8 Principes du codage décodage

Préambule (rappel) : Soit X une variable aléatoire réelle de densité de probabilité f:

$$\Pr(X \ge a) = \int_a^{+\infty} f(t)dt = 1 - \Pr(X \le a) \text{ et } \Pr\left(X \in [a,b]\right) = \Pr\left(X \in [a,b]\right) = \int_a^b f(t)dt.$$

La loi normale $\mathcal{N}(\mu,\sigma^2)$ de moyenne μ et de variance σ^2 a pour densité $f_{\mu,\sigma}(t) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2\right\}$.

Décision optimale au sens du MV, canal gaussien

On se place en sortie d'un canal gaussien dont l'entrée C_k vaut ± 1 .

A chaque utilisation canal k, l'observation y_k est la somme de l'entrée C_k et d'une perturbation b_k distribuée selon une loi normale de moyenne nulle et de variance σ^2 . Les v.a. b_k sont indépendantes : le canal est sans mémoire.

On note \widehat{C}_k l'hypothèse décidée pour C_k .

- 1. On place une seule valeur $C=c\in\{-1,+1\}$ en entrée; la sortie correspondante Y|C=c est une variable aléatoire à valeur réelle. Quelle est la *vraissemblance*, i.e. la densité de probabilité, notée $f_c(y)$, de Y|C=c?
- 2. Les probabilités $a\ priori$ (avant observation de y) des entrées ± 1 sont notées \mathcal{P}_{\pm} . On partitionne \mathbb{R} en deux éléments Z_+ et Z_- . On décide que l'entrée était +1 si $y\in Z_+$ et -1 sinon.

Ecrire la probabilité d'erreur en fonction de \mathcal{P}_{+} , Z_{+} et de $f_{+1}\left(y\right)$ et $f_{-1}\left(y\right)$.

3. Quelle est la partition Z_- , Z_+ qui minimise la probabilité d'erreur? Exprimer cette partition en fonction du rapport de vraisemblance logarithmique

$$\log \frac{f_{+1}(y)}{f_{-1}(y)}$$

4. A partir de maintenant, on suppose la loi d'entrée uniforme $\mathcal{P}_+ = \mathcal{P}_- = 1/2$. Montrer que la règle de décision établie à la question précédente se réduit alors à $\widehat{C} = \mathrm{sign}(y)$, c'est-à-dire que l'on décide +1 lorsque la valeur observée est positive, -1 si elle est négative.

- 5. Montrer que cette règle de décision revient à choisir celle des 2 valeurs possibles en entrée qui se trouve à distance euclidienne minimale de l'observation y.
- 6. On suppose maintenant que le code émis comporte 2 mots binaires de longueur n (parmi les 2^n séquences binaires possibles). On émet un mot-code binaire ${\bf C}$ de longueur n choisi dans ce dictionnaire de 2 mots-codes équiprobables : ${\bf C^0}=\left(C_0^0,\cdots,C_{n-1}^0\right)$ et ${\bf C^1}=\left(C_0^1,\cdots,C_{n-1}^1\right)$. Le rapport de vraisemblance logarithmique impliqué dans la définition de la règle de décision (qui minimise la probabilité d'erreur) devient

$$\log \frac{f_{\mathbf{C}^{1}}(\mathbf{y})}{f_{\mathbf{C}^{0}}((\mathbf{y}|)} = \frac{1}{2\sigma^{2}} \left[d_{E}(\mathbf{y}, \mathbf{C}^{0}) - d_{E}(\mathbf{y}, \mathbf{C}^{1}) \right]$$

Commenter et interpréter ce résultat.

Décision optimale au sens du MV, CBS

On se place maintenant après la décision, le canal qui lie z_k à C_k est binaire. On suppose la loi d'entrée uniforme $\mathcal{P}_+ = \mathcal{P}_- = 1/2$.

- 1. Exprimer la probabilité de la sortie $z_k=+1$ sachant $C_k=-1$ en fonction de la variance σ^2 ; en déduire que le canal est symétrique (CBS) et donner sa probabilité de transition (*i.e.* d'erreur) p.
- 2. Pour réduire la probabilité d'erreur après décodage, on ajoute de la redondance en répétant n=2s+1 fois $(s\in\mathbb{N}^*)$ chaque symbole en entrée du canal.

On construit ainsi le codeur de rendement 1/n:

- (a) Montrer que la règle de décision qui minimise la probabilité d'erreur est une décision majoritaire en sortie.
- (b) Exprimer cette probabilité d'erreur en fonction de la taille du mot de code n (le nombre de répétition) et de la fiabilité du canal p

TD théorie de l'information - Ensimag 1A - 2018-2019