IP CORE MANUAL

Pulse Transfer IP

px_xpm_cdc_pulse

Pentek, Inc.
One Park Way
Upper Saddle River, NJ 07458
(201) 818-5900
http://www.pentek.com/

Copyright © 2017

Manual Part Number: 807.48379 Rev: 1.0 - April 10, 2017

Manual Revision History

Date	Version		Comments
04/10/17	1.0	Initial Release	

Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Pentek products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Pentek hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Pentek shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in conjunction with, the Materials (including your use of Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage and loss was reasonably foreseeable or Pentek had been advised of the possibility of the same. Pentek assumes no obligation to correct any error contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the materials without prior written consent. Certain products are subject to the terms and conditions of Pentek's limited warranty, please refer to Pentek's Ordering and Warranty information which can be viewed at http://www.pentek.com/contact/customerinfo.cfm; IP cores may be subject to warranty and support terms contained in a license issued to you by Pentek. Pentek products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for the use of Pentek products in such critical applications.

Copyright

Copyright © 2017, Pentek, Inc. All Rights Reserved. Contents of this publication may not be reproduced in any form without written permission.

Trademarks

Pentek, Jade, and Navigator are trademarks or registered trademarks of Pentek, Inc.

ARM and AMBA are registered trademarks of ARM Limited. PCI, PCI Express, PCIe, and PCI-SIG are trademarks or registered trademarks of PCI-SIG. Xilinx, Kintex UltraScale, Vivado, and Platform Cable USB are registered trademarks of Xilinx Inc., of San Jose, CA.

Table of Contents

	Page
IP Facts	
Description	5
Features	
Table 1-1: IP Facts Table	5
Chapter 1: Overview	
Functional Description	7
Figure 1-1: Pulse Transfer Core Block Diagram	7
Applications	
System Requirements	
Licensing and Ordering Information	7
Contacting Technical Support	8
Documentation	8
Chapter 2: General Product Specificat	tions
Standards	9
Performance	9
Resource Utilization	9
Table 2-1: Resource Usage and Availability	9
Limitations and Unsupported Features	10
Generic Parameters	10
Table 2-2: Generic Parameters	10
Chapter 3: Port Descriptions	
I/O Signals	11
Table 3-1: I/O Signals	11
Chapter 4: Designing with the Cor	e
General Design Guidelines	13
Clocking	
Resets	13
Interrupts	13
Interface Operation	13

Table of Contents

		Page
	Chapter 4: Designing with the Core (continued)	
4.6	Programming Sequence	14
1.7	Timing Diagrams	
	Chapter 5: Design Flow Steps	
	Figure 5-1: Pulse Transfer Core in Pentek IP Catalog	
	Figure 5-2: Pulse Transfer Core IP Symbol	
5.2	User Parameters	16
5.3	Generating Output	16
5.4	Constraining the Core	17
5.5	Simulation	
	Simulation	17

IP Facts

Description

Pentek's NavigatorTM Pulse Transfer Core is designed to instantiate the Xilinx Pulse Transfer Parameterized Macro. This Xilinx macro synchronizes an input pulse in the source clock domain to the destination clock domain.

This user manual defines the hardware interface, software interface, and parameterization options for the Pulse Transfer Core.

Features

- Generates an output pulse from the input pulse in the size of destination clock period
- User-programmable number of synchronizing flip-flops in the synchronizer

Table 1-1: IP Facts Table		
Core Specifics		
Supported Design Family ^a	Kintex [®] Ultrascale	
Supported User Interfaces	N/A	
Resources	See Table 2-1	
Provided with the Co	re	
Design Files	VHDL	
Example Design	Not Provided	
Test Bench	Not Provided	
Constraints File	Not Provided ^b	
Simulation Model	N/A	
Supported S/W Driver	N/A	
Tested Design Flows	_	
Design Entry	Vivado [®] Design Suite 2016.4 or later	
Simulation	Vivado VSim	
Synthesis	Vivado Synthesis	
Support		
Provided by Pentek fpgasupport@pentek.com		

a.For a complete list of supported devices, see the *Vivado Design Suite Release Notes*.

b.Clock constraints can be applied at the top level module of the user design.

This page is intentionally blank

Chapter 1: Overview

1.1 Functional Description

The Pulse Transfer Core instantiates the Xilinx Pulse Transfer macro which synchronizes the input pulse to the destination clock domain. The number of synchronizing flip-flops within the pulse transfer macro can be defined by the user through the generic parameters (refer to Section 2.5) which are used to define the attributes of the macro. For more details about the Xilinx Pulse Transfer Macro, refer to the *Ultrascale Architecture Libraries Guide*.

Figure 1-1 is a top-level block diagram of the Pentek Pulse Transfer Core.

Figure 1-1: Pulse Transfer Core Block Diagram

1.2 Applications

The Pulse Transfer Core can be incorporated into any user design where the input pulse is to be synchronized with the destination clock domain.

1.3 System Requirements

For a list of system requirements, see the Vivado Design Suite Release Notes.

1.4 Licensing and Ordering Information

This core is included with all Pentek Navigator FPGA Design Kits for Pentek Jade series board products. Contact Pentek for Licensing and Ordering Information (www.pentek.com).

1.5 Contacting Technical Support

Technical Support for Pentek's Navigator FPGA Design Kits is available via e-mail (fpgasupport@pentek.com) or by phone (201-818-5900 ext. 238, 9 am to 5 pm EST).

1.6 **Documentation**

This user manual is the main document for this IP core. The following documents provide supplemental material:

- 1) Vivado Design Suite User Guide: Designing with IP
- 2) Vivado Design Suite User Guide: Programming and Debugging
- 3) Ultrascale Architecture Libraries Guide

Chapter 2: General Product Specifications

2.1 Standards

This section is not applicable to this IP core.

2.2 Performance

This section is not applicable to this IP core.

2.3 Resource Utilization

The resource utilization of the Pulse Transfer Core is shown in Table 2-1. Resources have been estimated for the Kintex Ultrascale XCKU060 -2 speed grade device. These values were generated using the Vivado Design Suite.

Table 2-1: Resource Usage and Availability		
Resource	# Used	
LUTs	1	
Flip-Flops	4	

NOTE: Actual utilization may vary based on the user design in which the Pulse Transfer Core is incorporated.

2.4 Limitations and Unsupported Features

This section is not applicable to this IP core.

2.5 Generic Parameters

The generic parameters of the Pulse Transfer Core are described in Table 2-2. These parameters can be set as required by the user application while customizing the core.

Table 2-2: Generic Parameters			
Port/Signal Name	Туре	Description	
dest_sync_ff	Integers	Number of Destination Synchronizing Flip-Flops: This parameter defines the number of synchronizing flip-flops in the pulse transfer macro that are used to synchronize the input bus to the destination clock domain. It can take values in the range of 2 - 10.	
rst_used	Boolean	Reset Used: True - Resets implemented False - No resets implemented	
register_output		Register Output: This parameter is used register the generated output pulse.	
sim_assert_check		Simulation Assert Check: This parameter is used to enable/ disable simulation message reporting. True - Enable simulation messages False - Disable simulation messages	

Chapter 3: Port Descriptions

This chapter provides details about the port descriptions for the following interface types:

• I/O Signals

3.1 I/O Signals

The I/O port/signal descriptions of the top level module of the Pulse Transfer Core are discussed in Table 3-1.

Table 3-1: I/O Signals			
Port/ Signal Name	Туре	Direction	Description
src_clk	std_logic	Input	Source Clock
src_rst			Source Reset: Active High. Resets all logic in source clock domain.
src_pulse			Source Pulse: The rising-edge of this signal initiates a pulse transfer from the source clock domain to the destination clock domain.
dest_clk			Destination Clock
dest_rst			Destination Reset: Active High. Resets all logic in destination clock domain.
dest_pulse		Output	Destination Pulse: This is the output pulse generated for the size of the destination clock period, when a pulse transfer is correctly initiated on the source pulse input.

This page is intentionally blank

Chapter 4: Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the Pulse Transfer Core.

4.1 General Design Guidelines

The Pulse Transfer Core provides the required logic synchronize the input pulse to the destination clock domain.

4.2 Clocking

Source Clock: src_clk

This is the source clock signal.

Destination Clock: dest clk

This is the destination clock to which the input pulse is to be synchronized.

4.3 Resets

Source reset: src rst

This is used to reset all logic in the source clock domain.

Destination Reset: dest rst

This is used to reset all logic in the destination clock domain.

4.4 Interrupts

This section is not applicable to this IP core.

4.5 Interface Operation

This section is not applicable to this IP core.

4.6 Programming Sequence

This section is not applicable to this IP core.

4.7 Timing Diagrams

This section is not applicable to this IP core.

Chapter 5: Design Flow Steps

5.1 Pentek IP Catalog

This chapter describes customization and generation of the Pentek Pulse Transfer Core. It also includes simulation, synthesis, and implementation steps that are specific to this IP core. This core can be generated from the Vivado IP Catalog when the Pentek IP Repository has been installed. It will appear in the IP Catalog list as **px_xpm_cdc_pulse_v1_0** as shown in Figure 5-1.

Figure 5-1: Pulse Transfer Core in Pentek IP Catalog

5.1 Pentek IP Catalog (continued)

When you select the **px_xpm_cdc_pulse_v1_0** core, a screen appears that shows the core's symbol and the core's parameters (see Figure 5-2). The core's symbol is the box on the left side.

px_xpm_cdc_pulse_v1_0 (1.0)

Documentation in IP Location in Switch to Defaults

Show disabled ports

Component Name px_xpm_cdc_pulse_0

Number of Destination Sync Flip-Flops

Register Output

Reset Used

Reset Used

Sim Assert Check

Figure 5-2: Pulse Transfer Core IP Symbol

5.2 User Parameters

The user parameters of this core are described in Section 2.5 of this user manual.

5.3 Generating Output

For more details about generating and using IP in the Vivado Design Suite, refer to the *Vivado Design Suite User Guide - Designing with IP*.

OK

Cancel

5.4 Constraining the Core

This section contains information about constraining the Pulse Transfer Core in Vivado Design Suite.

Required Constraints

The XDC constraints are not provided with the Pulse Transfer Core. Clock constraints can be applied in the top-level module of the user design.

Device, Package, and Speed Grade Selections

This IP works for the Kintex Ultrascale FPGAs.

Clock Frequencies

This section is not applicable to this IP core.

Clock Management

This section is not applicable for this IP core.

Clock Placement

This section is not applicable for this IP core.

Banking and Placement

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

5.5 Simulation

This section is not applicable to this IP core.

5.6 Synthesis and Implementation

For details about synthesis and implementation see the *Vivado Design Suite User Guide - Designing with IP*.

This page is intentionally blank