SMART CONTRACTS SECURITY

OPERATING SYSTEMS AND CONCURRENCY #5CCS2OSC

Contributors of GROUP 46: Andrei-Bogdan Balcau, Iris Simionas, Sandra Popa, Livia-Oana Neagu, Zihao You, Sebastian Mesca

WHAT IS SMART CONTRACTS SECURITY?

- Smart Contracts Security is an emerging research area that deals with *security* issues arising from the execution of *smart contracts* in a blockchain system.
- Security breaches that surface on the main-net can cause massive financial losses or reputational damage.

- ➤ These SC security problems may be solved with the help of encryption.
- Ethereum also has a resource called GAS, that blocks the execution of smart contracts.

SMART CONTRACTS

Definition: Smart contracts are digital contracts that automatically process transactions when each of the encoded terms of the agreement is met by the *transacting parties*.

Benefits:

- 1. Direct(no needed intermediaries)
- 2. Cost efficient
- 3. Time efficient
- 4. More secure
- 5. Extra-fraud resistant

Composability: They are public on **Ethereum** and can be thought of as open APIs.

Limitations: Smart contracts alone cannot get information about "real-world" events because they cannot send HTTPs requests.

ETHEREUM

1. PROGRAMMING LANGUAGE - SOLIDITY

- Object oriented.
- Influenced by C++, Python and JavaScript, target the Ethereum Virtual Machine(EVM).
- Statically typed, supports inheritance, libraries and complex user-defined types.

```
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 < 0.9.0;
contract SimpleStorage {
  uint storedData;
  function set(uint x) public {
     storedData = x;
  function get() public view returns (uint) {
     return storedData;
```

2. PLATFORM - FRONT RUNNING

Displacement Scenario.

Insertion Scenario.

Suppression Scenario.

3. DENIAL-OF-SERVICE (DOS)

```
function distribute() public {
require(msg.sender == owner);
//only owner
for(uint i=0; i < investors.length; <math>i++)
 transferToken(investors[i],
investorTokens[i]);
 //transfers "amount" of tokens to the
address
```

Vulnerability:

Looping through externally manipulated mappings or arrays

Owner Operations

Progressing State Based on External Calls

Preventative Operations

4. REENTRANCY

Vulnerability

Preventative Operations

REFERENCES

- Docs.soliditylang.org. 2021. *Solidity Solidity 0.8.4 documentation*. [online] Available at: https://docs.soliditylang.org/en/develop/>
- Docs.soliditylang.org. 2021. *Introduction to Smart Contracts Solidity 0.8.4 documentation*. [online] Available at: https://docs.soliditylang.org/en/develop/introduction-to-smart-contracts. develop/introduction-to-smart-contracts.
- Medium. 2021. Front-running Attacks on Blockchain. [online] Available at: https://medium.com/codechain/front-running-attacks-on-blockchain-1f5ba28cd42b
- Docs.soliditylang.org. 2021. *Solidity Solidity 0.8.3 documentation*. [online] Available at: https://docs.soliditylang.org/en/v0.8.3/
- Sans.org. 2021. *Blockchain & Smart Contract Security | SANS SEC554*. [online] Available at: https://www.sans.org/cyber-security-courses/blockchain-smart-contract-security/.
- Research Paper 2021. [online] Available at:
 https://www.researchgate.net/publication/336735093_Blockchain_Smart_Contracts_Formalization_Approaches_and_Challenges_to_Address_Vulnerabilities
- Antonopoulos, A. and Wood, G., n.d. Mastering Ethereum.