RMSC4002 Data Analysis in Finance and Risk Management Science Tutorial 1 Supplement

Chan Chun Ho, Benjamin*†‡§
September 11, 2018

1 Matrix Algebra and Random Vectors

1.1 Definitions and Properties

• Suppose $\mathbf{Y}' = [Y_1, Y_2, \dots, Y_p]$ is a $p \times 1$ random vector. The $p \times 1$ mean vector is

$$E(\boldsymbol{Y}) = \begin{bmatrix} E(Y_1) \\ E(Y_2) \\ \vdots \\ E(Y_p) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_p \end{bmatrix} = \boldsymbol{\mu}_{(p \times 1)}.$$

• The variance-covariance matrix (or simply covariance matrix) is

$$\sum_{(p \times p)} = \text{Cov}(\mathbf{Y}) = E(\mathbf{Y} - \boldsymbol{\mu})(\mathbf{Y} - \boldsymbol{\mu})'$$

$$= E \begin{bmatrix} Y_1 - \mu_1 \\ Y_2 - \mu_2 \\ \vdots \\ Y_p - \mu_p \end{bmatrix} \begin{bmatrix} Y_1 - \mu_1 & Y_2 - \mu_2 & \cdots & Y_p - \mu_p \end{bmatrix}$$

$$= \begin{bmatrix} E(Y_1 - \mu_1)^2 & E(Y_1 - \mu_1)(Y_2 - \mu_2) & \cdots & E(Y_1 - \mu_1)(Y_p - \mu_p) \\ E(Y_2 - \mu_2)(Y_1 - \mu_1) & E(Y_2 - \mu_2)^2 & \cdots & E(Y_2 - \mu_2)(Y_p - \mu_p) \\ \vdots & \vdots & \ddots & \vdots \\ E(Y_p - \mu_p)(Y_1 - \mu_1) & E(Y_p - \mu_p)(Y_2 - \mu_2) & \cdots & E(Y_p - \mu_p)^2 \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{bmatrix},$$

where $\sigma_{ij} = \text{Cov}(Y_i, Y_j) = E(Y_i - \mu_i)(Y_j - \mu_j)$ for i, j = 1, ..., p. In fact, $\sigma_{ii} = \text{Var}(Y_i)$ for i = 1, ..., p.

^{*}For enquiry, please email to 1155049861@link.cuhk.edu.hk.

[†]Personal profile: www.linkedin.com/in/benjamin-chan-chun-ho

[‡]GitHub repository: https://github.com/BenjaminChanChunHo/CUHK-STAT-or-RMSC-Tutorial-Note

[§]RPubs: http://rpubs.com/Benjamin_Chan_Chun_Ho

1.2 Random Samples, Sample Mean and Covariance Matrix

• The $n \times p$ data matrix is¹

$$oldsymbol{X}_{(n imes p)} = egin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \ x_{21} & x_{22} & \cdots & x_{2p} \ dots & dots & \ddots & dots \ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix} = egin{bmatrix} x_1' \ x_2' \ dots \ x_n' \end{bmatrix},$$

where the row vector x'_j represents the jth observation, i.e.

$$oldsymbol{x}_j = egin{bmatrix} x_{j1} \ x_{j2} \ dots \ x_{jp} \end{bmatrix}.$$

• Let the (j, k)-th entry in the data matrix be the random variable X_{jk} . Each set of measurements X_j on p variables is a random vector, and we have the random matrix

$$\mathbf{X}_{(n \times p)} = \begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1p} \\ X_{21} & X_{22} & \cdots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \cdots & X_{np} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_1' \\ \mathbf{X}_2' \\ \vdots \\ \mathbf{X}_n' \end{bmatrix}.$$
(1)

• If the row vectors X'_1, X'_2, \ldots, X'_n in Equation 1 represent independent observations from a common joint distribution with density function $f(\mathbf{x}) = f(x_1, x_2, \ldots, x_p)$, then X_1, X_2, \ldots, X_n are said to form a random sample from $f(\mathbf{x})$.

Definition 1.1. (Sample Covariance Matrix). The symmetric matrix of sample variances and covariances is called the sample covariance matrix:²

$$\mathbf{S} = (s_{ij}) = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ s_{p1} & s_{p2} & \cdots & s_{pp} \end{bmatrix}.$$

The jth diagonal element s_{jj} is the sample variance of the jth variable:

$$s_{jj} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{ij}^2 - n\bar{x}_j^2 \right).$$

The off-diagonal element s_{ij} is the sample covariance of the *i*th and *j*th variables:

$$s_{jk} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k) = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{ij} x_{ik} - n\bar{x}_j \bar{x}_k \right).$$

 $^{^1}$ "Applied Multivariate Statistical Analysis" 6th ed. (Johnson and Wichern) Ch3 p.111-123

² "Multivariate Statistical Inference and Applications" (Rencher) Ch1 p.8

1.3 Sample Mean, Covariance and Correlation as Matrix Operations

- The descriptive statistics \bar{x} and S can be calculated by the data matrix X using matrix operations. The calculation can then be easily programmed on computers.³
- First of all,

$$\bar{\boldsymbol{x}} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \vdots \\ \bar{x}_p \end{bmatrix} = \frac{1}{n} \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{p1} & x_{p2} & \cdots & x_{pn} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \frac{1}{n} \boldsymbol{X}' \boldsymbol{1}_n,$$

where $\mathbf{1}_n$ is an $n \times 1$ vector whose n elements are all 1.

• Next, an $n \times p$ matrix of means can be created as follows:

$$\mathbf{1}_{n} \mathbf{\bar{x}'}_{(n \times 1)(1 \times p)} = \frac{1}{n} \mathbf{1}_{n} \mathbf{1}'_{n} \mathbf{X} = \begin{bmatrix} \bar{x}_{1} & \bar{x}_{2} & \cdots & \bar{x}_{p} \\ \bar{x}_{1} & \bar{x}_{2} & \cdots & \bar{x}_{p} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{x}_{1} & \bar{x}_{2} & \cdots & \bar{x}_{p} \end{bmatrix}_{(n \times p)}$$

• Then, the $n \times p$ matrix of deviations (residuals) can be obtained as follows:

$$\boldsymbol{X}_{c} = \boldsymbol{X} - \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}' \boldsymbol{X} = \begin{bmatrix} x_{11} - \bar{x}_{1} & x_{12} - \bar{x}_{2} & \cdots & x_{1p} - \bar{x}_{p} \\ x_{21} - \bar{x}_{1} & x_{22} - \bar{x}_{2} & \cdots & x_{2p} - \bar{x}_{p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} - \bar{x}_{1} & x_{n2} - \bar{x}_{2} & \cdots & x_{np} - \bar{x}_{p} \end{bmatrix}_{(n \times p)}$$

- In fact, $X_c = (I_n \frac{1}{n} \mathbf{1}_n \mathbf{1}'_n) X$ is the centered form of the data matrix X. From above, the centering matrix $I_n \frac{1}{n} \mathbf{1}_n \mathbf{1}'_n$ centers X.
- Note that $(n-1)\mathbf{S} = \mathbf{A} = \sum_{i=1}^{n} (\mathbf{X}_i \bar{\mathbf{X}})(\mathbf{X}_i \bar{\mathbf{X}})'$. So we have

$$(n-1)_{(p\times p)}^{\mathbf{S}} = \begin{bmatrix} x_{11} - \bar{x}_{1} & x_{21} - \bar{x}_{1} & \cdots & x_{n1} - \bar{x}_{1} \\ x_{12} - \bar{x}_{2} & x_{22} - \bar{x}_{2} & \cdots & x_{n2} - \bar{x}_{2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1p} - \bar{x}_{p} & x_{2p} - \bar{x}_{p} & \cdots & x_{np} - \bar{x}_{p} \end{bmatrix}_{(p\times n)} \times \begin{bmatrix} x_{11} - \bar{x}_{1} & x_{12} - \bar{x}_{2} & \cdots & x_{1p} - \bar{x}_{p} \\ x_{21} - \bar{x}_{1} & x_{22} - \bar{x}_{2} & \cdots & x_{2p} - \bar{x}_{p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} - \bar{x}_{1} & x_{n2} - \bar{x}_{2} & \cdots & x_{np} - \bar{x}_{p} \end{bmatrix}_{(n\times p)}$$

$$= \left(\mathbf{X} - \frac{1}{n} \mathbf{1}_{n} \mathbf{1}'_{n} \mathbf{X} \right)' \left(\mathbf{X} - \frac{1}{n} \mathbf{1}_{n} \mathbf{1}'_{n} \mathbf{X} \right) = \mathbf{X}' \left(\mathbf{I}_{n} - \frac{1}{n} \mathbf{1}_{n} \mathbf{1}'_{n} \right)' \left(\mathbf{I}_{n} - \frac{1}{n} \mathbf{1}_{n} \mathbf{1}'_{n} \right) \mathbf{X}$$

$$= \mathbf{X}'_{c} \mathbf{X}_{c} = \mathbf{X}' \left(\mathbf{I}_{n} - \frac{1}{n} \mathbf{1}_{n} \mathbf{1}'_{n} \right) \mathbf{X}.$$

• In summary, matrix operations on the data matrix X lead to \bar{x} and S.

$$\bar{\boldsymbol{x}} = \frac{1}{n} \boldsymbol{X}' \boldsymbol{1}_n \tag{2}$$

$$S = \frac{1}{n-1} X' \left(I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}'_n \right) X = \frac{1}{n-1} X'_c X_c$$
 (3)

³ "Applied Multivariate Statistical Analysis" 6th ed. (Johnson and Wichern) Ch3 p.137-140

⁴ "Multivariate Statistical Inference and Applications" (Rencher) Ch1 p.9

Definition 1.2. The sample correlation between the jth and kth variables is given by 5

$$r_{jk} = \frac{s_{jk}}{\sqrt{s_{jj}s_{kk}}}.$$

The sample correlation matrix is defined as

$$m{R} = (r_{jk}) = egin{bmatrix} 1 & r_{12} & \cdots & r_{1p} \\ r_{21} & 1 & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & 1 \end{bmatrix},$$

which is symmetric, since $r_{jk} = r_{kj}$.

Definition 1.3. The population correlation matrix is defined as

$$\boldsymbol{P}_{\rho} = (\rho_{jk}) = \begin{bmatrix} 1 & \rho_{12} & \cdots & \rho_{1p} \\ \rho_{21} & 1 & \cdots & \rho_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{p1} & \rho_{p2} & \cdots & 1 \end{bmatrix},$$

where $\rho_{jk} = \sigma_{jk} / \sqrt{\sigma_{jj}\sigma_{kk}}$.

• The sample covariance matrix S and the sample correlation matrix R are related to each other through matrix operations. Define a $p \times p$ diagonal matrix $D = \text{diag}(s_{11}, \ldots, s_{pp})$, where $S = (s_{ij})$. Then,

$$\mathbf{D}_{(p\times p)}^{1/2} = \begin{bmatrix} \sqrt{s_{11}} & 0 & \cdots & 0 \\ 0 & \sqrt{s_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{s_{pp}} \end{bmatrix} \quad \text{and} \quad \mathbf{D}_{(p\times p)}^{-1/2} = \begin{bmatrix} \frac{1}{\sqrt{s_{11}}} & 0 & \cdots & 0 \\ 0 & \frac{1}{\sqrt{s_{22}}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\sqrt{s_{pp}}} \end{bmatrix}.$$

Thus, we have

$$R = D^{-1/2}SD^{-1/2}$$

and

$$S = D^{1/2}RD^{1/2}$$
.

• The population covariance matrix Σ and the population correlation matrix P_{ρ} are related to each other through matrix operations. Define a $p \times p$ diagonal matrix $D_{\sigma} = \text{diag}(\sigma_{11}, \ldots, \sigma_{pp})$, where $\Sigma = (\sigma_{ij})$. Then

$$oldsymbol{P}_{
ho} = oldsymbol{D}_{\sigma}^{-1/2} oldsymbol{\Sigma} oldsymbol{D}_{\sigma}^{-1/2}$$

and

$$oldsymbol{\Sigma} = oldsymbol{D}_{\sigma}^{1/2} oldsymbol{P}_{
ho} oldsymbol{D}_{\sigma}^{1/2}.$$

⁵ "Multivariate Statistical Inference and Applications" (Rencher) Ch1 p.11-12

1.4 Eigenvalues and Eigenvectors

Definition 1.4. (Eigenvalue and Eigenvector). Let \mathbf{A} be a $p \times p$ matrix and let λ be an eigenvalue of \mathbf{A} . If \mathbf{x} is a $p \times 1$ nonzero vector ($\mathbf{x} \neq \mathbf{0}$) such that

$$Ax = \lambda x$$

then x is said to be an **eigenvector** of the matrix A associated with the **eigenvalue** λ . An equivalent condition for λ to be a solution of the eigenvalue-eigenvector pair is $|A - \lambda I_p| = 0.6$

Definition 1.5. A symmetric matrix has S' = S. It means that $s_{ii} = s_{ij}$.

Theorem 1.1. (Real Eigenvalues and Eigenvectors). All the eigenvalues and eigenvectors of a real symmetric matrix are real.⁷

Proof. Suppose that $Sx = \lambda x$ and λ is a complex number a + ib, where $i = \sqrt{-1}$ and a and b are real. Its complex conjugate is $\bar{\lambda} = a - ib$. Similarly suppose that the components of x are complex, and switching the signs of their imaginary parts gives \bar{x} . Since S is real symmetric, taking conjugates of

$$Sx = \lambda x$$

leads to $S\bar{x} = \bar{\lambda}\bar{x}$. Transpose to give

$$\bar{\boldsymbol{x}}'\boldsymbol{S} = \bar{\boldsymbol{x}}'\bar{\lambda}.$$

Take the dot product of the first equation with \bar{x} and the last equation with x:

$$\bar{x}'Sx = \bar{x}'\lambda x$$
 and $\bar{x}'Sx = \bar{x}'\bar{\lambda}x$.

The left sides are the same so the right sides are equal. One equation has λ , the other has $\bar{\lambda}$. They multiply $\bar{x}'x = |x_1|^2 + |x_2|^2 + \cdots$, which is length squared and not zero. Therefore λ must equal $\bar{\lambda}$, and a + ib equals a - ib. So b = 0 and $\lambda = a$, which is real.

The eigenvectors come from solving the real equation $(S - \lambda I)x = 0$. So the x's are real. \square

Theorem 1.2. (Orthogonal Eigenvectors). Eigenvectors of a real symmetric matrix (when they correspond to distinct eigenvalues) are always perpendicular.⁸

Proof. Suppose $Sx = \lambda_1 x$ and $Sy = \lambda_2 y$. Assume that $\lambda_1 \neq \lambda_2$. Use S' = S, take dot product of the first equation with y:

$$(Sx)'y = (\lambda_1x)'y \quad \Rightarrow \quad x'Sy = \lambda_1x'y.$$

Take dot product of the second equation with x:

$$m{x}'(m{S}m{y}) = m{x}'(\lambda_2m{y}) \quad \Rightarrow \quad m{x}'m{S}m{y} = \lambda_2m{x}'m{y}.$$

The left sides are the same so the right sides are equal, i.e. $\lambda_1 x' y = \lambda_2 x' y$. Since $\lambda_1 \neq \lambda_2$, it means that x' y = 0. The eigenvector x (for λ_1) is perpendicular to the eigenvector y (for λ_2).

⁶ "Applied Multivariate Statistical Analysis" 6th ed. (Johnson and Wichern) Ch2 p.98

⁷ "Introduction to Linear Algebra" 5th ed. (Strang) Ch6 p.339-340

 $^{^8\,\}mathrm{``Introduction}$ to Linear Algebra'' 5th ed. (Strang) Ch6 p.340

1.5 Positive Definite Matrices

Definition 1.6. (Quadratic Form). A quadratic form $Q(\mathbf{x})$ in the p variables x_1, x_2, \ldots, x_p is $Q(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x}$, which has only squared terms x_i^2 and product terms $x_i x_k$, and where $\mathbf{x}' = [x_1, x_2, \ldots, x_p]$ and \mathbf{A} is a $p \times p$ symmetric matrix.

Definition 1.7. (Positive Definite Matrix). A $p \times p$ symmetric matrix A is called positive definite if x'Ax > 0 for all vectors $x \neq 0$, denoted by $A \succ 0$. It is called positive semidefinite if $x'Ax \geq 0$ for all $x \neq 0$, denoted by $A \succeq 0$. It is called non-negative definite if $A \succ 0$ or $A \succ 0$, i.e., if x'Ax > 0 for all x.

Theorem 1.3. (Positive Eigenvalues). A symmetric matrix A is positive definite if and only if its eigenvalues are positive.¹⁰

Proof. Let λ and \boldsymbol{x} be an eigenvalue and corresponding eigenvector of \boldsymbol{A} . If \boldsymbol{A} is positive definite, then $\boldsymbol{x}'\boldsymbol{A}\boldsymbol{x}=\lambda\boldsymbol{x}'\boldsymbol{x}$. Since $\boldsymbol{x}'\boldsymbol{A}\boldsymbol{x}>0$, then $\lambda>0$. Vice versa, if the eigenvalues of \boldsymbol{A} are positive, then by the spectral decomposition, $\boldsymbol{x}'\boldsymbol{A}\boldsymbol{x}=\boldsymbol{x}'\boldsymbol{P}\boldsymbol{\Lambda}\boldsymbol{P}'\boldsymbol{x}$. Since $\boldsymbol{\Lambda}$ is a diagonal matrix with all the diagonal elements being positive, then $\boldsymbol{x}'\boldsymbol{A}\boldsymbol{x}=(\boldsymbol{\Lambda}^{1/2}\boldsymbol{P}'\boldsymbol{x})'(\boldsymbol{\Lambda}^{1/2}\boldsymbol{P}'\boldsymbol{x})>0$ for all $\boldsymbol{x}\neq\boldsymbol{0}$.

Lemma 1.4. For any matrix B, B'B is non-negative definite.

Proof. Let y = Bx. Assume that y is a $p \times 1$ vector. $x'B'Bx = y'y = \sum_{i=1}^{p} y_i^2 \ge 0$.

Theorem 1.5. The sample covariance matrix S is non-negative definite.

Proof. It suffices to show that the sums of squares and cross products matrix A is non-negative definite since $S = \frac{1}{n-1}A$. Note that we can write

$$A = \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})' = \left(X - \frac{1}{n} \mathbf{1}_n \mathbf{1}'_n X\right)' \left(X - \frac{1}{n} \mathbf{1}_n \mathbf{1}'_n X\right).$$

By Lemma 1.4, A is non-negative definite and hence S is non-negative definite.

Theorem 1.6. (Inverse of Positive Definite Matrix). If Σ is positive definite, so that Σ^{-1} exists, then¹¹

$$\Sigma e = \lambda e$$
 implies $\Sigma^{-1} e = \left(\frac{1}{\lambda}\right) e$

so (λ, e) is an eigenvalue-eigenvector pair for Σ corresponding to the pair $(1/\lambda, e)$ for Σ^{-1} . Also, Σ^{-1} is positive definite.

Proof. For positive definite Σ and eigenvector $e \neq 0$, we have $0 < e'\Sigma e = e'(\lambda e) = \lambda e'e = \lambda$. Moreover, $e = \Sigma^{-1}(\Sigma e) = \Sigma^{-1}(\lambda e)$, or $e = \lambda \Sigma^{-1}e$, and division by $\lambda > 0$ gives $\Sigma^{-1}e = (1/\lambda)e$. Thus, $(1/\lambda, e)$ is an eigenvalue-eigenvector pair for Σ^{-1} . For any $p \times 1$ vector x,

$$\boldsymbol{x}'\boldsymbol{\Sigma}^{-1}\boldsymbol{x} = \boldsymbol{x}'\bigg(\sum_{i=1}^p \bigg(\frac{1}{\lambda_i}\bigg)\boldsymbol{e}_i\boldsymbol{e}_i'\bigg)\boldsymbol{x} = \sum_{i=1}^p \bigg(\frac{1}{\lambda_i}\bigg)(\boldsymbol{x}'\boldsymbol{e}_i)^2 \geq 0$$

since each term $\lambda_i^{-1}(\boldsymbol{x}'\boldsymbol{e}_i)^2$ is nonnegative. In addition, $\boldsymbol{x}'\boldsymbol{e}_i = 0$ for all i only if $\boldsymbol{x} = \boldsymbol{0}$. So $\boldsymbol{x} \neq \boldsymbol{0}$ implies that $\sum_{i=1}^p (1/\lambda_i)(\boldsymbol{x}'\boldsymbol{e}_i)^2 > 0$, and it follows that $\boldsymbol{\Sigma}^{-1}$ is positive definite.

⁹ "Aspects of Multivariate Statistical Theory" (Muirhead) Appendix p.585

 $^{^{10}\,\}mathrm{``Matrix}$ Algebra Useful for Statistics'' 2nd ed. (Searle and Khuri) Ch
6 p.136

¹¹ "Applied Multivariate Statistical Analysis" 6th ed. (Johnson and Wichern) Ch4 p.153

1.6 Orthogonality

• Two vectors are orthogonal when their dot product is zero: $\mathbf{v} \cdot \mathbf{w} = \mathbf{v}' \mathbf{w} = 0$.

Definition 1.8. A set of vectors $\{v_1, v_2, \dots, v_n\}$ is called **orthogonal** if $v_i'v_j = 0$, for all $i \neq j$. If, in addition, $v_i'v_i = 1$, for all $i = 1, 2, \dots, n$, then the set is called **orthonormal**.¹²

Theorem 1.7. A matrix V with orthonormal columns v_1, v_2, \ldots, v_n satisfies V'V = I. 13

Proof.

$$oldsymbol{V'V} = egin{bmatrix} oldsymbol{v}_1' \ oldsymbol{v}_2' \ dots \ oldsymbol{v}_n' \end{bmatrix} egin{bmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \dots & oldsymbol{v}_n \end{bmatrix} = egin{bmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{bmatrix} = oldsymbol{I}.$$

When row i of V' multiplies column j of V, the dot product is $v'_i v_j$. Off the diagonal $(i \neq j)$ that dot product is zero by orthogonality. On the diagonal (i = j) the unit vectors give $v'_i v_i = ||v_i||^2 = 1$.

- If the columns are only orthogonal (not unit vectors), dot products give a diagonal matrix (not the identity matrix).
- To have V'V = I, the columns v_1, v_2, \ldots, v_n are orthonormal. However, V is not required to be square. When V is rectangular, V' is only an inverse from the left.

Definition 1.9. (Orthogonal Matrix). A square matrix Q is said to be orthogonal if its columns $\{q'_1, q'_2, \ldots, q'_n\}$ form an orthonormal set in \mathbb{R}^n .

Theorem 1.8. A square matrix Q is an orthogonal matrix if and only if Q is invertible with $Q^{-1} = Q'$. Then Q'Q = QQ' = I.

ullet When $oldsymbol{Q}$ is orthogonal, $oldsymbol{Q}'$ is the two-sided inverse. The rows of a square $oldsymbol{Q}$ are orthonormal like the columns.

 $^{^{12}\,\}mathrm{``Numerical\ Analysis''}$ 9th ed. (Burden and Faires) Ch
9 $\mathrm{p.566\text{-}570}$

¹³ "Introduction to Linear Algebra" 5th ed. (Strang) Ch4 p.233-238

1.7 Spectral Decomposition

• The spectral decomposition of a $p \times p$ symmetric matrix \boldsymbol{A} is given by 14

$$\mathbf{A}_{(p \times p)} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \dots + \lambda_p \mathbf{e}_p \mathbf{e}_p' = \sum_{i=1}^p \lambda_i \mathbf{e}_i \mathbf{e}_i', \tag{4}$$

where $\lambda_1, \lambda_2, \dots, \lambda_p$ are the eigenvalues of \mathbf{A} and $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_p$ are the associated normalized eigenvectors. Thus, $\mathbf{e}_i' \mathbf{e}_i = 1$ for $i = 1, 2, \dots, p$, and $\mathbf{e}_i' \mathbf{e}_i = 0$ for $i \neq j$.

• Let the spectral decomposition of A be defined in Equation 4. Let the normalized eigenvectors be the columns of a $p \times p$ matrix $P = [e_1, e_2, \dots, e_p]$. Then,

$$\mathbf{A}_{(p\times p)} = \mathbf{P}_{(p\times p)(p\times p)(p\times p)} \mathbf{P}', \tag{5}$$

where Λ is the diagonal matrix

$$\Lambda_{(p \times p)} = \begin{bmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_p
\end{bmatrix} = \operatorname{diag}(\lambda_1, \dots, \lambda_p)$$

and P is orthogonal. Hence, $P^{-1} = P'$ such that $PP' = P'P = I_p$.

• Let A be a $p \times p$ positive definite matrix with $A = P\Lambda P'$ defined as above.

The inverse of \boldsymbol{A} is given by

$$\mathbf{A}^{-1} = \mathbf{P} \mathbf{\Lambda}^{-1} \mathbf{P}' = \sum_{i=1}^{p} \frac{1}{\lambda_i} \mathbf{e}_i \mathbf{e}_i' \quad \text{with } \lambda_i > 0$$
 (6)

since $(P\Lambda^{-1}P')P\Lambda P' = P\Lambda P'(P\Lambda^{-1}P') = PP' = I_p$.

• Let A be a $p \times p$ non-negative definite matrix with $A = P\Lambda P'$ defined as above.

The (symmetric) square-root of A is given by

$$\mathbf{A}^{1/2} = \mathbf{P} \mathbf{\Lambda}^{1/2} \mathbf{P}' = \sum_{i=1}^{p} \sqrt{\lambda_i} \mathbf{e}_i \mathbf{e}_i' \quad \text{with } \lambda_i \ge 0$$
 (7)

since $\Lambda^{1/2}\Lambda^{1/2} = \Lambda$ and $(P\Lambda^{1/2}P')P\Lambda^{1/2}P' = P\Lambda P' = A$. Note $(A^{1/2})' = A^{1/2}$ so $A^{1/2}$ is symmetric.

As \boldsymbol{A} is non-negative definite, then $\boldsymbol{A}^{1/2}$ is non-negative definite and is called a non-negative definite square-root of \boldsymbol{A} . If \boldsymbol{A} is positive definite, $\boldsymbol{A}^{1/2}$ is positive definite and is called the positive definite square-root of \boldsymbol{A} .

¹⁴ "Applied Multivariate Statistical Analysis" 6th ed. (Johnson and Wichern) Ch2 p.60-66

¹⁵ "Aspects of Multivariate Statistical Theory" (Muirhead) Appendix p.588

1.8 Trace and Determinant

Lemma 1.9. (Trace is invariant under cyclic permutations). Let \boldsymbol{B} and \boldsymbol{C} be $m \times k$ and $k \times m$ matrices, respectively. Then

$$tr(\boldsymbol{BC}) = tr(\boldsymbol{CB}),$$

where the trace of a matrix is the sum of its diagonal elements.

Proof. BC has $\sum_{j=1}^k b_{ij} c_{ji}$ as its ith diagonal element, so $\operatorname{tr}(BC) = \sum_{i=1}^m (\sum_{j=1}^k b_{ij} c_{ji})$. Similarly, the jth diagonal element of CB is $\sum_{i=1}^m c_{ji} b_{ij}$, so $\operatorname{tr}(CB) = \sum_{j=1}^k (\sum_{i=1}^m c_{ji} b_{ij}) = \sum_{i=1}^m (\sum_{j=1}^k b_{ij} c_{ji}) = \operatorname{tr}(BC)$.

Lemma 1.10. (Trace and Eigenvalues). Let D be a $p \times p$ symmetric matrix. Then, the trace of D is

$$\operatorname{tr}(\boldsymbol{D}) = \sum_{i=1}^{p} \lambda_i,$$

where the λ_i are the eigenvalues of \boldsymbol{D} .

Proof. Using the spectral decomposition in Equation 5, $\mathbf{D} = \mathbf{P}\Lambda\mathbf{P}'$, where $\mathbf{P}'\mathbf{P} = \mathbf{I}_p$ and Λ is a diagonal matrix with entries $\lambda_1, \lambda_2, \dots, \lambda_p$. Therefore, $\operatorname{tr}(\mathbf{D}) = \operatorname{tr}(\mathbf{P}\Lambda\mathbf{P}') = \operatorname{tr}(\Lambda\mathbf{P}'\mathbf{P}) = \operatorname{tr}(\Lambda) = \lambda_1 + \lambda_2 + \dots + \lambda_p$, using Lemma 1.9.

Lemma 1.11. (Determinant and Eigenvalues). Let D be a $p \times p$ symmetric matrix. Then, the determinant of D is

$$|oldsymbol{D}| = \prod_{i=1}^p \lambda_i,$$

where the λ_i are the eigenvalues of \boldsymbol{D} .

Proof. Using the spectral decomposition in Equation 5, $\mathbf{D} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}'$, where $\mathbf{P}' \mathbf{P} = \mathbf{I}_p$ and $\mathbf{\Lambda}$ is a diagonal matrix with entries $\lambda_1, \lambda_2, \dots, \lambda_p$. Therefore, $|\mathbf{D}| = |\mathbf{P} \mathbf{\Lambda} \mathbf{P}'| = |\mathbf{P}||\mathbf{\Lambda}||\mathbf{P}'| = |\mathbf{\Lambda}||\mathbf{P}'\mathbf{P}| = |\mathbf{\Lambda}||\mathbf{I}_p| = |\mathbf{\Lambda}| = \lambda_1 \lambda_2 \cdots \lambda_p$.

2 Reference Books

- 1. Rencher, A.C. & Christensen, W.F. (2012). Methods of Multivariate Analysis (3rd ed.).
- 2. Rencher, A.C. (1998). Multivariate Statistical Inference and Applications.
- 3. Johnson, R.A. & Wichern, D.W. (2007). Applied Multivariate Statistical Analysis (6th ed.).
- 4. Muirhead, R.J. (1982). Aspects of Multivariate Statistical Theory.
- 5. Anderson, T.W. (2003). An Introduction to Multivariate Statistical Analysis (3rd ed.).
- 6. Burden, R.L. & Faires, J.D. (2011). Numerical Analysis (9th ed.).
- 7. Strang, G. (2009 & 2016). Introduction to Linear Algebra (4th & 5th ed.).
- 8. Searle, S.R. & Khuri, A.I. (2017). Matrix Algebra Useful for Statistics (2nd ed.).