Proj

Mānuka background(cultural, uses, industry)

Experimental Cross Design

Two east cape parents, F1 cross siblings

F1 Layout Map indicates the layout of the F1 generation resulting from a cross between EC201 and EC103 parents. Column 1 is approximately lengthways facing north.

Height Diagram Diagram indicates the areas of leaf collection regarding height. Each Tree generally had 10 leaves collected (some trees have been sampled more than once), leaves were selected from low, mid and high points of the tree. The first leaf sampled from each tree was measured twice for replication comparison.

Import and Arrange Data Dualex was used to measure transmittance through all samples included in this dataset, more information on how this works can be found in Clara Rey Caramés, 2015.

"Full.xlsx

- Surface content of chlorophyll in q/cm^2 (Chl)
- Epidermal Flavoid content in absorbance units(Au); Flavonol(Flav) and Anthocyanin(Anth)
- Nitrogen Balance Index status is calculated using Chlorophyll and Flavonol values automatically (NBI)

It also contains information about the block position, the leaf height information, and presense or absence of flowering

Sheet "Dup" contains only the replicated samples

Checking Data Quality from Replicate Leaf Measures. Replicates exist in two groups; first leaf measurement (Y1), and the second leaf measurement (Y2). The second measurement was taken after removing the leaf following the first reading, to help establish the presence of any leaf positional bias.

Replicate Plots and Data Overview

```
## Rep. AnthMean AnthSD ChlMean ChlSD FlavMean FlavSD ## 1 Y1 0.09830189 0.04539806 34.93672 14.55641 1.979969 0.2863768 ## 2 Y2 0.09768153 0.04439018 36.59920 14.51963 1.954280 0.2796720
```


Row	Column 1	Column 2	Column 3	Column 4
50	IN4DF	IN4F4	IN4GN	IN4GP
49	IN4DE	IN4F3	IN4G M	IN 4GS
48	IN4DD	IN4F2	IN4GL	
47	IN4DC	IN4F1	IN4GK	IN4GV
46	IN4DA	IN4F0	IN4GJ	IN4GW
45	IN4D9	IN4EZ	IN4GH	IN4GX
44	IN4D8	IN4EY	IN4GG	
43	IN4D7	IN4EX	IN4G F	
42	IN4D6	IN4EW	IN4GE	
41	IN4D5	IN4EV	IN4GD	IN4H1
40	IN4D4	IN4ET	IN4GC	
	IN4D3	IN4ES	IN4GB	
39 38	IN4D2	IN4ER	IN4GA	
37	IN4D0	IN4EP	IN4G9	
36	IN4CY	IN4EN	IN4G8	
35	IN4CX	IN4EM	IN4G5	IN4H7
34	IN4CX	IN4EIVI IN4EL	IN4G 7	IN4H7
	IN4CV IN4CV	IN4EL IN4EK	IN4G5	119400
33		ò		IN4HA
32	IN 4CT	IN4EJ	IN4G4	IN4DA
31	IN 4CS	IN4EH	IN4G3	
30	IN 4CR	IN4EG	IN4G2	
29	IN4CP	IN4EF	IN4G1	
28	IN4CN	IN4EE	IN4G0	
27	IN4CM	IN4ED	IN 4FZ	
26 25	IN4CL	IN4EC	IN4FY	
	IN 4CK	IN4EB	IN4FX	
24	IN 4CJ	IN 4EA	IN4FW	
23	IN4CH	IN4E9	IN4FV	IN4HK
22	IN4CG	IN4E8	IN4FT	
21	IN4CE	IN4E6	IN 4FS	
20	IN4CD	IN4E4	IN4FR	
19	IN 4CC	IN4E3	IN4FP	
18	IN 4CB	IN4E2	IN4FN	
17		IN4E1	IN4FM	
16	IN 4C9	IN4E0	IN4FL	
15	IN 4CB	IN 4DZ	IN4FK	
14	IN 4C7	IN4DY	IN4FJ	
13	IN 4C6	IN4DX	IN4FH	
12	IN4C5	IN4DW	IN4FG	
11	IN 4C4	IN4DV	IN4FF	
10	IN 4C3	IN4DT	IN4FE	
9	IN 4C2	IN4DFS	IN4FD	
8	IN4C1	IN4DR	IN4FC	
7	IN 4C0	IN4DP	IN4FB	
6	IN 4BZ	IN4DM	IN4FA	
5	IN 4BY	IN4DL	IN4F9	
4	IN 4BX	IN4DK	IN4F8	
3	IN4BW	IN4DJ	IN4F7	
2	IN4BV	IN4DH	IN4F6	
1	IN 4BT	IN4DG	IN4F5	

Figure 1: "Map of F1 Trees"

Figure 2: "Diagram of leaf collection levels"

Flavonol Distribution of Replicate Samples

Figure 3: Plots of replicate measure disitributions, medians (lines), means (empty diamonds)

Replicate ANOVAs

```
## Analysis of Variance Table
##
## Response: Dup$Anth
              Df Sum Sq
##
                           Mean Sq F value Pr(>F)
## Dup$Rep.
               1 0.00003 0.0000304 0.0151 0.9023
## Residuals 314 0.63303 0.0020160
## Analysis of Variance Table
##
## Response: Dup$Chl
##
              Df Sum Sq Mean Sq F value Pr(>F)
                         218.33
## Dup$Rep.
               1
                    218
                                  1.033 0.3102
## Residuals 314 66366
                         211.36
  Analysis of Variance Table
##
## Response: Dup$Flav
                  Sum Sq Mean Sq F value Pr(>F)
               1 0.0521 0.052129 0.6506 0.4205
## Dup$Rep.
## Residuals 314 25.1596 0.080126
```

Replicate measures and plots appear to correspond well - indicative that the measurements from the dualex are reliable. Might pay to remove the outliers.

Plots of leaf chemicals across groups

Data Summary

```
##
     Allocation
                  AnthMean
                                AnthSD
                                        ChlMean
                                                    ChlSD FlavMean
                                                                       FlavSD
## 1
             CG 0.25763636 0.18306079 36.02836
                                                 7.090510 2.169455 0.2021457
## 2
          EC103 0.05883333 0.03576650 52.59242
                                                 7.889391 1.599833 0.2334250
## 3
          EC201 0.07790000 0.03665288 52.60670
                                                 9.291990 1.710800 0.2217590
## 4
             F1 0.09711830 0.04437066 34.99601 15.144271 1.967003 0.2479930
```

Anthocyanin Crimson Glory(CG) outgroup apparent, F1 population more similar to parental trees.

Chlorophyll F1 very diverse, overlaps with both parent trees and outgroup, more similar median and distrubtion to outgroup.

Flavonol F1 overlaps with parents and outgroup, slightly more similar to parental trees.

Plots of unadjusted F1 chemical

Anothcyanin left bias, long tail

Chlorophyll right bias, truncated

Flavonol typical bell curve with slightly long tails both directions

Height 2018 lumpy normal disitribution

Height 2019 appears to be two overlapping distribitions, maybe 3

Growth maybe 3 overlapping populations

Column Comparisons

Row v Column Heatmaps

Raw Flav Measure

Height Plots

ANOVAs comparing Height, Row and Columns for each chemical

```
## Analysis of Variance Table
##
## Response: F1$Anth
##
              Df Sum Sq
                          Mean Sq F value
                                             Pr(>F)
              49 0.2346 0.0047878 2.5717 2.467e-08 ***
## F1$Row
               1 0.0020 0.0019565 1.0509
## F1$Column
                                             0.3054
## F1$Height
               2 0.0520 0.0260053 13.9687 9.587e-07 ***
## Residuals 1739 3.2375 0.0018617
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Analysis of Variance Table
##
## Response: F1$Chl
##
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
                  21394 436.61 1.9560 0.0001012 ***
## F1$Row
               49
## F1$Column
                         469.95 2.1054 0.1469578
                    470
               1
## F1$Height
               2
                    737
                         368.69
                                 1.6517 0.1920166
                         223.21
## Residuals 1739 388163
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Analysis of Variance Table
```

```
##
## Response: F1$Flav
##
              Df Sum Sq Mean Sq F value
              49 8.215 0.16765 2.9272 1.204e-10 ***
## F1$Row
## F1$Column
               1 1.379 1.37854 24.0698 1.016e-06 ***
               2 0.957 0.47848 8.3545 0.0002449 ***
## F1$Height
## Residuals 1739 99.597 0.05727
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Response: F1$Height08
##
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
## F1$Row
              49 493101
                          10063 42.056 < 2.2e-16 ***
## F1$Column
               1 154439 154439 645.422 < 2.2e-16 ***
## Residuals 1673 400321
                            239
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Analysis of Variance Table
## Response: as.numeric(F1$Height09)
##
              Df Sum Sq Mean Sq F value
## F1$Row
              49 626751
                          12791
                                 51.649 < 2.2e-16 ***
## F1$Column
               1 275536
                         275536 1112.606 < 2.2e-16 ***
## Residuals 1672 414069
                            248
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Response: as.numeric(F1$Growth)
##
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
## F1$Row
              49 145650 2972.5 12.725 < 2.2e-16 ***
## F1$Column
               1 17049 17049.2 72.985 < 2.2e-16 ***
## Residuals 1672 390575
                          233.6
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Anthocyanin Significant Row and Height effects

Chlorophyll Significant Row effect

Flavonol Significant row, column and height effects

Height 2018 Very Significant effect of row and column

Height 2019 Very Significant effect of row and column

Growth difference (Height 2019- Height 2018) Very Significant effect of row and column - need to double check might be from later in analysis

Adjusting Row, Column and Height measures

```
Height Column Row Tree.ID Allocation Rep. measure Flower Flower.Level
            Н
                   3
                      9
                            TN4FM
                                         F1
                                               N
                                                               N
## 490
                                                       11
                                                                            0
## 1307
                   2 13
                            IN4E4
                                          F1
                                               N
                                                       7
                                                               N
##
          Chl Flav Anth
                           NBI Height08 Height09 Growth AnthRowMeans ChlRowMeans
## 490 59.122 1.640 0.483 36.05
                                     166
                                               245
                                                       79
                                                             0.1163182
## 1307 18.511 1.401 0.370 13.21
                                     138
                                               234
                                                       96
                                                             0.1105227
                                                                          31.51561
       FlavRowMeans H18RowMeans H19RowMeans AnthColMeans ChlColMeans FlavColMeans
## 490
            1.886773
                        146.6957
                                      232.0
                                              0.09897588
                                                             36.04402
                                                                          1.960649
## 1307
            1.933068
                        151.0000
                                      246.5
                                              0.09924281
                                                            35.39257
                                                                          1.944405
##
       H18ColMeans H19ColMeans AnthHeightMeans ChlHeightMeans FlavHeightMeans
## 490
          175.1734
                       267.4482
                                    0.10500200
                                                     33.90735
                                                                      1.930788
                       241.0717
                                                     35.25540
## 1307
          157.0018
                                    0.09133645
                                                                      1.983505
         AdjAnth
## 490 0.4559164
## 1307 0.3623774
## Analysis of Variance Table
## Response: F1$AdjAnth
##
              Df Sum Sq
                            Mean Sq F value Pr(>F)
## F1$Row
               1 0.00026 0.00025836 0.1518 0.6969
               1 0.00118 0.00118033 0.6934 0.4051
## F1$Colum
## F1$Height
               2 0.00018 0.00008970 0.0527 0.9487
## Residuals 1785 3.03861 0.00170230
## Analysis of Variance Table
##
## Response: F1$AdjChl
              Df Sum Sq Mean Sq F value Pr(>F)
## F1$Row
               1
                     1
                           0.89 0.0041 0.9489
## F1$Column
               1
                      72
                          72.41 0.3349 0.5628
## F1$Height
               2
                     789
                         394.51 1.8249 0.1615
## Residuals 1785 385885
                         216.18
## Analysis of Variance Table
## Response: F1$AdjFlav
##
              Df Sum Sq Mean Sq F value Pr(>F)
## F1$Row
               1 0.019 0.018555 0.3357 0.5624
## F1$Column
               1 0.007 0.007400 0.1339 0.7145
## F1$Height
               2 0.001 0.000454 0.0082 0.9918
## Residuals 1785 98.652 0.055267
## Analysis of Variance Table
## Response: F1$AdjH18
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
                   2625 2625.3 11.005 0.0009277 ***
## F1$Row
## F1$Column
                   6285 6285.4 26.347 3.176e-07 ***
               1
## Residuals 1719 410084
                          238.6
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

```
## Analysis of Variance Table
##
## Response: F1$AdjH19
              Df Sum Sq Mean Sq F value
              1 3064 3063.9 12.788 0.0003586 ***
## F1$Row
## F1$Column 1 14757 14756.5 61.589 7.385e-15 ***
## Residuals 1718 411630
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Response: as.numeric(F1$Growth)
              Df Sum Sq Mean Sq F value Pr(>F)
## F1$Row
              1
                     26
                         26.07 0.1178 0.731482
## F1$Column 1
                   1852 1851.64 8.3672 0.003869 **
## Residuals 1718 380187 221.30
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Adjust height row and column effects
## Analysis of Variance Table
##
## Response: F1$AdjH182
              Df Sum Sq Mean Sq F value Pr(>F)
              1 174 173.971 0.7742 0.3790
## F1$Row
                    7 6.782 0.0302 0.8621
## F1$Column
               1
## Residuals 1718 386029 224.697
## Analysis of Variance Table
## Response: F1$AdjH192
              Df Sum Sq Mean Sq F value
##
                   423 423.06 1.8915 0.1692147
               1
## F1$Column
               1
                   3107 3107.07 13.8915 0.0001999 ***
## Residuals 1718 384260 223.67
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Analysis of Variance Table
## Response: as.numeric(F1$Growth)
                                            Pr(>F)
##
              Df Sum Sq Mean Sq F value
## F1$Row
              1 54.44 54.44
                                  39.712 3.731e-10 ***
## F1$Column
             1 2823.51 2823.51 2059.493 < 2.2e-16 ***
## Residuals 1718 2355.33
                         1.37
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
```

```
## Response: F1$AdjH193
##
                Df Sum Sq Mean Sq F value Pr(>F)
                        63 63.269 0.2839 0.5942
## F1$Column
                       210 209.574 0.9403 0.3323
## Residuals 1718 382892 222.871
## Analysis of Variance Table
## Response: as.numeric(F1$Growth)
##
                Df Sum Sq Mean Sq F value
                                                  Pr(>F)
## F1$Row
                      54.44
                              54.44
                                       39.712 3.731e-10 ***
                 1 2823.51 2823.51 2059.493 < 2.2e-16 ***
## F1$Column
## Residuals 1718 2355.33
                                1.37
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
                                                        Chlorophyll Distribution of F1 Trees
      Anthocyanin Distribution of F1 Trees
                                                  Preduency
0.00
0.00
   10.0
Frequency
    7.5
    5.0
    2.5
    0.0
          0.0
                                 0.2
                                            0.3
                                                                       20
                      Anthocyanin
                                                                        Chlorophyll
        Flavonol Distribution of F1 Trees
                                                         Height18 Distribution of F1 Trees
   2.0
                                                  Ledneucy 0.03 0.01 0.00
Frequency
   1.5
   1.0
   0.5
   0.0
                           2.0
      1.0
                 1.5
                                      2.5
                                                                125
                                                                          150
                                                                                   175
                                                                                            200
                       Flavonol
                                                                         Height18
        Height19 Distribution of F1 Trees
                                                          Growth Distribution of F1 Trees
                                                  Ledneucy
0.02
0.01
0.00
Frequency
   0.03
   0.02
   0.01
   0.00
                             250
                                       275
                                                                                 100
         200
                   225
                                                                   50
```

Growth

Height19

