DMA Domácí úkol č. 3b

Tento úkol vypracujte a pak přineste na cvičení č. 4.

- **1.** Nechť $n \in \mathbb{N}$. Dokažte, že jestliže $a, b \in \mathbb{Z}$ splňují $a \equiv b \pmod{n}$, pak $13a \equiv 13b \pmod{n}$.
- **2.** Nechť $n \in \mathbb{N}$. Dokažte, že jestliže $a, b, c \in \mathbb{Z}$ splňují $a \equiv b \pmod{n}$ a $b \equiv c \pmod{n}$, pak $a \equiv c \pmod{n}$.

Řešení:

- **1.** Dk: Nechť $a, b \in \mathbb{Z}$. Z předpokladu $a \equiv b \pmod{n}$ dostáváme $\exists k \in \mathbb{Z}$: b = a + kn. Pak 13b = 13a + (13k)n a $13k \in \mathbb{Z}$, tedy $13a \equiv 13b \pmod{n}$.
- **2.** Dk: Nechť $a, b, c \in \mathbb{Z}$. Z předpokladu $a \equiv b \pmod{n}$ a $b \equiv c \pmod{n}$ dostáváme $\exists k, l \in \mathbb{Z}$: b = a + kn a c = b + ln. Pak c = a + (k + l)n a $k + l \in \mathbb{Z}$, tedy $a \equiv c \pmod{n}$.