Grado en Ingeniería del Software Doble Grado en Matemática Computacional e Ingeniería del Software Doble Grado en Física Computacional e Ingeniería del Software

Redes de Ordenadores Tema 4

Dr. Constantino Malagón Luque Dr. Rafael Socas Gutiérrez

Septiembre 2024

4

Nivel de Red

Desarrollo de la asignatura

Nivel de Red: Conceptos Generales

The Network Layer, is responsible for forwarding packets over multiple hosts.

Aplicación	
Presentación	Aplicación
Sesión	
Transporte	Transporte
Red	Internet
Red Enlace	Internet Enlace

- Capa de Red (Network layer)
- Servicio: **transporta los segmentos de la capa de transporte** de un host a otro.
- **Protocolos: IP** y protocolos de enrutamiento (**RIP, OSPF, BGP,** etc.), utilizan algoritmos de búsqueda para determinar la ruta más corta entre dos hosts.
- Los paquetes de la capa de red se llaman datagramas/paquetes.
- También tenemos los protocolos ICMP (Internet Control Message Protocol), usado en la aplicación ping, y el IGMP (Internet Group Management Protocol), utilizado para aplicaciones que necesitan comunicación multicast como servicios de streaming o envío de diapositivas en aulas, por ejemplo).
- Diferentes modos de envío: Unicast, Multicast y Broadcast.

Nivel de Transporte: Unidades de Protocolo e Identidades

Nivel de Red: Protocolos Involucrados

Nivel de Red: Direccionamiento IPv4

IPv4 address in dotted-decimal notation

IPs públicas - IANA

Overview RIR Allocation Data Overview IPv6 (AFRINIC)

IPv6 (APNIC)
IPv6 (ARIN)
IPv6 (LACNIC)
IPv6 (RIPE NCC)
ASN (AFRINIC)

Number Resources

ASN (APNIC)
ASN (ARIN)
ASN (LACNIC)

ASN (RIPE NCC) Abuse Issues

Overview Questions and Answers

Number Resources

We are responsible for global coordination of the Internet Protocol addressing systems, as well as the Autonomous System Numbers used for routing Internet traffic.

Currently there are two types of Internet Protocol (IP) addresses in active use: IP version 4 (IPv4) and IP version 6 (IPv6). IPv4 was initially deployed on 1 January 1983 and is still the most commonly used version. IPv4 addresses are 32-bit numbers often expressed as 4 octets in "dotted decimal" notation (for example, 192.0.2.53). Deployment of the IPv6 protocol began in 1999. IPv6 addresses are 128-bit numbers and are conventionally expressed using hexadecimal strings (for example, 2001:odb8:852:ae33::29).

Both IPv4 and IPv6 addresses are generally assigned in a hierarchical manner. Users are assigned IP addresses by Internet service providers (ISPs). ISPs obtain allocations of IP addresses from a local Internet registry (LIR) or National Internet Registry (NIR), or from their appropriate Regional Internet Registry (RIR):

REGISTRY	AREA COVERED
AFRINIC	Africa Region
APNIC	Asia/Pacific Region
ARIN	Canada, USA, and some Caribbean Islands
LACNIC	Latin America and some Caribbean Islands
RIPE NCC	Europe, the Middle East, and Central

IPs privadas- RFC 1918

10.0.0.0 - 10.255.255.255 (prefijo 10/8)

172.16.0.0 - 172.31.255.255 (prefijo 172.16/12)

192.168.0.0 - 192.168.255.255 (prefijo 192.168/16)

Fuente: https://www.iana.org/ Fuente: https://www.rfc-es.org/rfc/rfc1918-es.txt

Nivel de Red: Notación CIDR IPv4

CIDR: Classless Inter-Domain Routing

CIDR IP Calculator

https://www.calculator.net/ip-subnet-calculator.html

Nivel de Red: Interfaces y Subnets

Direcciones de Subnet

Network: 223.1.3.0 Broadcast: 223.1.3.255

Direcciones de Interfaz

Nivel de Red: Cabecera IPv4

32 bits					
Version	Header length	Type of service	Datagram length (bytes)		
16-bit Identifier		Flags	13-bit Fragmentation offset		
Time-t	o-live	Upper-layer protocol	Header checksum		
32-bit Source IP address					
32-bit Destination IP address					
Options (if any)					
Data					

Nivel de Red: Protocolos de Enrutamiento

RIP, OSPF, BGP

Nivel de Red: Protocolo ICMP

ICMP, specified in [RFC 792], is used by hosts and routers to communicate network-layer information to each other. The most typical use of ICMP is for error reporting.

ICMP Type	Code	Description	
0	0	echo reply (to ping)	
3	0	destination network unreachable	
3	1	destination host unreachable	
3	2	destination protocol unreachable	
3	3	destination port unreachable	
3	6	destination network unknown	
3	7	destination host unknown	
4	0	source quench (congestion control)	
8	0	echo request	
9	0	router advertisement	
10	0	router discovery	
11	0	TTL expired	
12	0	IP header bad	

Nivel de Red: IPv6

Nivel de Red: Tipos de Direcciones IPv6

Por otro lado, los prefijos de direcciones IPv6 se representan de manera similar a la utilizada para direcciones IPv4 en notación CIDR, tal y como se muestra a continuación:

- Dirección del Nodo: 12ab:0:0:cd30:123:4567:89ab:cdef
- **Dirección de Subnet**: 12ab:0:0:cd30::/60
- **Dirección Completa**: 12ab:0:0:cd30:123:4567:89ab:cdef/60

Nivel de Red: Servicio NAT (1/2)

El mecanismo de Internet que traduce las direcciones se denomina Network Address Translation (NAT). Las direcciones IP del nivel de red que se usan para direccionar hosts sobre Internet se cambian con este mecanismo. Un NAT puede también cambiar el resto de los parámetros de direccionamiento como son puertos de Nivel 4, o direcciones MAC de Nivel 2. Aunque de momento nos centraremos en las direcciones IP.

El término NAT se usa para describir tanto el mecanismo como el dispositivo que lo ejecuta. Un NAT típicamente se encuentra en el router que conecta una red privada con Internet. Sin embargo, también hay NATs en el núcleo de Internet, p.e. para mitigar la escasez de direcciones IP, este es un caso típico en la región de Asia hoy en día.

Fuente: https://www.edx.org/es/course/ilabx-the-internet-masterclass

Nivel de Red: Servicio NAT (2/2)

- Cuando un host en la red local (p.e. 10.0.0.1) envía un paquete a Internet, el router NAT sustituye la IP origen local por su IP global pública. Este cambio es transparente para el receptor del paquete, éste solo ve la dirección global del router NAT. Cuando el receptor responde utiliza esa dirección como destino. Cuando el paquete de respuesta llega al router NAT se tiene que hacer la traslación nuevamente. En este caso, la dirección destino es cambiada desde 1.2.3.4 a 10.0.0.1.
- Pero aparece un problema cuando múltiples hosts en la red local, p.e. 10.0.0.1 y 10.0.0.2 envían un paquete al mismo destino. Puesto que la dirección de destino de ambos paquetes de respuesta es la dirección única global del router (por ejemplo, 1.2.3.4), el router no puede saber a qué host se debe reenviar una respuesta determinada. Para distinguir entre los puntos finales de comunicación en un host IP, podemos usar puertos. NAT resuelve el problema de mapeo cambiando el puerto de origen del paquete reenviado para distinguir a diferentes elementos de la comunicación. Un paquete de 10.0.0.1:14678 a 9.8.7.6:80 sería reescrito para originarse en 1.2.3.4:15676, (ver figura. Como la conexión es bidireccional, el host de destino (servidor web con puerto 80) responde de nuevo a 1.2.3.4:15676.

Ejemplo de NAT (1/2)

Ejemplo de NAT (2/2)

NAT TABLE

Nivel de Red: Servicio DHCP (1/2)

Host addresses can also be configured manually, but more often this task is now done using the **Dynamic Host Configuration Protocol (DHCP)** [RFC 2131] (**UDP ports: server 67, client 68**)

Nivel de Red: Servicio DHCP (2/2)

DHCP Dynamic Host Configuration Protocol (RFC 2131): DHCP allows a host to obtain (be allocated) an IP address automatically. A network administrator can configure DHCP so that a given host receives the same IP address each time it connects to the network, or a host may be assigned a **temporary IP address** that will be different each time the host connects to the network. In addition to host IP address assignment, DHCP also allows a host to learn additional information, such as its **subnet mask**, the address of its **first-hop router** (often called the default gateway), and the **address of its local DNS server.**

Nivel de Red: DHCP, Funcionamiento del Protocolo

Nivel de Red: Servicio DHCP, Trazas con Wireshark

Calle Playa de Liencres, 2 bis (entrada por calle Rozabella) Parque Europa Empresarial Edificio Madrid 28290 Las Rozas, Madrid

SOLICITA MÁS INFORMACIÓN

CENTRO ADSCRITO A:

PROYECTO COFINANCIADO POR:

