Listing of Claims

Claim 1 (Currently Amended): A method of operating a message bus serving to transfer data between a plurality of modules, said plurality of modules being connected to said message bus, said method comprising:

using <u>all of</u> a first set of signal lines to send control signals in a first duration <u>representing</u> an arbitration phase in which one or more of said plurality of modules, including a first module, <u>request ownership of said message bus using said first set of signal lines</u>, said first set of signal lines being comprised in said message bus,

wherein said first set of signal lines comprise a request line on which said first module requests said message bus for transmission of data, said first set of signal lines also comprising a grant line on which said first module is indicated that said message bus has been granted for transmission of data;

sending an address of a second module from said first module using said first set of signal lines, wherein said first module sends said address of said second module after being allocated said message bus; and

using <u>all of</u> said first set of signal lines to send data bits between said plurality of modules from said first module to said second module in a second duration, wherein said second duration represents a data transfer phase in which said first module allocated said message bus transfers said data bits on said message bus using all of said first set of signal lines.

Claims 2-5 (Canceled):

Claim 6 (Currently Amended): The method of claim [[5]] 1, wherein said using all of said first set of signal lines to send control signals in said arbitration phase comprises:

determining in said first module whether a BUSY signal line is asserted, wherein said BUSY signal line indicates whether any of said plurality of modules is available transmitting on said message bus;

requesting from said first module ownership of said message bus by sending a request on said request line if said BUSY line is not asserted; and

receiving a bus grant signal from an arbitration controller on said grant line, wherein said grant signal indicates allocation of said message bus to said first module.

Claim 7 (Currently Amended): The method of claim 6, wherein said first module includes said address of said second module in a control packet, wherein said control packet indicates a number of data packets to be sent by said first module to said second module.

Claim 8 (Currently Amended): The method of claim 7, wherein said using said first set of signal lines as data paths in said second duration comprises:

asserting in said first module said BUSY line to indicate ownership of said message bus; examining a TRDY line to determine whether said second module is ready to receive said number of packets after sending said address on said message bus, wherein said second module is designed to assert said TRDY line when ready to receive; and

sending from said first module said number of data packets on said message bus, wherein some bits of each of said number of data packets is sent on said first set of signal lines.

Claim 9 (Currently Amended): The method of claim 8, further comprising: receiving said control packet in said second module;

determining in said second module that said number of packets are directed to said second module by comparing said first address to a self address of said second module; and

asserting said TRDY line to indicate that said second module is ready to receive said number of packets.

Claim 10 (Original): The method of claim 9, further comprising:

determining in said second module whether an uncorrectable error is present in a first packet, wherein said first packet is comprised in said number of data packets;

asserting an ERR signal in said second module to indicate presence of said uncorrectable error;

transmitting said first packet again from said first module upon said ERR signal being asserted;

receiving said packet again and performing said determining and asserting ERR and STOP signal in said second module if said uncorrectable error is present again; and

terminating transferring in said first module after determining both said ERR and said STOP is asserted.

Claim 11 (Original): The method of claim 10, wherein said message bus contains only 4 control signal lines.

Claim 12 (Currently Amended): The method of claim [[4]] 1, further comprising: receiving in an arbitration block said request on said request line;

determining a first priority group in which said first module is assigned, wherein said first priority group is contained in a plurality of priority groups, wherein a second priority group has a higher priority than said first priority group;

allocating said message bus to said first module only if request for said message bus is not received from any modules in said second priority group, wherein said allocating allocates said message bus according to a least recently used (LRU) approach among modules in said first priority group if more than one module in said first priority groups requests said message bus.

Claim 13 (Currently Amended): A system comprising:

a message bus containing a plurality of signal lines including a first signal line;

a first module and a second module sharing said message bus to transfer data to each other,

an arbitration module allocating said message bus to one of said first module and said second module,

wherein said first module requests access to transmit data on said message bus using said first signal line, said first module further transmitting and transmits a bit of each of a plurality of packets to said second module on said first signal line,

wherein said message bus comprises a second signal line, said arbitration module indicating that said message bus is granted to said first module on said second signal line, wherein said first module transmits another bit of each of said plurality of packets on said second signal line to said second module.

Claim 14 (Canceled):

Claim 15 (Currently Amended): The system of claim [[14]] 13, further comprising a plurality of modules including said first module and said second module, wherein each of said plurality of modules is assigned to one of a plurality of priority groups, said plurality of groups

Reply to Non-final Office Action of 11/03/2010 Appl. No.: 10/595,538

Amendment Dated: 01/24/2011 Attorney Docket No.: CDOT-001

including a first priority group and a second priority group, wherein said first module is assigned to said first priority group, said second priority group having a higher priority than said first priority group,

wherein said arbitration module allocates said message bus to modules in said first priority group only if a request is not received from any modules in said second priority group,

said arbitration module allocating said message bus to modules in said first priority group according to a least recently used (LRU) approach.

Claim 16 (Currently Amended): The system of claim [[14]] 13, further comprising a plurality of modules including said first module and said second module, wherein said message bus further comprises a BUSY line shared by each of said plurality of modules,

wherein said first module determines whether said BUSY line is asserted, wherein said BUSY line indicates whether any of said plurality of modules is transmitting on said message bus;

wherein said first module requests ownership of said message bus by sending a request on said first signal line if said BUSY line is not asserted.

Claim 17 (Original): The system of claim 16, wherein said first module asserts said BUSY line to indicate ownership of said message bus after said second signal line indicates that said message bus is granted to said first module.

Claim 18 (Original): The system of claim 16, wherein said first module sends a control packet on said message bus, wherein said control packet contains a first address representing an address of said second module and a number of packets to be transferred, wherein one bit of said control packet is sent on said first signal line and another bit of said control packet is sent on said second signal line.

Claim 19 (Original): The system of claim 18, wherein said second module receives said control packet and determines that said number of packets are directed to said second module by comparing said first address to a self address of said second module, said second module asserting a TRDY line to indicate that said second module is ready to receive said number of

packets, wherein said first module sends said number of data packets on said message bus upon assertion of said TRDY line.

Claim 20 (Original): The system of claim 19, wherein said second module determines whether an uncorrectable error is present in a first packet, wherein said first packet is comprised in said number of data packets, said second module asserting a ERR signal line in said message bus to indicate presence of said uncorrectable error, wherein said first module sends said first packet again upon said ERR signal line being asserted.

Claim 21 (Currently Amended): The system of claim 20, wherein said second module receives said first packet again and asserting asserts said ERR signal line and a STOP signal if [[said]] an uncorrectable error is detected again in said second module, wherein transferring said number of data packets is terminated by said first module upon assertion of said ERR signal line and said STOP signal.