IDENTIFICATION OF AUTISM SPECTRUM DISORDER USING AI TECHNIQUES

Sabrine Bendimerad

Master's Student in Computational Neuroscience and Neuroengineering

Supervisors: Sabir Jacquir and Arthur Tenenhaus

1.Introduction and Motivation

- Autism Spectrum Disorder (ASD) affects social, communication, and behavioral skills, with 1 in 100 children impacted globally.
- Current diagnostic methods rely on subjective assessments, leading to variability and delays.
- Functional MRI (fMRI) combined with Machine Learning (ML) and Deep Learning (DL) offers a promising approach for efficient ASD diagnosis¹.
- Challenges include small datasets, site variability, underutilized phenotypic data, and limited ability to capture global brain context².
- This project establishes baselines with existing models and aims to explore generative AI for data augmentation and Vision Transformers for classification as advanced approaches during the internship.

2.Data

• Utilized the autism brain imaging data exchange (ABIDE) dataset, consisting of 1,035 fMRI scans from 17 international sites.

Figure 1: Age, Gender and Asd VS Control Distributions

• fMRI data is provided in 1D files representing BOLD signal time-series for multiple brain regions defined by six atlases: CC200, AAL, HO, EZ, TT, and Dosenbach160.

Figure 2: Workflow for Functional Connectivity Matrix Generation and examples of ML process

3. Methodology

- Generated connectivity matrices to represent functional connectivity between brain regions.
- Normalized phenotypic data (age, sex, IQ).
- Conducted exploratory data analysis to address missing data and assess class distributions.
- Split data into training, validation, and test sets, ensuring balanced representation across sites.
- Built Machine Learning models including Logistic Regression, Random Forest, and XGBoost.
- Developed Deep Learning models inclusing Multi Layer PErceptron(MLP), COnvolution Neural Networks (CNNs), and Autoencoders.
- Optimized hyperparameters using grid search and cross-validation.
- Evaluated the best-performing model on unseen test data.

4.Results

Machine Learning Results (Accuracy %)					Deep Learning Results (Accuracy %)				
Setup	+Phenotypic	-Phenotypic	Male	NYU	Setup	+Phenotypic	-Phenotypic	Male	NYU
Logistic Regression	68	65	67	66	CNN	74	70	74	74
Random Forest	74	70	72	73	MLP	76	73	77	78
XGBoost	78	72	75	76	Autoencoder	82	78	83	84

Table 1: Machine Learning Results

Table 2: Deep Learning Results

Figure 3: Site-wise sample distribution in ABIDE

- Including phenotypic data improved accuracy, with the highest gains observed in Autoencoders (+4-6%).
- Deep learning models consistently outperformed machine learning methods, demonstrating the ability to capture complex fMRI patterns.
- Site-specific experiments with New York University (NYU), the most representative site in the dataset, showed slightly better performance.
- Male-only datasets had marginally reduced accuracy, suggesting potential bias or missing diversity in features.
- Random Forest and XGBoost were strong traditional ML performers, but they plateaued compared to CNNs and Autoencoders.
- Autoencoders excelled in capturing non-linear and high-dimensional patterns in connectivity matrices.

5.Limitations and Future Work

Limitations:

- Connectivity matrices simplify data but risk losing critical spatial patterns.
- Dataset heterogeneity and small size limit the potential for achieving higher accuracy.
- Existing models struggle to effectively capture both temporal and spatial information³.

Future Work:

- Leverage Generative Adversarial networks (GANs) for neuroimaging-specific data augmentation to enhance dataset diversity.
- Implement Vision Transformers (ViTs) and hybrid CNN-ViT models for more comprehensive feature extraction.
- Combine sMRI and fMRI data for a multi-modal approach.

6.References

- 1. Huo, Y., et al. "3D Whole Brain Segmentation Using Spatially Localized Atlas Network Tiles." *NeuroImage*, 194 (2019): 105-119.
- 2. Nguyen, H.-D., et al. "Towards Better Interpretable and Generalizable AD Detection Using Collective Artificial Intelligence." *Computerized Medical Imaging and Graphics*, 104 (2023): 102171.
- 3. Liu, X., et al. "MADE-for-ASD: A Multi-Atlas Deep Ensemble Network for Diagnosing Autism Spectrum Disorder." *Computers in Biology and Medicine*, 164 (2024): 106036.