102nz

BUNDESZEPUBLIK DEUTSCHLAND

DE 00/02589

REC'D 2 8 SEP 2000

10/049404

4

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

Aktenzeichen: 199 37 264.0

Anmeldetag:

Anmelder/Inhaber:

6. August 1999

Deutsches Krebsforschungszentrum Stiftung

des öffentlichen Rechts, Heidelberg, Neckar/DE

Bezeichnung: F_v-Antikörper-Konstrukte

IPC: C 07 K, A 61 K

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 6. September 2000 Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

HoiB

A 9161 03/00 EDV-L K 2619

F_v-Antikörper-Konstrukte

Die vorliegende Erfindung betrifft F_v -Antikörper-Konstrukte, die eine Regression von Morbus Hodgkin induzieren können, für solche F_v -Antikörper-Konstrukte kodierende DNAs sowie ein Verfahren zur Herstellung der $F_{
m v}$ -Antikörper-Konstrukte und ihre Verwendung.

10

5

15

25

30

Natürliche Antikörper weisen vier variable Domänen, zwei $V_{\mbox{\scriptsize M}^-}$ und zwei V_L -Domänen, auf. Die variablen Domänen dienen als Bindungsstellen für ein Antigen, wobei eine Bindungsstelle aus einer V_{H} - und einer V_{L} -Domäne ausgebildet ist. Natürliche Antikörper weisen zwei gleiche Bindungsstellen auf, d.h. sie erkennen ein Antigen und werden daher auch als monospezifisch bezeichnet. Künstliche Antikörper können auch zwei verschiedene Bindungsstellen aufweisen, d.h. sie erkennen dann Antigene und werden entsprechend als bispezifisch zwei bezeichnet. Ein Beispiel solcher Antikörper ist jener, der den FcyIIIA Rezeptor (CD16) von natürlichen Killerzellen (NK-Zellen) und das Oberflächenprotein CD30 von Morbus Hodgkin-Zellen erkennt. Mit diesem Antikörper (bimAbHRS-3/A9) können NK-Zellen aktiviert und gegen Morbus Hodgkin-Zellen ausgerichtet werden, wodurch eine Regression von Morbus Hodgkin induziert wird (vgl. Hartmann, F. et al., Blood 89 (1997), 2042). Andererseits hat sich gezeigt, daß bimAbHRS-3/A9 nur schwer herstellbar bzw. reinigungsfähig ist. Darüber hinaus hat sich gezeigt, daß bimAbHRS-3/A9 bei vielen Patienten unerwünschte Immunreaktionen hervorruft.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, einen Antikörper bereitzustellen, mit dem eine Regression von Morbus Hodgkin induziert werden kann, wobei vorstehende Nachteile vermieden werden.

Erfindungsgemäß wird dies durch die Gegenstände den

10

15

20

30

35

Patentansprüchen erreicht.

Die vorliegende Erfindung beruht auf den Erkenntnissen des Anmelders, daß ein F_v -Antikörper-Konstrukt, das Bindungsstellen für einen CD16-Rezeptor und ein CD30-Oberflächenprotein aufweist, eine Regression von Morbus Hodgkin induzieren kann, wobei die Lyse der Tumorzellen stärker ist als mit bimAbHRS-3/A9. Ferner hat er erkannt, daß ein solches F_v -Antikörper-Konstrukt in großen Mengen und hoher Reinheit hergestellt werden kann. Desweiteren zeichnet sich das F_v -Antikörper-Konstrukt dadurch aus, daß es keine Teile enthält, die zu unerwünschten Immunreaktionen bei Patienten führen können.

Erfindungsgemäß werden die Erkenntnisse des Anmelders genutzt, ein F_v -Antikörper-Konstrukt bereitzustellen, das Bindungsstellen für einen CD16-Rezeptor und ein CD30-Oberflächenprotein aufweist.

Der Ausdruck " F_v -Antikörper-Konstrukt" weist auf ein Antikörper-Konstrukt hin, das variable Domänen, nicht aber konstante Domänen aufweist. Als variable Domänen liegen insbesondere Bindungsstellen für einen CD16-Rezeptor und ein CD30-Oberflächenprotein vor.

Der Ausdruck "Bindungsstelle" weist auf eine V_{H} - und eine V_{L} - Domäne hin, mittels derer das F_{V} -Antikörper-Konstrukt an einen CD16-Rezeptor bzw. ein CD30-Oberflächenprotein binden kann.

Der Ausdruck "CD16-Rezeptor" umfaßt einen CD16-Rezeptor jeglicher Art und Abstammung. Beispielsweise kann der CD16-Rezeptor von NK-Zellen, Makrophagen oder aktivierten Monocyten stammen. Auch kann der CD16-Rezeptor in Wildtyp- oder veränderter Form vorliegen, wobei letztere Form auch ein Fragment eines CD16-Rezeptors umfaßt, an das ein gegen einen CD16-Rezeptor gerichteter Antikörper binden kann.

Der Ausdruck "CD30-Rezeptor" umfaßt einen CD30-Rezeptor jeglicher Art und Abstammung. Beispielsweise kann der CD30-

10

15

20

30

35

Rezeptor von Morbus Hodgkin- oder Reed-Sternberg-Zellen stammen. Auch kann der CD30-Rezeptor in Wildtyp- oder veränderter Form vorliegen, wobei letztere Form auch ein Fragment eines CD30-Rezeptors umfaßt, an das ein gegen einen CD30-Rezeptor gerichteter Antikörper binden kann.

Ein erfindungsgemäßes F_v -Antikörper-Konstrukt weist eine oder mehrere Bindungsstellen für einen CD16-Rezeptor und eine oder mehrere Bindungsstellen für ein CD30-Oberflächenprotein auf. Vorzugsweise weist das F_v -Antikörper-Konstrukt eine oder zwei Bindungsstellen für einen CD16-Rezeptor und eine oder zwei Bindungsstellen für ein CD30-Oberflächenprotein auf.

Ein erfindungsgemäßes F_v -Antikörper-Konstrukt kann durch verschiedene Verfahren hergestellt werden. Beispielsweise kann ein F_v -Antikörper-Konstrukt, das eine Bindungsstelle für einen CD16-Rezeptor und eine Bindungsstelle für ein CD30-Oberflächenprotein aufweist, z.B. adadurch hemgestellt werden, daß ein erstes einzelkettiges $F_{\hat{v}}$ -Antikörper-Konstrukt, das eine $m V_{H} ext{-}Dom$ äne eines anti-CD16-Antikörpers und eine $m V_{L} ext{-}Dom$ äne eines anti-CD30-Antikörpers aufweist, zusammen mit einem zweiten einzelkettigen F_v -Antikörper-Konstrukt, das eine V_L -Domäne eines anti-CD16-Antikörpers und eine $V_{\rm H}$ -Domäne eines anti-CD30-Antikörpers aufweist, exprimiert wird, wodurch sich beide aneinanderlagern und das erfindungsgemäße F_v-Antikörper-Konstrukt ausgebildet wird. Ergänzend wird auf die Beispiele 1-3 verwiesen.

Ferner kann ein F_v -Antikörper-Konstrukt, das zwei bis vier Bindungsstellen für einen CD16-Rezeptor und zwei Bindungsstellen für ein CD30-Oberflächenprotein aufweist, z.B. dadurch hergestellt werden, daß ein einzelkettiges F_v -Antikörper-Konstrukt exprimiert wird, das die Elemente (a) und (b) umfaßt:

(a) eine $V_{\rm H}$ -Domäne eines anti-CD16-Antikörpers und eine $V_{\rm L}$ -Domäne eines anti-CD30-Antikörpers, wobei die Domänen über einen Peptidlinker 1 miteinander verbunden sind, der

15

20

30

35

jegliche Aminosäuren, insbesondere Glycin (G), Serin (S) und Prolin (P) und vorzugsweise O - 10 Aminosäuren umfassen kann,

5 (b) eine V_H -Domäne eines anti-CD30-Antikörpers und eine V_L -Domäne eines anti-CD16-Antikörpers, wobei die Domänen über vorstehenden Peptidlinker 1 miteinander verbunden sind,

wobei die Elemente (a) und (b) über einen Peptidlinker 2 miteinander verbunden sind, der jegliche Aminosäuren, insbesondere Glycin, Serin und Prolin und vorzugsweise 3 - 10 Aminosäuren und ganz besonders die Aminosäuresequenz GGPGS umfassen kann. Ergänzend wird auf die Patentanmeldung 198 19 846.9 des Anmelders verwiesen.

Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Nukleinsäure, insbesondere eine DNA, die für ein vorstehendes F_v -Antikörper-Konstrukt kodiert. Ferner sind Expressionsvektoren, die eine solche DNA enthalten, ein Gegenstand der vorliegenden Erfindung. Bevorzugt wird der Expressionsvektor pKID16-30 von Fig. 1. Dieser wurde bei der DSMZ (Deutsche Sammlung für Mikroorganismen und Zellen) am 29. Juli 1999 unter DSM 12960 hinterlegt. Desweiteren sind Zellen, die einen vorstehenden Expressionsvektor enthalten, ein Gegenstand der vorliegenden Erfindung.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kit, umfassend:

- (a) ein erfindungsgemäßes F_v -Antikörper-Konstrukt, und/oder
- (b) einen erfindungsgemäßen Expressionsvektor, sowie
- (c) übliche Hilfsstoffe, wie Puffer, Lösungsmittel, Träger, Kontrollen und Marker.

Von den einzelnen Komponenten können ein oder mehrere Vertreter vorliegen.

10

15

20

30

35

Die vorliegende Erfindung stellt ein F_v -Antikörper-Konstrukt bereit, das Bindungsstellen für einen CD16-Rezeptor und ein CD30-Oberflächenprotein aufweist. Dieses F_v -Antikörper-Konstrukt läßt sich in großen Mengen und großer Reinheit herstellen. Auch weist es keine Teile auf, die unerwünschten Immunreaktionen bei Patienten führen können. Besonders kennzeichnet sich das F_v -Antikörper-Konstrukt dadurch, daß es NK-Zellen aktivieren und gegen CD30-Oberflächenproteine exprimierende Zellen, insbesondere Tumorzellen, besonders Morbus ganz Hodgkinoder Reed-Sternberg Zellen, ausrichten kann, wodurch diese Zellen lysiert werden. Somit eignet sich die vorliegende Erfindung gegen Erkrankungen vorzugehen, bei denen CD30-Oberflächenproteine exprimierende Zellen eine Rolle spielen. Solche Erkrankungen sind z.B. Tumorerkrankungen, insbesondere Morbus Hodgkin.

Kurze Beschreibung der Zeichnungen:

Fig. 1 zeigt den erfindungsgemäßen Expressionsvektor pKID16-30. Dieser kodiert für zwei einzelkettige F_v -Antikörper-Konstrukte, von denen das eine die V_H -Domäne eines anti-CD16-Antikörpers und die V_L -Domäne eines anti-CD30-Antikörpers und das andere die V_H -Domäne eines anti-CD30-Antikörpers und die V_L -Domäne eines anti-CD16-Antikörpers aufweist. Nach Expression der einzelkettigen F_v -Antikörper-Konstrukte lagern sich diese aneinander, wodurch ein erfindungsgemäßes F_v -Antikörper-Konstrukt erhalten wird.

Fig. 2 zeigt eine FACS-Analyse der Bindung eines erfindungsgemäßen F_v -Antikörper-Konstruktes an CD30 $^+$ L540CY Morbus Hodgkin-Zellen und CD16 $^+$ Granulocyten. Die Tumorzellen und die Granulocyten wurden jeweils mit 20 μ g des erfindungsgemäßen F_v -Antikörper-Konstruktes inkubiert. Die Bindung des F_v -Antikörper-Konstruktes wurde mit dem anti-c-myc

Antikörper 9E10 und Fluorescein-konjugiertem Ziegeanti-Maus IgG bestimmt. Als Negativ-Kontrolle wurden die Zellen alleine mit 9E10 und Fluoresceinkonjugiertem Ziege-anti-Maus-IgG inkubiert.

5

Fig. 3 zeigt die cytolytische Aktivität von in peripheren Blutlymphozyten (PBL-Zellen) enthaltenen NK-Zellen (Effektor) gegenüber CD30* L540CY Morbus Hogdkin-

10

Zellen (Zielzellen) bei unterschiedlichen Effektor-Zielzellen-Verhältnissesn in einem 5h JAM-Test. Ein erfindungsgemäßes F_v -Antikörper-Konstrukt (•) wurde mit einer Konzentration von 1 μ g/ml verabreicht. Als Kontrolle wurde bimAbHRS-3/A9 (•) (mit einer Konzentration von 4 μ g/ml verwendet. Als Negativ-

Kontrolle wurden das erfindungsgemäße F_v-Antikörper-

Konstrukt ohne NK-Zellen (°) und NK-Zellen alleine

15

(□) verwendet.

20

Fig. 4

zeigt die Behandlung von SCID Mäusen, die Morbus Hodgkin-Xenotransplantate tragen, mit einem erfindungsgemäßen F_v -Antikörper-Konstrukt. Die Mäuse wurden am Tag 0 i.V. mit 100 μ g eines erfindungsgemäßen F_v -Antikörper-Konstruktes zusammen mit NK-Zellen enthaltenden PBL-Zellen (•) bzw. ohne solche (•), mit 200 μ l PBS (*), mit 1 x 10 7 PBL-Zellen (□), bzw. mit einem Gemisch von 100 μ g mAb HRS-3 und A9 zusammen mit PBL-Zellen (◊) behandelt. Tumor-Durchmesser wurden zweimal pro Woche gemessen und das Tumor-Volumen wurde mit folgender Formel berechnet: Volumen = d^2x Dx π /6, wobei d der kleinere

und D der größere Tumor-Durchmesser ist.

30

Beispiel 1: Konstruktion des erfindungsgemäßen Expressionsvektors pKID16-30

Die cDNA der V_H - und V_L -Domänen eines anti-CD16-Antikörpers mAb A9 wurde einer PCR unterzogen. Hierfür wurden die folgenden Primer verwendet:

VH5', 5-CAGCCGGCCATGGCGCCAGGTC(G)CAGCTGCAGC(G)AG-3 (NcoI); VH3',5-CCAGGGGCCAGTGGATAGACAAGCTTGGGTGTTTTT-3 (HindIII);

VL5',5-AGAGACGCGTACAGGCTGTTGTGACTCAGG-3 (MluI);

VL3',5-GACTGCGGCCGCAGACTTGGGCTGGCC-3 (NotI).

Die PCR wurde wie folgt durchgeführt: Ein Zyklus; 5 min bei 94°C, 3 min bei 58°C und 2 min bei 72°C, gefolgt von 30 Zyklen; 80 sec bei 94°C, 80 sec bei 58°C und 2 min bei 72°C bzw. letzteres 10 min im letzten Zyklus. Die PCR-Produkte wurden Gel-gereinigt und in den Vektor pCR-Script SK(+) (Stratagene) zur Sequenzierung inseriert. Zur Expression wurde die V_H -Domäne über NcoI/HindIII und die V_L -Domäne über MluI/NotI in den Vektor pHOG21 inseriert.

Die V_H - und V_L -Domänen eines anti-CD30-scF $_V$ -Fragmentes wurden einer PCR unterzogen. Hierfür wurden die folgenden Primer verwendet:

5-ATGACCATGATTACGCCAAGC-3

5-AGACAAGCTTGGGTGTTGTTTTGGCTGAGGAGACGG-3 (HindIII);

5-GGCGGATATCGAGCTCACTCAGTCTCC-3 (EcoRV)

5-TATAGCGGCCGCAGCATCAGCCCGTTTGATTTCC-3 (Not1).

Die V_H - und V_L -Domänen des anti-CD30-scFv-Fragmentes bzw. des anti-CD16-scFv-Fragmentes wurden in den Expressionsvektor pKID inseriert, wodurch der erfindungsgemäße Expressionsvektor pKID 16-30 erhalten wurde. Dieser kodiert für die einzelkettigen F_v -Antikörper-Konstrukte V_H 16- V_L 30 und V_H 30- V_L 16.

Beispiel 2: Expression des erfindungsgemäßen F_v-Antikörper-Konstruktes in Bakterien

E.coli-Xl1 Blue-Zellen (Stratagene, La Jolla, CA), die mit dem Expressionsplasmid pKID16-30 transformiert worden waren,

10

5

15

20

8

30

35

wurden über Nacht in 2YT-Medium mit 100 μ g/ml Ampicillin und 100 mM Glucose bei 37°C gezüchtet. 1:20-Verdünnungen der über Nacht-Kulturen wurden als Kolbenkulturen in 2YT-Medium bei 38°C unter Schütteln mit 280 rpm gezüchtet. Bei einem OD600-Wert von 0,8 wurden die Bakterien durch 10 minütige Zentrifugation mit 1500 g bei 20°C pelletiert und in dem gleichen Volumen eines frischen 2YT-Mediums, das 100 μ g/ml Ampicillin und 0,4 M Saccharose enthielt, resuspendiert. IPTG wurde mit einer Endkonzentration von 0,1 M zugesetzt und das Wachstum wurde bei 21°C (20-22°C) 18-20 h fortgesetzt. Das F,-Antikörper-Konstrukt wurde wie in Kipriyanov, S.M. et al., Protein Engineering 10, (1997), 445 beschrieben, isoliert. Anschließend wurde es durch eine Ammoniumsulfatfällung (Endkonzentration 70 % Sättigung) eingeengt. Das Proteinpräzipitat wurde durch Zentrifugation (30000 g, 4°C, 45 min) gewonnen und in 10 % des Anfangsvolumens von 50 mM Tris-M NaCl, pH 7,0 aufgelöst. Eine immobilisierte Metallaffinitäts-Chromatographie (IMAC) wurde wie in Kipriyanov, S.M. et al., J. Immunol. Methods 200, (1997), 69 beschrieben, durchgeführt. Das gereinigte F,-Antikörper-Konstrukt wurde gegen eine Phosphat-gepufferte Kochsalzlösung dialysiert.

30

35

5

10

15

20

Beispiel 3: Charakterisierung des erfindungsgemäßen F_v Antikörper-Konstruktes

(A) Durchflußcytometrie

Zum Nachweis der Bindung eines erfindungsgemäßen F_v -Antikörper-Konstruktes an CD16 $^+$ Granulocyten und CD30 $^+$ L540CY-Morbus Hodgkin-Zellen wurde eine FACScan (Beckton Dickinson)-Analyse durchgeführt. Hierzu wurden 1 x 10 6 -Zellen zweimal in eiskaltem PBS-N (PBS, 0,05 * NaN₃) gewaschen und mit 100 μ l des F_v -Antikörper-Konstruktes von Beispiel 2 45 min auf Eis inkubiert. Die Zellen wurden 5 min mit 1200 rpm bei 4 $^\circ$ C pelletiert und mit 2 ml PBS-N gewaschen. Die Zellen wurden in 100 μ l PBS-N, das 10 μ g/ml des an das c-myc bindenden

Antikörpers 9E10 (ICI Chemikalien) enthielt, resuspendiert und 30 min auf Eis inkubiert. Die Zellen wurden pelletiert und wie vorstehend gewaschen. Danach wurden die Zellen mit Fluorescein-markiertem Ziege-anti-Maus IgG (Gibco BRL; 1:100 verdünnt in PBS-N), resuspendiert und 30 min inkubiert. Nach erneutem Waschen mit PBS-N waren die Zellen für die Analyse mit PBS-N, das 1 μ g/ml Propidiumjodid (Sigma) bereit. Hintergrund-Fluoreszenz wurde bestimmt, enthielt, indem die Zellen mit dem Antikörper 9E10 und Fluoresceinmarkiertem Ziege-anti-Maus-IgG unter gleichen Bedingungen inkubiert wurden.

20

30

35

10

5

Es zeigte sich, daß das erfindungsgemäße F_v -Antikörper-Konstrukt sowohl CD16 $^+$ Granolocyten als auch CD30 $^+$ L540 CY Morbus Hodgkin-Zellen erkennt und an sie bindet.

(B) Cytotoxizitätstest

Zum Nachweis der Aktivität eines erfindungsgemäßen F_{v} -Antikörper-Konstruktes NK-Zellen zu aktivieren, CD30 L540CY Morbus Hodgkin-Zellen zu lysieren wurde ein Cytotoxizitätstest entsprechend des in Matzinger, P., J. Immunol. Meth. 185 beschriebenen JAM-Tests durchgeführt. (1991), Cytotoxizitätstest wird die DNA-Fragmentierung bewertet. Zellen wurden mit [3H] Thymidin bis zu einer Endkonzentration von 2,5-5 μ Ci/ml für 4-6 h markiert. Die Zellen wurden pelletiert, einmal mit Kulturmedium gewaschen und auf 104 Zellen/Vertiefung einer 96-Lochplatte eingestellt. Nach Zugabe von Effektor-Zellen (NK Zellen enthaltende periphere Blutzellen "PBL-Zellen") in verschiedenen Verdünnungen wurde die 96.Lochplatte in einer befeuchteten Atmosphäre mit 7,5 % CO2 für 4 h inkubiert. Die Zellen und das Medium wurden auf Fiberglas-Filter gesaugt. Nach Waschen und Trocknen der Filter wurden sie in Plastik-Tüten überführt, die eine Szintillationsflüssigkeit enthielten und unter Verwendung eines Flüssig-Szintillations-Zählers (LKB) gezählt. gemessene Radioaktivität bezieht sich auf intakte DNA, da DNA aus toten Zellen in kleine Fragmente abgebaut ist, die nicht

von den Filtern festgehalten werden. Zur Bestimmung der Cytotoxizität, d.h. der Abtötung von Zellen, wurde die Standardformel für den JAM-Test verwendet: % spezifische Abtötung = (S-E)/S 100, wobei E = experimentell erhaltene DNA in Gegenwart von Effektor-Zellen (in cpm) und S = erhaltene DNA in Abweseneheit von Effektor-Zellen (spontan).

Es zeigte sich, daß ein erfindungsgemäßes F_v -Antikörper-Konstrukt NK-Zellen aktivieren kann, CD30 $^+$ L540CY Morbus Hodgkin-Zellen zu lysieren, wobei die Lyse stärker ist als bei Verwendung von bimAbHRS-3/A9.

9

15

20

10

5

(C) Einfluß auf Tumoren von Mäusen

CD30* L540CY Hodgkin's Lymphome wurden in SCID Mäusen, wie in Hombach, A. et al., Int. J. Cancer 55, (1993), 830; Renner, C. et al., J. Hematotherapy 4, (1995), 447 beschrieben, etabliert. Hierzu wurden 1.5×10^7 Tumorzellen in $200 \mu l$ PBS subcutan in die rechte Flanke der Mäuse injiziert. Die Tumor-Entwicklung, d.h. der Tumor-Durchmesser, wurde zweimal pro Woche bestimmt. Mäuse mit Tumoren von 4-6 mm im Durchmesser wurden in verschiedene Gruppen eingeteilt und erhielten ein erfindungsgemäßes F_v -Antikörper-Konstrukt in $200 \mu l$ PBS zusammen mit NK-Zellen enthaltenden peripheren Blutlymphozyten (PBL-Zellen). Das Tumorvolumen und seine Entwicklung wurden bestimmt (vgl. Legende zu Fig. 4).

30

Es zeigte sich, daß ein erfindungsgemäßes F_v -Antikörper-Konstrukt nicht nur in vitro sondern auch in vivo NK-Zellen aktivieren kann, CD30 * L540CY Morbus Hodgkin-Zellen zu lysieren.

35

Patentansprüche

- 1. F_v -Antikörper-Konstrukt mit Bindungsstellen für einen 5 CD16-Rezeptor und ein CD30-Oberflächenprotein.
 - 2. F_v -Antikörper-Konstrukt nach Anspruch 1, wobei der CD16-Rezeptor von NK-Zellen stammt.
- 10 3. F_v -Antikörper-Konstrukt nach Anspruch 1 oder 2, wobei das CD30-Oberflächenprotein von Morbus Hodgkin- oder Reed-Sternberg-Zellen stammt.
 - 4. F_v -Antikörper-Konstrukt nach einem der Ansprüche 1 3, wobei jeweils eine Bindungsstelle vorliegt.
 - 5. F_v-Antikörper-Konstrukt nach Anspruch 4, kodiert durch den Expressionsvektor pKID16-30 (DSM 12960).
- 20 6. F_v-Antikörper-Konstrukt nach einem der Ansprüche 1-3, wobei jeweils zwei Bindungsstellen vorliegen.
 - 7. Expressionsvektor, kodierend für das F_v -Antikörper-Konstrukt nach einem der Ansprüche 1 6.
 - 8. Expressionsvektor nach Anspruch 7, nämlich pKID16-30 (DSM 12960).
- 9. Transformante, enthaltend den Expressionsvektor nach30 Anspruch 7 oder 8.
 - 10. Verfahren zur Herstellung des F_v -Antikörper-Konstruktes nach einem der Ansprüche 1-6, umfassend die Kultivierung der Transformante nach Anspruch 9 unter geeigneten Bedingungen.
 - 11. Kit, umfassend:
 - (a) ein erfindungsgemäßes F_v -Antikörper-Konstrukt,

15

und/oder

- (b) einen erfindungsgemäßen Expressionsvektor, sowie
- (c) übliche Hilfsstoffe, wie Puffer, Lösungsmittel, Träger, Kontrollen und Marker,

wobei von den einzelnen Komponenten ein oder mehrere Vertreter vorliegen können.

10 12. Verwendung des F_v -Antikörper-Konstruktes nach einem der Ansprüche 1-6 zur Lyse von CD30-Oberflächenproteinen exprimierenden Zellen.

14. Verwendung nach Anspruch 13, wobei die Tumorzellen Morbus Hodgkin- oder Reed-Sternberg-Zellen sind.

F_v -Antikörper-Konstrukte

Die vorliegende Erfindung betrifft F_v -Antikörper-Konstrukte mit Bindungsstellen für einen CD16-Rezeptor und ein CD30-Oberflächenprotein, wobei sich die F_v -Antikörper-Konstrukte eignen, eine Regression von Morbus Hodgkin zu induzieren. Ferner-betrifft die Erfindung für solche F_v -Antikörper-Konstrukte kodierende DNAs sowie ein Verfahren zur Herstellung der F_v -Antikörper-Konstrukte und ihre Verwendung.

10

5

'' 'Xhol Asel 1 CTCGAGAGCGGGCAGTGAG ACGCAATTAATGTGAGTTAGCTCACTCA GCACCCCAGGCTTTACACTTTAT EcoRI **RBS** 79 GCTCCCGGCTCGTATGTTGTGGGAATTGTGAGCGGATAACAATTTCACACAGAATTCATTAAAGAGGAGAAATTAAC AlwNI Serum A 157 CATGAAATACCTATTGCCTACGGCAGCCGCTGGCTTGCTGCTGCTGCAGCTCAGCCGCCATGGCGCAGGTGCAGCTG 1 MetAlaGlnValGlnLeu anti-CD16 E∞RV 235 CAGCAGTCTGGAGCTGAGCTGGGAACGCCTGGGACTTCAGTGAAGATATCCTGCAAGGCTTCTGGCTACACCTTCACT 7 GlnGlnSerGlyAlaGluLeuValArgProGlyThrSerValLysIleSerCysLysAlaSerGlyTyrThrPheThr CDR-H1 E∞RV CDR-H2 313 <u>AACTACTGGCTAGGT</u>TGGGTAAAACAGAGGCCTGGACATGGACTCGAGTGGATTGGA<u>GATATCTACCCTGGAGGTGG</u>T 33 AsnTyrTrpLeuGlyTrpValLysGlnArgProGlyHisGlyLeuGluTrpIleGlyAspIleTyrProGlyGlyGly 391 TATACTAACTACAATGAGAAATTCAAGGGCAAGGCCACAGTGACTGCAGAACATCCTCCAGAACTGCCTACGTGCAG 59 TyrThrAsnTyrAsnGluLysPheLysGlyLysAlaThrValThrAlaAspThrSerSerArgThrAlaTyrValGln CDR-H3 469 GTCAGGAGCCTGACATCTGAGGACTCTGCTGTCTATTTCTGTGCAAGATCGCCTAGCTGCTACTTCGATGTCTGCGGC 85 ValArgSerLeuThrSerGluAspSerAlaValTyrPheCysAlaArgSerAlaSerTrpTyrPheAspValTrpGly HindIII Linker E∞RV 111) AlaArgThrThrValThrValSerSerAlaLysThrThrProLysLeuGlyGlyAspIleGluLeuThrGlnSerPro ٧L anti-CD30 5 AAATTCATGTCCACATCAGTAGGAGACAGGGTCAACGTCACCTACAAGGCCAGTCAGAATGTGGGTACTAATGTAGCC 7♪LysPheMetSerThrSerValGlyAspArgValAsnValThrTyrLysAlaSerGlnAsnValGlyThrAsnValAla 703 TGGTTTCAACAAAAACCAGGGCAATCTCCTAAAGTTCTGATTTACTCGGCATCTTACCGATACAGTGGAGTCCCTGAT 163 TrpPheGlnGlnLysProGlyGlnSerProLysValLeuIleTyrSerAlaSerTyrArgTyrSerGlyValProAsp 781 CGCTTCACAGGCAGTGGATCTGGAACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACTTGGCAGAGTAT 189 ArgPheThrGlySerGlyThrAspPheThrLeuThrIleSerAsnValGlnSerGluAspLeuAlaGluTyr C kappa 859 TTCTGTCAGCAATATCACACCTATCCTCTCACGTTCGGAGGGGGCACCAAGCTGGAAATCAAACGGGCTGATGCTGCG 215 PheCysGlnGlnTyrHisThrTyrProLeuThrPheGlyGlyGlyThrLysLeuGluIleLysArgAlaAspAlaAla c-myc epitope His6 tail 937 GCCGCTGGATCCGAACAAAAGCTGATCTCAGAAGAAGACCTAAACTCACCATCACCATCACCATCACTAAAGATCTATT 241 AlaAlaGlySerGluGlnLysLeuIleSerGluGluAspLeuAsnSerHisHisHisHisHisHis Pel B leader Ncol 1015 AAAGAGGAGAAATTAACCATGAAATACCTATTGCCTACGGCAGCCGCTGGCTTGCTGCTGCTGCAGCTCAGCCGGCC Ncol . Serum A VH anti-CD30 1093 ATÇÇCGGCCATGGCCCAGGTGCAACTGCAGCAGTCAGGGGCTGAGCTGGCTAGACCTGGGGCTTCAGTGAAGATGTCC 1 MetAlaGlnValGlnLeuGlnGlnSerGlyAlaGluLeuAlaArgProGlyAlaSerValLysMetSer 1171 TGCAAGGCTTCTGGCTACACCTTTACTACCTACACAATACACTGGGTAAGACAGAGGCCTGGACACGATCTGGAATGG $24^{f b}$ <code>CysLysAlaSerGlyTyrThrPheThrThrTyrThrIleHisTrpValArgGlnArgProGlyHisAspLeuGluTrp</code> eta ATTGGATACATTAATCCTAGCAGTGGATATTCTGACTACAATCAGAACTTCAAGGGCAAGACCACATTGACTGCAGAC D lleGlyTyrIleAsnProSerSerGlyTyrSerAspTyrAsnGlnAsnPheLysGlyLysThrThrLeuThrAlaAsp 1327 AAGTCCTCCAACACAGCCTACATGCAACTGAACAGCCTGACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGAAGA 76 LysSerSerAsnThrAlaTyrMetGlnLeuAsnSerLeuThrSerGluAspSerAlaValTyrTyrCysAlaArgArg 1405 GCGGACTATGGTAACTACGAATATACCTGGTTTGCTTACTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGCCAAA 102 AlaAspTyrGlyAsnTyrGluTyrThrTrpPheAlaTyrTrpGlyGlnGlyThrThrValThrValSerSerAlaLys HindIII Linker E∞RV VL anti-CD16 1483 ACAACACCCAAGCTTGGCGGTGATATCCAGGCTGTTGTGACTCAGGAATCTGCACTCACCACATCACCTGGTGAAAC 128 ThrThrProLysLeuGlyGlyAspIleGlnAlaValValThrGlnGluSerAlaLeuThrThrSerProGlyGluTh CDR-L1 1560 AGTCACACTCACTTGT<u>CGCTCAAATACTGGGACTGTTACAACTAGTAACTATGCCAAC</u>TGGGTCCAAGAAAAACCAGA 153 rValThrLeuThrCysArgSerAsnThrGlyThrValThrThrSerAsnTyrAlaAsnTrpValGlnGluLysProAs CDR-L2 1638 TCATTTATTCACTGGTCTAATAGGTCATACCAACAACCGAGCTCCAGGTGTTCCTGCCAGATTCTCAGGCTCCCTGAT 179 pHisLeuPheThrGlyLeuIleGlyHisThrAsnAsnArgAlaProGlyValProAlaArgPheSerGlySerLeuIl 1716 TGGAGACAAGGCTGCCCTCACCATCACAGGGGCACAGACTGAGGATGAGGCAATATATTTCTGT<u>GCTCTATGGTATAA</u> 205 eGlyAspLysAlaAlaLeuThrIleThrGlyAlaGlnThrGluAspGluAlaIleTyrPheCysAlaLeuTrpTyrAs Notl 1794 <u>CAACCATTGGGTG</u>TTCGGTGGAGGAACCAAACTGACTGTCCTAGGCCAGCCCAAGTCTGCGGCCGCTGGATCCGAACA 231 nAsnHisTrpValPheGlyGlyGlyThrLysLeuThrValLeuGlyGlnProLysSerAlaAlaAlaGlySerGluGl

					,	•	
	1872 257	c-myc epit AAAAGCTGATCTCAGA AAAAGCTAAACTCACA nLysLeuIleSerGluGluAspLeuAsnSerHi	His6 tail TCACCATCACCATC SHisHisHisHisH	Xbal ATCTAGAGGCCTG	BcII STGCTAATGATC	Nhe AGC	
	1050				Нра	1	
	1950			CTTTCGTTTTATCTGTT	GTTTGTCGGTT	AAC	
	2020	Sall Earl	Pvul	Fspl Bgll			
	2028		CGATCGCCCTTCCC	AACAGTTGCGCAGCCTG	AATGGCGAATG	GGA	
	2106	CGCGCCTGTAGCGGCGCATTAAGCGCGGCGG			CTTGCCAGCGC	CCT	
	210/	VCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	N DOMOGOGO GORDON	ael			
	2104	AGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTT	ICICGCCACGIICG	CCGGCTTTCCCCCGTCAA	GCTCTAAATCG	GGG	
	2262	f1 IR			Dralll		
	2262 2340	GCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGC	CACCTCGACCCCA	AAAAACTTGATTAGGGT	GATGGTTCACG	TAG	
			111GACGTTGGAGT	CCACGTTCTTTAATAGT	GGACTCTTGTTY	CCA	
	2410	AACTGGAACAACACTCAACCCTATCTCGGTCTAT			TCGGCCTATTG	GTT	
	2496	AAAAAATGAGCTGATTTAACAAAAATTTAACGCC	Ssp.				
	2470	ANAMATICAGE IGAI I IAACAAAAATI I IAACGEC	MAITTAACAAAA			PPT	
	2574	CGGGGAAATGTGCGCGGAACCCCTATTTGTTTAT	יוייזייי	የጥና à ልጥልጥናጥልጥና ና ናር	BspHI	TIA 3	
		Sspl Ea		TICAMINICIAICCGC	ICAIGAGACAA'I	IAA	
	2652	CCCTGATAAATGCTTCAATAATATTGAAAAAGGA		ICAACATTTCCGTGTCG	CCCTTATTCCC	بلململ	
						Anal	
	2730	TTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACC	CAGAAACGCTGGT	GAAAGTAAAAGATGCTG	AAGATCAGTTG	GT:	
1					Xmnl		
1	8	GCACGAGTGGGTTACATCGAACTGGATCTCAACA	GCGGTAAGATCCT	rgagagtttttcgccccg	AAGAACGTTTTC	CA	
	•	Dral		•			
	2886	ATGATGAGCACTTTTAAAGTTCTGCTATGTGGCG		PATTGACGCCGGGCAAG2	AGCAACTCGGTC	CGC	
	2064	Sca			1000		
	2964	CGCATACACTATTCTCAGAATGACTTGGTTGAGT		AGAAAAGCATCTTACGG	ATGGCATGACAG	TA	
		ß-Lactamase		F	Pvul		
	3042	-AGAGAATTATGCAGTGCTGCCATAACCATGAGTG	ATAACACTGCGGCC	CAACTTACTTCTGACAA)ĠĀTCGGAĞGAC	CG	
	3120	AAGGAGCTAACCGCTTTTTTGCACAACATGGGGG	ATCATGTAACTCGC		JGGAGCTGAATG	:AA:	
	3198	CCC ATTACCA A ACCACCACCACCACCACCACCATCA	CMCM3 CC3 3 MCCC3	Fspl			
	3130	GCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACCGTTGCGCAAACTATTAACTGGCGAA Asel					
	3276	ASEI 5 CTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGA					
		Bgll Bsal					
	3354	GCCCTTCCGGCTGGCTGGTTTATTGCTGATAAAT	CTGGAGCCGGTGAG		CATTGCAGCAC	TG:	
	3432	GGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTA	TCTACACGACGGG	AGTCAGGCAACTATGGA	ATGAACGAAATA	ιGΑ	
	3510		ATTGGTAACTGTCA	GACCAAGTTTACTCATA	TATACTTTAGA	TT	
	_	Drai Drai	•	BspHI			
	38	GATTTAAAACTTCATTTTTAATTTAAAAGGATCT					
	5	CGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCG					
.```	2022	GTAATCTGCTGCTTGCAAACAAAAAACCACCGC'	PACCAGCGGTGGTT	TGTTTGCCGGATCAAGA	GCTACCAACTC'	TT	
	3822	TTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGA	PACCAAATACTGTC		GTTAGGCCACC	AC	
	3900	TTTC A A C A A CTCTCTA C A CCCCCTTA C A TIA COTTCC		AlwNI			
	3300	TTCAAGAACTCTGTAGCACCGCCTACATACCTCGC	CTCTGCTAATCCTG	TTACCAGTGGCTGCTGC	CAGTGGCGATA	AG	
	2050	ColE1		2000	Apa	aL!	
		TCGTGTCTTACCGGGTTGGACTCAAGACGATAGT					
		ACACAGCCCAGCTTGGAGCGAACGACCTACACCG					
		CCCGAAGGAGAAAGGCGGACAGGTATCCGGTAA					
	4212	GGAAACGCCTGGTATCTTTATAGTCCTGTCGGGT	TCGCCACCTCTGA	CTIGAGCGTCGATTTTT	GIGATGCTCGT	CA	
	4368	GGGGGGGGAGCCTATGGAAAAACGCCAGCAACGCATGTTTCCTGCGTTATCCCCTGATTCTGTGG	LGGCCTTTTTACGG'	TTCCTGGCCTTTTGCTG	GCCTTTTGCTC	AC CC	
	4700	AIGITETTTCCTCCGTTATCCCCTCATTCTGTGG		GCCTTTGAGTGAGCTGA	TACCGCTCGCCC	<u>ين</u>	
	4446	AGCCGAACGACCGAGCGCGAGTCAGTGAGCGA	Earl AGGAAGCGGAAGAG	^C_C_C_A	CCCTCTCCCC	CG	
		Asel BspMI	WADAMEDOO! I I I I	COCCUATACOCHAACC	GC1C1CCCC	JG	
	4524			~			

Fig. 2

Granulocytes (CD16.+)

L540CY cells (CD30 +)

erfindungsgemäßes F_V-Antikörper-Konstrukt

erfindungsgemäßes F_V-Antikörper-Konstrukt

Fluorescence Intensity

Fig. 3

Fig. 4

This Page Blank (uspto)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
MAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)