Problem 1

- ^a Students in CS 206 class are known multiple languages:
 - 20 students know French
 - 18 students know Russian
 - 35 students know Spanish
 - 5 students know both Russian and French
 - 2 students know French, Russian Spanish
 - 10 students know Spanish and French
 - 40 students know only English

Draw a Venn diagram for the above. How many students are there in the class?

 ${}^a{\rm Still \ remember \ the \ equation} \ |A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| \ ?$

Solution:

There are 40+3+11+23+10+5+2+0=94 students in class

Problem 2

For any set A, let $\mathcal{P}(A)$ be its power set. Let \emptyset denote the empty set.

- 1. Write down all the elements of $\mathcal{P}(\{\emptyset, \{\emptyset\}\})$.
- 2. How many elements are there in $\mathcal{P}(\{1,2,3,4,5,6,7,8\})$?

Solution:

$$\mathcal{P}(\{\emptyset,\{\emptyset\}\})=\{\{\emptyset\},\{\emptyset,\{\emptyset\}\},\{\{\emptyset\}\},\emptyset\}$$

$$|\mathcal{P}(\{1,2,3,4,5,6,7,8\})| = 2^8$$

Problem 3

- ^a Given the set $X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$, answer the following:
 - (a) How many subsets of X contain element x_1 ?
 - (b) How many subsets of X contain element x_2 and x_3 , and DO NOT contain x_4 ?

^aStill remember how we get $|\mathcal{P}(A)| = 2^{|A|}$? If not, see the appendix.

Solution:

(a) Let $Y = \{y: y \text{ is a subset of } X \text{ containing element } x_1\},$ $Y = \{x_1\} \times \mathcal{P}(X - \{x_1\}),$

$$|Y| = |\mathcal{P}(X - \{x_1\})|$$

= $|\mathcal{P}(\{x_2, x_3, x_4, x_5, x_6, x_7, x_8\})|$
= 2^7

(b) Let $Y = \{y: y \text{ is a subset of } X \text{ containing element } x_2 \text{ and } x_3, \text{ and not containing } x_4\},$ $Y = \{x_2, x_3\} \times \mathcal{P}(X - \{x_2, x_3, x_4\}),$

$$|Y| = |\mathcal{P}(X - \{x_1\})|$$

= $|\mathcal{P}(\{x_1, x_5, x_6, x_7, x_8\})|$
= 2^5 .

Problem 4

^a Let $f:A\to B$ and $g:B\to C$ be functions and $h:A\to C$ be their composition, namely, $h(a):=g(f(a)),\,\forall a\in A.$

- (a) Prove that if f and g are surjective, then so is h.
- (b) Prove that if f and g are bijective, then so is h.

^aDig deeper in this problem. If h is bijective/surjective/injective, what can we know about f and g?

Solution:

(a) If g is surjective, for each $c \in C$, there exists a $b \in B$ s.t. g(b) = c. If f is surjective, for each $b \in B$, there exists an $a \in A$ s.t. f(a) = b. Therefore, for each $c \in C$, we can find an $a \in A$ s.t. h(a) = g(f(a)) = c. Hence, h is surjective. QED

(b) According to the definition, if a function is bijective, it is both injective and.

To prove h is bijective, we can prove h is both injective and surjective.

If f is injective, each $a \in A$ is mapped to a different $b \in B$.

If g is injective, each $b \in B$ is mapped to a different $c \in C$.

Therefore, for each $a \in A$, we can find a different $c \in C$, namely, $\forall a_1, a_2 \in A, a_1 \neq a_2, h(a_1) \neq h(a_2), h$ is injective.

In (a), we have proved that if f and g are surjective, h is surjective.

Hence, h is bijective. QED

Problem 5

Direct Proof

Prove: $\forall n \in \mathbb{Z}$, if n is odd, then $n^2 + 2n + 1$ is even.

Solution:

Assume n is odd.

By definition of an odd number,

$$n = 2j + 1,$$

where $j \in \mathbb{Z}$.

Then,

$$n^{2} + 2n + 1 = (2j + 1)(2j + 1) + 2(2j + 1) + 1$$

$$= 4j^{2} + 4j + 1 + 4j + 2 + 1$$

$$= 4j^{2} + 8j + 4$$

$$= 2(2j^{2} + 4j + 2).$$

since $(2j^2+4j+2) \in \mathbb{Z}$ it must be that $2(2j^2+4j+2)$ is an even number by definition, hence the above statement must be true. QED

Appendix

A The proof of $|\mathcal{P}(A)| = 2^{|A|}$

Base case: When |A| = 0, $A = \emptyset$, $|\mathcal{P}(A)| = |\{\emptyset\}| = 1 = 2^0 = 2^{|A|}$. Induction step: Let $k \in \mathbb{N}$ be given and suppose $|\mathcal{P}(A)| = 2^{|A|}$ is true for |A| = k. When |A| = k + 1, select an element x from A arbitrarily.

$$\begin{aligned} |\mathcal{P}(A)| &= |\{x\} \times \mathcal{P}(A - \{x\})| + |\emptyset \times \mathcal{P}(A - \{x\})| \\ &= |\mathcal{P}(A - \{x\})| + |\mathcal{P}(A - \{x\})| \\ &= 2^k + 2^k \\ &= 2^{k+1}. \end{aligned}$$

¹ Thus, the equation $|\mathcal{P}(A)| = 2^{|A|}$ holds for |A| = k + 1, and the proof of the induction step is complete. **Conclusion:** By the principle of induction, $|\mathcal{P}(A)| = 2^{|A|}$ is true for all $|A| \in \mathbb{N}$.

¹Please notice that $\mathcal{P}(A) \neq (\{x\} \times \mathcal{P}(A - \{x\})) \cup (\emptyset \times \mathcal{P}(A - \{x\}))$, because the product operation returns a set of pairs rather than a set of union sets.