Machine Learning for Exploration Geophysics

Th2: Basic Principles of Supervised Learning

10. - 12. March 2020

Hamburg

Outline

- Three components of supervised learning
- Regression
 - Linear regression
 - Polynomial regression
 - Gradient descent
 - Regularization
 - Training / CV / Test
 - k-Fold Cross-Validation
 - Hyperparameter tuning

Three components of supervised learning

Goal of supervised learning algorithms: predict results based on incoming data

Three components to teach the machine:

- Data
 - The more diverse the data, the better the result!
 - Two main ways to get the data: manual and automatic
- Features
 - Feature selecting is time consuming (AutoML)
 - Subjective selection is the main source of errors
- Algorithms
 - Any problem can be solved!
 - But, the precision, performance, and size of the final model depend on the algorithm
 - "Garbage in Garbage out"

Regression vs Classification

Housing Prices (Berlin Neukölln)

Size in m ² (x)	Price in 1000's of euro (y)
41,34	260,505
54,52	343,476
28,12	171,532
34,81	226,265
•••	•••

• Linear regression:

$$y_m = b + wx$$

Housing Prices (Berlin Neukölln)

Housing Prices (Berlin Neukölln)

• Linear regression:

$$F(x) = b + wx$$

Parameters:

Cost Function:

$$J(b, w) = \frac{1}{2N} \sum_{i=1}^{N} (F(x^{(i)}) - y^{(i)})^{2}$$

Goal:

$$\underset{b,w}{\operatorname{minimize}}(J(b,w))$$

$$\begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \dots \\ y^{(N)} \end{bmatrix} = \begin{bmatrix} 1 & x^{(1)} \\ 1 & x^{(2)} \\ \dots & \dots \\ 1 & x^{(N)} \end{bmatrix} \begin{bmatrix} b \\ w \end{bmatrix} + \epsilon$$

$$X$$

$$w = (X^T X)^{-1} X^T y$$

• Linear regression:

$$F(x) = b + wx$$

• Parameters:

Cost Function:

$$J(b, w) = \frac{1}{2N} \sum_{i=1}^{N} (F(x^{(i)}) - y^{(i)})^{2}$$

• Goal:

$$\underset{b,w}{\operatorname{minimize}}(J(b,w))$$

(function of the parameters b, w)

F(x)

(for fixed b, w, this is function of x)

J(b, w)

(function of the parameters b, w)

Ivan Abakumov

Gradient descent

Want:
$$\min_{b,w} J(b,w)$$

1. Start with a guess:

$$b=b_0$$
,

$$w = w_0$$

2. Calculate:

$$db = \frac{\partial J}{\partial b'},$$

$$dw = \frac{\partial J}{\partial w}$$

3. Update:

$$b_{i+1} = b_i - \alpha db,$$

$$w_{i+1} = w_i - \alpha dw$$

Housing Prices in Berlin

Regression with regularization

Ridge

Linear least squares with
$$L_2$$
 regularization:
$$J = \frac{1}{2N} |y - Xw|_2^2 + \alpha \sum_i w_i^2$$

Lasso

Linear least squares with
$$L_1$$
 regularization:
$$J = \frac{1}{2N} |y - Xw|_2^2 + \alpha \sum_i |w_i|$$

ElasticNet

Linear regression with combined
$$L_1$$
 and L_2 regularization:
$$J = \frac{1}{2N}|y - Xw|_2^2 + \alpha \gamma \sum_i |w_i| + \alpha (1 - \gamma) \frac{1}{2} \sum_i w_i^2$$

Training / Test / CV

60% - training 20% - CV 20% - test

Training set is a subset of data that is used to train the model

Test set is a small subset of data that are <u>not</u> used to train the model

• Cross validation dataset is created in addition to the training and test sets to select model parameters ("hyperparameters")

Hyperparameters

Example: polynomial regression with combined L_1 and L_2 regularization:

$$J = \frac{1}{2N} |y - Xw|_2^2 + \alpha \gamma \sum_{i} |w_i| + \alpha (1 - \gamma) \frac{1}{2} \sum_{i} w_i^2$$

Hyperparameters:

- α
- · \(\gamma \)
- degree