FOR SOFTWARE STUDENTS

Practical Lab Plan: Advanced Facial Recognition with HDBSCAN

Title: Advanced Facial Recognition Clustering using HDBSCAN

Objective:

- 1. Explore the application of **HDBSCAN** for clustering facial data in an unsupervised learning scenario.
- 2. Tackle real-world challenges like noisy datasets and unbalanced data distribution.
- 3. Visualize and evaluate clustering results for practical use cases.

Lab Prerequisites:

- 1. Basic knowledge of unsupervised learning and density-based clustering methods.
- 2. Familiarity with dimensionality reduction techniques such as PCA.
- 3. Proficiency in Python programming and related data analysis tools.

Required Tools:

- A Python development environment such as Jupyter Notebook or VS Code.
- Pre-installed libraries such as NumPy, Pandas, Scikit-learn, OpenCV, Matplotlib, and HDBSCAN.

Lab Setup:

Dataset:

Use a real-world dataset, such as:

- CelebA Dataset: Contains celebrity faces with multiple images per person.
- <u>Labeled Faces in the Wild (LFW)</u>: A dataset of labeled facial images suitable for clustering tasks.

Lab Steps:

Step 1: Load and Explore the Dataset

- Load the dataset into the environment.
- Examine the shape and structure of the dataset to understand its features, including the number of images, dimensions, and labels (if available).

• Visualize a few images to familiarize students with the data format and potential challenges like varying image sizes or resolutions.

Step 2: Data Preprocessing

- Flatten the image data into a format suitable for machine learning models.
- Standardize the dataset to ensure uniform scaling, which is critical for clustering algorithms like HDBSCAN.

Step 3: Dimensionality Reduction

- Use PCA (Principal Component Analysis) to reduce the number of features while retaining essential variance in the data.
- Choose an appropriate number of components to optimize clustering performance without over-simplifying the dataset.

Step 4: Apply HDBSCAN Clustering

- Apply the HDBSCAN algorithm to the reduced data.
- Configure HDBSCAN parameters, such as minimum cluster size and distance metric, to achieve meaningful clusters.
- Extract and display the cluster labels assigned to each data point.

Step 5: Introduce Real-Life Challenges

1. Noisy Data:

 Simulate noisy data by adding random variations to images and analyze the algorithm's performance on this altered dataset.

2. Distance Metrics:

 Experiment with different distance metrics, such as Manhattan or Cosine, to observe their effects on clustering results.

Step 6: Visualize and Analyze Results

- Create scatter plots or other visual representations to display the clustering of the reduced data.
- Identify noise points, which HDBSCAN labels as outliers, and analyze their distribution.
- Evaluate clustering quality using metrics like silhouette scores or other relevant techniques.

Step 7: Real-Life Applications

1. Test on New Data:

- Use HDBSCAN to assign a new image to one of the identified clusters.
- Analyze how well the clustering algorithm generalizes to unseen data.

2. Representative Images for Clusters:

o Identify the most representative image in each cluster by finding the data point closest to the cluster center.

Expected Outcomes:

- 1. Hands-on experience in clustering facial data with unsupervised learning techniques.
- 2. Understanding the impact of dimensionality reduction and parameter tuning on clustering.
- 3. Insights into real-world challenges such as noise and imbalanced data.

Additional Challenges:

- 1. Work with a custom dataset by capturing images from a webcam or mobile camera.
- 2. Experiment with advanced feature extraction techniques like HOG or embeddings from pre-trained models.
- 3. Optimize HDBSCAN parameters for better performance in clustering tasks.

FOR NETWORKING STUDENTS

Lab: Building an Al-Based Anomaly Detection System for Network Security Using Unsupervised Learning

Objective:

- 1. **Identify anomalies** in network traffic using unsupervised learning techniques.
- 2. **Detect abnormal behaviors** in network traffic that could indicate security threats, such as Distributed Denial of Service (DDoS), network intrusions, or malware activity.
- 3. **Learn and apply unsupervised learning algorithms** like clustering (K-Means, DBSCAN) and dimensionality reduction (PCA, Autoencoders) to identify patterns in the network traffic data.

Skills Developed:

- Data preprocessing for network traffic data.
- Understanding unsupervised learning techniques for anomaly detection.
- Implementing clustering algorithms (K-Means, DBSCAN).
- Applying dimensionality reduction methods (PCA or Autoencoders) for anomaly detection.
- Evaluating anomaly detection models.
- Handling network traffic data and learning how to detect outliers.

Required Tools & Technologies:

- Python Development Environment (Jupyter Notebook or an IDE of your choice).
- Libraries:
 - Scikit-learn (for algorithms like DBSCAN, K-Means, PCA, etc.)
 - Pandas (for data manipulation)
 - Matplotlib/Seaborn (for data visualization)
 - NumPy (for numerical operations)
 - Isolation Forest or One-Class SVM (for anomaly detection).

Dataset:

- KDD Cup 1999 Dataset (or other network traffic datasets like UNSW-NB15 or CICIDS).
 - The KDD Cup 1999 dataset is commonly used for network anomaly detection tasks. Use only normal traffic data for this unsupervised learning task.
 - You may also use simulated network traffic logs or synthetic data that contains both normal and abnormal traffic.

Lab Steps:

Step 1: Data Preprocessing

1. Loading and Exploring the Dataset:

- Load the dataset and inspect it to understand its structure (e.g., types of features such as duration, protocol type, bytes, packets, etc.).
- o Check for missing values or inconsistencies in the dataset.
- Normalize or standardize the numerical features to bring them to the same scale.

2. Feature Engineering:

- Select relevant features for anomaly detection, such as **Duration**, **Bytes**,
 Packets, and **Protocol Type**.
- Convert categorical features (e.g., Protocol Type) into numerical representations using one-hot encoding or label encoding.
- Normalize the features to ensure all of them are on the same scale, which is important for distance-based algorithms like K-Means or DBSCAN.

Step 2: Applying Unsupervised Learning Algorithms for Anomaly Detection

1. K-Means Clustering:

- Use K-Means clustering to divide the data into different clusters. Anomalies are often points that don't fit well into any cluster.
- After clustering, calculate the distance of each data point from its assigned cluster centroid.

 Define a threshold to flag points with large distances from their centroids as anomalies.

2. DBSCAN (Density-Based Spatial Clustering of Applications with Noise):

- Use DBSCAN, a density-based clustering algorithm, to identify regions of high density in the data. Points that don't fit into any cluster (i.e., outliers) will be labeled as noise (anomalies).
- Set appropriate parameters for eps (radius of neighborhood) and min_samples (minimum number of points in a neighborhood) to optimize the detection of anomalies.

3. Principal Component Analysis (PCA) for Dimensionality Reduction:

- Apply PCA to reduce the dimensionality of the data. Anomalies tend to lie far from the main data points in the reduced-dimensional space.
- Visualize the data after applying PCA to detect points that are far from the normal data cluster.

4. Isolation Forest (Optional Alternative):

- Use the Isolation Forest algorithm, which is an unsupervised learning method designed for anomaly detection by isolating points that are different from others.
- This method is efficient for detecting anomalies in high-dimensional datasets.

Step 3: Evaluation and Results

1. Visualizing Anomalies:

- Use scatter plots or PCA to visualize the normal and anomalous data points. This
 helps in understanding how well the anomaly detection algorithm has performed.
- If the dataset contains both normal and anomalous behavior (such as network attacks), compare the results with known anomalies in the dataset to see how accurately the model detects them.

2. Evaluating Performance (if labeled data is available):

- If you have access to labeled data, calculate evaluation metrics like precision, recall, and F1-score to assess the performance of your anomaly detection model.
- If labeled data is not available, you can compare detected anomalies with known attack signatures or incidents to verify the performance.

Step 4: Enhancing the Model (Optional)

Hyperparameter Tuning:

 Experiment with the parameters of DBSCAN (such as eps and min_samples) and K-Means (such as the number of clusters) to improve the anomaly detection results.

Advanced Feature Engineering:

 Add additional features that might help detect anomalies, such as network packet size, packet frequency, or statistical features like mean, median, and standard deviation of network traffic.

Model Comparison:

 Compare the performance of different anomaly detection methods (e.g., K-Means vs. DBSCAN vs. Isolation Forest) to determine which one works best for your dataset.

Expected Outcomes:

Anomaly Detection Insights:

- Students will learn how to identify and flag anomalies in network traffic data using unsupervised learning techniques.
- They will gain hands-on experience applying clustering algorithms and dimensionality reduction to identify abnormal patterns in data.

Practical Understanding:

 Students will understand how unsupervised learning models can be used for detecting abnormal network behaviors, which is crucial for building security systems like Intrusion Detection Systems (IDS).

Assessment Criteria:

• Report Submission:

- A comprehensive report describing the steps taken in the lab, from data preprocessing to model evaluation.
- Include visualizations such as scatter plots, PCA plots, and anomaly detection results.
- Discuss any challenges faced and how they were overcome.

Model Performance:

- Evaluate how well the unsupervised learning models identified anomalies in network traffic.
- The ability to interpret results and verify their relevance to potential security threats.