MEET Discussion Abstract 8:30 PM One sentence approach Power oscillation damping? MAMS (PMUS) for damping? Hordwore prototype of POD bosed on phosor bosed power oscillation domping algorithm & deployed in NI-cRIO. RT-HIL opproach to evaluate performance of developed controller using emegasion Opal-RTE.
its interface with real PMUs (hardware). Challenges, limitations
E lesson bornt are discussed. INTRODUCTION Paper presents Mi-cRIO boold POD. PMU data set ovailable. Detailed simulink model Kundur. Executed in RT. Interfaced with hordware PMUs, Phosor based POD algorithm deployed in cR10. cR10 provide signal to FACTS and for AVR. Section II - Background Section III - Software + Hordware architecture + RT-HL execution + model used + SVC model Section IV - Repults with AVR / FACTS Section V - Challenges, lesson learnt, discussion, future work

Section VI - Conclusion

sackground
sackground One sentance - small signal stability
Discussion of lead log bosed controllers. Requirement for modularity, fast prototyping, phosor POD with equation & figure
Discussion of lead-log bosed controllers.
Requirement for modulaity, fost
prototyping, phosor POD with equation &
figure
Section III HW SIW Configuration
_
First = Model Kunder + Model SVC figures + Scenarios
Figures + Scenarios
Second = POD Algorithm in cR10 (LoSview)
Third - Realization in HW
Fourth - Complete Test bench (CRIO + Opal) picture
Section IIV
Results
(i) SVC / FACTS
Tosle 1 overshoot, damping,
Figure 1 = different PMU inputs + Osis Table 1 avershoot, damping, settling time etc
ii) AVR
Figure 2 - PMU inputs Table 2 - overshoot etc
Table 2 - Querohoot etc

Section VI
a Chollenges
is delay (You need network Figure)
ii) Noise SWR, SNID
iii) Loop Rotes Figure Page 40
iv) solution of loop rotes
Paragraph for future work
(i) Adoptive poptimal signal selection (ii) Opnet System in loop Idelays
(iii) ABB ECS RT-HIL
Conclusion
CRIO POD
posible improvements
stepping stone for future research
References
· No appendix
· No modifications