Graph Curvature

Topology vs Geometry

- What is the difference?
- Topology
 - studies properties of spaces that are invariant under any continuous deformation.
 - rubber-sheet geometry

Graphs as Geometric Objects

Geometric view: Extrinsic vs Intrinsic

Extrinsic: coordinates

Intrinsic: length and curvature

What is curvature?

Curvature in Geometry

How do we know that the earth is round?

Curvature in Geometry

• A geometric property: Flatness of an object

Ricci Curvature

Consider $\varepsilon>0$ and let x be an arbitrary point in a n dimensional manifold, y be the endpoint of δv where v is a tangent vector at x with $\delta=d(x,y)$ and S_x and S_y be the geodesic (blue and red) balls with radius ε . As $(\varepsilon,\delta)\to 0$:

Ric
$$(x, v) \simeq \frac{2(n+2)}{\varepsilon^2} \left(1 - \frac{d(S_x, S_y)}{d(x, y)}\right)$$

Graph Ricci Curvature

Analog: For an edge xy, consider the distances from x's neighbors to y's neighbors and compare it with the length of xy

Graph Ricci Curvature

- Issue: how to match x's neighbors to y's neighbors?
 - Assign uniform distribution μ_1 , μ_2 on x' and y's neighbors.
 - Use optimal transportation distance (earth-mover distance) from μ_1 to μ_2 : the matching that minimize the total transport distance.

Ollivier Ricci Curvature

Definition (Ollivier)

Let (X, d) be a metric space and let m_1, m_2 be two probability measures on X. For any two distinct points $x, y \in X$, the (Ollivier-) Ricci curvature along xy is defined as

$$\kappa(x,y):=1-\frac{W_1(m_x,m_y)}{d(x,y)},$$

Ric $(x, v) \simeq \frac{2(n+2)}{\varepsilon^2} \left(1 - \frac{d(S_x, S_y)}{d(x, y)}\right)$

where m_X (m_y) is a probability distribution defined on X (y) and its neighbors, $W_1(\mu_1, \mu_2)$ is the L_1 optimal transportation distance between two probability measure μ_1 and μ_2 on X:

$$W_1(\mu_1, \mu_2) := \inf_{\psi \in \Pi(\mu_1, \mu_2)} \int_{(u, v)} d(u, v) d\psi(u, v)$$

^[1] Ollivier, Y. (2007, January 31). Ricci curvature of Markov chains on metric spaces. arXiv.org.

^[2] Lin, Y., Lu, L., & Yau, S.-T. (2011). Ricci curvature of graphs. Tohoku Mathematical Journal, 63(4), 605–627.

Example: Zero Curvature

• 2D grid

Example: Negative Curvature

• Tree: $\kappa(x, y) = 1/d_x + 1/d_y - 1$, d_x is degree of x.

Example: Positive Curvature

Complete graph

Curvature Distribution

Negatively curved edges → "backbones"

Robustness vs. Vulnerability

Removing edges with increasing curvature

Ricci Curvature in Academic Graphs

• Finding scholars that bridge different communities

Graph Learning with Ricci Curvature

- Ricci curvature improves message passing in graph learning
 - Negative curved edges pass important messages

Graph Learning with Ricci Curvature

- Ricci curvature explains oversquashing in graph representation learning
 - negatively curved edges act as graph bottlenecks and lead to oversquashing

MPNN $h_i^{(\ell+1)} = \phi_{\ell} \left(h_i^{(\ell)}, \sum_{j=1}^n \hat{A}_{ij} \psi_{\ell}(h_i^{(\ell)}, h_j^{(\ell)}) \right)$

Theorem 4. Consider a MPNN as in equation I Let $i \sim j$ with $d_i \leq d_j$ and assume that:

- (i) $|\nabla \phi_{\ell}| \leq \alpha$ and $|\nabla \psi_{\ell}| \leq \beta$ for each $0 \leq \ell \leq L-1$, with $L \geq 2$ the depth of the MPNN.
- (ii) There exists δ s.t. $0 < \delta < (\max\{d_i, d_j\})^{-\frac{1}{2}}$, $\delta < \gamma_{max}^{-1}$, and $\mathrm{Ric}(i, j) \leq -2 + \delta$.

Then there exists $Q_j \subset S_2(i)$ satisfying $|Q_j| > \delta^{-1}$ and for $0 \le \ell_0 \le L - 2$ we have

$$\frac{1}{|Q_j|} \sum_{k \in Q_j} \left| \frac{\partial h_k^{(\ell_0 + 2)}}{\partial h_i^{(\ell_0)}} \right| < (\alpha \beta)^2 \delta^{\frac{1}{4}}. \tag{4}$$

Graph Learning with Ricci Curvature

- Ricci curvature explains oversquashing in graph representation learning
 - Curvature gives a control of cheeger constant (spectral gap)

Cheeger constant
$$h_G := \min_{S \subset V} h_S, \quad h_S := \frac{|\partial S|}{\min\{\operatorname{vol}(S), \operatorname{vol}(V \setminus S)\}}$$

where
$$\partial S = \{(i,j) : i \in S, j \in V \setminus S\}$$
 and $vol(S) = \sum_{i \in S} d_i$.

Cheeger inequality
$$2h_G \ge \lambda_1 \ge \frac{h_G^2}{2}$$

Curvature and Cheeger constant

If
$$Ric(i, j) \ge k > 0$$
 for all $i \sim j$, then $\lambda_1/2 \ge h_G \ge \frac{k}{2}$.

Graph Embedding in Curved Space

Graph Geometric Representation Learning

- Learn representations that reflect the intrinsic geometry of graphs
 - Preserve graph similarity relations
 - Low dimension

Geometry of space aligns with geometry of data

Geometric Model Spaces

Euclidean

Curvature

$$\kappa = 0$$

Inner product
$$\langle x,y\rangle = \sum_{i=1}^n x_i y_i$$

Distance $d(x,y) = \sqrt{\langle x-y, x-y \rangle}$

Canonical Graph

Hyperbolic

 $\kappa < 0$

$$\langle x, y \rangle_H = -x_0 y_0 + \sum_{i=1}^n x_i y_i$$

 $d(x,y) = \operatorname{acosh}(-\langle x,y\rangle_H)$

Spherical

 $\kappa > 0$

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

 $d(x,y) = \arccos(\langle x,y \rangle)$

Hyperbolic Model

Exponential neighborhood growth rate

• Continous space: δ - neighborhood $\mathcal{B}_{\delta}(x) = \{y \in \mathcal{X} : d_{\mathcal{X}}(x,y) \leq \delta\}$

 $\mathcal{X} = \mathbb{R}^d$: polynomial growth (\rightarrow lattice)

 $\mathcal{X} = \mathbb{H}^d$: exponential growth (\rightarrow tree)

Hyperbolic Graph Learning

- Embed graph on the hyperbolic space
 - Adapt graph learning operations in Euclidean space to hyperbolic space

$$\begin{aligned} \mathbf{h}_i^{\ell,E} &= W^\ell \mathbf{x}_i^{\ell-1,E} + \mathbf{b}^\ell \\ \mathbf{x}_i^{\ell,E} &= \sigma(\mathbf{h}_i^{\ell,E} + \sum_{j \in \mathcal{N}(i)} w_{ij} \mathbf{h}_j^{\ell,E}) \end{aligned} \text{Euclidean space}$$

$$\begin{aligned} \mathbf{h}_{i}^{\ell,H} &= (W^{\ell} \otimes^{K_{\ell-1}} \mathbf{x}_{i}^{\ell-1,H}) \oplus^{K_{\ell-1}} \mathbf{b}^{\ell} \\ \mathbf{y}_{i}^{\ell,H} &= \mathrm{AGG}^{K_{\ell-1}} (\mathbf{h}^{\ell,H})_{i} & \text{hyperbolic space} \\ \mathbf{x}_{i}^{\ell,H} &= \sigma^{\otimes^{K_{\ell-1},K_{\ell}}} (\mathbf{y}_{i}^{\ell,H}) \end{aligned}$$

Summary

- From an intrinsic view, graph is curved
 - Negative curved edges are key structures
 - Curvature can help to improve graph representation learning
- From an extrinsic view, graph should be embedded into best-fit space
 - Negative curved spaces can embed more
 - Non-Euclidean geometry can be further exploited

Summary of social networks

- Social networks
 - Small world
 - Scale free
 - Community
 - Girvan-Newman
 - Louvain
 - Spectral clustering
 - Curvature learning