14.3

Exercícios

- **1.** A temperatura T (em °C)de uma localidade do Hemisfério Norte depende da longitude x, da latitude y e do tempo t, de modo que podemos escrever T = f(x, y, t). Vamos medir o tempo em horas a partir do início de janeiro.
 - (a) Qual o significado das derivadas parciais $\partial T/\partial x$, $\partial T/\partial y$ e $\partial T/\partial t$?
 - (b) Honolulu tem longitude de 158° W e latitude de 21° N. Suponha que às 9 horas em 1° de janeiro esteja ventando para noroeste uma brisa quente, de forma que a Oeste e a Sul o ar esteja quente e a Norte e Leste o ar esteja mais frio. Você esperaria que f_x (158, 21, 9), f_y (158, 21, 9) e f_t (158, 21, 9) fossem positivos ou negativos? Explique.
- **2.** No início desta seção discutimos a função I = f(T, H), onde I era o humidex; T, a temperatura; e H, a umidade relativa. Utilize a Tabela 1 para estimar f_T (34, 75) e f_H (34, 75). Quais são as interpretações práticas desses valores?
- **3.** O índice de sensação térmica W é a temperatura sentida quando a temperatura real é T e a velocidade do vento, v. Portanto, podemos escrever W = f(T, v). A tabela de valores a seguir foi extraída da Tabela 1 da Seção 14.1.

Velocidade do vento (km/h)

(°C)	T v	20	30	40	50	60	70
real (-10	-18	-20	-21	-22	-23	-23
Temperatura	-15	-24	-26	-27	-29	-30	-30
	-20	-30	-33	-34	-35	-36	-37
Теп	-25	-37	-39	-41	-42	-43	-44

- (a) Estime os valores de $f_T(-15, 30)$ e $f_v(-15, 30)$. Quais são as interpretações práticas desses valores?
- (b) Em geral, o que se pode dizer sobre o sinal de $\partial W/\partial T$ e $\partial W/\partial v$?
- (c) Qual parece ser o valor do seguinte limite?

$$\lim_{v\to\infty}\frac{\partial W}{\partial v}$$

4. A altura h de ondas em mar aberto depende da velocidade do vento v e do tempo t durante o qual o vento se manteve naquela intensidade. Os valores da função h = f(v, t) são apresentados na seguinte tabela.

Duração (horas)

	3 \ /								
Velocidade do vento (km/n)	v t	5	10	15	20	30	40	50	
	20	0,6	0,6	0,6	0,6	0,6	0,6	0,6	
	30	1,2	1,3	1,5	1,5	1,5	1,6	1,6	
	40	1,5	2,2	2,4	2,5	2,7	2,8	2,8	
	60	2,8	4,0	4,9	5,2	5,5	5,8	5,9	
	80	4,3	6,4	7,7	8,6	9,5	10,1	10,2	
	100	5,8	8,9	11,0	12,2	13,8	14,7	15,3	
	120	7,4	11,3	14,4	16,6	19,0	20,5	21,1	

- (a) Qual o significado das derivadas parciais $\partial h/\partial v$ e $\partial h/\partial t$?
- (b) Estime os valores de $f_v(80, 15)$ e $f_t(80, 15)$. Quais são as interpretações práticas desses valores?
- (c) Qual parece ser o valor do seguinte limite?

$$\lim_{t\to\infty}\frac{\partial h}{\partial t}$$

5–8 Determine os sinais das derivadas parciais da função *f* cujo gráfico está mostrado.

- **5.** (a) $f_x(1, 2)$
- (b) $f_{y}(1, 2)$
- **6.** (a) $f_x(-1, 2)$
- (b) $f_y(-1, 2)$
- 7. (a) $f_{xx}(-1, 2)$
- (b) $f_{yy}(-1, 2)$
- **8.** (a) $f_{xy}(1, 2)$
- (b) $f_{xy}(-1, 2)$
- **9.** As seguintes superfícies, rotuladas a, b e c, são gráficos de uma função f e de suas derivadas parciais f_x e f_y . Identifique cada superfície e dê razões para sua escolha.

- É necessário usar uma calculadora gráfica ou computador
- 1. As Homework Hints estão disponíveis em www.stewartcalculus.com

10. Um mapa de contorno de uma função f é apresentado. Utilize--o para estimar $f_{y}(2, 1)$ e $f_{y}(2, 1)$.

- **11.** Se $f(x, y) = 16 4x^2 y^2$, determine $f_x(1, 2)$ e $f_y(1, 2)$ e interprete esses números como inclinações. Ilustre ou com um esboço à mão ou utilizando o computador.
- **12.** Se $f(x, y) = \sqrt{4 x^2 4y^2}$, determine $f_x(1, 0)$ e $f_y(1, 0)$ e interprete esses números como inclinações. Ilustre ou com um esboço à mão ou utilizando o computador.
- 13-14 Determine f_x e f_y e faça os gráficos f_x , f_x e f_y com domínios e pontos de vista que lhe permitam ver a relação entre eles.

13.
$$f(x, y) = x^2 y^3$$

14.
$$f(x, y) = \frac{y}{1 + x^2 y^2}$$

15-40 Determine as derivadas parciais de primeira ordem da função.

15.
$$f(x, y) = y^5 - 3xy$$

16.
$$f(x, y) = x^4 y^3 + 8x^2 y$$

17.
$$f(x, t) = e^{-t} \cos \pi x$$

18.
$$f(x, t) = \sqrt{x} \ln t$$

19.
$$z = (2x + 3y)^{10}$$

20.
$$z = \lg xy$$

21.
$$f(x, y) = \frac{x}{y}$$

22.
$$f(x, y) = \frac{x}{(x + y)^2}$$

23.
$$f(x, y) = \frac{ax + by}{cx + dy}$$
 24. $w = \frac{e^{v}}{u + v^{2}}$

24.
$$w = \frac{e^v}{u + v^2}$$

25.
$$g(u, v) = (u^2v - v^3)^5$$
 26. $f(x, t) = arctg(x\sqrt{t})$

26.
$$f(x,t) = \arctan(x\sqrt{t})$$

27.
$$w = \operatorname{sen} \alpha \cos \beta$$

28.
$$f(x, y) = x^y$$

29.
$$F(x, y) = \int_{y}^{x} \cos(e^{t}) dt$$

30.
$$F(\alpha, \beta) = \int_{\alpha}^{\beta} \sqrt{t^3 + 1} dt$$

31.
$$f(x, y, z) = xz - 5x^2y^3z^4$$

32.
$$f(x, y, z) = x \operatorname{sen}(y - z)$$

33.
$$w = \ln(x + 2y + 3z)$$

34.
$$w = ze^{xyz}$$

35.
$$u = xy \operatorname{sen}^{-1}(yz)$$

36.
$$u = x^{y/z}$$

37.
$$h(x, y, z, t) = x^2 y \cos(z/t)$$

38.
$$\phi(x, y, z, t) = \frac{\alpha x + \beta y^2}{\gamma z + \delta y^2}$$

39.
$$u = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$$

40.
$$u = \text{sen}(x_1 + 2x_2 + \cdots + nx_n)$$

41–44 Determine as derivadas parciais indicadas.

41.
$$f(x, y) = \ln(x + \sqrt{x^2 + y^2});$$
 $f_x(3, 4)$

42.
$$f(x, y) = arctg(y/x);$$
 $f_x(2, 3)$

43.
$$f(x, y, z) = \frac{y}{x + y + z}$$
; $f_y(2, 1, -1)$

44.
$$f(x, y, z) = \sqrt{\sin^2 x + \sin^2 y + \sin^2 z};$$
 $f_z(0, 0, \pi/4)$

45–46 Use a definição de derivadas parciais como limites 4 para encontrar $f_x(x, y)$ e $f_y(x, y)$.

45.
$$f(x, y) = xy^2 - x^3y$$

45.
$$f(x, y) = xy^2 - x^3y$$
 46. $f(x, y) = \frac{x}{x + y^2}$

47–50 Use a derivação implícita para encontrar $\partial z/\partial x$ e $\partial z/\partial y$.

47.
$$x^2 + 2y^2 + 3z^2 = 1$$

48.
$$x^2 - y^2 + z^2 - 2z = 4$$

49.
$$e^z = xyz$$

50.
$$yz + x \ln y = z^2$$

51–52 Determine $\partial z/\partial x$ e $\partial z/\partial y$.

51. (a)
$$z = f(x) + g(y)$$

(b)
$$z = f(x + y)$$

52. (a)
$$z = f(x)g(y)$$

(b)
$$z = f(xy)$$

(c)
$$z = f(x/y)$$

$$(b) \subset f(xy)$$

53.
$$f(x, y) = x^3y^5 + 2x^4y$$
 54. $f(x, y) = \sin^2(mx + ny)$

55.
$$w = \sqrt{u^2 + v^2}$$
 56. $v = \frac{xy}{x - y}$

56.
$$v = \frac{xy}{x - y}$$

57.
$$z = \arctan \frac{x+y}{1-xy}$$
 58. $v = e^{xe^y}$

58.
$$v = e^{xe^{x}}$$

59–62 Verifique se a conclusão do Teorema de Clairaut é válida, isto \acute{e} , $u_{xy} = u_{yx}$.

59.
$$u = x^4y^3 - y^4$$

60.
$$u = e^{xy} \text{sen } y$$

61.
$$u = \cos(x^2y)$$

62.
$$u = \ln(x + 2y)$$

63–70 Determine a(s) derivada(s) parcial(is) indicada(s).

63.
$$f(x, y) = x^4y^2 - x^3y$$
; f_{xxx} , f_{xyx}

64.
$$f(x, y) = \text{sen}(2x + 5y)$$
; f_{yxy}

65.
$$f(x, y, z) = e^{xyz^2}$$
; f_{xyz}

66.
$$g(r, s, t) = e^r \text{sen}(st);$$
 g_{rst}

67.
$$u = e^{r\theta} \operatorname{sen} \theta; \qquad \frac{\partial^3 u}{\partial r^2 \partial \theta}$$

68.
$$z = u\sqrt{v - w}$$
; $\frac{\partial^3 z}{\partial u \, \partial v \, \partial w}$

69.
$$w = \frac{x}{y + 2z}$$
; $\frac{\partial^3 w}{\partial z \partial y \partial x}$, $\frac{\partial^3 w}{\partial x^2 \partial y}$

70.
$$u = x^a y^b z^c$$
; $\frac{\partial^6 u}{\partial x \partial y^2 \partial z^3}$

- **71.** Se $f(x, y, z) = xy^2z^3 + \arcsin(x\sqrt{z})$, determine f_{xzy} . [Dica: Qual ordem de diferenciação é a mais fácil?]
- **72.** Se $q(x, y, z) = \sqrt{1 + xz} + \sqrt{1 xy}$, determine q_{xyz} . [Dica: Use uma ordem de diferenciação diferente para cada termo.]
- 73. Use a tabela de valores de f(x, y) para estimar os valores de $f_x(3, 2), f_x(3, 2, 2) e f_{xy}(3, 2).$

x	1,8	2,0	2,2
2,5	12,5	10,2	9,3
3,0	18,1	17,5	15,9
3,5	20,0	22,4	26,1

- 74. As curvas de nível são mostradas para uma função f. Determine se as seguintes derivadas parciais são positivas ou negativas no ponto P.
 - (a) f_x
- (b) f_v
- (c) f_{xx}

- $(d) f_{xy}$
- $(e) f_{yy}$

- **75.** Verifique se a função $u = e^{-\alpha^2 k^2 t}$ sen kx é solução da equação de condução do calor $u_t = \alpha^2 u_{xx}$.
- Determine se cada uma das seguintes funções é solução da equação de Laplace $u_{xx} + u_{yy} = 0$.
 - (a) $u = x^2 + y^2$
- (c) $u = x^3 + 3xy^2$
- (b) $u = x^2 y^2$ (d) $u = \ln \sqrt{x^2 + y^2}$
- (e) $u = \operatorname{sen} x \cosh y + \cos x \operatorname{senh} y$
- (f) $u = e^{-x} \cos y e^{-y} \cos x$
- 77. Verifique se a função u $u = 1/\sqrt{x^2 + y^2 + z^2}$ é uma solução da equação de Laplace tridimensional $u_{xx} + u_{yy} + u_{zz} = 0$.
- 78. Mostre que cada uma das seguintes funções é uma solução da equação da onda $u_{tt} = a^2 u_{xx}$.
 - (a) $u = \operatorname{sen}(kx) \operatorname{sen}(akt)$
 - (b) $u = t/(a^2t^2 x^2)$
 - (c) $u = (x at)^6 + (x + at)^6$
 - (d) $u = \operatorname{sen}(x at) + \ln(x + at)$
- **79.** Se f e g são funções duas vezes diferenciáveis de uma única variável, mostre que a função

$$u(x, t) = f(x + at) + g(x - at)$$

é solução da equação de onda dada no Exercício 78.

80. Se $u = e^{a_1x_1 + a_2x_2 + \dots + a_nx_n}$, onde $a_1^2 + a_2^2 + \dots + a_n^2 = 1$, mostre que

$$\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \dots + \frac{\partial^2 u}{\partial x_n^2} = u$$

81. Verifique que a função $z = \ln(e^x + e^y)$ é uma solução das equações diferenciais

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$$

e

$$\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = 0$$

- 82. A temperatura em um ponto (x, y) de uma chapa de metal é dada por $T(x, y) = 60/(1 + x^2 + y^2)$, onde T é medido em °C e x, y em metros. Determine a taxa de variação da temperatura no ponto (2, 1) em (a) a direção x e (b) a direção y.
- A resistência total R produzida por três condutores com resistência R₁, R₂ e R₃ conectados em paralelo em um circuito elétrico é dada pela fórmula

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Determine $\partial R/\partial R_1$.

Mostre que a função produção de Cobb-Douglas $P = bL^{\alpha}K^{\beta}$ satisfaz a equação

$$L\frac{\partial P}{\partial L} + K\frac{\partial P}{\partial K} = (\alpha + \beta)P$$

Mostre que a função produção de Cobb-Douglas satisfaz $P(L, K_0) = C_1(K_0)L^{\alpha}$ resolvendo a equação diferencial

$$\frac{dP}{dL} = \alpha \frac{P}{L}$$

(Veja a Equação 6.)

- Cobb e Douglas usaram a equação $P(L, K) = 1,01L^{0.75} K^{0.25}$ para o modelo de economia norte-americana de 1899 a 1922, onde Lé a quantidade de trabalho e K, a quantidade de capital. (Veja o Exemplo 3 na Seção 14.1.)
 - (a) Calcule P_L e P_K .
 - (b) Encontre a produtividade marginal de trabalho e a produtividade marginal de capital no ano de 1920, quando L = 194e K = 407 (em comparação com os valores atribuídos L = 100 e K = 100 em 1899). Interprete os resultados.
 - (c) No ano de 1920, o que trouxe mais benefícios para a produção: um aumento no capital de investimento ou um aumento nos gastos com mão de obra?
- 87. A equação de van der Waals para n mols de um gás é

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

onde P é a pressão, V é o volume e T é a temperatura do gás. A constante R é a constante universal de gás e a e b são constantes positivas que são características de um gás em particular. Calcule $\partial T/\partial P$ e $\partial P/\partial V$.

A lei dos gases para uma massa fixa m de um gás ideal à temperatura absoluta T, pressão P e volume $V \notin PV = mRT$, onde Ré a constante do gás. Mostre que

$$\frac{\partial P}{\partial V}\frac{\partial V}{\partial T}\frac{\partial T}{\partial P} = -1$$

89. Para o gás ideal do Exercício 88, mostre que

$$T\frac{\partial P}{\partial T}\frac{\partial V}{\partial T} = mR$$

O índice de sensação térmica é modelado pela função

$$W = 13,12 + 0,6215T - 11,37v^{0,16} + 0,3965Tv^{0,16}$$

onde T é a temperatura (°C) e v, a velocidade do vento (km/h). Quando T = -15 °C e v = 30 km/h, quanto você espera que a temperatura aparente W caia se a temperatura real decrescer em 1°C? E se a velocidade do vento aumentar em 1 km/h?

91. A energia cinética de um corpo com massa m e velocidade v é $K = \frac{1}{2} mv^2$. Mostre que

$$\frac{\partial K}{\partial m} \frac{\partial^2 K}{\partial v^2} = K$$

- 92. Se a, b e c são os lados de um triângulo e A, B e C são os ângulos opostos, determine $\partial A/\partial a$, $\partial A/\partial b$ e $\partial A/\partial c$ pela derivação implícita da Lei dos Cossenos.
- 93. Disseram-lhe que existe uma função f cujas derivadas parciais são $f_x(x, y) = x + 4y$ e $f_y(x, y) = 3x - y$. Você deve acreditar nisso?

 \mathbb{A}

- **94.** O paraboloide $z = 6 x x^2 2y^2$ intercepta o plano x = 1 em uma parábola. Determine as equações paramétricas para a reta tangente a essa parábola no ponto (1, 2, -4). Use um computador para fazer o gráfico do paraboloide, da parábola e da reta tangente em uma mesma tela.
- **95.** O elipsoide $4x^2 + 2y^2 + z^2 = 16$ intercepta o plano y = 2 em uma elipse. Determine as equações paramétricas da reta tangente a essa elipse no ponto (1, 2, 2).
- **96.** No estudo de penetração do congelamento descobriu-se que a temperatura *T* no instante *t* (medido em dias) a uma profundidade *x* (medida em metros) pode ser modelada pela função

$$T(x, t) = T_0 + T_1 e^{-\lambda x} \operatorname{sen}(\omega t - \lambda x)$$

onde $\omega = 2\pi/365$ e λ é uma constante positiva.

- (a) Determine $\partial T/\partial x$. Qual seu significado físico?
- (b) Determine $\partial T/\partial t$. Qual seu significado físico?
- (c) Mostre que T satisfaz a equação do calor $T_t = kT_{xx}$ para uma certa constante k.

(e) Qual é o significado físico do termo $-\lambda x$ na expressão $sen(\omega t - \lambda x)$?

$$f_{xyy} = f_{yxy} = f_{yyx}$$

- (b) Se essas derivadas parciais forem contínuas, quantas delas podem ser distintas?
- (c) Responda a parte (a) da questão para uma função de três variáveis

99. (a) Se $f(x, y) = x(x^2 + y^2)^{-3/2}e^{\operatorname{sen}(x^2y)}$, determine $f_x(1, 0)$. [*Dica*: Em vez de determinar $f_x(x, y)$ primeiro, observe que é mais fácil utilizar a Equação 1 ou a Equação 2.]

100. (a) Se
$$f(x, y) = \sqrt[3]{x^3 + y^3}$$
, determine $f_x(0, 0)$.

101. (a) . Seja

SCA

$$f(x, y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & \text{se } (x, y) \neq (0, 0) \\ 0 & \text{se } (x, y) = (0, 0) \end{cases}$$

- (a) Use um computador para traçar o gráfico de f.
- (b) Determine $f_x(x, y)$ e $f_y(x, y)$ quando $(x, y) \neq (0, 0)$.
- (c) Determine $f_x(0, 0)$ e $f_y(0, 0)$ usando as Equações 2 e 3.
- (d) Mostre que $f_{xy}(0, 0) = -1$ e $f_{yx}(0, 0) = 1$.
- (e) O resultado da parte (d) contradiz o Teorema de Clairaut? Use os gráficos de f_{xy} e f_{yx} para ilustrar sua resposta.

14.4

Planos Tangentes e Aproximações Lineares

Uma das ideias mais importantes em cálculo de funções com uma única variável é que, à medida que damos *zoom* em torno de um ponto no gráfico de uma função diferenciável, esse gráfico vai se tornando indistinguível de sua reta tangente, e podemos aproximar a função por uma função linear (veja a Seção 3.10, no Volume I.) Desenvolveremos ideias semelhantes em três dimensões. À medida que damos *zoom* em torno de um ponto na superfície que é o gráfico de uma função diferenciável de duas variáveis, essa superfície parece mais e mais com um plano (seu plano tangente) e podemos aproximar a função, nas proximidades do ponto, por uma função linear de duas variáveis. Estenderemos também a ideia de diferencial para as funções de duas ou mais variáveis.

Planos Tangentes

Suponha que uma superfície S tenha a equação z = f(x, y), onde f tenha derivadas parciais contínuas de primeira ordem, e seja $P(x_0, y_0, z_0)$ um ponto em S. Como na seção anterior, sejam C_1 e C_2 as curvas obtidas pela intersecção dos planos verticais $y = y_0$ e $x = x_0$ com a superfície S. Então o ponto P fica em C_1 e C_2 . Sejam C_1 e C_2 0 as retas tangentes à curva C_1 e C_2 0 no ponto C_2 0. Então o **plano tangente** à superfície C_2 0 no ponto C_2 0 definido como o plano que contém as retas da tangente C_2 1 e C_2 2 (veja a Figura 1.)

Veremos na Seção 14.6 que, se C é outra curva qualquer que esteja contida na superfície S e que passe pelo ponto P, então sua reta tangente no ponto P também pertence ao plano tangente. Portanto, podemos pensar no plano tangente a S em P como o plano que contém todas as retas tangentes a curvas contidas em S que passam pelo ponto P. O plano tangente em P é o plano que melhor aproxima a superfície S perto do ponto P.

Sabemos da Equação 12.5.7 que qualquer plano passando pelo ponto $P(x_0, y_0, z_0)$ tem equação da forma

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

Dividindo essa equação por C e tomando a = -A/C e b = -B/C, podemos escrevê-la como

FIGURA 1 O plano tangente contém as retas tangentes T_1 e T_2 .

Foi-nos dado que $|\Delta x| \le 0.2$, $|\Delta y| \le 0.2$ e $|\Delta z| \le 0.2$. Para estimarmos o maior erro no volume, utilizamos, portanto, dx = 0.2, dy = 0.2 e dz = 0.2 junto com x = 75, y = 60 e z = 40:

$$\Delta V \approx dV = (60)(40)(0.2) + (75)(40)(0.2) + (75)(60)(0.2) = 1980$$

Portanto, um erro de apenas 0,2 cm nas medidas de cada dimensão pode nos levar a um erro da ordem de 1.980 cm³ no cálculo do volume! Isso pode parecer um erro muito grande, mas, na verdade, é um erro de apenas cerca de 1% do volume da caixa.

14.4 Exercícios

1–6 Determine uma equação do plano tangente à superfície no ponto especificado.

1.
$$z = 3y^2 - 2x^2 + x$$
, $(2, -1, -3)$

2.
$$z = 3(x-1)^2 + 2(y+3)^2 + 7,$$
 (2, -2, 12)

3.
$$z = \sqrt{xy}$$
, $(1, 1, 1)$

4.
$$z = xe^{xy}$$
, $(2, 0, 2)$

5.
$$z = x \operatorname{sen}(x + y),$$
 $(-1, 1, 0)$

6.
$$z = \ln(x - 2y)$$
, (3, 1, 0)

7–8 Desenhe a superfície e o plano tangente no ponto dado. (Escolha o domínio e o ponto de vista de modo a ver tanto a superfície quanto o plano tangente.) Em seguida, dê *zoom* até que a superfície e o plano tangente se tornem indistinguíveis.

7.
$$z = x^2 + xy + 3y^2$$
, (1, 1, 5)

8.
$$z = \arctan(xy^2), \qquad (1, 1, \pi/4)$$

9–10 Desenhe o gráfico de *f* e de seu plano tangente no ponto dado. (Utilize um sistema de computação algébrica tanto para calcular as derivadas parciais quanto para traçar os gráficos da função e de seu plano tangente.) Em seguida, dê *zoom* até que a superfície e o plano tangente se tornem indistinguíveis.

9.
$$f(x, y) = \frac{xy \operatorname{sen}(x - y)}{1 + x^2 + y^2}$$
, $(1, 1, 0)$ $(1, 1, 0)$

10.
$$f(x, y) = e^{-xy/10} (\sqrt{x} + \sqrt{y} + \sqrt{xy}), (1, 1, 3e^{-0.1})$$

11–16 Explique por que a função é diferenciável no ponto dado. A seguir, encontre a linearização L(x, y) da função naquele ponto.

11.
$$f(x, y) = 1 + x \ln(xy - 5)$$
, (2, 3)

12.
$$f(x, y) = x^3 y^4$$
, (1, 1)

13.
$$f(x, y) = \frac{x}{x + y}$$
, (2, 1)

14.
$$f(x, y) = \sqrt{x + e^{4y}},$$
 (3, 0)

15.
$$f(x, y) = e^{-xy} \cos y$$
, $(\pi, 0)$

16.
$$f(x, y) = y + \operatorname{sen}(x/y),$$
 (0, 3)

17–18 Verifique a aproximação linear em (0, 0).

17.
$$\frac{2x+3}{4y+1} \approx 3 + 2x - 12y$$
 18. $\sqrt{y + \cos^2 x} \approx 1 + \frac{1}{2}y$

- **19.** Dado que f é uma função diferenciável f(2, 5) = 6, $f_x(2, 5) = 1$ e $f_y(2, 5) = -1$, use uma aproximação linear para estimar f(2,2,4,9).
- **20.** Determine a aproximação linear da função $f(x, y) = 1 xy \cos \pi y$ em (1, 1) e use-a para aproximar o número f(1,02, 0,97). Ilustre, traçando o gráfico de f e do plano tangente.
 - **21.** Determine a aproximação linear da função $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ em (3, 2, 6) e use-a para aproximar o número $\sqrt{(3,02)^2 + (1,97)^2 + (5,99)^2}$.
 - **22.** A altura h de ondas em mar aberto depende da velocidade do vento v e do tempo t durante o qual o vento se manteve naquela intensidade. Os valores da função h = f(v, t) são apresentados na seguinte tabela. Use a tabela para determinar uma aproximação linear da função altura da onda quando v está próximo de 80 km/h e t está próximo de 20 horas. Em seguida, estime a altura das ondas quando está ventando por 24 horas a 84 km/h.

Duração (horas)

Velocidade do vento (km/h)	v t	5	10	15	20	30	40	50
	40	1,5	2,2	2,4	2,5	2,7	2,8	2,8
	60	2,8	4,0	4,9	5,2	5,5	5,8	5,9
	80	4,3	6,4	7,7	8,6	9,5	10,1	10,2
	100	5,8	8,9	11,0	12,2	13,8	14,7	15,3
	120	7,4	11,3	14,4	16,6	19,0	20,5	21,1

- 23. Utilize a tabela do Exemplo 3 para encontrar a aproximação linear da função humidex quando a temperatura está próxima de 32 °C e a umidade relativa do ar é de aproximadamente 65%. Estime também o humidex quando a temperatura é de 33 °C e a umidade relativa, 63%.
- **24.** O índice de sensação térmica W é a temperatura sentida quando a temperatura real é T e a velocidade do vento, v. Portanto, podemos escrever W = f(T, v). A tabela de valores a seguir foi extraída da Tabela 1 da Seção 14.1. Use essa tabela para determinar a aproximação linear da função de sensação térmica quando T estiver a -15 °C e v estiver próximo de 50 km/h. Estime, a seguir, a sensação térmica quando a temperatura estiver a -17 °C e a velocidade do vento for de 55 km/h.