Pumping Lemma for Context-free Languages

Take an infinite context-free language

Generates an infinite number of different strings

Example:

$$S \rightarrow ABE \mid bBd$$

$$A \rightarrow Aa \mid a$$

$$B \rightarrow bSD \mid cc$$

$$D \rightarrow Dd \mid d$$

$$E \rightarrow eE \mid e$$

Smallet Smallet Stord stord

aabbeedd ee

In a derivation of a "long" enough string, variables are repeated

A possible derivation:

$$S \Rightarrow ABE \Rightarrow AaBE \Rightarrow aaBE$$

$$\Rightarrow aabSDE \Rightarrow aabbBdDE \Rightarrow$$

$$\Rightarrow aaabbccdDE \Rightarrow aabbccddE$$

$$\Rightarrow aabbccddeE \Rightarrow aabbccddee$$

$B \Rightarrow bSD \Rightarrow bbBdD \Rightarrow bbBdd$

 $B \Rightarrow bbBdd$

$S \Rightarrow ABE \Rightarrow AaBE \Rightarrow aaBE \Rightarrow aaBeE \Rightarrow aaBee$

 $S \Rightarrow aaBee$

 $B \Rightarrow cc$

Putting all together

We can remove the middle part

 $S \Rightarrow aaBee$

 $B \Rightarrow bbBdd$

 $B \Longrightarrow cc$

*

 $S \Rightarrow aaBee \Rightarrow aaccee = aa(bb)^0 cc(dd)^0 ee$

$$aa(bb)^{0}cc(dd)^{0}ee \in L(G)$$

We can repeated middle part two times

 $S \Rightarrow aa(bb)^2 cc(dd)^2 ee$

 $S \Rightarrow aaBee$

 $B \Rightarrow bbBdd$

 $B \Longrightarrow cc$

*

*

 $S \Rightarrow aaBee \Rightarrow aabbBddee$

*

 $\Rightarrow aa(bb)^2B(dd)^2ee \Rightarrow aa(bb)^2cc(dd)^2ee$

 $aa(bb)^2cc(dd)^2ee \in L(G)$

We can repeat middle part three times

 $S \Rightarrow aa(bb)^3 cc(dd)^3 ee$

*

 $S \Rightarrow aaBee$

 $B \Rightarrow bbBdd$ $B \Rightarrow cc$

*

$$S \Rightarrow aa(bb)^3 cc(dd)^3 ee \in L(G)$$

Repeat middle part itimes

 $S \Rightarrow aa(bb)^i cc(dd)^i ee$

*

$$S \Rightarrow aaBee \qquad B \Rightarrow bbBdc$$

$$B \Rightarrow bbBdd \qquad B \Rightarrow cc$$

$$S \Rightarrow aa(bb)^{i}cc(dd)^{i}ee \in L(G)$$

For any $i \ge 0$

From Grammar

and given string

$$S \rightarrow ABE \mid bBd$$

 $aabbccddee \in L(G)$

$$A \rightarrow Aa \mid a$$

 $B \rightarrow bSD \mid cc$

 $D \rightarrow Dd \mid d$

 $E \rightarrow eE \mid e$

We inferred that a family of strings is in L(G)

$$S \Rightarrow aa(bb)^i cc(dd)^i ee \in L(G) \text{ for any } i \ge 0$$

Arbitrary Grammars

Consider now an arbitrary infinite context-free language $\[L\]$

Let G be the grammar of $L-\{\lambda\}$

Take Gso that it has no unit-productions and no λ -productions (remove them)

Let r be the number of variables

Let t be the maximum right-hand size of any production

Claim:

Take string $W \in L(G)$ with $W > t^r$. Then in the derivation tree of Wthere is a path from the root to a leaf where a variable of G is repeated

Proof:

Proof by contradiction

First we show that the tree of w has at least r+2 levels of nodes

Maximum number of nodes per level

The maximum right-hand side of any production

Maximum number of nodes per level

Maximum number of nodes per level

At most r+1 Levels

Maximum possible string length $= \max \text{ nodes at level } r = \begin{bmatrix} t \\ t \end{bmatrix}$

Therefore, maximum length of string $w: |w| \leq t^r$

However we took, $|w| > t^r$

Contradiction!!!

Therefore, the tree must have at least r+2 levels

Thus, there is a path from the root to a leaf with at least r+2 nodes

At least r+2r+1 Variables Levels

Since there are at most r different variables some variable is repeated

> Pigeonhole principle

Take H to be the deepest, so that only H is repeated in subtree

We can write w = uvxyzyield Z yield \mathcal{U} yield yield u, v, x, y, z: \overline{x} yield Strings of terminals

B corresponds to H

$$y = dd$$

 $z = ee$

$$S \stackrel{*}{\Rightarrow} aaBee$$

$$B \stackrel{*}{\Rightarrow} bbBdd$$

$$B \Longrightarrow cc$$

Yield:
$$uxz = uv^0xy^0z$$

$$S \stackrel{*}{\Rightarrow} uHz \stackrel{*}{\Rightarrow} uxz = uv^0xy^0z \in L(G)$$

Repeat Middle part two times

$$S \Rightarrow uHz$$

$$H \Rightarrow vHy$$

$$H \Rightarrow x$$

*

$$S \Rightarrow uHz \Rightarrow uvHyz \Rightarrow uvvHyyz$$

*

$$\Rightarrow uvvxyyz = uv^2xy^2z \in L(G)$$

Repeat Middle part I times

$$S \Rightarrow uHz$$

$$H \Rightarrow vHy$$

$$H \Longrightarrow x$$

$$S \stackrel{*}{\Rightarrow} uHz \stackrel{*}{\Rightarrow} uvHyz \stackrel{*}{\Rightarrow} uvvHyyz \stackrel{*}{\Rightarrow}$$

- $\Rightarrow \dots$
- $\stackrel{*}{\Rightarrow} uv^i Hy^i z \stackrel{*}{\Rightarrow} uv^i xy^i z \in L(G)$

$$|w| \ge t^r$$

If we know that: $w = uvxyz \in L(G)$

then we also know:
$$uv^ixy^iz \in L(G)$$

For all

$$L(G) = L - \{\lambda\}$$

$$uv^i xy^i z \in L$$

Observation 1:

 $|vy| \ge 1$

Since G has no unit and λ -productions

At least one of V or Y is not λ

Observation 2:

$$|vxy| \leq t^{r+1}$$

since in subtree only variable H is repeated

subtree of H

Explanation follows....

$$|s_j| \le t^r$$
 since no variable is repeated in T

$$|\mathbf{v}\mathbf{x}\mathbf{y}| = \sum_{j=1}^{k} |\mathbf{s}_{j}| \leq k \cdot t^{r} \leq t \cdot t^{r} = t^{r+1}$$

Maximum right-hand side of any production

Thus, if we choose critical length

$$\mathbf{m} = \mathbf{t}^{r+1} > \mathbf{t}^r$$

then, we obtain the pumping lemma for context-free languages

The Pumping Lemma:

For any infinite context-free language L

there exists an integer m such that

for any string
$$w \in L$$
, $|w| \ge m$

we can write w = uvxyz

with lengths $|vxy| \le m$ and $|vy| \ge 1$

and it must be that:

 $uv^i x y^i z \in L$, for all $i \ge 0$

Applications of The Pumping Lemma

Non-context free languages

$$\{a^n b^n c^n : n \ge 0\}$$

$$\{a^nb^n: n \ge 0\}$$

Theorem: The language

$$L = \{a^n b^n c^n : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{a^n b^n c^n : n \ge 0\}$$

Assume for contradiction that $\,L\,$ is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{a^n b^n c^n : n \ge 0\}$$

Let m be the critical length of the pumping lemma

Pick any string $w \in L$ with length

$$|w| \ge m$$

$$1$$

$$3m \ge m$$

We pick: $w = a^m b^m c^m$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

From pumping lemma:

we can write:
$$w = uvxyz$$

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

$$vy \ge 1$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

We examine <u>all</u> the possible locations of string vxy in w

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1:
$$vxy$$
 is in a^m

$$m$$
 m
 m
 m
 $a...aa...aa...a$
 $bbb...bbb$
 $ccc...ccc$
 vxy
 vxy

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m$$

$$|vy| \ge 1$$

$$v = a^{k_1}$$
 $y = a^{k_2}$ $k_1 + k_2 \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

$$v = a^{k_1}$$
 $y = a^{k_2}$ $k_1 + k_2 \ge 1$

$$m + k_1 + k_2$$
 m m
 $a ... aa ... aa ... aa ... aa ... abbb... bbb ccc ... ccc$
 $u v^2 x y^2$ z

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

From Pumping Lemma:
$$uv^2xy^2z \in L$$

$$k_1 + k_2 \ge 1$$

However: $uv^2xy^2z = a^{m+k_1+k_2}b^mc^m \notin L$ Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$
$$w = uvxyz$$

$$|vxy| \le m$$
 $|vy| \ge 1$

Case 2:
$$vxy$$
 is in b^m

Similar to case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$vxy$$
 is in c^m

Similar to case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 4:
$$vxy$$
 overlaps a^m and b^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Sub-case 1: v contains only a y contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

$$v = a^{k_1}$$
 $y = b^{k_2}$ $k_1 + k_2 \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

$$v = a^{k_1}$$
 $y = b^{k_2}$ $k_1 + k_2 \ge 1$

$$m + k_1$$
 $m + k_2$ m
 $a ... aa ... aa ... a b ... bb ... bb ... b ccc ... ccc$
 $u v^2 x y^2 z$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

From Pumping Lemma: $uv^2xy^2z \in L$

$$k_1 + k_2 \ge 1$$

However:
$$uv^2xy^2z = a^{m+k_1}b^{m+k_2}c^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Sub-case 2: v contains a and b y contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$
$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

By assumption

$$\mathbf{v}=a^{k_1}b^{k_2}$$

$$y = b^{k_3}$$

$$k_1, k_2 \geq 1$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$
$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

$$\mathbf{v}=a^{k_1}b^{k_2}$$

$$y = b^{k_3}$$

$$k_1, k_2 \geq 1$$

$$m$$
 $+ k_3$ m k_1 k_2 k_1 k_2 k_3 k_4 k_5 k_5 k_6 k_8 k_8

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz, \qquad |vxy| \le m \qquad |vy| \ge 1$$

 $k_{1}, k_{2} \geq 1$

From Pumping Lemma:
$$uv^2xy^2z \in L$$

However:
$$uv^2xy^2z = a^mb^{k_2}a^{k_1}b^{m+k_3}c^m \notin L$$

Contradiction!!!

w = uvxyz

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Sub-case 3: v contains only a y contains a and b

Similar to sub-case 2

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 5:
$$vxy$$
 overlaps b^m and c^m

Similar to case 4

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$
$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

Case 6: vxy overlaps a^m , b^m and c^m

Impossible!

m m m aaa...aaa bbb...bbb ccc...ccc u vxy z.

In all cases we obtained a contradiction

Therefore: the original assumption that

$$L = \{a^n b^n c^n : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free

Non-context free languages

$$\{a^nb^nc^n:n\geq 0\} \qquad \{ww:w\in\{a,b\}\}$$

$$\{a^{n!}:n\geq 0\} \qquad \qquad Prove it !!!$$

Context-free languages

$$\{a^n b^n : n \ge 0\}$$
 $\{ww^R : w \in \{a, b\}^*\}$

More Applications of The Pumping Lemma

$$W = a^n b^n a^n b^n$$
 $W = a^n b^n a^n b^n$

he Pumping Lemma:

For infinite context-free language $\,L\,$ there exists an integer $\,m\,$ such that

for any string $w \in L$, $|w| \ge m$

we can write w = uvxyz

with lengths $|vxy| \le m$ and $|vy| \ge 1$

and it must be:

 $uv^i x y^i z \in L$, for all $i \ge 0$

Non-context free languages

$$\{a^n b^n c^n : n \ge 0\}$$
 $\{vv : v \in \{a, b\}\}$

Context-free languages

$$\{a^n b^n : n \ge 0\}$$
 $\{ww^R : w \in \{a, b\}^*\}$

Theorem: The language

$$L = \{vv : v \in \{a,b\}^*\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{vv : v \in \{a,b\}^*\}$$

Assume for contradiction that $\,L\,$ is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{vv : v \in \{a,b\}^*\}$$

Pumping Lemma gives a magic numberm such that:

Pick any string of L with length at least m

we pick: $a^m b^m a^m b^m \in L$

$$L = \{vv : v \in \{a,b\}^*\}$$

We can write: $a^m b^m a^m b^m = uvxyz$

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

We examine <u>all</u> the possible locations of string vxy in $a^mb^ma^mb^m$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1:
$$vxy$$
 is within the first a^m

$$v = a^{k_1} \qquad y = a^{k_2} \qquad k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1:
$$vxy$$
 is within the first a^m

$$v = a^{k_1} \qquad y = a^{k_2} \qquad k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1:
$$vxy$$
 is within the first a^m

$$a^{m+k_1+k_2}b^ma^mb^m = uv^2xy^2z \notin L$$

$$k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1:
$$vxy$$
 is within the first a^m

$$a^{m+k_1+k_2}b^ma^mb^m = uv^2xy^2z \notin L$$

However, from Pumping Lemma: $uv^2xy^2z \in L$

Contradiction!!!

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2:
$$v$$
 is in the first a^m y is in the first b^m

$$v = a^{k_1}$$
 $y = b^{k_2}$ $k_1 + k_2 \ge 1$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2:
$$v$$
 is in the first a^m y is in the first b^m

$$v = a^{k_1} \qquad y = b^{k_2} \qquad k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2:
$$v$$
 is in the first a^m y is in the first b^m

$$a^{m+k_1}b^{m+k_2}a^mb^m = uv^2xy^2z \notin L$$

$$k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2:
$$v$$
 is in the first a^m y is in the first b^m

$$a^{m+k_1}b^{m+k_2}a^mb^m = uv^2xy^2z \notin L$$

However, from Pumping Lemma: $uv^2xy^2z \in L$

Contradiction!!!

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$v$$
 overlaps the first $a^m b^m$ y is in the first b^m

$$v = a^{k_1} b^{k_2} \qquad y = b^{k_3} \qquad k_1, k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$v$$
 overlaps the first $a^m b^m$ y is in the first b^m

$$v = a^{k_1} b^{k_2} \qquad y = b^{k_3} \qquad k_1, k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$v$$
 overlaps the first $a^m b^m$ y is in the first b^m

$$a^m b^{k_2} a^{k_1} b^{m+k_3} a^m b^m = uv^2 xy^2 z \notin L$$

$$k_1, k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$v$$
 overlaps the first $a^m b^m$ y is in the first b^m

$$a^m b^{k_2} a^{k_1} b^{k_3} a^m b^m = u v^2 x y^2 z \notin L$$

However, from Pumping Lemma: $uv^2xy^2z \in L$

Contradiction!!!

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 4:
$$v$$
 in the first a^m y Overlaps the first a^mb^m

Analysis is similar to case 3

Other cases:
$$vxy$$
 is within $a^mb^ma^mb^m$

$$a^m b^m a^m b^m$$

or

$$a^m b^m a^m b^m$$

$$a^m b^m a^m b^m$$

Analysis is similar to case 1:

$$a^mb^ma^mb^m$$

More cases: vxy overlaps $a^mb^ma^mb^m$

$$a^m b^m a^m b^m$$

or

$$a^m b^m a^m b^m$$

Analysis is similar to cases 2,3,4:

$$a^m b^m a^m b^m$$

There are no other cases to consider

Since $|vxy| \le m$, it is impossible vxy to overlap: $a^m b^m a^m b^m$

nor

 $a^m b^m a^m b^m$

nor

 $a^m b^m a^m b^m$

In all cases we obtained a contradiction

Therefore: The original assumption that

$$L = \{vv : v \in \{a,b\}^*\}$$

is context-free must be wrong

Conclusion: L is not context-free