Doble Grado en Ingeniería Informática y Matemáticas

Cálculo I – Evaluación 2

1. Prueba, usando el principio de inducción, que para todo $n \in \mathbb{N}$ se verifica la desigualdad:

$$\frac{2\cdot 4\cdot 6\cdots (2n)}{5\cdot 7\cdot 9\cdots (2n+3)}<\frac{\sqrt{6}}{\sqrt{(n+1)(n+2)(n+3)}}$$

- 2. Sea A un conjunto infinito y acotado de números reales. Un número $z \in \mathbb{R}$ se dice que es un casimayorante de A si el conjunto $\{x \in A : z < x\}$ es finito (puede ser vacío). Sea B el conjunto de todos los casi-mayorantes de A. Prueba que B no es vacío, está minorado y $\inf(B) \leqslant \sup(A)$. Prueba también que si $\inf(B) < \sup(A)$ entonces A tiene máximo.
- 3. Sea $f:[a,b]\to\mathbb{R}$ creciente. Para cada $\alpha\in]a,b[$ definamos:

$$\omega(f, \alpha) = \inf\{f(t) : \alpha < t \leqslant b\} - \sup\{f(s) : a \leqslant s < \alpha\}$$

Prueba que:

- i) $\omega(f, \alpha) \geqslant 0$ y si $a \leqslant u < \alpha < v \leqslant b$ entonces $\omega(f, \alpha) \leqslant f(v) f(u)$.
- ii) Si $a < \alpha_1 < \alpha_2 < \cdots < \alpha_p < b$, entonces:

$$\omega(f, \alpha_1) + \omega(f, \alpha_2) + \dots + \omega(f, \alpha_p) \leqslant f(b) - f(a)$$

- iii) Para cada $n\in\mathbb{N}$ el conjunto $S_n=\{\alpha\in]a,b[:\omega(f,\alpha)\geqslant 1/n\}$ es finito.
- iv) El conjunto $S = \{\alpha \in]a, b[: \omega(f, \alpha) > 0\}$ es numerable.

Sugerencias. Para ii) considera puntos

$$a = x_0 < \alpha_1 < x_1 < \alpha_2 < x_2 < \alpha_3 < \dots < x_{p-1} < \alpha_p < x_p = b$$

Y usa i).

Usando un resultado de teoría, iv) se deduce de iii).