Dekompozycja SVD Macierzy — Raport

Filip Dziurdzia, Jakub Płowiec

1. Wstęp

Celem zadania było przeprowadzenie dekompozycji SVD (Singular Value Decomposition) macierzy prostokątnej A o rozmiarach $(n \times m)$. Proces ten polega na rozbiciu macierzy A na trzy składniki:

$$A = USV^T$$

gdzie:

- U- macierz ortogonalna (wiersze to wektory własne AA^T),
- S macierz diagonalna (singular values pierwiastki z wartości własnych),
- V^T macierz transponowana macierzy ortogonalnej V (wiersze to wektory własne ${\cal A}^T{\cal A}$).

2. Wybrane narzędzia

- Język programowania: Python 3.10
- Biblioteki:
 - numpy operacje na macierzach, wartości i wektory własne
 - matplotlib wizualizacja macierzy

3. Struktura kodu

Kod został uruchomiony dla n=5, m=4 i składa się z następujących kroków:

3.1 Wygenerowanie macierzy A

Generujemy losowo macierz A o rozmiarze $n \times m$.

3.2 Dekompozycja przez AA^{T}

W pierwszej metodzie rozpoczynamy od obliczenia macierzy AA^T , następnie znajdujemy wartości własne oraz wektory własne tej macierzy, które zostaną wykorzystane do wyliczenia U oraz S. Kolejnym krokiem jest obliczenie V ze wzoru:

$$V = A^T U S^{-1}$$

3.2.1 Obliczenie AA^T

Pierwszym krokiem w tej metodzie jest obliczenie macierzy AA^T . Produkt AA^T jest macierzą kwadratową, o wymiarach $n\times n$. Obliczenie tej macierzy jest kluczowe, ponieważ w kolejnych krokach będziemy wykorzystywać jej wartości i wektory własne do wyznaczenia macierzy U i S.

3.2.2 Wyznaczenie macierzy \boldsymbol{U} i \boldsymbol{S}

Kolejnym krokiem jest obliczenie wartości i wektorów własnych macierzy $AA^T.$ Wartości własne odpowiadają pierwiastkom kwadratowym z wartości osobliwych macierzy A. Wektory własne stanowią kolumny macierzy U, a wartości własne są umieszczane na przekątnej macierzy diagonalnej S.

- ullet U wektory własne macierzy AA^T
- ullet S pierwiastki wartości własnych (na przekątnej)

3.2.3 Wyznaczenie macierzy ${\cal V}$

Po obliczeniu macierzy U oraz S, możemy wyznaczyć macierz V za pomocą wzoru:

$$V = A^T U S^{-1}$$

W praktyce oznacza to obliczenie odwrotności macierzy diagonalnej S, a następnie obliczenie macierzy V. Wartości te są użyteczne w dalszych obliczeniach, ponieważ macierz V zawiera wektory własne A^TA .

3.3 Dekompozycja przez A^TA

W drugiej metodzie, obliczamy macierz A^TA i na jej podstawie wyznaczamy wartości własne i wektory własne, które zostaną wykorzystane do wyznaczenia V oraz S. Kolejnym krokiem jest obliczenie U ze wzoru:

$$U = AVS^{-1}$$

3.3.1 Obliczenie A^TA

Liczymy A^TA .

3.3.2 Wyznaczenie V i ${\cal S}$

Na podstawie macierzy A^TA obliczamy wartości i wektory własne. Tak samo jak w przypadku AA^T , wartości własne odpowiadają pierwiastkom z wartości osobliwych, a wektory własne tworzą macierz V.

Na podstawie A^TA :

- $\bullet \ \ V \text{wektory własne} \ A^T A$
- ullet S pierwiastki wartości własnych

3.3.3 Wyznaczenie \boldsymbol{U}

Po obliczeniu V oraz S, możemy wyznaczyć macierz U za pomocą wzoru:

$$U = AVS^{-1}$$

Jest to kluczowy etap, w którym uzyskujemy macierz U zawierającą wektory własne $AA^{T}.$

4. Porównanie dekompozycji

Obie metody pozwalają na odtworzenie macierzy A:

$$A \approx USV^T$$

Porównano błędy rekonstrukcji przy użyciu obu metod, otrzymując bardzo małe normy błędu (bliskie zeru):

- Błąd rekonstrukcji metodą pierwszą: $3.964580616172801 imes 10^{-15}$
- Błąd rekonstrukcji metodą drugą: $3.744328995048555 imes 10^{-15}$

Obie metody wykazują bardzo mały błąd rekonstrukcji, co oznacza, że dekompozycja SVD jest stabilna i obie metody prowadzą do poprawnych wyników.

5. Wnioski

- Obie metody rekonstrukcji dają poprawne wyniki.
- Dekompozycja SVD dzieli macierz A na trzy składniki opisujące:
 - kierunki (U i V),
 - skale (S).
- Możliwe jest obliczenie SVD na dwa sposoby:
 - poprzez analizę AA^T ,
 - poprzez analizę A^TA .

Dzięki temu możliwe jest efektywne wykorzystanie SVD w:

- kompresji danych,
- analizie głównych składowych (PCA),
- redukcji wymiarowości.

6. Wymiary jądra i obrazu

Obliczono również:

- dim R(A) = 4 wymiar obrazu macierzy A (rangę A)
- $\dim N(A) = 0$ wymiar jądra macierzy A (ilość wektorów zerowych)

Zgodnie z twierdzeniem:

$$\dim(R(A))+\dim(N(A))=m$$