

Semester 2 Examinations 2021-2022

| DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR |                                   |
|-----------------------------------------------------------------------------------|-----------------------------------|
| School                                                                            | Leicester International Institute |
| Module Code                                                                       | MA2404                            |
| Module Title                                                                      | Markov processes                  |
| Exam Duration                                                                     | Two hours                         |
| CHECK YOU HAVE THE CORRECT QUESTION PAPER                                         |                                   |
| Number of Pages                                                                   | 3                                 |
| Number of Questions                                                               | 4                                 |
| Instructions to Candidates                                                        | Answer all questions              |
| FOR THIS EXAM YOU ARE ALLOWED TO USE THE FOLLOWING:                               |                                   |
| Calculators                                                                       | Yes                               |
| Books/Statutes provided by the University                                         | -                                 |
| Are students permitted to bring their own Books/Statutes/Notes?                   | Yes                               |
| Additional Stationery                                                             | Yes                               |

Version 1 Page 1 of 3



All Candidates

1. An insurance company receives claims of sizes  $X_1, X_2, \ldots$  Hence, the total size of all claims during a week is  $S = X_1 + X_2 + \cdots + X_N$ , where N is the (random) number of claims during a week. The company assumes that N follows the geometric distribution with parameter p,  $X_i$  are independent from each other and from N, identically distributed, and follow the exponential distribution with parameter  $\lambda$ . Parameters p and  $\lambda$  are unknown and should be estimated from the past data.

To protect itself from large claims, an insurance company arranged excess of loss reinsurance policy with retention level M = 2000, that is, if claim  $X_i$  exceeds £2000, the insurance company pays £2000, and the remaining part  $X_i - 2000$  is covered by reinsurance.

(i) [5 marks] The numbers of claims an insurance company received during the last 10 weeks were

$$1,3,1,1,2,4,0,3,0$$
 and  $5$ .

Use the method of maximum likelihood to estimate the parameter p.

(ii) [5 marks] The last 10 non-zero payments a reinsurance company made are

Use the method of moments to estimate the parameter  $\lambda$ .

- (iii) [5 marks] Estimate the expectation and standard deviation of the total size S of all claims to be received by an insurance company during the next week.
- (iv) [5 marks] Let S = I + R, where I and R are the sums to be paid next week by insurance and reinsurance companies, respectively. Estimate the expectation of R.
- (v) [5 marks] Estimate the probability that R = 0.

Total: 25 marks

2. (i) An insurance company receives claims that follow Burr distribution  $\text{Burr}(\alpha,\lambda,\gamma)$  with density

$$f(x) = \frac{\alpha \gamma \lambda^{\alpha} x^{\gamma - 1}}{(\lambda + x^{\gamma})^{\alpha + 1}}, \quad x > 0$$

where  $\alpha, \lambda, \gamma$  are positive parameters. Using the limiting density ratios test, determine whether the tail of the Burr distribution becomes heavier or lighter if

- (a) **[5 marks]**.  $\lambda$  and  $\gamma$  are fixed and  $\alpha$  increases;
- (b) **[5 marks]**.  $\alpha$  and  $\gamma$  are fixed and  $\lambda$  increases;
- (c) [5 marks].  $\lambda$  and  $\alpha$  are fixed and  $\gamma$  increases.
- (ii) The random variables X and Y are dependent with the Clayton copula with parameter  $\alpha = 1/2$ .
  - (a) **[5 marks]**. Calculate the coefficient of lower tail dependence of *X* and *Y*.
  - (b) **[5 marks]**. Calculate the survival copula  $\bar{C}(u, v)$ .

Total: 25 marks

Version 1 Page 2 of 3

- 3. Consider a no claims discount (NCD) model for car-insurance premiums. The insurance company offers discounts of 0%, 25% and 50% of the full premium C=1000, determined by the following rules:
  - (a) All new policyholders start at the 0% level.
  - (b) If no claim is made during the current year the policyholder moves up one discount level, or remains at the 50% level.
  - (c) If one or more claims are made the policyholder moves to the 0% level.

The insurance company believes that the probability of making a claim each year depends on the current discount level and is equal to 0.3, 0.2 and 0.1 for drivers at discount levels 0%, 25% and 50%, respectively.

- (i) [5 marks] Explain why can this process be modelled as a Markov chain. Determine the state space and transition matrix.
- (ii) [5 marks] Calculate the 3-step transition matrix for this NCD system.
- (iii) [5 marks] A policyholder currently has no discount and pays the full premium. Calculate the expectation of the price of her insurance contract after 3 years.
- (iv) [5 marks] Compute the stationary distribution for this NCD system.
- (v) [5 marks] Prove that the *n*-step transition probabilities of this Markov chain converge to the stationary distribution.

Total: 25 marks

- 4. A company provides sick pay to its employees who are unable to work. They decided to ignore the mortality rates and use the two-state, time-inhomogeneous Markov jump process with states Healthy (H) that means fit to work and Sick (S) that means unable to work. The transition rate form H to S is  $\sigma(t)$ , while the transition rate from S to H is  $\rho(t)$ .
  - (i) [5 marks] Write down the generator matrix and Kolmogorov's forward equations in matrix form for this process.
  - (ii) [10 marks] Given an employee is sick at the time  $t_1$ , write down an expression for the probability that he or she will stay sick continuously until time  $t_2 > t_1$ . Estimate this probability for  $t_1 = 40$ ,  $t_2 = 40.5$  and  $\rho(t) = 100/t$ .
  - (iii) [10 marks] The company assumes that  $\sigma(t)=at$  and would like to use linear regression with least square error to find parameter a. Data shows that  $\sigma(20)\approx 0.04$ ,  $\sigma(40)\approx 0.08$  and  $\sigma(60)\approx 0.1$ . Find parameter a which best approximates these data.

Total: 25 marks