Support Vector Machines

Marcin Kuta

Support Vector Machines

Support Vector Machines

Separating Hyperplane

w - vector normal to hyperplane

$$w^T x + b \ge 0 \text{ when } y_n = +1 \tag{1}$$

$$w^T x + b < 0 \text{ when } y_n = -1 \tag{2}$$

$$y_n(w^Tx+b) \ge 0 \tag{3}$$

Representer Theorem

Optimal weight vector is a linear combination of the examples x_n :

$$w = \sum_{i=1}^{N} \alpha_i y_i x_i \tag{4}$$

If $\alpha_i = 0$ then example x_i does not contribute to the solution w.

If $\alpha_i > 0$ then x_i is called a support vector.

SVM Variants

- LinearSVC
- SVC
- NuSVC
- SGDClassifier

References

- [1] https: //jakevdp.github.io/PythonDataScienceHandbook/05. 07-support-vector-machines.html
- [2] https://github.com/rasbt/machine-learning-book/ blob/main/ch03/ch03.ipynb Maximum-margin classification with support vector machines
- [3] https://www.kaggle.com/code/prashant111/ svm-classifier-tutorial