B*. Examine each one of the following propositions to determine whether or not its true; indicate your choice by circling either "T" or "F" then prove that the choice is correct:

i.
$$f: \mathbb{R} \to \mathbb{R} \ni f(x) = x^2 - 1 \Rightarrow f: \mathbb{R} \xrightarrow{1:1} \mathbb{R}$$
T

Sample proof:

Given that $f: \mathbb{R} \to \mathbb{R} \to f(x) = x^2 - 1$, we need to demonstrate that f is not an injection. Our definition of injection (#013-C in our glossary) is as follows:

Given
$$A, B \in \{ \text{ sets } \}, (f: A \to B \Rightarrow f: A \to B \Rightarrow ((x_1, y_1), (x_2, y_1) \in f \Rightarrow x_1 = x_2) \}$$

Consider two *different* domain elements ⁻³ and 3:

$$((f(^{-}3)=(^{-}3)^2-1=8) \land (f(^{3})=3^2-1=8)) \Rightarrow (^{-}3,8),(^{3},8) \in f$$

 $\therefore f$ is not an injection. Q.E.D. (quod erat demonstrandum)

An aside: Check out the graph of f.

ii.
$$f: \mathbb{R} \to \mathbb{R} \ni f(x) = x^2 - 1 \Rightarrow f: \mathbb{R} \to \mathbb{R}$$

$$T \quad F$$

Sample proof:

Given that $f: \mathbb{R} \to \mathbb{R} \to f(x) = x^2 - 1$, we need to demonstrate that f is not a surjection. Our definition of surjection (#013-D in our glossary) is as follows:

Given
$$A, B \in \{ \text{ sets } \}$$
, $(f: A \rightarrow B \Leftrightarrow f: A \rightarrow B \ni \text{ the } range \text{ of } f = B)$

So we need to display an element from the codomain that is not also an element of the range. Consider the codomain element ⁻3:

Suppose $\exists x \in \mathbb{R} \ni f(x) = -3$, then we have the following string of deductions:

$$f(x) = -3 \Rightarrow x^2 - 1 = -3 \Rightarrow x^2 = -2 \Rightarrow x \in \{-\sqrt{2}i, \sqrt{2}i, \} \Rightarrow x \notin \mathbb{R}$$

Thus,
$$\exists x \in \mathbb{R} \ni f(x) = -3$$

 $\therefore f$ is not a surjection. Q.E.D.

iii.
$$g: \mathbb{R} \to \mathbb{R} \ni g(x) = \sqrt[3]{x} \to g: \mathbb{R} \xrightarrow{\mathrm{id}} \mathbb{R}$$

T

Sample proof:

Given that $g: \mathbb{R} \to \mathbb{R} \ni g(x) = \sqrt[3]{x}$, we need to demonstrate that f is an injection. Our definition of injection (#013-C in our glossary) is as follows:

Given
$$A, B \in \{ \text{ sets } \}, (f: A \rightarrow B \Rightarrow f: A \rightarrow B \Rightarrow ((x_1, y_1), (x_2, y_1) \in f \Rightarrow x_1 = x_2) \}$$

So we need to demonstrate that $(g(x_1) = y_1 \land g(x_2) = y_1) \Rightarrow x_1 = x_2$. Here we go:

$$(g(x_1) = y_1 \land g(x_2) = y_1) \rightarrow (\sqrt[3]{x_1} = y_1 \land \sqrt[3]{x_2} = y_1) \rightarrow (x_1 = y_1^3 \land x_2 = y_1^3) \rightarrow x_1 = x_2 \odot$$

 \therefore g is an injection. Q.E.D.

An aside: Check out the graph of g.

iv.
$$g: \mathbb{R} \to \mathbb{R} \ni g(x) = \sqrt[3]{x} \Rightarrow g: \mathbb{R} \to \mathbb{R}$$

T

A sample proof:

Given $g: \mathbb{R} \to \mathbb{R} \ni g(x) = \sqrt[3]{x}$, we need to demonstrate that g is surjection. Our definition of surjection (#013-D in our glossary) is as follows:

Given
$$A, B \in \{ \text{ sets } \}$$
, $(f: A \rightarrow B \Leftrightarrow f: A \rightarrow B \ni \text{ the } range \text{ of } f = B)$

g is a surjection because the codomain is the range. Here is a proof of that fact:

Suppose $y \in \mathbb{R}$ (i.e., an arbitrary element in the codomain), we need to demonstrate that $\exists x \in \mathbb{R}$ (i.e., an element in the domain) $\exists y \in \mathbb{R}$ (i.e., an element in the domain) $\exists y \in \mathbb{R}$. Consider $x = y^3$. Note that since $y \in \mathbb{R}$, we know that $y^3 \in \mathbb{R}$. Also $y \in \mathbb{R}$ and $y \in \mathbb{R}$ is a function of deduction makes me smile. $y \in \mathbb{R}$ is a function of deduction makes me smile. $y \in \mathbb{R}$ is a function of deduction makes me smile.

Although revealing the scratch work behind my choice of y^3 for x in the proof above is not a necessary part of the proof itself, I want to show it to you anyway:

$$g(x) = y \Rightarrow \sqrt[3]{x^3} = y \Rightarrow x = y^3$$

v.
$$h: \mathbb{R} \to \mathbb{R} \to h(x) = \sqrt{x} \to h: \mathbb{R} \xrightarrow{\mathrm{H}} \mathbb{R}$$

T

Sample proof:

This is just weird. In the first place the hypothesis of the proposition (i.e., $h : \mathbb{R} \to \mathbb{R} \to h(x) = \sqrt{x}$) is false because since negative real numbers are in the domain but the principal square root of a negative number is not a real number. But let's check out a couple of rows from our truth table from Line 002-H of our glossary:

p	q	\overline{p}	$p \lor q$	$p \wedge q$	p ee q	$p \rightarrow q$	$q \rightarrow p$	$\overline{q} \rightarrow \overline{p}$	$p \Leftrightarrow q$
Т	T	F	T	T	F	T	T	T	T
T	F	F	T	F	T	F	T	F	F
F	T	T	T	F	T	T	F	T	F
F	F	T	F	F	F	T	T	T	T

So the proposition $(h: \mathbb{R} \to \mathbb{R} \to h(x) = \sqrt{x} \to h: \mathbb{R} \to \mathbb{R})$ is vacuously true. Q.E. D.

vi.
$$(s \subseteq (\mathbb{Q} \times \mathbb{Q}) \times \mathbb{Q} \ni s = \{((x, y), x \cdot y) : x, y \in \mathbb{Q}\}) \Rightarrow s : \mathbb{Q} \times \mathbb{Q} \xrightarrow{1:1} \mathbb{Q}$$

Just a note: In a subsequent stage of Math 4200, we will refer to functions such as s in this proposition as a "binary operation on a set." In this case, the set is \mathbb{Q} and the binary operation is ordinary multiplication. Okay, on to the business of proving this proposition false.

A sample proof:

It is true that $s : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$, but it is not an injection. Note that (3, 2), $(12, 0.5) \in \mathbb{Q} \times \mathbb{Q}$. Furthermore, $3 \cdot 2 = 6 \land 12 \cdot 0.5 = 6$. Thus, we have s((3, 2)) = s((12, 0.5)) although $(3, 3) \neq (12, 0.5)$.

 \therefore s is not an injection. Q.E.D.