Statistical Tools for Analysis of Non-Probability samples: Part 2

Jae Kwang kim and Yonghyun Kwon

2025-07-24

1 Recap: Generalized entropy calibration(GEC)

• We maximize the generalized entropy

$$Q_G(\boldsymbol{\omega}) = -\sum_{i \in S} G(\omega_i) \tag{1}$$

subject to

$$\sum_{i \in S} \omega_i x_i = \sum_{i=1}^N x_i, \tag{2}$$

where $G(\cdot): \mathcal{V} \to \mathbb{R}$ is a strictly convex and differentiable function.

• Using the Lagrange multiplier method, we find the minimizer of

$$\mathcal{L}(\boldsymbol{\omega}, \boldsymbol{\lambda}) = \sum_{i \in S} G(\omega_i) - \boldsymbol{\lambda}^{\top} \left(\sum_{i \in S} \omega_i \boldsymbol{x}_i - \sum_{i=1}^{N} \boldsymbol{x}_i \right)$$
(3)

with respect to λ and ω .

• By setting $\partial \mathcal{L}/\partial \omega_i = 0$ and solving for ω_i , we obtain

$$\hat{\omega}_i(\boldsymbol{\lambda}) = g^{-1} \left(\boldsymbol{\lambda}^{\top} \boldsymbol{x}_i \right),$$

where $g(\omega) = dG(\omega)/d\omega$.

• Thus, by plugging $\hat{\omega}_i(\lambda)$ into \mathcal{L} in (3), we obtain

$$\hat{\boldsymbol{\lambda}} = \arg\min_{\boldsymbol{\lambda}} \left[\sum_{i \in S} G\left\{ \hat{\omega}_i(\boldsymbol{\lambda}) \right\} - \boldsymbol{\lambda}^{\top} \left(\sum_{i \in S} \hat{\omega}_i(\boldsymbol{\lambda}) \boldsymbol{x}_i - \sum_{i=1}^{N} \boldsymbol{x}_i \right) \right].$$

1.1 Toy example

Generalized Entropy	$G(\omega)$	$\rho(\nu)$
Squared loss	$\omega^2/2$	$\nu^2/2$
Kullback-Leibler	$\omega \log(\omega)$	$\exp(\nu-1)$
Shifted KL	$(\omega - 1)\{\log(\omega - 1) - 1\}$	$\nu + \exp(\nu)$
Empirical likelihood	$-\log(\omega)$	$-1 - \log(-\nu)$
Squared Hellinger	$(\sqrt{\omega}-1)^2$	$\nu/(\nu-1)$
Rényi entropy	$\frac{1}{\alpha+1}\omega^{\alpha+1}$	$\frac{\alpha}{\alpha+1} \nu^{\frac{\alpha+1}{\alpha}}$
$(\alpha \neq 0, -1)$	1	

Table 1: Examples of generalized entropies, $G(\omega)$, and the corresponding convex conjugate functions, $\rho(\nu)$

```
# install.packages(GECal)
library(GECal)
# Sampled study variable
y=c(5, 4, 7, 9, 11, 10, 13, 12, 15, 15)
# Sampled auxiliary variables
Xs=cbind(
    c(1,1,1,1,1,1,1,1,1,1),
    c(1,1,1,1,1,0,0,0,0,0),
    c(1,3,5,7,9,6,7,8,9,10)
)
# vector of population totals
total=c(160,124,700)
# base weights before calibration
d = rep(1, 10)
```

The structure of data is as follows:

i	δ_i	x_{i0}	x_{i1}	x_{i2}	y_i
1	1	1	1	1	5
2	1	1	1	3	4
3	1	1	1	5	7
4	1	1	1	7	9
5	1	1	1	9	11
6	1	1	0	6	10
7	1	1	0	7	13
8	1	1	0	8	12
9	1	1	0	9	15
10	1	1	0	10	15
11	0	NA	NA	NA	NA
÷	:	NA	NA	NA	NA
160	0	NA	NA	NA	NA
Total	10	160	124	700	$\theta = ?$

1.1.1 Kullback-Leibler (Exponential tiliting)

```
# GEC estimator using ET(exponential tilting) divergence
cal_ET <- GEcalib(~ 0 + Xs, dweight = d, const = total,</pre>
            method = "GECO", entropy = "ET")
head(cal ET$w)
## 48.359404 31.828847 20.948884 13.787987 9.074879 10.475456
GECal::estimate(y ~ 1, calibration = cal_ET)$estimate
##
    Estimate Std. Error
## y 1189.612 84.30957
1.1.2 Empirical Likelihood
# GEC estimator using EL(empirical likelihood) divergence
cal EL <- GEcalib(~ 0 + Xs, dweight = d, const = total,
       method = "GECO", entropy = "EL")
head(cal EL$w)
##
## 54.743353 27.066422 17.977452 13.458167 10.754606 8.232996
GECal::estimate(y ~ 1, calibration = cal_EL)$estimate
    Estimate Std. Error
## y 1209.387
               89.30535
      Shifted KL(Cross entropy)
1.1.3
# # GEC estimator using CE(cross entropy or shifted KL) divergence
cal CE <- GEcalib(~ 0 + Xs, dweight = d, const = total,
       method = "GECO", entropy = "CE", weight.scale = 2)
# design weights should be greater than 1 in CE
head(cal_CE$w)
```

54.88812 26.95156 17.91845 13.45263 10.78924 8.18484

					weights		
\overline{i}	y_i	x_{i0}	x_{i1}	x_{i2}	\mathbf{ET}	\mathbf{EL}	\mathbf{CE}
1	5	1	1	1	48.36	54.74	54.89
2	4	1	1	3	31.83	27.07	26.95
3	7	1	1	5	20.95	17.98	17.92
4	9	1	1	7	13.79	13.46	13.45
5	11	1	1	9	9.07	10.75	10.79
6	10	1	0	6	10.48	8.23	8.18
7	13	1	0	7	8.50	7.65	7.63
8	12	1	0	8	6.89	7.14	7.14
9	15	1	0	9	5.59	6.69	6.71
_10	15	1	0	10	4.54	6.30	6.34

Table 2: Comparison of ET, EL, and CE(shifted KL) weights.

```
GECal::estimate(y ~ 1, calibration = cal_CE)$estimate

## Estimate Std. Error
## y 1209.839 89.42995
```

2 Real data example

- The 2021 NHID from NHIS(National Health Insurance Service, Republic of Korea) was used, containing data for 1,000,000 adults in South Korea.
- A pseudo-population of size N = 100,000 was created via random sampling.
- Samples of size n = 2,297 were drawn using stratified sampling across 476 strata defined by Region (17), Age Group (14), and Sex (2).
- Stratum-specific sample sizes are:

```
-n_h = 5 if N_h > 15, and n_h = \lfloor N_h/3 \rfloor if N_h \le 15
```

- We try to estimate the population sum of three study variables:
 - Hemoglobin level(Hemo, in g/dL), Oral examination status(OralExam, 1 if an oral examination was conducted, 0 otherwise), and Alcohol consumption status(Alcohol 1 or 0).
- See Kwon et al. [2024] for more details.

```
load("nhis.Rdata")
head(nhis.samp[,c("AgeGroup", "SEX", "REGION1", "Hemo", "Alcohol", "OralExam")])
```

```
##
     AgeGroup SEX REGION1 Hemo Alcohol OralExam
## 1
            16
                 2
                         27 12.5
                                        0
## 2
            16
                 2
                         27 11.2
                                        0
                                                  0
## 3
            16
                 2
                         27 11.4
                                        0
                                                  0
## 4
                 2
                         27 14.1
                                        0
                                                  1
            16
                         27 13.2
## 5
            16
                 2
                                        0
                                                  0
                         27 13.7
## 6
            16
                 1
                                        0
                                                  1
```

```
## Estimate Std. Error
## Hemo 14.1310603 0.03121010
## Alcohol 0.6551861 0.01083104
## OralExam 0.3586279 0.01250435
```

References

Yonghyun Kwon, Jae Kwang Kim, and Yumou Qiu. Generalized entropy calibration for analyzing voluntary survey data. arXiv preprint arXiv:2412.12405, 2024.