(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年3 月25 日 (25.03.2004)

PCT

(10) 国際公開番号 WO 2004/025640 A1

(51) 国際特許分類7:

G11B 7/24, 7/26

(21) 国際出願番号:

PCT/JP2003/011680

(22) 国際出願日:

2003年9月12日(12.09.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2002-268537

特願2002-268537 特願2002-271121 (71) 出願人 (米国を除く全ての指定国について): 松下電器産業株式会社 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.) [JP/JP]; 〒571-8501 大阪府門真市大字門真1006番地 Osaka (JP).

- (72) 発明者; および
- (75) 発明者/出願人(米国についてのみ): 西原 孝史 (NISHI-HARA,Takashi) [JP/JP]; 〒573-1106 大阪府 枚方市 町 楠葉1-8-4-301 Osaka (JP). 児島 理恵 (KOJIMA,Rie) [JP/JP]; 〒571-0030 大阪府 門真市 末広町35-7-402 Osaka (JP). 山田 昇 (YAMADA,Noboru) [JP/JP]; 〒573-1104 大阪府 枚方市 楠葉丘1丁目4-2 Osaka (JP). 坂口 武 (SAKAGUCHI,Takeshi) [JP/JP]; 〒567-0042 大阪府 茨木市 字野辺2丁目5-33-207 Osaka (JP).
- (74) 代理人: 特許業務法人池内・佐藤アンドパートナーズ (IKEUCHI SATO & PARTNER PATENT ATTORNEYS); 〒530-6026 大阪府 大阪市 北区天満橋1丁目8番30号OAPタワー26階 Osaka (JP).
- (81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR,

[続葉有]

(54) Title: INFORMATION RECORDING MEDIUM AND METHOD FOR MANUFACTURING SAME

(54) 発明の名称: 情報記録媒体とその製造方法

(57) Abstract: An information recording medium comprises a substrate and an information layer arranged on the substrate. The information layer has a recording layer wherein a reversible phase change between the crystalline phase and amorphous phase is caused by at least one of an optical means and an electrical means, and at least one crystal nucleus-forming layer which contains at least one element selected from Bi and Te and at least one element (M1) selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Yb and Lu. The crystal nucleus-forming layer is in contact with the recording layer.

(57) 要約: 本発明の情報記録媒体は、基板と、前記基板上に配置された情報層とを含んでいる。情報層は、光学的手段及び電気的手段の少なくとも一方によって結晶相と非晶質相との間で可逆的な相変化を起こす記録層と、Bi及びTeから選ばれる少なくとも一つの元素とSc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる少なくとも一つの元素(M1)とを含み、記録層に接して設けられた少なくとも一つの結晶核生成層と、を含んでいる。

HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR),

OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 一 国際調査報告書
- 補正書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

情報記録媒体とその製造方法

技術分野

本発明は、光学的にまたは電気的に情報を記録、消去、書き換え、再生する情報記録媒体とその製造方法に関するものである。

5

背景技術

レーザビームを用いて光学的に情報を記録、消去、書き換え、再生す る情報記録媒体として相変化形光学的情報記録媒体がある。相変化形光 学的情報記録媒体への情報の記録、消去、書き換えには、その媒体に含 まれる記録層が結晶相と非晶質相との間で可逆的に相変化を生じる現象 10 を利用する。一般に、情報を記録する場合は、高パワー (記録パワー) のレーザビームを照射して記録層を溶融して急冷することによって、照 射部を非晶質相にして情報を記録する。一方、情報を消去する場合は、 記録時より低パワー(消去パワー)のレーザビームを照射して記録層を 15 昇温して徐冷することにより、レーザビーム照射部を結晶相にして前の 情報を消去する。したがって、相変化形光学的情報記録媒体では、高パ ワーレベルと低パワーレベルとの間でパワーを変調させたレーザビーム を記録層に照射することによって、記録されている情報を消去しながら 新しい情報を記録する、すなわち情報を書き換えることが可能である(例 20 えば、角田義人他「光ディスクストレージの基礎と応用」電子情報通信 学会編、1995年、第2章を参照。)。

また、レーザビームを照射するかわりに、電流の印加により発生する ジュール熱によって記録層の相変化材料を状態変化させて情報を記録す る相変化形電気的情報記録媒体もある。この相変化形電気的情報記録媒

10

体は、電流の印加により発生するジュール熱によって記録層の相変化材料を結晶相(低抵抗)と非晶質相(高抵抗)との間で状態変化させ、結晶相と非晶質相との間の電気抵抗の違いを検出して情報として読みとるものである。電極に挟み込んだ非晶質相の記録層に電流を徐々に流していくと、ある閾電流(threshold current)で記録層が結晶相に相変化し、電気抵抗が急激に低下する。また、結晶相の記録層に短時間幅の大電流パルスを印加することによって、記録層を溶融・急冷して高抵抗の非晶質相に戻すこともできるため、書き換え可能な情報記録媒体として用いることができる。結晶相と非晶質相との間で可逆的に相変化を生じる記録層を用いることによって、書き換え可能な情報記録媒体が得られる(例えば、菊池誠監修「アモルファス半導体の基礎」オーム社、1982年、第8章参照)

15 相変化形光学的情報記録媒体の一例としては、発明者らが商品化した 4.7 GB/DVD-RAMが挙げられる。この4.7 GB/DVD-RAMは、図21の情報記録媒体1000に示すように、基板1001上に、レーザビーム10の入射側から見て、第1誘電体層1002、第2誘電体層1003、結晶核生成層1004、記録層1005、第3誘電体層1006、第4誘電体層1007、光吸収補正層1008及び反射層1009がこの順に積層された8層構造の情報層1010を有している。情報層1010は、接着層1011によりダミー基板1012と貼り合わされている。

第1誘電体層1002と第4誘電体層1007は、光学距離を調節し 25 て記録層1005への光吸収効率を高め、結晶相と非晶質相との反射率 変化を大きくして信号振幅を大きくする光学的な働きと、記録時に高温

10

20

25

となる記録層1005から熱に弱い基板1001及びダミー基板1012等を断熱する熱的な働きがある。一般的に第1誘電体層1002及び第4誘電体層1007に使用されている80mo1%2nS-20mo1%SiO $_2$ の混合物(以下、(ZnS) $_{80}$ (SiO $_2$) $_{20}$ (mo1%)と表記する場合がある。)は透明且つ高屈折率であり、低熱伝導率で断熱性も良く、機械特性及び耐湿性も良好な優れた誘電体材料である。

結晶核生成層1004には、記録層1005に接して設けることにより記録層1005の結晶化を促進する材料であるSn-TeやPb-Teを用いる。これにより、情報記録媒体1000の信号振幅を低下させること無く、且つ記録保存性を確保して記録層の結晶化能を高め、初期の記録・書き換え性能のみならず、優れた記録保存性(記録した情報の長期保存後の再生性能)、書き換え保存性(長期保存後の記録・書き換え性能)を実現している(例えば、特開2001-273673号公報参照)。

15 記録層1005には、 $GeTe-Sb_2Te_3$ ライン上の擬二元系の相変化材料が用いられており、優れた繰り返し書き換え性能が実現されている。

第2誘電体層1003と第3誘電体層1006は、第1誘電体層1002と記録層1005との間、及び第4誘電体層1007と記録層1005との間で生じる物質移動を防止する機能を有する。この物質移動とは、第1誘電体層1002及び第4誘電体層1007に(ZnS)₈₀(SiO₂)₂₀(mol%)を使用した場合に、レーザビームを記録層1005に照射して記録書き換えを繰り返す際、Sが記録層1005に拡散していく現象のことである。Sが記録層1005に拡散していく現象のことである。Sが記録層1005に拡散すると、繰り返し書き換え性能が悪化する(例えば、N. Yamada et al., Japanese Journal of Applied Physics, Vol. 37(1998), pp. 2104-2110参照。)。この繰り

返し書き換え性能の悪化を防ぐには、Geを含む窒化物を第2誘電体層 1003及び第3誘電体層1006に使用すると良い(例えば、特開平 9-532424号公報及び特開平9-79477号公報参照。)。

以上のような技術により、優れた書き換え性能と高い信頼性を達成し 5 、4.7GB/DVD-RAMを商品化するに至った。

また、情報記録媒体をさらに大容量化するための技術として、さまざまな技術が検討されている。例えば、光学的情報記録媒体においては、従来の赤色レーザより短波長の青紫色レーザを用いたり、レーザビームが入射する側の基板の厚さを薄くして開口数(NA)が大きい対物レンでを使用したりすることによって、レーザビームのスポット径をより小さくして高密度の記録を行う技術が検討されている。また、2つの情報層を備える光学的情報記録媒体を用いて記録容量を2倍に高め、且つその片面側から入射するレーザビームによって2つの情報層の記録再生を行う技術も検討されている(例えば、特開2000-36130号公報を照。)。

情報記録媒体を大容量化するためにスポット径を小さくして記録を行う場合、小さな記録マークでも良好な形状に形成できる光学的情報記録媒体が必要である。スポット径を小さくして記録を行うと、記録層にレーザビームが照射される時間が相対的に短くなる。したがって、小さな記録マークを形成するためには、記録層の材料として結晶化速度の速い材料を用いるか、または、結晶化促進効果の高い膜を記録層に接して設けることが必要となる。

また、情報層が2層積層されており、片面側からレーザビームを照射 して2つの情報層に対し情報の記録再生を行う光学的情報記録媒体(以 下、2層光学的情報記録媒体という場合がある。)では、レーザビーム の入射面に近い位置に配置された情報層(以下、第1の情報層という。

20

)を透過したレーザビームを用いて、レーザビームの入射面から遠い位置に配置された情報層(以下、第2の情報層という。)の記録再生を行うため、第1の情報層では、記録層の膜厚を極めて薄くして透過率を高める必要がある。しかし、記録層が薄くなると、記録層を結晶化する際に形成される結晶核が減少し、また、原子の移動できる距離が短くなる。このような理由から、記録層の膜厚が薄いほど結晶相が形成されにくくなる(結晶化速度が低下する。)。

また、情報記録媒体に対する情報の記録時間を短くして情報の転送レートを高くすると、結晶化のための時間が短くなってしまう。このため 10 、高い転送レートに対応する情報記録媒体を実現する際にも、記録層の 結晶化能を高める必要がある。また、高い転送レートで情報を記録した 場合には、低い転送レートで記録した場合に比べ、昇温後の冷却速度が 速いため、記録後の非晶質相に微結晶核が形成される割合が低くなる。 すなわち、より安定な非晶質相になりやすい。非晶質相は長期保存後に さらに安定なエネルギー状態に変化してしまう傾向があるため、高い転送レートで情報を記録した場合、記録層がさらに結晶化しにくくなり書き換え保存性が悪化する。

発明者らの実験では、記録層の材料としてGeTe‐Sb₂Te₃ライン上の擬二元系及びその近傍の組成において、Geの一部をSnで置換した組成を用いることで、記録層の結晶化速度を向上できることがわかっている。ただし、この場合、置換するSnの量を増やしていくと、結晶相と非晶質相との間の光学変化が小さくなるため、信号振幅が低下してしまう。また、Snの量が増えると、記録した非晶質相が徐々に結晶化してしまうため、特に低い転送レートで情報を記録した場合、記録保25 存性が悪くなる。

以上のように、情報記録媒体の大容量化に伴い、高い転送レートでの

10

15

書き換え保存性と低い転送レートでの記録保存性を一つの情報記録媒体で両立することが困難となる。

信号振幅を低下させること無く、且つ記録保存性を確保して記録層の結晶化能を高めるには、上述したように、記録層に接して記録層の結晶化を促進するSn-Te等の結晶核生成層を設けると良い。また、発明者らの実験によると、結晶核生成層にBi-Teを用いても、記録層の結晶化能を高められることがわかっている。しかしながら、Sn-TeやBi-Teは融点が低いため、記録層が記録時に昇温した際に溶けて、書き換えを繰り返し行った場合、Sn-TeやBi-Teが徐々に記録層に混ざり込む現象が生じる。このため、繰り返し書き換え性能が悪化してしまう。

以上のように、従来の情報記録媒体においては、高い転送レートでの 良好な情報消去率(結晶相化)及び良好な書き換え保存性と、低い転送 レートでの良好な記録保存性とを両立し、さらに良好な繰り返し書き換 え性能も同時に実現することが困難であった。

発明の開示

本発明の情報記録媒体は、基板と、前記基板上に配置された情報層とを含んでおり、前記情報層が、光学的手段及び電気的手段の少なくとも20 一方によって結晶相と非晶質相との間で可逆的な相変化を起こす記録層と、Bi及びTeから選ばれる少なくとも一つの元素とSc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる少なくとも一つの元素(M1)とを含み、前記記録層に接して設けられた少なくとも一つの結晶核生成層と、を含むことを特25 徴としている。

本発明の情報記録媒体の製造方法は、基板上に少なくとも一つの情報

層が設けられた情報記録媒体を製造する方法であって、前記情報層を形成する工程が、光学的手段及び電気的手段の少なくとも何れか一方によって結晶相と非晶質相との間で可逆的な相変化を起こす記録層を形成する記録層形成工程と、Bi及びTeから選ばれる少なくとも一つの元素とSc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる少なくとも一つの元素(M1)とを含むスパッタリングターゲットを用いて、スパッタリングにより結晶核生成層を形成する結晶核生成層形成工程と、を含み、前記記録層形成工程と前記結晶核生成工程とが連続して行われることを特徴としている。

10

5

図面の簡単な説明

図1は、本発明の実施の形態1における情報記録媒体の構成例を示す断面図である。

図2は、本発明の実施の形態1における情報記録媒体の別の構成例を 15 示す断面図である。

図3は、本発明の実施の形態1における情報記録媒体のさらに別の構成例を示す断面図である。

図4は、本発明の実施の形態2における情報記録媒体の構成例を示す断面図である。

20 図5は、本発明の実施の形態2における情報記録媒体の別の構成例を示す断面図である。

図6は、本発明の実施の形態2における情報記録媒体のさらに別の構成例を示す断面図である。

図7は、本発明の実施の形態3における情報記録媒体の構成例を示す 25 断面図である。

図8は、本発明の実施の形態3における情報記録媒体の別の構成例を

示す断面図である。

図9は、本発明の実施の形態3における情報記録媒体のさらに別の構成例を示す断面図である。

図10は、本発明の実施の形態4における情報記録媒体の構成例を示 5 す断面図である。

図11は、本発明の実施の形態4における情報記録媒体の別の構成例を示す断面図である。

図12は、本発明の実施の形態4における情報記録媒体のさらに別の 構成例を示す断面図である。

10 図13は、本発明の情報記録媒体に対して情報の記録再生を行う記録 再生装置の一部構成を概略的に示す説明図である。

図14は、本発明の実施の形態6における情報記録媒体の構成例を示す断面図である。

図15は、本発明の実施の形態6における情報記録媒体の別の構成例 15 を示す断面図である。

図16は、本発明の実施の形態6における情報記録媒体のさらに別の 構成例を示す断面図である。

図17は、本発明の実施の形態6における情報記録媒体のさらに別の 構成例を示す断面図である。

20 図18は、本発明の実施の形態7における情報記録媒体の一部断面と 、その情報記録媒体に対して情報の記録再生を行う電気的情報記録再生 装置の概略構成とを示す説明図である。

図19は、本発明の実施の形態7における大容量の電気的情報記録媒体の構成の一部を模式的に示す説明図である。

25 図 2 0 は、本発明の実施の形態 7 における電気的情報記録媒体とその 記録再生システムとの構成の一部を模式的に示す説明図である。 図21は、従来の情報記録媒体の構成例を示す断面図である。

発明を実施するための最良の形態

本発明の情報記録媒体は、記録層に接して設けらた結晶核生成層が、 Bi及びTeから選ばれる少なくとも一つの元素とSc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる少なくとも一つの元素(M1)とを含む構成である。これにより、高い転送レートでの良好な情報消去率(結晶相化)が実現でき、さらに、結晶核生成層の融点が高く熱的安定性が良好であるため、良好な書き換え保存性も実現できる。また、低い転送レートでの良好な記録保存性も両立でき、良好な繰り返し書き換え性能も同時に実現することができる。

本発明の情報記録媒体においては、前記結晶核生成層が、Bi(M1))及びTe(M1)から選ばれる少なくとも一つを含んでいてもよい。

15 これにより、結晶核生成層の融点が高く熱的安定性が良好で、且つ長期 保存後の書き換え性能にも優れた情報記録媒体が得られる。

本発明の情報記録媒体においては、前記結晶核生成層が、 $BiTe(M 1)_2$ 、 $Bi_2Te(M1)$ 及び $BiTe_2(M1)$ から選ばれる少なくとも一つを含んでいてもよい。これにより、結晶核生成層の融点が高く熱的安定性が良好で、且つ長期保存後の書き換え性能にも優れた情報記録媒体が得られる。

本発明の情報記録媒体においては、前記結晶核生成層が、N及びOから選ばれる少なくとも一つの元素を含んでいてもよい。これにより、結晶核生成層の熱的安定性が向上する。また、特に、結晶核生成層にNを添加すると、結晶粒の大きさがより均一化され、且つ小さくなる傾向にあるため、記録する際の低周波数領域の記録ノイズを低下させることが

20

できる。

本発明の情報記録媒体においては、前記記録層が、Sb及びBiから選ばれる少なくとも一つの元素(M2)と、Geと、Teとを含み、前記M2、Ge及びTeを組成式Gea(M2) $_b$ Te $_{3+a}$ と表記した場合に、 $2 \le a \le 50$ 及び $2 \le b \le 4$ を満たす材料にて形成されていてもよい。これにより、記録層が約14nm以下と薄い場合でも良好な記録再生性能が得られる。また、M2がBiを含む場合には、結晶化能が向上し、高速な転送レートの場合にも良好な書き換え性能が得られる。

本発明の情報記録媒体においては、記録層が、前記 $Ge_a(M2)_bT$ e_{3+a} において、前記 Ge_a の少なくとも一部が、Sn及びPbから選ばれる少なくとも一つの元素(M3)にて置換されて、組成式(Ge-(M3))。 $(M2)_bTe_{3+a}$ と表記される材料にて形成されていてもよい。これによれば、 $Ge-M2-Te_03$ 元系組成のGeを置換したSn、Pbが結晶化能を向上させるので、記録層が約7nm以下と極めて薄り場合でも十分な書き換え性能が得られる。

本発明の情報記録媒体においては、前記記録層において、前記M 2 が S b であり、前記S b の少なくとも一部がB i にて置換されて、組成式 G e $_a$ (S b $_b$ B i) $_b$ T e $_{3+a}$ と表記されるものであってもよい。また、この場合、S n 原子の含有割合は、0 原子%を超え 2 0 原子%未満であることが好ましく、B i 原子の含有割合は、0 原子%を超え 1 0 原子% を超え 1 0 原子% 表満であることが好ましい。

本発明の情報記録媒体においては、前記記録層が、Sb及びBiから選ばれる少なくとも一つの元素(M2)と、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Se、Zr、Nb、Mo、Ru、Rh、Pd、Ag、In、Sn、Ta、W、Os、Ir、Pt及びAuから選ばれる少なくとも一つの元素(M4)と、Geと、Teとを含み、前記

20

M2、M4、Ge 及びTe を組成式(Ge_a (M2) $_b$ Te_{3+a}) $_{100-c}$ (M4) $_c$ と表記した場合に、

 $2 \le a \le 50$

 $2 \le b \le 4$

5 $0 < c \le 20$

を満たす材料にて形成されていてもよい。これによれば、Ge-M2-Te3元系組成に添加した元素M4が記録層の融点及び結晶化温度を上昇させ、記録層の熱的安定性が向上する。

本発明の情報記録媒体においては、前記記録膜が、Sbと、Teと、

10 Ag、In、Ge、Sn、Se、Bi、Au及びMnから選ばれる少な くとも一つの元素 (M5) とを含み、前記Sb、Te及びM5を組成式 (Sb_dTe_{100-d})_{100-e} (M5) eで表記した場合に、

 $5.0 \le d \le 9.5$

 $0 < e \le 20$

15 を満たす材料にて形成されていてもよい。これによれば、記録層の融点 が低く比較的小さなエネルギーでも良好な記録特性が得られる。

本発明の情報記録媒体においては、前記結晶核生成層の厚みが、0.2 nm以上3 nm以下であることが好ましい。特に、いわゆる青紫色レーザを用いて記録再生を行う情報記録媒体の場合は、結晶核生成層の厚みは0.3 nm以上であることがより好ましい。高速な転送レートの場合にも、消去性能が良好で、長期保存後の書き換え性能が良好な情報記録媒体が得られるからである。

本発明の情報記録媒体においては、前記記録層の厚みが、3nm以上 14nm以下であることが好ましい。特に、いわゆる赤色レーザを用い 25 て記録再生を行う情報記録媒体の場合は、記録層の厚みは6nm~12 nmであることがより好ましい。これにより、消去性能が良く、信号振

10

幅も大きい情報記録媒体が得られる。

本発明の情報記録媒体が、第1の情報層~第Nの情報層(Nは2以上の自然数)が積層された多層構造の情報記録媒体である場合、前記第1の情報層~第Nの情報層の少なくとも一つを前記情報層と同構成としてもよい。これにより、高い転送レートでの良好な情報消去率(結晶相化)及び良好な書き換え保存性と、低い転送レートでの良好な記録保存性と、良好な繰り返し書き換え性能とに加えて、大容量化も実現できる。

本発明の情報記録媒体において、前記記録層は、レーザビームの照射によって結晶相と非晶質相との間で可逆的な相変化を起こし、前記情報層が、前記記録層及び前記結晶核生成層からなる積層体の両面に設けられた誘電体層と、前記積層体に対しレーザビーム入射側と反対側に配置された反射層と、をさらに含む構成であってもよい。また、前記情報層は、前記積層体と前記反射層との間に配置された光吸収補正層をさらに含んでいてもよい。

15 本発明の情報記録媒体において、前記記録層は、レーザビームの照射によって結晶相と非晶質相との間で可逆的な相変化を起こし、前記情報層が、レーザビーム入射側から、少なくとも第1誘電体層、第2誘電体層、前記結晶核生成層、前記記録層、第3誘電体層及び反射層をこの順に含む構成としてもよい。また、前記情報層は、レーザビーム入射側から、少なくとも第1誘電体層、第2誘電体層、前記記録層、前記結晶核生成層、第3誘電体層及び反射層をこの順に含む構成であってもよい。また、前記情報層は、レーザビーム入射側から、少なくとも第1誘電体層、第2誘電体層、前記結晶核生成層、前記記録層、前記結晶核生成層、第3誘電体層及び反射層をこの順に含む構成であってもよい。また、前記情報層が、前記第3誘電体層と前記反射層との間に設けられた第4誘電体層をさらに含んでいてもよい。このとき、前記第4誘電体層は、

 $(ZnS)_{80}$ $(SiO_2)_{20}$ を含んでいてもよい。また、前記情報層は、前記第3誘電体層と前記反射層との間に設けられた、前記反射層より熱伝導率が低い界面層をさらに含んでいてもよい。

また、本発明の情報記録媒体が、レーザビームの照射によって情報が 記録される第1の情報層〜第Nの情報層(Nは2以上の自然数)がレーザビーム入射側からこの順に積層された多層構造の情報記録媒体の場合、少なくとも前記第1の情報層が前記情報層であり、前記第1の情報層に含まれる前記記録層が、レーザビームの照射によって結晶相と非晶質相との間で可逆的な相変化を起こし、前記第1の情報層が、レーザビーム入射側から、少なくとも第1誘電体層、第2誘電体層、前記結晶核生成層、前記記録層、第3誘電体層、反射層及び透過率調整層をこの順に含んでいることが好ましい。これにより、第1の情報層の透過率を高くできるので、第2〜第Nの情報層でも良好な記録特性が得られる。

本発明の情報記録媒体が、レーザビームの照射によって情報が記録される第1の情報層〜第Nの情報層(Nは2以上の自然数)がレーザビーム入射側からこの順に積層された多層構造の情報記録媒体の場合、少なくとも前記第1の情報層が前記情報層であり、前記第1の情報層に含まれる前記記録層が、レーザビームの照射によって結晶相と非晶質相との間で可逆的な相変化を起こし、前記第1の情報層が、レーザビーム入射20 側から、少なくとも第1誘電体層、第2誘電体層、前記記録層、前記結晶核生成層、第3誘電体層、反射層及び透過率調整層をこの順に含む構成としてもよい。これにより、第1の情報層の透過率を高くできるので、第2〜第Nの情報層でも良好な記録特性が得られる。さらに、消去性能及び書き換え性能が良好な情報記録媒体を実現できる。

25 本発明の情報記録媒体が、レーザビームの照射によって情報が記録される第1の情報層~第Nの情報層(Nは2以上の自然数)がレーザビー

10

ム入射側からこの順に積層された多層構造の情報記録媒体である場合、少なくとも前記第1の情報層が前記情報層であり、前記第1の情報層に含まれる前記記録層が、レーザビームの照射によって結晶相と非晶質相との間で可逆的な相変化を起こし、前記第1の情報層が、レーザビーム入射側から、少なくとも第1誘電体層、第2誘電体層、前記結晶核生成層、前記記録層、前記結晶核生成層、第3誘電体層、反射層及び透過率調整層をこの順に含む構成としてもよい。これにより、第1の情報層の透過率を高くできるので、第2~第Nの情報層でも良好な記録特性が得られる。さらに、消去性能及び書き換え性能が良好な情報記録媒体を実現できる。

本発明の情報記録媒体において、情報層に透過率調整層が含まれる構成の場合、透過率調整層が、TiO₂、ZrO₂、ZnO、Nb₂O₅、Ta₂O₅、SiO₂、Al₂O₃、Bi₂O₃、Cr₂O₃、Sr-O、Ti-N、Zr-N、Nb-N、Ta-N、Si-N、Ge-N、Cr-N

15 、Al-N、Ge-Si-N、Ge-Cr-N及びZnSから選ばれる少なくとも一つを含むことが好ましい。これにより、情報層の透過率を高めることができる。

本発明の情報記録媒体において、情報層が第3誘電体層を含む構成の場合、第3誘電体層が、 $H f O_2$ 及び $Z r O_2$ から選ばれる少なくともー20 つと、 $S i O_2$ と、 $C r_2 O_3$ と、フッ化物と、を含む酸化物ーフッ化物系材料にて形成されていてもよい。前記フッ化物には、 $C e F_3$ 、 $E r F_3$ 、 $G d F_3$ 、 $L a F_3$ 、 $T b F_3$ 、 $D y F_3$ 、 $N d F_3$ 、 $Y F_3$ 及び $Y b F_3$ から選ばれる少なくとも一つが使用可能である。

また、前記酸化物-フッ化物系材料が、 $(H f O_2)_{A1} (S i O_2)_{B1}$ 25 $(Cr_2O_3)_{C1} (フッ化物)_{100-A1-B1-C1}$ または($ZrO_2)_{A1} (S i O_2)_{B1}$ $(Cr_2O_3)_{C1} (フッ化物)_{100-A1-B1-C1}$ と表記され

る場合、

10

 $A 1 が、 1 0 \le A 1 \le 5 0$ 、

B1が、 $10 \le B1 \le 50$ 、

C1が、 $10 \le C1 \le 50$ 、

5 $A1+B1+C1 \text{ is}, 50 \leq A1+B1+C1 \leq 90$ を満たすことが好ましい。

本発明の情報記録媒体において、情報層が第2誘電体層及び第3誘電 体層を含む構成の場合、前記第2誘電体層及び前記第3誘電体層の少な くも一つが、 $H f O_2$ 及び $Z r O_2$ から選ばれる少なくとも一つと、S i

 O_2 と、 Cr_2O_3 と、を含む酸化物系材料にて形成されていてもよい。 また、前記酸化物系材料が、 $(HfO_2)_{A2}$ $(SiO_2)_{B2}$ (Cr_2) O_3) $_{1\,0\,0\,-A\,2\,-B\,2}$ \sharp \hbar \ddot{a} ($Z\,r\,O_2$) $_{A\,2}$ ($S\,i\,O_2$) $_{B\,2}$ ($C\,r_2\,O_3$) $_1$ 00-A2-B2と表記される場合、

 $A \ 2 \ \text{M}, \ 1 \ 0 \le A \ 2 \le 5 \ 0$

B 2 %, $1 0 \le B 2 \le 5 0$, 15

を満たすことが好ましい。

次に、本発明の情報記録媒体の製造方法について説明する。

本発明の情報記録媒体の製造方法によれば、Bi及びTeから選ばれ る少なくとも一つの元素とSc、Y、La、Ce、Pr、Nd、Sm、 20 Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる少なくとも 一つの元素 (M1) とを含む結晶核生成層を記録層に接するように形成 できる。これにより、高い転送レートでの良好な情報消去率(結晶相化) 及び良好な書き換え保存性と、低い転送レートでの良好な記録保存性 とを両立し、さらに良好な繰り返し書き換え性能も同時に実現できる情 25 報記録媒体を提供できる。

本発明の情報記録媒体の製造方法において、結晶核生成工程にて使用されるスパッタリングターゲットが、Bi(M1)及びTe(M1)より選ばれる少なくとも一つを含んでいてもよい。

本発明の情報記録媒体の製造方法において、結晶核生成工程にて使用 されるスパッタリングターゲットが、 $BiTe(M1)_2$ 、 $Bi_2Te(M1)$ 及び $BiTe_2(M1)$ から選ばれる少なくとも一つを含んでいて もよい。

本発明の情報記録媒体の製造方法では、結晶核生成層形成工程において、スパッタリングの際に、Arガスと、Krガスと、Arガス及び反応ガスの混合ガスと、Krガス及び反応ガスの混合ガスとから選ばれる少なくとも一つを用いてもよい。但し、反応ガスとは、N2ガス及びO2ガスから選ばれる少なくとも一つのガスのことである。

以下、本発明の実施の形態について、図面を参照しながら説明する。 なお、以下の実施の形態は一例であり、本発明は以下の実施の形態に限 15 定されない。また、以下の実施の形態では、同一の部分については同一 の符号を付して、重複する説明を省略する場合がある。

(実施の形態1)

本発明の情報記録媒体の一実施形態について説明する。本実施の形態の情報記録媒体は、波長390~420nmのいわゆる青紫色レーザを20 用いて情報の記録再生を行う場合に好適に用いられる媒体である。図1は、本実施の形態の情報記録媒体1の部分断面図である。情報記録媒体1は、レーザビーム10の照射によって情報の記録再生が可能な光学的情報記録媒体である。

情報記録媒体1には、基板11上に一つの情報層12が設けられ、さ 25 らに透明層13が設けられている。情報層12は、レーザビーム10の 入射側から順次積層された、第1誘電体層101、第2誘電体層102

10

15

、結晶核生成層103、記録層104、第3誘電体層105、第4誘電体層106、界面層107及び反射層108により構成されている。

透明層13の材料は、光硬化性樹脂(特に紫外線硬化性樹脂)や遅効性熱硬化型樹脂等の樹脂、あるいは誘電体材料等からなり、使用するレーザビーム10に対して光吸収が小さいことが好ましく、短波長域において光学的に複屈折が小さいことが好ましい。また、透明層13には、例えば、透明な円盤状のポリカーボネート、アモルファスポリオレフィンまたはPMMA(ポリメチルメタクリレート)等の樹脂、あるいはガラス等が使用できる。この場合、透明層13は、例えば、光硬化性樹脂(特に紫外線硬化性樹脂)や遅効性熱硬化型樹脂等の樹脂によって第1誘電体層101に貼り合わされることが可能である。

レーザビーム10の波長λは、レーザビーム10を集光した際のスポット径が波長λによって決まってしまう(波長λが短いほど、より小さなスポット径に集光可能である。)ため、高密度記録の場合、特に波長λを450nm以下とすることが好ましい。ただし、波長λが350nm未満の場合、透明層13等による光吸収が大きくなってしまうため、レーザビーム10の波長λは、350nm~450nmの範囲内であることがより好ましい。

基板11は、例えば、透明で円盤状の基板であり、例えば、ポリカー 20 ボネート、アモルファスポリオレフィンまたはPMMA等の樹脂や、或いはガラス等を用いることができる。

基板11の情報層12側(反射層108側)の表面には、必要に応じてレーザビーム10を導くための案内溝が形成されていてもよい。基板11の反射層108側と反対側の表面は、平滑であることが好ましい。

25 基板 1 1 の材料としては、転写性・量産性に優れ、且つ、低コストであることから、ポリカーボネートが特に有用である。なお、基板 1 1 の厚

さは、十分な強度があり、且つ情報記録媒体 1 の厚さが 1 2 0 0 μ m程度となるよう、5 0 0 μ m~1 2 0 0 μ mの範囲内であることが好ましい。なお、透明層 1 3 の厚さが 6 0 0 μ m程度(NA=0.6 で良好な記録再生が可能な厚さ。)の場合、基板 1 1 の厚さは 5 5 0 μ m~6 5 0 μ mの範囲内であることが好ましい。また、透明層 1 3 の厚さが 1 0 0 μ m程度(NA=0.8 5 で良好な記録再生が可能な厚さ。)の場合、基板 1 1 の厚さは 1 0 5 0 μ m~1 1 5 0 μ mの範囲内であることが好ましい。

第1誘電体層101は、誘電体からなる。この第1誘電体層101は 、記録層104の酸化、腐食、変形等を防止する働きと、光学距離を調 10 整して記録層104の光吸収効率を高める働きと、記録前後の反射光量 の変化を大きくして信号振幅を大きくする働きと、を有する。第1誘電 体層101には、例えばTiO2、ZrO2、ZnO、Nb2O5、Ta2 O_5 、 SiO_2 、 Al_2O_3 、 Bi_2O_3 、 Cr_2O_3 等の酸化物を用いるこ とができる。また、C-N、Ti-N、Zr-N、Nb-N、Ta-N 15 , S i -N, G e -N, C r -N, A l -N, G e -S i -N, G e -Cr-N等の窒化物を用いることもできる。また、ZnSなどの硫化物 やSiC等の炭化物、LaF3等のフッ化物を用いることもできる。ま た、上記材料の混合物を用いることもできる。例えば、ZnSとSiO $_2$ との混合物である $ZnS-SiO_2$ は、第1誘電体層101の材料とし 20 て特に優れている。ZnS-SiO。は、非晶質材料で、屈折率が高く 、成膜速度が速く、機械特性及び耐湿性が良好だからである。

第1誘電体層101の膜厚は、マトリクス法(例えば、久保田広著「波動光学」岩波書店、1971年、第3章を参照。)に基づく計算により、記録層104が結晶相である場合とそれが非晶質相である場合との反射光量の変化が大きく、且つ記録層104での光吸収が大きくなる条件

を満足するように、厳密に決定することができる。

第2誘電体層102は、繰り返し記録によって第1誘電体層101と 結晶核生成層103及び記録層104との間で生じる物質移動を防止す る働きがある。後に説明するが、結晶核生成層103は、0.3nm~ 3 nmと極めて薄く形成されるため、島状となっている可能性が高い。 このため、第2誘電体層102は、部分的に記録層104と接している ことも考えられる。したがって、第2誘電体層102は、光の吸収が少 なく記録の際に溶解しない高融点な材料で、且つ、結晶核生成層103 及び記録層104との密着性が良い材料であることが好ましい。第2誘 10 電体層102を記録の際に溶解しない高融点な材料で形成することは、 高パワーのレーザビーム10を照射した際に第2誘電体層102の一部 が溶解して結晶核生成層103及び記録層104に混入しないために必 要な特性である。第2誘電体層102の材料が混入すると、結晶核生成 層103及び記録層104の組成が変わり、書き換え性能が著しく低下 するからである。また、第2誘電体層102の材料が結晶核生成層10 15 3及び記録層104と密着性が良いことは、信頼性確保に必要な特性で ある。

性能に優れ、且つ信頼性の高い情報記録媒体15が実現できる。記録層 104との密着性を確保するため、 $Cr_2O_3-ZrO_2$ 中の Cr_2O_3 の 含有量は10 mol%以上あることが好ましく、また、第2 誘電体層 10 2 での光吸収を小さく保つため 60 mol%以下であることが好ましい(Cr_2O_3 が多くなると光吸収が増加する傾向にある。)。 Cr_2O_3 $-ZrO_2$ 中の Cr_2O_3 のより好ましい含有量は、20 mol%以上50 mol%以下である。

第2誘電体層102には、Cr、Zr、Oom他にさらにSiを含む材料を用いても良く、その中でも、Cr EOm Cr_2O_3 を形成し、Er Eom E

第2誘電体層102の膜厚は、第2誘電体層102での光吸収によって情報記録媒体1の記録前後の反射光量の変化が小さくならないよう、1 n m \sim 10 n m の範囲内であることが望ましく、2 n m \sim 7 n m の範囲内にあることがより好ましい。

第3誘電体層105は、光学距離を調整して記録層104の光吸収効 25 率を高める働きと、記録前後の反射光量の変化を大きくして信号振幅を 大きくする働きと、を有する。第3誘電体層105には、第1誘電体層

101と同様の系の材料を用いることができる。また、第2誘電体層102と同様、Cr、Zr、Oを含む材料を用いることが好ましく、その中でもCrとOがCr2O3</sub>を形成し、ZrとOがZrO2</sub>を形成して、Cr2O3とZrO2の混合物になっていることが好ましい。第3誘電体層105は第2誘電体層102より記録層104と密着性が悪い傾向にあるため、Cr2O3-ZrO2中のCr2O3</sub>の含有量は第2誘電体層102のそれより多い20mo1%以上80mo1%以下であることが好ましい。より好ましくは、30mo1%以上70mo1%以下である。

第3誘電体層105には、第2誘電体層102と同様、Cr、Zr、Oの他にさらにSiを含む材料を用いても良く、その中でもCrとOがCr₂O₃を形成し、ZrとOがZrO₂を形成し、SiとOがSiO₂を形成して、SiO₂とCr₂O₃とZrO₂の混合物になっていることが好ましい。SiO₂-Cr₂O₃-ZrO₂中のSiO₂の含有量は、記録層104との密着性を確保するため第2誘電体層102のそれより少ない35mol%以下であることが好ましい。より好ましくは、5mol%以上30mol%以下である。また、良好な記録書き換え性能を確保するため、SiO₂とCr₂O₃の含有量の和は95mol%以下であることが好ましい。

第3誘電体層105の膜厚は、2nm~75nmの範囲内であること 20 が好ましく、2nm~40nmの範囲内であることがより好ましい。第 3誘電体層105の膜厚をこの範囲内で選ぶことによって、記録層104で発生した熱を効果的に反射層108側に拡散させることができる。

第3誘電体層105のレーザビーム入射側と反対側の面には、第4誘電体層106が配置されている。この場合、第4誘電体層106には、

25 第1誘電体層 101 と同様の系の材料を用いることができ、ZnS とS iO_2 との混合物である $ZnS-SiO_2$ は、第4誘電体層 106 として

10

15

20

25

も優れた材料である。なお、本実施の形態においては第4誘電体層106を設けているが、第4誘電体層106を設けない構成でも可能である

第4誘電体層106の膜厚は、2nm~75nmの範囲内であることが好ましく、2nm~40nmの範囲内であることがより好ましい。第4誘電体層106の膜厚をこの範囲内で選ぶことによって、記録層104で発生した熱を効果的に反射層108側に拡散させることができる。

本発明の結晶核生成層103は、結晶核を生成することによって、記 録層104の結晶化能を高めるための層である。結晶核生成層103の 材料は、BiもしくはTeより選ばれる少なくとも一つの元素とM1(但 し、M1はSc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、D y、Ho、Er、Yb及びLuから選ばれる少なくとも一つの元素)と を含む材料で形成できる。このとき、結晶核生成層103は、BiとM 1の混合比が略50:50であるBi(M1)及びTeとM1の混合比 が略50:50であるTe(M1)の少なくとも何れか一方を含むこと が好ましい。Bi (M1) は融点が1500℃以上、Te (M1) は融 点が1300℃以上と高いからである。特に、BiGd、BiTb、B iDy、BiYは、融点が2000℃以上と高いことが2元系の相図に 示されている。このため、この材料を用いることにより、結晶核生成層 103の融点が高く熱的安定性が良好で、且つ長期保存後の書き換え性 能にも優れた情報記録媒体1が得られる。また、Bi(M1)及びTe(M1) は、岩塩型の結晶構造を有する。したがって、例えばGeTe -Sb₂Te₃化合物系などの岩塩型の結晶構造を有する記録層104 を用いる場合、結晶核生成層103と記録層104との結晶構造が同じ であるため、結晶核生成層103と記録層104との界面で結晶核が生 じやすく、記録層104での結晶成長が促進される。このため、書き換

え保存性に優れた情報記録媒体1が得られる。

また、結晶核生成層103は、BiTe(M1) $_2$ 、Bi $_2$ Te(M1)及びBiTe $_2$ (M1)から選ばれる少なくとも一つを含んでもよい。この材料を用いることにより、結晶核生成層103の融点が高く熱的安定性が良好で、結晶核生成層103と記録層104との界面で結晶核が生じやすく記録層104での結晶成長が促進され、書き換え保存性に優れた情報記録媒体1が得られる。

結晶核生成層103の膜厚は、高速な転送レートの場合にも、消去性能(結晶化能)が良好で、長期保存後の書き換え性能が良好となるよう100.3nm~3nmの範囲内であることが好ましく、0.5nm~2nmの範囲内にあることがより好ましい。なお、結晶核生成層103が島状の場合でも薄膜状の場合でも、結晶核生成層としての以上のような効果が得られる。

記録層104は、レーザビーム10の照射によって結晶相と非晶質相との間で可逆的な相変化を起こす材料にて形成されている。記録層104は、例えばGeとM2とTe(但し、M2はSb及びBiから選ばれる少なくとも一つの元素。)の3元素を含む材料で形成できる。具体的には、記録層104は、Gea(M2) $_{b}$ Te $_{3+a}$ で表される材料で形成でき、非晶質相が安定で信号振幅が大きく、融点の上昇と結晶化速度の 低下が少ない2≦ a ≦ 5 0 の関係を満たすことが望ましく、4 ≦ a ≦ 2 3 の関係を満たすことがより好ましい。また、非晶質相が安定で信号振幅が大きく、結晶化速度の低下が少ない2≦b ≦ 4 の関係を満たすことがより好ましい。

また、記録層104は、組成式(Ge-(M3))。(M2)。 Te_3 25 +。(ただし、M3はSn及びPbから選ばれる少なくとも一つの元素。)で表される材料で形成しても良い。この材料を用いた場合、Geを置

換した元素M3が結晶化能を向上させるため、記録層104の膜厚が薄い場合でも十分な消去率が得られる。元素M3としては、毒性がない点でSnがより好ましい。この材料を用いる場合も、 $2 \le a \le 50$ (より好ましくは $4 \le a \le 23$)、且つ $2 \le b \le 4$ (より好ましはは $2 \le b \le 3$) であることが好ましい。

また、記録層104は、組成式(Sb_dTe_{100-d})_{100-e}(M5)_e

(ただし、M5はAg、In、Ge、Sn、Se、Bi、Au及びMnから選ばれる少なくとも一つの元素。)で表される材料で形成してもよい。d及びeが、50≤d≤95及び0<e≤20を満たす場合には、20記録層104が結晶相の場合と非晶質相の場合との間の情報記録媒体1の反射率差を大きくでき、良好な記録再生特性が得られる。65≤dの場合には、結晶化速度が特に速く、特に良好な消去率が得られる。また、d≤85の場合には、非晶質化が容易となる。したがって、65≤d≤85であることがより好ましい。また、良好な記録再生性能を得るためには、結晶化速度を調整するための元素M5を添加することが好ましい。eは、1≤e≤10であることがより好ましい。e≤10の場合に

WO 2004/025640 * PCT/JP2003/011680

は、複数の相が現れることを抑制できるため、繰り返し記録による特性 劣化を抑制できる。

記録層104の膜厚は、情報記録媒体1の記録感度を高くするため、 $6nm\sim14nm$ の範囲内であることが好ましい。この範囲内においても、記録層104が厚い場合には熱の面内方向への拡散による隣接領域への熱的影響が大きくなる。また、記録層104が薄い場合には情報記録媒体10反射率が小さくなる。したがって、記録層104の膜厚は、 $8nm\sim12nm$ の範囲内であることがより好ましい。

反射層108は、記録層104に吸収される光量を増大させるという 10 光学的な機能を有する。また、反射層108は、記録層104で生じた 熱を速やかに拡散させ、記録層104を非晶質化しやすくするという熱 的な機能も有する。さらに、反射層108は、使用する環境から多層膜 を保護するという機能も有する。

反射層108の材料には、例えばAg、Au、Cu及びA1等の熱伝 等率が高い単体金属を用いることができる。また、A1-Cr、A1-Ti、Au-Pd、Au-Cr、Ag-Pd、Ag-Pd-Cu、Ag-Pd-Ti、Ag-Ru-Au、Ag-Cu-Ni、Ag-Zn-A 1またはCu-Siといった合金を用いることもできる。特にAg合金は、熱伝導率が大きいため、反射層108の材料として好ましい。反射 層108の膜厚は、熱拡散機能が十分となる30nm以上であることが 好ましい。この範囲内においても、反射層108が200nmより厚い場合には、その熱拡散機能が大きくなりすぎて情報記録媒体1の記録感度が低下する。したがって、反射層108の膜厚は30nm~200nmの範囲内であることがより好ましい。

25 反射層 1 0 8 のレーザビーム入射側の界面には、界面層 1 0 7 が設けられている。この場合、界面層 1 0 7 には、反射層 1 0 8 について説明

WO 2004/025640 PCT/JR2003/011680

した材料より熱伝導率の低い材料を用いることができる。反射層108 にAg合金を用いた場合、界面層107にはAlまたはAl合金を用い ることが好ましい。また、界面層107には、Cr、Ni、Si、C等 の元素を含む材料や、TiO₂、ZrO₂、ZnO、Nb₂O₅、Ta₂O 5、SiO₂、Al₂O₃、Bi₂O₃、Cr₂O₃等の酸化物を用いること ができる。また、C-N、Ti-N、Zr-N、Nb-N、Ta-N、 Si-N, Ge-N, Cr-N, Al-N, Ge-Si-N, Ge-C r-N等の窒化物を用いることもできる。また、ZnSなどの硫化物や SiC等の炭化物、LaF₃等のフッ化物を用いることもできる。また 、上記材料の混合物を用いることもできる。また、膜厚は3nm~10 10 0 nm (より好ましくは10 nm~50 nm) の範囲内であることが好 ましい。

なお、結晶核生成層は、記録層104と第3誘電体層105との間に 配置されても良い。この場合は、図2に示す情報記録媒体14のように 、基板11上に情報層12及び透明層13が設けられており、情報層1 15 2が、レーザビーム入射側から順次積層された、第1誘電体層101、 第2誘電体層102、記録層104、結晶核生成層109、第3誘電体 層105、第4誘電体層106、界面層107及び反射層10にて形成 される。また、結晶核生成層は、記録層104と第2誘電体層102及 び第3誘電体層105と間にそれぞれ配置されていてもよい。この場合 20 は、図3に示す情報記録媒体15のように、基板11上に情報層12及 び透明層13が設けられており、情報層12が、レーザビーム入射側か ら順次積層された、第1誘電体層101、第2誘電体層102、結晶核 生成層103、記録層104、結晶核生成層109、第3誘電体層10 5、第4誘電体層106、界面層107及び反射層108にて形成され 25 る。なお、結晶核生成層109は、結晶核生成層103と同様の系の材

料を用いることができ、それらの形状及び機能についても結晶核生成層 103と同様である。

次に、図 $1\sim$ 図3に示す情報記録媒体1, 14, 15の製造方法について説明する。

5 まず、基板11 (例えば、厚さ 1100μ m) を用意し、成膜装置内に配置する。

続いて、基板11上に反射層108を成膜する。このとき、基板11 にレーザビーム10を導くための案内溝が形成されている場合には、案内溝が形成された面上に反射層108を成膜する。反射層108は、反10射層108を構成する金属または合金からなるスパッタリングターゲットを、Arガス雰囲気中、またはArガスと反応ガス(酸素ガス及び窒素ガスから選ばれる少なくとも一つのガス)との混合ガス雰囲気中でスパッタリングすることによって形成できる。

続いて、反射層108上に、必要に応じて界面層107を成膜する。 界面層107は、界面層107を構成する元素からなるスパッタリング ターゲットを、Arガス雰囲気中、またはArガスと反応ガスとの混合

ガス雰囲気中でスパッタリングすることによって形成できる。

続いて、界面層107上(界面層107を設けない構成の場合は反射層108上)に、必要に応じて第4誘電体層106を成膜する。第4誘電体層106は、第4誘電体層106を構成する化合物からなるスパッタリングターゲットを、Arガス雰囲気中、またはArガスと反応ガスとの混合ガス雰囲気中でスパッタリングすることによって形成できる。また、第4誘電体層106は、第4誘電体層106を構成する元素を含む金属からなるスパッタリングターゲットを、Arガスと反応ガスとの混合ガス雰囲気中で反応性スパッタリングすることによっても形成でき

る。

続いて、第4誘電体層106上(第4誘電体層106を設けない構成の場合は界面層107上または反射層108上)に、第3誘電体層105を成膜する。第3誘電体層105は、第4誘電体層106と同様の方法で形成できる。

5 続いて、第3誘電体層105上に、必要に応じて(図2及び図3に示す情報記録媒体14,15を作製する場合)、結晶核生成層109を成膜する。結晶核生成層109は、その組成に応じて、BiもしくはTeより選ばれる少なくとも一つの元素とM1とを含むスパッタリングターゲット、Bi(M1)及びTe(M1)より選ばれる少なくとも一つを含むスパッタリングターゲット、またはBiTe(M1)2、Bi2Te(M1)及びBiTe2(M1)から選ばれる少なくとも一つを含むスパッタリングターゲットを、一つの電源を用いて、スパッタリングすることによって形成できる。

結晶核生成層109を作製する際のスパッタリングに用いられる雰囲

気ガスには、例えば、Arガス、Krガス、Arガスと反応ガスとの混合ガス、またはKrガスと反応ガスとの混合ガスを用いることができる。また、結晶核生成層109は、Bi、Te及びM1の各々のスパッタリングターゲットを複数の電源を用いて同時にスパッタリングすることによって形成することもできる。また、結晶核生成層109は、Bi、Te及びM1のうちからいずれかの元素を組み合わせた2元系スパッタリングターゲットや3元系スパッタリングターゲットなどを、複数の電源を用いて同時にスパッタリングすることによって形成することもできる。これらのスパッタリングターゲットを用いる場合でも、Arガス雰囲気中、Krガス雰囲気中、Arガスと反応ガスとの混合ガス雰囲気中、またはKrガスと反応ガスとの混合ガス雰囲気中でスパッタリングすることによって結晶核生成層109を形成できる。

続いて、結晶核生成層109上(結晶核生成層109を形成しない構成の場合は第3誘電体層105上)に、記録層104を成膜する。記録層104は、その組成に応じて、Ge-M2-Te合金からなるスパッタリングターゲット、Ge-M2-Te-M3合金からなるスパッタリングターゲット、Ge-M2-Te-M4合金からなるスパッタリングターゲット、またはSb-Te-M5合金からなるスパッタリングターゲットを、一つの電源を用いて、スパッタリングすることによって形成できる。

記録層104を作製する際のスパッタリングの雰囲気ガスには、Ar 10 ガス、Krガス、Arガスと反応ガスとの混合ガス、またはKrガスと 反応ガスとの混合ガスを用いることができる。また、記録層104は、 Ge、M2、Te、M3、M4及びM5のうち必要な元素を含むスパッ タリングターゲットを複数の電源を用いて同時にスパッタリングするこ とによって形成することもできる。また、記録層104は、Ge、M2 15 、Te、M3、M4及びM5のうち必要な元素を組み合わせた2元系ス パッタリングターゲットや3元系スパッタリングターゲットなどを、複 数の電源を用いて同時にスパッタリングすることによって形成すること もできる。これらのスパッタリングターゲットを用いる場合でも、Ar ガス雰囲気中、Krガス雰囲気中、Arガスと反応ガスとの混合ガス雰 囲気中、またはKrガスと反応ガスとの混合ガス雰囲気中でスパッタリ 20 ングすることによって、記録層104を形成できる。

続いて、記録層104上に、必要に応じて(図1及び図3に示す情報 記録媒体1,15を作製する場合)、結晶核生成層103を成膜する。

続いて、結晶核生成層103上(結晶核生成層103を設けない構成25 の場合は記録層104上)に、第2誘電体層102を成膜する。第2誘電体層102は、第2誘電体層102を構成する化合物からなるスパッ

10

タリングターゲットを、Arガス雰囲気中、またはArガスと反応ガスとの混合ガス雰囲気中でスパッタリングすることによって形成できる。また、第2誘電体層102は、第2誘電体層103を構成する金属からなるスパッタリングターゲットを、Arガスと反応ガスとの混合ガス雰囲気中で反応性スパッタリングすることによっても形成できる。

続いて、第2誘電体層102上に、第1誘電体層101を成膜する。 第1誘電体層101は、第1誘電体層101を構成する化合物からなる スパッタリングターゲットを、Arガス雰囲気中、またはArガスと反 応ガスとの混合ガス雰囲気中でスパッタリングすることによって形成で きる。また、第1誘電体層101は、第1誘電体層101を構成する元 素を含むスパッタリングターゲットを、Arガスと反応ガスとの混合ガ ス雰囲気中で反応性スパッタリングすることによっても形成できる。

最後に、第1誘電体層101上に透明層13を形成する。透明層13 は、光硬化性樹脂(特に紫外線硬化性樹脂)または遅効性熱硬化型樹脂 を第1誘電体層101上に塗布し、全体を回転させて樹脂を均一に延ば した(スピンコートした)したのち、樹脂を硬化させることによって形 成できる。また、透明層13には、透明な円盤状のポリカーボネートま たはアモルファスポリオレフィンまたはPMMA等の樹脂またはガラス などの基板を用いてもよい。このように基板を用いる場合、透明層13 は、光硬化性樹脂(特に紫外線硬化性樹脂)や遅効性熱硬化型樹脂等の 樹脂を第1誘電体層101上に塗布して、次に基板を第1誘電体層10 1上に密着させてスピンコートした後、樹脂を硬化させることによって 形成できる。また、基板に予め粘着性の樹脂を均一に塗布し、それを第 1誘電体層101に密着させることもできる。

25 なお、第1誘電体層101を成膜したのち、または透明層13を形成 したのち、必要に応じて、記録層104の全面を結晶化させる初期化工 程を行ってもよい。記録層104の結晶化は、レーザビームを照射する ことによって行うことができる。

以上のようにして、本実施の形態の情報記録媒体1,14,15を製造できる。

5 なお、本実施の形態においては、各膜の成膜方法としてスパッタリング法を用いたが、これに限定されず、真空蒸着法、イオンプレーティング法、CVD (Chemical Vapor Deposition) 法、MBE (Molecular Beam Epitaxy) 等を用いることも可能である。

(実施の形態2)

10 本発明の情報記録媒体の別の実施の形態を説明する。本実施の形態の情報記録媒体は、波長390~420nmのいわゆる青紫色レーザを用いて情報の記録再生を行う場合に好適に用いられる媒体である。図4に、本実施の形態の情報記録媒体2の一部断面構成を示す。情報記録媒体2は、複数の情報層を含んでおり、片面からのレーザビーム10の照射15 によって各情報層に対する情報の記録再生が可能な、多層構造の光学的情報記録媒体である。

情報記録媒体 2 においては、基板 2 1 上に第 1 ~第 Nまでの N個(Nは N \ge 2 を満たす自然数)の情報層 2 2 1 ~2 2 1 が積層され、さらに、透明層 2 3 が設けられている。なお、本明細書においては、レーザビー 2 4 0 の入射側から数えて 1 番目の情報層を第 1 の情報層 2 2 1 、 N番目の情報層を第 1 の情報層 2 2 1 、 N番目の情報層を第 1 の情報層 2 1 1 の情報層 1 、 光学分離層 1 2 4 を介して積層されている。情報記録媒体 1 においては、第 1 の情報層 1 1 ~第(N 1)の情報層 1 1 ~3 。第 N の情報層 1 1 ~3 。第 N の情報層 1 1 ~3 。第 N の情報層 1 ~4 。第 1 ~5)。第 N の情報 1 ~5)。 第 N の情報 1 ~5) で N の

基板21及び透明層23の材料には、実施の形態1で説明した基板1

1及び透明層13と同様の材料を用いることができる。また、それらの 形状及び機能についても、実施の形態1で説明した基板1及び透明層1 3の形状及び機能と同様である。

光学分離層24は、光硬化性樹脂(特に紫外線硬化性樹脂)や遅効性 熱硬化型樹脂等の樹脂、または誘電体等からなり、使用するレーザビー ム10に対して光吸収が小さいことが好ましく、短波長域において光学 的に複屈折が小さいことが好ましい。

各情報層間に設けられる光学分離層24は、第1の情報層221、第 2の情報層 2 2 $_2$ 、…、第Nの情報層 2 2 $_N$ それぞれのフォーカス位置を 区別するために用いられる。光学分離層24の厚さは、対物レンズの開 10 口数(NA)とレーザビーム10の波長λによって決定される焦点深度 ΔZ以上であることが必要である。焦点の光強度の基準を無収差の場合 の80%と仮定した場合、焦点深度 Δ Zは Δ Z= λ /{2 (NA) 2 } で近似できる。λ=400nm、NA=0.6の時、ΔZ=0.556 μ m となり、 \pm 0. 6 μ m 以内は焦点深度内となる。そのため、この場 15 合には、光学分離層 24 の厚さは 1 . 2μ m以上であることが必要であ る。また、対物レンズを用いてレーザビーム10を集光可能な範囲とな るように、各情報層間の距離を設定することが望ましい。したがって、 光学分離層24の厚さは、対物レンズが許容できる公差内(例えば50 20 μm以下)にすることが好ましい。

光学分離層24において、レーザビーム10の入射側の表面には、必要に応じてレーザビーム10を導くための案内溝が形成されていてもよい。

この場合、片側からのレーザビーム10の照射のみにより、第Kの情 25 報層(Kは1 < K \le Nの自然数) 22_{K} を第1 の情報層 22_{1} ~第(K - 1)の情報層 22_{K-1} を透過したレーザビーム10 によって記録再生す

ることが可能である。

以下、第1の情報層 22_1 の構成について詳細に説明する。

第1の情報層 22_1 には、レーザビーム 10の入射側から順に配置された第1誘電体層 201、第2誘電体層 202、結晶核生成層 203、

5 記録層204、第3誘電体層205、反射層206及び透過率調整層2 07が設けられている。

第1誘電体層201には、実施の形態1で説明した第1誘電体層10 1と同様の材料を用いることができる。また、それらの機能についても 、実施の形態1の第1誘電体層101の機能と同様である。

10 第1誘電体層201の膜厚は、マトリクス法に基づく計算により、記録層204が結晶相である場合と非晶質相である場合との間の反射光量の変化が大きく、且つ、記録層204での光吸収が大きくなるという条件を満足するように決定することができる。

第2誘電体層202には、実施の形態1で説明した第2誘電体層10 15 2と同様の材料を用いることができる。また、それらの機能及び形状に ついても、実施の形態1の第2誘電体層102と同様である。

第3誘電体層205には、実施の形態1で説明した第3誘電体層10 5と同様の材料を用いることができる。また、それらの機能及び形状に ついても、実施の形態1の第3誘電体層105と同様である。

20 結晶核生成層 2 0 3 には、実施の形態 1 の結晶核生成層 1 0 3 と同様の材料を用いることができる。また、それらの機能についても、実施の形態 1 の結晶核生成層 1 0 3 と同様である。

より好ましい。

記録層204には、実施の形態1で説明した記録層104と同様の材 料を用いることができる。記録層204の膜厚はなるべく薄くすること が好ましい。これは、第1の情報層22 $_1$ を透過したレーザ光にて情報 の記録再生を行う情報層(第1の情報層 22_1 よりもレーザビーム105 の入射側から遠くに配置された情報層)に記録再生の際に必要なレーザ 光量を到達させるために、第1の情報層 22_1 の透過率を高くする必要 があるからである。例えば、組成式 $Ge_a(M2)_b Te_{3+a}$ で表される 材料、 $Ge_a(M2)_bTe_{3+a}$ においてGeo一部を(M3)にて置換 した材料 ((Ge-(M3)) a Sb b Te 3+a)、及び組成式 (Ge a 10 $(M2)_b Te_{3+a})_{100-c} (M4)_c$ で表される材料の場合には、4n $m \sim 9 n m$ の範囲内であることが好ましく、 $5 n m \sim 8 n m$ の範囲内で あることがより好ましい。また、記録層 2 0 4 が組成式 (S b $_{\rm d}$ T e $_{\rm 10}$ $_{0-a}$) $_{100-e}$ (M5) $_{e}$ で表される材料にて形成されている場合は、厚 みは3 nm~8 nmの範囲内であることが好ましく、4 nm~6 nmの 15 範囲内であることがより好ましい。

反射層 $2\ 0\ 6$ には、実施の形態 $1\$ で説明した反射層 $1\ 0\ 8$ と同様の材料を用いることができる。また、それらの機能についても、実施の形態 $1\$ の反射層 $1\ 0\ 8$ の機能と同様である。反射層 $2\ 0\ 6$ の膜厚は、第 $1\$ の 1 の 情報層 $2\ 2_1$ の透過率をできるだけ高くするため、 $3\$ nm $\sim 1\ 5\$ nm の 範囲内であることが好ましく、 $8\$ nm $\sim 1\ 2\$ nm の範囲内であることがより好ましい。反射層 $2\ 0\ 6$ の膜厚がこの範囲内にあることにより、その熱拡散機能が十分で、且つ第 $1\$ の情報層 $2\ 2_1$ における十分な反射率が確保でき、さらに第 $1\$ の情報層 $2\ 2_1$ の透過率も十分となる。

25 透過率調整層 2 0 7 は誘電体からなり、第 1 の情報層 2 2 1 の透過率 を調整する機能を有する。この透過率調整層 2 0 7 によって、記録層 2

04が結晶相である場合の第1の情報層 22_1 における透過率 T_c (%) と、記録層204が非晶質相である場合の第1の情報層 22_1 における透過率 T_a (%)とを、共に高くすることができる。具体的には、透過率調整層207を備える第1の情報層 22_1 では、透過率調整層207を備える第1の情報層 22_1 では、透過率調整層207が無い場合に比べて、透過率 T_c 及び T_a が2%~10%程度上昇する。また、透過率調整層<math>207は、記録層204で発生した熱を効果的に拡散させる機能も有する。

15

-N、Ta-N、Si-N、Ge-N、Cr-N、A1-N、Ge-Si-N、Ge-Cr-N等の窒化物を用いることもできる。また、Zn-N といることもできる。また、Zn-N といることもできる。これらの中でも、特に、Zn-N にいることもできる。これらの中でも、特に、Zn-N にいることが好ましい。これらの材料は屈折率が大きく(Zn-N にいることが好ましい。これらの材料は屈折率が大きく(Zn-N にいることが好ましい。これらの材料は屈折率が大きく(Zn-N にいることが好ましい。これらの材料は屈折率が大きく、Zn-N になる。第1の情報層 Zn-N にいる。

第1の情報層 22_1 の透過率 T_c 及び T_a は、記録再生の際に必要なレーザ光量を第2の情報層 22_2 ~第Nの情報層 22_N に到達させるため、

10 $40 < T_c$ 、且つ、 $40 < T_a$ を満たすことが好ましく、 $46 < T_c$ 、且 つ、 $46 < T_a$ を満たすことがより好ましい。

第1の情報層 22_1 の透過率 T_c 及び T_a は、 $-5 \le (T_c - T_a) \le 5$ を満たすことが好ましく、 $-3 \le (T_c - T_a) \le 3$ を満たすことがより好ましい。透過率 T_c 及び T_a がこの条件を満たすことにより、第 $2 \sim$ 第 1 の情報層 $22_2 \sim 22_n$ に情報の記録再生を行う際、第 1 の情報層 22_1 における記録層 204 の状態による透過率の変化の影響が小さくなるので、良好な記録再生特性が得られる。

記録層 $2\ 0\ 4$ が結晶相の時の第 $1\ 0$ 情報層 $2\ 2\ 1$ の反射率 R_{c1} 及び記録層 $2\ 0\ 4$ が非晶質相の時の第 $1\ 0$ 情報層 $2\ 2\ 1$ の反射率 R_{a1} は、 R_{a1} 20 〈 R_{c1} を満たすことが好ましい。このことにより、情報が記録された状態よりも情報が記録されていない初期の状態で反射率が高く、安定に記録再生動作を行うことができる。また、反射率差($R_{c1}-R_{a1}$)を大きくして良好な記録再生特性が得られるように、 R_{c1} 、 R_{a1} は、 $0\ 1\le R_{a1}\le 5$ 、且つ、 $4\le R_{c1}\le 1\ 5$ を満たすことが好ましく、 $0\ 1\le R$ 25 $a_1\le 3$ 、且つ、 $4\le R_{c1}\le 1\ 0$ を満たすことがより好ましい。

なお、第1の情報層221において、結晶核生成層は、記録層204

と第3誘電体層205との間に配置されても良い。この場合は、図5に 示す情報記録媒体25のように、基板21上に第1~第Nの情報層22 1~22 №及び透明層23が設けられており、第1の情報層22,が、レ ーザビーム入射側から順次積層された、第1誘電体層201、第2誘電 体層202、記録層204、結晶核生成層208、第3誘電体層205 5 、反射層206及び透過率調整層207にて形成される。また、第1の 情報層221において、結晶核生成層は、記録層204と第2誘電体層 202及び第3誘電体層205と間にそれぞれ配置されていてもよい。 この場合は、図6に示す情報記録媒体26のように、基板21上に第1 ~第Nの情報層 22_1 ~ 22_N 及び透明層 23が設けられており、第1の 10 情報層221が、レーザビーム入射側から順次積層された、第1誘電体 層201、第2誘電体層202、結晶核生成層203、記録層204、 結晶核生成層208、第3誘電体層205、反射層206及び透過率調 整層207にて形成される。なお、結晶核生成層208は、結晶核生成 層203と同様の系の材料を用いることができ、それらの形状及び機能 15 についても結晶核生成層203と同様である。

なお、本実施の形態の光学的情報記録媒体 2 , 2 5 , 2 6 に含まれる第 1 の情報層 2 2 1 以外の他の情報層の膜構造は、第 1 の情報層 2 2 1 と同様であってもよく、また、別の構造であってもよい。また、複数の情報層のうちの少なくとも一つを本実施の形態で説明した第 1 の情報層 2 2 1 と同様の膜構造とし、他の情報層は異なる構造であっても構わないが、レーザビーム入射側の面に最も近い位置に配置される第 1 の情報層 2 2 1 を本実施の形態で説明した膜構造にすることが好ましい。また、第 1 の情報層 2 2 1 以外の他の情報層の何れか一つを、再生専用タイプの情報層(ROM(Read Only Memory))または 1 回のみ書き込み可能な追記型の情報層(WO(Write Once))としても良い。

20

次に、本実施の形態の情報記録媒体2,25,26の製造方法について説明する。

まず、基板21 (例えば厚さ1100μm)上に、第Nの情報層22 N~第2の情報層222gの(N-1)層の情報層を、光学分離層24を介 して順次積層する。各情報層は、単層膜または多層膜からなり、それら 5 の各膜は、成膜装置内で材料となるスパッタリングターゲットを順次ス パッタリングすることによって形成できる。また、光学分離層24は、 光硬化型樹脂(特に紫外線硬化型樹脂)または遅効性熱硬化型樹脂を情 報層上に塗布し、スピンコートにより樹脂を均一に延ばし、その後で樹 脂を硬化させることによって形成できる。なお、光学分離層24にレー 10 ザビーム10の案内溝を形成する場合は、表面に所定の形状の溝が形成 された転写用基板(型)を硬化前の樹脂に密着させた後、基板21と転 写用基板とを回転させてスピンコートし、その後に樹脂を硬化させ、さ らにその後に転写用基板を硬化させた樹脂から剥がすことによって、表 面に所定の案内溝が形成された光学分離層24を形成できる。 15

このようにして、基板 2 1 上に、(N-1)層の情報層を光学分離層 2 4 を介して順次積層した後、さらに光学分離層 2 4 を形成したものを用意する。

続いて、(N-1)層の情報層上に形成された光学分離層24上に、20 第1の情報層221を形成する。具体的には、まず、(N-1)層の情報層及び光学分離層24が形成された基板21を成膜装置内に配置し、光学分離層24上に透過率調整層207を成膜する。透過率調整層207は、透過率調整層207を構成する化合物からなるスパッタリングターゲットを、Arガス雰囲気中、またはArガスと反応ガスとの混合ガス雰囲気中でスパッタリングすることによって形成できる。また、透過率調整層207は、透過率調整層207を構成する元素からなる金属を

スパッタリングターゲットとして用い、Arガスと反応ガスとの混合ガス雰囲気中で反応性スパッタリングすることによっても形成できる。

続いて、透過率調整層207上に、反射層206を成膜する。反射層206は、実施の形態1で説明した反射層108の形成方法と同様の方法で形成できる。

続いて、反射層206上に、第3誘電体層205を成膜する。第3誘電体層205は、実施の形態1で説明した第3誘電体層105の形成方法と同様の方法で形成できる。

続いて、第3誘電体層205上に、必要に応じて(図5及び図6に示10 す情報記録媒体25,26を作製する場合)、結晶核生成層208を成膜する。結晶核生成層208は、実施の形態1で説明した結晶核生成層109と同様の方法で形成できる。なお、第3誘電体層205上に結晶核生成層208を成膜しない場合(図4に示す情報記録媒体2の場合)には、後述の記録層204上に結晶核生成層203を成膜する。

15 続いて、結晶核生成層208上(結晶核生成層209を設けない構成の場合は第3誘電体層205上)に、記録層204を成膜する。記録層204は、実施の形態1で説明した記録層104の形成方法と同様の方法で形成できる。

続いて、記録層204上に、必要に応じて(図4及び図6に示す情報 20 記録媒体2,26を作製する場合)、結晶核生成層203を成膜する。

続いて、結晶核生成層203上(結晶核生成層203を設けない場合は記録層204上)に、第2誘電体層202を成膜する。第2誘電体層202は、実施の形態1で説明した第2誘電体層102の形成方法と同様の方法で形成できる。

25 続いて、第2誘電体層202上に、第1誘電体層201を成膜する。 第1誘電体層201は、実施の形態1で説明した第1誘電体層101の 形成方法と同様の方法で形成できる。

最後に、第1誘電体層201上に透明層23を形成する。透明層23 は、実施の形態1で説明した透明層13の形成方法と同様の方法で形成 できる。

5 なお、第1誘電体層201を成膜したのち、または透明層23を形成したのち、必要に応じて、記録層204の全面を結晶化させる初期化工程を行ってもよい。記録層204の結晶化は、レーザビームを照射することによって行うことができる。

以上のようにして、本実施の形態の情報記録媒体2,25,26を製10 造できる。なお、本実施の形態においては、各膜の成膜方法としてスパッタリング法を用いたが、これに限定されず、真空蒸着法、イオンプレーティング法、CVD法、MBE等を用いることも可能である。

(実施の形態3)

本発明の情報記録媒体のさらに別の実施の形態を説明する。本実施の 形態の情報記録媒体は、波長390~420nmのいわゆる青紫色レー ザを用いて情報の記録再生を行う場合に好適に用いられる媒体である。 図7に、本実施の形態の情報記録媒体3の一部断面構成を示す。情報記 録媒体3は、2つの情報層を含んでおり、片面からのレーザビーム10 の照射によって各情報層に対する情報の記録再生が可能な2層構造の光 20 学的情報記録媒体である。

情報記録媒体 3 は、基板 3 1 上に順次積層した、第 2 の情報層 3 2 2 、光学分離層 3 4 、第 1 の情報層 3 2 1 、及び透明層 3 3 により構成されている。レーザビーム 1 0 は透明層 3 3 側から入射される。基板 3 1 、光学分離層 3 4 、第 1 の情報層 3 2 1 、及び透明層 3 3 には、実施の形態 1 または 2 で説明した基板 1 1 、2 1 、光学分離層 2 4 、第 1 の情報層 2 2 1 、透明層 1 3 、2 3 と同様の材料を用いることができ、また

15

、それらの形状及び機能も同様である。

以下、第2の情報層322の構成について詳細に説明する。

第2の情報層3 2_2 は、レーザビーム10の入射側から順に配置された第1誘電体層301、第2誘電体層302、結晶核生成層303、記録層304、第3誘電体層305、第4誘電体層306、界面層307及び反射層308を備える。第2の情報層 32_2 は、透明層33、第1の情報層 32_1 及び光学分離層34を透過したレーザビーム10によって記録再生が行われる。

第1誘電体層301には、実施の形態1で説明した第1誘電体層10 10 1と同様の材料を用いることができる。また、それらの機能についても 、実施の形態1の第1誘電体層101の機能と同様である。

第1誘電体層301の膜厚は、マトリクス法に基づく計算により、記録層304が結晶相である場合と非晶質相である場合との間の反射光量の変化が大きくなり、且つ記録層304での光吸収が大きくなるという条件を満足するように決定することができる。

第2誘電体層302には、実施の形態1で説明した第2誘電体層10 2と同様の材料を用いることができる。また、それらの機能及び形状に ついても、実施の形態1の第2誘電体層102と同様である。

第3誘電体層305には、実施の形態1で説明した第3誘電体層10 20 5と同様の材料を用いることができる。また、それらの機能及び形状に ついても、実施の形態1の第3誘電体層105と同様である。

結晶核生成層303には、実施の形態1で説明した結晶核生成層10 3と同様の材料を用いることができる。また、それらの膜厚についても 、実施の形態1の結晶核生成層103と同様である。

25 記録層304には、実施の形態1の記録層104と同様の材料を用いることができる。また、それらの膜厚についても、実施の形態1の記録

層104の膜厚と同様である。

第4誘電体層306には、実施の形態1で説明した第4誘電体層106と同様の材料を用いることができる。また、それらの機能及び形状についても、実施の形態1の第4誘電体層106の機能及び形状と同様である。なお、第4誘電体層306を設けない構成とすることも可能である。

反射層308には、実施の形態1で説明した反射層108と同様の材料を用いることができる。また、それらの機能及び形状についても、実施の形態1の反射層108の機能と同様である。

10 界面層307には、実施の形態1で説明した界面層107と同様の材料を用いることができる。また、それらの機能及び形状についても、実施の形態1の界面層107の機能及び形状と同様である。なお、界面層307を設けない構成とすることも可能である。

なお、第2の情報層322において、結晶核生成層は、記録層304 と第3誘電体層305との間に配置されても良い。この場合は、図8に 15 示す情報記録媒体 35 のように、第2 の情報層 32_2 が、レーザビーム 入射側から順次積層された、第1誘電体層301、第2誘電体層302 、記録層304、結晶核生成層309、第3誘電体層305、第4誘電 体層306、界面層307及び反射層308にて形成される。また、第 2の情報層321において、結晶核生成層は、記録層304と第2誘電 20 体層302及び第3誘電体層305と間にそれぞれ配置されていてもよ い。この場合は、図9に示す情報記録媒体36のように、第2の情報層 322が、レーザビーム入射側から順次積層された、第1誘電体層30 1、第2誘電体層302、結晶核生成層303、記録層304、結晶核 生成層309、第3誘電体層305、第4誘電体層306、界面層30 25 7及び反射層308にて形成される。なお、結晶核生成層309は、結

晶核生成層303と同様の系の材料を用いることができ、それらの形状 及び機能についても結晶核生成層303と同様である。

次に、本実施の形態の情報記録媒体3,35,36の製造方法について説明する。

5 まず、基板31上に第2の情報層32 $_2$ を形成する。具体的には、まず、基板31(例えば厚さ1100 μ m)を用意し、成膜装置内に配置する。

続いて、基板31上に反射層308を成膜する。この時、基板31に レーザビーム10を導くための案内溝が形成されている場合には、案内 10 溝が形成された面上に反射層308を成膜する。反射層308は、実施 の形態1で説明した反射層108と同様の方法で形成できる。

続いて、反射層308上に、必要に応じて界面層307を成膜する。 界面層307は、実施の形態1で説明した界面層107と同様の方法で 形成できる。

15 続いて、界面層 3 0 7上(界面層 3 0 7を設けない場合は反射層 3 0 8上)に、必要に応じて第 4 誘電体層 3 0 6 を成膜する。第 4 誘電体層 3 0 6 は、実施の形態 1 で説明した第 4 誘電体層 1 0 6 と同様の方法で形成できる。

続いて、第4誘電体層306上(第4誘電体層306を設けない場合20 は界面層307または反射層308上)に、第3誘電体層305を成膜する。第3誘電体層305は、実施の形態1の第3誘電体層105と同様の方法で形成できる。

続いて、第3誘電体層305上に、必要に応じて(図8及び図9に示す情報記録媒体35,36の場合)、結晶核生成層309を成膜する。

25 結晶核生成層 3 0 9 は、実施の形態 1 で説明した結晶核生成層 1 0 9 と 同様の方法で形成できる。なお、第 3 誘電体層 3 0 5 上に結晶核生成層

3 0 9 を成膜しない場合には、後述の記録層 3 0 4 上に結晶核生成層 3 0 3 を成膜する。

続いて、結晶核生成層309上(結晶核生成層309を設けない場合は第3誘電体層305上)に、記録層304を成膜する。記録層304 は、実施の形態1で説明した記録層104と同様の方法で形成できる。

続いて、記録層304上に、必要に応じて(図7及び図9に示す情報 記録媒体3,36の場合)、結晶核生成層303を成膜する。

続いて、結晶核生成層304上(結晶核生成層304を設けない場合は記録層304上)に、第2誘電体層302を成膜する。第2誘電体層10302は、実施の形態1の第2誘電体層103と同様の方法で形成できる。

続いて、第2誘電体層302上に、第1誘電体層301を成膜する。 第1誘電体層301は、実施の形態1の第1誘電体層101と同様の方 法で形成できる。

15 このようにして、第2の情報層322を形成する。

続いて、第2の情報層32₂の第1誘電体層301上に光学分離層34を形成する。光学分離層34は、光硬化性樹脂(特に紫外線硬化性樹脂)または遅効性硬化型樹脂を第1誘電体層301上に塗布してスピンコートしたのち、樹脂を硬化させることによって形成できる。なお、光学分離層34がレーザビーム10の案内溝を備える場合には、溝が形成された転写用基板(型)を硬化前の樹脂に密着させたのち、樹脂を硬化させ、その後、転写用基板(型)をはがすことによって、案内溝を形成できる。

なお、第1誘電体層301を成膜したのち、または光学分離層34を 25 形成したのち、必要に応じて、記録層304の全面を結晶化させる初期 化工程を行ってもよい。記録層304の結晶化は、レーザビームを照射

10

することによって行うことができる。

続いて、光学分離層34上に第1の情報層321を形成する。具体的には、まず、光学分離層34上に、透過率調整層207、反射層206、第3誘電体層205、結晶核生成層208、記録層204、第2誘電体層202及び第1誘電体層201をこの順序で成膜する。または、光学分離層34上に、透過率調整層207、反射層206、第3誘電体層205、記録層204、結晶核生成層203、第2誘電体層202及び第1誘電体層201をこの順序で成膜する。あるいは、光学分離層34上に、透過率調整層207、反射層206、第3誘電体層205、結晶核生成層208、記録層204、結晶核生成層203、第2誘電体層202及び第1誘電体層204、結晶核生成層203、第2誘電体層202及び第1誘電体層201をこの順序で成膜する。これらの各層は、実施の形態2で説明した方法で形成できる。

最後に、第1誘電体層201上に透明層33を形成する。透明層33 は、実施の形態1で説明した透明層13と同様の方法で形成できる。

15 なお、第1誘電体層201を成膜したのち、または透明層33を形成したのち、必要に応じて、記録層204の全面を結晶化させる初期化工程を行ってもよい。記録層204の結晶化は、レーザビームを照射することによって行うことができる。

また、第1誘電体層 201 を成膜したのち、または透明層 33 を形成 20 したのち、必要に応じて、第2の情報層 32_2 の記録層 304 及び第 1 の情報層 32_1 の記録層 204 の全面を結晶化させる初期化工程を行ってもよい。この場合、第1の情報層 32_1 の記録層 204 の結晶化を先に行うと、第2の情報層 32_2 の記録層 304 を結晶化するために必要なレーザパワーが大きくなる傾向にあるため、第2の情報層 32_2 の記 録層 304 を先に結晶化させることが好ましい。

以上のようにして、本実施の形態の情報記録媒体3,35,36を製

造できる。なお、本実施の形態においては、各膜の成膜方法としてスパッタリング法を用いたが、これに限定されず、真空蒸着法、イオンプレーティング法、CVD法、MBE等を用いることも可能である。

(実施の形態4)

5 本発明の情報記録媒体のさらに別の実施の形態を説明する。本実施の 形態の情報記録媒体は、波長390~420nmのいわゆる青紫色レー ザを用いて情報の記録再生を行う場合に好適に用いられる媒体である。 図10に、本実施の形態の情報記録媒体4の断面図を示す。情報記録媒 体4は、複数の情報層を含んでおり、片面からのレーザビーム10の照 10 射によって各情報層に対する記録再生が可能な多層構造の光学的情報記 録媒体である。

基板41及びダミー基板45は、実施の形態1で説明した基板11と同様に、透明で円盤状の基板である。基板41及びダミー基板45には、例えば、ポリカーボネート、アモルファスポリオレフィン、またはPMMA等の樹脂、或いはガラスを用いることができる。

基板 4 1 の第 1 の情報層 4 2 1 側の表面には、必要に応じてレーザビーム 1 1 0 を導くための案内溝が形成されていても良い。基板 4 1 の情報層 4 2 1 側と反対側の表面は、平滑であることが好ましい。基板 4 1 及びダミー基板 4 5 の材料としては、転写性及び量産性に優れ、低コストであることから、ポリカーボネートが特に好ましい。なお、基板 4 1 の厚さは、十分な強度があり、且つ情報記録媒体 4 の厚さが全体で

15

20

 1200μ m程度となるよう、 500μ m \sim 1200μ mの範囲内であることが好ましい。

接着層44は、光硬化型樹脂(特に紫外線硬化型樹脂)や遅効性熱硬化型樹脂等の樹脂からなり、使用するレーザビーム10に対して光吸収が小さいことが好ましく、短波長域において光学的に複屈折が小さいことが好ましい。

その他、実施の形態2の情報記録媒体と同一の符号を付した層については、材料、形状及び機能が実施の形態2の場合と同様であるため、ここではその説明を省略する。

- 10 なお、第1の情報層42 $_1$ において、結晶核生成層は、記録層204 のレーザビーム入射側とは反対の界面に配置されても良い。この場合は 、図11の情報記録媒体46に示すように、第1の情報層42 $_1$ は、レーザビーム入射側から順に配置された第1誘電体層201、第2誘電体層202、記録層204、結晶核生成層208、第3誘電体層205、
- 反射層206及び透過率調整層207より構成される。また、第1の情報層421において、記録層204と第2誘電体層202及び第3誘電体層205と間にそれぞれ配置されていてもよい。この場合は、図12に示す情報記録媒体47のように、第1の情報層421が、レーザビーム入射側から順次積層された、第1誘電体層201、第2誘電体層202、結晶核生成層203、記録層204、結晶核生成層208、第3誘

電体層205、反射層206及び透過率調整層207にて形成される。 なお、結晶核生成層208は、結晶核生成層203と同様の系の材料を 用いることができ、それらの形状及び機能についても結晶核生成層20 3と同様である。

25 次に、本実施の形態の情報記録媒体 4, 46, 47の製造方法につい て説明する。 まず、基板41 (例えば厚さ600μm)上に、第1の情報層421を形成する。この時、基板41にレーザビーム10を導くための案内溝が形成されている場合には、案内溝が形成された面上に第1の情報層421を形成する。具体的には、基板41を成膜装置内に配置し、実施の5 形態2で説明した第1の情報層221と逆の順番で、第1誘電体層201、第2誘電体層202、結晶核生成層203、記録層204、第3誘電体層205、反射層206及び透過率調整層207を順次積層する。または、基板41上に、第1誘電体層201、第2誘電体層202、記録層204、結晶核生成層208、第3誘電体層205、反射層2060及び透過率調整層207を順次積層する。あるいは、基板41上に、第1誘電体層201、第2誘電体層202、結晶核生成層203、記録層204、結晶核生成層208、第3誘電体層205、反射層206及び透過率調整層207を順次積層する。各層の成膜方法は、実施の形態2で説明したとおりである。

- 15 その後、第2の情報層 52_2 ~第Nの情報層 52_N の(N-1)層の情報層を、光学分離層 43を介して順次積層する。各情報層は、単層膜または多層膜からなり、それらの各膜は、実施の形態 2 で説明した方法と同様、成膜装置内で材料となるスパッタリングターゲットを順次スパッタリングすることによって形成できる。
- 20 最後に、第Nの情報層4 2_{N} とダミー基板45とを、接着層44を用いて貼り合わせる。具体的には、光硬化型樹脂(特に紫外線硬化型樹脂)や遅効性熱硬化型樹脂等の樹脂を第Nの情報層4 2_{N} 上に塗布し、この樹脂を介してダミー基板45を第Nの情報層 42_{N} 上に密着させてスピンコートした後、樹脂を硬化させると良い。また、ダミー基板45に 予め粘着性の樹脂を均一に塗布しておき、それを第Nの情報層 42_{N} に 密着させることもできる。

なお、ダミー基板 45 を密着させた後、必要に応じて、第10 情報層 42_1 の記録層 204 の全面を結晶化させる初期化工程を行っても良い 。記録層 204 の結晶化は、レーザビームを照射することによって行うことができる。

以上のようにして、本実施の形態の情報記録媒体4,46,47を製 5 造できる。なお、本実施の形態においては、各膜の成膜方法としてスパ ッタリング法を用いたが、これに限定されず、真空蒸着法、イオンプレ ーティング法、CVD法、MBE等を用いることも可能である。また、 本実施の形態の光学的情報記録媒体4,46,47に含まれる第1の情 報層421以外の他の情報層の膜構造は、第1の情報層421と同様であ 10 ってもよく、また、別の構造であってもよい。また、複数の情報層のう ちの少なくとも一つを本実施の形態で説明した第1の情報層 42_1 と同 様の膜構造とし、他の情報層は異なる構造であっても構わないが、レー ザビーム入射側の面に最も近い位置に配置される第1の情報層42,を 本実施の形態で説明した膜構造にすることが好ましい。また、第1の情 15 報層42,以外の他の情報層の何れか一つを、再生専用タイプの情報層 (ROM (Read Only Memory)) または1回のみ書き込み可能な追記型 の情報層 (WO (Write Once)) としても良い。

(実施の形態5)

20 実施の形態 1 ~ 4 で説明した情報記録媒体に対して情報の記録再生を 行う方法について説明する。

図13には、本実施の形態の記録再生方法に用いられる記録再生装置81の一部の構成が、模式的に示されている。記録再生装置81は、情報記録媒体86を回転させるためのスピンドルモータ85と、半導体レーザ83を備える光学ヘッド84と、半導体レーザ83から出射されるレーザビーム10を集光する対物レンズ82とを含んでいる。情報記録

媒体 86 は、実施の形態 $1\sim4$ で説明した何れかの情報記録媒体であり、一つの情報層または複数の情報層(例えば、情報記録媒体 3 における第 1 の情報層 32_1 及び第 2 の情報層 32_2)を含んでいる。対物レンズ 82 により、レーザビーム 10 が情報記録媒体 86 の情報層上に集光される。

情報記録媒体86への情報の記録、消去、及び上書き記録は、レーザビーム10のパワーを、高パワーのピークパワー(Pp(mW))と低パワーのバイアスパワー(Pp(mW))とに変調させることによって行う。ピークパワーのレーザビーム10を照射することによって、情報10層に含まれる記録層の局所的な一部分に非晶質相が形成され、その非晶質相が記録マークとなる。記録マーク間では、バイアスパワーのレーザビーム10が照射され、結晶相(消去部分)が形成される。なお、ピークパワーのレーザビーム10を照射する場合には、パルスの列で形成する、いわゆるマルチパルスとするのが一般的である。なお、マルチパルスは、ピークパワー及びバイアスパワーのパワーレベルだけで変調されても良いし、0mW~ピークパワーの範囲のパワーレベルによって変調されても良い。

また、ピークパワー及びバイアスパワーの何れのパワーレベルよりも低く、そのパワーレベルでのレーザビーム10の照射によって記録マー20 クの光学的な状態が影響を受けず、且つ情報記録媒体86から記録マーク再生のための十分な反射光量が得られるパワーを再生パワー(Pr(mW))とし、再生パワーのレーザ光を照射することによって得られる情報記録媒体86からの信号を検出器で読みとることにより、情報信号の再生が行われる。

25 対物レンズ82の開口数(NA)は、レーザビーム10のスポット径 ϵ 0.4 μ m \sim 0.7 μ m の範囲内に調整するため、0.5 \sim 1.1 の

例えば、情報記録媒体 8 6 が二つの情報層を備えた情報記録媒体 3 (図7参照。)である場合において、第1の情報層 3 2 1 に対して記録を 行う際には、レーザビーム10の焦点を記録層 2 0 4 に合わせ、透明層 3 3 を透過したレーザビーム10によって記録層 2 0 4 に情報を記録する。情報の再生は、記録層 2 0 4 によって反射され、透明層 3 3 を透過してきたレーザビーム10を用いて行う。一方、第2の情報層 3 2 2 に 対して記録を行う際には、レーザビーム10の焦点を記録層 3 0 4 に合わせ、透明層 3 3、第1の情報層 3 2 1 及び光学分離層 3 4 を透過したレーザビーム10によって情報を記録する。情報の再生は、記録層 3 0 4 によって反射され、光学分離層 3 4、第1の情報層 3 2 1 及び透明層 3 3 を透過してきたレーザビーム10を用いて行う。

なお、情報記録媒体3の基板31及び光学分離層34の表面にレーザ20 ビーム10を導くための案内溝が形成されている場合、情報は、レーザビーム10の入射側から近い方の溝面(グルーブ)に行われても良いし、遠い方の溝面(ランド)に行われても良い。また、グループとランドの両方に情報を記録しても良い。

(実施の形態6)

25 本発明の情報記録媒体のさらに別の実施の形態を説明する。図14に 、本実施の形態の情報記録媒体5の断面図を示す。本実施の形態の情報

本実施の形態の情報記録媒体5には、基板51上に一つの情報層52 が設けられ、情報層52上には接着層53によりダミー基板54が貼り 合わされている。情報層52には、レーザビーム10の入射側から順に 、第1誘電体層501、第2誘電体層502、結晶核生成層503、記 録層504、第3誘電体層505、光吸収補正層506及び反射層50 7が積層されている。

基板 5 1 には、成形が容易な材料を用いることが好ましく、実施の形態 1 で説明した基板 1 1 と同様の材料を用いることができる。また、基板 5 1 は、円盤状で光ビームのトラッキングのために、例えばトラックピッチ 0 . 6 1 5 μ mの案内溝を備えている。図 1 4 に示すように、案内溝はランド部 5 5 及びグルーブ部 5 6 からなり、両方の領域に情報を記録することが可能である。基板 5 1 の厚さは、0 . 5 mm \sim 0 . 7 m ∞ 範囲内であることが好ましい。

以下に、情報層 5 2 を構成する各層について、製造方法と共に説明する。

まず、基板51上に、第1誘電体層501を形成する。第1誘電体層501は、ArガスもしくはArガスと反応ガス雰囲気中で材料となるスパッタリングターゲットを反応性スパッタリングすることによって形成できる。

第1誘電体層501は、記録層504の酸化、腐食、変形等を防止する働きと、光学距離を調整して記録層504の光吸収効率を高める働きと、記録前後の反射光量の変化を大きくして信号振幅を大きくする働きと、を有する。さらに、記録層504の非晶質相と結晶相との間での光の位相差を調整する働きもある。本実施の形態における第1誘電体層5

20

01は、例えば、Y、Ce、Ti、Zr、Nb、Ta、Co、Zn、Al、Si、Ge、Sn、Pb、Cr、Sb、Bi、Te等の酸化物、Ti、Zr、Nb、Ta、Cr、Mo、W、B、Al、Ga、In、Si、Ge、Sn、Pb等の窒化物、Ti、Zr、Nb、Ta、Cr、Mo、W、Si等の炭化物、Zn、Cd等の硫化物、セレン化物またはテルル化物、La、Mg、Ca、Ce、Er、Gd、Tb、Dy、Nd、Y、Yb等のフッ化物、C、Si、Ge等の単体、またはこれらの混合物からなる誘電体を用いることができる。

これらの中でも、(ZnS) $_{80}$ (SiO_2) $_{20}$ (mol%)は、非晶 10 質材料で、高屈折率を有し、成膜速度も速く、機械特性及び耐湿性も良好で優れた誘電体材料であるため、第1誘電体層501に好適に用いられる。

次に、第1誘電体層501上に、第2誘電体層502を形成する。第 2誘電体層502は、第2誘電体層502を構成する元素を含むスパッ 15 タリングターゲットを、Arガス雰囲気中でスパッタリングすることに よって形成することができる。

第2誘電体層 502は、第1誘電体層 501と結晶核生成層 503との間の物質移動を防止する機能を有しており、例えば、第1誘電体層 501に(2nS)80(SiO_2)20(mo1%)を用いた場合に、結晶核生成層 503へのSの混入を防止することができる。これにより、繰り返し書き換え性能が向上する。

第2誘電体層502の材料としては、例えば、 HfO_2 及び ZrO_2 から選ばれる少なくともいずれか一つと、 SiO_2 と、 Cr_2O_3 と、を含む酸化物系材料を用いることができる。

 $Z r O_2$ 及び $H f O_2$ は、融点が2700 \mathbb{C} 以上の高融点材料であり、 記録する際に溶解して記録層 504に混入することがないため、Z r O

 $_2$ または $H f O_2$ を用いると、優れた繰り返し書き換え性能が得られる。

 SiO_2 は、非晶質材料で、透明性を高める作用及び誘電体材料の結晶化を抑制する作用を有する。 Cr_2O_3 は、結晶核生成層 503との密着性が良好で、使用環境に対する耐候性に優れている。なお、密着性の評価は、温度 90 $\mathbb C$ 、湿度 80 %の高温環境下で 100 時間保存を行った後、第 2 誘電体層 502 と結晶核生成層 503 との間が剥離していないか目視検査することにより行った。

詳しくは、ZrO₂またはHfO₂の濃度(A2)を10mo1%以上とすることにより良好な繰り返し書き換え性能が得られ、50mo1%以下とすることにより結晶核生成層503と第2誘電体層502との密着性を向上させることができる。

また、 SiO_2 の濃度(B2)を10mol%以上とすることにより 20 良好な繰り返し書き換え性能が得られ、<math>50mol%以下とすることに より結晶核生成層 <math>503と第2誘電体層 502との密着性を向上させる ことができる。

また、 Cr_2O_3 の濃度(100-A2-B2)を20mo1%以上よすることにより結晶核生成層 <math>503と第2誘電体層 502との密着性を向上させることができ、80mo1%以下とすることにより良好な繰り返し書き換え性能が得られる。

WO_a2004/Q25640 PCT/JP2003/011680

次に、第2誘電体層502上に、結晶核生成層503を形成する。結晶核生成層503は、結晶核生成層503を構成する元素を含むスパッタリングターゲットを、例えば、Ar ガスもしくは $Ar-N_2$ 混合ガス雰囲気中でスパッタリングすることによって形成できる。

5 結晶核生成層 5 0 3 を形成する工程では、Biと元素M1とを含む材料、またはTeと元素M1とを含む材料からなるスパッタリングターゲットを用いると、記録層 5 0 4 に比べて融点が高い結晶核生成層 5 0 3 を成膜することができる。元素M1とは、Sc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ば 10 れる少なくとも一つの元素である。

また、結晶核生成層 503 を形成する工程で、Bi、Te、元素M1 を含む化合物である Bi_2 Te (M1)、 $BiTe_2$ (M1) または Bi Te (M1) $_2$ を含む材料からなるスパッタリングターゲットを用いることによっても、記録層 504 に比べて融点が高温である結晶核生成層 503 を成膜することができる。

このように形成した結晶核生成層 5 0 3 によれば、互いに異なる線速度であっても、それぞれの線速度に対して良好な記録特性を実現することができる。

線速度が大きい場合、情報記録媒体5にレーザビーム10が照射され 20 る時間が短いため、記録層504は短い時間で結晶化しなくてはならない。すなわち、情報記録媒体5の線速度が大きいほど、記録層504の 結晶化速度を大きくすることが必要である。

そこで、本実施の形態の情報記録媒体5のように結晶核生成層503 を設けると、情報記録媒体5の線速度が大きい場合において、記録層5 04の結晶化速度を大きくすることができる。同時に、情報記録媒体5 の線速度が小さい場合においても、非晶質相の安定性を低下させること

25

なく、良好な記録特性を得ることができる。

これに対し、結晶核生成層503を用いずに、記録層504にSnやBi等を添加することによって結晶化速度を大きくすると、情報記録媒体5の線速度が小さい場合に非晶質相の安定性が低下してしまうという問題が生じる。

このように、記録層 5 0 4 の材料を変化させることのみでは結晶化速度を大きくすることと線速度が小さい場合の非晶質相の安定性とを両立することが困難であるが、本実施の形態のように結晶核生成層 5 0 3 を用いることにより、これらの両立が実現できる。

また、結晶核生成層 5 0 3 は、初期化工程や記録層 5 0 4 に情報信号を記録する際に、構成物質が溶解して記録層 5 0 4 に混入しないように、融点が高い材料にて形成されることが好ましい。例えば、Biと元素M1との組み合わせ、またはTeと元素M1との組み合わせは、融点が1300℃以上と高温であるので、情報信号の書き換えを繰り返しても、結晶核生成層 5 0 3 の材料が記録層 5 0 4 に混入しにくい。特に、元素M1の中でもNd、Gd、Tbを用いるとさらに融点が高くなり、例えば、TeNdでは2025℃、BiGdでは2015℃、BiTbでは2000℃である。

例えば、SnTeで形成された結晶核生成層503に比べて、Biと 元素M1とからなる材料にて形成された結晶核生成層503は融点が高いため、記録時に結晶核生成層503の材料が記録層504へ混入することを防ぐことができる。このため、情報信号の書き換えを繰り返しても記録層504へ不純物が混入する可能性が低く、良好な繰り返し書き換え性能が得られる。

25 これに対して、SnTeで形成された結晶核生成層 5 0 3 は、SnTeの融点が低いため、記録時にSnTeの一部が記録層 5 0 4 へ混入す

る可能性が高い。そのため、情報信号の書き換えを繰り返していくと、 特に高線速度において、結晶化促進効果に差が生じ、ジッターが大きく なる(繰り返し書き換え性能が低下する。)。

結晶核生成層503は、成膜後、少なくとも一部が結晶化していることが好ましいが、後に初期化工程にて結晶化することもできる。さらに、結晶核生成層503の結晶構造は、記録層504の結晶構造と同じであるほうが、記録層504の結晶化を促進する効果が大きいため好ましい。

例えば、記録層 504を $GeTe-Sb_2Te_3$ ライン上の擬二元系組 10 成を用いる場合、記録層 504はNaC1型の結晶構造を有するので、 結晶核生成層 503を、Biと元素M1、Teと元素M1を1:1で含 むBi(M1)またはTe(M1)にて形成することが特に好ましい。 これらの化合物は、NaC1型の結晶構造を有するからである。

また、B i とT e と元素M 1 との組み合わせであるB i $_2$ T e (M 1 15)、B i T e $_2$ (M 1)、B i T e (M 1) $_2$ においても同様に融点が高いので、これらの材料からなる結晶核生成層 5 0 3 は、情報信号の書き換えを繰り返しても、結晶核生成層 5 0 3 の材料が溶解して記録層 5 0 4 の結晶化を促進させることができる。

また、結晶核生成層 5 0 3 にNを添加すると、結晶粒の大きさがより 20 均一化され、且つ小さくなる傾向にある。この場合、記録する際に、低 周波数領域の記録ノイズを低下させることができるので、結晶核生成層 5 0 3 にNを添加してもよい。

結晶核生成層 5 0 3 の膜厚が薄いと原子数が少ないため、結晶核生成層 5 0 3 を成膜後、結晶化しにくくなる。このため、結晶核生成層 5 0 3 の膜厚は 0 . 2 n m以上が好ましい。また、結晶核生成層 5 0 3 の膜厚が厚いと、記録層 5 0 4 の結晶化を促進する効果はより大きくなるが

、非晶質相の安定性を損なうこと、結晶核生成層503で光を吸収し記録層504に到達する光が減少すること等の問題が生じるため、結晶核生成層503の膜厚は3nm以下が好ましい。

次に、結晶核生成層 503 上に、記録層 504 を形成する。記録層 504 は、記録層 504 を構成する元素を含むスパッタリングターゲットを、例えばAr ガスもしくはAr -N $_2$ 混合ガス雰囲気中でスパッタリングすることによって形成することができる。

記録層 504 を形成する工程では、 $Ge_aSb_2Te_{a+3}$ (本実施の形態においては、a は、 $2 \le a \le 22$ を満たす。)のスパッタリングター 0 がットを用いると、安定性に優れた薄膜を成膜することができる。本実施の形態の記録層 0 4 は、レーザビーム 0 の照射によって結晶相と非晶質相との間で可逆的変化を起こし、所定のレーザ波長における結晶相と非晶質相の光学定数(屈折率、消衰係数)が変化する材料を用いることが好ましい。また、記録層 0 5 0 4 は、繰り返し書き換え性能に優れている材料を用いることが好ましい。さらに、結晶化速度が大きい材料を用いることが好ましい。

Ge-Sb-Teは、結晶相と非晶質相の光学定数が変化し、繰り返し書き換え性能も優れていて、結晶化速度が大きく優れた材料である。実用的には、GeaSb2Tea+3において、aが2より小さい場合、結20 晶相と非晶質相の屈折率差及び消衰係数差が小さくなる。したがって、aは2以上であることが好ましい。また、aが22より大きい場合、結晶化速度が小さくなるため結晶化しにくくなり、また、融点が高くなるために記録感度が劣化する。さらに、結晶相と非晶質相との間で体積変化が大きくなるため、繰り返し書き換え性能が劣化する。これらのことから、aは22以下であることが好ましい。

また、記録層504に含まれるGeの一部をSnで置換することによ

って、さらに結晶化速度を増加させることができる。この場合、(Ge-Sn) $_aSb_2Te_{a+3}$ と表記でき、a は、 $2 \le a \le 2$ 2 を満たすことが好ましい。この場合、記録層 5 0 4 に含まれるSn 原子の含有割合(原子%)が多いほど結晶化が促進されるが、同時に結晶化温度が低くなり

- 5 、非晶質相の安定性が低下する。また、Sn原子の含有割合が多いほど 、結晶相と非晶質相の光学定数の変化が小さくなる。これらのことから 、Sn原子の含有割合は、20原子%未満であることが好ましい。
- また、記録層 504に含まれるSb0一部をBiで置換することによっても、さらに結晶化速度を増加させることができる。この場合、Ge 10 $a(Sb-Bi)_2Te_{a+3}$ と表記でき、a は、 $2 \le a \le 22$ を満たすことが好ましい。この場合、記録層 504 に含まれるBi 原子の含有割合を多くすると、結晶相と非晶質相の光学定数の変化を小さくすることなく、結晶化速度を大きくできる。しかしながら、同時に、結晶化温度が低くなり非晶質相の安定性が低下するという現象も生じる。このことから、Bi 原子の含有割合は、10 原子%未満であることが好ましい。

記録層 504 に含まれるGeo 一部をSn に、Sbo 一部をBi で置換することによっても、さらに結晶化速度を増加させることができる。この場合、(Ge-Sn)。(Sb-Bi)。 $_2Te_{a+3}$ と表記でき、aは、 $2 \le a \le 22$ を満たすことが好ましい。また、記録層 504 にNを添加すると、繰り返し書き換え性能が向上するため、記録層 504 にNを添加してもよい。

記録層504の膜厚が薄すぎると結晶化しにくくなるので、記録層504の膜厚は6nm以上であることが好ましい。また、記録層504の膜厚が厚すぎると情報信号の繰り返し書き換え性能が劣化することから記録層104の膜厚は、12nm以下であることが好ましい。

次に、記録層504上に、第3誘電体層505を形成する。第3誘電

20

15

20

体層 5 0 5 は、第 3 誘電体層 5 0 3 を構成する元素を含むスパッタリングターゲットを、A r ガス雰囲気中でスパッタリングすることによって形成することができる。第 3 誘電体層 5 0 5 は、光学距離を調節して記録層 5 0 4 への光吸収効率を高める働き、記録前後の反射率差を大きくして信号振幅を大きくする働きを有する。さらに、記録層 5 0 4 の非晶質相と結晶相との間での光の位相差を調整する働きや、使用環境から記録層 5 0 4 を保護する働きも有する。また、第 3 誘電体層 5 0 5 の融点は、記録層 5 0 4 の融点よりも高いことが好ましい。

第3誘電体層505の材料としては、 HfO_2 もしくは ZrO_2 から選10 ばれる少なくともいずれか一つと、 SiO_2 と Cr_2O_3 とフッ化物とを含む酸化物-フッ化物系材料を用いることができる。

 $Z r O_2$ 及び $H f O_2$ は融点が2700 C以上の高融点材料であるため、これらの酸化物を第3誘電体層 505 に用いた場合、記録の際に第3誘電体層 505 が溶解して記録層 504 に混入する可能性が少なくなる。したがって、 ZrO_2 または HfO_2 を第3誘電体層 505 に用いると、優れた繰り返し書き換え性能が得られる。

SiO₂は非晶質材料で、透明性を高める作用及び誘電体材料の結晶 化を抑制する作用(すなわち、第3誘電体層に用いた場合は第3誘電体 層自体の結晶化を抑制する作用)を有し、さらに、記録層504の結晶 化を促進する効果を高めて書き換え性能を向上させる働きを行う。

さらに、フッ化物は、酸化物と混合することによって誘電体層の構造を複雑化し、誘電体層の熱伝導率を下げる役割を果たす。誘電体層の熱伝導率を低くすることにより、記録層 5 0 4 が急冷されやすくなるため、記録感度を高めることができる。希土類金属のフッ化物(CeF₃、

25 ErF_3 、 GdF_3 、 LaF_3 、 TbF_3 、 DyF_3 、 NdF_3 、 YF_3 、Y bF_3)は、水に不溶で優れた耐湿性を有する。特に、 LaF_3 は、融点

WO_2004/Q25640 PCT/JP2003/011680

が約1500 Cと最も高く、価格が安いので、誘電体層に混合するフッ化物材料として最も実用性がある。これら、 ZrO_2 及び HfO_2 から選ばれる少なくとも一つと、 SiO_2 と Cr_2O_3 とフッ化物とを混合した酸化物-フッ化物系材料を用いることにより、記録層504 に直接積層しても、良好な繰り返し書き換え性能と耐候性を有する第3 誘電体層505 が作製できる。

また、第3誘電体層 505に用いた酸化物 - フッ化物系材料は、(H fO_2) $_{A1}$ (S iO_2) $_{B1}$ (C r_2O_3) $_{C1}$ (フッ化物) $_{100-A1-B1-C1}$ 1(mo1%)または(ZrO_2) $_{A1}$ (S iO_2) $_{B1}$ (C r_2O_3) $_{C1}$ (フ no1%)と表記できる。この場合、A1、 no1%0)と表記できる。この場合、A1、 no1%10 no1%1)と表記できる。この場合、A1、 no1%10 no1%10

詳しくは、 $Z r O_2$ 及び $H f O_2$ から選ばれる少なくとも何れか一つの 濃度 (A 1) を 10 m o 1 %以上とすると良好な繰り返し書き換え性能 が得られ、50 m o 1 %以下とすると第 3 誘電体層 505 と記録層 505 との密着性を向上させることができる。

また、 SiO_2 の濃度(B1)を10mo1%以上とすると良好な繰20 り返し書き換え性能が損なわれ、<math>50mo1%以下とすると第3誘電体層505と記録層504との密着性を向上させることができる。 Cr_2O_3 の濃度(C1)を10mo1%以上とすると第3誘電体層505と記録層504との密着性を向上させることができ、50mo1%以上とすると良好な繰り返し書き換え性能が得られる。フッ化物の濃度(<math>100mo100年)の100mo100年)の第25 100mo100年)の第25 100mo10年)の第36 100mo10年)の第46 100mo10年)の第50 10

物-フッ化物系材料は、第1誘電体層501にも用いることができる。

次に、第3誘電体層505上に、光吸収補正層506を形成する。光吸収補正層506は、記録層504が結晶相である場合と非晶質相である場合との光吸収率比を調整し、書き換え時に記録マークの形が歪まないようにすること、さらに、記録層504が結晶相である場合と非晶質相である場合との間の反射率差を大きくして信号振幅を大きくすること等の目的で設けられる。光吸収補正層506は、屈折率が高く、適度に光を吸収する材料が好ましい。例えば、屈折率が3以上6以下で、消衰係数が1以上4以下であることが好ましい。

一般的には、結晶相である場合の記録層504の光吸収率(Ac)が、非晶質相である場合の記録層504の光吸収率(Aa)よりも大きくなる(Ac>Aa)ように調節する。例えば、Ge-Cr、Ge-M、Si-Cr、Si-MoまたはSi-W等の非晶質であるGe合金やSi合金、Te化物、あるいはTi、Zr、Nb、Ta、Cr、Mo、W
 SnTe、PbTe等の結晶性の金属、半金属及び半導体材料を用いることが好ましい。

次に、光吸収補正層506上に、反射層507を形成する。反射層507はスパッタリング法または蒸着法等で形成することができる。

反射層 5 0 7 は、光学的には記録層 5 0 4 に吸収される光量を増大さ 20 せ、また、記録層 5 0 4 で生じた熱を速やかに拡散させて非晶質化しや すくする機能を有し、さらには、情報記録媒体 5 を使用環境から保護する役割も兼ね備えている。

反射層 5 0 7 の材料としては、例えば、A 1、A u、A g、C u等の熱伝導率の高い単体金属材料、または、これらのうちの1 つまたは複数の元素を主成分として、耐湿性の向上あるいは熱伝導率の調整等のために1 つまたは複数の他の元素を添加したA 1 - C r、A 1 - T i、A g

WO-2004/Q25640 PCT/JP2003/011680

- Pd、Ag-Pd-Cu、Ag-Pd-Ti等の合金材料を用いることができる。これらの材料は、いずれも耐湿性に優れ、かつ急冷条件を満足する材料である。

以上のように基板51上に第1誘電体層501から反射層507まで 形成した後、反射層507上に接着層53を用いてダミー基板54を貼 り合わせる。接着層53には、耐熱性及び接着性の高い材料、例えば、 紫外線硬化樹脂等の接着樹脂を用いることができ、例えば、アクリル樹 脂を主成分とした材料またはエポキシ樹脂を主成分とした材料を用いる ことができる。これと同じ材質、または異なる材質の紫外線硬化樹脂等 の接着樹脂、両面テープ、誘電体膜等を用いることもできる。

なお、ダミー基板 5 4 の代わりに他の情報記録媒体を貼り合わせて、 両面構造の情報記録媒体を形成することもできる。

また、結晶核生成層は、記録層54と第3誘電体層505との間に配 置されても良い。この場合は、図15に示す情報記録媒体57のように 、情報層52が、レーザビーム入射側から順次積層された、第1誘電体 15 層501、第2誘電体層502、記録層504、結晶核生成層508、 第3誘電体層505、光吸収補正層506及び反射層507にて形成さ れる。また、結晶核生成層は、記録層504と第2誘電体層502及び 第3誘電体層505と間にそれぞれ配置されていてもよい。この場合は 、図16に示す情報記録媒体58のように、情報層52が、レーザビー 20 ム入射側から順次積層された、第1誘電体層501、第2誘電体層50 2、結晶核生成層503、記録層504、結晶核生成層508、第3誘 電体層505、光吸収補正層506及び反射層507にて形成される。 この構成の場合、記録層504の両面に結晶核生成層が設けられている ので、両側の結晶化生成層503、508によって記録層504の両面 25 から結晶化が促進され、より結晶化速度が大きくなる。なお、結晶核生

5

10

成層 5 0 8 は、結晶核生成層 5 0 3 と同様の系の材料を用いることができ、それらの形状及び機能についても結晶核生成層 1 0 3 と同様である。なお、結晶核生成層 5 0 3 と結晶核生成層 5 0 8 とは、同じ材料にて形成してもよく、互いに異なる材料(異なる組成)にて形成してもよい

また、第3誘電体層505と光吸収補正層506との間に第4誘電体層509を設けてもよい。この場合は、図17に示す情報記録媒体59のように、情報層52が、レーザビーム入射側から順次積層された、第1誘電体層501、第2誘電体層502、結晶核生成層503、記録層504、第3誘電体層505、第4誘電体層509、光吸収補正層506及び反射層507にて形成される。

第4誘電体層509は、第1誘電体層501と同様の機能を有する層であり、同様の系の材料が使用可能である。例えば、(ZnS)₈₀(SiOiO₂)₂₀(mol%)を用いることができる。(ZnS)₈₀(SiO²)₂₀(mol%)は、高屈折率を有し、成膜速度も速く、機械特性及び耐湿性も良好な優れた材料であるが、記録層504と接して設けると、Sの一部が記録層504に混入して信号品質の低下が起こる。しかしながら、第4誘電体層509と記録層504との間には第3誘電体層505が設けられているので、第4誘電体層509がSを含む場合であっても問題ない。なお、図17に示す情報記録媒体59は、結晶核生成層が記録層504と第2誘電体層503との間にのみ設けられた構成であるが、記録層504と第3誘電体層505との間にのみ設けられていてもよく、また、記録層504と第2誘電体層503及び第3誘電体層505との間にそれぞれ設けられていてもよい。

10

15

たレーザビーム10を照射することによって、記録層504に非晶質相と結晶相とを形成し、信号の記録を行う。具体的には、レーザビーム10を低パワーにして記録層504の非晶質相に照射し、徐冷することによって、照射部分の非晶質相を結晶化することができる。また、レーザビーム10を高パワーにして記録層504の結晶相に照射し、急冷することによって、照射部分の結晶相を非晶質相にすることができる。

このようにして信号の記録が行われた領域を、信号が劣化しない程度 のパワーのレーザビーム10を照射し、反射光の大きさによって信号の 再生を行う。このような記録再生方法によれば、信頼性よく情報信号の 記録を行うことができる。

(実施の形態7)

本発明の情報記録媒体のさらに別の実施の形態を説明する。図18は、本実施の形態の情報記録媒体6の一部断面と、電気的情報記録再生装置の概略構成とを示す説明図である。本実施の形態の情報記録媒体6は、電流の印加によって情報の記録再生が可能な電気的情報記録媒体である。

本実施の形態の情報記録媒体6は、基板61上に、下部電極62、記録層63、結晶核生成層64及び上部電極65をこの順に積層した構成である。

20 基板 6 1 の材料としては、ポリカーボネート等の樹脂基板、ガラス基板、A 1 $_2$ O $_3$ 等のセラミック基板、S i 基板、またはC u 等の各種金属基板等を用いることができる。ここでは、基板 6 1 としてS i 基板を用いた場合について説明する。

下部電極62及び上部電極65は、記録層62及び結晶核生成層64 25 に電流を印加するために設けられた電極である。

記録層63は、電流の印加により発生するジュール熱によって結晶相

と非晶質相との間で可逆的な相変化を起こす材料であり、結晶相と非晶質相との間で抵抗率が変化する現象を情報の記録に利用する。記録層 6 3 の材料は、実施の形態1で説明した記録層104と同様の材料を用いることができる。

5 結晶核生成層 6 4 は、結晶核を生成することによって、記録層 6 3 の 結晶化能を高め、情報の高速な記録を可能にするための層である。結晶 核生成層 6 3 の材料は、実施の形態 1 で説明した結晶核生成層 1 0 3 と 同様の材料を用いることができる。

記録層63及び結晶核生成層64は、それぞれ実施の形態1で説明し 10 た記録層104及び結晶核生成層103の形成方法と同様の方法で形成 できる。

また、下部電極62及び上部電極65には、A1、Au、Ag、Cu、Pt等の単体金属材料、あるいはこれらのうちの1つまたは複数の元素を主成分とし、耐湿性の向上あるいは熱伝導率の調整等のために適宜1つまたは複数の他の元素を添加した合金材料を用いることができる。下部電極62及び上部電極65は、Arガス雰囲気中で材料となる金属母材または合金母材をスパッタリングターゲットとし、スパッタリングによって形成できる。

次に、情報記録媒体6に情報を記録再生する電気的情報記録再生装置92について説明する。本実施の形態における電気的情報記録再生装置92は、印加部87を介して、情報記録媒体6と電気的に接続される。この電気的情報記録再生装置92により、情報記録媒体6の下部電極62と上部電極65との間に配置された記録層63及び結晶核生成層64に電流パルスを印加するために、パルス電源90がスイッチ89を介して接続される。また、記録層63の相変化による抵抗値の変化を検出するために、下部電極62と上部電極65の間にスイッチ91を介して抵

15

抗測定器 8 8 が接続される。非晶質相(高抵抗状態)にある記録層 6 3 を結晶相(低抵抗状態)に変化させるためには、スイッチ 8 9 を閉じて(スイッチ 9 1 は開く)電極間に電流パルスを印加し、電流パルスが印加される部分の温度が、材料の結晶化温度より高く、且つ融点より低い温度で、結晶化時間の間保持されるようにする。結晶相から再度非晶質相に戻す場合には、結晶化時よりも相対的に高い電流パルスをより短い時間で印加し、記録層を融点より高い温度にして溶融した後、急激に冷却する。

ここで、記録層 63 が非晶質相の場合の抵抗値をra、記録層 63 が 10 結晶相での抵抗値 rc とすると、ra>rc となる。したがって、電極間の抵抗値を抵抗測定器 88 で測定することにより、2 つの異なる状態、すなわち 1 値の情報を検出できる。

この情報記録媒体6をマトリクス状に多数配置することによって、図19に示すような大容量の電気的情報記録媒体7を構成することができる。電気的情報記録媒体7の各メモリセル71には、微小領域に情報記録媒体6と同様の構成が形成されている。各々のメモリセル71への情報の記録再生は、ワード線72及びビット線73をそれぞれ一つ指定することによって行う。

図20は、電気的情報記録媒体7を用いた、情報記録システムの一構 20 成例を示したものである。記憶装置93は、電気的情報記録媒体7と、アドレス指定回路94とを含んでいる。アドレス指定回路94により、電気的情報記録媒体7のワード線72及びビット線73がそれぞれ指定され、各々のメモリセル71への情報の記録再生を行うことができる。また、記憶装置93を、少なくともパルス電源96と抵抗測定器97と 25 を含む外部回路95と電気的に接続することにより、電気的情報記録媒体7への情報の記録再生を行うことができる。

以上のように、本実施の形態の電気的情報記録媒体においても、記録層に接して結晶核生成層が設けられているので、記録層の結晶化速度を向上させることができる。

[実施例]

10

5 以下に、実施例を用いて本発明をさらに詳細に説明する。

(実施例1)

実施例1では、図1の情報記録媒体1を作製し、結晶核生成層103の材料と、情報記録媒体1の消去率、記録書き換え回数(繰り返し書き換え性能)、記録保存性、及び書き換え保存性との関係を調べた。具体的には、結晶核生成層103の材料が異なる情報記録媒体1のサンプルを作製した。作製したサンプルそれぞれについて、情報記録媒体1の消去率、記録書き換え回数、記録保存性及び書き換え保存性を測定した。

サンプルは以下のようにして製造した。まず、基板11として、レーザビーム10を導くための案内溝(深さ20nm、トラックピッチ0.

- 15 3 2 μm) が形成されたポリカーボネート基板(直径120mm、厚さ 1100μm) を用意した。そして、そのポリカーボネート基板上に、 反射層108としてAg-Pd-Cu層(厚さ:80nm)、界面層107としてAl層(厚さ:10nm)、第4誘電体層106としてZn S-SiO₂層(厚さ:約20nm、ZnS:80mol%、SiO₂:
- 20 20 mol%)、第3誘電体層105として $SiO_2-Cr_2O_3-ZrO_2$ 層(厚さ:5nm、 SiO_2 :25mol%、 Cr_2O_3 :50mol%、 ZrO_2 :25mol%)、記録層104として $Ge_{22}Sb_2Te_{25}$ 層(厚さ:10nm)、結晶核生成層103(厚さ:1nm)、第2誘電体層102として $SiO_2-Cr_2O_3-ZrO_2$ 層(厚さ:5nm、S
- 25 i O_2 : 25mol%、 Cr_2O_3 : 50mol%、 ZrO_2 : 25mol%)、第1誘電体層10lとして $ZnS-SiO_2$ 層(厚さ:約60nm

、 $SiO_2:20mol%$)を順次スパッタリング法によって積層した。最後に、紫外線硬化性樹脂を第1誘電体層101上に塗布し、ポリカーボネートシート(直径120mm、厚さ $90\mu m$)を第1誘電体層101に密着し回転させることによって均一な樹脂層を形成したのち、紫外線を照射して樹脂を硬化させることによって、透明層13を形成した。その後、記録層104をレーザビームで結晶化させる初期化工程を行った。以上のようにして、結晶核生成層103の材料が異なる複数のサンプルを製造した。

ここで、第4誘電体層106及び第1誘電体層101の膜厚は、マトリクス法に基づく計算により、厳密に決定されたものである。具体的には、これらの厚さは、波長405nmにおいて、記録層104が結晶相の時の情報記録媒体1の基板の鏡面部における反射率 R_c (%)ができるだけ15 \leq R_c \leq 25の範囲内に収まるように、また、記録層104が非晶質相である場合の情報記録媒体1における基板の鏡面部における反射率 R_a (%)ができるだけ0.5 \leq R_a \leq 5の範囲内に収まるように決定した。

このようにして得られた情報記録媒体のサンプルについて、最初に図 13に示すの記録再生装置81を用いて消去率を測定した。このとき、 レーザビーム10の波長は405nm、対物レンズ82の開口数(NA 20)は0.85、測定時のサンプルの線速度は5.3m/sまたは10. 6m/s、最短マーク長は0.149μmとした。また、情報はグルー ブに記録した。

消去率は、レーザビーム10を P_p と P_b の間でパワー変調し、(1-7)変調方式でマーク長0.149 μ m(2 T)と0.671 μ m(9 T)の信号を同じグルーブに連続交互記録し、2 T 信号を9 T 信号で書き換えた場合の2 T 信号振幅の減衰率をスペクトラムアナライザーで測

10

15

20

定した。なお、消去率は負の値となるが、絶対値が大きいほど好ましく 、具体的には-30dB以下となるのが好ましい。

記録書き換え回数は、レーザビーム10を P_p と P_b の間でパワー変調し、(1-7)変調方式でマーク長0.149 μ m(2T)から0.596 μ m(8T)までのランダム信号を同じグルーブに連続記録し、各記録書き換え回数における前端ジッター(記録マーク前端部におけるジッター)、後端ジッター(記録マーク後端部におけるジッター)をタイムインターバルアナライザーで測定することによって評価した。1回目の前端ジッターと後端ジッターとの平均ジッター値に対し3%増加する書き換え回数を、記録書き換え回数の上限値とした。なお、 P_p と P_b は、平均ジッター値が最も小さくなるように決定した。

記録保存性及び書き換え保存性は、以下のようにして測定した。まず、レーザビーム10をこの P_p と P_b の間でパワー変調し、(1-7)変調方式でマーク長 $0.149\mu m$ (2T)から $0.596\mu m$ (8T)

- までのランダム信号を同じグルーブに連続記録し、書き換え回数10回における前端ジッター及び後端ジッターをタイムインターバルアナライザーで測定した。その後、信号を記録したサンプルを温度90℃、相対湿度20%の条件で恒温恒湿槽に100時間放置し、記録した信号を100時間放置した後の前端ジッター及び後端ジッターを測定し、放置前のジッター値と比較することによって、記録保存性を評価した。また、記録した信号を100時間放置した後に1回書き換えた後の前端ジッター及び後端ジッターを測定し、放置前のジッター値と比較することによって、書き換え保存性を評価した。
- 情報記録媒体1の結晶核生成層103の材料と、情報記録媒体1の消25 去率、記録書き換え回数、記録保存性、及び書き換え保存性の評価結果とについて、サンプルの線速度が5.3m/sの場合の結果を表1に、

サンプルの線速度が10.6 m/s の場合の結果を表2に示す。なお、記録保存性及び書き換え保存性については、放置前のジッター値と放置後のジッター値の差が2%未満の場合は〇、2%以上の場合は×と評価した。

5 (表1)

(線速度5.3m/s)

サンプル No.	結晶核生成層 材料	消去率 (dB)	繰り返し書き換え 性能(回)	記録 保存性	書き換え 保存性
1-a	BiDy	-35	10000	0	0
1-b	TeDy	-35	10000	0	0
1-c	BiTeDy ₂	-35	10000	0	0
1-d	Bi ₂ TeDy	-35	10000	0	0
1—е	BiTe ₂ Dy	-35	10000	0	0
1 — f	Bi₂Te₃	-35	1000	0	0
1-g	無し	-30	10000	0	0

15 (表2)

10

20

(線速度10.6m/s)

サンプル No.	結晶核生成層 材料	消去率 (dB)	繰り返し書き換え 性能(回)	記録 保存性	書き換え 保存性
1-a	BiDy	-30	10000	0	0
1-b	TeDy	-30	10000	0	0
1-c	BiTeDy ₂	-30	10000	0	0
1-d	Bi ₂ TeDy	-30	10000	0	0
1-e	BiTe ₂ Dy	-30	10000	0	0
1-f	Bi ₂ Te ₃	-30	1000	0	0
1-g	無し	-20	1000	0	×

25 この結果、結晶核生成層 103 が Dy を含まず、従来の Bi-Te に て形成されたサンプル 1-f の場合には、記録書き換え回数が 100 回と不十分であることがわかった。また、結晶核生成層103が設けられていないサンプル1-gの場合には、線速度10.6 m/sの高転送レートでの消去率、及び書き換え保存性が不十分であり、さらに、記録書き換え回数も1000回と不十分であることがわかった。結晶核生成5 層103にDyを含むサンプル1-a、1-b、1-c、1-d及び1-eについては、線速度5.3 m/sの低転送レートの場合でも、線速度10.6 m/sの高転送レートの場合でも、共に消去率、繰り返し書き換え性能、記録保存性及び書き換え保存性が良好であることがわかった。

10 なお、結晶核生成層103として、BiまたはTeの少なくとも一つと、Dy以外のM1を少なくとも一つ含む材料、及びBi(M1)またはTe(M1)の少なくとも一つを含む材料、及びBiTe(M1)。、Bi₂Te(M1)、またはBiTe。(M1)の少なくとも一つを含む材料を用いた場合でも同様の実験を行ったところ、線速度5.3m/sの低転送レートの場合でも、線速度10.6m/sの高転送レートの場合でも、共に消去率、繰り返し書き換え性能、記録保存性、及び書き換え保存性が良好であることがわかった。

また、図2の情報記録媒体14のように、結晶核生成層103が記録 層104と第3誘電体層105と界面に配置されている場合や、図3の 情報記録媒体15のように、記録層104の両面に結晶核生成層103, 109が配置されている場合についても同様にサンプルを作製し、各サ ンプルについて同様に消去率、記録書き換え回数、記録保存性、及び書 き換え保存性を測定したところ、同様の結果が得られた。

(実施例2)

25 実施例2では、図7の情報記録媒体3において、結晶核生成層203 及び結晶核生成層303の材料と、情報記録媒体3の第1の情報層32

WO₀2004/025640 PCT/JP2003/011680

 $_1$ 及び第2の情報層32 $_2$ それぞれの消去率、記録書き換え回数、記録保存性、及び書き換え保存性との関係を調べた。具体的には、結晶核生成層203、及び結晶核生成層303の材料が異なる情報記録媒体3のサンプルを作製した。作製したサンプルについて、情報記録媒体3の第1の情報層32 $_1$ 及び第2の情報層32 $_2$ それぞれの消去率、記録書き換え回数、記録保存性及び書き換え保存性を測定した。

サンプルは以下のようにして製造した。まず、基板31として、レー ザビーム10を導くための案内溝(深さ20nm、トラックピッチ0. 3 2 μm) が形成されたポリカーボネート基板(直径120 mm、厚さ 1100μm)を用意した。そして、そのポリカーボネート基板上に、 10 反射層308としてAg-Pd-Cu層(厚さ:80nm)、界面層3 07としてA1層(厚さ:10nm)、第4誘電体層306としてZn S-SiO,層(厚さ:22nm、ZnS:80mo1%、SiO,:2 0 m o 1 %)、第3誘電体層305としてSiO,-Cr,O,-ZrO, 層(厚さ:5nm、SiO₂:25mol%、Cr₂O₃:50mol% 15 、 ZrO₂: 25mo1%)、記録層304としてGe₂₂Sb₂Te₂₅ 層(厚さ:10nm)、結晶核生成層303(厚さ:1nm)、第2誘 電体層302としてSiO,-Cr,O,-ZrO,層(厚さ:5nm、S i O₂: 25mol%, Cr₂O₃: 50mol%, ZrO₂: 25mol%)、第1誘電体層302としてZnS-SiO,層(厚さ:60nm、 20 ZnS:80mo1%、SiO2:20mo1%) を順次スパッタリン グ法によって積層した。ここで、第4誘電体層306及び第1誘電体層 301の膜厚は、マトリクス法に基づく計算により、波長405nmに おいて、記録層304が結晶相のときの反射光量が記録層304が非晶 質相のときの反射光量よりも大きく、且つ記録層304が結晶相のとき 25 と非晶質相のときとで反射光量の変化がより大きく、且つ記録層304

5

15

20

の光吸収効率が大きくなるように、厳密に決定したものである。

次に、第1誘電体層301上に紫外線硬化性樹脂を塗布し、その上に 案内溝(深さ20nm、トラックピッチ0.32 μ m)を形成した転写 用基板を載置して密着し、回転させることによって均一な樹脂層を形成 した。この樹脂を硬化させた後に転写用基板を剥がした。この工程によ って、レーザビーム10を導く案内溝が第1の情報層32,側に形成さ れた光学分離層34を形成した。

その後、光学分離層34の上に、透過率調整層207としてTiO2 層(厚さ:20nm)、反射層206としてAg-Pd-Cu層(厚さ:

- 10nm)、第3誘電体層205としてSiO2-Cr2O3-ZrO2 10 層(厚さ:10nm、SiO2:20mol%、Cr2O3:30mol% 、ZrO2:50mo1%)、記録層204としてGe22Sb2Te25 層(厚さ:6 nm)、結晶核生成層203(厚さ:1 nm)、第2誘電 体層 2 0 2 としてS i O $_2$ - C r $_2$ O $_3$ - Z r O $_2$ 層(厚さ:5 n m、S i O_2 : 35 m o 1 %, Cr_2O_3 : 30 m o 1 %, ZrO_2 : 35 m o 1 %
-)、第1誘電体層201として $ZnS-SiO_2$ 層(厚さ:40nm、 ZnS:80mo1%、SiO2:20mo1%) を順次スパッタリン グ法によって積層した。その後、紫外線硬化性樹脂を第1誘電体層20 1上に塗布し、ポリカーボネートシート(直径120mm、厚さ90 μ m)を第1誘電体層201に密着し回転させることによって均一な樹脂・
 - 層を形成したのち、紫外線を照射して樹脂を硬化させ、透明層23を形 成した。最後に、第2の情報層322の記録層304の全面を結晶化さ せる初期化工程と、第1の情報層321の記録層204の全面を結晶化 させる初期化工程とを、この順に行った。以上のようにして、結晶核生
- 成層203、303材料が異なる複数のサンプルを製造した。 25

このようにして得られたサンプルについて、実施例1と同様の方法に

よって、情報記録媒体3の第1の情報層32₁及び第2の情報層32₂それぞれの消去率、記録書き換え回数、記録保存性、及び書き換え保存性を測定した。線速度が5.3m/sの場合の測定結果を表3に示し、線速度が10.6m/sの場合の測定結果を表4に示す。なお、記録保存性及び書き換え保存性については、放置前のジッター値と放置後のジッター値の差が2%未満の場合は〇、2%以上の場合は×と評価した。(表3)

(線速度5.3m/s)

10

5

サンプル No.	情報層No.	結晶核生成 層材料	消去率 (dB)	繰り返し書き 換え性能(回)	記録 保存性	書き換え 保存性
2-a	第1情報層	BiDy	-32	10000	0	0
	第2情報層	BiDy	-35	10000	0	0
2-b	第1情報層	TeDy	-32	10000	0	0
	第2情報層	TeDy	-35	10000	0	0
2-c	第1情報層	BiTeDy ₂	-32	10000	0	0
	第2情報層	BiTeDy ₂	-35	10000	0	0
2-d	第1情報層	Bi ₂ TeDy	-32	10000	0	0
	第2情報層	Bi ₂ TeDy	-35	10000	0	0
2-e	第1情報層	BiTe ₂ Dy	-32	10000	0	0
	第2情報層	BiTe ₂ Dy	-35	10000	0	0
2-f	第1情報層	Bi ₂ Te ₃	-32	1000	0	0
	第2情報層	Bi ₂ Te ₃	-35	1000	. 0	0
2-g	第1情報層	無し	-27	10000	0	0
	第2情報層	無し	-30	10000	0	0

20

15

(表4)

(線速度10.6m/s)

サンプル No.	情報層No.	結晶核生成 層材料	消去率 (dB)	繰り返し書き 換え性能(回)	記録 保存性	書き換え 保存性
2-a	第1情報層	BiDy	-27	10000	0	0
	第2情報層	BiDy	-30	10000	0	0
2-b	第1情報層	TeDy	-27	10000	0	0
	第2情報層	TeDy	<u>∸</u> 30	10000	0	0
2-c	第1情報層	BiTeDy ₂	-27	10000	0	0
	第2情報層	BiTeDy ₂	-30	10000	0	0
2-d	第1情報層	Bi ₂ TeDy	-27	10000	0	0
	第2情報層	Bi ₂ TeDy	-30	10000	0	0
2-е	第1情報層	BiTe ₂ Dy	-27	10000	0	0
	第2情報層	BiTe₂Dy	-30	10000	0	0
2-f	第1情報層	.Bi ₂ Te ₃	-27	1000	. 0	0
	第2情報層	Bi ₂ Te ₃	-30	1000	0	.0
2-g	第1情報層	無し	-17	10000	0	×
	第2情報層	無し	-20	10000	0	×

10

5

2の結果、結晶核生成層 2 0 3 及び結晶核生成層 3 0 3 が D y を含まないサンプル 2 - f の場合には、繰り返し書き換え性能が 1 0 0 0 回と不十分であることがわかった。また、第 1 の情報層 3 2 1 及び第 2 の情報層 3 2 2 に共に結晶核生成層を設けなかったサンプル 2 - g の場合には、線速度 1 0 . 6 m/s の高転送レートでの消去率及び書き換え保存性が不十分であることがわかった。結晶核生成層 2 0 3 及び結晶核生成層 3 0 3 の両方に D y が含まれるサンプル 2 - a、2 - b、2 - c、2 - d 及び 2 - e については、線速度 5 . 3 m/s の低転送レートの場合でも、線速度 1 0 . 6 m/s の高転送レートの場合でも、共に消去率、繰り返し書き換え性能、記録保存性及び書き換え保存性が良好であることがわかった。

なお、結晶核生成層203,303として、BiまたはTeの少なく

WO-2004/025640 PCT/JP2003/011680

とも一つとDy以外のM1とを少なくとも一つとを含む材料、Bi(M1)及VT e(M1)の少なくとも一つを含む材料、または、Bi T e(M1) $_2$ 、Bi $_2$ T e(M1)及VB i T e $_2$ (M1)の少なくとも一つを含む材料を用いた場合でも同様の実験を行ったところ、線速度 5

5 3 m/s の低転送レートの場合でも、線速度10.6 m/s の高転送レートの場合でも、共に消去率、繰り返し書き換え性能、記録保存性及び書き換え保存性が良好であることがわかった。

また、図8の情報記録媒35のように、結晶核生成層208が記録層204と第3誘電体層205との界面に配置され、結晶核生成層309が記録層304と第3誘電体層305との間に配されている場合や、図9の情報記録媒体36のように、記録層204の両面に結晶核生成層203,208が配置され、記録層304の両面に結晶核生成層303,309が配置されている場合についても同様にサンプルを作製し、各サンプルについて同様に消去率、記録書き換え回数、記録保存性、及び書き換え保存性を測定したところ、同様の結果が得られた。

(実施例3)

実施例3では、図10の情報記録媒体4において、第1の情報層42 1のみが形成されたサンプルを作製し、結晶核生成層203の材料と、 情報記録媒体4の第1の情報層42₁の消去率、記録書き換え回数、記 20 録保存性、及び書き換え保存性との関係を調べた。具体的には、結晶核 生成層203材料が異なるサンプルを作製し、各サンプルについて、情 報記録媒体4の第1の情報層42₁それぞれの消去率、記録書き換え回 数、記録保存性及び書き換え保存性を測定した。

サンプルは以下のようにして製造した。まず、基板 4 1 として、レー 25 ザビーム 1 0 を導くための案内溝(深さ 4 0 n m、トラックピッチ 0 . 3 4 4 μ m)が形成されたポリカーボネート基板(直径 1 2 0 m m、厚

10

さ600μm) を用意した。そして、そのポリカーボネート基板上に、 第 1 誘電体層 2 0 1 として Z n S - S i O $_2$ 層(厚さ: 4 0 n m、 Z nS:80mo1%、SiO₂:20mo1%)、第2誘電体層202と して $SiO_2-Cr_2O_3-ZrO_2$ 層(厚さ:5nm、 $SiO_2:35m$ o 1 %、Cr₂O₃: 30 mo 1 %、ZrO₂: 35 mo 1 %)、結晶核 生成層203(厚さ:1nm)、記録層204としてGe22Sb2Te2 $_5$ 層(厚さ:6nm)、第3誘電体層 205としてSi O_2 -Cr $_2$ O $_3$ - Z r O_2 層(厚さ:1 0 n m、S i O_2 :2 0 m o 1 %、C r $_2$ O_3 :30 m o 1 %、ZrO2:50 m o 1%)、反射層206としてAg-P d-Cu層(厚さ:10nm)、透過率調整層 207 として TiO_2 層 10 (厚さ:20nm)を順次スパッタリング法によって積層した。その後 、紫外線硬化性樹脂を透過率調整層207上に塗布し、ダミー基板45 (直径120mm、厚さ600μm) を透過率調整層207に密着させ 、スピンコートによって均一な樹脂層を形成したのち、この樹脂層に紫 外線を照射して硬化させ、接着層44とした。このように、接着層44 15 を介して透過率調整層207とダミー基板45を接着させた。最後に、 記録層204の全面を結晶化させる初期化工程を行った。以上のように して、結晶核生成層203の材料が異なる複数のサンプルを製造した。 なお、本実施例においては、結晶核生成層203の材料として実施例2 の場合と同様のものを用い、各サンプルを作製した。 20

このようにして得られたサンプルについて、実施例1と同様の方法によって、第1の情報層 42_1 の消去率、記録書き換え回数、記録保存性及び書き換え保存性を測定した。

このとき、レーザビーム 10 の波長は 405 n m、対物レンズ 82 (図 13 参照。)の開口数(NA)は 0.65、測定時のサンプルの線速度は 8.6 m/s または 17.2 m/s、最短マーク長は 0.294 μ m

WQ_2004/025640 PCT/JP2003/011680

とした。また、情報はグルーブに記録した。

この結果、実施例2と同様、結晶核生成層203がBi及びTeより選ばれる少なくとも一つの元素とM1とを含む場合、消去率、記録書き換え回数、記録保存性及び書き換え保存性が良好な情報記録媒体が得られることが確認できた。

また、図11の情報記録媒46のように、結晶核生成層208が記録層204と第3誘電体層205と界面に配置されている場合や、図12の情報記録媒体47のように、記録層204の両面に結晶核生成層203,208が配置されている場合についても同様にサンプルを作製し、

10 各サンプルについて同様に消去率、記録書き換え回数、記録保存性、及 び書き換え保存性を測定したところ、同様の結果が得られた。

(実施例4)

5

15

20

実施例 $1\sim3$ の情報記録媒体の記録層104, 204, 304を、組成式 $Ge_aSb_bTe_{3+a}$ 、 $Ge_aBi_bTe_{3+a}$ で表される材料、または $Ge_aSb_bTe_{3+a}$ のSbの一部をBiで置換した $Ge_a(Sb-Bi)$) $_bTe_{3+a}$ で表される材料で形成した場合について、消去率、記録書き換え回数、記録保存性及び書き換え保存性を同様に測定した。これらの場合についても、実施例 $1\sim3$ の場合と同様の結果が得られた。さらに、 $2\leq a$ の場合は、記録層の光学変化が大きくでき、信号振幅の大きな情報記録媒体を作製できた。また、 $a\leq 5$ 0の場合は、記録層の融点が高くなりすぎず、良好な記録感度が得られた。また、 $2\leq b\leq 4$ の場合は、より良好な記録書き換え性能が得られた。

(実施例5)

実施例 $1\sim3$ の情報記録媒体の記録層104, 204, 304を、組 25 成式(Ge-(M3)) $_aSb_bTe_{3+a}$ 、(Ge-(M3)) $_aBi_b$ Te_{3+a} で表される材料、または(Ge-(M3)) $_aSb_bTe_{3+a}$ の

Sbの一部をBiで置換した(Ge-(M3))。(Sb-Bi)。Te 3+aで表される材料で形成した場合について、消去率、記録書き換え回数、記録保存性及び書き換え保存性を同様に測定した。これらの場合についても、実施例 $1\sim3$ の場合と同様の結果が得られた。なお、M3 としては、Sn 及びP bの少なくともいずれか一つを用いた。さらに、 $2\leq a$ の場合は、記録層の光学変化が大きくでき、信号振幅の大きな情報記録媒体を作製できた。また、 $a\leq 5$ のの場合は、記録層の融点が高くなりすぎず、良好な記録感度が得られた。また、 $2\leq b\leq 4$ の場合は、より良好な記録書き換え性能が得られた。

10 (実施例6)

5

実施例1~3の情報記録媒体の記録層104,204,304を、組 成式 (GeaSbbTe3+a) 100-c (M4) c、 (GeaBibTe3+a)_{100-c}(M4)_cで表される材料、または(Ge_gSb_bTe_{3+g})₁₀ o-c (M4) cのSbの一部をBiで置換した(Gea(Sb-Bi) h Te_{3+4}) 100-c (M4) cで表される材料で形成した場合について、 15 消去率、記録書き換え回数、記録保存性及び書き換え保存性を同様に測 定した。これらの場合についても、実施例1~3と同様の結果が得られ た。なお、M4としては、Si、Ti、V、Cr、Mn、Fe、Co、 Ni, Cu, Se, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In 、Sn、Ta、W、Os、Ir、Pt及びAuから選ばれる少なくとも 20 いずれか一つの元素を用いた。さらに、2≤aの場合は、記録層の光学 変化が大きくでき、信号振幅の大きな情報記録媒体を作製できた。また 、 a ≤ 5 0 の場合は、記録層の融点が高くなりすぎず、良好な記録感度 が得られた。また、 $2 \le b \le 4$ の場合及び $0 < c \le 20$ の場合は、より 良好な記録書き換え性能が得られた。 25

(実施例7)

WQ. 2004/\$\tilde{D}25640" PCT/JP2003/011680

実施例 $1\sim3$ の情報記録媒体の記録層104,204,304を、組成式(Sb $_d$ Te $_{100-d}$) $_{100-e}$ (M5) $_e$ で表される材料を用いて形成した場合について、消去率、記録書き換え回数、記録保存性及び書き換え保存性を同様に測定した。これらの場合についても、実施例 $1\sim3$ と同様の結果が得られた。なお、M5としては、Ge、Ag、In、Sn、Se、Bi、Au B0 の場合は、記録層の結晶化能が高く、消去率が向上した。また、 $0\leq 0$ 0 の場合は、結晶化能が高くなりすぎないため、十分な記録保存性が得られた。また、0< 00 の場合は、

10 、良好な記録書き換え性能が得られた。

(実施例8)

5

15

20

25

実施例1~3の情報記録媒体の結晶核生成層103,203,303 を、膜厚を変化させて形成した場合について、消去率、記録書き換え回数、記録保存性及び書き換え保存性を同様に測定した。これらの場合についても実施例1~3と同様の結果が得られたが、結晶核生成層の膜厚を0.3nm以上とすることにより、記録層の結晶化促進効果が十分に得られ、線速度が高速の場合であっても良好な書き換え保存性が得られた。また、結晶核生成層の膜厚を3nm以下とすることにより、記録層の結晶化能が高くなりすぎることを防ぐことができ、線速度が低速の場合であっても良好な記録保存性が得られた。

(実施例9)

実施例1及び2の情報記録媒体を、記録層104,304の膜厚を変化させて形成した場合について、消去率、記録書き換え回数、記録保存性及び書き換え保存性を、実施例1の場合と同様に測定した。これらの場合についても実施例1と同様の結果が得られたが、記録層104,304の結晶化能が向04の膜厚を6nm以上とすると記録層104,304の結晶化能が向

上してより良好な消去率が得られた。また、膜厚を14nm以下とすると、非晶質化が容易となるためより良好な記録感度が得られた。また、実施例2の情報記録媒体の第1の情報層 32_1 の記録層204についても同様に膜厚を変化させたところ、記録層204の膜厚を3nm以上とすると結晶化能が向上してより良好な消去率が得られ、9nm以下とすると第1の情報層 32_1 の透過率が大きく低下せず、第2の情報層 32_2 についても十分な記録感度が得られた。

(実施例10)

実施例2の情報記録媒体の透過率調整層207を、 TiO_2 、 ZrO_2 ZrO_3 、 ZrO_3 ZrO_3 Z

(実施例11)

実施例 $1\sim10$ の情報記録媒体の基板11, 21, 31, 41に直径50.8mm、厚さ800 μ mのポリカーボネート基板を用いた場合に 20 ついて、消去率、記録書き換え回数、記録保存性及び書き換え保存性を同様に測定した。これらの場合についても実施例 $1\sim10$ と同様の結果が得られた。

(実施例12)

実施例12では、図18の情報記録媒体6を製造し、その電流の印加 25 による相変化を確認した。

基板61として、表面を窒化処理したSi基板を準備し、その上に下

WO-2004/025640 PCT/JP2003/011680

記録層63が非晶質相で高抵抗状態のとき、下部電極62と上部電極65の間に、振幅2mA、パルス幅80nsの電流パルスを印加したところ、記録層63が非晶質相から結晶相に転移した。また、記録層63が結晶相で低抵抗状態のき、下部電極62と上部電極65の間に、振幅10mA、パルス幅50nsの電流パルスを印加したところ、記録層63が結晶相から非晶質相に転移した。なお、結晶核生成層64を形成しないサンプルも同時に作製して同様の実験を行ったところ、100ns以上のパルス幅の電流パルスを印加しなければ記録層63が非晶質相から結晶相に転移しなかった。

以上のことから、電気的手段によって相変化を起こす情報記録媒体に おいても、結晶核生成層64が記録層63の結晶化速度の向上に寄与し ていることがわかった。

(実施例13)

25 実施例 1 3 では、図 1 4 の情報記録媒体 5 について、B i と元素M 1 とをさまざまに組み合わせて結晶核生成層 5 を作製した複数のサンプル

5

10

15

を用意した。基板 5 1 としては、直径 1 2 cm、厚さ 0 . 6 mmのポリカーボネート樹脂からなる基板を用いた。基板 5 1 の一方の表面には、トラックピッチ 0 . 6 1 5 μ m、グルーブ深さが 5 0 n mのスパイラル状の溝を形成した。基板 5 1 の他方の表面は、平らな面とした。

- 基板51の溝(ランド部55及びグルーブ部56)が形成された表面上に、第1誘電体層501を厚さ130nm、第2誘電体層502を厚さ2nm、結晶核生成層503を厚さ1nm、記録層504を厚さ8nm、第3誘電体層505を厚さ55nm、光吸収補正層506を厚さ40nm、反射層507を厚さ80nmと、この順に形成した。
- 基板 5 1上に形成した情報層 5 2を構成する各層は、具体的には、第 1 誘電体層 5 0 1 は、(Z n S) $_{80}$ (S i O_2) $_{20}$ (m o 1 %)のスパッタリングターゲットを用いて形成した。第 2 誘電体層 5 0 2 は、(Z r O_2) $_{25}$ (S i O_2) $_{25}$ (C r $_2$ O_3) $_{50}$ (m o 1 %)のターゲットを用いて形成した。
- 15 結晶核生成層 5 0 3 は、BiLa、BiPr、BiGd、BiTb、BiDvのスパッタリングターゲットを用いて形成した。

記録層 504は、 $Ge_8Sb_2Te_{11}$ のスパッタリングターゲットを用いて形成した。第 3 誘電体層 505は、(ZrO_2) $_{28.6}$ (SiO_2) $_2$ 8.6(Cr_2O_3) $_{21.4}$ (LaF_3) $_{21.4}$ (mo1%)のスパッタリングターゲットを用いて形成した。光吸収補正層 506は、 $Ge_{80}Cr_2$ 0のスパッタリングターゲットを用いて形成した。反射層 507は、 $Ag_{98}Pd_1Cu_1$ のスパッタリングターゲットを用いて形成した。

このようにして形成された多層膜の表面上に、スピンコート法によって紫外線硬化樹脂からなる接着層 5 3 を塗布し、紫外線を照射することによってダミー基板 5 4 と貼り合せた。さらに、形成時の記録層 5 0 4 は非晶質相であるので、基板 5 1 側からレーザビームを照射することに

20

よって、記録層504の全面を結晶相にする初期化工程を行った。

本実施例において作製したサンプルを、波長650nm、NA0.6 の光学系を用いて、線速度8.2 m/s、20.5 m/s の条件で、ランダム信号の記録を10回行った。ランダム信号は、最短マーク(3T)が0.42 μ m、最長マーク(11T)が1.54 μ mであり、3T~11Tの信号をランダムに配列した信号である。これは、本実施例の情報記録媒体5において容量4.7 GBに相当する。このような記録を行ったトラックを再生し、各サンプルについてジッターを測定した。本実施例で測定したジッターは、記録マークの前端ジッターと後端ジッターとの平均ジッターである。

表 5 に、結晶核生成層 5 0 3 の材料が異なる各サンプルに対して測定した、線速度 8. 2 m/s でのグルーブ部 5 6 のジッターと、線速度 2 0. 5 m/s でのグルーブ部 5 6 のジッターとを示す。サンプル 1 3 ー f は比較例であり、記録層 5 0 4 に結晶核生成層 5 0 3 として SnTe を積層した情報記録媒体である。

(表5)

10

15

20

サンプル No.	結晶核生成層 材料	ジッター(%) (線速度8.2m/s)	ジッター(%) (線速度20.5m/s)
13-a	BiLa	8. 5	8. 3
13-b	TePr	8. 2	8. 4
13-c	BiGd	8. 4	8. 3
13-d	BiTb	8. 3	8. 5
13-е	BiDy	8. 2	8. 3
13-f	SnTe	8. 3	9. 1

表 5 より、結晶核生成層 5 0 3 を B i と元素M 1 とを含む材料にて形 25 成したサンプル 1 3 - a \sim 1 3 - e では、 8 . 2 m / s 、 2 0 . 5 m /

sと線速度が大きく異なるにもかかわらず、それぞれの線速度において

5

良好なジッター値が得られている。

以上の結果より、Biと元素M1とからなる材料にて形成された結晶核生成層 503が、記録層 504の結晶化速度を大きくするので、より短い時間で結晶相に相変化させることができるので、線速度が大きい(線速度 20.5 m/s)場合であっても良好なジッターを維持することができる。

(実施例14)

実施例14では、実施例13で示した各サンプル13-a~13-f を、温度80℃、湿度20%の高温環境で50時間保存した。高温環境 10 下での保存前に、各サンプルに対して、線速度8.2m/s及び20. 5m/sでランダム信号の10回記録を行った。

表6には、高温環境下での保存後に測定した記録保存性(アーカイバ ル)及び書き換え保存性(アーカイバルオーバーライト)のジッターと 高温環境下での保存前に測定したジッターとの差分(保存後のジッター 保存前のジッター)を示す。なお、本実施例においては、アーカイバル 15 のジッターについては低速度(線速度 8.2 m/s) の場合のみ測定し た。これは、アーカイバルのジッターは、記録速度が遅いほど悪くなる ため、線速度 8 . 2 m / s よりも高速である線速度 2 0 . 5 m / s の場 合は、線速度8.2m/sの時よりもジッター値が良いと考えられるか らである。また、アーカイバルオーバーライトのジッターについては、 20 高速度(線速度20.5m/s)の場合のみ測定した。これは、アーカ イバルオーバーライトのジッターは、記録速度が速いほど悪くなるため 、線速度20.5m/sよりも高速である線速度8.2m/sの場合は 、線速度20.5m/sの時よりもジッター値が良いと考えられるから である。 25

本実施例でのアーカイバルのジッター及びアーカイバルオーバーライ

トのジッターの測定方法について説明する。

高温環境下で保存後におけるアーカイバルのジッターは、高温環境下 で保存したサンプルを取り出して、保存前に記録したトラックを、同じ 線速度で再生することによって測定した。

次に、高温環境下で保存後におけるアーカイバルオーバーライトのジ 5 ッターは、高温環境下で保存したサンプルを取り出して、保存前に記録 したトラックに同じ線速度でランダム信号の1回記録を行い、この信号 を再生することによって測定した。

(表 6)

14-f

SnTe

10	サンプル No.	結晶核生成層 材料	ジッターの差分(%) (線速度8.2m/s) アーカイバル	ジッターの差分(%) (線速度20.5m/s) アーカイバル オーバーライト
	14-a	BiLa	0. 1	1. 2
	14-b	TePr	0. 2	1. 3
	14-c	BiGd	0. 2	1. 1
	14d	BiTb	0. 1	0. 9
15	14-e	BiDy	0. 1	0. 8

20

25

サンプル14-a~14-fでは、表6に示すように、高温環境下で の保存後でも保存前からの差分が2%以内と、良好な記録保存特性を示 した。一方、書き換え保存性については、Biと元素M1とからなる材 料にて結晶核生成層503を形成したサンプル14-a~14-eのみ ジッターの差分が2%以内となり良好な書き換え保存性を示し、SnT e を用いたサンプル14-fについては、ジッターの差分が5.1%と 大きく、良好な書き換え保存性が得られないことが確認された。このよ うに、Biと元素M1とからなる材料にて結晶核生成層503を形成し た場合、線速度8.2m/s (低速度) の場合の良好なアーカイバルと 、線速度20.5m/s(高速度)の場合の良好なアーカイバルオーバ

0.0

5. 1

ーライトとを両立させることが可能であると確認された。

高温環境下で保存を行うと、記録層504の非晶質相が、保存前のエ ネルギー状態から異なるエネルギー状態へ変わり、より安定なエネルギ ー状態になる。このように非晶質相がより安定なエネルギー状態となる と、記録層504の非晶質相が結晶化しにくくなる。しかしながら、以 5 上の結果に示すように、Biと元素M1とからなる材料にて結晶核生成 層 5 0 3 を形成したサンプル 1 4 - a ~ 1 4 - e は、保存後の非晶質相 を容易に結晶化することができ、良好な書き換え保存性を得ることがで きた。一方、SnTeを用いたサンプル14-fについては、高温環境 下で保存した後で信号を記録したアーカイバルオーバーライトのジッタ 10 ーの差分は5.1%と大きくなった。これは、SnTeの融点が低いた め、高温環境下において結晶核生成層503が溶解して記録層504に 混入し、記録層504に不純物が含まれたためであると考えられる。こ れに対し、Biと元素M1とからなる材料はSnTeよりも融点が高い ので、高温環境下での保存後も記録層504に不純物が混入することが 15 なく、良好な書き換え保存性が得られると考えられる。

アーカイバルのジッターについては、各サンプルについて、引き続き 500時間まで高温環境で保存した後のジッターの値も測定した。アーカイバルは、保存時間が長くなるに従い悪くなる傾向にあるからである。高温環境下で500時間保存したところ、Biと元素M1との組み合わせの材料にて形成された結晶核生成層503を用いたサンプル14ー a~14ーeについては、保存前のジッターに対して差分1%以内と、優れた記録保存性を示した。また、SnTeを結晶核生成層503に用いたサンプル14ーfについても、サンプル14ーa~14ーeよりはジッターの差分の値はやや大きくなったが、良好な記録保存性が確認された。なお、アーカイバルオーバーライトのジッターについては、50

20

WO,2004/025640 PCT/JP2003/011680

0時間保持後についての測定を行わなかった。これは、書き換え保存性は、保存時間が約50時間程度の場合が最も悪く、その後さらに時間が経過すると少しずつ良くなる傾向が見られたため、保存時間50時間程度のアーカイバルオーバーライトのジッターが最も悪いと考えられるからである。

以上の結果より、結晶核生成層503をBiと元素M1とを含む材料にて形成する方が、従来のSnTeにて形成するよりも、結晶化促進の効果が大きく優れていることが確認できた。

(実施例15)

5

10 実施例15では、結晶核生成層503にBiTe₂Dyを用い、結晶 核生成層503の膜厚が異なるサンプルを複数作製した。

基板51上に形成した各層は、具体的には、第1誘電体層501は、 (ZnS) 80 (SiO2) 20 (mol%) のスパッタリングターゲットを用いて形成した。第2誘電体層502は、 (ZrO2) 25 (SiO2) 25 (Cr2O3) 50 (mol%) のスパッタリングターゲットを用いて形成した。結晶核生成層503は、Bi25Te50Dy25のスパッタリングターゲット、記録層504は、Ge8Sb2Te11のスパッタリングターゲットを用いて形成した。第3誘電体層505は、 (ZrO2) 28.6 (SiO2) 28.6 (Cr2O3) 21.4 (LaF3) 21.4 (mol% 0のスパッタリングターゲットを用いて形成した。光吸収補正層506は、Ge80Cr20のスパッタリングターゲットを用いて形成した。光吸収補正層506は、Ge80Cr20のスパッタリングターゲットを用いて形成した。反射層507は、Ag98Pd1Cu1のスパッタリングターゲットを用いて形成した。反射層507は、Ag98Pd1Cu1のスパッタリングターゲットを用いて形成した。

作製したサンプルは、波長650nm、NA0.6の光学系を用いて 25、線速度8.2m/s、20.5m/sの条件で、ランダム信号の記録 を10回行った。ランダム信号は、実施例13の場合と同様の条件であ る。この記録を行ったトラックを再生し、ジッターを測定した。ジッターは、記録マークの前端ジッターと後端ジッターとの平均ジッターである。表7には、結晶核生成層503の膜厚に対する線速度8.2m/sでのグルーブ部56のジッターを示す。

(表 7)

サンプル 結晶核生成層 ジッター(%) ジッター(%) No. 膜厚(nm) (線速度8.2m/s) (線速度20.5m/s) 15-a 0.1 8.3 10.5 15-b 0. 2 8.3 8. 9 15-c 0.5 8.3 8.6 15-d 1.0 8. 4 8.3 15-e 1. 5 8. 5 8.3 15-f 2.0 8. 7 8. 5 15-g 3.0 8.8 8.8 15-h 4.0 9. 5 9. 1

15

10

5

表 7 より、結晶核生成層 5 0 3 の膜厚が 0 . 2 n m から 3 . 0 n m までの膜厚範囲において、線速度が 8 . 2 m / s 、 2 0 . 5 m / s ともに、良好なジッター値が得られた。

(実施例16)

実施例16では、図15に示すような、記録層504と第3誘電体層505との間に結晶核生成層508を設けたサンプルを作製した。結晶核生成層508はBi₂TeDyを用いて形成し、記録層504はGe-Sb-Teの一部をSnまたはBiで置換したGe-Sn-Sb-Te、Ge-Sb-Bi-Te、Final Company
 形成した。

基板51上に形成した各層は、具体的には、第1誘電体層501は、

 $(ZnS)_{80}$ $(SiO_2)_{20}$ (mol%) ozNyyyyyyyyを用いて形成した。第2誘電体層502は、(ZrO₂)₂₅(SiO₂)₂₅ (Cr₂O₃)₅₀ (mol%) のスパッタリングターゲットを用い て形成した。次に、本実施例では、第2誘電体層502上に、記録層5 04を形成した。記録層504には、(Ge-Sn)₈Sb₂Te₁,でS 5 nの含有割合が8原子%の組成、Ge₈(Sb-Bi)₂Te₁₁でBiの 含有割合が4原子%の組成、(Ge-Sn)。(Sb-Bi)。Te,1 でSnの含有割合が3原子%及びBiの含有割合が4原子%の組成を用 いた。記録層504を形成した後、結晶核生成層508は、BisoTe 10 25Dy₂₅ (at. %) のスパッタリングターゲットを用いて形成した。 結晶核生成層508を形成後、第3誘電体層505は、(Zr〇。)。。 $_{6}$ (S i O $_{2}$) $_{2\,8.\,6}$ (C r $_{2}$ O $_{3}$) $_{2\,1.\,4}$ (L a F $_{3}$) $_{2\,1.\,4}$ (m o l %) のスパッタリングターゲットを用いて形成した。光吸収補正層506は 、 $Ge_{80}Cr_{20}$ のスパッタリングターゲットを用いて形成した。反射層 507は、 $Ag_{98}Pd_1Cu_1$ のスパッタリングターゲットを用いて形成 15 した。

作製したサンプルは、波長650nm、NA0.6の光学系を用いて、線速度8.2m/s、20.5m/sの条件で、ランダム信号の記録を10回行った。ランダム信号は、実施例13と同様の条件である。この記録を行ったトラックを再生し、ジッターを測定した。ジッターは、記録マークの前端ジッターと後端ジッターとの平均ジッターである。

表 8 には、各サンプルの記録層 5 0 4 に対する線速度 8 . 2 m/s でのグループ部 5 6 のジッターと、線速度 2 0 . 5 m/s でのグループ部 5 6 のジッターとを示す。

25

(表8)

5

10

15

20

25

サンプル	記錄	層	ジッター(%)	ジッター(%)
No.	Sn(原子%)	Bi(原子%)	(線速度8.2m/s)	(線速度20.5m/s)
16-a	8	0	8. 5	8. 6
16-b	0	4	8. 4	8. 4
16-c	3	4	8. 5	8. 2
16-d	25	O .	11. 5	8. 0
16-е	0	15	11. 0	7. 8

表8に示すように、実施例16においても、それぞれの線速度で良好なジッターが得られているが、サンプル16- $a\sim16-c$ と比較のためのサンプル16-d及び16-eとの結果によれば、記録層504におけるSnの含有量が $0\sim20$ 原子%の範囲内である場合、Biの含有量が $0\sim10$ 原子%の範囲内である場合、特にジッターが良好である。

以上のように、記録層504と第3誘電体層505との間に結晶核生成層508を設けた構成であっても、線速度が大きい場合に良好な書き換え性能が得られることがわかる。

(実施例17)

実施例17では、図14に示す情報記録媒体5において、結晶核生成層503の膜厚及び記録層504の膜厚が異なるサンプルを複数作製した。結晶核生成層503にはBiTe₂Dyを用い、記録層504にはGe-Sb-Teの一部をBiに置換したGe-Sb-Bi-Teを用いた。

基板 5 1上に形成した各層は、具体的には、第 1 誘電体層 5 0 1 は、 $(Z n S)_{80}$ ($S i O_2$) $_{20}$ (m o 1 %) のスパッタリングターゲットを用いて形成した。第 2 誘電体層 5 0 2 は、($Z r O_2$) $_{25}$ ($S i O_2$) $_{25}$ ($C r_2 O_3$) $_{50}$ (m o 1 %) のスパッタリングターゲットを用いて形成した。結晶核生成層 5 0 3 は、 $B i_{25} T e_{50} D y_{25}$ のスパッタ

リングターゲット、記録層 5 0 4 には、(GeーSn)₈(SbーBi)₂Te₁₁でSnの含有割合が5原子%及びBiの含有割合が6原子%の組成のスパッタリングターゲットを用いて形成した。第3誘電体層 5 0 5 は、(ZrO₂)_{28.6}(SiO₂)_{28.6}(Cr₂O₃)_{21.4}(La 5 F₃)_{21.4}(mol%)のスパッタリングターゲットを用いて形成した。光吸収補正層 5 0 6 は、Ge₈₀Cr₂₀(at.%)のスパッタリングターゲットを用いて形成した。反射層 5 0 7 は、Ag₉₈Pd₁Cu₁(at.%)のスパッタリングターゲットを用いて形成した。結晶核生成層 5 0 3 の膜厚は、記録層 5 0 4 の膜厚を8 nmに固定して、0.5 nm 10 、1.0 nm、1.5 nmと用意した。また、記録層 5 4 の膜厚は、結晶核生成層 5 0 3 の膜厚を1.5 nmと固定して、6 nm、8 nm、12 nmと用意した。

実施例17で作製したサンプルは、波長650nm、NA0.6の光 学系を用いて、線速度8.2m/s、20.5m/s、32.8m/s 15 の条件で、ランダム信号の記録を10回行った。ランダム信号は、実施 例13と同様の条件である。次に、実施例14と同様に温度80℃、湿 度20%の高温環境下で50時間の保存を行った。

表9には、線速度8.2m/s、20.5m/s、32.8m/sに対して、高温環境下での保存後に測定したグルーブ部56のアーカイバ20 ルのジッター及びグルーブ56のアーカイバルオーバーライトのジッターと高温環境下での保存前に測定したジッターとの差分(保存後のジッター保存前のジッター)を示す。ジッターは、記録マークの前端ジッターと後端ジッターとの平均ジッターである。

アーカイバルのジッター及びアーカイバルオーバーライトのジッター 25 の測定方法は実施例14と同様の測定方法を用いた。 (表9)

		T	T					
サンプル	結晶核 生成層	記録層			ジッターの差分(%) (線速度20.5m/s)		ジッターの差分(%) (線速度32.8m/s)	
No.	膜厚 (nm)	膜厚 (nm)	アーカイハ・ル	アーカイハ"ル オーハ"ーライト	アーカイハ・ル	アーカイハ・ル オーハ・ーライト	アーカイハ・ル	アーカイハ*ル オーハ*ーライト
17-a	1. 5	6	0. 6	0. 2	0. 2	0. 6	0. 1	0 0
17-b	0. 5	8	0. 5	0, 1				2. 0
				0. 1	0. 1	0. 3	0. 0	1. 9
17-c	1. 0	8	0. 4	0. 1	0. 1	0. 4	0. 1	1. 8
17-d	1. 5	8	0. 4	0. 2	0. 1			
17-е				<u> </u>	0. 1	0. 5	0. 1	1. 9
17-e	1. 5	12	0. 7	0. 1	0. 2	0. 4	0. 1	2. 0

10

15

20

5

線速度が32.8m/sと非常に大きい場合であっても、高温環境下で保存前後のアーカイバルオーバーライトの差分が2%以内であり、且つ線速度が8.2m/sでのアーカイバルの差分も0.7%以下である。また、線速度が8.2m/sでのアーカイバルは、温度80℃、湿度20%の高温環境下で500時間の保存を行った後においても、保存前との差分は2%であることを確認した。

実施例17から、線速度が8.2m/sから32.8m/sと4倍異なる場合でも、それぞれの線速度において、良好な記録特性を両立することが確認された。また、記録層504単体(記録層に接して結晶核生成層を設けない構成)では、記録層504の膜厚を薄くするにつれて結晶化しにくくなるが、結晶核生成層503を設けることにより、膜厚が6nmと薄い場合でも、結晶核生成層103の結晶促進効果により、線速度が大きい場合に良好なアーカイバルオーバーライト特性を実現することができる。

25 (実施例18)

実施例18では、図16に示すように記録層504の両側に結晶核生

WO-2004/025640 PCT/JP2003/011680

成層 503, 508 を形成したサンプルを作製した。結晶核生成層 503, 508 にはB i $_2$ T e D y を用い、記録層 504 には、G e - S b - T e o 一部をS n またはB i で置換したG e - S n - S b - T e o の - B i - T e o の - B i - T e o の - B i - T e o の - B i - T e o の - B i - T e o の - B i - T e o の - B i - T e o の - B i - T e o の - B i - T e o の - B i - T e o の - B i - T e o の - S b - B i - T e o の - S b - B i - T e o の - S b - B i - T e o の - S b - B i - T e o の - S b - B i - T e o の - S b - B i - T e o の - S b - B i - T e o の - S b - B i - T e o の - S b - B i - T e o の - S b - B i - T e o の - S b - B i - T e o の - S b - B i - T e o D i - T e o D i - S b - B i - T e o D i - S b - B i - T e o D i - S b - B i - T e o D i - S b - S b - B i - T e o D i - S b -

基板 5 1 上に形成した各層は、具体的には、第 1 誘電体層 5 0 1 は、 (Z n S) 80 (S i O2) 20 (m o 1 %)のスパッタリングターゲットを用いて形成した。第 2 誘電体層 5 0 2 は、 (Z r O2) 25 (S i O2) 25 (C r 2 O3) 50 (m o 1 %)のスパッタリングターゲットを用いて形成した。次に、実施例 1 8 では、第 2 誘電体層 5 0 2 上に、結晶核生成層 5 0 3 を形成した。結晶核生成層 5 0 3 は、B i 50 T e 25 D y 25 (a t . %)のスパッタリングターゲットを用いて形成した。結晶核生成層 5 0 3 上に、記録層 5 0 4 を形成した。記録層 5 0 4 には、 (G e - S n) 8 S b 2 T e 11 で S n の含有割合が 8 原子%の組成、G e 8 (S b - B i) 2 T e 11 で S n の含有割合が 3 原子% と B i の含有割合が 4 原子%の組成を用いた。

さらに、記録層 504 を形成した後、結晶核生成層 508 を形成した。結晶核生成層 508 は、 Bi_{50} Te_{25} Dy_{25} のスパッタリングター 20 ゲットを用いて形成した。第 3 誘電体層 505 は、 $(ZrO_2)_{28.6}$ (SiO_2) $_{28.6}$ (Cr_2O_3) $_{21.4}$ (LaF_3) $_{21.4}$ (mo1%) のスパッタリングターゲットを用いて形成した。光吸収補正層 506 は、 Ge_{80} Cr_{20} のスパッタリングターゲットを用いて形成した。反射層 507 は、 Ag_{98} Pd_1 Cu_1 のスパッタリングターゲットを用いて形成した。

を10回行った。ランダム信号は、実施例13と同様の条件である。この記録を行ったトラックを再生し、ジッターを測定した。ジッターは、 記録マークの前端ジッターと後端ジッターとの平均ジッターである。

表 10 には、各サンプルの記録層 504 に対する線速度 8.2 m/s 5 でのジッターと線速度 20.5 m/s でのジッターを示す。

(表10)

サンプル	記録	录層	ジッター(%)	ジッター(%)
No.	Sn(原子%)	Bi(原子%)	(線速度8.2m/s)	(線速度20.5m/s)
18−a	8	0	8. 4	8. 3
18-b	0	4	8. 5	8. 1
18-c	3	4	8. 6	8. 1
18-d	25	0	11.8	7. 9
18-e	- 0	15	11. 5	7. 7

10

15

20

25

表10に示すように、本実施例においてもそれぞれの線速度で良好なジッターが得られているが、サンプル18-a~18-cと比較のためのサンプル18-d及び18-eとの結果によれば、記録層504におけるSnの含有量が0~20原子%の範囲内である場合、Biの含有量が0~10原子%の範囲内である場合、特にジッターが良好である。このように、記録層504の両面に結晶核生成層503,508を形成した場合においても、結晶核生成層503,508が記録層504の結晶化速度を大きくし、線速度が大きい場合に、より短い時間で結晶相に相変態させるので、書き換え性能が向上するといえる。

(実施例19)

実施例19では、図17に示す情報記録媒体59のように、第3誘電体層505と光吸収補正層506との間に第4誘電体層509がさらに設けられ、且つ、第2誘電体層502と第3誘電体層505の材料が互いに異なる2つのサンプルを作製した。これらのサンプルにおいて、第

WO-2004/025640 PCT/JP2003/011680

4誘電体層105には、(ZnS) $_{80}$ (SiO_2) $_{20}$ (mol%)を用いた。結晶核生成層503には $BiTeDy_2$ を用い、記録層504にはGe-Sb-Teの一部をBiで置換したGe-Sb-Bi-Teを用いて形成した。

基板51上に形成した各層は、具体的には、第1誘電体層501は、(ZnS)₈₀(SiO₂)₂₀(mo1%)のスパッタリングターゲットを用いて形成した。第2誘電体層502は、(ZrO₂)₂₅(SiO₂)₂₅(Cr₂O₃)₅₀(mo1%)のスパッタリングターゲットを用いて形成した。次に、第2誘電体層502上に、結晶核生成層503を形成した。法晶核生成層503は、Bi₂₅Te₂₅Dy₅₀のスパッタリングターゲットを用いて形成した。結晶核生成層503上に、記録層504を形成した。記録層504には、Ge₈(Sb-Bi)₂Te₁₁でBiの含有割合が4原子%の組成を用いた。

記録層 504 を形成した後、第 3 誘電体層 505 を形成した。第 3 誘電体層 505 は、それぞれ(ZrO_2) $_{25}$ (SiO_2) $_{25}$ (Cr_2O_3) $_{50}$ (mol%)、(HfO_2) $_{25}$ (SiO_2) $_{25}$ (Cr_2O_3) $_{50}$ (mol%)のスパッタリングターゲットを用いて形成した。第 3 誘電体層 505 を形成後、第 4 誘電体層 509 を形成した。第 4 誘電体層 509 は、(ZnS) $_{80}$ (SiO_2) $_{20}$ (mol%)のスパッタリングターゲットを用いて形成した。さらに、光吸収補正層 506 は、 Ge_{80} Cr_{20} のスパッタリングターゲットを用いて形成した。反射層 507 は、600 のスパッタリングターゲットを用いて形成した。反射層 507 は、600 のスパッタリングターゲットを用いて形成した。

作製したサンプルは、波長650nm、NA0.6の光学系を用いて、線速度8.2m/s、20.5m/sの条件で、ランダム信号の記録を10回行った。ランダム信号は、実施例13と同様の条件である。この記録を行ったトラックを再生し、ジッターを測定した。ジッターは、

記録マークの前端ジッターと後端ジッターとの平均ジッターである。

表 1 1 には、それぞれの記録層 5 0 4 に対する線速度 8 . 2 m/s でのジッターと線速度 2 0 . 5 m/s でのジッターを示す。

(表11)

5

サンプル	第3誘電体層	ジッター(%)	ジッター(%)
No.	(mol%)	(線速度8.2m/s)	(線速度20.5m/s)
19-a	$(ZrO_2)_{25}(SiO_2)_{25}(Cr_2O_3)_{50}$	8. 4	8. 3
19-b	$(HfO_2)_{25}(SiO_2)_{25}(Cr_2O_3)_{50}$	8. 5	8. 1

10 図17に示す構成の情報記録媒体であっても、それぞれの線速度で良 好なジッターが得られた。

産業上の利用の可能性

本発明の情報記録媒体及び情報記録媒体の製造方法によれば、結晶核 15 生成層の融点が高く熱的安定性が良好で、高い転送レートでの書き換え 保存性と低い転送レートでの記録保存性を両立し、且つ良好な繰り返し 書き換え性能を有する情報記録媒体が得られる。 WO-2004/025640 PCT/JP2003/011680

請求の範囲

1. 基板と、前記基板上に配置された情報層とを含んでおり、前記情報層が、

5 光学的手段及び電気的手段の少なくとも一方によって結晶相と非晶質相との間で可逆的な相変化を起こす記録層と、

Bi及びTeから選ばれる少なくとも一つの元素とSc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる少なくとも一つの元素(M1)とを含み、前記記録層に

- 10 接して設けられた少なくとも一つの結晶核生成層と、を含むことを特徴とする情報記録媒体。
 - 2. 前記結晶核生成層が、Bi (M1)及びTe (M1)から選ばれる少なくとも一つを含む請求の範囲1に記載の情報記録媒体。
 - 3. 前記結晶核生成層が、 $BiTe(M1)_2$ 、 $Bi_2Te(M1)$ 及び $BiTe_2(M1)$ から選ばれる少なくとも一つを含む請求の範囲 1

に記載の情報記録媒体。

- 4. 前記結晶核生成層が、N及びOから選ばれる少なくとも一つの元素を含む請求の範囲1に記載の情報記録媒体。
- 5. 前記記録層が、Sb及びBiから選ばれる少なくとも一つの元素
 20 (M2)と、Geと、Teとを含み、前記M2、Ge及びTeを組成式Gea(M2)bTe3+aと表記した場合に、

 $2 \le a \le 50$

 $2 \le b \le 4$

である請求の範囲1に記載の情報記録媒体。

25 6. 前記 Ge_a (M2) $_b$ Te_{3+a} において、前記Ge の少なくとも一部が、Sn 及びPb から選ばれる少なくとも一つの元素(M3)にて置

換されている請求の範囲5に記載の情報記録媒体。

- 7. 前記記録層において、前記M2がSbであり、前記Sbの少なくとも一部がBiにて置換されている請求の範囲5に記載の情報記録媒体
- 5 8. 前記記録層において、Sn原子の含有割合は、0原子%を超え2 0原子%未満である請求の範囲7に記載の情報記録媒体。
 - 9. 前記記録層において、Bi原子の含有割合は、0原子%を超え1 0原子%未満である請求の範囲7に記載の情報記録媒体。
- 10. 前記記録層が、Sb及びBiから選ばれる少なくとも一つの元 素(M2)と、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Cu 、Se、Zr、Nb、Mo、Ru、Rh、Pd、Ag、In、Sn、T a、W、Os、Ir、Pt及びAuから選ばれる少なくとも一つの元素 (M4)と、Geと、Teとを含み、前記M2、M4、Ge及びTeを 組成式(Gea(M2)bTe3+a)100-c(M4)cと表記した場合に、
- 15 $2 \le a \le 50$

 $2 \le b \le 4$

 $0 < c \le 20$

である請求の範囲1に記載の情報記録媒体。

11. 前記記録膜が、Sbと、Teと、Ag、In、Ge、Sn、Se、Bi、Au及びMnから選ばれる少なくとも一つの元素(M5)とを含み、前記Sb、Te及びM5を組成式(Sb_dTe_{100-d})_{100-e}(M5)_eで表記した場合に、

 $5.0 \le d \le 9.5$

 $0 < e \le 20$

- 25 である請求の範囲1に記載の情報記録媒体。
 - 12. 前記結晶核生成層の厚みが、0.2 nm以上3 nm以下である

請求の範囲1に記載の情報記録媒体。

13. 前記記録層の厚みが、3nm以上14nm以下である請求の範囲1に記載の情報記録媒体。

- 14. 第1の情報層〜第Nの情報層(Nは2以上の自然数)が積層された多層構造の情報記録媒体であって、前記第1の情報層〜第Nの情報層の少なくとも一つが前記情報層である請求の範囲1に記載の情報記録媒体。
 - 15. 前記記録層は、レーザビームの照射によって結晶相と非晶質相との間で可逆的な相変化を起こし、
- 10 前記情報層が、前記記録層及び前記結晶核生成層からなる積層体の両面に設けられた誘電体層と、前記積層体に対しレーザビーム入射側と反対側に配置された反射層と、をさらに含む請求の範囲1に記載の情報記録媒体。
- 16. 前記情報層が、前記積層体と前記反射層との間に配置された光 15 吸収補正層をさらに含む請求の範囲15に記載の情報記録媒体。
 - 17. 前記記録層は、レーザビームの照射によって結晶相と非晶質相との間で可逆的な相変化を起こし、

前記情報層は、レーザビーム入射側から、少なくとも第1誘電体層、 第2誘電体層、前記結晶核生成層、前記記録層、第3誘電体層及び反射 20 層をこの順に含む請求の範囲1に記載の情報記録媒体。

18. 前記記録層は、レーザビームの照射によって結晶相と非晶質相との間で可逆的な相変化を起こし、

前記情報層は、レーザビーム入射側から、少なくとも第1誘電体層、 第2誘電体層、前記記録層、前記結晶核生成層、第3誘電体層及び反射 層をこの順に含む請求の範囲1に記載の情報記録媒体。

19. 前記記録層は、レーザビームの照射によって結晶相と非晶質相

5

との間で可逆的な相変化を起こし、

前記情報層は、レーザビーム入射側から、少なくとも第1誘電体層、 第2誘電体層、前記結晶核生成層、前記記録層、前記結晶核生成層、第 3誘電体層及び反射層をこの順に含む請求の範囲1に記載の情報記録媒 体。

- 20. 前記情報層は、前記第3誘電体層と前記反射層との間に設けられた第4誘電体層をさらに含む請求の範囲17~19の何れか一項に記載の情報記録媒体。
- 21. 前記情報層は、前記第3誘電体層と前記反射層との間に設けら 10 れた、前記反射層より熱伝導率が低い界面層をさらに含む請求の範囲1 7~19の何れか一項に記載の情報記録媒体。
 - 22. レーザビームの照射によって情報が記録される第1の情報層~ 第Nの情報層(Nは2以上の自然数)がレーザビーム入射側からこの順 に積層された多層構造の情報記録媒体であって、
- 15 少なくとも前記第1の情報層が前記情報層であり、

前記第1の情報層に含まれる前記記録層は、レーザビームの照射によって結晶相と非晶質相との間で可逆的な相変化を起こし、

前記第1の情報層が、レーザビーム入射側から、少なくとも第1誘電体層、第2誘電体層、前記結晶核生成層、前記記録層、第3誘電体層、

- 20 反射層及び透過率調整層をこの順に含む請求の範囲1に記載の情報記録 媒体。
 - 23. レーザビームの照射によって情報が記録される第1の情報層~ 第Nの情報層(Nは2以上の自然数)がレーザビーム入射側からこの順 に積層された多層構造の情報記録媒体であって、
- 25 少なくとも前記第1の情報層が前記情報層であり、

前記第1の情報層に含まれる前記記録層は、レーザビームの照射によ

5

15

20

って結晶相と非晶質相との間で可逆的な相変化を起こし、

前記第1の情報層が、レーザビーム入射側から、少なくとも第1誘電体層、第2誘電体層、前記記録層、前記結晶核生成層、第3誘電体層、 反射層及び透過率調整層をこの順に含む請求の範囲1に記載の情報記録 媒体。

24. レーザビームの照射によって情報が記録される第1の情報層~ 第Nの情報層(Nは2以上の自然数)がレーザビーム入射側からこの順 に積層された多層構造の情報記録媒体であって、

少なくとも前記第1の情報層が前記情報層であり、

10 前記第1の情報層に含まれる前記記録層は、レーザビームの照射によって結晶相と非晶質相との間で可逆的な相変化を起こし、

前記第1の情報層が、レーザビーム入射側から、少なくとも第1誘電体層、第2誘電体層、前記結晶核生成層、前記記録層、前記結晶核生成層、第3誘電体層、反射層及び透過率調整層をこの順に含む請求の範囲 1に記載の情報記録媒体。

- 25. 前記透過率調整層が、 TiO_2 、 ZrO_2 、ZnO、 Nb_2O_5 、 Ta_2O_5 、 SiO_2 、 Al_2O_3 、 Bi_2O_3 、 Cr_2O_3 、Sr-O、Ti-N、Zr-N、Nb-N、Ta-N、Si-N、Ge-N、Cr-N0、Al-N0、Cr-N0、Cr-N0、Cr-N0、Cr-N0 を含む請求の範囲 $22\sim24$ の何れか一項に記載の情報記録媒体。
- 26. 前記第4誘電体層が、 $(ZnS)_{80}$ (SiO₂)₂₀を含む請求の範囲20に記載の情報記録媒体。
- 27. 前記第3誘電体層が、 HfO_2 及び ZrO_2 から選ばれる少なく 25. とも一つと、 SiO_2 と、 Cr_2O_3 と、 ZrO_3 と ZrO_3 と、 ZrO_3 と、 ZrO_3 と、 ZrO_3 と ZrO_3 と

記載の情報記録媒体。

28. 前記フッ化物は、 CeF_3 、 ErF_3 、 GdF_3 、 LaF_3 、 TbF_3 、 DyF_3 、 NdF_3 、 YF_3 及び YbF_3 から選ばれる少なくとも一つを含む請求の範囲 27 に記載の情報記録媒体。

5 29. 前記酸化物-フッ化物系材料が、

 $(H f O_2)_{A1} (S i O_2)_{B1} (C r_2 O_3)_{C1} (フッ化物)_{100-A1}$ $_{-B1-C1}$ または $(Z r O_2)_{A1} (S i O_2)_{B1} (C r_2 O_3)_{C1} (フッ化物)_{100-A1-B1-C1}$ と表記される場合、

 $A 1 が、 1 0 \le A 1 \le 5 0$ 、

 $10 \quad B \ 1 \text{ is}, \quad 1 \ 0 \leq B \ 1 \leq 5 \ 0,$

 $C \ 1 \ \text{M}, \ 1 \ 0 \le C \ 1 \le 5 \ 0,$

 $A 1 + B 1 + C 1 が、 5 0 \le A 1 + B 1 + C 1 \le 9 0$

である請求の範囲27に記載の情報記録媒体。

30. 前記第2誘電体層及び前記第3誘電体層の少なくも一つが、H fO_2 及び ZrO_2 から選ばれる少なくとも一つと、 SiO_2 と、 Cr_2 O $_3$ と、を含む酸化物系材料にて形成されている請求の範囲 $1.7 \sim 2.5$ の何れか一項に記載の情報記録媒体。

31. 前記酸化物系材料が、

 $(H\ f\ O_2)_{A2}\ (S\ i\ O_2)_{B2}\ (C\ r_2O_3)_{100-A2-B2}$ \sharp \hbar \sharp ι

20 rO_2) A_2 (SiO₂) B_2 (Cr₂O₃) 100-A2-B2と表記され、

 $A 2 が、 1 0 \le A 2 \le 5 0$ 、

 $B 2 \text{ is}, 1 0 \leq B 2 \leq 5 0$

 $A 2 + B 2 \pi$, $2 0 \le A 2 + B 2 \le 8 0$

である請求の範囲29に記載の情報記録媒体。

25 32. 基板上に少なくとも一つの情報層が設けられた情報記録媒体を 製造する方法であって、

WO-2004/025640 PCT/JP2003/011680

前記情報層を形成する工程が、

光学的手段及び電気的手段の少なくとも何れか一方によって結晶相と 非晶質相との間で可逆的な相変化を起こす記録層を形成する記録層形成 工程と、

- 5 Bi及びTeから選ばれる少なくとも一つの元素とSc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる少なくとも一つの元素(M1)とを含むスパッタリングターゲットを用いて、スパッタリングにより結晶核生成層を形成する結晶核生成層形成工程と、を含み、
- 10 前記記録層形成工程と前記結晶核生成工程とが連続して行われること を特徴とする情報記録媒体の製造方法。
 - 33. 前記スパッタリングターゲットが、Bi(M1)及びTe(M1)より選ばれる少なくとも一つを含む請求の範囲32に記載の情報記録媒体の製造方法。
- 15 34. 前記スパッタリングターゲットが、BiTe(M1)₂、Bi₂
 Te(M1)及びBiTe₂(M1)から選ばれる少なくとも一つを含む請求の範囲32に記載の情報記録媒体の製造方法。
- 35. 前記結晶核生成層形成工程において、スパッタリングの際に、 Arガスと、Krガスと、Arガス及び反応ガスの混合ガスと、Krガ 20 ス及び反応ガスの混合ガスとから選ばれる少なくとも一つを用いる請求

の範囲32に記載の情報記録媒体の製造方法。

但し、反応ガスとは、 N_2 ガス及び O_2 ガスから選ばれる少なくとも一つのガスのことである。

補正書の請求の範囲

[2004年2月20日 (20. 02. 04) 国際事務局受理:出願当初の請求の範囲 1-8, 10, 12-15, 17, 20-22, 25, 27, 30-32は補正された; 出願当初の請求の範囲11, 18, 19, 23, 24は取り下げられた; 他の請求の範囲は変更なし。(7頁)]

- 1. (補正後) 基板と、前記基板上に配置された情報層とを含んでおり、
- 5 前記情報層が、

光学的手段及び電気的手段の少なくとも一方によって結晶相と非晶質 相との間で可逆的な相変化を起こす記録層と、

Bi及びTeから選ばれる少なくとも一つの元素とSc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる少なくとも一つの元素(M1)とを含み、前記記録層に接して設けられた少なくとも一つの結晶核生成層と、を含み、

前記記録層が、Sb及びBiから選ばれる少なくとも一つの元素(M2)と、Geと、Teとを含み、前記M2、Ge及びTeを組成式Ge。。 (M2)。 Te3+4と表記した場合に、

15 $2 \le a \le 50$

 $2 \le b \le 4$

であることを特徴とする情報記録媒体。

- 2. (補正後) 基板と、前記基板上に配置された情報層とを含んでおり、
- 20 前記情報層が、

光学的手段及び電気的手段の少なくとも一方によって結晶相と非晶質相との間で可逆的な相変化を起こす記録層と、

Bi及びTeから選ばれる少なくとも一つの元素とSc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる少なくとも一つの元素(M1)とを含み、前記記録層に接して設けられた少なくとも一つの結晶核生成層と、を含み、

前記記録層が、Sbと、Teと、Ag、In、Ge、Sn、Se、Bi、Au及びMnから選ばれる少なくとも一つの元素(M5)とを含み、前記Sb、Te及びM5を組成式(Sb_dTe_{100-d})_{100-e}(M5)。で表記した場合に、

5 $5.0 \le d \le 9.5$

10

 $0 < e \le 20$

であることを特徴とする情報記録媒体。

- 3. (補正後) 前記結晶核生成層が、Bi(M1)及びTe(M1)から選ばれる少なくとも一つを含む請求の範囲1または2に記載の情報記録媒体。
- 4. (補正後) 前記結晶核生成層が、 $BiTe(M1)_2$ 、 $Bi_2Te(M1)$ 及び $BiTe_2(M1)$ から選ばれる少なくとも一つを含む請求の範囲1または2に記載の情報記録媒体。
- 5. (補正後) 前記結晶核生成層が、N及びOから選ばれる少なくとも 15 一つの元素を含む請求の範囲1または2に記載の情報記録媒体。
 - 6. (補正後) 前記 Ge_a (M2) $_b$ T e_{3+a} において、前記Geの少なくとも一部が、Sn及びPbから選ばれる少なくとも一つの元素 (M3) にて置換されている請求の範囲1に記載の情報記録媒体。
- 7. (補正後) 前記記録層において、前記M2がSbであり、前記Sb 20 の少なくとも一部がBiにて置換されている請求の範囲1に記載の情報 記録媒体。
 - 8. (補正後) 前記記録層において、Sn原子の含有割合は、0原子% を超え20原子%未満である請求の範囲6に記載の情報記録媒体。
- 9. 前記記録層において、Bi原子の含有割合は、0原子%を超え1 25 0原子%未満である請求の範囲7に記載の情報記録媒体。
 - 10. (補正後) 前記記録層が、Si、Ti、V、Cr、Mn、Fe、

Co、Ni、Cu、Se、Zr、Nb、Mo、Ru、Rh、Pd、Ag、In、Sn、Ta、W、Os、Ir、Pt及びAuから選ばれる少なくとも一つの元素(M4)をさらに含み、前記M2、M4、Ge及びTeを組成式(Gea(M2)。Te3+a)100-c(M4)。と表記した場合に、

 $2 \le a \le 50$

 $2 \le b \le 4$

 $0 < c \le 20$

である請求の範囲1に記載の情報記録媒体。

10 11. (削除)

5

- 12. (補正後) 前記結晶核生成層の厚みが、0.2 n m以上3 n m以下である請求の範囲1または2に記載の情報記録媒体。
- 13. (補正後) 前記記録層の厚みが、3nm以上14nm以下である 請求の範囲1または2に記載の情報記録媒体。
- 15 14. (補正後) 第1の情報層〜第Nの情報層(Nは2以上の自然数) が積層された多層構造の情報記録媒体であって、前記第1の情報層〜第 Nの情報層の少なくとも一つが前記情報層である請求の範囲1または2 に記載の情報記録媒体。
- 15. (補正後) 前記記録層は、レーザビームの照射によって結晶相と 20 非晶質相との間で可逆的な相変化を起こし、

前記情報層が、前記記録層及び前記結晶核生成層からなる積層体の両面に設けられた誘電体層と、前記積層体に対しレーザビーム入射側と反対側に配置された反射層と、をさらに含む請求の範囲1または2に記載の情報記録媒体。

25 16. 前記情報層が、前記積層体と前記反射層との間に配置された光 吸収補正層をさらに含む請求の範囲15に記載の情報記録媒体。

17. (補正後) 前記記録層は、レーザビームの照射によって結晶相と 非晶質相との間で可逆的な相変化を起こし、

前記情報層は、前記レーザビーム入射側から、少なくとも第1誘電体層、第2誘電体層、前記記録層、第3誘電体層及び反射層をこの順に含み、

前記第2誘電体層と前記記録層との間および前記第3誘電体層と前記記録層との間の少なくとも一方に、前記結晶核生成層が形成されている請求の範囲1または2に記載の情報記録媒体。

- 18. (削除)
- 10 19. (削除)

5

- 20. (補正後) 前記情報層は、前記第3誘電体層と前記反射層との間に設けられた第4誘電体層をさらに含む請求の範囲17に記載の情報記録媒体。
- 21. (補正後) 前記情報層は、前記第3誘電体層と前記反射層との間 15 に設けられた、前記反射層より熱伝導率が低い界面層をさらに含む請求 の範囲17に記載の情報記録媒体。
 - 22. (補正後) レーザビームの照射によって情報が記録される第1の情報層~第Nの情報層(Nは2以上の自然数)がレーザビーム入射側からこの順に積層された多層構造の情報記録媒体であって、
- 20 少なくとも前記第1の情報層が前記情報層である請求の範囲17に記載の情報記録媒体。
 - 23. (削除)
 - 24. (削除)
 - 25. (補正後) 前記透過率調整層が、TiO2、ZrO2、ZnO、
- 25 Nb₂O₅, Ta₂O₅, SiO₂, Al₂O₃, Bi₂O₃, Cr₂O₃, S r-O, Ti-N, Zr-N, Nb-N, Ta-N, Si-N, Ge-

5

N、C r -N、A 1 -N、G e -S i -N、G e -C r -N D U Z n S から選ばれる少なくとも一つを含む請求の範囲 2 2 E に記載の情報記録媒体。

- 26. 前記第4誘電体層が、(ZnS)₈₀ (SiO₂)₂₀を含む請求の範囲20に記載の情報記録媒体。
 - 27 (補正後) 前記第3誘電体層が、 HfO_2 及び ZrO_2 から選ばれる少なくとも一つと、 SiO_2 と、 Cr_2O_3 と、フッ化物と、を含む酸化物-フッ化物系材料にて形成されている請求の範囲17に記載の情報記録媒体。
- 10 28. 前記フッ化物は、 CeF_3 、 ErF_3 、 GdF_3 、 LaF_3 、 TbF_3 、 DyF_3 、 NdF_3 、 YF_3 及び YbF_3 から選ばれる少なくとも一つを含む請求の範囲 27に記載の情報記録媒体。
 - 29. 前記酸化物-フッ化物系材料が、

 $(H f O_2)_{A1} (S i O_2)_{B1} (C r_2 O_3)_{C1} (フッ化物)_{100-A1}$ 15 $_{-B1-C1}$ または($Z r O_2)_{A1} (S i O_2)_{B1} (C r_2 O_3)_{C1} (フッ化物)_{100-A1-B1-C1}$ と表記される場合、

 $A 1 \%, 1 0 \le A 1 \le 5 0,$

B1が、 $10 \le B1 \le 50$ 、

C1が、 $10 \le C1 \le 50$ 、

20 A 1 + B 1 + C 1 が、5 0 ≤ A 1 + B 1 + C 1 ≤ 9 0 である請求の範囲 2 7 に記載の情報記録媒体。

30. (補正後) 前記第2誘電体層及び前記第3誘電体層の少なくも一つが、 HfO_2 及び ZrO_2 から選ばれる少なくとも一つと、 SiO_2 と、 Cr_2O_3 と、を含む酸化物系材料にて形成されている請求の範囲17に記載の情報記録媒体。

31. (補正後) 前記酸化物系材料が、

25

 $(H f O_2)_{A2} (S i O_2)_{B2} (C r_2 O_3)_{100-A2-B2}$ または($Z r O_2)_{A2} (S i O_2)_{B2} (C r_2 O_3)_{100-A2-B2}$ と表記され、

 $A \ 2 \ \text{m}, \ 1 \ 0 \le A \ 2 \le 5 \ 0$

 $B \ 2 \ \text{m}, \ 1 \ 0 \le B \ 2 \le 5 \ 0,$

5 A 2 + B 2 ii, $2.0 \le A 2 + B 2 \le 8.0$

である請求の範囲30に記載の情報記録媒体。

3 2. (補正後) 基板上に少なくとも一つの情報層が設けられた情報記録媒体を製造する方法であって、

前記情報層を形成する工程が、

10 光学的手段及び電気的手段の少なくとも何れか一方によって結晶相と非晶質相との間で可逆的な相変化を起こし、且つ、S b 及びB i から選ばれる少なくとも一つの元素(M 2)と、G e と、T e とを含み、前記M 2、G e 及びT e を組成式G e $_a$ (M 2) $_b$ T e $_{3+a}$ と表記した場合に、 $2 \le a \le 5$ 0、且つ、 $2 \le b \le 4$ である記録層を形成する記録層形成15 工程と、

Bi及びTeから選ばれる少なくとも一つの元素とSc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる少なくとも一つの元素(M1)とを含むスパッタリングターゲットを用いて、スパッタリングにより結晶核生成層を形成する結晶核生成層形成工程と、を含み、

前記記録層形成工程と前記結晶核生成工程とが連続して行われることを特徴とする情報記録媒体の製造方法。

33. 前記スパッタリングターゲットが、Bi(M1)及びTe(M 1)より選ばれる少なくとも一つを含む請求の範囲32に記載の情報記 25 録媒体の製造方法。

20

- 34. 前記スパッタリングターゲットが、 $BiTe(M1)_2$ 、 Bi_2 Te(M1) 及び $BiTe_2$ (M1) から選ばれる少なくとも一つを含む請求の範囲 32 に記載の情報記録媒体の製造方法。
- 35. 前記結晶核生成層形成工程において、スパッタリングの際に、
- 5 Arガスと、Krガスと、Arガス及び反応ガスの混合ガスと、Krガス及び反応ガスの混合ガスとから選ばれる少なくとも一つを用いる請求の範囲32に記載の情報記録媒体の製造方法。

但し、反応ガスとは、 N_2 ガス及び O_2 ガスから選ばれる少なくとも一つのガスのことである。

5/19

10/19

11/19

12/19

55

56

13/19

FIG. 15

FIG. 16

FIG. 17

FIG. 20

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/11680

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ G11B7/24, 7/26						
According to	According to International Patent Classification (IPC) or to both national classification and IPC					
	SEARCHED					
Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ G11B7/24, 7/26					
Jitsu Kokai	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2003 Kokai Jitsuyo Shinan Koho 1971-2003 Jitsuyo Shinan Toroku Koho 1996-2003					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)						
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.			
X Y	JP 2002-225436 A (Ricoh Co., 14 August, 2002 (14.08.02), Full text; all drawings (Family: none)	Ltd.),	1,2,5-33 3,4,34,35			
Y	JP 2001-209970 A (Matsushita Co., Ltd.), 03 August, 2001 (03.08.01), Full text; all drawings & EP 1039448 A2	Electric Industrial	1–35			
Y	JP 2002-2116 A (Ricoh Co., L 08 January, 2002 (08.01.02), Full text; all drawings (Family: none)	td.),	1-35			
·						
	er documents are listed in the continuation of Box C.	See patent family annex.	amational filter details			
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family				
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed						
Date of the	actual completion of the international search December, 2003 (10.12.03)	Date of mailing of the international sear 24 December, 2003				
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Facsimile N	¹o.	Telephone No.				

BNSDOCID: <WO____2004025640A1_l_> (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/11680

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 2002-123977 A (Sony Corp.), 26 April, 2002 (26.04.02), Full text; all drawings (Family: none)	
Y	JP 2001-273673 A (Matsushita Electric Industrial Co., Ltd.), 05 October, 2001 (05.10.01), Full text; all drawings (Family: none)	1-35
Y	US 2001-33991 A1 (Koninklijke Philips Electronics N.V.), 25 October, 2001 (25.10.01), Full text; all drawings & WO 01/82297 A1 & JP 2003-532248 A	1-35
		-
į		
		,
	·	
Į		

発明の属する分野の分類(国際特許分類(IPC)) Int. Cl. 7 G11B7/24, 7/26 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl. 7 G11B7/24, 7/26 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1922-1996年 日本国公開実用新案公報 1971-2003年 1994-2003年 日本国登録実用新案公報 1996-2003年 日本国実用新案登録公報 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) 関連すると認められる文献 関連する 引用文献の 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 カテゴリー* 1, 2, 5-332002-225436 A (株式会社リコー) X 2002.08.14 全文、全図 (ファミリーなし) 3, 4, 34, 35 Y 1 - 35IP 2001-209970 A (松下電器産業株式会社) Y 2001.08.03 全文、全図 & EP 1039448 A2 2002-2116 A (株式会社リコー) 1 - 35Y 2002.01.08 全文、全図 (ファミリーなし) | パテントファミリーに関する別紙を参照。 区欄の続きにも文献が列挙されている。 の日の後に公表された文献 * 引用文献のカテゴリー 「T」国際出願日又は優先日後に公表された文献であって 「A」特に関連のある文献ではなく、一般的技術水準を示す 出願と矛盾するものではなく、発明の原理又は理論 もの 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの の新規性又は進歩性がないと考えられるもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 「Y」特に関連のある文献であって、当該文献と他の1以 日若しくは他の特別な理由を確立するために引用する 上の文献との、当業者にとって自明である組合せに 文献 (理由を付す) よって進歩性がないと考えられるもの 「O」ロ頭による開示、使用、展示等に言及する文献 「&」同一パテントファミリー文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 国際調査報告の発送日 国際調査を完了した日 24.12.03 10.12.03 3045 特許庁審査官(権限のある職員) 5 D 国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 日下 善之 郵便番号100-8915 電話番号 03-3581-1101 内線 3550 東京都千代田区霞が関三丁目4番3号

様式PCT/ISA/210 (第2ページ) (1998年7月)

C ((dt x)	BD'# L 7 1 FD L 2 16 7 L th	
C (続き). 引用文献の	関連すると認められる文献	関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Y	JP 2002-123977 A (ソニー株式会社) 2002.04.26 全文、全図 (ファミリーなし)	1-35
Y	JP 2001-273673 A (松下電器産業株式会社) 2001.10.05 全文、全図 (ファミリーなし)	1-35
Y	US 2001-33991 A1(Koninklijke Philips Electronics N. V.) 2001.10.25 全文、全図 & WO 01/82297 A1 & JP 2003-532248 A	1-35
		}
		:

様式PCT/ISA/210 (第2ページの続き) (1998年7月)

THIS PAGE BLANK (USPTO)