COURSE: MATH 2132

[9] 1. (a) The following sequence of functions is defined on the interval $[0, \infty)$

$$\left\{1 + (x^2 - 2x + 1)e^{-nx}\right\}_{n=1}^{\infty}$$
.

Determine whether the sequence is convergent or divergent. If it converges, find the limit function.

- Find all values of x for which the sequence $\left\{1 + \frac{|x-2|^n}{n!}\right\}_{n=1}^{\infty}$ converges. (Explain your work.)
- [12] 2. Let $f(x) = e^{1-2x}$ for $-\infty < x < \infty$. Then:
- (a) Find the first 4 terms of the Taylor series of f(x) about 1. [4]
- (b) Find the nth-remainder (i.e. R_n(1, x)). [4]
 - (c) Show that $\lim_{n\to\infty} R_n(1,x) = 0$ only for the case x > 1.
- [8] 3. Let $f(x) = \frac{1+a}{1+ax}$, find the value of a such that the 4th term of Taylor series of f(x) about 1 is $-\frac{1}{27}(x-1)^3$. (Hint: You may use geometric series)
- Find the radius of convergence and the open interval of convergence for the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{3^{2n} e^{\sqrt{n}}} (x+1)^{2n}$
- [6] 5. Find the sum and the interval of convergence of the series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)! e^{(4n+2)x}}$$

[12] 6. Let $f(x) = \frac{x - x^2}{(1 + x)^2}$ use the binomial expansion to find the Maclaurin series of f(x). Express your answer in sigma notation and simplify as much as possible. Determine its open interval of convergence.