Méthodes de descente

Michel Bierlaire

michel.bierlaire@epfl.ch

EPFL - Laboratoire Transport et Mobilité - ENAC

Méthode de descente

Idée

- 1. Trouver une direction de descente d_k , c'est-à-dire telle que $\nabla f(x_k)^T d_k < 0$.
- 2. Trouver un pas α_k tel que $f(x_k + \alpha_k d_k) < f(x_k)$.
- 3. Calculer $x_{k+1} = x_k + \alpha_k d_k$.

Plus forte pente

- Choix intuitif de la direction : $d_k = -\nabla f(x_k)$
- Choix du pas

$$\alpha_k = \operatorname{argmin}_{\alpha \in \mathbb{R}_0^+} f(x_k + \alpha d_k).$$

Exemple:

$$f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$$

Plus forte pente

Plus forte pente

$$f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$$

Changement de variable :

$$\begin{array}{rcl} x_1' & = & x_1 \\ x_2' & = & 3x_2 \end{array}$$

et

$$\tilde{f}(x') = \frac{1}{2}x_1'^2 + \frac{9}{2}(\frac{1}{3}x_2')^2 = \frac{1}{2}x_1'^2 + \frac{1}{2}x_2'^2.$$

$$\tilde{f}(x') = \frac{1}{2}x_1'^2 + \frac{1}{2}x_2'^2.$$

Direction:

$$d = -\nabla \tilde{f}(x') = \begin{pmatrix} -x_1' \\ -x_2' \end{pmatrix}.$$

Pas:

$$\underset{\alpha}{\operatorname{argmin}}_{\alpha} f(x' - \alpha \nabla f(x')) = \min_{\alpha} \frac{1}{2} (x'_1 - \alpha x'_1)^2 + \frac{1}{2} (x'_2 - \alpha x'_2)^2,$$

Solution : $\alpha = 1$

$$\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} + \begin{pmatrix} -x_1' \\ -x_2' \end{pmatrix} = 0,$$

- Après conditionnement, la méthode de la plus forte pente converge en une seule itération sur cet exemple
- D'une manière générale, un pré-conditionnement peut significativement accélérer la méthode

Algorithme: Plus forte pente préconditionnée

Objectif

Trouver une approximation de la solution du problème

$$\min_{x \in \mathbb{R}^n} f(x). \tag{1}$$

Input

- La fonction $f: \mathbb{R}^n \to \mathbb{R}$ différentiable;
- Le gradient de la fonction $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$;
- Une famille de préconditionneurs $(D_k)_k$ telle que D_k est définie positive pour tout k;
- $x_0 \in \mathbb{R}^n$;
- La précision demandée $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$.

Algorithme: Plus forte pente préconditionnée

Output

Une approximation de la solution $x^* \in \mathbb{R}$

Initialisation

$$k = 0$$

Itérations

- 1. $d_k = -D_k \nabla f(x_k)$,
- 2. Déterminer α_k , par exemple $\alpha_k = \operatorname{argmin}_{\alpha>0} f(x_k + \alpha d_k)$,
- 3. $x_{k+1} = x_k + \alpha_k d_k$,
- **4.** k = k + 1.

Critère d'arrêt Si $\|\nabla f(x_k)\| \le \varepsilon$, alors $x^* = x_k$.

Il reste à préciser

- comment choisir D_k
- comment choisir α_k

et il reste à s'assurer que cela fonctionne...

Résolution de

$$\alpha_k = \operatorname{argmin}_{\alpha \in \mathbb{R}_0^+} f(x_k + \alpha d_k).$$

trop coûteuse

- Travail inutile si la direction n'est pas bonne
- Idée : prenons n'importe quel α tel que

$$f(x_k + \alpha d_k) < f(x_k)$$

Malheureusement, cela ne suffit pas...

- Exemple : $f(x) = x^2$
- Appliquons l'algorithme avec $x_0 = 2$, et

$$D_k = 1/2|x_k| = \operatorname{sgn}(x_k)/2x_k$$

 $\alpha_k = 2 + 3(2^{-k-1}).$

- D_k est bien (défini) positif pour tout k.
- $\nabla f(x_k) = 2x_k \Rightarrow d_k = -D_k \nabla f(x_k) = -\operatorname{sgn}(x_k)$
- La méthode s'écrit

$$x_{k+1} = \begin{cases} x_k - 2 - 3(2^{-k-1}) & \text{si } x_k \ge 0, \\ x_k + 2 + 3(2^{-k-1}) & \text{si } x_k < 0, \end{cases}$$

Nous avons que

$$x_k = (-1)^k (1 + 2^{-k})$$

et

$$|x_{k+1}| < |x_k|.$$

(p. 264)

Dès lors

$$f(x_{k+1}) < f(x_k)$$

Cependant, la suite x_k a deux points d'accumulation: -1 et 1

k	x_k	d_k	$lpha_k$
0	+2.000000e+00	-1	+3.500000e+00
1	-1.500000e+00	1	+2.750000e+00
2	+1.250000e+00	-1	+2.375000e+00
3	-1.125000e+00	1	+2.187500e+00
4	+1.062500e+00	-1	+2.093750e+00
5	-1.031250e+00	1	+2.046875e+00
:			
46	+1.000000e+00	-1	+2.000000e+00
47	-1.000000e+00	1	+2.000000e+00
48	+1.000000e+00	-1	+2.000000e+00
49	-1.000000e+00	1	+2.000000e+00
50	+1.000000e+00	-1	+2.000000e+00

Pourquoi cela ne fonctionne pas?

- Origine théorique : théorème de Taylor
- Théorie locale
- Ici, les pas sont trop longs
- Le fait que $f(x_{k+1}) < f(x_k)$ est du à la chance et non au fait que $d^T \nabla f(x_k) < 0$
- Les pas sont trop longs par rapport au bénéfice obtenu

Notion de diminution suffisante

Soit $\gamma > 0$. On veut

$$f(x_k) - f(x_k + \alpha_k d_k) \ge \alpha_k \gamma,$$

ou encore

$$f(x_k + \alpha_k d_k) \le f(x_k) - \alpha_k \gamma.$$

Exemple:

$$f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$$

$$x_0 = \begin{pmatrix} 10 \\ 1 \end{pmatrix} \quad d = \begin{pmatrix} \frac{-10}{\sqrt{181}} \\ \frac{-9}{\sqrt{181}} \end{pmatrix} \quad \gamma = 6$$

Exemple:

$$f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$$

$$x_0 = \begin{pmatrix} 10 \\ 1 \end{pmatrix} \quad d = \begin{pmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix} \quad \gamma = 6$$

- γ ne peut pas être constant
- Il doit dépendre de la direction
- Utilisons la théorie

Rappel

Direction de descente Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ une fonction différentiable. Soient $x \in \mathbb{R}^n$ tel que $\nabla f(x) \neq 0$ et $d \in \mathbb{R}^n$. Si d est une direction de descente, alors il existe $\eta > 0$ tel que

$$f(x + \alpha d) < f(x) \quad \forall 0 < \alpha \le \eta.$$

De plus, pour tout $\beta < 1$, il existe $\widehat{\eta} > 0$ tel que

$$f(x + \alpha d) < f(x) + \alpha \beta \nabla f(x)^T d,$$

pour tout $0 < \alpha \leq \widehat{\eta}$.

(voir début du cours et p. 36)

Choisissons

$$\gamma = -\beta \nabla f(x_k)^T d_k$$

avec $0 < \beta < 1$.

Diminution suffisante : première condition de Wolfe

Soient $f: \mathbb{R}^n \to \mathbb{R}$ une fonction différentiable, un point $x_k \in \mathbb{R}^n$, une direction (de descente) $d_k \in \mathbb{R}^n$ telle que $\nabla f(x_k)^T d_k < 0$ et un pas $\alpha_k \in \mathbb{R}$, $\alpha_k > 0$. On dira que la fonction f diminue suffisamment en $x_k + \alpha_k d_k$ par rapport à x_k si

$$f(x_k + \alpha_k d_k) \le f(x_k) + \alpha_k \beta_1 \nabla f(x_k)^T d_k,$$

avec $0 < \beta_1 < 1$. Cette condition s'appelle la première condition de Wolfe

- Exemple : $f(x) = x^2$
- Appliquons l'algorithme avec $x_0 = 2$, et

$$D_k = 1/2x_k$$
$$\alpha_k = 2^{-k-1}.$$

- D_k est bien (défini) positif pour tout k.
- $\nabla f(x_k) = 2x_k \Rightarrow d_k = -D_k \nabla f(x_k) = -1$
- La méthode s'écrit

$$x_{k+1} = x_k - 2^{-k-1}$$

Nous avons que

$$x_k = 1 + 2^{-k}.$$

(p. 269)

Dès lors

$$f(x_{k+1}) < f(x_k)$$

Cependant,

$$\lim_{k \to \infty} x_k = 1 \neq 0$$


```
k
                     d_k
                         \alpha_k
    x_k
    +2.000000e+00
0
                     -1
                         +5.000000e-01
    +1.500000e+00
                     -1
                         +2.500000e-01
1
2
    +1.250000e+00
                         +1.250000e-01
                     -1
3
    +1.125000e+00
                         +6.250000e-02
                     -1
                         +3.125000e-02
    +1.062500e+00
4
                     -1
5
    +1.031250e+00
                     -1
                         +1.562500e-02
    +1.000000e+00
46
                     -1
                         +7.105427e-15
    +1.000000e+00
                         +3.552714e-15
47
                     -1
48
    +1.000000e+00
                     -1
                         +1.776357e-15
   +1.000000e+00
                         +8.881784e-16
49
                     -1
    +1.000000e+00
                         +4.440892e-16
50
                     -1
```

Pourquoi cela ne fonctionne pas ?

- Dégénérescence
- Pas trop petits

Notion de progrès suffisant

- $\bullet \quad \nabla f(x_k)^T d_k < 0$
- Si α_k minimum dans la direction alors $\nabla f(x_k + \alpha_k d_k)^T d_k = 0$
- La dérivée directionnelle augmente

Progrès suffisant : seconde condition de Wolfe

Soient $f: \mathbb{R}^n \to \mathbb{R}$ une fonction différentiable, un point $x_k \in \mathbb{R}^n$, une direction (de descente) $d_k \in \mathbb{R}^n$ telle que $\nabla f(x_k)^T d_k < 0$ et un pas $\alpha_k \in \mathbb{R}$, $\alpha_k > 0$. On dira que le point $x_k + \alpha_k d_k$ apporte un progrès suffisant par rapport à x_k si

$$\nabla f(x_k + \alpha_k d_k)^T d_k \ge \beta_2 \nabla f(x_k)^T d_k,$$

avec $0 < \beta_2 < 1$. Cette condition s'appelle la seconde condition de Wolfe.

$$d_k = (-10/\sqrt{181} - 9/\sqrt{181})^T \qquad \alpha \ge 1.4687$$

$$d_k = (-2/\sqrt{5} \quad 1/\sqrt{5})^T \qquad \alpha \ge 0.94603$$

Conditions de Wolfe

Validité des conditions de Wolfe Soient $f: \mathbb{R}^n \to \mathbb{R}$ une fonction différentiable, un point $x_k \in \mathbb{R}^n$ et une direction (de descente) $d_k \in \mathbb{R}^n$ telle que $\nabla f(x_k)^T d_k < 0$ et f est bornée inférieurement dans la direction d_k , c'est-à-dire il existe f_0 tel que $f(x_k + \alpha d_k) \geq f_0$ pour tout $\alpha \geq 0$. Si $0 < \beta_1 < 1$, il existe η tel que la première condition de Wolfe soit vérifiée pour tout $\alpha_k \leq \eta$. De plus, si $0 < \beta_1 < \beta_2 < 1$, il existe $\alpha_2 > 0$ tel que les deux conditions de Wolfe soient toutes deux vérifiées.

(p. 271)

Objectif

Trouver un pas α^* tel que les conditions de Wolfe soient vérifiées.

Input

- La fonction $f: \mathbb{R}^n \to \mathbb{R}$ différentiable;
- Le gradient de la fonction $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$;
- Un vecteur $x \in \mathbb{R}^n$;
- Une direction de descente d telle que $\nabla f(x)^T d < 0$;
- Une première approximation de la solution $\alpha_0 > 0$.

Input (suite)

- Des paramètres β_1 et β_2 tels que $0 < \beta_1 < \beta_2 < 1$.
- Un paramètre $\lambda > 1$.

Output

Un pas α^* tel que les conditions de Wolfe soient vérifiées.

Initialisation

$$i=0$$
, $\alpha_\ell=0$, $\alpha_r=+\infty$.

Itérations

- Si α_i vérifie les conditions, alors $\alpha^* = \alpha_i$. STOP.
- Si α_i viole Wolfe-1, i.e. $f(x_k+\alpha_k d_k)>f(x_k)+\alpha_k \beta_1 \nabla f(x_k)^T d_k, \text{ alors le pas est trop long et}$

$$\begin{array}{rcl} \alpha_r & = & \alpha_i \\ \alpha_{i+1} & = & \frac{\alpha_\ell + \alpha_r}{2} \end{array}$$

Itérations

• Si α_i ne viole pas Wolfe-1 et viole Wolfe-2, i.e.

$$\nabla f(x + \alpha_i d)^T d < \beta_2 \nabla f(x)^T d$$

alors le pas est trop court et

$$\alpha_{\ell} = \alpha_{i}$$

$$\alpha_{i+1} = \begin{cases} \frac{\alpha_{\ell} + \alpha_{r}}{2} & \text{si } \alpha_{r} < +\infty \\ \lambda \alpha_{i} & \text{sinon} \end{cases}$$

• i = i+1

$$f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2 \quad x = \begin{pmatrix} 10 \\ 1 \end{pmatrix} \quad d = \begin{pmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$$
$$\alpha_0 = 10^{-3} \quad \beta_1 = 0.3 \quad \beta_2 = 0.7 \quad \lambda = 20.$$

α_i	$lpha_\ell$	$lpha_r$	Cond. violée
1.0000000e-03	0.00000000e+00	9.99999000e+05	Wolfe-2
2.00000000e-02	1.0000000e-03	9.99999000e+05	Wolfe-2
4.00000000e-01	2.00000000e-02	9.99999000e+05	Wolfe-2
8.0000000e+00	4.00000000e-01	9.99999000e+05	Wolfe-1
4.20000000e+00	4.00000000e-01	8.0000000e+00	Wolfe-1
2.30000000e+00	4.00000000e-01	4.20000000e+00	_

Méthode de Newton

- Combiner les idées de
 - 1. plus forte pente préconditionnée
 - 2. Newton
 - 3. recherche linéaire
- Itération de Newton locale

$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k),$$

• Itération de plus forte pente préconditionnée

$$x_{k+1} = x_k - \alpha_k D_k \nabla f(x_k),$$

• Si $\nabla^2 f(x_k)^{-1}$ déf. positive, et $\alpha_k=1$ acceptable, itérations équivalentes.

Méthode de Newton

- Si $\alpha_k = 1$ non acceptable, algorithme de recherche linéaire
- Si $\nabla^2 f(x_k)^{-1}$ non définie positive, définir

$$D_k = (\nabla^2 f(x_k) + E)^{-1}$$

avec E telle que D_k soit définie positive. Typiquement, $E = \tau I$

• Exemple:

$$\nabla^2 f(x_k) = \begin{pmatrix} -2 & 0 \\ 0 & -3 \end{pmatrix} \quad E = 3.1 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \nabla^2 f(x_k) + E = \begin{pmatrix} 1.1 & 0 \\ 0 & 0.1 \end{pmatrix}$$

Algorithme: Newton avec recherche linéaire

Objectif

Trouver une approximation d'un minimum local du problème

$$\min_{x \in \mathbb{R}^n} f(x).$$

Input

- La fonction $f: \mathbb{R}^n \to \mathbb{R}$ différentiable;
- Le gradient de la fonction $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$;
- Le hessien de la fonction $\nabla^2 f: \mathbb{R}^n \to \mathbb{R}^{n \times n}$;
- Une première approximation de la solution $x_0 \in \mathbb{R}^n$;
- La précision demandée $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$.

Algorithme : Newton avec recherche linéaire

Output

Une approximation de la solution $x^* \in \mathbb{R}$

Initialisation

$$k = 0$$

Algorithme: Newton avec recherche linéaire

Itérations

• Calculer une matrice triangulaire inférieure L_k et τ tels que

$$L_k L_k^T = \nabla^2 f(x_k) + \tau I,$$

en utilisant l'algorithme précédent

- Trouver z_k en résolvant le système triangulaire $L_k z_k = \nabla f(x_k)$.
- Trouver d_k en résolvant le système triangulaire $L_k^T d_k = -z_k$.

Algorithme: Newton avec recherche linéaire

Itérations (suite)

- Déterminer α_k en appliquant la recherche linéaire avec $\alpha_0 = 1$.
- $\bullet \ x_{k+1} = x_k + \alpha_k d_k.$
- k = k + 1.

Critère d'arrêt

Si $\|\nabla f(x_k)\| \le \varepsilon$, alors $x^* = x_k$.

Point de départ $x_0 = (1 \ 1)^T$.

$$\min f(x_1, x_2) = \frac{1}{2}x_1^2 + x_1 \cos x_2,$$

Point de départ $x_0 = (1 \ 1)^T$.

Solution:

$$x^* = \begin{pmatrix} 1 \\ \pi \end{pmatrix} \quad \nabla f(x^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \nabla^2 f(x^*) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Solution:

$$x^* = \begin{pmatrix} 1 \\ \pi \end{pmatrix} \quad \nabla f(x^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \nabla^2 f(x^*) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 x_1

k	$f(x_k)$	$\ \nabla f(x_k)\ $	α_k	au
0	1.04030231e+00	1.75516512e+00		
1	2.34942031e-01	8.88574897e-01	1	1.64562250e+00
2	4.21849003e-02	4.80063696e-01	1	1.72091923e+00
3	-4.52738278e-01	2.67168927e-01	3	8.64490594e-01
4	-4.93913638e-01	1.14762780e-01	1	0.00000000e+00
5	-4.99982955e-01	5.85174623e-03	1	0.00000000e+00
6	-5.00000000e-01	1.94633135e-05	1	0.00000000e+00
7	-5.00000000e-01	2.18521663e-10	1	0.00000000e+00
8	-5.00000000e-01	1.22460635e-16	1	0.00000000e+00

Résumé

- Algorithme complet
- Combinaison entre
 - méthode de Newton locale
 - plus forte pente préconditionnée
 - recherche linéaire

