#### Applied Deep Learning



### BERT

Bidirectional Encoder Representations from Transformers



March 21st, 2022 <a href="http://adl.miulab.tw">http://adl.miulab.tw</a>





Taiwan University 國立臺灣大學

### BERT: Bidirectional Encoder Representations from Transformers

- Idea: contextualized word representations
  - Learn word vectors using long contexts using Transformer instead of LSTM



#### BERT #1 — Masked Language Model

Idea: language understanding is bidirectional while LM only uses left or right context

> Use the output of the masked word's position to predict the masked word

0.1% | Aardvark Possible classes: All English words Improvisation Zyzzyva FFNN + Softmax

Randomly mask 15% of tokens

- Too little: expensive to train
- Too much: not enough context





### BERT #1 – Masked Language Model







#### BERT #2 — Next Sentence Prediction

- Idea: modeling relationship between sentences
  - QA, NLI etc. are based on understanding inter-sentence relationship

```
Input = [CLS] the man [MASK] to the store [SEP]  penguin \ [MASK] \ are \ flight \ \#less \ birds \ [SEP]  Label = NotNext
```

#### BERT #2 — Next Sentence Prediction

• Idea: modeling relationship between sentences



#### BERT – Input Representation

- Input embeddings contain
  - Word-level token embeddings
  - Sentence-level segment embeddings
  - Position embeddings



## BERT Training

- Training data: Wikipedia + BookCorpus
- 2 BERT models
  - BERT-Base: 12-layer, 768-hidden, 12-head
  - BERT-Large: 24-layer, 1024-hidden, 16-head







#### BERT Fine-Tuning for Understanding Tasks

Idea: simply learn a classifier/tagger built on the top layer for each



#### **BERT Overview**

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

#### **Semi-supervised Learning Step**



2 - Supervised training on a specific task with a labeled dataset.





#### BERT Fine-Tuning Results

#### Effect of Pre-training Task



| Model                      | Description                           | CONLL 2003<br>F1 |
|----------------------------|---------------------------------------|------------------|
| TagLM (Peters+, 2017)      | LSTM BiLM in BLSTM Tagger             | 91.93            |
| ELMo (Peters+, 2018)       | ELMo in BLSTM                         | 92.22            |
| BERT-Base (Devlin+, 2019)  | Transformer LM + fine-tune            | <u>92.4</u>      |
| CVT Clark                  | Cross-view training + multitask learn | 92.61            |
| BERT-Large (Devlin+, 2019) | Transformer LM + fine-tune            | <u>92.8</u>      |
| Flair                      | Character-level language model        | 93.09            |

#### BERT Results with Different Model Sizes

Improving performance by increasing model size





#### BERT for Contextual Embeddings

Idea: use pre-trained BERT to get contextualized word embeddings and feed them into the task-specific models



The output of each encoder layer along each token's path can be used as a feature representing that token.



But which one should we use?

#### BERT Contextual Embeddings Results on NER

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER



# **ERNIE:** Enhanced Representation through kNowledge IntEgration



- BERT models local cooccurrence between tokens, while characters are modeled independently
  - 哈(ha), 爾(er), 濱(bin) instead 哈爾濱(Harbin)
- ERNIE incorporates knowledge by masking semantic units/entities
  Learned by BERT
  Learned by ERNIE



#### Concluding Remarks

- Contextualized embeddings learned from masked LM via Transformers provide informative cues for transfer learning
- BERT a general approach for learning contextual representations from Transformers and benefiting language understanding
  - ✓ Pre-trained BERT:

https://github.com/google-research/bert https://github.com/huggingface/transformers

