Matematiikan ylioppilaskoe 29.9.2010

Pitkä oppimäärä

Vastaukset

1. a)
$$4ab$$
; b) $x = 60^{\circ} + n \cdot 180^{\circ}, n \in \mathbb{Z}$; c) $\frac{3}{4}$.

2. a)
$$x \ge \frac{3}{\sqrt{7}-4}$$
; b) $\ln(2)$; c) $x_1 = 2, x_2 = -2$.

- **3.** a) Suoran piste on (1+2t,2+t,2+ts). Tämän tulee toteuttaa tason yhtälö kaikilla parametrin t arvoilla, mistä seuraa s=-2.
 - b) Ehdon F(0) = 0 täyttävä integraalifunktio on $F(x) = -\frac{1}{4}(2-x)^4 + 4$, jolloin $F(1) = \frac{15}{4}$.

4.
$$a = 1, b = -6, c = 5$$
; siis $a + b + c = 0$.

- **5.** Käytetyt ajat: joen leveys kerrottuna luvulla 0.088... (A), 0.082... (B); B siis pääsee ensin vastarannalle.
- **6.** Todennäköisyys, että 15:sta on n oikein ja 15 n väärin: $p_n = \binom{15}{n} (\frac{1}{2})^n (\frac{1}{2})^{15-n}$. Todennäköisyys, että läpäisee: $1 (p_0 + p_1 + p_2 + p_3 + p_4) \approx 0.94$.
- 7. Derivaatan nollakohdat: $x=2n\pi,\ x=\frac{\pi}{3}+n\frac{2\pi}{3},\ n\in\mathbb{Z}.$ max $f=\frac{3}{4},$ min $f=-\frac{3}{2}.$ Maksimikohdat $x=\pm\frac{\pi}{3}+2n\pi,\ n\in\mathbb{Z}.$ (Minimikohdat $x=n\pi,\ n$ pariton.)
- **8.** Jos $a_n = a + nd$, niin $b_n = 3^a \cdot (3^d)^n$. Jono (b_n) aidosti vähenevä, jos $3^d < 1$ eli d < 0.

9.

Kuvion mukaisessa tukin poikkileikkauksessa on $\cos\alpha=\frac{3}{5}$, jolloin $\alpha\approx53.130^\circ$. Poikkileikkauksesta veden alle jäävän segmentin ala on $A=\frac{360-2\alpha}{360}\cdot\pi r^2+\frac{4}{5}\cdot\frac{3}{5}r^2$. Jos tukin pituus on d, niin tukin massa on Ad kerrottuna veden tiheydellä. Tällöin tukin tiheys on $Ad/(\pi r^2 d)=1-\frac{\alpha}{180}+\frac{12}{25\pi}\approx0.86~\mathrm{kg/dm^3}$.

10. Suoran yhtälö on y-b=k(x-a) ja kolmion ala $A(k)=\frac{1}{2}(a-\frac{b}{k})(b-ka)$. Tällöin minimiala on $A(-\frac{b}{a})=2ab$.

© SKK

- **11.** a) Ei ole tautologia, sillä $A \vee B$ on epätosi, jos A ja B ovat epätosia. b) On tautologia, sillä $(A \vee \neg B) \vee (C \vee B) \iff (A \vee C) \vee (B \vee \neg B)$ ja $B \vee \neg B$ on tosi.
- 12. Jakamalla P(x) binomilla 2x-1 saadaan jakojäännnökseksi a-2, joten tulee olla a=2. Osamäärä on x^3-x^2-4x-2 , jolla on nollakohta x=-1 ja siis tekijänä x+1. Uusi jakolasku antaa osamääräksi x^2-2x-2 , jolla on nollakohdat $x=1\pm\sqrt{3}$. Juuret siis $x_1=\frac{1}{2},\ x_2=-1,\ x_3=1+\sqrt{3},\ x_4=1-\sqrt{3}$.
- **13.** Ehto $\int_0^\infty f(x) dx = 1$ antaa a = 3, jolloin f on tiheysfunktio. Kertymäfunktio on F(x) = 0, jos $x \le 0$, ja $F(x) = \int_0^x f(x) dx = 1 e^{-3x}$, jos $x \ge 0$. $P(X \ge t) = e^{-3t}$, jos $t \ge 0$.

14. a) Käänteisfunktio on olemassa, sillä $f'(x) = \frac{1}{x} + 1 > 0$.

b)
$$f(1) = 2 \implies g(2) = 1$$
, joten $g'(2) = 1/f'(g(2)) = 1/f'(1) = \frac{1}{2}$.

- c) Funktion ja käänteisfunktion kuvaajat leikkaavat suoralla y = x, joten tulee olla $x = \ln x + x + 1$. Tästä seuraa $x = \frac{1}{e}$, ja leikkauspiste on $(\frac{1}{e}, \frac{1}{e})$.
- d) Funktion kuvaajan tangentin kulmakerroin leikkauspisteessä on $f'(\frac{1}{e}) = \tan \alpha = e + 1$. Kuvaajien välinen kulma (= kuvaajien tangenttien välinen kulma) on $2(\alpha \frac{\pi}{4}) \approx 60^{\circ}$.
- 15. a) Kolmio on tylppäkulmainen, jos sen jokin kulma on suurempi kuin 90°.
 - **b)** Kuvion

© SKK

mukaisesti on $ab=2A_1+2A_2$, jolloin kolmion ala on $A_1+A_2=\frac{1}{2}ab$. Jos kantana on tylpän kulman viereinen sivu, saadaan vastaava tulos erotusten avulla: $ab=2A_1-2A_2$, jolloin $A_1-A_2=\frac{1}{2}ab$. (Piirrä kuvio!)

c) Kuvion

© SKK

mukaisesti puolisuunnikas muodostuu kahdesta kolmiosta. Ala on tällöin kolmioiden alojen summa, joka edellisen kohdan perusteella on $\frac{1}{2}a_1h + \frac{1}{2}a_2h = h \cdot \frac{a_1 + a_2}{2}$.