1/INTRODUCTION:

Parfois il est difficile de définir les forces qui interviennent dans un $m.v.t \rightarrow$ alors on peut recourir à d'autres nouvelles notions qui sont « le travail et l'énergie » ; avec ces notions on peut résoudre les problèmes même si nous ne connaissant pas toutes les forces.

2/LE TRAVAIL D'UNE FORCE:

2.1/Définition:

Le travail élémentaire fourni par une force \vec{F} est défini comme le produit scalaire de la force par le déplacement correspondant.

$$dW = \vec{F} \cdot \vec{d\ell} = F \cdot d\ell \cdot \cos\alpha$$

O A $\vec{d\ell}$

B \times

Si
$$\alpha < \pi/2 : \rightarrow dW > 0 \rightarrow \begin{cases} \vec{F} : est une force motrice \\ W : est un travail moteur \end{cases}$$

Si
$$\alpha > \pi/2 : \rightarrow dW < 0 \rightarrow \begin{cases} \vec{F} : \text{est une force résistante} \\ W : \text{est un travail résistant} \end{cases}$$

Si
$$\alpha = \pi/2 : \rightarrow dW = 0 \rightarrow \begin{cases} \vec{F} : est \perp (AB) \\ W : est un travail nul \end{cases}$$

L'unité du travail est le Joule « J ».

Remarque1:

Si le m.v.t est rectiligne suivant \overrightarrow{Ox} ($\overrightarrow{d\ell} = \overrightarrow{dx}$), alors le travail élémentaire s'écrira :

$$dW = \vec{F} \cdot \overrightarrow{dx} = F \cdot dx \cdot \cos\alpha = F \cdot \cos\alpha \cdot dx$$

Le travail total sera:

$$W = \int_A^B dW = \int_{x_A}^{x_B} F \cos\alpha \, dx$$

Si \vec{F} et α sont des constantes, alors on aura :

$$W = F \cos \alpha \int_{x_A}^{x_B} dx = F \cos \alpha \cdot (x_B - x_A) = F \cos \alpha \cdot \overline{AB}$$

Remarque 2:

Si le mouvement est plan (par exemple: dans le plan xOy)

$$\rightarrow \overrightarrow{F} \begin{vmatrix} F_x \\ F_y \end{vmatrix} et \quad \overrightarrow{d\ell} \begin{vmatrix} dx \\ dy \end{vmatrix}$$

alors le travail élémentaire s'écrit :

$$dW = \vec{F} \cdot \overrightarrow{d\ell} = F_x dx + F_y dy$$

Le travail total sera :

$$W = \int_{A}^{B} dW = \int_{A}^{B} F_{x} dx + F_{y} dy = \int_{x_{A}}^{x_{B}} F_{x} dx + \int_{y_{A}}^{y_{B}} F_{y} dy$$

2.2/ Le travail d'un poids :

Le travail élémentaire d'un poids \vec{P} s'écrit :

$$dW = \vec{P} \cdot d\vec{\ell} = P \cdot d\ell \cdot \cos\alpha = m \cdot g \cdot dz$$

Le travail total du poids \vec{P} sera :

$$W = \int_0^A dW = \int_{z_0}^{z_A} m. g. dz = m. g. [z_A - z_0]$$

puisque :
$$z_{A-}z_{O}=h$$

alors:

$$W=m.g.h$$

Le travail du poids est indépendant du chemin suivi.

3/L'ÉNERGIE CINETIQUE:

3.1/ Théorème de l'énergie cinétique :

La variation de l'énergie cinétique entre deux instant t_1 et t_2 est égale à la somme algébrique des travaux de toutes les forces.

$$\Delta E_c = E_{cB} - E_{cA} = \sum W_{toutes \ les \ forces}$$

avec : E_{cA} : énergie cinétique initiale à l'instant t_1 ;

 E_{cB} : énergie cinétique finale à l'instant t_2 .

Démonstration:

$$\sum W_{toutes\ les\ forces} = W_A^B = \int_A^B dW = \int_A^B \vec{F} \cdot d\vec{x} = \int_A^B m \cdot \vec{a} \cdot d\vec{x} =$$

$$\int_A^B m \cdot \frac{\vec{dV}}{dt} \cdot d\vec{x} = \int_A^B m \cdot \vec{V} \cdot \vec{dV} = \frac{1}{2} m V^2 \Big]_A^B = \frac{1}{2} m V_B^2 - \frac{1}{2} m V_A^2 = E_{cB} - E_{cA}$$

4/ L'ÉNERGIE POTENTIELLE : (E,)

4.1/Cas d'un système conservatif :

Un système est dit conservatif lorsque son énergie totale (E_c+E_p) se conserve, pas de perte d'énergie. On aura : $(\Delta E_T=\mathbf{0})$

Système est conservatif
$$\Rightarrow$$
 $E_{TA}=E_{TB}$ $(\Delta E_T=E_{TB}-E_{TA}=0)$ $E_{cA}+E_{pA}=E_{cB}+E_{pB}$ $E_{cB}-E_{cA}=-(E_{pB}-E_{pA})$ $\Delta E_c=-\Delta E_p$

donc d'après le théorème de l'énergie cinétique on peut conclure que pour une système conservatif :

$$\sum W_{toutes\ les\ forces} = \sum W_A^B = \Delta E_c = -\Delta E_p$$

4.2/ Forces dérivants d'un potentiel :

Une force \vec{F} dérive d'un potentiel si son travail ne dépend pas du chemin suivi, le travail entre A et B est donné par :

$$W = -\Delta E_p \implies dW = -dE_p$$

$$\vec{F}. \overrightarrow{d\ell} = -dE_p$$

$$F_x. dx + F_y. dy + F_z. dz = -\frac{\partial E_p}{\partial x} dx - \frac{\partial E_p}{\partial y} dy - \frac{\partial E_p}{\partial z} dz$$

Par identification on aura:

$$F_{x} = -\frac{\partial E_{p}}{\partial x}$$

$$F_{y} = -\frac{\partial E_{p}}{\partial y}$$

$$F_{z} = -\frac{\partial E_{p}}{\partial z}$$

$$\Leftrightarrow \qquad \overrightarrow{F} = -\overrightarrow{grad} E_{p}$$

En résumé :

Remarque importante :

Si:
$$\vec{F} = -\overrightarrow{grad} E_p \Leftrightarrow \overrightarrow{RotF} = \overrightarrow{\nabla} \wedge \overrightarrow{F} = \overrightarrow{0}$$

Démonstration:

$$\overrightarrow{Rot} \vec{F} = \overrightarrow{\nabla} \wedge \vec{F} = \overrightarrow{\nabla} \wedge \left(- \overrightarrow{\nabla} E_p \right) = - \left(\overrightarrow{\nabla} \wedge \overrightarrow{\nabla} \right) E_p = \overrightarrow{0}$$

4.3/ Energie potentielle d'une masse dans le champ de gravitation :

Soit un corps de masse "m", la terre

attire ce corps avec une force :

$$\vec{F} = \vec{P} = -G.\frac{M.m}{r^2} \vec{u}$$

alors le travail de cette force pour un

déplacement entre deux points A et B s'écrit :

$$W_A^B = \int_A^B \vec{F} \cdot \overrightarrow{d\ell} = \int_A^B -G \cdot \frac{M \cdot m}{r^2} \vec{u} \cdot \overrightarrow{d\ell}$$

$$W_A^B = G.M.m \int_A^B -\frac{1}{r^2} dr$$

puisque $dr = d\ell cos \alpha$

$$W_A^B = G.M.m \left[\frac{1}{r}\right]_A^B = \frac{G.M.m}{r_B} - \frac{G.M.m}{r_A}$$

d'autre part on sait que : $W_A^B = -\Delta E_p = E_{pA} - E_{pB}$

par identification, on obtient:

$$E_{pB} = -\frac{G.M.m}{r_B}$$
 et $E_{pA} = -\frac{G.M.m}{r_A}$

d'une façon générale, pour un point "r" de l'espace :

$$E_p(r) = -\frac{G.M.m}{r}$$
 avec $E_p(\infty) = 0$

Exercice : Déterminer la vitesse " V_ℓ " de libération d'un projectile.

 V_ℓ : c'est la vitesse minimale qu'il faut donner à un projectile pour qu'il s'échappe à l'attraction de la terre.

Il faut que :

$$E_c(\infty) = 0$$
 or on a aussi $E_p(\infty) = 0$

On a la conservation de l'énergie totale :

$$E_c(\infty) + E_p(\infty) = E_{cA} + E_{pA}$$

$$0 + 0 = \frac{1}{2}mV_{\ell}^2 - \frac{GMm}{r} \rightarrow V_{\ell} = \sqrt{\frac{2GM}{R}} = 11.2 \text{ km/s}$$

4.4/Energie potentielle au voisinage de la terre :

Un corps de masse "m" se déplace du point A de hauteur par rapport au sol " $h_{\!\scriptscriptstyle A}$ ", au point B de hauteur par rapport au sol " $h_{\!\scriptscriptstyle B}$ ".

On a: $r_A = R + h_A$ $r_B = R + h_B$

on a:

$$\Delta E_p = E_{pB} - E_{pA} = -\frac{G.M.m}{r_B} + \frac{G.M.m}{r_A}$$

$$\Delta E_p = -\frac{G.M.m}{(R+h_B)} + \frac{G.M.m}{(R+h_A)} = GMm \frac{R+h_B-R-h_A}{R^2} = GMm \frac{h_B-h_A}{R^2}$$

Or:
$$g = \frac{GM}{R^2}$$

Alors:
$$\Delta E_p = mgh_B - mgh_A = E_{pB} - E_{pA}$$
 c.à.d:
$$\begin{cases} E_{pB} = mgh_B + C^{ste} \\ E_{pA} = mgh_A + C^{ste} \end{cases}$$

On choisit l'origine du repère au niveau du sol :

$$\rightarrow si \ h = 0 \ \rightarrow \ E_p = 0 \ \rightarrow \ C^{ste} = 0$$

Finalement on peut conclure que l'énergie potentielle d'un corps de masse "m" au voisinage de la terre s'écrit :

$$oxed{E_p(h)=m.\,g.\,h}$$
 l'axe de référence étant la terre (le sol)

4.4.1/ variation de l'Ec et l'Ep en fonction de la hauteur "z" :

On abandonne un corps en chute libre d'un point A de hauteur « h ». Tracer la variation de l'Ec et l'Ep en fonction de z. z

Notre système est conservatif :

$$E_T = E_c + E_p = C^{ste}$$

L'axe de référence choisi étant la terre alors

l'énergie potentielle du corps s'écrit : $E_p(z) = mgz$

au point A :
$$E_p = mgh$$

 $E_c = 0$ $\rightarrow E_{TA} = mgh + 0 = mgh$

au point M : $E_p = mgz$

$$E_c = E_T - E_p = mgh - mgz$$
 sachant que $mgh = C^{ste}$

$$E_c = -mgz + mgh$$

Finalement:

$$E_p(oldsymbol{z}) = mgoldsymbol{z}$$
 (de la forme y(x)=ax une droite passant par 0)

$$E_c(oldsymbol{z}) = -mgoldsymbol{z} + mgh$$
 (de la forme y(x) =-ax+b : une droite décroissante)

 $variation\ de: E_p(\mathbf{z}) = mg\mathbf{z}$

 $variation de: E_c(\mathbf{z}) = -mg\mathbf{z} + mgh$

variations de E_T , E_c et E_p

4.4.2/ Energie potentielle d'élasticité:

La force de rappel d'une masse accrochée à un ressort est donnée par :

$$\vec{T} = \vec{F} = -kx\vec{\imath}$$

Le travail fourni par cette force est :

$$W_A^B = \int_A^B \vec{F} \cdot d\vec{x} = \int_A^B |\vec{F}| \cdot dx \cdot \cos \pi = \int_A^B -kx dx = -\frac{1}{2}kx^2\Big]_A^B = -\frac{1}{2}kx_B^2 + \frac{1}{2}kx_A^2 \quad \text{(1)}$$

avec: $\begin{cases} x_A = x_m : \text{\'elongation maximale du ressort} \\ x_B = -x_m : \text{compression maximale du ressort} \end{cases}$

D'autre part :

$$W_A^B = -\Delta E_p = -E_{pB} + E_{pA} \ (2)$$

Finalement, l'énergie potentielle d'élasticité est définie par :

$$E_p = \frac{1}{2}kx^2$$

Variations des énergies cinétiques et potentielles en fonction du temps :

Pour un système conservatif : $E_T = E_c + E_p = C^{ste}$

On connait la variation de $E_p = \frac{1}{2}kx^2$:

• Au point A « élongation maximale » $x_A = x_m$

$$\begin{cases} E_p = \frac{1}{2}kx_m^2 \\ E_c = 0 \ (V = 0) \end{cases} \Rightarrow E_T = \frac{1}{2}kx_m^2 = C^{ste}$$

• A l'origine O :

$$E_p = 0 \quad \Rightarrow E_c = E_T = \frac{1}{2}kx_m^2$$

Alors la variation de l' $E_p=rac{1}{2}kx^2$ est (une parabole orienté vers le haut)

La variation de l' $E_c=E_T-E_p=-rac{1}{2}kx^2+C^{ste}$ (parabole orientée vers le bas) (Remarque : on peut toujours écrire $E_c=rac{1}{2}mV^2$)

5/FORCES NON CONSERVATRICES:

Il existe des cas ou l'énergie totale ne se conserve pas, par exemple si les forces de frottements existent \rightarrow alors l'énergie totale diminue et on n'aura pas de conservation d'énergie, dans ces cas la variation de l'énergie totale $(\Delta E_T \neq 0)$, alors on dit que la variation de l'énergie totale entre deux point A et B est égale à la somme des travaux des force non conservatrices appliquées à ce système :

$$\Delta E_T|_A^B = \sum W_{forces\ non\ conservatrices} = E_{TB} - E_{TA}$$

Si la seule force non conservatrice est la force de frottement " $\vec{\mathcal{C}}_x$ ", alors :

$$\Delta E_T|_A^B = \sum W_{\overrightarrow{Cx}} = E_{TB} - E_{TA}$$

Cependant, si le système est isolé, il ne subit aucune force extérieure (pas de force de frottement ($\vec{C}_x = 0$) alors l'énergie totale se conserve : $\Delta E_T|_A^B = 0$.