Acute lymphoblastic leukemia

Human-specific genes

Andrea Tonina, Thomas Sirchi, Lorenzo Santarelli, Gloria Lugoboni, Sabri Kaci Group B1

Human Specific genes

Man and chimpanzee separated around 6 million years ago. From that point onwards, rapid evolution and new alterations were acquired, giving rise to orthologous and de-novo genes. It subsequently possible to associate human-specific genes with a restricted set of functions:

- Neural functions
- Metabolic functions
- Immunological functions
- Functions at the cellular level.

Acute Lymphoblastic Leukemia

Focus on acute lymphocytic leukemia (ALL), whether pediatric or adult :

- 80% of patients are children.
- Malignant transformation that causes abnormal growth of lymphoid cells.
- Symptoms are generally non-specific

Objective: try to extend our knowledge of human-specific genes regarding Acute Lymphoblastic Leukemia (ALL)

The pipeline

Database retrival

Pre-processing, normalization, and batch effect correction

Pre-processing

Batch effect correction

TMM normalization

Pre-processing

Hugo Symbol to Ensembl ID

Filtering for duplicates (less informatives)

Filtering for low expressed genes

Batch effect correction Tumors

Batch effect correction Controls

Post-combat

TMM correction

Tumor

Differential Gene expression

Control vs Cancer

Subtype vs Subtype

Pediatric vs Adult

Control vs Cancer

Control vs Cancer

Human-specific

Subtype vs Subtype

 Subtype Pre-B and Subtype T: 2 up-regulated genes in common

 Subtype Pre-B and Subtype Pre-T: 6 down-regulated genes in common (PreB has 22 down hs while PreT 23)

• Subtype Pre-T and Subtype T: 2 up-regulated genes in common

Pediatric vs Adult

Pediatric ALL tumors: 55 up-regulated and 108 down-regulated

Only 10 down-regulated and 6 up-regulated are also human-specific

 Pediatric ALL is genetically different compared to the adult ALL

PCA

• Tumor - Control

Subtype - Subtype

• Pediatric - Adult

Tumor - Control

All

• Human-specific

Subtype - Subtype

All

• Human-specific

PCA by utilizing the result data from the DEGs Subtype vs Subtype

Pediatric - Adult

- In this case seems that the Principal Components are defined in such a way as to not capture this information
- PCA by utilizing the result data from the DEGs Pediatric vs Adult

Mechanism of origin Human-specific genes

Literature comparison

regulatory region alteration

- Gene amplification
- Human-specific gene
 Sequence alteration
- Structural alteration
- Gene loss
- Regulatory alteration
- De novo origin■ Non-coding gene
- Lost in chimpanzee
- Human accelerated region

Gene set expansion

Tool used

PC algorithm that expand the Local Gene Network (LGN) using transcriptomic data

Use of BOINC to compute on different volunteers computer

Some parameters:

 α = 0,05 (significance threshold) tsize = 2000 (number of gene in subdivision) nsize=2000 (number of iterations)

From expansion to graph

Creation of an Interaction Network from the gene expansion using

Using absolute frequency as threshold

Just too complex to analyse!

Fixing the mess

Reducing the nodes (min 3 edges per node)

Selecting Human specific gene highly connected

Most connected HS gene: LLRC37A, LLRC37A3, ARL17A, STAG3 and GRAPL

Validation of the expansions

Why

Need of a different database to compare the results

How

Using OverlapGene to define correlation between the sets

Use of contingency table and Fisher Test for correlation

Overlap and Association

LLRC37A	
Overlapping p-value	5.9e-05
Odds ratio	80.8
Jaccard Index	0.0

LLRC37A3	
Overlapping p-value	1.1e-04
Odds ratio	43.7
Jaccard Index	0.0

ARL17A	
Overlapping p-value	4.7e-08
Odds ratio	220.6
Jaccard Index	0.0

STAG3	
Overlapping p-value	0.015
Odds ratio	12.7
Jaccard Index	0.0

Overlap and Association

GRAPL	
Overlapping p-value	1
Odds ratio	0.0
Jaccard Index	0.0

The red result

- Difference in the database nature
- Difference in dimension

Different denominations

Machine learning

Classification

SUBTYPE	COUNT
Pre-B ALL	136
Pre-T ALL	37
T Cell	108
Control	30
Unknown	359

The red is our first threshold

 Correct prediction of control is essential to grasp the understanding of the model

The green is our objective

 Classification of all the unknown is what could give us more insights on the subtypes

The methods:

01	Random Forest	Ensemble of decision trees. It builds multiple decision trees during training and merges them together to get a more accurate and stable prediction.
02	K-Nearest Neighbors	Simple and intuitive algorithm that classifies a data point based on the majority class of its k-nearest neighbors.
03	XGBoost	Powerful and efficient implementation of gradient boosting. It sequentially adds weak learners to the model, each correcting errors of the previous one.
04	Naive Bayes	Probabilistic classifier based on Bayes' theorem. It assumes that the features are conditionally independent given the class label.

The scores

Non Human specific (nonHS)	
Method	F1 score
Random Forest	0.93
KNN	0.96
XGBoost	0.80

Human specific (HS)		
Method	F1 score	
Random Forest	0.97	
KNN	0.98	
Naive Bayes	0.73	

Results

Non Human specific (nonHS)

Human specific (HS)

Predictions:

Non Human specific (nonHS)		
SUBTYPE	COUNT	
Pre-B ALL	418	
Pre-T ALL	63	
T Cell	157	
Control	30	
Unknown	2	

Human specific (HS)		
SUBTYPE	COUNT	
Pre-B ALL	376	
Pre-T ALL	56	
T Cell	204	
Control	30	
Unknown	4	

Non Human specific PCA

Human specific PCA

Drug enrichment on subtypes

Enrichr

• Pre B ALL

Pre T ALL

T Cell

Pre B ALL

Clomipramine

Known antidepressant, in recent years has been taken under a program of *drug repurposing* and shown promising *anti-cancer activities*

Theophylline

Effective against numerous diseases including leukemia

Pre TALL

Doxorubicin

Well-known treatment for cancer as one of the most popular chemotherapeutic agents

Mitomycin C

Known treatment against breast cancer, it has shown *potential for leukemia* due to its effect on bone marrow

T Cell

Hydroxyurea

The drug is an *approved treatment* for various forms of cancer and between those the myelogenous leukemia

Chlorambucill

It has been taken into consideration as a *novel* chemotherapeutic treatment in combination with other components to reduce side effects

Enrichment and pathway analysis

Tumor vs Control

Pediatric vs Adult

Post-expansion

Non human-specific

Up-regulated

Non human-specific

Non human-specific

Up-regulated

- Pleural mesothelioma (MPM)
- Cell cycle
- VEGFA VEGFR2 signaling.

- T cell receptor and co-stimulatory signaling
- T cell activation SARS CoV 2.

Human-specific

Up-regulated

Human-specific

Non-human-specific

Up-regulated

Non-human-specific

Non human-specific

Up-regulated

- Small ligand GPCRs and GPCRs class A rhodopsin like
- Thymic stromal lymphopoietin
 TSLP signaling pathway

- Complement activation
- Vitamin D receptor pathway

Human-specific

Up-regulated

Human-specific

Human-specific

Up-regulated

Cell lineage map for neuronal differentiation

Down-regulated

 Regulatory circuits of the STAT3 signaling pathway

Post-expansion Tumor vs Control

Graph 1

Post-expansion Tumor vs Control

Graph 2

Post-expansion Tumor vs Control

Graph 3

Limitations and Future Perspectives

Limitations

 Lack of datasets from patients with important subtypes (B-cell subtype, Philadephia chromosome (BCR-ABL fusion))

 Low number of samples that were used to create the machine learning classifier

Future Perspectives

 Operate the analysis effectuated given datasets on B-cell subtype patients.

 Using the new labeled data to repeat the subtypes DEG pipeline

More in depth analysis of the differences

 (and similarities) between the different ALL subtypes, and pediatric vs adult samples.

Work subdivision

- Preprocessing: Lorenzo, Thomas, Andrea, Gloria
- Gene expansion, validation, enrichment and networks analysis: Lorenzo, Andrea, Gloria, Thomas
- Differential gene expression analysis, PCA, Enrichment and Clustering: Andrea and Gloria
- Machine learning, consensus, treatment enrichment: Thomas and Lorenzo
- Report writing: Andrea, Thomas, Lorenzo, Gloria, Sabri

Thank you for the attention!