1.1 Batch Gradient Descent

a. Derive the gradient of the negative log-likelihood in terms of w for this setting. [5 points]

$$NLL(D, w) = -\sum_{i=1}^{N} [(1 - y_i) \log(1 - \sigma(w^T x_i)) + y_i \log\sigma(w^T x_i)]$$

$$\frac{\partial NNL(D, w)}{\partial w_j} =$$

$$-\sum_{i=1}^{N} (1 - y_j) \frac{1}{1 - \sigma(w^T x_i)} \sigma(w^T x_i) (\sigma(w^T x_i) - 1) x_i$$

$$+ y_j \frac{1}{\sigma(w^T x_i)} \sigma(w^T x_i) (\sigma(w^T x_i) - 1) (1 - \sigma(w^T x_i)) x_i$$

$$= -\sum_{i=1}^{N} [(y_i - 1)\sigma(w^T x_i) x_i + y_i (1 - \sigma(w^T x_i)) x_i]$$

$$= -\sum_{i=1}^{N} x_i (y_i - \sigma(w^T x_i))$$

1.2 Stochastic Gradient Descent

a. Show the positive log likelihood, l, of a single (xt,yt) pair. [5 points]

$$l(w) = (1 - y_t) \log \left(1 - \sigma(w^T x_t)\right) + y_t \log \left(\sigma(w^T x_t)\right)$$

b.

$$\frac{\partial l}{\partial w_j} = x_t \left(y_t - \sigma(w_j^T x_t) \right)$$

$$w_t = w_{t-1} + \eta x_t \left(y_t - \sigma(w_{t-1}^T x_t) \right)$$

c. Suppose m is the total number of features (regardless of whether they are non-zero), n is the total number of non-zero features for each sample and T is the number of iterations. What is the smallest time complexity (in big-O notation) of the update rule from b if xt by all iterations?

Because n is the total number of non-zero features, and we only need to update the non-zero features, which is n. The smallest time complexity O (nT)

What if dimension is very sparse, i.e., n is small constant, what can the complexity be (in big-O notation)?

The dimension is very sparse, n is a small constant.

$$O(nT) -> O(T)$$

d. Briefly explain the consequence of using a very large η and very small η . [3 points]

Large η : large η can lead to converging too quickly to a suboptimal solution or it can cause oscillations around the optimum, and in the worst-case scenario, it can lead to outright divergence, infinite iterations

Small η : small η can take too many iterations to converge to the optimum or it can get stuck in a local optimum.

e. Show how to update wt under the penalty of L2 norm regularization. In other words, update wt according to $l - \mu / w / 2$, where μ is a constant. The learning rate η should be applied to ∂ ($l - \mu / w / 2$). What's the time complexity (use the same notation from c)? [5 points]

$$\frac{\delta\left(l-\mu\big||w|\big|_2^2\right)}{\delta w} = x_t\big(y_t - \sigma(w^T x_t)\big) - 2\mu w$$

$$w_t = w_{t-1} + \eta \left(x_t (y_t - \sigma(w^T x_t)) - 2\mu w \right)$$

Suppose we have n non-zero features, the time complexity is O(nT).

If n is a small constant, the time complexity is O(T)

2.1 b. Use events.csv and mortality.csv provided in data as input and fill Table 2 with ac-tual values (you can keep two decimal places for float numbers when fill the form) [6 points]. We only need the top 5 codes for common diagnoses, labs and medications. Their respective counts are not required.

Metric	Deceased patients	Alive patients
Event Count		
1. Average Event Count	1027.74	683.16
2. Max Event Count	16829	12627
3. Min Event Count	2	1
Encounter Count		
1. Average Encounter Count	24.84	18.70
2. Median Encounter Count	14	9
3. Max Encounter Count	375	391
4. Min Encounter Count	1	1
Record Length		
 Average Record Length 	157.04	194.70
2. Median Record Length	25	16
3. Max Record Length	5364	3103
4. Min Record Length	0	0
	DIAG320128	DIAG320128
	DIAG319835	DIAG319835
Common Diagnosis	DIAG313217	DIAG317576
	DIAG197320	DIAG42872402

	DIAG132797	DIAG313217
Common Laboratory Test	LAB3009542	LAB3009542
	LAB3023103	LAB3000963
	LAB3000963	LAB3023103
	LAB3018572	LAB3018572
	LAB3016723	LAB3007461
Common Medication	DRUG19095164	DRUG19095164
	DRUG43012825	DRUG43012825
	DRUG19049105	DRUG19049105
	DRUG956874	DRUG19122121
	DRUG19122121	DRUG956874

2.3 b. Show the ROC curve generated by test.py in this writing report for different learning rates η and regularization parameters μ combination and briefly explain the result. [5 points]

When $\mu=0.0$ (penalty is 0), as η increases, there are less data points making the curve, the ROC curve becomes smoother.

Comparing $\eta = 0.01$, AUC = 0.65, and $\eta = 0.001$, AUC = 0.64. There is a possibility that with the smaller $\eta = 0.01$, it may get stuck in the suboptimum.

Comparing $\eta = 0.01$, AUC = 0.65, and $\eta = 0.1$, AUC = 0.64. The larger $\eta = 0.1$ causes the model to converge too quickly to a suboptimal solution

When $\eta=0.01$ (learning rate is constant, 0.01), as μ (penalty) increases, (as we try to minimize the effect of overfitting) the AUC decreases. Because as the regularization increases, the weights decrease and the model shrinks, indicating the model becomes underfitting.