

"ESOL" BENCHMARK FOR WATER SOLUBILITY

I found 3 data sources available ...:

- Delaney article (2004): 1144
- RDKit: Christos Kannas (2013 2nd RDKit UGM meeting): 1143
- Deepchem / Moleculenet.ai (2017): 1128

Recent papers use modified benchmark => up to 16 molecules removed :

Are the harder one ? Hopefully not ;-)

STATISTICAL LIMIT REPORTED

- We make 5 CV BUT:
 - We do not always report CV deviation of models in paper or on slides!
- So please add «Error bars» in presentations
- Correct judgement of errors in NN:
 - Smaller error = more «robust» model
 - => better compression & high generalisation

OPEN SOURCE CODE SHARING

As you know, open source code is the best to validate paper: "Bryan Kelly" If possible with unit tests ;-)

« CAUTION », simple « seed » changes may affect the performance of the model: (aka) not robust and not general model

How to chose Graph conv => LIKE FP ALL!

But not all code available

Approach	Category	Inputs	Pooling	Readout	Time Complexit
GNN* (2009) [15]	RecGNN	A, X, X^e	-	a dummy super node	-
GraphESN (2010) [16]	RecGNN	A, X	-	mean	-
GGNN (2015) [17]	RecGNN	A, X	-	attention sum	-
SSE (2018) [18]	RecGNN	A, X	-	-	-
Spectral CNN (2014) [19]	Spectral-based ConvGNN	A, X	spectral clustering+max pooling	max	$O(n^3)$
Henaff et al. (2015) [20]	Spectral-based ConvGNN	A, X	spectral clustering+max pooling		$O(n^3)$
ChebNet (2016) [21]	Spectral-based ConvGNN	A, X	efficient pooling	sum	O(m)
GCN (2017) [22]	Spectral-based ConvGNN	A, X	-	-	O(m)
CayleyNet (2017) [23]	Spectral-based ConvGNN	A, X	mean/graclus pooling	-	O(m)
AGCN (2018) [40]	Spectral-based ConvGNN	A, X	max pooling	sum	$O(n^2)$
DualGCN (2018) [41]	Spectral-based ConvGNN	A, X	-	-	O(m)
NN4G (2009) [24]	Spatial-based ConvGNN	A, X	-	sum/mean	O(m)
DCNN (2016) [25]	Spatial-based ConvGNN	A, X	-	mean	$O(n^2)$
PATCHY-SAN (2016) [26]	Spatial-based ConvGNN	A, X, X^e	-	concat	-
MPNN (2017) [27]	Spatial-based ConvGNN	A, X, X^e	-	attention sum/ set2set	O(m)
GraphSage (2017) [42]	Spatial-based ConvGNN	A, X	-	-	-
GAT (2017) [43]	Spatial-based ConvGNN	A, X	-	-	O(m)
MoNet (2017) [44]	Spatial-based ConvGNN	A, X	-	-	O(m)
PGC-DGCNN (2018) [46]	Spatial-based ConvGNN	A, X	sort pooling	attention sum	$O(n^3)$
CGMM (2018) [47]	Spatial-based ConvGNN	A, X	-	concat	-
LGCN (2018) [45]	Spatial-based ConvGNN	A, X	-	-	-
GAAN (2018) [48]	Spatial-based ConvGNN	A, X	-	-	O(m)
FastGCN (2018) [49]	Spatial-based ConvGNN	A, X	-	-	-
StoGCN (2018) [50]	Spatial-based ConvGNN	A, X	-	-	-
Huang et al. (2018) [51]	Spatial-based ConvGNN	A, X	-	-	-
DGCNN (2018) [52]	Spatial-based ConvGNN	A, X	sort pooling	-	O(m)
DiffPool (2018) [54]	Spatial-based ConvGNN	A, X	differential pooling	mean	$O(n^2)$
GeniePath (2019) [55]	Spatial-based ConvGNN	A, X	-	-	O(m)
DGI (2019) [56]	Spatial-based ConvGNN	A, X	-	-	O(m)
GIN (2019) [57]	Spatial-based ConvGNN	A, X	-	concat+sum	O(m)
ClusterGCN (2019) [58]	Spatial-based ConvGNN	A, X	-	-	-

MEASUREMENT & INSTRUMENT ANOMALY DETECTION

Minor¹:

Outliers detection against internal machine reference performance

Major²:

Change detection overtime analysis fluctuation (maintenance)

1: https://link.springer.com/article/10.1007/s41060-019-00186-0

2: https://www.frontiersin.org/articles/10.3389/fphys.2018.00325/full

"ESOL" BENCHMARK FOR WATER SOLUBILITY

I found 3 datasources available ...:

- Delaney article (2004): 1144
- RDKit: Christos Kannas (2013 2nd RDKit UGM meeting): 1143
- Deepchem / Moleculenet.ai (2017): 1128

Recent papers use modified benchmark => up to 16 molecules removed :

Are the harder one ? Hopefully not ;-)

"Data cleaning" is now recognize as a science...

«AqSoIDB» August 2019: 9,982 unique compounds curated

Article https://www.nature.com/articles/s41597-019-0151-1

Code & raw data https://codeocean.com/capsule/8848590/tree/v1

Curate DB https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OVHAW8

Sorkun et al. 48 persons downloaded it since ... including me!

OUR PUBLISHED WORKS

Human Knowledge comes almost exclusively from text

What is for AI in Chemistry?

Augmentation Text "CNF"

Kimber, T et al, https://arxiv.org/abs/1812.04439

Augmentation TextCNF/CNN

Tetko, IV et al, "Augmentation Is What You Need!" In Artificial Neural Networks and Machine Learning - ICANN 2019

GEN SMILES

Van Deursen R. et al, https://arxiv.org/abs/1909.04825

GEN Graph *G(V,E)*

Van Deursen R. et al, https://arxiv.org/abs/1909.11472

Retrosynthesis Transformers

https://chemrxiv.org/articles/A_Transformer_Model_for_Retrosynthesis/8058464/1

Karpov P, et al, "A Transformer Model for Retrosynthesis." In Artificial Neural Networks and Machine Learning – ICANN 2019

More in the pipeline...

All codes available

https://github.com/RuudFirsa

https://github.com/bigchem/retrosynthesis

textCNF / CNN augmentation including in OCHEM interface (code available soon)

