Blatt 10
Ausgabe: Di, 02.07.19
Besprechung: Di, 9.07.19

Übungsbetreuung: Seraina Glaus (seraina.glaus@kit.edu) (Raum 12/08 - Geb. 30.23)

Aufgabe 1: Potentialtopf

Betrachten Sie ein Elektron in einem Kastenpotential, welches für x < 0 und x > a die Höhe $V_0 > 0$ besitzt und dazwischen für $0 \le x \le a$ die Höhe $V_0 = 0$ (siehe Bild). Betrachten Sie einen endlichen Potentialtopf, also $V_0 \nrightarrow \infty$. Lösen Sie die stationäre Schrödingergleichung

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) + V(x)\psi(x) = E\psi(x)$$

mit einer Strategie analog zum Problem der kastenförmigen Potentialbarriere. Beschränken Sie sich dabei zunächst auf Energien $E < V_0$ und benutzen Sie den Ansatz

$$\psi_I(x) = re^{\kappa x},$$

$$\psi_{II}(x) = pe^{ikx} + qe^{-ikx},$$

$$\psi_{III}(x) = te^{-\kappa x},$$

um die Normierbarkeit der Wellenfunktion zu gewährleisten. Zeigen Sie, dass die Lösung nach den diskreten Energiewerten auf die transzendentale Gleichung $\tan(ka) = 2k\kappa/(k^2 - \kappa^2)$ führt.

Aufgabe 2: Vektoren im Hilbertraum

Die Vektoren $|v_1\rangle, |v_2\rangle$ bilden ein vollständiges Orthonormalsystem (VONS) in einem zweidimensionalen Hilbertraum \mathcal{H} , d.h. $\langle v_i|v_j\rangle = \delta_{ij}$. In Abhängigkeit dieser zwei Basisvektoren definieren wir die zwei Vektoren $|\varphi\rangle, |\chi\rangle \in \mathcal{H}$ durch

$$|\varphi\rangle = (3-i)|v_1\rangle + (1+2i)|v_2\rangle$$
 und $|\chi\rangle = (1+i)|v_1\rangle + (1-i)|v_2\rangle$

(a) Berechnen Sie das Skalarprodukt $\langle \chi | \varphi \rangle$. Zeigen Sie dann, dass die Vektoren

$$|u_1\rangle = \frac{1}{\sqrt{2}}|v_1\rangle + \frac{i}{\sqrt{2}}|v_2\rangle \quad \text{und} \quad |u_2\rangle = \frac{-i}{\sqrt{2}}|v_1\rangle - \frac{1}{\sqrt{2}}|v_2\rangle$$

ebenfalls ein VONS bilden und bestimmen Sie die Komponenten von $|\varphi\rangle$ und $|\chi\rangle$ bezüglich dieser neuen Basisvektoren.

(b) Projektoren P_i auf Unterräume \mathcal{H}_i haben die Eigenschaften $P_i^2 = P_i$ (Idempotenz) und $\sum_i P_i = 1$ (Vollständigkeit), falls die \mathcal{H}_i den gesamten Raum \mathcal{H} aufspannen. Betrachten Sie nun die Projektoren $P_{u_1} = |u_1\rangle\langle u_1|$ und $P_{v_1} = |v_1\rangle\langle v_1|$. Welche mathem. Objekte sind durch P_{u_1} bzw. P_{v_1} beschrieben? Bestimmen Sie die Komponenten $\langle v_j|P_{u_1}|v_k\rangle$ von P_{u_1} bezüglich der $|v_i\rangle$ und die Komponenten $\langle u_j|P_{v_1}|u_k\rangle$ von P_{v_1} bezüglich der $|u_i\rangle$. Schreiben Sie schließlich P_{u_1} in der Basis $|v_i\rangle$.