

Machine Learning

Application example: Photo OCR

Problem description and pipeline

The Photo OCR problem

how to get the computer/camera to read the text/pictures better

Photo OCR pipeline

1. Text detection

→ 2. Character segmentation

→ 3. Character classification

Andrew Ng

Photo OCR pipeline

Machine Learning

Application example: Photo OCR

Sliding windows

Text detection

A simpler case

Pedestrian detection

Supervised learning for pedestrian detection

x =pixels in 82x36 image patches

Positive examples (y = 1)

000

Negative examples (y = 0)

Sliding window detection

Sliding window detection

Sliding window detection

Text detection

Text detection

Positive examples (y=1)

Negative examples (y = 0)

[David Wu]

Andrew Ng

1D Sliding window for character segmentation

Photo OCR pipeline

→ 1. Text detection

→ 2. Character segmentation

→ 3. Character classification

Machine Learning

Application example: Photo OCR

Getting lots of data: Artificial data synthesis

two main variation

Character recognition

Artificial data synthesis for photo OCR

Real data

Abcdefg Abcdefg Abcdefg Abcdefg **Abcdefg**

Artificial data synthesis for photo OCR

Real data -----

Synthetic data

Creating new data from scratch

Synthesizing data by introducing distortions

Synthesizing data by introducing distortions: Speech recognition

Original audio: <

Audio on bad cellphone connection

Noisy background: Crowd

Noisy background: Machinery

Synthesizing data by introducing distortions

Distortion introduced should be representation of the type of noise/distortions in the test set.

- Audio: Background noise, bad cellphone connection
- Usually does not help to add purely random/meaningless noise to your data.

- $\rightarrow x_i = \text{intensity (brightness) of pixel } i$
- $\rightarrow x_i \leftarrow x_i + \frac{1}{random noise}$

meaningless noise is less meaningful

Discussion on getting more data

- 1. Make sure you have a low bias classifier before expending the effort. (Plot learning curves). E.g. keep increasing the number of features/number of hidden units in neural network until you have a low bias classifier.
- 2. "How much work would it be to get 10x as much data as we currently have?"
 - Artificial data synthesis
 - Collect/label it yourself
 - "Crowd source" (E.g. Amazon Mechanical Turk)

Discussion on getting more data

- 1. Make sure you have a low bias classifier before expending the effort. (Plot learning curves). E.g. keep increasing the number of features/number of hidden units in neural network until you have a low bias classifier.
- 2. "How much work would it be to get 10x as much data as we currently have?"
 - Artificial data synthesis
 - Collect/label it yourself
 - "Crowd source" (E.g. Amazon Mechanical Turk)

Machine Learning

Application example: Photo OCR

Ceiling analysis: What part of the pipeline to work on next

Estimating the errors due to each component (ceiling analysis)

What part of the pipeline should you spend the most time trying to improve?

Component	Accuracy
Overall system	72%
Text detection manually set the	at all text are correctly 89% only 1% improvement
Character segmentation	idea 90% improvement (do not spend too much time here!)
Character recognition ***	100%

Another ceiling analysis example Face recognition from images (Artificial example) Camera **Preprocess** (remove background) image **Eyes segmentation Logistic regression Nose segmentation** Label **Face detection** Mouth segmentation

Another ceiling analysis example

