PCT

A1

INTERNATIONAL APPLICATION PUBLISHED UNDER T

WO 9606173A

(51) International Patent Classification 6:

C12N 15/54, 9/10, A01H 5/00

(11) International Publication Number:

WO 96/06173

9/10, A01H 5/00

(43) International Publication Date:

29 February 1996 (29.02.96)

(21) International Application Number:

PCT/AU95/00527

(22) International Filing Date:

24 August 1995 (24.08.95)

(30) Priority Data:

PM 7643

24 August 1994 (24.08.94)

ΑU

(71)(72) Applicants and Inventors: JACQUES, Nicholas, Anthony [AU/AU]; Institute of Dental Research, 2 Chalmers Street, Surry Hills, NSW 2010 (AU). SIMPSON, Christine, Lynn [AU/GB]; Department of Oral Biology, The Dental School, University of Newcastle upon Tyne, Framington Place, Newcastle upon Tyne NE2 4BW (GB). GIFFARD, Philip, Morrison [AU/AU]; Centre for Molecular Biotechnology, Queensland University of Technology, G.P.O. Box 2434, Brisbane, QLD 4001 (AU).

(74) Agent: GRIFFITH HACK & CO.; G.P.O. Box 4164, Sydney, NSW 2001 (AU).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

With international search report. With amended claims.

(54) Title: GENETIC MANIPULATION OF PLANTS TO INCREASE STORED CARBOHYDRATES

(57) Abstract

The present invention relates to plants genetically modified to increase the level of stored carbohydrates in the plant, particularly during periods of high sink activity and low source activity through production of a glycosyl-transferase which catalyses the formation of soluble glucans. The invention also relates to the genetic constructs used to produce the engineered plants and the method of producing the engineered plants.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	*				
AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	` Greece	NL	Netherlands
BF	Burkina Faso	· HU	Hungary	NO	Norway
BG	Bulgaria	· IE	Ireland	NZ	New Zealand
BJ	Benin	TI	Italy	PL	Poland
BR	Brazil	JP`	Japan	PT	Portugal
BY'	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	` КР	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
СН	Switzerland	KR	Republic of Korea	SI	Slovenia
Cl	Côte d'Ivoire .	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	·TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK ·	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		•		

10

15

20

25

30

35

"Genetic Manipulation of Plants to Increase Stored Carbohydrates"

TECHNICAL FIELD

The present invention relates to plants genetically modified to increase the level of stored carbohydrates in the plant, particularly during periods of high sink activity and low source activity. The invention also relates to the genetic constructs used to produce the engineered plants and the method of producing the engineered plants.

BACKGROUND ART

The soluble storage carbohydrate found in plants, including sucrose, glucans, starch and fructans, are an important source of feed for animals, particularly grazing ruminants. These carbohydrates are stored non-structurally which makes them readily available for digestion by animals and therefore an important source of digestible energy.

During periods of high sink activity and low source activity, such as during a drought, the level of stored carbohydrates falls as the non-structural storage carbohydrates are mobilised for use in seed filling. The result of this mobilisation, particularly in relation to pasture grasses, is a significant loss of feed value to grazing ruminants due to the reduction in the levels This reduction is caused of the stored carbohydrates. by the enzymatic degradation of the stored carbohydrates. This enzymatic degradation is assisted by the fact that the stored carbohydrates generally have a low degree of polymerization. For example, as noted by Radojevic et al 1994, during the period from late spring to early autumn in southern Australia, the declining feed quality of the grasses causes a corresponding reduction in the lactation by dairy herds and necessitates the use of supplementary This decline in digestibility is associated with a decline in the level of soluble carbohydrates. Perennial rye grass lines which accumulate high concentrations of soluble carbohydrates from late spring

10

25

30

35

to early autumn do not suffer as large a decline in digestibility (Radojevic et al 1994). The result of this increased digestibility is a corresponding increase in milk production by dairy herds.

In addition to this, there are many pasture plants, such as white clover which do not possess any significant levels of stored carbohydrate.

There has, therefore, been a desire to develop methods for preventing the degradation of the stored carbohydrates during plant senescence and to increase the level of stored carbohydrates in pasture plants with low levels.

Glucosyltransferases of Streptococcus salivarius

It is known that many strains of <u>Streptococcus</u> salivarius and <u>Streptococcus</u> mutans, produce extracellular α -D-glucosyltransferase (Gtfs), an enzyme which catalyses the formation of glucan from sucrose. These Gtfs are also found in many other species of oral streptococci.

The Gtfs utilise the high free energy of the glycosidic bond of sucrose to synthesise glucans (Jacques NA, Giffard PM, 1991). Gtfs produce either soluble or insoluble products by transferring a glucose residue from sucrose to a growing glucan chain.

Gtfs which produce an insoluble product are generally considered to be primer-dependent (Walker GJ, Jacques NA, 1987). These primer-dependent Gtfs require a dextran $(\alpha - (1 \rightarrow 6)$ -linked glucan) as a receptor for polymerisation to proceed at an appreciable rate. In contrast, Gtfs that produce soluble products may be either primer-dependent or primer-independent.

The genetic sequences for 10 gtf genes from a number of <u>Streptococcus</u> species have been ascertained (Gilmore KS, Russell RRB, Ferretti JJ). All the Gtfs coded by these genes possess highly conserved putative signal sequences that lead to the secretion of these enzymes.

10

15

20

25

30

35

The remainder of each protein is arbitrarily divided into two domains - the N-terminal two-thirds "catalytic domain" and the C-terminal one-third "glucan-binding domain".

S. salivarius ATCC 25975 has been shown to possess at least four different gtf genes (Giffard et al (1991); Each of these genes codes for a Giffard et al (1993)). highly hydrophilic monomeric glucosyltransferase that possesses unique enzymic properties. These Gtfs synthesize structurally different glucans from sucrose. For example, the genes coding for GtfJ and GtfL produce enzymes which synthesize insoluble glucans. primer-dependent enzyme producing essentially a linear $\alpha(1\rightarrow 3)$ -glucan while GtfL is a primer-independent enzyme that synthesizes a glucan containing 50% α -(1+3) - and 50% α -(1 \rightarrow 6)-linked glucosyl residues. In contrast, the qtfK and gtfM genes code for enzymes which produce a soluble glucan which possess α -(1 \rightarrow 6)-linked glucosyl residues. GtfK is primer stimulated while GtfM is primer independent.

DESCRIPTION OF THE INVENTION

Up until now, a gtf gene in <u>S. salivarius</u> or any other <u>Streptococcus</u> species which produces a glucosyltransfererase that synthesises a glucan which is both soluble and primer independent has not been described.

The significance of a glucosyltransferase produced by <u>S. salivarius</u>, or any other streptococci, which is both primer independent and which synthesises a soluble glucan product is twofold. First, the primer independence of the Gtf means that the enzyme should be functional when expressed in plants while the glucan that is formed from sucrose in the plant should be readily stored without detriment to the plant, due to its solubility.

10

15

20

30

35

An important characteristic of soluble glucans produced by Gtf synthesis is that they are poorly degraded by plant enzymes and are readily digested by the diverse microflora present in the rumen of grazing livestock.

The inventors of the present invention have isolated and characterised a novel gtf (GtfM) gene in <u>S</u>.

<u>salivarius</u> which codes for a primer independent Gtf which produces a glucan which is soluble, resistant to degradation by plant enzymes and readily digested by microflora present in the rumen of grazing livestock.

According to a first aspect of the present invention there is provided a plant containing bacterial DNA which codes for a glucosyltransferase which catalyses the formation of glucans from sucrose.

Preferably, the plant contains bacterial DNA which codes for a glucosyltransferase which is primer independent.

More preferably, the plant contains DNA which codes for a glucosyltransferase which catalyses the formation of soluble glucans.

More preferably, the bacterial DNA is obtained from Streptococcus salivarius.

According to a second aspect of the present invention there is provided a DNA comprising a sequence according to SEQ ID NO: 1.

According to a third aspect of the present invention there is provided a DNA sequence which is a variant of a DNA having a sequence according to SEQ ID NO: 1. In this respect a "variant" is a polynucleotide which corresponds to or comprises a portion of the DNA of the invention, or is "homologous" to the DNA of the invention. For the purposes of this description, "homology" between two polynucleotide sequences connotes a likeness short of identity, indicative of a derivation of the first sequence from the second. In particular, a polynucleotide is "homologous" to the DNA of the

10

15

20

25

30

35

PCT/AU95/00527

4

虚

invention if there is greater than 70% identity in the DNA sequence.

The polynucleotides of the present invention exclude those polynucleotides in the environment in which they occur in nature. They include the polynucleotides in a form in which they are substantially free of other Streptococcus salivarius polynucleotide sequences, such as sequences in isolated form, including those in substantially purified form.

According to a fourth aspect of the present invention there is provided a protein comprising the amino acid sequence according to SEQ ID NO: 2.

According to a fifth aspect of the invention there is provided a polypeptide comprising an amino-acid sequence which is a variant of SEQ ID NO:2. A variant is a polypeptide which corresponds to or comprises a portion of the polypeptide of the invention, or is "homologous" to the peptide of the invention. For the purposes of this description, "homology" between two peptide sequences connotes a likeness short of identity, indicative of a derivation of the first sequence from the second. In particular, a polypeptide is "homologous," to the peptide of the invention if there is greater than 70% identity in the amino acid sequence.

These homologous polypeptides can be produced by conventional site-directed mutagenesis of the corresponding DNA or by chemical synthesis, and fall within the scope of the invention, particularly where they retain the biological activity of a glucosyltransferase.

The proteins and polypeptides of the invention exclude those proteins and polypeptides in the environment in which they occur in nature. They include the proteins and polypeptides in a form in which they are substantially free of other Streptococcus salivarius polypeptide sequences, such as sequences in isolated form, including those in substantially purified form.

10

15

20

25

30

According to a sixth aspect of the present invention there is provided the microorganism $\underline{E.\ coli}$ containing plasmid pGSG501.

According to a seventh aspect of the present invention there is provided the microorganism \underline{E} . \underline{coli} containing plasmid pGSG502.

According to a eighth aspect of the present invention there is provided a plant containing DNA comprising a sequence according to SEQ ID NO: 1.

According to an ninth aspect of the present invention there is provided a plant containing DNA which is a variant of DNA having a sequence according to SEQ ID NO: 1.

According to a tenth aspect of the present invention there is provided a plant expressing a protein comprising an amino acid sequence according to SEQ ID NO: 2 or a variant thereof.

DNA and variants thereof of the invention can be incorporated into a variety of plant types. These include plants, such as grasses, used as fodder for livestock. They also include cereal crops or other starchy food product types, (to provide grain or other food with increased fibre); and horticultural crops, such as tomatoes and fruits, to provide fruits with increased solids.

In addition plants expressing the DNA and variants thereof, of the invention may also produce dextran which can in turn be used:

- 1) as a binder for use in processed foods (e.g. so called 'health bars');
- 2) in pharmaceutical preparations again as a binder; and
- 3) in medical preparations to increase antigenic activity.

10

15

20

PCT/AU95/00527

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a restriction map of the inserts from pGSG501 and pGSG502.

BEST METHOD OF PERFORMING THE INVENTION

The invention is further described with reference to the accompanying Example which is no way limiting on the scope of the present invention.

Example 1

The general strategy adopted to isolate a gene from S. salivarius encoding a Gtf which produces a primer independent and soluble glucan is as follows:

A λ gene bank containing <u>S. salivarius</u> DNA was prepared. Positive clones were detected by using an <u>E. coli</u> strain grown on agar containing sucrose.

- E. coli which contained gtf DNA from S. salivarius could convert the sucrose in the medium into a polymer which resulted in opaque colonies. These opaque colonies were then picked and the S. salivarius DNA excised and subjected to restriction mapping to ascertain whether the
 - DNA was from a previously described <u>S. salivarius gtf</u> gene, or whether the DNA was novel. Three clones containing novel DNA were located. These were subjected to a radioactive assay to determine whether the DNA encoded for a primer independent or primer dependent Gtf.
- One clone- λC -13 was found to contain a novel gtf gene which coded for a primer independent Gtf. The DNA from this clone was then isolated and sequenced.

The particular details of this methodology are now described below.

Bacterial strains and growth conditions. Escherichia coli LE392 and NM522 and S. salivarius ATCC 25975 were used. E. coli strains were grown in Luria-Bertani (LB) medium at 37°C, supplemented with ampicillin (100 μ g ml⁻¹), isopropylthiogalactoside (IPTG) (1mM), or 5-bromo-4-chloro-3-indolyl- β -D-galactoside (X-gal) (100

10

Bacteriophage and phagemids. All genetic constructs, excluding sequencing subclones, are listed in Table 1. Bacteriophage- λ derivatives were grown either as 20 ml or 1 L-liquid lysates using <u>E. coli</u> strain LE392 as the host and DNA purified according to the method of Silhavy et al (1984). Plasmids were propagated in <u>E. coli</u> strains as described previously (Giffard et al, 1991).

Screening of Gene Bank. A bacteriophage- λ gene bank of <u>S. salivarius</u> ATCC 25975 (Pitty et al, 1989) was screened by detecting plaques on a lawn of <u>E. coli</u> LE392 grown at 37°C on minimal agar medium containing 0.2% glucose and 50 μ g ml⁻¹ methionine as well as 1% (wt/vol) sucrose with or without 0.02% (wt/vol) dextran T-10. Potential *Gtf* clones were detected by their opacity including λ C-13 containing the <u>gtf</u> M gene.

Twenty recombinant plaques were picked from minimal media plates containing sucrose and the EcoR1 restriction patterns of these recombinants were analysed. Of these recombinants, only λC -13 exhibited a unique EcoR1

- restriction pattern and Gtf activity. A restriction map of λC -13 was constructed using double restriction digests. The Gtf gene encoded by λC -13 (GtfM) was located on an 8.3 kbp insert (see figure 1). The 5.3 kbp XbaI fragment from λC -13 was subcloned into pIBI31
- 30 (pGSG501; see Table 1) and was positive for Gtf activity as was the 4.8 kbp XbaI/EcoR1 from λ C-13 subcloned into pIBI31 (pGSG502; see Table 1).

Bacteria, Phage or Phagemid	Description	Source or reference
Bacterium: Streptococcus salivamus AT	CC 259	ATCC (Hamilton, 1967).
Eschenchia coli LE392	F e14 (merv.) mans 14 (mm.) super44 supr 50 lacYI or A(lacIZY)6 gulK2 gal722 metB1 upR55	Mulidy & 146., 1777
Eschenchia coli NMS22	FlucPa(lacZ) MIS prod B'/supE thi A(lac-prodB) \[\lambda(hsdMS-mcrB)\S \text{(rk mk McrBC)} \]	Gough and Murray, 1983
Bacteriophage:		Loenen and Brammar, 1980
λΑ-8	AL47.1 with Giff encoding 8.5kbp San3A partial fragment	Pitty et al., 1989
λΑ-33	ΔL47.1 with GtfK encoding 9.6khp Sau3A partial fragment of S. salivarius ATCC 25975	Pitty et al., 1989
AC-13	λL47.1 with 8.3kbp GtfM encoding Sau3A partial fragment of S. salivarius ATCC 25975	This study
λD-10	AL47.1 with 11kbp GtfL encoding Sau3A partial fragment of S. salivanus ATCC 25975	This study
λD-40	AL47.1 with Sau3A partial fragment of S. salivarius ATCC 25975 isolated from sucrose-containing medium	This study
Phagemid: pIB130	Ap', fl origin replication, p-galactosidase,	IBI Corporation
p1B131	Ap', fl origin replication, p-galactosidase,	IBI Corporation
_	pIDI30 with Otfl encoding 6.8khp Sact/Bam1II fragment of AA-8	Giffard et al., 1991 Giffard et al., 1991
pGSG201 (pGS201)	pibist with office encoding 6.2khp Bam111/Xba1 fragment of λD-10	This study
pGSG402	plB131 with 6.2kbp Baml II/Xbal fragment of AD-10	This study
pGSG403	pIBI30 with 4.8kbp EcolRI fragment of AD-10 ntBI30 with 4 1kbn FcolRI fragment of AD-10	This study
pGSG501	pIBI31 with GtfM encoding 5.3khp Xbal fragment of \(\lambda \)C-13	This study
pGSG502 pGSG503	pIBI31 with GtfM encoding 4.8kbp <i>EcoRIMba</i> l fragment of \(\lambda C-13\) pIBI31 with 3.7kbp \(Km\l/\text{Mod}\) fragment of \(\lambda C-13\)	This study This study
·>>))		

- 10 -

Detection of Gtf activity. Gtf activity was routinely detected using a qualitative microtitre reducing sugar test for liberated fructose, outlined in Jacques N.A. (1983). Gtf activity encoded by phagemids was released from E. coli cells by permeabalizing 1 ml of 5 a stationary phase culture. This was achieved by vortexing the cells in the presence of 50 μ l 0.1% (wt/vol) SDS and 100 μ l chloroform for 20 seconds. Quantification of Gtf activity utilized [U-qlucosyl-14C]labelled sucrose. One unit of enzyme activity was 10 defined as the amount of Gtf that catalyzed the incorporation of 1μ mol of the glucose moiety of sucrose in 75% (vol/vol) ethanol-insoluble polysaccharide per min.

15 The assay mix used for the quantification of Gtf activity was scaled up to 8 ml and incubated with 3.2ml of bacteriophage λ lysates at 37°C for 2h. After the 2h incubation, the assay mix was boiled for a further 1h to inactivate the enzyme and the amount of glucan formed 20 (cpm) determined by assaying duplicate 500µl aliquots. After cooling to 37°C, C. gracile endo- $(1\rightarrow6)$ - α -Dglucanase was added to a final concentration of 500mU/ml and the solution incubated at 37°C. Duplicate aliquots $(500\mu l)$ were removed and assayed for total remaining 25 glucan at varying time intervals over a 5h period. Any reduction in glucan (cpm) during this period was attributed to hydrolysis by the endo- $(1\rightarrow6)$ - α -D-glucanase.

DNA sequence analysis. DNA sequence determination was carried out on CsCl purified double-stranded DNA using the Pharmacia T7 sequencing kit according to the manufacturer's instructions. Custom-made oligonucleotide primers (17mers) were used and all sequencing was confirmed in both directions. DNA sequences were assembled and open reading frames (orfs) detected using the IBI-Pustell sequence analysis software version 2.03.

Southern Hybridizations. Chromosomal DNA from

S. salivarius ATCC 25975 was extracted and purified as

30

35

10

15

20

previously described (Giffard et al, 1991). Southern hybridizations were done essentially as outlined by Silhavy et al (1984) and in accordance with standard techniques such as those described in Maniatis et al (1989).

Incorporation into plants. Incorporation of $\underline{\text{gtfM}}$ gene into plants is obtained by standard transgenic techniques. The $\underline{\text{gtfM}}$ gene is obtained from $\lambda C\text{-}13$ or pGSG501 by PCR. Various constructs are made using PCR primers that either do or do not contain a coding region that adds a vacuolar targeting sequence to the N- or C-terminus of the GtfM protein. These PCR constructs are cloned into a pUC18 based vector containing a Cauliflower Mosaic Virus (CaMV) 35S promoter. By this means the streptococcal promoter is replaced by a plant promoter.

Other methods of incorporating foreign DNA into plants are taught in Australian Patent Application No. 46881/89 by Ciba Geigy Ag. They include the use of Agrobacterium tumefaciens and the leaf disc transformation method and the use of Tobacco Mosaic Virus (TMV).

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Simpson, Christine Lynn
 Giffard, Philip Morrison
 Jacques, Nicholas Anthony
- (ii) TITLE OF INVENTION: Genetic Manipulation of Plants to Increase Stored Carbohydrates
- (iii) NUMBER OF SEQUENCES: 2
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Griffith Hack & Co
 - (B) STREET: Level 8, 168 Walker Street
 - (C) CITY: North Sydney
 - (D) STATE: New South Wales
 - (E) COUNTRY: Australia
 - (F) ZIP: 2060
- (v) COMPUTER READABLE FORM:
 - (A) MRDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: WO
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: AU PM7643
 - (B) FILING DATE: 24-AUG-1994
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 61 2 9957 5944
 - (B) TELEFAX: 61 2 957 6288
 - (C) TELEX: 26547

WO 96/06173

- 13 -

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4853 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus salivarius

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

. (3227 -			-			
CAGAGATTTA	TGAAAAGAAG	ATGATTTTT	CCTATTTGTA	ATTTGTCTGA	ATATATCATA	60
GAGTAGAGAT	GACAACAGAA	AAAAGGATGA	TTGATATAGA	TGGAAAATAA	GGTACGTTTT	120
AAACTACACA	AGGTTAAGAA	AAACTGGGTA	ACTATTGGGG	TGACCACTCT	CTCAATGGTT	180
GCCTTGGCAG	GTGGAAGCCT	CCTAGCTCAA	GGAAAAGTAG	AGGCCGATGA	GACGAGCGCA	240
CCTAACGGTG	ACGGCTTGCA	GCAACTGAGT	GAGGATGGGA	CTGCCAGTCT	AGTGACGACA	300
ACAACTGTTA	CTGAGCAAGC	TAGTGCTCAA	GCAAGTGTGT	CAGCAGTAGC	AACAGCCAGC	360
GTAAGTCACG	AAACAAGCTT	CCAGGCGGCG	ACAAGTGCAG	TCAGCCAGGA	GGCAACTGCT	420
CAAGCACAAA	CTAGTCCAGT	TGCCAGTCAA	GAAGTGGCAG	TATCTTCGCA	AACTCAATCC	480
AGTGGCCAAG	AGACACAGAC	TACTGAACAG	GTGTCACAAG	GTCAGACATC	AACTCAAGTA	540
	CAAGTGCTCA		•			600
	CAGCGCCAGC			•		660
			•		TGTAACCATT	720
	CAAACACGCC					780
	CCATTGTAAC					840
	CTAACAAGCC					900
	TGAAGACTAT			•		9.60
	CCATTGAGCT					1020
	GTAAACCTTT		•	•		1080
	AGGCCTATGA					1140
	GCTGGTACCG					1200
	AAGATTATCG					1260
				•		1320
	TCAACTATAT					
ATGATGAGCT	ATGACTIGGC	AGCTGCTGCC	GAAACGGTTC	AACGAGGCAT	CGAGGAACGT	1380

WO 96/06173 PCT/AU95/00527

	- :	1

	•					
ATTGGTCGTC	G AGGGCAATAC	CACTTGGCTT	CGCCAGTTGA	TGTCAGACTT	CATCAAAACA	1440
CAGCCTGGCT	GGAACTCTGA	GAGTGAGGAC	AATCTCTTAG	TTGGTAAAGA	CCACTTGCAA	1500
GGAGGCGCTC	TGACCTTCCT	AAATAATAGT	GCGACAAGTC	ATGCCAATTC	AGATTTCCGC	1560
CTCATGAACO	GCACACCGAC	TAACCAAACG	GGGACACGCA	AATATCATAT	TGACCGTTCA	1620
AATGGTGGTT	ACGAGTTGCT	CTTGGCTAAC	GATATCGACA	ACTCTAACCC	AGCTGTTCAG	1680
GCAGAGCAAC	TAAACTGGCT	CCACTACATC	ATGAACATTG	GTTCTATCCT	TGGCAATGAT	1740
CCAAGTGCCA	ACTITGACGG	TGTTCGTATC	GATGCGGTGG	ACAATGTGGA	TGCGGATCTC	1800
TTGCAGATTC	CITCTGATTA	CTTCAAGGAA	AAATACCGTG	TCGCAGATAA	TGAAGCAAAT	1860
GCCATTGCTC	ATTTGTCAAT	CCTTGAAGCT	TGGTCATACA	ACGACCACCA	ATACAACAAG	1920
GATACCAAGG	GTGCTCAGTT	GTCTATCGAC	AATCCACTAC	GTGAAACGCT	TTTGACGACT	1980
TTCTTGCGTA	AGAGCAATTA	CCGTGGCAGC	TTGGAGCGCG	TGATTACTAA	CTCTCTTAAC	2040
AATCGTTCAA	GTGAGCAGAA	ACACACGCCA	CGTGATGCCA	ATTATATTTT	CGTGCGAGCC	2100
CATGATAGTG	AAGTGCAAGC	TGTTTTGGCT	AATATCATCA	GCAAGCAGAT	TAATCCAAAA	2160
ACAGATGGTT	TCACCTTCAC	TATGGATGAG	CTCAAACAGG	CCTTCGAAAT	CTACAATGCG	2220
GACATCGCGA	AGGCTGATAA	AAAGTACACC	CAGTACAATA	TCCCAGCTGC	CTATGCCACA	2280
ATGTTGACCA	ACAAGGATAG	TATCACTCGT	GTTTACTACG	GGGACCTCTT	TACCGACGAT	2340
GGCCAATACA	TGGCTGAAAA	ATCACCGTAC	TATAATGCCA	TCGATGCCCT	GCTCCGTGCT	2400
CGCATCAAAT	ATGTAGCAGG	TGGTCAAGAC	ATGAAGGTTA	CTAAGCTTAA	TGGCTATGAA	2460
ATCATGTCAT	CTGTGCGTTA	TGGTAAGGGG	GCAGAAGAAG	CCAACCAGCT	TGGTACTGCT	2520
GAAACACGCA	ACCAAGGAAT	GCTGGTCCTT	ACAGCCAACC	GTCCAGATAT	GAAGTTGGGA	2580
GCTAATGATC	GTCTGGTAGT	CAATATGGGA	GCTGCCCACA	AAAATCAGGC	TTACCGTCCA	2640
TIGCITCICA	GCAAATCGAC	AGGTCTTGCG	ACCTACCTCA	AGGATTCTGA	TGTACCAGCT	2700
GGATTGGTTC	GCTATACGGA	CAATCAAGGG	AACTTGACCT	TCACGGCAGA	TGATATTGCT	2760
GGTCATTCAA	CCGTTGAAGT	TTCAGGTTAT	TTGGCAGTTT	GGGTGCCAGT	GGGTGCCTCA	2820
GAAAACCAAG	ATGCCCGAAC	CAAGGCTTCG	AGCACCAAGA	AGGGTGAGCA	GGTCTTTGAA	2880
TCATCAGCAG	CTCTTGATTC	ACAAGTCATT	TACGAAGGCT	TCTCAAACTT	CCAAGATTTC	2940
GTTAAGACAC	CAAGTCAGTA	CACCAACCGT	GTTATTGCTC	AAAATGCCAA	ACTCTTCAAA	3000
GAGTGGGGAA	TCACTTCCTT	TGAATTTGCG	CCACAGTATG	TGTCTAGCCA	AGACGGCACT	3060
TTCTTGGATT	CTATCATTGA	AAATGGCTAC	GCCTTCGAGG	ACCGCTACGA	TATTGCCATG	3120
AGCAAGAACA	ACAAATACGG	TTCACTCAAA	GACCTCATGG	ATGCCCTTCG	TGCCCTTCAC	3180
GCAGAAGGTA	TCTCAGCCAT	TGCTGACTGG	GTTCCAGATC	AAATTTACAA	TCTCCCTGGA	3240
ÄAAGAAGTGG	TAACAGCTTC	TCGTACCAAT	AGCTACGGTA	CACCACGTCC	AAATGCTGAA	3300
ATCTACAATA	GCCTCTACGC	AGCTAAAACA	CGTACCTTTG	GAAATGACTT	CCAAGGCAAG	3360
TACGGTGGTG	CCTTCCTTGA	TGAATTGAAG	GCAAAATACC	CAGCAATCTT	TGAGCGCGTG	3420

WO 96/06173

15

CAGATTTCAA	ACGGCCGTAA	ATTGACTACC	AATGAGAAAA	TCACGCAATG	GTCAGCCAAG	3480
TATTTCAATG	GAAGCAATAT	CCAAGGTACT	GGAGCTCGCT	ATGTCCTACA	AGATAACGCT	3540
ACCAACCAAT	ACTTCAGCGT	CAAAGCAGGT	CAAACCTTCC	TTCCTAAACA	AATGACTGAA	3600
ATTACTGGAA	GTGGTTTCCG	TAGGGTTGGA	GATGATGTCC	AATACCTCTC	AATTGGTGGC	3660
TACCTTGCTA	AGAATACCTT	TATTCAAGTC	GGTGCCAACC	AGTGGTATTA	CTTTGATAAG	3720
AATGGCAACA	TGGTCACAGG	TGAGCAGGTC	ATTGATGGCA	AGAAATACTT	CTTCCTAGAC	3780
AATGGTCTCC	AGCTACGTCA	TGTCCTTCGC	CAAGGTAGTG	ATGGTCATGT	GTATTATTAC	3840
GATCCTAAAG	GGGTTCAGGC	CTTTAACGGA	TTTTATGATT	TTGCGGGTCC	TCGCCAAGAC	3900
GTTCGCTACT	TTGATGGCAA	CGGTCAAATG	TATCGTGGCC	TCCACGACAT	GTATGGCACA	3960
ACCTTCTATT	TTGATGAAAA	GACTGGTATT	CAAGCCAAAG	ACAAGTTCAT	CCGTTTTGCG	4020
GACGGACGCA	CGCGTTACTT	CATCCCAGAT	ACAGGAAATC	TCGCAGTCAA	CCGATTTGCG	4080
CAAAATCCTG	AGAACAAGGC	TTGGTATTAC	CTCGATAGCA	ACGGTTATGC	CGTGACAGGA	4140
CTACAAACCA	TTAACGGTAA	GCAGTATTAC	TTTGACAATG	AAGGACGTCA	GGTTAAGGGA	4200
CACTTTGTCA	CTATCAATAA	CCAACGTTAC	TTCCTTGATG	GTGATAGTGG	TGAAATTGCT	4260 2
CCGTCACGCT	TTGTGACGGA	AAACAACAAG	TGGTACTATG	TCGATGGCAA	TGGTAAACTG	4320 s
GTTAAAGGTG	CTCAGGTCAT	CAATGGTAAT	CACTACTATT	TCAACAATGA	TTATAGCCAA	4380 ~
GTCAAGGGTG	CCTGGGCCAA	CGGCCGTTAC	TATGATGGTG	ACTCAGGTCA	GGCCGTAAGC	4440
AACCAATTCA	TTCAAATTGC	GGCTAACCAA	TGGGCTTACC	TTAACCAAGA	TGGTCACAAA	4500
GTAACAGGTC	TTCAAAATAT	TAACAATAAA	GTTTACTATT	TTGGTAGCAA	TGGTGCTCAA	4560
GTCAAAGGTA	AATTGCTCAC	TGTCCAAGGT	AAGAAATGTT	ACTTTGATGC	CCACACAGGT	4620 -
GAGCAAGTGG	TAAACCGCTT	TGTCGAAGCT	GCACGTGGCT	GCTGGTATTA	CTTTAACTCA	4680
GCTGGCCAAG	CAGTGACTGG	ACAACAGGTC	ATCAATGGTA	AACAACTITA	CTTCGACGGT	4740
TCAGGTCGTC	AAGTTAAAGG	ACGTTATGTT	TATGTTGGTG	GTAAACGACT	CTTCTGCGAT	4800
GCCAAAACTG	GTGAATTGAG	ACAGCGTCGC	TAATTAATAT	GTACTTTAAA	AAT	4853

- 16:--

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1577 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus salivarius
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
 - Met Glu Asn Lys Val Arg Phe Lys Leu His Lys Val Lys Lys Asn Trp 5 10 15
 - Val Thr Ile Gly Val Thr Thr Leu Ser Met Val Ala Leu Ala Gly Gly
 20 25 30
 - Ser Leu Leu Ala Gln Gly Lys Val Glu Ala Asp Glu Thr Ser Ala Pro 35 40 45
 - Asn Gly Asp Gly Leu Gln Gln Leu Ser Glu Asp Gly Thr Ala Ser Leu 50 60
 - Val Thr Thr Thr Val Thr Glu Gln Ala Ser Ala Gln Ala Ser Val 65 70 75 80
 - Ser Ala Val Ala Thr Ala Ser Val Ser His Glu Thr Ser Phe Gln Ala 85 90 95
 - Ala Thr Ser Ala Val Ser Gln Glu Ala Thr Ala Gln Ala Gln Thr Ser 100 105 110
 - Pro Val Ala Ser Gln Glu Val Ala Val Ser Ser Gln Thr Gln Ser Ser 115 120 125
 - Gly Gln Glu Thr Gln Thr Thr Glu Gln Val Ser Gln Gly Gln Thr Ser 130 135 140
 - Thr Gln Val Ala Gly Gln Thr Ser Ala Gln Ser Thr Pro Ser Val Thr 145 150 155 160
 - Glu Gln Ala Arg Pro Arg Val Leu Thr Asn Ala Ala Pro Ala Ile Ala 165 170 175
 - Thr Arg Ala Ala Asp Ser Thr Ile Arg Ile Asn Ala Asn Arg Asn Thr 180 185 190
 - Asn Ile Thr Ile Thr Ala Ser Gly Thr Thr Pro Asn Val Thr Ile Ile 195 200 205
 - Thr Gly Pro Asn Thr Pro Lys Pro Asn Val Thr Val Thr Ser Pro Asn 210 220
 - Gly Thr Arg Pro Asn Val Thr Ile Val Thr Gln Pro Asn Gln Pro Asn 225 235 240
 - Lys Pro Val Gln Pro Ser Gln Pro Ser Gln Pro Asn Lys Pro Val Gln
 245 250 255
 - Pro Asn Gln Pro Ser Leu Asp Tyr Lys Pro Val Ala Ser Asn Leu Lys 260 265 270

Thr	Ile	Авр 275	Gly	Lys	Gln	Tyr	Tyr 280	Val	Glu	Asn	Gly	Val 285	Val	ГÀв	Lys
Asn	Ala 290	Ala	Ile	Glu	Leu	Авр 295	Gly	Arg	Leu	Tyr	Tyr 300	Phe	qaA	Glu	Thr
Gly 305	Ala	Met	Val	qaA	Gln 310	Ser	Lys	Pro	Leu	Tyr 315	Arg	Ala	qaA	Ala	Ile 320
Pro	Asn	Asn	Ser	Ile 325	Tyr	Ala	Val	Tyr	Asn 330	Gln	Ala	Tyr	Asp	Thr 335	Ser
Ser	Lys	Ser	Phe 340	Glu	His	Leu	Asp	Asn 345	Phe	Leu	Thr	Ala	Asp 350	Ser	Trp
Tyr	Arg	Pro 355	Lys	Gln	Ile	Leu	Lys 360	Asp	Gly	Lys	Asn	Trp 365	Thr	Ala	Ser
Thr	Glu 370	Lys	Авр	Tyr	Àrg	Pro 375	Leu	Leu	Met	Thr	Trp 380	Trp	Pro	qaA	Lys
Val 385	Thr	Gln	Val	Asn	Tyr 390	Leu	Asn	Tyr	Met	Ser 395	Gln	Gln	Gly	Phe	Gly 400
Asn	Lys	Thr	Tyr	Thr 405	Thr	Asp	Met	Met	Ser 410	Tyr	Asp	Leu	Ala	Ala 415	Ala
Ala	Glu	Thr	Val 420	Gln	Arg	Gly	Ile	Glu 425	Glu	Arg	Ile	Gly	Arg 430	Glu	Gly
		435			Arg		440					445			
	450				Glu	455					460				•
His 465	Leu	Gln	Gly	Gly	Ala 470	Leu	Thr	Phe	·Leu	Asn 475	Asn	Ser	Ala	Thr	Ser 480
				485	Phe			-	490					495	-
			500		Tyr			505					510		
		515	-		Asp		520					525			
	530				Leu	535	•				540				
545					Ala 550					555		•			560
				565	Авр				570				-	575	
			580		Ala			585					590		
		595			Trp		600					605			
Thr	Lys 610	Gly	Ala	Gln	Leu	Ser 615	Ile	Asp	Asn	Pro	Leu 620	Arg	Glu	Thr	Leu

- 18 -

-															
Le:	u Th	r Th	r Ph	e Le	4 Arg	y Ly:	s Se	r As	n Ty	r Arg 635	g Gly	y Se	r Le	u Gl	u Arg 640
Va.	1 11	Th	r As	n Se:	r Leu	ı Ası	n Ası	n Ar	g Se: 650	r Sei	r Glı	u Gl	n Ly	в Ні 65	s Thr
Pro	Arg	g Ası	9 Ala	a Ası	тут	: Ile	e Phe	≥ Va:	l Arg	g Ala	Hia	s As _i	p Se:		u Val
Glr	n Ala	Val 675	L Let	ı Ala	Asn	Ile	11e 680	e Sei	Lye	3 Gln	ıIle	AB:		o Lyı	B Thr
JaA	690	Phe	Thi	Phe	Thr	Met 695	Asp	Glu	ı Lev	Lys	Glr. 700		a Phe	e Glu	lle
Tyr 705	Asn	Ala	Asp	Ile	Ala 710	Lys	Ala	Asp	Lys	Lys 715	Тух	Thi	Gli	туг	720
Ile	Pro	Ala	Ala	Tyr 725	Ala	Thr	Met	Leu	Thr 730	Asn	Lys	Asp	Ser	: Ile 735	Thr
Arg	Val	Tyr	Tyr 740	Gly	Asp	Leu	Phe	Thr 745	Asp	Asp	Gly	Gln	Ty:		Ala
Glu	Lys	Ser 755	Pro	Tyr	Tyr	Asn	Ala 760	Ile	Asp	Ala	Leu	Leu 765		Ala	Arg
Ile	Lys 770	Tyr	Val	Ala	Gly	Gly 775	Gln	Asp	Met	Lys	Val 780	Thr	Lys	Leu	Asn
Gly 785	Tyr	Glu	Ile	Met	Ser 790	Ser	Val	Arg	Tyr	Gly 795	Lys	Gly	Ala	Glu	Glu 800
Ala	Asn	Gln	Leu	Gly 805	Thr	Ala	Glu	Thr	Arg 810	Asn	Gln	Gly	Met	Leu 815	Val
Leu	Thr	Ala	Asn 820	Arg	Pro	qaA	Met	Lys 825	Leu	Gly	Ala	Asn	QaA	Arg	Leu
Val	Val	Asn 835	Met	Gly	Ala	Ala	His 840	Lys	Asn	Gln	Ala	Tyr 845	Arg	Pro	Leu
Leu	Leu 850	Ser	Lys	Ser	Thr	Gly 855	Leu	Ala	Thr	Tyr	Leu 860	Lys	Авр	Ser	Авр
Val 865	Pro	Ala	Gly	Leu	Val 870	Arg	Tyr	Thr	Asp	Asn 875	Gln	Gly	Asn	Leu	Thr 880
Phe	Thr	Ala	qaA	Asp 885	Ile	Ala	Gly	His	Ser 890	Thr	Val	Glu	Val	Ser 895	Gly
Tyr	Leu	Ala	Val 900	Trp	Val	Pro	Val	Gly 905	Ala	Ser	Glu	Asn	Gln 910	Авр	Ala
Arg	Thr	Lys 915	Ala	Ser	Ser	Thr	Lys 920	Lys	Gly	Glu	Gln	Val 925	Phe	Glu	Ser
Ser	Ala 930	Ala	Leu	Asp	Ser	Gln 935	Val	Ile	Tyr		Gly 940	Rhe	Ser	Asn	Phe
Gln . 945	Asp .	Phe	Val	Lys	Thr 950	Pro	Ser	Gln	Tyr	Thr . 955	Asn .	Arg	Val	Ile	Ala 960
Gln.	Asn .	Ala	Lys	Leu 965	Phe 1	Lys	Glu j	Trp	Gly 970	Ile '	Thr	Ser		Glu 975	Phe
						•			•						

Ala Pro Gln Tyr Val Ser Ser Gln Asp Gly Thr Phe Leu Asp Ser Ile 980 985 990

- 19 -

Ile Glu Asn Gly Tyr Ala Phe Glu Asp Arg Tyr Asp Ile Ala Met Ser 995 1000 1005

Lys Asn Asn Lys Tyr Gly Ser Leu Lys Asp Leu Met Asp Ala Leu Arg 1010 1015 1020

Ala Leu His Ala Glu Gly Ile Ser Ala Ile Ala Asp Trp Val Pro Asp 1025 1030 1035 1040

Gln Ile Tyr Asn Leu Pro Gly Lys Glu Val Val Thr Ala Ser Arg Thr 1045 1050 1055

Asn Ser Tyr Gly Thr Pro Arg Pro Asn Ala Glu Ile Tyr Asn Ser Leu 1060 1065 1070

Tyr Ala Ala Lys Thr Arg Thr Phe Gly Asn Asp Phe Gln Gly Lys Tyr 1075 1080 1085

Gly Gly Ala Phe Leu Asp Glu Leu Lys Ala Lys Tyr Pro Ala Ile Phe 1090 1095 1100

Glu Arg Val Gln Ile Ser Asn Gly Arg Lys Leu Thr Thr Asn Glu Lys 1105 1110 1115 1120

Ile Thr Gln Trp Ser Ala Lys Tyr Phe Asn Gly Ser Asn Ile Gln Gly 1125 1130 1135

Thr Gly Ala Arg Tyr Val Leu Gln Asp Asn Ala Thr Asn Gln Tyr Phe 1140 1145 1150

Ser Val Lys Ala Gly Gln Thr Phe Leu Pro Lys Gln Met Thr Glu Ile 1155 1160 1165

Thr Gly Ser Gly Phe Arg Arg Val Gly Asp Asp Val Gln Tyr Leu Ser 1170 1175 1180

Ile Gly Gly Tyr Leu Ala Lys Asn Thr Phe Ile Gln Val Gly Ala Asn 1185 1190 1195 1200

Gln Trp Tyr Tyr Phe Asp Lys Asn Gly Asn Met Val Thr Gly Glu Gln 1205 1210 1215

Val Ile Asp Gly Lys Lys Tyr Phe Phe Leu Asp Asn Gly Leu Gln Leu 1220 1225 1230

Arg His Val Leu Arg Gln Gly Ser Asp Gly His Val Tyr Tyr Tyr Asp 1235 1240 1245

Pro Lys Gly Val Gln Ala Phe Asn Gly Phe Tyr Asp Phe Ala Gly Pro 1250 1255 1260

Arg Gln Asp Val Arg Tyr Phe Asp Gly Asn Gly Gln Met Tyr Arg Gly 1265 1270 1275 1280

Leu His Asp Met Tyr Gly Thr Thr Phe Tyr Phe Asp Glu Lys Thr Gly 1285 1290 1295

Ile Gln Ala Lys Asp Lys Phe Ile Arg Phe Ala Asp Gly Arg Thr Arg 1300 1305 1310

Tyr Phe Ile Pro Asp Thr Gly Asn Leu Ala Val Asn Arg Phe Ala Gln
1315 1320 1325

- 20 -

Asn Pro Glu Asn Lys Ala Trp Tyr Tyr Leu Asp Ser Asn Gly Tyr Ala 1330 1335 1340

Val Thr Gly Leu Gln Thr Ile Asn Gly Lys Gln Tyr Tyr Phe Asp Asn 1345 1350 1355 1360

Glu Gly Arg Gln Val Lys Gly His Phe Val Thr Ile Asn Asn Gln Arg 1365 1370 1375

Tyr Phe Leu Asp Gly Asp Ser Gly Glu Ile Ala Pro Ser Arg Phe Val 1380 1385 1390

Thr Glu Asn Asn Lys Trp Tyr Tyr Val Asp Gly Asn Gly Lys Leu Val 1395 1400 1405

Lys Gly Ala Gln Val Ile Asn Gly Asn His Tyr Tyr Phe Asn Asn Asp 1410 1415 1420

Tyr Ser Gln Val Lys Gly Ala Trp Ala Asn Gly Arg Tyr Tyr Asp Gly 1425 1430 1435 1440

Asp Ser Gly Gln Ala Val Ser Asn Gln Phe Ile Gln Ile Ala Ala Asn 1445 1450 1455

Gln Trp Ala Tyr Leu Asn Gln Asp Gly His Lys Val Thr Gly Leu Gln 1460 1465 1470

Asn Ile Asn Asn Lys Val Tyr Phe Gly Ser Asn Gly Ala Gln Val 1475 1480 1485

Lys Gly Lys Leu Leu Thr Val Gln Gly Lys Lys Cys Tyr Phe Asp Ala 1490 1495 1500

His Thr Gly Glu Gln Val Val Asn Arg Phe Val Glu Ala Ala Arg Gly 1505 1510 1515 1520

Cys Trp Tyr Tyr Phe Asn Ser Ala Gly Gln Ala Val Thr Gly Gln Gln 1525 1530 1535

Val Ile Asn Gly Lys Gln Leu Tyr Phe Asp Gly Ser Gly Arg Gln Val 1540 1545 1550

Lys Gly Arg Tyr Val Tyr Val Gly Gly Lys Arg Leu Phe Cys Asp Ala 1555 1560 1565

Lys Thr Gly Glu Leu Arg Gln Arg Arg 1570 1575

LIST OF REFERENCES

- 1. Radojevic et al. 1994 Aust J Agric Res 45, 901-12.
- 2. Jacques NA, Giffard PM, "The Glycosyltransferases of Oral Streptococci" <u>Todays Life Science</u> 1991; 3: 40-6.
- 3. Walker GJ, Jacques NA, "Polysaccharides of Oral Streptococci" In: Reizer J, Peterkofsky A, Eds.

 "Sugar Transport and Metabolism in Gram-Positive
 Bacteria". Chichester: Ellis Horwood, 1987; 39-68.
- 10 4. Gilmore KS, Russell RRB, Ferretti JJ, "Anaylsis of the Streptococcus downei gtfS gene, which specifies a glucosyltransferase that synthesises soluble glucans". <u>Infect Immun</u> 1990; <u>58</u>: 2452-8.
- 5. Giffard PM, Simpson CL, Milward CP, Jacques NA,

 "Molecular characterization of a cluster of at least
 two glucosyltransferase genes in Streptococcus
 salivarius ATCC25975". J. Gen. Microbiol. 1991;
 137:2577-93.
- 6. Giffard PM, Allen DM, Milward CP, Simpson CL,

 Jacques NA, "Sequence of the GtfK of Streptococcus

 salivarius ATCC25975 and the evolution of the gtf

 genes of oral streptococci". J Gen Microbiol 1993;

 139:1511-22.
- 7. Pitty LS, Giffard PM, Gilpin ML, Russell RRB and
 Jacques NA, 1989. "Cloning and expression of
 glycosyltransferase C gene (gtfC) from Streptococcus
 mutans LM7. Infect Immun 55: 2176-2182.
- 8. Silliary TS, Berman ML, and Enquist LW, 1984.

 "Experiments with Gene fusions". Cold Spring Harbor

 Laboratory, Cold Spring Harbor, N.Y.

PCT/AU95/00527 - 22 -

- Jacques N.A. 1983. Membrane perturbation by 9. cerulenin modulates glucosyltransferase secretion and acetate uptake by Streptococcus salivarius. J. Gen. Micriobial. 129: 3293-3302.
- 10. Maniatis T, Fritsch EF, and Sambrook J. (1989). 5 "Molecular Cloning; a laboratory manual. Second edition. Cold Spring Harbor Laboratory Press, N.Y.

THE CLAIMS

- 1. A plant containing bacterial DNA which codes for a glucosyltransferase which catalyses the formation of glucans from sucrose.
- 5 2. A plant according to claim 1 wherein the bacterial DNA is primer independent.
 - 3. A plant according to claim 1 where the glucosyltransferase catalyses the formation of soluble glucans.
- 10 4. A DNA comprising a sequence according to SEQ ID NO: 1.
 - 5. A DNA having a sequence which is a variant of SEQ ID. NO: 1.
- 6. A protein comprising an amino acid sequence according to SEQ ID NO: 2.
 - 7. A protein comprising an amino-acid sequence which is a variant of SEQ ID NO:2.
 - 8. The plasmid pGSG501 containing λC -13 DNA.
 - 9. The plasmid pGSG502 containing λC -13 DNA.
- 20 10. A plant containing DNA comprising a sequence according to SEQ ID NO: 1.
 - 11. A plant containing DNA having a sequence which is a variant of DNA SEQ ID NO: 1.
- 12. A plant expressing a protein comprising an 25 amino acid sequence according to SEQ ID NO: 2.

13. A plant expressing a protein comprising an amino acid sequence which is a variant of SEQ ID NO: 2.

- 24 -

AMENDED CLAIMS

PCT/AU95/00527

[received by the International Bureau on 18 January 1996 (18.01.96); original claims 2,3 cancelled; original claims 1,5,7,11,13 amended and renumbered; new claims 12-14 added; claim 4 renumbered as claim 2 claim 6 renumbered as claim 4 claims 8-10 renumbered as claims 6-8 claim 12 renumbered as claim 10 (2 pages)]

- 1. A plant containing primer independent bacterial DNA which codes for a glucosyltransferase which catalyses the formation of soluble glucans from sucrose.
- 5 2. A DNA comprising a sequence according to SEQ ID NO: 1.
 - 3. A DNA having a sequence which is a variant of SEQ ID. NO: 1, in which minor alterations have been made compared to SEQ ID. NO: 1 resulting in a sequence which is not identical to SEQ ID. NO: 1.
 - 4. A protein comprising an amino acid sequence according to SEQ ID NO: 2.
- 5. A protein comprising an amino-acid sequence which is a variant of SEQ ID NO: 2, in which minor alterations have been made compared to SEQ ID NO: 2 resulting in a sequence which is not identical to SEQ ID NO. 2.
 - 6. The plasmid pGSG501 containing λ C-13 DNA.
 - 7. The plasmid pGSG502 containing λ C-13 DNA.
- 20 8. A plant containing DNA comprising a sequence according to SEQ ID NO: 1.
 - A plant containing DNA according to claim 3.
 - 10. A plant expressing a protein comprising an amino acid sequence according to SEQ ID NO: 2.
- 25 11. A plant expressing a protein comprising an amino acid sequence according to claim 5.

10

- 12. A method of improving the level of stored carbohydrate in a pasture plant with low levels, comprising inserting a DNA according to claim 2 or 3 into the plant so that the plant expresses a protein according to claim 4 or 5 in active form.
- 13. A method of preventing degradation of stored carbohydrate during plant senescence comprising inserting a DNA according to claim 2 or 3 into the plant so that the plant expresses a protein according to claim 4 or 5 in active form.
- 14. Dextran, when produced from a plant according to claim 1, or any one of claims 8 to 11.

AMENDED SHIFT () TOLE 19

1/1

Figure 1

INTERNATIONAL SEARC SEPORT

International Application No.

			PCT/AU 95/00527
A .	CLASSIFICATION OF SUBJECT MATTE	R	
Int Cl ⁶ : C	12N 15/54, 9/10; A01H 5/00		
According to	o International Patent Classification (IPC) or to b	ooth national classification and	IPC
В.	FIELDS SEARCHED		_
	umentation searched (classification system followed to (keywords below); Chemical Abstracts (keywords below);		
Documentation BIOT (keyw	n searched other than minimum documentation to the ords below)	extent that such documents are in	cluded in the fields searched
cas on-line:	a base consulted during the international search (name keywords: (EC-2.4.1.5 or EC 2.4.1.125 or gold 1989-1995 or (sucrose:or plant:) keywords: glycosyl()trans: or GTF or glucosylant)	ducosyl()trans: or GTF or gl	ucosyltrans: or transgl:) (SS1) and C12N/IC and (sucrose or
C.	DOCUMENTS CONSIDERED TO BE RELEVA	NT	continued.
Category*	Citation of document, with indication, where	appropriate, of the relevant pas	sages Relevant to claim No.
P,X X X	Infection and Immunity (Feb 1995) vol. 63, not al: "Streptococcus salivarius ATCC 25975 pos primer-independent glucosyltransferases". (Se Abstract, figures 2(b) and 3) WO, A, 90/02484 (Washington University) 22 particular pages 25-26, examples 4, 5, 11 and WO, A, 89/12386 (Calgene Inc) 28 December 8, line 33-page 9, line 1)	sesses at least two genes coding whole document, in particular the whole document in particular the whole 1990 (22.03.90) (see in claim 18)	g for ar
	Further documents are listed in the continuation of Box C	X See patent family	annex
'A" docum not con 'E" earlier interna 'L" docum or whin anothe 'O" docum exhibit 'P" docum	nent defining the general state of the art which is insidered to be of particular relevance document but published on or after the ational filing date the nent which may throw doubts on priority claim(s) is cited to establish the publication date of cricitation or other special reason (as specified) then treferring to an oral disclosure, use, tion or other means	x" document of particular rele- be considered novel or canr inventive step when the doc Y" document of particular rele- be considered to involve an combined with one or more	vance; the claimed invention cannot inventive step when the document is other such documents, such to a person skilled in the art
Date of the actu	nal completion of the international search	Date of mailing of the internation	onal search report
5 December 19	95	4 DECEMBER	ر ۱۹۹5
	ng address of the ISA/AU INDUSTRIAL PROPERTY ORGANISATION 2606	Authorized officer KAREN AYERS	
USTRALIA	Facsimile No.: (06) 285 3929	Telephone No : (06) 283 2082	·

	PCT/AU 95/00527
C (Continuati	
Category*	Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Х	J. Gen. Microbiology (1993) vol.139, pages 1511-1522, P.M. Giffard et al: "Sequence of the 5,7
 Y	gtfK gene of Streptococcus salivarius ATCC 25975 and evolution of the gtf genes of oral streptococci". (See whole document).
Y	Aust. J. Agric. Res., (1994) volume 45, pages 901-12, I. Radojevic et al: "Chemical composition and in vitro digestibility of lines of Lolium perenne selected for high concentrations of water-soluble carbohydrate" (See, in particular, page 910 third full paragraph)
Y	WO, A, 94/11520 (Zeneca Ltd) 26 May 1994 (26.05.94) (see page 2, line 25-page 3, line 10)
·	
·	

...ternational Application No. PCT/AU 95/00527

Box 1	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Internat	onal Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.:
	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Internat	ional Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on	Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

nternational Application No.

PCT/AU 95/00527

Box B (continuation)

BIOT: keywords: SSI (see above) and (A1/CL or E5/CL) and (sucrose # or plant)

STN search: (a) TGGCACAAGACCAAA

(b) TTACTAAGCTTAA

Form PCT/ISA/210 (extra sheet) (July 1992) copteb

INTERNATIONAL SEARCE EPORT Information on patent family members

International Application No. PCT/AU 95/00527

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Doo	cument Cited in Search Report		·.	Patent	Family Member	
wo	89/12386	AU	38520/89	. IL	90713	,
wo	94/11520	AU	54285/94	GB	9223454	
			-			
		•	•			END OF ANNEX