Credit Card Clients

Domain

This dataset describes and default payments of credit card clients in Taiwan from April to September 2005. It was sourced from the Department of Information Management, Chung Hua University, Taiwan and the Department of Civil Engineering, Tamkang University, Taiwan.

Past usage of the dataset include various proposals suggesting a classification problem such as the following:

https://www.linkedin.com/pulse/default-payment-prediction-system-duy-hoang-ly

Problem Statement

The dataset compares the predictive accuracy of probability of default based on 23 feature describing demographics such as gender, marital status and educational background as well as financial features such as payment lateness for the past 6 months, payment amount and line of credit. For any give set of features we will use a classification model to predict if a credit card client will default or not.

Dataset and Inputs

The data set contains 30k observations and 23 explanatory variables (56 categorical, 23 numeric) that are involved in assessing the category for default as 0 for not defaulting and 1 for defaulting.

The data set uses up 5.28 MB in memory.

Evaluation Metrics

The dataset is not evenly distributed as most credit card client do not default. We can use the success of the model measuring against the F1 score and determine if our model predicts the correct default class more reliably than the F1 score.

Data Exploration

As seen above the distribution of defaulting is about 80% to 20%. In the below plot we can see the demographic distribution of the dataset:

Education (1 = graduate school; 2 = university; 3 = high school; 4 = others)
Marital status (1 = married; 2 = single; 3 = others)

The dataset has a few more female clients than male with the majority of clients between the age of 25-40 and an almost evenly split between married and single.

Here is the summary of all features:

ID	LIMIT_BAL	SEX	EDUCATION
Min. : 1	Min. : 10000	Min. :1.000	Min. :0.000
1st Qu.: 7501	Min. : 10000 1st Qu.: 50000	lst Qu.:1.000	1st Qu.:1.000
Median :15000	Median : 140000 Mean : 167484	Median :2.000	Median :2.000
Mean :15000	Mean : 167484	Mean :1.604	Mean :1.853
3rd Qu.:22500	3rd Ou.: 240000	3rd Ou.:2.000	3rd Qu.:2.000
Max. :30000	3rd Qu.: 240000 Max. :1000000	Max. :2.000	Max. :6.000
		PAY 0	PAY 2
Min :0 000	Min •21 00 1	1in :-2 0000	Min :-2 0000
1st Ou :1 000	1s+ Ou :28 00	ls+ Ou :-1 0000	1st Ou :-1 0000
Median :2 000	Median :34 00	Median : 0 0000	Median : 0 0000
Mean 1 552	Mean :35.40	dean :-0.0000	Mean :-0.1338
3rd Ou +2 000	1st Qu.:28.00 Median :34.00 Mean :35.49 3rd Qu.:41.00	3rd Ou : 0 0000	3rd Ou . 0 0000
Max. :3.000	Max. :79.00	10 00 0.0000	May . 8 0000
DAY 2	PAY_4	DAY E	MAX G.OOOO
M4" . 2 0000	Min . 2 000	PAT_5	PAT_0
10+ 000 1 0000	10± 0 1 0000	9 MIN. :-2.00	00 Min. :-2.0000 00 lst Qu.:-1.0000 00 Median : 0.0000
1st Qu.:-1.0000	1st Qu.:-1.0000	9 IST QU.:-1.00	00 Ist Qu.:-1.0000
Median : 0.0000	Median : 0.0000	Median : 0.00	00 Median : 0.0000
Mean :-0.1002	Mean :-0.220	/ Mean :-0.20	62 Mean :-0.2911 00 3rd Qu.: 0.0000
	3rd Qu.: 0.0000	9 3rd Qu.: 0.00	00 3rd Qu.: 0.0000
Max. : 8.0000	Max. : 8.000	Max. : 8.00	00 Max. : 8.0000
BILL_AMT1	BILL_AMI2	BILL_AMT3	BILL_AMT4
Min. :-165580	Min. :-69///	Min. :-15/26	4 Min. :-170000 6 1st Qu.: 2327
1st Qu.: 3559	1st Qu.: 2985	1st Qu.: 266	6 1st Qu.: 2327
Median : 22382	Median : 21200	Median : 2008	8 Median : 19052 3 Mean : 43263
	Mean : 49179	Mean : 4701	3 Mean : 43263
3rd Qu.: 67091	3rd Qu.: 64006	3rd Qu.: 6016	5 3rd Qu.: 54506 9 Max. : 891586
Max. : 964511	Max. :983931	Max. :166408	9 Max. : 891586
BILL_AMT5	BILL_AMT6	PAY_AMT1	
Min. :-81334	Min. :-339603	Min. : 0	Min. : 0
lst Qu.: 1763	1st Qu.: 1256	lst Qu.: 1000	1st Qu.: 833
Median : 18104	1st Qu.: 1256 Median: 17071 Mean: 38872	Median : 2100	1st Qu.: 833 Median : 2009 Mean : 5921 3rd Qu.: 5000
		Mean : 5664	Mean : 5921
3rd Qu.: 50190	3rd Qu.: 49198	3rd Qu.: 5006	3rd Qu.: 5000
Max. :927171	Max. : 961664	Max. :873552	Max. :1684259
PAY_AMT3	PAY_AMT4	PAY_AMT5	PAY_AMT6
Min. : 0	Min. : 0	Min. : 0.	0 Min. : 0.0 5 1st Qu.: 117.8
lst Ou.: 390	lst Qu.: 296	1st Qu.: 252.	5 1st Qu.: 117.8
Median : 1800	Median : 1500	Median : 1500.	0 Median: 1500.0 4 Mean: 5215.5
Mean : 5226	Mean : 4826	Mean : 4799.	4 Mean : 5215.5
3rd Qu.: 4505	3rd Qu.: 4013	3rd Qu.: 4031.	5 3rd Qu.: 4000.0 0 Max. :528666.0
Max. :896040	Max. :621000	Max. :426529.	0 Max. :528666.0
DEFAULT			
Min. :0.0000			
lst Qu.:0.0000			
Median :0.0000			
Mean :0.2212			
3rd Qu.:0.0000			
Max. :1.0000			

We have to turn the various numerical features representing categories such as gender, education, marital status, age and history of past payment into factors and later one need to be one hot encoded. Also, a few values in the demographic features are zero, which is not defined in the legend. We can remove these outliers as they only make up 68 instances out of the 30k we have available.

Exploratory Visualization

When looking at the various demographic feature we can see that the distribution of defaulting to not defaulting is fairly similar to the dataset as a whole (about 80/20)

```
DEFAULT
SEX
           0
  1 0.7583277 0.2416723
  2 0.7922372 0.2077628
        DEFAULT
EDUCATION
                  0
        0 1.00000000 0.00000000
        1 0.80765234 0.19234766
        2 0.76265146 0.23734854
        3 0.74842384 0.25157616
        4 0.94308943 0.05691057
        5 0.93571429 0.06428571
        6 0.84313725 0.15686275
       DEFAULT
MARRIAGE
                 0
                             1
       0 0.90740741 0.09259259
       1 0.76528296 0.23471704
       2 0.79071661 0.20928339
       3 0.73993808 0.26006192
```

This is suggesting that payment history, payment delay and pf given credit are better predictors for defaulting. This can be confirmed by below correlations to the target:

LIMIT_BAL	-0.153519876
SEX	-0.039960578
EDUCATION	0.028006078
MARRIAGE	-0.024339216
AGE	0.013889834
PAY_0	0.324793728
PAY_2	0.263551202
PAY_3	0.235252514
PAY_4	0.216613637
PAY_5	0.204148914
PAY_6	0.186866362
BILL_AMT1	-0.019644197
BILL_AMT2	-0.014193218
BILL_AMT3	-0.014075518
BILL_AMT4	-0.010156496
BILL_AMT5	-0.006760464
BILL_AMT6	-0.005372315
PAY_AMT1	-0.072929488
PAY_AMT2	-0.058578707
PAY_AMT3	-0.056250351
PAY_AMT4	-0.056827401
PAY_AMT5	-0.055123516
PAY_AMT6	-0.053183340

Solution Statement

A solution to this problem will be a classification model such as a logistic regression, decision tree, random forest, gradient-boosted tree, multilayer perceptron, one-vs-rest.

We are going to fit the dataset on a decision tree which is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences. It is one way to display an algorithm that only contains conditional control statements. With that we are identifying the F1 score as a measure precision and recall and then using hyper parameter tuning, boosting and/or a different model to improve the score.

Algorithms and Techniques

The decision tree is fit with the standard algorithms. The quality of a split is measured by the Gini impurity with the best splitter and no maximal depth. The minimum number of samples required to split 2 and the minimum number of samples required to be at a leaf node is 1. The samples have equal weight and we do not limit the amount of features when looking at the best split. Since the decision tree requires minimal data transformation and feature engineering it is a good model to start with.

Benchmark Model

When fitting a decision tree with above described default algorithm we are getting a 0.99 score for the train set which is to be expected as we didn't specify maximum depth and decision trees can easily over fit on a data set. We are also getting a score of 0.72 on the test set and an F1 score of 0.40 for the test set's actual target values and the predicted values by the model. This has room for improvement and next we would apply a boosting method such as gradient boosting, try to set a maximum depth for the decision tree model fitting and identify other hyper parameters that can improve the model.

Project Design

In order to identify the best model for this project we should fit on various models such as logistic regression, decision tree, random forest, gradient-boosted tree, multilayer perceptron, etc instead of juts fitting the decision tree. Once we have scores for the various models we can select the most promising to further improve upon with hyper parameter tuning and/or boosting.