Pr-66

19. Operační systémy

Programování – 6 Verze 1.2

David Martinek, 2016-2024

Gymnázium Brno, Vídeňská

Prezentace pro výuku programování, jejímž autorem je Ing. David Martinek, podléhá licenci Creative Commons Uvedte autora-Neužívejte dílo komerčně-Zachovejte licenci 4.0 Mezinárodní. ∫ Pr-6 6

Operační systémy

- Stručná historie OS
- Operační systém
- Základní části OS
- Základní úlohy OS
- Druhy OS
- OS jako správce prostředků
- Modulární OS Programování - teorie, 6. ročník

- Základní moduly OS
- Úrovně OS
- · Proces základní pojmy
- Proces
- Vlákno
- Multitasking
- Životní cyklus procesu

2/48

Pr-6 6

Stručná historie OS

- 40. léta 20. století
 - Jednoúlohové počítače
 - Programují se pomocí propojovací desky (plugboard).
 - Zapojení jedné úlohy trvá v řádu týdnů!
 - Bez operačního systému

CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=522789

∫ Pr-6 6

Stručná historie OS

- 50.-60. léta 20. století
 - Přepínací panely
 - · Vylepšení propojovacích desek
 - Děrné štítky, pásky
 - · Nejprve pro vstup i výstup dat, pak i programů

Programování - teorie, 6. ročník

3/48

Programování - teorie, 6. ročník

Stručná historie OS

• 50.-60. léta 20. století

- Počítačový terminál

 Využití technologie dálnopisu (teleprinter, telex) → komunikace přes elektrický psací stroj

 Později televizní obrazovka s textovým rozhraním (koncem 60. let)

Programování - teorie, 6. ročník

Pr-66

Stručná historie OS

- 50.-60. léta 20. století
 - Sálové počítače (mainframe)
 - Dávkové zpracování
 - · Úlohy seřazeny za sebou
 - Jakmile jedna skončí, začne se zpracovávat další.
 - První náznaky operačních systémů
 - Chytrým přeuspořádáním částí programů v dávce lze efektivněji využívat počítačový čas.

Programování - teorie, 6. ročník

0/4

Pr-6 6

Stručná historie OS

- 1964: IBM OS/360
 - Dávkový operační systém pro počítač IBM System/360
 - První verze pracovaly ještě s děrnými štítky.
 - V 60. letech velmi rozšířený
 - Používán např. u NASA pro program Apollo, nebo firmami jako Volkswagen.

Pr-6 6

Stručná historie OS

- 1964: Zahájen vývoj Multicsu
 - Společný projekt MIT, General Electric a Bell Labs
 - Předchůdce dnešních OS
 - · Nebyl vázán na jediný počítač.
 - Modulární HW a SW výkon lze zvýšit přidáváním komponent i za plného provozu (!)
 - · Segmentování paměti předchůdce segmentového adresování
 - · Zavedl koncept multitaskingu.
 - · Přímo inspiroval vznik Unixu a tím i dalších moderních OS.

Programování - teorie, 6. ročník

Programování - teorie, 6. ročník

7/48

Stručná historie OS

- 1969: Unix
 - Ken Thompson a Dennis Ritchie, Bell labs, AT&T
 - Napsán v jazyce C (společně s ním).
 - Obecný, víceúlohový (s preemptivním multitaskingem), víceuživatelský, síťový, ...
 - Nejvlivnější SW projekt 20. století
 - Vyvíjen a používán dodnes

Programování - teorie, 6. ročník

Pr-6

Stručná historie OS

- 1978: BSD Unix
 - Univerzitní větev Unixu
- 1981: MS DOS ⇒ SRACKA
 - Extrémně zjednodušený, Unixem inspirovaný OS pro IBM PC
 - První IBM PC byly velice slabé počítače v porovnání se sálovými počítači s Unixem.
- 1984: Mac OS
 - Classic Mac OS běžící na procesorech PowerPC
- 1985: MS Windows v. 1.0

Programování - teorie, 6. ročník

10/48

Pr-6 6

Stručná historie OS

- 1991: Linux
 - Reinterpretace (jádra) Unixu od Linuse Torvaldse pro PC napsaná v C.
 - Původně šlo o hobby/školní projekt.
 - PC byly v té době považovány za příliš primitivní pro provozování Unixu. Unix byl doma na sálových počítačích.
 - Projekt GNU (1984) + Linux = GNU/Linux
- 1995: MS Windows 95
- 2001: Mac OS X
- Jádro založeno na BSD Unixu
 Programování teorie, 6. ročník

11/48

Pr-6 6

Stručná historie OS

- 2007: iOS
 - OS firmy Apple pro mobilní zařízení (iPhone, iPod, iPad)
 - BSD jádro (Darwin) + GUI
 - C, C++, Objective-C, Swift
- 2008: Android
 - OS firmy Google pro mobilní zařízení (mobily, tablety různých výrobců)
 - Linuxové jádro + Java virtual machine
 - Java, C, C++

Programování - teorie, 6, ročník

{ Pr-6 6

Operační systém

- Základní programové vybavení počítače
- OS je program (sada programů).
 - Mezivrstva mezi HW a uživatelskými programy a uživateli
 - Umožňuje uživateli pohodlně a efektivně používat počítač.
 - Umožňuje a řídí běh ostatních programů.

Programování - teorie, 6. ročník

13/48

Pr-6 6

Operační systém

- · Zavádí se do paměti hned po startu počítače.
 - Nejdříve jádro, až pak CLI a/nebo GUI
- Běží až do vypnutí počítače.
- Obvyklé úlohy
 - Správa procesů, přerušení, přidělování procesoru, přidělování a ochrana paměti, souborový systém, ovládání zařízení, sítě, bezpečnost/řízení přístupu, vstup/výstup

Pr-6 6

Základní části OS

- · Jádro (kernel)
 - Moduly pro přidělování prostředků, řízení procesů, ...
- Systémové knihovny a programy
- Uživatelské rozhraní
 - CLI textové rozhraní (ls, dir, mkdir, ...)
 - GUI grafické rozhraní (správce oken, správce souborů, dialogy, ...)
- Operační systém není jen GUI!
 Programování teorie. 6. ročník

Programování - teorie, 6. ročník

15/48

Základní úlohy OS

Správa prostředků

- Prostředky: procesor, paměť, periferie (mf: hody)
- Efektivní a bezpečné sdílení prostředků více programy, uživateli

Poskytování služeb programům a uživatelům

- Definuje standardní rozhraní (knihovny, uživatelské rozhraní).
- La job a him prilling present Poskytuje abstrakce.
 - Zjednodušuje pohled na hardware a činnosti počítače.
 - Příklady: soubor, proces

Programování - teorie, 6. ročník

18/48

Druhy OS ZAPANATUVAT

- Jednoúlohový
 - MS DOS V jednom čase běží jen jedna úloha.
 - Dávkový systém
 - Až skončí jedna úloha, poběží další naplánovaná úloha.

(yboy or horaine 1 min . . .)

- · Víceúlohový (har pa les)
 - V jednom čase běží více úloh současně.
 - Multitasking současný běh více úloh, než je procesorů.
 - Přepíná běh několika úloh tak rychle, že se zdá, jako by běžely paralelně.
 - Kooperativní vs. preemptivní

Druhy OS

- Jednouživatelský
 - dříve MS DOS, herní konzole (Atari, ZX Spectrum)
 - dnes mobily (tzv. "bez OS", starší verze "smart": Symbian, Android, iOS)
- Víceuživatelský
 - Uživatelé mají bezpečně oddělené účty proces jednoho uživatele nemůže ohrozit procesy ani data jiného uživatele
 - Unix, Linux, MS Windows, Mac OS X, ...

Programování - teorie, 6, ročník

20/48

Programování - teorie, 6. ročník

Druhy OS

Pr-6 6 OS jako správce prostředků

ardin zu mitorianio

· Real-time

jahon elebbrian => memisir dem byll Windows (albertian)

- Garantuje dobu odezvy na určité podněty.
- Pro speciální použití
 - Řídící systémy letadel, raket, ponorek, některých továren, jaderných elektráren
 - · Všude, kde by pozdní reakce mohly způsobit katastrofu.

Programování - teorie, 6. ročník

21/48

Pracuje v privilegovaném režimu procesoru.

- Může přerušovat a obnovovat běh ostatních programů.

- Musí mít podporu v hardware - speciální instrukce a přerušení procesoru. Os princip Aprillo proven P

Udržuje přehled o všech sdílených prostředcích.

- · Plánuje a rozhoduje komu, kdy a kolik prostředků přidělit.
- · Přiděluje a vyžaduje navrácení prostředků.
 - U kritických prostředků vynucuje navrácení (např. procesorový čas).

Programování - teorie, 6. ročník

22/48

Pr-6 6

Modulární OS

- OS jsou velké SW projekty ⇒ bez modulů nezvládnutelné.
- Moduly řeší různé aspekty fungování OS.
 - Správa prostředků, ovládání HW zařízení
- Snaha o zefektivnění vývoje.

∫ Pr-6 6

Typy modulárních OS

Monolitické jádro

=> printerior se to do just well himsely

Jádro je kompaktní program.

Mikrojádro

=> mussel bindly (brish dilat nisa)

- Malé jádro + samostatné servery (moduly) Ly nuhamy nou
- Hybridní jádro
 - Kombinace předchozích přístupů

Monolitické jádro

- Moduly na úrovni zdrojového kódu
- Po sestavení vzniká kompaktní binární program jádro.
- · Příklady: Unix, Linux

Programování - teorie, 6. ročník

25/48

∫ Pr-6 6

Monolitické jádro

- Výhody
 - Vyšší efektivita
 - Moduly sdílejí datové struktury.
 - Moduly spolu rychleji komunikují.
 - Snazší vývoj (?)

Programování - teorie, 6. ročník

Přání vývojářů...

Nevýhody

- Všechny moduly musí běžet v chráněném režimu
 - Bezpečnost havárie jednoho modulu vede k havárii celého systému (blue screen, kernel panic)
- Obtíže s přidáváním modulů za běhu systému.
- Od určité velikosti obtížný vývoj.
 - · Zatím se ale stále daří jej zvládat.

26/48

Pr-6 6

Mikrojádro

- · Malé základní jádro
 - Běží v privilegovaném režimu.
- Moduly
 - Tzv. servery obsluhující nekritické služby systému.
- Příklady
 - Hurd, zatím jen akademické projekty

Pr-6 6

Mikrojádro

- Výhody
 - Dynamická změna modulů za běhu
 - Dnes to umí i monolity...
 - Teoreticky vyšší bezpečnost
 - · Ale na úkor efektivity
 - Teoreticky snazší vývoj (???!)

- Nevýhody
 - Menší výkon

- · Komunikace mezi moduly,
- Oddělené datové struktury ⇒ nutnost duplikace, synchronizace
- V praxi se zatím příliš tento přístup neuchytil.

Hybridní

- Oba předchozí přístupy mají své nevýhody.
- Hybridní snaha vzít z obou přístupů to dobré a minimalizovat nevýhody
 - MS Windows (daří se to ???)
- Který z těchto tří přístupů do budoucna zvítězí není zcela jasné.
- Paralelní a distribuovaný HW generuje nové problémy.

29/48

Modul přidělování procesoru

- Vyžaduje privilegovaný režim procesoru.
 - Pro preemptivní multitasking (viz dále)
- Plánovač úloh (část modulu přidělování procesoru)
 - rozhoduje o přepínání procesů,
 - rozhoduje o časových úsecích, které jsou procesu přiřazeny,
 - bere v úvahu priority procesů, jejich požadavky, aktuální stav.

Programování - teorie, 6. ročník

31/48

Základní moduly OS

V nějaké podobě je najdeme u všech typů OS.

· Modul přidělování procesoru

Modul přidělování paměti

Modul správy souborů

Modul správy periferií

Programování-tobrie, 6. ročník) hym => mhm/
- ma shuh => shund to 4hh habin miky sinhah min fun a ny m * Sulyr OS spiral , in john gold minor front , Parting gagen

Modul přidělování paměti

- · Udržuje údaje o stavu paměti
 - Celkový stav vs. paměť přidělená jednotlivým procesům
- Přiděluje paměť procesům, které o ni požádají

- malloc, new

• Uvolňuje paměť procesů, které se jí vzdají, ວັດປາໄດ້

- free, delete Programování - teorie, 6. ročník

Pr-6

Modul přidělování paměti

- Přiděluje/uvolňuje paměť vznikajícím/zanikajícím procesům během zavádění do paměti a přerušení.
- Obsluhuje tzv. chráněný režim. (hodby jedli az rodón)
 Přístup mimo přidělenou paměť způsobí HW přerušení,

 - které OS vyřeší zabitím provinilého procesu.

- B* he sjill your

Programování - teorie, 6. ročník

repulsed me blen men rengent

Modul správy souborů

- Sleduje stav souborů
- Rozhoduje
 - o přístupu procesů k souborům na základě jejich práv ochrana souborů.
 - o umístění souborů na disku (paměťovém médiu)
- Přiděluje soubor pro použití (otevření)
- · Vyžaduje vrácení souboru (zavření)

Programování - teorie, 6. ročník

34/48

Souborové systémy

- Moduly realizující souborový V/V
 - Pro různá fyzická zařízení (pevný disk, DVD, SSD, Flash, Ramdisk atd.)
 - V různých logických formátech (EXT4, FAT32, NTFS atd.)
- Logický formát dat
 - Soubory se dělí na bloky dat → nemusí být ukládány souvisle → různé datové struktury (tabulka, spojový seznam, stromové struktury).

Mri gi medem orbibled armi? = bride perforer joint (stylier magratu)

Modul správy periferií

- Rozhoduje o efektivním přidělování, plánuje V/V operace.
- Přiděluje, zahajuje V/V, vyžaduje vrácení.
- Realizuje virtualizaci zařízení
 - pomocí cache, vydává periferii za soubor

Proč?

- Periferie isou různě rychlé.
- Jsou od různých výrobců liší se v ovládání (každá má svůj ovladač). Programování - teorie, 6. ročník

Dispecer pros

Sleduje stav periferie (v HW smyslu).

Spooler myram

realizuje frontu požadavků (např. úloh pro tiskárnu)

- Aby numica poored porable ropi. Nichiem

Programování - teorie, 6. ročník

∫ Pr-6 6

Úrovně OS

- OS je hierarchický
 - Moduly tvoří jádro systému.
 - Moduly smí využívat služeb modulů na nižší úrovni a nesmí využívat moduly na vyšší úrovni.

Programování - teorie, 6. ročník

37/48

Pr-6 6

Proces - základní pojmy

- Úloha
 - Souhrn činností potřebných k provedení určité zakázky.
- Krok úlohy
 - Jednotka činnosti
 - Provádějí se postupně, v určitém pořadí

39/48

Pr-6 6

Úrovně OS

- Úroveň 1 modul přidělování procesoru na nižší úrovni
 - Plánovač procesů (žádosti o, přidělení, uvolnění prostředků)
- Úroveň 2 modul přidělování paměti
- Úroveň 3 modul přidělování procesoru na vyšší úrovni
 - Správa procesů, zasílání zpráv mezi procesy
- Úroveň 4 modul přidělování periferií
- Úroveň 5 modul správy souborů

Programování - teorie, 6. ročník

38/48

Romenton mere minon

- prices Inil => price dular price;

- prices Inil => price dular price => primh)

Nyruli je OS (price price OS or dular price => primh)

Nix prin

Proces - základní pojmy

Proces

(biring program) finish => regen br =>

- Výpočet, který lze provádět paralelně s ostatními výpočty.
- Vytváří jej OS.

Ly relia ryell' propini

- Adresový prostor
 - Oblast paměti, která je přidělena procesu.
 - Vymezuje legální adresy procesu (použije-li jiné, bude zabit).

Programování - teorie, 6. ročník

pressy si pritaji pomi OS (lakoy poilar lu OS)

4 whom suborgion a rayeller

40/48

Programování - teorie, 6. ročník

connul QL

 $\left\{ \begin{array}{c} \mathsf{Pr-6} \\ \mathsf{6} \end{array} \right\} \quad \ \ \, \left\{ \begin{array}{c} \mathsf{Pr-6} \\ \mathsf{6} \end{array} \right\}$

Proces – základní pojmy

Přerušení

(periford roand => myon thin => mother as much represent

- Mechanismus, díky němuž procesor přeruší svou činnost při určité události.
- · Obsluha přerušení
 - Předem registrovaná činnost (funkce), která je vyvolána v reakci na přerušení.
 - Obvykle je má pod palcem OS.

Programování - teorie, 6. ročník

41/48

∫ Pr-6 6

Proces

- Spuštěný počítačový program
 - v operační paměti, využívá procesor ("živý" program).
- Vykonávaný kód + jeho (dynamicky se měnící) data.
- OS zajišťuje ochranu paměti
 - procesy si nemohou vzájemně škodit
- Je řízen a spravován OS (viz moduly)
- OS provozuje více procesů zároveň přiděluje jim procesorový čas → multitasking.

Programování - teorie, 6. ročník

42/48

Pr-6 6

Vlákno

- Odlehčený proces
 - resp. proces se může dělit na vlákna.
- Vlákna sdílejí paměť procesu.
 - Menší režie OS při paralelním běhu
 - Nutnost řešit synchronizační problémy
 - Co když chce jedno vlákno proměnnou zapsat a zároveň jiné přečíst?
 - · Deadlock, race condition
- Ne všechny OS vlákna podporují.

Programování - teorie, 6. ročník

6

Multitasking

- Metoda přepínání procesů tak, aby se zdálo, že běží současně
 - i na jednom procesoru,
 - na více procesorech současně běžících úloh je obvykle více než dostupných procesorů.
- Výměna vykonávaných procesů → přepnutí kontextu
 - Jádro vymění obsah bázových registrů a IP (instruction pointer) tak, aby ukazovaly na paměť a kód dalšího procesu
- Dvě základní strategie
- Koperativní vs. preemptivní

Programování - teorie, 6. ročník

44/48

Ly ment smit advers produ

∫ Pr-6 6

Kooperativní multitasking

- Schéma chování
 - OS přiděluje procesu procesor.
 - Proces se po chvíli sám vzdá procesoru (zavolá funkci).
 - OS pak může přidělit procesor jinému procesu.
- Velmi nebezpečné
 - Co s chamtivými procesy? (viz MS Windows 3.11)
- Důvod vzniku
- Primitivní HW procesory bez podpory pro přerušování procesů
 Programování teorie, 6. ročník

Pr-6 6

Preemptivní multitasking

- Výhody
 - Havárie jednoho procesu neohrozí jiné procesy ani OS.
 - Vyšší bezpečnost
 - Vyšší plynulost
- Nevýhody
 - Vyžaduje podporu v HW.
 - Procesory určené pro běh OS mají privilegovaný režim.
 - Kontrolery takovýto režim nemají implementován.
- Složitější algoritmus v OS (jen drobný problém výrobce)

 Programování teorie, 6. ročník

Pr-6 6

Preemptivní multitasking

- Schéma chování
 - Jádro vynucuje přerušení běhu procesů (řádově 100 1000× za sekundu),
 - nastaví v procesoru časovač, pak dojde k vynucenému přerušení běhu,
 - následně spouští další proces → přepnutí kontextu.
- Musí mít podporu v HW (procesoru)
 - Jádro běží v privilegovaném režimu.
 - Může používat speciální instrukce, může zasahovat do chráněných oblastí paměti procesů.
 - Procesy samotné tu část procesoru, která přerušuje běh procesů využívat nesmějí (procesor jim to nedovolí).

Programování - teorie, 6. ročník

47/48

46/48

Pruoz bioin' fuel => r UNIT gara la DÉTIONI (mW, MAIO) => rusatur'
progray)

Pr-6

Životní cyklus procesu

