

I Workshop do IE

Solução para o Problema da CODEPLAN

Localização de Serviços Públicos: Conselhos Tutelares

17 de Agosto, 2018

Localização Atual dos Conselhos

O Problema

Baseado no número atual de conselhos tutelares (CT) no DF, qual é a sua localização ótima considerando o acesso do cidadão ao ponto de atendimento?

Restrições:

- 1. Deverá haver pelo menos 1 CT por Região Administrativa;
- A otimização deverá ser feita com base no acesso ao transporte público e mapeamento de ruas;
- 3. Considerar 40 CT e 31 RA;
- 4. Levar em consideração a distribuição da população no DF;

Os dados

Dados disponibilizados pela CODEPLAN:

- Distribuição de domicílios obtida por meio do número de unidades de consumo da Companhia Energética de Brasília -CEB e da Companhia de Água e Esgoto de Brasília - CAESB;
- Dados da população do Censo Demográfico 2010 (dados agregados por setores censitários);
- Dados da malha viária e da distribuição de pontos de ônibus e rotas de ônibus;

A solução

Objetivo: Minimizar a soma das distâncias percorridas por todos os habitantes da RA para chegar até o CT via transporte público.

$$\min_{c_1,\dots,c_K} \sum_{j=1}^{40} \sum_{i=1}^n d(\mathbf{x}_i,c_j) = \min_{i=1}^n d_i$$
 (1)

Etapas da solução:

1. Alocar primeiramente 31 CT, 1 em cada RA;

A solução

Objetivo: Minimizar a soma das distâncias percorridas por <u>todos</u> os habitantes da RA para chegar até o CT via transporte público.

$$\min_{c_1, \dots, c_K} \sum_{j=1}^{40} \sum_{i=1}^n d(\mathbf{x}_i, c_j) = \min_{i=1}^n d_i$$
 (1)

Etapas da solução:

- 1. Alocar primeiramente 31 CT, 1 em cada RA;
- 2. Alocar +1 CT considerando a configuração dos 31CT;

A solução

<u>Objetivo:</u> Minimizar a soma das distâncias percorridas por <u>todos</u> os habitantes da RA para chegar até o CT via transporte público.

$$\min_{c_1,\dots,c_K} \sum_{j=1}^{40} \sum_{i=1}^n d(\mathbf{x}_i,c_j) = \min_{i=1}^n d_i$$
 (1)

Etapas da solução:

- 1. Alocar primeiramente 31 CT, 1 em cada RA;
- 2. Alocar +1 CT considerando a configuração dos 31CT;
- 3. Alocar +1 CT considerando a configuração dos 32CT;
- 4. ...
- 5. Alocar +1CT considerando a configuração dos 39 CT.

Etapa 1: Alocar 1 CT em 1 RA

- Para cada RA, calcular a distância entre os centróides de todas as combinações de setores censitários via transporte público.
 - Simplificação: Os habitantes do setor censitário residem no centróide do mesmo.

	1	2	3	4	5
1	-	(2,1)	(3,1)	(4,1)	(5,1)
2	(1,2)	-	(3,2)	(4,2)	(5,2)
3	(1,3)	(2,3)	-	(4,3)	(5,3)
4	(1,4)	(2,4)	(3,4)	-	(5,4)
5	(1,5)	(2,5)	(3,5)	(4,5)	-

- Para o cálculo da distância via malha, chamamos o GoogleMaps dentro do software SAS/R.
 - No R usamos o pacote mapsapi.
 - E no SAS uma macro foi feita chamando o link: https://maps.google.com/maps?&addr=-15.45,-48,77&sddr=-15.20,-48.95&dirflg=r

Etapa 1: Alocar 1 CT em 1 RA

 Uma vez que temos a matriz de distâncias, a soma das linhas nos dá a distância total.

	1	2	3	4	5	Soma_Dist
1	0	2	2	2	2	8
2	2	0	2	2	2	8
3	1	1	0	1	1	4
4	2	2	1	0	2	7
5	2	2	1	2	0	7

Etapa 1: Alocar 1 CT em 1 RA

 Uma vez que temos a matriz de distâncias, a soma das linhas nos dá a distância total.

	1	2	3	4	5	Soma_Dist
1	0	2	2	2	2	8
2	2	0	2	2	2	8
3	1	1	0	1	1	4
4	2	2	1	0	2	7
5	2	2	1	2	0	7

 Podemos também considerar pesos, por exemplo, utilizando a população de cada setor.

	1	2	3	4	5		Pesos		Soma_Dist
1	0	2	2	2	2		100		88
2	2	0	2	2	2		10		268
3	1	1	0	1	1	X	20	=	124
4	2	2	1	0	2		8		252
5	2	2	1	2	0		6		256

Etapa 2: Acrescentar +1 CT em 1 RA

 E agora? Em qual RA acrescentar 1 CT?
Relembrando: Minimizar a soma das distâncias percorridas por todos os habitantes da RA para chegar até o CT via transporte público.

$$\min \sum_{i=1}^n d_i = \min \sum_{j=1}^J w_j d_j$$

Vamos encontrar o pior caso (RA com maior função objetivo):

RA	Soma_Dist
1	88
2	70
3	65
31	20

Etapa 2: Acrescentar +1 CT em 1 RA

Como otimizar a disposição de 2 CT na RA escolhida?
Escolhemos utilizar o algoritmo do k-means: "É um método de Clustering que objetiva particionar n observações dentre k grupos onde cada observação pertence ao grupo mais próximo da média" [Wiki].

- Considere a RA de Santa Maria com 201 Setores Censitários.
 - 1. Inicialização: Selecione 2 setores aleatoriamente

- Considere a RA de Santa Maria com 201 Setores Censitários.
 - 1. Inicialização: Selecione 2 setores aleatoriamente
 - 2. Obtenha a região de abrangência com base na matriz de distâncias

- Considere a RA de Santa Maria com 201 Setores Censitários.
 - 1. Inicialização: Selecione 2 setores aleatoriamente
 - 2. Obtenha a região de abrangência com base na matriz de distâncias
 - 3. Atualize o CT para o "ponto central" ponderado

- Considere a RA de Santa Maria com 201 Setores Censitários.
 - 1. Inicialização: Selecione 2 setores aleatoriamente
 - 2. Obtenha a região de abrangência com base na matriz de distâncias
 - 3. Atualize o CT para o "ponto central" ponderado

- Considere a RA de Santa Maria com 201 Setores Censitários.
 - 1. Atualize a região de abrangência
 - 2. Atualize o CT para o "ponto central" ponderado
 - 3. E repita esses passos até a convergência

- Considere a RA de Santa Maria com 201 Setores Censitários.
 - 1. Atualize a região de abrangência
 - 2. Atualize o CT para o "ponto central" ponderado
 - 3. E repita esses passos até a convergência

- Considere a RA de Santa Maria com 201 Setores Censitários.
 - 1. Atualize a região de abrangência
 - 2. Atualize o CT para o "ponto central" ponderado
 - 3. E repita esses passos até a convergência

- Considere a RA de Santa Maria com 201 Setores Censitários.
 - 1. Atualize a região de abrangência
 - 2. Atualize o CT para o "ponto central" ponderado
 - 3. E repita esses passos até a convergência

- Considere a RA de Santa Maria com 201 Setores Censitários.
 - 1. Atualize a região de abrangência
 - 2. Atualize o CT para o "ponto central" ponderado
 - 3. E repita esses passos até a convergência

- Considere a RA de Santa Maria com 201 Setores Censitários.
 - 1. Atualize a região de abrangência
 - 2. Atualize o CT para o "ponto central" ponderado
 - 3. E repita esses passos até a convergência

- Considere a RA de Santa Maria com 201 Setores Censitários.
 - 1. Atualize a região de abrangência
 - 2. Atualize o CT para o "ponto central" ponderado
 - 3. E repita esses passos até a convergência

- Considere a RA de Santa Maria com 201 Setores Censitários.
 - 1. Atualize a região de abrangência
 - 2. Atualize o CT para o "ponto central" ponderado
 - 3. E repita esses passos até a convergência

Etapa 2: Acrescentar +1 CT em 1 RA

E agora? Em qual RA acrescentar 1 CT?
Relembrando: Minimizar a soma das distâncias:

$$\min \sum_{i=1}^n d_i = \min \sum_{j=1}^J w_j d_j$$

Vamos encontrar o pior caso (RA com maior função objetivo):

RA	Soma_Dist
1a	60
1 b	72
2	70
3	65
31	20

Como otimizar a disposição de 3 CT na RA?
k-means de novo! Agora com 3 pontos de partida ...

Em suma: A solução

Objetivo: Minimizar a soma das distâncias percorridas por <u>todos</u> os habitantes da RA para chegar até o CT via transporte público.

Etapas da solução:

- 1. Alocar primeiramente 31 CT, 1 em cada RA;
- 2. Alocar +1 CT considerando a configuração dos 31CT;
- 3. Alocar +1 CT considerando a configuração dos 32CT;
- 4. ...
- 5. Alocar +1CT considerando a configuração dos 39 CT.

Naturalmente, as localizações encontradas devem ser avaliadas e um ajuste fino realizado. Por exemplo, mover o ponto ótimo para perto de equipamentos públicos (escola, CRAS, CREAS).

Considerações Finais

Vantagens da metodologia proposta:

- 1. Simplicidade metodológica
- 2. Algoritmo é válido para alocação de qualquer número de CT
- 3. O atributo do peso pode ser explorado para incluir outras informações relevantes: fatores sócio-econômicos, vulnerabilidade, população por faixa etária

Considerações Finais

Vantagens da metodologia proposta:

- 1. Simplicidade metodológica
- 2. Algoritmo é válido para alocação de qualquer número de CT
- O atributo do peso pode ser explorado para incluir outras informações relevantes: fatores sócio-econômicos, vulnerabilidade, população por faixa etária

Desvantagens:

 A obtenção da matriz de distâncias via malha tem um custo computacional ou financeiro elevado. Como alternativa, propõe-se a distância euclidiana.

Considerações Finais

Vantagens da metodologia proposta:

- 1. Simplicidade metodológica
- 2. Algoritmo é válido para alocação de qualquer número de CT
- O atributo do peso pode ser explorado para incluir outras informações relevantes: fatores sócio-econômicos, vulnerabilidade, população por faixa etária

Desvantagens:

 A obtenção da matriz de distâncias via malha tem um custo computacional ou financeiro elevado. Como alternativa, propõe-se a distância euclidiana.

Softwares utilizados:

- 1. Matriz de distâncias: SAS e R
- 2. k-means: SAS e linguagem C

Obrigada!

Equipe:

Prof. Alan da Silva - EST-UnB, Alisson Silva - EST-UnB/CODEPLAN, Prof^a Ana Maria Vasconcelos - EST-UnB/CODEPLAN, Prof. André Cançado - EST-UnB, Profa Andrea Oliveira - MAT-UnB. Bruno Cruz - CODEPLAN, Bruno de Castro - EST-UnB. Kessys de Oliveira - EST-UnB, Patrícia da Silva - CODEPLAN, Prof^a Thais Rodrigues - EST-UnB, Prof. Vinicius Ruela - CIC-UnB.

Obrigada!

Equipe:

Prof. Alan da Silva - EST-UnB, Alisson Silva - EST-UnB/CODEPLAN, Prof^a Ana Maria Vasconcelos - EST-UnB/CODEPLAN, Prof. André Cançado - EST-UnB, Profa Andrea Oliveira - MAT-UnB. Bruno Cruz - CODEPLAN, Bruno de Castro - EST-UnB. Kessys de Oliveira - EST-UnB, Patrícia da Silva - CODEPLAN, Prof^a Thais Rodrigues - EST-UnB, Prof. Vinicius Ruela - CIC-UnB.

Dúvidas, sugestões?

