USING CENTRALITY MEASURES ON ROADS TO HELP THE PEOPLE SUFFERING DUE TO KERALA FLOODS

TEAM MEMBERS:

16BCB0136 (Sarah Elsa Mathew) 16BCE0651 (Parth Pande) 16BCE2213 (Janani Suresh) 16BCE2239 (Oeindrila Bairagi) 16BCI0183 (Tanishq Tewari)

Report submitted for the Final Project Review of

Course Code: CSE3021 – Social and Information Networks

Slot: A1 + **TA1**

Professor W.B. Vasantha

***** Introduction

In India, during the months of July and August, floods can occur in cities and/or states due to heavy rainfall. This can occur all over the country, however, it is more prominently found in the more southern states and cities of the country. Mumbai is an example of a city that is flooded due to heavy rainfall almost every year.

However, over the past few days, several cities in the state of Kerala have experienced devastation caused by floods due to very heavy rainfall. These floods have submerged parts of cities and have led to severe loss of property and people. This type of rainfall in Kerala was very unusual, and it was proven by historical records of rains in the state, which reveal that these floods in Kerala are the worst they have ever been for nearly a century.

Within a fortnight's time, the lives of 445 people have been taken, and 15 people are still missing. Over a million people were evacuated and all 14 districts of the state were placed on red alert. According to the government of Kerala, nearly 1/6 of the entire population have been affected by these floods.

To conduct rescue operations and provide aid to the affected citizens, senior officers of the NDRF and the NDMA were instructed by the cabinet secretary to conduct meetings with the Kerala Chief Secretary. Following these, 40 helicopters, 31 aircrafts, 182 teams for rescue, 18 specialized medical teams, 58 teams of NDRF, and 7 companies of the Central Armed Police Forces were tasked with service to rescue and provide aid to the people affected by the floods, with the use of rescue equipment and over 500 boats.

Support has flown in from all over the country from businesses, private institutions, and citizens of other states. However, the affected citizens are still in need of aid, and thus, they need to be helped.

Identifying the closest relief areas and cities to affected areas, identifying the cities that are most vital for transfer of goods and funds are thus, and identifying the cities most in need of aid are thus very vital tasks, will lead to the betterment of the current poor condition of the state.

***** Literature review summary table:

Authors and Year (Reference	Title (Study)	Concept	Methodology	Dataset details/an alysis	Relevant findings	Limitations/ future research/ga ps identified
Kyoungjin Park, Alper Yilmaz	A social Network analysis approach to analyse road networks	Real world events or physical settings can be represente d in different types of network structures. To realize this, a social network topology is used to represent road networks. Generally, road networks reside on a plane, which generate a specific network structure called a planar	A section was selected using google maps, and the junctions, crossroads, etc. were identified there. Then a graph of the road network was created, through which the node centrality: degree, closeness and betweenness were calculated. The entropy was then calculated from that.	4 sites were chosen and mapped: residential area of Columbus Ohio, downtown area of Columbus Ohio, residential area of Washingto n dc and downtown area of Washingto n dc. Number of nodes and links were found for each graph as well.	The experiment proved that the distribution dose does not have a distinction between downtown and residential area, when comparing the distribution of node centrality in downtown area and residential area. The road network is planar network, so the range of nodal degree is narrow. In a downtown area which had a grid	Finding and accurately labelling all the links present in the section.
		network. To analyse these special			like topology has a higher entropy than the	

	<u> </u>	, 1		T	• 1 .• 1	
		networks,			residential	
		a new			area have a	
		approach			radiant	
		is			topology.	
		introduced				
		, using				
		centrality				
		and				
		entropy of				
		various				
		distributio				
		ns				
		estimated				
		from the				
		network				
		topology.				
		The				
		entropy				
		will help				
		to				
		examine				
		the				
		characteris				
		tics of				
		selected				
		road				
		networks				
		in places.				
Hu	Urban	One of the	A section is	A small	From	Finding and
Weiping,	road	most	separated, in	city called	North-east	accurately
Wu Chi	network	_	which all the	Foshan	to the	labelling all
vv u Cili	accessibili	important	roads are			the links
		problems	labelled as	city was	South-west, the Foshan	
	ty evaluation	in today's	nodes and	used, and the roads	the Foshan	present in the
	method	world is	links. The		central	section
		how to		were	region's	
	based on	evaluate	shorted time	analysed	accessibility	
	gis	the	distance is	in this	value	
	Spatial	accessibili	calculated	case	decreases	
	analysis	ty of a	between each	study.	gradually.	
	techniques	road	node. The		gradually.	
	teeninques	network.	lower the		In other	
			value, the		findings, it	
		This paper	higher its		mainly	
		tries to	accessibility.		indicates the	
		discuss it.	The weighted		node's	
			average travel		11040	

Then, the	time is also	shortest
spatial	calculated	general
analysis	between each	time.
method on	node, so is the	
road	accessibility	The central
network	index. After	region of
assessmen	which, ESRI	Foshan has
t has	Personal	relatively
establishe	geodatabase is	higher value
d based on	_	of
the GIS	with the data	
	an build up	accessibility
spatial	the dataset,	
analysis	construct	
technolog	effectiveness	on the one
y, some		hand, the
urban road	network, and	accessibility
network	usc	value
accessibili	Inetworkclass	displays the
ty	to carry on	
evaluation	geometry	node
models	network to	shortest
	build another	travel time
are built	geometric	characteristi
up. The	network.This	c. On the
models	will calculate	other hand,
use ESRI	the	as
Corneratio	connectivity	4 11
Corporatio n's	of each node,	the node has
ArcGIS	the shortest	joined the
	travel time	weights on
Engine	and the	centricity
componen	distance	and
ts and	between each	transportatio
Microsoft	nodo	n
Corporatio		monte that
n. Net		rank, the
Framewor		northern
k, and		region with
focus on		a railroad, a
the road		national
network		highway
connectivi		l l l
ty,		and
		provincial
the		highway
shortest		and so on,
travel time		

_	1	T	T	
	and the		then it has a	
	weighted		higher	
	average		•1 •1•,	
	travel		accessibility	
	time. The		value.	
	paper		The western	
	presented		region has	
	three main		relatively	
	road		Telatively	
	network		lower value	
	accessibili		of	
	ty		accessibility	
	evaluating			
	indicators,			
	introduced			
	theory			
	basis of			
	the model			
	constructi			
	on in			
	detail, and			
	the model			
	constructi			
	on			
	process.			
	Finally,			
	further			
	urban road			
	network			
	accessibili			
	ty			
	evaluation			
	models			
	are			
	discussed.			

		l				I
Fangxia	Analysis	This paper	We develop	All	The	First, the
Zhao,	of Road	proposes a	the road	relevant	population	travelers'
Huijun	Network	road	network	data are	distribution	route choice
Sun,	Pattern	network	pattern	within the	and CBD	behavior and
Jianjun	Consideri	growing	framework	paper.	are two	the limit
Wu, Ziyou	ng	model	considering		important	financial
Gao,	Population	with the	population		factors that	budget
Ronghui	Distributio	considerat	distribution		affect the	during the
Liu	n and	ion of	and central		topology of	process of
D 11' 1 1	Central	population	business		road	building the
Published:	Business	distributio	district based		network.	road is not
March 16,	District	n and	on the relative		The paper	account for
2016		central	neighbor		also	in this paper.
		business	graph. For		discusses	One possible
		district	simplicity, we		the topology	extension is
		(CBD)	present our		of road	to
		attraction.	road network		network,	incorporate
		In the	pattern model		circuitness	them into the
		model, the	only with the		and	proposed
		relative	consideration		treeness,	framework in
		neighborh	of the		coverage	future
		ood graph	population		and total	studies.
		(RNG) is	distribution		length.	Secondly, the
		introduced	and central			some other
		as the	business			social-
		connectio	district.			economic
		n	However, the			mechanisms,
		mechanis	some other			such as land
		m to	social-			use and
		capture	economic			environment,
		the	mechanisms,			can be
		characteris	such as land			introduced
		tics of	use and			into the
		road	environment,			proposed
		network	can readily be			framework.
		topology.	incorporate			
		The	into our			
		simulation	proposed			
		experimen	model. This			
		t is set up	work adds to			
		to	the body of			
		illustrate	knowledge in			
		the effects	the road			
		of	network			
		population	pattern by			
		distributio	considering			
	J	aisaiouno	Community		<u> </u>	<u> </u>

Geethu	Sustainabl	The	A coso study	A direct	Lack of	Not
Lal,*,	e Traffic	spectacula	A case study of a	field	road	mentioned in
Divya L.	Improvem	r increase	prominent		markings,	this specific
G., Nithin	ent	of number	urban	survey	signals, etc.,	-
	forUrban		intersection –	was	as well as	paper
K. J., Susan		of motor		performed		
Mathew,	Road	vehicles	Ettumanoor	to collect	improper	
Bennet	Intersectio	on the	was taken as a	relevant	land uses	
Kuriakose	ns of	road is	case study to	data.	pattern	
Global	Developin	mainly	propose the	Accident	trigger and	
Colloquium	g	attributed	methodology	data were	sustain the	
in Recent	Countries:	ingenerati	to solve traffic	collected	traffic	
Advanceme	A Case	on	congestion	from the	problem at	
nt and	Study of	oftraffic	problems in	Ettumano	the	
	Ettumano	problems	developing	or Police	Ettumanoor	
Effectual	or, India	like	countries.	Station for	intersection.	
Researches		accidents,	Field surveys	three	During the	
in		congestion	were	years	peak hours,	
Engineerin		s, delays	performed	(2012,	it was	
g, Science		etc.,	and relevant	2013 and	observed	
and		especially	data regarding	2014).	that the	
Technology		in the	the	Passenger	pedestrian	
(RAEREST		urban	commutation	Car Unit	volume is	
2016)		premises	volume, land	(PCU)	exceeding	
2010)		of	use activities,	was	the	
		developin	pedestrian	adopted	permissible	
		g	movements	for all the	limits at the	
		countries.	and accident	vehicular	roads.	
		This paper	data were	volume	Improveme	
		examines	collected. The	counts.	nts in the	
		the traffic	collected data	Turning	planning of	
		problems	was further	movement	the	
		and	analysed.	s of	intersection,	
		sustainabl		vehicles at	parking,	
		e		the	traffic	
		improvem		intersectio	movements	
		ent		n with	as well as	
		ofroadinte		respect to	proper	
		rsection at		12	signalisation	
		Ettumano		identified	were	
		or, India.		directions	suggested.	
		The		were		
		spacial		reckoned		
		and		during		
		temporal		morning		
		constitutio		and		
		ns of the		evening		

vehicle as	peak
well as	hours.
pedestrian	Entry and
traffic at	exit of
the	public
intersectio	transport
ns were	buses to
examined	the bus
and the	stations
characteris	were also
tics of the	counted
junction	during
indoctrinat	both the
ing the	peak
delay	periods.
problems	Pedestrian
are	movement
identified.	characteris
Data	tics in the
regarding	lateral and
the traffic	cross
volume,	movement
land use	directions
and	with
pedestrian	respect to
movement	the roads
activities	were also
are	enumerate
collected	d. A
through	simple
direct	hand
field	counter
surveys.	was
Analysis	employed
of the	for
collected	pedestrian
data	and
revealed	vehicle
that the	volume
improper	counts.
planning	
of the	
junctions,	
lack of	
traffic	
signals	

	ı	T		ı	T	
		and				
		unauthoris				
		ed parking				
		are the				
		major				
		factors				
		contributi				
		ng to the				
		traffic				
		congestion				
		s. Various				
		remedial				
		measures				
		are also				
		proposed,				
		focusing				
		on				
		junction				
		improvem				
		ent,				
		alternative				
		operation				
		plan and				
		junction				
		signalisati				
		on.				
Jean-Marc	Analysis	Roads in	The	They use a	The	The thematic
Tacnet,	of	mountains	methodology	generic	GeographLa	approach of
Eric	importanc	areas are	is based on	tool called	b software	economic
Mermet,	e of road	exposed to	two steps. The	Geograph	has been	and social
Somsakun	networks	natural	first step	Lab which	extended in	factors can
Maneerat	exposed to	hazards	characterizes	lies on a	order to	still be
	natural	such as	the initial	four	import	improved in
April, 24-	hazards	snow	state of socio-	parameter	thematic	collaboration
27, 2012		avalanche	economic	s models :	layers from	with
		s, torrent	factors across		G.I.S.	economy,
		floods and	the territories.	• Space is	applications.	geography
		rockfalls.	The second	constitute	This shows	specialists.
		Risk	one translates	d of a set	the	The case
		depends	them into	of Origin-	feasibility	study of the
		both on	structural	Destinatio	and the	Maurienne
		hazard,	indicators	n (OD)	interest of	Valley
	I .	,		I .	11110100001	, arroj

	11	(1:11 4-	1.4	1	1
	direct and	(linked to	relations	such an	relates to a
	indirect	importance)	on the	approach in	very simple
	vulnerabili	of each road	network	order to	network
	ty. In case	section using	(figure 8).	analyze the	structure.
	of roads,	both network	It is the	importance	Therefore,
	the	structural	set of	and	the
	indirect	properties and	definition	criticality of	identification
	vulnerabili	constraints	for	roads	of critical
	ty relates	issued from a	measure	sections	sections is
	to the	multicriteria	calculus;	exposed to	not
	consequen	analysis of	Measure	natural	spectacular
	ces of	natural		hazards	due to the
	road	hazards.	is a	considered	linear
	closures		mathemati	as	structure of
	which is		cal	constraints.	network (in
	rarely		property	This first	opposition to
	assessed.		which	application	a high
	The		synthesize	also showed	meshed
	criticality		S	that the	structure).
	of these		informatio	initial	
	closures		n	geographic,	
	depends		collected	economic,	
	on the		on OD	environment	
	importanc		relations;	al data	
	e of road		• View is	processing	
	sections.		a	is an	
	A new		graphical	essential	
	methodolo		representa	part but	
	gy is		tion of the	time-	
	proposed		network	consuming	
	in the		which	of the global	
	context of			methodolog	
	natural		permits the	y.	
	risks		variation		
	manageme		of levels		
	nt in		of details		
	mountains				
	. Based on		by		
	structural		vertices		
	networks		aggregatio		
	analysis, it		n;		
	aims to		• Legend		
	assess the		allows		
	accessibili		better		
	ty level of		assessing		
	mountain		results		
L			Tesuits		

		T	T
territories	displayed		
and to	by		
identify	operating		
critical	variation		
roads	on the		
sections	number of		
depending	boxes		
both on	(classificat		
their	ion) and		
exposure	colors		
to	(symboliz		
phenomen	ation).		
ons but	,		
also on the			
importanc			
e of roads			
on			
economic,			
social,			
environme			
ntal			
contexts.			
The			
structural			
network			
analysis			
allows to			
describe			
how far			
the			
network			
properties			
conditions			
the			
accessibili			
ty from			
one point			
to another.			
This			
approach			
is			
combined			
to			
multicriter ia decision			
making to			

		assess				
		importanc				
		e				
		according				
		to				
		economic,				
		social or				
		human				
		factors but				
		also				
		fragility,				
		resilience				
		or risk				
		sensitivity on road				
		sections.				
		sections.				
G 1.11	-	D 1 1				
Sreelekha.	Interaction	Developed	The	Dataset is	Network	Analysis
M.G.a *,	between	graph	methodology	everything	Density is	reveals that
Krishnamur	Road	theory	involves	given on	usually	road network
thy.K.b,	Network	measures	application of	the paper.	computed	fractality is
Anjaneyulu	Connectiv	to	GIS for	The main	by dividing	directly
	ity and	quantify	evaluating the	two	the mass	varying with
M.V.L.R.c	Spatial	the spatial	road network	objectives	length of	respect to
	Pattern	structure	of the study	were:	road	connectivity
		of road	area. Urban	• To	network by	and coverage
		network	road network	understan	the surface	of the study
		and to	evaluation	d the	on which	area. Root
		verify	based on GIS	existing	this mass is	Mean Square
		their	involves	road	located.	Error
		relationshi	collecting the	network	Thus	(RMSE)
		p with	data	of the city	density only	values
		regional	resources,	in terms of	provides	showed that
		economic	digitizing the	connectivi	information	road network
		characteris	network,	ty and	about the	density is
		tics.	building road	developm	mean	better suited
		Traditiona	network	ent	occupation	to predict
		1 interest	database,	• To	of the object	road network
		in	extracting the	characteris	by a mass; it	fractal
		understan	network	e the	doesnot take	dimension
		ding	structure	spatial	into account	even though
		network	etcCalicut	structure	the spatial	the data
		structure	corporation	Structure	distribution	contain some

has been road network of the road of the mass amount of limited to was taken network in under dispersion. consideratio geographe from Google terms of This means n. From a that there is rs who map and the fractal view the zone wise dimension mathematic significant al point of relationship spatial corporation boundary view, this is between the nature of The the road from the a rather level of road proposed network Autocad rough network network as a vital drawing interpretatio development measures input to obtained from n of the and the were later regional Calicut notion of network applied to developm Corporation density. If spatial trace the ent. In office. fractal structure changes in ArcGIS 9.3 dimension recent within the network was used for was a study area, years. characteris characterising simple there has suggesting tics over the network been synonym of that the road time. considerab based on network road le interest various density, the development to indicators and correlation could explain the variation understan hence to between the d the identify the in the spatial two topology variation in variables pattern of evaluated significantly. their pattern. All the roads transport for the same The networks including road indicators Arterial, Subnetwork undertaken that arterial. would be connects for measuring points in Collector close to 1. geographi Streets and the spatial Local Streets structure of c space. investigate were digitised road d the from the networks can potential Google base be applied to applicatio map. The identify its n of Autocad ward effect on the performance proposed map was network converted into of the road measures ESRI shape transport namely, file format. system, as heterogen Both the maps well as its subsequent eity, were geoconnectio rectified in effects on ArcGIS to land use and n patterns and geographic urban form.

		continuity, in quantifyin g the structure of road networks.	co-ordinates for which the ground control points were used. In ArcGIS, the ward boundary and roads were converted into polygon and polyline features respectively.			
Andreas	Value	The	The aim of	То	The analysis	The
Hartmann a	creation of	analysis	this research	estimate	of the PLS	limitation of
, Florence	road	revealed	is to shed	our	model is a	the research
Yeang Yng	infrastruct	that road	more light on	conceptual	two-step	to the
Ling b	ure	cleanlines	the role of	model, we	approach	Singapore
	networks:	s and road	road agency	used	which first	context and
	A	evenness	activities for	structural	assesses the	to the
	structural	have a	the value	equa- tion	measuremen	perspective
	equation	significant	creation	modeling	t model and	of the
	approach	effect on	process of	(SEM),	then the	Singapore
		the	road users.	which is a	conceptual	road agency
		experience	The research	second	model. Due	offers
		of road	builds upon	generation	to the lack	avenues for
		maintenan	an earlier	multivar-	of a global	further
		ce.	study of Ling	iate	quality	research.
		Important	and Ng	analysis	criterion,	First of all,
		and	(2011), which	technique. SEM	the criteria to evaluate	future studies should
		significant indicators	explored the relationship	combines	reflective	further
		for the	between	both	and	improve our
		experience	activity	econometr	formative	understandin
		of traffic	outcomes and	ic and	constructs	g of the role
		manageme	road user	psychomet	as well as	of road
		nt are the	satisfaction in	ric	the path	infrastructure
		clarity of	Singapore and	perspectiv	model were	in the value-
		road signs	found two	es in	based on the	creation
		and the	activity	statistical		process of
		efficiency	outcomes	modeling		road users

of traffic	(cleanliness of	attempts	extant	and the
redirection	roads and	and allows	literature.	condition and
. A main	efficiency of	estimation	incrature.	traffic
conclusion	traffic	of		parameters
of the	redirection	simultane		that affect
research is	arising from	ous		the service
that for	_	relationshi		
traffic-	road works)			provision of a road. That
	affecting satisfaction.	ps among unobserva		
intensive	Based on a			may include
networks,		ble		a more
both road	structural	predictor		detailed
maintenan	equation	and		differentiatio
ce and	approach, we	predicted		n of road
traffic	extend the	constructs,		users, their
man-	work of Ling	character-		characteristic
agement	and Ng (2011)	ized by		s and
activities	by examining	their		purposes of
are	the	respective		using road
important	relationship	block of		infra-
contributo	between the	measurem		structure
rs to the	road user	ent items.		networks. In
value	experience of	There are		addition,
creation of	road agency	two		future studies
road	activities and	approache		could also
infrastruct	the value that	s for		fruitfully
ure with a	road users	estimating		compare the
slightly	achieve	structural		effectiveness
stronger	through these	equation		of road
contributi	activities.	models:		agencies in
on of	More	covariance		contributing
traffic	specifically,	-based		to the value
manageme	our aim was	SEM and		creation
nt	to investigate	variance-		process of
activities.	the effect of	based		road users.
	road user	partial		
	experience	least		
	with two main	square		
	activity types:	(PLS)		
	road	modeling.		
	maintenance	Covarianc		
	and traffic	e-based		
	management.	SEM is a		
	Both activity	confirmat		
	types are	ory		
	central to the	approach		
	service	which		
	SELVICE	WIIICII		

			T	
	provision of	tries to		
	road agencies	minimize		
	and can be	the		
	expected to	discrep-		
	have a great	ancy		
	impact on the	between		
	value	the		
	proposition of	estimated		
	road	and		
	infrastructure.	sample		
	It is this	covariance		
	notion of	matrices.		
	value offering	Variance-		
	which forms	based PLS		
	the theoretical	is a		
	lens of our	prediction		
	research.	-oriented		
		approach		
		which		
		tries to		
		maximize		
		the		
		explained		
		variance		
		of the		
		endogeno		
		us latent		
		variable		
		by		
		applying a		
		series of		
		ordinal		
		least		
		square		
		regression		
		S.		
		5.		

Objective of the project:

The objective is to attempt to help the residents of cities affected by the floods in Kerala. This is done by visualising the road map of Kerala as a graph with the nodes being the prominent cities in Kerala, and the edges being the roads connecting the cities. Using centrality measures (such as degree, closeness, and betweenness) the closest unaffected cities are identified and the people who have experienced loss (such as the destruction of their houses, having severe injuries, and/or deaths) can be aided. These unaffected cities can act as relief areas for the people of affected cities and as distribution centres for goods and funds to these people.

! Innovation component in the project:

The project uses the measures of centrality in a social network to determine the reachability and connectivity of each city in the state. The innovative part of this project is the creation of a user friendly menu through which the user can input their city and find out if it is affected or unaffected. If affected, the user is provided with the closest unaffected city and the distance in kms through which relief can be sent. This program can be used in areas that are affected by natural calamities and disasters so that citizens can find the closest help centers.

***** Work done and implementation

Methodology adopted:

Firstly, a dataset is made by using the road map of Kerala to create the graph. This will consist of the distance between cities. Thus, the edges that are used will be valued. Using the distances between each city, the most prominent city (which will be found using the prestige of cities), etc., a data set is created that will consist of all this relevant information.

The dataset will consist of the distances between cities with a direct path between them. For cities that have only indirect paths between them, the shortest path will be calculating by adding the distances of the roads in this path.

The dataset will also consist of information regarding whether or not a particular city is affected or not. The programmer will feed this information to the dataset. The names of affected and unaffected cities are derived from the internet

After this analysis of each city's centrality is performed based on the following measures:

1. Degree

$$C_D'(v_i) = d_i/(n-1)$$

2. Betweenness

$$C_b(n_i) = \frac{\sum_{\substack{j \neq k \\ i \neq j, k}} \frac{g_{jk}(n_i)}{g_{jk}}}{(g-1)(g-2)}$$

3. Closeness

$$C_C(i) = \frac{1}{\sum_j d(i,j)}$$

$$C_C^*(i) = \frac{1}{n-1} C_C(i)$$

The most important cities are analysed for distribution by taking into consideration the betweenness of cities, the closest relief areas to the affected cities on the basis of degree values, and which cities are in need of most help by examining which cities have the smallest closeness values.

The closest cities are identified using the degree and geodesic values between cities. Once the cities with largest betweenness values are obtained, this helps in identifying the cities that are most important for transport of goods through indirect paths. For unaffected cities, closeness values is identified as well, as they can provide insight into which cities need more help (those with low values of closeness) in comparison to other cities (those with larger values of closeness).

The algorithm to calculate these values is:

- 1. Start
- 2. Import networkx library of Python.
- 3. Create a graph G with nodes labelled from 1 to 35.
- 4. Add the weighted edges from the dataset.
- 5. Compute the degree centrality, closeness centrality and betweenness centrality for each node using the inbuilt functions of networkx library of the unweighted graph.
- 6. Find the maximum for all three centrality measures.
- 7. Print the maximum values.
- 8. Compute the degree centrality for each node while considering weights using the formula:

- 9. Compute the maximum weighted degree centrality and print it.
- 10. Compute the closeness centrality for each node using inbuilt functions from networkx library while considering weights this time.
- 11. Compute the maximum weighted closeness centrality and print it.
- 12. Compute the betweenness centrality for each node using inbuilt functions from networkx library while considering weights this time.
- 13. Compute the maximum weighted betweenness centrality and print it.
- 14. On the basis of the maximum values of degree, closeness, and betweenness, find the most important city and print it.
- 15. If the most important city amongst all cities is affected by floods, create two separate subgraphs consisting of the affected and unaffected cities respectively.
- 16. Apply steps from 8 to 14 for the graph of unaffected cities.
- 17. Using the inbuilt function to calculate the shortest path between two nodes using the Dijkstra algorithm, calculate the shortest paths to each unaffected city for an affected city.
- 18. Calculate and print the minimum of the shortest paths for each affected city, along with the node number of the unaffected city to which this shortest path exists.
- 19. Print the list of all the cities and prompt the user to input a specific city's number.
- 20. Check if the city is affected or not, if not, print that it is an unaffected city
- 21. If affected, print that it has been affected, and then refer to the list created in 19 and print the distance to the nearest unaffected city along with the index number of that unaffected city.

Hardware and Software Requirements:

Hardware: A fast computer with a good processor and all the necessary functions that are expected from modern computers is all we need in terms of hardware.

Software: A coding language that is flexible and allows the creation of user-defined functions, ie, Anaconda Distribution of Python.

Basic Requirements other than these include road maps for Kerala, formulae for calculating centrality measures, etc.

Dataset used:

a) Where are you taking your dataset from?

The road map for Kerala is taken from https://www.prokerala.com and the information regarding whether or not a city is affected will be obtained from the internet.

b) Is your project based on any other reference project? (Stanford University or MIT)

Stanford University (Texas Road Network, link given in references)

c) How does your project differ from the reference project?

Our project differs in several ways from the reference project:

- We have taken the state of Kerala and not Texas.
- Along with defining the road network amongst major cities of Kerala, we are calculating the centrality measures (degree, closeness, and betweenness.) of each city while considering the distances of each path as weights. Based on these measures, we are identifying the cities of Kerala which can provide best support to the cities affected by floods.

Tools used:

The only tool we have used comprises of the Anaconda Distribution, which consists of the Anaconda Command Prompt, the Jupyter Notebook for Python, and several python libraries.

Screenshot and Demo:

Given below are screenshots of calculations of the weighted centrality measures, shortest paths, etc.

Fig 2: Creating the graph of nodes, with the paths between all pairs (if any), and respective weights of each path.

Fig 3: Finding the maximum of centrality measures without considering weight.

Fig 4: Finding the weighted degree centralities of each node, and the maximum weighted degree centrality.

Fig 5: Finding the weighted closeness centralities of each node, and the maximum weighted closeness centrality.

Fig 6: Finding the weighted betweenness centralities of each node, and the maximum weighted betweenness centrality.

Fig 7: Creating the graphs of affected and unaffected cities.

Fig 8: Finding the degree centralities of each of the unaffected cities and the maximum degree centrality amongst them.

Fig 9: Finding the closeness and betweenness centralities of each of the unaffected cities and the maximum closeness and betweenness centralities amongst them and thus printing the city with maximum of each centrality i.e. Calicut (node number 5).

Fig 10 (a): Finding the shortest path for each affected city to an unaffected city.

Fig 10 (b): Finding the shortest path for each affected city to an unaffected city (continued).

Fig 11: Printing each affected city and their respective closest unaffected cities.

Fig 12 (a): Taking info from user to print info regarding that city.

Fig 12 (b): Printing info of the city (whether it is affected and shortest path to an unaffected city) based on the user's input.

Results and discussion

Our project is based on achieving several results which are:

- Centrality Measures (with weights) for all cities
- Centrality Measures (with weights) for all unaffected cities only
- Shortest path for each affected city to an unaffected city

Based on all these results, we are identifying the most important unaffected cities which can act as hubs for transport of goods and services. We are also identifying the affected cities which should be helped first.

Based on our calculations, we have found that the most important city overall is Ernakulam, as it has the highest weighted closeness and betweenness centrality measures of 0.0064 and 0.4813 respectively. Calicut is an important city as well, with the highest weighted degree centrality value of 0.0745.

However, Ernakulam is a city that is affected by the floods. Thus, we need to find the most central city amongst unaffected cities as well. Based on our calculations, we have found that Calicut has the highest measures of degree, closeness, and betweenness centralities amongst unaffected cities with values of 0.1699, 0.0042, and 0.1905 respectively.

Furthermore, we have found the shortest paths for each affected city to an unaffected city, which has been shown on our screenshots. The cities of Angamali, Kothamangalam, and Changanassery are very important as well as they are the closest unaffected cities to 3, 3, and 2 affected cities respectively.

Munnar is the most remote affected city as the closest unaffected city to it is 77 km away (Kothamangalam). Ernakulam is a city that must be prioritized as it is the most central city in terms of closeness and betweenness values in Kerala.

Any user can use our project to identify if a city in Kerala is affected by the floods or not. If the city is affected, the user will be provided info on which unaffected city is the closest to it, and the distance to that city.

References:

- https://snap.stanford.edu/data/roadNet-TX.html
- https://www.prokerala.com
- https://www.maphill.com/india/kerala/detailed-maps/road-map/
- https://en.m.wikipedia.org/wiki/2018_Kerala_floods?wprov=sfla1
- Research Papers:
 - A social Network analysis approach to analyse road networks by Kyoungjin Park, Alper Yilmaz
 - Urban road network accessibility evaluation method based on gis Spatial analysis techniques by Hu Weiping, Wu Chi

- Analysis of Road Network Pattern Considering Population Distribution and Central Business District by Fangxia Zhao, Huijun Sun, Jianjun Wu, Ziyou Gao, Ronghui Liu
- Sustainable Traffic Improvement for Urban Road Intersections of Developing Countries: A Case Study of Ettumanoor, India by Geethu Lal,*, Divya L. G., Nithin K. J., Susan Mathew, Bennet Kuriakose
- Analysis of importance of road networks exposed to natural hazards by Jean-Marc Tacnet, Eric Mermet, Somsakun Maneerat
- Value creation of road infrastructure networks: A structural equation approach by Andreas Hartmann a, Florence Yeang Yng Ling b