ÁLGEBRA

CHAPTER 4

5th

of Secondary

TEMA:

Divisibilidad Polinómica II

MOTIVATING STRATEGY

EL "NEWTON" FRANCÉS

HELICO THEORY

TEOREMA DEL RESTO

Es un procedimiento que permite calcular el residuo de una división algebraica sin hacer uso del método del Horner.

$$D(x) \equiv d(x) \cdot Q(x) + R(x)$$

igualar a cero

Con la expresión del divisor igualada a cero se busca reducir el dividendo para obtener el residuo.

EJEMPLO

Calcule el resto de la siguiente división:

$$\frac{x^4 - 2x^3 + 2x + 6}{x - 2}$$

Resolución

POR TEOREMA DEL RESTO

1)
$$x - 2 = 0$$

2)
$$x = 2$$

3) Reemplazando en el Dividendo

$$R = (2)^4 - 2(2)^3 + 2(2) + 6$$

$$R = 10$$

TEOREMAS

Sea P(x) un polinomio no nulo.

- 1) Si P(x) entre (x-a) deja un resto R, entonces P(a)=R.
- 2) Si P(x) es divisible separadamente con (x-a) y (x-b), entonces P(x) es divisible con el producto (x-a)(x-b).
- 3) Si al dividir P(x) con (x-a) y (x-b) en forma separada y deja el mismo resto R en cada caso, entonces al dividir P(x) con el producto (x-a)(x-b) dejará el mismo resto R.
- 4) Si al dividendo y al divisor se le multiplica o divide con alguna expresión, el residuo también quedará afectado de la misma manera.

HELICO PRACTICE

$$\frac{(x+3)^7 + (x^2 - x - 7)^8 - 5x + 2}{x+2}$$

Resolución

$$d_{(x)}$$
: $x + 2 = 0$

$$x = -2$$

x = -2 Reemplazando:

$$R(x) = (-2 + 3)^7 + ((-2)^2 - (-2) - 7)^8 - 5(-2) + 2$$

$$R(x) = (1)^7 + (-1)^8 + 10 + 2$$

$$\therefore R(x) = 14$$

2) Halle el residuo de dividir.

$$\frac{(x+8)(x+6)(x-3)(x-1)+5}{x^2+5x-2}$$

Resolución

$$d_{(x)}$$
: $x^2 + 5x - 2 = 0$

$$x^2 + 5x = 2$$

$$R(x) = (x^2 + 5x - 24)(x^2 + 5x - 6) + 5$$

Reemplazando:

$$R(x) = (2-24)(2-6) + 5$$

$$R(x) = (-22)(-4) + 5$$

$$\therefore R(x) = 93$$

3) Halle el residuo que se obtiene al dividir.

$\frac{(x^8 + x^4 + x)(x+2)}{(x^4 - 2)(x+2)}$

Resolución

$$d_{(x)}$$
: $x^4 - 2 = 0$ $x^4 = 2$

$$R'(x) = (x^4)^2 + (x^4) + x$$

$$R'(x) = (2)^2 + (2) + x$$

$$R'(x) = x + 6$$

Reemplazando:

$$\therefore R(x) = (x+6)(x+2)$$

4) Obtenga el resto de dividir un polinomio P(x) entre (x-10) si se sabe que el término independiente del cociente es 5 y el término independiente de P(x) es 2.

Resolución

$$P(x) \equiv (x - 10).Q(x) + R(x)$$

$$P(x) \equiv (x - 10) \cdot Q(x) + r$$

Por dato:

$$T.I.[P(x)] = 2 = P(0)$$

$$T.I.[Q(x)] = 5 = Q(0)$$

$$P(0) \equiv (0 - 10).Q(0) + r$$

Reemplazando:

$$2 = (0 - 10).(5) + r$$

$$r = 52$$

 $\therefore resto = 52$

5) Al dividir el polinomio P(x) entre (x-4) y (x-2) se obtiene como residuo 9 y 5, respectivamente. Halle el resto de dividir P(x) entre el producto (x-4)(x-2).

Resolución

$$\frac{P(x)}{x-4} \to R(x) = 9 \implies P(4) = 9$$

$$\frac{P(x)}{x-2} \to R(x) = 5 \implies P(2) = 5$$

$$P(x) \equiv (x-4)(x-2).Q(x) + R(x)$$

(1° grado)

Por propiedad: R(x) = ax + b

$$P(4) = R(4)$$
 $P(2) = R(2)$

$$9 = 4a + b$$

$$P(2) = R(2)$$

$$5 = 2a + b$$

$$\begin{cases}
4a+b=9 \\
2a+b=5
\end{cases}$$

$$a = 2 \\
b = 1$$

$$2a + b = 5$$

$$h = 1$$

$$\therefore R_{(x)} = 2x + 1$$

6) La nota del examen de Wilmer es el resultado del siguiente problema: "Indique el término independiente de un polinomio de tercer grado tal que al dividirlo entre (x-1), (x+2) y (x-4) origina un residuo común de 20. Además el polinomio es divisible entre (x+1). ¿Cuál es la nota de Wilmer?

Resolución

$$Q(x) = k$$

$$P(x) \equiv (x-1)(x+2)(x-4).k + 20$$

$$\frac{P(x)}{x+1} \to R(x) = 0 \qquad \longrightarrow \qquad P(-1) = 0$$

$$P(-1) = (-2)(1)(-5)k + 20 = 0$$
$$k = -2$$

$$P(x) = -2(x-1)(x+2)(x-4) + 20$$

Por propiedad para T.I.

$$T.I. = P(0)$$
 $P(0) = -2(-1)(2)(-4) + 20$

$$T.I. = 4$$

La nota de Wilmer es 4

7) Winny, ha plantado coles en filas y columnas sobre una parcela de forma rectangular de (2x+2) y (x-16) metros, x>30. En cada fila o columna la distancia entre cada col es de un metro. Si todas las coles plantadas están listas para ser cosechadas en grupos de (x+2) coles. ¿Cuántas quedan sin cosecharse?

Resolución

$$x - 16$$

$$2x + 2$$

Coles sin cosechar: r

$$\frac{(x-16)(2x+2)}{x+2}$$

$$d_{(x)}$$
: $x + 2 = 0$ $x = -2$

$$r = (-2 - 16)(2(-2) + 2)$$
$$r = (-18)(-2)$$

 \therefore coles sin cosechar = 36