Teoría de Control

Abel Doñate Muñoz

Contents

1	Introducción	2
2	Sistemas lineales	2
3	Estabilidad	2
4	Respuesta temporal y frecuencial de sistemas lineales	3
5	Controlabilidad	4
6	Observabilidad	4
7	Output feedback	5
	7.1 Lugar geométrico de las raíces	5
8	Frequency domain control design	6

1 Introducción

Definition (Tipos de variables).

- $x \in \mathbb{R}^n$ es el estado del sistema
- $u \in \mathbb{R}^p$ es la variable de control
- $y \in \mathbb{R}^q$ es la salida

Theorem (Ecuaciones en espacio de estado). Siempre podemos expresar nuestra ecuación diferencial de la siguiente manera

$$\begin{cases} \dot{x} = f(x, t, u) \\ y = h(x, t, u) \end{cases}$$

Si las funciones no dependen de t, entonces se le llama sistema **autónomo**.

El objetivo de la asignatura será intentar modelar la variable de control u con tal de conseguir la respuesta deseada en la variable de salida y

2 Sistemas lineales

Definition (Sistema lineal).

$$\begin{cases} \dot{x} = A(t)x + B(t)u \\ y = C(t)x + D(t)u \end{cases} \Rightarrow si \ es \ LTI \Rightarrow \begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

Definition (Función de transferencia SISO LTI). $Y(s) = G(s)U(s) \Rightarrow G(s) = C(sI - A)^{-1}B + D$

Definition (Sistema SISO LTI).

$$a_0 y^{(n)} + \dots + a_n y = b_1 u^{(n-1)} + \dots + b_n u \quad \Rightarrow \quad G(s) = \frac{b_1 s^{n-1} + \dots + b_n}{a_0 s^n + \dots + a_n}$$

3 Estabilidad

Definition (Estabilidad de diagrama de fases). $\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \lambda_1, \lambda_2 \ VAPs$

- $Im(\lambda_i) = 0$
 - Nodo estable $\lambda_1, \lambda_2 < 0$
 - Nodo inestable $\lambda_1, \lambda_2 > 0$
 - $Silla \lambda_1 < 0 < \lambda_2$
- $Im(\lambda_i) \neq 0$
 - Foco estable $Re(\lambda_i) < 0$
 - Foco inestable $Re(\lambda_i) > 0$
 - **Punto central** $Re(\lambda_i) = 0$
- det(A) = 0 equilibrio en una recta

Definition (Equilibrio hiperbólico). Un punto de equilibrio es hiperbólico si el jacobiano en el punto no tiene VAPs λ_i con $Re(\lambda_i) = 0$

Definition (Establidad en sentido Lyapunov). x_0 es estable si $\forall R > 0 \; \exists r > 0$:

$$||x(0) - x_0|| < r \Rightarrow ||x(t) - x_0|| < R \ \forall t > 0$$

Definition (Tipos de estabilidad).

- 1. **Asintótica** (AS) $||x(0) x_0|| < r_0 \Rightarrow \lim x(t) = x_0$
- 2. **Exponencial** (ES) $||x(0) x_0|| < r_0 \Rightarrow ||x(t) x_0|| < \alpha ||x(0) x_0|| e^{-\lambda t}$
- 3. Marginal (MS) estable pero no asintótica

Definition (Estabilidad BIBO LTI SISO). El sistema es BIBO si $\forall u(t)$ acotado, la respuesta y(t) es acotada. Esto pasa si todos los polos de la función de transferencia tienen parte real negativa.

Theorem (Criterio de Routh). (que puto palo)

Definition (Función de Lyapunov). V es una función de Lyapunov si

- 1. V(0) = 0
- 2. $V(x) > 0 \ \forall x \in B \{0\}$
- 3. $\dot{V}(x) = \frac{dV}{dx} f(x) \le 0$

Theorem (Estabilidad local). Sea $\dot{x} = f(x)$ con f localmente Lipschitz f(0) = 0

- 1. Si existe función de Lyapunov \Rightarrow origen S
- 2. Si existe función de Lyapunov estricta \Rightarrow origen AS

Theorem (Estabilidad global). Si existe V(x) tal que

- V globalmente definida positiva
- ullet \dot{V} globalmente definida negativa
- $V(x) \to \infty$ cuando $||x(t)|| \to \infty$

Entonces el origen es GAS

Proposition. $\dot{W}(t) \leq -\alpha W(t) \Rightarrow W(t) \leq W(0)e^{-\alpha t}$

Theorem (Estabilidad exponencial). Si se cumple en Ω

- $\alpha \|x\|^{\delta} \le V(x) \le \beta \|x\|^{\delta}$
- $\dot{V}(x) \leq -\gamma V(x)$

Entonces el origen es ES

Definition (Ecuación de Lyapunov). Sea A y $Q = Q^T > 0$ y una $P = P^T$ desconocida. Definimos la ecuación de Lyapunov asociada a A como $A^TP + PA = -Q$ \Rightarrow $V(x) = x^TPx$ función de Lyapunov

Theorem. A is Hurwitz $(Re(\lambda_1) < 0) \iff \forall Q \exists P \text{ que satisface la ecuación de Lyapunov}$

Definition (Conjunto invariante). $M \subseteq \mathbb{R}^n$ tal que $x(0) \in M \Rightarrow x(t) \in M \ \forall t > 0$

Theorem (LaSalle principle). R conjunto tal que $\dot{V}(x) = 0$ no contiene trayectorias diferentes a la trivial. V no acotado. Entonces el origen es GAS

4 Respuesta temporal y frecuencial de sistemas lineales

Considerando el sistema SISO $\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$

Theorem (Solución única). Sea $\dot{x} = Ax + Bu$

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau \quad \Rightarrow \quad y(t) = Ce^{At}x(0) + \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)d\tau$$

Definition (Impulse response). $y_{\delta}(t) = Ce^{At}B$

Definition (Características del sistema). .

- $T_r = \sup_{\delta} \{ \delta | y(t) \leq \frac{t}{\delta} \}$
- $T_s = \inf_{\delta} \{ \delta | |y(t) 1| \le \epsilon \}$

$$\bullet \ y_{os} = \sup_{t} \{ y(t) - 1 \}$$

(poner gráfico fancy)

Proposition. Sistema de segundo orden. ζ amortiguamiento, ω_0 la frecuencia natural

$$G(s) = \frac{k\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2} \quad \Rightarrow \quad \begin{cases} T_r = \frac{\pi - \arctan\frac{\zeta}{\sqrt{1-\zeta^2}}}{m_p} \\ M_p = e^{\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}} \\ T_s = \frac{4}{\zeta\omega_0} \end{cases}$$

Con valores propios $\lambda = -\zeta \omega_0 \pm \omega_0 \sqrt{\zeta^2 - 1} = -\sigma \pm j\omega_d$

5 Controlabilidad

Definition (Sistema lineal). Forma canónica Controlable

$$\Sigma \begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \\ u = -Kx + k_r r \end{cases} \Rightarrow z = Tx \quad \tilde{\Sigma} \begin{cases} \dot{z} = \tilde{A}z + \tilde{B}u \\ y = \tilde{C}z + \tilde{D}u \\ u = -\tilde{K}z + k_r r \end{cases} \begin{cases} P_a(\lambda) = \lambda^n + a_1\lambda^{n-1} + \dots + a_n = |A - \lambda I| \\ P_p(\lambda) = \lambda^n + p_1\lambda^{n-1} + \dots + p_n = |A - BK - \lambda I| \\ G(s) = \frac{b_1s^{n-1} + \dots + b_n}{s^n + \dots + a_n} + D, \end{cases}$$

con

$$\tilde{A} = \begin{pmatrix} -a_1 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & 0 & 0 \\ 0 & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 \end{pmatrix}, \quad \tilde{B} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \tilde{C} = \begin{pmatrix} b_1 & \cdots & b_n \end{pmatrix}, \quad \begin{pmatrix} \tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D} \end{pmatrix} = \begin{pmatrix} TAT^{-1} & TB \\ CT^{-1} & D \end{pmatrix}, \begin{cases} \tilde{k}_i = p_i - a_i \\ k_r = \frac{p_n}{b_n} \end{cases}$$

la matriz de controlabilidad

$$\tilde{W_C} = (\tilde{B} \quad \tilde{A}\tilde{B} \quad \dots \tilde{A}^{n-1}\tilde{B}) = TW_c, \quad K = \tilde{K}\tilde{W}_cW_c^{-1}$$

(falta la matriz de controlabilidad explicita)

Theorem (Controlabilidad). Un sistema LTI SISO es controlable si la matriz de controlabilidad W_C tiene rango completo

Theorem (Formula de Ackermann). $K = \begin{pmatrix} 0 & \dots & 0 & 1 \end{pmatrix} W_C^{-1} P_d(A), \quad k_r = -(C(A - BK)^{-1})^{-1}$

6 Observabilidad

Definition (Sistema lineal). Forma canónica Observable

$$\Sigma \begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow z = Tx \quad \tilde{\Sigma} \begin{cases} \dot{z} = \tilde{A}z + \tilde{B}u \\ y = \tilde{C}z + \tilde{D}u \end{cases} \begin{cases} P_a(\lambda) = \lambda^n + a_1\lambda^{n-1} + \dots + a_n = |A - \lambda I| \\ P_p(\lambda) = \lambda^n + p_1\lambda^{n-1} + \dots + p_n = |A - LC - \lambda I| \\ G(s) = \frac{b_1s^{n-1} + \dots + b_n}{s^n + \dots + a_n} + D, \end{cases}$$

con

$$\tilde{A} = \begin{pmatrix} -a_1 & 1 & \cdots & 0 \\ -a_2 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ -a_n & \cdots & 0 & 0 \end{pmatrix}, \quad \tilde{B} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}, \quad \tilde{C} = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}, \quad \begin{pmatrix} \tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D} \end{pmatrix} = \begin{pmatrix} TAT^{-1} & TB \\ CT^{-1} & D \end{pmatrix}, \begin{cases} \tilde{l}_i = p_i - a_i \\ l_r = \frac{p_n}{b_n} \end{cases}$$

la matriz de controlabilidad

$$\tilde{W_o} = \begin{pmatrix} \tilde{C} \\ \tilde{C}\tilde{A} \\ \dots \\ \tilde{C}\tilde{A}^{n-1} \end{pmatrix} = TW_c?, \quad L = W_o^{-1}\tilde{W}_o\tilde{L}, \quad \hat{x} = A\hat{x} + Bu + L(y - C\hat{x})$$

(falta la matriz de controlabilidad explicita)

Theorem (Observabilidad). Un sistema LTI SISO es observable si la matriz de observabilidad W_C tiene rango completo

Theorem (Formula de Ackermann).
$$L = P_d(A)W_O^{-1} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

7 Output feedback

(difujar graficardo) La salida general de este sistema es

$$Y(s) = \frac{C(s)G(s)}{1 + L(s)}R(s) + \frac{1}{1 + L(s)}N(s) + \frac{G(s)}{1 + L(s)}D(s), \quad \text{donde} \quad L(s) = C(s)G(s)H(s)$$

Sin disturbances D(s) ni ruido N(s), la función de transferencia y el error quedan

$$T = \frac{C(s)G(s)}{1 + L(s)}, \quad E(s) = \frac{D_L(s)}{D_L(s) + N_L(s)} \frac{N_R(s)}{D_R(s)}$$

Theorem (Valor Final). $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$

Theorem (Estabilidad). Tendremos $\lim_{t\to\infty} e(t) = 0$ si y solo si

- 1. Los polos de E(s) están en el semiplano abierto izquierdo
- 2. $D_R(s)$ es un factor de $D_L(s)$

La función controladora C(s) puede tener múltiples formas, las más comunes son:

- Controlador proporcional (P). $C(s) = k_p$.
- Controlador derivador (D). $C(s) = k_d s$.
- Controlador integrador (I). $C(s) = k_i \frac{1}{s}$.
- Cualquier combinación lineal de los PID

En el dominio del tiempo un PID se comporta como $u(t) = k_p e(t) + k_i \int_0^t e(\tau) d\tau + k_d \frac{de(t)}{dt}$

(falta PID pid tunning)

7.1 Lugar geométrico de las raíces

Consideramos un controlador $P \Rightarrow L(s) = KG(s)H(s)$, por lo que debemos localizar los ceros de

$$1 + L(s) = 1 + k \frac{N_L(s)}{D_L(s)} = 1 + k \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}$$

en función de k

Definition (Root locus method). Grafica las raices de L(s) + 1 = 0 para todos los valores de C(s) = k con las condiciones

1. |L(s)| = 1

2.
$$\angle L(s) = \pm \pi (2\lambda + 1)$$

Las reglas de RL son:

1. Número de ramas. n

- 2. Puntos de inicio. p_i
- 3. Puntos finales. m ramas convergen a z_i . Las otras n-m raices son asíntotas con

$$\angle a = \pm \frac{\pi}{n-m} (2\lambda + 1), \quad c = \frac{1}{n-m} \left(\sum p_i - \sum z_i \right)$$

- 4. Un segmento del eje real pertenece a RL si el numero total de polos reales y ceros de L(s) a la derecha es impar.
- 5. (breakaway)
- 6. Ángulos desde polos p_j con multiplicidad l_j

$$\theta_j = \frac{1}{l_j} \left(\pm \pi + \sum \angle (p_i - z_i) - \sum_{i \neq j} \angle (p_j - p_i) \right)$$

7. Ángulos hacia ceros z_i con multiplicidad l_i

$$\theta_j = \frac{1}{l_j} \left(\pm \pi - \sum_{i \neq j} \angle(z_j - z_i) + \sum \angle(z_j - p_i) \right)$$

Este diagrama siempre es simétrico con respecto al eje real.

Definition (Zero-pole, pole-zero controllers). ZP-PZ Generalizan PID

$$C(s) = \frac{(s + \omega_{z1}) \cdots (s + \omega_{zm})}{(s + \omega_{p1}) \cdots (s + \omega_{pn})}$$

8 Frequency domain control design

Definition (Bode Plot). Representación de

 $M = 20 \log |G(j\omega)| \ como \ función \ de \log \omega$

 $\theta = \angle G(j\omega)$ como función de $\log \omega$

Definition (Polar plot). $G(j\omega) = Re(G(j\omega)) + Im(G(j\omega))$

Theorem (Mapping). Sea F(s) un cociente de polinomios con P polos y Z dentro del contorno del plano complejo C. Mapeamos $s \in C \mapsto F(s) \in \mathbb{C}$. La cantidad de veces que el mapa rodea el origen con dirección antihoraria es Z - P.

Definition (Criterio de estabilidad de Nyquist). P polos de L(s) en la region de Nyquist. N rodeos horarios de -1 por L(s) en dirección horaria. Entonces la función de transferencia en lazo cerrado tiene Z = N + P polos en el semiplano derecho y el sistema es BIBO estable si Z = 0