

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer: **0 545 099 A2**

⑫

EUROPÄISCHE PATENTANMELDUNG

⑬ Anmeldenummer: **92119105.2**

⑮ Int. Cl. 5: **C07D 213/82, C07D 231/14,
C07D 277/56, C07D 263/34,
C07D 307/68, C07D 309/28,
C07D 327/06, C07C 233/64,
A01N 37/22, A01N 43/00**

⑭ Anmeldetag: **07.11.92**

⑯ Priorität: **22.11.91 DE 4138387
18.02.92 DE 4204764
18.02.92 DE 4204766
18.02.92 DE 4204767
18.02.92 DE 4204768**

⑰ Veröffentlichungstag der Anmeldung:
09.06.93 Patentblatt 93/23

⑱ Benannte Vertragsstaaten:
**AT BE CH DE DK ES FR GB GR IE IT LI NL PT
SE**

⑲ Anmelder: **BASF Aktiengesellschaft
Carl-Bosch-Strasse 38
W-6700 Ludwigshafen(DE)**

⑳ Erfinder: **Eicken, Karl, Dr.**

**Am Huettenwingert 12
W-6706 Wachenheim(DE)
Erfinder: Goetz, Norbert, Dr.
Schoefferstrasse 25
W-6520 Worms 1(DE)
Erfinder: Harreus, Albrecht, Dr.
Telchgasse 13
W-6700 Ludwigshafen(DE)
Erfinder: Ammermann, Eberhard, Dr.
Von Gagern-Strasse 2
W-6148 Heppenheim(DE)
Erfinder: Lorenz, Gisela, Dr.
Erlenweg 13
W-6730 Neustadt(DE)
Erfinder: Rang, Harald, Dr.
Maximilianstrasse 30
W-6700 Ludwigshafen(DE)**

㉑ Säureanilid-Derivate und Ihre Verwendung zur Bekämpfung von Botrytis.

㉒ Verwendung von Nicotinsäureanilid-Derivaten der allgemeinen Formel

I,

in der die Substituenten folgende Bedeutung haben:

R¹ Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl

R² gegebenenfalls durch Halogen substituiertes Alkyl, gegebenenfalls durch Halogen substituiertes Alkenyl, Alkinyl, gegebenenfalls durch Halogen substituiertes Alkoxi, gegebenenfalls durch Halogen substituiertes Alkenyloxi, Alkinyloxi, Cycloalkyl, Cycloalkenyl, Cycloalkyloxi, Cycloalkenyloxi zur Bekämpfung von Botrytis und Nicotinsäureanilide der Formel I.

Die vorliegende Erfindung betrifft die Verwendung von Säureanilid-Derivaten der allgemeinen Formel

- 10 in der A die folgenden Bedeutungen hat
 Pyridin-3-yl, substituiert in 2-Stellung durch Halogen, Methyl, Trifluormethyl, Methoxy, Methylthio, Methylsulfinyl, Methylsulfonyl,
 Phenyl, substituiert in 2-Stellung durch Methyl, Trifluormethyl, Chlor, Brom, Iod,
 2-Methyl-5,6-dihydropyran-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-
 15 yl-4-oxid, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4,4-dioxid; 2-Methyl-furan-3-yl, substituiert in 4- und 5-
 Stellung durch Wasserstoff oder Methyl; Thiazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor,
 Trifluormethyl; Thiazol-4-yl, substituiert in 2- und 5-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl;
 1-Methylpyrazol-4-yl, substituiert in 3- und 5-Stellung durch Methyl, Chlor, Trifluormethyl;
 Oxazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor und
- 20 R die folgenden Bedeutungen hat, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkyl, gegebenenfalls
 durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes
 C₂-C₁₂-Alkoxy, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxy, C₃-C₁₂-Alkinyloxy,
 gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substi-
 tiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxy, gege-
 benenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxy, gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-
 Alkoxy, C₁-C₄-Alkylthio, Halogen, substituiertes Phenyl,
 zur Bekämpfung von Botrytis.

Ferner betrifft die vorliegende Erfindung neue Ssäureanilid-Derivate.

Es ist bekannt, Nicotinsäureanilide, z.B. das 2-Chlornicotinsäure-2'-ethylanilid (US 4 001 416) oder das

- 30 2-Chlornicotinsäure-3'-isopropylanilid (DE 26 11 601) als Fungizide zu verwenden.

Es wurde nun gefunden, daß die eingangs definierten Säureanilid-Derivate eine gute Wirkung gegen Botrytis besitzen.

Im Hinblick auf ihre Wirksamkeit sind Verbindungen bevorzugt, in denen die Substituenten folgende Bedeutung haben:

- 35 Halogen z.B. Fluor, Chlor, Brom,
 Alkyl wie insbesondere Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dime-
 thylpropyl, 1-Ethylpropyl, n-Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl,
 40 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-2-methylpropyl, n-Heptyl, 1-Methylhexyl, 1-Ethylpentyl, 2-Ethylpentyl, 1-Propylbutyl, Octyl, Decyl, Dodecyl wobei das Alkyl ein bis drei der vorstehend genannten Halogenatome, insbesondere Fluor und Chlor tragen kann,
 Alkenyl, wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-
 45 butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butene,
 50 1,1-Dimethyl-3-butene, 1,2-Dimethyl-2-butene, 1,2-Dimethyl-3-butene, 1,3-Dimethyl-2-butene, 1,3-Dimethyl-2-butene, 1,3-Dimethyl-3-butene, 2,2-Dimethyl-3-butene, 2,3-Dimethyl-2-butene, 2,3-Dimethyl-3-butene, 1-Ethyl-2-butene, 1-Ethyl-3-butene, 2-Ethyl-2-butene, 2-Ethyl-3-butene, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl, insbesondere 2-Propenyl, 2-Butenyl, 3-Methyl-2-butene und 3-Methyl-2-pentenyl;
 wobei das Alkenyl ein bis drei der vorstehend genannten Halogenatome, insbesondere Fluor und Chlor
 55 tragen kann,
 Alkinyl wie 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1-Methyl-2-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Alkinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-penti-

- nyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl, 1,2-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl,
- 5 Alkoxy wie insbesondere Ethoxi, Propoxi, 1-Methylethoxi, Butoxi, 1-Methylpropoxi, 2-Methylpropoxi, 1,1-Dimethylethoxi, n-Pentyloxi, 1-Methylbutoxi, 2-Methylbutoxi, 3-Methylbutoxi, 1,2-Dimethylpropoxi, 1,1-Dimethylpropoxi, 2,2-Dimethylpropoxi, 1-Ethylpropoxi, n-Hexyloxi, 1-Methylpentylloxi, 2-Methylpentylloxi, 3-Methylpentylloxi, 4-Methylpentylloxi, 1,2-Dimethylbutoxi, 1,3-Dimethylbutoxi, 2,3-Dimethylbutoxi, 1,1-Dimethylbutoxi, 2,2-Dimethylbutoxi, 3,3-Dimethylbutoxi, 1,1,2-Trimethylpropoxi, 1,2,2-Trimethylpropoxi, 1-Ethylbutoxi, 2-Ethylbutoxi, 1-Ethyl-2-methylpropoxi, n-Heptyloxi, 1-Methylhexyloxi, 2-Methylhexyloxi, 3-Methylhexyloxi, 4-Methylhexyloxi, 5-Methylhexyloxi, 1-Ethylpentylloxi, 2-Ethylpentylloxi, 1-Propylbutoxi, Octyloxi, Decyloxi, Dodecyloxi, wobei das Alkoxy ein bis drei der vorstehend genannten Halogenatome, insbesondere Fluor und Chlor tragen kann,
- 10 Alkenyloxi wie 2-Propenyloxi, 2-Butenyloxi, 3-Butenyloxi, 1-Methyl-2-propenyloxi, 2-Methyl-2-propenyloxi, 2-Pentenyloxi, 3-Pentenyloxi, 4-Pentenyloxi, 1-Methyl-2-butenyloxi, 2-Methyl-2-butenyloxi, 3-Methyl-2-butenyloxi, 1-Methyl-3-butenyloxi, 2-Methyl-3-butenyloxi, 3-Methyl-3-butenyloxi, 1,1-Dimethyl-2-propenyloxi, 1,2-Dimethyl-2-propenyloxi, 1-Ethyl-2-propenyloxi, 2-Hexenyloxi, 3-Hexenyloxi, 4-Hexenyloxi, 5-Hexenyloxi, 1-Methyl-2-pentenyloxi, 2-Methyl-2-pentenyloxi, 3-Methyl-2-pentenyloxi, 4-Methyl-2-pentenyloxi, 1-Methyl-3-pentenyloxi, 2-Methyl-3-pentenyloxi, 3-Methyl-3-pentenyloxi, 4-Methyl-3-pentenyloxi, 1-Methyl-4-pentenyloxi, 2-Methyl-4-pentenyloxi, 3-Methyl-4-pentenyloxi, 4-Methyl-4-pentenyloxi, 1,1-Dimethyl-2-butenyloxi, 1,2-Dimethyl-2-butenyloxi, 1,3-Dimethyl-2-butenyloxi, 1,3-Dimethyl-3-butenyloxi, 2,2-Dimethyl-3-butenyloxi, 2,3-Dimethyl-2-butenyloxi, 2,3-Dimethyl-3-butenyloxi, 1-Ethyl-2-butenyloxi, 1-Ethyl-3-butenyloxi, 2-Ethyl-2-butenyloxi, 2-Ethyl-3-butenyloxi, 1,1,2-Trimethyl-2-propenyloxi, 1-Ethyl-1-methyl-2-propenyloxi und 1-Ethyl-2-methyl-2-propenyloxi, insbesondere 2-Propenyloxi, 2-Butenyloxi, 3-Methyl-2-butenyloxi, und 3-Methyl-2-pentenyloxi;
- 15 25 wobei das Alkenyloxy ein bis drei der vorstehend genannte Halogenatome, insbesondere Fluor und Chlor tragen kann.
- Alkinyloxi wie 2-Propinyloxi, 2-Butinyloxi, 3-Butinyloxi, 1-Methyl-2-propinyloxi, 2-Pentinyloxi, 3-Pentinyloxi, 4-Pentinyloxi, 1-Methyl-3-butinyloxi, 2-Methyl-3-butinyloxi, 1-Methyl-2-butinyloxi, 1,1-Dimethyl-2-propinyloxi, 1-Ethyl-2-propinyloxi, 2-Hexinyloxi, 3-Hexinyloxi, 4-Alkinyloxi, 5-Hexinyloxi, 1-Methyl-3-pentinyloxi, 1-Methyl-4-pentinyloxi, 2-Methyl-2-pentinyloxi, 3-Methyl-2-pentinyloxi, 4-Methyl-2-pentinyloxi, 1-Methyl-3-pentenyloxi, 2-Methyl-3-pentenyloxi, 3-Methyl-3-pentenyloxi, 4-Methyl-3-pentenyloxi, 1-Methyl-4-pentenyloxi, 2-Methyl-4-pentenyloxi, 3-Methyl-4-pentenyloxi, 4-Methyl-4-pentenyloxi, 1,1-Dimethyl-2-butenyloxi, 1,2-Dimethyl-2-butenyloxi, 1,3-Dimethyl-2-butenyloxi, 1,3-Dimethyl-3-butenyloxi, 2,2-Dimethyl-3-butenyloxi, 2,3-Dimethyl-2-butenyloxi, 2,3-Dimethyl-3-butenyloxi, 1-Ethyl-2-butenyloxi, 1-Ethyl-3-butenyloxi, 2-Ethyl-2-butenyloxi, 2-Ethyl-3-butenyloxi, 1,1,2-Trimethyl-2-propenyloxi, 1-Ethyl-1-methyl-2-propenyloxi und 1-Ethyl-2-methyl-2-propenyloxi, insbesondere 2-Propinyloxi, 2-Butinyloxi, 3-Methyl-2-butenyloxi, und 3-Methyl-2-pentenyloxi;
- 30 35 C₃-C₆-Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, wobei das Cycloalkyl gegebenenfalls durch ein bis drei C₁-C₄-Alkylreste substituiert ist;
- C₄-C₆-Cycloalkenyl, wie Cyclobutenyl, Cyclopentenyl, Cyclohexenyl, das gegebenenfalls durch ein bis drei C₁-C₄-Alkylreste substituiert ist.
- 40 45 C₅-C₆-Cycloalkoxi wie Cyclopentyloxi oder Cyclohexyloxi, das durch ein bis drei C₁-C₄-Alkylreste substituiert sein kann.
- C₅-C₆-Cycloalkenyloxi wie Cyclopentyloxi oder Cyclohexaryloxi, das durch ein bis drei C₁-C₄-Alkylreste substituiert sein kann.
- Bevorzugt wird die Verwendung von Nicotinsäureanilid-Derivaten der allgemeinen Formel I,

45

50

in der die Substituenten folgende Bedeutung haben:

R¹ Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl

R² gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi,

55 gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi

zur Bekämpfung von Botrytis.

Die Verbindungen der Formel I erhält man beispielsweise, in dem man ein entsprechend substituiertes Nicotinsäurehalogenid der Formel 2

Hal ist Chlor oder Brom, mit einem ortho-substituierten Anilin der Formel 3 in Gegenwart einer Base umgesetzt. Die Nicotinsäuren bzw. deren Halogenide der Formel 2 sind bekannt. Die Aniline der Formel 3 sind 15 bekannt oder können nach bekannten Verfahren hergestellt werden (Helv. Chim. Acta 60, 978 (1977); Zh. Org. Khim 26, 1527(1990); Heterocyclics 26, 1885 (1987); Izv. Akad. Nauk. SSSR Ser. Khim 1982, 2160).

Insbesondere bevorzugt sind Verbindungen, der Formel I in denen der Rest R¹ für Chlor steht und der Rest R² die eingangs erwähnte Bedeutung hat.

20 Tabelle 1 Verbindungen der Formel I

Nr.	R1	R2	phys. Dat. FP [°C]
30	1.1	F n-C ₃ H ₇	
	1.2	F i-C ₃ H ₇	
35	1.3	F sec.-C ₄ H ₉	52 - 54
	1.4	F i-C ₄ H ₉	87 - 89
	1.5	C1 n-C ₃ H ₇	103 - 104
	1.6	C1 n-C ₄ H ₉	
40	1.7	C1 sec.-C ₄ H ₉	94 - 96
	1.8	C1 i-C ₄ H ₉	99 - 101

	Nr.	R1	R2	phys. Dat. FP [°C]
5	1.9	C1	tert.-C ₄ H ₉	118 - 120
	1.10	C1	n-C ₅ H ₁₁	
	1.11	C1	sec.-C ₅ H ₁₁	
10	1.12	C1	n-C ₆ H ₁₃	
	1.13	C1	n-C ₇ H ₁₅	
	1.14	C1	sec.-C ₇ H ₁₅	
	1.15	C1	n-C ₈ H ₁₇	
15	1.16	C1	n-C ₁₀ H ₂₃	
	1.17	C1	n-C ₁₂ H ₂₅	
	1.18	C1	1-Methylvinyl	90 - 91
	1.19	C1	2-Methylvinyl	
20	1.20	C1	Allyl	
	1.21	C1	2-Methylallyl	
	1.22	C1	2-Ethylallyl	
	1.23	C1	1-Methylallyl	
25	1.24	C1	1-Ethylallyl	
	1.25	C1	1-Methyl-2-butenyl	
	1.26	C1	1-Ethyl-2-butenyl	
	1.27	C1	1-Isopropyl-2-butenyl	
30	1.28	C1	1-n-Butyl-2-butenyl	
	1.29	C1	1-Methyl-2-pentenyl	
	1.30	C1	1,4-Dimethyl-2-pentenyl	
	1.31	C1	Propargyl	
35	1.32	C1	2-Butinyl	
	1.33	C1	3-Butinyl	
	1.34	C1	Ethoxi	131 - 132
	1.35	C1	Propoxi	
40	1.36	C1	1-Methylethoxi	65 - 67
	1.37	C1	n-Butoxi	84 - 85
	1.38	C1	1-Methylpropoxi	72 - 74
	1.39	C1	2-Methylpropoxi	81 - 84
45	1.40	C1	1,1-Dimethylethoxi	
	1.41	C1	n-Pentyloxi	
	1.42	C1	n-Hexyloxi	
	1.43	C1	n-Heptyloxi	

	Nr.	R1	R2	phys. Dat. FP [°C]
5	1.44	Cl	n-Octyloxi	
	1.45	Cl	2-Ethylhexyloxi	
	1.46	Cl	n-Decyloxi	
10	1.47	Cl	2-Propenyloxi	86 - 88
	1.48	Cl	2-Butentyloxi	92 - 95
	1.49	Cl	2-Methyl-2-propenyloxi	75 - 76
	1.50	Cl	2-Pentenyloxi	
15	1.51	Cl	3-Pentenyloxi	
	1.52	Cl	3-Chlor-2-propenyloxi	
	1.53	Cl	2,3-Dichlor-2-propenyloxi	
	1.54	Cl	2,3,3-Trichlor-propenyloxi	
20	1.55	Cl	2-Propinyloxi	79 - 84
	1.56	Cl	2-Butinyl-oxi	
	1.57	Cl	3-Butinyl-oxi	
	1.58	Cl	1-Methyl-2-propinyloxi	
25	1.59	Cl	Cyclopropyl	144 - 145
	1.60	Cl	Cyclobutyl	
	1.61	Cl	Cyclopentyl	112 - 114
	1.62	Cl	Cyclohexyl	141 - 142
30	1.63	Cl	2-Cyclopentenyl	123 - 124
	1.64	Cl	1-Cyclopentenyl	
	1.65	Cl	2-Cyclohexenyl	92 - 93
	1.66	Cl	1-Cyclohexenyl	
35	1.67	Cl	Cyclopentyloxi	80 - 82
	1.68	Cl	Cyclohexyloxi	
	1.69	Cl	2-Cyclopentenyloxi	
	1.70	Cl	2-Cyclohexenyloxi	Öl
40	1.71	Br	sec.-Butyl	
	1.72	Br	i-Butyl	
	1.73	CH ₃	sec.-Butyl	
	1.74	CH ₃	i-Butyl	
45	1.75	CF ₃	i-Propyl	
	1.76	CF ₃	sec.-Butyl	
	1.77	CF ₃	i-Butyl	
50	1.78	OCH ₃	i-Propyl	

Nr.	R1	R2	phys. Dat. FP [°C]
5	1.79	OCH ₃ sec.-Butyl	Öl NMR 0,8t (3H); 1,2d (3H); 1,6m (2H); 3,0q (1H); 4,1s (3H); 7,2m (3H); 7,3m (1H); 8,3m (1H); 8,4m (1H), 9,8s (1H)
10	1.80	OCH ₃ i-Butyl	Öl NMR 0,8d (6H); 1,9m (1H); 2,5d (2H), 4,05s (3H), 7,2m (4H); 7,8d (1H); 8,3d (1H); 8,4m (1H); 9,8s (1H)
15	1.81	SCH ₃ i-Propyl	
1.82	SCH ₃	sec.-Butyl	89 - 91
1.83	SCH ₃	i-Butyl	140 - 141
1.84	SO ₂ CH ₃	sec.-Butyl	191 - 192
1.85	SO ₂ CH ₃	i-Butyl	150 - 153
20	1.86	Cl 2-Ethylpropoxy	65 - 66
	1.87	Cl 3-Methyl-3-butenyloxy	83 - 84

25 Herstellungsbeispiele

Beispiel 1

Zu einer Lösung von 2,7 g 2-n-Propylanilin und 2,0 g Triethylamin in 30 ml Tetrahydrofuran tropft man bei 0°C 3,5 g 2-Chlornicotinsäurechlorid und röhrt noch 2 Stdn. bei 0°C. Nach Verdünnen mit 300 ml Wasser isoliert man 3,2 g 2-Chlornicotinsäure-2-n-propylanilid von Fp.: 103 - 104°C (Nr. 1.5).

Beispiel 2

35 4,4 g 2-Chlornicotinsäure-2-sec.-butylanilid (Tabelle 1, Nr. 7) werden in einer Lösung von 5,5 g 30 % Natriummethylat-Lösung in 20 ml Methanol 2 Stdn. am Rückfluß gekocht. Nach Verdünnen mit 250 ml Wasser wird zweimal mit je 100 ml Essigester extrahiert. Aus den vereinigten organ. Phasen isoliert man nach Trocknen und Verdampfen des Lösungsmittels 3,8 g 2-Methoxy-nicotinsäure-2-sec.-butylanilid als Öl. (Nr. 1.79).

40 Beispiel 3

Aus 5,7 g 2-Methylthionicotinsäurechlorid, 4,6 g 2-sec-Butylanilin und 3,1 g Triethylamin erhält man in analoger wie Beispiel 1 6,6 g 2-Methylthionicotinsäure-2-sec.-butylanilid vom Fp.: 89 - 91°C (Nr. 1.82).

45 Beispiel 4

In eine Mischung aus 2,00 g des obigen Produkts (Beispiel 3) in 5 ml Eisessig und 0,13 g Natriumwolframat tropft man unter Röhren bei 35°C 2,20 g 30 % Wasserstoffperoxid zu und röhrt 3 Stdn. bei 35°C nach. Nach Verdünnen mit 15 ml Wasser, Absaugen der Kristalle, Waschen mit Wasser und Trocknen erhält man 1,7 g 2-Methylsulfonylnicotinsäure-2-sec.-butylanilid vom FP.: 191 - 192°C (Nr. 1.84).

Die Erfindung betrifft ferner die Verwendung von Anilid-Derivaten der Formel II,

5

II,

10

A

15

(A1)

(A2)

X Methylen oder Schwefel

20 R gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi

zur Bekämpfung von Botrytis.

Die Verbindungen der Formel 2 erhält man beispielsweise, in dem man ein entsprechend substituiertes Carbonsäurehalogenid der Formel 4 mit einem ortho-substituierten Anilin der Formel 3 in Gegenwart einer Base umsetzt.

30

A-CO-Hal

+

II

35

4

3

40 Hal ist Chlor oder Brom.

Die Carbonsäuren bzw. deren Halogenid ACO₂H bzw. A-CO-Hal (4) sind bekannt.

45

50

55

5
Tabelle 2
Verbindungen der Formel II

10

25

Nr.	A	R	X	phys. Dat. Fp [°C]
2.1	A ₁	i-C ₃ H ₇	-	108 - 109
2.2	A ₁	n-C ₃ H ₇	-	112 - 114
2.3	A ₁	n-C ₄ H ₉	-	
2.4	A ₁	sec.-C ₄ H ₉	-	89 - 90
2.5	A ₁	i-C ₄ H ₉	-	118 - 11
2.6	A ₁	tert.-C ₄ H ₉	-	

30

35

40

45

50

55

	Nr.	A	R	X	phys. Dat. Fp [°C]
5	2.7	A ₁	n-C ₅ H ₁₁	-	
	2.8	A ₁	sec.-C ₅ H ₁₁	-	
	2.9	A ₁	n-C ₆ H ₁₃	-	
10	2.10	A ₁	n-C ₇ H ₁₅	-	
	2.11	A ₁	sec.-C ₇ H ₁₅	-	
	2.12	A ₁	1-Methylvinyl	-	
	2.13	A ₁	2-Methylvinyl	-	
15	2.14	A ₁	Allyl	-	
	2.15	A ₁	2-Methylallyl	-	
	2.16	A ₁	2-Ethylallyl	-	
	2.17	A ₁	1-Methylallyl	-	
20	2.18	A ₁	1-Ethylallyl	-	
	2.19	A ₁	1-Methyl-2-butenyl	-	
	2.20	A ₁	1-Ethyl-2-butenyl	-	
	2.21	A ₁	1-Isopropyl-2-butenyl	-	
25	2.22	A ₁	1-n-Butyl-2-butenyl	-	
	2.23	A ₁	1-Methyl-2-pentenyl	-	
	2.24	A ₁	1,4-Dimethyl-2-pentenyl	-	
30	2.25	A ₁	Propargyl	-	
	2.26	A ₁	2-Butinyl	-	
	2.27	A ₁	3-Butinyl	-	
	2.28	A ₁	Ethoxi	-	
35	2.29	A ₁	Propoxi	-	
	2.30	A ₁	1-Methylethoxi	-	
	2.31	A ₁	n-Butoxi	-	
	2.32	A ₁	1-Methylpropoxi	-	46 - 84
40	2.33	A ₁	2-Methylpropoxi	-	
	2.34	A ₁	1,1-Dimethylethoxi	-	
	2.35	A ₁	n-Pentyloxi	-	
	2.36	A ₁	n-Hexyloxi	-	
45	2.37	A ₁	2-Ethylhexyloxi	-	
	2.38	A ₁	2-Propenyloxi	-	
	2.39	A ₁	2-Butentyloxi	-	62 - 66
50	2.40	A ₁	2-Methyl-2-propenyloxi	-	Ö1
	2.41	A ₁	2-Pentenyloxi	-	

Nr.	A	R	X	phys. Dat. Fp [°C]
5	2.42	A ₁	3-Pentenyloxi	-
	2.43	A ₁	3-Chlor-2-propenyloxi	-
	2.44	A ₁	2,3-Dichlor-2-propenyloxi	-
	2.45	A ₁	2,3,3-Trichlor-propenyloxi	-
10	2.46	A ₁	2-Propinyloxi	-
	2.47	A ₁	2-Butinyl-oxi	-
	2.48	A ₁	3-Butinyl-oxi	-
15	2.49	A ₁	1-Methyl-2-propinyloxi	-
	2.50	A ₁	Cyclopropyl	-
	2.51	A ₁	Cyclobutyl	-
	2.52	A ₁	Cyclopentyl	- 112 - 113
20	2.53	A ₁	Cyclohexyl	- 120 - 121
	2.54	A ₁	2-Cyclopentenyl	- 128 - 129
	2.55	A ₁	1-Cyclopentenyl	-
	2.56	A ₁	2-Cyclohexenyl	- 95 - 96
25	2.57	A ₁	1-Cyclohexenyl	-
	2.58	A ₁	Cyclopentyloxi	-
	2.59	A ₁	Cyclohexyloxi	-
	2.60	A ₁	2-Cyclopentenyloxi	-
30	2.61	A ₁	2-Cyclohexenyloxi	- ö1
	2.62	A ₂	i-C ₃ H ₇	CH ₂ 99 - 101
	2.63	A ₂	n-C ₃ H ₇	CH ₂
35	2.64	A ₂	n-C ₄ H ₉	CH ₂
	2.65	A ₂	sec.-C ₄ H ₉	CH ₂ 81 - 82
	2.66	A ₂	i-C ₄ H ₉	CH ₂ 81 - 83
	2.67	A ₂	tert.-C ₄ H ₉	CH ₂
40	2.68	A ₂	n-C ₅ H ₁₁	CH ₂
	2.69	A ₂	sec.-C ₅ H ₁₁	CH ₂
	2.70	A ₂	n-C ₆ H ₁₃	CH ₂
45	2.71	A ₂	n-C ₇ H ₁₅	CH ₂
	2.72	A ₂	sec.-C ₇ H ₁₅	CH ₂
	2.73	A ₂	1-Methylvinyl	CH ₂
	2.74	A ₂	2-Methylvinyl	CH ₂
50	2.75	A ₂	Allyl	CH ₂
	2.76	A ₂	2-Methylallyl	CH ₂

	Nr.	A	R	X	phys. Dat. Fp [°C]
5	2.77	A ₂	2-Ethylallyl	CH ₂	
	2.78	A ₂	1-Methylallyl	CH ₂	
	2.79	A ₂	1-Ethylallyl	CH ₂	
10	2.80	A ₂	1-Methyl-2-butenyl	CH ₂	
	2.81	A ₂	1-Ethyl-2-butenyl	CH ₂	
	2.82	A ₂	1-Isopropyl-2-butenyl	CH ₂	
15	2.83	A ₂	1-n-Butyl-2-butenyl	CH ₂	
	2.84	A ₂	1-Methyl-2-pentenyl	CH ₂	
	2.85	A ₂	1,4-Dimethyl-2-pentenyl	CH ₂	
20	2.86	A ₂	Propargyl	CH ₂	
	2.87	A ₂	2-Butinyl	CH ₂	
	2.88	A ₂	3-Butinyl	CH ₂	
	2.89	A ₂	Ethoxi	CH ₂	
25	2.90	A ₂	Propoxi	CH ₂	
	2.91	A ₂	1-Methylethoxi	CH ₂	
	2.92	A ₂	n-Butoxi	CH ₂	
	2.93	A ₂	1-Methylpropoxi	CH ₂	
	2.94	A ₂	2-Methylpropoxi	CH ₂	
30	2.95	A ₂	1,1-Dimethylethoxi	CH ₂	
	2.96	A ₂	n-Pentyloxi	CH ₂	
	2.97	A ₂	n-Hexyloxi	CH ₂	
	2.98	A ₂	2-Ethylhexyloxi	CH ₂	
35	2.99	A ₂	2-Propenyloxi	CH ₂	
	2.100	A ₂	2-Butentyloxi	CH ₂	
	2.101	A ₂	1-Methyl-2-propenyloxi	CH ₂	67 - 69
40	2.102	A ₂	2-Pentenyloxi	CH ₂	
	2.103	A ₂	3-Pentenyloxi	CH ₂	
	2.104	A ₂	3-Chlor-2-propenyloxi	CH ₂	
	2.105	A ₂	2,3-Dichlor-2-propenyloxi	CH ₂	
45	2.106	A ₂	2,3,3-Trichlor-propenyloxi	CH ₂	
	2.107	A ₂	2-Propinyloxi	CH ₂	
	2.108	A ₂	2-Butinyl-oxi	CH ₂	
	2.109	A ₂	3-Butinyl-oxi	CH ₂	
50	2.110	A ₂	1-Methyl-2-propinyloxi	CH ₂	
	2.111	A ₂	Cyclopropyl	CH ₂	

	Nr.	A	R	X	phys. Dat. Fp [°C]
5	2.112	A ₂	Cyclobutyl	CH ₂	
	2.113	A ₂	Cyclopentyl	CH ₂	109 - 111
	2.114	A ₂	Cyclohexyl	CH ₂	118 - 123
10	2.115	A ₂	2-Cyclopentenyl	CH ₂	87 - 89
	2.116	A ₂	1-Cyclopentenyl	CH ₂	
	2.117	A ₂	2-Cyclohexenyl	CH ₂	85 - 87
	2.118	A ₂	1-Cyclohexenyl	CH ₂	
15	2.119	A ₂	Cyclopentyloxi	CH ₂	60 - 91
	2.120	A ₂	Cyclohexyloxi	CH ₂	
	2.121	A ₂	2-Cyclopentenyloxi	CH ₂	
	2.122	A ₂	2-Cyclohexenyloxi	CH ₂	Öl
20	2.123	A ₂	i-C ₃ H ₇	S	
	2.124	A ₂	n-C ₃ H ₇	S	
	2.125	A ₂	n-C ₄ H ₉	S	
	2.126	A ₂	sec.-C ₄ H ₉	S	Öl
25	2.127	A ₂	i-C ₄ H ₉	S	Öl
	2.128	A ₂	tert.-C ₄ H ₉	S	
	2.129	A ₂	n-C ₅ H ₁₁	S	
30	2.130	A ₂	sec.-C ₅ H ₁₁	S	
	2.131	A ₂	n-C ₆ H ₁₃	S	
	2.132	A ₂	n-C ₇ H ₁₅	S	
	2.133	A ₂	sec.-C ₇ H ₁₅	S	
35	2.134	A ₂	1-Methylvinyl	S	
	2.135	A ₂	2-Methylvinyl	S	
	2.136	A ₂	Allyl	S	
	2.137	A ₂	2-Methylallyl	S	
40	2.138	A ₂	2-Ethylallyl	S	
	2.139	A ₂	1-Methylallyl	S	
	2.140	A ₂	1-Ethylallyl	S	
45	2.141	A ₂	1-Methyl-2-butenyl	S	
	2.142	A ₂	1-Ethyl-2-butenyl	S	
	2.143	A ₂	1-Isopropyl-2-butenyl	S	
	2.144	A ₂	1-n-Butyl-2-butenyl	S	
50	2.145	A ₂	1-Methyl-2-pentenyl	S	
	2.146	A ₂	1,4-Dimethyl-2-pentenyl	S	

	Nr.	A	R	X	phys. Dat. Fp [°C]
5	2.147	A ₂	Propargyl	S	
	2.148	A ₂	2-Butinyl	S	
	2.149	A ₂	3-Butinyl	S	
10	2.150	A ₂	Ethoxi	S	
	2.151	A ₂	Propoxi	S	
	2.152	A ₂	1-Methylethoxi	S	
15	2.153	A ₂	n-Butoxi	S	
	2.154	A ₂	1-Methylpropoxi	S	Öl
	2.155	A ₂	2-Methylpropoxi	S	
20	2.156	A ₂	1,1-Dimethylethoxi	S	
	2.157	A ₂	n-Pentyloxi	S	
	2.158	A ₂	n-Hexyloxi	S	
25	2.159	A ₂	2-Ethylhexyloxi	S	
	2.160	A ₂	2-Propenyloxi	S	
	2.161	A ₂	2-Butentyloxi	S	
30	2.162	A ₂	1-Methyl-2-propenyloxi	S	65 - 67
	2.163	A ₂	2-Pentenyloxi	S	
	2.164	A ₂	3-Pentenyloxi	S	
35	2.165	A ₂	3-Chlor-2-propenyloxi	S	
	2.166	A ₂	2,3-Dichlor-2-propenyloxi	S	
	2.167	A ₂	2,3,3-Trichlor-propenyloxi	S	
40	2.168	A ₂	2-Propinyloxi	S	
	2.169	A ₂	2-Butinyl-oxi	S	
	2.170	A ₂	3-Butinyl-oxi	S	
45	2.171	A ₂	1-Methyl-2-propinyloxi	S	
	2.172	A ₂	Cyclopropyl	S	
	2.173	A ₂	Cyclobutyl	S	
50	2.174	A ₂	Cyclopentyl	S	62 - 64
	2.175	A ₂	Cyclohexyl	S	120 - 122
	2.176	A ₂	2-Cyclopentenyl	S	76 - 78
55	2.177	A ₂	1-Cyclopentenyl	S	
	2.178	A ₂	2-Cyclohexenyl	S	70 - 72
	2.179	A ₂	1-Cyclohexenyl	S	
60	2.180	A ₂	Cyclopentyloxi	S	88 - 90
	2.181	A ₂	Cyclohexyloxi	S	

Nr.	A	R	X	phys. Dat. Fp [°C]
5	2.182	A ₂	2-Cyclopentenyloxi	S
	2.183	A ₂	2-Cyclohexenyloxi	S Öl
	2.184	A ₁	1-Ethylpropoxy	- 65 - 66
10	2.185	A ₁	3-Methyl-2-butenyloxy	- Öl
	2.186	A ₂	1-Ethylpropoxy	CH ₂ Öl
	2.187	A ₂	1-Ethylpropoxy	S Öl

15

Herstellungsbeispiele

Beispiel 5

20 Zu einer Lösung von 3,0 g sec.-Butyl-anilin und 2,0 g Triethylamin in 30 ml Tetrahydrofuran tropft man bei 0 °C 3,1 g 2-Methylbenzoësäurechlorid und röhrt noch 2 Stdn. bei 0 °C. Nach Verdünnen mit 500 ml Wasser, Extraktion mit Essigester und Verdampfen des Lösungsmittels, isoliert man 2-Methylbenzoësäure-2-sec.-butylanilid vom Fp: 89 - 90 °C (Verbindung Nr. 2.4).

25 Beispiel 6

Zu einer Lösung von 3,0 g 2-Methyl-5,6-dihydropyran-3-carbonsäure in 20 ml Pyridin tropft man bei 0 °C 2,5 g Thionylchlorid, nach 1 Stunde Nachröhren setzt man 2,8 g 2-Isopropylanilin zu und röhrt 12 Stunden bei Raumtemperatur (20 °C) nach. Nach Verdampfen des Pyridins wird mit 50 ml Wasser aufgerührt mit verd. Salzsäure auf pH 3 eingestellt und mit Essigester extrahiert. Nach Verdampfen des Lösungsmittels und Mischen des Rückstandes mit Diisopropylether isoliert man 3,3 g 2-Methyl-5,6-dihydropyran-3-carbonsäure-2-isopropylanilid vom Fp: 99 - 101 °C (Verbindung Nr. 2.62).

Die Erfindung betrifft ferner die Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel II,

35

40

in der die Substituenten folgende Bedeutung haben:

45

50

55

X Methylen, Schwefel, Sulfinyl, Sulfonyl (SO_2),

R¹ Methyl, Trifluormethyl, Chlor, Brom, Jod

30 R² Trifluormethyl, Chlor

R³ Wasserstoff oder Methyl

R⁴ Methyl, Trifluormethyl, Chlor

R⁵ Wasserstoff, Methyl, Chlor

R⁶ Methyl, Trifluoromethyl

R⁷ Methyl, Chlor

R⁸ C₁-C₄-Alkyl, C₁-C₄-

Die Verbindungen der Formel III erhält man beispielsweise, indem man ein entsprechend substituiertes

50 Hal ist Chlor oder Brom, mit einem ortho-substituierten Anilin der Formel 5 in Gegenwart einer Base umgesetzt. Die Carbonsäuren bzw. deren Halogenide der Formel 4 sind bekannt. Die Aniline der Formel 5 sind z. Teil bekannt oder können nach bekannten Verfahren hergestellt werden (Tetrahedron Letters, Vol. 28 S. 5093 (1987); THL Vol 29 5483 (1988)).

5

10

15

20

25

30

35

40

45

50

55

Tabelle 3

Nr.	A	R ₁	R ₂	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	X	phys. Daten [°C]
3.1	A ₁	CH ₃	-	-	-	-	-	-	2-F	-	
3.2	A ₁	CH ₃	-	-	-	-	-	-	4-F	-	
3.3	A ₁	CF ₃	-	-	-	-	-	-	2-F	-	
3.4	A ₁	CF ₃	-	-	-	-	-	-	4-F	-	
3.5	A ₂	-	C ₁	-	-	-	-	-	2-F	-	
3.6	A ₂	-	C ₁	-	-	-	-	-	2-CH ₃	-	71 - 73
3.7	A ₂	-	C ₁	-	-	-	-	-	2-C ₁	-	
3.8	A ₂	-	C ₁	-	-	-	-	-	2-OCH ₃	-	
3.9	A ₂	-	C ₁	-	-	-	-	-	3-F	-	
3.10	A ₂	-	C ₁	-	-	-	-	-	3-C ₁	-	95 - 98
3.11	A ₂	-	C ₁	-	-	-	-	-	3-CH ₃	-	
3.12	A ₂	-	C ₁	-	-	-	-	-	3-OCH ₃	-	
3.13	A ₂	-	C ₁	-	-	-	-	-	3-OiC ₃ H ₇	-	
3.14	A ₂	-	C ₁	-	-	-	-	-	3-Br	-	
3.15	A ₂	-	C ₁	-	-	-	-	-	4-F	-	156 - 157
3.16	A ₂	-	C ₁	-	-	-	-	-	4-C ₁	-	
3.17	A ₂	-	C ₁	-	-	-	-	-	4-CH ₃	-	
3.18	A ₂	-	C ₁	-	-	-	-	-	4-OCH ₃	-	
3.19	A ₂	-	C ₁	-	-	-	-	-	4-SCH ₃	-	

5

10

15

20

25

30

35

40

45

50

55

Nr.	A	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	X	phys. Daten [°C]
3.20	A ₃	-	-	-	-	-	-	-	2-F	CH ₂	
3.21	A ₃	-	-	-	-	-	-	-	3-F	CH ₂	
3.22	A ₃	-	-	-	-	-	-	-	4-F	CH ₂	
3.23	A ₃	-	-	-	-	-	-	-	3-C1	CH ₂	
3.24	A ₃	-	-	-	-	-	-	-	3-CH ₃	CH ₂	
3.25	A ₃	-	-	-	-	-	-	-	2-F	S	
3.26	A ₃	-	-	-	-	-	-	-	3-F	S	
3.27	A ₃	-	-	-	-	-	-	-	4-F	S	
3.28	A ₃	-	-	-	-	-	-	-	3-C1	S	
3.29	A ₃	-	-	-	-	-	-	-	3-CH ₃	S	
3.30	A ₃	-	-	-	-	-	-	-	2-F	SO ₂	
3.31	A ₃	-	-	-	-	-	-	-	3-F	SO ₂	
3.32	A ₃	-	-	-	-	-	-	-	4-F	SO ₂	
3.33	A ₃	-	-	-	-	-	-	-	3-C1	SO ₂	
3.34	A ₃	-	-	-	-	-	-	-	3-CH ₃	SO ₂	
3.35	A ₅	-	-	-	CF ₃	CH ₃	-	-	2-F	-	
3.36	A ₅	-	-	-	CF ₃	CH ₃	-	-	3-F	-	
3.37	A ₅	-	-	-	CF ₃	CH ₃	-	-	4-F	-	
3.38	A ₇	-	-	-	-	-	CH ₃	C1	2-F	-	
3.39	A ₇	-	-	-	-	-	CH ₃	C1	3-F	-	
3.40	A ₇	-	-	-	-	-	CH ₃	C1	4-F	-	

5

10

15

20

25

30

35

40

45

50

NR.	A	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	X	phys. Daten [°C]
3.41	A ₇	-	-	-	-	-	CF ₃	C1	2-F	-	
3.42	A ₇	-	-	-	-	-	CF ₃	C1	4-F	-	

Die Erfindung betrifft ferner die Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel IV,

55

in der die Substituenten folgende Bedeutung haben:

10

15

(A1)

(A2)

(A3)

20

(A4)

(A5)

(A6)

25

30

(A7)

(A8)

35

- X Methylen, Sulfanyl, Sulfonyl (SO_2),
- R¹ Methyl, Trifluormethyl, Chlor, Brom, Jod
- R² Trifluormethyl, Chlor
- R³ Wasserstoff oder Methyl
- R⁴ Methyl, Trifluormethyl, Chlor
- R⁵ Wasserstoff, Methyl, Chlor
- R⁶ Methyl, Trifluormethyl
- R⁷ Methyl, Chlor,

zur Bekämpfung von Botrytis.

45 Die Verbindung der Formel IV erhält man beispielsweise, indem man ein entsprechendes aromatisches oder heterocyclisches Säurehalogenid 4 mit 2-Aminobiphenyl 6 in Gegenwart einer Base umsetzt.

50

A-CO-Hal

+

 \longrightarrow

IV

55

Hal ist Chlor oder Brom.

Die Säuren der Formel A-CO₂H bzw. deren Halogenide II sind bekannt.

5

10

15

20

25

30

35

40

45

50

55

Tabelle 4

Nr.	A	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	X	phys. Daten [°C]
4.1	A ₁	CH ₃	-	-	-	-	-	-	-	87 - 88
4.2	A ₁	Br	-	-	-	-	-	-	-	113 - 115
4.3	A ₂	-	C ₁	-	-	-	-	-	-	151 - 152
4.4	A ₃	-	-	-	-	-	-	-	CH ₂	76 - 77
4.5	A ₄	-	-	CH ₃	-	-	-	-	-	104 - 106
4.6	A ₅	-	-	-	CH ₃	CH ₃	-	-	-	136 - 137

Tabelle 5

NR.	A	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	X	phys. Daten [°C]	PS-NR.
5.1	A ₁	CF ₃	-	-	-	-	-	-	-	138-139	
5.2	A ₁	J	-	-	-	-	-	-	-	129-132	
5.3	A ₂	-	CF ₃	-	-	-	-	-	-		
5.4	A ₃	-	-	-	-	-	-	-	SO		
5.5	A ₃	-	-	-	-	-	-	-	SO ₂		
5.6	A ₅	-	-	-	CF ₃	CH ₃	-	-	-	116-118	
5.7	A ₆	-	-	-	CH ₃	CH ₃	-	-	-		
5.8	A ₆	-	-	-	C ₁	C ₁	-	-	-		
5.9	A ₇	-	-	-	-	-	CH ₃	C ₁	-	108-109	
5.10	A ₇	-	-	-	-	-	CF ₃	C ₁	-		
5.11	A ₇	-	-	-	-	-	CH ₃	CH ₃	-		
5.11	A ₁	C ₁	-	-	-	-	-	-	-	100-103	

Die Erfindung betrifft ferner die Verwendung von Carbonsäureanilid-Derivaten der allg. Formel V,

in der die Substituenten folgende Bedeutung haben:

n 1 oder 2

- 30 R¹ Trifluormethyl, Chlor, Brom, Jod
R² Wasserstoff oder Methyl
R³ Methyl, Trifluormethyl, Chlor
R⁴ Wasserstoff, Methyl, Chlor
R⁵ Methyl, Trifluormethyl
R⁶ Methyl, Chlor
35 R⁷ gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi,
40 gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi
zur Bekämpfung von Botrytis.

45

50

55

5
Tabelle 6
Verbindungen der Formel I mit A in der Bedeutung A₁

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
15	CF ₃	i-C ₃ H ₇	160-162
6.2	CF ₃	n-C ₃ H ₇	151-152
6.3	CF ₃	n-C ₄ H ₉	
20	CF ₃	sec.-C ₄ H ₉	83- 84
6.5	CF ₃	i-C ₄ H ₉	133-135
6.6	CF ₃	tert.-C ₄ H ₉	
25	CF ₃	n-C ₅ H ₁₁	
6.8	CF ₃	sec.-C ₅ H ₁₁	
6.9	CF ₃	n-C ₆ H ₁₃	
30	CF ₃	n-C ₇ H ₁₅	
6.11	CF ₃	sec.-C ₇ H ₁₅	
6.12	CF ₃	1-Methylvinyl	
6.13	CF ₃	2-Methylvinyl	
35	CF ₃	Allyl	
6.15	CF ₃	2-Methylallyl	

40

45

50

55

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	6.16	CF ₃	2-Ethylallyl	
	6.17	CF ₃	1-Methylallyl	
	6.18	CF ₃	1-Ethylallyl	
10	6.19	CF ₃	1-Methyl-2-butenyl	
	6.20	CF ₃	1-Ethyl-2-butenyl	
	6.21	CF ₃	1-Isopropyl-2-butenyl	
	6.22	CF ₃	1-n-Butyl-2-butenyl	
15	6.23	CF ₃	1-Methyl-2-pentenyl	
	6.24	CF ₃	1,4-Dimethyl-2-pentenyl	
	6.25	CF ₃	Propargyl	
	6.26	CF ₃	2-Butinyl	
20	6.27	CF ₃	3-Butinyl	
	6.28	CF ₃	Ethoxi	
	6.29	CF ₃	Propoxi	
	6.30	CF ₃	1-Methylethoxi	
25	6.31	CF ₃	n-Butoxi	
	6.32	CF ₃	1-Methylpropoxi	
	6.33	CF ₃	2-Methylpropoxi	
30	6.34	CF ₃	1,1-Dimethylethoxi	
	6.35	CF ₃	n-Pentyloxi	
	6.36	CF ₃	n-Hexyloxi	
	6.37	CF ₃	2-Ethylhexyloxi	
35	6.38	CF ₃	2-Propenyloxi	
	6.39	CF ₃	2-Butentyloxi	
	6.40	CF ₃	2-Methyl-2-propenyloxi	
	6.41	CF ₃	2-Pentenyloxi	
40	6.42	CF ₃	3-Pentenyloxi	
	6.43	CF ₃	3-Chlor-2-propenyloxi	
	6.44	CF ₃	2,3-Dichlor-2-propenyloxi	
	6.45	CF ₃	2,3,3-Trichlor-propenyloxi	
45	6.46	CF ₃	2-Propinyloxi	
	6.47	CF ₃	2-Butinyl-oxi	
	6.48	CF ₃	3-Butinyl-oxi	
50	6.49	CF ₃	1-Methyl-2-propinyloxi	
	6.50	CF ₃	Cyclopropyl	

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	6.51	CF ₃	Cyclobutyl
	6.52	CF ₃	Cyclopentyl
	6.53	CF ₃	Cyclohexyl
10	6.54	CF ₃	2-Cyclopentenyl
	6.55	CF ₃	1-Cyclopentenyl
	6.56	CF ₃	2-Cyclohexenyl
	6.57	CF ₃	1-Cyclohexenyl
15	6.58	CF ₃	Cyclopentyloxi
	6.59	CF ₃	Cyclohexyloxi
	6.60	CF ₃	2-Cyclopentenyloxi
	6.61	CF ₃	2-Cyclohexenyloxi

20

Tabelle 7
Verbindungen der Formel V mit A in der Bedeutung A₁

25

30

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
35	7.1	C1	i-C ₃ H ₇
	7.2	C1	n-C ₃ H ₇
	7.3	C1	n-C ₄ H ₉
40	7.4	C1	sec.-C ₄ H ₉
	7.5	C1	i-C ₄ H ₉
	7.6	C1	tert.-C ₄ H ₉
	7.7	C1	n-C ₅ H ₁₁
45	7.8	C1	sec.-C ₅ H ₁₁
	7.9	C1	n-C ₆ H ₁₃
	7.10	C1	n-C ₇ H ₁₅
	7.11	C1	sec.-C ₇ H ₁₅
50	7.12	C1	1-Methylvinyl
	7.13	C1	2-Methylvinyl

55

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	7.14	Cl Allyl	
	7.15	Cl 2-Methylallyl	
	7.16	Cl 2-Ethylallyl	
	7.17	Cl 1-Methylallyl	
10	7.18	Cl 1-Ethylallyl	
	7.19	Cl 1-Methyl-2-butenyl	
	7.20	Cl 1-Ethyl-2-butenyl	
15	7.21	Cl 1-Isopropyl-2-butenyl	
	7.22	Cl 1-n-Butyl-2-butenyl	
	7.23	Cl 1-Methyl-2-pentenyl	
	7.24	Cl 1,4-Dimethyl-2-pentenyl	
20	7.25	Cl Propargyl	
	7.26	Cl 2-Butinyl	
	7.27	Cl 3-Butinyl	
	7.28	Cl Ethoxi	
25	7.29	Cl Propoxi	
	7.30	Cl 1-Methylethoxi	
	7.31	Cl n-Butoxi	
30	7.32	Cl 1-Methylpropoxi	
	7.33	Cl 2-Methylpropoxi	
	7.34	Cl 1,1-Dimethylethoxi	
	7.35	Cl n-Pentyloxi	
35	7.36	Cl n-Hexyloxi	
	7.37	Cl 2-Ethylhexyloxi	
	7.38	Cl 2-Propenyloxi	
	7.39	Cl 2-Butentyloxi	
40	7.40	Cl 2-Methyl-2-propenyloxi	
	7.41	Cl 2-Pentenyloxi	
	7.42	Cl 3-Pentenyloxi	
	7.43	Cl 3-Chlor-2-propenyloxi	
45	7.44	Cl 2,3-Dichlor-2-propenyloxi	
	7.45	Cl 2,3,3-Trichlor-propenyloxi	
	7.46	Cl 2-Propinyloxi	
50	7.47	Cl 2-Butinyl-oxi	
	7.48	Cl 3-Butinyl-oxi	

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]	
5	7.49	Cl	1-Methyl-2-propynyloxi	
	7.50	Cl	Cyclopropyl	
	7.51	Cl	Cyclobutyl	
10	7.52	Cl	Cyclopentyl	110-111
	7.53	Cl	Cyclohexyl	141-142
	7.54	Cl	2-Cyclopentenyl	110-112
15	7.55	Cl	1-Cyclopentenyl	
	7.56	Cl	2-Cyclohexenyl	84- 86
	7.57	Cl	1-Cyclohexenyl	
20	7.58	Cl	Cyclopentyloxi	
	7.59	Cl	Cyclohexyloxi	
	7.60	Cl	2-Cyclopentenyloxi	
25	7.61	Cl	2-Cyclohexenyloxi	

Tabelle 8

Verbindungen der Formel V mit A in der Bedeutung A₂

Nr.	n	R ⁷	phys.Dat. Fp [°C]
35	8.1	i-C ₃ H ₇	
	8.2	n-C ₃ H ₇	
40	8.3	n-C ₄ H ₉	
	8.4	sec.-C ₄ H ₉	96-98
45	8.5	i-C ₄ H ₉	85-86
	8.6	tert.-C ₄ H ₉	
50	8.7	n-C ₅ H ₁₁	
	8.8	sec.-C ₅ H ₁₁	
55	8.9	n-C ₆ H ₁₃	
56	8.10	n-C ₇ H ₁₅	
57	8.11	sec.-C ₇ H ₁₅	

Nr.	n	R ⁷	phys.Dat. Fp [°C]
5	8.12	2	1-Methylvinyl
	8.13	2	2-Methylvinyl
	8.14	2	Allyl
10	8.15	2	2-Methylallyl
	8.16	2	2-Ethylallyl
	8.17	2	1-Methylallyl
	8.18	2	1-Ethylallyl
15	8.19	2	1-Methyl-2-butenyl
	8.20	2	1-Ethyl-2-butenyl
	8.21	2	1-Isopropyl-2-butenyl
	8.22	2	1-n-Butyl-2-butenyl
20	8.23	2	1-Methyl-2-pentenyl
	8.24	2	1,4-Dimethyl-2-pentenyl
	8.25	2	Propargyl
	8.26	2	2-Butinyl
25	8.27	2	3-Butinyl
	8.28	2	Ethoxi
	8.29	2	Propoxi
30	8.30	2	1-Methylethoxi
	8.31	2	n-Butoxi
	8.32	2	1-Methylpropoxi
	8.33	2	2-Methylpropoxi
35	8.34	2	1,1-Dimethylethoxi
	8.35	2	n-Pentyloxi
	8.36	2	n-Hexyloxi
	8.37	2	2-Ethylhexyloxi
40	8.38	2	2-Propenyloxi
	8.39	2	2-Butentyloxi
	8.40	2	2-Methyl-2-propenyloxi
45	8.41	2	2-Pentenyloxi
	8.42	2	3-Pentenyloxi
	8.43	2	3-Chlor-2-propenyloxi
	8.44	2	2,3-Dichlor-2-propenyloxi
50	8.45	2	2,3,3-Trichlor-propenyloxi
	8.46	2	2-Propinyloxi

	Nr.	n	R ⁷	phys.Dat. Fp [°C]
5	8.47	2	2-Butinyl-oxi	
	8.48	2	3-Butinyl-oxi	
	8.49	2	1-Methyl-2-propinyloxi	
10	8.50	2	Cyclopropyl	
	8.51	2	Cyclobutyl	
	8.52	2	Cyclopentyl	128-130
	8.53	2	Cyclohexyl	134-135
15	8.54	2	2-Cyclopentenyl	
	8.55	2	1-Cyclopentenyl	
	8.56	2	2-Cyclohexenyl	
	8.57	2	1-Cyclohexenyl	
20	8.58	2	Cyclopentyloxi	
	8.59	2	Cyclohexyloxi	
	8.60	2	2-Cyclopentenyloxi	
	8.61	2	2-Cyclohexenyloxi	
25	8.62	1	i-C ₃ H ₇	
	8.63	1	n-C ₃ H ₇	
	8.64	1	n-C ₄ H ₉	
30	8.65	1	sec.-C ₄ H ₉	Ö1
	8.66	1	i-C ₄ H ₉	Ö1
	8.67	1	tert.-C ₄ H ₉	
	8.68	1	n-C ₅ H ₁₁	
35	8.69	1	sec.-C ₅ H ₁₁	
	8.70	1	n-C ₆ H ₁₃	
	8.71	1	n-C ₇ H ₁₅	
40	8.72	1	sec.-C ₇ H ₁₅	
	8.73	1	Ethoxi	
	8.74	1	Propoxi	
	8.75	1	1-Methylethoxi	
45	8.76	1	n-Butoxi	
	8.77	1	1-Methylpropoxi	
	8.78	1	2-Methylpropoxi	
	8.79	1	1,1-Dimethylethoxi	
50	8.80	1	n-Pentyloxi	

Nr.	n	R ⁷	phys.Dat. Fp [°C]
8.81	1	n-Hexyloxi	
8.82	1	Cyclopentyl	

Tabelle 9
Verbindungen der Formel V mit A in der Bedeutung A₄

10

15

Nr.	R ³	R ⁴	R ⁷	phys.Dat. Fp [°C]
9.1	CF ₃	CH ₃	i-C ₃ H ₇	115-116
9.2	CF ₃	CH ₃	n-C ₃ H ₇	114-116
9.3	CF ₃	CH ₃	n-C ₄ H ₉	
9.4	CF ₃	CH ₃	sec.-C ₄ H ₉	73- 75
9.5	CF ₃	CH ₃	i-C ₄ H ₉	100-102
9.6	CF ₃	CH ₃	tert.-C ₄ H ₉	
9.7	CF ₃	CH ₃	n-C ₅ H ₁₁	
9.8	CF ₃	CH ₃	sec.-C ₅ H ₁₁	
9.9	CF ₃	CH ₃	n-C ₆ H ₁₃	
9.10	CF ₃	CH ₃	n-C ₇ H ₁₅	
9.11	CF ₃	CH ₃	sec.-C ₇ H ₁₅	
9.12	CF ₃	CH ₃	1-Methylvinyl	
9.13	CF ₃	CH ₃	2-Methylvinyl	
9.14	CF ₃	CH ₃	Allyl	
9.15	CF ₃	CH ₃	2-Methylallyl	
9.16	CF ₃	CH ₃	2-Ethylallyl	
9.17	CF ₃	CH ₃	1-Methylallyl	
9.18	CF ₃	CH ₃	1-Ethylallyl	
9.19	CF ₃	CH ₃	1-Methyl-2-but enyl	
9.20	CF ₃	CH ₃	1-Ethyl-2-but enyl	
9.21	CF ₃	CH ₃	1-Isopropyl-2-but enyl	
9.22	CF ₃	CH ₃	1-n-Butyl-2-but enyl	
9.23	CF ₃	CH ₃	1-Methyl-2-pentenyl	

55

	Nr.	R ³	R ⁴	R ⁷	phys.Dat. Fp [°C]
5	9.24	CF ₃	CH ₃	1,4-Dimethyl-2-pentenyl	
	9.25	CF ₃	CH ₃	Propargyl	
	9.26	CF ₃	CH ₃	2-Butinyl	
	9.27	CF ₃	CH ₃	3-Butinyl	
10	9.28	CF ₃	CH ₃	Ethoxi	
	9.29	CF ₃	CH ₃	Propoxi	
	9.30	CF ₃	CH ₃	1-Methylethoxi	
	9.31	CF ₃	CH ₃	n-Butoxi	
15	9.32	CF ₃	CH ₃	1-Methylpropoxi	
	9.33	CF ₃	CH ₃	2-Methylpropoxi	
	9.34	CF ₃	CH ₃	1,1-Dimethylethoxi	
	9.35	CF ₃	CH ₃	n-Pentyloxi	
20	9.36	CF ₃	CH ₃	n-Hexyloxi	
	9.37	CF ₃	CH ₃	2-Ethylhexyloxi	
	9.38	CF ₃	CH ₃	2-Propenyloxi	
	9.39	CF ₃	CH ₃	2-Butentyloxi	
25	9.40	CF ₃	CH ₃	2-Methyl-2-propenyloxi	
	9.41	CF ₃	CH ₃	2-Pentenyloxi	
	9.42	CF ₃	CH ₃	3-Pentenyloxi	
	9.43	CF ₃	CH ₃	3-Chlor-2-propenyloxi	
30	9.44	CF ₃	CH ₃	2,3-Dichlor-2-propenyloxi	
	9.45	CF ₃	CH ₃	2,3,3-Trichlor-propenyloxi	
	9.46	CF ₃	CH ₃	2-Propinyloxi	
	9.47	CF ₃	CH ₃	2-Butinyl-oxi	
35	9.48	CF ₃	CH ₃	3-Butinyl-oxi	
	9.49	CF ₃	CH ₃	1-Methyl-2-propinyloxi	
	9.50	CF ₃	CH ₃	Cyclopropyl	
	9.51	CF ₃	CH ₃	Cyclobutyl	
40	9.52	CF ₃	CH ₃	Cyclopentyl	114-118
	9.53	CF ₃	CH ₃	Cyclohexyl	100-104
	9.54	CF ₃	CH ₃	2-Cyclopentenyl	116-120
	9.55	CF ₃	CH ₃	1-Cyclopentenyl	
45	9.56	CF ₃	CH ₃	2-Cyclohexenyl	96-98
	9.57	CF ₃	CH ₃	1-Cyclohexenyl	
	9.58	CF ₃	CH ₃	Cyclopentyloxi	

	Nr.	R ³	R ⁴	R ⁷	phys.Dat. Fp [°C]
5	9.59	CF ₃	CH ₃	Cyclohexyloxi	
	9.60	CF ₃	CH ₃	2-Cyclopentenyloxi	
	9.61	CF ₃	CH ₃	2-Cyclohexenyloxi	
10	9.62	CH ₃	CH ₃	i-C ₃ H ₇	
	9.63	CH ₃	CH ₃	n-C ₃ H ₇	
	9.64	CH ₃	CH ₃	n-C ₄ H ₉	
	9.65	CH ₃	CH ₃	sec.-C ₄ H ₉	136
15	9.66	CH ₃	CH ₃	i-C ₄ H ₉	96- 97
	9.67	CH ₃	CH ₃	tert.-C ₄ H ₉	
	9.68	CH ₃	CH ₃	n-C ₅ H ₁₁	
	9.69	CH ₃	CH ₃	sec.-C ₅ H ₁₁	
20	9.70	CH ₃	CH ₃	n-C ₆ H ₁₃	
	9.71	CH ₃	CH ₃	n-C ₇ H ₁₅	
	9.72	CH ₃	CH ₃	sec.-C ₇ H ₁₅	
	9.73	CH ₃	CH ₃	Ethoxi	
25	9.74	CH ₃	CH ₃	Propoxi	
	9.75	CH ₃	CH ₃	1-Methylethoxi	
	9.76	CH ₃	CH ₃	n-Butoxi	
	9.77	CH ₃	CH ₃	1-Methylpropoxi	
30	9.78	CH ₃	CH ₃	2-Methylpropoxi	
	9.79	CH ₃	CH ₃	1,1-Dimethylethoxi	
	9.80	CH ₃	CH ₃	n-Pentyloxi	
35	9.81	CH ₃	CH ₃	n-Hexyloxi	
	9.82	CH ₃	CH ₃	Cyclopentyl	128-130
	9.83	CH ₃	CH ₃	Cyclopentenyl	128-129
	9.84	CH ₃	CH ₃	Cyclohexyl	128-129
40	9.85	CH ₃	CH ₃	1-Ethyl-propoxy	45-47
	9.86	CH ₃	CH ₃	Cyclopentyloxy	97-99
	9.87	CH ₃	CH ₃	2-Cyclohexenyloxy	87-89
	9.88	CH ₃	CH ₃	2-Methyl-2-propenyloxy	103-105

45

50

55

Tabelle 10

Verbindungen der Formel V mit A in der Bedeutung A₆

5

10

	Nr.	R ⁵	R ⁶	R ⁷	phys.Dat. Fp [°C]
15	10.1	CH ₃	Cl	i-C ₃ H ₇	108-110
	10.2	CH ₃	Cl	n-C ₃ H ₇	129-130
	10.3	CH ₃	Cl	n-C ₄ H ₉	
20	10.4	CH ₃	Cl	sec.-C ₄ H ₉	71- 73
	10.5	CH ₃	Cl	i-C ₄ H ₉	119-120
	10.6	CH ₃	Cl	tert.-C ₄ H ₉	
	10.7	CH ₃	Cl	n-C ₅ H ₁₁	
25	10.8	CH ₃	Cl	sec.-C ₅ H ₁₁	
	10.9	CH ₃	Cl	n-C ₆ H ₁₃	
	10.10	CH ₃	Cl	n-C ₇ H ₁₅	
	10.11	CH ₃	Cl	sec.-C ₇ H ₁₅	
30	10.12	CH ₃	Cl	1-Methylvinyl	
	10.13	CH ₃	Cl	2-Methylvinyl	
	10.14	CH ₃	Cl	Allyl	
	10.15	CH ₃	Cl	2-Methylallyl	
35	10.16	CH ₃	Cl	2-Ethylallyl	
	10.17	CH ₃	Cl	1-Methylallyl	
	10.18	CH ₃	Cl	1-Ethylallyl	
40	10.19	CH ₃	Cl	1-Methyl-2-butenyl	
	10.20	CH ₃	Cl	1-Ethyl-2-butenyl	
	10.21	CH ₃	Cl	1-Isopropyl-2-butenyl	
	10.22	CH ₃	Cl	1-n-Butyl-2-butenyl	
45	10.23	CH ₃	Cl	1-Methyl-2-pentenyl	
	10.24	CH ₃	Cl	1,4-Dimethyl-2-pentenyl	
	10.25	CH ₃	Cl	Propargyl	
	10.26	CH ₃	Cl	2-Butinyl	
50	10.27	CH ₃	Cl	3-Butinyl	

	Nr.	R ⁵	R ⁶	R ⁷	phys.Dat. Fp [°C]
5	10.28	CH ₃	Cl	Ethoxi	
	10.29	CH ₃	Cl	Propoxi	
	10.30	CH ₃	Cl	1-Methylethoxi	
	10.31	CH ₃	Cl	n-Butoxi	
10	10.32	CH ₃	Cl	1-Methylpropoxi	
	10.33	CH ₃	Cl	2-Methylpropoxi	
	10.34	CH ₃	Cl	1,1-Dimethylethoxi	
	10.35	CH ₃	Cl	n-Pentyloxi	
15	10.36	CH ₃	Cl	n-Hexyloxi	
	10.37	CH ₃	Cl	2-Ethylhexyloxi	
	10.38	CH ₃	Cl	2-Propenyloxi	
	10.39	CH ₃	Cl	2-Butentyloxi	
20	10.40	CH ₃	Cl	2-Methyl-2-propenyloxi	
	10.41	CH ₃	Cl	2-Pentenyloxi	
	10.42	CH ₃	Cl	3-Pentenyloxi	
	10.43	CH ₃	Cl	3-Chlor-2-propenyloxi	
25	10.44	CH ₃	Cl	2,3-Dichlor-2-propenyloxi	
	10.45	CH ₃	Cl	2,3,3-Trichlor-propenyloxi	
	10.46	CH ₃	Cl	2-Propinyloxi	
30	10.47	CH ₃	Cl	2-Butinyl-oxi	
	10.48	CH ₃	Cl	3-Butinyl-oxi	
	10.49	CH ₃	Cl	1-Methyl-2-propinyloxi	
	10.50	CH ₃	Cl	Cyclopropyl	
35	10.51	CH ₃	Cl	Cyclobutyl	
	10.52	CH ₃	Cl	Cyclopentyl	122-123
	10.53	CH ₃	Cl	Cyclohexyl	143-144
40	10.54	CH ₃	Cl	2-Cyclopentenyl	123-125
	10.55	CH ₃	Cl	1-Cyclopentenyl	
	10.56	CH ₃	Cl	2-Cyclohexenyl	114-116
	10.57	CH ₃	Cl	1-Cyclohexenyl	
45	10.58	CH ₃	Cl	Cyclopentyloxi	
	10.59	CH ₃	Cl	Cyclohexyloxi	
	10.60	CH ₃	Cl	2-Cyclopentenyloxi	
	10.61	CH ₃	Cl	2-Cyclohexenyloxi	
50	10.62	CF ₃	Cl	i-C ₃ H ₇	

Nr.	R ⁵	R ⁶	R ⁷	phys.Dat. Fp [°C]	
5	10.63	CF ₃	Cl	n-C ₃ H ₇	
10	10.64	CF ₃	Cl	n-C ₄ H ₉	
15	10.65	CF ₃	Cl	sec.-C ₄ H ₉	108-110
20	10.66	CF ₃	Cl	i-C ₄ H ₉	122-124
25	10.67	CF ₃	Cl	tert.-C ₄ H ₉	
30	10.68	CF ₃	Cl	n-C ₅ H ₁₁	
35	10.69	CF ₃	Cl	sec.-C ₅ H ₁₁	
40	10.70	CF ₃	Cl	n-C ₆ H ₁₃	
45	10.71	CF ₃	Cl	n-C ₇ H ₁₅	
50	10.72	CF ₃	Cl	sec.-C ₇ H ₁₅	
55	10.73	CF ₃	Cl	Ethoxi	
60	10.74	CF ₃	Cl	Propoxi	
65	10.75	CF ₃	Cl	1-Methylethoxi	
70	10.76	CF ₃	Cl	n-Butoxi	
75	10.77	CF ₃	Cl	1-Methylpropoxi	
80	10.78	CF ₃	Cl	2-Methylpropoxi	
85	10.79	CF ₃	Cl	1,1-Dimethylethoxi	
90	10.80	CF ₃	Cl	n-Pentyloxi	
95	10.81	CF ₃	Cl	n-Hexyloxi	
100	10.82	CF ₃	Cl	Cyclopentyl	113-115
105	10.83	CF ₃	Cl	Cyclopentenyl	132-133

Tabelle 11

Verbindungen der Formel V mit A in der Bedeutung A₇

Nr.	R ²	R ⁶	R ⁷	phys.Dat. Fp [°C]
11.1	H	CH ₃	i-C ₃ H ₇	
11.2	H	CH ₃	n-C ₃ H ₇	
11.3	H	CH ₃	n-C ₄ H ₉	

Nr.	R ²	R ⁶	R ⁷	phys.Dat. Fp [°C]
5	11.4	H	CH ₃	sec.-C ₄ H ₉
	11.5	H	CH ₃	i-C ₄ H ₉
10	11.6	H	CH ₃	tert.-C ₄ H ₉
	11.7	H	CH ₃	n-C ₅ H ₁₁
15	11.8	H	CH ₃	sec.-C ₅ H ₁₁
	11.9	H	CH ₃	n-C ₆ H ₁₃
20	11.10	H	CH ₃	n-C ₇ H ₁₅
	11.11	H	CH ₃	sec.-C ₇ H ₁₅
25	11.12	H	CH ₃	Ethoxi
	11.13	H	CH ₃	Propoxi
30	11.14	H	CH ₃	1-Methylethoxi
	11.15	H	CH ₃	n-Butoxi
35	11.16	H	CH ₃	1-Methylpropoxi
	11.17	H	CH ₃	2-Methylpropoxi
40	11.18	H	CH ₃	1,1-Dimethylethoxi
	11.19	H	CH ₃	n-Pentyloxi
45	11.20	H	CH ₃	n-Hexyloxi
	11.21	H	CH ₃	Cyclopentyl
50	11.22	H	CH ₃	Cyclopentenyl

Tabelle 12
Verbindungen der Formel V mit A in der Bedeutung A₃

Nr.	R ²	R ⁷	phys.Dat. Fp [°C]
45	12.1	H	147-148
	12.2	H	n-C ₃ H ₇
50	12.3	H	n-C ₄ H ₉
	12.4	H	sec.-C ₄ H ₉
	12.5	H	i-C ₄ H ₉
			109-110
			114-115

	Nr.	R ²	R ⁷	phys.Dat. Fp [°C]
5	12.6	H	tert.-C ₄ H ₉	
	12.7	H	n-C ₅ H ₁₁	
	12.8	H	sec.-C ₅ H ₁₁	
10	12.9	H	n-C ₆ H ₁₃	
	12.10	H	n-C ₇ H ₁₅	
	12.11	H	sec.-C ₇ H ₁₅	
15	12.12	H	Ethoxi	
	12.13	H	Propoxi	
	12.14	H	1-Methylethoxi	
20	12.15	H	n-Butoxi	
	12.16	H	1-Methylpropoxi	
	12.17	H	2-Methylpropoxi	
25	12.18	H	1,1-Dimethylethoxi	
	12.19	H	n-Pentyloxi	
	12.20	H	n-Hexyloxi	
30	12.21	H	Cyclopentyl	97- 98
	12.22	H	Cyclohexyl	125-127
	12.23	H	2-Cyclopentenyl	98- 99
35	12.24	H	1-Cyclopentenyl	
	12.25	H	2-Cyclohexenyl	82- 84
	12.26	H	1-Cyclohexenyl	
40	12.27	H	Cyclopentyloxi	73 - 75
	12.28	H	Cyclohexyloxi	
	12.29	H	2-Cyclopentenylloxi	
45	12.30	CH ₃	i-C ₃ H ₇	
	12.31	CH ₃	n-C ₃ H ₇	
	12.32	CH ₃	n-C ₄ H ₉	
50	12.33	CH ₃	sec.-C ₄ H ₉	80- 82
	12.34	CH ₃	i-C ₄ H ₉	114-116
	12.35	CH ₃	tert.-C ₄ H ₉	
55	12.36	CH ₃	n-C ₅ H ₁₁	
	12.37	CH ₃	sec.-C ₅ H ₁₁	
	12.38	CH ₃	n-C ₆ H ₁₃	
60	12.39	CH ₃	n-C ₇ H ₁₅	
	12.40	CH ₃	sec.-C ₇ H ₁₅	

	Nr.	R ²	R ⁷	phys.Dat. Fp [°C]
5	12.41	CH ₃	Ethoxi	
	12.42	CH ₃	Propoxi	
	12.43	CH ₃	1-Methylethoxi	
10	12.44	CH ₃	n-Butoxi	
	12.45	CH ₃	1-Methylpropoxi	
	12.46	CH ₃	2-Methylpropoxi	
	12.47	CH ₃	1,1-Dimethylethoxi	
15	12.48	CH ₃	n-Pentyloxi	
	12.49	CH ₃	n-Hexyloxi	
	12.50	CH ₃	Cyclopentyl	
20	12.51	H	2-Methyl-2-propenyl	40 - 41
	12.52	H	1-Ethyl-propoxy	Öl
	12.53	H	2-Cyclohexenyl	51 - 53

25

Herstellbeispiele

Beispiel 7

30 Zu einer Lösung von 1,4 g 2-n-Propylanilin und 1,1 g Triethylamin in 15 ml Tetrahydrofuran tropft man bei 0 °C 2,3 g 2-Methyl-4-trifluormethyl-thiazol-5-carbonsäurechlorid und röhrt noch 12 Stdn. bei 20 °C.

Nach Verdünnen mit 300 ml Wasser, Extraktion mit Methyltert.-butylether (2x 70 ml), Verdampfen des Lösungsmittels und Mischen des Rückstandes mit wenig n-Pentan isoliert man 2,8 g 2-Methyl-4-trifluormethyl-thiazol-5-carbonsäure-2-n-propyl-anilid vom Fp.: 114-116 °C (Tabelle 9, Nr. 2).

35

Beispiel 8

Zu einer Lösung von 2,7 g 2-i-Propylanilin und 2,2 g Triethylamin in 40 ml Dichlormethan tropft man bei 0 °C 3,8 g 1,3-Dimethyl-5-chlor-pyrazol-4-carbonsäurechlorid und röhrt noch 2 Stdn. bei 0 °C.

40 Nach Waschen mit 50 ml Wasser, Verdampfen des Lösungsmittels und Umkristallisieren aus Cyclohexan isoliert man 3,3 g 1,3-Dimethyl-5-chlor-pyrazol-4-carbonsäure-2-isopropylanilid vom Fp. 108 - 110 °C (Tabelle 10, Nr. 1).

45

50

55

Tabelle 13

Verbindungen der Formel V mit A in der Bedeutung A₁

5

10

15

20

25

30

35

40

45

50

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
13.1	Br	i-C ₃ H ₇	
13.2	Br	n-C ₃ H ₇	
13.3	Br	n-C ₄ H ₉	
13.4	Br	sec.-C ₄ H ₉	74- 75
13.5	Br	i-C ₄ H ₉	110 - 112
13.6	Br	tert.-C ₄ H ₉	
13.7	Br	n-C ₅ H ₁₁	
13.8	Br	sec.-C ₅ H ₁₁	
13.9	Br	n-C ₆ H ₁₃	
13.10	Br	n-C ₇ H ₁₅	
13.11	Br	sec.-C ₇ H ₁₅	
13.12	Br	1-Methylvinyl	
13.13	Br	2-Methylvinyl	
13.14	Br	Allyl	
13.15	Br	2-Methylallyl	
13.16	Br	2-Ethylallyl	
13.17	Br	1-Methylallyl	
13.18	Br	1-Ethylallyl	
13.19	Br	1-Methyl-2-butenyl	
13.20	Br	1-Ethyl-2-butenyl	
13.21	Br	1-Isopropyl-2-butenyl	
13.22	Br	1-n-Butyl-2-butenyl	
13.23	Br	1-Methyl-2-pentenyl	

55

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	13.24	Br	1,4-Dimethyl-2-pentenyl	
	13.25	Br	Propargyl	
	13.26	Br	2-Butinyl	
	13.27	Br	3-Butinyl	
10	13.28	Br	Ethoxi	
	13.29	Br	Propoxi	
	13.30	Br	1-Methylethoxi	
	13.31	Br	n-Butoxi	
15	13.32	Br	1-Methylpropoxi	
	13.33	Br	2-Methylpropoxi	
	13.34	Br	1,1-Dimethylethoxi	
20	13.35	Br	n-Pentyloxi	
	13.36	Br	n-Hexyloxi	
	13.37	Br	2-Ethylhexyloxi	
	13.38	Br	2-Propenyloxi	
25	13.39	Br	2-Butentyloxi	
	13.40	Br	2-Methyl-2-propenyloxi	
	13.41	Br	2-Pentyloxi	
	13.42	Br	3-Pentyloxi	
30	13.43	Br	3-Chlor-2-propenyloxi	
	13.44	Br	2,3-Dichlor-2-propenyloxi	
	13.45	Br	2,3,3-Trichlor-propenyloxi	
	13.46	Br	2-Propinyloxi	
35	13.47	Br	2-Butinyl-oxi	
	13.48	Br	3-Butinyl-oxi	
	13.49	Br	1-Methyl-2-propinyloxi	
40	13.50	Br	Cyclopropyl	
	13.51	Br	Cyclobutyl	
	13.52	Br	Cyclopentyl	
	13.53	Br	Cyclohexyl	
45	13.54	Br	2-Cyclopentenyl	
	13.55	Br	1-Cyclopentenyl	
	13.56	Br	2-Cyclohexenyl	
	13.57	Br	1-Cyclohexenyl	
50	13.58	Br	Cyclopentyloxi	

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
13.59	Br	Cyclohexyloxi	
13.60	Br	2-Cyclopentyloxi	
13.61	Br	2-Cyclohexyloxi	

10 Tabelle 14
Verbindungen der Formel V mit A in der Bedeutung A₁

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
14.1	J	i-C ₃ H ₇	
14.2	J	n-C ₃ H ₇	
14.3	J	n-C ₄ H ₉	
14.4	J	sec.-C ₄ H ₉	97 - 98
14.5	J	i-C ₄ H ₉	148 - 149
14.6	J	tert.-C ₄ H ₉	
14.7	J	n-C ₅ H ₁₁	
14.8	J	sec.-C ₅ H ₁₁	
14.9	J	n-C ₆ H ₁₃	
14.10	J	n-C ₇ H ₁₅	
14.11	J	sec.-C ₇ H ₁₅	
14.12	J	1-Methylvinyl	
14.13	J	2-Methylvinyl	
14.14	J	Allyl	
14.15	J	2-Methylallyl	
14.16	J	2-Ethylallyl	
14.17	J	1-Methylallyl	
14.18	J	1-Ethylallyl	
14.19	J	1-Methyl-2-butenyl	
14.20	J	1-Ethyl-2-butenyl	
14.21	J	1-Isopropyl-2-butenyl	

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	14.22	J	1-n-Butyl-2-butenyl	
	14.23	J	1-Methyl-2-pentenyl	
	14.24	J	1,4-Dimethyl-2-pentenyl	
10	14.25	J	Propargyl	
	14.26	J	2-Butinyl	
	14.27	J	3-Butinyl	
	14.28	J	Ethoxi	
15	14.29	J	Propoxi	
	14.30	J	1-Methylethoxi	
	14.31	J	n-Butoxi	
	14.32	J	1-Methylpropoxi	
20	14.33	J	2-Methylpropoxi	
	14.34	J	1,1-Dimethylethoxi	
	14.35	J	n-Pentyloxi	
	14.36	J	n-Hexyloxi	
25	14.37	J	2-Ethylhexyloxi	
	14.38	J	2-Propenyloxi	
	14.39	J	2-Butentyloxi	
30	14.40	J	2-Methyl-2-propenyloxi	
	14.41	J	2-Pentenyloxi	
	14.42	J	3-Pentenyloxi	
	14.43	J	3-Chlor-2-propenyloxi	
35	14.44	J	2,3-Dichlor-2-propenyloxi	
	14.45	J	2,3,3-Trichlor-propenyloxi	
	14.46	J	2-Propinyloxi	
	14.47	J	2-Butinyl-oxi	
40	14.48	J	3-Butinyl-oxi	
	14.49	J	1-Methyl-2-propinyloxi	
	14.50	J	Cyclopropyl	
45	14.51	J	Cyclobutyl	
	14.52	J	Cyclopentyl	
	14.53	J	Cyclohexyl	
	14.54	J	2-Cyclopentenyl	
50	14.55	J	1-Cyclopentenyl	
	14.56	J	2-Cyclohexenyl	

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
14.57	J	1-Cyclohexenyl	
14.58	J	Cyclopentyloxi	
14.59	J	Cyclohexyloxi	
14.60	J	2-Cyclopentenyloxi	
14.61	J	2-Cyclohexenyloxi	

Tabelle 15
Verbindungen der Formel V mit A in der Bedeutung A₃

20

5

15

25

30

35

40

45

50

Nr.	R ⁷	phys.Dat. Fp [°C]
15.1	i-C ₃ H ₇	
15.2	n-C ₃ H ₇	
15.3	n-C ₄ H ₉	
15.4	sec.-C ₄ H ₉	78-80
15.5	i-C ₄ H ₉	106-107
15.6	tert.-C ₄ H ₉	
15.7	n-C ₅ H ₁₁	
15.8	sec.-C ₅ H ₁₁	
15.9	n-C ₆ H ₁₃	
15.10	n-C ₇ H ₁₅	
15.11	sec.-C ₇ H ₁₅	
15.12	Ethoxi	
15.13	Propoxi	
15.14	1-Methylethoxi	
15.15	n-Butoxi	
15.16	1-Methylpropoxi	
15.17	2-Methylpropoxi	
15.18	1,1-Dimethylethoxi	
15.19	n-Pentyloxi	

55

Nr.	R ⁷	phys.Dat. Fp [°C]
5	15.20 n-Hexyloxi	
	15.21 Cyclopentyl	
	15.22 Cyclohexyl	
10	15.23 2-Cyclopentenyl	
	15.24 1-Cyclopentenyl	
	15.25 2-Cyclohexenyl	
	15.26 1-Cyclohexenyl	
15	15.27 Cyclopentyloxi	
	15.28 Ethoxi	
	15.29 Propoxi	
	15.30 1-Methylethoxi	
20	15.31 n-Butoxi	
	15.32 1-Methylpropoxi	
	15.33 2-Methylpropoxi	
	15.34 1,1-Dimethylethoxi	
25	15.35 n-Pentyloxi	
	15.36 n-Hexyloxi	
	15.37 2-Ethylhexyloxi	
	15.38 2-Propenyloxi	
30	15.39 2-Butentyloxi	
	15.40 2-Methyl-2-propenyloxi	Öl
	15.41 2-Pentenyloxi	
	15.42 3-Pentenyloxi	
35	15.43 3-Chlor-2-propenyloxi	
	15.44 2,3-Dichlor-2-propenyloxi	
	15.45 2,3,3-Trichlor-propenyloxi	
40	15.46 2-Propinyloxi	
	15.47 2-Butinyl-oxi	
	15.48 3-Butinyl-oxi	
	15.49 1-Methyl-2-propinyloxi	
45	15.50 Cyclopropyl	
	15.51 Cyclobutyl	
	15.52 Cyclopentyl	
	15.53 Cyclohexyl	
50	15.54 2-Cyclopentenyl	

Nr.	R ⁷	phys.Dat. Fp [°C]
5	15.55 1-Cyclopentenyl	
	15.56 2-Cyclohexenyl	
10	15.57 1-Cyclohexenyl	
	15.58 Cyclopentyloxi	Ö1
15	15.59 Cyclohexyloxi	
	15.60 2-Cyclopentenyloxi	
20	15.61 2-Cyclohexenyloxi	Ö1
	15.62 1-Ethylpropoxy	Ö1

Die Erfindung betrifft ferner die folgenden neuen Verbindungen.

Nicotinsäureanilid-Derivate der allgemeinen Formel I

20

25

in der die Substituenten folgende Bedeutung haben

R¹ Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl,

30 R² gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß R² verschieden von Isopropyl ist, wenn R¹ Chlor bedeutet.

Anilid-Derivate der allgemeinen Formel II,

35

40

in der die Substituenten folgende Bedeutung haben:

45

A

(A1)

(A2)

50

X Methylen oder Schwefel

55 R gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes

C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß

- 5 A nicht A₁ ist, wenn R Ethoxi, Isopropoxi oder Allyloxi ist
 A nicht A₂ mit X in der Bedeutung Schwefel ist, wenn R Ethoxi, Propoxi, n-Butoxi, sec.-Butoxi, n-Pentyloxi ist
 A nicht A₂ mit X in der Bedeutung Methylen ist, wenn R Isopropyl ist.

2-Aminobiphenyl-Derivate der allgemeinen Formel III,

10

III,

15

in der die Substituenten folgende Bedeutung haben:

20

25

(A1)

(A2)

(A3)

30

35

(A4)

(A5)

(A6)

40

(A7)

(A8)

45

X Methylene, Schwefel, Sulfinyl, Sulfonyl (SO₂),

R¹ Methyl, Trifluormethyl, Chlor, Brom, Jod

R² Trifluormethyl, Chlor

R³ Wasserstoff oder Methyl

50 R⁴ Methyl, Trifluormethyl, Chlor

R⁵ Wasserstoff, Methyl, Chlor

R⁶ Methyl, Trifluormethyl

R⁷ Methyl, Chlor

R⁸ C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Halogen.

55 Carbonsäureanilid-Derivate der allg. Formel V,

v,

in der die Substituenten folgende Bedeutung haben

10

A

15

(A1)

(A2)

(A3)

20

25

(A4)

(A5)

(A6)

(A7)

n = 1 oder 2

R¹ Trifluormethyl, Chlor, Brom, Jod

30 R² Wasserstoff oder Methyl

R³ Methyl, Trifluormethyl, Chlor

R⁴ Wasserstoff, Methyl, Chlor

R⁵ Methyl, Trifluormethyl

R⁶ Methyl, Chlor

35 R⁷ gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxy, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß R⁷ verschieden von 3-Methyl-but-2-en-1-yl oder 3-Methyl-but-3-en-1-yl ist, wenn R¹ Trifluormethyl ist.

40 Die neuen Verbindungen eignen sich als Fungizide.

Die erfindungsgemäßen fungiziden Verbindungen bzw. die sie enthaltenden Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, ölichen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

50 Normalerweise werden die Pflanzen mit den Wirkstoffen besprüht oder bestäubt oder die Samen der Pflanzen mit den Wirkstoffen behandelt.

Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstreichen des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln, wobei im Falle von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können. Als Hilfsstoffe kommen dafür im wesentlichen in Betracht: 55 Lösungsmittel wie Aromaten (z.B. Xylo), chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B. Cyclohexanon), Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser; Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talcum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene

und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiertmittel wie Ligninsulfitablaugen und Methylcellulose.

- Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatiertes Hexa-, Hepta- und Octadecanolen, sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfonierte Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylene, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

- Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineraleden wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Beispiele für solche Zubereitungen sind:

- I. eine Lösung aus 90 Gew.-Teilen der Verbindung Nr. 1.7 und 10 Gew.-Teilen N-Methyl-a-pyrrolidon, die zur Anwendung in Form kleinstter Tropfen geeignet ist;
- II. eine Mischung aus 20 Gew.-Teilen der Verbindung Nr. 1.8, 80 Gew.-Teilen Xylool, 10 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 5 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl; durch feines Verteilen der Lösung in Wasser erhält man eine Dispersion.
- III. eine wäßrige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 1.3, 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Rizinusöl;
- IV. eine wäßrige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 1.4, 25 Gew.-Teilen Cyclohexanol, 65 Gew.-Teilen einer Mineralölfaktion vom Siedepunkt 210 bis 280°C und 10 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Rizinusöl;
- V. eine in einer Hammermühle vermahlene Mischung aus 80 Gew.-Teilen der Verbindung Nr. 1.5, 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-a-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfitablaue und 7 Gew.-Teilen pulverförmigem Kieselsäuregel; durch feines Verteilen der Mischung in Wasser erhält man eine Spritzbrühe;
- VI. eine innige Mischung aus 3 Gew.-Teilen der Verbindung Nr. 1.7 und 97 Gew.-Teilen feinteiligem Kaolin; dieses Stäubemittel enthält 3 Gew.-% Wirkstoff;
- VII. eine innige Mischung aus 30 Gew.-Teilen der Verbindung Nr. 1.8, 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprühnt wurde; diese Aufbereitung gibt dem Wirkstoff eine gute Haftfähigkeit;
- VIII. eine stabile wäßrige Dispersion aus 40 Gew.-Teilen der Verbindung Nr. 1.9, 10 Gew.-Teilen des Natriumsalzes eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensates, 2 Gew.-Teilen Kieselgel und 48 Gew.-Teilen Wasser, die weiter verdünnt werden kann;
- IX. eine stabile ölige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 1.33, 2 Gew.-Teilen des Calciumsalzes der Dodecylbenzolsulfonsäure, 8 Gew.-Teilen Fettalkohol-polyglykolether, 20 Gew.-Teilen des Natriumsalzes eines Phenolsulfonsäure-harnstoff-formaldehydkondensates und 68 Gew.-Teilen eines paraffinischen Mineralöls.

Die neuen Verbindungen zeichnen sich durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere gegen Botrytis aus. Sie sind zum Teil systemisch wirksam und können als Blatt- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.

Die Verbindungen werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Saatgüter, Pflanzen, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt.

Die Anwendung erfolgt vor oder nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze.

Speziell eignen sich die Verbindungen zur Bekämpfung folgender Pflanzenkrankheiten:

Erysiphe graminis (echter Mehltau) in Getreide,

5 Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,

Podosphaera leucotricha an Äpfeln,

Uncinula necator an Reben,

Venturia inaequalis (Schorf) an Äpfeln,

Helminthosporium-Arten an Getreide,

10 Septoria nodorum an Weizen,

Botrytis cinerea (Grauschimmel) an Erdbeeren, Reben,

Cercospora arachidicola an Erdnüssen,

Pseudocercosporella herpotrichoides an Weizen, Gerste, Pyricularia oryzae an Reis,

Fusarium- und Verticillium-Arten an verschiedenen Pflanzen, Alternaria-Arten an Gemüse und Obst.

15 Die Anwendung gegen Botrytis wird bevorzugt.

Die neuen Verbindungen können auch im Materialschutz (Holzschutz) eingesetzt werden, z.B. gegen Paecilomyces variotii.

Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.% Wirkstoff.

20 Die Aufwandsmengen liegen je nach Art des gewünschten Effektes zwischen 0,02 und 3 kg Wirkstoff pro ha.

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 50 g, vorzugsweise 0,01 bis 10 g je Kilogramm Saatgut benötigt.

Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln.

Beim Vermischen mit Fungiziden erhält man dabei in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:

Schwefel,

Dithiocarbamate und deren Derivate, wie

Ferridimethyldithiocarbamat,

Zinkdimethyldithiocarbamat,

35 Zinkethylenbisdithiocarbamat,

Manganethylenbisdithiocarbamat,

Mangan-Zink-ethylendiamin-bis-dithiocarbamat,

Tetramethylthiuramdisulfide,

Ammoniak-Komplex von Zink-(N,N-ethylen-bis-dithiocarbamat),

40 Ammoniak-Komplex von Zink-(N,N'-propylen-bis-dithiocarbamat),

Zink-(N,N'-propylen-bis-dithiocarbamat),

N,N'-Polypropylen-bis-(thiocarbamoyl)-disulfid,;

Nitroderivate, wie

Dinitro-(1-methylheptyl)-phenylcrotonat,

45 2-sec-Butyl-4,6-dinitrophenyl-3,3-dimethylacrylat,

2-sec-Butyl-4,6-dinitrophenyl-isopropylcarbonat,

5-Nitro-isophthalsäure-di-isopropylester;

heterocyclische Substanzen, wie

2-Heptadecyl-2-imidazolin-acetat,

50 2,4-Dichlor-6-(o-chloranilino)-s-triazin,

O,O-Diethyl-phthalimidophosphonothioat,

5-Amino-1- β bis-(dimethylamino)-phosphinyl'-3-phenyl-1,2,4-triazol,

2,3-Dicyano-1,4-dithioanthrachinon,

2-Thio-1,3-dithiolo β 4,5-b'chinoxalin,

55 1-(Butylcarbamoyl)-2-benzimidazol-carbaminsäuremethylester,

2-Methoxycarbonylamino-benzimidazol,

2-(Furyl-(2))-benzimidazol,

2-(Thiazolyl-(4))-benzimidazol,

- N-(1,1,2,2-Tetrachlorethylthio)-tetrahydropthalimid,
 N-Trichlormethylthio-tetrahydropthalimid,
 N-Trichlormethylthio-phthalimid,
 N-Dichlorfluormethylthio-N',N'-dimethyl-N-phenyl-schwefelsäurediamid,
- 5 5-Ethoxy-3-trichlormethyl-1,2,3-thiadiazol,
 2-Rhodanmethyliothiobenzthiazol,
 1,4-Dichlor-2,5-dimethoxybenzol,
 4-(2-Chlorphenylhydrazono)-3-methyl-5-isoxazolon,
 Pyridin-2-thio-1-oxid,
- 10 8-Hydroxychinolin bzw. dessen Kupfersalz,
 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin,
 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin-4,4-dioxid,
 2-Methyl-5,6-dihydro-4H-pyran-3-carbonsäure-anilid,
 2-Methyl-furan-3-carbonsäureanilid,
- 15 2,5-Dimethyl-furan-3-carbonsäureanilid,
 2,4,5-Trimethyl-furan-3-carbonsäureanilid,
 2,5-Dimethyl-furan-3-carbonsäurecyclohexylamid,
 N-Cyclohexyl-N-methoxy-2,5-dimethyl-furan-3-carbonsäureamid,
 2-Methyl-benzoësäure-anilid,
- 20 2-Iod-benzoësäure-anilid,
 N-Formyl-N-morpholin-2,2,2-trichlorethylacetal,
 Piperazin-1,4-diylbis-(1-(2,2,2-trichlor-ethyl)-formamid,
 1-(3,4-Dichloranilino)-1-formylamino-2,2,2-trichlorethan,
 2,6-Dimethyl-N-tridecyl-morpholin bzw. dessen Salze,
- 25 2,6-Dimethyl-N-cyclododecyl-morpholin bzw. dessen Salze,
 N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-cis-2,6-dimethylmorpholin,
 N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-piperidin,
 1-[2-(2,4-Dichlorphenyl)-4-ethyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol
 1-[2-(2,4-Dichlorphenyl)-4-n-propyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol
- 30 30 N-(n-Propyl)-N-(2,4,6-trichlorphenoxyethyl)-N'-imidazol-yl-harnstoff,
 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanon,
 1-(4-Chlorphenyl)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanol,
 α -(2-Chlorphenyl)- α -(4-chlorphenyl)-5-pyrimidin-methanol,
 5-Butyl-2-dimethylamino-4-hydroxy-6-methyl-pyrimidin,
- 35 Bis-(p-chlorphenyl)-3-pyridinmethanol,
 1,2-Bis-(3-ethoxycarbonyl-2-thioureido)-benzol,
 1,2-Bis-83-methoxycarbonyl-2-thioureido)-benzol,
 sowie verschiedene Fungizide, wie
 Dodecylguanidinacetat,
- 40 40 3-[3-(3,5-Dimethyl-2-oxycyclohexyl)-2-hydroxyethyl)]glutarimid,
 Hexachlorbenzol,
 DL-Methyl-N-(2,6-dimethyl-phenyl)-N-furoyl (2)-alaninat,
 DL-N-(2,6-Dimethyl-phenyl)-N-(2'-methoxyacetyl)-alanin-methylester,
 N-(2,6-Dimethylphenyl)-N-chloracetyl-D,L-2-aminobutyrolacton,
- 45 45 DL-N-(2,6-Dimethylphenyl)-N-(phenylacetyl)-alaninmethylester,
 5-Methyl-5-vinyl-3-(3,5-dichlorphenyl)-2,4-dioxo-1,3-oxazolidin,
 3-[3,5-Dichlorphenyl(-5-methyl-5-methoxymethyl)-1,3-oxazolidin-2,4-dion,
 3-(3,5-Dichlorhenyl)-1-isopropylcarbamoylhydantoin,
 N-(3,5-Dichlorphenyl)-1,2-dimethylcyclopropan-1,2-dicarbonsäureimid,
- 50 50 2-Cyano-[N-(ethylaminocarbonyl)-2-methoximino]-acetamid,
 1-[2-(2,4-Dichlorphenyl)-pentyl]-1H-1,2,4-triazol,
 2,4-Difluor- α -(1H-1,2,4-triazolyl-1-methyl)-benzhydrylalkohol,
 N-(3-Chlor-2,6-dinitro-4-trifluormethyl-phenyl)-5-trifluormethyl-3-chlor-2-aminopyridin,
 1-((bis-(4-Fluorophenyl)-methylsilyl)-methyl)-1H-1,2,4-triazol.

Anwendungsbeispiele

Als Vergleichswirkstoffe wurden 2-Chlornicotinsäure-2'-ethylanilid (A) - bekannt aus US 4 001 416 - und 2-Chlornicotinsäure-3'-isopropylanilid (B) - bekannt aus DE 26 11 601 - benutzt.

5

Anwendungsbeispiel 1**Wirksamkeit gegen Botrytis cinerea auf Paprikaschoten**

10 Scheiben von grünen Paprikaschoten wurden mit wäßriger Wirkstoffaufbereitung, die 80 % Wirkstoff und 20 % Emulgiermittel in der Trockensubstanz enthielt, tropfnäß besprüht. 2 Stunden nach dem Antrocknen des Spritzbelages wurden die Fruchtscheiben mit einer Sporensuspension von Botrytis cinerea, die $1,7 \times 10^6$ Sporen pro ml einer 2 %igen Biomalzlösung enthielt, behandelt. Die Fruchtscheiben wurden anschließend in feuchten Kammern bei 18 °C für 4 Tage aufbewahrt. Danach erfolgte visuell die Auswertung
15 der Botrytis-Entwicklung auf den befallenen Fruchtscheiben.

Das Ergebnis zeigt, daß die Wirkstoffe 1.5, 1.7 und 1.8 bei der Anwendung als 500 ppm haltige Spritzbrühe eine bessere fungizide Wirkung zeigen (95 %) als die bekannten Vergleichswirkstoffe A (10 %) und B (65 %).

20 **Anwendungsbeispiel 2****Wirksamkeit gegen Botrytis cinerea auf Paprikaschoten**

Die Innenfläche von aufgeschnittenen Paprikaschoten wurde mit einer wäßrigen Wirkstoffaufbereitung,
25 die 80 % Wirkstoff und 20 % Emulgiermittel in der Trockensubstanz enthielt, bis zur Tropfnässe besprüht. Nach dem Antrocknen der wäßrigen Wirkstoffaufbereitung wurden die Fruchtstücke mit einer wäßrigen Sporensuspension von Botrytis cinerea, die $1,7 \times 10^6$ Sporen/ml enthielt, inkuliert.

Anschließend wurden die Fruchtstücke für 4 Tage in Klimaschränke bei 20 - 22 °C gestellt. Dann wurde das Ausmaß des Pilzbewuchses visuell ausgewertet.

30 Das Ergebnis des Versuchs zeigt ferner, daß die Verbindungen Nr. 2.4, 4.4, 6.4, 7.4, 7.5, 9.1, 9.2, 9.4, 9.5, 10.1, 10.2, 10.4, 10.5, 12.4, 12.6, 2.65 und 2.66 bei der Anwendung als 1000 ppm Wirkstoff enthaltende wäßrige Spritzbrühen eine gute fungizide Wirkung (100 %) haben.

Patentansprüche

35

1. Verwendung von Anilid-derivaten der Formel

45

in der A die folgenden Bedeutungen hat

Pyridin-3-yl, substituiert in 2-Stellung durch Halogen, Methyl, Trifluormethyl, Methoxy, Methylthio, Methylsulfinyl, Methylsulfonyl,

Phenyl, substituiert in 2-Stellung durch Methyl, Trifluormethyl, Chlor, Brom, Iod,

50 2-Methyl-5,6-dihydropyran-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4-oxid, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4,4-dioxid; 2-Methyl-furan-3-yl, substituiert in 4- und 5-Stellung durch Wasserstoff oder Methyl; Thiazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl; Thiazol-4-yl, substituiert in 2- und 5-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl; 1-Methylpyrazol-4-yl, substituiert in 3- und 5-Stellung durch Methyl, Chlor, Trifluormethyl; Oxazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor und R die folgenden Bedeutungen hat, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxy, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxy, C₃-C₁₂-

Alkinyloxy, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxy, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxy, gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Halogen, substituiertes Phenyl,
zur Bekämpfung von Botrytis.

2. Verwendung von Nicotinsäureanilid-Derivaten der allgemeinen Formel I,

10

15

in der die Substituenten folgende Bedeutung haben:

20

R¹ Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl
R² gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkynyl, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxy, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi zur Bekämpfung von Botrytis.

25

3. Verwendung von Anilid-Derivaten der Formel II,

30

35

in der die Substituenten folgende Bedeutung haben:

40

A

(A1)

(A2)

45

X Methylen oder Schwefel
R gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkynyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxy, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi zur Bekämpfung von Botrytis.

50

4. Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel III,

55

5

III,

10

in der die Substituenten folgende Bedeutung haben:

15

(A1)

(A2)

(A3)

20

(A4)

(A5)

(A6)

25

(A7)

(A8)

30

- | | |
|-------|---|
| X | Methylen, Schwefel, Sulfinyl, Sulfonyl (SO_2), |
| R^1 | Methyl, Trifluormethyl, Chlor, Brom, Jod |
| R^2 | Trifluormethyl, Chlor |
| R^3 | Wasserstoff oder Methyl |
| R^4 | Methyl, Trifluormethyl, Chlor |
| R^5 | Wasserstoff, Methyl, Chlor |
| R^6 | Methyl, Trifluormethyl |
| R^7 | Methyl, Chlor |
| R^8 | $C_1\text{-}C_4$ -Alkyl, $C_1\text{-}C_4$ -Alkoxy, $C_1\text{-}C_4$ -Alkylthio, Halogen |
- zur Bekämpfung von Botrytis.

40

5. Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel IV,

50

IV,

55

in der die Substituenten folgende Bedeutung haben:

	X	Methylen, Sulfinyl, Sulfonyl (SO_2),
	R ¹	Methyl, Trifluormethyl, Chlor, Brom, Jod
	R ²	Trifluormethyl, Chlor
30	R ³	Wasserstoff oder Methyl
	R ⁴	Methyl, Trifluormethyl, Chlor
	R ⁵	Wasserstoff, Methyl, Chlor
	R ⁶	Methyl, Trifluormethyl
	R ⁷	Methyl, Chlor,
35	zur Bekämpfung von Botrytis.	

6. Verwendung von Carbonsäureanilid-Derivaten der allg. Formel V,

in der die Substituenten folgende Bedeutung haben:

A

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

n 1 oder 2

R¹ Trifluormethyl, Chlor, Brom, JodR² Wasserstoff oder MethylR³ Methyl, Trifluormethyl, ChlorR⁴ Wasserstoff, Methyl, ChlorR⁵ Methyl, TrifluormethylR⁶ Methyl, Chlor

25 R⁷ gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxy, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi zur Bekämpfung von Botrytis.

7. Nicotinsäureanilid-Derivate der allgemeinen Formel I

35

I,

40

in der die Substituenten folgende Bedeutung haben

R¹ Halogen, Methyl, Trifluormethyl, Methoxy, Methylthio, Methylsulfinyl, Methylsulfonyl,

45 R² gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxy, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß R² verschieden von Isopropyl ist, wenn R¹ Chlor bedeutet.

50 8. Anilid-Derivate der allg. Formel II,

II,

in der die Substituenten folgende Bedeutung haben:

5

A

(A1)

10

(A2)

10

X Methylen oder Schwefel

R gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß

20

A nicht A₁ ist, wenn R Ethoxi, Isopropoxi oder Allyloxi istA nicht A₂ mit X in der Bedeutung Schwefel ist, wenn R Ethoxi, Propoxi, n-Butoxi, sec.-Butoxi, n-Pentyloxi istA nicht A₂ mit X in der Bedeutung Methylen ist, wenn R Isopropyl ist.

25

9. 2-Aminobiphenyl-Derivate der allgemeinen Formel III,

30

III,

35

in der die Substituenten folgende Bedeutung haben:

40

45

50

55

5

10

15

20

(A7)

(A8)

25

- | | |
|----------------|---|
| X | Methylen, Schwefel, Sulfinyl, Sulfonyl (SO ₂), |
| R ¹ | Methyl, Trifluormethyl, Chlor, Brom, Jod |
| R ² | Trifluormethyl, Chlor |
| R ³ | Wasserstoff oder Methyl |
| R ⁴ | Methyl, Trifluormethyl, Chlor |
| R ⁵ | Wasserstoff, Methyl, Chlor |
| R ⁶ | Methyl, Trifluormethyl |
| R ⁷ | Methyl, Chlor |
| R ⁸ | C ₁ -C ₄ -Alkyl, C ₁ -C ₄ -Alkoxy, C ₁ -C ₄ -Alkythio, Halogen. |

10. 2-Aminobiphenyl-Derivate der allgemeinen Formel IV,

40

IV,

45

in der die Substituenten folgende Bedeutung haben:

50

55

5

(A1)

(A2)

(A3)

10

15

(A5)

(A6)

20

25

(A7)

(A8)

X Methylen, Sulfinyl, Sulfonyl (SO_2),R¹ Trifluormethyl, Chlor, JodR² Trifluormethyl, Chlor

30

R³ Wasserstoff oder MethylR⁴ Methyl, Trifluormethyl, ChlorR⁵ Wasserstoff, Methyl, ChlorR⁶ Methyl, TrifluormethylR⁷ Methyl, Chlor.

35

11. Carbonsäureanilid-Derivate der allg. Formel V,

40

V,

45

in der die Substituenten folgende Bedeutung haben

50

55

n 1 oder 2

R¹ Trifluormethyl, Chlor, Brom, JodR² Wasserstoff oder MethylR³ Methyl, Trifluormethyl, ChlorR⁴ Wasserstoff, Methyl, ChlorR⁵ Methyl, TrifluormethylR⁶ Methyl, Chlor

R⁷ gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß R⁷ verschieden von 3-Methyl-but-2-en-1-yl oder 3-Methyl-but-3-en-1-yl ist, wenn R¹ Trifluormethyl ist.

35

40

45

50

55