

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Analysis of Clocked Seq. Circuits

Team DDCO Department of Computer Science and Engineering

Introduction(section 5.5 T1)

- Analysis describes what a given circuit will do under certain operating conditions.
- The behavior of a clocked sequential circuit is determined from the inputs, the outputs, and the state of its flip-flops.
- The outputs and the next state are both a function of the inputs and the present state.
- The analysis of a sequential circuit consists of obtaining a table or a diagram for the time sequence of inputs, outputs, and internal states.
- It is also possible to write Boolean expressions that describe the behavior of the sequential circuit.

Introduction

- These expressions must include the necessary time sequence, either directly or indirectly.
- A logic diagram is recognized as a clocked sequential circuit if it includes flip-flops with clock inputs.
- The flip-flops may be of any type, and the logic diagram may or may not include combinational logic gates.
- Algebraic representation for specifying the next-state condition in terms of the present state and inputs

- The **behavior** of a clocked sequential circuit can be described algebraically by means of **state equations**.
- A state equation (also called a transition equation) specifies the next state as a function of the present state and inputs.
- Consider the sequential circuit shown in the Figure.

Circuit acts as a 0-detector by asserting its output when a 0 is detected in a stream of 1s

Behavior of circuit:

Imagine you're monitoring a signal line that should be continuously 1 (high).

- •As long as the signal is 1, the detector stays quiet.
- •When a glitch (a single 0) happens, the detector alerts with y = 1.
- •But if the line stays 0, it doesn't keep alerting only the first error is flagged.

- It consists of two D flip-flops A and B, an input x and an output y.
- Since the D input of a flip-flop determines the value of the next state (i.e., the state reached after the clock transition), it is possible to write a set of state equations for the circuit:

$$\circ \quad A(t+1) = A(t)x(t) + B(t)x(t)$$

$$\circ B(t+1) = A'(t)x(t)$$

- The Boolean expressions for the state equations can be derived directly from the gates that form the combinational circuit part of the sequential circuit, since the D values of the combinational circuit determine the next state.
- Similarly, the present-state value of the output can be expressed algebraically as

$$\circ \quad y(t) = [A(t) + B(t)]x'(t)$$

• By removing the symbol (t) for the present state, we obtain the output Boolean equation:

$$\circ$$
 $y = (A + B)x'$

State Table

- The time sequence of **inputs**, **outputs**, **and flip-flop states** can be enumerated in a **state table** (sometimes called a **transition table**).
- The state table for the previous circuit is shown in the table.
- The table consists of 4 sections: **present state**, **input**, **next state**, **and output**.
- The present-state section shows the states of flip-flops A and B at any given time t.
- The input section gives a value of x for each possible present state.
- The next-state section shows the states of the flip-flops one clock cycle later, at time t+1.
- The output section gives the value of y at time t for each present state and input condition.

State Table- Type 1

				_		
	sent ate	Input		ext ate	Output	
A	В	X	A	В	y	
0	0	0	0	0	0	A(t+1) = Ax + Bx
0	0	1	0	1	0	
0	1	0	0	0	1	B(t+1) = A'x
0	1	1	1	1	0	
1	0	0	0	0	1	y = Ax' + Bx'
1	0	1	1	0	0	Section of Sections
1	1	0	0	0	1	
1	1	1	1	0	0	

Moore Models of Finite State Machines

Moore Machine

- •In the Moore model, the output is a function of only the present state
- •Next state is function of present state and input

State Table

- The state table of a sequential circuit with D -type flip-flops is obtained by the same procedure outlined in the previous example.
- In general, a sequential circuit with m flip-flops and n inputs needs 2^{m+n} rows in the state table.
- The binary numbers from 0 through 2^{m+n} 1 are listed under the present-state and input columns.
- The next-state section has m columns, one for each flip-flop.
- The binary values for the next state are derived directly from the state equations.
- The output section has as many columns as there are output variables.
- Its binary value is derived from the circuit or from the Boolean function in the same manner as in a truth table.

State Table

- It is sometimes convenient to express the state table in a slightly different form having only three sections: present state, next state, and output.
- The input conditions are enumerated under the next-state and output sections.
- The new state table is as shown in this second form.
- For each present state, there are two possible next states and outputs, depending on the value of the input.

State Table – Type 2

Second Form of the State Table

Dro	cont	Next State				Out		
Present State		x = 0 x		x :	= 1	x = 0	x = 1	4(4 + 1) -
A	В	A	В	A	В	y	y	A(t+1) =
0	0	0	0	0	1	0	0	B(t+1) =
0	1	0	0	1	1	1	0	
1	0	0	0	1	0	1	0	y = Ax' +
1	1	0	0	1	0	1	0	

Mealy Models of Finite State Machines

In the Mealy model, the output is a function of both the present state and the input. Next state depends on present state and inputs

State Diagram

Second Form of the State Table

Present State		N	lext	Stat	Output		
		x = 0		x = 1		x = 0	x = 1
A	В	A	В	Α	В	y	y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Circuit diagram → Equations – State table → State diagram

State Diagram

- The state diagram provides the same information as the state table and is obtained directly from table. The information available in a state table can be represented graphically in the form of a state diagram
- The binary number inside each circle identifies the state of the flip-flops.
- The directed lines are labelled with two binary numbers separated by a slash.
- The input value during the present state is labelled first, and the number after the slash gives the output during the present state with the given input.
- The steps presented in this example are summarized below:

Circuit diagram → Equations – State table → State diagram

The state diagram gives a pictorial view of state transitions and is the form more suitable for human interpretation of the circuit's operation

Flip-Flop Input Equations

- The part of the combinational circuit that generates external outputs is described algebraically by a set of Boolean functions called output equations.
- The part of the circuit that generates the inputs to flip-flops is described algebraically by a set of Boolean functions called flip-flop **input equations** (or, sometimes, excitation equations).

$$D_A = Ax + Bx$$

$$D_B = A'x$$

$$y = (A + B)x'$$

Note that the expression for the input equation for a D flip-flop is identical to the expression for the corresponding state equation. This is because of the characteristic equation that equates the next state to the value of the D input: $Q(t + 1) = D_Q$.

• The procedure for analyzing a clocked sequential circuit with D flip-flops by means of a simple example. The circuit we want to analyze is described by the input equation:

$$D_A = A \oplus x \oplus y$$

- The D_A symbol implies a D flip-flop with output A.
- The x and y variables are the inputs to the circuit.
- No output equations are given, which implies that the output comes from the output of the flip-flop.

- The state table has one column for the present state of flip—flop A, two columns for the two inputs, and one column for the next state of A.
- The binary numbers under Axy are listed from 000 through 111 as shown in figure (b).
- The next–state values are obtained from the state equation

$$A(t+1) = A \oplus x \oplus y$$

- The expression specifies an odd function and is equal to 1 when only one variable is 1 or when all three variables are 1.
- This is indicated in the column for the next state of A.

Present state	Inp	Next state		
A	x	y	A	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

(b) State table

- The circuit has one flip—flop and two states.
- The state diagram consists of two circles, one for each state as shown in figure (c).
- The present state and the output can be either 0 or 1, as indicated by the number inside the circles.(moore model)
- A slash on the directed lines is not needed, because there is no output from a combinational circuit.
- The two inputs can have four possible combinations for each state.
- Two input combinations during each state transition are separated by a comma to simplify the notation.

- When a flip—flop other than the D type is used, such as JK or T, it is necessary to refer to the corresponding characteristic table or characteristic equation to obtain the next—state values.
- The procedure is illustrated first by using the characteristic table and again by using the characteristic equation.
- The next-state values of a sequential circuit that uses JK or T –type flip–flops can be derived as follows:
 - a. Determine the flip—flop input equations in terms of the present state and input variables.
 - b. List the binary values of each input equation.
 - c. Use the corresponding flip—flop characteristic table to determine the next—state values in the state table.

- As an example, consider the sequential circuit with two *JK* flip–flops *A* and *B* and one input *x*.
- The circuit has no outputs; therefore, the state table does not need an output column.
- The circuit can be specified by the flip—flop input equations

$$J_A = B$$
 $K_A = Bx'$
 $J_B = x'$ $K_B = A'x + Ax' = A \oplus x$

State Table for Sequential Circuit with JK Flip-Flops

Present State		Input	Next State		Flip-Flop Inputs			
A	В	X	A	В	JA	KA	J _B	KB
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

The next-state values can also be obtained by evaluating the state equations from the characteristic equation. This is done by using the following procedure:

- 1. Determine the flip-flop input equations in terms of the present state and input variables.
- 2. Substitute the input equations into the flip-flop characteristic equation to obtain the state equations.
- **3.** Use the corresponding state equations to determine the next-state values in the state table.

The input equations for the two JK flip-flops of Fig. 5.18 were listed a couple of paragraphs ago. The characteristic equations for the flip-flops are obtained by substituting A or B for the name of the flip-flop, instead of Q:

$$A(t+1) = JA' + K'A$$

$$B(t+1) = JB' + K'B$$

Substituting the values of J_A and K_A from the input equations, we obtain the state equation for A:

$$A(t+1) = BA' + (Bx')'A = A'B + AB' + Ax$$

The state equation provides the bit values for the column headed "Next State" for A in the state table. Similarly, the state equation for flip-flop B can be derived from the characteristic equation by substituting the values of J_B and K_B :

$$B(t+1) = x'B' + (A \oplus x)'B = B'x' + ABx + A'Bx'$$

State diagram of the circuit

- The analysis of a sequential circuit with T flip-flops follows the same procedure.
- The next-state values in the state table can be obtained by using either using the characteristic table or characteristic equation.

$$Q(t+1) = T \oplus Q = T'Q + TQ'$$

It has two flip-flops A and B, one input x, and one output y and can be described algebraically by two input equations and an output equation:

$$T_A = Bx$$

 $T_B = x$
 $v = AB$

State Table for Sequential Circuit with T Flip-Flops

Present State A B		Input		ext ate	Output	
		X	A	В	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	1	0	
0	1	1	1	0	0	
1	0	0	1	0	0	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	1	

The values for y are obtained from the output equation. The values for the next state can be derived from the state equations by substituting TA and TB in the characteristic equations, yielding

$$A(t+1) = (Bx)'A + (Bx)A' = AB' + Ax' + A'Bx$$

$$B(t+1) = x \oplus B$$

As long as input x is equal to 1, the circuit behaves as a binary counter with a sequence of states 00, 01, 10, 11, and back to 00.

When x = 0, the circuit remains in the same state. Output y is equal to 1 when the present state is 11.

Here, the output depends on the present state only and is independent of the input.

The two values inside each circle and separated by a slash are for the present state and output.

(b) State diagram

Applications

Elevator Controller (Multi-floor Building)

•Description:

The elevator logic determines movement between floors, door operation, and priority handling.

•How it relates to your concept:

- States: Floor positions + Door open/close status.
- Inputs: Floor request buttons, sensors.
- Flip-flops: Store current floor/door state;
- state equations decide next movement.

Traffic Light Controller

•Description:

A four-way traffic signal is controlled by a **finite state machine (FSM)** implemented using flip-flops.

•How it relates to your concept:

- States: Red → Green → Yellow → Red.
- Flip-flops: Store the current light state.
- State table & equations: Determine which light turns on next based on current state and timer pulse.

Applications

Digital Lock System

Description:

Unlocks only when a correct sequence of digits/buttons is entered.

How it relates to your concept:

States: Each entered digit represents a state transition.

Inputs: Keypad inputs.

Flip-flops: Store entered sequence progress.

State equations: Verify input sequence and transition to "Unlock" state if correct.

MCQ

- 1. The present state of a D flip-flop is 1. If the input equation is $D=A \oplus x \oplus y$ where A is the current flip-flop output, x=1 and y=0, what will be the next state after the clock edge?
 - **A)** 0
 - **B)** 1
 - C) Cannot be determined
 - **D)** Remains same
- 2. A sequential circuit uses two D flip-flops A and B, and one input x. The next state equations are:

$$A(t+1)=A\cdot x+B\cdot x$$

$$B(t+1)=A'\cdot x$$

If present state is A=1,B=0,x=1, what is the next state?

- **A)** (1,0)
- **B)** (1,1)
- (0,1)
- **D**) (0,0)

MCQ

- 1. The present state of a D flip-flop is 1. If the input equation is D=A \bigoplus x \bigoplus yD where A is the current flip-flop output, x=1, and y=0, what will be the next state after the clock edge?
 - **A)** 0
 - **B)** 1
 - C) Cannot be determined
 - **D)** Remains same

Answer: A - D=1 \oplus 1 \oplus 0, so next state is 0.

2. A sequential circuit uses two D flip-flops A and B, and one input x. The next state equations are:

$$A(t+1)=A\cdot x+B\cdot x$$

$$B(t+1)=A'\cdot x$$

If present state is A=1,B=0,x=1, what is the next state?

- **A)** (1,0)
- **B)** (1,1)
- (0,1)
- **D)** (0,0)

Answer: A — Direct substitution into the state equations.

THANK YOU

Team DDCO
Department of Computer Science and Engineering