MA 571: Homework # 13 due Wednesday December 2.

Please do:

p. 421 # 1, 2(abc), 3 (For # 2 and # 3, use the paragraph in the middle of page 418. Also, in the last sentence of 2(b), "odd length" should be "odd length > 1").

- A) (i) Do the case of p. 367 # 9(e) where h and k take b_0 to b_0 . (The proof is similar to the proof of Lemma 55.3, (3) \Rightarrow (1), that I gave in class.)
- (ii) Let G be a path-connected topological group and let $a \in G$. Prove that the map $\phi : G \to G$ defined by $\phi(g) = ag$ is homotopic to the identity map.
 - (iii) Use part (ii) to complete the proof of p. 367 # 9(e)
- B) Let

$$q:S^2\to P^2$$

be the quotient map, where P^2 is the projective plane. Let $x_0 = q(1,0,0)$ and let

$$f(s) = q(\cos \pi s, \sin \pi s, 0)$$

for $0 \le s \le 1$. (Note: the use of π in this formula instead of 2π is not a misprint.) Then $f: I \to P^2$ is a loop at x_0 . **Prove** that $[f] * [f] = [e_{x_0}]$.

C) Let Y be the following subset of \mathbb{R}^2 : $Y = \{(s,t) \in [0,1] \times [0,1] \mid s \in \{0,1\} \text{ or } t \in \{0,1\}\}$ (that is, Y is the boundary of the square $[0,1] \times [0,1]$). Give Y the equivalence relation \sim that identifies the top and bottom edges and the left and right edges: specifically, \sim is the equivalence relation associated to the partition of Y into the following sets:

for each
$$s \notin \{0, 1\}$$
, the set $\{(s, 0), (s, 1)\}$,
for each $t \notin \{0, 1\}$, the set $\{(0, t), (1, t)\}$,
the set $\{0, 1\} \times \{0, 1\}$.

Prove that Y/\sim is a wedge of two circles (see the top of page 434 for the definition).

Optional problem (This problem will be used in the next assignment to show that for a 2-manifold there is a homeomorphism taking any point to any other point.) Let B^2 denote the unit disk $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ and let S^1 denote the unit circle. Let $\mathbf{a} \in B^2 - S^1$. In this problem we will show that there is a homeomorphism $h: B^2 \to B^2$ which takes (0,0) to \mathbf{a} and fixes S^1 .

- i) Let $h: B^2 \to B^2$ be the function defined as follows: note that every point in B^2 has the form $t\mathbf{y}$ for some $\mathbf{y} \in S^1$ and $t \in [0, 1]$, and define $h(t\mathbf{y}) = (1 t)\mathbf{a} + t\mathbf{y}$. Prove that this is well-defined, continuous, and lands in B^2 . (Hint: to show continuity, you can give a more explicit formula or you can use a quotient map.)
 - ii) Show that $h(0,0) = \mathbf{a}$ and that h fixes S^1 .
- iii) Prove that h is one-to-one. (Hint: first use the dot product and the quadratic formula to show that if \mathbf{u} , \mathbf{v} are vectors with $|\mathbf{u}| < 1$ then there is a unique positive s with $|\mathbf{u} + s\mathbf{v}| = 1$; geometrically this just says that any ray that starts inside the unit circle has exactly one point on the unit circle.)
 - iv) Prove that h is onto. (Hint: if $|\mathbf{u}| < 1$, $|\mathbf{u} + \mathbf{v}| \le 1$, and $|\mathbf{u} + s\mathbf{v}| = 1$ with s positive, show that $s \ge 1$).
 - v) Prove that h is a homeomorphism.