

SEGUNDO SEMESTRE LETIVO DE 2014 RECUPERAÇÃO

Escola	EACH	TURM	IA				
Curso	Sistemas de Informação			Nota do aluno na PROVA			
Disciplina	Sistemas Operacionais - ACH2044	Data da Prova	12/02/15				
Professor	Clodoaldo Aparecido de Moraes Lima						
Aluno							
No. USP							

QUESTÃO 01 Valor da Questão: 2,5

Cinco processos em batch, A a E, chegam em um centro de computação quase que ao mesmo tempo. Eles têm tempos de execução estimados de 12, 10, 4, 8 e 6. Suas prioridades, definidas externamente, são 2, 3, 1, 5 e 4, com 5 sendo a mais alta. Para cada um dos seguintes algoritmos, determine o tempo médio de execução completa (mean turnaround time) desses processos. Ignore o tempo gasto com a troca de processos.

- (a) Round Robin
- (b) Prioridade
- (c) First-come, First-served (na ordem 6, 12, 8, 4, 10)
- (d) Shortest Remaining Time Next

Pede-se

30

31

32

33

34

35

36

37

38

39

40

 a) (0.5) Para i), assuma que o sistema aceita multiprogramação, e que cada processo recebe uma fatia de 3 da CPU. Para (ii) a (iv) assuma que somente um processo pode rodar por vez, rodando até o fim. Todos os processos são CPU bound (sem E/S)..

(a) Round Robin Ε D С В Α 0 1 2 3 4 5 6 7 8 9 10 Ε D С В X Α 20 10 11 12 13 14 18 19 15 16 17 Е D С В Α 20 21 22 23 24 25 26 27 28 29 30 Ε D С В Α

SEGUNDO SEMESTRE LETIVO DE 2014 RECUPERAÇÃO

Tm = (39+40+22+36+28)/5

Prioridade

Е											
D											
С											
В		Χ									
Α											
	40	41	22	23	24	25	26	27	28	29	30

b) (2,0) Para i), assuma que o sistema aceita multiprogramação, e que cada processo recebe uma fatia de 3 da CPU. Para (ii) a (iv) assuma que somente um processo pode rodar por vez, rodando até o fim. Para todos os itens assuma que somente o processo B realiza E/S. Assuma que somente o processo B tenha um surto de CPU de 2 e que a E/S tenha duração de 4.

QUESTÃO 02 Valor da Questão: 1,0

Os pedidos para acesso a um disco chegam em seu driver para os cilindros 10, 22, 20, 2, 40, 6, 38 nesta ordem. O disco demora 4 ms para movimentar o braço de leitura/escrita entre dois cilindros consecutivos. Considerando que o braço está inicialmente no cilindro 16 calcule o tempo gasto em seek para cada um dos algoritmos de escalonamento do braço do disco:

a) (0,3 ponto) FCFS (Primeiro-a-Chegar-Primeiro-a-Ser-Servido);

```
Fila [16 10 22 20 2 40 6 38] 0.1 tempo = ((16-10) + (10-22) + (22-20) + (20-2) + (2-40) + (40-6) + (6-38)) + 4ms 0.1 tempo = (6 + 12 + 2 + 18 + 38 + 34 + 32) + 4 = 568 + 30.1
```

b) (0,3 ponto) SSF (Menor Seek Primeiro);

```
Fila [16 20 22 10 6 2 38 40 ] 0,1

tempo = ((16 -20)+(20 -22)+(22-10)+(10 -6)+(6 -2)+(2 -38)+(38-40))*4ms 0,1

tempo = (4 + 2 + 12 + 4 + 4 + 36 +2)*4 = 256 ms 0,1

cada erro 0,05
```

c) (0,4 ponto) O algoritmo do elevador, suponha que braço está se movendo inicialmente para cima, ou seja, dos cilindros de número menor para os de número maior.

```
Fila [16 20 22 38 40 10 6 2] 0,1
tempo = ((16 -20)+(20 -22)+(22-38)+(38 - 40) +(40 -10) +(10-6) + (6 - 2) )*4ms 0,1
tempo = (4 +2+16+2+30+4+4)*4 0,1
tempo = 248 ms 0,1
erro calculo 0,05
```


SEGUNDO SEMESTRE LETIVO DE 2014 RECUPERAÇÃO

QUESTÃO 03 Valor da Questão: 1,0

Um sistema de tempo real tem quatro eventos periódicos com períodos de 3, 4, 6 e 10 ms cada. Suponha que os quatro eventos requeiram 1, 1, 2 e 1 ms de tempo de CPU, respectivamente. Ilustre o escalonamento dos processos segundo (durante 20 ms)

- a) (1,0) Rate Monotonic Scheduling
- b) (1,0) Earliest Deadline First

	a)																				
D											ם										D
С							С						С						С		
В					В				В				В				В				В
Α				Α			Α			Α			Α			Α			Α		
	Α	В	С	Α	В	С	Α	С	В	Α	С		Α	В	С	Α	В	С	Α	С	В
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21

Cada item errado -0.075 Não parou em 10 - 0,30

b)																					
D											ם										D
С							O						С						O		
В					В				В				В				В				В
Α				Α			Α			Α			Α			Α			Α		
	Α	В	O	Α	O	В	Α	ם	В	Α	O	O	Α	В	С	Α	С	В	О	O	
	Α	В	O	O	Α	В	Α	ם	В	Α	O	O	Α	В	С	С	Α	В	О	Α	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21

Cada item 0.0375

QUESTÃO 04 Valor da Questão: 1,5

Considere um arquivo de nome prova.pdf com tamanho **y** armazenado em uma partição de **z** Mbytes, cujo endereçamento é de 16bits com blocos de 4K.

a) (0,2 ponto) Qual o tamanho máximo da partição em Mbytes?

Tamanho da Partição = 2^16*4K/(1024)^2 = 256 Mbytes

b) (0,5 ponto) Suponha que a FAT que mapeia este arquivo possui os seguintes valores: x, x, 8, 7, -1, -1, 3, 2, 5, 0, 0. Sendo x não relevante para os nossos propósitos, o 0 indica uma posição livre e -1 indica fim de arquivo. Se a entrada do diretório para este arquivo tem 6 como o bloco inicial, quantos blocos possui este arquivo e qual o tamanho deste arquivo?

SEGUNDO SEMESTRE LETIVO DE 2014 RECUPERAÇÃO

0	X
1	X
2 3 4 5 6 7	8
3	7
4	-1
5	-1
6	3
7	3 2 5
8	
9	0
10	0

Tamanho do arquivo 0,3 6-> 3-> 7 --> 2--->8--->5, logo o tamanho máximo do arquivo é 6*4Kbyte = 24 Kbyte

Faltou bloco 6, -0.15

c) (0,4 ponto) Considere que o sistema de arquivo utilizado seja baseado em nó-i (i-node), o qual possui 8 endereços de disco para blocos de dados, 1 endereço de bloco para endereçamento indireto simples, 1 para endereçamento indireto duplo e 1 para endereçamento indireto triplo. Ilustre o mapeamento dos blocos deste arquivo nesta partição (faça um desenho ilustrando), considerando que o arquivo possua 8322 Kbytes.

SEGUNDO SEMESTRE LETIVO DE 2014 RECUPERAÇÃO

0	Endereço Bloco	—
1		
2		
3		
4		
5		
6		
7		
2K-1		

0	Endereço Bloco 2057
1	Endereço Bloco 2058
2	Endereço Bloco 2059
3	Endereço Bloco 2060
:	:
24	Endereço Bloco 2081
25	
26	
2K-1	

Endereço Indireto Simples = 4 KByte /2Byte = 2K endereço

Numero de Blocos = 8322 K /4 K = 2081 (0,1)

Desenho ilustrando 0.1

d) (0,4 ponto) Para o item b), qual é o tamanho do maior arquivo que pode ser manipulado? Mostre todos os cálculos.

Tamanho máximo = (8 + 2K + 2K * 2K+ 2K*2K*2K) * 4 Kbyte

Esquecer de multiplicar por 4 Kbyte

SEGUNDO SEMESTRE LETIVO DE 2014 RECUPERAÇÃO

QUESTÃO 05	Valor da	Questão	1,0			
Usando a tabela	de páginas	abaixo, pe	de-se			
Espaço de endereços virtuais	0 K - 4 K 4 K - 8 K 8 K - 12 K 12 K - 16 K 16 K - 20 K 20 K - 24 K 24 K - 28 K 28 K - 32 K 32 K - 36 K 36 K - 40 K 40 K - 44 K 44 K - 48 K 48 K - 52 K 52 K - 56 K 56 K - 60 K 60 K - 64 K	2 1 6 0 4 3			0 K - 4 K 4 K - 8 K 8 K - 12 K 12 K - 16 K 16 K - 20 K 20 K - 24 K 24 K - 28 K 28 K - 32 K	Endereços físicos de memória

a) (0,2 ponto) Quantos bits são necessários para endereçar todos os endereços virtuais e reais?

Tamanho da Pagina = 4 K, logo 12 bits

Número de páginas = 16, logo 4 bits

Número de frames = 8, logo 3 bits

Endereçamento virtual = 4 bits +12bits = 16 bits 0,1

Endereçamento real = 3 bits +12 bits = 15 bits 0,1

b) (0,3 ponto) Quantos bits são usados para número de páginas, frames e o deslocamento?

Número de paginas = 16, 4 bits 0,1

Número de frames = 8, 3 bits 0,1

Deslocamento = 12 bits0,1

c) (0,6 ponto) Apresente o endereço físico (em binário) correspondente a cada um dos seguintes endereços virtuais: 250; 12300; 37200, 1011 1111 1011 0000

250 --> 0000 0000 1111 1010 será mapeado para 010 0000 1111 1010

12300 --> 0010 1111 0100 0100 será mapeado para 110 1111 0100 0100

37200 --> 1001 0001 0101 0000 --> será mapeado para 101 0001 0101 0000

1011 1101 1011 0000 --> não esta mapeado em memória

c) (0,4 ponto) Supondo uma tabela de paginas de 2 níveis, os endereços são quebrados em um campo de x bits para a tabela de paginas de nível 1, um campo de y bits para a tabela de pagina de nível 2 com 8 entradas. Considerando um processo de 18 Kbytes, quantas tabelas, no mínimo, deverão estar em memória física.

Solução

SEGUNDO SEMESTRE LETIVO DE 2014 RECUPERAÇÃO

```
Tabela Nível 2 - 8 entradas --> 3 bits 0.1

Tabela Nível 1 - ---> 1 bits 0.1

Cada tabela Nível 2 mapeia = 5* 4 K byte = 20 K Byte 0.1

Logo duas tabelas, tabela de nível 1 e uma tabela de nível 2 0.1
```

QUESTÃO 06 Valor da Questão: 1.5

Considere o problema dos leitores/escritores, onde existem processos que lêem o valor das variáveis compartilhadas, chamados leitores e processos que escrevem na região compartilhada, chamados escritores. Os leitores podem ler de modo concorrente, enquanto os escritores só podem executar em exclusão mútua. O seguinte código resolve o problema dos leitores/escritores, desde que sejam colocados adequadamente os semáforos. Nesta implementação, foi feita a suposição de que, enquanto houver um leitor acessando a base de dados, o escritor é suspenso. Havendo pelo menos um leitor ativo, leitores subseqüentes serão admitidos e o escritor permanecerá suspenso até que nenhum leitor esteja presente.

```
typedef int semaphore;
semaphore mutex = 1; /* Controla o acesso a rc
semaphore db = 1; /* Controla o acesso a base de dados
int rc = 0;
                   /*Número de processos lendo ou querendo ler
cada erro 0,2
void leitor (void)
      while (TRUE) {
             ___a) down(&mutex)____
             rc++; /* Um leitor a mais agora
             if (rc ==1) __c) down(&db)_____
             _b) up(&mutex)____
             read_data_base(); /* Acessa os dados
             a) down(&mutex)____;
             rc--; /* Um leitor a menos agora
             if (rc = 0)_d up(\&db)_
             _b) up(&mutex)_____
             use_data(); /*Região não critica
      }
void escritor (void)
      while (TRUE) {
             prepare_data(); /* Região não critica
             _c) down(&db)_____;
             write_data_base(); /* Atualiza os dados
             d) up(&db) :
```

Considerando a) down(&mutex), b) up(&mutex), c) down(&db), d) up(&db) preencha adequadamente os 8 espaços no programa acima com a opção adequada.

SEGUNDO SEMESTRE LETIVO DE 2014 RECUPERAÇÃO

QUESTÃO 07 Valor da Questão: 1.5

Em um computador, o endereço virtual da memória virtual por paginação é de 16 bits e as páginas têm tamanho de 2 K endereços. O limite de páginas reais de um processo qualquer é de quatro páginas. Ilustre o mapeamento e calcule quantas interrupções por falta de página ocorrerão na seguinte seqüência de referências à memória: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,2,3,1 para os algoritmos de substituição de página Considere que os 4 quadros (frames) disponíveis para o processo estão inicialmente vazios.

a) Ótimo

Página virtual	Páginas na memória	Page fault	Página a ser substituída
2		S	
1	2	S	
3	1,2	S	
4	1,2,3	S	
2	1,2,3,4	N	
1	1,2,3,4	N	
5	1,2,3,4	S	4
6	1,2,3,5	S	5
2	1,2,3,6	N	
1	1,2,3,6	N	
2	1,2,3,6	N	
3	1,2,3,6	N	
7	1,2,3,6	S	1
6	2,3,6,7	N	
2	2,3,6,7	N	
3	2,3,6,7	N	
1	2,3,6,7	S	2 ou 3, ou 6 ou 7
	1,3,6,7 ou 2,1,6,7 ou		
	2,3,1,7 ou 2,3,6,1		

Numero de faltas de paginas8
Cada 0,125
Pagina adicional ser substituída -0,05
Pagina em memória -0 05

b)Segunda Chance

Página virtual	Páginas na memória	Page fault	Página a ser substituída
2		S	
1	2 [1]	S	
3	2,1 [1,1]	S	
4	2,1, 3 [1,1,1]	S	
2	2,1,3,4 [1,1,1,1]	N	
1	2,1,3,4 [1,1,1,1]	N	
5	2,1,3,4 [1,1,1,1]	S	2
6	1,3,4, 5 [0,0,0,1]	S	1
2	3,4, 5,6 [0,0,1,1]	S	3
1	4, 5,6,2 [0,1,1,1]	S	4
2	5,6,2,1 [1,1,1,1]	N	
3	5,6,2,1 [1,1,1,1]	S	5
7	6,2,1,3 [0,0,0,1]	S	6
6	2,1,3,7 [0,0,1,1]	S	2

SEGUNDO SEMESTRE LETIVO DE 2014 RECUPERAÇÃO

2	1,3,7, 6 [0,1,1,1]	S	1
3	3,7, 6, 1 [1,1,1,1]	N	
1	3,7, 6, 1 [1,1,1,1]	N	

Numero de faltas de paginas _____12____

Cada erro 0,05

Numero de pagina 0,05

c) LRU

Página virtual	Páginas na memória	Page fault	Página a ser substituída
2		S	
1	2	S	
3	2,1	S	
4	2, 1, 3	S	
2	2, 1, 3, 4	N	
1	1, 3, 4, 2	N	
5	3, 4, 2, 1	S	3
6	4, 2, 1, 5	S	4
2	2, 1, 5 6	N	
1	1, 5, 6, 2	N	
2	5, 6, 2 1	N	
3	5, 6, 1, 2	S	5
7	6, 1, 2, 3	S	6
6	1, 2, 3, 7	S	1
2	2, 3, 7, 6	N	
3	3, 7, 6, 2	N	
1	7, 6, 2, 3	S	7
	6, 2, 3, 1		

Numero de faltas de paginas _____10____