Teoremi di Fondamenti Matematici per l'Informatica

Carlo Ramponi May 8, 2019

1 L'ordinamento dei numeri naturali è un buon ordinamento

Enunciato

L'ordinamento dei numeri naturali è un buon ordinamento

Dimostrazione

Supponiamo che l'insieme $A\subseteq\mathbb{N}$ non abbia minimo e proviamo che allora $A=\emptyset$. Chiamiamo B il suo complementare $(B=\mathbb{N}\setminus A)$ e dimostriamo per induzione che

$$\forall n \in \mathbb{N} \quad \{0, 1, ..., n\} \subseteq B$$

- $0 \notin A$, altrimenti ne sarebbe il minimo, quindi $0 \in B$ e pertanto $\{0\} \subseteq B$.
- Supponiamo che $\{0,1,...,n\}\subseteq B$, allora $0,1,...,n\notin A$ e quindi $n+1\notin A$, altrimenti ne sarebbe il minimo, ma allora $n+1\in B$ e pertanto $\{0,1,...,n,n+1\}\subseteq B$.

Per il principio di induzione di prima forma un insieme con queste proprietà coincide con quello dei numeri naturali $(B = \mathbb{N})$ e quindi $A = \emptyset$

2 Il principio di induzione (seconda forma)

Enunciato

Sia P(n) una famiglia di proposizioni indicate su \mathbb{N} e si supponga che

- 1. P(0) sia vera
- 2. $\forall n > 0 (P(k)vera \forall k < n) \Rightarrow P(n)vera$

allora P(n) è vera $\forall n \in \mathbb{N}$

Dimostrazione

Sia $A = \{n \in \mathbb{N} | P(n) \text{ non è vera } \}$, e supponiamo per assurdo che $A \neq \emptyset$. Allora per la proprietà di buon ordinamento A ha minimo n.

Chiaramente $n \neq 0$ in quanto P(0) è vera per ipotesi.

Inoltre se k < n allora $k \notin A$ in quanto $n = \min A$, ma allora dalla (2) segue che P(n) è vera e quindi $n \notin A$, contraddicendo il fatto che $n \in A$.

3 La divisione euclidea (esistenza e unicità)

Enunciato

Siano $n, m \in \mathbb{Z}$ con $m \neq 0$, allora esistono unici $q, r \in \mathbb{Z}$ tali che

$$\begin{cases} n = mq + r \\ 0 \le r < |m| \end{cases}$$

Dimostrazione

- Esistenza Supponiamo dapprima che $n, m \in \mathbb{N}$, ed usiamo il principio di induzione della seconda forma su n.
 - Se n = 0 basta prendere q = 0 e r = 0.
 - Supponiamo n>0 e che la tesi sia vera $\forall k< n$. Se n< m basta prendere q=0 e r=n, altrimenti sia k=n-m, dato che $m\neq 0$, 0< k< n, quindi per ipotesi di induzione esistono $q,r\in\mathbb{N}$ tali che

$$\begin{cases} k = mq + r \\ 0 \le r < |m| \end{cases}$$

ma allora n = k + m = mq + r + m = (q + 1)m + r.

Supponiamo ora n < 0 e m > 0. Allora -n > 0 e quindi per il caso precedente si ha che esistono $q, r \in \mathbb{Z}$ tali che -n = mq + r e $0 \le r < m = |m|$. E quindi n = m(-q) - r. Se r = 0 abbiamo finito, se invece 0 < r < m allora 0 < m - r < m = |m| e n = m(-q) - r = m(-q) - m + m - r = m(-1 - q) + (m - r).

Sia infine m<0 allora -m>0, quindi per i due casi precedenti $\exists q,r\in\mathbb{Z}$ tali che n=(-m)q+r=m(-q)+r con $0\leq r<-m=|m|$

- Unicità Supponiamo che n=mq+r e n=mq'+r' con $0 \le r, r' < m$. Supponiamo che $r' \ge r$, allora m(q-q')=r'-r e quindi passando ai moduli si ha |m||q-q'|=|r'-r|=r'-r<|m|, da cui $0 \le |q-q'|<1$ e quindi |q-q'|=0 ovvero q=q'.
 - Ma allora da mq + r = mq' + r' segue che anche r = r'.