Sumário

1.	Março	2
2.	Abril	2
-	Tabela 1 – Modelos de baterias preliminar	2
3.	Maio	3
-	Tabela 2 – Modelos de baterias	3
1	Processo de escolha dos modelos das baterias preliminar	4
1	Placa shield	4
1	Escolha da bateria ideal	5
	Consumo da placa ESP8266	5
	Notas:	9
	Equação da média ponderada	9
4.	Junho	10
I	Resultado final – Modelo de bateria	10
(Quadro técnico de placas e seus protocolos de comunicação	10
5.	Julho	10
6.	Agosto	10
7.	Setembro	10
8.	Outubro	10
9.	Novembro	10
10.	. Dezembro	10
11.	. Janeiro	10
12.	. Fevereiro	11
DI	FFFDÊNCIAS	11

1. Março

Mês dedicado à logística, capacitação e reconhecimento de todo o trabalho.

Foram realizadas diversas pesquisas quanto ao *chip* escolhido, o *ESP8266*, a fim de se ter o conhecimento mínimo para a realização dos primeiros experimentos. Neste momento foi dado início a construção do primeiro programa simples para a realização de testes iniciais no *ESP*.

2. Abril

Mês dedicado a capacitação e a pesquisas referentes aos tipos de baterias.

Foi iniciada a construção, também, de uma placa a qual possui 8 LEDs indicativos para a realização de futuros testes com relação ao consumo. O código fonte¹ referente ao controle dessa placa foi desenvolvido com o intuito de auto capacitação.

As pesquisas referentes aos modelos de baterias também foram iniciadas.

Tabela 1 – Modelos de baterias preliminar

Num	Marca	Modelo	Dime	ensões	(mm)	Drago	Tensão de	mAh
INUIII	Maica	Modelo	C	L	A	Preço	trabalho	
<u>A</u>	Rontek	RT300AAAB4	11	45	11	R\$ 3,50	1,2	600
<u>B</u>	Energy Power	AA NI-Mh	14,5	50,5	14,5	R\$ 8,90	1,2	800
<u>C</u>	Energy Power	AA NI-Cd	14,5	50,5	14,5	R\$ 9,50	1,2	1000
D	Rontek	AA NI-Mh	15	50	15	R\$ 7,50	1,2	2100
<u>E</u>	Mox	Aaa	14,5	50,5	14,5	R\$ 3,8	1,2	2700
<u>F</u>	Knup	KP-BT9V	47	20	15	R\$ 12	9	450
<u>G</u>	FLEX	FX-45B1	47	20	15	R\$ 28	9	450
<u>H</u>	FullyMax	-	9,5	26	45	R\$ 15,20	3,7	650
<u>J</u>	Rontek	NP-20	50	40	32	orçamento	3,7	680
<u>K</u>	Rontek	6RT1800SC-CX	131	51	23	orçamento	7,2	1800
<u>L</u>	Rontek	6RT3000SC-CX	131	51	23	orçamento	7,2	3000
<u>M</u>	Rontek	6LR61	48	26	16	orçamento	8,4	350

¹ O código fonte desenvolvido se encontra no perfil GitHub do autor do documento, referente a este link: https://github.com/W8jonas/Internet-das-Vacas/blob/master/programacao/codigo_servidor_teste_consumo/codigo_servidor_teste_consumo.ino

3. Maio

Mês dedicado para pesquisas referentes aos tipos e modelos de baterias, foram produzidas várias tabelas com o intuito de representar de forma simplificada os mais diversos fatores técnicos envolvendo esses modelos de bateria.

Tabela 2 – Modelos de baterias

	1 aocia 2	Wiodelos di	Modelo		ensões(i	mm)	Modelo de	_	Tensão			G
Numeração	Marca	Modelo	químico	С	L	A	tamanho	Preço	de trabalho	mAh	Wh	Custo/wh
01	Rontek	RT300AAAB4	Ni-cd	11	44	11	Aaa	R\$3,50	1,20	300,00	360,00	0,009722
02	Energy Power	AA NI-Mh	Ni-mh	14,5	50,5	14,5	Aa	R\$8,90	1,20	800,00	960,00	0,009271
03	Energy Power	AA NI-Cd	Ni-cd	14,5	50,5	14,5	Aa	R\$9,50	1,20	1000,00	1200,00	0,007917
04	Rontek	AA NI-Mh	Ni-mh	14,5	50,5	14,5	Aa	R\$7,50	1,20	2100,00	2520,00	0,002976
05	Mox	Aaa	Ni-mh	14,5	50,5	14,5	Aa	R\$3,80	1,20	2700,00	3240,00	0,001172
06	Knup	KP-BT9V	Ni-mh	47	20	15	Bat P	R\$12,00	9,00	450,00	4050,00	0,002963
07	FLEX	FX-45B1	Ni-mh	47	20	15	Bat P	R\$28,00	9,00	450,00	4050,00	0,008642
08	FullyMax	-	LIPO	9,5	26	45	Lipo M	R\$15,20	3,70	650,00	2405,00	0,006320
09	Mox	MO-086B	Ni-cd	31,5	44	10,5	Aaa	R\$19,00	3,60	700,00	2520,00	0,001428
10	Rontek	6RT1800SC-CX	Ni-cd	131	51	23	Bat. G	Orçamento	7,20	1800,00	12960,00	XXXX
11	Rontek	6RT3000SC-CX	Ni-mh	131	51	23	Bat. G	Orçamento	7,20	3000,00	21600,00	XXXX
12	Rontek	6LR61	Ni-mh	48	26	16	Bat. P	Orçamento	8,40	350,00	2940,00	XXXX
13	Rontek	-	Ni-mh	2	16	16	P. Botão	Orçamento	3,60	80,00	288,00	XXXX
14	Rontek	-	Ni-mh	42	14	47	4 * Aaa	Orçamento	3,60	1300,00	4680,00	XXXX
15	Rontek	-	Ni-cd	17	51	57	3 * aa	Orçamento	7,20	600	4320,00	XXXX
16	FullyMax	-	LIPO	7	20	36	Lipo P	R\$14,40	3,70	350,00	1295,00	0,011119
17	minamoto	LFP803048	LiFePO 4	8	30	50	Lipo M	Orçamento	3,20	800		XXXX
18	minamoto	LFP603450	LiFePO 4	6	34	50	Lipo M	Orçamento	3,20	700		XXXX
19	minamoto	LFP101945HP	LiFePO 4	10	19	45	Lipo M	Orçamento	3,20	440		XXXX
20	minamoto	LFP803048HP	LiFePO 4	8	30	48	Lipo M	Orçamento	3,20	800		XXXX
21	minamoto	LFR26650E	LiFePO 4	26	65	26	D+	Orçamento	3,20	3300		XXXX
22	minamoto	LFR18650E	LiFePO 4	18,2	64,5	18,2	D+	Orçamento	3,20	1500		XXXX
23	minamoto	LFR18490E	LiFePO 4	18,2	48,5	18,2	Aa	Orçamento	3,20	1000		XXXX
24	minamoto	LFR14500E	LiFePO 4	14,1	48,5	14,1	Aa	Orçamento	3,20	500		XXXX
25	minamoto	LFR18650P	LiFePO 4	18,2	64,5	18,2	D+	Orçamento	3,20	1100		XXXX
26	minamoto	LFR26650P	LiFePO 4	26	65	26	D+	Orçamento	3,20	2300		XXXX
27	minamoto	LP104884	LIPO	10	48	84		Orçamento	3,7	5000		XXXX
28	minamoto	LP805060	LIPO	8	50	60		Orçamento	3,7	2700		XXXX
29	minamoto	LP605559	LIPO	5,5	55	60		Orçamento	3,7	2000		XXXX
30	minamoto	LP704460	LIPO	6,7	44	60		Orçamento	3,7	2000		XXXX
31	minamoto	LP103746	LIPO	10	37	46		Orçamento	3,7	1750		XXXX
32	minamoto	LP804044	LIPO	8	40	44		Orçamento	3,7	1400		XXXX
33	minamoto	LP803033	LIPO	7,6	30	33		Orçamento	3,7	730		XXXX
34	minamoto	LP902535	LIPO	8,8	25	35		Orçamento	3,7	700		XXXX
35	minamoto	LP683033	LIPO	6,5	30	33		Orçamento	3,7	600		XXXX
36	minamoto	LP502435	LIPO	5	24	35		Orçamento	3,7	350		XXXX

Processo de escolha dos modelos das baterias preliminar

Para a realização da seleção dos modelos mais propícios à adesão ao projeto, foi realizado um processo de eliminação dos modelos presentes na <u>Tabela 2</u>. Esses modelos foram avaliados em 3 diferentes etapas, a quais eram aprovados ou reprovados.

Primeiramente, foi analisado o valor referente a tensão de trabalho de cada bateria, a fim de eliminar aquelas que ultrapassem o valor máximo da placa WeMos D1 mini. Para obter este valor, foi consultado o esquemático da placa, encontrado na *wiki* da fabricante. Após a consulta, foi observado que o regulador de tensão da placa é o CI ME6211. De acordo com seu *Datasheet*, o valor máximo de tensão é de 6 volts. Logo, serão descartadas as baterias que apresentarem tensão nominal superior a 6 volts, portanto, os modelos 06, 07, 10, 11, 12 e 15 ficam fora de cogitação até o momento. Sendo a única forma possível para sua adesão, a implementação de um regulador de tensão externo ao circuito da placa WeMos.

Em segundo método, foram avaliadas as dimensões das baterias restantes, levando em consideração as associações necessárias para as baterias com tensão inferior a 3 volts. Nesse caso, os modelos 01, 02, 03, 04 e 05 precisam receber 3 associações em série com a finalidade de se alcançar a tensão de trabalho da placa. Todavia, dessa forma, ocupa-se um espaço 3 vezes maior, fato não presente nos modelos 08, 09, 13, 14 e 16. Em vista disso, esses modelos ganham preferência. No entanto, os modelos 09 e 14 já possuem em seu encapsulamento 3 pilhas em série, o que lhes garante o mesmo espaço aproximado dos modelos anteriores. Sobrando, então, somente os modelos 08, 13 e 16.

Cabe então, dentre os três últimos modelos, aquele que possui a melhor autonomia por custo. Para tal análise é preciso estimar um valor para o modelo 13, visto que seu preço não é acessível sem o contato com a distribuidora <u>sta-eletronica</u>. Estipulando, com base na média de valores do mercado, aproximadamente, o modelo possuiria um valor de R\$12,00 reais, custo próximo aos demais modelos.

Nessa situação, cabe a escolha entre esses modelos. Observando que o modelo 08 apresenta as maiores dimensões físicas, mas possui maior mAh, garantindo maior autonomia. Em contrapartida, o modelo 13 garante menor tamanho, apesar de possuir, também, significativa diminuição na autonomia. Por fim, resta o modelo 16 que representa equilíbrio entre os dois anteriores, por possuir uma autonomia mais razoável, além de ser de menor tamanho e custo que o modelo 08.

Placa shield

Para se chegar a um valor confiável do melhor modelo de bateria, foi realizado diversos testes experimentais, todavia, para efetuar esses testes foi feita uma placa *shield* para a realização desses experimentos. Em relação ao ESP8266, foi projetado um circuito, cujo seu esquemático feito no *software Proteus* segue logo em seguida (ver figura 1). Este, possui 8 leds que estão ligados em *current source* com 8 pinos digitais da placa WeMos que serão controlados por um código fonte² anteriormente programado. Há também um botão, cuja sua finalidade é orientar o programa para a escolha da função a ser executada pelo programa. Essas funções estão presentes na tabela 3, são elas: Standby, Leds ligados, 100% uso do CPU e Leds e processador.

(Figura 1 – Esquemático da placa shield- modelo Proteus)

Escolha da bateria ideal

Para a escolha da bateria ideal foram analisados novos fatores, e para a análise de cada foram realizados diversos procedimentos práticos, a fim de escolher o modelo de melhor rendimento para o projeto. Neste momento foi utilizado a *shield* desenvolvida conjuntamente com 2 modelos de códigos de programa, com a intenção de realizar experimentos práticos para aferir o consumo da placa em seus diversos modos de funcionamento.

Inicialmente foi realizado o estudo de consumo da placa ESP8266, de acordo com seu datasheet, com o propósito de adquirir os valores de energia gasta para realizar determinadas funções. Foram analisados esses fatores em suas várias modalidades de funcionamento, tais quais em suas funções de poupança de energia, quanto em suas funções ativas. Os valores de consumo foram medidos em laboratório utilizando 2 equipamentos diferentes.

Paralelamente, para se chegar ao resultado final, será empregado uma sequência de cálculos utilizando uma média ponderada, atribuindo para cada característica da bateria um peso diferente. Quanto mais alto o valor final, melhor a classificação da bateria. A bateria que alcançar o maior valor será a bateria ideal para o projeto.

Consumo da placa ESP8266

A placa Esp8266 possui um avançado sistema de administração de energia, possuindo tecnologia voltada para projetos móveis e principalmente aplicações voltadas para o *Internet of Things*.

Sua arquitetura de baixo consumo opera em 3 diferentes modos: Active mode, sleep mode and Deep-sleep mode. Em modo de Deep-sleep o Wi-Fi é desligado e os sensores da placa trabalham em períodos reduzidos, o consumo se encontra próximo dos 20 µA, quando alimentado com 2.5 Volts.

Em modo Sleep, o Wi-Fi switch é desativado, impedindo a transmissão de dados, seu consumo se aproxima de 0,9 mA. Por fim, há o Active mode, no qual o consumo elétrico depende das aplicações realizadas pelo Esp8266, todavia, seu consumo médio é 80mA. [20]

Para que seja encontrado valores de referência para as aplicações no código fonte, foram realizados os experimentos com dois <u>códigos testes</u>, com o intuito de medir os valores de consumo para cada modo de operação. Todos os testes foram realizados com a mesma placa *shield* desenvolvida previamente.

Tabela 3 – Resultados dos testes de consumo da placa WeMos D1 mini

Função em teste	VCC (V)	Mínimo (mA)	Máximo (mA)	Média (mA)
	5	74.4 ⁽²⁾ 74.5 ⁽³⁾	76.1 75.6	75,333
		75.2 ⁽⁴⁾	76.2	, , , , , , ,
Standby ⁽¹⁾	4	74.8	76.0	75 502
Standby	4	74.3 74.8	77.6 76.0	75,583
		73.3	74.8	
	3,4	73.2	74.2	74,050
		73.6 75,5	75.2 75.2	
	5	75.3	75.3	75,583
		75.8	76.4	
1 Led ligado ⁽⁵⁾	4	75.4 75.2	76.8 76.5	76,15
1 Lett ligatio		75.8	77.2	70,13
		73.8	74.8	
	3,4	73.3 73.9	74.6 75.8	74,366
		78,6	80,0	
	5	78.3	80.1	79,3
		78.8	80.0	
Todos os Leds ligados	4	78.6 78.2	79.5 79.3	79,066
Todos os Leds figados		78.8	80.0	77,000
		76.2	78.1	
	3,4	75.9	77.2	77,133
		76.5 76,0	78.9 77,3	
	5	76.0	76.3	76,9
		76.6	79.2	
100% uso do CPU ⁽⁶⁾	4	75.5 75.3	76.6 76.6	76,233
100% uso do Cr O	4	75.9	77.5	70,233
		74.8	75.5	
	3,4	74.4	75.2 76.2	75,166
		74.9 76,8	76.2 78,1	
	5	76.4	77.7	77,783
		78.2	79.5	
1 Led ligado + 100% uso CPU	4	76.8 76.7	77.6 77.3	77,383
1 Led ligado + 100% uso el o	, , , , , , , , , , , , , , , , , , ,	77.8	78.1	77,363
		74.9	76.3	
	3,4	74.4 75.4	75.2 77.1	75,55
		75.4 79,6	77.1 80,8	
	5	79.2	81.4	80,333
		79.8	81.2	
Todos os Leds ligados + 100% uso	4	79.0 79.1	80.5 80.1	79,85
10000 05 Louis figures 1 100/0 us0		79.9	80.5	, ,,,,,,
		76.4	78.2	
	3,4	76.6 76.7	78.2 79.2	77,55
		76.7 75.2	79.2 75.5	
	5	75.1	75.1	75,366
ESP em modo server e cliente ligado		75.5	75.8	
	3,4	Instabilidade ⁽⁷⁾		≈75
ESP only client	5	71.9 71.4	72.1 71.8	71,983

A				72.1	72.6	
Modem Sleep						≈70
Modem Sleep			3,4			~70
Modem Sleep			_			
Modem Sleep			5			
Modem Sleep					71.4	
1,14 72.0 7.14 72.0 7.21 7.21 7.27	Mode	m Sleep	4			
Satisface 1.18		1		71.4	72.0	
Transmit 802.11b CCK = 11Mbps POUT = +16dBm POUT = +14dBm POUT = +16dBm POUT = +14dBm POUT = +18.5dBm POUT = +20.5dBm POUT = +14dBm POUT = +14dBm POUT = +14dBm POUT = +120.5dBm POUT = +14dBm POUT = +120.5dBm POUT = +120.5dBm POUT = +14dBm POUT = +120.5dBm POUT = +14dBm POUT = +120.5dBm POUT = +14dBm POUT = +14dBm POUT = +14dBm POUT = +120.5dBm POUT = +14dBm POUT = +120.5dBm						
Light Sleep - CPU ativa			3,4		71.9	
Light Sleep - CPU ativa				16.3	12.6	
Light Skep - CPU ativa			5			
Light Sleep - CPU ativa 4			3			
Light Sleep - CPU ativa 4				16.3	16.5	
16.3 16.4 15.5 15.6 15.7 15.5	Light Sleen	– CPU ativa	4			
Deep Sleep - CPU desativada				16.3		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						
Light Sleep - CPU desativada			3,4			
Light Sleep - CPU desativada				15.6	15.7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5			
$ \begin{tabular}{l l l l l l l l l l l l l l l l l l l $				2.2	2.2	
Light Sleep − CPU desativada $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2.3	2.3	
Deep Sleep	Light Sleep –	CPU desativada	4	2.1	2.1	
Deep Sleep	C r			2.3	2.2	
$Deep Sleep \\ Deep Sleep \\ Deep$						
Deep Sleep			3,4			
$Deep Sleep \\ Deep Sleep \\ \hline Deep Sleep \\ \hline \\ Def Deep Sleep \\ \hline \\ Def Sleep Sleep \\ \hline \\ Def Deep Sleep \\ \hline \\ Def Sleep Sleep Sleep \\ \hline \\ Def Sleep Sleep $				1.8	1.8	
Deep Sleep			5			
Deep Sleep			3		0.2	
Deep Sleep				0.02	0.02	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4			
	Davis	C1	-		0.02	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Deep	Sleep		0.01	0.02	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3,3			≈0.0116 ⁽⁸⁾
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.01	
POUT = +20.5 dBm			3.0			0.0055
POUT = +20.5dBm						≈0,0066
POUT = +20.5dBm		1			75.8	
POUT = +20.5 dBm			5			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		POUT = +20.5dBm				
Transmit 802.11b CCK = 1Mbps Ou CCK = 11Mbps POUT = +16dBm POUT		1001 120.342111	4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Muito in	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		POUT = +18.5dBm		76.3	77.3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T			Muito instável		-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Transmit 802.11b		3,4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		POUT = +16dRm			77.7	
POUT = +14dBm	CCK = 11Mbps	1 0 0 1 1 1 1 dabin	4			
$POUT = +14dBm \\ POUT = +14dBm \\ $	•			77.6	78.3	
POUT = +14dBm			3,4			-
POUT = +14dBm						
POUT = +14dBm			5			
POUT = +20.5 dBm		DOLLT 144D			75.5	
POUT = +20.5 dBm		POUI = +14dBm	4			
POUT = +20.5 dBm			4			
POUT = +20.5 dBm			3.4		nstável	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-,-			
Transmit 802.11g $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5	73.3	75.0	
Transmit 802.11g $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		POUT = +20.5dBm		73.8		
Transmit 802.11g $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Muito is	nstável	_
OFDM 54Mbps $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Transmit 802.11g		3,4			
OFDM 54Mbps $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 6		_			
POUT = +18.5 dBm	OFDM 54Mhns		5			
4 71.2 71.3 71.6 72.2	or Divi o intopo	POUT - ±19 5dPm			71.5	
71.6 72.2		1001 – +18.3dbiii	4			
2.4			7			
] 3.4			3,4	71.0		

			71.0	72.0	
		5	70.8	70.9	
			71.2	71.6	
			70.9	71.2	
	POUT = +16dBm	4	70.8	70.9	
			71.6	72.0	
			71.5	72.0	
		3,4	71.4	72.2	
		5,1	71.7	73.1	
			70.8	71.2	
		5	70.5	71.2	
		3			
	DOLUT 141D		71.4	71.6	
	POUT = +14dBm		70.8	71.1	
		4	70.8	71.0	
			71.5	71.8	
		3,4		de - discrepâncias nas mediço	ões
			71.1	71.3	
		5	70.9	71.3	
			71.8	72.2	
	POUT = +20.5dBm		71.1	71.2	
	1001 120.542111	4	70.8	71.0	
			71.8	72.1	
		3,4	71.0	Muita instabilidade	
		3,4	70.1	71.3	
		_	70.5	71.3	
		5			
			71.6	72.5	
	DOLLE 10.5 ID	4	70.8	71.3	
	POUT = +18.5dBm		70.8	71.1	
			71.7	72.0	
		3,4(10)	71.6	72.0	
Transmit 802.11n			71.6	72.0	
11411511111 002.1111			72.5	72.1	
		5	70.9	71.1	
MCS 7			70.9	71.0	
			71.5	71.7	
			71.0	71.2	
	POUT = +16dBm	4	70.8	71.0	
	1001 1005111		71.5	71.8	
			71.7	72.0	
		3,4(*10)	71.7	72.0	
		3,4	72.7	73.3	
		+	70.9	71.3	
		5	70.9	71.2	
	POUT = +14dBm		71.6	72.0	
		4	71.0	71.1	
			70.6	71.0	
			71.8	72.0	
		3,4(11)		Muita instabilidade	
	•				

Notas:

Existem dois códigos distintos, para que seja feita uma análise mais bem elaborada. O primeiro código ³ tem como objetivo testar os modos operacionais do ESP, já o segundo⁴, possui como única finalidade testar os diferentes modos de transmissão de dados e os modos de baixo consumo elétrico. O primeiro código conta com o WIFI ligado, todavia, sem a transmissão de energia.

- (1) No modo *standby* o led onboard permanece ligado, sendo necessário caso queria desliga-lo, configurar via *software*.
- (2) O primeiro valor de medição foi realizado com o multímetro DT830B.
- (3) O segundo valor de medição foi realizado com o multímetro Imimipa ET-1002.
- (4) O terceiro valor de medição foi realizado com o multímetro
- (5) No modo '1 LED ligado' somente 1 do total de 8 LEDs é ligado, sendo a função seguinte ao 'standby'
- (6) O CPU executará uma série de operações aritméticas com a finalidade de por seu desempenho no máximo.
- (7) Foi apresentada certa instabilidade nas medições, ou por grandes variações em curtos períodos de tempo ou pelo desligamento do ESP por problemas de alimentação.
- (8) Como os valores medidos foram registrados por multímetros, estes não apresentam grande precisão para valores próximos a 0, sendo 0,01Volts o menor valor possível registrado antes do 0.
- (9) Aferição das medidas impossível, por desligamento ininterrupto do ESP.
- (10) Foram observados picos de tensão nas aferições que podem comprometer a autonomia. Além de observada certa instabilidade por parte do ESP.
- (11) ESP apresentou muita instabilidade. CARECE DE CONFIRMAÇÃO.

Equação da média ponderada

Para a obtenção do resultado final, será realizada uma média ponderada. Serão considerados 3 fatores na equação, sendo estes, referentes a segunda tabela. Na ordem de pesos temos: Tamanho, custo e mAh.

$$\text{Media ponderada} = \frac{\frac{1}{Tamanho} \times peso1 + \frac{1}{Custo} \times peso2 + mAh \times peso3}{peso1 + peso2 + peso3} \tag{1}$$

Em que:

³ O código referido pode ser acessado por este link do github: https://github.com/W8jonas/Internet-das-Vacas/blob/master/programacao/codigo modos de operacao/codigo modos de operacao.ino

⁴ O código referido pode ser acessado por este link do github: XXXXXXX

Tamanho = comprimento \times Largura \times altura da bateria	peso2 = valor do peso2 aplicado ao Custo					
peso1 = valor do peso1 aplicado ao tamanho	mAh = Corrente fornecida em 1 hora de uso pela bateria					
Custo = Valor unitário de custo	peso3 = valor do peso3 aplicado ao mAh					
4. Junho						
Resultado final – Modelo de bateria						
Quadro técnico de placas e seus protocolos de co	omunicação					
5. Julho						
6. Agosto						
7. Setembro						
8. Outubro						
9. Novembro						

10. Dezembro

11. Janeiro

12. Fevereiro

REFERÊNCIAS

- [1] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/rontek-recarregaveis-industrial/nicd/tamanho-aaa_2. Acesso em 21 de abril de 2018.
- [2] GOLDPOWER. Pilhas e baterias Ni-mh. Disponível em: http://www.goldpower.com.br/aaa-800mah-1-2v.php. Acesso em 21 de abril de 2018.
- [3] GOLDPOWER. Pilhas e baterias Ni-mh. Disponível em: http://www.goldpower.com.br/aaa-1000mah-1-2v.php. Acesso em 21 de abril de 2018.
- [4] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/rontek-recarregaveis-consumidor/aa/12v-2100mah_3. Acesso em 21 de abril de 2018.
- [5] MOXDOTCELL. Pilha recarregável MO-AA2700. Disponível em: http://www.moxdotcell.com.br/pilha-recarregavel-mo-aa2700-com-2-unidades-rtu.html. Acesso em 21 de abril de 2018.
- [6] COMP DISTRIBUIDORA. Bateria recarregável Knup. Disponível em: https://www.compdistribuidora.com.br/bateria-recarregavel-9v-knup-kp-bt9v.html. Acesso em 21 de abril de 2018.
- [7] FLEXGOLD. Flex X-cell. Disponível em: http://www.flexgold.com.br/produto/fx-9v45b1/. Acesso em 22 de abril de 2018
- [8] FULLYMAX. Bateria Fullymax SYMA. Disponível em: http://www.asaseletricas.com.br/loja/product_info.php?products_id=4448. Acesso em 15 de maio de 2018.
- [9] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/recarregaveis/para-cameras/37v-680mah. Acesso em 23 de abril de 2018.
- [10] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/recarregaveis/para-brinquedos-e-modelismo/72v-1800mah. Acesso em 23 de abril de 2018.

- [11] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/recarregaveis/para-brinquedos-e-modelismo/72v-3000mah. Acesso em 23 de abril de 2018.
- [12] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/recarregaveis/para-telefones-sem-fio-24v-36-48-e-6v/36v-1300mah. Acesso em 23 de abril de 2018.
- [13] MOXDOTCELL. Pilha recarregável MO-AA2700. Disponível em: http://www.moxdotcell.com.br/bateria-mo-086b-3aaa-3-6v-700-mah-para-talk-about.html. Acesso em 21 de abril de 2018.
- [14] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/recarregaveis/pilhas-botao/36v-80mah. Acesso em 1 de maio de 2018.
- [15] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/recarregaveis/para-telefones-sem-fio-24v-36-48-e-6v/36v-600mah. Acesso em 1 de maio de 2018.
- [16] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/recarregaveis/para-radios-de-comunicacao/72v-600mah. Acesso em 1 de maio de 2018.
- [17] WIKI WEMOS. Esquemático completo. Disponível em: https://wiki.wemos.cc/_media/products:d1:sch_d1_mini_v3.0.0.pdf. Acesso em 15 de maio de 2018.
- [18] DATASHEET ME6211. High Speed LDO Regulators, Low ESR Cap. Disponível em: https://datasheet.lcsc.com/szlcsc/ME6211C33M5G-N_C82942.pdf. Acesso em 15 de maio de 2018.
- [19] FULLYMAX. Bateria Fullymax SYMA. Disponível em: http://www.asaseletricas.com.br/loja/product_info.php?products_id=4301. Acesso em 15 de maio de 2018.
- [20] DATASHEET ESP8266EX. Disponível em: https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf . Acesso em 21 de maio de 2018.
- [21] MINAMOTO. LiFePO4 Polymer MODELS. Disponível em: http://www.minamoto.com/lifepo4-

- polymer/ Acesso em 05 de Junho de 2018.
- [22] MINAMOTO. LiFePO4 Cylindrical MODELS. Disponível em: http://www.minamoto.com/lifepo4-cylindrical/ Acesso em 05 de Junho de 2018.
- [23] MINAMOTO. Lithium Polymer Standard Type MODELS. Disponível em: http://www.minamoto.com/12591-2/ Acesso em 05 de Junho de 2018.