Opérades

1 Motivation

En mathématiques, on s'intéresse beaucoup aux algèbres :

- Algèbre associative $A = \mathbb{k}$ -ev $+ \mu : A \otimes A \to A$ to $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- Algèbre commutative $A = \mathbb{k}$ -ev $+ \mu : A \otimes A \to A$ tq $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ et $b \cdot a = a \cdot b$.
- Algèbre de Lie $\mathfrak{g}=\mathbb{k}$ -ev + $\lambda:\mathfrak{g}\otimes\mathfrak{g}\to\mathfrak{g}$ tq [a,[b,c]]=[[a,b],c]+[b,[a,c]] et [b,a]=-[a,b].
- Algèbres BV = \mathbb{k} -ev $A + \mu$ commut + λ Lie + Δ presque dérivation.

Points communs:

- Des « générateurs », opérations d'une certaine arité $(\mu, \lambda, \eta...)$
- Des « symétries » $\mu(y, x) = \dots$
- Des « relations ».

But : unifier ces différents « types d'algèbres » dans un cadre commun et trouver un objet associé au type dont les représentations sont les algèbres.

Par exemple : « les algèbres commutatives sont les algèbres sur l'opérade Com. »

Pourquoi? Par exemple, on peut regarder les ev munis d'une involution, ou les représentations de $\mathbb{Z}/2\mathbb{Z}$. On peut regarder les ev munis de $S, T \in \text{End}(V)$ tq $S^4 = 1$ et $(ST)^3 = S^2$, ou bien on peut regarder les représentations de $SL_2(\mathbb{Z})$... Et qu'est-ce qu'on fait quand on n'a pas de présentation simple, e.g. $GL_n(\mathbb{R})$?

2 Définition

L'idée : regarder toutes les opérations qui découlent de la définition de notre type d'algèbre, par exemple $(a,b,c) \mapsto a \cdot (b \cdot c)$, $(a,b,c,d) \mapsto [b,\Delta d] \cdot (a \cdot (c \cdot 1))...$ Et après au lieu de dire « pour toute algèbre machin on a ces équations », on a directement les équations dans l'opérade. Ça permet par exemple de faire des liens entre les opérades (genre quotient).

L'exemple fondamental : End_X pour un objet X. Comme vous voyez à chaque fois on a des choses qui « prennent en entrée » un certain nombre d'éléments de X et en ressortent un. On va calquer la définition d'une opérade sur End_X .

G	End_X	P
G(1) = G	$\operatorname{End}_X(n) = \operatorname{Map}(X^n, X)$	P(n)
$g \in G \leadsto \rho_g : X \to X$	$f\in \operatorname{End}_X(n) \leadsto f: X^n \to X$	$\operatorname{Alg\`ebres}:\mathtt{P} o \mathtt{End}_X$
$e_G \in G$	$\mathrm{id}_X\in \mathtt{End}_X(1)$	$1_{\mathtt{P}} \in \mathtt{P}(1)$
n/a	$(f \cdot \sigma)(x_1, \dots, x_n) = f(x_{\sigma(1)}, \dots, x_{\sigma(n)})$	$\mathfrak{S}_n \curvearrowright \mathtt{P}(n)$
$G \times G \to G$	Composition : arbre	$P(r) \times \prod P(k_i) \to P(\sum k_i)$

3 Exemples

Un groupe (ou plus généralement un monoïde, ou une algèbre associative) G induit une opérade P_G en posant $P_G(1) = G$ et \emptyset sinon. Les algèbres sur P_G sont exactement les représentations de G.

L'opérade des monoïdes commutatifs : $Com(r) = \{\mu_r\}$ pour $r \geq 1$, et le groupe symétrique agit trivialement. En effet, étant donnés (a_1, \ldots, a_r) , il n'y a qu'une seule manière de les multiplier, quel que soit l'ordre, vu que tout commute.

L'opérade des monoïdes : $\mathtt{Ass}(r) = \mathfrak{S}_r \cdot \{\mu_r\}$, avec l'action évidente du groupe symétrique. Quand on veut multiplier r éléments, seul leur ordre compte. Il existe un morphisme $\mathtt{Ass} \to \mathtt{Com} \iff$ tout monoïde commutatif est un monoïde.

On peut définir les opérades par générateurs et relations (plutôt dans un contexte algébrique en général). Lie : opérade engendrée par λ en arité 2 avec $\lambda(y,x) = -\lambda(x,y)$ et $\lambda(x,\lambda(y,z)) = \lambda(\lambda(x,y),z) + \lambda(y,\lambda(x,z))$. Quand on calcule Lie(n) on retombe sur des résultats combinatoires concernant les algèbres de Lie (dim Lie(n) = (n-1)!). \exists Lie \rightarrow Ass. Parler de Lie-admissible?

Généralisations : opérades non symétriques, coopérades, PROPs, opérades colorées = multicatégories, ∞-opérades, opérades cycliques...

Remarque. Le mot « opérade » est la contraction de « operation monad ». Pour ceux qui sont allés à l'exposé d'Andrea la semaine dernière, une opérade P induit une monade (la monade « algèbre libre sur P ») dont les algèbres sont exactement les algèbres sur P.

4 Opérades E_n

4.1 Principe de reconnaissance

En topologie algébrique, on s'intéresse beaucoup aux espaces de lacets (faire un dessin):

$$\Omega X = \{ \gamma : [0, 1] \to X \mid \gamma(0) = \gamma(1) = x_0 \}$$

$$\Omega^n X = \{ \gamma : [0, 1]^n \to X \mid \gamma(\partial[0, 1]^n) = x_0 \}$$

La question est : quand est-ce qu'un espace Y « est » un espace de lacets (itérés)? La réponse est donnée par les opérades.

 $\frac{1}{2}$ $\frac{3}{2}$ $\in C_1(3)$

On définit l'opérade des petits cubes C_n de manière visuelle. Formellement,

$$C_n(r) = \{(\alpha_1, \dots, \alpha_r) \mid \alpha_i : [0, 1]^n \hookrightarrow [0, 1]^n \text{ est rectiligne et } \alpha_i(]0, 1[^n) \cap \alpha_j(]0, 1[^n) = \emptyset \forall i \neq j\}$$

Proposition. C_n est une opérade, et $\Omega^n X$ est une algèbre sur C_n .

Expliquer pourquoi avec un dessin.

Théorème (Boardman-Vogt, May). Si Y est une algèbre sur C_n connexe par arcs, alors $\exists X \ t.q. \ Y \simeq \Omega^n X$.

4.2 Algèbres A_{∞}

La concaténation des lacets dans ΩX n'est pas *strictement* associative : on a juste $(\alpha\beta)\gamma \sim \alpha(\beta\gamma)$. De même $\alpha\alpha^{-1} \sim e_{\Omega X}$ mais pas =. A priori c'est donc juste un H-groupe. Mais on a en fait plus de structure, encodée par l'opérade C_1 : un monoïde associatif à homotopie cohérente près.

C'est plus facile de regarder la sous-opérade des associahèdres [Stasheff] $A_{\infty} \subset C_1$. On a $A_{\infty}(1) = A_{\infty}(2) = *$. En arité 3 c'est un segment, en arité 4 un pentagone, et après je ne sais pas le dessiner. $A_{\infty}(r)$ est contractible (convexe), donc il n'y a « qu'un seul moyen » de passer d'un parenthésage à un autre.

Quel intérêt? On peut parler d'algèbres A_{∞} dans toute catégorie raisonnable. Il arrive souvent que l'on ait des structures associatives mais seulement à homotopie près, et il n'est pas toujours bon de vouloir les strictifier. $(\infty, 1)$ -catégories, A_{∞} -catégories... Les associateurs ne sont pas toujours triviaux et fournissent des informations intéressantes.

Un autre intérêt : en général si $X \simeq Y$ et que Y est un monoïde topologique, on ne peut pas forcément trouver une structure de monoïde topologique sur X qui soit équivalente à celle de Y. On peut cependant trouver une structure A_{∞} sur X qui est équivalente à la structure A_{∞} sur Y (je triche un peu) induite par $A_{\infty} \to \mathtt{Ass}$! C'est un exemple de ce qu'on appelle le transfert homotopique.

4.3 Algèbres E_n , $n \geq 2$

Théorème (Eckmann–Hilton). Soit X un ensemble muni de deux structures de monoïde (avec la même unité pour simplifier) compatibles : $(a \cdot b) * (c \cdot d) = (a * c) \cdot (b * d)$. Alors $\cdot = *$ est commutatif.

$$\begin{array}{lll} \textit{D\'{e}monstration.} \ a \cdot b = (a * 1) \cdot (1 * b) = (a \cdot 1) * (1 \cdot b) = a * b = (1 \cdot a) * (b \cdot 1) = (1 * b) \cdot (a * 1) = b \cdot a \end{array}$$

Quel rapport? On a deux structures de monoïde dans $\Omega^2 X$: la composition horizontale et la composition verticale, et les deux sont compatibles (cf. dessin). On peut adapter l'argument pour montrer qu'elles sont égales à homotopie près et commutatives! Voir la preuve graphique. D'ailleurs, toutes ces preuves graphiques ont lieu dans C_2 : on peut étendre l'argument à toutes les C_2 -algèbres.

Mais tout n'est pas rose : si on applique deux fois l'homotopie de commutativité $\alpha\beta \rightsquigarrow \beta\alpha \rightsquigarrow \alpha\beta$, on a effectué une opération non-triviale. En effet, $C_2(2) \simeq S^1$, et il peut y avoir des obstructions à ce que la multiplication soit commutative de manière cohérente.

Chaque cran supplémentaire $C_n \leadsto C_{n+1}$ rajoute « un niveau » de commutativité, et à la limite il existe une opérade C_∞ dont les algèbres sont les espaces munis d'une multiplication associative et commutative à homotopie cohérente près, et l'unique morphisme $C_\infty \to Com$ est une équivalence.

Le principe de reconnaissance s'étend à C_{∞} : si X est une algèbre (connexe par arcs) sur C_{∞} , alors il existe une suite d'espaces Y_k telle que $Y_0 = X$ et $Y_k \simeq \Omega Y_{k+1}$. (Pour ceux qui connaissent, c'est un Ω -spectre.) Il y a également une version pour E_{∞} du transfert homotopique.