```
In [ ]:
#Project milestone 1
In [2]:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import statsmodels.formula.api as smf
import seaborn as sns
In [3]:
NYC = pd.read csv("DSNY Monthly_Tonnage_Data.csv")
In [4]:
NYC['PAPERTONSCOLLECTED'] = NYC['PAPERTONSCOLLECTED'].replace(np.nan, 0)
NYC['MGPTONSCOLLECTED'] = NYC['MGPTONSCOLLECTED'].replace(np.nan, 0)
NYC['RESORGANICSTONS'] = NYC['RESORGANICSTONS'].replace(np.nan, 0)
NYC['SCHOOLORGANICTONS'] = NYC['SCHOOLORGANICTONS'].replace(np.nan, 0)
NYC['LEAVESORGANICTONS'] = NYC['LEAVESORGANICTONS'].replace(np.nan, 0)
NYC['XMASTREETONS'] = NYC['XMASTREETONS'].replace(np.nan, 0)
In [6]:
NYC.head()
Out[6]:
   MONTH BOROUGH COMMUNITYDISTRICT REFUSETONSCOLLECTED PAPERTONSCOLLECTED MGPTONSCOLLECTED RESORGAI
     1993 /
0
           Manhattan
                                   01
                                                       625.2
                                                                           119.4
                                                                                               34.4
       11
     1992 /
           Manhattan
                                   01
                                                       726.0
                                                                             0.0
                                                                                                0.0
 1
       03
     1995 /
           Manhattan
                                   01
                                                       627.5
                                                                            82.4
                                                                                                35.6
       08
     1991 /
                                                       695.1
                                                                             0.0
                                                                                                0.0
 3
           Manhattan
                                   01
       80
     1995 /
           Manhattan
                                   01
                                                       633.1
                                                                            117.2
                                                                                                45.8
       09
4
In [7]:
Month 2020 = NYC["MONTH"] > "2020"
Month 2020 3 = NYC["MONTH"] < "2020 / 03"
In [8]:
NYC2 = NYC[Month 2020 \& Month 2020 3]
NYC2.head()
Out[8]:
     MONTH BOROUGH COMMUNITYDISTRICT REFUSETONSCOLLECTED PAPERTONSCOLLECTED MGPTONSCOLLECTED RESORG
      2020 /
 511
               Queens
                                     01
                                                        3935.7
                                                                             662.1
                                                                                                696.1
         01
```

2020 /

02 2020 / Brooklyn

Staten

Island

05

02

3871.4

3946.9

212.0

586.0

343.6

534.8

627

815

	MONTH	BOROUGH	COMMUNITYDISTRICT	REFUSETONSCOLLECTED	DADEDTONISCOLLECTED	MCDTONSCOLL ECTED	DESORC
906	2020 / 02	Brooklyn	T4	4062.5	429.5		RESURG
983	2020 / 01	Queens	02	2927.0	461.1	438.2	
4							Þ
In [10]:						
NYC2	.dtype	s					
Out[10]:						
REFU: PAPE! MGPT(RESO! SCHO! LEAV! XMAS' BORO!	UGH UNITYD SETONS RTONSC ONSCOL RGANIC OLORGA	STONS NICTONS NICTONS NS	object object object float64 float64 float64 float64 float64 float64 float64 float64				
In [11]:						
sns.	pairpl	ot(data =	NYC2, hue = "BORG	OUGH")			
wa: C:\U: ve va wa:	width rnings sers\s arianc rnings	for data .warn(msg teve\anace e to comp .warn(msg	is 0; skipping de , UserWarning) onda3\lib\site-pa ute a kernel dens , UserWarning)		ibutions.py:283: Us	serWarning: Data m	ıst ha
C:\U	sers\s	teve\anac	onda3\lib\site-pa	ckages\seaborn\distr	ibutions.py:369: Us	serWarning: Defaul	Ē.

warnings.warn(msg, UserWarning)

 $\verb|C:\Users| steve| anaconda3 | lib| site-packages| seaborn| distributions.py: 369: User \verb|Warning: Default| for the packages| seaborn| distributions.py: 369: User \verb|Warning: Default| seaborn| distributions| for the packages| for the packages| seaborn| distributions| for the packages| seaborn| distributions| for the packages| for the packages| for the packages| seaborn| distributions| for the packages| for the packa$ bandwidth for data is 0; skipping density estimation.

warnings.warn(msg, UserWarning)

C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha ve variance to compute a kernel density estimate.

warnings.warn(msg, UserWarning)

C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha ve variance to compute a kernel density estimate.

warnings.warn(msg, UserWarning)

C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha ve variance to compute a kernel density estimate.

warnings.warn(msg, UserWarning)

C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha ve variance to compute a kernel density estimate.

warnings.warn(msg, UserWarning)

C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha ve variance to compute a kernel density estimate.

warnings.warn(msg, UserWarning)

C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha ve variance to compute a kernel density estimate.

warnings.warn(msg, UserWarning)

C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha ve variance to compute a kernel density estimate.

warnings.warn(msg, UserWarning)

Out[11]:

<seaborn.axisgrid.PairGrid at 0x16b3d105be0>

In [9]:

```
NYC["REFUSETONSCOLLECTED"].hist(bins = 20)
plt.title("Recylce")
plt.xlabel("Garbage Collection")
plt.ylabel("# of collection")
```

Out[9]:

Text(0, 0.5, '# of collection')

In [10]:

```
NYC["MGPTONSCOLLECTED"].hist(bins = 20)
plt.title("Recylce")
plt.xlabel("Metal, Glass, Plastic recycle Collection")
```

plt.ylabel("# of collection")

Out[10]:

Text(0, 0.5, '# of collection')

In [11]:

```
NYC["PAPERTONSCOLLECTED"].hist(bins = 20)
plt.title("Recylce")
plt.xlabel("Paper and Cardboard recycle Collection")
plt.ylabel("# of collection")
```

Out[11]:

Text(0, 0.5, '# of collection')

In [12]:

```
NYC["RESORGANICSTONS"].hist(bins = 20)
plt.title("Recylce")
plt.xlabel("Organic recycle Collection")
plt.ylabel("# of collection")
```

Out[12]:

Text(0, 0.5, '# of collection')


```
2500 0 100 200 300 400 500 Organic recycle Collection
```

In [20]:

```
sns.relplot(x = "REFUSETONSCOLLECTED", y = "MGPTONSCOLLECTED", hue = "BOROUGH", data = NYC2)
plt.title("Recycle")
plt.xlabel("Garbage Collection")
plt.ylabel("Recyle trash glass, paper, and plastic")
```

Out[20]:

Text(35.17570312500001, 0.5, 'Recyle trash glass, paper, and plastic')

In [14]:

```
sns.relplot(x = "REFUSETONSCOLLECTED", y = "PAPERTONSCOLLECTED", hue = "BOROUGH", data = NYC2)
plt.title("Recycle")
plt.xlabel("Garbage Collection")
plt.ylabel("Recyle trash paper, cardboard, and aluminum")
```

Out[14]:

Text(36.9753125, 0.5, 'Recyle trash paper, cardboard, and aluminum')


```
In [41]:
#Project Milesstone 2
from sklearn.model_selection import train test split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import mean squared error
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression
from sklearn.metrics import confusion matrix
import matplotlib
%matplotlib inline
In [16]:
x = NYC2[["PAPERTONSCOLLECTED", "MGPTONSCOLLECTED", "RESORGANICSTONS", "SCHOOLORGANICTONS",
"LEAVESORGANICTONS", "XMASTREETONS"]]
y = NYC2["REFUSETONSCOLLECTED"]
In [29]:
#Decision Tree
In [18]:
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
In [37]:
reg2 = DecisionTreeRegressor(max depth = 2)
reg2 = reg2.fit(x train, y train)
In [38]:
y test pred 2 = reg2.predict(x test)
In [39]:
mean_squared_error(y_test_pred_2, y_test)
Out[39]:
450188.80874662125
In [23]:
reg2 = DecisionTreeRegressor(max depth = 2)
reg2 = reg2.fit(x_train, y_train)
In [24]:
pred_2 = reg2.predict(x_test)
In [25]:
mean_squared_error(pred_2, y_test)
Out [25]:
450188.80874662125
In [40]:
```

: D.

```
#Linear Kegression
```

In [42]:

```
linear_model = LinearRegression()
linear_model.fit(x_train,y_train)
```

Out[42]:

LinearRegression()

In [43]:

```
y_test_preds_linear = linear_model.predict(x_test)
```

In [44]:

```
mean_squared_error(y_test_preds_linear,y_test)
```

Out[44]:

397428.2837027192

In [57]:

```
# Project Milestone 3
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import KMeans
from sklearn.metrics import confusion_matrix
```

In [58]:

```
\verb|sns.jointplot(x = "REFUSETONSCOLLECTED", y = "PAPERTONSCOLLECTED", kind = "kde", color = "Green", data = NYC2)|
```

Out[58]:

<seaborn.axisgrid.JointGrid at 0x27b83e69f40>

In [59]:

```
\verb|sns.jointplot(x = "REFUSETONSCOLLECTED", y = "MGPTONSCOLLECTED", kind = "hex", color = "red", data = NYC2)|
```

Out[59]:

<seaborn.axisgrid.JointGrid at 0x27b842111f0>

In [60]:

```
!pip install --user folium
```

Requirement already satisfied: folium in c:\users\steve\appdata\roaming\python\python38\site-packages (0.12.1)

Requirement already satisfied: jinja2 >= 2.9 in c:\users\steve\anaconda3\lib\site-packages (from folium) (2.11.2)

Requirement already satisfied: numpy in c:\users\steve\anaconda3\lib\site-packages (from folium) (1.18.5)

Requirement already satisfied: branca>=0.3.0 in

c:\users\steve\appdata\roaming\python\python38\site-packages (from folium) (0.4.2)

Requirement already satisfied: requests in c:\users\steve\anaconda3\lib\site-packages (from folium) (2.24.0)

Requirement already satisfied: MarkupSafe>=0.23 in c:\users\steve\anaconda3\lib\site-packages (from jinja2>=2.9->folium) (1.1.1)

Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in

 $\verb|c:|users| steve| anaconda \verb|a|| lib| site-packages (from requests->folium) (1.25.9)|$

Requirement already satisfied: idna<3,>=2.5 in c:\users\steve\anaconda3\lib\site-packages (from requests->folium) (2.10)

Requirement already satisfied: chardet<4,>=3.0.2 in c:\users\steve\anaconda3\lib\site-packages (from requests->folium) (3.0.4)

Requirement already satisfied: certifi>=2017.4.17 in c:\users\steve\anaconda3\lib\site-packages (from requests->folium) (2020.6.20)

In [122]:

import folium

In [126]:

```
map = folium.Map(location=[40.8747, -73.8951])
```

In [130]:

Out[130]:

<folium.map.Marker at 0x27b9a444e20>

```
In [131]:
 folium.Marker([40.826153, -73.920265], popup="Bronx", tooltip = "Click for information",
                                       icon = folium.Icon(color = "red")).add_to(map)
Out[131]:
<folium.map.Marker at 0x27b9a444e80>
In [132]:
 folium.Marker([40.75325, -74.00381], popup="Manhattan", tooltip = "Click for information",
                                            icon = folium.Icon(color = "green")).add to(map)
Out[132]:
<folium.map.Marker at 0x27b9a5c8790>
In [136]:
 folium.Marker([40.692528, -73.991], popup="Brooklyn", tooltip = "Click for information",
                                          icon = folium.Icon(color = "blue")).add_to(map)
Out[136]:
<folium.map.Marker at 0x27b9a4299d0>
In [134]:
 folium. Marker ( [40.580753, -74.152794], popup="Staten Island", tooltip = "Click for information", tooltip = "Click fo
                                           icon = folium.Icon(color = "purple")).add to(map)
Out[134]:
<folium.map.Marker at 0x27b9a50de50>
In [137]:
map
Out[137]:
```

Make this Notebook Trusted to load map: File -> Trust Notebook

```
In [112]:
```

kmeans = KMeans(n_clusters = 5)

In [113]:

kmeans.fit(x)

Out[113]:

KMeans(n clusters=5)

In [114]:

clusters = kmeans.predict(x)

In [115]:

NYC2["clusters"] = clusters
NYC2.head()

<ipython-input-115-3c21e78c1c31>:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
NYC2["clusters"] = clusters

Out[115]:

MONTH BOROUGH COMMUNITYDISTRICT REFUSETONSCOLLECTED PAPERTONSCOLLECTED MGPTONSCOLLECTED RESORG

511	2020 / 01	Queens	01	3935.7	662.1	696.1
627	2020 / 02	Brooklyn	05	3871.4	212.0	343.6
815	2020 / 01	Staten Island	02	3946.9	586.0	534.8
906	2020 / 02	Brooklyn	14	4062.5	429.5	360.5
983	2020 / 01	Queens	02	2927.0	461.1	438.2
4						Þ

In [96]:

sns.pairplot(NYC2, hue = "clusters")

C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:369: UserWarning: Default bandwidth for data is 0; skipping density estimation.

warnings.warn(msg, UserWarning)

C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:369: UserWarning: Default bandwidth for data is 0; skipping density estimation.

warnings.warn(msg, UserWarning)

C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha ve variance to compute a kernel density estimate.

warnings.warn(msg, UserWarning)

C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha ve variance to compute a kernel density estimate.

warnings.warn(msg, UserWarning)

C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha ve variance to compute a kernel density estimate.

warnings.warn(msg, UserWarning)

C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:369: UserWarning: Default bandwidth for data is 0; skipping density estimation.

warnings.warn(msg, UserWarning)

 $\verb|C:\Users| steve| anaconda3 | lib| site-packages| seaborn| distributions.py: 369: User \verb|Warning: Default| for the packages| seaborn| distributions.py: 369: User \verb|Warning: Default| seaborn| distributions| for the packages| for the packages| seaborn| distributions| for the packages| seaborn| distributions| for the packages| for the packages| for the packages| seaborn| distributions| for the packages| for the packa$

```
bandwidth for data is 0; skipping density estimation.
   warnings.warn(msg, UserWarning)
C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha
ve variance to compute a kernel density estimate.
   warnings.warn(msg, UserWarning)
C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:369: UserWarning: Default
bandwidth for data is 0; skipping density estimation.
   warnings.warn(msg, UserWarning)
```

Out[96]:

<seaborn.axisgrid.PairGrid at 0x27b93c8adf0>

In [116]:

```
scaler = MinMaxScaler()
```

In [117]:

```
x_scaled = scaler.fit_transform(x)
x_scaled
```

Out[117]:

```
array([[0.4863388 , 0.72455165, 0. , 0. , 0. , 0. , 0. , 0.
```

```
[0.1020321 , 0.27936348, 0.
                                , 0. , 0.
         ],
0.
[0.4213627 , 0.5208386 , 0.
                                 , 0.34867925, 0.
0.16481481],
[0.28773907, 0.30070725, 0.
                                , 0.44075472, 0.
0.
         ],
[0.31471995, 0.39883809, 0.43453071, 0.50415094, 0.
 0.14074074],
[0.10262978, 0.14094468, 0.28852839, 0. , 0.
         1,
[0.41854508, 0.43116949, 0.46755504, 0.31773585, 0.
0.32407407],
[0.3300888 , 0.32836575, 0.35921205, 0.20830189, 0.
0.
     ],
[0.00187842, 0.03081586, 0.10428737, 0.
                                           , 0.
0. ],
[0.02817623, 0.0828492 , 0.1373117 , 0.
                                           , 0.63448276,
0.02345679],
[0.10228825, 0.26888103, 0.06720742, 0.
                                           , 0.
0. ],
[0.30037568, 0.39504925, 0.33893395, 1.
                                           , 0.
0.17407407],
                                , 0.18867925, 0.
[0.46063866, 0.57779742, 0.
0.
      ],
[0.42631489, 0.65950998, 0.
                                 , 0.
                                            , 0.
0.08518519],
[0.12337773, 0.30714827, 0.
                                , 0.
                                            , 0.
0.09074074],
[0.36116803, 0.56895681, 0.28331402, 0.
                                            , 0.
0.
        ],
[0.16709358, 0.42548623, 0. , 0.
                                            , 0.
0.02839506],
[0.44339139, 0.44379894, 0.66917729, 0.39320755, 0.
0.43580247],
[0.27160178, 0.52828997, 0.
                            , 0.
                                            , 0.
0.18209877],
[0.17930328, 0.48004547, 0.60428737, 0.
                                            , 0.
 0.
         ],
[0.6411373 , 0.84074261, 0.63673233, 0.
                                            , 0.
0.51111111],
[0.24863388, 0.46059611, 0.
                            , 0.
                                            , 0.
0.09382716],
[0.18809768, 0.31813589, 0.33140209, 0.
0.10617284],
[0.3457138 , 0.42207628, 0.698146 , 0.61962264, 0.
0.21604938],
[0.27792008, 0.36145491, 0.29837775, 0.
                                            , 1.
0. ],
[0. , 0.02020712, 0. 0. 1
[0.
                           , 0.
                                           , 0.
          ],
[0.78961749, 0.80348573, 0.20973349, 0.28
                                            , 0.
0.
         ],
[0.24709699, 0.30714827, 0. , 0.40679245, 0.
0.12345679],
[0.27313866, 0.23692852, 0. , 0.17283019, 0.
         ],
0.
[0.12320697, 0.33543824, 0.08458864, 0.
                                           , 0.
0.0382716],
[0.43826844, 0.41576156, 0.26013905, 0.
                                           , 0.79310345,
0.
         ],
[0.17605874, 0.09926749, 0.
                                            , 0.
                            , 0.
0.1382716],
[0.21721311, 0.75423087, 0.73696408, 0.
                                            , 0.
0.
      ],
[0.35553279, 0.40578429, 0.29895713, 0.
                                            , 0.
0. ],
                                            , 0.
[0.19006148, 0.39580702, 0.
                                , 0.
         ],
[0.16376366, 0.33101793, 0.
                                            , 0.
                               , 0.
0.
         ],
[0.51280738, 0.41904521, 0.23522596, 0.8090566, 0.
0.04506173],
[0.25093921, 0.48459207, 0.32502897, 0.
                                           , 0.
0.36419753],
[0.12482923, 0.25713564, 0.26419467, 0.
                                           , 0.
0. ],
[N 14182N36 N 32836575 N
                                 \cap
```

```
, ··.
0.
[0.31360997, 0.36928517, 0.
                                , 0.60603774, 0.
0.03950617],
[0.18280396, 0.22871937, 0.
                                , 0.11849057, 0.
0.13271605],
[0.33478484, 0.2902248 , 0.
                                , 0.2045283 , 0.
0.28395062],
[0.5307377 , 0.53372064, 0.30880649, 0.
                                           , 0.
0.27469136],
[0.20346653, 0.25675676, 0.
                               , 0.
                                            , 0.
0.
    ],
     , 1.
],
                 , 0.13904983, 0.
[1.
                                            , 0.
1.
[0.07317281, 0.21634251, 0.
                             , 0.
                                            , 0.
0. ],
[0.4497097 , 0.46046982, 0.22247972, 0.
                                            , 0.
0.25308642],
[0.14711407, 0.1451124 , 0.
                            , 0.
                                            , 0.
0.07716049],
[0.38311134, 0.42725436, 0.20625724, 0.
                                            , 0.
0.18333333],
[0.30020492, 0.202829 , 0.11297798, 0.
0.25123457],
                                            , 0.
[0.17460724, 0.35514019, 0.
                               , 0.
0.08950617],
[0.06839139, 0.14397575, 0.06836616, 0.3290566 , 0.
0.11358025],
[0.02621243, 0.073756, 0.05214368, 0.23773585, 0.
0. ],
[0.22651981, 0.29237181, 0.297219 , 0.79849057, 0.
0. ],
[0.65206626, 0.80727456, 0.
                          , 0.25962264, 0.
0.26296296],
[0.36483948, 0.45655469, 0.2184241 , 0. , 0.67586207,
0.
     1,
[0.51127049, 0.82937611, 0.63673233, 0.51773585, 0.
0.4462963],
[0.13968579, 0.31295782, 0.21436848, 0.
                                          , 0.
0.
          ],
[0.21115096, 0.38545087, 0.28331402, 0.
                                            , 0.
0.08641975],
[0.24299863, 0.7834049 , 0.
                            , 0.
                                            , 0.
0. ],
[0.3823429 , 0.57325082, 0.
                               , 0.
0. ],
[0.31685451, 0.54281384, 0.95075319, 0.30188679, 0.
0.2222222],
[0.43596311, 0.34465774, 0.20509849, 0.6
                                        , 0.
0.
        ],
[0.25529372, 0.31687295, 0.57126304, 0.46490566, 0.
0. ],
[0.32137978, 0.36524375, 0.60544612, 0.
                                           , 0.
0.23703704],
                            , 0.
[0.02792008, 0.07767113, 0.
                                            , 0.
0.02777778],
[0.1835724 , 0.20636524, 0.
                               , 0.
                                           , 0.
0.08518519],
[0.4741291 , 0.59030058, 0.2433372 , 0.
                                            , 0.
0.12901235],
[0.37406079, 0.66746653, 0.59849363, 0.42037736, 0.
0. ],
[0.31523224, 0.50909321, 0.
                               , 0.
                                           , 0.
         ],
[0.33418716, 0.9516292 , 0.
                               , 0.
                                            , 0.
0.08333333],
[0.05268101, 0.09156353, 0.10081112, 0.
Ο.
[0.08683402, 0.1635514, 0.11239861, 0.
                                            , 0.
0.02962963],
[0.17503415, 0.39504925, 0.31923523, 0.
                                            , 0.
          1,
[0.25076844, 0.29792877, 0.49188876, 0.
                                            , 0.
0.
[0.23215505, 0.26648143, 0.
                               , 0.45056604, 0.
0.
[0.1425888 , 0.1588785 , 0.
                              , 0.08754717, 0.
```

, ..

[0.17102000, 0.02000010, 0.

```
[0.00802596, 0. , 0.03012746, 0. , 0.
0. ],
[0.1411373 , 0.06137914, 0. , 0.
                                        , 0.
0. ],
[0.13251366, 0.18173781, 0.20336037, 0.36150943, 0.
         ],
[0.16555669, 0.23212933, 0.20683662, 0.47622642, 0.
0.12654321],
[0.18476776, 0.49280121, 0.
                             , 0.
                                        , 0.
0.0962963],
                             , 0.
[0.02211407, 0.0897954 , 0.
                                         . 0.
0. ],
[0.09153005, 0.23490781, 0.
                              , 0.
                                         , 0.
0. ],
[0.4760929 , 0.74703208, 0.48435689, 0.
                                         , 0.
0.22037037],
[0.23463115, 0.43571609, 0.70973349, 0.23245283, 0.
0. ],
[0.25315915, 0.62604193, 0.78215527, 0.
                                        , 0.
 0.05185185],
[0.31318306, 0.38633493, 0. , 0.22792453, 0.11034483,
      ],
0.
[0.23744877, 0.30234908, 0.34530707, 0.40075472, 0.
0. ],
[0.14899249, 0.19828239, 0.34125145, 0.
                                      , 0.
0.16666667],
[0.89506489, 0.93142208, 0.24739282, 0.37584906, 0.
0.5],
[0.13473361, 0.12553675, 0.
                             , 0.
                                        , 0.
0. ],
[0.30404713, 0.92826471, 1.
                              , 0.
0.18518519],
[0.33845628, 0.36360192, 0.
                             , 0.62037736, 0.
0.06666667],
[0.0224556, 0.02475373, 0.03360371, 0. , 0.
0.14691358],
[0.18468238, 0.22606719, 0. , 0.31471698, 0.
0. ],
[0.11731557, 0.15559485, 0.09559676, 0.18867925, 0.
0. ],
[0.26101434, 0.43672645, 0.14716107, 0.28
                                         , 0.
 0.
        ],
[0.37030396, 0.36120232, 0.19524913, 0.
                                         , 0.
0.
         ],
[0.08512637, 0.07464006, 0. , 0.
                                         , 0.
0. ],
[0.32428279, 0.32887093, 0.18597914, 0.
                                         , 0.
0. ],
[0.25008538, 0.16380399, 0.10023175, 0.
                                          , 0.
 0. ],
[0.12295082, 0.28618338, 0.
                            , 0.
                                          , 0.
0.
        ],
[0.06224385, 0.14460722, 0.
                              , 0.
                                         , 0.
0.01296296],
[0.43912227, 0.50164183, 0.32734647, 0.
0.0462963 ],
[0.34084699, 0.33846931, 0.55330243, 0.30867925, 0.
0.
    ],
[0.51408811, 0.68072746, 0.52838934, 0.
                                          , 0.
0. ],
[0.37226776, 0.48055064, 0.39339513, 0.
                                         , 0.
0.2345679],
[0.19304986, 0.44190452, 0. , 0.
                                          , 0.
0.04382716],
[0.16555669, 0.26206113, 0.24623407, 0.
                                          , 0.
     ],
0.
[0.21712773, 0.35817126, 0.34994206, 0.
0.13333333],
[0.19057377, 0.24602172, 0.10660487, 0.24679245, 0.
0.15555556],
                                      , 0.57241379,
[0.28423839, 0.37067441, 0.
                          , 0.
 0.12901235],
[0.35365437, 0.61871685, 0.17381228, 0.32830189, 0.
0.19753086],
[0.84725068, 0.87130589, 0.1193511 , 0.
                                        , 0.
```

```
[U.U93/3
                 , U.Z040J901, U.
                                         , \circ .
                                                       , ∪.
        0.02345679],
       [0.13464822, 0.37686284, 0.
                                      , 0.
                                                        , 0.
                11)
In [118]:
kmeans_scaled = KMeans(n_clusters = 5)
kmeans scaled.fit(x scaled)
Out[118]:
KMeans(n clusters=5)
In [119]:
clusters scaled = kmeans scaled.predict(x scaled)
clusters scaled
Out[119]:
array([0, 1, 0, 2, 2, 1, 3, 1, 1, 4, 1, 2, 0, 0, 1, 0, 1, 3, 0, 3, 3, 1,
       1, 3, 4, 1, 0, 2, 1, 1, 4, 1, 3, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 0,
       1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 0, 4, 3, 1, 1, 0, 0, 3, 2, 2, 3,
       1, 1, 0, 3, 1, 0, 1, 1, 1, 3, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 3,
       1, 2, 1, 0, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 3, 3, 3, 1,
       1, 1, 1, 4, 0, 0, 1, 1])
In [120]:
NYC2["clusters scaled"] = clusters scaled
NYC2.head()
<ipython-input-120-52af0efa935c>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  NYC2["clusters scaled"] = clusters scaled
Out[120]:
    MONTH BOROUGH COMMUNITYDISTRICT REFUSETONSCOLLECTED PAPERTONSCOLLECTED MGPTONSCOLLECTED RESORG
      2020 /
              Queens
                                   01
                                                     3935.7
                                                                          662.1
                                                                                            696.1
        01
      2020 /
                                                                                            343.6
              Brooklyn
                                   05
                                                     3871.4
                                                                          212.0
        02
      2020 /
               Staten
                                                     3946.9
                                                                          586.0
                                                                                            534.8
                                   02
        01
               Island
      2020 /
              Brooklyn
                                    14
                                                     4062.5
                                                                          429.5
                                                                                            360.5
        02
      2020 /
              Queens
                                   02
                                                     2927.0
                                                                          461.1
                                                                                            438.2
        01
In [102]:
sns.pairplot(NYC2, hue = "clusters scaled")
C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:369: UserWarning: Default
bandwidth for data is 0; skipping density estimation.
 warnings.warn(msg, UserWarning)
C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha
ve variance to compute a kernel density estimate.
 warnings.warn(msg, UserWarning)
C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha
```

nackages acchang distributions no. 260. Hasyllanning. Default

511

627

815

906

983

ve variance to compute a kernel density estimate.

warnings.warn(msg, UserWarning)

C. \ IIaara\ atarra\ anaganda 2\ lib\ aita

4

```
bandwidth for data is 0; skipping density estimation.
   warnings.warn(msg, UserWarning)
C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha
ve variance to compute a kernel density estimate.
   warnings.warn(msg, UserWarning)
C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha
ve variance to compute a kernel density estimate.
   warnings.warn(msg, UserWarning)
C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha
ve variance to compute a kernel density estimate.
   warnings.warn(msg, UserWarning)
C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:283: UserWarning: Data must ha
ve variance to compute a kernel density estimate.
   warnings.warn(msg, UserWarning)
C:\Users\steve\anaconda3\lib\site-packages\seaborn\distributions.py:369: UserWarning: Default
bandwidth for data is 0; skipping density estimation.
   warnings.warn(msg, UserWarning)
```

Out[102]:

<seaborn.axisgrid.PairGrid at 0x27b9aa8a160>

In [111]:

```
cluster_scaled_map = {"0":"Queens", "1":"Brooklyn", "2":"Staten Island", "3":"Bronx", "4":"Manhatta
n"}
NYC2["mapped_clusters_scaled"] = NYC2["clusters_scaled"].apply(str).map(cluster_scaled_map)
NYC2.head()
```

<ipvthon-input-111-e75cdh2d6f1c>:2: SettingWithCopvWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

NYC2["mapped_clusters_scaled"] = NYC2["clusters_scaled"].apply(str).map(cluster_scaled_map)

Out[111]:

MONTH	BOROUGH	COMMUNITYDISTRICT	REFUSETONSCOLLECTED	PAPERTONSCOLLECTED	MGPTONSCOLLECTED	RESORG

511	2020 / 01	Queens	01	3935.7	662.1	696.1
627	2020 / 02	Brooklyn	05	3871.4	212.0	343.6
815	2020 / 01	Staten Island	02	3946.9	586.0	534.8
906	2020 / 02	Brooklyn	14	4062.5	429.5	360.5
983	2020 / 01	Queens	02	2927.0	461.1	438.2
4						Þ

In []:

Correlation, causation, and heat maps

In [152]:

NYC2.corr()

Out[152]:

REFUSETONSCOLLECTED	PAPERTONSCOLLECTED	MGPTONSCOLLECTED	RESORGANICSTONS	SCHOOL

REFUSETONSCOLLECTED	1.000000	0.616804	0.784573	0.122240
PAPERTONSCOLLECTED	0.616804	1.000000	0.802113	0.274381
MGPTONSCOLLECTED	0.784573	0.802113	1.000000	0.382142
RESORGANICSTONS	0.122240	0.274381	0.382142	1.000000
SCHOOLORGANICTONS	0.064230	0.217337	0.051459	0.189335
LEAVESORGANICTONS	0.065371	0.019029	-0.037174	0.000350
XMASTREETONS	0.237746	0.576346	0.470813	0.248555
BOROUGH_ID	0.414455	0.116527	0.327866	0.283357
clusters	0.014794	0.115484	-0.029883	0.133505
clusters_scaled	-0.018963	-0.053365	-0.010390	0.591980
1				,

In [150]:

corr_matrix = NYC2.corr()
sns.heatmap(corr_matrix)

Out[150]:

<matplotlib.axes._subplots.AxesSubplot at 0x27b9a51c670>

In [153]:

NYC.corr()

Out[153]:

	REFUSETONSCOLLECTED	PAPERTONSCOLLECTED	MGPTONSCOLLECTED	RESORGANICSTONS	SCHOOL
REFUSETONSCOLLECTED	1.000000	0.436293	0.477313	0.009548	
PAPERTONSCOLLECTED	0.436293	1.000000	0.700245	0.105411	
MGPTONSCOLLECTED	0.477313	0.700245	1.000000	0.211602	
RESORGANICSTONS	0.009548	0.105411	0.211602	1.000000	
SCHOOLORGANICTONS	-0.034091	0.083622	0.119135	0.251629	
LEAVESORGANICTONS	0.065504	0.107765	0.101338	-0.008753	
XMASTREETONS	0.024222	0.120995	0.151805	0.018633	
BOROUGH_ID	0.378589	0.246063	0.262113	0.100164	

In [154]:

4

corr_matrix2 = NYC.corr()
sns.heatmap(corr_matrix2)

Out[154]:

<matplotlib.axes. subplots.AxesSubplot at 0x27b9a676400>

In []: