

O 1
Part One

Background Introduce

NNVM Compiler nnvm tvm

cosxsinx + x/y

02

Part Two

NNVM Introduction

Design Note Optimization

NNVM Overview

NNVM Overview

TOPI (TVM Operator Inventory): TOPI is the operator collection library for TVM, to provide sugars for constructing compute declaration as well as optimized schedules.

02

03

Part Three

TVM Stack

Lower IR Optimization

TVM Overview

TVM Optimization on CPU

TVM Optimization on CPU - Matrix Multi

Matrix dot:

A[1024,1024], B[1024,1024]

Intel(R) Xeon(R) CPU E5-2660 16 logical cores

 $C = A \cdot B$

T = 2.11167s

```
produce C {
  for (x, 0, 1024) {
    for (y, 0, 1024) {
        C[((x*1024) + y)] = 0.000000f
        for (k, 0, 1024) {
            C[((x*1024) + y)] = (C[((x*1024) + y)] + (A[((x*1024) + k)]*B[(y + (k*1024))])
        }
    }
    }
}
```

TVM Optimization on CPU - Tiling/Blocking

Goal: Increase cache hit rate


```
bn = 32
s = tvm.create_schedule(C.op)
# Blocking by loop tiling
xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
```

```
T = 2.11167s \rightarrow 0.897558s
```

```
produce C {
 for (x.outer, 0, 32) {
    for (y.outer, 0, 32) {
     for (x.inner.init, 0, 32) {
        for (y.inner.init, 0, 32) {
          C[((((x.outer*1024) + y.outer) + (x.inner.init*32)]
      for (k, 0, 1024) {
       for (x.inner, 0, 32) {
          for (y.inner, 0, 32) {
            C[(((((x.outer*1024) + y.outer) + (x.inner*32))*3]
```

TVM Optimization on CPU - Vectorize

SIMD (Single Instruction Multiple Data)

```
Az
Ax
                Ay
                                           s = tvm.create_schedule(C.op)
                                           xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
                                 Bz
Bx
                By
                                           s[C].reorder(xo, yo, k, xi, yi)
                                           # Vectorization
Cx
                                 Cz
                Cy
                                           s[C].vectorize(yi)
                                           func = tvm.build(s, [A, B, C], name = 'mmult')
Dx
                Dy
                                 Dz
```

TVM Optimization on CPU - Parallel

Whenever parallelism is possible, just use parallel() give a hint to tvm

```
s = tvm.create_schedule(C.op)
xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
s[C].reorder(xo, yo, xi, k, yi)
# vectorize
s[C].vectorize(yi)

# parallel
s[C].parallel(xo)
```

 $T = 0.028522s \rightarrow 0.015810s$

Speedup

Optimization on CPU

TVM Optimization on GPU

Convolution

3	0	1	2	7	4
1					1
2					3
0	1	3	1	7	8
0	1 2	3	1 6	7	8

	—	0	1
*	1	0	-1
	1	0	-1

-5	-4	0	8
10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

*

Convolution — Padding — Stride

3	0		2	7
1	5		9	3
				1
0	1		1	7
4	2	1	6	2

Stride = 2

Optimize1: Blocking

AA/WW: Buffer

Apad: Ihs in convolution

W: rhs in convolution

B: convolution result

Optimize2:

Virtual Thread Split

Optimize3:

Cooperative Fetching

To reduce memory transfer per thread, make threads in the same thread block cooperatively fetch independent data from global memory

04

Part Four

Compare & Evaluate

XLA

Darkroom

Performance

NNVM vs. XLA

- Different strategy for code generation
- Different strategy for optimization methods
 - XLA: provide a unified optimization method for all hardware resources
 - NNVM: every hardware resource have relevant method
- Similar Optimization on high-level graphs (fusions, layout...)

NNVM vs. Darkroom/Halide

- Similar Ideas between Halide and TVM
 - Both separate algorithms and schedules
- Similar strategy for optimization methods
 - Both have similar optimization on Hardware-independent code
- Different levels of optimization
 - NNVM has more rules and more efficient ways on optimization

NNVM Performance

INVIDIA GPU

Raspberry PI

Time cost of Inference on Raspberry PI

