

HC32F460 系列

32 位 ARM® Cortex®-M4 微控制器
HC32F460PETB-LQFP100 / HC32F460PEHB-VFBGA100
HC32F460KETA-LQFP64 / HC32F460KEUA-QFN60TR
HC32F460JETA-LQFP48 / HC32F460JEUA-QFN48TR
HC32F460PCTB-LQFP100 / HC32F460KCTA-LQFP64
HC32F460JCTA-LQFP48

数据手册

产品特性

ARM Cortex-M4 32bit MCU+FPU, 250DMIPS, up to 512KB Flash, 192KB SRAM, USB FS (Device/Host), 14 Timers, 2 ADCs, 1 PGA, 3 CMPs, 20 个通信接口

- ARMv7-M 架构 32bit Cortex-M4 CPU,集成 FPU、MPU,支持 SIMD 指令的 DSP,及 CoreSight 标准调试单元。最高工作主频 200MHz, Flash 加速单元实现 0-wait 程序执行, 达到 250DMIPS 或 680Coremarks 的运算性能
- 内置存储器
 - 最大 512KByte 的 Flash memory, 支持安全 保护及数据加密*1
 - 最大 192KByte 的 SRAM,包括 32KByte 的 200MHz 单周期访问高速 RAM,4KByte Retention RAM
- 电源,时钟,复位管理
 - 系统电源 (Vcc): 1.8-3.6V
 - 6 个独立时钟源:外部主时钟晶振(4-25MHz),外部副晶振(32.768kHz),内部高速 RC(16/20MHz),内部中速 RC(8MHz),内部低速 RC(32kHz),内部 WDT 专用 RC(10kHz)
 - 包括上电复位 (POR), 低电压检测复位 (LVDR), 端口复位 (PDR) 在内的 14 种 复位源,每个复位源有独立标志位
- 低功耗运行
 - 外设功能可以独立关闭或开启
 - 三种低功耗模式: Sleep, Stop, Power down 模式
 - Run 模式和 Sleep 模式下支持超高速模式、 高速模式、超低速模式之间的切换
 - 待机功耗: Stop 模式 typ.90uA@25°C, Power down 模式最低至 1.8uA@25°C
 - Power down 模式下,支持 16 个端口唤醒, 支持超低功耗 RTC 工作,4KByte SRAM 保 持数据
 - 待机快速唤醒, Stop 模式唤醒最快至 2us, Power down 模式唤醒最快至 20us
- 外设运行支持系统显著降低 CPU 处理负荷
 - 8 通道双主机 DMAC
 - USBFS 专用 DMAC

- 数据计算单元(DCU)
- 支持外设事件相互触发(AOS)
- 高性能模拟
 - 2 个独立 12bit 2MSPS ADC
 - 1 个可编程增益放大器(PGA)
 - 3 个独立电压比较器 (CMP), 支持 2 路内部 基准电压
 - 1个片上温度传感器(OTS)
- Timer
 - 3 个多功能 16bit PWM Timer (Timer6)
 - 3 个 16bit 电机 PWM Timer (Timer4)
 - 6个16bit 通用 Timer (TimerA)
 - 2个16bit 基础 Timer (Timer0)
- 最大 83 个 GPIO
 - CPU 单周期访问,最大 100MHz 输出
 - 最大 81 个 5V-tolerant IO
- 最大 20 个通信接口
 - 3个I2C,支持SMBus协议
 - 4个USART,支持ISO7816-3协议
 - 4 个 SPI
 - 4 个 I2S, 内置音频 PLL 支持音频级采样精度
 - 2个SDIO,支持SD/MMC/eMMC格式
 - 1 个 QSPI, 支持 200Mbps 高速访问 (XIP)
 - 1个CAN,支持ISO11898-1标准协议
 - 1个USB 2.0 FS, 内置 PHY, 支持 Device/Host
- 数据加密功能
 - AES/HASH/TRNG
- 封装形式:

LQFP100(14×14mm) VFBGA100(7×7mm)
LQFP64 (10×10mm) QFN60 (7×7mm)
QFN48 (5×5mm) LQFP48 (7×7mm)

*1: 关于 Flash 安全保护及数据加密的具体规格,请咨询销售窗口。

声明

- ▶ 小华半导体有限公司(以下简称: "XHSC")保留随时更改、更正、增强、修改小华半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。XHSC产品依据购销基本合同中载明的销售条款和条件进行销售。
- ➤ 客户应针对您的应用选择合适的 XHSC 产品,并设计、验证和测试您的应用,以确保您的应用满足相应标准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。
- > XHSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ➤ XHSC 产品的转售,若其条款与此处规定不同,XHSC 对此类产品的任何保修承诺无效。
- ➤ 任何带有"®"或"™"标识的图形或字样是 XHSC 的商标。所有其他在 XHSC 产品上显示的 产品或服务名称均为其各自所有者的财产。
- ▶ 本通知中的信息取代并替换先前版本中的信息。

©2022 小华半导体有限公司 - 保留所有权利

目 录

产品	品特性			2
声	明			3
目	录			4
1	简介	(Overvie	ew)	10
	1.1	型号	命名规则	11
	1.2	型号:	功能对比表	12
	1.3	功能	框图	14
	1.4	功能征	简介	15
		1.4.1	CPU	15
		1.4.2	总线架构(BUS)	15
		1.4.3	复位控制(RMU)	16
		1.4.4	时钟控制(CMU)	16
		1.4.5	电源控制(PWC)	17
		1.4.6	初始化配置(ICG)	18
		1.4.7	嵌入式 FLASH 接口(EFM)	18
		1.4.8	内置 SRAM(SRAM)	18
		1.4.9	通用 IO(GPIO)	19
		1.4.10	中断控制(INTC)	19
		1.4.11	自动运行系统(AOS)	20
		1.4.12	键盘扫描(KEYSCAN)	20
		1.4.13	存储保护单元(MPU)	20
		1.4.14	DMA 控制器(DMA)	20
		1.4.15	电压比较器(CMP)	21
		1.4.16	模数转换器(ADC)	21
		1.4.17	温度传感器(OTS)	23
		1.4.18	高级控制定时器(Timer6)	23
		1.4.19	通用控制定时器(Timer4)	23
		1.4.20	紧急刹车模块(EMB)	23
		1.4.21	通用定时器(TimerA)	24
		1.4.22	通用定时器(Timer0)	24
		1.4.23	实时时钟(RTC)	24
		1.4.24	看门狗计数器(WDT)	24
		1.4.25	串行通信接口(USART)	24
		1.4.26	集成电路总线(I2C)	
		1.4.27	串行外设接口(SPI)	25
		1.4.28	四线式串行外设接口(QSPI)	25
		1.4.29	集成电路内置音频总线(I2S)	
		1.4.30	CAN 通信接口(CAN)	26
		1.4.31	USB2.0 全速模块(USB FS)	
		1.4.32	加密协处理模块(CPM)	26

		1.4.33	数据计算单元(DCU)	27
		1.4.34	CRC 计算单元(CRC)	27
		1.4.35	SDIO 控制器(SDIOC)	27
2	引脚	配置及功	能(Pinouts)	28
	2.1	引脚	配置图	28
	2.2	引脚。	功能表	33
	2.3	引脚口	功能说明	41
	2.4	引脚作	使用说明	44
3	电气	特性(EC	Cs)	45
	3.1	参数统	条件	45
		3.1.1	最小值和最大值	45
		3.1.2	典型值	45
		3.1.3	典型曲线	45
		3.1.4	负载电容	45
		3.1.5	引脚输入电压	46
		3.1.6	电源方案	47
		3.1.7	电流消耗测量	50
	3.2	绝对比	最大额定值	51
	3.3	工作组	条件	53
		3.3.1	通用工作条件	53
		3.3.2	上电 / 掉电时的工作条件	54
		3.3.3	复位和电源控制模块特性	
		3.3.4	供电电流特性	58
		3.3.5	电气敏感性	67
		3.3	3.5.1 静电放电 (ESD)	67
		3.3	3.5.2 静态 Latch-up	67
		3.3.6	低功耗模式唤醒时序	68
		3.3.7	I/O 端口特性	69
		3.3.8	USART 接口特性	
		3.3.9	I2S 接口特性	
		3.3.10	I2C 接口特性	
		3.3.11	SPI 接口特性	
		3.3.12	CAN2.0B 接口特性	
		3.3.13	USB 接口特性	
		3.3.14	PLL 特性	
		3.3.15	JTAG 接口特性	
		3.3.16	外部时钟源特性	
			3.16.1 外部源产生的高速外部用户时钟	
			3.16.2 晶振 / 陶瓷谐振器产生的高速外部时钟	
			3.16.3 晶振 / 陶瓷谐振器产生的低速外部时钟	
		3.3.17	内部时钟源特性	
		2 2	3.17.1 内郊宫诗(HDC)振荡哭	86

		3.3.1	17.2 内部中速(MRC)振荡器	86
		3.3.1	17.3 内部低速(LRC)振荡器	87
		3.3.1	17.4 SWDT 专用内部低速(SWDTLRC)振荡器	87
		3.3.18	12 位 ADC 特性	88
		3.3.19	DAC 特性	96
		3.3.20	比较器特性	96
		3.3.21	增益可调放大器特性	97
		3.3.22	温度传感器	98
		3.3.23	存储器特性	
		3.3.2	23.1 闪存	
4	封装信	言息		100
	4.1	封装尺	寸	100
	4.2		意图	
	4.3		明	
	4.4		阻系数	
5	订购信			
版			·式	

表目录

表	1-1	型号功能对比表	13
表	2-1	引脚功能表	37
表	2-2	Func32~63 表	38
表	2-3	端口配置	39
表	2-4	通用功能规格	40
表	2-5	引脚功能说明	43
表	2-6	引脚使用说明	44
表	3-1	VCAP_1/VCAP_2 工作条件	50
表	3-2	电压特性	51
表	3-3	电流特性	51
表	3-4	热特性	52
表	3-5	通用工作条件	53
表	3-6	上电 / 掉电时的工作条件	54
表	3-7	复位和电源控制模块特性	57
表	3-8	超高速模式电流消耗	59
表	3-9	高速模式电流消耗 1	60
表	3-10	高速模式电流消耗 2	61
表	3-11	高速模式电流消耗 3	62
表	3-12	超低速模式电流消耗 1	63
表	3-13	超低速模式电流消耗 2	64
表	3-14	低功耗模式电流消耗	66
表	3-15	模拟模块电流消耗	66
表	3-16	ESD 特性	67
表	3-17	静态 Latch-up 特性	67
表	3-18	低功耗模式唤醒时间	68
表	3-19	I/O 静态特性	69
表	3-20	输出电压特性	70
		I/O 交流特性	
表	3-22	USART AC 时序	73
表	3-23	I2S 电气特性	74
表	3-24	I2C 电气特性	76
表	3-25	SPI 电气特性	77
表	3-26	USB Full-Speed 电气特性	79
表	3-27	USB Low-Speed 电气特性	80
表	3-28	PLL 主要性能指标	81
		JTAG 接口特性	
表	3-30	高速外部用户时钟特性	83
表	3-31	XTAL 4-25 MHz 振荡器特性	84
表	3-32	XTAL32 振荡器特性	85
表	3-33	HRC 振荡器特性	86

表 3-34	MRC 振荡器特性	86
表 3-35	LRC 振荡器特性	87
表 3-36	SWDTLRC 振荡器特性	87
表 3-37	ADC 特性	88
表 3-38	ADC 特性 (续)	89
表 3-39	ADC1_IN0~3、ADC12_IN4~IN7 输入通道精度@ f _{ADC} =60MHz	90
表 3-40	ADC1_IN0~3、ADC12_IN4~IN7 输入通道精度@ f _{ADC} =30MHz	90
表 3-41	ADC1_IN0~3、ADC12_IN4~IN7 输入通道精度@ f _{ADC} =30MHz	90
表 3-42	ADC1_IN0~3、ADC12_IN4~IN7 输入通道精度@ f _{ADC} =8MHz	91
表 3-43	ADC1_IN12~15、ADC12_IN8~11 输入通道精度@ f _{ADC} =60MHz	91
表 3-44	ADC1_IN12~15、ADC12_IN8~11 输入通道精度@ f _{ADC} =30MHz	91
表 3-45	ADC1_IN12~15、ADC12_IN8~11 输入通道精度@ f _{ADC} =30MHz	92
表 3-46	ADC1_IN12~15、ADC12_IN8~11 输入通道精度@ f _{ADC} =8MHz	92
表 3-47	ADC1_IN0~3、ADC12_IN4~IN7 输入通道输入通道动态精度@ f _{ADC} =60MHz	92
表 3-48	ADC1_IN0~3、ADC12_IN4~IN7 输入通道输入通道动态精度@ f _{ADC} =30MHz	93
表 3-49	ADC1_IN0~3、ADC12_IN4~IN7 输入通道输入通道动态精度@ f _{ADC} =8MHz	93
表 3-50	DAC 特性	96
表 3-51	比较器特性	96
表 3-52	增益可调放大器特性	98
表 3-53	温度传感器特性	98
表 3-54	闪存特性	99
表 3-55	闪存编程擦除时间	99
表 3-56	闪存可擦写次数和数据保存期限	99
表 4-1	各封装热阻系数表	113

图目录

图	1-1	功能框图	14
图	2-1	引脚配置图	32
图	3-1	引脚负载条件(左)与输入电压测量(右)	46
图	3-2	电源方案(HC32F460PETB-LQFP100,HC32F460PEHB-VFBGA100)	47
图	3-3	电源方案(HC32F460KETA-LQFP64)	48
冬	3-4	电源方案(HC32F460KEUA-QFN60TR/HC32F460JETA-LQFP48/HC32F460JEUA-QFN48TR)	49
冬	3-5	电流消耗测量方案	50
冬	3-6	I/O 交流特性定义	72
图	3-7	USART 时钟时序	73
图	3-8	USART (CSI) 输入输出时序	73
图	3-9	I2S 从模式时序(Philips 协议)	75
图	3-10	I2S 主模式时序(Philips 协议)	75
图	3-11	I2C 总线时序定义	76
图	3-12	SCK Clock 定义	
图	3-13	SPI 接口时序要求	78
图	3-14	USB 上升/下降时间及 Cross Over 电压定义	
图	3-15	JTAG JTCK 时钟	82
图	3-16	JTAG 输入输出	83
图	3-17	采用8 MHz 晶振的典型应用	84
图	3-18	采用 32.768 kHz 晶振的典型应用	
图	3-19	ADC 精度特性	93
图	3-20	使用 ADC 的典型连接	94
图	3-21	电源和参考电源去耦例	95

1 简介(Overview)

HC32F460 系列是基于 ARM® Cortex®-M4 32-bit RISC CPU,最高工作频率 200MHz 的高性能 MCU。Cortex-M4 内核集成了浮点运算单元(FPU)和 DSP,实现单精度浮点算术运算,支持所有 ARM 单精度数据处理指令和数据类型,支持完整 DSP 指令集。内核集成了 MPU 单元,同时叠加 DMAC 专用 MPU 单元,保障系统运行的安全性。

HC32F460系列集成了高速片上存储器,包括最大512KB的Flash,最大192KB的SRAM。 集成了Flash访问加速单元,实现CPU在Flash上的单周期程序执行。轮询式总线矩阵 支持多个总线主机同时访问存储器和外设,提高运行性能。总线主机包括CPU,DMA, USB专用DMA等。除总线矩阵外,支持外设间数据传递,基本算术运算和事件相互触 发,可以显著降低CPU的事务处理负荷。

HC32F460 系列集成了丰富的外设功能。包括 2 个独立的 12bit 2MSPS ADC, 1 个增益可调 PGA, 3 个电压比较器(CMP), 3 个多功能 16bit PWM Timer(Timer6)支持 6 路互补 PWM 输出, 3 个电机 PWM Timer(Timer4)支持 18 路互补 PWM 输出, 6 个 16bit 通用 Timer(TimerA)支持 3 路 3 相正交编码输入及 48 路 Duty 独立可设 PWM 输出, 11 个串行通信接口(I2C/UART/SPI), 1 个 QSPI 接口, 1 路 CAN, 4 个 I2S 支持音频 PLL, 2 个 SDIO, 1 个 USB FS Controller 带片上 FS PHY 支持 Device/Host。

HC32F460 系列支持宽电压范围(1.8-3.6V),宽温度范围(-40-105℃)和各种低功耗模式。Run 模式和 Sleep 模式下可切换超高速模式(≤200MHz)、高速模式(≤168MHz)和超低速模式(≤8MHz)。支持低功耗模式的快速唤醒,STOP 模式唤醒最快至 2us,Power Down 模式唤醒最快至 20us。

典型应用

HC32F460 系列提供 48pin、64pin、100pin 的 LQFP 封装, 48pin、60pin 的 QFN 封装, 100pin 的 VFBGA 封装, 适用于高性能电机变频控制、智能硬件、IoT 连接模块等领域。

1.1 型号命名规则

	HC 32 F 4 6 0 J E U A
小华半导体	
CPU位宽	
32: 32bit	
产品类型	
F: 通用	
CPU类型	
4: Cortex-M4	
性能识别码	
6: 高性能	
功能配置识别码	
0: 配置1	
引脚数	
J: 48Pin K: 60Pin / 64Pin	
P: 100Pin	
FLASH容量	
C: 256KB E: 512KB	
封装类型	
T: LQFP U: QFN	
H: VFBGA	
环境温度范围	
B: -40-105°C,工业级	

A: -40-85°C, 工业级

1.2 型号功能对比表

		产品型号													
	功能	HC32F4	HC32F4	HC32F4	HC32F4	HC32F4	HC32F4	HC32F4	HC32F4	HC32F4					
		60РЕНВ	60PETB	60РСТВ	60KETA	60KCTA	60JETA	60JCTA	60JEUA	60KEUA					
Flash Me	emory (KB)	512	512 512 256 512 256 512						512	512					
Ē	別脚数	100	100 100 100 64 64 48 48												
G	PIO数	83	83	83	52	52	38	38	38	50					
5V Tole	erant GPIO数	81	81	81	50	50	36	36	36	48					
	封装	VFBGA			LÇ	FP			Q ¹	FN					
温	度范围		-40-105℃				-40-	85℃							
电源	电压范围					1.8 ~ 3.6 V									
OTP	(Byte)					960									
SRA	M (KB)					192									
	DMA		2unit * 4ch												
外部	端口中断	EIRQ * 16vec + NMI * 1ch													
	UART	4ch (2)													
Communca	SPI	4ch (3)													
tion	I2C	3ch (2)													
Interfaces (括号内	I2S	4ch (3)													
是每个ch	CAN	1ch (2)													
最少所需	QSPI	1ch (6)													
IO数)	SDIO	2ch (3)													
	USB-FS		1ch (2)												
	Timer0					2unit									
	TimerA	6unit													
	Timer4	3unit													
Timers	Timer6					3unit									
	WDT					1ch									
	SWDT	1ch													
	RTC	1ch													
	12bit ADC			2unit, 16ch		2unit, 10ch 2unit, 15ch									
A 1	PGA					1ch									
Analog	CMP					3ch									
	OTS					$\sqrt{}$									

AES128	$\sqrt{}$
HASH (SHA256)	\checkmark
TRNG	\checkmark
频率监测模块(FCM)	\checkmark
可编程电压检测功能(PVD)	V
调试接口	SWD
州 (八) (五)	JTAG

表 1-1 型号功能对比表

1.3 功能框图

图 1-1 功能框图

1.4 功能简介

1.4.1 CPU

HC32F460 系列集成了最新一代的嵌入式 ARM® Cortex®-M4 with FPU 32bit 精简指令 CPU,实现了管脚少功耗低的同时,提供出色的运算性能和迅速的中断反应能力。片上集成的存储容量可以充分发挥出 ARM® Cortex®-M4 with FPU 出色的指令效率。CPU 支持 DSP 指令,可以实现高效信号处理运算和复杂算法。单点精度 FPU (Floating Point Unit)单元可以避免指令饱和,加快软件开发。

1.4.2 总线架构(BUS)

主系统由 32 位多层 AHB 总线矩阵构成,可实现以下主机总线和从机总线的互连。 主机总线

- Cortex-M4F 内核 CPU-I 总线, CPU-D 总线, CPU-S 总线
- 系统 DMA 1 总线, 系统 DMA 2 总线
- USBFS DMA 总线

从机总线

- Flash ICODE 总线
- Flash DCODE 总线
- Flash MCODE 总线(CPU 以外其他主机访问 Flash 的总线)
- SRAMH 总线(SRAMH 32kB)
- SRAMA 总线(SRAM1 64KB)
- SRAMB 总线(SRAM2 64KB, SRAM3 28KB, Ret SRAM 4KB)
- APB1 外设总线(AOS/EMB/Timers/SPI/USART/I2S)
- APB2 外设总线(Timers/SPI/USART/I2S)
- APB3 外设总线(ADC/PGA/TRNG)
- APB4 外设总线(FCM/WDT/CMP/OTS/RTC/WKTM/I2C)
- AHB1 外设总线(KEYSCAN/INTC/DCU/GPIO/SYSC)
- AHB2 外设总线(CAN/SDIOC)
- AHB3 外设总线(AES/HASH/CRC/USB FS)

- AHB4 外设总线(SDIOC)
- AHB5 外设总线(QSPI)

借助总线矩阵,可以实现主机总线到从机总线高效率的并发访问。

1.4.3 复位控制 (RMU)

芯片配置了14种复位方式。

- 上电复位(POR)
- NRST 引脚复位(NRST)
- 欠压复位(BOR)
- 可编程电压检测 1 复位(PVD1R)
- 可编程电压检测 2 复位(PVD2R)
- 看门狗复位(WDTR)
- 专用看门狗复位(SWDTR)
- 掉电唤醒复位(PDRST)
- 软件复位(SRST)
- MPU 错误复位(MPUR)
- RAM 奇偶校验复位(RAMPR)
- RAMECC 复位(RAMECCR)
- 时钟异常复位(CKFER)
- 外部高速振荡器异常停振复位(XTALER)

1.4.4 时钟控制 (CMU)

时钟控制单元提供了一系列频率的时钟功能,包括:一个外部高速振荡器、一个外部低速振荡器、两个PLL时钟、一个内部高速振荡器、一个内部中速振荡器、一个内部低速振荡器、一个 SWDT 专用内部低速振荡器、时钟预分频器、时钟多路复用和时钟门控电路。

时钟控制单元还提供时钟频率测量功能。时钟频率测量电路(FCM)使用测定基准时钟 对测定对象时钟进行监视测定。在超出设定范围时发生中断或者复位。

AHB、APB 和 Cortex-M4 时钟都源自系统时钟,系统时钟的源可选择 6 个时钟源:

- 1) 外部高速振荡器(XTAL)
- 2) 外部低速振荡器(XTAL32)
- 3) MPLL 时钟(MPLL)
- 4) 内部高速振荡器(HRC)
- 5) 内部中速振荡器 (MRC)
- 6) 内部低速振荡器(LRC)

系统时钟的最大运行时钟频率可以达到 200MHz。SWDT 有独立的时钟源: SWDT 专用内部低速振荡器(SWDTLRC)。实时时钟(RTC)使用外部低速振荡器或者内部低速振荡器作为时钟源。USB-FS 的 48MHz 时钟和 I2S 通信时钟可以选择系统时钟、MPLL、UPLL 作为时钟源。

对于每一个时钟源,都可以单独打开和关闭。建议关闭未使用的时钟源,以降低功耗。

1.4.5 电源控制 (PWC)

电源控制器用来控制芯片的多个电源域在多个运行模式和低功耗模式下的电源供给、切换、检测。电源控制器由功耗控制逻辑(PWCL)、电源电压检测单元(PVD)构成。

芯片的工作电压(VCC)为 1.8V 到 3.6V。电压调节器(LDO)为 VDD 域和 VDDR 域供电,VDDR 电压调压器(RLDO)在掉电模式时为 VDDR 域供电。芯片通过功耗控制逻辑 (PWCL)提供了超高速、高速、超低速三种运行模式,睡眠、停止和掉电等三种低功耗模式。

电源电压检测单元(PVD)提供了上电复位(POR)、掉电复位(PDR)、欠压复位(BOR)、可编程电压检测 1(PVD1)、可编程电压检测 2(PVD2)等功能,其中 POR、PDR、BOR 通过检测 VCC 电压,控制芯片复位动作。PVD1 通过检测 VCC 电压,根据寄存器设定使芯片产生复位或者中断。PVD2 通过检测 VCC 电压或者外部输入检测电压,根据寄存器选择产生复位或者中断。

VDDR 区域在芯片进入掉电模式后可以通过 RLDO 维持电源,保证实时时钟模块(RTC)、唤醒定时器(WKTM)能够继续动作,保持 4KB 的低功耗 SRAM(Ret-SRAM)的数据。模拟模块配备了专用供电引脚,提高了模拟性能。

1.4.6 初始化配置 (ICG)

芯片复位解除后,硬件电路会读取 FLASH 地址 0x0000_0400~0x0000_041F (其中 0x0000_0408~0x0000_041F 为预留功能地址,该 24byte 地址需要用户设定全 1 以确保证 芯片动作正常) 把数据加载到初始化配置寄存器,用户需要编程或擦除 FLASH 扇区 0 来修改初始化配置寄存器。

1.4.7 嵌入式 FLASH 接口 (EFM)

FLASH 接口通过 ICODE, DCODE 和 MCODE 总线对 FLASH 进行访问,该接口可对 FLASH 执行编程,扇区擦除和全擦除操作;通过指令预取和缓存机制加速代码执行。 主要特性:

- 最大 512KByte FLASH 空间
- I-CODE 总线 16Byte 预取值
- I-CODE 和 D-CODE 总线上的共享 64 个缓存(1Kbyte)
- 提供 960Bbyte 一次性编程区域(OTP)
- 支持低功耗读操作
- 支持引导交换功能
- 支持安全保护及数据加密*1
 - *1: 关于 Flash 安全保护及数据加密的具体规格,请咨询销售窗口

1.4.8 内置 SRAM (SRAM)

本产品带有 4KB 掉电模式保持 SRAM (Ret_SRAM) 和 188KB 系统 SRAM (SRAMH/SRAM1/SRAM2/SRAM3)。

SRAM 可按照字节、半字(16位)或全字(32位)访问。读写操作以 CPU 速度执行,可插入等待周期。

Ret SRAM 可在 Power down 模式下提供 4KB 的数据保持空间。

SRAM3 带有 ECC 校验(Error Checking and Correcting),ECC 校验为纠一检二码,即可以纠正一位错误,检查两位错误;SRAMH/SRAM1/SRAM2/Ret_SRAM 带有奇偶校验(Even-parity check),每字节数据带有一位校验位。

1.4.9 通用 IO (GPIO)

GPIO 主要特性:

- 每组 Port 配有 16 个 I/O Pin,根据实际配置可能不足 16 个
- 支持上拉
- 支持推挽, 开漏输出模式
- 支持高,中,低型驱动模式
- 支持外部中断的输入
- 各个 I/O pin 可独立编程
- 各个 I/O pin 可以选择 2 个功能同时有效 (不支持 2 个输出功能同时有效)

1.4.10 中断控制 (INTC)

中断控制器(INTC)的功能为选择中断事件请求作为中断输入到 NVIC, 唤醒 WFI; 作为事件输入, 唤醒 WFE。选择中断事件请求作为低功耗模式(休眠模式和停止模式)的唤醒条件; 外部管脚 NMI 和 EIRQ 的中断控制功能; 软件中断的中断/事件选择功能。

主要规格:

- 1) NVIC 中断向量:实际使用中断向量数请参考用户手册(不包括 Cortex™-M4F 的 16 根中断线),每个中断向量可以根据中断选择寄存器选择对应的外设中断事件请求。 更多关于异常和 NVIC 编程的说明,请参考《ARM Cortex™-M4F 技术参考手册》 中的第5章:异常和第8章:嵌套向量中断控制器。
- 2) 可编程优先级: 16个可编程优先级(使用了4位中断优先级)。
- 3) 不可屏蔽中断:除 NMI 管脚作为不可屏蔽中断源以外,可以独立选择多种系统中断事件请求作为不可屏蔽中断,且各中断事件请求配备独立的使能选择,挂起,清除挂起寄存器。
- 4) 配备 16 个外部管脚中断。
- 5) 配置多种外设中断事件请求,具体请参考中断事件请求序号列表。

- 6) 配备 32 个软件中断事件请求。
- 7) 中断可唤醒系统休眠模式和停止模式。

1.4.11 自动运行系统(AOS)

自动运行系统(Automatic Operation System)用于在不借助 CPU 的情况下实现外设硬件电路之间的联动。利用外设电路产生的事件作为 AOS 源(AOS Source),如定时器的比较匹配、定时溢出,RTC 的周期信号、通信模块的收发数据的各种状态(空闲,接收数据满,发送数据结束,发送数据空),ADC 的转换结束等,来触发其他外设电路动作。被触发的外设电路动作称为 AOS 目标(AOS Target)。

1.4.12 键盘扫描 (KEYSCAN)

本产品搭载键盘控制模块(KEYSCAN)1个单元。KEYSCAN模块支持键盘阵列(行和列)扫描,列是由独立的扫描输出KEYOUTm(m=0~7)驱动,而行KEYINn(n=0~15)则作为EIRQn(n=0~15)输入被检测。本模块通过行扫描查询法实现按键识别功能。

1.4.13 存储保护单元(MPU)

MPU 可以提供对存储器的保护,通过阻止非授权的访问,可以提高系统的安全性。本产品内置了四个针对主机的 MPU 单元和一个针对 IP 的 MPU 单元。

其中 ARM MPU 提供 CPU 对全部 4G 地址空间的访问权限控制。

DMA MPU(DMPU)提供 DMA_1/DMA_2/USB FS DMA 对全部 4G 地址空间的读写访问权限控制。对禁止空间发生访问时,可以设置 MPU 动作为无视/总线错误/不可屏蔽中断/复位。

IP MPU 提供非特权模式时对系统 IP 和安全相关 IP 的访问权限控制。

1.4.14 DMA 控制器 (DMA)

DMA 用于在存储器和外围功能模块之间传送数据,能够在 CPU 不参与的情况下实现存储器之间,存储器和外围功能模块之间以及外围功能模块之间的数据交换。

- DMA 总线独立于 CPU 总线,按照 AMBA AHB-Lite 总线协议传输
- 拥有 8 个独立通道(DMA 1 和 DMA 2 各 4 个通道),可以独立操作不同的 DMA

传输功能

- 每个通道的启动请求源通过独立的触发源选择寄存器配置
- 每次请求传输一个数据块
- 数据块最小为1个数据,最多可以是1024个数据
- 每个数据可配置为 8bit, 16bit 或 32bit
- 可以配置最多 65535 次传输
- 源地址和目标地址可以独立配置为固定,自增,自减,循环或指定偏移量的跳转
- 可产生3种中断,块传输完成中断,传输完成中断,传输错误中断。每种中断都可以配置是否屏蔽。其中块传输完成,传输完成可作为事件输出,用作其它具有硬件触发功能外围模块的触发源输入
- 支持连锁传输功能,可实现一次请求传输多个数据块
- 支持外部事件触发通道重置
- 不使用时可设置进入模块停止状态以降低功耗

1.4.15 电压比较器 (CMP)

CMP 是将两个模拟电压 INP 和 INM 进行比较,并输出比较结果的外设模块。CMP 共有 3 个独立的比较通道,每个比较通道的模拟电压 INP 和 INM 均有 4 个输入源。使用时可以选定一个 INP 与一个 INM 进行单一比较,也可以将多个 INP 与同一个 INM 进行扫描比较。比较结果可通过寄存器读取,也可输出到外部管脚,还可产生中断和事件。

1.4.16 模数转换器 (ADC)

12 位 ADC 是一种采用逐次逼近方式的模拟数字转换器。它最大拥有 16 个模拟输入通道,可以转换外部端口和内部的模拟信号。这些通道可以任意组合成一个序列进行逐次扫描转换,序列可以进行单次,或者连续扫描的转换。支持对任意指定通道进行连续多次转换并对转换结果进行平均。ADC 模块还搭载模拟看门狗功能,对任意指定通道的转换结果进行监视,检测是否超出用户设定的阀值。

ADC 主要特性

高性能

- 可配置 12 位、10 位和 8 位分辨率
- 周边时钟 PCLK4 和 A/D 转换时钟 ADCLK 的频率比可选择:
 - PCLK4: ADCLK=1: 1, 2: 1, 4: 1, 8: 1, 1: 2, 1: 4
 - ADCLK 可选与系统时钟 HCLK 异步的 PLL,此时 PCLK4 与 ADCLK 的时钟源同时被固定为 PLL, 且频率比为 1: 1,原分频设定无效
- 2MSPS (PCLK4=ADCLK=60MHz, 12 位, 采样 17 周期)
- 各通道采样时间独立编程
- 各通道独立数据寄存器
- 数据寄存器可配置数据对齐方式
- 连续多次转换平均功能
- 模拟看门狗,监视转换结果
- 不使用时可以将 ADC 模块设定成停止状态
- 模拟输入通道
 - 最大 16 个外部模拟输入通道
 - 1个内部基准电压
- 转换开始条件
 - 软件设置转换开始
 - 周边外设同步触发转换开始
 - 外部引脚触发转换开始
- 转换模式
 - 2 个扫描序列 A、B,可任意指定单个或多个通道
 - 序列 A 单次扫描
 - 序列 A 连续扫描
 - 双序列扫描,序列 A、B 独立选择触发源,序列 B 优先级高于 A
 - 同步模式(适用于具有两个或三个 ADC 的设备)
- 中断与事件信号输出
 - 序列 A 扫描结束中断 EOCA INT 和事件 EOCA EVENT
 - 序列 B 扫描结束中断 EOCB INT 和事件 EOCB EVENT

- 模拟看门狗通道比较中断 CHCMP_INT 和事件 CHCMP_EVENT,序列比较中断 SEQCMP_INT 和事件 SEQCMP_EVENT
- 上述 4 个事件均可启动 DMA

1.4.17 温度传感器 (OTS)

OTS 可以获取芯片内部的温度,以支持系统的可靠性操作。使用软件或者硬件触发启动测温后,OTS 提供一组与温度相关的数字量,通过计算公式可以计算得到温度值。

1.4.18 高级控制定时器(Timer6)

高级控制定时器 6(Timer6)是一个 16 位计数宽度的高性能定时器,可用于计数产生不同形式的时钟波形,输出以供外部使用。该定时器支持三角波和锯齿波两种波形模式,可生成各种 PWM 波形;单元间可实现软件同步计数和硬件同步计数;各基准值寄存器支持缓存功能;支持 2 相正交编码和 3 相正交编码;支持 EMB 控制。本系列产品中搭载 3 个单元的 Timer6。

1.4.19 通用控制定时器(Timer4)

通用控制定时器 4(Timer4)是一个用于三相电机控制的定时器模块,提供各种不同应用的三相电机控制方案。该定时器支持三角波和锯齿波两种波形模式,可生成各种PWM 波形;支持缓存功能;支持 EMB 控制。本系列产品中搭载 3 个单元的 Timer4。

1.4.20 紧急刹车模块(EMB)

紧急刹车模块是在满足一定条件时通知定时器,以使定时器停止向外部电机输出 PWM 信号的功能模块,下列事件用于产生通知:

- 外部端口输入电平变化
- PWM 输出端口电平发生同相(同高或同低)
- 电压比较器比较结果
- 外部振荡器停止振荡
- 写寄存器软件控制

1.4.21 通用定时器 (TimerA)

通用定时器 A(TimerA)是一个具有 16 位计数宽度、8 路 PWM 输出的定时器。该定时器支持三角波和锯齿波两种波形模式,可生成各种 PWM 波形;支持软件同步启动计数;比较基准值寄存器支持缓存功能;支持 2 相正交编码计数和 3 相正交编码计数。本系列产品搭载 6 个单元 TimerA,最大可实现 48 路 PWM 输出。

1.4.22 通用定时器 (Timer0)

通用定时器 0 (Timer0) 是一个可以实现同步计数、异步计数两种方式的基本定时器。 定时器内含 2 个通道,可以在计数期间产生比较匹配事件。该事件可以触发中断,也 可作为事件输出来控制其它模块等。本系列产品中搭载 2 个单元的 Timer0。

1.4.23 实时时钟(RTC)

实时时钟 (RTC) 是一个以 BCD 码格式保存时间信息的计数器。记录从 00 年到 99 年间的具体日历时间。支持 12/24 小时两种时制,根据月份和年份自动计算日数 28、29 (闰年)、30 和 31 日。

1.4.24 看门狗计数器(WDT)

看门狗计数器有两个,一种是计数时钟源为专用内部 RC(WDTCLK:10KHz)的专用看门狗计数器(SWDT),另一种是计数时钟源为 PCLK3 的通用看门狗计数器(WDT)。专用看门狗和通用看门狗是 16 位递减计数器,用来监测由于外部干扰或不可预见的逻辑条件造成的应用程序背离正常的运行而产生的软件故障。

两个看门狗都支持窗口功能。在计数开始前可预设窗口区间,计数值位于窗口区间时,可刷新计数器,计数重新开始。

1.4.25 串行通信接口(USART)

本产品搭载串行通信接口模块(USART)4个单元。串行通信接口模块(USART)能够灵活地与外部设备进行全双工数据交换;本 USART 支持通用异步串行通信接口(UART),时钟同步通信接口,智能卡接口 (ISO/IEC7816-3)。支持调制解调器操作

(CTS/RTS 操作),多处理器操作。

1.4.26 集成电路总线 (I2C)

本产品搭载集成电路总线(I2C)3个单元。I2C 用作微控制器和 I2C 串行总线之间的接口。提供多主模式功能,可以控制所有 I2C 总线的协议、仲裁。支持标准模式、快速模式。

1.4.27 串行外设接口(SPI)

本产品搭载 4 个通道的串行外设接口 SPI, 支持高速全双工串行同步传输, 方便地与外围设备进行数据交换。用户可根据需要进行三线/四线, 主机/从机及波特率范围的设置。

1.4.28 四线式串行外设接口(QSPI)

四线式串行外设接口(QSPI)是一个存储器控制模块,主要用于和带 SPI 兼容接口的串行 ROM 进行通信。其对象主要包括有串行闪存,串行 EEPROM 以及串行 FeRAM。

1.4.29 集成电路内置音频总线(I2S)

I2S(Inter_IC Sound Bus),集成电路内置音频总线,该总线专责于音频设备之间的数据传输。本产品搭载 4 个 I2S,具有以下特性。

功能	主要特性
通信方式	• 支持全双工和半双工通信
	• 支持主模式或从模式操作
数据格式	• 可选通道长度: 16/32 位
	• 可选传送数据长度: 16/24/32 位
	• 数据移位顺序: MSB 开始
波特率	• 8 位可编程线性预分频器,可实现精确的音频采样频率
	• 支持采样频率 192k, 96k,48k,44.1k, 32k,22.05k,16k,8k
	• 可输出驱动时钟以驱动外部音频元件,比率固定为 256*Fs(Fs 为音频采样频率)
支持 I2S 协议	• I2S Philips 标准
	• MSB 对齐标准
	• LSB 对齐标准
	• PCM 标准

数据缓冲	• 带有 2 字深, 32 位宽的输入输出 FIFO 缓冲区域
时钟源	• 可使用内部 I2SCLK(UPLLR/UPLLQ/UPLLP/MPLLR/MPLLQ/MPLLP); 也可由 I2S_EXCK 引脚上的外部时钟提供
中断	 发送缓冲区有效空间达到报警阈值时产生中断 接收缓冲区有效空间达到报警阈值时产生中断 接收数据区域已满仍有写入数据请求,接收上溢 发送数据区域已空仍有发送请求,发送下溢 发送数据区域已满仍有写入数据请求,发送上溢

1.4.30 CAN 通信接口 (CAN)

本产品搭载 CAN 通信接口模块 (CAN) 1 个单元, 并为 CAN 配备 512Byte 的 RAM 用于存储发送/接收消息。支持 ISO11898-1 规定的 CAN2.0B 协议和 ISO11898-4 规定 TTCAN 协议。

1.4.31 USB2.0 全速模块(USB FS)

本产品搭载 USB2.0 全速模块(USBFS)1 个单元,内置片上全速 PHY。USBFS 是一款双角色(DRD)控制器,同时支持从机功能和主机功能。主机模式下,USBFS 支持全速和低速收发器,而从机模式下仅支持全速收发器。

本产品搭载的 USB FS 模块在主机模式成功发送 SOF 令牌或从机模式成功接收到 SOF 令牌时可以产生 SOF 事件。

1.4.32 加密协处理模块(CPM)

加密协处理模块(CPM)包括 AES 加解密算法处理器,HASH 安全散列算法,TRNG 真随机数发生器三个子模块。

AES 加解密算法处理器遵循标准的数据加密解密标准,可以实现 128 位密钥长度的加密运算和解密运算。

HASH 安全散列算法是 SHA-2 版本的 SHA-256(Secure Hash Algorithm),符合美国国家标准和技术局发布的国家标准"FIPS PUB 180-3",可以对长度不超过 2^64 位的消息产生 256 位的消息摘要输出。

TRNG 真随机数发生器是以连续模拟噪声为基础的随机数发生器,提供 64bit 随机数。

1.4.33 数据计算单元 (DCU)

数据计算单元(Data Computing Unit)是一个不借助于 CPU 的简单处理数据的模块。每个 DCU 单元具有 3 个数据寄存器,能够进行 2 个数据的加减和比较大小,以及窗口比较功能。本产品搭载 4 个 DCU 单元,每个单元均可独立完成自身功能。

1.4.34 CRC 计算单元(CRC)

本模块 CRC 算法遵从 ISO/IEC13239 的定义,分别采用 32 位和 16 位的 CRC。CRC32 的生成多项式为 $X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^8+X^7+X^5+X^4+X^2+X+1$ 。CRC16 的生成多项式为 $X^{16}+X^{12}+X^5+1$ 。

1.4.35 SDIO 控制器(SDIOC)

SDIO 控制器是 SD/SDIO/MMC 通信协议中的主机。本产品具有 2 个 SDIO 控制器,每个 SDIO 控制器各提供了一个主机接口,用于和支持 SD2.0 协议的 SD 卡,SDIO 设备以及支持 eMMC4.51 协议的 MMC 设备进行通信。SDIOC 特点如下:

- 支持 SDSC, SDHC, SDXC 格式 SD 卡及 SDIO 设备
- 支持一线式(1bit)和四线式(4bit)SD 总线
- 支持一线式(1bit), 四线式(4bit)和八线式(8bit)MMC 总线
- 具有卡识别和硬件写保护功能

2 引脚配置及功能(Pinouts)

2.1 引脚配置图

HC32F460PETB-LQFP100/HC32F460PCTB-LQFP100

HC32F460PEHB-VFBGA100

(Top View)

注: A1 为 Pin 1。

HC32F460KETA-LQFP64/HC32F460KCTA-LQFP64

HC32F460KEUA-QFN60TR

HC32F460JETA-LQFP48 / HC32F460JCTA-LQFP48/HC32F460JEUA-QFN48TR

图 2-1 引脚配置图

2.2 引脚功能表

		LOTE	ome	LQFP/				mp + cryare: ~	Func0	Func1	Func2	Func3	Func4	Func5	Func6	Func7	Func8	Func9	Func10	Func11	Func12	Func13	Func14	Func15	Func16 ~31	Func32~63
LQFP 100	VFBG A100	LQFP 64			Pin Name	Analog	EIRQ/WK UP	TRACE/JTAG /SWD	GPO	other	TIM4	TIM6	TIMA	TIMA	EMB,TIMA	USART/SPI/Q SPI	KEY	SDIO	USBFS/I2S	-	-	-	EVNTPT	VNTPT EVENTOUT		Communic ation Funcs
1	В2	-	-	-	PE2		EIRQ2	TRACECK	GPO				TIMA_3_PWM 5			USART3_CK								EVENTOUT		Func_Grp2
2	Al	-	-	-	PE3		EIRQ3	TRACED0	GPO				TIMA_3_PWM			USART4_CK								EVENTOUT		Func_Grp2
3	В1	-	-	-	PE4		EIRQ4	TRACED1	GPO	•			TIMA_3_PWM											EVENTOUT		Func_Grp2
4	C2	-	-	-	PE5		EIRQ5	TRACED2	GPO				TIMA_3_PWM											EVENTOUT		Func_Grp2
5	D2	-	-	-	PE6		EIRQ6	TRACED3	GPO				0							•				EVENTOUT		Func_Grp2
6	E2	1	1	1	PH2		EIRQ2		GPO	FCMREF	TIM4_2_CLK		TIMA_4_PWM		EMB_IN4			SDIO2_D4	I2S3_EXCK					EVENTOUT		Func_Grp2
7	Cl	2	2	2	PC13		EIRQ13		GPO	RTC_OUT			TIMA_4_PWM				•	SDIO2_CK	12S3_MCK				EVNTP313			Func_Grp2
8	Dl	3	3	3	PC14	XTAL32_O UT	EIRQ14		GPO				TIMA_4_PWM										EVNTP314			
9	E1	4	4	4	PC15	XTAL32_I	EIRQ15		GPO				TIMA_4_PWM				•						EVNTP315			
10	F2	-	-	-	VSS	N							0				•									
11	G2	-	-	-	VCC																					
12	F1	5	5	5	PH0	XTAL_IN	EIRQ0		GPO					TIMA_5_PWM												
13	Gl	6	6	6	PH1	XTAL_OU	EIRQ1		GPO	•				TIMA_5_PWM			•									
14	H2	7	7	7	NRST																					
15	Hl	8	8	-	PC0	ADC12_IN1 0/CMP3_IN P3	EIRQ0		GPO				TIMA_2_PWM 5					SDIO2_D5					EVNTP300	EVENTOUT		Func_Grp1
16	J2	9	9	-	PC1	ADC12_IN1	EIRQ1		GPO				TIMA_2_PWM 6					SDIO2_D6					EVNTP301	EVENTOUT		Func_Grp1
17	J3	10	10	-	PC2	ADC1_IN12	EIRQ2		GPO				TIMA_2_PWM		EMB_IN3			SDIO2_D7					EVNTP302	EVENTOUT		Func_Grp1
18	K2	11	-	-	PC3	ADC1_IN13 /CMP1_IN M2			GPO				TIMA_2_PWM 8					SDIO1_WP					EVNTP303	EVENTOUT		Func_Grp1
19	-	-	-	-	VCC				•••••																	
20	Jl	12	11	8	AVSS																					
-	K1	-	-	-	VREFL																					
21	Ll	-	-	-	VREFH																					
22	M1	13	12	9	AVCC																					
23	L2	14	13	10	PA0	ADC1_IN0/ CMP1_INP 1	EIRQ0/WK UP0_0		GPO		TIM4_2_OUH		TIMA_2_PWM 1/TIMA_2_CL KA		TIMA_2_TRIG	SPI1_SS1		SDIO2_D4					EVNTP100	EVENTOUT		Func_Grp1

XHSC 小华半导体 XIAOHUA SEMICONDUCTOR

_		$\Delta \Lambda$			XIAUHU	IA SEMICONE	JUCTUR																			
				LQFP/				TRACE/JTAG /SWD	Func0	Func1	Func2	Func3	Func4	Func5	Func6	Func7	Func8	Func9	Func10	Func11	Func12	Func13	Func14	Func15	Func16	Func32~63
LQFP 100			FP QFN6 0	OFN4	Pin Name	Analog			GPO	other	TIM4	TIM6	TIMA	TIMA	EMB,TIMA	USART/SPI/Q SPI	KEY	SDIO	USBFS/I2S	Ē	-	-	EVNTPT	EVENTOUT	-	Communic ation Funcs
24	M2	15	14	11	PAI	ADC1_IN1/ CMP1_INP 2	EIRQ1		GPO		TIM4_2_OUL		TIMA_2_PWM 2/TIMA_2_CL KB	TIMA_3_TRIG		SPI1_SS2		SDIO2_D5					EVNTP101	EVENTOUT		Func_Grp1
25	К3	16	15	12	PA2	ADC1_IN2/ CMP1_INP 3	EIRQ2		GPO		TIM4_2_OVH		TIMA_2_PWM 3	TIMA_5_PWM 1/TIMA_5_CL KA		SPI1_SS3		SDIO2_D6					EVNTP102	EVENTOUT		Func_Grp1
26	L3	17	16	13	PA3	ADC1_IN3/ PGAVSS/C MP1_INP4	EIRQ3		GPO		TIM4_2_OVL		TIMA_2_PWM 4	TIMA_5_PWM 2/TIMA_5_CL KB				SDIO2_D7					EVNTP103	EVENTOUT		Func_Grp1
27	-	18	-	-	AVSS	-																				
-	E3	-	-	-	NC																					
28	-	19	-	-	AVCC																					
29	М3	20	17	14	PA4	ADC12_IN4 /CMP2_INP 1/CMP3_IN P4	EIRQ4		GPO		TIM4_2_OWH			TIMA_3_PWM 5		USART2_CK	KEYOUT0		12S1_EXCK				EVNTP104	EVENTOUT		Func_Grp1
30	K4	21	18	15	PA5	ADC12_IN5 /CMP2_INP 2	EIRQ5		GPO		TIM4_2_OWL		TIMA_2_PWM 1/TIMA_2_CL KA	TIMA_3_PWM	TIMA_2_TRIG		KEYOUT1		I2S1_MCK				EVNTP105	EVENTOUT		Func_Grp1
31	L4	22	19	16	PA6	ADC12_IN6 /CMP2_INP 3	EIRQ6		GPO					TIMA_3_PWM 1/TIMA_3_CL KA	EMB_IN2		KEYOUT2	SDIO1_CMD					EVNTP106	EVENTOUT		Func_Grp1
32	M4	23	20	17	PA7	ADC12_IN7 /CMP1_IN M1/CMP2_I NM1/CMP3 _INM1	EIRQ7		GPO		TIM4_1_OUL	TIM6_1_PWM B	TIMA_1_PWM 5	TIMA_3_PWM 2/TIMA_3_CL KB	EMB_IN3		KEYOUT3	SDIO2_WP					EVNTP107	EVENTOUT		Func_Grp1
33	K5	24	21	-	PC4	ADC1_IN14 /CMP2_IN M2	EIRQ4		GPO		TIM4_2_OUH			TIMA_3_PWM 7		USART1_CK		SDIO2_CD					EVNTP304	EVENTOUT		Func_Grp1
34	L5	25	22	-	PC5	ADC1_IN15 /CMP3_IN M2	EIRQ5		GPO		TIM4_2_OUL			TIMA_3_PWM 8				SDIO2_CMD					EVNTP305	EVENTOUT		Func_Grp1
35	M5	26	23	18	PB0	ADC12_IN8 /CMP3_INP 1	EIRQ0		GPO		TIM4_1_OVL	TIM6_2_PWM B	TIMA_l_PWM 6	TIMA_3_PWM 3		USART4_CK	KEYOUT4	SDIO2_CMD					EVNTP200	EVENTOUT		Func_Grp1
36	М6	27	24	19	PB1	ADC12_IN9 /CMP3_INP 2			GPO		TIM4_1_OWL	TIM6_3_PWM B	TIMA_l_PWM 7	TIMA_3_PWM 4		QSPI_QSSN	KEYOUT5	SDIO2_D3	I2S2_EXCK				EVNTP201	EVENTOUT		Func_Grp1
37	L6	28	25	20	PB2	PVD2EXIN P	EIRQ2/WK UP0_2		GPO	VCOUT123		TIM6_TRIGB	TIMA_l_PWM 8		EMB_IN1	QSPI_QSIO3		SDIO2_D2	12S2_MCK				EVNTP202	EVENTOUT		Func_Grp1
38	M7	-	-	-	PE7		EIRQ7		GPO	ADTRG1		TIM6_TRIGA	TIMA_1_TRIG			USART1_CK								EVENTOUT		ļ
39	L7	-	-	-	PE8		EIRQ8		GPO		TIM4_1_OUL	TIM6_1_PWM B	TIMA_l_PWM 5											EVENTOUT		
40	М8	-	-	-	PE9		EIRQ9		GPO		TIM4_1_OUH	TIM6_1_PWM A	TIMA_1_PWM 1/TIMA_1_CL KA											EVENTOUT		
41	L8	-	-	-	PE10		EIRQ10		GPO		TIM4_1_OVL	TIM6_2_PWM B	TIMA_1_PWM 6											EVENTOUT		

XHSC 小华半导体 XIAOHUA SEMICONDUCTOR

					XIAOHU	IA SEMICONE	DUCTOR																			
	na		omic	LQFP/				VK TRACE/JTAG /SWD	Func0	Func1	Func2	Func3	Func4	Func5	Func6	Func7	Func8	Func9	Func10	Func11	Func12	Func13	Func14	Func15	Func16 ~31	Func32~63
LQFP 100	VFBG A100	LQFP 64	QFN6 0	OFN4	Pin Name	Analog	EIRQ/WK UP		GPO	other	TIM4	TIM6	TIMA	TIMA	EMB,TIMA	USART/SPI/Q SPI	KEY	SDIO	USBFS/I2S	-	-	-	EVNTPT	EVENTOUT	-	Communic ation Funcs
42	М9	-	-	-	PE11		EIRQ11		GPO		TIM4_1_OVH	TIM6_2_PWM A	TIMA_1_PWM 2/TIMA_1_CL KB											EVENTOUT		
43	L9	-	-	-	PE12		EIRQ12		GPO		TIM4_1_OWL	TIM6_3_PWM B	TIMA_1_PWM 7			SPI1_SS1								EVENTOUT		Func_Grp2
44	M10	-	-	-	PE13		EIRQ13		GPO		TIM4_1_OWH	TIM6_3_PWM A	TIMA_1_PWM 3			SPI1_SS2								EVENTOUT		Func_Grp2
45	M11	-	-	-	PE14		EIRQ14		GPO		TIM4_1_CLK		TIMA_l_PWM 4			SPI1_SS3		SDIO1_CD						EVENTOUT		Func_Grp2
46	M12	-	26	-	PE15		EIRQ15		GPO				TIMA_1_PWM 8	TIMA_5_TRIG	EMB_IN2	USART4_CK		SDIO1_WP						EVENTOUT		Func_Grp2
47	L10	29	27	21	PB10		EIRQ10		GPO	ADTRG2	TIM4_2_OVH		TIMA_2_PWM 3	TIMA_5_PWM 8		QSPI_QSIO2		SDIO1_D7	I2S3_EXCK				EVNTP210	EVENTOUT		Func_Grp2
48	L11	30	28	22	VCAP_1																					
49	F12	31	29	23	VSS																					
50	G12	32	30	24	VCC																					
51	L12	33	31	25	PB12		EIRQ12		GPO	VCOUT1	TIM4_2_OVL	TIM6_TRIGB	TIMA_1_PWM 8		EMB_IN2	QSPI_QSIO1		SDIO2_D1	I2S3_MCK				EVNTP212	EVENTOUT		Func_Grp2
52	K12	34	32	26	PB13		EIRQ13		GPO	VCOUT2	TIM4_1_OUL	TIM6_1_PWM B	TIMA_1_PWM 5			QSPI_QSIO0		SDIO2_D0					EVNTP213	EVENTOUT		Func_Grp2
53	K11	35	33	27	PB14		EIRQ14		GPO	VCOUT3	TIM4_1_OVL	TIM6_2_PWM B	TIMA_1_PWM 6			QSPI_QSCK		SDIO1_D6					EVNTP214	EVENTOUT		Func_Grp2
54	K10	36	34	28	PB15		EIRQ15		GPO	RTC_OUT	TIM4_1_OWL	TIM6_3_PWM B	TIMA_l_PWM 7	TIMA_6_TRIG	EMB_IN4	USART3_CK		SDIO1_CK					EVNTP215	EVENTOUT		Func_Grp2
55	K9	-	-	-	PD8		EIRQ8		GPO		TIM4_3_OUL			TIMA_6_PWM 1/TIMA_6_CL KA		QSPI_QSIO0	KEYOUT7						EVNTP408	EVENTOUT		Func_Grp2
56	K8	-	-	-	PD9		EIRQ9		GPO		TIM4_3_OVL			TIMA_6_PWM 2/TIMA_6_CL KB		QSPI_QSIO1	KEYOUT6						EVNTP409	EVENTOUT		Func_Grp2
57	J12	-	-	-	PD10		EIRQ10		GPO		TIM4_3_OWL			TIMA_6_PWM		QSPI_QSIO2	KEYOUT5						EVNTP410	EVENTOUT		Func_Grp2
58	J11	-	-	-	PD11		EIRQ11		GPO		TIM4_3_CLK			TIMA_6_PWM 4		QSPI_QSIO3	KEYOUT4						EVNTP411	EVENTOUT		Func_Grp2
59	J10	-	-	-	PD12		EIRQ12		GPO				TIMA_4_PWM 1/TIMA_4_CL KA	TIMA_5_PWM 5									EVNTP412	EVENTOUT		
60	H12	-	-	-	PD13		EIRQ13		GPO				TIMA_4_PWM 2/TIMA_4_CL KB	TIMA_5_PWM									EVNTP413	EVENTOUT		
61	H11	-	-	-	PD14		EIRQ14		GPO				*	TIMA_5_PWM									EVNTP414	EVENTOUT		
62	H10	-	-	-	PD15	•	EIRQ15		GPO				TIMA_4_PWM	TIMA_5_PWM 8									EVNTP415	EVENTOUT		
63	E12	37	-	-	PC6		EIRQ6		GPO				TIMA_3_PWM 1/TIMA_3_CL KA	TIMA_5_PWM 8		QSPI_QSCK	KEYOUT3	SDIO1_D6					EVNTP306	EVENTOUT		Func_Grp2
64	E11	38	35	-	PC7		EIRQ7	-	GPO		TIM4_2_CLK	-	TIMA_3_PWM 2/TIMA_3_CL KB	TIMA_5_PWM		QSPI_QSSN	KEYOUT2	SDIO1_D7	I2S2_EXCK				EVNTP307	EVENTOUT		Func_Grp2

XHSC 小华半导体 XIAOHUA SEMICONDUCTOR

					AIAUHU	A SEMICONE	JUCTUR																			
	D VEDC			LQFP/					Func0	Func1	Func2	Func3	Func4	Func5	Func6	Func7	Func8	Func9	Func10	Func11	Func12	Func13	Func14	Func15	Func16 ~31	Func32~63
LQFP 100		LQFP 64	QFN6 0	QFN4 8	Pin Name	Analog	EIRQ/WK UP	TRACE/JTAG /SWD	GPO	other	TIM4	TIM6	TIMA	TIMA	EMB,TIMA	USART/SPI/Q SPI	KEY	SDIO	USBFS/I2S	-	-	-	EVNTPT	EVENTOUT	-	Communic ation Funcs
65	E10	39	36	-	PC8		EIRQ8		GPO		TIM4_2_OWH		TIMA_3_PWM 3	TIMA_5_PWM 6		USART3_CK	KEYOUT1	SDIO1_D0	I2S2_MCK				EVNTP308	EVENTOUT		Func_Grp2
66	D12	40	37	-	PC9		EIRQ9		GPO	MCO_2	TIM4_2_OWL		TIMA_3_PWM	TIMA_5_PWM			KEYOUT0	SDIO1_D1					EVNTP309	EVENTOUT		Func_Grp1
67	DII	41	38	29	PA8		EIRQ8/WK UP2_0		GPO	MCO_1	TIM4_1_OUH	TIM6_1_PWM A	TIMA_l_PWM l/TIMA_l_CL KA			USART1_CK		SDIO1_D1	USBFS_SOF				EVNTP108	EVENTOUT		Func_Grp1
68	D10	42	39	30	PA9		EIRQ9/WK UP2_1		GPO		TIM4_1_OVH	TIM6_2_PWM A	TIMA_1_PWM 2/TIMA_1_CL KB					SDIO1_D2	USBFS_VBUS				EVNTP109	EVENTOUT		Func_Grp1
69	C12	43	40	31	PA10		EIRQ10/W KUP2_2		GPO		TIM4_1_OWH	TIM6_3_PWM A	TIMA_1_PWM 3	TIMA_5_TRIG				SDIO1_CD	USBFS_ID				EVNTP110	EVENTOUT		Func_Grp1
70	B12	44	41	32	PA11		EIRQ11/W KUP2_3		GPO		TIM4_1_CLK		TIMA_1_PWM		EMB_IN1			SDIO2_CD	USBFS_DM				EVNTP111	EVENTOUT		Func_Grp1
71	A12	45	42	33	PA12		EIRQ12/W KUP3_0		GPO		TIM4_3_OWL	TIM6_TRIGA	TIMA_1_TRIG	TIMA_6_PWM 1/TIMA_6_CL KA				SDIO2_WP	USBFS_DP				EVNTP112	EVENTOUT		Func_Grp1
72	All	46	43	34	PA13		EIRQ13/W KUP3_1	JTMS_SWDIO	GPO				TIMA_2_PWM 5	TIMA_6_PWM 2/TIMA_6_CL KB		SPI2_SS1		SDIO2_D3					EVNTP113	EVENTOUT		Func_Grp1
73	C11	-	-	-	VCAP_2																					
74	F11	47	44	35	VSS																					
75	G11	48	45	36	VCC		EIRQ14/W						TIMA 2 PWM	TIMA_6_PWM												
76	A10	49	46	37	PA14		KUP3_2	JTCK_SWCLK	GPO				6	3	TIMA_4_TRIG	SPI2_SS2		SDIO2_D2	I2S1_EXCK				EVNTP114	EVENTOUT		Func_Grp1
77	A9	50	47	38	PA15		EIRQ15/W KUP3_3	JTDI	GPO				TIMA_2_PWM 1/TIMA_2_CL KA	TIMA_6_PWM 4	TIMA_2_TRIG	SPI2_SS3		SDIO2_D1	12S1_MCK				EVNTP115	EVENTOUT		Func_Grp1
78	B11	51	48	-	PC10		EIRQ10		GPO		TIM4_3_OUH		TIMA_2_PWM 7	TIMA_5_PWM 1/TIMA_5_CL KA				SDIO1_D2					EVNTP310	EVENTOUT		Func_Grp1
79	C10	52	49	-	PC11		EIRQ11		GPO		TIM4_3_OVH		TIMA_2_PWM 8	TIMA_5_PWM 2/TIMA_5_CL KB				SDIO1_D3					EVNTP311	EVENTOUT		Func_Grp1
80	B10	53	50	-	PC12		EIRQ12		GPO		TIM4_3_OWH		TIMA_4_TRIG	TIMA_5_PWM 3				SDIO1_CK					EVNTP312	EVENTOUT		Func_Grp1
81	C9	-	-	-	PD0		EIRQ0		GPO	VCOUT123				TIMA_5_PWM 4									EVNTP400	EVENTOUT		Func_Grp1
82	В9	-	-	-	PD1		EIRQ1		GPO				TIMA_3_TRIG	TIMA_6_PWM 5									EVNTP401	EVENTOUT		Func_Grp1
83	C8	54	-	-	PD2		EIRQ2		GPO				TIMA_2_PWM	TIMA_6_PWM				SDIO1_CMD					EVNTP402	EVENTOUT		Func_Grp1
84	В8	-	-	-	PD3		EIRQ3		GPO	VCOUT1				TIMA_6_PWM 7									EVNTP403	EVENTOUT		
85	В7	-	-	-	PD4		EIRQ4		GPO	VCOUT2				TIMA_6_PWM 8									EVNTP404	EVENTOUT		
86	A6	-	-	-	PD5		EIRQ5		GPO	VCOUT3													EVNTP405	EVENTOUT		
87	В6	-	-	-	PD6		EIRQ6		GPO							USART2_CK							EVNTP406	EVENTOUT		
88	A5	-		-	PD7		EIRQ7		GPO					<u> </u>		USART2_CK	<u> </u>			<u> </u>	<u> </u>	<u> </u>	EVNTP407	EVENTOUT	<u> </u>	1

X出SC小华半导体

						A SEMICONL		1					1						1						_	
LOED	VEDC	LOEB	OENG	LQFP/	Di		EIDO/WV	TRACE/JTAG		Func1	Func2	Func3	Func4	Func5	Func6	Func7	Func8	Func9	Func10	Func11	Func12	Func13	Func14	Func15	Func16 ~31	Func32~63
LQFP 100	A100	64	QFN6 0	QFN4 8	Name	Analog	-	/SWD	GPO	other	TIM4	TIM6	TIMA	TIMA	EMB,TIMA	USART/SPI/Q SPI	KEY	SDIO	USBFS/I2S	-	-	-	EVNTPT	EVENTOUT		Communic ation Funcs
89	A8	55	51	39	PB3			JTDO_TRACE SWO	GPO	FCMREF	TIM4_3_CLK		TIMA_2_PWM 2/TIMA_2_CL KB	TIMA_6_PWM 5				SDIO2_D0					EVNTP203	EVENTOUT		Func_Grp2
90	A7	56	52	40	PB4		EIRQ4/WK UP1_0	NJTRST	GPO		TIM4_3_OWL		TIMA_3_PWM 1/TIMA_3_CL KA	TIMA_6_PWM 6				SDIO1_D0					EVNTP204	EVENTOUT		Func_Grp2
91	C5	57	53	41	PB5		EIRQ5/WK UP1_1		GPO		TIM4_3_OWH		TIMA 3 PWM	TIMA_6_PWM 7				SDIO1_D3	12S4_EXCK				EVNTP205	EVENTOUT		Func_Grp2
92	В5	58	54	42	PB6		EIRQ6/WK UP1_2		GPO	ADTRG2	TIM4_3_OVL		TIMA_4_PWM 1/TIMA_4_CL KA	TIMA_6_PWM 8				SDIO2_CK	12S4_MCK				EVNTP206	EVENTOUT		Func_Grp2
93	В4	59	55	43	PB7		EIRQ7/WK UP1_3		GPO	ADTRG1	TIM4_3_OVH		TIMA_4_PWM 2/TIMA_4_CL KB					SDIO1_D0					EVNTP207	EVENTOUT		Func_Grp2
94	A4	60	56	44	PB11/MD		NMI																EVNTP211			
95	A3	61	57	45	PB8		EIRQ8		GPO		TIM4_3_OUL		TIMA_4_PWM 3				KEYOUT7	SDIO1_D4	USBFS_DRVV BUS				EVNTP208	EVENTOUT		Func_Grp2
96	В3	62	58	46	PB9		EIRQ9		GPO		TIM4_3_OUH		TIMA_4_PWM 4	TIMA_6_TRIG		SPI2_SS1	KEYOUT6	SDIO1_D5					EVNTP209	EVENTOUT		Func_Grp2
97	С3	-	-	-	PE0		EIRQ0		GPO	MCO_1			TIMA_4_TRIG			SPI2_SS2								EVENTOUT		Func_Grp2
98	A2	-	-	-	PE1		EIRQ1		GPO	MCO_2	TIM4_3_CLK					SPI2_SS3								EVENTOUT		Func_Grp2
99	D3	63	59	47	VSS																					
100	C4	64	60	48	VCC																					
-	Н3	-	-	-	NC																					

表 2-1 引脚功能表

注:

上表中,有64个引脚支持Func32~63 功能选择,Func32~63 主要为串行通信功能(包含 USART, SPI, I2C, I2S, CAN),
 分成两组Func_Grp1,Func_Grp2。详细请参考表 2-2。

	Func32	Func33	Func34	Func35	Func36	Func37	Func38	Func39	Func40	Func41	Func42	Func43	Func44	Func45	Func46	Func47
Func_Grp	USART1_	USART1_	USART1_R	USART1_C	USART2_	USART2_	USART2_R	USART2_C	SPI1_MO	SPI1_MIS	SPI1 SS0	SPI1_SC	SPI2_MO	SPI2_MIS	SPI2 SS0	SPI2_SC
1	TX	RX	TS	TS	TX	RX	TS	TS	SI	О	SP11_SS0	K	SI	О	SP12_SS0	K
Func_Grp	USART3_	USART3_	USART3_R	USART3_C	USART4_	USART4_	USART4_R	USART4_C	SPI3_MO	SPI3_MIS	ania ago	SPI3_SC	SPI4_MO	SPI4_MIS	CDIA CCO	SPI4_SC
2	TX	RX	TS	TS	TX	RX	TS	TS	SI	О	SPI3_SS0	K	SI	О	SPI4_SS0	K

	Func48	Func49	Func50	Func51	Func52	Func53	Func54	Func55	Func56	Func57	Func58	Func59	Func60	Func61	Func62	Func63
Func_Grp	I2C1_SDA	I2C1_SCL	I2C2_SDA	I2C2_SCL	I2S1_SD	I2S1_SDIN	12S1_WS	12S1_CK	I2S2_SD	I2S2_SDI N	12S2_WS	I2S2_CK				
Func_Grp 2	I2C3_SDA	I2C3_SCL	CAN_TxD	CAN_RxD	I2S3_SD	I2S3_SDIN	I2S3_WS	I2S3_CK	I2S4_SD	I2S4_SDI N	12S4_WS	I2S4_CK				

表 2-2 Func32~63 表

D 1	Port								В	its								Pin	Count
Package	Group	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		Total
LQFP100	PortA	О	0	0	0	O	О	o	O	o	0	О	О	o	О	О	0	16	83
VFBGA100	PortB	О	0	0	0	0	О	0	0	0	0	О	o	0	О	О	0	16	
	PortC	0	o	0	0	0	0	o	o	o	o	0	0	0	0	0	0	16	
	PortD	О	О	0	О	O	0	0	O	O	О	О	0	O	0	0	O	16	
	PortE	О	0	0	0	О	О	0	О	0	0	О	О	0	0	О	0	16	
	PortH	-	-	-	-	-	-	-	-	-	-	-	-	-	О	О	0	3	
LQFP64	PortA	0	О	0	О	0	О	O	O	O	О	О	0	o	О	0	0	16	52
	PortB	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	16	
	PortC	О	0	0	0	O	0	0	O	0	0	О	0	O	0	0	0	16	
	PortD	-	-	-	-	-	-	-	-	-	-	-	-	-	0	-	-	1	
	PortH	-	-	-	-	-	-	-	-	-	-	-	-	-	0	О	0	3	
QFN60	PortA	0	0	0	0	O	0	0	O	0	0	О	0	O	0	0	0	16	50
	PortB	О	0	0	O	0	0	O	O	o	0	0	0	0	0	0	0	16	
	PortC	О	0	0	О	0	О	0	0	0	-	О	О	-	0	О	0	14	
	PortE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	1	
	PortH	-	-	-	-	-	-	-	-	-	-	-	-	-	0	О	0	3	
LQFP48	PortA	О	О	0	О	О	О	0	О	0	О	О	О	O	0	0	0	16	38
QFN48	PortB	О	О	O	О	O	О	0	О	0	0	О	О	0	0	0	0	16	
	PortC	О	О	O	-	-	-	-	-	-	-	-	-	-	-	-	-	3	
	PortH	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0	0	3	
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		

表 2-3 端口配置

	Port	上拉	开漏输出	驱动能力	5V 耐压	备注
PortA	PA0~PA10	支持	支持	低,中,高	支持 *	
	PA13~PA15					
	PA11, PA12	支持	支持	低,中,高	不支持	
PortB	PB0~PB10,	支持	支持	低,中,高	支持 *	
	PB12~PB15					
	PB11	支持	-	-	支持	输入专用
PortC	PC0~PC15	支持	支持	低,中,高	支持 *	
PortD	PD0~PD15	支持	支持	低,中,高	支持	
PortE	PE0~PE15	支持	支持	低,中,高	支持	
PortH	PH0~PH2	支持	支持	低,中,高	支持	

表 2-4 通用功能规格

注:

– 用作模拟功能时,输入电压不得高于 VREFH/AVCC。

2.3 引脚功能说明

类别	功能名	I/O	说明
Power	VCC	I	电源
	VSS	I	电源地
	VCAP_1~2	Ю	内核电压
	AVCC	I	模拟电源
	AVSS	I	模拟电源地
	VREFH	I	模拟参考电压
	VREFL	I	模拟参考电压
System	NRST	I	复位引脚,低有效
	MD	I	模式引脚
PVD	PVD2EXINP	I	PVD2 外部输入比较电压
Clock	XTAL_IN	I	外部主时钟振荡器接口
	XTAL_OUT	О	
	XTAL32_IN	I	外部副时钟(32K)振荡器接口
	XTAL32_OUT	О	
	MCO_1~2	О	内部时钟输出
GPIO	GPIOxy (x= A~E,H, y=0~15)	Ю	通用输入输出
EVENTOUT	EVENTOUT	О	Cortex-M4 CPU 事件输出
EIRQ	EIRQx (x=0~15)	I	可屏蔽外部中断
	WKUPx_y (x,y=0~3)	I	PowerDown 模式外部唤醒输入
	NMI	I	非可屏蔽外部中断
Event Port	EVNTPxy (x=1~4, y=0~15)	Ю	事件端口输入输出功能
Key	KEYOUTx(x=0~7)	0	KEYSCAN 扫描输出信号
JTAG/SWD	JTCK_SWCLK	I	在线调试接口
	JTMS_SWDIO	Ю	
	JTDO_TRACESWO	0	
	JTDI	I	
	NJTRST	I	
TRACE	TRACECK	О	跟踪调试同步时钟输出
	TRACED0~3	О	跟踪调试数据输出
FCM	FCMREF	I	时钟频率计测用外部基准时钟输入
RTC	RTCOUT	О	1Hz 时钟输出
Timer4	TIM4_x_CLK	I	计数时钟端口输入

类别	功能名	I/O	说明
(x=1~3)	TIM4_x_OUH	Ю	PWM 端口 U 相输出
	TIM4_x_OUL	Ю	PWM 端口 U 相输出
	TIM4_x_OVH	Ю	PWM 端口 V 相输出
	TIM4_x_OVL	Ю	PWM 端口 V 相输出
	TIM4_x_OWH	Ю	PWM 端口 W 相输出
	TIM4_x_OWL	Ю	PWM 端口 W 相输出
Timer6	TIM6_TRIGA	I	外部事件触发 A 输入
(x=1~~3)	TIM6_TRIGB	I	外部事件触发 B 输入
	TIM6_x_PWMA	Ю	外部事件触发输入或 PWM 端口输出
	TIM6_x_PWMB	Ю	外部事件触发输入或 PWM 端口输出
TimerA	TIMA_x_TRIG	I	外部事件触发输入
$(x=1\sim6)$	TIMA_x_PWM1/TIMA_x_CLKA	Ю	外部事件触发输入或 PWM 端口输出或计数时钟端口输
	TIMA_x_PWM2/TIMA_x_CLKB	Ю	外部事件触发输入或 PWM 端口输出或计数时钟端口输
	TIMA_x_PWMy (y=3~8)	Ю	外部事件触发输入或 PWM 端口输出
EMB	EMB_INx (x=1~4)	I	Groupx(x=1~4)端口输入控制信号
USARTx	USARTx_TX	Ю	发送数据
$(x=1\sim4)$	USARTx_RX	Ю	接收数据
	USARTx_CK	Ю	通信时钟
	USARTx_RTS	О	请求发送信号
	USARTx_CTS	I	清除发送信号
SPIx	SPIx_MISO	Ю	主输入/从输出数据传输引脚
$(x=1\sim4)$	SPIx_MOSI	Ю	主输出/从输入数据传输引脚
	SPIx_SCK	Ю	传输时钟
	SPIx_SS0	Ю	从机选择输入输出引脚
	SPIx_SS1~3	О	从机选择输出引脚
QSPI	QSPI_QSIO0~3	Ю	数据线
	QSPI_QSCK	О	时钟输出
	QSPI_QSSN	О	从机选择
I2Cx	I2Cx_SCL	Ю	时钟线
(x=1~~3)	I2Cx_SDA	Ю	数据线
I2Sx	I2Sx_SD	Ю	串行数据
$(x=1\sim4)$	I2Sx_SDIN	I	全双工串行数据输入
. ,	I2Sx_WS	Ю	字选择
	I2Sx_CK	IO	串行时钟

类别	功能名	I/O	说明
	I2Sx_EXCK	I	外部时钟源
	I2Sx_MCK	О	主时钟
CAN	CAN_TxD	О	发送数据
	CAN_RxD	I	接收数据
SDIOx	SDIOx_Dy (y=0~7)	Ю	SD 数据信号
	SDIOx_CK	О	SD 时钟输出信号
	SDIOx_CMD	Ю	SD 命令和回复信号
	SDIOx_CD	I	SD 卡识别状态信号
	SDIOx_WP	I	SD卡写保护状态信号
USBFS	USBFS_DM	Ю	USBFS 片上全速 PHY D-信号
	USBFS_DP	Ю	USBFS 片上全速 PHY D+信号
	USBFS_VBUS	I	USBFS VBUS 信号
	USBFS_ID	I	USBFS ID 信号
	USBFS_SOF	О	USBFS SOF 脉冲输出信号
	USBFS_DRVVBUS	О	USBFS VBUS 驱动许可信号
CMPx	VCOUT1	О	模拟比较通道 1 结果输出
$(x=1\sim3)$	VCOUT2	О	模拟比较通道 2 结果输出
	VCOUT3	О	模拟比较通道 3 结果输出
	VCOUT123	О	模拟比较通道 1~3 结果 OR 输出
	CMPx_INPy	I	模拟比较器通道 x 正端电压 y 输入
	CMPx_INMy	I	模拟比较器通道 x 负端电压 y 输入
ADC	ADTRG1	I	ADC1 AD 转换外部启动源
	ADTRG2	I	ADC2 AD 转换外部启动源
	ADC1_INx (x=0~3,12~15)	I	ADC1 外部模拟输入端口
	ADC12_INx (x=4~11)	I	ADC1 与 ADC2 共用外部模拟输入端口
	PGAVSS	I	PGA Ground 输入

表 2-5 引脚功能说明

2.4 引脚使用说明

引脚名	使用说明
VCC	电源,接 1.8V~3.6V 电压,并就近与 VSS 引脚接去耦电容(参考电气特性)
VSS	电源地,接 0V
VCAP_1~2	内核电压,就近与 VSS 引脚接电容,以稳定内核电压(参考电气特性)
AVCC	模拟电源,给模拟模块供电,接与 VCC 相同电压(参考电气特性)
	不使用模拟模块时,请与 VCC 短接
AVSS/VREFL	模拟电源地/参考电压,接与 AVSS 相同电压(参考电气特性)
	不使用模拟模块时,请与 VSS 短接
VREFH	ADC1, ADC2 的模拟参考电压,接不高于 AVCC 的电压
	不使用 ADC 时,请与 AVCC 短接
PB11/MD	模式输入,固定为输入状态。复位引脚(NRST)解除(从低电平变为高电平)
	时,本管脚必须固定为高电平。推荐接电阻(4.7KΩ)到 VCC(上拉)
NRST	复位引脚,低有效。不使用时接电阻到 VCC(上拉)
Pxy, $x=A\sim E,H$,	通用引脚。用作输入功能时,输入电压不要超过 5V。用作模拟输入时,模拟电压不
y=0~15	要超过 VREFH/AVCC
	不使用时悬空,或者接电阻到 VCC(上拉)/VSS(下拉)

表 2-6 引脚使用说明

3 电气特性(ECs)

3.1 参数条件

若无另行说明,所有电压都以 VSS 为基准。

3.1.1 最小值和最大值

除非特别说明,所有器件的最小值和最大值在最坏的环境温度、供电电压和时钟频率条件下由设计保证或者特性测试保证。

3.1.2 典型值

除非特别说明,典型数据都是在 $T_A=25$ °C、VCC=3.3 V 条件下通过设计或者特性测试分析得到。

3.1.3 典型曲线

除非特别说明,否则所有典型曲线未经测试,仅供设计参考。

3.1.4 负载电容

图 3-1 (左) 中显示了用于测量引脚参数的负载条件。

3.1.5 引脚输入电压

图 3-1(右)中显示了器件引脚上输入电压的测量方法。

图 3-1 引脚负载条件(左)与输入电压测量(右)

3.1.6 电源方案

图 3-2 电源方案(HC32F460PETB-LQFP100, HC32F460PEHB-VFBGA100)

图 3-3 电源方案(HC32F460KETA-LQFP64)

图 3-4 电源方案(HC32F460KEUA-QFN60TR/HC32F460JETA-LQFP48/HC32F460JEUA-QFN48TR)

- 1. 4.7μF 陶瓷电容必须连至 VCC 引脚之一。
- 2. AVSS=VSS.
- 3. 每个电源对(例如 VCC/VSS, AVCC/AVSS…)必须使用上述的滤波陶瓷电容去耦。这些电容必须尽量靠近或低于 PCB 下面的适当引脚,以确保器件正常工作。不建议去掉滤波电容来降低 PCB 尺寸或成本。这可能导致器件工作不正常。

- 4. 芯片的 VCAP_1/VCAP_2 管脚使用的电容如下: 1) 同时存在 VCAP_1 和 VCAP_2 管脚的芯片,每个管脚可以使用 0.047uF 或者 0.1uF 电容(总容量为 0.094uF 或者 0.2uF)。2) 只有 VCAP_1 管脚的芯片,可以使用 0.1uF 或者 0.22uF 电容。从掉电模式唤醒时,内核电压建立 过程中需要给 VCAP_1/VCAP_2 充电。一方面,较小的 VCAP_1/VCAP_2 总容量能够缩短充 电时间,为应用带来快速响应能力;另一方面,较大的 VCAP_1/VCAP_2 总容量金延长充电时间,但是也提供更强的电磁兼容性(EMC)。用户可以根据电磁兼容性和系统响应速度的要求,选择较大或者较小的电容值。芯片的 VCAP_1/VCAP_2 总容量必须与 PWC_PWRC3.PDTS 位 的赋值相匹配。VCAP_1/VCAP_2 的总容量为 0.2uF 或者 0.22uF 时,需要在进入掉电模式之前确保 PWC_PWRC3.PDTS 位清零。VCAP_1/VCAP_2 的总容量为 0.094uF 或者 0.1uF 时,需要在进入掉电模式之前确保 PWC_PWRC3.PDTS 位置位。
- 5. 主调压器的稳定性是通过将外部电容连接到 VCAP_1 (或 VCAP_1/VCAP_2) 引脚实现的,电容值 CEXT 根据系统的稳定性要求确定。电容值 CEXT 和 ESR 要求如下:

符号	参数	条件
C_{EXT}	外部电容的电容值	0.047μF / 0.1μF / 0.22uF
ESR	外部电容的等效串联电阻ESR	< 0.3 Ω

表 3-1 VCAP 1/VCAP 2 工作条件

3.1.7 电流消耗测量

图 3-5 电流消耗测量方案

3.2 绝对最大额定值

如果加在器件上的载荷超过表 3-2 电压特性、表 3-3 电流特性和表 3-4 热特性中列出的绝对最大额定值,则可能导致器件永久损坏。这些数值只是额定应力,并不意味着器件在这些条件下功能正常。长期工作在最大额定值条件下可能会影响器件的可靠性。

符号	项目	最小值	最大值	单位
V _{CC} -V _{SS}	外部主电源电压(包括 AVCC、VCC) ⁽¹⁾	-0.3	4.0	
	5V耐压引脚上的输入电压 ⁽²⁾	V _{SS} -0.3	VCC+4.0(最大5.8V)	
$V_{\rm IN}$	PA11/USBFS_DM和PA12/USBFS_DP引脚上	V _{SS} -0.3	4.0	V
	的输入电压			
V _{ESD(HBM)}	静电放电电压(人体模型)	请参考 3.3.5	5 电气敏感性	i

表 3-2 电压特性

- 1. 在允许的范围内,所有主电源(VCC、AVCC)和接地(VSS、AVSS)引脚必须始终连接到外部电源。
- 2. 必须始终遵循 $V_{\rm IN}$ 的最大值。有关允许的最大注入电流值的信息,请参见表 3-3。

符号	项目	最大值	単位
$\Sigma I_{ m VCC}$	流入所有 VCC _X 电源线的总电流 (拉电流) ⁽¹⁾	240	
ΣI_{VSS}	流出所有 VSS _X 接地线的总电流 (灌电流) ⁽¹⁾	-240	
I_{VCC}	流入每个 VCCx 电源线的最大电流 (拉电流) ⁽¹⁾	100	
I_{VSS}	流出每个 VSS _X 接地线的最大电流 (灌电流) ⁽¹⁾	-100	
	任意 I/O 和控制引脚的输出灌电流	40	mA
I_{IO}	任意 I/O 和控制引脚的输出拉电流	-40	
	所有 I/O 和控制引脚上的总输出灌电流	120	
$\Sigma I_{ m IO}$	所有 I/O 和控制引脚上的总输出拉电流	-120	

表 3-3 电流特性

1. 在允许的范围内,所有主电源(VCC、AVCC)和接地(VSS、AVSS)引脚必须始终连接到外部电源。

符号	项目	数值	单位
T_{STG}	储存温度范围	-55 到 +125	°C
T_{J}	最大结温	125	°C

表 3-4 热特性

3.3 工作条件

3.3.1 通用工作条件

符号	参数	条件	最小值	典型值	最大值	单位
		超高速模式印				
		PWRC2.DVS=00	0	-	200	
		PWRC2.DDAS=1111 高速模式 [1]				
C	中型 AID 叶色梅玄	向迷侠式 [1] PWRC2.DVS=11	0		168	MII
f_{HCLK}	内部 AHB 时钟频率	PWRC2.DVS=11 PWRC2.DDAS=1111	0	-	108	MHz
		超低速模式				
		超版速模式 PWRC2.DVS=10	0		8	
		PWRC2.DDAS=1000		-	8	
V _{CC}	 标准工作电压		1.8	_	3.6	
V CC	///IE工作电压	-	1.0		3.0	<u> </u> -
V _{AVCC} ⁽²⁾	模拟工作电压	-	1.8	-	3.6	
	5V耐压引脚上的输入电	2 V ≤ VCC ≤ 3.6 V	-0.3	-	5.5	1
	压(3)	VCC ≤ 2 V	-0.3	ı	5.2	V
$V_{\rm IN}$	PA11/USBFS_DM					
	PA12/USBFS_DP		-0.3	-	V _{CC} +0.3	
	引脚的输入电压					
T_{J}	结温范围		-40	-	125	°C

表 3-5 通用工作条件

- 1. 量产测试保证。
- 2. 若存在 VREFH 引脚,则必须考虑下述条件: V_{AVCC}-V_{REFH} < 1.2 V。
- 3. 要使电压保持在高于 V_{CC} +0.3, 必须禁止内部上拉/下拉电阻。

3.3.2 上电 / 掉电时的工作条件

TA 服从一般工作条件。

符号	参数	最小值	最大值	单位
	VCC 上升时间速率	20	20000	
tvcc	VCC 下降时间速率		20000	μs/V

表 3-6 上电 / 掉电时的工作条件

3.3.3 复位和电源控制模块特性

符号	参数		条件	最小值	典型值	最大值	单位
		超高速模式	ICG1.BOR_LEV[1:0]=00	1.88	1.99	2.09	V
			ICG1.BOR_LEV [1:0]=01	1.99	2.09	2.20	V
V_{BOR}	BOR的监测电压		ICG1.BOR_LEV [1:0]=10	2.09	2.20	2.30	V
			ICG1.BOR_LEV [1:0]=11	2.30	2.40	2.51	V
		高速模式	ICG1.BOR_LEV[1:0]=00	1.80	1.90	2.00	V
		超低速模式	ICG1.BOR_LEV [1:0]=01	1.90	2.00	2.10	V
			ICG1.BOR_LEV [1:0]=10	2.00	2.10	2.20	V
			ICG1.BOR_LEV [1:0]=11	2.20	2.30	2.40	V
		超高速模式	PVD1LVL[2:0]=000	1.99	2.09	2.20	V
			PVD1LVL[2:0]=001	2.09	2.20	2.30	V
			PVD1LVL[2:0]=010	2.30	2.40	2.51	V
			PVD1LVL[2:0]=011	2.54	2.67	2.79	V
V_{PVD1}	PVD1监测电压 ⁽³⁾		PVD1LVL[2:0]=100	2.65	2.77	2.90	V
			PVD1LVL[2:0]=101	2.75	2.88	3.00	V
			PVD1LVL[2:0]=110	2.85	2.98	3.11	V
			PVD1LVL[2:0]=111	2.96	3.08	3.21	V
		高速模式	PVD1LVL[2:0]=000	1.90	2.00	2.10	V
		超低速模式	PVD1LVL[2:0]=001	2.00	2.10	2.20	V
			PVD1LVL[2:0]=010	2.20	2.30	2.40	V
			PVD1LVL[2:0]=011	2.43	2.55	2.67	V
			PVD1LVL[2:0]=100	2.53	2.65	2.77	V
			PVD1LVL[2:0]=101	2.63	2.75	2.87	V
			PVD1LVL[2:0]=110	2.73	2.85	2.97	V
			PVD1LVL[2:0]=111	2.83	2.95	3.07	V
V_{PVD2}	PVD2监测电压 ⁽³⁾	超高速模式	PVD2LVL[2:0]=000	2.09	2.20	2.30	V

符号	参数		条件	最小值	典型值	最大值	单位
			PVD2LVL[2:0]=001	2.30	2.40	2.51	V
			PVD2LVL[2:0]=010	2.54	2.67	2.79	V
			PVD2LVL[2:0]=011	2.65	2.77	2.90	V
			PVD2LVL[2:0]=100	2.75	2.88	3.00	V
			PVD2LVL[2:0]=101	2.85	2.98	3.11	V
			PVD2LVL[2:0]=110	2.96	3.08	3.21	V
			PVD2LVL[2:0]=111 ⁽²⁾	1.05	1.15	1.25	V
		高速模式	PVD2LVL[2:0]=000	2.00	2.10	2.20	V
		超低速模式	PVD2LVL[2:0]=001	2.20	2.30	2.40	V
			PVD2LVL[2:0]=010	2.43	2.55	2.67	V
			PVD2LVL[2:0]=011	2.53	2.65	2.77	V
			PVD2LVL[2:0]=100	2.63	2.75	2.87	V
			PVD2LVL[2:0]=101	2.73	2.85	2.97	V
			PVD2LVL[2:0]=110 (1)	2.83	2.95	3.07	V
			PVD2LVL[2:0]=111 ⁽²⁾	1.00	1.10	1.20	V
V _{pvd} hyst	PVD1,2的迟滞 ⁽³⁾			-	100	-	mV
V (1)	1. 由/抗由有层闸店	上升沿VPOR		1.60	1.68	1.76	V
$V_{POR}^{(1)}$	上电/掉电复位阈值	下降沿VPDR		1.56	1.64	1.72	V
V _{POR} hyst	POR 迟滞			-	40	-	mV
${ m I}_{ m RUSH}$	调压器上电时的浪 涌电流(POR或从待 机唤醒)			-	100	150	mA
T _{NRST}	NRST复位最低宽度			500	-	-	ns
T _{IPVD1}	PVD1复位解除时间			300	380	460	μs
T _{IPVD2}	PVD2复位解除时间			300	380	460	μs
T _{INRST}	NRST复位解除时间			25	35	50	μs
T_{RIPT}	内部复位时间			140	160	200	μs

符号	参数	条件	最小值	典型值	最大值	单位
T _{RSTBOR}	BOR复位解除时间		440	520	610	μs
T _{RSTPOR}	上电复位解除时间		-	2500	3000	μs

表 3-7 复位和电源控制模块特性

- 1. 量产测试保证。
- 2. PVD2LVDL[2:0] = 111 时,比较电压是 PVD2EXINP 管脚的外部输入比较电压。
- 3. PVD1 监测电压是 VCC 电压下降时的监测电压;在 PVD2LVL[2:0]设置为 111 时 PVD2 监测电压是 PVDEXINP 电压下降时的监测电压,在 PVD2LVD[2:0]设置为 111 之外的值时 PVD2 监测电压是 VCC 电压下降时的监测电压。
- 4. PVD1,2 的迟滞是 VCC 上升时的监测电压与 VCC 下降时的监测电压的差值。

VCC 上升时的 PVD1 监测电压=Vpvd1+Vpvdhyst;

VCC 上升时的 PVD2 监测电压=Vpvd2+Vpvdhyst。

3.3.4 供电电流特性

电流消耗受多个参数和因素影响,其中包括工作电压、环境温度、I/O 引脚负载、器件软件配置、工作频率、I/O 引脚开关速率、程序在存储器中的位置以及运行的代码等。 图 3-5 电流消耗测量方案中介绍了电流消耗的测量方法。本节所述各种运行模式下的电流消耗测量值都是在实验室条件下通过一套运行在 FLASH 的测试代码得出。 具体条件如下:

- 1) 所有 I/O 引脚都处于输入模式, VCC 或 VSS 上为静态值(无负载)。
- 时钟频率选择超高速模式 f_{HCLK}=200MHz,
 高速模式 f_{HCLK}=168MHz/120MHz/24MHz 和超低速模式 f_{HCLK}=8MHz/1MHz。
- 3) 功耗模式分为: 正常工作模式 ICC_RUN,休眠模式 ICC_SLEEP,停止模式 ICC_STP, 掉电模式 ICC_PD 以及 Dhrystone 工作模式 ICC_DHRYSTONE。
- 4) 外设时钟 ON/OFF 请参考具体电流测试项目。
- 5) 超高速模式 f_{HCLK}=200MHz、高速模式 f_{HCLK}=168MHz/120MHz 下 PLL 处于开启状态。

4-44	n ,	6 11	AT DL	Ta		产品规构	各	T T *4
模式 	Parameter	Symbol	条件	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
超高速	f _{HCLK} =		while(1),全模块时钟OFF	-40	-	16	-	mA
模式	200MHz	ICC_RUN	while(1),全模块时钟ON	-40	-	29	-	mA
		ICC DURVCTONE	CACHE OFF	-40	-	17	-	mA
		ICC_DHRYSTONE	CACHE ON	-40	-	19	-	mA
			全模块时钟OFF	-40	-	11	-	mA
		ICC_SLEEP	全模块时钟ON	-40	-	24	-	mA
		ICC_RUN	while(1),全模块时钟OFF	25	-	16	-	mA
			while(1),全模块时钟ON	25	-	29	-	mA
			CACHE OFF	25	-	17	-	mA
		ICC_DHRYSTONE	CACHE ON	25	-	19	-	mA
			全模块时钟OFF	25	-	11	-	mA
		ICC_SLEEP	全模块时钟ON	25	-	24	1	mA
			while(1),全模块时钟OFF	85	-	1	22	mA
		ICC_RUN	while(1),全模块时钟ON	85	-	ı	35	mA
			CACHE OFF	85	-	1	22	mA
		ICC_DHRYSTONE	CACHE ON	85	-	1	25	mA
			全模块时钟OFF	85	-	1	17	mA
		ICC_SLEEP	全模块时钟ON	85	-	1	30	mA
		ICC_RUN	while(1),全模块时钟OFF	105	-	-	25	mA
			while(1),全模块时钟ON	105	-		39	mA
			CACHE OFF	105	-	-	24	mA
		ICC_DHRYSTONE	CACHE ON	105	-	-	29	mA
			全模块时钟OFF	105	-	1	21	mA
		ICC_SLEEP	全模块时钟ON	105	-	-	34	mA

表 3-8 超高速模式电流消耗

- 1. Typ 电压条件 V_{CC}=3.3V
- 2. Max 电压条件 V_{CC}=1.8~3.6V

4-44	D .	6 1 1	AT DIL	Ta		产品规构	各	T T */
模式	Parameter	Symbol	条件	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
高速	f _{HCLK} =		while(1),全模块时钟OFF	-40	-	13	-	mA
模式	168MHz	ICC_RUN	while(1),全模块时钟ON	-40	-	23	-	mA
			CACHE OFF	-40	-	14	-	mA
		ICC_DHRYSTONE	CACHE ON	-40	-	15	-	mA
		IGG GLEED	全模块时钟OFF	-40	-	9	-	mA
		ICC_SLEEP	全模块时钟ON	-40	-	19	-	mA
		IGG PUP	while(1),全模块时钟OFF	25	-	13	-	mA
		ICC_RUN	while(1),全模块时钟ON	25	-	23	-	mA
		ICC_DHRYSTONE	CACHE OFF	25	-	14	-	mA
			CACHE ON	25	-	15	-	mA
		IGG GLEED	全模块时钟OFF	25	-	9	-	mA
		ICC_SLEEP	全模块时钟ON	25	-	19	-	mA
		IGG PUP	while(1),全模块时钟OFF	85	-	-	18	mA
		ICC_RUN	while(1),全模块时钟ON	85	-	-	28	mA
		IGG DUDUGTOVE	CACHE OFF	85	-	-	18	mA
		ICC_DHRYSTONE	CACHE ON	85	-	-	20	mA
		IGG GLEED	全模块时钟OFF	85	-	-	14	mA
		ICC_SLEEP	全模块时钟ON	85	-	-	24	mA
		ICC_RUN	while(1),全模块时钟OFF	105	-	-	20	mA
			while(1),全模块时钟ON	105	-	-	31	mA
			CACHE OFF	105	-	-	19	mA
		ICC_DHRYSTONE	CACHE ON	105	-	-	23	mA
		ICC GI FED	全模块时钟OFF	105	-	-	17	mA
		ICC_SLEEP	全模块时钟ON	105	-	-	27	mA

表 3-9 高速模式电流消耗 1

- 1. Typ 电压条件 V_{CC}=3.3V
- 2. Max 电压条件 V_{CC}=1.8~3.6V

模式	Danamatan	Count of	条件	Ta		产品规格	f	Unit
(英八	Parameter	Symbol	牙竹	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
高速	f _{HCLK} =	ICC_RUN	while(1),全模块时钟OFF	-40	-	9.5	-	mA
模式	120MHz	ICC_RUN	while(1),全模块时钟ON	-40	-	16.5	-	mA
		IGG DUDVGTOVE	CACHE OFF	-40	-	10	-	mA
		ICC_DHRYSTONE	CACHE ON	-40	-	11.5	-	mA
		100 01 PPP	全模块时钟OFF	-40	-	7	-	mA
		ICC_SLEEP	全模块时钟ON	-40	-	14.5	-	mA
			while(1),全模块时钟OFF	25	-	9.5	-	mA
		ICC_RUN	while(1),全模块时钟ON	25	-	16.5	-	mA
		ICC_DHRYSTONE	CACHE OFF	25	-	10	-	mA
			CACHE ON	25	-	11.5	-	mA
		ICC_SLEEP	全模块时钟OFF	25	-	7	-	mA
			全模块时钟ON	25	-	14.5	-	mA
		ICC_RUN	while(1),全模块时钟OFF	85	-	-	14	mA
			while(1),全模块时钟ON	85	-	1	22	mA
			CACHE OFF	85	-	-	14	mA
		ICC_DHRYSTONE	CACHE ON	85	-	-	17	mA
			全模块时钟OFF	85	-	-	12	mA
		ICC_SLEEP	全模块时钟ON	85	-	-	20	mA
			while(1),全模块时钟OFF	105	-	-	16	mA
		ICC_RUN	while(1),全模块时钟ON	105	-	1	25	mA
		vaa pyyn	CACHE OFF	105	-	-	15	mA
		ICC_DHRYSTONE	CACHE ON	105	-	-	19	mA
			全模块时钟OFF	105	-	-	15	mA
		ICC_SLEEP	全模块时钟ON	105	-	-	22	mA

表 3-10 高速模式电流消耗 2

- 1. Typ 电压条件 V_{CC}=3.3V
- 2. Max 电压条件 V_{CC}=1.8~3.6V

4-44	D .	G 1.1	AT DIL	Ta		产品规构	 各	T
模式	Parameter	Symbol	条件	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
高速	f _{HCLK} =		while(1),全模块时钟OFF	-40	-	3	-	mA
模式	24MHz	ICC_RUN	while(1),全模块时钟ON	-40	-	6	-	mA
		ICC_DHRYSTONE	CACHE OFF	-40	-	3.5	-	mA
		ICC SLEEP	全模块时钟OFF	-40	-	2	-	mA
		ICC_SLEEP	全模块时钟ON	-40	-	5.5	-	mA
		ICC_RUN	while(1),全模块时钟OFF	25	-	3	-	mA
			while(1),全模块时钟ON	25	-	6	1	mA
		ICC_DHRYSTONE	CACHE OFF	25	-	3.5	1	mA
		IGG GUPER	全模块时钟OFF	25	-	2	1	mA
		ICC_SLEEP	全模块时钟ON	25	-	5.5	1	mA
			while(1),全模块时钟OFF	85	-	-	8	mA
		ICC_RUN	while(1),全模块时钟ON	85	-	-	12	mA
		ICC_DHRYSTONE	CACHE OFF	85	-	-	7	mA
			全模块时钟OFF	85	-	-	8	mA
		ICC_SLEEP	全模块时钟ON	85	-	-	11	mA
		ICC_RUN	while(1),全模块时钟OFF	105	-	-	10	mA
			while(1),全模块时钟ON	105	-	-	14	mA
		ICC_DHRYSTONE	CACHE OFF	105	-	-	8	mA
			全模块时钟OFF	105	-	-	10	mA
		ICC_SLEEP	全模块时钟ON	105	-	-	14	mA

表 3-11 高速模式电流消耗 3

- 1. Typ 电压条件 Vcc=3.3V
- 2. Max 电压条件 V_{CC}=1.8~3.6V

模式	Damamatan	Ch -1	条件	Ta		产品规构	各	Unit
(快八	Parameter	Symbol	宋 竹	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
超低速	f _{HCLK} =		while(1),全模块时钟OFF	-40	-	1	-	mA
模式	8MHz	ICC_RUN	while(1),全模块时钟ON	-40	-	3.5	-	mA
		ICC_DHRYSTONE	CACHE OFF	-40	-	1.5	-	mA
			全模块时钟OFF	-40	-	1.2	-	mA
		ICC_SLEEP	全模块时钟ON	-40	-	3.2	-	mA
			while(1),全模块时钟OFF	25	-	1	-	mA
		ICC_RUN	while(1),全模块时钟ON	25	-	3.5	-	mA
		ICC_DHRYSTONE	CACHE OFF	25	-	1.5	-	mA
			全模块时钟OFF	25	-	1.2	-	mA
		ICC_SLEEP	全模块时钟ON	25	-	3.2	-	mA
			while(1),全模块时钟OFF	85	-	-	4	mA
		ICC_RUN	while(1),全模块时钟ON	85	-	-	6	mA
		ICC_DHRYSTONE	CACHE OFF	85	-	-	4	mA
			全模块时钟OFF	85	-	-	3.5	mA
		ICC_SLEEP	全模块时钟ON	85	-	-	6	mA
			while(1),全模块时钟OFF	105	-	-	6	mA
		ICC_RUN	while(1),全模块时钟ON	105	-	-	7	mA
		ICC_DHRYSTONE	CACHE OFF	105	-	-	4.5	mA
			全模块时钟OFF	105	-	-	4	mA
		ICC_SLEEP	全模块时钟ON	105	-	-	6.5	mA

表 3-12 超低速模式电流消耗 1

- 1. Typ 电压条件 Vcc=3.3V
- 2. Max 电压条件 V_{CC}=1.8~3.6V

4-44	December	C. whal	AT UL	Ta		产品规构	 各	TT . 4
模式	Parameter	Symbol	条件	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
超低速	f _{HCLK} =		while(1),全模块时钟OFF	-40	-	0.7	-	mA
模式	1MHz	ICC_RUN	while(1),全模块时钟ON	-40	-	2.5	-	mA
		ICC_DHRYSTONE	CACHE OFF	-40	-	0.9	-	mA
			全模块时钟OFF	-40	-	0.9	-	mA
		ICC_SLEEP	全模块时钟ON	-40	-	2.4	-	mA
			while(1),全模块时钟OFF	25	-	0.7	-	mA
		ICC_RUN	while(1),全模块时钟ON	25	-	2.5	-	mA
		ICC_DHRYSTONE	CACHE OFF	25	-	0.9	-	mA
			全模块时钟OFF	25	-	0.9	-	mA
		ICC_SLEEP	全模块时钟ON	25	-	2.4	-	mA
			while(1),全模块时钟OFF	85	-	-	4	mA
		ICC_RUN	while(1),全模块时钟ON	85	-	-	5	mA
		ICC_DHRYSTONE	CACHE OFF	85	-	-	3.5	mA
			全模块时钟OFF	85	-	-	3.5	mA
		ICC_SLEEP	全模块时钟ON	85	-	-	5	mA
		ICC_RUN	while(1),全模块时钟OFF	105	-	-	5	mA
			while(1),全模块时钟ON	105	-	-	5.5	mA
		ICC_DHRYSTONE	CACHE OFF	105	-	-	4	mA
			全模块时钟OFF	105	-	-	5	mA
		ICC_SLEEP	全模块时钟ON	105	-	-	5.5	mA

表 3-13 超低速模式电流消耗 2

- 1. Typ 电压条件 Vcc=3.3V
- 2. Max 电压条件 V_{CC}=1.8~3.6V

4-44	D	Cl.d	A Project 2 200	Та		产品规格	\$	TI.4
模式	Parameter	Symbol	条件(VCC=3.3V)	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
停止模式	-	ICC_STP	PWC_PWRC1.STPDAS=00	-40	-	160	-	uA
			PWC_PWRC1.STPDAS=11	-40	-	30	-	uA
			PWC_PWRC1.STPDAS=00	25	-	220	-	uA
			PWC_PWRC1.STPDAS=11	25	-	80	-	uA
			PWC_PWRC1.STPDAS=00	85	-	-	3600	uA
			PWC_PWRC1.STPDAS=11	85	-	-	3400	uA
			PWC_PWRC1.STPDAS=00	105	-	-	4800	uA
			PWC_PWRC1.STPDAS=11 ⁽³⁾	105	-	-	4600	uA
掉电模式	-	ICC_PD	掉电模式1	-40	-	10	ı	uA
			掉电模式2	-40	-	4	ı	uA
			掉电模式3	-40	-	1.8	ı	uA
			掉电模式4	-40	-	1.8	ı	uA
			掉电模式2+XTAL32+RTC	-40	-	6	ı	uA
			掉电模式2+LRC+RTC	-40	-	9	ı	uA
			掉电模式1	25	-	10	ı	uA
			掉电模式2	25	-	4	1	uA
			掉电模式3	25	-	1.8	1	uA
			掉电模式4	25	-	1.8	-	uA
			掉电模式2+XTAL32+RTC	25	-	6	1	uA
			掉电模式2+LRC+RTC	25	-	9	-	uA
			掉电模式1	85	-	-	21	uA
			掉电模式2	85	-	-	19	uA
			掉电模式3	85	-	-	19	uA
			掉电模式4	85	-	-	19	uA
			掉电模式2+XTAL32+RTC	85	-	-	21	uA
			掉电模式2+LRC+RTC	85	-	-	21	uA
			掉电模式1	105	-	-	35	uA
			掉电模式2	105	-	-	33	uA

4-44		Cl I	A HAVOC 2 200	Ta		产品规格	\$	TT .*4
模式	Parameter	Symbol	条件(VCC=3.3V)	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
			掉电模式3	105	-	-	30	uA
			掉电模式4 ^[3]	105	-	-	30	uA
			掉电模式2+XTAL32+RTC	105	-	ı	35	uA
			掉电模式2+LRC+RTC	105	-	-	35	uA

表 3-14 低功耗模式电流消耗

- 1. Typ 电压条件 V_{CC}=3.3V
- 2. Max 电压条件 V_{CC}=1.8~3.6V
- 3. 量产测试保证。

T,	ъ .	6 11	Although Mich 130	Ta		产品规格		T T •4
Item	Parameter	Symbol	条件(VCC=AVCC=3.3V)	(°C)	Min	Тур	Max	Unit
模块	-	ICC_MODULE	XTAL振荡模式大驱动24MHz	25	-	1.8	-	mA
电流			振荡模式中驱动16MHz	25	-	1	-	mA
			振荡模式小驱动10MHz	25	-	0.8	-	mA
			振荡模式超小驱动8MHz	25	-	0.6	-	mA
			XTAL 32K	25	-	0.5	-	mA
			HRC	25	-	0.35	1	mA
			PLL (@480MHz)	25	-	2.3	i	mA
			PLL (@240MHz)	25	-	1.4	i	mA
			ADC	25	-	1.2	i	mA
			DAC	25	-	70	i	uA
			СМР	25	-	0.11	i	mA
			PGA	25	-	1	1	mA
			USBFS ⁽¹⁾	25	-	6	i	mA

表 3-15 模拟模块电流消耗

1. 包含控制部分与 USBPHY 通信时的电流。

3.3.5 电气敏感性

使用特定的测量方法对芯片进行不同的测试(ESD、LU),以确定其在电气敏感性方面的性能。

3.3.5.1 静电放电 (ESD)

根据每种引脚组合,对每个样本的引脚施加静电放电。此项测试符合 JESD22-A114/C101 标准。

符号	参数	条件	最大值	单位
V _{ESD(HBM)}	静电放电电压(人体模型)	T _A =+25 °C,符合 JESD22-A114 标准	4000	3 .7
V _{ESD(CDM)}	静电放电电压(充电设备模型)	T _A =+25 °C,符合 JESD22-C101 标准	1000	V

表 3-16 ESD 特性

3.3.5.2 静态 Latch-up

为评估静态 Latch-up 性能,需要对芯片执行两项互补的静态 Latch-up 测试:

- 对每个电源和模拟输入引脚施加过压
- 对其他输入、输出和可配置 I/O 引脚施加电流注入

这些测试符合 EIA/JESD 78A IC Latch-up 标准。

符号	参数	条件	最大值	单位
LU	静态Latch-up	T _A =+105°C,符合 JESD78A 标准	200	mA

表 3-17 静态 Latch-up 特性

3.3.6 低功耗模式唤醒时序

唤醒时间测量方法为,从唤醒事件触发至 CPU 执行的第一条指令:

- 对于停止或睡眠模式:唤醒事件为 WFE。
- WKUP引脚用于从待机、停止、睡眠模式唤醒。所有时序均在环境温度及VCC=3.3V测试得出。

符号	参数	条件	典型值	最大值	单位
T _{STOP1}	PWC_PWRC1.VHRCSD=1且 从停止模式唤醒 PWC_PWRC1.VPLLSD=1,系统时钟为MRC,程 序在RAM上执行		2	5	
T_{STOP2}	从停止模式唤醒	系统时钟为MRC,程序在Flash上执行	8	15	
T. (1)	VCAP_1/VCAP_2总容量为0.094uF或者0.1uF		15	25	
│ T _{PD1} ⁽¹⁾ │ 从掉电模式1唤醒 │	VCAP_1/VCAP_2总容量为0.2uF或者0.22uF		30		
T. (1)		VCAP_1/VCAP_2总容量为0.094uF或者0.1uF	40	50	us
T _{PD2} ⁽¹⁾	从掉电模式2唤醒	VCAP_1/VCAP_2总容量为0.2uF或者0.22uF	45	55	
T (1)	11 15 th ## + 2 n/4 ##	VCAP_1/VCAP_2总容量为0.094uF或者0.1uF	2500	3000	
T _{PD3} ⁽¹⁾	从掉电模式3唤醒	VCAP_1/VCAP_2总容量为0.2uF或者0.22uF	2500	3000	
T (1)	 	VCAP_1/VCAP_2总容量为0.094uF或者0.1uF	65	75	
$T_{PD4}^{(1)}$	从掉电模式4唤醒	VCAP_1/VCAP_2总容量为0.2uF或者0.22uF	70	80	

表 3-18 低功耗模式唤醒时间

1. 芯片的 VCAP_1/VCAP_2 总容量必须与 PWC_PWRC3.PDTS 位的赋值相匹配。 VCAP_1/VCAP_2 的总容量为 0.2uF 或者 0.22uF 时,需要在进入掉电模式之前确保 PWC_PWRC3.PDTS 位清零。VCAP_1/VCAP_2 的总容量为 0.094uF 或者 0.1uF 时,需要在进入掉电模式之前确保 PWC PWRC3.PDTS 位置位。

3.3.7 I/O 端口特性

常规输入/输出特性

符号	参数		条件	最小值	典型值	最大值.	单位
$V_{\rm IL}^{(1)}$	输入低电	平	1.8≤V _{CC} ≤3.6	-	-	$0.2V_{\rm CC}$	V
$V_{\mathrm{IH}}{}^{(1)}$	输入高电	平	1.8≤V _{CC} ≤3.6	$0.8V_{\rm CC}$	-	-	V
V _{HYS}	输入迟滞		1.8≤V _{CC} ≤3.6	-	0.2	-	V
- (1)	t-A > > >		$V_{SS} \leq V_{IN} \leq V_{CC}$	-	-	±1	uA
$I_{LKG}^{(1)}$	I/O输入洲	过露 电流	$V_{IN} = 5.5V^{(2)}$	-	-	5	uA
		USBFS_DP、USBFS_DM	-	-	1.5	-	ΚΩ
$R_{PU}^{(1)}$	RPU(1) 弱上拉 等效电 阻	除了的USBFS_DP和 USBFS_DM的其他输入引 脚	$V_{\mathrm{IN}} = V_{\mathrm{SS}}$	-	30	-	ΚΩ
	1/0 31 Bhn	PA11/USBFS_DM PA12/USBFS_DP	-	-	10	-	pF
C_{IO}	I/O引脚 电容	除了PA11/USBFS_DM和 PA12/USBFS_DP的其他输 入引脚	-	-	5	-	pF

表 3-19 I/O 静态特性

- 1. 量产测试保证。
- 2. 要使电压保持在高于 V_{CC}+0.3 V, 必须禁止内部上拉 / 下拉电阻。

输出电压

驱动设置	符号	参数	条件	最小值	典型值	最大值	单位
	$V_{\mathrm{OL}^{(1)(2)}}$	低电平输出		-	-	0.4	
	V _{OH} ⁽¹⁾⁽³⁾	高电平输出	$I_{IO}=\pm 1.5$ mA, $1.8 \le V_{CC} \le 2.7$	V _{CC} -0.4	-	-	
/c/ 115 = 1.	V _{OL} (1)(2)	低电平输出		-	-	0.4	
低驱动	$V_{OH}^{(1)(3)}$	高电平输出	$I_{IO}=\pm 3$ mA, $2.7 \le V_{CC} \le 3.6$	V _{CC-} 0.4	-	-	
	$V_{\mathrm{OL}^{(1)(2)}}$	低电平输出		-	-	1.3	
	$V_{OH}^{(1)(3)}$	高电平输出	$I_{IO} = \pm 6 \text{mA}, 2.7 \le V_{CC} \le 3.6$	V _{CC} -1.3	-	-	
	$V_{\mathrm{OL}^{(1)(2)}}$	低电平输出		-	-	0.4	
	$V_{OH}^{(1)(3)}$	高电平输出	I_{IO} =±3mA, 1.8≤ V_{CC} <2.7	V _{CC} -0.4	-	-	
	$V_{OL}^{(1)(2)}$	低电平输出		-	-	0.4	V
中驱动	$V_{OH}^{(1)(3)}$	高电平输出	$I_{IO}=\pm 5$ mA, $2.7 \le V_{CC} \le 3.6$	V _{CC} -0.4	-	-	V
	$V_{OL}^{(1)(2)}$	低电平输出	1 112 1 2 7 27 22 (-	-	1.3	
	$V_{OH}^{(1)(3)}$	高电平输出	$I_{IO}=\pm 12$ mA, $2.7 \le V_{CC} \le 3.6$	V _{CC} -1.3	-	-	
	$V_{OL}^{(1)(2)}$	低电平输出	I I (A 102V 227	-	-	0.4	
	$V_{OH}^{(1)(3)}$	高电平输出	$I_{IO}=\pm 6$ mA, $1.8 \le V_{CC} \le 2.7$	V _{CC} -0.4	-	-	
÷1524	$V_{OL}^{(1)(2)}$	低电平输出	1 10 1 27 41 22 6	-	-	0.4	
高驱动	$V_{OH}^{(1)(3)}$	高电平输出	$I_{IO} = \pm 8 \text{mA}, 2.7 \le V_{CC} \le 3.6$	V _{CC} -0.4	-	-	
	$V_{OL}^{(1)(2)}$	低电平输出	1 120 1 27 24 22 6	-	-	1.3	
	$V_{OH}^{(1)(3)}$	高电平输出	$I_{IO}=\pm 20$ mA, $2.7 \le V_{CC} \le 3.6$	V _{CC} -1.3	-	-	

表 3-20 输出电压特性

- 1. 量产测试保证。
- 2. 器件的 I_{IO} 灌电流必须一直考虑表 3-3 中规定的绝对最大额定。 I_{IO} (I/O 端口和控制引脚) 之和一定不能超过 I_{VSS} 。
- 3. 器件的 I_{IO} 拉电流必须始终遵循表 3-3 所列的绝对最大额定值, I_{IO} (I/O 端口和控制引脚)的 总和不得超过 I_{VCC} 。

输入/输出交流特性

驱动设置	符号	参数	条件(3)	最小值	典型值	最大值	单位
			$C_L=30 \text{ pF}, V_{CC} \ge 2.7 \text{V}$	-	-	20	MHz
	2 (7.5)		C _L =30 pF, V _{CC} ≥1.8V	-	-	10	
	f _{max} (IO)out	最大频率(1)	C _L =10pF, V _{CC} ≥2.7V	-	-	40	
			$C_L=10pF, V_{CC}\geq 1.8V$	-	-	20	
低驱动			C _L =30 pF, V _{CC} ≥2.7V	-	-	15	
	t _f (IO)out	输出高至低电平下	C _L =30 pF, V _{CC} ≥1.8V	-	-	25	
	$t_r(IO)$ out	降时间及输出低至 高电平上升时间	C _L =10pF, V _{CC} ≥2.7V	-	1	7.5	ns
		同电工工灯时间	C _L =10pF, V _{CC} ≥1.8V	-	-	15	
		g(IO)out 最大频率 ⁽¹⁾	$C_L=30 \text{ pF}, V_{CC} \ge 2.7 \text{V}$	-	-	45	
	2 (7.5)		C _L =30 pF, V _{CC} ≥1.8V	-	-	22.5	MHz
	f _{max} (IO)out		C _L =10pF, V _{CC} ≥2.7V	-	-	90	
			$C_L=10pF, V_{CC}\geq 1.8V$	-	-	45	
中驱动		降时间及输出低至 out	C _L =30 pF, V _{CC} ≥2.7V	-	-	7.5	ns
	t _f (IO)out		C _L =30 pF, V _{CC} ≥1.8V	-	-	12	
	$t_r(IO)$ out		C _L =10pF, V _{CC} ≥2.7V	-	-	4	
		高电平上升时间	C _L =10pF, V _{CC} ≥1.8V	-	-	7.5	
			C _L =30 pF, V _{CC} ≥2.7V	-	-	100	
	C (IO)	目上版表 (1)	C _L =30 pF, V _{CC} ≥1.8V	-	-	50	MI
	f _{max} (IO)out	最大频率 (1)	C _L =10pF, V _{CC} ≥2.7V	-	-	180	MHz
<u> </u>			$C_L=10pF, V_{CC}\geq 1.8V$	-	-	100	
高驱动		於山京不低也亚丁	C _L =30 pF, V _{CC} ≥2.7V	-	-	4	ns
	t _f (IO)out	输出高至低电平下	C _L =30 pF, V _{CC} ≥1.8V	-	-	6	
	$t_r(IO)$ out	降时间及输出低至 高电平上升时间	$C_L=10pF, V_{CC}\geq 2.7V$	-	-	2.5	
		IN CT 스키 티티	$C_L=10pF, V_{CC}\geq 1.8V$	-	-	4	

表 3-21 I/O 交流特性

- 1. 最大频率在图 3-6中定义。
- 2. 负载电容 CL 必须将 PCB 和 MCU 引脚的电容考虑在内(引脚与电路板的电容可粗略地估算

为 10 pF)。

最大频率条件: $(t_r + t_f) \le (2/3)T$ 并且Duty cycle= $50\% \pm 5\%$ (负载电容 C_L 在"输入/输出交流特性"表格的"条件"一栏中标明)

图 3-6 I/O 交流特性定义

3.3.8 USART 接口特性

符号	参	数	最小值	最大值	单位	
4	输入时钟周期数	UART	4	-	t _{PCLK1}	
t _{cyc}	制八的 押 问 别 级	CSI	6	-		
t_{CKw}	输入时钟宽度	0.4	0.6	t_{Scyc}		
t_{CKr}	输入时钟上升时间	-	5	ns		
t_{CKf}	输入时钟下降时间		-	5	ns	
t_{TD}	发送延迟时间	CSI	-	28	ns	
$t_{ m RDS}$	接收数据建立时间	CSI	15	-	ns	
t_{RDH}	接收数据保持时间	CSI	5	-	ns	

表 3-22 USART AC 时序

图 3-7 USART 时钟时序

图 3-8 USART (CSI) 输入输出时序

3.3.9 I2S 接口特性

符号	性能指标	条件	Min	Max	Unit
f_{MCK}	I2S main clock output	-	256 *8K	256*Fs	MHz
	120 1 1 0	Master data: 32 bits	20	64*Fs	
f_{CK}	I2S clock frequency	Slave data: 32 bits	-	64*Fs	MHz
D_{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
$t_v(WS)$	WS valid time	Master mode	0	-	
t _h (WS)	WS hold time	Master mode	0	-	
t _{su} (WS)	WS setup time	Slave mode	1	-	
t _h (WS)	WS hold time	Slave mode	0	-	
t _{su} (SD_MR)		Master receiver	7.5	-	
t _{su} (SD_SR)	Data input setup time	Slave receiver	2	-	
t _h (SD_MR)		Master receiver	0	-	
th(SD_SR)	Data input hold time	Slave receiver	0	-	ns
$t_v(SD_ST)$		Slave transmitter(after		25	
t _h (SD_ST)	B	enable edge)	-	27	
(CD MT)	Data output valid time	Master transmitter(after		20	
$t_v(SD_MT)$		enable edge)	-	20	
A (CD MT)	Determine hells	Master transmitter(after	2.5	-	
t _h (SD_MT)	Data output hold time	enable edge)	2.5		

表 3-23 I2S 电气特性

1. Fs: I2S 采样频率

图 3-9 I2S 从模式时序 (Philips 协议)

图 3-10 I2S 主模式时序 (Philips 协议)

3.3.10 I2C 接口特性

<i>5</i> /5 □	₩	标准模式	(SM)	快速模式	(FM)	X th
符号	参数	Min	Max	Min	Max	- 単位
$f_{ m SCL}$	SCL频率	0	100	0	400	KHz
$t_{\mathrm{HD;STA}}$	开始条件/重新开始条件Hold	4.0	-	0.6	-	us
$t_{ m LOW}$	SCL低电平	4.7	-	1.3	-	us
t _{HIGH}	SCL高电平	4	-	0.6	-	us
t _{SU;STA}	重新开始条件Setup	4.7	-	0.6	-	us
t _{HD;DAT}	数据Hold	0	-	0	-	us
$t_{ m SU;DAT}$	数据Setup	50+ t _{I2C} 基准时钟周期	-	50+ t _{I2C} 基准时钟周期	-	ns
t_R	SCL/SDA的上升时间	-	1000	6.5	300	ns
t_{F}	SCL/SDA的下降时间	-	300	6.5	300	ns
t _{SU;STO}	停止条件Setup	4	-	0.6	-	us
$t_{ m BUF}$	停止条件到开始条件间的 BUS空闲时间	4.7	-	1.3	-	us
C _b	负载电容	-	400	-	400	pF

表 3-24 I2C 电气特性

图 3-11 I2C 总线时序定义

3.3.11 SPI 接口特性

Item	_	Symbol	Min	Max	Unit	Test conditions
SCK clock cycle	Master	tspcyc	2 (pclk ≤60MHz) 4 (pclk ≤60MHz)	4096	tpcyc	图 3-12 C=30pF
	Slave		6	4096		
SCK clock rise and fall	Master	tsckr	-	5	ns	
time	Slave	tsckf	-	1	us	
Data input setup time	Master	tsu	4	-	ns	图 3-13
	Slave		5	-		C=30pF
Data input hold time	Master	th	tpcyc	-	ns	
	Slave		20	-		
Data output delay	Master	tod	-	8	ns	
	Slave		-	20		
Data output hold time	Master	toh	0	-	ns	
	Slave		0	-		
MOSI/MISO rise and	Master	tdr	-	5	ns	
fall time	Slave	tdf	-	1	us	
SS rise and fall time	Master	tssr	-	5	ns	
	Slave	tssf	-	1	us	

表 3-25 SPI 电气特性

图 3-12 SCK Clock 定义

图 3-13 SPI 接口时序要求

3.3.12 CAN2.0B 接口特性

CANx_TX 和 CANx_RX 的端口特性,请参考 3.3.7 I/O 端口特性。

3.3.13 USB 接口特性

Sy	mbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
	V_{CC}	工作电压	-	3.0(2)	-	3.6	V
	$V_{\rm IL}$	输入低电平	-	-	-	0.8	V
输入	V_{IH}	输入高电平	-	2.0	-	-	V
	V_{DI}	差分输入灵敏度	-	0.2	-	-	V
	V _{CM} 差分共模电压		-	0.8	-	2.5	V
	$V_{OL}^{(3)}$	静态输出低电平	$R_L=1.5k\Omega$ to $3.6V^{(4)}$	-	-	0.3	V
	V _{OH} ⁽³⁾ 静态输出高电平		$R_L=15k\Omega$ to $VSS^{(4)}$	2.8	-	3.6	V
	V_{CRS}	Cross-over电压	$C_L=50pF$	1.3	-	2.0	V
输出	t_R	上升时间	C _L =50pF, 10%~90% of V _{OH} -V _{OL}	4	-	20	ns
	t_{F}	下降时间	C _L =50pF, 10%~90% of V _{OH} -V _{OL}	4	1	20	ns
	t_{RFMA}	上升下降时间比 t _R /t _F	C _L =50pF	90	ı	111.1	%
$R_{PD}^{(3)}$		下拉电阻	$V_{IN}=V_{CC}$, in host mode	-	15	-	kΩ
			V _{IN} = V _{SS} , idle state	0.900	1.2	1.575	kΩ
R _{PU} ⁽³⁾		上拉电阻	$V_{IN}=V_{SS}$ in device mode	1.425	2.3	3.090	kΩ

表 3-26 USB Full-Speed 电气特性

- 1. 所有电压均基于局部接地电位测得。
- 2. 工作电压降至 2.7V 时,仍可保证 USB 全速收发器的功能,但不能保证完整的 USB 全速电气特性,后者在 2.7 到 3.0V 的 V_{CC} 电压范围内会降级。
- 3. 量产测试保证。
- 4. RL是连接至 USB 全速驱动器的负载。

Sy	mbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
输入	V _{CC}	工作电压	-	3.0(2)	-	3.6	V
	$V_{\rm IL}$	输入低电平	-	-	-	0.8	V
	$V_{ m IH}$	输入高电平	-	2.0	-	-	V
	V_{DI}	差分输入灵敏度	-	0.2	-	-	V
	V_{CM}	差分共模电压	-	0.8	-	2.5	V
输出	$V_{OL}^{(3)}$	静态输出低电平	R_L =1.5k Ω to 3.6V ⁽⁴⁾	-	-	0.3	V
	V _{OH} ⁽³⁾	静态输出高电平	R_L =15k Ω to VSS ⁽⁴⁾	2.8	-	3.6	V
	V _{CRS} ⁽³⁾	Cross-over电压	C _L =200pF~600pF	1.3	-	2.0	V
	$t_{R}^{(3)}$	上升时间	C _L =200pF~600pF,	75	-	300	ns
			10%~90% of V _{OH} -V _{OL}				
	t _F (3)	下降时间	C _L =200pF~600pF,	75	-	300	ns
			10%~90% of V _{OH} -V _{OL}				
	t _{RFMA} (3)	上升下降时间比	C _L =200pF~600pF	80	-	125	%
		$t_{ m R}/t_{ m F}$					
$R_{PD}^{(3)}$		下拉电阻	$V_{IN}=V_{CC}$, in host mode	14.25	-	24.80	kΩ

表 3-27 USB Low-Speed 电气特性

- 1. 所有电压均基于局部接地电位测得。
- 2. 工作电压降至 2.7V 时,仍可保证 USB 低速收发器的功能,但不能保证完整的 USB 低速电气特性,后者在 2.7 到 3.0V 的 V_{CC} 电压范围内会劣化。
- 3. 量产测试保证。
- 4. RL是连接至 USB 低速驱动器的负载。

图 3-14 USB 上升/下降时间及 Cross Over 电压定义

3.3.14 PLL 特性

符号	参数	条件	Min	Тур	Max	Unit
$f_{ m PLL_IN}$	PLL PFD(Phase Frequency Detector) input clock ⁽¹⁾	-	1	1	25	MHz
$f_{ t PLL_OUT}$	PLL multiplier output clock	-	15	1	240	MHz
f _{VCO_OUT}	PLL VCO output	-	240	-	480	MHz
Jitter _{PLL}	Period Jitter	PLL PFD input clock=8MHz, System clock=120MHz, Peak-to-Peak	-	±100	-	
	Cycle-to-Cycle Jitter	PLL PFD input clock=8MHz, System clock=120MHz, Peak-to-Peak	-	±150 -		ps
t_{LOCK}	PLL lock time	-	-	80	120	μs

表 3-28 PLL 主要性能指标

^{1.} 推荐使用较高的输入时钟,以获得良好的 Jitter 特性。

3.3.15 JTAG 接口特性

Synbol	Item	Min	Тур	Max	Unit
$t_{ m TCKeye}$	JTCK clock cycle time	50	-	-	ns
t _{TCKH}	JTCK clock high pulse width	20	-	-	ns
t _{TCKL}	JTCK clock low pulse width	20	-	-	ns
$t_{ m TCKr}$	JTCK clock rise time	-	-	5	ns
$t_{ m TCKf}$	JTCK clock fall time	-	-	5	ns
$t_{ m TMSs}$	JTMS setup time	8	-	-	ns
$t_{ m TMSh}$	JTMS hold time	8	-	-	ns
t_{TDIs}	JTDI setup time	8	-	-	ns
t_{TDIh}	JTDI hold time	8	-	-	ns
$t_{ ext{TDOd}}$	JTDO data delay time	-	-	20	ns

表 3-29 JTAG 接口特性

3.3.16 外部时钟源特性

3.3.16.1 外部源产生的高速外部用户时钟

在旁路模式,XTAL 振荡器关闭,输入引脚为标准 I/O。外部时钟信号必须考虑 I/O 静态特性。

符号	参数	条件	最小值	典型值	最大值	单位
f _{XTAL_EXT}	用户外部时钟源频率	-	1	1	25	MHz
V_{IH_XTAL}	XTAL_IN输入引脚高电平		0.8*V _{CC}	-	V_{CC}	
V_{IL_XTAL}	XTAL_IN输入引脚低电平		V_{SS}	-	0.2*V _{CC}	V
$t_{r(XTAL)}$	XTAL_IN上升或下降时间		-	-	5	ns
$t_{f(XTAL)}$						
Duty _(XTAL)	占空比	-	40	-	60	%

表 3-30 高速外部用户时钟特性

3.3.16.2 晶振 / 陶瓷谐振器产生的高速外部时钟

高速外部 (XTAL) 时钟可以使用一个 4 到 25 MHz 的晶振 / 陶瓷谐振振荡器产生。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以尽量减小输出失真和起振稳定时间。有关谐振器特性(频率、封装、精度等)的详细信息,请咨询晶振谐振器制造商。

符号	参数	条件	最小值	典型值	最大值	单位
f _{XTAL_IN}	振荡器频率		4	-	25	MHz
$R_F^{(1)}$	反馈电阻		-	300	-	kΩ
A _{XTAL} ⁽²⁾	XTAL精度	-	-500	-	500	ppm
G _{mmax}	振荡器Gm	起振	4	-	-	mA/V
t _{SU(XTAL)} (3)	启动时间	VCC稳定,晶振=8MHz	-	2.0	-	ms
		VCC稳定,晶振=4MHz	-	4.0	-	ms

表 3-31 XTAL 4-25 MHz 振荡器特性

- 1. 量产测试保证。
- 2. 此参数取决于应用系统上使用到的谐振器。
- 3. t_{SU(XTAL)}是起振时间,即从软件使能 XTAL 开始测量,直至得到稳定的 8MHz 振荡频率这段时间。该值基于标准晶振谐振器测得,可能随晶振制造商的不同而显著不同。

对于 C_{L1} 和 C_{L2} ,建议使用专为高频应用设计、可满足晶振或谐振器要求的高质量外部陶瓷电容(请参见下图)。 C_{L1} 和 C_{L2} 的大小通常相同, C_{L1} = C_{L2} = $2*(C_L$ - C_S)。 C_S 是 PCB 和 MCU 引脚(XTAL IN、XTAL OUT) stray capacitance。

带集成电容的谐振器

图 3-17 采用8 MHz 晶振的典型应用

1. REXT 的值取决于晶振特性。

3.3.16.3 晶振 / 陶瓷谐振器产生的低速外部时钟

低速外部时钟可以使用一个由 32.768 kHz 的晶振/陶瓷谐振器构成的振荡器产生。在 应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以尽量减小输出失真和 起振稳定时间。有关谐振器特性(频率、封装、精度等)的详细信息,请咨询晶振谐振器制造商。

符号	会粉	参数条件		规格		单位
10 5	多 数	余 行	Min	Тур	Max	平位
F _{XTAL32}	频率	-	-	32.768	-	kHz
$R_F^{(1)}$	反馈电阻	-	-	15	-	ΜΩ
I _{DD_XTAL32}	功耗	XTAL32DRV[2:0]=000	-	0.8	-	μΑ
A _{XTAL32} ⁽²⁾	XTAL32精度	-	-500	-	500	ppm
G _{mmax}	振荡器Gm	-	5.6	-	-	uA/V
T _{SUXTAL32}	启动时间(3)	VCC稳定状态下	-	2	-	S

表 3-32 XTAL32 振荡器特性

- 1. 量产测试保证。
- 2. 此参数取决于应用系统上使用到的谐振器。
- 3. T_{SUXTAL32} 是起振时间,即从软件使能 XTAL32 开始测量,直至得到稳定的 32.768 kHz 振荡频率这段时间。该值基于标准晶振谐振器测得,可能随晶振制造商的不同而显著不同。

对于 C_{L1} 和 C_{L2} ,建议使用高质量外部陶瓷电容(请参见下图)。 C_{L1} 和 C_{L2} 的大小通常相同, C_{L1} = C_{L2} = $2*(C_L$ - C_S)。 C_S 是 PCB 和 MCU 引脚(XTAL32_IN、XTAL32_OUT) stray capacitance。如果 C_{L1} 和 C_{L2} 大于 18pF,建议设置 XTAL32DRV[2:0]=001(大驱动,功耗典型值增加 0.2uA)。

带集成电容的谐振器

图 3-18 采用 32.768 kHz 晶振的典型应用

3.3.17 内部时钟源特性

3.3.17.1 内部高速(HRC)振荡器

符号	参数	条件	最小值	典型值	最大值	单位
	频率(1)	模式1	1	16	1	MHz
		模式2	1	20	1	
	用户调整刻度	-	-	-	0.2	%
$f_{ m HRC}$	频率精度(1)	T _A = -40 到 105 °C	-2	-	2	%
		T _A = -20 到 105 °C	-1.5	-	1.5	%
		$T_A = 25 ^{\circ}\mathrm{C}$	-0.5	-	0.5	%
t _{st(HRC)}	HRC 振荡器振荡	-	-	-	15	μs

表 3-33 HRC 振荡器特性

1. 量产测试保证。

3.3.17.2 内部中速(MRC)振荡器

符号	参数		典型值	最大值	单位
$f_{MRC}^{(1)}$	频率	7.2	8	8.8	MHz
t _{st(MRC)}	MRC振荡器稳定时间	1	1	3	μs

表 3-34 MRC 振荡器特性

1. 量产测试保证。

3.3.17.3 内部低速(LRC)振荡器

符号	参数	最小值	典型值	最大值	单位
$f_{LRC}^{(1)}$	频率	27.853	32.768	37.683	kHz
$t_{st(LRC)}$	LRC振荡器稳定时间	-	-	36	μs

表 3-35 LRC 振荡器特性

1. 量产测试保证。

3.3.17.4 SWDT 专用内部低速(SWDTLRC)振荡器

符号	参数	最小值	典型值	最大值	单位
f _{SWDTLRC} ⁽¹⁾ 频率		9	10	11	kHz
tst(SWDTLRC)	SWDTLRC振荡器稳定时间	-	-	57.1	μs

表 3-36 SWDTLRC 振荡器特性

1. 量产测试保证。

3.3.18 12 位 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{AVCC}	电源	-	1.8	-	3.6	V
$V_{REFH}^{(1)}$	正参考电压	-	1.8	-	V _{AVCC}	V
		超高速/高速动作模式下 V _{AVCC} =2.4~3.6V	1	-	60	
$f_{ m ADC}$	ADC 转换时钟频率	超高速/高速动作模式下 V _{AVCC} =1.8~2.4V	1	-	30	MHz
		超低速动作模式	1	-	8	
V _{AIN}	转换电压范围	-	V _{AVSS}	-	V_{REFH}	V
R _{AIN}	外部输入阻抗	详见公式1	-	-	50	kΩ
R _{ADC}	采样开关电阻	-	-	-	6	kΩ
C_{ADC}	内部采样和保持电容	-	-	4	7	pF
t_{D}	触发器转换延迟	$f_{ADC} = 60 \text{ MHz}$	-	-	0.3	μs

表 3-37 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
	5 W-10-	6 60 67	0.183	-	4.266	μs
$t_{\rm S}$	采样时间	f _{ADC} =60MHz	11	1	255	$1/f_{ADC}$
		f _{ADC} = 60 MHz 12 位分辨率	0.4	-	-	μs
$t_{\rm CONV}$	单通道总转换时间 (包括采样时间)	f _{ADC} = 60 MHz 10 位分辨率	0.36	-	-	μs
		f _{ADC} = 60 MHz 8 位分辨率	0.33	-	-	μs
		20到 268 (采样时间 ts	S+ 逐次趋近	t n 位分辨	幹率+1)	1/f _{ADC}
	₩ + + + + + + + + + + + + + + + + + + +	12 位分辨率单ADC	-	-	2.5	
f_S	采样率 $f_{ADC} = 60 \text{ MHz}$	12 位分辨率时间内插 双ADC	-	-	4.6	Msps
t_{ST}	上电时间	-	-	1	2	μs

表 3-38 ADC 特性 (续)

1. V_{AVCC} - V_{REFH} <1.2V

公式 1: RAIN 最大值公式

$$R_{AIN} = \frac{k-1}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

上式(公式 1)用于确定使误差低于 1/4 LSB 的最大外部阻抗。其中 N=12 (12 位分辨率),k 为 ADC_SSTR 寄存器中定义的采样周期数。

符号	参数	条件	典型值	最大值	单位
E _T	绝对误差		±4.5	±6	LSB
Eo	偏移误差	超高速/高速动作模式下	±3.5	±6	LSB
E_G	增益误差	f _{ADC} =60MHz	±3.5	±6	LSB
E_D	微分线性误差	输入源阻抗<1kΩ -V _{AVCC} =2.4 ~3.6V	±1	±2	LSB
E_L	积分线性误差	V AVCC−2.4 ~3.0 V	±1.5	±3	LSB

表 3-39 ADC1_IN0~3、ADC12_IN4~IN7 输入通道精度@ f_{ADC}=60MHz

符号	参数	条件	典型值	最大值	单位
E_T	绝对误差		±4.5	±6	LSB
Eo	偏移误差	超高速/高速动作模式下	±3.5	±6	LSB
E _G	增益误差	f _{ADC} =30MHz	±3.5	±6	LSB
$E_{D}^{(1)}$	微分线性误差	输入源阻抗<1kΩ -V _{AVCC} =2.4 ~3.6V	±1	±2	LSB
$E_{L}^{(1)}$	积分线性误差	V AVCC-2.7 ~3.0 V	±1.5	±3	LSB

表 3-40 ADC1_IN0~3、ADC12_IN4~IN7 输入通道精度@ f_{ADC}=30MHz

1. 量产测试保证。

符号	参数	条件	典型值	最大值	单位
E_T	绝对误差		±4.5	±6	LSB
Eo	偏移误差	超高速/高速动作模式下	±3.5	±6	LSB
E _G	增益误差	f _{ADC} =30MHz	±3.5	±6	LSB
E_D	微分线性误差	输入源阻抗<1kΩ -V _{AVCC} =1.8 ~2.4V	±1	±2	LSB
E_L	积分线性误差	V AVCC-1.6 *2.7 V	±2	±3	LSB

表 3-41 ADC1_IN0~3、ADC12_IN4~IN7 输入通道精度@ f_{ADC}=30MHz

符号	参数	条件	典型值	最大值	单位
E_{T}	绝对误差		±4.5	±6	LSB
Eo	偏移误差	超低速动作模式下	±3.5	±6	LSB
E_G	增益误差	f _{ADC} =8MHz	±3.5	±6	LSB
E _D	微分线性误差	输入源阻抗<1kΩ ·V _{AVCC} =1.8 ~3.6V	±1	±2	LSB
E_{L}	积分线性误差	V AVCC−1.0 ~3.0 V	±2	±3	LSB

表 3-42 ADC1_IN0~3、ADC12_IN4~IN7 输入通道精度@ f_{ADC}=8MHz

符号	参数	条件	典型值	最大值	单位
E _T	绝对误差		±5.5	±7	LSB
Eo	偏移误差	超高速/高速动作模式下	±4.5	±7	LSB
E _G	增益误差	f _{ADC} =60MHz	±4.5	±7	LSB
E _D	微分线性误差	输入源阻抗<1kΩ V _{AVCC} =2.4~3.6V	±1.5	±2	LSB
E_L	积分线性误差	V AVCC-2.4 ~3.0 V	±2.0	±3	LSB

表 3-43 ADC1_IN12~15、ADC12_IN8~11 输入通道精度@ f_{ADC}=60MHz

符号	参数	条件	典型值	最大值	单位
E _T	绝对误差		±5.5	±7	LSB
Eo	偏移误差	超高速/高速动作模式下	±4.5	±7	LSB
E _G	增益误差	f _{ADC} =30MHz	±4.5	±7	LSB
$E_{D}^{(1)}$	微分线性误差	输入源阻抗<1kΩ V _{AVCC} =2.4~3.6V	±1.5	±2	LSB
$E_{L}^{(1)}$	积分线性误差	V AVCC−2.4 ~3.0 V	±2.0	±3	LSB

表 3-44 ADC1_IN12~15、ADC12_IN8~11 输入通道精度@ f_{ADC}=30MHz

1. 量产测试保证。

符号	参数	条件	典型值	最大值	单位
E _T	绝对误差		±5.5	±7	LSB
Eo	偏移误差	超高速/高速动作模式下	±4.5	±7	LSB
E_G	增益误差	f _{ADC} =30MHz	±4.5	±7	LSB
E_D	微分线性误差	输入源阻抗<1kΩ V _{AVCC} =1.8 ~2.4V	±1.5	±2	LSB
E_{L}	积分线性误差	V AVCC-1.0 ~2.4 V	±2.5	±3	LSB

表 3-45 ADC1_IN12~15、ADC12_IN8~11 输入通道精度@ f_{ADC}=30MHz

符号	参数	条件	典型值	最大值	单位
E _T	绝对误差		±5.5	±7	LSB
Eo	偏移误差	超低速动作模式下 $f_{ADC} = 8MHz$	±4.5	±7	LSB
E _G	增益误差		±4.5	±7	LSB
E_D	微分线性误差	输入源阻抗<1kΩ V _{AVCC} =1.8 ~3.6V	±1.5	±2	LSB
E_L	积分线性误差	VAVCC=1.6 ~5.0 V	±2.5	±3	LSB

表 3-46 ADC1_IN12~15、ADC12_IN8~11 输入通道精度@ f_{ADC}=8MHz

符号	参数	条件		最大值	单位
ENOB	有效位数	超高速/高速动作模式下	10.6	-	Bits
SINAD	信噪谐波比	f _{ADC} =60MHz	64	-	dB
SNR	信噪比	输入信号频=2kHz 输入源阻抗<1kΩ	66	-	dB
THD	总谐波失真	V_{AVCC} =2.4 ~3.6V	-	-70	dB

表 3-47 ADC1_IN0~3、ADC12_IN4~IN7 输入通道输入通道动态精度@ f_{ADC}=60MHz

符号	参数	条件	最小值	最大值	单位
ENOB	有效位数	超高速/高速动作模式下	10.4	-	Bits
SINAD	信噪谐波比	f _{ADC} =30MHz 输入信号频=2kHz	62	-	dB
SNR	<i>P</i> -111.	输入原 5 <u>/ / / / / / / / / / / / / / / / / / </u>	64	-	dB
THD	总谐波失真	V _{AVCC} =1.8~2.4V	1	-67	dB

表 3-48 ADC1_IN0~3、ADC12_IN4~IN7 输入通道输入通道动态精度@ f_{ADC}=30MHz

符号	参数	条件	最小值	最大值	单位
ENOB	有效位数	超低速动作模式下	10.4	-	Bits
SINAD	信噪谐波比	f _{ADC} =8MHz	62	-	dB
SNR	信噪比	输入信号频=2kHz 输入源阻抗<1kΩ	64	-	dB
THD	总谐波失真	V _{AVCC} =1.8~3.6V	-	-67	dB

表 3-49 ADC1_IN0~3、ADC12_IN4~IN7 输入通道输入通道动态精度@ fadc=8MHz

图 3-19 ADC 精度特性

- 1. 另请参见上述表格。
- 2. 实际传输曲线举例。
- 3. 理想传输曲线。
- 4. 端点相关线。
- 5. E_T = 总未调整误差:实际和理想传输曲线间的最大偏离。
 - Eo = 偏移误差: 第一次实际转换和第一次理想转换间的偏离。
 - E_G = 增益误差: 最后一次理想转换和最后一次实际转换间的偏离。
 - E_D = 微分线性误差: 实际步进和理想值间的最大偏离。
 - EL = 积分线性误差: 任何实际转换和端点相关线间的最大偏离。

图 3-20 使用 ADC 的典型连接

- 1. 有关 RAIN、RADC 和 CADC 值的信息,请参见表 3-37。
- 2. Cparasitic 表示 PCB 电容(取决于焊接和 PCB 布线质量)以及焊盘电容(约 5 pF)。Cparasitic 值较高会导致转换精度降低。要解决这一问题,应减小 fADC。

通用 PCB 设计准则

应按照下图所示对电源进行去耦,具体取决于 VREFH 是否与 AVCC 相连以及 AVCC 引脚个数。0.1μF 电容应为(优质)陶瓷电容。这些电容应尽可能靠近芯片。

图 3-21 电源和参考电源去耦例

3.3.19 DAC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{AVCC}	模拟电源电压	-	1.8	3.3	3.6	V
DNL	微分非线性误差(两个连续代码 之间的偏差-1LSB)	-	-	-	±2	LSB
偏移	偏移误差(代码(0x80)处测得值与理想值V _{AVCC} /2之间的差)	-	-	-	±2	LSB
T _{SETTLING}	建立时间(满刻度:适用于到DA0/DA1达到最终值±4LSB时,最低输入代码与最高输入代码之间8位输入代码转换)	-	-	-	8	μs

表 3-50 DAC 特性

3.3.20 比较器特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{AVCC}	模拟电源电压	-	1.8	3.3	3.6	V
$V_{\rm I}$	输入电压范围	-	0	-	V_{AVCC}	V
T_{cmp}	比较时间	比较器分辨电压=100mV	-	50	100	ns
T _{set}	输入通道切换稳定时间	-	ı	100	200	ns

表 3-51 比较器特性

3.3.21 增益可调放大器特性

符号	4	多数	条件	最小值	典型值	最大值	单位
V _{AVCC}	模拟电源电	 包压	-	1.8	3.3	3.6	V
$V_{OS}^{(1)}$	输入失调目	 上	-	-8	-	8	mV
$V_{\rm I}$	输入电压剂		-	0.1*V _{AVCC} /Gain	-	0.9*V _{AVCC} /Gain	V
			Gain=2 ⁽¹⁾	-1	-	1	%
			Gain=2.133	-1	-	1	%
			Gain=2.286	-1	-	1	%
			Gain=2.667	-1	-	1	%
			Gain=2.909	-1	-	1	%
			Gain=3.2	-1.5	-	1.5	%
		使用外部端	Gain=3.556	-1.5	-	1.5	%
		□PGAVSS	Gain=4.0	-1.5	-	1.5	%
		作为PGA负相输入	Gain=4.571	-2	-	2	%
		イロイ的ノへ	Gain=5.333	-2	-	2	% %
	W W NO V6		Gain=6.4	-3.0	-	3.0	
G_{E}	增益误差		Gain=8	-3.0	-	3.0	%
			Gain=10.667	-4.0	-	4.0	%
			Gain=16	-4.0	-	4.0	%
			Gain=32 ⁽¹⁾	-7.0	-	7.0	%
			Gain=2 ⁽¹⁾	-2	-	2	%
		使用内部的	Gain=2.133	-2	-	2	%
		模拟地	Gain=2.286	-2	-	2	%
		AVSS作为	Gain=2.667	-2	-	2	%
		PGA负相输	Gain=2.909	-2	-	2	%
		入	Gain=3.2	-2.5	-	2.5	%
			Gain=3.556	-2.5	-	2.5	%

	Gain=4.0	-2.5	-	2.5	%
	Gain=4.571	-3.0	-	3.0	%
	Gain=5.333	-3.0	-	3.0	%
	Gain=6.4	-4.0	-	4.0	%
	Gain=8	-4.0	-	4.0	%
	Gain=10.667	-5.0	-	5.0	%
	Gain=16	-5.0	-	5.0	%
	Gain=32 ⁽¹⁾	-8.0	1	8.0	%

表 3-52 增益可调放大器特性

1. 量产测试保证。

3.3.22 温度传感器

	符号	参数	条件	最小值	典型值	最大值	单位
1	TL	相对精度	根据用户手册,每颗芯片单独定标	-	-	±5	°C

表 3-53 温度传感器特性

3.3.23 存储器特性

3.3.23.1 闪存

器件交付给客户时, 闪存已被擦除。

符号	参数	条件	最小值	典型值	最大值	单位
		读模式,V _{CC} =1.8 V~3.6V	ı	1	5	
		编程模式,Vcc=1.8 V~3.6V	i	1	10	
Ivcc	供电电流	块擦除模式,Vcc=1.8 V~3.6V	-	-	10	mA
		全擦除模式,V _{CC} =1.8 V~3.6V	-	-	10	

表 3-54 闪存特性

符号	参数	条件	最小值	典型值	最大值	单位
	字编程时间	单编程模式	43+2* T _{helk} (2)	48+4* T _{hclk} ⁽²⁾	53+6* T _{hclk} ⁽²⁾	μs
$T_{prog}^{(1)}$	字编程时间	连续编程模式	12+2* T _{helk} (2)	14+4* T _{helk} (2)	16+6* T _{hclk} ⁽²⁾	μs
T _{erase} (1)	块擦除时间	-	16+2* T _{helk} (2)	18+4* T _{hclk} (2)	20+6* T _{hclk} ⁽²⁾	ms
$T_{\text{mas}}^{(1)}$	全擦除时间	-	16+2* T _{helk} (2)	18+4* T _{helk} (2)	20+6* T _{hclk} ⁽²⁾	ms

表 3-55 闪存编程擦除时间

- 1. 量产测试保证。
- 2. T_{helk}为 CPU 时钟的 1 周期。

符号	参数	条件	数值	单位
10.2	少 数	家 什	最小值	平位
N_{end}	编程,块擦除次数	$T_A = 85$ °C	10	kcycles
N_{end}	全擦除次数	$T_A = 85$ °C	10	kcycles
T_{ret}	数据保存期限	$T_A = 85$ °C, after 10 kcycles	10	Years

表 3-56 闪存可擦写次数和数据保存期限

4 封装信息

4.1 封装尺寸

LQFP100 封装

	14x14 Millimeter							
Symbol	Min	Nom	Max					
A			1.60					
A1	0.05		0.15					
A2	1.35	1.40	1.45					
A3	0.59	0.64	0.69					
b	0.18		0.27					
b1	0.17	0.20	0.23					
С	0.13		0.17					
c1	0.12	0.13	0.14					
D	15.80	16.00	16.20					
D1	13.90	14.00	14.10					
Е	15.80	16.00	16.20					
E1	13.90	14.00	14.10					
e		0.50BSC						
L	0.45		0.75					
L1		1.00REF						
θ	0		7°					

NOTE:

WITH PLATING

SECTION B-B

 Dimensions "D1" and "E1" do not include mold flash.

BASE METAL

VFBGA100 封装

BOTTOM VIEW

	7x7 Millimeter						
Symbol	Min	Nom	Max				
A	0.67	0.74	0.81				
A1	0.11	0.16	0.21				
A2	0.54	0.58	0.62				
A3		0.45REF					
A4		0.13REF					
b	0.20	0.25	0.30				
D	6.90	7.00	7.10				
D1		5.5					
E	6.90	7.00	7.10				
E1		5.5					
e		0.5					
F		0.75REF					
ddd		0.10					
eee		0.15					
fff		0.05					

LQFP64 封装

	10x10 Millimeter							
Symbol	Min	Nom	Max					
A			1.60					
A1	0.05		0.15					
A2	1.35	1.40	1.45					
A3	0.59	0.64	0.69					
b	0.18		0.27					
b1	0.17	0.20	0.23					
С	0.13		0.17					
c1	0.12	0.13	0.14					
D	11.80	12.00	12.20					
D1	9.90	10.00	10.10					
E	11.80	12.00	12.20					
E1	9.90	10.00	10.10					
e		0.50BSC						
L	0.45		0.75					
L1		1.00REF						
θ	0°		7°					

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

LQFP48 封装

	7:	x7 Millimet	er
Symbol	Min	Nom	Max
A			1.60
A1	0.05		0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18		0.27
b1	0.17	0.20	0.23
С	0.13		0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
Е	8.80	9.00	9.20
E1	6.90	7.00	7.10
e		0.50BSC	
L	0.40		0.65
L1		1.00REF	
θ	0		7°

NOTE:

- Dimensions "D1" and "E1" do not include mold flash.

QFN60 封装

		7x7 Millimete	r				
Symbol	Min	Nom	Max				
A	0.70	0.75	0.80				
A1	0.00	0.02	0.05				
A2		0.547REF					
b	0.15	0.20	0.25				
	0.13	0.14REF	0.23				
b1							
С		0.20REF					
c1	0.255REF						
c2		0.18REF					
D	6.90	7.00	7.10				
D2	5.50	5.60	5.70				
Nd		5.60BSC					
e		0.40BSC					
E	6.90	7.00	7.10				
E2	5.50	5.60	5.70				
	3.30		3.70				
Ne		5.60BSC					
L	0.35	0.40	0.45				
K	0.25	0.30	0.35				
h	0.30	0.35	0.40				

QFN48 封装

	5x5 Millimeter						
Symbol	Min	Max					
A	0.50	0.55	0.60				
A1	0.00	0.02	0.05				
A2		0.40REF					
b	0.13	0.18	0.23				
b1		0.12REF					
С	0.10	0.15	0.20				
c1		0.145REF					
c2	0.140REF						
D	4.90	5.00	5.10				
D2	3.60	3.70	3.80				
e	3.00						
Ne		0.35BSC 3.85BSC					
Nd							
	4.00	3.85BSC	5 10				
E	4.90	5.00	5.10				
E2	3.60	3.70	3.80				
L	0.30	0.35	0.40				
L1	0.13	0.18	0.23				
h	0.25	0.30	0.35				
L/F 载体 尺寸		154 x 154					

4.2 焊盘示意图

LQFP100 封装 (14mm x 14mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

LQFP64 封装 (10mm x 10mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

LQFP48 封装 (7mm x 7mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

QFN60 封装 (7mm x 7mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

VFBGA100 封装 (7mm x 7mm)

	1	2	3	4	5	6	7	8	9	10	11	12
А												
В												
С												
D												
E												
F												
G												
н												
I												Dsm ↓ Dpad
J												<u>↑</u>
К												
L												
										0.!	 ← 50	

NOTE:

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

VBGA100 recommended PCB design rules(0.5mm pitch)

Dimension	Recommended values
Pitch	0.5mm
Dpad	0.240mm
Dsm	0.340mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.240mm
Stencil thickness	Between 0.100mm and 0.125mm

QFN48 封装 (5mm x 5mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

4.3 丝印说明

以下给出各封装正面丝印的 Pin 1 位置和信息说明。

LQFP100 封装(14mm x 14mm) / LQFP64 封装(10mm x 10mm) LQFP48 封装(7mm x 7mm)

QFN60 封装(7mm x 7mm) / VFBGA100 封装(7mm x 7mm)

QFN48 封装 (5mm x 5mm)

注意:

- 上图空白框表示与生产相关的可选标记,本节不作说明。

4.4 封装热阻系数

封装芯片在指定工作环境温度下工作时,芯片表面的结温 $T_j(^{\circ}\mathbb{C})$ 可以按照下面的公式计算:

$$T_j = T_{amb} + (P_D \times \theta_{JA})$$

- T_{amb} 是指封装芯片工作时的工作环境温度,单位是℃;
- θ_{JA} 是指封装对工作环境的热阻系数,单位是℃/W;
- P_D 等于芯片的内部功耗和 I/O 功耗之和,单位是 W。芯片的内部功耗是产品的 I_{DD} \times V_{DD} ,I/O 功耗指的是指芯片工作时 I/O 引脚产生的功耗,通常该部分值很小,可以忽略。

芯片在指定工作环境温度下工作时芯片表面的结温 T_j ,不可以超出芯片可容许的最大结温度 T_J 。

Package Type and Size	Thermal Resistance Junction-ambient Value (θ_{JA})	Unit
LQFP100 14mm x 14mm / 0.5mm pitch	50 +/- 10%	°C/W
LQFP64 10mm x 10mm / 0.5mm pitch	65 +/- 10%	°C/W
LQFP48 7mm x 7mm / 0.5mm pitch	75 +/- 10%	°C/W
QFN60 7mm x 7mm / 0.4mm pitch	30 +/- 10%	°C/W
QFN48 5mm x 5mm / 0.35mm pitch	42 +/- 10%	°C/W

表 4-1 各封装热阻系数表

5 订购信息

产品型号	HC32F460JEUA- QFN48TR	HC32F460JETA- LQFP48	HC32F460KEUA- QFN60TR	HC32F460KETA- LQFP64	HC32F460PETB- LQFP100	HC32F460PEHB- VFBGA100	HC32F460JCTA- LQFP48	HC32F460KCTA- LQFP64	HC32F460PCTB- LQFP100
主頻 (MHz)	200	200	200	200	200	200	200	200	200
内核	ARM Cortex-M4	ARM Cortex-M4	ARM Cortex-M4	ARM Cortex-M4	ARM Cortex-M4	ARM Cortex-M4	ARM Cortex-M4	ARM Cortex-M4	ARM Cortex-M4
Flash (KB)	512	512	512	512	512	512	256	256	256
RAM (KB)	192	192	192	192	192	192	192	192	192
OTP (B)	960	960	960	960	960	960	960	960	960
Package (mm*mm)	QFN48 (5*5) e=0.35	LQFP48 (7*7) e=0.5	QFN60 (7*7) e=0.4	LQFP64 (10*10) e=0.5	LQFP100 (14*14) e=0.5	VFBGA100 (7*7) e=0.5	LQFP48 (7*7) e=0.5	LQFP64 (10*10) e=0.5	LQFP100 (14*14) e=0.5
通用IO	38	38	50	52	83	83	38	52	83
最低工作电压	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
最高工作电压	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6
16位定时器	11	11	11	11	11	11	11	11	11
电机控制定时器	3	3	3	3	3	3	3	3	3
12位ADC转换单元	2	2	2	2	2	2	2	2	2
12位ADC通道数	10	10	15	16	16	16	10	16	16
比较器	3	3	3	3	3	3	3	3	3
放大器PGA	1	1	1	1	1	1	1	1	1
SPI	4	4	4	4	4	4	4	4	4
QUADSPI	1	1	1	1	1	1	1	1	1
l²S	4	4	4	4	4	4	4	4	4
I ² C	3	3	3	3	3	3	3	3	3
U(S)ART	4	4	4	4	4	4	4	4	4
CAN	1	1	1	1	1	1	1	1	1
SDIO	2	2	2	2	2	2	2	2	2
全速USB OTG	1	1	1	1	1	1	1	1	1
DMA	8	8	8	8	8	8	8	8	8
DCU	4	4	4	4	4	4	4	4	4
PVD	√	√	√	1	1	√	√	√	1
AES128	√	√	√	1	1	√	√	√	√
SHA256	√	√	J	√	√	√	√	√	√
TRNG	√	√	J	1	√	√	√	√	1
CRC	√	√	J.	1	√	√	√	√	1
KEYSCAN	√	√	J.	1	√	√	√	√	1
RTC	√	√	√	√	√	√	√	√	V
FLASH物理加密	1	√	1	√	1	√	√	√	1
出货方式	卷带	盘装	卷带	盘装	盘装	盘装	盘装	盘装	盘装

订购前,请联系销售窗口咨询最新量产信息。

版本信息 & 联系方式

版本	日期	修订内容摘要						
Rev1.0	2019/11/12	初版发布						
D 11	2020/1/10	①全文增加 256KB 产品描述;②全文增加 VFBGA 封装描述;③电气特性中修改掉电模式 105°C						
Rev1.1	2020/1/10	的电流 max 值; ④更新丝印说明						
		1) 增加超高速运行模式描述、更新 CoreMark/DMIPS,增加超高速模式描述。更新功能框图						
		2) 引脚配置图增加 256KB 的型号						
Rev1.2	2020/8/26	3) 增加焊盘示意图和封装热阻系数						
		4) 增加超高速模式下 BOR/PVD 特性,电流特性						
		5) 更新 JTAG/SWJ 调试端口引脚						
		1) 修改声明, 封装尺寸中增加 QFN48/60 的 A2/c1/c2 尺寸, 修改闪存中数据保存期限						
		2) 外部主时钟晶振: (4-24MHz) 改为 (4-25MHz)						
		3) 功能框图修改: USB_DMA -> USBFS_DMA; I2S_1 -> I2S_2; 增加 AOS						
		4) 1.4.6 地址						
		0x00000400H~0x0000041FH -> 0x0000_0400~0x0000_041F						
		0x00000408~0x0000041F -> 0x0000_0408~0x0000_041F						
		5) 增加"自动运行系统(AOS)"简介描述,更新"键盘扫描(KEYSCAN)"描述						
Rev1.3	2021/12/10	6) 名称修正和描述优化						
10011.5	2021/12/10	7) 电源方案图中修改模拟电源管脚旁路电容推荐配置,删除 10nF 电容, 10uF 电容修改为 1uF.						
		8) 复位和电源控制模块特性表中增加参数项: TIPVD1/TIPVD2/TINRST/TRSTBOR						
		TRSTTAO->TRSTPOR						
		9) 3.3.12 添加 CAN2.0B 接口特性说明						
		10) PLL 特性中 fPLL_IN 的 Max 值由 24MHz 改为 25MHz,增加 Jitter 特性						
		11) 3.3.16.1 fXTAL_EXT 最大值改为 25MHz						
		12) 3.3.16.2 增加外部高速振荡器 XTAL 精度指标,修改 CL1 和 CL2 相关描述						
		13) 3.3.16.3 增加外部低速振荡器 XTAL32 精度指标,修改 CL1 和 CL2 相关描述						
Rev1.4	2022/3/9	公司 Logo 更新						
Rev1.41	2022/3/29	1) 3.3.13 USB 接口特性 R _{PD} 删除 MAX, MIN 值,添加 Typ 值 15k Ω						
		3.3.16 tsu(XTAL)启动时间删除最大值,添加典型值						
		2) 4.1 LQFP100/LQFP64/LQFP48 b MAX 值修改为 0.27						

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@xhsc.com.cn

网址: http://www.xhsc.com.cn

通信地址:上海市浦东新区中科路 1867号 A座 10层

邮编: 201210

