Einführung: Topologie – Blatt 1

Abgabe: Freitag, 10. Mai bis 10:00

- (1) Sei (X,d) ein metrischer Raum und $Y \subset X$ eine Teilmenge. Bezeichne mit \mathscr{T}_1 die von der Standardtopologie auf X induzierte Teilraumtopologie auf Y und mit \mathscr{T}_2 die Topologie auf Y, die durch $d|_Y$ definiert wird. Zeigen Sie, dass \mathscr{T}_1 und \mathscr{T}_2 übereinstimmen.
- (2) Man zeige:
 - (a) Sei *X* ein metrischer Raum. Dann besitzt *X* genau dann eine dichte abzählbare Teilmenge, wenn es eine abzählbare Basis der Topologie von *X* gibt.
 - (b) Es gibt keine Metrik auf \mathbb{R} , die genau die Sorgenfrey-Topologie erzeugt.
- (3) Es sei $F: X \to Y$ eine Abbildung zwischen topologischen Räumen. Man zeige:
 - (a) Sind U_1, \ldots, U_n offene Mengen in X mit $U_1 \cup \ldots \cup U_n = X$ und ist $f|_{U_i}$ stetig für alle i, so ist f stetig.
 - (b) Sind $A_1, ..., A_n$ abgeschlossene Mengen in X mit $A_1 \cup ... \cup A_n = X$ und ist $f|_{A_i}$ stetig für alle i, so ist f stetig.

Gelten diese Aussagen auch für Überdeckungen von X durch unendlich viele Teilmengen?

(4) Seien X, Y topologische Räume und bezeichne mit \mathscr{T} die gröbste Topologie auf $X \times Y$ mit der Eigenschaft: Für alle topologischen Räume Z ist eine Abbildung $f: Z \to X \times Y$ genau dann stetig, wenn $\pi_X \circ f$ und $\pi_Y \circ f$ stetig sind. Zeigen Sie, dass \mathscr{T} die Produkttopologie ist.

(Dabei bezeichne π_X und π_Y die Projektion auf die jeweilige Komponente.)