# DS 574: Algorithmic Mechanism Design

PROFESSOR KIRA GOLDNER

# What is "EconCS"?

### Also referred to as: Algorithmic Game Theory (AGT)



# Econ→CS

### **Online Labor Markets**





- The systems interact with **strategic individuals**.
- We must design them to be robust to strategic behavior.

### Health Insurance



### **Carbon Emissions**













### Econ→CS Algorithmic Economic concepts, **Objective:** Maximize problems arguments Input: buyer's value Data reported by **Output:** strategic agents. -who gets what -who pays (gets 20 15 paid) what Mechanism Use game theory to reason about incentives within the algorithm so that we can guarantee (approximate) optimality.

### Econ→CS

Elegant proofs using an economic lens:



Maximum weight matching [Demange Gale Sotomayor '86]

 LHS runs ascending auction "bidding" on RHS until perfecting matching achieved.

Online bipartite matching [Karp Vazirani Vazirani '90]

- Algorithm: Randomly permute RHS. LHS arrives and takes first available item in LHS according to permutation.
- Prove this using elegant random price argument. [Eden Feldman Fiat Segal '21]

### CS→Econ

Computational thinking



Economic problems





1 item

**Open Problem**: What optimal mechanisms can we characterize beyond 1 item?

2 items





- Simple.
- Easy to compute.
- Only one real option.

[Myerson '81]

\$5: Pr[**6**]=1

- Uncountably infinite options.
  [Manelli Vincent '07, Daskalakis Deckelbaum Tzamos '15]
- Intractable to compute. [Daskalakis Deckelbaum Tzamos '13]
- We still know very little about how to do this.

\$5.89: (Pr[**i**]=.60, Pr[**7**]=.29)



# CS→Econ





- Uncountably infinite options. [Manelli Vincent '07, Daskalakis Deckelbaum Tzamos '15]
- Intractable to compute. [Daskalakis Deckelbaum Tzamos '13]
- We still know very little about how to do this.

\$5.89: (Pr[)]=.60, Pr[)]=.29)

Simple Mechanisms









(Lack of) information



# Why is this important to learn about?

# Mechanism Design and Society





### Computationally Efficient:

- To design.
- To run.
- To strategize within.



# Mechanism Design and Society

### Settings where:

- Allocations are a mess.
- There are perverse incentives.

### Computationally Efficient:

- To design.
- To run.
- To strategize within.



### Health Insurance















# Braess's Paradox



### Fraction of population on route

Cost (think: time to travel with traffic)

**Centralized OPT** 

Price of Stability (PoS)

Takeaways:

0

u

 $\boldsymbol{\chi}$ 

1

S

x = 1

Adding a 0-cost road doesn't always help! Agents don't choose what's best for them!

Price of Anarchy (PoA)

1

# What should you expect to learn?

- Mechanism Design basics (welfare, revenue, environments)
  - Similar to other MD/EconCS courses. Probably the only part that is.
- Mechanism Design for Social Good
- Robustness
- New frontiers (two-sided markets, interdependent values, fairness)
- LP Duality applied to mechanism design

# Where can go you after this course?

### Research in related fields:

- EconCS (from CS)
- Operations Research (IE or Business)
- Microeconomic theory
- Some interdisciplinary split!

Add incentives or an economics perspective to your research:

- Privacy for strategic agents
- Learning with strategic agents







### Related industries:

- Platform economics
- Allocation systems in welfare or industry
- Legal regulation (when is regulation better than markets?)











# Logistics

# Teaching Staff

Instructor: Prof. Kira Goldner

Email: goldner@bu.edu

OH: Tues 3-4PM & by appointment

Office Location: CCDS 1339

TF: Peiran Xiao

Email: pxiao@bu.edu

OH: TBD

Location: TBD





# Introductions!

- Name
- Department + Year
- •Why are you taking this class?
- Somewhere you've been that you think no one else here has been

## Class Resources

Course website: https://www.kiragoldner.com/teaching/DS574/

Lecture notes, links to everything

### Piazza (access code AMD):

- Questions and answers; alternative for email
- I am a human who does not live inside the computer!

### Gradescope (entry code ZZV4DV):

Turn in assignments and view grades

Sign up for these if you have not already! (Links on... the course website!)

Also! I am open to suggestions on how to best utilize things like Piazza!



# This is a theoretical problem-solving class

No programming assignments! Evaluation based on problem sets and project.

### Prerequisites:

- A first proofs class that's Discrete-Math-esque (DS 121, CS 131, MA 293, ...)
- Undergrad algorithms (DS 320, CS 330, ...)—algorithmic reasoning, runtime and complexity notions
- Intro probability (MA 581)—know r.v.s and compute their moments
- Mathematical maturity

### Not expected:

Any background in game theory/incentives/economics.

## Evaluation

### Homework (45%)

Collaborative problem sets ~every other week.

### Mechanism Design for Social Good problem formulation (15%)

 Formulate a problem and defend why the question is important both for the domain and within mechanism design. Identify a domain expert for potential collaboration.

### Class participation (5%)

In class and via Piazza (asking and answering questions) gets 100% here.

### Final Project (35%)

• Investigate a research question not covered in class—read papers and write a survey OR do original research. Write up and presentation.

# Homework Policies

- Expect to spend at least 10 hours per assignment.
- Late policy: You have 4 late days, max 2 per assignment (integer numbers used only). No exceptions.
- Type up homework with LaTeX.
- Turn in via **gradescope**. Due at 11:59pm on the date assigned.
- Regrades: Requests within 7 days, only via gradescope, with explanation/argument. Only for incorrect grading (not insufficient credit). If you request a regrade, the whole assignment/exam may be regraded, and your score may go up or down.

# Collaboration Policy

Collaboration is encouraged!!!

- You may work with up to two classmates on an assignment. List your collaborators' names on your assignment. (E.g., Collaborators: None.)
- Good rough rule: Nobody should leave the room with anything written down.
  If you really understand, you should be able to reconstruct it on your own.
- You may not use the internet on homework problems. You may use course materials and the recommended readings from textbooks.

I believe **strongly** in learning over evaluation, learning via collaboration, and academic integrity. Please adhere to BU's academic conduct policy.

# Class Etiquette

I strive toward an accessible and equitable classroom for all students.

- Raise your hand.
- Be conscious of how often you participate (in class and in collaboration).
  - Don't talk over others, leave room for other voices if you speak up a lot, and speak up more if you do not.
- I'm always open to new strategies here.

#### But also

Ask questions!!!!!!

Best advice I ever got was to just ask and not wait to fill in gaps myself later.

# Book

There is no required textbook, and the lecture notes will be self contained. But many of the topics we are covering are well covered in standard algorithms textbooks; some lectures are adapted from Tim Roughgarden's lecture notes.







# Let's get started!