Chapter 3: Cluster Analysis

- > 3.1 Basic Concepts of Clustering
 - 3.1.1 Cluster Analysis
 - 3.1.2 Clustering Categories
- 3.2 Partitioning Methods
 - 3.2.1 The principle
 - 3.2.2 K-Means Method
 - 3.2.3 K-Medoids Method
 - 3.2.4 CLARA
 - 3.2.5 CLARANS
- > 3.3 Hierarchical Methods
- 3.4 Density-based Methods
- 3.5 Clustering High-Dimensional Data
- > 3.6 Outlier Analysis

3.1.1 Cluster Analysis

- Unsupervised learning (i.e., Class label is unknown)
- Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns
- Principle: Maximizing intra-class similarity & minimizing interclass similarity

Typical Applications

→ WWW, Social networks, Marketing, Biology, Library, etc.

3.1.2 Clustering Categories

Partitioning Methods

→ Construct k partitions of the data

Hierarchical Methods

→ Creates a hierarchical decomposition of the data

Density-based Methods

→ Grow a given cluster depending on its density (# data objects)

Grid-based Methods

→ Quantize the object space into a finite number of cells

Model-based methods

 Hypothesize a model for each cluster and find the best fit of the data to the given model

Clustering high-dimensional data

→ Subspace clustering

Constraint-based methods

→ Used for user-specific applications

Chapter 3: Cluster Analysis

- 3.1 Basic Concepts of Clustering
 - 3.1.1 Cluster Analysis
 - 3.1.2 Clustering Categories
- 3.2 Partitioning Methods
 - 3.2.1 The principle
 - 3.2.2 K-Means Method
 - 3.2.3 K-Medoids Method
 - 3.2.4 CLARA
 - 3.2.5 CLARANS
- > 3.3 Hierarchical Methods
- 3.4 Density-based Methods
- 3.5 Clustering High-Dimensional Data
- > 3.6 Outlier Analysis

3.2.1 Partitioning Methods: The Principle

- Given
 - → A data set of **n** objects
 - → **K** the number of clusters to form
- Organize the objects into k partitions (k<=n) where each partition represents a cluster
- The clusters are formed to optimize an objective partitioning criterion
 - → Objects within a cluster are similar
 - → Objects of different clusters are dissimilar

3.2.2 K-Means Method

Choose 3 objects (cluster centroids)

Assign each object to the closest centroid to form Clusters

Goal: create 3 clusters (partitions)

Update cluster centroids

K-Means Method

Recompute Clusters

If Stable centroids, then stop

K-Means Algorithm

Input

- → K: the number of clusters
- → D: a data set containing n objects
- Output: A set of k clusters
- Method:
 - (1) Arbitrary choose k objects from D as in initial cluster centers
 - (2) Repeat
 - (3) Reassign each object to the most similar cluster based on the mean value of the objects in the cluster
 - (4) Update the cluster means
 - (5) **Until** no change

K-Means Properties

The algorithm attempts to determine k partitions that minimize the square-error function

$$E = \sum_{i-1}^{k} \sum_{p \in C_i} (p - m_i)^2$$

- → E: the sum of the squared error for all objects in the data set
- → P: the data point in the space representing an object
- → m_i: is the mean of cluster C_i
- It works well when the clusters are compact clouds that are rather well separated from one another

K-Means Properties

Advantages

- K-means is relatively scalable and efficient in processing large data sets
- The computational complexity of the algorithm is O(nkt)
 - → **n:** the total number of objects
 - → **k**: the number of clusters
 - → t: the number of iterations
 - → Normally: k<<n and t<<n

Disadvantage

- Can be applied only when the mean of a cluster is defined
- Users need to specify k
- K-means is not suitable for discovering clusters with nonconvex shapes or clusters of very different size
- It is sensitive to noise and outlier data points (can influence the mean value)

Variations of the K-Means Method

- A few variants of the **k-means** which differ in
 - → Selection of the initial k means
 - → Dissimilarity calculations
 - → Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang'98)
 - → Replacing means of clusters with modes
 - → Using new dissimilarity measures to deal with categorical objects
 - → Using a <u>frequency</u>-based method to update modes of clusters
 - → A mixture of categorical and numerical data

November 2, 2010

Data Mining: Concepts and Techniques

11

3.2.3 K-Medoids Method

- Minimize the sensitivity of k-means to outliers
- Pick actual objects to represent clusters instead of mean values
- Each remaining object is clustered with the representative object (Medoid) to which is the most similar
- The algorithm minimizes the sum of the dissimilarities between each object and its corresponding reference point

$$E = \sum_{i-1}^{k} \sum_{p \in C_i} |p - o_i|$$

- → E: the sum of absolute error for all objects in the data set
- → P: the data point in the space representing an object
- → O_i: is the representative object of cluster C_i

K-Medoids Method: The Idea

- Initial representatives are chosen randomly
- The iterative process of replacing representative objects by no representative objects continues as long as the quality of the clustering is improved
- For each representative Object O
 - → For each non-representative object R, swap O and R
- Choose the configuration with the lowest cost
- Cost function is the difference in absolute error-value if a current representative object is replaced by a non-representative object

Data Objects

	A ₁	A ₂
O ₁	2	6
O_2	3	4
O_3	3	8
O_4	4	7
O ₅	6	2
O_6	6	4
O ₇	7	3
O ₈	7	4
O_9	8	5
O ₁₀	7	6

Goal: create two clusters

Choose randmly two medoids

$$O_2 = (3,4)$$

 $O_8 = (7,4)$

Data Objects

	\mathbf{A}_{1}	A_2
O ₁	2	6
O ₂	3	4
O_3	3	8
O_4	4	7
O ₅	6	2
O_6	6	4
O ₇	7	3
O ₈	7	4
O_9	8	5
O ₁₀	7	6

- →Assign each object to the closest representative object
- \rightarrow Using L1 Metric (Manhattan), we form the following clusters

Cluster1 =
$$\{O_1, O_2, O_3, O_4\}$$

Cluster2 =
$$\{O_5, O_6, O_7, O_8, O_9, O_{10}\}$$

Data Objects

8

7

5

O₉

O₁₀

→Compute the absolute error criterion [for the set of Medoids (O2,O8)]

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} p - o_i \mid \exists o_1 - o_2 \mid + \mid o_3 - o_2 \mid + \mid o_4 - o_2 \mid + \mid o_5 - o_8 \mid + \mid o_6 - o_8 \mid + \mid o_7 - o_8 \mid + \mid o_9 - o_8 \mid + \mid o_{10} - o_$$

$$+|o_5-o_8|+|o_6-o_8|+|o_7-o_8|+|o_9-o_8|+|o_{10}-o_{8}|$$

Data Objects

	\mathbf{A}_{1}	\mathbf{A}_{2}
O ₁	2	6
O ₂	3	4
O_3	3	8
O ₄	4	7
O ₅	6	2
O_6	6	4
O ₇	7	3
O ₈	7	4

5

6

O₉

O₁₀

→The absolute error criterion [for the set of Medoids (O2,O8)]

$$E = (3+4+4)+(3+1+1+2+2) = 20$$

Data Objects

	\mathbf{A}_{1}	$\mathbf{A_2}$
0 ₁	2	6
02	3	4
O_3	3	8
O_4	4	7
O ₅	6	2
O_6	6	4
0,	7	3

4

5

O₈

O₉

O₁₀

- →Choose a random object O₇
- →Swap **O8** and **O7**
- →Compute the absolute error criterion [for the set of Medoids (O2,O7)]

$$E = (3+4+4)+(2+2+1+3+3)=22$$

Data Objects

	A ₁	A_2
O ₁	2	6
02	3	4
O_3	3	8
O_4	4	7
O ₅	6	2
O_6	6	4
O ₇	7	3
O ₈	7	4
O ₉	8	5
O ₁₀	7	6

→Compute the cost function

Absolute error [for O_2, O_7] – Absolute error $[O_2, O_8]$

$$S = 22 - 20$$

 $\mbox{S> 0} \Rightarrow \mbox{it}$ is a bad idea to replace \mbox{O}_{8} by \mbox{O}_{7}

K-Medoids Method

Data Objects

	\mathbf{A}_{1}	A_2
O ₁	2	6
02	3	4
O_3	3	8
O_4	4	7
O ₅	6	2
O_6	6	4
O ₇	7	3
O ₈	7	4
O_9	8	5
O ₁₀	7	6

- In this example, changing the medoid of cluster 2 did not change the assignments of objects to clusters.
- What are the possible cases when we replace a medoid by another object?

K-Medoids Method

First case

The assignment of **P** to **A** does **not change**

- Representative object
- Random Object
- Currently P assigned to A

- Representative object
- Random Object
- Currently P assigned to B

Second case

P is reassigned to A

K-Medoids Method

- Representative object
- Random Object
- Currently P assigned to B

- Representative object
- Random Object

Currently P assigned to A

Third case

P is reassigned to the new B

Fourth case

P is reassigned to B