Задача № 1

Заданы нечеткие множества A и B с функциями принадлежности $\mu_{\scriptscriptstyle A}(x)$ и $\mu_{\scriptscriptstyle B}(x)$:

X	1	2	3	4	5	6	7	8	9	10	11	12
$\mu_A(x)$	1	0	1	0.8	0.8	0.5	0.6	1	0.4	0.1	0	0.5
$\mu_{\scriptscriptstyle B}(x)$	0.5	0.4	0	1	0.3	0.6	0.8	0	0.5	1	0	0.8

Построить функции принадлежности для следующих нечётких множеств:

a) $A \cup B$;

B)
$$\overline{A}$$

$$\Gamma$$
) \overline{B}

e)
$$A \overline{\cup} B$$

$$\ddot{e}$$
) $A \cap B$ ж) $A \setminus (B \cap A)$

Задача № 2

Заданы нечеткие множества A и B с функциями принадлежности $\mu_A(x)$ и $\mu_B(x)$:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0.5	0.4	0.8	0.9	0.5	0.5	0.8	0.3	0	0.4
$\mu_{\scriptscriptstyle B}(x)$	0.1	0.1	0.6	0.3	0.9	0.1	0	0.3	0.3	0.5

- а) построить подмножества уровня α A_{α} и B_{α} , где α =0,2; 0,5; 0,6
- б) построить $(A \cup B)_{\alpha}$ и $(A \cap B)_{\alpha}$ и убедиться, что

$$(A \cup B)_{\alpha} = A_{\alpha} \cup B_{\alpha}$$
 и $(A \cap B)_{\alpha} = A_{\alpha} \cap B_{\alpha}$, где α =0,1

Задача № 3

Заданы нечеткие множества А, В и С с соответствующими функциями принадлежности, заданными в табличном виде:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0.1	0.4	0.4	0.3	0.2	0.2	0.4	0.9	0.9	0.7
$\mu_{\scriptscriptstyle B}(x)$	0.9	0.7	0.8	0.8	0.3	0.6	0	0.3	0.8	0.9
$\mu_{C}(x)$	0.7	0.1	0.5	0.4	0.7	0.6	0	0.3	0.7	0.9

а) найти функцию принадлежности $\mu_{\lambda}(x)$ выпуклой комбинации этих множеств с весами:

$$\lambda_A = 0.3$$
; $\lambda_B = 0.3$; $\lambda_C = 0.4$

$$\mu_{\lambda}(x) \begin{cases} 1 \\ \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \end{cases}, \text{ если } \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \geq 1$$

в противном случае.

б) построить $(A \cup B \cup C)_{\alpha}$ и $(A \cap B \cap C)_{\alpha}$, где α =0,4 и убедиться, что

$$(A \overline{\cup} B \overline{\cup} C)_{\alpha} \supseteq (A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}) \quad \text{if} \quad (A \overline{\cap} B \overline{\cap} C)_{\alpha} \subseteq (A_{\alpha} \cap B_{\alpha} \cap C_{\alpha})$$

Задача № 4

Доказать, что для нечетких множеств A , B и C с функциями принадлежности $\mu_{A}(x)$, $\mu_{B}(x)$ и $\mu_{C}(x)$ выполняется следующее:

a)
$$(A \cap B) \cap C = A \cap (B \cap C)$$

б)
$$\overline{A \cap B} = \overline{A + B}$$
, где $\mu_{A+B}(x) = \mu_A(x) + \mu_B(x) - \mu_A(x)\mu_B(x)$

Задача № 5

Проверить, является ли нечеткое отношение R, заданное функцией принадлежности $\mu_R(x,y)$, симметричным и рефлексивным:

$$\mu_R(x,y) = \frac{1}{1+k|x-y|}, k > 1.$$

Проверить, является ли транзитивным нечеткое отношение R, заданное функцией принадлежности $\mu_{\scriptscriptstyle R}(x,y)$, вида:

	X1	X2	X3	X4
X1	0.9	0.2	0.2	0.4
X2	0	0.6	0.5	0.3
X3	0.1	0.8	0.9	0.3
X4	0.6	0.9	0.3	0.5

Задача № 7

Для нечётких отношений А и В, функции принадлежности которых имеют вид:

A	X1	X2	X3	X4	X5
X1	0.2	0.8	0.3	0.5	0.7
X2	0.4	0.5	0.9	0.2	0.4
X3	0.9	0.2	0.5	0.4	0.7
X4	0.5	0.4	0.9	0.6	0.5
X5	0.6	0.8	0.6	0.7	0.7

В	X1	X2	X3	X4	X5
X1	0.3	0.2	0.7	0.7	0.1
X2	0.8	0.5	0.7	0.6	0.9
X3	0.3	0.2	0.4	0.4	0.9
X4	0.6	0.3	0.2	0.6	0.7
X5	0.6	0	0	0.6	0.6

Построить следующее:

a)
$$A \cup B$$
:

$$\overline{A}$$
 1

e)
$$A^{-1}$$

$$\ddot{e}$$
) B^{-1}

a)
$$A \cup B$$
; 6) $A \cap B$ B) \overline{A} $\Gamma \setminus \overline{B}$
ë) B^{-1} $\Re A \oplus B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$

Задача № 8

Для нечётких отношений А и В, с функции принадлежности которых имеют вид:

A	Y1	Y2	Y3	Y4	Y5
X1	0.3	0.8	0.6	0.9	0.4
X2	0	0.6	0.2	0.2	0.4
X3	0.4	0.2	0.1	0.2	0.8

В	Z 1	Z 2	Z 3	Z 4
Y1	0.8	0.5	0.9	0
Y2	0.7	0.9	0.9	0.2
Y3	0	0.6	0.6	0.2
Y4	0.9	0.7	0.8	0.6
Y5	0.7	0	0.7	0

Построить R_1^2 , R_2^2 , R_3^2 , где соответственно:

$$\mu_{R_1^2}(x,z) = \max_{y \in V} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in Y} \max(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in Y} \max(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_3^2}(x,z) = \max_{y \in Y} \{\mu_A(x,y) \cdot \mu_B(y,z)\}$$

Задача № 9

Задано нечеткое отношение R с функцией принадлежности вида:

Эйді	<i>1</i> 110 11	C ICIN	.0001
	X1	X2	X3
X1	0	0.6	0.2
X2	0.9	0.9	0.6
X3	0.2	0.6	0.6

a)					
	X1	X2	X3	X4	X5
X1	1	0.3	0.7	0.7	0.9
X2	0.1	1	0.2	0.8	0.4
X3	0.8	0.1	1	0.9	0.3
X4	0.4	0.8	0.7	1	0.9
X5	0.5	0.8	0.4	0.4	1

в)						
	X1	X2	X3	X4	X5	X6
X1	1	0.4	0.5	0.9	0.8	0.7
X2	0.6	1	0.7	0.5	0.6	0.5
X3	0.1	0.8	1	0.4	0.4	0.5
X4	0.7	0.7	0.5	1	0.3	0.4
X5	0.7	0.3	0.8	0.4	1	0.1
X6	0.6	0.9	0.4	0.2	0.5	1

б)						
		X1	X2	X3	X4	X5
X1		1	0.4	0.3	0.3	0.9
X2	. •	0.7	1	0.6	0.1	0.4
X3	,	0.4	0.6	1	0.9	0.7
X4	Ļ	0.6	0.7	0.7	1	0.6
X5	,	0.6	0.1	0.7	0.5	1

Г)						
	X1	X2	X3	X4	X5	X6
X1	1	0.8	0.3	0.5	0.2	0.1
X2	0.8	1	0.3	0.4	0.8	0.6
X3	0.7	0.9	1	0.7	0.3	0.7
X4	0.4	0.2	0.9	1	0.9	0.4
X5	0.3	0.7	0.9	0.1	1	0.2
X6	0.8	0.5	0.6	0.4	0.5	1

Задача № 1

Заданы нечеткие множества A и B с функциями принадлежности $\mu_{A}(x)$ и $\mu_{B}(x)$:

X	1	2	3	4	5	6	7	8	9	10	11	12
$\mu_A(x)$	1	0.9	0.3	0.9	0.1	0.1	0.4	0.1	0.4	0.8	0.4	0
$\mu_{\scriptscriptstyle B}(x)$	0.2	0.6	0.2	0.6	0.7	0	0.3	0.4	0.6	0.9	0.7	0.6

Построить функции принадлежности для следующих нечётких множеств:

a) $A \cup B$;

б)
$$A \cap B$$
 в) A

 Γ) B

e)
$$A \cup B$$

ё)
$$A \cap B$$
 ж) $(A \cup B) \cup B$

Задача № 2

Заданы нечеткие множества A и B с функциями принадлежности $\mu_A(x)$ и $\mu_B(x)$:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0.5	0.2	0.1	0	0.9	0.1	0.6	0.5	0	0
$\mu_{\scriptscriptstyle B}(x)$	0.5	0.7	0.4	0.5	0.1	0.7	0.4	0.7	0.9	0.8

- а) построить подмножества уровня α A_{α} и B_{α} , где α =0,3; 0,8; 0,9
- б) построить $(A \cup B)_{\alpha}$ и $(A \cap B)_{\alpha}$ и убедиться, что

$$(A \cup B)_{\alpha} = A_{\alpha} \cup B_{\alpha}$$
 и $(A \cap B)_{\alpha} = A_{\alpha} \cap B_{\alpha}$, где α =0,1

Задача № 3

Заданы нечеткие множества А, В и С с соответствующими функциями принадлежности, заданными в табличном виде:

X	1	2	3	4	5	6	7	8	9	10
$\mu_{\scriptscriptstyle A}(x)$	0.2	0.3	0.7	0.4	0.6	0.9	0.2	0.1	0.9	0.3
$\mu_{\scriptscriptstyle B}(x)$	0.3	0.3	0.6	0	0.5	0.2	0.4	0.7	0.3	0.3
$\mu_{C}(x)$	0.8	0	0.1	0.2	0.9	0.8	0.7	0.9	0.2	0.1

а) найти функцию принадлежности $\mu_{\lambda}(x)$ выпуклой комбинации этих множеств с весами:

$$\lambda_A = 0.4;$$
 $\lambda_B = 0.1;$ $\lambda_C = 0.5$

$$\mu_{\lambda}(x) \begin{cases} 1 \\ \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \end{cases}, \text{ если } \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \geq 1$$

в противном случае.

б) построить $(A \cup B \cup C)_{\alpha}$ и $(A \cap B \cap C)_{\alpha}$, где α =0,4 и убедиться, что

$$(A \overline{\cup} B \overline{\cup} C)_{\alpha} \supseteq (A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}) \quad \text{if} \quad (A \overline{\cap} B \overline{\cap} C)_{\alpha} \subseteq (A_{\alpha} \cap B_{\alpha} \cap C_{\alpha})$$

Задача № 4

Доказать, что для нечетких множеств A , B и C с функциями принадлежности $\mu_A(x)$, $\mu_B(x)$ и $\mu_{C}(x)$ выполняется следующее:

a)
$$(A \cup B) \cup C = A \cup (B \cup C)$$

б)
$$\overline{A \cap B} = \overline{A + B}$$
, где $\mu_{A+B}^-(x) = \mu_A(x) + \mu_B(x) - \mu_A(x)\mu_B(x)$

Задача № 5

Проверить, является ли нечеткое отношение R, заданное функцией принадлежности $\mu_R(x,y)$, симметричным и рефлексивным:

$$\mu_R(x,y) = \frac{1}{1+k(x-y)^2}, k > 1.$$

Проверить, является ли транзитивным нечеткое отношение R, заданное функцией принадлежности $\mu_{R}(x, y)$, вида:

	X1	X2	X3	X4
X1	0.9	0.1	0.6	0.5
X2	0.4	0.6	0.3	0.3
X3	0.1	0.5	0.3	0.9
X4	0.4	0.1	0.5	0.1

Задача № 7

Для нечётких отношений А и В, функции принадлежности которых имеют вид:

Α		X1	X2	X3	X4	X5
X	1	0.2	0.8	0.3	0.5	0.7
\mathbf{X}'	2	0.4	0.5	0.9	0.2	0.4
X	3	0.9	0.2	0.5	0.4	0.7
X	4	0.5	0.4	0.9	0.6	0.5
X	5	0.6	0.8	0.6	0.7	0.7

В	X1	X2	X3	X4	X5
X1	0.3	0.2	0.7	0.7	0.1
X2	0.8	0.5	0.7	0.6	0.9
X3	0.3	0.2	0.4	0.4	0.9
X4	0.6	0.3	0.2	0.6	0.7
X5	0.6	0	0	0.6	0.6

Построить следующее:

a)
$$A \cup B$$
:

$$\delta$$
) A \cap B

B)
$$\overline{A}$$

$$\Gamma$$
) \overline{B}

а)
$$A \cup B$$
; б) $A \cap B$ в) \overline{A} $\Gamma \setminus \overline{B}$ д) $A \setminus B$
 ё) B^{-1} ж) $A \oplus B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$

Задача № 8

Для нечётких отношений А и В, с функции принадлежности которых имеют вид:

A	Y1	Y2	Y3	Y4	Y5
X1	0.3	0.8	0.6	0.9	0.4
X2	0	0.6	0.2	0.2	0.4
X3	0.4	0.2	0.1	0.2	0.8

В	Z 1	Z2	Z 3	Z4
Y1	0.8	0.5	0.9	0
Y2	0.7	0.9	0.9	0.2
Y3	0	0.6	0.6	0.2
Y4	0.9	0.7	0.8	0.6
Y5	0.7	0	0.7	0

Построить R_1^2 , R_2^2 , R_3^2 , где соответственно:

$$\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in V} \max(\mu_A(x,y), \mu_B(y,z))$$

$$\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in Y} \max(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_3^2}(x,z) = \max_{y \in Y} \{\mu_A(x,y), \mu_B(y,z)\}$$

Задача № 9

Задано нечеткое отношение R с функцией принадлежности вида:

	X1	X2	X3
X1	1	0.6	0.2
X2	0.9	0.9	0.6
X3	0.2	0.6	0.9

a)					
	X1	X2	X3	X4	X5
X1	1	0.3	0.7	0.7	0.9
X2	0.1	1	0.2	0.8	0.4
X3	0.8	0.1	1	0.9	0.3
X4	0.4	0.8	0.7	1	0.9
X5	0.5	0.8	0.4	0.4	1

в)						
	X1	X2	X3	X4	X5	X6
X1	1	0.4	0.5	0.9	0.8	0.7
X2	0.6	1	0.7	0.5	0.6	0.5
X3	0.1	0.8	1	0.4	0.4	0.5
X4	0.7	0.7	0.5	1	0.3	0.4
X5	0.7	0.3	0.8	0.4	1	0.1
X6	0.6	0.9	0.4	0.2	0.5	1

б)					
	X1	X2	X3	X4	X5
X1	1	0.4	0.3	0.3	0.9
X2	0.7	1	0.6	0.1	0.4
X3	0.4	0.6	1	0.9	0.7
X4	0.6	0.7	0.7	1	0.6
X5	0.6	0.1	0.7	0.5	1

Г)						
	X1	X2	X3	X4	X5	X6
X1	1	0.8	0.3	0.5	0.2	0.1
X2	0.8	1	0.3	0.4	0.8	0.5
X3	0.7	0.9	1	0.7	0.3	0.7
X4	0.4	0.2	0.9	1	0.9	0.1
X5	0.3	0.7	0.9	0.1	1	0.2
X6	0.8	0.5	0.6	0.4	0.5	1

Задача № 1

Заданы нечеткие множества A и B с функциями принадлежности $\mu_{A}(x)$ и $\mu_{B}(x)$:

X	1	2	3	4	5	6	7	8	9	10	11	12
$\mu_A(x)$	0.1	1	0	0.2	0.1	0.4	0.6	0.2	0.7	0	0.3	0
$\mu_{\scriptscriptstyle B}(x)$	0.4	0.4	0.1	0.6	0.3	0.2	0.8	0.4	0.8	0.9	0.3	0.5

Построить функции принадлежности для следующих нечётких множеств:

a) $A \cup B$;

B)
$$\overline{A}$$

$$\Gamma$$
) \overline{B}

e)
$$A \cup B$$

$$\ddot{e}$$
) $A \cap B$ ж) $A \setminus (B \cap A)$

Задача № 2

Заданы нечеткие множества A и B с функциями принадлежности $\mu_A(x)$ и $\mu_B(x)$:

X		1	2	3	4	5	6	7	8	9	10
μ	$t_A(x)$	0.3	0.6	0.2	0.6	0.3	0.8	0.7	0.8	0.6	0.7
μ	$e_B(x)$	0.5	0.7	0.4	0.5	0.1	0.7	0.4	0.7	0.9	0.8

а) построить подмножества уровня α A_{α} и B_{α} , где α =0,2; 0,5; 0,6

б) построить $(A \cup B)_{\alpha}$ и $(A \cap B)_{\alpha}$ и убедиться, что

$$(A \cup B)_{\alpha} = A_{\alpha} \cup B_{\alpha}$$
 и $(A \cap B)_{\alpha} = A_{\alpha} \cap B_{\alpha}$, где α =0,1

Задача № 3

Заданы нечеткие множества А, В и С с соответствующими функциями принадлежности, заданными в табличном виде:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0.4	0.3	8.0	8.0	0	0.7	0.3	0.4	0.3	0.3
$\mu_{\scriptscriptstyle B}(x)$	0.9	0.7	0.7	0.9	0.5	0.7	0.2	0.4	0.6	0.8
$\mu_{C}(x)$	0	0	0.8	0.1	0.2	0.9	0	0.5	0.8	0.7

а) найти функцию принадлежности $\mu_{\lambda}(x)$ выпуклой комбинации этих множеств с весами:

$$\lambda_A = 0.3$$
; $\lambda_B = 0.3$; $\lambda_C = 0.4$

$$\mu_{\lambda}(x) \begin{cases} 1 \\ \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \end{cases}, \text{ если } \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \geq 1$$

б) построить $(A \cup B \cup C)_{\alpha}$ и $(A \cap B \cap C)_{\alpha}$, где α =0,4 и убедиться, что

$$(A \overline{\cup} B \overline{\cup} C)_{\alpha} \supseteq (A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}) \quad \text{if} \quad (A \overline{\cap} B \overline{\cap} C)_{\alpha} \subseteq (A_{\alpha} \cap B_{\alpha} \cap C_{\alpha})$$

Задача № 4

Доказать, что для нечетких множеств A , B и C с функциями принадлежности $\mu_{A}(x)$, $\mu_{B}(x)$ и $\mu_{C}(x)$ выполняется следующее:

a)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

б)
$$\stackrel{-}{A+}(B\cap C)=\stackrel{-}{(A+B)}\cap \stackrel{-}{(A+C)},$$
 где $\stackrel{-}{\mu_{A+B}}(x)=\mu_{A}(x)+\mu_{B}(x)-\mu_{A}(x)\mu_{B}(x)$

Задача № 5

Проверить, является ли нечеткое отношение R, заданное функцией принадлежности $\mu_R(x,y)$, симметричным и рефлексивным:

$$\mu_R(x,y) = \frac{1}{1+k|x-y|}, k > 1.$$

Проверить, является ли транзитивным нечеткое отношение R, заданное функцией принадлежности $\mu_{R}(x,y)$, вида:

	X1	X2	X3	X4
X1	0.7	0.9	0.1	0.3
X2	0.5	0.1	0.2	0.6
X3	0.2	0.1	0.7	0.9
X4	0.5	0.8	0.7	0.2

Задача № 7

Для нечётких отношений А и В, функции принадлежности которых имеют вид:

A	X1	X2	X3	X4	X5
X1	0.3	0.5	0.7	0.5	0.7
X2	0.4	0.8	0.8	0.3	0.4
X3	0.7	0.1	0.5	0.6	0.7
X4	0.6	0.3	0.9	0.7	0.5
X5	0.5	0.7	0.1	0.9	0.7

В	X1	X2	X3	X4	X5
X1	0.1	0.3	0.7	0.5	0.3
X2	0.2	0.2	0.7	0.2	0.9
X3	0.9	0.6	0.4	0.8	0.9
X4	0.9	0	0.2	0.7	0.5
X5	0.6	0.1	0	0.6	0.1

Построить следующее:

a)
$$A \cup B$$
;

$$\overline{A}$$

e)
$$A^{-1}$$

a)
$$A \cup B$$
; 6) $A \cap B$ B) \overline{A} $\Gamma \setminus \overline{B}$
ë) B^{-1} $\Re A \oplus B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$

Задача № 8

Для нечётких отношений А и В, с функции принадлежности которых имеют вид:

A	Y1	Y2	Y3	Y4	Y5
X1	0.4	0.9	0.6	0.5	0.6
X2	0	0.5	0.2	0.4	0.9
X3	0.7	0.1	0.1	0.3	0.8

В	Z 1	Z 2	Z 3	Z 4
Y1	0.1	0.4	0.7	0
Y2	0.2	0.8	0.7	0.3
Y3	0	0.2	0.1	0.9
Y4	0.4	0.5	0.5	0.8
Y5	0.9	0	0.9	0

Построить R_1^2 , R_2^2 , R_3^2 , где соответственно:

$$\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_1^2}(x, z) = \max_{y \in Y} \min(\mu_A(x, y), \mu_B(y, z));$$

$$\mu_{R_2^2}(x, z) = \min_{y \in Y} \max(\mu_A(x, y), \mu_B(y, z));$$

$$\mu_{R_3^2}(x,z) = \max_{y \in Y} \{ \mu_A(x,y) \cdot \mu_B(y,z) \}$$

Задача № 9

Задано нечеткое отношение R с функцией принадлежности вида:

	X1	X2	X3						
X1	0.2	0.7	0.4						
X2	0.8	0.1	0.5						
X3	0.1	0.3	0.7						

a)					
	X1	X2	X3	X4	X5
X1	1	0.4	0.6	0.3	0.9
X2	0.2	1	0.1	0.5	0.2
X3	0.7	0.2	1	0.7	0.9
X4	0.3	0.7	0.9	1	0.1
X5	0.4	0.9	0.2	0.1	R

в)						
	X1	X2	X3	X4	X5	X6
X1	1	0.3	0.5	0.9	0.8	0.7
X2	0.5	1	0.3	0.4	0.7	0.4
X3	0.2	0.7	1	0.4	0.5	0.6
X4	0.6	0.9	0.4	1	0.7	0.4
X5	0.6	0.1	0.9	0.8	1	0.2
X6	0.9	0.1	0.2	0.1	0.9	1

б)					
	X1	X2	X3	X4	X5
X1	1	0.6	0.3	0.3	0.8
X2	0.2	1	0.9	0.3	0.4
X3	0.4	0.5	1	0.7	0.3
X4	0.7	0.1	0.8	1	0.6
X5	0.6	0.4	0.7	0.5	1

Г)						
	X1	X2	X3	X4	X5	X6
X1	1	0.7	0.9	0.9	0.3	0.2
X2	0.9	1	0.5	0.6	0.7	0.5
X3	0.9	0.1	1	0.8	0.4	0.6
X4	0.5	0.3	0.6	1	0.9	0.9
X5	0.2	0.7	0.7	0.3	1	0.3
X6	0.2	0.4	0.6	0.4	0.5	1

Задача № 1

Заданы нечеткие множества A и B с функциями принадлежности $\mu_{\scriptscriptstyle A}(x)$ и $\mu_{\scriptscriptstyle B}(x)$:

X	1	2	3	4	5	6	7	8	9	10	11	12
$\mu_A(x)$	0	0.5	1	0	1	0.4	0.1	0.6	0.6	0	0.2	0.2
$\mu_{\scriptscriptstyle B}(x)$	0.8	0	0.7	0.9	0.6	0.9	0.4	0.2	0.9	0.6	0.8	0.3

Построить функции принадлежности для следующих нечётких множеств:

a) $A \cup B$;

б) А∩В

B) \overline{A}

 Γ) \overline{B}

д) А∖В

e) $A \cup B$

 \ddot{e}) A \cap B

ж) $(\overline{A} \cap B)/(A \cup B)$

Задача № 2

Заданы нечеткие множества A и B с функциями принадлежности $\mu_{A}(x)$ и $\mu_{B}(x)$:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0.5	0.9	0.8	0.1	0.7	0.4	0.3	0.9	0.1	0.4
$\mu_{\scriptscriptstyle B}(x)$	0.3	0.8	0.9	0.9	0.6	0.9	0.3	0.6	0	0.6

а) построить подмножества уровня α A_{α} и B_{α} , где α =0,3; 0,5; 0,8

б) построить $(A \cup B)_{\alpha}$ и $(A \cap B)_{\alpha}$ и убедиться, что

$$(A \cup B)_{\alpha} = A_{\alpha} \cup B_{\alpha}$$
 и $(A \cap B)_{\alpha} = A_{\alpha} \cap B_{\alpha}$, где α =0,2

Задача № 3

Заданы нечеткие множества A , B и C с соответствующими функциями принадлежности, заданными в табличном виде:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0.2	0.9	0.4	0.5	0.4	0.1	0.9	0.6	0.1	0.7
$\mu_{\scriptscriptstyle B}(x)$	0.1	0.5	0.1	0.5	0	0.5	0.3	0.6	0.5	0
$\mu_{C}(x)$	0.1	0.8	0.2	0.9	0.2	0.1	0.3	0	0.1	0.5

а) найти функцию принадлежности $\mu_{\lambda}(x)$ выпуклой комбинации этих множеств с весами:

$$\lambda_A = 0.3;$$
 $\lambda_B = 0.4;$ $\lambda_C = 0.3$

$$\mu_{\lambda}(x) \begin{cases} 1 \\ \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \end{cases}, \text{ если } \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \geq 1$$

в противном случае.

б) построить $(A \cup B \cup C)_{\alpha}$ и $(A \cap B \cap C)_{\alpha}$, где α =0,4 и убедиться, что

$$(A \overline{\cup} B \overline{\cup} C)_{\alpha} \supseteq (A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}) \quad \text{if} \quad (A \overline{\cap} B \overline{\cap} C)_{\alpha} \subseteq (A_{\alpha} \cap B_{\alpha} \cap C_{\alpha})$$

Задача № 4

Доказать, что для нечетких множеств A , B и C с функциями принадлежности $\mu_A(x)$, $\mu_B(x)$ и $\mu_C(x)$ выполняется следующее:

a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

б)
$$(A + B + C = A + (B + C)$$
, где $\mu_{A+B}(x) = \mu_A(x) + \mu_B(x) - \mu_A(x)\mu_B(x)$

Задача № 5

Проверить, является ли нечеткое отношение R, заданное функцией принадлежности $\mu_R(x,y)$, симметричным и рефлексивным:

$$\mu_R(x,y) = \frac{xy}{1+xy}, y > x.$$

Проверить, является ли транзитивным нечеткое отношение R, заданное функцией принадлежности $\mu_{R}(x, y)$, вида:

	X1	X2	X3	X4
X1	0	0.7	0.3	0.7
X2	0.2	0.9	0	0.7
X3	0.2	0.8	0.1	0.1
X4	0.9	0.6	0	0.4

Задача № 7

Для нечётких отношений А и В, функции принадлежности которых имеют вид:

A	X1	X2	X3	X4	X5
X1	0.4	0.4	0	0.1	0.9
X2	0.6	0.2	0.5	0.6	0.7
X3	0.1	0	0.6	0.1	0.5
X4	0.5	0	0.2	0.1	0.5
X5	0.8	0.7	0.3	0.6	0

В	X1	X2	X3	X4	X5
X1	0.6	0.9	0.4	0.2	0.3
X2	0	0.2	0.4	0	0.2
X3	0.4	0.9	0.5	0.2	0.8
X4	0.6	0.9	0.4	0	0.7
X5	0.8	0	0.7	0.5	0

Построить следующее:

a)
$$A \cup B$$
:

B)
$$\overline{A}$$

$$\overline{B}$$

д) A\B e)
$$A^{-1}$$

a)
$$A \cup B$$
; 6) $A \cap B$ B) \overline{A} $\Gamma \setminus \overline{B}$
ë) B^{-1} $\Re A \oplus B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$

Задача № 8

Для нечётких отношений А и В, с функции принадлежности которых имеют вид:

A	Y1	Y2	Y3	Y4	Y5
X1	0.5	0.4	0.3	0.5	0.6
X2	0.2	0.3	0.8	0.7	0.7
X3	0.5	0	0.2	0.9	0.6

В	Z 1	Z2	Z3	Z4
Y1	0.1	0.1	0.6	0.5
Y2	0.9	0.1	0.6	0.9
Y3	0.4	0.9	0.7	0
Y4	0.1	0.5	0.6	0.6
Y5	0.3	0.2	0.2	0

Построить R_1^2 , R_2^2 , R_3^2 , где соответственно:

$$\mu_{R_1^2}(x,z) = \max_{y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in Y} \max(\mu_A(x,y), \mu_B(y,z));$$

Построить
$$K_1$$
, K_2 , K_3 , где соответственно $\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$

$$\mu_{R_2^2}(x,z) = \min_{y \in Y} \max(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_3^2}(x,z) = \max_{y \in Y} \{\mu_A(x,y) \cdot \mu_B(y,z)\}$$

Задача № 9

Задано нечеткое отношение R с функцией принадлежности вида:

	X1	X2	X3
X1	0.2	0.2	0
X2	0.4	0.1	0.8
X3	0.9	0.2	0

Для следующих нечетких отношений предпочтения, заданных функцией принадлежности в виде таблицы, найти отношение строгого предпочтения, множество недоминируемых альтернатив и наиболее недоминируемую альтернативу:

	a)					
		X1	X2	X3	X4	X5
	X1	1	0.9	0.7	0.2	0.2
	X2	0.1	1	0.9	0.2	0.7
Ī	X3	0.2	0.9	1	0.6	0.2
Ī	X4	0.4	0.4	0.6	1	0.9
	X5	0.7	0.8	0.1	0.3	1

в)						
	X1	X2	X3	X4	X5	X6
X1	1	0.6	0.7	0.4	0.4	0.8
X2	0.3	1	0.2	0.3	0.7	0.2
X3	0.3	0.6	1	0.4	0.9	0.7
X4	0.4	0.7	0.6	1	0.8	0.9
X5	0.8	0.4	0.1	0.1	1	0.7

0.7 | 0.7 | 0.1 | 0.1

б)					
	X1	X2	X3	X4	X5
X1	1	0.4	0.5	0.8	0.2
X2	0.9	1	0.3	0.5	0.7
X3	0.6	0.3	1	0.7	0.6
X4	0.6	0.3	0.9	1	0.9
X5	0.8	0.1	0.4	0.4	1

Г)						
	X1	X2	X3	X4	X5	X6
X1	1	0.5	0.1	0.6	0.4	0.2
X2	0.8	1	0.7	0.7	0.3	0.3
X3	0.9	0.7	1	0.6	0.9	0.9
X4	0.8	0.1	0.1	1	0.6	0.4
X5	0.6	0.7	0.1	0.8	1	0.9
X6	0.1	0.3	0.9	0.3	0.1	1

Задача № 1

Заданы нечеткие множества A и B с функциями принадлежности $\mu_{\scriptscriptstyle A}(x)$ и $\mu_{\scriptscriptstyle B}(x)$:

X	1	2	3	4	5	6	7	8	9	10	11	12
$\mu_A(x)$	0	0,3	0,3	0,1	0,3	0	1	0,8	0,6	0,8	0,6	0,9
$\mu_{\scriptscriptstyle B}(x)$	0,6	0,3	1	0,4	0	0,2	1	0,6	0	0,5	0,4	0,2

Построить функции принадлежности для следующих нечётких множеств:

a) $A \cup B$;

B) \overline{A}

$$\Gamma$$
) \overline{B}

д) А∖В

e)
$$A \overline{\cup} B$$

 \ddot{e}) A \cap B

ж)
$$((B \cup A) \setminus A)$$

Задача № 2

Заданы нечеткие множества A и B с функциями принадлежности $\mu_{A}(x)$ и $\mu_{B}(x)$:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0,6	0,7	0,1	0,2	0,1	0,1	0,1	0,1	0,2	0
$\mu_{\scriptscriptstyle B}(x)$	0,7	0,4	0,7	0,1	0,8	0,6	0,8	0	0,5	0,9

- а) построить подмножества уровня α A_{α} и B_{α} , где α =0,3; 0,4; 0,8
- б) построить $(A \cup B)_{\alpha}$ и $(A \cap B)_{\alpha}$ и убедиться, что

$$(A \cup B)_{\alpha} = A_{\alpha} \cup B_{\alpha}$$
 и $(A \cap B)_{\alpha} = A_{\alpha} \cap B_{\alpha}$, где α =0,2

Задача № 3

Заданы нечеткие множества A , B и C с соответствующими функциями принадлежности, заданными в табличном виде:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0,3	0,8	0,7	0,6	0,8	0,8	0,7	0,8	0,1	0,3
$\mu_{\scriptscriptstyle B}(x)$	0,5	0,1	0,9	0,7	0,2	0,1	0,8	0	0	0,4
$\mu_{C}(x)$	0,3	0,6	0,8	0,8	0,4	0,2	0,1	0,6	0,5	0,7

а) найти функцию принадлежности $\mu_{\lambda}(x)$ выпуклой комбинации этих множеств с весами:

$$\lambda_A = 0.5$$
; $\lambda_B = 0.4$; $\lambda_C = 0.1$

$$\mu_{\lambda}(x) \begin{cases} 1 \\ \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \end{cases}, \text{ если } \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \geq 0$$

в противном случае.

б) построить $(A \cup B \cup C)_{\alpha}$ и $(A \cap B \cap C)_{\alpha}$, где α =0,1 и убедиться, что

$$(A \overline{\cup} B \overline{\cup} C)_{\alpha} \supseteq (A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}) \quad \text{if} \quad (A \overline{\cap} B \overline{\cap} C)_{\alpha} \subseteq (A_{\alpha} \cap B_{\alpha} \cap C_{\alpha})$$

Задача № 4

Доказать, что для нечетких множеств A , B и C с функциями принадлежности $\mu_A(x)$, $\mu_B(x)$ и $\mu_C(x)$ выполняется следующее:

a)
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

б)
$$A \cap (B + C) \neq (A \cap B) + (A \cap C)$$
, где $\mu_{A+B}(x) = \mu_A(x) + \mu_B(x) - \mu_A(x)\mu_B(x)$

Задача № 5

Проверить, является ли нечеткое отношение R, заданное функцией принадлежности $\mu_R(x,y)$, симметричным и рефлексивным:

$$\mu_R(x, y) = \frac{xy}{1 + xy}, \ y > x.$$

Проверить, является ли транзитивным нечеткое отношение R, заданное функцией принадлежности $\mu_{\scriptscriptstyle R}(x,y)$, вида:

	X1	X2	X3	X4
X1	0	0,5	0,6	0,7
X2	0,6	0,5	0,8	0,9
X3	0,3	0,5	0,5	0,7
X4	0,7	0,8	0,2	0

Задача № 7

Для нечётких отношений А и В, функции принадлежности которых имеют вид:

Α	X1	X2	X3	X4	X5
X1	0,4	0,6	0,7	0	0,5
X2	0	0,4	0,3	0,6	0
X3	0,7	0,4	0,9	0,9	0,3
X4	0,9	0,6	0,8	0,5	0,1
X5	0,7	0,9	0,7	0,7	0,8

В	X1	X2	X3	X4	X5
X1	0,5	0	0,1	0,2	0,9
X2	0,3	0,4	0,2	0	0,5
X3	0	0,3	0,7	0	0,5
X4	0,9	0,5	0	0,5	0,3
X5	0.7	0,1	0,1	0,6	0,8

Построить следующее:

a)
$$A \cup B$$

$$\overline{A}$$

e)
$$A^{-1}$$

а)
$$A \cup B$$
; б) $A \cap B$ в) \overline{A} г) \overline{B} д) $A \backslash B$ е) A^{-1} ё) B^{-1} ж) $A \oplus B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$

Задача № 8

Для нечётких отношений А и В, с функции принадлежности которых имеют вид:

A	Y1	Y2	Y3	Y4	Y5
X1	0.5	0.6	0	0.4	0.2
X2	0.5	0.5	0.6	0.6	0
X3	0.1	0.4	0.5	0.7	0.4

В	Z 1	Z 2	Z 3	Z 4		
Y1	0,1	0,3	0,3	0,4		
Y2	0,5	0,5	0,8	0,7		
Y3	0,3	0,2	0,3	0,4		
Y4	0,3	0,2	0,4	0		
Y5	0,9	0,8	0,6	0,6		

Построить R_1^2 , R_2^2 , R_3^2 , где соответственно:

$$\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{x \in Y} \max(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in Y} \max(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_3^2}(x,z) = \max \{ \mu_A(x,y), \mu_B(y,z) \}$$

Задача № 9

Задано нечеткое отношение R с функцией принадлежности вида:

	X1	X2	X3
X1	0.2	0.4	0.6
X2	0.4	0.7	0.2
X3	0.1	0	0.9

a)					
	X1	X2	X3	X4	X5
X1	1	0.1	0.4	0.2	0.8
X2	0.5	1	0.7	0.2	0.5
X3	0.6	0.3	1	0.4	0.2
X4	0.8	0.9	0.6	1	0.5
X5	0.6	0.9	0.6	0.4	1

в)						
	X1	X2	X3	X4	X5	X6
X1	1	0.2	0.3	0.4	0.6	0.2
X2	0.5	1	0.1	0.6	0.3	0.6
X3	0.5	0.3	1	0.7	0.6	0.3
X4	0.9	0.3	0.5	1	0.2	0.4
X5	0.9	0.3	0.3	0.5	1	0.5
X6	0.3	0.1	0.3	0.6	0.9	1

б)					
	X1	X2	X3	X4	X5
X1	1	0.2	0.7	0.8	0.8
X2	0.3	1	0.1	0.4	0.3
X3	0.2	0.7	1	0.4	0.3
X4	0.1	0.8	0.5	1	0.6
X5	0.6	0.2	0.8	0.5	1

_Г)						
	X1	X2	X3	X4	X5	X6
X1	1	0.7	0.7	0.5	0.1	0.6
X2	0.9	1	0.7	0.3	0.6	0.7
X3	0.1	0.4	1	0.9	0.4	0.5
X4	0.2	0.7	0.9	1	0.1	0.1
X5	0.4	0.6	0.3	0.2	1	0.7
X6	0.5	0.6	0.5	0.8	0.9	1

Задача № 1

Заданы нечеткие множества A и B с функциями принадлежности $\mu_{\scriptscriptstyle A}(x)$ и $\mu_{\scriptscriptstyle B}(x)$:

X	1	2	3	4	5	6	7	8	9	10	11	12
$\mu_A(x)$	0.1	0.1	0.7	0.1	0.8	0.8	0.8	1	0.7	0.4	1	0.5
$\mu_{\scriptscriptstyle B}(x)$	0.1	0.5	0.2	0	0.5	0.7	0.6	1	0.2	0.3	1	0.4

Построить функции принадлежности для следующих нечётких множеств:

a) $A \cup B$;

б) А∩В

 Γ) \overline{B}

д) А∖В

e) $A \cup B$

 \ddot{e}) A \cap B

ж) $A \cap (\overline{B} \setminus A)$

Задача № 2

Заданы нечеткие множества A и B с функциями принадлежности $\mu_A(x)$ и $\mu_B(x)$:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0.6	0.5	0.5	0.3	0.5	0.7	0	0.3	0.2	0.7
$\mu_{\scriptscriptstyle B}(x)$	0.1	0	0.5	0.4	0.1	0.2	0.2	0.4	0.1	0.3

а) построить подмножества уровня α A_{α} и B_{α} , где α =0,2; 0,4; 0,7

в) *А*

б) построить $(A \cup B)_{\alpha}$ и $(A \cap B)_{\alpha}$ и убедиться, что

$$(A \cup B)_{\alpha} = A_{\alpha} \cup B_{\alpha}$$
 и $(A \cap B)_{\alpha} = A_{\alpha} \cap B_{\alpha}$, где α =0,5

Задача № 3

Заданы нечеткие множества A , B и C с соответствующими функциями принадлежности, заданными в табличном виде:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0.3	0.6	0.1	0.7	0.2	0.4	0.6	0	0.2	0
$\mu_{\scriptscriptstyle B}(x)$	0.9	0.7	0.7	0.9	0.5	0.7	0.2	0.4	0.6	0.8
$\mu_{C}(x)$	0.4	0.5	0.4	0.6	0.5	0.3	0.9	0.2	0	0.9

а) найти функцию принадлежности $\mu_{\lambda}(x)$ выпуклой комбинации этих множеств с весами:

$$\lambda_A = 0.6$$
; $\lambda_B = 0.3$; $\lambda_C = 0.1$

$$\mu_{\lambda}(x) \begin{cases} 1 \\ \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \end{cases}, \text{ если } \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \geq 1$$

в противном случае.

б) построить $(A \cup B \cup C)_{\alpha}$ и $(A \cap B \cap C)_{\alpha}$, где α =0,5 и убедиться, что

$$(A \overline{\cup} B \overline{\cup} C)_{\alpha} \supseteq (A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}) \quad \text{if} \quad (A \overline{\cap} B \overline{\cap} C)_{\alpha} \subseteq (A_{\alpha} \cap B_{\alpha} \cap C_{\alpha})$$

Задача № 4

Доказать, что для нечетких множеств A , B и C с функциями принадлежности $\mu_A(x)$, $\mu_B(x)$ и $\mu_C(x)$ выполняется следующее:

a)
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\vec{b}$$
) $\vec{A} + (\vec{B} \cap \vec{C}) \neq (\vec{A} + \vec{B}) \cap (\vec{A} + \vec{C})$, где $\mu_{\vec{A} + \vec{B}}(x) = \mu_{\vec{A}}(x) + \mu_{\vec{B}}(x) - \mu_{\vec{A}}(x)\mu_{\vec{B}}(x)$

Задача № 5

Проверить, является ли нечеткое отношение R, заданное функцией принадлежности $\mu_R(x,y)$, симметричным и рефлексивным:

$$\mu_R(x,y) = \frac{1}{1 + (x^2 + y^2)}, k > 1.$$

Проверить, является ли транзитивным нечеткое отношение R, заданное функцией принадлежности $\mu_{R}(x,y)$, вида:

	X1	X2	X3	X4
X1	0.1	0.4	0.9	0.8
X2	0	0.2	0.9	0.1
X3	0.3	0.1	0.9	0.3
X4	0.5	0	0.5	0.6

Задача № 7

Для нечётких отношений А и В, функции принадлежности которых имеют вид:

A	X1	X2	X3	X4	X5
X1	0.3	0.9	0	0.9	0.7
X2	0.7	0.7	0.9	0.5	0.7
X3	0.9	0.2	0.3	0.5	0.8
X4	0.6	0.7	0.9	0.4	0.4
X5	0.4	0.1	0.6	0	0.5

В	X1	X2	X3	X4	X5
X1	0.5	0.4	0.4	0	0.1
X2	0	0.7	0.8	0.9	0.2
X3	0.2	0.2	0.2	0.5	0.1
X4	0.7	0.6	0.2	0.4	0.6
X5	0.4	0.4	0.9	0.9	0.5

Построить следующее:

a)
$$A \cup B$$

$$\overline{A}$$
 Γ

a)
$$A \cup B$$
; 6) $A \cap B$ B) \overline{A} $\Gamma \setminus \overline{B}$
ë) B^{-1} \Rightarrow $A \oplus B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$

Задача № 8

Для нечётких отношений А и В, с функции принадлежности которых имеют вид:

A	Y1	Y2	Y3	Y4	Y5
X1	0.4	0.9	0.3	0.3	0.4
X2	0.2	0.8	0.2	0.5	0.7
X3	0.3	0.2	0.9	0.3	0.9

В	Z 1	Z 2	Z 3	Z 4
Y1	0	0.6	0.6	0.3
Y2	0.7	0.2	0.1	0.2
Y3	0.2	0.9	0.5	0.2
Y4	0.6	0.8	0.9	0.8
Y5	0	0	0.5	0.9

Построить R_1^2 , R_2^2 , R_3^2 , где соответственно:

$$\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in V} \max(\mu_A(x,y), \mu_B(y,z))$$

$$\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in Y} \max(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_3^2}(x,z) = \max_{y \in Y} \{\mu_A(x,y) \cdot \mu_B(y,z)\}$$

Задача № 9

Задано нечеткое отношение R с функцией принадлежности вида:

<i>r</i> 1			
	X1	X2	X3
X1	0.1	0.7	0.9
X2	0.2	0.9	0.9
X3	0.4	0.6	0.8

a)					
	X1	X2	X3	X4	X5
X1	1	0.4	0.7	0.6	0.3
X2	0.2	1	0.3	0.6	0.7
X3	0.8	0.1	1	0.7	0.5
X4	0.5	0.4	0.8	1	0.8
X5	0.3	0.4	0 4	0.7	1

в)						
	X1	X2	X3	X4	X5	X6
X1	1	0.5	0.7	0.2	0.8	0.9
X2	0.6	1	0.8	0.3	0.5	0.4
X3	0.3	0.9	1	0.5	0.7	0.5
X4	0.8	0.6	0.2	1	0.2	0.3
X5	0.5	0.7	0.7	0.3	1	0.1
X6	0.9	0.6	0.4	0.7	0.5	1

б)					
	X1	X2	X3	X4	X5
X1	1	0.5	0.3	0.6	0.6
X2	0.3	1	0.7	0.3	0.7
X3	0.4	0.6	1	0.4	0.9
X4	0.7	0.9	0.7	1	0.8
X5	0.3	0.4	0.6	0.8	1

Г)						
	X1	X2	X3	X4	X5	X6
X1	1	0.1	0.4	0.4	0.2	0.1
X2	0.2	1	0.3	0.7	0.8	0.5
X3	0.6	0.3	1	0.8	0.5	0.7
X4	0.1	0.7	0.7	1	0.3	0.4
X5	0.1	0.3	0.8	0.6	1	0.4
X6	0.1	0.4	0.6	0.9	0.5	1

Задача № 1

Заданы нечеткие множества A и B с функциями принадлежности $\mu_{A}(x)$ и $\mu_{B}(x)$:

X	1	2	3	4	5	6	7	8	9	10	11	12
$\mu_A(x)$	0.1	1	0	0.2	0.1	0.4	0.6	0.2	0.7	0	0.3	0
$\mu_{\scriptscriptstyle B}(x)$	0.1	0.8	0.4	0.7	1	0	0.1	0.3	0.3	0.2	0.6	0.9

Построить функции принадлежности для следующих нечётких множеств:

a) $A \cup B$;

б)
$$A \cap B$$
 в) A

 Γ) B

e)
$$A \cup B$$

$$\ddot{e}$$
) $A \cap B$ ж) $A \cap (B \setminus A)$

Задача № 2

Заданы нечеткие множества A и B с функциями принадлежности $\mu_A(x)$ и $\mu_B(x)$:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0.6	0.4	0.8	0.3	0.9	0.4	0.8	0.5	0.3	0.3
$\mu_{\scriptscriptstyle B}(x)$	0.5	0.6	0.2	0.6	0.3	0.8	0.7	0.8	0.6	0.7

- а) построить подмножества уровня α A_{α} и B_{α} , где α =0,3; 0,8; 0,9
- б) построить $(A \cup B)_{\alpha}$ и $(A \cap B)_{\alpha}$ и убедиться, что

$$(A \cup B)_{\alpha} = A_{\alpha} \cup B_{\alpha}$$
 и $(A \cap B)_{\alpha} = A_{\alpha} \cap B_{\alpha}$, где α =0,1

Задача № 3

Заданы нечеткие множества А, В и С с соответствующими функциями принадлежности, заданными в табличном виде:

X	1	2	3	4	5	6	7	8	9	10
$\mu_{\scriptscriptstyle A}(x)$	0.3	0.4	0.4	0.7	0.6	0.1	0.4	0.2	0.2	0.6
$\mu_{\scriptscriptstyle B}(x)$	0.2	0.3	0.4	0.1	0.7	0.3	0.7	0.8	0.1	0.2
$\mu_{C}(x)$	0.6	0.4	0	0.5	0.7	0.5	0.6	0.8	0.4	0.1

а) найти функцию принадлежности $\mu_{\lambda}(x)$ выпуклой комбинации этих множеств с весами:

$$\lambda_A = 0.6;$$
 $\lambda_B = 0.2;$ $\lambda_C = 0.2$

$$\mu_{\lambda}(x) \begin{cases} 1 \\ \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \end{cases}, \text{ если } \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \geq 1$$

в противном случае.

б) построить $(A \cup B \cup C)_{\alpha}$ и $(A \cap B \cap C)_{\alpha}$, где α =0,4 и убедиться, что

$$(A \overline{\cup} B \overline{\cup} C)_{\alpha} \supseteq (A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}) \quad \text{if} \quad (A \overline{\cap} B \overline{\cap} C)_{\alpha} \subseteq (A_{\alpha} \cap B_{\alpha} \cap C_{\alpha})$$

Задача № 4

Доказать, что для нечетких множеств A , B и C с функциями принадлежности $\mu_{A}(x)$, $\mu_{B}(x)$ и $\mu_{C}(x)$ выполняется следующее:

a)
$$(A \cap B) \cap C = A \cap (B \cap C)$$

б)
$$\bar{A+(B\cap C)} = (\bar{A+B}) \cap (\bar{A+C})$$
, где $\mu_{\bar{A+B}}(x) = \mu_{\bar{A}}(x) + \mu_{\bar{B}}(x) - \mu_{\bar{A}}(x)\mu_{\bar{B}}(x)$

Задача № 5

Проверить, является ли нечеткое отношение R, заданное функцией принадлежности $\mu_R(x, y)$, симметричным и рефлексивным:

$$\mu_R(x,y) = \frac{1}{1 + (x^2 - y^2)}, k > 1.$$

Проверить, является ли транзитивным нечеткое отношение R, заданное функцией принадлежности $\mu_{R}(x, y)$, вида:

	X1	X2	X3	X4
X1	0.1	0.2	0.3	0.9
X2	0.4	0.8	0.5	0.3
X3	0.4	0.8	0.2	0.9
X4	0.2	0.2	0.7	0.2

Задача № 7

Для нечётких отношений А и В, функции принадлежности которых имеют вид:

A	X1	X2	X3	X4	X5
X1	0.3	0.8	0.4	0.9	0.1
X2	0.3	0.5	0.1	0.5	0.4
X3	0.3	0.8	0.1	0.7	0.1
X4	0.3	0.1	0.4	0	0.7
X5	0.5	0	0.1	0.9	0.7

В	X1	X2	X3	X4	X5
X1	0.5	0.2	0.7	0.1	0.5
X2	0.7	0.5	0	0.9	0.8
X3	0.6	0.7	0	0.7	0.3
X4	0.3	0	0.6	0.9	0
X5	0.5	0.2	0.5	0.8	0.6

Построить следующее:

a)
$$A \cup B$$

$$\overline{A}$$

e)
$$A^{-1}$$

Задача № 8

Для нечётких отношений А и В, с функции принадлежности которых имеют вид:

A	Y1	Y2	Y3	Y4	Y5
X1	0.5	0.7	0.6	0.3	0.8
X2	0.9	0.6	0.4	0.6	0.4
X3	0.7	0.8	0.7	0.5	0.2

В	Z 1	Z2	Z 3	Z4
Y1	0	0.4	0.9	0.4
Y2	0.1	0.8	0.9	0.4
Y3	0.3	0.6	0.9	0.8
Y4	0.5	0	0.2	0.4
Y5	0.4	0.4	0.1	0.2

Построить R_1^2 , R_2^2 , R_3^2 , где соответственно:

$$\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in V} \max(\mu_A(x,y), \mu_B(y,z))$$

$$\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in Y} \max(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_3^2}(x,z) = \max_{y \in Y} \{\mu_A(x,y), \mu_B(y,z)\}$$

Задача № 9

Задано нечеткое отношение R с функцией принадлежности вида:

	X1	X2	X3
X1	0.2	0.5	0.3
X2	0.3	0.3	0.5
X3	0.2	0.8	0.9

a)					
	X1	X2	X3	X4	X5
X1	1	0.2	0.4	0.1	0.4
X2	0.8	1	0.5	0.1	0.4
X3	0.2	0.7	1	0.2	0.7
X4	0.1	0.5	0.2	1	0.1
X5	0.4	0.3	0.6	0.6	1

в)						
	X1	X2	X3	X4	X5	X6
X1	1	0.4	0.2	0.3	0.2	0.5
X2	0.6	1	0.1	0.3	0.9	0.6
X3	0.7	0.1	1	0.1	0.1	0.9
X4	0.3	0.9	0.3	1	0.6	0.2
X5	0.7	0.2	0.5	0.9	1	0.3
X6	0.6	0.3	0.9	0.1	0.7	1

б)						
		X1	X2	X3	X4	X5
X1		1	0.4	0.3	0.7	0.4
X2	2	0.6	1	0.9	0.3	0.3
X3	;	0.8	0.2	1	0.2	0.1
X4	Ļ	0.4	0.4	0.1	1	0.2
X5	5	0.5	0.3	0.2	0.7	1

Г)						
	X1	X2	X3	X4	X5	X6
X1	1	0.8	0.4	0.5	0.6	0.9
X2	0.1	1	0.6	0.3	0.2	0.1
X3	0.4	0.2	1	0.4	0.8	0.1
X4	0.7	0.4	0.8	1	0.4	0.3
X5	0.3	0.5	0.5	0.6	1	0.5
X6	0.8	0.9	0.5	0.4	0.7	1

Задача № 1

Заданы нечеткие множества A и B с функциями принадлежности $\mu_{A}(x)$ и $\mu_{B}(x)$:

X	1	2	3	4	5	6	7	8	9	10	11	12
$\mu_A(x)$	0.1	0.9	0.3	0.3	0.5	0	0.5	0.4	0.8	0.7	0.8	0.7
$\mu_{\scriptscriptstyle B}(x)$	0.9	1	0.7	0.3	0.4	0.4	0.7	0.7	0.5	0.1	0.1	0.8

Построить функции принадлежности для следующих нечётких множеств:

a) $A \cup B$;

B) \overline{A}

д) А∖В

e) $A \overline{\cup} B$

 \ddot{e}) A \cap B

$$\mathfrak{R} A \setminus (B \cap A)$$

Задача № 2

Заданы нечеткие множества A и B с функциями принадлежности $\mu_{A}(x)$ и $\mu_{B}(x)$:

X	1	2	3	4	5	6	7	8	9	10
$\mu_{A}(x)$	0.7	0.2	0.2	0.4	0.3	0	0.7	0.7	0.4	0
$\mu_{B}(x)$	0.9	0.2	0	0.8	0.5	0.4	0.1	0.2	0.2	0.1

 Γ) B

- а) построить подмножества уровня α A_{α} и B_{α} , где α =0.4; 0.5; 0,8
- б) построить $(A \cup B)_{\alpha}$ и $(A \cap B)_{\alpha}$ и убедиться, что

$$(A \cup B)_{\alpha} = A_{\alpha} \cup B_{\alpha}$$
 и $(A \cap B)_{\alpha} = A_{\alpha} \cap B_{\alpha}$, где α =0,3

Задача № 3

Заданы нечеткие множества A , B и C с соответствующими функциями принадлежности, заданными в табличном виде:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0.4	0.3	8.0	8.0	0	0.7	0.3	0.4	0.3	0.3
$\mu_{\scriptscriptstyle B}(x)$	0.6	0.9	0.2	0.4	0.9	0	0.1	0.2	0.7	0.5
$\mu_{C}(x)$	0.7	0.2	0.6	0.3	0.9	0.6	0.4	0.4	0.9	0.3

а) найти функцию принадлежности $\mu_{\lambda}(x)$ выпуклой комбинации этих множеств с весами:

$$\lambda_A = 0.7;$$
 $\lambda_B = 0.1;$ $\lambda_C = 0.2$

$$\mu_{\lambda}(x) \begin{cases} 1 \\ \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \end{cases}, \text{ если } \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \geq 1$$

в противном случае.

б) построить $(A \cup B \cup C)_{\alpha}$ и $(A \cap B \cap C)_{\alpha}$, где α =0,2 и убедиться, что

$$(A \overline{\cup} B \overline{\cup} C)_{\alpha} \supseteq (A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}) \quad \text{if} \quad (A \overline{\cap} B \overline{\cap} C)_{\alpha} \subseteq (A_{\alpha} \cap B_{\alpha} \cap C_{\alpha})$$

Задача № 4

Доказать, что для нечетких множеств A , B и C с функциями принадлежности $\mu_A(x)$, $\mu_B(x)$ и $\mu_C(x)$ выполняется следующее:

a)
$$A \cap (B \cap C) = (A \cap B) \cap (A \cap C)$$
;

б)
$$\bar{A+(B+C)} = (\bar{A+B}) + \bar{C}$$
, где $\mu_{\bar{A+B}}(x) = \mu_{\bar{A}}(x) + \mu_{\bar{B}}(x) - \mu_{\bar{A}}(x)\mu_{\bar{B}}(x)$

Задача № 5

Проверить, является ли нечеткое отношение R, заданное функцией принадлежности $\mu_R(x,y)$, симметричным и рефлексивным:

$$\mu_R(x,y) = \frac{1}{1 + (x^2 - y^2)}, k > 1.$$

Проверить, является ли транзитивным нечеткое отношение R, заданное функцией принадлежности $\mu_{R}(x, y)$, вида:

	X1	X2	X3	X4
X1	0.1	0	0.6	0.9
X2	0.8	0.5	0.4	0.5
X3	0.4	0.4	0.6	0.5
X4	0	0.4	0.9	0.9

Задача № 7

Для нечётких отношений А и В, функции принадлежности которых имеют вид:

A	X1	X2	X3	X4	X5
X1	0.4	0.6	0.7	0	0.5
X2	0	0.4	0.3	0.6	0
X3	0.7	0.4	0.9	0.9	0.3
X4	0.9	0.6	0.8	0.5	0.1
X5	0.7	0.9	0.7	0.7	0.8

В	X1	X2	X3	X4	X5
X1	0.5	0	0.1	0.2	0.9
X2	0.3	0.4	0.2	0	0.5
X3	0	0.3	0.7	0	0.5
X4	0.9	0.5	0	0.5	0.3
X5	0.7	0.1	0.1	0.6	0.8

Построить следующее:

a)
$$A \cup B$$

$$\overline{A}$$

д) A\B e)
$$A^{-1}$$

e)
$$A^{-1}$$

$$\ddot{e}$$
) B^{-1}

a)
$$A \cup B$$
; 6) $A \cap B$ B) \overline{A} $\Gamma \setminus \overline{B}$
ë) B^{-1} $\Re A \oplus B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$

Задача № 8

Для нечётких отношений А и В, с функции принадлежности которых имеют вид:

A	Y1	Y2	Y3	Y4	Y5
X1	0.5	0.6	0	0.4	0.2
X2	0.5	0.5	0.6	0.6	0
X3	0.1	0.4	0.5	0.7	0.4

В	Z 1	Z 2	Z 3	Z 4
Y1	0.1	0.3	0.3	0.4
Y2	0.5	0.5	0.8	0.7
Y3	0.3	0.2	0.3	0.4
Y4	0.3	0.2	0.4	0
Y5	0.9	0.8	0.6	0.6

Построить R_1^2 , R_2^2 , R_3^2 , где соответственно:

$$\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in Y} \max(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in Y} \max(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_3^2}(x,z) = \max_{y \in Y} \{\mu_A(x,y) \cdot \mu_B(y,z)\}$$

Задача № 9

Задано нечеткое отношение R с функцией принадлежности вида:

	X1	X2	X3
X1	0.2	0.4	0.6
X2	0.4	0.7	0.2
X3	0.1	0	0.9

a)					
	X1	X2	X3	X4	X5
X1	1	0.1	0.4	0.2	0.8
X2	0.5	1	0.7	0.2	0.5
X3	0.6	0.3	1	0.4	0.2
X4	0.8	0.9	0.6	1	0.5
X5	0.6	0.9	0.6	0.4	1

в)						
	X1	X2	X3	X4	X5	X6
X1	1	0.2	0.3	0.4	0.6	0.2
X2	0.5	1	0.1	0.6	0.3	0.6
X3	0.5	0.3	1	0.7	0.6	0.3
X4	0.9	0.3	0.5	1	0.2	0.4
X5	0.9	0.3	0.3	0.5	1	0.5
X6	0.3	0.1	0.3	0.6	0.9	1

б)					
	X1	X2	X3	X4	X5
X1	1	0.2	0.7	0.8	0.8
X2	0.3	1	0.1	0.4	0.3
X3	0.2	0.7	1	0.4	0.3
X4	0.1	0.8	0.5	1	0.6
X5	0.6	0.2	0.8	0.5	1

_Г)						
	X1	X2	X3	X4	X5	X6
X1	1	0.7	0.7	0.5	0.1	0.6
X2	0.9	1	0.7	0.3	0.6	0.7
X3	0.1	0.4	1	0.9	0.4	0.5
X4	0.2	0.7	0.9	1	0.1	0.1
X5	0.4	0.6	0.3	0.2	1	0.7
X6	0.5	0.6	0.5	0.8	0.9	1

Задача № 1

Заданы нечеткие множества A и B с функциями принадлежности $\mu_{A}(x)$ и $\mu_{B}(x)$:

X	1	2	3	4	5	6	7	8	9	10	11	12
$\mu_A(x)$	0.2	0.7	0.7	0.4	1	0.7	0.3	0.6	0.9	0.4	0.1	0.2
$\mu_{\scriptscriptstyle B}(x)$	0.7	0.1	0.9	1	0.9	0.9	0.2	0	0.7	1	0.8	0.6

Построить функции принадлежности для следующих нечётких множеств:

a) $A \cup B$;

б) А∩В в) *A* Γ) B

д) А∖В

e) $A \cup B$

 \ddot{e}) $A \cap B$ \Rightarrow $(A \cup B) \cap (A \cup B)$

Задача № 2

Заданы нечеткие множества A и B с функциями принадлежности $\mu_A(x)$ и $\mu_B(x)$:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0.7	0	0.5	0.5	0.7	0.7	0.5	0.9	0.4	0.6
$\mu_{\scriptscriptstyle B}(x)$	0.3	0.8	0.8	0	0.8	0.1	0.6	0.6	0.7	0.4

а) построить подмножества уровня α A_{α} и B_{α} , где α =0,5; 0,7; 0,8

б) построить $(A \cup B)_{\alpha}$ и $(A \cap B)_{\alpha}$ и убедиться, что

$$(A \cup B)_{\alpha} = A_{\alpha} \cup B_{\alpha}$$
 и $(A \cap B)_{\alpha} = A_{\alpha} \cap B_{\alpha}$, где α =0,3

Задача № 3

Заданы нечеткие множества А, В и С с соответствующими функциями принадлежности, заданными в табличном виде:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0.4	0.1	0.1	0.9	0.4	0.4	0.1	0.6	0.3	0.9
$\mu_{B}(x)$	0	0.4	0	0.6	0.2	0.6	0.6	0.6	0.2	0.9
$\mu_{C}(x)$	0.8	0.1	0.2	0.2	0	0.7	0.2	0.9	0.3	0.5

а) найти функцию принадлежности $\mu_{\lambda}(x)$ выпуклой комбинации этих множеств с весами:

$$\lambda_A = 0.7$$
; $\lambda_B = 0.1$; $\lambda_C = 0.2$

$$\mu_{\lambda}(x) \begin{cases} 1 \\ \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \end{cases}, \text{ если } \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \geq 0$$

в противном случае.

б) построить $(A \cup B \cup C)_{\alpha}$ и $(A \cap B \cap C)_{\alpha}$, где α =0,2 и убедиться, что

$$(A \overline{\cup} B \overline{\cup} C)_{\alpha} \supseteq (A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}) \quad \text{if} \quad (A \overline{\cap} B \overline{\cap} C)_{\alpha} \subseteq (A_{\alpha} \cap B_{\alpha} \cap C_{\alpha})$$

Задача № 4

Доказать, что для нечетких множеств A , B и C с функциями принадлежности $\mu_{A}(x)$, $\mu_{B}(x)$ и $\mu_{C}(x)$ выполняется следующее:

a)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
;

б)
$$\vec{A+(B+C)} = (\vec{A+B}) + \vec{C}$$
, где $\mu_{\vec{A+B}}(x) = \mu_{\vec{A}}(x) + \mu_{\vec{B}}(x) - \mu_{\vec{A}}(x)\mu_{\vec{B}}(x)$

Задача № 5

Проверить, является ли нечеткое отношение R, заданное функцией принадлежности $\mu_R(x,y)$, симметричным и рефлексивным:

$$\mu_R(x,y) = \sqrt{\left|x^2 - y^2\right|}.$$

Проверить, является ли транзитивным нечеткое отношение R, заданное функцией принадлежности $\mu_{R}(x, y)$, вида:

	X1	X2	X3	X4
X1	0.2	0.7	0.3	0.1
X2	0.3	0.8	0.6	0.9
X3	0.5	0.1	0.4	0.2
X4	0.6	0.9	0.4	0.1

Задача № 7

Для нечётких отношений А и В, функции принадлежности которых имеют вид:

Α	X1	X2	X3	X4	X5
V1	1		0		0.9
X1	0.4	0.4	Ů	0.1	
X2	0.6	0.2	0.5	0.6	0.7
X3	0.1	0	0.6	0.1	0.5
X4	0.5	0	0.2	0.1	0.5
X5	0.8	0.7	0.3	0.6	0

В		X1	X2	X3	X4	X5
\mathbf{X}^{2}	1	0.6	0.9	0.4	0.2	0.3
X^2	2	0	0.2	0.4	0	0.2
X_{3}^{2}	3	0.4	0.9	0.5	0.2	0.8
X	4	0.6	0.9	0.4	0	0.7
X	5	0.8	0	0.7	0.5	0

Построить следующее:

a)
$$A \cup B$$

$$B) \overline{A}$$

$$\Gamma)\overline{B}$$

a)
$$A \cup B$$
; 6) $A \cap B$ B) \overline{A} $\Gamma) \overline{B}$
ë) B^{-1} \Rightarrow $A \oplus B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$

Задача № 8

Для нечётких отношений А и В, с функции принадлежности которых имеют вид:

Ī	A	Y1	Y2	Y3	Y4	Y5
Ī	X1	0.5	0.4	0.3	0.5	0.6
Ī	X2	0.2	0.3	0.8	0.7	0.7
	X3	0.5	0	0.2	0.9	0.6

В	Z 1	Z2	Z3	Z4
Y1	0.1	0.1	0.6	0.5
Y2	0.9	0.1	0.6	0.9
Y3	0.4	0.9	0.7	0
Y4	0.1	0.5	0.6	0.6
Y5	0.3	0.2	0.2	0

Построить R_1^2 , R_2^2 , R_3^2 , где соответственно:

$$\mu_{R_1^2}(x, z) = \max_{y \in Y} \min(\mu_A(x, y), \mu_B(y, z));$$

$$\mu_{R_2^2}(x, z) = \min_{y \in Y} \max(\mu_A(x, y), \mu_B(y, z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in Y} \max(\mu_A(x,y), \mu_B(y,z))$$

$$\mu_{R_3^2}(x,z) = \max \{ \mu_A(x,y) \cdot \mu_B(y,z) \}$$

Задача № 9

Задано нечеткое отношение R с функцией принадлежности вида:

	X1	X2	X3
X1	0.2	0.2	0
X2	0.4	0.1	0.8
X3	09	0.2	0

a)					
	X1	X2	X3	X4	X5
X1	1	0.9	0.7	0.2	0.2
X2	0.1	1	0.9	0.2	0.7
X3	0.2	0.9	1	0.6	0.2
X4	0.4	0.4	0.6	1	0.9
X5	0.7	0.8	0.1	0.3	1

B)						
	X1	X2	X3	X4	X5	X6
X1	1	0.6	0.7	0.4	0.4	0.8
X2	0.3	1	0.2	0.3	0.7	0.2
X3	0.3	0.6	1	0.4	0.9	0.7
X4	0.4	0.7	0.6	1	0.8	0.9
X5	0.8	0.4	0.1	0.1	1	0.7
X6	0.9	0.7	0.7	0.1	0.1	1

б)					
	X1	X2	X3	X4	X5
X1	1	0.4	0.5	0.8	0.2
X2	0.9	1	0.3	0.5	0.7
X3	0.6	0.3	1	0.7	0.6
X4	0.6	0.3	0.9	1	0.9
X5	0.8	0.1	0.4	0.4	1

_Г)						
	X1	X2	X3	X4	X5	X6
X1	1	0.5	0.1	0.6	0.4	0.2
X2	0.8	1	0.7	0.7	0.3	0.3
X3	0.9	0.7	1	0.6	0.9	0.9
X4	0.8	0.1	0.1	1	0.6	0.4
X5	0.6	0.7	0.1	0.8	1	0.9
X6	0.1	0.3	0.9	0.3	0.1	1

Задача № 1

Заданы нечеткие множества A и B с функциями принадлежности $\mu_A(x)$ и $\mu_B(x)$:

X	1	2	3	4	5	6	7	8	9	10	11	12
$\mu_A(x)$	0.2	0.5	0	0.4	0.3	0.3	0.1	0.9	0.9	0	0.5	0.9
$\mu_{\scriptscriptstyle B}(x)$	0,6	0,5	0,3	0,6	0,8	0,2	0,9	0,3	0,4	0,6	0,8	0,1

Построить функции принадлежности для следующих нечётких множеств:

a) $A \cup B$;

B)
$$\overline{A}$$

$$\Gamma$$
) \overline{B}

e)
$$A \overline{\cup} B$$

$$\ddot{e}) A \cap B \qquad \text{w}) (\overline{A} \cap B) \setminus (A \cup \overline{B})$$

Задача № 2

Заданы нечеткие множества A и B с функциями принадлежности $\mu_A(x)$ и $\mu_B(x)$:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0.7	0.9	0.8	0.6	0.1	0.3	0.4	0.2	0.5	0.3
$\mu_{\scriptscriptstyle B}(x)$	0.6	0.4	0.5	0.2	0	0.7	0	0	0.3	0.8

- а) построить подмножества уровня α A_{α} и B_{α} , где α =0.5; 0.7; 0,8
- б) построить $(A \cup B)_{\alpha}$ и $(A \cap B)_{\alpha}$ и убедиться, что

$$(A \cup B)_{\alpha} = A_{\alpha} \cup B_{\alpha}$$
 и $(A \cap B)_{\alpha} = A_{\alpha} \cap B_{\alpha}$, где α =0,4

Задача № 3

Заданы нечеткие множества А, В и С с соответствующими функциями принадлежности, заданными в табличном виде:

X	1	2	3	4	5	6	7	8	9	10
$\mu_A(x)$	0.4	0.9	0.4	0.9	0.8	0	0.9	0.8	0.4	0.6
$\mu_{\scriptscriptstyle B}(x)$	0.4	0	0.8	0.8	0.4	0.2	0	0	0.8	0.3
$\mu_{C}(x)$	0	0	0.8	0.1	0.2	0.9	0	0.5	0.8	0.7

а) найти функцию принадлежности $\mu_{\lambda}(x)$ выпуклой комбинации этих множеств с весами:

$$\lambda_A = 0.2;$$
 $\lambda_B = 0.3;$ $\lambda_C = 0.5$

$$\mu_{\lambda}(x) \begin{cases} 1 \\ \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \end{cases}, \text{ если } \lambda_{A}\mu_{A}(x) + \lambda_{B}\mu_{B}(x) + \lambda_{C}\mu_{C}(x) \geq 1$$

б) построить $(A \cup B \cup C)_{\alpha}$ и $(A \cap B \cap C)_{\alpha}$, где α =0,2 и убедиться, что

$$(A \overline{\cup} B \overline{\cup} C)_{\alpha} \supseteq (A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}) \quad \text{if} \quad (A \overline{\cap} B \overline{\cap} C)_{\alpha} \subseteq (A_{\alpha} \cap B_{\alpha} \cap C_{\alpha})$$

Задача № 4

Доказать, что для нечетких множеств A , B и C с функциями принадлежности $\mu_{A}(x)$, $\mu_{B}(x)$ и $\mu_{C}(x)$ выполняется следующее:

a)
$$(A \cap B) \cap C = A \cap (B \cap C)$$
;

б)
$$A + (B \cap C) = (A + B) \cap (A + C)$$
, где $\mu_{A+B}(x) = \mu_A(x) + \mu_B(x) - \mu_A(x)\mu_B(x)$

Задача № 5

Проверить, является ли нечеткое отношение R, заданное функцией принадлежности $\mu_R(x,y)$, симметричным и рефлексивным:

$$\mu_R(x, y) = \exp\{-(ax + by)\}, a > b > 1.$$

Проверить, является ли транзитивным нечеткое отношение R, заданное функцией принадлежности $\mu_{R}(x, y)$, вида:

	X1	X2	X3	X4
X1	0.2	0.7	0.3	0.1
X2	0.6	0.8	0	0.9
X3	0.5	0.7	0.4	0.7
X4	0.6	0.9	0.4	0.1

Задача № 7

Для нечётких отношений А и В, функции принадлежности которых имеют вид:

A	X1	X2	X3	X4	X5
X1	0.2	0.3	0.3	0.7	0.9
X2	0.4	0	0.5	0.4	0.4
X3	0.1	0	0.8	0	0.4
X4	0.4	0.8	0.1	0.3	0.6
X5	0.1	0.4	0.4	0.3	0.2

В	X1	X2	X3	X4	X5
X1	0.4	0.7	0.7	0.9	0.3
X2	0.7	0	0.4	0.8	0.9
X3	0.4	0	0.7	0.1	0.6
X4	0.4	0.7	0.4	0.3	0.6
X5	0.1	0.6	0.7	0.2	0.1

Построить следующее:

a)
$$A \cup B$$

B)
$$\overline{A}$$

$$\Gamma$$
) \overline{B}

e)
$$A^{-1}$$

a)
$$A \cup B$$
; 6) $A \cap B$ B) \overline{A} $\Gamma \setminus \overline{B}$ $A \setminus B$ e) A^{-1} ë) B^{-1} $B \cap B$ $A \cap B$ $B \cap B$ $A \cap B$

Задача № 8

Для нечётких отношений А и В, с функции принадлежности которых имеют вид:

A	Y1	Y2	Y3	Y4	Y5
X1	0.4	0.2	0.6	0.1	0.6
X2	0.9	0.1	0.8	0.4	0.4
X3	0.5	0	0.4	0.8	0.5

В	Z 1	Z 2	Z 3	Z 4
Y1	0.9	0.9	0.9	0.2
Y2	0.9	0.9	0.4	0.8
Y3	0.1	0.6	0.7	0
Y4	0.2	0.4	0.5	0.5
Y5	0.1	0.2	0.4	0.1

Построить R_1^2 , R_2^2 , R_3^2 , где соответственно:

$$\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in V} \max(\mu_A(x,y), \mu_B(y,z))$$

$$\mu_{R_1^2}(x,z) = \max_{y \in Y} \min(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_2^2}(x,z) = \min_{y \in Y} \max(\mu_A(x,y), \mu_B(y,z));$$

$$\mu_{R_3^2}(x,z) = \max_{y \in Y} \{\mu_A(x,y) \cdot \mu_B(y,z)\}$$

Задача № 9

Задано нечеткое отношение R с функцией принадлежности вида:

	X1	X2	X3
X1	0.1	0	0.2
X2	0.1	0.1	0.6
X3	0.7	0.2	0.7

a)					
	X1	X2	X3	X4	X5
X1	1	0.8	0.4	0.9	0.2
X2	0.9	1	0.8	0.9	0.4
X3	0.8	0.9	1	0.5	0.1
X4	0.3	0.1	0.4	1	0.6
X5	0.3	0.4	0.2	0.6	1

B)						
	X1	X2	X3	X4	X5	X6
X1	1	0.9	0.5	0.1	0.2	0.6
X2	0.1	1	0.9	0	0.7	0.3
X3	0.4	0.5	1	0.2	0.8	0.7
X4	0.7	0.8	0.9	1	0.8	0.6
X5	0.2	0.7	0.2	0.2	1	0.7
X6	0.6	0.1	0.6	0.7	0.1	1

б)					
	X1	X2	X3	X4	X5
X1	1	0.9	0.3	0.5	0.2
X2	0.7	1	0.3	0.2	0.4
X3	0.6	0.4	1	0.6	0.4
X4	0.5	0.2	0.9	1	0.1
X5	0.6	0.7	0.5	0.1	1

Г)						
	X1	X2	X3	X4	X5	X6
X1	1	0.3	0.4	0.2	0.4	0.7
X2	0.5	1	0.5	0.4	0.8	0.3
X3	0.6	0.6	1	0.5	0.6	0.9
X4	0.7	0.3	0.4	1	0.6	0.7
X5	0.8	0.1	0.2	0.9	1	0.9
X6	0.8	0.7	0.8	0.9	0.1	1