

	개별 연구 9주차	회의록	
회의내용	성능 평가 및 논문	문 초안 작성	
교과목명	개별연구	신연순	
과제명	재난 및 위기관리 성능평가 연구	팀원	김관우, 서혜민
	1. 학습한 네가지 모델의 성능 평가 1) 성능평가는 f1 score 을 사용하여 진행(Machinery Score 를 의미함) 2) .네 가지 모델은 정규화 방법에 따라 나- - 정규화 적용 안함(none) submission(none).csv		
	9 minutes ago by KWANWOO KIM add submission details - dropout 적용(dropout)		
	submission(dropout).csv 9 minutes ago by KWANWOO KIM add submission details		0.83420
	- dropconnect 적용(dropconnect)		
회의록	submission(dropconnect).csv just now by KWANWOO KIM add submission details		0.83450
	- dropout + maxnorm 적용(maxnorm)		
	submission(maxnorm).csv 21 hours ago by KWANWOO KIM add submission details		0.83818
	 2. 논문 초안 작성 - 전자 정보 통신 학술대회 참가를 위 - 참가비와 관련해서 지원금 등의 조사 3. 추후 계획 		= 논문 작성
	- 논문 수정 및 학술 대회 참가		

	개별 연구 8주차	회의록						
회의내용	BERT 모델 학습(dropout + max	knorm) 및 b	atch size 조사					
교과목명	개별연구 담당교수 신연순							
과제명	재난 및 위기관리 성능평가 연구	팀원	김관우, 서혜민					
회의록	4. Batch size 및 max-norm 조사 3) Batch size 는 전체 데이터 셋을 여러 그 그룹에 해당하는 데이터 수를 의미. Batch 속도가 향상되지만, overfitting 이 일어날때문에 가중치의 잦은 업데이트로 불안경 4) Max-norm은 신경망의 가중치를 크게 가과적합을 피해 모델의 매개변수를 제한. 상호보완적이기 때문에, 같이 사용했을 때문에 같은 사용했을 때문에, 같이 사용했을 때문에 함께 보안 다른 사용했을 때문에 하는 사용하여 학원 선명Se_layer1 = Dense(units=256, activation='relu', dense_layer1 = Dropout(0.5)(dense_layer1) 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	ch size 는 클수 수 있고, 작성 성해질 수 있음 설정되지 못하 Dropout 과 n 때 효과가 매워 습 수행 kernel_constra	우록 학습 횟수가 줄어들어 을수록 학습 횟수가 늘어나기 게 제한하는 방법으로 주로 naxnorm 은 서로 우 좋음. aint=max_norm(2.))(clf_output)					

	개별 연구 7주차	회의록						
회의내용	BERT 모델 학습(nodrop, c	dropout, drop	oconnect)					
교과목명	개별연구 담당교수 신연순							
과제명	재난 및 위기관리 성능평가 연구 팀원 김관우,							
	8. dropout 과 dropconnect 추가 학습 9. 참고 논문과 같은 조건의 학습이 불가능하다		생하여 해결 방법 도출					
	1) nodrop, dropout, dropconnect 를 각각	학습						
	2) 학습한 세가지 모델에 대해 성능을 비고	卫						
	3) TV의 뉴스와 같은 매체의 데이터보다 : 정보를 얻을 수 있어서 위기 관리에 사용되 예상되어 연구를 진행하였고, BERT를 이용하 분류가 가능할 것으로 예상 여기서 BERT를 정규화를 nodrop, dropout, dropconnect 세 진행했을 때 가장 성능이 좋은 재난 트윗 분 과정으로 논문을 작성할 예정	면 좋은 효과를 하면 성능이 좋 · 사용하여 재I 가지를 같이 ?	를 가져올 수 있을 것으로 들은 NLP 기술로 재난 트윗 난 관련 트윗을 분류할 때 적용해 보고 어떤 정규화를					
회의록	10. nodrop, dropout, dropconnect 를 각각 학습	습수행						
	<pre>[dropout] dense_layer1 = Dense(units=256, activation='relu')(clf_output) dense_layer1 = Dropout(D.5)(dense_layer1) out = Dense(1, activation='sigmoid')(dense_layer1) [dropconnet] dense_layer1 = Dense(units=256, activation='relu')(clf_output) dense_layer1 = DropConnectDense(units=256, prob=0.5, activation='relu', use_bias=True)(dense_layer1)</pre>							
	out = Dense(1, activation='sigmoid')(dense_layer1) [학습 계수: (epochs = 8	3, bach_size =	10)]					
	11. 추후 계획							
	- 학습한 세 가지 모델의 성능 비교 - 논문 초안 작성							

	개별 연구 6주차	회의록						
회의내용	BERT 모델 input data 및 기원	존 논문과의	차별성 조사					
교과목명	개별연구 담당교수 신연순							
과제명	재난 및 위기관리 성능평가 연구	팀원	김관우, 서혜민					
	1. input 데이터 분석							
회의록	['[CLS]', 'our', 'deeds', 'are', 'the', 'reason', 'of', 'this', '[101, 2256, 15616, 2024, 1996, 3114, 1997, 2023, 8372, 2089, 1645] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	55, 9641, 2149, 2035, 9, 0, 0, 0, 0, 0, 0, sk 라고 하며, t 는 1, 그 뒤으 이 pad_mas	, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,					
	 기존 논문과의 차별성 조사 기존 논문은 0.5 dropout layer 및 relu 함 We added a dropout layer of 0.5 to the BERT layer then we said a Dense layer with relu activation. We us architecture will generate opportunities for each class target). Figure 7 shows a summary of the model. 차별점 1) droupout layer 를 두 번 적용 2) droupout layer 대신 dropconnect layer 	e's output to comp se the relu and sig , real disaster (ta	plete the pre-trained model, and gmoid activation functions. The					

개별 연구 5주차 회의록

회의내용 BERT 모델 encoding 구조 및 input data 분석

교과목명	개별연구	담당교수	신연순
과제명	재난 및 위기관리 성능평가 연구	팀원	김관우, 서혜민

1. encoding 구조 학습

- attention 벡터를 생성하는 함수의 실행 과정 및 input 학습
- attention 들을 여러 개를 모아 multi head attention 을 생성하고 이는 토큰 간의 더욱 복잡한 관계를 파악
- 인코더 구조의 feed forword 레이어는 현재 인코더에서 다음 인코더와 연결하기 위해 출력 벡터의 크기를 인풋으로 들어온 입력 벡터의 크기와 같게 함
- BERT의 pretraining 단계에서는 Masked Language Model 과 Next Sentence Prediction을 사용해 학습을 진행하고 이를 통해 문장의 표현을 학습
- 위와 같은 단계를 거쳐 pretrain 된 모델에 class label 의 개수만큼 output 을 가지는 Dense Layer 를 붙여서 fine-tuning 을 수행

2. 인코딩 데이터 분석

회의록

- 지난주에 pretraining 까지 직접 코드를 작성해 수행했다고 생각했지만 이번 주에 BERT 구조를 학습한 결과 아직 pretraining 은 진행하지 않았고, 데이터 토큰화와 인코딩 단계 까지만 수행된 것으로 파악
- BERT 모델에 사용할 train 데이터 분석
- token -> 각 단어를 토큰화 하여 int 형으로 매핑 됨

[101, 2256, 15616, 2024, 1996, 3114, 1997, 2023, 8372, 2089, 16455, 9641, 2149, 2035, 102,

- mask_pad -> 토큰들은 전부 1로 토큰이 아닌 패딩은 0으로 설정됨
- Segment_id -> 토큰화 된 토큰이 어떤 문장에 속하는지 0 또는 1을 통해 지정하는데 단일 문장은 모두 0으로 지정한다.
- 3. 추후 계획
- 토큰화와 인코딩 된 데이터를 사용하여 BERT 모델의 Pre-Training 수행

개별 연구 4주차 회의록

회의내용

BERT 모델 pre-train 및 모델 분석

교과목명	개별연구	담당교수	신연순
과제명	재난 및 위기관리 성능평가 연구	팀원	김관우, 서혜민

1. Pre-train

- tensorhub에서 BERT 모델을 불러오고, 이전 단계에서 특수기호, 문장부호 및 소문자 처리의 data cleaning을 완료한 data에서 모델의 입력으로 들어갈 token, mask, segment를 추출하기 위해 모델의 FullTokenizer를 불러온다.

```
module_url = "https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1"
bert_layer = hub.KerasLayer(module_url, trainable=True)
vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy()
do_lower_case = bert_layer.resolved_object.do_lower_case.numpy()
tokenizer = tokenization.FullTokenizer(vocab_file, do_lower_case)
```

 bert_encode 함수 내에서 불러온 FullTokenizer를 통해 text를 token, mask, segment 로 변환한다.

```
text = tokenizer.tokenize(text)
text = text[:max_len-2]
input_sequence = ["[CLS]"] + text + ["[SEP]"]
pad_len = max_len - len(input_sequence)

tokens = tokenizer.convert_tokens_to_ids(input_sequence)
tokens += [0] * pad_len
pad_masks = [1] * len(input_sequence) + [0] * pad_len
segment_ids = [0] * max_len
train input = bert encode(train.text.values. tokenizer. max len=160
```

train_input = bert_encode(train.text.values, tokenizer, max_len=160)
test_input = bert_encode(test.text.values, tokenizer, max_len=160)
train_labels = train.target.values

- 2. BERT 모델 및 데이터 분석.
- BERT 모델의 트랜스포머 인코더 내부 과정 및 data 전처리 필요성 분석.
- BERT 활용 코드 분석(https://www.kaggle.com/friskycodeur/nlp-with-disaster-tweets-bert-explained)
- 3. 추후 계획
- BERT 모델 분석 및 train Model.

회의록

개별 연구 3주차 회의록

회의내용

데이터 전 처리 및 모델 분석

교과목명	개별연구	담당교수	신연순
과제명	재난 및 위기관리 성능평가 연구	팀원	김관우, 서혜민

1. 데이터 전처리

- Pandas 와 preprocess_kgptalkie 를 사용하여 데이터 전 처리

3913	5561	flood	boston	when fizzy is sitting in the regular flood seats and no one known	0
3914	5563	flood	United Sta	JKL cancels Flash Flood Warning for Bell Harlan Knox [KY] http://	1
3915	5564	flood	New York	Spot Flood Combo 53inch 300W Curved Cree LED Work Light B	1
3916	5565	flood	New York	Spot Flood Combo 53inch 300W Curved Cree LED Work Light B	0
3917	5567	flood	Warrandyt	A [small] flood with big??consequences https://t.co/CVPdVHxd1F	1
3918	5569	flood	British Col	Homecoming Queen Killed on Way Home from the Prom by Flo	1
3919	5570	flood		2pcs 18W CREE Led Work Light Offroad Lamp Car Truck Boat N	0

[이전 데이터 -> 특수문자와 대문자 포함]

치	OI	루
꼬	$\dot{-}$	=

5561	flood	boston	when fizzy is sitting in the regular flood seats and no
5563	flood	United Sta	jkl cancels flash flood warning for bell harlan knox ky
5564	flood	New York	spot flood combo 53inch 300w curved cree led work
5565	flood	New York	spot flood combo 53inch 300w curved cree led work
5567	flood	Warrandyt	a small flood with bigconsequences
5569	flood	British Colu	homecoming queen killed on way home from the pro
5570	flood		2pcs 18w cree led work light offroad lamp car truck l

[이후 데이터 -> 특수문자 삭제 및 대문자를 소문자로 변환]

- 2. 논문의 BERT 모델과 용어 분석
 - 기존 모델의 연구 방식, BERT 모델의 레이어, 성능 평가 방법 등 분석
 - BERT 활용 코드 분석(https://www.kaggle.com/chandrakanthlns/disaster-classfication-tweets)

개별 연구 2주차 회의록

회의내용 연구 계획 재수립

교과목명	개별연구	담당교수	신연순
과제명	재난 및 위기관리 성능평가 연구	팀원	김관우, 서혜민

3. 주제 선정

- 논문 Disaster Tweets Classification in Disaster Response using Bidirectional Encoder Representations from Transformer(BERT) 을 참고하여 주제 선정
- BERT 모델 학습 방법 https://www.kaggle.com/c/nlp-getting-started# 내 disaster dataset 와 BERT 오픈 소스 코드를 참고하여 BERT 모델 학습.
- BERT 모델 검증 방법 학습된 BERT 모델에 트위터에서 크롤링을 통해 수집한 실제 데이터를 적용하여 테스트.
- BERT 모델 학습을 통한 홍수 재난 트윗 분류를 주제로 선정
- BERT 모델의 테스트는 2021년 3월 22일에 호주에서 발생한 홍수를 기준으로 수행.

4. 주제 선정 이유

회의록

- 양방향으로 학습이 되는 BERT 모델을 통해 정교하며, 높은 정확도의 자연어 처리(NLP)를 달성
- 학습한 모델을 실제 데이터에 적용하여 BERT 모델의 성능 확인 가능.

5. 프로젝트 일정 조율

재난 및 위기관리 성능평가 연구 (트위터 데이터를 활용한 재난 연관 트윗 분류)							C 7 (11+1-	3 2 2 2 2	+1-1 -1-1	O HHID	
								동국내약교	1. 김퓨터공	학과 - 김관	우, 서예민
	8/30~										~11/14
	1주차	2주차	3주차	4주차	5주차	6주차	7주차	8주차	9주차	10주차	11주차
관련 논문 분석											
세부 계획 수립											
데이터 수집 / 전처리											
인공지능 모델 학습											
데이터 크롤링											
성능 평가 및 테스트										•	
논문 작성											

개별 연구 1주차 회의록

교과목명	개별연구	담당교수	신연순		
과제명	재난 및 위기관리 성능평가 연구	팀원	김관우, 서혜민		

6. 주제 선정

- 논문 An Automated Early Alert System for Natural Disaster Risk Reduction: A Review 과 A Cloud Based Disaster Management System 을 참고하여 주제 선정
- 재난 상황 인식 방법 첫 번째 논문의 SNS 데이터를 이용한 홍수 감지 시스템 채택
- 재난 상황 전달 방법 두 번째 논문의 3D 모델링 방법 채택
- 트위터 크롤링을 통한 홍수 상황 인식 및 3D 모델 개발을 주제로 선정
- 연구는 2021년 3월 22일에 호주에서 발생한 홍수를 기준으로 수행

7. 주제 선정 이유

회의록

- TV 나 라디오보다 SNS 를 사용하면 더 많은 정보를 수집 및 사용 가능
- 3D 시뮬레이션을 웹으로 제공하면 도시에서 울리는 경보 이외에 3D로 시각화 된 홍수 재난 상황을 인식 가능

8. 프로젝트 일정 조율

재난 및 위기관리 성능평가 연구 (sns 데이터를 사용한 홍수 감지 시스템)											
에는 첫 파기는의 ㅇㅇㅇ기 는 I (SIIS 데이의를 사이면 송구 몹시 시끄럼)							동국대학교 컴퓨터공학과 - 김관우, 서혜민				
	8/30~										~11/14
	1주차	2주차	3주차	4주차	5주차	6주차	7주차	8주차	9주차	10주차	11주차
관련 논문 분석											
세부 계획 수립											
데이터 수집 / 전처리											
인공지능 모델 학습											
웹 시뮬레이션 제작											
성능 평가 및 테스트											
논문 작성											