Векторы и операторы название лекции

Вектор: длина и скалярное произведение название видеофрагмента

Краткое напутствие

Зачем нужна линейная алгебра?

• Линейная алгебра прекрасна сама по себе!

Краткое напутствие

Зачем нужна линейная алгебра?

- Линейная алгебра прекрасна сама по себе!
- Работает «под капотом» практически всех методов машинного обучения.

• Вектор — это столбец чисел.

- Вектор это столбец чисел.
- Сложение двух векторов и умножение на число.

- Вектор это столбец чисел.
- Сложение двух векторов и умножение на число.
- Расстояние и косинус угла между векторами.

Вектор

• Рабочее определение.

Вектор — столбец из нескольких чисел.

$$\mathbf{v} = \begin{pmatrix} \sqrt{5} \\ 3 \\ -3.45 \end{pmatrix}$$

Вектор

• Рабочее определение.

Вектор — столбец из нескольких чисел.

$$\mathbf{v} = \begin{pmatrix} \sqrt{5} \\ 3 \\ -3.45 \end{pmatrix}$$

• Идея вектора. Вектор — всё, что можно описать столбцом из нескольких чисел.

Вектор

• Рабочее определение.

Вектор — столбец из нескольких чисел.

$$\mathbf{v} = \begin{pmatrix} \sqrt{5} \\ 3 \\ -3.45 \end{pmatrix}$$

- Идея вектора. Вектор всё, что можно описать столбцом из нескольких чисел.
- Мы не пишем стрелочку над вектором.

Пространство \mathbb{R}^n

• Определение. Пространство \mathbb{R}^n : Множество всех возможных векторов из n чисел.

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \middle| x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R} \right\}$$

Пространство \mathbb{R}^n

• Определение. Пространство \mathbb{R}^n : Множество всех возможных векторов из n чисел.

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \middle| x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R} \right\}$$

• Определение. Размерность пространства \mathbb{R}^n : Количество чисел в каждом векторе, n.

Длина вектора

Евклид, около 300 лет до н.э.

Определение.

Евклидова длина или норма вектора

$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

wikipedia.org / общественное достояние

Сложение и вычитание двух векторов

Определение. Сложение и вычитание двух векторов выполняем поэлементно:

$$\begin{pmatrix} 2\\3.5\\-1 \end{pmatrix} + \begin{pmatrix} 3\\-3\\1 \end{pmatrix} = \begin{pmatrix} 5\\0.5\\0 \end{pmatrix}$$

Умножение вектора на число

Определение. Умножение вектора на число выполняем поэлеметно:

$$4 \cdot \begin{pmatrix} 2 \\ 3.5 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ 14 \\ -4 \end{pmatrix}$$

Расстояние между векторами

Определение. Евклидово расстояние между векторами

$$d(\mathbf{a},\mathbf{b}) = \|\mathbf{a} - \mathbf{b}\| = \sqrt{(a_1 - b_1)^2 + \ldots + (a_n - b_n)^2}$$

- по определению, $d(\mathbf{a}, \mathbf{b}) \ge 0$.
- также говорят Евклидова метрика

Скалярное произведение и угол

• Определение. Скалярное произведение векторов a и b:

$$\langle \mathbf{a}, \mathbf{b} \rangle = a_1 b_1 + a_2 b_2 + \dots + a_n b_n.$$

Угол определён, если $\|\mathbf{a}\| > 0$ и $\|\mathbf{b}\| > 0$.

Скалярное произведение и угол

- Определение. Скалярное произведение векторов ${\bf a}$ и ${\bf b}$: $\langle {\bf a}, {\bf b} \rangle = a_1b_1 + a_2b_2 + ... + a_nb_n$.
- Определение. Косинус угла и угол между векторами a и b:

$$\cos \angle(\mathbf{a}, \mathbf{b}) = \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{\|\mathbf{a}\| \|\mathbf{b}\|} \quad \angle(\mathbf{a}, \mathbf{b}) = \arccos \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{\|\mathbf{a}\| \|\mathbf{b}\|}$$

Угол определён, если $\|\mathbf{a}\| > 0$ и $\|\mathbf{b}\| > 0$.

Скалярное произведение и проекция

Если вектор а имеет единичную длину, $\|\mathbf{a}\|=1$, то $\langle \mathbf{a}, \mathbf{b} \rangle = \|\mathbf{b}\| \cos \phi$ — длина* проекции b на a.

Свойства скалярного произведения

• Скалярное вектора на себя равно квадрату длины $\langle \mathbf{a}, \mathbf{a} \rangle = \left\| \mathbf{a} \right\|^2$

Свойства скалярного произведения

- Скалярное вектора на себя равно квадрату длины $\langle \mathbf{a}, \mathbf{a} \rangle = \left\| \mathbf{a} \right\|^2$
- Линейность по каждому аргументу

$$\langle \lambda \mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{a}, \lambda \mathbf{b} \rangle = \lambda \langle \mathbf{a}, \mathbf{b} \rangle$$

 $\langle \mathbf{a} + \mathbf{b}, \mathbf{c} \rangle = \langle \mathbf{a}, \mathbf{c} \rangle + \langle \mathbf{b}, \mathbf{c} \rangle$

Свойства скалярного произведения

- Скалярное вектора на себя равно квадрату длины $\langle \mathbf{a}, \mathbf{a} \rangle = \left\| \mathbf{a} \right\|^2$
- Линейность по каждому аргументу

$$\langle \lambda \mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{a}, \lambda \mathbf{b} \rangle = \lambda \langle \mathbf{a}, \mathbf{b} \rangle$$

 $\langle \mathbf{a} + \mathbf{b}, \mathbf{c} \rangle = \langle \mathbf{a}, \mathbf{c} \rangle + \langle \mathbf{b}, \mathbf{c} \rangle$

• Симметричность

$$\langle \mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{b}, \mathbf{a} \rangle$$

Ортогональность векторов

Определение. Векторы ${\bf a}$ и ${\bf b}$ ортогональны, $a\perp b$, если

$$\langle \mathbf{a}, \mathbf{b} \rangle = 0$$

Также говорят «перпендикулярны».

Прямая, порожденная вектором, гиперплоскость

название видеофрагмента

• Да будет больше разных расстояний!

- Да будет больше разных расстояний!
- Делаем из вектора прямую и гиперплоскость.

- Да будет больше разных расстояний!
- Делаем из вектора прямую и гиперплоскость.
- Ядерные функции из скалярного произведения.

Больше метрик в студию!

Манхэттэнская метрика

Расстояние по Майкопски:

$$d(a,b) = |a_1 - b_1| + |a_2 - b_2| + \ldots + |a_n - b_n|$$

У нас и у них

TODO:

Рядом картинки Манхэттэна и Майкопа

Ещё больше метрик!

Метрика Минковского

$$d_p(\mathbf{a}, \mathbf{b}) = \left(\sum_{i=1}^n \left|a_i - b_i\right|^p\right)^{1/p}$$

Частные случаи метрики Минковского

Евклидова метрика, p=2

$$d_2(\mathbf{a},\mathbf{b}) = \sqrt{(a_1 - b_1)^2 + \ldots + (a_n - b_n)^2}$$

Манхэттэнская метрика, p=1

$$d_1(\mathbf{a},\mathbf{b}) = |a_1 - b_1| + |a_2 - b_2| + \ldots + |a_n - b_n|$$

Частные случаи метрики Минковского

Вектор порождает прямую

Прямая порождённая вектором a, Lin a

множество векторов, получаемых при домножении вектора a на произвольное число,

$$\mathsf{Lina} = \{t \cdot \mathbf{a} | t \in \mathbb{R}\}\$$

ТООО: картинка прямой порожденной вектором

Вектор задаёт гиперплоскость

Вектор ${\bf a}$ фиксирован, например, ${\bf a}=(1,2,3)$.

ТООО: две картинки рядом

$$\langle \mathbf{a}, \mathbf{v} \rangle = 0$$
 и $\langle \mathbf{a}, \mathbf{v} \rangle = 1$

Ядерные функции

Векторная функция f фиксирована, например,

$$f: \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \to \begin{pmatrix} -1 \\ v_1^2 + v_2^2 \end{pmatrix}$$

Ядерная функция, ядро K

Скалярное произведение в спрямляющем пространстве:

$$K(a,b) = \langle f(a), f(b) \rangle.$$

Спрямляющее пространство:

ТООО: картинка с исходным и спрямляющим пространством

Линейный оператор: определение и примеры

название видеофрагмента

Вывод формулы поворота название видеофрагмента

видеофрагмент с прозрачной доской

Вывод формулы проекции название видеофрагмента

видеофрагмент с прозрачной доской

Композиция операторов, ортогональный оператор

название видеофрагмента

Транспонирование оператора название видеофрагмента

Обращение оператора название видеофрагмента

Собственные векторы и собственные числа название видеофрагмента

Игра Нимназвание видеофрагмента

это видео является бонусным, поэтому ничего нет страшного, что с ним выходит много видео, или оно будет долгое

В начале фрагмента идёт слайд с правилами затем видеофрагмент с прозрачной доской

Игра Ним

- Есть три кучки с камнями: 3, 5 и 8 камней;
- Два игрока ходят по очереди;
- За ход:
 - игрок выбирает одну кучку; берёт из неё положительное число камней;
- Выигрывает берущий последний камень.

Какой ход сделать первому игроку?

видео с доской

Краткое содержание:

закодируем каждую кучку двоичным вектором стоимость позиции — сумма этих двух векторов финальная позиция имеет стоимость ноль любой ход из нулевой позиции ведёт в положительную Из положительной позиции можно попасть в нулевую С помощью нижней единички убиваем остальные Выигрышный ход: взять 2 камня из кучки в 8 камней