

(11)Publication number:

08-262650

(43)Date of publication of application: 11.10.1996

(51)Int.CI.

G03C 5/30 G03C 1/035 G03C 5/26 G03C 5/31

(21)Application number: 07-069522

(71)Applicant: KONICA CORP

(22)Date of filing:

28.03.1995

(72)Inventor: YAMATANI YORIHIRO

(54) PROCESSING METHOD OF SILVER HALIDE PHOTOGRAPHIC MATERIAL

(57)Abstract:

PURPOSE: To reduce a replenisher, provide excellent stability with the lapse of time without loosing sensitivity even by a quick processing, and improve silver tone property and color persistence property by using a developer and/or development replenisher containing specified compounds in processing.

CONSTITUTION: A developer and/or development replenisher having a compound represented by the formula I and a compound represented by the formula III are used in processing. In the formulae, R1, R2 each independently represent a hydroxyl group, an amino group, an acylamino group, or an alkylsulfonylanxino group. X represents an atomic group necessary for forming a 5 to 6 membered ring together with two vinyl carbon atom and carbonyl carbon atom substituted by R1, R2. X2 and Y, which may be the same or different, represent a hydrogen atom, a hydroxyl group, an alkyl group, an amino group, or an ammonium group. R21, R23 represent alkylene groups, and these alkylene groups

$$X_3 - X_{31} - 2 - (X_{33}) - 2 - X_{33} - X$$

П

may have ether bondings. R22 represents an alkylene group which may have an ether bonding.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-262650

(43)公開日 平成8年(1996)10月11日

	談別記号 5/30 1/035 5/26 5/31	庁内整理番号	FI G03C	5/30 1/035 5/26 5/31	技術表示箇所
--	---------------------------------------	--------	------------	-------------------------------	--------

審査請求 未請求 請求項の数6 OL (全 27 頁)

(21)出願番号

特願平7-69522

(22)出願日

平成7年(1995)3月28日

FP03-0238 -00W0-HP **03**, 12, 16

SEARCH REPORT

(71)出願人 000001270

コニカ株式会社

東京都新宿区西新宿1丁目26番2号

(72)発明者 山谷 自広

東京都日野市さくら町1番地 コニカ株式

会社内

(74)代理人 弁理士 高月 亨

(54) 【発明の名称】 ハロゲン化銀写真感光材料の処理方法

(57)【要約】 (修正有)

【目的】 補充液を低減し、迅速処理されても感度を損 なうことなく、経時安定性に優れ、銀色調性、残色性の 向上したハロゲン化銀写真感光材料の処理方法を提供す

*【構成】 現像処理に下記(1)で表される化合物及 び(2)で表される化合物を含有する現像液及び/また は現像補充液を用いるハロゲン化銀写真感光材料の処理 方法。

(1)

(2)

【特許請求の範囲】

【請求項1】支持体上に少なくとも1層のハロゲン化銀 乳剤層を有するハロゲン化銀写真感光材料の処理方法に おいて、

現像処理に下記一般式(])で表される化合物及び一般* 一般式(1)

*式(2)で表される化合物を含有する現像液及び/また は現像補充液を用いることを特徴とするハロゲン化銀写 真感光材料の処理方法。

【化1】

一般式(2)

$X^2 - R^2 = S - (R^2) - S - R^2 - Y$

一般式(1)中、R、、R、は各々独立にヒドロキシ 基、アミノ基、アシルアミノ基、アルキルスルホニルア ミノ基、アリールスルホニルアミノ基、アルコキシカル 表す。XはR、、R、が置換している2つのビニル炭素 原子とカルボニル炭素原子と共に5~6員環を形成する のに必要な原子群を表す。〔一般式(2)中、X1とY は同一でも異なってもよく、水素原子、ヒドロキシル 基、アルキル基、アミノ基、アンモニオ基、カルボキシ ル基、スルホ基、アミノカルボニル基、またはアミノス ルホニル基を表す。R²¹、R²³はアルキレン基を表し、 これらのアルキレン基はエーテル結合を有していてもよ 13. R214R23-CO-NH-R26-NH-CO-を表す。R^{2*}は~(CH₂)_{n1}-N(R^{2*})~(C H_{2})_{n2}-\$\tau_{1} \text{CH}_{2} \)_{n3}-S (CH₂)_{n4} -O-を表す。R'', R''はエーテル結合を有してもよ いアルキレン基、R^{**}は水素原子またはアルキル基を表 し、n, , n, , n, は1~5の整数を表す。) 【請求項2】現像液中に下記一般式(3)で表される化 合物を含有するととを特徴とする請求項] に記載のハロ ゲン化銀写真感光材料の処理方法。

[{£2}

一般式(3)

一般式(3)式中、R30はアリール基を表す。R31、R '', R'', R''は互いに同一でも異なっていてもよく、 50 【産業上の利用分野】本発明は、ハロゲン化銀写真感光

それぞれ水素原子、アルキル基、アラルキル基、アリー ル基を表す。

【請求項3】現像液に下記一般式(4)で表される化合 ボニルアミノ基、メルカプト基またはアルキルチオ基を 20 物を含むことを特徴とする請求項1または2に記載のハ ロゲン化銀写真感光材料の処理方法。

> [123] 一般式 (4)

一般式(4)中、Mは水素原子、アルカリ金属原子、ア ンモニウム基またはアルカリ条件下で開裂する基を表 R²⁷、またはエーテル結合を有してもよいアルキレン基 30 し、Lはアルキレン、アルケニレン、エーテル、チオエ ーテル、-CO-、-CS-、-NR-(Rは水素原子 あるいは置換してもよいアルキル基を表す)を単独また は組合せて構成される2価の有機基を表し、Xはアルキ ル置換してもよいアミノ基、アルキル置換してもよいア ンモニオ基、ヒドロキシ基、置換してもよいヘテロ環残 基を表す。 nは0または1を表す。

> 【請求項4】前記ハロゲン化銀乳剤層のハロゲン化銀粒 子が塩化銀含有率10モル%以上であることを特徴とす る請求項1ないし3のいずれかに記載のハロゲン化銀写 40 真感光材料の処理方法。

【請求項5】現像補充液の補充量が220ミリリットル /m以下であることを特徴とする請求項1ないし4のい ずれかに記載のハロゲン化銀写真感光材料の処理方法。 【請求項6】全処理時間(Edge to Edge) が35秒以内でなされることを特徴とする請求項 1 ない し5のいずれかに記載のハロゲン化銀写真感光材料の処 理方法。

【発明の詳細な説明】

[0001]

材料の処理方法に関する。特に、補充液を低減し、迅速 処理されても感度を損なうことなく、経時安定性に優 れ、銀色調、残色性の向上したハロゲン化銀写真感光材 料の処理方法に関する。

[0002]

【従来の技術】近年、ハロゲン化銀写真感光材料の消費 は増加の一途をたどっており、それに伴いハロゲン化銀 写真感光材料の現像処理枚数も増加していることから、 処理の迅速化が強く要望されている。また、使用される 処理液量も増えるために補充液を頻繁に交換しなくては 10 べる。一般式(l)は、次に示すとおりである。 ならず、補充量の低減も強く望まれている。また、廃液 重も、1996年からの海洋投棄禁止など、環境汚染負 荷低減や、処理作業の簡便化のために、低減あるいはリ サイクルする方向である。

【0003】単純な迅速化は、現像工程においては現像 時間の短縮となる。しかしこれによると現像が充分に行 われず、感度やコントラストの低下を伴うおそれがある ため、現像性の向上が必要である。その手段としては現 像主薬の増量や、現像液のpHアップなどが知られてい る。しかしこのための例えばこれらのような系の還元の 20 活性度を上げる方法は、そのままでは経時で現像液の空 気酸化耐性の劣化につながり、その結果安定な現像レベ ルを保つのが困難になる。空気酸化耐性の比較的良い現 像主薬を用いる方法も知られているが、例えばピラゾリ ドン類などの現像主薬は増量することにより処理した感 光材料の銀色調が劣化するとうい欠点がある。

【0004】また、現在、黒白ハロゲン化銀写真感光材 料を処理する処理液では現像主薬として主にジヒドロキ シベンゼン類、特にハイドロキノンを多量に使っている が、ハイドロキノンは毒性を持っていることから、環境 30 ノ基(アセチルアミノ基、ベンゾイルアミノ基など)、 負荷低減、作業環境向上のためにもこれに変わるものの 必要性が望まれてきた。その1つが米国特許第2688 549号、特開平3-249756などに記載のレダク トン類であるが、これらの化合物はアルカリ現像液中で は加水分解して酸を生成することで、現像活性を経時で 失っていくという欠点がある。

[0005]

【発明が解決しようとする課題】上記のような問題に対 して、本発明の課題は、補充液を低減し、迅速処理され ても感度を損なうととなく、経時安定性に優れ、銀色調 40 性、残色性の向上したハロゲン化銀写真感光材料の処理 方法を提供することにある。

[0006]

【課題を解決するための手段】本発明の上記課題は、支 持体上に少なくとも1層のハロゲン化銀乳剤層を有する ハロゲン化銀写真感光材料の処理方法において、現像処 理に一般式(1)で表される化合物及び一般式(2)で 表される化合物を含有する現像液及び/または現像補充 液を用いることを特徴とするハロゲン化銀写真感光材料 の処理方法によって達成された。(化学式は後記す

る)。

【0007】以下、本発明について詳述する。まず、本 発明に係る一般式(1)で表される化合物について説明 する。

【0008】本発明において、一般式(1)で表される 化合物は、現像液1リットル当たり0.005~0.5 モル、より好ましくは0.02~0.4モル用いるのが 好ましい。

【0009】次に、一般式(1)について更に詳しく述

[0010]

[(£4)

一般式(1)

【0011】上記一般式(1)中、R、、R、は各々独 立にヒドロキシ基、アミノ基、アシルアミノ基、アルキ ルスルホニルアミノ基、アリールスルホニルアミノ基、 アルコキシカルボニルアミノ基、メルカプト基、アルキ ルチオ基を表し、Xは環形成原子団で、好ましくは炭素 原子あるいは酸素原子あるいは窒素原子から構成され、 R、、R、が置換している2つのビニル炭素とカルボニ ル炭素と共同で5~6員環を構成する。更に、具体的に は、R,、R,は各々独立にヒドロキシ基、アミノ基 (置換基として炭素数1~10のアルキル基、例えばメ チル基、エチル基、n‐ブチル基、ヒドロキシエチル基 などを置換基として有するものを含む。)、アシルアミ アルキルスルホニルアミノ基(メタンスルホニルアミノ 基など)、アリールスルホニルアミノ基(ベンゼンスル ホニルアミノ基、p-トルエンスルホニルアミノ基な ど)、アルコキシカルボニルアミノ基(メトキシカルボ ニルアミノ基など)、メルカブト基、アルキルチオ基 (メチルチオ基、エチルチオ基など)を表す。R,、R えとして好ましい例として、ヒドロキシ基、アミノ基、 アルキルスルホニルアミノ基、アリールスルホニルアミ ノ基を挙げることができる。Xは好ましくは炭素原子あ るいは酸素原子あるいは窒素原子から構成され、R,、 R, が置換している2つのビニル炭素とカルボニル炭素 と共同で5〜6員環を構成する。Xの具体例としては、 -O-, -C(R,)(R,)-, -C(R,)=, C (=O) -、-N (R,)-、-N=を組み合わせて 構成される。ただしR、、R。、R、、R。は各々独立 に水素原子、炭素数1~10の置換してもよいアルキル 基(置換基としてヒドロキシ基、カルボキシ基、スルホ 基を挙げることができる)、炭素数6~15の置換して もよいアリール基(置換基としてアルキル基、ハロゲン 50 原子、ヒドロキシ基、カルボキシ基、スルホ基を挙げる

5 ことができる)、ヒドロキシ基、カルボキシ基を表す。 更にこの5~6員環には飽和あるいは不飽和の縮合環を 形成してもよい。との5~6員環の例として、ジヒドロ フラノン環、ジヒドロビロン環、ピラノン環、シクロベ ンテノン環、シクロヘキセノン環、ピロリノン環、ピラ ゾリノン環、ビリドン環、アザシクロヘキセノン環、ウ

ラシル環などが挙げられ、好ましい5~6員環の例とし* A - 1

*て、ジヒドロフラノン環、シクロペンテノン環、シクロ ヘキセノン環、ピラゾリノン環、アザシクロヘキセノン 環、ウラシル環を挙げることができる。以下に本発明の 一般式(1)で示される化合物の具体例を示すが、本発 明はこれに限定されるものではない。

[0012]

【化5】

A-2

A - 4

A - 5

[0013]

[{t6}

A - 8

$$A - 1 1$$

$$A - 1 2$$

[0014]

【化7】

$$A - 1 \ 3$$

$$A - 1 \ 4$$

$$A - 15$$

$$A - 16$$

$$A - 17$$

$$A - 1 8$$

[0015]

【化8】

11 A - 19

A - 21

A - 2 2

A - 20

【0016】次に、一般式(2)で表される化合物につ 20*処理性を向上させる目的で塩化銀含有率の高い粒子を用 いて詳述する。一般式(2)で表される化合物について は、従来、これを現像スターターに添加して、ランニン グ感度安定性を達成させうることが知られていた。これ に対し、本発明者は、現像液あるいは現像補充液中に上 記一般式(1)で表される化合物とともに、この一般式 (2) で表される化合物を含有させることにより、一般 式(1)で表される化合物のみの場合に対して経時安定 性、銀色調、残色性に優れる処理を実現できることを見 いだした。特に、銀色調については、感光材料の側から*

いた場合、従来の構成では見られなかった効果が得られ 【0017】すなわち、本発明の効果は一般式(1) (2)で表される化合物を用いることによって実現され たのである。 【0018】一般式(2)について更に述べる。一般式

(2)は、次のとおりである。

[0019]

[化9]

一般式(2)

$X^2 - R^{21} - S - (R^{22}) - S - R^{22} - Y$

レン基を表す。

【0020】一般式(2)中、X'とYは同一でも異な ってもよい水素原子、ヒドロキシル基、アルキル基、ア ミノ基、アンモニオ基、カルボキシル基、スルホ基、ア ミノカルボニル基、またはアミノスルホニル基を表す。 XとYとで環を形成してもよい。 X. Yの置換基として は、水素原子、炭素数1~5の置換基を有してもよいア ルキル基、例えばメチル基、エチル基、置換基を有して ミノ基、ジーシアノエチルアミノ基、モルホリノ基、ア ンモニオ基、例えばトリメチルアンモニオ基、アミノカ ルボニル基、例えばジメチルアミノカルボニル基、アミ ノスルホニル基、例えばジメチルアミノスルホニル基が 好ましい。

【0021】また、一般式(2)で表される化合物は無 機または有機の酸の塩でもよい。好ましい塩としては、 塩酸、硫酸、硝酸、臭化水素酸、蓚酸、p-トルエンス ルホン酸、メタンスルホン酸、トリフルオロメタンスル

ホン酸などが挙げられる。

【0022】R***、R**はアルキレン基を表し、これら のアルキレン基はエーテル結合を有していてもよい。 [0023] R224 R25-CO-NH-R26-NH-CO-R''、またはエーテル結合を有してもよいアルキ

[0024] R'* tt - (CH,) , -N (R'*) - (C もよいアミノ基、例えばジメチルアミノ基、ジエチルア 40 H.)。, -または-O-(CH.)。, -S-(CH.) .. - O - を表す。

> 【0025】R**、R**はエーテル結合を有してもよい アルキレン基、R^{**}は水素原子またはアルキル基を表 し、n, n, n, n, は]~5の整数を表す。 【0026】以下、一般式(2)で表される化合物の具 体例を示すが本発明において使用できる化合物はこれら の例示化合物のみに限定されるものではない。

[0027]

[12]

(2) - 2

(2) - 3

(2) - 4

(2) - 5

[0028]

【化11】

$$(2) - 6$$

15

$$(2) - 7$$

$$(2) - 8$$

(2) - 9

(2) -10

[0029]

【化12】

(2) - 12

(2) - 13

(2) - 14

(2) - 15

[0030]

【化13】

(2) -16¹⁹

(2) -17

(2) - 18

(2) - 19

[0031]

【化14】

21

(2) - 20

(2) - 21

H-(CH₂)₂-S-(CH₂)₂-S-(CH₂)₂-H

(2) - 22

HO-(CH₂)₂-S-(CH₂)₂-S-(CH₂)₂-OH

(2) - 23

H-(CH₂)₃-S-(CH₃)₃-S-(CH₃)₃-H

(2) - 24

HO-(CH₂)₄-S-(CH₂)₄-S-(CH₂)₄-OH

【0032】一般式(2)で表される化合物は、どく一般的な方法で合成することができる。例えば、米国特許3,021,215号、英国特許950.089号、ジャーナル・オブ・オーガニックケミストリー第26巻1991~1995頁(1961年)、新実験化学講座14巻,1713~1726頁丸善(1978年刊)などに記載の方法を参考に合成できる。

【0033】 Cれら一般式 (2) で表される化合物は、 1種でも、2種以上組み合わせて用いてもよい。一般式 (2) で表される化合物の現像液及び現像補充液への添加量は、 $1.6\times10^{-1}\sim1.6\times10^{-1}$ モル/リットルが好ましく、特に好ましくは $1.6\times10^{-1}\sim7.8\times10^{-1}$ モル/リットルである。

【0034】本発明の実施において、下記一般式(3)で表される化合物を現像液中に含有せしめるのは、好ましいことである。

[0035]

【化15】

40

一般式(3)

【0036】一般式(3)式中、R"はアリール基を表す。R"、R"、R"、R"は互いに同一でも異なっていてもよく、それぞれ水素原子、アルキル基、アラルキル基、アリール基を表す。

【0037】更に詳しくは、一般式(3)において、R 'ではアリール基(例えばフェニル、ナフチル基)を表

50 す。R**, R**, R**, R**はそれぞれ水素原子、アル

キル基(例えばメチル、エチル、プロビル、イソプロビ ルあるいは更に高級アルキル基など)、アリール基(例 えばフェニル、ナフチル基など)、アラルキル基 (例え ばベンジル基など)を表す。

【0038】また上記のR30のアリール基及びR31~R 11のアルキル基、アリール基、アラルキル基は各々置換 基を有していてもよく、各置換基としては例えばヒドロ キシ基、アルコキシ基、ヒドロキシアルキル基、アミノ 基、ニトロ基、スルホン酸基、カルボキシル基、ハロゲ ン原子を挙げることができる。

【0039】上記のうち、R*1は水素原子かアミノ基で 置換されたアルキル基、ヒドロキシアルキル基が好まし い。R**は水紫原子が好ましい。

【0040】更に好ましくはR"がヒドロキシアルキル 基であって、R"がヒドロキシアルキル基、アルキル 基、または置換アルキル基であって、R30がアリールま たは置換アリール基である場合である。

【0041】 これらのアルキル基の炭素数としては、4 以下が好ましい。

【0042】以下、一般式(3)で表される化合物の例 20 を挙げるが、これらに限定されるものではない。

[0043]3-1 1-フェニル-4.4-ジヒドロ キシメチルー3-ピラゾリドン

3-2 1-p-トリル-4, 4-ジヒドロキシメチル -3-ピラゾリドン

3-3 1-フェニル-4-ヒドロキシメチル-4-メ チルー3ーピラゾリドン .

3-4 1-フェニル-4, 4-ジメチル-3-ピラゾ

3-5 1-フェニル-2-ヒドロキシメチル-4, 4 30 -ジメチル-3-ピラゾリドン

3-6 1-フェニル-2-モルホリノメチル-4.4 ージメチルー3ーピラゾリドン

3-7 1-フェニル-2-モルホリノメチル-4-メ チルー3ーピラゾリドン

3-8 1-フェニル-2-ヒドロキシメチル-4-メ チルー3ーピラゾリドン

3-9 1-フェニル-5, 5-ジメチル-3-ピラゾ

3-11 1-p-トリル-4-メチル-4-ヒドロキ シメチルー3ーピラゾリドン

3-12 1-p-ヒドロキシフェニル-4, 4-ジメ チルー3ーピラゾリドン

3-13 1-0-トリル-4-メチル-4-ヒドロキ シメチルー3-ピラゾリドン

3-14 l-p-メトキシフェニル-4-メチル-4 -ヒドロキシメチル-3-ピラゾリドン

3-15 1-(3,5-ジメチル)フェニル-4-メ 50 きる。nは0または1を表す。

チルー4ーヒドロキシメチルー3ーピラゾリドン

【0044】一般式(3)で表される化合物は単独で用 いても、2種以上を併用して用いてもよい。現像液にお ける好ましい濃度は、現像液1リットルあたり一般式 (3)で表される化合物の総モル数として0.02~ 0.08モルが好ましい。

【0045】また本発明の実施において、一般式(4) で表される化合物を現像液に用いることも好ましい。一 般式(4)で表される化合物は、銀色調を改良する目的 10 で現像液に添加することは特開平5-249623など で知られているが、本発明に用いた場合、経時安定性や 残色性をさらに向上させ得ることが判った。

【0046】一般式(4)で表される化合物の現像液に おける好ましい濃度は、現像液1リットル当たり1×1 0-'モル~5×10-'モル、より好ましくは5×10-' モル~1×10-1モルである。

【0047】一般式(4)は、下記に示すとおりであ る。

[0048]

【化16】

一般式(4)

【0049·】(式中、Mは水素原子、アルカリ金属原 子、アンモニウム基またはアルカリ条件下で開裂する基 を表し、Lはアルキレン、アルケニレン、エーテル、チ オエーテル、-CO-、-CS-、-NR-(Rは水素 原子あるいは置換してもよいアルキル基を表す) を単独 または組合せて構成される2価の有機基を表し、Xはア ルキル置換してもよいアミノ基、アルキル置換してもよ いアンモニオ基、ヒドロキシ基、置換してもよいヘテロ 環残基を表す。nはOまたはlを表す。)

【0050】一般式(4)について更に詳しく説明す る。式中、Mは水素原子、アルカリ金属原子、アンモニ ウム基またはアルカリ条件下で開裂する基を表す。しは アルキレン、アルケニレン、エーテル、チオエーテル、 -CO-、-CS-、-NR- [Rは水素原子あるいは 3-10 1-フェニル-5-メチル-3-ピラゾリド 40 置換してもよいアルキル基を表す〕を単独または組合せ て構成される2価の有機基を表す。 しの好ましい例とし てアルキレンを挙げることができ、このアルキレン基に は置換基を有してもよい。 Xはアルキル置換してもよい アミノ基、アルキル置換してもよいアンモニオ基、ヒド ロキシ基、置換してもいヘテロ環残基を表す。アルキル 置換基としては、炭素数1~10のアルキル基が好まし く、さらにヒドロキシル基、カルボキシ基、スルホ基な どの親水性置換基が置換してもよい。Xの好ましい例と してアルキル置換してもよいアミノ基を挙げることがで

[0053]

4 - (5)

【化18】

26

25 【0051】一般式(4)で表される化合物の具体例を 下記に示す。たたし、以下例示に限定されるものではない。

[0052]

[化17] 4-(1)

4 - (2)

4 - (3)

4 - (4)

$$HS \xrightarrow{N \longrightarrow N} CH_2N < \frac{C_2H_4}{C_2H_4}$$

HS CH.CH.NH.

4 - (7)

30

[0054] [化19]

4 - (8)

HS
$$\stackrel{N}{\longrightarrow}$$
 CH.CH.N $\stackrel{\circ}{\longrightarrow}$ CH. CH. CH.

4 - (9)

4-(10)

[0055] [(£20]

(16)

30

4 - (11)

29

4 - (12)

 $4 - (13)^{\circ}$

【0056】上記一般式(4)で表される化合物の合成 は、例えば化合物4-(3)は、N、N-ジメチルグリ シンメチルエステル(エチルアルコール溶液)に、抱水 ヒドラシンを加えて反応させ、二硫化炭素を加え、水酸 化カリウム (エチルアルコール溶液) でアルカリとして 反応を進め、濃塩酸を加えることにより結晶として得る ことができる.

【0057】また、化合物(4)-(7)は、γーブチ ロラクトンを出発物質として、同様に合成できる。

【0058】現像液には、その他、必要に応じて保恒 剤、アルカリ緩衝剤、溶解助剤、銀スラッジ防止剤、 p H調整剤、硬膜剤などを含有させてもよい。

【0059】保恒剤としては、亜硫酸塩類、例えば亜硫 酸カリウム、亜硫酸ナトリウム、レダクトン類、例えば 40 ピペリジノヘキソースレダクトンなどを含んでもよく これらは、好ましくは0.2~1モル/リットル、より 好ましくは0.3~0.6モル/リットル用いるのがよ い。また、アスコルビン酸類を多量に添加することも処 理安定性につながる。

【0060】アルカリ級衝剤としては、水酸化ナトリウ ム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、 第三燐酸ナトリウム、第三燐酸カリウムの如き p H調節 剤を含む。さらに特開昭61-28708号明細書記載

カローズ、アセトオキシム、5-スルホサリチル酸、燐 酸塩、炭酸塩などの緩衝剤を用いてもよい。これらの薬 剤の含有量は現像液のpHを一般に好ましくは9.0~ 13、より好ましくはpH10~12.5とするように 選ぶ。

【0061】溶解助剤としては、ポリエチレングリコー ル類、及びこれらのエステルなど、増感剤としては、例 えば四級アンモニウム塩など、現像促進剤、界面活性剤 などを含有させることができる。

10 【0062】銀スラッジ防止剤としては、特開昭56-106244号明細書記載の銀汚れ防止剤、特開平3-51844号明細書記載のスルフィド、ジスルフィド化 合物、特願平4-92947号明細書のシステイン誘導 体あるいはトリアジン化合物が好ましく用いられる

【0063】有機抑制剤としてアゾール系有機カブリ防 止剤、例えばインダゾール系、イミダゾール系、ベンツ イミダゾール系、トリアゾール系、ベンツトリアゾール 系、テトラゾール系、チアジアゾール系化合物が用いら れる。

20 【0064】無機抑制剤としては、臭化ナトリウム、臭 化カリウム、沃化カリウムなどを含有する。この他、 L. F. A. メンソン著「フォトグラフィック・プロセ ッシング・ケミストリー」フォーカルプレス社刊(19 66年) の226~229頁、米国特許2, 193, 0 15号、同2,592,364号、特開昭48-649 33号明細書などに記載のものを用いてもよい。処理液 に用いられる水道水中に混在するカルシウムイオンを隠 蔽するためのキレート剤には、有機キレート剤として特 開平1-193853号明細書の鉄とのキレート安定化 定数が8以上のキレート剤が好ましく用いられる。無機 キレート剤としてヘキサメタ燐酸ナトリウム、ヘキサメ タ燐酸カルシウム、ポリ燐酸塩等がある。

【0065】現像硬膜剤としてはジアルデヒド系化合物 を用いてもよい。この場合、グルタルアルデヒドが好ま しく用いられる。但し、迅速処理のためには、硬膜剤は 現像処理工程で作用させるより、前記のように予め感光 材料の塗布工程で硬膜剤を含有させ作用させるほうが好 ましい。

【0066】本発明において現像液により処理する際の p H は 好ま しく は 9.0~13.00 の 範囲 で あり、 より好ましくは10.00~12.00のpHで処理さ

【0067】現像温度としては18~50℃、特に30 ℃~45℃であることが好ましく、現像時間としては6 ~15秒であることが好ましい。

【0068】この現像液には同一組成またはそれに準じ た組成の現像補充液が用いられる。本発明における補充 は、処理剤疲労と酸化疲労相当分を補充する。補充法と しては、特開昭55-126243号に記載の幅、送り の硼酸塩、特開昭60-93439号明細書記載のサッ 50 速度による補充、特開昭60-104946号記載の面

積補充、特開平1-149156号記載の連続処理枚数 によりコントロールされた面積補充でもよく、好ましい 補充量は220ミリリットル/m'以下、更に好ましく は50~200ミリリットル/m²、より好ましくは8 0~190ミリリットル/m¹ の現像補充液で補充され る。

31

【0069】次に本発明の実施の際用いることができる 定着剤について説明する。好ましい定着液としては、当 業界で一般に用いられている定着素材を含むことができ る。pH3.8以上、好ましくは4.2~5.5であ 3.

【0070】定着剤としては、チオ硫酸アンモニウム、 チオ硫酸ナトリウムなどのチオ硫酸塩であり、定着速度 からチオ硫酸アンモニウムが特に好ましい。該チオ硫酸 アンモニウムの濃度は0.1~5モル/リットルの範囲 が好ましく、より好ましくは0.8~3モル/リットル の範囲である。

【0071】本発明の実施に用いる定着液は酸性硬膜を 行うものであってもよい。この場合硬膜剤としてはアル ミニウムイオンが好ましく用いられる。例えば硫酸アル 20 ミニウム、塩化アルミニウム、カリ明礬などの形態で添 加するのが好ましい。

【0072】その他定着液には、所望により亜硫酸塩、 重亜硫酸塩等の保恒剤、酢酸、硼酸等のpH緩衝剤、鉱 酸(硫酸、硝酸)や有機酸(クエン酸、蓚酸、リンゴ酸 など)、塩酸などの各種酸や金属水酸化物(水酸化カリ ウム、ナトリウム)等の p H調整剤や硬水軟化剤を有す るキレート剤を含むことができる。また、以下の化合物 R-(B) n-CH₂-COOH

Rは水酸基、アミノ基、スルホ基、ニトロ基及びハロゲ 30 ン原子から選ばれる少なくとも 1 つの基または原子で置 換されたアルキル基またはアリール基を表す。 Bはエス テル結合、アミド結合、エーテル結合、チオエーテル結 合を表し、nはlまたは0である。を用いることも好ま しい。この化合物は単独で用いても複数の化合物と併用 してもよい。また、酢酸等のp H緩衝剤と併用すること は好ましく用いられる。とれらの化合物はまた、ナトリ ウムやカリウム等の塩として添加されてもよい。

【0073】定着促進剤としては、例えば特公昭45-2536号記載のチオ尿素誘導体、米国特許4.12 6、459号記載のチオエーテルなどが挙げられる。

【0074】次に本発明の被処理ハロゲン化銀写真感光 材料に用いることができるハロゲン化銀粒子について説 明する。

【0075】本発明にかかるハロゲン化銀乳剤は、現像 開始から、定替、水洗、乾燥終了までの全処理時間(E dge to Edge)が35秒以下で処理されると とが好ましい。

【0076】本発明に用いられる乳剤は、単独の乳剤で 50 158644号記載の凝集高分子剤例示G3、G8など

あってもよいし、2種以上の乳剤の混合によってもよ い。混合される乳剤は平板粒子どうしでもよいし、正常 晶やアスペクト比が2未満の双晶粒子でもよい。乳剤層 は一層でもよいが、複数の層で構成されてもよい。

【0077】ハロゲン化銀乳剤は単分散性であるものが 好ましく用いられ、平均粒径は中心に±20%の粒径節 囲に含ませるハロゲン化銀粒子が50重量%以上のもの が特に好ましく用いられる。

【0078】ハロゲン化銀乳剤は、塩化銀、臭化銀、塩 10 臭化銀、沃臭化銀、塩沃臭化銀等ハロゲン組成は任意で あるが、銀色調の点で、塩化銀含有率10%以上の塩臭 化銀あるいは塩沃臭化銀が好ましい。

【0079】ハロゲン化銀乳剤としては、粒子内部と表 面が異なるハロゲン化銀組成を有するコア/シェル型或 いは二重構造型の粒子も好ましく用いられる。なお、コ ア/シェル型乳剤を得る方法としては例えば米国特許 3,505,068号、同4,444,877号、英国 特許1,027,146号、特開昭60-14331号 などに詳しく述べられている。ハロゲン化銀乳剤のコア /シェル型粒子は、該粒子の最外殼層の沃化銀含有量 が、5モル%未満であり、このましくは3モル%未満で ある。

【0080】ハロゲン化銀粒子の最外殼層の沃化銀含有 量は種々の表面の元素分析手段によって検出できる。 X PS (X-ray Photoelectron Sp ectroscopy)、オージェー電子分光、ISS などの方法を用いることは有用である。最も簡便で精度 の高い手段としてXPSがあり、例えばハロゲン化銀粒 子の最外殼層の沃化銀含有率はこの方法による測定値に より定義することができる。

【0081】XPS表面分析法により分析される深さは 約10 A程度といわれている。 ハロゲン化銀粒子表面付 近のヨード含量の分析に使用されるXPS法の原理に関 しては、相原淳一らの「電子の分光」(共立ライブラリ -16, 共立出版発行、昭和53年)を参考にすること ができる。

【0082】上述した乳剤は、粒子表面に潜像を形成す る表面潜像型あるいは粒子内部に潜像を形成する内部潜 像型、表面と内部に潜像を形成する型のいずれの乳剤で 35754号、同58-122535号、同58-12 40 あってもよい。これらの乳剤は、物理熟成あるいは粒子 調製の段階でカドミウム塩、鉛塩、亜鉛塩、タリウム 塩、ルテニウム塩、オスミウム塩、イリジウム塩または その錯塩、ロジウム塩またはその錯塩などを用いてもよ

> 【0083】乳剤は可溶性塩類を除去するためにヌーデ ル水洗法、フルキュレーション沈法などの水洗方法がな されてもよい。好ましい水洗法としては、例えば特公昭 5-16086号記載のスルホ基をふくむ芳香族炭化水 **素系アルデヒド樹脂を用いる方法、または特開昭63-**

を用いる方法が特に好ましい脱塩法として挙げられる。 【0084】乳剤に化学増感を施す場合の増感手段とし ては、いわゆる硫黄増感、Se化合物による増感、Te 化合物による増感、金増感、周期律表VIII族の貴金 属(例えばPd、Pt、idなど)による増感、及びこ れらの組み合わせによる増感法を用いることができる。 中でも金増感と硫黄増感との組み合わせや、金増感とS e化合物による増感の組み合わせが好ましい。また、還 元増感と併用して行うことも好ましい。

給することは、感度や色素吸着の面から好ましい。特に 沃化銀の偽粒子の形態で添加する方法が好ましい。

【0086】化学増感をハロゲン化銀に吸着性をもつ化 合物の存在下で行うことも好ましい。化合物として特に アゾール類、シアゾール類、トリアゾール類、テトラゾ ール類、インダゾール類、チアゾール類、ビリミジン 類、アザインデン類、特にこれらのメルカプト基を有す る化合物やベンゼン環を有する化合物が好ましい。

【0087】還元処理、いわゆる還元増感を用いる場合 Ag=1~7の銀イオン過剰状態を経過させる方法、高 pH熟成と呼ばれるpH=8~11の高pH状態を経過 させる方法などによって、これをハロゲン化銀乳剤に施 すことができる。またこれら2つ以上の方法を併用する とともできる。

【0088】還元性化合物を添加する方法は、還元増感 の程度を微妙に調節できる点で好ましい。

【0089】還元性化合物としては、無機または有機化 合物のいずれでも良く、二酸化チオ尿素、第一スズ塩、 アミン及びポリアミン類、ヒドラジン誘導体、ホルムア 30 ミジンスルフィン酸、シラン化合物、ボラン化合物、ア スコルビン酸及びその誘導体、亜硫酸塩などが挙げら れ、特に好ましくは二酸化チオ尿素、塩化第一スズ、ジ メチルアミンボランが挙げられる。これら還元性化合物 の添加量は、その化合物の還元性及びハロゲン化銀の種 類、溶解条件等の乳剤製造条件によって異なるが、ハロ ゲン化銀1モル当たり1×10~8~1×10-1モルの 範囲が適当である。とれらの還元性化合物は、水あるい はアルコール類などの有機溶媒に溶解させハロゲン化銀 粒子の成長中に添加される。

【0090】ハロゲン化銀粒子の最外殼層でない任意の 部分及び/または殼層に還元処理を施し、そのままさら に粒子を成長させることも好ましく、効果制御の点から 多段積層される内部殼層表面、例えば種乳剤粒子表面あ るいは成長休止時の殼層表面に施されることが好まし 44.

【0091】還元処理は、特開昭2-135439号、 同2-136852号などに示されているチオスルフォ ン酸化合物の存在下で行われてもよい。

素類その他の分光増感色素を用いて分光増感がなされて よい。用いられる色素は、シアニン色素、メロシアニン 色素、複合シアニン色素、複合メロシアニン色素、ホロ ボーラーシアニン色素、ヘミシアニン色素、スチリル色 素及びヘミオキソノール色素が包含される。特に有用な 色素はシアニン色素、メロシアニン色素及び複合メロシ アニン色素に属する色素である。これらの色素類は通常 利用されている核のいずれをも適用できる。即ち、ピロ リン核、オキサゾリン核、チアゾリン核、ピロール核、 【0085】化学増感時または終了時に沃索イオンを供 10 オキサゾール核、チアゾール核、セレナゾール核、イミ ダゾール核、テトラゾール核、ビリジン核などで、これ らの核に脂肪式炭化水素環が融合した核、即ちインドレ ニン核、ベンズインドレニン核、インドール核、ベンズ オキサゾール核、ナフトオキサゾール核、ベンソチアゾ ール核、ナフトチアゾール核、ベンゾセレナゾール核、 ベンズイミダゾール核、キノリン核などが適用できる。 これらの核は炭素原子上に置換されてもよい。

【0093】メロシアニン色素または複合メロシアニン 色素にはケトメチン構造を有する核として、ピラゾリン は、還元性化合物を添加する方法、銀熟成と呼ばれるp 20 -5-オン核、チオビタントイン核、2-チオオキサゾ リジン-2,4-ジオン核、チアゾリン-2,4-ジオ ン核、ローダニン核、チオパルビツール酸核など5~6 員異節環核を適用することができる。

> 【0094】これらの技術は、例えばドイツ特許第92 9,080号、米国特許第2,231,658号、同第 2, 493, 748号、同第2, 503, 776号、同 第2,519,001号、同第2,912,329号、 同第3,655,394号、同第3,656,959 号、同第3,672,897号、同第3,649,21 7号、英国特許第1,242,588号、特公昭44-14030号に記載されたものである。

【0095】とれらの増感色素は単独に用いてもよい が、それらを組み合わせて用いてもよい。増感色素は組 み合わせてしばしば用いられる。それらの代表的な例と しては、米国特許第2,688,545号、同第2,9 77, 299号、同第3, 397, 060号、同第3, 522,052号、同第3,527,641号、同第 3, 617, 293号、同第3, 628, 964号、同 第3,666,480号、同第3,679,428号、 40 同第3,703,377号、同第3,837,862 号、英国特許第1,344,281号、特公昭43-4 936号などに記載されている。

【0096】増感色素の添加時間は粒子形成時、化学増 感の前後や途中、塗布時までの任意の時期を選択できる が、数カ所に添加することが好ましい。

【0097】感光材料には支持体と乳剤層の間にクロス オーバーカット層を設けてもよい。この層は支持体と親 水性コロイド層の間に設けられる下引き層でもよいし、 下引き層と乳剤層の間に染料層を設けてもよい。下引き 【0092】ハロゲン化銀写真感光材料には、メチン色 50 層に用いられる染料としては、ビラゾロン核やバルビツ

ール酸核を有するオキソノール染料、アゾ染料、アゾメチン染料、アントラキノン染料、アリーリデン染料、スチリル染料、トリアリールメタン染料、メロシアニン染料、シアニン染料などが挙げられる。染料層に用いられる染料は微粒子状態で分散されていてもよい。染料としては具体的には特開昭2-264272号の6頁~12頁に記載の例示化合物(I-2、4、6、8、9、10、11、12、13~27、11-2、5、6、II1-3、4、6、8、9、10、11、12、14~28、IV-3、5、6、8、10~16、V-3、5、6、7)などが挙げられ使用することができる。

【0098】また、これらの化合物は、国際特許公報88/04794、ヨーロッパ特許0274723A1号、同276、566号、同299、435号、特開昭52-92716号、同55-155350号、55-155351号、同61-205934号、同48-68623号、米国特許第2、527、583号、同3、486、897号、同3、746、539号、同3、9*

*33,798号、同4,130,429号、同4,04 0,841号等に記載されている方法に準じて容易に合成することができる。

【0099】乳剤には、物理熱成または化学熱成前後の工程において、各種の写真用添加剤を用いることができる。ヒドラジン化合物を添加することもでき、特開平5-134743の化合物が好ましく、特にその一般式(5)及び造核促進剤として一般式(7)、(8)が好ましい。テトラゾリウム塩を添加することもでき、特開10平2-250050記載のものがとくに好ましい。その他、公知の添加剤としては、例えばリサーチ・ディスクロージャー(RD)No.17643(1978年12月)、同No.18716(1979年11月)及び同No.308119(1989年12月)に記載された化合物が挙げられる。これら3つのリサーチ・ディスクロージャーに示されている化合物種類と記載箇所を以下に掲載した。

	添加剂	RD-1	7643	RD-187	16 RD-3	08119
		頁	分類	頁 分類		分類
	化学增感剤	2 3	111	6 4 8 右上	996	111
	增感色素	2 3	JV	648~649	996~8	1 V
	減感色素	2 3	l V		998	В
	染料 2	25~26	VIII	649~650	1003	VIII
	現像促進剤	29	IXX	648右上		
	カブリ制御剤	リ・安定				
		2 4	1 V	649右上	1006~7	VΙ
	增白剤	2 4	V		998	V
	硬膜剤	26	Χ	651左	1004~5	X
	界面活性剤	26~7	ΙX	650右	1005~6	ΧI
	帯電防止剤	2 7	XII	650右	1006~7	XIII
	可塑剤	2 7	XII	650右	1006	XII
	スペリ剤	2 7	XII			
	マット剤	2 8	XVI	650右	1008~9	XVI
	バインダー	2 6	XXII		1003~4	ΙX
	支持体	2 8	XVII		1009	IIVX
ŀ		1				

【0100】感光材料に用いることのできる支持体としては、例えば前述のRD-17643の2頁及びRD-18716の1009頁に記載されているものが挙げられる。また支持体としてポリエチレン-2、6-ナフタ 40レートを用いてもよい。適当な支持体としてはプラスチックフィルムなどで、これら支持体の表面には塗布層の接着をよくするために、下塗層を設けたり、コロナ放電、紫外線照射などを施してもよい。

【0101】本発明において現像液とは、実際に感光材料を現像する処理液を示し、好ましくは自動現像機の現像槽に入る現像液である。現像補充液とは、感光材料現像中に補充する補充液をいう。

【0102】本発明の好ましい処理時間は、Edge する to Edge 35秒以内であるが、25秒以下が好 50 い。

ましい。 C C で E d g e t o E d g e とは、被処理 感光材料の一部(例えば先端部)について処理液による 処理が開始し、処理が終了して同一部が乾燥状態になる (例えば乾燥されて排出される)までの時間(いわゆる 渡り時間を含む)を言う。

【0103】自動現像機を用いる場合、被処理感光材料の先端が現像液に浸漬し始める時点から、処理工程を経て、同先端が乾燥ゾーンを出てくるまでの時間が35秒以下であることが好ましく、10秒~25秒が特に好ましい。

[0104]

【実施例】以下、本発明を実施例を用いて具体的に説明 するが、本発明はこれらによって限定されるものではない。

特開平8-262650

37

【0105】実施例1

本実施例においては、例えばX線用感光材料として利用 可能なハロゲン化銀写真感光材料について、本発明の処米

*理方法を適用した。ここではまず、以下の方法により、 六角平板種乳剤を作成した。

【0106】次の溶液A~Dを用いた。

〈溶液A〉

オセインゼラチン

60.2g

茲留水

20. 0リットル

ポリイソプロピレンーポリエチレンオキシージコハク酸

エステルナトリウム塩10%エタノール水溶液

5. 6ミリリットル

КВг

26.8g

10%H, SO.

144ミリリットル

(溶液B) AgNO.

1487.5g

蒸留水で 3500ミリリットルとする。

〈溶液C〉

KВг

1029g

K 1

29.3g

蒸留水で 3500ミリリットルにする 〈溶液D〉

1. 75N KBr水溶液

下記銀電位制御量

【0107】35℃において、特公昭58-58288 20※した。添加終了後3%KOHによってpHを6に合わ 号、同58-58289号に示される混合撹拌機を用い て、溶液Aに溶液B及び溶液Cの各々64.1ミリリッ トルを同時混合法により2分間で添加し、核形成を行っ た。

【0108】溶液B及び溶液Cの添加を停止した後、6 0分間で溶液Aの温度を60℃に上昇させ、再び溶液B と溶液Cを同時混合法により、各々68.5ミリリット ル/minの流量で50分間添加した。この間の銀電位 (飽和銀-塩化銀電極を比較電極として銀イオン選択電

せ、直ちに脱塩、水洗を行い種乳剤EM-0とした。と のように作成した種乳剤EM-0は、ハロゲン化銀粒子 の全投影面積の90%以上が最大隣接辺比が1.0~ 2. 0の六角平板粒子よりなり、六角平板の厚さ0. 0 $7 \mu m$ 、平均直径(円直径換算)は $0.5 \mu m$ であると とが電子顕微鏡観察により判明した。

【0109】(平板乳剤の調製)以下の4種類の溶液を 用いて1.53モル%Aglを含有する平板状沃臭化銀 乳剤EM-1を作成した。

極で測定)を溶液Dを用いて+6mVになるように制御※30 【0110】

〈溶液A1〉

オセインゼラチン

29.4g

ポリイソプロピレンーポリエチレンオキシージコハク酸

エステルナトリウム塩10%エタノール水溶液

2. 5ミリリットル

種乳剤EM-0

0.588モル相当

蒸留水で 1400ミリリットルとする。

[0111]

〈溶液B1〉

ARNO.

1404.2g

蒸留水で 2360ミリリットルとする

〈溶液Cl〉

KBr

963g

ΚI

27.4g

蒸留水で 2360ミリリットルとする

〈溶液D1〉

1. 75N KBr水溶液

下記銀電位制御量

【0112】60℃において、特公昭58-58288 号、同58-58289号に示される混合撹拌機を用い て、溶液Aに溶液B及び溶液Cの全量を同時混合法によ

で添加成長を行った。 【0113】Cの間の銀電位を溶液D1を用いて+25

mVになるように制御した。 り21.26ミリリットル/minの流速で111分間 50 【0114】添加終了後、過剰な塩類を除去するため、

デモールN(花王アトラス社製)水溶液及び硫酸マグネ シウム水溶液を用いて沈澱脱塩を行い、オセインゼラチ ン92.2gを含むゼラチン水溶液を加え、撹拌再分散 Lite.

【0115】得られた乳剤EM-1の粒子約3000個 を電子顕微鏡により観察・測定し形状を分析した結果、* *平均粒子厚さ0.25 μm、平均粒子直径1.05 μm で分布の広さが18%の六角平板状粒子であることが判 明した。

【0116】次に示す4種の溶液を用いて塩臭化銀乳剤 Em-2、3を調製した。

[0117]

〈溶液A2〉

オセインゼラチン

6 g

ポリイソプロピレン-ポリエチレンオキシジコハク酸

エステルナトリウム塩10%エタノール水溶液 1ミリリットル 蒸留水 700ミリリットル 〈溶液 B 2 〉

硝酸銀 蒸留水

170g 410ミリリットル

〈溶液C2〉 塩化ナトリウム

35. lg

臭化カリウム 6塩化イリジウム塩

47.6g 50μg

ポリイソプロピレンオキシジコハク酸

3ミリリットル.

エステルナトリウム塩10%エタノール溶液 オセインゼラチン

llg

蒸留水

407ミリリットル ※【0118】EAg値は120mVより添加開始7分後

溶液A2を40℃に保温した後、EAg値が120mV になるように塩化ナトリウムを添加した。次に特開昭5 7-92523号と同57-92524号記載の混同撹 拌機を用いて、ダブルジェット法にて溶液 B 2 及び溶液 C2を添加した。添加量は下記に示したように全添加時 間25分の間において、徐々に添加流量を増加させ、E

Ag値を一定に保ちながら添加を行った。

に塩化ナトリウム水溶液を用いてEAg値100mVに 変化させ、以後混合の完了までこの値を維持した。

【0119】EAg値を一定に保つため、3モル/リッ トルの塩化ナトリウム水溶液を用いてEAg値を制御し た。

[0120]

添加時間	B2液	C2液
(分)	(ミリリットル/min)	(ミリリットル/min)
0	5. 4	5. 3
7	5. 4	5. 3
10	22. 0	21.6
2 5	22. 0	21.6

【0121】EAg値の測定には、金属銀電極と、ダブ ルジャンクション型飽和Ag/AgC1比較電極を用い た(電極の構成は、特開昭57-197534号に開示 されているダブルジャンクションを使用した)。

【0122】また、溶液B2液、C2液の添加には、流 40 【0124】(試料の作成)それぞれの乳剤について5 **量可変型のローラーチューブ定量ポンプを用いた。添加** 中、乳剤のサンプリングにより、系内に新たな粒子の発 生が認められないことを電子顕微鏡により観察し、確認 している。更に添加中、系のpH値を3.0に一定に保 つように3%硝酸水溶液で制御した。

【0123】B2液、C2液を添加終了後、乳剤は10 分間オストワルド熱成した後、常法により、脱塩、水洗 を行い、その後オセインゼラチンの水溶液600ミリリ ットル (オセインゼラチン 15 g 含有) を添加して55

ルに調製した。この方法により、立方体で、粒径が0. 2 μmで塩化銀含有率が6 0 モル%の塩臭化銀乳剤 (E m-3)を得た。同様にして、立方体で塩化銀含有率が 6 モル%の塩臭化銀(Em-2)を得た。

0℃に保った状態で、下記に示す増感色素(A)及び (B)をハロゲン化銀1モル当たり150mg及び15 mg添加した後、チオシアン酸アンモニウム塩を銀1モ ル当たり7.0×10*4モル、及び適当な量の塩化金酸 とハイポを添加して化学熟成を行い、平均粒径0.06 μmのAg I 微粒子乳剤を6×10-4モル/Ag 1モル 添加後、4-ヒドロキシ-6-メチル-1, 3, 3a,

7-テトラザインデン3×10-2モルで安定化した。 【0125】増感色素(A):5.5′-ジクロロ-9 ℃、30分間撹拌により分散した後、750ミリリット 50 -エチル-3, 3′-ジ-(3-スルホプロリル) オキ

サカルボシアニン塩無水物

増感色素(B):5,5'-ジ-(ブトキシカルボニル)-1,1'-ジエチル-3,3'-ジ-(4-スルホブチル)ベンゾイミダゾロカルボシアニン-ナトリウム塩無水物

*【0126】それぞれの乳剤液(感光性ハロゲン化銀塗 布液)に用いた添加剤は次のとおりである。添加量はハロゲン化銀1モル当たりの量で示す。

[0127] [化21]

150mg

[0128]

t - ブチルーカテコール400mgポリビニルビロリドン (分子量10,000)1.0gスチレン-無水マレイン酸共重合体2.5gトリメチロールブロバン10gジエチレングリコール5gニトロフェニルートリフェニルーホスホニウムクロリド50mg1.3-ジヒドロキシベンゼンー4-スルホン酸アンモニウム4g2-メルカブトベンツイミダゾールー5-スルホン酸ナトリウム

1.5 mg

[0129]

※ ※ 【化22】

[0130]

n-C, H, OCH, CH (OH) CH, N (CH, COOH), 1g また保護層液に用いた添加剤は次のとおりである。添加 ★【0131】

量はゼラチンlg当たりの量で示す。

★30

面積平均粒径 7 μ m の ポリメチルメタクリレートからなるマット剤 7 m g コロイドシリカ (平均粒径 0.013 μ m) 70 m g 2.4 - ジクロロー6-ヒドロキシ-1.3.5-トリアジンナトリウム塩 30 m g

 $(CH_{i} = CHSO_{i} - CH_{i} -)$, O

36mg

[0132]

[化23]

$$C_0H_{10}$$
 \longleftrightarrow $CH_2CH_2O \xrightarrow{}_{12}SO_0N_8$

$$C_{\bullet}H_{\bullet} = CH_{\bullet}CH_{\bullet}O + CH_{\bullet}CH_{\bullet}O \xrightarrow{}_{I}H$$

2 mg

7 m g

3 m g

[0133]

F₁,C, -O- (CH₂ CH₂ O) ₁,CH₂ CH₂ -OH

3 mg

以上の塗布液を用いて、次のように試料を調製した。即 *0 w t %の3種モノマーからなる共重合体の浪度が10 ち、写真乳剤層はゼラチン量として片面当たり2.0g に、さらに保護層はゼラチン付き量として片面1.15 g/m² となるように、2台のスライドホッパー型コー ターを用い、毎分80mのスピードで支持体上に両面同 時塗布を行い、2分20秒で乾燥し、試料を得た。支持 体上としては、グリシジメタクリレート50wt%、メ チルアクリレート10wt%、ブチルメタクリレート4*

w t %になるように希釈して得た共重合体水性分散液を $/m^2$ 、また塗布銀量は片面 $1.6 \, \mathrm{g}/m^2$ となるよう 40 下引き液ととして塗設した。支持体は厚さ $1.75 \, \mu\mathrm{m}$ の X線フィルム用の青色着色をしたポリエチレンテレフタ レートフィルムベースを用いた。

> 【0134】上記のどとくして、前記した乳剤Em-1 ~3より、それぞれ試料1~3を作製した。

> 【0135】次に本実施例に用いた現像液、現像補充液 及び定着液の組成を示す。

現像補充液処方

Part-A(12リットル仕上げ用) 水酸化カリウム 亜硫酸カリウム (50%溶液)

450g

2280g

(24)	特開平8-262
45	46
ジエチレンテトラミン5酢酸	120g
炭酸水素ナトリウム	1 3 2 g
5-メチルベンゾトリアゾール	1. 2 g
1-フェニル-5-メルカプトテトラゾール	0. 2 g
一般式(1)で表される化合物	表1に記載の量
一般式(2)で表される化合物	表1に記載の量
一般式(4)で表される化合物	表1に記載の量
水を加えて	5 リットルに仕上げる
Part-B(12リットル仕上げ用)	
氷酢酸	170g
トルイチレンガリュニル	

米 トリエチレングリコール 185g 一般式(3)で表される化合物 表しに記載の量 5-ニトロインダゾール 0.4g

[0136]

定着液処方

Part-A(18リットル仕上げ用)

チオ硫酸アンモニウム(70wt/vol%)	6000g
亜硫酸ナトリウム	1 1 0 g
酢酸ナトリウム・3水塩	450g
クエン酸ナトリウム	50g
グルコン酸	70g
1 - (N,N - ジメチルアミノ) - エチル - 5 - メル	カプトテトラゾール
	10 ~

Part-B(18リットル什トげ用)

硫酸アルミニウム

800g

650

【0137】現像補充液の調製は、水約5リットルにP art-A、Part-Bを同時添加し、攪拌溶解しな がら水を加え12リットルに仕上げ、KOHでpHを1 0.40に調整した。これを現像補充液とする。

【0138】との現像補充液1リットルに対して氷酢酸 30 を2. 48/リットル、臭化カリウムを0. 054モル /リットル添加し、KOHでpHを10. 15に調整し 現像液A~Pを調整した。

【0139】定着液の調製は、水約5リットルにPar t-A、Part-Bを同時添加し、攪拌溶解しながら 水を加え18リットルに仕上げ、硫酸とNaOHを用い てpHを4.4に調整した。これを定着補充液とする。 【0140】試料1及び、表1の「処理剤」の欄に示し た現像液 De v A~P液を用いて、次のような評価を行 った。

【0141】(センシトメトリー)試料を2枚の蛍光増 感紙SRO-250 (コニカ製)ではさみ、管電圧80 k V、管電流100mA、照射時間50msecでウェ ッジ像を焼き付け、下記に示す処理を行った14×17 cmの試料で評価した。結果を表1に示す。表1の感度は 処理No. 1における45秒処理での感度を100とし た時の相対感度で示した。

【0142】処理方法:上記現像液、定稽液を入れたX ray用自動現像機SRX-502 (コニカ製)を、搬 送速度を変え25秒で処理できるように改良したものに 50 2:残色汚染やや多いが実用範囲の限界

入れ、25秒と45秒処理モードで処理した。処理温度 は現像温度は35℃、定着温度は33℃、水洗温度は2 0℃、乾燥温度は45℃とした。現像液の補充量 (現像 液補充量の流入量)は表1の補充量の欄に示す量、定着 液は400ミリリットル/m゚とした。なお、処理液 は、各々の処理条件で処理レベルが平衡状態になるよう なランニングを行った液を用いた。

【0143】〈銀色調の評価〉タングステン光にて透過 光黒化濃度が1.0になるように均一に露光し、センシ トメトリーと同様の処理方法で処理した後、写真観察用 光源台で目視により下記5段階の評価を行った。

5: 黒色

4:わずかに黄色みがある

3:やや黄色みがあるが実用性可

2: 黄色みがあり実用範囲の限界

1:黄色みが多く実用性不可

【0144】結果を表1に示す。

【0145】〈残色性の評価〉残色汚染の程度は、未露 光の試料を、センシトメトリーと同様の処理方法(処理 時間25秒)で現像した試料を目視により以下の5段階 で評価した。

5:残色汚染無し

4:残色汚染僅かに有り

3: 残色汚染やや有るが実用性可

1:残色汚染が多く実用性不可 得られた結果を表1に示す。

【0146】表1から理解されるように、本発明に係る 処理によれば、補充液を低減し、迅速処理されても、感*

47

*度を損なうことなく、経時安定性に優れ、銀色調性、残 色性の向上した処理を実現できる。

[0147]

【表1】

		. -10 :	(I) Ø	-40±	(2) o	_ p ;	£(3) @	- 10	₹(4) Ø	被求量			报	H	ī
	2		•	化台		化	\$ \$	1	合 物		45	25°	2		
a			,,,,	1		1	9 , 1 1	1	1 . } &	(9)		ALAN A	1	L	-
	A				Ι_	 	1		1	1	+	-	+	┢	
ŀ	Ŧ	A 1 5	0. 27	 		-	-	1-		360	100	80	Ľ	1	比较
2	В	113	0.27	11 -31	0.02	_			-	380	100	83	2	1	比较
3	C		•	_	-	_	-	-	-	380	BB	92	2	2	本発明
4	D	A-1	0.2	11 -81	0, 02	_	_	-	-	880	101	99	4	4	本発明
5	E	A-1	0.3	II -31	0. 02	_	-	-	-	380	105	102	4	4	本异明
6	F	A-1	0.2	n -31	0.04		-	_	-	360	105	103	4	4	本発明
.7	G	A-1	0.2	11-22	0. 02		-	_	-	360	102	100	4	4	本党明
8	н	A-1	0.2	II -22	۵.04	-	<u> </u>	_	-	360	106	103	4	4	本発明
0	1	A-2	0.2	II -31	0.02	-		_	-	360	102	100	4	4	本臭明
10	J	A-2	Q.3	H -31	0.02	-	_	_	-	360	106	103	4	4	本発明
11	к	A-1	0.2	II - 31	0.02	M-3	0.01	_	-	360	108	107	4	4	本発明
12	ւ	A-1	Q 2	11-31	0.02-	W - 3	0.025	_	-	360	108	108	4	4	本発明
13	м	A-1	0.2	II - 31	O 03	I – 8	G 04	-	-	360	108	108	4	4	本発明
14	И	A-1	0.2	II —31	U 05	H-9	Q. 925	_	-	360	107	107	4	4	本発明
15	0	A-1	0.2	II —81	C 02	-	-	IV - 3	0.001	960	106	108	5	5	本発明
18	P	A-1	Q.2	□ −81	0 03	I – 3	0.025	IV - 3	0.001	380	108	108	5	5	本発明
17	D	A-1	@2	□ -31	C 02	-	-	-	-	180	100	97	4	4	本発明
18	L	A-1	0.8	II — 31	0.02	E-3	0.025	-	-	180	102	100	4	4	本党明
10	٥	A-1	U 2	II — 31	0.03		-	IV – 3	0.001	180	100	100	5	5	本発明
20	Р	A-1	a z	n –31	0.02	II – 3	0.025	I7 – 3	0.001	180	103	103	5	5	本発明

【0148】実施例2

試料2、3を用いて補充量を180にした他は実施例1 と同様の実験を行い、銀(Ag)色調の評価を行った結 果を表2に示す。

【0149】表2から理解されるように、本発明に係る

処理によれば、補充液を低減し、迅速処理されても、感度を損なうことなく、経時安定性に優れ、銀色調性の向上上した処理を実現できる。

[0150]

【表2】

		試 料		康		
長速	经查剌	(乳剤)	45′热理	25 色理	最色質	# *
2 1	٨	2	100	8 8	1	比較
2 2	В	2	100	9 D	1	比 較
2 8	С	2	L 0 0	9 7	1	比 数
2 4	D	2	104	103	4	本発明
2 5	D	3	D 8	9 7	5	本幾明
2 6	R	2	108	107	4	本発明
2 7	E	3	103	103	5	本発明
2 8	F	2	1 0 8	1 0 B	4	本発明
2 9	y	8	103	103	5	本発明
8 0	G	2	1 0 7	107	4	本穀明
3 1	1	2	1 0 7	1 0 7	4	本塾明
3 2	L	2	109	109	4	本塾明
3 3	L	3	105	1 0 5	5	本整明
8 4	N	z	T D B	108	4	本発明
3 5	0	2	108	108	5	本発明
3 6	0	8	1 0 5	1 0 5	5	本発明
8 7	P	2	1 1 0	110	5	本獎明
3 5	P	3	1 1 0	1 1 0	5	本発明

【0151】実施例3

試料1及び処理剤として現像液A~Pを用いて、経時安定性の評価を行った。

【0152】〈経時安定性の評価〉試料1のフィルムに対し、Fog+1.0の濃度を得るのに必要なX線量の逆数を、Aの調液直後の値を100とした場合の相対値で示す。これを調液後の他10日後、30日後について

も評価した。結果を表3に示す。

【0153】表3から理解されるように、本発明に係る 30 処理によれば、きわめて経時安定性に優れた処理が達成 できた。

[0154]

【表3】

Arti XXIII	An xun-im		備考		
処理	処理剤	調液直後 10日後		30日後	10 °
3 9	A	100	8 9	7 2	比較
4 0	В	100	8 8	7 2	比較
4 1	С	98	8 7	70	比較
4 2	D	101	98	9 4	本発明
4 3	Е	105	102	98	本発明
44	К	108	106	104	本発明
4 5	L	108	107	105	本発明
4 6	м	108	107	105	本発明
47	0	106	106	106	本発明
48	P	108	108	108	本発明

[0155]

【発明の効果】本発明によれば、補充液を低減し、迅速 処理されても感度を損なうことなく、経時安定性に優 れ、銀色調性、残色性の向上したハロゲン化銀写真感光 材料の処理方法を提供することができた。