- 1. Изображения как структура данных. Базовые операции над изображением. Свертка изображения
- 2. Морфологические операции. Эрозия, дилатация, замыкание и размыкание: что это и для чего могут быть использованы.
- 3. Фильтр границ Канни, для чего используется, какие параметры за что отвечают.

Фильтр границ Канни (Кэнни) – алгоритм, который среди всех пикселей изображения в градациях серого выделяет множество пикселей, которые образуют границы между объектами. Содержит следующие шаги:

- 1. Сглаживание изображения с целью устранения шума. Сглаживание выполняется путем сворачивания изображения с гауссовым ядром фиксированного размера: $I = H(\sigma) * I_0$. Слишком маленькие значения σ не смогут убрать шум, что приведет к множеству ложноположительных срабатываний, а слишком большие превратят все изображение в слабо меняющийся градиент и уничтожат все границы.
- 2. Вычисление градиента, то есть полей частных производных яркости по двум координатам. Как правило, используется разностная схема размера 3×3 , то есть свертка с ядром оператора Собеля:

$$\begin{split} D_x &= \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{pmatrix}, \quad D_y = D_x^T; \\ G_x &= D_x * I, \quad G_y = D_y * I. \end{split}$$

Однако этот шаг может быть объединен с предыдущим: для этого нужно сворачивать исходное изображение с дифференцированным гауссовым ядром, то есть с дискретными приближениями $\partial_x h(0,\sigma), \partial_u h(0,\sigma)$.

- 3. По полученным значениям вычисляется массив абсолютных значений градиента ($G = \sqrt{G_x^2 + G_y^2}$, поэлементно) и массив направлений. Все направления округляются до одного из основных: вертикаль, горизонталь или одна из двух диагоналей, при этом сторона (влево или вправо) значения не имеет.
- 4. Все пиксели помечаются как границы или как не-границы по следующим правилам в указанном порядке:
 - (а) Если элемент не является локальным максимумом в направлении *своего* градиента, то элемент отмечается как не-граница. Например, если округленное направление градиента в I_{ij} вертикаль, то $G_{ij} \leqslant G_{i-1,j} \wedge G_{ij} \leqslant G_{i+1,j} \implies B_{ij} = 0$, где B выходной булев массив того же размера, что и изображение.
 - (b) Если модуль градиента $G_{ij} < \theta_{\text{low}}$, то $B_{ij} = 0$.
 - (c) Если $G_{ij} > \theta_{high}$, то $B_{ij} = 1$.
 - (d) В противном случае, если пиксель является локальным максимумом, но его абсолютное значение лежит между двумя пороговыми значениями, то он считается границей, если хотя бы один из 8 соседних был определен как граница с использованием предыдущего правила.

Параметры $\theta_{\text{low}}, \theta_{\text{high}}$ регулируют количество ошибок обоих родов, но придать им какой-либо физический смысл довольно сложно.

- 4. Преобразование Радона. Дискретное преобразование Радона. Оценка сложности.
- 5. Виды параметризации прямых на изображении и их свойства. Повторное вычисление преобразования Хафа и связь этой процедуры с поиском точки схода.
- 6. Преобразование Хафа и быстрое преобразование Хафа. Описание работы алгоритмов и их вычислительных характеристик.
- 7. Трехмерное быстрое преобразование Хафа для плоскостей. Параметризация, описание работы, вычислительная сложность.
- 8. Трехмерное быстрое преобразование Хафа для прямых. Параметризация, описание работы, вычислительная сложность.
- 9. История развития томографии. Строение томографа.
- 10. Взаимодействие рентгеновского излучения с веществом. Сведение зарегистрированных данных к виду преобразования Радона.
- 11. Преобразование Радона. Синограмма.

Опр. 1. Преобразование Радона Пусть $l_{\theta,s}$ – прямая, направляющий вектор

которой направлен под углом θ ($\theta=0$ соответствует горизональной прямой) и удаленная от начала координат на расстояние s. Тогда преобразованием Радона функции f(x,y) называется интеграл этой функции по параметризованной прямой:

$$\begin{split} \left[\mathcal{R}f\right](\theta,s) &= \int_{l_{\theta,s}} f(x,y) dl = \int_{\mathbb{R}^2} f(x,y) \delta(x\cos\theta + y\sin\theta - s) dx dy = \\ &= \int_{\mathbb{R}} f(s\cos\theta + z\sin\theta, s\sin\theta - z\cos\theta) dz. \end{split}$$

Каждая точка Радон-образа функции представляет собой "сумму" по прямой с определенными параметрами. Как правило, по обоим параметрам рассматривается равномерная дискретная сетка значений, где θ меняется от 0 до π , s – от 0 до некоторого максимального значения, соответствующего размеру сцены. Полученный массив значений называется синограммой, так как Радон-образом точечной функции является синусоида.

12. Теорема о центральном сечении.

Преобразование Фурье функций от одной и от двух переменных задаются следующими формулами:

$$\hat{f}(\omega) = \int_{\mathbb{R}} f(t)e^{-2\pi i(\omega t)}dt,\tag{1}$$

$$\hat{F}(u,v) = \int_{\mathbb{R}^2} f(x,y)e^{-2\pi i(xu+yv)}dudv. \tag{2}$$

Также введем сокращенное обозначение для преобразования Радона, считая θ фиксированным параметром, а s – переменной:

$$p_{\theta}(s) := \left[\mathcal{R} f \right] (\theta, s) \,.$$

Теор. 1. О центральном сечении. Преобразование Фурье от $p_{\theta}(s)$ совпадает со значениями двумерного преобразования Фурье от f(x,y) на некоторой прямой:

$$\hat{p}_{\theta}(\omega) = F(\omega \cos \theta, \omega \sin \theta)$$

 \Box . Преобразуем определение преобразований Фурье и Радона, используя основное свойство дельта-функции (а также $\delta(t) = \delta(-t)$):

$$\begin{split} \hat{p}_{\theta}(\omega) &= \int_{\mathbb{R}} p_{\theta}(s) e^{-2\pi i \omega s} ds = \\ &= \int_{\mathbb{R}^3} f(x,y) \cdot \delta(x\cos\theta + y\sin\theta - s) e^{-2\pi i \omega s} dx dy ds = \int_{\mathbb{R}^2} f(x,y) e^{-2\pi i \omega (x\cos\theta + y\sin\theta)} dx dy; \\ F(u = \omega\cos\theta, v = \omega\sin\theta) &= \int_{\mathbb{R}^2} f(x,y) e^{-2\pi i (xu + yv)} \bigg|_{\substack{u = \omega\cos\theta \\ v = \omega\sin\theta}} = \hat{p}_{\theta}(s). \end{split}$$

Таким образом, прямая, вырезанная из двумерного Фурье-образа исходной функции, проходящая через начало координат, фактически описывает интегралы этой функции вдоль всех прямых, параллельных вырезанной. Получить их можно при помощи обратного к (1) преобразования.

13. Алгоритм обратного проецирования (ВР).

Рассмотрим задачу восстановления исходной функции по ее Радон-образу. Если рассматривать модель непрерывного мира, то f(x, y) может быть восстановлена при помощи обратного проецирования (Back-projection):

$$[\mathcal{B}(p_{\theta}(s))](x,y) = \int_0^{\pi} p_{\theta}(x\cos\theta + y\sin\theta) d\theta. \tag{3}$$

Выражение (3) не совпадает с f(x,y), однако часто используется как его приближение.

$$f(x,y)=\mathcal{F}_2^{-1}\left[F(u,v)\right](x,y)=\int_{\mathbb{R}^2}F(u,v)e^{2\pi i(xu+yv)}dudv=\dots$$

Перейдем в последнем равенстве к полярным координатам по переменным интегрирования: $u = \omega \cos \theta, v = \omega \sin \theta, du dv = |\omega| d\omega d\theta$:

$$\cdots = \int_0^{\pi} \int_{-\infty}^{\infty} F(\omega \cos \theta, \omega \sin \theta) e^{2\pi i (x \cos \theta + y \sin \theta)\omega} |\omega| d\omega d\theta = \dots$$

Рис. 1: Суть backprojection в одной картинке

Используем теорему 1 для замены $F(\omega\cos\theta,\omega\sin\theta)=\hat{p}_{\theta}(\omega)$. Также введем для краткости обозначение $s=x\cos\theta+y\sin\theta$.

$$\int_0^\pi \int_{\mathbb{R}} |\omega| \hat{p}_{\theta}(\omega) e^{2\pi i s \omega} d\omega d\theta = \int_0^\pi \left[\mathcal{F}^{-1} \left(|\omega| \hat{p}_{\theta}(\omega) \right) \right](s) d\theta.$$

Если удалить из последнего выражения якобиан $|\omega|$, оставив под интегралом вместо выражения $\mathcal{F}^{-1}\left[\hat{p}_{\theta}(\omega)\right](s) = p_{\theta}(s) = p_{\theta}\left(x\cos\theta + y\sin\theta\right)$ то получится в точности выражение (3).

- 14. Алгоритм FBP.
- 15. Способ использования БПХ для определения наклона шрифта.
- 16. Способ использования БПХ для слепой компенсации радиальной дисторсии.
- 17. Способ использования БПХ для определения степени сбития камеры. Эпиполярная геометрия.
- 18. Быстрое вычисление суммы по любому отрезку и четырехвершиннику на изображении с помощью БПХ.
- 19. Сочетание $\mathbf{B}\mathbf{\Pi}\mathbf{X}$ и принципа четырех русских для случаях прямых в трехмерном пространстве.
- 20. Быстрая линейная бинарная кластеризация с помощью БПХ.
- 21. Робастное решение задачи линейной регресси путем вычисления М-оценок с помощью БПХ.