вариант	ф. номер	група	поток	курс	специалност
O.I.1	2 × 1 × 1 × 1		1		
Име:				,	

Устен изпит по логическо програмиране 29 януари 2022 год.

- **Зад. 1.** а) Какво означава едно множество от съждителни формули да е изпълнимо? Вярно ли е, че ако Γ_1 и Γ_2 са изпълними, то и $\Gamma_1 \cup \Gamma_2$ е изпълнимо?
- б) Нека $\Gamma \cup \{\psi\}$ е множество от съждителни формули. Да се докаже, че $\Gamma \models \psi$ точно тогава, когато $\Gamma \cup \{\neg \psi\}$ е неизпълнимо.
- в) Да се опише алгоритъм, който по дадено крайно множество от съждителни формули Γ разпознава дали то е изпълнимо.
- **Зад. 2.** Нека S е множество от дизюнкти, а D е дизюнкт.
- а) Какво е резолютивен извод от S? Какво означава $S \stackrel{r}{\vdash} D$?
- б) Нека $S \stackrel{r}{\vdash} D$. Докажете, че има такова крайно подмножество S_0 на S, че $S_0 \stackrel{r}{\vdash} D$.
- **Зад. 3.** Нека S е множество от съждителни дизюнкти, което е затворено относно правилото за резолюцията и не съдържа празния дизюнкт. Да се докаже, че S има булев модел.
- Зад. 4. а) Да се дефинира понятието *хорнов дизюнкт*. Да се докаже, че множеството от хорновите дизюнкти е затворено относно правилото за резолюцията.
- б) Нека Σ е множество от непразни хорнови дизюнкти. Да се докаже, че ако Σ е неизпълнимо, то поне един факт принадлежи на Σ .

Пожелаваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
O.I.2	_				
Име:	,				

Устен изпит по логическо програмиране 29 януари 2022 год.

- Зад. 1. а) Нека $\Gamma \cup \{\psi\}$ е множество от съждителни формули. Какво означава $\Gamma \models \psi$? Вярно ли, че ако $\Gamma \models \varphi \lor \psi$, то $\Gamma \models \varphi$ или $\Gamma \models \psi$?
- б) Да се докаже, че за всяка съждителна формула φ е в сила $\Gamma \models \varphi \Rightarrow \psi$ точно тогава, когато $\Gamma, \varphi \models \psi$.
- в) Да се опише алгоритъм, който по дадено крайно множество от съждителни формули Γ разпознава дали то е неизпълнимо.
- **Зад. 2.** а) Какво означава дизюнктът D е резолвента на дизюнктите D_1 и D_2 ?
- б) Нека дизюнктът D е резолвента на дизюнктите D_1 и D_2 , а I е булева интерпретация. Да се докаже, че:

 $I \models \{D_1, D_2\} \longleftrightarrow I \models \{D_1, D_2, D\}.$

Зад. 3. Нека А е фамилия от множества.

- а) Какво е трансверзала за A? Какво е минимална трансверзала за A?
- б) Да се докаже, че една трансверзала Y за A е минимална трансв. за A точно тогава, когато $(\forall y \in Y)(\exists x \in A)(Y \cap x = \{y\})$.
- Зад. 4. а) Да се дефинира понятнето хорнов дизюнкти. Да се докаже, че множеството от хорновите дизюнкти е затворено относно правилото за резолюцията.
- б) Нека Σ е множество от непразни хорнови дизюнкти. Да се докаже, че ако Σ е неизпълнимо, то поне една цел принадлежи на Σ .

Пожелаваме ви приятна и успешна работа!

Scanned with CamScanner

вариант	ф. номер	група	поток	курс	специалност
O.II.1			, 1		
Име:		1			

Устен изпит по логическо програмиране 29 януари 2022 год.

Избирате 3 от следващите 4 задачи!

Зад. 5. а) Дефинирайте понятията свързано участие и свободно участие на индивидна променлива в предикатна формула.

- б) Нека \mathcal{A} е структура за езика \mathcal{L} . Да се докаже, че за всяка формула φ от \mathcal{L} всеки път, когато v и w са оценки в \mathcal{A} и за всяка свободна променлива x на φ е в сила v(x) = w(x), то $\|\varphi\|^{\mathcal{A}}[v] = \|\varphi\|^{\mathcal{A}}[w]$.
- в) Нека \mathcal{A} е структура за \mathcal{L} , Γ е множество от формули от \mathcal{L} и x е индивидна променлива, която няма свободни участия във формулите от Γ . Да се докаже, че ако $\Gamma \models \psi$, то $\Gamma \models \forall x\psi$.

 ${\bf 3ag.}$ 6. Нека ${\cal L}$ е предикатен език от първи ред, а ${\cal A}$ и ${\cal B}$ са структури за ${\cal L}$.

- а) Какво означава h е изоморфно влагане на A в В?
- б) Нека h е изоморфно влагане на A в B. Нека φ е безкванторна формула от \mathcal{L} и $\varphi[x_1,\ldots,x_n]$. Да се докаже, че за произволни a_1,a_2,\ldots,a_n от универсума на A е в сила сквивалентността:

 $\mathcal{A} \models \varphi[a_1, a_2, \ldots, a_n] \longleftrightarrow \mathcal{B} \models \varphi[h(a_1), h(a_2), \ldots, h(a_n)].$

Зад. 7. Нека φ е предикатна формула, а x и y са индивидни променливи. Да се докаже, че ако y няма свободни участия във φ и свободните участия на x във φ не са в област на действие на квантор по y, то $\forall x \varphi$ и $\forall y \varphi[x/y]$ са логически еквивалентни.

Зад. 8. Нека \mathcal{L} е език на предикатното смятане без формално равенство и \mathbb{C} onst $_{\mathcal{L}} \neq \emptyset$.

- а) Какво означава \mathcal{A} е ербранова структура за \mathcal{L} ? Ако \mathcal{A} е ербранова структура за \mathcal{L} и τ е затворен терм, да се намери $\tau^{\mathcal{A}}$.
- б) Нека Δ с множество от затворени безкванторни формули от \mathcal{L} . Да се докаже, че следните са еквивалентни:
 - (1) Δ няма модел;
 - (2) Δ няма ербранов модел;
 - (3) има крайно подмножество на Δ , което е булево неизпълнимо.

Пожселаваме ви приятна и успешна работа!

вариант	ф. помер	група	поток	курс	специалност
O.II.2			.#		
Име:				_	

Устен изпит по логическо програмиране 29 януари 2022 год.

Избирате 3 от следващите 4 задачи!

Зад. 5. а) Какво означава замяната на свободните участия на x с x във φ е допустима?

б) Нека \mathcal{A} е структура за езика \mathcal{L} , x е индивидна променлива, а \varkappa е терм от \mathcal{L} . Нека φ е формула от \mathcal{L} и замяната на свободните участия на x с \varkappa във φ е допустима. Да се докаже, че всеки път, когато v и w са оценки, удовлетворяващи условията:

 $v(x) = \varkappa^{\mathcal{A}}[w]$ и

v(y)=w(y) за всяка променлива $y\in \mathrm{Var}^{\mathrm{free}}[\varphi]\setminus \{x\}$, е в сила равенството $\|\varphi\|^{\mathcal{A}}[v]=\|\varphi[x/\varkappa]\|^{\mathcal{A}}[w].$

в) Да се докаже, че ако замяната на свободните участия на x с \varkappa във φ е допустима, то $\models \forall x \varphi \Rightarrow \varphi[x/\varkappa]$.

 ${\bf 3}$ ад. 6. Нека ${\cal L}$ е предикатен език от първи ред, а ${\cal A}$ и ${\cal B}$ са структури за ${\cal L}$.

- а) Какво означава h е изоморфизъм на A върху В?
- б) Нека h е изоморфизъм на \mathcal{A} върху \mathcal{B} . Нека φ е формула от \mathcal{L} . Да се докаже, че ако $\varphi[x_1, x_2, \ldots, x_n]$, то за произволни a_1, \ldots, a_n от универсума на \mathcal{A} е в сила:

 $\mathcal{A} \models \varphi[a_1, a_2, \ldots, a_n] \longleftrightarrow \mathcal{B} \models \varphi[h(a_1), h(a_2), \ldots, h(a_n)].$

Зад. 7. Нека φ е предикатна формула, а x и y са индивидни променливи. Да се докаже, че ако x няма свободни участня във φ и свободните участия на y във φ не са в област на действие на квантор по x, то $\exists y \varphi$ и $\exists x \varphi[y/x]$ са логически еквивалентии.

Зад. 8. Нека \mathcal{L} е език на предикатното смятане без формално равенство и $\mathsf{Const}_{\mathcal{L}} \neq \emptyset$.

- а) Нека \mathcal{H} е ербранова структура за \mathcal{L} и v е оценка в \mathcal{H} . Да со докаже, че за всеки терм τ , ако $\tau[x_1, x_2, \ldots, x_n]$, то $\tau^{\mathcal{H}}[v]$ е $\tau[x_1/v(x_1), x_2/v(x_2), \ldots, x_n/v(x_n)]$.
- 6) Нека Γ е множество от затворени безкванторни формули от \mathcal{L} . Да се докаже, че следните са сквивалентии:
 - (1) Г има модел;
 - (2) Г има ербранов модел;
 - (3) всяко крайно подмножество на Г е булево изпълнимо.

Пожелаваме ви приятна и успешна работа!

Scanned with CamScanner