

Q: Given a graph G₁, deter-mine if there is a path between node 2 and 3. A: The answer is yes.

deter-mine if there is a graph cycle.

Cycle Detection

Q: Given a graph G₁,

A: No cycle in the graph.

Hamilton Path

Shortest Path

or structures.

Titanic and Avatar."

Knowledge Graph Generation

A: The graph is shown in the follow:

Graph [name="Knowledge-Graph"] {

Q: Given a graph G2, is there a path visits every node exactly once. A: No.

Bipartite Matching

Q: Given a graph G₂, whether node 1 is connective to node 4.
A: Yes.

Degree Computing

Q: Given a graph G₁, find the shortest path between node 2 and 3.
A: The path is 2,0,4,3.

Q: Given a graph G₁, compute the degree of node 4.

A: The degree is 3.

Definition: Given a graph, understand the structure and answer the question about connectivity, cycle, hamilton path, bipartite matching, shortest path and degree.

Definition: Given a passage, understand

generate a graph to satisfy the semantics

"James Cameron is a Canadian filmmaker born in

Ontario in 1954. He directed popular movies such as

entity list = ["James Cameron", "Ontario", ...],

triple list = [("James Cameron" -> "Ontario")[

the instruction and question, and then

Q: Given the following passage, generate a

knowledge graph to express the semantics:

relation="born in"], ...],

Link Prediction

Q: Given a graph G3, predict the relation between "James Cameron" and "Canada".

A: place of birth.

Question Answering

Q: Given a graph G3, answer the question: what's the birthday of the film TITANIC's director? A: 1954.

Relevance Inspection

Q: Given a graph G3, whether the following passage is relevant to the graph. "James ..."

A: Yes, it's relevant.

Caption Generation

1. ... 1.

Graph[name="G3"]{

entity list = [

"James Cameron", "Ontario", ...

relation="born in'

Q: Given a graph G3, generate a caption to describe the graph.

A: James Cameron ..

User2 Item2 User3 User3 User4 User4

Node Classification

Q: Given a graph G3, classify the node "Canada".

A: country_name.

Collaboration Filtering

Q: Given a graph G4, what's the user3's review preference towards item1?

A: It's 👍 .

Definition: Given a graph, understand the graph semantic and answer the question about caption, QA, node classification, link prediction, relevance and collaboration.

Graph Structure Modeling (Graph Reasoning)

Graph Generation Modeling

(Graph Generation

Instruct Graph

Graph Thought Modeling

(Graph Reasoning and Generation)

Graph Language Modeling

(Graph Reasoning)

Structure Graph Generation

Q: Given the follow description, generate a graph to release the structure. "In an undirected graph, the nodes are from 0 to 6, (i, w, j) means an edge with a weight w. All edges are: (3, 5, 5), (0, 2, 1), (0, 1, 6), (2, 3, 4), (5, 1, 6), (2, 3, 3), (1, 1, 6) and (1, 4, 6)."

A: The graph is shown in the follow:

```
Graph[name="Structure-Graph"]{
    node_List = [0, 1, 2, 3, 4, 5, 6],
    edge_List = [
        (0 -> 1)[weight=2], (0 -> 6)[weight=1], ...],
}
```

Commonsense & Factual Reasoning

Q: What's the birth country of Avatar's director?
A: To answer this question, we first find the topic entity is "Avatar". Then, we construct a knowledge subgraph of the topic entity, the graph is:

```
Graph[name="Thought-Graph"]{
  entity_list = ["James Cameron", "Avatar", ... ],
  triple_list = [("Avatar" -> "James Cameron")[
      relation="director"], ... ],
```


Based on the graph, we can find a reasoning path that (Avatar, director, James Cameron, born in, Ontario, country, Canada). So the answer is Canada. Definition: Given a reasoning question, think step by step: 1) find a topic entity, 2) then generate a graph that express the thinking process, 3) finally output the answer.

Arithmetical & Logical Reasoning

Q: Roger had 16 dollars. For his birthday he got 28 more dollars but spent 25 on a new game. How much money does he have now?

A: To answer this question, we first find the topic entity is "Roger". Then, we construct a graph:

```
Graph[name="Thought-Graph"]{
   entity_list = ["Roger", "16 dollars", ...],
   triple_list = [("Rogar" -> "16 dollars")[
      relation="first has"], ...],
}
```


Based on the graph, we can find a reasoning path that (Rogar, first has,16 dollars, add, 28 dollars, minus, 25 dollars). So the answer is 19 dollars.