10. 特異ホモロジー論(III)

1 球面の特異ホモロジー群

一般に可縮な位相空間 X について, $\widetilde{H}_*(X)=0$ が成立する.n 次元球面 S^n 上に 2 点 $p_+=(0,\cdots,0,1),\ p_-=(0,\cdots,0,-1)$ をとると S^n-p_+,S^n-p_- はともに可縮で,切除可能な対をなす.したがって,Mayer-Vietoris 完全列によって, S^n の特異ホモロジー群を帰納的に計算することができる.結果は $n\geq 1$ として

$$H_q(S^n) = \begin{cases} \mathbf{Z} & q = 0, n \\ 0 & q \neq 0, n \end{cases}$$

となる . $H_n(S^n)$ の生成元を S^n の基本ホモロジー類とよび $[S^n]$ で表す . 連続写像 $f:S^n\to S^n$ に対して , f の写像度 $({\rm mapping\ degree})$ $\deg f$ を

$$f_*[S^n] = (\deg f)[S^n]$$

で定義する . 連続写像 $f,g:S^n\to S^n$ がホモトピー同値であれば , $\deg f=\deg g$ となる . 写像度は回転数の概念の一般化である .

命題 $\mathbf{1.}\ r:S^n \to S^n$ を原点についての対称変換とすると $\deg r = (-1)^{n+1}$ が成立する .

2 特異ホモロジーの応用

対 D^n, S^{n-1} のホモロジー完全列を用いると

$$H_q(D^n, S^{n-1}) = \begin{cases} \mathbf{Z} & q = n \\ 0 & q \neq n \end{cases}$$

が得られる.また, \mathbf{R}^n の一点pに対して,

$$H_*(\mathbf{R}^n, \mathbf{R}^n - p) \cong H_*(D^n, S^{n-1})$$

となる.このことから,次の定理が得られる.

定理 1. $m \neq n$ ならば \mathbb{R}^m と \mathbb{R}^n は同相ではない.

Xを位相空間,Yをその部分空間とする.包含写像 $i:Y\to X$ に対して,連続写像 $r:X\to Y$ で, $r\circ i=id_Y$ を満たすものが存在するとき,Y は X のレトラクトであるという.さらに,このr がまた, $i\circ r\sim id_X$ (homotopic)を満たすものが存在するとき,Y は X の変位レトラクト(deformation retract)であるという.このとき,X,Y はホモロピー同型である.

対 D^n, S^{n-1} のホモロジーを用いると次の定理を示すことができる.

定理 2. $S^{n-1} = \partial D^n$ は D^n のレトラクトではない.

このことから次の Brouwer の不動点定理が従う.

定理 3. 連続写像 $f:D^n\to D^n$ には,不動点つまり f(x)=x となる点 $x\in D^n$ が存在する.

連続写像 $f:S^n\to S^n$ が不動点をもたないならば $\deg f=(-1)^{n+1}$ であることを示すことができる.これを用いると次の定理が証明できる.

定理 4. 球面 S^n 上にいたるところ零にはならないベクトル場が存在するのは n が奇数の場合に限る.

前回分の 4 行目は "包含写像を $i:Y\to X$ とすると"に訂正.