### Your Browsing History May Cost You

### A Framework for Discovering Differential Pricing in Non-Transparent Markets

Aditya Karan (karan2@illinois.edu)

Naina Balepur (nainab2@illinos.edu)

Hari Sundaram (hs1@illinois.edu)

University of Illinois Urbana-Champaign

Image source: Vecteezy.com

All icons from thenounproject.com



We collect 1.1M flight records and 4.2M hotel records.

Some customers lose up to \$6 on average – 33x what you might lose by chance.



In-person audits allow for easy consensus; online audits are difficult.



# Prior Work Makes Assumptions about Identity

Datta (2014) – audit with sock puppets; use google settings to validate identity

Asplund (2020) – also audit with sock puppets; use correlation to validate identity

Mikians (2012) – train sock puppets with focus on personal and browser attributes



"On the Internet, nobody knows you're a dog."

## Our Work is Grounded in Consensus on Behavior



## Our Work is Grounded in Consensus on Behavior



• Use user profiles from existing literature

- Use user profiles from existing literature
- For every run, have agents visit websites based on profile and then simultaneously execute query

- Use user profiles from existing literature
- For every run, have agents visit websites based on profile and then simultaneously execute query
- Record good, seller, and pricing information

- Use user profiles from existing literature
- For every run, have agents visit websites based on profile and then simultaneously execute query
- Record good, seller, and pricing information

| Seller ID | Profile ID | Flight # | Route   | Good ID | Date    | Price |
|-----------|------------|----------|---------|---------|---------|-------|
| S1        | Pl         | AA2058   | LGA-ORD | 101     | 11Jun23 | \$100 |
| S1        | P2         | AA2058   | LGA-ORD | 101     | 11Jun23 | \$105 |

Average flight ticket price per profile is uninformative.



Price Difference?









Price Difference?







Price Difference?









| Good ID | Seller ID | Profile X ID | Price X | Profile Y ID | Price Y | Price Difference? |
|---------|-----------|--------------|---------|--------------|---------|-------------------|
| 101     | S1        | PI           | \$105   | P2           | \$100   | True              |

$$y_{i,j|k} \sim \operatorname{Ber}(p_{i,j|k})$$

 $y_{i,j \mid k}$  = indicator outcome variable; buyers i and j see different prices from seller k



$$y_{i,j|k} \sim \operatorname{Ber}(p_{i,j|k})$$

 $y_{i,j \mid k}$  = indicator outcome variable; buyers i and j see different prices from seller k

 $p_{i,j \mid k}$  = probability that buyers i and j see different prices from seller k



$$y_{i,j|k} \sim \operatorname{Ber}(p_{i,j|k})$$

 $y_{i,j \mid k} = \text{indicator outcome variable};$ buyers i and j see different prices from seller k  $p_{i,j \mid k} = \text{probability that buyers } i \text{ and } j$ see different prices from seller k



$$Logit(p_{i,j|k}) = \overline{p} + (\beta_i - \beta_j) + (\delta_{k,i} - \delta_{k,j})$$

 $\bar{p}$  = base probability that any buyers see different prices

$$y_{i,j|k} \sim \operatorname{Ber}(p_{i,j|k})$$

 $y_{i,j \mid k} = \text{indicator outcome variable};$ buyers i and j see different prices from seller k  $p_{i,j \mid k} = \text{probability that buyers } i \text{ and } j$ see different prices from seller k



$$Logit(p_{i,j|k}) = \bar{p} + (\beta_i - \beta_j) + (\delta_{k,i} - \delta_{k,j})$$

 $\bar{p}$  = base probability that any buyers see different prices  $\beta_i - \beta_j$  = difference in direct effect of profiles i and j on probability of seeing different prices

$$y_{i,j|k} \sim \operatorname{Ber}(p_{i,j|k})$$

 $y_{i,j \mid k} = \text{indicator outcome variable};$ buyers i and j see different prices from seller k  $p_{i,j \mid k} = \text{probability that buyers } i \text{ and } j$ see different prices from seller k



$$Logit(p_{i,j|k}) = \bar{p} + (\beta_i - \beta_j) + (\delta_{k,i} - \delta_{k,j})$$

 $\bar{p}$  = base probability that any buyers see different prices  $\beta_i - \beta_j$  = difference in direct effect of profiles i and j on probability of seeing different prices

 $\delta_{k,i} - \delta_{k,j} = \text{difference in seller} - \text{profile interaction effect on}$  probability of seeing different prices

## How Common is Differential Treatment Across Sellers?















#### How Much More Do Consumers Pay?



# What is the Dollar Impact for a Specific Seller?



## What is the Dollar Impact for a Specific Seller?



### What is the Dollar Impact for a Specific Seller?



#### Future Work Can Mitigate Consumer Loss



Laws requiring disclosures



Limit tracking



Consumer cooperation

### You may have paid too much

Why?

- 1) Lack of price transparency
- 2) Computational advertising infrastructure