Bayesian approach of the parameter inverse problem under uncertainties

Victor Trappler

Directeurs de Thèse : Arthur VIDARD (Inria) Élise ARNAUD (UGA) Laurent DEBREU (Inria)

15 janvier 2020

Table des matières

1	(Joint) Posterior formulation			1
	1.1	Priors		
	1.2	Likelil	nood model	
2 GP for sequential adaptative design, and Relative-regret based fa				
	mily of estimators			
	2.1	Rando	om processes	
	2.2	GP m	odelling of the penalized cost function	
		2.2.1	GP processes	
		2.2.2	Definition of m_V^* ?	
		2.2.3	Approximation of the objective probability using GP	;

(Joint) Posterior formulation

Priors

 $K \sim \mathcal{U}(\mathbb{K}), \quad p(k)$ $U \sim \mathcal{U}(\mathbb{U}), \quad p(u)$

Likelihood model

$$p(y \mid k, u, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2} SS(k, u)\right]$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2} \|\mathcal{M}(k, u) - y\|_{\Sigma}^2\right]$$

Now to Bayes' theorem

$$p(k, u \mid y, \sigma^2) = \frac{p(y \mid k, u, \sigma^2) p(k, u)}{\iint_{\mathbb{K} \times \mathbb{H}} p(y \mid k, u, \sigma^2) p(k, u) \, \mathrm{d}(k, u)}$$

Let us assume an hyperprior for $\sigma^2: p(\sigma^2)$

GP for sequential adaptative design, and Relative-regret based family of estimators

Random processes

Let us assume that we have a map f from a p dimensional space to \mathbb{R} :

$$f: \ \mathbb{X} \subset \mathbb{R}^p \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x)$$
(1)

This function is assumed to have been evaluated on a design of n points, $\mathcal{X} \subset \mathbb{X}^n$. We wish to have a probabilistic modelling of this function We introduce random processes as way to have a prior distribution on function

GP modelling of the penalized cost function

GP processes

Let $\Delta_{\alpha}(\mathbf{k}, \mathbf{u}) = J(\mathbf{k}, \mathbf{u}) - \alpha J^*(\mathbf{u})$. Furthermore, we assume that we constructed a GP on J on the joint space $\mathbb{K} \times \mathbb{U}$, based on a design $\mathcal{X} = \{(\mathbf{k}^{(1)}, \mathbf{u}^{(1)}), \dots, (\mathbf{k}^{(n)}, \mathbf{u}^{(n)})\}$, denoted as $(\mathbf{k}, \mathbf{u}) \mapsto Y(\mathbf{k}, \mathbf{u})$.

As a GP, Y is described by its mean function m_Y and its covariance function $\kappa_Y(\cdot,\cdot)$:

$$Y(\mathbf{k}, \mathbf{u}) \sim \mathcal{N}\left(m_Y(\mathbf{k}, \mathbf{u}), \sigma_Y^2(\mathbf{k}, \mathbf{u})\right)$$
 (2)

Analogous to J and J^* , we define Y^* as

$$Y^*(\mathbf{u}) \sim \mathcal{N}\left(m_Y^*(\mathbf{u}), \sigma_Y^{2,*}(\mathbf{u})\right)$$
 (3)

Then we have

$$\Delta_{\alpha}(\mathbf{k}, \mathbf{u}) \sim \mathcal{N}\left(m_Y(\mathbf{k}, \mathbf{u}) - \alpha m_Y^*(\mathbf{u}), \sigma_Y^2(\mathbf{k}, \mathbf{u}) + \alpha^2 \sigma_Y^{2,*}(\mathbf{u})\right)$$
(4)

Definition of m_Y^* ?

$$J^*(\mathbf{u}) = J(\mathbf{k}^*(\mathbf{u}), \mathbf{u}) = \min_{\mathbf{k} \in \mathbb{K}} J(\mathbf{k}, \mathbf{u})$$
 (5)

As J^* is unknown, we can use first use a plug-in approach, and define

$$m_Y^*(\mathbf{u}) = \min_{\mathbf{k} \in \mathbb{K}} m_Y(\mathbf{k}, \mathbf{u})$$
 (6)

The surrogate conditional minimiser is used in Ginsbourger profiles etc.

Approximation of the objective probability using GP

We are going now to use a different notation for the probabilities, taken with respect to the $GP : \mathcal{P}$, to represent the uncertainty encompassed by the GP.

Defined somewhere else, we have

$$\Gamma_{\alpha}(\mathbf{k}) = \mathbb{P}_{\mathbf{U}}[J(\mathbf{k}, \mathbf{U}) \le \alpha J^*(\mathbf{U})]$$
 (7)

$$= \mathbb{E}_{\mathbf{U}} \left[\mathbb{1}_{J(\mathbf{k}, \mathbf{U}) < \alpha J^*(\mathbf{U})} \right] \tag{8}$$

This classification problem can be approached with a plug-in approach, or a probablistic one :

$$\mathbb{1}_{J(\mathbf{k},\mathbf{u}) < \alpha J^*(\mathbf{u})} \approx \mathbb{1}_{m_Y(\mathbf{k},\mathbf{u}) < \alpha m_Y^*(\mathbf{u})} \tag{9}$$

$$\mathbb{1}_{J(\mathbf{k},\mathbf{u})\leq\alpha J^*(\mathbf{u})} \approx \mathcal{P}\left[\Delta_{\alpha}(\mathbf{k},\mathbf{u})\leq 0\right] = \pi(\mathbf{k},\mathbf{u})$$
(10)

Using the GPs, for a given \mathbf{k} , α and \mathbf{u} , the probability for our meta model to verify the inequality is given by Based on those two approximation, the approximated probability Γ is

$$\hat{\Gamma}_{\alpha,n}(\mathbf{k}) = \mathbb{P}_{U}\left[m_{Y}(\mathbf{k}, \mathbf{u}) \leq \alpha m_{Y}^{*}(\mathbf{u})\right]$$
 (plug-in)

$$\hat{\Gamma}_{\alpha,n}(\mathbf{k}) = \mathbb{E}_{U}\left[\mathcal{P}\left[\Delta_{\alpha}(\mathbf{k}, \mathbf{u}) \leq 0\right]\right]$$
 (Probabilistic approx)
(11)

Considering the joint distribution of $Y(\mathbf{k}, \mathbf{u})$ and $Y^*(\mathbf{u}) = Y(\mathbf{k}^*(\mathbf{u}), \mathbf{u})$, we have

$$\begin{bmatrix} Y(\mathbf{k}, \mathbf{u}) \\ Y^*(\mathbf{u}) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m_Y(\mathbf{k}, \mathbf{u}) \\ m_Y^*(\mathbf{u}) \end{bmatrix}; \begin{bmatrix} C\left((\mathbf{k}, \mathbf{u}), (\mathbf{k}, \mathbf{u}) \right) & C\left((\mathbf{k}, \mathbf{u}), (\mathbf{k}^*(\mathbf{u}), \mathbf{u}) \right) \\ C\left((\mathbf{k}, \mathbf{u}), (\mathbf{k}^*(\mathbf{u}), \mathbf{u}) \right) & C\left((\mathbf{k}^*(\mathbf{u}), \mathbf{u}), (\mathbf{k}^*(\mathbf{u}), \mathbf{u}) \right) \end{bmatrix} \right)$$
(12)

By multiplying by the matrix $\begin{bmatrix} 1 & -\alpha \end{bmatrix}$ yields

$$\Delta_{\alpha}(\mathbf{k}, \mathbf{u}) \sim \mathcal{N}\left(m_{\Delta}(\mathbf{k}, \mathbf{u}); \sigma_{\Delta}^{2}(\mathbf{k}, \mathbf{u})\right)$$
 (13)

$$m_{\Lambda}(\mathbf{k}, \mathbf{u}) = m_{Y}(\mathbf{k}, \mathbf{u}) - \alpha m_{Y}^{*}(\mathbf{u}) \tag{14}$$

$$\sigma_{\Lambda}^{2}(\mathbf{k}, \mathbf{u}) = \sigma_{Y}^{2}(\mathbf{k}, \mathbf{u}) + \alpha^{2} \sigma_{Y^{*}}^{2}(\mathbf{k}, \mathbf{u}) - 2\alpha C\left((\mathbf{k}, \mathbf{u}), (\mathbf{k}^{*}(\mathbf{u}), \mathbf{u})\right)$$
(15)

2 GP FOR SEQUENTIAL ADAPTATIVE DESIGN, AND RELATIVE-REGRET 2.2 GP modelling of the penalized cost function BASED FAMILY OF ESTIMATORS

The probability of coverage for the set $\{Y - \alpha Y^*\}$ is π , and can be computed using the CDF of the standard normal distribution Φ :

$$\pi(\mathbf{k}, \mathbf{u}) = \Phi\left(-\frac{m_{\Delta_{\alpha}}(\mathbf{k}, \mathbf{u})}{\sigma_{\Delta_{\alpha}}(\mathbf{k}, \mathbf{u})}\right)$$
(16)