

FIGURE 1A

CTCGAGGACAGT GACCTGGAGTGAGTACAAGGTGAGGCCACCCTCAGGGT
GCCAGCTCCAAGCGGGTCACAGGGACGAGGGCTGCAGGCCATCAGGAGGCCCT
GCACACACATCTGGGACACGCGCCCCCGAGGGCCAGTTCACCTCAGTGC
CATTCTCCTGCACAAAAGCGCCCCCATCCTTCTTCACAAGGCTTCGTGGAAG
CAGAGGCGTCGATGCCAGTACCCCTCCCTTCCCAGGCAACGGACCCCAA
GTTTGCTGACTGGGACCAAGCCACGCATGCGTCAAGAGTGAGAGTCCGG
GACCTAGGCAGGGGCCCTGGGTTGGCCTGAGAGAGAAGAGAACCTCCCC
AGCACTCGGTGTGCATCGGTAGTGAAGGAGCCTCACCTGACCCCCGCTGTTGC
TCAATCGACTTCCAAGAACAGAGAGAAAGGAAACTTCCAGGGCGGCCGG
GCCCTCTGGGGTTCCCACCCATTAGCTGAAAGCACTGAGGCAGAGCTC
CCCCTACCCAGGCTCCACTGCCCGCACAGAAATAACAACCACGGTTACTGAT
CATCTGGAGCTGTCCAGGAATT

09263242 - 092604

FIGURE 1B

Genuine Locus

U-4RE SRE SP1

U-4RE SRE SP

RICE

Low energy DNA folding of the S_c region

FIG 2A

FIGURE 2B

1 GCTGGGCTAA ACTGGGCTAG CCTGAGCTGG GCTGAACCTGG GCTGCTGGGC
51 TGGACTGGGT AAGCTGGGCT GAGCTGGGTT GGGTGGAAAT GGGCTGAGCT
101 GAGCTAGGCT AAACCTGGGTT TGGCTGGGCT GGGCTGGGCT GGG

FIGURE 2C

1 GGTTTGCTG GGCTGGCTG GGCTGGCTG GGTCAGCTG AGCGGGTTGG
51 GTTAGACTGG GTCAAACTGG TTCAGC

FIG 3

Appendix F

Yeast One-Hybrid Screening

FIG 4

IL-4 Induction of Germline ϵ mRNA in the IgM+ B cell lines: CA-46, MC-116 and DND39

Cells were incubated for 48 hrs in 300 U/ml of h-IL-4. RT-PCR was performed using primers specific for the germline ϵ exon and the 5'-end of the ϵ CH1 exon (predicted size ~ 200 bp).

FIG 5
T B 2 2 2 2 2 2 2 2 2

Approaches to generate germline ε promoter knock-in reporter cell lines

Appendix A

FIG 6

Appendix I Rigel Base Vector

All components are cassetted for flexibility

CRU5, modified LTR
LTR, long terminal repeat
 $\psi+$, packaging signal
Localization signal: nuclear, cell membrane, granular
MCS, multiple cloning site
IRES, internal ribosome entry site
2a, self-cleaving peptide

FIG 7

Appendix H

Protocol for Transfection of Phoenix Cells and Infection of Nonadherent Target Cells

8
F(6)

ϵ heavy chain GFP/BFP knock-in cell line

Appendix D

Appendix C

IL-4 Inducible ε Promoter Reporter Cell Line

Reporter Line Infected with BFP Construct

Screen for Peptide Inhibitors of the Germline ε Promoter

Survival Construct

All components are cassetted for flexibility

Appendix D

FIGURE 11A-1

1-845 CMV promoter/R/U5 5' LTR
1322 GAG ATG-ATC mutation
850-2100 extended ψ region
2146-2173 two BstX1 peptide cloning sites
2205-2723 ECMV IRES (cloned as EcoR1/Msc1 fragment from
pCITE-4a [Novagen])
2746-3465 GFP coding region
3522-4115 3' LTR
4122-6210 pGEM backbone (pUC origin, ampR)

ATCACGAGGCCCTTCGTCTCAAGAACAGCTTGCTTTAGGAGTTCTAAATACATCC
CAAACCTAAATATAAAGCATTTGACTGTCTATGCCCTAGTTATTAAATAGTAATCAA
TTACGGGTCAATTAGTCATAGCCCATAATGGAGTTCCCGCCTACATAACTACGGTAA
ATGGCCCGCCTGGCTGACGCCAACGACCCCCGCCATTGACGTCAATAATGACGTATG
TTCCCATAGTAACCCAATAGGGACTTCCATTGACGTCAATGGGTGGAGTATTTACGGT
AAACTGCCACTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCTATTGACG
TCAATGACGGTAAATGCCCGCCTGGCATTATGCCAGTACATGACCTATGGGACTTTC
CTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTATGCCGTTGGC
AGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCCA
TTGACGTCAATGGGAGTTGTTGGCACCAAAATCAACGGGACTTCCAAAATGTCGA
ACAACCTCCGCCATTGACGCAAATGGCGGTAGGCATGTACGGTGGGAGGTCTATATAA
GCAGAGCTCAATAAAAGGCCACAACCCCTCACTCGGGGCCAGTCCCTCGATTGACT
GAGTCGCCGGTACCCGTATCCAATAACCCCTTGCAGTTGCATCCGACTTGTGGT
CTCGCTGTTCTGGGAGGGTCTCCTCTGAGTGAATTGACTACCCGTCAAGGGGGTCTT
CATTTGGGGCTCGTCCGGATCGGGAGACCCCTGCCAGGGACCACGACCCACCG
GGAGGTAAGCTGCCAGCAACTATCTGTTGCTGCCGATTGTCTAGTGTCTATGACTGA
TTTATGCGCTGCGTCGGTACTAGTTAGCTAACTAGCTCTGTATCTGGCGGACCGTGG
TGGAACTGACGAGTTCGGAACACCCGGCGCAACCCCTGGGAGACGTCCCAGGGACTTCGG
GGCCGTTTGTGGCCGACCTGAGTCAAAAATCCGATGTTGGACTCTTGGT
CACCCCCCTTAGAGGAGGGATATGTGGTTCTGGTAGGAGACGAGAACCTAAAACAGTCC
CGCCTCCGTCTGAATTGCTTCCGGTTGGGACCGAAGCCGCGCGGTCTTGTCT
GCTGCAGCATCGTTCTGTTGCTCTGACTGTGTTCTGTATTGCTGAAAATA
TCGGCCGGCCAGACTGTTACCAACTCCCTTAAGTTCGACCTAGGTCACTGGAAAGATG
TCGAGCGGATCGCTACAACCAGTCGGTAGATGTCAAGAACAGACGTTGGTTACCTCT
GCTCTGCAGAATGGCAACCTTAACGTCGGATGGCCGCGAGACGGCACCTTAACCGAG
ACCTCATCACCCAGGTTAAGATCAAGGTCTTTCACCTGGCCCGCATGGACACCCAGACC
AGGTCCCCTACATCGTACCTGGGAAGCCTTGGCTTTGACCCCCCTCCGGTCAAGC
CCTTGTACACCCCTAACGCTCCGCTCCCTTCCCTCATCCGCCCGTCTCTCCCCCTTG
AACCTCCCTCGTCGACCCCGCCCTCGATCTCCCTTATCCAGCCCTCACTCCTCTAG
GCGCCCCCATATGCCATATGAGATCTTATATGGGGCACCCCCGCCCTGTAAACTCC
CTGACCCCTGACATGACAAGAGTTACTAACAGCCCTCTCCAAGCTCACTTACAGGCTC
TCTACTTAGTCCAGCACGAAGTCTGGAGACCTCTGGCGGAGCCTACCAAGAACAACTGG
ACCGACCGGTGGTACCTCACCCCTTACCGAGTCGGCGACACAGTGTGGTCCGCCGACACC
AGACTAACGAAACCTAGAACCTCGCTGGAAAGGACCTTACACAGTCCTGCTGACCACCCCA
CCGCCCTCAAAGTAGACGGCATCGCGCTGGATACACGCCGCCACGTGAAGGCTGCCGA
CCCCGGGGTGGACCATCCTCTAGACTGCCGGATCTGAGGGATCCACCAACCATGGACCC
CCATTAAATTGGAATTCTGCAGCCGGGGATCCACTAGTTCTAGAGCGAATTAAATTCC

FIGURE 11A-2

GGTTATTTCCACCATATTGCCGTCTTGGCAATGTGAGGGCCCGAAACCTGGCCCTG
TCTTCTTGACGAGCATTCTAGGGTCTTCCCCTCTGCCAAAGGAATGCAAGGTCTGT
TGAATGTCGTGAAGGAAGCAGTCCTCTGGAAAGCTTCTGAAGACAAACACGTCTGTAG
CGACCCCTTGCAAGGCAGCGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGCAAAGC
CACGTGTATAAGATAACACCTGCAAAGGCGGACAACCCCAGTGCCACGTTGTGAGTTGGA
TAGTTGTGAAAAGAGTCAAATGGCTCTCTCAAGCGTATTCAACAAGGGGCTGAAGGATG
CCCAGAAGGTACCCATTGTATGGATCTGATCTGGGCTCGGTGACATGCTTACAT
GTGTTAGTCGAGGTTAAAAAACGTCTAGGCCCCGAACCACGGGACGTGGTTTCCT
TTGAAAACACGATGATAATATGGGGATCCACCGTCGCCACCATGGTGAGCAAGGGCG
AGGAGCTGTCACCGGGTGGTGCCTCGGTGAGCTGGACGGCACGTAACGGCC
ACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCCTGA
AGTTCATCTGCACCACCGGAAGCTGCCGTGCCCTGGCCCACCCCTGTGACCAACCCCTGA
CCTACGGCGTGCAGTCTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTCA
AGTCGCCATGCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTCAAGGACGACGGCA
ACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCTGGTGAACCGCATCGAGC
TGAAGGGCATCGACTCAAGGAGGACGCAACATCCTGGGGACAAGCTGGAGTACAAC
ACAACAGCCACAACGTCTATATCATGGCGACAAGCAGAAGAACGGCATCAAGGTGAAC
TCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTGCCGACCACTACCAGCAGA
ACACCCCCATCGGCAGGGCCCGTGTGCTGCCGACAACCACACTACCTGAGCACCAGT
CCGCCCTGAGCAAAGACCCAACGAGAACGCGATCACATGGTCTGCTGGAGTTCGTGA
CCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAAGGGCCGCTCGACGA
TAAAATAAAAGATTTATTTAGTCTCCAGAAAAAGGGGGAAATGAAAGACCCACCTGTA
GGTTGGCAAGCTAGCTTAAGTAACGCCATTGCAAGGCATGGAAAAATACATAACTGA
GAATAGAGAAGTTCAGATCAAGGTAGGAACAGATGGAACAGCTGAATATGGCCAAACA
GGATATCTGTGGTAAGCAGTCCTGCCCGGCTCAGGGCCAAGAACAGATGGAACAGCTG
AATATGGCCAAACAGGATATCTGTGGTAAGCAGTCTGCCCGGCTCAGGGCCAAGAA
CAGATGGTCCCCAGATCGGTCAGCCCTCAGCAGTTCTAGAGAACCATCAGATGTT
CAGGGTCCCCAAGGACCTGAAATGACCTGTGCCATTGAACTAACCAATCAGTT
CTTCTCGCTCTGTCGCGCTCTGCTCCCCGAGCTCAATAAAAGAGCCCACAACCC
TCACTCGGGCGCCAGTCCTCCGATTGACTGAGTCGCCGGTACCCGTGTATCCAATAA
ACCCCTTGCACTGCATCCGACTTGTGGTCTCGCTGTTCTGGAGGGTCTCCTCTGA
GTGATTGACTACCCGTCAAGCGGGGTCTTCATTCCGACTTGTGGTCTCGCTGCCTGG
GAGGGTCTCTCTGAGTGAATGACTACCCGTCAAGCGGGGTCTCACATGCAGCATGTAT
CAAATAATTGGTTTTCTTAAGTATTACATTAAATGGCCATAGTTGCATTAAT
GAATCGGCCAACCGCGGGGAGAGGCAGGTTGCGTATTGGCGCTTCCGCTTCCTCGCT
CACTGACTCGCTCGCTCGGTGTTGCGCTGCCGAGCGGTATCAGCTCACTCAAAGGC
GGTAATACGGTTATCCACAGAATCAGGGATAACGCAGGAAAGAACATGTGAGCAAAGG
CCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGTTGCTGGCTTTCCATAGGCTCCG
CCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCGACAGG
ACTATAAAAGATAACCAAGGCCTTCCCCCTGGAAGCTCCCTCGTGCCTCTCTGTTCCGAC
CCTGCCGCTTACCGGATACCTGTCGCCATTCTCCCTCGGAAGCGTGGCGTTCTCA
TAGCTCACGCTGTAGGTATCTCAGTCGGTGTAGGTCGTTGCTCCAAGCTGGCTGT
GCACGAACCCCCCGTTCAAGCCGACCGCTGCCCTATCCGTAACTATCGTCTTGAGTC
CAACCCGGTAAGACACGACTTATGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAG
AGCGAGGTATGTAGGCGGTGCTACAGAGTTCTGAAGTGGTGGCTTAACACTACGGCTACAC
TAGAAGGACAGTATTGGTATCTCGCCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGT
TGGTAGCTCTGATCCGCAAACAAACCACCGCTGGTAGCGGTGGTTTTGTTGCAA
GCAGCAGATTACCGCAGAAAAAGGATCTCAAGAAGATCCTTGTATCTTCTACGGG
GTCTGACGCTCAGTGGAACGAAAACCTACGTTAAGGGATTGGTCAATGAGATTATCAA
AAGGATCTCACCTAGATCCTTAAATTAAATGAAGTTGCGCAAATCAATCTAAAG
TATATATGAGTAAACTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGACACCTATCTC
AGCGATCTGTCTATTGTTCATCCATAGTGCGCTGACTCCCCGTCGTAGATAACTAC
GATAACGGGAGGGCTTACCATCTGGCCCCAGTGTGCAATGATAACCGCGAGACCCACGCTC
ACCGGCTCCAGATTATCAGCAATAAACCAAGCCAGCCGGAAAGGGCGAGCGCAGAAGTGG

FIGURE 11A-3

TCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAAATTGTTGCCGGGAAGCTAGAGTAAG
TAGTTGCCAGTTAATAGTTGCGCAACGTTGTCATTGCTACAGGCATCGTGGTGTC
ACGCTCGTCGTTGGTATGGCTTCATTCAAGCTCCGGTCCCAACGATCAAGGCGAGTTAC
ATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTCGGTCTCGATCGTTGTCAAG
AAGTAAGTTGCCGCAGTGTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTAC
TGTCAATGCCATCCGTAAGATGCTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTG
AGAATAGTGTATGCCGGCACCGAGTTGCTCTGCCCGCGTCAACACGGGATAATACCGC
GCCACATAGCAGAACCTTAAAAGTGTCTCATCATTGGAAAACGTTCTCGGGCGAAA
ACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTGATGTAACCCACTCGTGCACCCAACTG
ATCTTCAGCATCTTTACTTCAACCAGCGTTCTGGGTGAGCAAAAACAGGAAGGCAAAA
TGCCGAAAAAGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCTTT
TCAATATTATTGAAGCATTATCAGGGTTATTGTCTCATGAGCGGATACATATTGAATG
TATTAGAAAAATAACAAATAGGGTTCCGCGCACATTG

FIGURE 11B-1

1-845 CMV promoter/R/U5 5' LTR
1322 GAG ATG-ATC mutation
850-2100 extended □ region
2151-2865 GFP coding region
2866-2894 GGGSGGG linker
2895-2952 FMDV 2a cleavage sequence
2953-3004 BstX1/BstX1/HinD3/HpaI/SalI/NotI polylinker
3052-3645 3' LTR
3652-5715 pGEM backbone (pUC origin, ampR)

ATCACGAGGCCCTTCGTCTCAAGAACAGCTTGCTCTAGGAGTTCTAATACATC
CCAAACTCAAATATAAGCATTGACTTGTCTATGCCCTAGTTAAATAGTAATC
AATTACGGGGTCATTAGTCATAGCCCCATATGGAGTTCCCGCGTTACATAACTACGG
TAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCATTGACGTCAATAATGACG
TATGTTCCCAGTAGAACGCCAATAGGGACTTCCATTGACGTCAATGGGTGGAGTATTT
ACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCTTA
TTGACGTCAATGACGGTAAATGGCCGCCTGGCATTATGCCAGTACATGACCTTATGG
GAECTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTATGCG
GTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGATTCCAAGTC
TCCACCCCATGACGTCAATGGAGTTGTTGGCACCAAAATCAACGGACTTCCA
AAATGTCGAACAACCTCCGCCCCATTGACGCAAATGGGCGGTAGGCATGTACGGTGGGA
GGTCTATATAAGCAGAGCTCAATAAAAGAGCCCACAACCCCTCACTCGGGCGCCAGTC
CTCCGATTGACTGAGTCGCCCGGGTACCCGTGTATCCAATAACCCCTCTGCAGTTGCA
TCCGACTTGTGGTCTCGCTGTTCTGGGAGGGTCTCCTCTGAGTGATTGACTACCCGT
CAGCGGGGGTCTTCATTGGGGGCTCGTCCGGGATCGGGAGACCCCTGCCAGGGACC
ACCGACCCACCACCGGGAGGTAAGCTGCCAGCAACTATCTGTCTGTCGATTGTC
TAGTGTCTATGACTGATTTATGCGCCTGCGTCGGTACTAGTTAGCTAACTAGCTCTGT
ATCTGGCGGACCCGTGGAACTGACGAGTCGGAACACCCGGCGCAACCCCTGGGAG

FIGURE 11B-2

ACGTCCCAGGGACTTCGGGGCGTTTGTGGCCGACCTGAGTCAAAATCCCGAT
CGTTTGACTCTTGGTGCACCCCCCTAGAGGAGGGATATGTGGTCTGGTAGGAGA
CGAGAACCTAAAACAGTCCCGCCTCGTGAATTGGCTTCGGTTGGGACCGAA
GCCGCGCCGCGCTTGTCTGCTGCAGCATCGTCTGTGTTCTGTCTGACTGTG
TTCTGTATTGTCTGAAAATATCGGCCGGCAGACTGTTACCACTCCCTTAAGTT
GACCTAGGTCACTGGAAAGATGTCGAGCGGATCGCTCACACCAGTCGGTAGATGTCA
AGAAGAGACGTTGGTTACCTCTGCTCGAGAATGGCCAACCTTAACGTCGGATGG
CCGCGAGACGGCACCTTAACCGAGACCTCATACCCAGGTTAAGATCAAGGTCTTTC
ACCTGGCCCGATGGACACCCAGACCAGGTCCCCATACATCGTACCTGGGAAGCCTTGG
CTTTGACCCCCCTCCCTGGGTCAAGCCCTTGTACACCCATAGCCTCCGCCTCTT
CCTCCATCCGCCCGTCTCTCCCCCTGAACCTCCTCGTGCACCCCGCCTCGATCCTC
CCTTATCCAGCCCTACTCCTCTCTAGGCGCCCCATATGGCCATATGAGATCTTAT
ATGGGGCACCCCCGCCCCCTGTAAACTTCCCTGACCTGACATGACAAGAGTTACTAAC
AGCCCCCTCTCCAAGCTCACTACAGGCTCTACTTAGTCCAGCACGAAGTCTGGAG
ACCTCTGGCGGCAGCCTACCAAGAACAACTGGACCGACCGGTGGTACCTCACCCCTAAC
GAGTCGGCGACACAGTGTGGTCCGCCGACACCAGACTAAGAACCTAGAACCTCGCTGG
AAAGGACCTTACACAGTCCTGCTGACCACCCCCACCGCCCTCAAAGTAGACGGCATCGC
AGCTTGGATACACGCCCGCCACGTGAAGGCTGCCGACCCCCGGGGTGGACCATCCTTA
GACTGCCGGATCTCGAGGGATCCACCATGGTGAGCAAGGGCAGGGAGCTGTTACCGGG
GTGGTGCCCATCCTGGTCGAGCTGGACGGCACGTAACGGCCACAAGTTCAGCGTGTG
CGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCCTGAAGTTCATCTGCACCA
CCGGCAAGCTGCCGTGCCCTGCCACCCCTCGTACCCCTGACCTACGGCGTGCAG
TGCTTCAGCCCTACCCGACCACATGAAGCAGCACGACTTCTCAAGTCCGCATGCC
CGAAGGCTACGTCCAGGAGCGCACCATCTTCTCAAGGACGACGGCAACTACAAGACCC
GCGCCGAGGTGAAGTTCGAGGGCGACACCCCTGGTAACCCGATCGAGCTGAAGGGCATC
GACTTCAAGGAGGGACGGCAACATCCTGGGGACAAGCTGGAGTACAACACTAACAGCCA
CAACGTCTATATCATGCCGACAAGCAGAACAGGCATCAAGGTGAACCTCAAGATCC
GCCACAACATCGAGGACGGCAGCGTGCAGCTGCCGACCAACTACCAGCAGAACACCCCC
ATCGGCACGGCCCCGTGCTGCCGACAACCAACTACCTGAGCACCCAGTCCGCC
GAGCAAAGACCCCAACGAGAACAGCGCATCACATGGCCTGCTGGAGTTCGTACCGCCG
CCGGGATCACTCTGGCATGGACGAGCTGTACAAGGAATTGGAGGTGGCAGCGGTGG
GGTCAGCTTTGAATTGGACCTTCTAAACTTGGGGAGACGTCAGTCCAACCCCTGG
GCCCAACCACCATGGAAGCTCCATTAAATTGGTTAACGTCAGCGGCCGCTCGAC
GATAAAATAAAAGATTATTTAGTCTCCAGAAAAGGGGGAAATGAAAGACCCACCT
GTAGGTTGGCAAGCTAGCTTAAGTAACGCCATTGGCAAGGCATGGAAAAATACATAA
CTGAGAATAGAGAAGTTCAAGATCAAGGTCAAGGACAGATGGAACAGCTGAATATGGGC
AACAGGATATCTGTGTAAGCAGTCCTGCCCGGCTCAGGGCCAAGAACAGATGGAA
CAGCTGAATATGGGCCAACAGGGATATCTGTGTAAGCAGTCCTGCCCGGCTCAGGG
CCAAGAACAGATGGTCCCCAGATGCGGTCCAGCCCTCAGCAGTCTAGAGAACCCATCA
GATGTTCCAGGGTGCCCCAAGGACCTGAAATGACCCCTGCTTCTGAGTCAATAAAAGAGC
CCACAACCCCTCACTCGGGGCCAGTCCTCCGATTGACTGAGTCGCCGGGTACCCGT
GTATCCAATAAAACCTCTTGCAAGTGCATCCGACTTGTGGTCTCGTGTCTGGAG
GGTCTCCTCTGAGTGATTGACTACCCGTCAAGCGGGGGTCTTCAATTCCGACTTGTGGT
CTCGCTGCCTTGGGAGGGTCTCCTCTGAGTGATTGACTACCCGTCAAGCGGGGGTCTTCA
CATGCAGCATGTATCAAAATTAAATTGGTTTTCTTAAGTATTACATAAATGGC
CATAGTTGCATTAATGAATCGGCCAACCGCGGGGAGAGGCAGGGTTGCGTATTGGCGCT

FIGURE 11B-3

CTTCGGCTTCCTCGCTACTGACTCGCTCGCTCGGTCGGCTGCCGAGCGGTA
TCAGCTCACTCAAAGGGGTAATACGGTTATCCACAGAACGAGGAA
GAACATGTGAGCAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAGGCCGCGTTGCTGG
CGTTTCCATAGGCTCCGCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAG
AGGTGGCGAAACCGACAGGACTATAAAGATACCAGGCCTTCCCGTGGAAAGCTCCCT
CGTGCCTCTCGTGTCCGACCCCTGCCGCTTACCGGATACCTGTCCGCTTCTCCCT
CGGGAAAGCGTGGCGCTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGAGGTC
GTTCGCTCCAAGCTGGCTGTGCACGAACCCCCGTTCAGCCCACCGCTGCGCCTT
ATCCGGTAACTATCGTCTGAGTCCAACCCGGTAAGACACGACTTATGCCACTGGCAG
CAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCAGGTACAGAGTTCTTG
AAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTGGTATCTCGCTCTGCT
GAAGCCAGTTACCTCGGAAAAGAGTTGGTAGCTTGTACCGGAAACAAACCACCG
CTGGTAGCGGTTGGTTGGTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCT
CAAGAAGATCCTTGATCTTCTACGGGCTGACGCTCAGTGGAACGAAAACCTACG
TTAAGGGATTGGTACGAGATTATCAAAAAGGATCTCACCTAGATCCTTAAATT
AAAAATGAAGTTGCGCAAATCAATCTAAAGTATATGAGTAAACTTGGTCTGACAGT
TACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTGTCATCCAT
AGTTGCCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCC
CCAGTGCTGCAATGATACCGCGAGACCCACGCTACCGGCTCCAGATTATCAGCAATA
AACCGCCAGCCGGAGGGCCGAGCGCAGAAGTGGCCTGCAACTTATCCGCCTCCAT
CCAGTCTATTAAATTGTTGCCATTGCTACAGGCATCGTGGTCACGCTCGTGTGTTGGCT
GCAACGTTGTTGCCATTGCTACAGGCATCGTGGTCACGCTCGTGTGTTGGCT
TCATTAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAA
AAAAGGGTTAGCTCCTCGGTCTCGATGTTGTCAGAACGTAAGTTGGCCAGTGT
TATCAGTGTGTTGACTGGGAGTACTCAACCAAGTCATTCTGAGAACGTAAGTTGGCCAGTGT
TGCTTTCTGTGACTGGGAGTACTCAACCAAGTCATTCTGAGAACGTAAGTTGGCCAGTGT
ACCGAGTTGCTCTGCCGGCGTCAACACGGGATAATACCGGCCACATAGCAGAACCT
TAAAAGTGCTCATCATTGAAAAGCTCTCGGGCGAAAACCTCAAGGATCTTACCG
CTGTTGAGATCCAGTTCGATGTAACCCACTCGTCACCCACTGATCTTCAGCATCTT
TACTTCAACCAGCGTTCTGGGTGAGCAAAACAGGAAGGCAAAATGCCGAAAAAAGG
GAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCCTTTCAATATTATTGA
AGCATTATCAGGGTTATTGTCTCATGACATTAACCTATAAAAATAGGGGT

FIGURE 11C-1

1-845 CMV promoter/R/U5 5' LTR
1322 GAG ATG-ATC mutation
850-2100 extended 5' region
2146-2173 two BstX1 peptide cloning sites
2173-2214 EcoRI/PstI/HpaI/NotI polylinker
2262-2855 3' LTR
2855-4901 pGEM backbone (pUC origin, ampicillin resistance)

ATCACGAGGCCCTTCGTCTCAAGAACAGCTTGTCTTAGGAGTTCTTAATACATCCAAACTCAAAT
ATATAAAGCATTTGACTTGTCTATGCCCTAGTTATTAAAGTAATCAATTACGGGTCTTACAGTCATAG
CCATATATGGAGTCCCGCTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCAAACGACCCCCG
CCCATTGACGTCAATAATGACGTATGTCCCCTAGTAACGCCAATAGGGACTTCCATTGACGTCAATGGG
TGGAGTATTACGGTAAACTGCCACTGGCAGTACATCAAGTGTATCATATGCCAAAGTACGGCCCTATT
GACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCTAGTACATGACCTTATGGACTTCCACTTG
GCAGTACATCTACGTATTAGTCATCGTATTACCATGGTATGCCAGTACATCAATGGCGTG
GATAGCGGTTGACTCACGGGATTCCAAGTCTCACCCATTGACGTCAATGGAGTTGGTGGCAC
CAAATCAACGGACTTCAAAATGTCGTAACAACCTCGCCCCATTGACGAAATGGCGGTAGGCATGT
ACGGTGGAGGTCTATATAAGCAGAGCTCAATAAAAGAGCCACAACCCCTACTCGGGGCCAGTCCTC
CGATTGACTGAGTCGCCGGTACCGTGTATCCAATAACCCCTTGTGAGTTGCATCCGACTTGTGGTCT
CGCTGTCCTGGGAGGGTCTCTGTAGTGATTGACTACCCGTAGCGGGGGCTTTCATTGGGGCTC
GTCCGGATCGGGAGACCCCTGCCAGGGACCACCGACCCACCACCGGGAGGTAAGCTGCCAGCAACTTA
TCTGTGTCTGTCGATTGTCTAGTGTCTATGACTGATTATGCGCCTGCTCGGTACTAGTTAGCTAACT
AGCTCTGTATCTGGCGACCGTGGAACTGACGAGTTCGGAACACCCGGCGAACCTGGAGACGT
CCCAGGACTCGGGGCCGTTTGTGGCCGACCTGAGTCAAAATCCGATCGTTTGACTCTTG
GTGCACCCCCCTTAGAGGAGGGATATGTGGTCTGGTAGGAGACGAGAACCTAAACAGTCCGCCCTCG
TCTGAATTGGTCTCGGTTGGGACCGAAGCCGCCGCGCTCTGTCTGCTGAGCATCGTTCTGTG
TTGTCTGTCTGACTGTGTTCTGTATTGTCTGAAAATCGGCCCCGGCAGACTGTTACCAACTCCCT
TAAGTTGACCTTAGTCAGTGGAAAGATGTCGAGCGGATCGCTCACAAACAGTCGGTAGATGTCAGAACAG
AGACGTGGGTTACCTCTGCTCTGCAAGATGGCAACCTTAACGTGGATGGCCGCGAGACGGCACCTT
TAACCGAGACCTCATACCCAGGTTAAGATCAAGGTCTTACCTGGCCCGCATGGACACCCAGACCAGG
TCCCTACATCGTACCTGGAAAGCCTGGCTTGACCCCCCTCCCTGGTCAAGCCCTTGTACACCC
AAGCTCCGCCCTCTCCCATCCGCCGCTCTCCCCCTTGAAACCTCCTCGTTCGACCCGCCCTCG
ATCCCTCCCTTATCCAGCCCTCACTCCTCTAGGCGCCCCATATGCCCATATGAGATCTTATATGGGG
CACCCCCGCCCTGTAAACTCCCTGACCTGACATGACAAGAGTTACTAACAGCCCTCTCCAAAGCT
CACTTACAGGCTCTACTTAGTCAGCACGAAGTCTGGAGACCTCTGGCGCAGCCTACCAAGAACAACT
GGACCGACCGGTGGTACCTCACCCCTACAGTCAGTCTGCTGACCCACAGCAGTGTGGGTCCGCCGACACCAAGACTAAGA
ACCTAGAACCTCGTGGAAAGGACCTTACACAGTCTGCTGACCCACCCACCGCCCTCAAAGTAGACGGC
ATCGCAGCTGGATACACGCCACGTGAAGGCTGCCGACCCGGGGTGGACATCCTCTAGACTGCC
GGATCTCGAGGGATCCACCAACCATGGACCCCATAAATTGAAATTGGGGCCAAAGCTTGTGTTAACGTCG
ACGGGGCCGCCGTCGACGATAAAATAAAAGATTATTAGTCCTCAGAAAAAGGGGGATGAAAGACCC
CACCTGTAGGTTGGCAAGCTAGCTTAAGTAACGCCATTGCAAGGCATGGAAAAATACATAACTGAGAA
TAGAGAAGTTCAGATCAAGGTCAAGGAACAGATGGAAACAGCTGAATATGGCCAAACAGGATATCTGTGGTA
AGCAGTTCCCTGCCCGGCTCAGGGCCAAGAACAGATGGAAACAGCTGAATATGGCCAAACAGGATATCTGT
GGTAAGCAGTTCTGCCCGCTCAGGGCCAAGAACAGATGGTCCCCAGATGCCGTTCCAGCCCTCAGCAGT
TTCTAGAGAACCATCAGATGTTCCAGGGTGCCCAAGGACCTGAAATGACCTGTGCTTATTTGAACCTA
ACCAATCAGTTCGCTCTCGCTCTGTCGCGCCTCTGCTCCCCGAGCTCAATAAAAGAGCCACAACC
CCTCACTGGGGGCCAGTCCTCGATTGACTGAGTCGCCCCGGTACCCGTGATCCAATAAAACCTCTTG

FIGURE 11C-2

CAGTTGCATCCGACTTGTGGTCTCGCTGTTCTGGGAGGGTCTCCTTGAGTGATTGACTACCCGTCA
GGGGTCTTCATTCGACTTGTGGTCTCGCTGCCCTGGGAGGGTCTCCTTGAGTGATTGACTACCCGT
CAGCGGGGTCTTCACATGCAGCATGTATCAAATAATTGGTTTTCTTAAGTATTACATTAAT
GGCCATAGTTGCATTAATGAATCGGCCAACGCGGGGAGAGGGCGTTGCTATTGGCGCTCTCCGCTT
CCTCGCTCACTGACTCGCTCGCTCGTCGTTCCGCTGCCGAGCGGTATCAGCTCACTCAAAGGGTA
ATACGGTTATCCACAGAATCAGGGGATAACGCAAGGAAGAACATGTGAGCAAAGGCCAGCAAAGGCCAG
GAACCGTAAAAGGCCGCGTTGCTGGCGTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAATC
GACGCTCAAGTCAGAGGTGGCAGAACCCGACAGGACTATAAGATAACCAGGCGTTCCCCCTGGAAGCTCC
CTCGTGCCTCTCTGTTCCGACCCCTGCCGTTACCGGATAACCTGTCGCCCTTCTCCCTCGGAAGCGT
GGCGCTTCTCATAGCTCACGCTGTAGGTATCTCAGTCGGTGTAGTCGTTCGCTCCAAGCTGGCTGTG
TGCACGAACCCCCGTTCAGCCGACCGCTGCCCTATCCGTAACTATCGTCTTGAGTCCAACCCGTA
AGACACGACTTATGCCACTGGCAGCAGCACTGGTAACAGGATTAGCAGAGCGAGGTATGAGGCGGTG
TACAGAGTTCTGAAGTGGGCCACTACGGCTACACTAGAACAGCTATTGGTATCTCGCTCTGC
TGAAGCCAGTTACCTCGAAAAAGAGTTGGTAGCTCTGATCCGCAAACAAACCACCGCTGGTAGCGGT
GGTTTTTTGTTGCAAGCAGATTACGCGAGAAAAAAAGGATCTCAAGAAGATCCTTGATTTTC
TACGGGTCTGACGCTCAGTGGAACGAAACTCACGTTAAGGGATTGGTATGAGATTATCAAAAGGA
TCTTCACCTAGATCCTTAAATTAAAAATGAAGTTGCGCAAATCAATCTAAAGTATATGAGTAAC
TGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGCTATTGTTCATCCAT
AGTTGCCTGACTCCCCGTCGTAGATAACTACGGATAACGGAGGGCTTACCATCTGGCCCCAGTGTGCAA
TGATACCGCGAGACCCACGCTCACCGGCTCCAGATTATCAGCAATAACCGAGCCAGCCGGAAGGGCCGAG
CGCAGAAGTGGCCTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGTTGCCGGAGCTAGAGTAAG
TAGTTGCCAGTTAATAGTTGCGCAACGTTGCTACAGGCATGTTGTCACGCTCGT
TTGGTATGGCTCATTCACTCCGGTCCCAACGATCAAGGCAGTTACATGATCCCCATGTTGCAA
AAAGCGGTTAGCTCCTCGGCCTCCGATCGTTGTCAGAAGTAAGTGGCCGCAGTGTATCACTCATGGT
TATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTCTGTGACTGGTGAGTACT
CAACCAAGTCATTCTGAGAAATAGTGTATGCGGCCACCGAGTTGCTCTGCCCAGGTCAACACGGGATAAT
ACCGGCCACATAGCAGAACCTTAAAGTGTCTCATATTGAAAACGTTCTCGGGCGAAAACCTCTCAAG
GATCTTACCGCTGTTGAGATCCAGTTGCTGATGTAACCCACTCGTCACCCAACTGATCTCAGCATCTTTA
CTTTCACCAGCGTTCTGGGTGAGCAAAACAGGAAGGCAAAATGCCGAAAAAGGAAATAAGGGCGACA
CGGAAATGTTGAATACTCATACTCTCCTTTCAATATTATTGAAGCATTATCAGGGTTATTGTCTCAT
GACATTAACCTATAAAATAGGCCT

F16 12A

(1) C12ScFas Survival construct

C12ScFas: epsilon-cFas(CD95)-Ires-Hygro-BGH PolyA put into C12s vector backwards so that no leaky transcription happens through the cmv promoter.

GAGGGCGCAGCGAACACAGTGTTCACAGGCCAGGAGAACATCGCAGTAGAAGTCTGGTTGCACTGCACTTGGTATTCTGGT
CAGGGTGCAAGTTGTTCCACTTCTAAACCATGCTCTCATCGCAGAGTGTGCATCTCTGCATTTATCAGCATAATGGT
TCTTGTCCATGTACTCTTCCCTCTGTGCATGGGGCACAGGTTGGGTACCCCCATTCAATTGCACTCCTCAACTTT

F1 12 B

TTTTTACCAAGGTTGGCATGGTGACAGCAAAATGGCCTCCTGATATAATCCTCTGAGCAGTTTATCAGTTCATG
AACCCGCTCCTCAGCTTAAACTCTCGGAGATGCTATTAGTACCTTGAGTATGAACCTTAACGTGAGCCAGCAAGCA
CCAGAGGCAGGACAGCCCAGATCCACACCAtgTGGCTTACCAACAGTACCGGAATGCCAAGCTGCGCCGCTTAAGA
GCTGTAATTGAACCTGGGAGTGGACACCTGTGGAGAGAAAGGCAAAGTGGATGTCAGTAAGACCAATAGGTGCCTATCAG
AACCGCAAGAGTCTCTGTCAGACAAGCCCAGTTCTATTGGTCTCCTAAACCTGCTTGTAAACCTGATACTTAC
CTGCCCAGTGCCTCACGACCAACTTctgcaggaattcctggacagctccagatgatcagtaaccgtggtttattct
gtgccggcagtggagccctggtaggggagctctgcctcagtgccttcagctaaaatggggggggaaaccccCaggagg
cccgccgcgcctggaaagtccctttctctgttgcggcggcggcggcggcggcggcggcggcggcggcggcggcggcggc
ttcaactaccatgcacccggc
ggactctCacttgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcac
ggacttgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcac
ggacttgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcac
ggacttgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcac
ggacttgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcacgcac
GGCTCGAcgatAAAATAAAAGATTTATTAGTCTCCAGAAAAAGGGGGGAATGAAAGACCCCACCTGTAGGTTGGCAAg
ctagcTTAAGTAACCCATTGCAAGGCATGGAAAATACATAACTGAGAATAGAGAAGTTCAGATCAAGGTGGAACAG
ATGGAACAGGCAATAAAAGAGCCCCACAACCCCTACTGGGGGCCAGTCCTCCGATTGACTGAGTCGCCGGTACCCG
TGTATCCAATAACCCCTTGCAGTTGCATCCGACTTGTGGCTCGCTGTTCTGGAGGGTCTCCTGTAGTATTGA
CTACCCGTCAGCGGGGTCTTCatgcaGCATGTATCAAAATTAAATTGGTTTTCTTAAGTATTACATTAAAT
GGCCATagttcGTAATCATGGTCATAGCTGTTCCCTGTGAAATTGTATCCGCTCACAATTCCACACAATACGAG
CCGGAAGCATAAAAGTGTAAAGCCTGGGTGCCTAATGAGTGAGCTAACTCACATTAAATTGCGTGCCTACTGCCGCT
TTCCAGTCGGAAACCTGCGGCCAGCTGCATTAATGAATCGCCAACGCCGGAGAGGCCGGTTGCGTATTGGCG
CTCTCCGCTCCTCGCTACTGACTCGCTGCCTCGCTCGCTCGCTCGCTCGCTCGCTCGCTCGCTCGCTCGCTCGCTCG
TAATACGGTTATCCACAGAACGAGGATAACGCCAGGAAAGAACATGTGAGCAGAAAGGCCAGAAAGGCCAGGAACCGT
AAAAAGGCCGGTTGCTGGCTTTTCATAGGCTCCGCCCCCTGACGAGCATCACAAATGACGCTCAAGTCAGAG
GTGGCGAAACCCGACAGGACTATAAAGATACCAAGGGCTTCCCTGGAGCTCCCTCGTGCCTCGCTCGCTCGCTCG
TGCGCTTACCGGATACCTGTCGCCCTTCTCCCTCGGAAGCGTGGCGTTCTCATAGCTCACGCTGTAGGTATCTC
AGTTGGTGTAGGTCGTCAGCTCAAGCTGGCTGTGCAAGAACCCCCGTTAGCCGACCGCTGCGCCTATCCGG
TAACTATCGTCTTGAGTCAACCCGTAAGACACGACTTATGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAG
CGAGGTATGTAAGCGGTGCTACAGAGTTCTGAGTGGTAGCTTGTGATCCGCAAACAAACCACCGCTGGTAGCG
TGCCTCTGCTGAAGCCAGTTACCTCGGAAAAGAGTTGGTAGCTTGTGATCCGCAAACAAACCACCGCTGGTAGCG
TGGTTTTTTGTTGCAAGCAGCAGATTACGCCAGAAAAAGGATCTCAAGAAGATCTTGTGATTTCTACGGGGT
CTGACGCTCAGTGGAAACAAACTCACGTTAAGGGATTGGTCATGAGATTATCAAAAGGATCTCACCTAGATCCTT
TTAAATTAAAAATGAAGTTGCGCAAATCAATCTAAAGTATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAAT
CAAGTGAGGCACCTATCTAGCGATCTGCTATTGCTCATCCAGTGCCTGACTCCCCGTCGTAGATAACTACGA
TACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCAGACCCACGCTCACCGCTCCAGATTATCAGCA
ATAAAACCAAGCCAGCCGAAGGGCCGAGCGCAGAAGTGGCTCGCAACTTTATCCGCTCCATCCAGTCTATTAAATTGTTG
CCGGGAAGCTAGAGTAAGTAGTTGCCAGTTAATAGTTGCGAACGTTGCGCATGCTACAGGCATCGTGGTGTAC
GCTCGTGTGTTGGTATGGCTTATTAGCTCCGGTICCAACGATCAAGGGAGTTACATGATCCCCATGTTGCAA
AAAGCGGTTAGCTCCTCGTCCTCCGATCGTGTAGAAGTAAGTTGCCAGTGTATCACTCATGGTTATGGCAGC

FIG 12C

ACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTCTGTGACTGGTGagtactcaaccaagtcattctgag
aatagtgtatgcggcgaccgagggttgctttgcggcgtaaacacggataataccgcgccacatagcagaactttaaaa
gtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttagatccagttcgatgtacc
cactcgtgcacccaactgatttcagcatctttactttcaccagcggttctgggtgagaaaaacaggaaggcaaaatg
ccgcaaaaaaagggaataaggcgacacggaaatgttgaataactcatactcttcctttcaatattattgaagcatttat
cagggttattgtctcatgacattaacctataaaaaataggcgt

03952347-032504

FIG 13A

(2) Ahhhh: Survival construct

2.) Ahhhh: epsilon-cFas' (CD8 or mLyt2)-Ires-Hygro-BGHpolyA also in C12s backwards

Fo- 13 B

tcaacatcgataaatttattgccactgttcaggattaagggtggagattcatgagaaccttggtttccttcgt
ctttctgcattttctgtactcccttcacccaaacaatttagtggattggaaaagaagaagacaaggccacc
ccaaccggttccggcccccttactgagccacggggccgacaatcttctggctctgggctgagatgtcccggtaggg
tgcacaggtagggagtgcagcaactggcttgttagtagtagacttactttctgaaggactggcacgacagaactgaa
gtacatcaccgagttgtgtactgagcagaaatagttagccctgtttccctgtctgaacttgtcagggtgagaacagt
acttatttattccgtgtccctcatggcagaaaaacagttcgcacgaattcagcttctgtccacgttatcttgtgtggat
aaaggccatatacacaacgaagggtggctggggagggtttggagctggagttggatctggaaagggccaaagagcatcttgcgaaac
ggaccccaacacttcacatcaccagggtccaccccttcgaccaaaggcttggcgtccattttttggaaagatccggacttccg
gtgcctgtggcttagttctccactccccaggataatcactcaccaggcagcagcaggttccgcagcagacagaaggggg
aacggtgaggccatgtGGCTTGTACCAACAGTACCGGAATGCCAAGCTTGCGGGCGCTTAAGAGCTGTAATTGAACTTGG

GAGTGGACACCTGTGGAGAGAAAAGGCÄAAGTGGATGTCAGTAAGACCAATAGGTGCCATTAGAAACGCAAGAGTCTCT

CTGTCTCGACAAGCCCAGTTCTATTTGGTCTCCCTAAACCTGTCTTGATAACTTACCTGCCCAAGTGCCCTCACG

ACCAACTTctgcaggaaattctggacagctcccagatgatcgttaaccgtggtttatttctgtgcgggcagtggagc
ctgggttagggggagctctgcctcagtgttcagctaaaaatggggtggaaccccCaggaggcccgggcccctggaa
gttccctttctctgttcttggaaagtgcattgagcaacagcgggggtcagggtggcttactaccgatgcaca
ccgagtGgggggggttctcttcgttccacCcaggccccctgccttaggtcccgacttCactttgac
gcattgcgtggcttgggtggcccttgcattgggggttgcctggaaaaggaggggtactggcatcgac
ccttgtccctccacgaaaggcttgcagaagaaaggatggggcgttttgcggcacttgagggtgaactg
gcctcgggGcgcgttccagatgtgtgcaggcccctctgtatggccgcagccccctgttgcaccctgttggag
ctggcacctgagtgggtggctcacCTTGTACTCACTCCCAGGTCACTGTCTgcacGGGGCCGCTCGACqatAAAAATAA

AAGATTTATTTAGTCTCCAGAAAAAGGGGGGAATGAAAGACCCCCACCTGTAGGTTGGCAAqctaqcTTAAGTAACCCA

TTTGCAAGGCATGGAAAAATACATAACTGAGAATAGAGAAGTTCAGATCAAGGTCGGAACAGATGAAACAGGGCAATAAA

AAGAGCCCCACAACCCCTCACTGGGGCGCCAGTCCCTCGATTGACTGAGTCGCCCGGGTACCCGTGTATCCAATAAACCCCT

TCTTTCAcatgcagCATGTATCAAATTAAATTGGTTTTTCTTAAGTATTACATTAATGGCCTAgtttcgtaat

CATGGTCATAGCTTTCTGTGAAATTGTTATCGCTCACAACTTCCACACAACATAACGAGGCCGAAGCATAAAGTGT

AAAGCCTGGGTGCCTAATGAGTGA
CTAACTCACATTAAATTGCGTGC
GCTCACTGCCGCTTTCCAGTGG
AAACCT

GTCTGTGCCAGCTGCATTAAATGAATCGGCCAACGCGCGGGGAGAGGCGTTTGCGTATTGGCGCTCTCCGCTTCCTCCG

TCAC TGA CTC GCT CGC TCG GT CGT TCG GCT CGG CGAG CGGT ATCA GCT CACT CAA AGGCC GT AAT ACC GT TAT CG CAC A

GAATCAGGGATAACGCAGGAAAGAACATGTGAGCAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGCCCCGCTTGT

GGCGTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCCAAGTCAGACCTCCCCAACCCGACAC

GA
CTATAAAAGATAACCAGCGTTTCCCCCTGGAAAGCTCCCTCGTCGGCTCTGCTTCCCACCGTCCCCCTTA
CCCCNTAC

CTGTCCGCCCTTCTCCCTTCGGGAAGCGTGGCGTTCTCATAGCTACGCTGTAGCTATCTCAGTTCCCTCTACCTCT

TCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTACGGCCGACCCGCTTCCCGTTATCCCGTAACTATCCGTCTTGACT

CCAACCCGTAAGACACGACTTATGCCACTGGCAGCAGCCACTGGTAACAGGATAAGCAGACCCACCTATCTACCCCCCT

GCTACAGAGTTCTTGAAGTGGTGGCTAACTACGGCTACACTAGAAGCACTTTCGCTTGCTCCGCTCTCGTACGCC

AGTTACCTTCGAAAAAAGAGTGGTAGCTCTGATCCGGAAACAAAAGCAGCCCTCTAACCCCTCCCTTGTCTTGC

AAAAACTCACGTTAACGGATTTCGGTCATGAGATTCTAAACCGTCTGAGCTAGCTGCTTAAATTNNNNNN

<http://www.ams.org/journals/proc/2007-135-09/S0002-9939-0708800-2/>

FIG 13C

GCTTCATTCAGCTCCGGTCCAAACGATCAAGGCAGTTACATGATCCCCATGTTGTGAAAAAGCGGTTAGCTCCTT
CGGTCCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTATCACTCATGGTTATGGCAGCACTGCATAATTCTTTA
CTGTCATGCCATCCGTAAGATGCTTTCTGTGACTGGTGagtactcaaccaagtcattctgagaatagtgtatgcggcga
ccgagttgtcttgcggcgtaaacacggataataccgcgccacatagcagaactttaaaagtgtcatcattggaaa
acgttcttcggggcgaaaactctcaaggatcttaccgcgtttagatccagttcgatgtaaacctcgtgcacccaact
gatcttcagcatctttactttcaccagcggttctgggtgagaaaaacaggaaggcaaatgccgaaaaaggaaata
gggcgacacggaaatgtgaataactcataactttcaatattattgaagcatttatcagggttattgtctcat
gacattaacctataaaaataggcgt

5' - 0 0 2 2 0 2 2 0 2