

PDF generated at: 13 Aug 2024 02:42:40 UTC

View this report on HackerRank ♂

Score

74% • 88 / 120

scored in CodePath TIP103: Unit 9 Assessment - Summer 2024 in 81 min 50 sec on 12 Aug 2024 18:19:14 PDT

Candidate Information

Email tanveerm176@gmail.com

Test CodePath TIP103: Unit 9 Assessment - Summer 2024

Candidate Packet View ℃

Taken on 12 Aug 2024 18:19:14 PDT

Time taken 81 min 50 sec/ 90 min

Invited by CodePath

Skill Distribution

There is no associated skills data that can be shown for this assessment

Candidate Report Page 1 of 18

Tags Distribution

There is no associated tags data that can be shown for this assessment

Questions

Status	No.	Question	Time Taken	Skill	Score
⊗	1	Recursion, Memoization, and Iteration Multiple Choice	11 min 5 sec	-	5/5
8	2	First Element Retrieval Multiple Choice	2 min 21 sec	-	5/5
⊗	3	Hash Tables Multiple Choice	48 sec	-	0/5
⊗	4	Trees Multiple Choice	4 min 59 sec	-	3.75/5

Candidate Report Page 2 of 18

⊗	5	Graph Traversal Multiple Choice	5 min 23 - sec	0/5
8	6	Big O Notation Multiple Choice	3 min 1 sec	5/5
⊗	7	Validate Binary Search Tree Coding	27 min - 40 sec	40/40
⊗	8	Zigzag Conversion Coding	26 min 7 - sec	30/50

1. Recursion, Memoization, and Iteration

⊘ Correct

Multiple Choice

Question description

Consider the following Python implementations of the fibonacci function:

```
def fib1(self, n: int) -> int:
    if n == 0 or n == 1:
    return n
    return fib1(n - 1) + fib1(n - 2)

memo = {0: 0, 1: 1}
```

Candidate Report Page 3 of 18

```
def fib2(self, n: int) -> int:
    if n in memo:
        return memo[n]
    memo[n] = fib2(n - 1) + fib2(n - 2)
    return memo[n]

def fib3(self, n: int) -> int:
    if n == 0 or n == 1:
    return n
    a, b = 0, 1
    for i in range(n - 1):
    a, b = b, a+b
    return b
```

Which of the following statements are true? Pick one or more options.

Candidate's Solution

Options: (Expected answer indicated with a tick)

Candidate Report Page 4 of 18

fib3 has lower time complexity than both fib1 and fib2	
fib3 has lower space complexity than both fib1 and fib2	8
① No comments.	
2. First Element Retrieval	⊗ Correct
Multiple Choice	
Question description	
Assume you add n items, one at a time, to a data structure. From which data structure can you access the first item in a single constant-time operation? Pick one or more options.	then
Candidate's Solution	
Options: (Expected answer indicated with a tick)	
A stack	
A queue	\otimes
A heap	

Candidate Report Page 5 of 18

① No comments.	
3. Hash Tables	Incorrect
Multiple Choice	
Question description	
Consider the following Java code that uses a hash table:	
Map <string, character=""> map = new HashMap<>();</string,>	
map.put("hello", 'h');	
map.put("goodbye", 'g');	
System.out.println(map.get("hello"));	
What will happen if "hello" and "goodbye" have the same hash values (i.e., collide)? Pick one op	tion.
Candidate's Solution	
Options: (Expected answer indicated with a tick)	
Copusins. (Expected answer mareated with a tick)	
The final line will always print; b	<i>⊘</i>
The final line will always print: h	
The final line will always print: g	

Candidate Report Page 6 of 18

The final line will always print: null	
The final line could print either g or h.	
There will be an error/exception on the final line.	
① No comments.	
4. Trees Multiple Choice	⊘ Partially correct
Question description	
Consider this tree:	

Which of the following terms accurately describe the tree? Pick one or more options.

Candidate Report Page 7 of 18

Candidate's Solution

Options: (Expected answer indicated with a tick)

A binary tree	\otimes
A binary search tree	
✓ A balanced binary tree	\otimes
✓ A min-heap	\otimes
A max-heap	
A graph	\otimes
① No comments.	
5. Graph Traversal Multiple Choice	⊗ Incorrect
Question description	

Candidate Report Page 8 of 18

6. Big O Notation

⊘ Correct

Consider an implementation of DFS that does not keep track of which nodes have already been visited	d:
def dfs(node): for neighbor in node.neighbors: dfs(neighbor)	
When is it guaranteed to terminate? Pick one or more options.	
Candidate's Solution Options: (Expected answer indicated with a tick)	
If passed the root of a directed tree, this is guaranteed to terminate.	\otimes
If passed a node in a directed acyclic graph, this is guaranteed to terminate.	\otimes
If passed a node in a directed cyclic graph, this is guaranteed to terminate.	
None of the above.	
① No comments.	

Candidate Report Page 9 of 18

Multiple Choice	
Question description	
Which of the following take O(log n) time? Pick one or more options.	
Candidate's Solution	
Options: (Expected answer indicated with a tick)	
Reading the nth value in an array of size n.	
Sorting an array of n integers.	
Adding a single item to a heap of size n.	8
Checking if an integer is present in a balanced binary search tree of size n.	8
① No comments.	
7. Validate Binary Search Tree Coding	⊘ Correct
Question description	
Given the root of a binary tree, determine if it is a valid binary search tree (BST).	

Candidate Report Page 10 of 18

A valid BST is defined as follows:

- The left subtree
 - of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys **greater than** the node's key.
- Both the left and right subtrees must also be binary search trees.

Example 1:

Input: root = [2,1,3]
Output: true

Example 2:

Input: root = [5,1,4,null,null,3,6]
Output: false

Candidate Report Page 11 of 18

Explanation: The root node's value is 5 but its right child's value is 4.

Constraints:

- The number of nodes in the tree is in the range [1, 10⁴].
- -2³¹ <= Node.val <= 2³¹ 1

Candidate's Solution

Language used: Python 3

```
1 #!/usr/bin/env python
 2
 3 class TreeNode:
 4
       def __init__(self, x):
 5
            self.val = x
            self.left = self.right = None
6
7
8
   def input binary tree():
9
       input values = input().split()
       index = 0
10
11
       num nodes = int(input values[index])
       index += 1
12
13
       if (num nodes == 0):
14
            return None
15
16
       nodes = []
17
        current parent index = 0
18
19
        root = TreeNode(int(input values[index]))
20
        index += 1
       nodes.append(root)
21
22
23
        for i in range(1, num nodes, 2):
24
            left_val = int(input_values[index])
25
            index += 1
26
            if (left val != -1):
27
                left = TreeNode(left val)
28
                nodes.append(left)
                nodes[current parent index].left = left
29
30
            right val = int(input values[index])
31
32
            index += 1
33
            if (right val != -1):
                right = TreeNode(right val)
34
35
                nodes.append(right)
```

Candidate Report Page 12 of 18

```
nodes[current_parent_index].right = right
36
37
38
            current parent index += 1
39
40
        return root
41
42
   def description(root):
43
        if root is None:
            return " "
44
45
46
        queue = []
47
48
        output = str(root.val)
49
        queue.append(root)
        cursor = 0
50
51
52
        while cursor < len(queue):
53
            node = queue[cursor]
54
            cursor += 1
55
56
            if node.left is not None:
                output += " " + str(node.left.val)
57
58
                queue.append(node.left)
59
            if node.right is not None:
60
                output += " " + str(node.right.val)
61
62
                queue.append(node.right)
63
64
        return output
65
66
   class TreeNode:
       def __init__(self, x):
67
68
            self.val = x
69
            self.left = self.right = None
   0.00\,0
70
71
72 def isValidBST(root) :
73
74
        Write your code here
75
        :type root: TreeNode
76
        :rtype: TreeNode
77
        def isValidBST_helper(currNode, minVal, maxVal):
78
            if currNode is None:
79
                return True
80
81
```

Candidate Report Page 13 of 18

```
# check if curr node val is between minVal and maxVal
82
83
           if (currNode.val <= minVal) or (currNode.val >= maxVal):
84
                return False
85
86
           #recursively check if the right and left subtrees meet the criteria
   of a bst
87
           return isValidBST helper(currNode.left, minVal, currNode.val) and
   isValidBST_helper(currNode.right, currNode.val, maxVal)
88
       # call helper function using root and the initial infinity bounds
89
       return isValidBST helper(root, float('-inf'), float('inf'))
90
91
92
   root = input_binary_tree()
93
   result = isValidBST(root)
94
95
   print(str(result).lower())
96
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 0	Easy	Sample	Success	0	0.0245 sec	9.45 KB
Testcase 1	Easy	Sample	Success	0	0.0248 sec	9.4 KB
Testcase 2	Easy	Hidden	Success	10	0.0192 sec	9.3 KB
Testcase 3	Easy	Hidden	Success	10	0.0374 sec	9.14 KB
Testcase 4	Easy	Hidden	Success	10	0.0258 sec	9.2 KB
Testcase	Easy	Hidden	Success	10	0.0208 sec	9.08 KB

Candidate Report Page 14 of 18

5

• No comments.

8. Zigzag Conversion

Partially correct

Coding

Question description

The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility)

P A H N APLSIIG Y I R

And then read line by line: "PAHNAPLSIIGYIR"

Write the code that will take a string and make this conversion given a number of rows:

string convert(string s, int numRows);

Example 1:

Input: s = "PAYPALISHIRING", numRows = 3
Output: "PAHNAPLSIIGYIR"

Example 2:

Input: s = "PAYPALISHIRING", numRows = 4
Output: "PINALSIGYAHRPI"
Explanation:

P I N A LS I G

Candidate Report Page 15 of 18

```
YA HR
P I
```

Example 3:

```
Input: s = "A", numRows = 1
Output: "A"
```

Constraints:

- 1 <= s.length <= 1000
- s consists of English letters (lower-case and upper-case), ',' and '.'.
- 1 <= numRows <= 1000

Candidate's Solution

Language used: Python 3

```
1 #!/bin/python3
 2
 3 import math
4 import os
 5 import random
6 import re
7 import sys
8
9
10 #
11 # Complete the 'convert' function below.
12 #
13 # The function is expected to return a STRING.
14 # The function accepts following parameters:
     1. STRING s
15 #
16 # 2. INTEGER numRows
17 #
18
19 def convert(s, numRows):
20
       # Write your code here
21
       if (numRows == 1) or (numRows >= len(s)):
22
           return s
23
24
       # create a list of rows
       rows = [''] *numRows
25
26
       # init current row
27
       curr row = 0
```

Candidate Report Page 16 of 18

```
28
29
       # last row
30
       last row = numRows - 1
31
32
       # process each char in string
33
       for char in s:
34
            rows[curr row] = rows[curr row] + char
35
36
            #if at first row or last row move currRow up or down
37
            if curr row == 0:
38
                curr row = curr row + 1
39
            elif curr_row == last_row:
40
                curr_row = curr_row -1
41
42
       print(rows)
43
44
        result = ''
45
       for string_row in rows:
            result = string_row + result
46
47
        return result
   if name == ' main ':
48
       fptr = open(os.environ['OUTPUT_PATH'], 'w')
49
50
51
       s = input()
52
53
       numRows = int(input().strip())
54
55
        result = convert(s, numRows)
56
57
       fptr.write(result + '\n')
58
       fptr.close()
59
60
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 0	Easy	Sample	Wrong Answer	0	0.0345 sec	10.5 KB
Testcase 1	Easy	Hidden	Wrong Answer	0	0.0353 sec	10.5 KB

Candidate Report Page 17 of 18

Testcase 2	Easy	Hidden	Success	10	0.0446 sec	10.6 KB
Testcase 3	Easy	Hidden	Success	10	0.0347 sec	10.6 KB
Testcase 4	Easy	Hidden	Success	10	0.0455 sec	10.4 KB
Testcase 5	Easy	Hidden	Wrong Answer	0	0.0416 sec	10.7 KB

No comments.

Candidate Report Page 18 of 18