D - Probability One

Input: standard input
Output: standard output

Number guessing is a popular game between elementary-school kids. Teachers encourage pupils to play the game as it enhances their arithmetic skills, logical thinking, and following-up simple procedures. We think that, most probably, you too will master in few minutes. Here's one example of how you too can play this game: Ask a friend to think of a number, let's call it n_0 . Then:

- 1. Ask your friend to compute $n_1 = 3 * n_0$ and to tell you if n_1 is even or odd
- 2. If n_1 is even, ask your friend to compute $n_2 = n_1/2$. If, otherwise, n_1 was odd, then let your friend compute $n_2 = (n_1 + 1)/2$.
- 3. Now ask your friend to calculate $n3 = 3 * n_2$.
- 4. Ask your friend to tell tell you the result of $n_4 = n_3/9$. (n_4 is the quotient of the division operation. In computer lingo, '/' is the integer-division operator.)
- 5. Now you can simply reveal the original number by calculating $n_0 = 2 * n_4$ if n_1 was even, or $n_0 = 2 * n_4 + 1$ otherwise.

Here's an example that you can follow: If $n_0 = 37$, then $n_1 = 111$ which is odd. Now we can calculate $n_2 = 56$, $n_3 = 168$, and $n_4 = 18$, which is what your friend will tell you. Doing the calculation $2 * n_4 + 1 = 37$ reveals n_0 .

Input

Your program will be tested on one or more test cases. Each test case is made of a single positive number $(0 < n_0 < 1,000,000)$.

The last line of the input file has a single zero (which is not part of the test cases.)

Output

For each test case, print the following line:

k. B Q

Where k is the test case number (starting at one), B is either 'even' or 'odd' (without the quotes) depending on your friend's answer in step 1 and Q is your friend's answer to step 4.

Sample Input

37

38

0

Sample Output

- 1. odd 18
- 2. even 19