Master of Science Course in Mechanical Engineering Politecnico di Milano - Bovisa Campus

CONTROL OF MECHANICAL SYSTEMS

Prof. Edoardo Sabbioni (Lecturer)

Francesco Paparazzo (Training Assistant)

Academic Year 2024/2025 - 1st Semester

CRUISE CONTROL

The figure below shows the longitudinal dynamics of a vehicle. Aim of the exercise is to implement a regulator to control the speed of the vehicle v by means of a torque T_M .

The forces acting on the vehicle system are:

- The control torque T_M
- the drag force F_{drag}
- the rolling resistance F_{RR}
- the damping of the drive shaft $(\dot{\theta}_T r_1 \text{ and } \dot{\theta}_D r_2)$
- the inertia at rotation of the tires $(4J_{wheel}\ddot{\theta}_{wheel})$
- the inertia at rotation of the motor $(J_{motor}\ddot{\theta}_M)$
- the inertia at motion of the vehicle $(M\dot{v})$
- the gravitational force (Mg)

PART 1

The drag force can be calculated according to the following formula:

$$F_{drag} = \frac{1}{2} \rho_{air} A_{front} C_x v_{relative}^2$$

Assuming that $v > v_{wind}$ and that the direction of these vectors is the one depicted in the picture, it holds that:

$$v_{relative} = v + v_{wind}$$

The rolling resistance force can be expressed as:

$$F_{RR} = C_{RR} M g (1 + k_{RR} v)$$

System data

System data			
vehicle mass	M	1500	[kg]
Moment of inertia of the wheel	J_{wheel}	1	[kgm ²]
Moment of inertia of the motor	J_M	0.05	[kgm ²]
Slope of the road	α	5	[°]
wheel radius	R	0.35	[m]
Damping coefficient 1	r_1	0.005	[Nms/rad]
Damping coefficient 1	r_2	0.005	[Nms/rad]
Torsional stiffness of the drive shaft	k_t	∞	[Nm/rad]
Transmission ratio	$ au_1$	3	-
Differential ratio	$ au_2$	1	-
Air density	$ ho_{air}$	1.225	[kg/m ³]
Front surface of the vehicle	A_{front}	2.2	$[m^2]$
Drag coefficient	C _x	0.3	-
Rolling coefficients	C_{RR}	0.01	-
	k_{RR}	0.0002	[s/m]

Consider the system without the actuator, under the assumption of a non-deformable drive shaft $(k_t = \infty)$, the system has 1 d.o.f.: the speed of the vehicle v. Assuming small oscillations around the steady state condition: $v_0 = 15 \frac{m}{s}$ and $v_{wind,0} = 3.5 \frac{m}{s}$:

- 1. Write the linearized equation of motion of the system putting in evidence the generalized mass (m*), the generalized stiffness (k*) and the generalized damping (c*)
- 2. Calculate the torque $T_{M,0}$ at steady state.

3. Write the expression of the transfer functions
$$G(s) = \frac{v}{T_M} \text{ and } D(s) = \frac{v}{v_{wind}}$$

- 4. Calculate the poles of the transfer function G(s) by using MATLAB.
- 5. Draw the Bode diagrams of the transfer function G(s) by using MATLAB.