ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет информационных технологий и программирования

Лабораторная работа №1

Разностная схема. Погрешность разностной схемы. Оценка погрешности.

> Выполнила: студентка группы M34021 Кумирова Екатерина Александровна

Принял: кандидат физико-математических наук Штумпф Святослав Алексеевич

Система уравнений Лотки-Вольтерра «хищник-жертва»:

$$\begin{cases} \hat{x} = \alpha x - xy \\ \hat{y} = \beta xy - cy \end{cases}$$

$$x(0) = x_0 > 0, y(0) = y_0 > 0$$

x — безразмерная численность жертв, y — безразмерная численность хищников

 β , c — положительные константы (β < 1)

Скорость размножения жертв: $\alpha(t) = \alpha_0(1 + \sin(\omega t))$.

Явная численная схема, порядок точности 3:

Нам необходима точность $O(h^N) = O(h^3)$, следовательно, в шаблоне должно быть N+1=4 точки.

Шаблон явной численной схемы для записи уравнения в координатах «время-численность»:

$$u((x_{i}, y_{i}), t)$$

$$u((x_{i-1}, y_{j-1}, t - h))$$

$$u((x_{i-2}, y_{j-2}, t - 2h))$$

$$u((x_{i-3}, y_{j-3}, t - 3h))$$

Разработаем явную численную схему 3-его порядка точности с помощью метода неопределённых коэффициентов. Существует единственный набор коэффициентов α , который позволяет найти на шаблоне из (1+l+m)=4 точек значение первой производной с точностью $O(h^{l+m=3})$. Численная схема - явная, так что положим l=3 (количество точек назад), m=0 (количество точек вперёд).

Мы ожидаем, что первая производная будет выражена через линейную комбинацию сеточных точек:

$$f'(x_j) \approx \frac{1}{h} \sum_{k=-l}^{m} \alpha_k f(x_j + kh)$$

Воспользуемся широко известным фактом: в окрестности точки функцию можно разложить в ряд Тейлора и получить некоторое приближение с помощью построенного ряда. Каждый $f(x_j + kh)$ мы раскладываем в ряд Тейлора в окрестности x_j и то, что получилось, суммируем, пока не достигнем 3-его порядка точности.

$$\frac{\partial x}{\partial t} \approx \frac{1}{h} \sum_{k=-3}^{0} \alpha_k f(x_j + kh)$$

$$\frac{\partial x}{\partial t} \approx \frac{1}{h} \left(\alpha_{-3} x(t - 3h) + \alpha_{-2} x(t - 2h) + \alpha_{-1} x(t - h) + \alpha_0 x(t) \right)$$

В упрощенное представление СЛАУ для матрицы неопределённых коэффициентов подставим наши значения l=3 и m=0:

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ -l & -l+1 & \dots & m \\ l^2 & (l-1)^2 & \dots & m^2 \\ (-l)^3 & (-l+1)^3 & \dots & m^3 \\ \dots & \dots & \dots & \dots \end{pmatrix} \begin{pmatrix} \alpha_{-3} \\ \alpha_{-2} \\ \alpha_{-1} \\ \alpha_0 \\ \dots \end{pmatrix} = (0,1,0,\dots,0)^T$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ -3 & -2 & -1 & 0 \\ 9 & 4 & 1 & 0 \\ -27 & -8 & -1 & 0 \end{pmatrix} \begin{pmatrix} \alpha_{-3} \\ \alpha_{-2} \\ \alpha_{-1} \\ \alpha_0 \end{pmatrix} = (0,1,0,0)^T$$

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 0 \\
-3 & -2 & -1 & 0 & 1 \\
9 & 4 & 1 & 0 & 0 \\
-27 & -8 & -1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & | & -\frac{1}{3} \\
0 & 1 & 0 & 0 & | & 1,5 \\
0 & 0 & 1 & 0 & | & -3 \\
0 & 0 & 0 & 1 & | & \frac{11}{6}
\end{pmatrix}$$

$$\alpha_{-3} = -\frac{1}{3}$$
, $\alpha_{-2} = 1.5$, $\alpha_{-1} = -3$, $\alpha_0 = \frac{11}{6}$

Обратим внимание на то, что в сумме коэффициенты дают 0 (нам необходимо, чтобы разностная схема не привносила никакого внешнего влияния, которого не заложено в исходной дифференциальной задаче).

$$\frac{\partial x}{\partial t} \approx \frac{1}{h} \left(-\frac{1}{3} x(t - 3h) + 1,5x(t - 2h) - 3x(t - h) + \frac{11}{6} x(t) \right)$$

$$\frac{1}{h} \left(-\frac{1}{3} x(t - 3h) + 1,5x(t - 2h) - 3x(t - h) + \frac{11}{6} x(t) \right) = \alpha(t - h)x(t - h) - x(t - h)y(t - h)$$

$$x(t) = \frac{6}{11} \left(h \left(\alpha(t - h)x(t - h) - x(t - h)y(t - h) \right) + \frac{1}{3} x(t - 3h) - 1,5x(t - 2h) + 3x(t - h) \right)$$

По аналогии для у:

$$\frac{1}{h}\left(-\frac{1}{3}y(t-3h)+1,5y(t-2h)-3y(t-h)+\frac{11}{6}y(t)\right) = \beta x(t-h)y(t-h)-cy(t-h)$$
$$y(t) = \frac{6}{11}\left(h\left(\beta x(t-h)y(t-h)-cy(t-h)\right)+\frac{1}{3}x(t-3h)-1,5x(t-2h)+3x(t-h)\right)$$

Итоговая численная схема:

$$\begin{cases} x(t) = \frac{6}{11} \left(h \left(\alpha(t - h) x_{n-1} - x_{n-1} y_{n-1} \right) + \frac{1}{3} x_{n-3} - 1,5 x_{n-2} + 3 x_{n-1} \right) \\ y(t) = \frac{6}{11} \left(h \left(\beta x(t - h) y_{n-1} - c y_{n-1} \right) + \frac{1}{3} x_{n-3} - 1,5 x_{n-2} + 3 x_{n-1} \right) \end{cases}$$

Оценка погрешности:

Численная схема 3-го порядка точности, следовательно, погрешность отбрасывания зависит от h^3 (мы отбросили 4-ый компонент разложения, взяли его модуль и тем самым обеспечили точность 3-его порядка).

$$\triangle_{\text{отбрасывания}} = |x_{IV}| = h^3 \left(-\frac{1}{3} \cdot \frac{3^4}{4!} + \frac{3}{2} \cdot \frac{2^4}{4!} - 3 \cdot \frac{1^4}{4!} \right) = h^3 \left(-\frac{1}{3} \cdot \frac{81}{24} + \frac{3}{2} \cdot \frac{16}{24} - 3 \cdot \frac{1}{24} \right) = -h^3 \frac{1}{4}$$
 $\triangle_{\text{округления}} = \frac{2\varepsilon}{h}, \, \varepsilon$ -машинный эпсилон.

$$\triangle = \triangle_{\text{отбрасывания}} + \triangle_{\text{округления}} = h^3 \frac{1}{4} + \frac{2\varepsilon}{h}$$
.

```
In [ ]: import matplotlib as mpl
        from matplotlib import pyplot as plt
        mpl.style.use(['ggplot'])
In [ ]: import sys
        def get_epsilon(h):
            return h**3/4 + 2 * sys.float_info.epsilon/h
In [ ]: import numpy as np
        import matplotlib.pyplot as plt
        h_values = np.linspace(0.0001, 1.0, 1000)
        eps_values = get_epsilon(h_values)
        plt.figure(figsize=(10, 6))
        plt.plot(tau_values, eps_values, label='Погрешность', color='xkcd:sage')
        plt.title('Зависимость погрешности от длины шана')
        plt.xlabel('Длина шага (h)')
        plt.ylabel('Погрешность (r)')
        plt.show()
```

3ависимость погрешности от длины шана 0.25 0.20 0.05 0.00 0.00 0.00 0.00 0.00 0.01 0.00 -

```
In []: from prettytable import PrettyTable
  table = PrettyTable()
  table.title = "Зависимость погрешности от длины шага"
  table.field_names = ["Длина шага (h)", "Погрешность (r)"]
  h_values = [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]
  for h in h_values:
    r = get_eps(h)
    table.add_row([h, r])
  print(table)
```

. Зависимость погрешности от длины шага	
Длина шага (h)	Погрешность (r)
0.0001	4.690892098500626e-12
0.0005	3.213817841970013e-11
0.001	2.504440892098501e-10
0.005	3.1250088817841975e-08
0.01	2.5000004440892103e-07
0.05	3.125000000888179e-05
0.1	0.00025000000000444095
0.5	0.03125000000000089
1	0.25000000000000044
+	+

```
In []: import math
  import numpy as np
  import matplotlib as mpl
  from matplotlib import pyplot as plt
  mpl.style.use(['ggplot'])
```

Моделирование

Начальные условия

```
In []: x0 = [9, 10, 8] # preys
y0 = [7, 5, 6] # predators
```

Визуализация

```
In []: w = 0
    h_arr, x, y = simulate_population(x0, y0, w)

fig = plt.figure(figsize=(14, 7))
    plt.grid(True, which='both')
    plt.minorticks_on()
    plt.plot(h_arr, x, c="#87A0C5", label="preys (x)")
    plt.plot(h_arr, y, c="#84d3b2", label="predators (y)")

plt.legend()
    plt.xlabel("time, t")
    plt.ylabel("population size")
    plt.title("calculation without seasonality (w=0)")
    plt.title("calculation without seasonality (w=0)")
```



```
In []: w = 0.7
h_arr, x, y = simulate_population(x0, y0, w)

fig = plt.figure(figsize=(14, 7))
plt.grid(True, which='both')
plt.minorticks_on()
plt.plot(h_arr, x, color='#bad6b8', label="preys (x)")
plt.plot(h_arr, y, color='#cea0af', label="predators (y)")

plt.legend()
plt.xlabel("time, t")
plt.ylabel("population size")
plt.title("calculation with seasonality (w=0.7)")
plt.show()
```



```
In []: w = 1
h_arr, x, y = simulate_population(x0, y0, w)

fig = plt.figure(figsize=(14, 7))
plt.grid(True, which='both')
plt.minorticks_on()
plt.plot(h_arr, x, color='#aa83a6', label="preys (x)")
plt.plot(h_arr, y, color='#dda9b2', label="predators (y)")

plt.legend()
plt.xlabel("time, t")
plt.ylabel("population size")
plt.title("calculation with seasonality (w=1)")
plt.show()
```



```
In []: h_arr, x, y = simulate_population([0]*3, [0]*3, w=0)
    fig = plt.figure(figsize=(14, 7))
    plt.grid(True, which='both')
    plt.minorticks_on()
    plt.plot(h_arr,x, color='#c05d6d', label="Жертвы (x)")
    plt.plot(h_arr,y, color='#dda9b2', label="Хищники (y)")

plt.legend()
    plt.xlabel("time, t")
    plt.ylabel("population size")
    plt.title("correctness check, x=0 и y=0")
    plt.title("correctness check, x=0 и y=0")
```



```
In []: h_arr, x, y = simulate_population([0,0,0], y0, w=0)
    fig = plt.figure(figsize=(14, 7))
    plt.grid(True, which='both')
    plt.minorticks_on()
    plt.plot(h_arr,x, color='#7a5f7c', label="preys (x)")
    plt.plot(h_arr,y, color='#86a786', label="predators (y)")

plt.legend()
    plt.xlabel("time, t")
    plt.ylabel("population size")
    plt.title("only predators")
    plt.show()
```


