Chapitre 5

Le second degré

I. Polynôme du second degré

1) Forme d'une fonction trinôme

Forme réduite

Définition:

On appelle **polynôme du second degré** (ou **trinôme**) toute expression qui peut s'écrire sous la forme $ax^2 + bx + c$ où a, b et c sont des réels et $a \ne 0$.

Exemple:

 $P(x)=2x^2-8x+8$ est un trinôme donné sous sa forme réduite avec a=2, b=-8 et c=8.

Forme canonique

Propriété :

Tout trinôme $ax^2 + bx + c$ peut s'écrire sous la forme $a(x-\alpha)^2 + \beta$ où α et β sont des réels. Cette forme s'appelle la **forme canonique** du trinôme.

Démonstration:

Soit $P(x)=a(x-\alpha)^2+\beta$,

- $a(x-\alpha)^2 + \beta = a(x^2 2 \times \alpha \times x + \alpha^2) + \beta = ax^2 2a\alpha x + a\alpha^2 + \beta$
- En posant $b=-2a\alpha$ et $c=a\alpha^2+\beta$, on a bien $P(x)=ax^2+bx+c$

Propriété:

Pour tous réels a, b et c avec $a \neq 0$, on a :

$$P(x)=ax^2+bx+c=a(x-\alpha)^2+\beta$$
 avec $\alpha=-\frac{b}{2a}$ et $\beta=P(\alpha)$

Exemples:

- $P(x)=2x^2-8x+8=2(x^2-4x+4)=2(x-2)^2$ On obtient donc la forme canonique de P(x) avec a=2, $\alpha=2$ et $\beta=0$.
- On considère le polynôme Q(x)=-2x(x-2)+3On a $Q(x)=-2x^2+4x+3$. (forme réduite avec a=-2, b=4 et c=3) En calculant $\alpha=-\frac{b}{2a}=-\frac{4}{2\times(-2)}=1$ et $\beta=Q(1)=-2\times1^2+4\times1+3=5$ Donc $Q(x)=-2(x-1)^2+5$ (forme canonique avec a=-2, $\alpha=1$ et $\beta=5$)

2) Représentation graphique

Définition:

La courbe représentative d'une fonction polynôme $P: x \longmapsto ax^2 + bx + c$, avec $a \ne 0$, est une **parabole**.

Son sommet S(α ; β) a pour abscisse $\alpha = -\frac{b}{2a}$ et pour ordonnée $\beta = P(\alpha)$

Remarque:

Le signe de *a* permet de connaître l'allure de la parabole :

Si a > 0

La parabole est tournée vers le haut

Si *a* < 0

La parabole est tournée vers le bas

Exemples:

• La courbe représentative de la fonction P définie sur \mathbb{R} par $P(x)=2x^2-8x+8$ est une parabole C_p de sommet S(2;0)

Comme a=2 (positif), la parabole C_p est tournée vers le haut.

• La courbe représentative de la fonction Q définie sur \mathbb{R} par $Q(x)=-2x^2+4x+3$ est une parabole C_q de sommet S'(1;5)

Comme a=-2 (négatif), la parabole C_q est tournée vers le bas.

3) Sens de variation

Théorème:

Suivant le signe de a, on obtient le sens de variation de la fonction polynôme du second degré :

$$f: x \longmapsto ax^2 + bx + c \text{ avec } a \neq 0 \text{ ; } \alpha = -\frac{b}{2a} \text{ et } \beta = f(\alpha)$$

• a > 0 (positif)

• a < 0 (négatif)

Démonstration:

Pour le cas où a > 0

En mettant f sous sa forme canonique on obtient $f(x)=a(x-\alpha)^2+\beta$.

- Pour tout x, on a $f(x) \ge \beta$ (donc β est un minimum de f sur $]-\infty$; $+\infty[$)
- Pour x_1 et x_2 appartenant à $]-\infty$; α [(donc $x_1 < \alpha$ et $x_2 < \alpha$), on a:

Si
$$x_1 < x_2$$
, (donc $x_1 - x_2 < 0$) alors

$$f(x_1) - f(x_2) = [a(x_1 - \alpha)^2 + \beta] - [a(x_2 - \alpha)^2 + \beta]$$

$$f(x_1) - f(x_2) = a(x_1 - \alpha)^2 - a(x_2 - \alpha)^2 = a[(x_1 - \alpha)^2 - (x_2 - \alpha)^2]$$

$$f(x_1) - f(x_2) = a[(x_1 - \alpha)^2 - (x_2 - \alpha)^2] = a[[(x_1 - \alpha) - (x_2 - \alpha)][(x_1 - \alpha) + (x_2 - \alpha)]]$$

$$f(x_1) - f(x_2) = a[[x_1 - x_2][x_1 + x_2 - 2\alpha]]$$
 avec $x_1 - x_2 < 0$ et $x_1 + x_2 < 2\alpha$ donc $f(x_1) - f(x_2) > 0$ et $f(x_1) > f(x_2)$

Ainsi f est décroissante sur $]-\infty$; α

On démontre les autres cas de la même manière.

II. Équation du second degré

1) Définition

Une **équation du second degré** à **une inconnue** *x* est une équation qui peut s'écrire sous la forme :

$$ax^2+bx+c=0$$

où a, b et c sont des réels donnés et $a \neq 0$

Exemples:

- $3x^2 7x + 2 = 0$ $2x^2 9 = 0$
- $-x^2+2x=0$
- L'équation (E) $x^2-4+3x=2x^2-x$ peut s'écrire sous la forme $ax^2+bx+c=0$ En effet, (E) équivaut à $x^2-4+3x-2x^2+x=0$ soit $-x^2+4x-4=0$ Donc ici a=-1; b=4 et c=-4.

2) **Discriminant**

Propriété:

Pour tous réels a, b et c avec $a \neq 0$, on a :

$$ax^2+bx+c=a\left[\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right]$$
 avec $\Delta=b^2-4ac$

Démonstration:

$$ax^{2} + bx + c = a \left[x^{2} + \frac{b}{a} x + \frac{c}{a} \right] = a \left[x^{2} + 2 \times \left(\frac{b}{2a} \right) \times x + \left(\frac{b}{2a} \right)^{2} - \left(\frac{b}{2a} \right)^{2} + \frac{c}{a} \right]$$

$$ax^{2} + bx + c = a \left[\left(x^{2} + 2 \times \frac{b}{2a} \times x + \left(\frac{b}{2a} \right)^{2} \right) - \frac{b^{2}}{4a^{2}} + \frac{4ac}{4a^{2}} \right]$$

$$ax^{2} + bx + c = a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{b^{2} - 4ac}{4a^{2}} \right]$$

Définition:

Le nombre $\Delta = b^2 - 4ac$ est appelé **discriminant** de l'équation $ax^2 + bx + c = 0$.

3) Résolution

Théorème:

Résolution de l'équation du second degré $ax^2+bx+c=0$ $(a \ne 0)$

$$\Delta = b^2 - 4ac$$

- Lorsque $\Delta < 0$, l'équation n'a pas de solution.
- Lorsque $\Delta = 0$, l'équation admet une solution $x = -\frac{b}{2a}$ (dite racine double)
- Lorsque $\Delta > 0$, l'équation admet deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Démonstration :

On sait que
$$ax^2 + bx + c = 0$$
 équivaut à $a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right] = 0$ donc à $\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} = 0$ (a\neq 0), c'est-à-dire $\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2}$.

En posant $X = x + \frac{b}{2a}$, résoudre l'équation $ax^2 + bx + c = 0$ revient donc à résoudre $X^2 = \frac{\Delta}{4a^2}$.

- Si $\Delta < 0$, alors $\frac{\Delta}{4a^2} < 0$. L'équation n' a pas de solution (car X^2 est positif).
- Si $\Delta = 0$, alors l'équation s'écrit $X^2 = 0$. Cette équation a une seule solution X = 0, c'est-àdire $x + \frac{b}{2a} = 0$ donc $x = -\frac{b}{2a}$.
- Si Δ >0, alors l'équation admet deux solutions :

Soit
$$X_1 = \sqrt{\frac{\Delta}{4a^2}}$$
 et $X_2 = -\sqrt{\frac{\Delta}{4a^2}}$
Soit $x_1 + \frac{b}{2a} = \sqrt{\frac{\Delta}{4a^2}}$ et $x_2 + \frac{b}{2a} = -\sqrt{\frac{\Delta}{4a^2}}$
 \circ Si $a > 0$, $\sqrt{(4a^2)} = 2a$ donc: $x_1 = \frac{-b}{2a} + \frac{\sqrt{\Delta}}{2a} = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b}{2a} - \frac{\sqrt{\Delta}}{2a} = \frac{-b - \sqrt{\Delta}}{2a}$
 \circ Si $a < 0$, $\sqrt{(4a^2)} = -2a$ donc: $x_1 = \frac{-b}{2a} + \frac{\sqrt{\Delta}}{2a} = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b}{2a} - \frac{\sqrt{\Delta}}{2a} = \frac{-b + \sqrt{\Delta}}{2a}$

Exemples:

- Résolution de l'équation $2x^2-3x+5=0$ a=2, b=-3 et c=5 $\Delta=(-3)^2-4\times2\times5=9-40=-31$ donc $\Delta<0$. L'équation n'admet aucune solution.
- Résolution de l'équation $3x^2-x-4=0$ a=3, b=-1 et c=-4 $\Delta=(-1)^2-4\times3\times(-4)=1+48=49$ donc $\Delta>0$. L'équation admet deux solutions :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{1+7}{6} = \frac{8}{6} = \frac{4}{3} \text{ et } x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{1-7}{6} = \frac{-6}{6} = -1$$

5

L'ensemble des solutions S= $\{-1; \frac{4}{3}\}$

Utilisation de la calculatrice :

```
PROGRAM: DEGRE2

:Prompt A,B,C

:B²-4AC→D

:If D>0

:Then

:Disp "2 SOLS :"

,(-B-√(D))/(2A) ►

Frac, "ET",(-B+√(D))/(2A) ►

Frac "ET",(-B+√(D))/(2A) ►

Else

:If D=0

:Then

:Disp "1 SOL :",

-B/(2A) ► Frac

:Else

:Disp "0 SOL"

:End
```

```
Pr9mDEGRE2
A=?2
B=?-3
C=?5
Ø SOL
Pr9mDEGRE2
A=?4
B=?-12
C=?9
1 SOL:
3/2
Fait
```

```
Pr9mDEGRE2
A=?3
B=?-1
C=?-4
2 SOLS :
-1
ET
4/3
Fait
```

III. <u>Synthèse</u>

Soit le polynôme $P(x)=ax^2+bx+c$

$\Delta = b^2 - 4ac$	Δ < 0	$\Delta = 0$	$\Delta > 0$
Solutions de l'équation $P(x)=0$	Pas de solution	Une seule solution : $\alpha = -\frac{b}{2a}$	Deux solutions : $\alpha_1 = \frac{-b - \sqrt{\Delta}}{2a}$ $\alpha_2 = \frac{-b + \sqrt{\Delta}}{2a}$
Factorisation de $P(x)$	Pas de factorisation	$P(x) = a(x - \alpha)^2$	$P(x) = a(x - \alpha_1)(x - \alpha_2)$
a>0 Position de la parabole par rapport à l'axe des abscisses	a	a	α α α α α α α α α α α α α α α α α α α
Signe de $P(x)$	$\begin{array}{c cc} x & -\infty & +\infty \\ \hline P(x) & + & \end{array}$	$ \begin{array}{c cccc} x & -\infty & \alpha & +\infty \\ \hline P(x) & + 0 & + \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
a<0 Position de la parabole par rapport à l'axe des abscisses		α	$\frac{\alpha_1}{\alpha}$
Signe de $P(x)$	$ \begin{array}{c cc} x & -\infty & +\infty \\ \hline P(x) & - \end{array} $	$ \begin{array}{c cccc} x & -\infty & \alpha & +\infty \\ \hline P(x) & -0 & - \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Remarques:

- Lorsque l'équation $ax^2+bx+c=0$ admet des solutions, ces solutions sont les racines du trinôme ax^2+bx+c .
 - Ce sont les abscisses des points d'intersection de la parabole avec l'axe des abscisses.
- Lorsque le polynôme a deux racines distinctes α_1 et α_2 , l'abscisse α du sommet de la parabole est la moyenne des deux racines : $\alpha = \frac{\alpha_1 + \alpha_2}{2}$.