Assume Li and Lz are regular languages.

Then, Li and Li are closed under union, intersection, complement, concatenation, and star-closure by Theorem 4.1 in textbook.

As the symmetric difference of two sets is a new set that contains every elements in either set except the elements in both sets, the symmetric difference of L_1 and L_2 can be denoted as $(L_1-L_2)V(L_2-L_1)$.

 $L_1-L_2=L_1 \cap \overline{L_2}$. Since L_1 and L_2 are closure under intersection and complement, $\overline{L_2}$ is regular so that $L_1 \cap \overline{L_2}$ is regular.

 $L_2 - L_1 = L_2 \Lambda L_1$. Since L_1 and L_2 are closure under intersection and complement, L_1 is regular so that $L_2 \Lambda L_1$ is regular.

As $(L_1 \cap \overline{L_2})$ and $(L_2 \cap \overline{L_1})$ are regular, $(L_1 \cap \overline{L_2})$ and $(L_2 \cap \overline{L_1})$ are closed under union, intersection, complement, concatenation, and star-closure.

Thus, (L, MIZ) U (L2 MI) is regular.

We proved that symmetric difference of regular languages is regular with regular languages Li and L2.

Therefore, the family of regular languages is closed under symmetric difference.

Assume L is regular language. We're given m. Let's pick $w = a^m b^m$. Suppose $|x_{\mathcal{J}}| \le m$, $|y_{\mathcal{J}}| \ge 1$, and $|y_{\mathcal{J}}| = k$ ($1 \le k \le m$). Let $x_{\mathcal{J}} = a^m$, $y_{\mathcal{J}} = a^k$. Then $w = x_{\mathcal{J}}z = a^{m-k}a^kb^m$ so that $w_i = a^{m-k}(a^k)^ib^m$ by Theorem 48. If we choose i = 0, $w_0 = a^{m-k}b^m$. Since $(\le k \le m, m-k \ne m \le 0)$ that $w_0 \ne 1$. Thus, we have successfully pumped the string out of the language.

3.

Assume L is regular language and we're given m. Let's pick $W = a^{2^m}$. Suppose $[xy] \le m$, $[y] \ge 1$, and [y] = k ($1 \le k \le m$). Let $xy = a^m$ and $y = a^k$. Then $W = xy = a^{m-k}a^ka^{2^m-m}$ so that $Wi = a^{m-k}(a^k)^ia^{2^m-m}$ by Theorem 4.8 in textbook.

If we choose i = 0, $W_0 = \Omega^{2^m - k}$.

Since $1 \le k \le m$, $2^m - k > 2^{(m-1)}$ so that $W_0 \not\in L$.

Thus, we have successfully pumped the string out of the language.