Peter Siawish, ID: 01-22-00124 Special Topics, Final Project Dr. Ibrahim Hamarash

Project Report: Personality Predictor Application

1. Executive Summary

This report details the development and functionality of the Personality Predictor Application, a user-friendly web tool designed to classify an individual's personality as either **Introvert** or **Extrovert** based on their responses to a series of lifestyle and behavioral questions. Built using the Streamlit framework, this application provides an interactive and intuitive interface for users, delivering immediate predictions with a confidence score and personalized suggestions.

2. Project Purpose

The primary objective of this project was to create a simple, accessible, and illustrative application demonstrating the practical application of a machine learning model in a real-world scenario. Specifically, it aims to:

- Provide a quick, engaging way for users to explore personality traits.
- Showcase the seamless integration of a machine learning model into a web-based graphical user interface (GUI).
- Offer personalized, high-level suggestions based on the predicted personality type, enhancing user engagement and utility.

3. Key Features

The Personality Predictor Application includes the following core functionalities:

- Interactive User Interface: A clean and responsive web interface developed with Streamlit, allowing users to input their responses via sliders and dropdown menus.
- **Personality Prediction:** Utilizes a pre-trained **K-Nearest Neighbors (KNN)** machine learning model to categorize users into "Introvert" or "Extrovert."
- **Prediction Confidence:** Displays a **confidence score** alongside the prediction, indicating the model's certainty.
- **Personalized Suggestions:** Based on the predicted personality, the application provides a brief list of **tailored tips** related to social interaction and self-care.
- Clear Guidance: User inputs are accompanied by descriptive labels and helpful tooltips to ensure clarity and accuracy of responses.

4. Technical Implementation

The application's architecture is straightforward and efficient:

- **Front-end & Logic:** The entire application logic and user interface are developed in **Python** using the **Streamlit** library. Streamlit handles the web server, rendering of widgets, and user interaction.
- Machine Learning Model: A K-Nearest Neighbors (KNN) model, previously trained on relevant personality data, is the core of the prediction engine.
- **Model Persistence:** The trained KNN model is serialized and stored as a .pkl file (personality_model.pkl) using the **joblib** library. This allows the application to load the pre-trained model efficiently without needing to retrain it each time the app runs.
- **Numerical Operations: NumPy** is used for efficient handling of numerical data, particularly in preparing the input features for the model prediction.
- **Dependency Management:** A requirements.txt file lists all necessary Python libraries and their exact versions, ensuring a reproducible environment for both local execution and cloud deployment.

5. Conclusion

The Personality Predictor Application successfully demonstrates the power of combining machine learning with an accessible web interface. It serves as an excellent example of how data-driven insights can be presented in an interactive and user-friendly manner, offering both informative predictions and practical, personalized advice. The project's clean structure and use of widely adopted tools like Streamlit and scikit-learn make it easily deployable and understandable.