Tuesday, March 6 ** Integrating vector fields.

- 1. Consider the vector field $\mathbf{F} = (y, 0)$ on \mathbb{R}^2 .
 - (a) Draw a sketch of **F** on the region where $-2 \le x \le 2$ and $-2 \le y \le 2$.
 - (b) Consider the following two curves which *start* at A = (-2,0) and *end* at B = (2,0), namely the line segment C_1 and upper semicircle C_2 .
 - Add these curves to your sketch, and compute both $\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$ and $\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$.
- 2. Consider the curve *C* and vector field **F** shown below.

- (a) Calculate $\mathbf{F} \cdot \mathbf{T}$, where here \mathbf{T} is the unit tangent vector along C. Without parameterizing C, evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ by using the fact that it is equal to $\int_C \mathbf{F} \cdot \mathbf{T} ds$.
- (b) Find a parameterization of C and a formula for \mathbf{F} . Use them to check your answer in (a) by computing $\int_C \mathbf{F} \cdot d\mathbf{r}$ explicitly.
- 3. Consider the points A = (0,0) and $B = (\pi, -2)$. Suppose an object of mass m moves from A to B and experiences the constant force $\mathbf{F} = -mg\mathbf{j}$, where g is the gravitational constant.
 - (a) If the object follows the straight line from A to B, calculate the work W done by gravity using the formula: Work = $F \cdot D$, where F is a constant force vector, and D is a displacement vector.

(b) Now suppose the object follows half of an inverted cycloid C as shown below. A parametrization for the inverted cycloid C is $\mathbf{r}(t) = (t - \sin t, \cos t - 1), 0 \le t \le \pi$, use this parametrization to calculate the work done via a line integral.

