Hence, $\lim_{n\to\infty} \rho(\psi_{t_n}, \psi) = 0.$

Next, we will show the existence of a positive number $\overline{\epsilon}_0$ such that $\rho(\psi_{t_n+\tau_n}, \psi_{\tau_n}) \geq \overline{\epsilon}_0$ for each $n \in \mathbb{N}$. Denote $\beta = \min\{1, L_1\}$. For each $k \in \mathbb{N}$, we have that

$$\rho_{k}(\psi_{t_{n}+\tau_{n}}, \psi_{\tau_{n}}) = \min \left\{ 1, \sup_{s \in [-k,k]} \|h(\phi(t_{n}+\tau_{n}+s)) - h(\phi(\tau_{n}+s))\| \right\}$$

$$\geq \min \left\{ 1, L_{1} \sup_{s \in [-k,k]} \|\phi(t_{n}+\tau_{n}+s) - \phi(\tau_{n}+s)\| \right\}$$

$$\geq \beta \rho_{k}(\phi_{t_{n}+\tau_{n}}, \phi_{\tau_{n}}).$$

Thus, the inequality

$$\rho(\psi_{t_n+\tau_n}, \psi_{\tau_n}) \ge \beta \rho(\phi_{t_n+\tau_n}, \phi_{\tau_n}) \ge \overline{\epsilon}_0$$

holds for each $n \in \mathbb{N}$, where $\overline{\epsilon}_0 = \beta \epsilon_0$. Consequently, the function $\psi(t)$ is unpredictable. \square

A corollary of Theorem 5.2 is as follows.

Corollary 5.1 If $\phi : \mathbb{R} \to \mathcal{H}$ is an unpredictable function, where \mathcal{H} is a bounded subset of \mathbb{R}^p , then the function $\psi : \mathbb{R} \to \mathbb{R}^p$ defined as $\psi(t) = P\phi(t)$, where P is a constant, nonsingular, $p \times p$ matrix, is also an unpredictable function.

Proof. The function $h: \mathcal{H} \to \mathbb{R}^p$ defined as h(u) = Pu satisfies the inequality

$$L_1 \|u_1 - u_2\| \le \|h(u_1) - h(u_2)\| \le L_2 \|u_1 - u_2\|,$$

for $u_1, u_2 \in \mathcal{H}$ with $L_1 = 1/\|P^{-1}\|$ and $L_2 = \|P\|$. Therefore, by Theorem 5.2, the function $\psi(t)$ is unpredictable. \square

In the next section, the existence of Poincaré chaos in the dynamics of differential equations will be presented.

6 Unpredictable solutions of differential equations

Consider the differential equation

$$x'(t) = -\frac{3}{2}x(t) + \nu(t), \tag{6.9}$$

where the function $\nu(t)$ is defined as

$$\nu(t) = \begin{cases} 0.7, & \text{if } \zeta_{2j} < t \le \zeta_{2j+1}, \ j \in \mathbb{Z}, \\ -0.4, & \text{if } \zeta_{2j-1} < t \le \zeta_{2j}, \ j \in \mathbb{Z}. \end{cases}$$
(6.10)