3. Principles of QM

Axiomatic principles

State vector axiom: State vector at t is ket $\psi(t)$, or $|\psi\rangle$, bra state.

Probability axiom: Given a system in state $|\psi\rangle$, a measurement will find it in state $|\phi\rangle$ with probability amplitude $\langle \phi | \psi \rangle$.

Hermitian operator axiom: Physical observable is represented by a linear and Hermitian operator.

Measurement axiom: Measurement of a physical observable results in eigenvalue of observable. Observable \widehat{A} , we have $\widehat{A}|a\rangle = a|a\rangle$, where a is eigenvalue and $|a\rangle$ is eigenvector. Measurement of the physical quantity represented by \widehat{A} collapses the state $|\psi\rangle$ before measurement into an eigenstate

Time evolution axiom: $i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \widehat{H} |\psi(t)\rangle$, w/o consider x or p.

Vector space

State vector is neither in position nor momentum space.

Basis vectors:
$$|0\rangle = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
, $|1\rangle = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$, $|n\rangle = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$ (in n th pos).

Linearity: Because the SE is linear, given two states $|\psi_1(t)\rangle$ and $|\psi_2(t)\rangle$, $|\psi(t)\rangle = c_1 |\psi_1(t)\rangle + c_2 |\psi_2(t)\rangle$ is also a sol. (c's are complex).

Properties of a vector space

Dual vector space
$$c|\psi\rangle$$
 is mapped to $c*\langle\psi|$. Given a vector, $|\psi\rangle=\left| \begin{array}{c} : \\ \alpha \\ : \end{array} \right|$

the dual vector is $\langle \psi | = \begin{bmatrix} \cdots & \alpha^* & \cdots \end{bmatrix}$.

Dual basis vectors are $\langle 0| = \begin{bmatrix} 1 & 0 & \cdots \end{bmatrix}, \cdots, \langle n| \begin{bmatrix} 0 & \cdots & 1 \end{bmatrix}$.

Inner product : $\langle \phi | \psi \rangle = c$, where c is complex.

 $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle^* \to \langle \psi | \psi \rangle$ is real, positive, and finite for a normalizable ket vector. Can choose $\langle \psi | \psi \rangle = 1$. $\langle \psi_m | \psi_n \rangle = \delta_{mn}$

A matrix operator \widehat{A} acting on a state vector $|\psi\rangle$ transforms it into another state vector $|\phi\rangle$, $\widehat{A}|\psi\rangle = |\phi\rangle$. It is linear.

Properties of operators

Hermitian conjugate (Hermitian adjoint) operator in the dual space

Hermitian adjoint operator \widehat{A}^{\dagger} acts on the dual vector $\langle \psi |$ from the right as $\langle \psi | \widehat{A}^{\dagger} \rangle$, where $\widehat{A}^{\dagger} = (\widehat{A})^{T*}$

$$(\widehat{A}|\psi\rangle)^{\dagger} = |\psi\rangle^{\dagger} \widehat{A}^{\dagger} = \langle\psi|\widehat{A}^{\dagger} \quad \langle\psi| = |\psi\rangle^{\dagger} \quad \langle\psi|^{\dagger} = |\psi\rangle$$
$$(\widehat{A}\widehat{B})^{\dagger} = (\widehat{A}\widehat{B})^{T*} = (\widehat{B}^T \widehat{A}^T)^* = \widehat{B}^{T*} \widehat{A}^{T*} = \widehat{B}^{\dagger} \widehat{A}^{\dagger}, \quad (c\widehat{A})^{\dagger} = c^* \widehat{A}^{\dagger}$$

Outer product operators : $|\psi\rangle\langle\phi|$ $[|\psi\rangle\langle\phi|]\chi\rangle = |\psi\rangle\langle\phi|\chi\rangle$

Matrix elements of operators

$$\langle \phi | \widehat{A} | \psi \rangle$$
 (complex num)

Hermitian equiv to complex conj $\langle \phi | \widehat{A} | \psi \rangle^{\dagger} = \langle \psi | \widehat{A}^{\dagger} | \phi \rangle = \langle \phi | \widehat{A} | \psi \rangle^{*}$

Hermitian operators : $\widehat{A}^{\dagger} = \widehat{A}$, so given $\widehat{A}|\phi\rangle$ in the vector space, we have $\langle \psi | \widehat{A}^{\dagger} = \langle \phi | \widehat{A} \text{ in the dual vector space.} \rangle$

Matrix elements of a Hermitian operator

$$\langle \phi | \widehat{A} | \psi \rangle^{\dagger} = \langle \phi | \widehat{A} | \psi \rangle^{*} = \langle \psi | \widehat{A}^{\dagger} | \phi \rangle = \langle \psi | \widehat{A} | \phi \rangle$$

Hermitian operator, real expectation vals: $\langle \psi | \widehat{A} | \phi \rangle^* = \langle \psi | \widehat{A} | \phi \rangle \equiv \langle \widehat{A} \rangle$

Same result whether \widehat{A} acts to right or left: $\langle \phi | \widehat{A} | \psi \rangle = \langle \phi | \widehat{A}^{\dagger} | \psi \rangle$

Eigenvals and eigenvecs of Hermitian operators : $\widehat{A}|a_n\rangle = a_n|a_n\rangle$

Normalized eigercs $\langle a_m | a_n \rangle = \delta_{mn}$. Gram-Schmidt, degenerate evec.

Completeness of eigenvector of a Hermitian operator Set $|a_n\rangle$ is complete if $\sum_{n} |\langle a_n | \psi \rangle|^2 = 1$. $\sum_{n} |a_n \rangle \langle a_n| = 1$ (identity operator)

Continuous spectra of a Hermitian operator Hermitian operator \widehat{A} ,

 $\widehat{A}|a\rangle = a|a\rangle$, where a is continuous.

 $\int da' \langle a' | \widehat{A} | a \rangle = a \int da' \langle a' | a \rangle = \int da' a' \langle a' | a \rangle \rightarrow \langle a' | a \rangle = \delta(a' - a)$ Continuous condition: $\int da |a\rangle\langle a| = 1$

Gram-Schmidt orthogonalization procedure Eigval (like energy level) is n-fold degenerate: n states w same eigval.

Orthogonal eigenstates \rightarrow no degeneracy.

1. Normalize each state and define $\alpha_i = \frac{\alpha_i}{\sqrt{\langle a_i | a_i \rangle}}$. 2. $|\alpha_1'\rangle = |\alpha_1\rangle$.

$$3. \ |\alpha_2'\rangle = \frac{|\alpha_2\rangle - |\alpha_1\rangle\langle\alpha_1|\alpha_2\rangle}{\sqrt{\langle\alpha_2|\alpha_2\rangle - \langle\alpha_1|\alpha_2\rangle\langle\alpha_2|\alpha_1\rangle}} = \frac{|\alpha_2\rangle - |\alpha_1\rangle\langle\alpha_1|\alpha_2\rangle}{\sqrt{1 - \langle\alpha_1|\alpha_2\rangle\langle\alpha_2|\alpha_1\rangle}}$$

4. Subtract components of $|\alpha_3\rangle$ along $|\alpha_1\rangle$ and $|\alpha_2\rangle$,

 $|\alpha_3\rangle - |\alpha_1\rangle\langle\alpha_1|\alpha_3\rangle - |\alpha_2\rangle\langle\alpha_2|\alpha_3\rangle$, normalize and promote to $|\alpha_3'\rangle$

Position and momentum representation

$$\overrightarrow{\hat{r}} | \overrightarrow{r} \rangle = \overrightarrow{r} | \overrightarrow{r} \rangle \quad \langle \overrightarrow{r'} | \overrightarrow{r} \rangle = \delta^3(\overrightarrow{r'} - \overrightarrow{r}), \int d^3 \overrightarrow{r} | \overrightarrow{r} \rangle \langle \overrightarrow{r} | = 1, \langle \overrightarrow{r'} | \hat{\vec{r}} | \overrightarrow{r} \rangle = \overrightarrow{r} \delta^3(\overrightarrow{r'} - \overrightarrow{r})$$

$$\hat{\vec{p}}|\vec{p}\rangle = \vec{p}|\vec{p}\rangle \quad \langle \vec{p'}|\vec{p}\rangle = \delta^3(\vec{p'} - \vec{p}), \int d^3\vec{p}|\vec{p}\rangle\langle\vec{p}| = 1$$

State vector $|\psi(t)\rangle$ in position space (scalar): $\langle \vec{r}|\psi(x,t)\rangle \equiv \psi(\vec{r},t)$

$$\langle \psi | \hat{\vec{p}} | \psi \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \langle \psi | \hat{\vec{r}} | \psi \rangle m$$

Representation of momentum operator in position space: $\hat{\vec{p}} = -i\hbar\vec{\nabla}$. $\langle x|\widehat{p}|x'\rangle = -i\hbar \frac{\partial}{\partial x}\delta(x-x') = -i\hbar \frac{\partial}{\partial x}\langle x|x'\rangle.$

$$\widehat{p} = -i\hbar \frac{\partial}{\partial z}$$
 is Hermitian, $\frac{\partial}{\partial z}$ is not.

$$\langle x|\widehat{p}|p\rangle = p\langle x|p\rangle = -i\hbar \frac{\partial}{\partial x}\langle x|p\rangle$$
. The solution is $\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{\frac{i}{\hbar}px}$.

In 3D,
$$\langle \vec{r} | \vec{p} \rangle = \frac{1}{(2\pi\hbar)^{3/2}} e^{\frac{i}{\hbar} \vec{p} \vec{r}}$$

We can write the normalized wavefunction of definite position in momentum space, $\langle p|x\rangle=\langle x|p\rangle^*$. So, $\langle p|x\rangle=\frac{1}{\sqrt{2\pi\hbar}}e^{-\frac{i}{\hbar}px}$ (particle moving to the left, or with momentum -p, in the momentum space).

Operators and wavefunction in position representation Position and momentum operators in pos space: $\vec{r} = \vec{r}$, $\vec{p} = -i\hbar \vec{\nabla}$.

 $\hat{\vec{r}}$ is Hermitian and $\langle \phi | \hat{\vec{r}}^{\dagger} | \psi \rangle = \langle \phi | \hat{\vec{r}} | \psi \rangle$.

$$\widehat{O}(\widehat{r},\widehat{\vec{p}}) = \widehat{O}(\vec{r},-i\hbar\vec{\nabla})$$

The expectation val of the observable should be indep of representation. In state $\psi(t)$, $\langle \widehat{O} \rangle = \langle \psi(t) | \widehat{O} | \psi(t) \rangle$.

Insert
$$\int d^2 \vec{r} |\vec{r}\rangle \langle \vec{r}| = 1$$
 to get $\langle \widehat{O} \rangle = \int d^2 \vec{r} \langle \psi(t) |\vec{r}\rangle \langle \vec{r}| \widehat{O} |\psi(t)\rangle$

$$\psi(\vec{r},t) = \langle \vec{r} | \psi(t) \rangle, \qquad \psi(\vec{r},t)^* = \langle \vec{r} | \psi(t) \rangle^* = \langle \psi(t) | \vec{r} \rangle,$$

$$\langle \vec{r} | \hat{O} | \psi(t) \rangle = \hat{O}(\vec{r}, -i\hbar \vec{\nabla}) \psi(\vec{r}, t), \\ \langle \vec{O} \rangle = \int d^3 \vec{r} \psi(\vec{r}, t)^* \vec{O}(\vec{r}, -i\hbar \vec{\nabla}) \psi(\vec{r}, t)$$

Operators and wavefunction in momentum representation $\hat{\vec{r}}=i\hbar\vec{\nabla}_{\vec{p}}$, or in 1D, $\hat{x} = i\hbar \frac{\partial}{\partial x}$, $\hat{\vec{p}} = \vec{p}$, where $\vec{p}^* = \vec{p}$.

$$\widehat{\vec{O}}(\widehat{\vec{r}},\widehat{\vec{p}}) = \widehat{O}(i\hbar \vec{\nabla}_{\vec{n}},\vec{p})$$

$$\begin{array}{l} \langle \widehat{O} \rangle = \langle \psi(t) | \widehat{O} | \psi(t) \rangle \rightarrow \langle \widehat{O} \rangle = \int d^2 \vec{p} \langle \psi(t) | \vec{p} \rangle \langle \vec{p} | \widehat{O} | \psi(t) \rangle. \\ \psi(\vec{p},t) = \langle \vec{p} | \psi(t) \rangle, \qquad \psi(\vec{p},t)^* = \langle \vec{p} \psi(t) \rangle^* = \langle \psi(t) | \vec{p} \rangle \end{array}$$

$$\begin{array}{ll} \psi(p,t) = \langle p|\psi(t)\rangle, & \psi(p,t) = \langle p\psi(t)\rangle = \langle \psi(t)|p\rangle \\ \langle \vec{p}|\widehat{O}|\psi(t)\rangle = \widehat{O}(i\hbar\vec{\nabla}_{\vec{p}},\vec{p}), \langle \vec{O}\rangle = \int d^3\vec{p}\psi(\vec{p},t)^*\widehat{O}(i\hbar\vec{\nabla}_{\vec{p}},\vec{p})\psi(\vec{p},t). \end{array}$$

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \widehat{H} |\psi(t)\rangle$$
, where $\widehat{H} = \frac{\widehat{p}^2}{2m} + V(\widehat{r},t)$ becomes $i\hbar \frac{\partial \psi(\vec{r},t)}{\partial t} = -\frac{\hbar^2}{2m} \vec{\nabla}^2 \psi(\vec{r},t) + V(\vec{r},t) \psi(\vec{r},t)$

Commuting operators

If $[\widehat{A},\widehat{B}]=0$ and the states are nondegenerate, $|\psi\rangle$ is a simultaneous eigenstate of \widehat{A} and \widehat{B} .

$$|\psi\rangle = |ab\rangle$$
, and $\widehat{A}|ab\rangle = a|ab\rangle$, $\widehat{B}|ab\rangle = b|ab\rangle$

Non-commuting operators and the general uncertainty principle

$$(\Delta A)^2 (\Delta B)^2 \ge (\frac{1}{2i} \langle [\widehat{A}, \widehat{B}] \rangle)^2$$

Cannot construct simulatneous eigenstates (which correspond to definite eigenvalues) of non-commuting observables.

Time evolution of expectation value of an operator and Ehrenfest's theorem

Ehrenfest's theorem: how observable \widehat{O} 's expectation value in state $|\psi(t)\rangle$ evolves in time, $\frac{\mathrm{d}}{\mathrm{d}t}\langle \widehat{O} \rangle = \langle \frac{\partial \widehat{O}}{\partial t} \rangle + \frac{i}{\hbar} \langle [\widehat{H}, \widehat{O}] \rangle$

For $\widehat{O}=\widehat{\vec{p}}$ and a Hamiltonian that is TI, $\frac{\mathrm{d}}{\mathrm{d}t}\langle\widehat{\vec{p}}\rangle=-\langle\vec{\nabla}V(\widehat{\vec{r}})\rangle$, which is just Newton's Second Law! \rightarrow QM contains all of classical mech.

The simple harmonic oscillator

$$\widehat{H} = \frac{\vec{p}^2}{2m} + \frac{1}{2}m\omega^2 \widehat{x}^2$$

Raising and lowering operators Lowering op: $\hat{a} = \sqrt{\frac{m\omega}{2\hbar}}(\hat{x} + \frac{i}{m\omega}\hat{p})$, Raising op: $\widehat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} (\widehat{x} - \frac{i}{m\omega} \widehat{p}).$

$$[\widehat{a}, \widehat{a}^{\dagger}] = 1$$
 $\widehat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\widehat{a}^{\dagger} + \widehat{a}), \ \widehat{p} = i\sqrt{\frac{m\omega\hbar}{2}} (\widehat{a}^{\dagger} - \widehat{a})$

$$\widehat{H}=(\widehat{N}+\frac{1}{2})\hbar\omega$$
, where $\widehat{N}=\widehat{a}^{\dagger}\widehat{a}$. Now \widehat{N} is Hermitian, and $\widehat{N}|n\rangle=n|n\rangle$ $[\widehat{N},\widehat{a}]=-\widehat{a},\,[\widehat{N},\widehat{a}^{\dagger}]=\widehat{a}^{\dagger}$

$$\widehat{N}(\widehat{a}|n\rangle) = (n-1)(\widehat{a}|n\rangle), \ \widehat{N}(\widehat{a}^{\dagger}|n\rangle) = (n+1)(\widehat{a}^{\dagger}|n\rangle)$$

Normalized number state vectors Energy levels are not degenerate, so $|n-1\rangle=c_n\widehat{a}|n\rangle \to c_n=\frac{1}{\sqrt{n}}\to \widehat{a}|n\rangle=\sqrt{n}|n-1\rangle.$

$$|n+1\rangle = d_n \hat{a}^{\dagger} |n\rangle \to d_n = \frac{1}{\sqrt{n+1}} \to \hat{a}^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$$

Ground state: $|0\rangle$, excited state: $|n\rangle = \frac{(\hat{a}^{\dagger})^n}{\sqrt{n!}} |0\rangle$, n = 0, 1, 2, ...

$$\begin{split} \langle n'|\hat{x}|n\rangle &= \sqrt{\frac{\hbar}{2m\omega}} \langle n'|(\hat{a}^\dagger + \hat{a})|n\rangle = \sqrt{\frac{\hbar}{2m\omega}} (\sqrt{n+1}\delta_{n',n+1} + \sqrt{n}\delta_{n',n-1}) \\ \langle n'|\hat{p}|n\rangle &= i\sqrt{\frac{m\omega\hbar}{2}} \langle n'|(\hat{a}^\dagger - \hat{a})|n\rangle = i\sqrt{\frac{m\omega\hbar}{2}} (\sqrt{n+1}\delta_{n',n+1} - \sqrt{n}\delta_{n',n-1}) \end{split}$$

Wavefunctions in position representation $E_n=(n+\frac{1}{2})\hbar\omega, n=0,1,2,...$

The stationary wavefunctions of definite energy: $\psi_n(x) = \langle x | n \rangle$

$$\langle x'|\widehat{a}^{\dagger}|x''
angle = \delta(x'-x'')rac{1}{\sqrt{2}\sigma}(x''-\sigma^2rac{\partial}{\partial x''})$$
, where $\sigma\equiv\sqrt{rac{\hbar}{m\omega}}$

$$\xi = \frac{x}{\sigma}, \qquad \langle x|n\rangle = \frac{1}{\sqrt{\sqrt{\pi}n!2^n\sigma}} (\xi - \frac{\partial}{\partial \xi})^n e^{-\frac{1}{2}\xi^2}$$

$$\langle x|0\rangle = (\frac{m\omega}{\pi\hbar})^{1/4} e^{-\frac{m\omega}{2\hbar}x^2}, \qquad \langle x|1\rangle = \sqrt{2}(\frac{m^3\omega^3}{\pi\hbar^3})^{1/4} x e^{-\frac{m\omega}{2\hbar}x^2}$$

Classical simple harmonic oscillator Hamiltonian of a simple harmonic is $H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$. $\dot{x} = \frac{\partial H}{\partial p} = \frac{p}{m}$, $\dot{p} = -\frac{\partial H}{\partial x} = -m\omega^2 x$

Define
$$\sqrt{\hbar\omega}\alpha = \sqrt{\frac{m\omega^2}{2}}x + \frac{i}{\sqrt{2m}}p$$
, so $x = \sqrt{\frac{2\hbar}{m\omega}}\alpha_R$ and $p = \sqrt{2m\hbar\omega}\alpha_I$

Rewrite Hamiltonian, $H = \hbar \omega |\alpha|^2$, $\dot{\alpha} = -i\omega \alpha$. The sol is $\alpha = \alpha_0 e^{-i\omega t}$.

The quantum simple harmonic oscillator and coherent state Coherent state, superpos of stat states $|n\rangle$: $|\alpha\rangle = e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{|\alpha|^n} |n\rangle$

$$P(n) = \left| \langle n | \alpha \rangle \right|^2 = \left| \alpha_n \right|^2 = \frac{\langle n \rangle^n e^{-\langle n \rangle}}{n!}$$
, where $\langle n \rangle = \langle \alpha | a^\dagger a | \alpha \rangle = |\alpha|^2$.

4. Three-dimensional systems

Three-dimensional infinite square well

$$\frac{1}{-\frac{\hbar^2}{2m}(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2})\psi(x,y,z)}=E\psi(x,y,z) \text{ for } 0\leq x\leq l_x,\dots$$

while $\psi(x, y, z) = 0$ outside.

Separation of vars: $\psi(x, y, z) = \psi_1(x)\psi_2(y)\psi_3(z)$

$$\rightarrow$$
 SE becomes $-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi_1(x)=E_1\psi_1(x),...$, where $E=E_1+E_2+E_3$.

$$\psi_{n_x n_y n_z}(x, y, z) = \sqrt{\frac{8}{l_x l_y l_z}} \sin\left(\frac{n_x \pi}{l_x} x\right) \sin\left(\frac{n_y \pi}{l_y} z\right) \sin\left(\frac{n_z \pi}{l_z} z\right)$$

$$E_{n_x n_y n_z} = rac{\hbar^2 \pi^2}{2m} (rac{r_x^2}{l_x^2} + rac{r_y^2}{l_y^2} + rac{r_z^2}{l_z^2})$$
, with $n_x, n_y, n_z = 1, 2,$

Wave vector:
$$\vec{k}=(k_x,k_y,k_z)=(\frac{n_x\pi}{lx},\frac{n_y\pi}{ly},\frac{n_z\pi}{lz})$$

The Schrödinger equation in spherical coordinates

$$\begin{split} &i\hbar \frac{\partial \psi(\vec{r},t)}{\partial t} = -\frac{\hbar^2}{2m} \vec{\nabla}^2 \psi(\vec{r},t) + V(\vec{r}) \psi(\vec{r},t), \text{ where } \vec{r} = (r,\theta,\phi), \\ &\psi(\vec{r},t) = \psi(r,\theta,\phi,t) \text{ and } \vec{\nabla}^2 = \frac{1}{r^2} \frac{\partial}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \text{ is Laplacian operator.} \end{split}$$

For a TI and central potential, potential depends only on r, $V(\vec{r}) = V(r)$

$$\frac{1}{R(r)} \left[\frac{\mathrm{d}}{\mathrm{d}r} - \frac{2mr^2}{\hbar^2} (V(r) - E) \right] = -\frac{1}{Y(\theta, \phi)} \left[\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} + \frac{1}{\sin^2 \theta} \frac{\mathrm{d}^2 Y(\theta, \phi)}{\mathrm{d}\phi^2} \right]$$

Each side must be constant and equal.

$$\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} + \frac{1}{\sin^2 \theta} \frac{\mathrm{d}^2 Y(\theta, \phi)}{\mathrm{d}\phi^2} = -l(l+1)Y(\theta, \phi)$$

$$\frac{d}{dr} - \frac{2mr^2}{\hbar^2} (V(r) - E) = l(l+1)R(r)$$

Orbital angular momentum $[\hat{L}_i, \hat{L}_i] = i\hbar \epsilon_{ijk} \hat{L}_k$, with i = 1, 2, 3representing the x, y, and z components, and the epsilon tensor is

 $\epsilon_{123}=\epsilon_{231}=\epsilon_{312}=1$, which is -1 for odd perms of indicies, and vanishes

$$\widehat{\vec{L}}^2 = \widehat{\vec{L}}_x^2 + \widehat{\vec{L}}_y^2 + \widehat{\vec{L}}_z^2, \, [\widehat{\vec{L}^2}, \widehat{L}_i] = 0$$

In pos rep. $\hat{\vec{L}} = \hat{\vec{r}} \times \hat{\vec{p}} = -i\hbar \vec{r} \times \vec{\nabla}$

$$\widehat{\vec{L}} = -i\hbar r \widehat{r} \times (\tfrac{\partial}{\partial r} \widehat{r} + \tfrac{1}{r} \tfrac{\partial}{\partial \theta} \widehat{\theta} + \tfrac{1}{r \sin \theta} \tfrac{\partial}{\partial \phi} \widehat{\phi} = -i\hbar (\widehat{\phi} \tfrac{\partial}{\partial \theta} - \widehat{\theta} \tfrac{1}{\sin \theta} \tfrac{\partial}{\partial \phi})$$

Components along cartesian unit vectors:

 $\hat{r} = \sin \theta \cos \psi \hat{x} + \sin \theta \sin \phi \hat{y} + \cos \theta \hat{z}$

 $\hat{\theta} = \cos \theta \cos \phi \hat{x} + \cos \theta \sin \phi \hat{y} - \sin \theta \hat{z}$

 $\widehat{\phi} = -\sin\phi\widehat{x} - \cos\phi\widehat{y}$

$$\widehat{L}_x = i\hbar(\sin\theta \frac{\partial}{\partial\theta} + \cot\theta\cos\phi \frac{\partial}{\partial\phi}) \ \widehat{L}_y = i\hbar(-\cos\phi \frac{\partial}{\partial\theta} + \cot\theta\sin\phi \frac{\partial}{\partial\phi})$$

$$\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi} \hat{\vec{L}}^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]$$

$$\widehat{\vec{L}}Y(\theta,\phi) = l(l+1)\hbar^2 Y(\theta,\phi)$$

$$-\frac{\hbar^2}{2m}\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}-V_{\mathrm{eff}}(r)R(r)=ER(r),\ V_{\mathrm{eff}}(r)=V(r)+\frac{l(l+1)\hbar^2}{2mr^2}$$
 Spherical harmonics Find the sols to the angular eqn. Use sep of vars

$$\frac{1}{\Theta}[\sin\theta\frac{\mathrm{d}}{\mathrm{d}\theta}+l(l+1)\sin^2\theta=-\frac{1}{\Theta}\frac{\mathrm{d}^2\Phi}{\mathrm{d}\phi^2}=constant=m^2$$

$$\Psi(\psi) = e^{im\psi}$$

 $\Psi(\psi)$ is periodic in ψ w period 2π gives the constraint $m=0,\pm 1,\pm 2,\cdots$ The eq for $\Theta(\theta)$ can be written in terms of $x \equiv \cos \theta$

$$(1-x^2)\frac{\mathrm{d}^2 P(x)}{\mathrm{d}x^2} - 2x\frac{\mathrm{d}P(x)}{\mathrm{d}x} + (l(l+1) - \frac{m^2}{1-x^2})P(x) = 0$$

Associated Legendre functions: $P_l^{m_l}(x) = (1-x^2)^{|m_l|/2} (\frac{\mathrm{d}}{\mathrm{d}x})^{|m_l|} P_l(x)$, where $P_l(x)$ is the l^{th} Legendre polynomial given by the Rodrigues formula $P_l(x) = \frac{1}{2^l l!} (\frac{\mathrm{d}}{\mathrm{d}x})^l (x^2 - 1)^l$, with l taking values l = 0, 1, 2, ...and for each l, m_l takes 2l+1 values $m_l=-l,-l+1,...,l-1,l$.

Spherical harmonics, normalized angular wave functions:

$$\begin{array}{l} Y_l^m(\theta,\phi)=\epsilon\sqrt{\frac{(2l+1)}{4\pi}\frac{(l-|m|)!}{(l+|m|)!}}e^{im\phi}P_l^m(\cos\theta)\text{, where }\epsilon=(-1)^m\text{ for }m\geq0\text{ and }\epsilon=1\text{ for }m\leq0. \end{array}$$

The Legendre polynomials are normalized s.t. they satisfy the ortho relation $\int_{-1} 1 P_{l'} P_l(x) dx = \int_0^{\pi} P_{l'}(\theta) P_l(\theta) \sin \theta d\theta = \frac{2}{2l+1} \delta_{l'l}$

First few associated Legendre functions:

$$P_0^0(x)=1, P_1^1(x)=\sqrt{1-x^2}, P_1^0(x)=x, P_2^2(x)=3(1-x^2), P_2^1(x)=3x\sqrt{1-x^2}, P_2^0=\frac{1}{2}(3x^2-1)$$

 $P_0^0(\theta) = 1, P_1^1(\theta) = \sin \theta, P_1^1(\theta) = \cos \theta, P_2^2(\theta) = 3\sin^2 \theta, P_2^1(\theta) =$ $3\cos\theta\sin\theta, P_2^0(\theta) = \frac{1}{2}(3\cos^2\theta - 1)$

with
$$P_l^{-m_l}(x) = P_l^{m_l}(x)$$

$$\int_{-1}^{1} P_{l'}^{m'}(x) P_{l}^{m_{l}}(x) dx = \int_{0}^{\pi} P_{l'}^{m'_{l}}(\theta) P_{l}^{m_{l}}(\theta) \sin \theta d\theta = \frac{(l+m_{l})!}{(2l+1)(l-m_{l})!} \delta_{l'l} \delta_{m'_{l},m_{l}}$$

First few spherical harmonics:

$$Y_0^0(\theta,\phi) = \frac{1}{\sqrt{4\pi}}, Y_1^{\pm 1}(\theta,\phi) = \mp \sqrt{\frac{3}{8\pi}} \sin \theta e^{\pm i\phi}, Y_1^0(\theta,\phi) = \sqrt{\frac{3}{4\pi}} \cos \theta$$

The spherical harmonics satisfy the orthogonality relation

$$\int_0^{2\pi} d\phi \int_0^{\pi} d\theta \sin \theta Y_l^{m'l*}(\theta, \phi) Y_l^{ml}(\theta, \phi) = \delta_{l'l} \delta_{m'm},$$

$$\widehat{\vec{L}}^2 | lm_l \rangle = l(l+1)\hbar^2 | lm_l \rangle, \ \widehat{\vec{L}}_z | lm_l \rangle = m\hbar | lm_l \rangle$$

The spherical harmonics are the wavefunctions in pos rep $Y_l^{m_l}(\theta,\phi) = \langle \vec{r} | l m_l \rangle$

Parity of the spherical harmonics Cartesian coords:

$$\widehat{P}\psi(x,y,z) = \psi(-x,-y,-z)$$

Spherical coords: $\widehat{P}\psi(r,\theta,\phi) = \psi(r,\pi-\theta,\phi+\theta)$

For the Legendre polynomials, $\widehat{P}P_{l}^{m_{l}}(\theta)=(-1)^{l-|m_{l}|}P_{l}^{m_{l}}(\theta) \to \text{even for}$ $l+|m_l|$ even and odd for $l+|m_l|$ odd.

Azimuthal part of the wavefunction, $\widehat{P}e^{im_l\phi}=e^{im_l(\phi+\pi)}=(-1)^{m_l}e^{im_l\phi}$.

 $\overset{\cdot}{\text{The spherical harmonics are products of two, and}}$

$$\widehat{P}Y_l^{m_l}(\theta,\phi) = Y_l^{m_l}(\pi-\theta,\phi+\pi) = (-1)^{l-|m_l|+m_l}Y_l^{m_l}(\theta,\phi) = (-1)^{l}Y_l^{m_l}(\theta\widehat{j\theta}\widehat{j\phi})\widehat{J_{\pm}}|ab\rangle) = a(\widehat{J_{\pm}}|ab\rangle, \text{ so } \widehat{J_{\pm}}|ab\rangle$$

The hydrogen atom

Coulomb's law, $\widehat{V} = -\frac{e^2}{4\pi\epsilon_0}\frac{1}{r}$

Let
$$u(r)\equiv rR(r)$$
, Radial eq: $-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2u}{\mathrm{d}r^2}+[-\frac{e^2}{4\pi\epsilon_0}\frac{1}{r}+\frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}]u=Eu$

The radial wave function $\kappa \equiv \frac{\sqrt{-2mE}}{\hbar}$

$$\frac{1}{\kappa^2} \frac{\mathrm{d}^2 u}{\mathrm{d}r^2} = \left[1 - \frac{me^2}{2\pi\epsilon_0 \hbar^2 \kappa} \frac{1}{(\kappa r)} + \frac{l(l+1)}{(\kappa r)^2}\right] u$$

Introduce
$$\rho \equiv \kappa r$$
, $\rho_0 \equiv \frac{me^2}{2\pi\epsilon\hbar^2\kappa}$, $\frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} = [1 - \frac{\rho_0}{\rho} + \frac{l(l+1)}{\rho^2}]u$

As $\rho \to \infty$, the constant term in the brackets dominates, so $\frac{d^2 u}{d\rho^2} = u$.

General sol is $u(\rho)=Ae^{-\rho}+Be^{\rho}$, but $B=0\to u(\rho)\approx e^{-\rho}$ for large ρ . As $\rho \to 0$, centriugal term dominates, $\frac{d^2 u}{d a^2} = \frac{l(l+1)}{a^2} u$

The general sol is $u(\rho)=C\rho^{l+1}+D\rho^{-l}$, but ρ^{-l} blows up as $\rho\to 0$, so D=0. Thus, $u(\rho)\approx Cp^{l+1}$ for small ρ .

Peel off the asymptotic behavior, $u(\rho)=\rho^{l+1}e^{-\rho}v(\rho)$

Radial eq in terms of $v(\rho)$, $\rho \frac{\mathrm{d}^2 v}{\mathrm{d}\rho^2} + 2(l+1-\rho)\frac{\mathrm{d}v}{\mathrm{d}\rho} + [\rho_0 - 2(l+1)]v = 0$

Assume the solution, v(p), can be expressed as a power series in ρ :

$$v(\rho) = \sum_{j=0}^{\infty} c_j \rho^j$$
.

$$v(\rho) = \sum_{j=0}^{\infty} c_j \rho^j.$$

$$c_{j+1} = \frac{2(j+l+1)-\rho_0}{(j+1)(j+2l+2)} c_j$$

For large j (corresponding to large ρ), $c_{j+1} = \frac{2j}{i(j+1)}c_j = \frac{2}{j+1}c_j$

If this were exact, $c_j = \frac{2^j}{i!}c_0$, $v(\rho) = c_0 \sum_{i=0}^{\infty} \frac{2^j}{i!}\rho^j = c_0e^{2\rho}$, and hence $u(\rho) = c_0 \rho^{l+1} e^{\rho}$, which blows up at large ρ

Must exist $c_{j_{\max}+1}=0$, beyond which all coefficients vanish automatically. Define principle quantum number, $n\equiv j_{\max}+l+1$, $ho_0=2n$

$$E = -\frac{\hbar^2 \kappa^2}{2m} = -\frac{me^3}{8\pi^2 \epsilon_0^2 \hbar^2 \rho_0^2}$$

Bohr formula: $E_n = -\left[\frac{m}{2\hbar^2}\left(\frac{e^2}{4\pi\epsilon}\right)^2\right]\frac{1}{n^2} = \frac{E_1}{n^2} = \frac{-13.6 \text{ eV}}{n^2}, n = 1, 2, 3, \dots$ $\kappa = (\frac{me^2}{4\pi c_0 \hbar^2}) \frac{1}{n} = \frac{1}{an}$, Bohr radius: $a \equiv \frac{4\pi c_0 \hbar^2}{mc^2} = 0.529 \times 10^{-10} \text{m}$ $\psi_{nlm}(r, \theta, \phi) = R_{nl}(r)Y_l^m(\theta, \phi)$ $\psi_{100}(r,\theta,\phi) = \frac{1}{\sqrt{2}} e^{-r/a}$

For arbitrary $n,\ l=0,1,2,...,n-1$, so $d(n)=\sum_{l=0}^{n-1}(2l+1)=n^2$ $v(\rho)=L_{n-l-1}^{2l+1}(2\rho)$, where $L_{q-p}^p(x)\equiv (-1)^p(\frac{\mathrm{d}}{\mathrm{d}x})^pL_q(x)$ is an associated Laguerre polynomial. $L_q(x) \equiv e^x (\frac{d}{dx})^q (e^{-x} x^q)$ is the qth Laguerre polynomial.

The normalized hydrogen wavefunctions are:

$$\psi_{nlm} = \sqrt{(\frac{2}{na})^3 \frac{(n-l-1)!}{2n[(n+1)!]^3}} e^{-r/na} (\frac{2r}{na})^l [L_{n-l-1}^{2l+1} (2r/na) Y_l^m(\theta,\phi)$$

Wavefunctions are mutually orthogonal. Spectrum Transitions: $E_{\gamma}=E_{i}-E_{f}=-13.6eV(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}})$

Planck formula, $E_{\gamma}=h\nu$, wavefunction is $\lambda=c/\nu$. Rydberg formula: $\frac{1}{\lambda}=R(\frac{1}{n_{+}^{2}}-\frac{1}{n_{-}^{2}})$

Rydberg constant: $R\equiv\frac{1}{4\pi c \hbar^3}(\frac{e^2}{4\pi\epsilon_0})^2=1.097\times 10^7~{\rm m}^{-1}$

General angular momentum

$$\widehat{\vec{J}} = (\widehat{J}_x, \widehat{J}_y, \widehat{J}_z) = (\widehat{J}_1, \widehat{J}_2, \widehat{J}_3)$$

$$\widehat{\vec{J}}^2 = \widehat{\vec{J}}_x^2 + \widehat{\vec{J}}_y^2 + \widehat{\vec{J}}_z^2$$

The commutation relations are $[\widehat{J}_i, \widehat{J}_j] = i\hbar \epsilon_{ijk} \widehat{J}_k, [\widehat{\widetilde{J}}^2, J_i] = 0$

Take the commuting set to be \widehat{J}^2 and \widehat{J}_z . Now suppose we trade \widehat{J}_x and \widehat{J}_z

The commutation relations become $[\widehat{J}_+,\widehat{J}_-]=2\hbar\widehat{J}_z$ and $[\widehat{J}_z,\widehat{J}_+]=\pm\hbar\widehat{J}_+$ and $[\widehat{\overline{J}}^2, \widehat{J}_{\perp}] = 0$

Because $\widehat{\vec{J}}^2$ and \widehat{J}_z commute, we can simulaneously diagonalize them. Let the simultaneous eigenstate be $|ab\rangle$ s.t. $\overrightarrow{J}|ab\rangle = a|ab\rangle$, $\overrightarrow{J}_z|ab\rangle = b|ab\rangle$

$$\widehat{J}_z(\widehat{J}_{\pm}|ab\rangle) = (b \pm \hbar)(\widehat{J}_{\pm}|ab\rangle)$$

Thus, \widehat{J}_+ raises and \widehat{J}_- lowers the eigenvalue b of \widehat{J}_z . Therefore, assuming $|ab\rangle$ is normalized, $\widehat{J}_{+}|ab\rangle=c_{+}|ab\pm\hbar\rangle$, where c_{+} are normalization

Define
$$j = \frac{n}{2}$$
, then $a = b_{\max}^2 + \hbar b_{\max} = j^2 \hbar^2 + \hbar^2 j = j(j+1)\hbar^2$
 $\widehat{J}_+|jm_j\rangle = \hbar \sqrt{(j \mp m_j)(j \pm m_j + 1)}|jm_j \pm 1\rangle$

The matrix elements of \widehat{J}_+ are

$$\begin{split} \langle j'm_j'|\widehat{J}_{\pm}|jm_j\rangle &= \hbar\sqrt{(j\mp m_j)(j\pm m_j+1)}\langle j'm_j'|jm_j\pm 1\rangle = \\ \hbar\sqrt{(j\mp m_j)(j\pm m_j+1)}\delta_{j'j}\delta_{m_j'm_j\pm 1} \end{split}$$

Classical orbital and spinning motion Infinitesimal classical angular momentum corresponsing to an infinite linear momentum $d\vec{p} = dm\vec{v}$ at position \vec{r} from the axis of rotation is $d\vec{L} = \vec{r} \times d\vec{p}$

The total angular momentum is $\vec{L} = \int \vec{r} \times d\vec{p} = \int \vec{r} \times dm\vec{v}$

Point particle of mass m at radius r spinning w constant angular velocity ω about the z-axis, $\vec{L} = I\omega\hat{z} = m\omega r^2\hat{z}$

Considering a particle of mass m and charge q rotating with angular velocity ω at radius r about the z-axis, the angular momentum \vec{L} and the momentum dipole momentum $\vec{\mu}$ are given by $\vec{L} = m\omega r^2 \hat{z}$, $\vec{\mu} = \frac{q}{2}\omega r^2 \hat{z}$, where we used $\mu = I\pi r^2$ with current $I = \frac{q}{2\pi/\omega} = \frac{q\omega}{2\pi}$. Thus, $\vec{\mu} = \frac{q}{2m}\vec{L}$

Basis vectors are
$$|\frac{1}{2}, \frac{1}{2}\rangle \equiv |1\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}, |\frac{1}{2}, \frac{1}{2}\rangle \equiv |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$$

Construct the matrices for \widehat{S}_x , \widehat{S}_y , \widehat{S}_z , and $\widehat{\vec{S}}^2$.

The matrices \widehat{S}_z and $\widehat{\widetilde{S}}^2$ are diagonal, since they are the ones that are simultaneously diagonalized. The matrix elements are

$$\langle s'm'_s|\hat{\vec{S}}^2|sm_s\rangle = s(s+1)\hbar^2\delta_{s's}\delta_{m'_sm_s},$$

$$\langle s'm_s'|\hat{S}_z|sm_s\rangle = m_s\hbar\delta_{s's}\delta_{m_s'm_s}$$

In matrix form,
$$\widehat{\vec{S}}^2 = \frac{3}{4}\hbar^2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \widehat{S}_z = \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\widehat{S}_{+} = \hbar \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ \widehat{S}_{-} = \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 - 1 \end{bmatrix}$$

$$\widehat{S}_x = \frac{1}{2}(\widehat{S}_+ + \widehat{S}_-)$$
 and $\widehat{S}_x = \frac{1}{2i}(\widehat{S}_+ - \widehat{S}_-)$, we have $\widehat{S}_x = \frac{\hbar}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\widehat{S}_y = \frac{\hbar}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$

Spin angular momentum: $\vec{S} = \frac{\vec{\sigma}}{2}$

where the components of $\vec{\sigma}$ are called the Pauli matrices, and given by

where the components of
$$\sigma$$
 are called the Pauli m. $\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Observe that $[\widehat{S}_i,\widehat{S}_j]=i\hbar\epsilon_{ijk}\widehat{S}_k$ and $[\sigma_i,\sigma_j]=2i\epsilon_{ijk}\sigma_k$ A general state of a spin-half system is given by a spinor,

$$|\chi\rangle=\alpha|\frac{1}{2},\frac{1}{2}\rangle+\beta|\frac{1}{2},\frac{1}{2}\rangle=\left[lphatop\beta
ight]$$
, where $lpha$ and eta are complex constants.

Magnetic moment of the electron

Electron in a magnetic field

The Stern-Gerlach experiment Addition of angular momentum

Triplet and singlet states of a system of two spin-halves

Addition of general angular momentum