Mestrado em Engenharia e Gestão Industrial Inteligência Artificial aplicada na Indústria

Métricas

Daniel Nogueira

dnogueira@ipca.pt

https://www.linkedin.com/in/danielfnogueira/

Machine Learning Models

Reference: Input (Dataset)

Machine Learning Models

Reference: Output

Classification Models

Machine Learning Models

Classification Models

Decision Tree

Random Forest

Naive Bayes

Support Vector Machine

Machine Learning Models

Classification Models

Regression Models

Machine Learning Models

Classification Models

Regression Models

Dataset

Preprocessing

Metrics

Machine Learning Pipeline Posprocessing Interate until Interate to find data is ready the best model Deploy Apply ML Apply Raw Prepared Evaluate techniques Model preprocess model/app Data Data to data to data **Prepared** Data

Machine Learning

Deploy

Dataset

Dataset

Accuracy

Accuracy mede o quão próximo o resultado está do valor real que você estava tentando alcançar. Em outras palavras, é o quão perto você atinge o que almeja.

Accuracy pode ser usada em uma instancia.

Precision

Precision mede a proximidade entre seus resultados.

Accuracy

Accuracy mede o quão próximo o resultado está do valor real que você estava tentando alcançar. Em outras palavras, é o quão perto você atinge o que almeja.

Accuracy pode ser usada em uma instancia.

Precision

Precision mede a proximidade entre seus resultados.

Accuracy

Accuracy mede o quão próximo o resultado está do valor real que você estava tentando alcançar. Em outras palavras, é o quão perto você atinge o que almeja.

Accuracy pode ser usada em uma instancia.

Precision

Precision mede a proximidade entre seus resultados.

Accuracy

Accuracy mede o quão próximo o resultado está do valor real que você estava tentando alcançar. Em outras palavras, é o quão perto você atinge o que almeja.

Accuracy pode ser usada em uma instancia.

Precision

Precision mede a proximidade entre seus resultados.

Accuracy

Accuracy mede o quão próximo o resultado está do valor real que você estava tentando alcançar. Em outras palavras, é o quão perto você atinge o que almeja.

Accuracy pode ser usada em uma instancia.

Precision

Precision mede a proximidade entre seus resultados.

Accuracy

Accuracy mede o quão próximo o resultado está do valor real que você estava tentando alcançar. Em outras palavras, é o quão perto você atinge o que almeja.

Accuracy pode ser usada em uma instancia.

Precision

Precision mede a proximidade entre seus resultados.

Test Data

TP – True Positive

FP – False Positive

TN – True Negative

FN – False Negative

Predicted

Predicted

	Positive	Negative	
Positive	True positive(TP)	False Negative(FN)	Sensitivity or Recall or True Positive Rate=TP/(TP+FN)
Negative	False Positive (FP)	True Negative(TN)	Specificity or True Negative Rate=TN/(TN+FP)
	Precision or Positive Predictive Value=TP/(TP+FP)	Negative Predictive Value=FN/(FN+TN)	Accuracy=TP+TN/TP+TN+FP+FN

Actual

Actual

- > Accuracy (Acurácia):
 - **Definição:** A acurácia mede a proporção de previsões corretas feitas por um modelo em relação ao número total de previsões.
 - Foco: É uma métrica geral que avalia o desempenho global do modelo, levando em conta verdadeiros positivos, verdadeiros negativos, falsos positivos e falsos negativos.

$$Accurancy = \frac{TP}{TP + FP + FN + TN}$$

> Accuracy (Acurácia):

- **Definição:** A acurácia mede a proporção de previsões corretas feitas por um modelo em relação ao número total de previsões.
- Foco: É uma métrica geral que avalia o desempenho global do modelo, levando em conta verdadeiros positivos, verdadeiros negativos, falsos positivos e falsos negativos.

> Precision (Precisão):

- **Definição:** A precisão mede a proporção de previsões positivas corretas em relação ao número total de previsões positivas feitas pelo modelo.
- Foco: É importante quando você deseja minimizar falsos positivos, ou seja, quando a identificação incorreta de casos positivos é crítica.

$$Precision = \frac{TP}{TP + FP}$$

$$Accurancy = \frac{TP}{TP + FP + FN + TN}$$

$$Precision = \frac{TP}{TP + FP}$$

High Accuracy Low Precision

Low Accuracy Low Precision

High Accuracy High Precision

Low Accuracy High Precision

> Accuracy (Acurácia):

- **Definição:** A acurácia mede a proporção de previsões corretas feitas por um modelo em relação ao número total de previsões.
- Foco: É uma métrica geral que avalia o desempenho global do modelo, levando em conta verdadeiros positivos, verdadeiros negativos, falsos positivos e falsos negativos.

> Precision (Precisão):

- **Definição:** A precisão mede a proporção de previsões positivas corretas em relação ao número total de previsões positivas feitas pelo modelo.
- Foco: É importante quando você deseja minimizar falsos positivos, ou seja, quando a identificação incorreta de casos positivos é crítica.

> Recall (Revocação):

- Definição: Recall, também conhecido como Sensibilidade ou Taxa de Verdadeiros Positivos, mede a capacidade de um modelo de identificar todos os exemplos <u>relevantes</u> em um conjunto de dados.
- Foco: É particularmente importante quando você deseja minimizar falsos negativos, ou seja, quando a não detecção de casos positivos é crítica.

$$Accurancy = \frac{TP}{TP + FP + FN + TN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Accurancy = \frac{TP}{TP + FP + FN + TN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

> F1 Score:

- Definição: é uma métrica de avaliação que combina as métricas de precision e recall em um único número, fornecendo uma medida geral do desempenho de um modelo.
- Foco: é particularmente útil para encontrar um equilíbrio entre a precision e a capacidade de recuperar todos os casos positivos (recall). O F1 Score é calculado pela média harmônica da precision e recall.
- ❖ O F1 Score varia de 0 a 1, onde 1 indica um modelo perfeito que atinge tanto alta precisão quanto alta revocação.
- ❖ É especialmente útil quando as consequências de falsos positivos e falsos negativos são críticas e você deseja encontrar um equilíbrio entre esses dois tipos de erros.
- ❖ É amplamente utilizado em problemas de classificação binária, como detecção de spam, diagnóstico médico, ou classificação de sentimentos.

$$F1 \ score = \frac{2 * Precision * Recall}{Precision + Recall} = \frac{TP}{TP + \frac{FP}{2} + \frac{FN}{2}}$$

Confusion Matrix

- 150 samples (80% train + 20% test)
- 3 classes (setosa, versicolor, virginica)
- 30 test samples (test dataset):
 - ✓ Setosa 11 samples (11 predicted)
 - ✓ Versicolor 11 samples (10 predicted)
 - √ Virginica 8 samples (9 predicted)

1 sample predicted Virginica => Versicolor (real)

$$Accurancy = \frac{11+10+8}{11+11+8} = \frac{29}{30} = 0.9667$$

Setosa:
$$TP = 11 | FP = 0 | FN = 0$$

Versicolor:
$$TP = 10 \mid FP = 0 \mid FN = 1$$

Virginica:
$$TP = 8 \mid FP = 1 \mid FN = 0$$

$$Precision_{setosa} = \frac{11}{11+0} = \frac{11}{11} = 1$$

$$Recall_{setosa} = \frac{11}{11+0} = \frac{11}{11} = 1$$

$$Precision_{versicolor} = \frac{10}{10+0} = \frac{10}{10} = 1$$

$$Recall_{versicolor} = \frac{10}{10+1} = \frac{10}{11} = 0.9091$$

Precision_{virginica} =
$$\frac{8}{8+1} = \frac{8}{9} = 0.8889$$

$$Recall_{virginica} = \frac{8}{8+0} = \frac{8}{8} = 1$$

Setosa:
$$TP = 11 \mid FP = 0 \mid FN = 0$$

Versicolor: $TP = 10 \mid FP = 0 \mid FN = 1$
Virginica: $TP = 8 \mid FP = 1 \mid FN = 0$

$$F1_{setosa} = \frac{2 * 1 * 1}{1 + 1} = \frac{2}{2} = 1$$

$$W_{setosa} = \frac{11}{30} = 0.3666$$

$$F1_{versicolor} = \frac{2 * 1 * 0.9091}{1 + 0.9091} = \frac{1.8182}{1.9091} = 0.9524$$

$$W_{versicolor} = \frac{11}{30} = 0.3666$$

$$F1_{virginica} = \frac{2 * 0.8889 * 1}{0.8889 + 1} = \frac{1.7778}{1.8889} = 0.9412$$

$$W_{virginica} = \frac{8}{30} = 0.2667$$

Predicted label

Mestrado em Engenharia e Gestão Industrial **Inteligência Artificial aplicada na Indústria**

Daniel Nogueira

dnogueira@ipca.pt

https://www.linkedin.com/in/danielfnogueira/

