Distance Vector - Part 2

Dr. Kiran Manjappa Dept. of IT, NITK

Previous Session

Sharding

- New clustering
- Why sharding ?- To provide the dedicated service (w.r.t our problem statement)
- Different ways of Sharding (Clustering) Partitional Clustering.

SINR

- Unwanted Noise in the actual signal
- o Interference caused by other signals
- Noise Caused by other reasons (signal processing, receiving ...)

Distance Vector Routing Algorithm

- Dynamic
- Router contains distance (cost) to all other routers as a vector.
- Routing Table Exchange
- Cost will be estimated first, and then will be finalised over the time.

Neighbor	Cost
----------	------

Routing Table Structure

C Rout. Tab		
Α	1	
В	1	
D	2	

C Rout. Tab		
Α	1	
В	1	
D	2	

B Rout. Tab		
Α	2	
Е	3	
С	1	

C - > B - > A

C - > B - > E

C Rout. Tab		
Α	1	
В	1	
D	2	

B Rout. Tab		
Α	2	
Е	3	
С	1	

$$C -> B -> A = 1 + 2 = 3$$

C Rout. Tab		
Α	1	
В	1	
D	2	
E 4		

B Rout. Tab		
Α	2	
Е	3	
С	1	

$$C -> B -> A = 1 + 2 = 3$$
 No Changes will be done for $C -> A$ as $3 > 1$ $C -> B -> E = 1 + 3 = 4$ A New Entry will be made for E

C Rout. Tab		
А	1	
В	1	
D	2	
Е	4	

B Rout. Tab		
Α	2	
Е	3	
С	1	

С	- >	D	-	>	E

D Rout. Tab		
Е	1	
С	2	

C Rou	C Rout. Tab				
А	1				
В	1				
D	2				
E	4				

B Rout. Tab				
А	2			
Е	3			
С	1			

ز	- >	> D	- >	E	= 2	<u>'</u> + 1	1 = 3	

D Rou	ıt. Tab
Ε	1
С	2

C Rout. Tab				
Α	1			
В	1			
D	2			
Е	A 3			

B Rout. Tab				
Α	2			
E	3			
С	1			

C	- :	>	D	-	>	Ε	=	2	+	1	=	3
C	- :	>	D	-	>	E	=	2	+	1	=	3

Entry for E is changed to 3;

3 < 4 , smaller cost to reach E

D Rout. Tab				
Е	1			
С	2			

DV Algorithm

- To begin with, each router knows the distance of its immediate neighbors.
- At every n seconds, each router exchanges its routing table to its immediate neighbors.
 - At 't' seconds first exchange, each router knows the best distance to two hops.
 - \circ At 't + n' seconds, second exchange, then each router knows the best distance to three hops.
 - At $t + n^2$ seconds, third four hops....

First routing table exchange @ *t* seconds

- @ B : C gives its best distance to D , B will come to know about D (two hops)

Second routing table exchange @ t + n seconds

More about DV

- Complete Local Knowledge
 - o Believes Neighbors.
- Periodic updates @ every t seconds routing tables exchanges.
- Triggered Updates when link fails, or node fails.
 - Before *t* seconds routing tables will be exchanged.
- "I'm Alive" messages, No need to send the entire routing table, just a HELLO is enough.
- "Probe Ack" messages When a node has some doubt about the neighbor node.

On the other hand

- Reacts rapidly to good news, but leisurely to bad news.
 - Router P has a considerably large cost to router Q
 - o On single routing table exchange, if it finds a much lesser cost to Q, it immediately updates.
- The blind belief on neighbors !!
- It can lead to problems.

- A fails or link A->B fails. It's a triggered update.
- Before B sends its updated routing table with distance to A as ∞,
- C does the periodic routing table exchange.
- C says "I can reach A with a cost of 2"
- B believes C and updates its routing table

@C : No neighbor has 2 to reach A !!

Might be a wrong entry in the routing table. It updates its routing table..

3	4	3	4	After 2 Exchange
5	4	5	4	After 3 Exchange
5	6	5	6	After 4 Exchange
				After <i>n</i> Exchange

Counting to Infinity Problem.

Optimization

- Restricting the path hop to N make infinity small
 - o If the path cost is 25, once all the routing table entry reaches 25, Something is wrong...
- Send complete path information to neighbors.
 - Neighbors might come to know about the failed node/link
- Split horizon Carefully forward the routing information.
- Change the routing table structure

Routing Table Structure

Neighbor	Cost		Destination	Cost	Next Hop
----------	------	--	-------------	------	----------

• C says "I can reach A with a cost of 2 through B"

Dest.	Cost	Next Hop
Α	2	В

B observes that the path goes through it self!!, it will not update its routing table.