TP4 – Relaciones entre conjuntos

Agustina Sol Rojas

Ejercicio 1.

Sean los conjuntos $A = \{1, 0, -1\}$ y $B = \{4, 3, 2, 1\}$. Decide si las siguientes corresponden a relaciones de A en B. Justifica.

- a. $R = \{(1; 1), (0; 2)\}$
 - $(1;1) \in A \times B$
 - $(0; 2) \in A \times B$
 - Por lo tanto $R \subseteq A \times B$
- b. $R = \{(-1; 1), (1; -1)\}$
 - $(-1;1) \in A \times B$
 - $(1;-1) \notin A \times B$
 - Por lo tanto no se da que $R \subseteq A \times B$.
 - R no es una relación de A en B
- c. $R = \{(-1; 1), (-1; 2), (-1; 3)\}$
 - $(-1;1) \in A \times B$
 - $(-1; 2) \in A \times B$
 - $(-1;3) \in A \times B$
 - Por lo tanto $R \subseteq A \times B$.
- d. $R = \{(4; 1)\}$
 - $(4;1) \notin A \times B$
 - Por lo tanto no se da que $R \subseteq A \times B$.
 - R no es una relación de A en B
- e. $R = \emptyset$
 - $\emptyset \notin A \times B$
 - Por lo tanto no se da que $R \subseteq A \times B$.

Ejercicio 2.

Sea A = $\{-3, -2, -1, 0, 1, 2, 3\}$, B = Z y la relación de A en B que viene definida en la forma: xRy si y sólo si y es el cuadrado de x. Escribe R por extensión. Define R^{-1} por comprensión y por extensión.

R por extensión:

$$R = \{(-3,9), (-2,4), (-1,1), (0,0), (1,1), (2,4), (3,9)\}$$

R⁻¹ por comprensión:

$$R^{\wedge}(-1) = \{(y, x) : (x, y) \in R\}$$

$$R^{\wedge}(-1) = \{(y, x) \colon (y \in A) \ \ \mathbb{I}(_^{\wedge})(x \in B) \ \mathbb{I} \ ^{\wedge}(x^{\wedge}2 = y)\}$$

R⁻¹ por extensión:

$$R^{\wedge}(-1) = \{(9, -3), (4, -2), (1, -1), (0, 0), (1, 1), (4, 2), (9, 3)\}$$

Ejercicio 3.

Sean los conjuntos $A = \{a, b, c, d, e\}$, $V = \{vocales\}$ y $B = \{1, 2, 3\}$. Decide si las siguientes corresponden a relaciones. Justifica

- a. $R = \{(a, a, a); (a, b, c); (b, c, d)\} en A \times A \times A$
 - $(a, a, a) \in A \times A \times A$
 - $(a, b, c) \in A \times A \times A$
 - $(b, c, d) \in A \times A \times A$
 - Por lo tanto $R \subseteq A \times A \times A$.
- b. $R = \{(a, a, a); ((c, e, 2); (a, b, 1)\} en A \times V \times B$
 - $(a, a, a) \notin A \times V \times B$
 - $(c, e, 2) \in A \times V \times B$
 - $(a, b, 1) \notin A \times V \times B$
 - Por lo tanto no se da que $R \subseteq A \times V \times B$.

- c. $R = \{(a, b, 1); (e, c, 2) : (i, j, 3)\} en V \times A \times B$
 - $(a, b, 1) \in V \times A \times B$
 - $(e, c, 2) \in V \times A \times B$
 - $(i, j, 3) \notin V \times A \times B$
 - Por lo tanto no se da que $R \subseteq V \times A \times B$.
- d. $R = \{(a, z, 3); ((b, i, 2); (c, x, 1)\} en A \times V \times B$
 - $(a, z, 3) \notin A \times V \times B$
 - $(b, i, 2) \in A \times V \times B$
 - $(c, x, 1) \notin A \times V \times B$
 - Por lo tanto no se da que $R \subseteq V \times A \times B$.

Ejercicio 4.

Sea A = $\{1, 2, 3\}$ y la relación R en A × A × A definida en la forma: $(x, y, z) \in R$ si y sólo si x < y & y < z , siendo < el "menor" usual entre números reales. Escribe R por extensión

$$R = (\{1,2,3\})$$

Ejercicio 5.

Para cada una de las siguientes relaciones: dar tres pares que pertenezcan y tres pares que no; indicar si son reflexivas, simétricas, antisimétricas, y/o transitivas.

- a. En el conjunto de los números reales
 - xRy si y sólo si $x \ge 4 \& y \ge 5$.
 - o Pares que pertenecen:
 - i. (4,5)
 - ii. (4,6)
 - iii. (4,7)
 - o Pares que no pertenecen:
 - i. (3,5)
 - ii. (3,6)
 - iii. (3,7)
 - No es reflexiva puesto que no se da que para todo $x \in \mathbb{R}$ vale que xRx

- i. Contraejemplo: $4 \in \mathbb{R}$ pero $(4,4) \notin R$
- o No es simétrica puesto que no se cumple que para todo x,y en $\mathbb R$ vale que xRy implica yRx
 - i. Contraejemplo: $(4,5) \in R \rightarrow (5,4) \in R$
 - Se puede ver que el antecedente es verdadero, pero el consecuente es falso, por lo que la implicación es falsa, entonces la relación no es simétrica.
- o No es antisimetrica puesto que no se cumple que para todo x, y en \mathbb{R} vale que xRy e yRx implican que x=y
 - i. Contraejemplo: $(5,6) \land (6,5) \in R \to 5 = 6$
 - Se puede ver que el antecedente es verdadero, pero el consecuente es falso, por lo que la implicación es falsa, entonces la relación no es asimetrica.
- o Si es transitiva puesto que para todo x, y, z en \mathbb{R} vale que xRy e yRz implican que xRz
 - i. Si vale xRy se cumple que $x \ge 4 e y \ge 5$
 - ii. Si vale yRz se cumple $y \ge 4$ y $z \ge 5$
 - iii. En el caso xRz como por i. se cumple que $x \ge 4$ y por ii. se cumple que $z \ge 5$, entonces vale yRz
 - iv. Por lo tanto siempre que el antecedente sea verdadero, teniendo en cuenta lo dicho en iii. el consecuente será verdadero y siempre que el antecedente sea falso, teniendo en cuenta lo dicho en iii. el consecuente será falso. En ambos casos la implicación es verdadero y por lo tanto la relación es transitiva.
- $xRy si y sólo si y \le x \le y + 3$.
 - o Pares que pertenecen:
 - i. (3,1)
 - ii. (3,2)
 - iii. (4,2)
 - o Pares que no pertenecen:
 - i. (3,3)
 - ii. (4,4)
 - iii. (5,6)

- O No es reflexiva puesto que no se da que para todo $x \in \mathbb{R}$ vale que xRx
 - i. Contraejemplo: $3 \in \mathbb{R}$ pero $(3,3) \notin R$
- o No es simétrica puesto que no se cumple que para todo x, y en $\mathbb R$ vale que xRy implica yRx
 - i. Contraejemplo: $(3,1) \in R \rightarrow (1,3) \in R$
 - Se puede ver que el antecedente es verdadero, pero el consecuente es falso, por lo que la implicación es falsa, entonces la relación no es simétrica.
- o Si es antisimétrica puesto que se cumple que para todo x,y en $\mathbb R$ vale que xRy e yRx implican que x=y
 - i. Si vale xRy se cumple que $y \le x \le y + 3$.
 - ii. Hay casos donde vale xRy pero no valdrá yRx puesto que si x>y vale $x\leq y\leq x+3$ pero nunca se dará $x\leq y$, por lo tanto no se cumplirá $x\leq y\leq x+3$
 - iii. Esto hace que el antecedente sea siempre falso ya que no ocurre que para todo $x \in \mathbb{R}$ e $y \in \mathbb{R}$ vale xRy e yRx por lo tanto la implicación se cumple trivialmente.
- O No es transitiva puesto que no se cumple que para todo x,y,z en $\mathbb R$ vale que xRy e yRz implican que xRz
 - i. Contraejemplo: $(9,6) \in R \land (6,3) \in R \rightarrow (9,3) \in R$
 - 1. Se puede ver que el antecedente es verdadero, pero el consecuente es falso, ya que no se cumple que $3 \le 9 \le 3 + 3$ por lo que la implicación es falsa, entonces la relación no es transitiva.
- b. Sean A = {1, 2, 3, 4} y P(A) el conjunto de partes de A
 P(A) =
 {Ø,{1},{2},{3},{4},{1,1},{1,2},{1,3},{1,4},{2,1},{2,2},{2,3},{2,4},{3,1,{3,2},{3,3},{3,4},{4,1},{4,2},{4,3},{4,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}}
 - en P(A), XRX si y sólo si X ∩ Y = ∅
 - o Pares que pertenecen:
 - i. ({1,2},{4})
 - ii. $(\{1,3\},\{2,4\})$
 - iii. ({1},{2,2})
 - o Pares que no pertenecen:

- i. ({1},{1})
- ii. $(\{1,3\},\{3\})$
- iii. ({1},{1,2})
- O No es reflexiva puesto que no se da que para todo $X \in P(A)$ vale que XRX
 - i. Contraejemplo: $\{1\} \in P(A)$ pero $(\{1\},\{1\}) \notin R$
- Si es simétrica puesto que se cumple que para todo X,Y en P(A) vale que XRY implica YRX
 - i. Si vale XRY se cumple que $X \cap Y = \emptyset$.
 - ii. Como la intersección es conmutativa si vale $X \cap Y = \emptyset$ también vale $Y \cap X = \emptyset$.
 - iii. Si vale $Y \cap X = \emptyset$, se cumple que YRX.
 - iv. Por lo tanto XRY implica YRX.
- o No es antisimétrica puesto que no se cumple que para todo X,Y en P(A) vale que XRY e YRX implican que X=Y
 - i. Contraejemplo: $(\{1\},\{2\}) \in R \land (\{2\},\{1\}) \in R \rightarrow \{1\} = \{2\}$
- No es transitiva puesto que no se cumple que para todo X, Y, Z en P(A) vale que XRY e YRZ implican que XRZ
 - i. Contraejemplo: $(\{1,4\},\{2\}) \in R \land (\{2\},\{1,3,4\}) \in R \rightarrow (\{1,4\},\{1,3,4\}) \in R$
 - 1. $\{1,4\} \cap \{1,3,4\} = \emptyset$
 - 2. $\{1,4\} = \emptyset \rightarrow absurdo$
- en P(A), XRY si y sólo si X ⊂ Y
 - o Cuando practique para el parcial lo hago...

Ejercicio 6.

Determinar si las siguientes relaciones definidas en A = {a, b, c, d} son reflexivas, simétricas, antisimétricas y transitivas

- R0 = Ø
 - O No es reflexiva puesto que no se da que para todo $x \in A$ vale que xR0x
 - Contraejemplo: $a \in A$ pero $(a, a) \notin R0$

- O Si es simétrica puesto que se cumple que para todo x,y en A vale que xR0y implica yR0x
 - Como nunca se cumple xR0y puesto que el conjunto vacío no tiene elementos, el consecuente siempre será falso, por lo tanto la simetría se cumple trivialmente.
- O Si es antisimétrica puesto que se cumple que para todo x, y en A vale que xR0y e yR0x implican que x=y
 - Como nunca se cumple xR0y ni yR0x puesto que el conjunto vacío no tiene elementos, el consecuente siempre será falso, por lo tanto la simetría se cumple trivialmente.
- O Si es transitiva puesto que se cumple que para todo x, y, z en A vale que xR0y e yR0z implican que xR0z
 - Como nunca se cumple xR0y ni yR0z puesto que el conjunto vacío no tiene elementos, el consecuente siempre será falso, por lo tanto la simetría se cumple trivialmente.
- R1 = {(a, a); (a, b); (d, c); (c, d)}
 - No es reflexiva puesto que no se da que para todo $x \in A$ vale que xR1x
 - Contraejemplo: $b \in A$ pero $(b, b) \notin R1$
 - O No es simétrica puesto que no se cumple que para todo x,y en A vale que xR1y implica yR1x
 - Contraejemplo: $(a, b) \in R1 \rightarrow (b, a) \in R1$
 - $(b,a) \notin R$
 - o No es antisimétrica puesto que no se cumple que para todo x, y en A vale que xR1y e yR1x implican que x=y
 - Contraejemplo: $(d, c) \in R1 \land (c, d) \in R1 \rightarrow c = d$
 - $c = d \rightarrow absurdo$
 - o No es transitiva puesto que no se cumple que para todo x, y, z en A vale que xR1y e yR1z implican que xR1z
 - Contraejemplo: $(d, c) \in R1 \land (c, d) \in R1 \rightarrow (d, d) \in R1$
 - $(d,d) \notin R1$
- R2 = {(a, a); (b, b); (a, b); (b, a); (d, d); (c, c)}
 - Si es reflexiva puesto que se da que para todo $x \in A$ vale que xR2x.
 - $a \in A$ y vale aR2a.
 - $b \in A$ y vale bR2b.

- $c \in A$ y vale cR2c.
- $d \in A$ y vale dR2d.
- o Si es simétrica puesto que se cumple que para todo x, y en A vale que xR2y implica yR2x.
 - $aR2a \rightarrow aR2a$
 - $bR2b \rightarrow bR2b$
 - $cR2c \rightarrow cR2c$
 - $dR2d \rightarrow dR2d$
 - $aR2b \rightarrow bR2a$
- o No es antisimétrica puesto que no se cumple que para todo x, y en A vale que xR2y e yR2x implican que x=y
 - Contraejemplo: $(a, b) \in R2 \land (b, a) \in R2 \rightarrow a = b$
 - $a = b \rightarrow absurdo$
- O Si es transitiva puesto que se cumple que para todo x, y, z en A vale que xR2y e yR2z implican que xR2z
 - $(a,b) \in R2 \land (b,a) \in R2 \rightarrow (a,a) \in R2$
- R3 = {(a, a); (a, b); (b, a); (b, c); (c, b); (b, b)}
 - O No es reflexiva puesto que no se da que para todo $x \in A$ vale que xR3x
 - Contraejemplo: $c \in A$ pero $(c,c) \notin R3$
 - o Si es simétrica puesto que se cumple que para todo x, y en A vale que xR3y implica yR3x.
 - $aR3a \rightarrow aR3a$
 - $bR3b \rightarrow bR3b$
 - $cR3c \rightarrow cR3c$
 - $dR3d \rightarrow dR3d$
 - $aR3b \rightarrow bR3a$
 - o No es antisimétrica puesto que no se cumple que para todo x, y en A vale que xR3y e yR3x implican que x=y
 - Contraejemplo: $(a, b) \in R3 \land (b, a) \in R3 \rightarrow a = b$
 - $a = b \rightarrow absurdo$
 - o No es transitiva puesto que no se cumple que para todo x, y, z en A vale que xR2y e yR2z implican que xR2z
 - Contraejemplo: $(a, b) \in R2 \land (b, c) \in R2 \rightarrow (a, c) \in R2$
 - $(a,c) \notin R3$
- R4 = A × A

o Cuando practique para el parcial lo hago...

Ejercicio 7.

Escribir la matriz y los dígrafos asociados a las relaciones anteriores

Solo hago R2 para no perder tiempo

	а	b	С	d
а	1	1	0	0
b	1	1	0	0
С	0	0	1	0
d	0	0	0	1

Ejercicio 8.

Sea $A = \{a, b, c, d\}$

a. Dar un ejemplo de una relación R no reflexiva en A

$$R = \{(a, b), (b, a), (c, d)\}$$

b. Dar un ejemplo de una relación R simétrica en A

$$R = \{(a, b), (b, a), (a, c), (c, a)\}$$

c. Dar un ejemplo de una relación R no transitiva en A

$$R = \{(a, b), (b, c), (c, d)\}$$

d. Dar un ejemplo de una relación R no simétrica en A

$$R = \{(a, b), (c, d)\}$$

e. Dar un ejemplo de una relación R antisimétrica en A

$$R = \{(a, a), (b, b)(a, b), (c, d)\}$$

Ejercicio 9.

Demostrar que si R es simétrica y transitiva y aRb para ciertos a y b, entonces aRa y bRb.

- 1. Como R es simétrica y vale aRb, entonces se cumple bRa.
- 2. Como R es transitiva y vale aRb y bRa ,entonces se cumple aRa.
- 3. Como R es transitiva y vale bRa y aRb, entonces se cumple bRb.

Ejercicio 10.

Sea A un conjunto arbitrario. Sea $R = \Delta A$ (diagonal de A). Analizar qué propiedades tiene R.

- Si es reflexiva puesto que se da que para todo $x \in A$ vale que xRx.
- Si es simétrica puesto que se cumple que para todo x, y en A vale que xRy implica yRx.
 - \circ Para los $a,b \in A$ tal que a=b, vale tanto aRb y bRa por lo tanto la implicación $aRb \to bRa$ se cumple ya que tanto el antecedente como el consecuente son verdaderos.
 - O Para los $a,b \in A$ tal que $a \neq b$, no vale ni aRb ni bRa por lo tanto la implicación $aRb \rightarrow bRa$ se cumple ya que tanto el antecedente como el consecuente son falsos.
- Si es antisimétrica puesto que se cumple que para todo x, y en A vale que xRy e yRx implican que x = y
 - O Para los $a,b \in A$ tal que a=b, vale tanto aRb y bRa por lo tanto la implicación $aRb \land bRa \rightarrow a=b$ se cumple ya que tanto el antecedente como el consecuente son verdaderos.
 - o Para los $a,b \in A$ tal que $a \neq b$, no vale ni aRb ni bRa por lo tanto la implicación $aRb \land bRa \rightarrow a = b$ se cumple ya que tanto el antecedente como el consecuente son falsos.
- Si es transitiva puesto que se cumple que para todo x, y, z en A vale que xRy e yRz implican que xRz
 - o Para los $a, b, c \in A$ tal que a = b = c, vale tanto aRb, bRc y aRc por lo tanto la implicación $aRb \land bRc \rightarrow aRc$ se cumple ya que tanto el antecedente como el consecuente son verdaderos.
 - o Para los $a,b,c \in A$ tal que $a \neq b \neq c$, no vale ni aRb, ni bRc ni aRc por lo tanto la implicación $aRb \land bRc \rightarrow aRc$ se cumple ya que tanto el antecedente como el consecuente son falsos.