2.1.b)  $E(t) = E_0 \left( 1 + \cos \omega t \right) \cos(\omega t + \varphi_0),$ 

 $E_0$ ,  $\omega$  – как у пробной волны.

2.2. Примерно изобразите на графиках зависимости тока в цепи от приложенного напряжения для случаев 2.1.a и 2.1.b. Отметьте на них ключевые значения соответствующих величин.

## 3. Квантовый выход

- 3.1. Площадь пластины, на которую падает пробная волна,  $S=0.05 \text{ м}^2$ , при этом освещение падает под углом  $\alpha=30^\circ$  к поверхности (см. рис. 1). Используя имеющиеся данные, определите квантовый выход Y фотоэффекта.
- 3.2. Вообще говоря, зависимость квантового выхода от частоты излучения весьма существенна, и пренебрегать ей можно, разве что, в модельных задачах. Для измерения данной зависимости пластину, описанную в пункте 3.1, освещали электромагнитными волнами различной частоты и постоянной амплитуды:  $E_{\tau}(t) = E_{\tau} \cos(\omega_{\tau} t + \omega_{\tau})$  где  $E_{\tau}$  по-прежнему равно 15 R/м. Полученные значения

 $E_i(t) = E_0 \cos(\omega_i t + \varphi_0)$ , где  $E_0$  по-прежнему равно 15 В/м. Полученные значения задерживающего напряжения и тока насыщения представлены в таблице 1.

Используя имеющиеся данные, постройте приближенный график зависимости квантового выхода фотоэффекта от частоты падающего излучения в максимально возможном диапазоне частот.

| № опыта | <i>U</i> <sub>3</sub> , B | I <sub>max</sub> , мкА |
|---------|---------------------------|------------------------|
| 1       | 0,7                       | 1,5                    |
| 2       | 1,3                       | 4,5                    |
| 3       | 1,7                       | 5,5                    |
| 4       | 2,0                       | 6,0                    |
| 5       | 2,4                       | 6,5                    |
| 6       | 2,8                       | 6,6                    |
| 7       | 3,1                       | 6,5                    |
| 8       | 3,8                       | 6,3                    |

Таблица 1 – Результаты измерений задерживающего напряжения и тока насыщения

## Задача 11-3

С развитием технологий появляются все новые материалы с удивительными свойствами. Два таких метаматериала рассматриваются в данной задаче.

## Часть 1. Переменная диэлектрическая проницаемость.

- 1.1.1 Плоский конденсатор состоит из двух металлических параллельных пластин площади S, находящимися на расстоянии h друг от друга. Пространство между пластинами заполнено двумя слоями диэлектрика (толщины этих слоев одинаковы) с диэлектрическими проницаемостями  $\mathcal{E}_1$  и  $\mathcal{E}_2$ . Найдите емкость такого конденсатора.
- 1.1.2 На внешние металлические пластины подают постоянное напряжение  $U_0$ . Найдите поверхностные плотности зарядов на пластинах  $\sigma_0$  и на границе раздела диэлектриков  $\sigma'$



1.2 Плоский конденсатор состоит из двух металлических параллельных пластин площади S, находящимися на расстоянии h друг от друга. Пространство между пластинами заполнено диэлектриком, проницаемость которого плавно изменяется от  $\mathcal{E}_1$  у левой пластины до  $\mathcal{E}_2$  у правой. Закон изменения проницаемости от координаты x имеет вид

$$\varepsilon = (ax + b)^{-1}.$$

- 1.2.1 Выразите параметры этой зависимости через значения  $\mathcal{E}_1$  и  $\mathcal{E}_2$ .
- 1.2.2 Найдите емкость этого конденсатора.
- 1.2.3 На внешние металлические пластины подают постоянное напряжение  $U_{\scriptscriptstyle 0}.$  При этом внутри диэлектрика возникают объемные



поляризационные заряды. Найдите их объемную плотность как функцию координаты x  $\rho(x)$ 

## Часть 2. Переменная проводимость.

- 2.1.1 Плоский резистор состоит из двух металлических параллельных пластин площади S, находящимися на расстоянии h друг от друга. Пространство между пластинами заполнено двумя слоями слабо проводящих веществ (толщины этих слоев одинаковы) с удельными сопротивлениями  $\rho_1$  и  $\rho_2$ . Найдите сопротивление такого резистора.
- 2.1.2 На внешние металлические пластины подают постоянное напряжение  $U_{\scriptscriptstyle 0}$ . Найдите поверхностную плотность заряда  $\sigma'$  на границе раздела слоев. Поляризационными зарядами пренебречь.



- 2.2.1 Плоский резистор состоит из двух металлических параллельных пластин площади S, находящимися на расстоянии h друг от друга. Пространство между пластинами заполнено веществом, удельное сопротивление которого плавно изменяется от  $\rho_1$  у левой пластины до  $\rho_2$  у правой по линейному закону.
- 1.2.1 Запишите формулу, описывающую изменение удельного сопротивления вещества.
- 1.2.2 Найдите сопротивление этого резистора.
- $1.2.3\,$  На внешние металлические пластины подают постоянное напряжение  $U_{_0}.$  При этом внутри вещества возникают объемные заряды. Найдите их объемную плотность как функцию координаты x.