Intro den 10 oktober 2018

En mängd är ett vektorrum om den uppfyller 10 kriterier som jag inte tänker skriva ner. R^n är det kanoniska exemplet, men det finns MÅNGA vektorrum. Det är legitimt att säga att linjär algebra är läran om vektorrum, och allt vi talat om kring matriser etc. är bara ett kanoniskt exempel av detta. De välkända begreppen bas, linjärkombination, linjärt oberoende, linjärt hölje etc har precis samma betydelse i ett generellt vektorrum. Sats: Om W är en icke-tom mängd vektorer i ett vektorrum V så är W ett delrum av V om och endast om W är slutet under skalärmultiplikation och addition. Det finns en massa olika rum som kvalificerar sig som vektorrum. Ett exempel är P_n, vilket är ett n+ 1-dimensionellt vektorrum av alla polynom av grad n eller mindre. Basvektorerna är då polynom, och standardbasen är (1, x, x^2). lsomorfi: En isomorfi är en linjär avbildning mellan två vektorrum som är injektiv och surjektiv. Dessa är mycket mycket häftigare i allmänna vektorrum, som ni kommer få se. Det innebär att man kan hoppa mellan vektorrum och jobba i det vektorrum som är enklast, och sedan transformera tillbaka med hjälp av inversen till isomorfin som man vet finns. Sats: Alla n-dimensionella vektorrum är isomorfa mot R^n. Detta är ett oerhört, oerhört kraftfullt resultat som innnebär att man med en isomorfi kan överföra ett problem i vilket n-vektorrum som helst, och få det att handla om matriser och vektorer istället. Dessa är ju jättetrevliga att jobba med! Jag kommer inte räkna så många uppgifter den här övningen utan kommer låta er räkna rätt mycket själva och sen gå runt och hjälpa er. Detta då jag tror att det kommer krävas en del förklaringar av vad som händer, som jag tror är bäst att göra enskilt.

tober 2018 20:41

liller av följunde av delmen för Pz?

Dislutur en hort stand med bänkgrannen.

Sots: Dehum our sluter moler adelition och sholor mullight hubion.

4. (a,x+42x2) z haix + hazx2 &A.

$$L(a_0 + a_1 + a_2 + a_2) = L(a_0 + La_0 + La_0 + La_0 + La_0 + a_0 + La_0 + L$$

(a o + a, x + a z x²) = Veac + Vza, x + Vzaz x² = both, x + bzx & C.

Di or Cink ett delmu till Pz.

Lat

uisa att {p,pz,ps} år en bas för Pz och ultych p som en liggir herebination av p, pz och ps.

un vill visu att de ar dignit observede et besch en mangel ar u st d'uj. obser velstover; ett u-dien neletorem spainnerupp numet.

Anvand den naturlige transformationer

$$T: P_2 - > IR^3$$

$$a_0 + a_1 \times r a_2 \times^2 - > \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}.$$

bilda
$$G_1 := \left[P_1 J_{1R^2} \left[P_2 J_{1R^3} \left[P_5 J_{1R^6} \right] \right] \right]$$

$$= \left[\begin{array}{ccc} 1 & 3 & 3 \\ 2 & q & 3 \\ 1 & 0 & 4 \end{array} \right]$$

och an den naheslige juvereen

$$\begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} \rightarrow a_0 + a_1 x + a_2 x^2$$

Sok:
$$(7 = P_{g \to e})$$
.

=) $P_{g \to R} = (7^{-1} = ... = \begin{bmatrix} -36 & 6 & 21 \\ 5 & -1 & -3 \\ q & -2 & -5 \end{bmatrix}$,

 $P_{g \to R} = [P_{g \to R}] = [P_{g \to R$

Delta ar Moeticientema av linjärhoudineliener, annård Γ^{-1} igen: $\bar{p} = b_0 \bar{p}_1 + b_1 \bar{p}_2 + b_2 \bar{p}_5$

$$\begin{aligned} & \lim_{|\vec{p_1} + 2\vec{p_2} - \vec{p_3} = | \cdot (|+2x+x^2|) + 2(2+\alpha x) - |(3+3x+4x^2) = \\ & = (|+4-3|) + (2+16-3) + (|-4|) + |x^2| = \\ & = 2 + |7x - 3x^2| = \vec{p} \qquad \text{Magilill!} \end{aligned}$$

a) Lat T: P, >Pz ; T(pw) = xpw.

willen av boljemble en noigra ligger: renge (T)?

9,(x=1+x+x2 Ne), to lugsta juder misterne 1.

92(x)= X+5x2 Ja! T(1+5x)=x+5x2.

43(x)=0 Ju! [(0)=0.

b) Låt T:Pz → |R²; T(p) = (p(-1), p(1)). Wilha om vågra un följende ligger
i hur(t)?

q,2 x2-1 Ja! T(q,)=(1-1,1-1)=0

92 = X2+1 Nej! T(42) +0

930 Ju! T(93)=0.

Behalika den naturliga visornortia $T: P_2 \rightarrow \mathbb{R}^3$. $T(a_0 + a_1 \times ra_2 \times^2) = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}$.

a) withen releter peps mokumer

v = (2, 3, -1) under dema isomerti?

Sun: p=2+ >x-x2

- 6) Hitta andrewoode bas; M3 lill delnamet P, = Span &1, x3 lill
 P2.

 B = \{ \(\begin{align*} 1(1), \tau(x) \xeta = \begin{align*} 0 \\ 0 \end{align*}, \begin{align*} 0 \\ 0 \end{align*}.
- c) Hiller standardwestriser i 188 for den siyara operator

Q(p(x)) = p(x+1) pà P2.

En sista skitsvår tentauppgift

den 10 oktober 2018 20:51

8. (5p) Låt $f: \mathbb{R}^n \to \mathbb{R}^n$ vara en avbildning. Vi säger att $\vec{x}_0 \in \mathbb{R}^n$ är en $fixpunkt$ om $f(\vec{x}_0) = \vec{x}_0$. En kvadratisk matris \mathbf{A} med egenskapen att $ \mathbf{A}\vec{x} > \vec{x} $ för alla $\vec{x} \neq \vec{0}$ säges vara $expansiv$. Givet $\vec{b} \in \mathbb{R}^n$ och en expansiv $n \times n$ -matris \mathbf{A} , definiera en avbildning $f: \mathbb{R}^n \to \mathbb{R}^n$ genom att låta $f(\vec{x}) = \mathbf{A}\vec{x} + \vec{b}$. Visa att f har en fixpunkt.
are and and are the area of the area are a map and are area.
Maile seis aus ui läasu das a ⁸ blis dat haffa ash bullal
Maila mig om ni löser den så blir det kaffe och bulle!