Chapter 17

Vector Calculus (I)

Shuwei Chen swchen@swjtu.edu.cn

17.1

Vector Fields

Vector Fields in Two Dimensions

DEFINITION Vector Fields in Two Dimensions

Let f and g be defined on a region R of \mathbb{R}^2 . A **vector field** in \mathbb{R}^2 is a function \mathbf{F} that assigns to each point in R a vector $\langle f(x, y), g(x, y) \rangle$. The vector field is written as

$$\mathbf{F}(x, y) = \langle f(x, y), g(x, y) \rangle \text{ or }$$
$$\mathbf{F}(x, y) = f(x, y) \mathbf{i} + g(x, y) \mathbf{j}.$$

A vector field $\mathbf{F} = \langle f, g \rangle$ is continuous or differentiable on a region R of \mathbb{R}^2 if f and g are continuous or differentiable on R, respectively.

A vector field cannot be represented graphically in its entirety A representative sample $\mathbf{F}(x, y) = \langle 2x, 2y \rangle$

- For every (x, y) except (0, 0), the vector $\mathbf{F}(x, y)$ points in the direction of (2x, 2y), directly outward from the origin.
- The length of $\mathbf{F}(x, y)$ is $|\mathbf{F}| = |\langle 2x, 2y \rangle| = 2\sqrt{x^2 + y^2}$, which increases with distance from the origin.
- Vector fields are sometimes called *flows*

EXAMPLE 1 Vector fields Sketch representative vectors of the following vector fields.

- **a.** $\mathbf{F}(x, y) = \langle 0, x \rangle = x \mathbf{j}$ (a shear field)
- **b.** $\mathbf{F}(x, y) = \langle 1 y^2, 0 \rangle = (1 y^2) \mathbf{i}$, for $|y| \le 1$ (channel flow)
- **c.** $\mathbf{F}(x, y) = \langle -y, x \rangle = -y \mathbf{i} + x \mathbf{j}$ (a rotation field)

Radial Vector fields in \mathbb{R}^2

Its vectors point directly toward or away from the origin at all points, parallel to the position vectors $\mathbf{r} = \langle x, y \rangle$.

Mainly work with the form

$$\mathbf{F}(x,y) = \frac{\mathbf{r}}{|\mathbf{r}|^p} = \frac{\langle x,y \rangle}{|\mathbf{r}|^p} = \frac{\mathbf{r}}{|\mathbf{r}|} \frac{1}{|\mathbf{r}|^{p-1}}$$

Application example, central forces, such as gravitational or electrostatic forces between point masses or charges, are described by radial vector fields with p = 3.

DEFINITION Radial Vector Fields in \mathbb{R}^2

Let $\mathbf{r} = \langle x, y \rangle$. A vector field of the form $\mathbf{F} = f(x, y) \mathbf{r}$, where f is a scalar-valued function, is a **radial vector field**. Of specific interest are the radial vector fields

$$\mathbf{F}(x,y) = \frac{\mathbf{r}}{|\mathbf{r}|^p} = \frac{\langle x,y \rangle}{|\mathbf{r}|^p},$$

where p is a real number. At every point (except the origin), the vectors of this field are directed outward from the origin with a magnitude of $|\mathbf{F}| = \frac{1}{|\mathbf{r}|^{p-1}}$.

EXAMPLE 2 Normal and tangent vectors Let C be the circle $x^2 + y^2 = a^2$, where a > 0.

- **a.** Show that at each point of *C*, the radial vector field $\mathbf{F}(x, y) = \frac{\mathbf{r}}{|\mathbf{r}|} = \frac{\langle x, y \rangle}{\sqrt{x^2 + y^2}}$ is orthogonal to the line tangent to *C* at that point.
- **b.** Show that at each point of *C*, the rotation vector field $\mathbf{G}(x,y) = \frac{\langle -y, x \rangle}{\sqrt{x^2 + y^2}}$ is parallel to the line tangent to *C* at that point.

Vector Fields in Three Dimensions

DEFINITION Vector Fields and Radial Vector Fields in \mathbb{R}^3

Let f, g, and h be defined on a region D of \mathbb{R}^3 . A **vector field** in \mathbb{R}^3 is a function \mathbf{F} that assigns to each point in D a vector $\langle f(x, y, z), g(x, y, z), h(x, y, z) \rangle$. The vector field is written as

$$\mathbf{F}(x, y, z) = \langle f(x, y, z), g(x, y, z), h(x, y, z) \rangle \text{ or } \mathbf{F}(x, y, z) = f(x, y, z) \mathbf{i} + g(x, y, z) \mathbf{j} + h(x, y, z) \mathbf{k}.$$

A vector field $\mathbf{F} = \langle f, g, h \rangle$ is continuous or differentiable on a region D of \mathbb{R}^3 if f, g, and h are continuous or differentiable on D, respectively. Of particular importance are the **radial vector fields**

$$\mathbf{F}(x, y, z) = \frac{\mathbf{r}}{|\mathbf{r}|^p} = \frac{\langle x, y, z \rangle}{|\mathbf{r}|^p},$$

where p is a real number.

Gradient Fields and Potential Functions

DEFINITION Gradient Fields and Potential Functions

Let φ be differentiable on a region of \mathbb{R}^2 or \mathbb{R}^3 . The vector field $\mathbf{F} = \nabla \varphi$ is a **gradient field** and the function φ is a **potential function** for \mathbf{F} .

The vector field $\mathbf{F} = \nabla \varphi$ is orthogonal to the level curves of φ at (x, y).

EXAMPLE 4 Gradient fields

- **a.** Sketch and interpret the gradient field associated with the temperature function $T = 200 x^2 y^2$ on the circular plate $R = \{(x, y): x^2 + y^2 \le 25\}$.
- **b.** Sketch and interpret the gradient field associated with the velocity potential

 $\varphi = \tan^{-1}{(y/x)}.$

 $\mathbf{F} = \nabla \varphi$ is orthogonal to level curves and gives a rotation field.

Gradient vectors ∇T (not drawn to scale) are orthogonal to the level curves.

Level curves of $T(x, y) = 200 - x^2 - y^2$

Equipotential Curves and Surfaces

Gradient field $\mathbf{F} = \nabla \varphi$ of a potential function φ .

The level curves of a potential function are called **equipotential curves** (curves on which the potential function is constant).

EXAMPLE 5 Equipotential curves The equipotential curves for the potential function $\varphi(x, y) = (x^2 - y^2)/2$ are shown in green in Figure 14.15.

- **a.** Find the gradient field associated with φ and verify that the gradient field is orthogonal to the equipotential curve at (2, 1).
- **b.** Verify that the vector field $\mathbf{F} = \nabla \varphi$ is orthogonal to the equipotential curves at all points (x, y).

Flow curves of $\mathbf{F} = \nabla \varphi$ are orthogonal to level curves of φ everywhere.

17.2

Line (Curve) Integrals

Scalar Line Integrals in the Plane

To integrate either scalar-valued functions or vector fields along curves.

area
$$\approx \sum_{k=1}^{n} f(x(s_k^*), y(s_k^*)) \Delta s_k$$
.

DEFINITION Scalar Line Integral in the Plane, Arc Length Parameter

Suppose the scalar-valued function f is defined on the smooth curve C: $\mathbf{r}(s) = \langle x(s), y(s) \rangle$, parameterized by the arc length s. The **line integral of** f **over** C is

$$\int_C f(x(s), y(s)) ds = \lim_{\Delta \to 0} \sum_{k=1}^n f(x(s_k^*), y(s_k^*)) \Delta s_k,$$

provided this limit exists over all partitions of C. When the limit exists, f is said to be **integrable** on C.

More notations: $\int_C f(\mathbf{r}(s))ds$, $\int_C f(x,y)ds$ or $\int_C fds$.

If f is continuous on a region containing C, then the line integral of f over C exists.

If f(x,y) = 1, $\int_C ds$ gives the length of the curve.

Parameters Other Than Arc Length

Assume C is described by $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \le t \le b$. The length of C over the interval [a, t] is

$$s(t) = \int_{a}^{t} |\mathbf{r}'(u)| du$$

Differentiating both sides of this equation gives

$$ds = s'(t)dt = |\mathbf{r}'(t)|dt$$

Therefore,

$$\int_{C} f ds = \int_{a}^{b} f(x(t), y(t)) |\mathbf{r}'(t)| dt.$$

THEOREM 1 Evaluating Scalar Line Integrals in \mathbb{R}^2

Let f be continuous on a region containing a smooth curve C: $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \le t \le b$. Then

$$\int_C f ds = \int_a^b f(x(t), y(t)) |\mathbf{r}'(t)| dt$$

$$= \int_a^b f(x(t), y(t)) \sqrt{x'(t)^2 + y'(t)^2} dt.$$

PROCEDURE Evaluating the Line Integral $\int_C f ds$

- **1.** Find a parametric description of *C* in the form $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \le t \le b$.
- **2.** Compute $|\mathbf{r}'(t)| = \sqrt{x'(t)^2 + y'(t)^2}$.
- **3.** Make substitutions for *x* and *y* in the integrand and evaluate an ordinary integral:

$$\int_{C} f ds = \int_{a}^{b} f(x(t), y(t)) |\mathbf{r}'(t)| dt.$$

EXAMPLE 1 Average temperature on a circle The temperature of the circular plate $R = \{(x, y): x^2 + y^2 \le 1\}$ is $T(x, y) = 100(x^2 + 2y^2)$. Find the average temperature along the edge of the plate.

Line Integrals in \mathbb{R}^3

THEOREM 2 Evaluating Scalar Line Integrals in \mathbb{R}^3

Let f be continuous on a region containing a smooth curve

$$C: \mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$$
, for $a \le t \le b$. Then

$$\int_{C} f ds = \int_{a}^{b} f(x(t), y(t), z(t)) |\mathbf{r}'(t)| dt$$

$$= \int_a^b f(x(t), y(t), z(t)) \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} dt.$$

EXAMPLE 3 Line integrals in \mathbb{R}^3 Evaluate $\int_C (xy + 2z) ds$ on the following line segments.

- **a.** The line segment from P(1, 0, 0) to Q(0, 1, 1)
- **b.** The line segment from Q(0, 1, 1) to P(1, 0, 0)

A scalar line integral is independent of the orientation and parameterization of the curve.

EXAMPLE 4 Flight of an eagle An eagle soars on the ascending spiral path

$$C: \mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle = \left\langle 2400 \cos \frac{t}{2}, 2400 \sin \frac{t}{2}, 500t \right\rangle,$$

where x, y, and z are measured in feet and t is measured in minutes. How far does the eagle fly over the time interval $0 \le t \le 10$?

Line Integrals of Vector Fields

- Oriented curve: positive
 orientation is the direction
 where parameter increases,
 the unit tangent vector T
- The value of line integral depends on the orientation
- Tangential component of a vector field \mathbf{F} in the direction of \mathbf{T} , i.e., C $|\mathbf{F}| \cos \boldsymbol{\theta} = |\mathbf{F}||\mathbf{T}| \cos \boldsymbol{\theta}$ $= \mathbf{F} \cdot \mathbf{T}$

Integrating $\mathbf{F} \cdot \mathbf{T}$ along C is to add up the components of \mathbf{F} in the direction of C at each point of C

Slide 3 - 30

DEFINITION Line Integral of a Vector Field

Let **F** be a vector field that is continuous on a region containing a smooth oriented curve C parameterized by arc length. Let **T** be the unit tangent vector at each point of C consistent with the orientation. The line integral of **F** over C is $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$.

$$\int_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{a}^{b} \mathbf{F} \cdot \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \, |\mathbf{r}'(t)| \, dt = \int_{a}^{b} \mathbf{F} \cdot \mathbf{r}'(t) \, dt.$$

Assume
$$\mathbf{F} = \langle f, g, h \rangle$$

$$= \int_{a}^{b} (f(t)x'(t) + g(t)y'(t) + h(t)z'(t)) dt.$$

Let
$$d\mathbf{r} = \langle dx, dy, dz \rangle$$

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_C \mathbf{F} \cdot d\mathbf{r}.$$

Different Forms of Line Integrals of Vector Fields

The line integral $\int_C \mathbf{F} \cdot \mathbf{T} ds$ may be expressed in the following forms, where $\mathbf{F} = \langle f, g, h \rangle$ and C has a parameterization $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, for $a \le t \le b$:

$$\int_{a}^{b} \mathbf{F} \cdot \mathbf{r}'(t) dt = \int_{a}^{b} (f(t)x'(t) + g(t)y'(t) + h(t)z'(t)) dt$$
$$= \int_{C} f dx + g dy + h dz$$
$$= \int_{C} \mathbf{F} \cdot d\mathbf{r}.$$

For line integrals in the plane, we let $\mathbf{F} = \langle f, g \rangle$ and assume C is parameterized in the form $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \le t \le b$. Then

$$\int_a^b \mathbf{F} \cdot \mathbf{r}'(t) dt = \int_a^b (f(t)x'(t) + g(t)y'(t)) dt = \int_C f dx + g dy = \int_C \mathbf{F} \cdot d\mathbf{r}.$$

EXAMPLE 5 Different paths Evaluate $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$ with $\mathbf{F} = \langle y - x, x \rangle$ on the following oriented paths in \mathbb{R}^2 (Figure 20).

- **a.** The quarter circle C_1 from P(0, 1) to Q(1, 0)
- **b.** The quarter circle $-C_1$ from Q(1,0) to P(0,1)
- **c.** The path C_2 from P(0, 1) to Q(1, 0) via two line segments through O(0, 0)

- The line integral of vector filed depends on the orientation of the curve.
- For what vector fields are the values of a line integral independent of path?

If C is a smooth curve from A to B and P is a point on C between A and B, then:

$$\int_{AB} \mathbf{F} \cdot d\mathbf{r} = \int_{AP} \mathbf{F} \cdot d\mathbf{r} + \int_{PB} \mathbf{F} \cdot d\mathbf{r}$$

The solutions to parts (a) and (b) of Example 5 illustrate a *general result* that applies to line integrals of vector fields:

$$\int_{-C} \mathbf{F} \cdot \mathbf{T} ds = -\int_{C} \mathbf{F} \cdot \mathbf{T} ds$$

Reversing the orientation of C changes the sign of $\mathbf{F} \cdot \mathbf{T}$ at each point on C.

Work Integrals

If **F** is a *variable* force field, the work done in moving an object from x = a to x = b is $W = \int_a^b F_x(x) dx$ (in the direction of motion, x-axis here)

Take this progression one step further.

Let **F** is a *variable* force field defined in a region D of \mathbb{R}^3 and suppose C is a smooth, oriented curve in D, along which an object moves.

DEFINITION Work Done in a Force Field

Let **F** be a continuous force field in a region D of \mathbb{R}^3 . Let C: $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, for $a \le t \le b$, be a smooth curve in D with a unit tangent vector **T** consistent with the orientation. The work done in moving an object along C in the positive direction is

$$W = \int_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{a}^{b} \mathbf{F} \cdot \mathbf{r}'(t) \, dt.$$

EXAMPLE 6 An inverse square force Gravitational and electrical forces between point masses and point charges obey inverse square laws: They act along the line joining the centers and they vary as $1/r^2$, where r is the distance between the centers. The force of attraction (or repulsion) of an inverse square force field is given by the vector

field
$$\mathbf{F} = \frac{k\langle x, y, z \rangle}{(x^2 + y^2 + z^2)^{3/2}}$$
, where k is a physical constant. Because $\mathbf{r} = \langle x, y, z \rangle$, this

force may also be written $\mathbf{F} = \frac{k\mathbf{r}}{|\mathbf{r}|^3}$. Find the work done in moving an object along the following paths.

- **a.** C_1 is the line segment from (1, 1, 1) to (a, a, a), where a > 1.
- **b.** C_2 is the extension of C_1 produced by letting $a \to \infty$.

A parametric description of C_1 consistent with the orientation $r(t) = \langle t, t, t \rangle$, with $r'(t) = \langle 1, 1, 1 \rangle$

Circulation and Flux of a Vector Field

The Circulation of **F** along *C* is a measure of how much of the vector field points in the direction of *C*.

Imagine you are travelling along *C* in the positive direction, how much of the vector field is at your back and how much of it is in your face?

DEFINITION Circulation

Let **F** be a continuous vector field on a region D of \mathbb{R}^3 and let C be a closed smooth oriented curve in D. The **circulation** of **F** on C is $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$, where **T** is the unit vector tangent to C consistent with the orientation.

EXAMPLE 7 Circulation of two-dimensional flows Let C be the unit circle with counterclockwise orientation. Find the circulation on C of the following vector fields.

- **a.** The radial vector field $\mathbf{F} = \langle x, y \rangle$
- **b.** The rotation vector field $\mathbf{F} = \langle -y, x \rangle$

On the unit circle, $\mathbf{F} = \langle x, y \rangle$ is orthogonal to C and has zero circulation on C.

On the unit circle, $\mathbf{F} = \langle -y, x \rangle$ is tangent to C and has positive circulation on C.

EXAMPLE 8 Circulation of a three-dimensional flow Find the circulation of the vector field $\mathbf{F} = \langle z, x, -y \rangle$ on the tilted ellipse $C: \mathbf{r}(t) = \langle \cos t, \sin t, \cos t \rangle$, for $0 \le t \le 2\pi$ (Figure 25a).

Flux of Two-Dimensional Vector Field

The flux of **F** across (outward) C is to "add up" the components of **F** orthogonal or normal to C at each point of C, $\int_C \mathbf{F} \cdot \mathbf{n} ds$

$$\mathbf{T} = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \langle T_x, T_y, 0 \rangle = \frac{\langle x'(t), y'(t), 0 \rangle}{|\mathbf{r}'(t)|}.$$

$$\mathbf{n} = \mathbf{T} \times \mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ T_x & T_y & 0 \\ 0 & 0 & 1 \end{vmatrix} = T_y \mathbf{i} - T_x \mathbf{j}.$$

$$\mathbf{n} = T_y \mathbf{i} - T_x \mathbf{j} = \frac{y'(t)}{|\mathbf{r}'(t)|} \mathbf{i} - \frac{x'(t)}{|\mathbf{r}'(t)|} \mathbf{j} = \frac{\langle y'(t), -x'(t) \rangle}{|\mathbf{r}'(t)|}.$$

$$\int_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{a}^{b} \mathbf{F} \cdot \underbrace{\frac{\langle y'(t), -x'(t) \rangle}{|\mathbf{r}'(t)|}}_{\mathbf{n}} |\underbrace{\mathbf{r}'(t)| \, dt}_{ds} = \int_{a}^{b} (f(t)y'(t) - g(t)x'(t)) \, dt.$$

$$= \int_{a}^{b} f \, dy - g \, dx.$$

DEFINITION Flux

Let $\mathbf{F} = \langle f, g \rangle$ be a continuous vector field on a region R of \mathbb{R}^2 . Let $C: \mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \le t \le b$, be a smooth oriented curve in R that does not intersect itself. The **flux** of the vector field \mathbf{F} across C is

$$\int_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{a}^{b} (f(t)y'(t) - g(t)x'(t)) \, dt,$$

where $\mathbf{n} = \mathbf{T} \times \mathbf{k}$ is the unit normal vector and \mathbf{T} is the unit tangent vector consistent with the orientation. If C is a closed curve with counterclockwise orientation, \mathbf{n} is the outward normal vector and the flux integral gives the **outward flux** across C.

EXAMPLE 9 Flux of two-dimensional flows Find the outward flux across the unit circle with counterclockwise orientation for the following vector fields.

- **a.** The radial vector field $\mathbf{F} = \langle x, y \rangle$
- **b.** The rotation vector field $\mathbf{F} = \langle -y, x \rangle$

On the unit circle, $\mathbf{F} = \langle x, y \rangle$ is orthogonal to C and has positive outward flux on C.

On the unit circle, $\mathbf{F} = \langle -y, x \rangle$ is tangent to C and has zero outward flux on C.

17.3

Conservative Vector Fields

Types of Curves and Regions

DEFINITION Simple and Closed Curves

Suppose a curve C (in \mathbb{R}^2 or \mathbb{R}^3) is described parametrically by $\mathbf{r}(t)$, where $a \le t \le b$. Then C is a **simple curve** if $\mathbf{r}(t_1) \ne \mathbf{r}(t_2)$ for all t_1 and t_2 , with $a < t_1 < t_2 < b$; that is, C never intersects itself between its endpoints. The curve C is **closed** if $\mathbf{r}(a) = \mathbf{r}(b)$; that is, the initial and terminal points of C are the same (Figure 14.28).

DEFINITION Connected and Simply Connected Regions

An open region R in \mathbb{R}^2 (or D in \mathbb{R}^3) is **connected** if it is possible to connect any two points of R by a continuous curve lying in R. An open region R is **simply connected** if every closed simple curve in R can be deformed and contracted to a point in R (Figure 14.29).

Test for Conservative Vector Fields

DEFINITION Conservative Vector Field

A vector field **F** is said to be **conservative** on a region (in \mathbb{R}^2 or \mathbb{R}^3) if there exists a scalar function φ such that $\mathbf{F} = \nabla \varphi$ on that region.

THEOREM 14.3 Test for Conservative Vector Fields

Let $\mathbf{F} = \langle f, g, h \rangle$ be a vector field defined on a connected and simply connected region D of \mathbb{R}^3 , where f, g, and h have continuous first partial derivatives on D. Then \mathbf{F} is a conservative vector field on D (there is a potential function φ such that $\mathbf{F} = \nabla \varphi$) if and only if

$$\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$$
, $\frac{\partial f}{\partial z} = \frac{\partial h}{\partial x}$, and $\frac{\partial g}{\partial z} = \frac{\partial h}{\partial y}$.

For vector fields in \mathbb{R}^2 , we have the single condition $\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$.

EXAMPLE 1 Testing for conservative fields Determine whether the following vector fields are conservative on \mathbb{R}^2 and \mathbb{R}^3 , respectively.

a.
$$\mathbf{F} = \langle e^x \cos y, -e^x \sin y \rangle$$

b.
$$\mathbf{F} = \langle 2xy - z^2, x^2 + 2z, 2y - 2xz \rangle$$

Finding Potential Functions

EXAMPLE 2 Finding potential functions Find a potential function for the conservative vector fields in Example 1.

a.
$$\mathbf{F} = \langle e^x \cos y, -e^x \sin y \rangle$$

b.
$$\mathbf{F} = \langle 2xy - z^2, x^2 + 2z, 2y - 2xz \rangle$$

PROCEDURE Finding Potential Functions in \mathbb{R}^3

Suppose $\mathbf{F} = \langle f, g, h \rangle$ is a conservative vector field. To find φ such that $\mathbf{F} = \nabla \varphi$, use the following steps:

- 1. Integrate $\varphi_x = f$ with respect to x to obtain φ , which includes an arbitrary function c(y, z).
- **2.** Compute φ_y and equate it to g to obtain an expression for $c_y(y, z)$.
- **3.** Integrate $c_y(y, z)$ with respect to y to obtain c(y, z), including an arbitrary function d(z).
- **4.** Compute φ_z and equate it to h to get d(z).

A similar procedure beginning with $\varphi_v = g$ or $\varphi_z = h$ may be easier in some cases.

Fundamental Theorem for Line Integrals and Path Independence

THEOREM 4 Fundamental Theorem for Line Integrals

Let **F** be a continuous vector field on an open connected region R in \mathbb{R}^2 (or D in \mathbb{R}^3). There exists a potential function φ with $\mathbf{F} = \nabla \varphi$ (which means that **F** is conservative) if and only if

$$\int_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{C} \mathbf{F} \cdot d\mathbf{r} = \varphi(B) - \varphi(A),$$

for all points A and B in R (or D) and all piecewise-smooth oriented curves C in R (or D) from A to B.

Meaning of this theorem:

- If **F** is a conservative vector field, then the value of a line integral of **F** depends only on the endpoints of the path. More simply, *the line integral is independent of path*.
- If think of φ as an antiderivative of the vector field \mathbf{F} , then the line integral of \mathbf{F} is the difference of the values of φ evaluated at the endpoints, parallel to the Fundamental Theorem of Calculus.

EXAMPLE 3 Verifying path independence Consider the potential function $\varphi(x, y) = (x^2 - y^2)/2$ and its gradient field $\mathbf{F} = \langle x, -y \rangle$.

- Let C_1 be the quarter circle $\mathbf{r}(t) = \langle \cos t, \sin t \rangle$, for $0 \le t \le \pi/2$, from A(1,0) to B(0,1).
- Let C_2 be the line $\mathbf{r}(t) = \langle 1 t, t \rangle$, for $0 \le t \le 1$, also from A to B.

Evaluate the line integrals of **F** on C_1 and C_2 , and show that both are equal to $\varphi(B) - \varphi(A)$.

EXAMPLE 4 Line integral of a conservative vector field Evaluate

$$\int_C ((2xy - z^2) \mathbf{i} + (x^2 + 2z) \mathbf{j} + (2y - 2xz) \mathbf{k}) \cdot d\mathbf{r},$$

where C is a simple curve from A(-3, -2, -1) to B(1, 2, 3).

Line Integrals on Closed Curves

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

If **F** is a conservative vector field, then

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \varphi(A) - \varphi(A) = 0$$

$$0 = \oint_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = -\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{-C_2} \mathbf{F} \cdot d\mathbf{r}$$

Where $-C_2$ is the curve C_2 traversed in the opposite direction.

THEOREM 5 Line Integrals on Closed Curves

Let R in \mathbb{R}^2 (or D in \mathbb{R}^3) be an open connected region. Then \mathbf{F} is a conservative vector field on R if and only if $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ on all simple closed piecewisesmooth oriented curves C in R.

EXAMPLE 5 A closed curve line integral in \mathbb{R}^3 Evaluate $\int_C \nabla (-xy + xz + yz) \cdot d\mathbf{r}$ on the curve C: $\mathbf{r}(t) = \langle \sin t, \cos t, \sin t \rangle$, for $0 \le t \le 2\pi$, without using Theorems 4 or 5.

Summary of the Properties of Conservative Vector Fields

Three equivalent properties of conservative vector fields F defined on an open connected region R in \mathbb{R}^2 (or D in \mathbb{R}^3)

- There exists a potential function φ such that $\mathbf{F} = \nabla \varphi$ (Definition)
- $\int_{C} \mathbf{F} \cdot d\mathbf{r} = \varphi(B) \varphi(A)$ for all points A and B in R and all piecewise-smooth oriented curves C in R from A to B (Path Independence).
- $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ on all simple piecewise-smooth closed oriented curves C in R.

Path independence
$$\overset{\mathsf{Theorem}}{\Leftrightarrow}$$
 $\overset{\mathsf{F}}{\mathsf{F}}$ is conservative $(\nabla \varphi = \mathbf{F})$ $\overset{\mathsf{Theorem}}{\Leftrightarrow}$ $\overset{\mathsf{5}}{\mathsf{C}}$ $\mathbf{F} \cdot d\mathbf{r} = 0$.

17.4

Green's Theorem

Circulation Form of Green's Theorem

$$\int_{a}^{b} \frac{df}{dx} dx = f(b) - f(a)$$

Paddle wheel at one point of vector field.

 $\mathbf{F} = \langle -y, x \rangle$ has positive (counterclockwise) circulation on C.

$$\int_{C} \nabla \varphi \cdot d\mathbf{r} = \varphi(B) - \varphi(A)$$

A nonzero circulation on a closed curve says that the vector field must have some property *inside* the curve that produces the circulation, can be thought of as a *net rotation*.

THEOREM 14.6 Green's Theorem—Circulation Form

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected and simply connected region R in the plane. Assume $\mathbf{F} = \langle f, g \rangle$, where f and g have continuous first partial derivatives in R. Then

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \oint_{C} f \, dx + g \, dy = \iint_{R} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dA.$$
circulation circulation

- The quantity $\frac{\partial g}{\partial x} \frac{\partial f}{\partial y}$ is called the *two-dimensional curl* of the vector field, which describes the rotation of the vector field *within C* that produces the circulation *on C*.
- The theorem says that the net rotation throughout *R* equals the circulation on the boundary of *R*.

DEFINITION Two-Dimensional Curl

The **two-dimensional curl** of the vector field $\mathbf{F} = \langle f, g \rangle$ is $\frac{\partial g}{\partial r} - \frac{\partial f}{\partial r}$. If the curl is zero throughout a region, the vector field is **irrotational** on that region.

- For a conservative vector field \mathbf{F} in a region, the circulation
- $\oint_C \mathbf{F} \cdot d\mathbf{r}$ is zero on any simple closed curve in the region. A two-dimensional vector field $\mathbf{F} = \langle f, g \rangle$ for which $\frac{\partial g}{\partial x}$ $\frac{\partial f}{\partial y} = 0$ at all points is said to be *irrotational*, because it produces zero circulation on closed curves in the region.
- Irrotational vector fields on simply connected regions in \mathbb{R}^2 are conservative.

EXAMPLE 1 Circulation of a rotation field Consider the rotation vector field $\mathbf{F} = \langle -y, x \rangle$ on the unit disk $R = \{(x, y) : x^2 + y^2 \le 1\}$ (Figure 31). In Example 7 of Section 2, we showed that $\oint_C \mathbf{F} \cdot d\mathbf{r} = 2\pi$, where C is the boundary of R oriented counterclockwise. Confirm this result using Green's Theorem.

On the unit circle, $\mathbf{F} = \langle -y, x \rangle$ is tangent to C and has positive circulation on C.

Calculating Area by Green's Theorem

Consider the vector fields $\mathbf{F} = \langle f, g \rangle = \langle 0, x \rangle$ and $\mathbf{F} = \langle y, 0 \rangle$.

In the first case, $g_x = 1$ and $f_y = 0$; by Green's Theorem,

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \oint_C \underbrace{x \, dy}_C = \iint_R \underbrace{dA}_R = \text{area of } R.$$

$$\mathbf{F} \cdot d\mathbf{r} = \underbrace{\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}}_R = 1$$

In the second case, $g_x = 0$ and $f_y = 1$; by Green's Theorem,

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \oint_C y dx = -\iint_R dA = -\text{area of } R$$

Area of a Plane Region by Line Integrals

Under the conditions of Green's Theorem, the area of a region R enclosed by a curve C is

$$\oint_C x \, dy = -\oint_C y \, dx = \frac{1}{2} \oint_C (x \, dy - y \, dx).$$

EXAMPLE 2 Area of an ellipse Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Flux Form of Green's Theorem

THEOREM 7 Green's Theorem, Flux Form

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected and simply connected region R in the plane. Assume $\mathbf{F} = \langle f, g \rangle$, where f and g have continuous first partial derivatives in R. Then

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \oint_{C} f \, dy - g \, dx = \iint_{R} \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dA,$$
outward flux
outward flux

where **n** is the outward unit normal vector on the curve.

- The line integrals give the *outward flux* of the vector field across C.
- Quantity $\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}$, the *two-dimensional divergence* of the vector field, describes the property of the vector field that produces the flux *across C*.

DEFINITION Two-Dimensional Divergence

The **two-dimensional divergence** of the vector field $\mathbf{F} = \langle f, g \rangle$ is $\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}$. If the divergence is zero throughout a region, the vector field is **source free** on that region.

EXAMPLE 3 Outward flux of a radial field Use Green's Theorem to compute the outward flux of the radial field $\mathbf{F} = \langle x, y \rangle$ across the unit circle $C = \{(x, y): x^2 + y^2 = 1\}$ (Figure 34). Interpret the result.

EXAMPLE 4 Line integral as a double integral Evaluate

$$\oint_C (4x^3 + \sin y^2) \, dy - (4y^3 + \cos x^2) \, dx,$$

where C is the boundary of the disk $R = \{(x, y): x^2 + y^2 \le 4\}$ oriented counterclockwise.

Circulation and Flux on More General Regions

EXAMPLE 5 Circulation on a half annulus Consider the vector field $\mathbf{F} = \langle y^2, x^2 \rangle$ on the half annulus $R = \{(x, y): 1 \le x^2 + y^2 \le 9, y \ge 0\}$, whose boundary is C. Find the circulation on C, assuming it has the orientation shown in Figure 35.

Circulation on boundary of R is negative.

EXAMPLE 6 Flux across the boundary of an annulus Find the outward flux of the vector field $\mathbf{F} = \langle xy^2, x^2y \rangle$ across the boundary of the annulus $R = \{(x, y): 1 \le x^2 + y^2 \le 4\} = \{(r, \theta): 1 \le r \le 2, 0 \le \theta \le 2\pi\}$ (Figure 36).

Net flux across boundary of R is positive.

Stream Functions

Vector field $\mathbf{F} = \langle f, g \rangle$, differentiable on a region R.

A stream function for the vector field is a function ψ that satisfies

$$\frac{\partial \psi}{\partial y} = f, \frac{\partial \psi}{\partial x} = -g$$

It plays the same role for source-free fields that the potential function plays for conservative fields.

Compute the divergence of a vector field $\mathbf{F} = \langle f, g \rangle$ that has stream function and use the fact that $\psi_{xy} = \psi_{yx}$, then

$$\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} = \underbrace{\frac{\partial}{\partial x} \left(\frac{\partial \psi}{\partial y} \right) + \frac{\partial}{\partial y} \left(-\frac{\partial \psi}{\partial x} \right)}_{\psi_{yx} = \psi_{xy}} = 0.$$

- The existence of a stream function guarantees that the vector field has zero divergence or, equivalently, is source free.
- Flux integrals of a source-free field are also independent of path.
- Vector fields that are both conservative (zero curl, $g_x f_y = 0$) and source free (zero divergence, $f_x + g_y = 0$) are quite interesting.
- The potential function and the stream function both satisfy an important equation known as Laplace's equation:

$$\varphi_{xx} + \varphi_{yy} = 0$$
 and $\psi_{xx} + \psi_{yy} = 0$

• Any function satisfying Laplace's equation can be used as a potential function or stream function for a conservative, source-free vector field.

C is a simple piecewise-smooth oriented curve and is either closed or has endpoints A and B.

Table 1

Conservative Fields $F = \langle f, g \rangle$

• curl
$$=\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} = 0$$

• Potential function φ with

$$\mathbf{F} = \nabla \varphi \quad \text{or} \quad f = \frac{\partial \varphi}{\partial x}, \qquad g = \frac{\partial \varphi}{\partial y}$$

- Circulation = $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ on all closed curves C.
- Path independence

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \varphi(B) - \varphi(A)$$

Source-Free Fields $F = \langle f, g \rangle$

- divergence $=\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} = 0$
- Stream function ψ with

$$f = \frac{\partial \psi}{\partial y}, \qquad g = -\frac{\partial \psi}{\partial x}$$

- Flux = $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = 0$ on all closed curves C.
- Path independence

$$\int_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \psi(B) - \psi(A)$$

Various cases that arise with line integrals of both the circulation and flux types.

Table 2

Circulation/work integrals: $\int_{C} \mathbf{F} \cdot \mathbf{T} ds = \int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} f dx + g dy$			
	C closed	C not closed	
F conservative $(\mathbf{F} = \nabla \varphi)$	$\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$	$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \varphi(B) - \varphi(A)$	
F not conservative	Green's Theorem $ \oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R (g_x - f_y) dA $	Direct evaluation $\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} (fx' + gy') dt$	

Flux integrals:
$$\int_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{C} f \, dy - g \, dx$$

	C closed	C not closed
F source free $(f = \psi_y, g = -\psi_x)$	$\oint_C \mathbf{F} \cdot \mathbf{n} ds = 0$	$\int\limits_C \mathbf{F} \cdot \mathbf{n} ds = \psi(B) - \psi(A)$
F not source free	Green's Theorem $ \oint_C \mathbf{F} \cdot \mathbf{n} ds = \iint_R (f_x + g_y) dA $	Direct evaluation $\int_{C} \mathbf{F} \cdot \mathbf{n} ds = \int_{a}^{b} (fy' - gx') dt$

Chapter 17

Vector Calculus (I)

Shuwei Chen swchen@swjtu.edu.cn