Chi square distribution:

10:09 AM

The Chi square distribution with k (dof) degrees of freedom is the distribution of the sum of squares of k independent standard normal random variables.

If Z1 Z2 -- . Zk are independent

standard normal sandom variables, then

$$\sum_{i=1}^{K} z_i^2 \text{ is } \chi^2 \text{ s.v. with } k \text{ dof.}$$

- Note that χ^2 21 not symmetric about oxigin.
- Notation we denote $\chi^2_{\alpha} \rightarrow a$ number such that α is the area to the right of this number in probability distribution graph.

Now if we are looking for an interval containing 95% of the data from a Chi square distribution, then we can go for $\begin{bmatrix} \chi^2 \\ 0.975 \end{bmatrix}$, $\chi^2 \\ 0.025 \end{bmatrix}$

Why: Area to sight of $\chi^2_{0.025} = 2.5\%$ Area to sight of $\chi^2_{0.975} = 97.5\%$

• We have χ^2 table available, and the values like $\chi^2_{0.025}$ & $\chi^2_{0.975}$ is to be obtained from the table.

· X table

Degrees of freedom (df)	Significance level (α)							
	.99	.975	.95	.9	.1	.05	.025	.0
1		0.001	0.004	0.016	2.706	3.841	5.024	6.63
2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.21
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.34
4	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.27
5	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.08
6	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.81
7	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.47
8	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.09
9	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.66
10	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.20
11	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.72
12	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.21
13	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.68
14	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.14
15	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.57
16	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.00
17	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.40
18	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.80
19	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.19
20	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.56
21	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.93
22	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.28
23	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.63
24	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.98
25	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.31
26	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.64
27	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.96
28	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.27
29	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.58
30	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.89
40	22.164	24,433	26.509	29.051	51.805	55.758	59.342	63.69
50	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.15
60	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.37
70	45,442	48.758	51.739	55.329	85.527	90.531	95.023	100.42
80	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.32
100	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.11
1000	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.80

Suppose we want to look for $\chi^2_{0.975}$, then we have to ask for dof first. If degree of freedom = 40 then

$$\chi^2_{0.975} = 24.433$$

X2 values.

If dof = 24 & we are looking for $\chi_{0,q}^2$ then it is 15.65q

and so on. This is how we look for