BASICS OF DIFFERENTIAL GEOMETRY 2

Notes of BIMSA course

Misuzu/Yuxuan Liu

February 24, 2025

${\rm CONTENTS}$

Contents

1	Prir	Principle Bundles		
	1.1	Lie Groups	2	
	1.2	Definition of Principle Bundles	7	
	1.3	Connections on Principle Bundles	9	

Introduction

Last semester:

- Geometry of vector bundles
- Basic Riemannian geometry
- Differential operators on manifolds

We will learn this semester:

- Theory of principle bundles
- characteristic classes
- Basics of complex manifold, Kähler manifold, symplectic manifold.

1 Principle Bundles

In this section, we introduce the connections of principle bundles, it's closely related to the connections of vector bundles.

1.1 Lie Groups

Definition 1.1. Let G be a smooth manifold. G is a $Lie\ group$ if G is a group s.t. multiplication and inverse are smooth.

Let G be a Lie group, $g \in G$, we denote:

- $L_q: G \to G, h \mapsto gh$ (left translation)
- $R_q: G \to G, h \mapsto hg$ (right translation)
- $\mathfrak{X}^L(G) = \{X \in \mathfrak{X}(G) \mid \forall g \in G, (L_g)_*X = X\}$ (left invariant vector fields)

For $X \in \mathfrak{X}^L(G)$, $L_{g*}X = X$ means that X is L_g -related to X. Then for $\forall X, Y \in \mathfrak{X}^L(G)$, $L_{g*}([X,Y]) = [L_{g*}X, L_{g*}Y] = [X,Y]$, so $\mathfrak{X}^L(G)$ is closed under $[\cdot, \cdot]$

Definition 1.2. Set $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Given a \mathbb{K} -vector space \mathfrak{g} and a bilinear map $[\cdot,\cdot]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, we say \mathfrak{g} is a *Lie algebra* if:

- $(1) \ \forall X, Y \in \mathfrak{g}, [X, Y] = -[Y, X]$
- (2) $\forall X, Y, Z \in \mathfrak{g}, [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0$
- $[\cdot,\cdot]$ is called Lie bracket.

So by definition we have $(\mathfrak{X}^L(G), [\cdot, \cdot])$ is a Lie algebra.

Definition 1.3. For Lie algebra $\mathfrak{g}, \mathfrak{h}$, a linear map $f : \mathfrak{g} \to \mathfrak{h}$ is called the *Lie algebra homomorphism* if: $\forall X, Y \in \mathfrak{g}, f([X,Y]) = [f(X), f(Y)]$

If f is in addition an isomorphism, then f is called a $Lie\ algebra\ isomorphism$.

Let $e \in G$ be the unit of G. Set $\iota : \mathfrak{X}^L(G) \to T_eG$, $X \mapsto X_e$. Then ι is a linear isomorphism. Let $\mathfrak{g} = T_eG$, so we can define the Lie bracket on \mathfrak{g} s.t. ι is a Lie algebra isomorphism, i.e. setting $X^{\sharp} = \iota^{-1}(X)$, $[X,Y] = [X^{\sharp},Y^{\sharp}]_e$. Note that $X_g^{\sharp} = (L_g)_{*e}X$, $g \in G$.

Definition 1.4. Let G be Lie group, $\mathfrak{g} = T_e G$ with $[\cdot, \cdot]$ is called the *Lie algebra* of G. $(\mathfrak{X}^L(G), [\cdot, \cdot])$ is also called the Lie algebra of G)

Definition 1.5. Let G, H be Lie groups. A map $\rho: G \to H$ is a *Lie group homomorphism* if ρ is a smooth map and a group homomorphism. For the special

case $(\mathbb{R},+) \to G$, $t \mapsto g_t$, $\{g_t\}_{t \in \mathbb{R}}$ is called one parameter subgroup of G.

Proposition 1.1. Let G be Lie group and \mathfrak{g} its Lie algebra. Then

- (1) $\forall X \in \mathfrak{g}, X^{\sharp} = \iota^{-1}(X)$ is complete, i.e. X^{\sharp} generates a flow $\{\varphi_t\}_{t \in \mathbb{R}}$.
- (2) Set $\exp_G(tX) = \varphi_t(e) \in G$. Then $\varphi_t = R_{\exp_G(tX)}$.
- (3) For $s,t\in\mathbb{R}$, $\exp_G(sX)\exp_G(tX)=\exp_G\left((s+t)\,X\right)$, i.e. $\{\exp_G(tX)\}_{t\in\mathbb{R}}$ is one parameter subgroup of G.
 - (4) $\mathfrak{g} \to \{\text{one parameter subgroup of } G\}, X \mapsto \{\exp_G(tX)\}_{t \in \mathbb{R}} \text{ is bijective.}$

Proof. (1) By ODE theory, $\exists \epsilon > 0, \ \gamma_e : (-\epsilon, \epsilon) \to G \text{ s.t. } \gamma_e(0) = e, \frac{d\gamma_e}{dt} = X_{\gamma_e(t)}^{\sharp}.$

Claim 1. $\forall g \in G$, define $\gamma_g : (-\epsilon, \epsilon) \to G$, $t \mapsto g\gamma_e(t)$ is the integral curve of X^{\sharp} with $\gamma_g(0) = g$.

Indeed, $\forall t \in (-\epsilon, \epsilon), \frac{d\gamma_g}{dt}(t) = (L_g)_{*\gamma_e(t)} \frac{d\gamma_e}{dt}(t) = X_{g \cdot \gamma_e(t)}^{\sharp}.$

Claim 2. $\gamma_e: (-\epsilon, \epsilon) \to G$ can be extended to integral curve $\gamma_e: \mathbb{R} \to G$ of X^{\sharp} with $\gamma_e(0) = e$.

Set $\varphi_t = R_{\gamma_e(t)}$, then $\{\varphi_t\}_{t \in \mathbb{R}}$ is the flow generated by X^{\sharp} . So the following are easy.

By this proposition, we can define the exponential map $\exp_G : \mathfrak{g} \to G$.

Proposition 1.2. Let G, H be Lie groups with Lie algebra $\mathfrak{g}, \mathfrak{h}$. If $f: G \to H$ is Lie group homomorphism, then $f_{*e}: \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism.

Proof. We only need to show that X^{\sharp} and $(f_{*e}X)^{\sharp}$ are f-related. Since $X = \frac{d}{dt} \exp_G(tX)|_{t=0}$, we have $f_{*g}(X_g^{\sharp}) = \frac{d}{dt} f\left(g \cdot \exp_G(tX)\right)|_{t=0} = \frac{d}{dt} f(g) f\left(\exp_G(tX)\right)|_{t=0} = \left(L_{f(g)}\right)_{*e} (f_{*e}X) = (f_{*e}X)_{f(g)}^{\sharp}$.

Example 1.1. Let V be a \mathbb{R} -vector space, G = GL(V), \mathfrak{g} Lie algebra of G. Then $\mathfrak{g} = End(V)$, the bracket is given as follows:

Proposition 1.3. $\forall X, Y \in End(V), [X, Y] = XY - YX.$

Proof. For $X \in End(V)$, set matrix exponential $e^{tX} = \sum_{k=0}^{\infty} \frac{(tX)^k}{k!}$. Then $\{e_{tX}\}_{t \in \mathbb{R}}$ is a one parameter subgroup of G and $\frac{d}{dt}e^{tX}|_{t=0} = X$. So $\exp_G(tX) = e^{tX}$.

Then $[X,Y] = [X^{\sharp},Y^{\sharp}]_e = \left(\mathcal{L}_{X^{\sharp}}Y^{\sharp}\right)_e = \frac{d}{dt}\left(\varphi_{-t}\right)_{*e^{tX}}\left(Y_{e^{tX}}^{\sharp}\right)|_{t=0} = \frac{d}{dt}\frac{d}{ds}\varphi_{-t}\left(e^{tX}e^{sY}\right)|_{s=t=0} = XY - YX.$

Example 1.2. Set

- $O(n) = \{g \in GL(n; \mathbb{R}) \mid g^t g = E_n\}$ (orthogonal group)
- $SO(n) = \{g \in O(n) \mid \det g = 1\}$ (special orthogonal group)

we can check that O(n), SO(n) are Lie subgroups of $GL(n; \mathbb{R})$.

SO(n) is the unit component of O(n), so $\mathfrak{o}(n) = \mathfrak{so}(n)$ (Lie algebra of O(n)) and SO(n)). This is a Lie subalgebra of $End(\mathbb{R}^n)$ given by

$$\mathfrak{o}(n) = \mathfrak{so}(n) = \{ X \in End(\mathbb{R}^n) \mid X^t + X = O_n \}$$

where O_n is the zero matrix of size n.

Similarly, set

- $U(n) = \{g \in GL(n; \mathbb{C}) \mid g^*g = E_n\}$ (unitary group) where $g^* = \overline{g^t}$
- $SU(n) = \{g \in U(n) \mid \det g = 1\}$ (special unitary group)

We can check that

- U(n), SU(n) are Lie subgroups of $GL(n; \mathbb{C})$
- $\mathfrak{u}(n) = \{X \in End(\mathbb{C}^n) \mid X^* + X = O\}$ (Lie algebra of U(n))
- $\mathfrak{su}(n) = \{X \in End(\mathbb{C}^n) \mid X^* + X = O, \operatorname{tr} X = 0\}$ (Lie algebra of SU(n))

Note. A Lie subgroup H of G is a Lie group s.t.

- \bullet H is a subset of G
- inclusion map $H \hookrightarrow G$ is an embedding and group homomorphism

Fact. A closed subgroup of G is a Lie subgroup of G.

Definition 1.6. Let V be a \mathbb{K} -vector space, G a Lie group. A Lie group homomorphism $\rho: G \to GL(V)$ is called a *representation of* V. The Lie algebra homomorphism $\rho_{*e}: \mathfrak{g} \to End(V)$ is called a *differential representation*.

Example 1.3. Let G be a Lie group, \mathfrak{g} its Lie algebra. $\forall g \in G$, define a homomorphism

$$F_q: G \to G, \ h \mapsto ghg^{-1}$$

Note that $F_g \circ F_{g'} = F_{gg'}$. This induces a Lie algebra homomorphism $(F_g)_{*e}$: $\mathfrak{g} \to \mathfrak{g}$ which satisfies $(F_g)_{*e} \circ (F_{g'})_{*e} = (F_{gg'})_{*e}$. So we obtain a representation

$$Ad: G \to GL(\mathfrak{g}), \ g \mapsto (F_g)_{*e}$$

called adjoint representation of G. The differential representation $ad: \mathfrak{g} \to End(\mathfrak{g})$ of Ad is given as follows.

Proposition 1.4. $\forall X, Y \in \mathfrak{g}, ad(X)(Y) = [X, Y].$

Proof. Note that $F_g = R_{q^{-1}} \circ L_g$. Then

$$ad(X)(Y) = \frac{d}{dt}Ad(\exp_G(tX))(Y)|_{t=0} = \frac{d}{dt} \left(R_{\exp_G(-tX)}\right)_{*\exp_G(tX)} \left(L_{\exp_G(tX)}\right)_{*e} (Y)|_{t=0} = [X^\sharp, Y^\sharp]_e = [X, Y].$$

Recall that there is a exponential map in Riemannian geometry. The Riemannian exp and the Lie group exp are related as follows.

Definition 1.7. A Riemannian metric $\langle \cdot, \cdot \rangle$ on a Lie group G is said to be *bi-invariant* if $\forall g, h \in G$, $L_g^* R_h^* \langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle$.

Theorem 1.1. Let G be a Lie group with a bi-invariant metric $\langle \cdot, \cdot \rangle$. Then $\exp_e = \exp_G$.

To show this we describe the Levi-Civita connection ∇ of $\langle \cdot, \cdot \rangle$.

Lemma 1.1.
$$\forall X, Y \in \mathfrak{g}, \nabla_{X^{\sharp}}Y^{\sharp} = \frac{1}{2}[X,Y]^{\sharp}.$$

Proof. By Koszul formula, we have

$$\langle \nabla_{X^{\sharp}} Y^{\sharp}, Z^{\sharp} \rangle = \frac{1}{2} \left(X^{\sharp} \langle Y^{\sharp}, Z^{\sharp} \rangle + Y^{\sharp} \langle Z^{\sharp}, X^{\sharp} \rangle - Z^{\sharp} \langle X^{\sharp}, Y^{\sharp} \rangle - \langle Y^{\sharp}, [X^{\sharp}, Z^{\sharp}] \rangle - \langle Z^{\sharp}, [Y^{\sharp}, X^{\sharp}] \rangle + \langle X^{\sharp}, [Z^{\sharp}, Y^{\sharp}] \rangle \right)$$

Since for $\forall g \in G$, $X_g^{\sharp} = \frac{d}{dt} g \cdot \exp_G(tX) \mid_{t=0}$, we have

$$X^{\sharp}\langle Y^{\sharp}, Z^{\sharp}\rangle = \frac{d}{dt}\langle Y_{g \cdot \exp_G(tX)}^{\sharp}, Z_{g \cdot \exp_G(tX)}^{\sharp}\rangle_{g \cdot \exp_G(tX)}\mid_{t=0} = \frac{d}{dt}\langle Y, Z\rangle_e\mid_{t=0} = 0$$

Since $\langle \cdot, \cdot \rangle$ is bi-invariant.

$$L_g^* R_{g^{-1}}^* \langle \cdot, \cdot \rangle_e = \langle \cdot, \cdot \rangle_e \text{ for } \forall g \in G \iff \langle Ad(g)(\cdot), Ad(g)(\cdot) \rangle_e = \langle \cdot, \cdot \rangle_e$$

Setting $g = \exp_G(tZ)$ and $\frac{d}{dt}|_{t=0}$, we have $\langle ad(Z)(\cdot), \cdot \rangle_e + \langle \cdot, ad(Z)(\cdot) \rangle_e = 0$, which shows that $\langle Y^{\sharp}, [X^{\sharp}, Z^{\sharp}] \rangle + \langle X^{\sharp}, [Z^{\sharp}, Y^{\sharp}] \rangle = 0$, so we have $\nabla_{X^{\sharp}} Y^{\sharp} = \frac{1}{2} [X, Y]^{\sharp}$.

The proof of the theorem completes once shown that $\exp_G(tX)$ is geodesic, which is left as an exercise.

Exercise 1.1. Prove the theorem.

Remark 1.1. Existence/uniqueness of bi-invariant metrics? Some facts from representation theory are needed, the argument here is not used after this remark.

Existence When G is compact, \exists bi-invariant metric using "averaging trick".

5

- We first define Ad-invariant inner product on \mathfrak{g} .
- Then extend it to the whole G by pulling back L_q .

Note: \exists bi-invariant on $G \iff \exists Ad$ -invariant inner product on \mathfrak{g} .

 (\Leftarrow) Given Ad-invariant inner product on \mathfrak{g} , we can extend it to left-invariant metric on G, this is also right-invariant by pullback of $R_h = R_h \circ L_{h^{-1}} \circ L_h = Ad(h^{-1}) \circ L_h$

Uniqueness When G is abelian, then $L_g = R_g$, so \exists many bi-invariant metrics on G (Any inner product on \mathfrak{g} induces left-invariant metric on \mathfrak{g} , by the note above it is bi-invariant). Suppose that $\exists Ad$ -invariant inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{g} . By $\langle \cdot, \cdot \rangle$, we have an irreducible decomposition of (\mathfrak{g}, Ad) : $\mathfrak{g} = \mathfrak{g}_1^{\oplus n_1} \oplus \cdots \oplus \mathfrak{g}_r^{\oplus n_r}$, where \mathfrak{g}_i is irreducible representation of G and $\mathfrak{g}_i \neq \mathfrak{g}_j$ for $i \neq j$. Then

$$\dim \left\{ Ad\text{-invariant symmetric bilinear map } \mathfrak{g} \times \mathfrak{g} \to \mathbb{R} \right\} = \sum_{i=1}^r n_i^2$$

To see this, take $T \in \{Ad$ -invariant symmetric bilinear map $\}$ and use Schur's lemma to

$$T_{ij}: \mathfrak{g}_i \hookrightarrow \mathfrak{g} \xrightarrow{x \mapsto T(x,\cdot)} \mathfrak{g}^* \stackrel{\langle \cdot, \cdot \rangle}{\cong} \mathfrak{g} \xrightarrow{proj.} \mathfrak{g}_j$$

 $T_{ij}:\mathfrak{g}_i\hookrightarrow\mathfrak{g}\xrightarrow{x\mapsto T(x,\cdot)}\mathfrak{g}^*\stackrel{\langle\cdot,\cdot\rangle}{\cong}\mathfrak{g}\xrightarrow{proj.}\mathfrak{g}_j$ Then $T_{ij}=\left\{ egin{array}{ll} 0 & (i\neq j) \\ c\cdot id & (i=j) \text{ for } \exists c\in\mathbb{R} \end{array} \right.$, so uniqueness up to scalar multiplication holds only when r = 1, n = 1, i.e. (\mathfrak{g}, Ad) is irreducible $\iff G$ is simple Lie group.

Definition 1.8. Let M be smooth manifold, G be Lie group with unit e. A smooth map

$$A: M \times G \to M, (x,g) \mapsto xg$$

is called the right action of G on M if

- (1) $\forall x \in M, xe = x$
- (2) $\forall x \in M, \forall g, g \in G, (xg)h = x(gh)$

We write the right action as $M \curvearrowleft G$.

Definition 1.9. Suppose M
sigma G.

- (1) For $\forall g \in G$, set $R_g : M \to M$, $X \mapsto xg$ (right translation).
- (2) For $\forall X \in \mathfrak{g}$, define the fundamental vector field $X^{\sharp} \in \mathfrak{X}(M)$ by $X_x^{\sharp} =$ $\frac{d}{dt}x \cdot \exp_G(tX) \mid_{t=0} = dA(x,\cdot)_e(X).$

Here the notation X^{\sharp} is the same as the left-invariant vector field on Lie group, we'll show that they have the same property:

Remark 1.2. (1) $\forall g \in G, \forall X \in \mathfrak{g}, (R_g)_* X^{\sharp} = (Ad(g^{-1})X)^{\sharp}.$ (2) $\forall X, Y \in \mathfrak{g}, [X^{\sharp}, Y^{\sharp}] = [X, Y]^{\sharp}.$

Proof. (1) $\forall x \in M$, $((R_g)_* X^{\sharp})_x = (R_g)_* X_{xg^{-1}}^{\sharp} = \frac{d}{dt} x g^{-1} \exp_G(tX) g \mid_{t=0}$. Since $\{g^{-1} \exp_G(tX)g\}_{t \in \mathbb{R}}$ is a one parameter subgroup of G with $\frac{d}{dt} g^{-1} \exp_G(tX) g \mid_{t=0} = Ad(g^{-1})X$, then $g^{-1} \exp_G(tX)g = \exp_G(tAd(g^{-1})X)$, which gives (1).

(2) By definition, $\{\varphi_t = R_{\exp_G(tX)}\}_{t \in \mathbb{R}}$ is flow of X^{\sharp} . So

$$[X^{\sharp},Y^{\sharp}] = \frac{d}{dt} \left(\varphi_{-t}\right)_{*} Y^{\sharp} \mid_{t=0} = \frac{d}{dt} \left(Ad \left(\exp_{G}(tX)\right) Y\right)^{\sharp} \mid_{t=0} = \left(ad(X)(Y)\right)^{\sharp} = [X,Y]^{\sharp}.$$

Remark 1.3. We can define the left action

$$A^L: G \times M \to M, \ (g,x) \mapsto gx$$

and also the fundamental vector field $X_L^{\sharp} \in \mathfrak{X}(M)$. The left and right actions are essentially the same, since the right action is given form the left action. Indeed, given A^L above, define A by $A(x,g) = A^L(g^{-1},x) = g^{-1}x$, then $X_L^{\sharp} = -X^{\sharp}$ for $X \in \mathfrak{g}$. $[X_L^{\sharp}, Y_L^{\sharp}] = [X, Y]^{\sharp} = -[X, Y]_L^{\sharp}$.

Definition 1.10. Suppose M
sigma G.

- (1) For $p \in M$, define $G_p = \{g \in G \mid pg = p\}$ (isotropy subgroup at p).
- (2) The G action is free of $G_p = \{e\}$ for $\forall p \in M$.
- (3) The G action is effective if $\bigcap_{p \in M} G_p = \{e\}$. In other words, $G \to \text{Diff}(M)$ is injective.

1.2 Definition of Principle Bundles

Definition 1.11. Let P, M be smooth manifolds and G be Lie group. The map $\pi_P: P \to M$ is a principle G-bundle or principle bundle with structure group G if:

- (1) $P \curvearrowleft G$.
- (2) There exists an open cover $\{U_{\alpha}\}_{{\alpha}\in A}$ of M and diffeomorphisms called local trivialization

$$\phi_{\alpha}: \pi_P^{-1}(U_{\alpha}) \xrightarrow{\cong} U_{\alpha} \times G$$

such that

- (2.1) Denoting by $p_1: U_{\alpha} \times G \to U_{\alpha}$ the projection, then $\pi_P = p_1 \circ \phi_{\alpha}$
- (2.2) The G-action preserves each $\pi_P^{-1}(U_\alpha)$. Denoting the right G-action

on $U_{\alpha} \times G$ by

$$(U_{\alpha} \times G) \times G \to U_{\alpha} \times G, \ ((x,h),g) \mapsto (x,h) \cdot g = (x,hg)$$

Then ϕ_{α} is G-equivalent, i.e. $\forall \xi \in \pi_P^{-1}(U_{\alpha}), \forall g \in G, \phi_{\alpha}(\xi g) = \phi_{\alpha}(\xi)g$. Note that the G-action is free.

We often write $P|_{U} = \pi_{P}^{-1}(U)$ for open subset $U \subseteq M$ and $P_{x} = \pi_{P}^{-1}(x)$ for $x \in M$, P_{x} is called the fiber of P at x.

Recall that $e \in G$ is the unit, define a section $p_{\alpha} \in \Gamma(P|_{U_{\alpha}})$ on U_{α} : $\phi_{\alpha}(p_{\alpha}(x)) = (x, e)$, which is equivalent to $p_{\alpha}(x) = \phi_{\alpha}^{-1}(x, e)$. Define $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to G$ by $p_{\alpha}(x)g_{\alpha\beta}(x) = p_{\beta}(x)$, $\{g_{\alpha\beta}\}_{\alpha\beta}$ is called the transition map of $\pi_P : P \to M$. Note that $\forall x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$, we have $g_{\alpha\beta}(x)g_{\beta\gamma}(x) = g_{\alpha\gamma}(x)$. Conversely, given open covering $\{U_{\alpha}\}_{\alpha\in A}$ of M and transition maps, we can recover principle G-bundle $\pi_P : P \to M$.

As before, for $g \in G$, we can define $R_g : P \to P$ the right translation and the fundamental vector field X^{\sharp} generated by $X \in \mathfrak{g}$.

Definition 1.12. Let $\pi_P: P \to M$ be a principle G-bundle, $\rho: G \to GL(V)$ representation of G. Define the right G-action on $P \times V$ by

$$(P \times V) \times G \to P \times V, \ ((\xi, v), g) \mapsto (\xi g, \rho(g)^{-1}v)$$

 $P\times V=(P\times V)/G \text{ is called the } associated \ vector \ bundle \ to \ P.$ Set $\xi\times v$ the equivalence class of $(\xi,v)\in P\times V.$ Set $E=P\times V, \pi_E:E\to M,$ $\xi\times v\mapsto \pi_P(\xi).$ Then $\pi_E:E\to M$ is a vector bundle.

The local trivialization of E are induced from those of P:

$$\phi_{\alpha}^{E}: E \mid_{U_{\alpha}} \xrightarrow{\cong} U_{\alpha} \times V, \ p_{\alpha}(x) \times v \mapsto (x, v)$$

For $x \in U_{\alpha} \cap U_{\beta}$ and $v_{\beta} \in V$, $p_{\beta}(x) \underset{\rho}{\times} v_{\beta} = p_{\alpha}g_{\alpha\beta}(x) \underset{\rho}{\times} v_{\beta} = p_{\alpha}(x) \underset{\rho}{\times} \rho \left(g_{\alpha\beta}(x)\right) v_{\beta}$. The transition functions of E are given by $\{\rho(g_{\alpha\beta}) : U_{\alpha} \cap U_{\beta} \to GL(V)\}$.

We will explain some relations between P and E.

- First note that $\forall \xi \in P$, we have $\xi : V \xrightarrow{\cong} E_{\pi_P(\xi)}, v \mapsto \xi \underset{\rho}{\times} v$ is an isomorphism. For $\xi' \in P$ with $\xi' = \xi g$ for $g \in G$, we have $\xi^{-1} \left(\xi' \underset{\rho}{\times} v' \right) = \xi^{-1} \left(\xi \underset{\rho}{\times} \rho(g) v' \right) = \rho(g) v'$ for $v' \in V$.
- $\pi_P^* E$ is a trivial bundle. Indeed,

$$P \times V \xrightarrow[(\xi, v) \mapsto (\xi, \xi \times v)]{(\xi, v) \mapsto (\xi, e)} \pi_P^* E = \{(\xi, e) \in P \times E \mid \pi_P(\xi) = \pi_E(e)\} \text{ is isomorphism.}$$

• Next, for $s \in \Omega^q(E) = \Gamma(\Lambda^q T^*M \otimes E)$, define $\pi_P^* s \in \Omega^q(P; V)$ as follows (V - I)

valued q-form on P)

- For
$$q = 0$$
, $(\pi_P^* s)(\xi) = \xi^{-1}(s(\pi_P(\xi)))$

- For
$$q > 1$$
, $\forall \alpha \in \Omega^q(M)$, $\forall s \in \Omega^0(E) = \Gamma(E)$,

$$\pi_P^* (\alpha \otimes s) = \pi_P^* \alpha \otimes \pi_P^* s$$

The left one is pullback and the right one is define above. In other words, $\forall \xi \in P, \forall v_1, \dots, v_q \in T_{\xi}P$,

$$(\pi_P^* s)_{\xi} (v_1, \dots, v_q) = \xi^{-1} (s_{\pi_P(\xi)} (\pi_{P*}(v_1), \dots, \pi_{P*}(v_q)))$$

Notation: denote $\Omega_B^q(P;V)$ to be the elements \widetilde{s} in $\Omega^q(P;V)$ satisfying:

$$- \forall X \in \mathfrak{g}, i(X^{\sharp})\widetilde{s} = 0.$$

$$- \forall g \in G, R_q^* \widetilde{s} = \rho(g)^{-1} \widetilde{s}.$$

called the space of basic q-forms. Note that $\Omega^q_B(P;V)$ depends on representation ρ .

Proposition 1.5. (Important to study the relations between P and E)

- (1) $\pi_P^*(\Omega^q(E)) \subseteq \Omega_B^q(P;V)$ and $\pi_P^*: \Omega^q(E) \xrightarrow{\cong} \Omega_B^q(P;V)$. E-valued q-forms on M are identified with basic q-forms on P.
- (2) Recall the local trivialization $\phi_{\alpha}^{E}: E \mid_{U_{\alpha}} \stackrel{\cong}{\longrightarrow} U_{\alpha} \times V$. For $s \in \Omega^{q}(E)$, suppose that $s \mid_{U_{\alpha}}$ corresponds to $s_{\alpha} \in \Omega^{q}(U_{\alpha}; V)$. Then $s_{\alpha} = p_{\alpha}^{*}(\pi_{P}^{*}s)$. So we regard $s \in \Omega^{q}(E)$ as a basic form, and then pullback by p_{α} is s_{α} .

Proof. We show
$$\pi_P^* (\Omega^q(E)) \subseteq \Omega_B^q(P; V)$$
. Take $\forall s \in \Omega^q(E)$,

Example 1.4. Let $\pi_E: E \to M$ be a vector bundle with rank r. For $x \in M$,

1.3 Connections on Principle Bundles

In this subsection we study properties of connection on principle bundle and its relation between connection on associated vector bundle.

Definition 1.13. Let $\pi_P: P \to M$ be principle *G*-bundle.

(1) A distribution $\{H_\xi \subseteq T_\xi P\}_{\xi \in P}$ is a connection on P if

$$(1-1) \ \forall \xi \in P, T_{\xi}P = \ker (\pi_P)_{*\xi} \oplus H_{\xi}.$$

(1-2) $\{H_{\xi} \subseteq T_{\xi}P\}_{\xi \in P}$ is G-invariant, i.e. $\forall \xi \in P, \forall g \in G, (R_g)_{*\xi}H_{\xi} = H_{\xi g}$.

 H_{ξ} , ker $(\pi_P)_{*\xi}$ are called horizontal/vertical subspaces.

(2) A \mathfrak{g} -valued 1-form $\theta \in \Omega^1(P; \mathfrak{g})$ on P is a connection form if

$$(2-1) \ \forall X \in \mathfrak{g}, \ \theta(X^{\sharp}) = X.$$

(2-2)
$$\forall g \in G, R_q^* \theta = Ad(g^{-1})\theta.$$

These 2 notions are the same in the following sense:

Theorem 1.2. Let $\pi_P: P \to M$ be principle G-bundle.

- (1) If $\theta \in \Omega^1(P; \mathfrak{g})$ is a connection form, a distribution $\{\ker \theta_{\xi}\}_{\xi \in P} = \{v \in T_{\xi}P \mid \theta_{\xi}(v) = 0\}_{\xi \in P}$ is a connection on P.
 - (2) {connection form} \rightarrow {connection on P}, $\theta \mapsto \{\ker \theta_{\xi}\}_{\xi \in P}$ is bijective.
- *Proof.* (1) We check that $\{\ker \theta_{\xi}\}_{\xi \in P}$ satisfies (1-1), (1-2):
- (1-1) Note that $\ker (\pi_P)_{*\xi} = \left\{ X_{\xi}^{\sharp} \in T_{\xi}P \mid X \in \mathfrak{g} \right\}$, then for $\forall v \in T_{\xi}P$, we have $\theta(v) \in \mathfrak{g}$ and $v = \theta(v)_{\xi}^{\sharp} + \left(v \theta(v)_{\xi}^{\sharp}\right)$, which implies that $T_{\xi}P = \ker (\pi_P)_{*\xi} \oplus \ker \theta_{\xi}$ ($\ker (\pi_P)_{*\xi} \cap \ker \theta_{\xi} = \{0\}$ is obvious).
- (1-2) Take $\forall v \in \ker \theta_{\xi}$. By (2-2), $\forall g \in G$, we have $(R_g^*\theta)_{\xi} = Ad(g^{-1})\theta_{\xi}$, the left hand side is $\theta_{\xi g}((R_g)_{*\xi}(\cdot))$, so we have $(R_g)_{*\xi}(v) \in \ker \theta_{\xi g}$, hence $(R_g)_{*\xi}(\ker \theta_{\xi}) \subseteq \ker \theta_{\xi g}$. Replacing (g, ξ) with $(g^{-1}, \xi g)$, we have $(R_{g^{-1}})_{*\xi g}(\ker \theta_{\xi g}) \subseteq \ker \theta_{\xi}$. So $(R_g)_{*\xi}(\ker \theta_{\xi}) = \ker \theta_{\xi g}$, $\{\ker \theta_{\xi}\}_{\xi \in P}$ is a connection on P.
- (2) Injectivity Let θ, θ' be connection forms with $\ker \theta_{\xi} = \ker \theta'_{\xi} \ \forall \xi \in P$. We show that $\forall v \in T_{\xi}P$, $\theta_{\xi}(v) = \theta'_{\xi}(v)$. By (1), v is described as $v = X_{\xi}^{\sharp} + w$ for $X_{\xi}^{\sharp} \in \ker(\pi_{P})_{*\xi}$ and $w \in \ker \theta_{\xi} = \ker \theta'_{\xi}$. So $\theta_{\xi}(v) = \theta_{\xi}(X_{\xi}^{\sharp}) = X = \theta'_{\xi}(v)$.

Surjectivity Take $\forall \{H_{\xi}\}_{\xi \in P}$ a connection on P. By (1-1), we can define $\theta \in \Omega^1(P; \mathfrak{g})$ by

$$\theta_{\xi}(v) = \begin{cases} 0 & (v \in H_{\xi}) \\ X & (v = X_{\xi}^{\sharp} \text{ for } X \in \mathfrak{g}) \end{cases}$$

By definition, $\ker \theta_{\xi} = H_{\xi}$, we check (2-1), (2-2).

- (2-1) Holds by definition of θ_{ξ} .
- (2-2) $\forall \xi \in P$, $\forall g \in G$, we show that $\theta_{\xi g}((R_g)_{*\xi}(\cdot)) = Ad(g^{-1})\theta_{\xi}$ on $T_{\xi}P$. Recall that $T_{\xi}P = \ker(\pi_P)_{*\xi} \oplus H_{\xi}$, if $v \in H_{\xi}$, the equality holds by definition and (1-2); for $\forall X \in \mathfrak{g}$,

$$(R_g)_{*\xi} \left(X_{\xi}^{\sharp} \right) = (R_g)_{*\xi} \frac{d}{dt} \xi \exp_G(tX) \mid_{t=0} = \frac{d}{dt} \xi g \cdot g^{-1} \exp_G(tX) g \mid_{t=0} = \left(Ad(g^{-1})X \right)_{\xi g}^{\sharp}$$

So
$$\theta_{\xi g}\left((R_g)_{*\xi}(X_\xi^\sharp)\right)=Ad(g^{-1})X=Ad(g^{-1})\theta_\xi(X_\xi^\sharp)$$
, hence the equality holds. So we have $\theta_{\xi g}\left((R_g)_{*\xi}(\cdot)\right)=Ad(g^{-1})\theta_\xi$ on $T_\xi P$.

The next proposition says that a connection form θ on P induces a connection ∇^E of the associated vector bundle E. The relation between θ and local connection form of ∇^E us also given.

Proposition 1.6. Let $\pi_P: P \to M$ be a principle bundle, $\rho: G \to GL(V)$ a representation of G with differential representation $\rho_*: \mathfrak{g} \to End(V)$. Denote

by $\theta \in \Omega^1(P;\mathfrak{g})$ a connection form. Set $E = P \underset{\rho}{\times} V$ its associated vector bundle. Then,

(1)
$$(d + \rho_*(\theta) \wedge) \Omega_B^q(P; V) \subseteq \Omega_B^{q+1}(P; V)$$
. Here

- d: standard exterior derivative.
- $\rho_*(\theta) \in \Omega^1(P; End(V))$ acts on $\Omega^q_B(P; V)$ by wedging on differential form parts and composing End(V), V-parts.
- (2) Recall that $\pi_P^*: \Omega^q(E) \xrightarrow{\cong} \Omega_B^q(P; V)$. Then we can define $\nabla^E: \Omega^0(E) \to \Omega^1(E)$ by $(\pi_P^*)^{-1} \circ (d + \rho_*(\theta) \wedge) \circ \pi_P^*$.
- (3) Recall that a local section $p_{\alpha} \in \Gamma(P|_{U_{\alpha}})$ induces a local trivialization $\phi_{\alpha}^{E} : E|_{U_{\alpha}} \xrightarrow{\cong} U_{\alpha} \times V$. Then

$$\begin{array}{c} \eta + \xi^*(\beta^*_A \Theta) \vee \\ \chi_0(\Omega^*; \wedge) & \longrightarrow \chi_1(\Omega^*; \wedge) \\ \chi_0(\Omega^*; \wedge) & \longrightarrow \chi_1(\Omega^*; \wedge) \end{array}$$

(4) Recall that a connection ∇^E induces the exterior derivative $d^{\nabla^E}: \Omega^q(E) \to \Omega^{q+1}(E)$. Then

$$\begin{array}{ccc}
\Omega^{2}(E) & \xrightarrow{d} & \Sigma^{2}(E) \\
\pi_{p}^{*} & & & & & & & \\
\Pi_{p}^{2}(P; V) & \xrightarrow{d+P_{p}(\Theta)} & & & & \\
\end{array}$$

Remark 1.4. In [Kobayashi-Nomizu, Foundation of differential geometry Vol 1, chapter 2, section 5], for any principle G-bundle with a connection form $\theta \in \Omega^1(P;\mathfrak{g})$, $\forall V$ vector space, the exterior covariant derivative $D:\Omega^q(P;V)\to \Omega^{q+1}(P;V)$ is defined by $(D\widetilde{s})(v_0,\cdots,v_q)=(d\widetilde{s})(hv_0,\cdots,hv_q)$ for $v_i\in TP$, where $h:TP\to\ker\theta$ is the projection. If in addition, given a representation $\rho:G\to GL(V)$ and $\widetilde{s}\in\Omega^q_B(P;V)$, we have $D\widetilde{s}=(d+\rho_*(\theta)\wedge)$ (\widetilde{s}).

Proof. (1) Take $\forall \widetilde{s} \in \Omega^q_B(P; V)$, recall that $\begin{cases} & \forall X \in \mathfrak{g}, i(X^\sharp)\widetilde{s} = 0. \\ & \forall g \in G, R_g^*\widetilde{s} = \rho(g)^{-1}\widetilde{s}. \end{cases}$. We show that $(d + \rho_*(\theta) \wedge) \widetilde{s}$ also satisfies the same property.

- $\forall X \in \mathfrak{g}$, we have $\mathcal{L}_{X^{\sharp}}\widetilde{s} = \frac{d}{dt}R_{\exp_G(tX)}^*\widetilde{s} \mid_{t=0} = \frac{d}{dt}\rho\left(\exp_G(tX)\right)^{-1}\widetilde{s} \mid_{t=0} = -\rho_*(X)\widetilde{s}$. Since $\mathcal{L}_{X^{\sharp}}\widetilde{s} = i(X^{\sharp})d\widetilde{s} + d\left(i(X^{\sharp})\widetilde{s}\right)$ and $i(X^{\sharp})\widetilde{s} = 0$, we have $i(X^{\sharp})d\widetilde{s} = -\rho_*(X)\widetilde{s}$. Hence $i(X^{\sharp})\left((d+\rho_*(\theta)\wedge)(\widetilde{s})\right) = i(X^{\sharp})d\widetilde{s} + \rho_*\left(\theta(X^{\sharp})\right)\widetilde{s} - \rho_*(\theta)\wedge i(X^{\sharp})\widetilde{s} = 0$.
- For $\forall g \in G$, $R_g^*((d+\rho_*(\theta)\wedge)(\widetilde{s})) = dR_g^*\widetilde{s} + \rho_*(R_g^*\theta) \wedge R_g^*\widetilde{s} = d(\rho(g)^{-1}\widetilde{s}) + d(g)^{-1}\widetilde{s}$

$$\begin{split} &\rho_*\left(Ad(g^{-1})\theta\right)\wedge\rho(g)^{-1}\widetilde{s}. \text{ Since } \rho(g)^{-1} \text{ acts only on } V\text{-part, } d\left(\rho(g)^{-1}\widetilde{s}\right)=\rho(g)^{-1}d\widetilde{s}. \end{split}$$
 Note that $\forall X\in\mathfrak{g}, \ \frac{d}{dt}\rho\left(g^{-1}\exp_G(tX)g\right)\rho(g)^{-1}\mid_{t=0}=\frac{d}{dt}\rho\left(g^{-1}\exp_G(tX)\right)\mid_{t=0} \text{ and } g^{-1}\exp_G(tX)g=\exp_G(tAd(g^{-1})X), \text{ we have } \rho_*\left(Ad(g^{-1})X\right)\rho(g)^{-1}=\rho(g)^{-1}\rho_*(X). \end{split}$ This implies that $\rho_*\left(Ad(g^{-1})\theta\right)\wedge\rho(g)^{-1}\widetilde{s}=\rho(g)^{-1}\left(\rho_*(\theta)\wedge\widetilde{s}\right). \text{ Then we obtain } R_g^*\left((d+\rho_*(\theta)\wedge)(\widetilde{s})\right)=\rho(g)^{-1}\left((d+\rho_*(\theta)\wedge)(\widetilde{s})\right), \text{ so } (d+\rho_*(\theta)\wedge)(\widetilde{s})\in\Omega_B^{q+1}(P;V). \end{split}$

- (2) $\nabla^E = (\pi_P^*)^{-1} \circ (d + \rho_*(\theta) \wedge) \circ \pi_P^*$, we check the Leibniz rule, i.e. for $\forall f \in C^{\infty}(M)$, $\forall s \in \Gamma(E)$, we show $\nabla^E(fs) = df \otimes s + f \nabla^E s$. This is left as an exercise.
- (3) Since for $s \in \Omega^q(E)$, $s|_{U_\alpha}$ corresponds to $p_\alpha^*(\pi_P^*s)$. We compute $p_\alpha^*\pi_P^*(\nabla^E s) = p_\alpha^*((d+\rho_*(\theta)\wedge)\pi_P^*s) = p_\alpha^*d(\pi_P^*s) + \rho_*(p_\alpha^*\theta)\wedge p_\alpha^*\pi_P^*s = (d+\rho_*(p_\alpha^*\theta)\wedge)(p_\alpha^*\pi_P^*s)$.
- (4) Since d^{∇^E} is given by $d^{\nabla^E}(s \otimes \alpha) = \nabla^E s \wedge \alpha + s \otimes d\alpha$ for $s \in \Gamma(E)$, $\alpha \in \Omega^q(M)$, we have $\pi_P^* \left(d^{\nabla^E}(s \otimes \alpha) \right) = \pi_P^* \left(\nabla^E s \wedge \alpha + s \otimes d\alpha \right) = (d + \rho_*(\theta) \wedge) \pi_P^* s \wedge \pi_P^* \alpha + \pi_P^* s \otimes \pi_P^* \alpha = d \left(\pi_P^* s \otimes \pi_P^* \alpha \right) + \rho_*(\theta) \wedge (\pi_P^* s \otimes \pi_P^* \alpha) = (d + \rho_*(\theta) \wedge) (\pi_P^* (s \otimes \alpha)).$

Exercise 1.2. Prove that ∇^E defined above is a connection.

Example 1.5. Given a vector bundle $\pi_E : E \to M$, let $\pi_P : P \to M$ be the frame bundle. Consider the trivial representation $id : GL(r; \mathbb{K}) \to GL(r; \mathbb{K})$. Then