

计算机组成与结构 —运算方法3

计算机科学与技术学院

温故 —关于数制表示

- 简述原码一位乘法原理?
- 模拟手工乘法,符号位运算+数值位运算
- 符号位: 同号为正, 异号为负。(相当于异或运算)
- 数值位:将其中一个乘数固定住,另外一个乘数 (1的个数较少)的每一位从低位到高位拆分出来与之相乘
- 简述原码两位乘法原理?
- 每次取两位进行运算
- +3|X|=+4|X|--|X|, **存在进位(是否欠**+4|X|)
- 无论是否"欠"|X|, 一次最多+2|X|
- 如果"当轮"+"欠的">2, 继续"欠"下去

原码二位乘法,

一次乘两位数字?这个在十进制下很反人类啊...,但在二进制下,似乎还好...

原码二位乘法,

一次乘两位数字?这个在十进制下很反人类啊...,但在二进制下,似乎还好...

规则还可以更进一步优化:

$$3|X| = +4|X| - |X|$$

⇒先减|X|, 平移2位后加|X|

怎么做减法? 把X和D用补码表示

原码二位乘法,完整规则表

标记是否进位

Y_{i+1}	Y _i	C		操	作
0	0	0	+0,	右移2次,	C=0
0	0	1	+ X ,	右移2次,	C=0
0	1	0	+ X ,	右移2次,	C=0
0	1	1	+2 X ,	右移2次,	C=0
1	0	0	+2 X ,	右移2次,	C=0
1	0	1	- X ,	右移2次,	C=1
1	1	0	$- \mathbf{X} $,	右移2次,	C=1
× 1	1	1	+0,	右移2次,	C=1

例,[X]原=0.100111,[Y]原=1.100111,求积

解: [2X]补=01.001110; [-X]补=1.011001

ぞ	牙号	位			I)					1	A		操作		
0	0	0 1	0	0 1	0 1	0	0	0 1	1	0	0	1	1 1	C=0 -X		
1 1 0	1 1 0	1 1 1	0 1 0	1 1 0	1 0 1	0 1 I	0 1 1	1 0 0	0	1	1	0	0_1	C=1 →右移二次 C=1,+2X		
0 0 0	0 0 0	1 0 1	0 0 0	0 1 0	0 0 1	1 0 1	0 0 1	0 1 0	0	0	0	1	1_0	C=0 →右移二次 C=0,+2X		
0	0	1	0	1 1	1	1	1	1	1	1	0	0	0 1	C=0 →右移二次		

图 3-9 例 3-12 的二位乘法的运算过程

原码两位乘法运算过程

最终结果,[X]原x[Y]原 =1.010111110001

补码乘法

- 校正法
- Booth法
 - 两位Booth法

					0	0	1	1	0	1	
X					0	0	1	1	1	0	
					0	0	0	0	0	0	
				0	0	1	1	0	1		
			0	0	1	1	0	1			
		0	0	1	1	0	1				
	0	0	0	0	0	0					
0	0	0	0	0	0						
0	0	0	1	0	1	1	0	1	1	0	

<—无脑计算需要6步 v.s 略用心机只需3步—>

只关心Y为1的位

						0	0	1	1	0	1	
	X					0	0	1	1	1	0	
						0	0	0	0	0	0	'
					0	0	1	1	0	1		
				0	0	1	1	0	1			
			0	0	1	1	0	1				
		0	0	0	0	0	0					
	0	0	0	0	0	0						
-	0	0	0	1	0	1	1	0	1	1	0	

<—无脑计算需要6步 v.s 略用心机只需3步—>

能不能更简化!?

					0	0	1	1	0	1
X					0	0	1	1	1	0
7	É	100	0	0	0	1	1	0	1	
			0	0	1	1	0	1		
1		0	0	1	1	0	1			
0	0	0	1	0	1	1	0	1	1	0

						0	0	1	1	0	1	
	X					0	0	1	1	1	0	_
,						0	0	0	0	0	0	•
					0	0	1	1	0	1		
				0	0	1	1	0	1			
			0	0	1	1	0	1				
		0	0	0	0	0	0					
	0	0	0	0	0	0						
	0	0	0	1	0	1	1	0	1	1	0	

<—无脑计算需要6步 v.s 略用心机只需3步—>

能不能更简化!?

先看一个日常使用的技巧:

$$12345 \times 1001 = 12345 \times (1000 + 1)$$

$$2342 \times 999 = 2342 \times (1000 - 1)$$

对二进制,也一样!

$$1010 \times 0111 = 1010 \times (1000 - 1)$$

 $1010 \times 1110 = 1010 \times (10000 - 10)$

<---略用心机需要3步 v.s 运用技巧只需2步--->

问题来了:如何高效地识别"一串1"的开始和结束?

<一略用心机需要3步 v.s 运用技巧只需2步—>

问题来了:如何高效地识别"一串1"的开始和结束?

Booth算法:

- 从右向左,遇到"1 0"就是"一串1"的开始,在1的位置减|X|;
- 从右向左,遇到"0 1"就是"一串1"的结束,在0的位置m|X|;
- 中间的"00"和"11"都不管!

y _i	y i-1	操作
0	0	部分积+0,右移1位
0	1	部分积+ [X]_补,右移1 位
1	0	部分积+[-X] _补 ,右移 1 位
1	1	部分积+0,右移1位

边界? 0 1 1 1 1 → 0 1 1 1 1.0

最低位就是1,如何统一规则 小数点后一位补0

booth乘法

Booth算法:

- 从右向左,遇到"1 0"就是"一串1"的开始,在1的位置减|X|;
- 从右向左,遇到"0 1"就是"一串1"的结束,在0的位置m|X|;
- 中间的"00"和"11"都不管!

y _i	y i-1	操作
0	0	部分积+0,右移1位
0	1	部分积+ [X]_补,右移1 位
1	0	部分积+[-X] _补 ,右移 1 位
1	1	部分积十0,右移1位

①: booth乘法的乘数和被乘数还有结果都应由补码表示。

②: booth乘法计算前应在乘数末尾补零。 (防止末尾出现11的情况)

③: booth乘法的符号位参与计算。

④: booth乘法应以双符号位方式进行计算,防止结果溢出。

补码乘法

符号位

在此处减|X|

Уi	y _{i-1}	操作
0	0	部分积+0,右移1位
0	1	部分积+ [X]_补,右移1 位
1	0	部分积+[-X] _补 ,右移 1 位
1	1	部分积+0,右移1位

【例】X=0.1010, Y= - 0.1101, 利用Booth法求积。

【解】:

 $[X]_{?} = 00.1010$

 $[-X]_{\stackrel{?}{k}} = 11.0110$

 $[Y]_{i}$ = 11.0011

 $\therefore [X \cdot Y]_{*} = 1.01111110$

_														
_	符	号)				Α			A ₋₁	操作说明	
	0	0	0	0	0	0	1	0	0	1	1	0		
_	1	1	0	1	1	0			/	Ė	H		+[-X]*	补0
	1	1	0	1	1	0								TI V
	1	1	1	0	1	1	0	1	0	0	1	1	右移1位	
	0	0	0	0	0	0	1	2					+0	
	1	1	1	0	1	1	- 2		7					
	1	1	1	1	0	1	1	0	1	0	0	1	右移1位	
											-			
	0	0	1	0	1	0			ľ				+[X] _{ネト}	
	0	0		0 1		1			1				+[X] _补 在此处	カロ X
			0		1		1	1	0	1	0	0		カロ X
	0	0	0	1	1	1	1	1	0	1	0	0	在此处	カロ X
	0	0	0 0 0	1	1 1 0	1	1	1	0	1	0	0	在此处	מל X
	0 0 0	0 0 0	0 0 0	1 0 0	1 1 0	1 1 0	1	1	0	1 0	0	0	在此处	לום X
	0 0 0	0 0 0	0 0 0	1 0 0 0	1 1 0	1 1 0	1						在此处 右移1位 +0	לום X
	0 0 0 0	0 0 0	0 0 0 0	1 0 0 0	1 1 0 1 0	1 1 0 1	1 1				1		在此处 右移1位 +0 右移1位	カロ X

练习, [X]_原=0.110110, [Y]_原=1.101101

采用booth算法求积

XY交换等效:

 $[X]_{\bar{\mathbb{R}}}$ = 1.101101, $[Y]_{\bar{\mathbb{R}}}$ = 0.110110

解: [Y]补=00.110110;

[-X]补=00.101101

[X]*\=11.010011

结果为: 1.0110 1000 0010

原码乘法结果: 1.1001 0111 1110

[XY]_{*} = 1.0110 1000 0010

 $[XY]_{\overline{\bowtie}} = 1.0110\ 1000\ 0001$

[XY]_E= 1.1001 0111 1110

	-									IH W. SV HH
符	号)			Α	A ₋₁	操作说明
0	0	0	0	0	0	0	0	0110110	0	10
0	0	0	0	0	0	0	0	0011011	0	右移1位
0	0	1	0	1	1	0	1			+[- x] _{≱⊦}
0	0	1	0	1	1	0	1	0011011	0	
0	0	0	1	0	1	1	0	1001101	1	右移1位
0	0	0	0	1	0	1	1	0100110	1	右移1位
1	1	0	1	0	0	1	1			+[X] _补
_1	1	0	1	1	1	1	0	0100110	1	
1	1	1	0	1	1	1	1	0010011	0	右移1位
0	0	1	0	1	1	0	1	Q.		+[- x] _{≱⊦}
0	0	0	1	1	1	0	0	0010011	0	
0	0	0	0	0	1	1	1	0000100	1	右移2位
1	1	0	1	0	0	1	1	1		+[X] _{≱⊦}
1	1	0	1	1	0	1	0	0000100	1	and and
1	1	0	1	1	0	1	0	0000100	1	不移位

定点数运算一除法

按理说,原码一位除法就是模拟手工除法:

- 符号 $S_m = S_A \oplus S_b$, 数值|m| = |A|/|B|
- 余数符号与被除数相同

例,[X]原=0.1101,[Y]原=1.1011,求积

解: 符号, $S=0 \oplus 1=1$; 数值部分如下:

模拟手工除法

18

使用临时变量R逐层累减除数D

按理说,原码一位除法就是模拟手工除法:

- 符号 $S_m = S_A \oplus S_b$, 数值|m| = |A|/|B|
- 余数符号与被除数相同

例, [X]原=0.1101, [Y]原=1.1011, 求积

解: 符号, $S=0 \oplus 1=1$; 数值部分如下:

模拟手工除法

						0	.1	_1_	5	1	
.1	1	0	1/.1	0	1	1					
			0	0	0	0					
			1	0	1	1	0				
				1	1	0	1				
				1	0	0	1	0			
					1	1	0	1			
					0	1	0	1	0		
						0	0	0	0		
						1	0	1	0	0	
							1	1	0	1-	
			.0	0	0	0	0	1	1	1	

1艾	洲印	נעון	艾里	ĒΚ	逐	云系小	以际致D
层次	被除	数(余数	汝)	R	商↓	说明
₩ _₽	0	1	0	1	1		R
第一层 减0	- 0	0	0	0	0	0	不够减、商0
7145O	0	1	0	1	1		R = R - D * 0
<i>55</i> — —	1	1	0	1	0		R << 1
第二层 减1101	- 0	1	1	0	1	1	够减,商1
<i>小</i> 或 1101	0	1	0	0	1		R = R - D
<i>^</i>	1	0	0	1	0		R << 1
第三层 减1101	- 0	1	1	0	1	1	够减,商1
小以1101	0	0	1	0	1		R = R - D
<i>\$</i> \$ m 🖨	0	1	0	1	0		R << 1
第四层	- 0	0	0	0	0	0	不够减、商0
减0	0	1	0	1	0		R = R - D * 0
<i>**</i>	1	0	1	0	0		R << 1
第五层	- 0	1	1	0	1	1	够减,商1
减1101	0	0	1	1	1		R = R - D

19

使用临时变量R逐层累减除数D

按理说,原码一位除法就是模拟手工除法:

- 符号 $S_m = S_A \oplus S_b$, 数值|m| = |A|/|B|
- 余数符号与被除数相同

例,[X]原=0.1101,[Y]原=1.1011,求积

解: 符号, $S=0 \oplus 1=1$; 数值部分如下:

模拟手工除法

						0	.1	1	5	1	
.1	1	0	1/.1	0	1	1		Z			
				0							
			1	0	1	1	0				
				1	1	0	1				
				1	0	0	1	0			
					1	1	0	1			
					0	1	0	1	0		
						0	0	0	0		
						1	0	1	0	0	
							1	1	0	1-	
			.0	0	0	0	0	1	1	1	

世用順的党里へ登伝系例は致り													
层次	被除	数(余数	汝)	R	商↓	说明						
	0	1	0	1	1		R						
第一层 减0	- 0	0	0	0	0	0	不够减、商0						
柳	0	1	0	1	1		R = R - D * 0						
<i>55</i> — —	1	1	0	1	0		R << 1						
第二层 减1101	- 0	1	1	0	1	1	够减,商1						
/吸1101	0	1	0	0	1		R = R - D						
<i>55</i> — —	1	0	0	1	0		R << 1						
第三层 减1101	- 0	1	1	0	1	1	够减,商1						
理商0/1 向]题?		1	0	1	Ħ	R = R - D						
	0	1	0	1	0		R << 1						
第四层 减0	- 0	0	0	0	0	0	不够减、商0						
小戏U	0	1	0	1	0		R = R - D * 0						
WTP	1	0	1	0	0		R << 1						
第五层 减1101	- 0	1	1	0	1	1	够减,商1						
495, 1 1 O 1	0	0	1	1	1		R = R - D						

定点数运算一除法

使用临时变量R逐层累减除数D

	文/13·個中3文主: (2/公宗//次)外外公													
	层次	i	被除	数(:	余数	() F	3	商↓	说明					
	第一层		0	1	0	1	1		R > 0					
	\eta404	-	0	1	1	0	1	į.	无脑减D					
	减1101	-	0	0	0	1	0		R = R - D					
	第二层	-	0	0	0	1	0		R<0					
	4=4404	+	0	1	1	0	1		+D恢复R					
	加1101		0	1	0	1	1		R = R + D					
	第三层		0	1	0	1	1	30 00	0 < R < D					
	\	-	0	0	0	0	0	0	不够减、商0					
	减O		0	1	0	1	1		R = R - D * 0					
	第四层		1	1	0	1	0		R << 1					
	__	-	0	1	1	0	1	1	够减,商1					
	减1101		0	1	0	0	1		R = R - D					
	第五层		1	0	0	1	0		R << 1					
	1 -10	-	0	1	1	0	1	1	够减,商1					
-	减1101		0	0	1	0	1		R = R - D					
	第六层		0	1	0	1	0		R > 0					
-	1 -11	. =	0	1	1	0	1		无脑减D					
	减1101	-	0	0	0	1	1		R = R - D					
	第七层	-	0	0	0	1	1		R<0					
	4	+	0	1	1	0	1		+D恢复R					
	加1101	27	0	1	0	1	0		R = R + D					
Ì	第八层		0	1	0	1	0		0 < R < D					
	Vrt o	-	0	0	0	0	0	0	不够减、商0					
	减0		0	1	0	1	0		R = R - D * 0					
	第九层	8	1	0	1	0	0		R << 1					
		-	0	1	1	0	1	1	够减、商1					
	减1101		0	0	1	1	1		R = R - D					

解决方案一: 无脑直减, 减多了原地恢复 (恢复余数法)

【例 3-15】 若被除数 X=-0.10001011,除数 Y=0.1110 试利用原码恢复余数法求商及余数。

解:该例满足|X| < |Y|,且 $|Y| \neq 0$ 。

课本P66

写出[X]_原=1.10001011,[Y]_原=0.1110。

商符=1⊕0=1。绝对值除法过程如图 3-17 所示。

符	号			被隊	余数(余数	女)			商	操作
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	0	1	0	1	1	0		左移一位
1	1	0	0	1	0						- Y
0	0	0	0	1	1	0	1	1	0	1	够减,商为1
0	0	0	1	1	0	1	1	0	1		左移一位
1	1	0	0	1	0						' - Y
1	1	1	0	0	0	1	1	0	1	0	不够减,商为0
0	Ó	1	1	1	0						+ Y
0	0	0	1	1	0	1	1	0	1	0	恢复余数
0	0	1	1	0	1	1	0	1	0	[左移一位
1	1	0	0	1	0						- Y
1	1	1	1	1	1	1	0	1	0	0	不够减,商为0
0	0	1	1	1	0						+ Y
0	0	1	1	0	1	1	0	1	0	0	恢复余数
0	1	1	0	1	1	0	1	0	0		左移一位
1	1	0	0	1	0						- Y
0	0	1	1	0	1	0	1	0	0	1	够减,商为1

图 3-17 例 3-15 的恢复余数法过程

课本P66

定点数运算—除法

解决方案一:无脑直减,减多了原地恢复(恢复余数法)

不要溢出 【例 3-15】 若被除数 试利用原码恢复余数法求 不能除0

商及余数。

解:该例满足|X| < |Y|,且 $|Y| \neq 0$ 。

写出 $[X]_{\bar{n}}=1.10001011, [Y]_{\bar{n}}=0.1110$ 。

商符=1⊕0=1。绝对值除法过程如图 3-17 所示。

被除数(余数) 商 操作 符号 左移一位 - | Y | 够减,商为1 左移一位 0 0 - | Y | 0 不够减,商为0 + | Y | 恢复余数 左移一位 - | Y | 0 1 不够减,商为0 被除数符号 + | Y |恢复余数 0 1 0 1 1 左移一位 - | Y | 够减, 商为1 余数: 1.1101×2⁴

图 3-17 例 3-15 的恢复余数法过程

1.1001

解决方案一: 无脑直减, 减多了原地恢复 (恢复余数法)

例, [X]=-0.10001011, [Y]=0.1110 求商及余数。

【解】

[X]原 = 1.10001011

[Y]原 = 0.1110

[- Y]*\ = 1.0010

商符=1⊕0=1

[X÷Y]原 = 1.1001

余数 = 1.1101×2-4

1
0
0
1

寻找解决方案二....

恢复余数法太笨了,如何优化?

当余数R<0时:

- 商0;
- 恢复余数: R += D;
- 余数左移: (R+D) << 1;
- 进行第*i* + 1轮,减D

•
$$(R + D) \ll 1 - D = 2(R + D) - D$$

- $\bullet = 2R + D$
- $\bullet = R \ll 1 + D$

$$(R + D) \ll 1 - D = R \ll 1 + D$$

R<0的恢复流程,等效于R左移+D!!!

减成负值商0

解决方案二: 无脑直减, 减多了原地不恢复 (加减交替法)

例,[X]原=0.1101,[Y]原=1.1011,求积

减成负值商0 0 .1 1 .1 1 0 1/.1 0 1 1 1 1 0 1 - 0 0 1 0 0 + 1 1 0 1 1 0 0 1 0 - 1 1 0 1 1 0 1 0 - 1 1 0 1 + 1 1 0 .0 0 0 0 0 1 1 1

使用临时变量R逐层累减除数D

层次		被	除数	(余	数)	R		商	说明
<i>**</i>		0	0	1	0	1	1		R > 0
第一层 减1101	-	0	0	1	1	0	1	0	无脑减D
小以1101	-	0	0	0	0	1	0		R = R - D *补
	-	0	0	0	1	0	0		R<0, R << 1
第二层	+	0	0	1	1	0	1	1	+D
加1101		0	0	1	0	0	1		R = R + D
		0	1	0	0	1	0		R > 0
第三层	_	0	0	1	1	0	1	1	无脑减D
减1101		0	0	0	1	0	1		R = R - D
		0	0	1	0	1	0		R > 0
第四层	-	0	0	1	1	0	1	0	无脑减D
减1101	-	0	0	0	0	1	1		R = R - D
		0	0	0	1	1	0		R<0, R << 1
第五层	+		0	1	1	0	1	1	+D
加1101	Ä	0	0	0	1	1	1		R = R + D

定点数运算一除法

解决方案二: 无脑直减, 减多了原地不恢复 (加减交替法)

例, [X]=-0.10001011, [Y]=0.1110

求商及余数。

【解】

[X]原 = 1.10001011

[|Y|]原 = 0.1110

[-|Y|] $\stackrel{?}{=} 1.0010$

商符=1⊕0=1

[X÷Y]原 = 1.1001

余数 = 1.1101×2-4

<u>符</u>	号	被	除	数	(分	>数	į)			商	操作
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	0	1	0	1	1			左移1位
1	1	0	0	1	0		1				- Y
0	0	0	0	1	1	0	1	1		1	R≥0,商为1
0	0	0	1	1	0	1	1				左移1位
1	1	0	0	1	0						- Y
1	1	1	0	0	0	1	1	1		0	R<0,商为0
1	1	0	0	0	1	1	0				左移1位
0	0	1	1	1	0						+ Y
1	1	1	1	1	1	1			1	0	R<0,商为0
1	1	1	1	1	1						左移1位
0	0	1	1	1	0						+ Y
0	0	1	1	0	1	Ħ	ij	ř		1	R≥0,商为1

原码加减交替法,其实已经是用补码在计算...

离补码除法,只一步之遥~

定点数运算一除法

回顾原码加减交替法

当余数R>0时:

• 够剪, 商1;

符号依赖, R > 0, |D| > 0

•

当余数R<0时:

• 不够剪, 商0; 符号依赖, R < 0, |D| > 0

• 恢复余数: R += D;

• 余数左移: (R+D) << 1;

• 进行第i + 1轮,减D

•

•

1、余数计算方式:

余数R=+被除数的绝对值—+除数的绝对值

2、判断够减:

被减数的绝对值大于减数的绝对值称为"够减"

若A、B同号,则计算A-B得到余数R

若R与B同号,则说明|A|>|B|,

则够减商1,否则不够减商0;

若A、B异号,则计算A+B得到余数R

若R与B异号,则说明|A|>|B|,

则够减商0,否则不够减商1;

3、商0还是商1:

同号: "够减"商1, "不够减"商0;

异号: "够减"商0, "不够减"商1;

29

补码加减交替法

若A、B同号,则计算A-B得到余数R 若R与B同号,则说明|A|>|B|, 则够减商1,否则不够减商0;

若A、B异号,则计算A+B得到余数R 若R与B异号,则说明|A|>|B|, 则够减商0,否则不够减商1;

同号相除时,R与B同号够减商1,R与B异号不够减商0; 异号相除时,R与B异号够减商0,R与B同号不够减商1。

R与B,同号商1,异号商0

定点数运算一除法

补码交替除法完整规则

- 1. R与D同号, -D
- 2. R与D异号, +D
- 3. 当新余数R与D相同符号时,商1
- 4. 当新余数R与D不同符号时,商0;
- 5. R左移1位,下一轮回到1
- 6. 除不尽时,商恒置1

此规则与原码交替除法完 全兼容

关于除法的"表格式计算"

例,例,[X]原=-0.1011, [Y]原=0.1101

, 求商/余数, 用补码除法

【解】

[X]补 = 1.0101

[Y]原 = 0.1101

[- Y]补 = 1.0011

- 1. R与D同号, -D
- 2. R与D异号, +D
- 3. 当新余数R与D相同时, 商1
- 4. 当新余数R与D不同时, 商0;
- 5. R左移1位,下一轮回到1
- 6. 除不尽时, 商恒置1

	号	Ħ	談	(R)		商	操作说明
1	1	0	1	0	1		R初始化
							500
						//	100
						1	
							A STATE OF THE STA
					e (je		
					76		
							1
			E				

关于除法的"表格式计算"

例,例,[X]原=-0.1011, [Y]原=0.1101

, 求商/余数, 用补码除法

【解】

[X] $\stackrel{?}{=} 1.0101$

[Y]原 = 0.1101

[- Y]*\ = 1.0011

- 1. R与D同号, -D
- 2. R与D异号, +D
- 3. 当新余数R与D相同时, 商1
- 4. 当新余数R与D不同时, 商0;
- 5. R左移1位,下一轮回到1
- 6. 除不尽时,商恒置1

 $[X \div Y] \stackrel{?}{=} 1.0011$

余数 = 1.1001×2-4

	号	Ä	談	(R)		商	操作说明
1	1	0	1	0	1		R初始化
0	0	1	1	0	1		R与D异号,+D
0	0	0	0	1	0	1	R与D同号,商1
0	0	0	1	0	0	1	R左移1位
1	1	0	0	1	1		R与D同号, -D
1	1	0	1	1	1	0	R与D异号,商0
1	0	1	1	1	0		R左移1位
0	0	1	1	0	1		R与D异号,+D
1	1	1	0	1	1	0	R与D异号,商0
1	1	0	1	1	0		R左移1位
0	0	1	1	0	1		R与D异号, +D
0	0	0	0	1	1	1	R与D同号,商1
0	0	0	1	1	0		R左移1位
1	1	0	0	1	1		R与D同号, -D
1	1	1	0	0	1	1	末尾恒1

解决方案三: 补码交替加减法

例, [X]=-0.10001011, [Y]=0.1110, 求

商及余数

【解】

[X] $\stackrel{*}{\Rightarrow}$ = 1.01110101

[Y]= 0.1110

[- Y]补 = 1.0010

- 1. R与D同号, -D
- 2. R与D异号, +D
- 3. 当新余数R与D相同时,商1
- 4. 当新余数R与D不同时,商0;
- 5. R左移1位,下一轮回到1
- 6. 除不尽时,商恒置1

				_	11/4			, Att			, , , , , , , , , , , , , , , , , , ,
符	号			余	数	(R	()	/		商	操作说明
1	1	0	1	1	1	0	1	0	1		R初始化
									99	28	
						1	iz		M	No.	
								Ħ			
											28
								4			
								ij			
								1			
								Y			
		-,(
								n			
	4			36	3	37		ġ,			
										14	
93	115		-	H	ė					100	
1				Ш			П				En (

定点数运算一除法

解决方案三: 补码交替加减法

例, [X]=-0.10001011, [Y]=0.1110, 求

商及余数

【解】

1. R与D同号, -D

[X]补 = 1.01110101

2. R与D异号, +D

[Y]*\h = 0.1110

3. 当新余数R与D相同时,商1

[- Y]补 = 1.0010

4. 当新余数R与D不同时,商0;

5. R左移1位,下一轮回到1

6. 除不尽时,商恒置1

 $[X \div Y] \stackrel{?}{=} 1.0111$

余数 = 1.0011×2-4

	_			_	101			Att			
<u>符</u>	号			余	数	(R)			商	操作说明
1	1	0	1	1	1	0	1	0	1		R初始化
0	0	1	1	1	0	0	0	0	0	30	R与D异号,+D
0	0	0	1	0	1	0	1	0	1	1	R与D同号,商1
0	0	1	0	1	0	1	0	1	0		R左移1位
1	1	0	0	1	0	0	0	0	0		R与D同号, -D
1	1	1	1	0	0	1	0	1	0	0	R与D异号,商0
1	1	1	0	0	1	0	1	0	0		R左移1位
0	0	1	1	1	0	0	0	0	0		R与D异号, +D
0	0	0	1	1	1	0	1	0	0	1	R与D同号,商1
0	0	1	1	1	0	1	0	0	0		R左移1位
1	1	0	0	1	0	0	0	0	0		R与D同号, -D
0	0	0	0	0	0	1	0	0	0	1	R与D同号,商1
0	0	0	0	0	1	0	0	0	0		R左移1位
1	1	0	0	1	0	0	0	0	0		R与D同号,-D
1	1	0	0	1	1	0	0	0	0	1	末尾恒1