Linear Algebra

Theorem 2

Let $(V; F; +; \cdot)$ be a vector space over the field F. Let $n \in \mathbb{N}^*$ and $U = \{\vec{u_1}, \vec{u_2}...\vec{u_n}\}$ be a set of vectors \in V. Then span(U) is a subspace of V.

Proof. Let span(U) be the set of vectors which can be written as a linear combination of the vectors in U

- $\vec{0} \in \text{span}(\mathbf{u})$ because $\vec{0} = \overbrace{\lambda_1}^0 \cdot \vec{u_1} + \overbrace{\lambda_2}^0 \cdot \vec{u_2} + \overbrace{\lambda_n}^0 \cdot \vec{u_n}$
- Let $\vec{u}, \vec{w} \in \text{span}(U)$ and let $\mu \in F$ We want to show that $\vec{u} + \mu \cdot \vec{w} \in \text{span}(U)$

Let
$$\vec{u} = \alpha_1 \vec{u_1} + ... \alpha_n \vec{u_n}$$
 $\vec{w} = \beta_1 u_1 ... \vec{\beta}_n \vec{u_n}$

$$\vec{u} + \mu \vec{w} = \alpha_1 \vec{u_1} + \dots + \alpha_n \vec{u_n} + \mu \cdot (\beta_1 \vec{u_1} + \dots + \beta_n \vec{u_n}) = \underbrace{(\alpha_1 + \mu \beta_1) \cdot \vec{u_1} + \dots + (\alpha_n + \mu \beta_n) \cdot \vec{u_n}}_{\in F} \cdot \vec{u_n} \in \operatorname{span}(\mathbf{U}) \Rightarrow \operatorname{span}(\mathbf{U}) \text{ is a subset of V.}$$

Theorem 3

Uniqueness of representation. Let $(V; F; +; \cdot)$ be a vector space over the field F. Let B = $\{\vec{b_1}, \vec{b_2}, ..., \vec{b_n}\}\$ be a set of vectors $\in V$. Then B is a basis of V if and only if every vector $\vec{v} \in V$ can be written uniquely as a linear combination of the basis vectors of B.

Proof. Let $B = \{\vec{b_1}, \vec{b_2}, ..., \vec{b_n} \text{ be a set of vectors in V.} \rightarrow \text{Let B be a basis of V.}$

We want to show that every vector $\vec{v} \in V$ can be written uniquely as a linear combination of the vectors of B.

Assume that \vec{v} can't be written uniquely as a linear combination of the vectors of B:

Since B is a basis of V, then \vec{v} can be written as a linear combination of the vectors of B.

$$\vec{v} = \lambda_1 \cdot \vec{b_1} + ... + \lambda_n \cdot \vec{b_n}$$
 and $\vec{v} = \alpha_1 \cdot \vec{b_1} + ... + \alpha_n \cdot \vec{b_n}$
 $\vec{v} - \vec{v} = (\lambda_1 \cdot \vec{b_1} + ... + \lambda_n \cdot \vec{b_n}) - (\alpha_1 \cdot \vec{b_1} + ... + \alpha_n \cdot \vec{b_n}) = \vec{0}$

 $\vec{v} = \lambda_1 \cdot \vec{b_1} + ... + \lambda_n \cdot \vec{b_n}$ and $\vec{v} = \alpha_1 \cdot \vec{b_1} + ... + \alpha_n \cdot \vec{b_n}$ $\vec{v} \cdot \vec{v} = (\lambda_1 \cdot \vec{b_1} + ... + \lambda_n \cdot \vec{b_n}) - (\alpha_1 \cdot \vec{b_1} + ... + \alpha_n \cdot \vec{b_n}) = \vec{0}$ $\iff \vec{0} = (\lambda_1 - \alpha_1) \cdot \vec{b_1} + ... + (\lambda_1 - \alpha_n) \cdot \vec{b_n}$ // Since B is a basis of V, them $\vec{b_1} ... \vec{b_1}$ are linearly independent which implies:

which is a contradiction, since it proves that any vector $\vec{v} \in V$ is written uniquely as a linear combination of the basis vectors of B.

 \leftarrow Assume that every vector $\vec{v} \in V$ can be written uniquely as a linear combination of the vectors of B.

We want to show that B is a basis of V Let $\vec{v} \in \text{span}(B)$: $\vec{v} = \alpha_1 \cdot \vec{b_1} + ... + \alpha_n \cdot \vec{b_n} \in V$ since V is a vector space and closed under vector addition and scalar multiplication. Hence span(B)=V since every vector $\vec{v} \in V$ can be written as a linear combination of the vectors of B by hypothesis.

$$\left\{ \begin{array}{l} \vec{0} = \lambda_1 \cdot \vec{b_1} + \ldots + \lambda_n \cdot \vec{b_n} \\ \vec{0} = 0 \cdot \vec{b_1} + \ldots + 0 \cdot \vec{b_n} \end{array} \right.$$

Since we assumed that there is only one way to write every vector $\vec{v} \in V$, then $\lambda_1 = 0...\lambda_n = 0$ It proves that the vectors of the set B are linearly independent. \Rightarrow B is a basis of V.

Theorem 5

Kernel. Let $f: V \rightarrow W$ be a linear map. Then ker(f) is a subspace of V.

```
Proof. Let f: V \rightarrow W be a linear map.
                                                                           \forall \vec{u}, \vec{v} \in V
f(\vec{u} + \lambda \vec{v}) = f(\vec{u}) + \lambda \cdot f(\vec{v})
Since V is a vector space, then V \neq \emptyset by definition.
\Rightarrow \exists \vec{u} \in V and since V is a vector space, there is closure under scalar multiplication, ie \lambda \cdot \vec{u} \in V
\forall \lambda \in
\Rightarrow 0 \cdot \vec{u} \in V \iff \vec{0} \in V
1) We want to show that Ker(f) \neq \emptyset by showing that \vec{0} \in Ker(f)
f(\underbrace{\vec{0}}_{\in \mathbf{V}}) = f(0 \cdot \vec{u}) \qquad \widehat{=} \qquad 0 \cdot f(\vec{u}) = \underbrace{\vec{0}}_{\in \mathbf{W}} \Rightarrow \vec{0} \in ker(f)
2) Let \vec{u}, \vec{v} \in ker(f), \lambda \in \mathbb{R}
Since \vec{u}, \vec{v} \in \ker(f) \Rightarrow f(\vec{u}) = \vec{0} and f(\vec{v}) = 0
\mathbf{f}(\vec{u} + \lambda \vec{v}) \qquad = \qquad \mathbf{f}(\vec{u}) + \lambda \cdot f(\vec{v}) = \vec{0} + \lambda \vec{0} = \vec{0} \Rightarrow \vec{u} + \lambda v \in ker(f)
Since 0 \in \ker(f) and \vec{u} + \lambda \vec{v} \in \ker(f) \ \forall \vec{u}, \vec{v} \in \ker(f)
\Rightarrow ker(f) is a subspace of V
```

Theorem 6

Range. Let $f: V \to W$ be a linear map. Then Im(f) is a subspace of W.

Proof.

1) We have show that $f(\vec{0}) = \underbrace{\vec{0}}_{\in W}$

 $\vec{0} \in \text{Im}(f) \text{ since } \exists \vec{0} \in V \text{ such that } f(\vec{0}) = \vec{0}$

2) Let $\vec{w_1}, \vec{w_2} \in Im(f)$

 $\exists \vec{u_1}, \vec{u_2} \in V$ such that $f(\vec{u_1}) = \vec{v_1}$ and $f(\vec{u_2}) = \vec{v_2}$

Let $\lambda \in \mathbb{R}$: We want to show that $\vec{w_1} + \lambda \vec{w_2} \in \operatorname{Im}(f)$

$$\vec{w_1} + \lambda \cdot \vec{w_2} = f(\vec{u_1}) + \lambda \cdot f(\vec{u_2})$$

$$= \underbrace{f(\vec{u_1} + \lambda \cdot \vec{u_2})}_{\in V(\text{since V is a vec. space})}$$

Since $\exists \vec{u_1} + \vec{u_2} \in V$ such that $f(\vec{u_1} + \lambda \vec{v_2}) = \vec{w_1} + \lambda \vec{w_2}$, then $\vec{w_1} + \lambda \vec{w_2} \in Im(f)$ \Rightarrow Im(f) is a subspace of W

2