

10 / 521189

14 JAN 2005

PCT/JP2004/004290

日本国特許庁
JAPAN PATENT OFFICE

26. 3. 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 Date of Application: 2003年 3月28日

出願番号 Application Number: 特願2003-092796

[ST. 10/C]: [JP2003-092796]

出願人 Applicant(s): 三井化学株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

BEST AVAILABLE COPY

2004年 4月30日

特許庁長官
Commissioner,
Japan Patent Office

今井 康夫

出証番号 出証特2004-3037184

【書類名】 特許願
【整理番号】 P2030M488
【あて先】 特許庁長官殿
【発明者】

【住所又は居所】 千葉県袖ヶ浦市長浦 580 番地 32 三井化学株式会社
内

【氏名】 西島 茂俊

【発明者】

【住所又は居所】 千葉県袖ヶ浦市長浦 580 番地 32 三井化学株式会社
内

【氏名】 伊牟田 伸一

【発明者】

【住所又は居所】 千葉県袖ヶ浦市長浦 580 番地 32 三井化学株式会社
内

【氏名】 広瀬 敏行

【特許出願人】

【識別番号】 000005887

【氏名又は名称】 三井化学株式会社

【代理人】

【識別番号】 100075524

【弁理士】

【氏名又は名称】 中嶋 重光

【選任した代理人】

【識別番号】 100070493

【弁理士】

【氏名又は名称】 山口 和

【手数料の表示】

【予納台帳番号】 059846

【納付金額】 21,000円

特願 2003-092796

ページ： 2/E

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 9807060

【プルーフの要否】 要

出証特 2004-3037184

【書類名】 明細書

【発明の名称】 フィルムとその製造方法

【特許請求の範囲】

【請求項 1】

4-メチル-1-ペンテンと炭素原子数2～20の他の α -オレフィンとから得られる共重合体からなる層（A）と、それに接して積層された他の熱可塑性樹脂からなる層（B）を含む多層フィルムを2倍以上延伸した後、該層（A）および（B）間を剥離することによって得られる、少なくとも一つの外表面が剥離後の層（A）であるフィルム。

【請求項 2】

前記層（A）および（B）間が、剥離強度500g／15mm以下で剥離することを特徴とする請求項1に記載のフィルム

【請求項 3】

前記他の熱可塑性樹脂が、炭素原子数2～20の α -オレフィンを含むオレフィン系樹脂であることを特徴とする請求項1または2に記載のフィルム。

【請求項 4】

前記オレフィン系樹脂が、ポリエチレンおよびポリプロピレンから選ばれた少なくとも1種であることを特徴とする請求項3に記載のフィルム。

【請求項 5】

前記剥離後のフィルムが（A）層の単層フィルムであることを特徴とする請求項1に記載のフィルム。

【請求項 6】

前記剥離後のフィルムが（A）層を含む多層フィルムであることを特徴とする請求項1に記載のフィルム。

【請求項 7】

前記フィルムの一方の外表面が炭素原子数2～20の α -オレフィンを含むオレフィン系樹脂からなる層であることを特徴とする請求項6に記載のフィルム

【請求項 8】

前記フィルムの両外表面が剥離後の（A）層であることを特徴とする請求項1

～6に記載のフィルム

【請求項9】

請求項1～8のいずれかに記載のフィルムからなる離型フィルム。

【請求項10】

4-メチル-1-ペンテンと炭素原子数2～20の他の α -オレフィンとから得られる共重合体からなる層(A)と、それに接して積層された他の熱可塑性樹脂からなる層(B)を含む多層フィルムを2倍以上延伸した後、該層(A)および(B)間を剥離強度500g／15mm以下で剥離して少なくとも一つの外表面が剥離後の層(A)であるフィルムを製造する方法。

【請求項11】

前記延伸が、1軸延伸であることを特徴とする請求項1に記載のフィルム。

【請求項12】

前記延伸が、2軸延伸であることを特徴とする請求項1に記載のフィルム。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、離型性に優れた高耐熱性フィルムおよびその製造方法に関するもので、さらに詳しくは、離型フィルムとして有用な4-メチル-1-ペンテン共重合体フィルムおよびその製造方法に関するものである。

【0002】

【従来の技術】

近年、電子機器の急速な進歩に伴い、ICの集積度が増大するにつれ、より高精度、高密度、高信頼性化への要求に対応する目的でプリント配線板が多用されている。

このプリント配線基板としては、片面プリント配線板、両面プリント配線板、多層プリント配線板、フレキシブルプリント配線板がある。なかでも3層以上の導体の中間に絶縁層をおいて一体化し、任意の導体相互および実装する電子部品と任意の導体層との接続ができる点で多層プリント基板（以後「MLB」と略す。）の応用分野は広がっている。

【0003】

このMLBは、例えば一対の片面銅張積層板、または一対の両面銅張積層板を両面外装としてその内側に一層または二層以上の内層回路板をプリプレグ（エポキシ樹脂等）を介在させて交互に積み重ね、これらを治具で挟持するとともにクッション材を介してプレス熱板で熱プレスして、プリプレグを硬化させて強固に一体化された積層体を形成し、穴開け、スルーホールメッキなどを行った後、表面をエッチングすることで形成される。

【0004】

このようなMLBを製造する際には、通常銅張積層板（外装板）と治具との間に離型フィルムが用いられる。この離型フィルムとしては、4-メチル-1-ペンテン共重合体、ポリテトラフルオロエチレン、アセテート、ポリエステル、ポリプロピレンなどの加熱加圧工程で溶融しない高耐熱性の樹脂が使用される。

【0005】

銅貼積層板の銅箔にはエポキシ樹脂との接着性を高めるために表面を酸化して荒らした、いわゆる黒化処理銅箔がしばしば使用される。この場合には、上記の各離型フィルムにおいては剛性の不足により、加熱加圧工程でフィルムの表面が黒化処理銅箔面に食い込み、離型フィルムが剥離できなくなるという問題が起こることがある。

【0006】

特開平3-73588号公報には、4-メチル-1-ペンテン共重合体フィルムを一軸延伸して、剛性を高めたフィルムを離型フィルムとして使用することが提案されている。しかし、4-メチル-1-ペンテン共重合体フィルムは一軸延伸時の延伸性および生産性、および黒化処理銅箔面からの離型性に課題を有している。

【0007】

特開2002-225207には、4-メチル-1-ペンテン共重合体とポリエチレンまたはポリプロピレンからなる多層フィルムを延伸すると、延伸時に延伸ムラ、破れが少なく、剛性の高いMLB製造用の離型フィルムに好適な延伸フィルムが得られたことが述べられている。

【0008】

特開 2003-1772 には、4-メチル-1-ペンテン共重合体と無機フィラーが添加されたポリエチレンまたはポリプロピレンからなる多層フィルムは、剛性の高いMLB 製造用の離型フィルムに好適であることが述べられている。

【0009】**【特許文献 1】**

特開平 3-73588 号公報

【特許文献 2】

特開 2002-225207 号公報

【特許文献 3】

特開 2003-1772 号公報

【0010】**【発明が解決しようとする課題】**

本発明者らは、従来提案の離型フィルムよりさらに離型性が改善された離型フィルムの開発を目指して鋭意努力した結果本発明に到達した。

本発明の目的は、延伸が困難であったフィルムの延伸性を向上させ、高剛性・厚薄精度の良い、単層または多層フィルムを得ることであり、また、MLB 製造用に適した黒化処理銅箔からの離型性がよい離型フィルムを得ることである。

【0011】**【課題を解決するための手段】**

本発明は、4-メチル-1-ペンテンと炭素原子数 2~20 の他の α -オレフインとから得られる共重合体からなる層 (A) と、それに接して積層された他の熱可塑性樹脂からなる層 (B) を含む多層フィルムを 2 倍以上延伸した後、該層 (A) および (B) 間を剥離することによって得られる、少なくとも一つの外表面が剥離後の層 (A) であるフィルムを提供する。

【0012】

前記層 (A) および (B) 間が、剥離強度 500 g / 15 mm 以下 (JIS K 6854 に基づき、T ピール、23 ℃ で、速度 300 mm / 分で測定) で剥離しうる多層フィルムである前記した剥離後のフィルムは、本発明の好ましい態様

である。

【0013】

前記他の熱可塑性樹脂が、炭素原子数2～20の α -オレフィンを含むオレフィン系樹脂である剥離後のフィルムは、本発明の好ましい態様である。

【0014】

前記剥離後のフィルムが(A)層の単層フィルムまたは(A)層を含む多層フィルムである剥離後のフィルムは、本発明の好ましい態様である。

【0015】

前記フィルムの一方の外表面が炭素原子数2～20の α -オレフィンを含むオレフィン系樹脂である前記した剥離後のフィルムは、本発明の好ましい態様である。

【0016】

前記フィルムの両外表面が剥離後の(A)層である前記した剥離後のフィルムは、本発明の好ましい態様である。

【0017】

また本発明は、前記した剥離後のフィルムからなる離型フィルムを提供する。

【0018】

さらに本発明は、4-メチル-1-ペンテンと炭素原子数2～20の他の α -オレフィンとから得られる共重合体からなる層(A)と、それに接して積層された他の熱可塑性樹脂からなる層(B)を含む多層フィルムを2倍以上延伸した後、該層(A)および(B)間を剥離強度500g/15mm以下で剥離して少なくとも一つの外表面が剥離後の層(A)であるフィルムを製造する方法を提供する。

【0019】

前記延伸が、1軸延伸または2軸延伸である前記したフィルムを製造する方法は本発明の好ましい態様である。

【0020】

【発明の実施の形態】

本発明は、4-メチル-1-ペンテンと炭素原子数2～20の他の α -オレフ

インとから得られる共重合体からなる層（A）と、それに接して積層された他の熱可塑性樹脂からなる層（B）を含む多層フィルムを2倍以上延伸した後、該層（A）および（B）間を剥離することによって得られる、少なくとも一つの外表面が剥離後の層（A）であるフィルムを提供するものである。本発明はまた、フィルムを製造するための優れた方法を提供する。

【0021】

前記延伸される多層フィルムは、層（A）および（B）間が、剥離強度500g／15mm以下で剥離しうるものであることが好ましい。

【0022】

前記他の熱可塑性樹脂の具体例としては、炭素原子数2～20の α -オレフィンを含むオレフィン系樹脂を挙げることができる。オレフィン系樹脂のより好ましい例としては、エチレン、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、オクテン-1などの炭素数2～8の α -オレフィンの単独重合体またはこれら α -オレフィン同士もしくは他のモノマーとの共重合体を挙げができる。中でも好ましものとして、共重合体も含む意味でのポリエチレン（b1）、ポリエチレン（b2）などを挙げができる。

【0023】

本発明に係るフィルムは、例えば具体的には、（A）4-メチル-1-ペンテン共重合体（a）からなる層と、（B）ポリプロピレン（b1）またはポリエチレン（b2）からなる層とを含む多層フィルムを、2倍以上延伸後、剥離強度が500g／15mm以下で該層（A）および（B）間を剥離させて得られた单層または多層のフィルムである。

【0024】

剥離後も多層フィルムを構成する場合は必要に応じて、剥離前の多層フィルムに（C）接着樹脂層が介在してもよい。

本発明に係る4-メチル-1-ペンテン共重合体多層フィルムを形成する各樹脂について説明する。

【0025】

(a) 4-メチル-1-ペンテン共重合体

本発明で用いられる4-メチル-1-ペンテン共重合体(a)は、4-メチル-1-ペンテンと、4-メチル-1-ペンテン以外の炭素原子数2～20の α -オレフィンとの共重合体である。

【0026】

ここで4-メチル-1-ペンテン以外の炭素原子数2～20の α -オレフィンとしては、例えばエチレン、プロピレン、1-ブテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセンなどが挙げられる。これら4-メチル-1-ペンテン以外の他の α -オレフィンは、1種単独でまたは2種以上組み合わせて用いることができる。この中でも炭素原子数7～20、好ましくは8～20、より好ましくは10～20の α -オレフィンであることが望ましい。

【0027】

4-メチル-1-ペンテン共重合体(a)は、4-メチル-1-ペンテンから導かれる繰り返し単位を通常80モル%以上、好ましくは90～98モル%、より好ましくは93～98モル%、上記 α -オレフィンから導かれる繰り返し単位を、通常20モル%以下、好ましくは2～10モル%、より好ましくは2～7モル%の範囲で含有することが好ましい。4-メチル-1-ペンテン以外の炭素原子数2～20の α -オレフィンから導かれる繰り返し単位の含有量が上記範囲内にあると、4-メチル-1-ペンテン共重合体(a)は成型性および剛性に優れる。

【0028】

また、この4-メチル-1-ペンテン共重合体(a)は、ASTM D1238に準じ、荷重5.0kg、温度260℃の条件で測定したメルトフローレート(MFR)が通常0.5～250g/10分の範囲にあり、好ましくは1.0～150g/10分の範囲にある。MFRが上記範囲内にあると、4-メチル-1-ペンテン共重合体(a)は成型性に優れ、機械的強度特性に優れる。

【0029】

このような4-メチル-1-ペンテン共重合体(a)は、従来公知の方法で製

造することができる。

この4-メチル-1-ペンテン共重合体(a)には、本発明の目的を損なわない範囲で、耐熱安定剤、耐候安定剤、発錆防止剤、耐銅害安定剤、耐電防止剤などの通常ポリオレフィンに配合される従来公知の添加剤を配合することができる。

【0030】

添加剤として、具体的には例えば以下のようなものが挙げられる。

フェノール系酸化防止剤としては、例えば2, 6-ジ-tert-ブチル-p-クレゾール、ステアリル(3, 3-ジメチル-4-ヒドロキシベンジル)チオグリコレートなどのフェノール類および4, 4'-ブチリデンビス(2-tert-ブチル-5-メチルフェノール)の炭酸オリゴエステル(例えば重合度2、3、4、5、6、7、8、9、10など)などの多価フェノール炭酸オリゴエステル類が挙げられる。

【0031】

イオウ系酸化防止剤としては、例えばジアルキルチオジプロピオネートなどが挙げられる。

リン系酸化防止剤としては、例えばトリフェニルホスファイトなどが挙げられる。

【0032】

また一般式 $M_x A_1 y (OH)_{2x+3y-2z} (A)_z \cdot a H_2O$ (式中、MはMg、CaまたはZnを示し、Aは水酸基以外のアニオンを示し、x、yおよびzは正数であり、aは0または正数である。)で示される複合物を例えば塩酸吸収剤として添加することができる。

【0033】

光安定剤としては、例えば2-ヒドロキシ-4-メトキシベンゾフェノンなどが挙げられる。

滑剤としては、例えばパラフィンワックス、ポリエチレンワックス、ステアリン酸カルシウムなどが挙げられる。

【0034】

このような添加剤は、4-メチル-1-ペンテン共重合体（a）100重量部に対して、通常0.0001～10重量部の量で用いることができる。

【0035】

ポリプロピレン（b1）またはポリエチレン（b2）

本発明で用いられるポリプロピレン（b1）は、プロピレンの単独重合体、またはプロピレンと、プロピレン以外の炭素原子数2～20の α -オレフィンから選ばれる少なくとも1種のオレフィンとの共重合体である。

【0036】

プロピレン以外の炭素原子数2～20の α -オレフィンとしては、例えば1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセンおよびこれらの混合物が挙げられる。このうち炭素原子数4～10の α -オレフィンを用いることが特に好ましい。

【0037】

ポリプロピレン（b1）では、プロピレンと、プロピレン以外の炭素原子数2～20の α -オレフィンとのモル比（プロピレン/ α -オレフィン（プロピレンを除く））は、 α -オレフィンの種類によっても異なるが、一般に100/0～90/10、好ましくは100/0～95/5である。

【0038】

なお、ポリプロピレン（b1）は、その特性を損なわない範囲内で、ジエン化合物から誘導される成分単位等のような、 α -オレフィンから誘導される成分単位以外の成分単位等を含んでいてもよい。ジエン成分の含有量は、通常は0～1モル%、好ましくは0～0.5モル%である。

【0039】

ポリプロピレン（b1）は、230℃、2.16kg荷重におけるメルトフローレート（MFR）が0.1～100g/10分、好ましくは0.5～50g/10分の範囲にあり、密度が0.900g/cm³を超える、好ましくは0.900g/cm³を超える0.920g/cm³以下の範囲であることが望ましい。

このようなポリプロピレン（b1）は、従来公知の方法によって製造することができる。

【0040】

本発明で用いられるポリエチレン（b2）は、エチレンの単独重合体、またはエチレンと炭素原子数3～20の α -オレフィンとの共重合体である。

炭素原子数3～20の α -オレフィンとしては、例えばプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセンおよびこれらの混合物が挙げられる。このうち炭素原子数3～10の α -オレフィンを用いることが特に好ましい。

【0041】

なお、ポリエチレン（b2）は、その特性を損なわない範囲内で、ジエン化合物から誘導される成分単位等のような、 α -オレフィンから誘導される成分単位以外の成分単位を含んでいてもよい。ジエン成分の含有量は、通常は0～1モル%、好ましくは0～0.5モル%である。

【0042】

ポリエチレン（b2）では、エチレンと炭素原子数3～20の α -オレフィンとのモル比（エチレン/ α -オレフィン）は、 α -オレフィンの種類によっても異なるが、一般に100/0～99/1、好ましくは100/0～99.5/0.5である。

【0043】

ポリエチレン（b2）は、190℃、2.16kg荷重におけるメルトフロー率（MFR）が0.01～100g/10分、好ましくは0.05～50g/10分の範囲にあり、密度が0.900g/cm³を超える、好ましくは0.930～0.970g/cm³の範囲にあることが望ましい。

このようなポリエチレン（b2）は、従来公知の方法によって製造することができる。

【0044】接着樹脂（c）

本発明で用いられる接着樹脂（c）としては、4-メチル-1-ペンテン共重合体（a）からなる層（A）と、ポリプロピレン（b1）またはポリエチレン（b2）からなる層（B）とを接着しうるものであれば特に限定されないが、本発

明で好ましく用いられる接着樹脂（c）としては、例えばポリ4-メチル-1-ペンテン（d）と、ポリ1-ブテン（e）とからなる接着性樹脂組成物が挙げられる。

【0045】

接着性樹脂組成物を形成するポリ4-メチル-1-ペンテン（d）は、4-メチル-1-ペンテンの単独重合体または4-メチル-1-ペンテンと4-メチル-1-ペンテン以外の炭素原子数2～20の α -オレフィンとの共重合体である。

【0046】

4-メチル-1-ペンテン以外の炭素原子数2～20の α -オレフィンとしては、例えばエチレン、プロピレン、1-ブテン、1-ヘキセン、1-オクテン、1-デセン、1-テトラデセン、1-オクタデセン、1-ヘキサデセン、1-ドデセン、1-テトラドデセン、1-エイコセンなどが挙げられる。これらの α -オレフィンは、1種単独でまたは2種以上組み合わせて用いることができる。これらのなかでは1-ヘキセン、1-デセン、1-テトラデセン、1-オクタデセン、1-ドデセン、1-テトラドデセンまたは1-エイコセンが好ましい。

【0047】

ポリ4-メチル-1-ペンテン（d）は、4-メチル-1-ペンテンから導かれる繰り返し単位が通常100～80モル%、炭素原子数2～20の α -オレフィンから導かれる繰り返し単位が通常0～20モル%の割合で含有され、4-メチル-1-ペンテンから導かれる繰り返し単位が99.9～80モル%、炭素原子数2～20の α -オレフィンから導かれる繰り返し単位が通常0.1～20モル%の割合で含有されることが好ましい。

【0048】

このポリ4-メチル-1-ペンテン（d）は、MFRが通常0.1～200g／10分の範囲にあり、好ましくは1.0～150g／10分の範囲にある。

接着性樹脂組成物を形成するポリ1-ブテン（e）は、1-ブテンの単独重合体または1-ブテンと1-ブテン以外の炭素原子数2～20の α -オレフィンとの共重合体である。

【0049】

ここで、1-ブテン以外の炭素原子数2～20の α -オレフィンとしては、例えばエチレン、プロピレン、1-ヘキセン、1-オクテン、1-デセン、1-テトラデセン、1-オクタデセンなどが挙げられる。これらの α -オレフィンは、1種単独でまたは2種以上組み合わせて用いることができる。これらの中では、エチレン、プロピレンが好ましい。

【0050】

ポリ1-ブテン(e)は、1-ブテンから導かれる繰り返し単位を60重量%以上含有する共重合体である。特に1-ブテンから導かれる繰り返し単位を80重量%以上含有すると、ポリ1-ブテン(e)は、ポリ4-メチル-1-ペンテン(d)との相溶性に優れる。

【0051】

このポリ1-ブテン(e)は、ASTM D1238に準じ、荷重2.16kg、温度190℃の条件で測定したMFRが、通常0.01～100g/10分の範囲にあり、好ましくは0.1～50g/10分の範囲にある。

【0052】

ポリ1-ブテン(e)のMFRが上記範囲内にあると、ポリ4-メチル-1-ペンテン(d)との混合性がよくなり、接着性樹脂組成物は高い接着性能を発揮する。

【0053】

この接着性樹脂組成物は、上記ポリ4-メチル-1-ペンテン(d)と上記ポリ1-ブテン(e)との重量比(d:e)が通常95:5～50:50の範囲にあり、好ましくは80:20～60:40の範囲にある。ポリ4-メチル-1-ペンテン(d)と上記ポリ1-ブテン(e)との重量比が上記範囲内にあると、この組成物は高い接着性能を発揮する。

【0054】

接着性樹脂組成物は、例えば上記ポリ4-メチル-1-ペンテン(d)とポリ1-ブテン(e)とを従来公知の方法により溶融混練することにより製造することができる。例えば、ポリ4-メチル-1-ペンテン(d)とポリ1-ブテン(

e) の所定量を、Vブレンダー、リボンブレンダー、ヘンシェルミキサー、タンブラー ブレンダーなどで混合した後、単軸押出機、複軸押出機などで溶融混練し、造粒するか、またはニーダー、バンバリーミキサーなどで溶融混練し、粉碎することにより製造することができる。

【0055】

接着樹脂（c）からなる（C）層が上記のような組成の接着性樹脂組成物からなると、（A）層と（B）層とを強固に接着することができる

【0056】

多層フィルム

本発明に係る4-メチル-1-ペンテン共重合体（A）を含む多層フィルムの一の態様は、例えば、3層の場合、上記4-メチル-1-ペンテン共重合体（a）からなる層（A）と、上記ポリプロピレン（b1）またはポリエチレン（b2）からなる層（B）とからなり、上記（A）層の両面に上記（B）層が設けられている、（B）／（A）／（B）の構成を有する3層のフィルムである。

【0057】

また7層のフィルムとして、（B）／（A）／（C）／（D）／（C）／（A）／（B）の構成を有する多層フィルムを挙げることができる。ここで、（C）は接着樹脂層であり、（D）層はDSC（示差走査熱測定）で測定した融点が80～250℃、好ましくは120～250℃の熱可塑性樹脂であれば良く、ポリエチレン、ポリプロピレン、ポリアミド、ポリエチレンテレフタレートなどの公知の樹脂が使用可能である。

【0058】

このような多層フィルムを製造する方法として、例えば4-メチル-1-ペンテン共重合体（a）と、ポリプロピレン（b1）またはポリエチレン（b2）とを共押出成形する方法、予めこれらの各樹脂からプレス成形、押出成形などによって作製したシート、フィルムなどをプレス成形して積層フィルムとする方法などを挙げることができる。

【0059】

このような方法によって、層（A）の両側に層（B）を積層する3層フィルム

が得られる。また上記7層フィルムも同様の方法によって製造することができる。

。

【0060】

これら多層フィルムにおける層(A)および(B)間(例えば、3層の場合(B)／(A)または(A)／(B)であり、7層の場合も(B)／(A)または(A)／(B)である)の剥離強度は500g／15mm以下であることが好ましい。

【0061】

多層フィルムの延伸

得られた多層フィルムを、従来公知の方法により延伸することができる。たとえば、上記の3層フィルムを延伸する場合、一軸または二軸延伸する際の加熱温度は120～210℃、好ましくは130～180℃の範囲であり、延伸する際の延伸倍率は、通常2倍以上であり、好ましくは4倍以上、より好ましくは6倍以上である。延伸は一軸延伸であっても、二軸延伸であってもよい。

【0062】

この多層フィルムの延伸後の厚みは特に限定されないが、通常1～500μm、好ましくは5～400μm、更に好ましくは10～200μmであることが望ましい。

【0063】

剥離後のフィルム

本発明のフィルムは、層(A)と、それに接して積層された層(B)を含む多層フィルムを2倍以上延伸した後、該層(A)および(B)間を剥離することによって得られる、少なくとも一つの外表面が剥離後の層(A)であるフィルムである。剥離後の本発明のフィルムは、(A)層の単層フィルムであっても(A)層を含む多層フィルムであってもよい。

【0064】

剥離後の本発明のフィルムは、その片側外表面が剥離後の(A)層であればよいが、その両外表面が剥離後の(A)層であってもよい。その片側外表面が剥離後の(A)層である場合、他の外表面が炭素原子数2～20のα-オレフィンを

含むオレフィン系樹脂からなる層である態様は、本発明の好ましい態様である。

【0065】

本発明のフィルムを製造する好ましい具体的方法としては、4-メチル-1-ペンテンと炭素原子数2～20の他の α -オレフィンとから得られる共重合体からなる層(A)と、それに接して積層された他の熱可塑性樹脂からなる層(B)を含む多層フィルムを2倍以上延伸した後、該層(A)および(B)間を剥離強度500g/15mm以下で剥離して少なくとも一つの外表面が剥離後の層(A)であるフィルムを製造する方法をあげることができる。

【0066】

多層フィルムを延伸する方法としては、前述のとおり従来公知の方法を適宜採用することができる。延伸が1軸延伸で態様は本発明の好ましい態様であり、また延伸が2軸延伸である態様も本発明の好ましい態様である。

【0067】

剥離後の本発明のフィルムは高剛性であり、高耐熱性を備えたものであり、食品、医薬品、鮮度保持用途等の各種包装フィルムとして使用される。特に、MLB製造用に適した黒化処理銅箔からの離型性がよい、離型フィルムとして好適なフィルムである。

【0068】

【実施例】

本発明を、実施例によってより具体的に説明する。ただし、実施例は本発明をこれらのものに限定するものではない。

【0069】

本実施例においてポリ-4-メチル-1-ペンテン共重合体、ポリプロピレンとして以下のものを用いた。

(ポリ-4-メチル-1-ペンテン共重合体)

4-メチル-1-ペンテンと、1-デセンとの共重合体。この共重合体における4-メチル-1-ペンテン含量：97mol%、1-デセン含量：3mol%。
MFR (ASTM D1238に準じた荷重5.0kg、温度260°Cで測定)
：12g/10分

【0070】

(ポリプロピレン (b 1))

(株) グランドポリマー製、商品名：F-122

密度：0.91 g/cm³、MFR (ASTM D1238に準じ荷重2.16 kg、温度230°Cで測定) : 2 g/10分**【0071】**

(実施例1)

モダン社製2種3層のTダイ押出成形機を用い、中間層にポリ-4-メチル-1-ペンテンをシリンダー温度290°Cで、外層のポリプロピレンをシリンダー温度240°Cで、ダイス温度は270°Cで共押出成形した。ポリプロピレン層が50 μm、ポリ-4-メチル-1-ペンテン層の厚みが200 μmの未延伸フィルムを得た。

【0072】

未延伸フィルムを7cm角に切り、温度150°Cで5倍に一軸延伸した後、ポリプロピレン層を剥離させた。剥離強度は100g/15mm以下であった。

【0073】

このフィルムを亜塩素酸ソーダにより黒化処理した銅箔面にフィルムを重ね、185°C、36 kg/cm²、30分の条件でプレスし、フィルムの銅箔からの剥離性を調べた。フィルム端面を持って剥がし、銅箔から完全に剥離した場合は100%、全く剥離しなかった場合を0%として剥離面積とした。

外観を目視で観察し、下記基準で評価した。

良：フィルムに外観上のムラが殆ど認められない。

不良：フィルムに外観上のムラのある。

結果を表1に示した。

【0074】

(実施例2)

延伸倍率のみを6倍とした以外は実施例1と同様の操作を実施した。結果を表1に示した。

【0075】

(実施例 3)

延伸倍率のみを 7 倍とした以外は実施例 1 と同様の操作を実施した。結果を表 1 に示した。

【0076】

(実施例 4)

延伸倍率のみを 8 倍とした以外は実施例 1 と同様の操作を実施した。結果を表 1 に示した。

【0077】

(実施例 5)

延伸倍率のみを 4、3 倍とした以外は実施例 1 と同様の操作を実施した。結果を表 1 に示した。

【0078】

(比較例 1)

ポリ-4-メチル-1-ペンテン/ポリプロピレン/ポリ-4-メチル-1-ペンテンの層間に下記接着樹脂 (c) を使用して、80/40/80 μm の構成で押出成形した。得られた多層フィルムを用いて実施例 1 と同様の操作によって 180°C で 4 倍に延伸した後、層間を剥離させることなく剥離面積を測定した。結果を表 1 に示した。

【0079】

接着樹脂 (c) : 4-メチル-1-ペンテン共重合体 (1-オクタデセン含量: 6 重量%、MFR: 3.0 g/10 分) を 40 重量部、1-ブテン共重合体 (エチレン含量: 5 重量%、MFR: 2.5 g/10 分) を 40 重量%、Irganox 1010 (商品名、Ciba (株) 製) を 0.01 重量部、およびステアリン酸カルシウム (三共有機合成 (株) 製) を 0.03 重量部を、ヘンシェルミキサーで 3 分間低速回転で混合し、混合物を二軸押出機で 280°C の温度で押出して得られた混合物。

【0080】

【表1】

	実施例1	実施例2	実施例3	実施例4	実施例5	比較例1
剥離強度 g/15mm	100 以下	—				
延伸倍率	5	6	7	8	4.3	4
延伸可否	可	可	可	可	可	可
剥離面積	60	65	70	80	50	30
外観	良	良	良	良	良	不良

【0081】

【発明の効果】

本発明により、離型性がさらに改善された離型フィルムに適したフィルムが提供される。

本発明の剥離後のフィルムは、高剛性で厚薄精度が良く、高耐熱性を備えたものであり、MLB 製造用に適した黒化処理銅箔からの離型性がよい離型フィルムに好適のものである。

【0082】

本発明により、離型性がさらに改善された離型フィルムに適したフィルムを製造するための優れた方法が提供される。

【書類名】 要約書

【要約】

【課題】 高い剛性と高い耐熱性を有するフィルムであって、黒化処理銅箔からの離型性が良く、MLB製造用離型フィルムに適したフィルムとその製造方法を提供すること

【解決手段】 4-メチル-1-ペンテンと炭素原子数2～20の他の α -オレフィンとから得られる共重合体からなる層（A）と、それに接して積層された他の熱可塑性樹脂からなる層（B）を含む多層フィルムを2倍以上延伸した後、該層（A）及び（B）間を剥離することによって得られる、少なくとも一つの外表面が剥離後の層（A）であるフィルム、および層（A）及び（B）間を剥離強度500g/15mm以下で剥離するフィルムの製造方法。

【選択図】 なし

特願 2003-092796

ページ： 1/E

認定・付加情報

特許出願の番号	特願 2003-092796
受付番号	50300521749
書類名	特許願
担当官	第一担当上席 0090
作成日	平成15年 3月31日

<認定情報・付加情報>

【提出日】 平成15年 3月28日

次頁無

出証特 2004-3037184

特願 2003-092796

出願人履歴情報

識別番号 [000005887]

1. 変更年月日 1997年10月 1日
[変更理由] 名称変更
住 所 東京都千代田区霞が関三丁目2番5号
氏 名 三井化学株式会社
2. 変更年月日 2003年11月 4日
[変更理由] 住所変更
住 所 東京都港区東新橋一丁目5番2号
氏 名 三井化学株式会社

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.