01:XXX:XXX - Homework n

Pranav Tikkawar

November 14, 2024

Pranav Tikkawar 01:XXX:XXX Homework n

1. Question 1.

Suppose $X_1 \sim Exp(\lambda = 2)$ and $X_2 \sim Exp(\lambda = 3)$ are independent. Use the transformation theorem we learned to find the PDF of $Y = X_1 + X_2$.

Solution: We can see that $y = x_1 + x_2$ $f(x_1, x_2) = f(x_1)f(x_2) = \frac{1}{6}e^{-\frac{x_1}{2} - \frac{x_2}{3}}$ Thus if we let $y = x_1 + x_2$ then $x_1 = y - x_2$ and $x_2 = y - x_1$

 $g(y, x_2) = f(x_1, x_2)|J|$

Where |J| is $\frac{\partial x_1}{\partial y}$ We can clealry see that $g(y, x_2) = \frac{1}{6}e^{-\frac{x_1}{2} - \frac{x_2}{3}}$ Since we can see that $x_1 = y - x_2$ thus $y > x_2$ and $x_2 > 0$

$$f_Y(t) = \int_0^y \frac{1}{6} e^{-\frac{y-x_2}{2} - \frac{x_2}{3}} dx_2$$

$$f_Y(t) = e^{-\frac{y}{2}} + e^{-\frac{y}{3}}$$

Thus the PDF of $Y = X_1 + X_2$ is $f_Y(t) = e^{-\frac{y}{2}} + e^{-\frac{y}{3}}$

2. Write a series of algebraic manipulations that converts

$$P(-t_{\alpha/2,n-1} \le T \le t_{\alpha/2,n-1}) = 1 - \alpha$$

to

$$P(\bar{X} - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}} \le \mu \le \bar{X} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}) = 1 - \alpha$$

Solution: We know that $T \sim \frac{\bar{X} - \mu}{S/\sqrt{n}}$ where \bar{X} is the sample mean and S is the sample standard deviation.

$$P(-t_{\alpha/2,n-1} \le T \le t_{\alpha/2,n-1}) = 1 - \alpha$$

$$P(-t_{\alpha/2,n-1} \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le t_{\alpha/2,n-1}) = 1 - \alpha$$

$$P(-t_{\alpha/2,n-1}(S/\sqrt{n}) \le \bar{X} - \mu \le t_{\alpha/2,n-1}(S/\sqrt{n})) = 1 - \alpha$$

$$P(\bar{X} - t_{\alpha/2,n-1} \frac{S}{\sqrt{n}} \le \mu \le \bar{X} + t_{\alpha/2,n-1} \frac{S}{\sqrt{n}}) = 1 - \alpha$$

3. Question 3.

Use the PDF we derived of t_{ν} (note: $\nu > 0$) distribution to obtain a formula for the number

$$\int_0^\infty \frac{1}{(1+m^2)^p} \, dm$$

in terms of p. State the range of p for which this formula is valid.

- (a) Directly integrate $\int_0^\infty \frac{1}{1+m^2} dm$ and also use your formula. Do you get the same answer? You may use $\Gamma(1/2) = \sqrt{\pi}$.
- (b) Determine $\int_0^\infty \frac{1}{(1+m^2)^{7/2}} dm$. Simplify completely. You may use $\Gamma(1/2) = \sqrt{\pi}$.
- (c) Determine $\int_0^\infty \frac{1}{(1+m^2)^7} dm$. Simplify completely. You may use $\Gamma(1/2) = \sqrt{\pi}$.
- (d) (Challenge) Determine $\int_0^\infty \frac{1}{(1+m^2)^p} dm$ when either p is a positive half-integer or positive integer.

Solution: Part a: Let $G \sim \Gamma_{\nu}$ thus $G(x) = \frac{1}{\sqrt{\nu}} \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi}\Gamma(\frac{\nu}{2})} (1 + \frac{x^2}{\nu})^{-\frac{\nu+1}{2}}$

And since G is even

$$\int_0^\infty G(x) = .5$$

$$\int_0^\infty \left(1 + \frac{t^2}{\nu}\right)^{-(\nu+1)/2} dt = \frac{1}{2} \frac{\sqrt{\pi\nu}\Gamma(\nu/2)}{\Gamma(\frac{\nu+1}{2})}$$

We can sub $m = t\sqrt{\nu}$ and $\sqrt{\nu}dm = dt$

We can take $p = (\nu + 1)/2$ and thus $\nu = 2p - 1$

$$\int_0^\infty \frac{1}{(1+m^2)^p} dm = \frac{1}{2} \frac{\sqrt{\pi} \Gamma((2p-1)/2)}{\Gamma(p)}$$

This is valid for p > 1/2

Part b: We can directly apply to see that p = 1 and thus

$$\frac{1}{2} \frac{\sqrt{\pi^2}}{1}$$

$$\frac{\pi}{2}$$

Part c: We can directly apply to see that p = 7/2 and thus

$$\frac{\sqrt{\pi}}{2} \frac{\Gamma(3)}{\Gamma(7/2)}$$

$$\frac{\sqrt{\pi}}{2} \frac{8}{15\sqrt{\pi}}$$

$$4/15$$

Part d: We can directly apply to see that p = 7 and thus

$$\frac{\sqrt{\pi}}{2} \frac{\Gamma(13/2)}{\Gamma(7)}$$

$$\frac{\sqrt{\pi}}{2} \frac{11 \cdot 9 \cdot 7 \cdot 5 \cdot 3 \cdot \sqrt{\pi}}{2^{5} 6!}$$

$$\frac{231}{256} \pi$$