Problems classification

Simeon Monov

Problems Classification

- Easy problems (P)
- Medium problems (NP)
- Hard problems (NP-Complete)
- Hardest problems (NP-Hard)

Problem complexity

Big-O values:

- O(1) constant time
- O(log₂(n)) logarithmic time
- O(n) linear time
- O(n²) quadratic time
- O(n^k) polynomial time
- O(kⁿ) exponential time
- O(n!) factorial time

Polynomial Algorithms

- Polynomial algorithms we can be solved in polynomial time, like logarithmic, linear or quadratic time. The all have complexity of some O(n^k):
 - Mathematical operations: addition, subtraction, division, multiplication
 - Finding primes
 - Hashtable lookup, sorting, string operations
 - Linear or binary search algorithms

NP Algorithms

- NP algorithms (Non-deterministic Polynomial algorithms) cannot be solved in polynomial time. However, they can be verified in polynomial time. These algorithms can be solved in exponential time O(kⁿ):
 - Integer factorization

NP-Complete Algorithms

- NP-Complete problems are problems for which no efficient solution algorithm has been found but they can be solved by a non-deterministic algorithm in polynomial time.
 - Traveling Salesman
 - Knapsack
 - Graph Coloring

NP-Hard algorithms

- NP-Hard algorithms are the hardest, most complex problems in computer science. They are not only hard to solve but are hard to verify as well:
 - K-means Clustering
 - Traveling Salesman Problem
 - Graph Coloring