# Aurora Australis Marine Science Cruises AU0803 and AU0806 - Oceanographic Field Measurements and Analysis

MARK ROSENBERG (ACE CRC, Hobart) and STEVE RINTOUL (CSIRO CMAR)

May, 2010

## 1 INTRODUCTION

Oceanographic measurements were collected aboard Aurora Australis cruises au0803 (voyage 3 2007/2008, 16th December 2007 to 27th January 2008) and au0806 (voyage 6 2007/2008, 22nd March 2008 to 17th April 2008). Cruise au0803 focused on the Antarctic continental margin in the region of the Adélie Depression and on the southern end of the CLIVAR/WOCE meridional repeat section SR3, as part of the CASO oceanographic and CEAMARC biological programs. Cruise au0806 completed the CASO oceanographic program, with a full occupation of the SR3 transect between Antarctica and Tasmania, and included GEOTRACES program trace metal work. This report discusses only the CASO oceanographic data from these cruises.

## CASO program objectives were:

- 1. to measure changes in water mass properties and inventories throughout the full ocean depth between Australia and Antarctica along 140°E (the CLIVAR/WOCE repeat section SR3), as part of a multi-national International Polar Year program to obtain a circumpolar snapshot of the Southern Ocean in austral summer 2007-8:
- 2. to estimate the transport of mass, heat and other properties south of Australia, and to compare results to previous occupations of the SR3 line and other sections in the Australian sector;
- 3. to deploy moorings near the Adélie Depression (142-145°E) as part of a joint Australia-France-Italy program to monitor changes in the properties and flow of Adélie Land Bottom Water;
- 4. to identify mechanisms responsible for variability in ocean climate south of Australia.

The CASO program (with a full occupation of the SR3 transect) was originally scheduled for a single cruise. The shipping schedule was re-arranged following an unexpected period in drydock, due to a problem with the ship's thrusters, and as a result the CASO program was split over the two cruises. Several of the southern stations occupied on the first cruise au0803 were repeated on the second cruise au0806, to minimise the impact on the data set of the time gap between the cruises.

A total of 131 CTD vertical profile stations were taken on au0803, and 73 CTD station were taken on au0806, most to within 20 metres of the bottom (Table 1). During the 2 cruises, over 2900 Niskin bottle water samples were collected for the measurement (Table 2) of salinity, dissolved oxygen, nutrients (phosphate, nitrate+nitrite and silicate), <sup>18</sup>O, CFC's, dissolved inorganic carbon, alkalinity, <sup>14</sup>C, dissolved organic carbon, density (i.e. analysis of the effect of water composition on water density), germanium/silica/boron isotopes, trace metals, neodymium, chlorophyll-a, cell counts, pigments, genetic analyses, and other biological parameters, using a 24 bottle rosette sampler. Full depth current profiles were collected by an LADCP attached to the CTD package, while upper water column current profile data were collected by a ship mounted ADCP. Data were also collected by the array of ship's underway sensors.

This report describes the processing/calibration of the CTD data, and details the data quality. An offset correction is derived for the underway sea surface temperature and salinity data, by comparison with near surface CTD data. CTD station positions are shown in Figures 1 and 2, while CTD station information is summarised in Table 1. Mooring and drifter deployments/recoveries are summarised in Table 14. Mooring data from the Adélie Depression deployments are discussed in the mooring data

reports Rosenberg (unpublished report, 2009) and Meijers (unpublished report, 2009). Further cruise itinerary/summary details can be found in the voyage leader reports (Australian Antarctic Division unpublished reports: Riddle, V3 2007/08 VL report; Rintoul, V6 2007/08 VL report). Hydrochemistry and CFC cruise reports are in Appendix 1 and Appendix 2.

## 2 CTD INSTRUMENTATION

SeaBird SBE9plus CTD serial 704, with dual temperature and conductivity sensors and a single SBE43 dissolved oxygen sensor (serial 0178, on the primary sensor pump line), was used for both cruises, mounted on a SeaBird 24 bottle rosette frame, together with a SBE32 24 position pylon and 22 x 10 litre General Oceanics Niskin bottles. The following additional sensors were mounted:

- \* Tritech 500 kHz altimeter
- \* Wetlabs ECO-AFL/FL fluorometer serial 296
- \* Biospherical Instruments photosynthetically active radiation (i.e. PAR) sensor
- \* Sontek lowered ADCP (i.e. LADCP) with upward and downward looking transducer sets

CTD data were transmitted up a 6 mm seacable to a SBE11plusV2 deck unit, at a rate of 24 Hz, and data were logged simultaneously on 2 PC's using SeaBird data acquisition software "Seasave". The LADCP was powered by a separate battery pack, and data were logged internally and downloaded after each CTD cast. Note that physical mounting of the upward looking LADCP transducer set requires removal of 2 Niskin bottles, thus only 22 Niskins were fitted for the cruises.

The CTD deployment method was as follows:

- \* CTD initially deployed down to ~10 to 20 m
- \* after confirmation of pump operation, CTD returned up to just below the surface (depth dependent on sea state)
- \* after returning to just below the surface, downcast proper commenced

For most casts, the package was stopped for 5 minutes on the upcast at ~50 m above the bottom, for logging of LADCP bottom track data.

Pre cruise temperature, conductivity and pressure calibrations were performed by the CSIRO Division of Marine and Atmoshperic Research calibration facility (Table 3) (April to May 2007). Manufacturer supplied calibrations were used for the dissolved oxygen, fluorometer and altimeter. PAR sensor data were uncalibrated (raw voltage data only). Final conductivity and dissolved oxygen calibrations derived from in situ Niskin bottle samples are listed later in the report.

## 3 CTD DATA PROCESSING AND CALIBRATION

Preliminary CTD data processing was done at sea, to confirm correct functioning of instrumentation. Final processing of the data was done in Hobart. The first processing step is application of a suite of the SeaBird "Seasoft" processing programs to the raw data, in order to:

- \* convert raw data signals to engineering units
- \* remove the surface pressure offset for each station
- \* realign the oxygen sensor with respect to time (note that conductivity sensor alignment is done by the deck unit at the time of data logging)
- \* remove conductivity cell thermal mass effects
- \* apply a low pass filter to the pressure data
- \* flag pressure reversals
- \* search for bad data (e.g. due to sensor fouling)

For au0806, an additional processing step was done early on, running all data through the SeaBird data despiking program "wildedit". Further processing and data calibration were done in a UNIX environment, using a suite of fortran programs. Processing steps here include:

\* forming upcast burst CTD data for calibration against bottle data, where each upcast burst is the average of 10 seconds of data prior to each Niskin bottle firing

- \* merging bottle and CTD data, and deriving CTD conductivity calibration coefficients by comparing upcast CTD burst average conductivity data with calculated equivalent bottle sample conductivities
- \* forming pressure monotonically increasing data, and from there calculating 2 dbar averaged downcast CTD data
- \* calculating calibrated 2 dbar averaged salinity from the 2 dbar pressure, temperature and conductivity values
- \* deriving CTD dissolved oxygen calibration coefficients by comparing bottle sample dissolved oxygen values (collected on the upcast) with CTD dissolved oxygen values from the equivalent 2 dbar downcast pressures
- \* extracting the appropriate fluorescence data to assign to each 2 dbar bin

Full details of the data calibration and processing methods are given in Rosenberg et al. (unpublished report), referred to hereafter as the *CTD methodology*. Additional processing steps, in particular for the fluorescence data, are discussed below in the results section. For calibration of the CTD oxygen data, whole profile fits were used for shallower stations, while split profile fits were used for deeper stations.

Final station header information, including station positions at the start, bottom and end of each CTD cast, were obtained from underway data for the cruise (see section 5 below). Note the following for the station header information:

- \* All times are UTC.
- \* "Start of cast" information is at the commencement of the downcast proper, as described above.
- \* "Bottom of cast" information is at the maximum pressure value.
- \* "End of cast" information is when the CTD leaves the water at the end of the cast, as indicated by a drop in salinity values.
- \* All bottom depth values are corrected for local sound speed, where sound speed values are calculated from the CTD data at each station.
- \* "Bottom of cast" depths are calulated from CTD maximum pressure and altimeter values at the bottom of the casts.

Lastly, data were converted to MATLAB format, and final data quality checking was done within MATLAB.

## 4 CTD AND BOTTLE DATA RESULTS AND DATA QUALITY

Data from the primary CTD sensor pair (temperature and conductivity) were used for both cruises. Suspect CTD 2 dbar averages are listed in Table 9, while suspect nutrient and dissolved oxygen bottle samples are listed in Tables 11 and 12 respectively.

## 4.1 Conductivity/salinity

The conductivity calibration and equivalent salinity results for the cruises are plotted in Figures 3 and 4, and the derived conductivity calibration coefficients are listed in Tables 4 and 5. Station groupings used for the calibration are included in Table 4. International standard seawater batch numbers used for salinometer standardisation were as follows:

## au0803

stn 1-51 P147 (6th June 2006) stn 51-130 P148 (10th June 2006)

(note: for station 51, P147 used for 300 dbar down to bottom, P148 used for top 200 dbar)

#### au0806

station 1-8, 11-73 P147 (6th June 2006) station 9-10 P148 (10th June 2006)

The salinometer (Guildline Autosal serial 62548) appeared stable throughout the cruises. Overall, CTD salinity for the cruises can be considered accurate to better than 0.0015 (PSS78).

Close inspection of the vertical profiles of the bottle-CTD salinity difference values reveals a slight biasing for a few stations, mostly of the order 0.001 (PSS78), as follows:

| station      | bottle-CTD bias | s (PSS78)                                                          |
|--------------|-----------------|--------------------------------------------------------------------|
| au0803       |                 |                                                                    |
| 1            | +0.0015         |                                                                    |
| 2,3,7,13,102 | -0.001          | (for 2,3: bottles all at 1000 dbar; 7,13,102 all shallow stations) |
| 36           | +0.0005         | (a shallower station)                                              |
| 59,119       | +0.001          | (119: a shallow station)                                           |
| au0806       |                 |                                                                    |
| 2,73         | -0.0015         | (73: a shallow station)                                            |
| 19,20,28,42  | -0.0005         | •                                                                  |
| 26           | -0.001          |                                                                    |
| 44,66        | +0.0005         |                                                                    |

This is most likely due to a combination of factors, including salinometer performance, and station groupings for shallow stations. There is no significant diminishing of overall CTD salinity accuracy.

For au0803, a small pressure dependent salinity residual is evident for stations deeper than 2000 dbar (except for stations 2, 71 and 72). The magnitude of the residual is at most ~0.002 (PSS78) over the whole profile, with the trend a negative increase in bottle-CTD residual with depth. For au0806, there is no similar consistent residual evident, and a small pressure dependence can only be seen in the residuals for a few of the stations.

For the first 58 stations on au0803, bad secondary conductivity readings often occurred in the top 100 m of the upcast. The connectors were cleaned after station 58, and only two further cases of bad secondary conductivity were seen, during stations 62 and 128. Note that secondary sensor data have not been used in the final data set.

Bad salinity bottle samples (not deleted from the data files) are listed in Table 10.

## 4.2 Temperature

Primary and secondary CTD temperature data ( $t_p$  and  $t_s$  respectively) for the cruises are compared in Figure 5. CTD upcast burst data, obtained at each Niskin bottle stop, are used for the comparison. From previous cruises (e.g. au0603 in Rosenberg, unpublished report, 2006), a very small pressure dependency of  $t_p$ - $t_s$  for CTD704 of the order  $0.0005^{\circ}$ C is evident over the full ocean depth range. This value is the same for cruises au0803 and au0806, however  $t_p$ - $t_s$  starts from an average value of  $\sim$ - $0.0005^{\circ}$ C at the surface, decreasing to  $\sim$ - $0.001^{\circ}$ C at the bottom, indicating an initial calibration offset between the two temperature sensors. The magnitude of the  $t_p$ - $t_s$  pressure dependency is within the assumed temperature accuracy of  $0.001^{\circ}$ C (i.e. the accredited temperature accuracy of the CSIRO calibration facility). However without some temperature standard for comparison, it is unknown which of the temperature sensors provides more accurate data overall for cruises au0803 and au0806.

For both cruises, data spikes in the secondary temperature were common at temperatures below 0°C, of no consequence in this case as primary sensor data were used. Note that this same behaviour has been observed on previous cruises.

#### 4.3 Pressure

For both cruises, surface pressure offsets for each cast (Table 6) were obtained from inspection of the data before the package entered the water.

For au0806, data transmission errors initially caused some pressure spiking. The problem was fixed after retermination of the CTD wire (after station 3).

## 4.4 Dissolved oxygen

#### au0803

CTD oxygen data for profiles deeper than 3000 dbar (i.e. stations 1, 55 to 71, and 127 to 130) were calibrated as split profile fits, while profiles shallower than 3000 dbar were calibrated as whole profile fits. Calibration results are plotted in Figure 6, and the derived calibration coefficients are listed in Table 7a. Overall the calibrated CTD oxygen agrees with the bottle data to well within 1% of full scale (where full scale is  $\sim$ 400 µmol/l above 1500 dbar, and  $\sim$ 260 µmol/l below 1500 dbar).

The following stations had insufficient (or no) bottle samples for calibration of the CTD oxygen:

2, 3, 29, 37, 90, 92, 112-118, 131

For the split profile calibration of stations 56 and 69, the *CTD methodology* rules were varied, with increased bottle overlap between the shallow and deep fits, and merging of the fits at 1000 dbar rather than the usual 1500 dbar.

## au0806

CTD oxygen data were calibrated using split profile fits, as per the *CTD methodology*. Calibration results are plotted in Figure 6, and the derived calibration coefficients are listed in Table 7b. Overall the calibrated CTD oxygen agrees with the bottle data to well within 1% of full scale (where full scale is  $\sim$ 350 µmol/l above 1500 dbar, and  $\sim$ 260 µmol/l below 1500 dbar).

Bottle overlaps between the shallow and deep fits were varied slightly for some stations, while merging of the fits was changed to 2500 dbar for station 60, 2000 dbar for station 64, and 1000 dbar for station 65. For stations 15 and 55, whole profile fits were required to improve the calibration for the top part of the profile.

For stations 47 and 64, CTD oxygen accuracy is reduced for most of the top half of the profile (Table 9), due to sparse bottle samples.

## 4.5 Fluorescence, PAR, altimeter

All fluorescence data for the cruises have a calibration, as supplied by the manufacturer (Table 3), applied to the data. PAR sensor data are uncalibrated, and supplied as raw voltages. The data have **not** been verified by linkage to other data sources (e.g. chlorophyll-a concentration data, particulate data, etc).

In the *CTD 2 dbar averaged data files*, both downcast and upcast data are supplied for fluorescence and PAR. In these files, fluorescence data are not in fact averages: they are the **minimum** value within each 2 dbar bin, providing a profile "envelope" which minimizes the spikiness of the data.

In the *bottle data files*, fluorescence (and PAR) values are the averages of 10 second bursts of CTD data, and thus include all the data spikes within each 10 second averaging period. For comparison with Niskin bottle data, these 10 second averages best represent (short of referring to the full 24 Hz data) what the Niskin bottle is sampling as the package moves up and down with the swell prior to bottle closure. Note that these fluorescence data are different to the data in the CTD 2 dbar averaged files (described above).

For the Tritech 500 kHz altimeter used on both cruises, on some stations a false bottom reading was obtained before coming within the nominal altimeter range of 50 m. This false bottom could be due to detection of the echo from the previous altimeter ping, or alternatively a combination of a good echo return from the bottom and a slightly better range in cold water. As a result of this behaviour, the real bottom was missed for a few stations. Note that similar behaviour for Tritech 500 kHz altimeters has been observed elsewhere (RV Tangaroa).

#### 4.6 Nutrients

Nutrients measured on the cruises were phosphate, total nitrate (i.e. nitrate+nitrite), and silicate, using a Lachat autoanalyser. Some nitrite analyses were done on au0806, but only for the trace metal related nutrient samples (not discussed here). Suspect nutrient values not deleted from the bottle data files are listed in Table 11. Nitrate+nitrite versus phosphate data are shown in Figure 7. Note that most values are an average of two repeat analyses. Also note that full scale for phosphate, nitrate and silicate are respectively 3.0 µmol/l, 35 µmol/l, and 140 µmol/l.

Overall, silicate data are the cleanest, while nitrate data have the most inaccuracies (Table 11). For au0803, much of the nitrate data set has a reduced accuracy, in part because suspect analyses were not identified in time to allow repeat analysis runs. Specifically, for au0803 stations 1 to 29 and 38 to 54, nitrate values may be inaccurate by up to 3% of full scale. At the time of writing, the CSIRO hydrochemists advise that nitrate results may improve for future cruises, with the added pre-analysis step of warming the sample and thus bringing all the samples to a constant temperature for analysis.

Phosphate data appeared mostly okay, however the most surprising result is the consistent offset between au0806/au0803 phosphates and phosphates from previous cruises (Figures 8 and 9), with au0806/au0803 values ~0.13 µmol/l larger (i.e. ~4.3% of full scale). This offset is most likely due to the new data processing techniques for the Lachat data as compared to the old Alpkem system (Bec Cowley, CSIRO, pers. comm.), with the new data (i.e. au0803/au0806) assumed to be correct. The only way to completely confirm this would be to run old Alpkem data through the new data processing routines. Unfortunately, the resources to do this are currently unavailable.

# 4.7 Additional CTD data processing/quality notes

- \* au0803 station 7: the CTD broke the surface and the pumps switched off before the last bottle stop at 5 dbar. The package was lowered back down to 7 dbar, and the bottles were fired after the pumps were back on.
- \* au0803 station 14: no salinity bottle samples they were mistakenly poured out, and the bottles used for sampling station 15.
- \* au0803 station 60: touched the bottom upcast data all okay
- \* au0803 station 127: after firing bottle 20, the CTD was accidentally raised out of the water. The package was lowered back down to 10 dbar, and the last bottle was fired after the pumps were back on
- \* au0806 station 15: primary sensors fouled when package hit the bottom all upcast primary sensor data are bad.
- \* In the WOCE "Exchange" format bottle data file for both cruises, a laboratory temperature of 20.5°C was used for conversion of nutrient units from µmol/l to µmol/kg.

## 5 UNDERWAY MEASUREMENTS

Underway data were logged to an Oracle database on the ship. Quality control for the cruises was largely automated. 12 kHz bathymetry data for au0803 were quality controlled on the cruise (Belinda Ronai, AAD programmer), however the usual quality control steps were not applied for the au0806 bathymetry data.

1 minute instantaneous underway data are contained in the files au0803.ora and au0806.ora as column formatted text; and in the files au0803ora.mat and au0806ora.mat as matlab format. A correction for the hull mounted temperature sensor and the thermosalinograph salinity was derived by comparing the underway data to CTD temperature and salinity data at 8 dbar, for cruise au0803

(Figures 10a and b) and cruise au0806 (Figures 11a and b). The following corrections were then applied to the underway data:

au0803

 $T = T_{dis} - 0.013$  $S = S_{dis} + 0.055$ 

au0806

 $T = T_{dls} - 0.007$ 

S: no correction required

for corrected underway temperature and salinity T and S respectively, and uncorrected values  $T_{dls}$  and  $S_{dls}$ . For au0803 underway salinity data, the split horizontal grouping of data points (Figure 10b) appears to be underway salinity calibration shifts in time throughout the cruise.

#### 6 INTERCRUISE COMPARISONS

## Historical comparisons

Intercruise comparisons of dissolved oxygen and nutrient data on neutral density (i.e.  $\gamma$ ) surfaces are shown in bulk plots, comparing au0806 and au0103 (Figure 9a), and au0806 and au9601 (Figure 9b). Coinciding station profiles for au0803 and au0103 are compared in Figure 8 (the comparison in this case is not done on  $\gamma$  surfaces, as the spread of  $\gamma$  values is restricted for these southern stations). The most obvious difference is for phosphate (as discussed in section 4.6 above), with au0806 phosphate values higher than au0103 and au9601 by ~0.13 µmol/l, and au0803 similarly higher than au0103. For the au0806/au0103/au9601 comparisons (Figures 9a and b), nitrate values for the 3 cruises all agree to within ~1%; the average silicate difference between cruises is ~0.5 µmol/l for au0806 and au0103, and ~5.0 µmol/l for au0806 and au9601, with au0806 higher in both cases; and au0806 dissolved oxygen values are lower than au0103 and au9601 by ~4 µmol/l. For the au0803/au0103 comparison (Figure 8), there's no obvious offsets for nitrate, silicate and oxygen. Examination of plots for individual stations (not shown here) for these 2 cruises show a variable nitrate comparison (sometimes good), good silicate comparison, and au0803 oxygen values sometimes lower than au0103 values by ~1%.

## au0803/au0806 station overlaps

Nutrient and dissolved oxygen profiles for overlap (i.e. coinciding) stations on au0803 and au0806 are shown in Figures 12a to f. Silicate and dissolved oxygen comparisons below 800 dbar are mostly okay, although there are some noticeable silicate differences in Figures 12c, d and f. Phosphate and nitrate differences are more often apparent, with the most obvious difference for phosphate in Figures 12e and f - in this case the maximum difference is  $\sim 1 \, \mu mol/l$ , or  $\sim 3\%$  of full scale.

## **REFERENCES**

Meijers, A., unpublished. *Polynya 2007/08 ADCP Heading Correction.* CSIRO CMAR, unpublished report, December 2009. 27 pp.

Rosenberg, M., unpublished. *BROKE West Survey, Marine Science Cruise AU0603 - Oceanographic Field Measurements and Analysis.* ACE Cooperative Research Centre, unpublished report, July 2006. 24 pp.

Rosenberg, M., unpublished. *POLYNYA2007 Mooring Array - ADCP and Pole Compass Data.* ACE Cooperative Research Centre, unpublished report, July 2009. 22 pp.

Rosenberg, M., Fukamachi, Y., Rintoul, S., Church, J., Curran, C., Helmond, I., Miller, K., McLaughlan, D., Berry, K., Johnston, N. and Richman, J., unpublished. *Kerguelen Deep Western Boundary Current Experiment and CLIVAR 19 transect, marine science cruises AU0304 and AU0403 - oceanographic field measurements and analysis.* ACE Cooperative Research Centre, unpublished report. 78 pp.

## **ACKNOWLEDGEMENTS**

Thanks to all scientific personnel who participated in the cruises, and to the crew of the RSV Aurora Australis. Special thanks to the oceanography team for a great job collecting the data.

<u>Table 1a:</u> Summary of station information for cruise au0803. All times are UTC; "PULSE", "SAZC", "POLYNYA-WEST", "POLYNYA-CENTRAL" and "POLYNYA-EAST" are all mooring locations; "ICEBERG" = samples near a large iceberg (B-17A); "for the Jeff's" is a large volume sample for genetic analyses; "alt" = minimum altimeter value (m), "maxp" = maximum pressure (dbar).

|             | start of CTD                  |                  | bottom            | of CTD           | end of            | CTD              |           |
|-------------|-------------------------------|------------------|-------------------|------------------|-------------------|------------------|-----------|
| CTD station | date time latitude            | longitude depth  | time latitude     | longitude depth  | time latitude     | longitude depth  | alt maxp  |
| 001 PULSE   | 17 Dec 2007 061509 44 52.78 S | 145 32.43 E 3527 | 071030 44 52.42 S | 145 32.20 E 3542 | 082328 44 52.16 S | 145 31.94 E 3546 | - 3008    |
| 002 SAZC    | 19 Dec 2007 021809 53 44.91 S | 141 49.68 E 2433 | 023535 53 44.95 S | 141 49.81 E -    | 025949 53 45.02 S | 141 50.02 E -    | - 1003    |
| 003 SAZC    | 19 Dec 2007 035248 53 45.41 S | 141 51.55 E 2962 | 041903 53 45.49 S | 141 51.71 E -    | 043404 53 45.55 S | 141 51.89 E -    | - 1002    |
| 004 CEAMARC | 22 Dec 2007 231332 66 00.28 S | 142 39.56 E 443  | 232505 66 00.32 S | 142 39.52 E 443  | 235425 66 00.49 S | 142 39.48 E 440  | 13.1 434  |
| 005 CEAMARC | 23 Dec 2007 172230 65 58.79 S | 143 03.46 E 461  | 173512 65 58.75 S | 143 03.31 E 458  | 180157 65 58.67 S | 143 03.07 E 456  | 11.7 451  |
| 006 CEAMARC | 24 Dec 2007 015702 66 00.20 S | 143 19.88 E 460  | 020518 66 00.17 S | 143 20.08 E 462  | 023554 65 59.98 S | 143 21.17 E 458  | 5.8 461   |
| 007 CEAMARC | 24 Dec 2007 101801 65 59.57 S | 143 38.27 E 424  | 102603 65 59.57 S | 143 38.10 E 422  | 105624 65 59.61 S | 143 37.66 E 427  | 8.4 418   |
| 008 CEAMARC | 24 Dec 2007 181726 66 21.75 S | 143 41.85 E 584  | 183001 66 21.69 S | 143 41.72 E 581  | 185747 66 21.58 S | 143 41.75 E 581  | 10.9 576  |
| 009 CEAMARC | 25 Dec 2007 002546 66 19.78 S | 143 17.14 E 685  | 003752 66 19.79 S | 143 16.95 E 677  | 010313 66 19.87 S | 143 16.36 E 691  | 11.5 674  |
| 010 CEAMARC | 25 Dec 2007 063754 66 20.24 S | 142 59.17 E 649  | 064652 66 20.26 S | 142 59.20 E 646  | 072129 66 20.32 S | 142 58.91 E 645  | 13.3 640  |
| 011 CEAMARC | 26 Dec 2007 130456 66 19.75 S | 142 38.40 E 381  | 131254 66 19.73 S | 142 38.18 E 376  | 133310 66 19.58 S | 142 37.81 E 373  | 4.2 375   |
| 012 CEAMARC | 26 Dec 2007 173844 66 20.27 S | 142 17.63 E 216  | 174309 66 20.26 S | 142 17.46 E 214  | 175837 66 20.17 S | 142 16.62 E 211  | 12.7 203  |
| 013 CEAMARC | 26 Dec 2007 203356 66 20.62 S | 141 59.08 E 257  | 203917 66 20.66 S | 141 58.97 E 254  | 205241 66 20.77 S | 141 58.45 E 263  | 11.4 245  |
| 014 CEAMARC | 27 Dec 2007 005031 66 34.05 S | 142 00.16 E 310  | 005638 66 34.09 S | 142 00.13 E 304  | 011613 66 34.10 S | 141 59.78 E 295  | 9.2 298   |
| 015 CEAMARC | 27 Dec 2007 064524 66 33.45 S | 142 19.04 E 365  | 065343 66 33.50 S | 142 19.00 E 359  | 071407 66 33.62 S | 142 18.83 E 357  | 6.6 356   |
| 016 CEAMARC | 27 Dec 2007 115748 66 34.13 S | 142 38.94 E 396  | 120425 66 34.18 S | 142 38.83 E 391  | 123036 66 34.46 S | 142 38.24 E 365  | 13.9 381  |
| 017 CEAMARC | 27 Dec 2007 185344 66 33.65 S | 143 00.33 E 846  | 190809 66 33.59 S | 143 00.15 E 841  | 193707 66 33.39 S | 142 59.90 E 842  | 13.5 838  |
| 018 CEAMARC | 28 Dec 2007 022948 66 33.45 S | 143 19.63 E 804  | 024250 66 33.38 S | 143 19.94 E 799  | 031313 66 33.16 S | 143 20.55 E 801  | 5.4 803   |
| 019 CEAMARC | 28 Dec 2007 072604 66 39.85 S | 143 01.42 E 597  | 073549 66 39.82 S | 143 01.33 E 629  | 080450 66 39.69 S | 143 01.24 E 559  | 18.2 618  |
| 020 CEAMARC | 28 Dec 2007 124948 66 44.92 S | 142 39.82 E 685  | 131240 66 44.76 S | 142 39.09 E 721  | 133806 66 44.78 S | 142 39.06 E 698  | 18.2 712  |
| 021 CEAMARC | 28 Dec 2007 180930 66 52.69 S | 142 39.72 E 412  | 181731 66 52.70 S | 142 39.61 E 431  | 183722 66 52.70 S | 142 39.26 E 396  | 14.1 422  |
| 022 CEAMARC | 29 Dec 2007 001217 66 45.42 S |                  | 001529 66 45.41 S |                  | 002953 66 45.46 S | -                | 27.5 150  |
| 023 CEAMARC | 29 Dec 2007 034849 66 41.36 S | 143 40.24 E 739  | 040040 66 41.45 S | 143 40.20 E 741  | 043027 66 41.73 S | 143 40.23 E 713  | 9.7 740   |
| 024 CEAMARC | 29 Dec 2007 100704 66 45.14 S | 143 59.16 E 596  | 101951 66 45.24 S | 143 58.90 E 528  | 104548 66 45.47 S | 143 58.24 E 487  | 17.2 517  |
| 025 CEAMARC | 29 Dec 2007 160025 66 52.60 S | 144 04.09 E 602  | 161212 66 52.58 S | 144 04.00 E 613  | 163502 66 52.48 S | 144 03.56 E 631  | 14.9 605  |
| 026 CEAMARC | 29 Dec 2007 204706 66 56.57 S | 144 39.41 E 326  | 205325 66 56.57 S | 144 39.26 E 328  | 210643 66 56.48 S | 144 39.08 E 324  | 12.9 318  |
| 027 CEAMARC | 30 Dec 2007 004932 67 02.59 S | 144 40.00 E 178  | 005305 67 02.57 S | 144 40.04 E 181  | 010300 67 02.56 S | 144 40.04 E 178  | 14.8 168  |
| 028 CEAMARC | 30 Dec 2007 072711 67 01.86 S | 145 11.96 E 1209 | 074737 67 01.94 S | 145 11.99 E 1204 | 082753 67 02.12 S | 145 12.04 E 1209 | 10.3 1210 |
| 029 CEAMARC | 30 Dec 2007 105747 67 03.53 S | 145 11.54 E 1315 | 112345 67 03.38 S | 145 11.57 E 1314 | 114734 67 03.25 S | 145 11.68 E 1296 | 7.9 1323  |
| 030 CEAMARC | 30 Dec 2007 153646 66 51.10 S | 145 23.09 E 632  | 155025 66 51.05 S | 145 22.90 E 629  | 161149 66 50.84 S | 145 22.57 E 630  | 11.5 624  |
| 031 CEAMARC | 30 Dec 2007 181355 66 45.04 S | 145 31.59 E 520  | 182157 66 45.05 S | 145 31.58 E 524  | 184204 66 45.11 S | 145 31.47 E 521  | 13.5 516  |
| 032 CEAMARC | 30 Dec 2007 224155 66 45.26 S | 145 13.47 E 582  | 225257 66 45.19 S | 145 13.34 E 583  | 231343 66 45.08 S | 145 13.26 E 582  | 11.1 579  |
| 033 CEAMARC | 31 Dec 2007 041427 66 44.30 S | 144 58.71 E 636  | 042426 66 44.33 S | 144 58.46 E 635  | 045306 66 44.30 S | 144 57.61 E 628  | 8.4 634   |
| 034 CEAMARC | 31 Dec 2007 083151 66 44.89 S | 144 40.18 E 822  | 084615 66 44.83 S | 144 39.88 E 823  | 091624 66 44.80 S | 144 39.53 E 822  | 5.3 827   |
| 035 CEAMARC | 31 Dec 2007 185356 66 45.52 S |                  | 190956 66 45.43 S | 144 20.77 E 891  | 193421 66 45.21 S |                  | 11.9 890  |
| 036 CEAMARC | 02 Jan 2008 050045 66 36.45 S |                  | 051414 66 36.46 S |                  | 055407 66 36.43 S |                  | 6.4 820   |
| 037 CEAMARC | 02 Jan 2008 181011 66 45.03 S | 144 19.59 E 887  | 182932 66 45.00 S | 144 19.58 E 889  | 184448 66 45.01 S | 144 19.51 E 888  | 9.4 890   |

Table 1a: (continued)

|                     | start of CTD                |                    | bottom            | of CTD           | end o             | f CTD            |           |
|---------------------|-----------------------------|--------------------|-------------------|------------------|-------------------|------------------|-----------|
| CTD station         | date time latitude          | longitude depth    | time latitude     | longitude depth  | time latitude     | longitude depth  | alt maxp  |
| 038 CEAMARC         | 02 Jan 2008 225348 66 33.58 | S 144 39.95 E 569  | 230513 66 33.56 S | 144 39.89 E 566  | 232508 66 33.59 S | 144 39.87 E 571  | 14.7 557  |
| 039 CEAMARC         | 03 Jan 2008 030028 66 33.98 | S 144 58.55 E 455  | 030812 66 33.98 S | 144 58.34 E 453  | 034234 66 33.89 S | 144 57.34 E 456  | 4.6 454   |
| 040 CEAMARC         | 03 Jan 2008 065259 66 33.37 | S 145 19.83 E 399  | 070317 66 33.32 S | 145 19.78 E 399  | 072737 66 33.29 S | 145 19.44 E 404  | 10.7 392  |
| 041 CEAMARC         | 03 Jan 2008 130643 66 20.13 | S 144 59.73 E 378  | 131315 66 20.16 S | 144 59.80 E 385  | 133722 66 20.14 S | 145 00.16 E 384  | 9.9 380   |
| 042 CEAMARC         | 03 Jan 2008 161958 66 19.94 | S 144 39.53 E 414  | 162807 66 19.95 S | 144 39.51 E 418  | 164815 66 19.97 S | 144 39.19 E 416  | 14.0 408  |
| 043 CEAMARC         | 03 Jan 2008 191735 66 20.03 | S 144 19.64 E 450  | 192710 66 20.02 S | 144 19.53 E 452  | 194829 66 19.96 S | 144 19.29 E 449  | 13.9 443  |
| 044 CEAMARC         | 03 Jan 2008 225329 66 20.00 | S 143 59.05 E 505  | 230211 66 19.98 S | 143 58.99 E 506  | 232638 66 19.87 S | 143 58.80 E 507  | 14.4 497  |
| 045 CEAMARC         | 04 Jan 2008 083122 66 09.35 | S 143 19.92 E 527  | 084134 66 09.40 S | 143 19.66 E 530  | 091142 66 09.50 S | 143 18.94 E 530  | 5.5 530   |
| 046 POLYNYA-WEST    | 04 Jan 2008 135127 66 10.15 | S 142 55.55 E -    | 140411 66 10.11 S | 142 55.37 E 533  | 142710 66 09.97 S | 142 55.22 E 539  | 7.6 531   |
| 047 POLYNYA-CENTRAL | 04 Jan 2008 153026 66 10.74 | S 143 09.77 E 569  | 154237 66 10.70 S | 143 09.56 E 570  | 160620 66 10.72 S | 143 09.05 E 570  | 12.6 563  |
| 048 POLYNYA-EAST    | 04 Jan 2008 170629 66 10.70 | S 143 28.61 E 529  | 171636 66 10.72 S | 143 28.52 E 531  | 173826 66 10.76 S | 143 28.46 E 529  | 13.4 524  |
| 049 CEAMARC         | 04 Jan 2008 222202 65 50.69 | S 142 58.98 E 418  | 222941 65 50.73 S | 142 59.02 E 422  | 225015 65 50.81 S | 142 59.11 E 420  | 7.6 419   |
| 050 CEAMARC         | 05 Jan 2008 014526 65 48.32 | S 142 58.64 E 976  | 020041 65 48.25 S | 142 58.81 E 989  | 024146 65 47.95 S | 142 59.18 E 1068 | 12.1 989  |
| 051 CEAMARC         | 05 Jan 2008 055808 65 46.17 | S 142 57.49 E 1646 | 063112 65 46.04 S | 142 57.31 E 1683 | 073023 65 45.87 S | 142 56.87 E 1732 | 14.1 1693 |
| 052 CEAMARC         | 05 Jan 2008 190705 65 43.39 | S 142 57.43 E 2079 | 193940 65 43.44 S | 142 57.29 E 2002 | 202846 65 43.63 S | 142 57.14 E 2054 | 13.1 2018 |
| 053 CEAMARC         | 05 Jan 2008 235231 65 39.50 | S 143 02.64 E 2364 | 002919 65 39.55 S | 143 02.47 E 2290 | 013355 65 39.57 S | 143 02.00 E 2355 | 13.8 2312 |
| 054 CASO            | 06 Jan 2008 032123 65 31.94 | S 143 09.41 E 2677 | 040516 65 32.08 S | 143 09.31 E 2675 | 052221 65 32.39 S | 143 09.08 E 2667 | 12.3 2706 |
| 055 CASO            | 06 Jan 2008 072525 65 14.99 | S 143 02.20 E 3023 | 081546 65 15.10 S | 143 01.85 E 3022 | 093621 65 15.40 S | 143 01.22 E 3017 | 12.4 3061 |
| 056 CASO            | 06 Jan 2008 115001 65 00.62 | S 143 29.63 E 3256 | 124604 65 00.75 S |                  | 140255 65 00.75 S |                  | 11.2 3317 |
| 057 CASO            | 06 Jan 2008 153450 64 47.08 | S 143 38.92 E 3405 | 163709 64 47.14 S | 143 37.93 E 3406 | 175233 64 47.30 S | 143 36.99 E 3389 | 7.1 3461  |
| 058 CASO            | 06 Jan 2008 202002 64 23.45 | S 143 17.83 E 3574 | 212129 64 23.33 S | 143 18.33 E 3579 | 223525 64 23.42 S | 143 18.83 E 3581 | 7.4 3638  |
| 059 CASO            | 07 Jan 2008 015714 63 48.05 |                    | 030027 63 48.26 S |                  | 044603 63 48.61 S |                  | 12.5 3824 |
| 060 CASO            | 07 Jan 2008 081809 63 12.57 | S 143 29.83 E 3964 | 092949 63 12.56 S | 143 29.36 E 3961 | 112117 63 12.58 S | 143 28.23 E 3966 | 0.0 4038  |
| 061 CASO            | 07 Jan 2008 135400 62 45.69 | S 143 36.52 E 4088 | 151407 62 45.50 S | 143 37.15 E 4086 | 164902 62 45.47 S | 143 37.84 E 4084 | 9.9 4156  |
| 062 CASO            | 07 Jan 2008 202937 62 54.25 |                    | 213704 62 54.24 S | 145 02.69 E 3993 | 230125 62 54.25 S |                  | 8.8 4062  |
| 063 CASO            | 08 Jan 2008 024738 63 03.25 | S 146 28.70 E 3921 | 035435 63 03.26 S | 146 28.87 E 3919 | 055732 63 03.37 S | 146 29.11 E 3918 | 10.6 3983 |
| 064 CASO            | 08 Jan 2008 093650 63 10.45 | S 147 51.09 E 3882 | 105102 63 10.54 S | 147 51.64 E 3881 | 123235 63 10.97 S | 147 52.51 E 3881 | 14.3 3940 |
| 065 CASO            | 08 Jan 2008 154205 63 18.62 |                    | 164753 63 18.86 S | 149 13.48 E 3694 | 180131 63 19.15 S | 149 13.42 E 3765 | 16.5 3746 |
| 066 CASO            | 08 Jan 2008 202341 63 29.83 |                    | 213042 63 29.75 S |                  | 224716 63 29.83 S |                  | 5.8 3760  |
| 067 CASO            | 09 Jan 2008 010109 63 53.98 |                    | 020438 63 53.66 S |                  | 034132 63 53.57 S |                  | 7.9 3698  |
| 068 CASO            | 09 Jan 2008 060958 64 18.12 |                    | 071955 64 17.91 S |                  | 085356 64 17.71 S |                  | 19.4 3585 |
| 069 CASO            | 09 Jan 2008 111959 64 35.63 |                    | 122519 64 35.38 S |                  | 135207 64 35.12 S |                  | 13.5 3490 |
| 070 CASO            | 09 Jan 2008 161954 64 59.87 |                    | 171037 64 59.60 S |                  | 182347 64 59.04 S |                  | 7.5 3320  |
| 071 CASO            | 10 Jan 2008 004642 65 23.71 |                    | 014136 65 23.66 S |                  | 031223 65 23.63 S |                  | 7.8 3082  |
| 072 CASO            | 10 Jan 2008 060142 65 34.50 |                    | 065807 65 34.40 S |                  | 082342 65 34.30 S |                  | 12.4 2689 |
| 073 CASO            | 10 Jan 2008 133914 65 19.56 |                    | 142605 65 19.61 S |                  | 153425 65 19.68 S |                  | 8.5 2966  |
| 074 CASO            | 10 Jan 2008 171941 65 37.82 |                    | 180036 65 37.84 S |                  | 190432 65 37.81 S |                  | 12.7 2709 |
| 075 CASO            | 10 Jan 2008 210154 65 47.61 |                    | 213850 65 47.51 S |                  |                   | 146 35.91 E 2064 | 13.6 1996 |
| 076 CASO            | 10 Jan 2008 233140 65 49.73 | S 146 35.47 E 1398 | 000130 65 49.67 S | 146 35.14 E 1445 | 004011 65 49.59 S | 146 34.87 E 1463 | - 1476    |

Table 1a: (continued)

|             | start of CTD                   |                    | bottom            | of CTD           | end o             | f CTD            |           |
|-------------|--------------------------------|--------------------|-------------------|------------------|-------------------|------------------|-----------|
| CTD station | date time latitude             | longitude depth    | time latitude     | longitude depth  | time latitude     | longitude depth  | alt maxp  |
| 077 CASO    | 11 Jan 2008 014823 65 52.36 S  | 146 34.65 E 897    | 020424 65 52.37 S | 146 34.21 E 894  | 024603 65 52.34 S | 146 33.21 E 853  | 9.5 896   |
| 078 CASO    | 11 Jan 2008 040236 65 54.95 S  | 146 34.03 E 518    | 041235 65 54.95 S | 146 33.93 E 523  | 044917 65 55.10 S | 146 33.64 E 510  | 9.6 519   |
| 079 CASO    | 11 Jan 2008 061219 66 02.27 S  | 3 146 31.31 E 282  | 061809 66 02.33 S | 146 31.19 E 279  | 064209 66 02.35 S | 146 30.71 E 279  | 3.8 278   |
| 080 CEAMARC | 12 Jan 2008 034313 65 55.03 S  | 143 59.80 E 364    | 035132 65 54.98 S | 143 59.90 E 365  | 042311 65 54.83 S | 144 00.17 E 356  | 8.0 361   |
| 081 CEAMARC | 12 Jan 2008 072746 65 52.64 S  | 3 144 05.29 E 787  | 074620 65 52.63 S | 144 05.47 E 802  | 083005 65 52.52 S | 144 05.94 E 836  | 17.7 793  |
| 082 CEAMARC | 12 Jan 2008 114200 65 51.88 S  | 3 144 06.23 E 1104 | 120658 65 51.79 S | 144 06.15 E 1154 | 125942 65 51.58 S | 144 05.84 E 1196 | 20.1 1148 |
| 083 CEAMARC | 12 Jan 2008 175834 65 59.88 S  | 3 142 20.24 E 231  | 180408 65 59.86 S | 142 20.23 E 234  | 181916 65 59.83 S | 142 20.19 E 231  | 15.5 220  |
| 084 CEAMARC | 12 Jan 2008 204449 65 59.81 S  | 3 141 56.74 E 239  | 205008 65 59.80 S | 141 56.69 E 240  | 210528 65 59.72 S | 141 56.57 E 237  | 10.5 232  |
| 085 CEAMARC | 12 Jan 2008 235958 65 59.85 S  | 3 141 17.44 E 228  | 000241 65 59.86 S | 141 17.42 E 231  | 001938 65 59.91 S | 141 17.33 E 229  | 9.8 224   |
| 086 CEAMARC | 13 Jan 2008 031821 66 20.30 S  | 141 20.83 E 226    | 032352 66 20.33 S | 141 20.80 E 230  | 034739 66 20.39 S | 141 20.35 E 224  | 14.4 218  |
| 087 CEAMARC | 13 Jan 2008 061842 66 34.02 S  | 3 141 18.92 E 171  | 062258 66 34.04 S | 141 18.94 E 173  | 064047 66 34.09 S | 141 18.97 E 169  | 12.4 162  |
| 088 CEAMARC | 13 Jan 2008 111829 66 33.83 S  | 140 51.92 E 308    | 112556 66 33.89 S | 140 51.97 E 310  | 114845 66 34.05 S | 140 52.05 E 308  | 15.2 298  |
| 089 CEAMARC | 13 Jan 2008 172442 66 32.03 S  | 140 03.04 E 175    | 172753 66 32.03 S | 140 03.02 E 194  | 173915 66 31.97 S | 140 02.79 E 251  | 14.6 181  |
| 090 CEAMARC | 13 Jan 2008 201710 66 26.17 S  | 140 31.98 E 1169   | 204830 66 26.18 S | 140 31.67 E 1168 | 210458 66 26.16 S | 140 31.57 E 1169 | 9.6 1174  |
| 091 CEAMARC | 13 Jan 2008 234744 66 26.20 S  | 140 32.10 E 1144   | 001707 66 26.33 S | 140 31.64 E 1180 | 004938 66 26.38 S | 140 31.23 E 1033 | 18.5 1177 |
| 092 CEAMARC | 14 Jan 2008 020525 66 26.22 S  | 140 32.15 E 1140   | 022851 66 26.36 S | 140 31.93 E 1179 | 030207 66 26.60 S | 140 31.72 E 942  | 10.2 1184 |
| 093 CEAMARC | 14 Jan 2008 080940 66 23.15 S  | 140 27.12 E 674    | 082503 66 23.11 S | 140 27.32 E 673  | 090643 66 23.07 S | 140 27.80 E 660  | 11.2 670  |
| 094 CEAMARC | 14 Jan 2008 131550 66 20.55 S  | 140 28.82 E 412    | 132606 66 20.57 S | 140 28.89 E 414  | 134905 66 20.56 S | 140 28.84 E 394  | 14.9 404  |
| 095 CEAMARC | 14 Jan 2008 161939 66 19.86 S  | 140 39.81 E 167    | 162410 66 19.84 S | 140 39.74 E 169  | 163625 66 19.83 S | 140 39.44 E 167  | 9.4 161   |
| 096 CEAMARC | 14 Jan 2008 184604 66 09.73 S  | 3 140 39.70 E 222  | 184938 66 09.71 S | 140 39.65 E 220  | 190421 66 09.63 S | 140 39.45 E 216  | 11.2 211  |
| 097 CEAMARC | 14 Jan 2008 230904 66 20.80 S  | 3 139 56.87 E 612  | 232521 66 20.86 S | 139 56.76 E 631  | 234822 66 20.96 S | 139 56.60 E 643  | 14.8 623  |
| 098 CEAMARC | 15 Jan 2008 024739 66 23.50 S  |                    | 030636 66 23.51 S |                  | 034751 66 23.53 S |                  | 9.4 887   |
| 099 CEAMARC | 15 Jan 2008 072303 66 08.59 S  |                    | 073437 66 08.56 S |                  | 081210 66 08.36 S |                  | 9.6 628   |
| 100 CEAMARC | 15 Jan 2008 105455 66 10.03 S  |                    | 110232 66 10.09 S |                  | 112826 66 10.21 S |                  | 9.3 381   |
| 101 CEAMARC | 15 Jan 2008 135749 66 10.54 S  |                    | 140158 66 10.55 S |                  | 141515 66 10.52 S |                  | 13.0 144  |
| 102 CEAMARC | 15 Jan 2008 170051 66 00.07 S  |                    | 170447 66 00.07 S |                  | 171722 66 00.00 S |                  | 11.8 184  |
| 103 CEAMARC | 15 Jan 2008 203110 66 00.13 S  |                    | 203555 66 00.13 S |                  | 204756 66 00.15 S |                  | 14.9 204  |
| 104 CEAMARC | 15 Jan 2008 220604 66 00.05 S  |                    | 221523 66 00.09 S |                  | 223548 66 00.20 S |                  | 11.0 453  |
| 105 CEAMARC | 16 Jan 2008 055631 65 29.20 S  |                    | 060627 65 29.18 S |                  | 063125 65 29.14 S |                  | 14.8 397  |
| 106 CEAMARC | 16 Jan 2008 100748 65 26.39 S  |                    | 103441 65 26.33 S |                  | 112913 65 26.22 S |                  | 14.3 1241 |
| 107 CEAMARC | 16 Jan 2008 173315 65 28.19 S  |                    | 174750 65 28.24 S |                  | 181401 65 28.36 S |                  | 10.8 746  |
| 108 CEAMARC | 17 Jan 2008 130407 65 38.86 S  |                    | 133133 65 38.90 S |                  | 141203 65 39.07 S |                  | 6.3 1197  |
| 109 CEAMARC | 17 Jan 2008 223415 65 41.12 S  |                    | 224529 65 41.11 S |                  | 231221 65 41.15 S |                  | 12.3 771  |
| 110 CEAMARC | 18 Jan 2008 033135 65 41.72 S  |                    | 034044 65 41.77 S |                  | 041410 65 41.58 S |                  | 10.0 437  |
| 111 CEAMARC | 18 Jan 2008 102434 65 37.96 S  |                    | 105704 65 37.91 S |                  | 115932 65 37.85 S |                  | - 1396    |
| 112 ICEBERG | 19 Jan 2008 042420 65 35.74 S  |                    | 043034 65 35.69 S |                  | 044526 65 35.62 S |                  | - 303     |
| 113 ICEBERG | 19 Jan 2008 055208 65 34.67 \$ |                    | 055901 65 34.64 S |                  | 061455 65 34.52 S |                  | - 301     |
| 114 ICEBERG | 19 Jan 2008 070709 65 33.07 S  |                    | 071247 65 33.05 S |                  | 073318 65 32.93 S |                  | - 302     |
| 115 ICEBERG | 19 Jan 2008 082434 65 32.11 S  | 5 140 42.35 E 1027 | 083023 65 32.11 S | 140 42.43 E 1034 | 085129 65 32.08 S | 140 42.86 E 1036 | - 303     |

Table 1a: (continued)

|                    |             | start of CTD      |                  | bottom            | of CTD           | end o             |                  |           |
|--------------------|-------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|-----------|
| CTD station        | date        | time latitude     | longitude depth  | time latitude     | longitude depth  | time latitude     | longitude depth  | alt maxp  |
| 116 ICEBERG        | 19 Jan 2008 | 092432 65 32.89 S | 140 41.18 E 965  | 093318 65 32.82 S | 140 41.25 E 961  | 095230 65 32.75 S | 140 41.48 E 929  | - 304     |
| 117 ICEBERG        | 19 Jan 2008 | 103358 65 33.85 S | 140 39.74 E 912  | 104146 65 33.85 S | 140 39.89 E 900  | 105925 65 33.83 S | 140 40.08 E 892  | - 304     |
| 118 ICEBERG        | 19 Jan 2008 | 113105 65 34.82 S | 140 38.40 E 971  | 113604 65 34.82 S | 140 38.48 E 970  | 115456 65 34.66 S | 140 38.65 E 968  | - 301     |
| 119 SR3            | 19 Jan 2008 | 161753 65 48.08 S | 139 51.12 E 209  | 162138 65 48.06 S | 139 51.06 E 212  | 163907 65 47.98 S | 139 51.08 E 208  | 13.9 201  |
| 120 SR3            | 19 Jan 2008 | 173144 65 42.36 S | 139 51.02 E 300  | 173615 65 42.38 S | 139 51.08 E 298  | 175223 65 42.38 S | 139 51.08 E 297  | 12.3 289  |
| 121 SR3            | 19 Jan 2008 | 190644 65 33.96 S | 139 51.02 E 874  | 192234 65 33.95 S | 139 51.10 E 902  | 194747 65 33.94 S | 139 51.24 E 892  | 7.8 905   |
| 122 SR3            | 19 Jan 2008 | 214053 65 31.63 S | 139 50.90 E 1265 | 220003 65 31.58 S | 139 51.19 E 1268 | 223313 65 31.43 S | 139 51.44 E 1286 | 7.7 1277  |
| 123 SR3            | 19 Jan 2008 | 233522 65 25.84 S | 139 51.07 E 1812 | 000728 65 25.80 S | 139 51.32 E 1791 | 004953 65 25.78 S | 139 51.59 E 1757 | - 1851    |
| 124 SR3            | 20 Jan 2008 | 015739 65 23.90 S | 139 51.56 E 2405 | 024039 65 23.81 S | 139 51.70 E 2333 | 035902 65 23.75 S | 139 52.39 E 2427 | 10.8 2359 |
| 125 SR3            | 20 Jan 2008 | 062104 65 04.44 S | 139 51.85 E 2532 | 071321 65 04.19 S | 139 52.45 E 2565 | 084429 65 03.78 S | 139 53.67 E 2661 | 9.7 2597  |
| 126 SR3            | 20 Jan 2008 | 103415 64 48.74 S | 139 51.78 E 2566 | 112602 64 48.59 S | 139 51.73 E 2568 | 125452 64 48.48 S | 139 51.64 E 2574 | 10.7 2599 |
| 127 SR3            | 20 Jan 2008 | 144743 64 32.99 S | 139 51.14 E 3048 | 153515 64 32.95 S | 139 51.32 E 3051 | 165556 64 32.98 S | 139 51.61 E 3046 | 12.9 3090 |
| 128 SR3            | 20 Jan 2008 | 192738 64 12.61 S | 139 50.76 E 3496 | 202837 64 12.49 S | 139 51.63 E 3498 | 214143 64 12.20 S | 139 52.68 E 3500 | 13.9 3548 |
| 129 SR3            | 21 Jan 2008 | 002101 63 51.94 S | 139 50.68 E 3696 | 012708 63 51.91 S | 139 52.12 E 3698 | 025507 63 51.84 S | 139 54.01 E 3703 | 11.9 3755 |
| 130 SR3            | 21 Jan 2008 | 060322 63 21.11 S | 139 50.07 E 3776 | 071655 63 21.52 S | 139 50.00 E 3772 | 085023 63 21.95 S | 139 49.33 E 3778 | 11.6 3832 |
| 131 for the Jeff's | 22 Jan 2008 | 215514 56 41.41 S | 141 52.45 E 3503 | 230644 56 41.24 S | 141 52.99 E 3646 | 235456 56 41.17 S | 141 53.36 E 3542 | 10.0 3702 |

<u>Table 1b:</u> Summary of station information for cruise au0806. All times are UTC; "TEST" = test cast; "alt" = minimum altimeter value (m), "maxp" = maximum pressure (dbar).

|             | start of CTD                        | bo                         | ottom of CTD          | end of            | CTD              |           |
|-------------|-------------------------------------|----------------------------|-----------------------|-------------------|------------------|-----------|
| CTD station | date time latitude long             | ngitude depth time latitu  | ide longitude depth   | time latitude     | longitude depth  | alt maxp  |
| 001 TEST    | 23 Mar 2008 224828 50 12.07 S 145   | 23.16 E - 233648 50 11.    | 84 S 145 23.63 E -    | 002500 50 11.59 S | 145 24.01 E 4167 | - 2210    |
| 002 TEST    | 25 Mar 2008 000010 54 24.07 S 143   | 48.79 E 2772 005026 54 24. | 04 S 143 48.92 E 2778 | 021750 54 23.93 S | 143 49.08 E 2569 | 10.4 2811 |
| 003 TEST    | 25 Mar 2008 222657 57 30.43 S 142   | 50.48 E 2898 223752 57 30. | 41 S 142 50.42 E -    | 224559 57 30.40 S | 142 50.42 E -    | - 302     |
| 004 SR3     | 28 Mar 2008 212819 65 48.08 S 139   | 40.93 E 334 213449 65 48.  | 16 S 139 40.82 E 333  | 215200 65 48.37 S | 139 40.62 E 335  | 10.8 325  |
| 005 SR3     | 29 Mar 2008 024623 65 34.45 S 139   | 39.49 E 392 025616 65 34.  | 45 S 139 39.24 E 390  | 033504 65 34.29 S | 139 38.93 E 394  | 14.3 380  |
| 006 SR3     | 29 Mar 2008 055100 65 31.27 S 139   |                            | 30 S 139 51.59 E 1338 | 070822 65 31.36 S | 139 50.95 E 1317 | 12.6 1343 |
| 007 SR3     | 29 Mar 2008 094521 65 25.56 S 139   | 50.45 E 1940 102147 65 25. | 53 S 139 50.24 E 1989 | 112005 65 25.42 S | 139 49.68 E 2297 | - 2122    |
| 008 SR3     | 29 Mar 2008 154936 65 23.79 S 139   | 55.11 E 2427 162519 65 23. | 80 S 139 54.86 E 2353 | 173153 65 23.81 S | 139 54.46 E 2402 | 13.7 2375 |
| 009 SR3     | 29 Mar 2008 214843 65 04.25 S 139   | 45.03 E 2190 222443 65 04. | 27 S 139 44.89 E 2119 | 232905 65 04.28 S | 139 44.78 E 2195 | 12.5 2138 |
| 010 SR3     | 30 Mar 2008 022030 64 48.75 S 139   | 51.66 E 2562 030126 64 48. | 64 S 139 51.49 E 2565 | 041814 64 48.52 S | 139 51.13 E 2581 | 13.9 2592 |
| 011 SR3     | 30 Mar 2008 084145 64 52.64 S 140   | 12.41 E 3055 085531 64 52. | 65 S 140 12.29 E 2989 | 093621 64 52.64 S | 140 12.12 E 3023 | - 754     |
| 012 SR3     | 30 Mar 2008 140731 64 32.88 S 139   | 51.05 E 3051 150911 64 33. | 00 S 139 50.30 E 3057 | 163457 64 33.10 S | 139 49.17 E 3070 | 13.9 3096 |
| 013 SR3     | 30 Mar 2008 194546 64 12.55 S 139   | 50.46 E 3501 204850 64 12. | 55 S 139 50.30 E 3498 | 221100 64 12.80 S | 139 50.17 E 3496 | 10.9 3551 |
| 014 SR3     | 31 Mar 2008 000251 64 12.58 S 139   | 50.53 E 3500 003432 64 12. | 51 S 139 50.65 E 3502 | 013309 64 12.44 S | 139 50.72 E 3503 | - 2004    |
| 015 SR3     | 31 Mar 2008 052915 63 51.90 S 139   | 50.81 E 3705 062033 63 51. | 86 S 139 51.32 E 3699 | 074800 63 51.82 S | 139 51.85 E 3704 | 0.0 3768  |
| 016 SR3     | 31 Mar 2008 115011 63 21.03 S 139   | 49.94 E 3776 125315 63 20. | 96 S 139 50.12 E 3773 | 142725 63 20.76 S | 139 49.99 E 3777 | 13.6 3831 |
| 017 SR3     | 31 Mar 2008 181649 62 51.01 S 139   | 51.10 E 3179 190854 62 51. | 21 S 139 51.28 E 3176 | 202917 62 51.46 S | 139 51.65 E 3175 | 11.3 3220 |
| 018 SR3     | 01 Apr 2008 004736 62 21.64 S 139   | 50.44 E 3866 020325 62 22. | 14 S 139 50.54 E 3934 | 033455 62 22.96 S | 139 50.60 E -    | 12.8 3997 |
| 019 SR3     | 01 Apr 2008 065500 61 50.98 S 139   | 50.66 E 4213 084550 61 51. | 77 S 139 50.24 E 4263 | 102906 61 52.64 S | 139 50.20 E -    | 16.5 4331 |
| 020 SR3     | 01 Apr 2008 161927 61 21.02 S 139   | 50.31 E 4264 173156 61 21. | 32 S 139 50.15 E 4316 | 191212 61 21.80 S | 139 49.82 E -    | 12.4 4390 |
| 021 SR3     | 01 Apr 2008 231730 60 51.02 S 139   | 51.13 E 4325 003008 60 51. | 16 S 139 51.01 E 4378 | 021231 60 51.34 S |                  | 12.8 4453 |
| 022 SR3     | 02 Apr 2008 035844 60 50.98 S 139   | 50.96 E 4295 052545 60 51. | 20 S 139 50.95 E 4378 | 070147 60 51.53 S | 139 50.77 E 4323 | 13.1 4452 |
| 023 SR3     | 02 Apr 2008 114559 60 20.97 S 139   | 51.12 E 4362 131257 60 20. | 86 S 139 50.68 E 4416 | 145434 60 20.81 S | 139 50.01 E 4361 | 13.6 4491 |
| 024 SR3     | 02 Apr 2008 184138 59 50.93 S 139   |                            | 89 S 139 51.59 E 4453 | 213816 59 50.69 S | 139 51.41 E -    | 12.5 4531 |
| 025 SR3     | 03 Apr 2008 014736 59 20.97 S 139   |                            | 73 S 139 51.12 E 4194 | 044137 59 20.24 S | 139 51.07 E -    | 13.1 4263 |
| 026 SR3     | 03 Apr 2008 074311 58 50.93 S 139   |                            | 66 S 139 51.01 E 3904 | 103505 58 50.15 S |                  | 13.6 3964 |
| 027 SR3     | 03 Apr 2008 115140 58 51.03 S 139   |                            | 94 S 139 50.66 E -    | 134215 58 50.65 S |                  | - 2002    |
| 028 SR3     | 03 Apr 2008 183733 58 20.96 S 139   | 51.23 E 3898 194429 58 20. | 99 S 139 51.82 E 3970 | 211239 58 20.99 S |                  | 11.5 4034 |
| 029 SR3     | 04 Apr 2008 001527 57 50.98 S 139   |                            | 96 S 139 51.09 E 3987 | 025644 57 50.80 S |                  | 12.8 4049 |
| 030 SR3     | 04 Apr 2008 071136 57 20.90 S 139   | 52.52 E 3955 084319 57 20. | 90 S 139 53.27 E 4100 | 104835 57 20.88 S | 139 53.84 E -    | 12.6 4165 |
| 031 SR3     | 04 Apr 2008 140909 56 55.75 S 139   | 50.95 E 3976 141157 56 55. | 73 S 139 50.93 E -    | 142229 56 55.75 S | 139 50.89 E -    | - 154     |
| 032 SR3     | 04 Apr 2008 162955 56 55.76 S 139   |                            | 57 S 139 50.79 E 4114 | 191602 56 55.39 S | 139 50.87 E -    | 12.9 4180 |
| 033 SR3     | 05 Apr 2008 010841 56 25.76 S 140 ( |                            | 36 S 140 05.63 E 4116 | 043529 56 24.47 S | 140 05.62 E -    | 14.7 4180 |
| 034 SR3     | 05 Apr 2008 073348 55 55.72 S 140 2 |                            | 41 S 140 24.55 E 3604 | 103648 55 55.08 S |                  | 14.7 3653 |
| 035 SR3     | 05 Apr 2008 155225 55 30.09 S 140   |                            | 11 S 140 44.57 E 4157 | 184721 55 30.03 S |                  | 11.6 4225 |
| 036 SR3     | 05 Apr 2008 222030 55 01.18 S 141 ( |                            | 98 S 141 01.54 E 3313 | 010855 55 00.81 S |                  | 12.2 3357 |
| 037 SR3     | 06 Apr 2008 083324 54 31.74 S 141   |                            | 36 S 141 20.35 E 2854 | 113717 54 31.10 S |                  | 11.3 2888 |
| 038 SR3     | 06 Apr 2008 152330 54 04.26 S 141   | 36.05 E - 162423 54 04.    | 18 S 141 36.53 E 2536 | 173244 54 04.04 S | 141 37.25 E 2484 | 12.1 2563 |

Table 1b: (continued)

|             | start of CTD                  |                  | bottom            | of CTD           | end of            | f CTD            |           |
|-------------|-------------------------------|------------------|-------------------|------------------|-------------------|------------------|-----------|
| CTD station | date time latitude            | longitude depth  | time latitude     | longitude depth  | time latitude     | longitude depth  | alt maxp  |
| 039 SR3     | 06 Apr 2008 185606 54 04.12 S | 141 36.40 E -    | 191950 54 04.09 S | 141 36.65 E -    | 200307 54 03.97 S | 141 37.08 E 2520 | - 1506    |
| 040 SR3     | 07 Apr 2008 002907 53 34.94 S | 141 51.67 E -    | 011056 53 35.33 S | 141 51.97 E 2631 | 023310 53 36.03 S | 141 52.96 E 2904 | 11.7 2659 |
| 041 SR3     | 07 Apr 2008 054833 53 07.97 S | 142 08.30 E -    | 071408 53 08.36 S | 142 08.83 E 3181 | 090147 53 08.71 S | 142 09.49 E -    | 15.3 3218 |
| 042 SR3     | 07 Apr 2008 133110 52 40.25 S | 142 23.52 E 3321 | 145029 52 40.68 S | 142 23.79 E 3449 | 155726 52 41.14 S | 142 23.96 E -    | 10.6 3498 |
| 043 SR3     | 07 Apr 2008 172421 52 40.28 S | 142 23.30 E 3329 | 174545 52 40.42 S | 142 23.36 E -    | 181707 52 40.64 S | 142 23.59 E -    | - 1001    |
| 044 SR3     | 07 Apr 2008 204152 52 22.17 S | 142 32.09 E -    | 214750 52 22.43 S | 142 32.78 E 3500 | 230457 52 22.51 S | 142 33.40 E -    | 10.0 3550 |
| 045 SR3     | 08 Apr 2008 023037 52 04.81 S | 142 42.74 E 3452 | 034237 52 05.04 S | 142 43.48 E 3461 | 051945 52 05.27 S | 142 45.08 E 3359 | 14.1 3506 |
| 046 SR3     | 09 Apr 2008 160707 51 48.64 S | 142 50.45 E 3659 | 171410 51 48.78 S | 142 51.36 E 3721 | 183726 51 49.10 S | 142 52.55 E -    | 12.1 3775 |
| 047 SR3     | 09 Apr 2008 203309 51 32.35 S | 142 59.63 E -    | 214259 51 32.39 S | 143 00.78 E 3708 | 230949 51 32.41 S | 143 02.18 E 3436 | 10.5 3763 |
| 048 SR3     | 10 Apr 2008 003658 51 32.39 S | 142 59.92 E -    | 010906 51 32.33 S | 143 00.41 E 3633 | 021612 51 32.14 S | 143 01.56 E -    | - 2006    |
| 049 SR3     | 10 Apr 2008 053111 51 15.56 S | 143 07.91 E -    | 065308 51 15.39 S | 143 09.37 E 3706 | 083851 51 15.25 S | 143 11.04 E 3674 | 12.3 3759 |
| 050 SR3     | 10 Apr 2008 102820 51 00.66 S | 143 16.44 E -    | 115750 51 00.03 S | 143 18.50 E 3797 | 135018 50 59.28 S | 143 20.79 E 3805 | 14.5 3850 |
| 051 SR3     | 10 Apr 2008 160038 50 40.79 S | 143 25.19 E -    | 170220 50 40.36 S | 143 26.23 E 3516 | 182919 50 39.80 S | 143 27.33 E 3474 | 12.2 3564 |
| 052 SR3     | 10 Apr 2008 213535 50 23.93 S | 143 31.82 E -    | 224524 50 23.31 S | 143 32.36 E 3493 | 000909 50 22.72 S | 143 32.96 E 3549 | 11.2 3542 |
| 053 SR3     | 11 Apr 2008 030119 50 09.57 S | 143 39.70 E 3582 | 041959 50 09.17 S | 143 39.76 E 3816 | 060432 50 08.60 S | 143 40.25 E -    | 13.6 3870 |
| 054 SR3     | 11 Apr 2008 083057 49 53.59 S | 143 48.05 E 3615 | 094418 49 53.12 S | 143 48.54 E 3756 | 113549 49 52.42 S | 143 49.13 E -    | 15.2 3807 |
| 055 SR3     | 11 Apr 2008 144551 49 36.59 S |                  | 155227 49 36.34 S | 143 55.88 E 3753 | 171916 49 36.11 S | 143 56.05 E 3707 | 13.4 3806 |
| 056 SR3     | 11 Apr 2008 195250 49 16.25 S | 144 05.67 E 4216 | 210537 49 16.14 S | 144 06.05 E 4239 | 222545 49 15.98 S | 144 06.22 E -    | 9.8 4309  |
| 057 SR3     | 12 Apr 2008 000846 49 16.18 S | 144 05.96 E 4216 | 003649 49 16.00 S | 144 06.07 E -    | 012532 49 15.87 S | 144 06.17 E -    | - 1948    |
| 058 SR3     | 12 Apr 2008 053148 48 46.70 S | 144 19.06 E 4078 | 065123 48 46.43 S | 144 18.62 E 4168 | 083158 48 46.11 S | 144 18.04 E -    | 11.5 4234 |
| 059 SR3     | 12 Apr 2008 112642 48 19.22 S | 144 31.82 E 3970 | 124416 48 19.58 S | 144 32.69 E 4001 | 143248 48 19.76 S | 144 33.70 E -    | 14.4 4059 |
| 060 SR3     | 12 Apr 2008 182840 47 59.99 S | 144 40.43 E 4036 | 195021 47 59.95 S | 144 41.17 E 4307 | 211934 47 59.97 S | 144 41.69 E -    | 7.2 4380  |
| 061 SR3     | 12 Apr 2008 224102 47 59.96 S | 144 40.24 E 4218 | 230252 47 59.98 S | 144 40.32 E -    | 234352 48 00.19 S | 144 40.51 E -    | - 1103    |
| 062 SR3     | 13 Apr 2008 031655 47 28.10 S | 144 54.13 E 4343 | 044205 47 27.79 S | 144 54.14 E 4383 | 062207 47 27.23 S | 144 54.16 E -    | 13.0 4452 |
| 063 SR3     | 13 Apr 2008 094006 47 08.87 S |                  | 110853 47 08.27 S |                  | 125715 47 07.88 S |                  | 13.9 4892 |
| 064 SR3     | 13 Apr 2008 161342 46 38.92 S | 145 15.10 E 3287 | 171229 46 38.75 S | 145 15.34 E 3342 | 182149 46 38.53 S | 145 15.56 E -    | 12.9 3383 |
| 065 SR3     | 13 Apr 2008 195905 46 39.01 S |                  | 202534 46 38.91 S |                  | 211614 46 38.65 S |                  | - 1802    |
| 066 SR3     | 14 Apr 2008 012205 46 10.21 S | 145 28.31 E 2690 | 021256 46 10.28 S | 145 28.33 E 2724 | 032956 46 10.16 S | 145 27.98 E 2692 | 14.1 2751 |
| 067 SR3     | 14 Apr 2008 065518 45 41.99 S | 145 39.47 E 1990 | 073400 45 42.12 S | 145 39.37 E 2040 | 083617 45 42.49 S | 145 39.16 E 2114 | 13.4 2054 |
| 068 SR3     | 14 Apr 2008 131114 45 13.37 S |                  | 140749 45 13.84 S |                  | 151515 45 14.27 S |                  | 12.2 2876 |
| 069 SR3     | 14 Apr 2008 183548 44 43.21 S | 146 03.07 E 3160 | 193115 44 43.59 S | 146 02.71 E 3229 | 204616 44 43.93 S | 146 02.26 E 3225 | 13.8 3266 |
| 070 SR3     | 15 Apr 2008 003321 44 22.75 S |                  | 011906 44 22.78 S |                  | 022350 44 23.09 S |                  | 12.4 2345 |
| 071 SR3     | 15 Apr 2008 042916 44 07.09 S |                  | 045704 -          | - 1042           | 054351 44 07.14 S |                  | 13.5 1039 |
| 072 SR3     | 15 Apr 2008 074356 44 02.90 S |                  | 075749 -          | - 562            | 083038 44 03.08 S |                  | 14.9 552  |
| 073 SR3     | 15 Apr 2008 093130 43 59.92 S | 146 19.31 E 220  | 093703 -          | - 228            | 100319 44 00.11 S | 146 19.56 E 220  | 15.0 215  |

<u>Table 2a:</u> Cruise au0803 summary of samples drawn from Niskin bottles at each station, including "sal"= salinity, "ox"=dissolved oxygen, "nuts"= nutrients (i.e. phosphate, nitrate+nitrite, silicate), "CFC"=chlorofluorocarbons, "CO2"=dissolved inorganic carbon and alkalinity, "<sup>18</sup>O", and "gen"=large volume sample for genetic analyses. Note: biological samples (except for "gen") not included here.

| station | sal | ох | nuts | CFC | CO2    | qe      | <sup>18</sup> O | gen | station | sal | ох | nuts | CFC | CO2 | ge | <sup>18</sup> O | gen      |
|---------|-----|----|------|-----|--------|---------|-----------------|-----|---------|-----|----|------|-----|-----|----|-----------------|----------|
| 1       | Χ   | X  | Χ    | Χ   | Χ      | ge<br>X |                 | 3 - | 38      | X   | Χ  | X    | X   | Χ   | X  | X               | <b>J</b> |
| 2       | X   |    |      |     |        |         |                 |     | 39      | X   | X  | X    | X   | X   |    |                 |          |
| 3       | X   |    |      | X   |        |         |                 |     | 40      | X   | X  | X    | X   | X   |    |                 |          |
| 4       | X   | X  | Χ    | X   | X      |         |                 |     | 41      | X   | X  | X    | X   | X   | Χ  |                 |          |
| 5       | X   | X  | X    | X   | X      |         |                 |     | 42      | X   | X  | X    | X   | X   | ,, |                 |          |
| 6       | X   | X  | X    | X   | X      | X       |                 |     | 43      | X   | X  | X    | X   | X   |    |                 |          |
| 7       | X   | X  | X    | X   | X      |         |                 |     | 44      | X   | X  | X    | X   | X   |    |                 |          |
| 8       | X   | X  | X    | X   | X      |         |                 |     | 45      | X   | X  | X    | X   | X   |    | Χ               |          |
| 9       | X   | X  | X    | X   | X      | X       |                 |     | 46      | X   | X  | X    | X   | X   |    | , ,             |          |
| 10      | X   | X  | X    | X   | X      | ^       |                 |     | 47      | X   | X  | X    | X   | X   |    |                 |          |
| 11      | X   | X  | X    | X   | X      |         |                 |     | 48      | X   | X  | X    | X   | X   |    |                 |          |
| 12      | X   | X  | X    | X   | X<br>X | Χ       |                 |     | 49      | X   | X  | X    | X   | X   |    | Χ               |          |
| 13      | X   | X  | X    | X   | X      |         |                 |     | 50      | X   | X  | X    | X   | X   |    | X               |          |
| 14      | X   | X  | X    | X   | X      |         |                 |     | 51      | X   | X  | X    | X   | X   | X  | X               |          |
| 15      | X   | X  | X    | X   | X      | Χ       |                 | Χ   | 52      | X   | X  | X    | X   | X   |    | X               |          |
| 16      | X   | X  | X    | X   | X      | X       |                 |     | 53      | X   | X  | X    | X   | X   |    | X               |          |
| 17      | X   | X  | X    | X   | X      | X       | Χ               |     | 54      | X   | X  | X    | X   | X   |    | X               |          |
| 18      | X   | X  | X    | X   | X      | X       | X               |     | 55      | X   | X  | X    | X   | X   |    | X               |          |
| 19      | X   | X  | X    | X   | X      |         |                 |     | 56      | X   | X  | X    | X   | X   |    | X               |          |
| 20      | X   | X  | X    | X   | X      |         |                 |     | 57      | X   | X  | X    | X   | X   |    | X               |          |
| 21      | Χ   | X  | Χ    | Χ   | Χ      | X       |                 |     | 58      | Χ   | Χ  | Χ    | Χ   | Χ   | Χ  |                 |          |
| 22      | X   | X  | X    | X   | X      | X       |                 |     | 59      | X   | X  | X    | X   | X   |    | Χ               |          |
| 23      | Χ   | X  | Χ    | Χ   | Χ      |         | Χ               |     | 60      | Χ   | Χ  | Χ    | Χ   | Χ   | Χ  | Χ               |          |
| 24      | Χ   | Χ  | Χ    | Χ   | Χ      |         |                 |     | 61      | Χ   | Χ  | X    | Χ   | Χ   |    | Х               |          |
| 25      | Χ   | Χ  | Χ    | Χ   | Χ      |         |                 |     | 62      | Χ   | Χ  | Χ    | Χ   | Χ   |    | X<br>X          |          |
| 26      | Χ   | Χ  | Χ    | Χ   | Χ      | Χ       |                 |     | 63      | Χ   | Χ  | Χ    | Χ   | Χ   |    | X               |          |
| 27      | Χ   | X  | Χ    | Χ   | Χ      | Χ       |                 |     | 64      | Χ   | Χ  | Χ    | Χ   | Χ   |    | X               |          |
| 28      | Χ   | Χ  | Χ    | Χ   | Χ      | Χ       | Χ               |     | 65      | Χ   | Χ  | Χ    | Χ   | Χ   |    | Χ               |          |
| 29      | Χ   | Χ  | Χ    |     |        |         | Χ               | Χ   | 66      | Χ   | Χ  | Χ    | Χ   | Χ   | Χ  | Χ               |          |
| 30      | Χ   | Χ  | Χ    | Χ   | Χ      |         | Χ               |     | 67      | Χ   | Χ  | Χ    | Χ   | Χ   |    | Χ               |          |
| 31      | Χ   | Χ  | Χ    | Χ   | Χ      |         | Χ               |     | 68      | Χ   | Χ  | Χ    | Χ   | Χ   |    | X<br>X          |          |
| 32      | Χ   | Χ  | Χ    | Χ   | Χ      | Χ       | Χ               |     | 69      | Χ   | Χ  | Χ    | Χ   | Χ   | Χ  | Χ               |          |
| 33      | Χ   | Χ  | Χ    | Χ   | Χ      |         | Χ               |     | 70      | Χ   | Χ  | Χ    | Χ   | Χ   |    | Χ               |          |
| 34      | Χ   | Χ  | Χ    | Χ   | Χ      |         | Χ               |     | 71      | Χ   | Χ  | Χ    | Χ   | Χ   |    | Χ               |          |
| 35      | Χ   | Χ  | Χ    | Χ   | Χ      |         | X               |     | 72      | Χ   | Χ  | Χ    | Χ   | Χ   |    | Χ               |          |
| 36      | Χ   | Χ  | Χ    | Χ   | Χ      |         | Χ               |     | 73      | Χ   | Χ  | Χ    | Χ   | Χ   |    | Χ               |          |
| 37      | Χ   | Χ  | Χ    |     | Χ      |         |                 | Χ   | 74      | X   | Χ  | X    | Χ   | Χ   |    | X               |          |

Table 2a: (continued)

<u>Table 2b:</u> Cruise au0806 summary of samples drawn from Niskin bottles (except for "NIWA") at each station, including "sal"= salinity, "ox"=dissolved oxygen, "nuts"=nutrients (i.e. phosphate, nitrate+nitrite, silicate), "CFC"=chlorofluorocarbons, "CO2"=dissolved inorganic carbon and alkalinity, "<sup>14</sup>C", "DOC"=dissolved organic carbon, "<sup>18</sup>O", "dens"=analysis of the effect of water composition on water density, "ge"=germanium/silica/boron isotopes, "NIWA"=trace metal rosette deployed from trawldeck, "TM"=trace metal bottles on CTD package, "chl-a"=chlorophyll-a, "cell #"=cell counts, "pig"=pigments, and "Nd"=neodymium.

| station  |   | ОХ | nuts | CFC         | CO2    | <sup>14</sup> C | DOC | <sup>18</sup> O | dens | ge | NIWA | TM  | chl-a  | cell# | pig    | Nd | Comments                           |
|----------|---|----|------|-------------|--------|-----------------|-----|-----------------|------|----|------|-----|--------|-------|--------|----|------------------------------------|
| 1        | X | Χ  | Χ    |             |        |                 |     |                 |      |    |      |     |        |       |        |    | CTD test                           |
| 2        | Χ | Χ  | Χ    |             | Χ      |                 |     |                 |      |    |      |     |        |       |        |    | CTD test                           |
| 3        |   |    |      |             |        |                 |     |                 |      |    |      |     |        |       |        |    | Test of TM Niskins                 |
| 4        | Χ | X  | X    | Χ           | Χ      | Χ               | Х   | Χ               |      | X  | X    |     | Χ      | X     | X      | Χ  |                                    |
| 5        | Χ | Χ  | Χ    | Χ           | Χ      | Χ               | Х   | Χ               |      |    |      |     |        |       |        |    |                                    |
| 6        | Χ | Χ  | Χ    | Χ           | Χ      | Χ               |     | Χ               |      |    |      |     |        |       |        |    |                                    |
| 7        | Χ | Χ  | Χ    | Χ           | Χ      |                 |     | Χ               |      |    | Χ    | Χ   | X      | Χ     | Χ      |    |                                    |
| 8        | Χ | Χ  | Χ    | X           | Χ      | Χ               | X   | Χ               | X    |    |      |     |        |       |        |    |                                    |
| 9        | Χ | Χ  | Χ    | Χ           | Χ      |                 |     | Χ               |      | Χ  |      |     |        |       |        |    |                                    |
| 10       | Χ | Χ  | Χ    | Χ           | Χ      |                 |     | Χ               |      |    |      |     | Х      |       |        |    |                                    |
| 11       | X | X  | X    |             |        |                 |     | Χ               |      |    | X    |     | X<br>X | Х     | Χ      |    | near iceberg                       |
| 12       | Χ | X  | X    | X           | X      | Χ               | Χ   | Χ               |      |    |      |     |        |       |        |    |                                    |
| 13       | X | X  | X    | X           | X      | ,,              | ,,  | X               |      | Χ  |      | X   | Χ      |       |        | Χ  |                                    |
| 14       | X | X  | X    | X           | X      |                 |     | X               |      | X  | X    | , , | ,,     |       | X      | ^  |                                    |
| 15       | X | X  | X    | X           | X      | Х               | Х   | X               |      | ^  | ,,   |     |        |       | X<br>X |    |                                    |
| 16       | X | X  | X    | X           | X      | ^               | ^   | X               | Χ    | Χ  |      |     | Χ      |       | ^      |    | XBT                                |
| 17       | X | X  | X    | X           | X      |                 | Χ   | X               | ^    | ^  | Χ    |     | ^      |       | Χ      |    | ABT                                |
| 18       | X | X  | X    | X           | X      |                 | ^   | X               |      | Χ  | Α    |     |        |       | ^      |    |                                    |
| 19       | X | X  | X    | X           | X      |                 | Χ   | X               |      | ^  | Χ    |     | Χ      | Х     | Χ      |    |                                    |
| 20       | X | X  | X    | X           | X      | Х               | X   | X               | Х    | Χ  | Α    |     | ^      | ^     | ^      |    |                                    |
| 21       | X | X  | X    | X           | X      | ^               | ^   | X               | ^    | ^  |      | Х   | Χ      | Х     | Χ      |    | XBT                                |
|          | X | X  | X    | X           | X      |                 |     | X               |      |    | Χ    | ^   | ^      | ^     | ^      |    | ADT                                |
| 22<br>23 | X | X  | X    | X           | X      |                 | Х   | X               |      | Χ  | ^    |     |        |       |        |    |                                    |
| 23<br>24 | X | X  | X    | X           | X      |                 | ^   | X               | Х    | ^  | Χ    |     | Х      | Х     | Х      |    |                                    |
| 25       | X |    | X    | X           | X      | Х               | Х   |                 | ^    | Х  | ^    |     | ^      | ^     | ^      |    | VDT                                |
| 25       |   | X  |      | \<br>\<br>V | $\sim$ | ^               | ^   | X               |      | ^  |      | V   | V      | V     | V      |    | XBT                                |
| 26       | X | X  | X    | X           | X      |                 |     | X               |      |    | V    | Х   | Χ      | Χ     | Χ      |    |                                    |
| 27       | X | X  | X    | Х           | X      |                 |     | Х               |      |    | X    |     |        |       |        |    |                                    |
| 28       | X | X  | Х    | Х           | X      | .,              | Х   | Х               | Χ    | Χ  | .,   |     |        |       |        |    |                                    |
| 29       | X | X  | Х    | X           | X      | Χ               | Χ   | Х               |      |    | X    |     | Χ      | X     | Χ      |    |                                    |
| 30       | Χ | Χ  | Χ    | Χ           | X      |                 |     | Χ               |      | Χ  |      |     |        |       |        |    | XBT                                |
| 31       |   |    |      |             |        |                 |     |                 |      |    |      | X   |        |       |        |    | all bottles at 80 m for C. Hassler |
| 32       | X | Х  | Х    | X           | X      |                 | Χ   | Χ               | Χ    |    | X    |     | X      | Х     | Χ      |    |                                    |
| 33       | Χ | Χ  | Х    | Χ           | Х      |                 | Χ   | Χ               |      |    |      |     |        |       |        |    | Argo 2948                          |
| 34       | Χ | Χ  | X    | X           | Χ      |                 |     | Χ               |      |    | X    |     | Χ      | Χ     | Χ      |    |                                    |
| 35       | X | Χ  | Χ    | X           | X      | Χ               | Χ   | Χ               | Х    | Χ  |      |     |        |       |        |    |                                    |

Table 2b: (continued)

| statio   | n sal  | ox     | nuts | CFC | CO2         | <sup>14</sup> C | DOC <sup>18</sup> O | dens | ge | NIWA | TM | chl-a | cell# | pig      | Nd | Comments                             |
|----------|--------|--------|------|-----|-------------|-----------------|---------------------|------|----|------|----|-------|-------|----------|----|--------------------------------------|
| 36       | Χ      | X      | Χ    | Χ   | Χ           |                 |                     |      | _  | X    |    | Χ     | Χ     | pig<br>X |    |                                      |
| 37       | Χ      | X      | Χ    | Χ   | Χ           |                 | X                   |      | Χ  |      |    |       |       |          |    | oxy-isotope to compare with u/w; XBT |
| 38       | X      | X      | Χ    | Χ   | Χ           |                 |                     |      |    |      | X  | Χ     | Χ     | X        |    |                                      |
| 39       | Χ      | X      | Χ    | Χ   | Χ           |                 |                     |      |    | X    |    |       |       |          |    |                                      |
| 40       | Χ      | X      | Χ    | Χ   | X           | Χ               | X                   | Х    | Χ  |      |    |       |       |          |    |                                      |
| 41       | Χ      | X      | Χ    | Χ   | X           |                 |                     |      |    | X    |    | Χ     | Χ     | Χ        |    | Argo 2953                            |
| 42       | X      | X      | Χ    | Χ   | Χ           |                 |                     |      |    |      | X  |       |       |          | Χ  |                                      |
| 43       | X      | X      | Χ    | Χ   | X<br>X      |                 |                     |      |    |      |    |       |       |          |    |                                      |
| 44       | X      | X      | Χ    | Χ   | Χ           | Χ               | X                   |      |    | X    |    | X     | Χ     | Χ        |    |                                      |
| 45       | X      | X      | Χ    | Χ   | Χ           |                 |                     |      | Χ  |      |    |       |       |          |    | XBT                                  |
| 46       | X      | X      | Χ    | Χ   | X<br>X<br>X |                 |                     |      |    |      |    |       |       |          |    |                                      |
| 47       | Χ      | Χ      | Χ    | Χ   | Χ           |                 |                     |      |    |      | Χ  | Χ     | Χ     | Χ        |    |                                      |
| 48       | Χ      | Χ      | Χ    |     | Χ           |                 |                     |      |    | Χ    |    |       |       |          |    |                                      |
| 49       | Χ      | Χ      | Χ    |     | X           |                 | Χ                   |      | Χ  |      |    |       |       |          |    |                                      |
| 50       | X      | Χ      | Χ    | Χ   | X           | Χ               | Χ                   |      |    |      |    |       |       |          |    | Argo 2944; 1 TM bottle at chl max    |
| 51       | X      | X      | X    | X   | X           |                 |                     |      |    | X    |    | X     | Х     | Χ        |    |                                      |
| 52       | X      | X      | X    | X   | Χ           |                 | Χ                   |      |    |      |    |       |       |          |    | XBT                                  |
| 53       | X      | X      | X    | X   | X           |                 | •                   | Х    | Χ  |      |    |       |       |          |    | 7.2.                                 |
| 54       | X      | X      | X    | X   | X           |                 |                     | ,,   | ,, | Χ    |    | X     | X     | Χ        |    |                                      |
| 55       | X      | X      | X    | X   | X<br>X      | Χ               | Χ                   |      |    | ,    |    | ,,    | ,,    | ,,       |    |                                      |
| 56       | X      | X      | X    | X   | X           | ^               | ^                   |      |    |      | Х  | Χ     | Х     | Χ        |    |                                      |
| 57       | X      | X      | X    | X   | X           |                 |                     |      |    | Χ    | ,  | ^     | ^     | ^        |    |                                      |
| 58       | X      | X      | X    | X   | X<br>X<br>X |                 | Χ                   |      | Χ  | ,    |    |       |       |          |    | XBT                                  |
| 59       | X      | X      | X    | X   | X           |                 | ^                   |      | ^  | Χ    |    | Χ     | Х     | Χ        |    | Argo 2952                            |
| 60       | X      | X      | X    | X   | X           |                 |                     |      | Х  | Λ.   | Х  | ^     | ^     | ^        | Χ  | 7 ligo 2002                          |
| 61       | X      | X      | X    | X   | X           |                 |                     |      | X  |      | ^  |       |       |          | ^  |                                      |
| 62       | X      | X      | X    | X   | X           | Х               | Χ                   |      | ^  | Χ    |    | Χ     | Χ     | Χ        |    |                                      |
| 63       | X      | X      | X    | X   | X           | ^               | ^                   |      |    | Λ    |    | ^     | ^     | ^        |    | XBT                                  |
| 64       | X      | X      | X    | X   | X<br>X      |                 |                     |      |    | Χ    | Х  | Χ     | X     | Х        |    | ABI                                  |
| 65       | X      | X      | X    | X   | X           |                 |                     |      |    | Λ    | ^  | ^     | ^     | ^        |    |                                      |
| 66       | X      | X      | X    | X   | ×           | Х               | Χ                   |      | Х  |      |    |       |       |          |    |                                      |
| 67       | X      | X      | X    | x   | X<br>X      | ^               | ^                   |      | ^  | Х    | Х  | Χ     | Χ     | Х        |    |                                      |
| 68       | X      | X      | X    | X   | X           | Х               | ~                   |      | Χ  | ^    | ^  | ^     | ^     | ^        |    |                                      |
| 69       | X      | X      | X    | x   | X           | ^               | X<br>X              | Х    | ^  | Х    |    | Х     | Х     | ~        |    | Argo 2950; 1 TM bottle at chl max;   |
| 09       | ^      | ^      | ^    | ^   | ^           |                 | ^                   | ^    |    | ^    |    | ^     | ^     | X        |    |                                      |
| 70       | ~      | V      | V    | V   | ~           | V               | V                   | V    | V  |      |    |       |       |          |    | oxy-isotope for comp u/w             |
| 70<br>71 | X<br>X | X<br>X | X    | X   | X<br>X      | Χ               | Χ                   | Х    | Χ  | ~    |    | V     | V     | V        |    |                                      |
| 71<br>72 |        |        | X    | X   |             |                 |                     |      | V  | Χ    |    | Χ     | Χ     | Χ        |    | TM bottle near oblimay               |
| 72<br>73 | X      | X      | X    | X   | X           |                 |                     |      | Χ  | V    |    | V     | V     | V        |    | TM bottle near chl max               |
| 73       | Χ      | Χ      | Χ    | Χ   | Χ           |                 |                     |      |    | X    |    | Х     | Χ     | Χ        |    |                                      |

Table 3: CTD serial 704 calibration coefficients and calibration dates for cruises au0803 and au0806 (same calibrations used for both cruises). Note that platinum temperature calibrations are for the ITS-90 scale. Pressure slope/offset, temperature and conductivity values are from the CSIRO Division of Marine and Atmospheric Research calibration facility. Remaining values are manufacturer supplied.

Secondary Temperature, serial 4246, 17/04/2007 Primary Temperature, serial 4248, 17/04/2007

G : 4.3877775e-003 G : 3.9792192e-003 Н : 6.5187583e-004 Н : 6.2190883e-004 : 2.3855632e-005 I : 1.8759246e-005 ı : 1.9839367e-006 : 1.5805230e-006 J J F0 : 1000.000 F0 : 1000.000 : 1.00000000 Slope : 1.00000000 Slope : 0.0000 Offset Offset : 0.0000

Primary Conductivity, serial 2977, 17/04/2007 Secondary Conductivity, serial 2808, 17/04/2007

: -1.0711335e+001 : -9.2855258e+000 G G Н Н : 1.4782696e+000 : 1.4251822+000 : 1.9940078e-003 ı : -5.9428225e-005 : -7.6134805e-005 : 8.6006408e-005 J. CTcor : 3.2500e-006 **CTcor** : 3.2500e-006 : -9.5700000e-008 : -9.5700000e-008 **CPcor CPcor** : 1.00000000 : 1.00000000 Slope Slope : 0.00000 Offset : 0.00000 Offset

Pressure, serial 89084, 30/05/2007 Oxygen, serial 0178, 11/05/2007

: -5.337692e+004 : 5.5760e-001 C1 Soc C2 : -5.768735e-001 Boc : 0.0000 Offset C3 : 1.541700e-002 : -0.4930 : 0.0099 : 3.853800e-002 D1 Tcor D2 : 0.000000e+000 Pcor : 1.350e-004 : 2.984003e+001 Tau : 0.0

T1 T2 : -4.090591e-004

T3 : 3.693030e-006 Fluorometer, serial 296, 23/05/2005 T4 : 3.386020e-009 Vblank : 0.12

**T5** : 0.000000e+000 Scale factor : 7.000e+000

: 0.99992139 Slope Offset : 0.8298967 AD590M : 1.283280e-002 : -9.705660e+000 AD590B

ı

<u>Table 4:</u> CTD conductivity calibration coefficients for cruises au0803 and au0806.  $F_1$ ,  $F_2$  and  $F_3$  are respectively conductivity bias, slope and station-dependent correction calibration terms. n is the number of samples retained for calibration in each station grouping;  $\sigma$  is the standard deviation of the conductivity residual for the n samples in the station grouping.

| au0803         001 to 031       -0.58395229E-03       0.99998139E-03       0.20686489E-09       283         032 to 051       0.10130006E-02       0.99995148E-03       -0.16019067E-08       166         052 to 075       0.30777776E-02       0.99975509E-03       0.21164851E-09       459         076 to 101       0.87620023E-03       0.99985717E-03       0.25587303E-09       177         102 to 131       0.38699061E-02       0.99980105E-03       -0.37596166E-09       272         au0806         001 to 010       0.10342055E-01       0.99968467E-03       -0.97792982E-08       135         011 to 028       -0.19794018E-02       0.10000440E-02       -0.16522113E-08       312         029 to 038       -0.18389307E-01       0.10006718E-02       -0.40139781E-08       170 | stn grouping                                                   | g F <sub>1</sub>                                                        | F <sub>2</sub>                                                       | F <sub>3</sub>                                                           | n                        | σ                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------|----------------------------------------------------------|
| <b>au0806</b> 001 to 010  0.10342055E-01  0.99968467E-03  -0.97792982E-08  135 011 to 028  -0.19794018E-02  0.10000440E-02  -0.16522113E-08  312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 001 to 031<br>032 to 051<br>052 to 075<br>076 to 101           | 0.10130006E-02<br>0.30777776E-02<br>0.87620023E-03                      | 0.99995148E-03<br>0.99975509E-03<br>0.99985717E-03                   | -0.16019067E-08<br>0.21164851E-09<br>0.25587303E-09                      | 166<br>459<br>177        | 0.000997<br>0.000615<br>0.000603<br>0.000682<br>0.000641 |
| 039 to 052 -0.16136552E-02 0.99999518E-03 -0.23017785E-09 261 053 to 061 -0.22156146E-02 0.99992538E-03 0.12127648E-08 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | au0806<br>001 to 010<br>011 to 028<br>029 to 038<br>039 to 052 | 0.10342055E-01<br>-0.19794018E-02<br>-0.18389307E-01<br>-0.16136552E-02 | 0.99968467E-03<br>0.10000440E-02<br>0.10006718E-02<br>0.99999518E-03 | -0.97792982E-08<br>-0.16522113E-08<br>-0.40139781E-08<br>-0.23017785E-09 | 135<br>312<br>170<br>261 | 0.000841<br>0.000735<br>0.000476<br>0.000502<br>0.000649 |

<u>Table 5:</u> Station-dependent-corrected conductivity slope term  $(F_2 + F_3 \cdot N)$ , for station number N, and  $F_2$  and  $F_3$  the conductivity slope and station-dependent correction calibration terms respectively, for cruises au0803 and au0806.

| stat<br>num | ion (F <sub>2</sub> + F <sub>3</sub> . N)<br>hber |    | tion (F <sub>2</sub> + F <sub>3</sub> . N)<br>mber |    | tion (F <sub>2</sub> + F <sub>3</sub> . N)<br>mber | station (F <sub>2</sub> + F <sub>3</sub> . N)<br>number |
|-------------|---------------------------------------------------|----|----------------------------------------------------|----|----------------------------------------------------|---------------------------------------------------------|
| au0         | 803                                               |    |                                                    |    |                                                    |                                                         |
| 1           | 0.99998160E-03                                    | 34 | 0.99977957E-03                                     | 67 | 0.99980732E-03                                     | 100 0.99980546E-03                                      |
| 2           | 0.99998180E-03                                    | 35 | 0.99977818E-03                                     | 68 | 0.99980758E-03                                     | 101 0.99980548E-03                                      |
| 3           | 0.99998201E-03                                    | 36 | 0.99977679E-03                                     | 69 | 0.99980784E-03                                     | 102 0.99980345E-03                                      |
| 4           | 0.99998222E-03                                    | 37 | 0.99977540E-03                                     | 70 | 0.99980810E-03                                     | 103 0.99980298E-03                                      |
| 5           | 0.99998242E-03                                    | 38 | 0.99977401E-03                                     | 71 | 0.99980837E-03                                     | 104 0.99980251E-03                                      |
| 6           | 0.99998263E-03                                    | 39 | 0.99977261E-03                                     | 72 | 0.99980863E-03                                     | 105 0.99980204E-03                                      |
| 7           | 0.99998284E-03                                    | 40 | 0.99977122E-03                                     | 73 | 0.99980889E-03                                     | 106 0.99980157E-03                                      |
| 8           | 0.99998304E-03                                    | 41 | 0.99976983E-03                                     | 74 | 0.99980915E-03                                     | 107 0.99980110E-03                                      |
| 9           | 0.99998325E-03                                    | 42 | 0.99976844E-03                                     | 75 | 0.99980941E-03                                     | 108 0.99980063E-03                                      |
| 10          | 0.99998346E-03                                    | 43 | 0.99976705E-03                                     | 76 | 0.99980490E-03                                     | 109 0.99980016E-03                                      |
| 11          | 0.99998366E-03                                    | 44 | 0.99976566E-03                                     | 77 | 0.99980493E-03                                     | 110 0.99979969E-03                                      |
| 12          | 0.99998387E-03                                    | 45 | 0.99976427E-03                                     | 78 | 0.99980495E-03                                     | 111 0.99979922E-03                                      |
| 13          | 0.99998408E-03                                    | 46 | 0.99976288E-03                                     | 79 | 0.99980497E-03                                     | 112 0.99979875E-03                                      |
| 14          | 0.99998429E-03                                    | 47 | 0.99976149E-03                                     | 80 | 0.99980500E-03                                     | 113 0.99979828E-03                                      |
| 15          | 0.99998449E-03                                    | 48 | 0.99976010E-03                                     | 81 | 0.99980502E-03                                     | 114 0.99979781E-03                                      |
| 16          | 0.99998470E-03                                    | 49 | 0.99975871E-03                                     | 82 | 0.99980504E-03                                     | 115 0.99979734E-03                                      |
| 17          | 0.99998491E-03                                    | 50 | 0.99975732E-03                                     | 83 | 0.99980506E-03                                     | 116 0.99979687E-03                                      |
| 18          | 0.99998511E-03                                    | 51 | 0.99975593E-03                                     | 84 | 0.99980509E-03                                     | 117 0.99979640E-03                                      |
| 19          | 0.99998532E-03                                    | 52 | 0.99980340E-03                                     | 85 | 0.99980511E-03                                     | 118 0.99979593E-03                                      |
| 20          | 0.99998553E-03                                    | 53 | 0.99980366E-03                                     | 86 | 0.99980513E-03                                     | 119 0.99979546E-03                                      |
| 21          | 0.99998573E-03                                    | 54 | 0.99980392E-03                                     | 87 | 0.99980516E-03                                     | 120 0.99979499E-03                                      |
| 22          | 0.99998594E-03                                    | 55 | 0.99980418E-03                                     | 88 | 0.99980518E-03                                     | 121 0.99979452E-03                                      |
| 23          | 0.99998615E-03                                    | 56 | 0.99980444E-03                                     | 89 | 0.99980520E-03                                     | 122 0.99979405E-03                                      |
| 24          | 0.99998635E-03                                    | 57 | 0.99980471E-03                                     | 90 | 0.99980523E-03                                     | 123 0.99979358E-03                                      |
| 25          | 0.99998656E-03                                    | 58 | 0.99980497E-03                                     | 91 | 0.99980525E-03                                     | 124 0.99979311E-03                                      |
| 26          | 0.99998677E-03                                    | 59 | 0.99980523E-03                                     | 92 | 0.99980527E-03                                     | 125 0.99979264E-03                                      |
| 27          | 0.99998697E-03                                    | 60 | 0.99980549E-03                                     | 93 | 0.99980529E-03                                     | 126 0.99979217E-03                                      |
| 28          | 0.99998718E-03                                    | 61 | 0.99980575E-03                                     | 94 | 0.99980532E-03                                     | 127 0.99979170E-03                                      |
| 29          | 0.99998739E-03                                    | 62 | 0.99980601E-03                                     | 95 | 0.99980534E-03                                     | 128 0.99979123E-03                                      |
| 30          | 0.99998760E-03                                    | 63 | 0.99980627E-03                                     | 96 | 0.99980536E-03                                     | 129 0.99979076E-03                                      |
| 31          | 0.99998780E-03                                    | 64 | 0.99980654E-03                                     | 97 | 0.99980539E-03                                     | 130 0.99979029E-03                                      |
| 32          | 0.99978235E-03                                    | 65 | 0.99980680E-03                                     | 98 | 0.99980541E-03                                     | 131 0.99979029E-03                                      |
| 33          | 0.99978096E-03                                    | 66 | 0.99980706E-03                                     | 99 | 0.99980543E-03                                     |                                                         |

| Tak   | <u>ole 5:</u> (continued) |      |                        |      |                       |       |                      |
|-------|---------------------------|------|------------------------|------|-----------------------|-------|----------------------|
| stati | ion $(F_2 + F_3 . N)$     | stat | tion $(F_2 + F_3 . N)$ | stat | ion $(F_2 + F_3 . N)$ | stati | on $(F_2 + F_3 . N)$ |
| num   | nber                      | nur  | nber                   | nur  | nber                  | num   | ber                  |
|       |                           |      |                        |      |                       |       |                      |
| au0   |                           |      |                        |      |                       |       |                      |
| 1     | 0.99967489E-03            | 20   | 0.10000109E-02         | 39   | 0.99998620E-03        | 58    | 0.99999572E-03       |
| 2     | 0.99966511E-03            | 21   | 0.10000093E-02         | 40   | 0.99998597E-03        | 59    | 0.99999693E-03       |
| 3     | 0.99965533E-03            | 22   | 0.10000076E-02         | 41   | 0.99998574E-03        | 60    | 0.99999815E-03       |
| 4     | 0.99964555E-03            | 23   | 0.10000060E-02         | 42   | 0.99998551E-03        | 61    | 0.99999936E-03       |
| 5     | 0.99963577E-03            | 24   | 0.10000043E-02         | 43   | 0.99998528E-03        | 62    | 0.99990787E-03       |
| 6     | 0.99962599E-03            | 25   | 0.10000026E-02         | 44   | 0.99998505E-03        | 63    | 0.99990868E-03       |
| 7     | 0.99961621E-03            | 26   | 0.10000010E-02         | 45   | 0.99998482E-03        | 64    | 0.99990949E-03       |
| 8     | 0.99960643E-03            | 27   | 0.99999934E-03         | 46   | 0.99998459E-03        | 65    | 0.99991030E-03       |
| 9     | 0.99959665E-03            | 28   | 0.99999769E-03         | 47   | 0.99998436E-03        | 66    | 0.99991111E-03       |
| 10    | 0.99958687E-03            | 29   | 0.10005554E-02         | 48   | 0.99998413E-03        | 67    | 0.99991192E-03       |
| 11    | 0.10000258E-02            | 30   | 0.10005513E-02         | 49   | 0.99998390E-03        | 68    | 0.99991273E-03       |
| 12    | 0.10000241E-02            | 31   | 0.10005473E-02         | 50   | 0.99998367E-03        | 69    | 0.99991354E-03       |
| 13    | 0.10000225E-02            | 32   | 0.10005433E-02         | 51   | 0.99998344E-03        | 70    | 0.99991435E-03       |
| 14    | 0.10000208E-02            | 33   | 0.10005393E-02         | 52   | 0.99998321E-03        | 71    | 0.99991516E-03       |
| 15    | 0.10000192E-02            | 34   | 0.10005353E-02         | 53   | 0.99998966E-03        | 72    | 0.99991598E-03       |
| 16    | 0.10000175E-02            | 35   | 0.10005313E-02         | 54   | 0.99999087E-03        | 73    | 0.99991679E-03       |
| 17    | 0.10000159E-02            | 36   | 0.10005273E-02         | 55   | 0.99999208E-03        |       |                      |
| 18    | 0.10000142E-02            | 37   | 0.10005232E-02         | 56   | 0.99999330E-03        |       |                      |
| 19    | 0.10000126E-02            | 38   | 0.10005192E-02         | 57   | 0.99999451E-03        |       |                      |

Table 6: Surface pressure offsets (i.e. poff, in dbar) for cruises au0803 and au0806. For each station, these values are subtracted from the pressure calibration "offset" value in Table 3.

| stn | poff | stn | poff<br>                     |    | poff | stn      | poff<br> | stn | poff<br> | stn | poff |
|-----|------|-----|------------------------------|----|------|----------|----------|-----|----------|-----|------|
| au0 | 803  |     |                              |    |      |          |          |     |          |     |      |
| 1   | 0.85 | 23  | 0.35                         | 45 |      | 67       | 0.30     | 89  | 0.49     |     | 0.38 |
| 2   | 0.63 | 24  | 0.35                         | 46 | 0.33 | 68       | 0.30     | 90  | 0.44     | 112 | 0.38 |
| 3   | 0.70 | 25  | 0.35                         | 47 | 0.32 | 69       | 0.26     | 91  | 0.36     |     | 0.56 |
| 4   | 0.41 | 26  | 0.35                         | 48 |      | 70       | 0.31     | 92  | 0.36     |     | 0.40 |
| 5   |      | 27  | 0.35                         | 49 | 0.38 |          | 0.43     | 93  | 0.38     |     | 0.40 |
| 6   | 0.39 | 28  | 0.38                         | 50 | 0.36 |          | 0.26     | 94  | 0.47     |     | 0.39 |
| 7   | 0.21 | 29  | 0.23                         | 51 | 0.70 | 73       | 0.34     | 95  | 0.43     |     | 0.40 |
| 8   | 0.31 | 30  | 0.30                         | 52 | 0.52 | 74       | 0.25     | 96  | 0.35     |     | 0.42 |
| 9   | 0.22 | 31  | 0.35                         | 53 | O 10 | 75       | 0.27     | 97  | 0.38     |     | 0.45 |
| 10  | 0.21 | 32  | 0.30<br>0.35<br>0.33<br>0.33 | 54 | 0.42 | 76       | 0.18     | 98  | 0.38     |     | 0.50 |
| 11  | 0.40 | 33  | 0.33                         | 55 | 0.28 | 77       | 0.35     | 99  |          |     | 0.42 |
| 12  | 0.28 | 34  | 0.30                         | 56 | 0.34 |          | 0.26     |     | 0.35     |     | 0.38 |
| 13  | 0.35 | 35  | 0.31                         | 57 | 0.29 |          | 0.32     |     | 0.37     |     | 0.43 |
| 14  | 0.43 | 36  | 0.22                         |    | 0.32 |          | 0.46     |     | 0.36     |     | 0.42 |
| 15  | 0.39 |     | 0.36                         | 59 | 0.35 | 81       | 0.33     |     | 0.34     |     | 0.44 |
| 16  | 0.42 | 38  | 0.32                         | 60 | 0.41 | 82       | 0.39     |     | 0.38     |     | 0.42 |
| 17  | 0.35 | 39  | 0.34<br>0.37<br>0.39         | 61 | 0.33 | 83       | 0.42     |     | 0.41     |     | 0.35 |
| 18  | 0.29 | 40  | 0.37                         | 62 | 0.41 | 84<br>85 | 0.47     |     | 0.40     |     | 0.34 |
| 19  | 0.25 | 41  |                              |    | 0.37 | 85       | 0.41     | 107 | 0.33     |     | 0.36 |
| 20  | 0.25 | 42  | 0.25                         | 64 | 0.46 | 86       | 0.49     | 108 | 0.44     |     | 0.42 |
| 21  | 0.34 | 43  | 0.30                         | 65 |      | 87       | 0.49     |     | 0.37     | 131 | 0.41 |
| 22  | 0.33 | 44  | 0.25                         | 66 | 0.33 | 88       | 0.47     | 110 | 0.32     |     |      |
| au0 |      |     |                              |    |      |          |          |     |          |     |      |
| 1   | 0.64 | 14  | 0.26                         | 27 | 0.15 |          | 0.62     | 53  | 0.56     | 66  | 0.73 |
| 2   | 0.55 | 15  | 0.25                         | 28 | 0.24 | 41       | 0.61     | 54  | 0.53     | 67  | 0.81 |
| 3   | 0.32 | 16  | 0.24                         | 29 | 0.22 | 42       | 0.68     | 55  | 0.58     | 68  | 0.78 |
| 4   | 0.29 | 17  | 0.24                         | 30 |      | 43       | 0.47     | 56  | 0.47     | 69  | 0.78 |
| 5   | 0.28 | 18  | 0.25                         | 31 | 0.21 | 44       | 0.63     | 57  | 0.38     | 70  | 0.83 |
| 6   | 0.22 | 19  | 0.20                         | 32 | 0.24 | 45       | 0.70     | 58  | 0.54     | 71  | 0.72 |
| 7   | 0.31 | 20  | 0.29                         | 33 | 0.41 |          | 0.73     | 59  | 0.48     | 72  | 0.74 |
| 8   | 0.30 | 21  | 0.27                         | 34 | 0.42 | 47       | 0.67     | 60  | 0.58     | 73  | 0.73 |
| 9   | 0.33 | 22  | 0.13                         | 35 | 0.53 | -        | 0.60     | 61  | 0.40     |     |      |
| 10  | 0.25 | 23  | 0.24                         | 36 |      | 49       | 0.72     | 62  | 0.59     |     |      |
| 11  | 0.31 | 24  | 0.28                         | 37 | 0.62 | 50       | 0.63     | 63  | 0.63     |     |      |
| 12  | 0.33 | 25  | 0.23                         | 38 | 0.69 | 51       | 0.67     | 64  | 0.61     |     |      |
| 13  | 0.31 | 26  | 0.30                         | 39 | 0.54 | 52       | 0.65     | 65  | 0.60     |     |      |

<u>Table 7a:</u> CTD dissolved oxygen calibration coefficients for cruise au0803: slope, bias, tcor (= temperature correction term), and pcor (= pressure correction term). dox is equal to  $2.8\sigma$ , for  $\sigma$  as defined in the *CTD Methodology*. For deep stations, coefficients are given for both the shallow and deep part of the profile, according to the profile split used for calibration (see section 4.4 in the text); whole profile fit used for stations shallower than 3000 dbar (i.e. stations with only "shallow" set of coefficients in the table).

|          | shallow              |                        |                        |                      |                      | deepdeep |    |           |           |          |          |
|----------|----------------------|------------------------|------------------------|----------------------|----------------------|----------|----|-----------|-----------|----------|----------|
| stn      | slope                | bias                   | tcor                   | pcor                 | dox                  | slope    |    | bias      | tcor      | pcor     | dox      |
| 1 2      | 0.427786             | -0.109195<br>-         | 0.000207               | 0.000053             | 0.160493             | 0.5116   | 20 | -0.274024 | -0.009704 | 0.000141 | 0.028915 |
| 3<br>4   | -<br>0.396565        | -<br>0.019589          | 0.039588               | 0.000117             | -<br>0.027455        |          |    |           |           |          |          |
| 5        |                      | -0.177394              | 0.0033300              | 0.000117             | 0.027433             |          |    |           |           |          |          |
| 6        |                      | -0.293491              |                        | 0.000178             | 0.160466             |          |    |           |           |          |          |
| 7        |                      | -0.348060              | 0.033375               | 0.000259             | 0.087520             |          |    |           |           |          |          |
| 8        |                      | -0.405101              |                        | 0.000197             | 0.085409             |          |    |           |           |          |          |
| 9        |                      | -0.276603              |                        | 0.000167             | 0.137101             |          |    |           |           |          |          |
| 10       |                      | -0.285224              |                        | 0.000165             | 0.162961             |          |    |           |           |          |          |
| 11       | 0.147777             | 0.873420               | 0.199935               | 0.000098             | 0.139939             |          |    |           |           |          |          |
| 12<br>13 |                      | -0.827988              | 0.293372               | 0.000631             | 0.060601             |          |    |           |           |          |          |
| 14       | 0.501571<br>0.267296 | -0.292480<br>0.398080  | -0.006325<br>0.080509  | 0.000182<br>0.000081 | 0.048954<br>0.073026 |          |    |           |           |          |          |
| 15       | 0.207290             | 0.800924               | 0.000309               | 0.000061             | 0.073020             |          |    |           |           |          |          |
| 16       | 0.411085             | 0.024984               | 0.066847               | 0.000163             | 0.049937             |          |    |           |           |          |          |
| 17       | 0.290371             | 0.311503               | 0.073016               | 0.000083             | 0.164172             |          |    |           |           |          |          |
| 18       | 0.443133             | -0.138695              | 0.009369               | 0.000142             | 0.125920             |          |    |           |           |          |          |
| 19       | 0.168166             | 0.656547               | 0.114755               | 0.000061             | 0.198810             |          |    |           |           |          |          |
| 20       |                      | -0.119904              | 0.006539               | 0.000128             | 0.053972             |          |    |           |           |          |          |
| 21       | 0.343123             | 0.166902               | 0.059556               | 0.000159             | 0.119368             |          |    |           |           |          |          |
| 22       | 0.237043             | 0.404171               | 0.044135               | 0.000008             | 0.122849             |          |    |           |           |          |          |
| 23<br>24 |                      | -0.165324<br>-0.774043 |                        | 0.000108<br>0.000322 | 0.160522<br>0.076672 |          |    |           |           |          |          |
| 25       | -0.002488            | 1.164684               | 0.181286               | 0.000322             | 0.070072             |          |    |           |           |          |          |
| 26       | 0.345443             | 0.147029               | 0.044360               | 0.000090             | 0.033190             |          |    |           |           |          |          |
| 27       | 0.141110             | 0.873845               | 0.186252               | 0.000081             | 0.096519             |          |    |           |           |          |          |
| 28       | 0.411367             | -0.097003              |                        | 0.000122             | 0.044179             |          |    |           |           |          |          |
| 29       | 0.292019             | 0.132401               | 0.006446               | 0.000151             | 1.103887             |          |    |           |           |          |          |
| 30       | 0.483799             | -0.239807              | 0.000275               | 0.000149             | 0.049828             |          |    |           |           |          |          |
| 31       |                      | -0.081870              |                        | 0.000139             | 0.074950             |          |    |           |           |          |          |
| 32       | 0.319299             |                        | -0.077567              | 0.000014             | 0.130802             |          |    |           |           |          |          |
| 33<br>34 | 0.235277<br>0.264403 | 0.203090               | -0.081038<br>0.065375  | 0.000068<br>0.000090 | 0.096836<br>0.142535 |          |    |           |           |          |          |
| 35       | 0.229465             | 0.509202               | 0.003373               | 0.000030             | 0.142333             |          |    |           |           |          |          |
| 36       | 0.006753             | 1.118414               | 0.173396               | 0.000073             | 0.146971             |          |    |           |           |          |          |
| 37       | 2.465381             | -3.434575              | 1.699939               |                      | 40.000000            |          |    |           |           |          |          |
| 38       | 0.301852             | 0.105059               |                        | 0.000113             | 0.113278             |          |    |           |           |          |          |
| 39       | 0.506500             | -0.298438              |                        | 0.000178             | 0.135575             |          |    |           |           |          |          |
| 40       |                      | -0.302933              | 0.001777               | 0.000190             | 0.037394             |          |    |           |           |          |          |
| 41       |                      | -0.247167              | 0.003351               | 0.000169             | 0.072285             |          |    |           |           |          |          |
| 42       |                      | -0.243593              | 0.008495               | 0.000192             | 0.081831             |          |    |           |           |          |          |
| 43<br>44 |                      | -0.155143<br>-0.148322 | 0.019422<br>0.012332   | 0.000194<br>0.000173 | 0.119587             |          |    |           |           |          |          |
| 45       |                      | -0.146322              |                        | 0.000173             | 0.103154<br>0.193763 |          |    |           |           |          |          |
| 46       |                      | -0.699342              |                        | 0.000133             | 0.065666             |          |    |           |           |          |          |
| 47       |                      | -0.288842              | -0.006093              | 0.000177             | 0.028652             |          |    |           |           |          |          |
| 48       | 0.195627             | 0.404277               | 0.013678               | 0.000118             | 0.038744             |          |    |           |           |          |          |
| 49       | 0.487192             | -0.244554              | -0.003432              | 0.000131             | 0.089037             |          |    |           |           |          |          |
| 50       |                      | -0.267175              | 0.008524               | 0.000150             | 0.161074             |          |    |           |           |          |          |
| 51       |                      | -0.224296              |                        | 0.000133             | 0.166323             |          |    |           |           |          |          |
| 52       |                      | -0.242652              |                        | 0.000140             | 0.075290             |          |    |           |           |          |          |
| 53       |                      | -0.227028<br>-0.272273 | -0.005280              | 0.000135             | 0.088561             |          |    |           |           |          |          |
| 54<br>55 |                      | -0.272273              | -0.011232<br>-0.000419 | 0.000141<br>0.000132 | 0.243668<br>0.063574 | 0.4076   | 86 | -0.267031 | 0.289103  | 0.000291 | 0.093203 |
| 55<br>56 | 0.463132             | -0.232550              | 0.039545               | 0.000132             | 0.063574             |          |    | -0.267031 | 0.269103  | 0.000291 | 0.093203 |
| 57       |                      | -0.247333              | -0.004417              | 0.000203             | 0.108881             |          |    | -0.104758 | 0.000053  | 0.000124 | 0.030433 |
| 58       |                      | -0.222276              | -0.007713              | 0.000129             | 0.065433             |          |    |           | -0.032650 | 0.000146 | 0.052840 |
| 59       |                      | -0.295049              | 0.028586               | 0.000170             | 0.069910             |          |    | -0.400855 | -0.029573 | 0.000148 | 0.032392 |
| 60       |                      | -0.267722              | 0.037237               | 0.000159             | 0.126566             |          |    | -0.598057 |           | 0.000190 | 0.057203 |
| 61       |                      | -0.246964              | 0.006291               | 0.000146             | 0.073325             |          |    | -0.399279 | -0.028252 | 0.000147 | 0.031858 |
| 62       | 0.478725             | -0.206030              | -0.017479              | 0.000120             | 0.085993             | 0.5039   | 93 | -0.261647 | -0.015010 | 0.000139 | 0.043235 |

Table 7a: (continued)

|            | shallow              |                        |                        |                      |                       |          |                        |                        |                      |                      |  |
|------------|----------------------|------------------------|------------------------|----------------------|-----------------------|----------|------------------------|------------------------|----------------------|----------------------|--|
| stn        | slope                | bias                   | tcor                   | pcor                 | dox                   | slope    | bias                   | tcor                   | pcor                 | dox                  |  |
| 63         |                      | -0.269018              | 0.006700               | 0.000154             | 0.092143              |          | -0.104919              | 0.007120               | 0.000128             | 0.026750             |  |
| 64         |                      | -0.263810              | -0.001117              | 0.000140             | 0.056760              |          | -0.104362              | 0.007449               | 0.000128             | 0.054198             |  |
| 65<br>66   |                      | -0.397330<br>-0.275431 | 0.059683<br>0.009542   | 0.000198<br>0.000152 | 0.096841<br>0.060068  |          | -0.107307<br>-0.105827 | 0.012838<br>0.010366   | 0.000132<br>0.000129 | 0.037536<br>0.036482 |  |
| 67         |                      | -0.273431              | 0.009342               | 0.000132             | 0.057121              |          | -0.105356              | 0.010300               | 0.000129             | 0.055688             |  |
| 68         |                      | -0.349579              | 0.029957               | 0.000181             | 0.107726              |          | -0.108990              | 0.025264               | 0.000123             | 0.048362             |  |
| 69         |                      | -0.306472              | 0.016937               | 0.000173             | 0.122485              |          | -0.099102              |                        | 0.000123             | 0.045209             |  |
| 70         |                      | -0.282597              | 0.000589               | 0.000162             | 0.218064              |          | -0.105676              | 0.025164               | 0.000136             | 0.049641             |  |
| 71         |                      | -0.283589<br>-0.231865 | 0.006800               | 0.000146             | 0.169907              | 0.471616 | -0.223115              | 0.001687               | 0.000143             | 0.028223             |  |
| 72<br>73   |                      | -0.231865              | -0.005878<br>-0.000189 | 0.000137<br>0.000150 | 0.083711<br>0.150684  |          |                        |                        |                      |                      |  |
| 74         |                      | -0.225672              | -0.0004413             | 0.000134             | 0.062569              |          |                        |                        |                      |                      |  |
| 75         |                      | -0.301987              | 0.012735               | 0.000146             | 0.174446              |          |                        |                        |                      |                      |  |
| 76         |                      | -0.265795              | 0.003147               | 0.000134             | 0.141618              |          |                        |                        |                      |                      |  |
| 77         |                      | -0.269278              | 0.005358               | 0.000156             | 0.162077              |          |                        |                        |                      |                      |  |
| 78<br>70   | 0.419799             | 0.015566<br>-0.283412  | 0.071293<br>-0.032600  | 0.000095<br>0.000035 | 0.132452              |          |                        |                        |                      |                      |  |
| 79<br>80   |                      | -0.451273              | -0.032000              | 0.000033             | 0.096100<br>0.245243  |          |                        |                        |                      |                      |  |
| 81         |                      | -0.095076              | 0.011234               | 0.000068             | 0.131499              |          |                        |                        |                      |                      |  |
| 82         | 0.541451             | -0.379390              | -0.016296              | 0.000210             | 0.197745              |          |                        |                        |                      |                      |  |
| 83         | 0.290858             | 0.187669               | -0.020916              | 0.000014             | 0.044349              |          |                        |                        |                      |                      |  |
| 84         | 0.397764             | 0.006754               | 0.049587               | 0.000139             | 0.088052              |          |                        |                        |                      |                      |  |
| 85<br>86   |                      | -0.286871<br>-0.289249 | -0.008358<br>-0.015641 | 0.000132<br>0.000124 | 0.042886<br>0.231313  |          |                        |                        |                      |                      |  |
| 87         |                      | -2.652934              | -0.245696              | 0.000124             | 0.231313              |          |                        |                        |                      |                      |  |
| 88         | 0.524251             | -0.331085              | 0.002159               | 0.000216             | 0.056147              |          |                        |                        |                      |                      |  |
| 89         | 0.376260             | 0.134815               | 0.089438               | 0.000167             | 0.075452              |          |                        |                        |                      |                      |  |
| 90         | 0.043340             | 0.778305               | 0.005587               | 0.000357             | 1.395597              |          |                        |                        |                      |                      |  |
| 91<br>92   |                      | -0.338379<br>-3.778601 | -0.031105<br>1.647994  | 0.000157<br>0.002404 | 0.077061<br>40.000000 |          |                        |                        |                      |                      |  |
| 93         |                      | -0.287956              | -0.005886              | 0.002404             | 0.136099              |          |                        |                        |                      |                      |  |
| 94         |                      | -0.261018              | 0.023508               | 0.000151             | 0.077056              |          |                        |                        |                      |                      |  |
| 95         |                      | -1.065292              |                        | 0.000923             | 0.116465              |          |                        |                        |                      |                      |  |
| 96         |                      | -0.027424              | 0.022046               | 0.000014             | 0.142171              |          |                        |                        |                      |                      |  |
| 97         |                      | -0.300261<br>-0.295052 | -0.012337<br>-0.028993 | 0.000149             | 0.130600              |          |                        |                        |                      |                      |  |
| 98<br>99   |                      | -0.295052              | 0.026993               | 0.000154<br>0.000186 | 0.075303<br>0.194735  |          |                        |                        |                      |                      |  |
|            |                      | -0.131657              | 0.015547               | 0.000087             | 0.068003              |          |                        |                        |                      |                      |  |
| 101        | 0.599504             | -0.503462              | -0.003366              | 0.000334             | 0.076090              |          |                        |                        |                      |                      |  |
|            | 0.309664             | 0.214373               | 0.050825               | 0.000035             | 0.021747              |          |                        |                        |                      |                      |  |
|            | 0.331679<br>0.505952 | 0.178087               | 0.060033               | 0.000003             | 0.105710              |          |                        |                        |                      |                      |  |
|            |                      | -0.279020              | 0.005883<br>-0.010933  | 0.000214<br>0.000377 | 0.159005<br>0.065222  |          |                        |                        |                      |                      |  |
|            |                      |                        | -0.010722              | 0.00017              | 0.229878              |          |                        |                        |                      |                      |  |
|            |                      | -0.161833              |                        | 0.000097             | 0.096644              |          |                        |                        |                      |                      |  |
|            |                      | -0.234451              | -0.001761              | 0.000144             | 0.106974              |          |                        |                        |                      |                      |  |
|            | 0.506271             | -0.290694<br>-0.295734 | -0.003366              | 0.000171             | 0.124783              |          |                        |                        |                      |                      |  |
|            | 0.515126<br>0.483913 | -0.295734<br>-0.240877 | 0.010001<br>-0.001201  | 0.000146<br>0.000142 | 0.064423<br>0.062955  |          |                        |                        |                      |                      |  |
|            | 0.504025             | -0.288693              | -0.001154              | 0.000112             | 0.257888              |          |                        |                        |                      |                      |  |
| 113        | 0.504025             | -0.288693              | -0.001154              | 0.000185             | 0.257888              |          |                        |                        |                      |                      |  |
|            | 0.504025             | -0.288693              | -0.001154              | 0.000185             | 0.257888              |          |                        |                        |                      |                      |  |
|            | 0.504025             | -0.288693              | -0.001154              | 0.000185             | 0.257888              |          |                        |                        |                      |                      |  |
|            | 0.504025<br>0.504025 | -0.288693<br>-0.288693 | -0.001154<br>-0.001154 | 0.000185<br>0.000185 | 0.257888<br>0.257888  |          |                        |                        |                      |                      |  |
|            | 0.504025             | -0.288693              | -0.001154              | 0.000185             | 0.257888              |          |                        |                        |                      |                      |  |
| 119        | 0.501612             | -0.291546              | -0.000324              | 0.000290             | 0.052654              |          |                        |                        |                      |                      |  |
|            | 0.596635             | -0.526075              | -0.031100              | 0.000323             | 0.059770              |          |                        |                        |                      |                      |  |
|            | 0.480031             | -0.232975              | -0.000969              | 0.000145             | 0.042451              |          |                        |                        |                      |                      |  |
|            |                      | -0.273002<br>-0.254015 | -0.001915<br>0.001108  | 0.000156<br>0.000148 | 0.217881<br>0.079206  |          |                        |                        |                      |                      |  |
|            |                      | -0.256011              | 0.001100               | 0.000140             | 0.073200              |          |                        |                        |                      |                      |  |
|            |                      | -0.249000              | 0.011320               | 0.000148             | 0.142685              |          |                        |                        |                      |                      |  |
|            |                      | -0.216801              | 0.012599               | 0.000145             | 0.143743              |          | 0.01====               | 0.400:=:               | 0.0000:-             | 0.001==:             |  |
|            | 0.478361             | -0.217157              | -0.004490              | 0.000126             | 0.104614              |          | -0.245978              | 0.108481               | 0.000212             | 0.021771             |  |
| 128<br>129 | 0.483272<br>0.462102 | -0.239105              | 0.005983<br>0.018242   | 0.000143<br>0.000139 | 0.056201<br>0.195680  |          | -0.226876<br>-0.396806 | -0.041808<br>-0.022955 | 0.000115<br>0.000142 | 0.024280<br>0.068609 |  |
| 130        |                      | -0.182417              | -0.042281              | 0.000100             | 0.103639              |          | -0.284480              | 0.005107               | 0.000142             | 0.057571             |  |
| 131        | -                    | -                      | -                      | -                    | -                     | -        | -                      | -                      | -                    | -                    |  |

<u>Table 7b:</u> CTD dissolved oxygen calibration coefficients for cruise au0806: slope, bias, tcor (= temperature correction term), and pcor (= pressure correction term). dox is equal to  $2.8\sigma$ , for  $\sigma$  as defined in the *CTD Methodology*. Note that coefficients are given for both the shallow and deep part of the profile, according to the profile split used for calibration (see section 4.4 in the text). Note: split profile fit for all stations except stations 3, 4, 5, 6, 11, 15, 31, 43, 61, 55, 71, 72, 73 i.e. stations with only "shallow" set of coefficients in the table.

|          | shallow              |                            |                        |                      |                      | deep                 |                        |                        |                      |                      |  |
|----------|----------------------|----------------------------|------------------------|----------------------|----------------------|----------------------|------------------------|------------------------|----------------------|----------------------|--|
| stn      | slope                | bias                       | tcor                   | pcor                 | dox                  | slope                | bias                   | tcor                   | pcor                 | dox                  |  |
| 1<br>2   | -<br>0.508776        | -<br>-0.273201             | -<br>-0.011471         | 0.000142             | -<br>0.110065        | -<br>0.600405        | -<br>-0.397500         | -<br>-0.025326         | 0.000143             | -<br>0.063524        |  |
| 3        | -<br>0 505607        | -<br>0.0 <del>7</del> 0460 | -<br>0.007657          | -<br>0.00014E        | -                    |                      |                        |                        |                      |                      |  |
| 4<br>5   | 0.505697<br>0.333585 | -0.278160<br>-0.315013     | 0.007657<br>-0.337127  | 0.000145<br>0.000766 | 0.043210<br>0.085714 |                      |                        |                        |                      |                      |  |
| 6        | 0.526856             | -0.255178                  | 0.002441               | 0.000126             | 0.142496             |                      |                        |                        |                      |                      |  |
| 7        | 0.520065             | -0.262576                  | -0.003154              | 0.000138             | 0.084498             | 0.490205             | -0.213292              | -0.018789              | 0.000132             | 0.017054             |  |
| 8        | 0.481924             | -0.235379                  | -0.002939              | 0.000140             | 0.088786             | 0.310536             | 0.087994               | -0.093301              | 0.000074             | 0.028999             |  |
| 9<br>10  | 0.485480             | -0.238436                  | 0.003322               | 0.000134             | 0.083590             | 0.263042<br>0.400785 | 0.174352               | -0.086597              | 0.000062             | 0.019285<br>0.011334 |  |
| 11       | 0.606841<br>0.505571 | -0.460837<br>-0.270593     | 0.026408<br>-0.000625  | 0.000205<br>0.000146 | 0.111804<br>0.070104 | 0.400765             | -0.099495              | 0.012368               | 0.000134             | 0.011334             |  |
| 12       | 0.462883             | -0.199131                  | -0.020147              | 0.000136             | 0.158122             | 0.594195             | -0.400973              | -0.029473              | 0.000142             | 0.036920             |  |
| 13       | 0.418980             | -0.067923                  | -0.059618              | 0.000077             | 0.077159             | 0.596687             | -0.399043              | -0.032540              | 0.000142             | 0.032200             |  |
| 14       | 0.394783             | -0.010027                  | -0.079798              | 0.000063             | 0.085826             | 0.521109             | -0.335618              | 0.027703               | 0.000181             | 0.017124             |  |
| 15       | 0.472172             | -0.220414                  | -0.004343              | 0.000137             | 0.087030             | 0.603503             | 0.202055               | 0.005504               | 0.000145             | 0.006754             |  |
| 16<br>17 | 0.498917<br>0.492231 | -0.227658<br>-0.276445     | -0.017598<br>0.012883  | 0.000126<br>0.000164 | 0.112452<br>0.051366 | 0.603583<br>0.396269 | -0.392855<br>-0.105645 | -0.025521<br>0.005848  | 0.000145<br>0.000130 | 0.026751<br>0.018647 |  |
| 18       | 0.432231             | -0.250885                  | 0.012003               | 0.000164             | 0.081829             | 0.590203             | -0.462855              | 0.003040               | 0.000130             | 0.056324             |  |
| 19       | 0.487733             | -0.234176                  | -0.011770              | 0.000132             | 0.030255             | 0.395437             | -0.107796              | 0.006887               | 0.000129             | 0.030157             |  |
| 20       | 0.484946             | -0.225467                  | -0.013550              | 0.000128             | 0.079913             | 0.594244             | -0.401494              | -0.024572              | 0.000155             | 0.036136             |  |
| 21       | 0.500344             | -0.242851                  | -0.019528              | 0.000127             | 0.065213             | 0.395046             | -0.107691              | 0.007377               | 0.000128             | 0.022729             |  |
| 22<br>23 | 0.472553<br>0.505461 | -0.236714<br>-0.263594     | 0.006665<br>-0.014295  | 0.000151<br>0.000141 | 0.071519<br>0.062616 | 0.397806<br>0.394691 | -0.105207<br>-0.107612 | 0.002917<br>0.009341   | 0.000126<br>0.000129 | 0.026907<br>0.018962 |  |
| 24       | 0.303401             | -0.234145                  | 0.001745               | 0.000141             | 0.002010             | 0.394377             | -0.107012              | 0.009341               | 0.000129             | 0.016902             |  |
| 25       | 0.478477             | -0.244532                  | 0.002787               | 0.000110             | 0.063987             | 0.390732             | -0.109746              | 0.014839               | 0.000133             | 0.038832             |  |
| 26       | 0.512866             | -0.272591                  | -0.012252              | 0.000138             | 0.033533             | 0.400591             | -0.106398              | -0.000371              | 0.000123             | 0.033519             |  |
| 27       | 0.497377             | -0.246612                  | -0.008604              | 0.000132             | 0.133012             | 0.397875             | -0.104016              | 0.001676               | 0.000125             | 0.009705             |  |
| 28       | 0.471253             | -0.227573                  | 0.003057               | 0.000142             | 0.086009             | 0.395133             | -0.107190              | 0.006884               | 0.000127             | 0.017861             |  |
| 29<br>30 | 0.482213<br>0.483658 | -0.241619<br>-0.244516     | -0.000421<br>-0.000238 | 0.000143<br>0.000145 | 0.080800<br>0.075609 | 0.393293<br>0.348877 | -0.109002<br>0.009350  | 0.009105<br>-0.017120  | 0.000129<br>0.000092 | 0.017968<br>0.034411 |  |
| 31       | -                    | -                          | -                      | -                    | -                    | -                    | -                      | -                      | -                    | -                    |  |
| 32       | 0.490449             | -0.245401                  | -0.004243              | 0.000138             | 0.044382             | 0.398542             | -0.105960              | 0.002398               | 0.000123             | 0.034662             |  |
| 33       | 0.501184             | -0.264360                  | -0.006076              | 0.000145             | 0.064026             | 0.382619             | -0.043393              | -0.019889              | 0.000098             | 0.034015             |  |
| 34       | 0.473654<br>0.433295 | -0.231275<br>-0.181717     | 0.002336<br>0.017012   | 0.000145<br>0.000143 | 0.081853<br>0.063874 | 0.464778<br>0.570259 | -0.174895<br>-0.410108 | -0.020445<br>0.011288  | 0.000115<br>0.000190 | 0.023617<br>0.039388 |  |
| 35<br>36 | 0.433293             | -0.161717                  | -0.004273              | 0.000143             | 0.003674             | 0.370239             | -0.410106              | 0.011266               | 0.000190             | 0.039366             |  |
| 37       | 0.483625             | -0.245650                  | 0.000017               | 0.000150             | 0.073867             | 0.396355             | -0.106028              | 0.004539               | 0.000127             | 0.017087             |  |
| 38       | 0.476831             | -0.233804                  | 0.001386               | 0.000144             | 0.027584             | 0.396559             | -0.107388              | 0.004045               | 0.000129             | 0.021684             |  |
| 39       | 0.504775             | -0.270337                  | -0.006006              | 0.000156             | 0.069707             | 0.597691             | -0.403464              | -0.005221              | 0.000142             | 0.007469             |  |
| 40<br>41 | 0.481891<br>0.496789 | -0.236869<br>-0.267664     | -0.000976<br>-0.002605 | 0.000140<br>0.000159 | 0.084324             | 0.075201<br>0.398278 | 0.487900<br>-0.109065  | 0.088716<br>0.002083   | 0.000136<br>0.000125 | 0.022927<br>0.033421 |  |
| 42       | 0.490769             | -0.233386                  | -0.002605              | 0.000139             | 0.059421<br>0.019476 | 0.396276             | -0.109003              | -0.002063              | 0.000123             | 0.053421             |  |
| 43       | 0.507699             | -0.315449                  | 0.000663               | 0.000229             | 0.071641             | 0.100020             | 0.220001               | 0.000701               | 0.000102             | 0.002011             |  |
| 44       | 0.503256             | -0.252112                  | -0.008022              | 0.000131             | 0.072527             | 0.401089             | -0.110755              | 0.001767               | 0.000123             | 0.041847             |  |
| 45       |                      | -0.142450                  | 0.015287               | 0.000129             | 0.127149             |                      | -0.113415              | 0.000294               | 0.000127             | 0.045447             |  |
| 46<br>47 | 0.460665<br>0.500191 | -0.226358<br>-0.285075     | 0.005481<br>-0.001131  | 0.000154             | 0.079184<br>0.166280 | 0.447890<br>0.519671 | -0.210366<br>-0.296910 | 0.009348<br>-0.000788  | 0.000152<br>0.000150 | 0.051282<br>0.042612 |  |
| 48       | 0.498770             | -0.294080                  | 0.000622               | 0.000169<br>0.000193 | 0.100280             | 0.319071             | -0.290910              | 0.001057               | 0.000130             | 0.042612             |  |
| 49       | 0.446185             | -0.178508                  | 0.003422               | 0.000122             | 0.050173             | 0.494746             | -0.229211              | -0.012182              | 0.000126             | 0.048459             |  |
| 50       | 0.456893             | -0.155647                  | -0.002088              | 0.000082             | 0.113978             | 0.490728             | -0.238930              | -0.006471              | 0.000137             | 0.047679             |  |
| 51       | 0.441638             | -0.157406                  | 0.002268               | 0.000103             | 0.110426             | 0.425210             | -0.210338              | 0.029027               | 0.000168             | 0.026662             |  |
| 52       |                      | -0.286157                  | 0.000428               | 0.000177             | 0.122029             | 0.606532             | -0.381150              | -0.027967              | 0.000141             | 0.057939             |  |
| 53<br>54 |                      | -0.270555<br>-0.279997     | -0.002417<br>-0.001192 | 0.000154<br>0.000162 | 0.072047<br>0.053151 | 0.439518<br>0.479229 | -0.214897<br>-0.231567 | 0.017495<br>-0.003251  | 0.000160<br>0.000139 | 0.070478<br>0.034726 |  |
| 55       |                      | -0.276531                  | -0.001192              | 0.000102             | 0.033131             | U.TI ULLU            | 0.201001               | 0.000201               | 0.000100             | 0.007120             |  |
| 56       |                      | -0.283525                  | -0.001509              | 0.000165             | 0.032949             | 0.468467             | -0.192804              | -0.013404              | 0.000124             | 0.017906             |  |
| 57       |                      | -0.272149                  | -0.002596              | 0.000145             | 0.044277             | 0.597590             | -0.392144              | -0.028321              | 0.000178             | 0.020918             |  |
| 58       |                      | -0.230930                  | -0.000781              | 0.000136             | 0.089947             | 0.396025             | -0.039947              | -0.033213              | 0.000089             | 0.050977             |  |
| 59<br>60 | 0.482486<br>0.476167 | -0.237386<br>-0.236585     | -0.000445<br>0.000837  | 0.000138<br>0.000144 | 0.053674<br>0.080228 | 0.754695<br>0.394528 | -0.262882<br>-0.111298 | -0.157465<br>-0.001087 | 0.000027<br>0.000126 | 0.016391<br>0.054844 |  |
| 61       | 0.476167             | -0.233420                  | -0.000637              | 0.000144             | 0.060226             | 0.534520             | -0.111290              | -0.001007              | 0.000120             | 0.004044             |  |
| 62       | 0.405656             | -0.127278                  | 0.008574               | 0.000117             | 0.087513             | 0.300367             | -0.002163              | 0.016754               | 0.000123             | 0.037343             |  |
| 63       | 0.444342             | -0.189243                  | 0.004418               | 0.000131             | 0.052031             | 0.491681             | -0.262053              | 0.002229               | 0.000148             | 0.033183             |  |
|          |                      |                            |                        |                      |                      |                      |                        |                        |                      |                      |  |

# Table 7b: (continued)

|     |          |           |           |          |          | deep     |           |           |          |          |
|-----|----------|-----------|-----------|----------|----------|----------|-----------|-----------|----------|----------|
| stn | slope    | bias      | tcor      | pcor     | dox      | slope    | bias      | tcor      | pcor     | dox      |
| 64  | 0.835837 | -0.637368 | -0.036325 | 0.000104 | 0.133658 | 0.377963 | -0.098574 | 0.009008  | 0.000128 | 0.022884 |
| 65  | 0.537333 | -0.219146 | -0.013196 | 0.000019 | 0.057135 | 0.509517 | -0.272425 | -0.007086 | 0.000144 | 0.057215 |
| 66  | 0.475925 | -0.231014 | 0.000852  | 0.000131 | 0.122869 | 0.292960 | -0.051764 | 0.042368  | 0.000172 | 0.062121 |
| 67  | 0.430495 | -0.106424 | 0.000452  | 0.000046 | 0.087628 | 0.512372 | -0.276351 | -0.007624 | 0.000146 | 0.020297 |
| 68  | 0.490046 | -0.140868 | -0.008801 | 0.000006 | 0.086377 | 0.478771 | -0.232715 | 0.000483  | 0.000137 | 0.025282 |
| 69  | 0.471962 | -0.203725 | -0.000349 | 0.000117 | 0.175024 | 0.260614 | 0.015762  | 0.043796  | 0.000137 | 0.073198 |
| 70  | 0.459297 | -0.214908 | 0.002654  | 0.000144 | 0.068047 | 0.234714 | -0.067342 | 0.101358  | 0.000274 | 0.044244 |
| 71  | 0.421452 | -0.170627 | 0.007829  | 0.000154 | 0.089342 |          |           |           |          |          |
| 72  | 0.428540 | -0.129489 | 0.001524  | 0.000124 | 0.083848 |          |           |           |          |          |
| 73  | 0.502113 | -0.291677 | 0.000546  | 0.000139 | 0.014794 |          |           |           |          |          |

<u>Table 8a:</u> Missing data points in 2 dbar-averaged files for cruise au0803. "x" indicates missing data for the indicated parameters: T=temperature; S/C=salinity and conductivity; O=oxygen; F=fluorescence downcast; PAR=photosynthetically active radiation downcast; F\_up=fluorescence upcast; PAR\_up=photosynthetically active radiation upcast. Note: 2 and 4 dbar values not included here - 2 dbar value missing for most casts, 4 dbar value missing for many casts.

| station            | pressure (dbar)<br>where data missing | Т      | S/C    | 0           | F      | PAR    | F_up | PAR_up |
|--------------------|---------------------------------------|--------|--------|-------------|--------|--------|------|--------|
| 1-3<br>2<br>3      | 6-8<br>10-1004<br>10-1002             | Х      | X      | x<br>x      | x      | X      |      |        |
| 3<br>5<br>29<br>32 | 452<br>6-1324<br>6-22                 | x      | X      | X<br>X<br>X | Х      | X      | X    | х      |
| 33<br>33           | 6<br>6-94                             | x      | X      | X<br>X      | Х      | Х      |      |        |
| 36<br>37           | 6-8<br>6-890                          | Х      | Х      | X<br>X      | Х      | Х      |      |        |
| 38<br>38           | 6-10<br>12-62                         | Х      | Х      | X<br>X      | Х      | Х      |      |        |
| 48<br>65<br>90     | 6-66<br>6<br>6-1174                   | x      | x      | X<br>X<br>X | x      | X      |      |        |
| 92<br>92           | 6<br>8-1184                           | X      | x      | X<br>X      | х      | Х      |      |        |
| 112<br>113         | 6-304<br>6-302                        |        |        | X<br>X      |        |        |      |        |
| 114<br>115<br>116  | 6-302<br>6-302<br>6-304               |        |        | X<br>X<br>X |        |        |      |        |
| 117<br>118         | 6-304<br>6-300                        |        |        | X<br>X      |        |        |      |        |
| 120<br>128         | 6-8<br>6                              | X<br>X | X<br>X | X<br>X      | X<br>X | X<br>X |      |        |
| 131<br>131         | 6-8<br>10-3702                        | Х      | Х      | X<br>X      | Х      | Х      |      |        |

Table 8b: Missing data points in 2 dbar-averaged files for cruise au0806, as per Table 8a.

| station                    | pressure (dbar)<br>where data missing | Т  | S/C | 0  | F  | PAR | F_up | PAR_up |
|----------------------------|---------------------------------------|----|-----|----|----|-----|------|--------|
| 1                          | 6-16, 630,632,768,1030<br>862,1276    |    |     |    |    |     | x    | x<br>x |
| 1                          | 18-2210                               |    |     | Х  |    |     |      |        |
| 2                          | 788,910,918                           |    |     |    |    |     |      | Χ      |
| 2<br>2<br>2<br>2<br>3<br>3 | 798                                   |    |     |    |    |     | X    | Χ      |
| 2                          | 1640,2572                             |    |     | Х  |    |     |      |        |
| 2                          | 2520,2540                             |    |     |    |    | Х   |      |        |
| 2                          | 2524                                  |    |     |    | Х  |     |      |        |
| 3                          | 6-8                                   | Х  | Х   | Х  | Х  | Х   |      |        |
|                            | 10-302                                |    |     | X  |    |     |      |        |
| 30                         | 6-20                                  | X  | X   | X  |    | Х   |      |        |
| 31                         | 6                                     | Х  | X   | X  | Х  | Х   |      |        |
| 31                         | 8-154                                 | ., | .,  | ., | ., | .,  |      |        |
| 32-33                      | 6-8                                   | X  | X   | X  | X  | X   |      |        |
| 34-35                      | 6                                     | X  | X   | X  | X  | X   |      |        |
| 36                         | 6-24                                  | Х  | X   | X  | Х  | Х   |      |        |
| 37                         | 6                                     | Х  | X   | X  | X  | Х   |      |        |
| 40                         | 6-8                                   | Х  | X   | X  | Х  | Х   |      |        |
| 41                         | 6                                     | Х  | Х   | X  | Х  | Х   |      |        |
| 44                         | 6-8                                   | Х  | X   | X  | Х  | Х   |      |        |
| 45                         | 6                                     | Х  | Х   | Х  | X  | Х   |      |        |
| 46-47                      | 6-8                                   | X  | Х   | X  | Х  | Х   |      |        |
| 52                         | 6-22                                  | X  | Х   | Χ  | Х  | Х   |      |        |
| 53-54                      | 6-8                                   | Х  | Х   | Х  | Х  | Х   |      |        |
| 56-58                      | 6                                     | X  | Х   | Χ  | X  | Х   |      |        |
| 59                         | 4060                                  | Х  | Х   | Х  | Х  | Х   | X    | Х      |
| 60-61                      | 6-8                                   | Х  | Х   | Х  | Х  | Х   |      |        |
| 61                         | 1104                                  | Х  | Х   | Х  | Х  | Х   | Х    | Χ      |
| 62                         | 6-8                                   | Х  | Х   | Х  | Х  | Х   |      |        |
| 63                         | 6                                     | Х  | Х   | Х  | Х  | Х   |      |        |
| 64-65                      | 6-8                                   | Х  | Х   | Х  | Х  | Х   |      |        |
| 69                         | 6                                     | Χ  | Х   | Х  | Х  | Х   |      |        |
| 71                         | 6-8                                   | X  | Χ   | Х  | Х  | Х   |      |        |

 $\underline{Table~9:}~Suspect~CTD~2~dbar~averages~(not~deleted~from~the~CTD~2~dbar~average~files)~for~the~indicated~parameters,~for~cruises~au0803~and~au0806.$ 

| station | suspect 2 dbar value<br>(dbar) | parameter | s comment                                                  |
|---------|--------------------------------|-----------|------------------------------------------------------------|
| au0803  |                                |           |                                                            |
| 5       | 4-28                           | oxygen    | transient error at start                                   |
| 28      | 4-20                           | oxygen    | transient error at start                                   |
| 54      | 6-46                           | oxygen    | transient error at start                                   |
| 87      | 4-20                           | oxygen    | transient error at start                                   |
| au0806  |                                |           |                                                            |
| 4       | 4-18                           | oxygen    | transient error at start                                   |
| 5       | 4-102                          | oxygen    | transient error at start                                   |
| 15      | 3768                           | oxygen    | fouling after bottom contact                               |
| 47      | 200-2000                       | oxygen    | maybe innaccurate by up to ~2umol/l due to lack of bottles |
| 64      | 250-1700                       | oxygen    | reduced accurcay due to small number of bottles            |

 $\underline{\text{Table 10:}}$  Bad salinity bottle samples (not deleted from bottle data file) for cruises au0803 and au0806.

| au      | 0803             | au      | 0806             |
|---------|------------------|---------|------------------|
| station | rosette position | station | rosette position |
| 1       | 7,17,18          | 1       | 24               |
| 20      | 24               | 4       | 8                |
| 23      | 18               | 12      | 21,24            |
| 33      | 3,5              | 14      | 12               |
| 43      | 13               | 16      | 5                |
| 51      | 15               | 20      | 17               |
| 54      | 24               | 21      | 8                |
| 55      | 13               | 23      | 21               |
| 56      | 24               | 25      | 5                |
| 69      | 21               | 27      | 9                |
| 91      | 2                | 37      | 7                |
| 93      | 12               | 43      | 9                |
| 97      | 18               | 46      | 21               |
| 99      | 3                | 55      | 22               |
| 103     | 12               | 59      | 13               |
| 110     | 6                | 64      | 18               |
| 111     | 19               | 65      | 7                |
| 119     | 12               | 66      | 18               |
| 124     | 20               | 70      | 9                |
|         |                  | 71      | 9                |

Table 11a: Suspect nutrient sample values (not deleted from bottle data file) for cruise au0803.

| PHOSF             | PHATE               | NITRA                                                                                                                                          | ŤΕ                                                                                                                                                                                                          | SILIC             | ATE     |
|-------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|
| station<br>number | rosette<br>position | station<br>number                                                                                                                              | rosette<br>position                                                                                                                                                                                         | station<br>number | .000110 |
|                   |                     | 8<br>12<br>16<br>17<br>21                                                                                                                      | whole stn<br>15,18<br>1<br>6,8,10<br>6                                                                                                                                                                      |                   |         |
| 74                | 20                  | 26<br>24,26-29<br>34<br>39<br>43<br>52<br>57<br>60,61<br>62<br>68<br>74<br>78-80<br>81<br>95<br>97<br>94-97<br>106<br>107<br>110<br>124<br>126 | 2<br>whole stn<br>8<br>10,12,13,16<br>1,7<br>15-19<br>9-13<br>whole stn<br>1-6,17-21,24<br>14-16<br>20<br>whole stn<br>1<br>4,6,8<br>4,16<br>whole stn<br>4,6,18,20<br>6,8,10,12<br>20<br>6,8-11,20<br>9-15 |                   |         |

Table 11b: Suspect nutrient sample values (not deleted from bottle data file) for cruise au0806.

| PHOSPHATE         |                     | NITRATE           |                     | SILICATE          |                     |
|-------------------|---------------------|-------------------|---------------------|-------------------|---------------------|
| station<br>number | rosette<br>position | station<br>number | rosette<br>position | station<br>number | rosette<br>position |
|                   |                     | 2                 | 6                   |                   |                     |
|                   |                     | 5                 | 17,19               |                   |                     |
| 7                 | 14                  | 7                 | 14                  |                   |                     |
| 9                 | 6                   | 9                 | 6                   | 9                 | 6                   |
| 14                | 11                  |                   |                     |                   |                     |
|                   |                     | 16                | 11                  |                   |                     |
|                   |                     | 17                | 1-4                 |                   |                     |
| 23                | 4                   |                   |                     |                   |                     |
| 27                | 9                   | 27                | 9                   | 27                | 9                   |
|                   |                     | 29                | 9-15                |                   |                     |
|                   |                     | 35                | 3-6                 |                   |                     |
|                   |                     | 36                | 24                  |                   |                     |
|                   |                     | 38                | 15                  |                   |                     |
|                   |                     | 39                | 2-5                 |                   |                     |
| 40                | 13,14               | 40                | 13,14               |                   |                     |
|                   |                     | 46                | 11-21,24            |                   |                     |
|                   |                     | 50                | 1-4,7,8             |                   |                     |
| 53                | 9                   | 53                | 9                   | 53                | 9                   |
|                   |                     | 54                | 9-12                |                   |                     |
|                   |                     | 55                | 8                   |                   |                     |
|                   |                     | 59                | 9                   |                   |                     |
|                   |                     | 63                | 11                  |                   |                     |
|                   |                     | 67                | 3                   |                   |                     |

 $\underline{\text{Table 12:}}$  Suspect dissolved oxygen bottle values (not deleted from bottle data file) for cruises au0803 and au0806.

| station | rosette position |  |  |
|---------|------------------|--|--|
| au0803  |                  |  |  |
| -       | -                |  |  |
| au0806  |                  |  |  |
| 16      | 16               |  |  |
| 19      | 9                |  |  |
| 36      | 1                |  |  |
| 38      | 11               |  |  |
| 66      | 1                |  |  |

# Table 13a: Scientific personnel (cruise participants) for cruise au0803.

Edi Albert doctor, CTD

Margot Foster media, CTD

Beverley Henry hydrochemistry
Chris Kuplis comms, CTD

Sarah Merefield biology, CTD

Alicia Navidad hydrochemistry

Tomas Remenyi hydrochemistry, iceberg sampling

Steve Rintoul CTD, CASO chief scientist

Mark Rosenberg CTD, moorings Ben Smethurst biology, CTD

Jess Trevena CTD Esmee van Wijk CTD

Kate Berry carbon
Melissa Coman carbon
Danica Ellicott carbon
Kristina Paterson carbon
Emily Lemagie CFC
Mark Warner CFC

Helena Baird biology, sediment

Jean-François Barazer biology Rob Beaman biology Jules Biggart biology

Kim Briggs electronics, gear

Fred Busson biology
Romain Causse biology
Stefan Chilmonczyk biology
Stuart Crapper gear officer
Marc Eleaume biology
Bertrand Richer de Forges
Bryan Fry biology

Chris Gillies biology, sediment

Jeff Hoffman genetics Samuel Iglesias biology Glenn Johnstone biology

Andrea de Leon germanium, biology, sediment

Harvey Marchant biology
Jeff McQuaid genetics
Bernard Métivier biology
Sophie Mouge media, biology
Janette Norman biology
Catherine Ozouf-Costaz biology
Jack Pittar biology

Martin Riddle voyage leader, CEAMARC chief scientist

Sarah Robinson deputy voyage leader, biology

Belinda Ronai programming
Thomas Silberfeld biology
Aaron Spurr gear officer
Jill Sutton germanium
Hanne Thoen biology
Claire Thompson biology
Eivind Undheim biology

Tony Veness electronics, gear

# Table 13b: Scientific personnel (cruise participants) for cruise au0806.

Carrie Bloomfield hydrochemistry

Laura Herraiz Borreguero CTD Mehera Kidston CTD

Chris Kuplis comms, CTD
Alicia Navidad hydrochemistry
Mark Rayner hydrochemistry
Steve Rintoul CTD, voyage leader

Jean-Baptiste Sallee CTD
Serguei Sokolov CTD
Esmee van Wijk CTD
Jan Zika CTD

Kate Berry carbon **Andrew Bowie** trace metals Kim Briggs electronics Ed Butler trace metals biology Wee Cheah Daniel Cossa trace metals **Grady Cowley** carbon Cath Deacon doctor

Andrew Deep deputy voyage leader, continuous plankton recorder

Lars Heimburger trace metals
Sophie Hoft carbon
Peter Jansen programming
Delphine Lannuzel trace metals
Emily Lemagie CFC
Jesse McIvor biology
Kristing Paterson

Jesse McIvor biology
Kristina Paterson carbon
Alan Poole electronics
Tomas Remenyi trace metals

Tim Smit particulate inorganic carbon

Aaron Spurr gear
Jill Sutton germanium
Alessandro Tagliabue trace metals
Wenneke ten Hout carbon
Anais van Ditzhuyzen carbon
Mark Warner CFC

Ros Watson trace metals

Alice Watt particulate inorganic carbon

Martin Wille trace metals

 $\underline{\textbf{Table 14:}} \ \, \textbf{Summary of mooring deplyments/recoveries and ARGO float deployments on cruises au 0803 and au 0806. All times are UTC.}$ 

## au0803

| deployments  |                 |                     |      |                    |                        |
|--------------|-----------------|---------------------|------|--------------------|------------------------|
| PULSE3       | 44° 47.39'S     | 145° 35.10'E        | 3631 | 044416, 17/12/2007 | 44.7898°S 145.5850°E   |
| POLYNYA1     | 66° 12.027'S    | 143° 28.659'E       | 542  | 093315, 22/12/2007 | 66.20045°S 143.47765°E |
| POLYNYA2     | 66° 12.006'S    | 143° 10.065'E       | 590  | 164836, 22/12/2007 | 66.20010°S 143.16775°E |
| POLYNYA3     | 66° 11.958'S    | 142° 54.174'E       | 540  | 125401, 22/12/2007 | 66.19930°S 142.90290°E |
| POLYNYA-TEMP | A 66° 11.310'S  | 3 142° 55.326'E     | 537  | 144505, 22/12/2007 | 66.18850°S 142.92210°E |
| POLYNYA-TEMP | ъв 66° 11.118'S | 3 143° 28.064'E     | 529  | 182235, 04/01/2008 | 66.18530°S 143.46773°E |
| POLYNYA4     | 66° 10.804'S    | 143° 09.949'E       | 563  | 232926, 11/01/2008 | 66.18007°S 143.16581°E |
| ARGO #3636   | 44° 52.45'S     | 145° 31.58'E        |      | 0842, 17/12/2007   |                        |
|              |                 |                     |      |                    |                        |
| recoveries   |                 |                     |      |                    |                        |
|              | ===0 44 ====    | 4 4 4 0 4 6 4 6 1 5 |      | 000= 404404000= =  | 0 =00000 444 =00000=   |

| SAZC-10       | 53° 44.35'S    | 141° 46.13'E  | 2060 | 2325, 18/12/2007 | 53.7392°S 141.7688°E   |
|---------------|----------------|---------------|------|------------------|------------------------|
| POLYNYA-TEMPA | a 66° 11.310'S | 142° 55.326'E | 537  | 1249, 04/01/2008 | 66.18850°S 142.92210°E |
| POLYNYA-TEMPI | в 66° 11.118'S | 143° 28.064'E | 529  | 1305. 11/01/2008 | 66.18530°S 143.46773°E |

# au0806

| deployments |             |              |       |            |
|-------------|-------------|--------------|-------|------------|
| ARGÓ #2948  | 56° 24.37'S | 140° 05.50'E | 0445, | 05/04/2008 |
| ARGO #2953  | 53° 08.38'S | 142° 09.11'E | 1022, | 07/04/2008 |
| ARGO #2944  | 50° 59.18'S | 143° 21.05'E | 1359, | 10/04/2008 |
| ARGO #2952  | 48° 19.87'S | 144° 32.48'E | 1559, | 12/04/2008 |
| ARGO #2950  | 44° 44.12'S | 146° 01.30'E | 2202, | 14/04/2008 |









<u>Figure 1:</u> CTD station positions and ship's track for cruise au0803, for (a) whole cruise, and (b) southern stations.



Figure 2: CTD station positions and ship's track for cruise au0806.



Calibration data for cruise: au0803

Calibration file : a0803.bot Conductivity s.d. = 0.00003

Number of bottles used = 1401 out of 1522 Mean ratio for all bottles = 1.00000



Calibration data for cruise : au0806

Calibration file : a0806.bot Conductivity s.d. = 0.00002

Number of bottles used = 1243 out of 1368 Mean ratio for all bottles = 1.00000

<u>Figure 3:</u> Conductivity ratio  $c_{btl}/c_{cal}$  versus station number for cruises au0803 and au0806. The solid line follows the mean of the residuals for each station; the broken lines are  $\pm$  the standard deviation of the residuals for each station.  $c_{cal}$  = calibrated CTD conductivity from the CTD upcast burst data;  $c_{btl}$  = 'in situ' Niskin bottle conductivity, found by using CTD pressure and temperature from the CTD upcast burst data in the conversion of Niskin bottle salinity to conductivity.



Calibration data for cruise: au0803

Calibration file: a0803.bot

Mean offset salinity = 0.0000psu (s.d. = 0.0011 psu)

Number of bottles used = 1401 out of 1522



Calibration data for cruise: au0806

Calibration file: a0806.bot

Mean offset salinity = 0.0000psu (s.d. = 0.0008 psu)

Number of bottles used = 1243 out of 1368

<u>Figure 4:</u> Salinity residual ( $s_{btl}$  -  $s_{cal}$ ) versus station number for cruises au0803 and au0806. The solid line is the mean of all the residuals; the broken lines are  $\pm$  the standard deviation of all the residuals.  $s_{cal}$  = calibrated CTD salinity;  $s_{btl}$  = Niskin bottle salinity value.



<u>Figure 5:</u> Difference between primary and secondary temperature sensor  $(t_p - t_s)$  for CTD upcast burst data from Niskin bottle stops, for cruises au0803 and au0806.





<u>Figure 6:</u> Dissolved oxygen residual ( $o_{btl}$  -  $o_{cal}$ ) versus station number for cruises au0803 and au0806. The solid line follows the mean residual for each station; the broken lines are  $\pm$  the standard deviation of the residuals for each station.  $o_{cal}$ =calibrated downcast CTD dissolved oxygen;  $o_{btl}$ =Niskin bottle dissolved oxygen value. Note: values outside vertical axes are plotted on axes limits.



Figure 7: Nitrate+nitrite versus phosphate data for cruises au0803 and au0806.



Figure 8: Bulk plots showing intercruise comparison of oxygen and nutrient data for au0803 and au0103.



Figure 9: Bulk plots showing intercruise comparisons of oxygen and nutrient data on neutral density (i.e.  $\gamma$ ) surfaces, for (a) au0806 and au0103, and (b) au0806 and au9601.



<u>Figure 10a and b:</u> au0803 comparison between (a) CTD and underway temperature data (i.e. hull mounted temperature sensor), and (b) CTD and underway salinity data, including bestfit lines. Note: dls refers to underway data.



<u>Figure 11a and b:</u> au0806 comparison between (a) CTD and underway temperature data (i.e. hull mounted temperature sensor), and (b) CTD and underway salinity data, including bestfit lines. Note: dls refers to underway data.



Figure 12a and b: Nutrient and oxygen profiles for au0803 and au0806 overlap stations.



Figure 12c and d: Nutrient and oxygen profiles for au0803 and au0806 overlap stations.



Figure 12e and f: Nutrient and oxygen profiles for au0803 and au0806 overlap stations.

# APPENDIX 1 AU0806 Hydrochemistry Cruise Report

ALICIA NAVIDAD and MARK RAYNER, CSIRO CMAR

(this appendix summarised from the complete cruise lab report by the above authors)

Analaysts: Alicia Navidad and Mark Rayner (nutrients)
Carrie Bloomfield (dissolved oxygen)
Laura Herraiz Borreguero (salinity)

### A1.1 Nutrients

#### Set-up details:

| carrier used                                  | ASW          |
|-----------------------------------------------|--------------|
| diluent for manual standards                  | LNSW         |
| standard range used (nitrate+nitrite in µm/l) | 0-35         |
| standard range used (silicate in µm/l)        | 0-140        |
| standard range used (phosphate in µm/l)       | 0-3.0        |
| standard range used (nitrite in µm/l)         | 0-0.7        |
| SRM range used (nitrate+nitrite in µm/l)      | 10 & 30      |
| SRM range used (silicate in µm/l)             | 10, 30 & 140 |
| SRM range used (phosphate in µm/l)            | 1 & 3        |
| SRM range used (nitrite in µm/l)              | 0.1 & 0.3    |
|                                               |              |

The Lachat analyser was used for nutrient analyses on the cruise. Prior to running samples, initial quality runs gave values for detection limits and sampling precision, as well as accuracy and precision (Table A1.1).

<u>Table A1.1:</u> Detection limits (DL), sampling precision (SP), accuracy and precision from initial Lachat analyser quality run. Accuracy is reported as the % error over the top standard (35 for nitrate+nitrite, 140 for silicate, 3 for phosphate). The reported DL is the limit of detection of the analyte at 99% confidence interval.

| Nutrient (high/low)<br>in µmol/l | DL<br>µmol/l | SP<br>CV% | precision<br>CV% | accuracy low<br>% error | accuracy high<br>% error |
|----------------------------------|--------------|-----------|------------------|-------------------------|--------------------------|
| nitrate+nitrite (30/10)          | 0.021        | 0.31      | 0.11             | 0.79                    | 0.51                     |
| silicate (140/10)                | 0.015        | 0.07      | 0.16             | 0.15                    | 0.59                     |
| phosphate (3/1)                  | 0.016        | 0.47      | 0.29             | 0.31                    | 1.24*                    |

<sup>\*</sup> after working on phosphates and conducting another quality run, this value came down to 1.18%, and by the time station 2 dummy run was done it was below 1%

For each sample, 4 sampling tubes were taken, and 2 were frozen and 2 kept in the fridge. The fresh samples were analysed for phosphate, nitrate and silicate. The trace metal group also requested nitrite, and for these the frozen samples were used and separate runs were done.

The LNSW (low nutrient seawater) used was collected from Maria Island in October 2007, and was allowed to leach for several weeks. It was tested on the Lachat prior to cruise au0803, and shown to have very low if any concentration for all 3 nutrients.

The analysis on the cruise was carried out under new strict quality control protocols, including modifications to the frequency of standard reference materials and samples, cleaning regimes and post processing steps.

From trials undertaken with the Lachat dilutor, it was decided that for the level of accuracy required the dilutor would not be used. All standards were made manually, and stock standards were validated before the voyage.

A new excel macro created by Dave Terhell was used, allowing for a sensitivity factor to be applied, meaning any instrument/environmental drift could be accounted for uniformly throughout a run. The macro also calculated the precision between duplicate samples, highlighting any lying outside the designated deviation between duplicates. Highlighted samples were repeated.

#### A1.2 Dissolved oxygen

The DO system used for the voyage was the Scripps photometric system using the National Instrumentation A/D board and associated software and hardware. Standardisation was carried out every day prior to analyses, and a blank was performed at every reagent change. On two occasions the system was standardised against an external standard, with excellent comparison.

#### A1.3 Salinity

Guildline Autosal serial 62548 was used, calibrated with OSI international seawater standards. The instrument provided stable salinity data for the entire cruise. A large bubble at the start of the glass chamber was present consistently and did not interfere with the analysis (same as noted on au0803).

## A1.4 Laboratory temperature control

The new "sky lab" on the mezzanine deck was used for all hydrochemistry, and temperature stability in the lab was good. There were 3 temperature loggers situated in the lab, next to each of the instruments (Table A1.2).

<u>Table A1.2:</u> Laboratory temperature averages and standard deviations. For temperatures near the dissolved oxygen system and salinometer, temperature logger data was for 23/03/2008 to 16/04/2008. For the nutrient analyser, the logger malfunctioned, and the values in the table are only for 20/03/2008 to 23/03/2008.

| logger location         | average temperature (°C) | standard deviation<br>(°C) |
|-------------------------|--------------------------|----------------------------|
| dissolved oxygen system | m 20.52                  | 0.61                       |
| salinometer             | 21.2                     | 0.58                       |
| nutrient analyser       | 20.56                    | 0.32                       |

# APPENDIX 2 AU0803 CEAMARC/CASO and AU0806 CASO Chlorofluorocarbon (CFC) Measurements - Cruise Reports and Preliminary Data

MARK J. WARNER, University of Washington, Seattle

(this appendix merges the two cruise reports by the above author)

Samplers and Analysts: Mark J. Warner, University of Washington (warner@u.washington.edu) Emily Lemagie, University of Washington

Samples for the analysis of dissolved CFC-11, CFC-12, and CFC-113 were drawn from 1410 of the Niskin water samples collected during au0803, and 1148 of the Niskin water samples collected during au0806. When taken, water samples for CFC analysis were the first samples drawn from the 10-liter bottles. Care was taken to co-ordinate the sampling of CFCs with other samples to minimize the time between the initial opening of each bottle and the completion of sample drawing. In most cases, dissolved oxygen, alkalinity and dissolved inorganic carbon samples were collected within several minutes of the initial opening of each bottle. To minimize contact with air, the CFC samples were drawn directly through the stopcocks of the 10-liter bottles into 100-ml precision glass syringes equipped with 3-way plastic stopcocks. The syringes were immersed in a holding bath of seawater until analyzed.

For air sampling, a ~300 meter length of 3/8" OD Dekaron tubing was run from the portable laboratory to the bow of the ship. A flow of air was drawn through this line into the CFC van using an Air Cadet pump. The air was compressed in the pump, with the downstream pressure held at ~1.5 atm. using a back-pressure regulator. A tee allowed a flow (100 ml min<sup>-1</sup>) of the compressed air to be directed to the gas sample valves of the CFC analytical systems, while the bulk flow of the air (>7 l min<sup>-1</sup>) was vented through the back pressure regulator. Air samples were generally analyzed when the relative wind direction was within 100 degrees of the bow of the ship to reduce the possibility of shipboard contamination. The pump was run for approximately 30 minutes prior to analysis to insure that the air inlet lines and pump were thoroughly flushed. The average atmospheric concentrations determined during the cruises (from a set of 5 measurements analyzed when possible, n=33, for each cruise) were as follows: for au0803, 241.8 +/- 2.4 parts per trillion (ppt) for CFC-11, 538.6 +/- 2.2 ppt for CFC-12, and 69.7 +/- 3.2 ppt for CFC-113; for au0806, 241.4 +/- 0.9 parts per trillion (ppt) for CFC-11, 536.5 +/- 2.7 ppt for CFC-12, and 77.5 +/- 1.8 ppt for CFC-113.

Concentrations of CFC-11 and CFC-12, and CFC-113 in air samples, seawater and gas standards were measured by shipboard electron capture gas chromatography (EC-GC) using techniques modified from those described by Bullister and Weiss (1988). For seawater analyses, water was transferred from a glass syringe to a fixed volume chamber (~30 ml). The contents of the chamber were then injected into a glass sparging chamber. The dissolved gases in the seawater sample were extracted by passing a supply of CFC-free purge gas through the sparging chamber for a period of 4 minutes at 70 ml min<sup>-1</sup> for au0803, and at 80 ml min<sup>-1</sup> for au0806. Water vapor was removed from the purge gas during passage through an 18 cm long, 3/8" diameter glass tube packed with the desiccant magnesium perchlorate. The sample gases were concentrated on a cold-trap consisting of a 1/8" OD stainless steel tube with a ~10 cm section packed tightly with Porapak N (60-80 mesh). A vortex cooler, using compressed air at 95 psi, was used to cool the trap, to approximately -20°C. After 4 minutes of purging, the trap was isolated, and the trap was heated electrically to ~100°C. The sample gases held in the trap were then injected onto a precolumn (~25 cm of 1/8" O.D. stainless steel tubing packed with 80-100 mesh Porasil C, held at 70°C) for the initial separation of CFC-12, CFC-11 and CFC-113 from other compounds. After the CFCs had passed from the pre-column into the main analytical column (~183 cm of 1/8" OD stainless steel tubing packed with Carbograph 1AC, 80-100 mesh, held at 70°C) of GC1 (a HP 5890 Series II gas chromatograph with ECD), the flow through the pre-column was reversed to backflush slower eluting compounds.

The analytical system was calibrated frequently using a standard gas of known CFC composition. Gas sample loops of known volume were thoroughly flushed with standard gas and injected into the system. The temperature and pressure was recorded so that the amount of gas injected could be

calculated. The procedures used to transfer the standard gas to the trap, precolumn, main chromatographic column and EC detector were similar to those used for analyzing water samples. Two sizes of gas sample loops were used. Multiple injections of these loop volumes could be made to allow the system to be calibrated over a relatively wide range of concentrations. Air samples and system blanks (injections of loops of CFC-free gas) were injected and analyzed in a similar manner. For au0803, the typical analysis time for seawater, air, standard or blank samples was ~10.5 minutes. For au0806, the typical analysis time for seawater samples was 11.5 min., and for gas samples was ~10.5 minutes.

Concentrations of the CFCs in air, seawater samples and gas standards are reported relative to the SIO98 calibration scale (Prinn et. al., 2000). Concentrations in air and standard gas are reported in units of mole fraction CFC in dry gas, and are typically in the parts per trillion (ppt) range. Dissolved CFC concentrations are given in units of picomoles per kilogram seawater (pmol kg<sup>-1</sup>). CFC concentrations in air and seawater samples were determined by fitting their chromatographic peak areas to multi-point calibration curves, generated by injecting multiple sample loops of gas from a working standard (UW cylinder 45191 for CFC-11: 386.94 ppt, CFC-12: 200.92 ppt, and CFC-113: 105.4 ppt) into the analytical instrument. The response of the detector to the range of moles of CFC-12 and CFC-113 passing through the detector remained relatively constant during the cruises. The response of the detector to the upper range of CFC-11 amounts was found to slowly change during the cruises. Full-range calibration curves were run at intervals of 10 days during the cruises. These were supplemented with occasional injections of multiple aliquots of the standard gas at more frequent time intervals. Single injections of a fixed volume of standard gas at one atmosphere were run much more frequently (at intervals of ~90 minutes) to monitor short-term changes in detector sensitivity. The CFC-113 peak was often on a small bump on the baseline, resulting in a large dependence of the peak area on the choice of endpoints for integration. The height of the peak was instead used to provide better precision. For au0803, the precisions of measurements of the standard gas in the fixed volume (n=784) were ± 0.51% for CFC-12, 0.81% for CFC-11, and 4.2% for CFC-113. For au0806, the precisions of measurements of the standard gas in the fixed volume (n=450) were ± 0.61% for CFC-12, 0.89% for CFC-11, and 5.2% for CFC-113.

The efficiency of the purging process was evaluated periodically by re-stripping high concentration surface water samples and comparing the residual concentrations to initial values. For au0803, these re-strip values were approximately 2-3 % for all 3 compounds, and a fit of the re-strip efficiency as a function of temperature will be applied to the final data set; no correction has been applied to the preliminary data set. For au0806, these re-strip values were approximately 1% for all 3 compounds, and a correction has been applied to the shipboard data.

The determination of a blank due to sampling and analysis of CFC-free waters was hampered by the lack of CFC-free waters. For au0803, at CTD 1 CFCs in the deepest sample at 3000 m were 0.005 pmol kg<sup>-1</sup> for CFC-11 and CFC-12. For au0806, at several stations at the northern end of the section, CFCs in the deepest sample were measured to be less than 0.005 pmol kg<sup>-1</sup> for CFC-11 and CFC-12. No sampling blank corrections have been made to the preliminary data sets.

For au0803, based on the analysis of 74 duplicate samples, we estimate precisions (1 standard deviation) of 1.1% or 0.006 pmol kg<sup>-1</sup> (whichever is greater) for dissolved CFC-11, 0.56% or 0.003 pmol kg<sup>-1</sup> for CFC-12 measurements, and 2.8% or 0.004 pmol kg<sup>-1</sup> for CFC-113.

For au0806, based on the analysis of 46 duplicate samples, we estimate precisions (1 standard deviation) of 0.75% or 0.003 pmol  ${\rm kg}^{\text{-}1}$  (whichever is greater) for dissolved CFC-11, 0.30% or 0.003 pmol  ${\rm kg}^{\text{-}1}$  for CFC-12 measurements, and 4.8% or 0.005 pmol  ${\rm kg}^{\text{-}1}$  for CFC-113.

A very small number of water samples had anomalously high CFC concentrations relative to adjacent samples. These samples occurred sporadically during the cruises and were not clearly associated with other features in the water column (e.g. anomalous dissolved oxygen, salinity or temperature features). This suggests that these samples were probably contaminated with CFCs during the sampling or analysis processes. Measured concentrations for these anomalous samples are included in the preliminary data, but are given a quality flag value of either 3 (questionable measurement) or 4 (bad measurement).

For au0806, a small amount of water vapor made its way onto the chromatographic column on April

10th and resulted in less than optimal performance of the analytical system for a few days. During that time CFC-113 peaks were located atop a broad contaminant peak and difficult to integrate. A large amount of CFC-113 data are flagged as bad (4) during this period. As the contamination cleared up over 2-3 days, this broad peak gradually disappeared. CFC-113 values have been flagged as questionable during this interval, until the baseline was flat. Although the baseline was very noisy, the data quality for CFC-11 and CFC-12 was only slightly worse than normal and was not flagged.

- Bullister, J.L. and Weiss, R.F., 1988. Determination of CC1<sub>3</sub>F and CC1<sub>2</sub>F<sub>2</sub> seawater and air. *Deep-Sea Research*, 25, 839-853.
- Prinn, R. G., Weiss, R.F., Fraser, P.J., Simmonds, P.G., Cunnold, D.M., Alyea, F.N., O'Doherty, S., Salameh, P., Miller, B.R., Huang, J., Wang, R.H.J., Hartley, D.E., Harth, C., Steele, L.P., Sturrock, G., Midgley, P.M. and McCulloch, A., 2000. A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. *Journal of Geophysical Research*, 105, 17,751-17,792