RAPPORT

Simplexe avec C

Réalisé par:

Encadré par:

Ameziane Douaa

Dr. Abdelati REHA

Kamal Aymane

PARTIE CODE

Implémentation des fonctions de Gauss sur les tableaux d'itérations

Détermination de la colonne pivot

```
//Colonne pivot
int trouverColonnePivot(float TP[][10], int m, int n) {
   int colonnePivot = -1;
   float plusNegatif = 0;
   // Comparer tous les elements a plusNegatif
   //sauf le dernier colonne
   for (int j = 1; j < n - 1; j++) {
      if (TP[0][j] < plusNegatif) {
        plusNegatif = TP[0][j];
        colonnePivot = j;
      }
   }
   return colonnePivot;
}</pre>
```

Détermination de la ligne pivot

Création d'un tableau diagonal de 1,1,1 des variables de bases VB

```
//creer un tableau dont le diagonal est 1 et les autres0
//pour remplir notre premier tableau d itteration (VB)

void creerDiagonal(float TD[][10], int NbrCont) {
    for (int i = 0; i < NbrCont; i++) {
        for (int j = 0; j < NbrCont; j++) {
            if (i == j) {
                TD[i][j] = 1;
            } else {
                TD[i][j] = 0;
            }
        }
    }
}</pre>
```

Fonction d'affichage des tableaux d'itération

```
//Affichage des tableaux d itterations
void AfficherTableau(float T[10][10], int NbrVar, int NbrCont, int m,
                      int n) {
    int i, j;
    printf("Z\t ");
    for (i = 0; i < NbrVar; i++) {</pre>
        printf("x%d
                        ", i + 1);
    for (i = 0; i < NbrCont; i++) {</pre>
        printf("e%d ", i + 1);
    printf("|");
    printf("=\n");
    for (i = 0; i < n; i++) {
        printf("%.1f\t", T[0][i]);
    printf("\n");
    for (i = 0; i < n; i++) {
        printf("----");
```

```
printf("\n");
for (i = 1; i < m; i++) {
    for (j = 0; j < n - 1; j++) {
        printf("%.1f\t", T[i][j]);
    }
    printf("|%.1f\n", T[i][n - 1]);
}</pre>
```

Création d'un tableau ou on stock les coefficients de l'équation Objective

```
//creer un tableau dont on stock les coefficients du fctn Objectif
void CoeffObjectif(float TO[10], int NbrVar) {
    int i;
    //input des coefficients
    printf("
                                    Objectif:\n\n");
    printf("Entrer les coefficients :\n\n");
    for (i = 0; i < NbrVar; i++) {</pre>
        printf("Coefficient de la variable %d: ", i + 1);
        scanf("%f", &TO[i]);
    //ecrire l equation complete
    printf("\n");
    printf("Z = ");
    for (i = 0; i < NbrVar; i++) {
        printf("%.1fx%d", TO[i], i + 1);
        if (i < NbrVar - 1) {</pre>
            printf(" + ");
```

Création du tableau ou on va stocker les coefficients des équations des contraintes

```
//creer un tableau de coefficients des contraintes
void Contraintes(float TC[][10], int NbrVar, int NbrCont) {
    int i, j;
    //input coefficients
    printf("----
                                   -----\n"
    printf("
                                   Objectif:\n\n");
    for (i = 0; i < NbrCont; i++) {</pre>
        printf("Contrainte %d: \n", i + 1);
        for (j = 0; j < NbrVar; j++) {
    printf("Coefficient de x%d : ", j + 1);</pre>
            scanf("%f", &TC[i][j]);
     //input resultat
        printf ("Entrer la constante de la contrainte %d : ", i + 1);
        scanf("%f", &TC[i][NbrVar]);
    //affichage des contraintes
    printf("\nContraintes:\n\n");
    for (i = 0; i < NbrCont; i++) {
```

```
printf("Contrainte %d:\n\n", i + 1);
for (j = 0; j < NbrVar; j++) {
    printf("%.1fx%d", TC[i][j], j + 1);
    if (j < NbrVar - 1) {
        printf(" + ");
    }
}
printf(" <= %.1f\n", TC[i][NbrVar]);
}</pre>
```

Création du premier tableau d'itération dont on va stocker les tableaux des objectifs et les contraintes et le résultat

Affichage du processus simplexe et les tableaux d'itérations et les variables de base et les lignes pivot et les colonnes pivot (Tout le processus de simplexe)

```
//affichage du processus simplexe en utilisant les fctns precedent
void simplexe(float TP[][10], float TO[10], float TC[][10],
               float TD[][10], int NbrVar, int NbrCont, int m, int n) {
    int iteration = 1;
    while (1) {
    printf("\n\nIteration %d:\n", iteration);
        AfficherTableau(TP, NbrVar, NbrCont, m, n);
        int colonnePivot = trouverColonnePivot(TP, m, n);
        if (colonnePivot == -1) {
          //si le collone pivot n existe plus on sort
            printf("\nLe simplexe est termine.\n");
            break;
        int lignePivot = trouverLignePivot(TP, colonnePivot, m, n);
        if (lignePivot == -1) {
            printf("\nPas de solution optimale.\n");
            break;
```

```
printf("\nVe: %d\n", colonnePivot);
printf("Vs: %d\n\n", lignePivot);
afficherVariablesBase(TP, NbrVar, NbrCont);
printf("\n");
afficherVariablesHorsBase(TP, m, n, NbrVar);
gauss(TP, m, n, lignePivot, colonnePivot);
iteration++;
}
```

Fonction VB

IMPLEMENTATION DES FONCTIONS DANS LE MAIN

```
int main() {
    int NbrVar, NbrCont;
                                           ****Simplexe*****\n\n");
    printf("
    //limiter la <u>saisie</u> <u>des</u> utilisateurs
        printf("Combien de variables ? : ");
        if (scanf("%d", &NbrVar) != 1) {
            printf("Veuillez entrer un nombre entier.\n");
            scanf("%*s"); // tampon effacee
    } while (NbrVar <= 0);</pre>
    //limiter la saisie des utilisateurs
    do {
        printf("Combien de contraintes ? : ");
        if (scanf("%d", &NbrCont) != 1) {
            printf("Veuillez entrer un nombre entier.\n");
            scanf("%*s"); // tampon effacee
    } while (NbrCont <= 0);</pre>
```

```
printf("\n");
//des tableaux statiques dont on stock nos inputs en fcts
float TO[10]; // tableau objectif
float TC[10][10]; //tableau contraintes
float TP[10][10]; //tableau premier
float TD[10][10]; //tableau diagonal
//les dimensions des tables d itteration
int m = NbrCont + 1;// nbr des contraintes + Objectif
int n = NbrCont + NbrVar + 2; // Objectif+ Nbr Contraintes+Nbr Vars+Cs
//utilisation des fonctions:
creerDiagonal (TD, NbrCont);
CoeffObjectif(TO, NbrVar);
Contraintes (TC, NbrVar, NbrCont);
PremierTaleau(TP, TO, TC, TD, NbrVar, NbrCont, m, n);
printf("-----\n")
simplexe(TP, TO, TC, TD, NbrVar, NbrCont, m, n);
return 0;
```

PARTIE
EXECUTION

```
*****Simplexe****

Combien de variables ? : 2
Combien de contraintes ? : 3

Objectif:

Entrer les coefficients :

Coefficient de la variable 1: 3
Coefficient de la variable 2: 5

Z = 3.0x1 + 5.0x2
```

```
Objectif:

Contrainte 1:
Coefficient de x1 : 1
Coefficient de x2 : 0
Entrer la constante de la contrainte 1 : 4
Contrainte 2:
Coefficient de x1 : 0
Coefficient de x2 : 2
Entrer la constante de la contrainte 2 : 12
Contrainte 3:
Coefficient de x1 : 3
Coefficient de x2 : 2
Entrer la constante de la contrainte 3 : 18
```

Contraintes: Contrainte 1: $1.0x1 + 0.0x2 \le 4.0$ Contrainte 2: $0.0x1 + 2.0x2 \le 12.0$ Contrainte 3: $3.0x1 + 2.0x2 \le 18.0$

Iteration 1: Z 1. 0 x2 -5. 0 e1 e2 e3 x1-3.00.0 0.0 0.00.0 0.0 1.0 0.0 0.0 0.0 4.0 1.0 0. 0 2. 0 2. 0 12.0 0.0 0.0 1.0 0.0 18.0 3.0 0.0 0.0 1.0 Ve: 2 Vs: 2 Iteration 2: Z 1. 0 e2 2.5 x2 e3 = x1e1 -3.030.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 4.0 0.0 0.0 0.0 0.5 0.0 6.0 1.0 0.0 3.0 0.0 0.0 -1.01.0 6.0 Ve: 1 Vs: 3

Iteration 3:							
Z	x 1	x2	e1	e2	e3	=	
1.0	0.0	0.0	0.0	1. 5	1.0	36. 0	
0.0	0.0	0.0	1. 0	0.3	-0.3	2.0	
0.0	0.0	1.0	0.0	0.5	0.0	6.0	
0.0	1.0	0.0	0.0	-0.3	0.3	2.0	

Le simplexe est termine.

Process returned 0 (0x0) execution time: 22.595 s Press any key to continue.

