Mathematical Formulae A Book of High School and Engineering Common Core Mathematical Formulae

Agnij Mallick

December, 2020

Contents

T	AI	gebra				
1	Log	Logarithm				
	1.1	Basic Formulae				
	1.2	Series				
2	Complex Numbers					
	2.1	Basic Formulae				
	2.2	Arithmetic Operation of Complex Number				
	2.3	Euler's Formula				
	2.4	Trigonometric Ratios in Complex Form				
	2.5	De Moivre's Formula				
	2.6	Application of Euler's and De Moivre's Formula				
	2.7	Roots of Unity				
	2.8	Important Relations of Complex Numbers				
3	Progression					
	3.1	Arithmetic Progression (A.P.)				
		3.1.1 Sum of A.P. Series				
		3.1.2 Important Relation				
	3.2	Geometric Progression (G.P.)				
		3.2.1 The Value of 'r'				
		3.2.2 Sum of a G.P. Series				
		3.2.3 Important relations				
	3.3	Harmonic Progression (H.P.)				
	3.4	Arithmetico-Geometric Progression (A.G.P.)				
		3.4.1 Sum of A.G.P.:				
	3.5	Special Series				
		3.5.1 Riemann Zeta Function				
		3.5.2 Riemann's Infinite Series as an Integration				
4	Test of Convergence of Infinite Series					
_	4.1	Definition				
	4.2	Tests of Convergence				
		4.2.1 Comparison Test				

	4.2.2 Limit Form 4.2.3 Integral Test or Maclaurin-Cauchy Test 4.2.4 Ratio Test 4.2.5 D'Alembert's Ratio Test 4.2.6 Rabbe's Test 4.2.7 Cauchy's Root Test 4.2.8 Logarithmic Test	10 10 11 11 11 11 12
5	Determinants 5.1 Definition 5.1.1 Minor and Cofactor 5.2 Properties of Determinants 5.3 Cramer's Rule 5.3.1 Consistency Test 5.3.1 Consistency Test	13 13 13 14 15
6	Matrices 6.1 Sum of Two Matrices 6.2 Multiplication of Two Matrices 16 6.2.1 Multiplicative Properties 6.3 Adjoint of a Matrix 6.4 Martin's Rule	16 16 16 17 17
7	Binomial Theorem 7.1 Expansion of a binomial expression 7.2 Trinomial Expansion 7.3 Properties of Coefficients 7.4 Pascal's Rule	18 18 18 18 19
	Remainder Theorems 9.1 Remainder Theorem	20 21 21 21 21 22
II	Co-ordinate Geometry	24
10	2-D Co-ordinate Geometry	25
11	Triangles	26
12	Straight Line 12.1 Equation of Straight Line Passing Through (x_0, y_0) and Slope m	27 27 27 27

—Part I— Algebra

Logarithm

1.1 Basic Formulae

For $a^x = b$:

$$\log_a x, \forall x \le 0 \text{ is undefined} \tag{1.1}$$

$$\log_a b = x, bax \neq 1, a \neq 1 \tag{1.2}$$

$$\log_b a^m = m \log_b a, \text{ for } a^m = b \tag{1.3}$$

$$a^{\log_a x} = x \tag{1.4}$$

$$a^{\log_b c} = c^{\log_b a} \tag{1.5}$$

$$\frac{1}{\log_a b} = \log_b a \tag{1.6}$$

$$\log_c(ab) = \log_c a + \log_c b \tag{1.7}$$

$$\log_c \left(\frac{a}{b}\right) = \log_c a - \log_c b \tag{1.8}$$

$$|\log_a x| = \begin{cases} -\log_a x, & \text{if } 0 < x < 1\\ \log_a x, & \text{if } 1 \le x < \infty \end{cases}$$
 (1.9)

1.2 Series

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \lim_{n \to \infty} \sum_{i=0}^n \frac{x^i}{i!}$$
 (1.10)

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \lim_{n \to \infty} \sum_{i=1}^{n} (-1)^{(i-1)} \frac{x^i}{i}$$
 (1.11)

-Chapter 2-

Complex Numbers

2.1 Basic Formulae

For z = x + iy,

$$|z| = \sqrt{x^2 + y^2} \tag{2.1}$$

$$an \theta = \frac{y}{x} \tag{2.2}$$

$$\bar{z} = x - iy \tag{2.3}$$

2.2 Arithmetic Operation of Complex Number

For two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$:

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$
(2.4)

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$$
(2.5)

$$|z_1 z_2| = |z_1| \cdot |z_2| \tag{2.6}$$

$$\frac{z_1}{z_2} = \frac{(x_1 x_2 + y_1 y_2) + i(x_2 y_1 - x_1 y_2)}{a_2^2 + b_2^2}$$
(2.7)

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}\tag{2.8}$$

2.3 Euler's Formula

$$z = re^{i\theta}$$
, where (2.9)

$$r = |z| \tag{2.10}$$

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{2.11}$$

$$\theta = \arctan\left(\frac{y}{x}\right) \tag{2.12}$$

2.4 Trigonometric Ratios in Complex Form

$$e^{i\theta} + e^{-i\theta} = 2\cos\theta \tag{2.13}$$

$$\Rightarrow \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \tag{2.14}$$

$$e^{i\theta} - e^{-i\theta} = 2\sin\theta \tag{2.15}$$

$$\Rightarrow \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2} \tag{2.16}$$

2.5 De Moivre's Formula

According to DeMoivre's Formula:

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \tag{2.17}$$

Proof

$$\cos \theta + i \sin \theta = e^{i\theta}$$

$$\Rightarrow (\cos \theta + i \sin \theta)^n = e^{n(i\theta)}$$

$$= \cos(n\theta) + i \sin(n\theta)$$
Q.E.D.

2.6 Application of Euler's and De Moivre's Formula

For $z_1 = |r_1| e^{i\theta_1}$ and $z_2 = |r_2| e^{i\theta_2}$

$$z_1 z_2 = (r_1 r_2) e^{i(\theta_1 + \theta_2)}$$
(2.18)

$$\frac{z_1}{z_2} = \left(\frac{r_1}{r_2}\right) e^{i(\theta_1 - \theta_2)} \tag{2.19}$$

2.7 Roots of Unity

$$\sqrt[n]{1} = e^{i\frac{2k\pi}{n}}$$
, where $k \in [0, n-1]$ (2.20)

2.8 Important Relations of Complex Numbers

$$|z_1 + z_2| \le |z_1| + |z_2| \tag{2.21}$$

$$|z_1 - z_2| \le |z_1| + |z_2| \tag{2.22}$$

$$|z_1 - z_2| \ge |z_1| - |z_2| \tag{2.23}$$

$$|z_1 + z_2| \ge ||z_1| - |z_2|| \tag{2.24}$$

$$|z_1 + z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$
 (2.25)

Progression

3.1 Arithmetic Progression (A.P.)

An arithmetic sequence is $a, a+n, a+2n, ...\infty$ or $t_n = a+(n-1)d$, where a is the first term, d is the common difference, and n is the n^{th} -term.

An arithmetic series is $a + (a + d) + (a + 2d) + ...\infty$.

3.1.1 Sum of A.P. Series

$$S_{n} = a + (a + d) + \dots + (a + \overline{n - 2}d) + (a + \overline{n - 1}d)$$

$$S_{n} = (a + \overline{n - 1}d) + (a + \overline{n - 2}d + \dots + (a + d) + a$$

$$\Rightarrow 2S_{n} = n(2a + \overline{n - 1}d)$$

$$\Rightarrow S_{n} = \frac{n}{2}(2a + \overline{n - 1}d)$$
(3.1)

3.1.2 Important Relation

If the three terms a, b, c are in A.P., then

$$2b = a + c \tag{3.2}$$

3.2 Geometric Progression (G.P.)

An geometric sequence is $a, ar, ar^2, ...\infty$ or $t_n = ar^{n-1}$, where a is the first term, r is the common ratio, and n is the n^{th} -term. An geometric series is $a + ar + ar^2 + ...\infty$.

3.2.1 The Value of 'r'

$$r = \frac{t_2}{t_1} = \frac{t_3}{t_2} = \dots = \frac{t_n}{t_{n-1}}$$
 (3.3)

3.2.2 Sum of a G.P. Series

For a definite G.P. series, where there are n terms in the series, the sum of the series is:

$$S_n = \frac{a|r^n - 1|}{|r - 1|} \tag{3.4}$$

For an infite G.P. series the sum of the series is defined for r < 1. Sum of such a series is:

$$S_{\infty} = \frac{a}{1 - r} \tag{3.5}$$

3.2.3 Important relations

If the three terms a, b, c are in G.P., then:

$$b^2 = ac (3.6)$$

3.3 Harmonic Progression (H.P.)

If a, b, c are terms of an H.P. then $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.

$$\frac{2}{b} = \frac{1}{a} + \frac{1}{c} \tag{3.7}$$

$$\Rightarrow b = \frac{2ac}{a+c} \tag{3.8}$$

3.4 Arithmetico-Geometric Progression (A.G.P.)

Sequence $a, (a+d)r, (a+2d)r^2, ..., (a+\overline{n-1}d)r^{n-1}$, where $a \to \text{first term of A.G.P.}, d \to \text{common difference}$, and $r \to \text{common ratio}$.

3.4.1 Sum of A.G.P.:

For an infinite A.G.P. series, the sum is defined for r < 1:

$$S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2} \tag{3.9}$$

3.5 Special Series

For $n \in \mathbb{N}$

$$1 + 2 + 3 + \dots + (n-1) + n = \frac{n(n-1)}{2}$$
(3.10)

$$1^{2} + 2^{2} + 3^{2} + \dots + (n-1)^{2} + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
(3.11)

$$1^{3} + 2^{3} + 3^{3} + \dots + (n-1)^{3} + n^{3} = \left[\frac{n(n-1)}{2}\right]^{2}$$
(3.12)

3.5.1 Riemann Zeta Function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \tag{3.13}$$

3.5.2 Riemann's Infinite Series as an Integration

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=r_1}^{r_2} f(\frac{i}{n}) = \int_{\frac{r_1}{n}}^{\frac{r_2}{n}} f(x) dx \tag{3.14}$$

Test of Convergence of Infinite Series

If $a_1, a_2, a_3, ..., a_n$ is a sequence by a_n and their sum of series is S_n , then the following apply.

4.1 Definition

If

$$\lim_{n\to\infty} S_n = l$$

where l is a finite value, the series S_n is said to converge. A non-convergent series is called a divergent series.

4.2 Tests of Convergence

4.2.1 Comparison Test

If u_n and v_n are two positive series, then:

- 1. (a) v_n converges
 - (b) $u_n \leq v_n \forall n$ Then u_n converges.
- 2. (a) v_n diverges
 - (b) $u_n \ge v_n \forall n$ Then u_n diverges.

4.2.2 Limit Form

If

$$\lim_{x \to \infty} \frac{u_n}{v_n} = l$$

where l is a finite quantity $\neq 0$, then u_n and v_n converge and diverge together.

4.2.3 Integral Test or Maclaurin-Cauchy Test

For a series

$$\sum_{i=N}^{\infty} f(x), \text{ where } N \in \mathbb{Z}$$
 (4.1)

will only converge if the improper integral

$$\int_{N}^{\infty} f(x)dx \tag{4.2}$$

is finite.

If the improper integral is finite, the upper and lower limit of the infinite series is given by:

$$\int_{N}^{\infty} f(x)dx \le \sum_{i=N}^{\infty} f(x) \le f(N) + \int_{N}^{\infty} f(x)dx \tag{4.3}$$

4.2.4 Ratio Test

If, for two series $\sum u_n$ and $\sum v_n$:

- 1. (a) $\sum v_n$ converges
 - (b) from or after a particular term $\frac{u_n}{u_{n+1}} > \frac{v_n}{v_{n+1}}$, then u_n converges.
- 2. (a) $\sum v_n$ diverges
 - (b) from or after a particular term $\frac{u_n}{u_{n+1}} < \frac{v_n}{v_{n+1}}$, then u_n diverges.

4.2.5 D'Alembert's Ratio Test

$$\lim_{n \to \infty} \frac{u_n}{u_{n+1}} = \lambda \tag{4.4}$$

- series converges if $\lambda < 1$
- series diverges if $\lambda > 1$
- fails if $\lambda = 1$

4.2.6 Rabbe's Test

$$\lim_{n \to \infty} n \left[\frac{u_n}{u_{n+1}} - 1 \right] = \kappa \tag{4.5}$$

- series converges if $\kappa < 1$
- series diverges if $\kappa > 1$
- fails if $\kappa = 1$

4.2.7 Cauchy's Root Test

$$\lim_{n \to \infty} |u_n| = \lambda \tag{4.6}$$

- series converges for $\lambda < 1$
- series diverges for $\lambda > 1$
- test fails for $\lambda = 1$

4.2.8 Logarithmic Test

$$\lim_{n \to \infty} n \log \left(\frac{u_n}{u_{n+1}} \right) = \kappa \tag{4.7}$$

- series converges for $\kappa < 1$
- series diverges for $\kappa > 1$
- test fails for $\kappa = 1$

Determinants

5.1 Definition

For a determinant:

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$
 (5.1)

5.1.1 Minor and Cofactor

For a third order determinant

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Minor

$$M(a_{11}) = M_{11} = \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$$
 (5.2)

i.e., all the terms of determinant expect those in the same row and columns as the one of which the minor is being calculated.

Cofactor

$$C_{ij} = (-1)^{i+j} M_{ij} (5.3)$$

5.2 Properties of Determinants

1. Transposing a determinant does not alter its value.

$$\Delta = \Delta^T \tag{5.4}$$

2. If rows and columns are interchanges m times, the value of the new determinant is

$$\Delta' = (-1)^m \Delta \tag{5.5}$$

3. If two parallel lines are equal, then $\Delta = 0$

4. For
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $\Delta_1 = \begin{vmatrix} ka_1 & kb_1 & kc_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$, then $\Delta_1 = k\Delta$

5. For
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $\Delta_1 = \begin{vmatrix} ka_1 & b_1 & c_1 \\ ka_2 & b_2 & c_2 \\ ka_3 & b_3 & c_3 \end{vmatrix}$, then $\Delta_1 = k\Delta$

6. For
$$C_n \to k_1 C_l + k_2 C_m + k_3 C_n$$
 or $R_n \to k_1 R_l + k_2 R_m + k_3 R_n$, $\Delta' = \Delta$

5.3 Cramer's Rule

For a system of equations:

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

the following determinants are defined:

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$D_x = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$$

$$D_y = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}$$

$$D_z = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$$

The solution for the system of equations is:

$$x = \frac{D_x}{D} \tag{5.6}$$

$$y = \frac{D_y}{D} \tag{5.7}$$

$$z = \frac{D_z}{D} \tag{5.8}$$

5.3.1 Consistency Test

- 1. If $D \neq 0$, the system is consistent and has unique solutions.
- 2. If $D = D_x = D_y = D_z = 0$, the system may or may not be consisten and it will have infinite solutions and the system will be dependent.
- 3. If D=0 and at least one of D_x, D_y, D_z is non zero, the system is inconsistent

Matrices

For a matrix,

$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

and where I_p is an identity matrix of the p^{th} order, the following relations are applicable.

6.1 Sum of Two Matrices

$$A_{m \times n} + B_{m \times n} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{21} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$
(6.1)

6.2 Multiplication of Two Matrices

If

$$C_{m \times p} = A_{m \times n} \cdot B_{n \times p} \tag{6.2}$$

then,

$$c_{ik} = \sum_{j=1}^{n} a_{ij} \cdot b_{jk} \tag{6.3}$$

6.2.1 Multiplicative Properties

- 1. Multiplication of matrices is associative, hence (AB)C = A(BC).
- 2. AI = A

3.
$$A \cdot A^{-1} = I$$

4.
$$A \cdot (adjA) = (adjA) \cdot A = |A|I$$

5.
$$A^{-1} = \frac{1}{|A|} (adjA)^t$$

$$6. (AB)^t = B^t A^t$$

6.3 Adjoint of a Matrix

$$adjA = \begin{bmatrix} M_{11} & M_{12} & \cdots & M_{1n} \\ M_{21} & M_{22} & \cdots & M_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ M_{m1} & M_{m2} & \cdots & M_{mn} \end{bmatrix}^{t}, \text{ where } M_{ij} \text{ is the minor of } a_{ij}$$
(6.4)

6.4 Martin's Rule

For a system of equation,

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n$$

The system can be written as:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$(6.5)$$

$$\Rightarrow AX = B \tag{6.6}$$

$$\Rightarrow X = A^{-1}B \tag{6.7}$$

Binomial Theorem

For a binomial expansion $(a+b)^n$, there are (n+1) terms and $(a+b+c)^n$ has $\frac{(n+1)(n+2)}{2}$ terms.

7.1 Expansion of a binomial expression

$$(a+b)^{n} = {}^{n} C_{0} a^{n} b^{0} + {}^{n} C_{1} a^{n-1} b^{1} + {}^{n} C_{2} a^{n-2} b^{2} + \dots + {}^{n} C_{n} a^{0} b^{n}$$

$$= \sum_{i=0}^{n} {}^{n} C_{i} a^{n-i} b^{i}$$

$$\forall n \in \mathbb{N}$$

$$(a+b)^{n} = a^{n} b^{0} + n a^{n-1} b + \frac{n(n-1)}{2!} a^{n-2} b^{2} + \dots + \frac{n(n-1) \cdots 3 \cdot 2 \cdot 1}{n!} a^{0} b^{n} + \dots \infty$$

$$\forall n \in \mathbb{R}$$

$$(7.2)$$

7.2 Trinomial Expansion

For $(a+b+c)^n$:

$$(a+b+c+)^n = \sum_{i:j:k} \frac{n!}{i!j!k!} a^i b^j c^k$$

$$\forall (i+j+k) = n; i, j, k, n \in \mathbb{N}$$

$$(7.3)$$

7.3 Properties of Coefficients

Sum of Co-efficients:
$$C_0 + C_1 + C_2 + \dots + C_{n-1} + C_n = 2^n$$
 (7.4)

Sum of Odd Co-efficients:
$$C_0 + C_2 + C_4 + \dots + C_{2n-3} + C_{2n-1} = 2^{n-1}$$
 (7.5)

$$C_0 - C_1 + C_2 - \dots + C_{2n-1} - C_{2n} = 0 (7.6)$$

7.4 Pascal's Rule

For $1 \le k \le n$ and $k, n \in \mathbb{N}$:

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \tag{7.7}$$

-Chapter 8-

Boolean Algebra

Let B be a set of a, b, c with operations sum (+) and product (\cdot) . Then B is said to belong to the Boolean Structure if the following conditions are satisfied:

Table 8.1: Properties of Boolean Algebraic Structure

Property	Name of Property
$a+b \in B$	
$a \cdot b \in B$	Closure Property
a+b=b+a	
$a \cdot b = b \cdot a$	Associative Law
a(b+c) = ab + ac	
a + bc = (a+b)(a+c)	Commutative Law
$\{0,1\} \in B$	
a + 0 = a	
a + 1 = 1	
$a \cdot 0 = 0$	
$a \cdot 1 = a$	Laws of 1 and 0
a + ab = a	
a(a+b) = a	Absorption Law
(a+b)' = (a'b')	De'Morgan's Law

Remainder Theorems

9.1 Remainder Theorem

If a function f(x) is divided by a binomial x - a, then the remainder is provided by f(a).

$$\frac{f(x)}{x-a} \equiv f(a) \mod (x-a) \tag{9.1}$$

Worked Example

Find the remainder when $f(x) = x^3 - 4x^2 - 7x + 10$ is divided by (x - 2). The remainder:

$$R = (x^3 - 4x^2 - 7x + 10) \mod (x - 2)$$

is given by:

$$R = f(2) = (2)^3 - 4(2)^2 - 7(2) + 10$$
$$= 8 - 16 - 14 + 10 = -12$$

9.2 Euler's Remainder Theorem

According to Euler's Remainder Theorem, if x and n are two co-prime numbers:

$$x^{\varphi(n)} \equiv 1 \mod n, x, n \in \mathbb{Z}^+ \tag{9.2}$$

where, $\varphi(n)$ is Euler's totient function.

9.2.1 Euler's Totient Function

For a number defined as:

$$n = \prod_{i=1}^{r} a_r^{b_r} \tag{9.3}$$

then Euler's totient function is defined as:

$$\varphi(n) = n \cdot \left[\left(1 - \frac{1}{a_1} \right) \cdot \left(1 - \frac{1}{a_2} \right) \cdot \left(1 - \frac{1}{a_3} \right) \cdots \right]$$

$$= n \prod_{i=1}^r \left(1 - \frac{1}{a_r} \right)$$
(9.4)

Worked Example

Find the remainder if 3^{76} is divided by 35. Since:

$$35 = 5^1 \times 7^1$$

Hence the totient quotient of 35 is:

$$\varphi(35) = 35 \cdot \left(1 - \frac{1}{5}\right) \cdot \left(1 - \frac{1}{7}\right)$$
$$= 35 \times \frac{4}{5} \times \frac{6}{7}$$
$$= 24$$

Hence Euler's Theorem yields:

$$3^{24} \equiv 1 \mod 35$$

$$3^{76} \equiv 3^{24 \times 3 + 4}$$

$$\equiv (3^{24})^3 \times 3^4 \mod 35$$

$$\equiv (1)^3 \times 3^4 \mod 35$$

$$\equiv 81 \mod 35$$

$$\equiv 11 \mod 35$$

The remainder when 3^{76} is divided by 35 is 11.

9.3 Wilson Theorem

According to Wilson Theorem:

$$(n-1)! \equiv -1 \mod n \tag{9.5}$$

Worked Example

Find the remainder when 28! is divided by 31. By Wilson's Theorem:

$$30! \qquad \equiv -1 \mod 31$$

$$\Rightarrow 30 \cdot 29 \cdot 28! \qquad \equiv -1 \mod 31$$
Let 28! mod 31 \quad = x
$$\Rightarrow (-1) \cdot (-2) \cdot x \qquad \equiv 30 \mod 31$$

$$\Rightarrow 2x \qquad = 30$$

$$\Rightarrow x \qquad = 15$$

The remainder when 28! is divided by 31 is 15.

——Part II———Co-ordinate Geometry

2-D Co-ordinate Geometry

For the ordered pairs, $A(x_1, y_1)$ and $B(x_2, y_2)$:

$$AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
(10.1)

Mid point of AB =
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
 (10.2)

Point C, which divides AB in the ratio
$$m: n = \left(\frac{nx_1 + mx_2}{m+n}, \frac{ny_1 + my_2}{m+n}\right)$$
 (10.3)

Triangles

For a triangle defined with three vertices $A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$ and corresponding sides of length a, b, c, then:

Centroid of
$$\triangle ABC = (\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3})$$
 (11.1)

Area of
$$\triangle$$
 (11.2)

$$ABC = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$
 (11.3)

For a triangle, the semi-perimeter, s, is defined as:

$$s = \frac{a+b+c}{2}$$

Then the radius, r, and centre of incircle, o, is:

$$o = \left(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c}\right)$$
(11.4)

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$$
 (11.5)

(11.6)

The radius, R, and centre, O, of circumcircle is defined as:

$$O = \left(\frac{x_1 \sin 2A + x_2 \sin 2B + x_3 \sin 2C}{\sin 2A + \sin 2B + \sin 2C}, \frac{y_1 \sin 2A + y_2 \sin 2B + y_3 \sin 2C}{\sin 2A + \sin 2B + \sin 2C}\right)$$
(11.7)

$$2R = \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \tag{11.8}$$

Straight Line

A straight line can be defined as:

$$y = mx + c \tag{12.1}$$

$$\frac{x}{a} + \frac{y}{b} = 1$$
, where a and b are the intercepts at x and y axes respectively (12.2)

$$x\cos\alpha + y\sin\alpha = p \text{ (Normal Form)}$$
 (12.3)

$$Ax + By + C = 0$$
 (General Form) (12.4)

12.1 Equation of Straight Line Passing Through (x_0, y_0) and Slope m

$$(y - y_0) = m(x - x_0) (12.5)$$

12.2 Distance Between Two Points on a Line

$$\frac{y_1 - y_2}{\sin \theta} = \frac{x_1 - x_2}{\cos \theta} = \gamma \tag{12.6}$$

$$\theta = \tan^{-1} m \tag{12.7}$$

12.3 Angle Between Two Lines

For two lines with slopes m_1, m_2 , the angle between them, θ :

$$\theta = \arctan\left(\frac{m_1 - m_2}{1 + m_1 m_2}\right) \tag{12.8}$$

Distance of a Point from a Line

Line: ax + by + c = 0 Point: (g, h)

$$S = \frac{ag + bh + c}{\sqrt{a^2 + b^2}} \tag{12.9}$$

Angle Bisector of a Line For the two lines: $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, the angle bisector is:

$$\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$$
(12.10)

If the sign of c_1 and c_2 is the same, then the equation obtained is the internal bisector.

Equation of a Straight Line Passing through the Intersection of Two Lines

$$(a_1x + b_1y + c_1) + k(a_2x + b_2y + c_2) = 0 \ \forall k \in \mathbb{R}$$
 (12.11)

Relative Position of Points w.r.t. a Line For the points (x_1, y_1) and (x_2, y_2) :

$$k_1 = ax_1 + by_1 + c$$
$$k_2 = ax_2 + by_2 + c$$

If k_1 and k_2 have the same sign, they are on the same side of a line, otherwise on opposite sides.

Ratio of Division of Line Segment For any line, f(x,y) = 0, the ratio in which it divides (x_1, y_1) and (x_2, y_2) is given by:

$$r = -\frac{f(x_1, y_1)}{f(x_2, y_2)} \tag{12.12}$$

If $\begin{cases} r > 0, \text{ then division is internal} \\ r < 0, \text{ then division is external} \end{cases}$