# Predict the Severity of a Traffic Accident

IBM Data Science Professional Certificate

Monica

<u>LinkedIn</u> | <u>GitHub</u>

9 October 2020

#### **Data Source**

- Part of an example dataset in IBM Data Science Professional Certificate
- Can be downloaded from my GitHub repository <a href="https://github.com/monica110394/Coursera Capstone">https://github.com/monica110394/Coursera Capstone</a>

#### Variable Selection

- 'SEVERITYCODE', 'ADDRTYPE', 'COLLISIONTYPE', 'PERSONCOUNT', 'PEDCOUNT', 'PEDCYLCOUNT', 'VEHCOUNT', 'JUNCTIONTYPE', 'SDOT\_COLCODE', 'INATTENTIONIND', 'UNDERINFL', 'WEATHER', 'ROADCOND', 'LIGHTCOND', 'SPEEDING', 'ST\_COLCODE', 'HITPARKEDCAR'
- Target variable: 'SEVERITYCODE'

## **Feature Engineering**

- Null Values are detected.
- Attributes are removed that have most of the values as null
- Records are dropped that had missing values
  - Number of rows: 182895
  - Number of Columns: 15
  - 'SEVERITYCODE', 'ADDRTYPE', 'COLLISIONTYPE', 'PERSONCOUNT','PEDCOUNT',
    'PEDCYLCOUNT', 'VEHCOUNT', 'JUNCTIONTYPE', 'SDOT\_COLCODE', 'UNDERINFL', 'WEATHER',
    'ROADCOND', 'LIGHTCOND', 'ST COLCODE', 'HITPARKEDCAR'

# Label Encoding (categorical variables)

- 'ADDRTYPE'
- 'COLLISIONTYPE'
- 'JUNCTIONTYPE'
- 'SDOT COLCODE'
- 'UNDERINFL'
- 'WEATHER'
- 'ROADCOND'
- 'LIGHTCOND'
- 'ST COLCODE'
- 'HITPARKEDCAR'

## Numerical variables

- 'PERSONCOUNT'
- 'PEDCOUNT'
- 'PEDCYLCOUNT'
- 'VEHCOUNT'

## Balancing dataset:

- Unbalanced dataset can cause the prediction to be skewed
- Dataset is balanced by down sampling the category that has greater number of samples
- In this case it is 'SEVERITYCODE'=1



# **Exploratory Data Analysis (categorical variables)**

















# Exploratory Data Analysis (numerical variables)



# **Data Preparation**

Normalize the feature set

```
from sklearn import preprocessing
X = preprocessing.StandardScaler().fit(features).transform(features)
```

• Dataset split into train and test sets

```
Train set: (90600, 14) (90600,)
Test set: (22650, 14) (22650,)
```

# K Nearest Neighbours

The best accuracy score achieved was 0.6806 with k=7

```
KNeighborsClassifier(algorithm='auto',
leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=None,
n_neighbors=7, p=2,
weights='uniform')
Train set Accuracy: 0.7195
```

Train set Accuracy: 0.7195 Test set Accuracy: 0.6806



### **Decision Tree**

The best accuracy score achieved was 0.6806 with max\_depth = 10

```
DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='entropy', max_depth=10, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort='deprecated', random_state=None, splitter='best')
```

Train set Accuracy: 0.7183
Test set Accuracy: 0.7128



## **Logistic Regression**

The best accuracy score achieved was 0.6806 with C=0.1

```
LogisticRegression (C=0.1, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='auto', n_jobs=None, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

Train set Accuracy: 0.6591
Test set Accuracy: 0.6595
```



## Results

- Jaccard Index
- F1 Score
- Precision Score
- Recall Score
- ROC

In this problem, lower false positive rate is less important than higher true positive rate. In other words, it is more important to properly predict the high-severity accident properly, if there is room for doubt it is better to prevent.

• Log Loss (Logistic Regression only)







| Algorithm           | Jaccard | F1 Score | Precision | Recall | AUC (ROC) | Log Loss |
|---------------------|---------|----------|-----------|--------|-----------|----------|
| KNN                 | 0.6806  | 0.6797   | 0.6991    | 0.6284 | 0.75      | NA       |
| Decision Tree       | 0.7128  | 0.7104   | 0.7582    | 0.6207 | 0.79      | NA       |
| Logistic Regression | 0.6595  | 0.6585   | 0.6417    | 0.7144 | 0.74      | 0.5899   |

Decision Tree is the best classifier out of the three with the best Jaccard Index 0.71, best F1 Score 0.75 and best AUC 0.79