Тема. Квадратна нерівність

Мета. Вдосконалювати вміння розв'язувати квадратні нерівності

Повторюємо

- Що таке квадратна нерівність?
- Що означає графічно розв'язати квадратну нерівність?
- Як визначити нулі квадратичної функції та напрям віток її графіка?
- Наведіть алгоритм розв'язування квадратної нерівності.

Ознайомтеся з інформацією

Нерівність	Неправильне розв'язання	Правильне розв'язання 🎸
$-x^2 + 7x - 12 < 0$	-(x-3)(x-4)<0; (x-3)(x-4)<0. $Bi\partial nosi\partial b: x \in (3;4).$	$x^2-7x+12>0;$ (x-3)(x-4)>0: $Bi\partial no Bi\partial b: x \in (-\infty;3) \cup (4;+\infty).$
$x^2 + 8x + 16 \ge 0$	$(x+4)^{2} \ge 0;$ $x+4 \ge 0;$ $x \ge -4.$ $Bi\partial nosi\partial b: x \in [-4; +\infty).$	$(x+4)^2 \ge 0$. Нерівність $(x+4)^2 \ge 0$ виконується для всіх значень x , тобто x — будь-яке число. $Bi\partial no Bi\partial b$: $x \in (-\infty; +\infty)$.
$x^2 - 6x + 9 > 0$	$(x-3)^2 > 0$. Нерівність $(x-3)^2 > 0$ виконується для всіх значень x , тобто x — будь-яке число. $Bi\partial nobi\partial b$: $x \in (-\infty; +\infty)$.	$(x-3)^2 > 0$. При $x=3$ маємо $(x-3)^2 = 0$, отже, $x \neq 3$. $Bi\partial nosi\partial b: x \in (-\infty; 3) \cup (3; +\infty)$.
$x^2 + 4x + 4 \leq 0$	$(x+2)^2 \le 0$. Розв'язків немає. Відповідь: \emptyset .	$(x+2)^2 \le 0$. Нерівність $(x+2)^2 \le 0$ виконується при єдиному значенні $x=-2$. Відповідь: $x=-2$, або $\{-2\}$.
$x^2 + 3x + 4 > 0$	$D = 3^2 - 4 \cdot 1 \cdot 4 = -7$. Оскільки $D < 0$, то розв'язків немає. $Bi\partial nosi\partial b$: \emptyset .	Оскільки старший коефіцієнт — додатне число і $D < 0$, то для будь-якого значення x ліва частина нерівності — додатне число. Відповідь: $x \in (-\infty; +\infty)$.
$x^2 - 49 \leqslant 0$	$x^2 \le 49$; $x \le 7$. $Bi\partial nosi\partial b$: $x \in (-\infty; 7]$.	$(x-7)(x+7) \le 0;$ $-7 \le x \le 7.$ $Bi\partial nosi\partial b: x \in [-7;7].$
$x^2 - 25 \geqslant 0$	$x^2 \ge 25;$ $x \ge 5.$ $Bi\partial nosi\partial b: x \in [5; +\infty).$	$(x-5)(x+5) \ge 0;$ $x \le -5, \ x \ge 5.$ $Bi\partial nobi\partial b: \ x \in (-\infty; -5] \cup [5; +\infty).$

Розв'язування завдань

Завдання 1

1. Розв'яжіть нерівності:

1)
$$x^2 \le 25$$
;

2)
$$x^2 \ge 25$$
.

Розв'язання:

1)
$$x^2 \le 25$$
;
 $x^2 - 25 \le 0$;
 $(x - 5)(x + 5) \le 0$;

2)
$$x^2 \ge 25$$
;
 $x^2 - 25 \ge 0$;
 $(x - 5)(x + 5) \ge 0$;

$$(x-5)(x+5) = 0;$$

 $x_1 = 5, x_2 = -5.$

 $a = 1 > 0 \Rightarrow$ вітки вгору.

 $a = 1 > 0 \Rightarrow$ вітки вгору.

Див. рис. 1.

Рис. 2
$$(-\infty; -5] \cup [5; +\infty)$$

Bi∂nові∂ь: 1) [-5; 5]; 2) (-∞; -5] \cup [5; +∞).

Завдання 2

2. **Розв'яжіть нерівність** $x^2 + x(1 - \sqrt{5}) < \sqrt{5}$.

Розв'язання:

$$x^2 + x(1 - \sqrt{5}) < \sqrt{5};$$

$$x^2 + x(1 - \sqrt{5}) - \sqrt{5} = 0,$$

за теоремою, оберненою до теореми Вієта, маємо:

$$x_1 = \sqrt{5}, \ x_2 = -1.$$

 $a = 1 > 0 \Rightarrow$ вітки вгору.

Див. рис. 3.

Відповідь: $(-1; \sqrt{5})$.

Завдання 3

3. Розв'яжіть нерівність $\frac{x^2-4x}{8} + \frac{x-3}{5} \ge \frac{1-x}{6}$.

Розв'язання:

$$\frac{x^2 - 4x}{8} + \frac{x - 3}{5} \ge \frac{1 - x}{6} \mid \cdot 120$$

Завдання 4

4. **Розв'яжіть нерівність** $(6x - 5)^2 + (3x - 2)(3x + 2) > 36$.

Розв'язання:

$$(6x-5)^2 + (3x-2)(3x+2) > 36,$$

 $36x^2 - 60x + 25 + 9x^2 - 4 - 36 > 0,$
 $45x^2 - 60x - 15 > 0,$
 $3x^2 - 4x - 1 > 0,$

$$3x^{2} - 4x - 1 = 0,$$

$$D = 4^{2} - 4 \cdot 3 \cdot (-1) = 16 + 12 = 28 = (2\sqrt{7})^{2},$$

$$x_{1} = \frac{4 + 2\sqrt{7}}{6} = \frac{2 + \sqrt{7}}{3}, \quad x_{2} = \frac{4 - 2\sqrt{7}}{6} = \frac{2 - \sqrt{7}}{3}.$$

 $a = 3 > 0 \Rightarrow$ вітки вгору.

Див. рис. 5.

 $Biдnoвiд_b$: $\left(-\infty; \frac{2-\sqrt{7}}{3}\right) \cup \left(\frac{2+\sqrt{7}}{3}; +\infty\right)$.

Завдання 5

5. Posb'яжіть нерівність 2(x+1)(x-3) > (x+5)(x-7).

Розв'язання:

$$2(x+1)(x-3) > (x+5)(x-7),$$

 $2x^2 - 4x - 6 > x^2 - 2x - 35,$
 $x^2 - 2x + 29 > 0,$

$$x^2 - 2x + 29 = 0$$
,
 $D = (-2)^2 - 4 \cdot 1 \cdot 29 = 4 - 116 = -112 < 0$,

a=1>0 \Rightarrow вітки вгору.

Див. рис. 6

 $Bi\partial noвiдь: (-\infty; +\infty).$

Завдання 6

6. Знайдіть цілі розв'язки нерівності $-4x^2 + 13x - 3 \ge 0$.

Розв'язання:

$$-4x^2 + 13x - 3 \ge 0,$$

$$-4x^{2} + 13x - 3 = 0,$$

$$4x^{2} - 13x + 3 = 0,$$

$$D = 13^{2} - 4 \cdot 4 \cdot 3 = 169 + 48 = 121 = 11^{2},$$

$$x_{1} = \frac{13 + 11}{8} = 3, \quad x_{2} = \frac{13 - 11}{8} = \frac{1}{4}.$$

 $a = -4 < 0 \implies$ вітки вниз.

Див. рис. 7.

Відповідь: 1; 2; 3.

Поміркуйте

Які помилки при розв'язуванні нерівності можуть призвести до втрати розв'язків?

Домашнє завдання

- Опрацювати конспект
- Розв'язати нерівності:

Знайдіть цілі розв'язки нерівностей:

$$x^{2} - 5 > 0;$$

 $-\frac{1}{4}x^{2} + x + 3 > 0.$

Джерело

Всеукраїнська школа онлайн