GPU: **Graphics** Processing Units

Arquitetura de Computadores Mestrado Integrado em Engenharia Informática

Material de Apoio

- "Computer Organization and Design: The Hardware / Software Interface"
 David A. Patterson, John L. Hennessy; 5th Edition, 2013
 - Secções 6.6 e 6.11
 - Material Complementar Avançado: Apêndice C
- Material complementar:
 - "Understanding Bandwidth and Latency":
 http://archive.arstechnica.com/paedia/b/bandwidth-latency/bandwidth-latency-1.html

Controladores gráficos –80's

 Nos anos 80 era responsabilidade do CPU gerar a imagem gráfica e copiá-la para um espaço de endereçamento conhecido como frame buffer, de onde era depois convertida em sinais analógicos e enviada para o display

Nome	Resolução	Cores
MDA (1981)	Caracteres (80x25)	B/W
CGA (1981)	640x200	16
EGA (1984)	640x350	16 de uma palette de 64
VGA (1987)	640x480	16

GPUs – 90's

 Na década de 90 aparecem os GPUs, como co-processadores que aliviam o CPU dessa carga

- Extremamente paralelos O(pixels)
- Apenas processavam gráficos
- Toda a lógica era replicada para providenciar paralelismo, mas estas unidades não eram programáveis

GPUs - 2000 .. 2004

- O aumento do número de transístores (Lei de Moore) permitiu flexibilizar os GPUs
- Alguns componentes do pipeline passam a ser programáveis, dando origem ao que se chamou de shader programming

CPU-style core

Core elementar

• Remover toda a complexidade de controlo que explora ILP

2 cores elementares

16 cores elementares

16 cores = 16 simultaneous instruction streams

Streaming Multi Processor (SM)

- Amortizar a complexidade usando a mesma stream de instruções para as várias ALUs (unidades funcionais ou stream processor (SP))
- Nota: um único *Instruction Pointer* por SM
- SIMT: Single Instruction Multiple Threads

Múltiplos SM por GPU

 Neste exemplo, 16 SMs com 8 SPs = 128 threads a executar simultaneamente (threads do mesmo SM executam a MESMA instrução)

NVIDIA Kepler GK110

15 (SMX) * 192 integer cores = 2880 integer cores

2-way In-order

NVIDIA Kepler SMX

192 FP/Int 64 DP 32 LD/ST SMX Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Register File (65,536 x 32-bit) LEJET SFU LDIST SFU LEAST SFU LEVST SFU LOVST SFU LEVET SFU LEXST SFU LD/ST SFU LD/ST SFU LOVET SFU LIDJST SFU LEAST SFU LIDJST SFU LIDJST SFU LEVST SFU LD/ST SFU LIDJST SFU LEVST SFU 64 KB Shared Memory / L1 Cache 48 KB Read-Only Data Cache Tex Tex

256KB!

Partitioned (user-defined)

Nvidia Turing TU102-400A (3,Dez,2018)

Note: The TU102 GPU also features 144 FP64 units (two per SM), which are not depicted in this diagram.

Nvidia Turing (2018)

Table 1. Comparison of NVIDIA Pascal GP102 and Turing TU102

GPU Features	GTX 1080Ti	RTX 2080 Ti	Quadro P6000	Quadro RTX 6000
Architecture	Pascal	Turing	Pascal	Turing
GPCs	6	6	6	6
TPCs	28	34	30	36
SMs	28	68	30	72
CUDA Cores / SM	128	64	128	64
CUDA Cores / GPU	3584	4352	3840	4608
Tensor Cores / SM	NA	8	NA	8
Tensor Cores / GPU	NA	544	NA	576
RT Cores	NA	68	NA	72
GPU Base Clock MHz (Reference / Founders Edition)	1480 / 1480	1350 / 1350	1506	1455

[NVIDIA TURING GPU ARCHITECTURE: Graphics Reinvented; Nvidia 2018]

Figure 4. Turing TU102/TU104/TU106 Streaming Multiprocessor (SM)

Desempenho GPUs (2013)

Theoretical GFLOP/s

Estruturas Condicionais

- Todos os SPs de um mesmo SM executam a mesma instrução.
- Como lidar então com estruturas condicionais?
- Divergência do código:
 - Dividir as threads
 - Executar um dos caminhos da condição
 - Executar o outro caminho da condição
 - Combinar no fim
- Penalização do desempenho


```
<unconditional
 shader code>
if (x > 0) {
    y = pow(x, exp);
    y *= Ks;
    refl = y + Ka;
} else {
    x = 0;
    refl = Ka;
<resume unconditional</pre>
shader code>
```



```
<unconditional
 shader code>
if (x > 0) {
    y = pow(x, exp);
    y *= Ks;
    refl = y + Ka;
  else {
    x = 0;
    refl = Ka;
<resume unconditional</pre>
shader code>
```



```
<unconditional</pre>
 shader code>
if (x > 0) {
    y = pow(x, exp);
    y *= Ks;
    refl = y + Ka;
  else {
    x = 0;
    refl = Ka;
<resume unconditional</pre>
shader code>
```

Memória: latência e largura de banda

- Os GPUs modernos são massivamente paralelos, processando centenas ou milhares de elementos de dados em cada ciclo do relógio
- As ligações entre o GPU e a memória são muito largas, no sentido em que um elevado número de bits é transferido em cada ciclo

Consequência: elevada largura de banda

Uma largura de banda elevada resulta numa latência elevada

É fundamental esconder esta latência, mantendo as unidades de processamento ocupadas

Memória: largura de banda (2013)

Hierarquia de memória e working set

 Os GPUs processam grandes quantidades de dados (na ordem dos MibiBytes) para gerar uma única imagem. Embora possam exibir boa localidade espacial, a localidade temporal é normalmente baixa.
 Consequência: baixa hit-rate (~90%) versus CPU (~99.9%)

 É necessário um mecanismo complementar para esconder a latência

Configurable Shared Memory and L1 Cache

 Sempre que um conjunto de threads em execução num SM bloqueia à espera de resposta da memória, o SM muda de contexto e executa outro conjunto de threads cujos dados estejam disponíveis -> thread interleaving

- Este mecanismo requer que:
 - A mudança de contexto seja extremamente rápida
 - Existam muitas mais threads do que SPs (milhares de threads)

Consequência: requer programas massivamente paralelos cujas tarefas sejam de grão muito fino!

Comunicação CPU – GPU

GPUs em placas gráficas

- Bottleneck: Os dados têm que ser transferidos da memória do sistema para a memória da placa (e os resultados eventualmente transferidos no outro sentido) através do barramento PCI
- Tendência: Integração do CPU com o GPU, reduzindo o custo de comunicação entre ambos
 - AMD A-Series
 - Intel Sandy Bridge
 - NVIDIA Tegra2

Processadores Heterogéneos

NVIDIA Tegra 2

AMD APU

Modelos de Programação

Model	GPU	CPU Equivalent	
Vectorizing Compiler	PGI CUDA Fortran	gcc, icc, etc.	
"Drop-in" Libraries	cuBLAS	ATLAS	
Directive-driven	OpenACC, OpenMP-to-CUDA	OpenMP	
High-level languages	nyCUDA OpenCL CUDA	python	
Mid-level languages	pyCUDA, OpenCL, CUDA	pthreads + C/C++	
Low-level languages	-	PTX, Shader	
Bare-metal	Assembly/Machine code	SASS	

GEMM "à la CUDA" - CPU code

```
#define N 512
#define Ne (N*N)
float A[Ne], B[Ne], C[Ne];
main () {
  float *devA, *devB, *devC;
  ini matrix (Ne, A, B);
  GPU Alloc (Ne, devA, devB, devC);
  MemCpy (CPU2GPU, Ne, A, devA, B, devB);
  GPU GEMM <<< Ne threads >>> (N, devA, devB, devC);
  MemCpy (GPU2CPU, Ne, devC, C);
  GPU Free (devA, devB, devC);
  printf ("That's all, folks!\n");
```

GEMM "à la CUDA" – GPU code

```
/*
 * Note: there are as many threads as elements in
 * each matrix
 * /
GPU_GEMM (int N, float *A, float *B, float *C) {
  const int tid = get my tid();
  // each GPU thread will process an element of C
  const int row = tid /N, col = tid % N;
  float lc=0.0;
  for (int k=0; k<N; k++)
    lc += A[row*N+k] * B[k*N+col];
 C[tid] = lc;
```