FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2021. május 18. 8:00

Időtartam: 240 perc

Pótlapok száma						
Tisztázati						
Piszkozati						

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap üres oldalain, illetve pótlapokon folytathatja a feladat számának feltüntetésével.

2111 írásbeli vizsga 2 / 20 2021. május 18.

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszlehetőségek közül pontosan egy jó. Írja be ennek a válasznak a betűjelét a jobb oldali fehér négyzetbe! (Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.)

- 1. Lehetséges-e, hogy egy nyugvó testre pontosan két, egymással ellentétes irányú és azonos nagyságú erő hat, és ennek hatására a test mozgásba jön?
 - A) Nem lehetséges, mivel ekkor az erők eredője zérus.
 - B) Igen, ha a két erő hatásvonala nem esik egybe, akkor a test biztosan forogni kezd.
 - C) Igen, ha a két erő támadáspontja különböző, akkor a test biztosan forogni kezd.

2 pont

- 2. Egy bizonyos radioaktív anyag mintájában az egy év felezési idejű izotópból 108 db atommag van. Körülbelül hány atommag lesz ebből a radioaktív izotópból a mintában két év eltelte után?
 - **A)** 10^2
 - **B)** $2.5 \cdot 10^8$
 - C) $2,5\cdot10^7$
 - **D)** $2,5\cdot10^2$

2 pont

3. Egy, a bal oldali ábrán látható formájú, negatív dioptriájú szemüveglencsébe folyadékot öntünk, melynek törésmutatója megegyezik a szemüveglencse anyagának törésmutatójával. Így egy új "lencsét" kapunk. Mit állíthatunk erről?

- A) Az új "lencse" pozitív dioptriájú.
- B) Az új "lencse" negatív dioptriájú.
- C) Az új "lencse", az eredeti lencse dioptriájától függően, lehet pozitív és negatív dioptriájú is.

2 pont

Fizika	
emelt szin	1

Azonosító								
iel:							İ	

4. Egy széles szájú üveg aljára tapad egy felfújt szappanbuborék. Óvatosan, fokozatosan egy kicsit megmelegítjük alulról az üveget. Megnövekszik-e melegítés közben a szappanbuborék térfogata? (A buborék a melegítés során nem pukkad ki.)

- A) Igen, mert a buborékba zárt levegő kitágul.
- B) Nem, mert a buborékban nem melegszik fel a levegő.
- C) Nem, mert az üvegben lévő, a buborékot körülvevő levegő is felmelegszik.
- **D)** Igen, de csak észrevehetetlenül kicsit, kizárólag a buborék falának hőtágulása miatt.

2 pont	

- 5. "Állati jó remixek készülnek a Csurjumov–Geraszimenko-üstökös hangjából" ez a címe egy internetes portálon megjelent írásnak. Hogyan kell ezt értenünk?
 - A) Az üstökösmag hanghullámokat bocsát ki magából, ám azok a nagy távolság miatt nagyon legyengülnek, mire a Földre érnek, ezért egy berendezéssel fel kell őket erősíteni, hogy hallhassuk.
 - **B)** A hanghullámok, amelyeket az üstökösmag kibocsát, nem hallhatók a Földön, mert nagyon mélyek, ezért egy berendezéssel meg kell emelni a frekvenciájukat, hogy az ember számára hallhatóvá váljanak.
 - C) Az üstökösmag elektromágneses hullámokat bocsát ki magából, amit egy berendezés segítségével azonos frekvenciájú hanghullámokká alakíthatunk a Földön.

- 6. Egy optikai rácsot fehér fénnyel világítunk meg. A rács felbontja a fehér fényt komponenseire. Az ibolya és a vörös színek közül melyik elsőrendű maximuma lesz távolabb az elhajlási kép középpontjától?
 - A) A vörös.
 - **B)** Az ibolya.
 - C) Hullámhossztól függetlenül, csak a rácsállandótól és a rács-ernyő távolságtól függ a színek sorrendje.

2 pont	
--------	--

7. Egy autó az észak-déli egyenes autóúton észak felé indul. Sebességét a mellékelt grafikon mutatja. Hova érkezett meg a 2. óra végén?

- A) A kiindulási ponttól délre.
- B) A kiindulási ponttól északra.
- C) A kiindulási pontba.

- 8. 10 dkg -10 °C-os jeget és 10 dkg +10 °C-os vizet összekeverünk egy termoszban. A közös hőmérséklet 0 °C lesz. A hőmérsékleti egyensúly beálltakor miből lesz több a termoszban: vízből vagy jégből? A jég fajhője 2100 J/(kg · °C), a vízé 4200 J/(kg · °C).
 - A) Vízből.
 - B) Egyenlő lesz a víz és a jég tömege.
 - C) Jégből.

2 pont

9. Az ábrán lévő kapcsolásban a fenti áramköri elem egy fotoellenállás, melynek megvilágítás hatására csökken az ellenállása. Hogyan változik a feszültségmérő által mutatott érték, ha a megvilágítást csökkentjük?

- A) Nő.
- B) Csökken.
- C) Nem változik.

2 pont

- 10. Annál nagyobb a szökési sebesség egy bolygó felszínén,
 - A) minél nagyobb a tömege és a sugara.
 - B) minél kisebb a tömege és a sugara.
 - C) minél nagyobb a sugara és minél kisebb a tömege.
 - **D)** minél nagyobb a tömege és minél kisebb a sugara.

2 pont

11. Egy, a mesteremberek által használt vízmérték (bal oldali ábra) úgy működik, hogy egy kis zárt, folyadékkal telt, íves üvegcsőben a buborék (jobb oldali ábra) akkor van pontosan középen, ha az üvegcsövet tartalmazó egyenes rúd pontosan vízszintes helyzetben van. Használhat-e egy ilyen eszközt egy búvár, hogy ellenőrizze, a vízzel telt medence alja vízszintes-e?

- A) Igen, ez a vízmérték a víz alatt is ugyanúgy működik, mint szárazon.
- **B)** Nem, víz alatt nem működik az eszköz, mert a zárt csőben lévő folyadék a víz alatt feljön a cső tetejére.
- C) Az eszköz csak akkor működik helyesen, ha a zárt csőben lévő folyadék sűrűsége nagyobb, mint a medence vizének sűrűsége.

2 pont

12. Két egyforma vezetőkeret fekszik a síkjukra merőleges, homogén mágneses térben. A mágneses tér mindkét keret esetében változik. Az egyik keretben az 1. grafikon, a másik keretben a 2. grafikon szerint. Melyik keretben indukálódik nagyobb feszültség?

- A) Az 1. keretben.
- **B)** A 2. keretben.
- C) A két keretben megegyezik az indukált feszültség nagysága.

2 pont

Fizika
emelt szint

zonosító	
ial.	

13. Miért vannak egy hideg gázon átjutó fény abszorpciós színképében sötét vonalak?

- A) Mert a gáz bizonyos frekvenciájú sugarakat visszaver a fényforrás felé.
- **B)** Mert a gáz bizonyos frekvenciájú sugarakat elnyel, melyek energiáját γ-sugarak formájában sugározza ki, ezeket a prizma nem a látható tartomány színképében jeleníti meg.
- C) Mert a gáz bizonyos frekvenciájú sugarakat elnyel, melyek energiáját minden irányban kisugározza, így kevesebb jut a megfigyelőkhöz ezekből a frekvenciákból.

2 pont

14. Lehetséges-e holdfogyatkozás az ábrán látható holdfázist követően, két órán belül?

(forrás: https://tavcso.hu/galeria/1009199)

- A) Igen, mert a Hold megvilágított része növekszik.
- B) Nem lehetséges, mert holdfogyatkozáskor más holdfázis van.
- C) Nem, mert a Hold megvilágított része csökken.

2 pont	
--------	--

15. Hogyan helyezkednek el egy pontszerű töltés elektromos terében az ekvipotenciális felületek?

- A) Párhuzamosan az erővonalakkal.
- **B)** Merőlegesen az erővonalakra.
- C) Pontszerű töltés erőterében nincsenek ekvipotenciális felületek.

2 pont	

2111 írásbeli vizsga 7 / 20 2021. május 18.

Azonosító								
jel:								

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet, és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalakra írhatja.

1. A ruténium bomlása

"A fejlett méréstechnikának köszönhetően hazánkban is mérhető volt, de nincs egészségi következménye a környezetbe került radioaktív ruténiumizotópnak" olvashattuk a Magyar Tudományos Akadémia hírei között. Október első napjaiban Európa számos pontján, így hazánkban is kimutatható volt a levegőmintákban a Ru-106 izotóp jelenléte. A sajtóban először megjelent francia hírek 10 μBq/m³ nagyságrendű légköri aktivitáskoncentrációt említettek, a hazai és a környező országok légköri környezetellenőrző állomásain ennél két-három nagyságrenddel nagyobb értékeket detektáltak. A ruténium-106 izotóp felezési ideje 374 nap, ezért a természetben nem fordul elő, a mintákban kimutatott szennyeződés csak mesterséges eredetű lehet. A környezeti mintákban más mesterséges eredetű izotóp nem volt mérhető, így egyértelműen ki lehetett zárni annak lehetőségét, hogy a szennyeződés egy reaktorból vagy kiégett nukleáris fűtőelemek feldolgozása során került volna a környezetbe, mivel ezekben az esetekben számos más izotóp is kikerült volna a környezetbe. A Ru-106 lágy bétasugárzó, detektálása elsősorban leányelemén, a fél perces felezési idejű Rh-106 (ródium) izotópon keresztül lehetséges. Elterjedten alkalmazzák gyógyászati célokra, elsősorban a szemlencse daganatos megbetegedésének kezelésére, de esetenként űreszközökön radioizotópos termogenerátorban is használják. (forrás: https://mta.hu/tudomany hirei/)

- a) Milyen részecskéket sugároznak ki a radioaktív izotópok az egyes bomlások során?
- b) Mit jelent a felezési idő fogalma?
- c) Értelmezze az aktivitáskoncentráció fogalmát!
- d) A 374 napos felezési idő miért magyarázat arra, hogy nincs jelen természetes módon a ruténium-106 izotóp?
- e) Mi a leányelem? A konkrét esetben melyik a ruténium-106 izotóp leányeleme?
- f) Írja le a ródium palládiummá (Pd) való alakulását leíró béta-bomlás egyenletét!
- g) Milyen folyamatok miatt állíthatjuk, hogy ha reaktorból származna a szennyeződés, akkor más radioaktív izotópokat is találtak volna a levegőben?
- h) Miért alkalmasak a radioaktív izotópok a daganatos betegségek kezelésére?
- i) Körülbelül mennyi idő alatt csökken ezredére a 106-os tömegszámú, radioaktív ruténium koncentrációja egy mintában?

2111 írásbeli vizsga 8 / 20 2021. május 18.

2. A Mohr-Westphal-mérleg

A Mohr-Westphal-mérleget folyadékok sűrűségének pontos meghatározására használják. Ez egy olyan kétkarú mérleg, melynek egyik karján (az ábra szerinti jobb oldalon) egy üvegtest függ, amelyet a másik karon (a bal oldalon) egy fém nehezék egyensúlyoz ki. Ha az üvegtestet folyadékba merítjük, a mérleg egyensúlya felbillen. Ha a mérleg jobb oldali karjára kis súlyokat, úgynevezett lovasokat ültetünk a megfelelő helyre, az egyensúly helyreállítható. A mérleg jobb karja tíz egyenlő részre van osztva. Ha az üvegtestet l g/cm³ sűrűségű vízbe merítjük, akkor a legnehezebb lovast a tizedik osztásrészbe ültetve a mérleg egyensúlya helyreáll. A közepes méretű lovas tömege a nagynak a tizede, a legkisebb lovas tömege a nagynak a századrésze. Ha például a legnagyobb lovast a kilencedik, a közepest a harmadik, és a legkisebbet az ötödik rovátkába ültetve áll helyre az egyensúly, akkor megállapíthatjuk, hogy a folyadék sűrűsége 0,935 g/cm³. (Kép forrása: https://docplayer.org/48565178-Dichtebestimmung-r-bzw.html)

- a) Mutassa be a vízbe merülő testre ható erőket!
- b) Ismertesse a kétkarú emelő egyensúlyának feltételeit!
- c) Ha a legnagyobb lovast az ötödik osztásrészbe ültetve az egyensúly helyreáll, akkor elmondhatjuk, hogy a folyadék sűrűsége 0,5 g/cm³. Az üvegtestre, valamint a lovasokra ható erők és ezek erőkarjai segítségével magyarázza meg, hogy miért!
- d) Működik-e ez a mérőeszköz, ha nagy sűrűségű folyadék, például higany sűrűségét szeretnénk meghatározni vele? Válaszát indokolja!
- e) Miért érdemes a folyadékba merülő üvegtestnek egy hőmérőt választani?
- f) Az ábrán látható elrendezésben mekkora az olaj sűrűsége? Ha lassan melegíteni kezdjük az olajat, hogyan kell a lovasok helyzetén változtatnunk: jobbra vagy balra kell majd a legkisebb lovast tennünk?

2111 írásbeli vizsga 9 / 20 2021. május 18.

3. Körfolyamatok, a hőtan második főtétele

A valóságos gépekben, amelyekben a hő segítségével mechanikai munkát akarunk nyerni, az erő forrását nem a hő abszorpciójában vagy átalakításában kell keresnünk, hanem csupán a hő átfolyatásában... a hő mechanikai munkává való átalakítása minden valószínűség szerint lehetetlen, legalábbis eddig még nem fedezték fel.

W. Thomson (Lord Kelvin)

Simonyi Károly: A fizika kultúrtörténete 1981, Budapest

- a) Ismertesse, mit értünk a hőerőgépek termodinamikai hatásfoka alatt!
- b) Az alábbi ábrán egy körfolyamat nyomás-térfogat diagramját látja. Ismertesse ezen a példán az egyes részfolyamatok energetikai jellemzése segítségével, hogy hogyan határozhatjuk meg ennek a folyamatnak a termodinamikai hatásfokát!
- c) Fogalmazza meg, hogy mit mond ki a hőtan második főtétele a hőerőgépek hatásfokáról!
- d) Mutassa meg, hogy a fent jellemzett körfolyamatban az előbbiekben megfogalmazott elv hogyan érvényesül!
- e) Ismertesse a hőtan második főtételének a hőáramlás irányára vonatkozó megfogalmazását!
- f) Mutassa be a hőtan második főtételének a folyamatok irányára vonatkozó megfogalmazását!
- g) Adjon meg egy példát olyan elképzelt folyamatra, ami a hőtan első főtételének nem mond ellent, de a második főtétel miatt nem játszódik le a természetben!

Tartalom	Kifejtés	Összesen				
18 pont	5 pont	23 pont				

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

- 1. Egy mosógép 10 l vizet melegít fel egy mosási programhoz. A takarékos program 30 °C-os vízzel mos, a fehérnemű program 60 °C-os vízzel, maga a mosás menete mindkét esetben megegyezik. A vizet a mosógép elektromos fűtőszállal melegíti fel.
 - a) Hány kWh elektromos energiával használ többet a mosógép a fehérnemű programhoz, mint a takarékos programhoz? (A melegebb vízzel való mosás során fellépő többlet hőveszteséget hanyagoljuk el!)

A modern vasalókban sokszor van gőzölési funkció, amellyel könnyebb kivasalni a gyűrött ruhákat. Bizonyos mennyiségű ruha vasalásához 2 dl, kezdetben 15 °C hőmérsékletű vizet forralt el a készülék.

b) Hány kWh elektromos energiát használt el a készülék a forraláshoz?

(A víz fajhője 4180
$$\frac{J}{kg^{\circ}C}$$
, forráshője 2257 $\frac{kJ}{kg}$, sűrűsége 1 $\frac{kg}{l}$. A fűtőszál hatásfokát vegyük 100%-nak.)

a)	b)	Összesen
5 pont	6 pont	11 pont

2111 írásbeli vizsga 13 / 20 2021. május 18.

Azonosító								
jel:								

2. Vihar vonult el a közelünkben. A villámlást és a mennydörgést figyelve feljegyeztük a villámlások észlelésének időpontját és azt, hogy a mennydörgés mennyivel követte a villámlásokat. Az adatokat az alábbi táblázat tartalmazza. Feltételezzük, hogy a villámlások és dörgések forrása a vihar centrumában van, amelynek kiterjedése kicsiny a vihar tőlünk vett távolságához képest. (Az első villámlás időpontját tekintjük t=0 szekundumnak.)

mérés száma	1.	2.	3.	4.	5.	6.	7.	8.
a villámlás észlelése	0 s	61 s	140 s	178 s	217 s	265 s	329 s	405 s
villámlás és dörgés között eltelt idő	18 s	13 s	7 s	6 s	7 s	10 s	15 s	22 s

- a) Készítsen felülnézeti vázlatot a vihar centrumának mozgásáról a megfigyelő pozícióját is feltüntetve és hozzávetőlegesen jelölve a vihar helyzetét a villámlások időpontjában!
- b) Ha feltételezzük, hogy a vihar centruma egyenletesen haladt, akkor milyen messze esett tőlünk, amikor hozzánk legközelebb volt?
- c) Mekkora volt a vihar centrumának haladási sebessége?

A vihar centrumának mozgását tekintsük egyenes vonalú egyenletes mozgásnak! A hangsebesség 330 m/s.

2111 írásbeli vizsga 14 / 20 2021. május 18.

a)	b)	c)	Összesen
4 pont	4 pont	4 pont	12 pont

2111 írásbeli vizsga 15 / 20 2021. május 18.

3. Az elemi töltés meghatározásának ismert módszere a Millikan-féle kísérlet. A kísérlet egyik lehetséges kivitelezésében az elektromosan töltött kis olajcseppek lebegését vizsgáljuk feszültségre kapcsolt kondenzátorfegyverzetek között. A számos olajcseppecske közül egy kiválasztott, negatívan töltött cseppecske sugara $r = 8,1\cdot10^{-7}$ m, amely U = 165 V feszültség esetén éppen lebeg a kondenzátor lemezei között.

(A kép forrása: Wikipedia)

- a) Készítsen értelmező ábrát a töltött kondenzátorról és a lebegő cseppecskékre ható erőkről! (Mivel a cseppecskére a levegőben ható felhajtóerő a többi erőhöz képest elhanyagolhatóan kicsi, ennek jelölésétől eltekinthet!)
- b) Határozza meg a kiválasztott olajcsepp töltésének nagyságát, ha ρ_{olaj} = 973 kg/m³, a kondenzátorok fegyverzeteinek távolsága pedig d = 5 mm!
- c) Az elemi töltés hányszorosát mérjük az olajcseppecskén?

(Az elemi töltés nagysága $e = 1.6 \cdot 10^{-19} \text{ C}, g = 9.8 \text{ m/s}^2.$)

a)	b)	c)	Összesen
3 pont	9 pont	2 pont	14 pont

4. Mekkora erővel vonzza a Föld az Egyenlítőn nyugvó, 3 kg tömegű testet, ha a Föld egyenlítői sugara 6370 km, tömege 6·10²⁴ kg? A Föld forgása miatt az Egyenlítőn mérhető nehézségi erő ennél kisebb. Mennyivel? Hány százaléka ez az érték a gravitációs vonzóerőnek?

(A tengely körüli forgás periódusát 24 órával közelítjük, $\gamma = 6.67 \cdot 10^{-11} \text{ Nm}^2/\text{kg}^2$.)

2111 írásbeli vizsga 18 / 20 2021. május 18.

Fizika	Azonosító							
emelt szint	jel:							

Összesen

10 pont

2111 írásbeli vizsga 19 / 20 2021. május 18.

	ponts	szám
	maximális	elért
I. Feleletválasztós kérdéssor	30	
II. Témakifejtés: tartalom	18	
II. Témakifejtés: kifejtés módja	5	
III. Összetett feladatok	47	
Az írásbeli vizsgarész pontszáma	100	

dátum	javító tanár

	pontszáma egész számra kerekítve			
	elért	programba beírt		
I. Feleletválasztós kérdéssor				
II. Témakifejtés: tartalom				
II. Témakifejtés: kifejtés módja				
III. Összetett feladatok				

dátum	dátum
javító tanár	jegyző