5.5 1) Soit $u \in E$.

Puisque $(e_1; \ldots; e_k; e_{k+1}; \ldots; e_n)$ est une base de E, il existe des réels $\alpha_1, \ldots, \alpha_n$ tels que $u = \alpha_1 \cdot e_1 + \ldots + \alpha_n \cdot e_n$.

Posons $v = \alpha_1 \cdot e_1 + \dots + \alpha_k \cdot e_k$ et $w = \alpha_{k+1} \cdot e_{k+1} + \dots + \alpha_n \cdot e_n$. Alors $v \in F$ et $w \in G$.

En outre $u = v + w \in F + G$.

Ainsi, tout élément de E s'écrit comme somme d'un élément de F et d'un élément de G, ce qui prouve que E=F+G.

2) $\dim(F + G) = \dim(E) = n = k + (n - k) = \dim(F) + \dim(G)$ D'après l'exercice 5.4, cette égalité implique $F \cap G = \{0\}$.