A Formula Proof for OEIS Sequence A007917

Joseph M. Shunia

August 26, 2024

1 Formula and Proof

A short proof of a formula for $\underline{A007917}(n)$ is given.

Theorem 1.1. Define $\underline{A007917}(n)$ to be the integer sequence which returns the largest prime $p \leq n$. Then

$$\forall n \in \mathbb{Z}_{\geq 2}, \quad \underline{\text{A007917}}(n) = \left| \log \left(\sum_{k=2}^{n} e^{\varphi(k)+1} \right) \right|.$$

Proof. Let $n \in \mathbb{Z}_{\geq 2}$. Consider the polynomial

$$S_n(x) = \sum_{k=2}^n x^{\varphi(k)+1} \in \mathbb{Z}[x].$$

Substituting x = e into $S_n(x)$ gives the expression $S_n(e) = \sum_{k=2}^n e^{\varphi(k)+1}$. Notice that the degree of $S_n(x)$ is determined by the largest $\varphi(k) + 1$, which is always the largest prime $\leq n$. Thus, $\deg(S_n(x)) = \underline{A007917}(n)$.

To complete the proof, we will show that

$$\underline{\text{A007917}}(n) = \deg(S_n(x)) = \lfloor \log(S_n(e)) \rfloor = \left| \log \left(\sum_{k=2}^n e^{\varphi(k)+1} \right) \right|.$$

For n=2, the formula holds since,

$$\left\lfloor \log(e^{\varphi(2)+1}) \right\rfloor = \left\lfloor \log(e^{1+1}) \right\rfloor = \left\lfloor \log(e^2) \right\rfloor = 2.$$

For n > 2, we consider the worst-case scenario, which occurs when n and n - 2 are a twin prime pair. In such case, the leading terms in $S_n(e)$ are $e^{\varphi(n)+1}$ and $e^{\varphi(n-2)+1}$, so we need to ensure that

$$\forall n \in \mathbb{Z}_{>2}, \quad e^{\varphi(n)+1} > \sum_{k=2}^{n-1} e^{\varphi(k)+1}.$$

Rewriting this inequality, and noting that $\varphi(n) = n - 1$ iff n is prime, we have

$$\begin{split} e^{\varphi(n)+1} > e^{\varphi(n-1)+1} + e^{\varphi(n-2)+1} + \sum_{k=2}^{n-3} e^{\varphi(k)+1}, \\ e^n > e^{n-2} + e^{\varphi(n-1)+1} + \sum_{k=2}^{n-3} e^{\varphi(k)+1}, \end{split}$$

which simplifies to

$$e^{n} - e^{n-2} > e^{\varphi(n-1)+1} + \sum_{k=2}^{n-3} e^{\varphi(k)+1},$$

$$e^{n-2}(e^{2} - 1) > e^{\varphi(n-1)+1} + \sum_{k=2}^{n-3} e^{\varphi(k)+1}.$$

We claim that, for n > 2, we have

$$e^{n-2}(e^2-1) > \sum_{k=2}^{n-3} e^k \ge \sum_{k=2}^{n-3} e^{\varphi(k)+1}.$$

Observe that the sum $\sum_{k=2}^{n-3} e^k$ is a geometric series with the closed form

$$\sum_{k=2}^{n-3} e^k = \frac{e^n - e^4}{e^2(e-1)}.$$

Substituting this into the previous inequality, we obtain

$$e^{n-2}(e^2-1) > \frac{e^n - e^4}{e^2(e-1)} \ge \sum_{k=2}^{n-3} e^{\varphi(k)+1},$$

which is certainly true, since

$$e^{n-2}(e^2-1)-\left(e^{n-1}+\frac{e^n-e^4}{e^2(e-1)}\right)=\frac{e^n(e-2)+e^2}{e-1}>0.$$

The twin prime case is the worst possible case because, in such scenario, the second-largest term e^{n-2} is as close as possible to the largest term e^n , maximizing the contribution of lower-order terms to the sum $S_n(e)$. In other cases where n and n-2 are not both primes, the second-largest term is smaller, and thus the sum $S_n(e)$ is more heavily dominated by e^n . This means $\log(S_n(e))$ is closer to n and more easily approximated by n in non-twin prime cases.

Therefore, in all cases, the sum $S_n(e)$ remains dominated by the leading term e^n , and hence

$$\left[\log\left(\sum_{k=2}^{n} e^{\varphi(k)+1}\right)\right] = \deg(S_n(x)) = \underline{\text{A007917}}(n).$$