Álgebra

exame de recurso - exame global - 4 fev 2021

Lic. em Ciências de Computação/Lic. em Matemática - $2^{\underline{o}}$ ano

duração: duas horas

Responda no próprio enunciado, colocando uma cruz no quadrado correspondente. Cada questão está cotada com 0,8 valores numa escala de 0 a 20. Respostas erradas descontam 0,2 valores na mesma escala.

Declaração de Honra: "Ao submeter esta avaliação online, declaro por minha honra que irei resolver a prova recorrendo apenas aos elementos de consulta autorizados, de forma autónoma e sem trocar qualquer informação por qualquer meio, com qualquer pessoa ou repositório de informação, físico ou virtual"

Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente:

P	roposição, assinaiando a opção conveniente.	
1.	Se * é uma operação binária associativa num conjunto S , então $(a*b)*(c*d)=a*(b*c)*d$, para todos $a,b,c,d\in S$.	V□ F□
2.	Existe um conjunto A não vazio tal que $(A,*)$ é grupo, para qualquer operação binária $*$ definida em A .	V□ F□
3.	É condição necessária para H ser subgrupo de um grupo G que $H\subseteq G$.	V□ F□
4.	Se G é grupo, então, $G/\{1_G\}=\{\{a\}:a\in G\}$	V□ F□
5.	Se G é grupo, $ G =12$, $H < G$ e $ H =6$, então, $H \lhd G$.	V□ F□
6.	O grupo aditivo \mathbb{R}/\mathbb{Z} admite um subgrupo não abeliano.	V□ F□
7.	Existe um morfismo de grupos entre um grupo de 6 elementos e um grupo de 25 elementos.	V□ F□
8.	O grupo quociente de um grupo que não é cíclico não é um grupo cíclico.	V□ F□
9.	Em S_6 existem pelo menos uma permutação α par e uma permutação β ímpar tais que $o(\alpha)=o(\beta)=5$.	V□ F□
10.	Num anel A de característica 12 com identidade 1_A , o elemento $10 \cdot 1_A$ é um divisor de zero de A .	V□ F□
11.	$A = \left\{ \left[\begin{array}{cc} a & b \\ a & b \end{array} \right] : a,b \in \mathbb{R} \right\} \text{ \'e um subanel do anel das matrizes quadradas}$ reais de ordem 2.	V 🗆 F 🗆
12.	Seja A um anel. Então, $I=\{x\in A:5x=0_A\}$ é um ideal de A .	V 🗆 F 🗆
13.	Se A é um domínio de integridade e I é um ideal de A , então, A/I é um domínio de integridade.	V□ F□
14.	Sejam A um anel comutativo com identidade, I um ideal primo e J um ideal de A . Então $I\cap J$ é um ideal primo de A .	V□ F□
15.	Se A é um anel de característica 6, então $(x+y)^6=x^6+y^6$ para todo $x\in A$.	V□ F□
16.	Se A é um anel com identidade 1_A , então, existe um morfismo de anéis $f:A\times A\to A'$ tal que $\mathrm{Nuc}f=\{1_A\}\times A.$	V□ F□
17.	Seja $\varphi:A\to A'$ um morfismo de anéis. Se A é um corpo então $\varphi(A)$ é um corpo.	V□ F□

Em cada uma das questões seguintes, assinale a opção correta:

18.	O grupo \mathbb{Z}_{20} é gerado por $\square\ [2]_{20} \qquad \square\ [15]_{20} \qquad \square\ [9]_{20}$	
19.	Sejam $G_1 = < a >$ e $G_2 = < b >$ grupos cíclicos de ordem 6 e 15, respetivamente. Sabendo que $H < G_2 \times G_1$ é tal que $ H = 10$, podemos ter	
	$\Box H = <(b^{3}, a^{3}) > \qquad \Box H = < b^{2} > \times < a^{5} > \Box H = <(b^{2}, a^{5}) > \qquad \Box H = <(a^{3}, b^{3}) >$	
20. Se G é um grupo comutativo e $a,b\in G$ são tais que $o(a)=4$ e $o(b)=6$, então,		
	$\Box o(ab) = 24 \qquad \qquad \Box o(ab) = 12$ $\Box o(ab) = 10 \qquad \qquad \Box o(ab) = 2$	
21.	Seja $\varphi:\mathbb{Z}\to\mathbb{Z}_8 imes\mathbb{Z}_4$ o morfismo de grupos definido por $\varphi(x)=([4x]_8,[2x]_4)$, para todo o $x\in\mathbb{Z}$. Então,	
	$ \Box \operatorname{Nuc}\varphi = \{0\} \qquad \Box \operatorname{Nuc}\varphi = 2\mathbb{Z} \Box \operatorname{Nuc}\varphi = 4\mathbb{Z} \qquad \Box \operatorname{Nuc}\varphi = \mathbb{Z} $	
22. Em S_{10} , se $\delta = (987654)$, então		
	$\Box \ \delta^2 = (759)(486) \qquad \Box \ \delta^2 = (96)(85)(74) \qquad \Box \ \delta^2 = (65789) \qquad \Box \ \delta^2 = (97)$	
23.	A caraterística do anel $\mathbb{Z}_4 \times \mathbb{Z}_6$ é $\Box \ 12 \qquad \Box \ 2 \qquad \Box \ 6 \qquad \Box \ 24$	
24. Sejam $a \in \{n \in \mathbb{Z} : 0 \le n \le 9\}$ e $f_a : \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ a função definida por $f_a([x]_{10}) = [ax]_{10}$, para todo $x \in \mathbb{Z}$. Então, f_a é um morfismo de anéis se e só se		
	$\Box \ a \in \{0, 1\} \qquad \Box \ a \in \{0, 1, 5, 6\} \Box \ a \in \{0, 1, 4, 9\} \qquad \Box \ a \in \{1, 3, 7, 9\}$	
25. Se I é um ideal primo não maximal do anel $\mathbb{R} \times \mathbb{Z}$, então, I pode ser		
	$\square \ \mathbb{Z} \times 11\mathbb{Z} \qquad \square \ \mathbb{R} \times 11\mathbb{Z} \qquad \square \ \mathbb{R} \times \{0\} \qquad \square \ \{0\} \times \mathbb{Z}$	