IEE3773 - Laboratorio de resonancia magnética

Estimación de mapas T1 y T2¹

Objetivos

• Aprender distintas maneras de reconstruir mapas T1 y T2.

1 Experiencia práctica

En esta experiencia se adquiriran los datos necesarios para realizar el informe que se pide más adelante.

- 1. Defina un protocolo para adquirir una imagen de cerebro. Procure que el setup escogido (e.g. tamaño del pixel y FOV entre otros) sea el adecuado para evitar artefactos.
- 2. Para cada una de sus adquisiciones guarde el raw data para el proceso de reconstrucción.
- 3. Adquiera una imagen 2D (corte axial) de cerebro completamente muestreada utilizando la secuencia de *Lock-Locker* (LL).
- 4. Diseñe un protocolo que permita adquirir datos para la estimación de mapas T2.

2 Tarea

Observación: En al menos uno de los mapas a estimar en las preguntas (1), (2) y (3) debe realizar un ajuste por mínimos cuadrados de los datos a las expresiones de evolución de la magnetización, esto es, usted debe programar el ajuste de los datos.

- (1) Reconstruya las imágenes I_{LL} (Look-Locker) e I_{T2} utilizando SENSE para combinar la información de cada bobina.
- (2) Reconstruya el mapa T1 utilizando la imagen I_{LL} . Indique qué modelo para la magnetización utilizó para el ajuste de los datos y muestre sus resultados.
- (3) Reconstruya un mapa T2 a partir de la imagen I_{T2} adquirida con el protocolo diseñado durante la adquisición de los datos. Indique qué modelo de la magnetización utilizó y muestre sus resultados.
- (4) Para cada una de las reconstrucciones, realice un análisis de sensibilidad reduciendo el número de muestras en el tiempo. Indique qué sucede con los resultados.
- (5) Compare los resultados obtenidos con valores de T1 y T2 descritos en la literatura².

¹Look, D. C., and Locker, D. R. (1970). Time saving in measurement of NMR and EPR relaxation times. Review of Scientific Instruments.

 $^{^2}$ Tener siempre presente que estos valores cambian dependiendo de la intensidad del campo magnético principal del scanner.