Manejo de populações de animais de companhia

Oswaldo Santos Baquero

Amostragem	l		

Amostragem

Estimativas Indicadores

Dinâmica populacional

Modelagem matemática

www.bintang.com

www.guioteca.com

www.dailymail.co.uk

www.youtube.com/watch?v=pdKFAknSr9o

http://petsaspests.blogspot.com.br

http://georgesoutdoornews.bangordailynews.com

Seleção natural

Variabilidade ⇒ Vantagem adaptativa ⇒ Herança natural.

Seleção natural

- Variabilidade ⇒ Vantagem adaptativa ⇒ Herança natural.
- Seleção pós-zigótica.

Seleção natural

- Variabilidade ⇒ Vantagem adaptativa ⇒ Herança natural.
- Seleção pós-zigótica.
- Determinação ambiental.

Seleção natural

- Variabilidade ⇒ Vantagem adaptativa ⇒ Herança natural.
- Seleção pós-zigótica.
- Determinação ambiental.

Seleção artificial

 Variabilidade ⇒ Vantagem antrópica ⇒ Herança controlada.

Seleção natural

- Variabilidade ⇒ Vantagem adaptativa ⇒ Herança natural.
- Seleção pós-zigótica.
- Determinação ambiental.

Seleção artificial

- Variabilidade ⇒ Vantagem antrópica ⇒ Herança controlada.
- Seleção predominante prezigótica.

Seleção natural

- Variabilidade ⇒ Vantagem adaptativa ⇒ Herança natural.
- Seleção pós-zigótica.
- Determinação ambiental.

Seleção artificial

- Variabilidade ⇒ Vantagem antrópica ⇒ Herança controlada.
- Seleção predominante prezigótica.
- Seleção pós-zigótica em fases iniciais (ex. resistência a doenças).
- Determinação antrópica

Domesticação

Resultado da seleção artificial.

- Resultado da seleção artificial.
- Seleção de características fisiológicas, morfológicas e comportamentais aumenta:
 - Dependência dos ambientes antrópicos.

- Resultado da seleção artificial.
- Seleção de características fisiológicas, morfológicas e comportamentais aumenta:
 - Dependência dos ambientes antrópicos.
 - Habituação à interação com humanos.

- Resultado da seleção artificial.
- Seleção de características fisiológicas, morfológicas e comportamentais aumenta:
 - Dependência dos ambientes antrópicos.
 - Habituação à interação com humanos.
- A seleção de algumas características é um efeito colateral e não intencionado, resultante da seleção intencional de outras características.

- Resultado da seleção artificial.
- Seleção de características fisiológicas, morfológicas e comportamentais aumenta:
 - Dependência dos ambientes antrópicos.
 - Habituação à interação com humanos.
- A seleção de algumas características é um efeito colateral e não intencionado, resultante da seleção intencional de outras características.
- Não existe uma demarcação clara a partir da qual uma espécie passa a ser doméstica (é um processo contínuo).

Domesticação

Agricultura e civilização

 A domesticação é intensificada num contexto de transformação ecológica, econômica e social que aumenta a diversidade das:

Domesticação

Agricultura e civilização

- A domesticação é intensificada num contexto de transformação ecológica, econômica e social que aumenta a diversidade das:
 - Características selecionadas.

Domesticação

Agricultura e civilização

- A domesticação é intensificada num contexto de transformação ecológica, econômica e social que aumenta a diversidade das:
 - Características selecionadas.
 - Funções dos animais domésticos nas sociedades humanas.

unçoes	
	ı
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	J

Funções

Ornamentos mantidos pelo valor estético.

- Ornamentos mantidos pelo valor estético.
- Símbolos de status.

- Ornamentos mantidos pelo valor estético.
- Símbolos de status.
- Passatempo.

- Ornamentos mantidos pelo valor estético.
- Símbolos de status.
- Passatempo.
- Equipamentos ou facilitadores (proteção, guia, salvamento, terapia assistida).

- Ornamentos mantidos pelo valor estético.
- Símbolos de status.
- Passatempo.
- Equipamentos ou facilitadores (proteção, guia, salvamento, terapia assistida).
- "Pessoas" (companheiros, amigos, membros da família).

- Ornamentos mantidos pelo valor estético.
- Símbolos de status.
- Passatempo.
- Equipamentos ou facilitadores (proteção, guia, salvamento, terapia assistida).
- "Pessoas" (companheiros, amigos, membros da família).
- Contato com a natureza.

Funções

- Ornamentos mantidos pelo valor estético.
- Símbolos de status.
- Passatempo.
- Equipamentos ou facilitadores (proteção, guia, salvamento, terapia assistida).
- "Pessoas" (companheiros, amigos, membros da família).
- Contato com a natureza.
- Fonte de inspiração, mudança e aprendizado.

Funções

- Ornamentos mantidos pelo valor estético.
- Símbolos de status.
- Passatempo.
- Equipamentos ou facilitadores (proteção, guia, salvamento, terapia assistida).
- "Pessoas" (companheiros, amigos, membros da família).
- Contato com a natureza.
- Fonte de inspiração, mudança e aprendizado.
- Facilitadores sociais.

Funções

- Ornamentos mantidos pelo valor estético.
- Símbolos de status.
- Passatempo.
- Equipamentos ou facilitadores (proteção, guia, salvamento, terapia assistida).
- "Pessoas" (companheiros, amigos, membros da família).
- Contato com a natureza.
- Fonte de inspiração, mudança e aprendizado.
- Facilitadores sociais.
- Alvo para as pessoas projetarem a própria identidade.

Principais problemas

Zoonoses

- Zoonoses
 - Raiva

- Zoonoses
 - Raiva
 - LV

- Zoonoses
 - Raiva
 - LV
 - Esporotricose

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões
- Maus tratos

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões
- Maus tratos
- Depredação de fauna

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões
- Maus tratos
- Depredação de fauna
- Transmissão de doenças a animais slevagens

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões
- Maus tratos
- Depredação de fauna
- Transmissão de doenças a animais slevagens
- Poluição

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões
- Maus tratos
- Depredação de fauna
- Transmissão de doenças a animais slevagens
- Poluição
- Acidentes de trânsito

Principais problemas

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões
- Maus tratos
- Depredação de fauna
- Transmissão de doenças a animais slevagens
- Poluição
- Acidentes de trânsito

Principais benfícios

Estresse

Principais problemas

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões
- Maus tratos
- Depredação de fauna
- Transmissão de doenças a animais slevagens
- Poluição
- Acidentes de trânsito

- Estresse
- Transtornos emocionais e de comportamento

Principais problemas

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões
- Maus tratos
- Depredação de fauna
- Transmissão de doenças a animais slevagens
- Poluição
- Acidentes de trânsito

- Estresse
- Transtornos emocionais e de comportamento
- Sobrevida pós-infarto miocárdico

Principais problemas

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões
- Maus tratos
- Depredação de fauna
- Transmissão de doenças a animais slevagens
- Poluição
- Acidentes de trânsito

- Estresse
- Transtornos emocionais e de comportamento
- Sobrevida pós-infarto miocárdico
- Dor em crianças

Principais problemas

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões
- Maus tratos
- Depredação de fauna
- Transmissão de doenças a animais slevagens
- Poluição
- Acidentes de trânsito

- Estresse
- Transtornos emocionais e de comportamento
- Sobrevida pós-infarto miocárdico
- Dor em crianças
- Sintomas do espectro autista

Principais problemas

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões
- Maus tratos
- Depredação de fauna
- Transmissão de doenças a animais slevagens
- Poluição
- Acidentes de trânsito

- Estresse
- Transtornos emocionais e de comportamento
- Sobrevida pós-infarto miocárdico
- Dor em crianças
- Sintomas do espectro autista
- Dependência de drogas

Principais problemas

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões
- Maus tratos
- Depredação de fauna
- Transmissão de doenças a animais slevagens
- Poluição
- Acidentes de trânsito

- Estresse
- Transtornos emocionais e de comportamento
- Sobrevida pós-infarto miocárdico
- Dor em crianças
- Sintomas do espectro autista
- Dependência de drogas
- Obesidade

Principais problemas

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões
- Maus tratos
- Depredação de fauna
- Transmissão de doenças a animais slevagens
- Poluição
- Acidentes de trânsito

- Estresse
- Transtornos emocionais e de comportamento
- Sobrevida pós-infarto miocárdico
- Dor em crianças
- Sintomas do espectro autista
- Dependência de drogas
- Obesidade
- Esquizofrenia

Principais problemas

- Zoonoses
 - Raiva
 - LV
 - Esporotricose
 - Leptospirose
 - Toxoplasmose
 - Febre maculosa
- Agressões
- Maus tratos
- Depredação de fauna
- Transmissão de doenças a animais slevagens
- Poluição
- Acidentes de trânsito

- Estresse
- Transtornos emocionais e de comportamento
- Sobrevida pós-infarto miocárdico
- Dor em crianças
- Sintomas do espectro autista
- Dependência de drogas
- Obesidade
- Esquizofrenia
- Afasia

A heterogeneidade e de consequências associadas ao convívio com animais de companhia gera um espectro de percepções.

A heterogeneidade e de consequências associadas ao convívio com animais de companhia gera um espectro de percepções.

A heterogeneidade e de consequências associadas ao convívio com animais de companhia gera um espectro de percepções.

Seres insenssíveis.
Problema de saúde pública e ambiental.

A heterogeneidade e de consequências associadas ao convívio com animais de companhia gera um espectro de percepções.

Manejo populacional

O manejo populacional é um conjunto de estratégias para prevenir e controlar os prejuízos, e promover os benefícios associados ao convívio entre pessoas e animais de companhia.

Dinâmica e manejo populacional de cães e gatos

Dinâmica populacional

Mudanças no tamanho populacional determinadas por processos biológicos e ambientais.

Dinâmica e manejo populacional de cães e gatos

Dinâmica populacional

Mudanças no tamanho populacional determinadas por processos biológicos e ambientais.

Manejo populacional

Conjunto de intervenções para modificar ou evitar a modificação de determinantes da dinâmica populacional.

Taxas vitais e migração

Taxas vitais e migração

Nascimentos e imigração: favorecem o crescimento

Taxas vitais e migração

- Nascimentos e imigração: favorecem o crescimento
- Mortes e emigração: favorecem o decréscimo

Socioeconômicos, culturais e ambientais

Efeitos mediados pelas taxas vitais e pela migração

Socioeconômicos, culturais e ambientais

Determinante	Natalidade	Mortalidade	Imigração	Emigração
↑ Esterilização	1			

Socioeconômicos, culturais e ambientais

Determinante	Natalidade	Mortalidade	Imigração	Emigração
↑ Esterilização	\			
↑ Abandono			↑ (PND)	↑ (PD)

Socioeconômicos, culturais e ambientais

Determinante	Natalidade	Mortalidade	Imigração	Emigração
↑ Esterilização	\			
↑ Abandono			↑ (PND)	↑ (PD)
↑ Adoção			↑ (PD)	↑ (PND)

Socioeconômicos, culturais e ambientais

Determinante	Natalidade	Mortalidade	Imigração	Emigração
↑ Esterilização	\			
↑ Abandono			↑ (PND)	↑ (PD)
↑ Adoção			↑ (PD)	↑ (PND)
↑ Compra			↑ (PD)	

Socioeconômicos, culturais e ambientais

Determinante	Natalidade	Mortalidade	Imigração	Emigração
↑ Esterilização	#			
↑ Abandono			↑ (PND)	↑ (PD)
↑ Adoção			↑ (PD)	↑ (PND)
↑ Compra			↑ (PD)	
↑ Eliminação		↑		

Intrínsecos à população e ao ambiente

Intrínsecos à população e ao ambiente

Determinante	Natalidade	Mortalidade	Imigração	Emigração
Bazão M·F	Д оп ⊕			

Intrínsecos à população e ao ambiente

Determinante	Natalidade	Mortalidade	lmigração	Emigração
Razão M:F	↓ ou ↑			
Estrutura etá-	↓ ou ↑	↓ ou ↑		
ria				

Intrínsecos à população e ao ambiente

Determinante	Natalidade	Mortalidade	Imigração	Emigração
Razão M:F	↓ ou ↑			
Estrutura etá-	↓ ou ↑	↓ ou ↑		
ria				
Sistema de	↓ ou ↑			
acasalamento				

Intrínsecos à população e ao ambiente

Determinante	Natalidade	Mortalidade	lmigração	Emigração
Razão M:F	↓ ou ↑			
Estrutura etá-	↓ ou ↑	∜ ou ↑		
ria				
Sistema de	↓ ou ↑			
acasalamento				
Approx à Cap	\	1	\	\uparrow
de suporte				

Os efeitos são complexos

Dependência entre os determinantes

- Dependência entre os determinantes
 - Qual o efeito conjunto do abandono e da esterilização? E a compra? E a adoção? ...

- Dependência entre os determinantes
 - Qual o efeito conjunto do abandono e da esterilização? E a compra? E a adoção? ...
 - A redução do tamanho populacional mediada pela esterilização é compensada por outros determinantes?

- Dependência entre os determinantes
 - Qual o efeito conjunto do abandono e da esterilização? E a compra? E a adoção? ...
 - A redução do tamanho populacional mediada pela esterilização é compensada por outros determinantes?
- Comparação de efeitos

- Dependência entre os determinantes
 - Qual o efeito conjunto do abandono e da esterilização? E a compra? E a adoção? ...
 - A redução do tamanho populacional mediada pela esterilização é compensada por outros determinantes?
- Comparação de efeitos
 - O efeito da esterilização de fêmeas é maior do que o efeito da esterilização de machos?

- Dependência entre os determinantes
 - Qual o efeito conjunto do abandono e da esterilização? E a compra? E a adoção? ...
 - A redução do tamanho populacional mediada pela esterilização é compensada por outros determinantes?
- Comparação de efeitos
 - O efeito da esterilização de fêmeas é maior do que o efeito da esterilização de machos?
 - A magnitude do efeito da adoção é igual nas populações domiciliada e não domiciliada?

- Dependência entre os determinantes
 - Qual o efeito conjunto do abandono e da esterilização? E a compra? E a adoção? ...
 - A redução do tamanho populacional mediada pela esterilização é compensada por outros determinantes?
- Comparação de efeitos
 - O efeito da esterilização de fêmeas é maior do que o efeito da esterilização de machos?
 - A magnitude do efeito da adoção é igual nas populações domiciliada e não domiciliada?
 - Em que escala temporal se detectam efeitos "relevantes"?

Quais devem ser alvo de intervenção?

Quais devem ser alvo de intervenção?

 Idealmente, todos os que se opõem aos objetivos de um programa de manejo populacional, atingindo o total de indivíduos.

Quais devem ser alvo de intervenção?

- Idealmente, todos os que se opõem aos objetivos de um programa de manejo populacional, atingindo o total de indivíduos.
- Quando a limitação de recursos impede o ideal, o alvo deve estar nos determinantes que mais influenciam a dinâmica populacional.

Sumário

As amostras são fontes de informação para instanciar modelos matemáticos e definir indicadores de manejo populacional

As amostras são fontes de informação para instanciar modelos matemáticos e definir indicadores de manejo populacional

Instanciamento de modelos matemáticos

 Atribuição de valores aos compartimentos (condições iniciais) e às flechas (parâmetros).

As amostras são fontes de informação para instanciar modelos matemáticos e definir indicadores de manejo populacional

Instanciamento de modelos matemáticos

 Atribuição de valores aos compartimentos (condições iniciais) e às flechas (parâmetros).

Exemplos de indicadores para auxiliar o monitoramento

Proporção de animais vacinados

As amostras são fontes de informação para instanciar modelos matemáticos e definir indicadores de manejo populacional

Instanciamento de modelos matemáticos

 Atribuição de valores aos compartimentos (condições iniciais) e às flechas (parâmetros).

Exemplos de indicadores para auxiliar o monitoramento

- Proporção de animais vacinados
- Proporção de animais semi-domiciliados

Vantagens do censo

 A variável de interesse é medida em todos os elementos da população.

Vantagens do censo

- A variável de interesse é medida em todos os elementos da população.
- Os parâmetros populacionais (total, média, variância, etc.) são determinados com exatidão.

Vantagens do censo

- A variável de interesse é medida em todos os elementos da população.
- Os parâmetros populacionais (total, média, variância, etc.) são determinados com exatidão.
- O cálculo dos parâmetros não envolve estatísticas complexas.

Vantagens do censo

- A variável de interesse é medida em todos os elementos da população.
- Os parâmetros populacionais (total, média, variância, etc.) são determinados com exatidão.
- O cálculo dos parâmetros não envolve estatísticas complexas.

Desvantagens do censo

Os recursos disponíveis usualmente não são suficientes.

Vantagens do censo

- A variável de interesse é medida em todos os elementos da população.
- Os parâmetros populacionais (total, média, variância, etc.) são determinados com exatidão.
- O cálculo dos parâmetros não envolve estatísticas complexas.

Desvantagens do censo

- Os recursos disponíveis usualmente não são suficientes.
- Para uma quantidade fixa de recursos, podem se coletar menos informações por indivíduo.

Componentes de um desenho amostral

 Plano amostral: métodos de seleção das unidades amostrais.

Componentes de um desenho amostral

- Plano amostral: métodos de seleção das unidades amostrais.
- Procedimentos de estimação: algoritmos e formulas para estimar parâmetros populacionais.

Componentes de um desenho amostral

- Plano amostral: métodos de seleção das unidades amostrais.
- Procedimentos de estimação: algoritmos e formulas para estimar parâmetros populacionais.

Amostragem probabilística

 As unidades amostrais s\u00e3o selecionadas com probabilidade conhecida e diferente de zero.

Componentes de um desenho amostral

- Plano amostral: métodos de seleção das unidades amostrais.
- Procedimentos de estimação: algoritmos e formulas para estimar parâmetros populacionais.

Amostragem probabilística

- As unidades amostrais s\u00e3o selecionadas com probabilidade conhecida e diferente de zero.
- Permite quantificar os erros aleatórios das estimativas.

Acurácia e precisão

Aleatórios

Associados à precisão.

Aleatórios

- Associados à precisão.
- A amostragem probabilística permite quantificá-los.

Aleatórios

- Associados à precisão.
- A amostragem probabilística permite quantificá-los.
- A escolha adequada do desenho amostral ajuda a reduzi-los.

Aleatórios

- Associados à precisão.
- A amostragem probabilística permite quantificá-los.
- A escolha adequada do desenho amostral ajuda a reduzi-los.
- Diminuem com o tamanho amostral.

Aleatórios

- Associados à precisão.
- A amostragem probabilística permite quantificá-los.
- A escolha adequada do desenho amostral ajuda a reduzi-los.
- Diminuem com o tamanho amostral.

Sistemáticos

Associados à acurácia.

Aleatórios

- Associados à precisão.
- A amostragem probabilística permite quantificá-los.
- A escolha adequada do desenho amostral ajuda a reduzi-los.
- Diminuem com o tamanho amostral.

- Associados à acurácia.
- Casuas:
 - Quadros amostrais incompletos.

Aleatórios

- Associados à precisão.
- A amostragem probabilística permite quantificá-los.
- A escolha adequada do desenho amostral ajuda a reduzi-los.
- Diminuem com o tamanho amostral.

- Associados à acurácia.
- Casuas:
 - Quadros amostrais incompletos.
 - Coleta de dados errados.

Aleatórios

- Associados à precisão.
- A amostragem probabilística permite quantificá-los.
- A escolha adequada do desenho amostral ajuda a reduzi-los.
- Diminuem com o tamanho amostral.

- Associados à acurácia.
- Casuas:
 - Quadros amostrais incompletos.
 - Coleta de dados errados.
 - Recusa na participação.

Aleatórios

- Associados à precisão.
- A amostragem probabilística permite quantificá-los.
- A escolha adequada do desenho amostral ajuda a reduzi-los.
- Diminuem com o tamanho amostral.

- Associados à acurácia.
- Casuas:
 - Quadros amostrais incompletos.
 - Coleta de dados errados.
 - Recusa na participação.
 - Estimadores enviesados.

Aleatórios

- Associados à precisão.
- A amostragem probabilística permite quantificá-los.
- A escolha adequada do desenho amostral ajuda a reduzi-los.
- Diminuem com o tamanho amostral.

- Associados à acurácia.
- Casuas:
 - Quadros amostrais incompletos.
 - Coleta de dados errados.
 - Recusa na participação.
 - Estimadores enviesados.
 - Amostragem não probabilística.

Aleatórios

- Associados à precisão.
- A amostragem probabilística permite quantificá-los.
- A escolha adequada do desenho amostral ajuda a reduzi-los.
- Diminuem com o tamanho amostral.

- Associados à acurácia.
- Casuas:
 - Quadros amostrais incompletos.
 - Coleta de dados errados.
 - Recusa na participação.
 - Estimadores enviesados.
 - Amostragem não probabilística.
- Não diminuem com o tamanho amostral.

Principais tipos para animais domiciliados

Simples.

Principais tipos para animais domiciliados

- Simples.
- Sistemático.

Principais tipos para animais domiciliados

- Simples.
- Sistemático.
- Estratificado.

Principais tipos para animais domiciliados

- Simples.
- Sistemático.
- Estratificado.
- Por conglomerados em dois estágios.

Principais tipos para animais domiciliados

- Simples.
- Sistemático.
- Estratificado.
- Por conglomerados em dois estágios.

Animais que ficam na rua

 Desenhos para animais selvagens.

Principais tipos para animais domiciliados

- Simples.
- Sistemático.
- Estratificado.
- Por conglomerados em dois estágios.

Animais que ficam na rua

- Desenhos para animais selvagens.
 - Captura-marcarecaptura.

Principais tipos para animais domiciliados

- Simples.
- Sistemático.
- Estratificado.
- Por conglomerados em dois estágios.

Animais que ficam na rua

- Desenhos para animais selvagens.
 - Captura-marcarecaptura.
 - Transectos lineares.

Principais tipos para animais domiciliados

- Simples.
- Sistemático.
- Estratificado.
- Por conglomerados em dois estágios.

Animais que ficam na rua

- Desenhos para animais selvagens.
 - Captura-marcarecaptura.
 - Transectos lineares.

 A escolha e o uso adequados do desenho amostral são necessários mas não suficientes para garantir a validade das estimativas.

Principais tipos para animais domiciliados

- Simples.
- Sistemático.
- Estratificado.
- Por conglomerados em dois estágios.

Animais que ficam na rua

- Desenhos para animais selvagens.
 - Captura-marcarecaptura.
 - Transectos lineares.

- A escolha e o uso adequados do desenho amostral são necessários mas não suficientes para garantir a validade das estimativas.
- Os procedimentos de medição e a operacionalização das atividades de campo também comprometem a validade.

Vantagens

Facilidade estatística.

Vantagens

Facilidade estatística.

Desvantagens

 Unidades amostrais devem ser identificáveis no quadro amostral.

Vantagens

Facilidade estatística.

Desvantagens

- Unidades amostrais devem ser identificáveis no quadro amostral.
- Custos associados ao deslocamento para chegar até as unidades amostrais.

Vantagens

Facilidade estatística.

Vantagens

- Facilidade estatística.
- Não se precisa de um quadro amostral construído a priori.

Vantagens

- Facilidade estatística.
- Não se precisa de um quadro amostral construído a priori.

Desvantagens

 Custos associados ao deslocamento para chegar até as unidades amostrais.

Vantagens

 Geralmente a precisão das estimativas é maior em comparação com a amostragem aleatória simples.

Vantagens

- Geralmente a precisão das estimativas é maior em comparação com a amostragem aleatória simples.
- Podem se obter estimativas para cada estrato.

Vantagens

- Geralmente a precisão das estimativas é maior em comparação com a amostragem aleatória simples.
- Podem se obter estimativas para cada estrato.

Desvantagens

 Deve-se conhecer o estrato ao qual pertence cada uma das unidades amostrais.

Amostragem por conglomerados

Amostragem por conglomerados em dois estágios

Amostragem por conglomerados em dois estágios

Vantagens

• Facilidade operacional e custo.

Amostragem por conglomerados em dois estágios

Vantagens

• Facilidade operacional e custo.

Desvantagens

- Para um dado tamanho amostral a precisão é geralmente inferior.
- Entretanto, para um dado custo, o tamanho da amostra pode ser maior e consequentemente a precisão também.

Preventive Veterinary Medicine Volume 158, 1 October 2018, Pages 169-177

Companion animal demography and population management in Pinhais, Brazil

Oswaldo Santos Baquero ^a $\stackrel{>}{\sim}$ $\stackrel{\boxtimes}{\bowtie}$, Solange Marconcin ^b, Adriel Rocha ^b, Rita de Cassia Maria Garcia ^c

Table 1. Calibrated and uncalibrated (inside parentheses) estimates of total number of dogs, cats and humans, and of percentage of households (PHH) with dogs and cats. Pinhais, Brazil, 2017.

Species	Estimate	CI 95%	Deff	Error (%)
Dogs	50,444	46,232–54,656	1.5	8.4
	(46,874)	(41,921–51,827)	(2.3)	(10.6)
Cats	7,722	5746–9697	1.7	25.6
	(7192)	(5302–9081)	(1.8)	(26.3)
Dogs (PHH)	66.7	63.1–70.2	1.4	3.5
	(66.5)	(62.9–70.1)	(1.5)	(3.6)
Cats (PHH)	12.7	10–15.3	1.6	2.6
	(12.6)	(10–15.2)	1.6	(2.6)
Humans	129,445	129,445–129,445	-	0
	(119,121)	(109,976–128,266)	7.3	(7.7)

Table 2. Absolute and relative sample frequencies of dogs and cats according to their sex, and if they were sterilized and free-roaming.

	Dogs (%)		Cats (%)		
	Males	Females	Males	Females	
Total	644 (51)	606 (49)	110 (56)	85 (44)	
Sterilized	120 (19)	191 (32)	38(36)	31 (37)	
Free-roaming	114 (21)	73 (14)	42 (58)	31 (32)	

Sumário

• Entendimento da dinâmica populacional

- Entendimento da dinâmica populacional
- Quantificação do efeito conjunto dos determinantes da DP

- Entendimento da dinâmica populacional
- Quantificação do efeito conjunto dos determinantes da DP
- Quantificação da influência dos determinantes da DP

- Entendimento da dinâmica populacional
- Quantificação do efeito conjunto dos determinantes da DP
- Quantificação da influência dos determinantes da DP
- Simulação de cenários

Modelos compartimentais

Modelos matemáticos nos quais os compartimentos são subpopulações, e a relação entre as mesmas é representada por flechas indicando fluxos entre os compartimentos.

• É o modelo mais simples de dinâmica populacional.

- É o modelo mais simples de dinâmica populacional.
- No cenário mais simples (sem migração), as taxas de natalidade a e de mortalidade b são os únicos fatores que influenciam o tamanho populacional N.

- É o modelo mais simples de dinâmica populacional.
- No cenário mais simples (sem migração), as taxas de natalidade a e de mortalidade b são os únicos fatores que influenciam o tamanho populacional N.
- A população pode crescer indefinidamente.
- Não é um modelo de manejo populacional, mas é a base para construir outros modelos.

- É o modelo mais simples de dinâmica populacional.
- No cenário mais simples (sem migração), as taxas de natalidade a e de mortalidade b são os únicos fatores que influenciam o tamanho populacional N.
- A população pode crescer indefinidamente.
- Não é um modelo de manejo populacional, mas é a base para construir outros modelos.
- Conformado por um único compartimento.

$$\frac{dN}{dt} = aN - bN$$

$$\frac{dN}{dt} = aN - bN$$
$$\frac{dN}{dt} = (a - b)N$$

$$\frac{dN}{dt} = aN - bN$$
$$\frac{dN}{dt} = (a - b)N$$

Taxa de crescimento intrínseca: r = (a - b)

$$\frac{dN}{dt} = rN$$

• r > 0: Crescimento

• r = 0: Equilíbrio

• r < 0: Extinção

 Modifica o modelo exponencial para limitar o crescimento populacional.

- Modifica o modelo exponencial para limitar o crescimento populacional.
- A modificação é densidade-dependente. Quanto maior a densidade de animais, a natalidade diminui, a mortalidade aumenta, ou ambas coisas.

- Modifica o modelo exponencial para limitar o crescimento populacional.
- A modificação é densidade-dependente. Quanto maior a densidade de animais, a natalidade diminui, a mortalidade aumenta, ou ambas coisas.
- Quanto maior a densidade, menor a disponibilidade de recursos (alimento, água, abrigo).

- Modifica o modelo exponencial para limitar o crescimento populacional.
- A modificação é densidade-dependente. Quanto maior a densidade de animais, a natalidade diminui, a mortalidade aumenta, ou ambas coisas.
- Quanto maior a densidade, menor a disponibilidade de recursos (alimento, água, abrigo).
- A capacidade de suporte é o número máximo de animais que os recursos de um dado ambiente sustenta.

- Modifica o modelo exponencial para limitar o crescimento populacional.
- A modificação é densidade-dependente. Quanto maior a densidade de animais, a natalidade diminui, a mortalidade aumenta, ou ambas coisas.
- Quanto maior a densidade, menor a disponibilidade de recursos (alimento, água, abrigo).
- A capacidade de suporte é o número máximo de animais que os recursos de um dado ambiente sustenta.
- A população só cresce até a capacidade de suporte.

Pulando a matemática intermediária entre os modelos exponencial e logístico:

$$\frac{dN}{dt} = rN[1 - N/K]$$

Pulando a matemática intermediária entre os modelos exponencial e logístico:

$$\frac{dN}{dt} = rN[1 - N/K]$$

Taxa de crescimento intrínseca: r = (a - b)

Pulando a matemática intermediária entre os modelos exponencial e logístico:

$$\frac{dN}{dt} = rN[1 - N/K]$$

Taxa de crescimento intrínseca: r = (a - b)

K: Capacidade de suporte.

Pulando a matemática intermediária entre os modelos exponencial e logístico:

$$\frac{dN}{dt} = rN[1 - N/K]$$

Taxa de crescimento intrínseca: r = (a - b)

K: Capacidade de suporte.

Quando N = K, o tamanho populacional não muda.

$$\frac{dN}{dt} = 0$$

Modelo logístico

 Os modelos anteriores (e outros) podem ser modificados para simular o efeito de intervenções que modificam parâmetros da dinâmica populacional.

- Os modelos anteriores (e outros) podem ser modificados para simular o efeito de intervenções que modificam parâmetros da dinâmica populacional.
- Para simular intervenções em subpopulações, é necessário acrescentar compartimentos adicionais para representar essas subpopulações.

- Os modelos anteriores (e outros) podem ser modificados para simular o efeito de intervenções que modificam parâmetros da dinâmica populacional.
- Para simular intervenções em subpopulações, é necessário acrescentar compartimentos adicionais para representar essas subpopulações.
- Ha múltiplos critérios para dividir a população em subpopulações:
 - Sexo.

- Os modelos anteriores (e outros) podem ser modificados para simular o efeito de intervenções que modificam parâmetros da dinâmica populacional.
- Para simular intervenções em subpopulações, é necessário acrescentar compartimentos adicionais para representar essas subpopulações.
- Ha múltiplos critérios para dividir a população em subpopulações:
 - Sexo.
 - Idade.

- Os modelos anteriores (e outros) podem ser modificados para simular o efeito de intervenções que modificam parâmetros da dinâmica populacional.
- Para simular intervenções em subpopulações, é necessário acrescentar compartimentos adicionais para representar essas subpopulações.
- Ha múltiplos critérios para dividir a população em subpopulações:
 - Sexo.
 - Idade.
 - Restrição e supervisão.

- Os modelos anteriores (e outros) podem ser modificados para simular o efeito de intervenções que modificam parâmetros da dinâmica populacional.
- Para simular intervenções em subpopulações, é necessário acrescentar compartimentos adicionais para representar essas subpopulações.
- Ha múltiplos critérios para dividir a população em subpopulações:
 - Sexo.
 - Idade.
 - Restrição e supervisão.
 - Migração.

- Os modelos anteriores (e outros) podem ser modificados para simular o efeito de intervenções que modificam parâmetros da dinâmica populacional.
- Para simular intervenções em subpopulações, é necessário acrescentar compartimentos adicionais para representar essas subpopulações.
- Ha múltiplos critérios para dividir a população em subpopulações:
 - Sexo.
 - Idade.
 - Restrição e supervisão.
 - Migração.
 - **.**...

Fêmeas domiciliadas	Machos domiciliados
Fêmeas não domiciliadas	Machos não domiciliados

Fêmeas domiciliadas

Machos domiciliados

Fêmeas não domiciliadas

Machos não domiciliados

Fêmeas domiciliadas

Machos domiciliados

Fêmeas não domiciliadas

Machos não domiciliados

Sumário

Da teoria à prática

Installation Gallery

Contributions

Documentation

License

Referências

- Gotelli, N. J. (2001). A primer of ecology. Sunderland, Massachusetts. Sinauer Associates, Inc, 385, 386.
- World Health Organization. (1990). Guidelines for dog population management. Guidelines for dog population management.
- Baquero, O. S., Marconcin, S., Rocha, A., & Garcia, R. D. C. M. (2018). Companion animal demography and population management in Pinhais, Brazil. Preventive veterinary medicine.
- Baquero, O. S., Akamine, L. A., Amaku, M., & Ferreira, F. (2016).
 Defining priorities for dog population management through mathematical modeling. Preventive veterinary medicine, 123, 121-127.
- Scarlett, J. M. (2008). Interface of epidemiology, pet population issues and policy. Preventive veterinary medicine, 86(3), 188-197.