Teori Bahasa & Otomata

Pendilkom/Ilkom Universitas Pendidikan Indonesia

Daftar Isi

- Bab 1 Pendahuluan
- Bab 2 Matematika Dasar
- Bab 3 Dasar-Dasar Teori Bahasa
- Bab 4 Representasi Bahasa
- Bab 5 Klasifikasi Grammar Noam Chomsky

Bab 1 Pendahuluan

- Komponen Ilmu Informatika
 - Ide & model fundamental yang mendasari komputasi
 - Teknik rekayasa untuk perancangan sistem komputasi

Bab1 Pendahuluan (Model Komputasi)

- Finite automata/finite state automata (FSA)
 - Deterministic finite automata (DFA)
 - Non deterministic finite automata (NDFA)
- Pushdown automata (PA)
 - Deterministic pushdown automata (DPA)
 - Non deterministic pushdown automata (NDPA)
- Turing machine (TM)

Bab 1 Pendahuluan (Teori Komputasi)

- Apa yang dimaksud dengan mengkomputasi?
- Apa yang dapat dikomputasi?
- Seberapa kompleks untuk mengkomputasi sesuatu?

Bab 2 Matematika Dasar (Himpunan)

- Himpunan bagian, A⊆ B
- Penggabungan, A ∪ B
- Irisan, $A \cap B$
- Complement (Relative/Absolute)
- Cartesian Product,

$$A \times B = \{(x, y) \mid (x \in A) \text{ dan } (y \in B)\}$$

Bab2 Matematika Dasar (Relasi)

Sifat-sifat relasi:

- Reflexive, $\forall x \in X, xRx \Rightarrow (x, x) \in R$
- Symmetric, $x, y \in X, xRy \Rightarrow yRx$
- Transitive, $x, y, z \in X$, $xRy \& yRz \Rightarrow xRz$
- Irreflexive, $\forall x \in X \Rightarrow (x, x) \notin R$
- Antisymmetric $x, y \in X, xRy \& yRz \Rightarrow x = y$

Bab 2 Matematika Dasar (Relasi)

Transitive Closure

• Definisi: Bila X adalah suatu himpunan berhingga dan R adalah relasi pada X. Relasi $R^+ = R \cup R^2 \cup R^3$... pada X, disebut transitive closure R pada X.

Bab 2 Matematika Dasar (Relasi)

 Transitive closure R⁺ relasi R pada suatu himpunan berhingga X adalah transitif. Juga untuk suatu relasi transitif P lain pada X dimana R⊆ P, kita mempunyai R⁺⊆ P.
 Dalam arti ini, R⁺ adalah relasi transitif terkecil yang berisi R.

Bab 2 Matematika Dasar (Logika)

$$\neg(\neg P) = P$$
$$(P \lor Q) = (\neg P \Longrightarrow Q)$$

Hukum de Morgan

$$\neg (P \lor Q) = (\neg P \land \neg Q)$$

$$\neg (P \land Q) = (\neg P \lor \neg Q)$$

Hukum Distributif

$$P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$$

$$P \land (Q \lor R) = (P \land Q) \lor (P \land R)$$

Bab 2 Matematika Dasar (Logika)

Hukum Komutatif

$$(P \land Q) = (Q \land P)$$

$$(P \lor Q) = (Q \lor P)$$

Hukum Asosiatif

$$((P \land Q) \land R) = (P \land (Q \land R))$$

$$((P \lor Q) \lor R) = (P \lor (Q \lor R))$$

Hukum Kontrapositif

$$(P \Rightarrow Q) = (\neg Q \Rightarrow \neg P)$$

Bab 2 Matematika Dasar (Graph)

- Dua graph disebut ekivalen (isomorphic) jika keduanya berprilaku identik menurut kriteria-kriteria graph.
- Syarat perlu dua graph adalah isomorphic:
 - Jumlah simpul ke-2 graph sama
 - Jumlah busur ke-2 graph sama
 - Jumlah simpul yang sama dengan derajat yang diberikan

Bab 2 Matematika Dasar (Graph)

Pohon adalah graph G dengan n simpul, jika:

- 1. G terhubung dan tanpa sirkit, atau
- 2. G terhubung dan n-1 busur, atau
- 3. G tanpa sirkit dan mempunyai n-1 busur, atau
- 4. Terdapat tepat satu path di antara pasangan simpul di G,atau
- 5. G adalah graph terhubung minimal

Bab 2 Matematika Dasar (Graph)

- Terdapat beragam algoritma penentuan graph terhubung
 - 1. Algoritma permutasi baris dan kolom matriks
 - 2. Algoritma memanfaatkan DFT dan BFT
 - 3. Algoritma menggunakan operasi fusion
 - 4. Algoritma warshall

- Penyambungan [o]
 - 'a' o 'b' = 'ab'
- String pada alphabet V
 - $-V = \{ (a', b', c', d') \}; (a', abcd', bbba')$
 - $-V^n = V_0 V_0 \dots oV$
 - $-\mathbf{V}^{+} = \mathbf{V}^{1} \cup \mathbf{V}^{2} \cup \mathbf{V}^{3} \cup \dots$
 - $-\mathbf{V}^* = \{\mathcal{E}\} \cup V^+, \mathcal{E}$ adalah string kosong dan mempunyai sifat identitas.

- Definisi: Diberikan alphabet V, bila $x = a_1 a_2 ... a_n$ dan $y = b_1 b_2 ... b_m$ adalah string pada V, maka x dan y adalah sama jika dan hanya jika n=m dan untuk masing-masing i = 1, 2, ..., n, $a_i = b_i$.
- Bahasa:
 - Subset L dari V* disebut bahasa pada V. Contoh: $V^*, \emptyset, \{\varepsilon\}$

- Terapan (Bahasa Pascal)
 - Aspek Leksik
 - Alphabet pascal digunakan untuk membetuk token yang berupa keyword dan identifier.
 - Aspek Sintaks
 - Penyambungan token-token yang memenuhi syarat sintaks pascal.
 - Aspek Semantiks
 - Setelah memenuhi aspek leksik dan sintaks, maka untuk menjadi program pascal juga harus memenuhi aspek semantiksnya.

- Definisi: String pada alphabet V_T adalah
 - 1. ε adalah string pada V_T
 - 2. Jika x adalah string pada V_T dan a adalah elemen V_T , maka xa adalah string V_T .
 - 3. y adalah string pada V_T jika dan hanya jika mengikuti aturan (1) dan (2).
- Jika x dan y adalah string, maka string xy adalah penyambungan x dan y.

- Definisi: V_T^* menunjukan himpunan berisi semua string pada V_T termasuk \mathcal{E} . Dengan demikan bahasa L adalah $L \subset V_T^*$.
- Himpunan kosong \emptyset , adalah bahasa. Himpunan $\{\varepsilon\}$ adalah bahasa yang hanya berisi string kosong.
- \varnothing dan $\{\varepsilon\}$ adalah dua bahasa yang berbeda.

• Definisi: Jika L_1 bahasa pada alphabet V_{T1} dan L_2 bahasa pada alphabet V_{T2} . Maka L_1L_2 disebut penyambungan (concatenation) atau perkalian (product) dari L_1 dan L_2 yaitu bahasa dengan $\{xy \mid x \in L_1 \text{ dan } y \in L_2\}$

- Definisi: Ketertutupan (*Closure*) L, ditandai dengan L* didefinisikan sebagai berikut:
 - 1. $L^0 = \{e\}$
 - 2. $L^n = LL^{n-1}$ untuk $n \ge 1$
 - 3. $L^* = \bigcup_{n>0} L^n$
 - 4. $L^+ = \bigcup_{n \ge 1} L^n$
 - 5. $L = L^+ \cup \{e\}$

- Union L dan M ditulis dengan $L \cup M$
 - Adalah $\{s \mid s \in L \text{ atau } s \in M\}$
- Penyambungan L dan M ditulis dengan LM
 - Adalah $\{st \mid s \in L \text{ dan } t \in M\}$
- Kleene Closure dari L ditulis L*
 - $Adalah \cup_{i=0}^{\infty} L$
- Positive Closure dari L ditulis L⁺
 - $Adalah \cup_{i=1}^{\infty} L$

Homomorphism

Definisi: Bila V_{T1} dan V_{T2} alphabet, maka homomorphism adalah pemetaan h:V_{T1} → V_{T3} Kita memperluas domain homomorphism h ke V*_{T1} dengan h(e) = e dan h(x)h(a) untuk semua x dalam V*_{T1}, a dalam V_{T1}.

- Definisi: Jika $h: V_{T1} \to V_{T2}^*$ adalah homomorphism, maka relasi $h^{-1}: V_{T2}^* \to p(V_{T1})$ yang didefinisikan di bawah ini disebut inverse homomorphism.
- Secara formal:

$$h^{-1}(L) = y \in L$$
, maka $h^{-1}(L) = \{x \mid h(x) \in L\}$

• Definisi: Grammar adalah sistem matematis untuk mendefinisikan bahasa. Bahasa yang didefinisikan oleh grammar adalah himpunan string yang hanya berisi terminal dan dapat diturunkan mulai dari simbol tertentu yang dikhususkan yang disebut S atau simbol mula (starting symbol).

• Grammar didefinisikan oleh 4 tupel

 $G = (V_N, V_T, S, \phi)$, dimana V_N adalah himpunan simbol non-terminal, S adalah sebuah elemen dari V_N yang khusus yang disebut dengan simbol awal. Dan ϕ adalah himpunan bagian tak kosong dari relasi dari $(V_T \cup V_N)^* V_N (V_T \cup V_N)^*$ ke $(V_T \cup V_N)^*$. Secara umum dapat ditulis (α, β) yang disebut aturan produksi atau aturan penulisan kembali.

• Definisi (Penurunan Langsung): Bila $G = (V_N, V_T, S, \phi)$ adalah grammar. Untuk σ , $\psi \in V^*$, σ dikatakan penurunan langsung dari ψ ditulis dengan $\psi \Rightarrow \sigma$, jika terdapat string ϕ_1 dan ϕ_2 (termasuk string kosong) sehingga $\psi = \phi_1 \alpha \phi_2$ dan $\sigma = \phi_1 \beta \phi_2$ dan $\alpha \to \beta$ merupakan produksi dari G.

Bentuk Kalimat

Bentuk kalimat (sentential form) adalah tiap penurunan nonterminal S unik. Bahasa L yang dihasilkan grammar G adalah kumpulan semua bentuk kalimat yang simbol-simbolnya adalah simbol terminal.

$$L(G) = \{ \sigma \mid S \Longrightarrow \sigma \text{ dan } \sigma \in V_T \}$$

- Bahasa yang didefinisikan oleh recoginzer adalah himpunan string masukan yang diterimanya. Karakteristik bahasa yang diterima recoginzer adalah:
 - 1. Bahasa L adalah right linear jika dan hanya jika L didefinisikan oleh finite automaton searah deterministik.
 - 2. Bahasa L adalah context free jika dan hanya jika L didefinisikan pushdown automaton searah nondeterministik.

- 3. Bahasa L adalah context sensitive jika dan hanya jika L didefinisikan oleh pushdown bounded automaton linear dua arah non deterministik.
- 4. Bahasa yang secara rekursif terdaftarkan jika dan hanya jika L didefinisikan oleh mesin turing.

• Translasi Bahasa Translasi adalah himpunan string. Kompilator mendefinisikan translasi sebagai pasangan. Jika kita anggap kompilator berisi 3 tahap, yaitu analisis leksik, sintaks, dan pembangkitan kode, maka masing-masing tahap itu mendefinisikan translasi.

- Analisis Leksik adalah translasi string-string yang merepresentasikan program sumber dipetakan menjadi string-string token.
- Analisis Sintaks memetakan string-string token menjadi string-string yang merepresentasikan pohon sintaks.
- Pembangkit kode kemudian mengambil stringstring yang dihasilkan analisis sintaks menjadi bahasa mesin atau assembly.

• Definisi (Translasi): Misalkan V_T adalah alphabet masukan dan Δ aplhabet keluaran. Kita mendefinisikan translasi satu bahasa $L_1 \subseteq V_T^*$ ke bahasa $L_2 \subseteq \Delta^*$ sebagai relasi T dari V_T^* ke Δ^* di mana domain T adalah L_1 dan range T adalah L_2 .

• Contoh penulisan grammar lengkap:

$$G = (V_N, V_T, S, \phi)$$
 dengan $V_N = \{I, L, D\}$ $V_T = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $S = I$ $\phi = \{I \rightarrow L, I \rightarrow ID, I \rightarrow IL, L \rightarrow a, L \rightarrow b, ..., L \rightarrow z, D \rightarrow 0, D \rightarrow 1, ..., D \rightarrow 9\}$

• Penulisan dengan BNF:

```
<identifier>::=<letter>|<identifier><letter>|
```

<identifier><digit>

$$<$$
letter $>::=$ a|b|c|...|z

Bab 5 Klasifikasi Grammar Noam Chomsky

- Definisi: G dinyatakan sebagai
 - 1. Right linear jika tiap produksi pada P berbentuk $A \rightarrow xB$ atau $A \rightarrow A$, di mana A dan B adalah V_N dan x adalah V_T^* .
 - 2. Context free jika tiap produksi pada P berbentuk $A \to \alpha$, di mana A adalah V_N dan α adalah $(V_N \cup V_T)^*$
 - 3. Context sensitive jika tiap produksi P berbentuk $\alpha \to \beta$ di mana $|\alpha| \le |\beta|$
 - 4. Grammar tanpa pembatasan-pembatasan di atas disebut unrestricted grammar.

Bab 5 Klasifikasi Grammar Noam Chomsky

- 1. Kelas 0 Unrestricted grammar (aturan produksinya tak dibatasi)
- **2. Kelas 1** Context sensitive grammar, di mana $\alpha \to \beta$ dengan $|\alpha| \le |\beta|$
- 3. Kelas 2 Context free grammar, di mana $\alpha \to \beta$ $\alpha \in V_N$ dan β adalah $(V_N \cup V_T)^*$
- **4. Kelas 3** Regular grammar di mana $\alpha \to \beta$ dengan $|\alpha| \le |\beta|$, $\alpha \in V_N$ dan β berbentuk aB atau a, dengan $a \in V_T^*$ dan $B \in V_N$.

Bab 5 Klasifikasi Grammar Noam Chomsky (Kelas 3: Regular Gramar)

Contoh:

$$G = (\{S, A, B, C\}, \{a, b\}, \phi, S), \ \phi \text{ adalah}$$

$$S \to aS \mid aB$$

$$B \to bC$$

$$C \to aC \mid a$$

Bahasa yang dihasilkan adalah

$$L(G)=\{a^mba^n | m,n \ge 1\}$$

Bab 5 Klasifikasi Grammar Noam Chomsky (Kelas 2: CFG)

Contoh:

$$G = (\{S, A, B, C\}, \{a, b\}, \phi, S), \phi \text{ adalah}$$

 $S \rightarrow aSbb \mid abb$

Bahasa yang dihasilkan adalah

$$L(G) = \{a^n b^{2n} | n \ge 1\}$$

Bab 5 Klasifikasi Grammar Noam Chomsky (Kelas 1: CSG)

Contoh:

$$G = (\{S, A, B, C\}, \{a, b\}, \phi, S), \phi \text{ adalah}$$

$$S \to 0A1$$

$$0A \to 00A1$$

$$A \to 1$$

Bahasa yang dihasilkan adalah

$$L(G) = \{0^n 1^n | n \ge 1\}$$

Bab 5 Klasifikasi Grammar Noam Chomsky (Kelas 0: UG)

Contoh:

$$G = (\{S, A, B, C\}, \{a, b\}, \phi, S), \phi \text{ adalah}$$

 $S \to CD$ $Ab \to bA$
 $C \to aCA \mid bCB$ $Ba \to aB$
 $AD \to aD$ $Bb \to bB$
 $BD \to bD$ $C \to e$
 $Aa \to aA$ $D \to e$

Bahasa yang dihasilkan adalah $L(G)=\{ww | w \in \{a,b\}^*\}$. Bahasa yang dihasilkan grammar ini merupakan himpunan yang dikenali dengan mesin turing.