(a,b) \cdot \gcd(b,c) \cdot \gcd(c,a)} = \frac{a^{2}b^{2}c^{2}}{[\gcd(a,b)]^{2}[\gcd(\operatorname{lcm}(a,b),c)]^{2}}$$

$$[\gcd(a,b)]^{2}[\gcd(\operatorname{lcm}(a,b),c)]^{2} = \gcd(a,b) \cdot \gcd(b,c) \cdot \gcd(c,a)$$

$$\gcd(a,b) \cdot [\gcd(\operatorname{lcm}(a,b),c)]^{2} = \gcd(b,c) \cdot \gcd(c,a) \tag{*}$$

Now, since $\gcd(b,c) \mid b \mid \operatorname{lcm}(a,b)$ and $\gcd(b,c) \mid c$, we must have $\gcd(b,c) \mid \gcd(\operatorname{lcm}(a,b),c)$. Hence, $\gcd(\operatorname{lcm}(a,b),c) \geq \gcd(b,c)$. Similarly, $\gcd(\operatorname{lcm}(a,b),c) \geq \gcd(a,c)$. Therefore, $[\gcd(\operatorname{lcm}(a,b),c)]^2 \geq \gcd(b,c) \cdot \gcd(c,a)$. Plugging this into (*) gives us $\gcd(a,b) \leq 1$, so we must have $\gcd(a,b) = 1$. Due to symmetry, we also have $\gcd(b,c) = \gcd(c,a) = 1$, so a,b,c are mutually coprime.

In conclusion, positive integers a, b, c are mutually coprime if and only if

$$\operatorname{lcm}(a,b) \cdot \operatorname{lcm}(b,c) \cdot \operatorname{lcm}(c,a) = [\operatorname{lcm}(a,b,c)]^{2}.$$

- 8. The Fibonacci sequence F_n is defined such that $F_0 = 0, F_1 = 1$ and $F_{k+2} = F_{k+1} + F_k$ for $k \ge 0$.
 - (a) Prove that F_k and F_{k+1} are coprime for all $k \geq 0$.

For the base case, we have $F_m \mid F_0 = 0$ when q = 0.

(b) Prove that $F_m \mid F_n$ if and only if $m \mid n$.

Proof:

- (a) We prove this by induction. Obviously, $\gcd(F_0, F_1) = \gcd(0, 1) = 1$. Assume $\gcd(F_k, F_{k+1}) = 1$ for some $k \geq 0$. Then $\gcd(F_{k+1}, F_{k+2}) = \gcd(F_{k+1}, F_{k+1} + F_k) = \gcd(F_{k+1}, F_k) = 1$, hence completing the proof for $\gcd(F_k, F_{k+1}) = 1$ for all $k \geq 0$.
- (b) The case for m=1 is obvious since $F_1 \mid F_n$ and $1 \mid n$ for all n. Now, let m>1 since $m \neq 0$. Obviously, $F_m \mid F_0=0$. Now we need to prove that $F_m \mid F_{qm}$ while $F_m \nmid F_{qm-r}$ $(q \geq 1, 0 < r < m)$. We prove this by induction on q. Note that $F_m \nmid F_{m-r}$ for 0 < r < m since in that case $0 < F_{m-r} < F_m$.

Assume that for some $q \ge 0$, we have that $F_m \mid F_{qm}$. Consider the sequences $a_k = (F_k F_{qm+1} \mod F_m)$ and $b_k = (F_k \mod F_m)$ for $k \ge 0$.

Note that the sequence a_k satisfies $a_0 = 0$, $a_1 = (F_{qm+1} \mod F_m)$, and

$$a_{k+2} = (F_{k+2}F_{qm+1} \bmod F_m)$$

= $((F_{k+1} + F_k)F_{qm+1} \bmod F_m)$
= $((a_{k+1} + a_k) \bmod F_m)$

for $k \geq 0$; on the other hand, sequence b_k satisfies $b_{qm} = (F_{qm} \mod F_m) = 0$, $b_{qm+1} = (F_{qm+1} \mod F_m)$, and

$$b_{k+2} = (F_{k+2} \bmod F_m)$$

= $((F_{k+1} + F_k) \bmod F_m)$
= $((b_{k+1} + b_k) \bmod F_m)$

for $k \geq 0$. Now, since $a_0 = b_{qm}$, $a_1 = b_{qm+1}$, and the recursive definitions for the sequences a_k and b_k are the same, we conclude that $a_k = b_{qm+k}$ for all $k \geq 0$. Hence, we have

$$(F_{(q+1)m} \bmod F_m) = b_{qm+m} = a_m = (F_m F_{qm+1} \bmod F_m) = 0,$$

i.e. $F_m \mid F_{(q+1)m}$. Furthermore, for 0 < r < m, note that $F_m \mid F_{qm}$ and $\gcd(F_{qm}, F_{qm+1}) = 1$ (from part a) result in $\gcd(F_m, F_{qm+1}) = 1$, so $F_m \nmid F_{m-r}$ tells us that $F_m \nmid F_{m-r}F_{qm+1}$. Hence,

$$(F_{(q+1)m-r} \bmod F_m) = b_{qm+m-r} = a_{m-r} = (F_{m-r}F_{qm+1} \bmod F_m) \neq 0,$$

i.e. $F_m \nmid F_{(q+1)m-r}$ for 0 < r < m.

By induction, $F_m \mid F_{qm}$ while $F_m \nmid F_{qm-r} \ (q \ge 1, \ 0 < r < m)$.

In conclusion, $F_m \mid F_n$ if and only if $m \mid n$.