Séries temporais

Humberto Souza Rodrigo Cunha

Sumário

Introdução

Modelos ARIMA

Análise no domínio de frequência

Dados

Não estacionariedade

ACF e PACF

Ordem dos modelos

Previsão

Periodograma

Espectro cruzado

Lagged Regression

Introdução

Modelos ARIMA

Análise no domínio de frequência

Dados

Não estacionariedade

ACF e PACF

Ordem dos modelos

Previsão

Periodograma

Espectro cruzado

Lagged Regression

Taxas de Câmbio

Petróleo Cru

Crue Oil Price

Ibovespa

Estacionariedade

Estacionariedade

Introdução

Modelos ARIMA

Análise no domínio de frequência

Dados

Não estacionariedade

ACF e PACF

Ordem dos modelos

Previsão

Periodograma

Espectro cruzado

Lagged Regression

Diferenciação

$$\nabla x_t = x_t - x_{t-1}$$

- Transformar séries em estacionárias

3.2 Difference Equations

The study of the behavior of ARMA processes and their ACFs is greatly enhanced by a basic knowledge of difference equations, simply because they are difference equations.

Modelo proposto:

Modelo proposto:

Modelo proposto:

Modelo proposto:

Modelo proposto:

Ordem dos modelos

Identificação

 	р	d	q
Euro	0	2	1
Real	0	2	1
Yuan	0	2	1
WTI	0	1	1
lbov	0	2	1

auto.arima()

	þ	d	q
Euro	1	1	0
Real	1	1	0
Yuan	1	1	3
WTI	0	1	1
lbov	4	1	1

Previsão

Previsão

auto.arima

Previsão

auto.arima

Introdução

Modelos ARIMA

Análise no domínio de frequência Dados

Não estacionariedade

ACF e PACF

Ordem dos modelos

Previsão

Periodograma

Espectro cruzado

Lagged Regression

Visualização dos Dados

Análise de Séries Financeiras

Fontes $(2011 \sim 2021)$

- REAL/US: Batps://Gwwtwabcb.gov.br/estatisticas/
- Demais: Fith In Demais: Fith I

Transformação

Séries Diferenciadas

Parâmetros escolhidos

N = 2451 observações H = 31 dias L = 401 M = 800 Taper = 0.1Objetivo: prever IBovespa

Periodograma IBovespa | Taper= 0.1

Coerência

Coerência

Coerência cruzada

Coerência cruzado

Espectro cruzado

IBovespa com REAL/US, EU/US, CH/US e Crude Oil

Proposta de Modelo

Modelo 1: IBovespa $\sim EU/US + CH/US + REAL/US$

Modelo 2: IBovespa ~ REAL/US

Modelo 1: IBovespa \sim EU/US + CH/US + REAL/US

Modelo 1: IBovespa $\sim EU/US + CH/US + REAL/US$

Modelo 1:

It = 41.15 - 5653.43*E0 - 5409.52*C0 - 354.94C1 - 10820.69*R0 + 2277.81*R1 - 1432.8*R2 + 1335.66*R3 + Vt

- It: IBovespa
- E0 : EU/US com lag igual a 0
- C0 : CH/US com lag igual a 0
- C1 : CH/US com lag igual a -1
- R0 : REAL/US com lag igual a 0
- R1 : REAL/US com lag igual a -1
- R2 : REAL/US com lag igual a -2
- R3 : REAL/US com lag igual a -3
- Vt : sinal estacionário

Modelo 1:

 $\begin{aligned} \text{It} &= 42 - 7336*\text{E0} - 5504*\text{C0} - 1253*\text{C1} - 11158*\text{R0} + 2329*\text{R1} - 1116*\text{R2} + 1211*\text{R3} + \text{Vt} \\ \text{Vt} &= 0.34*\text{V1} + .18*\text{W1} + 0.1*\text{V7} + \text{Wt} \end{aligned}$

$$S^2 = 1169349$$

AIC = 41157.76

- It: IBovespa
- E0 : EU/US com lag igual a 0
- C0 : CH/US com lag igual a 0
- C1 : CH/US com lag igual a -1
- R0 : REAL/US com lag igual a 0
- R1 : REAL/US com lag igual a -1

- R2 : REAL/US com lag igual a -2
- R3 : REAL/US com lag igual a -3
- Vt : sinal estacionário
- V1: Vt com lag igual a -1
- V7: Vt com lag igual a -7
- Wt: ruído $\sim iid(0, S^2)$
- W1: Wt com lag igual a -1

Modelo 1: previsões das diferenças

Modelo 1: previsões finais

Modelo 1: previsões finais (zoom)

Modelo 2:

```
It = 49.42 - 11411.52*R0 + 2299.41*R1 - 1410.38*R2 + 1362.49*R3 - 1456.66*R4 - 981.09*R9 - 2180.64*R11 + Vt
```

- It: IBovespa
- R0 : REAL/US com lag igual a 0
- R1 : REAL/US com lag igual a -1
- R2 : REAL/US com lag igual a -2
- R3 : REAL/US com lag igual a -3
- R4: REAL/US com lag igual a -4
- R9 : REAL/US com lag igual a -9
- R11 : REAL/US com lag igual a -11
- Vt : sinal estacionário

Modelo 2:

```
It = 49 - 17791*R0 + 2354*R1 - 1275*R2 + 1463*R3 - 1403*R4 - 823*R9 - 2170*R11 + Vt \\ Vt = -0.36*V1 + .21*W1 + 0.1*V7 + Wt
```

$$S^2 = 1171076$$

AIC = 41026.87

- It: IBovespa
- R0 : REAL/US com lag igual a 0
- R1 : REAL/US com lag igual a -1
- R2 : REAL/US com lag igual a -2
- R3 : REAL/US com lag igual a -3
- R4 : REAL/US com lag igual a -4

- R9 : REAL/US com lag igual a -9
- R11 : REAL/US com lag igual a -11
- Vt : sinal estacionário
- V1: Vt com lag igual a -1
- V7: Vt com lag igual a -7
- Wt: ruído $\sim iid(0, S^2)$
- W1: Wt com lag igual a -1

Modelo 2: previsões das diferenças

Modelo 2: previsões finais

Modelo 2: previsões finais (zoom)

Modelo 1 vs Modelo 2

