

Sensores: Luminosidade e Bluetooth

Curso Superior de Tecnologia em Sistemas Embarcados

Professor: Fernando Silvano Gonçalves fernando.goncalves@ifsc.edu.br

Junho de 2023

Cronograma

Encontro	Data	Nº Aulas	Conteúdo
1	7-fev.	04	Recepção e Apresentação do Unidade / Apresentação do Plano de Ensino / Avaliação Diagnóstica / Introdução a sistemas embarcados / Conceitos, Características e Aplicações
2	14-fev.	04	Visita Tecnica Evoluma Sistemas
3	28-fev.	04	Histórico de Sistemas Embarcados / Conceitos de Projeto de Sistemas Embarcados
4	9-mar.	04	Conceitos de Projeto de Sistemas Embarcados / Projeto de Sistemas Embarcados
5	14-mar.	04	Microcontroladores e Microprocessadores / Introdução ao Arduino
6	21-mar.	04	Introdução à Linguagens de Programação
7	23-mar.	04	Entradas Digitais Arduino / Estruturas Condicionais
8	28-mar.	04	Display / Comunicação I2C / Estruturas Condicionais
9	04-abr.	04	Estruturas Condicionais / Estruturas de Repetição / Entradas Analógicas / Sensores e Display
10	03-jun.	04	Jogos Sedentários

Cronograma

Encontro	Data	Nº Aulas	Conteúdo
11	13-jun.	04	Revisão de Conceitos
12	15-jun.	04	Entradas Digitais / Conversor A/D
13	16-jun.	04	Avaliação 01
14	20-jun.	04	Timers e Interrupções
15	21-jun.	04	Sensores: Ultrassônico, Umidade e Temperatura
16	22-jun.	04	Sensores: Luminosidade, Bluetooth
17	23-jun.	04	PWM / Atuadores: Servomotor, Ponte H / Motor DC
18	27-jun.	04	Relés / Buzzer
19	28-jun.	04	Avaliação 02
20	4-jul.	04	Conselho de Classe / Atividades de Encerramento da UC
		80	

Pauta

- Sensor de Luminosidade;
- Bluetooth;
- Práticas com Sensores;

Light Dependent Resistor - LDR

Light Dependent Resistor

Fotocélulas

- Sensor de luz;
- Quando a luminosidade está abaixo de um valor de referência aciona a lâmpada ou dispositivo conectado a ela;
- LDR é responsável por medir a luminosidade.

Light Dependent Resistor - LDR

- Quanto maior a luz que incide nesse componente, menor é a sua resistência;
- Constituído de um semicondutor de alta resistência, que ao receber uma grande quantidade de fótons oriundos da luz incidente, ele absorve elétrons que melhoram sua condutibilidade, reduzindo assim sua resistência.

Light Dependent Resistor - LDR

Realizando Leitura do LDR

```
#define ldrPin A0 //pino de conexão do LDR
int ldrValue = 0; //Valor lido do LDR
void setup() {
 Serial.begin(9600); //inicialização da porta serial
 pinMode(ldrPin, INPUT); //definição da porta de conexão do LDR como entrada
void loop(){
 IdrValue = analogRead(IdrPin); //Leitura do LDR entre 0 e 1023
 Serial.println(ldrValue); //imprime na porta serial a leitura do LDR
 delay(500);
```


Praticando com LDR

- Modifique a prática anterior onde ao acionar um dos botões seja exibido na tela a leitura da luminosidade obtida no LDR;
- Adicione 2 leds ao circuito e conforme a variação da luminosidade faça o acionamento dos leds. Você deve iniciar com os leds apagados e ir acendendo conforme a variação da luminosidade;

- Módulo utilizado para comunicação sem fio entre o Arduino e algum outro dispositivo com bluetooth.
- As informações recebidas pelo módulo são repassadas ao Arduino via serial.
- O alcance do módulo é de aproximadamente 10 metros.
- Esse módulo funciona apenas em modo slave (escravo).

- O módulo possui 4 pinos: **VCC** (alimentação de 3,6 à 6v), **GND**, **RX** e **TX**.
- O nível lógico dos pinos RX e TX é de 3.3v, o que significa que, para o Arduino Uno, necessitamos de um divisor de tensão no pino RX para evitar que o módulo seja danificado.

HC-06 Connections to Arduino

HC-05 Connections to Arduino

Proposta de Atividade

Aplicativo para Comunicação Bluetooth

Para a comunicação com o Arduino via bluetooth temos várias aplicações gratuitas, por exemplo, o aplicativo RoboRemoFree Bluetooth o qual pode ser baixado na loja do Google Play.


```
#include <SoftwareSerial.h>
SoftwareSerial mySerial(9,8);
void setup() {
 Serial.begin(9600);
 mySerial.begin(9600);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
void loop() {
 char dados;
 if(mySerial.available()){
  dados = mySerial.read();
  Serial.println(dados);
```

```
switch(dados){
  case 'A':
    digitalWrite(3, !digitalRead(3));
    digitalWrite(4, !digitalRead(4));
  break;
  case 'B':
    digitalWrite(3, !digitalRead(3));
  break;
  case 'C':
    digitalWrite(4, !digitalRead(4));
  break;
}
delay(300);
}
```


Prática com Bluetooth

■ No exemplo anterior insira mais um led e faça o acionamento via aplicativo bluetooth;

Obrigado!

Fernando Silvano Gonçalves

fernando.goncalves@ifsc.edu.br

se.cst.tub@ifsc.edu.br