Correlación Canónica

Graciela Boente

Definiciones 0000000 000000000

stimación 10000 100000000 Criterio de Wilks

nferencia 00000 0000 0000000 CA regularizada 0000 0 000000

Un investigador recopiló datos sobre tres variables psicológicas, cuatro variables académicas (resultados de exámenes estandarizados) y de género para 600 estudiantes de primer año de universidad.

Está interesado en la forma en que el conjunto de variables psicológicas se relaciona con las variables académicas y el sexo.

En particular, el investigador está interesado en saber cuántas dimensiones (variables canónicas) son necesarias para comprender la asociación entre los dos conjuntos de variables.

Las variables psicológicas son

- capacidad de control
- autoconcepto
- motivación

y las académicas son las pruebas estandarizadas de

- lectura (READ)
- escritura (WRITING)
- matemáticas (MATH)
- y ciencia (SCIENCE)

Sea
$$\mathbf{z} = (z_1, \dots, z_{p+q})^{\mathrm{T}} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} \in \mathbb{R}^d$$
 donde $d = p + q$, $\mathbf{x} \in \mathbb{R}^p$, $\mathbf{y} \in \mathbb{R}^q$. Supongamos por simplicidad que $\mathbb{E}\mathbf{z} = \mathbf{0}_d$. Sea

$$\mathrm{Cov}(\boldsymbol{z}) = \boldsymbol{\Sigma} = \left(\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array}\right)$$

donde $\Sigma_{11} \in \mathbb{R}^{p \times p}$, $\Sigma_{22} \in \mathbb{R}^{q \times q}$. Supongamos $\Sigma > 0$.

Supongamos p = 1

Queremos medir la relación lineal entre z_1 y $\mathbf{y} = (z_2, \dots, z_d)^{\mathrm{T}} \Rightarrow$ usamos el cuadrado del coeficiente de correlación múltiple, $\rho_{1,(23...d)}^2$ que es la máxima correlación al cuadrado entre z_1 y cualquier combinación lineal $\boldsymbol{\beta}^{\mathrm{T}}\mathbf{y}$

$$ho_{1,(23...d)}^2 = rac{m{\sigma}_{21}^{ ext{T}} m{\Sigma}_{22}^{-1} m{\sigma}_{21}}{\sigma_{11}}$$

donde $\sigma_{21} = \text{Cov}(\mathbf{y}, z_1)$ y el máximo se alcanzaba en $\beta_0 = \mathbf{\Sigma}_{22}^{-1} \sigma_{21}$.

Caso General: q < p

Queremos medir la asociación entre x y y que estará dada por:

la máxima correlación al cuadrado entre cualquier combinación lineal $\alpha^T \mathbf{x}$ y cualquier combinación lineal $\beta^T \mathbf{y}$

$$\max_{\boldsymbol{\alpha}\neq\boldsymbol{0}_p,\boldsymbol{\beta}\neq\boldsymbol{0}_q}\rho_{\boldsymbol{\alpha},\boldsymbol{\beta}}^2$$

con

$$\rho_{\boldsymbol{\alpha},\boldsymbol{\beta}}^2 = \frac{\mathrm{Cov}^2\left(\boldsymbol{\alpha}^{\mathrm{T}}\mathbf{x},\boldsymbol{\beta}^{\mathrm{T}}\mathbf{y}\right)}{\mathrm{Var}\left(\boldsymbol{\alpha}^{\mathrm{T}}\mathbf{x}\right)\mathrm{Var}\left(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{y}\right)} = \frac{\left(\boldsymbol{\alpha}^{\mathrm{T}}\boldsymbol{\Sigma}_{12}\boldsymbol{\beta}\right)^2}{\boldsymbol{\alpha}^{\mathrm{T}}\boldsymbol{\Sigma}_{11}\boldsymbol{\alpha}\;\boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\Sigma}_{22}\boldsymbol{\beta}}$$

Sea
$$\mathbf{\Sigma}_{jj} = \mathbf{A}_j^{\mathrm{T}} \mathbf{A}_j$$
,

$$\boldsymbol{\Psi}_1 = \left(\boldsymbol{\mathsf{A}}_1^{\mathrm{T}}\right)^{-1}\boldsymbol{\mathsf{\Sigma}}_{12}\boldsymbol{\mathsf{\Sigma}}_{22}^{-1}\boldsymbol{\mathsf{\Sigma}}_{21}\boldsymbol{\mathsf{A}}_1^{-1} \qquad \boldsymbol{\Psi}_2 = \left(\boldsymbol{\mathsf{A}}_2^{\mathrm{T}}\right)^{-1}\boldsymbol{\mathsf{\Sigma}}_{21}\boldsymbol{\mathsf{\Sigma}}_{11}^{-1}\boldsymbol{\mathsf{\Sigma}}_{12}\boldsymbol{\mathsf{A}}_2^{-1}$$

entonces

$$\max_{\boldsymbol{\alpha}\neq\boldsymbol{0}_p,\boldsymbol{\beta}\neq\boldsymbol{0}_q}\rho_{\boldsymbol{\alpha},\boldsymbol{\beta}}^2=\rho_{\boldsymbol{\alpha}_1,\boldsymbol{\beta}_1}^2=\rho_1^2$$

- ho_1^2 es el máximo autovalor de Ψ_1 , es decir, el máximo autovalor de $\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$
- α_1 es el autovector de $\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$ asociado a ρ_1^2 tal que $\boldsymbol{\alpha}_{1}^{\mathrm{T}}\boldsymbol{\Sigma}_{11}\boldsymbol{\alpha}_{1}=1.$
- β_1 es el autovector de $\Sigma_{22}^{-1}\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}$ asociado a ρ_1^2 tal que $\boldsymbol{\beta}_{1}^{\mathrm{T}}\boldsymbol{\Sigma}_{22}\boldsymbol{\beta}_{1}=1.$

$$\boldsymbol{\beta}_1 = \frac{\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} \boldsymbol{\alpha}_1}{\rho_1} \qquad \boldsymbol{\alpha}_1 = \frac{\boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} \boldsymbol{\beta}_1}{\rho_1 + \rho_1 + \rho_2 + \rho_2 + \rho_3 + \rho_4 +$$

Definición.

- $ho_1 = \sqrt{
 ho_1^2}$ se llama la primer correlación canónica entre **x** y **y**.
- $u_1 = \alpha_1^{\mathrm{T}} \mathbf{x}$, $v_1 = \beta_1^{\mathrm{T}} \mathbf{y}$ se llaman las primeras variables canónicas. Se cumple $\mathrm{VAR}(u_1) = \mathrm{VAR}(v_1) = 1$

Como
$$\mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}\alpha_1=\rho_1^2\mathbf{\Sigma}_{11}\alpha_1$$
 y $\alpha_1^{\mathrm{T}}\mathbf{\Sigma}_{11}\alpha_1=1$ tenemos que
$$\rho_1^2=\alpha_1^{\mathrm{T}}\mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}\alpha_1$$

O sea, ρ_1^2 es el cuadrado del coeficiente de correlación multiple entre la variable $u_1 = \boldsymbol{\alpha}_1^{\mathrm{T}} \mathbf{x}$ y el vector \mathbf{y} ya que $\mathrm{VAR}(u_1) = 1$ y $\mathrm{Cov}(u_1,\mathbf{y}) = \boldsymbol{\Sigma}_{21} \boldsymbol{\alpha}_1$.

Cómo seguimos?

Este procedimiento puede verse como una técnica de reducción de dimensión en la que \mathbf{x} y \mathbf{y} se reducen a u_1 y v_1 de modo que $\rho^2_{\alpha,\beta}$ sea máxima. Pero, la reducción u_1 de \mathbf{x} puede no ser adecuada.

Buscamos $\mathbf{u}=(u_1,\ldots,u_m)^{\mathrm{T}}$ y $\mathbf{v}=(v_1,\ldots,v_m)$ tales que

- $u_j = \boldsymbol{\alpha}_j^{\mathrm{T}} \mathbf{x}, \ v_j = \boldsymbol{\beta}_j^{\mathrm{T}} \mathbf{y}$
- u_1, \ldots, u_m sean no correlacionados
- v_1, \ldots, v_m sean no correlacionados
- $CORR(u_j, v_j)$ sea máxima en algún sentido

Observemos primero que como hablamos de correlaciones podemos suponer que $Var(u_j) = Var(v_j) = 1$, es decir,

$$\boldsymbol{\alpha}_{j}^{\mathrm{T}} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}_{j} = 1$$
 $\boldsymbol{\beta}_{j}^{\mathrm{T}} \boldsymbol{\Sigma}_{22} \boldsymbol{\beta}_{j} = 1$

Teorema

Supongamos $\mathbf{\Sigma}_{11} > 0$, $\mathbf{\Sigma}_{22} > 0$, q < p, $\mathbf{\Sigma}_{jj} = \mathbf{A}_j^{\mathrm{T}} \mathbf{A}_j$. Sean

•
$$\mathbf{C} = (\mathbf{A}_1^T)^{-1} \mathbf{\Sigma}_{12} \mathbf{A}_2^{-1}$$

•
$$\Upsilon_1 = \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

•
$$\Upsilon_2 = \Sigma_{22}^{-1} \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$$

- $1 > \rho_1^2 \ge \rho_2^2 \ge \cdots \ge \rho_m^2 > 0$ con $m = \text{rango}(\mathbf{\Sigma}_{12})$ los autovalores no nulos de Υ_1 (y de Υ_2)
- $\alpha_1, \ldots, \alpha_m$ los autovectores de Υ_1 asociados a $\rho_1^2 \geq \rho_2^2 \geq \cdots \geq \rho_m^2$ tales que $\alpha_i^{\mathrm{T}} \mathbf{\Sigma}_{11} \alpha_j = 1$
- β_1, \dots, β_m los autovectores de Υ_2 asociados a $\rho_1^2 \ge \rho_2^2 \ge \dots \ge \rho_m^2$ tales que $\beta_i^{\mathrm{T}} \mathbf{\Sigma}_{22} \beta_i = 1$

Sea $s \leq m-1$ y sean $lpha \in \mathbb{R}^p$ y $oldsymbol{eta} \in \mathbb{R}^q$ tales que

$$Cov(\boldsymbol{\alpha}^{\mathrm{T}}\mathbf{x}, \boldsymbol{\alpha}_{j}^{\mathrm{T}}\mathbf{x}) = 0 \qquad 1 \leq j \leq s$$
$$Cov(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{y}, \boldsymbol{\beta}_{j}^{\mathrm{T}}\mathbf{y}) = 0 \qquad 1 \leq j \leq s$$

i) La máxima correlación al cuadrado entre $\alpha^T \mathbf{x}$ y $\boldsymbol{\beta}^T \mathbf{y}$ está dada por ρ_{s+1}^2 y ocurre cuando $\alpha = \alpha_{s+1}$ y $\boldsymbol{\beta} = \beta_{s+1}$, o sea,

$$\max_{\substack{\boldsymbol{\alpha} \neq \mathbf{0}, \boldsymbol{\beta} \neq \mathbf{0} \\ \mathrm{Cov}(\boldsymbol{\alpha}^{\mathrm{T}}\mathbf{x}, \boldsymbol{\alpha}_{j}^{\mathrm{T}}\mathbf{x}) = \mathbf{0}, \ 1 \leq j \leq s}} \rho_{\boldsymbol{\alpha}, \boldsymbol{\beta}}^{2} = \rho_{\boldsymbol{\alpha}_{s+1}, \boldsymbol{\beta}_{s+1}}^{2} = \rho_{\boldsymbol{\alpha}_{s+1}, \boldsymbol{\beta}_{s+1}}^{2}$$

- ii) $\operatorname{Cov}(\boldsymbol{\alpha}_{i}^{\mathrm{T}}\mathbf{x}, \boldsymbol{\alpha}_{k}^{\mathrm{T}}\mathbf{x}) = 0 \text{ si } j \neq k \text{ y } \operatorname{Cov}(\boldsymbol{\beta}_{i}^{\mathrm{T}}\mathbf{y}, \boldsymbol{\beta}_{k}^{\mathrm{T}}\mathbf{y}) = 0 \text{ si } j \neq k$
- iii) $\operatorname{Var}(\boldsymbol{\alpha}_{i}^{\mathrm{T}}\mathbf{x}) = \operatorname{Var}(\boldsymbol{\beta}_{i}^{\mathrm{T}}\mathbf{y}) = 1$
- iv) Sea $m = \operatorname{rango}(\mathbf{\Sigma}_{12}) \leq \min(q, p) = q$ y tomemos $\mathbf{u} = \mathbf{A}^{\mathrm{T}}\mathbf{x}$ con $\mathbf{A} = (\alpha_1, \dots, \alpha_m, \alpha_{m+1}, \dots, \alpha_p)$ $\mathbf{v} = \mathbf{B}^{\mathrm{T}}\mathbf{y}$ con $\mathbf{B} = (\beta_1, \dots, \beta_q)$ Luego, si $\mathbf{D}_{\rho} = \operatorname{DIAG}(\rho_1, \dots, \rho_q)$ con $\rho_i = 0$ si i > m

$$\operatorname{VAR}\left(\begin{array}{c} \mathbf{u} \\ \mathbf{v} \end{array}\right) = \left(\begin{array}{ccc} \mathbf{I}_q & \mathbf{0} & \mathbf{D}_{\rho} \\ \mathbf{0} & \mathbf{I}_{p-q} & \mathbf{0} \\ \mathbf{D}_{\rho} & \mathbf{0} & \mathbf{I}_q \end{array}\right)$$

Definición.

- u se llama las variables canónicas del espacio x.
- v se llama las variables canónicas del espacio y.
- α_1,\ldots,α_m y $oldsymbol{eta}_1,\ldots,oldsymbol{eta}_m$ son los vectores canónicos
- u_j es la j-ésima variable canónica en el espacio ${f x}$
- v_j es la j-ésima variable canónica en el espacio ${f y}$

La relación entre ${\bf x}$ y ${\bf y}$ queda expresada por las correlaciones canónicas ρ_1^2,\dots,ρ_m^2

Como
$$\mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}\alpha_j=\rho_j^2\mathbf{\Sigma}_{11}\alpha_j$$
 y $\alpha_j^{\mathrm{T}}\mathbf{\Sigma}_{11}\alpha_j=1$ tenemos que
$$\rho_j^2=\alpha_j^{\mathrm{T}}\mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}\alpha_j$$

O sea, ρ_j^2 es el cuadrado del coeficiente de correlación multiple entre la variable $u_j=\alpha_j^{\mathrm{T}}\mathbf{x}$ y el vector \mathbf{y} , pues $\mathrm{VAR}(u_j)=1$ y $\mathrm{Cov}(u_j,\mathbf{y})=\mathbf{\Sigma}_{21}\alpha_j$.

Otro enfoque

$$\mathbf{\Sigma}_{jj} = \mathbf{A}_{j}^{\mathrm{T}} \mathbf{A}_{j} \qquad \mathbf{A}_{j} > 0 \qquad \qquad \mathbf{C} = \left(\mathbf{A}_{1}^{\mathrm{T}}\right)^{-1} \mathbf{\Sigma}_{12} \mathbf{A}_{2}^{-1}$$

Por la descomposición de valores singulares

$$\mathbf{C} = \mathbf{L} \left(\begin{array}{c} \mathbf{D}_{oldsymbol{
ho}} \\ \mathbf{0}_{(oldsymbol{
ho}-oldsymbol{q}) imes oldsymbol{q}} \end{array}
ight) \mathbf{M}^{\mathrm{T}}$$

- $\mathbf{L} = (\ell_1, \cdots, \ell_p) \in \mathbb{R}^{p \times p}$, $\mathbf{M} = (\mathbf{m}_1, \cdots, \mathbf{m}_q) \in \mathbb{R}^{q \times q}$, ortogonales, $\mathbf{m}_j \in \mathbb{R}^q$ y $\ell_j \in \mathbb{R}^p$.
- $\mathbf{D}_{\rho} = \text{DIAG}(\rho_1, \dots, \rho_q), \ \rho_1 \geq \rho_2 \geq \dots \geq \rho_q \geq 0,$ ρ_j es la raíz cuadrada de j-ésimo autovalor de $\mathbf{C}^{\mathrm{T}}\mathbf{C} = \Psi_2$.

Los vectores $\{\mathbf{m}_1,\cdots,\mathbf{m}_q\}$ son los autovectores de $\mathbf{C}^{\mathrm{T}}\mathbf{C}=\Psi_2$ y

$$\ell_j = \frac{\mathsf{Cm}_j}{\rho_j} \qquad 1 \le j \le q$$

son los autovectores ortonormales de $\mathbf{CC}^{\mathrm{T}} = \Psi_{\mathbb{P}} \times \mathbb{R} \times$

Definamos

$$\mathbf{u} = \mathbf{L}^{\mathrm{T}} \left(\mathbf{A}_{1}^{-1} \right)^{\mathrm{T}} \mathbf{x} = (u_{1}, \dots, u_{p})^{\mathrm{T}} \qquad u_{j} = \left(\mathbf{A}_{1}^{-1} \ell_{j} \right)^{\mathrm{T}} \mathbf{x}$$

$$\mathbf{v} = \mathbf{M}^{\mathrm{T}} \left(\mathbf{A}_{2}^{-1} \right)^{\mathrm{T}} \mathbf{y} = (v_{1}, \dots, v_{q})^{\mathrm{T}} \qquad v_{j} = \left(\mathbf{A}_{2}^{-1} \mathbf{m}_{j} \right)^{\mathrm{T}} \mathbf{y}$$

Entonces,

$$VAR \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} \mathbf{I}_{p} & \begin{pmatrix} \mathbf{D}_{p} \\ \mathbf{0} \end{pmatrix} \\ (\mathbf{D}_{p} & \mathbf{0}) & \mathbf{I}_{q} \end{pmatrix}$$

- $VAR(u_i) = VAR(u_j) = 1$
- Corr $(u_i, v_j) = \rho_i \, \delta_{ij}, \, 1 \leq i \leq p, \, 1 \leq j \leq q.$

Definición. Las variables u_1, \ldots, u_p y v_1, \ldots, v_q se llaman las variables canónicas y los números ρ_j , $\rho_1 \geq \rho_2 \geq \cdots \geq \rho_q \geq 0$ son las correlaciones canónicas.

La cantidad de correlaciones no nulas es $m = \operatorname{rango}(\mathbf{\Sigma}_{12})$

Las dos definiciones coinciden

Sean dos puntos $\mathbf{x}_1 \in \mathbb{R}^p$, $\mathbf{x}_2 \in \mathbb{R}^p$ y definamos

$$\mathbf{u}_i = \mathbf{L}^{\mathrm{T}} \left(\mathbf{A}_1^{-1} \right)^{\mathrm{T}} \mathbf{x}_i = (u_{1,i}, \dots, u_{p,i})^{\mathrm{T}} \qquad u_{j,i} = \left(\mathbf{A}_1^{-1} \ell_j \right)^{\mathrm{T}} \mathbf{x}_i \quad i = 1, 2$$

Luego,

$$\|\mathbf{u}_1 - \mathbf{u}_2\|^2 = \|\mathbf{L}^{\mathrm{T}} (\mathbf{A}_1^{-1})^{\mathrm{T}} (\mathbf{x}_1 - \mathbf{x}_2)\|^2 = (\mathbf{x}_1 - \mathbf{x}_2)^{\mathrm{T}} \mathbf{\Sigma}_{11}^{-1} (\mathbf{x}_1 - \mathbf{x}_2)$$

Sean dos puntos $\mathbf{y}_1 \in \mathbb{R}^p$, $\mathbf{y}_2 \in \mathbb{R}^p$ y definamos

$$\mathbf{v}_i = \mathbf{M}^{\mathrm{T}} \left(\mathbf{A}_2^{-1} \right)^{\mathrm{T}} \mathbf{y}_i = (v_{1,i}, \dots, v_{q,i})^{\mathrm{T}} \qquad v_{j,i} = \left(\mathbf{A}_2^{-1} \mathbf{m}_j \right)^{\mathrm{T}} \mathbf{y}_i \quad i = 1, 2$$

Luego,

$$\|\mathbf{v}_1 - \mathbf{v}_2\|^2 = \|\mathbf{M}^{\mathrm{T}} \left(\mathbf{A}_2^{-1}\right)^{\mathrm{T}} (\mathbf{y}_1 - \mathbf{y}_2)\|^2 = (\mathbf{y}_1 - \mathbf{y}_2)^{\mathrm{T}} \mathbf{\Sigma}_{22}^{-1} (\mathbf{y}_1 - \mathbf{y}_2)$$

O sea, distancias entre puntos del espacio de las variables canónicas representan distancias de Mahalanobis en el espacio original.

Al usar, la reducción de s variables canónicas, las distancias entre puntos del espacio de variables canónicas dan aproximadamente la distancia de Mahalanobis en el espacio original.

Resumen de propiedades de las variables y correlaciones canónicas

- Las variables canónicas son indicadores de los dos conjuntos de variables que se definen por pares, con la condición de máxima correlación
- Los coeficientes de las variables canónicas son los autovectores asociados al mismo autovalor de las matrices

$$\mathbf{\Sigma}_{ii}^{-1}\mathbf{\Sigma}_{ij}\mathbf{\Sigma}_{jj}^{-1}\mathbf{\Sigma}_{ji} \qquad \qquad i=1,2 \qquad i\neq j$$

- Si $\alpha_j^{\mathrm{T}} \mathbf{x}$ es una variable canónica también lo es $-\alpha_j^{\mathrm{T}} \mathbf{x}$. Los signos de las variables canónicas suelen tomarse para que la correlación entre las variables canónicas $u_j = \alpha_j^{\mathrm{T}} \mathbf{x}$ y $v_j = \beta_j^{\mathrm{T}} \mathbf{y}$ sean positiva.
- Los cuadrados de las correlaciones canónicas ρ_j^2 son los autovalores de $\Upsilon_1 = \mathbf{\Sigma}_{11}^{-1}\mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}$ y $\Upsilon_2 = \mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}\mathbf{\Sigma}_{11}^{-1}\mathbf{\Sigma}_{12}$, o sea las raíces de

$$|\mathbf{\Sigma}_{11}^{-1}\mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21} - \lambda \mathbf{I}_p| = 0$$

Resumen de propiedades de las variables y correlaciones canónicas

- Los cuadrados de las correlaciones canónicas ρ_j^2 son el cuadrado del coeficiente de correlación entre las dos variables canónicas $u_j = \boldsymbol{\alpha}_j^{\mathrm{T}} \mathbf{x}$ y $v_j = \boldsymbol{\beta}_j^{\mathrm{T}} \mathbf{y}$ correspondientes.
- Las correlaciones canónicas son invariantes ante transformaciones lineales no singulares de las variables.
- La primer correlación canónica ho_1^2 es mayor o igual que el mayor coeficiente de correlación al cuadrado entre una variable de cada conjunto.

$$\rho_1^2 \ge \operatorname{CORR}^2(x_i, y_j)$$
 para todo $1 \le i \le p, 1 \le j \le q$

- El coeficiente de correlación canónica ρ_j^2 es el cuadrado del coeficiente de correlación multiple entre la variable $u_j = \alpha_j^{\mathrm{T}} \mathbf{x}$ y el vector \mathbf{y} .
- El coeficiente de correlación canónica ρ_j^2 es el cuadrado del coeficiente de correlación multiple entre la variable $v_j = \beta_j^{\mathrm{T}} \mathbf{y}$ y el vector \mathbf{x} .

Resumen de propiedades de las variables y correlaciones canónicas

 Las variables canónicas son predictores óptimos en el siguiente sentido:

Queremos hallar 2s combinaciones lineales $\mathbf{u} = \mathbf{A}_s^{\mathrm{T}} \mathbf{x}$ y $\mathbf{v} = \mathbf{B}_s^{\mathrm{T}} \mathbf{y}$ con $s \leq m = \mathrm{rango}(\mathbf{\Sigma}_{12})$

- $\mathbf{A}_s = (\mathbf{a}_1, \dots, \mathbf{a}_s)$, $\mathbf{a}_1, \dots, \mathbf{a}_s$ linealmente independientes (o sea, $\operatorname{rango}(\mathbf{A}_s) = s$)
- $\mathbf{B}_s = (\mathbf{b}_1, \dots, \mathbf{b}_s)$, $\mathbf{b}_1, \dots, \mathbf{b}_s$ linealmente independientes (o sea, $\operatorname{rango}(\mathbf{B}_s) = s$)
- $\mathbf{A}_s^{\mathrm{T}} \mathbf{\Sigma}_{11} \mathbf{A}_s = \mathbf{I}_s$, $\mathbf{B}_s^{\mathrm{T}} \mathbf{\Sigma}_{22} \mathbf{B}_s = \mathbf{I}_s$ tales que $\mathbb{E} \| \mathbf{u} \mathbf{v} \|^2$ sea mínima.

El mínimo se alcanza si $\mathbf{a}_j = \pmb{lpha}_j$ y $\mathbf{b}_j = \pmb{eta}_j$.

Propiedades

Propiedad 1. Sean

$$\Delta_{\mathbf{x}} = \text{DIAG}\left(\text{VAR}(x_1), \dots, \text{VAR}(x_p)\right)$$

$$\Delta_{\mathbf{x}} = \text{DIAG}\left(\text{VAR}(y_1), \dots, \text{VAR}(y_q)\right)$$

Se tiene que

•
$$CORR(u_j, x_\ell) = \mathbb{E}(x_\ell \mathbf{x}^T) \alpha_j / \sqrt{VAR(x_\ell)}$$

•
$$CORR(v_j, y_\ell) = \mathbb{E}(y_\ell \mathbf{y}^T) \boldsymbol{\beta}_j / \sqrt{VAR(y_\ell)}$$

es decir,

$$CORR(u_j, \mathbf{x}) = \mathbf{\Delta}_{\mathbf{x}}^{-\frac{1}{2}} \mathbf{\Sigma}_{11} \alpha_j \qquad CORR(v_j, \mathbf{y}) = \mathbf{\Delta}_{\mathbf{y}}^{-\frac{1}{2}} \mathbf{\Sigma}_{22} \beta_j$$
$$CORR(u_j, \mathbf{y}) = \mathbf{\Delta}_{\mathbf{y}}^{-\frac{1}{2}} \mathbf{\Sigma}_{21} \alpha_j \qquad CORR(v_j, \mathbf{x}) = \mathbf{\Delta}_{\mathbf{x}}^{-\frac{1}{2}} \mathbf{\Sigma}_{12} \beta_j$$

Propiedad 2. Si $z \sim N(0, \Sigma)$, x es independiente de y si y sólo si

Propiedades

Propiedad 3. Invarianza del análisis.

Si llamamos
$$\mathbf{z}^{\star} = \begin{pmatrix} \mathbf{\Delta}_{\mathbf{x}}^{-\frac{1}{2}} \mathbf{x} \\ \mathbf{\Delta}_{\mathbf{y}}^{-\frac{1}{2}} \mathbf{y} \end{pmatrix}$$
 y efectuamos el análisis de

correlación canónica de z*, o sea, en lugar de

$$\mathbf{\Upsilon}_1 = \mathbf{\Sigma}_{11}^{-1} \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} \quad \mathbf{\Upsilon}_2 = \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} \mathbf{\Sigma}_{11}^{-1} \mathbf{\Sigma}_{12}$$

tomamos

$$\Upsilon_1^{\star} = \mathsf{R}_{11}^{-1} \mathsf{R}_{12} \mathsf{R}_{22}^{-1} \mathsf{R}_{21} \quad \Upsilon_2^{\star} = \mathsf{R}_{22}^{-1} \mathsf{R}_{21} \mathsf{R}_{11}^{-1} \mathsf{R}_{12}$$

con R_{ii} las matrices de correlación entonces

- Las correlaciones canónicas no cambian
- $\bullet \ \alpha_i^{\star} = \mathbf{\Delta}_{\mathsf{x}}^{1/2} \alpha_i,$
- $\boldsymbol{\beta}_{i}^{\star} = \boldsymbol{\Delta}_{\mathbf{v}}^{1/2} \boldsymbol{\beta}_{i}$

Por lo tanto, las variables canónicas u_j y v_j son las mismas.

Sean
$$\mathbf{z}_i = \begin{pmatrix} \mathbf{x}_i \\ \mathbf{y}_i \end{pmatrix} \in \mathbb{R}^d$$
 i.i.d. con densidad $(\mathbf{\Sigma} > 0)$, $\mathbf{x}_i \in \mathbb{R}^p$, $\mathbf{y}_i \in \mathbb{R}^q$. Sea

•
$$\widetilde{\mathbf{x}}_i = \mathbf{x}_i - \overline{\mathbf{x}}$$

•
$$\widetilde{\mathbf{y}}_i = \mathbf{y}_i - \overline{\mathbf{y}}$$

$$\bullet \ \widetilde{\mathbf{X}} = \left(\begin{array}{c} \widetilde{\mathbf{x}}_1^{\mathrm{T}} \\ \vdots \\ \widetilde{\mathbf{x}}_n^{\mathrm{T}} \end{array} \right) \quad \widetilde{\mathbf{Y}} = \left(\begin{array}{c} \widetilde{\mathbf{y}}_1^{\mathrm{T}} \\ \vdots \\ \widetilde{\mathbf{y}}_n^{\mathrm{T}} \end{array} \right)$$

$$\bullet \ \ \boldsymbol{Q}_{11} = \widetilde{\boldsymbol{X}}^{\mathrm{T}}\widetilde{\boldsymbol{X}}, \ \boldsymbol{Q}_{22} = \widetilde{\boldsymbol{Y}}^{\mathrm{T}}\widetilde{\boldsymbol{Y}}, \ \boldsymbol{Q}_{12} = \widetilde{\boldsymbol{X}}^{\mathrm{T}}\widetilde{\boldsymbol{Y}}.$$

•
$$S_{ij} = Q_{ij}/(n-1)$$

$$\bullet \ \ \textbf{S} = \left(\begin{array}{cc} \textbf{S}_{11} & \textbf{S}_{12} \\ \textbf{S}_{21} & \textbf{S}_{22} \end{array} \right)$$

Supongamos n > d = p + q y q < p luego **S** es definida positiva con probabilidad 1 y rango(\mathbf{Q}_{12}) = q.

Definición. Se definen las correlaciones canónicas muestrales r_j , $r_1 > r_2 > \cdots > r_q > 0$ (con prob. 1) como $r_j = \sqrt{r_j^2}$ donde $r_1^2 > r_2^2 > \cdots > r_q^2 > 0$ (con prob. 1) son los autovalores de

$$\widehat{\Upsilon}_1 = \mathsf{S}_{11}^{-1}\mathsf{S}_{12}\mathsf{S}_{22}^{-1}\mathsf{S}_{21}$$
 ode $\widehat{\Upsilon}_2 = \mathsf{S}_{22}^{-1}\mathsf{S}_{21}\mathsf{S}_{11}^{-1}\mathsf{S}_{12}$

o sea, la solución de

$$|\mathbf{S}_{11}^{-1}\mathbf{S}_{12}\mathbf{S}_{22}^{-1}\mathbf{S}_{21} - \lambda \mathbf{I}_{\rho}| = 0$$
 o $|\mathbf{S}_{12}\mathbf{S}_{22}^{-1}\mathbf{S}_{21} - \lambda \mathbf{S}_{11}| = 0$

Definición. Se definen las variables canónicas muestrales como

•
$$\mathbf{u}_i = (u_{1,i}, \dots, u_{q,i})^{\mathrm{T}}$$
 con $u_{j,i} = \widehat{\boldsymbol{\alpha}}_j^{\mathrm{T}} \widetilde{\mathbf{x}}_i$ y

•
$$\mathbf{v}_i = (v_{1,i}, \dots, v_{q,i})^{\mathrm{T}} \ v_{j,i} = \widehat{\boldsymbol{\beta}}_j^{\mathrm{T}} \widetilde{\mathbf{y}}_i$$

$$\begin{aligned} \mathbf{S}_{11}^{-1}\mathbf{S}_{12}\mathbf{S}_{22}^{-1}\mathbf{S}_{21}\widehat{\boldsymbol{\alpha}}_{j} &= r_{j}^{2}\widehat{\boldsymbol{\alpha}}_{j} \\ \mathbf{S}_{22}^{-1}\mathbf{S}_{21}\mathbf{S}_{11}^{-1}\mathbf{S}_{12}\widehat{\boldsymbol{\beta}}_{j} &= r_{j}^{2}\widehat{\boldsymbol{\beta}}_{j} \\ \end{aligned} \qquad \widehat{\boldsymbol{\beta}}_{j}^{\mathrm{T}}\mathbf{S}_{22}\widehat{\boldsymbol{\beta}}_{j} &= 1 \end{aligned}$$

Observemos que

$$1 = \widehat{\alpha}_j^{\mathrm{T}} \mathbf{S}_{11} \widehat{\alpha}_j = \frac{1}{n-1} \sum_{i=1}^n u_{j,i}^2$$
$$1 = \widehat{\beta}_j^{\mathrm{T}} \mathbf{S}_{22} \widehat{\beta}_j = \frac{1}{n-1} \sum_{i=1}^n v_{j,i}^2$$

La distribución exacta de r_j , aún el el caso $\mathbf{z}_i \sim N(\mu, \mathbf{\Sigma})$ es complicada (ver Muirhead, 1982, sección 11.3.4). La distribución asintótica puede verse en Bilodeau & Brenner (1999, sección 11.5).

Distribución asintótica de r_j^2

Proposición 1. Sean $\mathbf{z}_i \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ i.i.d., tales que $\rho_1 > \rho_2 > \cdots > \rho_k > \rho_{k+1} = \cdots = \rho_p = 0$, luego

$$\sqrt{n} \left(r_j^2 - \rho_j^2\right) \stackrel{D}{\longrightarrow} N\left(0, 4 \rho_j^2 \left(1 - \rho_j^2\right)^2\right), \quad j = 1, \dots, k$$

• Más aún, si $\mathbf{r}_k^{(2)}=(r_1^2,\ldots,r_k^2)^{\mathrm{T}}$ y $oldsymbol{
ho}_k^{(2)}=(
ho_1^2,\ldots,
ho_k^2)$ entonces

$$\sqrt{n} \left(\boldsymbol{r}_{k}^{(2)} - \boldsymbol{\rho}_{k}^{(2)} \right) \stackrel{D}{\longrightarrow} N \left(\boldsymbol{0}_{q}, 4 \operatorname{DIAG} \left(\rho_{1}^{2} \left(1 - \rho_{1}^{2} \right)^{2}, \dots, \rho_{k}^{2} \left(1 - \rho_{k}^{2} \right)^{2} \right) \right)$$

• Además, $\mathbf{r}_{k}^{(2)}$ es independiente de r_{i} para j > k.

Distribución asintótica de r_j^2

- Si $w_j = nr_j^2$ para j > k, entonces w_{k+1}, \ldots, w_q son dependientes y no–normales.
- La distribución asintótica conjunta de w = (w_{k+1},..., w_q)^T es la distribución de los autovalores de una matriz
 A ∈ ℝ^{(q-k)×(q-k)} tal que A ~ W(I_{q-k}, q m, p k).
- La densidad asintótica de w es

$$C \exp\{-\frac{1}{2}\sum_{j=k+1}^{q} w_j\} \prod_{j=k+1}^{q} w_j^{\frac{p-q-1}{2}} \prod_{k+1 \le i < j \le q} (w_i - w_j)$$

Ejemplo

La matriz **S** es igual a

	Control	Concept	Motiv.	Read	Write	Math	Science	Sex
Control	0.449	0.081	0.056	2.530	2.340	2.128	2.112	0.038
Concept	0.081	0.498	0.070	0.432	0.133	0.356	0.478	-0.044
Motiv.	0.056	0.070	0.117	0.729	0.848	0.629	0.385	0.017
Read	2.530	0.432	0.729	102.070	61.769	64.611	67.730	-0.210
Write	2.340	0.133	0.848	61.769	94.604	57.935	53.732	1.184
Math	2.128	0.356	0.629	64.611	57.935	88.637	59.354	-0.226
Science	2.112	0.478	0.385	67.730	53.732	59.354	94.210	-0.668
Sex	0.038	-0.044	0.017	-0.210	1.184	-0.226	-0.668	0.248

Las correlaciones canónicas son

j	1	2	3
r;	0.464	0.167	0.104

En CANCOR, los vectores canónicos están normalizados de modo que

$$\widehat{m{lpha}}_{j}^{\mathrm{T}} \mathbf{Q}_{11} \widehat{m{lpha}}_{j} = 1$$
 $\widehat{m{eta}}_{j}^{\mathrm{T}} \mathbf{Q}_{22} \widehat{m{eta}}_{j} = 1$

mientras que en CCA, están normalizados de modo que

$$\widehat{m{lpha}}_{j}^{\mathrm{T}} \mathbf{S}_{11} \widehat{m{lpha}}_{j} = 1 \qquad \qquad \widehat{m{eta}}_{j}^{\mathrm{T}} \mathbf{S}_{22} \widehat{m{eta}}_{j} = 1$$

Estos últimos son los que presentamos

v	i ios que prese	iiicaiiiog	_	_
		$\widehat{m{lpha}}_1$	$\widehat{\boldsymbol{\alpha}}_2$	$\widehat{m{lpha}}_3$
	Control	-1.2538	-0.6215	-0.6617
	Concept	0.3513	-1.1877	0.8267
	Motivation	-1.2624	2.0273	2.0002
		$\widehat{oldsymbol{eta}}_1$	$\widehat{m{eta}}_2$	$\widehat{m{eta}}_3$
	Read	-0.0446	-0.0049	0.0214
	Write	-0.0359	0.0421	0.0913
	Math	-0.0234	0.0042	0.0094
Science		-0.0050	-0.0852	-0.1098
	Sex	-0.6321	1.0846	-1.7946

Los coeficientes canónicos se interpretan en forma análoga a los coeficientes de regresión, o sea, por ejemplo para la variable Read una unidad de incremento en Lectura lleva a un 0.0446 de decrecimiento en la primer variable canónica \mathbf{v}_1 cuando todas las demás variables permanecen constantes.

Por otra parte

	$CORR(\mathbf{u}_1,\mathbf{x})$	$\text{Corr}(\textbf{u}_2,\textbf{x})$	$CORR(\mathbf{u}_3,\mathbf{x})$	$CORR(\mathbf{v}_1,\mathbf{x})$	$\text{Corr}(\mathbf{v}_2,\mathbf{x})$	$\text{Corr}(\textbf{v}_3,\textbf{x})$
Control	-0.9040	-0.3897	-0.1756	-0.4196	-0.0653	-0.0183
Concept	-0.0208	-0.7087	0.7052	-0.0097	-0.1187	0.0733
Motivation	-0.5672	0.3509	0.7451	-0.2632	0.0588	0.0775

	$Corr(\mathbf{u}_1, \mathbf{y})$	$\text{Corr}(\textbf{u}_2,\textbf{y})$	${\tiny \texttt{Corr}(u_3,y)}$	$_{\mathrm{CORR}}(\mathbf{v}_{1},\mathbf{y})$	$\text{Corr}(\mathbf{v}_2,\mathbf{y})$	$CORR(\mathbf{v}_3,\mathbf{y})$
Read	-0.3900	-0.0601	0.0141	-0.8404	-0.3588	0.1354
Write	-0.4068	0.0109	0.0265	-0.8765	0.0648	0.2546
Math	-0.3545	-0.0499	0.0154	-0.7639	-0.2979	0.1478
Science	-0.3056	-0.1134	-0.0240	-0.6584	-0.6768	-0.2304
Sex	-0.1690	0.1265	-0.0565	-0.3641	0.7549	-0.5434

- Porqué el gráfico en b) es una nube de puntos sin estructura?
- En a) cada punto es la correlación de la variable indicada con los ejes u_1 , u_2 .
- En b), las distancias entre puntos del espacio de variables canónicas $(u_{1,i}, u_{2,i}) = (\widehat{\alpha}_1^{\mathrm{T}} \widetilde{\mathbf{x}}_i, \widehat{\alpha}_2^{\mathrm{T}} \widetilde{\mathbf{x}}_i)$ dan aproximadamente la distancia de Mahalanobis entre observaciones $\widetilde{\mathbf{x}}_i$.

- En a) cada punto es la correlación de la variable indicada con los ejes v₁, v₂.
- En b), las distancias entre puntos del espacio de variables canónicas $(v_{1,i}, v_{2,i}) = (\widehat{\boldsymbol{\beta}}_1^T \widetilde{\mathbf{y}}_i, \widehat{\boldsymbol{\beta}}_2^T \widetilde{\mathbf{y}}_i)$ dan aproximadamente la distancia de Mahalanobis entre observaciones $\widetilde{\mathbf{y}}_i$.

La relación entre u_j y v_j decrece con j, como esperábamos.

Cuando las variables en el modelo tienen desvíos estándar muy distintos, se usan los coeficientes estandarizados que se definen como

$$\bullet \ \widehat{\alpha}_j^{\star} = \widehat{\Delta}_{\mathsf{x}}^{1/2} \widehat{\alpha}_j,$$

$$\bullet \ \widehat{\boldsymbol{\beta}}_{j}^{\star} = \widehat{\boldsymbol{\Delta}}_{y}^{1/2} \widehat{\boldsymbol{\beta}}_{j}$$

permiten comparaciones más simples entre variables. Estas direcciones cumplen

$$\widehat{m{lpha}}_{j}^{\star} \, ^{\mathrm{T}} \widehat{m{\mathsf{R}}}_{11} \widehat{m{lpha}}_{j}^{\star} = 1 \qquad \widehat{m{eta}}_{j}^{\star} \, ^{\mathrm{T}} \widehat{m{\mathsf{R}}}_{22} \widehat{m{eta}}_{j}^{\star} = 1$$

$$\text{donde } \widehat{\textbf{R}}_{11} = \widehat{\boldsymbol{\Delta}}_{\textbf{x}}^{-1/2} \textbf{S}_{11} \widehat{\boldsymbol{\Delta}}_{\textbf{x}}^{-1/2} \text{ y } \widehat{\textbf{R}}_{22} = \widehat{\boldsymbol{\Delta}}_{\textbf{y}}^{-1/2} \textbf{S}_{22} \widehat{\boldsymbol{\Delta}}_{\textbf{y}}^{-1/2}$$

	$\widehat{m{lpha}}_1^{\star}$	$\widehat{\boldsymbol{\alpha}}_2^{\star}$	$\widehat{\boldsymbol{\alpha}}_{3}^{\star}$
Control	-0.8404	-0.4166	-0.4435
Concept	0.2479	-0.8379	0.5833
Motivation	-0.4327	0.6948	0.6855
	$\widehat{oldsymbol{eta}}_1^{\star}$	$\widehat{m{eta}}_2^{\star}$	$\widehat{m{eta}}_3^{\star}$
Read	-0.4508	-0.0496	0.2160
Write	-0.3490	0.4092	0.8881
Math	-0.2205	0.0398	0.0885
Science	-0.0488	-0.8266	-1.0661
Sex	-0.3150	0.5406	-0.8944

- En este caso, la interpretación es como sigue: para la variable Read un aumento de 1 desvío estándar en Lectura lleva a un decrecimiento de 0.45 desvíos estándar en la primer variable canónica v₁ cuando todas las demás variables permanecen constantes.
- Para las variables psicológicas, el primer vector canónico está fuertemente influenciado por Control (.84) y para u₂ por Concepto (-.84) and y Motivación (.69).
- Para las variables académicas más sexo, v₁ es un compromiso entre Lectura (.45), Escritura (.35) y Sexo (.32), mientras que para v₂ Escritura (.41), Ciencia (-.83) y Sexo (.54) son las variables dominantes.

Criterio de Wilks

Tanto en el caso del test de independencia como en el modelo lineal multivariado es posible hallar dos matrices

- $\mathbf{U} \sim \mathcal{W}(\mathbf{\Sigma}, p, N-r)$ y
- $\mathbf{H} \sim \mathcal{W}(\mathbf{\Sigma}, p, r)$

independientes bajo la hipótesis nula de interés.

Más generalmente, tendremos

- $\mathbf{U} \sim \mathcal{W}(\mathbf{\Sigma}, p, N-r)$ y
- $\mathbf{z}_j \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $1 \leq j \leq r$, $\mathbf{H} = \sum_{j=1}^r \mathbf{z}_j \mathbf{z}_j^{\mathrm{T}}$

donde muchas veces r < p pero N - r > p.

El estadístico de Wilks se utiliza para testear cualquier hipótesis equivalente a $\mu=0$. Rechazaremos si el Wilks es pequeño.

Criterio de Wilks

En analogía con el caso univariado Wilks (1932) definió el estadístico de Wilks.

Definición Sean $\mathbf{U} \sim \mathcal{W}(\mathbf{\Sigma}, p, N-r)$ y $\mathbf{z}_j \sim N(\mathbf{0}, \mathbf{\Sigma})$, $1 \leq j \leq r$ independientes entre sí, el criterio de Wilks se define como

$$\Lambda(N,p,r) = \frac{|\mathbf{U}|}{|\mathbf{U} + \mathbf{H}|}$$

donde $|\mathbf{A}|$ indica el determinante de la matriz $\mathbf{A} \in \mathbb{R}^{p \times p}$ y $\mathbf{H} = \sum_{j=1}^{r} \mathbf{z}_{j} \mathbf{z}_{j}^{\mathrm{T}} \sim \mathcal{W}(\mathbf{\Sigma}, p, r)$

N, p y r son los parámetros del Wilks Λ y corresponden respectivamente a los grados de libertad de $\mathbf{U} + \mathbf{H}$, la dimensión de las matrices y los grados de libertad de \mathbf{H} .

Por otra parte, si **U** es inversible $\Lambda(N, p, r)$ depende sólo de los autovalores de $\mathbf{H}\mathbf{U}^{-1}$

Distribución del criterio de Wilks

a) Si $r \geq p$, $\mathbf{H} \sim \mathcal{W}(\mathbf{\Sigma}, p, r)$ tiene densidad y

$$\Lambda(N,p,r)\sim\prod_{j=1}^p b_{ii}^2$$

con b_{11}^2,\dots,b_{pp}^2 son independientes $b_{ii}^2\sim\mathcal{B}\left(\frac{N-r+1-i}{2},\frac{r}{2}\right)$

b) Si r < p,

$$\Lambda(N,p,r) \sim \prod_{i=1}^{r} b_{ii}^{2}$$

con b_{11}^2,\dots,b_{rr}^2 son independientes $b_{ii}^2\sim\mathcal{B}\left(rac{N-p+1-i}{2},rac{p}{2}
ight)$

Es decir, $\Lambda(N, p, r) \sim \Lambda(N, r, p)$

Corolario

a) Si
$$p=1$$
,
$$\frac{1-\Lambda(N,1,r)}{\Lambda(N,1,r)}\,\frac{N-r}{r}\sim \mathcal{F}_{r,N-r}$$

b) Si
$$r=1$$
,
$$\frac{1-\Lambda(N,p,1)}{\Lambda(N,p,1)}\,\frac{N-p}{p}\sim \mathcal{F}_{p,N-p}$$

c) Si
$$p=2$$
,
$$\frac{1-\Lambda(N,2,r)^{\frac{1}{2}}}{\Lambda(N,2,r)^{\frac{1}{2}}}\frac{N-r-1}{r}\sim \mathcal{F}_{2r,2(N-r-1)}$$

d) Si
$$r=2$$
,
$$\frac{1-\Lambda(N,p,2)^{\frac{1}{2}}}{\Lambda(N,p,2)^{\frac{1}{2}}}\,\frac{N-p-1}{p}\sim \mathcal{F}_{2p,2(N-p-1)}$$

Aproximaciones a la Distribución del criterio de Wilks

• Rao (1951) mostró que

$$\frac{(\mathit{fs} + \lambda)}{m} \frac{(1 - \Lambda(N, p, r)^{\frac{1}{s}})}{\Lambda(N, p, r)^{\frac{1}{s}}} \approx \mathcal{F}_{m, \mathit{fs} + \lambda}$$

donde

$$f = N - \frac{p+r+1}{2}$$
 $m = pr$
 $\lambda = -\frac{pr}{2} + 1$ $s = \frac{(p^2r^2 - 4)^{\frac{1}{2}}}{(p^2 + r^2 - 5)^{\frac{1}{2}}}$

Otros criterios

Hay otros criterios que se utilizan

• Criterio de Roy o de la máxima raíz. Considera la máxima raíz θ_{\max} de $|\mathbf{H} - \theta(\mathbf{U} + \mathbf{H})| = 0$. Luego

$$heta_{\mathsf{max}} = rac{\lambda_1}{1 + \lambda_1}$$

y rechazo si $\theta_{\rm max}$ es grande. Los percentiles de la distribución de $\theta_{\rm max}$ están dados en el Apéndice D14 de Seber (1984).

Test de Independencia H_{01} : $\Sigma = \text{diag}(\Sigma_{11}, \Sigma_{22})$ Supongamos $z \sim N(\mu, \Sigma)$.

Queremos testear $\Sigma_{12} = 0$ o equivalentemente H_{01} : $\rho_1 = 0$

El test de cociente de máxima verosimilitud para H₀ está basado en

$$\gamma_1 = \frac{|\mathbf{Q}|}{|\mathbf{Q}_{11}| |\mathbf{Q}_{22}|} = \frac{|\mathbf{Q}_{11,2}|}{|\mathbf{Q}_{11}|}.$$

Vimos que

$$-n\log(\gamma_1) \stackrel{D}{\longrightarrow} \chi^2_{\nu_1}$$

donde

$$u_1 = \frac{1}{2} \left(d^2 - (p^2 + q^2) \right) = pq.$$

La aproximación mejora si tomamos en lugar de n la corrección de Bartlett, m = n - (p + q + 3)/2, es decir,

$$-m\log(\gamma_1) \xrightarrow{D} \chi_{\nu_1}^2$$
.

Test de Independencia $H_{01}: \Sigma = \text{diag}(\Sigma_{11}, \Sigma_{22})$ Por otra parte.

$$|\mathbf{Q}| = |\mathbf{Q}_{22}| |\mathbf{Q}_{11.2}| = |\mathbf{Q}_{11}| |\mathbf{Q}_{22}| |\mathbf{I}_p - \mathbf{Q}_{11}^{-1} \mathbf{Q}_{12} \mathbf{Q}_{22}^{-1} \mathbf{Q}_{21}|$$

con lo cual

$$\gamma_1 = |\mathbf{I}_p - \mathbf{Q}_{11}^{-1} \mathbf{Q}_{12} \mathbf{Q}_{22}^{-1} \mathbf{Q}_{21}| = \prod_{j=1}^{q} (1 - r_i^2)$$

donde r_i^2 son los autovalores de $\mathbf{Q}_{12}\mathbf{Q}_{22}^{-1}\mathbf{Q}_{21}\mathbf{Q}_{11}^{-1}$, o sea, el cuadrado de las correlaciones canónicas muestrales.

Es decir, rechazo con nivel α si

$$\prod_{i=1}^{q} (1 - r_i^2) < k << 1$$

con
$$k = \exp\left(-\chi_{\nu_1,\alpha}^2/m\right)$$
 con $m = n - (p + q + 3)/2$

Test de Independencia H_{01} : $\Sigma = \text{diag}(\Sigma_{11}, \Sigma_{22})$

Por otra parte,

$$\gamma_1 = \frac{|\mathbf{Q}_{11.2}|}{|\mathbf{Q}_{11}|} = \frac{|\mathbf{U}|}{|\mathbf{U} + \mathbf{H}|}$$

donde $\mathbf{\Sigma}_{11.2} = \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21}$. Ahora bien,

- $\mathbf{U}=\mathbf{Q}_{11.2}\sim\mathcal{W}(\mathbf{\Sigma}_{11.2},q,n-1-p)=\mathcal{W}(\mathbf{\Sigma}_{11},p,n-1-q)$ bajo H_{01}
- $\mathbf{H} = \mathbf{Q}_{12}\mathbf{Q}_{22}^{-1}\mathbf{Q}_{21} \sim \mathcal{W}(\mathbf{\Sigma}_{11.2}, p, q) = \mathcal{W}(\mathbf{\Sigma}_{11}, p, q)$ bajo H_{01}
- **H** y **U** son independientes bajo H_{01} .

Luego,

$$\gamma_1 = \Lambda(n-1, p, q)$$

Test de Independencia H_{01} : $\Sigma = \text{diag}(\Sigma_{11}, \Sigma_{22})$

Queremos aplicar el principio de unión interseción de Roy para testear $H_{01}: \Sigma_{12} = 0$.

Recordemos que

$$\mathbf{z}_i = \left(\begin{array}{c} \mathbf{x}_i \\ \mathbf{y}_i \end{array}\right)$$

entonces $Cov(\mathbf{a}^T\mathbf{x}, \mathbf{b}^T\mathbf{y}) = \mathbf{a}^T\mathbf{\Sigma}_{12}\mathbf{b}$. Definamos

$$H_{0,\mathbf{a}\mathbf{b}}: \mathbf{a}^{\mathrm{T}}\mathbf{\Sigma}_{12}\mathbf{b} = 0$$

Luego

$$H_{01} = \cap_{\mathbf{a}\neq\mathbf{0}} \cap_{\mathbf{b}\neq\mathbf{0}} H_{0,\mathbf{ab}}$$

Test de Independencia
$$H_{01}$$
: $\Sigma = \text{diag}(\Sigma_{11}, \Sigma_{22})$

Aplicando el principio de unión intersección, se obtiene el criterio de Roy.

Es decir, el test rechaza si

$$\theta_{\sf max} > k_{\alpha}$$
.

donde θ_{max} es la máxima raíz de $|\mathbf{H} - \theta(\mathbf{U} + \mathbf{H})| = 0$, o sea, θ_{max} es el máximo autovalor de $\mathbf{Q}_{12}\mathbf{Q}_{22}^{-1}\mathbf{Q}_{21}\mathbf{Q}_{11}^{-1}$, es decir, rechaza si

$$r_1 > k_{\alpha}$$

Aunque rechacemos H_{01} : $\rho_1=0$ es posible que $\rho_2=0$, por lo tanto nos interesa testear

$$H_{0,k+1}: \rho_{k+1}=0 \qquad \rho_k>0$$

que da la dimensión de la relación entre x y y.

- Si $\rho_1 > 0$ y $\rho_2 = 0$ la relación es lineal.
- Si $\rho_1 > \rho_2 > 0$ y $\rho_3 = 0$ la relación es planar.

El número de correlaciones no nulas da el rango de Σ_{12}

Si $\rho_1 \ge \cdots \ge \rho_k > 0$ y $\rho_{k+1} = 0$, las variables canónicas asociadas a ρ_{k+1} se llaman funciones nulas y se usan en economía.

El test de cociente de verosimilitud para

$$H_{0,k+1}: \rho_{k+1} = 0 \qquad \rho_k > 0$$

se basa en

$$\gamma_{k+1} = \prod_{j=k+1}^{q} (1 - r_j^2)$$

Además,

$$\gamma_{k+1} = \Lambda(n-1-k, p-k, q-k)$$

Por la aproximación de Rao

$$rac{\left(\mathit{fs} + \lambda
ight)}{m} rac{\left(1 - \gamma_{k+1}^{rac{1}{s}}
ight)}{\gamma_{\nu-1}^{rac{1}{s}}} pprox \mathcal{F}_{m,\mathit{fs} + \lambda} = \mathcal{F}_{
u_{1,k+1},
u_{2,k+1}}$$

$$f = n - 3/2 - (p+q)/2 \qquad m = (p-k)(q-k)$$

$$\lambda = -\frac{(p-k)(q-k)}{2} + 1 \qquad s = \frac{((p-k)^2(q-k)^2 - 4)^{\frac{1}{2}}}{((p-k)^2 + (q-k)^2 - 5)^{\frac{1}{2}}}$$

El test de cociente de verosimilitud para

$$H_{0,k+1}: \rho_{k+1} = 0$$
 $\rho_k > 0$ se basa en

$$\gamma_{k+1} = \prod_{j=k+1}^{q} (1 - r_j^2)$$

Si $H_{0,k+1}$ es cierta,

$$-n \log(\gamma_{k+1}) \xrightarrow{D} \chi^2_{\nu_{k+1}} \qquad \nu_{k+1} = (p-k)(q-k)$$

• Bartlett (1947) sugiere tomar m = n - (p + q + 3)/2, y usar la aproximación

$$-m\log(\gamma_{k+1}) \xrightarrow{D} \chi_{m+1}^2$$

• Glynn y Muirhead (1978) sugieren la modificación

$$\ell_{k+1} = -\left[n-k-\frac{p+q+3}{2} + \sum_{j=1}^{k} \frac{1}{r_{j-1}^2} \log(\gamma_{k+1}) \xrightarrow{D} \chi^2_{\nu_{k+1}} \right]$$

Nos interesaba testear

$$H_{0,k+1}: \rho_{k+1}=0 \qquad \rho_k>0$$

que da la dimensión de la relación entre x y y.

Para determinar k testeamos la secuencia

$$H_{01}, H_{02}, \dots$$

hasta encontrar un test no significativo para digamos H_{0r} entonces elegimos k = r - 1.

Ejemplo

Deseamos saber cuantas correlaciones son significativas

Aproximación Asintótica

$H_{0,k+1}$	ℓ_{k+1}	ν_{k+1}	p — valor
$H_{01}: ho_1 = 0$	167.580	15	0.00000000
$H_{02}: \rho_2 = 0(\rho_1 > 0)$	23.162	8	0.003163
$H_{03}: \rho_3 = 0(\rho_2 > 0)$	6.004	3	0.111401

- Porqué el gráfico en b) es una nube de puntos sin estructura?
- En a) cada punto es la correlación de la variable indicada con los ejes u₁, u₂.
- En b), las distancias entre puntos del espacio de variables canónicas
 (u_{1,i}, u_{2,i}) = (\$\hat{\alpha}_1^T \tilde{\tilde{\tilde{x}}}_i, \$\hat{\alpha}_2^T \tilde{\tilde{x}}_i)\$ dan aproximadamente la distancia de
 Mahalanobis entre observaciones \$\tilde{\tilde{x}}_i\$.

- En a) cada punto es la correlación de la variable indicada con los ejes v₁, v₂.
- En b), las distancias entre puntos del espacio de variables canónicas $(v_{1,i}, v_{2,i}) = (\widehat{\boldsymbol{\beta}}_1^T \widetilde{\mathbf{y}}_i, \widehat{\boldsymbol{\beta}}_2^T \widetilde{\mathbf{y}}_i)$ dan aproximadamente la distancia de Mahalanobis entre observaciones $\widetilde{\mathbf{y}}_i$.

La relación entre u_i y v_i decrece con j, como esperábamos.

0000000

Vectores canónicos estandarizados

Espacio x			Espacio y			
	$\widehat{m{lpha}}_1^{\star}$	$\widehat{m{lpha}}_2^{\star}$			$\widehat{oldsymbol{eta}}_1^{\star}$	$\widehat{m{eta}}_2^{\star}$
Control	-0.8404	-0.4166		Read	-0.4508	-0.0496
Concept	0.2479	-0.8379		Write	-0.3490	0.4092
Motivation	-0.4327	0.6948		Math	-0.2205	0.0398
				Science	-0.0488	-0.8266
				Sex	-0.3150	0.5406

- Para las variables psicológicas,
 - el primer vector canónico está fuertemente influenciado por Control (.84)
 - **u**₂ está influenciado por Concepto (-.84) and y Motivación (.69).
- Para las variables académicas más sexo,
 - v₁ es un compromiso entre Lectura (.45), Escritura (.35) y Sexo (.32),
 - para v₂ Escritura (.41), Ciencia (-.83) y Sexo (.54) son las variables dominantes.

Qué pasa si p crece con n?

- Fujikoshi *et al.* (2008) Asymptotic results in canonical discriminant analysis when the dimension is large compared to the sample size. *Journal of Statistical Planning and Inference* **128**,3457-3466.
- Fujikoshi, Y. (2016). High-Dimensional asymptotic distributions of characteristic roots in multivariate linear models and canonical correlation analysis.
- Fujikoshi *et al.* (2010) *Multivariate Statistics:* High–dimensional and large–sample approximations
- Bao et al. (2017). Canonical correlation coefficients of high-dimensional Gaussian vectors: finite rank case. En prensa en Annals of Statistics.

Obtuvieron la distribución asintótica de las correlaciones canónicas cuando q es fijo y $p/n \to c \in (0,1)$

Qué pasa si p crece con n?

 Oda et al. (2016). Asymptotic non-null distributions of test statistics for redundancy in the high-dimensional canonical correlation analysis.

Considera el problema de testear redundancia si $(p+q)/n o c \in (0,1)$

- C. Gao, Z. Ma, Z. Ren, HH Zhou. (2015). Minimax estimation in sparse canonical correlation analysis. *Annals of Statistics*, 43, 2168-2197.
- C. Gao, Z. Ma, HH Zhou. (2014). Sparse CCA: Adaptive estimation and computational barriers.

Consideran el caso ralo pero con $(p+q)/n \rightarrow c \in (0,1)$.

Supongamos que

• $n < \min(p, q)$

0

• las componentes del vector $\mathbf{x} = (x_1, \dots, x_p)^{\mathrm{T}}$ o del vector $\mathbf{y} = (y_1, \dots, y_q)^{\mathrm{T}}$ son casi colineales.

En ese caso, las matrices S_{11} y/o S_{22} son singulares.

No podemos definir

•
$$\mathbf{u}_i = (u_{1,i}, \dots, u_{q,i})^{\mathrm{T}}$$
 con $u_{i,i} = \widehat{\boldsymbol{\alpha}}_i^{\mathrm{T}} \widetilde{\mathbf{x}}_i$ y

•
$$\mathbf{v}_i = (v_{1,i}, \dots, v_{q,i})^{\mathrm{T}} \ v_{j,i} = \widehat{\boldsymbol{\beta}}_j^{\mathrm{T}} \widetilde{\mathbf{y}}_i$$

como

$$\begin{aligned} \mathbf{S}_{11}^{-1}\mathbf{S}_{12}\mathbf{S}_{22}^{-1}\mathbf{S}_{21}\widehat{\boldsymbol{\alpha}}_{j} &= r_{j}^{2}\widehat{\boldsymbol{\alpha}}_{j} \\ \mathbf{S}_{22}^{-1}\mathbf{S}_{21}\mathbf{S}_{11}^{-1}\mathbf{S}_{12}\widehat{\boldsymbol{\beta}}_{j} &= r_{j}^{2}\widehat{\boldsymbol{\beta}}_{j} \\ \end{aligned} \qquad \widehat{\boldsymbol{\alpha}}_{j}^{\mathrm{T}}\mathbf{S}_{11}\widehat{\boldsymbol{\alpha}}_{j} = 1$$

Propuesto por

• Vinod, H. (1976), Canonical ridge and econometrics of joint production. *Journal of Econometrics*, **4**, 147-166.

Reemplaza las matrices

$$S_{11}$$
 y S_{22}

por

$$S_{11}(\lambda_1) = S_{11} + \lambda_1 I_p$$
 y $S_{22}(\lambda_2) = S_{22} + \lambda_2 I_q$

Es decir, resolvemos

$$\begin{aligned} \mathbf{S}_{11}(\lambda_1)^{-1}\mathbf{S}_{12}\mathbf{S}_{22}(\lambda_2)^{-1}\mathbf{S}_{21}\widehat{\boldsymbol{\alpha}}_j & \qquad \widehat{\boldsymbol{\alpha}}_j^{\mathrm{T}}\mathbf{S}_{11}(\lambda_1)\widehat{\boldsymbol{\alpha}}_j = 1 \\ \mathbf{S}_{22}(\lambda_2)^{-1}\mathbf{S}_{21}\mathbf{S}_{11}(\lambda_1)^{-1}\mathbf{S}_{12}\widehat{\boldsymbol{\beta}}_j & \qquad \widehat{\boldsymbol{\beta}}_j^{\mathrm{T}}\mathbf{S}_{22}(\lambda_2)\widehat{\boldsymbol{\beta}}_j = 1 \end{aligned}$$

Equivalentemente, para encontrar $\left(\widehat{\alpha}_1, \widehat{\beta}_1\right) = \left(\widehat{\alpha}_1(\lambda_1, \lambda_2), \widehat{\beta}_1(\lambda_1, \lambda_2)\right)$ maximizamos

$$\max_{\boldsymbol{\alpha} \neq \mathbf{0}_p, \boldsymbol{\beta} \neq \mathbf{0}_q} \widehat{\rho}_{\boldsymbol{\alpha}, \boldsymbol{\beta}}^2(\lambda_1, \lambda_2) = \max_{\boldsymbol{\alpha} \neq \mathbf{0}_p, \boldsymbol{\beta} \neq \mathbf{0}_q} \frac{\left(\boldsymbol{\alpha}^{\mathrm{T}} \mathbf{S}_{12} \boldsymbol{\beta}\right)^2}{\left(\boldsymbol{\alpha}^{\mathrm{T}} \mathbf{S}_{11}(\lambda_1) \boldsymbol{\alpha}\right) \ \left(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{S}_{22}(\lambda_2) \boldsymbol{\beta}\right)}$$

Como en regresión ridge al agregar las penalizaciones λ_1 y λ_2 a los elementos diagonales de ${\bf S}_{11}$ y ${\bf S}_{22}$ se obtienen estimadores más estables y

confiables cuando los datos están cerca de la colinealidad 🖂 🖹 🔻 🔊 🤏 🗢

•
$$\widehat{\rho}_{\boldsymbol{\alpha},\boldsymbol{\beta}}^2(\lambda_1,\lambda_2) \leq \widehat{\rho}_{\boldsymbol{\alpha},\boldsymbol{\beta}}^2(0,0)$$

• Como la condición de vínculo es

$$\widehat{\boldsymbol{\alpha}}_1^{\mathrm{T}} \mathbf{S}_{11}(\lambda_1) \widehat{\boldsymbol{\alpha}}_1 = \widehat{\boldsymbol{\beta}}_1^{\mathrm{T}} \mathbf{S}_{22}(\lambda_2) \widehat{\boldsymbol{\beta}}_1 = 1$$

entonces

$$\|\widehat{\alpha}_1(\lambda_1,\lambda_2)\| \leq \|\widehat{\alpha}_1(0,0)\| \qquad \|\widehat{\boldsymbol{\beta}}_1(\lambda_1,\lambda_2)\| \leq \|\widehat{\boldsymbol{\beta}}_1(0,0)\|$$

Estamos resolviendo un problema de regresión ridge alternado

- Fijado $\widehat{m{eta}}_1$ si $\widehat{m{v}}_{1,i} = \widehat{m{eta}}_1^{\mathrm{T}} \widetilde{m{y}}_i$
- \widehat{lpha}_1 resuelve

$$\widehat{\alpha}_1 = \operatorname*{argmin}_{\alpha \neq \mathbf{0}_p} \sum_{i=1}^n \left(\widehat{v}_{1,i} - \alpha^{\mathrm{T}} \widetilde{\mathbf{x}}_i \right)^2 + \lambda_1 \|\alpha\|^2$$

- Fijado \widehat{lpha}_1 si $\widehat{\mathit{u}}_{1,i} = \widehat{lpha}_1^{\mathrm{T}} \widetilde{\mathbf{x}}_i$
- $\widehat{m{eta}}_1$ resuelve

$$\widehat{\boldsymbol{\beta}}_1 = \operatorname*{argmin}_{\boldsymbol{\beta} \neq \mathbf{0}_q} \sum_{i=1}^n \left(\widehat{u}_{1,i} - \boldsymbol{\beta}^{\mathrm{T}} \widetilde{\mathbf{y}}_i\right)^2 + \lambda_2 \|\boldsymbol{\beta}\|^2$$

Cómo elegir λ_1 y λ_2 , $\boldsymbol{\lambda} = (\lambda_1, \lambda_2)^{\mathrm{T}}$

• Para cada $1 \le i \le n$, sea la muestra sin la observación i-ésima, o sea, $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i \ne i}$ e indiquemos por

$$\mathbf{S}^{(-i)} = \frac{1}{n-1} \sum_{j \neq i} \left(\mathbf{z}_j - \overline{\mathbf{z}}^{(-i)} \right) \left(\mathbf{z}_j - \overline{\mathbf{z}}^{(-i)} \right)^{\mathrm{T}} = \begin{pmatrix} \mathbf{S}_{11}^{(-i)} & \mathbf{S}_{12}^{(-i)} \\ \mathbf{S}_{21}^{(-i)} & \mathbf{S}_{22}^{(-i)} \end{pmatrix}$$

• Definamos $\left(\widehat{lpha}_1^{(-i)}(\pmb{\lambda}),\widehat{eta}_1^{(-i)}(\pmb{\lambda})\right)$ los valores tales que

$$\begin{pmatrix}
\widehat{\alpha}_{1}^{(-i)}(\boldsymbol{\lambda}), \widehat{\beta}_{1}^{(-i)}(\boldsymbol{\lambda})
\end{pmatrix} = \underset{\boldsymbol{\alpha}^{\mathrm{T}}\mathbf{S}_{11}^{(-i)}(\lambda_{1})\boldsymbol{\alpha}=1}{\operatorname{argmax}} \left(\widehat{\rho}_{\boldsymbol{\alpha},\boldsymbol{\beta}}^{(-i)}(\lambda_{1},\lambda_{2})\right)^{2} \\
= \underset{\boldsymbol{\alpha}^{\mathrm{T}}\mathbf{S}_{22}^{(-i)}(\lambda_{2})\boldsymbol{\beta}=1}{\operatorname{argmax}} \left(\boldsymbol{\alpha}^{\mathrm{T}}\mathbf{S}_{12}^{(-i)}\boldsymbol{\beta}\right)^{2} \\
= \underset{\boldsymbol{\alpha}^{\mathrm{T}}\mathbf{S}_{11}^{(-i)}(\lambda_{1})\boldsymbol{\alpha}=1}{\operatorname{\beta}^{\mathrm{T}}\mathbf{S}_{22}^{(-i)}(\lambda_{2})\boldsymbol{\beta}=1} \\
= \underset{\boldsymbol{\beta}^{\mathrm{T}}\mathbf{S}_{22}^{(-i)}(\lambda_{2})\boldsymbol{\beta}=1}{\operatorname{\beta}^{\mathrm{T}}\mathbf{S}_{22}^{(-i)}(\lambda_{2})\boldsymbol{\beta}=1} \\
= \underset{\boldsymbol{\beta}^{\mathrm{T}}\mathbf{S}_{22}^{(-i)}(\lambda_{2})\boldsymbol{\beta}=1} \\
= \underset{\boldsymbol{\beta}^$$

Sean

$$u_i^{(-i)} = \mathbf{x}_i^{\mathrm{T}} \widehat{\alpha}_1^{(-i)}(\boldsymbol{\lambda}) \qquad v_i^{(-i)} = \mathbf{y}_i^{\mathrm{T}} \widehat{eta}_1^{(-i)}(\boldsymbol{\lambda})$$

Definamos

$$CV(\lambda) = \operatorname{cor}\left(\left\{u_{1,i}^{(-i)}\right\}_{1 \leq i \leq n}, \left\{v_{1,i}^{(-i)}\right\}_{1 \leq i \leq n}\right)$$

$$= \frac{\sum_{i=1}^{n} (u_{1,i}^{(-i)} - \overline{u}^{(-i)})(v_{1,i}^{(-i)} - \overline{v}^{(-i)})}{\left\{\sum_{i=1}^{n} (u_{1,i}^{(-i)} - \overline{u}^{(-i)})^{2} \sum_{i=1}^{n} (v_{1,i}^{(-i)} - \overline{v}^{(-i)})^{2}\right\}^{\frac{1}{2}}}$$

$$\widehat{oldsymbol{\lambda}} = \mathop{\mathsf{argmax}}_{oldsymbol{\lambda}} \mathcal{C} V^2(oldsymbol{\lambda})$$

Ejemplo

Estudio de nutrición en ratones (Martin et al. 2007).

- 40 ratones
- expresiones de 120 genes medidas en células de hígado (x)
- concentraciones de 21 ácidos grasos hepáticos medidos por cromatografía.

CCA regularizada 00

X correlation

Cross-correlation

$$\widehat{\lambda}_1 = 0.006993103$$
 $\widehat{\lambda}_2 = 0.06206897$ $CV(\widehat{\lambda}) = 0.8837507$

Inferencia 00000 0000 0000000 CCA regularizada ○○○○ ○○ ○○ ○○ CCA rala

CCA rala

Otra aproximación es usar CCA rala.

- Parkhomenko et al. (2009) Sparse canonical correlation analysis with application to genomic data integration. Statistical Applications in Genetics and Molecular Biology, 8, 1-34.
- Witten et al. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics, 10, 515-534.
- Waaijenborg et al. (2008). Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis. Statistical Applications in Genetics and Molecular Biology, 7, Article 3.

Usan distintos tipos de penalizaciones (LASSO, elastic net) pero suponen que $\Sigma_{11} = I$ y $\Sigma_{22} = I$, lo que ignora dependencia entre las variables de cada grupo.

CCA rala

 Wilms, I. and Croux, C. (2015). Sparse canonical correlation analysis from a predictive point of view. *Biometrical Journal*, 57, 834-851

Usa un enfoque de regresión LASSO alternada.

CCA rala

- Fijado $\widehat{oldsymbol{eta}}_1$ si $\widehat{oldsymbol{
 u}}_{1,i} = \widehat{oldsymbol{eta}}_1^{\mathrm{T}} \widetilde{oldsymbol{y}}_i$
- $\widehat{\alpha}_1$ resuelve

$$\widehat{\boldsymbol{\alpha}}_1 = \operatorname*{argmin}_{\boldsymbol{\alpha} \neq \mathbf{0}_p} \sum_{i=1}^n \left(\widehat{\mathbf{v}}_{1,i} - \boldsymbol{\alpha}^{\mathrm{T}} \widetilde{\mathbf{x}}_i \right)^2 + \lambda_1 \sum_{\ell=1}^p |\alpha_\ell|$$

- Fijado \widehat{lpha}_1 si $\widehat{\mathit{u}}_{1,i} = \widehat{lpha}_1^{\mathrm{T}} \widetilde{oldsymbol{\mathsf{x}}}_i$
- $\widehat{\boldsymbol{\beta}}_1$ resuelve

$$\widehat{\boldsymbol{\beta}}_1 = \operatorname*{argmin}_{\boldsymbol{\beta} \neq \mathbf{0}_q} \sum_{i=1}^n \left(\widehat{\boldsymbol{u}}_{1,i} - \boldsymbol{\beta}^{\mathrm{T}} \widecheck{\mathbf{y}}_i \right)^2 + \lambda_2 \sum_{\ell=1}^q |\beta_\ell|$$