FCC TEST REPORT

For

ELEYEA ELECTRONICS INC.

reader

Model No. : 80901

FCC ID : XPI-80901

Operating

Frequency: 13.56M

Applicant : ELEYEA ELECTRONICS INC.

1039E, VALLEY BLVD., B111 SAN GABRIEL, CA91776

Regulation : FCC Part 15.225 Subpart C

Prepared by : AOV Testing Technology Co., Ltd

AOV Building, Xueyuan Road East, University City, Shenzhen

(Tanglang Village, Xili Town, Nanshan District), China

Test Date : August 20-25, 2009

Date of Report: August 25, 2009

TABLE OF CONTENT

Description
Page
Test Report Declaration

1. GENERAL INFORMATION	4
1.1 General Information	4
	4
	5
	6
	7
2. RADIATION INTERFERENCE	9
2.1. Rules Part No	9
	9
	10
3. CALCULATION OF DUTY CYCLE	11
4. FREQUENCY TOLERANCE	12
	12
	12
4.3. Test Result	12
5. OCCUPIED BANDWIDTH/BAND-EDGE	ES COMPLIANCE13
5.1. Rules Part No	13
	13
5.3. Test Result	13
6. POWER LINE CONDUCTED INTERFER	RENCE14
6.1. Rules Part No	14
	14
6.3. Test Result	14
7. ANTENNA REQUIREMENT	15
8 PHOTOGRAPH OF TEST	16

TEST REPORT DECLARATION

Applicant : ELEYEA ELECTRONICS INC.

Manufacturer : ELEYEA ELECTRONICS INC.

EUT Description: reader

Power Supply : Input DC 12V

Test Procedure Used: FCC Part 15.225 Subpart C

The E. U. T. listed below has been completed RFI testing by Shenzhen AOV Testing Technology Co., Ltd at the test site of Bontek Compliance Testing Laboratory Ltd. and the Interference emissions can pass *FCC Part 15.225 Subpart C* limitations.

The test configurations and the facility comply with the radiated criteria in **ANSI C63.4-2003**.

Date of Test:	August 20-25, 2009		
Prepared by:	Jessica		
	Project Engineer		
Determina	form.		
Reviewer:			
	Project Manager		

1. GENERAL INFORMATION

1.1 General Information

Description : reader

Operating

Frequency: 13.56M

Model No. : 80901

Applicant : ELEYEA ELECTRONICS INC.

1039E, VALLEY BLVD., B111 SAN GABRIEL, CA91776

Manufacturer: ELEYEA ELECTRONICS INC.

1039E, VALLEY BLVD., B111 SAN GABRIEL, CA91776

1.2 Test Facility

Test Firm : Bontek Compliance Testing Laboratory Ltd.

Certificated by FCC, Registration No.: 338263

Address : FL.1, Building H-3, Hua Qiao Cheng East Industrial Area

Qiaocheng East Road, Nanshan, Shenzhen, P.R.China

Tel : 86-755-86337020 Fax : 86-755-86337028

1.3 Test Summary

For the EUT described above. The standards used were FCC Part 15 Subpart C Section 15.225 for Emissions

Tests Carried Out Under FCC Part 15 Subpart C

Standard	Test Items	Status
Part 15 Subpart C	RADIATION INTERFERENCE	Complied
Section 15.225	CALCULATION OF DUTY CYCLE	Complied
Section 15.225	FREQUENCY TOLERANCE	Complied
	OCCUPIED	Complied
	BANDWIDTH/BAND-EDGES	
	COMPLIANCE	
	POWER LINE CONDUCTED	N/A
	INTERFERENCE	
Part 15 Subpart C		
Section 15.203	ANTENNA REQUIREMENT	Complied

1.4 Test Instrument Used

No.	Equipment	Manufacturer Model No.		S/N	Calculator date
1.	EMI Test Receiver	R&S ESCI 100687 2009		2009-2-22	
2.	EMI Test Receiver	R&S	FSU	BCT-019	2009-2-22
3.	Amplifier	HP	8447D	1937A02492	2009-2-22
4.	TRILOG Broadband Test-Antenna	SCHWARZBECK	VULB9163	9163-324	2009-2-22
5.	Horn Antenna	SCHWARZBECK	BBHA9120A	B08000991-0001	2009-2-27
6.	High Field Biconical Antenna	ELECTRO-METRICS	EM-6913	166	2009-2-22
7.	Log Periodic Antenna	ELECTRO-METRICS	EM-6950	811	2009-2-22
8.	Remote Active Vertical Antenna	ELECTRO-METRICS	EM-6892	304	2009-2-22
9.	Teo Line Single Phase Module	SCHWARZBECK	NSLK8128	D-69250	2009-3-31
10.	Positioning Controller	C&C	CC-C-1F	MF7802113	2009-2-22
11.	Loop Antenna	SCHWARZBECK	FMZB1516	1516131	2009-2-22
12.	Bilog Antenna	SCHWARZBECK	VULB9163	9163-323	2009-2-22
13.	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-655	2009-2-22
14.	Horn Antenna	SCHWARZBECK	BBHA9170D	9170-359	2009-2-22
15.	10dB attenuator	SCHWARZBECK	MTAIMP-136	R65.90.0001#06	2009-2-22

1.5 Test Procedure

Power Line Conducted Interference:

The procedure used was ANSI STANDARD C63.4-2003 using a 50uH LISN. Both lines were observed with the DUT transmitting. The resolution bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

Radiation Interference:

The test procedure used was ANSI C63.4-2003 using an Agilent spectrum analyzer with a preselector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz.

ANSI Standard C63.4-2003 10.1.7 Measurement Procedures:

The DUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The DUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to 10th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes if necessary and the highest readings were converted to average readings based on the duration of "ON" time in 100 mseconds.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

Frequency Stability:

The test procedure used was ANSI C63.4: 2003. Temperature and voltage tests were performed to verify that the frequency tolerance of the carrier signal remains within the ±0.01% of the operating frequency over a temperature variation of –20°C to +50°C at normal supply voltage and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 °C.

The test was conducted as follows: The transmitter was placed in the temperature chamber at 25°C and allowed to stabilize for one hour. The transmitter was keyed ON for one minute during which time four frequency readings were recorded at 15-second intervals. The worse case number was recorded. The assigned channel frequency was considered to be the reference frequency. The temperature was then reduced to -20°C after which the transmitter was again allowed to stabilize. The transmitter was keyed ON for one minute, and again frequency readings were noted at 15-second intervals. This procedure was repeated in 10°C increments up to +50°C.

Readings were also taken at 15% of the battery voltage.

2. RADIATION INTERFERENCE

2.1. Rules Part No.

Part 15.225, Part 15.209

2.2.Limits

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental
(1011 12)	dBµV/m @ 3 meters
13.553 – 13.567	124

Fundamental Frequency (MHz)	Field Strength of Harmonics and Spurious Emissions
0.009 - 0.490	2400/F (kHz) uV/m @ 300 meters
0.490 - 1.705	24000/F (kHz) uV/m @ 30 meters
1.705 – 30.0	29.54 dBuV/m @ 30 meters or 69.54 dBuV/m @ 3 meters
30 – 88	40.00 dBuV/m @ 3 meters
88 – 216	43.50 dBuV/m @ 3 meters
216 – 960	46.00 dBuV/m @ 3 meters
Above 960	54.00 dBuV/m @ 3 meters

2.3.Test Result

PASS

Field Strength of Fundamental:

Frequency	Read Level	Limit	Margin
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)
13.5601	42.20	124.00	81.80

Field Strength of Spurious Emission:

Frequency (MHz)	Antenna Polarity (H/V)	Read Level (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)
27.13	N/A	34.20	69.50	35.30
40.70	Н	33.15	40.00	6.85
54.26	Н	34.60	40.00	5.40
67.70	Н	33.65	40.00	6.35
81.26	Н	35.40	40.00	4.60
94.82	Н	37.06	46.00	8.96
122.04	Н	35.80	46.00	10.20
134.60	Н	35.20	46.00	10.80
135.64	Н	37.40	46.00	8.60
40.70	V	33.13	40.00	6.87
54.26	V	34.30	40.00	5.70
67.70	V	33.55	40.00	6.45
81.26	V	35.45	40.00	4.55
94.82	V	37.66	46.00	8.34
122.04	V	35.83	46.00	10.17
134.00	V	35.10	46.00	10.90
135.64	V	37.45	46.00	8.55

3. CALCULATION OF DUTY CYCLE

The period of the pulse train is determined by observing it on an oscilloscope or a spectrum analyzer with zero (0) frequency span. A plot is then made of the pulse train with a sweep time of 100 milliseconds. This sweep determines the duration of the pulse train. This sweep allows the determination of the number of and type of pulses, i.e. long & short. Plots are then made showing the duration of each type of pulse and its duration. From the 100 millisecond plot, the number of a given type of pulse is then multiplied by the duration of that type pulse. This allows the calculation of the amount of time the DUT is on within 100 ms. If the pulse train is longer than 100 ms then this number is multiplied by 100 to determine the percentage ON TIME. If the pulse train and then multiplied by 100 to determine the percentage ON TIME.

100% ON time. CW Signal. No correction taken.

4. FREQUENCY TOLERANCE

4.1. Rules Part No.

Part 15.225(e), Part 2.1055

4.2.Limits

The frequency tolerance shall be maintained within ±0.01% (100PPM) of the operating frequency

4.3.Test Result

PASS

TEST DATA

Assigned Frequency (MHz)	13.5607 MHz	
Temperature °C	Measured Frequency MHz	PPM
-20	13.564320	12.40
-10	13.564316	12.07
0	13.564282	9.56
+10	13.564243	6.64
+20	13.564242	1.84
+30	13.564177	-2.74
+40	13.564104	-2.26
+50	13.564116	-2.02
Battery 85% End-point at 20°C	13.564147	-0.37
Battery 115% End-point at 20°C	13.564148	-0.27

5. OCCUPIED BANDWIDTH/BAND-EDGES COMPLIANCE

5.1. Rules Part No.

Part 15.225

5.2.Limits

- (a) The field strength of any emissions within this band shall not exceed 10,000 microvolts/meter at 30 meters.
- (b) The field strength of any emissions appearing outside of this band shall not exceed the general radiated emission limits shown in §15.209.
- (c) The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency over a temperature variation of ¥20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

5.3.Test Result

6. POWER LINE CONDUCTED INTERFERENCE

6.1. Rules Part No.

Part 15.207

6.2.Limits

Frequency (MHz)	Quasi Peak Limits (dBuV)	Average Limits (dBuV)
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30	60	50

6.3.Test Result

Not applicable

7. ANTENNA REQUIREMENT

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna is fixed by enclosure, can not be changed except take apart the product.

8. PHOTOGRAPH OF TEST

Radiated Emission test

(9K-30MHz)

(30MHz-1GHz)

