ST-2023-14 to 26

1

AI24BTECH11017 - MAANYA SRI

1) Consider the probability space (Ω, \mathcal{G}, P) , where $\Omega =$ [0,2] and $\mathcal{G}=$ $\{\emptyset, \Omega, [0, 1], (1, 2]\}$. Let X and Y be two functions on Ω defined as

$$X(\omega) = \begin{cases} 1 & if\omega \in [0,1] \\ 2 & if\omega \in (1,2] \end{cases}$$

and

$$Y(\omega) = \begin{cases} 2 & if \omega \in [0, 1.5] \\ 3 & if \omega \in (1.5, 2]. \end{cases}$$

Then which one of the following statements is true?

- a) X is a random variable with respect to G, but Y is not a random variable with respect to \mathcal{G}
- b) Y is a random variable with respect to G, but X is not a random variable with respect to \mathcal{G}
- c) Neither X nor Y is a random variable with respect to \mathcal{G}
- d) Both X and Y are random variables with respect to G
- 2) Let $\Phi(\cdot)$ denote the cumulative distribution function of a standard normal random variable. If the random variable X has the cumulative distribution function

$$F(x) = \begin{cases} \Phi(x) & if x < -1 \\ \Phi(x+1) & if x \ge -1, \end{cases}$$

then which one of the following statements is true?

- a) $P(X \le -1) = \frac{1}{2}$
- b) $P(X = -1) = \frac{1}{2}$ c) $P(X < -1) = \frac{1}{2}$
- d) $P(X \le 0) = \frac{1}{2}$
- 3) Let X be a random variable with probability density function

$$f(x) = \begin{cases} \alpha \lambda x^{\alpha - 1} e^{-\lambda x^{\alpha}} & if x > 0\\ 0 & otherwise, \end{cases}$$

where $\alpha > 0$ and $\lambda > 0$. If the median of X is 1 and the third quantile is 2, then (α, λ) equals

- a) $(1, \log_e 2)$
- b) (1, 1)
- c) $(2, \log_{a} 2)$
- d) $(1, \log_e 3)$

- 4) Let X be a random variable having Poisson distribution with mean $\lambda > 0$. Then $E\left(\frac{1}{X+1}|X>0\right)$ equals
- 5) Suppose that X has the probability density function

$$f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} & if x > 0\\ 0 & otherwise, \end{cases}$$

where $\alpha > 0$ and $\lambda > 0$. Which one of the following statements is NOT true?

- a) E(X) exists for all $\alpha > 0$ and $\lambda > 0$
- b) Variance of X exists for all $\alpha > 0$ and $\lambda > 0$
- c) $E\left(\frac{1}{X}\right)$ exists for all $\alpha > 0$ and $\lambda > 0$
- d) $E(\log_e(1+X))$ exists for all $\alpha > 0$ and $\lambda > 0$
- 6) Let (X, Y) have joint probability density function

$$f(x,y) = \begin{cases} 8xy & if 0 < x < y < 1\\ 0 & otherwise. \end{cases}$$

If $E(X|Y = y_0) = \frac{1}{2}$, then y_0 equals

- a) $\frac{3}{4}$ b) $\frac{1}{2}$ c) $\frac{1}{3}$ d) $\frac{2}{3}$
- 7) Suppose that there are 5 boxes, each containing 3 blue pens, 1 red pen and 2 black pens. One pen is drawn at random from each of these 5 boxes. If the random variable X_1 denotes the total number of blue pens drawn and the random variable X_2 denotes the total number of red pens drawn, then $P(X_1 = 2, X_2 = 1)$ equals
- 8) Let $\{X_n\}_{n\geq 1}$ and $\{Y_n\}_{n\geq 1}$ be two sequences of random variables and X and Y be two random variables, all of them defined on the same probability space. Which one of the following statements is true?
 - a) If $\{X_n\}_{n\geq 1}$ converges in distribution to a real constant c, then $\{X_n\}_{n\geq 1}$ converges in probability to c
 - b) If $\{X_n\}_{n\geq 1}$ converges in probability to X, then $\{X_n\}_{n\geq 1}$ converges in 3^{rd} mean to X
 - c) If $\{X_n\}_{n\geq 1}$ converges in distribution to X and $\{Y_n\}_{n\geq 1}$ converges in distribution to Y, then $\{X_n + Y_n\}_{n \ge 1}$ converges in distribution to X + Y
 - d) If $\{E(X_n)\}_{n\geq 1}$ converges to E(X), then $\{X_n\}_{n\geq 1}$ converges in 1^{st} mean to X

9) Let X be a random variable with probability density function

$$f(x;\lambda) = \begin{cases} \frac{1}{\lambda}e^{-\frac{x}{\lambda}} & if x > 0\\ 0 & otherwise, \end{cases}$$

where $\lambda > 0$ is an unknown parameter. Let Y_1, Y_2, \dots, Y_n be a random sample of size n from a population having the same distribution as X^2 .

If $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$, then which one of the following statements is true?

- a) $\sqrt{\frac{\bar{y}}{2}}$ is a method of moments estimator of λ
- b) $\sqrt{\bar{Y}}$ is a method of moments estimator of λ
- c) $\frac{1}{2}\sqrt{\bar{Y}}$ is a method of moments estimator of λ
- d) $2\sqrt{\bar{Y}}$ is a method of moments estimator of λ
- 10) Let X_1, X_2, \ldots, X_n be a random sample of size $n \geq 2$ from a population having probability density function

$$f(x;\theta) = \begin{cases} \frac{2}{\theta x} \left(-log_e x \right) e^{-\frac{(log_e x)^2}{\theta}} & if 0 < x < 1\\ 0 & otherwise, \end{cases}$$

where $\theta > 0$ is an unknown parameter. Then which one of the following statements is true?

- a) $\frac{1}{n}\sum_{i=1}^{n}(log_eX_i)^2$ is the maximum likelihood estimator of θ b) $\frac{1}{n-1}\sum_{i=1}^{n}(log_eX_i)^2$ is the maximum likelihood estimator of θ
- c) $\frac{1}{n}\sum_{i=1}^{n}log_eX_i$ is the maximum likelihood estimator of θ d) $\frac{1}{n-1}\sum_{i=1}^{n}log_eX_i$ is the maximum likelihood estimator of θ
- 11) Let X_1, X_2, \dots, X_n be a random sample of size n from a population having uniform distribution over the interval $(\frac{1}{3}, \theta)$, where $\theta > \frac{1}{3}$ is an unknown parameter. If Y = $max\{X_1, X_2, ..., X_n\}$, then which one of the following statements is true?

 - a) $\left(\frac{n+1}{n}\right)\left(Y-\frac{1}{3}\right)+\frac{1}{3}$ is an unbiased estimator of θ b) $\left(\frac{n}{n+1}\right)\left(Y-\frac{1}{3}\right)+\frac{1}{3}$ is an unbiased estimator of θ c) $\left(\frac{n+1}{n}\right)\left(Y+\frac{1}{3}\right)-\frac{1}{3}$ is an unbiased estimator of θ
 - d) Y is an unbiased estimator of θ
- 12) Suppose that $X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_n$ are independent and identically distributed random vectors each having $N_p(\mu, \Sigma)$ distribution, where Σ is non-singular, p > 1and n > 1. If $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$, then which one of the following statements is true?
 - a) There exists c > 0 such that $c(\bar{X} \mu)^T \Sigma^{-1}(\bar{X} \mu)$ has χ^2 -distribution with p degrees of freedom
 - b) There exists a c > 0 such that $c(\bar{X} \bar{Y})^T \Sigma^{-1}(\bar{X} \bar{Y})$ has χ^2 -distribution with (p 1)degrees of freedom.
 - c) There exists c > 0 such that $c \sum_{i=1}^{n} (X_i \bar{X})^T \Sigma^{-1} (X_i \bar{X})$ has χ^2 -distribution with p degrees of freedom
 - d) There exists c>0 such that $c\sum_{i=1}^n \left(X_i-Y_i-\bar{X}+\bar{Y}\right)^T \Sigma^{-1} \left(X_i-Y_i-\bar{X}+\bar{Y}\right)$ has χ^2 -distribution with p degrees of freedom

13) Consider the following regression model

$$y_k = \alpha_0 + \alpha_1 \log_e k + \epsilon_k, \quad k = 1, 2, ..., n,$$

where the ϵ_k 's are independent and identically distributed random variables each having probability density function $f(x) = \frac{1}{2}e^{-|x|}$, $x \in \mathbb{R}$. Then which of the following statements is true?

- a) The maximum likelihood estimator of α_0 does not exist
- b) The maximum likelihood estimator of α_1 does not exist
- c) The least squares estimator of α_0 exists and is unique
- d) The least squares estimator of α_1 exists, but it is not unique