FEUILLE D'EXERCICE 2

Exercice 1 – Vrai ou Faux

Exercice	1 -	Vrai	ou	Faux
F				
V				
V				
F				
F				
V				
F				
F				
V				
F				
F				
F				
F				

Exercice 2 – 1. arbre:

2. Varaible libre

$$F \,: (\exists x, p(x, f(y))) \vee \neg \forall \mathbf{y}, q(\mathbf{y}, g(a, z, f(z)))$$

$$G: r(x) \vee ((\exists x, \forall y, p(f(x), z)) \wedge r(a)) \wedge \forall x, q(y, g(x, z, x))$$

- 3. Ce sont toutes les feuilles des arbres de la question 1
- 4. F: x, f(x), y, g(a, z, f(z))
 - G: x, f(x, z), y, g(x, z, x)
- 5. $F: (\exists x, p(x, f(f(a)))) \lor \neg \forall y, q(y, g(a, f(x), f(f(x))))$
 - $G: r(x), \forall ((\exists w, \forall y, p(f(w), f(x))) \land r(a)) \land \forall w, q(f(a), g(w, f(x), w))$

Exercice 3 – Arbre Binaire de Recherche

- 1. 1: Oui Node(Node(Nil, 10, Nil), 15, Node(Nil, 20, Nil)), 33, Node(Nil, 40, Nil))
 - 2 : Non (le noeud 12 devrai être à droite du noeud 10)
- 2. $\max(n,t) := n \in t \land \forall x, x \in t \Rightarrow x = n \lor x < n$
- 3. (a) $\forall x, \neg (x \in nil)$: Il n'y a pas de valeur dans une feuille
 - (b) $\forall x \ l \ v \ r, (x \in node(l, v, r) \Leftrightarrow x \in l \lor x = v \lor x \ in)$: Si x est dans un arbre alors il est soit dans la racine soit dans l'arbre de gauche soit dans l'arbre de droite
 - (c) $\forall t_1 t_2, \exists t, \forall x, (x \in t \Leftrightarrow x \in t_1 \land x \in t_2)$: Il existe une intersection entre deux arbres.
- 4. abr(t) vrai si t
 est un Arbre Binaire de R
cherche
 - (a) abr(nil)
 - (b) $\forall l, v, r, (abr(node(l, v, r)) \Leftrightarrow abr(l) \land abr(r) \land \forall x, (x \in l \Rightarrow x < v \land x \in r \Rightarrow v < x))$

5. $\forall t, u, abr(t) \land abr(u) \Rightarrow (abr(union(t, u)) \land \forall z, (z \in union(t, u) \Leftrightarrow z \in t \lor z \in u))$

Exercice 4 – Algorithmes satisfaibilité-validé

```
satisfiable(P) := non(valide(\neg P))

valide(P) := non(satisfiable(\neg P))
```

Exercice 5 – Interprétation en calcul des prédicats

1. formules:

	1	2	3	4	5
$\forall xy, P(x,y)$	\mathbf{F}	V	\mathbf{F}	\mathbf{F}	\mathbf{F}
$\exists xy, P(x,y)$	\mathbf{F}	V	V	V	V
$\exists x, \forall y, P(x, y)$	\mathbf{F}	V	V	\mathbf{F}	\mathbf{F}
$\exists y, \forall x, P(x, y)$	\mathbf{F}	V	\mathbf{F}	V	\mathbf{F}
$\forall x, \exists y, P(x, y)$	\mathbf{F}	V	\mathbf{F}	V	V
$\forall y, \exists x, P(x, y)$	\mathbf{F}	V	V	\mathbf{F}	\mathbf{F}

- 2. Toutes les cases sont noir
 - le tableau à au moin une case noir
 - Il y a une ligne noir
 - Il y a une colonne noir
 - il y a au moin une case noir par ligne
 - Il y a au moin une case noir pas colonne

Exercice 6 – Prouvez un résulatat théorique du théorème de la copacité

1. Satisfiable : Il exite une interpretation I, A_i vrai dans I Instasifiable : Pour toutes interprétations I, au moins un A_i est faux dans \mathcal{E}

- 2. Grâce à la compacité on peut dir que si $H \subset \mathcal{E}$ est instasifiable alors \mathcal{E} est aussi instasifiable
- 3. \mathcal{E} est instasifiable donc pour toutes interpretation $I \in \mathbb{B}^{\mathbb{N}}$ il existe $A_i \subset \mathcal{E}$ tel que A_i faux dans $I = \{A_i | i \in \mathbb{B}^{\mathbb{N}}\}$
- 4. Lemme de Köning: Tout arbre infini à branchement fini a une branche infinie.

Exercice 7 – Colirage de graphe

- Couleurs : $c \in C$
- (x_i^c) vrai si (x_i) est de couleur c

Graphe
$$\begin{cases} V = \{x_1, \dots x_n\} \\ E \subseteq V^2 \\ C = couleurs \end{cases}$$

n sommets et k couleurs

$$- n^{n}$$

$$- \left\{ x_{i}^{c} \Rightarrow \neg x_{i}^{d} | i \in V, c \neq d \in C \right\}$$

$$- \left\{ x_{i}^{c} \Rightarrow \neg x_{j}^{c} | c \in C, (x_{i}, x_{j}) \in E \right\}$$

$$- \left\{ x_{i}^{c_{1}} \lor \ldots \lor x_{i}^{c_{n}} | C = \left\{ c_{1}, \ldots, c_{n} \right\}, x_{i} \in V \right\}$$