Given the following Neural Network and input values, compute the output value. Use the sigmoid activation function. Show your work for partial credit.

Input	Level 1 Weights	Level 1 Weights	Bias
i1 = .8	W1 = .2	W5 = .48	B1 = .23
i2 = .3	W2 = .35	W6 = .34	B2 = .41
	W3 = .15		B3 = .5
	W4 = .6		

The work for partial credit is shown in the attached Excel file, but here are screenshots for simplicity.

Answer:

o1 output value is:	0.7361693

Work for partial credit (actual calculations were done in the Excel file that was included in the submission

	J	K	L	M	N	0	Р	Q
1								
2	Input	Level 1 Weights	Level 1 Weights	Bias	Learning Rate	Target Value		
3	i1 = .8	W1.1 = .2	W5 = .48	B1 = .23	0.1	0		
4	i2 = .3	W2.1 = .35	W6 = .34	B2 = .41				
5		W1.2 = .15		B3 = .5				
6		W2.2 = .6						
7								
8			F	orward P	ass			
9	-							
10	1	13.		1				
11	h =	0/51	× Wk,n+	- 4 /				
12	//n -	2 / /	- Who	Unl				
12	. //	(^	Call	11/				
13	"	V-1	1,11	""				
13 14	From inputs	to hidden layer 1	Nati	""		Sum and add bias	Then sigmoid	1
13 14	·	V-1	w	=	`+b	Sum and add bias	"a" values	
13 14 15	From inputs	to hidden layer 1				Sum and add bias 0.495	"a" values	d:h1_output
13 14 15 16	·	to hidden layer 1	w	0.16	0.23		"a" values	
13 14 15 16	w1: i1.h1	to hidden layer 1 I x 0.8	w 0.2	0.16	0.23	0.495	"a" values 0.6212836	:h1_output
13 14 15 16 17	w1: i1.h1	to hidden layer 1 I x 0.8	w 0.2	0.16 0.105	0.23	0.495	"a" values	:h1_output
13 14 15 16 17 18	w1: i1.h1 w2: i2.h1	to hidden layer 1 I x 0.8 0.3	w 0.2 0.35	0.16 0.105 0.12	0.23	0.495	"a" values 0.6212836	:h1_output
13 14 15 16 17 18 19	w1: i1.h1 w2: i2.h1 w3: i1.h2	to hidden layer 1 I x 0.8 0.3	w 0.2 0.35	0.16 0.105 0.12	0.23	0.495	"a" values 0.6212836	:h1_output
13 14 15 16 17 18 19 20 21	w1: i1.h1 w2: i2.h1 w3: i1.h2 w4: i2.h2	to hidden layer 1 I x 0.8 0.3	w 0.2 0.35 0.15 0.6	0.16 0.105 0.12	0.23	0.495	"a" values 0.6212836	:h1_output
13 14 15 16 17 18 19 20 21	w1: i1.h1 w2: i2.h1 w3: i1.h2 w4: i2.h2	to hidden layer 1 I x 0.8 0.3 0.8 0.3	w 0.2 0.35 0.15 0.6	0.16 0.105 0.12	0.23	0.495	"a" values 0.6212836 0.67040116	:h1_output
13 14 15 16 17 18 19 20 21 22 23	w1: i1.h1 w2: i2.h1 w3: i1.h2 w4: i2.h2	to hidden layer 1 I x 0.8 0.3 0.8 0.3 n layer 1 to output 1	w 0.2 0.35 0.15 0.6	0.16 0.105 0.12 0.18	0.23 0.41 `+b	0.495	"a" values	:h1_output :h2_output
13	w1: i1.h1 w2: i2.h1 w3: i1.h2 w4: i2.h2 From hidder	to hidden layer 1 I x 0.8 0.3 0.8 0.3 0.8 1 layer 1 to output 1 I x	w 0.2 0.35 0.15 0.6	0.16 0.105 0.12 0.18	0.23 0.41 `+b	0.495 0.71 Sum and add bias	"a" values	:h1_output :h2_output
13 14 15 16 17 18 19 20 21 22 23 24 25 26	w1: i1.h1 w2: i2.h1 w3: i1.h2 w4: i2.h2 From hidder w5: h1.o1	to hidden layer 1 I x 0.8 0.3 0.8 0.8 0.3 In layer 1 to output 1 I x 0.621283595	w 0.2 0.35 0.15 0.6	0.16 0.105 0.12 0.18 = 0.29821613	0.23 0.41 `+b	0.495 0.71 Sum and add bias	"a" values	:h1_output

Using the output from the previous question, apply backpropagation assuming the target value is 0 and the learning rate is .1. What are the new weights. Show your work for partial credit.

Answer:

	Upo	Updated Weights					
	From:		To:				
w1		0.2	0.19870814				
w2		0.35	0.34951555				
w3		0.15	0.14914065				
w4		0.6	0.59967774				
From hid	dden layer 1 to	output 1	_				
	From:		To:				
w5		0.48	0.47111678				
w6		0.34	0.33041448				
	Up	Updated Biases					
	From:		To:				
b1		0.23	0.22838517				
b2		0.41	0.40892581				
b3		0.5	0.48570182				

Work for partial credit (actual calculations were done in the Excel file that was included in the submission

	S	Т	U	V	W	X
2	0) Calculate	the error				
3	Formula: Ou	tput - Target				
4	=L26-O3					
5	0.7361693					
6						
7	1) Calculate	the gradient	of the error	with respec	t to the outp	ut value
8		ror = Error *				at value
9	=R5*L26*(1-		<u> </u>			
10	dError =	0.14298179				
11						
12	2) Gradient	of Output lay	/er			
13	Formula: Out	tput of previo	us layer * dE	rror		
14	d_w5:	=P16*T\$10				
15	d_w5:	0.08883224				
16						
17	d_w6:	=P19*T10				
18	d_w6:	0.09585516				
19						
20	3) Error grad	lient of hidd	en layer neu	rons		
21	Formula: d_e	error * w5 * h	1_output * (1	L - h1_output	t)	
22	d_h1:	=T10*L24*P1				
23	d_h1:	0.01614827				
24						
25	d_h2:	=T10*L25*P1	L9*(1-P19)			
26	d_h2:	0.01074187				

	S	Т	U	V	W	Χ
28	4) Gradien	t for the input la	ayer weigh	t		
29	Formula: Ir	nput to the neuro	n * gradien	t of error at t	he following r	euron
30	d_w1:	=K16*T23				
31	d_w1:	0.01291862				
32	_					
3	d_w2:	=K17*T23				
4	d_w2:	0.00484448				
5						
6	d_w3:	=K19*T26				
7	d_w3:	0.0085935				
8						
9	d_w4:	=K20*T26				
0	d_w4:	0.00322256				
1						
2	5) Update	the weights				
3	Formula: C	old weight - Learr	ning Rate *	d_w		
4	new_w1:	=L16-N3*T31				
.5	new_w1:	0.19870814				
6						
7	new_w2:	=L17-N3*T34				
8	new_w2:	0.34951555				
9						
0	new_w3:	=L19-N3*T37				
1	new_w3:	0.14914065				
2						
3	new_w4:	=L20-N3*T40				
4	new_w4:	0.59967774				
5						
6	new_w5:	=L24-N3*T15				
7	new_w5:	0.47111678				
8	_					
9	new_w6:	=L25-N3*T18				
0	new_w6:	0.33041448				

	S	Т	U	V
62	6) Gradient	of dError wit	h respect to	the Bias
63	Formula: Gr	adient of the e	error on that o	edge
64	d_b1:	=T23 (aka d_	h1)	
65	d_b1:	0.01614827		
66				
67	d_b2:	=T26 (aka d_	h1)	
68	d_b2:	0.01074187		
69				
70	d_b3:	=T10 (aka d_	Error)	
71	d_b3:	0.14298179		
72				
73	5) Update t	he biases		
74	Formula: Ol	d bias - Learni	ng Rate * d_E	3
75	new_b1:	=N16-N3*T6	5	
76	new_b1:	0.22838517		
77				
78	new_b2:	=N19-N3*T6	8	
79	new_b2:	0.40892581		
80				
81	new_b3:	=N24-N3*T7	1	
82	new_b3:	0.48570182		
22				

Apply PCA to the Diabetes dataset. What are the resulting projections for the top 2 dimensions?

The projections themselves are stored in the attached diabetes_pca_top_2_projections.csv

Nevertheless, here is a plot of the values with component-1 on the X axis and component 2 on the Y axis.

Also of note:

Here are the top 2 components of the Diabetes data set after applying PCA

	preg	plas	pres	skin	insu	mass	pedi	age
PC-1	0.128432	0.393083	0.360003	0.439824	0.435026	0.451941	0.270611	0.198027
PC-2	0.593786	0.174029	0.183892	-0.331965	-0.250781	-0.100960	-0.122069	0.620589

For component 1 the percentage of the variance explained is: 26.18% For component 2 the percentage of the variance explained is: 21.64% Apply LDA and PCA to the iris dataset. Using the top 2 dimensions, graph the resulting subspace and include the graphs here. Which one produces a better separation between classes.

LDA provides a better separation between the classes. This is illustrated by noting how many of the dots shown in green "bleed" into the yellow class with PDA whereas there is almost no intermixing with LDA

