Grafos

Algoritmo de Dijkstra

Prof. Edson Alves

Faculdade UnB Gama

Proponente

Proponente

Edsger Wybe Dijkstra (1956)

 \star Computa o caminho mínimo de todos os vértices de G(V,E) a um dado nó s

 \star Computa o caminho mínimo de todos os vértices de G(V,E) a um dado nó s

* Processa corretamente apenas grafos com arestas não-negativas

 \star Computa o caminho mínimo de todos os vértices de G(V,E) a um dado nó s

* Processa corretamente apenas grafos com arestas não-negativas

* É eficiente: cada aresta é processada uma única vez

- \star Computa o caminho mínimo de todos os vértices de G(V,E) a um dado nó s
- * Processa corretamente apenas grafos com arestas não-negativas
- * É eficiente: cada aresta é processada uma única vez
- \star Complexidade: $O((V+E)\log V)$

Entrada: um grafo G(V,E) e um vértice $s\in V$

Saída: um vetor d tal que d[u] é a distância mínima em G entre s e u

Entrada: um grafo G(V,E) e um vértice $s\in V$

Saída: um vetor d tal que d[u] é a distância mínima em G entre s e u

1. Faça d[s]=0, $d[u]=\infty$ se $u\neq s$ e seja U=V

Entrada: um grafo G(V, E) e um vértice $s \in V$

Saída: um vetor d tal que d[u] é a distância mínima em G entre s e u

- 1. Faça d[s]=0, $d[u]=\infty$ se $u\neq s$ e seja U=V
- 2. Enquanto $U \neq \emptyset$:
 - (a) Seja $u \in U$ o vértice mais próximo de s em U
 - (b) Relaxe as distâncias usando as arestas que partem de u
 - (c) Remova u de U

Entrada: um grafo G(V, E) e um vértice $s \in V$

Saída: um vetor d tal que d[u] é a distância mínima em G entre s e u

- 1. Faça d[s]=0, $d[u]=\infty$ se u
 eq s e seja U=V
- 2. Enquanto $U \neq \emptyset$:
 - (a) Seja $u \in U$ o vértice mais próximo de s em U
 - (b) Relaxe as distâncias usando as arestas que partem de u
 - (c) Remova u de U
- 3. Retorne d

Relaxamento

Relaxamento c r_4 r_3 r_4 r_4 r_4 r_4 r_4 r_4 r_5 r_6 r_8 r_8

 s_3

Relaxamento

$$\operatorname{dist}(s,u) = \sum_{i=1}^4 r_i \qquad \qquad \operatorname{dist}(s,v) = \sum_{j=1}^3 s_i$$

Relaxamento c r_4 w s s_2

 s_3

Relaxamento

Se
$$\operatorname{dist}(s,u)+w<\operatorname{dist}(s,v)$$
, faça $\operatorname{dist}(s,v)=\operatorname{dist}(s,u)+w$

	A	В	С	D	E	F	
$dist(u, \mathbf{A})$	0	∞	∞	∞	∞	8	

 $U=\{ ext{ A, B, C, D, E, F }\}$

						•
$dist(u, \mathbf{A})$	0	∞	∞	∞	∞	∞

$dist(u, \mathbf{A})$	0	9	∞	∞	∞	∞

					_	•	
$dist(u, \mathbf{A})$	0	9	7	∞	∞	∞	

						•
$dist(u, \mathbf{A})$	0	9	7	4	∞	∞

			C	U		
$dist(u, \mathbf{A})$	0	9	7	4	2	∞

					_	•	
$dist(u, \mathbf{A})$	0	9	7	4	2	∞	

					_	•	
$dist(u, \mathbf{A})$	0	9	7	4	2	∞	

	A	D	L	ט		<u> </u>
$dist(u, \mathbf{A})$	0	9	7	3	2	8

	A	В	C	D	E	F	
$dist(u, \mathbf{A})$	0	9	7	3	2	13	

 $U=\{\;\textbf{B, C, D, F}\;\}$

		_	С	_	_	-	
$dist(u, \mathbf{A})$	0	9	7	3	2	13	$U=\{$ B, C, I

	• •	_	_	D	_	•	
$dist(u, \mathbf{A})$	0	9	5	3	2	13	$U=\{ \mathbf{B},\mathbf{C},\mathbf{F} \}$

	• •	_	С	_	_	•
$dist(u, \mathbf{A})$	0	9	5	3	2	13

	• •	В	_	_	_	•	
$dist(u, \mathbf{A})$	0	6	5	3	2	13	$U=\{\; {\sf B,F}\; \}$

					E	•	
$dist(u,\mathbf{A})$	0	6	5	3	2	13	$U = \{ \mathbf{F} \}$

					_	•
$dist(u, \mathbf{A})$	0	6	5	3	2	9

 $U=\{\;\mathbf{F}\;\}$

	A	В	C	D	E	F	
$dist(u, \mathbf{A})$	0	6	5	3	2	9	U =

Problemas sugeridos

- 1. AtCoder Beginner Contest 137 Problem E: Coin Respawn
- 2. CSES 1673 High Score
- 3. OJ 423 MPI Maelstrom
- 4. **OJ 534 Frogger**

Referências

- 1. HALIM, Felix; HALIM, Steve. Competitive Programming 3, 2010.
- 2. LAAKSONEN, Antti. Competitive Programmer's Handbook, 2018.
- 3. SKIENA, Steven; REVILLA, Miguel. Programming Challenges, 2003.
- 4. Wikipédia, Dijkstra's algorithm. Acesso em 13/07/2021.
- 5. Wikipédia, Edsger W. Dijkstra. Acesso em 13/07/2021.