DEPARTAMENTO DE MATEMÁTICA E APLICAÇÕES

26 /3/ 2014

Duração: 90 minutos

Teste de Análise Matemática EE - versão B

Nome: Nr.	.: Curso: MIEEIC
-----------	------------------

GRUPO I

Em cada uma das perguntas seguintes, assinale a resposta correta no quadrado correspondente. Cada resposta correta vale 1 valor.

1. Qual dos seguintes pontos pertence à curva $\vec{r}(t)=t\,\vec{e}_1+t^2\,\vec{e}_2+(2+t)\,\vec{e}_3$ em \mathbb{R}^3 ? (1,4,4)

(0,0,0) \Box ;

(1,2,4) ;

Nenhum dos anteriores.

2. Qual das seguintes curvas é representada pela função vetorial $\vec{r}(t)=(t,4-t^2),\,t\in[0,3]$?

Nenhuma das anteriores.

3. Qual das seguintes expressões representa a curva $\mathcal C$ na figura, percorrida a partir do ponto (0,-2) e com fim no ponto (0,2)?

 $\vec{r}(t) = (2\sin t, 2\cos t), \ t \in [0, \pi]$

$$\vec{r}(t) = (2\sin(\frac{\pi}{2} - t), 2\cos(\frac{\pi}{2} - t)), \ t \in [0, \pi]$$

$$\vec{r}(t) = (2\cos t, 2\sin t), \ t \in [0, \pi]$$

 $\vec{r}(t) = (2\sin(\pi - t), 2\cos(\pi - t)), \ t \in [0, \pi]$ Nenhuma das anteriores.

4. Qual das seguintes funções tem domínio $D =]0, +\infty[?]$

$$f(x,y) = \frac{1}{x^2 + y^2}$$

$$f(x,y)=\sqrt{xy}$$

$$\vec{r}(t) = (\frac{1}{t^2+1}, \ln t)$$

$$\vec{r}(t) = (\sqrt{t}, t)$$

Nenhuma das anteriores.

Nenhuma das anteriores.

6. Quais das seguintes curvas representam as curvas de nível da função $f(x,y)=y+x^2$?

Nenhuma das anteriores.

7. Considere a função real de duas variáveis reais definida no seu domínio, $f(x,y) = \frac{x-3y}{x+y}$ e o $\lim_{(x,y)\to(0,0)} f(x,y)$. Indique qual a afirmação verdadeira:

 $\lim_{(x,y)\to(0,0)} f(x,y) \text{ e \'e igual a zero }.$

Não existe
$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 pois $\lim_{x\to 0} \left(\lim_{y\to 0} f(x,y)\right) \neq \lim_{y\to 0} \left(\lim_{x\to 0} f(x,y)\right)$.

X

Nada se pode concluir sobre o valor do limite.

Nenhuma das anteriores.

GRUPO II

Apresente todos os cálculos efectuados.

1. Considere a função vetorial em \mathbb{R}^3 , $\vec{r}(t) = \sin t \cdot \vec{a} - \cos t \cdot \vec{b} + 3t \cdot \vec{c}$ onde $\vec{a} = \vec{e}_2 + \vec{e}_1$, $\vec{c} = \vec{e}_3$, $\vec{b} = -\vec{e}_1 + \vec{e}_2$.

(a) Escreva a função à custa das suas componentes. $2(t) = \text{sent}(e_2 + e_3) - \text{cost}(-e_1 + e_2) + 3t \cdot e_3$ R(t) = (sent + cost) = + (sent - cost) = + 3t. = 3 ore 2(t) = (sent + east, sent - east, 3t)

(b) Se considerarmos a função vetorial $\vec{r}(t)$ como a trajetória de uma partícula ao longo do tempo t, em que ponto do espaço está a partícula no instante t=0? E no instante $t=3\pi$?

R(0) = (sen 0 + cos 0, sen 0 - cos 0, 0) = (1,-1,0) No instante t=0, a particula esté no ponte (1,-1,0) R (311) = (sen 311+00531, sen 311-005311, 911) = (-9,1,911) No instente t = 311, a portéceple esté vo ponte (-1,1,911)

(c) Calcule a distância percorrida (em
$$cm$$
) pela partícula entre $t=0$ e $t=3\pi$? Sug: Use a fórmula
$$\int_a^b \|\vec{r}'(t)\|dt.$$

$$R'(t) = (eost-sent, eost + sent, 3)$$

$$||R'(t)|| = \sqrt{eos^2t + sen^2t} - 2 sent + cost + cos^2t + sen^2t + 2 sent + cost + 9 = \sqrt{11}$$

$$\int_0^{3\pi} \sqrt{11} \cdot dt = \sqrt{11} \left[t\right]_0^{3\pi} = 3\pi \sqrt{11} \cdot A \text{ distance} \text{ perconnide for }$$
Considere a função vetorial $\vec{r}(t) = (\frac{-3t}{2}, \exp(2t-1))$.

- 2. Considere a função vetorial $\vec{r}(t) = (\frac{-3t}{t+1}, \exp(2t-1))$.
 - (a) Determine o vetor tangente à curva descrita por $\vec{r}(t)$ no instante t=3.

$$\overrightarrow{R}'(t) = \left(-\frac{3}{(t+1)^2}\right)^{2 \cdot 2t-1}$$

$$\overrightarrow{R}'(3) = \left(-\frac{3}{16}\right)^{2 \cdot 2t} \quad \text{we that enjerte a census } \overrightarrow{R}(t)$$

$$\text{we sharte } t = 3.$$

(b) Determine a equação da reta tangente à curva representada por $\vec{r}(t)$ no mesmo instante.

$$\vec{R}(3) = \left(-\frac{9}{4}, e^{5}\right) \rightarrow \text{parter warsherts} \text{ quando } t = 3$$
.
 $\vec{R}'(3) = \left(-\frac{3}{16}, 2e^{5}\right) \rightarrow \text{ veter direter da rote tengente à censo quando } t = 3$.

force da rete pretendida:

$$(x,y) = (-\frac{9}{4}, e^5) + t(-\frac{3}{16}, 2e^5)$$
, $t \in \mathbb{R}$

(c) Determine o ponto em que o vetor tangente à curva representada por $\vec{r}(t)$ é paralelo à reta

$$y(t) = \frac{2}{e}t$$
 . $t \in \mathbb{N}$
Use veten paralelo à reta dade \bar{e} $\bar{u} = (-3, \frac{2}{e})$.
Prefende-se saber quel o parte ande $\bar{R}'(t) = (-\frac{3}{(t+1)^2})^2 e^{2t-1}$ \bar{e} iqual

$$a = (-3, \frac{2}{2})^{\circ}$$

$$\begin{cases} -\frac{3}{(t+1)^{2}} = -3 \\ 2e^{2t-1} = 2e^{-1} \end{cases} \begin{cases} (t+1)^{2} = 1 \\ 2t-1 = -1 \end{cases} \begin{cases} t = 0 \text{ if } t = 0 \end{cases}$$

$$t = 0 \text{ if } t = 0 \text{ if } t = 0 \text{ parte } R(0) = (0, e^{1})$$

3. A partícula A segue a trajetória $\vec{r}(t) = (2-3t, 2t-1)$, com $t \in [0,1]$ e a partícula B segue a trajetória $\vec{s}(t) = (t, -2t + 1), \text{ com } t \in \mathbb{R}.$

Verifique se as partículas chocam uma com a outra. Se a resposta for afirmativa, indique o instante e o ponto de choque das duas partículas.

As porticulas chocaesi se existe t tel que
$$\vec{s}(t) = \vec{R}(t)$$

As porticulas chocaesi se existe t tel que $\vec{s}(t) = \vec{R}(t)$
 $\begin{vmatrix} 2-3t = t \\ 2t-1 = -2t+1 \end{vmatrix}$
 $t = \frac{9}{2}$

As porticulos chocaesi que $\vec{R}(t) = \frac{1}{2}$

As porticulos chocaesi que $\vec{R}(t) = \frac{1}{2}$
 $t = \frac{9}{2}$
 $t = \frac{9}{2}$

- 4. A corrente elétrica (C) de um aparelho, com uma determinada potência (P) e ligado a uma determinada voltagem (V) é dada por $C(P,V) = \frac{P}{V}$. Considere a unidade da corrente elétrica, $Amp\`ere$; a unidade da potência, Watt e a unidade da voltagem, Volt.
 - (a) Calcule C(250, 100) e diga qual o seu significado.

C(250,100) = 250 = 2,5 Accupere

A convente elétrice é de 2,5 Aceupères quendo terros sema potériero de 250 Wetts e sema voltagen de 100 Volts.

(b) Determine o domínio da função C(P,V).

(c) Determine $\lim_{(P,V)\to(0,0)} C(P,V)$.

lieu
$$C(P,V) = lun$$

 $(P,V) \rightarrow (0,0)$ $V = \frac{0}{0}$

Pelos limites iterados:

then
$$\left(\frac{P}{V \Rightarrow 0}\right) = \lim_{P \Rightarrow 0} \left(\frac{P}{O}\right) = \infty$$

lieu
$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 & 0 \end{pmatrix}$$

Logo vico existe lu C(P,V) pois OS

(P,V) > (0,0)

no to

laurites iterados sec diferentes