

Instituto Tecnológico de Buenos Aires

Trabajo Práctico N° 3

Teoría de Circuitos I 25.10

Grupo N° 5

Juan Bautista Correa Uranga Juan Ignacio Caorsi Rita Moschini

Legajo: 65532 Legajo: 67026

Legajo: 65016

Resumen

Índice

1 Introducción		3
1.1.	Instrumental	3
1.2.	Marco teórico	3
2 Des	sarrollo	3
2.1.	Procedimiento	3
2.2.	Mediciones	3
2.3.	Cálculos	4
2.4.	Ecuaciones utilizadas	4
2.5.	Resultados	4
2.6.	Análisis	4
3 Cor	nclusiones	4

1. Introducción

1.1 Instrumental

1.2 Marco teórico

2. Desarrollo

2.1 Procedimiento

2.2 Mediciones

- $R_f = 215\Omega$
- $R_{V_{max}} = 9980 \Omega$
- $R_{V_{min}} = 2\Omega$
- $R_L = 0.8\Omega$
- $L \approx 1mH$

Capacitor de C = 470 pF

- \blacksquare Valor de la resistencia variable tal que el amortiguamiento era crítico: $R_{critico}=1,9k\Omega$
- \blacksquare Tiempo τ en que la salida llegaba a 3,175 V cuando R_V tomaba su valor máximo: $\tau=5,75\mu s$
- Salida cuando $t = 5\tau$: V=3,175 V

Capacitor de C = 47 pF

- \blacksquare Valor de la resistencia variable tal que el amortiguamiento era crítico: $R_{critico}=3,47k\Omega$
- Tiempo en que la salida llegaba a 3,175 V cuando R_V tomaba su valor máximo: $t=32,25\mu s$
- Tiempo en que la salida llegaba a 5,24 V $(5V\pm0,05V)$ cuando R_V tomaba su valor mínimo: $t=14,3\mu s$
- \blacksquare Tiempo en que la salida llegaba a 4,888 V $(5V\pm0,05V)$ con ambas resistencias cortocircuitadas: $t=22,25\mu s$

2.3 Cálculos

2.4 Ecuaciones utilizadas

Cálculo del valor de la resistencia variable tal que el amortiguamiento sea crítico:

$$\alpha_{serie} = \omega_0$$

$$\Rightarrow \frac{R}{2L} = \frac{1}{\sqrt{LC}}$$

$$R = \frac{2L}{\sqrt{LC}}$$
(1)

Cálculo de τ

Sabemos que $\alpha_{serie}=\frac{R}{2L}$ y $\tau=\frac{1}{\alpha}$ Tomando $R=R_f+R_V+R_L$, nos queda

$$\tau = \frac{2L}{R_f + R_V + R_L} \tag{2}$$

2.5 Resultados

Capacitor de C = 470 pF

1) Valor de la resistencia variable tal que el amortiguamiento fuera crítico:

$$R_{critico} = 2,702k\Omega \tag{3}$$

2) Cálculo del valor de τ para $R_V = R_{V_{max}} = 9980\Omega$:

$$\tau = 19,616\mu s \tag{4}$$

Capacitor de C = 47 pF

3) Valor de la resistencia variable tal que el amortiguamiento fuera crítico:

$$R_{critico} = 9,010k\Omega \tag{5}$$

4) Valor de τ para $R_V = R_{V_{min}}$:

$$\tau = 9,1827\mu s \tag{6}$$

6) Valor de τ para $R = R_L$ (resistencias cortocircuitadas):

$$\tau = 2500\mu s \tag{7}$$

2.6 Análisis

3. Conclusiones