DUAL VECTOR SPACES

COLTON GRAINGER (MATH 6140 ALGEBRA 2)

Assignment due 2019-02-18

[1, No. 11.3.2] part (a). Given. Let V be the collection of polynomials with coefficients in \mathbf{Q} in the variable x of degree at most 5 with $\mathcal{B} = \{1, x, x^2, \dots, x^5\}$ as a basis. Consider the dual space $V* = \operatorname{Hom}_{\mathbf{Q}}(V, \mathbf{Q})$. Let the dual basis \mathcal{B}^* for be defined on elements of \mathcal{B} (letting the indices run over $0 \le i, j \le 5$) by

$$f_i(x^i) = \delta_{ij}$$
.

To prove. The map $E: V \to \mathbf{Q}$ defined E(p) = p(3) is a linear functional in $\mathrm{Hom}_{\mathbf{Q}}(V, \mathbf{Q})$ expressed in terms of the dual basis $\mathscr{B}^* = \{f_j\}_{j=0}^5$ as $\sum_{j=0}^5 3^j f_j$.

Proof. Let $a \in \mathbf{Q}$. Observe that the function $\operatorname{ev}_a|_V \colon V \to \mathbf{Q}$ defined by $\operatorname{ev}_a|_V(p) = p(a)$ is a restriction of the ring homomorphism $\operatorname{ev}_a \colon \mathbf{Q}[x] \to \mathbf{Q}$. In particular, taking $\lambda \in \mathbf{Q}$ as the constant polynomial and $p, q \in V$, we see

$$\operatorname{ev}_a(\lambda p) = \lambda \operatorname{ev}_a(p)$$

 $\operatorname{ev}_a(p+q) = \operatorname{ev}_a(p) + \operatorname{ev}_a(q).$

It follows that the restriction $\operatorname{ev}_a|_V$ is a **Q**-linear functional in $\operatorname{Hom}_{\mathbf{Q}}(V, \mathbf{Q})$. Specifically, the evaluation at $3 \in \mathbf{Q}$,

$$E \colon V \to \mathbf{Q}$$
 defined $E(p(x)) = p(3)$

is a **Q**-linear functional in $\operatorname{Hom}_{\mathbf{Q}}(V, \mathbf{Q})$. That is, E is a linear functional in the dual space V^* .

Now to express E as a linear combination of linear functionals in \mathscr{B}^* . Note for each $p \in V$ that $f_j(p)$ is the rational coefficient of x^j . Let \mathbf{Q} be given the standard basis $\mathscr{E} = \{1\}$. For an arbitrary $a \in \mathbf{Q}$, the matrix representation of $\operatorname{ev}_a|_V \in \operatorname{Hom}_{\mathbf{Q}}(V, \mathbf{Q})$ with respect to \mathscr{B} and \mathscr{E} is

(1)
$$M_{\mathscr{B}}^{\mathscr{E}}(\operatorname{ev}_{a}|_{V}) = \begin{bmatrix} a^{0} & a^{1} & a^{2} & a^{3} & a^{4} & a^{5} \end{bmatrix}.$$

The matrix representation of E follows from (1) as

$$M_{\mathscr{B}}^{\mathscr{E}}(E) = \begin{bmatrix} 3^0 & 3^1 & 3^2 & 3^3 & 3^4 & 3^5 \end{bmatrix}.$$

To write E in terms of the dual basis:

$$E = \begin{bmatrix} 3^0 & 3^1 & 3^2 & 3^3 & 3^4 & 3^5 \end{bmatrix} \begin{bmatrix} f_0 \\ \vdots \\ f_5 \end{bmatrix}$$
 (a linear combination of functionals f_j from the dual basis \mathscr{B}^*)

We verify that E and the linear combination $M_{\mathscr{B}}^{\mathscr{E}}[f_j]$ agree on basis elements of \mathscr{B} for $j=0,\ldots,5$:

$$\begin{bmatrix} 3^0 & 3^1 & 3^2 & 3^3 & 3^4 & 3^5 \end{bmatrix} \begin{bmatrix} f_0 \\ \vdots \\ f_5 \end{bmatrix} (x_j) = \begin{bmatrix} 3^0 & 3^1 & 3^2 & 3^3 & 3^4 & 3^5 \end{bmatrix} \begin{bmatrix} \delta_{0j} \\ \vdots \\ \delta_{5j} \end{bmatrix}$$
$$= 3^j.$$

We have demonstrated that E and $M_{\mathscr{B}}^{\mathscr{E}}[f_j]$ agree on all x^j in the basis \mathscr{B} for V. Extending linearly, $E \equiv M_{\mathscr{B}}^{\mathscr{E}}[f_j]$. \square

 $Date:\ 2019-02-17.$

1

[1, No. 11.3.2] part (b). Given. The same setup as [1, No. 11.3.2] part (a), but considering the function $\varphi \colon V \to \mathbf{Q}$ defined by $\varphi(p) = \int_0^1 p(t) \, dt$ instead of E.

To prove. The map $\varphi \colon V \to \mathbf{Q}$ is a linear functional in $\operatorname{Hom}_{\mathbf{Q}}(V, \mathbf{Q})$ expressed in terms of the dual basis $\mathscr{B}^* = \{f_j\}_{j=0}^5$ as $\sum_{j=0}^5 \frac{f_j}{j+1}$.

Proof. We first argue the following is true:

Let [a, b] be a closed interval in \mathbf{R} with rational endpoints, and let $\mathbf{Q}[x]$ be considered as a rational vector space of polynomials. For each $g \in \mathbf{Q}[x]$, the function $\varphi_g \colon \mathbf{Q}[x] \to \mathbf{Q}$ defined by $\varphi_g(f) = \int_a^b g(t)f(t) dt$ is a linear functional in $\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}[x], \mathbf{Q})$.

Why? Say φ_g is defined as integrating $f \in \mathbf{Q}[x]$ against g. Let $f_1, f_1 \in \mathbf{Q}[x]$ and $\lambda \in \mathbf{Q}$. Because $\mathbf{Q}[x]$ is also a ring under polynomial multiplication, both λf_i and gf_i (for i=1,2) are rational polynomials. The primitive F of a rational polynomial f is again a rational polynomial. It follows definite integral of a ration polynomial f is just the difference F(b) - F(a) of the evaluations of F at b and a (in that order). So much to say that $\varphi_g \colon \mathbf{Q}[x] \to \mathbf{Q}$ is well defined. Now for \mathbf{Q} -linearity. Observe

$$\varphi_g(f_1 + f_2) = \int_a^b (f_1 + f_2)(t)g(t) dt$$

$$= \int_a^b f_1(t)g(t) dt + \int_a^b f_2(t)g(t) dt$$

$$= \varphi_g(f_1) + \varphi_g(f_2), \text{ and}$$

$$\varphi_g(\lambda f_1) = \int_a^b (\lambda f_1)(t)g(t) dt$$

$$= \lambda \int_a^b f_1(t)g(t) dt$$

$$= \lambda \varphi_g(f_1).$$

We have shown φ_g is a linear functional in $\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}[x], \mathbf{Q})$.

Onto our specific case. Let a=0 and b=1. Notice that φ as given is the restriction of $\varphi_1 \in \operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}[x], \mathbf{Q})$ (defined $\varphi_1(f) = \int_0^1 f(t) \, dt$) to the subspace V of $\mathbf{Q}[x]$. Because the restriction of a morphism to a subobject is a morphism out of the subobject, φ is a linear functional in $\operatorname{Hom}_{\mathbf{Q}}(V, \mathbf{Q})$.

Lastly, for each x^i in the basis \mathscr{B} of V, we have

$$\varphi(x^i) = \frac{t^{i+1}}{i+1} \Big|_{t=0}^{t=1} = \frac{1}{i+1}.$$

The matrix representation (using $\mathscr{E} = \{1\}$ for **Q**) is

$$M_{\mathscr{B}}^{\mathscr{E}}(\varphi) = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \end{bmatrix}.$$

The expression of φ is terms of the dual basis \mathscr{B}^* is

$$\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} f_0 \\ \vdots \\ f_5 \end{bmatrix} = \sum_{j=0}^{5} \frac{f_j}{j+1}.$$

[1, No. 11.3.2] part (c). Given. The same setup as [1, No. 11.3.2] part (b), but considering a new definition of $\varphi \colon V \to \mathbf{Q}$ such that

(2)
$$\varphi(p) = \int_0^1 t^2 p(t) dt.$$

To prove. The map $\varphi \colon V \to \mathbf{Q}$ is a linear functional in $\operatorname{Hom}_{\mathbf{Q}}(V, \mathbf{Q})$ expressed in terms of the dual basis $\mathscr{B}^* = \{f_j\}_{j=0}^5$ as $\sum_{j=0}^5 \frac{f_j}{j+3}$.

Proof. In part (b) we demonstrated that for each $g \in \mathbf{Q}[x]$, the function $\varphi_g \colon \mathbf{Q}[x] \to \mathbf{Q}$ defined by $\varphi_g(f) = \int_a^b g(t)f(t)\,dt$ is a linear functional in $\mathrm{Hom}_{\mathbf{Q}}(\mathbf{Q}[x],\mathbf{Q})$. Let $g(t)=t^2$. We see that φ in (2) is the restriction of φ_g to the subspace V. Hence the restriction $\varphi_g|_V = \varphi$ is a linear functional in $\mathrm{Hom}_{\mathbf{Q}}(V,\mathbf{Q})$.

For each x^i in the basis \mathscr{B} of V, we have

$$\varphi(x^i) = \frac{t^{i+3}}{i+3} \Big|_{t=0}^{t=1} = \frac{1}{i+3}.$$

The matrix representation with respect to \mathscr{B} and \mathscr{E} is

$$M_{\mathscr{B}}^{\mathscr{E}}(\varphi) = \begin{bmatrix} \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \end{bmatrix}.$$

So the expression of φ is terms of the dual basis \mathscr{B}^* is

$$\begin{bmatrix} \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \end{bmatrix} \begin{bmatrix} f_0 \\ \vdots \\ f_5 \end{bmatrix} = \sum_{j=0}^5 \frac{f_j}{j+3}.$$

[1, No. 11.3.2] part (d). Given. The same setup as [1, No. 11.3.2] part (c), but considering $\varphi \colon V \to \mathbf{Q}$ such that

$$\varphi(p) = p'(5)$$
. (polynomial derivation)

To prove. The map $\varphi \colon V \to \mathbf{Q}$ is a linear functional in $\operatorname{Hom}_{\mathbf{Q}}(V, \mathbf{Q})$ expressed in terms of the dual basis $\mathscr{B}^* = \{f_j\}_{j=0}^5$ as $\sum_{j=0}^5 j 5^{j-1} f_j$.

Proof. In part (a) we demonstrated that for any $a \in \mathbf{Q}$ and \mathbf{Q} -subspace W of $\mathbf{Q}[x]$, the map $\operatorname{ev}_a|_W$ was a linear functional in $\operatorname{Hom}_{\mathbf{Q}}(W, \mathbf{Q})$. Now let W be the subspace of $\mathbf{Q}[x]$ of polynomials with degree at most 4. Let $D: V \to W$ be defined D(p(x)) = p'(x) for all $p \in V$. Observe that D is linear. For $\lambda \in \mathbf{Q}$, $p, q \in V$,

$$\lambda D(p(x)) = \lambda p'(x) = D(\lambda p(x)), \quad \text{(scalar multiplication)}$$

$$D(p(x) + q(x)) = (p+q)'(x) = p'(x) + q'(x) = D(p(x)) + D(q(x)), \quad \text{(addition)}$$

So D is in $\text{Hom}_{\mathbf{O}}(V, W)$.

By the argument in part (a), ev₅ $|_W$ is a linear functional in $\operatorname{Hom}_{\mathbf{Q}}(W, \mathbf{Q})$. Whence the composition ev₅ $|_W \circ D$ is in $\operatorname{Hom}_{\mathbf{Q}}(V, \mathbf{Q})$. But in fact ev₅ $|_W \circ D \equiv \varphi$. We conclude that φ is a linear functional in $\operatorname{Hom}_{\mathbf{Q}}(V, \mathbf{Q})$.

For each x^i in the basis \mathscr{B} of V, we have

$$\varphi(x^i) = i5^{i-1}.$$

The matrix representation with respect to ${\mathscr B}$ and ${\mathscr E}$ is

$$M_{\mathscr{B}}^{\mathscr{E}}(\varphi) = \begin{bmatrix} 0 & 1 & 10 & 75 & 500 & 3125 \end{bmatrix}$$

So the expression of φ is terms of the dual basis \mathscr{B}^* is

$$\begin{bmatrix} 0 & 1 & 10 & 75 & 500 & 3125 \end{bmatrix} \begin{bmatrix} f_0 \\ \vdots \\ f_5 \end{bmatrix} = \sum_{j=0}^5 j 5^{j-1} f_j.$$

[1, No. 11.3.3] part (a). Given. For any subset S of V^* for some finite dimensional space V, we define the annihilator of S in V as

$$\mathrm{Ann}\,(S):=\{v\in V: f(v)=0 \text{ for all } f\in S\}.$$

Let V be such a finite dimensional vector space and S such a subset.

To prove. Ann (S) is a subspace of V.

Proof. Notice $0 \in \text{Ann}(S)$, because ranging through all $f \in V^*$, it's always the case that f(0) = 0. Now suppose $u, v \in \text{Ann}(S)$ and $\lambda \in F$. Then, for all $f \in S$,

$$f(u + v) = f(u) + f(v) = 0 + 0 = 0$$

 $\lambda f(u) = \lambda 0 = 0.$

So Ann (S) is a subspace of V. \square

[1, No. 11.3.3] part (c). Given. Let V be a finite dimensional vector space. Let $W_1, W_2 \subset V^*$ be subspaces of the dual space.

To prove. $W_1 = W_2$ if and only if $Ann(W_1) = Ann(W_2)$.

Proof. (\Rightarrow) Suppose $W_1 = W_2$. Then

Ann
$$(W_1) = \{v \in V : f(v) = 0 \text{ for all } f \in W_1\}$$

= $\{v \in V : f(v) = 0 \text{ for all } f \in W_2\}$
= Ann (W_2) .

 (\Leftarrow) Suppose Ann $(W_1) = \text{Ann } (W_2)$. From the forwards argument, it's apparent

(3)
$$\operatorname{Ann}\left(\operatorname{Ann}\left(W_{1}\right)\right) = \operatorname{Ann}\left(\operatorname{Ann}\left(W_{2}\right)\right).$$

We desire that $W_1 = W_2$, so we will argue:

For each subspace $U \subset V^*$, the annihilator of the annihilator $\operatorname{Ann}(\operatorname{Ann}(U))$ is naturally isomorphic (via the natural embedding of W into V^* , where $W^* = V$) to U itself.

Supposing the statement above has been proven, (3) implies that W_1 and W_2 in $V^* = W^{**}$ are natural images of the same subspace Ann $(Ann(W_1)) = Ann(Ann(W_2))$ in W. Naturality then implies $W_1 = W_2$.

Onto the argument. Say V^* be a finite dimensional vector space with $U \subset V^*$ a subspace of the dual. We might as well find a vector space W such that $W^* = V$ (certainly V^* is a candidate, but for notation's sake we'll write W). Here's a schematic (which is *not to imply* there are morphisms along the arrows):

Choose $\tilde{U} \subset W$ as the preimage of U under the natural injection $W \to W^{**}$ given by $u \mapsto (\operatorname{ev}_u \colon W^* \to W)$. Because V is finite dimensional, $V^* = W^{**}$ is too. Whence \tilde{U} naturally surjects onto U, which implies each linear functional in U is of the form $\operatorname{ev}_u \colon W^* \to F$ for a unique $u \in \tilde{U}$. We can compute Ann (U) either thinking of $U \subset W^{**}$ or as $U \subset V^*$. That is,

$$\begin{aligned} \operatorname{Ann}\left(U\right) &= \{v \in V : f(v) = 0 \quad \text{ for all } \quad f \in U \subset V^*\} \\ &= \{f \in W^* : \operatorname{ev}_u(f) = 0 \quad \text{ for all } \quad \operatorname{ev}_u \in U \subset W^{**}\}. \end{aligned}$$

Proceeding in the $U \subset W^{**}$ style of thought,

$$\begin{aligned} \operatorname{Ann}\left(\operatorname{Ann}\left(U\right)\right) &= \operatorname{Ann}\left(\left\{f \in W^* : \operatorname{ev}_u(f) = 0 \quad \text{ for all } \quad \operatorname{ev}_u \in U \subset W^{**}\right\}\right) \\ &= \left\{w \in W : f(w) = 0 \quad \text{ for all } \quad f \in W^* \quad \text{s.th.} \quad \operatorname{ev}_u(f) = 0 \quad \text{ for all } \quad \operatorname{ev}_u \in U \subset W^{**}\right\} \\ &= \left\{w \in W : f(w) = 0 \quad \text{ for all } \quad f \in W^* \quad \text{s.th.} \quad f(u) = 0 \quad \text{ for all } \quad u \in \tilde{U} \subset W\right\} \\ &= \tilde{U}. \end{aligned}$$

Because Ann (Ann (U)) = \tilde{U} of each subspace $U \subset V^*$ is naturally isomorphic to U by way of including W into W^{**} , we conclude:

Given subspaces W_1 and W_2 in V^* with identical annihilators $\operatorname{Ann}(W_1) = \operatorname{Ann}(W_2)$, it follows that $\operatorname{Ann}(\operatorname{Ann}(W_1)) = \operatorname{Ann}(\operatorname{Ann}(W_2))$, so the natural preimages W_1 and W_2 are in fact the same. \square

[1, No. 11.3.3] part (d). Given. Let $S \subset V^*$ for V^* a finite dimensional vector space.

To prove. Ann $(\operatorname{span}(S)) = \operatorname{Ann}(S)$.

Proof. We show both inclusions. Let $v \in \text{Ann}(\text{span}(S))$. Then for all $f \in \text{span}(S)$, f(v) = 0. So clearly for all $f \in S$, f(v) = 0. Thus $v \in \text{Ann}(\text{span}(S))$.

On the other hand, let $v \in \text{Ann}(S)$. For all $f \in S$, f(v) = 0. Because S is a generating set for span (S), there's a surjection

(5)
$$\bigoplus_{f \in S} F \to \operatorname{span}(S) \quad \text{such that} \quad \sum_{f \in S} \lambda_f \mapsto \sum_{f \in S} \lambda_f f.$$

Take an arbitrary functional in the image (e.g., the left hand side) of (5). Evaluating at v, it follows that $\sum_{f \in S} \lambda_f f(v) = 0$. So v annihilates all functionals in span (S). Thence $v \in \text{Ann}$ (span (S)). \square

[1, No. 11.3.3] part (e). Given. Assume V is finite dimensional with basis v_1, \ldots, v_n .

To prove. If $S = \{v_1^*, \dots, v_k^*\}$ for some $k \leq n$, then Ann (S) is the subspace spanned by $\{v_{k+1}, \dots, v_n\}$.

Proof. We show both inclusions for Ann $(S) = \text{span}(v_{k+1}, \dots, v_n)$. Let

$$u = \lambda_{k+1} v_{k+1} + \dots + \lambda_n v_n$$

be in span (v_{k+1}, \ldots, v_n) . Consider the image of u under each dual basis functional v_1^*, \ldots, v_k^* . Because the indices $1, \ldots, k$ in the dual basis are disjoint from $k+1, \ldots, n$ of the (possibly) nonzero components of u, it's visible that u is a vector in Ann (S).

For the other inclusion, say $v \in \text{Ann}(S)$. Then

$$v = \lambda_1 v_1 + \ldots + \lambda_k v_k + \lambda_{k+1} v_{k+1} + \cdots + \lambda_n v_n.$$

Evaluating each dual basis functional v_1^*, \ldots, v_k^* at v, the condition $v_i^*(v) = 0$ implies $\lambda_i = 0$ for $i = 1, \ldots, k$. Whence $v \in \text{span}(v_{k+1}, \ldots, v_n)$. \square

[1, No. 11.3.3] part (f). Given. Assume V is a finite dimensional vector space.

To prove. If W^* is any subspace of V^* , then $\dim \operatorname{Ann}(W^*) = \dim V = \dim W^*$.

Proof. In part (e), we argued when $k \leq \dim V$, if $S = \{v_1^*, \dots, v_k^*\}$ is a subset of the dual basis, then Ann (S) is spanned by $\dim V - k$ linearly independent vectors. In part (d), we proved that Ann $(S) = \operatorname{Ann} (\operatorname{span} (S))$. Given $W^* \subset V^*$, both parts (d) and (e) imply: for a basis \mathscr{B} of W^* , $\dim \operatorname{Ann} (S) = \dim V - |\mathscr{B}|$, whence $\dim \operatorname{Ann} (W^*) = \dim V - \dim W^*$. \square

[1, No. 11.3.4]. Given. Let V be an infinite dimensional with basis \mathscr{A} .

To prove. $\mathscr{A}^* = \{v^* : v \in \mathscr{A}\}$ does not span V^* .

Proof. Suppose for contradiction that span $(\mathscr{A}) = V^*$. Then for each $f \in V^*$, we would have a unique linear combination

$$f = \sum_{a \in \mathscr{A}} a^* f(a)$$
 such that all but finitely many of the $f(a) = 0$.

Let $u \in F$ be a nonzero element of the base field. Then let $f \in \operatorname{Hom}_F(V, F)$ be defined on generators $a \in \mathscr{A}$ by f(a) = u. Extending linearly, f is a well defined homomorphism from V to F. Yet f cannot be expressed as a finitary linear combination $\sum_{a \in \mathscr{A}} a^* f(a)$, which is absurd. We conclude that \mathscr{A}^* does not span V^* . \square

References

[1] D. Dummit and R. Foote, Abstract algebra. Prentice Hall, 2004.