# Digital Signal Processing for Music

Part 12: Digital Number Formats

Andrew Beck

# Word length and SNR

| Δ                           | Max. Amp                                                     | theo. SNR                                          |
|-----------------------------|--------------------------------------------------------------|----------------------------------------------------|
| ±1                          | 0255                                                         | ≈48 dB                                             |
| $\pm 1$                     | $-32768 \dots 32767$                                         | $\approx$ 96 dB                                    |
| $\pm 1$                     | $-524288 \dots 524287$                                       | pprox120 dB                                        |
| $\pm 1$                     | $-16777216 \dots 16777215$                                   | $\approx$ 144 dB                                   |
| $\pm 1.175 \cdot 10^{-38}$  | $\pm 3.403 \cdot 10^{1038}$                                  | 1529 dB                                            |
| $\pm 2.225 \cdot 10^{-308}$ | $\pm 1.798\cdot 10^{10308}$                                  | 12318 dB                                           |
|                             | $egin{array}{c} \pm 1 \ \pm 1 \ \pm 1 \ \pm 1 \ \end{array}$ | $egin{array}{cccccccccccccccccccccccccccccccccccc$ |

How do we represent this in bits?

#### Number Formats: Value Range

- >> Unnormalized:  $-2^{w-1} \dots 2^{w-1} 1$ 
  - >> Integer representation
  - >> Non-symmetric step count for positive and negative values
  - >> Used for transmission, etc.
- $\rightarrow$  Normalized: -1...1
  - >> Used for floating point representations
  - >> Word length independent
  - >> Used for processing

#### Number Representation



- $\blacktriangleright$  Least Significant Bit (LSB):  $b_0$  (usually on the right)
- $\longrightarrow$  Most Significant Bit (MSB):  $b_{w-1}$  (usually on the left)



#### **Amplitude**

#### Range (normalized)

Amplitude 
$$x_Q=-b_{w-1}+\sum\limits_{i=0}^{w-2}b_i2^{-(w-i-1)}$$
  $x_Q=\sum\limits_{i=0}^{w-1}b_i2^{-(w-1)}$ 

$$-1 \leq x_Q \leq 1 - 2^{-(w-1)}$$

Unsigned

$$x_Q = \sum_{i=0}^{w-1} b_i 2^{-(w-1)}$$

$$0 \leq x_Q \leq 1-2^{-w}$$

- $\Rightarrow$  w: word length
- $\Rightarrow$   $b_i$ : ith bit



## Clipping & Wrap-Around



# Fixed Point and Floating Point: Number Formats and their Most Frequent Uses

- >> Unsigned Format: Small word lengths (4...8 bit)
- >> 2's Complement': File formats with higher word lengths (16...24 bit), some DSPs
- >> Floating Point: Internal representation for processing

### Floating Point

$$x_Q = M_G \cdot 2^{E_G}$$

- $\blacktriangleright \blacktriangleright M_G$ : Normalized Mantissa  $0.5 \leq M_G < 1$
- $\blacktriangleright \triangleright E_G$ : Exponent

#### 32 Bit IEEE 754 Floating Format

| Bit 31: Sign     | Bits 30-23: Exponent | Bits 22-0: Mantissa |
|------------------|----------------------|---------------------|
| $\boldsymbol{s}$ | $e_7 \dots e_0$      | $m_{22}m_0$         |

#### Exceptions

| Type               | $E_G$                 | $M_G$    | Value                    |
|--------------------|-----------------------|----------|--------------------------|
| Normal             | $1 \leq E_G \leq 254$ | Any      | $(-1)^s(0.m)2^{E_G-127}$ |
| NaN (Not a Number) | 255                   | $\neq 0$ | Undefined                |
| Infinity           | 255                   | = 0      | $\infty$                 |
| Zero               | 0                     | 0        | 0                        |



#### >> High Exponent:

Large quantization error energy

#### >> Low Exponent:

Small quantization error energy

#### >> Linear quantization:

Within one exponent

# Summary

- >> Most common number representations
  - >> 2-Complement for high quality audio storage
  - >> Floating point for high quality audio processing (non-linear quantization)