Intro to Electronics

Mar-2019

Rules of thumb, assumptions and mixed-quality analogies to come!

BAD ANALOGIES

JUST BECAUSE ONE ARGUMENT RESEMBLES ANOTHER, DOESN'T MEAN THAT CATS CAN FLY IN SPACE.

Plumbing Analogy

Powering a Light Bulb

Voltage is the pressure (pushing force)
Pushes electrons through a circuit

Voltage

Powering a Complex Circuit

Voltage is applied <u>across</u> any circuit to power it

Measuring Voltage

Voltage is measured between/across two points:

- Positive minus negative
- Convention red minus black

Common Voltages

Volts DC: 9V or 9VDC or 9V DC

110 volts AC 110V or 110V AC or 110VAC

12V DC or 12V

Let's Try It!

Current

Current is the flow of electrons
Similar to the flow of water

Current

Measured in amps $1A (1 \text{ amp}) = 6.25 \times 10^{18} \text{ electrons per second}$

Measuring Current

Current can be measured by passing it through a multimeter

Let's Try It!

~0.5mA DC

Remove

Jumper

"Voltage Across" – "Current Through"

Voltage

Current

Power

Power = Watts =
Amount of energy
used at a particular
point in time

Energy =
Power x Time = W x hr
Total energy used over
a period of time

Calculating Power

Power = Voltage x Current

 $120V \times 0.5A = 60W$

Resistors – A minute to learn, a lifetime to master

We use them every day

Resistors – Resist the flow of current

Resistance – measured in Ohms (Ω)

Conductors vs Insulators

Semi-conductors

Insulators

All Shapes and Sizes

Fixed Resistors — Construction

Variable Resistors – Construction

Resistors – Simple but useful!

Ohm's Law

$$V = I * R$$

Special Relationship between voltage, current, resistance

Ohm's Law

$$V = I * R$$

$$V = I * R$$
 $R = V / I$ $I = V / R$

$$I = V / R$$

Let's Try It!

Remove jumper, measure R $R = 4.7k\Omega$

Place jumper, measure V V = 2.5V

Remove jumper, measure I V = 0.53mA

V = I * R R = V / I I = V / R

Resistors in Series

Resistors in Parallel

$$R_{T} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \frac{1}{R_{4}}}$$

Let's Try It!

Remove jumpers, measure each R

$$R_1 = R_2 = 10k\Omega$$

$$R_3//R_5 = 5k\Omega$$

 $R_3 = R_5 = 10k\Omega$

Diodes/LEDs

Diodes – Everyday Uses

Diodes – One-Way Gate

Current Flow

How to use a diode

$$V_S \ge V_{LED} + 1V$$
 $I_{LED} \sim 10-20 \text{mA}$
 $V_{LED} \sim 1.8-3.3V$

Practical Circuit

R =
$$(5V - 2V) / 0.01A$$

= $3V / 0.01A$
= 300Ω

Turn knob to set brightness

Let's Try It!

Remove jumper, measure R $R = 100\Omega$

Place jumper, measure V V = 2.5V

Remove jumper, measure l V = 0.53mA

Switches

Capacitors

Similar to Batteries

"Supply Bypass" Capacitors

Further Reading

Falstad Circuit Simulator — Runs in Browser
Kahn Academy — Introduction to EE
Mattermost Channel
YouTube Videos
All About Circuits

https://www.allaboutcircuits.com/education/
 Sparkfun – learn.sparkfun.com