NLP Analysis of Meesho Product Reviews Group 47

Team Members:

Rohit Raju Kamble (2411Al61) Satyam Kumar (2411Al44) Abhisar Anand (2411Al43)

Guided by:

Dr. Sourav Kumar Dandapat

April 21, 2025

Agenda

Introduction

Data Collection & Preprocessing

Feature Engineering

Visualizations

Model Training

Model Evaluation

Conclusion

Problem Statement

- Analysis of Meesho product reviews using NLP techniques
- Objectives:
 - Perform sentiment analysis on customer reviews
 - Extract key aspects and opinions
 - ▶ Build classification models to predict sentiment
 - Visualize insights from the data
- Dataset: 24,999 product reviews from Meesho

Data Collection

- Scraped reviews using Apify client
- Combined multiple CSV files into one dataset
- Initial dataset columns:

```
Index(['productUrl', 'review/author/name',
'review/comments', 'review/product_name',
'review/rating', 'scrapedAt'], dtype='object')
```

Text Cleaning Pipeline

```
def clean_text(text):
     text = text.lower()
2
     text = re.sub(r'http\S+|www\S+|https\S+', '', text
3
     text = re.sub(r'\\0\\w+|\\^{*}', '', text)
4
     text = re.sub(r'<.*?>', '', text)
5
      text = re.sub(r'[^\w\s]', '', text)
6
     text = re.sub(r' \setminus d+', '', text)
      text = re.sub(r')\s+', ', text).strip()
8
      return text
9
```

Additional steps:

- ► Tokenization and lemmatization
- Stopword removal
- Spelling correction

N-gram Extraction

```
def get_top_ngrams(text_series, n=2, top_n=10):
     vec = CountVectorizer(ngram_range=(n, n)).fit(
2
     text_series)
3
     bag_of_words = vec.transform(text_series)
     sum_words = bag_of_words.sum(axis=0)
4
     words_freq = [(word, sum_words[0, idx])
5
                    for word, idx in vec.vocabulary_.
6
     items()]
     return sorted(words_freq, key=lambda x: x[1],
7
                   reverse=True)[:top_n]
8
```

Top N-grams

Top Bigrams:

- ▶ good price (795)
- low quality (769)
- ▶ suit need (757)
- poor quality (568)
- ▶ daily use (566)

Top Trigrams:

- ▶ fell apart cheap (501)
- ▶ highly functional great (341)
- excellent daily use (317)
- ▶ daily use love (317)
- poor performance worth (310)

Top Product Aspects

Figure: Top Product Aspects

Word Cloud

Figure: Word cloud of most frequent terms in reviews

Feature Extraction Methods

```
1 # Bag of Words
2 bow_vectorizer = CountVectorizer(max_features=5000)
3 X_train_bow = bow_vectorizer.fit_transform(X_train)
5 # TF-IDF
6 tfidf_vectorizer = TfidfVectorizer(
      max_features=5000,
7
      ngram_range=(1, 2))
8
9 X_train_tfidf = tfidf_vectorizer.fit_transform(X_train
# Train-test split
12 X_train, X_test, y_train, y_test = train_test_split(
      X, y, test_size=0.2, random_state=42)
13
```

Model Implementation

```
1 def train_and_evaluate(model, X_train, X_test,
                         y_train, y_test, model_name):
2
3
      model.fit(X_train, y_train)
      y_pred = model.predict(X_test)
4
      print(classification_report(y_test, y_pred))
5
      print(f"Accuracy: {accuracy_score(y_test, y_pred)
6
      :.4f}")
      return model
7
8
   Example: SVM with TF-IDF
  svm_tfidf = SVC(kernel='linear',
                  probability=True,
11
                  random_state=42)
12
  train_and_evaluate(svm_tfidf, X_train_tfidf,
                     X_test_tfidf, y_train, y_test,
14
                     "SVM with TF-IDF")
15
```

Model Performance Summary

Model	Features	Accuracy
Naive Bayes	BoW	0.6956
Naive Bayes	TF-IDF	0.6976
Random Forest	TF-IDF	0.6956
XGBoost	TF-IDF	0.6956
SVM	TF-IDF	0.7016

Detailed Model Performance

Best Model: SVM with TF-IDF

- Precision: 0.74 (class 0), 0.66 (class 1)
- Recall: 0.73 (class 0), 0.66 (class 1)
- ► F1-score: 0.73 (class 0), 0.66 (class 1)
- ► Accuracy: 0.7016

Model Parameters

- Kernel: linear
- Probability: True
- Random state: 42
- ► Features: TF-IDF (5000)
- ► N-gram range: (1,2)

Classification Report

1	SVM with	TF-IDF	Performanc	:e:		
2		p	recision	recall	f1-score	support
3						
4		0	0.74	0.73	0.73	2817
5		1	0.66	0.66	0.66	2183
6						
7	accur	racy			0.70	5000
8	macro	avg	0.70	0.70	0.70	5000
9	weighted	avg	0.70	0.70	0.70	5000

Key Findings

- ► SVM with TF-IDF performed best (70.16% accuracy)
- ► All models showed similar performance (70% accuracy)
- Key phrases reveal product quality and value concerns
- ▶ "Good price" and "low quality" most common bigrams
- Model performance consistent across metrics

Future Work

- ► Analyze temporal trends in reviews
- ▶ Build recommendation system based on aspects
- Hyperparameter tuning for better performance

Contributions

- Abhisar Automatic Data Collection
- ► Satyam Text prepossessing and visualization
- Rohit feature engineering and Model Building

Thank You!