K-Nearest Neighbors

Classification tasks for driverless cars

Understanding Nearest Neighbors

Basic Idea

- For a given record to be classified, identify nearby records
- "Near" means records with similar predictor values $X_1, X_2, ... X_p$
- Classify the record as whatever the predominant class is among the nearby records (the "neighbors")

Measuring similarity with distance

How to Measure "nearby"?

The most popular distance measure is **Euclidean distance**

$$\sqrt{(x_1-u_1)^2+(x_2-u_2)^2+\cdots+(x_p-u_p)^2}$$

Illustration of the kNN Rule

• k=5

Choosing 'k' neighbors

Bigger 'k' is not always better

KNN: K=10

 X_1

Choosing k

- K is the number of nearby neighbors to be used to classify the new record
 - -k=1 means use the single nearest record
 - -k=5 means use the 5 nearest records

 Typically choose that value of k which has lowest error rate in validation data

Low k vs. High k

- Low values of *k* (1, 3 ...) capture local structure in data (but also noise)
- High values of k provide more smoothing, less noise, but may miss local structure

 Note: the extreme case of k = n (i.e. the entire data set) is the same thing as "naïve rule" (classify all records according to majority class)

Using K-NN for Prediction (for Numerical Outcome)

 Instead of "majority vote determines class" use average of response values

 May be a weighted average, weight decreasing with distance

kNN assumes numeric data

rectangle = 1

diamond = 0

rectangle = 0

diamond = 1

rectangle = 0

diamond = 0

kNN benefits from normalized data

kNN benefits from normalized data

Normalizing data in R

```
# define a min-max normalize() function
normalize <- function(x) {
  return((x - min(x)) / (max(x) - min(x)))
}</pre>
```

Applying nearest neighbors in R

```
library(class)
pred <- knn(training_data, testing_data, training_labels)</pre>
```

Advantages

- Simple
- No assumptions required about Normal distribution, etc.
- Effective at capturing complex interactions among variables without having to define a statistical model

Shortcomings

- Required size of training set increases exponentially with # of predictors, p
 - This is because expected distance to nearest neighbor increases with p (with large vector of predictors, all records end up "far away" from each other)
- In a large training set, it takes a long time to find distances to all the neighbors and then identify the nearest one(s)
- These constitute "curse of dimensionality"