STA261: Probability and Statistics II

Shahriar Shams

Week 7 (Test of Hypothesis)

Winter 2020

Recap of Week 6

- Idea of interval estimation using Likelihood func.
- Definition of Confidence Interval (CI)
- CI for parameters of Normal dist
 - CI for μ , (σ^2 known)
 - CI for μ , (σ^2 unknown)
 - CI for σ^2
- MLE based Confidence Intervals
- One-sided Confidence Intervals
- Few definitions related to CI and interpreting CI

Learning goals for this week

- Idea of test of hypothesis and types of hypothesis
- Two approaches:
 - Critical value approach
 - p-value approach
- Type-1, Type-2 error and Power of a test.
- Test of hypothesis using Confidence Interval
- One sided test
- Likelihood Ratio Test (LRT)
- Review for midterm

These are selected topics from Evans and Rosenthal: chapter 6.3 and John A. Rice: Chap 9.2,9.3

Section 1

Idea of test of hypothesis and types of hypothesis

Test of hypothesis

- Suppose we are interested in $\psi(\theta)$
- In point and interval estimation we try to guess the value of $\psi(\theta)$ based on the sample observations.
- In test of hypothesis we start with a hypothetical statement like $\psi(\theta) = \psi_0$
- We call this null hypothesis, H_0
- The idea is to check whether our observed data supports H_0 or not.

Test of hypothesis: a numerical example

- Suppose, we are interested in the average income of all Canadians (μ)
- We want to test $H_0: \mu = \$35,000$
- We collect 10K (representative samples) individuals and get their income data.
- We calculate the sample mean (\bar{x}) and here are few scenarios:
 - scenario-1: $\bar{x} = 35,100$
 - scenario-2: $\bar{x} = 35,500$
 - scenario-3: $\bar{x} = 36,000$
 - ...
 - scenario-10: $\bar{x} = 50,000$
- In which scenario you will reject H_0 ?
- In other words: in which scenario the sample mean looks surprising to you if you believe the H_0 to be true?

Null vs. Alternative hypothesis

- Null Hypothesis, H_0 : the hypothesis that we want to test.
 - For example, in the previous slide we wanted to test whether $\mu = \$35,000$

- Alternative Hypothesis (some time written as H_A or H_1): The alternative values of the parameter of interest
 - Often this is what we are trying to prove as a researcher.
 - For example, we might say

 $H_1: \mu > $35,000 \text{ or}$

 $H_1: \mu < \$35,000 \text{ or }$

 $H_1: \mu \neq \$35,000 \text{ or simply}$

 $H_1: \mu = \$40,000$

Simple vs. Composite hypothesis

- Simple hypothesis: when a hypothesis involves only a single value from the parameter space. e.g. $\mu = \$35,000$
- Composite hypothesis: when a hypothesis involves more than one values from the parameter space. e.g. $\mu > \$35,000$ or $\mu \neq \$35,000$
- In practice, often we test simple null against composite alternative hypothesis.

Section 2

Two approaches of hypothesis testing

Significance level

- Due to uncertainty, often we reject H_0 even though it could be true.
- Clearly this is a mistake!
- We assign a (preferably) small predefined probability of making this mistake.
- We call this level of significance and denote it by α

Subsection 1

Critical region approach

Test statistic, T(X)

- It's a quantity that simultaneously serves few purposes:
 - It summarizes the sample data through an estimator
 - When H_0 is true, it has a known distribution
 - \bullet And under that distribution it's possible to find some areas that has probability α
- The pivots that we used in constructing confidence intervals are good examples of test statistic.

Critical region, $R_{\alpha}(T)$

- A region of the distribution of the test statistic such that we will reject H_0 if $T(X) \in R_{\alpha}(T)$
- Example: for the numerical example of average income of all Canadians, we can reject the hypothesis $H_0: \mu = \$35,000$ if $\bar{x} < 20000$ or $\bar{x} > 50000$ (these are made up numbers)

- Here, $\bar{x} < 20000$ and $\bar{x} > 50000$ constitutes the rejection region.
- We need to make sure that

$$P[T(X) \in R_{\alpha}(T)|H_0 \ true] = \alpha$$

Testing $H_0: \mu = \mu_0$ when $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$ [σ^2 is known]

- Null Hypothesis, $H_0: \mu = \mu_0$
- Test statistic, $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$
- If H_0 is true ie. $\mu = \mu_0$ then $\frac{\bar{X} \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$
- Rejection region: $(-\infty, z_{\frac{\alpha}{2}}) \cup (z_{1-\frac{\alpha}{2}}, \infty)$
- We reject H_0 if $\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}} < z_{\frac{\alpha}{2}}$ or $\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}} > z_{1-\frac{\alpha}{2}}$
- Intuition: we reject the null hypothesis when the test statistic falls in the lower probability area of the distribution under the null.
- In Naive words: If μ_0 is the true mean then \bar{X} shouldn't be too far from μ_0

Numerical example of critical region approach

Exercise-6.3.1 (E&R):

$$(4.7, 5.5, 4.4, 3.3, 4.6, 5.3, 5.2, 4.8, 5.7, 5.3) \stackrel{iid}{\sim} N(\mu, \sigma_0^2)$$
 with $\sigma_0^2 = 0.5$ Test $H_0: \mu = 5$ at level of significance, $\alpha = 0.05$

- ② test statistic, $T(X) = \frac{4.88-5}{\frac{\sqrt{0.5}}{\sqrt{10}}} = -0.537$
- **3** given level of significance, $\alpha = 0.05$
- Rejection region, $(-\infty, -1.96) \cup (1.96, \infty)$
- \odot Since, test statistic value -0.537 does not fall in to the rejection area, we fail to reject H_0

Note: We never say we accept H_0 .

We failed to prove that H_0 is wrong $\Rightarrow H_0$ is right!

Other cases...

Testing $H_0: \mu = \mu_0 \; ; \; X_i \stackrel{iid}{\sim} N(\mu, \sigma^2) \; [\sigma^2 \; \text{is unknown}]$

- The frame work remains same with two changes:
 - ① Test statistic, $\frac{\bar{X}-\mu_0}{S/\sqrt{n}} \sim t_{(n-1)}$
 - Rejection regions are calculated based on a t-distribution

$$R_{\alpha}(T) = (-\infty, t_{\frac{\alpha}{2}(df=n-1)}) \cup (t_{1-\frac{\alpha}{2}(df=n-1)}, \infty)$$

Exercise-6.3.2 (E&R): (4.7, 5.5, 4.4, 3.3, 4.6, 5.3, 5.2, 4.8, 5.7, 5.3)

 $\stackrel{iid}{\sim} N(\mu, \sigma^2)$ with both μ and σ^2 unknown

Test $H_0: \mu = 5$ at level of significance, $\alpha = 0.05$

- $\bar{x} = 4.88 \text{ and } s = 0.696$
- **2** Test statistic, $T = \frac{4.88-5}{0.696/\sqrt{10}} = -0.545$
- **3** Rejection regions= $(-\infty, -2.262) \cup (2.262, \infty)$
- Fail to reject H_0

Other cases... (cont...)

Testing $H_0: \sigma^2 = \sigma_0^2 ; X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$

- The frame work remains same with two changes:
 - 1 Test statistic, $\frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2_{(n-1)}$
 - 2 Rejection regions are calculated based on a χ^2 -distribution

$$R_{\alpha}(T)=(-\infty,\chi^2_{\frac{\alpha}{2}(\mathit{df}=n-1)})\cup(\chi^2_{1-\frac{\alpha}{2}(\mathit{df}=n-1)},\infty)$$

Exercise-6.3.2 (E&R): (4.7, 5.5, 4.4, 3.3, 4.6, 5.3, 5.2, 4.8, 5.7, 5.3)
$$\stackrel{iid}{\sim} N(\mu, \sigma^2)$$
 with both μ and σ^2 unknown Test $H_0: \sigma^2 = 0.5$ at level of significance, $\alpha = 0.05$ You do it...

Subsection 2

p-value approach

A numeric example first...

$$(4.7, 5.5, 4.4, 3.3, 4.6, 5.3, 5.2, 4.8, 5.7, 5.3) \stackrel{iid}{\sim} N(\mu, \sigma_0^2)$$
 with $\sigma_0^2 = 0.5$ Test $H_0: \mu = 5$

- Let's revisit the example we did on slide 15
- α was given to be 0.05
- Let's re calculate the rejection region for some other values of α
 - $\alpha = 0.9 \implies R_{\alpha} = (-\infty, -0.126) \cup (0.126, \infty) \implies reject H_0$
 - $\alpha = 0.8 \implies R_{\alpha} = (-\infty, -0.253) \cup (0.253, \infty) \implies reject H_0$
 - $\alpha = 0.6 \implies R_{\alpha} = (-\infty, -0.524) \cup (0.524, \infty) \implies reject H_0$
 - $\alpha = 0.592 \implies R_{\alpha} = (-\infty, -0.536) \cup (0.536, \infty) \implies reject H_0$
 - $\alpha = 0.5 \implies R_{\alpha} = (-\infty, -0.674) \cup (0.674, \infty) \implies fail\ to\ reject\ H_0$
- 0.592 (approx.) is the smallest α at which H_0 would be rejected.

p-value [Rice p-334]

- **Def 1:** It's the smallest level of significance at which H_0 would be rejected based on the observed data.
- **Def 2:** It's the probability of observing the result as or more extreme than that actually observed if H_0 is true.
- In naive words, p-value suggests how surprising the observed sample is if we assume H_0 to be true.
- Conventionally we compare p-value to 0.01, 0.05 or 0.1
- If p-value is less than a predefined cut-off we reject H_0

Calculating p-value

for z-test

$$2\left[1 - \Phi\left(\left|\frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}\right|\right)\right]$$

where Φ is the CDF of a standard normal distribution.

$$(4.7, 5.5, 4.4, 3.3, 4.6, 5.3, 5.2, 4.8, 5.7, 5.3) \stackrel{iid}{\sim} N(\mu, \sigma_0^2)$$
 with $\sigma_0^2 = 0.5$ Test $H_0: \mu = 5$ From slide 15, test statistic = -0.537 p-value= $2*(1-pnorm(0.537)) \approx 0.5912$

• for t-test

$$2\left[1 - G\left(\left|\frac{\bar{x} - \mu_0}{s/\sqrt{n}}\right|\right)\right]$$

where G is the CDF of a $t_{(n-1)}$ distribution.

From slide 16, test statistic = -0.545 p-value= $2*(1-pt(0.545,df=9))\approx 0.5989$

Section 3

Type-1, Type-2 error and Power of a test

Type-1, Type-2 error and Power of a test

	fail to reject H_0	reject H_0
H_0 true	Correct decision	type-1 error
H_0 false	type-2 error	Correct decision

- $P[Type-1 error] = \alpha = P[reject H_0|H_0 true]$
- $P[Type-2 error] = \beta = P[fail to reject H_0|H_0 false]$
- Power of a test= $1 \beta = P[\text{reject } H_0 | H_0 \text{ false}]$

Type-1 and Type-2 error using graphs

- Suppose we are testing two simple hypotheses: $H_0: \mu = 1 \ vs. \ H_1: \mu = 4$
- Only one of them can be true (and there are no other options)

- Type-1 error: The area shaded in red on the left figure
- Type-2 error: The area shaded in cyan on the right figure

Note: For a given sample size, decreasing one type will increase the other!

Power of a test using graph

• Power of a test = 1 - P[type-2 error]

- Power is calculated using the density under H_1
- So in this example, instead of $\mu = 4$, if H_1 changes to $\mu = 5$ we will have a different power.
- When we have a composite H_1 like $\mu \neq 1$, we will have a power function (a function that takes μ as an argument and calculates power for each μ)

Numerical example

Suppose we have $N(\mu, \sigma^2)$ populations with unknown μ and $\sigma = 3$ We want to test $H_0: \mu = 1$ vs. $H_1: \mu = 4$ at $\alpha = 0.05$ we decide to take n = 9 observations. Calculate P[type-2 error] and the power.

- $var[\bar{X}] = \frac{\sigma^2}{n} = \frac{3^2}{9} = 1$
- **2** Under H_0 : $\bar{X} \sim N(1,1)$
- **3** Under H_1 : $\bar{X} \sim N(4,1)$
- Power = $P[\bar{X} > 2.645 \text{ Under the } H_1] \implies P[Z > \frac{2.645 4}{1}] = 0.912$
- **6** P[type-2 error] = 1 0.912 = 0.088

Homework: change the H_1 , try $\mu = 3, 5, 6, 7$ etc... and calculate the power in each case.

Section 4

Test of hypothesis using Confidence Interval

A simple way of testing hypothesis

- In week-6 we learned how to construct γ -level Confidence intervals.
- We kept the γ part of the distribution and discarded the corners $(1 \gamma \text{ portion})$.
- In test of hypothesis, we define the corners as the rejection region
- Intuitively we are doing the same task!
- Let's set $\alpha = 1 \gamma$
- Constructing a γ level confidence interval for μ and checking whether μ_0 is inside or not is equivalent of testing the hypothesis of $\mu = \mu_0$ at (1γ) level of significance.

A numeric example

- Last week (slide-16), we calculated the 95% CI for μ as (4.442,5.318)
- If we want to test $\mu = 5$ at $\alpha = 5\%$, we would fail to reject the hypothesis since 5 is inside the interval.
- Which is the same conclusion we reached this week (on slide-15)

Section 5

One sided test

One sided test (E&R page 337)

- When testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$, we define our rejection region on both sides.
- When testing $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$, intuitively we define our rejection region on the right side only.
- Similarly, when testing $H_0: \mu = \mu_0$ against $H_1: \mu < \mu_0$, we define our rejection region on the left side only.

One sided p-value (for Z-test)

- On slide 21, we calculated p-value keeping in mind the two sides of the rejection region.
- When testing $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$,

$$p-value = 1 - \Phi\left(\frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}\right)$$

• When testing $H_0: \mu = \mu_0$ against $H_1: \mu < \mu_0$,

$$p - value = \Phi\left(\frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}\right)$$

• Similar idea for t, χ^2 or other tests.

One sided test using one sided CI

I will leave it for you to figure this out...

hint: having a α level rejection region on the right, is same as constructing $(1-\alpha)$ level left sided CI and vice versa

Section 6

Testing using large sample property of MLE

Question: 1

Can we construct a test for testing $H_0: \theta = \theta_0$ using the fact that

$$\frac{\hat{\theta} - \theta_0}{\sqrt{1/nI(\theta_0)}} \xrightarrow{D} N(0, 1)$$

Question: 2

Can we construct a test using the variable $S(\theta_0)$ (score evaluated at θ_0)

- What is the distribution of this variable under $H_0: \theta = \theta_0$
- What is the mean?
- What is the variance?

We will learn more on these two ideas along with Likelihood ratio test on week-9

Discussion

Statistical significance vs. Practical Significance $\,$

Assignment (Non-credit)

Evans and Rosenthal

Exercise: 6.3.1-6.3.6, 6.3.11, 6.3.14

John A. Rice

Exercise 9: 1, 3, 5, 9