CS 344: Design and Analysis of Computer Algorithms

(Spring 2022 — Sections 5,6,7,8)

Lecture 12:
Greedy Algorithms: Unit-Weight Knapsack

Greedy Algorithms: Going Beyond Checking All Options

Dynamic Programming vs Greedy Algorithms

- Dynamic programming:
 - Write a recursive formula to "check (almost) all" options
 - Store intermediate answers to speedup computation
- Greedy algorithms:
 - Only search a small set of options
 - Greedily pick a choice and ignore alternatives

The Knapsack Problem

Input:

- A collection of n items with value v_i and weight w_i

A knapsack of size W

size: 35

 value:
 1000
 5
 50
 5
 100

 weight:
 25
 5
 8
 5
 15

The Knapsack Problem

Output:

- The maximum value we can get by picking a subset S of items
- The total weight of S should be less than Knapsack size

size: 35

value:	1000	5	50	5	100
weight:	25	5	8	5	15

The Unit-Weight Knapsack Problem

Input:

and weight 1

- A collection of n items with value v_i and weight w_i
- A knapsack of size W

Output:

- The maximum value we can get by picking a subset S of items
- The total weight of S should be less than Knapsack size
- Alternatively, pick W items with largest value

- IF $W \ge n$ pick all the items
- Otherwise run dynamic programming for original knapsack

- IF $W \ge n$ pick all the items
- Otherwise run dynamic programming for original knapsack

• Correctness?

- IF $W \ge n$ pick all the items
- Otherwise run dynamic programming for original knapsack

- Correctness?
- Runtime:
 - O(nW) when W < n so $O(n^2)$ time

- IF $W \ge n$ pick all the items
- Otherwise run dynamic programming for original knapsack

- Correctness?
- Runtime:
 - O(nW) when W < n so $O(n^2)$ time
 - Can we solve the problem faster?

- A "Greedy" Observation:
 - An item of price 100 is definitely better than an item of price 10 in every possible way
 - Why? Both have the same weight

- A "Greedy" Observation:
 - An item of price 100 is definitely better than an item of price 10 in every possible way
 - Why? Both have the same weight
- More generally,
 - If price of item i is more than item j, then we should first pick i before considering picking j

- Greedy algorithm:
 - While knapsack is not full:
 - Pick the item i with the largest price among remaining items
 - Remove item i from list of items and decrease the capacity of knapsack by 1

- Greedy algorithm:
 - While knapsack is not full:
 - Pick the item i with the largest price among remaining items
 - Remove item i from list of items and decrease the capacity of knapsack by 1

Example:

Price

3 5

2

1

8

- Greedy algorithm:
 - While knapsack is not full:
 - Pick the item i with the largest price among remaining items
 - Remove item i from list of items and decrease the capacity of knapsack by 1

Example:

Price

3 5

2

3

- Greedy algorithm:
 - While knapsack is not full:
 - Pick the item i with the largest price among remaining items
 - Remove item i from list of items and decrease the capacity of knapsack by 1

Example:

Price

3

5

2

8

4

- Greedy algorithm:
 - While knapsack is not full:
 - Pick the item i with the largest price among remaining items
 - Remove item i from list of items and decrease the capacity of knapsack by 1

Example:

Price

3

5

2

7

8

9

- Greedy algorithm:
 - While knapsack is not full:
 - Pick the item i with the largest price among remaining items
 - Remove item i from list of items and decrease the capacity of knapsack by 1

- Greedy algorithm:
 - While knapsack is not full:
 - Pick the item i with the largest price among remaining items
 - Remove item i from list of items and decrease the capacity of knapsack by 1

We pick items 2,5,6, and 8 with a total price of 29

- Consider our greedy solution called $G = \{g_1, g_2, ..., g_W\}$
- Consider an optimal solution called $O = \{o_1, o_2, ..., o_W\}$
- We can assume:

$$-v_{g_1} \ge v_{g_2} \ge \cdots \ge v_{g_W}$$

$$-v_{o_1} \ge v_{o_2} \ge \cdots \ge v_{o_W}$$

- If O = G we are done: greedy is also an optimal solution
- If $O \neq G$ find the first index i such that $g_i \neq o_i$:

$$- g_1 = o_1$$
, ..., $g_{i-1} = o_{i-1}$

- So we found another optimal solution "one step closer" to G
- We can repeat this step to i+1 until n to find an optimal solution which is identical to G

- So we found another optimal solution "one step closer" to G
- We can repeat this step to i+1 until n to find an optimal solution which is identical to G

- So we found another optimal solution "one step closer" to G
- We can repeat this step to i+1 until n to find an optimal solution which is identical to G

Exchange Argument

- We proved the correctness of our greedy algorithm
- This type of argument is called an exchange argument
 - Start from an optimal solution which can be "far from" greedy
 - Exchange decisions of the optimal solution, one at a time, to make it "closer to" greedy while keeping optimality
 - Once we changed all of optimal to greedy, we obtain that the greedy solution is also optimal

- Greedy algorithm:
 - While knapsack is not full:
 - Pick the item i with the largest price among remaining items
 - Remove item i from list of items and decrease the capacity of knapsack by 1

Runtime?

- Greedy algorithm:
 - While knapsack is not full:
 - Pick the item i with the largest price among remaining items
 - Remove item i from list of items and decrease the capacity of knapsack by 1

- Runtime?
 - We have to specify the algorithm more

- While knapsack is not full:
 - Pick the item i with the largest price among remaining items
 - Remove item i from list of items and decrease the capacity of knapsack by 1

- Naive implementation:
- Add all items to a linked-list L
- For i=1 to W:
 - Find the maximum of L
 - Add this item to the solution and remove it from L

- While knapsack is not full:
 - Pick the item i with the largest price among remaining items
 - Remove item i from list of items and decrease the capacity of knapsack by 1

- Naive implementation:
- Add all items to a linked-list L
- For i=1 to W:
 - Find the maximum of L
 - Add this item to the solution and remove it from L

Runtime is O(nW) this way which can become $O(n^2)$ as before

- While knapsack is not full:
 - Pick the item i with the largest price among remaining items
 - Remove item i from list of items and decrease the capacity of knapsack by 1

- Better implementation:
- Sort the items based on their prices in decreasing (nonincreasing) order
- Return the first W items in the sorted array

- While knapsack is not full:
 - Pick the item i with the largest price among remaining items
 - Remove item i from list of items and decrease the capacity of knapsack by 1

- Better implementation:
- Sort the items based on their prices in decreasing (nonincreasing) order
- Return the first W items in the sorted array

Runtime is $O(n \log n)$ this way

Pattern of Greedy Algorithms

Pattern of Greedy Algorithms

- 1. See if you find a way of ignoring some of available options
 - Not a proof, just intuition
- 2. Design your greedy algorithm based on this observation
- 3. **Main step:** Prove the correctness of your algorithm
 - Typically (but not always) based on an exchange argument
- 4. What if you failed to prove the correctness?
 - Then your algorithm is (most likely) wrong and you should go back to step 1 or 2 to change the algorithm.
- 5. What if you keep failing? Not every problem has a greedy solution

The Job Scheduling Problem

The Job Scheduling Problem

Input:

- A collection of n computing jobs each with a length L[i]
- A single processor that can compute job i in L[i] time

Output:

- On ordering π of the jobs with minimal total delay

$$delay(\pi) = \sum_{i=1}^{n} \sum_{j=1}^{i} L[\pi(j)]$$

Input:

- A possible ordering $\pi = (1,2,3,4,5,6,7,8)$
 - i.e., the same ordering as the input

6	1	2	3	2	1	1	4
---	---	---	---	---	---	---	---

Input:

- A possible ordering $\pi = (1,2,3,4,5,6,7,8)$
 - i.e., the same ordering as the input
- Job 1 has to wait 6 unit
- Job 2 has to wait 7 unit

6	1	2	3	2	1	1	4
---	---	---	---	---	---	---	---

- Job 3 has to wait 9 unit
- •
- Total delay is 6+7+9+12+14+15+16+20 = 99 units

Input:

• Another possible ordering $\pi = (3,2,1,7,5,6,4,8)$

Input:

- Another possible ordering $\pi = (3,2,1,7,5,6,4,8)$
 - Job 3 has to wait 2 unit
 - Job 2 has to wait 3 unit
 - Job 1 has to wait 9 unit

2	1	6	1	2	1	3	4
---	---	---	---	---	---	---	---

– ...

- Total delay is 2+3+9+10+12+13+16+20 = 85 units

Input:

• Yet another possible ordering $\pi = (2,6,7,5,3,4,8,1)$

Input:

- Yet another possible ordering $\pi = (2,6,7,5,3,4,8,1)$
 - Job 2 has to wait 1 unit
 - Job 6 has to wait 2 unit
 - Job 7 has to wait 3 unit

– ...

- Total delay is 1+2+3+5+7+10+14+20 = 62 units

- A "Greedy" Observation:
 - Suppose we have two jobs next to each other in the output ordering π
 - If we flip the order of these two jobs, the delay for remaining jobs does not change
 - Delay of first job increases by length of second, while delay of second job decreases by length of first

