Intro 분석의 목표 분석 데이터 예상분석결과 Outro

파이썬기반백데이터

파이썬을 이용한 데이터 분석 프로젝트

21011928 전주혁

Contents

- 01. Intro
- 02. 분석의 목표
- 03. 분석 데이터
- 04. 예상 분석 결과
- 05. Outro

Intro

분석 데이터 선정

DACON 제주도 도로 교통량 데이터

- * 제주 테크노파크 제주도 도로 교통량 예측 AI 경진대회
- * 기간: 2022.10.03 ~ 2022.11.14
- * 정형 데이터 / 회귀

분석의 목표

분석의 목표

제주도 교통량 데이터 분석의 목표

- 1. 제주도 도로 교통량 예측 알고리즘 개발
 - -> 교통 체증이 일어나는 구간을 미리 예측
- 2. 새로운 비즈니스 가치 창출
 - -> 심야 버스 노선 개발
 - -> 대중교통 서비스 개설
 - -> 환승 거점 센터 선정
- 3. 새로운 정책 개발
 - -> 교통 운영 계획
 - -> 공공 분야와 정책 개발에 활용

1. Train Data

- 2022년 8월 이전 데이터
- 4,701,217 개의 데이터
- 25 Columns

2. Test Data

- 2022년 8월 데이터
- 291,241 개의 데이터
- 24 Columns

Data Info

- 1. ld: 아이디
- 2. Base_date : 날짜
- 3. day_of_week : 요일
- 4. Base_hour : 시간대
- 5. Road_in_use: 도로사용여부
- 6. Lane_count : 차로수
- 7. Road_rating : 도로등급
- 8. Mulit_linked : 중용구간 여부
- 9. Connect_code : 연결로 코드
- 10. Maximum_speed_limit: 속도제한
- 11. Weight_restricted : 통과제한하중
- 12. Height_restricted : 통과제한높이

- 13. geight_restricted : 통과제한높이
- 14. road_type : 도로유형
- 15. start_latitude : 시작지점의 위도
- 16. start_longitude : 시작지점의 경도
- 17. start_turn_restricted:시작지점 회전제한 유무
- 18. end_latitude : 도착지점의 위도
- 19. end_longitude : 도착지점의 경도
- 20. end_turn_restricted:도착지점 회전제한 유무
- 21. road_name: 도로명
- 22. Start_node_name : 시작지점명
- 23. end_node_name: 도착지점명
- 24. vehicle_restricted : 통과제한 차량
- 25. Target : 평균속도(Test Data에는 제외)

	id	base_date	day_of_week	base_hour	road_in_use	lane_count	road_rating	road_name	multi_linked	connect_code	road_type	start_node_name	start_latitude	start.
0	TRAIN_0000000	20220623	목	17	0	1	106	지방도 1112호선	0	0	3	제3교래교	33.427747	
1	TRAIN_0000001	20220728	목	21	0	2	103	일반국도11 호선	0	0	0	광양사거리	33.500730	
2	TRAIN_0000002	20211010	일	7	0	2	103	일반국도16 호선	0	0	0	창고천교	33.279145	
3	TRAIN_0000003	20220311	금	13	0	2	107	태평로	0	0	0	남양리조트	33.246081	
4	TRAIN_0000004	20211005	화	8	0	2	103	일반국도12 호선	0	0	0	애윌샷시	33.462214	
4701212	TRAIN_4701212	20211104	목	16	0	1	107		0	0	0	대림사거리	33.422145	
4701213	TRAIN_4701213	20220331	목	2	0	2	107		0	0	3	광삼교	33.472505	
4701214	TRAIN_4701214	20220613	윌	22	0	2	103	일반국도12 호선	0	0	0	고성교차로	33.447183	
4701215	TRAIN_4701215	20211020	수	2	0	2	103	일반국도95 호선	0	0	0	제6광령교	33.443596	
4701216	TRAIN_4701216	20211019	화	6	0	2	107	경찰로	0	0	0	서귀포경찰서	33.256785	
4701217 ro	4701217 rows × 24 columns													

Train 데이터의 구조

Train 데이터 info

- 9개의 float 형
- 10개의 int 형
- 5개의 object 형

train.info()

20 end_latitude end_longitude

23 target

22 end_turn_restricted

dtypes: float64(9), int64(10), object(5)

RangeIndex: 4701217 entries, 0 to 4701216 Data columns (total 24 columns): Dtype object base_date int64 day_of_week object int64 base_hour int64 road_in_use lane_count int64 road rating int64 road name object int64 multi linked int64 connect code 10 maximum speed limit float64 vehicle_restricted float64 float64 12 weight_restricted float64 13 height restricted int64 14 road type object 15 start_node_name float64 16 start_latitude float64 17 start longitude 18 start_turn_restricted int64 19 end_node_name object

float64

float64

float64

int64

<class 'pandas.core.frame.DataFrame'>

Test 데이터 info

- 8개의 float 형
- 8개의 int 형
- 7개의 object 형

test.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 291241 entries, 0 to 291240 Data columns (total 23 columns):

#	Column	Non-Nu	Dtype					
0	id	291241	non-null	object				
	base_date	291241	non-null	int64				
2	day_of_week	291241	non-null	object				
3	base_hour	291241	non-null	int64				
4	road_in_use	291241	non-null	int64				
5	lane_count	291241	non-null	int64				
6	road_rating	291241	non-null	int64				
7	road_name	291241	non-null	object				
8	multi_linked	291241	non-null	int64				
9	connect_code	291241	non-null	int64				
10	maximum_speed_limit	291241	non-null	float64				
11	vehicle_restricted	291241	non-null	float64				
12	weight_restricted	291241	non-null	float64				
13	height_restricted	291241	non-null	float64				
14	road_type	291241	non-null	int64				
15	start_node_name	291241	non-null	object				
16	start_latitude	291241	non-null	float64				
17	start_longitude	291241	non-null	float64				
18	start_turn_restricted	291241	non-null	object				
19	end_node_name	291241	non-null	object				
20	end_latitude	291241	non-null	float64				
21	end_longitude	291241	non-null	float64				
22	end_turn_restricted	291241	non-null	object				
dtypes: float64(8), int64(8), object(7)								
	©Saebyeol Yu. Saebyeol's PowerPoint							

200000

100000

분석 데이터

Train 데이터의 피쳐별 분포도

- node_in_use
- mulit_linked
- connect_code
- vehicle_restricted
- height_restricted 그래프만 확인 시 위 피쳐들의 value 값이 한 종류로 파악됨

value_counts()로 확인하기

True columns -> Drop

```
train['road_in_use'].value_counts()
     4694812
        6405
Name: road_in_use, dtype: int64
train['connect_code'].value_counts()
       4689075
         12142
103
Name: connect_code, dtype: int64
train['multi_linked'].value_counts()
     4698978
        2239
Name: multi_linked, dtype: int64
```

분석 결과 + 예상

1. 출퇴근 시간의 반전

일반적으로 하루 중 출,퇴근시간이 교통체증이 제일 심할 것 이라 생각하지만 틀린 가설 -> 데이터의 불균형도 확인

1. 출퇴근 시간의 활용 방안

파생변수 생성

- dummie 화
- 출근시간부터 퇴근시간까지 평균 속도가 점차 줄어 들다가 퇴근시간이 끝난 후 부터 평균속도가 증가함
 - -> 8시~20시를 기준으로 새로운 피쳐 생성
 - → 8시~20시인 시간대는 1로 그 외 시간대는 0으로

2. 요일의 반전

일반적으로 금,토,일 교통체증이 제일 심할 것 이라 생각했지만 틀린 가설-> 데이터의 불균형도 확인

2. 요일 활용 방안

Solution : **파생변수** 생성

- 비교적 평균속도가 비슷한 목,화,월,수,토 피쳐 생성 후 해 당되는 인덱스는 1, 그 외는 0
- 평균속도가 제일 낮은(교통체증이X) 금요일 피쳐 생성 후 해당되는 인덱스는 1, 그 외는 0
- 평균속도가 제일 높은(교통체증이X) 일요일 피쳐 생성 후 해당되는 인덱스는 1, 그외는 0

3. 상식적으로 이해가 되지 않는 그래프

최고 제한 속도가 40인 도로가 평균 속도가 약 70으로 제일 높음

- -> 데이터 불균형 존재
- -> 불균형과 관계 有?

3. 최고속도제한 활용 방안


```
(train['maximum_speed_limit'] == 40).value_counts()
False     4694427
True     6790
Name: maximum_speed_limit, dtype: int64
```

최고제한속도가 40인 데이터의 개수는 약 **470만개 중 6790개 존재**

Solution : **Drop**

- -> 데이터가 약 0.15% 존재
- -> 최고제한속도가 40인 데이터들은 잘못 측정 or 잘못 입력된데이터로 생각
- -> 또한 데이터가 40인 index들은 Drop을 시켜줘도 영향 X

Outro

Why? : 새로운 피쳐를 여러개 만들어 주는 이유

- column 한 개에 값을 0, 1, 2, 3 이렇게 구분을 해 주는게 더 편하지 않나?
- -> LabelEncoder vs OneHotEncoder
- 1. LabelEncoder : 한 column에 피쳐의 종류가 3개 존재한다면 한 column에 0,1,2로 변환
- OneHotEncoder : 한 column에 피쳐의 종류가 3 개 존재한다면 세개의 column을 생성해 해당하는 index를 1로 해당하지 않는 index를 0으로 변환

LabelEncoder

OneHotEncoder

그렇다면 LabelEncoder가 메모리 용량이 적으니 LabelEncoder를 사용하는게 좋지 않나?

-> 순서가 없는 한 column 안에 사과 = 1, 배 = 2, 딸기 = 3으로 Label Encoding 한다면 1 + 2 = 3 즉, 사과 + 배 = 딸기 같이 상관관계가 있다고 생각하면서 머신러닝 모델이 학습할 수 있다.

결론

- 1. Label Encoding
- -> 순서의 의미가 있을 때
- -> 고유값의 개수가 너무 많을 때
- 2. One-Hot-Encoding
- -> 순서가 없을 때
- -> 고유값의 개수가 많지 않을 때

감사합니다.

"