Variation de la valeur de dichotomie selectionnée

Nom Instance	opti	25%	40%	50%	60%	75%
pmed1	127	1.25	2.27	1.6	1	1.25
pmed2	98	8	9.5	7.6	8.75	8
pmed3	93	32	40	32	35	32
pmed4	74	0.07	0.08	0.04	0.02	0.07
pmed5	48	0.01	0	0	0	0.01
pmed6	84	59	162	159	153	59
pmed7	64	60 - 64	61 - 66	61 - 66	58 - 67	60 - 64
pmed8	55	3 - 70	38 - 58	31 - 57	3 - 81	3 - 70
pmed9	37	0.6	1.3	0.2	0.6	0.6
pmed10	20	0.12	0.02	0.05	0.06	0.12
pmed11	59	1142	1775	1758	1969	1142
pmed12	51	40 - 52	28 - 67	1 - 84	37 - 60	40 - 52
pmed13	36	2 - 48	32 - 40	31 - 39	2 - 54	2 - 48
pmed14	26	21 - 26	23 - 26	4 - 47	23 - 26	21 - 26
pmed15	18	0.42	0.12	0.16	0.22	0.42
pmed16	47	1 - 60	1 - 107	42 - 48	39 - 48	1 - 60
pmed17	39	1 - 44	28 - 42	28 - 40	1 - 63	1 - 44
pmed18	28	2 - 34	2 - 57	20 - 36	20 - 31	2 - 34
pmed19	18	16 - 19	3 - 42	16 - 21	16 - 20	16 - 19
pmed20	13	1	0.24	0.37	0.5	1
pmed21	40	1 - 51	1 - 91	24 - 46	34 - 41	1 - 51
pmed22	38	1 - 48	19 - 45	1 - 57	26 - 41	1 - 48
pmed23	22	2 - 23	2 - 38	14 - 25	2 - 35	2 - 23
pmed24	15	3 - 19	14 – 18	3 - 27	3 - 23	3 - 19
pmed25	11	2.32	0.6	0.88	1.2	2.32
pmed26	38	1 - 49	1 - 87	34 - 39	1 - 52	1 - 49
pmed27	32	1 - 38	16 - 37	24 - 35	21 - 33	1 - 38
pmed28	18	1 - 19	1 - 44	1 - 28	1 - 24	1 - 19
pmed29	13	2 - 13	8 - 15	2 - 23	2 - 20	2 - 13
pmed30	9	4	1.14	1.55	2.33	4
pmed31	30	1 - 37	1 - 65	18 - 33	1 - 39	1 - 37
pmed32	29	1 - 29	1 - 50	17 - 31	1 - 44	1 - 29
pmed33	15	1 - 17	1 - 30	11 - 19	11 – 16	1 - 17
pmed34	11	9 - 11	9 - 12	9 - 11	2 - 14	9 - 11
pmed35	30	1 - 31	20 - 30	20 - 37	1 - 44	1 - 31
pmed36	27	1 - 28	15 - 35	1 - 44	1 - 31	1 - 28
pmed37	15	1 - 18	1 - 38	11 - 20	11 – 17	1 - 18
pmed38	29	1 - 35	15 - 34	1 - 42	19 - 30	1 - 35
pmed39	23	1 - 27	1 - 46	1 - 29	1 - 25	1 - 27
pmed40	13	1 - 16	1 - 28	1 - 18	1 – 15	1 – 16

Tableau pas intéressant

Element etudie	25%	40%	50%	00%	75%
Distance moyenne entre les bornes	19.75	22.632	14.375	16.4	19
Nombre de fois que cette dichotomie est la meilleure	9	7	8	8	8
Nombre de valeur traitée	215	175	210	213	200
Distance moyenne de la borne inférieure à l'optimum	8.175	11.475	9.35	11.6	15.8
Distance movenne de la borne supérieure à l'optimum	11.525	11	5	4.8	3.05

Table 6 – Bornes finales après 1 h sur les différentes dichotomies

Dichotomie Chu Min Li

 Commencer à l'indice 1, puis l'indice 2, puis l'indice 4 et ainsi de suite jusqu'à rencontrer une contradiction.

Notre borne max est alors x et notre borne min x/2

Nom Instance	opti	50%	Nouvelle	l
pmed1	127	1.6	1.6	
pmed2	98	7.6	20.06	
pmed3	93	32	90.51	
pmed4	74	0.04	25.74	
pmed5	48	0	55.03	
pmed6	84	159	78.61	
pmed7	64	61 - 66	32 - 64	
pmed8	55	31 - 57	32 - ?	
pmed9	37	0.2	32 - ?	
pmed10	20	0.05	19 - 20	
pmed11	59	1758	419	
pmed12	51	1 - 84	32 - ?	
pmed13	36	31 - 39	16 - ?	
pmed14	26	4 - 47	16 - ?	
pmed15	18	0.16	16 - ?	
pmed16	47	42 - 48	32 - 48	
pmed17	39	28 - 40	32 - ?	
pmed18	28	20 - 36	16 - ?	
pmed19	18	16 - 21	8 - ?	
pmed20	13	0.37	8 - ?	
pmed21	40	24 - 46	32 - ?	
pmed22	38	1 - 57	32 - ?	
pmed23	22	14 - 25	16 - ?	
pmed24	15	3 - 27	8 - ?	
pmed25	11	0.88	4 - ?	
pmed26	38	34 - 39	32 - ?	
pmed27	32	24 - 35	16 - 32	
pmed28	18	1 - 28	8 - ?	
pmed29	13	2 - 23	8 - ?	
pmed30	9	1.55	8 - ?	
pmed31	30	18 – 33	16 - 32	
pmed32	29	17 - 31	16 - ?	
pmed33	15	11 – 19	8 - ?	
pmed34	11	9 – 11	4 - ?	
pmed35	30	20 - 37	16 - 32	
pmed36	27	1 - 44	16 - ?	
pmed37	15	11 - 20	8 - ?	
pmed38	29	1 - 42	16 - 32	
pmed39	23	1 - 29	16 - ?	
pmed40	13	1 - 18	8 - ?	
Final				I
Table 7 – Bornes finales	après 1	h sur les o	différentes d	lichotomi

Appliquer Alber pendant le branch and bound

Règles	pmed1	pmed2	pmed3	
Version actuelle	4	25	113	
Réduction de graphe à chaque branche	45	312	1204	

Table 9 – Comparaison de la version par défaut et la version avec réduction à chaque branche