

# **Multi-agent Democratic Gridworld**

An anthological perspective

Andrea Longo Reinforcement learning



In a grid world a ship is guided by the democratic vote of some agents within it, each agent is intent on reaching a specific cell



. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . . .

. . . . . . . . . . . . .

. . . . . . . .

. . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

 . . . . . . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

### **Getting off**

When an agent reach its goal it will not gain further rewards and cannot vote, so its like if it will get off the ship



### **Playoff**

In case multiple directions gains the same number of votes the direction taken will be chosen randomly among those



### Win away

The first cell for the ship cannot contain any reward



#### Goal

Learn a policy for each agent to make it reach its goal (hopefully quickly)

#### **Evaluation**

For each episode the number of total steps (or steps of the latest agent) will be the key measurement

### **Setting alternative**

Tests are made either with random initial position or fixed at the middle



### Restriction to spice it up

Use of single-agent reinforcement learning techniques readjusted to the multi-agent context

### **Keeping track**

The way in which cooperative or competitive dynamics are established

### **Setting extensions**

- Multiple reward cells for each agent
- Obstacles inside the grid
- Competition between different agents

## Intuition on state space





## Approaches



### **Collaborative**

Planning + Value contamination

$$|S| = (X \cdot Y) \cdot 2^N$$

Parametrized Value Iteration



#### Naive

Multi-agent as Transition Probability

$$|S| = (X \cdot Y) \cdot 2^N$$

Q-learning



Unstructured

Previous votes into states

$$|S| = (X \cdot Y) \cdot (2 \cdot 5)^{N}$$

SARSA VFA with Neural Network



. . . . . . .

. . . . . . . 

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . 





Individual Value function construction is indipendent

simulating actions as direction taken, not votes

Contaminated Value function CV<sub>i</sub> = K<sub>i</sub>·sum<sub>j != i</sub>(V<sub>j</sub>)

with K ~ U(k\_min, k\_max)

.....

Since V expresses only future rewards the adjusted policy is

Policy<sub>i</sub>(s) = argmax<sub>a</sub>[sum<sub>i</sub>[R<sub>i</sub>(s,a)] +  $^{\gamma}$  · CV<sub>i</sub>(s'(s,a))]



### Notable attempt

#### **Inside Value Iteration**

. . . . . . .

$$V_{i,t+1}(s) = \max_{a} [R_i(s,a) + Y \cdot V_{i,t}(s'(s,a))]$$

### I tried with contamination during evaluation

$$V_{i,t}(s'(s,a)) += K_{i} \cdot sum_{j!=i}[V_{j,t}(s'(s,a))]$$

But the underline Bellman Equation rarely converged with K!=0



### Best [k\_min,k\_max]

. . . . . . . . . .

. . . . . . .

Random init | 3 agents | 10x10 grid | rewards [goal,empty,wall]=[100,-1,-10]

# Naive Approach Q-Learning



- Agents constructs their own  $Q_i(s,a)$  over the training episodes after training the evaluation's votes are greedy (no  $\epsilon$ ) and Q does not update
- Votes are the actions
   the democratic step is integrated as Transition probability
- Rewards are individual unlike the previous case

.....

# Unstructured Approach SARSA VFA with Neural Network



#### Features from states, votes, actions

feat<sub>i</sub>  $\rightarrow$  o-h(X) + o-h(Y) + o-h(alives<sub>j!=1</sub>) + lastVotes(actions) [+ o-h(actions)] |feat| = width + height + (n\_agents - 1) + 4 [+ 4]

Votes are the actions

.....

the democratic step is integrated as Transition probability

Rewards are individual

unlike the previous case

