Отчёт по работе 6.9.1

Закон Кюрий-Вейсса и обменное взаимодействие в ферромагнетиках

Карташов Константин Б04-005

Цель работы: Исследуется температурная зависимость магнитной восприимчивости ферромагнетика в парамагнитной области — выше точки Кюри. По полученной в работе температуре Кюри оценивается энергия обменного взаимодействия. Объектом исследования является металлический гадолиний.

I Теоретическая часть

Намагниченность вещества I связана с внешним магнитным полем H, под воздействием которого она возникает, соотношением

$$I = \varkappa H$$
.

где \varkappa называется магнитной восприимчивостью. Для парамагнитного вещества, в котором магнитный момент атома обусловлен спином одного электрона:

$$\varkappa = \frac{I}{H} = N \frac{\mu^2}{k_{\rm B}T}.$$

Для атома с более чем одним электроном и суммарным спином S, эта формула обобщается как

$$\varkappa = \frac{Ng^2 \mu_{\rm B}^2 S(S+1)}{3k_{\rm B}T} \tag{1}$$

где g – фактор Ланде.

В ферромагнетиках для описание взаимодействия соседних электронов вводится эффективное (или обменное) поле $H_{\rm эфф}$, величина которого пропорциональна намагниченности:

$$H_{\text{add}} = \lambda I$$
,

где λ – некоторая константа. С учётом этого поля формула (1) примет вид:

$$\varkappa = \frac{I}{H} = N \frac{g^2 \mu_{\rm B}^2 S(S+1)}{3k_{\rm B}(T-\Theta)},$$

где

$$\Theta = N \frac{g^2 \mu_{\rm B}^2 S(S+1)}{3k_{\rm B}} \lambda.$$

В итоге получили соотношение:

$$\varkappa \propto \frac{1}{T - \Theta},$$
(2)

называемое законом Кюри-Вейса. Температура Θ называется парамагнитной точкой Кюри, при стремлении температуры к ней восприимчивость неограниченно возрастает из-за того, что тепловое движение всё меньше препятствует магнитным моментам ориентироваться в одном направлении.

При учёте того, что энергия обменного взаимодействия умноженная на два это энергией изменения направления спина атома в поле $H_{\text{эфф}}$. Получим соотношение:

$$\lambda = \frac{2nJV}{g^2\mu_{\rm B}^2}.$$

где J – обменный интеграл, V=1/N – объём приходящийся на один атом. Из этого соотношения получим формулу для определения величины обменного интеграла:

$$J = \frac{3k_{\rm B}\Theta}{2nS(S+1)}. (3)$$

II Экспериментальная часть

і Экспериментальная установка

На рис. 1 показана схема экспериментальной установки для измерения восприимчивости магнетиков. Ферромагнитный образец 1 располагается внутри пустотелой катушки 2, которая является индуктивностью колебательного контура, входящего в состав LC-генератора. Частота колебаний генератора высвечивается на цифровом табло на блоке генератора. Катушка самоиндукции помещена в термостат 3. Для того чтобы в образце не возникали токи Фуко, маскирующие изучаемый эффект, он изготовлен из мелких гранул размером менее 0.1 мм. Образец помещен в тефлоновою капсулу. С помощью штока 5 капсулу можно перемещать вдоль оси катушки самоиндукции.

Рис. 1: Схема экспериментальной установки

Магнитная восприимчивость определяется по изменению самоиндукции, происходящему при его введению в катушку. Обозначая через L самоиндукцию катушки с образцом и через L_0 – её самоиндукцию в отсутствие образца, получим:

$$L = \mu \frac{4\pi n^2 S}{l}, \ L_0 = \frac{4\pi n^2 S}{l},$$
 (4)

где μ — магнитная проницаемость образца, n — число витков катушки, l — длина катушки, S — её сечение. Тогда, пренебрегая размагничивающим фактором, так как длина образца существенно больше его диаметра, получим:

$$\frac{L - L_0}{L_0} = \frac{\Delta L}{L_0} = \mu - 1 = 4\pi\varkappa. \tag{5}$$

Учитывая, что частота f колебательного LC-контура определяется выражением $1/f=2\pi\sqrt{LC}$, получим:

$$\frac{f_0^2 - f^2}{f^2} = 4\pi\varkappa. (6)$$

Откуда следует, что:

$$\frac{1}{\varkappa} \propto \frac{f^2}{f_0^2 - f^2}.\tag{7}$$

Температура образца измеряется медно-константановой термопарой, соединённой с цифровым вольтметром, с чувствительностью $\alpha^{-1}=41$ мкB/K. Измерения проводятся в интервале температур от 10° C до 70° C.

іі Проведение измерений

Убедившись в исправности установки приступим к охлаждению образца. После достижения образцом минимальной температуры начнём измерять значения f_0 , f и $U_{\text{терм}}$. Второй конец термопары находится при комнатной температуре $T_0 = 24^{\circ}\text{C}$, в нулевом положении значение вольтметра $U_0 = 0.06$ мВ.

Температуру образца определим по формуле:

$$T = T_0 + \alpha \left(U_{\text{терм}} - U_0 \right), \tag{8}$$

погрешность определения температуры определяется ценой деления вольтметра $\Delta U = 0.01~\mathrm{B},$ поэтому $\Delta T = \alpha \Delta U \approx 0.3~\mathrm{K}.$

Оценим погрешность рассчитываемой величины $f^2/(f_0^2-f^2)$ пользуясь стандартным подходом для оценки погрешности из чего получим:

$$\Delta \left(\frac{f^2}{f_0^2 - f^2} \right) = \frac{2f^2}{f_0^2 - f^2} \sqrt{\left(\frac{\Delta f}{f} \right)^2 + \left(\frac{\sqrt{(f_0 \Delta f_0)^2 + (f \Delta f)^2}}{f_0^2 - f^2} \right)^2}, \tag{9}$$

видим, что погрешность будет высокой при $f_0 \approx f$, погрешность измерения частоты $\Delta f = \Delta f_0 \sim 0.5$ к Γ ц возникает в основном за счёт быстрого изменения показаний частотомера (за время необходимое для измерения f и f_0 показания этих величин меняются на Δf), что вероятно связанно с постоянным изменением температуры. Измеренные и рассчитанные данные приведены в таблице 1 (величина $f^2/(f_0^2-f^2)$ обозначена как g).

$U_{\text{терм}}$, мВ	f , к Γ ц	f_0 , к Γ ц	T	y	Δy
-0.66	809.9	867.4	279.4	6.80	0.08
-0.59	810.1	867.3	281.1	6.84	0.09
-0.5	810.3	867.3	283.3	6.87	0.09
-0.39	810.7	867.5	286.0	6.89	0.09
-0.29	812.6	867.6	288.5	7.15	0.09
-0.18	820.4	867.4	291.1	8.5	0.1
-0.08	837.1	867.8	293.6	13.4	0.3
0.02	850.1	868.3	296.0	23.1	0.9
0.12	858.5	868.3	298.5	44	3
0.22	862	868.7	300.9	64	7
0.32	864	868.3	303.3	100	16
0.42	864.8	868.7	305.8	111	20
0.53	865.8	868.5	308.5	160	42
0.63	866.3	869.2	310.9	149	36
0.72	885.9	887.2	313.1	340	185
0.8	888.6	891.2	315.0	171	46
0.84	891.5	893.8	316.0	194	60
0.86	892.9	895	316.5	212	72

Таблица 1: Измеренные и рассчитанные данные.

ііі Определение температуры Кюри и величины обменного интеграла

Построим график зависимости $[f^2/(f_0^2-f^2)](T)$ по данным из таблицы 1 (рис. 2). По графику определим участок, на котором зависимость будет линейной, по точкам из этого участка построим линейную аппроксимацию (y = ax + b) методом наименьших квадратов с весом точек равным обратной погрешности $w=1/\Delta y$. Полученные коэффициенты $a=8.8\pm0.3,\ b=-2570\pm90$ K.

Определим температуру Кюри из условия y = 0, из чего получаем:

$$\Theta = -\frac{b}{a} = \frac{2570 \text{ K}}{8.8} = 292 \text{ K},$$

$$\Delta\Theta = \Theta \sqrt{\left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta b}{b}\right)^2} = 292 \sqrt{\left(\frac{0.3}{8.8}\right)^2 + \left(\frac{90}{2570}\right)^2} = 14 \text{ K},$$

то есть из измерений $\Theta = 290 \pm 15 \; \mathrm{K}.$

По формуле (3) определим величину обменного интеграла, полагая n=12, S=7/2:

$$J = \frac{3k_{\rm B}}{2nS(S+1)}\Theta = \frac{3\cdot 1.38\cdot 10^{-16}~{\rm эрг/K}}{2\cdot 12\cdot 3.5\cdot 4.5}\cdot 290~{\rm K} = 3.18\cdot 10^{-16}~{\rm эрг} = 198~{\rm мкэB},$$

$$\Delta J = J\frac{\Delta\Theta}{\Theta} = 198\cdot \frac{15}{290} = 10~{\rm мкэB},$$

получили $J = 200 \pm 10$ мкэ $B = 7.9 \pm 0.4$ К.

Рис. 2: График зависимости $[f^2/(f_0^2-f^2)](T)$ с аппроксимацией линейного участка

III Выводы

- 1. Изучили температурную зависимость магнитной восприимчивости гадолиния. Показали, что при переходе через точку Кюри эта зависимость резко изменяется.
- 2. По полученной температурной зависимости нашли точку Кюри. $\Theta=292\pm14$ К. Что хорошо согласуется с табличным значением $\Theta=292$ К.
- 3. По полученной точке Кюри вычислили величину обменного интеграла $J==200\pm10$ мкэ $\mathrm{B}=7.9\pm0.4$ К.