ENGN 2020:

Solutions to Midterm #1

Brown University School of Engineering

Problem 1

Part a. The elements that go into our matrix are:

$$\tilde{k}_{ij} = \frac{k_{ij}}{\sqrt{m_i m_j}}$$

This was analyzed with code at the end of the problem to find the natural frequencies, which are:

```
[ 0.29557781  0.71803543  1.14237507  1.35085132  2.42453087]
```

with units of s^{-1} . The associated eigenvectors are the columns of the below

Eigenvectors are properly dimensionless, since they can be scaled by an arbitrary factor.

Part b. This is a basis set transformation, which we can do by

$$\mathbf{q} = c_1 \underline{\mathbf{v}}_1 + c_2 \underline{\mathbf{v}}_2 + c_3 \underline{\mathbf{v}}_3 + c_4 \underline{\mathbf{v}}_4 + c_5 \underline{\mathbf{v}}_5 = \underline{\mathbf{v}} \underline{\mathbf{c}}$$
 (1)

where $\underline{\mathbf{q}}$ is our given vector, $\underline{\underline{\mathbf{v}}}$ is a matrix containing the eigenvectors on the columns, and $\underline{\mathbf{c}}$ is a vector containing our five coefficients. We can use np.linalg.solve to find $\underline{\mathbf{c}}$.

Different assumptions could reasonably be made on whether the presented numbers contained the displacements directly, or whether the presented numbers already contained the $\sqrt{m_i}$ correction. Either interpretation is eligible for full credit.

1. Assuming numbers need mass correction. Here, we first calculate $\underline{\tilde{\mathbf{q}}} = \underline{\mathbf{m}} \circ \underline{\mathbf{q}}$, where \circ indicates the element-wise product and $\underline{\mathbf{m}}$ contains the square-roots of the masses, and use this in equation (1). This gives:

```
[0.2241178 -1.04391844 0.4175895 -0.12186543 -0.12678062]
```

2. Assuming numbers contain mass correction. Here, we just use $\underline{\mathbf{q}}$ directly in equation (1), giving:

```
[0.10134328 - 0.39418793 0.1201439 - 0.09726451 - 0.05523108]
```

Part c. Note that our force equation, as given in the problem statement, can be re-expressed as:

$$\underline{\mathbf{F}} = -\underline{\underline{\mathbf{k}}}\,\underline{\mathbf{q}}$$

This is simple to solve, and we get:

[[-0.72] [-1.] [-0.44] [0.47] [-2.16]]

Python code. File attached here.

```
import numpy as np
2
  masses = [8., 2., 3., 5., 9.]
3
  ks = np.zeros((len(masses), len(masses)))
  ks[0, 0] = 8.
  ks[0, 1] = 3.
  ks[0, 2] = 7.
  ks[0, 3] = 1.
  ks[0, 4] = 0.
10
11
12 ks[1, 1] = 7.
13 ks[1, 2] = 5.
14 ks[1, 3] = 0.
  ks[1, 4] = 1.
17 ks[2, 2] = 9.
  ks[2, 3] = 3.
  ks[2, 4] = 1.
  ks[3, 3] = 5.
21
  ks[3, 4] = 3.
22
23
24
  ks[4, 4] = 10.
25
  # Copy symmetric values:
26
  ks = ks + ks.T - np.diag(ks.diagonal())
27
  print(ks)
28
  # Make k-tildes.
  ktildes = np.zeros((len(masses), len(masses)))
  for i in range(len(masses)):
32
       for j in range(len(masses)):
33
           ktildes[i, j] = ks[i, j] / np.sqrt(masses[i] * masses[j])
34
35
  print(ktildes)
36
   w, v = np.linalg.eigh(ktildes)
37
  print(w)
39
  print('The natural frequencies are:')
  print (np.sqrt(w))
42 print (V)
43
  #######################
  # Part b.
  #######################
q = np.array([0.1, .05, .01, -.3, .3])
  # Approach 1.
qt = np.sqrt(masses) * q
50 print (np.linalg.solve(v, qt))
51 # Approach 2.
52 print (np.linalq.solve(v, q))
```

```
53
54  #################
55  # Part c.
56  ###############
57  F = -np.matmul(ks, q)
58  print(F)
```

Rubric. Total 15 points.

- Part a. 8 points (pick one from each group separated by carriage return)
 - (+1) natural frequency units 1/s (rad/s OK)
 - (+0) incorrect frequency units
 - (+1) eigenvector units unitless or m, with correct frequency/justification
 - (+0) incorrect eigenvector units
 - (+3) correct five eigenvalues
 - (+2) eigenvalue numbers all correct but wrong signs or squared
 - (+1) one incorrect eigenvalue (not sign error)
 - (+0) more than one incorrect eigenvalue (not sign error)
 - (+3) correct five eigenvectors
 - (+2) eigenvalues do not match eigenvectors but otherwise correct
 - (+2) one incorrect eigenvector or fewer than three small typos across multiple
 - (+1) eigenvector numbers correct but wrongly said they were rows not columns etc.
 - (+1) eigenvectors not normalized but correct
 - (+0) more than one incorrect eigenvector or 3+ typos
- Problem 1b. Max total: 5 points
 - (+5) correct five coefficients
 - (+3) correct numbers but coefficient order does not match basis set order, or all wrong sign
 - (+3) four correct coefficients
 - (+2) incorrect coefficients due to input but correct input type and attempt to solve q=vc for c
 - (+1) incorrect coefficients and input type but attempt to solve q=vc for c
 - (+0) incorrect values and/or incorrect procedure
- Problem 1c. Max total: 2 points
 - (+2) correct five forces
 - (+1) correct numbers but sign and/or ordering error
 - (+1) multiple incorrect forces but correct attempt to solve F=-kq
 - (+1) any incorrect input but correct attempt to solve F=-kq
 - (+0) incorrect values and/or incorrect procedure

Problem 2

Part a. The key equation was given in eq (4) of the reference

$$\underline{\mathbf{x}} = (1 - m)\underline{\mathbf{A}}\underline{\mathbf{x}} + m\underline{\mathbf{s}}$$

We try this on the two examples in the paper, and one extra, with a link deleted. Note when the link is deleted, we need to be a little careful not to divide by zero. For the three values of m, we get:

```
0.15
  0.25
                               0.14731658 0.07991615 0.05621352]]
  [[ 0.35827687  0.35827687
  0.35
  File attached here.
  import numpy as np
2
  def make_A(n, links):
      """Make the link matrix."""
      A = np.zeros((n, n))
      for link in links:
6
         A[link[1], link[0]] += 1.
      # Make each column sum to one.
      Asum = A.sum(axis=0)
9
      # If any columns have no entries, they should stay zero, not nan.
10
      for index, value in enumerate(Asum):
11
         if value == 0.:
12
             Asum[index] = 1.
13
      A = A / Asum
14
      return A
15
16
  def power_method(m, iterations=10):
17
      """Run the power method."""
18
      x = np.ones((n, 1)) \# Guess of x.
19
      for _ in range(10):
20
         x = (1. - m) * np.matmul(A, x) + m * s
21
         x /= np.linalg.norm(x, ord=1)
22
         print(x.T)
23
24
  # Figure 2, modified.
25
  n = 5 # number of pages
  links = [[1, 2], [2, 1], [4, 3], [5, 3], [5, 4]]
27
  # Bring to python numbering system.
  for link in links:
29
      link[0] -= 1
30
      link[1] -= 1
31
 A = make_A(n, links)
  s = 1./ n * np.ones((n, 1))
```


Figure 1: Texas' importance score by week.

Part b. The code is not shown, as it is a simplified version of that in part c. The two unique values are (0.235606, 1.).

Part c. The top ten teams, according to this ranking scheme, are (with their importance scores shown):

```
1.000 Texas
0.835 LSU
0.823 Virginia Tech
0.815 Michigan
0.757 Florida State
0.700 Georgia
0.695 Penn State
0.653 Miami (Florida)
0.545 Georgia Tech
0.544 Auburn
```

Texas was the top team at the end; their week-by-week score is shown in Figure 1. Code to generate this follows. File attached here.

```
import json
   import numpy as np
   from matplotlib import pyplot
   np.set_printoptions(precision=2)
   def make A(n, links):
       """Make the link matrix."""
       A = np.zeros((n, n))
8
       for link in links:
           A[link[1], link[0]] += 1.
10
       # Make each column sum to one.
11
       Asum = A.sum(axis=0)
12
       # If any columns have no entries, they should stay zero, not nan.
13
14
       for index, value in enumerate(Asum):
            if value == 0.:
                Asum[index] = 1.
16
       A = A / Asum
17
       return A
18
19
   def get_importance_scores(links, n, m=0.15, iterations=1000):
20
       A = make_A(n, links)
21
       m = 0.15
22
       S = 1. / n * np.ones((n, n))
23
       M = (1. - m) * A + m * S
24
25
       # Power method.
       x = np.ones((n, 1)) # Guess of x.
26
       for _ in range(iterations):
27
           x = np.matmul(M, x)
28
29
            x /= x.max()
30
       return x
31
   def get_links(results):
32
        """Creates links list from results list."""
33
       links = []
34
       for r in results:
35
            if r['home_score'] > r['away_score']:
36
                links.append([r['away_team'], r['home_team']])
37
            else:
38
                links.append([r['home_team'], r['away_team']])
39
40
       return links
41
42
   def get results until week (week):
       partial_results = []
43
       for result in results:
44
            if result['week'] <= week:</pre>
45
                partial_results.append(result)
46
       return partial_results
47
48
   results = json.load(open('results.json'))
   team_names = json.load(open('teams.json'))
50
   n = len(team_names)
52
   partial_results = get_results_until_week(np.inf)
  links = get_links(partial_results)
```

```
x = get_importance_scores(links, n)
  sorted_indices = np.argsort(x.flatten())
  sorted_indices = np.flip(sorted_indices, axis=0)
57
  for index in sorted_indices[:10]:
       print('{:.3f} {:s}'.format(float(x[index]), team_names[index]))
59
60
   # Now make a plot of what Texas did throughout the year.
61
   # They are team #202.
62
  texas_scores = []
  for week in range (18):
64
       partial_results = get_results_until_week(week)
       links = get_links(partial_results)
66
      x = get_importance_scores(links, n)
      texas\_score = x[202]
68
       print (texas_score)
       texas_scores.append(texas_score)
70
71
  fig, ax = pyplot.subplots()
72
73
  ax.plot(range(18), texas_scores, 'o-')
74 ax.set_xlabel('week')
  ax.set_ylabel('Texas importance score')
  fig.savefig('texas.pdf')
```

Rubric. Total 15 points.

- Part a: 4 points
 - 4/4 all three importance scores are correct
 - 3/4 two of three importance scores are correct
 - 2/4 one of three importance scores are correct
 - 1/4 all importance scores are wrong but have right M
 - 1/4 all importance scores are wrong but code provided
 - 0/4 importance scores are wrong and no code provided
- Part b: 2 points
 - 2/2 both importance scores are correct
 - 1/2 importance scores are wrong but code provided
 - 0/2 importance scores are wrong and no code provided
- Part c, top-ten ranking: 3 points
 - 3/3 all top ten rankings and importance scores are correct.
 - 2/3 ranking are wrong but all importance score are correct.
 - 1/3 rankings are correct but importance scores are wrong.
 - 0/3 all rankings and importance score are wrong.
- Part c, plot: 2 points
 - 2/2 The plot is right (Texas, x-axis is week and y-axis is importance score)
 - 2/2 The plot is not right or not normalized, but the importance scores for every week are provided and these scores are right
 - 1/2 The plot is right but the team names are wrong

- 0/2 The plot is not right or not normalized, and no importance scores for every week provided.
- Part c, code: 4 points
 - 4/4 code makes sense.
 - 3/4 code doesnt make sense..
 - 0/4 no code provided.

Problem 3

Part a.

• Node 1, x direction:

$$0 = -F_{\rm A}\cos\beta + F_{\rm C}\cos\gamma$$

• Node 1, y direction:

$$0 = -F_{\text{load}} - F_{\text{A}} \sin \beta - F_{\text{C}} \sin \gamma$$

• Node 2, x direction:

$$0 = F_{\rm B} + H_2 + F_{\rm A} \cos \beta$$

• Node 2, y direction:

$$0 = V_2 + F_A \sin \beta$$

• Node 3, x direction:

$$0 = -F_{\rm B} - F_{\rm C} \cos \gamma$$

• Node 3, y direction:

$$0 = V_3 + F_C \sin \gamma$$

Part b. Converting to a linear system, $\underline{\mathbf{A}} \mathbf{x} = \underline{\mathbf{b}}$, gives

$$\begin{bmatrix} -\cos\beta & 0 & \cos\gamma & 0 & 0 & 0 \\ -\sin\beta & 0 & -\sin\gamma & 0 & 0 & 0 \\ \cos\beta & 1 & 0 & 1 & 0 & 0 \\ \sin\beta & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & -\cos\gamma & 0 & 0 & 0 \\ 0 & 0 & \sin\gamma & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} F_{\rm A} \\ F_{\rm B} \\ F_{\rm C} \\ H_2 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} 0 \\ F_{\rm load} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Part c. Using the script, this gives:

```
[[-500. ]
[ 433.01270189]
[-866.02540378]
[ 0. ]
[ 250. ]
[ 750. ]]
```

File attached here.

```
import numpy as np

def get_A(beta, gamma):
    """Returns the A matrix given angles beta and gamma."""

cos = np.cos
sin = np.sin
```

```
A = [[-\cos(beta), 0., \cos(gamma), 0., 0., 0.],
7
             [-\sin(beta), 0., -\sin(gamma), 0., 0., 0.],
             [cos(beta), 1., 0., 1., 0., 0.],
             [sin(beta), 0., 0., 0., 1., 0.],
10
             [0., -1., -\cos(\text{gamma}), 0., 0., 0.],
11
             [0., 0., sin(gamma), 0., 0., 1.]]
12
       return np.array(A)
13
14
   def get_b(F_load):
15
        """Returns the b vector given the load force."""
16
       b = [[0., F_load, 0., 0., 0., 0.]]
17
       return np.array(b).T
18
19
   F_load = 1000. \# N
20
   alpha = 90. / 180. * np.pi
21
   beta = 30. / 180. * np.pi
   gamma = 60. / 180. * np.pi
24
25
   A = get_A(beta, gamma)
   b = get_b(F_load)
  x = np.linalg.solve(a=A, b=b)
  print(x)
```

Part d. Given a value of γ , we first need a formula to find β . The constraint is that the height if fixed. If we take the distance between 2 and 3 to be 1 unit, we can work through the trigonometry to find the height at 1 is $\sqrt{3}/4$.

Writing a script to solve this, we find the maximum angle is 65.2°.

File attached here.

```
import numpy as np
   from scipy.optimize import newton
   def get_A(beta, gamma):
        """Returns the A matrix given angles beta and gamma."""
5
       cos = np.cos
       sin = np.sin
       A = [[-\cos(beta), 0., \cos(gamma), 0., 0., 0.],
             [-\sin(beta), 0., -\sin(gamma), 0., 0., 0.],
             [cos(beta), 1., 0., 1., 0., 0.],
             [sin(beta), 0., 0., 0., 1., 0.],
11
             [0., -1., -\cos(\text{gamma}), 0., 0., 0.],
             [0., 0., sin(gamma), 0., 0., 1.]]
13
14
       return np.array(A)
15
   def get_b(F_load):
16
        """Returns the b vector given the load force."""
17
       b = [[0., F load, 0., 0., 0., 0.]]
18
       return np.array(b).T
19
20
   def get_beta(gamma):
21
        """Returns the value of angle gamma given a value of beta."""
22
       h = np.sqrt(3.) / 4.
23
       x = h / np.tan(gamma)
24
```

```
y = 1. - x
25
       return np.arctan(h / y)
26
27
   def get_V3(gamma):
28
       beta = get beta (gamma)
29
       A = get A(beta, gamma)
30
       b = get_b(F_load=1000.)
31
       x = np.linalg.solve(a=A, b=b)
32
       V3 = x[-1]
33
       return V3
34
35
   def get_residual(gamma):
36
       gamma = float(gamma)
37
       V3max = 800.
38
       V3 = get_V3(gamma)
39
       return V3 - V3max
40
41
42
43
   # Just check that it works for our original system.
   gamma = 61. * np.pi / 180.
   V3 = get_V3(gamma)
   print(V3)
  # Solve it!
48
  gamma = newton(func=get_residual, x0=60. * np.pi / 180.)
   print (gamma * 180 / np.pi)
  V3 = get_V3(gamma[0])
  print(V3)
```

Rubric

- Part a. 4 points.
 - -1 Small sign error(s) or similar. Max 2 deductions if equations otherwise sound.
- Part b. 4 points.
 - -1 Sign error.
 - -1 Missing or wrong term. (Max two deductions of missing/sign/wrong.)
 - -2 b not provided.
 - -1 **b** = **0** (missing F_{load})
- Part c. 4 points.
 - -1 Sign error. (Not taken twice if already taken in a/b.)
 - 2/4 Right approach, wrong numbers.
 - 1/4 Attempted (incorrect) hand solution; didn't use numerical approach.
- Part d. 8 points.
 - 4/8 Right approach, wrong numbers.
 - 2/8 Poorly documented / hard-to-follow approach with wrong numbers, but using nonlinear solver.
 - 2/8 Only solved for height correctly.
 - -1 Small sign / conversion error.