

# SUMO bei TUM-VT

Matthew Fullerton

Lehrstuhl für Verkehrstechnik
Technische Universität München

#### **SUMO Workshop**

11. November 2010



## SUMO als eigenständiges Simulator

- HBS\*-konforme Simulation des Verkehrsablaufs auf Autobahnen
- AIMSUN, BABSIM, Paramics, SUMO, VISSIM
- Übertragbarkeit der für Standardelemente\*\* geltenden Parametersätze auf nicht HBS-konforme Bemessungssituationen
- TUM-VT: AIMSUN & SUMO



Bundesanstalt für Straßenwesen

<sup>\*</sup>Handbuch für die Bemessung von Straßenverkehrsanlagen (2001).

<sup>\*\*</sup>Strecke, Einfahrt, Ausfahrt, Verflechtungsstrecke



## SUMO als eigenständiges Simulator

- Stipendiat im Bereich Potenziale und Grenzen einer kooperativen Lichtsignalsteuerung unter Annahme zunehmender Vernetzung
- Potenzial von Informationsaustausch und Kooperation zwischen LSA und Fahrzeuge
- Durch Hans L. Merkle-Stiftung (HLM) für Spitzenforschung in Naturwissenschaft und Technik gefordert

Hans L. Merkle-Stiftung



## SUMO als eigenständiges Simulator





- JKU Linz
- OSM > eWorld > SUMO





## SUMO als zentrale Werkzeug/Daten Basis

- Thema Integration:
  - Unterschiedliche Datenquellen
  - Unterschiedliche Karten
    - Konzeptuelle: Node/Edge, Lane(s)/Connections
    - Formaten: e.g. <u>VISSIM</u>, SUMO, PostGIS, OSM
  - Auswertung (Effizienz und Sicherheit)
  - Kollaborationen (Extern aber auch Intern!)





#### **✓** ♦ ticks: 3866 Andere Modelle? Setup number 54 Go Once Go 100 Select Car slow-down Car Speeds average max selected-car average speed 0.47 NetLogo 🔫 SOCIONICAL



#### Kopplung von verschiedenen Arten von Modellen

Gemeinsame grundliegende Daten und Auswertung nötig





#### Verkehrsdaten

- Gleiche UI für Eingabe- und Ausgabedaten
  - Generische interne Klassen
- Scatter, Contour Plots
- Einfacher durch ,dfrouter', Detektoren direkt als Aufzeichnungsquellen genützt







#### Verkehrsnetze

SUMO Formaten als Basis

- Warum?
  - XML: Edges, nodes und lane connections
  - netconvert': Viele andere Formate können umgewandelt
  - ,dfrouter': Routen/Emitters
  - Klarheit der Daten macht umwandeln in anderen Formaten möglich!





## Auswertung von Sicherheitskenngrößen

Auswertungstool für "Surrogate Safety Measures": SSAM (Surrogate Safety Assessment Module, FHWA/Siemens Traffic Solutions)

Berechnet und visualisiert u.a. folgende **Sicherheitskenngrößen** aus Trajektorien von Simulationsfahrzeugen und identifiziert Konfliktsituationen:

- Time to Collision (TTC)
- Post Encroachment Time (PET)
- Minimale und maximale Beschleunigung
- Maximale Geschwindigkeit
- Relativgeschwindigkeit

#### Konflikte werden klassifiziert:

- Auffahrkonflikt
- Fahrstreifenwechselkonflikt
- Kreuzungskonflikt



# Auswertung von Sicherheitskenngrößen

Kriterien für einen Auffahrkonflikt:

| 0 💠      | <= TTC       | <= | 1,5 🕏    | seconds                    |
|----------|--------------|----|----------|----------------------------|
|          | <= PET       |    | 2,2 💠    | seconds                    |
|          | <= MaxS      |    | 57,156 🕏 | meters/second              |
| 0,623 🕏  | <= DeltaS    | <= | 82,027 🕏 | meters/second              |
| -9,198 🕏 | <= DR        | <= | 3,133 🕏  | meters/second <sup>2</sup> |
| -9,198 🕏 | <= MaxD      | <= | 3,133 🕏  | meters/second <sup>2</sup> |
| 0,313 🕏  | <= MaxDeltaV | <= | 49,39 😂  | meters/second              |





#### Vielen Dank!



www.vt.bv.tum.de