

Masayu Leylia Khodra

KK IF – Teknik Informatika – STEI ITB

Modul 3: Beyond Classical Search

Simulated Annealing

Inteligensi Buatan (Artificial Intelligence)

bolehin pindah ke state tetangga ya lebih bunuk dan probabiutas tertentu ya semakin lama semakin menulun

Combining Completeness and Efficiency

-, tetangga cuman 1

Purely random walk

Hill-climbing

Complete search

Incomplete search (no "downhill" moves)

Extremely inefficient

Efficient, but can stuck on local maximum

- Simulated annealing combines hill climbing (efficient) with a random walk (complete)
- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency
- Simulated annealing is a version of stochastic hill climbing where some downhill moves are allowed.

Neighbor: One Random Successor of Current

Current State: h=-17

56 possible random successor

Better neighbor: h=-12

Worse neighbor: h=-18

- Stochastic hill-climbing:
 - Only move to better neighbor, and skip worse neighbor.
- Simulated annealing:
 - move to better neighbor, and allow move to worse neighbor that has probability

Simulated Annealing

https://id.m.wikipedia.org/wiki/Berkas:Annealing a silver strip.JPG

Annealing: heat (metal or glass) and allow it to cool slowly, in order to remove internal stresses and toughen it.

- T is the "temperature" of annealing that gradually decreases.
- ΔE =neighbor.value-current.value
- If better neighbor ($\Delta E > 0$): move to neighbor (stochastic HC) | Fallo | 1001h > 0 | parti pindah
- If worse neighbor ($\Delta {
 m E}<0$): probability move $e^{\Delta E/T}$
 - When T is high (e.g. $\Delta E=-5$, T=100, prob=0.95), there is a lot of random motion \rightarrow random walk
 - When T approaches 0 (e.g. $\Delta E=-5$, T=1, prob=0.007), randomness is decreased \rightarrow stochastic hill climbing.

Simulated Annealing (Russel & Norvig, 2010)

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
 schedule, a mapping from time to "temperature"

 $current \leftarrow MAKE-NODE(problem.INITIAL-STATE)$ for t = 1 to ∞ do Terminates T=0 beres armya (culmai) $T \leftarrow schedule(t)$ if T = 0 then return currentMove to better $next \leftarrow$ a randomly selected successor of currentneighbor $\Delta E \leftarrow next.Value - current.Value$ (stochastic HC) if $\Delta E > 0$ then $current \leftarrow next$ else $current \leftarrow next$ only with probability $e^{\Delta E}$ allowing some "bad" moves, depends on ternantung sama vertuset set threshold probability. probability

T: temperature as a function of time t

Move to Worse State

Current State: h=-1

 $current \leftarrow next$ only with probability $e^{\Delta E/T}$

Compare to static value: move probability > 0.5

Compare to random value: move probability > random(0,1)

Next: h=-2, T=10

 $\Delta E < 0$: prob=e^{(-2-(-1))/10}=e^{-0.1}=0.9

Simulated Annealing: Illustration

Current State: h=-1

Column: C3 Row: 2→8

Next: h=-1
Current ← next

Application: Simulated Annealing for Paraphrase

Liu, X., Mou, L., Meng, F., Zhou, H., Zhou, J., & Song, S. (2020). Unsupervised paraphrasing by simulated annealing. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 302–312 July 5 - 10, 2020. c 2020 Association for Computational Linguistics. arXiv preprint arXiv:1909.03588.

Properties of simulated annealing search

One can prove: If *T* decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc

Summary: Simulated Annealing

Simulated annealing is a version of stochastic hill climbing where some downhill moves are allowed.

If *T* decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1

Next:

Genetic Algorithm

THANK YOU

