Some B. tricks

basically for more speed

Rochebrune - March 2016

- The R inferno. Patrick Burns
 - http://www.burns-stat.com/documents/books/the-r-inferno/
- FasteR! HigheR! StrongeR!, Noam Ross http://www.noamross.net/blog/2013/4/25/faster-talk.html
- Seamless R and C++ integration with Rcpp, Dirk EddelBuettel http://dirk.eddelbuettel.com
- Hadley Wickham, ggplot2, an implementation of the grammar of graphics http://had.co.nz/, http://ggplot2.org/, http://yihui.name/knitr/

Part I

Benchmark your code

How to quickly benchmark your code

```
func.one <- function(n) {return(rnorm(n,0,1))}
func.two <- function(n) {return(rpois(n,1))}

library(microbenchmark)
n <- 1000
res <- microbenchmark(func.one(n), func.two(n), times=1000)
autoplot(res)</pre>
```


How to profile your code I

Suppose you want to evaluate which part of the following function is hot:

```
## generate data, center/scale and perform ridge regression
my.func <- function(n,p) {</pre>
  require (MASS)
  ## draw data
  x <- matrix(rnorm(n*p),n,p)
  v <- rnorm(n)</pre>
  ## center/scale
  xs < - scale(x)
  ys <- y-mean(y)
  ## return ridge's coefficients
  ridge <- lm.ridge(ys~xs+0,lambda=1)
  return(ridge$coef)
```

How to profile your code II

One can rely on the default Rprof function, with somewhat technical outputs

```
Rprof(file="profiling.out", interval=0.05)
res <- my.func(1000,500)

## Loading required package: MASS
Rprof(NULL)</pre>
```

```
summaryRprof("profiling.out")$by.self
##
                     self.time self.pct total.time total.pct
## "La svd"
                         1.00
                                74.07
                                          1.00
                                                  74.07
## ".External2"
                         0.05
                                 3.70
                                          0.10
                                                  7.41
## "matrix"
                         0.05
                               3.70
                                         0.10
                                                  7.41
                                       0.05
                                                3.70
                              3.70
## "aperm.default"
                         0.05
                                       0.05
                                                3.70
                              3.70
## "apply"
                        0.05
                                      0.05
## "is.finite"
                         0.05
                              3.70
                                                   3.70
                              3.70
## "na omit data frame"
                     0.05
                                      0.05
                                                   3.70
## "rnorm"
                         0.05
                                 3.70
                                          0.05
                                                   3.70
```

How to profile your code III

summaryRprof("profiling.out")\$by.total

##		total.time			
##	" <anonymous>"</anonymous>	1.35	100.00	0.00	0.00
##	"block_exec"	1.35	100.00	0.00	0.00
##	"call_block"	1.35	100.00	0.00	0.00
##	"doTryCatch"	1.35	100.00	0.00	0.00
##	"eval"	1.35	100.00	0.00	0.00
##	"evaluate_call"	1.35	100.00	0.00	0.00
##	"FUN"	1.35	100.00	0.00	0.00
##	"handle"	1.35	100.00	0.00	0.00
##	"in_dir"	1.35	100.00	0.00	0.00
##	"knit"	1.35	100.00	0.00	0.00
##	"lapply"	1.35	100.00	0.00	0.00
##	"my.func"	1.35	100.00	0.00	0.00
##	"process_file"	1.35	100.00	0.00	0.00
##	"process_group"	1.35	100.00	0.00	0.00
##	"process_group.block"	1.35	100.00	0.00	0.00
##	"try"	1.35	100.00	0.00	0.00
##	"tryCatch"	1.35	100.00	0.00	0.00
##	"tryCatchList"	1.35	100.00	0.00	0.00
##	"tryCatchOne"	1.35	100.00	0.00	0.00
##	"withCallingHandlers"	1.35	100.00	0.00	0.00
##	"withVisible"	1.35	100.00	0.00	0.00
##	"lm.ridge"	1.15	85.19	0.00	0.00
##	"svd"	1.05	77.78	0.00	0.00
##	"La.svd"	1.00	74.07	1.00	74.07
##	".External2"	0.10	7.41	0.05	3.70
##	"matrix"	0.10	7.41	0.05	3.70
##	"scale"	0.10	7.41	0.00	0.00
##	"scale.default"	0.10	7.41	0.00	0.00
##	"aperm.default"	0.05	3.70	0.05	3.70
##	"apply"	0.05	3.70	0.05	3.70
##	"is.finite"	0.05	3.70	0.05	3.70

How to profile your code III

The profr package is maybe a little easier to understand...

```
library(profr)
profiling <- profr({my.func(1000,500)}, interval=0.01)
plot(profiling)</pre>
```


Part II

Use multiple cores for your simulation

The do.call function

constructs and executes a function call from a name or a function and a list of arguments to be passed to it

Suppose you have the outputs of 100 simulations at your disposable, stored in a list like that

```
res[[1]]

## method mse timing

## 1 lasso 0.7862968 0.9399695

## 2 ridge 0.5057219 0.7958627

## 3 bayes 0.9310022 115.8219670

length(res)

## [1] 100
```

How would you store them in a single data frame?

```
all.res <- do.call(rbind, res)
dim(all.res)</pre>
```

The do.call function

constructs and executes a function call from a name or a function and a list of arguments to be passed to it

Suppose you have the outputs of 100 simulations at your disposable, stored in a list like that

```
res[[1]]
## method mse timing
## 1 lasso 0.7862968  0.9399695
## 2 ridge 0.5057219  0.7958627
## 3 bayes 0.9310022 115.8219670
length(res)
## [1] 100
```

How would you store them in a single data frame?

```
all.res <- do.call(rbind, res)
dim(all.res)
## [1] 300 3
```

Parallelizing is very easy I

Do some parallel computation as soon as you do simulations (this should happen sometimes)

```
library(parallel) ## embedded with R since version 2.9 or something
cores <- detectCores() ## How many cores do I have?
print(cores)
## [1] 4</pre>
```

My simulation study estimates the test error from ridge regression

```
one.simu <- function(i) {
    ## draw data
    n <- 1000; p <- 500
    x <- matrix(rnorm(n*p),n,p) ; y <- rnorm(n)
    ## return ridge's coefficients
    train <- 1:floor(n/2)
    test <- setdiff(1:n,train)
    ridge <- lm.ridge(y~x+0,lambda=1,subset=train)
    err <- (y[test] - x[test, ] %*% ridge$coef )^2
    return(list(err = mean(err), sd = sd(err)))
}</pre>
```

Parallelizing is very easy II

```
out <- mclapply(1:8, one.simu, mc.cores=cores)
head(do.call(rbind, out))

## err sd
## [1,] 13.72301 18.94939
## [2,] 10.66215 16.23548
## [3,] 9.22876 13.05196
## [4,] 9.438628 12.84848
## [5,] 10.57839 14.97044
## [6,] 12.95024 17.24075</pre>
```

Be careful though. . .

- ► Parallelize piece of code complex enough
- Do not choose stupidly the number of cores

The Reduce function

'Reduce' uses a binary function to successively combine the elements of a given vector

 \leadsto can be use to post-process your list of simulations obtained via mclapply

Example

Work in progress with Avner for "jacknifing" a lasso solution path

```
rm(list=ls())
library(lars)
library(glmnet)
## the diabetes data set (part of the lars package)
data(diabetes)
y <- diabetes$y
x <- diabetes$x
n <- length(y)</pre>
```

The Reduce function II

A single lasso fit

```
## recover a grid of lambda on the complete data set
lasso <- glmnet(x,y)</pre>
```


The Reduce function III

Jacknifing the path

```
library(parallel)
## compute the regularization paths for all subsets,
## removing one individual at once
paths <- mclapply(1:n, function(i) {
    glmnet(x[-i, ], y[-i], lambda = lasso$lambda)$beta
}, mc.cores=4)</pre>
```

Computing the envelop around the average regularization path with Reduce

The Reduce function IV

Part III

Be aware of what R is good (and bad) for

Use the vector capabilities of R

Any algebraic operation should be thought in a "vectorized" way

```
exp2.1 <- sum(2^(0:10)/c(1,cumprod(1:10))) ## good
exp2.2 <- 1
for(k in 1:10) ## bad
    exp2.2 <- exp2.2 + 2^k/factorial(k)</pre>
```

Even non-algebraic operation should be thought as algebraic:

```
## [,1] [,2] [,3] [,4]
## [1,] "1-A" "1-B" "1-C" "1-D"
## [2,] "2-A" "2-B" "2-C" "2-D"
## [3,] "3-A" "3-B" "3-C" "3-D"
## [4,] "4-A" "4-B" "4-C" "4-D"
```

Use the vector capabilities of R

Any algebraic operation should be thought in a "vectorized" way

```
exp2.1 <- sum(2^(0:10)/c(1,cumprod(1:10))) ## good
exp2.2 <- 1
for(k in 1:10) ## bad
  exp2.2 <- exp2.2 + 2^k/factorial(k)</pre>
```

Even non-algebraic operation should be thought as algebraic:

```
cuter(1:4,c("A","B","C","D"),FUN=paste,sep="-")

## [,1] [,2] [,3] [,4]

## [1,] "1-A" "1-B" "1-C" "1-D"

## [2,] "2-A" "2-B" "2-C" "2-D"

## [3,] "3-A" "3-B" "3-C" "3-D"

## [4,] "4-A" "4-B" "4-C" "4-D"
```

Preallocate whenever it is possible

```
grow <- function(n) {vec <- numeric(0); for (i in 1:n) vec <- c(vec,i)}
loop <- function(n) {vec <- numeric(n); for (i in 1:n) vec[i] <- i}
vect <- function(n) {1:n}</pre>
```


Do not stack objects I

Even if it is tempting when the final size is unknown.

```
simu.stack <- function(x) { ## x is a n x p matrix</pre>
  out <- data.frame(mean = numeric(0), sd = numeric(0))</pre>
 for (i in 1:n)
    out <- rbind(out, data.frame(mean = mean(x[i,]), sd = sd(x[i,])) )</pre>
 return(out)
simu.df <- function(x) {
  out <- data.frame(mean = numeric(n), sd = numeric(n))</pre>
 for (i in 1:n)
    out[i, ] \leftarrow c(mean = mean(x[i,]), sd = sd(x[i,]))
 return(out)
simu.list <- function(x) {
 my.list <- lapply(1:n, function(i) c(mean(x[i,]), sd(x[i,])))</pre>
  out <- data.frame(do.call(rbind, my.list))</pre>
  colnames(out) <- c("mean", "sd")</pre>
 return(out)
```

Do not stack objects II

```
n <- 1000; p <- 10; x <- matrix(rnorm(n*p), n, p)
res <- microbenchmark(simu.stack(x), simu.df(x), simu.list(x), times=20)</pre>
```


Use the [a-z]*pply family

Example with factors (tapply)

```
data <- rnorm(100)
sexe <- factor(sample(c("H","F"),100,rep=TRUE))
mean.1 <- tapply(data, sexe, mean) ## good
mean.2 <- c() ## complicated
for (1 in levels(sexe))
  mean.2 <- c(mean.2, mean(data[sexe == 1]))</pre>
```

Example with list or data.frame (sapply/lapply)

```
# B V N Y
# 1 I Victory 0.0cwt 111
# 2 I Victory 0.2cwt 130

apply(oats, is.factor) ## readable

# B V N Y
# TRUE TRUE TRUE FALSE

or (c in 1:ncol(oats)) ## less readable
    print(is.factor(oats[,c]))
```

Use the [a-z]*pply family

Example with factors (tapply)

```
data <- rnorm(100)
sexe <- factor(sample(c("H","F"),100,rep=TRUE))
mean.1 <- tapply(data, sexe, mean) ## good
mean.2 <- c() ## complicated
for (1 in levels(sexe))
  mean.2 <- c(mean.2, mean(data[sexe == 1]))</pre>
```

Example with list or data.frame (sapply/lapply)

```
data(oats)
oats[1:2, ]
## B V N Y
## 1 I Victory 0.0cwt 111
## 2 I Victory 0.2cwt 130
sapply(oats, is.factor) ## readable
## B V N Y
   TRUE TRUE TRUE FALSE
##
for (c in 1:ncol(oats)) ## less readable (I think)
   print(is.factor(oats[,c]))
```

Compile your functions I

```
cumsum.R <- function(n) {
  x \leftarrow rnorm(n)
  return(cumsum(x))
cumsum.me <- function(n) {
  x <- rnorm(n)
  res <- 0
  for (i in 1:length(x)) {
   res <- res+x[i]
  return(res)
library(compiler)
cumsum.cmp <- cmpfun(cumsum.me)</pre>
n < -1000
res <- microbenchmark(cumsum.R(n), cumsum.me(n), cumsum.cmp(n), times=1000)
```

Compile your functions II

The crossprod function

As can be guessed, it computes the cross-product between two vector or matrices. . . and is generally fastest than % * % !

```
crossprod.prod <- function(x) return(t(x) %*% x)
crossprod.func1 <- function(x) return(crossprod(x,x))
crossprod.func2 <- function(x) return(crossprod(x))</pre>
```


The row/colSums family

col/rowSums, col/rowMeans and their extensions in the matrixStats package (rank,max,min, etc.) are very efficient.

```
colSums.default <- function(x) return(colSums)
colSums.algebra <- function(x) return(crossprod(rep(1,nrow(x)), x))
colSums.apply <- function(x) return(apply(x,2,sum))
colSums.loop <- function(x) {
  res <- rep(0,ncol(x))
  for (i in 1:ncol(x))
    res[i] <- sum(x[,i])
  return(res)
}</pre>
```


The secret function rowsum

rowsum (not to be confused with rowSums) computes sums in a vector split according a grouping variable (work for matrices).

```
vec <- runif(1000)
grp <- sample(1:5, 1000, TRUE)
print(c(rowsum(vec, grp)))
## [1] 102.87880 99.03421 93.72513 97.05151 89.06845</pre>
```

```
res <- microbenchmark(
  rowsum = rowsum(vec, grp),
  split = sapply(split(vec, grp), sum),
  tapply = tapply(vec, grp, sum),
  aggreg = aggregate(vec, list(grp), sum),
  times=1000)</pre>
```


Internal function are faster

Function defined internally are sometimes incredibly faster (written in C), but cannot by called in packages submitted to CRAN.

The sweep function

Fancy way to apply a statistic on a given dimension of an array.

```
center1 <- function(x) return(scale(x, colMeans(x), FALSE))
center2 <- function(x) return(sweep(x, 2, colMeans(x), "-", check.margin=FALSE))
center3 <- function(x) return(x - outer(rep(1, nrow(x)), colMeans(x)) )
seq.p <- 10^(1:5); n <- 100; times <- 20</pre>
```


Basic algebra does not always pay

Example for scaling a matrix

```
scale1 <- function(x) return(scale(x, FALSE, colSums(x^2)))
scale2 <- function(x) return(sweep(x, 2, colSums(x^2), "/", check.margin=FALSE))
scale3 <- function(x) return(x %*% diag(1/colSums(x^2)) )
seq.p <- 10^(1:3); n <- 100; times <- 20</pre>
```


Mind some algebra I

Example by inverting a positive definite matrices

```
use.chol <- function(n,p) {</pre>
 x <- matrix(rnorm(n*p),n,p)
 xtx <- crossprod(x)
 return(chol2inv(chol(xtx)))
use.solve <- function(n,p) {
 x <- matrix(rnorm(n*p),n,p)
 xtx <- crossprod(x)
 return(solve(xtx))
bench.p.fixed <- function(p, times) {
  res <- microbenchmark(solve = use.solve(2*p,p),
                        chol = use.chol (2*p,p), times=times)
 return(data.frame(method = res$expr,
                    timings = res$time,
                    size = rep(as.character(p),times)))
```

Mind some algebra II

```
out <- do.call(rbind,
             lapply(c(10,50,100,250),
                    bench.p.fixed, times=10)
head(out)
##
    method timings size
## 1 chol 239439 10
##
  2 solve 786924 10
## 3 solve 68059 10
## 4 solve 52322 10
## 5 solve 49488 10
## 6 chol 45483
                  10
p <- ggplot(out, aes(x=size, y=timings, fill=method)) +
 geom_boxplot() + coord_trans(y="log10")
```

Mind some algebra III

Part IV

Remind that R is object oriented

R masks the numerical errors

by printing a convenient summary of objects

```
7/13
## [1] 0.5384615
print(7/13, digits=16)
## [1] 0.5384615384615384
```

[1] TRUE

R masks the numerical errors

by printing a convenient summary of objects

```
7/13

## [1] 0.5384615

print(7/13, digits=16)

## [1] 0.5384615384615384
```

So do not use binary operator to compare floats because

all.equal(.1, .3/3

R masks the numerical errors

by printing a convenient summary of objects

```
7/13

## [1] 0.5384615

print(7/13, digits=16)

## [1] 0.5384615384615384
```

So do not use binary operator to compare floats because

```
.1 == (.3/3)
## [1] FALSE

print(.3/3, digits=16)
```

```
## [1] 0.0999999999999999
```

Try

```
all.equal(.1, .3/3)
```

```
## [1] TRUE
```

Factor conversion are slow (nlevels)

Do not use factor if you need to perform just one operation on it.

Operations on factors are fast (nlevels)

Use factor if you need repeated operations on the same vector.

Avoid table whenever you can

table is a complex function that should not be use for simple operations like counting the occurrences of integers in a vector.

Use the Matrix package I

Propose a collection of functions for of matrix algebra adapted to the type of matrix at hand (sparse, diagonal, triangular, block diagonal, etc.)

Use the Matrix package II

Use the Matrix package III

Part V

Use (supposedly) lower-level languages

Interfacing C++ with R is <u>really</u> easy I Example 1

For a vector $\mathbf{x} = (x_1, \dots, x_n)$, consider the simple task of computing

$$y_k = \sum_{i=1}^k \log(x_i), \quad k = 1, \dots, n.$$

One can easily integrate some C++ version of this code with Rcpp.

```
library(Rcpp)
cppFunction('NumericVector rcpp(NumericVector x) {
    using namespace Rcpp;

    int n = x.size();
    NumericVector res(x);
    res(0) = log(x(0));
    for (int i=1; i<n; i++) {
        res(i) = res(i-1) + log(x(i));
    }
    return(wrap(res));
}')</pre>
```

Interfacing C++ with R is <u>really</u> easy II Example 1

The Armadillo library for linear algebra facilitates even more the integration

```
cppFunction(depends="RcppArmadillo", 'NumericVector Arma(NumericVector x) {
   using namespace Rcpp;
   using namespace arma;
   return(wrap(cumsum(log(as<vec>(x)))));
}')
```

Interfacing C++ with R is <u>really</u> easy III Example 1

```
x <- runif(1e7, 1,2)
res <- microbenchmark(cpp = rcpp(x), arma = Arma(x), times=40)</pre>
```


Interfacing C++ with R is really easy

Example 2: from a work with C. Lévy-Leduc and V. Brault

Let ${f T}$ be an $n \times n$ lower triangular matrix with nonzero elements equal to one. We need fast computation of

$$\operatorname{vec}(\mathbf{T}\mathbf{B}\mathbf{T}^{\top}) = (\mathbf{T} \otimes \mathbf{T}) \times \operatorname{vec}(\mathbf{B}).$$

```
library(Matrix); library(inline); library(RcppArmadillo)
prod.rough <- function(B) {</pre>
    n \leftarrow ncol(B); T \leftarrow bandSparse(n,k=(-n+1):0)
    return(kronecker(T,T) %*% as.vector(B))}
prod.smart <- function(B) {</pre>
    return(as.vector(apply(apply(B,1,cumsum),1,cumsum)))}
prod.wise <- cxxfunction(signature(B="matrix"), '</pre>
  using namespace Rcpp;
  using namespace arma;
  return(wrap(vectorise(cumsum(cumsum(as<mat>(B),0),1))));
   , plugin="RcppArmadillo")
```

Interfacing C++ with R is really easy II

Example 2

