[while $e \ do \ c$] $\sigma = Y F \sigma$

 $F w \sigma =$

$$w_{\perp \perp}([c]\sigma)$$
 $si [e]\sigma$
 σ cc

 $F \in (\Sigma \to \Sigma_{\perp}) \to (\Sigma \to \Sigma_{\perp})$ es continua para todo c,e

Sea f_1, f_2 , ... cadena en $\Sigma \to \Sigma$

Hay que ver
$$\bigcup_{i=0}^{} F \quad f_i = F \left(\bigcup_{i=0}^{} f_i\right)$$

Po definición de supremo en $\Sigma \to \Sigma$, hay que ver: $\bigcup_{i=0}^{\infty} F$ $f_i \sigma = F (\bigcup_{i=0}^{\infty} f_i) \sigma$

Caso $[e]\sigma$ y $[c]\sigma \neq \bot$

$$\bigcup_{i=0}^{\mathsf{U}} F \quad f_i \sigma = \bigcup_{i=0}^{\mathsf{U}} (f_i) \quad \text{and} \quad ([c]\sigma) = \bigcup_{i=0}^{\mathsf{U}} f_i ([c]\sigma)$$

$$F\left(\bigcup_{i=0}^{n} f_i\right) \sigma = \left(\bigcup_{i=0}^{n} f_i\right) \prod_{i=1}^{n} ([c]\sigma) = \left(\bigcup_{i=0}^{n} f_i\right) ([c]\sigma)$$

La igualdad se da por definición de supremo

Caso $[e]\sigma$ y $[c]\sigma = \bot$

$$\bigcup_{i=0} F \quad f_i \sigma = \bigcup_{i=0} (f_i) \quad \text{i.e.} ([c]\sigma) = \bigcup_{i=0} \bot$$

$$F\left(\bigcup_{i=0}^{n} f_i\right) \sigma = \left(\bigcup_{i=0}^{n} f_i\right) \left([c]\sigma\right) = \bot$$

La igualdad se da de manera trivial

De manera similar se hace el caso restante.