Rugalmas állandók mérése

Klasszikus fizika laboratórium, Csütörtöki csoport

Márton Tamás

November 16

Bevezetés

Az anyagtudomány fontos részét képezi a testek rugalmas és rugalmatlan tulajdonságainak vizsgálata. Ebben a mérésben egy elhajlási és egy torziós jelenséget fogok vizsgálni. Az előbbiben a minták Young-moduluszának, az utóbbiban egy szál torziós moduluszának meghatározása lesz a cél.

A mérés első fele egy elhajlás vizsgálata lesz. Két végén alátámasztott rudat a közepén terhelünk. Az l hosszú (alátámasztások távolsága), E Young-moduluszú anyagban F terhelő erő erő hatására, a kezedeti neutrális zóna s elhajlása:

$$s = \frac{1}{48}^3 EIF$$

A képletben I az adott anyag formájára jellemző másodrendű nyomaték. Téglalap keresztmetszetű rúdra $I_{ab}=\frac{ab^3}{12},\,R$ sugarú rúd esetén pedig: $I_R=\frac{\pi}{4}R^4$.

A mérés második felében egy torziós szál, torziós moduluszát kell kimérnünk, ismerve a következő összefüggést a G torziós modulusz, Θ tehetetlenségi nyomaték, és T lengésidő között:

$$G = K \frac{\Theta}{T^2}$$

Ahol K a rendszer paramétereit magába foglaló konstans. $K = \frac{8\pi l}{r^4}$. A tehetelenségi nyomaték ismeretében tehát, meg tudnánk határozni a torziós moduluszt. Az ingára egy tárcsát helyezünk. Erre a felfüggesztési ponttól a távolságra egy m_1 és m_2 tömeg testet helyezünk, melyek össztömege M. Az eredő tehetelenségi nyomaték az üres tárcsa tehetetlenségi nyomatékából, a testek tehetetlenségi nyomatékából és a Steiner-tétel szerint:

$$\Theta = \Theta_{empty} + \Theta_{weights} + Ma^2$$

A toriós moduluszra felírt egyenletet átrendezve és a megfelelő behelyettesítéseket elvégezve T^2 és a^2 között egy lineáris összefüggést kapunk (ezt a labor jegyzet részletesen tárgyalja). Amiből meghatározható a torziós modulusz (az egyenes meredekségéből számolható G) és az inga tehetelenségi nyomatéka is (az egyenes függőleges tengellyel vett metszete b):

$$G = \frac{KM}{m}$$

$$\Theta_{empty} = \frac{Gb}{K} - \Theta_{weigths}$$

A mérés

A mérési összeállítás, mérési feladatok

1. Elhajlás mérése

A méréshez több súlyra, egy kétkarú emelőre, valamint egy rúdra is szükségünk van. A kétkarú mérleget terhelve, felfelé húzzuk majd a rudat, így hajlítva azt. A "elhajlást" egy mérőórával tudjuk mérni, aminek 0.01mm-es beosztása van.

A mintának mindig terheltnek kell lennie. Az F tehelő erő mindig adott k szorosa a kétkarú emelőre helyetezett súlynak. Kezdetben állandó mintahossz mellett a terhelő erő függvényében kell megmérnünk a lehajlást. Az illesztett egyenes meredekségéből kiszámolhatjuk a minta Young-moduluszát. Ezután változó mintahossz mellett mérjük a lehajlást állandó terhelőerő mellett. A meredekségek függvényében adott anyag Young-modulusza a következő képpen számolható:

$$E = \frac{1}{48} \frac{l^3}{m_1 I_{minta}}$$

$$E = \frac{1}{48} \frac{F}{m_2 I_{minta}}$$

Adott I_{minta} másodrendű nyomatékú, vagyis adott formájú mintára így meghatározható a Young-modulusz értéke. Ez nagyságrendileg általában a GPa-os tartományba esik.

A mérés során különböző hibaforrásokat kell figyelmbe venni. A minták méreteit csavarmikrométerrel 0.5 mm-es pontossággal lehet csak meghatározni. A Young-modulusz relatív hibáját a két esetben a követekző képletek adják meg, figyelembe véve a hibaterjedést:

$$\delta E = 3\delta l + \delta m_1 + \delta I$$

$$\delta E = \delta m_2 + \delta I$$

Ehhez hasonlóan kell majd a tehetelenségi nyomatékoknál hibát számolni. A megfelelő képleteket, majd akkor közlöm, amikor a mérés kiértékelése során az esedékes lesz. Mérési feladat volt még:

• Téglalap alakú minta (A4) mindkét élére méréseket kell végezni, és belátni, hogy az s(F) (lehajlás-erő) függvényből kapott meredekségek aránya, megegyezik a különböző másodrendű nyomatékok arányával.

2. A torziós modulusz mérése

A vékony huzal torziós moduluszát a belőle készített torziós ingával tudjuk megmérni. A torziós modulusz és az inga lengésideje között fenáll:

$$G = K \frac{\Theta}{T^2}$$

Ahol $K=\frac{8\pi l}{r^4}$ a huzal paramétereit tartalmazó állandó. Ahogy korábban már leírtam, a méréshez két súlyt használunk majd. Ezeket a távolságra helyezzük el a felfüggesztéstől. A lengésidő négyzete és a^2 között lineáris a kapcsolat:

$$T^{2} = \frac{K}{G}(\Theta_{empty} + \Theta_{weigths}) + \frac{KM}{G}a^{2}$$

Ennek az egyenesnek a meredekségéből meg tudjuk határozni a torziós moduluszt, a tengely-metszetből pedig az üres inga tehetelenségi nyomatékát. Annak ismeretében, hogy kihasználjuk, hogy a súlyok tehetelenségi nyomatéka:

$$\Theta_{S_i} = \frac{1}{2} m_i R_i^2$$

A torziós ingával egy ismeretlen test tehetelenségi nyomatékát is meg lehet határozni. Ha a tárcsák nincsnek felhelyezve, akkor egy $\Theta_{unknown}$ ismeretlen tehetetlenségi nyomaték:

$$T^2 = \frac{K}{G}(\Theta_{empty} + \Theta_{unknown})$$

Ahol a jegyzetben diszkutáltak alapján, G/K = M/m és $\Theta_{empty} = bM/m$ - $\Theta_{weigths}$. Ezeket helyettesítve:

$$\Theta_{unknown} = \frac{M}{m}(T^2 - b) + \Theta_{weigths}$$

Ahol b a korábban felírt T^2 és a^2 közötti lineáris összefüggés tengelymetszete. Tehát azt kaptuk, hogy a lengésidő mérésével meghatározhatjuk egy adott test tehetetlenségi nyomatékát. Meg kell jegyeznem, hogy itt a test a forgástengelyre van helyezve.

Mérési feladatok:

- A torziós szál sugarának pontos mérési 8-10 ponton, mivel ennek hibája igen jelentős eltérést eredményezhet.
- 10 lengés periódusidejének elektronikus mérése, minden tárcsahelyzetben, azaz a változtatása mellett.
- Tehetelenségi nyomatékot is mérnünk kell. Ennek elméletét fentebb ismertettem.
- Meg kell határoznunk a torziós moduluszt és a Θ_{empty} tehetelnségi nyomatékot (az inga nyomatéka), és ezen mennyiségek hibáit.

A mérések

Lehajlás mérése

Az S1-es minta (egy hengeres, réz színű rúd) terhelőerő elhajlás adatai, vannak közötte ugyanolyan terhelések is, mivel k*m-ben a tagok különbözőek lehetnek. Ez a mérés szerint nem számít. A minta mért paraméterei és erő-lehajlás adatok:

átmérő[mm]
10.45
10.42
10.41

Amiből ennek átlagát tekintem majd az átmérőnek és ennek felét a sugárnak, ami $r_{S1} = 0.005213 \pm 0.0000008 \, m$, hibáját, pedig a legnagyobb átlagos eltérésnek vettem.

F[N]	lehajlás[m]
9.81	0.00044
19.62	0.00080
24.525	0.00097
9.81	0.00038
14.715	0.00056
24.525	0.00091
19.62	0.00067
14.715	0.00057
24.525	0.00092
29.43	0.00110
39.24	0.00144

Ezt grafikonon ábrázolva, az illesztett egyenes hozzárendelési szabálya, valamint az illesztés meredekségének relatív hibája a *Gnuplot* által meghatározva. :

$$s(F) = m_1 * F + b$$
$$s(F) = 3.54821(e - 05) * F + 5.27401(e - 05)$$
$$\delta m_1 = 3.919\%$$

A második A4-es mintát, ami egy hasáb volt a hosszabb és rövidebb oldalára fektetve és mértem. A mért minta paraméterei és az erő-lehajlás adatok:

a[mm]	b[mm]
12.24	8.34
12.44	8.43
12.44	8.43

Amiből a minta hosszabbik oldala $a=0.012373\pm0.000008~m$ és a rövidebbik oldala $b=0.0084\pm0.000012~m$, ezeket a mért értékek átalagként, hibájukat a legnagyobb eltérésként határoztam meg.

A rövidebb oldal esetén:

F[N]	lehajlás[m]
14.715	0.00030
19.62	0.00039
24.525	0.00041
29.43	0.00054
39.24	0.00072
49.05	0.00088
58.85	0.00105
78.48	0.00138
98.1	0.00169
98.1	0.00166

Az itt megfelőle illesztés grafikonja, a meredekség hibája és az illesztett egyenes:

$$s(F) = m_2 * F + c$$

$$s(F) = 1.67029(e - 05) * F + 4.99667(e - 05)$$

$$\delta m_2 = 1.498\%$$

A hosszabb oldal esetén:

F[N]	lehajlás[m]
7.3575	0.00025
9.81	0.00035
12.2625	0.00044
29.43	0.00109
14.715	0.00055
19.62	0.00073
29.43	0.00111
39.24	0.00142
39.24	0.00149
24.525	0.00095

Az pontok, és rájuk illesztett egyenes grafikonja:

Az illesztett egyenes, annak meredeksége és meredekségének hibája:

$$s(F) = m_3 * F + d$$

$$s(F) = 3.77587(e - 05) * F - 1.39489(e - 05)$$

$$\delta m_3 = 1.858\%$$

A mérési feladat része volt, hogy meghatározzam, hogy $\frac{m_2}{m_3}$ arány mennyire egyezik meg, a hozzájuk tartozó másodrendű nyomatékok arányával. Ez a következő képpen alakul:

$$\frac{m_2}{m_3} = \frac{1.64545}{3.80511} \approx 0.43$$

$$\frac{I_{A4,2}}{I_{A4,1}} = \frac{4.896307}{11.1191771} \approx 0.44$$

Itt felhasználom a másodrendű nyomatékok később ismertetett értékét, de ezt a továbbiak során közlöm majd. Jól látható azonban, hogy a mérési eredmények viszonylag jól tükrözik a valóságot, mivel a két érték szinte pontosan egybeesik.

Ezután mértem meg a hossz függvényében a elhajlást. Ehhez szükség volt egy akkor sújra ami 2mm-es megengedett maximális elhjlást még éppen nem haladja meg, ezt a hejlytást úgy kellett elérni, hogy egy alapfeszültésg mindíg legyen a rúdban, ami mindig s_0 terhelést adott azS1-es mintának(ez 9.81N volt), valamint a 400mm-es maximális hossznál kellett elérni, ez 39.24N erő volt. Így a kettő közötti különbség 27.54N volt az erő amivel terheltem a mintát, miközben a minta alátámasztás távolságát változtattam.

hossz[mm]	$s_0[\mathrm{mm}]$	s[mm]	$\Delta s[\mathrm{mm}]$
400	0.91	1.93	1.02
380	0.78	1.70	0.97
360	0.73	1.51	0.78
340	0.68	1.35	0.67
320	0.62	1.18	0.56
300	0.60	1.06	0.46
280	0.54	0.92	0.38
260	0.51	0.81	0.30
240	0.48	0.72	0.24
220	0.44	0.62	0.18
200	0.43	0.57	0.14

Az ezen pontokra (hossz - elhajlás) illesztett egyenes és grafikonjuk:

Hossz - Elhajlas fuggv'enye allando terheles mellett

$$s(l) = m_4 * l + e$$

$$s(l) = 0.00459091 * l - 0.859091$$

$$\delta m_4 = 5.667\%$$

Lehajlás méréseinek kiértékelése

A mérés első felében állandó hossz mellett, erőmérés útján határozható meg az adott minta Young-modulusza és annak relatív hibája:

$$E = \frac{1}{48} \frac{l^3}{m_2 I_{minta}}$$
$$\delta E = 3\delta l + \delta m + \delta I$$

Ahol az S1-es minta, lévén hengeres alakú másodrendű nyomatéka és annak hibája:

$$I_{S1} = \frac{r_{S1}^4 \pi}{4} = 5.8(e - 10)m^4$$
$$\delta I = 4\delta r_{S1} = 4\frac{\Delta r_{S1}}{r_{S1}}$$
$$\delta I = 0.01918$$

Innen a Young-modulusz az S1-es mintára:

$$E = \frac{1}{48} \frac{l^3}{m_1 I_{S1}} = 64.789GPa$$

$$\delta E = 3 \frac{\Delta l}{l} + \delta m + 4 \delta r_{S1} = 0.0076$$

$$E_{S1} = 64.789 \pm 0.49GPa$$

Ez a Young-modulusz közeli egyezést mutat valamiféle rézötvözet rugalmassági moduluszával. Most kiszámolva a hasáb másodrendű nyomatékait és azok relatív hibáit:

$$I_{A4,1} = \frac{ab^3}{12} = 10(e - 9)m^4$$

$$\delta I_{A4,1} = \delta a + 3\delta b = 0.0018$$

$$I_{A4,2} = \frac{ba^3}{12} = 6.14(e - 10)m^4$$

$$\delta I_{A4,2} = \delta b + 3\delta a = 0.0183$$

Ezekből már számítható a Young-modulusz értéke:

$$E_{A4,1} = \frac{1}{48} \frac{l^3}{m_2 I_{A4,1}} = 79.41234 GPa$$

$$E_{A4,2} = \frac{1}{48} \frac{l^3}{m_3 I_{A4,2}} = 55.18764 GPa$$

$$\delta E_{A4,1} = 3\delta l + \delta m_2 + \delta I_{A4,1} = 0.0184$$

$$\delta E_{A4,2} = 3\delta l + \delta m_3 + \delta I_{A4,2} = 0.0178$$

$$E_{A4} = \frac{E_{A4,1} + E_{A4,2}}{2} = 67.29999 \pm 1.21812 GPa$$

A két tengelyre vonatkoztatott Young-modulusz mérés átlagából meghatároztam a minta rugalmas állandóját. Ennek értéke, pedig valamilyen tiszta alumínium Young-moduluszához közeli.

Amikor pedig állandó terhelés mellett mértem a hossz változtatásával az S9-es mintát, akkor a Young-modulusz értéke a következő összefüggés alapján határozható meg:

$$E = \frac{1}{48} \frac{F + F_0}{m_4 I_{S9}} =$$

$$\delta E = \delta m_4 + \delta I_{S9}$$

$$E = 307.07 \pm 3.98289 GPa$$

Ez az érték nagyon eltér az első értéktől ami mindenképpen annak tudható be, hogy vagy a számolásnál vagy a mérésnél rontottam el valamit.

Torzió és tehetetlenségi nyomaték mérése

A torziós szál hossza $l=0.591\pm0.001~m$. A torziós szál átmérője a mérések alapján:0.7mm Ebből a torziós szál sugara $r=0.00035\pm0.000005~m$. Hibáját a legnagyobb átlagos eltérésnek tekintem.

Ezután kezdtem el mérni a tárcsákat felhelyezve az inga lengéisdejét. Ezt a következő táblázatba foglalva közlöm:

a[cm]	10T[s]
10	76.474
9	69.792
8	63.547
7	57.288
6	51.353
5	45.658
4	40.000
3	35.839
0	28.779

A jegyzetben leírtak szerint T második és a második hatváya között lineáris összefüggés áll fenn:

$$T^2 = \frac{K}{G}(\Theta_{empty} + \Theta_{weigths}) + \frac{KM}{G}a^2$$

Ezt ábrázolva az illesztett egyenes egyenlete:

Lengesido negyzete a tavolsag fuggvenyeben

$$T^{2}(a^{2}) = m * a^{2} + b$$

$$T^{2}(a^{2}) = 51784.8 * a^{2} - 51.593$$

$$\delta m = 11.68\%$$

$$\delta b = 761.7\%$$

Ahol $G=\frac{KM}{m}$, és $K=\frac{8\pi l}{r^4}$ valamint M, pedig az ingára tett tárcsák összes súlya. Ezek rendre $m_5=0.1962036~kg$ és $m_6=0.1962036~kg$. Tehát $M=m_1+m_2$. Ebből:

$$G = \frac{KM}{m} = 9.89816MPa$$

$$\delta G = 4\delta r + \delta l + \delta m = 0.057$$

$$G = 9.89816 \pm 0.5664MPa$$

Így megkaptam a szál torziós moduluszát. Meg kell még határozni azonban az inga tehetelenségi nyomatékát:

$$\Theta_{empty} = \frac{G}{K}b - \sum_{i=1}^{2} \frac{1}{2}m_i R_i^2$$

$$\delta\Theta_{empty} = \delta G + \delta K + 2\delta R + \delta b = 0.13583$$

$$\Theta_{emtpty} = 0.00022 \pm 51kg \frac{m^2}{s}$$

A hiba az illesztés pontatlanságából adódhatott ilyen nagynak.

Ezután kezdtem el mérni a téglatest 10 lengés idejét mindkét oldalára.

Fekve 10T[s]	Oldalt 10T[s]
42.047	41.651
42.061	41.650
42.046	41.655

A mérési eredmények átlaga 41.8515s nak adódott.

Feladatom volt az ismeretlen tömegő test, tömegének meghatározása a már ismert Young-modulus-ú torziós szállal mért lengésidőből.

Az időmérés hibáját elhanyagolom, lévén, hogy ezt egy precíziós műszer mérte, és nem számottevő. A következő összefüggést használva:

A mérési pontokból számított ismeretlen test tömege a fenti képlet alapján:

$${\rm M} = 292.638 {\rm g} {\pm} 16.68 g$$

Összegzés

A mérési eredmények nagyjából pontosnak bizonyultak, bár az illasztések hibáiból látható, hogy lehetett volna pontosabban mérni. Az üres inga tehetetetlenségi nyomatéka nagy valószínűséggel zérus körüli. A minták anyagilag nagyjából beazonosíthatóak voltak.