1

11.9.5.3

EE23BTECH11062 - V MANAS

Question:

Let the sum of n, 2n, 3n terms of an AP be S_1, S_2 and S_3 , respectively, show that $S_3 = 3(S_2 - S_1)$ **Solution:**

Variable	Description
x(0)	First term of AP
d	common difference in the AP
n	number of terms in AP
S_k	sum of k_n terms the AP
TABLE I	

VARIABLES USED

.: LHS=RHS shows that $S_3 = 3(S_2 - S_1)$ Now let we take an AP for verification, Whose x0(initial term)=5,d(common difference)=3 \implies sum of first 5 terms of the AP[y(4)]=55 \implies sum of first 10 terms of the AP[y(9)]=185 \implies sum of first 15 terms of the AP[y(14)]=390 RHS=3(y(9)-y(4))=390 \implies y(14)=3(y(9)-y(4))

Fig. 1. Verification plot for the given equation

By equation(??)

$$\implies S_1 = \frac{n+1}{2}(2x(0) + nd)u(n) \tag{1}$$

$$\implies S_2 = \frac{2n+1}{2}(2x(0) + 2nd)u(n)$$
 (2)

$$\implies S_3 = \frac{3n+1}{2}(2x(0) + 3nd)u(n) \tag{3}$$

$$\implies RHS = 3(S_2 - S_1)$$

$$RHS = 3(\frac{2n+1}{2}(2x(0)+2nd)u(n) - \frac{n+1}{2}(2x(0)+nd)u(n))$$
(4)

$$= \frac{3n+1}{2}(2x(0)+3nd)u(n) \tag{5}$$