SIR implementation in a mobility network

Guzman Solis Cristina Neven Guillaume Guichemerre Jérémy Van Doorn Willem Laurenszoon

GESS ETH Zürich REAL TIME EPIDEMIC ATATHON

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Contents

- Introduction
- SIR
- Implementation
 - Two betas
- Results
 - By state
 - Global
- Further work
 - Mobility model and data
- Conclusion

SIR Model

Three compartments

- Susceptible, infectious, recovered
- Interaction parameters β, γ

Every US State is own compartment model

- No mobility between states included (yet)
- Parameters initially unknown, but bounds are given; fitting is optimisation problem
- Dynamics change with every wave: adaptive parameters

Implementation:

Code based on

https://github.com/cidacslab/Mathematical-and-Statistical-Modeling-of-COVID19-in-Brazil/blob/master/main/modelos.py

Pipeline INPUT (days, confirmed cases, SIR parameters β, γ) Update parameters Update parameters calculate MSE between confirmed cases and I+R

Preparing the data:

- Group by state total number of confirmed cases.
- Create an array per state of number of confirmed cases.
- Create a dictionary with key=state name and value=Population size.
- Initialize SIR object for each state, with their respective population size.

Optimization

Powell method vs. L-BFGS-B method

Needed to check:

- Sensitivity of initial parameters
- Local minima

We observed that:

- Minima obtained with Powell method were more consistent.
- Values obtained with L-BFGS-B tended to go to the boundaries.
- Comparing both methods, Powell gave generally lower errors.

Second approach: Nonhomogeneous β

Assuming a constant β might not be the best way to model the dynamics.

We used a "discrete time varying" beta instead, of the form

$$\beta(t) = \beta_1 f(t^* - t) + \beta_2 f(t - t^*)$$

where

$$f(t) = \frac{1}{1 + e^{-at}}$$

Fitting pipeline

Cases distribution

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Error per capita US Virgin Islands Mariana Islands Guam Puerto Rico Wyoming 1 Wisconsin -West Virginia -Washington -Virginia · Vermont Utah -Texas Tennessee -South Dakota South Carolina Rhode Island Pennsylvania -Oregon -Oklahoma -Ohio -North Dakota -North Carolina -New York -New Mexico New Jersey New Hampshire Nevada Nebraska Montana Missouri -Mississippi -Minnesota -Massachusetts Maryland -Maine -Louisiana Kentucky -Kansas lowa -Indiana 🖥 Illinois Idaho-Hawaii -Georgia -Florida Columbia Delaware Connecticut -Colorado -California Arkansas Arizona Alaska -Alabama -0.00075 0.00175 0.00000 RMSE/capita

Results by state

Results by state

National results

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Further work: Mobility dependencies

How to include mobility data?

$$\beta_{m_i} = \frac{1}{\alpha} \sum_{j \neq i} m_{ji} \frac{I_j}{Pop_j}$$

where m_{ji} is the number of passenger from j to i.

Further work: Mobility dependencies

We then need to combine the betas:

$$\beta_i = \theta \beta_{0_i} + (1 - \theta) \beta_{m_i}$$

2 general parameters to optimize:

lpha and $oldsymbol{ heta}$

Further work: Getting mobility data

- We have coded a bot that gather the needed data and combine it to mobility matrix.
- A script linking the matrix rows to the corresponding state in the code has been done.

The global optimization has not been implemented.

Conclusion

- A model of independent SIRs has been implemented with automatic data cleaning.
- A dual beta model has been done to take time dependency into account.
- An alternative model to take mobility data into account has been proposed including data acquisition.

What we have learned:

- An understanding of pandemic modeling including its difficulties.
- Good practice for further projects on modeling and prediction.

