TI Voyage 200 - Befehlsreferenz

1 Basics

1.1 Tipps / Tricks

ON	Bricht die aktuelle Aktion ab.
$\diamond + G$	Aktiviert griechisches Alphabet. (für das nächste Zeichen)
	$\diamond + G \to D = \delta$
	$\diamond + G \rightarrow \uparrow + D = \Delta$

1.2 Basic Funtions

solve(x+1=5,x)	Löse die Gleichung nach \boldsymbol{x}
$solve(x + 1 = y \text{ and } y + 2 = x, \{x, y\})$	Löse das Gleichungssystem nach \boldsymbol{x} und \boldsymbol{y}
abs(a)	Betrag $ a $ einer (komplexen) Zahl a
root(a, n)	$\sqrt[n]{a}$ bzw. \sqrt{a} , falls n weggelassen wird.
$limit(n+1,n,\infty)$	$\lim_{n\to\infty}(n+1)$
$\sum (n+1,n,a,b)$	$\sum_{n=a}^{b} n + 1$
$\int (x+1,x,a,b)$	$\int_a^b x + 1 dx$ (a und b optional)
$\delta(x+1,x,n)$	$\frac{\delta^n}{\delta x^n}x + 1$
expand((x+1)(x+2))	Multipliziert den Term aus. Führt auch PBZ durch.
$factor(x^2+x)$	Zerlegt den Term in Faktoren.
factor(x2+x,x)	Faktorisiert den Term nach der Variable \boldsymbol{x}
gcd(a,b)	Gibt den grössten gemeinsamen Teiler (ggT) von a und b zurück.
lcm(a,b)	Gibt das kleinste gemeinsame Vielfache (kgV) von a und b zurück.

1.3 Advanced Functions

$impDif(x^2 + y^2 = 100, x, y)$	Berechnet die implizite Ableitung der Gleichung, wenn eine Variable
	implizit durch die Andere gegeben ist. Resultat: $-x/y$
$nDeriv(x^2, x, [h])$	Berechnet die numerische Ableitung nach x . Der optionale Parameter
	h gibt die Schrittweite an. Wenn statt x^2 eine Liste oder Matrix
	verwendet wird, wird die Ableitung über entsprechenden Werte gebildet.
$\int fMax(-(x-a)^2,x)$	Gibt Werte für x an, so dass der Term maximal wird.
$\int fMax(-(x-a)^2,x) x>3$	mit eingeschränktem Lösungsintervall
$fMin((x-a)^2, x)$	Gibt Werte für x an, so dass der Term minimal wird.
$exp \triangleright list(x = 2 \text{ or } x = 1, x)$	Gibt durch or getrennte Werte als Liste zurück ($\{2,1\}$)

2 Zahlensysteme

Der TI Voyage kennt folgende Zahlensysteme und Umrechnungsfunktionen:

... ► bin 0b... Binärsystem

... $\triangleright hex \quad 0h...$ Hexadezimalsystem

 $\dots \triangleright dez \quad \dots \quad$ Dezimalsystem

Unter $MODE \triangleright BASE$ wird das Standard-Zahlensystem festgelegt. Hinweis: Nur die Ausgabe wird verändert. Die Eingabe muss weiterhin mit z.B. 0b... erfolgen.

3 Vektoren / Matrizen

Vektoren und Matrizen werden im TI Voyage 200 folgendermassen eingegeben:

[a,b]	$\begin{bmatrix} a & b \end{bmatrix}$	Zeilenvektoren
[a;b]	$\begin{bmatrix} a \\ b \end{bmatrix}$	Spaltenvektoren
[a, b; c, d] $[[a, b][c, d]]$	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$	Matrizen

3.1 Vektor-Funktionen

$crossP(\vec{a}, \vec{b})$	Kreuzprodukt $ec{a} imes ec{b}$
$dotP(\vec{a}, \vec{b})$	Skalarprodukt $ec{a} \circ ec{b}$

3.2 Matrix-Funktionen

det(A)	Determinante der Matrix A				
2(1)		1	0	a	
rref(A)	Gibt die reduzierte Zeilenstaffelform der Matrix an.	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	1	b	
eigVc(A)	Ergibt eine Matrix, welche die Eigenvektoren der Matrix A enthält.				
eigVl(A)	Gibt eine Liste der Eigenwerte der Matrix ${\cal A}$ zurück.				
identity(n)	Gibt eine Einheitsmatrix der Dimension n zurück.				
max(A)	Gibt einen Zeilenvektor zurück, der das Maximum jeder Spalte enthält.				
min(A)	Gibt einen Zeilenvektor zurück, der das Minimum jeder Spalte enthält.				

3.3 Weitere Funktionen

$list \blacktriangleright mat(\{\})$		Gibt einen Zeilenvektor mit den Elementen der Liste zurück.
$list \triangleright mat(\{$	$\}, a)$	Gibt eine Matrix mit a Elementen pro Zeile zurück.
$mat \triangleright list([$])	Gibt eine Liste mit dem Inhalt der Matrix zurück (Zeile für Zeile).

4 Komplexe Zahlen

Komplexe Zahlen können im TI Voyage 200 in der Form a+bi (Rectangular) oder $r \angle \phi$ (Polar) geschrieben werden. Unter $MODE \triangleright Complex\ Format$ kann der Standard-Modus ausgewählt werden. Der Modus Real zeigt nur komplexe Werte an, wenn auch die Eingabe komplex war. Die Eingabe und Umrechnung geschieht folgendermassen:

 $25 + 3 * i \quad | \quad \dots \triangleright Rect$ $(2\angle 30) \quad | \quad \dots \triangleright Polar$

4.1 Funktionen

$cFactor(x^2 + a^2, x)$	Komplexe Faktorzerlegung nach \boldsymbol{x}
$cSolve(x^2 + x + 1, x)$	Lösen der komplexen Gleichung nach \boldsymbol{x}
$cSolve(x = 2 * y \ and \ y^2 = -1)$	Lösen komplexer Gleichungssysteme nach \boldsymbol{x} und \boldsymbol{y}
$cZeros(x^2+1,x)$	Bestimmen der (komplexen) Nullstellen
conj(z)	Konjugiert-komplexe Zahl \bar{z}
abs(z)	Betrag $ z $
angle(z)	Winkel $rg(z)$
real(z)	Realteil $\Re(z)$
imag(z)	Imaginärteil $\Im(z)$

4.2 Umrechnungen

$P \triangleright Rx(r,\theta)$	Gibt die X -Koordinate des Paars (r,ϕ) zurück.
$P \blacktriangleright Rx(\{r1, r2\}, \{\theta1, \theta2\})$	Funktioniert auch für Listen
$P \triangleright Rx([r1, r2; r3, r4], [\theta1, \theta2; \theta3, \theta4])$	und Vektoren / Matrizen
$P \triangleright Ry(r,\phi)$	Gibt die Y -Koordinate des Paars (r,ϕ) zurück.
$R \blacktriangleright Pr(x,y)$	Gibt die r -Koordinate des Paars (x,y) zurück.
$R \triangleright P\theta(x,y)$	Gibt die θ -Koordinate des Paars (x,y) zurück.

5 Statistik / Wahrscheinlichkeit

5.1 Funktionen

$mean(\{\})$	Berechnet das arithmetische Mittel der Elemente der Liste.
$mean(\{\}, \{\})$	Mit einer zweiten Liste lassen sich die Elemente einzeln gewichten.
mean(A)	Gibt einen Zeilenvektor mit den arith. Mitteln der Spalten zurück.
mean(A, B)	Mit einer Matrix B lassen sich die Elemente von A gewichten.
$median(\{\})$	Berechnet den Median der Elemente der Liste.
median(A)	Gibt einen Zeilenvektor mit den Medianwerten der Spalten zurück.
nCr(n,k)	Binominalkoeffizient $\binom{n}{k}$ - funktioniert auch für Listen und Matrizen
nPr(n,k)	Anzahl Möglichkeiten unter Berücksichtigung der Reihenfolge k Elemente aus n auszuwählen.
$\boxed{OneVarL1,[L2],[L3],[L4]}$	Berechnet die Statistiken der Liste L1. Die Statistik wird mit $ShowStat$ eingeblendet.
	Folgende Werte werden berechnet: $\bar{x}, \sum x, \sum x^2, \sigma x,$
	Optionale Listen: L2: Häufigkeit, L3: Klassencodes, L4: Klassenliste

5.2 Regression

Zur Berechnung einer Regression muss eine Liste ($\{...\}$) die x-Werte enthalten und eine zweite Liste die y-Werte. Der Befehl LinReg~L1,L2 berechnet die lineare Regression. Mit ShowStat werden die berechneten Werte angezeigt. Es ist auch möglich, die Datenpunkte und die Regressionskurve zu plotten: $Regeq(x) \rightarrow y1(x)$ und NewPlot~1,1,L1,L2 Optional können weitere Listen angegeben werden: L3: Häufigkeit, L4: Klassencodes, L5: Klassenliste, wobei alle Listen ausser L5 die gleiche Dimension besitzen müssen. Iterationen gibt die maximale Anzahl Lösungsversuche an. (Standard: 64)

Logistische Regression Logistic L1, L2, [Iterationen], [L3], [L4, L5]

 $\begin{array}{ll} \mbox{Potenz-Regression} & PowerReg~L1,L2,[L3],[L4,L5] \\ \mbox{Quadratische Polynomische Regression} & QuadReg~L1,L2,[L3],[L4,L5] \\ \mbox{Polynomische Regression 4-ter Ordnung} & QuartReg~L1,L2,[L3],[L4,L5] \\ \end{array}$

5.3 Zufallszahlen

RandSeed~1147	Setzt die Ausgangsbasis (Seed) für den Zufallszahl-Generator
rand()	Gibt eine Zufallszahl zwischen 0 und 1 zurück.
rand(n)	Gibt eine Zufallszahl zwischen 0 und n (für n pos.)
	bzw. zwischen n und 0 (für n neg.) zurück.
randMat(n,m)	Erzeugt eine ganzzahlige Matrix mit n Zeilen und m Spalten mit Werten $-9 < x < +9$.
randNorm(a,sd)	Gibt eine reelle Zufallszahl um den Mittelwert a mit der Standardabweichung sd aus.
randPoly(x,n)	Erzeugt ein Polynom der Variable x der Ordnung n mit Koeffizienten $-9 < x < +9$

Hannes Badertscher 4 3. Dezember 2012