COMP5313/COMP4313 - Large Scale Networks

Week 5: The Structure of the Web, Hubs and Authorities

Lijun Chang

March 27, 2025

Introduction

- We already looked at social networks
 - The basic units being connected are people or other social entities, like firms or organizations
 - The links connecting them generally correspond to opportunities for some kind of social or economic interaction
 - e.g., Facebook network, twitter network, Livejournal network
- ▶ We will now consider information networks
 - The basic units being connected are pieces of information
 - Links join pieces of information that are related to each other
 - e.g., the World Wide Web, citation networks, knowledge graphs

Outline

Information Networks

Bow-tie Structure of the Web

Link Analysis: Hubs and Authorities

Applications beyond the Wel

Spectral Analysis of Hubs and Authorities

Advanced Material (Optional)

The World Wide Web

- The World Wide Web is probably the most prominent information network
- ► The Web is an application developed to let people share information over the Internet
- lacktriangle It was created by Tim Berners-Lee during the period of 1989-1991 1
- It features two components:
 - It makes a document available over the Internet through a Web page stored on a public folder of a computer
 - It provides a way for others to easily access Web pages through a browser

University of Sydney

4

¹T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret. The world-wide web. Commun. ACM, vol. 37, pp. 76-82, 1994.

The World Wide Web

- ► A set of four Web pages
 - The home page of an instructor who teaches a class of network, the homepage of a network class she teaches, the blog for the class, with a post about Microsoft.

 These pages are part of one system (the Web) but may be located on four different computers belonging to different institutions.

The World Wide Web

- The Web uses the network metaphor
 - Each page is a hypertext that can embed virtual links in any portion of the document
 - This virtual link allows a reader to move from one Web page to another

The directed edges are the links from one page to another

Citation

- ► A precursor of hypertext is citation
 - For authors to credit the source of an idea
- ► The network of citations among a set of research papers forms a directed graph that, like the Web, is a kind of information network.
- In contrast to the Web, however, the passage of time is much more evident in citation networks since their links tend to point strictly backward in time.

Outline

Information Networks

Bow-tie Structure of the Web

Link Analysis: Hubs and Authorities

Applications beyond the Wel

Spectral Analysis of Hubs and Authorities

Advanced Material (Optional)

Web as a Directed Graph

- Viewing social networks in terms of their graph structures have provided significant insights
- ▶ The same is true for information networks such as the Web
 - It allows us to better understand the logical relationships expressed by its links
 - It helps to identify important pages as a step in organizing the results of Web searches
- The Web graph is directed
 - The edges point from one node to another, and are not symmetrical
 - Page A pointing to page B does not necessarily indicate page B pointing back to page A

Path in a Directed Graph

- ► A directed graph formed by the links among a small set of Web pages
- A path from A to B in a directed graph is a sequence of nodes, beginning with A and ending with B with the property that each consecutive pair of nodes in the sequence is connected by an edge pointing in the forward direction.

Strongly Connected Components

► A directed graph is strongly connected if there is a path from every node to every other node

Strongly Connected Component (SCC)

A strongly connected component (SCC) in a directed graph is a subset of the nodes such that:

- 1. Every node in the subset has a path to every other; and
- 2. The subset is not part of some larger set with the property that every node can reach every other.

Strongly Connected Components

► A directed graph with its strongly connected components identified

The Bow-tie Structure of the Web

- ▶ In 1999, Broder et al. set out to build a global map of the Web ²
 - They used the index of pages and links of AltaVista, one of the largest commercial search engine at that time
- This study was replicated on
 - the larger (early) index of Google's search engine and
 - large research collection of web pages

²A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener. Graph structure in the web. Computer networks, vol. 33, no. 1–6, pp. 309–320, 2000.

The Bow-tie Structure of the Web

Their findings include:

- ▶ The Web contains a giant strongly connected component (SCC):
- ► IN: Some nodes can reach the giant SCC but cannot be reached from it, these nodes are upstream of the giant SCC
- ► OUT: Some nodes can be reached from the giant SCC but cannot reach it, these nodes are downstream of the giant SCC
- There are nodes that can neither reach the giant SCC nor be reached from it
 - Tendrils are nodes that can be reached from IN but cannot reach the giant SCC and the ones that can reach OUT but cannot be reached from the giant SCC
 - Disconnected are nodes that have no path to the giant SCC (even if ignoring directions)

The Bow-tie Structure of the Web

A schematic picture of the bow-tie structure of the Web. Although the numbers are now outdated, the structure has persisted.

Outline

Information Networks

Bow-tie Structure of the Web

Link Analysis: Hubs and Authorities

Applications beyond the Wel

Spectral Analysis of Hubs and Authorities

Advanced Material (Optional)

Searching the Web: The Problem of Ranking

► Type "University of Sydney" in Google's search engine

- How does Google's search engine know which page to show first?
 - Search engines only exploit information from the Web (no external info)
 - → There should be enough information intrinsic to the Web to rank results

Voting by In-links

- Perspective
 - All pages with "University of Sydney" contain different numbers of occurrences
 - But all these webpages likely link to sydney.edu.au
- Links are essential
 - Some links may be off-topic, may be negative rather than positive ...
 - But overall, many incoming links means hopefully collective endorsement
- Let's list all relevant pages with the term "University of Sydney"
 - Consider links as votes from one webpage to another
 - What page receives the largest number of votes from other pages?
 - Ranking pages by decreasing number of votes works reasonably well

Voting by In-links

- Voting is not enough
- ► Type "newspapers", you may get high scores for prominent newspapers, along with irrelevant highly ranked pages
 - Unlabelled pages represent a sample of pages relevant to query newspapers
 - The most voted pages are
 - two newspapers (NYT, USA today)
 - two irrelevant results (Yahoo!, Amazon)

⇒ Vote number is a too simple measure

A List-finding Technique

- ▶ What other information can complement vote measure?
- ▶ What are the (list) pages that compile lists of resources relevant to the topic?
 - Such lists exist for most broad enough queries like "newspapers"
 - They would correspond to lists of links to online newspapers
 - Let's try to find good list pages for the query "newspapers"

A List-finding Technique

- Let's consider the figure again
 - Few list pages voted for many of the highly voted pages
 - List pages have some sense of where the good answers are
 - Page's value as a list is the sum of the votes received by all pages for which it voted

A List-finding Technique

- Finding good lists for the query "newspapers": each page's value as a list is written as a number inside it
- ► If we believe that pages scoring well as lists have a better sense for where the good results are, we should weight their votes more heavily
- Similarly, people recommending lots of good restaurants may act as high-value lists so that you end up giving them more value

The Principle of Repeated Improvement

▶ Re-weight votes for the query "newspapers": each of the labeled page's new score is equal to the sum of the values of all lists that point to it

Why stop here? Can we refine the scores obtained on the left-hand side as well?

► This process can go back and forth forever (repeated improvement)

- This process suggests a ranking procedure that we can try to make precise, as follows
 - We call authorities the page with high score for the query
 - We call hubs the high-value list for the query
- For each page p, we assign pairs: hub(p) and auth(p)
 - Each page starts with (1,1)
- Voting: Use the quality of hubs to refine our estimate for the quality of authorities
 - Authority Update Rule: For each page p, update auth(p) to be the sum of the hub scores of all pages that point to it.
- ► **List-finding:** Use the quality of the authorities to refine our estimate of the quality of the hubs.
 - **Hub Update Rule:** For each page p, update hub(p) to be the sum of the authority scores of all pages that it points to.

Algorithm

- We start with all hub scores and all authority scores equal to 1
- \triangleright We choose a number of steps, k
- ▶ We then perform a sequence of k hub-authority updates Each update works as follows:
 - First apply the Authority Update Rule to the current set of scores
 - Then apply the Hub Update Rule to the resulting set of the scores
- At the end, the hub and authority scores may involve numbers that are very large so normalize them
 - divide each authority score by the sum of all authority scores
 - divide each hub score by the sum of all hub scores

After 1 application of the Authority Update Rule (assuming that hub(p)=1 for every p)

Then after 1 application of the Hub Update Rule

After second application of the Authority Update Rule

After normalization (sum of authorities was 125)

normalized 152

normalized 152

- ▶ What happens if we do this for larger and larger values of *k*?
 - Normalized values converge to limits as k goes to infinity
 - The result stabilizes as the improvement leads to smaller and smaller changes
- Ultimately, we reach an equilibrium
 - Your authority score is proportional to the hub scores of the pages that point to you
 - Your hub score is proportional to the authority scores of the pages you point to
- ► The same limits are reached whatever positive initial values we choose for hubs and authorities
 - The limiting values are properties of the link structure (not initial values)

Limiting hub and authority values for the query "newspapers"

Outline

Information Networks

Bow-tie Structure of the Web

Link Analysis: Hubs and Authorities

Applications beyond the Web

Spectral Analysis of Hubs and Authorities

Advanced Material (Optional)

Application of Link Analysis

- ► Link analysis techniques have diverse applications in any domain where information is connected by a network structure
 - Citation analysis (impact factor)
 - U.S. Supreme Court citations

US Supreme Court Citations

- Study of the network of citations among legal decisions by U.S. courts
- Citations are crucial in legal writing:
 - To ground a decision in precedent
 - To explain the relation of a new decision to what has come before
- Link analysis of citations helps identifying cases that play especially important roles in the overall citation structure
- Hub and authority measures used on all Supreme Court decisions (over 2 centuries)
 - Revealed cases that acquired significant authority according to these measures shortly after they appeared
 - But which took much longer to get recognition from the legal community
 - Showed how authority can change over long time periods

US Supreme Court Citations

- ▶ Rising and falling of some key 5th Amendment cases (20th century)
 - 1936 Brown vs. Mississippi about confessions obtained under torture
 - 1966 Miranda vs. Arizona: the need for citations to the former quickly declined

Outline

Information Networks

Bow-tie Structure of the Web

Link Analysis: Hubs and Authorities

Applications beyond the Web

Spectral Analysis of Hubs and Authorities

Advanced Material (Optional

Spectral Analysis

 Spectral analysis is the use of eigenvalues and eigenvectors to study the structure of networks

► The limiting values of hub and authority values can be interpreted as coordinates in the eigenvectors of certain matrices derived from the network

Adjacency Matrix

- \blacktriangleright Set of n pages represented as nodes labeled $1,2,3,\ldots,n$
- ightharpoonup Links are encoded in an adjacency $n \times n$ matrix ${f A}$
 - $A_{i,j}$ (i^{th} row and j^{th} column of \mathbf{A}) = 1 if there is a link from node i to j
 - $A_{i,j} = 0$ otherwise
- ightharpoonup Example: the directed hyperlinks among Web pages represented as an n imes n adjacency matrix ${f A}$

Let's consider the hub and authority update rules in terms of matrix-vector multiplication

- \triangleright For every node i,
 - its hub score is denoted h_i
 - its authority score is denoted a_i
- ► Hub vector is denoted h, and authority vector is a
 - Here we assume column vectors.
- ► Hub Update Rule (formalized with matrix notation):

$$h_i = A_{i,1} \times a_1 + A_{i,2} \times a_2 + A_{i,3} \times a_3 + \dots + A_{i,n} \times a_n \tag{1}$$

- The values of $A_{i,j}$ as multipliers capture precisely the authority values to sum
- Equation (1) is the definition of matrix-vector multiplication, hence we can write:

$$h = Aa$$

Example

- ► The matrix representation allows to represent the Hub Update Rule as a matrix-vector multiplication
- ▶ The multiplication by a vector of authority scores [2,6,4,3] produces a new vector of hub scores [9,7,2,4]

_			_
0	1	0	1
0	0	1	1
1	0	0	0
0	0	1	0
L_			_

1		1 1	
	2		9
	6	=	7
	4		2
	3		4

- ► The Authority Update Rule is analogous to the Hub Update Rule, except that scores flow in the other direction across the edges
 - a_i is updated to be the sum of h_i over all nodes j that have an edge to i
- ► Authority Update Rule (formalized with matrix notation):

$$a_i = h_1 \times A_{1,i} + h_2 \times A_{2,i} + h_3 \times A_{3,i} + \dots + h_n \times A_{n,i}$$
 (2)

- The roles of columns and rows are interchanged, so we use the transpose of matrix \mathbf{A} , denoted \mathbf{A}^{\top} , defined by the property that (i,j) entry of \mathbf{A}^{\top} is the (j,i) entry of \mathbf{A} (i.e., $(A^{\top})_{i,j} = A_{j,i}$).

$$\mathbf{a} = \mathbf{A}^{\top} \mathbf{h}$$
 equivalently $\mathbf{a}^{\top} = \mathbf{h}^{\top} \mathbf{A}$

Let's perform the k-step hub-authority computation for large values of k

- ightharpoonup Let ${f a}^{(0)}$ and ${f h}^{(0)}$ be the vectors whose coordinates are all ${f 1}$
- Let $\mathbf{a}^{(k)}$ and $\mathbf{h}^{(k)}$ denote the vectors of authority and hubs after k applications of Authority-and-then-Hub Update Rules in order
- ► Following previous formula we find that:

$$\mathbf{a}^{(1)} = \mathbf{A}^{\top} \mathbf{h}^{(0)}$$

and

$$\mathbf{h}^{(1)} = \mathbf{A} \mathbf{a}^{(1)} = \mathbf{A} \mathbf{A}^{\top} \mathbf{h}^{(0)}$$

That's the result of the one-step hub-authority computation.

▶ In the 2nd step, we therefore get

$$\mathbf{a}^{(2)} = \mathbf{A}^{\top} \mathbf{h}^{(1)} = \mathbf{A}^{\top} \mathbf{A} \mathbf{A}^{\top} \mathbf{h}^{(0)}$$

and

$$\mathbf{h}^{(2)} = \mathbf{A}\mathbf{a}^{(2)} = \mathbf{A}\mathbf{A}^{\top}\mathbf{A}\mathbf{A}^{\top}\mathbf{h}^{(0)} = (\mathbf{A}\mathbf{A}^{\top})^{2}\mathbf{h}^{(0)}$$

► In the 3rd step, we get

$$\mathbf{a}^{(3)} = \mathbf{A}^{\top} \mathbf{h}^{(2)} = \mathbf{A}^{\top} \mathbf{A} \mathbf{A}^{\top} \mathbf{A} \mathbf{A}^{\top} \mathbf{h}^{(0)} = (\mathbf{A}^{\top} \mathbf{A})^2 \mathbf{A}^{\top} \mathbf{h}^{(0)}$$

and

$$\mathbf{h}^{(3)} = \mathbf{A}\mathbf{a}^{(3)} = \mathbf{A}\mathbf{A}^{\top}\mathbf{A}\mathbf{A}^{\top}\mathbf{A}\mathbf{A}^{\top}\mathbf{h}^{(0)} = (\mathbf{A}\mathbf{A}^{\top})^{3}\mathbf{h}^{(0)}$$

► What do we observe?

Conclusion: $\mathbf{a}^{(k)}$ and $\mathbf{h}^{(k)}$ are products of the terms \mathbf{A} and \mathbf{A}^{\top} in alternating order, where $\mathbf{a}^{(k)}$ begins with \mathbf{A}^{\top} and the expression for $\mathbf{h}^{(k)}$ begins with \mathbf{A} .

► We can write:

$$\mathbf{a}^{(k)} = (\mathbf{A}^{\top} \mathbf{A})^{k-1} \mathbf{A}^{\top} \mathbf{h}^{(0)}$$

and

$$\mathbf{h}^{(k)} = (\mathbf{A}\mathbf{A}^{\top})^k \mathbf{h}^{(0)}$$

The authority and hub vectors are the results of multiplying an initial vector by larger and larger powers of $\mathbf{A}^{\top}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\top}$, respectively.

Outline

Information Networks

Bow-tie Structure of the Web

Link Analysis: Hubs and Authorities

Applications beyond the Web

Spectral Analysis of Hubs and Authorities

Advanced Material (Optional)

- The magnitude of hubs and authorities increase at each step
- ▶ They only converge when we take normalization into account
- ▶ It is the direction of hubs and authorities that converges
- ightharpoonup To show convergence, we need to show that there are constants c and d such that:
 - $-\frac{1}{c^k}\mathbf{h}^{(k)}$ and $\frac{1}{d^k}\mathbf{a}^{(k)}$ converge to limits as k goes to infinity.
- ▶ Let's focus on the convergence of hub vectors $\frac{1}{c^k}\mathbf{h}^{(k)}$. The convergence proof of authority vectors $\frac{1}{d^k}\mathbf{a}^{(k)}$ is analogous.

Let's focus on the sequence of hub vectors

- ▶ If $\frac{1}{c^k}\mathbf{h}^{(k)} = \frac{1}{c^k}(\mathbf{A}\mathbf{A}^\top)^k\mathbf{h}^{(0)}$ converges to a limit \mathbf{h}^* , then the direction of \mathbf{h}^* shouldn't change when multiplied by $\mathbf{A}\mathbf{A}^\top$ although its length may grow by a factor of c.
 - That is, we expect $\frac{1}{c}\mathbf{A}\mathbf{A}^{\top}\mathbf{h}^* = \mathbf{h}^*$
 - or equivalently $\mathbf{A}\mathbf{A}^{\mathsf{T}}\mathbf{h}^*=c\mathbf{h}^*$
- Any vector satisfying this property (that does not change its direction when multiplied by a given matrix) is called an eigenvector of the matrix
 - The scaling constant c is called the eigenvalue corresponding to the eigenvector
- We expect \mathbf{h}^* to be an eigenvector of the matrix $\mathbf{A}\mathbf{A}^{\top}$ with c a corresponding eigenvalue.

Let's prove that the sequence of vectors $\frac{1}{c^k}\mathbf{h}^{(k)}$ converges to an eigenvector of the matrix $\mathbf{A}\mathbf{A}^{\top}$

- A square matrix **S** is *symmetric* if it remains the same after transposing it:
 - $S_{i,j} = S_{j,i}$ for every choice of i and j
 - in other words $\mathbf{S}^{\top} = \mathbf{S}$
- Every symmetric $n \times n$ matrix **S** has a set of n eigenvectors that are all unit vectors and all mutually orthogonal; that is, they form a basis for the space \mathbb{R}^n . ³
 - Thus, $\mathbf{A}\mathbf{A}^{\top}$ has n mutually orthogonal eigenvectors $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$ with corresponding eigenvalues c_1, c_2, \dots, c_n , satisfying $|c_1| \geq |c_2| \geq \dots \geq |c_n|$
- As $\mathbf{A}\mathbf{A}^{\top}$ is positive semidefinite (because $\mathbf{x}^{\top}\mathbf{A}\mathbf{A}^{\top}\mathbf{x} = (\mathbf{A}^{\top}\mathbf{x})^{\top}(\mathbf{A}^{\top}\mathbf{x}) \geq 0$), all the eigenvalues are non-negative, i.e., $c_1 \geq c_2 \geq \cdots \geq c_n \geq 0$.

³G. Strang. Linear Algebra and Learning from Data. 2019.

 $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$ is a set of mutually orthogonal unit vectors in \mathbb{R}^n .

- $\mathbf{h}^{(0)}$ can be represented as a linear combination of the vectors $\mathbf{z}_1, \dots, \mathbf{z}_n$. That is, $\mathbf{h}^{(0)} = q_1 \mathbf{z}_1 + q_2 \mathbf{z}_2 + \dots + q_n \mathbf{z}_n$ for coefficients q_1, \dots, q_n
 - Here $\mathbf{h}^{(0)}$ can be an arbitrary vector in \mathbb{R}^n .

We have:
$$(\mathbf{A}\mathbf{A}^{\top})\mathbf{h}^{(0)} = (\mathbf{A}\mathbf{A}^{\top})(q_1\mathbf{z}_1 + q_2\mathbf{z}_2 + \dots + q_n\mathbf{z}_n)$$

 $= q_1\mathbf{A}\mathbf{A}^{\top}\mathbf{z}_1 + q_2\mathbf{A}\mathbf{A}^{\top}\mathbf{z}_2 + \dots + q_n\mathbf{A}\mathbf{A}^{\top}\mathbf{z}_n$
 $= q_1c_1\mathbf{z}_1 + q_2c_2\mathbf{z}_2 + \dots + q_nc_n\mathbf{z}_n$

where the third equality follows from the fact that each \mathbf{z}_i is an eigenvector with corresponding eigenvalue c_i of $\mathbf{A}\mathbf{A}^{\top}$.

What this says is that $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$ is a very useful set of coordinate axes for representing $\mathbf{h}^{(0)}$: multiplication by $\mathbf{A}\mathbf{A}^{\top}$ consists simply of replacing each term $q_i\mathbf{z}_i$ in the representation of $\mathbf{h}^{(0)}$ by $c_iq_i\mathbf{z}_i$.

As each successive multiplication by $\mathbf{A}\mathbf{A}^{\top}$ introduces an additional factor of c_i in front of the i^{th} term, we have

$$\mathbf{h}^{(k)} = (\mathbf{A}\mathbf{A}^{\top})^k \mathbf{h}^{(0)} = c_1^k q_1 \mathbf{z}_1 + c_2^k q_2 \mathbf{z}_2 + \dots + c_n^k q_n \mathbf{z}_n$$

▶ Dividing both sides by c_1^k leads to:

$$\frac{1}{c_1^k}\mathbf{h}^{(k)} = q_1\mathbf{z}_1 + \left(\frac{c_2}{c_1}\right)^k q_2\mathbf{z}_2 + \dots + \left(\frac{c_n}{c_1}\right)^k q_n\mathbf{z}_n$$

Assume that $c_1 > c_2$, then as k goes to infinity, every term but the first goes to 0.

 $-\frac{1}{c_1^k}\mathbf{h}^{(k)}$ tends to $q_1\mathbf{z}_1$ as k goes to infinity.

Let's show that the starting vector does not matter

- ▶ Instead of $\mathbf{h}^{(0)}$ being all coordinates equal to 1, let's choose another vector \mathbf{x} with positive coordinates
 - Assume $\mathbf{x} = p_1 \mathbf{z}_1 + p_2 \mathbf{z}_2 + \dots + p_n \mathbf{z}_n$
- $(\mathbf{A}\mathbf{A}^{\top})^k \mathbf{x} = c_1^k p_1 \mathbf{z}_1 + c_2^k p_2 \mathbf{z}_2 + \dots + c_n^k p_n \mathbf{z}_n$
- ▶ So $\frac{1}{c_1^k}\mathbf{h}^{(k)}$ is converging to $p_1\mathbf{z}_1$.
 - In other words, it is still converging to a vector in the direction of \mathbf{z}_1 despite the new choice for the starting vector $\mathbf{h}^{(0)} = \mathbf{x}$

Let's show that q_1 and p_1 are not zero to show that $q_1\mathbf{z}_1$ is in fact a non-zero vector in the direction of \mathbf{z}_1

ightharpoonup We compute the inner product of z_1 and x

$$\langle \mathbf{z}_1, \mathbf{x} \rangle = \langle \mathbf{z}_1, p_1 \mathbf{z}_1 + \dots + p_n \mathbf{z}_n \rangle$$

$$= p_1 \langle \mathbf{z}_1, \mathbf{z}_1 \rangle + p_2 \langle \mathbf{z}_1, \mathbf{z}_2 \rangle + \dots + p_n \langle \mathbf{z}_1, \mathbf{z}_n \rangle$$

$$= p_1$$

- \triangleright p_1 is just the inner product of \mathbf{x} and \mathbf{z}_1
- So, if our starting hub vector $\mathbf{h}^{(0)} = \mathbf{x}$ is not orthogonal to \mathbf{z}_1 , then our sequence of vectors converges to a nonzero vector in the direction of \mathbf{z}_1

Let's show that every positive vector \mathbf{x} (i.e., with all coordinates positive) is not orthogonal to \mathbf{z}_1 .

- ightharpoonup Recall that \mathbf{z}_1 is a unit vector, and thus nonzero.
- ightharpoonup that only all nonnegative coordinates or all nonpositive coordinates.
 - 1. Since \mathbf{z}_1 is nonzero, there exists some nonnegative vector \mathbf{x} (i.e., with all coordinates nonnegative) that is not orthogonal to \mathbf{z}_1 , i.e., $p_1 = \langle \mathbf{x}, \mathbf{z}_1 \rangle$ is nonzero.
 - 2. Let \mathbf{x} be any such a nonnegative vector. Since $\frac{1}{c_1^k}(\mathbf{A}\mathbf{A}^\top)^k\mathbf{x}$ has only nonnegative numbers and converges to $p_1\mathbf{z}_1$, $p_1\mathbf{z}_1$ has only nonnegative numbers.
- So if we consider the inner product of any positive vector with \mathbf{z}_1 , the result must be nonzero. No positive vector can be orthogonal to \mathbf{z}_1 .

 \implies The sequence of hub vectors converge to a vector in the direction of \mathbf{z}_1

Reading

- ► Reading for this week
 - Chapter 13 of the textbook
 - Chapter 14 of the textbook, excluding the PageRank part
- ► Reading for next week
 - Chapter 14 of the textbook
 - Chapter 5 (link analysis) of Mining of Massive Datasets (3rd edition)
 http://www.mmds.org/