M3 Midsem

Year 2020-21 - Y19 Batch

1st Oct 2020 Max Marks : 30 Duration : 90 Mins

In Online Mode Via Moodle

Q1

Question 1
Not answered
Marked out of
1.00
F Flag question

(a) Show that for any two complex numbers z_1 and z_2 , $\;|z_1+z_2|\geq ||z_1|-|z_2||.$ [2]

(b) Show that the function $f(z)=\sqrt{|(xy)|}$ is not differentiable at the (0,0), but the CR-Equations are satisfied at that point.

(c) Let a function f be analytic everywhere in a domain D. Prove that if f(z) is real valued for all z in D, then f(z) must be constant throughout D. [2]

Q2

Question **2**Not answered
Marked out of
1.00

P Flag question

(a) For any nonzero z, define $f(z)=\ln r+e^{i\theta}$, where $z=re^{i\theta}$ and $\frac{\pi}{4}<\theta\leq\frac{9\pi}{4}$. Show that the function is discontinuous on the ray $\theta=\frac{\pi}{4}$.

(b) Evaluate $(-1)^{\frac{1}{\pi}}$. [2]

(c) If f(z) = zIm(z), then determine the set of points where f'(z) exists, and find the value of f'(z) at all such points. [3]

Q3

Question **3**Not answered
Marked out of
1.00
Friag question

- (a) Evaluate the following integral: $\int_C \exp(z^5) dz$, where C is any simple closed contour in the counterclockwise direction.
- (b) Using generalised Cauchy integral formula, evaluate $\int_C \frac{\exp{(3z)}}{z^3} dz$, where C is the positively oriented unit circle |z|=1. [3]
- (c) Prove / Disprove : $\sin 3z$ is bounded function in $\mathbb{C}.$ [2]

Q4

Question **4**Not answered
Marked out of
1.00

Friag question

- (a) Assume that f(z) is entire and v(x, y) = Im [f(z)] has an upper bound v_0 in the xy plane. Show that v(x, y) must be constant throughout the plane. [3]
- (b) Consider the function $f(z)=z^2\sin\!\left(rac{1}{z^2}
 ight)$
- (i) Find the Laurent series $\$ representation of $\$ the function $\$ f(z) in the domain $\$ 0 < |z| < ∞ . Hence find the residue of the function $\$ f at $\$ z = 0. [3]
- (ii) Using the residue, evaluate the following integral $\int_C f(z) dz$, where C is the circle |z|=3 in the positive sense.