Вариационное исчисление, практические занятия

Р. В. Бессонов

Содержание

1.	Производные по Гато и по Фреше	1
2.	Вариационная задача с закрепленными концами	2
3.	Вариационная задача со свободными концами	6
4.	Условные экстремумы (изопериметрическая задача)	8
5.	Контрольная работа. Вариант 1.	11
6.	Контрольная работа. Вариант 2.	12
7.	Контрольная работа. Вариант 3.	13
8.	Контрольная работа. Вариант 4.	14
9.	Контрольная работа. Вариант 5.	15
10	Контрольная работа Вариант 6	16

1. Производные по Гато и по Фреше

Пусть E – линейное пространство, $J: E \to \mathbb{R}$ – функционал (произвольное отображение). Говорят, что в точке $y \in E$ существует производная по Фреше функционала J если существует линейное отображение $J'_F(y): E \to \mathbb{R}$ такое, что

$$J[y+h] = J[y] + J'_F(y)[h] + o_E(h), \qquad h \to 0.$$

Говорят, что в точке $y \in E$ существует производная по Гато функционала J если для каждого $h \in E$ существует предел (в правой части - функция одного вещественного переменного)

$$J_G'(y)[h] = \lim_{t \to 0} \frac{J[y+th] - J[y]}{t},$$

который называется производной по Гато функционала J в точке $y \in E$ на векторе $h \in E$. Вместо линейного пространства E можно рассматривать афинное пространство (сдвиг линейного пространства на фиксированный вектор). В этом случае в определениях выше дополнительно предполагается, что $y, y + h \in E$. Легко проверить, что множество E_0 элементов $h \in E$ с таким свойством – линейно. Производные по Фреше и по Гато будут опредлены именно на этом пространстве E_0 . Если производная по Фреше существует, то существует и производная по Гато, и они совпадают. Для функционалов вида

$$J[y] = \int_a^b L(x, y(x), y'(x)) dx, \qquad E = C_0^1([a, b] \to \mathbb{R}^n) + \varphi,$$

где $L \in C^1([a,b],\mathbb{R}^n,\mathbb{R}^n)$, $\varphi \in C^1([a,b] \to \mathbb{R}^n)$, производная по Фреше всегда существует. Как обычно, через $C^1_0([a,b] \to \mathbb{R}^n)$ обозначается линейное пространство гладких отображений на отрезке [a,b], обнуляющихся в точках a,b.

Пример 1. Найти производную по Фреше функционала

$$J[y] = \int_a^b (x+y^2)y' \, dx$$

заданного на множестве функций $\{y\in C^1([a,b] o \mathbb{R}): y(a)=A, y(b)=B\}.$

Область задания функционала совпадает Ј с афинным пространством

$$E = \varphi + C_0^1([a, b] \to \mathbb{R}),$$

где φ – произвольная функция из $C^1([a,b] \to \mathbb{R})$ такая, что $\varphi(a) = A, \varphi(b) = B$. У такого функциионала существует производная по Фреше. Следовательно достаточно вычислить его производную по Гато. Рассмотрим точку $y \in E$. Пусть $y + h \in E$ (или, что то же самое, $h \in C^1_0([a,b] \to \mathbb{R})$). Вычислим производную по Гато:

$$J'_{G}(y)[h] = \lim_{t \to 0} \frac{J[y+th] - J[y]}{t} = \lim_{t \to 0} \frac{1}{t} \int_{a}^{b} \left(x(th)' + (y+th)^{2}(y'+th') - y^{2}y' \right) dx,$$

$$= \int_{a}^{b} xh' dx + \lim_{t \to 0} \frac{1}{t} \int_{a}^{b} \left(2tyy'h + 2t^{2}yhh' + t^{2}h^{2}(y'+th') \right) dx,$$

$$= \int_{a}^{b} xh' dx + \int_{a}^{b} 2yy'h dx = \int_{a}^{b} (xh' + 2yy'h) dx.$$

Полученное выражение можно упростить, проинтегрировав по частям:

$$J'_F(y)[h] = J'_G(y)[h] = \int_a^b (2yy' - 1)h \, dx.$$

При этом мы воспользовались тем, что функция h обнуляется на концах отрезка [a,b]. Очевидно, что полученное выражение задает линейный функционал по h на линейном пространстве $C_0^1([a,b] \to \mathbb{R})$.

2. Вариационная задача с закрепленными концами

Требуется найти локальные экстремумы функционала вида

$$J[y] = \int_a^b L(x, y(x), y'(x), y''(x), \dots, y^{(s)}(x)) dx,$$

где $L \in C^s([a,b],\mathbb{R}^n,\mathbb{R}^n)$, на множестве функций

$$y \in C^{s}([a,b] \to \mathbb{R}^{n}), \quad \begin{cases} y(a) = A_{0}, \ y'(a) = A_{1}, \ \dots, \ y^{(s-1)}(a) = A_{s-1}, \\ y(b) = B_{0}, \ y'(a) = B_{1}, \ \dots, \ y^{(s-1)}(a) = B_{s-1}. \end{cases}$$

Для того, чтобы это сделать, находят стационарные точки функционала (т.е. функции из области определения функционала J, в которых его производная по Фреше равна нулю) и проверяют по определению, являются ли они локальным экстремумом. Вместо того, чтобы явно вычислять производную по Фреше, пользуются тем, что на функции $y \in C^{2s}([a,b] \to \mathbb{R}^n)$ она равна нулю тогда и только тогда, когда выполняется условие Эйлера-Лагранжа:

$$\sum_{k=1}^{s} (-1)^{k+1} \frac{d^k}{dx^k} \left(\nabla_{v_k} L(x, u, v_1, \dots, v_s) \big|_{(x, y(x), y'(x), \dots, y^{(s)}(x))} \right) = \nabla_u L(x, u, v_1, \dots, v_s) \big|_{(x, y(x), y'(x), \dots, y^{(s)}(x))}.$$

Вообще говоря, стационарная точка не обязана иметь гладкость 2s, и поэтому уравнение Эйлера-Лагранжа применимо не во всех ситуациях. Тем не менее, как правило, оно дает нетривиальную информацию. Например, при поиске глобального минимума или максимума достаточно найти кандидата на экстремум (стационарную точку) и проверить по определению, что он им является. При этом при поиске кандидата на экстремум можно предполагать любую гладкость.

В наиболее часто встречающемся случае, когда s=1, уравнение Эйлера-Лагранжа имеет вид

$$\frac{d}{dx} \Big(\nabla_v L(x, u, v) \big|_{(x, y(x), y'(x))} \Big) = \nabla_u L(x, u, v) \big|_{(x, y(x), y'(x))}.$$

При этом производная в левой части всегда существует (хотя гладкость L, вообще говоря, не превышает $C^1([a,b],\mathbb{R}^n,\mathbb{R}^n)$). В случае, когда n=1, уравнение выше превращается в ОДУ (как

правило, порядка 2) на скалярную функцию y. Если $n \geqslant 2$, мы получаем систему дифференциальных уравнений.

Пример 2 (Романко, задача 9, стр. 224). Решить простейшую вариационную задачу:

$$J[y] = \int_{1}^{2} (xy' + y)^{2} dx, \qquad y(1) = 1, \quad y(2) = 1/2.$$

В рассматриваемой задаче $[a,b]=[1,2], n=1, s=1, A_0=1, B_0=1/2,$ отображение L имеет вид $L(x,u,v)=(xv+u)^2.$

Выпишем уравнение Эйлера-Лагранжа:

$$\nabla_{v}L(x, u, v) = \frac{d}{dv}L(x, u, v) = 2x(xv + u),$$

$$\nabla_{v}L(x, u, v)\big|_{(x, y(x), y'(x))} = 2x(xy'(x) + y(x)),$$

$$\frac{d}{dx}\Big(\nabla_{v}L(x, u, v)\big|_{(x, y(x), y'(x))}\Big) = 2(xy'(x) + y(x)) + 2x(y'(x) + xy''(x) + y'(x)),$$

$$\nabla_{u}L(x, u, v)\big|_{(x, y(x), y'(x))} = 2(xv + u),$$

$$\nabla_{u}L(x, u, v)\big|_{(x, y(x), y'(x))} = 2(xy'(x) + y(x)),$$

следовательно,

$$2(xy'(x) + y(x)) + 2x(y'(x) + xy''(x) + y'(x)) = 2(xy'(x) + y(x)).$$

Упрощая это уравнение, мы получаем

$$xy''(x) + 2y'(x) = 0,$$

или

$$(\log(y'(x)))' = -2/x = -(2\log x)'.$$

Решим это уравнение:

$$\log y'(x) = -2\log x + c,$$

$$x^{2}y(x) = e^{c}$$

$$y(x) = \frac{c_{1}}{x} + c_{2}$$

Постоянные $c_1=1, c_2=0$ определяются из условий y(1)=1, y(2)=1/2. Таким образом, $\hat{y}=1/x$ – стационарная точка функционала J. Проверим, что она является глабольным минимумом J. Для этого возьмем произвольную функцию y из области определения J и покажем, что $J[y]\geqslant J[\hat{y}]$. Представим y в виде $y=\hat{y}+h$, где приращение $h\in C^1([1,2],\mathbb{R})$. По построению, y лежит в области определения функционала J, откуда мы получаем h(1)=h(2)=0. Следовательно,

$$J[\hat{y}+h] - J[\hat{y}] = \int_{1}^{2} \left(2(x\hat{y}'+\hat{y})(xh'+h) + (xh'+h)^{2} \right) dx,$$

$$\geqslant \int_{1}^{2} 2(x\hat{y}'+\hat{y})(xh'+h) dx,$$

$$= 2x(x\hat{y}'+\hat{y})h\Big|_{1}^{2} - \int_{1}^{2} (2x(x\hat{y}'+\hat{y}))'h + \int_{1}^{2} 2(x\hat{y}'+\hat{y})h dx,$$

$$= \int_{1}^{2} (-(2x(x\hat{y}'+\hat{y}))' + 2(x\hat{y}'+\hat{y}))h dx,$$

где при интегрировании по частям исчезает подстановка

$$2x(x\hat{y}'+\hat{y})h\Big|_{1}^{2}=0$$

из-за того, что функция h обнуляется в точках 1 и 2. Так как

$$(-(2x(x\hat{y}'+\hat{y}))' + 2(x\hat{y}'+\hat{y})) = 0$$

в силу уравнения Эйлера-Лагранжа, окончательно заключаем, что \hat{y} – глобальный минимум функционала J.

Пример 3 (Романко, задача 4, стр. 208). Решить простейшую вариационную задачу:

$$J[y_1, y_2] = \int_1^2 (12y_1^2 + y_2^2 + x^2 y_1'^2 + y_2'^2) dx, \quad y_1(1) = 1, \quad y_2(1) = e, \quad y_1(2) = 8, \quad y_2(2) = e^2.$$

В рассматриваемой задаче $[a,b]=[1,2],\ n=2,\ s=1,\ A_0=\left(\frac{1}{e}\right),\ B_0=\left(\frac{8}{e^2}\right),$ отображение L имеет вид

$$L(x, \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}) = 12u_1^2 + u_2^2 + x^2v_1^2 + v_2^2.$$

Выпишем уравнение Эйлера-Лагранжа:

$$\begin{split} \nabla_v L(x,u,v) &= \begin{pmatrix} \frac{\partial}{\partial v_1} L(x,u,v) \\ \frac{\partial}{\partial v_2} L(x,u,v) \end{pmatrix} = \begin{pmatrix} 2x^2 v_1 \\ 2v_2 \end{pmatrix}, \\ \nabla_v L(x,u,v)) \big|_{(x,y(x),y'(x))} &= \begin{pmatrix} 2x^2 y_1' \\ 2y_2' \end{pmatrix}, \\ \frac{d}{dx} \Big(\nabla_v L(x,u,v)) \big|_{(x,y(x),y'(x))} \Big) &= \begin{pmatrix} 2(2xy_1' + x^2 y_1'') \\ 2y_2'' \end{pmatrix}, \\ \nabla_u L(x,u,v)) &= \begin{pmatrix} \frac{\partial}{\partial u_1} L(x,u,v) \\ \frac{\partial}{\partial u_2} L(x,u,v) \end{pmatrix} = \begin{pmatrix} 24u_1 \\ 2u_2 \end{pmatrix}, \\ \Big(\nabla_u L(x,u,v)) \big|_{(x,y(x),y'(x))} &= \begin{pmatrix} 24y_1 \\ 2y_2 \end{pmatrix}, \end{split}$$

следовательно,

$$\begin{cases}
2(2xy_1' + x^2y_1'') = 24y_1, \\
2y_2'' = 2y_2.
\end{cases}$$
(1)

Упрощая эту систему уравнений, мы получаем

$$\begin{cases} x^2 y_1'' + 2xy_1' - 12y_1 = 0, \\ y_2'' - y_2 = 0. \end{cases}$$

Первое уравнение является уравнением Эйлера, поэтому два его линейно независимых решения можно искать в виде $y = x^m$:

$$m(m-1)x^m + 2mx^m - 12x^m = 0$$

то есть $m^2 + m - 12 = 0$ или m = 3 и m = -4. Второе уравнение имеет постоянные коэффициенты и характеристическое уравнение $\lambda^2 - 1 = 0$. Находя его корни $\lambda = \pm 1$, получаем общий вид решения $y_2 = c_{21}e^x + c_{22}e^{-x}$. Итак,

$$\begin{cases} y_1 = c_{11}x^3 + c_{12}x^{-4}, \\ y_2 = c_{21}e^x + c_{22}e^{-x}. \end{cases}$$

Используя условия на концах $y_1(1)=1, y_2(1)=e, y_1(2)=8, y_2(2)=e^2,$ получаем

$$\begin{cases} y_1 = x^3, \\ y_2 = e^x. \end{cases}$$

Проверим, что точка $\hat{y} = \begin{pmatrix} \hat{y}_1 \\ \hat{y}_2 \end{pmatrix} = \begin{pmatrix} x^3 \\ e^x \end{pmatrix}$ является глобальным минимумом функционала J. Представим произвольную функцию y из области определения J в виде $y = \hat{y} + h$. Рассмотрим разность:

$$J[y] - J[\hat{y}] = \int_{1}^{2} (24\hat{y}_{1}h_{1} + 2\hat{y}_{2}h_{2} + 2x^{2}\hat{y}'_{1}h'_{1} + 2\hat{y}'_{2}h'_{2}) + (12h_{1}^{2} + h_{2}^{2} + x^{2}h'_{1}^{2} + h'_{2}^{2}) dx$$

$$= \int_{1}^{2} (24\hat{y}_{1}h_{1} + 2\hat{y}_{2}h_{2} - 2(x^{2}\hat{y}'_{1})'h_{1} - 2\hat{y}''_{2}h_{2}) + (12h_{1}^{2} + h_{2}^{2} + x^{2}h'_{1}^{2} + h'_{2}^{2}) dx$$

где при интегрировании по частям подстановка

$$2x^2\hat{y}_1'h\Big|_1^2 = 0, \qquad 2\hat{y}_2'h\Big|_1^2 = 0,$$

исчезает из-за того, что $h=\binom{h_1}{h_2}=y-\hat{y}$ обнуляется на концах интервала [1,2]. Используя уравнение Эйлера-Лагранжа (1), мы получаем

$$J[y] - J[\hat{y}] = \int_{1}^{2} (12h_{1}^{2} + h_{2}^{2} + x^{2}h_{1}^{2} + h_{2}^{2}) dx \ge 0,$$

что и требовалось.

Пример 4 (Романко, задача 4, страница 211). Исследовать функционал на экстремум, если

$$J[y] = \int_0^1 4(y')^2 + (y'')^2 dx, \quad y(0) = y'(0) = 0, \qquad y(1) = \frac{e^2 - 3}{4}, \qquad y'(1) = \frac{e^2 - 1}{2}.$$

В рассматриваемом примере $[a,b]=[0,1],\ s=2,\ n=1,\ A_0=A_1=0,\ B_0=\frac{e^2-3}{4},\ B_1=\frac{e^2-1}{2}.$ Отображение L имеет вид:

$$L(x, u, v_1, v_2) = 4v_1^2 + v_2^2.$$

Уравнение Эйлера-Лагранжа имеет вид:

$$8(y'(x))' - 2(y''(x))'' = 0,$$

или, после упрощения,

$$w'' - 4w = 0,$$
 $w = y''(x).$

Характеристический многочлен λ^2-4 уравнения выше имеет вещественные корни $\lambda=\pm 2$, откуда $y''(x)=w=c_1e^{2x}+c_2e^{-2x}.$

Следовательно, общее решение уравнения Эйлера-Лагранжа имеет вид

$$y(x) = C_1 + C_2 x + C_3 e^{2x} + C_4 e^{-2x}.$$

Из условий на y в концах отрезка [0,1] получаем

$$\begin{cases} C_1 + C_3 + C_4 = 0 \\ C_2 + 2C_3 - 2C_4 = 0 \\ C_1 + C_2 + C_3 e^2 + C_4 e^{-2} = \frac{e^2 - 3}{4} \\ C_2 + 2C_3 e^2 - 2C_4 e^{-2} = \frac{e^2 - 1}{2}. \end{cases}$$

Эта система имеет решение $C_1=-1/4,\,C_2=-1/2,\,C_3=1/4,\,C_4=0.$ Таким образом,

$$\hat{y} = (e^{2x} - 2x - 1)/4$$

– стационарная точка J. Рассмотрим приращение $\hat{y} + h$, где

$$h \in C^1([a,b] \to \mathbb{R}) : h(0) = h'(0) = h(1) = h'(1) = 0.$$
 (2)

Тогда (и только тогда) функция $\hat{y} + h$ лежит в области определения функционала J. Оценим разность:

$$J[\hat{y}+h] - J[\hat{y}] = \int_0^1 4(2\hat{y}'h' + (h')^2) + (2\hat{y}''h'' + (h'')^2) dx.$$

Интегрируя по частям и используя условия (2), получаем

$$J[\hat{y}+h] - J[\hat{y}] = \int_0^1 4(-2\hat{y}''h + (h')^2) + (2\hat{y}''''h + (h'')^2) dx.$$

В силу уравнения Эйлера-Лагранжа, окончательно получаем

$$J[\hat{y}+h] - J[\hat{y}] = \int_0^1 4(h')^2 + (h'')^2 dx \geqslant 0.$$

Следовательно, \hat{y} – глобальный минимум.

3. Вариационная задача со свободными концами

Рассмотрим сначала случай, в котором один из концов фиксирован. В задаче требуется найти локальные экстремумы функционала вида

$$J[y] = \int_{\text{Dom } y} L(x, y(x), y'(x)) dx, \qquad \begin{cases} \text{Dom } y = [a, b], \ b \in [c, d] : \varphi(b, y(b)) = 0, \\ y \in C^{1}([a, b], \mathbb{R}), \\ y(a) = A, \end{cases}$$

где $a < c \leqslant d, L \in C^1([a,d],\mathbb{R},\mathbb{R}), \varphi \in C^1(\mathbb{R} \times \mathbb{R},\mathbb{R})$ – отображение с не вырождающимся градиентом. Можно рассматривать задачу со свободными концами и для функционалов, содержащих старшие производные. Такие задачи здесь не обсуждаются, читатель может найти соответсвующую теорию здесь: https://arxiv.org/pdf/1309.6518.pdf

Геометрически условие справа от фигурной скобки означает, что функционал J определен на кривых в \mathbb{R}^2 , допускающих параметризацию вида $(x,y(x)), x \in [a,c]$, и соединяющих точку A с кривой, заданной уравнением $\varphi(x,u)=0$.

Решение задачи основано на следующем результате: если кривая y дает экстремум функционалу J, то выполняется уравнение Эйлера-Лагранжа

$$\frac{d}{dx} \Big(\nabla_v L(x, u, v)) \big|_{(x, y(x), y'(x))} \Big) = \nabla_u L(x, u, v)) \big|_{(x, y(x), y'(x))}$$

всюду на Dom y = [a, b] и условие трансверсальности правом конце:

$$\frac{L(x,u,v) - v\frac{\partial}{\partial v}L(x,u,v)}{\frac{\partial}{\partial x}\varphi(x,u)}\bigg|_{(b,y(b),y'(b))} = \frac{\frac{\partial}{\partial v}L(x,u,v)}{\frac{\partial}{\partial u}\varphi(x,u)}\bigg|_{(b,y(b),y'(b))},$$
(3)

или, более строго (чтобы избежать возможного деления на ноль):

$$\frac{\partial}{\partial u}\varphi(x,u)\Big(L(x,u,v)-v\frac{\partial}{\partial v}L(x,u,v)\Big)\bigg|_{(b,y(b),y'(b))} = \frac{\partial}{\partial x}\varphi(x,u)\frac{\partial}{\partial v}L(x,u,v)\bigg|_{(b,y(b),y'(b))}$$

Если c=d=b, а кривая φ имеет вид x=b, то $\varphi(x,u)=\varphi(x)=x-b$, $\frac{\partial}{\partial u}\varphi(x,u)=0$. В этом случае условие трансверсальности принимает вид

$$\left. \frac{\partial}{\partial v} L(x, u, v) \right|_{(b, y(b), y'(b))} = 0.$$

Если кривая φ имеет вид $y=y_0$, то $\varphi(x,u)=\varphi(u)=u-y_0$, $\frac{\partial}{\partial x}\varphi(x,u)=0$. В этом случае условие трансверсальности принимает вид

$$\left(L(x, u, v) - v \frac{\partial}{\partial v} L(x, u, v) \right) \Big|_{(b, y(b), y'(b))} = 0.$$
(4)

Если свободным является не правый конец b, а левый конец a, то условие трансверсальности в нем запишется в виде

$$\frac{L(x,u,v) - v\frac{\partial}{\partial v}L(x,u,v)}{\frac{\partial}{\partial x}\varphi(x,u)}\bigg|_{(a,y(a),y'(a))} = \frac{\frac{\partial}{\partial v}L(x,u,v)}{\frac{\partial}{\partial u}\varphi(x,u)}\bigg|_{(a,y(a),y'(a))}.$$

Если оба конца свободны, то условий трансверсальности будет два (в каждом из концов).

Пример 5 (Задача 136 в методичке, стр. 44). Найти стационарные точки функционала

$$J[y] = \int_{\text{Dom } y} y'(x)^2 \, dx,$$

заданном на кривых (x,y(x)) соединяющих точку A=(a,y(a)) на кривой $y^2=4x$ с точкой (1,3).

Уравнение Эйлера-Лагранжа имеет вид

$$2y''(x) = 0,$$
 $x \in \text{Dom } y = [a, 1].$

Отображение φ имеет вид

$$\varphi(x, u) = 4x - u^2.$$

В частности,

$$4a - y(a)^2 = 0.$$

Условие трансверсальности в точке А имеет вид

$$\frac{(y'(a))^2 - y'(a) \cdot 2y'(a)}{4} = \frac{2y'(a)}{-2y(a)}$$

или y'(a)y(a) = 4. Кроме того, y(1) = 3. Таким образом,

$$y = c_1 x + c_2$$
, $c_1 + c_2 = 3$, $(c_1 a + c_2)^2 = 4a$, $c_1(c_1 a + c_2) = 4$.

Отсюда получаем $c_1 = 3$, $c_2 = 0$, a = 4/9, A = (2/3, 4/3). Стационарной точкой функционала J будет отображение y = 3x на промежутке [4/9, 1].

Пример 6 (Задача 17 в Романко, страница 206). *Решить вариационную задачу со свободным концом:*

$$J[y] = \int_{1}^{2} (2yy' - x^{2}y'^{2} + 12x^{2}y) dx, \qquad y(2) = -5.$$

В данной задаче левый (свободный) конец кривой (x,y(x)) лежит на прямой x=1, то есть ограничение на него имеет вид $\varphi(x,y(x))=0$, где $\varphi(x,u)=x-1$. Уравнение Эйлера-Лагранжа имеет вид:

$$2y' - 2(x^2y')' = 2y' + 12x^2$$

Отсюда получаем

$$(x^2y')' = -6x^2$$
, $x^2y' = -2x^3 + c$, $y' = -2x + c_1/x^2$, $y = -x^2 - c_1/x + c_2$.

Условие трансверсальности (4) в левом конце имеет вид

$$0 = \frac{\partial}{\partial v} L(x, u, v) \Big|_{(1, y(1), y'(1))} = (2y - 2x^2y') \Big|_{(1, y(1), y'(1))} = 2y(1) - 2y'(1).$$

Последнее можно переписать в виде y'(1) = y(1), то есть

$$-2 + c_1 = -1 - c_1 + c_2$$
.

Так как y(2) = -5, имеет место ограничение

$$-4 - c_1/2 + c_2 = -5.$$

Решая последние два уравнения, находим $c_1 = 0$, $c_2 = -1$. Итак, стационарная точка имеет вид $\hat{y} = -x^2 - 1$. Изучим ее характер, рассматривая произвольную функцию y из области определения функционала J, которую мы представим в виде $y = \hat{y} + h$:

$$J[y] - J[\hat{y}] = \int_{1}^{2} (2\hat{y}h' + 2h\hat{y}' + 2hh' - 2x^{2}\hat{y}'h' - x^{2}h'^{2} + 12x^{2}h) dx.$$

Интегрируя по частям, получаем:

$$J[y] - J[\hat{y}] = \int_{1}^{2} (-2\hat{y}'h + 2h\hat{y}' + 2hh' + 2(x^{2}\hat{y}')'h - x^{2}h'^{2} + 12x^{2}h) dx - 2\hat{y}(1)h(1) + 2\hat{y}'(1)h(1).$$

Из уравнения Эйлера-Лагранжа следует, что

$$J[y] - J[\hat{y}] = \int_{1}^{2} (2hh' - x^{2}h'^{2}) dx - 2\hat{y}(1)h(1) + 2\hat{y}'(1)h(1).$$

Из условия трансверсальности следует, что

$$J[y] - J[\hat{y}] = \int_{1}^{2} (2hh' - x^{2}h'^{2}) dx.$$

Последнее равенство можно переписать в виде

$$J[y] - J[\hat{y}] = -\int_{1}^{2} x^{2} h'^{2} dx - h^{2}(1) \le 0.$$

Следовательно, \hat{y} – глобальный максимум.

4. Условные экстремумы (изопериметрическая задача)

Задача состоит в минимизации функционала

$$J[y] = \int_a^b F(x, y(x), y'(x)) dx, \quad y \in C^1([a, b] \to \mathbb{R}^n),$$

где $F \in C^1([a,b],\mathbb{R}^n,\mathbb{R}^n)$, при условиях на концах

$$y(a) = A, \qquad y(b) = B,$$

и условиях связи

$$J_j[y] = \int_a^b G_j(x, y(x), y'(x)) dx = g_j, \qquad j = 1, \dots, N.$$

Концы могут быть и свободными, это приведет к модификации граничных условий для стационарной точки (см. ниже). Функционал может содержать больше производных, что приведет к использованию более общего уравнения Эйлера-Лагранжа и дополнительной информации в концах отрезка.

Для поиска экстремумов функционала при наложенных ограничениях используют следующий факт: если \hat{y} – экстремум J и \hat{y} не является стационарной точкой для функционалов J_j , то для некоторых чисел $\lambda_i \in \mathbb{R}$ функция \hat{y} является стационарной точкой функционала

$$J - \lambda_1 J_1 - \sum \lambda_N J_N$$

на множестве функций без условий связи:

$$y \in C^1([a, b] \to \mathbb{R}^n), \qquad y(a) = A, \qquad y(b) = B.$$

Таким образом, для решения задачи достаточно показать, что J_j не имеют экстремумов и выписать уранение Эйлера-Лагранжа

$$\frac{d}{dx} \Big(\nabla_v L(x, u, v) \big) \big|_{(x, y(x), y'(x))} \Big) = \nabla_u L(x, u, v) \big|_{(x, y(x), y'(x))}$$

для функции

$$L = F - \lambda_1 G_1 - \ldots - \lambda_N G_N.$$

В качестве условий, которыми должны удовлетворять решения этого уравнения выступают значения на концах

$$y(a) = A,$$
 $y(b) = B,$

(или условия трансверсальности (1) в свободных концах, или значения старших производных в концах, если функционал содержит старшие производные...), а также условия связи:

$$\int_a^b G_j(x, y(x), y'(x)) dx = g_j.$$

Пример 7 (Задача 7 в Романко, страница 215). Решить изопериметрическую задачу:

$$J[y] = \int_{1}^{2} x(y')^{2} dx, \qquad y(1) = 0, \qquad y(2) = 12, \quad \int_{1}^{2} xy dx = \frac{16}{3}.$$

B данном примере n = 1, N = 1,

$$L(x, u, v) = xv^2 - \lambda xu.$$

Функционал

$$J_1[y] = \int_1^2 xy \, dx$$

линеен, поэтому стационарных точек у него нет. Это можно увидеть и из того, что его уравнение Эйлера-Лагранжа не имеет решений (указанное уравнение 0=x должно выполняться всюду на [a,b] при каком-то выборе y, от которого оно даже не зависит). Составим уравнение Эйлера-Лагранжа для L:

$$2(xy')' = -\lambda x,$$

или, после упрощения,

$$2xy'' + 2y' = -\lambda x.$$

Однородная версия указанного уравнения,

$$xy'' + y' = 0,$$

является дифференциальным уравнением Эйлера с кратным корнем характеристического уравнения $m^2 = 0$. Его решение имеет вид

$$y = c_1 + c_2 \log x$$
, $c_1, c_2 \in \mathbb{R}$.

Частное решение уравнения $2xy'' + 2y' = -\lambda x$ легко подобрать, рассматривая функции вида $y = cx^2$:

$$4cx + 4cx = -\lambda x, \qquad c = -\lambda/4.$$

Итак, общее решение уравнения уравнения $2xy'' + 2y' = -\lambda x$ имеет вид

$$y = -\lambda x^2/4 + c_1 + c_2 \log x$$

Так как

$$y(1) = 0,$$
 $y(2) = 12,$ $\int_{1}^{2} xy \, dx = \frac{16}{3},$

то

$$-\lambda/4 + c_1 = 0,$$
 $-\lambda + c_1 + c_2 \log 2 = 12,$ $-\lambda \frac{7}{12} + c_1 \frac{3}{2} + c_2 \int_1^2 x \log x \, dx = \frac{16}{3}.$

Решая эту систему уравнений, получаем $\lambda = -16$, $c_1 = -4$, $c_2 = 0$. Таким образом,

$$\hat{y} = 4(x^2 - 1)$$

— точка, подозрительная на экстремум. Проверим, что она задает абсолютный минимум. Рассмотрим приращение h со свойством

$$h(1) = 0,$$
 $h(2) = 0,$ $\int_{1}^{2} xh \, dx = 0.$

Тогда (и только тогда) $\hat{y} + h$ лежит в области определения функционала J, и

$$J[\hat{y}+h] - J[\hat{y}] = \int_{1}^{2} 2x\hat{y}'h' + x(h')^{2} dx = \int_{1}^{2} (-2(x\hat{y}')'h + x(h')^{2}) dx,$$

где при интегрировании по частям подстановка

$$2x\hat{y}'h\Big|_1^2 = 0$$

исчезает из-за того, что h(1)=h(2)=0. Так как $2(xy')'=-\lambda x$ в силу уравнения Эйлера-Лагранжа, и

$$\int_{1}^{2} xh \, dx = 0,$$

мы получаем, что

$$J[\hat{y} + h] - J[\hat{y}] = \int_{1}^{2} x(h')^{2} dx \geqslant 0.$$

Следовательно, \hat{y} – глобальный минимум.

5. Контрольная работа. Вариант 1.

Задача 1. Найти производную по Фреше функционала

$$J[y] = \int_{1}^{2} \cos(xy + y') dx$$

заданного на множестве функций $\{y \in C^1([1,2] \to \mathbb{R}) : y(2) = 1\}$. Выписать, на каком линейном пространстве она задана.

Задача 2. Решить простейшую вариационную задачу:

$$J[y_1, y_2] = \int_0^{\pi/2} \left(2y_1 y_2 + (y_1')^2 + (y_2')^2 \right) dx, \quad y_1(0) = y_2(0) = 1, \quad y_1(\pi/2) = y_2(\pi/2) = e^{\pi/2}.$$

Задача 3. Найти стационарные точки функционала

$$J[y] = \int_{\text{Dom } y} \left(y^2(x) + y'(x)^2 - \frac{3}{16} \right) dx,$$

заданном на кривых (x,y(x)), соединяющих прямую x=0 с прямой y=1/2.

Задача 4. Решить изопериметрическую задачу:

$$J[y] = \int_0^1 e^x (y')^2 dx, \qquad y(0) = y(1) = 0, \quad \int_0^1 e^x y^2(x) dx = 2.$$

6. Контрольная работа. Вариант 2.

Задача 5. Найти производную по Фреше функционала

$$J[y] = \int_{1}^{2} \log(1 + x^{2}(y + y')^{2}) dx$$

заданного на множестве функций $\{y \in C^1([-1,1] \to \mathbb{R}) : y(-1) = y(1) = 1\}$. Выписать, на каком линейном пространстве она задана.

Задача 6. Решить вариационную задачу с закрепленными концами:

$$J[y] = \int_0^{1/2} \left(\frac{(y')^2}{x^2 - 1} - \frac{2y^2}{(x^2 - 1)^2} \right) dx, \qquad y(0) = 1, \quad y(1/2) = 2.$$

Задача 7. Найти стационарные точки функционала

$$J[y] = \int_{\text{Dom } y} x(y')^2 dx,$$

заданном на кривых (x,y(x)), соединяющих точку (1,0) с параболой $y=x^2.$

Задача 8. Решить изопериметрическую задачу:

$$J[y] = \int_0^{\pi/2} ((y')^2 - y^2) \, dx, \qquad y(0) = y(\pi/2) = 0, \quad \int_0^{\pi/2} y(x) \sin x \, dx = 1.$$

Задача 9. Найти оптимальное управление в задаче максимизации функционала

$$J[y] = \int_0^2 (2x(t) - 3u(t) - u^2(t)) dt$$

 $npu\ y$ словиях $\dot{x} = x + u,\ x(0) = 5,\ u \in [0,2].$

7. Контрольная работа. Вариант 3.

Задача 10. Найти производную по Фреше функционала

$$J[y] = \int_0^1 x \arctan(yy') \, dx$$

заданного на множестве функций $\{y \in C^1([0,1] \to \mathbb{R}) : y(0) = 2\}$. Выписать, на каком линейном пространстве она задана.

Задача 11. Решить вариационную задачу с закрепленными концами:

$$J[y] = \int_0^1 \left(4(y')^2 + (y'')^2 \right) dx, \qquad y(0) = y'(0) = 0, \quad y(1) = \frac{e^2 - 3}{4}, \quad y'(1) = \frac{e^2 - 1}{2}.$$

Задача 12. Найти расстояние от точки $(-2,3\sqrt{3})$ до окружности $y^2+(x-1)^2=1$ изучая функционал длины кривой (x,y(x)):

$$J[y] = \int_{-2}^{b} \sqrt{1 + y'^2} \, dx,$$

ede Dom y = [-2, b].

Задача 13. Решить изопериметрическую задачу:

$$J[y] = \int_0^{\pi} (2y + 3y' + (y')^2) dx, \qquad y(0) = 0, \quad y(\pi) = \pi^2, \quad \int_0^{\pi} y(x) \sin x \, dx = \pi^2 - 1.$$

Задача 14. Используя принцип максимума, найти кандидата (кандидатов) на оптимальное управление в задаче максимизации функционала

$$J[y] = \int_0^T (1 - u(t))x(t) dt$$

при условиях $\dot{x} = u$, $u \in [0, 1]$, x(0) = 0, $x(T) \geqslant x_1$, $x_1 < T/2$.

8. Контрольная работа. Вариант 4.

Задача 15. Найти производную по Фреше функционала

$$J[y] = \int_0^1 (yx^2 + (y')^2) \, dx$$

заданного на множестве функций $\{y \in C^1([0,1] \to \mathbb{R}) : y(1) = 0\}$. Выписать, на каком линейном пространстве она задана.

Задача 16. Решить вариационную задачу без ограничений:

$$J[y] = \int_0^{\pi/2} (4y^2 + (y')^2 + 2y\cos x) dx.$$

Задача 17. Доказать, что e^{x+1} является стационарной точкой функционала

$$J[y] = \int_{\text{Dom } y} (y')^2 \, dx,$$

заданного на кривых (x,y(x)), соединяющих точку (0,e) с с прямой y=1 и удовлетворяющих условию $\int_{\mathrm{Dom}\, y} (y^2+y'y)\,dx=1-e^2.$

Задача 18. Решить изопериметрическую задачу:

$$J[y] = \int_0^1 (1+x^2)(y')^2 dx, \qquad y(0) = 0, \quad y(1) = \pi, \quad \int_0^1 xy dx = 1.$$

Задача 19. Найдите оптимальное управление в задаче максимизации функционала

$$J[y] = -\int_0^T dt = -T$$

при условиях $\dot{x}_1=x_2,\ \dot{x}_2=u,\ u\in[-1,1],\ x_1(0)=1\ x_2(0)=-1,\ x(T)=0.$

9. Контрольная работа. Вариант 5.

Задача 20. Найти производную по Фреше функционала

$$J[y] = \int_0^1 (x+y)y' \, dx$$

заданного на множестве функций $\{y \in C^1([0,1] \to \mathbb{R}) : y(0) = y(1) = 0\}$. Выписать, на каком линейном пространстве она задана.

Задача 21. Решить вариационную задачу без ограничений:

$$J[y] = \int_{1}^{e} \left(x(y')^{2} + \frac{y^{2}}{x} + \frac{2y \log x}{x} \right) dx.$$

Задача 22. Найти стационарные точки функционала

$$J[y] = \int_{\text{Dom } y} \frac{\sqrt{1 + y'^2}}{y} \, dx,$$

заданном на кривых (x,y(x)), соединяющих точку (0,0) с окружностью $(x-9)^2+y^2=9$.

Задача 23. Решить изопериметрическую задачу:

$$J[y] = \int_{1}^{2} x(y')^{2} dx, \qquad y(1) = 0, \quad y(2) = 12, \quad \int_{1}^{2} xy dx = 9.$$

Задача 24. Найти оптимальное управление в задаче максимизации функционала

$$J[y] = \int_0^1 x(t)(t - 3/4) dt$$

 $npu\ y$ словиях $\dot{x} = x + u,\ x(0) = 1,\ u \in [-1,1].$

10. Контрольная работа. Вариант 6.

Задача 25. Найти производную по Фреше функционала

$$J[y] = \int_0^1 x \sin(yy') \, dx$$

заданного на множестве функций $\{y\in C^1([a,b]\to\mathbb{R}):y(0)=0\}.$

Задача 26 (Романко, задача 104, стр. 200). Решить простейщую вариационную задачу:

$$J[y] = \int_0^{\pi} \left((y')^2 - \frac{25}{9}y^2 + 68e^x y \right) dx, \qquad y(0) = 9, \quad y(\pi) = 9e^{\pi}.$$

Задача 27 (Задача 131 в методичке, стр. 43). Найти стационарные точки функционала

$$J[y] = \int_{\text{Dom } y} \left(y^2(x) + y'(x)^2 - \frac{3}{16} \right) dx,$$

заданном на кривых (x,y(x)) соединяющих прямую x=0 с прямой y=1/2.

Задача 28 (Задача 7 в Романко, страница 215). Решить изопериметрическую задачу:

$$J[y] = \int_0^1 (2xy + (y')^2) dx, \qquad y(0) = 0, \quad y(1) = 3, \quad \int_1^2 xy dx = 1.$$