1 Second Quantization

1.1 Position-space representation

Definition 1.1. *n*-electron Hilbert space. If \mathcal{H} is a complete one-electron Hilbert space and $\{\psi_p\}$ is its spin-orbital basis, then $\mathcal{H}^{\otimes n} = \mathcal{H} \underset{n \text{ times}}{\otimes \cdots \otimes \mathcal{H}} = \text{span}\{\psi_{p_1} \otimes \cdots \otimes \psi_{p_n}\}$ is an *n*-electron Hilbert space.¹ The inner product on $\mathcal{H}^{\otimes n}$ is

$$\langle \psi_{p_1} \otimes \cdots \otimes \psi_{p_n} | \psi_{q_1} \otimes \cdots \otimes \psi_{q_n} \rangle = \langle \psi_{p_1} | \psi_{q_1} \rangle \cdots \langle \psi_{p_n} | \psi_{q_n} \rangle. \tag{1.1}$$

Projection onto $\langle 1 \otimes \cdots \otimes n |$, where $|i\rangle = |\mathbf{r}_i, s_i\rangle$ is a space-spin electronic state, reveals that the basis states $\psi_{p_1} \otimes \cdots \otimes \psi_{p_n}$ are abstact representations of ordinary product states, $\langle 1 \otimes \cdots \otimes n | \psi_{p_1} \otimes \cdots \otimes \psi_{p_n} \rangle = \psi_{p_1}(1) \cdots \psi_{p_n}(n)$.

Definition 1.2. *n*-electron Slater determinant. An *n*-electron Slater determinant $\Phi_{(p_1\cdots p_n)}$ is a normalized antisymmetric product of *n* one-electron states $\psi_{p_1}, \cdots, \psi_{p_n}$

$$\Phi_{(p_1 \cdots p_n)} = \frac{1}{\sqrt{n!}} \sum_{\pi \in S_n} \varepsilon_{\pi} \psi_{p_{\pi(1)}} \otimes \cdots \otimes \psi_{p_{\pi(n)}}$$
(1.2)

where $\pi \in S_n$ is a permutation of $1 \cdots n$ and ε_{π} is $(-)^{\# \text{ transpositions}}$. Projecting into position space yields its familiar form.

$$\langle 1 \otimes \cdots \otimes n | \Phi_{(p_1 \cdots p_n)} \rangle = \Phi_{(p_1 \cdots p_n)}(1, \cdots, n) = \frac{1}{\sqrt{n!}} \det | \psi_{p_{\pi(1)}}(1) \cdots \psi_{p_{\pi(n)}}(n) |$$

Remark 1.1. A direct derivation of second quantization in position-space representation. Let F_n be the space of *n*-electron Slater determinants, $\Phi_{(p_1\cdots p_n)}$, a subspace of $\mathcal{H}^{\otimes n}$. Consider the integral operator $\hat{a}_p: F_n \to F_{n-1}$ given by

$$\Psi(1,\dots,n) \mapsto (\hat{a}_p \Psi)(2,\dots,n) \equiv \sqrt{n} \int d(1)\psi_p^*(1)\Psi(1,2,\dots,n).$$
 (1.3)

This operator acts on Slater determinants as

$$(\hat{a}_p \Phi_{(p_1 \cdots p_n)})(2, \cdots, n) = \frac{1}{\sqrt{(n-1)!}} \sum_{\pi \in S_n} \langle \psi_p | \psi_{p_{\pi(1)}} \rangle \psi_{p_{\pi(2)}}(2) \cdots \psi_{p_{\pi(n)}}(n) = \begin{cases} (-)^{k-1} \Phi_{(p_1 \cdots p_k)} & p = p_k \in (p_1 \cdots p_n) \\ 0 & \text{otherwise} \end{cases}$$

i.e. it deletes the orbital ψ_p from $\Phi_{(p_1\cdots p_n)}$ if exists and otherwise kills the determinant. The restriction of \hat{a}_p to the space of antisymmetric functions implies that these operators anticommute, $\hat{a}_p\hat{a}_q=-\hat{a}_q\hat{a}_p$, since

$$\int d(1)d(2)\psi_p^*(1)\psi_q^*(2)\Psi(1,2,\cdots,n) = \int d(1)d(2)\psi_q^*(1)\psi_p^*(2)\Psi(2,1,\cdots,n) = -\int d(1)d(2)\psi_q^*(1)\psi_p^*(2)\Psi(1,2,\cdots,n)$$

by changing dummy variables of integration and plugging in $\Psi(2, 1, \dots, n) = -\Psi(1, 2, \dots, n)$. These deletion operators provide the following decomposition of functions in F_n .

$$\Psi(1,\dots,n) = \frac{1}{\sqrt{n}} \sum_{p}^{\infty} \psi_p(1) \left(\hat{a}_p \Psi\right) (2,\dots,n) = \frac{1}{\sqrt{n(n-1)}} \sum_{pq}^{\infty} \psi_p(1) \psi_q(2) (\hat{a}_q \hat{a}_p \Psi) (3,\dots,n)$$
(1.4)

Therefore, general matrix elements of the electronic Hamiltonian with respect to $\Psi, \Psi' \in F_n$ can be expressed as

$$\langle \Psi | \hat{H}_e \Psi' \rangle = \sum_{i=1}^n \langle \Psi | \hat{h}(i) \Psi' \rangle + \sum_{i < j}^n \langle \Psi | \hat{g}(i,j) \Psi' \rangle = n \langle \Psi | \hat{h}(1) \Psi' \rangle + \frac{n(n-1)}{2} \langle \Psi | \hat{g}(1,2) \Psi' \rangle$$

$$= \sum_{pq}^{\infty} h_{pq} \langle \hat{a}_p \Psi | \hat{a}_q \Psi' \rangle + \frac{1}{2} \sum_{pqrs}^{\infty} \langle pq|rs \rangle \langle \hat{a}_q \hat{a}_p \Psi | \hat{a}_s \hat{a}_r \Psi' \rangle$$

where $\hat{h}(i) \equiv -\frac{1}{2}\nabla_i^2 + \sum_A \frac{Z_A}{|\mathbf{r}_i - \mathbf{R}_A|}$, $\hat{g}(i,j) \equiv \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$, $h_{pq} \equiv \langle \psi_p(1)|\hat{h}(1)\psi_q(1)\rangle$, and $\langle pq|rs\rangle \equiv \langle \psi_p(1)\psi_q(2)|\hat{g}(1,2)\psi_r(1)\psi_s(2)\rangle$. Therefore, restricting \hat{H}_e to the space of physically realistic (i.e. antisymmetric) functions, we get the following identity

$$\hat{H}_e = \sum_{pq}^{\infty} h_{pq} \hat{a}_p^{\dagger} \hat{a}_q + \frac{1}{2} \sum_{pqrs}^{\infty} \langle pq|rs \rangle \hat{a}_p^{\dagger} \hat{a}_q^{\dagger} \hat{a}_s \hat{a}_r$$
 (1.5)

which is the second quantized form of the Hamiltonian, as opposed to the first quantized form which is not restricted to antisymmetric functions. A defining feature of the second quantization formalism is that \hat{H}_e is independent of the number of electrons.

¹See ?? for the definition of a tensor product.

1.2 Abstract representation

Definition 1.3. Fock space. Let $F_n(\mathcal{H})$ denote span $\{\Phi_{(p_1\cdots p_n)}\}$, the antisymmetric subspace of $\mathcal{H}^{\otimes n}$. The fermionic Fock space is the union of all of these spaces, $F(\mathcal{H}) = F_0(\mathcal{H}) \oplus F_1(\mathcal{H}) \oplus F_2(\mathcal{H}) \oplus \cdots \oplus F_{\infty}(\mathcal{H})$, which comprises all possible electronic wavefunctions.

Definition 1.4. The occupation number representation of $F(\mathcal{H})$. In the occupation number representation of Fock space, the basis vectors are represented as lists of 1s and 0s, $|\mathbf{n}\rangle \equiv |n_1, n_2, n_3, \dots, n_{\infty}\rangle$, where $n_p = 1$ when ψ_p is occupied and $n_p = 0$ when ψ_p is unoccupied in the state. One possible basis for $F(\mathcal{H})$ is given by distributing 1s and 0s over the occupation vector in all possible ways. The state in which no spin-orbitals are occupied is called the *vacuum state*, denoted $|\text{vac}\rangle$, which spans $F_0(\mathcal{H}) \simeq \mathbb{C}$.

Definition 1.5. Particle-hole operators. Particle-hole operators change the occupation numbers of one-particle states. The annihilation operator of ψ_p is a linear mapping $a_p: F_n(\mathcal{H}) \to F_{n-1}(\mathcal{H})$ defined by

$$a_p|\cdots n_p\cdots\rangle = (-)^{n_1+\cdots+n_{p-1}}|\cdots n_p-1\cdots\rangle$$
 if $n_p=1$ $a_p|\cdots n_p\cdots\rangle = 0$ if $n_p=0$ (1.6)

and the creation operator of ψ_p is a linear mapping $c_p: F_n(\mathcal{H}) \to F_{n+1}(\mathcal{H})$ defined by

$$c_p|\cdots n_p\cdots\rangle = (-)^{n_1+\cdots+n_{p-1}}|\cdots n_p+1\cdots\rangle \quad \text{if } n_p=0 \qquad c_p|\cdots n_p\cdots\rangle = 0 \quad \text{if } n_p=1.$$
 (1.7)

Proposition 1.1. $c_p = a_p^{\dagger}$. Creation and annihilation operators of the same state ψ_p are adjoints of each other. Proof: $\langle n'_1 n'_2 \cdots | a_p [n_1 n_2 \cdots] \rangle$ vanishes unless $n'_p = 0$, $n_p = 1$, and $n'_q = n_q \ \forall q \neq p$. Likewise for $\langle c_p [n'_1 n'_2 \cdots] | n_1 n_2 \cdots \rangle$. Therefore, $\langle \Psi | a_p \Psi' \rangle = \langle c_p \Psi | \Psi' \rangle$ for all $\Psi, \Psi' \in F(\mathcal{H})$ and $c_p = a_p^{\dagger}$ by the definition of adjoint.

Proposition 1.2. $[q, q']_+ = \delta_{q'q^{\dagger}}$. Particle-hole operators q and q' anticommute unless $q' = q^{\dagger}$, for which $[q, q^{\dagger}]_+ = 1$. Proof: Let q and q' be arbitrary particle-hole operators acting on ψ_p and $\psi_{p'}$, respectively. First, suppose $p \neq p'$. Then

$$qq'|\cdots n_p \cdots n_{p'} \cdots\rangle = (-)^{n_p + \sum_{r=p+1}^{p'} n_r} |\cdots \overline{n_p} \cdots \overline{n_{p'}} \cdots\rangle$$
, and $q'q|\cdots n_p \cdots n_{p'} \cdots\rangle = (-)^{\overline{n_p} + \sum_{r=p+1}^{p'} n_r} |\cdots \overline{n_p} \cdots \overline{n_{p'}} \cdots\rangle$

where $\overline{n_p}$ and $\overline{n_{p'}}$ are the occupations after applying q and q'. Since n_p and $\overline{n_p}$ differ by one, qq' = -q'q. The second case, p = p', implies $q' \in \{q, q^{\dagger}\}$. If q' = q, then qq' = -q'q = 0. If $q' = q^{\dagger}$, either $n_p = 1 \implies (a_p^{\dagger} a_p + a_p a_p^{\dagger}) | \cdots n_p \cdots \rangle = (1+0) | \cdots n_p \cdots \rangle$ or $n_p = 0 \implies (a_p^{\dagger} a_p + a_p a_p^{\dagger}) | \cdots n_p \cdots \rangle = (0+1) | \cdots n_p \cdots \rangle$. Either way, $q' = q^{\dagger} \implies (qq' + q'q) = 1$.

Remark 1.2. Relating the determinant and occupation number representations. When $p_1 < \cdots < p_n$, $\Phi_{(p_1 \cdots p_n)}$ is equivalent to the occupation vector $|\mathbf{n}_{(p_1 \cdots p_n)}\rangle$ with 1s at p_1, \cdots, p_n . Otherwise, this determinant is equivalent to $\varepsilon_{\pi}|\mathbf{n}_{(p_1 \cdots p_n)}\rangle$ for $\pi \in S_n$ such that $p_{\pi(1)} < \cdots < p_{\pi(n)}$. The actions of a_p and a_p^{\dagger} on $\Phi_{(p_1 \cdots p_n)}$ are given by

$$a_p \Phi_{(p_1 \cdots p_n)} = (-)^{k-1} \Phi_{(p_1 \cdots p_n)} \text{ if } p = p_k \in (p_1 \cdots p_n) \qquad a_p \Phi_{(p_1 \cdots p_n)} = 0 \text{ if } p \notin (p_1 \cdots p_n)$$

$$(1.8)$$

$$a_p^{\dagger} \Phi_{(p_1 \cdots p_n)} = (-)^{k-1} \Phi_{(p_1 \cdots p_{k-1} p p_k \cdots p_n)} \text{ if } p \notin (p_1 \cdots p_n)$$
 $a_p^{\dagger} \Phi_{(p_1 \cdots p_n)} = 0 \text{ if } p \in (p_1 \cdots p_n)$ (1.9)

which follows directly from Eqs (1.6) and (1.7) when $p_1 < \cdots < p_n$. Other cases follow from the fact that any sign factors for permuting $(p_1 \cdots p_n)$ cancel on both sides of the equation, including the position of insertion or deletion, p_k , whose phase is tracked by $(-)^{k-1}$ on the right. That is, both sides of the equation are antisymmetric to permutations of $(1 \cdots n)$. Note that Eq (1.8) was also derived in Rmk 1.1 using the position-space representation of a_p . One advantage of the determinant basis is that, unlike occupation vectors, determinants translate directly into strings of creations operators

$$|\Phi_{(p_1\cdots p_n)}\rangle = a_{p_1}^{\dagger}\cdots a_{p_n}^{\dagger}|\text{vac}\rangle$$
 (1.10)

without any phase ambiguity. Together with the second quantized form of the electronic Hamiltonian (Eq (1.5)), this boils much of the grunt work of electronic structure theory down to particle-hole operator algebra.

Definition 1.6. Excitation operators and excited determinants. Operator strings of the form $a_{p_1}^{\dagger} \cdots a_{p_m}^{\dagger} a_{q_m} \cdots a_{q_1}$ are called excitation operators. For a given reference determinant Φ , excited determinants can be constructed as

$$\Phi_{i_1\cdots i_m}^{a_1\cdots a_m} = a_{a_1}^{\dagger}\cdots a_{a_m}^{\dagger}a_{i_m}\cdots a_{i_1}\Phi = a_{a_1}^{\dagger}a_{i_1}\cdots a_{a_m}^{\dagger}a_{i_m}\Phi$$

$$\tag{1.11}$$

where i_1, \dots, i_m are occupied and a_1, \dots, a_m are virtual indices with respect to Φ .