

King obstacle; King obstacle; demode		
[x] = \(\frac{1}{2} \) \(\times \) \(\tim	Klosy	abstratesi
[x] = \(\frac{1}{2} \) \(\times \) \(\tim		
ye [x] = - represented bloop shellowing ye [x] = - represented bloop shellowing their primosestatis in X mounts makeles X mounts in the shellow of the shellow of the shellow of the shellow of the shellowing in bloops bloops a who shellow as a shellow of the shellowing in the she		Klasa obstralaji elementu xeX uzględem relogi p
ye [x] = - represented bloop shellowing ye [x] = - represented bloop shellowing their primosestatis in X mounts makeles X mounts in the shellow of the shellow of the shellow of the shellow of the shellowing in bloops bloops a who shellow as a shellow of the shellowing in the she		$\begin{bmatrix} \times \end{bmatrix}_{\rho} = \left\{ \mathbf{q} \in \times : \times_{\rho} \mathbf{q} \right\}$
The first of the second of the		
Relayir extensional X personal gradulic X no. take rethings a labora, is locally a solah statute of a childre or orbayir returnational. Magastronan - perganjaman childre sh Man - personal no. berhama lapergata utemain educate Mana. Zahir Kennang relay. which completes the makeshigh X anglykan c X/c - [[x]_c : x = x]. Perfelul alla naturi, perphenenta madula (Za, - [[0], [11, [2], [3]]). [3] = [3] - [4] Uterannia relayi returnational 4. Verx xe[x]_c 2. Ye, ex ([x]_c - [x]_c and x = y). 3. Vegen ([x]_c = [x]_c and x = y). 4. U(x]_c = X 5. Vegen y e[x]_c = x = [x]_c Perfect of the short of the contract		$g \in [\times]_e \iff \times_e g$
Relayir extensional X personal gradulic X no. take rethings a labora, is locally a solah statute of a childre or orbayir returnational. Magastronan - perganjaman childre sh Man - personal no. berhama lapergata utemain educate Mana. Zahir Kennang relay. which completes the makeshigh X anglykan c X/c - [[x]_c : x = x]. Perfelul alla naturi, perphenenta madula (Za, - [[0], [11, [2], [3]]). [3] = [3] - [4] Uterannia relayi returnational 4. Verx xe[x]_c 2. Ye, ex ([x]_c - [x]_c and x = y). 3. Vegen ([x]_c = [x]_c and x = y). 4. U(x]_c = X 5. Vegen y e[x]_c = x = [x]_c Perfect of the short of the contract		
		ye[x]e - veprezentant klasy abstralecjó
		Relagia namovozności u X nozvola podretró X na takre nostacene zbiony
Mayching - graphogus obidis de la - granda no balana septingula otransis atmosfer lang. Zhire Zaman May sairi vagatah lita sehindi lang. X/ = [12] = x ∈ X } Peoplial La seling prophogus malula 6 Z ₁ = [0], [1], [2], [3] } [2] = [3] = [-4] Utassairi vaga ramanimisi 1. Vex xe[-1] 2. Vega ([x] = [3] = ∞ x ∈ 3) 3. Vega ([x] = [3] = ∞ [x] = n[s] = Ø) 4. U[s] = x = xe[s] 5. Vega ye[s] = xe[s] = ∞ [x] = n[s] = Ø) 4. U[s] = x = xe[s] Pedix shima X relina X relin		
Zeliev immany vlanje zeliev conjugate zeliev		
Zhiri itamana shaiji shiri Asayakishi \times confidence \times		
which completes the abstracts $\times X_{\ell} = \{[x]_{\ell} : x \in X\}$ $X_{\ell} = \{[x]_{\ell} : x \in X\}$ Profiled All relays proposessor module 4 $Z_{m_{\ell}} = \{[0], \{11, [23, [33]\}\}$ $[3] = [3] + [-4]$ Unique selection of the proposessor of the profile of		elementón blasa
which completes the absorbagi \times angleton c $X/c = \{[x]_c : x \in X\}$ Profiled All relays programme module 4 $Z_{xx} = \{[0], \{11, [23, [33]\}\}$ $[3] = [3] + [-4]$ Uniquencial relays nonemanistic 1. Viex $xe[x]_c$ 2. $V_{xy}ex$ ($[x]_c = [y]_c = \infty \times e^{-y}$) 3. $V_{xy}ex$ ($[x]_c = [y]_c = \infty \times e^{-y}$) 5. $V_{xy}ex$ ($[x]_c = [y]_c = \infty \times e^{-y}$) 5. $V_{xy}ex$ ($[x]_c = xe[x]_c$ Profiled X The solution X The solution X $X_{xy}ex$ Unique X_{xy	26100	itorozona velacij
$ \begin{array}{c} X_{\ell} = \left\{ [x]_{\ell} : x \in X \right\} \\ \\ \text{Profital} \\ \text{do ruling: progressions resolved } 4 \\ \\ Z_{n_{\ell}} = \left[[0], [1], [2], [33] \right\} \\ \\ \left[3] = \left[3 \right] = \left[-1 \right] \\ \\ \text{Ufiscension: reliago: remonstration:} \\ 1. \text{Viex } \text{xe}[v]_{\ell} \\ \\ Z_{\ell} \text{Vising and } \text{(in)}_{\ell} = \left[x_{3} \right]_{\ell} \text{ consists of } i \\ \\ \text{I.} \text{Vising and } \text{(in)}_{\ell} = \left[x_{3} \right]_{\ell} \text{ consists of } i \\ \\ \text{I.} \text{Vising and } \text{(in)}_{\ell} = \left[x_{3} \right]_{\ell} \text{ consists of } i \\ \\ \text{I.} \text{Vising and } \text{(in)}_{\ell} = \left[x_{3} \right]_{\ell} = \left[x_{3} \right]_{\ell} \text{ of } \left[x_{3} \right]_{\ell} = \left[x_{3} \right]_{\ell} \\ \\ \text{I.} \text{Vising and } \text{(in)}_{\ell} = \left[x_{3} \right]_{\ell} = \left[x_{3} \right]_{\ell} \text{ of } \left[x_{3} \right]_{\ell} = \left[x_{3} \right]_{\ell} \\ \\ \text{I.} \text{Vising and } \text{(in)}_{\ell} = \left[x_{3} \right]_{\ell} = \left[x_{3} \right]_{\ell} \\ \\ \text{I.} \text{Vising and } \text{(in)}_{\ell} = \left[x_{3} \right]_{\ell} = \left[x_{3} \right]_{\ell} \\ \\ \text{I.} \text{Vising and } \text{(in)}_{\ell} = \left[x_{3} \right]_{\ell} \\ \\ \text{I.} \text{Vising and } \text{(in)}_{\ell} = \left[x_{3} \right]_{\ell} \\ \\ \text{I.} \text{(in)}_{\ell} = \left[x_{3} \right]_{\ell} \\ \\ \text{(in)}_{\ell} = \left[x_{3} \right]_{\ell} \\ \\ \text{I.} \text{(in)}_{\ell} = \left[x_{3} \right]_{\ell} \\ \\ \text{(in)}_{\ell}$		
Publical the stay; programmin modulo 4 $Z_{n_n} = \{[0], \{i1, [2], [3]\}\}$ $[3] = [3] = [-i]$ Utimanisi telagi primonainosis 1. Vex $\times e[v]_e$ 2. $V_{n,0} \in \times$ ($[x]_e = [y]_e \implies \times e[y]_e$ 2. $V_{n,0} \in \times$ ($[x]_e = [y]_e \implies [x]_e \cap [y]_e = \emptyset$) 3. $V_{n,0} \in \times$ ($[x]_e = [x]_e \implies [x]_e \cap [y]_e = \emptyset$) 4. $\bigcup [v]_e = \times$ 5. $V_{n,0} \in \times$ $y_e[x]_e \implies x_e[y]_e$ Political station. X restricts. $X = \{A_i: i \neq i\} \le 2 \times b_i b_i b_i$ 2. $V_{n,0} \in X$ $A_i \ne \emptyset$ 2. $V_{n,0} \in X$ $A_i \ne \emptyset$ 3. $\bigcup A_i = X$ 1. $\bigcup A_i \in A$ $A_i \ne \emptyset$ 3. $\bigcup A_i = X$ 1. $\bigcup A_i \in A$ $A_i \ne \emptyset$ 3. $\bigcup A_i = X$ 1. $\bigcup A_i \in A$ $A_i \ne \emptyset$ 3. $\bigcup A_i = X$ 1. $\bigcup A_i \in A$ $A_i \ne \emptyset$ 3. $\bigcup A_i = X$ 1. $\bigcup A_i \in A$ $\bigcup A_i \ne A$ $\bigcup A_i = A$ $\bigcup A_i = A$ 3. $\bigcup A_i \in X$ 1. $\bigcup A_i \in A$ $\bigcup A_i \ne A$ 3. $\bigcup A_i \in X$ 1. $\bigcup A_i \in A$ $\bigcup A_i \in A$ 3. $\bigcup A_i \in A$ 4. $\bigcup A_i \in A$ 5. $\bigcup A_i \in A$ 1. $\bigcup A_i \in A$ 2. $\bigcup A_i \in A$ 2. $\bigcup A_i \in A$ 3. $\bigcup A_i \in A$ 4. $\bigcup A_i \in A$ 5. $\bigcup A_i \in A$ 6. $\bigcup A_i \in A$		
the relays programme module 4 $Z_{n_{k}} = \{[O], [A], [D], [D], [D], [D], [D], [D], [D], [D$		$\times e = \{ \exists x \exists e : x \in X \}$
the relays programme module 4 $Z_{n_{k}} = \{[O], [1], [2], [3]\}\}$ $[3] = [3] = [-1]$ $U_{\text{constant}}, \text{ relays prime about }$ 1. View $xe[x]_{e}$ 2. $V_{n,y}ex$ ($[K]_{e} = [y]_{e} \Longrightarrow xey$) 3. $V_{n,y}ex$ ($[K]_{e} = [y]_{e} \Longrightarrow xey$) 4. $U[X]_{e} = X$ 1. $V_{n,y}ex$ ($[K]_{e} = [x]_{e} \Longrightarrow xey$) 5. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 7. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 8. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 9. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 1. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 2. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 2. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 2. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 3. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 4. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 5. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 1. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 2. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 3. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 4. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 5. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 6. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 7. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 8. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 9. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 10. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 11. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 12. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 13. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 14. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 15. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 16. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 17. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 18. $V_{n,y}ex$ $ye[x]_{e} \Longrightarrow xe[x]_{e}$ 19. $V_{n,y}ex$ 19. $V_{n,y}ex$ 19. $V_{n,y}ex$ 19. $V_{n,y}ex$ 10. $V_{n,y}ex$ 10. $V_{n,y}ex$ 10. $V_{n,y}ex$ 10. $V_{n,y}ex$ 10. $V_{n,y}ex$ 10. $V_{n,y}ex$ 11. $V_{n,y}ex$ 12. $V_{n,y}ex$ 12. $V_{n,y}ex$ 13. $V_{n,y}ex$ 14. $V_{n,y}ex$ 15. $V_{n,y}ex$ 16. $V_{n,y}ex$ 17. $V_{n,y}ex$ 17. $V_{n,y}ex$ 19. $V_{n,y}e$	PaI	
$Z_{m} = \{[0], [1], [2], [3]\}$ $[3] = [7] - [1]$ $U_{\text{conversion}} \text{ velogis primonezarosion}$ $1. \text{ Vocax } \text{ xe}[x]_{0}$ $2. \text{ Vocax } \text{ xe}[x]_{0}$ $3. \text{ Vocax } \text{ (Inde } = [x]_{0} \iff \text{ end})$ $3. \text{ Vocax } \text{ (Inde } = [x]_{0} \implies \text{ [x]}_{0} = \emptyset)$ $4. \text{ U[V]}_{0} = X$ $5. \text{ Vocax } \text{ ye}[x]_{0} \implies \text{ xe}[x]_{0} = [x]_{0} = \emptyset$ $5. \text{ Vocax } \text{ ye}[x]_{0} \implies \text{ xe}[x]_{0} = x$ $1. \text{ Vocax } \text{ A}_{0} \neq \emptyset$ $2. \text{ Vocax } \text{ A}_{0} \neq \emptyset$ $3. \text{ UA } \neq \emptyset$ $4. \text{ Vocax } \text{ A}_{0} \neq \emptyset$ $3. \text{ UA } \neq \emptyset$ $4. \text{ Vocax } \text{ A}_{0} \neq \emptyset$ $3. \text{ UA } \neq \emptyset$ $4. \text{ Vocax } \text{ A}_{0} \neq \emptyset$ $3. \text{ UA } \Rightarrow \emptyset$ $4. \text{ Vocax } \text{ A}_{0} \neq \emptyset$ $4. \text{ Vocax } \text{ A}_{0}$	1	
[3] = [7] = [-1] Uterranici relegii rimmasinati 1. Vex $x \in [x]_c$ 2. $V_{n,y} \in x$ ($[x]_c = [y]_c \Longrightarrow x \in y$) 3. $V_{n,y} \in x$ ($[x]_c = [y]_c \Longrightarrow [x]_c \cap [y]_c = \emptyset$) 4. $U_{[x]_c} = x$ 5. $V_{n,y} \in x$ $y \in [x]_c \Longrightarrow x \in [x]_c$ Podriat zbirna X 1. $V_{n,c} \in x$ $A_{n,c} \in x$ 1. $V_{n,c} \in A_{n,c} \in x$ 2. $V_{n,x} \in A_{n,c} \in x$ 3. $U_{n,c} \in A_{n,c} \in x$ 1. $U_{n,c} \in A_{n,c} \in x$ 2. $V_{n,x} \in A_{n,c} \in x$ 3. $U_{n,c} \in x$ 4. $U_{n,c} \in x$ 4. $U_{n,c} \in x$ 5. $U_{n,x} \in x$ 7. $U_{n,x} \in x$ 8. $U_{n,x} \in x$ 9. $U_{n,x} \in x$ 1. $U_{n,c} \in x$ 2. $U_{n,x} \in x$ 3. $U_{n,c} \in x$ 4. $U_{n,c} \in x$ 4. $U_{n,c} \in x$ 5. $U_{n,c} \in x$ 6. $U_{n,c} \in x$ 7. $U_{n,c} \in x$ 8. $U_{n,c} \in x$ 9. $U_{n,c} \in x$ 1. $U_{n,c} \in x$ 2. $U_{n,x} \in x$ 3. $U_{n,c} \in x$ 4. $U_{n,c} \in x$ 5. $U_{n,x} \in x$ 6. $U_{n,c} \in x$ 7. $U_{n,x} \in x$ 8. $U_{n,x} \in x$ 9. $U_{n,x} \in x$ 9. $U_{n,x} \in x$ 9. $U_{n,x} \in x$ 1. $U_{n,x} \in x$ 1		
Ufcomornic velogi niversamorni 1. Viex $x \in [x]_e$ 2. $V_{x,y} \in x$ ($[x]_e = [y]_e \implies x \in y$) 3. $V_{x,y} \in x$ ($[x]_e = [y]_e \implies [x]_e \cap [y]_e = \varphi$) 4. $\bigcup [x]_e = x$ 5. $V_{x,y} \in x$ $y \in [x]_e \implies x \in [y]_e$ Polivia zhima $X = [A_i : i \in I] \in \mathbb{Z}^X$ forta, x rotinua $A = [A_i : i \in I] \in \mathbb{Z}^X$ forta, x 1. $V_{A_i \in A} = A \land i \neq A \implies A \land A_i = \varphi$ 3. $\bigcup A_i = x$ in $I = X \implies X$		$\mathbb{Z}_{N_{k}} = \{[0], [1], [2], [3]\}$
Ufcomornic relagio rimenomensioni 1. Vicex $x \in [x]_c$ 2. Ving ex $([x]_c = [y]_c \Longrightarrow x \in y)$ 3. Ving ex $([x]_c = [y]_c \Longrightarrow [x]_c \cap [y]_c = \phi)$ 4. $\bigcup [x]_c = X$ 5. Ving ex $y \in [x]_c \Longrightarrow x \in y$ Polivia zhima $X = \{A_i : i \in I\} \in \mathbb{Z}^X$ linter, $x \in Y$ 1. Ving $X = X$ 1. Ving $X = X$ 1. Ving $X = X$ 2. Ving $X = X$ 2. Ving $X = X$ 3. $\bigcup A_i = X$ 3. $\bigcup A_i = X$ 3. $\bigcup A_i = X$ 4. Ving $X = X$ 4. Ving $X = X$ 4. Ving $X = X$ 5. Ving $X = X$ 7. Ving $X = X$ 1. Ving $X = X$ 1. Ving $X = X$ 1. Ving $X = X$ 2. Ving $X = X$ 3. $\bigcup A_i = X$ 3. $\bigcup A_i = X$ 4. Ving $X = X$ 4. Ving $X = X$ 4. Ving $X = X$ 5. Ving $X = X$ 5. Ving $X = X$ 6. Ving $X = X$ 7. Ving $X = X$ 6. Ving $X = X$ 7. Ving $X = X$ 7. Ving $X = X$ 7. Ving $X = X$ 8. Ving $X = X$ 9. Ving $X = X$ 8. Ving $X = X$ 9. Ving $X = X$ 9. Ving $X = X$ 9. Ving $X = X$ 10. Ving $X = X$ 11. Ving $X = X$ 12. Ving $X = X$ 13. Ving $X = X$ 14. Ving $X = X$ 15. Ving $X = X$ 16. Ving $X = X$ 16. Ving $X = X$ 17. Ving $X = X$ 18. Ving $X = X$ 19. Ving $X = X$		[3]=[7]=[-1]
1. $\forall v_{n,y} \times x \in [x]_e = [y]_e \iff x \in y$ 2. $\forall v_{n,y} \in x \times ([x]_e = [y]_e \implies [x]_e \cap [y]_e = \emptyset)$ 3. $\forall v_{n,y} \in x \times y \in [x]_e \implies x \in [x]_e$ 5. $\forall v_{n,y} \in x \times y \in [x]_e \implies x \in [x]_e$ Politie where $x = [A_i : i \in I] \le 2^x$ take, is $x = [A_i : i \in I] \le 2^x$ take, is $x = [A_i : i \in I] \le 2^x$ take, is $x = [A_i : i \in I] \le 2^x$ take, is $x = [A_i : i \in I] \le 2^x$ take, is $x = [A_i : i \in I] \le 2^x$ take, is $x = [A_i : i \in I] \le 2^x$ take, is $x = [A_i : i \in I] \le 2^x$ take, is $x = [A_i : i \in I] \le 2^x$ take, is $x = [A_i : i \in I] \le 2^x$ take, is $x = [A_i : i \in I] \le 2^x$ take, is $x = [A_i : i \in I] \le 2^x$ take, is $x = [A_i : A_i :$		
1. $\forall v_{n,y} \times x \in [x]_e = [y]_e \iff x \in y$ 2. $\forall v_{n,y} \in x ([x]_e = [y]_e \iff x \in y)$ 3. $\forall v_{n,y} \in x ([x]_e \neq [y]_e \Rightarrow [x]_e \cap [y]_e = \emptyset)$ 4. $\bigcup [x]_e = x$ 5. $\forall v_{n,y} \in x y \in [x]_e \Rightarrow x \in [x]_e$ Politie within $X = [A_i : i \in I] \le 2^x$ fator, is: 1. $\forall A_i \in A A_i \neq \emptyset$ 2. $\forall A_i, A_i \in A A_i \neq \emptyset$ 3. $\bigcup A_i = x$ Ugher takah monodysh, pomoni vostopomysh podskiowi x , ktorych samo jest catyon X Triordzewie o podsinle shiviu [color of podsinle shiv [color of podsi	Wiasna	ści velażi rówazaności
2. $\forall x,y \in X$ ($[X]_c = [y]_c \Longrightarrow [X]_c \cap [y]_c = \emptyset$) 3. $\forall x,y \in X$ ($[X]_c = [y]_c \Longrightarrow [X]_c \cap [y]_c = \emptyset$) 4. $\bigcup [X]_c = X$ 5. $\forall x,y \in X$ ye $[X]_c \Longrightarrow x \in [3]_c$ Podrict shirm X 1. $\forall A_i \in A A_i \neq \emptyset$ 2. $\forall A_i A_i \in A A_i \neq \emptyset$ 2. $\forall A_i A_i \in A A_i \neq A_i \Rightarrow A_i \cap A_i = \emptyset$ 3. $\bigcup A_i = X$ in [1] Ugher totals seems yet colliss X Literards when seems yet colliss X It tough seems yet colliss X Thirdscape of podrict shirms [2] [3] [4] [5] [6] [6] [7] [7] [8] [8] [8] [8] [8] [8		
3. $\forall x_3 \in X$ $([x]_e \neq [3]_e \Rightarrow [x]_e \cap [3]_e = \emptyset)$ 4. $\bigcup [x]_e = X$ 5. $\forall x_3 \in X$ $y_3 \in [x]_e \Rightarrow x_6 y_3 e$ Political shirms X reduces $X = \{A_i : i \in I\} \subseteq 2^X$ takes, is 1. $\forall A_i \in A A_i \neq \emptyset$ 2. $\forall A_i, A_i \in A A_i \neq A_i \Rightarrow A_i \cap A_i = \emptyset$ 3. $\bigcup A_i = X$ is if it is in in it is	1.	$\forall_{x \in X} \times \epsilon[x]_e$
3. $\forall x_3 \in X$ $([x]_e \neq [3]_e \Rightarrow [x]_e \cap [3]_e = \emptyset)$ 4. $\bigcup [x]_e = X$ 5. $\forall x_3 \in X$ $y_3 \in [x]_e \Rightarrow x_6 y_3 e$ Political shirms X reduces $X = \{A_i : i \in I\} \subseteq 2^X$ takes, is 1. $\forall A_i \in A A_i \neq \emptyset$ 2. $\forall A_i, A_i \in A A_i \neq A_i \Rightarrow A_i \cap A_i = \emptyset$ 3. $\bigcup A_i = X$ is if it is in in it is	9	٧ ([x], =[u], جه x م u)
4. U[1]e = X 5. Vx,yex ye[x]e = xe[x]e Podrial zbirna X rotrina A = {Ai:ie1} \leq 2 \times tolan, ic 1. VA; A = A = A = A = A = A 2. Vi, A; A = A = A = A = A = A 3. UA: = X Lyber tolaid sequely a common restance pods birrio X, Letingh summer yet colly m X Triordzewie o podriale zbirna] coli e jest relacjo resumanimości x to X/e jest podsiatem tego zbirna. Jest e jest relacjo resumanimości. Jest A jest podsiatem X to relacja x e y = 3A; e A (xeA; n yeA;) jest jelują resumanimości.		
5. $V_{X,y}e_X$ $y_e[x]_e \Rightarrow x_e[x]_e$ Podriot zbiera X rectains $A = \{A_i : i \in I\} \subseteq 2^X$ take, \hat{x}_e 1. $V_{A_i}e_A$ $A_i \neq \emptyset$ 2. $V_{A_i}A_i \in A$ $A_i \neq A_i \Rightarrow A_i \land A_i = \emptyset$ 3. $U_{A_i} = X$ is I Wyles taketh impushyth poecuni I Litrigal some yet cation I Litrigal some yet cation I Thirdepolyth I podriote zbiera Jesti I just relaxing retrinocolonisis I I I I I I I I	3.	$\forall_{x,y} \in x ([x]_e \neq [y]_e \Rightarrow [x]_e \cap [y]_e = \emptyset)$
5. $V_{X,y}e_X$ $y_e[x]_e \Rightarrow x_e[x]_e$ Podriot zbiera X rectains $A = \{A_i : i \in I\} \subseteq 2^X$ take, \hat{x}_e 1. $V_{A_i}e_A$ $A_i \neq \emptyset$ 2. $V_{A_i}A_i \in A$ $A_i \neq A_i \Rightarrow A_i \land A_i = \emptyset$ 3. $U_{A_i} = X$ is I Wyles taketh impushyth poecuni I Litrigal some yet cation I Litrigal some yet cation I Thirdepolyth I podriote zbiera Jesti I just relaxing retrinocolonisis I I I I I I I I		
Podriot zbisna X restrina $A = \{A_i : i \in I\} \subseteq 2^{\times}$ taka, is 1. $\forall A_i \in A A_i \neq \emptyset$ 2. $\forall A_i, A_i \in A A_i \neq A_i \Rightarrow A_i \cap A_i = \emptyset$ 3. $\bigcup A_i = X$ in I Ugber takth impushuh, panumi restaganyah podabioni X , Interpola summe jest cultym X Thierelaenie o podriale zbisna Toirelaenie o podriale zbisna	4.	U I×Ie = X
Podriot zbisna X restrina $A = \{A_i : i \in I\} \subseteq 2^{\times}$ taka, is 1. $\forall A_i \in A A_i \neq \emptyset$ 2. $\forall A_i, A_i \in A A_i \neq A_i \Rightarrow A_i \cap A_i = \emptyset$ 3. $\bigcup A_i = X$ in I Ugber takth impushuh, panumi restaganyah podabioni X , Interpola summe jest cultym X Thierelaenie o podriale zbisna Toirelaenie o podriale zbisna	5	$\forall x e x y \in [x]_0 \Rightarrow x \in [y]_0$
rodsina $A = \{A_i : i \in I\} \subseteq 2^X$ talia, se 1. $VA_i \in A$ $A_i \neq \emptyset$ 2. $V_{A_i,A_i \in A}$ $A_i \neq A_i \Rightarrow A_i \cap A_i = \emptyset$ 3. $UA_i = X$ in the sum of the second X is the sum of the second X and the second X is the sum of the second X is the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X in the second X is the second X in the second X in the second X in the second X is the second X in the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X is the second X in the second X is the second X in the second X in the second X is the second X in t	•	
rodsina $A = \{A_i : i \in I\} \subseteq 2^X$ talia, se 1. $VA_i \in A$ $A_i \neq \emptyset$ 2. $V_{A_i,A_i \in A}$ $A_i \neq A_i \Rightarrow A_i \cap A_i = \emptyset$ 3. $UA_i = X$ in the sum of the second X is the sum of the second X and the second X is the sum of the second X is the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X in the second X is the second X in the second X in the second X in the second X is the second X in the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X in the second X is the second X in the second X is the second X in the second X is the second X in the second X in the second X is the second X in t	Podriat	26 min X
2. Vi, Ai		radaina $A = \{A_i : i \in I\} \subseteq 2^X$ taka, ac
3. U Ai = X lyber takich wegustych, percuni voz Tacznych podabiorów X, letrych sauna jest cultym X Twicrdzenie o podriale zbioru Jesti e jest relacja rownowaności w X to X/e jest podriałem togo zbioru. Jesti A jest podrialem X to relacja x e y => 3Ai e A (x e Ai A y e Ai) jest relacjaz rownowaności.		$rac{r}{r} \cdot \forall A_i \in A_i \neq \emptyset$
Wylor takich nepustych parami roztącznych podabiorów X, których same jest calizm X Twicrolaenie o podrzale zbioru Josli e jest rolacja rownowaności w X to X/e jest podzialem togo zbioru. Josli A jest podzialem X to rolacja × e y => JA:eA (×eA: A yeA:) jest rolacja rownowaności.		3. UA; = X
Twicrdzenie o podriale zbioru Jesti e jest relagioz rosunovažnošci i × to ×/e jest podeiatem tego zbioru. Jesti A jest podeiatem × to relagia × e y = 3Ai e A (× e Ai A y e Ai) jest relagioz rosunovažnošci.		ue I
Twicrdzenie o podriale zbioru Jesti e jest relagioz rosunovažnošci i × to ×/e jest podeiatem tego zbioru. Jesti A jest podeiatem × to relagia × e y = 3Ai e A (× e Ai A y e Ai) jest relagioz rosunovažnošci.		Lyber takeh mepunyeh, panumi roz Tzernych pods biorów X,
Jesti e jest relacja roznavažnošti i \times to \times/e jest poderatem tego zbioru. Jesti A jest poderatem \times to relacja \times e y \Longrightarrow $\exists A_{i}\in A$ ($\times \in A_{i}$ \land y $\in A_{i}$) jest relacjaz roznavažnošti.		Ltorych same jost collym X
Jesti e jest relacja roznavažnošti i \times to \times/e jest poderatem tego zbioru. Jesti A jest poderatem \times to relacja \times e y \Longrightarrow $\exists A_{i}\in A$ ($\times \in A_{i}$ \land y $\in A_{i}$) jest relacjaz roznavažnošti.	Tweeter	mie o podriale zbioru
Jest A jest podukulom X to relacja $x \in y \Longrightarrow \exists A_{i \in A} (x \in A_{i} \land y \in A_{i})$ jest relacjaz rosunaraziności.	- 70/20	
jest relaujaz vorunascažnosci.		Jesti e jest relación rovnovanosi a X to X/e jest podriatem tego abiora.
jest relaujaz vorunascažnosci.		
		Josh A just podeholom X to relación X to relación X es die A (xeai / ye Ai)
Kozder relazion rozumovažnosci detinityc podriat, elementami podziatu sa, klosy abstralcy:		Ser Peterda vermanante et .
		Kosola relacija rovnovažnosti detiniuje podežat, elementami podažatu so, telosy abstrategi