Теория игр в топологии

Содержание

🕕 Игры на пространстве Бэра

Игры на пространстве Бэра

Пусть Y множество и $U\subset Y^\omega$. Для $\bar x=(x_0,x_1,...,x_n)\in Y^{<\omega}$ положим

$$U/\bar{x} = \{\bar{y} \in Y^{\omega} : \bar{x} \cap \bar{y} \in U\}.$$

Пусть $\bar{p} \in Y^{2n}$.

Определим булеву игру с нулевой суммой $G(Y, U; \bar{p})$ с двумя игроками α и β .

0-ой ход. Игрок α выбирает $y_0 \in Y$. Игрок β выбирает $y_1 \in Y$. **n-ый ход.** Игрок α выбирает $y_{2n} \in Y$. Игрок β выбирает $y_{2n+1} \in Y$.

После счетного числа ходов игрок α выиграл если $\bar{p}^{\frown}(y_n)_{n\in\omega}\in U.$

Игру $G(Y,U;\bar{p})$ можно трактовать следующим образом: игроки сначала сделали n ходов \bar{p} , потом продолжили игру G(Y,U). Игра $G(Y,U;\bar{p})$ эквивалентна игре $G(Y/\bar{p},U)$. Пусть s есть стратегия для игрока $\gamma\in\{\alpha,\beta\}$ и $q=(q_0,...,q_{n-1})\in Y^n$. Обозначим через s*q частичную партию $p\in Y^{2n}$, которая получается после n ходов, когда игрок γ следует стратегии s а противник на k-ом ходу выбирает q_k . Стратегию s для γ назовем s0 оборонительной (defensive strategy) если

Обозначим

$$Y^{2,<\omega}=\left(Y^2
ight)^{<\omega}=igcup_{n\in\omega}Y^{2n},$$
 $W_lpha=\{ar p\in Y^{2,<\omega}:\$ игра $G(Y,U;ar p)\ lpha$ —благопритна $\},$ $W_eta=\{ar p\in Y^{2,<\omega}:\$ игра $G(Y,U;ar p)\ eta$ —благопритна $\}.$

Игра G(Y, U) со счетным U

Theorem 1.1.

Пусть U не более чем счетно. Тогда G(Y,U) β -благоприятна.

Пусть $U=\{u_n:n\in\omega\}$, $u_n=(u_{n,0},u_{n,1},...)$. Выигрышня стратегия для игрока заключается в следующем: на n-ом ходу игрок β выбирает y_{2n+1} таким образом, что $y_{2n+1}\neq u_{n,2n+1}$.

Theorem 1.2.

Пусть $|U| < 2^{\omega}$. Тогда G(Y, U) α -неблагопричтна.

Пусть s есть некоторая стратегия игрока α . Пусть $Q\subset Y^\omega$, которые смогут сыграть игроки когда α придерживается стратигии α . Тогда $|Q|=2^\omega$. Пусть $y\in Q\setminus U$ и q есть такая стратегия β , что результат игры равен y. В этакой партии игрок β стратегией q оправерг стратегию s игрока α .