IRF730

FEATURES

- Repetitive Avalanche Rated
- Fast switching
- High thermal cycling performance
- Low thermal resistance

SYMBOL

QUICK REFERENCE DATA

$$V_{DSS} = 400 \text{ V}$$
 $I_D = 7.2 \text{ A}$
 $R_{DS(ON)} \le 1 \Omega$

GENERAL DESCRIPTION

N-channel, enhancement mode field-effect power transistor, intended for use in off-line switched mode power supplies, T.V. and computer monitor power supplies, d.c. to d.c. converters, motor control circuits and general purpose switching applications.

The IRF730 is supplied in the SOT78 (TO220AB) conventional leaded package.

PINNING

PIN	DESCRIPTION	
1	gate	
2	drain	
3	source	
tab	drain	

SOT78 (TO220AB)

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
	Drain-source voltage	$T_i = 25 {}^{\circ}\text{C} \text{ to } 150 {}^{\circ}\text{C}$	-	400	V
V_{DGR}	Drain-gate voltage	$T_i = 25 ^{\circ}\text{C}$ to 150 $^{\circ}\text{C}$; $R_{GS} = 20 \text{k}\Omega$	-	400	V
V _{GS}	Gate-source voltage	,	-	± 30	V
l _D	Continuous drain current	$T_{mb} = 25 ^{\circ}\text{C}; V_{GS} = 10 \text{V}$ $T_{mb} = 100 ^{\circ}\text{C}; V_{GS} = 10 \text{V}$	-	7.2	Α
		$T_{mb} = 100 ^{\circ}C; V_{GS} = 10 V$	-	4.6	Α
I _{DM}	Pulsed drain current	$T_{mb}^{mb} = 25 ^{\circ}C$	-	29	Α
P _D	Total dissipation	$T_{mb}^{mc} = 25 ^{\circ}C$ $T_{mb} = 25 ^{\circ}C$	-	125	W
T_{i}^{D} , T_{stg}	Operating junction and	1110	- 55	150	°C
, 3.9	storage temperature range				

AVALANCHE ENERGY LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
E _{AS}	Non-repetitive avalanche energy	Unclamped inductive load, I_{AS} = 4.8 A; t_p = 0.23 ms; T_j prior to avalanche = 25°C; $V_{DD} \le 50$ V; R_{GS} = 50 Ω ; V_{GS} = 10 V; refer to fig:17	1	290	mJ
E _{AR}	Repetitive avalanche energy ¹	$I_{AR} = 7.2 \text{ A}$; $t_p = 2.5 \mu\text{s}$; $T_j \text{ prior to}$ avalanche = 25°C; $R_{GS} = 50 \Omega$; $V_{GS} = 10 \text{ V}$; refer to fig:18	-	9.4	mJ
I _{AS} , I _{AR}	Repetitive and non-repetitive avalanche current	Ü	-	7.2	А

 $[\]mathbf{1}$ pulse width and repetition rate limited by T_j max.

IRF730

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{th j-mb}	Thermal resistance junction		-	-	1	K/W
R _{th i-a}	to mounting base Thermal resistance junction to ambient	in free air	-	60	-	K/W

ELECTRICAL CHARACTERISTICS

T_i = 25 °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_{D} = 0.25 \text{ mA}$	400	-	-	V
$\Delta V_{(BR)DSS}$ / ΔT_j	Drain-source breakdown voltage temperature coefficient	$V_{DS} = V_{GS}; I_{D} = 0.25 \text{ mA}$	-	0.1	-	%/K
R _{DS(ON)}	Drain-source on resistance Gate threshold voltage	$V_{GS} = 10 \text{ V}; I_D = 3.6 \text{ A}$ $V_{DS} = V_{GS}; I_D = 0.25 \text{ mA}$	- 2.0	0.7 3.0	1 4.0	Ω V
$V_{GS(TO)}$	Forward transconductance	$V_{DS} = 30 \text{ V}; I_D = 3.6 \text{ A}$	2.0	4	-	Š
IDSS	Drain-source leakage current		-	1	25	μΑ
I _{GSS}	Gate-source leakage current	$V_{DS} = 320 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 125 \text{ °C}$ $V_{GS} = \pm 30 \text{ V}; V_{DS} = 0 \text{ V}$	-	30 10	250 200	μA nA
$\begin{matrix} Q_{g(tot)} \\ Q_{gs} \\ Q_{gd} \end{matrix}$	Total gate charge Gate-source charge Gate-drain (Miller) charge	$I_D = 7.2 \text{ A}; V_{DD} = 320 \text{ V}; V_{GS} = 10 \text{ V}$	-	52 3 26	62 5 30	nC nC n
	, ,				30	iiC
t _{d(on)}	Turn-on delay time	$V_{DD} = 200 \text{ V}; R_D = 27 \Omega;$	-	12	-	ns
τ _r	Turn-on rise time Turn-off delay time	$R_G = 12 \Omega$	-	33 93	-	ns ns
$egin{array}{c} oldsymbol{t}_{ ext{d(off)}} \ oldsymbol{t}_{ ext{f}} \end{array}$	Turn-off fall time		-	42	-	ns
L _d	Internal drain inductance	Measured from tab to centre of die	-	3.5	-	nΗ
L _d	Internal drain inductance	Measured from drain lead to centre of die	-	4.5	-	nΗ
Ls	Internal source inductance	Measured from source lead to source bond pad	-	7.5	-	nΗ
C _{iss}	Input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$	-	620	-	рF
Coss	Output capacitance		-	108 63	-	pF
C _{rss}	Feedback capacitance		-	03	-	рF

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

T_i = 25 °C unless otherwise specified

0)/140.01	DADAMETED					
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNII
Is	Continuous source current (body diode)	$T_{mb} = 25^{\circ}C$	-	-	7.2	Α
I _{SM}		$T_{mb} = 25^{\circ}C$	-	-	29	Α
V_{SD}	Diode forward voltage	$I_S = 7.2 \text{ A}; V_{GS} = 0 \text{ V}$	-	-	1.2	V
t _{rr} Q _{rr}	Reverse recovery time Reverse recovery charge	$I_S = 7.2 \text{ A}; V_{GS} = 0 \text{ V}; \text{ dI/dt} = 100 \text{ A/}\mu\text{s}$	-	270 3.3	-	ns μC

IRF730

IRF730

IRF730

 $V_{GS} = f(Q_G)$; parameter V_{DS}

Fig.16. Source-Drain diode characteristic. $I_F = f(V_{SDS})$; parameter T_i

Fig.14. Typical switching times; $t_{d(on)}$, t_r , $t_{d(off)}$, $t_f = f(R_G)$

Fig.17. Maximum permissible non-repetitive avalanche current (I_{AS}) versus avalanche time (t_p); unclamped inductive load

Fig.15. Normalised drain-source breakdown voltage; $V_{(BR)DSS}/V_{(BR)DSS 25 °C} = f(T_i)$

Fig.18. Maximum permissible repetitive avalanche current (I_{AR}) versus avalanche time (t_p)

IRF730

MECHANICAL DATA

Notes

- 1. This product is supplied in anti-static packaging. The gate-source input must be protected against static discharge during transport or handling.

 2. Refer to mounting instructions for SOT78 (TO220AB) package.

 3. Epoxy meets UL94 V0 at 1/8".

Fig.19. SOT78 (TO220AB); pin 2 connected to mounting base (Net mass:2g)

IRF730

DEFINITIONS

Data sheet status				
Objective specification This data sheet contains target or goal specifications for product development.				
Preliminary specification This data sheet contains preliminary data; supplementary data may be published late				
Product specification This data sheet contains final product specifications.				

Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 1999

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.