Integrated Energy/Transportation Continent-wide Infrastructure Design

Overview

- 1. US energy view
- 2. Observations
- 3. US energy future: principles & approaches
- 4. Computational models
- 5. Conclusions: policy & awareness

Infrastructure view: Multi-sector (fuel, electric, transportation), continental, long-term planning

US Energy View: 2013

Observations: efficiency

- 1. Overall efficiency:
 - Electric gen: 12.4/38.2=32.5%
 - Transportation: 5.66/27=21%
- 2. Technology efficiencies:
 - Electric gen:
 - ➤ Thermal: 35%
 - ➤ Wind: 80%
 - Transport:
 - > ICE: 17% (tank to wheel)
 - > EV: 80% (plug to wheel)
- 3. Total US energy need:
 - Today: 97.4 Quads
 - 100% wind electric/100% EV for LDV: 61.5 Quads

Observations: least-cost technologies are inland wind & NGCC

 $LCOE = \frac{\text{Levelized Annual Revenue Requirements}}{\text{Average Annual Energy Production}}$

Observations: inland wind vs natural gas?

Yellow is winner

	WIND	NATURAL GAS
Overall cost (see last slide)	Low	Low
Fuel production - land	None	Some
Fuel production - water	None	Much
Fuel production – GHG emissions	None	Some (methane)
Fuel transport - land	None	Some
Fuel transport – public resistance	None	Some
Power plant - land	Some	Some
Power plant - water	None	Much
Power plant – CO ₂ emissions	None	Some
Power plant - other	Bats and birds	None
Electric transmission - land	Much	Some
Electric transmission – public resistance	Much	Some
Future risk (see next slide)	Little	Much

Observations: inland wind vs natural gas?

Risks of heavy gas portfolio:

- 1. Gas price goes up due to
 - gas demand increase: pwr plnts, trnsprtn, exports
 - gas supply decrease:
 gas depletion will occur
 but may happen sooner
 due to fracking impact:
 - → water/earthquake
- GHG-induced climate change occurs rapidly requiring gas use reduction

Risks of heavy wind portfolio:

- 1. Climate change reduces wind speeds
- 2. Major bat/bird impact
- 3. LCOE increases
- 4. No new transmission

Observations: do renewables need gas?

- Wind/solar need flexibility, provided by:
 - Demand side control
 - Wind and solar control
 - Storage
 - Hydro
 - Transmission:
 - Geo-diversity of wind & solar
 - Regulation/contingency reserve sharing
 - Combustion turbines
- Natural gas combined cycle units:
 - motivated by GHG constraints to provide energy
 - not a renewable need
 - to what extent should NGCC grow?

Observations: Electric sector gas growth

Electric energy generation by fuel, 1990-2040 (trillion kW-hrs)

US Energy Information Administration, "Annual Energy Outlook 2014: Early Release Overview," available http://www.eia.gov/forecasts/aeo/er/pdf/0383er(2014).pdf.

US Energy Future: Principles & Approach

Three principles:

- 1. Minimize cost
- 2. Minimize GHG
- 3. Increase resilience and adaptability: diversify and interconnect

Approach:

- 1. Electric generation portfolio:
 - a. Maintain NGCC fleet (but do not grow it)
 - b. Grow wind, solar, deep geothermal, nuclear
 - c. Grow US hydro (65GW potential⁽¹⁾)
 - d. Grow Canadian hydro (163GW potential total, 68GW in south⁽²⁾)

2. Passenger transportation:

- a. Diversify energy sources:
 - increase use of CNG (LDVs) & LNG (freight)
- b. Diversify modes: build high-speed rail
- 3. Build transmission

^{(1) &}lt;a href="http://energy.gov/sites/prod/files/2014/04/f15/New%20Stream-Reach%20Development%20Potential%20April%202014.pdf">http://energy.gov/sites/prod/files/2014/04/f15/New%20Stream-Reach%20Development%20Potential%20April%202014.pdf

⁽²⁾ file:///C:/Users/jdm.IASTATE/Downloads/CHA%20MRC%20-%20RETECH%20Presentation%2017OCT2012.pdf

Light-duty vehicles and generation costs

Passenger Vehicles			
	Year 1	Year 20	
Gasoline	\$24,000	\$24,000	
Conventional Hybrid	\$28,000	\$26,000	
Plugin Hybrid,20m	\$35,000	\$31,000	
Plugin Hybrid,40m	\$41,000	\$34,000	
Plugin Hybrid,60m	\$50,000	\$36,000	
Battery Elctrc,100m	\$45,000	\$35,000	
Compressed Nat Gas	\$27,000	\$27,000	

Gasoline \$3.80/Gallon
Natural gas \$3/MMBTU

Both increase 1.25%/year

Electric generation (\$/kW)			
Coal	2844		
IGCC	3221		
NGCC	1003		
Gas Turbine	665		
Nuclear	5339		
Onshore Wind	2438		
Offshore Wind	5975		
Oil	1655		
IPCC	3311		
Solar PV	4755		
Solar Thermal	4692		
Geothermal	4141		
Tidal Power	18286		
Oceanic Thermal	6163		

Design: natural gas (NG) & light-duty vehicles (LDV)

- → Total 40 year cost is 8% less for the 50% CNG case.
- → Total 40 year CO₂ emissions is 2% less for the 50% CNG case.
- → We obtain desirable diversification while improving cost & emissions.

Design: High-speed rail (HSR)

- Long-distance travel only: 95 state-state + 140 additional heavily-traveled routes
- Possible travel modes are highway, air, HSR
- Travel time penalized 24\$/hr for all modes in optimization but reported separately

Attribute	No HSR	With HSR
HSR penetration (%)	0	30.5
Total Cost (T\$)	11.61	11.15
Emissions (e10 short tons)	2.59	2.51 (-3.1%)
Gasoline (E+3 MGallon)	29.84	19.92 (-33.2%)
Jet Fuel (E+3 MGallon)	320.55	211.25 (-34.1%)
Electric Energy (E+6 TWh)	194.23	198.24 (+2.06%)
Cost Savings (B\$)	Reference	460
		<u> </u>

DOT Designations

Computational Models

There is need to centrally *design*, at the continental level, interdependent infrastructure systems:

- Economies of scale (still) motivate centralized designs to avoid inefficient infrastructure investment;
- 2. Interdependencies are numerous; building without capturing them leads to inefficient infrastructure investment.
- 3. Infrastructure lives for 50 years or more, and climate impacts take decades to turn;
 - →free markets are too short-term to adequately respond, and the consequences of getting it wrong are potentially severe.

Computational models are our means of developing, testing, assessing our designs.

Public Education and Policy

*2006 survey:

What is the impact of nuclear power plants on CO₂ emissions?

80% got it wrong

**2008 survey:

Which costs more today: electricity from wind turbines or electricity from coal-fired plants?

82% said coal

#2009 survey (women):

67% identify coal power plants as a big cause or somewhat of a cause of global warming, 54% think the same about nuclear energy; 43% don't know that coal is the largest source of US electricity.

##2003, 2007 survey:

For both survey years, "People see alternative fuels (hydro, solar, wind) as cheap and conventional fuels as expensive."

+2011 survey:

59% did not know hydro is our leading renewable resource for electricity

<u>++2013 survey:</u>

60% (in Texas!) did not know what hydraulic fracturing is.

^{*}T. Curry, et al., "A survey of public attitudes towards climate change and climate change mitigation technologies in the United States: Analyses of 2006 Results," Publication LFEE 2007-01-WP, MIT Laboratory for Energy and the Environment.

[#]M. D;Estries, "Survey: Women fail on energy knowledge," July 3, 2009, report on a survey commissioned by Women Impacting Public Policy and Women's Council on Energy and the Environment.

^{**}H. Klick and E. Smith, "Public understanding of and support for wind power in the United States," Renewable Energy, Vol. 35, July 2010, pp. 1585-1591.

^{##} S. Ansolabehere, "Public attitudes toward America's energy options," MIT-NES-TR-008, June 2007.

⁺B. Southwell, J. Murphy, J. DeWater, and P. LeBaron, "Americans' perceived & actual understanding of energy," Aug., 2012. RTI Press ++S. Kirshenbaum, "University of Texas at Austin Energy Poll," April 30, 2014.

Public Education and Policy

→ We can help electorate (& policy-makers) see the impact on their lives of various infrastructure designs.

Conclusions: policy/awareness

Major infrastructure development requires:

- Computational models to inform;
- Good policy, which depends on public awareness;
- **Decision-making entities having** political will to pursue change & authority to make it happen.

"When a reporter approaches, I generally find myself wishing for a martini."

-- Jonas Salk, Nobel Prize winner

"It seems as if the whole scientific establishment has absent-mindedly misplaced English somewhere between high school graduation and the awarding of the Ph.D."

-- Katie Coe, TV science beat reporter, 2003

ALL THE PAIN FOR ZERO GAIN PAINFUL FACTS ABOUT WIND ENERGY

*TO THE NEAREST WHOLE NUMBER