

Lista de ejercicios de la lección 1.4

- 1. Calcular el área de la región limitada por la gráfica de la función $f(x) = x^3 1$, el eje x y las rectas x = 1 y x = 3.
- 2. Calcular el área de la región limitada por la gráfica de la función $f(x) = 4 x^2$, el eje x y las rectas x = -4 y x = 0.
- 3. Calcular el área de la región comprendida entre las curvas y=x+2, $y=\sqrt{x},$ tomando en cuenta que $0\leq x\leq 4.$
- 4. Calcular el área de la región acotada por las gráficas de las ecuaciones $y=x^2$ y $y=\sqrt{x}$.
- 5. Calcular el área de la región acotada por las graficas de $y + x^2 = 6$ y y + 2x 3 = 0.
- 6. Encontrar el área de la región encerrada por las parábolas $y = x^2$ y $y = 2x x^2$.
- 7. Calcular el área de la región acotada por las gráficas de $y=x^2+2x,\,y=-x+4$ tomando en cuenta que $-2 \le x \le 3$.
- 8. Encontrar el área de la región comprendida entre las curvas $y = \sec^2 x$, $y = \sin x$ en $\left[0, \frac{\pi}{4}\right]$

Calcular el área de la región acotada por las gráficas de las curvas.

9.
$$y = \frac{1}{x^2}$$
, $y = -x^2$, $x = 1$, $x = 2$ 12. $y = x^2 + 1$, $y = 5$

10.
$$y = \sin x$$
, $y = \cos x$, $x = 0$, $x = \pi$ 13. $y = x^{-2}$, $y = x$, $x = \frac{1}{2}$, $x = 3$

11.
$$y = x^2$$
, $y = 4x$ 14. $y = x\sqrt{4 - x^2}$, $y = 0$

Calcular el área de la región acotada por las gráficas de las funciones dadas.

15.
$$y = x^2 + 2x$$
, $y = -x + 4$ en $[-4, 2]$ 41. $y^2 = 4 + x$, $y^2 + x = 2$

16.
$$y = x^3 - 4x + 2$$
, $y = 2$ en $[-1, 3]$ 42. $y = x$, $y = 3x$, $x + y = 4$

17.
$$y = 6 - 3x^2$$
, $y = 3x$ en $[0, 2]$ 43. $x = 4y - y^3$, $x = 0$

18.
$$y^2 = 1 - x$$
, $2y = x + 2$ 44. $y = -x + 2$, $y = 4 - x^2$ en $[-2, 3]$

19.
$$y - x = 6$$
, $y - x^3 = 0$, $2y + x = 0$ 45. $y = x^2 - 4$, $y = -x^2 - 2x$ en $[-3, 1]$

20.
$$3y + x^2 = 6$$
, $y + 2x - 3 = 0$ 46. $y = -x^2 + 3x$, $y = 2x^3 - x^2 - 5x$ en $[-2, 2]$

21.
$$y = \sin x$$
, $y = \cos x$ en $[0, 2\pi]$

22.
$$y = \ln x$$
, $y = 2 \ln x$, $x = 1$, $x = 5$

23.
$$x = y^2$$
, $x = y + 2$

24.
$$xy = 1$$
, $y = 0$, $x = 1$, $x = e$

25.
$$y = 3^{-x}, x = 1, x = 2$$

26.
$$y = \sin\left(\frac{1}{2}x\right), \ x = 0, \ x = 2$$

27.
$$y = \sinh(3x), y = 0, x = 1$$

28.
$$x - y + 1 = 0$$
, $7x - y - 17 = 0$, $2x + y + 2 = 0$ 54. $y = 1 + \sqrt{x}$, $y = \frac{3 + x}{3}$

29.
$$x = y^{\frac{2}{3}}, x = y^2$$

30.
$$y = x^3, y = 0$$

31.
$$y = x$$
, $y = 3x$, $x + y = 4$

32.
$$x - 2y = 0, x - 2y - 4 = 0, y = 3, y = 0$$

33.
$$y = e^{-x}$$
, $xy = 1$, $x = 1$, $x = 2$

34.
$$y = e^{-2x}$$
, $y = -e^x$, $x = 0$, $x = 2$

35.
$$y = 2^x$$
, $x + y = 1$, $x = 1$

36.
$$y = x^3 - 4x + 2$$
, $y = 2$, $x = -1$, $x = 3$

37.
$$y = x^2$$
, $y = x^3$, $x = -1$, $x = 2$

38.
$$x + 4y^2 = 4$$
, $x + y^4 = 1$ para $x \le 0$

39.
$$y^2 = -x$$
, $x - y = 4$ para $y = -1$, $y = 2$

47.
$$y = \frac{x^3}{3} - x$$
, $y = \frac{x}{3}$ en $[-2, 3]$

48.
$$y = \sin x$$
, $y = \cos x$ en $\left[0, \frac{\pi}{2}\right]$

49.
$$y = \sin x, \ y = e^x \text{ en } \left[0, \frac{\pi}{2}\right]$$

50.
$$y = \frac{1}{x}$$
, $y = \frac{1}{x^2}$, $x = 2$

$$51.y = x - 1, \ y^2 = 2x + 6$$

$$52.x = y^3 - y, \ x = 1 - y^4$$

53.
$$y = x + 5$$
, $y^2 = x$ en $[-1, 2]$

54.
$$y = 1 + \sqrt{x}, \ y = \frac{3+x}{3}$$

55.
$$y = \cos x$$
, $y = \sec^2 x$ en $\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$

56.
$$y = \cos x, \ y = \sin(2x) \text{ en } \left[0, \frac{\pi}{2}\right]$$

57.
$$y = \cos x$$
, $y = 1 - \frac{2x}{\pi}$

58.
$$y = |x|, \ y = x^2 - 2$$

59.
$$y = \sin(\pi x), \ y = x^2 - x, \ x = 2$$

60.
$$y = \cos\left(\frac{\pi}{2}x\right), \ y = 1 - x^2$$

61.
$$y = \sin\left(\frac{\pi}{2}x\right), \ y = x$$

62.
$$y = \sec^2 x, \ y = \tan^2 x \text{ en } \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$$

63.
$$x = \tan^2 y$$
, $x = -\tan^2 y$ para y en $\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$

$$64. \ x = 4, \ x^3 - x^2 + 2xy - y^2 = 0$$

65.
$$y = 3\sin y \sqrt{\cos y}, \ x = 0 \text{ en } \left[0, \frac{\pi}{2}\right]$$

$$40. y = 1 - x^2, y = x - 1$$

- 66. Calcular el área de la región acotada por la curva $y = \frac{x}{2x^2 + 4}$, el eje x y la recta x = 4.
- 67. Las graficas de $f(x) = -x^2 + 10$ y $g(x) = \frac{9}{x^2}$ se cortan 4 veces, limitando 2 regiones de la misma área. Calcular el área de estas regiones.
- 68. Calcular el área de la región limitada por la curva $y = e^x$, los ejes coordenados y la recta x = 2.
- 69. Calcular el área de la región limitada por la curva $y = e^x$, y la recta que pasa por los puntos (0,1) y (1,e).
- 70. Calcular el área de la región limitada por la gráfica de $y = 5^x$ y las rectas x = 1 y y = 1.
- 71. Calcular el área de la región acotada por las gráficas de curva $y=e^x$ y $y=2^x$ y la recta x=2
- 72. Calcular el área de la región limitada por las gráficas de $y = \log_{10} x$, $y = \ln x$ y la recta x = 3.
- 73. Determinar el área de la región acotada por la curva $y = \frac{8}{x^2 4}$, el eje x, el eje y y la recta x = 2.
- 74. Calcular el área de la región determinada por la catenaria $y = 6 \cosh\left(\frac{x}{6}\right)$, el eje x, el eje y y la recta $x = 6 \ln 6$.
- 75. Determinar el área del triángulo con los vértices (a) (0, 0), (2, 1), (-1,6); (b) (0, 5), (2,-2), (5, 1)
- 76. Hallar el área de la región limitada por la parábola $y=x^2$, la recta tangente a esta parábola en el punto (1,1) y el eje x.
- 77. Encontrar el número b tal que la recta y=b divida la región limitada por las curvas $y=x^2$ y y=4 en dos regiones de áreas iguales.
- 78. (a) Hallar el número a tal que la recta x = a biseque el área bajo de la curva $y = \frac{1}{x^2}$ en [1,4].
- (b) Encontrar el número b tal que la recta y=b biseque el área mencionada en (a).
- 79. Calcular los valores de c tales que el área de la región encerrada por las parábolas $y=x^2-c^2$ y $y=c^2-x^2$ sea 576.
- 80. Suponga que $0 < c < \frac{\pi}{2}$; Para qué valores de c, el área de la región encerrada por las curvas $y = \cos x$, $y = \cos (x c)$ y x = 0 es igual al área de la región encerrada por las curvas $y = \cos (x c)$, $x = \pi$ y y = 0?

- 81. Calcular el área de la región en el 1er. cuadrante que está acotada por la izquierda por el eje y, abajo por la curva $x = 2\sqrt{y}$, por arriba a la izquierda por la curva $x = (y-1)^2$ y por arriba a la derecha por la recta x = 3 y.
- 82. Hallar el área de la región en el 1
er. cuadrante que está acotada por la izquierda por el eje
 y, abajo por la recta $y=\frac{x}{4}$, por arriba a la izquierda por la curva $y=1+\sqrt{x}$ y por arriba a la derecha por la recta $y=\frac{2}{\sqrt{x}}$.
- 83. Hallar el área de la región entre la curva $y = 3 x^2$ y la recta y = -1 integrando con respecto a (a) la variable x, (b) la variable y.
- 84. Sea R la región acotada por las graficas de $x-2y=0,\ x-2y-4=0,\ y=3,\ y=0.$ Calcule su área usando (a) integración, y (b) una fórmula de geometría.