大学物理期末 练习题

(下册)

天津科技大学理学院物理系

一、选择题

- 1. 下列几个说法中哪一个是正确的?
 - (A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.
 - (B) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.
- (C) 场强可由 $\vec{E} = \vec{F}/q$ 定出,其中 q 为试验电荷,q 可正、可负, \vec{F} 为试验电荷所受的电场力.
 - (D) 以上说法都不正确.

[]

2. 有两个电荷都是+q 的点电荷,相距为 2a. 今以 左边的点电荷所在处为球心,以 a 为半径作一球形高 斯面. 在球面上取两块相等的小面积 S_1 和 S_2 ,其位置

如图所示. 设通过 S_1 和 S_2 的电场强度通量分别为 $\boldsymbol{\sigma}_1$ 和 $\boldsymbol{\sigma}_2$,通过整个球面的电场强度通量为 $\boldsymbol{\sigma}_8$,则

- (A) $\Phi_1 > \Phi_2$, $\Phi_S = q / \varepsilon_0$.
- (B) $\Phi_1 < \Phi_2$, $\Phi_S = 2q / \varepsilon_0$.
- (C) $\Phi_1 = \Phi_2$, $\Phi_S = q / \varepsilon_0$.
- (D) $\Phi_1 < \Phi_2$, $\Phi_S = q / \varepsilon_0$.

[]

3. 有一边长为a的正方形平面,在其中垂线上距中心O点a/2处,有一电荷为q的正点电荷,如图所示,则通过该平面的电场强度通量为

- (A) $\frac{q}{3\varepsilon_0}$.
- (B) $\frac{q}{4\pi\varepsilon_0}$
- (C) $\frac{q}{3\pi\varepsilon_0}$.
- (D) $\frac{q}{6\varepsilon_0}$

- 4. 如图点电荷 Q 被曲面 S 包围 ,从无穷远处引入另一点电荷 q 至曲面外一点,,则引入前后:
 - (A) 曲面 S 的电场强度通量不变,曲面上各点场强不变.
 - (B) 曲面 S 的电场强度通量变化, 曲面上各点场强不变.

1

- (C) 曲面 S 的电场强度通量变化, 曲面上各点场强变化.
- (D) 曲面S的电场强度通量不变,曲面上各点场强变化.

[]

5. 在点电荷+q 的电场中,若取图中 P 点处为电势零点 , 则 M 点的电势为

(A)
$$\frac{q}{4\pi\varepsilon_0 a}$$
. (B) $\frac{q}{8\pi\varepsilon_0 a}$.

(C)
$$\frac{-q}{4\pi\varepsilon_0 a}$$
. (D) $\frac{-q}{8\pi\varepsilon_0 a}$.

[]

6. 如图所示,边长为 $0.3 \, \mathrm{m}$ 的正三角形 abc,在顶点 a 处有一电荷为 $10^{-8} \, \mathrm{C}$ 的正点电荷,顶点 b 处有一电荷为 $-10^{-8} \, \mathrm{C}$ 的负点电荷,则顶点 c 处的电场强度的大小 E 和电势 U 为 : $(\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \, \mathrm{N \, m \, /C^2})$

- (A) E=0, U=0.
- (B) E = 1000 V/m, U = 0.
- (C) E = 1000 V/m, U = 600 V.
- (D) E=2000 V/m, U=600 V.

Γ 1

7. 如图所示,半径为 R 的均匀带电球面,总电荷为 Q,设无穷远处的电势为零,则球内距离球心为 r 的 P 点处的电场强度的大小和电势为:

(A)
$$E=0$$
, $U = \frac{Q}{4\pi\varepsilon_0 r}$.

(B)
$$E=0$$
, $U = \frac{Q}{4\pi\varepsilon_0 R}$.

(C)
$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$
, $U = \frac{Q}{4\pi\varepsilon_0 r}$.

(D)
$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$
, $U = \frac{Q}{4\pi\varepsilon_0 R}$.

- 8. 如图所示, 边长为 a 的等边三角形的三个顶点上, 分别放置着
- 三个正的点电荷 q、2q、3q. 若将另一正点电荷 Q 从无穷远处移到
- 三角形的中心 O 处,外力所作的功为:

- ٦
- 9. 在已知静电场分布的条件下,任意两点 P_1 和 P_2 之间的电势差决定于
 - $(A) P_1$ 和 P_2 两点的位置.
 - (B) P_1 和 P_2 两点处的电场强度的大小和方向.
 - (C) 试验电荷所带电荷的正负.
 - (D) 试验电荷的电荷大小.

Γ 7

10. 半径为r 的均匀带电球面 1, 带有电荷 q, 其外有一同心的半径为 R 的均匀带电球面 2, 带有电荷 O,则此两球面之间的电势差 U_1 - U_2 为:

(A)
$$\frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r} - \frac{1}{R} \right)$$
 . (B) $\frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{R} - \frac{1}{r} \right)$.

(B)
$$\frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{R} - \frac{1}{r} \right)$$

(C)
$$\frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r} - \frac{Q}{R} \right)$$
 . (D) $\frac{q}{4\pi\varepsilon_0 r}$.

(D)
$$\frac{q}{4\pi\varepsilon_0 r}$$

11. 如图,边长为a的正方形的四个角上固定有四个电荷均为q的点 电荷. 此正方形以角速度 α 绕 AC 轴旋转时,在中心 O 点产生的磁感强 度大小为 B_1 : 此正方形同样以角速度 ω 绕过 O 点垂直于正方形平面的 轴旋转时, 在 O 点产生的磁感强度的大小为 B_2 , 则 B_1 与 B_2 间的关系 为

- (A) $B_1 = B_2$. (B) $B_1 = 2B_2$.
- (C) $B_1 = \frac{1}{2}B_2$. (D) $B_1 = B_2/4$.

12. 如图,两根直导线 ab 和 cd 沿半径方向被接到一个截面处处相等 的铁环上,稳恒电流 I 从 a 端流入而从 d 端流出,则磁感强度 \bar{B} 沿图 中闭合路径 L 的积分 $\oint \bar{B} \cdot d\bar{l}$ 等于

13. 一电子以速度 \bar{v} 垂直地进入磁感强度为 \bar{B} 的均匀磁场中,此电子

- (A) $\mu_0 I$. (B) $\frac{1}{3} \mu_0 I$.
- (C) $\mu_0 I/4$. (D) $2\mu_0 I/3$.

]

- 在磁场中运动轨道所围的面积内的磁通量将
 - (A) 正比于 B, 反比于 v^2 . (B) 反比于 B, 正比于 v^2 .

 - (C) 正比于 B, 反比于 v. (D) 反比于 B, 反比于 v.
- 14. 如图, 长载流导线 ab 和 cd 相互垂直, 它们相距 l, ab 固定不动, cd 能绕中点 O 转动,并能靠近或离开 ab. 当电流方向如图所示时, 导线 cd 将

Γ

- (A) 顺时针转动同时离开 ab.
- (B) 顺时针转动同时靠近 ab.
- (C) 逆时针转动同时离开 ab.

(D) 逆时针转动同时靠近 ab.

15. 两个同心圆线圈,大圆半径为R,通有电流 I_1 ;小圆半径为r,通 有电流 I_2 ,方向如图. 若 $r \ll R$ (大线圈在小线圈处产生的磁场近似为 均匀磁场), 当它们处在同一平面内时小线圈所受磁力矩的大小为

(A)
$$\frac{\mu_0 \pi I_1 I_2 r^2}{2R}$$
.

(B)
$$\frac{\mu_0 I_1 I_2 r^2}{2R}$$
.

(C)
$$\frac{\mu_0 \pi I_1 I_2 R^2}{2r}$$
. (D) 0.

]

Γ

16. 如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在 磁场作用下,线圈发生转动,其方向是

- (A) ab 边转入纸内, cd 边转出纸外.
- (B) ab 边转出纸外, cd 边转入纸内.
- (C) ad 边转入纸内, bc 边转出纸外.
- (D) ad 边转出纸外, bc 边转入纸内.

- 17. 有一半径为 R 的单匝圆线圈,通以电流 I,若将该导线弯成匝数 N=2 的平面圆线圈, 导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的
 - (A) 4倍和 1/8.
- (B) 4倍和 1/2.
- (C) 2 倍和 1/4. (D) 2 倍和 1/2.

Γ ٦

18. 有一无限长通电流的扁平铜片, 宽度为 a, 厚度不计, 电流 I 在铜片 上均匀分布,在铜片外与铜片共面,离铜片右边缘为b处的P点(如图) 的磁感强度 \bar{B} 的大小为

(A)
$$\frac{\mu_0 I}{2\pi(a+b)}.$$

(B)
$$\frac{\mu_0 I}{2\pi a} \ln \frac{a+b}{b}.$$

(C)
$$\frac{\mu_0 I}{2\pi b} \ln \frac{a+b}{b}$$
. (D) $\frac{\mu_0 I}{\pi(a+2b)}$.

(D)
$$\frac{\mu_0 I}{\pi(a+2b)}.$$

- 19. 半径为a的圆线圈置于磁感强度为 \bar{B} 的均匀磁场中,线圈平面与磁场方向垂直,线圈 电阻为 R: 当把线圈转动使其法向与 \vec{B} 的夹角 θ =60°时,线圈中通过的电荷与线圈面积及 转动所用的时间的关系是
 - (A) 与线圈面积成正比,与时间无关.
 - (B) 与线圈面积成正比,与时间成正比.
 - (C) 与线圈面积成反比,与时间成正比.
 - (D) 与线圈面积成反比,与时间无关.

7

- 20. 一矩形线框长为 a 宽为 b,置于均匀磁场中,线框绕 OO'轴,以匀角速度 ω 旋转(如图所示). 设 t =0 时,线框平面处于纸面内,则任一时刻感应电动势的大小为
 - (A) $2abB |\cos \omega t|$.
- (B) ωabB
- (C) $\frac{1}{2}\omega abB |\cos \omega t|$.
 - (D) $\omega abB |\cos \omega t|$.
- (E) $\omega abB | \sin \omega t |$.

[]

- 21. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近
- 似为零,则应调整线圈的取向使
 - (A) 两线圈平面都平行于两圆心连线.
 - (B) 两线圈平面都垂直于两圆心连线.
 - (C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.
 - (D) 两线圈中电流方向相反.

- ГТ
- 22. 在感应电场中电磁感应定律可写成 $\oint_L \bar{E}_K \cdot d\bar{l} = -\frac{d\Phi}{dt}$, 式中 \bar{E}_K 为感应电场的电场强
- 度. 此式表明:
 - (A) 闭合曲线 $L \perp \bar{E}_K$ 处处相等.
 - (B) 感应电场是保守力场.
 - (C) 感应电场的电场强度线不是闭合曲线.
 - (D) 在感应电场中不能像对静电场那样引入电势的概念.

Γ

7

23. 在圆柱形空间内有一磁感强度为 \bar{B} 的均匀磁场,如图所示. \bar{B} 的大小以速率 dB/dt 变化. 在磁场中有A、B 两点,其间可放直导线AB和弯曲的导线AB,则

- (A) 电动势只在 \overline{AB} 导线中产生.
- (B) 电动势只在 AB 导线中产生.
- (C) 电动势在 \overrightarrow{AB} 和 \overrightarrow{AB} 中都产生,且两者大小相等.
- (D) AB 导线中的电动势小于 \overline{AB} 导线中的电动势.

٦

24. 如图, S_1 、 S_2 是两个相干光源, 它们到 P 点的距离分别为 r_1 和 r_2 . 路径 S_1P 垂直穿过一块厚度为 t_1 , 折射率为 n_1 的介质板, 路径 S_0P 垂直穿过厚度为 t_2 , 折射率为 t_2 的另一介质板, 其余部 分可看作真空,这两条路径的光程差等于

(A)
$$(r_2 + n_2 t_2) - (r_1 + n_1 t_1)$$

(B)
$$[r_2 + (n_2 - 1)t_2] - [r_1 + (n_1 - 1)t_2]$$

(C)
$$(r_2 - n_2 t_2) - (r_1 - n_1 t_1)$$

(D)
$$n_2 t_2 - n_1 t_1$$

25. 如图所示,平行单色光垂直照射到薄膜上,经上下两表面反 射的两東光发生干涉,若薄膜的厚度为 e,并且 $n_1 < n_2 > n_3$, λ_1 为入射光在折射率为 n_1 的媒质中的波长,则两束反射光在相遇点 的相位差为

(A)
$$2\pi n_2 e / (n_1 \lambda_1)$$
.

(B)
$$[4\pi n_1 e / (n_2 \lambda_1)] + \pi$$
.

(C)
$$[4\pi n_2 e / (n_1 \lambda_1)] + \pi$$
. (D) $4\pi n_2 e / (n_1 \lambda_1)$.

(D)
$$4\pi n_2 e / (n_1 \lambda_1)$$

- 26. 在双缝干涉实验中, 两条缝的宽度原来是相等的. 若其中一缝的宽度略变窄(缝中心位 置不变),则
 - (A) 干涉条纹的间距变宽.
 - (B) 干涉条纹的间距变窄.
 - (C) 干涉条纹的间距不变, 但原极小处的强度不再为零.
 - (D) 不再发生干涉现象.

27. 在双缝干涉实验中, 屏幕 E 上的 P 点处是明条纹. 若将缝 S_2 盖住,并在 S_1 S_2 连线的垂直平分面处放一高折射率介质反射面M, 如图所示,则此时

- (A) P 点处仍为明条纹.
- (B) P 点处为暗条纹.
- (C) 不能确定 P 点处是明条纹还是暗条纹.
- (D) 无干涉条纹.

Γ

28. 在双缝干涉实验中,设缝是水平的. 若双缝所在的平板稍微向上平移,其它条件不变, 则屏上的干涉条纹

- (A) 向下平移, 且间距不变. (B) 向上平移, 且间距不变.
- (C) 不移动, 但间距改变. (D) 向上平移, 且间距改变.

Γ ٦

29. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射, 在反射光中看到干涉条纹,则在接触点P处形成的圆斑为

图中数字为各处的折射

- (A) 全明.
- (B) 全暗.
- (C) 右半部明, 左半部暗.
- (D) 右半部暗,左半部明.

Γ 1

- 30. 一束波长为λ的单色光由空气垂直入射到折射率为 n 的透明薄膜上,透明薄膜放在空 气中,要使反射光得到干涉加强,则薄膜最小的厚度为

 - (A) $\lambda/4$. (B) $\lambda/(4n)$. (C) $\lambda/2$. (D) $\lambda/(2n)$.

Γ 7

31. 用劈尖干涉法可检测工件表面缺陷, 当波长为λ的单色 平行光垂直入射时, 若观察到的干涉条纹如图所示, 每一 条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线 相切,则工件表面与条纹弯曲处对应的部分

- (A) 凸起, 且高度为λ/4.
- (B) 凸起, 且高度为λ/2.
- (C) 凹陷, 且深度为λ/2.
- (D) 凹陷, 且深度为λ/4.

Γ ٦

- 32. 把一平凸透镜放在平玻璃上,构成牛顿环装置. 当平凸透镜慢慢地向上平移时,由反 射光形成的牛顿环
 - (A) 向中心收缩,条纹间隔变小.
 - (B) 向中心收缩,环心呈明暗交替变化.
 - (C) 向外扩张,环心呈明暗交替变化.
 - (D) 向外扩张,条纹间隔变大.

Γ

33. 如图所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L,夹在两块平晶的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹. 如果滚柱之间的距离L变小,则在L范围内干涉条纹的

- (A) 数目减少,间距变大.
- (B) 数目不变,间距变小.
- (C) 数目增加,间距变小.
- (D) 数目减少,间距不变.

Г 7

- 34. 在单缝夫琅禾费衍射实验中,波长为 λ 的单色光垂直入射在宽度为 $\alpha=4\lambda$ 的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为
 - (A) 2 个.

(B) 4 个.

(C) 6 个.

- (D) 8 个.
- []
- 35. 一東波长为 λ 的平行单色光垂直入射到一单缝 AB上,装置如图. 在屏幕 D上形成衍射图样,如果 P是中央亮纹一侧第一个暗纹所在的位置,则 \overline{BC} 的长度为
 - (A) $\lambda / 2$.
- (B) λ .
- (C) $3\lambda/2$.
- (D) 2λ .

- 36. 一单色平行光束垂直照射在宽度为 1.0 mm 的单缝
- 上,在缝后放一焦距为 2.0 m 的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹 宽度为 2.0 mm,则入射光波长约为 (1nm=10⁻⁹m)
 - (A) 100 nm
- (B) 400 nm
- (C) 500 nm
- (D) 600 nm
- 37. 在如图所示的单缝的夫琅禾费衍射实验中,将单缝 *K*沿垂直于光的入射方向(沿图中的 *x* 方向)稍微平
- 移,则
 - (A) 衍射条纹移动,条纹宽度不变.
 - (B) 衍射条纹移动,条纹宽度变动.
 - (C) 衍射条纹中心不动,条纹变宽.
 - (D) 衍射条纹不动,条纹宽度不变.
 - (E) 衍射条纹中心不动,条纹变窄.

[]

٦

38.	一東	白光垂直照	射在一分	光栅上,	在形成	的同一	级光栅	光谱中,	偏离中	中央明	纹最远	的是
	(A)	紫光.	(B) 绿光	ć.	(C) 黄	光.	(D) 纟	工光.		Г]	
39.	一東	光是自然光	光和线偏 _捷	辰光的酒	启 合光,	让它垂	直通过	一偏振片	7. 若以	从此入	射光束	为轴
旋转	旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光											
的光	2强比	值为										
	(A) 1	/ 2.		(B) 1 / 3								
	(C) 1	/4.		(D) 1 / 5	5.]	
40.	一東	光强为 16 的	的自然光	垂直穿过	过两个偏	撮片,	且此两	偏振片的	的偏振值	化方向	成 45°£	角,
则穿	型 过两	个偏振片后	6的光强	I为								
	(A)	$I_0/4\sqrt{2}$		(B) I_0	/4.							
	(C) I	0/2.		(D) $\sqrt{2}$	$\overline{2} I_0 / 2.$				[]		
41.	一束	自然光自空	ど气射向-	一块平板	(玻璃(如	4图),	设入射力	角等于布	*	\downarrow , i_0	A	
儒期	行特角	<i>i</i> ₀ ,则在界	面 2 的原	反射光						***		$\sqrt{1}$
	(A)	是自然光.										2
	(B)	是线偏振光	且光矢量	遣的振动	方向垂	直于入	射面.					4
	(C)	是线偏振光	且光矢量	量的振动	方向平	行于入	射面.					
	(D)	是部分偏振	. 光.						[]	
42.	白然	光以 60°的	入射角照	引到某	两介质	交界面	时,反射	付光为完	全线偏	攝振光,	则知才	 折射
42. 自然光以 60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射 光为												
	(A)	完全线偏振	光且折射	付角是3	0°.							
	(B)	部分偏振为	七旦只是	在该光由	真空入	、射到排	斤射率为	$\sqrt{3}$ 的介	·质时,	折射	角	

(D) 部分偏振光且折射角是 30°. [

]

43. 一定频率的单色光照射在某种金属上,测出其 光电流的曲线如图中实线所示. 然后在光强度不变 的条件下增大照射光的频率,测出其光电流的曲线 如图中虚线所示. 满足题意的图是:

44、用频率为 ν 的单色光照射某种金属时,逸出光电子的最大动能为 E_K ;若改用频率为 2ν 的单色光照射此种金属时,则逸出光电子的最大动能为:

- (A) $2 E_K$.
- (B) $2hv E_K$.

- (C) $hv E_K$.
- (D) $h v + E_K$.

45、康普顿效应的主要特点是

- (A) 散射光的波长均比入射光的波长短,且随散射角增大而减小,但与散射体的性质 无关.
 - (B) 散射光的波长均与入射光的波长相同,与散射角、散射体性质无关.
- (C) 散射光中既有与入射光波长相同的,也有比入射光波长长的和比入射光波长短的.这与散射体性质有关.
- (D) 散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与入射光波长相同. 这都与散射体的性质无关. 「]

二、填空题

1. $A \times B$ 为真空中两个平行的"无限大"均匀带电平面,已知两平面 间的电场强度大小为 E_0 , 两平面外侧电场强度大小都为 $E_0/3$, 方向 如图.则 A、B 两平面上的电荷面密度分别 为 σ_A =______, σ_B =_______. 2. 点电荷 q_1 、 q_2 、 q_3 和 q_4 在真空中的分布如图所示. 图 中 S 为闭合曲面,则通过该闭合曲面的电场强度通量 $\oint \vec{E} \cdot d\vec{S} =$ _______,式中的 \vec{E} 是点电荷_______ 在闭合曲面上任一点产生的场强的矢量和. 3. 把一个均匀带有电荷+Q的球形肥皂泡由半径 r_1 吹胀到 r_2 ,则半径为 $R(r_1 < R < r_2)$ 的球 面上任一点的场强大小 E 由 变为 ; 电势 U 由 _____变为______(选无穷远处为电势零点). 4. 如图所示,两同心带电球面,内球面半径为 $r_1=5$ cm,带电荷 $q_1=$ 3×10^{-8} C; 外球面半径为 $r_2=20$ cm , 带电荷 $q_2=-6\times10^{-8}$ C, 设无穷 远处电势为零,则空间另一电势为零的球面半径 r= 5. 静电场的环路定理的数学表示式为: _____. 该式的物理 意义是:_____ . 该定理表明,静电场是 场.

6. 如图所示,在电荷为 q 的点电荷的静电场中,将一电荷为 q_0 的试验电荷从 a 点经任意路径移动到 b 点,外力所作的功 A=______.

7. 带有电荷 q、半径为 r_A 的金属球 A,与一原先不带电、内外半径分别为 r_B 和 r_C 的金属球壳 B 同心放置如图.则图中 P 点的电场强度 $\bar{E} =$ ______. 如果用导线将 A、B 连接起来,则 A 球的电势 U = ______. (设无穷远处电势为零)

8. 在一根通有电流 I 的长直导线旁,与之共面地放着一个长、宽各为 a 和 b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为 b,如图所示. 在此情形中,线框内的磁通量

9. 两根长直导线通有电流 I,图示三种环路; $\oint ar{B} \cdot d \, ar{l}$ 分别等于:

 (对环路 a).
(对环路 b).
(对环路 c).

10. 有半导体通以电流 I,放在均匀磁场 B 中,其上下表面积累电荷如图所示. 试判断它们各是什么类型的半导体?

11. 半径分别为 R_1 和 R_2 的两个半圆弧与直径的两小段构成的通电线圈 abcda (如图所示), 放在磁感强度为 \vec{B} 的均匀磁场中, \vec{B} 平行线圈所在平 面.则线圈的磁矩为 线圈受到的磁力矩为 12. 有一半径为 a, 流过稳恒电流为 I 的 1/4 圆弧形载 流导线 bc, 按图示方式置于均匀外磁场 \overline{B} 中,则该载流导线 所受的安培力大小为______. 13. 如图所示,用均匀细金属丝构成一半径为R的圆环C, 电流 I 由导线 1 流入圆环 A 点, 并由圆环 B 点流入导线 2. 设 导线1和导线2与圆环共面,则环心0处的磁感强度大小为 ,方向 . 14. 半径为r的小绝缘圆环,置于半径为R的大导线圆环中心, 二者在同一平面内,且r << R. 在大导线环中通有正弦电流(取 逆时针方向为正) $I = I_0 \sin \omega t$, 其中 ω 、 I_0 为常数, t 为时间,则任 一时刻小线环中感应电动势(取逆时针方向为正)为 15. 一自感线圈中, 电流强度在 0.002 s 内均匀地由 10 A 增加到 12 A, 此过程中线圈内自 感电动势为 400 V,则线圈的自感系数为 $L = ____.$

17. 一双缝干涉装置,在空气中观察时干涉条纹间距为 1.0 mm. 若整个装置放在水中,干涉条纹的间距将为mm. (设水的折射率为 4/3)
18. 用λ=600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第 4 个(不计中央暗斑)暗环对应的空气膜厚度为
19.用波长为 λ 的单色光垂直照射折射率为 n_2 的劈形膜(如图)图中各部分折射率的关系是 $n_1 < n_2 < n_3$. 观察反射光的干涉条纹,从劈形膜顶开始向右数第 5 条暗条纹中心所对应的厚度 $e=$
20. 波长为 600 nm 的单色平行光,垂直入射到缝宽为 a =0.60 mm 的单缝上,缝后有一焦距 f' =60 cm 的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为,两个第三级暗纹之间的距离为 (1 nm=10 ⁻⁹ m)
21. 平行单色光垂直入射于单缝上,观察夫琅禾费衍射. 若屏上 P 点处为第二级暗纹,则单缝处波面相应地可划分为
22. 假设某一介质对于空气的临界角是 45°,则光从空气射向此介质时的布儒斯特角是
23. 当一束自然光在两种介质分界面处发生反射和折射时,若反射光为线偏振光,则折射光为
24. 附图表示一束自然光入射到两种媒质交界平面上产生反射光和 折射光. 按图中所示的各光的偏振状态,反射光是

25、分别以频	率为以和心	的单色光	照射某一	·光电管.	若и>12(生	匀大于红	限频率:	ν ₀), Ϳ	則当两
种频率的入射	光的光强相	同时,月	听产生的 <i>:</i>	光电子的量	最大初动能	$\stackrel{\circ}{E} E_1$	E ₂ ; 所	产生的	的饱和
光电流 I _{s1}	$I_{\mathrm{s2}}.$	(用>或	=或<填)	λ)					

26、	某金属产生光电效应的红限为10,	当用频率为レ(レ>ル)的单	色光照射该金属时,	从金
属中	¬逸出的光电子(质量为 m)的德布罗	'意波长为		

27、康普顿散射中,	当散射光子与入射光子	方向成夹角∅=	时,散射光子的
频率小得最多; 当φ	= 时,	散射光子的频率与入射光子	4相同.

三、计算题

1、图示为一个均匀带电的球层,其电荷体密度为 ρ ,球层内表面半径为 R_1 ,外表面半径为 R_2 . 设无穷远处为电势零点,求空腔内任一点的电势.

- 2、半径为 R 的均匀带电球体,其电荷体密度为 ρ ,求球体内外的场强和电势分布。
- 3、在半径为 R_1 和 R_2 的两个同心球面上分别均匀带电 q_1 和 q_2 ,求在 $0 < r < R_1$, $R_1 < r < R_2$, $r > R_2$ 三个区域内的电势分布。

4、无限长直导线,通以常定电流 I. 有一与之共面的直角 三角形线圈 ABC. 已知 AC 边长为 b,且与长直导线平行, BC 边长为 a. 若线圈以垂直于导线方向的速度 \bar{v} 向右平移, 当 B 点与长直导线的距离为 d 时,求线圈 ABC 内的感应电动势的大小和感应电动势的方向.

5、如图所示,长直导线中通有电流强度为I的电流,长为I的金属棒 ab 与长直导线共面且垂直于导线放置,其a 端离导线为d,并以速度 \bar{v} 平行于长直导线作匀速运动,求金属棒中的感应电动势 ε 并比较 U_a 、 U_b 的电势大小。

6、如图所示,一根长为L的金属细杆 ab 绕竖直轴 O_1O_2 以角速度 ω 在水平面内旋转. O_1O_2 在离细杆 a端 L /5 处. 若已知竖直方向的磁场为 \bar{B} . 求 ab 两端间的电势差 U_a-U_b .

7、一双缝,缝间距 d=0.10mm,缝宽 a=0.02mm,用波长 $\lambda=480nm$ 的平行单色光垂直入射该双缝,双缝后放一焦距为 50cm 的透镜,试求:

- (1) 透镜焦平面处屏上的干涉条纹间距;
- (2) 单缝衍射中央亮条纹的宽度;
- (3) 单缝衍射的中央包线内有多少条干涉主极大。

- 8、波长为600nm 的单色光垂直入射在一光栅上,第 2,3 级明纹分别出现在 $\sin\theta = 0.20$ 和 $\sin\theta = 0.30$ 处,第 4 级缺级。试求:
 - (1) 光栅常量;
 - (2) 光栅上狭缝的宽度;
 - (3) 屏上实际呈现的全部级数。
- 9、波长 λ =600nm(1nm= 10^{-9} m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为 30° ,且第三级是缺级.
 - (1) 光栅常数(a+b)等于多少?
 - (2) 透光缝可能的最小宽度 a 等于多少?
- (3) 在选定了上述(a+b)和 a 之后,求在衍射角 $-\frac{1}{2}\pi < \varphi < \frac{1}{2}\pi$ 范围内可能观察到的全部主极大的级次.
- 10、如图所示的空心柱形导体,柱的内外半径分别为a和b,导体内载有电流I,设电流I均匀分布在导体的横截面上。求证导体内部各点(a<r<b)的磁感应强度B由下式给出:

11、如图所示,长直电缆由半径为 R_1 的导体圆柱与同轴的内外半径分别为 R_2 、 R_3 的导体圆筒构成,电流沿轴线方向由一导体流入,从另一导体流出,设电流强度 I 都均匀地分布在横截面上。求距轴线为 r 处的磁感应强度大小($0 < r < \infty$)。

- 12、一根很长的圆柱形实心铜导线半径为R,均匀载流为I。试计算:
- (1) 空间磁感应强度的分布;
- (2) 如图所示,导线内部通过单位长度导线剖面的磁通量.

- 13、波长为 200nm 的紫外光照射到铝表面,铝的逸出功为 4.2eV。 试求:
 - (1) 出射的最快光电子的能量;
 - (2) 截止电压;
 - (3) 铝的截止波长。
- 14、波长为 λ 的单色光照射某金属 M 表面发生光电效应,发射的光电子(电荷绝对值为 e,质量为 m)经狭缝 S 后垂直进入磁感应强度为 \bar{B} 的均匀磁场(如图示),今已测出电子在该磁场中作圆运动的最大半径为 R. 求

- (1) 金属材料的逸出功 A:
- (2) 遏止电势差 Ua.
- 15、光电管的阴极用逸出功为 A = 2.2 eV 的金属制成,今用一单色光照射此光电管,阴极发射出光电子,测得遏止电势差为 $|U_a| = 5.0$ V,试求:
 - (1) 光电管阴极金属的光电效应红限波长;
 - (2) 入射光波长.

(普朗克常量 $h = 6.63 \times 10^{-34} \text{ J·s}$, 基本电荷 $e = 1.6 \times 10^{-19} \text{ C}$)

答案

一、选择题

1CDDDD 6BBCAA 11CDBDD 16ABBAD 21CDDBC 26CBBDB 31CBBBB 36CDDAB 41BDDDD

二、填空题

 $1, -2\varepsilon_0 E_0 / 3$ $4\varepsilon_0 E_0 / 3$

2,
$$(q_2 + q_4)/\varepsilon_0$$
 q_1 , q_2 , q_3 , q_4

3.
$$Q/(4\pi\varepsilon_0R^2)$$
 0 $Q/(4\pi\varepsilon_0R)$ $Q/(4\pi\varepsilon_0r_2)$

4, 10 cm

$$5, \oint_{I} \vec{E} \cdot d\vec{l} = 0$$

单位正电荷在静电场中沿任意闭合路径绕行一周,电场力作功等于零有势(或保守力)

6.
$$\frac{q_0 q}{4\pi\varepsilon_0} \left(\frac{1}{r_b} - \frac{1}{r_a} \right)$$
 7. $q\vec{r}/(4\pi\varepsilon_0 r^3)$ $q/(4\pi\varepsilon_0 r_C)$

8.
$$\frac{\mu_0 Ia}{2\pi} \ln 2$$
 9.
$$\mu_0 I$$
 0
$$2 \mu_0 I$$

10, n p

11.
$$p_m = \frac{1}{2}\pi I(R_2^2 - R_1^2)$$
 $M_m = \frac{1}{2}\pi IB(R_2^2 - R_1^2)$

12、
$$aIB$$
 13、 $\mu_0 I/(4\pi R)$ 垂直纸面向内

14.
$$-\frac{\mu_0 \pi r^2}{2R} I_0 \omega \cos \omega t$$
 15. 0.400 H

16,
$$2\pi (n-1) e / \lambda$$
 4×10³ 17, 0.75 18, 1.2

19、
$$\frac{9\lambda}{4n_2}$$
 20、1.2 mm 3.6 mm 21、4 第一 暗

25.
$$\langle$$
 26. $\sqrt{\frac{h}{2m(v-v_0)}}$

 $27, \pi = 0$

三、计算题

1、解: 由高斯定理可知空腔内 E=0,故带电球层的空腔是等势区,各点电势均为 U. 在球层内取半径为 $r \rightarrow r + dr$ 的薄球层. 其电荷为

$$dq = \rho 4\pi r^2 dr$$

该薄层电荷在球心处产生的电势为

$$dU = dq/(4\pi\varepsilon_0 r) = \rho r dr/\varepsilon_0$$

整个带电球层在球心处产生的电势为

$$U_0 = \int dU_0 = \frac{\rho}{\varepsilon_0} \int_{R_1}^{R_2} r \, dr = \frac{\rho}{2\varepsilon_0} (R_2^2 - R_1^2)$$

因为空腔内为等势区所以空腔内任一点的电势 U 为

$$U = U_0 = \frac{\rho}{2\varepsilon_0} (R_2^2 - R_1^2)$$

也可根据电势定义 $U = \int \vec{E} \cdot d\vec{l}$ 计算.

2、解: 根据高斯定理 $\oint_s \vec{E} \cdot d\vec{S} = E4\pi r^2 = \frac{\sum q}{\varepsilon_0}$ 得

$$E = \frac{\sum q}{4\pi\varepsilon_0 r^2}$$

当
$$r < R$$
时, $\sum q = \rho \frac{4}{3} \pi r^3$,得 $E_1 = \frac{\rho r}{3\varepsilon_0}$

当
$$r \ge R$$
时, $\sum q = \rho \frac{4}{3} \pi R^3$,得 $E_2 = \frac{\rho R^3}{3\epsilon_0 r^2}$ 方向均沿半径方向

当
$$r < R$$
时, $U = \int_r^R E_1 dr + \int_R^\infty E_2 dr = \int_r^R \frac{\rho r}{3\varepsilon_0} dr + \int_R^\infty \frac{\rho R^3}{3\varepsilon_0 r^2} dr = \frac{\rho R^2}{2\varepsilon_0} - \frac{\rho r^2}{6\varepsilon_0}$

当
$$r \ge R$$
时, $U = \int_r^\infty E_2 dr = \int_r^\infty \frac{\rho R^3}{3\varepsilon_0 r^2} dr = \frac{\rho R^3}{3\varepsilon_0 r}$

3、解:利用高斯定理求出空间的电场强度:

$$E_I = 0 \qquad r < R_1$$

$$E_{II} = \frac{q_1}{4\pi\varepsilon_0 r^2} \qquad R_1 < r < R_2$$

$$E_{III} = \frac{q_1 + q_2}{4\pi\varepsilon_0 r^2} \qquad r > R_2$$

则空间电势的分布:

$$r \le R_1 \qquad U_I = \int_r^{R_1} \vec{E}_I \cdot d\vec{r} + \int_{R_1}^{R_2} \vec{E}_{II} \cdot d\vec{r} + \int_{R_2}^{+\infty} \vec{E}_{III} \cdot dr = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_2}{R_2} + \frac{q_1}{R_1} \right)$$

 $R_2 \leq r \leq R_2$

$$U_{II} = \int_{r}^{R_{2}} \vec{E}_{II} \cdot d\vec{r} + \int_{R_{2}}^{+\infty} \vec{E}_{III} \cdot d\vec{r} = \int_{r}^{R_{2}} \frac{q_{1}}{4\pi\varepsilon_{0}r^{2}} dr + \frac{q_{1} + q_{2}}{4\pi\varepsilon_{0}R_{2}} = \frac{1}{4\pi\varepsilon_{0}} \left(\frac{q_{2}}{R_{2}} + \frac{q_{1}}{r} \right)$$

$$r \ge R_2 \qquad U_{III} = \int_r^{+\infty} \vec{E}_{III} \cdot d\vec{r} = \int_r^{+\infty} \frac{q_1 + q_2}{4\pi\varepsilon_0 r^2} dr = \frac{q_1 + q_2}{4\pi\varepsilon_0 r}$$

也可用电势叠加的方法, 更为简单。

4、解:建立坐标系,长直导线为y轴,BC 边为x轴,原点在长直导线上,则斜边的方程为 y = (bx/a) - br/a

式中r是t时刻B点与长直导线的距离. 三角形中磁通量

$$\begin{split} \Phi &= \frac{\mu_0 I}{2\pi} \int\limits_r^{a+r} \frac{y}{x} \mathrm{d}\, x = \frac{\mu_0 I}{2\pi} \int\limits_r^{a+r} (\frac{b}{a} - \frac{br}{ax}) \, \mathrm{d}\, x = \frac{\mu_0 I}{2\pi} (b - \frac{br}{a} \ln \frac{a+r}{r}) \\ \varepsilon &= -\frac{\mathrm{d}\, \Phi}{\mathrm{d}\, t} = \frac{\mu_0 I b}{2\pi a} (\ln \frac{a+r}{r} - \frac{a}{a+r}) \frac{\mathrm{d}\, r}{\mathrm{d}\, t} \\ \varepsilon &= \frac{\mu_0 I b}{2\pi a} (\ln \frac{a+d}{d} - \frac{a}{a+d}) \mathrm{V} \end{split}$$

方向: ACBA(即顺时针)

5、解:
$$d\varepsilon = (\vec{v} \times \vec{B}) \cdot d\vec{l} = -v \cdot \frac{\mu_0 I}{2\pi r} dr$$
,

$$\therefore \varepsilon = -\frac{\mu_0 v I}{2\pi} \int_d^{d+l} \frac{dr}{r} = -\frac{\mu_0 v I}{2\pi} \ln \frac{d+l}{d},$$

 $U_a>U_b$

6、解: \overline{Ob} 间的动生电动势:

$$\varepsilon_1 = \int_0^{4L/5} (\vec{\mathbf{v}} \times \vec{B}) \cdot d\vec{l} = \int_0^{4L/5} \omega B l \, dl = \frac{1}{2} \omega B (\frac{4}{5} L)^2 = \frac{16}{50} \omega B L^2$$

b 点电势高于 O 点.

Oa 间的动生电动势:

$$\varepsilon_2 = \int_0^{L/5} (\vec{\mathbf{v}} \times \vec{B}) \cdot d\vec{l} = \int_0^{L/5} \omega B l dl = \frac{1}{2} \omega B (\frac{1}{5} L)^2 = \frac{1}{50} \omega B L^2$$

a 点电势高于 O 点.

$$\therefore \qquad U_a - U_b = \varepsilon_2 - \varepsilon_1 = \frac{1}{50} \omega B L^2 - \frac{16}{50} \omega B L^2 = -\frac{15}{50} \omega B L^2 = -\frac{3}{10} \omega B L^2$$

7、解: 1) 干涉条纹间距:
$$\Delta x = \frac{f\lambda}{d} = \frac{50 \times 10^{-2} \times 480 \times 10^{-9}}{0.1 \times 10^{-3}} = 2.4 \times 10^{-3} m$$

2) 单缝衍射中央亮条纹宽度
$$\Delta x' = \frac{2f\lambda}{a} = \frac{2 \times 50 \times 10^{-2} \times 480 \times 10^{-9}}{0.02 \times 10^{-3}} = 2.4 \times 10^{-2} m$$

3) 中央亮条纹内干涉主极大的数目:

光栅衍射缺级条件: $k = \pm \frac{d}{a}k'$ $k' = 1,2,3\cdots$

可知当k'=1时, $k=\frac{d}{a}=\frac{0.1}{0.02}=5$,即第 5 级主极大与中央亮条纹边缘(单缝衍射 1 级暗纹中心)重合,所以中央亮条纹内有 0,±1,±2,±3,±4 共 9 条干涉主极大。

8、解: 1) 由光栅衍射方程 $d \sin \theta = \pm k\lambda$ $k = 1,2,3 \cdots$ 可知对第 2 级谱线:

$$d = \frac{2\lambda}{\sin \theta_2} = \frac{2 \times 600 \times 10^{-9}}{0.2} = 6.0 \times 10^{-6} \, m$$

2) 由缺级条件:
$$k=\pm\frac{d}{a}k'$$
 $k'=1,2,3\cdots$ 可知 $4=\frac{d}{a}\times 1$,所以
$$a=\frac{d}{4}=1.5\times 10^{-6}\,m$$

3) 由
$$\theta_{\text{max}} = \frac{\pi}{2}$$
 得: $k_{\text{max}} = \frac{d \sin \theta_{\text{max}}}{\lambda} = \frac{6.0 \times 10^{-6}}{600 \times 10^{-9}} = 10$
屏上呈现的级次为: $0, \pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 7, \pm 9$
 $(\pm 4, \pm 8$ 缺级, ± 10 不在屏上)

9、解: (1) 由光栅衍射主极大公式得

$$a + b = \frac{k\lambda}{\sin\varphi} = 2.4 \times 10^{-4} \text{ cm}$$

(2) 若第三级不缺级,则由光栅公式得 $(a+b)\sin \varphi' = 3\lambda$

由于第三级缺级,则对应于最小可能的 a, φ' 方向应是单缝衍射第一级暗纹:两式比较,得 $a\sin\varphi'=\lambda$

$$a = (a+b)/3 = 0.8 \times 10^{-4}$$
 cm $(a+b)\sin \varphi = k\lambda$, (主极大) $a\sin \varphi = k'\lambda$, (单缝衍射极小) $(k'=1, 2, 3,)$

因此 k=3, 6, 9, 缺级.

又因为 $k_{\text{max}}=(a+b)/\lambda=4$, 所以实际呈现 k=0, ± 1 , ± 2 级明纹. $(k=\pm 4)$

在 π/2 处看不到.)

10、证明: 载流导体内电流密度为 $\delta = \frac{I}{\pi(b^2 - a^2)}$

由对称性可知,取以轴为圆心,r为半径的圆周为积分回路L,则由安培环路定理

$$\oint_{l} \vec{B} \cdot d\vec{l} = \mu_{0} \sum_{i} I_{i}$$

得
$$B2\pi r = \mu_0 \delta \pi (r^2 - a^2) = \mu_0 I \frac{r^2 - a^2}{b^2 - a^2}$$

从而有
$$B = \frac{\mu_0 I}{2\pi (b^2 - a^2)} \frac{r^2 - a^2}{r}$$

11、解:以轴线上一点为圆心,r 为半径做圆形环路,利用安培环路定理

$$\oint_{S} \vec{B} \cdot d\vec{l} = B2\pi r = \mu_{0} \sum I$$
 进行分析

(1) 当
$$0 < r \le R_1$$
时,有: $B_1 \cdot 2\pi r = \mu_0 \frac{\pi r^2 I}{\pi R_1^2}$

$$\therefore B_1 = \frac{\mu_0 Ir}{2\pi R_1^2};$$

(2) 当
$$R_1 \le r \le R_2$$
 时,有: $B_2 \cdot 2\pi r = \mu_0 I$, $\therefore B_2 = \frac{\mu_0 I}{2\pi r}$;

(3) 当
$$R_2 \le r \le R_3$$
时,有: $B_3 \cdot 2\pi r = \mu_0 \left(I - \frac{\pi r^2 - \pi R_2^2}{\pi R_3^2 - \pi R_2^2} I \right)$,

$$\therefore B_3 = \frac{\mu_0 I}{2\pi r} \cdot \frac{R_3^2 - r^2}{R_3^2 - R_2^2};$$

(4) 当
$$r > R_3$$
时,有: $B_4 \cdot 2\pi r = \mu_0 (I - I)$, $\therefore B_4 = 0$

12、解: 1) 以轴线上一点为圆心, r 为半径做圆形环路, 利用安培环路定理

$$\oint_{S} \vec{B} \cdot d\vec{l} = B2\pi r = \mu_{0} \sum I$$
进行分析

当
$$r \ge R$$
时, $B \cdot 2\pi r = \mu_0 I$, $\therefore B = \frac{\mu_0 I}{2\pi r}$

磁感应强度分布情况为

$$\begin{cases} B_{\mid h \mid} = \frac{\mu_0 I r}{2\pi R^2} & (r < R) \\ B_{\mid h \mid} = \frac{\mu_0 I}{2\pi r} & (r \ge R) \end{cases}$$

2) 导线内部通过单位长度导线剖面的磁通量

$$\Phi_{\mu} = \int_{0}^{R} B_{\mu} dr = \int_{0}^{R} \frac{\mu_{0} Ir}{2\pi R^{2}} dr = \frac{\mu_{0} I}{4\pi}$$

13、解:(1)入射光子的能量为:

$$E = hv = h\frac{c}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{200 \times 10^{-9}} = 9.93 \times 10^{-19} (J) = 6.20 (eV)$$

由光电效应方程可得出射的最快光电子的能量为:

$$\frac{1}{2}mv_{max}^2 = \frac{hc}{\lambda} - A = 6.20 - 4.20 = 2.00(\text{eV})$$

(2) 截止电压为:

$$U_0 = \frac{\frac{1}{2}mv_{max}^2}{e} = \frac{2.00(\text{eV})}{e} = 2.00(\text{V})$$

(3) 铝的截止波长可由下式求得:

$$\lambda_0 = \frac{c}{v_0} = \frac{hc}{A} = \frac{hv}{A} \lambda = \frac{6.20}{4.20} \times 200 = 295.2 \text{(nm)}$$

14、解: (1) 由
$$eBv = mv^2/R$$
 得 $v = (ReB)/m$,代入
$$hv = \frac{1}{2}mv^2 + A$$

可得
$$A = \frac{hc}{\lambda} - \frac{1}{2} \cdot \frac{mR^2 e^2 B^2}{m^2} = \frac{hc}{\lambda} - \frac{R^2 e^2 B^2}{2m}$$

$$(2) \qquad \qquad e|U_a| = \frac{1}{2} m v^2$$

$$|U_a| = \frac{mv^2}{2e} = \frac{R^2 e B^2}{2m}$$

15、解: (1) 由
$$A = hv_0 = hc/\lambda_0$$
 得
$$\lambda_0 = \frac{hc}{A} = 5.65 \times 10^{-7} \text{ m} = 565 \text{ nm}$$
 (2) 由
$$\frac{1}{2}mv^2 = e|U_a| , \qquad hv = \frac{hc}{\lambda} = e|U_a| + A$$
 得
$$\lambda = \frac{hc}{e|U_a| + A} = 1.73 \times 10^{-7} \text{ m} = 173 \text{ nm}$$