МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

# «Классификация сетевых подсистем мониторинга ядра ОС Linux»

Студент: Мансуров Владислав Михайлович

Группа: ИУ7-56Б

Руководитель: Оленев Антон Александрович

## Цели и задачи

**Целью** работы является провести анализ существующих средств мониторинга сетевой подсистемы ядра ОС Linux.

#### Задачи:

- провести анализ сетевой подсистемы ядра ОС Linux;
- провести обзор существующих подсистем и средств сетевого мониторинга ядра ОС Linux;
- сформулировать критерии сравнения средств сетевого мониторинга ядра ОС Linux;
- классифицировать существующие подсистемы и средства сетевого мониторинга.

# Ядро Linux

#### Ядро Linux:

- основной внутренний компонент
- монолитное

#### Задачи:

- взаимодействие с аппаратными компонентами
- обслуживание приложение с низкоуровневыми элементами



# Сетевая подсистема ядра Linux

#### Обеспечивает функциональность:

- поддержку взаимодействия процессов с помощью механизмов сокетов;
- реализацию стеков сетевых протоколов;
- поддержку сетевых интерфейсов или драйверов;
- обеспечение маршрутизации пакетов;
- обеспечение фильтрации пакетов;



# Сетевой мониторинг ядра Linux

Сетевой мониторинг ядра Linux — отслеживание пути пакетов и выявление наличие ошибок сетевых интерфейсов сетевой подсистемы, что относится к вмешательству в работу сетевой подсистемы.

Путем использования сетевого мониторинга можно выявить:

- проблемы производительности диска (хранилища);
- проблемы производительности памяти и процессора;
- узкие места в сети.

## Утилиты сетевого мониторинга ядра

#### Преимущества:

- Гарантия работы без сбоев;
- Низкие накладные ресурсы;
- Работа при работающей системе;
- Независимость от версии ядра

#### Недостатки:

• Заточены под определенные задачи;

### Модификация кода ядра

#### Преимущества:

- Универсальность;
- Скорость работы;

- Риск нарушить работу системы;
- Сложность добавление кода в ядро Linux
- Перекомпиляция для каждого измененного или нового модуля

## Зондирование ядра

#### Преимущества:

- Динамическая загрузка модулей ядра;
- Работа при работающей системе;
- Независимость от версии ядра, адаптируются только имена функций

- Риск нарушить работы системы;
- Пересборка модулей при изменении фильтра
- •

### Точки трассировки

#### Преимущества:

- Стабильный интерфейс;
- Низкие расход ресурсов;
- Точки трассировки запускаются при необходимости

- Если точка трассировки добавлена ее нельзя убрать или переместить;
- Минимальное количество или необходимость вести учет точек трассировки.

#### **Function Trace**

#### Преимущества:

- Не требует изменение и добавления кода в ядро Linux;
- Независимость от версии сборки ядра.

- Ухудшается универсальность решаемость задач;
- Невозможность добавления новых модулей

## **Extended Berkeley Packet Filter**

#### Преимущества:

- Модификация кода сопровождается проверка до внесения в ядро Linux;
- Динамическая или статическая загрузка;
- Поддержка высокоуровневых языков
- Поддержка ЈІТ компилятора

- Новая развивающая технология;
- Ограниченность
- Проблема с безопасностью, но риск нарушить работу систему минимален

# Классификация сетевых подсистем мониторинга ядра Linux

#### Критерии сравнения методов сетевого мониторинга

| Критерии               | Описание                                                                                                       |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|
| Производительность     | Работа при реальной нагрузки и низкие расход системных ресурсов                                                |  |  |  |
| Безопасность           | Наличие гарантии, что внесенный код не вызовет сбой системы или нет необходимости к внедрению написанного кода |  |  |  |
| Скорость разработки    | Быстрота разработки программ для сетевого мониторинга                                                          |  |  |  |
| Работоспособность      | Запуск на работающей системе без сбоев или требования перезапуска                                              |  |  |  |
| Гибкость               | Возможность выполнить любые поставленные задачи                                                                |  |  |  |
| Независимость          | Независимость от сборки ядра                                                                                   |  |  |  |
| Простота развертывания | Насколько сложно развертывать средства мониторинга на машине и сопровождением документации                     |  |  |  |

# Классификация сетевых подсистем мониторинга ядра Linux

| Критерий                  | Модификация<br>кода ядра | Утилиты  | kprobes  | tracepoint | ftrace   | BPF/eBPF |
|---------------------------|--------------------------|----------|----------|------------|----------|----------|
| Производительность        | √/X                      | ✓        | √/X      | <b>√</b>   | <b>√</b> | ✓        |
| Безопасность              | X                        | <b>✓</b> | √/X      | √/X        | <b>√</b> | ✓        |
| Скорость разработки       | X                        | _        | X        | <b>√</b>   | _        | ✓        |
| Работоспособность         | X                        | <b>√</b> | √/X      | √/X        | <b>√</b> | ✓        |
| Гибкость                  | X                        | X        | <b>√</b> | <b>√</b>   | X        | X        |
| Независимость             | X                        | √/X      | √/X      | <b>√</b>   | <b>√</b> | ✓        |
| Простота<br>развертывания | <b>√</b>                 | <b>√</b> | √/X      | √/X        | X        | <b>✓</b> |

### Заключение

В ходе данной работы были изучены:

- структура и принципы работы сетевой подсистемы ядра Linux;
- методы сетевого мониторинга ядра Linux или средства и подсистемы мониторинга сетевой подсистемы ядра Linux;
- критерии сравнения методов сетевого мониторинга;
- принципы работы методов касательно сетевой подсистемы;
- преимущества и недостатки каждого из методов.

Были сформирована критерии классификации методов сетевого мониторинга ядра Linux. Была проведена классификация методов сетевого мониторинга ядра Linux по критериям, сформированным в ходе работы.