20250423_AKIB2_Python

Villalba-Diez, J., Ordieres-Meré, J., Chudzick, H., Lopez-Rojo, P. (2015). NEMAWASHI: Attaining Value Stream alignment within Complex Organizational Networks. Procedia CIRP, 37, 134--139. https://doi.org/10.1016/j.procir.2015.08.021

.. NEMAWASHI Den Boden vorbereiten.

Mit der Methodik beschreiben die Organisationsdynamik. Wir wandeln die bestehende Management Information vm.

Annahme ist: wis haben eine Liste von Kennzahlen als Funktion von der Zeit. Diese Kennzahlen nennen wir KPIs (Key Performance Indicators).

KPI := KPI: (t) i=1,..., n

Jede kennzahl
beschreibt NUR ein
Feilder Vonindshifat des
Rose Bes.

Variabilität: VAR(KPI)= SKPI:-KPI)2 This bringing Stk/E

Bestande

Beispie Annendung Nemanashi:

policy in the Manney				
	avality [Q] (ppm)	Delivery Rate [DR] (%)	Cost [C] £/stuck	
kwj	3300	91	17	
Kw2	2700	93	18	
Kw3	1800	89	16	
Kwy	1500	92	\5	
KW5	1300	95	16	

Schriff. 1. NORMIEREN in der ZEITACHSE. Januit ich die KPis vergleiche Kann.

Normalize* 1:
$$x_i^* = \frac{x_i - x}{\sigma_x}$$
 $\rightarrow N(0,1)$

Normalize* 2:
$$x_i = \frac{x_i - x_{min}}{x_{max} - x_{min}} \longrightarrow \mathbb{E}\left[0, 1\right]$$

1	avality [a]	Dilivery Rate [DR]	Cost [C] f/stuck
kwj	3300	91	17
Kw2	2700	93	18
kw3	1800	89	16
Kwy	1500	92	15
KWS	1300	95	16

	Q*	DR*	c*
kw,	3300 - 300 3300 - 300	91-89 = 0133	17-15 = 0'66
kw2	2700-1300 = 017	93-89 = 0'66	18-15 = 1
Kwz	1800-1300 = 0125 3300-1300	89-89 _{= 0}	$\frac{16-15}{18-15} = 0^{1}33$
KW4	1500-1300 = 01 3300-1300	$\frac{92-89}{95-89} = 0.5$	15-15 = 0
kw5	1300-1300 = 0 3300-1300	95-89 = 1	16-15 =0'33 18-15

Nur Könnten wir die laten in einer 3D Graphik darstellen.

Weil eine 3D Darstellung sehr schwer zu interpretieren

	*	- 4	7
_	*	DR*	c*
kw,	3300 - 300 3300 - 300 =	91-89 95-89=0133	17-15 = 0'66 18-15
kw2	2700-1300 3300-1300	93-89 = 0166	$\frac{18-15}{18-15}=1$
kwz	1800-1300 = 0125 3300-1300	89-89 = 0	16-15 = 0133 18-15
KW4	1500-1300 = 01 3300-1300	$\frac{92-89}{95-89} = 0^{1}5$	15-15 = 0
kw5	1300-1300 = 10 3300-1300	<u>95-89</u> = 1	16-15 =0'33
	1 1. 5.1		1.1 1 11

Q**

DR**

$$|KW| = \frac{1}{1 + 0^{1}33 + 0^{1}66} = 0^{1}5$$
 $\frac{0^{1}33}{1 + 0^{1}33 + 0^{1}66} = 0^{1}67$ $\frac{0^{1}66}{1 + 0^{1}33 + 0^{1}66} = 0^{1}33$

$$kw2 \frac{o'7}{o'7+0'66+1} = o'297 \frac{0.066}{o'7+0'66+1} = o'28 \frac{1}{o'7+o'66+1} = o'42$$

$$\frac{0.06}{0.7+0.66+1} = 0.28$$

$$\frac{1}{0'7+0'66+1}=0'42$$

$$kw3$$
 $\frac{0'25}{0'25+0+0'33} = 0'43$ $\frac{0}{0'25+0+0'33} = 0$ $\frac{0'33}{0'25+0+0'33} = 0'57$

$$\frac{0}{0'25+0+0'33}=0$$

$$kw4$$
 $\frac{o^{1}}{o^{1}+o^{1}5+o} = o^{1}67$ $\frac{o^{1}5}{o^{1}+o^{1}5+o} = o^{1}833$ O

$$\frac{0' + 0' 5 + 0}{0' + 10' 5 + 0} = 0' 75 \qquad \frac{0' 33}{0 + 1 + 0' 33} = 0' 25$$

$$\frac{1}{0 + 1 + 0' 33} = 0' 1 =$$

|CW2-CW3 | < |CW3-CW4 | -> Alos CN4-CWS -> Abstanle werden Weiner, das Systemist in Alignment. CW3-CW4