

Extreme weather prediction by Support Vector Machine

Statistical Analysis and Application in Climate Research

庄逸

中国科学院大气物理研究所

Nov. 2021, UCAS

Introduction

Extreme weather prediction and Analog methods

Support Vector MachineDefinition, Computation, Extension and Application

Summary

Extreme weather

- Extreme weather is disastrous and tends to occur more frequently.
- Heat Waves, Drought, Heavy Downpours, Floods, Hurricanes, ...
- By making better prediction, we can reduce its loss effectively.

Fig: Extreme weathers

Method for predicting extreme weather

■ There are many ways to predict extreme weather.

Numerical weather prediction (NWP)

- NWP rely on basic physical laws and current weather state.
- Generally, NWP works fine; But it fails to predict certain extreme weather well, e.g. heavy rainfall.
- This may results from complicated processes and multiscale property.

Method for predicting extreme weather

■ There are many ways to predict extreme weather.

Numerical weather prediction (NWP)

- NWP rely on basic physical laws and current weather state.
- Generally, NWP works fine; But it fails to predict certain extreme weather well, e.g. heavy rainfall.
- This may results from complicated processes and multiscale property.

Analog method

- Analog method is a statistical and probabilistic model.
- Based on similarity of atmospheric conditions on extreme days.

Method for predicting extreme weather

■ There are many ways to predict extreme weather.

Numerical weather prediction (NWP)

- NWP rely on basic physical laws and current weather state.
- Generally, NWP works fine; But it fails to predict certain extreme weather well, e.g. heavy rainfall.
- This may results from complicated processes and multiscale property.

Analog method

- Analog method is a statistical and probabilistic model.
- Based on similarity of atmospheric conditions on extreme days.

The key point is how to define "Similarity"?

To be more specific...

■ Assume we have the following knowledge¹.

Date	Temperature at noon ($^{\circ}$ C)	Weather in the afternoon
2021/8/16	33	Heavy rain
2021/8/17	35	Heavy rain
2021/8/18	28	Sunny
2021/8/19	31	Heavy rain
2021/8/20	26	Sunny

Table: Example data

¹Fake examples, just for explanation.

To be more specific...

Assume we have the following knowledge¹.

Date	Temperature at noon ($^{\circ}$ C)	Weather in the afternoon
2021/8/16	33	Heavy rain
2021/8/17	35	Heavy rain
2021/8/18	28	Sunny
2021/8/19	31	Heavy rain
2021/8/20	26	Sunny

Table: Example data

- We may conclude that an ≥ 30 °C Temp. at noon leads to heavy rain in the afternoon. And we can use this **criterion** to predict heavy rainfall in the afternoon.
- Now we have large amount of atmospheric data before extreme weather, how can we develop a criterion for prediction?

¹Fake examples, just for explanation.

What is SVM?

- Support Vector Machine(SVM), is a binary classifier.
- lacksquare We have labelled data $D = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n)\}, y_i = \pm 1.$
 - ightharpoonup Vector x_i represents atmospheric conditions (Temp., Wind, etc.).
 - $y_i = +1, -1$ stands for extreme weather and non-extreme weather respectively.
- We seek for a hyperplane for separation by the sign of y_i .

■ For generalization purpose, the "center" one is the best.

How to compute?

We define Canonical Separating Hyperplane \mathcal{H} , that

$$\mathcal{H}: \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b = 0 \tag{1}$$

For x_1 and x_2 which are two closet points from each side, they satisfy

$$w^{\mathrm{T}}x_1 + b = 1, \qquad w^{\mathrm{T}}x_2 + b = -1$$
 (2)

And the margin width γ can be computed as

$$\gamma = \frac{\boldsymbol{w}^{\mathrm{T}}}{\|\boldsymbol{w}\|}(\boldsymbol{x}_1 - \boldsymbol{x}_2) = \frac{2}{\|\boldsymbol{w}\|}$$
(3)

How to compute? The optimization problem.

Now, as we want to maximize margin and the margin directly depends on $\|w\|$, we reach the following optimization problem.

Optimization problem for solving SVM

$$\min \frac{1}{2} ||\boldsymbol{w}||^2$$
s.t. $y_i(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i + b) \ge 1$ (4)

■ There are many developed optimization methods to solve it.

How to compute? The optimization problem.

Now, as we want to maximize margin and the margin directly depends on $\|w\|$, we reach the following optimization problem.

Optimization problem for solving SVM

$$\min \frac{1}{2} \|\boldsymbol{w}\|^2$$
s.t. $y_i(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i + b) \ge 1$ (4)

■ There are many developed optimization methods to solve it.

What is support vector?

- It is obvious that, only closet points (e.g. x_1, x_2) will affect the result.
- They are called Support Vectors, and that is where Support Vector Machine comes from.

- Face recognition, text classification, OCR, bioinformatics, ...
- Based on analog methods and SVM, Nayak(2013) developed a classifier which predicts extreme rainfall in Mumbai 6-48 h ahead, according to corresponding atmosphere conditions.
- They collected extreme rainfall data of Mumbai from 1969 to 2008.
 - ► The training set contains data from 1969 to 1999.
 - ► The validation set contains data from 2000 to 2008.

- Face recognition, text classification, OCR, bioinformatics, ...
- Based on analog methods and SVM, Nayak(2013) developed a classifier which predicts extreme rainfall in Mumbai 6-48 h ahead, according to corresponding atmosphere conditions.
- They collected extreme rainfall data of Mumbai from 1969 to 2008.
 - ► The training set contains data from 1969 to 1999.
 - ► The validation set contains data from 2000 to 2008.
- For better performance, day events and night events are separately trained.
- Both SVM1 and SVM2 are used for prediction.

Fig. 4 Flowchart of the two-phase SVM model

Result:

- Besides 16 correct extreme predictions, there are 133 false alarms. 0 miss.
- ► Much better than previous fingerprinting method (900+ false alarms).

■ Limitations:

- ightharpoonup Region choice: small ightharpoonup exclude important factors; large ightharpoonup less weight.
- Lack of data: only 40 yrs and extremes are rare.
- Detailed data: high-resolution weather pattern, Doppler radar data.

Table 8 Best SVM architecture

SVM1	SVM2		
Kernel function	RBF	Kernel function	Quadratic
Kernel function argument (sigma)	0.8900	Bias	0.9489
Bias	0.3999	Support vectors	45×4
Support vectors	48×32	Optimization method	SMO

- An advantage of SVM is that we know how predictor works.
 - ▶ E.g. if we find $w = (w^{(1)}, \dots, w^{(m)}, \dots, w^{(n)})$ have $w^{(m)} \approx 0$, then it indicates the corresponding variable $x_i^{(m)}$ may not be important. (Why?)
 - ► The article does not provide it though, which may results from kernel function and other difficulties

- An advantage of SVM is that we know how predictor works.
 - ▶ E.g. if we find $w=(w^{(1)},\ldots,w^{(m)},\ldots,w^{(n)})$ have $w^{(m)}\approx 0$, then it indicates the corresponding variable $x_i^{(m)}$ may not be important. (Why?)
 - The article does not provide it though, which may results from kernel function and other difficulties.
- SVM disadvantages:
 - Cost great computational effort for large amount of training data.
 - ► The selection of kernel function, parameters, etc. is subjective.

- An advantage of SVM is that we know how predictor works.
 - ▶ E.g. if we find $w = (w^{(1)}, \dots, w^{(m)}, \dots, w^{(n)})$ have $w^{(m)} \approx 0$, then it indicates the corresponding variable $x_i^{(m)}$ may not be important. (Why?)
 - The article does not provide it though, which may results from kernel function and other difficulties.

■ SVM disadvantages:

- Cost great computational effort for large amount of training data.
- ► The selection of kernel function, parameters, etc. is subjective.

Open questions:

- ▶ Is it reliable in the future? How can we take climate change into account?
- Should other factors be included, like forest area, pollution level, etc.?
- Can we turn binary classification into continous one, which provides rainfall probability and strength information?
- ► How to adapt the method for other extreme weather prediction?

Take Home Message

Support Vector Machine(SVM) is a binary classifier and is trained by solving an optimization problem.

Analog method predicts extreme weather by recognizing similar weather pattern ahead.

■ After training with historical data, SVM is able to predict extreme weather.

Tools for SVM

■ LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/

■ LIBLINEAR http://www.csie.ntu.edu.tw/~cjlin/liblinear/

SVM-light, SVM-perf, SVM-struct http://svmlight.joachims.org/svm_struct.html

Pegasos http://www.cs.huji.ac.il/~shais/code/index.html

Reference I

- [1] NAYAK M A, GHOSH S. Prediction of Extreme Rainfall Event Using Weather Pattern Recognition and Support Vector Machine Classifier[J/OL]. Theoretical and Applied Climatology, 2013, 114(3): 583-603(2013-11-01). https://doi.org/10.1007/s00704-013-0867-3. DOI: 10.1007/s00704-013-0867-3.
- [2] 周志华. 机器学习[M]. 第 1 版. 北京: 清华大学出版社, 2016.

Many thanks to lecture slides from Prof. Lan Yanyan (2019).

THANKS!

Pratical problems and Extensions: Kernel Function

■ What if... the data is not linearly separable?

Pratical problems and Extensions: Kernel Function

■ What if... the data is not linearly separable?

■ We can introduce a **function**, which maps data into the **feature space**, where they are separable.

In practice, we only need to deal with $\phi({m x}_i)^{\rm T}\phi({m x}_j)$, and we simply define

$$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \phi(\boldsymbol{x}_i)^{\mathrm{T}} \phi(\boldsymbol{x}_j)$$
 (5)

Where K is called Kernel Function.

Pratical problems and Extensions: Kernel Function

The choice of K requires experience and attempts.

Type	Formula
Linear	$oldsymbol{x}_i^{\mathrm{T}} oldsymbol{x}_j$
Polynomial	$(oldsymbol{x}_i^{ ext{T}}oldsymbol{x}_j^{ ext{T}})^q$
Gaussian	$\exp(-\ \boldsymbol{x}_i - \boldsymbol{x}_j\ ^2 / 2\sigma^2)$
Laplace	$\exp(-\ oldsymbol{x}_i - oldsymbol{x}_j\ /\sigma)$
Sigmoid	$ anh(eta oldsymbol{x}_i^{\mathrm{T}} oldsymbol{x}_j + heta)$

Table: Common Kernel Functions

From Tommi Jaakkola, MIT CSAIL

Pratical problems and Extensions: Soft margin

■ What if... there is noise or **outliers** in the data?

Pratical problems and Extensions: Soft margin

■ What if... there is noise or **outliers** in the data?

- For generalization purpose, we may want a separation that is not so strict.
- So we can relax the constraint a little.

$$y_i(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_i + b) \ge 1 \quad \rightarrow \quad y_i(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_i + b) \ge 1 - \xi_i$$
 (6)

■ Where $\xi_i > 0$ represents the error.

Pratical problems and Extensions: Soft margin

On the other hand, we don't want the error to be too large, thus the goal is reformulated as

$$\min \frac{1}{2} ||w||^2 \to \min \left(\frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \right)$$
 (7)

- Where parameter C measures the tradeoff between margin maximization and training error minimization.
- Now we can solve the new optimization problem.

Backup: AFM method

- Anomaly frequency method(AFM) is an efficient technique in extracting the features which discriminate extreme events and non-extreme events.
- For a variable, those grid points are selected as feature grid points which have a very **high frequency** of extreme anomalies.

Fig. 3 Frequency of high positive anomaly of V-wind velocity at the surface level, at different grid points, 6 h before the extreme events. Fifty extreme events are considered for this

Backup: Fingerprinting approach drawbacks

- 1. The fingerprints identified by the approach may also be present on a non-extreme day, which may result in false alarms.
- 2. There may be multiple numbers of weather patterns, which may result in extreme events; however, the fingerprinting approach considers only one fingerprint.