Fundação Getúlio Vargas

- 1. Em uma fábrica de peças automotivas, o diâmetro de uma peça segue uma distribuição normal com média de 20 mm e desvio padrão de 0.2 mm. Essa fábrica tem um padrão de qualidade rigoroso e precisa garantir que as peças estejam dentro de especificações para serem aprovadas.
 - (a) Qual é a probabilidade de uma peça ter um diâmetro entre 19.8 mm e 20.2 mm?
 - Para os demais itens, considere que peças fora da faixa fornecida no item (a) são consideradas fora de especificação.
 - (b) Se a fábrica deseja que no máximo 5% das peças produzidas sejam rejeitadas por estarem com diâmetro abaixo de um limite inferior, qual deve ser o valor desse limite inferior? Conclua se isso é possível dada especificação.
 - (c) Em uma produção de 100000 peças, quantas peças, em média, estarão fora da especificação?

- 2. A função de taxa de falha de um certo equipamento, com tempo de vida expresso em anos é dada por $\lambda(t)=\frac{t^2}{1+t^2}$ para $t\geq 0$.
 - (a) Sendo T o tempo de vida desse equipamento, determine a função de distribuição acumulada e de densidade de probabilidade de T.
 - (b) Em 1 ano e 3 meses de uso do aparelho, qual a probabilidade aproximada de que ele falhe até o início do próximo mês?
 - (c) Qual é a probabilidade de que o aparelho falhe entre 1 ano e 3 meses e 1 ano e 4 meses? Interprete este resultado com o obtido no item (b).

(Sugestão: Para os itens (b) e (c), você pode utilizar que $\int\limits_a^b x(t)\ dt \approx (b-a)x(a)$, onde x é uma função integrável. Além disso, talvez ajude saber que $\frac{(5/4)^2}{1+(5/4)^2}\approx 0.61$, $\arctan(5/4)\approx 0.9$ e $e^{-0.35}=0.7$)

3. Seja $A\sim N(0,1)$ e $B\sim {\rm Gama}(\alpha,\lambda)$. Determine as funções de densidade de $X=A^2$ e Y=1/B. Você reconhece alguma dessas distribuições?

4. Sejam X e Y variáveis aleatórias com função de densidade de probabilidade conjunta dada por

$$f_{X,Y}(x,y) = egin{cases} k(x+y) & ext{ se } x \in [0,1] ext{ e } y \in [x,x+1] \ 0 & ext{ c.c.} \end{cases}$$

onde k é uma constante.

- (a) Determine o valor de k.
- (b) Calcule as funções de densidade marginais de X e de Y.
- (c) X e Y são independentes?
- (d) Determine o valor esperado de Y dado que $X = \frac{1}{2}$.

Tabela: P(Z < z), onde $Z^{\sim}N(0,1)$

	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
-0,0	0,50000	0,49601	0,49202	0,48803	0,48405	0,48006	0,47608	0,47210	0,46812	0,46414
-0,1	0,46017	0,45620	0,45224	0,44828	0,44433	0,44038	0,43644	0,43251	0,42858	0,42465
-0,2	0,42074	0,41683	0,41294	0,40905	0,40517	0,40129	0,39743	0,39358	0,38974	0,38591
-0,3	0,38209	0,37828	0,37448	0,37070	0,36693	0,36317	0,35942	0,35569	0,35197	0,34827
-0,4	0,34458	0,34090	0,33724	0,33360	0,32997	0,32636	0,32276	0,31918	0,31561	0,31207
-0,5	0,30854	0,30503	0,30153	0,29806	0,29460	0,29116	0,28774	0,28434	0,28096	0,27760
-0,6	0,27425	0,27093	0,26763	0,26435	0,26109	0,25785	0,25463	0,25143	0,24825	0,24510
-0,7	0,24196	0,23885	0,23576	0,23270	0,22965	0,22663	0,22363	0,22065	0,21770	0,21476
-0,8	0,21186	0,20897	0,20611	0,20327	0,20045	0,19766	0,19489	0,19215	0,18943	0,18673
-0,9	0,18406	0,18141	0,17879	0,17619	0,17361	0,17106	0,16853	0,16602	0,16354	0,16109
-1,0	0,15866	0,15625	0,15386	0,15151	0,14917	0,14686	0,14457	0,14231	0,14007	0,13786
-1,1	0,13567	0,13350	0,13136	0,12924	0,12714	0,12507	0,12302	0,12100	0,11900	0,11702
-1,2	0,11507	0,11314	0,11123	0,10935	0,10749	0,10565	0,10383	0,10204	0,10027	0,09853
-1,3	0,09680	0,09510	0,09342	0,09176	0,09012	0,08851	0,08691	0,08534	0,08379	0,08226
-1,4	0,08076	0,07927	0,07780	0,07636	0,07493	0,07353	0,07215	0,07078	0,06944	0,06811
-1,5	0,06681	0,06552	0,06426	0,06301	0,06178	0,06057	0,05938	0,05821	0,05705	0,05592
-1,6	0,05480	0,05370	0,05262	0,05155	0,05050	0,04947	0,04846	0,04746	0,04648	0,04551
-1,7	0,04457	0,04363	0,04272	0,04182	0,04093	0,04006	0,03920	0,03836	0,03754	0,03673
-1,8	0,03593	0,03515	0,03438	0,03362	0,03288	0,03216	0,03144	0,03074	0,03005	0,02938
-1,9	0,02872	0,02807	0,02743	0,02680	0,02619	0,02559	0,02500	0,02442	0,02385	0,02330
-2,0	0,02275	0,02222	0,02169	0,02118	0,02068	0,02018	0,01970	0,01923	0,01876	0,01831

Gabarito

1.

- a) 0.6826
- b) 19.671 mm. Isso não é possível pois 19.671 ∉ [19.8, 20.2]
- c) 31740 peças

2.

a)
$$F_T(t)=1-e^{\operatorname{arctan}(t)-t}$$
 e $f_T(t)=rac{t^2}{1+t^2}e^{\operatorname{arctan}(t)-t}$

- b) 0.05
- c) 0.032. Nota-se que a probabilidade do aparelho falhar entre 1 ano e 3 meses e 1 ano e 4 meses é menor do que a probabilidade dele falhar nesse período dado que ele funcionou por 1 ano e 3 meses, o que faz sentido pois no primeiro caso estamos fornecendo um dado (o aparelho ter funcionado por 1 ano e 3 meses) e no segundo caso estamos exigindo que esse dado também ocorra no cálculo da probabilidade, o que torna o evento menos provável. Vale ressaltar que devido ao baixo período analisado (cerca de 1 ano), os valores de ambas as probabilidades deram muito pequenos, já que o aparelho deve ter um tempo médio bem maior do que o de 1 ano.

3.
$$f_X(x)=rac{1}{\sqrt{2\pi x}}e^{-x/2}$$
 e $f_Y(y)=rac{\lambda^{lpha}}{\Gamma(lpha)}y^{-lpha-1}e^{-\lambda/y}$. Sabemos que $X\sim \mathrm{Gama}\left(rac{1}{2},rac{1}{2}
ight)$. 4.

- a) $k = \frac{2}{3}$
- b) $f_X(x) = rac{4x+1}{3}$ e $f_Y(y) = rac{4y-1}{3}$
- c) X e Y não são independentes
- d) $\frac{19}{18}$