

Desenvolvimento de Base de Dados para Treinamento de Redes Neurais de Reconhecimento de Voz Através da Geração de Áudios com Resposta ao Impulso Simuladas por Técnicas de Data Augmentation

Bruno Machado Afonso

bruno.ma@poli.ufrj.br

Departamento de Engenharia Eletrônica e de Computação - Escola Politécnica

Universidade Federal do Rio de Janeiro

11 de julho de 2021

Sumário

Motivação

Texto de Exemplo para a motivação as dfas ffds a

Conclusões

- Em grande parte, os resultados alcançados estão condizentes com os valores esperados.
- Discrepância nos valores de T60 podem ser explicados pelas diferenças de implementação entre este projeto e [1].
- Avaliação empírica das sensações subjetivas de "distância" e "eco" condizentes com as modificações esperadas.

Trabalhos Futuros

- Implementação de uma metodologia de *data augmentation* de T60 mais próxima à usada no artigo [1].
- Comparação entre as RIRs geradas com a metodologia implementada e RIRs geradas através de programas de simulação acústicas (RAIOS [2]).
- Proposta de um modelo de rede de deep learning para estimação de T60 e DRR em AVCDs para observação da eficácia das RIRs como aprimoradoras do treinamento de redes neurais.

Obrigado!

Referências

- [1] N. J. Bryan. "Impulse Response Data Augmentation and Deep Neural Networks for Blind Room Acoustic Parameter Estimation". Em: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 1–5. DOI: 10.1109/ICASSP40776.2020.9052970.
- [2] Roberto Tenenbaum et al. "Hybrid method for numerical simulation of room acoustics: Part 2-validation of the computational code RAIOS 3". Em: Journal of the Brazilian Society of Mechanical Sciences and Engineering 29 (abr. de 2007). DOI: 10.1590/S1678-58782007000200013.