Intrøductiøn à la mécåníqũė Systèmes de Coordonées

Table des matières

1) Bref historique	. 1
2) Objet de la mécanique	
3) Systèmes de coordonnées	. 1
4) Dérivée d'un vecteur unitaire tournant par rapport à son angle de rotation	. 9

1) Bref historique

2) Objet de la mécanique

2.1) Quelques définitions

- <u>Cinématique</u>: Description, analyse des mouvements, sans s'intéresser aux causes de ce mouvement.
- Dynamique: Étude des causes du mouvement: notion de force et d'action mécanique
 - Statique: Étude des équilibres en l'absence de mouvement

2.2) Cadre de la mécanique newtonienne

2.2.1) Unités

- Mètre: Distance parcourue par la lumière en $\frac{1}{c}$ seconde.
- **Seconde**: Horloge atomique

2.2.2) Hypothèse de la mécanique newtonienne

On considèra que:

- La précision de la position et de la vitesse est illimité et absolue.
 - (Faux car principe d'incertitude quantique mais négligeable à l'échelle macroscopique)
- Le temps avance à la même vitesse partout
 - (Faux car relativité restreinte, mais négligeable à l'échelle macroscopique)
- Espace euclidien = La somme des angles d'un triangle vaut 180°, l'espace est plat
 - (Faux car torsion de l'espace-temps)
- Le temps et l'espace sont continus
 - (Faux car quantisation)

3) Systèmes de coordonnées

Un système de coordonnée permet de se repérer dans l'espace par rapport à une origine.

3.1) Coordonnées cartésiennes

On pose un repère orthonormé $(\overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$

On peut atteindre le point M avec ses coordonées: $\overrightarrow{OM} = x\overrightarrow{u_x} + y\overrightarrow{u_y} + z\overrightarrow{u_z}$

On peut faire varier les coordonnées de M dans les trois directions élémentaires.

Déplacement élémentaire:

$$d\overrightarrow{OM} = dx\overrightarrow{u_x} + dy\overrightarrow{u_y} + dz\overrightarrow{u_z}$$

En faisant varier dx, dy et dz.

On obtient un parallépipè de de coté $\mathrm{d}x,\,\mathrm{d}y$ et $\mathrm{d}z.$ On appelle le volume de ce parallépipè de le volume élémentaire:

$$d\tau = dx dy dz$$

Ce parallépipède possède 3 faces élémentaire:

- Une perpendiculaire à $\overrightarrow{u_x}$, de surface $\mathrm{d}y\,\mathrm{d}z=\mathrm{d}S_x$
- Une perpendiculaire à $\vec{u_y}$, de surface $\mathrm{d}x\,\mathrm{d}z=\mathrm{d}S_y$
- Une perpendiculaire à $\vec{u_z},$ de surface $\mathrm{d}y\,\mathrm{d}x=\mathrm{d}S_z$

3.2) Coordonées cylindriques

Lorsque notre système tourne autour d'un point fixe, il sera souvent beaucoup plus simple d'utiliser directement un repère cylindrique, plutôt que des coordonées cartésiennes.

Fig. 2. – Repère cylindriques

On va regarder ce qui se passe dans le plan $\vec{x}\vec{y}$.

On prend M_P le projeté orthogonal de M dans le plan $\vec{x}\vec{y}$

On prend la distance OM_P dans ce plan, ainsi que l'angle θ entre $\overrightarrow{OM_P}$ et le vecteur \vec{x} Coordonées cylindriques:

- $r \to \text{La distance } OM_P \text{ (qui est positive)}$
- $\theta \in [0; 2\pi[$
- z, la hauteur, la même que dans les coordonées cartesiennes

Autrement dit, on utilise des coordonnées polaires pour x et y, et des coordonées cartésiennes pour z.

3.2.1) Conversion depuis les coordonées cartésiennes

On a:

$$r = OM_P = \sqrt{x^2 + y^2}$$

$$\tan \theta = \frac{y}{x}$$

$$\theta = \begin{cases} \arctan(\frac{y}{x}) \text{ si } x \geq 0 \text{ et } y \geq 0 \\ \arctan(\frac{y}{x}) + \pi \text{ si } x < 0 \text{ et } y \geq 0 \\ \arctan(\frac{y}{x}) + \pi \text{ si } x > 0 \text{ et } y < 0 \\ \arctan(\frac{y}{x}) + 2\pi \text{ si } x < 0 \text{ et } y < 0 \end{cases}$$

$$z = z$$

3.2.2) Conversion vers coordonées cartésiennes

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \\ z = z \end{cases}$$

3.2.3) Base mobile

On se place dans les coordonées polaires.

On a la base du repère polaire $(\overrightarrow{u_x}, \overrightarrow{u_y})$

On va prendre la base locale du point M_P . On pose $\vec{u_r}$ le vecteur unitaire $\widehat{OM_P}$ et $\vec{u_\theta}$ son vecteur orthogonal unitaire (afin de former une base orthonormé), qu'on prendre dans le sens trigonométrique.

$$\begin{cases} u_r = \vec{x}\cos\theta + \vec{y}\sin\theta \\ u_\theta = -\vec{x}\sin\theta + \vec{y}\cos\theta \end{cases}$$

On obtient une nouvelle base de l'espace: $(\vec{u_r}, \vec{u_\theta}, \vec{u_z})$

N'importe quel point/vecteur possède une représentation dans cette base et dans la base cartésienne:

$$\vec{a} = a_x \vec{u_x} + a_y \vec{u_y} + a_z \vec{u_z}$$
$$= a_x \vec{u_x} + a_\theta \vec{u_\theta} + a_z \vec{u_z}$$

 a_r : Composante radiale

 a_{θ} : Composante orthoradiale

On peut enfin représenter \overrightarrow{OM} dans cette base:

$$\overrightarrow{OM} = \overrightarrow{OM_P} + \overrightarrow{M_PM}$$

$$\overrightarrow{OM_P} = r\overrightarrow{u_r} + 0 \times \overrightarrow{u_\theta}$$

$$\overrightarrow{OM} = r\overrightarrow{u_r} + z\overrightarrow{u_z}$$

!! Caution:

Et non pas $\overrightarrow{OM} = r \vec{u_r} + \theta \vec{u_\theta} + z \vec{u_z}$

Le θ est « caché » dans u_r , la base est mobile.

On peut passer de la base cylindrique vers la base cartésienne:

$$\{\overrightarrow{u_x} = \cos\theta \overrightarrow{u_r} - \sin\theta \overrightarrow{u_\theta}$$

3.2.4) Déplacement élémentaire

- Pour passer de x à $r+\mathrm{d}r$, le point M s'est déplacé sur OM_P de $\mathrm{d}r$ dans le sens de u_r , d'où un déplacement de $\mathrm{d}r\vec{u_r}$
- Pour passer de z à $z + \mathrm{d}z$, le point M subit une translation de $\mathrm{d}z\vec{u_z}$
- Pour passer de θ à θ + d θ , le point M_P subit une rotation d'axe (O, \vec{z}) , donc:
 - La distance parcourue vaut $r\,\mathrm{d}\theta$ dans la direction $\vec{u_{\theta}}$, d'où: $r\,\mathrm{d}\theta\vec{u_{\theta}}$

On a donc:

$$d\overrightarrow{OM} = dr\overrightarrow{u_r} + r d\theta \overrightarrow{u_\theta} + dz\overrightarrow{u_z}$$

3.2.5) Volume élémentaire

On peut encore apparenter notre déplacement à un mini parallépipède.

On obtient un volume élémentaire:

$$d\tau = r dr d\theta dz$$

Fig. 5. - Volume élémentaire dans un repère cylindrique

On peut aussi définir des surfaces élémentaires:

- $\mathrm{d}S_r \perp \overrightarrow{u_r}$ avec $\mathrm{d}S_r = r\,\mathrm{d}\theta\,\mathrm{d}z$
- $\mathrm{d}S_\theta \perp \overrightarrow{u_\theta}$ avec $\mathrm{d}S_\theta = \mathrm{d}r\,\mathrm{d}z$
- $\mathrm{d}S_z \perp \vec{u_z}$ avec $\mathrm{d}S_z = r\,\mathrm{d}r\,\mathrm{d}\theta$

3.3) Coordonnées sphériques

Φ Note:

Convention:

- Vecteur pointant vers nous
- ⊗ Vecteur pointant à l'opposé

Fig. 6. – Repère sphérique

On va directement définir r comme la distance OM:

$$r = \sqrt{x^2 + y^2 + z^2}$$

!! Caution:

L'angle θ des coordonnées sphériques n'a rien à voir avec l'angle θ des coordonnées cylindriques

On projete M sur le plan $\vec{x}\vec{y}$ pour obtenir M_P

On a:

- φ l'angle entre \vec{x} et $\overrightarrow{OM_P}$, avec $\varphi \in [0; 2\pi[$ θ l'angle entre \vec{z} et \overrightarrow{OM} , avec $\theta \in [0; \pi[$

3.3.1) Conversion en coordonées cartésiennes

On s'intéresse aux plans:

- $\overrightarrow{u_x}\overrightarrow{u_y}$, le plan équatorial

• OM_PM , le plan méridien

Ce qui nous donne:

• Dans le plan équatorial:

$$\cos\varphi = \frac{x}{OM_P} = \frac{x}{r\sin\theta}$$

$$x = r\sin\theta\cos\varphi$$

$$\sin\varphi = \frac{y}{OM_P} = \frac{y}{r\sin\theta}$$

$$y = r\sin\varphi\sin\theta$$

• Dans le plan méridien:

$$\cos \theta = \frac{z}{r}$$
$$z = r \cos \theta$$

3.3.2) Conversion vers coordonées sphériques

On a, assez simplement:

$$r = OM = \sqrt{x^2 + y^2 + z^2}$$

Pour trouver les angles, on utilise les fonctions trigonométriques réciproques:

- Pour θ :
 - Avec le cos:

$$\cos \theta = \frac{z}{r} = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

• Avec la tan:

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{OM_P}{z}$$

$$\tan \theta = \frac{\sqrt{x^2 + y^2}}{z}$$

• Pour φ :

$$\tan \varphi = \frac{\sin \varphi}{\cos \varphi} = \frac{r \sin \varphi \sin \theta}{r \cos \varphi \sin \theta} = \frac{y}{x}$$

3.3.3) Base mobile

On pose la base $(\vec{u_r}, \vec{u_\theta}, \overrightarrow{u_\varphi})$:

On pose aussi le vecteur « joker » \vec{u} , qui est orthogonal à $\overrightarrow{u_{\varphi}}$ dans le plan équatorial, et qui simplifie le calcul des vecteurs de la base.

 $\overrightarrow{u_{\theta}}$ va dans le même sens que $\theta,$ et $\overrightarrow{u_{\varphi}}$ va dans le même sens que $\varphi.$

Le vecteur orthogonal à $\vec{u_r}$ et $\vec{u_\theta}$ est orthogonal au plan méridien:

On a donc:

$$\begin{split} \vec{u} &= \cos \varphi \overrightarrow{u_x} + \sin \varphi \overrightarrow{u_y} \\ \overrightarrow{u_\varphi} &= -\sin \varphi \overrightarrow{u_x} + \cos \varphi \overrightarrow{u_y} \\ \overrightarrow{u_r} &= \cos \varphi \overrightarrow{u_z} + \sin \theta \overrightarrow{u} \\ &= \cos \varphi \overrightarrow{u_z} + \sin \theta \cos \varphi \overrightarrow{u_x} + \sin \theta \sin \varphi \overrightarrow{u_y} \\ \overrightarrow{u_\theta} &= -\sin \theta \overrightarrow{u_z} + \cos \theta \overrightarrow{u} \\ &= -\sin \theta \overrightarrow{u_z} + \cos \theta \cos \varphi \overrightarrow{u_x} + \cos \theta \sin \varphi \overrightarrow{u_y} \end{split}$$

3.3.4) Déplacement élémentaire

Le déplacement par rapport à r est plutôt simple:

$$r \longrightarrow r + \mathrm{d}r \Leftrightarrow \mathrm{d}r\vec{u_r}$$

Le déplacement par rapport à θ se rapporte à se déplacer de θ sur le cercle de centre O de rayon r (la coupe de la sphere par le plan méridien), d'où:

$$\theta \longrightarrow \theta + \mathrm{d}\theta \Leftrightarrow r \, \mathrm{d}\theta \vec{u_\theta}$$

Le déplacement par rapport à φ se rapport à déplacer M_P sur le cercle de centre O, et de rayon $OM_P=r\sin\theta$ (le rayon est plus petit si on se rapproche des pôles et plus grand si on se rapproche de l'équateur), d'où:

$$\underbrace{r\sin\theta}_{\text{rayon}}\underbrace{\mathrm{d}\varphi}_{\text{angle}}$$

Un rayon \times un angle est une distance, et elle est parcourue dans la direction de $\overrightarrow{u_{\varphi}}$:

$$\varphi \longrightarrow \varphi + \mathrm{d}\varphi \Leftrightarrow r \sin\theta \,\mathrm{d}\varphi \overrightarrow{u_{\omega}}$$

On obtient donc le déplacement élémentaire:

$$d\overrightarrow{OM} = dr\overrightarrow{u_r} + r d\theta \overrightarrow{u_\theta} + r \sin\theta d\varphi \overrightarrow{u_\varphi}$$
$$d\tau = r^2 \sin\theta dr d\theta d\varphi$$

Et les surfaces perpendiculaires:

- $\mathrm{d}S_r = r^2 \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\varphi$
- $dS_{\theta} = r \sin \theta \, dr \, d\varphi$
- $dS_{\varphi} = r dr d\varphi$

4) Dérivée d'un vecteur unitaire tournant par rapport à son angle de rotation

4.1) Cas des coordonées polaires

On se place en coordonées polaires:

$$\begin{cases} \overrightarrow{u_r} = \cos\theta \overrightarrow{u_x} + \sin\theta \overrightarrow{u_y} \\ \overrightarrow{u_\theta} = -\sin\theta \overrightarrow{u_x} + \cos\theta \overrightarrow{u_y} \end{cases}$$

On dérive $\vec{u_r}$:

$$\frac{\mathrm{d} \vec{u_r}}{\mathrm{d} \theta} = -\sin\theta \overrightarrow{u_x} + \cos\theta \overrightarrow{u_y} = \overrightarrow{u_\theta}$$

$$\frac{\mathrm{d} \vec{u_{\theta}}}{\mathrm{d} \theta} = -\cos\theta \overrightarrow{u_x} - \sin\theta \overrightarrow{u_y} = -\overrightarrow{u_r}$$

Dériver le vecteur unitaire polaire correspond à le faire tourner d'un angle $\frac{\pi}{2}$

4.2) Cas général

On prend \hat{u} un vecteur unitaire, tournant d'un angle α

On cherche $\frac{\mathrm{d}\hat{u}}{\mathrm{d}\alpha}$

On a \hat{u} unitaire, donc:

$$\begin{split} \|\hat{u}\|^2 &= 1 = \hat{u} \cdot \hat{u} \\ \frac{\mathrm{d} \ \|\hat{u}\|^2}{\mathrm{d}\alpha} &= \hat{u} \cdot \frac{\mathrm{d}\hat{u}}{\mathrm{d}\alpha} + \frac{\mathrm{d}\hat{u}}{\mathrm{d}\alpha} \cdot \hat{u} \\ &= 2\hat{u} \cdot \frac{\mathrm{d}\hat{u}}{\mathrm{d}\alpha} \\ &= \frac{\mathrm{d}(1)}{\mathrm{d}\alpha} = 0 \end{split}$$

Donc:

$$\hat{u} \cdot \frac{\mathrm{d}\hat{u}}{\mathrm{d}\alpha} = 0$$

 \hat{u} est un vecteur unitaire, donc ne peut pas être nul.

Donc la dérivée d'un vecteur unitaire sera forcément orthogonal à ce vecteur.

4.3) Base de Fresnel

Base de Fresnel: Quatrième solution pour se repérer dans l'espace, liée à la trajectoire que l'on va suivre.

On définit l'abscisse curviligne comme la distance sur la trajectoire que l'on suit.

On définit alors un vecteur unitaire $\vec{u_t}$ qui va suivre la trajectoire, et un vecteur normal $\overrightarrow{u_n}$ orthogonal à $\vec{u_t}$. Le vecteur normal devera toujours pointer vers l'intérieur de la concavité de la courbe.

Das le cas circulaire, on a donc $\overrightarrow{u_t} = \overrightarrow{u_\theta}$ et $\overrightarrow{u_n} = -\overrightarrow{u_n}$

On a:

$$\frac{\mathrm{d}\vec{u_t}}{\mathrm{d}s} = \frac{\overrightarrow{u_n}}{R}$$

Avec R le rayon de courbure.