CHAPTER 5: NUMBER THEORY AND ALGEBRA

Lectures 25

FACTORISATION METHODS

Trial factorisation
Fermat Factorisation
Pollard's ρ Method
Quadratic Sieve Method
Shor's Algorithm
others...

Trial factorisation

Input: an integer n Output: the factors of n

• Trial divide n by primes up to \sqrt{n} until the smallest factor a is found.

• If a>1, then repeat with $\frac{n}{a}$.

This is good for small n but very slow in general.

Fermat Factorisation

Input: an odd integer n

Output: a two-factorization of n

• For
$$t = \lceil \sqrt{n} \rceil, \ldots, n$$
:

• If
$$s^2=t^2-n$$
 is square, then return $n=ab=(t+s)(t-s)$.

Note that

• we can write n=ab with $a\geq b\geq 1$ if and only if

$$n = t^2 - s^2 = (t+s)(t-s)$$
 where $t = \frac{1}{2}(a+b)$ and $s = \frac{1}{2}(a-b)$

Checking whether a number is square is algorithmically quick and easy.

Calculating each term $s^2=t^2-n$ is iteratively linear:

$$(t+1)^2 - n = (t^2 - n) + (2t+1)$$

Fermat Factorisation

Input: an odd integer n Output: a two-factorization of n

$$ullet$$
 For $t=\lceil \sqrt{n}
ceil,\ldots,n$:

• If
$$s^2=t^2-n$$
 is square, then return $n=ab=(t+s)(t-s)$.

Example Find factor (pair) of n=9869.

We find that a=s+t=139 and b=t-s=71, so $\mid n=ab=71\times139$

Pollard's ρ Method

Input: integers n, x_0 Output: possibly a factor d of n • Iterate $x_{i+1} \equiv f(x_i) \pmod{n}$ where $f(x) = x^2 - 1$ until $d = \gcd(x_i - x_{2i}, n) = n$; return failure or 1 < d < n; return d

Note that

- We can replace $f:\mathbb{Z} o \mathbb{Z}$ by many other functions that satisfy $x_i \equiv x_{2i} \pmod{p}$ for many possible factors p of n.
- We can also replace x_{2i} by other x_j .
- Calculating d can be done fairly quickly with the Euclidean Algorithm.
- This algorithm pseudo-randomly chooses pairs x_i, x_{2i}
- The algorithm has expected time $O(\sqrt{p})$ to find a factor p.

Example

Find a factor of n=91643 if possible.

Choose $x_0 = 3$, say, and calculate $x_{i+1} = x_i^2 - 1 \pmod{91654}$:

$$x_0 \equiv 3$$
 $\gcd(x_{2i} - x_i, n)$

$$x_1 \equiv 8$$

$$x = 65$$

$$x_2 - x_1 \equiv 55$$

$$x_2 \equiv 63$$

$$x_4 - x_2 \equiv 74007$$

$$x_3 \equiv 3968$$
$$x_4 \equiv 74070$$

$$x_6 - x_3 \equiv 31225$$

65061

 $x_2 \equiv$

$$x_6 \equiv 35193$$
$$x_7 \equiv 83746$$

$$x_8 - x_4 \equiv 62941$$

45368

 $x_8 \equiv$

We have found a factor d = 113.

It is a prime and so is $\frac{n}{d}=811$, so $n=91643=113\times811$.

Quadratic Sieve Method

- Combines Fermat Factorisation with Pollard's ρ Method
- It tries to cleverly find pairs s,t so that $t^2\equiv s^2\pmod n$; then $n \mid (t^2 - s^2) = (t - s)(t + s);$

calculating $gcd(n, t \pm s)$ provides a factor of n.

This is a very fast method.

Shor's Algorithm

- This algorithm is designed for use on quantum computers.
- It works as follows:
- Find some a so that $\operatorname{ord}_n(a) = 2k$ for some integer k.
- Then $a^{2k} \equiv 1 \pmod{n}$, so

$$n \mid (a^{2k} - 1) = (a^k - 1)(a^k + 1)$$

Calculate $\gcd(n, a^k \pm 1)$ to find factors.

The quantum computing is used for finding a quickly.

- but Prof. Michelle Simmons' team (UNSW) is making great advances!

So far, quantum computers are very primitive

RANDOM NUMBER GENERATION

Middle Squares Method

Linear Congruential

Polynomial Congruential and LFSR

N-LFSR

Cryptographic generators

Multiplexing of sequences

others...

These generate pseudo-random numbers deterministically via algorithms.

Truly random processes, like observing nuclear decay, provide random numbers non-deterministically.

Middle Squares Method

Output: Pseudo-random sequences of n digits. Input: An integer n and an integer seed x_0

Iterate:

•
$$x_{i+1} = x_i^2$$

Add leading 0s so that x_{i+1} has 2n digits.

Crop x_{i+1} to middle n digits.

This method is easy to use - but is slow, and has short periodicity.

Middle Squares Method

Output: Pseudo-random sequences of n digits. Input: An integer n and an integer seed x_0

Iterate:

•
$$x_{i+1} = x_i^2$$

- Add leading 0s so that x_{i+1} has 2n digits.
- ullet Crop x_{i+1} to middle n digits.

Example

Let n = 4 and let $x_0 = 2100$.

Then

$$x_0 = 2100$$
 $x_1 = 04410000$
 $x_2 = 16810000$
 $x_3 = 65610000$
 $x_4 = 37210000$
 $x_5 = x_1$

Linear Congruential

Input: Integers a, b, m and an integer seed x_0 Output: Pseudo-random numbers x_i

Iterate:

•
$$x_{i+1} \equiv ax_i + b \pmod{m}$$

This method is easy to use and is relatively useful.

Maple uses this method with

$$a = 427419669081$$
 $b = 0$
 $m = 9999999999989$

and $x_0 = 1$ or truly random seeds x_0 , like the date and time, say.

Unfortunately, this method cannot be used for cryptography since a,bcan often be determined from m and any three x_{i-1}, x_i, x_{i+1} . 0

Polynomial Congruential and LFSR

A prime p and $a_0, \ldots, a_{n-1} \in \mathbb{Z}_p$ and integer seeds x_0, \ldots, x_{n-1} Output: Pseudo-random numbers x_i

Iterate:

•
$$x_{i+n} \equiv a_{n-1}x_{i+n-1} + \dots + a_0x_i \pmod{p}$$

This method is easy to use and has maximal possible period length $(p^n\!-\!1)$ when the recursion's characteristic polynomial

$$f(r) = r^n - a_{n-1}r^{n-1} - \dots - a_0$$

is primitive over \mathbb{Z}_p .

can often be determined from p and any 2n+1 consecutive x_i s. this method cannot be used for cryptography since a_0,\ldots,a_{n-1} Unfortunately, like the linear congruential method,

Polynomial Congruential and LFSR

Input: A prime p and $a_0,\ldots,a_{n-1}\in\mathbb{Z}_p$ and integer seeds x_0,\ldots,x_{n-1} Output: Pseudo-random numbers x_i

Iterate:

•
$$x_{i+n} \equiv a_{n-1}x_{i+n-1} + \dots + a_0x_i \pmod{p}$$

For p=2, one often uses Linear Feedback Shift Registers (LFSR).

- s_{n-1},\ldots,s_0 are switch registers, initially x_{n-1},\ldots,x_0 .
- Switch i is off if $a_i = 0$ and on if $a_i = 1$.
- indicates binary addition (XOR; super-fast)

Example

 $f(x)=x^3+x^2+1$ is primitive over \mathbb{Z}_2 and represents the recurrence

Set initial values $(x_2, x_1, x_0) = (0, 0, 1)$:

output	0 0 1	\vdash	0	0	$\overline{}$	$\overline{}$	$\overline{}$	0
S_0	$\overline{}$	0	0	\vdash	\vdash	\vdash	0	\vdash
S_1	0	0				0		0
S_2	0				0		0	0

Non-linear Feedback Shift Registers (N-FLSR)

Input: Integer seeds x_0,\ldots,x_{n-1} and a non-linear function $f:\mathbb{Z}^n\to\mathbb{Z}$ Output: Pseudo-random numbers x_i

Iterate:

•
$$x_{i+1} = f(x_i, \dots, x_{i+n-1})$$

Not much is known about these in general. One efficient N-FLSR is given by

$$x_0 \equiv 2 \pmod{4}$$

$$x_{i+1} \equiv x_i(x_i + 1) \pmod{2^k}, k > 2$$