

PERIODIC TABLE > ELEMENT SUMMARY

Erbium

Erbium is a chemical element with symbol Er and atomic number 68. Classified as a lanthanide, erbium is a solid at room temperature.

Н		68		Aton	Atomic Mass 167.26u							He					
		1		_		Elect	ron Conf	iguration	[Xe]6	s ² 4f ¹²					ı		
Li	Be			Fi	r	Oxid	ation Sta	tes	+3			В	С	N	0	F	Ne
					ı	Year	Discover	ed	1843								
Na	Mg			Erbiu	m		Viev	v All Prop	erties			Al	Si	Р	S	CI	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Xe
Cs	Ва	*	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
		*	1.	0-	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Du	Ш	Fu.	T	Yb	1
		^	La	Ce	Pr	Na	PM	SM	EU	Ga	I D	Dy	Но	Er	Tm	Y D	Lu
		**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

1 Identifiers	? Z
1.1 Element Name	② Z
Erbium	
PubChem; Commission on Isotopic Abundances and Atomic Weights (CIAAW), International Union of Pure and Applied Ch	emistry (IUPAC)
1.2 Element Symbol	② Z
Er	
PubChem; Commission on Isotopic Abundances and Atomic Weights (CIAAW), International Union of Pure and Applied Ch	emistry (IUPAC)
1.3 InChl	? Z
InChI=1S/Er	
▶ PubChem	
1.4 InChl Key	② Z

UYAHIZSMUZPPFV-UHFFFAOYSA-N

PubChem

2 Properties	② 🗹
2.1 Atomic Weight	② Z
167.259(3)	
Commission on Isotopic Abundances and Atomic Weights (CIAAW), International Union of Pure and Applied Chemistry (IUPAC	c); NIST Physical Measurement Lab
167.259	
Jefferson Lab, U.S. Department of Energy	
167.3	
Los Alamos National Laboratory, U.S. Department of Energy	
2.2 Electron Configuration	? 🛮
[Xe]6s ² 4f ¹²	
Los Alamos National Laboratory, U.S. Department of Energy	
2.3 Atomic Radius	② Z
/an der Waals Atomic Radius 235 pm (Van der Waals)	
Los Alamos National Laboratory, U.S. Department of Energy	
Empirical Atomic Radius	
175 pm (Empirical)	
J.C. Slater, J Chem Phys, 1964, 41(10), 3199-3205. DOI:10.1063/1.1725697	
PubChem Elements	
Covalent Atomic Radius	
189(6) pm (Covalent) B. Cordero, V. Gómez, A.E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, Dalton Trans. 2008, 21, 2832-283	20 DOI:10 1020/b001115i
PMID:18478144.	56. DOI.10.1039/D601113J
▶ PubChem Elements	
2.4 Oxidation States	② Z
+3	
▶ Jefferson Lab, U.S. Department of Energy	
3, 2, 1 (a basic oxide)	
▶ Los Alamos National Laboratory, U.S. Department of Energy	
	O ==
2.5 Ground Level	⊘ ∠
³ H ₆	
NIST Physical Measurement Laboratory	
2.6 Ionization Energy	② Z
6.108 eV	<u> </u>

▶ Jefferson Lab, U.S. Department of Energy

6.1077 ± 0.0010 eV

First Ionization Potentials of Lanthanides by Laser Spectroscopy, E. F. Worden, R. W. Solarz, J. A. Paisner, and J. G. Conway, J. Opt. Soc. Am. 68, 52–61 (1978) DOI:10.1364/JOSA.68.000052

NIST Physical Measurement Laboratory

2.7 Electronegativity	? Z
Pauling Scale Electronegativity 1.24 (Pauling Scale) A.L. Allred, J. Inorg. Nucl. Chem., 1961, 17(3-4), 215-221. DOI:10.1016/0022-1902(61)80142-5 PubChem Elements	
2.8 Atomic Spectra	② Z
Lines Holdings NIST Physical Measurement Laboratory	
Levels Holdings NIST Physical Measurement Laboratory	
2.9 Physical Description	② Z
Solid • Jefferson Lab, U.S. Department of Energy	
2.10 Element Classification	② Z
Metal • Jefferson Lab, U.S. Department of Energy	
2.11 Element Period Number	② Z
6 • Jefferson Lab, U.S. Department of Energy	
2.12 Element Group Number	② Z
- Lanthanide • Jefferson Lab, U.S. Department of Energy	
2.13 Density	? Z
9.07 grams per cubic centimeter Jefferson Lab, U.S. Department of Energy	
2.14 Melting Point	② Z
1802 K (1529°C or 2784°F)	

▶ Jefferson Lab, U.S. Department of Energy

1529°C

▶ Los Alamos National Laboratory, U.S. Department of Energy

2.15 Boiling Point

3141 K (2868°C or 5194°F)

In the proof of Energy

2868°C

Los Alamos National Laboratory, U.S. Department of Energy

2.16 Estimated Crustal Abundance

3.5 milligrams per kilogram

In Jefferson Lab, U.S. Department of Energy

② Z

8.7×10⁻⁷ milligrams per liter

▶ Jefferson Lab, U.S. Department of Energy

2.17 Estimated Oceanic Abundance

The name derives from the Swedish town of Ytterby, where the ore gadolinite (in which it was found) was first mined. Erbium was discovered by the Swedish surgeon and chemist Carl-Gustav Mosander in 1843 in a yttrium sample. He separated the yttrium into yttrium, a rose-coloured salt he

▶ Commission on Isotopic Abundances and Atomic Weights (CIAAW), International Union of Pure and Applied Chemistry (IUPAC)

The mineral gadolinite ((Ce, La, Nd, Y)₂FeBe₂Si₂O₁₀), discovered in a quarry near the town of Ytterby, Sweden, has been the source of a great number of rare earth elements. In 1843, Carl Gustaf Mosander, a Swedish chemist, was able to separate gadolinite into three materials, which he named yttria, erbia and terbia. As might be expected considering the similarities between their names and properties, scientists soon confused erbia and terbia and, by 1877, had reversed their names. What Mosander called erbia is now called terbia and visa versa. From these two substances, Mosander discovered two new elements, terbium and erbium. Today, erbium is primarily obtained through an ion exchange process from the minerals xenotime (YPO₄) and euxenite ((Y, Ca, Er, La, Ce, U, Th)(Nb, Ta, Ti)₂O₆).

Jefferson Lab, U.S. Department of Energy

Erbium, one of the so-called rare-earth elements on the lanthanide series, is found in the minerals mentioned under dysprosium. In 1842 Mosander separated "yttria" found in the mineral gadolinite, into three fractions which he called yttria, erbia, and terbia. The names erbia and terbia became confused in this early period. After 1860, Mosander's terbia was known as erbia, and after 1877, the earlier known erbia became terbia. The erbia of this period was later shown to consist of five oxides, now known as erbia, scandia, holmia, thulia and ytterbia. By 1905 Urbain and James independently succeeded in isolating fairly pure Er₂O₃. Klemm and Bommer first produced reasonably pure erbium metal in 1934 by reducing the anhydrous chloride with potassium vapor.

▶ Los Alamos National Laboratory, U.S. Department of Energy

called terbium and a deep-yellow peroxide that he called erbium.

4 Description ② 🖸

The pure metal is soft and malleable and has a bright, silvery, metallic luster. As with other rare-earth metals, its properties depend to a certain extent on the impurities present. The metal is fairly stable in air and does not oxidize as rapidly as some of the other rare-earth metals. Naturally occurring erbium is a mixture of six isotopes, all of which are stable. Nine radioactive isotopes of erbium are also recognized. Recent production techniques, using ion-exchange reactions, have resulted in much lower prices of the rare-earth metals and their compounds in recent years. Most of the rare-earth oxides have sharp absorption bands in the visible, ultraviolet, and near infrared. This property, associated with the electronic structure, gives beautiful pastel colors to many of the rare-earth salts.

▶ Los Alamos National Laboratory, U.S. Department of Energy

Erbium is alloyed with vanadium to make it softer and easier to shape. Erbium is added to fiber optic cables as a doping agent where it is used as a signal amplifier. Erbium also has some uses in the nuclear power industry.

Erbia, the renamed material that Mosander discovered in 1843, is erbium oxide (Er_2O_3) , one of erbium's compounds. Erbia has a pink color and is used to color glass and glazes. Other erbium compounds include: erbium fluoride (ErF_3) , erbium chloride $(ErCl_3)$ and erbium iodide (Erl_3) .

▶ Jefferson Lab, U.S. Department of Energy

Erbium is finding nuclear and metallurgical uses. Added to vanadium, for example, erbium lowers the hardness and improves workability. Erbium oxide gives a pink color and has been used as a colorant in glasses and porcelain enamel glazes.

▶ Los Alamos National Laboratory, U.S. Department of Energy

See more information at the Erbium compound page.

PubChem

6.1 Element Forms

CID	Name	Formula	SMILES	Molecular Weight
23980	erbium	Er	[Er]	167.259
161153	erbium-169	Er	[169Er]	168.935
177431	erbium-171	Er	[171Er]	170.938
177481	erbium-168	Er	[168Er]	167.932
177497	erbium-166	Er	[166Er]	165.93
177526	erbium-161	Er	[161Er]	160.93
177635	erbium-170	Er	[170Er]	169.935
177697	erbium-172	Er	[172Er]	171.939
178160	erbium-165	Er	[165Er]	164.931
3779597	erbium(3+)	Er+3	[Er+3]	167.259
131708394	erbium-162	Er	[162Er]	161.929
131708395	erbium-164	Er	[164Er]	163.929
131708396	erbium-167	Er	[167Er]	166.932

PubChem

7 Isotopes

Stable Isotope Count

6

Jefferson Lab, U.S. Department of Energy

7.1 Isotopes in Biology

Radiolabeled 171 Er (with a half-life of 7.5 h) tablets have been used to study bowel movements of individuals using external scintigraphy. Such tablets have an enteric coating and contain small amounts of stable erbium oxide (170 Er) initially. The tablets are then irradiated at a low neutron flux to produce radioactively labeled 171 Er tablets, via the 170 Er (n, γ) 171 Er reaction. This method is a noninvasive approach for determining gastric emptying rates and visualizing segments of the digestive system in an individual [479], [480].

[479] A. Parr, R. M. Beihn, M. Jay. Int. J. Pharm.32, 251 (1986).[480] M. C. Theodorakis. Am. Physiol. Soc. Gastrointest. Liver Physiol.239, G39 (1980).

▶ IUPAC Periodic Table of the Elements and Isotopes (IPTEI)

7.2 Isotopes in Medicine

 169 Er (with a half-life of 9.4 days) is used in radiosynovectomy, which is a regularly practiced radiotherapy, on rheumatoid arthritis patients whose condition is resistant to standard methods of treatment (Fig. IUPAC.68.1). Rheumatoid arthritis is a chronic, inflammatory, autoimmune disease of the joint capsule (synovial sac), which is lined with a thin membrane called the synovium, of an individual's moveable joints (synovial joints). In radiosynovectomy, the radiopharmaceutical called 169 Er- citrate colloid, which contains colloidal particles that are labeled with β-emitting 169 Er, is directly injected into the synovial cavity (the cavity between the bones in a moveable joint inside of the synovium) of the affected joint. These radioactive-colloid particles are then phagocytized (engulfed) by macrophage-like synoviocytes as well as other phagocytizing inflammatory cells in the patient's synovium. Necrosis (tissue death) and the inhabitation of cell proliferation (increase in number of cells) result from the radiation of the synovium and therefore, temporarily halts synovitis (which is the condition of when the synovium thickens with inflammation) and improves synovial joint function [481], [482], [483], [484].

[481] F. M. van der Zanta, Z. N. Jahangierb, G. G. M. Gommansa, J. D. Moolenburghc, J. W. G. Jacobs. Appl. Radiat. Isot. 65, 649 (2007).

[482] S. J. Kim, K. A. Jung. Clin. Med. Res. 5, 244 (2007).

[483] M. E. A. McNeil. The First Year Rheumatoid Arthritis: An Essential Guide for the Newly Diagnosed, Marlowe & Company, New York, NY (2005). [484] G. Prabhakar, S. S. Sachdev, N. Sivaprasad. Pharma Times41, 11 (2009).

[485] National Institute of Arthritis and Musculoskeletal and Skin Diseases. Normal Joint Versus Joint Affected by Rheumatoid Arthritis.

▶ IUPAC Periodic Table of the Elements and Isotopes (IPTEI)

7.3 Isotope Mass and Abundance

Isotope	Atomic Mass (uncertainty) [u]	Abundance (uncertainty)
¹⁶² Er	161.928 787(6)	0.001 39(5)
¹⁶⁴ Er	163.929 207(5)	0.016 01(3)
¹⁶⁶ Er	165.930 299(8)	0.335 03(36)
¹⁶⁷ Er	166.932 054(8)	0.228 69(9)
¹⁶⁸ Er	167.932 376(8)	0.269 78(18)
¹⁷⁰ Er	169.935 47(1)	0.149 10(36)

▶ Commission on Isotopic Abundances and Atomic Weights (CIAAW), International Union of Pure and Applied Chemistry (IUPAC)

Isotope	Atomic Mass (uncertainty) [u]	Abundance (uncertainty)
¹⁶² Er	161.9287884(20)	0.00139(5)
¹⁶⁴ Er	163.9292088(20)	0.01601(3)
¹⁶⁶ Er	165.9302995(22)	0.33503(36)
¹⁶⁷ Er	166.9320546(22)	0.22869(9)
¹⁶⁸ Er	167.9323767(22)	0.26978(18)
¹⁷⁰ Er	169.9354702(26)	0.14910(36)

NIST Physical Measurement Laboratory

7.4 Atomic Mass, Half Life, and Decay

Nuclide	Atomic Mass and Uncertainty [u]	Half Life and Uncertainty	Discovery Year	Decay Modes, Intensities and Uncertainties [%]
¹⁴² Er	141.970016 ± 0.000537 [Estimated]	10 us [Estimated]		p?
¹⁴³ Er	142.966548 ± 0.000429 [Estimated]	200 ms [Estimated]	2005	β ⁺ ?; β ⁺ p ?
¹⁴⁴ Er	143.960700 ± 0.00021 [Estimated]	400 ms ± >200ns [Estimated]	2003	β+?
¹⁴⁵ Er	144.957874 ± 0.000215 [Estimated]	900 ms ± 200	1989	$\beta^{+}=100\%; \beta^{+}p=?$
¹⁴⁵ Er ^m	144.957874 ± 0.000215 [Estimated]	1.0 s ± 0.3	2010	β+=100%; IT ?; β+p=?
¹⁴⁶ Er	145.952418357 ± 0.000007197	1.7 s ± 0.6	1993	β ⁺ =100%; β ⁺ p=?
¹⁴⁷ Er	146.949964456 ± 0.000041	3.2 s ± 1.2	1992	β ⁺ =100%; β ⁺ p=?
¹⁴⁷ Er ^m	146.949964456 ± 0.000041	1.6 s ± 0.2	1982	β ⁺ =100%; β ⁺ p=?
¹⁴⁸ Er	147.944735026 ± 0.000011	4.6 s ± 0.2	1982	β ⁺ =100%; β ⁺ p≈0.15%
¹⁴⁸ Er ^m	147.944735026 ± 0.000011	13 us ± 3	1982	IT=100%
¹⁴⁹ Er	148.942306000 ± 0.00003	4 s ± 2	1984	β ⁺ =100%; β ⁺ p=7±0.2%
¹⁴⁹ Er ^m	148.942306000 ± 0.00003	8.9 s ± 0.2	1984	$\beta^{+}\text{=}96.5\pm0.7\%; \text{IT=}3.5\pm0.7\%; \beta^{+}\text{p=}0.18\pm0.7\%$
¹⁴⁹ Er ⁿ	148.942306000 ± 0.00003	610 ns ± 80	1987	IT=100%
¹⁴⁹ Er ^p	148.942306000 ± 0.00003	4.8 us ± 0.1	1987	IT=100%
¹⁵⁰ Er	149.937915524 ± 0.000018458	18.5 s ± 0.7	1982	β+=100%
¹⁵⁰ Er ^m	149.937915524 ± 0.000018458	2.55 us ± 0.10	1984	IT=100%
¹⁵¹ Er	150.937448567 ± 0.000017681	23.5 s ± 2.0	1970	β+=100%
¹⁵¹ Er ^m	150.937448567 ± 0.000017681	580 ms ± 20	1980	IT=95.3±0.3%; β ⁺ =4.7±0.3%
¹⁵¹ Er ⁿ	150.937448567 ± 0.000017681	420 ns ± 50	1990	IT=100%
¹⁵² Er	151.935050347 ± 0.000009478	10.3 s ± 0.1	1963	α=90±0.4%; β ⁺ =10±0.4%
¹⁵³ Er	152.935086350 ± 0.000009967	37.1 s ± 0.2	1963	α=53±0.3%; β ⁺ =47±0.3%

Nuclide	Atomic Mass and Uncertainty [u]	Half Life and Uncertainty	Discovery Year	Decay Modes, Intensities and Uncertainties [%]
¹⁵³ Er ^m	152.935086350 ± 0.000009967	373 ns ± 9	1979	IT=100%
¹⁵³ Er ⁿ	152.935086350 ± 0.000009967	248 ns ± 32	1979	IT=100%
¹⁵⁴ Er	153.932790799 ± 0.000005325	3.73 m ± 0.09	1963	β ⁺ ≈100%; α=0.47±1.3%
¹⁵⁵ Er	154.933215710 ± 0.00000652	5.3 m ± 0.3	1969	β+=99.978±0.7%; α=0.022±0.7%
¹⁵⁶ Er	155.931065926 ± 0.00002644	19.5 m ± 1.0	1967	β ⁺ =100%; α=1.2e-5±0.3%
¹⁵⁷ Er	156.931922652 ± 0.000028454	18.65 m ± 0.10	1966	β+=100%
¹⁵⁷ Er ^m	156.931922652 ± 0.000028454	76 ms ± 6	1971	IT=100%
¹⁵⁸ Er	157.929893474 ± 0.000027074	2.29 h ± 0.06	1961	ε=100%
¹⁵⁹ Er	158.930690790 ± 0.00000391	36 m ± 1	1962	β+=100%
¹⁵⁹ Er ^m	158.930690790 ± 0.00000391	337 ns ± 14	1971	IT=100%
¹⁵⁹ Er ⁿ	158.930690790 ± 0.00000391	590 ns ± 60	1971	IT=100%
¹⁶⁰ Er	159.929077193 ± 0.000026029	28.58 h ± 0.09	1954	ε=100%
¹⁶¹ Er	160.930003530 ± 0.000009419	3.21 h ± 0.03	1954	β+=100%
¹⁶¹ Er ^m	160.930003530 ± 0.000009419	7.5 us ± 0.7	1969	IT=100%
¹⁶² Er	161.928787299 ± 0.000000811	Stable ± >140Ty	1938	IS=0.139±0.5%; α ?; 2β ⁺ ?
¹⁶² Er ^m	161.928787299 ± 0.000000811	88 ns ± 16	1974	IT=100%
¹⁶³ Er	162.930039908 ± 0.000004967	75.0 m ± 0.4	1953	β+=100%
¹⁶³ Er ^m	162.930039908 ± 0.000004967	580 ns ± 100	1974	IT=100%
¹⁶⁴ Er	163.929207739 ± 0.000000755	Stable	1938	IS=1.601±0.3%; α ?; 2β ⁺ ?
¹⁶⁵ Er	164.930733482 ± 0.000000985	10.36 h ± 0.04	1950	ε=100%
¹⁶⁵ Er ^m	164.930733482 ± 0.000000985	250 ns ± 30	1970	IT=100%
¹⁶⁵ Er ⁿ	164.930733482 ± 0.000000985	370 ns ± 40	2012	IT=100%
¹⁶⁶ Er	165.930301067 ± 0.000000358	Stable	1934	IS=33.503±3.6%
¹⁶⁷ Er	166.932056192 ± 0.000000306	Stable	1934	IS=22.869±0.9%
¹⁶⁷ Er ^m	166.932056192 ± 0.000000306	2.269 s ± 0.006	1986	IT=100%
¹⁶⁸ Er	167.932378282 ± 0.00000028	Stable	1934	IS=26.978±1.8%
¹⁶⁸ Er ^m	167.932378282 ± 0.00000028	109.0 ns ± 0.7	1974	IT=100%
¹⁶⁹ Er	168.934598444 ± 0.000000326	9.392 d ± 0.018	1956	β-=100%
¹⁶⁹ Er ^m	168.934598444 ± 0.000000326	285 ns ± 20	1969	IT=100%
¹⁶⁹ Er ⁿ	168.934598444 ± 0.000000326	200 ns ± 10	1969	IT=100%
¹⁷⁰ Er	169.935471933 ± 0.000001488	Stable ± >410Py	1934	IS=14.910±3.6%; 2β ⁻ ?; α ?
¹⁷¹ Er	170.938037372 ± 0.000001511	7.516 h ± 0.002	1938	β ⁻ =100%
¹⁷¹ Er ^m	170.938037372 ± 0.000001511	210 ns ± 10	1969	IT=100%
¹⁷² Er	171.939363461 ± 0.000004253	49.3 h ± 0.5	1956	β ⁻ =100%
¹⁷² Er ^m	171.939363461 ± 0.000004253	579 ns ± 62	2006	IT=100%
¹⁷³ Er	172.942400 ± 0.00021 [Estimated]	1.434 m ± 0.017	1972	β ⁻ =100%
¹⁷⁴ Er	173.944230 ± 0.00032 [Estimated]	3.2 m ± 0.2	1989	β ⁻ =100%
¹⁷⁴ Er ^m	173.944230 ± 0.00032 [Estimated]	3.9 s ± 0.3	2006	IT=100%
¹⁷⁵ Er	174.947770 ± 0.00043 [Estimated]	1.2 m ± 0.3	1996	β ⁻ =100%
¹⁷⁶ Er	175.949940 ± 0.00043 [Estimated]	12 s ± >300ns [Estimated]	2012	β-?
¹⁷⁷ Er	176.953990 ± 0.00054 [Estimated]	8 s ± >300ns [Estimated]	2012	β-?
¹⁷⁸ Er	177.956779 ± 0.00064 [Estimated]	4 s ± >300ns [Estimated]	2012	β-?
¹⁷⁹ Er	178.961267 ± 0.000537 [Estimated]	3 s ± >550ns [Estimated]	2018	β⁻ ?; β⁻n ?
¹⁸⁰ Er	179.964380 ± 0.000537 [Estimated]	2 s ± >550ns [Estimated]	2018	β ⁻ ?; β ⁻ n ?

1. PubChem

https://pubchem.ncbi.nlm.nih.gov

2. Atomic Mass Data Center (AMDC), International Atomic Energy Agency (IAEA)

LICENSE

https://www-nds.iaea.org/disclaimer.html

Er

https://www-nds.iaea.org/amdc/

3. Commission on Isotopic Abundances and Atomic Weights (CIAAW), International Union of Pure and Applied Chemistry (IUPAC)

LICENSE

http://www.ciaaw.org/bylaws.htm

Erbium

https://www.ciaaw.org/erbium.htm

4. Jefferson Lab, U.S. Department of Energy

LICENSE

Please see citation and linking information: https://education.jlab.org/faq/index.html

https://www.jlab.org/privacy-and-security-notice

Erbium

https://education.jlab.org/itselemental/ele068.html

5. Los Alamos National Laboratory, U.S. Department of Energy

Frhium

https://periodic.lanl.gov/68.shtml

6. NIST Physical Measurement Laboratory

LICENSE

https://www.nist.gov/pml/database-disclaimer

Erbium

https://physics.nist.gov/cgi-bin/Elements/elInfo.pl?element=68

7. IUPAC Periodic Table of the Elements and Isotopes (IPTEI)

LICENSE

Copyright © 2020 International Union of Pure and Applied Chemistry. The International Union of Pure and Applied Chemistry (IUPAC) contribution within Pubchem is provided under a CC-BY-NC-ND 4.0 license, unless otherwise stated. https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1515/pac-2015-0703

8. PubChem Elements

Er