

SCRIPTED LESSONS 3RD TERM WEEK 3

CHEMISTRY S.S.2

CHEMISTRY SS2 3RD TERM WEEK 3

Subject	Chemistry			
Theme	Chemistry and Environment			
Topic	Sulphur-Properties of Hydrogen Sulphide			
Class Level	SS2	DV FDUA		
Lesson Duration	40 Minutes	AL EDOC	A>, \	
Period	1		2770.	
Instructional		esson, students shou		
Objectives/Learning	·	ysical and chemical	properties of hyd	lrogen sulphide
Outcome	2) Give the use			0_1
Instructional Resources/Materials	Text book, apparat	us, board and marke	er	
Teacher's Preparation for the lesson	The teacher prepares the in structural material and the class			
Teaching Method	Interactive, collabo	ration discussion		
Lesson Procedure	Time	Teacher activity	Students activity	Core Skill
STEP I:	5 Minutes	1) Revises the	1) Students	Critical Thinking
Introduction		last topic.	answers the	
Of Prior Ideas		2) Ask the	questions	
		students		- / /
1 1 4		questions that		/ /
		leads to the		/ /
		new topic		
STEP II:	15 Minutes	Teacher	1) Students	Critical thinking
Main Lesson		1) List the	listen	
		physical	2) Ask	
		properties of	questions	
		hydrogen		
	En.	sulphide		
	CD	2) State the		
		chemical		
		properties of		
		hydrogen		
		sulphide and		
		explain it		
		3) Give the uses		

		of hydrogen		
		sulphide		
STEP III:	15 Minutes	1) Teacher 1	1) Students	
Class Exercise		revises the	answer the	
		topic	questions	
		2) Ask the	2) Copy notes	
	- A	students	from the	
	NOF	questions.	ooard	
	-013	3) Copy notes on	27/0.	
	10	the board	W	
STEP IV:	200	1) List the 1	1) Students	
Evaluation	5 Minutes	physical	copies from	
		properties of t	the board.	
		h <mark>ydrogen 2</mark>	2) Guides	
			students to	
		,	draw the	
	100		extraction of	
		properties of s	sulphur	
		H ₂ S		
		3) Give the uses		
		of H ₂ S		
		4) Collects and		
		marks the		
		students notes		
Assignment		Explain in deta	ail sulphides	

Physical Properties of Hydrogen Sulphide

- 1. Hydrogen sulphide is a colourless gas with a repulsive smell like that of a rotten egg.
- 2. It is very poisonous.
- 3. It is about 1.18 times denser than air
- 4. It is moderately soluble in water. Three volumes of the gas dissolves in every volume of water to form a very weak acidic solution.
- 5. It burns with a pale blue flame.

Chemical Properties of Hydrogen Sulphide

a) As an Acid:

Hydrogen sulphide ionizes slightly in water to form a weak, basic acid exhibiting acidic properties

$$H_2S_{(g)} + H_2O_{(L)}$$
 $= H_3O^+(aq) + HS^-(aq)$
 $HS_{(aq)} + H_2O_{(L)}$ $= H_3O^+(aq) + S^{2-}(aq)$

In reacting with alkalis; the gas hydrogen sulphide forms both a normal salt (sulphide) and an acid salt (a hydrogen sulphide).

$$2K0H_{(aq)} + H_2S_{(a)} \rightarrow K_2 S_{(aq)} + 2H_2O_{(L)}$$

excess normal
 $K0H_{(aq)} + H_2S_{(g)} \rightarrow KHS + H_2O_{(L)}$
excess (acid salt)

b) Combustion reaction/Reaction With Oxygen:

Hydrogen sulphide does not support combustion. It however burns in excess oxygen with a bright blue flame to form sulphur (iv) oxide, but if in limited supply of oxygen, the reaction leads to the formation of a deposit of sulphur

$$2H_2S_{(g)} + 30_{2(g)} \rightarrow 2H_2O_{(L)} + 2SO_{2(g)}$$

Excess
 $2H_2S_{(g)} + O_{2(g)} \rightarrow 2H_2O_{(L)} + 2S_{(g)}$
(limited)

c) As a Precipitating Agent:

Since many metals form insoluble sulphides which are coloured, hydrogen sulphide precipitates the insoluble coloured sulphide when it is bubbled into the solution of the metal salt.

$$\begin{array}{c} \text{(USO}_{4(aq)} + \text{H}_2\,\text{S}_{(g)} \rightarrow \text{(US}_{(s)} + \text{H}_2\text{SO}_{4(aq)} \\ & \text{dark brown} \\ \text{Pb (CH}_3\,(00)_{2(ag)} + \text{H}_2\text{S}_{(g)} \rightarrow \text{PbS}_{(s)} + 2\,\text{CH}_3\,\text{C00H}_{(aq)} \\ & \text{(black)} \\ \text{ZnSO}_{4(aq)} + \text{H}_2\text{S}_{(g)} \rightarrow \text{ZnS}_{(s)} + \text{H}_2\text{SO}_{4(aq)} \\ & \text{(white)} \end{array}$$

d) As a reducing Agent:

Hydrogen sulphide is a strong reducing agent because the oxidation number of sulphur is -2. In reacting with many **oxidizing agents**, the hydrogen sulphide is oxidized to elemental sulphur and an increased in oxidation state from -2 to 0. H_2S $2H^+ + S^{2-}$

i. With halogen: In the presence of moisture, halogens oxidizes hydrogen sulphide to sulphur

$$CL_{2(g)} + H_2S_{(s)} \rightarrow 2HCL_{(g)} + S_{(s)}$$

ii. With sulphur (iv) oxide: Hydrogen sulphide reduces sulphur (iv) oxide to sulphur in the presence of moisture.

$$S0_2 ++ 2.H_2 S_{(g)} \rightarrow 2H_2 0_{(l)} + 3S_{(s)}$$

- iii. With oxidizing acids:
 - Tetraoxosulphate (iv) acid oxidizes Hydrogen Sulphide to Sulphur, but i) with concentrated trioxonitrate (v), it oxidizes hydrogen sulphide to tetraoxosulphate (vi) acid to some extent with evolution of brown fumes of $N0_2$

$$H_2SO_{4(aq)} + H_2S_{(g)} \rightarrow 2H_2O_{(l)} + SO_{2(g)} + S_{(s)}$$

 $2HNO_{3(aq)} + H_2S_{(g)} \rightarrow 2H_2O_{(L)} +$
 $8HNO_{3(aq)} + H_2S_{(q)} \rightarrow 4H_2O_{(l)} + 8NO_{2(q)} + H_2SO_{4(aq)}$

With iron (iii) chloride

When hydrogen sulphide reacts with iron (iii) chloride, itself is oxidized to sulphur and hydrogen chloride and in the process reduced brownish-yellow solution of iron (iii) chloride to a green solution of iron (ii) chloride.

- With tretraoxomanganate (vii): ٧.
- Bubbling Hydrogen Sulphide through a purple solution of acidified potassium vi. tetraoxomanganate (vii) changes the purple colour to pale pink i.e. tetraoxomagaes (viii) ion to magnganses (ii) ion.
- vii. $2KMnO_{4(aq)} + 5H_2S_{(g)} \rightarrow K2 SO_{4(q(+2MnS))} = 5S_{(s)}$ ionically:

$$2Mn0^{-}_{4(aq)} 6H^{2}_{(aq)} + 5H_{2}S(g) \rightarrow 2Mn^{2+}_{(aq)} + 8H_{20(l)} + 5S_{(s)}$$

viii. With heptaoxochromate (vi)

> Bubble hydrogen sulphide through an orange solution of acidified potassium heptaoxodichromate (vi), the colour of the solution changes to green and sulphur is deposited at the same time. The colour change is due to the reduction of the orange heptaxodichromate (vi) ion to the green chromium (iii) ion.

$$K_2C_2O_{7(aq)} + 4h_2sO_{4(aq)} + 3H_2S_{(g)} \rightarrow K_2SO_{4(aq)} + Cr_2 (SO_4)_{3(aq)} + 7H_2O_{(L)} + 3S_{(g)}$$
 ionically:

$$K_2C_2O_{7(aq)} + 4H_2SO_{4(aq)} + 3H_2S_{(g)} \rightarrow K_2SO_{4(aq)} + Cr_2 (SO_4)_{3(aq)} + 7H_2O_{(L)} + 3S_{(g)}$$

 $C_2O_7^{2-}(aq) + 8H^+(aq) + 3H_2S_{(q)} \rightarrow 2Cr^{3+}(aq) + 7H_2O_{(L)} + 3S_{(s)}$

Test for Hydrogen Sulphide

Test	Observation	Inference	
Sample	Repulsive smell like that of rotten Egg	H ₂ S Present	
Filter Paper Pb (N0 ₃) ₂ + Sample	Filter paper turns black	H ₂ S confirmed	

$$\begin{array}{c} Pb(N0_3)_{2(aq)} + H_2S_{(g)} \rightarrow PbS_{(s)} + 2HN0_{3(aq)} \\ & black \\ (CH_3\ C00)_2\ Pb_{(aq)} + H_2\ S_{(g)} \rightarrow PbS_{(s)} + 2CH_3C00H_{(aq)} \\ & black \end{array}$$

Uses of Hydrogen Sulphide

- 1. In the analysis of ores and metals
- 2. In the precipitation of sulphide (coloured), identification of cations
- 3. In the preparation of sulohides of metals and other compounds.

Subject	Chemistry			
Theme	Chemistry and Environment			
Topic	Sulphur-Sulphur (iv) oxide			
Class Level	SS2			
Lesson Duration	40 Minutes	DY FDIIA		
Period	2		47,	
Instructional	By the end of the le	esson, students shou	uld be able to:	
Objectives/Learning	1) Explain the	preparation of sulphu	ur (iv) oxide	
Outcome	2) State the ph	ysical and chemical	properties	9_ \
1 67	3) List the uses	s of sulphur (iv) oxide	Э	0.
Instructional	Text book, board, r	marker and learners	notes	17.1
Resources/Materials				121
Teacher's	The teacher prepa	res the class making	it conducive for	learning to take
Preparation for the	place.			\ \ \
lesson	19 1			\ \ \
Teaching Method	Class discussion, of	demonstration, learne	er report back	
Lesson Procedure	Time	Teacher activity	Students activity	Core Skill
STEP I: Introduction Of Prior Ideas	5 Minutes	1) Revises the last topic 2) Ask the students questions to refresh the students interests and will lead to the new topic	Students answers the questions	Critical ThinkingCollaboration
STEP II: Main Lesson	15 Minutes	Teacher explains: 1) The preparation of sulphur (iv) oxide 2) Give the properties 3) List the uses 4) Teacher responds to the	Students answers the questions	Critical ThinkingCollaboration

		questions asked by the students		
STEP III: Class Exercise	15 Minutes	1) Ask the students questions 2) Give correct answer when necessary 3) Copy Board Summary on the board 4) Collects students notes and mark	1) Students answer the questions 2) Students copy notes 3) Submit for making	 Critical Thinking Collaboration
STEP IV: Evaluation	5 Minutes	1) Explain briefly the preparatio n of sulphur (iv) oxide 2) List the physical properties SO ₂ 3) State the chemical properties of SO ₂ 4) List the uses of SO ₂	Students answer the questions	 Critical thinking Discussion
Assignment		Give the sulphide	e differences beto e and sulphur (iv) uses of sulphur (oxide

Sulphur (iv) oxide is an oxide of sulphur found in volcanic gases, water of certain sulphur springs, burnt coal which causes acid rain (air pollutant). It has an oxidation number of +4.

Laboratory Preparation

Sulphur (iv) oxide is prepared by heating sodium or potassium trioxosulphate (iv) with tetroaxosulphate (vi) or hydrochloric acid. The trioxosulphate (iv) acid formed breaks down to produce water and sulphur (iv) oxide.

$$Na_2SO_{3(aq)} + 2HCL_{(aq)} \rightarrow 2NaCl_{(aq)} + H_2O_{(L)} + SO_{2(g)}$$

ionically

$$S0^{2-}_{3(aq)} + 2H^{+}_{(aq)} \rightarrow 2H_20_{(L)} + S0_{2(g)}$$

Sulphur (iv) oxide can also be prepared by heating concentrated tetraoxosulphate (vi) acid with copper.

Industrial Preparation

Sulphur (iv) oxide is prepared by burning sulphur or metallic sulphide in oxygen. The gas formed is then liquefied and stored under pressure

$$S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)}$$

$$4FeS_{(s)} +70_2 \rightarrow 2Fe_2O_3 +4SO_2$$

Physical Properties of Sulphur (iv) Oxide

- 1. Sulphur (iv) oxide is a colouress and poisonous gas with a very irritating smell like burning matches.
- 2. It is very soluble in water resulting in the formation of trioxosulphate (iv) acid. Hence it is anhydride of trioxosulphate (iv)
- 3. It is about 2.5 times denser than air.
- 4. It can be easily liquefied under pressure (about 3 atm) at room temperature.

Chemical Properties of Sulphur (iv) Oxide

1. As an Acid:

The gas reacts with alkalis to form a normal salt.

$$2\mathsf{Na}\mathsf{0H}_{(\mathsf{ag})} + \mathsf{S}\mathsf{0}_{2(\mathsf{g})} \xrightarrow{} \mathsf{Na}_2 \; \mathsf{S}\mathsf{0}_{3(\mathsf{aq})} + \mathsf{H}_2\mathsf{0}_{(\mathsf{L})}$$

Limited Sodium trioxo-

Sulphate (iv)

2. As a Reducing Agent:

Sulphur (iv) oxide, $S0_2$, is a strong reducing agent in the presence of water due to the formation trioxosulphate (iv) ion, $S0_3^{2-}$ which readily donates electrons to an oxidizing agent.

$$H_2O(L) + SO_2(g)$$
 $H_2SO_3(aq)$ $2H^{\dagger}(aq)^+SO_3^{2-}(aq)$

a) With Tetraoxomanganate (vii):

Sulphur (iv) oxide decolourizes an acidified potassium tetraoxomanganate (vii) solution by reducing to managanese (ii) tetraoxosulphate (vi). While itself is oxidized to tetraoxosulpohate (vi)

$$2KM_n0_{4(aq)} + 5S0_{2(g)} + 2H_20_{(l)} \rightarrow K_2S0_{4(aq)} + 2MnS0_{4(aq)} + 2H_2S04_{(aq)}$$
 ionically

$$2Mn0_{4(aq)} + 5S0_{2(g)} + 2H_20_{(l)} \xrightarrow{} 2M^{2+}{}_{n(aq)} + 5S0^{2-}{}_{4(aq)} + 4H^+{}_{(aq)}$$

b) With Heptaoxochromate (vi):

Sulphur (iv) oxide changes the colour of acidified potassium heptaoxochromate (vi) solution from orange to green by reducing it to chromium (iii) tetraoxosulphate (vi)

$$K_2Cr_2O_{7(aq)} + 3SO_{2(q)} + H_2SO_{4(aq)} \rightarrow K_2SO_{4(aq)} + Cr_2(SO_4)_{3(aq)} + H_2)_{(l)}$$

ionically:

$$Cr_2O^{2-}_{7(aq)} + 3SO_{2(g)} + 2H^{+}_{(aq)} \rightarrow 2Cr^{3+}_{(aq)} + 3SO^{2-}_{4(aq)} + H_2O$$

c) With iron (iii) Chloride:

Brown iron (iii) chloride solution is reduced to green iron (ii) chloride solution by sulphur (iv) oxide while oxidizing itself to tetra0xosulphate (vi) acid.

$$2 FeCl_{3(aq)} + S0_{2(g)} + 2 H_20_{(l)} \ \, \Rightarrow \ \, 2 FeCl_{2(aq)} + H_2S0_{4(aq)} + 2 HCl_{(aq)} \\ ioniclaly$$

$$2Fe^{3+}S0_{2(g)} + 2H_20_{(l)} \rightarrow 2Fe^{2+}_{(aq)} + S0^{2-}_{4(aq)} + 4H^{+}_{(aq)}$$

d) With trioxonitrate (v) acid:

Sulphur (iv) oxide reduces concentrated trioxonitrate (v) acid to liberate reddish-brown nitrogen (iv) oxide

$$2HN0_{3(aq)} + S0_{2(g)} \xrightarrow{} H_2S0_{4(aq)} + 2N0_{2(g)}$$
 ionically:

$$2N0^{-}_{3(aq)} + S0_{2(g)} \rightarrow S0^{2-}_{4(aq)} + 2N0_{2(g)}$$

e) With the Halogen:

Sulphur (iv) oxide reduces the colour solutions of chlorine, bromine and iodine to the colourless solutions of their hydrogen compounds.

3. As a Bleaching Agent:

Sulphur (iv) oxide bleaches in the presence of water like chlorine, but it bleaches with both natural and artificial dyes. And It bleaches by reducing the dye to a colourless compound. In the presence of water sulphur (iv) oxide form trioxosulphate (iv) which donates its electrons to the dye and its axidized. Sulphur (iv) oxide bleaching does not last long as that of chlorine because the bleached dye may become reoxidized by atmospheric oxygen to form the original coloured compound. That is why a white straw hat often turns yellow after some time.

$$H_2SO_{3(aq)}$$
 + $dye_{(aq)} \rightarrow$ $H_2SO_{4(aq)}$ + bleached $dye_{(aq)}$ trioxosulphate (coloured) (colourless)

4. <u>Direct Combination Reactions:</u>

a) With certain metallic oxides

Oxides like lead (iv) oxide and sodium peroxide reacts similar with sulphur (iv) oxide. The oxide is heated and lowered into a gas jar of sulphur (iv) oxide. The lead (iv) oxide combines to form white deposits of lead (ii) tetraoxosulphate (vi).

$$PbO_{2(s)} + SO_{2(g)} \rightarrow PbSO_{4(s)}$$

 $Na_2O_{2(s)} + SO_{2(g)} \rightarrow Na_2 SO_{4(s)}$

b) With Oxygen

Sulphur (iv) oxide combines reversibly with oxygen in the presence of a catalyst to form sulphur (vi) oxide. The forward reactions is exothermic

$$2S0_{2(g)} + 0_{2(g)} \quad \underline{\hspace{1cm}} 2S0_{3(g)}$$

c) As an Oxidizing Agent:

Sulphur (iv) oxide act as an oxidizing agent in the presence of a stronger reducing agent while itself is reduced to sulphur. This reaction is used to recover sulphur from industrial fuel gases.

$$\begin{array}{l} 2H_2S_{(g)} + S0_{2(g)} \rightarrow 2H_20_{(l)} + 35_{(s)} \\ C_{(s)} + S0_{2(g)} \rightarrow C0_{2(g)} + S. \end{array}$$

Test for Sulphur

- 1. Bleaching action
- 2. Action on oxidizing agents

Subject	Chemistry	
Theme	chemistry and Environment	
Topic	ulphur-Sulphur (iv) oxide	
Class Level	SS2	
Lesson Duration	40 Minutes	
Period	3	
Instructional	By the end of the lesson, students should be able to:	

Objectives/Learning Outcome	2) State the p	ne preparation of sulplor roperties of sulphur (vote the oxidation states o	/i) oxide	najor compounds.
Instructional	Text book, board,	marker and learners	notes	
Resources/Materials				
Teacher's		ares the class making	it conducive for	learning to take
Preparation for the	place.			
lesson	MULA	111	A > 1	
Teaching Method		d class discussion		
Lesson Procedure	Time	Teacher activity	Students activity	Core Skill
STEP I:	5 Minutes	1) Revises the	Students	Critical Thinking
Introduction		previous topic	answers the	 Collaboration
Of Prior Ideas		2) Ask the	questions	1.30
		students	1	101
1 01		questions to		
1 1	100	refresh the		
		students interests		
		and will lead to		
		the new topic		
STEP II:	15 inutes	1) Explains the	1) Listen	
Main Lesson		preparation of	attentively	
		sulphur (vi)	2) Ask	
N N /		oxide	questions	
		2) State the		/ /
1 1 1		properties of		/ /
		sulphur (vi)		/ /
		oxide		/ /
		3) Explain how to		
		determine the		
		oxidation state		
		of sulphur in		
		its major		
	5/	compounds		
		4) Responds to		
		student's		
		questions		
STEP III:	15 Minutes	1) Ask the	1) Students	Critical
Class Exercise		students	answer the	Thinking
		questions.	questions	Collaboration

	CONDAR	2) Give the correct copy notes answers when necessary 3) Copy board summary on the board 4) Collects students notes and mark
STEP IV: Evaluation	5 Minutes	1) Explain briefly the preparation of sulphur (iv) oxide 2) What is/are the conditions necessary to obtain a good yield of sulphur (vi) oxide. 3) State the properties of sulphur (vi) oxide. 4) Give the oxidation state of sulphur in the compounds a) H ₂ S (b) H ₂ SO ₃ (c) H ₂ SO ₄ • Critical thinking • Discussion • Critical thinking • Discussion
Assignment		 Explain the properties of H₂SO₃ Give its properties List its uses

Sulphur (iv) oxide S0₂, under normal condition doesn't readily combine with oxygen, 0₂, to form sulphur (vi) oxide, S0₃, except under some necessary conditions to obtain a good yield of it.

- i. Presence of a catalyst platinized abestor or vanadium (v) oxide
- ii. A slight pressure
- iii. Temperature of 400-450°C.

Laboratory Preparation

A mixture of sulphur (iv) and oxygen is passed through concentrated tetraoxosulphate (vi) acids to dry them; the gaseous mixture passed over a strongly heated catalyst platinized absetor/vanadium (v) oxide. A dense white fume is seen which is sulphur (vi) oxide. It solidifies who cooled in a freezing mixture of ice and salt. The reaction is

Properties of Sulphur (vi) Oxide

- 1. At room temperature, sulphur (vi) oxide exist as white needle-shaped crystals
- 2. It has low boiling point (45°C) and hence on gentle heating readily vapourizes.
- 3. It is an acidic oxide
- 4. It reacts exothermically with water/dissolve readily in water to form an hydride of tetraoxosulphate (vi) acid which neutralizes bases to form tetraoxosulphates (vi) $H_2O_{(l)} + SO_{3(g)} \longrightarrow H_2SO_{4(aq)}$

Oxidation State of Sulphur in Compounds of Sulphur

S/N	Name of Compounds	Formula	Oxidation State
1.	Tetraoxosulphate (vi) acid	H ₂ S0 ₄	+6
2.	Sulphur (iv) oxide	S0 ₂	+4
3.	Sulphur	S ₈	0
4.	Hydrogen Sulphide	H ₂ S(15)	-2

Subject	Chemistry			
Theme	Chemistry and Environment			
Topic	Sulphur-Tetraoxosulphate			
Class Level	SS2			
Lesson Duration	40 Minutes	ey FDIIA		
Period	4		A > 1	
Instructional	By the end of the le	By the end of the lesson, students should be able to:		
Objectives/Learning	 Describe the 	e industrial preparation	on of tetraoxosul	phate (vi) by contact
Outcome	process			
1 67	2) State the ph	ysical properties of I	H ₂ S0 ₄	
1 12/	3) State the ch	emical properties of	H ₂ S0 ₄	
15/	4) Give the use	e sof H ₂ SO ₄		121
Instructional	 Chart on the 	contact process for	the preparation	of H ₂ S0 ₄
Resources/Materials	2. Car battery	acid, litmus paper		
	7931			
Teacher's		es the car battery ac	-	pares the class:
Preparation for the	making it conducive	e for learning to take	e place.	
lesson				
Teaching Method	Demonstration and	Interaction		
Lesson Procedure	Time	Teacher activity	Students activity	Core Skill
STEP I:	5 Minutes	1) Revises the	1) Students	Critical Thinking
Introduction		previous topic	answer the	 Imagination
Of Prior Ideas		2) Ask the	questions	/ /
		students	2) Answer	/ /
		questions to	questions	
		refresh their		
		knowledge and		
		lead them to the		
		new topic		
STEP II:	15 Minutes	1) Explain the	1) Students	Critical thinking
Main Lesson	- CD	preparation of	listen	
		tetraoxosulph	attentively.	
		ate (vi) acid.	2) Ask	
		2) State the	questions	
				1
		properties of	for a better	
		properties of H ₂ S0 ₄	for a better understandi	

		of H ₂ S0 ₄ topic
STEP III: Class Exercise	15 Minutes	1) Ask the students questions 2) Give the correct answers when necessary 3) Copy board summary on the board. 4) Collects and mark students notes 1) Students answers the questions 2) Students copy notes from the board summary 3) Submit for marking
STEP IV: Evaluation	5 Minutes	1) With the aid of a diagram, explain the contact process for the preparatio n of H ₂ S0 ₄ 2) State the physical properties of H ₂ S0 ₄ . 3) Give the chemical properties of H ₂ S0 ₄ 4) List the uses of H ₂ S0 ₄
Assignment		Explain tetraoxosulphates (vi) salt State the properties and uses

Tetraoxosulphate (vi) acid is one of the most used chemicals in the laboratory and industries directly or indirectly at some stage.

Industrial Preparation

H₂S0₄ acid is manufactured by contact process which is a catalytic combination of sulphur (iv) oxide and oxygen to form sulphur (vi) oxide.

The produced sulphur (iv) oxide mixes with excess air and passes through AN electric chamber to remove impurities and dust which may poison the catalyst. The gaseous mixture is passed through concentrated tetraoxosulphates (iv) to dry it and then pass into the reaction pressure where the sulphur (iv) oxide combines with the excess oxygen in the presence of the catalyst (vanadium (iv) oxide) to yield about 98% of sulphur (vi) oxide).

The sulphur (vi) oxide is cooled and passed into an absorption tower, dissolved in concentrated tetraoxosulphate (vi) to produce a thick liquid, oleum, H₂S₂O₇. Sulpur (vi) oxide is not dissolved directly in water because the solution will boil producing a mist of acid droplets.

 $S0_{3(g)} + H_2S0_{4(aq)} \rightarrow H_2S_20_7.$

The oleum is then diluted with appropriate amount of water to produce 98% tetraoxosulphate (vi) acid.

 $H_2S_2O_{7(aq)} + H_2O_{(I)} \rightarrow 2H_2 SO_{4(aq)}.$

<u>Industrial Preparation of Sulphur (vi) Oxide by the Contact Process</u>

Scheme of the Contact Process

$$S+0_2 \rightarrow S0_2 \rightarrow S0_3 \rightarrow H_2S_2O_7 + \rightarrow H_2SO_4$$

 $|+ |+ oleum |$
 O_2 concentrated
(excess air) H_2SO_4 H_2O

Physical Properties

- 1. Concentrated tetraoxosulphate (vi) acid, called **oil of vitriol** is a colourless, viscous liquid with a density of 1.84gcm⁻³.
- 2. On contact with the skin because it is corrosive causing severe burns.
- 3. Concentrated tetraoxosulphate (vi) acid has a great affinity for water, evolving a large amount of heat as it dissolves because of the hydration of H₂SO₄ ions. Concentrated tetraoxosulphate (vi) acid is hygroscopic (absorb water vapour from the surrounding).

Chemical Properties

a) As an Acid:

Dilute H₂S0₄ acid is a strong dibasic acid which ionizes in two stages.

$$H_2SO_{4(aq)} + H_2O_{(L)} \rightarrow H_3^+O_{(aq)} + HSO_{4(aq)}$$

Hydrogen tetraoxzosulphate (v) ion

$$HS0^{-}_{4(a)} + H_{2}0_{(L)} \rightarrow H_{3}^{+}0_{(aq)} + S0_{4}^{2-}_{(aq)}$$

Tetraoxosulphate (vi) ion

(i) With Metals:

Dilute $H_2SO_{4(aq)}$ reacts with metal and liberate hydrogen because the metals are higher than hydrogen in the electrochemical series

$$H_2SO_{4(aq)} + Zn_{(s)} \rightarrow ZnSO_{4(aq)} + H_2O_{(g)}$$

(ii) With Bases:

Dilute H₂SO_{4(aq)} reacts with bases or alkalis to form salt and water

$$H_2SO_{4(aq)} + Mgcl_{(s)} \rightarrow MgSO_{4(aq)} + H_2O_{(L)}$$

Since tetraoxosulphate (vi) acid is dibasic, it forms normal salts, tetraoxosulphates and acid salt, the hydrogentetraoxosulphate (vi)

$$H_2+S0_{4(aq)} + NaOH_{(aq)} \rightarrow NaHS0_{4(aq)} + H_20_{(L)}$$

 $H_2S0_{4(aq)} + 2NaOH_{(aq)} \rightarrow Na_2S0_{4(aq)} + 2H_20_{(L)}$

excess

(iii) With Trioxocarbonates:

Dilute tetraoxosulphate (vi) acids reacts with trioxocrbonates (iv) to liberate carbon (iv) oxide

$$H_2SO_{4(aq)} + CuCO_{3(aq)} \rightarrow CuSO_{4(aq)} + H_2O_{(l)} + CO_{2g}$$

ionically

$$2H^{+}_{(aq)} + C0^{2-}_{(aq)} \rightarrow H_{2}0_{(L)} + C0_{2(g)}$$

b) As an Oxidizing Agent:

Hot concentrated tetraoxosulphate (vi) acid exhibits oxidizing properties by accepting electron(s) from the reducing agents. The acid itself is reduced to trioxosulphate (iv) acid or sulphur (iv) oxide. Sulphur oxidation number decreases + 6 to +4.

$$S0_4^{2-}(aq) + 4H^+(aq) + 2e^- \rightarrow 2H_2O_{(L)} + SO_{2(g)}$$

With Metals:

The concentrated acid oxidizes metals to produce the corresponding metallic tetraoxosulphate (vi) and sulphur (iv) oxide. In these reactions, the metals supply the electron(s) and becomes oxidized to the metallic ions.

$$Zn(s) + 2H_2SO_{4(aq)} \rightarrow ZnSO_{4(aq)} + 2H_2O_{(L)} + SO_{2(g)}$$

ionically

$$Zn(s) + 4H^{+}_{(aq)} + S04^{2-}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + 2H_20_{(L)} + S0_{2(g)}$$

With Non-Metal

The concentrated acid oxidizes non-metals to produce their corresponding oxides and sulphur (iv) oxide for example, when powdered carbon is heated with the concentrated acid, carbon (iv) oxide is formed.

$$C_{(s)} + 2H_2SO_{4(aq)} \rightarrow CO_{2(g)} + 2H_2O_{(L)} + 2SO_{2(g)}$$

With Hydrogen Sulphide

Tetraoxosulphate (vi) acid oxidized hydrogen sulphide to sulphur. The reaction takes place readily when hydrogen sulphide is bubbled into hot or cold concentrated tetraoxosulphate (vi) acid.

$$H_2S_{(g)} + H_2S_{04(aq)} \rightarrow S_{02(g)} + 2H_2O_{(L)} + S_{(b)}$$

c) As a dehydrating Agent:

Concentrated tetraoxosulphate (vi) acid is able to remove water from compounds like sugar, ethanol, methanonic acid and ethanedioic acid by the processes as dehydration.

Ethanedioic acid

Dehydration affects the chemical composition of a compound while drying do not and the acid itself remains chemically unchanged at the end of the reaction. Although it may be deluted by the water formed.

Displacement of other Acids from their Salts

Concentrated tetraoxosulphate (vi) acid is able to displace volatile acids from their corresponding salts, when a chloride or a trioxonitrated (v) is heated with concentrated tetraoxosulphate (vi) acid, hydrochloric or trioxonitrate (vi) acid distills over a vapour because of its lower boiling point. In some instances, the acids displaced are unstable and break down to give volatile products.

```
Kcl_{(s)} + H_2SO_{4(aq)} \rightarrow KHSO_{4(aq)} + HCL_{(g)}

Na_2SO_{3(s)} + 2H_2SO_{4(aq)} \rightarrow 2NaHSO_{4(aq)} + H_2O_{(L)} + SO_{2(g)}

Na_2CO_{3(s)} + H_2SO_{4(aq)} \rightarrow Na_2SO_{4(aq)} + H_2O_{(L)} _+ CO_{2(g)}.
```

The above reactions are used in qualitative analysis to detect the presence of many acid radicals depending on the high boiling point of concentrated H₂SO₄ (vi) acid

Hydrogen Tetraoxosulphates (vi)

Hydrogen tetraoxosulphates (vi) are acid salts, they are formed when an excess of tetraoxosulphate (vi) acid is reacted with alkalis or soluble trioxocarbonates (iv) $K0H_{(aq)} + H_2S0_{4(aq)} \rightarrow KHS0_{4(aq)} + H_20_{(L)}$ $Na_2 C0_{3(aq)} + 2H_2S0_{4(aq)} \rightarrow 2NaHS0_{4(aq)} + H_20_{(L)}$

Properties

Hydrogen tetraoxosulphates (ii) are acidic because they still contain an ionized hydrogen. They change the colour of blue litmus solution red. They react with excess alkalis to form normal salts.

$$KOH_{(aq)} + KHSO_{4(aq)} \rightarrow K_2SO_{4(aq)} + H_2O_{(L)}$$

ASSIGNMENT

Read up oxidation -

Education (REDOX) reaction

Conclusion:

The teacher collects and marks their notes