GEL10280/64486: Communications numériques **2007 Examen final**

Mercredi le 25 avril 2007; Durée: 13h30 à 15h20 Deux feuilles de documentation fournies; une calculatrice permise

Problème 1 (15 points sur 100)

Considérons un PLL d'ordre deux avec largeur de bande équivalente de bruit de B_N =.05 et facteur d'amortissement ζ =.5. Le filtre de boucle est passe-bas avec la forme

$$F(\omega) = \frac{\omega_1}{j\omega + \omega_1}$$

La phase à l'entrée est un échelon avec un saut de phase de 1.25 radian.

Quelle est l'erreur asymptotique pour B_N =.05 et ζ =.5?

Problème 2 (10 points sur 100)

Voici quatre PLL.

Classifiez chaque PLL selon la méthode de génération des références de phase, soit

- A) tonalité ou pilote
- B) re-modulation
- C) mettre signal reçu au carré (puissance quatre, etc.)

.

Problème 3 (20 points sur 100)

Voici le tableau standard et la table des syndromes pour un code en bloc.

bits de message	001	010	011	100	101	110	111	Syndrome
000000	110001	101010	011011	011100	101101	110110	000111	000
000001	110000	101011	011010	011101	101100	110111	000110	110
000010	110011	101000	011001	011110	101111	110100	000101	101
000100	110101	101110	011111	011000	101001	110010	000011	011
001000	111001	100010	010011	010100	100101	111110	001111	001
010000	100001	111010	001011	001100	111101	100110	010111	010
100000	010001	001010	111011	111100	001101	010110	100111	100
001001	111000	100011	010010	010101	100100	111111	001110	111

- A. Combien de vecteurs d'erreur peuvent être corrigés par ce code?
- B. Combien de bits peuvent être corrigés par ce code?
- C. Est-ce que le code est systématique?
- D. Est-ce que le code est linéaire?
- E. Quelle est la distance minimale du code?
- F. Quel est le taux de code?
- G. Si la séquence reçue est 010011, est-ce qu'il y a eu une erreur de transmission?
- H. Avec l'information fournie, est-ce que vous pouvez donner une esquisse de l'encodeur?
- I. Avec l'information fournie est-ce que vous pouvez corriger les erreurs?
 - a. Si oui, comment?
 - b. Si non, quelle information additionnelle est requise?

Problème 4 (30 points sur 100)

Considérons le système TCM 8QAM suivant

Page 4

Il y a deux possibilités pour le chemin avec la distance la plus courte, soit

Notons que sur chaque transition il y a trois bits de code. Le premier bit du code c_3 , qui est égal au premier bit de données, est fourni pour chaque transition.

- A. (10 points) Complétez les mots de code pour toutes les transitions dans les deux chemins.
- B. (20 points) Trouvez les distances globales (métriques de chemin) pour les deux chemins en utilisant la distance euclidienne au carré.

Problème 5 (25 points sur 100)

Voici un décodeur pour un code convolutif. Les métriques de branche (distances locales) sont indiquées pour chaque transition, et représentent la distance de Hamming entre le mot de code reçu et le mot de code valide pour la transition.

- A. (15 points) Quelle est la sortie du décodeur, c.-à-d. la séquence de cinq bits de données?
- B. (10 points) Est-ce qu'il y a eu des erreurs pendant la transmission? Si oui, combien?