

- a) ¿Cuál es la probabilidad de que no se produzcan desperfectos en los primeros dos kilómetros?
- b) Sabiendo que no hay desperfectos en los dos primeros kilómetros, ¿cuál es la probabilidad de que no haya tampoco desperfectos en el tercer kilómetro?

Ejercicio 3. Cierta oficina pública mantiene registros del número de personas que van a realizar un determinado trámite durante la mañana (de 8 a 13 hs). Estos registros muestran que, en promedio, llegan 15 personas por hora, y que el número de personas que arriban constituye un proceso de Poisson homogéneo.

- a) ¿Cuál es la probabilidad de que lleguen más de 20 personas en la última hora de atención?
- b) ¿Cuál es la probabilidad de que durante la mañana lleguen exactamente 100 personas, sabiendo que desde las 9hs, hasta las 12hs, llegaron 80?

transter a 125 8 am =
$$N(0) = 0$$
.

2) guicro que estre las hara $V = S$ | le quan ≥ 20 .

Se gue $N(t_n) - N(t_{n-1})$ son vor incep. y guero que

 $D(N(S) - N(H) \geq 20) = \#gare hara = \#gare hara M \geq 20$.

 $Si = S = 1$ y $t = T$ $N(t + T) = N(t)$ distribute guan que $N(S)$

Ejercicio 4. En una empresa electrónica se observa que el número de componentes que fallan en un período de tiempo *t* corresponde a un proceso Poisson. Además, se sabe que ocurren aproximadamente ocho fallos antes de cumplir 100 horas de funcionamiento.

- a) ¿Cuál es la probabilidad de que un componente falle en 25 horas?.
- b) ¿y que fallen no más de dos componentes en 50 horas?
- c) ¿cuál es la probabilidad de que fallen por lo menos diez componentes en 125 horas?

a) algoring que
$$t = 2s$$
 Ns. or excit

 $N(1) = \# \text{ events}$ on $2s$ Ns. $s = 2s$.

 $enone$ $P(N(1) = 1) = \frac{e^{-2}!}{e^{-2}!} \frac{2^1}{2^1} = e^{-2}! 2 = 927$

b) $P(N(2) \le 2) = \frac{e^{-2}!}{2!} \frac{4^2!}{4!} \frac{e^{-2^2}!}{4!} \frac{4^2!}{4!} = 0,210$.

c) $P(N(s) \ge 10) = 1 - P(N(s) < 10) = 1 - 9457 = 0,843$.

Ejercicio 5. Para un proceso Poisson con intensidad λ , determinar $P(N(s) = k \mid N(t) = n)$, considerando dos casos: a) s < t y b) s > t.

$$P(N(1) = 1, N(+) = 1) = P(N(0) = 1, N(+) = 1) \oplus P(N(1) = 1, N(+) = 1) = P(N(1) = 1, N(+) = 1) \oplus P(N($$

Ejercicio 6. Los clientes llegan a un banco de acuerdo a un proceso de Poisson con intensidad constante λ (dada en horas). En la primera hora han llegado dos clientes. ¿Cuál es la probabilidad de que:

- a) ambos hayan llegado en los primeros 20 minutos?,
- b) al menos uno de ellos haya llegado en los primeros 20 minutos?.

Ejercicio 7. Un barrabrava de Talleres quiere llegar al Kempes desde Parque Don Bosco, pero para eso necesita cruzar la circunvalación. Los autos pasan de acuerdo con un proceso de Poisson de intensidad $\lambda = 3$ por minuto. Si cruza corriendo la ruta sin mirar si vienen autos

- a) ¿Cuál es la probabilidad de que salga ileso si tarda s segundos en cruzarla? Asuma que si está sobre la ruta cuando pasa un auto, entonces saldrá herido. Calcular para s = 2, 5, 10 y 20.
- b) ¿Cuál es la probabilidad de que salga ileso si cuando cruza la ruta y pasa un auto tiene un 80 % de probabilidades de ser atropellado ?

$$\begin{array}{l} = \frac{1}{2} \cdot \frac{1}{2}$$

Ejercicio 8. Suponer que, en el Ejercicio anterior, el barrabrava es lo suficientemente ágil para esquivar un auto, pero si se encuentra con dos o más autos mientras intenta cruzar, entonces sale herido.

- a) ¿Cuál es la probabilidad que salga ileso si le toma s segundos cruzar la ruta? Calcular para s = 5, 10, 20 y 30.
- b) Si el primer auto aparece a los s_1 segundos,
 - i) ¿cuál es la probabilidad de que haya 2 autos en s segundos, con $s > s_1$?.
 - ii) ¿cuál es la probabilidad de que el hincha salga ileso en este caso? Calcular para s = 10,20 y 30 y $s_1 = 5$.

Ejercicio 9. Ben, Max y Yolanda están al frente de tres colas separadas en la cafetería esperando a ser atendidos. Los tiempos de servicio de las tres colas siguen procesos de Poisson independientes con parámetros respectivos de 1, 2 y 3 minutos.

- a) Hallar la probabilidad de que Yolanda sea atendida primero.
- b) Hallar la probabilidad de que Ben sea atendido antes que Yolanda.
- c) Hallar el tiempo de espera esperado para la primera persona atendida.

a) Sean N , N × N | 125 proc correspondence a caro uno.

grammar ver,
$$3\pi$$

D (min\forall \chi^3, \chi^1, \chi^1) = \chi^1 \) = $\frac{3}{112+3} = \frac{3}{6} = 0$, S.

C) Min\forall \chi^3, \chi^1, \chi^1, \chi^1 \) \simes \(\xi \) (1+2+3) = \(\xi \) (6) \(\xi \) (7) = \(\xi \)

D (min\forall \chi^3, \chi^7) = \(\xi^1 \) = $\frac{7}{7+2} = \frac{7}{4} \)

D (min\forall \chi^3, \chi^7) = \(\xi^1 \) = $\frac{7}{7+2} = \frac{7}{4} \)$$

Ejercicio 10. A partir de las 6 de la mañana, los autos, colectivos y motos llegan a un peaje de autopista según procesos de Poisson independientes. Los autos llegan aproximadamente una vez cada 5 minutos. Los colectivos llegan aproximadamente una vez cada 10 minutos. Las motos llegan aproximadamente una vez cada 30 minutos.

- a) Hallar la probabilidad de que en los primeros 20 minutos lleguen a la cabina exactamente tres vehículos: dos autos y una moto.
- b) En el peaje, la probabilidad de que un conductor tenga el cambio exacto es de 1/4, independientemente del vehículo. Encontrar la probabilidad de que ningún vehículo tenga el cambio exacto en los primeros 10 minutos.

3) 3 0 n) 3.
$$D(N_{c}(20=0), P(N_{d}(20=2), M_{h}(20=2))$$

3 m 3 20 m,

M 3 3 1.20 $\frac{1}{2}$. $\frac{1}{20}$ $\frac{1}{20}$. $\frac{1}{20}$ $\frac{1}{20}$. $\frac{2}{2}$. $\frac{2}{3}$. $\frac{2}$. $\frac{2}{3}$. $\frac{2}{3}$. $\frac{2}{3}$. $\frac{2}{3}$. $\frac{2}{3}$. $\frac{2}$

C) Ses M(t) = N1(1) + N2(t) con Sm = 3+4=7 M(t) (vano 10 conties & cherce en + minutor. D(M(4) = 20) = e. (7.4) = diener y exhop. 4 b) Ponto un benomial con 1 = 7-1 con cherce y exhop. 4

 $\times \sim \beta(7, 4)$ given $\rho(\times \geq 3) = 1 - \rho(\times \leq 2) = 1 - 0,1282 = 0,8718$

Ejercicio 15. Los reclamos a una empresa se reciben de acuerdo a un proceso de Poisson no homogéneo N_t , $t \ge 0$ (t en horas), con intensidad

$$\lambda(t) = \begin{cases} \frac{1}{2}t & \text{para } 0 < t < 5\\ \frac{t+5}{4} & \text{para } t \ge 5. \end{cases}$$

- a) Calcular la probabilidad de que hayan recibido exactamente 15 reclamos en las primeras 4 horas.
- b) Calcular la probabilidad de que hayan recibido exactamente 15 reclamos en (1,5].
- c) Dado que en las primeras 4 horas se recibieron 15 reclamos, calcular la probabilidad de que el número

