Machine Learning 520 Advanced Machine Learning

Lesson 3: Random Forest and Gradient Boosted Trees

Today's Agenda

- Decision/Regression tree bagging
- Random forest regression/classification
- Gradient boosting regression/classification

Learning Objectives

By the end of this session, you should be able to:

- Describe bootstrap and why bootstrap helps.
- Demonstrate how bootstrap aggregation works for classification/regression trees.
- Apply random forest and gradient boosting trees to data sets and evaluate performance.

Bagging

- > Bootstrap aggregation, or bagging, is a general-purpose procedure for reducing the variance of a machine learning method by combining the result of multiple classifiers trained on different sub-samples of the same data set.
 - E.g. random forest.

> Bagging:

- Step 1: Create bootstrap samples (sample with replacement).
- Step 2: Train separate classifier on each sample.
- Step 3: Classify new data point by majority vote or average.

Ensemble of multiple independently trained decision trees

- Each tree is trained using a sample of observations and a sample of independent variables
 - Think about three doctors diagnosing heart disease. One doctor is trained by just looking at ECG, one doctor is a Chinese medicine doctor who is trained only by only touching the pulse, and one doctor is trained by looking at the ultrasound image
 - Each doctor is trained on data of different patients (there might be overlapping among the sets of patients)

Advantages of Random Forest:

- Significantly better performance than individual trees
- Automatic Feature Selection
- Less risk of overfitting
- Can be parallelized easily (training of multiple doctors can happen at the same time independently)

Disadvantages:

- Less interpretability than decision trees
- In some algorithms, data is copied in order to train each tree. Has higher requirement in memory space than individual trees.

- Combination of decision trees and bagging concepts
- A large number of decision trees is trained, each on a different bagging sample
- At each split, only a random number of the original variables is available (i.e. small selection of columns)
- Data points are classified by majority voting of the individual trees


```
= training set
                                     F = set of tests
k = nb of trees in forest
                               n = nb of tests
for i = 1 to k do:
  build data set Di by sampling with replacement from D
  learn tree Ti (Tilde) from Di:
     at each node:
         choose best split from random subset of F of size n
     allow aggregates and refinement of aggregates in tests
make predictions according to majority vote of the set of k trees.
```


Training Data

Construct a decision tree

At each node in choosing the split feature choose only among *m*<*M* features

Create decision tree from each bootstrap sample

Take the majority vote

Random Forest options in Scikit-learn

Description
number of tree
"gini" or "entropy"
The number of features to consider when looking for the best split
The maximum depth of the tree
The minimum number of samples required to split an internal node
The minimum number of samples required to be at a leaf node
The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node.
Grow trees with max_leaf_nodes in best-first fashion.
Threshold for early stopping in tree growth.
Whether bootstrap samples are used when building trees.
Whether to use out-of-bag samples to estimate the generalization accuracy.
When set to True, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest.

Bias/Variance Tradeoff

ERORR = BIAS + VARIANCE + NOISE

- > **Bias**: the difference between the predicted value and the actual value.
 - Model underfits the training data and fails to capture the underlying pattern within the data.
 - e.g. Linear model
- > **Variance**: the variability of a model prediction for a given data point.
 - Learning is not stable. A small change in the training data or hyper-parameter can lead to a very different model/predictoin.
 - E.g. decision tree

Bagging: reduces variance - Example 1

- Two categories of samples: blue, red
- Two predictors: x1 and x2
 Diagonal separation...hardest case for tree-based cla
 - Single tree decision boundary in orange.
 - Bagged predictor decision boundary in red.

Bagging: reduces variance - Example 2

Ellipsoid
separation
Two categories,
Two predictors

Single tree decision boundary

100 bagged trees..

Why does bagging work?

> Bagging reduces variance by averaging the predictions from multiple classifiers.

$$Var(\overline{X}) = rac{Var(X)}{N}$$
 (when prediction are independent)

> Bagging has little effect on **bias**.

> Can we average and reduce both **bias** and **variance**?

Yes: Boosting

Boosting

Main Idea of Boosting

> Learn classifiers in sequence: later classifiers focus on examples that were misclassified by earlier classifiers.

> **Weighted voting**: weight the predictions of the classifiers according their prediction accuracy.

Boosting Realization

> On each iteration t:

- Weight each training example by how incorrectly it was classified by previous classifiers.
 - increasing the weight of incorrectly classified examples ensures that they will become more important in the next iteration.
- Learn a classifier $h_t(x)$ based on the weighted training data.
- Calculate a strength factor α_t for $h_t(x)$ based on its accuracy.

> Final classifier:

Weighted voting of different classifiers where weight is their strength factor.

Goal: turn weak learners (e.g. linear model) into a strong learner.

Pick a weak linear classifier h_t(x).

- > Adjust weights: misclassified examples get heavier weight.
- > Calculate strength α_t according to the weighted error of $h_t(x)$.

Goal: turn weak learners (e.g. linear model) into a strong learner.

Pick a weak linear classifier h_t(x).

- > Adjust weights: misclassified examples get heavier weight.
- > Calculate strength α_t according to the weighted error of $h_t(x)$.

Goal: turn weak learners (e.g. linear model) into a strong learner.

> Pick a weak linear classifier h_t(x).

> Adjust weights: misclassified examples get heavier weight.

> Calculate strength α_t according to the weighted error of $h_t(x)$.

Goal: turn weak learners (e.g. linear model) into a strong learner.

> Pick a weak linear classifier h_t(x).

- > Adjust weights: misclassified examples get heavier weight.
- > Calculate strength α_t according to the weighted error of $h_t(x)$.

Goal: turn weak learners (e.g. linear model) into a strong learner.

> Pick a weak linear classifier h_t(x).

- > Adjust weights: misclassified examples get heavier weight.
- > Calculate strength α_t according to the weighted error of $h_t(x)$.

Goal: turn weak learners (e.g. linear model) into a strong learner.

Pick a weak linear classifier h_t(x).

- > Adjust weights: misclassified examples get heavier weight.
- > Calculate strength α_t according to the weighted error of $h_t(x)$.

Goal: turn weak learners (e.g. linear model) into a strong learner.

Pick a weak linear classifier h_t(x).

- > Adjust weights: misclassified examples get heavier weight.
- > Calculate strength α_t according to the weighted error of $h_t(x)$.

Boosting history

[Schapire '89]:

- first provable boosting algorithm

[Freund '90]:

- "optimal" algorithm that "boosts by majority"

[Drucker, Schapire & Simard '92]:

- first experiments using boosting
- limited by practical drawbacks

[Freund & Schapire '95]:

- introduced "AdaBoost" algorithm
- strong practical advantages over previous boosting algorithms

AdaBoost

Effect of Outliers

> Too many outliers can degrade classification performance dramatically increase time to convergence.

Gradient Boost Decision Trees

Adaboost: redistribute the weights in the data so that later classifier focuses more on the misclassified examples by previous classifiers.

> Gradient boosting:

- Step 1: Calculate **the residual** for all examples in the training data (the difference between the outcome of the first learner and the real value).
- Step 2: Build learner to predict/fit the residual left from the previous classifiers.
- These two steps continues until certain threshold is met.

XGBoost

- > XGBoost stands for eXtreme Gradient Boosting.
- > XGBoost is an implementation of gradient boosted decision trees, created by Tianqi Chen (UW).
 - The name xgboost, though, actually refers to the engineering goal to push the limit of computations resources for boosted tree algorithms. Which is the reason why many people use xgboost.
- > The two advantages of XGBoost:
 - Execution Speed (written in C++).
 - Model Performance (a more regularized model formalization to control over-fitting).

XGBoost

 Additive tree model: add new trees that complement the alreadybuilt ones

Response is the optimal linear combination of all decision trees **Greedy Algorithm Error Number of Tree** Image courtesy of Sha Li

XGBoost Occupied Kaggle

KDnuggets Home » News » 2016 » Mar » Software » XGBoost: Implementing the Winningest Kaggle Algorithm in Spark and Flink (16:n11)

◀ Previous post

XGBoost: Implementing the Winningest Kaggle Algorithm in Spark and Flink

XGBoost Resources

- > The original paper: https://arxiv.org/abs/1603.02754
- > Github repo: https://github.com/dmlc/xgboost

Boosting: Pros and Cons

> Pros:

- Often best off-the-shelf accuracy on many problems.
- Using model for prediction requires only modest memory and is fast.
- Does not require careful normalization of features to perform well.
- Like decision trees, handles a mixture of feature types.

> Cons:

- The models are often difficult for humans to interpret.
- Requires careful tuning of the learning rate and other parameters.
- Not easy to parallel (unlike random forest) since each classifier can only be trained after the previous one has been trained.

Bagging vs. Boosting

> Bagging:

- -Resamples data points
- -Weight of each classifier is the same
- Only variance reduction

>Boosting:

- Reweights data points
- Weight is dependent on classifier's accuracy.
- Both bias and variance reduced.

