微分積分学 A 定期試験問題

2019年7月29日第3時限施行 担当 水野 将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず. 解答用紙のみを提出し、問題用紙は持ち帰ること、

問題 1.

次の各問いに答えよ、ただし、答えのみを書くこと、

- (1) $f: \mathbb{R} \to \mathbb{R}$ を $x \in \mathbb{R}$ に対して, $f(x) := x^2 + 2x + 2$ で定義すると き, 像 f([-2,3]) を求めよ.
- (2) $\arcsin(\sin(3\pi))$ を求めよ.
- (3) $\arctan\left(\tan\left(\frac{3}{4}\pi\right)\right)$ を求めよ.
- (4) $a,b \in \mathbb{R}$, $a,b \neq 0$ に対して, $\lim_{x\to 0} \frac{1-\cos^2(ax)}{\sin^2(bx)}$ を求めよ.
- (5) 極限 $\lim e^x \sin(2x)$ を求めよ.
- (6) 極限 $\lim_{x\to 0} \frac{\arcsin x}{x}$ を求めよ (ヒント: $y = \arcsin x$ とおく).
- (7) 極限 $\lim_{x\to\infty} (\sqrt{4x^2+x}-2x)$ を求めよ.
- (8) 極限 $\lim_{x\to 0-0}\frac{|x|}{x}$ と $\lim_{x\to 0+0}\frac{|x|}{x}$ をそれぞれ求めよ. (9) 極限 $\lim_{x\to 0}\frac{1-\cos(x^2)}{x^\alpha}$ が 0 でない値に収束するような実数 $\alpha\in\mathbb{R}$ を求めよ.
- (10) 実数列 $\{a_n\}_{n=1}^{\infty}$ が $a \in \mathbb{R}$ に収束すること, すなわち, $\lim_{n \to \infty} a_n = a$ の ε -N 論法による主張を述べよ.
- - (a) $A \in \mathbb{R}$ に対して, $\lim_{x \to 1} f(x) = A$ であることの ε - δ 論法を用い た定義を述べよ
 - (b) $A \in \mathbb{R}$ に対して、 $\lim f(x) = A$ であることの ε - δ 論法を用 いた定義を述べよ.
 - (c) $\lim_{x \to 1-0} f(x) = \infty$ であることの ε - δ 論法を用いた定義を述 べよ.

- (12) $I \subset \mathbb{R}$, $f: I \to \mathbb{R}$ とする.
 - (a) $x_0 \in I$ に対して, f が $x = x_0$ で連続であることの ε - δ 論法 を用いた定義を述べよ.
 - (b) $x_0 \in I$ に対して, f が $x = x_0$ で連続ではないことを ε - δ 論法を用いて述べよ.
 - (c) f が I 上一様連続であることの定義を述べよ.
- (13) 方程式 $5x^5 4x^4 3x^3 2x^2 1 = 0$ の実数解が $a \le x \le a + 1$ をみたすように、整数 a を定めよ.
- (14) 有界だが最小値が存在しない関数の例を挙げよ. ただし, 定義域, 値域を明記すること.
- (15) $f: [-2,2] \rightarrow \mathbb{R}$ を [-2,2] 上連続な関数とする.
 - (a) f(-2) < f(2) とする. 中間値の定理を述べよ.
 - (b) Weierstrass の最大値定理で最大値に関する主張を sup を用いて述べよ.

以下余白 計算用紙として使ってよい.

問題 2.

次が正しいか否か答えよ.

- (1) $I = (a,b) \subset \mathbb{R}, x_0 \in I, f : I \setminus \{x_0\} \to \mathbb{R}$ に対して, 次が成り立つとする: 任意の $\varepsilon > 0$ に対して, ある $\delta > 0$ が存在して, すべての $x,x' \in I \setminus \{x_0\}$ に対して, $0 < |x x_0| < \delta, 0 < |x' x_0| < \delta$ ならば $|f(x) f(x')| < \varepsilon$. このとき, f は $x \to x_0$ のときに, ある実数に収束する.
- (2) $I \subset \mathbb{R}$ に対して, $f: I \to \mathbb{R}$, $g: I \to \mathbb{R}$ を I 上連続な関数とする. このとき, $\lambda, \mu \in \mathbb{R}$ に対して $\lambda f + \mu g$ は I 上連続となる.
- (3) 関数 $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$ が \mathbb{R} 上連続ならば、合成関数 $g \circ f: \mathbb{R} \to \mathbb{R}$ も \mathbb{R} 上連続となる.
- (4) $I \subset \mathbb{R}$ を有界な閉区間としたとき, I 上連続な関数 $f: I \to \mathbb{R}$ は最大値を持つ.
- (5) $I \subset \mathbb{R}$ を有界な閉区間としたとき, I 上連続な関数 $f: I \to \mathbb{R}$ は I 上一様連続となる.

問題 3.

次が正しいか否か答えよ.

- (1) $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 2 $(x \in \mathbb{R})$ は単射である.
- (2) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x \ (x \in \mathbb{R})$ は単射である.
- (3) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -x^2 (x \in \mathbb{R})$ は単射である.
- (4) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x (x \in \mathbb{R})$ は \mathbb{R} 上一様連続である.
- (5) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = |x| (x \in \mathbb{R})$ は \mathbb{R} 上一様連続である.

問題 4.

 $f: \mathbb{R} \to \mathbb{R}$ を $f(x) := x^3$ ($x \in \mathbb{R}$) で定める. このとき, f は \mathbb{R} 上連続 であることを示せ. また, f は \mathbb{R} 上一様連続かどうか考察せよ.