Pin planner နဲ့ FPGA pin တွေသတ်မှတ်ပြီးရင် board ထဲထည့်စမ်းလို့ရပါပြီ။

Ripple Adder

Full adder တွေကိုဆင့်ပွားပြီးတော့ ripple adder ကိုတည်ဆောက်ထားပါတယ်။ စာမျက်နှာ ၃၉ ရဲ့အောက်ဆုံးပုံမှာ ripple adder ကိုပြထားပါတယ်။ အဲဒီပုံမှာ full adder လေးလုံးကို အသုံးပြုထား တဲ့အတွက်ကြောင့် 4-bit ripple adder လို့ခေါ်ပါတယ်။

module add1 (a,b,ci,s,co);

input a, b, ci;

output s, co;

assign $s = a \wedge b \wedge ci$;

assign co = a & b | b & ci | ci & a;

endmodule

အပေါ် က code ဟာ full adder ရဲ့ code ဖြစ်ပါတယ်။ ပြောပြီးသားပါ - ripple adder ဆောက် ဖို့ full adder ကိုယူသုံးရတယ်ဆိုတာ။ အခုလည်း 4-bit ripple adder ဆောက်ဖို့ရန်အတွက် full adder ရဲ့ module

တစ်ခုဖြစ်တဲ့ add1 ဆိုတဲ့ module လေးကိုယူသုံးမှာဖြစ်ပါတယ်။ ripple adder အတွက် Verilog HDL code ကိုဆက်ရေးကြပါမယ်။

```
module rp_adder (a,b,ci,s,co);
input [3:0] a, b;
input
          ci;
output [3:0] s;
output
           co;
wire [2:0] c;
// add1 (a, b, ci, s, co);
add1 a0 (a[0], b[0], ci, s[0], c[0]);
add1 a1 (a[1], b[1], c[0], s[1], c[1]);
add1 a2 (a[2], b[2], c[1], s[2], c[2]);
add1 a3 (a[3], b[3], c[2], s[3], co);
 endmodule
```

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location
in_ a[3]	Input	PIN_C12	7	B7_N0	PIN_C12
in_ a[2]	Input	PIN_D12	7	B7_N0	PIN_D12
in_ a[1]	Input	PIN_C11	7	B7_N0	PIN_C11
in_ a[0]	Input	PIN_C10	7	B7_N0	PIN_C10
in_ b[3]	Input	PIN_A14	7	B7_N0	PIN_A14
in_ b[2]	Input	PIN_A13	7	B7_N0	PIN_A13
in b[1]	Input	PIN_B12	7	B7_N0	PIN_B12
in b[0]	Input	PIN_A12	7	B7_N0	PIN_A12
in_ ci	Input	PIN_B14	7	B7_N0	PIN_B14
out co	Output	PIN_D13	7	B7_N0	PIN_D13
out s[3]	Output	PIN_B10	7	B7_N0	PIN_B10
out s[2]	Output	PIN_A10	7	B7_N0	PIN_A10
out s[1]	Output	PIN_A9	7	B7_N0	PIN_A9
out s[0]	Output	PIN_A8	7	B7_N0	PIN_A8

Pin planner နဲ့ pin assignment ချပြီးရင် compile ပြန်လုပ်ပြီး board ထဲထည့်စမ်းပါတော့မယ်။

Verilog HDL code မှာပါတဲ့ addition algorithms က အပေါင်းအနှုတ်လက္ခကာတွေကို ထည့်မစဉ်းစားတဲ့ unsigned အတွက်ကော လက္ခကာထည့်စဉ်းစားတဲ့ singed တွေအတွက် 2's complement representation အတွက်ကောနစ်ခုစလုံးအတွက်အဆင်ပြေပါတယ်။ 4-bit ကိန်ဂကန်းနှစ် ခုကိုနမူနာအနေနဲ့ ပေါင်းပြပါမယ်။

ဘယ်ဘက်မှာ unsigned ကိန်ဂဏန်းနှစ်ခုဖြစ်တဲ့ 7 နဲ့ 11 ကိုပေါင်းထားပါတယ်။ ပေါင်းလဒ်က 18 ဖြစ်ရ မှာပါ။ overflow ဖြစ်သွားတဲ့အတွက်ကြောင့်4-bit code မဟုတ်နိုင်တော့ပါဘူး။ ညာဘက်က ဥပမာကို ဆက်ကြည့်ပါမယ်။ (+7) နဲ့ (-5) နှစ်ခုပေါင်းရလဒ်က +2 ရပါမယ်။ ရလဒ်မှန်ကန်တာကိုမြင်တွေရမှာဖြစ် ပါတယ်။