ELEC 403 Lab 3 Script - EXPERIMENT 3

DESIGN OF A BAND-LIMITED DIFFRERENTIATOR FOR VELOCITY ESTIMATION BASED ON NOISY POSITION DATA % This script is used to fulfill the requirements in the lab manual. %

3.6.1 - following Sec. 3.3 to generate noise-free position signal s[n] and v[n]

```
close all
clear all
t = 0:1/512:(2-1/512);
t = t(:);
randn('state', 7)
a = 0.25*randn(7,1);
randn('state', 19)
b = 0.25*randn(7,1);
s = 0.3*ones(1024,1);
v = zeros(1024, 1);
for i = 1:7,
s1 = a(i)*sin(2*pi*i*t);
 s2 = b(i)*cos(2*pi*(i-0.5)*t);
 s = s + s1 + s2;
v1 = i*a(i)*cos(2*pi*i*t);
v2 = (i-0.5)*b(i)*sin(2*pi*(i-0.5)*t);
v = v + 2*pi*(v1 - v2);
end
figure
plot (t,s)
xlabel('Time in seconds')
title('Position signal s[n]')
print('Reproduced3_1a','-dpng','-r300')
figure
plot (t,v)
xlabel('Time in seconds')
title('Velocity signal v[n]')
print('Reproduced3_1b','-dpng','-r300')
```


3.6.2 - get a conventional differentiator of length 23 by following Sec. 3.3

```
fs = 512;
Ts = 1/fs;
N = 23;
M = (N-1)/2;
n = 1:1:M;
h = cos(n*pi)./(Ts*n); % compute desired impulse response using (3.5)
h = [-fliplr(h) \ 0 \ h]; \% compute desired impulse response using (3.4)
win = hamming(N); % construct 41-point Hamming window
h_diff = win(:).*h(:); % generate the impulse response of the differentiator
% We now apply the differentiator to the position signal s[n] by discrete convolution:
sw = conv(h_diff, s); % perform digital differentiation by discrete convolution
s_diff = sw(12:1035); % reduce the output length to 1024
figure
plot (t, s_diff)
title('Output of differentiator s-diff[n]')
xlabel('Time in seconds')
axis([0 2 -30 30])
print('Reproduced3_2a','-dpng','-r300')
```

```
figure
plot(t,v)
title('Exact velocity signal v[n]')
xlabel('Time in seconds')
print('Reproduced3_2b','-dpng','-r300')
```


3.6.3 - generate noise w[n] and noise-corrupted position signal x[n]

```
randn('state',9); % sets a seed state for generating a random sequence
w0 = randn(1024,1); % generate 1024 Gaussian white random samples
mw = mean(w0); % evaluate its mean value
w0 = w0 - mw; % modify w0 to have a zero-mean
c = 0.3/sqrt((w0'*w0)/1024);
w0 = c*w0; % modify w0 to have a standard deviation = 0.3
h = fir1(250,0.7, 'high'); % get a good highpass FIR filter with cutoff freq. = 0.7
w1 = conv(h, w0); % apply highpass filtering to the white sequence
w = w1(126:1149); % cut the filtered sequence to a right size
w = w(:); % make sure w[n] is a column vector
x = s + w; % Generate noisy position signal
figure
plot(t,x)
title('Noise-corrupted position signal x[n]')
xlabel('Time in seconds')
print('Reproduced3_3a','-dpng','-r300')
figure
sww = conv(h_diff, x); % perform digital differentiation by discrete convolution
w_diff = sww(12:1035); % reduce the output length to 1024
```

```
plot(t,w_diff)
title('Response to differentator to noisy x[n]')
xlabel('Time in seconds')
print('Reproduced3_3b','-dpng','-r300')
```


3.6.4 - design BLD with N = 23, wp = 0.2pi, wa=0.5pi and Ts = 1/512

```
format <mark>long</mark>
h_BLD = lab3_363(23,1/512,0.2*pi,0.5*pi);
h_BLD
```

```
p =
   Columns 1 through 3
   40.686020377278155   72.029997840609937   87.241378322871554
   Columns 4 through 6
   83.874163751577640   64.339814440168666   35.017056807228130
   Columns 7 through 9
   4.263870745255236 -20.034761157085999 -32.633158103349196
   Columns 10 through 11
```

q =

Columns 1 through 3

0.861793301924978	-0.531283440388385	0.164290969791942
-0.531283440388385	1.026084269608764	-0.106107378607646
0.164290969791942	-0.106107378607646	1.148539524585688
0.425176062996481	0.286746224868288	-0.209603359847701
0.122455220840790	0.321680099301193	0.297205127125491
-0.103495957773908	0.132914183847191	0.413386424691162
0.010458873370765	-0.011789685918372	0.073473169617056
0.091706249068981	-0.048982091017164	-0.172172019577499
-0.059441055005861	-0.068676020848451	-0.088609561706681
-0.160382437396598	-0.099068396605395	0.005378476006910
-0.039627312563967	-0.086327839719034	-0.080431475586132

Columns 4 through 6

0.425176062996481	0.122455220840790	-0.103495957773908
0.286746224868288	0.321680099301193	0.132914183847191
-0.209603359847701	0.297205127125491	0.413386424691162
1.158998426828271	-0.117897034238076	0.237764142189861
-0.117897034238076	1.099557441874591	-0.278279393929659
0.237764142189861	-0.278279393929659	1.059930072001250
0.253004065922314	0.198136772316520	-0.204224976940981
0.033845799793747	0.327058482948997	0.216771753913668
-0.098117571193358	0.052480781412049	0.291842721359883
-0.069974479303084	-0.133333347142564	0.091841416993021
-0.029837425590578	-0.030613843501887	-0.042616003903041

Columns 7 through 9

0.010458873370765	0.091706249068981	-0.059441055005861
-0.011789685918372	-0.048982091017164	-0.068676020848451
0.073473169617056	-0.172172019577499	-0.088609561706681
0.253004065922314	0.033845799793747	-0.098117571193358
0.198136772316520	0.327058482948997	0.052480781412049
-0.204224976940981	0.216771753913668	0.291842721359883
1.078565053597575	-0.239440720914006	0.256132389528398
-0.239440720914006	1.117925689211494	-0.148723378027174
0.256132389528398	-0.148723378027174	1.125975706841395
0.382560081830462	0.264182407158481	-0.216955130677360
0.099891434609813	0.314328329220408	0.237764147283939

Columns 10 through 11

```
-0.099068396605395 -0.086327839719034
  0.005378476006910 - 0.080431475586132
 -0.069974479303084 -0.029837425590578
 -0.133333347142564 -0.030613843501887
  0.091841416993021 -0.042616003903041
  0.264182407158481 0.314328329220408
 -0.216955130677360 0.237764147283939
  1.099557446966611 -0.196292831636055
  h_BLD =
 -0.797923862820184
 -0.676208173791139
  2.375172129586918
  5.611656469894399
  1.165735106609191
 -12.499355678469954
 -19.819051269390684
  0.643297572310985
 46.809278069707453
 81.820406520359597
 65.510591958352848
 -65.510591958352848
 -81.820406520359597
 -46.809278069707453
 -0.643297572310985
 19.819051269390684
 12.499355678469954
 -1.165735106609191
 -5.611656469894399
 -2.375172129586918
  0.676208173791139
  0.797923862820184
```

3.6.5 - apply BLD designed in 3.6.4 to x[n] save figures.

```
xx = conv(h_BLD, x); % perform digital differentiation by discrete convolution
x_diff = xx(12:1035); % reduce the output length to 1024
figure
plot(t,x_diff);
axis([0 2 -30 30])
title('Applied BLD to noisy x[n]')
xlabel('Time in seconds')
print('Pic3_5','-dpng','-r300')
```

```
figure
sssx = conv(h_BLD, s);
sss_diff = sssx(12:1035);
plot(t,sss_diff);
axis([0 2 -30 30])
xlabel('Time in seconds')
title('Applied BLD to s[n]')
print('Pic3_5b','-dpng','-r300');
```

Published with MATLAB 3 R2016a