	Codon Usage For Organism Clustering IBM Unsupervised Machine Learning: Clustering Course Assignment Vladas Alesius 2021-06-27 Main Objective The purpose of this study is to see how different clustering approaches work to cluster organisms using their codon information. Codons are triplets of nucleotides (organic units that compose RNA and DNA), and they encode information within genetic material. The primary interest is training a model that is capable of telling between different organism kingdoms - in other words, the focus is clustering.
	 k-means Agglomerative Clustering Mean Shift In all three cases, the best parameters will be searched. For k-means, it will be the number of clusters. Agglomerative Clustering model will be tuned using the number of clusters and the linkage type. Finally, we will search for the best bandwidth for Mean Shift. These models differ in scalability - some are better for different numbers of features or samples. Also, they might have different usecases - for example, some models might perform better on datasets with uneven cluster sizes than others (such as Mean Shift). Data properties will be checked in below parts. After fitting the models, their efficiency will be compared using several metrics. Calculating Adjusted Rand Score and Contingency Matrix
	will show how well the calculated clusters align with the "true" labels. However, Silhouette Coefficient and Calinski-Harabasz index do not require ground truth labels. Additionally, Principal Component Analysis will be applied on the dataset to reduce dimensionality and avoid multicollinearity. The number of components will be selected to explain as much variance as possible, while keeping few dimensions. For PCA, data transformation and standardization are necessary, and will be performed in later parts. As per the description, the dataset contains "codon usage frequencies in the genomic coding DNA of a large sample of diverse organisms from different taxa tabulated in the CUTG database." Please see Data Exploration part for further details. The codon dataset was used in the following publications: • Khomtchouk BB: 'Codon usage bias levels predict taxonomic identity and genetic composition'. bioRxiv, 2020, doi: 10.1101/2020.10.26.356295 • Nakamura Y, Gojobori T, Ikemura T: 'Codon usage tabulated from international DNA sequence databases: status for the year 2000'.
In [1]:	Nucleic Acids Research, 2000, 28:292. We will start with exploratory data analysis, to see how our variables are distributed and correlated, what transformations might be necessary. Data Description We will start with importing necessary modules:
<pre>In [2]: In [3]: Out[3]: In [4]: Out[4]:</pre>	from sklearn.metrics import adjusted_rand_score, silhouette_score, calinski_harabasz_score from matplotlib import pyplot as plt The dataset contains more than 13000 entries, the first rows are presented below: df = pd.read_csv(r"C:\Users\Lenovo\Desktop\ibm_machine_learning\4_unsupervised_machine_learning\week3\assignmer df.shape (13028, 69) df.head() Kingdom DNAtype SpeciesID Ncodons SpeciesName UUU UUC UUA UUG CUU CGG AGA AGG GAU
	0 vrl 0 100217 1995 Epizootic necrosis virus recrosis virus necrosis virus 0.01203 0.0055 0.01203 0.01203 0.01203 0.01303 0.03559 0.01003 1 vrl 0 100220 1474 Bohle iridovirus 0.02714 0.01357 0.00688 0.00678 0.00407 0.00136 0.01696 0.01221 2 vrl 0 100755 4862 Sweet potato leaf curl virus 0.01974 0.0218 0.01357 0.01543 0.00782 0.00596 0.01974 0.02489 0.03126 3 vrl 0 100880 1915 Northern cereal mosaic virus 0.01275 0.02245 0.01699 0.01567 0.00366 0.01410 0.01671 0.03760 4 vrl 0 100887 2831 Soil-borne cereal mosaic virus 0.01371 0.00767 0.03679 0.01380 0.01734 0.01440 0.01418 5 rows × 69 columns
	 Column 1: Kingdom Column 2: DNAtype Column 3: SpeciesID Column 4: Ncodons Column 5: SpeciesName Columns 6-69: codon (header: nucleotide bases; entries: frequency of usage (5 digit floating point number)) The 'Kingdom' is a 3-letter code corresponding to the group of organisms: 'arc'(archaea), 'bct'(bacteria), 'phg'(bacteriophage), 'plm' (plasmid), 'pln' (plant), 'inv' (invertebrate), 'vrt' (vertebrate), 'mam' (mammal), 'rod' (rodent), 'pri' (primate), and 'vrl'(virus) sequence entries. The 'DNAtype' is denoted as an integer for the genomic composition in the species: 0-genomic, 1-mitochondrial, 2-chloroplast, 3-cyanelle,
	4-plastid, 5-nucleomorph, 6-secondary_endosymbiont, 7-chromoplast, 8-leucoplast, 9-NA, 10-proplastid, 11-apicoplast, and 12-kinetoplast. The species identifier ('SpeciesID') is an integer, which uniquely indicates the entries of an organism. The number of codons ('Ncodons') is the algebraic sum of the numbers listed for the different codons in an entry. Codon frequencies are normalized to the total codon count, hence the number of occurrences divided by 'Ncodons' is the codon frequencies listed in the data file. The species' name ('SpeciesName') is represented in strings purged of 'comma' (which are now replaced by 'space'). This is a descriptive label of the name of the species for data interpretations. Lastly, the codon frequencies ('codon') including 'UUU', 'UUA', 'UUG', 'CUU', etc., are recorded as floats (with decimals in 5 digits).
In [5]: In [6]: Out[6]:	The reduced dataset is smaller by about a third:
<pre>In [7]: Out[7]: In [8]: Out[8]:</pre>	float64 62 object 4 int64 3 dtype: int64 Examining data types shows that some codon related variables are of object type, because of non-numeric entries: df.dtypes[:10]
In [9]: In [10]: In [11]:	<pre>UUC</pre>
Out[11]: In [12]: Out[12]:	According to the dataset description, 'Kingdom' field contains information about the species classification. However, its entries might mean not only actual biological kingdom, but some lower taxonomic units as well (such as belonging to primates, rodents etc.). In order to be consistent, all entries will be assigned the actual biological kingdom they belong to: df[['Kingdom']].value_counts()
In [13]: In [14]: Out[14]:	<pre>mam 102 pri 83 rod 59 plm 18 dtype: int64 df['Kingdom'].replace(['phg', 'plm', 'inv', 'vrt', 'mam', 'rod', 'pri', 'bct', 'arc'],</pre>
In [15]: In [16]: In [17]:	For clustering, only codon data will be used, so the rest of columns will be dropped: df = df.iloc[:, 5:] The histograms below show that some codon columns are skewed and/or have multiple modes. In other words, their distribution differs from normal, which is desirable in data analysis (such as Principal Component Analysis, which we will demonstrate below):
Out[17]:	
In [18]: Out[18]:	
	600 - 200 - 200 -
In [19]: Out[19]:	<pre>df_s = pd.DataFrame(df_s, columns=df.columns) df_s.head()</pre>
In [20]: Out[20]:	<axessubplot:> -100</axessubplot:>
	AUU 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
In [21]:	tutorial, "PCA is used to decompose a multivariate dataset in a set of successive orthogonal components that explain a maximum amount of the variance." It will help to create uncorrelated variables (linear combinations of dataset features) and reduce their number. Since we have 64 features in total, we will try PCA with a number of components between 1 and 64, and see what percentage of variance each number explains: pca_list = list()
In [23]: Out[23]:	<pre><axessubplot:> 10 0.9 0.8 0.7 0.6 </axessubplot:></pre>
In [24]: Out[24]:	_
	2 3 0.554516 3 4 0.592152 4 5 0.620262 5 6 0.647223 6 7 0.668581 7 8 0.689410 8 9 0.707205 9 10 0.723359 10 11 0.738317
In [25]:	kingdoms_le = le.fit_transform(kingdoms) As we can see from the 3D chart below, the kingdoms tend to overlap, there are no clear boundaries between them. This can make it
In [50]:	harder to cluster the organisms. However, we use only 3 first principal components to visualize the data that explain only about 55% of variance: *matplotlib notebook from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(1, figsize=(8, 6)) ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) PCAmod = PCA(n_components=3) X = PCAmod.fit_transform(df_s) ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=kingdoms_le, cmap=plt.cm.nipy_spectral, edgecolor='k')
Out[50]:	Model Training As described in the introduction, we will train three clustering models - k-means, Agglomerative Clustering and Mean Shift. We will assess their performance on telling between kingdoms of different organisms. Their performance will be assessed using four different metrics - Silhouette Coefficient, Calinski-Harabasz Index, Contingency Matrix and Adjusted Rand Score. Among those metrics, Contingency Matrix and Adjusted Rand Score will require ground truth labels, for which we will use kingdom labels prepared above. Other metrics - Silhouette Coefficient and Calinski-Harabasz Index - require no such labels. These metrics are shortly described below.
In [51]:	Adjusted Rand Score is proportional to the number of sample pairs whose labels are the same in both predicted and true labels, or are different in both. It can be between -1 and 1 (perfect labeling is scored 1), 0 meaning random label assignments. Silhouette Coefficient is bounded between -1 for incorrect clustering and +1 for highly dense clustering. Scores around zero indicate overlapping clusters. Calinski-Harabasz index is the ratio of the sum of between-clusters dispersion and of within-cluster dispersion for all clusters (where dispersion is defined as the sum of distances squared). A higher Calinski-Harabasz score relates to a model with better defined clusters. Contingency matrix reports the intersection cardinality for every true/predicted cluster pair. Now let's run PCA with 12 components, as described above. This processed dataset will be used for clustering below: PCAmod = PCA (n_components=12, random_state=42) df_s_pca = PCAmod.fit_transform(df_s)
In [52]: Out[52]:	df_s_pca.head()
In [45]: Out[45]:	<pre><axessubplot:> </axessubplot:></pre>
	k-means According to Sklearn tutorial, "The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance, minimizing a criterion known as the inertia or within-cluster sum-of-squares (). This algorithm requires the number of clusters to be specified. It scales well to large number of samples and has been used across a large range of application areas in many different fields. The k-means algorithm divides a set of N samples X into K disjoint clusters C, each described by the mean of the samples in the cluster. The means are commonly called the cluster "centroids"; note that they are not, in general, points from X, although they live in the same space."
In [53]:	We will run multiple k-means clustering models on the dataset processed with PCA above, with the number of clusters ranging from 1 to 10. Apart from the performance metrics described above, we will compute inertia (within-cluster sum-of-squares criterion - a measure of how internally coherent clusters are; lower values are better) for each cluster number. km_lst = [] for c in range(1,11): km = KMeans (n_clusters=c, random_state=42) km = km.fit (df_s_pca) try: sil_score = silhouette_score(df_s_pca, km.labels_, metric='euclidean') ch_score = calinski_harabasz_score(df_s_pca, km.labels_) except: sil_score = 0 ch_score = 0
In [54]: Out[54]:	<pre>km_lst.append([c, round(km.inertia_, 0), adjusted_rand_score(kingdoms, km.labels_), sil_score, round(ch_score) km_df = pd.DataFrame(km_lst, columns=['cluster_no', 'inertia', 'adj_rand', 'sil_score', 'ch_score']) Inertia is the lowest for the maximum number of clusters (10). Adjusted Rand Score is the highest for a 5-cluster model (0.18), while Silhouette and CH scores are the highest for a 2-cluster model (0.32 and 5891).</pre> <pre>km_df</pre>
	2 3 220093.0 0.079800 0.237143 4758.0 3 4 196736.0 0.125795 0.192298 3915.0 4 5 184121.0 0.177546 0.201188 3296.0 5 6 174729.0 0.169620 0.168378 2877.0 6 7 166165.0 0.161284 0.165860 2601.0 7 8 159107.0 0.148920 0.168824 2386.0 8 9 153172.0 0.148758 0.169590 2214.0 9 10 148325.0 0.133827 0.153553 2065.0 As expected, inertia decreases together with a number of clusters. Calinski-Harabasz score is the highest for 2 clusters (the best number),
In [52]:	and decreases for a higher number. $ax = km_df.plot(x="cluster_no", y="inertia", legend=False)$ $ax2 = ax.twinx()$ $km_df.plot(x="cluster_no", y="ch_score", ax=ax2, legend=False, color="r")$ $ax.figure.legend()$ $plt.show()$ inertia th_score 6000 400000 400000 400000
In [54]:	300000 250000 200000 150000 2
Out[54]:	0.30 - adj_rand si_score 0.25 - 0.15 - 0.10 - 0.05 - 0.00
In [73]: Out[73]:	<pre>km_2 = km_2.fit(df_s_pca) pd.DataFrame(km_2.labels_).value_counts()</pre>
In [74]: Out[74]:	pd.crosstab(kingdoms, km_2.labels_)
	The next model type we will examine is Agglomerative Clustering. According to Sklearn tutorial, "Hierarchical clustering is a general family of clustering algorithms that build nested clusters by merging or splitting them successively. This hierarchy of clusters is represented as a tree (or dendrogram). The root of the tree is the unique cluster that gathers all the samples, the leaves being the clusters with only one sample. () The AgglomerativeClustering object performs a hierarchical clustering using a bottom up approach: each observation starts in its own cluster, and clusters are successively merged together. The linkage criteria determines the metric used for the merge strategy: Ward minimizes the sum of squared differences within all clusters. It is a variance-minimizing approach and in this sense is similar to the k-means objective function but tackled with an agglomerative hierarchical approach. Maximum or complete linkage minimizes the maximum distance between observations of pairs of clusters.
In [55]:	<pre>ag_lst = [] for l in linkages: for c in range(1, 11): ag = AgglomerativeClustering(n_clusters=c, linkage=l) ag = ag.fit(df_s) try:</pre>
In [56]:	<pre>sil_score = silhouette_score(df_s_pca, ag.labels_, metric='euclidean')</pre>
<pre>In [57]: In [58]: In [59]: In [60]: Out[60]:</pre>	<pre>max_ch = ag_df[ag_df.ch_score == np.max(ag_df.ch_score)] max_ag = pd.concat([max_rand, max_sil, max_ch]) max_ag linkage cluster_no adj_rand_score sil_score ch_score 4 ward 5 0.180124 0.153936 2709.721602 11 complete 2 0.034551 0.326619 4056.185164</pre>
In [74]: In [79]: Out[79]:	The charts below show how each metric value changes for a linkage type and a number of clusters. Adjusted Rand Score is the highest for a 5-cluster ward linkage model, and decreases for a bigger cluster number. However, in case of a complete linkage, its value rises until 3 clusters and remains almost the same for more. sns.lineplot(x="cluster_no", y="value", hue="linkage", data=ag_df2[ag_df2.variable == "adj_rand_score"])
	o.150 0.125 0.000
In [80]: Out[80]:	
In [81]: Out[81]:	As for Silhouette Coefficient, Calinski-Harabasz score reaches its maximum value for 2-cluster models and decreases afterwards. However, its value varies among linkage types - thousands for ward and complete linkage vs close to zero for average and single linkage. sns.lineplot(x="cluster_no", y="value", hue="linkage", data=ag_df2[ag_df2.variable == "ch_score"]) <a< th=""></a<>
	Since our metrics are maximized by three different parameter choices, we will select the best model based on parameter majority vote - 2
In [86]: Out[86]: In [87]:	of the selected models are 2-cluster, and 2 are based on ward linkage. So we will select a 2-cluster ward linkage model, that provides the best Calinski-Harabasz score, and 2nd best values for Silhouette Coefficient and Adjusted Rand Score. Both clusters are of similar size: ag_ward_2 = AgglomerativeClustering(n_clusters=2, linkage="ward") ag_ward_2 = ag_ward_2.fit(df_s) pd.DataFrame(ag_ward_2.labels_).value_counts() 0
In [87]: Out[87]:	
-	According to description in Sklearn tutorial, "MeanShift clustering aims to discover blobs in a smooth density of samples. It is a centroid based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. () The algorithm automatically sets the number of clusters, instead of relying on a parameter bandwidth, which dictates the size of the region to search through. This parameter can be set manually, but can be estimated using the provided estimate_bandwidth function, which is called if the bandwidth is not set." Its bandwidth parameter will be estimated using a special function. It will be computed using different quantiles of pairwise distances between the dataset points. Experiments show that large enough quantiles fail to find any clusters in this case, so the quantiles do not exceed 0.3. [quantiles = np.linspace(0.02, 0.3, 15)]
In [61]:	based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. () The algorithm automatically sets the number of clusters, instead of relying on a parameter bandwidth, which dictates the size of the region to search through. This parameter can be set manually, but can be estimated using the provided estimate_bandwidth function, which is called if the bandwidth is not set." Its bandwidth parameter will be estimated using a special function. It will be computed using different quantiles of pairwise distances between the dataset points. Experiments show that large enough quantiles fail to find any clusters in this case, so the quantiles do not exceed 0.3.

Service of the control of the contro	[63]:	<pre>ms_lst = [] for b in bandwidths: ms = MeanShift(bandwidth=b) ms.fit(df_s_pca) try: sil_score = silhouette_score(df_s_pca, ms.labels_, metric='euclidean') ch_score = calinski_harabasz_score(df_s_pca, ms.labels_) except: sil_score = 0 ch_score = 0 ch_score = 0 categs = pd.Series(ms.labels_).nunique() ms_lst.append([b, categs, adjusted_rand_score(kingdoms, ms.labels_), sil_score, ch_score]) ms_df = pd.DataFrame(ms_lst, columns=['bandwidth', 'clust_no', 'adj_rand_score', 'sil_score', 'ch_score'])</pre>
1	Ī	Again, different bandwidth values optimize different metrics. Adjusted Rand Score is the highest for the model with 92 clusters (0.14) - this model would be hard to use and interpret, so we will pay more attention to other metrics. Silhouette Coefficient is the highest for models with 2 clusters (0.25), while Calinski-Harabasz score is the highest for a 7-cluster model (686). ms_df bandwidth clust_no adj_rand_score sil_score ch_score quantile 0 4.038823 92 0.142449 0.004683 196.385013 0.02 1 4.576521 38 0.095270 0.014293 265.823592 0.04
The companies and the companies of the c		3 5.285271 14 0.066663 0.068446 546.211831 0.08 4 5.548612 7 0.014155 0.093321 686.239630 0.10 5 5.785990 7 0.014175 0.094213 684.974095 0.12 6 6.004099 5 0.000849 0.045111 180.613098 0.14 7 6.203698 5 0.000822 0.043329 175.593573 0.16 8 6.388517 3 -0.002696 0.126270 200.481904 0.18 9 6.562058 2 0.000438 0.251856 25.768293 0.20
The contraction of the contracti		12 7.037239 1 0.000000 0.000000 0.000000 0.26 13 7.185963 1 0.000000 0.000000 0.28 14 7.330660 1 0.000000 0.000000 0.000000 0.30 max_rand_ms = ms_df[ms_df.adj_rand_score == np.max(ms_df.adj_rand_score)] max_sil_ms = ms_df[ms_df.sil_score == np.max(ms_df.sil_score)]
The debt below sow the with electricated and sown increases which is narrow of distinct point of these improvements, Calmade lambs are side out to accome the electricate of the control o	[70]: [71]: [71]:	max_ms = pd.concat([max_rand_ms, max_sil_ms, max_ch_ms]) bandwidth clust_no adj_rand_score sil_score ch_score quantile 0 4.038823 92 0.142449 0.004683 196.385013 0.02 9 6.562058 2 0.000438 0.251856 25.768293 0.20 10 6.727673 2 0.000438 0.251856 25.768293 0.22
Nevertice analyse to 2 -dutar mode trap gover the highest allowed to Confidence and Confidence a	-	The plot below shows that while Adjusted Rand Score increases with the number of clusters (which shows improvement), Calinski-Harabas and Silhouette scores decrease (a sign of worse performance) after the peak cluster number: ax = ms_df.plot(x="clust_no", y="ch_score", legend=False, color="g") ax2 = ax.twinx() ms_df.plot(x="clust_no", y=["adj_rand_score", "sil_score"], ax=ax2, legend=False) ax.figure.legend() plt.show()
Now let's analyse that is alter model that give the highest sibbulants Cariffords The Committee of the Co		500 - 600 - 0.20 400 - 300 - 0.15 - 0.10 - 0.05
the great in Life Could be a comment position of the comment of t	98]:	Now let's analyze the 2-cluster model that gave the highest Silhouette Coefficient: ms_02 = MeanShift (bandwidth=bandwidths[9], bin_seeding=False) ms_02 = ms_02.fit (df_s_pca) The vast majority of samples fall under cluster 0, only 25 of them are clustered separately. Both clusters contain organisms from all kingdoms:
Model Selection In the analysis above, we tried three different dustering algorithms: Is means. Agglomerative Clustering and Mean Shift. Results for different parameters were compared for each algorithm and the bird are (or their combination) selected. For kineson 2, discusser algorithm with bethe selected must be bird and a few combinations of the selected for Cardinal Analysis of the State of Cardinal Analysis of Cardinal	99]:	0 9240 1 25 dtype: int64 pd.crosstab(kingdoms, ms_02.labels_) col_0 0 1 Kingdom anm 1625 5 mon 3051 10
4809 and Adjusted Rand Score of 0.65. For Mean Shift, 2 cluster model was again selected, its Silhouette Coefficient is 0.25, Calinski Harabasz score around 26, and Adjusted Rand Score; Jook to 0. Among those three selections, k-means 2-cluster model provides the best results and is thus selected as the final one. Key Findings And Insights As discussed above, k-means algorithm is the most cuitable for this analysis. However, its efficiency is all like Accord values for Silhouette and Adjusted Rand scores would be close to 1. Low values demonstrate that the selected algorithm does a relatively poor job in finding closers. The plot below shows that there is no lower-density area that would separate the clusters obtained with k-means model: 10		Model Selection In the analysis above, we tried three different clustering algorithms - k-means, Agglomerative Clustering and Mean Shift. Results for different parameters were compared for each algorithm and the best one (or their combination) selected. For k-means, 2-cluster algorithm was the best selection, with Silhouette Coefficient of 0.32, Calinski-Harabasz score of 5891 and Adjusted Rand Score of 0.08.
The plot below shows that there is no lower density area that would separate the clusters obtained with k means model: 10		4509 and Adjusted Rand Score of 0.05. For Mean Shift, 2-cluster model was again selected. Its Silhouette Coefficient is 0.25, Calinski-Harabasz score - around 26, and Adjusted Rand Score - close to 0. Among those three selections, k-means 2-cluster model provides the best results and is thus selected as the final one. Key Findings And Insights As discussed above, k-means algorithm is the most suitable for this analysis. However, its efficiency is still low. Good values for Silhouette and Adjusted Rand scores would be close to 1. Low values demonstrate that
This is in line with our previous observation of overlapping organism kingdoms. For example, k-means clusters ha a very different number of viruses (2601 vs 450), while the counts for other kingdoms are very similar. A similar pattern can be observed the Agglomerative Clustering model, where one cluster contains much more virus samples (2029 vs 1022), while the other cluster of the two has more animals (1185 vs 445) and moneros (1900 vs 1161). Another similarity between the results for those two algorithms is a similar cluster size. k-means algorithm split the dataset into clusters of 5742 and 3523, while Agglomerative Clustering provides counts of 4870 and 4395. Mean Shift clusters almost all samples into one cluste keeping only 25 entries separately (so it has done the worst job in clustering). Suggestions Relatively poor results of our clustering models might encourage us to say that codon information is not suitable for organism clustering However, it is worth considering some possible model improvements, before making the final conclusion. Firstly, we used only genomic DNA data, skipping other types. The analysis might be repeated with DNA data of all types. Also, it might tworth adding some other features, that might cluster organisms well together with codon frequencies. Ground truth labels (in our case - kingdoms) is a result of a somewhat arbitrary choice. They were remade to keep taxonomic consistency but we might have used the initial labels. After the initial analysis, we might regroup the samples into e.g. viruses and all the rest. Also, we selected 12 PCA components (given 64 codon features). Changing the number of components might yield different results. Reducing the component number will make us lose some information, and using more components will make more susceptible to "the curse of dimensionality", so experimenting with several numbers might be useful.		The plot below shows that there is no lower-density area that would separate the clusters obtained with k-means model: le = LabelEncoder() labels_le = le.fit_transform(km_2.labels_) %matplotlib notebook from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(1, figsize=(4, 3)) ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) PCAmod = PCA(n_components=3) X = PCAmod.fit_transform(df_s) ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=labels_le, cmap=plt.cm.nipy_spectral,
This is in line with our previous observation of overlapping organism kingdoms. Although clustering power is low, our clusters still make some difference between organism kingdoms. For example, k-means clusters ha a very different number of viruses (2601 vs 450), while the counts for other kingdoms are very similar. A similar pattern can be observed the Agglomerative Clustering model, where one cluster contains much more virus samples (2029 vs 1022), while the other cluster of the two has more animals (1185 vs 445) and moneros (1900 vs 1161). Another similarity between the results for those two algorithms is a similar cluster size. k-means algorithm split the dataset into clusters of 5742 and 3523, while Agglomerative Clustering provides counts of 4870 and 4395. Mean Shift clusters almost all samples into one cluste keeping only 25 entries separately (so it has done the worst job in clustering). Suggestions Relatively poor results of our clustering models might encourage us to say that codon information is not suitable for organism clustering However, it is worth considering some possible model improvements, before making the final conclusion. Firstly, we used only genomic DNA data, skipping other types. The analysis might be repeated with DNA data of all types. Also, it might be worth adding some other features, that might cluster organisms well together with codon frequencies. Ground truth labels (in our case - kingdoms) is a result of a somewhat arbitrary choice. They were remade to keep taxonomic consistency but we might have used the initial labels. After the initial analysis, we might regroup the samples into e.g. viruses and all the rest. Also, we selected 12 PCA components (given 64 codon features). Changing the number of components might yield different results. Reducing the component number will make us lose some information, and using more components will make more susceptible to "the curse of dimensionality", so experimenting with several numbers might be useful. Furthermore, using other clu		10.0- 7.5- 5.0- 2.5- 0.0- -2.5- -5.0
two has more animals (1185 vs 445) and moneros (1900 vs 1161). Another similarity between the results for those two algorithms is a similar cluster size. k-means algorithm split the dataset into clusters of 5742 and 3523, while Agglomerative Clustering provides counts of 4870 and 4395. Mean Shift clusters almost all samples into one cluste keeping only 25 entries separately (so it has done the worst job in clustering). Suggestions Relatively poor results of our clustering models might encourage us to say that codon information is not suitable for organism clustering However, it is worth considering some possible model improvements, before making the final conclusion. Firstly, we used only genomic DNA data, skipping other types. The analysis might be repeated with DNA data of all types. Also, it might be worth adding some other features, that might cluster organisms well together with codon frequencies. Ground truth labels (in our case - kingdoms) is a result of a somewhat arbitrary choice. They were remade to keep taxonomic consistency but we might have used the initial labels. After the initial analysis, we might regroup the samples into e.g. viruses and all the rest. Also, we selected 12 PCA components (given 64 codon features). Changing the number of components might yield different results. Reducing the component number will make us lose some information, and using more components will make more susceptible to "the curse of dimensionality", so experimenting with several numbers might be useful. Furthermore, using other clustering algorithms is also worth trying, depending on their properties. For example, Gaussian mixture model	- , ,	10 5 0 -5 -10 <mpl_toolkits.mplot3d.art3d.path3dcollection 0x20a81fc5c40="" at=""> This is in line with our previous observation of overlapping organism kingdoms. Although clustering power is low, our clusters still make some difference between organism kingdoms. For example, k-means clusters have a very different number of viruses (2601 vs 450), while the counts for other kingdoms are very similar. A similar pattern can be observed for the counts for other kingdoms are very similar.</mpl_toolkits.mplot3d.art3d.path3dcollection>
Ground truth labels (in our case - kingdoms) is a result of a somewhat arbitrary choice. They were remade to keep taxonomic consistency but we might have used the initial labels. After the initial analysis, we might regroup the samples into e.g. viruses and all the rest. Also, we selected 12 PCA components (given 64 codon features). Changing the number of components might yield different results. Reducing the component number will make us lose some information, and using more components will make more susceptible to "the curse of dimensionality", so experimenting with several numbers might be useful. Furthermore, using other clustering algorithms is also worth trying, depending on their properties. For example, Gaussian mixture model		Another similarity between the results for those two algorithms is a similar cluster size. k-means algorithm split the dataset into clusters of 5742 and 3523, while Agglomerative Clustering provides counts of 4870 and 4395. Mean Shift clusters almost all samples into one cluster keeping only 25 entries separately (so it has done the worst job in clustering). Suggestions Relatively poor results of our clustering models might encourage us to say that codon information is not suitable for organism clustering. However, it is worth considering some possible model improvements, before making the final conclusion. Firstly, we used only genomic DNA data, skipping other types. The analysis might be repeated with DNA data of all types. Also, it might be
	1	Ground truth labels (in our case - kingdoms) is a result of a somewhat arbitrary choice. They were remade to keep taxonomic consistency, but we might have used the initial labels. After the initial analysis, we might regroup the samples into e.g. viruses and all the rest. Also, we selected 12 PCA components (given 64 codon features). Changing the number of components might yield different results. Reducing the component number will make us lose some information, and using more components will make more susceptible to "the curse of dimensionality", so experimenting with several numbers might be useful. Furthermore, using other clustering algorithms is also worth trying, depending on their properties. For example, Gaussian mixture models