APPENDIX I

ANSWERS TO SELECTED PROBLEMS

CHAPTER 1

1.1 (a) 10 mA; (b) $10 \text{ k}\Omega$; (c) 100 V; (d) 0.1 A 1.2 (a) 0.9 W, 1 W; (c) 0.09 W, 1/8 W; (f) 0.121 W, 1/8 W but preferably 1/4 W 1.4 17 1.7 2.94 V, 2.22 k Ω ; 2.75 V to 3.14 V, $2.11 \text{ k}\Omega$ to $2.33 \text{ k}\Omega$ 1.9 10.2 V; shunt the 10-k Ω resistor a 157-k Ω resistor; add a series resistor of 200 Ω ; shunt the 4.7-k Ω resistor with a 157 k Ω and the 10-k Ω resistor with 90 k Ω 1.11 250 Ω 1.13 Shunt R_I with a 1.1-k Ω resistor; current divider 1.15 0.77 V and 6.15 k Ω ; 0.1 mA 1.17 1.88 μ A; 5.64 V 1.19 (a) 10^{-7} s, 10^{7} Hz, 6.28×10^{7} Hz; (f) 10^3 rad/s, 1.59×10^2 Hz, 6.28×10^{-3} s 1.21 (a) (1 - j1.59) k Ω ; (c) (71.72 - j45.04) k Ω 1.22 (b) 0.1 V, $10 \mu A$, $10 k\Omega$ 1.24 $10 k\Omega$ 1.28 (a) 165 V; (b) 24 V 1.30 0.5 V; 1 V; 0 V; 1 V; 1000 Hz; 10⁻³ s 1.32 4 kHz; 4 Hz 1.34 0, 101, 1000, 11001, 111001 1.36 (c) 11; 4.9 mV; 2.4 mV 1.38 7.056×10^5 bits per second 1.40 11 V/V or 20.8 dB; 22 A/A or 26.8 dB; 242 W/W or 23.8 dB; 120 mW; 95.8 mW; 20.2% 1.42 9 mV; 57.5 mV; 0.573 V 1.43 (a) 8.26 V/V or 18.3 dB; (b) 2.5 V/V or 8 dB; (c) 0.083 V/V or -21.6 dB 1.46 0.83 V; -1.6 dB; 79.2 dB; 38.8 dB 1.51 (a) 300 V/V; (b) 90 k Ω , $3 \times 10^4 \text{ A/A}, 9 \times 10^6 \text{ W/W};$ (c) 667 Ω ; (d) 555.7 V/V; (e) 100 k Ω , 100 Ω , 363 V/V 1.57 Transconductance amplifier; $100 \text{ k}\Omega$; $100 \text{ k}\Omega$; 121 V/V 1.65 s/(s+1/CR)1.68 0.64 μF 1.71 0.51/CR 1.72 13.3 pF; 0.26 pF 1.75 20 dB; 37 dB; 40 dB; 37 dB; 20 dB; 0 dB; -20 dB; 9900 Hz 1.76 $1/(sC_1R_1 + 1)$; 15.9 Hz; $-G_m s(R_2//R_3)/(s + 1/(C_2/R_2 + 1))$ R_3))); 53 Hz; 16 Hz

CHAPTER 2

```
2.2 2002 V/V 2.5 20,000 V/V 2.8 (a) -10 \text{ V/V}, 10 \text{ k}\Omega; (b) -10 \text{ V/V}, 10 \text{ k}\Omega;
(c) -10 \text{ V/V}, 10 \text{ k}\Omega; (d) -10 \text{ V/V}, 10 \text{ k}\Omega 2.11 (a) -1 \text{ V/V}; (b) -10 \text{ V/V}; (c) -0.1 \text{ V/V};
 (d) -100 \text{ V/V}; (e) -10 \text{ V/V} 2.12 (b) R_1 = 10 \text{ k}\Omega, R_2 = 20 \text{ k}\Omega (d) R_1 = 10 \text{ k}\Omega,
R_2 = 1 \text{ M}\Omega 2.14 R_{in} = 50.1 \text{ k}\Omega 2.18 0 V, 5 V; -4.9 V to -5.1 V 2.20 (b) -66.4 V/V
2.21 ±5 mV 2.26 (b) 909 V/V 2.29 100 Ω; 100 Ω; 100 kΩ 2.31 (a) R, R, R, R;
(b) I, 2I, 4I, 8I; (c) -IR, -2IR, -4IR, -8IR 2.34 (a) 1.11 k\Omega; (b) 0 \Omega, \infty
2.36 v_{-} = -(v_1 + \frac{1}{2}v_2); -1 V 2.43 12.8 k\Omega 2.46 R = 100 \text{ k}\Omega; No 2.50 v_0 = 4 \sin(2\pi \times
1000t) 2.53 (a) 0.099 V; 0.099 mA; 0.099 mA; (b) 10 V; 10 mA; 0 mA
2.54 v_0/v_1 = 1/(1+1/A); 0.999, -0.1%; 0.990, -1.0%; 0.909, -9.1% 2.56 8.33 V/V; Shunt
R_1 with R_{sh} = 36 \text{ k}\Omega; 9.09 V/V; 11.1 V/V 2.59 -10.714 to +10.714 V; 1.07 V
2.62 v_0 = v_2 - v_1; R; 2R; 2R; R 2.64 R_1 = R_3 2.66 68 dB 2.68 (a) 1, 0;
(b) -5 \text{ V} to +5 \text{ V}; (c) 1, 0, -30 \text{ to } +30 \text{ V} 2.73 (a) -0.14 \text{ to } +0.14 \text{ V}; -14 \text{ to } +14 \text{ V}
2.76 R_1 = 0.5 \text{ k}\Omega fixed; R_2 = 50 \text{ k}\Omega 2.77 (a) 3 \text{ V/V}, -3.0 \text{ V/V}; (b) 6 \text{ V/V}; (c) 56 \text{ V}
(peak-to-peak), 19.8 V (rms) 2.81 100 kHz; 1.59 μs 2.85 100 pulses 2.88 1.59 kHz;
10 V (peak-to-peak) 2.97 1.4 mV 2.99 57.5 mV; 42.5 to 57.5 mV; Add a 5-kΩ resistor in
series with the positive input terminal; \pm 10 mV; add 5-k\Omega resistor in series with the negative
input load. 2.101 4.54 mV 2.104 (a) 0.1 V; (b) 0.2 V; (c) 10 \text{ k}\Omega, 10 \text{ mV};
(d) 110 mV 2.108 46 dB; 501 Hz; 10 MHz 2.111 47.6 kHz; 19.9 V/V; 19.9 V/V
```

2.114 32 V/V 2.117 (a) $(\sqrt{2} - 1)^{1/2} f_1$; (b) 10 kHz; (c) 64.4 kHz, about six times greater 2.120 For each, $f_{3dB} = f_t/3$ 2.127 (a) 31.8 kHz; (b) 0.795 V; (c) 0 to 200 kHz; (d) 1 V peak

CHAPTER 3

3.1 5.33×10^{-18} ; 3.05×10^{-14} ; 1.72×10^{-13} ; 2.87×10^{-11} ; 9.45×10^{-11} 3.4 1.5×10^{17} P atoms/cm³ 3.5 Hole concentration 2.25×10^4 /cm³; 2.23×10^9 /cm³ 3.9 4.63×10^{17} /cm³ 3.10 0.432 A/cm² 3.11 D_n : 35, 28.5, 18.1, 9.3; D_p : 12.4, 10.4, 6.7, 3.9 3.13 0.633 V; $0.951 \ \mu m; \ 0.8642 \ \mu m; \ 0.8642 \ \mu m; \ 5.53 \times 10^{-14} \ C$ 3.22 $3.6 \times 10^{-15} \ A; \ 0.6645 \ V$ 3.27 259 pS; 1 pF

CHAPTER 4

4.1 (a) 0 A; 1.5 V; (b) 1.5 A; 0 V 4.2 (a) 5 V; 1 mA; (b) 5 V; 0 mA; (c) 5 V; 1 mA; (d) 5 V; 0 mA $4.8 \, 50 \, k\Omega$ $4.9 \, (a) \, 0 \, V$; 0.3 mA; (b) 0.4 V; 0 mA $4.10 \, (a) \, 4.5 \, V$; 0.225 mA; (b) 2 V; 0 A 4.15 29.67 V; 3.75Ω ; 0.75 A; 26.83 V; 30 V; 3Ω ; 20.5%; 136 mA; 1 A; 27 V 4.16 red lights; neither light; green lights 4.18 0.345 V; $1.45 \times 10^{12}I_s$ 4.20 537 × 10⁻¹⁸ A; 0.746 mA; 27.32 mA; 0.335 mA; 9.17 µA; 57.56 mV 4.23 7.9 mA; -10.15 mV 4.26 194 Ω 4.29 50°C; 9 W; 5.56°C/W 4.33 0.6635 V; 0.3365 mA $4.35 R = 947 \Omega$ 4.38 0.86 mA; 0 V; 0 A; 3.6 V $4.51 157 \mu\text{A}$; -84.3° to -5.71° 4.58 -30 mV/mA; -120 mV/mA 4.60 8.96 V; 9.01 V; 9.46 V 4.63 8.83 V; 19.13 mA; 300 Ω ; 9.14 V; ±0.01 V; +0.12 V; 578 Ω ; 8.83 V; 90 mV/V; -27.3 mA/mA 4.68 16.27 V; 48.7%; 0.13; 5.06 V; 5.06 mA 4.69 16.27 V; 97.4%; 10.12 V; 10.12 mA 4.70 15.57 V; 94.8%; 9.44 V; 9.44 mA 4.72 55 V 4.75 (a) 166.7 μF; 15.4 V; 7.1%; 233 mA; 449 mA; (b) 1667 μ F; 16.19 V; 2.25%; 735 mA; 1455 mA 4.76 (a) 83.3 μ F; 15.5 V; 14.2%; 124.4 mA; 233 mA; (b) 833 μF; 16.19 V; 4.5%; 376 mA; 735 mA 4.79 (a) 23.6 V; (b) 444.4 µF; (c) 32.7 V; 49 V; (d) 0.73 A; (e) 1.36 A 4.91 14.14 V

CHAPTER 5

5.2 1.875 fC 5.7 2.38 μ m 5.12 $W_n/W_n = 2.5$ 5.13 238 Ω ; 238 mV; 50 5.14 (a) 7.3 mA; (b) 1.62 mA; 1.61 mA; 17.7 mA 5.17 3.5 V; 1.5 V; 500 Ω ; 100 Ω 5.18 1.0 V; 0.5 V; 1.5 V; 1.0 V 5.22 \leq 0.3 V 5.23 100 Ω to 10 kΩ; (a) 200 Ω to 20 kΩ; (b) 50 Ω to 5 k Ω ; (c) 100 Ω to 10 k Ω 5.31 500 k Ω ; 50 k Ω ; 2%; 2% 5.33 82.13 μ A; 2.7%; use $L = 6 \mu m$ 5.38 0.24 mA; 0.52 mA; 0.54 mA; 0.59 mA 5.39 -3 V; +3 V; -4 V; +4 V; -1 V; -50 V; -0.02 V^{-1} ; 1.39 mA/V^2 5.42 (b) -0.3%/°C 5.46 $R = 11.1 \text{ k}\Omega$; $R = 1.67 \text{ k}\Omega$ 5.49 25 μm; 1.875 kΩ 5.50 2 μm; 5.6 μm; 2.8 kΩ $5.52 \, 0.395 \, \text{mA}$; $7.6 \, \text{V} \, 5.57 \, \text{(a)} \, 0.9 \, \text{V}$; $-1.6 \, \text{V}$; (b) $4.1 \, \text{V}$; $2.5 \, \text{V}$; $0.9 \, \text{V} \, 5.59 \, \text{(a)} \, 7.5 \, \mu\text{A}$; 1.5 V; (b) $4.6 \mu A$; 1.4 V; (c) 1.5 V; $7.5 \mu A$ 5.61 (a) 1 V; 1 V; -1.32 V; (b) 0.2 V; 1.8 V; -1.35 V 5.65 0.4 V; 8.33 5.71 (a) 125 μA; 0.8 V; (b) 1 mS; (c) -8.0 V/V; (d) $80 \text{ k}\Omega$; -7.3 V/V 5.75 4 µm; 1.0 V 5.77 -18.2 V/V; 1.207 V; -23.6 V/V 5.78 NMOS: 424 μS, 160 kΩ, 0.47 V; PMOS: 245 μS, 240 kΩ, 0.82 V 5.100 3.39 V; 0.86 mA to 0.36 mA; 1.1 k Ω 5.101 1 mA; 7.6% 5.102 2 V; 2.40 V; 2.55 mA 5.106 (a) -1.5 V; +0.5 V; 2 V; (b) -1.37 V; +0.5 V; +1.87 V 5.108 15.9 k Ω ; 0.314 mA; 1.82 V 5.110 -11.2 V/V

CHAPTER 6

6.1 active; saturation; active; saturation; inversed active; active; cutoff; cutoff 6.8 53.3; 0.982 6.10 0.5; 0.667; 0.909; 0.952; 0.991, 0.995; 0.999; 0.9995 6.7 0.907 mA; 0.587 V 6.12 3 to 15 mA; 3.05 to 15.05 mA; 135 mW 6.17 -0.718 V; 4.06 V; 0.03 mA 6.22 -2 V; 0.82 mA; -0.57 V 6.24 0.91 mA; 9.09 mA; 0.803 V; 9.99 mA 6.28 (a) 1 mA; (b) -2 V; (c) 1 mA; 1 V; (d) 0.965 mA; 0.35 V 6.38 0.74 V; 0.54 V 6.40 3.35 μ A 6.43 33.3 k Ω ; 100 V; 3.3 k Ω 6.45 1.72 mA; 6 V; 34 V; 20 k Ω 6.47 150; 125; 1.474 mA 6.70 -360 V/V; 0.7 V, 2 mV 6.75 -100 V/V 6.78 3 mA; -120 V/V; -0.66 V; -0.6 V; 0.54 V; 0.6 V 6.51 (a) 1.3 V, 3.7 V; (b) 0.3 V, 4.7 V; (c) 0 V, +5 V 6.54 -0.7 V;+4.7 V; -0.5 V (-1 V; +5 V); +2.6 V (1.9 V, 2.6 V) 6.56 0.3 V; 15 μ A; 0.8 mA; 0.785 mA; -1.075 V; 52.3; 0.98 6.61 (a) -0.7 V, 1.8 V; (b) 1.872 V, 1.955 mA; (c) -0.7 V, 0 V, 1.872 V; (d) 1.9 V, -0.209 V; (e) 1.224 V, 1.924 V, -0.246 V 6.64 1.08 k Ω ; the transistor saturates. 6.94 1.25 V; 20 mA/V; 150 V/V 6.102 135; 41.8 Ω; 23 mA/V; 1.09 kΩ; -0.76 V/V 6.105 9.3 kΩ; 28.6 kΩ; 143 V/V 6.106 1 mA; 0.996 V/V; 0.63 V/V 6.152 (a) 1.73 mA, 68.5 mA/V, 14.5 Ω , 1.46 k Ω ; (b) $148.2 \text{ k}\Omega$, 0.93 V/V; (c) $18.21 \text{ k}\Omega$, 0.64 V/V

CHAPTER 7

7.15 0.905 V; 1.4 V² 7.19 (a) 0.5 mA; (b) $100 \text{ k}\Omega$, $100 \text{ k}\Omega$, $50 \text{ k}\Omega$; (c) $2.5 \text{ k}\Omega$, 20 mA/V; (d) $2.5 \text{ k}\Omega$, $50 \text{ k}\Omega$, -1000 V/V 7.46 $10.5 \text{ k}\Omega$; 0.25 V; $50 \text{ k}\Omega$; $10 \mu\text{A}$ 7.49 $100 \mu\text{A}$; 0.2 V; 0.7 V; 5 μ A 7.52 4: 25, 50, 200, 400 μ A; 3: 16.7, 40, 133 μ A; 1.05 V 7.54 (a) 10 μ A to 10 mA; 0.633 to 0.806 V 7.57 0.2 mA; 10% 7.60 (a) 1.0 mA, -0.7 V, 3 V, 0.7 V, -5.7 V, -3.2 V; (b) 0.1 mA, -0.7 V, 3 V, 0.7 V, -0.7 V, -3.2 V 7.63 1.56 μA 7.64 8.93 MΩ; 0.95 V; 1.45 V; 100.4 μA 7.69 500 Ω 7.70 2 μA; 0.2% 7.76 (a) 5.7 k Ω ; (b) 16.4 M Ω , 0.3 μ A 7.78 7.46 M Ω 7.79 (a) 68.5 k Ω ; (b) 112.5 M Ω 7.80 6.42 k Ω 7.84 12; 34 7.85 2.88 7.88 0.5 mA; 4 mA/V 7.93 16.7 GHz; 23.9 GHz; because the overlap capacitance is neglected. 7.94 15 V/V; 164.2 MHz; 2.5 GHz, 0.155 mA; quadrupled to 0.62 mA; 7.5 V/V; 656.8 MHz 7.97 5.3 MHz; 391 MHz

CHAPTER 8

8.9 0.724 V; 3.57 mA/V; 0.317 V; 1.6 mA 8.11 -1.5 V; +0.5 V; equal in both cases; 0.05 V; -0.05 V; 0.536 V 8.32 -1.665 V; 0.52 V 8.34 -1.53 V to 0.92 V 8.38 (a) $V_{CC} - (I/2)R_C$; (b) $-(I/2)R_C$, $+(I/2)R_C$; (c) 4 V; (d) 0.4 mA, 10 k Ω 8.41 (a) $20IR_C \text{ V/V}$; (b) $V_{CC} - 0.0275A_v$ 8.43 $I_{E1} = 2 \text{ mA}$, $I_{E2} = 1 \text{ mA}$, $I_{C1} = 2 \text{ mA}$, $I_{C} = 1 \text{ mA}$; 17.3 mV 8.45 4 mA/V; 75.5 k Ω 8.48 (a) 0.2 mA, 10 mV; (b) 0.7 mA, 0.3 mA; (c) -2.4 V, +2.4 V; (d) 48 V/V 8.59 50 V/V; $50.5 \text{ k}\Omega$ 8.60 50 V/V; $50.5 \text{ k}\Omega$ 8.63 25 V/V; $40.4 \text{ k}\Omega$; 0.001 V/V; $6.56 \text{ M}\Omega$ 8.64 (a) 200 V/V; (b) 20.2 k Ω ; (c) 0.0005 V/V; (d) 112 dB; (e) $9.76 \text{ m}\Omega$ 8.67 1.8 mA; 360 V/V; $1.8 \sin \omega t \text{ V}$ 8.68 $R_E = 25~\Omega$; $R_C = 10~\text{k}\Omega$; $R_o \le 50~\text{k}\Omega$; $R_{icm} = 5~\text{M}\Omega$; $\pm 12~\text{V}$ would do, $\pm 15~\text{V}$ would be better. $8.69\ 2\%$ $8.70\ 0.008\ V/V$ $8.77\ -125\ \mu V$ $8.79\ 1.7\ mVM$ $8.81\ (a)$ 0.3; (b) 0.8.115 $R_{id}^{-1} = 40.4 \text{ k}\Omega$; $R_{id}^{-2} = 10.1 \text{ k}\Omega$; 20.2 V/V; 3823 V/V decrease 8.116 $R_5 = 7.34 \text{ k}\Omega$; $4104 \text{ V/V}; R_4 = 1.11 \text{ k}\Omega$ 8.117 (a) $173.1 \times 10^3 \text{ V/V}$ (b) 5583 V/V 8.118 (a) 0.97 mA; (b) $2.23 \text{ k}\Omega$, 129Ω ; (c) $2.86 \times 10^4 \text{ V/V}$

CHAPTER 9

```
9.1 1.43 V/V, 9.3 \muF 9.4 -16 V/V; C_{c1} = 21.2 \text{ nF}, C_{s} = 9.6 \muF; C_{c2} = 0.5 \muF; 50 Hz
9.17 6.3 GHz 9.19 5.4 GHz 9.24 500 MHz, 600 MHz, 251.9 ps, 0.435 pF
9.25 0.69 pF; 40 \text{ mA/V}; 4 \text{ k}\Omega; 50 \text{ MHz} 9.33 (a) -15.9 \text{ V/V}; (b) 40.1 \text{ kHz}
9.45 (a) 2.07; (b) 7.02 9.46 (a) 10^4 rad/s; (b) 10.1 Krad/s 9.47 5.67 \times 10^6 rad/s
```

9.54 40.6 V/V; 243.75 ns; 3100 ns; 300 ns; 43.7 kHz 9.58 (a) -1000 V/V, $C_i = 1.001$ nF, $C_0 = 1.001 \text{ pF}$; (b) -10 V/V, $C_i = 110 \text{ pF}$, $C_0 = 11 \text{ pF}$; (c) -1 V/V, $C_i = 20 \text{ pF}$, $C_0 = 20 \text{ pF}$; (d) 1 V/V, $C_i = 0$ pF, $C_o = 0$ pF; (e) 10 V/V, $C_i = -90$ pF, $C_o = 9$ pF 9.62 6.37 GHz; 673.23 kHz; 21.39 MHz; 673.23 kHz 9.66 139 V/V; 21.22 GHz; 1.99 MHz; 83.22 MHz; 1.99 MHz 9.68 -80 V/V; 3.79 MHz; 303.2 MHz 9.72 159.1 fF 9.75 16 V/V; 398 MHz; 3.79 MHz; 3.79 MHz 9.88 0.964 V/V; 593.8 MHz 9.103 (a) 2.5 M Ω , -3943.6 V/V; (b) 107.8 kHz, $(C_L + C_{u2})$ dominates, C_{u2} or C_T is the second most significant

CHAPTER 10

10.1 9.99×10^{-3} ; 91.74; -8.26% 10.14 $A_{Mf} = A_{M}/(1 + A_{M}\beta)$; $W_{Lf} = W_{L}/(1 + A_{M}\beta)$ 10.16 1 MHz; 1 Hz 10.34 (a) $h^{11} = R_1 R_2 / (R_1 + R_2) \Omega$, $h_{12} = R_2 / (R_1 + R_2) V/V$, $h_{21} = -R_2/(R_1 + R_2) \text{ A/A}, h_{22} = 1/(R_1 + R_2) \Omega;$ (b) $h_{11} = 10 \Omega, h_{12} = 0.01 \text{ V/V}, h_{21} = -0.01 \text{ A/V},$ $h_{22} = 0.99 \times 10^{-3} \Omega$ 10.35 100 V/V; 1.001 M Ω 10.62 (a) shunt–series; (b) series– series; (c) shunt–shunt $10.80 ext{ } 10^4 ext{ rad/s}$; $\beta = 0.002$; $500 ext{ V/V}$ $10.82 ext{ } K < 0.008$ 10.84 9.9 V/V; 1.01 MHz; 10 MHz; 101 10.85 (a) 5.5×10^5 Hz, $\beta = 2.025 \times 10^{-3}$; (b) 330.6 V/V; (c) 166.3 V/V, 1/2; (d) 1.33 10.87 $\omega_0 = 1/CR$; Q = 1/(2.1 - K); 0.1; 0.686; K = 2.1 10.89 1 MHz; 90° 10.91 56.87° ; 54.07° ; 59.24° ; 52.93° 10.93 159.2 μs; 39.3°; 20 dB 10.95 3 KHz 10.96 15 KHz; 200 10.97 1/10*CR*; 1/*CR*; 1/(100 x C_f x R); 9.1/CR 10.98 100 Hz; 1.59 nF 10.99 58.8 pF; 37.95 MHz

CHAPTER 11

11.1 Upper limit (same in all cases): 4.7 V, 5.4 V; lower limits: -4.3 V, -3.6 V; -2.15 V, -1.45 V 11.4 152 Ω ; 0.998 V/V; 0.996 V/V; 0.978 V/V; 2% 11.6 $V_{CC}I$ 11.8 5 V 11.10 4.5 V; 6.4%; 625 Ω 11.12 5.0 V peak; 3.18 V peak; 3.425 Ω ; 4.83 Ω ; 3.65 W; 0.647 W 11.19 12.5 11.21 20.7 mA; 788 mW; 7.9°C; 37.6 mA 11.22 1.34 k Ω ; $1.04 \text{ k}\Omega$ 11.30 50 W; 2.5 A $11.32 \text{ 140}^{\circ}\text{C}$; 0.57 V 11.34 100 W; 0.4°C/W 11.45 13 Ω; 433 mV; 0.33 μA 11.47 $R_1 = 60 \text{ k}\Omega$; $R_2 = 5 \text{ k}\Omega$; 0.01 μA 11.49 $I_{E1} = I_{E2} \approx 17 \,\mu\text{A}$; $I_{E3} = I_{E4} \approx 358 \,\mu\text{A}$; $I_{E5} \approx I_{E6} = 341 \,\mu\text{A}$; 10.5 V 11.50 14 V; 1.9 W; 11 V 11.51 $R_3 = R_4 = 40 \Omega$; $R_1 = R_2 = 2.2 \text{ k}\Omega$ 11.53 $40 \text{ k}\Omega$; $50 \text{ k}\Omega$ 11.55 $L = \mu_n (v_{GS} - V_t) / U_{sat}$; 3 µm; 3 A; 1 A/V

CHAPTER 12

12.24 36.3 μA 12.25 0.625 V; for A, 7.3 mA/V, 134.3 Ω , 6.85 k Ω , 274 k Ω ; for B, 21.9 mA/V, 44.7 Ω , 2.28 k Ω , 91.3 k Ω 12.29 593 mV; 518 mV; 7.5 k Ω 12.31 4.75 μA; 1.94 kΩ 12.33 56.5 kΩ; 9.353 μA 12.36 5.6 mV 12.38 6.37 kΩ; 270 μA 12.40 1.68 mA; 50.4 mW 12.42 Raise R'_1 , R'_2 to 4.63 kΩ 12.45 1.4 mV 12.50 3.1 MΩ; 9.38 mA/V 12.52 4.2 V to -3.6 V 12.54 105.6 dB; $|V_{ij}| < 4$ V; 21.0 mA 12.56 108 dB; 61.9 Ω 12.58 7.6 MHz 12.60 318 k Ω 12.62 159.2 kHz; 15.9 MHz

CHAPTER 13

13.6 1.5 V; 1.5 V; 1.5 V; 0 V; 3 V; 1.5 V; 1.5 V; ∞ 13.8 0.349 to 0.451 V; 0.749 to 0.852 V; 0 V; 1.2 V; 0.349 to 0.452 V; 0.348 to 0.451 V 13.19 4.36 mW; 1.48 mW 13.21 (a) $t_{PLH} = 1.6 \text{ ns}, t_{PHL} = 0.8 \text{ ns};$ (b) C = 1.43 pF; (c) $C_o = 0.86 \text{ pF},$ $C_i = 0.57 \text{ pF}$ 13.25 (a) 0.66, 0.435 (b) 0.436, 0.435 13.29 9.09 mV; 50 mV 13.46 24 13.53 $p_A = p$: $p_B = p_C = p_D = 2p$; and $n_A = n_B = 2n$: $n_C = n_D = 2(2n) = 4n$ 13.55 t_{PHL} is 4 times larger; t_{PLH} is the same

CHAPTER 14

14.1 (a) 0.693 R_DC ; (b) 0.5 R_DC , for a 21.5% reduction 14.2 1.52; 0.97 V; 1.69 V; 1.2 V; 2.5 V; 0.28 V; 0.81 V; 0.69 V 14.4 $r \approx 2.1$; NM_{Imax} 0.731 V 14.6 1.33 14.23 9.38 ns 14.30 3 ms; 333 Hz 14.33 2.27 GHz 14.35 33.3 MHz; high 13 ns; low 17 ns 14.38 0.33 V/V; 8.95 V/V; 0.37 V/V 14.39 (a) -1.375 V, -1.265 V; (b) -1.493 V, -1.147 V 14.41 21.2 14.43 7 cm 14.45 (W/L) = 5 μ m/1 μ m; 6.5 μ A 14.46 2.32 V; 3.88 mA 14.47 For R_1 : 50%; 36.5 $k\Omega$; 20%; 91.1 $k\Omega$; for R_2 : 50%; $6.70 \text{ k}\Omega$; 20%; $16.7 \text{ k}\Omega$; 50%; $R_1/R_2 = 5.45$; 20%; $R_1/R_2 = 5.45$ 14.48 83.2 ps; 50.7 ps; 67.0 ps $14.50 (W/L)_{NA} = (W/L)_{NB} = 2(W/L)_{N}; (W/L)_{PA} = (W/L)_{PB} = (W/L)_{PB}$

CHAPTER 15

15.10 2.236 V; 100 V/V 15.12 1024; 1024; 400 pF; 225 pF; 220 fF/bit; 2.8 times 15.13 60% 15.29 41 mV 15.31 0.4 pA 15.32 1.589 mA/V; 11.36 μm; 34.1 μm; 1.56 ns 15.33 680 μA/V; 0.482 V; 0.206 V; 50%; 7.5 ns 15.38 9; 512; 18; 4608 NMOS and 512 PMOS transistors 15.39 9; 1024; 4608; 512; 5641; 521 15.44 0100, 0000, 1000, 1001, 0101, 0001, 0110, and 0010 15.46 2.42 ns; 23 ns, 3.16 V; 1.90 ns

CHAPTER 16

16.1 1 V/V, 0°, 0 dB, 0 dB; 0.894 V/V, -26.6°, -0.97 dB, 0.97 dB; 0.707 V/V, -45.0°, -3.01 dB, 3.01 dB; 0.447 V/V, -63.4°, -6.99 dB, 6.99 dB; 0.196 V/V, -78.7°, -14.1 dB, 14.1 dB; 0.100 V/V, -84.3°, -20.0 dB, 20.0 dB; 0.010 V/V, -89.4°, -40.0 dB, 40.0 dB 16.5 0.5088 rad/s; 3 rad/s; 5.9 16.9 $T(s) = 0.2225 (s^2 + 4)/[(s + 1)(s^2 + s + 0.89)]$ 16.11 $T(s) = 0.5/s^3 + 2s^2 + 2s + 1$; poles at $s = -1, -1/2 \pm i\sqrt{3}/2$, 3 zeros at $s = \infty$ 16.13 28.6 dB 16.19 $R_1 = 10 \text{ k}\Omega$; $R_2 = 100 \text{ k}\Omega$; C = 159 pF 16.21 40 dB 16.23 $T(s) = -(S - \omega_0 / S + \omega_0)$; 2.68 kΩ, 5.77 kΩ, 10 kΩ, 17.3 kΩ, 37.3 kΩ 16.25 $T(s) = 10^6/(s^2 + 10^3 s + 10^6)$; 0.707 rad/s; 1.15 V/V; 1.21 dB 16.33 L = 500 mH; C = 20 nF 16.35 $s^2/(s^2 + s/RC + 1/LC)$ 16.39 $L_1/L_2 = 0.2346$; $|T| = L_2/(L_1 + L_2)$; |T| = 1 16.43 $R_1 = R_2 = R_3 = R_5 = 3.979 \text{ k}\Omega$; $R_6 = 39.79 \text{ k}\Omega$; $C_{61} = 6.4 \text{ nF}$; $C_{62} = 3.6 \text{ nF}$ 16.44 $C_4 = C_6 = 1$ nF; $R_1 = R_2 = R_3 = R_5 = R_6 = 159.16$ kΩ 16.49 C = 10 nF; R = 15.92 kΩ; $R_1 = R_f = 10 \text{ k}\Omega$; $R_2 = 10 \text{ k}\Omega$; $R_3 = 390 \text{ k}\Omega$; 39 V/V 16.51 ±1% 16.55 $R_3 = 141.4 \text{ k}\Omega$; $R_4 = 70.7 \text{ k}\Omega$ 16.57 4/RC; 2; 8 V/V 16.59 High-pass; 1 V/V; $R_3 = 141.4 \text{ k}\Omega$; $R_A = 70.7 \text{ k}\Omega$ 16.64 0; $2Q^2/A$

CHAPTER 17

17.1 (a) $\omega = \omega_0$, AK = 1; (b) $-2Q/\omega_0$; (c) $\Delta\omega_0/\omega_0 = -\Delta\phi/2Q$ 17.5 20 dB; ±180° 17.9 1/RC;¾;¾ 17.10 1.15/RC 17.15 20.3 V 17.17 1; 29R; 0.065/RC 17.23 2.01612 MHz to 2.0172 MHz 17.25 (a) $V_{TL} = V_R (1 - R_1/R_2) - L_4 R_1/R_2$, $V_{TH} = V_R (1 - R_1/R_2) - V_{TH} = V_R (1$ $V_R(1 + R_2/R_1) - L_R / R_2 L_1$; (b) $R_2 = 200 \text{ k}\Omega$, $V_R = 47.62 \text{ mV}$ 17.28 (a) +12 V or -12 V 17.29 $V_z = 6.8 \text{ V}; R_1 = R_2 = 37.5 \text{ k}\Omega; R = 4.1 \text{ k}\Omega$ 17.33 $V_z = 6.8 \text{ V}; R_1 = R_2 = R_3 = R_4 = 8.1 \text{ k}\Omega$ $R_5 = R_6 = 200 \text{ k}\Omega$; $R_7 = 5.1 \text{ k}\Omega$; triangle with period of 100 µs and $\pm 7.5 \text{ V}$ peaks 17.35 96 µs 17.38 (a) 9.1 k Ω ; (b) 13.3 V 17.39 $R_A = 21.2 \text{ k}\Omega$; $R_B = 10.7 \text{ k}\Omega$ 17.41 V = 1.0996 V; $R = 400 \Omega$; Table rows, for v_0 , θ , 0.7 sin θ , error % are: 0.70 V, 90°, 0.700 V, 0%; 0.65 V, 63.6°, 0.627 V, 3.7%; 0.60 V, 52.4°, 0.554 V, 8.2%; 0.55 V, 46.1°, 0.504 V, 9.1%; 0.50 V, 41.3°, 0.462 V, 8.3%; 0.40 V, 32.8°, 0.379 V, 5.6%; 0.30 V, 24.6°, 0.291 V, 3.1%; 0.20 V, 16.4°, 0.197 V, 1.5%; 0.10 V, 8.2°, 0.100 V, 0%; 0.00 V, 0°, 0.0 V, 0%. 17.42 2.5 V 17.55 10 mV, 20 mV, 100 mV; 50 pulses, 100 pulses, 200 pulses