

Example

Emp_ID	Name	Dept_Name	Salary	Course_Title	Date_Completed
100	Margaret Simpson	Marketing	48,000	SPSS	6/19/200X
100	Margaret Simpson	Marketing	48,000	Surveys	10/7/200X
140	Alan Beeton	Accounting	52,000	Tax Acc	12/8/200X
110	Chris Lucero	Info Systems	43,000	SPSS	1/12/200X
110	Chris Lucero	Info Systems	43,000	C++	4/22/200X
190	Lorenzo Davis	Finance	55,000		
150	Susan Martin	Marketing	42,000	SPSS	6/19/200X
150	Susan Martin	Marketing	42,000	Java	8/12/200X

Question – Is this a relation?

Answer – Yes: unique rows and no multivalued attributes

Question – What's the primary key?

Answer – Composite: Emp_ID, Course_Title

Anomalies in this Table

- Insertion can't enter a new employee without having the employee take a class
- **Deletion** if we remove employee 140, we lose information about the existence of a Tax Acc class
- Modification giving a salary increase to employee 100 forces us to update multiple records

Why do these anomalies exist?

Because there are two themes (entity types) into one relation. This results in duplication, and an unnecessary dependency between the entities

Steps in Normalization

First Normal Form

- A relation that contains no repeating groups (multi valued attributes)
- Every attribute value is atomic

- Simply fill in the relevant data values in vacant cells
- A new relation is created that has only single-valued attributes and satisfies rule 2

Employee1 Relation

<u>ID</u>	Name	Dept_Name	Salary	Course_Title	Date_Completed
100	Margaret Simpson	Marketing	48000	SPSS	6/19/1999
				Surveys	10/7/1999
140	Alan Beeton	Accounting	52000	Tax Acc	12/8/1998
110	Chris Lucero	Info. Systems	43000	SPSS	1/12/1999
				C++	4/22/1999
190	Lorenzo Davis	Finance	55000		
150	Susan Martin	Marketing	42000	SPSS	6/16/1999
				Java	8/12/1999

Employee2 Relation

<u>ID</u>	Name	Dept_Name	Salary	Course Title	Date_Completed	
100	Margaret Simpson	Marketing	48000	SPSS	6/19/1999	
100	Margaret Simpson	Marketing	48000	Surveys	10/7/1999	
140	Alan Beeton	Accounting	52000	Tax Acc	12/8/1998	
110	Chris Lucero	Info. Systems	43000	SPSS	1/12/1999	
110	Chris Lucero	Info. Systems	43000	C++	4/22/1999	***
190	Lorenzo Davis	Finance	55000			
150	Susan Martin	Marketing	42000	SPSS	6/16/1999	
150	Susan Martin	Marketing	42000	Java	8/12/1999	

Functional Dependencies and Keys

- Functional Dependency: The value of one attribute (the determinant) determines the value of another attribute
- Candidate Key:
 - A unique identifier. One of the candidate keys will become the primary key
 - E.g. perhaps there is both credit card number and SS# in a table...in this case both are candidate keys
 - Each non-key field is functionally dependent on every candidate key

Functional Dependency

 An attribute B is functionally dependent on attribute A if for every valid instance of A, the value of A uniquely determines the value of B

Notation: $A \rightarrow B$

EX: (EMPID, COURSE, DATE COMPLETED)

EMPID, COURSE → DATE COMPLETED

Ex: Functional Dependency

SSN → NAME, BIRTHDATE

VIN → MAKE, MODEL, COLOR

ISBN → TITLE

Determinant: Attribute on the left-hand side of the arrow

Rules of Functional Dependency

Augmentation: If $X \rightarrow Y$ then $XZ \rightarrow Y$

EX: Student# → Student Name then Student#, Course→Student Name

<u>Transitivity</u>: If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

EX: Student#→Major & Major→Advisor then Student#→Advisor

Second Normal Form

- A relation is 1NF and
 - The Primary Key consists of only one attribute
 - No Non-key attributes exist
 - Every non-key attribute is fully functionally dependent on the full set of primary key attributes, not by only part of the key
 - No partial functional dependencies

Functional dependency olarak primary key closure'nda ise

A -> B,C

Functional Dependencies in EMPLOYEE2

EmpID, CourseTitle → DateCompleted

EmpID → Name, DeptName, Salary

Therefore, NOT in 2nd Normal Form!!

Getting it into 2nd Normal Form

Decompose into two separate relations

Third Normal Form

- 2NF PLUS no transitive dependencies (one attribute functionally determines a second, which functionally determines a third)
- Transitive dependency is the dependency between or among two non-key attributes

Removing Transitive Dependencies

- Decompose relation into two (or more) relations.
- The determinant of the transitive dependency becomes the primary key in the new relation and a foreign key in the original relation

Relation with transitive dependency

(a) SALES relation with simple data

SALES			
Cust_ID	Name	Salesperson	Region
8023	Anderson	Smith	South
9167	Bancroft	Hicks	West
7924	Hobbs	Smith	South
6837	Tucker	Hernandez	East
8596	Eckersley	Hicks	West
7018	Arnold	Faulb	North

Relation with transitive dependency

CustID → Name

CustID → Salesperson

CustID → Region

All this is OK (2nd NF)

BUT

CustID → Salesperson → Region

Transitive dependency (not 3rd NF)

Removing a transitive dependency

(a) Decomposing the SALES relation

SALES1			<u>-2</u>	SPERSON	
Cust_ID	Name	Salesperson		Salesperson	Region
8023	Anderson	Smith	_	Smith	South
9167	Bancroft	Hicks		Hicks	West
7924	Hobbs	Smith		Hernandez	East
6837	Tucker	Hernandez		Faulb	North
8596	Eckersley	Hicks			
7018	Arnold	Faulb			

Relations in 3NF

CustID → Name

CustID → Salesperson

Now, there are no transitive dependencies... Both relations are in 3rd NF

Ex: Transitive Dependency

- Relation:
 - Shipment(Snum, Origin, Dest, Distance)
- Dependencies:
 - Snum→Origin, Dest, Distance
 - Origin, Dest→Distance
- Fix by decomposing into two relations:
 - Shipto(Snum, Origin, Dest)
 - Distance(Origin, Dest, Distance)

Employee2 Relation

<u>ID</u>	Name	Dept_Name	Salary	Course Title	Date_Completed
100	Margaret Simpson	Marketing	48000	SPSS	6/19/1999
100	Margaret Simpson	Marketing	48000	Surveys	10/7/1999
140	Alan Beeton	Accounting	52000	Tax Acc	12/8/1998
110	Chris Lucero	Info. Systems	43000	SPSS	1/12/1999
110	Chris Lucero	Info. Systems	43000	C++	4/22/1999
190	Lorenzo Davis	Finance	55000		
150	Susan Martin	Marketing	42000	SPSS	6/16/1999
150	Susan Martin	Marketing	42000	Java	8/12/1999

ID	Name	Dept_Name	Salary	Course Title	Date_Completed
100	Margaret Simpson	Marketing	48000	SPSS	6/19/1999
100	Margaret Simpson	Marketing	48000	Surveys	10/7/1999
140	Alan Beeton	Accounting	52000	Tax Acc	12/8/1998
110	Chris Lucero	Info. Systems	43000	SPSS	1/12/1999
110	Chris Lucero	Info. Systems	43000	C++	4/22/1999
190	Lorenzo Davis	Finance	55000		
150	Susan Martin	Marketing	42000	SPSS	6/16/1999
150	Susan Martin	Marketing	42000	Java	8/12/1999

1NF: it is already in 1NF. All entries are atomic.

2NF: fully functionally dependent upon the entire primary key.

<u>ID</u> → Name, Dept_Name, Salary

<u>ID</u>, <u>Course title</u> → Date_Completed

[ID, Name, Dept_name, Salary]

[ID, Course_Title, Date_Completed]

Now onto the 3NF: No transitive dependencies among non-key attributes.

Conclusion: no possible violation of 3nf.

So the set of tables are now in 3NF.

OPIM-302

Merging Relations

- After transforming E-R diagrams into relations
 - Check each relation to ensure 3NF (at least)
 - Normalize if necessary
 - Check for redundancy merge redundant relations

Merging Relations

- Issues to watch out for when merging entities from different ER models:
 - Synonyms two or more attributes with different names but same meaning. E.g. Student ID & Matriculation#
 - Homonyms attributes with same name but different meanings. E.g. Patient# could represent inpatient or outpatient

Merge Relations

 Transitive dependencies – even if relations are in 3NF prior to merging, they may not be after merging

Student1(<u>StudentID</u>, Major) Student2(<u>StudentID</u>, Advisor) Student(<u>StudentID</u>, Major, Advisor) Major→Advisor

Student(STDID, Major, Advisor)
Major→Advisor

Student(STDID, <u>Major</u>)
Advisor(Major, Advisor)

Supertype/subtype relationships – may be hidden prior to merging

STUDENT [Student ID, Major]

ST_ADVISOR [Major, Advisor]

Ex: Merge Relations

Employee1(EmployeeNo, Name, Address, Phone)

Employee2(EmployeeNo, Name, Address, Jobcode, NoYrs)

Hint: Look for same primary key

Employee (EmployeeNo, Name, Address, Phone, Jobcode, NoYrs)

Integrity Constraints

- Domain Constraints: the set of values that may be assigned to an attribute must be from the same domain
 - Domain name, meaning, data type, size/length, allowable values or ranges
- Entity Integrity: Every relation must have a primary key and the data values of that key are valid.
 - RULE: The primary key or any component of the primary key can never be null

Integrity Constraints

 Referential Integrity – rule that states that any foreign key value (on the relation of the many side) MUST match a primary key value in the relation of the one side. (Or the foreign key can be null)

Delete Rules

- Restrict don't allow delete of "parent" side if related rows exist in "dependent" side
- Cascade automatically delete "dependent" side rows that correspond with the "parent" side row to be deleted
- Set-to-Null set the foreign key in the dependent side to null if deleting from the parent side → not allowed for weak entities

Referential Integrity Constraints

In Class Exercise 7

Transform the ER diagram given above on to logical data model

E2 [E, B, C, D] ← not 1st nf. Because of multivalued attrib.

E2_1[F, B, C]

E2_2 [F, D]

E1 [<u>A</u>, E, <u>F, A1</u>]

In Class Exercise 8

Transform the ER diagram given above on to logical data model

PROJECT [PID, PNAME, BUDGET]

WORKS_IN [PID, ENO, HOURS]

EMPLOYEE [ENO, FNAME, LNAME]

In Class Exercise 9

Given dependencies below, normalize following relations and obtain 3NF relations.

PNO→ PNAME, BUDGET

ENO→ ENAME, TITLE, SALARY

ENO, PNO→ RESPONSIBILITY, DURATION

TITLE→ SALARY

EMPLOYEE

ENO	ENAME	TITLE	SALARY	PNO	RESPONSIBILITY	DURATION

PROJECT

	I	
PNO	PNAME	BUDGET

ENO→ ENAME, TITLE, SALARY

ENO, PNO→ RESPONSIBILITY, DURATION

TITLE→ SALARY

EMPLOYEE

ENO ENAME TITLE SALARY PNO RESPONSIBILITY DURATION

PROJECT

PNO PNAME BUDGET

EMPLOYEE [ENO, ENAME, TITLE, PNO, RECOGNISIENT, DOTATION

EMPLOYEE_RR [ENO, PNO, RESPONSIBILITY, DURATION]

EMP_TITLE [TITLE, SALARY]

PROJECT [PNO, PNAME, BUDGET]