Test-train split

Create training and test splits in using a split ratio of 30%:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
```

Assumption: By training and test split ratio it means 70% training and 30% test. There's no ratio function for train_test_split so I used the first function in the documentation which is test size, and used 0.3 due to 30%.

Create linear regression object: LinearRegression = LinearRegression()

Fit the model on to the instantiated object itself:

Check the intercept and coefficients: ->

Intercept: -7639897.157447537 Coefficients: [2.16053752e+01 1.65383679e+05 1.20959919e+05 8.67234961e+0 1.52685340e+01]

Sort the features based on the t-statistic:

metric_calculations(X_tro	ain, y_train, I	LinearRegressio	n) # Assumpt				
	Coefficients	Standard Error	t-statistic				
Avg. Area Income	21.605375	0.161641	133.663013				
Avg. Area House Age	165383.679490	1721.176995	96.087549				
Avg. Area Number of Rooms	120959.919418	1690.030744	71.572615				
Avg. Area Number of Bedrooms	867.234961	1357.935779	0.638642				
Area Population	15.268534	0.171699	88.926203				

Do predictions with the linear model: y_prediction = LinearRegression.predict(X_test)

Assuming we use X_test since the source code documents predict() to be this: predict(self, X), and we use X_test and not X_train because the model was trained on X_train and we

want to predict with new data to avoid overfitting

Plot predictions against the ground truth values:

What can be determined from this plot:

It can be determined that the model works and isn't overfitted. That the trained data works with the predicted data, i.e. future predictions can be made confidently.

Optional plots: I did them both, please check the .ipynb

Ck the .ipynb

als vs. predicted values (homoscedasticity)

Mean squared error: 10429346272.554321
Root mean squared error: 102124.1708536933
R2 value: 0.920013906373715

