WIA2005: Algorithm Design and Analysis Semester 2, Session 2016/17

Lecture 3: Divide and Conquer

Learning objectives

- Know and understand the following:
 - Merge sort
 - Quick sort
 - Binary search
 - Powering a number
 - Fibonacci numbers
 - Matrix multiplication

The divide-and-conquer design paradigm

- 1.Divide the problem (instance) into subproblems.
- **2.** Conquer the subproblems by solving them recursively.
- 3. Combine subproblem solutions.

Divide and conquer sorting

- Merge Sort
- Quick Sort

Merge algorithm

```
MERGE(A, p, q, r)
 1 \quad n_1 = q - p + 1
2 n_2 = r - q
3 let L[1..n_1+1] and R[1..n_2+1] be new arrays
4 for i = 1 to n_1
 5 L[i] = A[p+i-1]
 6 for j = 1 to n_2
7 	 R[j] = A[q+j]
8 L[n_1 + 1] = \infty
9 R[n_2 + 1] = \infty
10 i = 1
11 i = 1
12 for k = p to r
13
       if L[i] \leq R[j]
14 	 A[k] = L[i]
15 i = i + 1
16 else A[k] = R[j]
17
           j = j + 1
```

Merge operation

$$A = \begin{bmatrix} 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ ... & 2 & 4 & 5 & 7 & 1 & 2 & 3 & 6 & ... \\ \hline k \\ L & 2 & 4 & 5 & 7 & \infty \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 6 & \infty \end{bmatrix}$$

$$i \qquad \qquad i \qquad i \qquad i \qquad \qquad i \qquad i \qquad i \qquad \qquad i \qquad$$

Merge operation Cont...

(h)

Merge sort algorithm

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

Merge sort operation

Merge sort

- 1.Divide: Trivial.
- **2.** Conquer: Recursively sort 2 subarrays.
- 3. Combine: Linear-time merge.

Merge sort

- 1.Divide: Trivial.
- **2.** Conquer: Recursively sort 2 subarrays.
- 3. Combine: Linear-time merge.

Master theorem (reprise)

$$T(n) = a T(n/b) + f(n)$$

$$CASE 1: f(n) = O(n^{\log_b a - \varepsilon}), \text{ constant } \varepsilon > 0$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a}).$$

$$CASE 2: f(n) = \Theta(n^{\log_b a} \log^k n), \text{ constant } k \ge 0$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a} \log^{k+1} n).$$

$$CASE 3: f(n) = \Omega(n^{\log_b a + \varepsilon}), \text{ constant } \varepsilon > 0,$$
and regularity condition
$$\Rightarrow T(n) = \Theta(f(n)).$$

Master theorem (reprise)

$$T(n) = a T(n/b) + f(n)$$

$$CASE 1: f(n) = O(n^{\log_b a - \varepsilon}), \text{ constant } \varepsilon > 0$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a}).$$

$$CASE 2: f(n) = \Theta(n^{\log_b a} \lg^k n), \text{ constant } k \ge 0$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a} \lg^{k+1} n).$$

$$CASE 3: f(n) = \Omega(n^{\log_b a + \varepsilon}), \text{ constant } \varepsilon > 0,$$
and regularity condition
$$\Rightarrow T(n) = \Theta(f(n)).$$

$$Merge sort: a = 2, b = 2 \Rightarrow n^{\log_b a} = n^{\log_2 2} = n$$

$$\Rightarrow CASE 2 (k = 0) \Rightarrow T(n) = \Theta(n \lg n).$$

Quicksort

- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm.
- Sorts "in place" (like insertion sort, but not like merge sort).
- Very practical (with tuning).

Example

Quicksort an *n*-element array:

1.Divide: Partition the array into two subarrays around a *pivot* x such that elements in lower subarray $\le x \le$ elements in upper subarray.

- **2.** Conquer: Recursively sort the two subarrays.
- 3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

Partitioning subroutine

```
Partition(A, p, q) \triangleleft A[p ...q]
   x = A[p] \triangleleft pivot = A[p]
                                                Running time
    i = p
                                                =O(n) for n
    for j = p + 1 to q
                                                elements.
        do if A[j] \leq x
                then i = i + 1
                        exchange A[i] \leftrightarrow A[j]
    exchange A[p] \leftrightarrow A[i]
    return i
Invariant:
                          \leq \chi
                                         \geq \chi
```


6	10	13	5	8	3	2	11
6	5	13	10	8	3	2	11
6	5	3	10	8	13	2	11
6	5	3	2	8	13	10	11
2	5	3	6	8	13	10	11

į

Pseudocode for quicksort

```
Quicksort(A, p, r)

if p < r

then q \leftarrow \text{Partition}(A, p, r)

Quicksort(A, p, q-1)

Quicksort(A, p, q+1, r)
```

Initial call: QUICKSORT(A, 1, n)

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let T(n) = worst-case running time on an array of n elements.

Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$= \Theta(1) + T(n-1) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$= \Theta(n^2) \qquad (arithmetic series)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn T(n)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

Worst-case recursion tree

$$T(n) = T(0) + T(n-1) + cn$$

$$T(0) \quad c(n-1) \qquad \Theta\left(\sum_{k=1}^{n} k\right) = \Theta(n^2)$$

$$T(0) \quad c(n-2) \qquad \Theta(1)$$

Worst-case recursion tree

$$T(n) = T(0) + T(n-1) + cn$$

$$\Theta(1) \quad c(n-1) \qquad \Theta\left(\sum_{k=1}^{n} k\right) = \Theta(n^2)$$

$$\Theta(1) \quad c(n-2) \qquad T(n) = \Theta(n) + \Theta(n^2)$$

$$= \Theta(n^2)$$

Best-case analysis

(For intuition only!)

If we're lucky, Partition splits the array evenly:

$$T(n) = 2T(n/2) + \Theta(n)$$

= $\Theta(n \lg n)$ (same as merge sort)

What if the split is always $\frac{1}{10}$: $\frac{9}{10}$?

$$T(n) = T\left(\frac{1}{10}n\right) + T\left(\frac{9}{10}n\right) + \Theta(n)$$

What is the solution to this recurrence?

T(n)

More intuition

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky,

$$L(n) = 2U(n/2) + \Theta(n)$$
 lucky
 $U(n) = L(n-1) + \Theta(n)$ unlucky

Solving:

$$L(n) = 2(L(n/2 - 1) + \Theta(n/2)) + \Theta(n)$$

$$= 2L(n/2 - 1) + \Theta(n)$$

$$= \Theta(n \lg n) \quad Lucky!$$

How can we make sure we are usually lucky?

Randomized quicksort

IDEA: Partition around a *random* element.

- Running time is independent of the input order.
- No assumptions need to be made about the input distribution.
- No specific input elicits the worst-case behavior.
- The worst case is determined only by the output of a random-number generator.

- Find an element in a sorted array:
- 1. Divide: Check middle element.
- **2.** Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

- Find an element in a sorted array:
- 1.Divide: Check middle element.
- **2.** Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.
- Example: Find 9

•

- Find an element in a sorted array:
- 1. Divide: Check middle element.
- **2.** Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.
- Example: Find 9

- Find an element in a sorted array:
- 1.Divide: Check middle element.
- **2.** Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.
- Example: Find 9
 - 3 5 7 8

- Find an element in a sorted array:
- 1.Divide: Check middle element.
- **2.** Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.
- Example: Find 9
 - 3 5 7 8

- Find an element in a sorted array:
- 1.Divide: Check middle element.
- **2.** Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.
- Example: Find 9
 - 35781215

- Find an element in a sorted array:
- 1.Divide: Check middle element.
- **2.** Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.
- Example: Find 9
 - 35781215

Recurrence for binary search

Recurrence for binary search

$$n^{\log_b a} = n^{\log_2 1} = n^0 = 1 \Rightarrow \text{CASE 2 } (k = 0)$$

 $\Rightarrow T(n) = \Theta(\lg n).$

Powering a number

Problem: Compute a^n , where $n \in \mathbb{N}$.

Naive algorithm: $\Theta(n)$.

Powering a number

Problem: Compute a^n , where $n \in \mathbb{N}$.

Naive algorithm: $\Theta(n)$.

Divide-and-conquer algorithm:

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

Powering a number

Problem: Compute a^n , where $n \in \mathbb{N}$.

Naive algorithm: $\Theta(n)$.

Divide-and-conquer algorithm:

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

$$T(n) = T(n/2) + \Theta(1) \implies T(n) = \Theta(\lg n)$$
.

Fibonacci numbers

Recursive definition:

$$F_{n} = \begin{cases} 1 & \text{if } n = 0; \\ 2 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

$$0 \quad 1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad L$$

Fibonacci numbers

Recursive definition:

$$F_{n} = \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

$$0 \quad 1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad \mathsf{L}$$

Naive recursive algorithm: $\Omega(\phi^n)$ (exponential time), where $\phi = (1+\sqrt{5})/2$ is the *golden ratio*.

Computing Fibonacci numbers

Bottom-up:

- Compute $F_0, F_1, F_2, ..., F_n$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

Computing Fibonacci numbers

Bottom-up:

- Compute $F_0, F_1, F_2, ..., F_n$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

Naive recursive squaring:

 $F_n = \phi^n / \sqrt{5}$ rounded to the nearest integer.

- Recursive squaring: $\Theta(\lg n)$ time.
- This method is unreliable, since floating-point arithmetic is prone to round-off errors.

Recursive squaring

Theorem:
$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n .$$

Algorithm: Recursive squaring.

Time =
$$\Theta(\lg n)$$
.

Proof of theorem. (Induction on *n*.)

Base
$$(n = 1)$$
: $\begin{bmatrix} F_2 & F_1 \\ F_1 & F_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^1$.

Recursive squaring

Inductive step $(n \ge 2)$:

$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} F_n & F_{n-1} \\ F_{n-1} & F_{n-2} \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n$$

Matrix Multiplication

Suppose that we partition each of A, B, and C into four $n/2 \times n/2$ matrices

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}, \tag{4.9}$$

so that we rewrite the equation C = A.B as

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}. \tag{4.10}$$

Equation (4.10) corresponds to the four equations

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}, \qquad (4.11)$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}, \qquad (4.12)$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}, \qquad (4.13)$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}. \qquad (4.14)$$

Matrices simple algorithm

```
n = A.rows
   let C be a new n \times n matrix
   if n == 1
        c_{11} = a_{11} \cdot b_{11}
   else partition A, B, and C as in equations (4.9)
        C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
6
             + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
        C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
             + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
        C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
8
             + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
        C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
9
             + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
```

Running time

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$
 (4.17)

From master methods:

$$T(n) = \Theta(n^3).$$

Reference

- MIT open courseware, Introduction to Algorithms, 2005.
- Cormen, Lieserson and Rivest, Introduction to Algorithms,
 Third Edition, MIT Press, 2009.

In the next lecture...

Lecture 4: Probabilistic Analysis and randomize algorithm