Bitcoin Emissions Calculator

The Environmental Costs of Cryptocurrencies

Motivation

We know that Bitcoins are energy intensive, from mining to verifying transactions. We wanted to allow people to see visually just how much, with their own projections instead of what the experts say.

natural gas

33%

This allowed us to calculate CO2 emission per unit of energy produced, by source

Electricity Generation (TWh)		Growth Rate (%)	Shares (%)	
	2018	2017-2018	2000	2018
Total Generation	26 672	4.0%	100%	100%
Coal	10 116	2.6%	39%	38%
Oil	903	-3.9%	8%	3%
Gas	6 091	4.0%	18%	23%
Nuclear	2 724	3.3%	17%	10%
Hydro	4 239	3.1%	17%	16%
Biomass and waste	669	7.4%	1%	3%
Wind	1 217	12.2%	0%	5%
Solar photovoltaics	570	31.2%	0%	2%
Other renewables	144	4.2%	0%	1%

Convert Terawatt Hours to Quads

<u>Kyle's Converter</u> > <u>Energy, Work, And Heat</u> > <u>Terawatt Hours</u> > <u>Terawatt Hours to</u> <u>Quads</u>

These two told us how much energy comes from each source, worldwide. We can now calculate emissions per unit of energy used.

Constantly updated data provides up-to-date estimates

A	В	С	D	Е	F	G	Н	1
Caveat: This data is for th	e U.S. We're extr	apolating to global	because I can't fi	nd comparable d	ata for worldwide	production of ener	gy. Source: http	s://www.eia.gov/en
Energy Consumption	%	QBTUs	Emissions %	MTons	Ratio	Rounded		
Source								
Petroleum	37	37.074	46	2359.8	63.65107623	63.65		multiply bitcoin er
Natural Gas	32	32.064	33	1692.9	52.79752994	52.8		
Coal	11	11.022	21	1077.3	97.74088187	97.74		
Non-fossil*	20	20.04	0	0	0	0		
* nuclear or renewable								
Absolute amounts								
Consumption (QBTUs)	Emissions (M me	etric tons)						
100.2	5130							
Worldwide production & e	missions (Source	: https://www.eene	ws.net/assets/20	19/03/26/docume	nt_cw_01.pdf)			
Energy Consumption	%	Generation (TWh)	QBTUs	Million Metric To	Rounded	Acres of US Fore	# of Homes' Yea	rly Energy Use
Source								
Petroleum	3	903	3.07923	195.9929895	195.99	254532467.5	22605536.33	
Natural Gas	23	6091	20.77031	1096.672368	1096.67	1424246753	126490196.1	
Coal	38	10116	34.49556	3371.596034	3371.6	4378701299	388881199.5	
Non-fossil*	36	9563	32.60983	0	0	0	0	
* nuclear or renewable								

We put it all together in a spreadsheet to figure out how to calculate & check results

Then we coded