

MAT 520142: ALGEBRA y ALGEBRA LINEAL

Primer Semestre 2002, Universidad de Concepción

CAPITULO 3

DEPARTAMENTO DE INGENIERIA MATEMATICA

Facultad de Ciencias Físicas y Matemáticas

Relaciones Binarias

Definición: RELACION

Dados dos subconjuntos arbitrarios A y B no vacíos, una relación binaria \mathcal{R} es una correspondencia entre los elementos de A y B, la cual se representa por un subconjunto de *pares* ordenados $R \subseteq A \times B$.

Si $(a,b) \in R$ diremos que a está relacionado con b y escribiremos $a\mathcal{R}b$:

$$a\mathcal{R}b \iff (a,b) \in R$$

- **Dominio de** \mathcal{R} : $Dom(\mathcal{R}) = \{a \in A : \exists b \in B \land (a,b) \in R\}$
- **P** Recorrido de \mathcal{R} : $Rec(\mathcal{R}) = \{b \in B : \exists a \in A \land (a,b) \in R\}$

EJEMPLOS

• \mathcal{R} representada por $R = \{(1,1), (2,1), (3,1)\}$:

$$Dom(\mathcal{R}) = \{1, 2, 3\}$$
 $Rec(\mathcal{R}) = \{1\}$

Relaciones Binarias

Continuación EJEMPLOS

• \mathcal{R} representada por $R = \{(2,1), (2,2), (2,3)\}$:

$$Dom(\mathcal{R}) = \{2\}$$
 $Rec(\mathcal{R}) = \{1, 2, 3\}$

Sean $A = \{1,2,3\}, B = \{1,4\}$ y \mathcal{R} definida por

$$a\mathcal{R}b \iff a+b \leq 5, \quad a \in A, b \in B.$$

$$R = \{(1,1), (1,4), (2,1), (3,1)\}, \quad Dom(\mathcal{R}) = A, \quad Rec(\mathcal{R}) = B.$$

lacksquare $\mathcal R$ definida por:

$$a\mathcal{R}b \iff a+b \leq 1, \quad a,b>0$$

$$R = \{(a,b) \in \mathbb{R}^+ \times \mathbb{R}^+ : a+b \le 1\}, \quad Dom(\mathcal{R}) =]0,1[, \quad Rec(\mathcal{R}) =]0,1[.$$

Definición: FUNCION

Dada una relación \mathcal{R} representada por $R \subseteq A \times B$, diremos que \mathcal{R} es una *función* de A en B, sí y sólo si:

$$\forall x \in A, \exists ! y \in B : (x, y) \in R$$

Notación: $x\mathcal{R}y$ se escribirá y = f(x)

$$f: A \longrightarrow B$$

 $x \longmapsto f(x)$

- y (variable dependiente) es la IMAGEN de x a través de f
- x (variable independiente) es la PRE-IMAGEN de y por f
- A DOMINIO de f A = Dom(f)
- B CODOMINIO de f B = Cod(f)
- R GRAFICO de f $Gr(f) = \{(x,y) \in A \times B : y = f(x)\}.$

Conjunto Imagen

Sea $f: A \longrightarrow B$ una función y $X \subseteq A$.

La *imagen* de X por f se define por:

$$f(X) = \{ y \in B : \exists x \in X, y = f(x) \}$$
$$= \{ y \in B : y = f(x), x \in X \}$$
$$= \{ f(x) : x \in X \}$$

Notación: Rec(f) = f(A)

Imagen Recíproca o Pre-Imagen

Sea $f:A\longrightarrow B$ una función e $Y\subseteq B$.

La pre-imagen o imagen recíproca de Y por f se define por:

$$f^{-1}(Y) = \{x \in A : y = f(x), y \in Y\}$$

= $\{x \in A : f(x) \in Y\}$

Algunas Propiedades de f(X) y $f^{-1}(Y)$

Sea $f: A \longrightarrow B$ una función, $X \subseteq A$ e $Y \subseteq B$.

$$X \subseteq \tilde{X} \subseteq A \Longrightarrow f(X) \subseteq f(\tilde{X})$$

$$f(X \cup \tilde{X}) = f(X) \cup f(\tilde{X})$$

$$f^{-1}(Y \cup \tilde{Y}) = f^{-1}(Y) \cup f^{-1}(\tilde{Y})$$

$$f(X \cap \tilde{X}) \subseteq f(X) \cap f(\tilde{X})$$

$$f^{-1}(Y \cap \tilde{Y}) = f^{-1}(Y) \cap f^{-1}(\tilde{Y})$$

Función Sobreyectiva

Una función $f:A\longrightarrow B$ es

sobreyectiva sí y sólo si
$$f(A) = B$$
 (ed. $Rec(f) = B$)

o bien:

$$f(A) = B \iff \forall y \in B, \exists x \in A : f(x) = y$$

o bien, en términos de resolver una ecuación:

$$f(A) = B \iff \forall y \in B :$$
 la ecuación $f(x) = y$ admite solución en A

Función Inyectiva

Una función $f:A\longrightarrow B$ es **inyectiva** sí y sólo si :

$$\forall y \in f(A), \exists ! x \in A : f(x) = y$$

$$\forall x_1, x_2 \in A: f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$$

$$\forall x_1, x_2 \in A: x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$$

 $\forall\,y\,\in f(A): egin{array}{ll} \mbox{la ecuación} & f(x)=y \ \mbox{tiene solución} & \mbox{única} \mbox{en A} \end{array}$

Observación

 $f:A\to B$ no es inyectiva $\Longleftrightarrow \exists x_1,x_2\in A: f(x_1)=f(x_2) \land x_1\neq x_2$

Función Biyectiva

Una función $f:A\longrightarrow B$ es **biyectiva** sí y sólo si es **inyectiva** y **sobreyectiva**, es decir:

$$\forall y \in B, \exists ! x \in A : f(x) = y$$

 $oxed{\forall\,y\in B}$: la ecuación f(x)=y tiene solución **única** en A

$$f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$

- $Gr(f) = \{(x, f(x)) \in \mathbb{R} \times \mathbb{R} : x \in Dom(f)\}.$

Igualdad de Funciones

Sean $f:Dom(f)\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ y $g:Dom(g)\subseteq\mathbb{R}\longrightarrow\mathbb{R}$:

$$f = g \iff \begin{cases} Dom(f) = Dom(g) \\ (\forall x \in Dom(f)) : f(x) = g(x) \end{cases}$$

Sea $f:Dom(f)\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ y X=Dom(f)

Restricción de Funciones

$$g: C \subseteq X \longrightarrow \mathbb{R}$$
 $x \longmapsto g(x) = f(x)$

se denomina la **Restricción** de f a C y se escribe $g = f|_{C}$.

Funciones Monótonas La función f se dice **estrictamente** :

- **©** Creciente, sí y sólo si, $\forall x_1, x_2 \in X : x_1 < x_2 \implies f(x_1) < f(x_2)$
- **Decreciente**, sí y sólo si, $\forall x_1, x_2 \in X : x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$

Nota Si $x_1 \le x_2 \Rightarrow f(x_1) \le f(x_2)$ se dice que f es monótona creciente. Análogamente, si $x_1 \le x_2 \Rightarrow f(x_1) \ge f(x_2)$ diremos que f es monótona decreciente.

Proposición

Toda función estrictamente creciente (decreciente) es inyectiva.

Funciones Par e Impar

Una función $f:Dom(f)=X\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ se dice :

- lacksquare Par, sí y sólo si, $\begin{cases} x \in X \implies -x \in X \\ f(x) = f(-x) \end{cases}$
- Impar, sí y sólo si, $\begin{cases} x \in X \implies -x \in X \\ f(x) = -f(-x) \end{cases}$

Operaciones con funciones

 $f:Dom(f)\subset\mathbb{R}\longrightarrow\mathbb{R},$

Sean $g:Dom(g)\subset\mathbb{R}\longrightarrow\mathbb{R}$

 $X = Dom(f) \cap Dom(g)$.

Se define la **Función**

Suma
$$f+g:X\longrightarrow \mathbb{R}; x\in X\longmapsto (f+g)(x)=f(x)+g(x).$$

Producto

$$fg: X \longrightarrow \mathbb{R}; \quad x \in X \longmapsto (fg)(x) = f(x)g(x).$$

Cuociente

$$f/g$$
 : X $\longrightarrow \mathbb{R}$; $x \in X \longmapsto (f/g)(x) = f(x)/g(x)$. Si $(\forall x \in X)$: $g(x) \neq 0$

Producto por Escalar $(\lambda \in \mathbb{R})$

$$\lambda f: Dom(f) \longrightarrow \mathbb{R}; \quad x \in Dom(f) \longmapsto (\lambda f)(x) = \lambda f(x).$$

Función Compuesta

Sean $f:Dom(f)\subset\mathbb{R}\longrightarrow\mathbb{R}, \quad g:Dom(g)\subset\mathbb{R}\longrightarrow\mathbb{R},$

$$X = \left\{ x \in Dom(f) : f(x) \in Dom(g) \right\}.$$

Cuando $X \neq \emptyset$, se define:

$$g \circ f : X \longrightarrow \mathbb{R}$$
 $x \longmapsto (g \circ f)(x) = g(f(x))$

Función Inversa

Sea $f:Dom(f)\longrightarrow \mathbb{R}$ una función **Inyectiva**.

La función $g: Rec(f) \subseteq \mathbb{R} \longrightarrow Dom(f)$, definida por:

 $\forall y \in Rec(f): g(y) = x \text{ donde } x \in Dom(f) \text{ es tal que } f(x) = y$

se llama **función inversa de** f y se escribe $g = f^{-1}$.

Observación

$$\forall y \in Rec(f): \qquad f(f^{-1}(y)) = y$$

 $\forall x \in Dom(f): \qquad f^{-1}(f(x)) = x.$

Algunas Propiedades de la Función Inversa

- lacksquare Si una función f admite inversa entonces, ésta es única.
- Sean $\boxed{g:A o B}$ y $\boxed{f:B o C}$ dos funciones inversibles entonces $\boxed{f\circ g:A o C}$ es **inversible** y

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}.$$

Los gráficos de f y f^{-1} son **simétricos** con respecto a la recta y=x.

FUNCIÓN EXPONENCIAL

Sea $b \in \mathbb{R}, \ b > 0, \ b \neq 1$. La función $f : \mathbb{R} \to \mathbb{R}^+$ definida por $f(x) = b^x$ se llama **Función Exponencial de Base b**. Se escribe $\exp_b(x) = b^x$.

Observaciones:

- Si 0 < b < 1, (resp. b>1) entonces \exp_b es una función estrictamente decreciente (resp. creciente) y por lo tanto es inyectiva.
- Si $b=e\approx 2,7182\cdots$ la función se llama La Función Exponencial Natural y se escribe: $\exp(x)=e^x$.

FUNCIÓN LOGARITMICA

Sea $b \in \mathbb{R}, \ b > 0, \ b \neq 1$. La función $\log_b : \mathbb{R}^+ \to \mathbb{R}$ definida por

$$\forall x \in \mathbb{R}^+ : \log_b(x) = y \iff \exp_b(y) = x$$

Se llama Función Logaritmo en base b.

Observación

 \blacksquare Para todo b > 0:

$$\forall x \in \mathbb{R} : \log_b(b^x) = x$$

$$\forall x \in \mathbb{R}^+: b^{\log_b(x)} = x.$$

Si
$$b = 10$$
: $\log_{10} = \log$.

Propiedades de \log_b

- $\log_b(1) = 0$
- lacksquare Si $b > 1 \ \ y \quad 0 < x < 1$, entonces $\log_b(x) < 0$.

- Si b > 1, entonces \log_b es función creciente.
- Si b < 1, entonces \log_b es función decreciente.

Funciones EXPONENCIALES y LOGARITMICAS

Funciones EXPONENCIALES

Funciones EXPONENCIALES

Funciones LOGARITMICAS

Funciones LOGARITMICAS

