Pautes de correcció

Física

Sèrie 2

P1

a)
$$F = G \frac{mM}{r^2} \Rightarrow g = G \frac{M}{R^2}$$

$$\begin{cases}
\text{Terra } g_T = G \frac{M_T}{R_T^2} \\
\text{Júpiter } g_J = G \frac{M_J}{R_J^2}
\end{cases}$$
; $g_T \frac{R_T^2}{M_T} = g_J \frac{R_J^2}{M_J}$ [0,5]

$$g_J = g_T \frac{R_T^2}{R_J^2} \frac{M_J}{M_T} = 9.8 \cdot \left(\frac{6378 \cdot 10^3}{71492 \cdot 10^3}\right)^2 \cdot 318 = 24.8 \frac{\text{m}}{\text{s}^2}$$
 [0,5]

La resolució d'aquest problema es valorarà correctament si, en lloc de seguir el procediment anterior, es resol utilitzant el valor numèric de G, malgrat no es doni en l'enunciat.

$$g_J = G \frac{M_J}{R_J^2}$$
 [0,5]; $g_J = 24.8 \,\text{m/s}^2$ [0,5]

b)
$$\frac{1}{2}mv_e^2 = mg_JR_J$$
 [0,5]; $v_e = \sqrt{2g_JR_J} = \sqrt{2\cdot24.8\cdot71492\cdot10^3} = 59.548\frac{\text{m}}{\text{s}}$ [0,5]

c) tercera llei de Kepler:
$$T^2 = \frac{4\pi^2}{GM_s}R^3$$

$$\left(\frac{T_J}{T_T}\right)^2 = \left(\frac{R_J}{R_T}\right)^3$$
 [0,6] $\Rightarrow T_J = T_T \left(\frac{R_J}{R_T}\right)^{\frac{3}{2}} = 11.81 \,\text{anys}$ [0,4]

Q1

$$W = \Delta E_m = E_{final} - E_{inicial}$$
 [0,3]; $W = \frac{1}{2} m v_f^2 - mg h_i = \frac{1}{2} \cdot 20 \cdot 15^2 - 20 \cdot 9, 8 \cdot 25 = -2.650 J$ [0,7]. L'energia perduda és igual a l'energia dissipada pel fregament.

Q2

La força és perpendicular a la velocitat i, per tant, no produeix treball, modifica la direcció de la velocitat de la partícula però no el seu mòdul. Així, l'acceleració tangencial de la pertícula és nul·la. Les partícules descriuran un moviment circular uniforme. Les trajectòries seran dues circumferències.

[0,2] (Les trajectòries no estan fetes a escala).

La força magnètica, F = qvB, proporciona la força centrípeta;

$$qvB = m\frac{v^2}{R}$$
 \Rightarrow $R = \frac{mv}{qB}$ [0,2]; $\frac{R_p}{R_e} = \frac{m_p}{m_e} = \frac{1,67 \cdot 10^{-27}}{9,11 \cdot 10^{-31}} = 1.833$ [0,2]

OPCIÓ A

P2 a)

representacions: \vec{F}_e [0,4]; \vec{T} [0,3]; \vec{P} [0,1]

q és negativa, ja que $\vec{F}_e = q\vec{E}$, $\vec{E} = -10^3 \hat{i}$ i la càrrega es desvia cap a la dreta. [0,2]

b) equilibri de la partícula: $F_y = T\cos 37 - p = 0$ [0,7]; $T = \frac{mg}{\cos 37} = \frac{0,250 \cdot 9,8}{\cos 37} = 3,07 \,\text{N}$ [0,3]

c) equilibri de la partícula: $F_x = -T \sin 37 + F_e = 0$ [0,5]

$$-T\sin 37 + qE = 0$$
 [0,2]; $q = \frac{T\sin 37}{E} = \frac{3.07 \cdot \sin 37}{-10^3} = -1.85 \cdot 10^{-3} \,\text{C}$ [0,3]

També es pot resoldre posant el mòdul de q i del camp: $-T\sin 37 + |q||E| = 0$ [0,2]; $|q| = 1.85 \cdot 10^{-3} \,\mathrm{C}$; $q = -1.85 \cdot 10^{-3} \,\mathrm{C}$ [0,3]

O3

$$\vec{F} = m\vec{a}$$
; $W = \int_{inicial}^{final} \vec{F} \cdot d\vec{\ell} = \int_{inicial}^{final} F \, dx = \text{àrea sota el gràfic F-x} = m(\text{àrea sota el gràfic a-x})$ [0,6] (no cal que, a la resposta, s'expliciti que s'ha de fer una integral) $W = 10 \cdot \frac{20 \cdot 8}{2} = 800 \text{ J}$ [0,4]

Q4

a)
$$hv_{\text{incident}} = hv_{\text{llindar}} + E_c$$
 [0,2]

$$E_c = h(v_{\text{incident}} - v_{\text{llindar}}) = 6,62 \cdot 10^{-34} (1,5 \cdot 10^{15} - 1,1 \cdot 10^{15}) = 2,65 \cdot 10^{-19} \text{ J}$$
 [0,3]

b) energia de la radiació incident: E = hv; però $c = \lambda v$

$$E = hv = h\frac{c}{\lambda} = 6,62 \cdot 10^{-34} \frac{3 \cdot 10^8}{3 \cdot 10^{-7}} = 6,62 \cdot 10^{-19} \text{ J} \quad [0,1]$$

Energia llindar $E = hv_{\rm llindar} = 6,62 \cdot 10^{-34} \cdot 1,1 \cdot 10^{15} = 7,28 \cdot 10^{-19} \, {\rm J}$ [0,1]

No es produirà efecte fotoelèctric ja que l'energia dels fotons de la llum incident és menor que l'energia llindar (que és l'energia mínima perque es produeixi l'efecte fotoelèctric). [0,3]

Resposta alternativa: $f = \frac{c}{\lambda} = \frac{3 \cdot 10^8}{3 \cdot 10^{-7}} = 1 \cdot 10^{15} \,\text{Hz}$ [0,2];

com que $f < f_{\rm llindar} \Rightarrow E_{\rm incident} < E_{\rm llindar}$, no es produirà efecte fotoelèctric [0,3]

Pautes de correcció

Física

OPCIÓ B

a)
$$m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1 + m_2 \vec{v}_2$$
 [0,3]

$$2 \cdot (2, -3) + 4 \cdot (-3, -3) = 2 \cdot (-3, -2) + 4\vec{v}'_2 \implies \vec{v}'_2 = \left(-\frac{1}{2}, -\frac{7}{2}\right)$$
 [0,5]

$$v'_2 = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(-\frac{7}{2}\right)^2} = 3,54\frac{m}{s}$$
 [0,2]

b)
$$v_1 = \sqrt{2^2 + (-3)^2} = \sqrt{13} \text{ m/s}$$
; $v_2 = \sqrt{(-3)^2 + (-3)^2} = \sqrt{18} \text{ m/s}$; $v'_1 = \sqrt{(-3)^2 + (-2)^2} = \sqrt{13} \text{ m/s}$ [0,2]

$$E_{c} = \frac{1}{2} m_{1} v_{1}^{2} + \frac{1}{2} m_{2} v_{2}^{2} = \frac{1}{2} \cdot 2 \cdot 13 + \frac{1}{2} \cdot 4 \cdot 18 = 49 \,\mathrm{J}$$

$$E'_{c} = \frac{1}{2} m_{1} v_{1}^{'2} + \frac{1}{2} m_{2} v_{2}^{'2} = \frac{1}{2} \cdot 2 \cdot 13 + \frac{1}{2} \cdot 4 \cdot 3,54^{2} = 38 \,\mathrm{J}$$
[0,3] $E_{c} \neq E'_{c}$, el xoc no és elàstic [0,5]

[0,3]
$$E_c \neq E'_c$$
, el xoc no és elàstic [0,5]

c)
$$E_{c1} = \frac{1}{2} m_1 v_1^2 - \frac{1}{2} m_1 v_1^2 = \frac{1}{2} \cdot 2 \cdot (13 - 13) = 0 \text{ J}$$
 [0,5]

$$E_{c2} = \frac{1}{2}m_2v_2^2 - \frac{1}{2}m_2v_2^2 = \frac{1}{2}\cdot 4\cdot (3,54^2 - 18) = -11$$
 [0,5]

Les dues güestions de l'opció B puntuen entre totes dues un mínim de 0 punts i un màxim de 2 punts. Una resposta correcta es puntua amb 0,50 punts, una resposta en blanc són 0 punts i una resposta errònia es puntual amb -0,25 punts. Si la suma de les notes de les dues güestions és negativa puntueu amb un zero. No poseu puntuacions totals negatives

Q3

1. A

2. C

Q4

1. B

2. C

Física

Sèrie 5

P

a))
$$E_{\text{total}} = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$$
 [0,4]
$$\omega = \frac{2\pi}{T} = \frac{2\pi}{0.75} = 8.38 \frac{\text{rad}}{\text{s}}$$
 [0,1]; $k = m\omega^2 = 2 \cdot 8.38^2 = 140 \text{ N/m}$ [0,3]
$$\frac{1}{2}mv^2 = \frac{1}{2}kA^2 - \frac{1}{2}kx^2 = \frac{1}{2} \cdot 140 \cdot (0.25^2 - 0.10^2) = 3.7 \text{ J}$$
 [0,2]

Solució alternativa: $x = A\cos(\omega t + \theta_0)$

El sentit positiu de les X és cap a la dreta. La posició d'equilibri correspon a x=0. condicions inicials: t=0; $A=A\cos(0+\theta_0)$ \Rightarrow $\cos\theta_0=1$ \Rightarrow $\theta_0=0$ [0,2]

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{0.75} = 8.38 \frac{\text{rad}}{\text{s}}$$
 [0,1]

per $x_1 = 0.10 \,\mathrm{m}$: $0.10 = 0.25 \,\mathrm{cos} \,\omega t \implies \omega t = \pm 1.16 \,\mathrm{rad}$ [0,2]

$$v = \dot{x} = -A\omega \sin(\omega t)$$
 [0,1]

per $x_1 = 0.10 \,\mathrm{m}$ (i es mou cap a la dreta); $v_1 = -0.25 \cdot 8.38 \sin(-1.16) = 1.92 \,\mathrm{m/s}$ [0,3]

$$E_c = \frac{1}{2}mv^2 = \frac{1}{2} \cdot 2 \cdot 1,92^2 = 3,7 \text{ J} \text{ [0,1]}$$

b)
$$E_m = E_c + E_p = \frac{1}{2} m v_{\text{max}}^2 = \frac{1}{2} m (A\omega)^2$$
 [0,7]; $E_m = \frac{1}{2} \cdot 2 \cdot (0,25 \cdot 8,38)^2 = 4,4 \text{ J}$ [0,3]

[0,4]

Solució alternativa: $E_{\text{total}} = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$ [0,7]; $E_{\text{total}} = \frac{1}{2}\cdot140\cdot0,25^2 = 4,4\,\text{J}$ [0,3]

c) $F = ma = m\omega^2 x$ [0,4]; $F_1 = 14,04 \text{ N}$ [0,2]

Q1

segona llei de Kepler: $T^2 = CR^3$

Terra: $T_T^2 = CR_T^3$; Júpiter: $T_I^2 = CR_I^3$ [0,4]

$$\left(\frac{T_J}{T_T}\right)^2 = \left(\frac{R_J}{R_T}\right)^3$$
 [0,3]; $\Rightarrow R_J = R_T \left(\frac{T_J}{T_T}\right)^{\frac{2}{3}} = 771 \cdot 10^6 \text{ km}$ [0,3]

Q2

$$Mv = 2Mv' \implies v' = v/2$$
 [0,5]

energia perduda(%) =
$$\frac{E_{\text{inicial}} - E_{\text{final}}}{E_{\text{inicial}}} \cdot 100 = \frac{\frac{1}{2}Mv^2 - \frac{1}{2}(2M)v^{\frac{2}{2}}}{\frac{1}{2}Mv^2} \cdot 100 = 50\%$$
 [0,5]

Física

OPCIÓ A

P2

$$\vec{E}(P) = \vec{E}_1 + \vec{E}_2 = 0 \implies E_1 = E_2$$
 [0,2];

$$E = k \frac{|q|}{r^2}$$
; $E_1 = 9.10^9 \frac{2.10^{-6}}{x^2}$ [0,2]; $E_2 = 9.10^9 \frac{20.10^{-6}}{(2-x)^2}$ [0,3];

$$E_1 = E_2 \implies \frac{2}{x^2} = \frac{20}{(2-x)^2} \implies 9x^2 + 4x - 4 = 0 \implies x = \begin{cases} 0,48 \text{ m} \\ -0.93 \text{ m} \end{cases}$$
 [0,2]

la solució negativa no té sentit en aquest cas [0,1]

b)
$$V = k \frac{q}{r}$$
; $V_1 = 9 \cdot 10^9 \cdot \frac{2 \cdot 10^{-6}}{0,20} = 90 \cdot 10^3 \text{ V}$ [0,4]; $V_2 = 9 \cdot 10^9 \cdot \frac{20 \cdot 10^{-6}}{1,80} = 100 \cdot 10^3 \text{ V}$ [0,4];

$$V = V_1 + V_2 = 190 \cdot 10^3 \text{ V}$$
 [0,2]

c)
$$U_p = k \frac{Q_1 Q_2}{d}$$
 [0,4]; $U_p = 9 \cdot 10^9 \cdot \frac{2 \cdot 10^{-6} \cdot 20 \cdot 10^{-6}}{2} = 0.18 \text{J}$ [0,6]

Q3

[0,1]

$$\Phi = 100 - 20t$$
 [0,4]; $\varepsilon = -\frac{d\Phi}{dt}$ [0,2]; $\varepsilon = 20 \text{ V}$ [0,3]

Q4

$$F_{
m centripeta} = F_{
m fregament}$$
 ; $m\omega^2 r = \mu mg$ [0,5]

$$\omega = \frac{120}{\pi} \text{rpm} = \frac{120}{\pi} \frac{\text{rev}}{\text{min}} \cdot \frac{1 \text{min}}{60 \text{s}} \cdot \frac{2\pi \text{ rad}}{1 \text{ rev}} = 4 \frac{\text{rad}}{\text{s}} \quad [0,3]$$

$$r = \frac{\mu g}{\omega^2} = \frac{0.5 \cdot 9.8}{4^2} = 0.31 \text{m}$$
 [0,2]

Pautes de correcció

Física

OPCIÓ B

P2

$$H = L - L\cos 60 = 0.5 \,\mathrm{m}$$

$$\begin{cases} L\cos 60 & M_1gH = \frac{1}{2}M_1v_1^2 \implies v_1 = \sqrt{2gH} = \sqrt{2\cdot9,8\cdot0,5} = 3,13\frac{\text{m}}{\text{s}} \text{ [0,2]} \\ & \text{en el xoc: } M_1v_1 = M_1v_1' + M_2v_2' \text{ [0,3]} \end{cases}$$

$$\overset{L}{M_2} & \text{xoc elàstic: } \frac{1}{2}M_1v_1^2 = \frac{1}{2}M_1v_1'_1^2 + \frac{1}{2}M_2v_2'_2^2 \text{ [0,3]}$$

$$0, 2 \cdot 3, 13 = 0, 2 \cdot v'_{1} + 0, 4 \cdot v'_{2}
0, 2 \cdot 3, 13^{2} = 0, 2 \cdot v'_{1}^{2} + 0, 4 \cdot v'_{2}^{2}$$

$$v'_{1} = 1, 04 \frac{m}{s}; \quad v'_{2} = 2, 09 \frac{m}{s} \quad [0,2]$$

b)
$$\Delta p = M_1 v'_1 - M_1 v_1 = M_1 (v'_1 - v_1) = 0.2 \cdot (1.04 - 3.13) = -0.42 \frac{\text{kg m}}{\text{s}}$$
 [0,8] + [0,2] (unitats)

c) després del xoc:
$$E_2 = \frac{1}{2} M_2 v'^2 = \frac{1}{2} \cdot 0, 4 \cdot 2, 09^2 = 0,87 \text{ J}$$
 [0,2]

$$E_2 = M_2 g H_2$$
 [0,4]; $H_2 = \frac{E_2}{M_2 g} = \frac{0.87}{0.4 \cdot 9.8} = .22 \,\text{m}$ [0,4]

Les dues questions de l'opció B puntuen entre totes dues un mínim de 0 punts i un màxim de 2 punts. Una resposta correcta es puntua amb 0,50 punts, una resposta en blanc són 0 punts i una resposta errònia es puntual amb -0,25 punts. Si la suma de les notes de les dues qüestions és negativa puntueu amb un zero. No poseu puntuacions totals negatives

Q3

1. C

2. B

Q4

1. B 2. A