Problem 1. Show that $x^3 + 3x + 1$ $(1+\theta)(1+\theta+\theta^2)$ and $\frac{1+\theta}{1+\theta+\theta^2}$ in $\mathbb{Q}(\theta)$		nd let $\theta \in \mathbb{C}$ be a root.	Compute
Proof.			
Problem 2. Let $w = e^{\pi i/6}$ so that w polynomial $m_{w,\mathbb{Q}}(x)$ and compute $[\mathbb{Q}[w]]$		or $1 \le k < 12$. Find the	minimal
Proof.			
Problem 3. Compute the minimal polynomial $m_{\alpha,F}(x)$ where $\alpha = \sqrt{2} + \sqrt{5}$ and F is each of the following fields:			
	$\sqrt{10}$], $(d) \mathbb{Q}[\sqrt{18}]$	5].	
Proof.			
Problem 4. Compute the minimal poi	gnomial $m_{lpha,\mathbb{Q}}(x)$ where	$\alpha = \sqrt{2} + \sqrt[3]{5}.$	
Proof.			
Problem 5. If K is a field extension of the field of F and $\alpha \in K$ has a minimal polynomial $f(x) \in F[x]$ of odd degree, prove that $F(\alpha) = F(\alpha^2)$. Determine whether the condition on $f(x)$ is necessary for $F(\alpha) = F(\alpha^2)$.			
Proof.			
Problem 6. 6 Let K be an extension field of F that is algebraic over F . Show that any subring R of K which contains F , i.e., $F \subseteq R \subseteq K$, is a field. Hence, prove that any subring of a finite dimensional extension field K/F containing F is a subfield.			
Proof.			
Problem 7. 7 Suppose that $K = F(\alpha)$ is a finite simple extension of the field F . Define an F -linear transformation $T_{\alpha}: K \to K$ by $T_{\alpha}(\beta) = \alpha\beta$ for all $\beta \in K$. Show that the minimal polynomial of α over F is the characteristic polynomial of T_{α} , that is			
$m_{\alpha,F}(x) = det(xI - T_{\alpha}).$			
Proof.			