# Basics of Probabilistic Modeling and Inference, Single Parameter Models

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

Jan 9, 2018

### **Probabilistic Modeling and Inference**

• Assume data  $\mathbf{y} = \{y_1, \dots, y_N\}$  generated from a probabilistic model (call it m) with parameters  $\theta$ 

$$y_1,\ldots,y_N\sim p(y|\theta,m)$$

ullet The Bayesian approach infers the unknowns heta by computing their posterior distribution

$$p(\theta|\mathbf{y}, \mathbf{m}) = \frac{p(\mathbf{y}, \theta|\mathbf{m})}{p(\mathbf{y}|\mathbf{m})} = \frac{p(\mathbf{y}|\theta, \mathbf{m})p(\theta|\mathbf{m})}{\int p(\mathbf{y}|\theta, \mathbf{m})p(\theta|\mathbf{m})d\theta} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}}$$

- Note: Here m is simply an "index" to refer to the model. For example, each m could refer to
  - A degree-k (k = 0, 1, 2, ...) polynomial (probabilistic) model for regression
- Note: Sometimes we will omit the explicit use of model index m in the notation
  - In some situations (e.g., when doing model comparison/selection), we will use it explicitly
- Note: The notion of what "model" refers to can be sometimes be more subtle (e.g., in hierarchical models, each distict value of a hyperparam would give rise to a different model). More on this later

### Meaning of various terms..

Let's again look at the Bayes rule for inferring the posterior distribution

$$p(\theta|\mathbf{y}, \mathbf{m}) = \frac{p(\mathbf{y}|\theta, \mathbf{m})p(\theta|\mathbf{m})}{\int p(\mathbf{y}|\theta, \mathbf{m})p(\theta|\mathbf{m})d\theta} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}} \propto \mathsf{Likelihood} \times \mathsf{Prior}$$

- Likelihood function  $p(y|\theta, m)$  or the "observation model" specifies how data is generated
  - $\bullet$  It is also the probability of the observed data, given  $\theta$
- Prior distribution  $p(\theta|m)$  specifies how likely different parameter values are a priori
  - As we'll see later, using a prior also corresponds to imposing a "regularizer" over  $\theta$
- Marginal likelihood p(y|m) is the average probability of the observed data y under model m

$$p(\mathbf{y}|m) = \int p(\mathbf{y}, \theta|m) d\theta = \int p(\mathbf{y}|\theta, m) p(\theta|m) d\theta$$

.. a very important quantity as we'll see later

### More on Marginal Likelihood..

• The marginal likelihood is also called "model evidence". Recall its definition

$$p(\mathbf{y}|m) = \int p(\mathbf{y}, \theta|m) d\theta = \int p(\mathbf{y}|\theta, m) p(\theta|m) d\theta = \mathbb{E}_{p(\theta|m)}[p(\mathbf{y}|\theta, m)]$$

- ullet It's the average probability of  $oldsymbol{y}$  for randomly drawn heta's from the model's prior p( heta|m)
- ullet We use the marginal likelihood as a reasonable notion of "goodness" of the model m



- Why: Because, for a good model, several parameters (rather than a select few) will fit the data "reasonably" well. Such a model is less likely to overfit and thus generalize better to future data
  - Caveat: The choice of prior  $p(\theta|m)$  is important if using p(y|m) to do model selection

## Making Predictions using Posterior Predictive Distribution

- In probabilistic modeling, making predictions requires computing the predictive distribution  $p(y_*|y,m)$ , i.e., probability distribution of new data  $y_*$ , given past data y
- This is formally defined by the so-called posterior predictive distribution

$$p(\mathbf{y}_*|\mathbf{y},m) = \int p(\mathbf{y}_*,\theta|\mathbf{y},m)d\theta = \int p(\mathbf{y}_*|\theta,\mathbf{y},m)p(\theta|\mathbf{y},m)d\theta$$
$$= \int p(\mathbf{y}_*|\theta,m)p(\theta|\mathbf{y},m)d\theta$$

- ullet This is basically the likelihood on new data with posterior-weighted averaging over all values of heta
- If posterior predictive is expensive to compute, we can approximate it by plug-in predictive

$$p(\boldsymbol{y}_*|\boldsymbol{y},m) \approx p(\boldsymbol{y}_*|\hat{\theta},m)$$

- .. where  $\hat{\theta}$  is a point estimate of  $\theta$  (e.g., MLE/MAP)
- The marginal likelihood p(y|m) is a special case of posterior predictive (sort of a "prior predictive")
  - Reason: Recall that  $p(y|m) = \int p(y|\theta, m)p(\theta|m)d\theta$

## **Estimating Parameters via Point Estimation**

 $\bullet$  Recall the definition of the posterior distribution over parameters (omitting the model index m)

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

- Although, typically the goal is to infer the posterior, sometimes we only want a point estimate
- Point Estimation finds the single "best" estimate of the parameters via optimization. E.g.,
  - Maximum likelihood estimation (MLE)

$$\hat{\theta} = \arg\max_{\theta} \log p(\mathbf{X}|\theta)$$

Maximum-a-Posteriori (MAP) estimation

$$\hat{\theta} = \arg\max_{\boldsymbol{\alpha}} \log p(\boldsymbol{\theta}|\mathbf{X}) = \arg\max_{\boldsymbol{\alpha}} [\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})]$$

ullet Point estimates doesn't provide us the uncertaintly in our estimate of heta

### Point Estimation via MLE

• MLE finds the parameter  $\theta$  that maximizes the (log-) likelihood  $p(X|\theta)$ 

$$\mathcal{L}(\theta) = \log p(\mathbf{X}|\theta) = \log p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \theta)$$

- If the observations are i.i.d.,  $p(x_1, ..., x_N \mid \theta) = \prod_{n=1}^N p(x_n \mid \theta)$
- Maximum Likelihood parameter estimation

$$\hat{ heta}_{MLE} = rg \max_{ heta} \mathcal{L}( heta) = rg \max_{ heta} \sum_{n=1}^{N} \log p(m{x}_n | heta)$$



### Point Estimation via MAP

• MAP estimation finds the parameter  $\theta$  that maximizes the (log-) posterior probability  $p(\theta|\mathbf{X})$ 

$$\mathcal{L}(\theta) = \log p(\theta|\mathbf{X}) = \log \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})}$$

• Again assuming i.i.d. observations, and noting that p(X) is independent of  $\theta$ 

$$egin{aligned} \hat{ heta}_{MAP} &= rg \max_{ heta} \mathcal{L}( heta) = rg \max_{ heta} \sum_{n=1}^{N} \log p(oldsymbol{x}_n | heta) + \log p( heta) \end{aligned}$$



- Note: When the prior is uniform, MAP and MLE solutions are identical
- Despite using the prior, MAP is NOT considered a Bayesian approach (still gives a point estimate)

# Point Estimation (MLE/MAP) vs Loss Function Minimization

• Recall the maximum Likelihood parameter estimation procedure

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta)$$

• We can also think of it as minimizing the negative log-likelihood (NLL)

$$\hat{ heta}_{ extit{MLE}} = rg\min_{ heta} extit{NLL}( heta)$$

where  $NLL(\theta) = -\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta)$  is called the negative log-likelihood

• Likewise, MAP parameter estimation can be shown to have the following form

$$\hat{ heta}_{MAP} = rg \min_{ heta} extit{NLL}( heta) - \log p( heta)$$

- Can think of the NLL as a loss function and  $-\log p(\theta)$  as a regularizer on  $\theta$
- Thus MLE is like empirical loss/risk minization (ERM) and MAP is like regularized ERM

### "Hybrid" Inference

- Often we want to do point estimation for some parameters and fully Bayesian inference for others
- The choice depends on various factors (which we'll see later). But as a rule of thumb:
  - Perform fully Bayesian inference for "local variables"
  - Perform point estimation for "global" variables



- Local variables are data-point specific (so there is little data available to infer them)
- Global variables are shared by all data points (so usually plenty of data to infer them)

# A Simple Parameter Estimation Problem

(for a single-parameter model) (hyperparameter if any will be assumed to be fixed/known)

## MLE via a simple example

- ullet Consider a sequence of N coin tosses (call head = 0, tail = 1)
- ullet The  $n^{th}$  outcome  $oldsymbol{x}_n$  is a binary random variable  $\in \{0,1\}$
- ullet Assume heta to be probability of a head (parameter we wish to estimate)
- Each likelihood term  $p(\mathbf{x}_n \mid \theta)$  is Bernoulli:  $p(\mathbf{x}_n \mid \theta) = \theta^{\mathbf{x}_n} (1 \theta)^{1 \mathbf{x}_n}$
- Log-likelihood:  $\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta) = \sum_{n=1}^{N} \mathbf{x}_n \log \theta + (1 \mathbf{x}_n) \log (1 \theta)$
- ullet Taking derivative of the log-likelihood w.r.t. heta, and setting it to zero gives

$$\hat{\theta}_{MLE} = \frac{\sum_{n=1}^{N} \mathbf{x}_n}{N}$$

- $\hat{\theta}_{MLE}$  in this example is simply the fraction of heads!
- MLE doesn't have a way to express our prior belief about  $\theta$ . Can be problematic especially when the number of observations is very small (e.g., suppose very few or zero heads when N is small).

### MAP via a simple example

- MAP estimation can incorporate a prior  $p(\theta)$  on  $\theta$
- Since  $\theta \in (0,1)$ , one possibility can be to assume a Beta prior

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

ullet  $\alpha, eta$  are called hyperparameters of the prior (these can have intuitive meaning; we'll see shortly)



• Note that each likelihood term is still a Bernoulli:  $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$ 

# MAP via a simple example (contd.)

- The log posterior probability =  $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta) + \log p(\theta)$
- Ignoring the constants w.r.t.  $\theta$ , the log posterior probability:

$$\sum_{n=1}^{N} \{\boldsymbol{x}_n \log \theta + (1-\boldsymbol{x}_n) \log (1-\theta)\} + (\alpha-1) \log \theta + (\beta-1) \log (1-\theta)$$

ullet Taking derivative w.r.t. heta and setting to zero gives

$$\hat{\theta}_{MAP} = \frac{\sum_{n=1}^{N} \mathbf{x}_n + \alpha - 1}{N + \alpha + \beta - 2}$$

- Note: For  $\alpha=1, \beta=1$ , i.e.,  $p(\theta)=\mathsf{Beta}(1,1)$  (equivalent to a <u>uniform prior</u>),  $\hat{\theta}_{MAP}=\hat{\theta}_{MLE}$
- What hyperparameters represent intuitively? Hyperparameters of the prior (in this case  $\alpha$ ,  $\beta$ ) can often be thought of as "pseudo-observations".
  - $\alpha-1$ ,  $\beta-1$  are the expected numbers of heads and tails, respectively, before seeing any data

## Full Bayesian Inference via a simple example

- Recall that each likelihood term was Bernoulli:  $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$
- Let's again choose the prior  $p(\theta)$  as Beta:  $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha 1}(1 \theta)^{\beta 1}$
- The posterior distribution will be proportional to the product of likelihood and prior

$$egin{aligned} 
ho( heta|\mathbf{X}) & \propto & \prod_{n=1}^N 
ho(\mathbf{x}_n| heta) 
ho( heta) \ & \propto & heta^{lpha + \sum_{n=1}^N \mathbf{x}_n - 1} (1- heta)^{eta + N - \sum_{n=1}^N \mathbf{x}_n - 1} \end{aligned}$$

- From simple inspection, note that the posterior  $p(\theta|\mathbf{X}) = \text{Beta}(\alpha + \sum_{n=1}^{N} \mathbf{x}_n, \beta + N \sum_{n=1}^{N} \mathbf{x}_n)$
- Here, finding the posterior boiled down to simply "multipy, add stuff, and identify the distribution"
- Note: Can verify (exercise) that the normalization constant  $=\frac{\Gamma(\alpha+\sum_{n=1}^{N}\mathbf{x}_n)\Gamma(\beta+N-\sum_{n=1}^{N}\mathbf{x}_n)}{\Gamma(\alpha+\beta+N)}$ 
  - ullet To verify, make use of the fact that  $\int p( heta|\mathbf{X})d heta=1$
- Here, the posterior has the same form as the prior (both Beta): property of conjugate priors.

### **Conjugate Priors**

- Many pairs of distributions are conjugate to each other. E.g.,
  - Bernoulli (likelihood) + Beta (prior) ⇒ Beta posterior
  - ullet Binomial (likelihood) + Beta (prior)  $\Rightarrow$  Beta posterior
  - Multinomial (likelihood) + Dirichlet (prior) ⇒ Dirichlet posterior
  - Poisson (likelihood) + Gamma (prior)  $\Rightarrow$  Gamma posterior
  - ullet Gaussian (likelihood) + Gaussian (prior)  $\Rightarrow$  Gaussian posterior
  - and many other such pairs ..
- Easy to identify if two distributions are conjugate to each other: their functional forms are similar
  - E.g., recall the forms of Bernoulli and Beta

$$\mathsf{Bernoulli} \propto \theta^{\mathsf{x}} (1-\theta)^{1-\mathsf{x}}, \quad \mathsf{Beta} \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

• More on conjugate priors when we look at exponental family distributions

### **Making Predictions**

- ullet Let's say we want to compute the probability that the next outcome  $oldsymbol{x}_{N+1} \in \{0,1\}$  will be a head
- The plug-in predictive distribution using a point estimate  $\hat{\theta}$  (e.g., using MLE/MAP)

$$p(\mathbf{x}_{N+1} = 1 | \mathbf{X}) \approx p(\mathbf{x}_{N+1} | \hat{\theta}) = \hat{\theta}$$
 or equivalently  $p(\mathbf{x}_{N+1} | \mathbf{X}) \approx \text{Bernoulli}(\mathbf{x}_{N+1} | \hat{\theta})$ 

• The posterior predictive distribution (averaging over all  $\theta$  weighted by their posterior probabilities):

$$p(\mathbf{x}_{N+1} = 1|\mathbf{X}) = \int_0^1 P(\mathbf{x}_{N+1} = 1|\theta)p(\theta|\mathbf{X})d\theta$$

$$= \int_0^1 \theta \times \text{Beta}(\theta|\alpha + \mathbf{N}_1, \beta + \mathbf{N}_0)d\theta$$

$$= \mathbb{E}[\theta|\mathbf{X}]$$

$$= \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}}$$

• Therefore the posterior predictive distribution:  $p(x_{N+1}|\mathbf{X}) = \text{Bernoulli}(x_{N+1} \mid \mathbb{E}[\theta|\mathbf{X}])$ 

## **Another Example: Estimating Gaussian Mean**

• Consider N i.i.d. observations  $\mathbf{X} = \{x_1, \dots, x_N\}$  drawn from a one-dim Gaussian  $\mathcal{N}(x|\mu, \sigma^2)$ 

$$p(x_n|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) \propto \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$$
$$p(\mathbf{X}|\mu,\sigma^2) = \prod_{n=1}^{N} p(x_n|\mu,\sigma^2)$$

- ullet Assume the mean  $\mu\in\mathbb{R}$  of the Gaussian is unknown and assume variance  $\sigma^2$  to be known/fixed
- ullet We wish to estimate the unknown  $\mu$  given the data  ${f X}$
- ullet Let's do fully Bayesian inference for  $\mu$  (not MLE/MAP)
- ullet We first need a prior distribution for the unknown param.  $\mu$
- Let's choose a Gaussian prior on  $\mu$ , i.e.,  $p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$  with  $\mu_0, \sigma_0^2$  as fixed
- Therefore this is also a single-parameter model (only  $\mu$  is the unknown)

## **Another Example: Estimating Gaussian Mean**

ullet The posterior distribution for the unknown mean parameter  $\mu$ 

$$p(\mu|\mathbf{X}) = \frac{p(\mathbf{X}|\mu)p(\mu)}{p(\mathbf{X})} \quad \propto \quad \prod_{n=1}^{N} \exp\left[-\frac{(x_n - \mu)^2}{2\sigma^2}\right] \times \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

• (Verify) The above posterior turns out to be another Gaussian  $p(\mu|\mathbf{X}) = \mathcal{N}(\mu|\mu_N, \sigma_N^2)$  where

$$\begin{array}{lll} \frac{1}{\sigma_N^2} & = & \frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \\ \\ \mu_N & = & \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x} \end{array} \qquad \text{(where } \bar{x} = \frac{\sum_{n=1}^N x_n}{N} \text{)} \end{array}$$

• Making prediction: The posterior predictive distribution for a new observation  $x_*$  will be

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu)p(\mu|\mathbf{X})d\mu = \int \mathcal{N}(x_*|\mu,\sigma^2)\mathcal{N}(\mu|\mu_N,\sigma_N^2)d\mu = \mathcal{N}(x_*|\mu_N,\sigma_N^2+\sigma^2)$$

ullet Note that, in contrast, the plug-in predictive posterior, given a point estimate  $\hat{\mu}$  would be

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu)p(\mu|\mathbf{X})d\mu \approx p(x_*|\hat{\mu}) = \mathcal{N}(x_*|\hat{\mu}, \sigma^2)$$

• Question: What happens when N is very large?