Λογική Επιχειρηματολογίας (2) (Ποογοαμματισμός Κοινής Λογικής)

- Κάθε σύνολο κανόνων αποτελεί ένα επιχείρημα για τα (λογικά) συμπεράσματα που στηρίζει.
- Επιχειρήματα που στηρίζουν αντίθετα συμπεράσματα αντικρούονται μεταξύ τους αποτελούν αντι-επιχειρήματα.
- Ποιο επιχείρημα υπερισχύει?

Αποδεκτά Επιχειρήματα (Acceptable Arguments)

- What is a good/acceptable argument?
 - An argument that builds a **coherent case** for its position.
 - □ Δένει καλά μαζί!
 - An argument that can defend itself against all its counterarguments
 - An argument that renders its counter-arguments incoherent/invalid
- An argument that has some kind of a stable property in the space of all available arguments

Αποδεκτά Επιχειρήματα (Acceptable Arguments)

- □ What is a **good/acceptable** argument?
 - An argument that can defend itself against all its counterarguments
 - -Admissible arguments

□ Later we will see how we can improve this to get closer to the informal definition

Abstract Argumentation (1)

- An abstract argumentation framework is a pair of a set T of arguments and an attacking relation on arguments
 - AF=<Args, Att>, where Att is a binary relation on Args

- □ S⊆T is an Admissible Argument iff
 - S it does not attack itself (i.e. it is conflict free), and
 - S attacks (counter-attacks/defends) all its attacks
- This is a simple but powerful definition.

Abstract Argumentation (2)

- □ S⊆Args is an Admissible Argument iff
 - S it does not attack itself (i.e. it is conflict free), and
 - S attacks (counter-attacks) all its attacks
- □ Example

- {a2} and {a3} are not admissible.
- But {a2,a5} is admissible.
- \blacksquare {a1}, {a5} are admissible.
- {a1,a2,a5} is maximally admissible.

Abstract Argumentation (3)

- □ S⊆Args is an Admissible Argument iff
 - S it does not attack itself (i.e. it is conflict free), and
 - S attacks (counter-attacks) all its attacks

□ Example 2

- {a2} and {a3} are admissible.
- {a1} is not admissible.
- {a1, a3} is admissible (maximally).

"Debate" Example of Argumentation

- Proposed argunt: {Athens should wage war on The all poses a thread.}
- Counter-argume. 2: {Sparta will then consider us a thread and will wage war on us.}
- Defending-argument a3: {Defend against Spare with an ally. Thebes, an encomber of the spare with an ally. Thebes, an encomber a3 possible ally.}
- Counter-argument a1: {Waging war on Thebes prevents Thebes from being an ally.}
- Hence a1 is not acceptable (It is self-defeating).

Banana Example

banana(b1)

- □ a1 supports position yellow(b1)
- a {a1, dc} supports position neg(green(b1)).
- □ It attacks {a2, unripe(b1)} but NOT vice-versa.
- a1, dc} is the only admissible argument.
- Hence conclude sceptically yellow(b1).

banana(b1), unripe(b1)

- a2 supports position green(b1)
- □ {a2, dc} supports position neg(yellow(b1)).
- □ {a2, dc} attacks {a1, dc} and vice-versa.
- □ Both {a2, dc} and {a2, dc} are admissible.
- Hence conclude credulously yellow(b1) and green(b1)!
- No sceptical conclusion on colour of b1.
 - Yet we want to have green(b1) sceptically! HOW?

Example of Argumentation

- "Sellers who deliver on time are trustworthy"
 □ a1={trusted(Seller):- timely(X)}
- "Sellers who deliver wrong are not trustworthy"

```
□ a2={¬ trusted(Seller) :- wrong_delivery(X)}
```

- Suppose we "observe":
 - timely(bob): a1 supports trusted(bob).
 - □ wrong_delivery(bob): a2 supports ¬trusted(bob).
 - a1 attacks a2 and vice-versa.
- "Sellers who are trusted get large orders"
 - a = {large_orders(X) :- trusted(X)}
 - a A={a1, a} supports large_orders(bob)
 - B={a2} attacks A (B undercuts A)

Example of Argumentation

"Sellers who are trusted get large orders"

```
    a = {large_orders(X) :- trusted(X)}
    A = {a1, a} supports large_orders(bob)
    B = {a2} attacks A (B undercuts A)
```

- Both A and B are admissible.
 - Hence can we be sure about large_orders(bob)?
- Do we have an argument supporting ¬large_orders(bob)?

```
    B'={a2,a'} with

            a'= {¬large_orders(X):-¬trusted(X)}

    B"={a2,a"} with

                    a"={¬large_orders(bob)} - a" is a hypothesis.
                    Both B' and B" are attacked by A.
```

■ Both B' and B" are admissible, supporting
 ¬large_orders(bob), because of a2 that defends against A
 • a" cannot defend against A because a" is a weaker argument

Building admissible arguments Dialectics

- □ Find an argument △ that supports the position (query) we want.
- □ Check △ is not self-attacking.
- □ Consider attacks, A, against △.
- Attack/Defend each A by argument D.
- \square Add D to \triangle to give new $\triangle' = \triangle \cup D$.
- \square Repeat from 2nd step with \triangle' .

Example of Dialectic Argumentation

- **Args** ={a1,a2,a3} **constructed** by:
 - a1={turn_on_switch causes light_on, light_on causes -> darkness} U {turn_on_switch@T}
 - a2={power_cut causes ¬ electricity,¬ electricity
 implies ¬ light_on} U {power_cut@T}
 - a3={darkness@T implies darkness@T+} U {darkness@T}
- a1 supports ¬ darkness@T+;
- a3 supports darkness@T+
- □ Constructed from: "The power cut had turned the house into darkness. Bob came home and turned on the light switch. ..."

Example of Dialectic Argumentation

- a1 supports ¬ darkness@T+; a3 supports darkness@T+
- Attacks between arguments = {(a1,a3), (a2,a1)}
 - a1 attacks a3 but not vice-versa
 - "Bob expects the house to come out of darkness"
 - a2 attacks a1 (on light_on) but not vice-versa
 - a2 defends a3 against the attack of a1
- a3,a2} acceptable argument for darkness@T+
 - Also {a2} acceptable but {a1} is not acceptable.

Example of Dialectic Argumentation

- Suppose now that we also have an argument that the power cut had ended at T, e.g.:
 - a4 ={short_power_cut@T⁻ implies -- power_cut@T} U {short_power_cut@T⁻}
- - Args a4 and a2 are equally strong on "power_cut"
 - No preference between them
 - They **defend** against each other.
- a {a3,a2} acceptable argument for darkness@T+
- □ {a1,a4} acceptable argument for ¬ darkness@T+

Another Example - Dialectics

- What is a good argument? EXAMPLE
 - Position: Attend this talk
 - Arg: This is the reason we came to the conference
 - C-Arg1: The speaker is known to be boring
 - But the title of the talk is interesting Separate Defence
 - C-Arg2: A friend wants to meet (for coffee I think)
 - But my sense of professional responsibility is generally stronger than that of self satisfaction - Arg is Stronger than C-Arg2
 - C-Arg2': The friend is not well and wants help
 - My sense of social responsibility is generally stronger than professional responsibility - Arg is Weaker than C-Arg2'
 - □ I have been assigned to write up a report on this afternoons talk
 - --Argument for social resp. is weaker than that of professional resp.
 - -- Hence, Arg is Stronger than C-Arg2