Chapitre 2 : Recherche de plus court chemin

Cours Graphes & Applications

Unité Pédagogiques de Mathématiques, Ecole Supérieure Privée d'Ingénierie et de Technologies (ESPRIT)

Année Universitaire : 2024-2025

Plan

Introduction

Motivation

Définitions et terminologies

Algorithmes de résolution

Algorithme de DIJKSTRA

Algorithme de FORD BELLMAN

Algorithme de FLOYD-WARSHALL

Conclusion

A l'issu du chapitre 2, l'étudiant sera capable de :

- Identifier des problèmes dont les solutions sont données via une recherche du plus court chemin.
- Modéliser des situations réelles par des graphes.
- Application de l'algorithme de Dijkstra pour la recherche d'un plus court chemin.
- ► Connaître les limitations de l'algorithme de DIJKSTRA.
- Appliquer l'algorithme de FORD BELLMAN pour la recherche d'un plus court chemin dans un graphe à poids mixtes.
- Appliquer l'algorithme de FLOYD pour la recherche de plus courts chemins entre les différents couples de sommets dans un graphe à poids mixtes.
- Savoir comparer les algorithmes sur la base de leurs complexités algorithmiques.

Plan

Introduction

Motivation

Définitions et terminologies

Algorithmes de résolution

Algorithme de DIJKSTRA

Algorithme de FORD BELLMAN

Algorithme de FLOYD-WARSHALL

Conclusion

Exemple 1:

HONORIS UNITED UNIVERSITIES

- Beaucoup de problèmes de la vie quotidienne peuvent être représentés sous forme de graphes · · ·
- Le calcul de distance (et donc un plus court chemin) en est un des plus courants:

Google's map: le plus rapide / court chemin vers la destination SPRIT - Cours du soir, 18 Rue de l'Usi esprit ecole d'innénieurs Envoyer l'Énéraire vers votre téléphons 20 min via Avenue Fethi Zoubir DÉTAIL S via Rue De La Cité Sportive Ariana via Avenue de l'UMA/N10 OESPRIT - Cours du soir Découvrir ESPRIT - Cours du soir

Figure: Itinéraire de ESPRIT Ghazela à ESPRIT Charguia

Exemple 2:

Le routage : acheminement des paquets par le plus court chemin vers la destination

Figure: Illustration d'un réseaux de communication (source de l'image : internet)

Outline

Introduction

Motivation

Définitions et terminologies

Algorithmes de résolution

Algorithme de DIJKSTRA

Algorithme de FORD BELLMAN

Algorithme de FLOYD-WARSHALL

Conclusion

Définition 1 (**Graphe pondéré (ou valué)**)

On appelle **graphe pondéré** un graphe G=(V,E) muni d'une application $p:E\to X$ où X est l'ensemble des valeurs (la plupart du temps $\mathbb R$).

Cela revient à affecter un "poids" à chaque arête (ou arcs).

Définition 2

Soit G = (V, E) un graphe pondéré. Soit v_0, v_1, \cdots, v_n un chemin du graphe, la longueur du chemin est la somme des poids des arêtes (ou arcs) qui constituent le chemin.

Soit G = (V, E) un graphe un graphe orienté.

Définition 3 (Longueur du chemin)

Soit $m=<\nu_1,\nu_2,\cdots,\nu_k>$ un chemin reliant k sommets de G=(V,E) avec |V|=n :

$$v_i \in V, 1 \leq i \leq k, k \leq n.$$

La longueur du chemin m, notée l(m), correspond à la somme des poids (ou encore les coûts) associés aux arcs qui le composent:

$$l(m) = \sum_{e \in m} l(e) = \sum_{i=1}^{k-1} p(v_i, v_{i+1}).$$

Exemple:

- ▶ la longueur du chemin $m_1 = \langle A, E, B, F \rangle$ est $l(m_1) = p(A, E) + p(E, B) + p(B, F) = 3 + 6 + 10 = 19$.
- ▶ la longueur du chemin $m_2 = \langle A, E, B, C, F, D \rangle$ est $l(m_2) = p(A, E) + p(E, B) + p(B, C) + p(C, F) + p(F, D) = 3 + 6 + 7 1 3 = 12.$

Définition 4 (Distance/ Circuit absorbant)

- La distance entre deux sommets v_i et v_j avec $1 \le i, j \le n$ de V notée $\delta(v_i, v_j)$ est la plus petite longueur de tous les chemins qui les relie.
- $\delta(v_i, v_j) = +\infty$ S'il n'existe pas de chemin entre v_i et v_j ,
- $\delta(\nu_i, \nu_j) = -\infty$ S'il existe un chemin entre deux sommets ν_i et ν_j contenant un circuit de coût total négatif.
- Un circuit absorbant est un circuit dont le coût total est négatif.

Remarque: Une condition nécessaire d'existence de plus court chemin est l'absence de circuit absorbant.

Exemple:

- ▶ la distance entre A et B est $\delta(A,B) = 8$
- ▶ la distance entre D et C est $\delta(D,C) = \delta(D,F) + \delta(F,C) = 3 + 1 = 4$.
- ▶ la distance entre A et D est $\delta(A,D) = -\infty$: : il n'existe pas de plus court chemin entre A et D (existence de circuit absorbant).

Propriété des sous-chemins optimaux

Tout sous-chemin d'un plus court chemin est un plus court chemin.

Définition 5 (Problème du plus court chemin (PCC))

Le problème de plus court chemin entre deux sommets i et j consiste à déterminer un chemin de i à j de longueur minimale.

Remarque: Avec un graphe de taille importante, ceci risque de devenir rapidement impossible. Pour résoudre ce problème, on fait appel à des algorithmes.

Outline

Introduction

Motivation

Définitions et terminologies

Algorithmes de résolution

Algorithme de DIJKSTRA

Algorithme de FORD BELLMAN

Algorithme de FLOYD-WARSHALL

Conclusion

Quelques algorithmes de recherche de PCC:

Les algorithmes de résolution du problème de recherche du plus court chemin seront différents suivant:

- les propriétés du graphe:
 - praphe valué avec des poids positives,
 - praphe valué avec des poids de signes quelconques.
- le problème considéré:
 - recherche du plus court chemin d'un sommet à un autre,
 - recherche du plus court chemin d'un sommet à tous les autres,
 - recherche du plus court chemin entre tous les couples de sommets.

Outline

Introduction

Motivation

Définitions et terminologies

Algorithmes de résolution

Algorithme de DIJKSTRA

Algorithme de FORD BELLMAN

Algorithme de FLOYD-WARSHALL

Conclusion

Algorithme de DIJKSTRA : Principe

On considère le graphe orienté et valué G=(V,E) avec |V|=n et $V=(x_1,x_2,\cdots,x_n)$.

- Recherche du plus court chemin partant de la source x1 à toutes les autres destinations.
- On désigne par dist(j) : la longueur optimale du chemin entre le sommet x₁ et le sommet x_i.
- P: ensemble de sommets dont les distances sont fixées de manière Permanente: pour lesquels le plus court chemin a été déterminé.
- ► T = V\P: ensemble de sommets dont les distances sont fixées de manière Temporaire: pour lesquels le plus court chemin n'a été pas encore déterminé.
- ▶ A chaque itération un sommet est transféré de *T* vers *P*.
- ightharpoonup on note par $P_{cc}(j)$: le plus court chemin de $x_i \longrightarrow x_j$.
- Le calcul des plus courtes distances se fait de proche en proche par ajustements successifs.

Pseudo-code Algorithme de Dijkstra-Moore (1959)

Initialisation:

- dist(1) = 0
- Pour j de 2 à n faire

$$dist(j) = \left\{ \begin{array}{ll} \mathcal{C}_{1,j} & \text{ si } (x_1,x_j) \in A, \\ +\infty & \text{ sinon.} \end{array} \right.$$

- fin pour
- $Pcc(1) = (x_1), P = \{x_1\}, \text{ et } T = \{x_2, \dots, x_n\}$

Procédure itérative :

- Tant que $T \neq \emptyset$ faire
 - étape 1 : Choix de dist(k) optimale
 - - Détermination de x_k / $dist(k) = \min_{x_j \in T} dist(j)$
 - \bullet Mémorisation de $Pcc(k),\,P=P\cup\{x_k\}$ et $T=T/\{x_k\}$
 - étape 2 : Mise à jour des dist
 - Pour $x_j \in T$ et x_j successeur de x_k faire
 Si $dist(k) + C_{k,j} < dist(j)$ alors $dist(j) = dist(k) + C_{k,j}$
 - fin Si
 - fin Pour

- fin Tant que
- Afficher dist et Pcc.

		itérat	tion 0	itérat	ion 1	itérat	tion 2	itérat	tion 3	itérat	ion 4
j	×j	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)
2	2	15	(1, 2)								
3	3	8	(1, 3)								
4	4	8	(1, 4)								
5	5	4	(1, 5)								
	P	{1}									
	Т	{2, 3, 4, 5}									

		itérat	tion 0	itéra	tion 1	itéra	tion 2	itérat	tion 3	itérat	tion 4
j	×j	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)
2	2	15	(1, 2)	15	(1, 2)	12	(1, 5,4,2)				
3	3	∞	(1, 3)	11	(1, 5,3)	11	(1, 5,3)				
4	4	∞	(1, 4)	9	(1, 5,4)	-	-	-	-	-	-
5	5	4	(1,5)	-	-	-	-	-	-	-	-
	Р	{1}		{1	,5}	{1,	5,4}				
	Т	{2, 3, 4, 5}		{2,3	3, 4}	{2	,3}				

		itéra	tion 0	itéra	tion 1	itéra	tion 2	itéra	tion 3	itérat	tion 4
j	×j	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)
2	2	15	(1, 2)	15	(1, 2)	12	(1, 5,4,2)	12	(1, 5,4,2)		
3	3	∞	(1, 3)	11	(1, 5,3)	11	(1, 5,3)	-	-	-	-
4	4	∞	(1, 4)	9	(1, 5,4)	-	-	-	-	-	-
5	5	4	(1, 5)	-	-	-	-	-	-	-	-
	Р	{1}		{1	,5}	{1,	5,4}	{1,5	,4,3}		
	Т	{2, 3,	4, 5}	{2,3	3, 4}	{2	,3}	-{	2}		

		itéra	tion 0	itéra	tion 1	itéra	tion 2	itérat	tion 3	itéra	tion 4
j	x _j	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)
2	2	15	(1, 2)	15	(1, 2)	12	(1, 5,4,2)	12	(1, 5, 4, 2)	-	-
3	3	∞	(1, 3)	11	(1, 5,3)	11	(1, 5,3)	-	-	-	-
4	4	∞	(1, 4)	9	(1, 5,4)	-	-	-	-	-	-
5	5	4	(1, 5)	-	-	-	-	-	-	-	-
	P	-{	{1}		,5}	{1,	5,4}	{1,5	4,3}	{1,5,4	1,3,2}
	Т	{2, 3,	4, 5}	{2,3	3, 4}	{2	,3}	{}	2}	{	}

		itéra	tion 0	itéra	tion 1	itéra	tion 2	itéra	tion 3	itéra	tion 4
j	× _j	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)
2	2	15	(1, 2)	15	(1, 2)	12	(1, 5,4,2)	12	(1, 5, 4, 2)	-	-
3	3	00	(1, 3)	11	(1, 5,3)	11	(1, 5,3)	-	-	-	-
4	4	∞	(1, 4)	9	(1, 5,4)	-	-	-	-	-	-
5	5	4	(1, 5)	-	-	-	-	-	-	-	-
	P	{1}		{1	,5}	{1,	5,4}	{1,5	,4,3}	{1,5,4	4,3,2}
	Т	{2, 3,	4, 5}	{2,3	3, 4}	{2	,3}	-{	2}	{	}

Arborescence optimale :

		itéra	tion 0	itéra	tion 1	itéra	tion 2	itéra	tion 3	itéra	tion 4
j	x _j	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)
2	2	15	(1, 2)	15	(1, 2)	12	(1, 5,4,2)	12	(1, 5, 4, 2)	-	-
3	3	- 00	(1, 3)	11	(1, 5,3)	11	(1, 5,3)	-	-	-	-
4	4	∞	(1, 4)	9	(1, 5,4)	-	-	-	-	-	-
5	5	4	(1, 5)	-	-	-	-	-	-	-	-
	Р	{1}		{1	,5}	{1,	5,4}	{1,5	,4,3}	{1,5,4	4,3,2}
	Т	{2, 3,	4, 5}	{2,3	3, 4}	{2	,3}	-{	2}	{	}

Exemple d'application

Une entreprise située au sommet 1 doit distribuer la marchandise à ses clients situés aux sommets 2 à 6. La distance à parcourir d'un point à un autre et le sens de circulation sont indiqués dans la figure ci-contre.

Déterminer les plus courts chemins entre 1 et 2 et entre 1 et 6?

Exemple d'application

		itérat	tion 0	itérat	tion 1	itérat	tion 2	itérat	tion 3	itérat	tion 4	itéra	tion 5
j	×j	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)
2	2	70	(1, 2)	60	(1,3,2)	50	(1,3,5,2)	50	(1,3,5,2)	-	-	-	-
3	3	10	(1, 3)	-	-	-	-	-	-	-	-	-	-
4	4	- 00	(1, 4)	- 00	(1, 4)	80	(1, 5, 4)	80	(1, 5, 4)	80	(1, 5, 4)	-	-
5	5	- 00	(1,5)	30	(1,3,5)	-	-	-	-	-	-	-	-
	P	{:	1}	{1,	3}	{1, 3	3, 5}	{1, 3,	5, 6}	{1, 3, !	5, 6, 2}	{1, 3, 5,	6, 2, 4}
	т	{2, 3, 4	1, 5, 6}	{2, 4,	5, 6}	{2, 4	1, 6}	{2,	4}	{4	1}	-	}

- ▶ Le plus court chemin de 1 à 2 est < 1, 3, 5, 2 > de longueur 50.
- ightharpoonup Le plus court chemin de 1 à 6 est <1,3,6> de longueur 50.

Limite de l'algorithme de DIJKSTRA

Application de l'algorithme de DIJKSTRA : Itération 2

		itérat	tion 0	itérat	ion 1	itéra	tion 2	itérat	tion 3	itérat	tion 4	itérat	tion 5
j	×j	dist(x _j)	Pcc(x _j)	$dist(x_j)$	Pcc(x _j)	$dist(x_j)$	Pcc(x _j)	dist(x _j)	Pcc(x _j)	$dist(x_j)$	Pcc(x _j)	dist(x _j)	Pcc(x _j)
2	2	7	(1, 2)	-	-	-	-	-	-	-	-	-	-
3	3	8	(1, 3)	8	(1, 3)	-	-	-	-	-	-	-	-
4	4	∞	(1, 4)	11	(1, 2, 4)	11	(1, 2, 4)						
5	5		(1,5)	8	(1, 2, 5)	8	(1, 2, 5)						
6	6	∞	(1, 6)	9	(1, 2, 6)	9	(1, 2, 6)						
	Р	{:	1}	{1,	2}	{1, }	2, 3}						
	т	{2, 3, 4	4, 5, 6}	{3, 4,	5, 6}	{4, !	5, 6}						

Limite de l'algorithme de DIJKSTRA

- L'algorithme de DIJKSTRA n'a pas détecté le plus court chemin p = <1, 2, 5, 3 > pour aller du sommet 1 vers le sommet 3.
- $m\ell(p)=5$ alors que L'algorithme de DIJKSTRA nous a retourné $\pi(1,3)=8.$
- L'algorithme DIJKSTRA n'est plus utilisable dans le cas d'un graphe valué à poids mixtes.
- D'où la nécessité d'une autre démarche qui prend en considération la présence de poids négatifs, aussi bien des circuits absorbants : Algorithme de FORD BELLMAN.

Outline

Introduction

Motivation

Définitions et terminologies

Algorithmes de résolution

Algorithme de DIJKSTRA

Algorithme de FORD BELLMAN

Algorithme de FLOYD-WARSHALL

Conclusion

Algorithme de FORD BELLMAN: Principe

On considère le graphe orienté et valué G=(X,A) avec |X|=n et $C:A\longrightarrow \mathbb{R}$,la fonction coût associée.

Notation:

- Pour tout $j \in \{1, \cdots, n\}$, on note par $dist^k(j)$: la longueur optimale du chemin reliant la source x_1 à la destination x_j , composé d'au plus k sommets autre que l'origine. Cette longueur sera mise à jour tout au long du processus afin de déterminer $\delta(x_1, x_j)$, le plus court chemin reliant les deux sommets x_1 et x_j .
- Pour tout $j \in \{1, \dots, n\}$, on note par $\mathit{Pcc}(j)$: le plus court chemin associé au sommet x_j .
- ► Graphe ayant des coûts quelconques,
- ▶ Recherche du plus court chemin entre un sommet et tous les autres,
- ll y a convergence en absence de circuit absorbant,

Pseudo-code Algorithme de FORD BELLMAN

```
Étape 0 : Initialisation :
   • k = 1
   • dist^k(1) = 0
   • Pour j de 2 à n faire
         dist^1(j) = \begin{cases} \mathcal{C}_{1,j} & \text{si } (x_1, x_j) \in A, \\ +\infty & \text{sinon.} \end{cases}
   • fin pour
Étape 1 : Mise à jour des dist^k(j) :
   • Pour j de 1 à n faire
         dist^{k+1}(j) = \min(dist^k(j), \min(dist^k(l) + C_{l,j})), x_l sont les prédécesseurs de x_j.
   • fin pour
Étape 2 : Test de convergence :
   • Si \forall j \in \{1, \dots, n\}, dist^{k-1}(j) = dist^k(j) alors fin : optimalité atteinte
   • Sinon et Si k = n alors : il existe un circuit absorbant
   • Sinon, faire k = k + 1 et aller à l'étape 1.
```

Remarque: L'algorithme converge en n itérations.

k=1: Détermination des chemins composés d'au plus 2 sommets

		itérat	ion 1				
j	X _j	dist(j)	Pcc(j)				
1	1	0	(1, 1)				
2	2	7	(1, 2)				
3	3	8	(1, 3)				
4	4		(1, 4)				
5	5	∞	(1,5)				
6	6	00	(1,6)				

k=2 : Détermination des chemins composés d'au plus 3 sommets

		itérat	itération 1		tion 2			
j	×i	dist(j)	Pcc(j)	dist(j)	Pcc(j)			
1	1	0	(1, 1)	0	(1, 1)			
2	2	7	(1, 2)	7	(1, 2)			
3	3	8	(1, 3)	8	(1, 3)			
4	4	- 00	(1, 4)	11	(1,2,4)			
5	5	- 00	(1, 5)	8	(1,2,5)			
6	6		(1,6)	9	(1,2,6)			

k=3: Détermination des chemins composés d'au plus 4 sommets

		itérat	ion 1	itérat	tion 2	itéra	tion 3		
j	×į	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)		
1	1	0	(1, 1)	0	(1, 1)	0	(1, 1)		
2	2	7	(1, 2)	7	(1, 2)	7	(1, 2)		
3	3	8	(1, 3)	8	(1, 3)	5	(1,2,5,3)		
4	4	∞	(1, 4)	11	(1,2,4)	10	(1,2,5,4)		
5	5	∞	(1, 5)	8	(1,2,5)	8	(1,2,5)		
6	6	∞	(1, 6)	9	(1,2,6)	9	(1,2,6)		

k=4 : Détermination des chemins composés d'au plus 5 sommets

		itérat	ion 1	itéra	tion 2	itéra	tion 3	itéra	tion 4	
j	X _j	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	
1	1	0	(1, 1)	0	(1, 1)	0	(1, 1)	0	(1, 1)	
2	2	7	(1, 2)	7	(1, 2)	7	(1, 2)	7	(1, 2)	
3	3	8	(1, 3)	8	(1, 3)	5	(1,2,5,3)	5	(1,2,5,3)	
4	4	∞	(1, 4)	11	(1,2,4)	10	(1,2,5,4)	10	(1,2,5,4)	
5	5	- 00	(1, 5)	8	(1,2,5)	8	(1,2,5)	8	(1,2,5)	
6	6		(1, 6)	9	(1,2,6)	9	(1,2,6)	7	(1,2,5,3,6)	

k=5 : Détermination des chemins composés d'au plus 6 sommets

		itération 1		itération 2		itération 3		itération 4		itération 5	
j	×j	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)	dist(j)	Pcc(j)
1	1	0	(1, 1)	0	(1, 1)	0	(1, 1)	0	(1, 1)	0	(1, 1)
2	2	7	(1, 2)	7	(1, 2)	7	(1, 2)	7	(1, 2)	7	(1, 2)
3	3	8	(1, 3)	8	(1, 3)	5	(1,2,5,3)	5	(1,2,5,3)	5	(1,2,5,3)
4	4	∞	(1, 4)	11	(1,2,4)	10	(1,2,5,4)	10	(1,2,5,4)	10	(1,2,5,4)
5	5	- 00	(1,5)	8	(1,2,5)	8	(1,2,5)	8	(1,2,5)	8	(1,2,5)
6	6	∞	(1, 6)	9	(1,2,6)	9	(1,2,6)	7	(1,2,5,3,6)	7	(1,2,5,3,6)

Outline

Introduction

Motivation

Définitions et terminologies

Algorithmes de résolution

Algorithme de DIJKSTRA

Algorithme de FORD BELLMAN

Algorithme de FLOYD-WARSHALL

Conclusion

Algorithme de FLOYD-WARSHALL: Principe

- ▶ Une généralisation de l'algorithme de FORD-BELLMAN.
- Détermination d'un plus court chemin entre n'importe quel couple de sommets du graphe.
- Cet algorithme prend en entrée un graphe orienté et valué sous forme d'une matrice d'adjacence donnant le poids d'un arc lorsque l'arc existe et la valeur infinie sinon.

Variables de l'algorithme de FLOYD-WARSHALL :

On considère le graphe orienté et valué G=(X,A) avec |X|=n et $C:A\longrightarrow \mathbb{R}$,la fonction coût associée.

Notation:

- Pour tout $j \in \{1, \dots, n\}$, on note par dist(i, j): la longueur optimale du chemin reliant la source x_i à la destination x_j . Cette longueur sera mise à jour tout au long du processus afin de déterminer $\delta(x_i, x_j)$, le plus court chemin reliant les deux sommets x_i et x_j .
- ▶ Pour tout $i,j \in \{1, \dots, n\}$, on note par Pcc(i,j): le plus court chemin reliant les sommets x_i et x_j .

Pseudo-code Algorithme de FLOYD-WARSHALL

Étape 0 : Initialisation :

• Pour j de 1 à n faire

$$dist(i,j) = \begin{cases} 0 & \text{si } i = j, \\ C_{i,j} & \text{si } (x_i, x_j) \in A, \\ +\infty & \text{sinon.} \end{cases}$$

• fin si

$$\forall i \neq j, \, Pcc(i,j) = (x_i, x_j)$$

Étape 1 : Mise à jour des dist(i, j) :

- k = 1
- $\forall i \neq k \text{ et } j \neq k$, si dist(i,k) + dist(k,j) < dist(i,j) faire dist(i,j) = dist(i,k) + dist(k,j), et $Pcc(i,j) = Pcc(i,k) \cup Pcc(k,j)$.
- fin pour

Étape 2 : Test de convergence :

- \bullet Si $\exists i$ tel que dist(i,i) < 0 alors fin : il existe un circuit absorbant
- Sinon et Si k = n alors : optimalité atteinte
- Sinon, faire k = k + 1 et aller à l'étape 1.

Exemple d'application

Initialisation selon l'ordre des sommets 1-2-3-4-5

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \pi^{(0)} = \begin{pmatrix} X & 1 & 1 & X & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & X & X \\ 4 & X & 4 & X & X \\ X & X & X & 5 & X \end{pmatrix}$$

$$\pi^{(0)} = \begin{pmatrix} X & 1 & 1 & X & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & X & X \\ 4 & X & 4 & X & X \\ X & X & X & 5 & X \end{pmatrix}$$

k=1: insertion du sommet d'indice k (le premier sommet : ici c'est 1)

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \pi^{(0)} = \begin{pmatrix} X & 1 & 1 & X & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & X & X \\ 4 & X & 4 & X & X \\ X & X & X & 5 & X \end{pmatrix}$$

$$\pi^{(0)} = \begin{pmatrix} X & 1 & 1 & X & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & X & X \\ 4 & X & 4 & X & X \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\pi^{(1)} = \begin{pmatrix} X & 1 & 1 & X & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & X & X \\ 4 & 1 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

k=2 : insertion du sommet d'indice k (le deuxième sommet : ici c'est 2)

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \pi^{(1)} = \begin{pmatrix} X & 1 & 1 & X & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & X & X \\ 4 & 1 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$\pi^{(1)} = \begin{pmatrix} X & 1 & 1 & X & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & X & X \\ 4 & 1 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\pi^{(2)} = egin{pmatrix} X & 1 & 1 & 2 & 1 \ X & X & X & 2 & 2 \ X & 3 & X & 2 & 2 \ 4 & 1 & 4 & X & 1 \ X & X & X & 5 & X \end{pmatrix}$$

k=3 : insertion du sommet d'indice k (le troisième sommet : ici c'est 3)

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\pi^{(2)} = egin{pmatrix} X & 1 & 1 & 2 & 1 \ X & X & X & 2 & 2 \ X & 3 & X & 2 & 2 \ 4 & 1 & 4 & X & 1 \ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\pi^{(3)} = egin{pmatrix} X & 1 & 1 & 2 & 1 \ X & X & X & 2 & 2 \ X & 3 & X & 2 & 2 \ 4 & 3 & 4 & X & 1 \ X & X & X & 5 & X \end{pmatrix}$$

k=4 : insertion du sommet d'indice k (le quatrième sommet : ici c'est 4)

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \pi^{(3)} = \begin{pmatrix} X & 1 & 1 & 2 & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & 2 & 2 \\ 4 & 3 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$\pi^{(3)} = \begin{pmatrix} X & 1 & 1 & 2 & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & 2 & 2 \\ 4 & 3 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\pi^{(4)} = egin{pmatrix} X & 1 & 4 & 2 & 1 \ 4 & X & 4 & 2 & 4 \ 4 & 3 & X & 2 & 4 \ 4 & 3 & 4 & X & 1 \ 4 & 4 & 4 & 5 & X \end{pmatrix}$$

k=5 : insertion du sommet d'indice k (le cinquième sommet : ici c'est 5)

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\pi^{(4)} = \begin{pmatrix} X & 1 & 4 & 2 & 1 \\ 4 & X & 4 & 2 & 4 \\ 4 & 3 & X & 2 & 4 \\ 4 & 3 & 4 & X & 1 \\ 4 & 4 & 4 & 5 & X \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\pi^{(5)} = \begin{pmatrix} X & 5 & 5 & 5 & 1 \\ 4 & X & 4 & 2 & 4 \\ 4 & 3 & X & 2 & 4 \\ 4 & 3 & 4 & X & 1 \\ 4 & 4 & 4 & 5 & X \end{pmatrix}$$

Outline

Introduction

Motivation

Définitions et terminologies

Algorithmes de résolution

Algorithme de DIJKSTRA

Algorithme de FORD BELLMAN

Algorithme de FLOYD-WARSHALL

Conclusion

Conclusion:

On considère un graphe orienté valué G=(X,A) avec |X|=n, |A|=m et $\mathcal{C}:A\longrightarrow\mathbb{R},$ la fonction coût associée.

	DIJKSTRA	FORD BELLMAN	FLOYD WARSHALL
	d'un sommet	d'un sommet	paires
Type de chemins	vers les autres	vers les autres	de sommets
Complexité			
représentation du graphe	$\theta(n + m \log(n))$	$\theta(n \times m)$	
par listes d'adjacence			
Complexité			
représentation du graphe	$\theta(n^2)$	$\theta(n^3)$	$\theta(n^3)$
par matrice d'adjacence	. ,		
	Graphes	Graphes	Graphes
Cas d'utilisation	à poids positifs	à poids quelconques	à poids quelconques

