

EP063 - Planejamento do Arranjo Físico Localização de instalações

João Mateus M. Santana

Departamento de Engenharia de Produção Centro de Tecnologia e Geociências Universidade Federal de Pernambuco

17 de junho de 2025

Localização de instalações

Decisões sobre localização

Decisões sobre localização Opções básicas

• Expandir instalação existente

Decisões sobre localização Opções básicas

- Expandir instalação existente
- Adicionar nova unidade

Decisões sobre localização Opções básicas

- Expandir instalação existente
- Adicionar nova unidade
- Fechar uma unidade e abrir outra

Classificação de problemas de localização

Fator motivador

- Fator motivador
- Número de instalações

- Fator motivador
- Número de instalações
- Nível de discretização

- Fator motivador
- Número de instalações
- Nível de discretização
- Grau de agregação de dados

- Fator motivador
- Número de instalações
- Nível de discretização
- Grau de agregação de dados
- Horizonte de tempo

Fatores determinantes

• Fontes de suprimento (material)

- Fontes de suprimento (material)
- Fontes de insumos (recursos, mão de obra)

- Fontes de suprimento (material)
- Fontes de insumos (recursos, mão de obra)
- Proximidade dos clientes

- Fontes de suprimento (material)
- Fontes de insumos (recursos, mão de obra)
- Proximidade dos clientes
- Ambiente físico e de negócio

- Fontes de suprimento (material)
- Fontes de insumos (recursos, mão de obra)
- Proximidade dos clientes
- Ambiente físico e de negócio
- Qualidade de vida dos colaboradores

- Fontes de suprimento (material)
- Fontes de insumos (recursos, mão de obra)
- Proximidade dos clientes
- Ambiente físico e de negócio
- Qualidade de vida dos colaboradores
- Comunidade

- Fontes de suprimento (material)
- Fontes de insumos (recursos, mão de obra)
- Proximidade dos clientes
- Ambiente físico e de negócio
- Qualidade de vida dos colaboradores
- Comunidade
- Globalização

Fontes de suprimento (material)

• Alguns fatores podem favorecer a escolha por instalações próximas a locais onde há disponibilidade de matérias primas.

Fontes de suprimento (material)

- Alguns fatores podem favorecer a escolha por instalações próximas a locais onde há disponibilidade de matérias primas.
- Operações de extração, como pesca ou mineração, exigem que as operações sejam realizadas próximo à fonte de suprimento.

Fontes de suprimento (material)

- Alguns fatores podem favorecer a escolha por instalações próximas a locais onde há disponibilidade de matérias primas.
- Operações de extração, como pesca ou mineração, exigem que as operações sejam realizadas próximo à fonte de suprimento.
- A perecibilidade da matéria prima também é um fator determinante, como no caso de processamento de frutas.

Fontes de suprimento (material)

- Alguns fatores podem favorecer a escolha por instalações próximas a locais onde há disponibilidade de matérias primas.
- Operações de extração, como pesca ou mineração, exigem que as operações sejam realizadas próximo à fonte de suprimento.
- A perecibilidade da matéria prima também é um fator determinante, como no caso de processamento de frutas.
- Os custos de transporte da matéria prima podem ser elevados, sendo mais vantajoso realizar o transporte da matéria processada ou o produto finalizado.

Fontes de insumos (recursos, mão de obra)

 Em algumas situações, deseja-se localizar com proximidade das "fontes" de mão de obra.

Fontes de insumos (recursos, mão de obra)

- Em algumas situações, deseja-se localizar com proximidade das "fontes" de mão de obra.
- Os custos com mão de obra, muitas vezes, são determinantes na decisão de localização.

Fontes de insumos (recursos, mão de obra)

- Em algumas situações, deseja-se localizar com proximidade das "fontes" de mão de obra.
- Os custos com mão de obra, muitas vezes, são determinantes na decisão de localização.
- A qualificação e as competências dos colaboradores pode influenciar essa decisão, também.

Fontes de insumos (recursos, mão de obra)

- Em algumas situações, deseja-se localizar com proximidade das "fontes" de mão de obra.
- Os custos com mão de obra, muitas vezes, são determinantes na decisão de localização.
- A qualificação e as competências dos colaboradores pode influenciar essa decisão, também.
- Características como pontualidade, absenteísmo, rotatividade, além de fatores como atuação de sindicatos.

Proximidade dos clientes

 Para muitas operações, é desejável estar localizado próximo aos clientes.

Proximidade dos clientes

- Para muitas operações, é desejável estar localizado próximo aos clientes.
- Quando o transporte do produto é mais volumoso, caro ou difícil do que os insumos e matérias primas.

Proximidade dos clientes

- Para muitas operações, é desejável estar localizado próximo aos clientes.
- Quando o transporte do produto é mais volumoso, caro ou difícil do que os insumos e matérias primas.
- A perecibilidade do produto pode inviabilizar operações distantes dos clientes.

Proximidade dos clientes

- Para muitas operações, é desejável estar localizado próximo aos clientes.
- Quando o transporte do produto é mais volumoso, caro ou difícil do que os insumos e matérias primas.
- A perecibilidade do produto pode inviabilizar operações distantes dos clientes.
- Em alguns casos, a operação exige a presença do cliente para executar suas atividades de agregação de valor.

Ambiente físico e de negócio

• Diversos aspectos são relacionados com a escolha de uma região (país, cidade, bairro...).

- Diversos aspectos são relacionados com a escolha de uma região (país, cidade, bairro...).
- Preço, qualidade e disponibilidade de espaço físico.

- Diversos aspectos são relacionados com a escolha de uma região (país, cidade, bairro...).
- Preço, qualidade e disponibilidade de espaço físico.
- Água, energia elétrica, infraestrutura, serviços públicos.

- Diversos aspectos são relacionados com a escolha de uma região (país, cidade, bairro...).
- Preço, qualidade e disponibilidade de espaço físico.
- Água, energia elétrica, infraestrutura, serviços públicos.
- Incentivos fiscais, zonas livres de comércio.

- Diversos aspectos são relacionados com a escolha de uma região (país, cidade, bairro...).
- Preço, qualidade e disponibilidade de espaço físico.
- Água, energia elétrica, infraestrutura, serviços públicos.
- Incentivos fiscais, zonas livres de comércio.
- Impactos ambientais, condições de solo, condições climáticas, facilidade de transporte.

Qualidade de vida dos colaboradores

 Proporcionar qualidade de vida aos colaboradores gera impactos não apenas relativos a produtividade e ganhos financeiros, mas também relativos à imagem da empresa e interesse dos colaboradores quanto ao crescimento do negócio.

Qualidade de vida dos colaboradores

- Proporcionar qualidade de vida aos colaboradores gera impactos não apenas relativos a produtividade e ganhos financeiros, mas também relativos à imagem da empresa e interesse dos colaboradores quanto ao crescimento do negócio.
- Fatores que podem ser considerados são relativos à infraestrutura de segurança, lazer, educação, moradia, transporte público, clima, estilo de vida, shopping centers, entre outros.

Comunidade

• É essencial que a comunidade local aceite o negócio, evitando conflitos, que podem durar anos.

Comunidade

- É essencial que a comunidade local aceite o negócio, evitando conflitos, que podem durar anos.
- A instalação de operações gera empregos, paga impostos para a região, além de outros benefícios.

Comunidade

- É essencial que a comunidade local aceite o negócio, evitando conflitos, que podem durar anos.
- A instalação de operações gera empregos, paga impostos para a região, além de outros benefícios.
- Podem existir restrições provenientes da comunidade, como relativos à poluição (visual, sonora, ar, água etc).

Globalização

 Devido aos avanços das últimas décadas tanto na rede global de transportes quanto na rede de informações, certas decisões em localização podem considerar opções em locais em outros países e continentes.

Globalização

- Devido aos avanços das últimas décadas tanto na rede global de transportes quanto na rede de informações, certas decisões em localização podem considerar opções em locais em outros países e continentes.
- Certos fatores podem influenciar essa decisão, como custo e qualificação da mão de obra, custos de transporte, entre outros.

Globalização

- Devido aos avanços das últimas décadas tanto na rede global de transportes quanto na rede de informações, certas decisões em localização podem considerar opções em locais em outros países e continentes.
- Certos fatores podem influenciar essa decisão, como custo e qualificação da mão de obra, custos de transporte, entre outros.
- Por exemplo, muitas empresas realizam sua produção em países onde há mão de obra barata, como na China.

Globalização

- Devido aos avanços das últimas décadas tanto na rede global de transportes quanto na rede de informações, certas decisões em localização podem considerar opções em locais em outros países e continentes.
- Certos fatores podem influenciar essa decisão, como custo e qualificação da mão de obra, custos de transporte, entre outros.
- Por exemplo, muitas empresas realizam sua produção em países onde há mão de obra barata, como na China.
- Muitas empresas americanas terceirizam o serviço de atendimento ao cliente para call centers na Índia.

Hierarquia das decisões de localização

Localização de instalações

Métodos para escolha de localização

Métodos para escolha de localização

- Ponderação qualitativa
- Ponto de equilíbrio
- Análise dimensional
- Centro de gravidade
- Modelo da mediana

• Este método pode ser usado quando não há uma estrutura detalhada de custos para cada localidade.

- Este método pode ser usado quando não há uma estrutura detalhada de custos para cada localidade.
- Devem ser levantados uma série de fatores relevantes para o caso.

- Este método pode ser usado quando não há uma estrutura detalhada de custos para cada localidade.
- Devem ser levantados uma série de fatores relevantes para o caso.
- A cada fator é atribuído um peso.

- Este método pode ser usado quando não há uma estrutura detalhada de custos para cada localidade.
- Devem ser levantados uma série de fatores relevantes para o caso.
- A cada fator é atribuído um peso.
- Cada localidade é avaliada em relação aos fatores escolhidos.

- Este método pode ser usado quando não há uma estrutura detalhada de custos para cada localidade.
- Devem ser levantados uma série de fatores relevantes para o caso.
- A cada fator é atribuído um peso.
- Cada localidade é avaliada em relação aos fatores escolhidos.
- É escolhida a localização com maior soma/média ponderada.

- Este método pode ser usado quando não há uma estrutura detalhada de custos para cada localidade.
- Devem ser levantados uma série de fatores relevantes para o caso.
- A cada fator é atribuído um peso.
- Cada localidade é avaliada em relação aos fatores escolhidos.
- É escolhida a localização com maior soma/média ponderada.

Para calcular a pontuação (N_i) da localização i:

$$N_i = \sum_{j=1}^k F_{ij} P_j$$

- Este método pode ser usado quando não há uma estrutura detalhada de custos para cada localidade.
- Devem ser levantados uma série de fatores relevantes para o caso.
- A cada fator é atribuído um peso.
- Cada localidade é avaliada em relação aos fatores escolhidos.
- É escolhida a localização com maior soma/média ponderada.

Para calcular a pontuação (N_i) da localização i:

$$N_i = \sum_{j=1}^k F_{ij} P_j$$

onde:

- F_{ii} : pontuação da instalação i no fator j
- P_i : peso do fator i

- Este método pode ser usado quando não há uma estrutura detalhada de custos para cada localidade.
- Devem ser levantados uma série de fatores relevantes para o caso.
- A cada fator é atribuído um peso.
- Cada localidade é avaliada em relação aos fatores escolhidos.
- É escolhida a localização com maior soma/média ponderada.

Fator	Peso	Α	В	С	D
Restrições ambientais	15	5	4	4	3
Disponibilidade de mão de obra	12	2	3	4	2
Sistema de transportes	18	3	4	4	4
Proximidade a mercados	20	2	3	4	3
Qualidade de vida	25	3	3	4	4
Proximidade de matérias primas	10	5	2	1	5

- Este método pode ser usado quando não há uma estrutura detalhada de custos para cada localidade.
- Devem ser levantados uma série de fatores relevantes para o caso.
- A cada fator é atribuído um peso.
- Cada localidade é avaliada em relação aos fatores escolhidos.
- É escolhida a localização com maior soma/média ponderada.

•		•			
Fator	Peso	Α	В	С	D
Restrições ambientais	15	5	4	4	3
Disponibilidade de mão de obra	12	2	3	4	2
Sistema de transportes	18	3	4	4	4
Proximidade a mercados	20	2	3	4	3
Qualidade de vida	25	3	3	4	4
Proximidade de matérias primas	10	5	2	1	5
	100	3.18	3.23	3.70	3.51

Exercício 1: a tabela abaixo contém os fatores, pesos e avaliações para três instalações consideradas. Qual das instalações deve ser escolhida, levando em consideração os fatores levantados?

Exercício 1: a tabela abaixo contém os fatores, pesos e avaliações para três instalações consideradas. Qual das instalações deve ser escolhida, levando em consideração os fatores levantados?

Fator	Peso	Α	В	С
Restrições ambientais	20	9	6	7
Disponibilidade de mão de obra	25	8	9	8
Sistema de transportes	13	9	9	7
Proximidade a mercados	12	7	8	10
Qualidade de vida	25	9	8	9
Proximidade de matérias primas	25	7	7	8

Exercício 1: a tabela abaixo contém os fatores, pesos e avaliações para três instalações consideradas. Qual das instalações deve ser escolhida, levando em consideração os fatores levantados?

Fator	Peso	Α	В	С
Restrições ambientais	20	9	6	7
Disponibilidade de mão de obra	25	8	9	8
Sistema de transportes	13	9	9	7
Proximidade a mercados	12	7	8	10
Qualidade de vida	25	9	8	9
Proximidade de matérias primas	25	7	7	8
	120	8.18	7.78	8.13

Análise de custos fixos e variáveis

 Consiste em estimar os custos totais de cada localização a partir dos custos fixos e variáveis.

- Consiste em estimar os custos totais de cada localização a partir dos custos fixos e variáveis.
- O ponto de equilíbrio de uma instalação é a quantidade que iguala os custos e as receitas.

- Consiste em estimar os custos totais de cada localização a partir dos custos fixos e variáveis.
- O ponto de equilíbrio de uma instalação é a quantidade que iguala os custos e as receitas.
- A localização com menor ponto de equilíbrio é a que mais rápido recupera os investimentos realizados.

- Consiste em estimar os custos totais de cada localização a partir dos custos fixos e variáveis.
- O ponto de equilíbrio de uma instalação é a quantidade que iguala os custos e as receitas.
- A localização com menor ponto de equilíbrio é a que mais rápido recupera os investimentos realizados.
- Para uma certa quantidade produzida, podem-se comparar os custos e receitas de cada instalação.

Análise de custos fixos e variáveis

Exercício 2: considere as alternativas de localização abaixo.

Análise de custos fixos e variáveis

Exercício 2: considere as alternativas de localização abaixo.

Localização	Custos fixos	Custo variável
Instalação A	R\$ 80,000	R\$ 22
Instalação B	R\$ 120,000	R\$ 14
Instalação C	R\$ 50,000	R\$ 31

Análise de custos fixos e variáveis

Exercício 2: considere as alternativas de localização abaixo.

Localização	Custos fixos	Custo variável
Instalação A	R\$ 80,000	R\$ 22
Instalação B	R\$ 120,000	R\$ 14
Instalação C	R\$ 50,000	R\$ 31

O preço de venda de uma unidade é de R\$ 50. Para cada uma das instalações, calcule:

Análise de custos fixos e variáveis

Exercício 2: considere as alternativas de localização abaixo.

Localização	Custos fixos	Custo variável
Instalação A	R\$ 80,000	R\$ 22
Instalação B	R\$ 120,000	R\$ 14
Instalação C	R\$ 50,000	R\$ 31

O preço de venda de uma unidade é de R\$ 50. Para cada uma das instalações, calcule:

• Ponto de equilíbrio.

Análise de custos fixos e variáveis

Exercício 2: considere as alternativas de localização abaixo.

Localização	Custos fixos	Custo variável
Instalação A	R\$ 80,000	R\$ 22
Instalação B	R\$ 120,000	R\$ 14
Instalação C	R\$ 50,000	R\$ 31

O preço de venda de uma unidade é de R\$ 50. Para cada uma das instalações, calcule:

- Ponto de equilíbrio.
- Lucros esperados para venda de 3000, 4000 e 6000 unidades.

Análise de custos fixos e variáveis

Exercício 2: considere as alternativas de localização abaixo.

Localização	Custos fixos	Custo variável
Instalação A	R\$ 80,000	R\$ 22
Instalação B	R\$ 120,000	R\$ 14
Instalação C	R\$ 50,000	R\$ 31

O preço de venda de uma unidade é de R\$ 50. Para cada uma das instalações, calcule:

- Ponto de equilíbrio.
- Lucros esperados para venda de 3000, 4000 e 6000 unidades.
- A melhor localização, para cada quantidade acima.

	Custos fixos	Custo variável	Ponto de equilíbrio	Lucro
Instalação A	R\$ 80.000,00	R\$ 22,00	2857	R\$ 46.000,00
Instalação B	R\$ 120.000,00	R\$ 14,00	3333	R\$ 42.000,00
Instalação C	R\$ 50.000,00	R\$ 31,00	2632	R\$ 35.500,00

Preço de venda	R\$ 50,00
Quantidade	4500

Quantidade	Instalação A	Instalação B	Instalação C
2000	-R\$ 24.000	-R\$ 48.000	-R\$ 12.000
2250	-R\$ 17.000	-R\$ 39.000	-R\$ 7.250
2500	-R\$ 10.000	-R\$ 30.000	-R\$ 2.500
2750	-R\$ 3.000	-R\$ 21.000	R\$ 2.250
3000	R\$ 4.000	-R\$ 12.000	R\$ 7.000
3250	R\$ 11.000	-R\$ 3.000	R\$ 11.750
3500	R\$ 18.000	R\$ 6.000	R\$ 16.500
3750	R\$ 25.000	R\$ 15.000	R\$ 21.250
4000	R\$ 32.000	R\$ 24.000	R\$ 26.000
4250	R\$ 39.000	R\$ 33.000	R\$ 30.750
4500	R\$ 46.000	R\$ 42.000	R\$ 35.500
4750	R\$ 53.000	R\$ 51.000	R\$ 40.250
5000	R\$ 60.000	R\$ 60.000	R\$ 45.000
5250	R\$ 67.000	R\$ 69.000	R\$ 49.750
5500	R\$ 74.000	R\$ 78.000	R\$ 54.500
5750	R\$ 81.000	R\$ 87.000	R\$ 59.250
6000	R\$ 88.000	R\$ 96.000	R\$ 64.000
6250	R\$ 95.000	R\$ 105.000	R\$ 68.750
6500	R\$ 102.000	R\$ 114.000	R\$ 73.500
6750	R\$ 109.000	R\$ 123.000	R\$ 78.250

Análise dimensional

• Método comparativo que avalia o desempenho relativo entre duas instalações.

Análise dimensional

- Método comparativo que avalia o desempenho relativo entre duas instalações.
- Pode ser utilizado quando há fatores para os quais há medidas quantitativas e outros com avaliações qualitativas.

Análise dimensional

- Método comparativo que avalia o desempenho relativo entre duas instalações.
- Pode ser utilizado quando há fatores para os quais há medidas quantitativas e outros com avaliações qualitativas.
- Os diferentes fatores podem ter escalas diferentes, porém as mesmas escalas devem ser utilizadas para as duas instalações.

- Método comparativo que avalia o desempenho relativo entre duas instalações.
- Pode ser utilizado quando há fatores para os quais há medidas quantitativas e outros com avaliações qualitativas.
- Os diferentes fatores podem ter escalas diferentes, porém as mesmas escalas devem ser utilizadas para as duas instalações.
- Atenção ao sentido dos fatores!

- Método comparativo que avalia o desempenho relativo entre duas instalações.
- Pode ser utilizado quando há fatores para os quais há medidas quantitativas e outros com avaliações qualitativas.
- Os diferentes fatores podem ter escalas diferentes, porém as mesmas escalas devem ser utilizadas para as duas instalações.
- Atenção ao sentido dos fatores!

Para calcular o coeficiente de mérito CM_{ij} entre as instalações i e j:

- Método comparativo que avalia o desempenho relativo entre duas instalações.
- Pode ser utilizado quando há fatores para os quais há medidas quantitativas e outros com avaliações qualitativas.
- Os diferentes fatores podem ter escalas diferentes, porém as mesmas escalas devem ser utilizadas para as duas instalações.
- Atenção ao sentido dos fatores!

Para calcular o coeficiente de mérito CM_{ij} entre as instalações i e j:

$$CM_{ij} = \left(\frac{F_{i1}}{F_{j1}}\right)^{p_1} \left(\frac{F_{i2}}{F_{j2}}\right)^{p_2} \dots \left(\frac{F_{ik}}{F_{jk}}\right)^{p_k}$$

- Método comparativo que avalia o desempenho relativo entre duas instalações.
- Pode ser utilizado quando há fatores para os quais há medidas quantitativas e outros com avaliações qualitativas.
- Os diferentes fatores podem ter escalas diferentes, porém as mesmas escalas devem ser utilizadas para as duas instalações.
- Atenção ao sentido dos fatores!

Para calcular o coeficiente de mérito CM_{ij} entre as instalações i e j:

$$CM_{ij} = \left(\frac{F_{i1}}{F_{j1}}\right)^{p_1} \left(\frac{F_{i2}}{F_{j2}}\right)^{p_2} \dots \left(\frac{F_{ik}}{F_{jk}}\right)^{p_k}$$

- Método comparativo que avalia o desempenho relativo entre duas instalações.
- Pode ser utilizado quando há fatores para os quais há medidas quantitativas e outros com avaliações qualitativas.
- Os diferentes fatores podem ter escalas diferentes, porém as mesmas escalas devem ser utilizadas para as duas instalações.
- Atenção ao sentido dos fatores!

Para calcular o coeficiente de mérito CM_{ij} entre as instalações i e j:

$$CM_{ij} = \left(\frac{F_{i1}}{F_{j1}}\right)^{p_1} \left(\frac{F_{i2}}{F_{j2}}\right)^{p_2} \dots \left(\frac{F_{ik}}{F_{jk}}\right)^{p_k}$$

- F_{ik} : avaliação da instalação i no fator k
- p_k : peso do fator k

Exercício 3: considere os dados abaixo.

Exercício 3: considere os dados abaixo.

Fator	Peso	Α	В	С
Preço do terreno (R\$)	2	300,000	430,000	390,000
Preço da construção (R\$)	3	1,740,000	1,390,000	1,520,000
Custos de treinamento (R\$)	1	135,000	145,000	120,000
Clima	3	5	2	3
Reação da comunidade	4	8	7	9
Rede hospitalar	3	7	9	9

Exercício 3: considere os dados abaixo.

Fator	Peso	Α	В	С
Preço do terreno (R\$)	2	300,000	430,000	390,000
Preço da construção (R\$)	3	1,740,000	1,390,000	1,520,000
Custos de treinamento (R\$)	1	135,000	145,000	120,000
Clima	3	5	2	3
Reação da comunidade	4	8	7	9
Rede hospitalar	3	7	9	9

Avalie quais instalações são preferíveis quando comparadas entre:

Exercício 3: considere os dados abaixo.

Fator	Peso	Α	В	С
Preço do terreno (R\$)	2	300,000	430,000	390,000
Preço da construção (R\$)	3	1,740,000	1,390,000	1,520,000
Custos de treinamento (R\$)	1	135,000	145,000	120,000
Clima	3	5	2	3
Reação da comunidade	4	8	7	9
Rede hospitalar	3	7	9	9

Avalie quais instalações são preferíveis quando comparadas entre:

• A e B

Exercício 3: considere os dados abaixo.

Fator	Peso	Α	В	С
Preço do terreno (R\$)	2	300,000	430,000	390,000
Preço da construção (R\$)	3	1,740,000	1,390,000	1,520,000
Custos de treinamento (R\$)	1	135,000	145,000	120,000
Clima	3	5	2	3
Reação da comunidade	4	8	7	9
Rede hospitalar	3	7	9	9

Avalie quais instalações são preferíveis quando comparadas entre:

- A e B
- A e C

Exercício 3: considere os dados abaixo.

Fator	Peso	Α	В	С
Preço do terreno (R\$)	2	300,000	430,000	390,000
Preço da construção (R\$)	3	1,740,000	1,390,000	1,520,000
Custos de treinamento (R\$)	1	135,000	145,000	120,000
Clima	3	5	2	3
Reação da comunidade	4	8	7	9
Rede hospitalar	3	7	9	9

Avalie quais instalações são preferíveis quando comparadas entre:

- A e B
- A e C
- B e C

Exercício 3: considere os dados abaixo.

Fator	Peso	Α	В	С
Preço do terreno (R\$)	2	300,000	430,000	390,000
Preço da construção (R\$)	3	1,740,000	1,390,000	1,520,000
Custos de treinamento (R\$)	1	135,000	145,000	120,000
Clima	3	5	2	3
Reação da comunidade	4	8	7	9
Rede hospitalar	3	7	9	9

Avalie quais instalações são preferíveis quando comparadas entre:

• A e B: B (11.15)

• A e C: C (1.36)

• B e C: B (0.12)

• Permite a inserção de uma nova instalação em uma rede já existente.

- Permite a inserção de uma nova instalação em uma rede já existente.
- Fornece uma medida aproximada da posição central da rede atual.

- Permite a inserção de uma nova instalação em uma rede já existente.
- Fornece uma medida aproximada da posição central da rede atual.

$$C_x = \frac{\sum_i d_{ix} V_i}{\sum_i V_i}$$
 $C_y = \frac{\sum_i d_{iy} V_i}{\sum_i V_i}$

- Permite a inserção de uma nova instalação em uma rede já existente.
- Fornece uma medida aproximada da posição central da rede atual.

$$C_x = \frac{\sum_i d_{ix} V_i}{\sum_i V_i}$$
 $C_y = \frac{\sum_i d_{iy} V_i}{\sum_i V_i}$

- Permite a inserção de uma nova instalação em uma rede já existente.
- Fornece uma medida aproximada da posição central da rede atual.

$$C_{x} = \frac{\sum_{i} d_{ix} V_{i}}{\sum_{i} V_{i}}$$
 $C_{y} = \frac{\sum_{i} d_{iy} V_{i}}{\sum_{i} V_{i}}$

onde:

• C_x : coordenada x do centro de gravidade.

- Permite a inserção de uma nova instalação em uma rede já existente.
- Fornece uma medida aproximada da posição central da rede atual.

$$C_{x} = \frac{\sum_{i} d_{ix} V_{i}}{\sum_{i} V_{i}}$$
 $C_{y} = \frac{\sum_{i} d_{iy} V_{i}}{\sum_{i} V_{i}}$

- C_x : coordenada x do centro de gravidade.
- C_y : coordenada y do centro de gravidade.

- Permite a inserção de uma nova instalação em uma rede já existente.
- Fornece uma medida aproximada da posição central da rede atual.

$$C_{x} = rac{\sum_{i} d_{ix} V_{i}}{\sum_{i} V_{i}}$$
 $C_{y} = rac{\sum_{i} d_{iy} V_{i}}{\sum_{i} V_{i}}$

- C_x : coordenada x do centro de gravidade.
- C_v : coordenada y do centro de gravidade.
- dix: coordenada x da localização i.

- Permite a inserção de uma nova instalação em uma rede já existente.
- Fornece uma medida aproximada da posição central da rede atual.

$$C_{x} = \frac{\sum_{i} d_{ix} V_{i}}{\sum_{i} V_{i}}$$
 $C_{y} = \frac{\sum_{i} d_{iy} V_{i}}{\sum_{i} V_{i}}$

- C_x : coordenada x do centro de gravidade.
- C_y : coordenada y do centro de gravidade.
- d_{ix}: coordenada x da localização i.
- d_{iy} : coordenada y da localização i.

- Permite a inserção de uma nova instalação em uma rede já existente.
- Fornece uma medida aproximada da posição central da rede atual.

$$C_{x} = rac{\sum_{i} d_{ix} V_{i}}{\sum_{i} V_{i}}$$
 $C_{y} = rac{\sum_{i} d_{iy} V_{i}}{\sum_{i} V_{i}}$

- C_x : coordenada x do centro de gravidade.
- C_y : coordenada y do centro de gravidade.
- dix: coordenada x da localização i.
- d_{iy}: coordenada y da localização i.
- V_i: volume movimentado de/para a localização i.

- Permite a inserção de uma nova instalação em uma rede já existente.
- Fornece uma medida aproximada da posição central da rede atual.

$$C_{x} = rac{\sum_{i} d_{ix} V_{i}}{\sum_{i} V_{i}}$$
 $C_{y} = rac{\sum_{i} d_{iy} V_{i}}{\sum_{i} V_{i}}$

- C_x : coordenada x do centro de gravidade.
- C_y : coordenada y do centro de gravidade.
- dix: coordenada x da localização i.
- d_{iy}: coordenada y da localização i.
- V_i : volume movimentado de/para a localização i. Em alguns casos: $V_i = p_i C_i$, onde:

- Permite a inserção de uma nova instalação em uma rede já existente.
- Fornece uma medida aproximada da posição central da rede atual.

$$C_{x} = rac{\sum_{i} d_{ix} V_{i}}{\sum_{i} V_{i}}$$
 $C_{y} = rac{\sum_{i} d_{iy} V_{i}}{\sum_{i} V_{i}}$

- C_x : coordenada x do centro de gravidade.
- C_y : coordenada y do centro de gravidade.
- d_{ix}: coordenada x da localização i.
- d_{iy}: coordenada y da localização i.
- V_i : volume movimentado de/para a localização i. Em alguns casos: $V_i = p_i C_i$, onde:
 - p_i: custo de transporte de/para a localização i
 - ► C_i: volume movimentado de/para a localização i

Localização	Volume	X	Υ
Instalação A	95,000	25	90
Instalação B	45,000	75	120
Instalação C	70,000	30	65

Localização	Volume	Х	Υ
Instalação A	95,000	25	90
Instalação B	45,000	75	120
Instalação C	70,000	30	65

Localização	Volume	X	Υ
Instalação A	95,000	25	90
Instalação B	45,000	75	120
Instalação C	70,000	30	65

• Assim como o modelo do centro de gravidade, este modelo insere uma instalação em uma rede já existente.

- Assim como o modelo do centro de gravidade, este modelo insere uma instalação em uma rede já existente.
- A instalação adicionada terá coordenadas X e Y individualmente coincidentes com outras instalações da rede.

- Assim como o modelo do centro de gravidade, este modelo insere uma instalação em uma rede já existente.
- A instalação adicionada terá coordenadas X e Y individualmente coincidentes com outras instalações da rede.
- A nova instalação não necessariamente coincide com outra existente, somente se ambos X e Y forem "herdados" da mesma instalação.

Resolução do modelo

Obtendo a mediana:

- Obtendo a mediana:
 - ► Somar volumes/demandas das instalações existentes. Dividir resultado por 2.

- Obtendo a mediana:
 - Somar volumes/demandas das instalações existentes. Dividir resultado por 2.
 - ▶ Se o resultado é ímpar, essa será a "mediana" das cargas.

- Obtendo a mediana:
 - Somar volumes/demandas das instalações existentes. Dividir resultado por 2.
 - ▶ Se o resultado é ímpar, essa será a "mediana" das cargas.
 - ► Se o resultado é par, haverá duas "medianas", uma igual ao resultado e outra igual ao resultado mais um.

- Obtendo a mediana:
 - Somar volumes/demandas das instalações existentes. Dividir resultado por 2.
 - ▶ Se o resultado é ímpar, essa será a "mediana" das cargas.
 - ▶ Se o resultado é par, haverá duas "medianas", uma igual ao resultado e outra igual ao resultado mais um.
- Definindo a coordenada X:

- Obtendo a mediana:
 - Somar volumes/demandas das instalações existentes. Dividir resultado por 2.
 - ▶ Se o resultado é ímpar, essa será a "mediana" das cargas.
 - ▶ Se o resultado é par, haverá duas "medianas", uma igual ao resultado e outra igual ao resultado mais um.
- Definindo a coordenada X:
 - ▶ Varrer instalações em direção crescente/decrescente em X (da esquerda para a direita, ou vice-versa).

- Obtendo a mediana:
 - Somar volumes/demandas das instalações existentes. Dividir resultado por 2.
 - ▶ Se o resultado é ímpar, essa será a "mediana" das cargas.
 - ► Se o resultado é par, haverá duas "medianas", uma igual ao resultado e outra igual ao resultado mais um.
- Definindo a coordenada X:
 - ▶ Varrer instalações em direção crescente/decrescente em *X* (da esquerda para a direita, ou vice-versa).
 - Parar quando a soma das cargas (volume ou demanda) for igual ou superior à mediana.

- Obtendo a mediana:
 - Somar volumes/demandas das instalações existentes. Dividir resultado por 2.
 - ▶ Se o resultado é ímpar, essa será a "mediana" das cargas.
 - ► Se o resultado é par, haverá duas "medianas", uma igual ao resultado e outra igual ao resultado mais um.
- Definindo a coordenada X:
 - ▶ Varrer instalações em direção crescente/decrescente em X (da esquerda para a direita, ou vice-versa).
 - Parar quando a soma das cargas (volume ou demanda) for igual ou superior à mediana.
- Definindo a coordenada Y:

- Obtendo a mediana:
 - Somar volumes/demandas das instalações existentes. Dividir resultado por 2.
 - ▶ Se o resultado é ímpar, essa será a "mediana" das cargas.
 - ► Se o resultado é par, haverá duas "medianas", uma igual ao resultado e outra igual ao resultado mais um.
- Definindo a coordenada X:
 - ▶ Varrer instalações em direção crescente/decrescente em X (da esquerda para a direita, ou vice-versa).
 - Parar quando a soma das cargas (volume ou demanda) for igual ou superior à mediana.
- Definindo a coordenada Y:
 - ▶ Varrer instalações em direção crescente/decrescente em *Y* (de cima para baixo, ou vice-versa).

- Obtendo a mediana:
 - Somar volumes/demandas das instalações existentes. Dividir resultado por 2.
 - ▶ Se o resultado é ímpar, essa será a "mediana" das cargas.
 - ► Se o resultado é par, haverá duas "medianas", uma igual ao resultado e outra igual ao resultado mais um.
- Definindo a coordenada X:
 - ▶ Varrer instalações em direção crescente/decrescente em X (da esquerda para a direita, ou vice-versa).
 - Parar quando a soma das cargas (volume ou demanda) for igual ou superior à mediana.
- Definindo a coordenada Y:
 - ▶ Varrer instalações em direção crescente/decrescente em *Y* (de cima para baixo, ou vice-versa).
 - Parar quando a soma das cargas (volume ou demanda) for igual ou superior à mediana.

Exercício 5: considere a rede abaixo.

Exercício 5: considere a rede abaixo.

Localização	Volume	Χ	Υ
Instalação A	100,000	10	100
Instalação B	10,000	63	145
Instalação C	30,000	63	60
Instalação D	120,000	67	116
Instalação E	30,000	89	135
Instalação F	100,000	108	94
Instalação G	50,000	155	155

Exercício 5: considere a rede abaixo.

Localização	Volume	Χ	Υ
Instalação A	100,000	10	100
Instalação B	10,000	63	145
Instalação C	30,000	63	60
Instalação D	120,000	67	116
Instalação E	30,000	89	135
Instalação F	100,000	108	94
Instalação G	50,000	155	155

Exercício 5: considere a rede abaixo.

Localização	Volume	Х	Υ
Instalação A	100,000	10	100
Instalação B	10,000	63	145
Instalação C	30,000	63	60
Instalação D	120,000	67	116
Instalação E	30,000	89	135
Instalação F	100,000	108	94
Instalação G	50,000	155	155

Defina o local de instalação de uma nova unidade (H), de acordo com o modelo da mediana.

Exercício 5: considere a rede abaixo.

Localização	Volume	X	Υ
Instalação A	100,000	10	100
Instalação B	10,000	63	145
Instalação C	30,000	63	60
Instalação D	120,000	67	116
Instalação E	30,000	89	135
Instalação F	100,000	108	94
Instalação G	50,000	155	155

Defina o local de instalação de uma nova unidade (H), de acordo com o modelo da mediana.

Materiais relacionados

- Leitura de capítulos:
 - Moreira: Cap. 7 Localização de instalações
 - ▶ Slack et al.: Cap. 6 Design of the operations network
 - ► Chase *et al.*: Facility Location
 - ▶ Ballou¹: Cap. 13 Facility Location Decisions
- Vídeos:
 - V1. British Airways Building the 787-9 Dreamliner [3:59]
 - V2. How Boeing Builds a 737 Plane in Just 9 Days [2:38]

¹BALLOU, R.H. Business Logistics: Supply Chain Management. 5th ed. Prentice Hall, 2003.