Determine two coterminal angles (one positive and one negative) for each given angle: $\theta = -\frac{\pi}{3} radians$

To find positive coterminal angles add 360° or 2π to the given angle. To find negative coterminal angles subtract 360° or 2π to the given angle.

Positive coterminal angle:
$$\theta = -\frac{\pi}{3} + 2\pi = \frac{5\pi}{3}$$

Negative coterminal angle: $\theta = -\frac{\pi}{3} - 2\pi = -\frac{7\pi}{3}$

Converting between radians and degree for 50° and 2π .

To convert between radians and degree you need to know if the given value is either a degree or a radian. If there is a ° then it is a degree else, it's radian.

Then for degree to radians you will multiply the given degree with $\frac{\pi}{180}$.

Then for radians to degree you will multiply the given degree with $\frac{180}{\pi}$.

Given:
$$50^{\circ}$$
1. $50^{\circ} \times \frac{\pi}{180} =$

$$2. = \frac{50\pi}{180}$$

3.
$$=\frac{5\pi}{18}$$

Given: 2π

1.
$$2\pi * \frac{180}{\pi} =$$

$$2. \ \frac{2\pi}{1} * \frac{180}{\pi} = \frac{360\pi}{\pi}$$

$$3. = 360^{\circ}$$

Complementary Angles

When 2 positive angles add up to either 90° or 180°.

Given angle, $\theta = 45^{\circ}$:

1.
$$\theta_c = 90^{\circ} - 45^{\circ} = 45^{\circ}$$

2.
$$\theta_s = 180^{\circ} - 45^{\circ} = 135^{\circ}$$

Degree, Minutes, Second Form

A way to denote fraction parts, ex. 25°12'12".

Given **DMS**: 12°23'12"

DMS to **Radians**

$$1.12 + \frac{23}{60} + \frac{12}{3600} = 12.38666$$

Given Radian: 12.625 Radians

Radians to DMS

- 1. 12.625 Radians [Multiple .625 by 60]
- $2.\ 0.625 \cdot 60 = 37.5$
- 3. 12°37.5' [Multiple .5 by 60]
- $4.0.5 \cdot 60 = 30$
- 5. = 12°37'30"

Finding Arc Length

A circle has a radius of 27 inches. Find the length of the arc intercepted by a central angle of 160°.

r = 27 in

Now convert degree to radians, as θ HAS to be a RADIAN.

1.
$$160^{\circ} \times \frac{\pi}{180} = \frac{160\pi}{180}$$

$$2. = \frac{8\pi}{9}$$

$$3.\ 27(\frac{8\pi}{9}) = 75.3982...$$

$$4. = 75.398$$
 inch

Linear and Angular Speed.

$$LS = \frac{r\theta}{t} \& AS = \frac{s}{rt}$$

The second hand of a clock is 8-cm long. Find the linear speed of the tip of this second hand as it passes around the clock face.

It's a circle so we can imply $r = 2\pi$. The arm is the minute-arm so t = 60.

$$LS = \frac{8(2\pi)}{60} = 0.8377...$$

LS = 0.838 cm/min.

The circular blade on a saw rotates at 2,400 revolutions per minute (2,400 rpm).

Given $\theta = 2,400$, Given t = 1, implied $r = 2\pi$

1.
$$2400(2\pi) = 4800\pi$$

2.
$$\frac{4800\pi}{1} = 15079.6447... \text{ rads/min}$$

If
$$r=4$$
 we can solve for LS.
1. $\frac{4(4800\pi)}{1}=19200\pi=60318.579$ in/mins.