Project

2025-04-28

```
library(forecast)
## Warning: 程辑包'forecast'是用 R 版本 4.3.3 来建造的
## Registered S3 method overwritten by 'quantmod':
##
    method
##
    as.zoo.data.frame zoo
library(ggplot2)
library(tseries)
## Warning: 程辑包'tseries'是用 R 版本 4.3.3 来建造的
data <- read.csv("C://Users//Anna Liu//Desktop//Columbia//Actuarial//PM</pre>
//group//project data(2)(2).csv")
str(data)
## 'data.frame': 672 obs. of 16 variables:
## $ observation_date : chr "1970/1/1" "1970/2/1" "1970/3/1" "1970/4
## $ UMCSENT interp : num 78.6 78.1 77.2 76.3 75.4 ...
## $ hourly_earning : num 3.31 3.33 3.36 3.36 3.37 3.4 3.41 3.44 3.
45 3.45 ...
## $ BBKMGDP
                     : num -1.01 1.91 -1.39 -1.6 2.52 ...
## $ CPI
                      : num 37.8 38 38.2 38.5 38.6 38.8 39 39 39.2 3
9.4 ...
                   : num 39.6 39.8 40.1 40.4 40.5 40.8 40.9 41.1
## $ CPILFESL
41.3 41.5 ...
## $ discouraged
                    : int NA ...
## $ FEDFUNDS
                      : num 8.98 8.98 7.76 8.1 7.95 7.61 7.21 6.62 6.
29 6.2 ...
                  : int 1245 1403 1511 1602 1829 1805 1859 1944
## $ num losers
2078 2233 ...
## $ PCEPI
                      : num 19.4 19.5 19.5 19.6 19.7 ...
## $ PCE
                      : num 629 634 632 636 642 ...
## $ unemployment_level: int 3201 3453 3635 3797 3919 4071 4175 4256
4456 4591 ...
## $ X
                       : logi NA NA NA NA NA NA ...
## $ monthly_average
                       : num 101 104 110 110 109 ...
## $ IC
                       : num 1103571 1034000 1190000 1422571 1356429
. . .
```

```
## $ CC
                        : num 1370161 1421000 1492161 1675200 1828581
 . . .
head(data)
     observation_date UMCSENT_interp hourly_earning BBKMGDP CPI CPIL
FESL
                            78.63333
## 1
             1970/1/1
                                               3.31 -1.014119 37.8
39.6
## 2
             1970/2/1
                            78.10000
                                               3.33 1.906225 38.0
39.8
## 3
                                               3.36 -1.392509 38.2
             1970/3/1
                            77.20000
40.1
## 4
             1970/4/1
                            76.30000
                                               3.36 -1.604366 38.5
40.4
## 5
             1970/5/1
                            75.40000
                                               3.37 2.520264 38.6
40.5
## 6
             1970/6/1
                            76.13333
                                               3.40 5.741429 38.8
40.8
                                              PCE unemployment_level X
##
     discouraged FEDFUNDS num_losers PCEPI
## 1
                     8.98
              NA
                                1245 19.377 628.7
                                                                 3201 NA
## 2
                     8.98
                                1403 19.454 634.0
                                                                 3453 NA
              NA
## 3
              NA
                     7.76
                                1511 19.502 632.3
                                                                 3635 NA
                     8.10
                                1602 19.601 636.0
## 4
              NA
                                                                 3797 NA
## 5
              NA
                     7.95
                                1829 19.663 642.4
                                                                 3919 NA
## 6
              NA
                     7.61
                                1805 19.714 646.3
                                                                 4071 NA
##
    monthly average
                          IC
                                  CC
## 1
            100.9633 1103571 1370161
            104.4704 1034000 1421000
## 2
## 3
            109.5552 1190000 1492161
            109.5705 1422571 1675200
## 4
## 5
            108.5677 1356429 1828581
            109.3033 1261714 1851167
## 6
data$observation_date <- as.Date(data$observation_date)</pre>
ic_ts <- ts(data$IC, start = c(1970, 1), frequency = 12)
cc_ts <- ts(data$CC, start = c(1970, 1), frequency = 12)</pre>
print(ic_ts)
##
                          Feb
                                                                       J
               Jan
                                     Mar
                                                Apr
                                                           May
un
## 1970 1103571.4 1034000.0 1190000.0 1422571.4 1356428.6 1261714.
## 1971 1319857.1 1136142.9 1303428.6 1227714.3 1298428.6 1258285.
7
## 1972 1195714.3 1085285.7 1162000.0 1132571.4 1183142.9 1242142.
9
```

```
## 1973 1012000.0 886285.7 1007428.6 1026857.1 1055857.1 1028285.
7
## 1974 1359857.1 1273285.7 1385285.7 1252714.3 1305285.7 1334142.
## 1975 2423714.3 2166857.1 2418428.6 2236142.9 2205428.6 2102857.
## 1976 1649142.9 1442714.3 1609428.6 1593857.1 1737142.9 1691000.
## 1977 1844714.3 1744714.3 1587857.1 1587000.0 1676571.4 1539428.
## 1978 1558285.7 1530857.1 1529285.7 1392285.7 1437428.6 1418142.
## 1979 1577571.4 1438000.0 1587142.9 1762857.1 1531142.9 1560000.
## 1980 1833000.0 1734000.0 1951000.0 2313285.7 2752142.9 2593428.
## 1981 1830714.3 1715000.0 1808714.3 1757285.7 1848142.9 1868000.
## 1982 2401857.1 2135000.0 2476857.1 2511428.6 2599857.1 2566285.
7
## 1983 2190428.6 1953285.7 2130285.7 2129285.7 2068714.3 1881714.
3
## 1984 1550571.4 1408714.3 1530714.3 1581285.7 1590285.7 1553428.
## 1985 1653285.7
                  1558428.6 1694714.3 1702285.7 1740714.3 1681571.
## 1986 1623857.1 1487428.6 1693428.6 1658142.9 1706000.0 1588000.
## 1987 1543428.6 1395000.0 1474428.6 1439285.7 1466142.9 1381857.
## 1988 1498428.6 1317285.7 1355000.0 1340285.7 1387857.1 1318000.
## 1989 1282428.6 1230857.1 1425571.4 1327857.1 1438000.0 1445428.
## 1990 1603571.4 1423285.7 1525428.6 1548142.9 1582714.3 1549142.
9
## 1991 1985428.6 1939571.4 2209000.0 1997714.3 1965000.0 1833000.
## 1992 1948000.0 1833857.1 1894571.4 1804285.7 1838571.4 1790000.
## 1993 1530000.0 1358000.0 1562000.0 1504428.6 1522000.0 1463857.
## 1994 1606857.1
                  1390285.7
                            1487857.1 1475714.3 1583857.1 1450714.
## 1995 1472857.1 1357428.6 1502857.1 1515857.1 1635857.1 1562428.
## 1996 1658142.9 1558142.9 1721857.1 1529142.9 1524571.4 1468428.
## 1997 1492714.3 1272714.3 1414714.3 1410571.4 1423571.4 1400857.
```

```
## 1998 1427714.3 1276000.0 1393714.3 1327428.6 1382571.4 1463428.
## 1999 1436142.9 1207285.7 1345285.7 1310571.4 1340857.1 1253428.
## 2000 1286000.0 1208428.6 1204428.6 1171857.1 1252857.1 1239142.
## 2001 1526714.3 1489571.4 1716571.4 1695857.1 1759142.9 1696000.
## 2002 1809142.9 1587428.6 1860571.4 1828714.3 1784714.3 1667857.
## 2003 1765571.4 1663714.3 1882428.6 1870428.6 1875428.6 1810714.
## 2004 1597571.4 1492142.9 1510285.7 1479285.7 1504714.3 1480857.
## 2005 1499571.4 1254428.6 1472142.9 1376714.3 1452857.1 1391714.
## 2006 1306857.1 1168571.4 1327000.0 1318142.9 1456857.1 1317428.
## 2007 1399000.0 1296714.3 1364142.9 1366714.3 1354857.1 1352428.
6
## 2008 1506142.9 1432714.3 1622428.6 1548285.7 1622571.4 1639000.
## 2009 2572571.4 2576000.0 2916857.1 2661142.9 2715142.9 2553428.
## 2010 2139857.1 1943857.1 2087285.7 1988857.1 2041571.4 1970285.
## 2011 1894857.1 1609428.6 1787857.1 1820857.1 1871285.7 1790285.
## 2012 1668714.3 1509571.4 1618714.3 1633571.4 1656714.3 1626714.
## 2013 1566142.9 1397000.0 1567428.6 1481285.7 1544000.0 1476571.
## 2014 1452714.3 1330714.3 1420428.6 1387857.1 1383285.7 1340285.
## 2015 1270000.0 1205000.0 1256857.1 1213857.1 1219000.0 1180428.
## 2016 1241000.0 1101857.1 1175142.9 1135000.0 1211571.4 1129571.
## 2017 1074571.4 923571.4 1019000.0 987142.9 1066142.9 1068000.
## 2018 1033000.0
                  886285.7 998714.3 946285.7 984000.0 953714.
## 2019 992428.6
                  878571.4 932714.3
                                      907428.6 968714.3 965571.
## 2020 943428.6 873571.4 11971142.9 18020000.0 9094857.1 6341571.
## 2021 3681428.6 3003000.0 2946571.4 2430571.4 2022857.1 1731000.
## 2022 1053428.6 881428.6 950142.9 912428.6 931714.3 915857.
```

0 ## 2024 933857.1 872142.9 953857.1 908857.1 986142.9 101 6 ## 2025 956428.6 905714.3 NA NA NA NA	.3428. D
## 2025 956428.6 905714.3 NA NA NA	D
NA	D
## Jul Aug Sep Oct Nov	
	2428.
	3000.
0 ## 1972 1259428.6 1126857.1 1096714.3 1113285.7 1055142.9 108 1	32857.
## 1973 1080714.3 1130714.3 1060285.7 1072857.1 1093857.1 127	7428.
	1428.
6 ## 1975 1971428.6 1999571.4 1899714.3 1857285.7 1701428.6 165	0571.
	18428.
	88285.
	50000.
	7000.
	.4857.
	8142.
	4000.
## 1983 1797857.1 1918571.4 1754142.9 1769857.1 1665714.3 163	35428.
	39714.
	6142.
	55714.
	8857.
## 1988 1435285.7 1388714.3 1293428.6 1288142.9 1250857.1 129	5714.
	31000.
	7000.

```
## 1991 1863000.0 1907714.3 1819142.9 1889142.9 1907714.3 2012142.
9
## 1992 1959142.9 1792285.7 1776571.4 1661571.4 1549000.0 1499571.
## 1993 1563142.9 1507142.9 1450714.3 1561142.9 1458428.6 1439857.
## 1994 1520714.3 1490428.6 1410142.9 1477857.1 1403428.6 1430857.
## 1995 1653000.0 1578285.7 1556428.6 1648857.1 1611571.4 1610142.
## 1996 1485428.6 1472714.3 1466714.3 1498857.1 1443428.6 1562714.
## 1997 1410714.3 1467142.9 1349571.4 1375000.0 1350000.0 1386000.
## 1998 1457142.9 1372142.9 1299142.9 1380428.6 1357142.9 1407285.
## 1999 1326000.0 1287285.7 1254428.6 1271571.4 1209714.3 1236142.
## 2000 1321571.4 1378571.4 1286000.0 1345857.1 1436571.4 1536714.
3
## 2001 1763857.1 1764714.3 1898428.6 2106428.6 1937142.9 1798857.
1
## 2002 1709857.1 1746285.7 1753428.6 1803857.1 1671714.3 1825428.
## 2003 1808714.3 1774857.1 1687142.9 1673714.3 1556285.7 1584000.
## 2004 1528714.3 1502714.3 1448571.4 1477857.1 1414857.1 1459142.
## 2005 1432857.1 1404857.1 1673857.1 1524714.3 1359571.4 1398571.
## 2006 1414000.0 1391142.9 1356000.0 1398714.3 1401857.1 1433571.
## 2007 1387571.4 1414571.4 1343000.0 1454714.3 1452000.0 1545000.
## 2008 1806000.0 1908000.0 1999571.4 2114428.6 2260428.6 2462000.
## 2009 2496142.9 2479714.3 2335142.9 2322428.6 2118000.0 2125714.
3
## 2010 2036571.4 2093714.3 1938857.1 1977428.6 1826428.6 1851571.
## 2011 1822285.7 1816714.3 1781571.4 1776857.1 1666142.9 1663857.
## 2012 1649000.0 1652000.0 1641000.0 1632571.4 1717857.1 1577285.
## 2013 1527571.4 1473285.7 1361142.9 1573142.9 1396714.3 1522000.
## 2014 1331428.6 1343142.9 1261714.3 1269428.6 1259571.4 1264428.
## 2015 1217285.7 1222571.4 1152571.4 1182428.6 1154000.0 1199000.
```

```
## 2016 1152714.3
                   1163000.0
                             1069142.9 1140428.6 1053285.7 1119285.
7
## 2017
        1107142.9
                   1130571.4
                             1149857.1 1075285.7 1056857.1 1076857.
1
## 2018
         928000.0
                    916285.7
                              883857.1
                                       946428.6
                                                  975285.7
                                                              988428.
6
## 2019
         922142.9
                    936142.9
                              897714.3
                                       942142.9
                                                   969142.9
                                                             1040000.
                   3972000.0
                             3600714.3 3528428.6 3254428.6 3671142.
## 2020
        5823285.7
## 2021 1638000.0
                   1584428.6
                             1501857.1 1235571.4
                                                   998857.1
                                                              970857.
## 2022
         969000.0
                    951000.0
                              849285.7
                                         895428.6
                                                  904142.9
                                                              920571.
## 2023
        1035142.9
                   1068428.6
                              932857.1
                                         933571.4
                                                   933714.3
                                                              911142.
## 2024 1048000.0
                   1020285.7
                              974000.0
                                        1028857.1
                                                   939142.9
                                                              976857.
## 2025
               NA
                         NA
                                    NA
                                              NA
                                                         NA
NA
autoplot(ic_ts) + ggtitle("Initial Claims Time Series")
```

Initial Claims Time Series

autoplot(cc_ts) + ggtitle("Continued Claims Time Series")

Continued Claims Time Series


```
ic_model <- auto.arima(ic_ts)</pre>
cc_model <- auto.arima(cc_ts)</pre>
summary(ic_model)
## Series: ic_ts
## ARIMA(3,0,2) with non-zero mean
##
## Coefficients:
##
            ar1
                    ar2
                            ar3
                                     ma1
                                             ma2
                                                        mean
##
         0.4256 0.0109 0.1801 0.8876
                                         0.0668 1613025.14
## s.e. 0.8528 0.3845 0.1183 0.8708 0.7536
                                                    97311.99
## sigma^2 = 2.443e+11: log likelihood = -9616.93
## AIC=19247.86 AICc=19248.03
                                  BIC=19279.32
##
## Training set error measures:
                                                   MPE
                                                           MAPE
                                                                     MAS
##
                       ME
                              RMSE
                                        MAE
## Training set -108.7424 492063.7 176999.8 -2.476309 10.14929 0.438541
2
##
                       ACF1
## Training set 0.001299218
summary(cc_model)
```

```
## Series: cc ts
## ARIMA(1,0,1) with non-zero mean
##
## Coefficients:
##
            ar1
                    ma1
                              mean
##
         0.8646 0.5468 2827939.0
## s.e. 0.0204 0.0363
                          227513.7
## sigma^2 = 2.758e+11: log likelihood = -9658.57
## AIC=19325.14
                  AICc=19325.2
                                  BIC=19343.12
## Training set error measures:
                             RMSE
                                                 MPE
                                                         MAPE
                                                                   MASE
##
                      ME
                                        MAE
      ACF1
## Training set 406.2501 523950.7 107453.5 -1.18604 3.176813 0.1388508
0.01281172
ic_forecast <- forecast(ic_model, h=12)</pre>
cc_forecast <- forecast(cc_model, h=12)</pre>
autoplot(ic_forecast) + ggtitle("Initial Claims Future Prediction")
## Warning: Removed 10 rows containing missing values (`geom_line()`).
```

Initial Claims Future Prediction

autoplot(cc_forecast) + ggtitle("Continued Claims Future Prediction")


```
library(forecast)
library(ggplot2)
library(tseries)
data <- read.csv("C://Users//Anna Liu//Desktop//Columbia//Actuarial//PM</pre>
//group//project_data(2)(2).csv")
data$observation_date <- as.Date(data$observation_date)</pre>
data$discouraged <- NULL</pre>
data$X <- NULL</pre>
data_clean <- na.omit(data)</pre>
ic_ts <- ts(data_clean$IC, start = c(1970, 1), frequency = 12)</pre>
cc_ts <- ts(data_clean$CC, start = c(1970, 1), frequency = 12)</pre>
print(ic_ts)
##
                             Feb
                Jan
                                         Mar
                                                     Apr
                                                                 May
                                                                             J
un
```

```
## 1970 1103571.4 1034000.0 1190000.0 1422571.4 1356428.6 1261714.
3
## 1971 1319857.1 1136142.9 1303428.6 1227714.3 1298428.6 1258285.
## 1972 1195714.3 1085285.7 1162000.0 1132571.4 1183142.9 1242142.
## 1973 1012000.0 886285.7
                           1007428.6 1026857.1 1055857.1 1028285.
## 1974 1359857.1 1273285.7 1385285.7 1252714.3 1305285.7 1334142.
## 1976 1649142.9 1442714.3 1609428.6 1593857.1 1737142.9 1691000.
## 1977 1844714.3 1744714.3 1587857.1 1587000.0 1676571.4 1539428.
## 1978 1558285.7 1530857.1 1529285.7 1392285.7 1437428.6 1418142.
## 1979 1577571.4 1438000.0 1587142.9 1762857.1 1531142.9 1560000.
a
## 1980 1833000.0 1734000.0 1951000.0 2313285.7 2752142.9 2593428.
## 1981 1830714.3 1715000.0 1808714.3 1757285.7 1848142.9 1868000.
## 1982 2401857.1 2135000.0 2476857.1 2511428.6 2599857.1 2566285.
## 1983 2190428.6 1953285.7 2130285.7 2129285.7 2068714.3 1881714.
## 1984 1550571.4 1408714.3 1530714.3 1581285.7 1590285.7 1553428.
## 1985 1653285.7 1558428.6 1694714.3 1702285.7 1740714.3 1681571.
## 1986 1623857.1 1487428.6 1693428.6 1658142.9 1706000.0 1588000.
## 1987 1543428.6 1395000.0 1474428.6 1439285.7 1466142.9 1381857.
1
## 1988 1498428.6 1317285.7
                           1355000.0 1340285.7 1387857.1 1318000.
0
## 1989 1282428.6 1230857.1 1425571.4 1327857.1 1438000.0 1445428.
## 1990 1603571.4 1423285.7 1525428.6 1548142.9 1582714.3 1549142.
## 1991 1985428.6
                 1939571.4 2209000.0 1997714.3 1965000.0 1833000.
## 1992 1948000.0 1833857.1 1894571.4 1804285.7 1838571.4 1790000.
## 1993 1530000.0 1358000.0 1562000.0 1504428.6 1522000.0 1463857.
1
## 1994 1606857.1 1390285.7 1487857.1 1475714.3 1583857.1 1450714.
```

```
## 1995 1472857.1 1357428.6 1502857.1 1515857.1 1635857.1 1562428.
## 1996 1658142.9 1558142.9 1721857.1 1529142.9 1524571.4 1468428.
## 1997 1492714.3 1272714.3 1414714.3 1410571.4 1423571.4 1400857.
## 1998 1427714.3 1276000.0 1393714.3 1327428.6 1382571.4 1463428.
## 1999 1436142.9 1207285.7 1345285.7 1310571.4 1340857.1 1253428.
## 2000 1286000.0 1208428.6 1204428.6 1171857.1 1252857.1 1239142.
## 2001 1526714.3 1489571.4 1716571.4 1695857.1 1759142.9 1696000.
## 2002 1809142.9 1587428.6 1860571.4 1828714.3 1784714.3 1667857.
## 2003 1765571.4 1663714.3 1882428.6 1870428.6 1875428.6 1810714.
## 2004 1597571.4 1492142.9 1510285.7 1479285.7 1504714.3 1480857.
1
## 2005 1499571.4 1254428.6 1472142.9 1376714.3 1452857.1 1391714.
3
## 2006 1306857.1 1168571.4 1327000.0 1318142.9 1456857.1 1317428.
## 2007 1399000.0 1296714.3 1364142.9 1366714.3 1354857.1 1352428.
## 2008 1506142.9 1432714.3 1622428.6 1548285.7 1622571.4 1639000.
## 2009 2572571.4 2576000.0 2916857.1 2661142.9 2715142.9 2553428.
## 2010 2139857.1 1943857.1 2087285.7 1988857.1 2041571.4 1970285.
## 2011 1894857.1 1609428.6 1787857.1 1820857.1 1871285.7 1790285.
## 2012 1668714.3 1509571.4 1618714.3 1633571.4 1656714.3 1626714.
3
## 2013 1566142.9 1397000.0 1567428.6 1481285.7 1544000.0 1476571.
## 2014 1452714.3 1330714.3 1420428.6 1387857.1 1383285.7 1340285.
## 2015 1270000.0 1205000.0 1256857.1 1213857.1 1219000.0 1180428.
## 2016 1241000.0 1101857.1 1175142.9 1135000.0 1211571.4 1129571.
## 2017 1074571.4 923571.4 1019000.0 987142.9 1066142.9 1068000.
## 2018 1033000.0 886285.7 998714.3 946285.7 984000.0
                                                           953714.
3
## 2019 992428.6 878571.4 932714.3 907428.6 968714.3 965571.
```

## 4	2020	943428.6	873571.4	11971142.9	18020000.0	9094857.1	6341571.
-	2021	3681428.6	3003000.0	2946571.4	2430571.4	2022857.1	1731000.
## 1 ## 0	2022	1053428.6	881428.6	950142.9	912428.6	931714.3	915857.
	2023	906142.9	866000.0	1002857.1	928857.1	1017714.3	1075000.
	2024	933857.1	872142.9				
## ec		Jul	Aug	Sep	0ct	Nov	D
	1970	1251000.0	1295857.1	1381428.6	1468000.0	1389000.0	1352428.
_	1971	1307714.3	1454857.1	1340714.3	1317428.6	1233142.9	1203000.
	1972	1259428.6	1126857.1	1096714.3	1113285.7	1055142.9	1082857.
_	1973	1080714.3	1130714.3	1060285.7	1072857.1	1093857.1	1277428.
_	1974	1385000.0	1515571.4	1549000.0	1771000.0	1998000.0	2291428.
_	1975	1971428.6	1999571.4	1899714.3	1857285.7	1701428.6	1650571.
-	1976	1728857.1	1734428.6	1741000.0	1809285.7	1674571.4	1648428.
_	1977	1611000.0	1628714.3	1559571.4	1601285.7	1519142.9	1588285.
-	1978	1557000.0	1514285.7	1389428.6	1448857.1	1455428.6	1560000.
	1979	1693571.4	1731857.1	1654428.6	1775857.1	1783857.1	1897000.
_	1980	2478000.0	2307571.4	2056000.0	1913142.9	1763285.7	1814857.
_	1981	1933857.1	1978142.9	2037285.7	2184571.4	2206428.6	2398142.
##	1982	2537142.9	2797000.0	2860428.6	2849714.3	2531571.4	2314000.
	1983	1797857.1	1918571.4	1754142.9	1769857.1	1665714.3	1635428.
	1984	1605714.3	1724285.7	1704571.4	1861142.9	1730000.0	1689714.
	1985	1689142.9	1789428.6	1749714.3	1791571.4	1682714.3	1696142.
	1986	1639142.9	1797000.0	1692428.6	1677428.6	1555857.1	1565714.
	1987	1435571.4	1420000.0	1320714.3	1328000.0	1318142.9	1408857.
1 ## 3	1988	1435285.7	1388714.3	1293428.6	1288142.9	1250857.1	1295714.

```
## 1989 1505428.6 1476428.6 1445000.0 1595714.3 1450000.0 1581000.
0
## 1990 1626142.9 1714857.1 1691714.3 1889000.0 1927857.1 2007000.
## 1991 1863000.0 1907714.3 1819142.9 1889142.9 1907714.3 2012142.
## 1992 1959142.9 1792285.7 1776571.4 1661571.4 1549000.0 1499571.
## 1993 1563142.9 1507142.9 1450714.3 1561142.9 1458428.6 1439857.
## 1994 1520714.3 1490428.6 1410142.9 1477857.1 1403428.6 1430857.
## 1995 1653000.0 1578285.7 1556428.6 1648857.1 1611571.4 1610142.
## 1996 1485428.6 1472714.3 1466714.3 1498857.1 1443428.6 1562714.
## 1997 1410714.3 1467142.9 1349571.4 1375000.0 1350000.0 1386000.
## 1998 1457142.9 1372142.9 1299142.9 1380428.6 1357142.9 1407285.
7
## 1999 1326000.0 1287285.7 1254428.6 1271571.4 1209714.3 1236142.
9
## 2000 1321571.4 1378571.4 1286000.0 1345857.1 1436571.4 1536714.
## 2001 1763857.1 1764714.3 1898428.6 2106428.6 1937142.9 1798857.
## 2002 1709857.1 1746285.7 1753428.6 1803857.1 1671714.3 1825428.
## 2003 1808714.3 1774857.1 1687142.9 1673714.3 1556285.7 1584000.
## 2004 1528714.3 1502714.3 1448571.4 1477857.1 1414857.1 1459142.
## 2005 1432857.1 1404857.1 1673857.1 1524714.3 1359571.4 1398571.
## 2006 1414000.0 1391142.9 1356000.0 1398714.3 1401857.1 1433571.
## 2007 1387571.4 1414571.4 1343000.0 1454714.3 1452000.0 1545000.
0
## 2008 1806000.0 1908000.0 1999571.4 2114428.6 2260428.6 2462000.
## 2009 2496142.9 2479714.3 2335142.9 2322428.6 2118000.0 2125714.
## 2010 2036571.4 2093714.3 1938857.1 1977428.6 1826428.6 1851571.
## 2011 1822285.7 1816714.3 1781571.4 1776857.1 1666142.9 1663857.
## 2012 1649000.0 1652000.0 1641000.0 1632571.4 1717857.1 1577285.
## 2013 1527571.4 1473285.7 1361142.9 1573142.9 1396714.3 1522000.
```

```
## 2014 1331428.6
                   1343142.9 1261714.3 1269428.6 1259571.4 1264428.
6
## 2015
        1217285.7
                   1222571.4
                              1152571.4
                                        1182428.6
                                                   1154000.0
                                                              1199000.
## 2016
        1152714.3
                   1163000.0
                              1069142.9
                                        1140428.6
                                                   1053285.7
                                                              1119285.
        1107142.9
                   1130571.4
## 2017
                              1149857.1
                                         1075285.7
                                                   1056857.1
                                                              1076857.
## 2018
                    916285.7
                                         946428.6
         928000.0
                               883857.1
                                                    975285.7
                                                               988428.
## 2019
         922142.9
                    936142.9
                               897714.3
                                        942142.9
                                                    969142.9
                                                              1040000.
## 2020
        5823285.7
                   3972000.0
                              3600714.3 3528428.6 3254428.6
                                                             3671142.
## 2021
        1638000.0
                   1584428.6
                              1501857.1
                                         1235571.4
                                                    998857.1
                                                               970857.
## 2022
         969000.0
                    951000.0
                               849285.7
                                         895428.6
                                                    904142.9
                                                               920571.
## 2023
        1035142.9
                   1068428.6
                               932857.1
                                         933571.4
                                                    933714.3
                                                               911142.
## 2024
autoplot(ic_ts) + ggtitle("Initial Claims Time Series")
```

Initial Claims Time Series

autoplot(cc_ts) + ggtitle("Continued Claims Time Series")

Continued Claims Time Series


```
par(mfrow=c(2,2))
acf(ic_ts, main="ACF of IC")
pacf(ic_ts, main="PACF of IC")
acf(cc_ts, main="ACF of CC")
pacf(cc_ts, main="PACF of CC")
```



```
0.0 1.0 2.0 0.0 0.5 1.0 1.5 2.0 Lag
```

```
par(mfrow=c(1,1))
ic_model_manual <- arima(ic_ts, order=c(1,1,1))</pre>
cc_model_manual <- arima(cc_ts, order=c(1,1,1))</pre>
summary(ic_model_manual)
##
## Call:
## arima(x = ic_ts, order = c(1, 1, 1))
##
## Coefficients:
##
                     ma1
             ar1
##
         -0.3305
                  0.8645
## s.e.
          0.0430 0.0175
##
## sigma^2 estimated as 3.019e+11: log likelihood = -9498.88,
9003.77
##
## Training set error measures:
                       ME
                              RMSE
                                        MAE
                                                    MPE
                                                            MAPE
                                                                     MASE
       ACF1
## Training set -282.108 548994.6 171112.3 -0.4136672 9.33175 1.319143
-0.08682375
```

```
summary(cc_model_manual)
##
## Call:
## arima(x = cc_ts, order = c(1, 1, 1))
## Coefficients:
##
             ar1
                     ma1
        -0.0991 0.5900
##
## s.e. 0.0944 0.0818
##
## sigma^2 estimated as 2.99e+11: log likelihood = -9495.54, aic = 18
997.08
##
## Training set error measures:
                                        MAE
                                                    MPE
                                                            MAPE
                                                                      MA
##
                      ME
                             RMSE
SE
## Training set 454.4881 546383.5 96382.48 -0.07777366 2.285327 0.81972
73
##
                       ACF1
## Training set 0.004235727
ic_forecast_manual <- forecast(ic_model_manual, h=12)</pre>
cc_forecast_manual <- forecast(cc_model_manual, h=12)</pre>
autoplot(ic_forecast_manual) + ggtitle("Initial Claims Manual ARIMA Pre
diction")
```

Initial Claims Manual ARIMA Prediction

autoplot(cc_forecast_manual) + ggtitle("Continued Claims Manual ARIMA P
rediction")

Continued Claims Manual ARIMA Prediction


```
ic auto model <- auto.arima(ic ts)</pre>
cc auto model <- auto.arima(cc ts)</pre>
summary(ic auto model)
## Series: ic ts
## ARIMA(3,0,2) with non-zero mean
##
## Coefficients:
##
             ar1
                     ar2
                              ar3
                                      ma1
                                              ma2
                                                         mean
##
         -0.4357
                  0.4629
                          0.1793
                                  1.7778
                                           0.8163
                                                   1621645.13
## s.e.
          0.1060 0.0772 0.0503 0.1038 0.0833
                                                     87740.32
## sigma^2 = 2.469e+11: log likelihood = -9446.02
## AIC=18906.03
                 AICc=18906.2
                                 BIC=18937.37
##
## Training set error measures:
                      ME
                              RMSE
                                        MAE
                                                  MPE
                                                          MAPE
                                                                     MASE
## Training set 642.4714 494558.3 175505.5 -2.579447 10.05998 0.4276046
##
                       ACF1
## Training set -0.01262006
summary(cc_auto_model)
## Series: cc ts
## ARIMA(1,0,1) with non-zero mean
##
## Coefficients:
            ar1
##
                    ma1
                               mean
         0.8636 0.5468 2827299.4
##
## s.e. 0.0206 0.0366
                          234260.2
##
## sigma^2 = 2.808e+11: log likelihood = -9489.3
## AIC=18986.6
                 AICc=18986.66 BIC=19004.51
##
## Training set error measures:
                                                        MAPE
                                                                   MASE
##
                                      MAE
                                                MPE
                      ME
                           RMSE
## Training set 2020.991 528641 108129.5 -1.130136 3.163341 0.1373794 0.
01332749
ic_manual_model <- arima(ic_ts, order = c(1,1,1))</pre>
cc_manual_model <- arima(cc_ts, order = c(1,1,1))</pre>
summary(ic_manual_model)
##
## Call:
## arima(x = ic_ts, order = c(1, 1, 1))
##
## Coefficients:
```

```
##
                     ma1
             ar1
##
         -0.3305
                  0.8645
## s.e. 0.0430 0.0175
##
## sigma^2 estimated as 3.019e+11: log likelihood = -9498.88, aic = 1
9003.77
##
## Training set error measures:
                      ME
                             RMSE
                                       MAE
                                                   MPE
                                                          MAPE
                                                                   MASE
       ACF1
## Training set -282.108 548994.6 171112.3 -0.4136672 9.33175 1.319143
-0.08682375
summary(cc_manual_model)
##
## Call:
## arima(x = cc_ts, order = c(1, 1, 1))
## Coefficients:
##
             ar1
                     ma1
##
         -0.0991 0.5900
## s.e. 0.0944 0.0818
## sigma^2 estimated as 2.99e+11: log likelihood = -9495.54, aic = 18
997.08
##
## Training set error measures:
                      ME
                             RMSE
                                       MAE
                                                    MPE
                                                            MAPE
                                                                      MΑ
SE
## Training set 454.4881 546383.5 96382.48 -0.07777366 2.285327 0.81972
73
##
                       ACF1
## Training set 0.004235727
ic_auto_forecast <- forecast(ic_auto_model, h = 12)</pre>
cc_auto_forecast <- forecast(cc_auto_model, h = 12)</pre>
ic_manual_forecast <- forecast(ic_manual_model, h = 12)</pre>
cc manual forecast <- forecast(cc manual model, h = 12)</pre>
autoplot(ic_auto_forecast) + ggtitle("IC Auto ARIMA Prediction") + xlab
("Time") + ylab("Initial Claims")
```

IC Auto ARIMA Prediction

autoplot(cc_auto_forecast) + ggtitle("CC Auto ARIMA Prediction") + xlab
("Time") + ylab("Continued Claims")

CC Auto ARIMA Prediction


```
autoplot(ic_manual_forecast) + ggtitle("IC Manual ARIMA Prediction (1,1,
1)") + xlab("Time") + ylab("Initial Claims")
```

IC Manual ARIMA Prediction (1,1,1)

autoplot(cc_manual_forecast) + ggtitle("CC Manual ARIMA Prediction (1,1,
1)") + xlab("Time") + ylab("Continued Claims")

CC Manual ARIMA Prediction (1,1,1)


```
cat("Initial Claims:\n")
## Initial Claims:
cat("Auto ARIMA AIC:", AIC(ic_auto_model), " BIC:", BIC(ic_auto_model),
 "\n")
## Auto ARIMA AIC: 18906.03 BIC: 18937.37
cat("Manual ARIMA AIC:", AIC(ic_manual_model), " BIC:", BIC(ic_manual_m
odel), "\n\n")
## Manual ARIMA AIC: 19003.77 BIC: 19017.19
cat("Continued Claims:\n")
## Continued Claims:
cat("Auto ARIMA AIC:", AIC(cc_auto_model), " BIC:", BIC(cc_auto_model),
 "\n")
## Auto ARIMA AIC: 18986.6 BIC: 19004.51
cat("Manual ARIMA AIC:", AIC(cc_manual_model), " BIC:", BIC(cc_manual_m
odel), "\n")
## Manual ARIMA AIC: 18997.08 BIC: 19010.5
```

```
p max <- 4
d max <- 3
q_max <- 4
results <- data.frame(p=integer(), d=integer(), q=integer(), AIC=numeri
c())
for (p in 0:p max) {
  for (d in 0:d_max) {
    for (q in 0:q_max) {
      tryCatch({
        model <- arima(ic_ts, order=c(p,d,q))</pre>
        results <- rbind(results, data.frame(p=p, d=d, q=q, AIC=AIC(mod
el)))
      }, error=function(e){})
    }
  }
}
## Warning in log(s2): 产生了 NaNs
## Warning in log(s2): 产生了 NaNs
results <- results[order(results$AIC), ]
print(results)
                 AIC
      pdq
## 83 4 1 3 18860.46
## 54 2 2 4 18862.12
## 67 3 1 4 18862.35
## 84 4 1 4 18863.57
## 49 2 1 4 18864.38
## 72 3 2 4 18871.05
## 71 3 2 3 18872.28
## 88 4 2 3 18873.59
## 89 4 2 4 18879.87
## 66 3 1 3 18881.42
## 65 3 1 2 18883.60
## 82 4 1 2 18884.99
## 30 1 1 4 18885.62
## 34 1 2 3 18887.53
## 15 0 2 4 18888.59
## 48 2 1 3 18888.63
## 35 1 2 4 18889.07
## 53 2 2 3 18889.23
## 94 4 3 4 18891.09
## 29 1 1 3 18892.05
```

```
## 47 2 1 2 18897.47
## 44 2 0 3 18899.54
## 93 4 3 3 18899.80
## 28 1 1 2 18904.79
## 62 3 0 2 18906.03
## 9 0 1 3 18906.66
## 61 3 0 1 18908.45
## 10 0 1 4 18908.66
## 25 1 0 4 18909.32
## 79 4 0 1 18909.77
## 87 4 2 2 18910.22
## 24 1 0 3 18910.70
## 77 3 3 4 18913.39
## 43 2 0 2 18913.70
## 76 3 3 3 18914.21
## 58 2 3 3 18915.56
## 23 1 0 2 18916.82
## 14 0 2 3 18917.70
## 5 0 0 4 18920.14
## 42 2 0 1 18922.00
## 40 1 3 4 18923.38
## 22 1 0 1 18924.99
## 70 3 2 2 18925.62
## 92 4 3 2 18926.25
## 52 2 2 2 18927.19
## 81 4 1 1 18929.58
## 86 4 2 1 18934.26
## 8 0 1 2 18936.70
## 20 0 3 4 18939.23
## 59 2 3 4 18940.76
## 64 3 1 1 18945.32
## 46 2 1 1 18947.04
## 80 4 1 0 18953.31
## 4 0 0 3 18956.06
## 3 0 0 2 18967.14
## 39 1 3 3 18970.23
## 78 4 0 0 18979.36
## 33 1 2 2 18983.29
## 69 3 2 1 18999.75
## 27 1 1 1 19003.77
## 51 2 2 1 19008.71
## 60 3 0 0 19010.04
## 63 3 1 0 19019.44
## 19 0 3 3 19024.33
## 45 2 1 0 19028.15
## 13 0 2 2 19038.39
## 7 0 1 1 19059.43
## 41 2 0 0 19083.21
## 91 4 3 1 19083.77
## 85 4 2 0 19101.75
```

```
## 2 0 0 1 19116.32
## 21 1 0 0 19138.76
## 32 1 2 1 19146.42
## 75 3 3 2 19157.54
## 12 0 2 1 19159.64
## 26 1 1 0 19166.80
## 18 0 3 2 19169.20
## 6 0 1 0 19179.72
## 74 3 3 1 19190.15
## 56 2 3 1 19190.55
## 57 2 3 2 19200.40
## 68 3 2 0 19208.96
## 50 2 2 0 19209.48
## 90 4 3 0 19368.50
## 38 1 3 2 19401.14
## 37 1 3 1 19457.06
## 17 0 3 1 19473.75
## 31 1 2 0 19477.33
## 11 0 2 0 19494.35
## 73 3 3 0 19523.51
## 55 2 3 0 19552.67
## 1 0 0 0 19751.17
## 36 1 3 0 19936.71
## 16 0 3 0 20015.39
results <- data.frame(p=integer(), d=integer(), q=integer(), AIC=numeri
c(), BIC=numeric())
for (p in 0:p_max) {
  for (d in 0:d_max) {
    for (q in 0:q_max) {
      tryCatch({
        model <- arima(ic ts, order=c(p,d,q))</pre>
        results <- rbind(results, data.frame(p=p, d=d, q=q, AIC=AIC(mod
el), BIC=BIC(model)))
      }, error=function(e){})
  }
}
## Warning in log(s2): 产生了 NaNs
## Warning in log(s2): 产生了 NaNs
best_aic <- results[order(results$AIC), ][1:5, ]</pre>
print("Top Best AIC combinations:")
## [1] "Top Best AIC combinations:"
print(best aic)
```

```
pdq AIC
                          BIC
## 83 4 1 3 18860.46 18896.27
## 54 2 2 4 18862.12 18893.44
## 67 3 1 4 18862.35 18898.15
## 84 4 1 4 18863.57 18903.85
## 49 2 1 4 18864.38 18895.70
best_bic <- results[order(results$BIC), ][1:5, ]</pre>
print("Top Best BIC combinations:")
## [1] "Top Best BIC combinations:"
print(best_bic)
      p d q
                 AIC
                          BIC
## 54 2 2 4 18862.12 18893.44
## 49 2 1 4 18864.38 18895.70
## 83 4 1 3 18860.46 18896.27
## 67 3 1 4 18862.35 18898.15
## 71 3 2 3 18872.28 18903.59
ggplot(best_aic, aes(x=paste(p,d,q,sep=","), y=AIC)) +
  geom_col(fill="skyblue") +
  labs(title="AIC top 5 model", x="(p,d,q)", y="AIC") +
  theme_minimal()
```

AIC top 5 model


```
ggplot(best_bic, aes(x=paste(p,d,q,sep=","), y=BIC)) +
  geom_col(fill="salmon") +
```

```
labs(title="BIC top 5 model", x="(p,d,q)", y="BIC") +
theme_minimal()
```



```
best_model_params <- results[which.min(results$AIC), ]

cat("The Optimal Model: (p,d,q) = (", best_model_params$p, ",", best_model_params$d, ",", best_model_params$q, ")\n")

## The Optimal Model: (p,d,q) = ( 4 , 1 , 3 )

best_arima_model <- arima(ic_ts, order=c(best_model_params$p, best_model_params$d, best_model_params$q))

best_forecast <- forecast(best_arima_model, h=12)

autoplot(best_forecast) +
    ggtitle(paste0("Optimal ARIMA(", best_model_params$p, ",", best_model_params$d, ",", best_model_params$q, ")Model Prediction")) +
    xlab("Time") + ylab("Initial Claims") +
    theme_minimal()</pre>
```



```
autoplot(best_forecast) +
   ggtitle(paste0("Optimal ARIMA(", best_model_params$p, ",", best_model
   params$d, ",", best_model_params$q, ")Model Prediction ")) +
   xlab("Time") + ylab("Initial Claims") +
   theme_minimal() +
   coord_cartesian(xlim=c(2018, 2026))
```



```
cat("Optimal BIC Model: (p,d,q) = (", best_bic_model_params$p, ",", best_bic_model_params$d, ",", best_bic_model_params$q, ")\n")
## Optimal BIC Model: (p,d,q) = ( 2 , 2 , 4 )
best_bic_arima_model <- arima(ic_ts, order = c(best_bic_model_params$p, best_bic_model_params$d, best_bic_model_params$q))

best_bic_forecast <- forecast(best_bic_arima_model, h = 12)

autoplot(best_bic_forecast) +
    ggtitle(paste0("Optimal BIC ARIMA(", best_bic_model_params$p, ",", best_bic_model_params$d, ",", best_bic_model_params$q, ") Model Prediction")) +
    xlab("Time") + ylab("Initial Claims") +
    theme_minimal() +
    coord_cartesian(xlim = c(2018, 2026))</pre>
```



```
results <- data.frame(p=integer(), d=integer(), q=integer(), AIC=numeri
c(), BIC=numeric())
# 遍历所有(p,d,q)
for (p in 0:p_max) {
 for (d in 0:d_max) {
    for (q in 0:q_max) {
     tryCatch({
        model <- arima(cc ts, order=c(p,d,q))</pre>
        results <- rbind(results, data.frame(p=p, d=d, q=q, AIC=AIC(mod
el), BIC=BIC(model)))
      }, error=function(e){})
  }
}
## Warning in log(s2): 产生了 NaNs
## Warning in log(s2): 产生了 NaNs
## Warning in log(s2): 产生了 NaNs
best_aic <- results[order(results$AIC), ][1:5, ]</pre>
print("Top 5 AIC")
## [1] "Top 5 AIC"
print(best_aic)
```

```
pdq AIC
                          BIC
## 94 4 2 3 18940.35 18976.15
## 74 3 2 3 18940.69 18972.00
## 95 4 2 4 18942.87 18983.14
## 68 3 1 2 18952.34 18979.19
## 69 3 1 3 18954.15 18985.48
best_bic <- results[order(results$BIC), ][1:5, ]</pre>
print("Top 5 BIC")
## [1] "Top 5 BIC"
print(best_bic)
      pdq
                 AIC
                          BIC
## 74 3 2 3 18940.69 18972.00
## 94 4 2 3 18940.35 18976.15
## 68 3 1 2 18952.34 18979.19
## 19 0 3 3 18963.94 18981.83
## 30 1 1 4 18955.43 18982.28
ggplot(best_aic, aes(x=paste(p,d,q,sep=","), y=AIC)) +
  geom_col(fill="skyblue") +
  labs(title="AIC top 5 models", x="(p,d,q)", y="AIC") +
  theme_minimal()
```

AIC top 5 models


```
ggplot(best_bic, aes(x=paste(p,d,q,sep=","), y=BIC)) +
  geom_col(fill="salmon") +
```

```
labs(title="BIC top 5 models", x="(p,d,q)", y="BIC") +
theme_minimal()
```



```
best_model_params <- results[which.min(results$AIC), ]

cat("The Best Model: (p,d,q) = (", best_model_params$p, ",", best_model
    params$d, ",", best_model_params$q, ")\n")

## The Best Model: (p,d,q) = ( 4 , 2 , 3 )

best_arima_model <- arima(ic_ts, order=c(best_model_params$p, best_model
    params$d, best_model_params$q))

best_forecast <- forecast(best_arima_model, h=12)

autoplot(best_forecast) +
    ggtitle(paste0("Optimal ARIMA(", best_model_params$p, ",", best_model
    params$d, ",", best_model_params$q, ")Model Prediction")) +
    xlab("Time") + ylab("Initial Claims") +
    theme_minimal()</pre>
```



```
autoplot(best_forecast) +
   ggtitle(paste0("Optimal ARIMA(", best_model_params$p, ",", best_model
_params$d, ",", best_model_params$q, ")Model Prediction ")) +
   xlab("Time") + ylab("Continuous Claims") +
   theme_minimal() +
   coord_cartesian(xlim=c(2018, 2026))
```



```
best_bic_model_params <- results[which.min(results$BIC), ]

cat("Optimal BIC Model: (p,d,q) = (", best_bic_model_params$p, ",", best_bic_model_params$d, ",", best_bic_model_params$q, ")\n")

## Optimal BIC Model: (p,d,q) = ( 3 , 2 , 3 )

best_bic_arima_model <- arima(ic_ts, order = c(best_bic_model_params$p, best_bic_model_params$d, best_bic_model_params$q))

best_bic_forecast <- forecast(best_bic_arima_model, h = 12)

autoplot(best_bic_forecast) +
    ggtitle(paste0("Optimal BIC ARIMA(", best_bic_model_params$p, ",", best_bic_model_params$d, ",", best_bic_model_params$q, ") Model Prediction")) +
    xlab("Time") + ylab("Continuous Claims") +
    theme_minimal() +
    coord_cartesian(xlim = c(2018, 2026))</pre>
```



```
fitted_values <- fitted(best_arima_model)
actual_values <- ic_ts

mse_in_sample <- mean((fitted_values - actual_values)^2)

cat("In-sample MSE =", mse_in_sample)

## In-sample MSE = 2.48743e+11</pre>
```