See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/244439883

Assembly of Triple-Stranded β -Sheet Peptides at Interfaces

ARTICLE in JOURNAL OF THE AMERICAN CHEMICAL SOCIETY · AUGUST 2002

Impact Factor: 12.11 · DOI: 10.1021/ja026765j

CITATIONS READS
42 19

7 AUTHORS, INCLUDING:

Hanna Rapaport

Ben-Gurion University of the Negev

56 PUBLICATIONS **1,145** CITATIONS

SEE PROFILE

Torben Rene Jensen

Aarhus University

247 PUBLICATIONS 4,645 CITATIONS

SEE PROFILE

Gunter Moeller

Arkema

13 PUBLICATIONS 201 CITATIONS

SEE PROFILE

Leslie Leiserowitz

Weizmann Institute of Science

306 PUBLICATIONS 12,307 CITATIONS

SEE PROFILE

Assembly of triple-stranded β -sheet peptides at interfaces

H. Rapaport¹, T. R. Jensen², K. Kjaer², L. Leiserowitz³ and D. A. Tirrelf⁴

¹Department of Biotechnology Engineering and The Institute for Applied Biosciences, Ben-Gurion University,84150 Beer-Sheva, Israel

²Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark ³Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel ⁴Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA

The design of self-assembled molecular systems composed of peptides or proteins is motivated by the search for new materials with predictable biological and physico-chemical properties. Recently, two-dimensional (2D) order in β -sheet monolayers has been demonstrated by grazing-incidence X-ray diffraction (GIXD) [1]. In the present study we have generated an ordered 2D molecular assembly composed of *triple*-stranded amphiphilic peptides, arrayed at the air-water interface. The 30-residue peptide BS30 was designed [2] to fold into the triple-stranded β -sheet form depicted schematically in Figure 1a . A second peptide studied, BS30G, is identical to BS30 except that glycine replaced proline in the turn. GIXD measurements of BS30 monolayer at a nominal area per molecule of 500 Ų, reveal Bragg peaks at $q_{xy}=0.180$ and 1.311 Ź, corresponding to spacings of 34.9 and 4.79 Å, respectively (Fig. 1b). The 4.79 Å spacing, characteristic of crystalline β -sheet structures, is generated by peptide strands interlinked by N-H O=C hydrogen bonds (along a, Fig. 1a). The 34.9 Å spacing is attributed to the repeat distance of juxtaposed neighboring hydrogen-bonded ribbons (along b, Fig. 1a). The full width at half maximum, FWHM(q_{xy}), of each of the two Bragg peaks yields crystalline coherence lengths along the a and b directions of about 250 Å. BS30G exhibits only a very weak GIXD Bragg peak corresponding to a ~ 4.79 Å spacing, suggesting only limited order. This study has provided a second example of designed β -sheet assemblies formed at the air-water interface.

Figure 1: (a) Scheme of BS30 peptide (top) and its possible assembly at an interface (bottom). Legend: Peptide backbone (line), carbonyl and amine NH groups (thick and thin lines, respectively). Amino acids are designated by the one letter code (A: alanine, L: leucine, F: phenylalanine, P: proline, E: glutamate). For peptide BS30G (not shown), glycine (G) replaces proline (P) in the turns.

(b) GIXD Bragg peaks of BS30 monolayer, corrected for Lorenz-polarization and geometric factors.

References

- [1] H. Rapaport, K. Kjaer, T. R. Jensen; L. Leiserowitz; D. A. Tirrell, J. Am. Chem. Soc, 122, 12523 (2000) and HASYLAB Annual Report for the year 2000, p. 354.
- [2] H. Rapaport, G. Möller, C. M. Knobler, T. R. Jensen, K. Kjaer, L. Leiserowitz and D. A. Tirrell, J. Am. Chem. Soc, 124, 9342 (2002)

This work was supported by the IHP-Contract HPRI-CT-1999-00040/2001-00140 of the European Commission