

Laboratory Notebook

BEMOSS and Its Enhanced Applications

Brian Lauer

blauer@mail.bradley.edu

Beginning March 13, 2018

Contents

Friday	March 13, 2018	5
1	Notation	5
Monda	, May 06, 2019	7
1	lab1	7

Friday, March 13, 2018

1 Notation

Throughout this document, the vectors (matrices) will be denoted by lowercase (uppercase) bold letters while the lowercase non-bold letters will denote scalar quantities. Sets will be denoted by calligraphic letters. For positive integers m, n > 0, $\mathbb{R}^n(\mathbb{R}^{m \times n})$ denotes n-dimensional column vector ($m \times n$ -dimensional matrix) with entries taken from a set of real numbers \mathbb{R} . $(\cdot)^T$ denotes the transposition of quantity (\cdot) . The standard Euclidean norm of the vector $\mathbf{x} \in \mathbb{R}^n$ and the matrix \mathbf{A} are given by $\|\mathbf{x}\| = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$ and $\|\mathbf{A}\| = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}$ with x_i, a_{ij} being the entries of \mathbf{x} and \mathbf{A} , respectively. The scalar products of quantities $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$, are given by

$$\mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i$$
 and $\mathbf{A} \cdot \mathbf{B} = \operatorname{Tr} \left(\mathbf{A}^T \mathbf{B} \right) = \operatorname{Tr} \left(\mathbf{A} \mathbf{B}^T \right)$,

respectively, where $\text{Tr}(\cdot)$ is the trace of matrix (\cdot) . Clearly, $\text{Tr}(\mathbf{A}^T\mathbf{A}) = \|\mathbf{A}\|^2$. Example of citing a paper. "Authors in [?] ..."

Monday, May 06, 2019

1 lab1

I emailed Mr. Mattus asking him whether he made any progress on finding a laptop that can be used to demonstrate the installation of BEMOSS.