Løsningsforslag til Skriftlig Eksamen DM527 Matematiske redskaber i datalogi

Torsdag, den 1. november 2007.

Opgave 1 (10 %)

a) Sandt. Dette vises ved et modstridsbevis.

Antag at $A - C \not\subseteq B - C$, men at $A \subseteq B$. Dette giver, at der må findes et x med $x \in A - C$ og $x \notin B - C$.

Per definition giver $x \in A - C$, at $x \in A$ og $x \notin C$. Da $A \subseteq B$ og $x \in A$, vil $x \in B$. $x \in B$ og $x \notin C$ giver at $x \in B - C$ i modstrid med hvad vi antog før.

b) Falsk. Lad $A = C = \{1\}$, $B = \{2\}$. Med disse mængder har vi $A - C = \emptyset$ og $B - C = \{1\}$, men ikke $A \subseteq B$.

Opgave 2 (25 %)

Dette vises ved et induktionsbevis.

Basis: n = 0. Vi har per definition $A^0 = I_2$ og dermed som ønsket

$$A^0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 - 2^0 \\ 0 & 2^0 \end{bmatrix}.$$

Induktionshypotese: Antag at for et vilkårligt $n \in \mathbb{N}$

$$A^n = \begin{bmatrix} 1 & 1 - 2^n \\ 0 & 2^n \end{bmatrix}.$$

Induktionsskridt: Vi viser, at sætningen holder for n + 1 givet induktionshypotesen for n.

$$A^{n+1} = A^{n}A$$

$$= \begin{bmatrix} 1 & 1-2^{n} \\ 0 & 2^{n} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1+2(1-2^{n}) \\ 0 & 2 \cdot 2^{n} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1-2^{n+1} \\ 0 & 2^{n+1} \end{bmatrix}$$

Opgave 3 (15 %)

- a) R er ikke refleksiv. Modeksempel $(1,1) \notin R$, idet $1 \cdot 1 = 1 \neq 0$.
- b) R er symmetrisk. Antag aRb, dvs. ab = 0. Da multiplikation i \mathbb{Z} er kommutativ, vil ba = 0 og dermed bRa.
- c) R er ikke anti-symmetrisk. Modeksempel: 0R1 og 1R0, men $0 \neq 1$.
- d) R er ikke transitiv. Modeksempel: 1R0 og 0R2, men vi har ikke $(1,2) \in R$.
- e) *R* er ikke en ækvivalensrelation. Dette kræver at *R* er refleksiv, symmetrisk og transitiv. *R* er kun symmetrisk.
- f) *R* er ikke en partiel ordning. Dette kræver at *R* er refleksiv, anti-symmetrisk og transitiv. *R* er ingen af delene.

Opgave 4 (15 %)

a) Vi multiplicerer begge sider med 135 og får

$$135 \cdot 203 x \equiv (1 + 52 \cdot 527) x \equiv x \equiv 135 \cdot 3 \equiv 405 \pmod{527}$$

Dermed bliver løsningsmængden $\{405 + 527i | i \in \mathbb{Z}\}.$

- b) (a) Fra vinket får vi at gcd(203,527) = 1, dvs. vi kan benytte den kinesiske restklassesætning.
 - (b) Vi har $a_1 = 1$, $a_2 = 3$, $m_1 = 203$, $m_2 = 527$, $m = m_1 m_2 = 106981$. Dermed $M_1 = \frac{m}{m_1} = m_2 = 527$ og $M_2 = \frac{m}{m_2} = m_1 = 203$.
 - (c) Vi skal finde y_1 , så $M_1y_1 \equiv 527y_1 \equiv 1 \pmod{203}$. Fra vinket fås $y_1 = -52$. Vi skal finde y_2 , så $M_2y_2 \equiv 203y_1 \equiv 1 \pmod{527}$. Fra vinket fås $y_2 = 135$.

(d) Dermed bliver løsningerne på formen

$$x \equiv \sum_{i=1}^{2} a_i M_i y_i \equiv 1 \cdot 527 \cdot (-52) + 3 \cdot 203 \cdot 135 \equiv 54811 \pmod{m}$$

Den mindste positive løsning er x = 54811.

Opgave 5 (15 %)

Lad *R* være en vilkårlig Euklidisk og refleksiv binær relation på en mængde *A*.

$$\forall a, b, c \in A : aRb \land aRc \Rightarrow bRc. \tag{1}$$

Symmetrisk. Sæt c = a i (1), derved fås

$$\forall a, b \in A : aRb \land aRa \Rightarrow bRa$$
.

Da R er refleksiv har vi $\forall a \in A : aRa$, dvs. ovenstående kan forkortes til flg. hvorved R er symmetrisk.

$$\forall a, b \in A : aRb \Rightarrow bRa$$
.

Transitiv. Da R er symmetrisk fås at aRb er sand hviss bRa. Dermed kan (1) skrives som

$$\forall a, b, c \in A : bRa \land aRc \Rightarrow bRc$$
,

hvorved *R* er transitiv.