# UNIVERSITY OF TORONTO Faculty of Arts and Science

#### **EXAMINATION DECEMBER 2012**

## PHL 245 H1F L0101 - Niko Scharer

**Duration - 3 hours** 

Examination Aid: Sheet with rules (provided)

|                | • | •                                     |  |
|----------------|---|---------------------------------------|--|
| T ant Name of  |   | iii<br>T                              |  |
| Last Name      |   | · · · · · · · · · · · · · · · · · · · |  |
| First Name     |   |                                       |  |
| Student Number |   |                                       |  |

Answer all questions on the exam paper.

Use the supplied examination booklet for rough work OR if you need further space.

The exam consists of fourteen (14) pages. Pages 2-12 have questions on them.

The final two pages (13-14) are an aid sheet and may be detached from the rest of the exam.

1. Suppose there are three sentences:  $\phi$ ,  $\psi$  and  $\chi$ . On every interpretation that  $\phi$  is true,  $\psi$  is false.

What can you conclude (if anything) about the following argument? Explain. (3%)

$$\dot{}$$
  $\psi \rightarrow \chi$ 

2. Here is a truth-table for the NEW symbol: \*

| P | Q  | P * Q |
|---|----|-------|
| T | T  | F     |
| T | F  | T     |
| F | T  | T     |
| F | TF | Т     |

a) Given this truth-table, what ordinary English expression can this new truth-functional connective (\*\*) be used to symbolize? (1 pt.)

b) Using the definition of the new symbol, \*\*, as defined by the truth-table above, provide a shortened truth-table and truth-value assignment that shows that the following sentence is NOT a tautology. (3 pts.)

$$((P \leftrightarrow \sim Q) \land (S * W)) \rightarrow ((Q * Z) \lor \sim (S \lor P))$$

| Name: | Student Number: |
|-------|-----------------|
|       |                 |

3. Provide an English language interpretation that shows that the following argument is invalid. Your interpretation should specify the universe of discourse and a symbolization scheme. (4 pts.)

$$\forall x(Bx \rightarrow \exists y \sim H(xy)).$$

$$\exists x \forall y (Ax \wedge H(xy))$$

$$\exists x \forall y (Ax \land H(xy)).$$
  $\therefore \forall z (Bz \rightarrow \sim H(zz))$ 

4. Explain why the following sentence is a contradiction. (4 pts.)

$$\exists x \forall y (Fx \land \sim L(xy)) \land \forall y (Fy \rightarrow \exists x L(yx))$$

| 5. | Use | e this symbolization scheme to symbo   | lize the following sentences:     | 36 pts. total                 |
|----|-----|----------------------------------------|-----------------------------------|-------------------------------|
|    |     | $A^1$ : a is ambitious.                | $C^1$ : a is a citizen.           | $D^1$ : $a$ is a politician   |
|    |     | $F^1$ : a is a time.                   | $G^1$ : a gets elected.           | $H^1$ : a is a person.        |
|    |     | $J^2$ : $a$ is more popular than $b$ . | $K^2$ : a votes for b.            | $L^2$ : a likes b.            |
|    |     | $M^3$ : a makes a promise to b at c.   | a <sup>0</sup> : Aaron            | $c^1$ : the cousin of a.      |
|    | a)  | Some people who are ambitious are      | politicians. (2 pts.)             |                               |
|    |     |                                        |                                   |                               |
|    |     |                                        |                                   |                               |
|    |     |                                        |                                   |                               |
|    | b)  | Every politician is a citizen, but not | all politicians get elected. (3   | pts.)                         |
|    |     |                                        |                                   |                               |
|    |     |                                        | •                                 |                               |
|    |     |                                        |                                   |                               |
|    |     |                                        |                                   |                               |
|    |     |                                        |                                   |                               |
|    | c)  | Only ambitious people are politiciar   | ns. (3 pts.)                      |                               |
|    | -,  | · · · · · · · · · · · · · · · · · · ·  |                                   |                               |
|    |     |                                        |                                   |                               |
|    |     |                                        |                                   |                               |
|    |     |                                        |                                   |                               |
|    |     |                                        |                                   |                               |
|    | d)  | For a person to get elected, it is nec | essary that he/she is more por    | oular than any politician tha |
|    | u)  | people vote for. (4 pts.)              | pessal y unat neverte to more per | ,                             |
|    |     |                                        | •                                 |                               |
|    |     |                                        |                                   |                               |

|                  | Name:                                                                    | Student N                      | umber:                               |
|------------------|--------------------------------------------------------------------------|--------------------------------|--------------------------------------|
| 5 cont<br>Use th | inued.<br>is symbolization scheme to symboliz                            | ze the following sentences:    |                                      |
|                  | $A^1$ : a is ambitious.                                                  | $C^1$ : a is a citizen.        | $D^1$ : a is a politician            |
|                  | $F^1$ : a is a time.                                                     | $G^1$ : a gets elected.        | $H^1$ : a is a person.               |
|                  | $J^2$ : a is more popular than b.                                        | $K^2$ : a votes for b.         | $L^2$ : a likes b.                   |
|                  | $M^3$ : a makes a promise to b at c.                                     | a <sup>0</sup> : Aaron         | $c^1$ : the cousin of a.             |
| e)               | Assuming that no politician is liked promises to people some of the time |                                | or him/her, every politician makes   |
|                  |                                                                          |                                |                                      |
|                  |                                                                          |                                |                                      |
|                  |                                                                          |                                |                                      |
|                  |                                                                          | •                              |                                      |
|                  |                                                                          |                                |                                      |
|                  |                                                                          |                                |                                      |
| f)               | Any politician who makes a promis dislikes him/her. (4 pts.)             | se to all citizens at the same | e time gets elected unless everybody |
|                  |                                                                          |                                |                                      |
|                  |                                                                          |                                |                                      |
|                  |                                                                          |                                |                                      |
|                  |                                                                          |                                | ·                                    |

(4 pts.)

g) Only Aaron likes exactly those people who vote for him.

#### 5 continued.

Use this symbolization scheme to symbolize the following sentences:

 $A^1$ : a is ambitious.

 $D^1$ : a is a politician

 $F^1$ : a is a time.

C<sup>1</sup>: a is a citizen.
G<sup>1</sup>: a gets elected.

 $H^1$ : a is a person.

 $J^2$ : a is more popular than b.  $K^2$ : a votes for b.

 $L^2$ : a likes b.

 $M^3$ : a makes a promise to b at c.

a<sup>0</sup>: Aaron

 $c^1$ : the cousin of a.

h) Neither Aaron nor Aaron's cousin votes for the one politician that Aaron likes.

(4 pts.)

i) Using the symbolization scheme above, provide an idiomatic English sentence that expresses: (4 pts.)

$$\exists x(Dx \land \forall y(Dy \land \sim x=y \rightarrow J(xy)) \land \sim \forall z(Hz \rightarrow L(zx)))$$

j) Using the symbolization scheme above, symbolize the following ambiguous sentence two logically distinct ways. For each, provide an English sentence that explains exactly what the symbolized sentence means:

Somebody doesn't like every politician. (4 pts.)

| Name:     | Student Number: |
|-----------|-----------------|
| 1 100110. |                 |

6. Provide a derivation that shows the following theorem is valid using only the 10 basic rules from SL (R, DN, MP, MT, ADJ, S, ADD, MTP, BC, CB) (9 pts.)

$$\therefore \sim (P \vee Q) \wedge \sim (R \to S) \to (\sim Q \leftrightarrow \sim S)$$

| ·  |   |
|----|---|
| 1  |   |
| 2  |   |
| 3  |   |
| 4  |   |
| 5  |   |
| 6  |   |
| 7  |   |
| 8  |   |
| 9  |   |
| 10 |   |
| 11 |   |
| 12 |   |
| 13 |   |
| 14 |   |
| 15 |   |
| 16 |   |
| 17 |   |
| 18 |   |
| 19 |   |
| 20 |   |
| 21 | · |
| 22 |   |
| 23 |   |
| 24 |   |
| 25 |   |
| 26 |   |
| 27 |   |

| 7. | Provide a derivation that shows that this is a valid argument using only the 10 basic rules from | m SL     |
|----|--------------------------------------------------------------------------------------------------|----------|
|    | (R, DN, MP, MT, ADJ, S, ADD, MTP, BC, CB) and the 3 basic rules from PL (UI, EG, EI)             | (9 pts.) |

$$\exists z (Fz \land \forall y L(zy)). \qquad \exists z (Bz \lor Cz) \rightarrow \forall x \forall y (Fx \leftrightarrow G(yx)).$$
 
$$\therefore \forall x (Bx \rightarrow \exists y (G(xy) \land L(yx)))$$

| 1                           |  |
|-----------------------------|--|
|                             |  |
| 2                           |  |
| 3                           |  |
| 4                           |  |
| 5                           |  |
| 6                           |  |
| 7                           |  |
| 8                           |  |
| 9                           |  |
| 10                          |  |
| 11                          |  |
| 12                          |  |
| 13                          |  |
| 14                          |  |
| 15                          |  |
| 16                          |  |
| 17                          |  |
| 18                          |  |
| 19                          |  |
| 20                          |  |
| 21                          |  |
| 22                          |  |
| 23                          |  |
| 24                          |  |
| 25                          |  |
| 26                          |  |
| Billion or annual ballatero |  |

|                     | Name:                                                                             | Student                                                                                                        | Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8. Pr               | ovide a derivation to show t                                                      | hat this is a valid argument (use a                                                                            | ny rules). (9 pts.):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\forall x \forall$ | $y(F(yx) \rightarrow \sim B(xy)) \rightarrow$                                     | ~∃y~A(yy).                                                                                                     | $\exists x \forall y (L(xyy) \rightarrow \forall z \sim A(xz)).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ∀z(∃                | $\operatorname{HwB}(\operatorname{wz}) \to \operatorname{H}(\operatorname{zz})$ . | $\forall x (H(xx) \rightarrow \sim \exists z F(xz)).$                                                          | ∴~∀x∃y∀zL(xyz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1                   |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                   |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                   |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                   |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                   |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                   |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                   |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                   |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                   |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                  | ·                                                                                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11                  |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12                  |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                  |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14                  |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15                  |                                                                                   |                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16                  |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17                  |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18                  |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19                  |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20                  |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21                  |                                                                                   |                                                                                                                | Antilleon Lange et al angle language and the language and |
| 22                  |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23                  |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24                  |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25                  |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26                  |                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27                  |                                                                                   | P 4000 mm at 1000 mm and a grant and a | AND THE PROPERTY OF THE PROPER |

| ∃х(В | $\forall x \land \sim Cx) \rightarrow \exists x \forall y F(a(x)y).$ | $\therefore \forall x \exists y \sim (Bx \rightarrow Cy) \rightarrow \exists x F(xa(x)) \land \exists y F(yy)$ |
|------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 1    |                                                                      |                                                                                                                |
| 2    |                                                                      |                                                                                                                |
| 3    |                                                                      |                                                                                                                |
| 4    |                                                                      |                                                                                                                |
| 5    |                                                                      |                                                                                                                |
| 6    |                                                                      |                                                                                                                |
| 7    |                                                                      |                                                                                                                |
| 8    |                                                                      |                                                                                                                |
| 9    |                                                                      |                                                                                                                |
| 10   |                                                                      |                                                                                                                |
| 11   |                                                                      |                                                                                                                |
| 12   |                                                                      |                                                                                                                |
| 13   |                                                                      |                                                                                                                |
| 14   |                                                                      |                                                                                                                |
| 15   |                                                                      |                                                                                                                |
| 16   |                                                                      |                                                                                                                |
| 17   |                                                                      |                                                                                                                |
| 18   |                                                                      |                                                                                                                |
| 19   |                                                                      |                                                                                                                |
| 20   |                                                                      |                                                                                                                |
| 21   |                                                                      |                                                                                                                |
| 22   |                                                                      |                                                                                                                |
| 23   |                                                                      |                                                                                                                |
| 24   |                                                                      |                                                                                                                |
| 25   |                                                                      |                                                                                                                |
| 26   |                                                                      |                                                                                                                |
| 27   |                                                                      |                                                                                                                |

9. Show that the following is a valid argument (use any rules). (9 pts.):

| Name: | Student Number: |
|-------|-----------------|
|-------|-----------------|

10. Use a finite model to demonstrate that this set of three sentences is consistent (8 pts.):

$$\{\exists x (Bx \wedge \forall y L(xy)).$$

$$\forall x \exists y (L(xy) \rightarrow \sim L(yx)).$$

$$\sim \forall x(Cx \rightarrow L(xx))$$

- i) provide a truth-functional expansion (to two individuals) for each sentence in this set.
- ii) define a finite model with a universe of two individuals that shows that the set is consistent.

$$\exists x (Bx \land \forall y L(xy)).$$

$$\forall x \exists y (L(xy) \rightarrow \sim L(yx)).$$

$$\sim \forall x(Cx \rightarrow L(xx)).$$

11. Consider the following derivation rule (which is *not* a rule in our derivation system):



Explain how this rule works.

What are the advantages (if any) and disadvantages (if any) of adding this rule to our system. Overall, do you think that it would be good to add this rule to our derivation system? Explain why or why not. (5%)

# AID SHEET: DERIVATION RULES (SEE BOTH SIDES)

# **Derivation Types:**

**Direct Derivation (DD)** 

**Conditional Derivation (CD)** 

**Indirect Derivation (ID)** 

Universal Derivation (UD) Restriction: the instantiating term cannot occur unbound

in any previous line.

# **Basic Rules for Sentential Operators:**

## Modus Ponens (MP)

$$\frac{(\phi \to \psi)}{\phi}$$

#### Modus Tollens (MT)

$$(\phi \rightarrow \psi)$$

$$\sim \psi$$

$$\sim \phi$$

### Double Negation (DN)

## Repetition (R)

# Simplification (S)

## Adjunction (ADJ)

## Addition (ADD)

# Modus Tollendo Ponens (MTP)

Ψ

## Biconditional-Conditional (BC)

$$\frac{\psi \leftrightarrow \psi}{\phi \rightarrow \psi}$$

$$\phi \leftrightarrow \psi$$

# Conditional-Biconditional (CB)

# **Derived Rules for Sentential Operators:**

#### Negation of Conditional (NC)

$$\sim (\phi \rightarrow \psi)$$

$$\frac{\varphi \lor \psi}{\sim \phi \rightarrow \psi}$$

## Separation of Cases (SC)

$$\begin{array}{ccc} \phi \lor \psi \\ \phi \to \chi & \phi \to \chi \\ \psi \to \chi & \sim \phi \to \chi \\ \hline \chi & \chi \end{array}$$

## Negation of Biconditional (NB)

$$\frac{}{\varphi \leftrightarrow \varphi} \qquad \frac{\varphi \leftrightarrow \varphi}{\varphi \leftrightarrow \varphi} \qquad \frac{}{\varphi \leftrightarrow \varphi}$$

# De Morgan's (DM)

# **Derivation Rules for Predicate Logic:**

| Existential<br>Generalization (EG) | Universal<br>Instantiation (UI)                                            | Existential<br>Instantiation (EI)                                    | Quantifier Negation                   | on (QN)                                      |
|------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------|
| φς                                 | $orall lpha \phi_lpha$                                                    | $\exists \alpha \varphi_{\alpha}$                                    | ~∀αφ                                  | ∼∃αφ                                         |
| $\exists \alpha \phi_{\alpha}$     | φς                                                                         | φς                                                                   | $\overline{\exists \alpha \sim \phi}$ | $\overline{\forall \alpha \sim \!\!\! \phi}$ |
|                                    | Restriction: $\zeta$ does not occur as a bound variable in $\phi_{\alpha}$ | Restriction: $\zeta$ does not occur in any previous line or premise. | ∃α ~φ                                 | ∀ <b>α</b> ~ <b>φ</b>                        |
|                                    |                                                                            |                                                                      | $\overline{\sim \forall \alpha \phi}$ | $\overline{\sim \exists \alpha \phi}$        |