Problem Set 6 Slope Fall 2020

1. For vector spaces V, W, show that there is a natural isomorphism

$$\operatorname{Hom}(V, W) \simeq W \otimes V^*$$
.

Deduce that there is a natural isomorphism

$$\operatorname{Hom}(E,F) \simeq F \otimes E^*$$

for bundles too. (This justifies a portion of the hint from Problem 5 of Problem Set 4.)

- **2.** Let E be a complex vector bundle of rank r over X.
- (a) If D_0 , D_1 are two connections on E, show that the difference $D_1 D_0$ is $C^{\infty}(X)$ -linear and deduce that it corresponds to an End(E)-valued 1-form on X.
- (b) If C denotes the space of connections on E, show that the tangent space T_DC to

a connection D can be identified with the space of $\operatorname{End}(E)$ -valued 1-forms.

(c) Let $F: \mathcal{C} \to A^2(\operatorname{End}(E))$ denote the map taking a connection to its corresponding curvature form. For a connection D and an $\operatorname{End}(E)$ -valued 1-form a, show that

$$dF_D(a) = Da.$$

(d) The trace determines a map

$$A^2(\operatorname{End}(E)) \to A^2(X)$$
.

Show that the derivative of the composition

$$\mathcal{C} \to A^2(\operatorname{End}(E)) \to A^2(X)$$

has image contained in im d, where d is the de Rham differential $d: A^1(X) \to A^2(X)$.

3. Show that the cohomology class determined by the 2-form $Tr(F_D)$ is independent

of the choice of connection D. (Hint: Apply the fundamental theorem of Calculus to a path connecting two different connections.)

4. The degree of E with respect to the Kähler form ω is defined by

$$\deg(E) = \int_X c_1(E) \wedge \frac{\omega^{n-1}}{(n-1)!}.$$

Show that

$$\deg(E) = \frac{i}{2\pi} \int_X \Lambda \operatorname{Tr}(F_D) \frac{\omega^n}{n!}$$

where F_D is the curvature of a connection D.

5. A Hermitian metric H on E is called Hermitian–Einstein if there is a constant λ such that

$$\Lambda F_H = \lambda I_E,$$

where I_E denote the identity endomorphism. Show that the only possible option

for λ is the number

$$\lambda = \frac{-2\pi i \mu(E)}{\operatorname{vol}(X)}$$

where $\mu(E)$ denotes the *slope*

$$\mu(E) = \frac{\deg(E)}{\operatorname{rank}(E)}.$$

6. Let V denote a finite-dimensional vector space. The group GL(V) acts on $\mathfrak{gl}(V)$ by conjugation

$$g \cdot A = gAg^{-1}.$$

The group also acts on p-copies of $\mathfrak{gl}(V)$ by the diagonal action consisting of conjugation in each slot.

(a) For a $g \in GL(V)$, the tangent space $T_gGL(V)$ can be identified with the vector space $\mathfrak{gl}(V)$ (because GL(V) is the open subset of $\mathfrak{gl}(V)$ consisting of endomorphisms with nonzero determinant). Let ξ

be a tangent vector

$$\xi = \frac{d}{dt} \bigg|_{t=0} g_t$$

realized as the derivative of a curve g_t in GL(V) passing through I at time t=0. Show that

$$\left. \frac{d}{dt} \left(g_t \cdot A \right) \right|_{t=0} = \left[\xi, A \right]$$

where

$$[\xi, A] = \xi A - A\xi$$

is the Lie bracket.

(b) Let φ_2 denote the bilinear form

$$\varphi_2(A, B) = -\text{Tr}(AB)$$

on $\mathfrak{gl}(V)$. Show that φ_2 is invariant with respect to the diagonal action of GL(V) on $\mathfrak{gl}(V) \times \mathfrak{gl}(V)$.

(c) Show that φ_2 enjoys the relation

$$\varphi_2([\xi, A], B) + \varphi_2(A, [\xi, B]) = 0.$$

(d) More generally, let φ denote any multilinear function on p copies of $\mathfrak{gl}(V)$. If φ is invariant under the diagonal action of GL(V), show that

$$\sum_{j=1}^{p} \varphi(A_1, \dots, [\xi, A_j], \dots, A_p) = 0$$

for any $\xi, A_i \in \mathfrak{gl}(V)$.

7. Let φ denote a multi- \mathbb{C} -linear bundle map

$$\varphi: \operatorname{End}(E)^{\oplus p} \to \underline{\mathbb{C}}$$

which determines a multi- $C^{\infty}(X)$ -linear map of sections

$$\varphi: A^0(\operatorname{End}(E))^{\oplus p} \to C^\infty(X).$$

More generally, φ determines a multi- $C^{\infty}(X)$ -linear map

$$\varphi: A(\operatorname{End}(E))^{\oplus p} \to A(X)$$

by the requirement

$$\varphi(\alpha_1 \otimes \sigma_1, \dots, \alpha_p \otimes \sigma_p)$$

= $\varphi(\sigma_1, \dots, \sigma_p) \otimes \alpha_1 \wedge \dots \wedge \alpha_p$

for $\sigma_k \in A^0(\text{End}(E))$ and $\alpha_k \in A(X)$.

(a) According to the previous problem, if φ is invariant under the conjugation action of GL(E), then φ enjoys the relation

$$\sum_{k=1}^{p} \varphi(\sigma_1, \dots, [\xi, \sigma_k], \dots, \sigma_p) = 0$$

for $\sigma_k, \xi \in A^0(\text{End}(E))$. More generally, define a bracket on A(End(E)) by

$$[\omega,\eta] = \omega \wedge \eta - (-1)^{|\omega||\eta|} \eta \wedge \omega$$

for homogeneous $\omega, \eta \in A(\operatorname{End}(E))$. (Here the notation \wedge is a combination of matrix multiplication and the wedge product.) Show that with this convention, if φ is invariant, then φ enjoys the relation

$$\sum_{k=1}^{p} (-1)^{|\eta|f(k)} \varphi(\omega_1, \dots, [\eta, \omega_k], \dots, \omega_p) = 0$$

for homogeneous ω_k , η , where

$$f(k) = \sum_{j>k} |\omega_j|.$$

(b) Show that the derivation property of d implies the relation

$$d(\varphi(\omega_1,\ldots,\omega_p))$$

$$=\sum_{k=1}^{p}(-1)^{g(k)}\varphi(\omega_1,\ldots,d\omega_k,\ldots,\omega_p),$$

where $g(k) = \sum_{j < k} |\omega_j|$.

 $d(\varphi(\omega_1,\ldots,\omega_n))$

(c) Show that if φ is invariant, then

$$= \sum^{p} (-1)^{g(k)} \varphi(\omega_1, \dots, D\omega_k, \dots, \omega_p).$$

(Hint: Work locally. Let θ denote a connection matrix for a connection on E. For the induced connection on $\operatorname{End}(E)$, show that

$$D\omega_k = d\omega_k - [\theta, \omega_k].$$

Then use the previous two parts together.)

(d) For a connection D, its curvature F_D determines via φ a 2p-form

$$\varphi(D) := \varphi(F_D, \dots, F_D).$$

If φ is invariant, show that $\varphi(D)$ is closed.

(e) Suppose φ is invariant. If D_1, D_0 are two connections, show that the difference

$$\varphi(D_1) - \varphi(D_0)$$

is exact. (Hint: Let $D_t = D_0 + t\alpha$ where $\alpha = D_1 - D_0$ is an End(E)-valued 1-form. Note that

$$\frac{d}{dt}\varphi(D_t) = \varphi(F_t; \dot{F}_t)$$

where

$$\varphi(\omega;\eta) = \sum_{k=1}^{p} \varphi(\omega,\ldots,\overset{(k)}{\eta},\ldots,\omega).$$

Problem 2(c) implies that

$$\dot{F}_t = D_0 \alpha + t[\alpha, \alpha] = D_t \alpha.$$

Part (c) implies

$$\frac{d}{dt}\varphi(D_t) = d(\varphi(F_t; \alpha)).$$

Set

$$\psi = \int_0^1 \varphi(F_t; \alpha) dt,$$

and conclude that

$$\varphi(D_1) - \varphi(D_0) = d\psi,$$

as desired.)

(f) Conclude that the cohomology class represented by $\varphi(D)$ is independent of the choice of connection D.

8. Let φ be as before and suppose additionally that φ is invariant under the action of the permutation group on the copies of $\mathfrak{gl}(V)$. For a Hermitian metric H on E, set

$$\varphi(H) = \varphi(D_H)$$

where D_H is the Chern connection corresponding to H. The $\partial\bar{\partial}$ -lemma, together with the previous problem, implies that for each pair of metrics H, K, there is a (p-1, p-1)-form $R_{\varphi}(H, K)$ satisfying

$$i\bar{\partial}\partial R_{\varphi}(H,K) = \varphi(H) - \varphi(K).$$

Our goal is to construct $R_{\varphi}(H, K)$, modulo im $\partial + \operatorname{im} \bar{\partial}$.

(a) Let r(t, s) for $0 \le t, s \le 1$ denote a smooth surface of metrics satisfying the property that for each s, the map

$$t \mapsto r_s(t) := r(s,t)$$

is a smooth path of metrics starting at K at t = 0 and ending at H at t = 1. Let θ

denote a one-form on the space of metrics \mathcal{E} . The pullback $r^*\theta$ is a one-form defined on the unit square $R = I^2 = [0, 1] \times [0, 1]$. Show that that

$$\iint_R d(r^*\theta) = \int_I r_1^*\theta - \int_I r_0^*\theta.$$

(b) Define a $A^{p-1,p-1}(X)$ -valued one-form θ by the rule that at the metric H, the one form θ_H acts on the tangent space by

$$\theta_H(h) = -i\varphi(F_H; H^{-1}h).$$

Show that the exterior derivative of θ at H evaluated on two tangent vectors h, k is given by

$$ip\varphi([\tau,\sigma], F, \dots, F)$$

$$+ ip \sum_{j=2}^{p} \varphi(\tau, F, \dots, \overleftarrow{\bar{\partial}} \partial \sigma, \dots, F)$$

$$- ip \sum_{j=2}^{p} \varphi(\sigma, F, \dots, \overleftarrow{\bar{\partial}} \partial \tau, \dots, F).$$

(Hint: See Donaldson's paper.)

(c) Show, using the Bianchi identity together with Problem 6(d), that the expression from the previous part lies in im ∂ + im $\bar{\partial}$.

(d) Set $R_{\varphi}(K, K) = 0$. For any other metric H, define

$$R_{\varphi}(H,K) = -i \int_0^1 \varphi(F_{H_t}; H_t^{-1} \dot{H}) dt,$$

where $t \mapsto H_t$ is a path of metrics from K to H. Use the previous parts to show that this definition is, modulo im $\partial + \text{im } \bar{\partial}$, independent of the choice of path.

9. Using the notation of the previous problem, let φ_1 denote the invariant function associated to the trace

$$\varphi_1(A) = \operatorname{Tr}(A)$$

and let φ_2 denote the invariant function

associated to the Killing form

$$\varphi_2(A,B) = -\text{Tr}(AB).$$

(Here, the minus sign guarantees that the form becomes positive definite when restricted to the space of skew-hermitian endomorphisms.) Verify that indeed each φ_k is invariant under the action of the general linear group. Then show that

$$R_1(H, K) = -i \int_0^1 \text{Tr}(H_t^{-1} \dot{H}) dt$$

$$R_2(H, K) = 2i \int_0^1 \text{Tr}(H_t^{-1} \dot{H} F_t) dt.$$

10. The Donaldson functional can be defined by

$$M_K(H) = \int_X (R_2 + 2\lambda R_1 \omega) \wedge \frac{\omega^{n-1}}{(n-1)!},$$

where λ is as in Problem 5 and R_1, R_2 are as in Problem 9. For a path of metrics H_t

from K to H, show that the variation of M_K along this path is given by

$$\frac{\partial}{\partial t} M_K(H_t)$$

$$= 2i \int_X \text{Tr}(H_t^{-1} \dot{H}(F_t - \lambda \omega I_E)) \wedge \frac{\omega^{n-1}}{(n-1)!}.$$

11. Show that if H is a critical point of M_K , then H is a Hermitian-Einstein metric.