Tutorium: Diskrete Mathematik

Algebraische Strukturen Lösungen

Steven Köhler

mathe@stevenkoehler.de mathe.stevenkoehler.de

- a) ja
- b) nein (nicht abgeschlossen, z.B. bei Division durch 0; kein neutrales Element)
- c) nein (Assoziativgesetz gilt nicht; kein neutrales Element)
- d) ja

Die vier Elemente der Rechteckgruppe sind:

- die Identität (i);
- die Drehung um $180^{\circ} (r)$;
- die beiden Spiegelungen an den Seitenhalbierenden (x, y).

Als Gruppentafel ergibt sich:

	$\mid i \mid$	r	x	y
\overline{i}	$\mid i \mid$	r	x	y
r	r	i	y	x
x	x	y	i	
y	y	\boldsymbol{x}	r	$\lceil i \rceil$

Zum Nachweis sind 2 Dinge zu zeigen:

- $a, b \in G \cap H \Rightarrow a \star b \in G \cap H$
- $a \in G \cap H \Rightarrow a^{-1} \in G \cap H$

Zum Nachweis der ersten Eigenschaft genügt die folgende Begründung:

$$a, b \in G \cap H$$

$$\Rightarrow a, b \in G \quad \text{und} \quad a, b \in H$$

$$\Rightarrow a \star b \in G \quad \text{und} \quad a \star b \in H$$

$$\Rightarrow a \star b \in G \cap H$$

Der Nachweis der zweiten Eigenschaft erfolgt analog.

Die beiden Gruppen der Ordnung 4 haben die folgenden Gruppentafeln:

	1	a	b	c
$\overline{1}$	1	a	b	c
\overline{a}	a	b	c	1
b	b	c	1	a
c	c	1	a	b

	1	$\mid a \mid$	b	c
1	1	a	b	c
\overline{a}	a	1	c	b
b	b	c	1	a
c	c	b	\overline{a}	1

Die linke Gruppe enthält Elemente der Ordnung 4, die rechte Gruppe nicht. Sie können also nicht isomorph sein. Die rechte Gruppe ist auch als Kleinsche Vierergruppe bekannt.

Die durch \mathcal{H} erzeugte Untergruppe von S_3 lautet:

$$\mathcal{H} = \left\{ id, (1,2) \right\}.$$

Es ergeben sich die folgenden Linksnebenklassen:

$$id\mathcal{H} = \{id, (1,2)\}$$

 $(1,3)\mathcal{H} = \{(1,3), (1,2,3)\}$
 $(2,3)\mathcal{H} = \{(2,3), (1,3,2)\}.$

Die "restlichen" Nebenklassen sind mit den bereits genannten identisch.

Sei \mathcal{M} die Menge der invertierbaren 2 × 2 - Matrizen. Es muss Folgendes gezeigt werden:

- $(\mathcal{M}, +)$ bildet eine kommutative Gruppe;
- (\mathcal{M}, \cdot) bildet einen Monoid;
- Gültigkeit der Distributivgesetze.

Es handelt sich weder um einen Ring noch um einen Körper, da Addition zweier invertierbarer Matrizen nicht immer eine invertierbare Matrix ergibt. Die Menge \mathcal{M} ist folglich nicht abgeschlossen bzgl. +.

Es seien $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ und $M_2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$. Sowohl M_1 als auch M_2 sind invertierbar. $M_1 + M_2 = 0$ ist nicht invertierbar, liegt also nicht in \mathcal{M} .