1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, ...

.... 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312,<mark>313</mark>, 314, 315, 316,...

..., 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033, 2034,

2035, 2036, 2037, 2038,...

Definition: For a natural number n, let $\pi(n)$ denote the number of primes less than n.

n	$\pi(n)$	$\frac{\pi(n)}{n}$	$\frac{1}{\ln(n)}$	$\frac{\frac{\pi(n)}{n}}{\frac{1}{\ln(n)}}$
5	2	.4	.62	0.64516
10	4	.4	.43429	0.92104
100	25	.25	.21714	1.15133
1,000	168	.168	.14476	1.16054
10,000	1229	.1229	.10857	1.13199
100,000	8592	.09592	.08685	1.10443
1,000,000	78498	.078498	.07238	1.08452

The Prime Number Theorem: As n approaches infinity, the proportion of primes less than or equal to n approaches $\frac{1}{\ln(n)}$, Specifically,

$$\lim_{n\to\infty} \left(\frac{\pi(n)/n}{1/\ln(n)}\right) = 1.$$

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, ...

..., 300, 301, 302, 303, 304, 305, 306, **307**, 308, 309, 310, **311**, 312,313, 314, 315, 316,...

..., 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033, 2034, 2035, 2036, 2037, 2038,...

difference is 2.

Twin Prime Conjecture: There are infinitely many primes whose

 $Yitang\ Zhang,\ January\ 2013$

James Maynard, November 2013

Green and Tao's Theorem: There are arbitrarily long arithmetic progressions of primes.

Ben Green and Terrence Tao, 2004

Marin Mersenne, 1588-1648

Frank Nelson Cole, 1861-1926

Definition: A *Mersenne Prime* is a prime of the form $2^p - 1$, where p is prime. A prime of the form $2^{2^k} + 1$ is called a *Fermat Prime*.