An

Interactive Data Explorer

and

Synthetic Prediction Tool

for

Characterizing Allegheny County Opioid Overdoses

Deep Girl Network

Theresa Gebert Shuli Jiang Chris Sheng

How to best help policy-makers?

- What exactly is happening right now: who is affected and how much?
- Why and how did this happen: what factors influenced increased opioid usage?
- What can be done to slow and stop this epidemic?
- How can we prevent this from happening again in the future?

Product Requirements

INTERACTIVE DATA EXPLORER

- interactive
- easy and intuitive to use
- lightweight and cheap to maintain

SYNTHETIC PREDICTION TOOL

- dynamic
- easy and intuitive to use
- incorporates a measure of uncertainty

Interactive Data Explorer

- interactive
- easy and intuitive to use
- lightweight and cheap to maintain

RShiny

Shiny by RStudio

- Generate synthetic control population
- Extract additional features & match to overdose cases
- Build models

- Generate synthetic control population
 - freely available EMR data
 - use population-level statistics to mimic reality

Synthetic Prediction Tool

- Extract additional features & match to overdose cases
 - MATCHING
 - for each individual that overdosed, match to synthetic person:
 - exactly on gender
 - if race is white, black, or Asian, then match exactly, otherwise match randomly
 - within 3 years on age
 - then remove from candidate pool

Synthetic Prediction Tool

- Extract additional features & match to overdose cases
 - ADDITIONAL FEATURES
 - marital status
 - socioeconomic status
 - language
 - sickliness: time-discounted days in hospital
 - disease history: the number of occurrences in each category of disease as defined by ICD-10

Number of drugs in overdose found as cause of death

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	0.6871	0.0548	12.54	0.0000
as.factor(Sex)Male	-0.0353	0.0230	-1.54	0.1243
as.factor(Race)White	0.1390	0.0329	4.23	0.0000
as.factor(Race)Hispanic	-0.0946	0.2519	-0.38	0.7072
as.factor(Race)Other	-0.0823	0.3550	-0.23	0.8167
as.factor(Race)Asian	-0.2169	0.2907	-0.75	0.4555
as.factor(Race)Middle Eastern	0.5753	0.2902	1.98	0.0475
as.factor(Race)Unidentified	-0.8342	1.0005	-0.83	0.4044
as.factor(Race)Indian	-0.0258	0.7082	-0.04	0.9709
Age	0.0032	0.0009	3.66	0.0003

Product Requirements

INTERACTIVE DATA EXPLORER

- interactive
- easy and intuitive to use
- lightweight and cheap to maintain

SYNTHETIC PREDICTION TOOL

- dynamic
- easy and intuitive to use
- incorporates a measure of uncertainty

Collect more data and learn more.

Crack down on Fentanyl.

Identify dangerous combinations.

Future Work

MATCHING

- matching on more exhaustive criteria
- more flexible ways of drawing samples

ANALYSIS

- Does the significant effect of white and Middle Eastern race on the number of drugs used disappear once socioeconomic status is taken into account?
- Does the significant effect of age on the number of drugs used disappear once health is taken into account?
- What are the bigger killers: hard drugs combined with alcohol, or a dangerous variety of less potent drugs?
- What is the elbow point of drug usage: is there a particular drug or drug combination that leads to a significant spike in drug usage?
- How correlated do additional features need to be to the outcome of interest in order to yield model improvements?
- What masking techniques are most effective at providing high prediction accuracy improvements at low cost to privacy?

References

- 1. Anna L. Buczak, Steven Babin, and Linda Moniz. *Data-driven approach for creating synthetic electronic medical records*. BMC Medical Informatics and Decision Making. 10(1):59, Oct 2010.
- 2. Ching Lee Koo, Mei Jing Liew, Mohd Mohamad, and Abdul Hakim Mohamed Sales. *A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology.* 2013:432375, 10, 2013.
- 3. Nicholas J. Gotelli, Edmund M. Hart, and Aaron M. Ellison. *Co-occurence Analysis*. Cran R-Project. March 8, 2015.
- R Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/
- 5. Kudakwashe Dube and Thomas Gallagher. *Approach and Method for Generating Realistic Synthetic Electronic Healthcare Records for Secondary Use.* Lecture Notes in Computer Science book series (LNCS, volume 8315).