TikhonovNikS 11012025-105454

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 2). Коэффициент передачи цепи обратной связи частотно независим и равен 10⁰, а крутизна характеристики управления частотой ГУН равна 1.6 МГц/В. Частота колебаний опорного генератора (ОГ) 310 МГц. Частота колебаний ГУН 620 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 1.1 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 0 дБ/декада, а фазовых шумов ГУН минус 20 дБ/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 1591 кГц на 4 дБ больше, чем вклад ГУН. Чему равна крутизна характеристики фазового детектора?

Рисунок 1 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) 0.43 В/рад
- 2) 0.54 В/рад
- $3) 0.65 \ B/рад$
- 4) 0.76 В/рад
- 5) 0.87 В/рад
- 6) 0.98 В/рад
- 7) 1.09 В/рад
- 8) 1.20 В/рад
- 9) 1.31 В/рад

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 2). Частота колебаний опорного генератора (ОГ) 40 МГц. Частота колебаний ГУН 4760 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Гц равна минус 135.2 дБн/Гц для ОГ и минус 4.7 дБн/Гц для ГУН. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 0 дБ/декада, а фазовых шумов ГУН минус 20 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=5.5472, \tau=180.6484$ мкс.

Крутизна характеристики управления частотой ГУН равна 2.1 МГц/В. Крутизна характеристики фазового детектора 0.4 В/рад.

Рисунок 2 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько дБ отличается спектральная плотность мощности фазовых шумов на частоте отстройки 204 кГц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза? Варианты ОТВЕТА:

- 1) на плюс 14.1 дБ
- 2) на плюс 13.7 дБ
- на плюс 13.3 дБ
- 4) на плюс 12.9 дБ
- 5) на плюс 12.5 дБ
- 6) на плюс 12.1 дБ

- 7) на плюс $11.7\,{\rm дB}$
- 8) на плюс 11.3 дБ 9) на плюс 10.9 дБ

Источник колебаний и частотой 5650 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 173 дБн/Гц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1293 К. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки 30 Гц, если с доступная мощность на выходе усилителя равна 4.5 дБм? Варианты ОТВЕТА:

- 1)-172.5 дБн/Гц
- 2)-173 дБн/Гц
- 3) -173.5 дБн/Гц
- 4) -174 дБн/Гц
- 5)-174.5 дБн/Гц
- 6) -175 дБн/Гц
- 7) -175.5 дБн/Гц
- 8) -176 дБн/Гц
- 9)-176.5 дБн/Гц

Источник колебаний с доступной мощностью 4.8 дБм и частотой 2570 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 88 дБн/Гц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 2569.9997 МГц, если спектральная плотность мощности его собственных шумов равна минус 92 дБм/Гц, а полоса пропускания ПЧ установлена в положение 5 Гц?

- 1)-67.2 дБм
- 2)-68.9 дБм
- 3)-70.6 дБм
- 4) -72.3 дБм
- 5)-74 дБм
- 6) -75.7 дБм
- 7) -77.4 дБм
- 8)-79.1 дБм
- 9)-80.8 дБм

Если цепь на рисунке 3 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 4.189 кГц больше на 5.6 дБ, чем вклад ГУН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад ОГ больше на 3.1 дБ, чем вклад ГУН. Известно, что C=15.43 нФ, а $R_1=2017$ Ом. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 3 – Электрическая схема цепи обратной связи

- 1)659 Om
- 2) 765 Om
- 3) 871 Om
- 4) 977 Om
- $5)1083 \, O_{\rm M}$
- 6) 1189 O_M
- $7)1295 \, O_{\rm M}$
- 8) 1401 O_M
- 9) $1507 \, \text{OM}$

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением нижней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту 2100 МГц и спектральную плотность мощности фазового шума на отстройке 100 кГц минус 83 дБрад 2 /Гц . Спектральная плотность мощности фазового шума на отстройке 100 кГц синтезированного колебания равна минус 78 дБн/Гц, а частота его равна 5270 МГц. Чему равна спектральная плотность мощности фазового шума второго колебания на отстройке 100 кГц при описанном выше когерентном синтезе?

- 1)-80.4 дБн/Гц
- 2)-79.4 дБн/Гц
- 3) -78.7 дБн/Гц
- 4) -78.1 дБн/Гц
- 5) -77.4 дБн/Гц
- 6) -75.7 дБн/ Γ ц
- 7) -75.1 дБн/Гц
- 8) -74.4 дБн/Гц
- 9) -72.1 дБн/Гц