Topology — Worksheet

Qualifying Exam Prep Seminar 2020

- 1. Write the fundamental group of a space $X \times Y$ in terms of the spaces X and Y. Prove your statement.
- 2. **Van Kampen's Theorem** says that given certain subsets A and B of a space X, you get that

$$\pi_1(X) \cong \frac{\pi_1(A) * \pi_1(B)}{N}$$

- i. What extra hypotheses should be said about A and B?
- ii. What does the subgroup N look like?
- 3. Use van Kampen's theorem to compute the fundamental groups of the following spaces:
 - i. $\mathsf{T}^2 \wedge \mathsf{S}^1$
 - ii. The real projective plane, \mathbb{RP}^2 .
 - iii. The Klein Bottle.
 - iv. The torus, T^2 .
 - v. The genus 2 surface, Σ_2 .
 - vi. The genus g surface, Σ_g .
- 4. Given connected, locally simply connected spaces X and Y, write the fundamental group of the wedge $X \land Y$ in terms the fundamental groups of X and Y. Prove your statement.