Lecture #1 Exercises

Distributed Lab

July 18, 2024

Exercise 1. Which of the following statements is **false**?

- 1. $(\forall a, b \in \mathbb{Q}, a \neq b) (\exists q \in \mathbb{R}) : \{a < q < b\}.$
- 2. $(\forall \varepsilon > 0) (\exists n_{\varepsilon} \in \mathbb{N}) (\forall n \geq n_{\varepsilon}) : \{1/n < \varepsilon\}.$
- 3. $(\forall k \in \mathbb{Z}) (\exists n \in \mathbb{N}) : \{n < k\}.$
- 4. $(\forall x \in \mathbb{Z} \setminus \{-1\}) (\exists ! y \in \mathbb{Q}) : \{(x+1)y = 2\}.$

Exercise 2. Denote $X := \{(x, y) \in \mathbb{Q}^2 : xy = 1\}$. Oleksandr claims the following:

- 1. $X \cap \mathbb{N}^2 = \{(1,1)\}.$
- $2. |X \cap \mathbb{Z}^2| = 2|X \cap \mathbb{N}^2|.$
- 3. *X* is a group under the operation $(x_1, y_1) \oplus (x_2, y_2) = (x_1x_2, y_1y_2)$.

Which statements are **true**?

- a) Only 1.
- b) Only 1 and 2.
- c) Only 1 and 3.
- d) Only 2 and 3.
- e) All statements are correct.

Exercise 3. Does a tuple (\mathbb{Z}, \oplus) with operation $a \oplus b = a + b - 1$ define a group?

- a) Yes, and this group is abelian.
- b) Yes, but this group is not abelian.
- c) No, since the associativity property does not hold.
- d) No, since there is no identity element in this group.
- e) No, since there is no inverse element in this group.

Distributed Lab ZKDL Camp

Exercise 4. Consider the Cartesian plane \mathbb{R}^2 , where two coordinates are real numbers. For two points A, B define the operation \oplus as follows: $A \oplus B$ is the midpoint on segment AB. Does (\mathbb{R}^2, \oplus) define a group?

- a) Yes, and this group is abelian.
- b) Yes, but this group is not abelian.
- c) No, since the associativity property does not hold and there is no identity element in this group.
- d) No, since the associativity property does not hold, but we might define an identity element nonetheless.

Exercise 5. Find the inverse of 4 in \mathbb{F}_{11} .

- a) 8
- b) 5
- c) 3
- d) 7

Exercise 6. Suppose for three polynomials $p, q, r \in \mathbb{F}[x]$ we have $\deg p = 3, \deg q = 4, \deg r = 5$. Which of the following is true for $n := \deg\{(p-q)r\}$?

- a) n = 9.
- b) *n* might be less than 9.
- c) n = 20.
- d) n is less than $deg\{qr\}$.

Exercise 7. Define the polynomial over \mathbb{F}_5 : $f(x) := 4x^2 + 7$. Which of the following is the root of f(x)?

- a) 2
- b) 3
- c) 4
- d) This polynomial has no roots over \mathbb{F}_5 .

Exercise 8. Quadratic polynomial $p(x) = ax^2 + bx + c \in \mathbb{R}[x]$ has zeros at 1 and 2 and p(0) = 2. Find the value of a + b + c.

- a) 0
- b) -1
- c) 1
- d) Not enough information to determine.

Exercise 9. Which of the following is a **valid** endomorphism $f: X \to X$?

- a) $X = [0, 1], f : x \mapsto x^2$.
- b) $X = [0, 1], f : x \mapsto x + 1.$
- c) $X = \mathbb{R}_{>0}$, $f : x \mapsto (x-1)^3$.
- d) $X = \mathbb{Q}_{>0}$, $f: x \mapsto \sqrt{x}$.

Distributed Lab ZKDL Camp

Exercise 10*. Denote by $GL(2, \mathbb{R})$ a set of 2×2 invertable matrices with real entries. Define two functions $\varphi : GL(2, \mathbb{R}) \to \mathbb{R}$:

$$\varphi_1\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc, \ \varphi_2\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + d \tag{1}$$

Den claims the following:

- 1. φ_1 is a group homomorphism between multiplicative groups $(GL(2,\mathbb{R}),\times)$ and (\mathbb{R},\times) .
- 2. φ_2 is a group homomorphism between additive groups $(GL(2,\mathbb{R}),+)$ and $(\mathbb{R},+)$. Which of the following is **true**?
- a) Only statement 1 is correct.
- b) Only statement 2 is correct.
- c) Both statements 1 and 2 are correct.
- d) None of the statements is correct.