NOIP 2018

Day 2

dy0607

October 6, 2018

题目名称	Reverse	Silhouette	Seat
源文件名	reverse	silhouette	seat
输入文件名	reverse.in	silhouette.in	seat.in
输出文件名	reverse.out	silhouette.out	seat.out
题目类型	传统型	传统型	传统型
每个测试点时限	1.0s	1.0s	1.0s
空间限制	512MB	512MB	512MB
编译命令	-lm - O2 - std = c + +11		

Notes:

- 1. 评测在Ubuntu16.04(64bit)上进行, 评测时开启无限栈;
- 2. 评测机配置为Intel® Pentium(R) CPU G2030 @ 3.00GHz × 2, 内存4GB;
- 3. 遇到原题请不要大喊"这不是xx上的xx题吗",可以AK后提前离场;
- 4. 输入量较大,建议使用较快的读入方式。
- 5. 题目难度可能与顺序无关。

1 Reverse

1.1 Description

小G有一个长度为n的01串T,其中只有 $T_S = 1$,其余位置都是0。现在小G可以进行若干次以下操作:

• 选择一个长度为K的连续子串(K是给定的常数),翻转这个子串。

对于每个 $i,i \in [1,n]$, 小G想知道最少要进行多少次操作使得 $T_i = 1$. 特别的,有m个"禁止位置",你需要保证在操作过程中1始终不在任何一个禁止位置上。

1.2 Input

从文件reverse.in中读入数据.

第一行四个整数n, K, m, S.

接下来一行加个整数表示禁止位置。

1.3 Output

输出到文件reverse.out中.

输出一行n个整数,对于第i个整数,如果可以通过若干次操作使得 $T_i = 1$,输出最小操作次数,否则输出-1.

1.4 Sample1

1.4.1 Input

6 2 0 1

1.4.2 Output

0 1 2 3 4 5

1.5 Sample2

1.5.1 Input

10 4 3 3

2 5 10

NOIP 2018 Simulation 1 REVERSE

1.5.2 Output

2 -1 0 1 -1 1 2 3 2 -1

1.6 Sample3

见选手目录下的reverse/reverse3.in与reverse/reverse3.ans.

1.7 Sample4

见选手目录下的reverse/reverse4.in与reverse/reverse4.ans.

1.8 Subtasks

对于所有数据,有 $1 \le n \le 10^5, 1 \le S, k \le n, 0 \le m \le n$. 保证S不是禁止位置,但禁止位置可能有重复。

- Subtask1(24%), $n \le 10$.
- Subtask2(22%), $n \le 10^3$.
- Subtask3(3%), k = 1.
- Subtask4(8%), k = 2.
- Subtask5(43%), 没有特殊的约束。

2 Silhouette

2.1 Description

有一个 $n \times n$ 的网格,在每个格子上堆叠了一些边长为1的立方体。

现在给出这个三维几何体的正视图和左视图,求有多少种与之符合的堆叠立方体的方案。两种方案被认为是不同的,当且仅当某个格子上立方体的数量不同。

输出答案对109+7取模的结果。

2.2 Input

从文件silhouette.in中读入数据.

第一行一个整数n.

第二行n个整数,第i个表示正视图中从左到右第i个位置的高度 A_i 。

第三行n个整数,第i个表示左视图中从左到右第i个位置的高度 B_i 。

2.3 Output

输出到文件silhouette.out中.

输出一行表示答案。

2.4 Sample1

2.4.1 Input

2

1 2

2 1

2.4.2 Output

5

2.4.3 Explanation

正视图和左视图:

如果用2×2的矩阵来表示每个格子上堆叠的立方体个数,则五种方案可以表示为:

 1 2
 0 2
 1 2
 0 2
 1 2

 1 1
 1 0
 1 0
 1 1
 0 1

2.5 Sample2

2.5.1 Input

3

3 1 3

2 3 2

2.5.2 Output

175

2.6 Sample3

2.6.1 Input

3

1 1 1

3 3 3

2.6.2 Output

0

2.7 Sample4

见选手目录下的silhouette/silhouette4.in与silhouette/silhouette4.ans.

2.8 Sample5

见选手目录下的silhouette/silhouette5.in与silhouette/silhouette5.ans.

2.9 Subtasks

对于所有数据,有 $1 \le n \le 10^5, 1 \le A_i, B_i \le 10^9$.

- Subtask1(3%), n = 1.
- Subtask2(14%), $n \le 3, A_i, B_i \le 4$.

NOIP 2018 Simulation 2 SILHOUETTE

- Subtask3(17%), $n \le 16$.
- Subtask4(24%), $n \le 100$.
- SUbtask5(13%), $n \le 3000$.
- Subtask6(18%), A_i , B_i 分别构成了一个1至n的排列.
- Subtask7(11%), 没有特殊的约束.

NOIP 2018 Simulation 3 SEAT

3 Seat

3.1 Description

有n+2个座位等距地排成一排,从左到右编号为0至n+1。

最开始时0号以及n+1号座位上已经坐了一个小G,接下来会有n个小G依次找一个空座位坐下。由于小G们坐得太近就容易互相搏弈,每个小G会找一个当前**离最近的小G距离最远**的座位坐下。如果有多个备选的座位,这个小G会等概率选择其中一个。

给出n,求第i个坐下的小G坐在j号座位的概率,对P取模。具体来说,如果答案化为最简分数可以表示为 $\frac{a}{b}$,你需要输出 $a\times b^{-1}$,其中 $b^{-1}=b^{P-2}\pmod{P}$.

3.2 Input

从文件seat.in中读入数据. 一行两个整数n.P。

3.3 Output

输出到文件seat.out中.

输出n个整数,第i行第j个整数表示第i个小G坐在第j个座位的概率。

3.4 Sample1

3.4.1 Input

4 10007

3.4.2 Output

0 5004 5004 0

3336 1668 1668 3336

3336 1668 1668 3336

3336 1668 1668 3336

3.4.3 Explanation

第一个小G会在中间两个位置中随机选择一个,接下来无论选哪个位置最近的距离都是1. $\frac{1}{2}=5004\pmod{10^4+7}, \frac{1}{3}=3336\pmod{10^4+7}, \frac{1}{6}=1668\pmod{10^4+7}$

NOIP 2018 Simulation 3 SEAT

3.5 Sample2

见选手目录下的seat/seat2.in与seat/seat2.ans.

3.6 Subtasks

对于所有数据,满足 $2 \le n \le 1024,2000 \le P \le 30000, P$ 是质数。本题共25个测试点,每个测试点4分。

测试点编号	n
1	= 1
2	=2
3, 4	≤ 10
5, 6	≤ 20
7, 8	≤ 32
9, 10	≤ 48
11, 12	≤ 64
13	≤ 80
14	≤ 100
15	= 127
16, 17, 18, 19, 20	≤ 300
21	= 511
22	= 1023
23, 24, 25	≤ 1024