

Started on	
State	Finished
Completed on	
Time taken	
Marks	28.00/31.00
Grade	

Correct

Mark 1.00 out of 1.00

Find all points where the function is discontinuous.

Select one:

A.
$$x = 2$$

$$\bigcirc$$
 B. $x = -2, x = 0, x = 2$

O.
$$x = 0, x = 2$$

O.
$$x = -2, x = 0$$

The correct answer is: x = -2, x = 0, x = 2

Correct

Mark 1.00 out of 1.00

Find the limit.

If
$$\lim_{x\to 0} \frac{f(x)}{x^2} = 1$$
, find $\lim_{x\to 0} \frac{f(x)}{x}$.

Select one:

- A. 1
- B. 2
- C. 0
- O. Does not exist

The correct answer is: 0

Question **3**

Correct

Mark 1.00 out of 1.00

Divide numerator and denominator by the highest power of \mathbf{x} in the denominator to find the limit.

$$\lim_{t\to\infty} \frac{\sqrt{36t^2 - 216}}{t-6}$$

Select one:

- A. 6
- B. 36
- O. 216
- O. does not exist

Correct

Mark 1.00 out of 1.00

Solve the problem.

To what new value should f(2) be changed to remove the discontinuity?

$$f(x) = \begin{cases} 2x-4, & x < 2 \\ 2 & x = 2 \\ x-2, & x > 2 \end{cases}$$

Select one:

- A. -1
- B. -8
- C. -7
- D. 0

The correct answer is: 0

Question **5**

Correct

Mark 1.00 out of 1.00

Divide numerator and denominator by the highest power of x in the denominator to find the limit.

$$\lim_{x \to \infty} \frac{4x^{-1} - 3x^{-3}}{4x^{-2} + x^{-5}}$$

Select one:

- A. -∞
- B. ∞
- O C. 1
- O D. 0

Question	6
Question	O

Mark 1.00 out of 1.00

Find the limit.

$$\lim_{x \to -1^+} (x+3) \left(\frac{|x+1|}{x+1} \right)$$

Select one:

- A. 2
- B. Does not exist
- C. -2
- O. 4

The correct answer is: 2

Question **7**

Incorrect

Mark 0.00 out of 1.00

Find the limit.

$$\lim_{x \to -7^+} f(x), \text{ where } f(x) = \begin{cases} x & -7 \le x < 0, \text{ or } 0 < x \le 3\\ 1 & x = 0\\ 0 & x < -7 \text{ or } x > 3 \end{cases}$$

Select one:

- A. Does not exist
- B. 6
- C. -0
- O D. -7

Ouestion	8
Ouestion	u

Mark 1.00 out of 1.00

Provide an appropriate response.

Let $\lim_{x\to 9} f(x) = 6$ and $\lim_{x\to 9} g(x) = -9$. Find $\lim_{x\to 9} \left[\frac{-4f(x)-3g(x)}{2+g(x)}\right]$.

Select one:

- A. 15
- \bigcirc B. $-\frac{3}{7}$
- \circ C. $\frac{51}{7}$
- O. 9

The correct answer is: $-\frac{3}{7}$

Ouestion **9**

Correct

Mark 1.00 out of 1.00

Find the limit.

$$\lim_{x \to \infty} \frac{x^2 - 8x + 19}{x^3 + 3x^2 + 18}$$

Select one:

- A. ∞
- B. 0
- $C. \frac{19}{18}$
- O D. 1

Correct

Mark 1.00 out of 1.00

Find the limit.

$$\lim_{x \to -3^{-}} \frac{1}{x+3}$$

Select one:

- O A. ∞
- B. -∞
- C. 0
- O. -1

The correct answer is: -∞

Question 11

Correct

Mark 1.00 out of 1.00

Find the limit.

$$\lim_{X \to \infty} \frac{\cos 4x}{x}$$

Select one:

- A. 4
- B. 0
- O. -∞
- O. 1

Answer the question.

Does $\lim_{x\to 2} f(x) = f(2)$?

$$f(x) = \begin{cases} x^3, & -2 < x \le 0 \\ -2x, & 0 \le x < 2 \\ 4, & 2 < x \le 4 \\ 0, & x = 2 \end{cases}$$

Select one:

- A. No
- B. Yes

Ouestion	1	3
Question	- 1	_

Mark 1.00 out of 1.00

Find the limit.

$$\lim_{x \to -\infty} \frac{4x^3 + 2x^2}{x - 6x^2}$$

Select one:

- A. ∞
- O B. $-\frac{1}{3}$
- C. 4
- O. -∞

The correct answer is: ∞

Question 14

Correct

Mark 1.00 out of 1.00

Find the limit.

$$\lim_{x \to 2^{-}} \frac{\sqrt{5x}(x-2)}{|x-2|}$$

Select one:

- A. 0
- B. Does not exist
- C. -√10
- O. $\sqrt{10}$

The correct answer is: $-\sqrt{10}$

Ouestion	1	5
CARSHOLL	- 1	_

Mark 1.00 out of 1.00

Find the limit.

$$\lim_{x \to -2^{-}} (x+5) \left(\frac{|x+2|}{x+2} \right)$$

Select one:

- B. 7
- O. Does not exist
- O D. 3

The correct answer is: -3

Question **16**

Correct

Mark 1.00 out of 1.00

Find the limit.

$$\lim_{x \to \infty} \frac{1}{x} - 4$$

Select one:

- A. 4
- B. -5
- C. -4
- O D. -3

Correct

Mark 1.00 out of 1.00

Find all points where the function is discontinuous.

Select one:

A.
$$x = 3$$

O B.
$$x = 0, x = 3$$

C.
$$x = 0$$

Mark 1.00 out of 1.00

Find numbers a and b, or k, so that f is continuous at every point.

$$f(x) = \begin{cases} 8x + 3, & \text{if } x < -1 \\ \\ kx + 2, & \text{if } x \ge -1 \end{cases}$$

Select one:

- \bigcirc A. k = 2
- B. k = -2
- C. k = 9
- \bigcirc D. k = 7

Correct

Mark 1.00 out of 1.00

Divide numerator and denominator by the highest power of ${\bf x}$ in the denominator to find the limit.

$$\lim_{x \to \infty} \sqrt{\frac{25x^2}{2 + 36x^2}}$$

Select one:

- \bigcirc A. $\frac{5}{6}$
- O B. $\frac{25}{36}$
- O. does not exist
- O. D. $\frac{25}{2}$

The correct answer is: $\frac{5}{6}$

Answer the question.

Does $\lim_{x \to -1^+} f(x) = f(-1)$?

$$f(x) = \begin{cases} -x^2 + 1, & -1 \le x < 0 \\ 2x, & 0 < x < 1 \\ -5, & x = 1 \\ -2x + 4 & 1 < x < 3 \\ 4, & 3 < x < 5 \end{cases}$$

Select one:

- A. No
- B. Yes

Incorrect

Mark 0.00 out of 1.00

Find the limit.

$$\lim_{x \to 1^{-}} f(x), \text{ where } f(x) = \begin{cases} \sqrt{1 - x^2} & 0 \le x < 1 \\ 1 & 1 \le x < 4 \\ 4 & x = 4 \end{cases}$$

Select one:

- A. 4
- B. Does not exist
- O C. 0
- D. 1

×

The correct answer is: 0

Question 22

Incorrect

Mark 0.00 out of 1.00

Find numbers a and b, or k, so that f is continuous at every point.

$$f(x) = \begin{cases} 8, & x < -4 \\ ax + b, & -4 \le x \le 4 \\ -24, & x > 4 \end{cases}$$

Select one:

- \bullet A. a = -4, b = -40
- O B. a = 8, b = -24
- O C. a = -4, b = -8
- D. Impossible

×

The correct answer is: a = -4, b = -8

Correct

Mark 1.00 out of 1.00

Find the limit.

If
$$\lim_{x \to 1} \frac{f(x) - 3}{x - 1} = 2$$
, find $\lim_{x \to 1} f(x)$.

Select one:

- A. 1
- B. 2
- C. 3
- O. Does not exist

The correct answer is: 3

Question **24**

Correct

Mark 1.00 out of 1.00

Solve the problem.

To what new value should f(1) be changed to remove the discontinuity?

$$f(x) = \begin{cases} x^2 + 2, & x < 1 \\ 1, & x = 1 \\ x + 2, & x > 1 \end{cases}$$

Select one:

- A. 3
- B. 4
- O C. 2
- O. 1

Question	2	5
Ouestion	_	J

Mark 1.00 out of 1.00

Find the limit.

$$\lim_{x \to 5^{-}} \frac{1}{x^2 - 25}$$

Select one:

- A. 1
- B. 0
- C. ∞
- D. -∞

The correct answer is: $-\infty$

Question **26**

Correct

Mark 1.00 out of 1.00

Find the limit.

$$\lim_{x \to \infty} \frac{7x^3 - 6x^2 + 3x}{-x^3 - 2x + 7}$$

Select one:

- A. ∞
- B. 7
- C. -7
- O. $\frac{3}{2}$

Correct

Mark 1.00 out of 1.00

Divide numerator and denominator by the highest power of \mathbf{x} in the denominator to find the limit.

$$\lim_{x \to -\infty} \frac{\sqrt[3]{x + 2x - 3}}{\sqrt[5]{x + x^{2/3} + 3}}$$

Select one:

- A. $-\frac{5}{2}$
- B. 0
- \bigcirc C. $-\frac{2}{5}$
- D. -∞

The correct answer is: $-\frac{2}{5}$

Question 28

Correct

Mark 1.00 out of 1.00

Find the limit.

$$\lim_{x \to -1^+} (x+5) \left(\frac{|x+1|}{x+1} \right)$$

Select one:

- A. 6
- B. -4
- C. Does not exist
- D. 4

Correct

Mark 1.00 out of 1.00

Find the limit using $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

$$\lim_{x\to 0} \frac{\sin(\sin x)}{\sin x}$$

Select one:

- A. 0
- B. -1
- C. does not exist
- D. 1

Sketch a possible graph of a function that satisfies the given conditions.

$$f(-1) = -7$$
; $\lim_{x \to (-1)^{-}} f(x) = -2$; $\lim_{x \to (-1)^{+}} f(x) = -7$

Select one:

A.

B.

C.

Mark 1.00 out of 1.00

Use the graph to estimate the specified limit.

Find $\lim_{x\to(-1)^-} f(x)$ and $\lim_{x\to(-1)^+} f(x)$

Select one:

- A. -5; -2
- B. -7; -5
- C. -2; -7
- O. -7; -2

The correct answer is: -2; -7