1.	In an experiment researchers found that a specific culture of bacteria increases in number
	according to the formula

$$N = 150 \times 2^{t}$$
,

where N is the number of bacteria present and t is the number of hours since the experiment began.

Use this formula to calculate

- (a) the number of bacteria present at the start of the experiment;
- (b) the number of bacteria present after 3 hours;
- (c) the number of hours it would take for the number of bacteria to reach 19 200.

Working:	
	Answers:
	(a)
	(b)
	(c)

(Total 4 marks)

2. The following diagram shows part of the graph of an exponential function $f(x) = a^{-x}$, where $x \in \mathbb{R}$.

- (a) What is the range of f?
- (b) Write down the coordinates of the point P.
- (c) What happens to the values of f(x) as elements in its domain increase in value?

Working:	
	Answers:
	(a)
	(b)
	(b)

(Total 4 marks)

3. Under certain conditions the number of bacteria in a particular culture doubles every 10 seconds as shown by the graph below.

(a) Complete the table below.

Time (seconds)	0	10	20	30
Number of bacteria	1			

(b) Calculate the number of bacteria in the culture after 1 minute.

Working:	
_	
	Answer:
	(b)

(Total 4 marks)

4. The graph below shows the curve $y = k(2^x) + c$, where k and c are constants.

Find the values of c and k.

Working:	
	Answers:

5. The following diagram shows the graph of $y = 3^{-x} + 2$. The curve passes through the points (0, a) and (1, b).

Diagram not to scale

- (a) Find the value of
 - (i) *a*;
 - (ii) b.

(b) Write down the equation of the asymptote to this curve.

1. (a) $N = 150 \times 2^0 = 150$

(A1) (C1)

(b) $N = 150 \times 2^3 = 1200$

(A1) (C1)

(c) $19200 = 150 \times 2^{t}$ $128 = 2^{t}$ 7 = t

- (M1)
- (A1) (C2) [4]
- $\mathbf{2.} \quad \text{(a)} \quad \mathbb{R}^+$
 - (b) P(0, 1) (A1)

Note: Award (A1) for 'Decrease', and (A1) for $\rightarrow 0$. Marks awarded at examiner's discretion.

[4]

3. (a)

Time (seconds)	0	10	20	30
Number of bacteria	1	2	4	8

(A2) (C2)

Note: Award [½ mark] for each correct entry (round up)

(b)
$$N = 2^6$$

Note: Award (M1) for any correct method

$$= 64$$
 (A1) (C2) [4]

4.
$$c = -10$$
 (asymptote of graph) (M1)(A1)
 $0 = k(2^1) - 10 \Rightarrow 2k = 10$ (M1)
 $\Rightarrow k = 5$ (A1)

OR

$$k+c=-5$$
 (M1) $2k+c=0$ (M1) Therefore, $k=5$ (A1) $c=-10$ (A1)

5. (a) (i)
$$y = 3^{-0} + 2$$
 (M1)
 $y = 1 + 2$ (A1)
 $a = 3$ (A1) (C3)

(ii)
$$y = 3^{-1} + 2$$
 (M1)
 $y = \frac{1}{3} + 2$ (A1)
 $b = 2\frac{1}{3}$ (A1)(C3)

(b)
$$y = 2$$
 (A2)(C2) Note: Award (A1) for $y = any constant$.