# ID2209 - Final Project

Multi agent system for resource delegation between agents and stations in a high risk/high frequent dynamic 2D environment.



#### About us



Interests: PAINTING and TECHNOLOG Era: 1605

Select a four

Select 1 four

Select 1 four

Select 1 four

Select 1 four

Select 2 four

Select 3 four

Select

Classic pizza - 11 - 9000 - UNSOLD Dragon skin - 5 - 14000 - UNSOLD Old books - 60 - 1500 - UNSOLD Mona Lisa - 1 - 18000 - UNSOLD

Name: Amount: Price: Start a new auction











# **Pirogie ctriage at**









#### Tool used - GAMA 1.6





# Find best point

Different distance

Different speed



# Different algorithms tried



- Purple Normalized points
- Red Inverse weighted point
- Green Average point
- Gray Total time calculation

# Inverse weighted point

Agent 1 at {1,1} speed 1

Agent 2 at {8,3} speed 2

Agent 3 at {5,8} speed 3

Total speed = 1 + 2 + 3 = 6

Total factors = 6/1 + 6/2 + 6/3 = 11



$$(6/1) / 11 = 0.5454...$$
 \*  $\{1,1\}$  ->  $\{0.54; 0.54\}$ 

$$(6/2) / 11 = 0.2727...$$
 \*  $\{8,3\}$  ->  $\{2.16; 0.81\}$ 

$$(6/3) / 11 = 0.1818...$$
 \*  $\{5,8\}$  ->  $\{0.90; 1.44\}$ 

$$\{0.54; 0.54\} + \{2.16; 0.81\} + \{0.90; 1.44\}$$

Meeting point is {3.60; 2.79}



#### Bonus slide: Inverse factor + time calculation



Start by finding inverse weighted point

Calculate total time for points around weighted point and select the lowest time as new point

Iterate X times to find lowest time

Ended up being slower

## Version 1.0 in action



# Is this working?



| Agent          | Location     | Speed | Request time |
|----------------|--------------|-------|--------------|
| Requester 1    | {50, 20, 0}  | 1     | 2            |
| Requester 2    | {30, 70, 0}  | 2     | 5            |
| Requester 3    | {66, 140, 0} | 3     | 8            |
| Delivery man 1 | {170, 70, 0} | 2     |              |



| No method   |             |                    |           |              |
|-------------|-------------|--------------------|-----------|--------------|
|             | Start Cycle | Distance Travelled | End Cycle | Cycles delta |
| Requester 1 | 2           | 262,95             | 135       | 133          |
| Requester 2 | 5           | 275,51             | 103       | 98           |
| Requester 3 | 8           | 250,31             | 72        | 64           |
|             |             | 788,77             |           | 295          |



| Inverse factor |             |                    |           |              |
|----------------|-------------|--------------------|-----------|--------------|
|                | Start Cycle | Distance Travelled | End Cycle | Cycles delta |
| Requester 1    | 2           | 86,93              | 58        | 56           |
| Requester 2    | 5           | 76,62              | 43        | 38           |
| Requester 3    | 8           | 169,58             | 58        | 50           |
| DeliveryMan    | -           | 104,16             | 33        | 33           |
|                |             | 437,29             |           | 144          |

Distance lowered by 45% Time shortened by up to 62.37%

## Scaling for bigger simulation

Multiple supply centers

Multiple camps

Gets more complicated...

Control center to locate the nearest supply station





#### **FIPA**



#### More features

Best delivery man

"Go get it yourself!"

Simulate the interior of supply stations

Let delivery man load at different stations



#### Restriction area



Free for all





Restriction Factor = 0.5



Camps | Supplies | Supplies



Restriction Factor = 0.5



Supplies | Camps | Supplies



## Version 2.0 in action





#### More utility

#### Delivery man arrives at station and wait in line

Resource 1 = 200 Resource 2 = 100 Resource 3 = 20 Resource 1 has priority 0.05 Resource 2 has priority 0.63 Resource 3 has priority 2.13

Resource 1 = 1Resource 2 = 3Resource 3 = 180





| 200 | * 0.05 = | 10.00 | 1   | * 0.05 = | 0.05  |
|-----|----------|-------|-----|----------|-------|
| 100 | * 0.63 = | 63.00 | 3   | * 0.63 = | 1.89  |
| 20  | * 2.13 = | 42.60 | 180 | * 2.13 = | 42.60 |

Total utility = 115.60

Total utility = 385.34

We pick Eric since he takes shorter time to load thus

Camps wait shorter duration for priority requests

Note: Lying here decreases total utility



# Version 2.1 in action





## **Improvements**

Agent walking path (Dijsktra, A\*, weighted network) 3D environment and paths Time taken to deliver to requester Add priority to inverse weighted point Supply stations run out of resources Special entrances at camps/supplies Supply station only allow X many delivery man Supplies can weigh, so they slow agents down Weather effect that slows down everyone At night, people might get robbed





# Tack så mycket



Takk fyrir okkur

谢谢

.... 0.00 THE PERSON NAMED IN To the last