

Bezier and Spline Curves and Surfaces

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Objectives

- Introduce the Bezier curves and surfaces
- Derive the required matrices
- Introduce the B-spline and compare it to the standard cubic Bezier

Bezier's Idea

- In graphics and CAD, we do not usually have derivative data
- Bezier suggested using the same 4 data points as with the cubic interpolating curve to approximate the derivatives in the Hermite form

Approximating Derivatives

Equations

Interpolating conditions are the same

$$p(0) = p_0 = c_0$$

 $p(1) = p_3 = c_0 + c_1 + c_2 + c_3$

Approximating derivative conditions

$$p'(0) = 3(p_1-p_0) = c_0$$

 $p'(1) = 3(p_3-p_2) = c_1+2c_2+3c_3$

Solve four linear equations for $\mathbf{c}=\mathbf{M}_B\mathbf{p}$

Bezier Matrix

$$\mathbf{M}_{B} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

$$\mathbf{p}(\mathbf{u}) = \mathbf{u}^{\mathrm{T}} \mathbf{M}_{B} \mathbf{p} = \mathbf{b}(\mathbf{u})^{\mathrm{T}} \mathbf{p}$$
 blending functions

Blending Functions

$$\mathbf{b}(u) = \begin{pmatrix} \dot{e} & (1-u)^3 & \dot{u} & 0.8 \\ \dot{e} & 3u(1-u)^2 \dot{u} & 0.6 \\ \dot{e} & 3u^2(1-u)\dot{u} & 0.4 \\ \dot{e} & \dot{u}^3 & \dot{u} & 0.2 \\ \dot{e} & u^3 & \dot{u} & 0.2 \end{pmatrix}$$

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)

Bernstein Polynomials

 The blending functions are a special case of the Bernstein polynomials

$$b_{kd}(u) = \frac{d!}{k!(d-k)!} u^k (1-u)^{d-k}$$

- These polynomials give the blending polynomials for any degree Bezier form
 - All zeros at 0 and 1
 - For any degree they all sum to 1
 - They are all between 0 and 1 inside (0,1)

Convex Hull Property

- The properties of the Bernstein polynomials ensure that all Bezier curves lie in the convex hull of their control points
- Hence, even though we do not interpolate all the data, we cannot be too far away

Bezier Patches

Using same data array $P=[p_{ij}]$ as with interpolating form

$$p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) p_{ij} = u^T \mathbf{M}_B \mathbf{P} \mathbf{M}_B^T v$$

Analysis

- Although the Bezier form is much better than the interpolating form, we have the derivatives are not continuous at join points
- Can we do better?
 - Go to higher order Bezier
 - More work
 - Derivative continuity still only approximate
 - Supported by OpenGL
 - Apply different conditions
 - Tricky without letting order increase

B-Splines

- Basis splines: use the data at $\mathbf{p}=[p_{i-2}\ p_{i-1}\ p_i\ p_{i+1}]^T$ to define curve only between p_{i-1} and p_i
- Allows us to apply more continuity conditions to each segment
- For cubics, we can have continuity of function, first and second derivatives at join points
- Cost is 3 times as much work for curves
 - Add one new point each time rather than three
- For surfaces, we do 9 times as much work

Cubic B-spline

$$\mathbf{p}(\mathbf{u}) = \mathbf{u}^{\mathrm{T}} \mathbf{M}_{S} \mathbf{p} = \mathbf{b}(\mathbf{u})^{\mathrm{T}} \mathbf{p}$$

$$\mathbf{M}_{S} = \begin{bmatrix} 1 & 4 & 1 & 0 \\ -3 & 0 & 3 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix} \quad \mathbf{p}_{0} \bullet \quad \mathbf{p}_{0} \bullet \quad \mathbf{p}_{0} \bullet$$

Blending Functions

$$\mathbf{b}(u) = \frac{1}{6} \begin{bmatrix} (1-u)^3 \\ 4-6u^2+3u^3 \\ 1+3u+3u^2-3u^2 \\ u^3 \end{bmatrix}$$

convex hull property

B-Spline Patches

$$p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) p_{ij} = u^T \mathbf{M}_S \mathbf{P} \mathbf{M}_S^T v$$

defined over only 1/9 of region

Splines and Basis

- If we examine the cubic B-spline from the perspective of each control (data) point, each interior point contributes (through the blending functions) to four segments
- We can rewrite p(u) in terms of the data points as

$$p(u) = \sum B_i(u) p_i$$

defining the basis functions $\{B_i(u)\}$

Basis Functions

In terms of the blending polynomials

$$B_{i}(u) = \begin{cases} 0 & u < i-2 \\ b_{0}(u+2) & i-2 \le u < i-1 \\ b_{1}(u+1) & i-1 \le u < i \\ b_{2}(u) & i \le u < i+1 \\ b_{3}(u-1) & i+1 \le u < i+2 \\ 0 & u \ge i+2 \end{cases} \xrightarrow{b_{0}(u+2)} \xrightarrow{b_{1}(u+1) \ b_{2}(u)} \xrightarrow{b_{3}(u-1)}$$

Generalizing Splines

- We can extend to splines of any degree
- Data and conditions to not have to given at equally spaced values (the knots)
 - Nonuniform and uniform splines
 - Can have repeated knots
 - Can force spline to interpolate points
- Cox-deBoor recursion gives method of evaluation

NURBS

- Nonuniform Rational B-Spline curves and surfaces add a fourth variable w to x,y,z
 - Can interpret as weight to give more importance to some control data
 - Can also interpret as moving to homogeneous coordinate
- Requires a perspective division
 - NURBS act correctly for perspective viewing
- Quadrics are a special case of NURBS