ECON 714A - Problem Set 3

Alex von Hafften*

2/15/2020

This problem asks you to update the CKM (2007) wedge accounting using more recent data. You are encouraged to use Matlab for the computations. Consider a standard RBC model with the CRRA preferences $E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, L_t)$, $U(C, L) = \frac{C^{1-\sigma}-1}{1-\sigma} - \frac{L^{1+\phi}}{1+\phi}$, a Cobb-Douglas production function $Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$, a standard capital law of motion $K_{t+1} = (1-\delta)K_t + I_t$, and four wedges $\tau_t = \{a_t, g_t, \tau_{Lt}, \tau_{It}\}$. Each wedge τ_{it} follows an AR(1) process $\tau_{it} = \rho_i \tau_{it-1} + \varepsilon_{it}$ with innovations ε_{it} potentially correlated across i. One period corresponds to a quarter.

1. Download quarterly data for real seasonally adjusted consumption, employment, and output in the U.S. from 1980–2020 from FRED database. The series for capital are not readily available, but can be constructed using the "perpetual inventory method". To this end, download the series for (real seasonally adjusted) investment from 1950-2020.

Raw Data

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, and Ryan Mather. I also discussed problems with Sarah Bass, Emily Case, Danny Edgel, and Katherine Kwok.

2. Convert all variables into logs and de-trend using the Hodrick-Prescott filter.

3. Assume that capital was at the steady-state level in 1950 and the rate of depreciation is $\delta = 0.025$ and use the linearized capital law of motion and the series for investment to estimate the capital stock (in log deviations) in 1980-2020. Justify this approach.

Log-linearizing the capital law of motion,

$$K_{t+1} = (1 - \delta)K_t + I_t$$

$$\Longrightarrow (1 + k_{t+1})\bar{K} = (1 - \delta)(1 + k_t)\bar{K} + \bar{I}(1 + i_t)$$

$$\Longrightarrow \bar{K} + k_{t+1}\bar{K} = (1 - \delta)\bar{K} + (1 - \delta)\bar{K}k_t + \bar{I} + \bar{I}i_t$$

$$\Longrightarrow k_{t+1} = (1 - \delta)k_t + \frac{\bar{I}}{\bar{K}}i_t$$

$$\Longrightarrow k_{t+1} = (1 - \delta)k_t + \delta i_t$$

If we assume that we're in the steady state in 1950, then $k_t = 0$. Thus, we can interate forward using i_t from the data over the next thirty years until 1980.

Estimated Capital Stock (in log deviations)

4. Linearize the equilibrium conditions. Assuming $\alpha = 1/3$, $\sigma = 1$, $\phi = 1$ and the steady-state share of government spendings in GDP equal 1/3, estimate a_t , g_t and τ_{Lt} for 1980-2020. Run the OLS regression for each of these wedges to compute their persistence parameters ρ_i .

Based on the equilibrium conditions, we found during lecture, we can approximate the efficiency wedge:

$$Y_{t} = A_{t}K_{t}^{\alpha}L_{t}^{1-\alpha}$$

$$\implies \bar{Y}(1+y_{t}) = \bar{A}(1+a_{t})\bar{K}^{\alpha}(1+\alpha k_{t})\bar{L}^{(1-\alpha)}(1+(1-\alpha)l_{t})$$

$$\implies (1+y_{t}) = (1+a_{t})(1+\alpha k_{t})(1+(1-\alpha)l_{t})$$

$$\implies a_{t} = 1 - \frac{1+y_{t}}{(1+\alpha k_{t})(1+(1-\alpha)l_{t})}$$

We can approximate the government consumption wedge:

$$Y_t = C_t + I_t + G_t$$

$$\bar{Y}(1+y_t) = \bar{C}(1+c_t) + \bar{I}(1+i_t) + \bar{G}(1+g_t)$$

$$\bar{Y}y_t = \bar{C}c_t + \bar{I}i_t + \bar{G}g_t$$

$$g_t = \frac{\bar{Y}y_t - \bar{C}c_t - \bar{I}i_t}{\bar{G}}$$

We can approximate the labor wedge:

$$U(C_t, L_t) = \ln(C_t) + \frac{L_t^2}{2}$$

$$\Rightarrow U_{C_t} = \frac{1}{C_t}$$

$$\Rightarrow U_{L_t} = L_t$$

$$F(K_t, L_t) = K_t^{\alpha} L_t^{1-\alpha}$$

$$\Rightarrow F_{L_t} = (1 - \alpha) K_t^{\alpha} L_t^{-\alpha}$$

$$-\frac{U_{L_t}}{U_{C_t}} = (1 - \tau_{L_t}) A_t F_{L_t}$$

$$\Rightarrow -\frac{(L_t)}{(\frac{1}{C_t})} = (1 - \tau_{L_t}) A_t ((1 - \alpha) K_t^{\alpha} L_t^{-\alpha})$$

$$\Rightarrow \tau_{L_t} = 1 + \frac{L_t C_t}{A_t (1 - \alpha) K_t^{\alpha} L_t^{-\alpha}}$$

$$= 1 + \frac{L_t}{L_t} \frac{C_t L_t}{A_t (1 - \alpha) K_t^{\alpha} L_t^{-\alpha}}$$

$$= 1 + \frac{L_t^2 C_t}{Y_t (1 - \alpha)}$$

$$\approx 1 + \frac{\bar{L}^2 (1 + 2l_t) \bar{C} (1 + c_t)}{\bar{Y} (1 + y_t) (1 - \alpha)}$$

Efficiency, Government, and Labor Wedges (Indexed at 100)

Table 1: Efficiency, Government, and Labor Wedge Persistance (OLS)

	Dependent variable:		
	efficiency	government	labor
	(1)	(2)	(3)
lag(efficiency)	0.750^{***} (0.050)		
lag(government)		0.748*** (0.052)	
lag(labor)			0.999*** (0.002)
Observations Adjusted R ²	163 0.575	163 0.554	163 0.999
\overline{Note} :	*p<0.1; **p<0.05; ***p<0.01		

^{5.} Write down a code that implements the Blanchard-Kahn method to solve the model. Use the values of parameters, including ρ_a , ρ_g , and ρ_{τ_L} , obtained above, and assume $\rho_{\tau_I}=0$ for now.

. . .

Appendix

```
# PCECC96 Real Personal Consumption Expenditures

# GDPC1 Real Gross Domestic Product

# PAYEMS All Employees, Total Nonfarm

# GPDIC1 Real Gross Private Domestic Investment

# GPDIC1 Real Gross Private Annual Rate

# Seasonally Adjusted

# GPDIC1 Real Gross Private Domestic Investment

# Seasonally Adjusted Annual Rate

# Billions of Chained 2012 Dollars

# Seasonally Adjusted Annual Rate
```