4.1. Пусть f — полуторалинейная форма на векторном пространстве H. Зафиксируем произвольное $n \in \mathbb{N}, \ n \geqslant 3$, и пусть $\zeta \in \mathbb{C}$ — корень из 1 степени $n, \ \zeta \neq \pm 1$. Докажите mosedecmeo nonspusayuu:

$$f(x,y) = \frac{1}{n} \sum_{k=0}^{n-1} \zeta^k f(x + \zeta^k y, x + \zeta^k y).$$

- **4.2.** Пусть H предгильбертово пространство. Докажите, что скалярное произведение непрерывно как функция на $H \times H$.
- **4.3.** Докажите, что в любом предгильбертовом пространстве справедливо moж decm so napanne nor panne nor panne

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

- **4.4.** Покажите, что норма на пространствах $(\mathbb{C}^n, \|\cdot\|_p)$, ℓ^p , $(C[a,b], \|\cdot\|_p)$, $L^p(X,\mu)$ (где (X,μ) пространство с мерой, содержащее хотя бы два непустых измеримых подмножества) при $p \neq 2$ и n > 1 не порождается никаким скалярным произведением.
- **4.5.** Придумайте обобщение тождества параллелограмма на случай n векторов.
- **4.6.** Покажите, что норма на пространствах ℓ^p , $(C[a,b], \|\cdot\|_p)$, $L^p(X,\mu)$ (где (X,μ) пространство с мерой, содержащее бесконечно много измеримых подмножеств) при $p \neq 2$ не эквивалентна никакой норме, порожденной скалярным произведением.
- **4.7-b** (*теорема фон Нойманна-Йордана*). Пусть H нормированное пространство, в котором выполняется тождество параллелограмма. Покажите, что формула

$$\langle x, y \rangle = \frac{1}{4} \sum_{k=0}^{3} i^{k} ||x + i^{k}y||^{2} \qquad (x, y \in H)$$

задает скалярное произведение на H, и что норма, порожденная этим скалярным произведением, совпадает с исходной.

- **4.8. 1)** Постройте пример предгильбертова пространства H и замкнутого векторного подпространства $H_0 \subset H$, для которых $H_0 \oplus H_0^{\perp} \neq H$.
- **2)** Покажите, что такое подпространство H_0 есть в любом неполном предгильбертовом пространстве.
- **4.9.** Постройте унитарный изоморфизм гильбертовых пространств $L^2[a,b]$ и $L^2[0,1]$.
- **4.10.** Докажите, что пополнение предгильбертова пространства является гильбертовым пространством.
- **4.11.** Докажите, что факторпространство (пред)гильбертова пространства по замкнутому векторному подпространству само является (пред)гильбертовым пространством.
- **4.12.** Система Уолша это система функций на [0,1], полученная из системы Радемахера $\{r_n\}_{n\in\mathbb{N}}$ добавлением функции $r_0\equiv 1$ и всевозможных произведений вида $r_{i_1}\cdots r_{i_n}$, где $i_1<\ldots< i_n$. Докажите, что система Уолша ортонормированный базис в $L^2[0,1]$.

4.13. $Cucmema\ Xaapa$ — это система функций на [0,1], задаваемых формулами

$$\chi_k^{(i)}(t) = \begin{cases} 2^{k/2} & \text{при } \frac{2i-2}{2^{k+1}} \leqslant t < \frac{2i-1}{2^{k+1}}, \\ -2^{k/2} & \text{при } \frac{2i-1}{2^{k+1}} \leqslant t < \frac{2i}{2^{k+1}}, \\ 0 & \text{иначе} \end{cases}$$

 $(k=0,1,\ldots;\ i=1,\ldots,2^k).$ Докажите, что система Хаара — ортонормированный базис в $L^2[0,1].$

- **4.14.** Докажите, что ортонормированная система в сепарабельном предгильбертовом пространстве не более чем счетна.
- **4.15.** Докажите, что пространство $C_c^{\infty}(a,b)$ гладких функций на интервале (a,b) с компактным носителем плотно в $L^p[a,b]$ для всех $1 \leq p < \infty$.

Определение 4.1. Пусть $f \in L^2[a,b]$. Функция $f' \in L^2[a,b]$ называется обобщенной производной функции $f \in L^2[a,b]$, если

$$\int_{a}^{b} f'\varphi \, dt = -\int_{a}^{b} f\varphi' dt$$

для всех $\varphi \in C_c^{\infty}(a,b)$.

- **4.16.** Докажите, что если $f \in L^2[a,b]$ обладает обобщенной производной f', то f' единственна (как элемент пространства $L^2[a,b]$).
- **4.17.** Пространство Соболева $W^{1,2}(a,b)$ определяется как множество всех $f \in L^2[a,b]$, обладающих обобщенной производной $f' \in L^2[a,b]$. Докажите, что $W^{1,2}(a,b)$ гильбертово пространство относительно скалярного произведения

$$\langle f, g \rangle = \int_a^b (f\bar{g} + f'\bar{g}') dt.$$

- **4.18. 1)** Пусть (e_n) стандартный ортонормированный базис в пространстве ℓ^2 . Положим $x = \sum_n n^{-1} e_n$ и $H_0 = \operatorname{span}\{x, e_2, e_3, \ldots\}$. Покажите, что (e_2, e_3, \ldots) максимальная ортонормированная система в H_0 , не являющаяся тотальной.
- 2) Докажите, что в любом неполном сепарабельном предгильбертовом пространстве существует максимальная ортонормированная система, не являющаяся тотальной.
- **4.19.** Докажите, что ортонормированная система (e_i) в предгильбертовом пространстве H тотальна тогда и только тогда, когда для каждого $x \in H$ выполнено равенство Парсеваля $||x||^2 = \sum_i |\langle x, e_i \rangle|^2$.
- 4.20-b. 1) Постройте пример предгильбертова пространства, чья гильбертова размерность строго меньше, чем у его пополнения.
- 2) Постройте пример предгильбертова пространства, в котором нет ортонормированного базиса.