UNIVERSIDADE FEDERAL DA FRONTEIRA SUL $Campus \ {\tt CERRO\ LARGO}$

PROJETO DE EXTENSÃO

Software R:

Capacitação em análise estatística de dados utilizando um software livre.

Fonte: https://www.r-project.org/

Módulo I Delineamentos Experimentais

Ministrante: Tatiane Chassot

Blog do projeto: https://softwarelivrer.wordpress.com/equipe/

Equipe:

Coordenadora:

Profe. Iara Endruweit Battisti (iara.battisti@uffs.edu.br)

Colaboradores:

Profa. Denize Reis

Prof. Erikson Kaszubowski

Prof. Reneo Prediger

Profa. Tatiane Chassot

Mestrando Felipe Smolski

Bolsista:

Djaina Rieger - aluna de Engenharia Ambiental (djaina.rieger@outlook.com)

SUMÁRIO SUMÁRIO

Sumário

1 Introdução						
2	Princípios básicos da Experimentação 2.1 Repetição					
	2.2 Casualização	;				
	2.4 Análise de Variância	4				
	2.5 Hipóteses estatísticas					
	Delineamento Inteiramente Casualizado (DIC)	4				
4	Delineamento Blocos Casualizados (DBC)					

1 Introdução

A experimentação é uma parte da estatística probabilística que estuda o planejamento, execução, coleta de dados, análise de dados e interpretação dos resultados provenientes de um experimento.

Um experimento é um procedimento planejado com base em uma hipótese, que tem por objetivo provocar fenômenos (tratamentos) de forma controlada, analisando e interpretando os resultados obtidos.

O tratamento é o método, elemento ou material cujo efeito desejamos avaliar em um experimento. Por exemplo: formas de preparo de solo, diferentes cultivares, doses de adubação, controle de insetos e outras pragas, controle de uma doença. Num experimento, somente o tratamento varia de uma unidade experimental para outra, as demais condições são mantidas constantes, salvo erros não controláveis.

E alguns experimentos, utiliza-se a testemunha (nas ciências agrárias e ambientais) ou placebo (na saúde), que são as unidades experimentais que não recebem tratamento.

A unidade experimental é a unidade que recebe o tratamento uma vez e, normalmente são chamadas de parcelas. A escolha da unidade experimental depende dos tipos de tratamentos que serão avaliados. Podem ser: uma área de campo, um vaso com solo, um animal, uma placa de Petri, uma planta. Em áreas de campo, normalmente utiliza-se a bordadura. Num experimento, recomenda-se, no mínimo, a utilização de 20 UEs.

Em um experimento, a variável a ser avaliada chamamos de variável resposta. Por exemplo, número de grãos por planta, número de folhas por planta, altura das plantas.

2 Princípios básicos da Experimentação

2.1 Repetição

A repetição consiste na aplicação do mesmo tratamento sobre duas ou mais unidades experimentais. Permite estimar o erro experimental e avaliar de forma mais precisa o efeito de cada tratamento.

O erro experimental é caracterizado pela variância entre as unidades experimentais que receberam o mesmo tratamento.

2.2 Casualização

A casualização consiste na aplicação dos tratamentos aleatoriamente (sorteio) sobre as unidades experimentais. A casualização é usada para obter a independência dos erros, ou seja, evitar que determinados tratamentos sejam favorecidos.

2.3 Controle local

Quando tiver heterogeneidade no material experimental: plantas de diferentes alturas, animais de diferentes idades, solo com declividade, deve-se separar o material em grupos homogêneos e aplicar o tratamento uma vez dentro de cada grupo (blocos).

A homogeneidade ou não do material dá origem aos tipos de delineamentos:

- Delineamento Inteiramente Casualizado (DIC): material experimental homogêneo

- Delineamento Blocos Casualizados (DBC): material experimental com uma fonte de heterogeneidade
- Delineamento Quadrado Latino (DQL): material experimental com duas fontes de heterogeneidade

2.4 Análise de Variância

Para saber se existe diferença significativa entre as médias resultados dos efeitos de tratamentos, realiza-se a Análise de Variância (ANOVA).

Fonte de variação	Graus de liberdade (GL)	Soma de quadrados (SQ)	Quadrado médio (QM)	Fcalc	P
Tratamento	I - 1	SQtrat	QMtrat	QMtrat/QMerro	
Erro	GLerro	SQerro	QMerro		
Total	IJ - 1	SQtotal			

2.5 Hipóteses estatísticas

H0: Não existe diferença entre as médias dos tratamentos

H1: Existe, pelo menos, uma diferença entre as médias dos tratamentos

3 Delineamento Inteiramente Casualizado (DIC)

É utilizado quando as unidades experimentais são homogêneas. É o mais simples dos delineamentos e os tratamentos são designados às unidades experimentais de forma casualizada, por meio de um único sorteio. Usado principalmente em pequenos animais, casas de vegetação e em laboratórios.

Exemplo: Um produtor deseja avaliar 4 variedades de pera (A, B, C e D). Para tanto, instalou um experimento no delineamento inteiramente casualizado, utilizando 5 repetições por variedade. Os resultados, peso médio do fruto, estão apresentados a seguir:

	Α	В	С
1	Variedade	Repeticao	Peso
2	Α	1	78
3	Α	2	88
4	Α	3	72
5	Α	4	74
6	Α	5	98
7	В	1	79
8	В	2	56
9	В	3	71
10	В	4	96
11	В	5	55
12	C C	1	63
13	С	2	68
14	C C	3	58
15	С	4	79
16	С	5	59
17	D	1	60
18	D	2	65
19	D	3	59
20	D	4	54
21	D	5	58
22			

Existe diferença significativa entre as variedades de pera, considerando o peso médio dos frutos de cada variedade?

Para responder esta pergunta, utilizamos a Análise de Variância (ANOVA).

No software RStudio:

Criar o arquivo acima em planilha eletrônica. Nomear como DIC e salvar em formato .xls

Importar no RStudio:

```
library(readxl)
DIC=read_excel("~/SOFTWARE R/AULAS/Avançado_2017.2/Deliniamentos experimentais/DIC.xls")
attach(DIC)
```

O comando que gera a análise de variância é o aov() e o comando que exibe o quadro da ANOVA é o anova. Então, podemos gerar o quadro da análise de uma só vez associando os dois comandos.

```
library(readxl)
DIC=read_excel("~/SOFTWARE R/AULAS/Avançado_2017.2/Deliniamentos experimentais/DIC.xls")
## The following objects are masked from DIC (pos = 3):
##
##
      Peso, Repeticao, Variedade
anova=aov(Peso~Variedade)
summary(anova)
              Df Sum Sq Mean Sq F value Pr(>F)
## Variedade
                          471.3
                                  3.775 0.0319 *
               3
                   1414
## Residuals
              16
                   1997
                           124.8
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Hipóteses estatísticas:

H0: ti = 0 (as médias dos tratamentos não diferem entre si)

H1: $ti \neq 0$ (existe, no mínimo, uma diferença entre as médias dos tratamentos)

Como p = 0,0319 (0,01 \leq p "menor ou igual a"0,05), rejeita-se H0 com nível de significância de 5% e conclui-se que existe diferença significativa entre as médias dos tratamentos.

Para saber quais as médias que diferem, utilizamos o teste de Tukey.

```
## The following objects are masked from DIC (pos = 3):
##
## Peso, Repeticao, Variedade
## The following objects are masked from DIC (pos = 4):
##
## Peso, Repeticao, Variedade
```

```
TukeyHSD(anova, "Variedade", ordered=TRUE)
##
    Tukey multiple comparisons of means
##
       95% family-wise confidence level
       factor levels have been ordered
##
##
## Fit: aov(formula = Peso ~ Variedade)
##
## $Variedade
##
       diff
                   lwr
                          upr
                                   p adj
## C-D 6.2 -14.016299 26.4163 0.8163995
## B-D 12.2 -8.016299 32.4163 0.3429223
## A-D 22.8
            2.583701 43.0163 0.0244592
## B-C 6.0 -14.216299 26.2163 0.8303280
## A-C 16.6 -3.616299 36.8163 0.1281553
## A-B 10.6 -9.616299 30.8163 0.4602137
```

Para que o RStudio apresente uma tabela com as médias e letras indicando quais as médias que diferiram, devemos instalar o pacote agricolae.

```
library(agricolae)
HSD.test(anova, "Variedade", console=TRUE)
##
## Study: anova ~ "Variedade"
##
## HSD Test for Peso
##
## Mean Square Error: 124.825
##
## Variedade, means
##
##
    Peso
               std r Min Max
## A 82.0 10.862780 5 72 98
## B 71.4 17.096783 5 55 96
## C 65.4 8.561542 5 58
                           79
## D 59.2 3.962323 5 54
## Alpha: 0.05 ; DF Error: 16
## Critical Value of Studentized Range: 4.046093
## Minimun Significant Difference: 20.2163
##
## Treatments with the same letter are not significantly different.
##
##
    Peso groups
## A 82.0
## B 71.4
              ab
## C 65.4
              ab
## D 59.2
```

*Médias dos tratamentos não seguidas por mesma letra diferem pelo teste de Tukey, ao nível de 5% de significância.

Conclusão: A variedade de pera A apresentou o maior peso médio dos frutos, que não

diferiu significativamente do peso médio das variedades B e C. A variedade de pera D apresentou o menor peso médio dos frutos, que não diferiu significativamente do peso médio das variedades B e C. As variedades B e C apresentaram peso médio dos frutos intermediário.

Medidas descritivas com a variável resposta:

```
## The following objects are masked from DIC (pos = 4):
##
## Peso, Repeticao, Variedade
## The following objects are masked from DIC (pos = 5):
##
## Peso, Repeticao, Variedade
## The following objects are masked from DIC (pos = 6):
##
## Peso, Repeticao, Variedade
boxplot(Peso~Variedade)
```



```
boxplot(Peso~Variedade,xlab="Variedade",ylab="Peso")
```



```
tapply(Peso, Variedade, mean)

## A B C D

## 82.0 71.4 65.4 59.2

tapply(Peso, Variedade, sd)

## A B C D

## 10.862780 17.096783 8.561542 3.962323
```

Diagnósticos de resíduos

```
residuos=residuals(anova)
ajustados=fitted(anova)
plot(ajustados,residuos)
abline(h=0)
```


qqnorm(residuos)
qqline(residuos)

Normal Q-Q Plot

4 Delineamento Blocos Casualizados (DBC)

É utilizado quando as unidades experimentais são heterogêneas. Os tratamentos são designados às unidades experimentais de forma casualizada, por meio de sorteio por blocos. Na área agrícola, é usado principalmente em áreas de campo e grandes animais.

Exemplo: Uma Nutricionista elaborou 4 dietas e quer aplicá-las em 20 pessoas a fim de testar suas eficiências quanto à perda de peso. Porém ela notou que entre essas 20 pessoas existem

 $5~{\rm grupos}$ de faixas iniciais de peso. Então, para aumentar a eficácia do teste ela separou os $20~{\rm indiv}$ íduos em $5~{\rm grupos}$ de faixas de peso.

	Α	В	С
1	Tratamentos	Blocos	Perda
2	Dieta 1	peso A	2
3	Dieta 2	peso A	5
4	Dieta 3	peso A	2
5	Dieta 4	peso A	5
6	Dieta 1	peso B	3
7	Dieta 2	peso B	7
8	Dieta 3	peso B	4
9	Dieta 4	peso B	3
10	Dieta 1	peso C	2
11	Dieta 2	peso C	6
12	Dieta 3	peso C	5
13	Dieta 4	peso C	4
14	Dieta 1	peso D	4
15	Dieta 2	peso D	5
16	Dieta 3	peso D	1
17	Dieta 4	peso D	3
18	Dieta 1	peso E	2
19	Dieta 2	peso E	5
20	Dieta 3	peso E	4
21	Dieta 4	peso E	4

Criar o arquivo acima em planilha eletrônica. Nomear como DBC e salvar em formato .xls

Importar no RStudio

```
DBC <- read_excel("~/SOFTWARE R/AULAS/Avançado_2017.2/Deliniamentos experimentais/DBC.xls")
attach(DBC)
anova=aov(Perda~Tratamentos+Blocos)
summary(anova)
              Df Sum Sq Mean Sq F value Pr(>F)
##
## Tratamentos 3
                   25.2
                            8.4
                                  6.000 0.00973 **
                            0.8
                                  0.571 0.68854
## Blocos
               4
                    3.2
## Residuals
                   16.8
                            1.4
              12
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Hipóteses estatísticas:

H0: ti = 0 (as médias dos tratamentos não diferem entre si)

H1: $ti \neq 0$ (existe, no mínimo, uma diferença entre as médias dos tratamentos)

Como p = 0,00973 (p \leq 0,01), rejeita-se H0 com nível de significância de 1% e conclui-se que existe diferença significativa entre as médias dos tratamentos.

```
H0: \sigma^2 blocos = 0
H1: \sigma^2 blocos \neq 0
```

Como p=0,68854 (p $\leq0,05),$ não rejeita-se H0 e conclui-se que a variância entre os blocos não é significativa.

```
attach(DBC)
## The following objects are masked from DBC (pos = 3):
##
##
     Blocos, Perda, Tratamentos
HSD.test(anova, "Tratamentos", console=TRUE)
##
## Study: anova ~ "Tratamentos"
##
## HSD Test for Perda
## Mean Square Error: 1.4
##
## Tratamentos, means
##
##
          Perda
                      std r Min Max
## Dieta 1 2.6 0.8944272 5 2
                                 7
## Dieta 2 5.6 0.8944272 5
## Dieta 3 3.2 1.6431677 5
## Dieta 4 3.8 0.8366600 5
## Alpha: 0.05; DF Error: 12
## Critical Value of Studentized Range: 4.19866
## Minimun Significant Difference: 2.221722
## Treatments with the same letter are not significantly different.
##
##
          Perda groups
## Dieta 2
           5.6
## Dieta 4
            3.8
## Dieta 3
           3.2
                     h
## Dieta 1 2.6
```

Médias dos tratamentos não seguidas por mesma letra diferem pelo teste de Tukey, ao nível de 5% de significância.

Conclusão: A dieta que resultou na maior perda de peso foi a dieta 2, que não diferiu da dieta 4. A dieta que resultou na menor perda de peso foi a dieta 1, que não diferiu das dietas 3 e 4.

Medidas descritivas com a variável resposta:

```
boxplot(Perda~Tratamentos)
```


boxplot(Perda~Tratamentos,xlab="Tratamentos",ylab="Perda")


```
tapply(Perda,Tratamentos,mean)

## Dieta 1 Dieta 2 Dieta 3 Dieta 4

## 2.6 5.6 3.2 3.8

tapply(Perda,Tratamentos,sd)

## Dieta 1 Dieta 2 Dieta 3 Dieta 4

## 0.8944272 0.8944272 1.6431677 0.8366600
```

Diagnósticos de resíduos

```
residuo=residuals(anova)
ajustado=fitted(anova)
plot(ajustado,residuo)
abline(h=0)
```


qqnorm(residuo)
qqline(residuo)

Normal Q-Q Plot

