Motivação

Tito Bruni

PUC-Rio

03/05/2023

- Motivação
- 2 Literatura
- 3 Dados
- 4 Estimação
- 6 Resultados

Motivação

Motivação

Motivação

- Política Monetária (Iversen et al, 2016)
- Contratos Nominais de longo prazo.
- Decisões de consumo e investimento.

- 1 Motivação
- 2 Literatura

Literatura

- Medeiros et al. (2021): ML methods beat univariate time series models specially when inflation is more volatile.
- Coulombe et al. (2021): transformations in macroeconomic data can enhance forecasts' accuracy.

- 1 Motivação
- 3 Dados
- 4 Estimação

Motivação

- Plataforma: Sistema Gerenciador de Séries Temporais (BC)
- Natureza dos dados: preços, commodities, atividade econômica, emprego, eletricidade, confiança, finanças, crédito, governo e comércio internacional.
- Período: Janeiro 2006 Janeiro 2023

- 1 Motivação
- 2 Literatura
- 3 Dados
- 4 Estimação
- Resultados

Dados originais

- Y: variável dependente.
- A,B: variáveis independentes

Υ	Α	В
y ₁	a 1	b_1
y ₂	a_2	b_2
:	i :	i
y ₁₂	a_{12}	b_{12}
y ₁₃	a_{13}	b_{13}
:	<u>:</u>	:

Estimação

Transformações

Acumulando variáveis:

Υ	Α	В
\tilde{y}_{12}	\tilde{a}_{12}	$ ilde{b}_{12}$
\tilde{y}_{13}	\tilde{a}_{13}	\tilde{b}_{13}
:	:	:
\tilde{y}_{23}	\tilde{a}_{23}	$ ilde{b}_{23}$
\tilde{y}_{24}	\tilde{a}_{24}	$ ilde{ ilde{b}}_{24}$
:	:	:

Transformações

• Alterando **Y**:

Υ	Α	В
$\tilde{y_{24}}$	\tilde{a}_{12}	$ ilde{b}_{12}$
$\widetilde{y_{25}}$	\tilde{a}_{13}	\tilde{b}_{13}
:	:	:
<i>y</i> $\tilde{3}$ 5	\tilde{a}_{23}	$ ilde{b}_{23}$
<i>y</i> 36	\tilde{a}_{24}	$ ilde{b}_{24}$
:	:	:

- Suponha que as janelas tenham tamanho 11.
- A primeira previsão será:

$$\begin{array}{c|cccc} \mathbf{Y} & \mathbf{A} & \mathbf{B} \\ \hline y_{24} & a_{12} & b_{12} \\ y_{25} & a_{13} & b_{13} \\ \vdots & \vdots & \vdots \\ y_{35} & a_{23} & b_{23} \\ \hline y_{36} & a_{24} & b_{24} \\ \vdots & \vdots & \vdots \\ \end{array} \right\} \hat{f}_{36}(.)$$

$$\hat{y}_{36} = \hat{f}_{36}(a_{24}, b_{24})$$

Motivação

A segunda previsão:

$$\begin{array}{c|cccc} \mathbf{Y} & \mathbf{A} & \mathbf{B} \\ \hline y_{24} & a_{12} & b_{12} \\ \hline y_{25} & a_{13} & b_{13} \\ y_{26} & a_{14} & b_{14} \\ \vdots & \vdots & \vdots \\ \hline y_{36} & a_{24} & b_{24} \\ \hline y_{37} & a_{25} & b_{25} \\ \vdots & \vdots & \vdots \end{array} \right\} \hat{f}_{37}(.$$

$$\hat{y}_{37} = \hat{f}_{37}(a_{25}, b_{25})$$

Motivação

A terceira previsão:

$$\begin{array}{c|ccccc} \mathbf{Y} & \mathbf{A} & \mathbf{B} \\ \hline y_{24} & a_{12} & b_{12} \\ y_{25} & a_{13} & b_{13} \\ \hline y_{26} & a_{14} & b_{14} \\ y_{27} & a_{15} & b_{15} \\ \vdots & \vdots & \vdots \\ y_{37} & a_{25} & b_{25} \\ \hline y_{38} & a_{26} & b_{26} \\ \vdots & \vdots & \vdots \\ \end{array} \right\} \hat{f}_{38}(.)$$

$$\hat{y}_{38} = \hat{f}_{38}(a_{26}, b_{26})$$

Na monografia:

- 83 variáveis explicativas
- janela de tamanho 121

Modelos Estatísticos

De que maneiras podemos calcular $\hat{f}(.)$?

Regressão Linear é útil?

Regressão Linear

$$y_t = \beta_0 + \beta_1 x_t + u_t$$
$$\hat{y}_t = \hat{\beta}_0 + \hat{\beta}_1 x_t$$

Regressão Linear

- Coeficientes $(\hat{\beta}_0, \hat{\beta}_1)$: min $(\sum_t (y_t \hat{y}_t)^2)$
- **Problemas**

Modelos Estatísticos

- 4 modelos:
 - **♠** LASSO
 - 2 Ridge
 - 3 Random Forest (RF)
 - 4 Complete Subset Regression (CSR)

Lasso e Ridge

Penalizam variáveis irrelevantes.

- LASSO: $\min\{\sum_t (y_t \hat{y}_t)^2 + \lambda \sum_i |\beta_i|\}$
- Ridge: $\min\{\sum_t (y_t \hat{y}_t)^2 + \lambda \sum_i \beta_i^2\}$

Complete Subset Regression

- fixa quantidade de variáveis explicativas.
- 2 Calcula diversas regressões lineares.
- 3 Extrai a média das previsões geradas nas regressões.

Qual o problema???

- 83 variáveis explicativas.
- Se cada regressão tivesse apenas 4 variáveis explicativas:

$$\binom{83}{4} = \frac{83!}{4!(83-4)!}$$

• Quase 2 milhões possíveis modelos

Complete Subset Regression

- Por fim, como faço 60 previsões com janela rolante, teria que computar 120 milhões de modelos.
- Pacote HDeconometrics

- 1 Seleciona diversas combinações diferentes de variáveis
- 2 Seleciona aleatoriamente algumas observações
- 3 Gera árvores de regressões
- 4 Computa a média das previsões das árvores de decisões

$$\frac{1}{B} \sum_{b=1}^{B} T_b^*(\mathbf{X})$$

- 1 Motivação

- 4 Estimação
- 6 Resultados

Vamos usar o RMSE (root mean squared error) das 60 previsões para comparar suas performances.

$$RMSE_{m} = \sqrt{\frac{1}{T - T_{0} + 1} \sum_{t=T_{0}}^{T} \hat{e}_{t,m}^{2}}$$

RMSE

	RF	LASSO	CSR	Ridge
2	1.726	1.622	2.237	2.491
3	1.753	1.791	2.210	2.116
4	1.805	1.791	2.197	4.656
5	1.805	3.888	2.179	5.703
6	1.766	2.232	2.162	7.448
7	1.776	14.115	2.140	13.554
8	1.725	15.644	2.127	13.916
9	1.737	3.128	2.153	11.421
10	1.746	3.345	2.204	3.950
11	1.739	1.801	2.214	2.761
12	1.719	1.653	4.722	2.789

RMSE normalizado pelo FOCUS

	RF	LASSO	CSR	Ridge
2	0.508	0.477	0.658	0.733
3	0.516	0.527	0.650	0.623
4	0.531	0.527	0.647	1.370
5	0.531	1.144	0.641	1.678
6	0.520	0.657	0.636	2.192
7	0.523	4.154	0.630	3.989
8	0.508	4.604	0.626	4.096
9	0.511	0.921	0.634	3.361
10	0.514	0.984	0.649	1.163
11	0.512	0.530	0.652	0.813
12	0.506	0.486	1.390	0.821