

Chapitre 1 Stabilité des systèmes

Cours

Savoirs et compétences :

- □ Mod3.C2 : pôles dominants et réduction de l'ordre du modèle : principe, justification
- Res2.C4: stabilité des SLCI: définition entrée bornée sortie bornée (EB SB)
- ☐ Res2.C5 : stabilité des SLCI : équation caractéristique
- $\hfill \square$ Res2.C6 : stabilité des SLCI : position des pôles dans le plan complexe
- Res2.C7: stabilité des SLCI: marges de stabilité (de gain et de phase)

1	Notion de stabilité	2
1.1	Représentation graphique	2
1.2	Premières définitions	2
2	Étude des pôles de la fonction de transfert	2

1 Notion de stabilité

1.1 Représentation graphique

1.2 Premières définitions

 $\textbf{D\'efinition } - \textbf{D\'efinition intuitive}. \ \ \textbf{Un syst\`eme est asymptotiquement stable si et seulement si}:$

- abandonné à lui-même à partir de conditions initiales quelconques il revient à son état d'équilibre ;
- son régime transitoire finit par disparaître;
- sa sortie finit par ressembler à l'entrée;
- sa réponse tend vers zéro au cours du temps.

Pour simplifier les calculs, une première approche pourra être d'utiliser la réponse impulsionnelle.

Définition En conséquence, on peut considérer qu'un système est asymptotiquement stable si et seulement si sa réponse impulsionnelle tend vers zéro au cours du temps.

2 Étude des pôles de la fonction de transfert Références

- [1] Frédéric Mazet, Cours d'automatique de deuxième année, Lycée Dumont Durville, Toulon.
- [2] Florestan Mathurin, Stabilité des SLCI, Lycée Bellevue, Toulouse, http://florestan.mathurin.free.fr/.