电子科技大学

实 验 报 告

学生姓名: 蔡与望 学号: 2020010801024 指导教师: 徐行

- 一、实验项目名称:图像过滤与融合
- 二、实验原理:

2.1 图像过滤

从空域上来看,图像过滤是用卷积核对图像进行一次卷积,如下图所示。

I(0,0)	I(1,0)	I(2,0)	I(3,0)	I(4,0)	I(5,0)	I(6,0)								
I(0,1)	I(1,1)	I(2,1)	I(3,1)	I(4,1)	I(5,1)	I(6,1)						O(0,0)		
I(0,2)	I(1,2)	I(2,2)	I(3,2)	I(4,2)	I(5,2)	I(6,2)		H(0,0)	H(1,0)	H(2,0)				
I(0,3)	I(1,3)	I(2,3)	I(3,3)	I(4,3)	I(5,3)	I(6,3)	×	H(0,1)	H(1,1)	H(2,1)	=			
I(0,4)	I(1,4)	I(2,4)	I(3,4)	I(4,4)	I(5,4)	I(6,4)		H(0,2)	H(1,2)	H(2,2)				
I(0,5)	I(1,5)	I(2,5)	I(3,5)	I(4,5)	I(5,5)	I(6,5)	Filter							
I(0,6)	I(1,6)	I(2,6)	I(3,6)	I(4,6)	I(5,6)	I(6,6)								

Input image

Output image

从频域上来看,图像过滤是一种过滤频率成分的方法,最典型的有低通和高通滤波。

分类	定义	用途	典型
低通滤波	只允许低频成分通过	平滑、降噪	均值、高斯
高通滤波	只允许高频成分通过	锐化、边缘检测	索伯、拉普拉斯

2.2 图像融合

图像融合,就是将一幅图像的低频成分和另一幅的高频成分叠加。在对两幅图像分别进行滤波时,截止频率需要相同。

同时, 想要让图像融合的效果更好, 就要让图像的结构类似, 例如两幅都是脸部的照片。

三、实验目的:

- 1. 掌握图像过滤的原理和方法。
- 2. 掌握图像融合的原理和方法。

四、实验内容:

- 1. 基于 scikit-image 中所包含的常见滤波器,对图像进行滤波,直观地对比不同滤波器的效果。
- 2. 编写 my_filter 函数,实现高通滤波和低通滤波两种滤波形式。
- 3. 通过 my filter 函数对图像进行高低通滤波,并且对图像分别在高低频进行融合。

五、实验步骤:

5.1 图像过滤

代码见 package/filter.py。

首先,将卷积核翻转 180°。虽然大多数(包括该实验中所有)的卷积核都是上下左右 对称的,但如果不翻转,这个核做的就不是卷积运算,而是互相关运算。

接着,为了卷积核能够更方便的处理边缘像素,我们在原图像的周围用0扩充,如下图所示。

然后,对于每个颜色通道,遍历每行每列,计算每个像素的卷积结果。

5.2 图像融合

代码见 package/hybrid.py。

首先, 创建一个高斯核, 其标准差和半径均为截止频率。

接着,用高斯核过滤图像1和图像2,得到它们的低频成分。从图像2中减去它自己的低频成分,就得到了图像2的高频成分。

最后,将图像1的低频成分和图像2的高频成分相加,得到融合图像。

六、实验数据及结果分析:

实验使用的两幅图像分别是狗和猫的脸部照片。

使用一个只有中心为 1、其它均为 0 的核滤波,结果与原图一致。这是因为,原图中的每个像素都变成了自己乘 1,相当于没有变。

均值滤波将原图变得更模糊。这是因为,原图中的每个像素都变成了周围像素的均值,相当于在图像的每个地方都做了平滑处理。

将原图减去均值滤波的结果,得到了类似于高通滤波的结果。这是因为,原图减去其低 频成分,自然就等于其高频成分。

高斯滤波也将原图变得更模糊。这是因为,高斯核在两个维度上都是正态分布的向量,相当于一种考虑了邻近程度影响的均值滤波。

索伯滤波检测出了图像的垂直(水平)边界。这是因为,索伯算子相当于是把像素一侧的值减去了另一侧的值。如果像素不在边界上,那么其两侧的颜色不会差很多,得到的卷积结果也接近于 0。而对于边界上的像素而言,两侧颜色有明显差异,所以索伯算子把边界的

像素点都检测了出来。

拉普拉斯滤波也检测出了图像的边界。这是因为,拉普拉斯算子相当于从像素周围的值中减去了该像素的值。与素伯滤波同理,它只在边界像素上的卷积结果不接近于0。

令截止频率为7,融合狗图的低频成分和猫图的高频成分,如下图所示。

七、实验结论:

从结果中可以看出,图像过滤和图像融合的效果都比较令人满意。因此可以说,本实验中编写的代码能够很好地完成实验要求。

八、总结及心得体会:

通过本实验,我对图像过滤和融合的原理有了清晰的认知,对如何使用代码完成这些操作有了亲身的体验。同时,我通过分析卷积核的特点,探究了各种过滤效果的产生原因。

九、对本实验过程及方法的改进建议:

无。

报告评分:

指导教师签字: