Math 141: Section 1.6 Inverse Functions and Logarithms - Notes

Inverse Functions Suppose that f is a one-to-one function on a domain D with range R. The inverse function f^{-1} is defined by

$$f^{-1}(b) = a \text{ if } f(a) = b.$$

The domain of f^{-1} is R and the range of f^{-1} is D. The graph of $y = f^{-1}$ is obtained by reflecting the graph of y = f(x) about the line y = x.

Given a function y = f(x) we can find it's inverse by taking two steps:

Step 1: Interchange x and y.

Step 2: Solve for the new y.

Example 1 Find the inverse of the function $y = x^2$, $x \ge 0$, expressed as a function of x.

y=X2 Stept: X=y2

Step 2:
$$\sqrt{x'} = y$$

Domain of $f(x) = x^2$, $[0, \infty)$
Range of $f^{-1}(x) = \sqrt{x'}$, $[0, \infty)$

Logarithmic Functions If a is any positive real number other than 1, the base a exponential function $f(x) = a^x$ is one-to-one. It therefore has an inverse. Its inverse is called the *logarithmic function with base* a. The logarithm function with base a, $y = \log_a(x)$, is the inverse of the base a exponential function $y = a^x$, $(a > 0, a \ne 1)$.

If
$$f(x)=a^{x}$$
, $a>0$, $a\neq 1$
then $f^{-1}(x)=bx_{a}x$
• $e^{y}=x$ if ord $e^{y}=x$ any if $e^{y}=x$ only if

Properties of Logarithms For any numbers b > 0 and x > 0, the base a logarithm satisfies the following rules:

1)
$$\log_{\alpha}(bx) = \log_{\alpha}(b) + \log_{\alpha}(x)$$

2) $\log_{\alpha}(\frac{b}{x}) = \log_{\alpha}(b) - \log_{\alpha}(x)$
3) $\log_{\alpha}(\frac{1}{x}) = \log_{\alpha}(1) - \log_{\alpha}(x) = -\log_{\alpha}(x)$
4) $\log_{\alpha}(x^{c}) = c \cdot \log_{\alpha}(x) = c \cdot \log_{\alpha}(x)$
5) $\log_{\alpha}(\alpha^{x}) = x$ (6) $\alpha^{\log_{\alpha}x} = x$

We can rewrite any exponential function as a power of the natural exponential function:

$$a^x = e^{x \ln a}$$

That is, a^x is the same as e^x raised to the power $\ln a$: $a^x = e^{kx}$, where

Inverse Trigonometric Functions Recall the six basic trig functions reviewed in Section 1.3. These functions were not one-to-one but we can restrict their domains to intervals on which they are one-to-one:

Function	Domain	Range	
$y = \sin x$	$[-\pi/2,\pi/2]$	[-1.1]	
$y = \cos x$	$[0,\pi]$	[-1, 1]	-110
$y = \tan x$	$(-\pi/2,\pi/2)$	$(-\infty, \infty)$	2990
$y = \cot x$	$(0,\pi)$	$(-\infty,\infty)$	
$y = \sec x$	$[0,\pi/2) \cup (\pi/2,\pi]$	$(-\infty,-1]\cup[1,\infty)$	
$y = \csc x$	$[-\pi/2,0) \cup (0.\pi/2]$	$(-\infty,-1]\cup[1,\infty)$	

Since these functions are now one-to-one, they have inverses denoted by:

Since these functions are now one-to-one, they have inverses denoted by:

$$y = Sm^{-1}x = arcsm x$$
 $y = Sec^{-1}x = arcsec x$
 $y = csc^{-1}x = arcsec x$
 $y = tan^{-1}x = arctan x$
 $y = csc^{-1}x = arcsec x$
 $y = csc^{-1}x = arcsec x$

The Arcsine and Arccosine Functions $y = \sin^{-1} x$ is the number in $[-\pi/2, \pi/2]$

for which $\sin y = x$ $y = \cos^{-1} x$ is the number in $[0, \pi]$ for which $\cos y = x$. The graph of $y = \sin^{-1} x$ is symmetric about the origin and is hence an odd function. The graph of $y = \cos^{-1} x$ has no such symmetry.

such symmetry. y = Smx $(1, \pi)$ $y = Sin^{-1} \times$