Riassunto di probabilità

Matti Martelli

Indice

L	Formule importanti		
2	Var	iabili al	leatorie
	2.1	Funzior	ne di ripartizione
	2.2	Variabi	li aleatorie discrete
		2.2.1	Distribuzione di Bernoulli
		2.2.2	Distribuzione binomiale
		2.2.3	Distribuzione geometrica
		2.2.4	Distribuzione di Poisson
		2.2.5	Distribuzione ipergeometrica
	2.3	Variabi	li aleatorie assolutamente continue
		2.3.1	Distribuzione continua uniforme
		2.3.2	Distribuzione esponenziale

1 Formule importanti

Lo spazio probabilistico è sempre (Ω, \mathscr{F}, P) e gli eventi e relative intersezioni hanno sempre probabilità al minimo nulla.

 $\textbf{Definizione 1} \ (\textbf{Formula delle probabilità totali}).$

$$P(E) = \sum_{k=1}^{n} P(E|F_k) P(F_k),$$

dove $\bigcup_{k=1}^n F_k = \Omega$ e $F_h \cap F_k = \emptyset$, $\forall h \neq k$.

Definizione 2 (Formula di Bayes).

$$P(F_h|E) = \frac{P(E|F_h) P(F_h)}{\sum_{k=1}^{n} P(E|F_k) P(F_k)},$$

per h = 1, 2, ..., n.

Definizione 3 (Formula della moltiplicazione).

$$P(E_1 \cap E_2 \cap ... \cap E_n) = P(E_1) P(E_2 | E_1) P(E_3 | E_1 \cap E_2) ... P(E_n | E_1 \cap E_2 \cap ... \cap E_{n-1}).$$

Definizione 4 (Indipendenza). Due eventi $E \in F$ sono indipendenti se

$$P(E \cap F) = P(E) P(F).$$

Ne deriva che, se indipendenti, P(E|F) = P(E) e viceversa. Per estenderlo a più eventi bisogna verificare la formula per tutte le combinazioni, estendendola secondo necessità.

2 Variabili aleatorie

Definizione 5 (Variabile aleatoria). Una variabile aleatoria X è una funzione $\Omega \to \mathbb{R}$ tale che, $\forall x \in \mathbb{R}$,

$$\{X \leqslant x\} := \{\omega \in \Omega \mid X(\omega) \leqslant x\} \in \mathscr{F}.$$

2.1 Funzione di ripartizione

Definizione 6 (Funzione di ripartizione). Si chiama funzione di ripartizione di X la funzione $F_X : \mathbb{R} \to [0, 1]$ definita come

$$F_X(x) := P(X \leqslant x).$$

Proprietà:

- F_X è una funzione monotona non decrescente;
- F_X è continua da destra, cio
è $\lim_{x\to x_0^-} F_X(x) = F_X(x_0), \, \forall \, x_0 \in \mathbb{R};$
- $\lim_{x\to-\infty} F_X(x) = 0$ e $\lim_{x\to+\infty} F_X(x) = 1$.

Se abbiamo una funzione $F: \mathbb{R} \to \mathbb{R}$ che soddisfa queste medesime proprietà essa è detta funzione di distribuzione.

2.2 Variabili aleatorie discrete

Definizione 7 (Variabile aleatoria discreta). Una variabile aleatoria è detta discreta quando può assumere valori su un insieme al più numerabile.

Definizione 8 (Funzione di densità). La funzione f_X , alternativamente scritta come p_X , definita come

$$f_X(x) := P(X = x)$$

è detta funzione di densità discreta X o, semplicemente, densità discreta di X.

Proprietà su un insieme $S := \{x_k \mid k \in I \subset \mathbb{Z}\}:$

- $0 \leqslant f_X(x) \leqslant 1 \ \forall x \in \mathbb{R} \ e \ f_X(x) = 0 \ \forall x \notin S$;
- $\sum_{k \in I} f_X(x_k) = 1;$
- $F_X(x) = \sum_{k:x_k \leq x} f_X(x_k);$
- $f_X(x_k) = F_X(x_k) F_X(x_{k-1});$
- $P(X \in B) = \sum_{k:x_k \in B} f_x(x_k)$, dove $B \subset \mathbb{R}$.

2.2.1 Distribuzione di Bernoulli

Si utilizza per calcolare la probabilità di una singola prova di Bernoulli. Si indica come $X \sim \mathbf{Be}(p)$, dove $p \in [0, 1]$.

Funzione di densità:

$$f_X(x) = \begin{cases} 1 - p & \text{se } x = 0\\ p & \text{se } x = 1\\ 0 & \text{altrimenti} \end{cases}$$

Funzione di ripartizione:

$$F_X(x) = \begin{cases} 0 & \text{se } x < 0 \\ 1 - p & \text{se } 0 \le x < 1 \\ 1 & \text{se } x \ge 1 \end{cases}$$

Media: E(X) = p.

Varianza: Var(X) = p(1 - p).

2.2.2 Distribuzione binomiale

Si utilizza per calcolare il numero di successi su n prove di Bernoulli. Si indica con $X \sim \mathbf{Bi}(n, p)$, dove $n \in \mathbb{N}$ e $p \in [0, 1]$. Nota: $\mathbf{Bi}(1, p) = \mathbf{Be}(p)$.

Funzione di densità:

$$f_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & \text{se } x = 0, \dots, x \\ 0 & \text{altrimenti} \end{cases}$$

Funzione di ripartizione:

$$F_X(x) = \sum_{k=0}^{x} \binom{n}{k} p^k (1-p)^{n-k}.$$

Media: E(X) = np.

Varianza: Var(X) = np(1-p).

2.2.3 Distribuzione geometrica

Si utilizza per calcolare la probabilità che un successo avvenga dopo n tentativi. Si indica con $X \sim \mathbf{Geom}(p)$, dove $p \in [0, 1]$.

Funzione di densità:

$$f_X(x) = \begin{cases} p(1-p)^{x-1} & \text{se } x = 1, 2, \dots \\ 0 & \text{altrimenti} \end{cases}$$

Funzione di ripartizione:

$$F_X(x) = 1 - (1 - p)^x$$
.

Media: E(X) = p.

Varianza: $Var(X) = \frac{1-p}{p^2}$.

2.2.4 Distribuzione di Poisson

Si utilizza per calcolare la probabilità per eventi successivi ed indipendenti, sapendo che se ne verificano mediamente λ . Si indica con $X \sim \mathcal{P}(\lambda)$, con $\lambda > 0$. Nota: **Bi** $(n, \lambda/n) \approx \mathcal{P}(\lambda)$.

Funzione di densità:

$$f_X(x) = \begin{cases} \frac{e^{\lambda} \lambda^x}{x!} & \text{se } x \in \{0, 1, 2, \ldots\} \\ 0 & \text{altrimenti} \end{cases}$$

Funzione di ripartizione:

$$F_X(x) = \frac{\Gamma(x+1, \lambda)}{x!}.$$

dove

$$\Gamma(a, x) = \int_{x}^{\infty} e^{-t} t^{a-1} dt.$$

Media: $E(X) = \lambda$. Varianza: $Var(X) = \lambda$.

2.2.5 Distribuzione ipergeometrica

Si utilizza per calcolare il numero di successi su n prove senza reinserimento. Si indica con $X \sim \mathbf{Iper}(b+r, r, n)$, dove $b+r, r, n \in \mathbb{N}$. Nota: $\mathbf{Iper}(b+r, r, 1) =$ $\mathbf{Be}\left(\frac{r}{b+r}\right)$.

Funzione di densità:

$$f_X(x) = \frac{\binom{r}{x}\binom{b}{n-x}}{\binom{r+b}{x}}.$$

Funzione di ripartizione:

$$F_X(x) = \sum_{k=1}^{x} f_X(k).$$

Media: $E(X) = \frac{rn}{b+r}$. Varianza: $Var(X) = \frac{nbr}{(b+r)^2} \left(1 - \frac{n-1}{b+r-1}\right)$.

Variabili aleatorie assolutamente continue

Definizione 9 (Variabile aleatoria assolutamente continua). Una variabile aletoria X si dice assolutamente continua se esiste una funzione $f_X: \mathbb{R} \to \mathbb{R}^+$ integrabile, detta densita di X, tale che

$$F_X(x) = \int_{-\infty}^x f_X(s) \, \mathrm{d}s.$$

Proprietà:

• $\int_{\mathbb{R}} f_X(x) \, \mathrm{d}x = 1;$

• $f_X(x) = F'_X(x), \forall x \in \mathbb{R} \mid \exists F'_X(x);$

• se $-\infty < a < b < +\infty$ allora

$$P\left(X\in\left(a,\,b\right)\right)=P\left(X\in\left(a,\,b\right]\right)=P\left(X\in\left[a,\,b\right]\right)=\int_{a}^{b}f_{X}(x)\;\mathrm{d}x.$$

2.3.1 Distribuzione continua uniforme

Si usa quando tutti gli eventi hanno la medesima probabilità di verificarsi. Si indica con $X \sim \mathcal{U}(a, b)$ in [a, b].

Funzione di densità:

$$f_X(x) = \frac{1}{b-a}.$$

Funzione di ripartizione:

$$F_X(x) = \frac{x - a}{b - a}.$$

Media: $E(X) = \frac{a+b}{2}$. Varianza: $Var(X) = \frac{(b-a)^2}{12}$.

2.3.2 Distribuzione esponenziale

Analogo continuo della distribuzione geometrica. Si indica con $X \sim \varepsilon(\lambda)$, con $\lambda > 0$.

Funzione di densità:

$$f_X(x) = \lambda e^{-\lambda x}.$$

Funzione di ripartizione:

$$F_X(x) = 1 - e^{-\lambda x}.$$

Media: $E(X) = 1/\lambda$.

Varianza: $Var(X) = 1/\lambda^2$.