

Application Performance Management

Experiment-Design & Benchmarking

Michael Faes

Übersicht

- 1. Übungsbesprechung
- 2. Performance-Experimente: Grundlagen
- 3. Experiment-Design
- 4. Übung: Benchmarking mit JMH

Performance-Experimente

Beobachtung und Experiment

Rückblick: Untersuchen von Unbekanntem durch Scientific Method

- 1. Frage
- 2. Hypothese
- 3. Vorhersage
- 4. Test: Beobachtung oder Experiment
- 5. Auswertung

Beobachtung und Experiment sind zwei grundsätzliche Ansätze, Performance zu analysieren. Beide haben Vor- und Nachteile, bzw. unterschiedliche Use Cases.

Beispiel Beobachtung (letzte Woche): Hypothese: Grund für schlechte Performance ist Dateisystem-Cache. Test: *Messen der Cache-Misses*.

Beispiel Experiment:

- Frage: Warum dauern HTTP-Requests länger von Host A zu Host C als von Host B zu Host C?
- 2. Hypothese: Grund: A und B sind in unterschiedlichen Datenzentren
- 3. Vorhersage: Verschieben von Host A in Datenzentrum von Host B behebt Problem.
- 4. Test: Host A verschieben und Anfragezeit messen
- 5. Analyse: Requests dauern nicht mehr länger Problem gefunden!

Alternative mit Beobachtung:

- 3. Vorhersage: Anfragen von anderen Hosts in Datenzentrum von A dauern ebenfalls länger
- 4. Test: Anfragezeit auf anderen Hosts messen

Korrelation vs. Kausalität

Hauptvorteil von Experiment: Starker Hinweis, dass gefundener Zusammenhang wirklich der Grund für beobachtetes Verhalten ist.

Korrelation: Wenn man A beobachtet, beobachtet man auch B.

Kausalität: A verursacht B.

xkcd: Correlation (CC BY-NC 2.5)

https://de.wikipedia.org/wiki/Cum_hoc_ergo_propter_hoc

Meist kann man zumindest **2** ausschliessen, aber zwischen **1**, **3**, **4** & **5** unterscheiden ist schwierig durch reine Beobachtung.

Experiment: Beobachten nicht nur A und B, sondern **steuern A**!

Performance: Beobachtung vs. Experiment

Vorteile Experiment

- Kontrolliertes Ändern von Parametern möglich
- Erlaubt zuverlässige Schlüsse über Kausalität
- Kann optimalen Wert für Parameter bestimmen
- Ermöglicht Vorhersagen (Was wäre, wenn...?)
- Ist nicht auf Users/reale Last angewiesen

Vorteile Beobachtung

- Keine grosse Beeinflussung von Live-System
- Liefert Daten unter realen Bedingungen
- Users/Last müssen nicht modelliert/simuliert werden
- Ist oft weniger aufwändig
- Kann (besser) automatisiert werden

Experiment-Design

(deutsch: «Statistische Versuchsplanung»...)

Experiment-Design

Experiment-Design:

Welche Experimente, wie oft, in welcher Reihenfolge?

Wenn System völlig unbekannt, dann wieder Scientific Method:

Frage, Hypothese & Vorhersage

Passendes Experiment entwerfen, durchführen & auswerten

Oft *nicht effizient*: Wissen/vermuten schon gewisse Dinge über System, z.B. dass CPU & Speicher Einfluss auf Performance haben.

Ziel von Experiment-Design: Maximale Menge an Information mit minimalem Aufwand.

10

Ziele

Wichtigster Schritt am Anfang jeder Analyse: Klare Ziele/Fragen.

Beispiel: Auswählen von SWITCHengine für App

Flavor	CPUs	RAM	Disk
m1.tiny	1	512MB	1GB
m1.small	1	2GB	20GB
m1.medium	2	4GB	40GB
m1.large	4	8GB	80GB
m1.xlarge	8	16GB	160GB

https://www.switch.ch/de/
engines/techspecs/

«Welche VM-Konfiguration ist für unsere App am geeignetsten?»

«Welche VM-Konfiguration führt dazu, dass die häufigsten 80% der Anfrage-Arten an unsere App die kürzeste durchschnittliche Antwortzeit haben? Und welche anderen Konfig. führen zu einer max. 20% höheren Antwortzeit?»

«Welche VMs führen für [...] zu einer durch. Antwortzeit von weniger als 100 ms?»

Begriffe

Antwortvariable (response variable): Resultat des Experiments, bzw. der Teil davon, der gemessen wird.

Im Beispiel: durchschnittliche Antwortzeit

Faktoren: Variablen, welche die Antwortvariable beeinflussen könnten.

Im Beispiel: Anzahl CPUs, RAM-Grösse, Disk-Grösse, Anfrage-Art (!)

Stufen (levels): Werte, die ein bestimmter Faktor annehmen kann.

Im Beispiel: CPU: 1, 2, 4, 8; RAM: 512 MB, 2 GB, 4 GB, 8 GB, 16 GB;

Disk: 1GB, 20GB, 40GB, 80GB, 160GB, Anfrage-Arten: ... (12 Stück)

Replikation: Wiederholung von einigen oder allen Experimenten.

Beispiel: Messungen auf VMs könnten 3 mal wiederholt werden.

12

Designs

Design (*Versuchsplan*): Besteht aus: Anzahl der Experimente, Definition des Levels für jeden Faktor für jedes Experiment, Anzahl Replikationen für jedes Experiment.

Beispiele:

 Alle Kombinationen von Levels der 4 Faktoren testen und alle Experimente 10× replizieren:

$$4 \times 5 \times 5 \times 12 \times 10 = 12'000$$
 Experimente...

 Könnten «typische» Konfiguration auswählen, jeden Faktoren separat varieren. Experimente 3× replizieren:

$$(1 + (4-1) + (5-1) + (5-1) + (12-1)) \times 3 = 69$$
 Experimente

Interaktion

Interaktion: Zwei Faktoren interagieren, falls der Effekt des einen vom Level des anderen abhängig ist.

keine Interaktion

	2GB RAM	4GB RAM
2 CPUs	100	150
4 CPUs	200	250

Interaktion

	2GB RAM	4GB RAM
2 CPUs	100	150
4 CPUs	200	300

Typen von Designs

«Einen Faktor aufs Mal»: Wählen «typische» Konfiguration, variieren einen Faktor aufs Mal um dessen Einfluss auf Performance zu sehen. Anzahl Experimente (ohne Replikation):

$$n = 1 + \sum_{i=1}^{k} (l_i - 1)$$

- *n* Anzahl Experimente
- k Anzahl Faktoren
- l_i Anzahl Levels für Faktor i

Nachteile:

- Interaktionen zwischen Faktoren werden nicht berücksichtigt. Falls vorhanden, liefern Experimente falsche Schlüsse.
- Statistisch nicht effizient: Mit gleicher Anzahl von Experimenten könnte mehr Information gewonnen werden. (...)

Full Factorial Design (Vollständiger Versuchsplan): Alle möglichen Kombinationen von allen Levels aller Faktoren.

Anzahl Experimente (ohne Replikation):

$$n = \prod_{i=1}^{k} l_i$$

- n Anzahl Experimente
- k Anzahl Faktoren
- l_i Anzahl Levels für Faktor i

Vorteil: Kann Effekte *aller Faktoren* bestimmen und *alle Interaktionen* (sogar zwischen mehr als zwei Faktoren)

Nachteil: Anzahl Experimente explodiert für grosse Zahl von Faktoren. Möglichkeiten zur Reduktion:

- Anzahl Faktoren reduzieren
- Anzahl Levels pro Faktor reduzieren (...)
- Abgewandeltes Design: Fractional Factorial Design

Fractional Factorial Design (Teilfaktorplan): Statt allen möglichen werden nur gewisse Kombinationen von Levels getestet.

Beispiel: VM-Konfigs (vereinf.) ohne Anfrage-Art und ohne Replikation Full design:

4 CPU-Levels × 4 RAM-Levels × 4 Disk-Levels = 64 Experimente Fractional design (Beispiel):

Experiment	CPUs	RAM	Disk
1	1	2 GB	20 GB
2	1	4 GB	40 GB
3	2	8 GB	20 GB
4	2	16 GB	40 GB
5	4	2 GB	80 GB
6	4	4 GB	160 GB
7	8	8 GB	80 GB
8	8	16 GB	160 GB

8 Experimente

2^k-Design

Spezialfall von Full Factorial Design: Jeder Faktor hat genau 2 Levels.

Anzahl Experimente: 2k.

Idee: Wissen oft, dass Einfluss von Faktoren *unidirektional* ist: Durch Erhöhen von Faktor wird Performance monoton besser (oder schlechter).

Mögliches Vorgehen: Zu Beginn einer Analyse nur zwei Levels für jeden Faktor: Minimum und Maximum. Dann entscheiden, ob Performance-Unterschied genügend gross ist, um Faktor weiter zu beachten.

2^k-Design: Effekt-Analyse

Einfachstes Beispiel:

2²-Design ohne Replikation

	2GB RAM	4GB RAM
2 CPUs	96	143
4 CPUs	209	296

Durchsatz (in Anfragen/s)

Einfaches Modell: Durchsatz ist *linear abhängig* von Anzahl CPUs, von RAM-Grösse und von Interaktion (Produkt) der beiden.

$$x_C = \begin{cases} -1 & \text{falls 2 CPUs} \\ 1 & \text{falls 4 CPUs} \end{cases}$$

$$x_R = \begin{cases} -1 & \text{falls 2 GB RAM} \\ 1 & \text{falls 4 GB RAM} \end{cases}$$

$$y = q_0 + q_C x_C + q_R x_R + q_{CR} x_C x_R$$

 q_0 Durchschnittl. Durchsatz

 q_C Effekt von Anzahl CPUs

 q_R Effekt von RAM-Grösse

 q_{CR} Interaktion von CPU/RAM

Können Messresultate, x_C und x_R in Gleichung einsetzen:

$$96 = q_0 - q_C - q_R + q_{CR}$$

$$209 = q_0 + q_C - q_R - q_{CR}$$

$$143 = q_0 - q_C + q_R - q_{CR}$$

$$296 = q_0 + q_C + q_R + q_{CR}$$

	2GB RAM	4GB RAM
2 CPUs	96	143
4 CPUs	209	296

Auflösen nach q_0 , q_C , q_R und q_{CR} ergibt:

$$y = 186 + 66.5x_C + 33.5x_R + 10x_Cx_R$$

Bedeutet:

- Durchschnittlicher Durchsatz ist 186 Anfragen/s
- Effekt von 4 CPUs gegenüber 2 CPUs ist 66.5 Anfragen/s
- Effekt von 2 GB RAM gegenüber 4 GB RAM ist 33.5 Anfragen/s
- Interaktion zwischen CPU und RAM macht 10 Anfragen/s aus

Statt von Hand Gleichungssystem auflösen: Trick mit Vorzeichentabelle

	Ø	CPU	RAM
	1	-1	-1
systematisch ausfüllen	1	1	-1
	1	-1	1
	1	1	1

Statt von Hand Gleichungssystem auflösen: Trick mit Vorzeichentabelle

	Ø	CPU	RAM	CPU & RAM
	1	-1	-1	1
systematisch	1	1	-1	-1 multiplizieren
ausfüllen	1	-1	1	-1
	1	1	1	1

Statt von Hand Gleichungssystem auflösen: Trick mit Vorzeichentabelle

	Ø	CPU	RAM	CPU & RAM	Durchsatz	
	1	-1	-1	1	96	
systematisch	Z 1	1	-1	-1 multipli	zieren 209	
ausfüllen	1	-1	1	-1	143	
	1	1	1	1	296	messen

Statt von Hand Gleichungssystem auflösen: Trick mit Vorzeichentabelle

	Ø	CPU	RAM	CPU & RAM	Durchsatz	
	1	-1	-1	1	96	
systematisch	Z 1	1	-1	-1 multipli	zieren 209	
ausfüllen	1	-1	1	-1	143	
	1	1	1	1	296	messen
	744	266	134	40	Total	
Summe der Produkte	186	66.5	33.5	10	Total/4	

Effekt von Anzahl CPUs: Durchschnittlicher Unterschied zwischen Durchsatz mit 2 CPUs und mit 4 CPUs. Analog für RAM.

Mit Replikationen: in letzter Spalte einfach *Durchschnittswerte* für entsprechende Experimente einsetzen.

Experiment-Design: Details

Vorsicht: Nicht alle Effekte sind statistisch signifikant!

Echte Performance-Studie (z.B. für BA) sollte auch *Varianz durch Messfehler* berücksichtigen. «Fortgeschrittene» statistische Verfahren.

Weitere Details z. B. in:

Benchmarking mit JMH

Benchmarking

Benchmarking: Kontrolliertes Messen von Performance unter definierter Last, Konfiguration, usw.

Ziele:

- Vergleichen von Alternativen (Systeme, Konfigs, Code-Stücke, ...)
- Identifizieren von Performance-Rückschritten (Regressions)
- Verstehen von Performance-Grenzen

Arten von Benchmarks:

- Microbenchmarks: Messen von einzelnen oder kleinen Serien von Operationen, wie Öffnen einer Datei, Ausführen einer Methode, ...
- Macrobenchmarks: Messen der Performance von ganzen Applikationen oder Sammlungen davon

Herausforderungen beim Benchmarking

Herausforderungen beim Bechmarking von (Java-)Code:

- Variation: Performance hängt von unkontrollierbaren Umständen ab, die von Ausführung zu Ausführung ändern können.
- Verzerrung der Resultate durch Overhead der Mess-Infrastruktur
- *Warmup*: JIT-Compiler optimiert (oder überhaupt kompiliert) Code nicht von Anfang an. Erste *n* Ausführungen nicht repräsentativ.
- *Ungewollte Optimierungen*: JIT-Compiler könnte Code «zu stark» optimieren, z.B. «ungebrauchte» Teile wegoptimieren.
- Vermischen von Code-Profilen: JIT-Compiler optimiert basierend auf bisher gesehener Ausführung (Profiling!). Mehrere Benchmarks innerhalb der gleichen JVM führen zu Vermischung und Interaktion.

Java Microbenchmark Harness

Werkzeug, das diese Herausforderungen berücksichtigt:

Java Microbenchmark Harness (JMH)

Geeignet für alle JVM-Sprachen (Java, Scala, Kotlin, ...) und alle möglichen Benchmarks, von Nano- bis Macro.

Idee: Benchmarks sind Java-Klassen und Teil der Code Base. Konfiguration über Annotationen, ähnlich wie bei JUnit.

Mehrwert gegenüber hand-rolled (z.B. DocFinderPerfTester):

- Weniger Code, weniger Fehler
- Eingebaute einfache statistische Analyse
- Vor allem: Berücksichtigt Warmup, ungewollte Optimierung, usw.

Übung: Benchmarking mit JMH

Fragen?

