Homework 4 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

March 14, 2024

- 1. Since *B* is equicontinuous, for any $f \in B$ and $\varepsilon > 0$, there exists $\delta > 0$ s.t. for any $x, y \in A$, $|x y| < \delta$ implies that $|f(x) f(y)| < \frac{\varepsilon}{2}$.
- 2. First, we want to show that B is closed. For any sequence $f_k \in B$ which converges to f, since $f_k(0) = 0$ for all k, we can get f(0) = 0. Then, assume there exists an $x_0, x_1 \in (0,1)$ s.t. $\frac{|f(x_0) f(x_1)|}{|x_0 x_1|} = \alpha > 1$. Take $\varepsilon = \frac{\alpha 1}{3}$, there exists $N \in \mathbb{N}$ s.t. $|f(x) f_k(x)| < \varepsilon$ for all x and x > 0. Thus, $|\frac{f_k(x_0) f_k(x_1)}{x_0 x_1}| \ge \frac{|f_k(x_0) f(x_0)| + |f(x_0) f(x_1)| + |f(x_1) f_k(x_1)|}{|x_0 x_1|}$

Then, since $|f'(x)| \le 1$ for all $f \in B$ and $x \in (0,1)$. For any $\varepsilon > 0$, we take $\delta < \varepsilon$, for any $x,y \in [0,1]$ s.t. $|x-y| < \varepsilon$, $|f(x)-f(y)| \le 1 \cdot |x-y| = \delta < \varepsilon$. Thus, B is equicontinuous.

Last, for any $x \in [0,1]$, we want to proof B_x is compact. For x = 0, $B_0 = \{0\}$ obviously compact. For x > 0, since $|f'| \le 1$, we can easily get $B_x = [-x,x]$ by f(x) = ax for all $|a| \le 1$. Thus, B is pointwise compact.

Therefore, by Arzela-Ascoli Theorem, *B* is compact.