Exercise 1.

- (a)(i) We prove that δ is well defined by a contrapositive proof i.e. if $\exists a \in \Sigma \ [xa] \neq [ya]$, then $[x] \neq [y]$. Suppose $[xa] \neq [ya]$ for $a \in \Sigma$, then $(xa, ya) \notin R_L$. This means that $\exists w \in \Sigma^*$ such that $xaw \in L$ but $yaw \notin L$ or vice versa. Now let z = aw, we have $xz \in L \land yz \notin L$ or vice versa. Hence, $(x, y) \notin R_L$ and $[x] \neq [y]$. We conclude by contrapositive that if [x] = [y] then [xa] = [ya] for all $a \in \Sigma$.
- (ii) We prove a more general statement i.e. $\forall x \in \Sigma^* \ \hat{\delta}([\epsilon], x) = [x]$. This implies $\hat{\delta}([\epsilon], x) \in F$ iff $x \in L$. Since if $x \in L$, then by the definition of F, $[x] = \hat{\delta}([\epsilon], x) \in F$. Conversely, if $\hat{\delta}([\epsilon], x) \in F \Leftrightarrow [x] \in F$, then by the definition of F, $x \in L$. Now we prove the lemma by an induction on |x|.
 - Basis case $x = \epsilon$. $\delta([\epsilon], \epsilon) = [\epsilon]$ by the definition of the transition function.
 - Step case Assume that $\hat{\delta}([\epsilon], x) = [x]$ for |x| < k. We prove for w = xa where $x \in \Sigma^{k-1}, a \in \Sigma$.

$$\hat{\delta}([\epsilon], xa) = \delta(\hat{\delta}([\epsilon], x), a)$$
 (definition of $\hat{\delta}$)
$$= \delta([x], a)$$
 (IH)
$$= [xa]$$
 (definition of δ)

Hence, we have proven the lemma.

(b). Denote the DFA in part (a) as $D = (Q, \Sigma, \delta, q_0, F)$. Let DFA $A = (Q_A, \Sigma, \delta_A, q_{0_A}, F_A)$ with L(A) = L and no unreachable state. Construct $f: Q_A \to Q$

$$f(\hat{\delta}_A(q_{0_A}, w)) = \hat{\delta}(q_0, w) \text{ for } \forall w \in \Sigma^*$$
(1)

f is well defined since

- for each $q \in Q_A$, there exists a $f(q) \in Q$. Let $q \in Q_A$, then $\exists w \in \Sigma^*$ such that $q = \hat{\delta}_A(q_{0_A}, w)$ since q is a reachable state by construction. By def of the constructed f, we have $f(q) = \hat{\delta}(q_0, w) = \hat{\delta}([\epsilon], w) \stackrel{part(b)}{=} [w] \in Q$
- and each $q \in Q_A$ has a unique mapping $f(q) \in Q$. Suppose $\hat{\delta}_A(q_{0_A}, x) = \hat{\delta}_A(q_{0_A}, y)$ for $x \neq y$, we show $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$. Let $w \in \Sigma^*$. $xw \in L \Leftrightarrow \hat{\delta}_A(q_{0_A}, xw) \in F_A \Leftrightarrow \hat{\delta}_A(\hat{\delta}_A(q_{0_A}, x), w) \in F_A \Leftrightarrow \hat{\delta}_A(\hat{\delta}_A(q_{0_A}, y), w) \in F_A \Leftrightarrow \hat{\delta}_A(q_{0_A}, yw) \in F_A \Leftrightarrow yw \in L$. Hence, $\forall w \in \Sigma^*, xw \in L \Leftrightarrow yw \in L$, i.e. $(x, y) \in R_L \Leftrightarrow [x] = [y] \Leftrightarrow \hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$

If A has fewer states than D, then f means there exists at least one state $[x] \in D$ such that for $\forall w \in \Sigma^*$, $f(\hat{\delta}_A(q_{0_A}, w)) \neq [x]$. However, $f(\hat{\delta}_A(q_{0_A}, x)) = \hat{\delta}(q_0, x) = [x]$, this is a contradiction. Therefore, A must have at least as many states as D. For A with unreachable states, it must be more. Hence D is the minimal DFA for L.

We prove that any DFA $A = (Q_A, \Sigma, \delta_A, q_{0_A}, F_A)$ with L(A) = L has at least as many states as D, by constructing a surjective function f from Q_A to Q. We adapted the proof from solutions of Tutorial 2. Define $S(q) = \{w \in \Sigma^* \mid \hat{\delta}(q_{0_A}, w) = q\}$, and f

$$f: \{q \in Q_A \mid S(q) \neq \emptyset\} \to \{[x] \mid x \in \Sigma^*\}$$
$$f(q) = [x] \text{ with } S(q) \subseteq [x]$$

We show that f is well defined, i.e.

- $\forall q \in Q_A$ such that $S(q) \neq \emptyset$, $\exists [x] \in Q$ with $S(q) \subseteq [x]$ Proof. For $q \in Q_A$, pick $[x] \in Q$ such that $x \in S(q)$. Now for $\forall u, v \in S(q)$, we proved in the tutorial that $(u, v) \in R_L$. Hence for $\forall u \in S(q), (x, u) \in R_L$. Hence, $u \in [x]$, and $S(q) \subseteq [x]$
- if f(q) = [x] and f(q) = [y] for $x \neq y$, then [x] = [y]Proof. Suppose f(q) = [x] and f(q) = [y], then $S(q) \subseteq [x]$ and $S(q) \subseteq [y]$. Then $u \in S(q) \Rightarrow u \in [x] \Leftrightarrow (x, u) \in R_L$; and $u \in S(q) \Rightarrow u \in [y] \Leftrightarrow (y, u) \in R_L \Leftrightarrow (u, y) \in R_L$. By transitivity, $(x, u) \in R_L \land (u, y) \in R_L \Rightarrow (x, y) \in R_L \Leftrightarrow [x] = [y]$

Now, we show that f is surjective. For $[x] \in Q$, we pick $q = \hat{\delta}(q_{0_A}, x) \in Q_A$. $S(q) \neq \emptyset$ since $x \in S(q)$ by definition. We only need to show $S(q) \subseteq [x]$. By the same argument that $\forall u, v \in S(q), (u, v) \in R_L$. $u \in S(q) \Rightarrow (x, u) \in R_L \Leftrightarrow u \in [x]$.

Since f is surjective, then for every state [x] in DFA D, there are corresponding reachable states in DFA A that are mapped to [x], and the cardinality of Q_A exclusive of unreachable states is at least the cardinality of Q. Hence, any DFA that accepts L would have at least as many states as DFA D. Then D is the minimal DFA.

Exercise 2.

- (a) Pick n=7. We consider $w = a^j c^k a^l b^m \in L$ with $|w| \ge 7$ in two separate cases.
 - $0 \le j \le 5$, $k \ge 2$ and $l \ne m$ Divide w = xyz as $x = a^j c$, y = c, and $z = c^{k-2} a^l b^m$. $|xy| = j + 2 \le 7$ since $0 \le j \le 5$, |y| = 1 > 0, and by pumping y, we get
 - $-xy^0z = a^jcc^{k-2}a^lb^m = a^jc^{k-1}a^lb^m$ if k=2, then k-1=1, $l\neq m$ still means $xy^0z\in L$ if k>2, then $k-1\geq 2$, $l\neq m$ still holds, and $xy^0z\in L$
 - $\begin{array}{l} -xy^iz=a^jcc^ic^{k-2}a^lb^m=a^jc^{i+k-1}a^lb^m \text{ for } i>1\\ i+k-1>2 \text{ for } k\geq 2,\ l\neq m \text{ still holds, so } xy^iz\in L \text{ for } i>1 \end{array}$

Hence, all w when $k \geq 2$ satisfies the pumping lemma.

- $0 \le j \le 5$, k < 2 and $k, l, m \in \mathbb{N}$ Note that for $w \in L$ with $|w| \ge 7$, w should have at least one of l and m not being zero since j + k < 7
 - if $l \neq 0 \Leftrightarrow l \geq 1$, then we divide w = xyz such that $x = a^j c^k$, y = a, $z = a^{l-1}b^m$. $|xy| = j + k + 1 \leq 7$, |y| = 1 > 0, and $xy^iz = a^jc^ka^ia^{l-1}b^m = a^jc^ka^{i+l-1}b^m$ and $i + l 1 \geq 0$ for $i \in \mathbb{N}$, hence $xy^iz \in L$ for $\forall i \in \mathbb{N}$
 - if l=0, then $m \neq 0 \Leftrightarrow m \geq 1$. We divide w=xyz such that $x=a^jc^ka^0$, y=b, $z=b^{m-1}$. $|xy|=j+k+1\leq 7$, |y|=1>0, and $xy^iz=a^jc^ka^0b^ib^{m-1}=a^jc^ka^0b^{i+m-1}$ and $i+m-1\geq 0$ for $i\in\mathbb{N}$, hence $xy^iz\in L$ for $\forall i\in\mathbb{N}$

Hence, we have proven L satisfies the pumping lemma.

(b) We show that R_L has an infinite number of equivalence classes.

Consider $u = a^j c^k a^l b^m$ and $v = a^j c^k a^{l'} b^{m'}$ where $0 \le j \le 5$, $k \ge 2$, l > m and l' > m', $l - m \ne l' - m'$. Since $k \ge 2 \land l \ne m \land l' \ne m'$, by definition $u, v \in L$. Now pick $w = b^{l-m}$, $uw = a^j c^k a^l b^m b^{l-m} = a^j c^k a^l b^l \notin L$, but $vw = a^j c^k a^{l'} b^{m'} b^{l-m} = a^j c^k a^{l'} b^{m'+l-m} \in L$ since $m' + l - m \ne l'$. Hence, $(u, v) \notin R_L \Leftrightarrow [u] \ne [v]$. In other words, for any pair of $(u, v) \in L$ with $k \ge 2$ and distinct positive values of l - m, we have $[u] \ne [v]$. Since there is an infinite number of distinct positive values of l - m for $l, m \in \mathbb{N}$, there is an infinite number of distinct equivalence classes in R_L . By the Myhill-Nerode Theorem, L is not regular.

Exercise 3.

- (a) We prove a lemma i.e. $f(\hat{\delta}(q, w)) = \hat{\delta}'(f(q), w)$ for $\forall w \in \Sigma^*, \forall q \in Q$. Let $q \in Q$, by an induction on |w|,
 - Base case $w = \epsilon$ $f(\hat{\delta}(q, \epsilon)) = f(q)$ by the def of $\hat{\delta}$ and $\hat{\delta}'(f(q), \epsilon) = f(q)$ by def of $\hat{\delta}'$, hence $f(\hat{\delta}(q, \epsilon)) = \hat{\delta}'(f(q), \epsilon)$
 - Step case Assume the claim for $\forall w$ with |w| < n. Now we prove for w = xa where $x \in \Sigma^{n-1}$, $a \in \Sigma$

$$f(\hat{\delta}(q, xa)) = f(\delta(\hat{\delta}(q, x), a))$$
 (def of $\hat{\delta}$)
$$= \delta'(f(\hat{\delta}(q, x)), a)$$
 (def (3) of f)
$$= \delta'(\hat{\delta}'(f(q), x), a)$$
 (IH since $|x| < n$)
$$= \hat{\delta}'(f(q), xa)$$
 (def of $\hat{\delta}'$)

Hence, we have proven the lemma.

Now we prove $\mathcal{L}(P,q) = \mathcal{L}(P',f(q))$ for $\forall q \in Q$. Let $q \in Q, w \in \Sigma^*$

$$\begin{split} w &\in \mathscr{L}(P,q) \Leftrightarrow \hat{\delta}(q,w) \in F \\ &\Leftrightarrow f(\hat{\delta}(q,w)) \in F' \\ &\Leftrightarrow \hat{\delta}'(f(q),w) \in F' \\ &\Leftrightarrow w \in \mathscr{L}(P',f(q)) \end{split} \tag{def (2) of } f)$$

Hence the claim.

(b)

$$L(P) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$$

$$= \mathcal{L}(P, q_0) \qquad (\text{def of } \mathcal{L})$$

$$= \mathcal{L}(P', f(q_0) \qquad (\text{part (a)})$$

$$= \mathcal{L}(P', q'_0) \qquad (\text{def (1) of } f)$$

$$= \{ w \in \Sigma^* \mid \hat{\delta}'(q'_0, w) \in F' \}$$

$$= L(P')$$

Exercise 4.

- 1. We show validity of $(r^*)^* = r^*$ by proving $L((r^*)^*) = L(r^*)$. $L((r^*)^*) = L(r^*)^* = L(r)^* = L(r)^* = L(r)^*$ where the third equality uses the algebraic law of Kleene-*. Now we prove for $\forall L \subseteq \Sigma^*, (L^*)^* = L^*$. Let $L \subseteq \Sigma^*$,
 - $L^* \subseteq (L^*)^*$ since $L^* = (L^*)^1 \subseteq (L^*)^*$
 - $(L^*)^* \subseteq L^*$ Let $w \in (L^*)^*$, we can write $w = w_1 w_2 ... w_n$ for $n \ge 0$ where each $w_i \in L^*$. We can also write each $w_i = x_{i1} x_{i2} ... x_{il_i}$ for $l_i \ge 0$ where each $x_{il_i} \in L$. Then $w = x_{11} x_{12} ... x_{1l_1} ... x_{n1} x_{n2} ... x_{nl_n} \in L^{\sum_{i=1}^n l_n} \subseteq L^*$. Hence, $w \in L^*$.
- **2.** We prove $L((r+s)^*) = L((r^*s)^*r^*)$. Denote R = L(r) and S = L(s) for clarity. By def of reg lang, $L((r+s)^*) = L(r+s)^* = (L(r) \cup L(s))^* = (R \cup S)^*$ $L((r^*s)^*r^*) = L((r^*s)^*)L(r^*) = L(r^*s)^*L(r)^* = (L(r^*)L(s))^*R^* = (L(r)^*S)^*R^* = (R^*S)^*R^*$ In other words, we prove $(R \cup S)^* = (R^*S)^*R^*$.
 - $(R \cup S)^* \subseteq (R^*S)^*R^*$ We prove the lemma that for $\forall n \geq 0$, $(R \cup S)^n \subseteq (R^*S)^*R^*$, then by def of set union, $(R \cup S)^* = \bigcup_{n \geq 0} (R \cup S)^n \subseteq (R^*S)^*R^*$. By an induction on n,
 - $n = 0 (R \cup S)^0 = {\epsilon} = {\epsilon} {\epsilon} = {R^*S}^0 R^0 \subseteq (R^*S)^* R^*$
 - prove $(R \cup S)^{n+1} \subseteq (R^*S)^*R^*$

$$(R \cup S)^{n+1} = (R \cup S)^n (R \cup S) \qquad \text{(concat of lang)}$$

$$= \{xa \in \Sigma^* \mid x \in (R \cup S)^n, a \in (R \cup S)\} \qquad \text{(set notation of concat)}$$

$$\subseteq \{xa \in \Sigma^* \mid x \in (R^*S)^*R^*, a \in (R \cup S)\} \qquad \text{(IH)}$$

$$= \{xa \in \Sigma^* \mid x \in (R^*S)^*R^*, a \in R\} \cup \{xa \in \Sigma^* \mid x \in (R^*S)^*R^*, a \in S\}$$

$$= ((R^*S)^*R^*)R \cup ((R^*S)^*R^*)S \qquad \text{(set def of concat)}$$

We show both subsets are in $(R^*S)^*R^*$. But first we prove some laws.

L1. $\forall L \subseteq \Sigma^*, L^*L \subseteq L^*$

Proof. $L^*L = (\bigcup_{n \ge 0} L^n)L = \{xa \in \Sigma^* \mid x \in \bigcup_{n \ge 0} L^n, a \in L\} = \bigcup_{n \ge 0} \{xa \in \Sigma^* \mid x \in L^n, a \in L\} = \bigcup_{n \ge 0} (L^nL) = \bigcup_{n \ge 0} L^{n+1} = \bigcup_{n \ge 1} L^n \subseteq L^*$

L2. $\forall L, M, N \subseteq \Sigma^*, M \subseteq N \Rightarrow LM \subseteq LN$

Proof. Suppose $M, N \subseteq \Sigma^*$ with $M \subseteq N$. Let $w \in LM$. Write w = xa, where $x \in L, a \in M$. Since $M \subseteq N, a \in N$. Then $w = xa \in LN$. In short, $LM = \{xa \in \Sigma^* \mid x \in L, a \in M\} \subseteq \{xa \in \Sigma^* \mid x \in L, a \in N\} = LN$

Back to the proof

 $* \ ((R^*S)^*R^*)R \subseteq (R^*S)^*R^*$

$$R^*R \subseteq R^* \tag{L1}$$

$$\Rightarrow (R^*S)^*(R^*R) \subseteq (R^*S)^*R^* \tag{L2}$$

$$\Leftrightarrow ((R^*S)^*R^*)R \subseteq (R^*S)^*R^*$$
 (associativity)

*
$$((R^*S)^*R^*)S \subseteq (R^*S)^*R^*$$

$$(R^*S)^*(R^*S) \subseteq (R^*S)^*$$

$$\Leftrightarrow ((R^*S)^*R^*)S \subseteq (R^*S)^* = (R^*S)^*\{\epsilon\} = (R^*S)^*R^0 \subseteq (R^*S)^*R^*$$
(assoc & concat with $\{\epsilon\}$)

Hence the step case.

Hence the lemma.

• $(R^*S)^*R^* \subset (R \cup S)^*$

L3. for $\forall M, N \in \Sigma^*, M \subseteq N \Rightarrow M^* \subseteq N^*$

Proof. Suppose $M \subseteq N$. Let $w \in M^*$, then we can write $w = w_1 w_2 ... w_n$ where each $w_i \in M$. Since $M \subseteq N$, hence each $w_i \in N$. Then $w = w_1 w_2 ... w_n \in N^*$. Hence, $M^* \subseteq N^*$.

L4. for $\forall M, N, X, Y \in \Sigma^*$, $M \subseteq N \land X \subseteq Y \Rightarrow MX \subseteq NY$

Proof. Suppose $M \subseteq N \land X \subseteq Y$. Let $w \in MX$, then w = ax where $a \in M$, $x \in X$. Since $M \subseteq N$ and $X \subseteq Y$, then $a \in N$ and $x \in Y$. Hence, $w \in NY$. $MX \subseteq NY$.

Now we can prove $(R^*S)^*R^* \subseteq (R \cup S)^*$.

Since $R \subseteq (R \cup S)$, by L3 we have $R^* \subseteq (R \cup S)^*$. Also, $S \subseteq (R \cup S)$, by L4 $R^*S \subseteq (R \cup S)^*(R \cup S) \subseteq (R \cup S)^*$. By L3 again, $(R^*S)^* \subseteq ((R \cup S)^*)^* \stackrel{part1}{=} (R \cup S)^*$. By L4, $(R^*S)^*R^* \subseteq (R \cup S)^*(R \cup S)^* = ((R \cup S)^*)^2 \subseteq ((R \cup S)^*)^* \stackrel{part1}{=} (R \cup S)^*$.

Hence, we have formally proven $L((r+s)^*) = L((r^*s)^*r^*)$, thus the validity of $(r+s)^* = (r^*s)^*r^*$.

3. Let R = L(r), S = L(s).

$$L((rs)^*) = L(rs)^* = (L(r)L(s))^* = (RS)^*$$

 $L(\epsilon + r(sr)^*s) = L(\epsilon) \cup L(r(sr)^*s) = \{\epsilon\} \cup L(r(sr)^*)L(s) = \{\epsilon\} \cup L(r)L((sr)^*)S = \{\epsilon\} \cup R(L(sr)^*S) = \{\epsilon\} \cup R(L(sr)^*S) = \{\epsilon\} \cup R(SR)^*S$

We prove $(RS)^* = \{\epsilon\} \cup R(SR)^*S$ by equaltiy of the subsets, i.e, $(RS)^0 = \{\epsilon\}$ and $(RS)^n = R(SR)^{n-1}S$ for $\forall n \geq 1$.

- $(RS)^0 = {\epsilon}$ by definition
- we prove by induction on n that $(RS)^n = R(SR)^{n-1}S$ for $\forall n \geq 1$.
 - Base case n = 1. $(RS)^1 = RS = (R\{\epsilon\})S = (R(SR)^0)S = R(SR)^0S$
 - Step case $(RS)^{n+1} = (RS)^n (RS) \stackrel{IH}{=} (R(SR)^{n-1}S)(RS) \stackrel{assoc}{=} ((R(SR)^{n-1}S)R)S$ $\stackrel{assoc}{=} (R(SR)^{n-1}(SR))S = (R(SR)^n)S = R(SR)^nS$

Hence $\bigcup_{n\geq 1} (RS)^n = \bigcup_{n\geq 1} R(SR)^{n-1} S = \bigcup_{n\geq 0} R(SR)^n S$

From above, $(RS)^* = \bigcup_{n\geq 0} (RS)^n = (RS)^0 \cup (\bigcup_{n\geq 1} (RS)^n) = \{\epsilon\} \cup (\bigcup_{n\geq 0} R(SR)^n S) = \{\epsilon\} \cup R(SR)^* S$. Hence, $(rs)^* = \epsilon + r(sr)^* s$ is valid.