Progress Quiz 8

1. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$10x^2 + 57x + 54 = 0$$

- A. $x_1 \in [-9.61, -8.33]$ and $x_2 \in [-0.67, -0.42]$
- B. $x_1 \in [-45.06, -43.86]$ and $x_2 \in [-12.03, -11.96]$
- C. $x_1 \in [-3.79, -2.7]$ and $x_2 \in [-1.51, -1.28]$
- D. $x_1 \in [-6, -3.8]$ and $x_2 \in [-1.31, -1.17]$
- E. $x_1 \in [-15.12, -12.2]$ and $x_2 \in [-0.5, -0.35]$
- 2. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$12x^2 + 11x - 36 = 0$$

- A. $x_1 \in [-0.9, 0.02]$ and $x_2 \in [3.15, 4.67]$
- B. $x_1 \in [-2.53, -1.56]$ and $x_2 \in [1.03, 1.47]$
- C. $x_1 \in [-27.88, -25.28]$ and $x_2 \in [15.47, 16.58]$
- D. $x_1 \in [-9.33, -7.37]$ and $x_2 \in [-0.25, 0.42]$
- E. $x_1 \in [-4.87, -2.48]$ and $x_2 \in [0.65, 0.69]$
- 3. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$24x^2 + 38x + 15$$

- A. $a \in [7.19, 9.72], b \in [3, 7], c \in [2.2, 4.2], and <math>d \in [0, 7]$
- B. $a \in [3.28, 5.6], b \in [3, 7], c \in [5.3, 8.4], and <math>d \in [0, 7]$
- C. $a \in [1.39, 3.83], b \in [3, 7], c \in [11.7, 13], and <math>d \in [0, 7]$
- D. $a \in [0.35, 1.34], b \in [16, 24], c \in [-2.7, 1.5], and <math>d \in [16, 22]$
- E. None of the above.

4553-3922 Fall 2020

4. Graph the equation below.

 $f(x) = (x+4)^2 - 13$

A.

C.

В.

E. None of the above.

5. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$-15x^2 - 11x + 3 = 0$$

A.
$$x_1 \in [-3.2, -1.77]$$
 and $x_2 \in [13.03, 14.69]$

B.
$$x_1 \in [-18.06, -17.49]$$
 and $x_2 \in [16.38, 17.64]$

C.
$$x_1 \in [-0.25, 0.19]$$
 and $x_2 \in [0.47, 2.44]$

D.
$$x_1 \in [-1.45, -0.57]$$
 and $x_2 \in [0.14, 0.22]$

E. There are no Real solutions.

6. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$-18x^2 - 12x + 3 = 0$$

4553-3922

Progress Quiz 8

- A. $x_1 \in [-4.06, -2.84]$ and $x_2 \in [15.48, 15.53]$
- B. $x_1 \in [-0.22, -0.12]$ and $x_2 \in [0.23, 0.99]$
- C. $x_1 \in [-19.88, -18.89]$ and $x_2 \in [18.28, 18.76]$
- D. $x_1 \in [-1.52, -0.7]$ and $x_2 \in [-0.67, 0.77]$
- E. There are no Real solutions.
- 7. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

- A. $a \in [0.6, 2.8], b \in [-7, -3], \text{ and } c \in [2, 4]$
- B. $a \in [-2.5, -0.8], b \in [-7, -3], \text{ and } c \in [-8, -5]$
- C. $a \in [-2.5, -0.8], b \in [2, 5], \text{ and } c \in [-8, -5]$
- D. $a \in [0.6, 2.8], b \in [2, 5], and c \in [2, 4]$
- E. $a \in [-2.5, -0.8], b \in [2, 5], \text{ and } c \in [-2, 1]$
- 8. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$24x^2 + 2x - 15$$

A. $a \in [0.4, 1.9], b \in [-21, -17], c \in [-1.2, 1.1], and <math>d \in [19, 21]$

4553-3922 Fall 2020

- B. $a \in [7.9, 9.9], b \in [-3, 2], c \in [1.2, 3.2], and <math>d \in [1, 7]$
- C. $a \in [0.4, 1.9], b \in [-3, 2], c \in [16.8, 20.9], and <math>d \in [1, 7]$
- D. $a \in [2.4, 5.1], b \in [-3, 2], c \in [3.6, 6.7], and <math>d \in [1, 7]$
- E. None of the above.
- 9. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

- A. $a \in [0.2, 1.8], b \in [1, 5], \text{ and } c \in [-6, -3]$
- B. $a \in [-1.6, -0.9], b \in [-8, -2], \text{ and } c \in [-14, -11]$
- C. $a \in [-1.6, -0.9], b \in [1, 5], \text{ and } c \in [2, 6]$
- D. $a \in [0.2, 1.8], b \in [-8, -2], \text{ and } c \in [-6, -3]$
- E. $a \in [-1.6, -0.9], b \in [1, 5], and <math>c \in [-14, -11]$
- 10. Graph the equation below.

$$f(x) = -(x-1)^2 - 12$$

В.

С.

D.

E. None of the above.

4553-3922 Fall 2020