Roughly lecture notes from Kevin Buzzard's Algebra 3 and Alessio Corti's Galois theory

1 Rings

Definition 1.1.1 (Ring). A ring (with 1) is a set R with elements 0,1 and binary operations $+,\times$ such that

- 1. (R, +) is an abelian group with identity 0,
- 2. (R, \times) is a semigroup with 1 as the identity,
- 3. both left and right multiplication are distributive over addition.

Examples 1.1.2. The following are common examples of rings:

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all rings with their normal operations,
- 2. $n\mathbb{Z}$ and $\mathbb{Z}/n\mathbb{Z}$ with n a positive integer, are both rings,
- 3. $\mathbb{R}[x]$, informally the set of polynomials with real coefficients, and $\mathbb{Q}[x]$ are rings,
- 4. given some set X and a ring R the set of functions $f: X \to R$ is a ring
- 5. given a ring R, $M_{n\times n}(R)$ is a ring.

Definition 1.1.3 (Commutative ring). A ring, R, is commutative iff $a \times b = b \times a$ for all $a, b \in R$.

Definition 1.1.4 (Subring). A subset of a ring which is itself a ring under the same operators is a subring.

Lemma 1.1.5. If R is a ring and $0_R, 1_R, s, t \in S \subseteq R$ with $s + t, st, s - t \in S$ then S is a subring of R.

Proof. The only non-obvious axiom is that S is closed under additive inverses which is given by $s-t \in S$. \square

Example 1.1.6. $\mathbb{Z}[\sqrt{n}]$ with $n \in \mathbb{Z}$ is a ring; and note $a + b\sqrt{n} = c + d\sqrt{n}$ iff a = c and b = d.

Proof. $\mathbb{Z}[\sqrt{d}] \subseteq \mathbb{C}$ so by Lemma 1.1.5 take $r = a + b\sqrt{n}$ and $s = c + d\sqrt{n}$, and by simple manipulations have $r \pm s, rs \in \mathbb{Z}[\sqrt{n}]$. Arguing by contradiction that \sqrt{d} is not rational gives the uniqueness.

Corollary 1.1.7. The same argument extends to show $\mathbb{Q}[\sqrt{n}]$ is a ring and in fact a field.

Proof. Commutativity is inherited from \mathbb{Q} , if $r = a + b\sqrt{n} \neq 0$, $r^{-1} = \frac{a - b\sqrt{n}}{a^2 - b^2 d}$ with $a^2 - b^2 d \neq 0$ easily coming from the irrationality of \sqrt{d} .

Propositions 1.1.8. Have R a ring with $r, s, r_i, s_j \in R$ for $i \in [1, n]$ and $j \in [1, m]$ respectively:

- 1. r0 = 0r = 0,
- 2. (-r)s = r(-s) = -(rs) and (-r)(-s) = rs,
- 3. $\left(\sum_{i=1}^{n} r_i\right) \sum_{j=1}^{m} s_j = \sum_{i=1}^{n} \sum_{j=1}^{m} r_i s_j,$
- 4. if rs = s then r = 1,
- 5. if 0 = 1 in R, $R = \{0\}$.

Proof. 1. $0+0=0 \implies r(0+0)=r0 \implies r0+r0=r0 \implies r0=0$ and similarly for 0r,

- 2. $r-r=0 \implies (r-r)s=0 s=0 \implies (-r)s+rs=0 \implies (-r)s=-(rs)$ with r(-s) and (-r)(-s)=rs immediately following,
- 3. inducting on m+n and distributivity,
- 4. s = 1 is sufficient,
- 5. for any r, r = r1 = r0 = 0, note $\{0\}$ is still a ring.

Definition 1.1.9 (Invertible). An element x of a ring R is invertible if there exists $y, z \in R$ with yx = xz = 1.

Definition 1.1.10 (Division ring). A ring R is called a **division ring** if every element of R is invertible.

Remark 1.1.11. A commutative division ring is a field.

Definition 1.1.12 (Zero divisor). An element a of a ring R is a **zero division** if there exists some $b \neq 0 \in R$ with ab = 0.

Definition 1.1.13 (Integral domain). A ring with 1, R, is an **integral domain** iff R is commutative, has no zero divisors, and $0 \neq 1$.

Examples 1.1.14. 1. \mathbb{Z} is an integral domain,

- 2. all fields are integral domains,
- 3. $\{0\}$ is not an integral domain,
- 4. a subring of an integral domain is also an integral domain,
- 5. $\mathbb{Z}/n\mathbb{Z}$ is an integral domain iff n is prime.

Proof of 5. (\Longrightarrow) If n=1 we have $\mathbb{Z}/1\mathbb{Z}=\{0\}$, otherwise take n=ab then ab=0 in $\mathbb{Z}/n\mathbb{Z}$ so neither are an integral domain. (\Longleftrightarrow) By lifting a and b to the integers we have a',b'< n prime so $a,b\nmid n$ hence $ab\nmid n$ therefore $ab\neq 0$ in $\mathbb{Z}/n\mathbb{Z}$ which is therefore an integral domain.

Proposition 1.1.15. There is non-zero cancellation in integral domains.

Proof. Have
$$ar = as \implies a(r - s) = 0$$
 as a is non-zero $\implies r - s = 0 \implies r = s$

Lemma 1.1.16. A finite integral domain is a field.

Proof. Consider $a \in R$ an integral domain with $\varphi_a : R \to R$ by $\varphi_a(r) = ar$. By cancellation φ_a is injective and as R is finite φ_a is therefore also surjective and hence bijective. Take $a^{-1} = \varphi_a^{-1}(1)$.

Corollary 1.1.17. $\mathbb{Z}/n\mathbb{Z}$ is a field iff n is prime.

Theorem 1.1.18 (Wedderburn). A finite division ring is a field. Proof hard so left until later...

1.2 Ring homomorphisms

Definition 1.2.1 (Ring homomorphism). Let R, S be rings, a function $f: R \to S$ is a **ring homomorphism** iff it satisfies

- 1. $f:(R,+)\to(S,+)$ is a group homomorphism,
- 2. f(xy) = f(x)f(y) for all $x, y \in R$,
- 3. $f(1_R) = 1_S$.

A ring homomorphism $\varphi: R \to S$ is an **isomorphism** if there exists some $\psi: R \to S$ with $\varphi \circ \psi$ and $\psi \circ \varphi$ both identity maps.

Examples 1.2.2. The following are some common examples of ring homomorphisms:

- 1. $\varphi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ with $\varphi(t) = t \pmod{n}$, and [0], [1] the identities,
- 2. $f: \mathbb{C} \to \mathbb{C}$ with $f(z) = \overline{z}$ is in fact a self-inverse ring isomorphism,
- 3. $\varphi_{\lambda}: \mathbb{R}[x] \to \mathbb{R}$ which evaluates a polynomial at $\lambda \in \mathbb{R}$,
- 4. structure preserving inclusions are also ring homomorphisms.

Definition 1.2.3 (Ideal). For a ring R, a subset $I \subseteq R$ is a **left ideal**, denoted $I \subseteq R$ iff

- 1. (I, +) is a subgroups of (R, +),
- 2. if $r \in R$ and $i \in I$, $ri \in R$.

Similarly, for **right ideals**. A subset *I* is a bi-ideal if it is both a left and right ideal.

Examples 1.2.4. 1. For any ring R, $\{0\}$ and R are always ideals,

- 2. $x\mathbb{R}[x]$ is an ideal for $\mathbb{R}[x]$,
- 3. $m\mathbb{Z}$ is an ideal for \mathbb{Z} and in fact all ideals are of this form.

Definition 1.2.5 (Quotient ring). Given a ring R with $I \triangleleft R$, have **cosets** of R by I be the subsets of R in the form $r+I:=\{r+i:i\in I\}$, the set of these cosets, R/I is the **quotient ring** of R by I under the operations (r+I)+(s+I)=(r+s+I) and (r+I)(s+I)=(r+s+I).

Proof. The structure of R translates directly to R/I so it is clearly a ring.

Lemma 1.2.6. The kernel of a ring homomorphism $\varphi: R \to S$ is an ideal.

Proof. The kernel of φ is a subgroup of R and $\varphi(ir) = \varphi(i)\varphi(r) = 0$ so $ir \in \ker \varphi$ and similarly for ir hence $\ker \varphi$ is a bi-ideal.

Lemma 1.2.7. The image of a ring homomorphism $\varphi: R \to S$ is a subring.

Proof. By Lemma 1.1.5 and ring homomorphism axioms.

Theorem 1.2.8. Have $\varphi: R \to S$ a ring homomorphism, $\operatorname{im} \varphi$ is naturally isomorphic to $R/\ker \varphi$.

Proof. Have $\psi: R/\ker \varphi \to \operatorname{im} \varphi$ by $\psi(r+I) = \varphi(r)$.

(well defined) $r + \ker \varphi = r' + \ker \varphi \implies r - r' \in \ker \varphi \implies \varphi(r) = \varphi(r'),$

(injective) the same argument but backwards,

(subjective) any $\varphi(r)$ for $r \in R$ is $\psi(r+I)$.

Proposition 1.2.9. A commutative ring R is a field iff its only 2 ideals are $\{0\}$ and R.

Proof. (\Longrightarrow) as R a field $\{0\} \neq R$, if there is some other ideal $0 \neq I \subseteq R$, $x \in R \Longrightarrow 1 = (x)^{-1} x \in I \Longrightarrow 1r = r \in I$ for general $r \in R$ so I = R.

(\Leftarrow) given some $r \in R$ have $I = \{ar : a \in R\}$ clearly a non-empty ideal so I = R therefore there exists some $a \in R$ with ar = 1.

Proposition 1.2.10. Given $f: R \to S$ a ring homomorphism with J a left (or right or bi) ideal of S, $f^{-1}(J)$ is a left (respectively) ideal of R.

Proof.

Definition 1.2.11 (Prime ideal). Let R be a commutative ring, a proper ideal $I \subset R$ is a **prime ideal** iff $ab \in I$ for $a, b \in R \implies a \in I$ or $b \in I$.

Proposition 1.2.12. If $I \subset R$ is a prime ideal, R/I is an integral domain.

Proof.

Definition 1.2.13 (Maximal ideal). A proper ideal I in a commutative ring R is **maximal** iff there are no other proper ideals J with $I \subset J$.

Proposition 1.2.14. I is a maximal ideal of R iff R/I is a field.

Proof.

Corollary 1.2.15. Maximal ideals are prime in commutative rings.

Proof.

Corollary 1.2.16. $\{0\}$ is a prime ideal of a commutative ring R iff R is an integral domain. $\{0\}$ is a maximal ideal of R iff R is a field.

Proof.

Corollary 1.2.17. The maximal ideal of \mathbb{Z} are $p\mathbb{Z}$ for prime p, the remaining non-maximal prime ideal is $\{0\}$.

Proof.

1.3 Generators of ideals

Definition 1.3.1 (Generated ideal). Have R a commutative ring (this is not necessary just much simpler) with finite $X = \{x_1, \ldots, x_n\} \subseteq R$, the **ideal generated by** X is the set $I := \{r_1x_2 + \cdots + r_nx_n : r_i \in R\}$. Write $I = (x_1, \ldots, x_n)$.

Lemma 1.3.2. Under the same definitions as above, I is the smallest ideal of R containing X.

Proof.

Remark 1.3.3. If X is infinite then I is still the collection of finite linear combinations of X in R.

Definition 1.3.4. An ideal I of the commutative ring R is **finitely generated** if $I = (x_1, \ldots, x_n)$ for some $x_i \in R$. Furthermore, I is **principal** if I = (x) for some $x \in R$.

Definition 1.3.5. A commutative ring R is **Noetherian** if all ideals of R are finitely generated; and call R a **principal ideal domain** if all ideals of R are principal.

Remark 1.3.6. Consider R being Noetherian roughly as R being "finite dimensional" and R being a PID as being "leq 1 dimensional".

1.4 Factorisation

Throughout this section we will always have R be an integral domain.

Definition 1.4.1 (Unit). $r \in R$ is a **unit** if there exists some $y \in R$ with $x \times y = 1_R$. We write R^{\times} for the group of units in R under multiplication.

Examples 1.4.2. Some common examples of units in rings:

- 1. $\mathbb{Z}^{\times} = \{1, -1\},\$
- 2. $\mathbb{Z}[i]^{\times} = \{1, -1, i, -i\},\$
- 3. given d < -1, $\mathbb{Z}[\sqrt{d}]^{\times} = \{1, -1\}$,
- 4. given a field F, $F[x]^{\times} = F^{\times}$.

Definition 1.4.3 (Associates). If $x, y \in R$, x and y are associates iff x = uy for some unit u.

Proposition 1.4.4. Association is an equivalence relation on any integral domain, $x \sim y$ iff (x) = (y).

Proof.

Proposition 1.4.5. If $x \in R$ is a unite, (x) = R.

Proof. \Box

Definition 1.4.6 (Irreducible). $r \in R \setminus R^{\times}$ is **irreducible** if it cannot be written as the product of two elements of $R \setminus R^{\times}$.

Examples 1.4.7. Common examples of irreducible elements in rings:

- 1. the irreducible elements of \mathbb{Z} is all $\pm p$ for a prime p,
- 2. the irreducible elements of $\mathbb{Z}[i]$ are the set of associates of primes congruent to 3 modulo 4,
- 3. in $\mathbb{R}[x]$ the polynomial $x^2 + 1$ is irreducible, however in $\mathbb{C}[x]$, $x^2 + 1 = (x+i)(x-i)$; and in fact by the fundamental theorem of algebra, irreducible elements in $\mathbb{C}[x]$ are all order 1 polynomials.

Proof of 2. \Box

Definition 1.4.8. A reminder of a very familiar definition, a number p is **prime** iff $p|ab \implies p|a$ or p|b.

Lemma 1.4.9. All primes of R are irreducible.

Proof.

Proposition 1.4.10. If $0 \neq r \in R$, then r is prime iff (r) is a prime ideal.

Proof.

Definition 1.4.11 (Euclidean domain). R is a Euclidean domain if there exists some $\varphi: R^* \to \mathbb{Z}_{\geq 0}$ satisfying:

- 1. $\varphi(ab) \ge \varphi(a)$ for all $a, b \ne 0$,
- 2. if $a, b \in R$ with $b \neq 0$ there exists $q, r \in R$ with a = qb + r with either r = 0 or $\varphi(r) \leq \varphi(b)$.

Examples 1.4.12. 1. \mathbb{Z} is a euclidean domain with $\varphi(n) = |n|$,

2. given some field k, k[x] is a euclidean domain with $\varphi(p) = \deg(p)$

Theorem 1.4.13. R is a Euclidean domain $\implies R$ is a PID.

Proof.

Corollary 1.4.14. If k is a field, k[x] is a PID. *Proof.* Obvious

Lemma 1.4.15. All irreducibles in a PID are prime.

Definition 1.4.16 (Unique factorisation domain). *R* is a unique factorisation domain if:

- (U1) if $r \neq 0 \in R$, $r = ur_1 \dots r_n$ for some unit u and $r_i \in R$ with $n \geq 0$,
- (U2) if $r = ur_1 \dots r_n = vs_1 \dots s_m$ for units u, v and $r_i, s_i \in R$ with $m, n \ge 0$, m = n and (after reordering) r_i and s_i are associates for all i.

Examples 1.4.17. \mathbb{Z} , k[x], $\mathbb{Z}[i]$ and any ED are all UFDs.

Theorem 1.4.18. All PIDs are UFDs.

Proof.

1.5 Localisation

Definition 1.5.1 (Multiplicative subset). Given $S \subseteq R$ a commutative ring, S is a **multiplicative subset** of R if $1 \in S$ and $s, t \in S \implies st \in S$.

Definition 1.5.2 (Localisation). Have R an integral domain with S a multiplicative subset without 0, the **localisation** of R at S is the set of equivalence classes of $(R \times S)/\sim$ with $(r_1, s_1) \sim (r_2, s_2) \iff r_1 s_2 = r_2 s_1$. Denoted R_S or $S^{-1}R$

Theorem 1.5.3. Have R an integral domain, the localisation of R by $R \setminus \{0\}$ called the **field of fractions** is a unique field up to isomorphism and is denoted Frac(R)

Proof.

Corollary 1.5.4. Any integral domain is a subring of a field.

Lemma 1.5.5. Have R a commutative ring with S a multiplicative subset of R and $\varphi: R \to A$ a ring homomorphism such that $\varphi(s)$ is a unit in A for all $s \in S$. There exists some $\tilde{\varphi}: R_S \to A$ extending φ .

Proof.

Examples 1.5.6. 1. if $S = \{1\}$, $S^{-1}R = R$,

- 2. if $p \in \mathbb{Z}$ is a prime and $S = \{1, p, p^2, \ldots\}, S^{-1}\mathbb{Z} = \mathbb{Z}\left[\frac{1}{p}\right]$ which is a subring of \mathbb{Q} ,
- 3. have P=(p) for a prime $p\in\mathbb{Z}$ and $S=\mathbb{Z}/P$ then $S^{-1}\mathbb{Z}=\mathbb{Z}_{(p)}$

Proposition 1.5.7. \mathbb{Q} has uncountably many subrings.

1.6 Zorn's lemma

Definition 1.6.1 (Partial order). A partial order on a set is a binary relation, ≤ satisfying:

- (P1) for all $s \in S$, $s \leq s$,
- (P2) if $s \le t$ and $t \le s$ then s = t,
- (P3) if $s \le t$ and $t \le u$ then $s \le u$.

Definition 1.6.2 (Chain). A chain in a poset S is a subset $T \subseteq S$ where \leq is total.

Definition 1.6.3 (Upper bound, maximal element). An **upper bound** for $W \subseteq S$ a poset is some $s \in S$ such that for all $w \in W$, $w \leq s$. A maximal element of S is an element $x \in S$ such that $x \leq y \implies x = y$ for all $y \in S$.

Example 1.6.4. Have $s_1 \subseteq s_2 \subseteq \cdots$ subsets of X, then $s = \bigcup_{n \ge 1} s_n$ and X are both upper bounds.

Axiom 1.6.5 (Zorn's Lemma). If S is a poset such that every chain in S has an upper bound, S has a maximal element (and possibly multiple).

Remark 1.6.6. Zorn's lemma is equivalent to the axiom of choice.

Theorem 1.6.7. If R is a ring with $I \triangleleft R$, there exists some maximal ideal m with $I \subseteq m \subset R$.

Proof.

Corollary 1.6.8. If $R \neq \{0\}$ then it has a maximal ideal.

Proposition 1.6.9. An ideal I of a commutative ring R is the unique maximal ideal iff R is the disjoint union of I and R^{\times} .

Definition 1.6.10 (Local). A commutative ring is **local** if it has a unique maximal ideal.

Proposition 1.6.11. Have R an integral domain with $P \subset R$ a prime ideal and S = R/P, $S^{-1}R$ is a local ring with unique maximal ideal $S^{-1}P$.

Proof.

1.7 Polynomial rings

Definition 1.7.1 (Polynomial ring). Let R be a commutative ring, formally, the **polynomial ring** R[x] is the set of infinite sequences with terms in R and finitely many nonzero terms. Informally it is convenient to view this as the set of polynomials with coefficients in R. R[x, y] := (R[x])[y].

Proposition 1.7.2. If R is an integral domain, so is R[x].

Proof.

Corollary 1.7.3. If R is an integral domain, so is $R[x_1, \ldots, x_n]$.

Theorem 1.7.4 (Hilbert basis theorem). If R is Noetherian, so is R[x].

Proof. \Box

Corollary 1.7.5. If R is a field or PID, $R[x_1, \ldots, x_n]$ is Noetherian.

Proof. \mathbb{R} is clearly Noetherian so by induction on \mathbb{R} .

Lemma 1.7.6. Have $\varphi: A \to B$ a surjective ring homomorphism, if A is Noetherian then B is Noetherian.

Proof.

Corollary 1.7.7. If R is a PID with $I \subseteq R[x_1, \ldots, x_n]$ then $R[x_1, \ldots, x_n]/I$ is Noetherian.

Proof.

1.8 Factorisation in polynomial rings

Definition 1.8.1 (π -adic valuation). For some element $\pi \in X \subseteq R$ a UFD, the π -adic valuation on $F = \operatorname{Frac} R$ is the map $\operatorname{val}_{\pi} : F^* \to \mathbb{Z}$ such that given some $f \neq 0 \in F$ written $f = u\pi^e \prod_{x_i \neq \pi \in X} x_i^{p_i}$, have $\operatorname{val}_{\pi}(f) := e$.

Proposition 1.8.2. val_{π} is a group homomorphism $(F^*, \times) \to (\mathbb{Z}, +)$.

Remark 1.8.3. It can be useful to consider $val_{\pi}(0) := +\infty$ to have $val_{\pi} : F \to \mathbb{Z} \cup \{+\infty\}$.

Definition 1.8.4. Given $0 \neq q \in F[x]$ with $q = f_0 + f_1 x + \ldots + f_n x^n$ and $\pi \in X$, have $val_{\pi}(q) := \min_{i:f_i \neq 0} \{val_{\pi}(f_i)\}.$

Lemma 1.8.5. 1. $val_{\pi}(xy) = val_{\pi}(x)val_{\pi}(y)$,

2. if $val_{\pi}(x)$ and $val_{\pi}(y) > 0$, $val_{\pi}(x+y) = 0$.

Proof.

Definition 1.8.6 (Content). The **content** of $f \neq 0 \in F[x]$ is the finite product

$$cont(f) := \prod_{\pi \in X} \pi^{val_{\pi}(f)},$$

and say f is **primitive** when cont(f) = 1.

Remark 1.8.7. Given $f = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$, $cont(f) = \gcd(a_0, a_1, \ldots, a_n)$.

Lemma 1.8.8. $cont(f) \in R \iff f \in R[x]$, furthermore f is primitive iff $f \in R[x]$ with the coefficients of f having gcd 1.

Proof.

Lemma 1.8.9. If $f \neq 0 \in F[x]$ and $\lambda \in F^{\times}$ then $cont(\lambda f) = u\lambda cont(f)$ for some unit u.

Proof.

Lemma 1.8.10. Have R a UFD with F = Frac(R), if $f, g \neq 0 \in F[x]$ then cont(fg) = cont(f)cont(g).

Proof.

Corollary 1.8.11 (Gauss' Lemma). Given a UFD R with $f \neq 0 \in F[x]$ and $\deg(f) \geq 1$. If f is irreducible in R[x] then f is irreducible in F[x].

Proof. \Box

Theorem 1.8.12. If R is a UFD, so is R[x]. Furthermore, the irreducible elements of R[x] are the elements of R and primitive polynomials which are also units in F[x].

Proof.

Corollary 1.8.13. If R is a UFD, $R[x_1, \ldots, x_n]$ is a UFD. *Proof.* Trivial.

2 Modules

- 2.2 Quotient modules
- 2.3 Snake lemma
- 2.4 Injective and projective modules
- 2.5 Hom
- 2.6 Tensor product
- 2.7 Semisimple modules

3 Galois

We will be working within the category of fields with objects fields and morphisms field homomorphisms.

Remark 3.1.1. Every morphism $\sigma: K \to L$ is injective, leading to $\operatorname{Hom}(K, L)$ being denoted as $\operatorname{Emb}(K, L)$.

Proof. Have
$$a \neq b \in K$$
, $\sigma(a) = \sigma(b) \implies \sigma(a-b) = 0_L \implies 1_L = \sigma(a-b)\sigma((a-b)^{-1}) = 0_L$.

Often a ground field k is considered and it is assumed that all fields K we have the extension $k \subset K$. We therefore find ourselves working in a modification of the category of fields where given our fixed ground field k, objects are extensions of k and morphisms are embeddings over k.

Definition 3.1.2 (Embedding over k). Given $k \subset K$ and $k \subset L$, the **embedding over** k from K to L is

$$\operatorname{Emb}_k(K, L) := \{ f \in \operatorname{Emb}(K, L) : \forall a \in k, f(a) = a \}.$$

Sometimes called k-embeddings of K in L.

Remark 3.1.3. If $K \subset L$ a field extension, L is a K-vector space. *Proof.* simple axiom checking.

Definition 3.1.4 (Degree). The **degree** of the extension $K \subset L$ is $[L:K] = \dim_K(L)$.

Proposition 3.1.5. If [L:K] = 1 then L = K.

Remark 3.1.6. If $k \subset K$ is finite then every element of $\operatorname{Emb}_k(K,K)$ is surjective (directly from rank-nullity) so $\operatorname{Emb}_k(K,K) = \operatorname{Aut}_k(K,K)$ a group. Unless stated otherwise assume all extensions to be finite.

Theorem 3.1.7 (Tower Law). Given a tower $K \subset L \subset M$ of extensions, [M:K] = [M:L][L:K].

- 3.2 Axioms
- 3.3 Fundamental theorem
- 3.4 Proof of axioms
- 3.5 Discriminants