Write your name here Surname	Other names	
Edexcel International GCSE	Centre Number	Candidate Number
Eurthan De	ıra Matha	matics
Further Pu	ire matrie	matics
	Afternoon	Paper Reference 4PM0/02

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

Answer all TEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

	g.	
1	A triangle has sides of length 10 cm, 8 cm and 9 cm.	
	(a) Calculate, in degrees to the nearest 0.1°, the size of the largest angle of this triangle.	(3)
	(b) Find, to 3 significant figures, the area of this triangle.	
		(2)

2	Relative to a fixed origin O , the point A has position vector $6\mathbf{i} + 5\mathbf{j}$ and the point B has position vector $3\mathbf{i} + 9\mathbf{j}$		
	(a) Find \overrightarrow{AB} as a simplified vector in terms of i and j	(2)	
	The line PQ is parallel to AB . Given that $\overrightarrow{PQ} = 12\mathbf{i} + \lambda\mathbf{j}$		
	(b) find the value of λ .		
	(c) Find a unit vector parallel to AB.	(2)	
		(2)	

3	A geometric series has first term $(11x - 3)$, second term $(5x + 3)$ and third term $(3x - 3)$.	
	(a) Find the two possible values of x .	
		(4)
	For each of your values of x ,	
	(b) find the corresponding value of the common ratio of the series.	(3)
	Given that the series is convergent,	
	(c) find the sum to infinity of the series.	
		(3)

Question 3 continued	
	(Total for Question 3 is 10 marks)

4 Differentiate with respect to <i>x</i>		
$e^{2x}\cos 3x$		(3)
		(3)
	(Total for Question 4 is 3 mag	arks)

5 A solid cuboid has volume 772 cm³ The cuboid has width x cm, length 4x cm and height h cm.

The total surface area of the cuboid is $A \text{ cm}^2$

(a) Show that $A = 8x^2 + \frac{1930}{x}$

(3)

(b) Find, to 3 significant figures, the value of x for which A is a minimum, justifying that this value of x gives a minimum value of A.

(5)

(c) Find, to 3 significant figures, the minimum value of A.

(2)

.....

Question 5 continued

6	6 (a) Use algebra to find the coordinates of the points of intersection of the curve with equation $y = x^2 + 2x - 6$ and the line with equation $y = 5x + 4$		(5)	
	(b) Use algebraic integration to find the exact area of the finite region bounded by curve and the line.			
			(5)	

A particle <i>P</i> moves in a straight line so that, at time <i>t</i> seconds ($t \ge 0$), its velocity, $v \text{ m/s}$, is given by $v = 3t^2 - 4t + 7$		
	Find	
	(a) the acceleration of P at time $t = 2$	
		(2)
	(b) the minimum speed of P .	(3)
	When $t = 0$, P is at the point A and has velocity V m/s.	
	(c) Write down the value of <i>V</i> .	
		(1)
	When P reaches the point B , the velocity of P is also V m/s.	
	(d) Find the distance AB.	
		(6)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

8 A curve *C* has equation

$$y = \frac{3x^2 - 1}{3x + 2} \qquad \text{where } x \neq -\frac{2}{3}$$

(a) Write down an equation of the asymptote to C which is parallel to the y-axis.

(1)

(b) Find the coordinates of the stationary points on C.

(8)

The curve crosses the y-axis at the point A.

(c) Write down the coordinates of A.

(1)

(d) On the axes on the opposite page, sketch C, showing clearly the asymptote parallel to the y-axis, the coordinates of the stationary points and the coordinates of A.

(3)

The line l is the normal to the curve at A.

(e) Find an equation of l.

(3)

Question 8 continued
<i>y</i> ↑
O X

Question 8 continued

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

Using the above identities

(a) show that $\cos 2\theta = 2 \cos^2 \theta - 1$

(3)

(b) find a simplified expression for $\sin 2\theta$ in terms of $\sin \theta$ and $\cos \theta$

(1)

(c) show that $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$

(4)

Hence, or otherwise,

(d) solve, for $0 \le \theta < \pi$ giving your answers in terms of π , the equation

$$6\cos\theta - 8\cos^3\theta + 1 = 0$$

(4)

- (e) find
 - (i) $\int \left(8\cos^3\theta + 4\sin\theta \right) d\theta$
 - (ii) the exact value of $\int_0^{\frac{\pi}{3}} \left(8\cos^3 \theta + 4\sin \theta \right) d\theta$

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Diagram **NOT** accurately drawn

Figure 1

A conical container is fixed with its axis of symmetry vertical. Oil is dripping into the container at a constant rate of $0.4 \text{ cm}^3/\text{s}$. At time t seconds after the oil starts to drip into the container, the depth of the oil is h cm. The vertical angle of the container is 60° , as shown in Figure 1

When t = 0 the container is empty.

(a) Show that
$$h^3 = \frac{18t}{5\pi}$$

(4)

Given that the area of the top surface of the oil is $A \text{ cm}^2$

(b) show that
$$\frac{dA}{dt} = \frac{4}{5h}$$

(6)

(c) Find, in cm²/s to 3 significant figures, the rate of change of the area of the top surface of the oil when t = 10

Question 10 continued	
	(Total for Question 10 is 12 marks)
	TOTAL FOR PAPER IS 100 MARKS

