MOSCOW AVIATION INSTITUTE

National Research University

Parts and Assemblies Engineering (Mr. Dukhnovskiy Denis) Spring 2023

Report of LAB 1

Zhichao WANG

Report of LAB 1

Zhichao WANG

April 24, 2023

1 Problem Statement

Variant No.: 5

Table 1: List of variant

Variants	L, mm	H, mm	a, mm	P_1 , N	P_2 , N
5	5000	350	1000	4000	30000

Figure 1: The setting of problem

The geometry section of the variant is shown in Fig. (2), which is a rectangular equilateral T-Bar section based on Γ OCT 13622 - 90.

2 Material Selection

The material of the caps is set to be BT20 titanium since this material has a high ultimate tensile strength and the material of the web is set to be μ 16T aluminum alloy since this material is easy to process. The detailed parameters of these materials are shown in Fig. (3).

Figure 2: The geometry section of the variant

Material	Ultimate tensile strength $\sigma_{\rm B}$, MPa	Proof strength σ_{02} , MPa	Shear strength* $\tau_{\rm B}, \tau_{\rm 02}$ (% of tensile strength)	Modulus of elasticity E, GPa	Shear modulus G,GPa	Density, ρ g/cm ³
30ХГСА	1100	850	63	210	78	7,85
Д16Т	450	300	50	72	28	2,8
BT20	1000	910	50	110	44	4,5

 $[\]star$ - ultimate shear strength and proof strength are approximated by taking the denoted percentage of tensile ultimate and proof strength respectively

Figure 3: Table of material

3 Calculations

3.1 Define the loading

$$P_2 \cdot L - P_1 \cdot a = M_{C-C} = M(0) = 146 \text{kN} \cdot \text{m},$$
 (1)

$$P_2 \cdot (L - a) = M(a) = M(1) = 120 \text{kN} \cdot \text{m}.$$
 (2)

The load diagram is shown as Fig. (4). We can calculate the moment on the other two sections of

Figure 4: Load diagram

the bar, which are

$$M_{\rm B-B} = M(0.5) = P_2 \cdot (L - 0.5) - P_1 \cdot (a - 0.5) = 133 \text{kN} \cdot \text{m},$$
 (3)

and

$$M_{A-A} = M(4) = P_2 \cdot (L-4) = 30 \text{kN} \cdot \text{m}.$$
 (4)

3.2 Design the cap of spar

The equivalent height is

$$H_{\rm eq} = 0.95 H_{spar} = 332.5 \text{mm}.$$
 (5)

We can find the force in the three sections we have studied as

$$F_{\rm C-C} = F(0) = \frac{M(0)}{H_{\rm eq}} = 439.1 \text{kN},$$
 (6)

$$F_{\rm B-B} = F(0.5) = \frac{M(0.5)}{H_{\rm eq}} = 400.0 \,\mathrm{kN},$$
 (7)

and

$$F_{A-A} = F(4) = \frac{M(4)}{H_{eq}} = 90.2$$
kN. (8)

The ultimate tensile strength of the cap $[\sigma_{\text{ult}}] = 1000 \text{MPa}$ according to Table (3), thus the ultimate section area of the cap for the three sections are,

$$A_{\text{C-C,ult}} = \frac{F_{\text{C-C}}}{[\sigma_{\text{ult}}]} = 439.1 \text{mm}^2,$$
 (9)

$$A_{\rm B-B,ult} = \frac{F_{\rm B-B}}{[\sigma_{\rm ult}]} = 400.0 \,\mathrm{mm}^2,$$
 (10)

and

$$A_{\text{A-A,ult}} = \frac{F_{\text{A-A}}}{[\sigma_{\text{ult}}]} = 90.2 \text{mm}^2. \tag{11}$$

3.3 Determine the cross-section area

According to the "Section data" file-excel and the ultimate results in Section (3.2), the cross-section area is set as $A_{C-C} = A_{B-B} = 449.1 \text{mm}^2$ and $A_{A-A} = 247.2 \text{mm}^2$, as shown in Table (2).

Table 2: Rectangular Equilateral T-Bar Sections ΓΟCT 13622 - 90

No. Number of Profile	Number of Profile	Н	В	S	S1	R	r	Cross-sectional Area mm²	Weight kg/m	Moment of Inertia, cm ⁴	
			n	nm			Cross-sectional Area, iiiii	weight, kg/ili	I_x	I_y	
5	420159	26	40	3.0	4.5	2.5	0.0	247.2	0.704	1.44	1.05
10	420325	40	50	3.5	6.5	4.0	0.0	449.1	1.280	4.65	6.78

3.4 Check stress safety factor

$$\eta_{\rm C-C} = \frac{[\sigma_{\rm ult}]}{F_{\rm C-C}/A} = \frac{1000}{977.7} = 1.02,$$
(12)

$$\eta_{\rm B-B} = \frac{[\sigma_{\rm ult}]}{F_{\rm B-B}/A} = \frac{1000}{890.67} = 1.12,$$
(13)

$$\eta_{\text{A-A}} = \frac{[\sigma_{\text{ult}}]}{F_{\text{A-A}}/A} = \frac{1000}{364.9} = 2.74.$$
(14)

3.5 Local buckling for cap of spar

The local buckling for the cap is

$$\sigma_{\text{loc}} = \frac{0.9kE}{(b/\delta)^2},\tag{15}$$

where $b = \frac{B-S}{2}$, $k \approx 0.45$, $\delta = S1$ and $E_{\text{cap}} = 110$ GPa. Therefore,

$$\sigma_{\text{loc,C-C}} = \sigma_{\text{loc,B-B}} = \frac{0.9 \cdot 0.45 \cdot 110}{(23.25/6.5)^2} = 3.482 \text{GPa},$$
 (16)

$$\sigma_{\text{loc,A-A}} = \frac{0.9 \cdot 0.45 \cdot 110}{(18.5/4.5)^2} = 2.636\text{GPa}.$$
 (17)

The safety factor for the cap then would be

$$\eta_{\text{buckling},C-C} = \frac{\sigma_{\text{loc},C-C}}{\sigma_{C-C}} \ge 1,$$
(18)

$$\eta_{\text{buckling},B-B} = \frac{\sigma_{\text{loc},B-B}}{\sigma_{B-B}} \ge 1,$$
(19)

$$\eta_{\text{buckling,A-A}} = \frac{\sigma_{\text{loc,A-A}}}{\sigma_{\text{A-A}}} \ge 1.$$
(20)

3.6 Design web of spar

The shear stress in the web is

$$\tau_{\text{web}} = \frac{Q}{H_{\text{eq}} \cdot \delta_{\text{web}}}.$$
 (21)

The ultimate shear strength of the web $[\tau_{\text{ult}}] = 225\text{MPa}$ according to Table (3), thus thus the ultimate thickness of the web for the three sections are

$$\delta_{\text{C-C,ult}} = \frac{Q}{H_{\text{eq}} \cdot [\tau_{\text{ult}}]} = \frac{26}{332.5 \cdot 225} = 0.35 \text{mm}, \tag{22}$$

and

$$\delta_{\text{B-B,ult}} = \delta_{\text{A-A,ult}} = \frac{Q}{H_{\text{eq}} \cdot [\tau_{\text{ult}}]} = \frac{30}{332.5 \cdot 225} = 0.4 \text{mm}.$$
(23)

For the sake of safety, we round up the thickness of the web to $\delta = 2.8$ mm. Therefore, the area of the web is

$$A_{\text{web}} = H_{\text{eq}} \cdot \delta = 332.5 \cdot 2.8 = 931 \text{mm}^2,$$
 (24)

and the shear stress on the web is

$$\tau_{\rm C-C} = \frac{F}{A_{\rm web}} = \frac{26}{931} \times 10^3 = 27.93 \text{MPa},$$
(25)

and

$$\tau_{\rm B-B} = \tau_{\rm A-A} = \frac{F}{A_{\rm web}} = \frac{30}{931} \times 10^3 = 32.22 \text{MPa}.$$
(26)

3.7 Check the Stress safety factor for web

$$\eta_{\text{C-C}} = \frac{[\tau_{\text{ult}}]}{\tau_{\text{C-C}}} = \frac{225}{27.93} = 8.06,$$
(27)

$$\eta_{\rm B-B} = \eta_{\rm A-A} = \frac{225}{32.22} = 6.98.$$
(28)

3.8 Local buckling of the web without stiffeners

Local buckling shear stress in the web without stiffeners is

$$\tau_{\text{loc,web}} = \frac{0.9kE_{\text{web}}}{(b/\delta_{\text{web}})^2}, \quad k = 5.6 + \frac{3.8}{(a/b)^2},$$
(29)

where $E_{\text{web}} = 72\text{GPa}$, a = 5000 and b = 332.5. Therefore,

$$\tau_{\text{loc,web}} = \frac{0.9 \cdot 5.62 \cdot 72}{(332.5/2.8)^2} = 25.83\text{MPa},$$
(30)

and the safety factors are

$$\eta_{\text{buckling,C-C}} = \frac{\tau_{\text{loc,web}}}{\tau_{\text{C-C}}} = \frac{25.83}{27.93} = 0.92 \le 1,$$
(31)

and

$$\eta_{\text{buckling,B-B}} = \eta_{\text{buckling,A-A}} = \frac{\tau_{\text{loc,web}}}{\tau_{\text{C-C}}} = \frac{25.83}{32.22} = 0.80 \le 1.$$
(32)

Due to that the safety factors are less than 1 but larger than 0.6, it is necessary to add some stiff-eners.

3.9 Local buckling of the web with stiffeners

Local buckling shear stress in the web with stiffeners is

$$\tau_{\text{loc,web}} = \frac{0.9kE_{\text{web}}}{(b/\delta_{\text{web}})^2}, \quad k = 5.6 + \frac{3.8}{(a/b)^2},$$
(33)

where $E_{\rm web}=72{\rm GPa}$ and a/b=1 in the optimal case. We assume that $a=b=2.5{\rm mm},$ and therefore,

$$\tau_{\text{loc,web}} = \frac{0.9 \cdot 9.4 \cdot 72}{(332.5/2.8)^2} = 43.2 \text{MPa}, \tag{34}$$

and the the safety factor is

$$\eta_{\text{buckling,C-C}} = \frac{\tau_{\text{loc,web}}}{\tau_{\text{C-C}}} = \frac{43.2}{27.93} = 1.55,$$
(35)

$$\eta_{\text{buckling,B-B}} = \eta_{\text{buckling,A-A}} = \frac{\tau_{\text{loc,web}}}{\tau_{\text{C-C}}} = \frac{43.2}{32.22} = 1.34.$$
(36)

In all, 15 stiffeners are needed.

4 Sketch

Figure 5: S