Algebra II

Homogeneous Ideals

Jendrik Stelzner

Let $A = \bigoplus_{d>0} A_d$ be a graded k-algebra and let $I \subseteq A$ be a two-sided ideal.

Lemma 1. The linear subspace $J := \bigoplus_{d \ge 0} (I \cap A_d)$ of A is again a two-sided ideal.

Proof. It holds that

$$AJ = \left(\sum_{d \ge 0} A_d\right) \left(\sum_{d' \ge 0} (I \cap A_d)\right)$$

$$\subseteq \sum_{d,d' \ge 0} A_d (I \cap A_{d'})$$

$$\subseteq \sum_{d,d' \ge 0} \left((A_d I) \cap (A_d A_{d'})\right)$$

$$\subseteq \sum_{d,d' \ge 0} (I \cap A_{d+d'})$$

$$= \sum_{d'' \ge 0} (I \cap A_{d''})$$

$$= J$$

and similarly $JA \subseteq J$.

Proposition 2. The following conditions on I are equivalent:

- 1) There exist linear subspaces $I_d \subseteq A_d$ with $I = \bigoplus_{d>0} I_d$.
- 2) It holds that $I = \bigoplus_{d>0} (I \cap A_d)$.
- 3) For every $x \in I$ with homogeneous decomposition $x = \sum_{d \geq 0} x_d$ all of the homogeneous components x_d are again contained in I.
- 4) The ideal I is generated by homogeneous elements.
- 5) It holds for the canonical projection $\pi\colon A\to A/I$ that $A/I=\bigoplus_{d>0}\pi(A_d)$.

Proof.

- 2) \implies 1) We can choose $I_d = I \cap A_d$ for every $d \ge 0$.
- 1) \implies 2) We have for every $d \ge 0$ that $I \cap A_d = I_d$.
- 5) \Longrightarrow 1) The projection π restrict for every $d \ge 0$ to a linear map $\pi_d \colon A_d \to \pi(A_d)$. With respect to the decompositions $A = \bigoplus_{d \ge 0} A_d$ and $\pi(A) = \bigoplus_{n \ge 0} \pi(A_d)$, the projection π can be written as $\pi = \bigoplus_{d \ge 0} \pi_d$. It follows that

$$\ker(\pi) = \ker\left(\bigoplus_{d \ge 0} \pi_d\right) = \bigoplus_{d \ge 0} \ker(\pi_d)$$

with $\ker(\pi_d) \subseteq A_d$ being a linear subspace for every $d \ge 0$.

1) \implies 5) For every $d \ge 0$ let $\pi_d : A_d \to A_d/I_d$ be the canonical projection. The linear map

$$\pi := \bigoplus_{d \geq 0} \pi_d \colon \bigoplus_{d \geq 0} A_d \longrightarrow \bigoplus_{d \geq 0} (A_d/I_d)$$

is surjective (because it is surjective in each summand) with kernel

$$\ker(\pi) = \ker\left(\bigoplus_{d\geq 0} \pi_d\right) = \bigoplus_{d\geq 0} \ker(\pi_d) = \bigoplus_{d\geq 0} I_d = I.$$

It follows that the map π induces an isomorphism of vector spaces

$$\overline{\pi} \colon A/I \to \bigoplus_{d \ge 0} (A_d/I_d).$$

Under this linear isomorphism $\overline{\pi}$, the summand A_d/I_d of the right hand side corresponds to the linear subspace $\pi(A_d)$ of the left hand side.

- 1) \Longrightarrow 3) We may write $x \in I$ as $x = \sum_{d \geq 0} x_d$ with $x_d \in I_d$ for every $d \geq 0$. Then $x_d \in A_d$ for every $d \geq 0$, so $x = \sum_{d \geq 0} x_d$ is the decomposition of x into homogeneous components. It now holds that $x_d \in I_d \subseteq I$.
- 3) \implies 4) The ideal I is generated by all of its elements, and hence by the homogeneous components of all of its elements.
- 4) \Longrightarrow 2) The linear subspace $\bigoplus_{d\geq 0}(I\cap A_d)$ of I is again a two-sided ideal in A, which by assumption contains a generating set of I. Hence $I=\bigoplus_{d>0}(I\cap A_d)$.

The ideal I is homogeneous if it satisfies the equivalent conditions from Proposition 2. It then follows that the quotient A/I inherits a grading from A via

$$(A/I)_d := \pi(A_d)$$

for every $d \ge 0$, where $\pi \colon A \to A/I$ denotes the canonical projection. Indeed, it holds that $A/I = \bigoplus_{d \ge 0} (A/I)_d$ by characterization 5), and it holds for all degrees $d, d' \ge 0$ that

$$(A/I)_d(A/I)_{d'} = \pi(A_d)\pi(A_{d'}) = \pi(A_dA_{d'}) \subseteq \pi(A_{d+d'}) = (A/I)_{d+d'}.$$

Note that this is the unique grading on A/I which makes π into a homomorphism of graded algebras.