ESS 411/511 Geophysical Continuum Mechanics Class #14

Highlights from Class #13 – Maleen Kidiwela Today's highlights on Monday – _____

Our text doesn't cover our next topics very thoroughly, so we will use a few other sources, which are posted on the class web site under READING & NOTES. https://courses.washington.edu/ess511/NOTES/notes.shtml

For Monday class – Please read

- Stein and Wysession 5.7.2
- Stein and Wysession 5.7.3/4
- Raymond notes on failure

Also see slides about upcoming topics

Failure and Mohr's circles – slides

Your short CR/NC Pre-class prep writing assignment (1 point) in Canvas

- It will be due in Canvas at the start of class.
- I will send another message when it is posted in Canvas.

ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools vectors, tensors, coordinate changes
- Stress principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain Finite strain; infinitesimal strains
- Moments lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

Class-prep questions for today (break-out rooms)

Failure of materials

Faults can slip when shear stress $\sigma_{\rm S}$ is large enough to overcome frictional resistance. Frictional resistance to failure can be modeled as increasing proportional to the normal traction $\sigma_{\rm N}$.

In stress space, if a stress state σ_N and σ_S exists that intersects or touches the frictional line, then the plane represented at that point can fail.

In the diagrams, all principal stresses are negative.

- Are they compressive or extensile?
- In the first diagram, do any stress states exist outside the circle shown?
- Can any faults fail in this stress field?

In the second diagram (below):

- What has changed in the stress field?
- Can any faults fail in this new stress field?
- If yes, how many different faults can fail?
- How could you identify the orientation(s) from the Mohr's circle?

Mohr's circle in 2-D view

Cartesian Space vs Stress Space

 \hat{e}_{i}^{*} are principal directions defining principal planes at **P**. Small circles in Cartesian space (e.g. EQG) map onto circles (e.g. eqg) concentric with primary Mohr's circles (e.g. akc). Similarly, KQD maps onto kqd.

Intersection at q shows σ_N and σ_s on plane defined by normal vector n_i at Q.

(I have attempted to (sort of) correct the stress-plane figure below. ©)

(a) Reference angles ϕ and β for intersection point Q on surface of body octant.

(b) Mohr's stress semicircle for octant of Fig. 3.15(a).

Sliding friction

 σ_S = - $\mu \sigma_N$ μ is *coefficient of friction* for sliding on a pre-existing break

Frictional sliding

 σ_S = - $\mu \sigma_N$ μ is *coefficient of friction* for sliding on a pre-existing break

Differential stress σ_{III} - σ_{I}

But, if $\sigma_{\text{III}} = \sigma_{\text{I}}$, all 3 principal stresses are equal

- What do the 3 Mohr's circle look like?
- Describe this state of stress inside the body.
- Is frictional failure possible, if differential stress is zero?

Mohr-Coulomb Fracture

 σ_s = τ_0 - n σ_N n is *coefficient of internal friction for* fracture on a new fault surface τ_0 is cohesion of the material

Mohr-Coulomb Fracture

 σ_{S} = τ_{0} - n σ_{N} σ_{N}