AD/A-002 866

A STRUCTURAL WEIGHT ESTIMATION PROGRAM (SWEEP) FOR AIRCRAFT. VOLUME VI - WING AND EMPENNAGE MODULE. BOOK 3: TECHNICAL DISCUSSION, SECTION V

G. Hayase

Rockwell International Corporation

Prepared for:

Aeronautical Systems Division

June 1974

DISTRIBUTED BY:

Best Available Copy

REPORT DOCUMENTATION	PAGE	read instructions before completing form
1. REPORT NUMBER ASD/XR 74-10	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER AN A- 602866
A Structural Weight Estimation Program (SWEEP) for Aircraft - Volume VI - Wing and Empennage		S. TYPE OF REPORT & PERIOD COVERED
Module		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)		S. CONTRACT OR GRANT NUMBER(s)
G. Hayase		F33615-71-C-1922
Performing organization name and address Rockwell International Corp, L.A.	Aircraft Div	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Los Angeles International Airport Los Angeles, California 90009		FX2826-71-01876/C093
Deputy for Development Planning		June 1974
Air Force Systems Command	M. ! _	13. NUMBER OF PAGES 360
Wright-Patterson Air Force Base O	1110 I from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15. DECLASSIFICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

weight estimation, structural weights, integrated computer programs, preliminary weight estimation, first-order weight estimations, aircraft structure weights, aircraft structural weight optimization, flutter optimization program, structural synthesis

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Three computer programs were written with the objective of predicting the structural weight of aircraft through analytical methods. The first program, the structural weight estimation program (SWEEP), is a completely integrated program including routines for airloads, loads spectra, skin temperatures, material properties, flucter stiffness requirements, fatigue life, structural sizing, and for weight estimation of each of the major

20. ABSTRACT (CONTINUED)

aircraft structural components. The program produces first-order weight estimates and indicates trends when parameters are varied. Fighters, bombers, and cargo aircraft can be analyzed by the program. The program operates within 100,000 octal units on the Control Data Corporation 6600 computer. Two stand-alone programs operating within 100,000 octal units were also developed to provide optional data sources for SWEEP. These include (1) the flexible airloads program to assess the effects of flexibility on lifting surface airloads, and (2) the flutter optimization program to optimize the stiffness distribution required for lifting surface flutter prevention.

The final report is composed of 11 volumes. This volume (volume VI) contains the methods and program description for the wing and empennage module of SWEEP. Program listings and flow charts are included in the appendix to this volume.

TABLE OF CONTENTS

Section		Page
	INTRODUCTION TO VOLUME VI	27
	BOOK 1 - TECHNICAL DISCUSSION, SECTIONS I AND II	29
I	MODULE DESCRIPTION	31
-	General Description	31
	Analysis Description	40
	Analysis Options	49
	Surface Types	49
	General Data Processing Option	49
	Torque-box Design Option	52
	Design Data Generation Option for the	
	Flutter Optimization and Flexible Loads	
	Analysis Programs	52
	Design Features	54
	Surface Geometry	54
	Nonlinear Planforms	54
	Cross-Sections	54
	Torque-Box Description	56
	Surface Configuration	57
	Variable-Sweep Wing Designs	57
	T-Tail Empennage Designs	57
	Leading and Trailing Edge Structures	58
	Miscellaneous Structure and Deadweight	
	Mass Items	59
	Secondary Structure	59
	Tip Structure	59
	Internal Fuel	59
	External Concentrated Mass Items	60
	Miscellaneous Internal Contents	60
	Structural Design Data	61
	Deadweight	61
	Torsional Flutter Requirements	61
	Design Loads	62

Section

	Page
Torque-box Design Synthesis	63
Construction Concepts	63
Torque-box Analysis Constants	64
Ultimate Allowable Stresses	64
•	04
Weight Calibration Factors	65
Torque-box Structure	65
Pivot Structure	65
Center-Section Structure	65
Leading Edge Structure	65
Trailing Edge Structure	•
Tip Structure	66
Secondary Structure	66
	66
Module Structure	67
Module Execution	(7
Execution of Metallic Torque-box Design Overlays	67
	67
Module Storage Arrangement	81
Blank Common	81
Module/Overlay Data Requirements	81
	01
Blank Common Initialization	81
Input Data	83
Output Data	83
Mass Storage File Records	83
	0.0
Module Core Maps	97
Labeled Common Arrays	07
Blank Common Arrays	97
	97

TABLE OF CONTENTS

Section		Page
П	METHODOLOGY	257
	Introduction	257
	Lifting Surface Geometry	263
	Planform Geometry	263
	Cross-Sectional Geometry	268
	Lifting Surface Design Data	274
	Leading and Trailing Edge Structures	274
	Nonstructural Wing Deadweight	280
	Flutter Stiffness Requirements	284
	Design Airloads	291
	Material Properties	293
	Initial Inertia Loads and Couple	
	Arm Estimation	294
	Structural Synthesis	237
	Cover Design Loads	297
	Torque-Box Synthesis	299
	Metallic Torque-Box Analysis	300
	Cover Synthesis	307
	Intermediate Support Structure	315
	Bending and Torsional Stiffness	321
	Advanced Composite Torque-Box Analysis	322
	General Behavior of Composite	
	Laminates	322
	Governing Relationships	324
	Temperature Dependence of	
	Properties	330
	Stability	331
	Stringer Columns	337
	Full-Depth Honeycomb	
	Sandwich	340

Section		Page
	General Procedures	343
	Multispar Analysis	349
	Multirib Analysis	351
	Bending and Torsional Stiffness	356
	Pivot Structure Synthesis	357
	Weight Analysis	358
	Torque-Box Weight Analysis	358
	Leading and Trailing Edge Weight Analysis	361
	Estimation Equation Form	362
	Fixed Leading Edge Structure	365
	Leading Edge Control Devices	366
	Fixed Trailing Edge Structure	368
	Trailing Edge Control Devices	369
	Basic Module Output	373
	Design Data Generation Option	378
	General Description	378
	Program Description	378
	Mass Properties and Design Data	
	Processing Requirements	380
	Structural Synthesis/Weight Analysis	
	Reference System	383
	Data for Flexible Loads Analysis Program	385
	Data for Flutter Optimization Program	397
	BOOK 2 - TECHNICAL DISCUSSION, SECTIONS III AND IV	415
III	INPUT DATA PROCESSING AND GEOMETRY ANALYSIS	. 417
	General Description	417
	Overlay (8,0) Input Data	417
	Overlay (8.0) Output Data	422
	Overlay Core Maps	424
	Variable Data Subarrays DLE, DTE, and DTC	434
	TXY Array	454
	YC and YTC Arrays, Overlay (8,0)	486
	Output Data Arrays TD and TS	492
	Transferred to the control of the co	

Section		Page
	Subroutine Descriptions	503
	Program ØLAY8	503
	Subroutine CCNTL	503
	Subroutine CASE	510
	Subroutine GEØMW	513
	Subroutine GEONC	521
	Subroutine VSGEØM	524
	Subroutine TBWDC	527
	Subroutine ABØXC	534
	Subroutine DMAX	537
	Subroutine CAERØ	540
	Subroutine SWPXYP	542
	Subroutine PRTG	545
	Subroutine GCOMP	550
IV	SUBROUTINE REFERENCE TABLES FOR OVERLAYS (9,0), (10,0), (14,0), (15,0), (16,0), (17,0), and (18,0)	552
	BOOK 3 - TECHNICAL DISCUSSION, SECTION V	767
V	CORIE MAPS FOR OVERLAYS (9,0), (10,0), (14,0), (15,0), (16,0), (17,0), and (18,0)	769
	REFERENCES	1097

Section	Page
APPENDIX A - GENERAL INFORMATION FOR MODULE FLOW CHARTS AND LISTINGS	1123
General Description Autoflow Description	1123 1123
	,
Cross Reference List	1128
Table of Diagnostics	1128
Flow Charts	1129
APPENDIX B - PROGRAM FLOW CHARTS, OVERLAYS (8,0), (14,0), (15,0), (16,0) AND (17,0)	1132
Overlay (8,0) - Input Data Processing and	
Geometry Analysis	1138
Program Table of Contents and References,	
and Table of Diagnostics	1139
Program Flow Charts	1153
Program ØLAY8	1154
Subroutine CCNTL	1154
Subroutine CASE	1166
Subroutine GE@MW	1170
Subroutine GEANC	1180
Subroutine VSGE@M	1187
Subroutine TBWDC	1193
Subroutine ABØXC	1199
Subroutine DMAX	1203
Subroutine CAERØ	1208
Subroutine SWPXYP	1211
Subroutine PRTG	1214
Subroutine GCØMP	1219
Overlay (14,0) - Leading and Trailing Edge	
Structures, Weight and Mass Properties Analysis	1 2 2 2
octactares, neight and rass froperties marysis	1223
Program Table of Contents and References, and	
Table of Diagnostics	1225
Program Flow Charts	1239
Program ØLAY14	1340
Subroutine WLETE	1240
Subroutine GCNTL	1243
	1253

Section		Page
	Subroutine LEWT	1264
	Subroutine TEWT	1274
	Subroutine TEDEV	1279
	Subroutine TEWTI	1286
	Subroutine LETEI	1295
	Subroutine CTVT1	1309
	Overlay (15,0) - Fuel, Contents and Concentrated	
	Masses, Weight and Mass Properties Analysis	1315
	Program Table of Contents and References,	
	and Table of Diagnostics	1317
	Program Flow Charts	1331
	Program ØLAY15	1332
	Subroutine WCØNT	1335
	Subroutine MISCNT	1338
	Subroutine MISCIT	1349
	Subroutine CDL	1361
	Subroutine FDIS	1370
	Subroutine TBFWI1	1382
	Subroutine CTØT2	1392
	Subroutine PRTM	1397
	(verlay (16,0) - Design Data for Torque-Box	
	Analysis	1403
	Program Table of Contents and References, and	
	Table of Diagnostics	1405
	Program Flow Charts	1419
	Program ØLAY16	1420
	Subroutine WDDATA	1423
	Subroutine MTLCW	1428
	Subroutine MTLFW Subroutine MTLPW	1432
	Subroutine ALDAD	1437
	Subroutine GJCAL	1440
	Subroutine GJSI	1448
	Subroutine GJTT	1457
	Subroutine CNSTC	1460
	Subroutine ABDW	1465 1476
	Subroutine YBSET	1476
•	Subroutine SS2	1481
-	Subroutine VL@AD1	1491
	• //	

Section	Page
Overlay (17,0) - Data Generation and Output	
Data Processing	1495
Program Table of Contents and References, and	
Table of Diagnostics	1497
Program Flow Charts	1509
Program ØLAY17	1510
Subroutine WDATA	1513
Subroutine PRTD	1525
Subroutine TBFWI	1537
Subroutine WFLDD	1547
Subroutine WVFDD	1552
Subroutine TPINT	1563
Subroutine CTOT	1568
Subroutine PINTØ	1573
APPENDIX C - PROGRAM FLOW CHARTS, OVERLAYS (9,0) AND (10,0)	1603
Overlay (9,0) - Torque-Box Structural Synthesis/	
Weight Analysis for Metallic Designs - No. 1	1607
Program Table of Contents and References, and	
Table of Diagnostics	1609
Program Flow Charts	1621
Program ØLAY9	1622
Subroutine PRØG	1625
Subroutine DWYBA	1633
Subroutine DEADW	1638
Subroutine VL@AD	1642
Subroutine TBMPT	1646
Subroutine PIVØT	1660
Subroutine TEE	1672
Subroutine TEL	1676
Subroutine CSECW	1680
Subroutine DLPVT	1684
Subroutine PRTA	1693
Subroutine PRTH	1703
Overlay (10,0) - Torque-Box Structural Synthesis/	
Weight Analysis for Metallic Designs - No. 2	1709
Program Table of Contents and References, and	
Table of Diagnostics	1710

Section	Page
Program Flow Charts s	1733
Program ØLAY10	1734
Subroutine CNSTR	1737
Subroutine SECTD	1748
Subroutine SFSCH	1761
Subroutine BØT	1780
Subroutine BØTC	1791
Subroutine TSCH	1795
Subroutine STBAR	1811
Subroutine STRG	1817
Subroutine STRGØ	1833
Subroutine STRIL	1837
Subroutine STRIB	1842
Subroutine SRRIB	1848
Subroutine STWEB	1851
Subroutine SKWEB	1857
Subroutine EIGJC	1860
Subroutine VFCAL	1865
Subroutine WTCAL	1871
Subroutine BHDJT	1878
Subroutine RTRIB	1887
Subroutine WTPIN	1890
Subroutine CG3P	1894
Subroutine SS	1899
Subroutine PRTB	1902
Subroutine PRTC	1907
Subroutine PRTBK	1911
APPENDIX D - PROGRAM FLOW CHARTS, OVERLAY (18,0)	1939
Overlay (18,0) - Torque-Box Structural Synthesis/	1941
Weight Analysis for Advanced Composite Designs	
Program Table of Contents and References, and	
Table of Diagnostics	1943
Program Flow Charts	1969
Program ØLAY18	1970
Subroutine ATBØPT	1973
Subroutine ACLDAD	1982
Subroutine TEMPC	1990
Subroutine AVLOAD	1996
Subroutine ACPRØG	2000
Subroutine CKSTAB	2006

Section	Page
Subroutine ACWMS	2012
Subroutine ACWFDH	2027
Subroutine CKSFDH	2034
Subroutine WEIGH1	2038
Subroutine ACWRBS	2044
Subroutine ACWSTR	2057
Subroutine ACMRSK	2074
Subroutine ACSTRG	2079
Subroutine WEIGH2	2086
Subroutine ASTIFF	2090
Subroutine ACEIGJ	2096
Subroutine ACNSTR	2100
Subroutine ACPRTA	2111
Function X'	2123
Subroutine WTCAL	2126
Subroutine BHDJT	2128
Subroutine RTRIB	2130
Subroutine WTPIN	2132
Subroutine DWYBA	2134
Subroutine DEADW	2136
Subroutine CSECW	2138
Subroutine PIVØT	2140
Subroutine TEE	2142
Subroutine TEL	2144
Subroutine DLPVT	2146
Subroutine PRTB	2148
Subroutine PRTC	2150
Subroutine PRTH	2152
APPENDIX E - PROGRAM LISTINGS, OVERLAYS (8,0), (14,0), (15,0), (16,0)	
AND (17,0)	2179
Overlay (8,0) - Input Data Processing and Geometry	
Analysis	
Mialy515	2185
Program ØLAY8	2186
Subroutine CCNTL	2186
Subroutine CASE	2193
Subroutine GEØMW	2195
Subroutine GEØMC	2203
Subroutine VSGEØM	2207
Subroutine TBWDC	2212
Subroutine ABØXC	2216
Subroutine DMAY	2218

Section	Page
Subroutine CAERØ	2220
Subroutine SWPXYP	2220
Subroutine PRTG	2221
Subroutine GC/MP	2224
O THE CAN DO THE STATE OF THE CAMPAGE	
Overlay (14,0) - Leading and Trailing Edge Structures,	
Weight and Mass Properties Analysis	2229
Program ØLAY14	2230
Subroutine WLETE	2230
Subroutine GCNTL	2234
Subroutine LEWT	2240
Subroutine TEWT	2246
Subroutine TEDEV	2249
Subroutine TEWTI	2253
Subroutine LETEI	2259
Subroutine CTØT1	2266
Overlay (15,0) - Fuel, Contents and Concentrated	
Masses, Weight and Mass Properties Analysis	226 9
Program ØLAY15	2270
Subroutine WCØNT	2270
Subroutine MISCNT	2271
Subroutine MISCIT	2278
Subroutine CDL	2286
Subroutine FDIS	2291
Subroutine TBFWI1	2299
Subroutine CTØT2	2305
Subroutine PRTM	2303
	2307
Overlay (16,0) - Design Data for Torque-Box	
Analysis	2309
Program ØLAY16	2310
Subroutine WDDATA	2310
Subroutine MTLCW	2313
Subroutine MTLFW	2315
Subroutine MTLPW	2318
Subroutine ALØAD	2319
Subroutine GJCAL	2324
	2330
	2331
• Subroutine CNSTC	2333
Subroutine ABDW	
CONTOUCTIO AMON	2339

Section	Page
Subroutine YBSET	2341
Subroutine SS2	2344
Subroutine VLØAD1	2345
	2343
Overlay (17,0) - Data Generation and Output Data	
Processing	2349
Program ØLAY17	2350
Subroutine WDDATA	2350
Subroutine PRTD	2359
Subroutine TBFWI	2367
Subroutine WFLDD	2373
Subroutine WFDD	2376
Subroutine TPINT	2385
Subroutine CTØT	
Subroutine PINTØ	2387
Subjourne 1 mp	2389
APPENDIX F - PROGRAM LISTINGS, OVERLAYS (9,0), (10,0) AND (18,Q)	2417
Overlay (9,0) - Torque-Box Structural Synthesis/	
Weight Analysis for Metallic Designs - No. 1	2423
Program ØLAY9	2424
Subroutine PRØG	2424
Subroutine DWYBA	2424
Subroutine DEADW	2429
Subroutine VLØAD	2432
literature and the state of the	2434
Subroutine TBØPT	2436
Subroutine PIVØT	2443
Subroutine TEE	2450
Subroutine TEL	2452
Subroutine CSECW	2453
Subroutine DLPVT	2455
Subroutine PRTA	2461
Subroutine PRTH	2466
Overlay (10,0) - Torque-Box Structural Synthesis/	
Weight Analysis for Metallic Designs - No. 2	2469
	2409
Program ØLAY10	2470
Subroutine CNSTR	2470
Subroutine SECTD	2477
Subroutine SFSCH	2485
Subroutine BØT	2494
Subroutine BØTC	2497

Section	Page
Subroutine TSCH	2498
Subroutine STBAR	2507
Subroutine STRG	2509
Subroutine STRGØ	2514
Subroutine STRIL	2516
Subroutine STRIB	2518
Subroutine SRRIB	2520
Subroutine STWEB	2521
Subroutine SKWEB	2523
Subroutine EIGJC	2524
Subroutine VFCAL	2528
Subroutine WTCAL	2531
Subroutine BHDJT	2537
Subroutine RTRIB	2541
Subroutine WTPIN	2542
Subroutine CG3P	2544
Subroutine SS	2545
Subroutine PRTB	2546
Subroutine PRTC	2548
Subroutine PRTBK	2550
Overlay (18,0) - Torque-Box Structural Synthesis/ Weight Analysis for Advanced Composite Designs	2553
Program ØLAY18	2554
Subroutine ATBØPT	2554
Subroutine ACLØAD	2561
Subroutine TEMPC	2566
Subroutine AVI (DAI)	2569
Subroutine ACPRØG	2572
Subroutine CKSTAB	2577
Subroutine ACWMS	2580
Subroutine ACWFDH	2590
Subroutine CKSFDH	2594
Subroutine WEIGH1	2595
Subroutine ACWRBS	2598
Subroutine ACWSTR	2606
Subroutine ACMRSK	2615
Subroutine ACSTRG	2619
Subroutine WEIGH2	2622
Subroutine ASTIFF	2624
Subroutine ACEIGJ	2629
Subroutine ACNSTR Subroutine ACPRTA	2632
Function XN	2642
runction an	2650

Section		Page
	Subroutine WTCAL	2650
	Subroutine BHDJT	2650
	Subroutine RTRIB	2651
	Subrout ine WTPIN	2651
	Subroutine DWYBA	2651
	Subroutine DEADW	2651
	Subroutine CSECW	2651
	Subroutine PIVØT	2651
	Subroutine TEE	2652
	Subroutine TEL	2652
	Subroutine DLFAT	2652
	Subroutine PRTB	2652
	Subroutine PRTC	2652
	Subroutine PRTH	2653

LIST OF ILLUSTRATIONS

Figure	Title	Page
1	Wing and Empennage Module, Overlay Execution Flow Diagram.	33
2	Overlay (8,0) - Input Data Processing and Geometry Analysis	68
3	Overlay (14,0) - Leading and Trailing Edge Structures, Weight and Mass Properties Analysis	69
4 ′	Overlay (15,0) - Fuel, Contents and Concentrated Masses,	70
•	Weight and Mass Properties Analysis	_
5	Overlay (16,0) - Design Data for Torque-box Analysis	71
6	Overlay (9,0) - Torque-box Structural Synthesis/Weight	72
7	Analysis for Metallic Designs - No. 1	12
7	Overlay (10,0) - Torque-box Structural Synthesis/Weight	73
8	Analysis for Metallic Designs - No. 2	/ 3
ō	Overlay (18,0) - Torque-box Structural Synthesis/Weight	74
9	Analysis for Advanced Composite Designs	/4
9	Overlay (17,0) - Data Generation and Output Data	75
10	Processing	84
10	Weight Summary, Wing Group	86
12	Weight Summary, Vertical Tail Group	88
13	General Program Functional Flow Diagram	259
14	Logic and Execution Subroutine Flow Diagram for	233
14	Lifting Surface Structural Weight Estimation Module	260
15	Structural Synthesis/Weight Analysis Reference System	200
13	and Weight Integration	261
16	Idealized Lifting Surface Planform	264
17	Blended Wing Planform	267
18	Idealized Box Section	269
19	Blended Wing Torque-Box Geometry	270
20	Blended Wing Normalized Geometry	271
21	Variable-Sweep Wing Geometry Idealization	273
22	Mass Properties Integration Grid System	275
23	Leading Edge Structure Weight Distribution	278
24	Leading Edge Structure Chordwise Weight Distribution	279
25	Trailing Edge Structure Chordwise Weight Distribution	281
26	Wing Fuel Distribution	282
27	Contents Weight Distribution	285
28	Externally Mounted Component Description	286
29	Loads Rotation and Translation	292
30	Typical Material Stress-Strain Curve and Evaluation	
	Data	295
31	Effective Structural Width Idealization	298

Figure	•	Page
32	Multirib Stringer Design Options	301
33	Multispar Design Options	302
34	First Search Level, Multirib or Multispar Construction	305
35	Second Search Level, Multirib	305
36	Interpolation Scheme for Stress Level	309
3 7	Stringer-Column Geometry	313
38	Composite-Ply Orientations	323
39	Laminate Configuration	324
40	Advanced Composite Structures Checked for Stability	332
41	Torque-Box Cross Section	344
42	Logic and Computational Flow Diagram for Total Multirib Torque-Box Optimization, Subroutine ACWRBS	352
43	Logic and Computational Flow Diagram for Synthesis of	
	Stringer Stiffened Covers, Subroutine ACWSTR	353
44	Logic and Computational Flow Diagram for Skin/Stringer Load and Skin Stability, Subroutine ACMRSK	354
45	Stringer Types for Multirib Torque-Box Covers	353
46	Leading and Trailing Edge Control Geometry	363
47	Geometry Description for Trailing Edge Device No. 3, 4, and 5 - Trailing Edge Flaps	370
48	Lifting Surface Component Weight Summary	374
49	Torque-Box Weight Summary, Page 1	374
50	Torque-Box Weight Summary, Page 2, Pivot Type	376
51	Flutter, Flexible Airloads, Weight Optimization Design	3/0
01	Loop (Stand-Alone Programs)	379
52	Flexible Loads Analysis Mass Distribution and	3/9
	Integration Reference System	381
53	Flutter Optimization Analysis Mass Distribution and	301
	Integration Reference System	382
54	Structural Synthesis/Weight Analysis Reference	
	System and Weight Integration	384
55	Mass Properties Integration Grid System	386
56	Overlay (8,0), Input Data Processing and Geometry	
	Analysis	420
57	Overlay (8,0), Logic Flow Diagram	421
58	Geometry Summary Data - Page 1	546
59	Geometry Summary Data - Page 2	547
60	Geometry Summary Data - Swent Platform Position	548

LIST OF TABLES

Table	Title	Page
1	Subprogram List, Wing and Empennage Module	34
2	Wing and Empennage Module Overlay Subprogram List	76
3	Overlay Blank Common Requirements	82
4	Mass Storage File 1 Records, Wing and Empennage Module	90
5	FDAT Array, Final Output Data	98
6 .	XMISC Array	100
7	IP Array, Print Control Data	104
8	D Array, Input Variable Data	109
9	ND Array	191
10	DC Array, Miscellaneous Constants	202
11	Array References, Array D	209
12	1) Array Variables Cross-Reference List	231
13	Array References, Array ND	243
14	Array References, Array DC	255
15	Torque-Box Elements, Section Stiffness Calculations	356
16	Sample Wing Torque-Box Program Calibration and Weight Index Coefficients	359
17	Flap-Type Indicator and Correlation Coefficients	372
18	Torque-Box Summary Page Line Item Definitions	
19	External References, Overlay (8,0) Routines	418
20	WD Array, Wing and Empennage Variable Data,	
	Mass Storage File 1, Record 21	425
21	SPAL Array, Wing and Empennage Flutter Analysis Data,	123
	Mass Storage File 1, Record 38	430
22	DLE Array, Variable Data Subarray for Nonlinear	450
	Leading Edges	436
23	DTE Array, Variable Data Subarray for Nonlinear	,,,,
	Trailing Edges	438
24	IMTC Array, Variable Data Subarray for Nonlinear	
	Thickness Ratios	440
25	DAF Array, Airfoil Cross-Section Data	442
26	Polynomial Coefficients of Properties of	
	Normalized Airfoils	448
27	Airfoil Ordinates	449
28	AFD Array	450
29	TAF Array, Airfoil Depth Data	450
3 0	TXY Array, Geometry Data	455
31	YTB Array, Torque-Box Geometry Data.	460
32	YLE Array, Leading Edge Geometry Data	460
33	YTE Array, Trailing Edge Geometry Data	463
34	T Array, Locations 1-200, 489-553.	464
35	TVS Array.	
		7/U

Table	Title	Page
36 37	TGJ Array, Flutter Analysis Data	482
37	Calculations	485
38	YC Array, Overlay (8,0)	487
3 9	YTC Array	490
40	TD Array, Printed Output Geometry Data	493
41	TS Array	500
42	Data Source Matrix for Adjustment of Variable	
7	Data, Array D	505
43	Variable References, Subroutine CCNTL	509
44	Variable References, Subroutine CASE	512
45	TT Array, GEØNW	516
46	Variable References, Subroutine GEØMW	518
47	Variable References, Subroutine GLOMC	523
48	Variable References, Subroutine VSGEØM	526
49	Variable References, Subroutine TBWDC	530
50	TR Array, TBWDC	531
51	TT Array, TBWDC and ABØXC	532
52	Variable References, Subroutine ABØXC	536
53	Variable References, Subroutine DMAX	539
54	Variable References, Subroutine CAERØ	541
55	Variable References, Subroutine SWPXYP	544
56	Variable References, Subroutine PRTG	549
57	Variable References, Subroutine GCOMP	551
58	Cross-Reference List for Subroutine Variable	
	Reference Tables	553
59	External References, Øverlay (14,0) Routines	556
60	External References, Overlay (15,0) Routines	557
61	External References, Øverlay (16,0) Routines	558
62	External References, Øverlay (9,0) Routines	560
63	External References, Øverlay (10,0) Routines	562
64	External References, Øverlay (18,0) Routines	565
65	External References, Øverlay (17,0) Routines	569
66	Variable References, Subroutine WLETE	570
67	Variable References, Subroutine GCNTL	571
68	Variable References, Subroutine LEWT	572
69	Variable References, Subroutine TEWT	574
70	Variable References, Subroutine TEWTI	575
71	Variable References, Subroutine TEDEV	576
72	Variable References, Subroutine LETEI	57 7
73	Variable References, Subroutine WCØNT	579
74	Variable References, Subroutine MISCNT	580
75	Variable References, Subroutine MISCIT	582
76	Variable References, Subroutine CDL	584
77	Variable References, Subroutine FDIS	586
78	Variable References, Subroutine PRTM	588

Table	Title	Page
79	Variable References, Subroutine WDDATA	589
80	Variable References, Subroutine MTLCW	592
81	Variable References, Subroutine MTLFW	593
82	Variable References, Subroutine MTLPW	594
83	Variable References, Subroutine ALØAD	595
84	Variable References, Subroutine GJCAL	598
85	Variable References, Subroutine GJSI	601
8 6	Variable References, Subroutine GJTT	602
87	Variable References, Subroutine CNSTC	605
88	Variable References, Subroutine ABDW	608
89	Variable References, Subroutine YBSET	611
90	Variable References, Subroutine PRØG	613
91	Variable References, Subroutine DEADW	617
92	Variable References, Subroutine DWYBA	619
93	Variable References, Subroutine VLØAD	621
94	Variable References, Subroutine TBØPT	624
95	Variable References, Subroutine CSECW	626
96	Variable References, Subroutine PIVØT	627
97	Variable References, Subroutine TEE	631
98	Variable References, Subroutine TEL	632
99	Variable References, Subroutine DLPVT	633
100	Variable References, Subroutine PRTA	635
101	Variable References, Subroutine PRTH	637
102	Variable References, Subroutine CNSTR	638
103	Variable References, Subroutine SECTD	641
104	Variable References, Subroutine SFSCH	644
105	Variable References, Subroutine BØT	646
106	Variable References, Subroutine BØTC	647
107	Variable References, Subroutine TSCH	648
108	Variable References, Subroutine STBAR	650
109	Variable References, Subroutine STRG	651
110	Variable References, Subroutine STRCØ	652
111	Variable References, Subroutine STRIL	653
112	Variable References, Subroutine STRIB	654
113	Variable References, Subroutine SRRIB	655
114	Variable References, Subroutine STWEB	656
115	Variable References, Subroutine SKWEB	657
116	Variable References, Subroutine VFCAL	658
117	Variable References, Subroutine EIGJC	659
118	Variable References, Subroutine WTCAL	660
119	Variable References, Subroutine BHDJT	662
120	Variable References, Subroutine RTRIB	663
121	Variable References, Subroutine WTPIN	664
122	Variable References, Subroutine SS	665
123	Variable References, Subroutine CG3P	666
124	Variable References, Subroutine PRTB	667

Table	Title	Page
125	Variable References, Subroutine PRTBK	668
126	Variable References, Subroutine PRTC	669
127	Variable References, Subroutine ACPRØG	670
128	Variable References, Subroutine ACLØAD	674
129	Variable References, Subroutine TEMPC	676
130	Variable References, Subroutine AVLØAD	678
131	Variable References, Subroutine ATBOPT	681
132	Variable References, Subroutine ACNSTR	685
133	Variable References, Subroutine ACWMS	689
134	Variable References, Subroutine CKSTAB	693
135	Variable References, Subroutine WEIGHL	696
136	Variable References, Subroutine ACWFDH	698
137	Variable References, Subroutine CKSFDH	700
138	Variable References, Subroutine ACWRBS	702
139	Variable References, Subroutine ACWSTR	706
140	Variable References, Subroutine ACMRSK	712
141	Variable References, Subroutine ACSTRG	716
142	Variable References, Subroutine WEIGH2	718
143	Variable References, Subroutine ASTIFF	720
144	Variable References, Subroutine ACEIGJ	723
145	Variable References, Function XN	724
146	Variable References, Subroutine ACPRTA	725
147	Variable References, Subroutine WØDATA	729
148	Variable References, Subroutine PRTD	732
149	Variable References, Subroutine TBFWI	734
150	Variable References, Subroutine WFLDD	735
151	Variable References, Subroutine WVFDD	737
152	Variable References, Subroutine TPINT	740
153	Variable References, Subroutine PINTØ	741
154	Variable References, Subroutine CTØT	742
155	Cross-Reference List for Array Core Maps	770
156	DLE Array, Variable Data Subarray for Fixed Leading	
	Edge Structures	774
157	DTE Array, Variable Data Subarray for Fixed Trailing Edge	
	Structures	776
158	DLED1 Array, Variable Data Subarray for Leading Edge Control	
	Surfaces	778
159	DLEDK Array, Variable Data Subarray, Leading Edge Control	
	Surface Analysis Constants	781
160	DTED1 Array, Variable Data Subarray for Trailing Edge Control	
	Surfaces Smilers	797

Table	Title	Page
161	DTED2 Array, Variable Data Subarray for Trailing Edge	704
162	Flap-Type Control Surfaces	- 786
	Surface Analysis	· 793
163	DFLPE Array, Variable Data Subarray, Trailing Edge Flap	
	Control Surface Analysis	. 794
164	DAILK Array, Variable Data Subarray, Aileron, Elevator, and Rudder Control Surface Analysis	. 795
165	DFSP Array, Variable Data Subarray, TE Flap-Type Control	• /95
103	Surface Support Structure Distribution Constants	. 797
166	TG Array	
167	TGA Array	
168	YC Array, Overlays (14,0), (15,0), and (17,0)	
169	TWG Array	
170	CCW Array	
171	CCI, CCL, and CCT Arrays, Overlay (14,0)	
172	TCS Array, Overlay (14,0)	
173	CKD Array, Subroutine LETEI	
174	CLEI and CILI Arrays	
175	CIØY Array	
176	TGR Array, Subroutine LEWT	
177	TST Array, Subroutine LEWT	
178	TTED Array	
179	TST Array, Subroutine TEWTI and TEDEV	. 839
180	TCR Array, Subroutine TEWT and TEWTI	
181	TGR Array, Subroutine LETEL	
182	TST Array, Subroutine LETEI	. 852
183	TE Array	
184	TST Array, Subroutine WLETE	-
185		
186	CMII Array	
187	CFL11 and CFL21 Arrays	
188	CKD Array, Overlay (15,0).	
189	TVMF Array	
190	T Array, Locations 201-900	
191	Subroutine References for T(201)-T(900) Variables.	
192	TVF Array	
193	CTBW Array	
194	CTBI Array	
195	WCG Array	
196	ACL Array	
197	ACLT Array	
198	ACVMI and V Arrays	
199	TEIGJ Array.	
200	ENQ Array	

Table	Title	Page
201	ENQC Array	• 914
202	CMT Array	• 916
203	STRESS Array	• 920
204	ENX Array	• 922
205	EL Array	. 924
206	IEL Array	
207	SPB Array	• 929
208	SPN Array	
209	TF Array	• 932
210	W Array, Subroutine WEIGHL	
211	TX Array	
212	TXS Array	
213	STRING Array	
214	W Array, Subroutine WEIGH2	
215	TSF Array	
216	TA Array	
217	CD Array, Locations 1-400, Stiffness Data Arrays	500
218	TDC Array, Overlay (18,0)	
219	DDUC and DDLC Arrays	
220	DDIS Array	
221	DDFS and DDRS Arrays	
222	DDSTR Array	
223	DSPLØ Array, Analysis Constants	
224	TDC Array, Overlays (9,0) and (10,0)	
225	TSC Array	
226	TSEC Array	
227	TSS Array, Subroutines SFSCH and TSCH	
228	TSS Array, Subroutine STRIB	
229	TSS Array, Subroutine STWEB	
230	TWT Array, Locations 1-330, Weight Analysis Data and	1017
231	Constants	• 1020
231	Inch Data Subscribe WIDIN	
232	Inch Data, Subroutine WTPIN	• 1047
232		
233	Data, Subroutine CSECW	• 1053
233	TWT Array, Locations 1 Through 50 and 331 Through	
	400, Torque-Box Weight Increment Data for Pivot	
234	Designs, Subroutine DLPVI	• 1057
235	PT Array, Subroutine PIV/T	• 1065
236	S Array, Subroutine PIVOT	• 1075
630	TSS Array, Total Weight Summary Data, Subroutines	11111111
237	TRØPT and ATBØPT	• 1083
	'' '' '' '' '' '' '' '' '' '' '' '' ''	• 1004

LIST OF TABLES

Table				Tit	:le										Page
A-1	Appendix	References	for	Wing and	l Emper	mage Modu	le	Ro	out	tir	nes	5.	•		1124
B-1	Appendix	References	for	Overlay	(8,0)	Routines.	•	•	•	•		•	•	•	1133
B-2	Appendix	References	for	Overlay	(14,0)	Routines		•	•	•		•	•	•	1134
B-3	Appendix	References	for	Overlay	(15,0)	Routines			•	•	•	•	•	•	1135
B-4	Appendix	References	for	Overlay	(16,0)	Routines		•		•		•	•	•	1136
B-5	Appendix	References	for	Overlay	(17,0)	Routines	•		•			•	•		1137
C-1	Appendix	References	for	Overlay	(9,0)	Routines.	•	•	•	•	•	•	•	•	1604
C-2	Appendix	References	for	Overlay	(10,0)	Routines		•		•	•	•	•	٠	1605
D-1	Appendix	References	for	Overlay	(18,0)	Routines		•	•	٠		•	•	•	1940
E-1	Appendix	References	for	Overlay	(9,0)	Routines.	•	•					•		2180
E-2	Appendix	References	for	Overlay	(14,0)	Routines	•	•		•	•		•		2181
E-3	Appendix	References	for	Overlay	(15,0)	Routines		•	•			•	•	•	2182
E-4	Appendix	References	for	Overlay	(16,0)	Routines	•	•							2183
E-5	Appendix	References	for	Overlay	(17,0)	Routines		•				•		•	2184
F-1	Appendix	References	for	Overlay	(9,0)	Routines.		•			•			•	2419
F-2	Appendix	References	for	Overlay	(10,0)	Routines							•	•	2420
F-3		References													

BOOK 3 TECHNICAL DISCUSSION, SECTION V

Section V

CORE MAPS FOR OVERLAYS (9,0), (10,0), (14,0), (15,0), (16,0), (17,0), AND (18,0)

Core maps for wing and empennage module overlays other than overlay (8,0) are found in this section. A complete list of all core maps presented in Sections III and V are summarized in Table 155 along with pertinent array specifications and core map table reference numbers. Tables 156 through 237 include core maps for overlays (9,0), (10,0), (14,0), (15,0), (16,0), (17,0), and (18,0).

TABLE 155. CROSS-REFERENCE LIST FOR ARRAY CORE MAPS

ACL ACL ACL ACLT ACWT 18 660 CT(1321) 8441 198 AFPD 8 6 CT(1321) 8441 198 AFPD 8 6 CT(1321) 8441 198 AFPD 15,16,17 150 CD(1651) 5771 171 CCT 14 300 CD(1551) 4771 171 CCT 14 300 CD(1551) 5771 171 CCT 18 2000 - 4121 2170 CD(1-400) 18 2000 - 4121 2170 CFL1I 15,17 150 CD(951) 5071 187 CFL2I 15,17 150 CD(1010) 5221 187 CIØY 14,15,16 150 T(501) 5071 187 CIØY 14,15,16 150 T(501) 5071 187 CKD CLEI 14,17 150 CD(1951) 6071 173 CKD CLEI 14,17 150 CD(1951) 6071 173 CKD CLEI 14,17 150 CD(1551) 4771 174 CMII 15,16,17 150 CD(1551) 4771 174 CTBI 17 150 CD(1251) 5771 185 CTEI 14,17 150 CD(1551) 4771 174 CTBI 17 150 CD(1551) 4771 174 D 18 9,17,18 150 CD(1551) 4771 174 D 16 CTEI 14,17 150 CD(351) 4771 174 D 175 CD(1651) 4771 174 D 175 CD(1651) 4771 174 D 175 CD(1651) 4771 176 CD(1651) 4771 177 CD(1651) 4771 177 CD(1651) 4771 177 CD(1651) 4771 178 CD(1651) 4771 178 CD(1651) 4771 178 CD(1651) 4771 178 CD(1651) 4771 179 CD(1651) 4771 179 CD(1651) 4771 179 CD(1651) 4771 170 CD(1651) 471 170 CD(1651) 4771 170 CD(1751) 471 170 CD(1751)				Core Loca	ation	
ACL ACL ACL ACL ACLT 18 66 CD(532) A652 197 ACVMT 18 660 CT(1321) 8441 198 AFD 8 67 CCDL1 15,16,17 150 CCC 14 300 CD(1651) 5771 171 CCC 14 300 CD(1651) 5771 171 CCT 14 300 CD(151) 4471 171 CCT CD(1-400) 18 2000 - 4121 217 CFL1I 15,17 150 CD(101) 18,77 150 CD(951) 5071 187 CFL2I 15,17 150 CD(101) 5221 187 CIØY 17 150 CCD(1010) 5221 187 CIØY 17 150 CCD(1401) 5521 175 CKD CKD 15 15 16 17 150 CD(1951) 6071 173 CKD CKD 15 15 16 17 17 150 CD(151) 177 170 CKD CKD 15 16 17 17 18 18 19 17 17 18 18 19 17 18 19 17 18 19 17 18 19 17 18 19 17 150 CD(151) 177 174 CMII 15,16,17 150 CD(651) 4771 174 CMII 15,16,17 150 CD(151) 1541 1541 193 CTEI 14,17 150 CD(801) 4921 174 D CTEW 9,17,18 150 T(1541) 1541 193 CTEI 10 10 10 10 10 10 10 10 10 10 10 10 10				FORTRAN	Blank	Table
ACLT ACLT ACWIT 18 660 CD(532) 4652 197 ACWIT 18 660 CT(1321) 8441 198 AFD 8 6 T(411) 411 28 CCDLI CCI 14 300 CD(1651) 5771 171 CCL 14 300 CD(51) 4771 171 CCT 14 300 CD(51) 4771 171 CCT CCW 14,15,16,17 50 CD(1) 4121 170 CD(1-400) 18 2000 - 4121 217 CFL1I 15,17 150 CD(951) 5071 187 CFL2I 15,17 150 CD(1101) 5221 187 CFL2I 15,17 150 CD(1101) 5221 187 CFL2I 17 150 CD(1401) 5521 175 CKD (LETEI) 14 50 CD(1951) 6071 175 CKD (LETEI) 14 50 CD(1951) 6071 173 CKD (LETEI) 14 50 CD(1951) 6071 173 CKD (LETEI) 15,16 15 50 CD(1951) 6071 173 CKD 15 50 CD(1951) 6071 173 CKD 15 50 CD(1951) 6071 188 CLEI 14,17 150 CD(151) 4771 174 CTBW 15,16,17 150 CD(151) 4771 174 CTBW 9,17,18 150 CD(351) 4471 194 CTBW 9,17,18 150 T(1541) 1541 202 CTBI 17 150 CD(651) 4771 174 CTBI 12 14,17 150 CD(351) 4471 194 CTBW 9,17,18 150 T(1541) 1541 193 CTEI 14,17 150 CD(801) 4921 174 D A11 2060 - 2061 11 D (variable reference 1ist) A11 2060 - 2061 12 D (input data adjustment) 8 2060 - 2061 12 D (input data adjustment) 8 2060 - 2061 12 D (input data adjustment) 8 500 T(1401) 3461 10 DC (array references) A11 100 D(1401) 3461 10 DDFS 18 220 CD(621) 4341 219 DDRS 18 220 CD(621) 4341 219 DDRS 18 220 CD(621) 4341 219 DDRS	Array Name	Overlay	Size			1
ACLT ACWIT ACWIT ACWIT ACWIT ACP ACIT ACWIT ACRIT ACRI	ACL	18	900	CT(1)	7121	196
ACVMIT AFD 8 6 6 T(11) 411 28 CCDLI CCI 114 300 CD(51) 5771 171 CCL 14 300 CD(51) 4171 171 CCT 14 500 CD(51) 4171 171 CCT 15,16,17 50 CD(1) 4121 170 CD(1-400) 18 2000 - 4121 217 CFL11 15,17 150 CD(951) 5071 187 CFL21 15,17 150 CD(101) 5221 187 CFL21 15,17 150 CD(1101) 5221 187 CFL21 17 150 CD(101) 5221 187 CGW 14,15,16 150 T(501) 501 175 CKD (LETEI) 14 50 CD(1951) 6071 173 CKD (LETEI) 14 50 CD(1951) 6071 173 CKD (LETEI) 14 50 CD(1951) 6071 188 CLEI 14,17 150 CD(151) 5371 188 CLEI 14,17 150 CD(151) 5371 185 CMT 18 91 T(1541) 1541 202 CTBI 17 150 CD(551) 4471 194 CTBW 9,17,18 150 CD(351) 4471 194 CTBW 9,17,18 150 CD(351) 4471 194 CTBW 9,17,18 150 CD(801) 4921 174 D A11 2060 - 2061 12 D (input data adjustment) 8 2060 - 2061 12 D (input data adjustment) 8 2060 - 2061 12 D (input data adjustment) 8 2060 - 2061 12 D (input data adjustment) 8 2060 - 2061 12 DAF 8 8 500 T(1401) 3461 10 DC (array references) A11 2060 - 2061 12 DAF 8 8 500 T(1401) 3461 10 DC (array references) A11 100 D(1401) 3461 10 DDFS 18 220 CD(681) 5001 221 DDISTR 18 320 CD(621) 4341 219 DDRS 18 220 CD(681) 5001 221 DDISTR 18 330 CT(1321) 8441 222 DDUC 18 220 CD(11) 4121 219		18	66	CD(532)	4652	197
CCDL 15,16,17	ACVMT	18	660	CT(1321)	8441	198
CCI	AFD	8	6	T(411)	411	28
CCL	CCDLI	15,16,17	150	CD(501)	4621	186
CCT	cci	14	300	CD(1651)	5771	171
CCW		14	300	CD(51)	4171	171
CD(1-400)	ССТ	14	300	CD(351)	4471	171
CD(1-400)	CCW	14,15,16,17	50	CD(1)	4121	170
CFL1I 15,17 150 CD(951) 5071 187 CFL2I 15,17 150 CD(1101) 5221 187 CIØY 14,15,16 150 T(501) 501 175 CKØY 17 150 CD(1401) 5521 175 CKØ 15 50 CD(1951) 6071 173 CKD 15 50 CD(1951) 6071 173 CKI 16 17 150 CD(651) 4771 174 CMII 15,16,17 150 CD(1251) 5371 185 CNT 18 91 T(1541) 1541 202 CTBI 17 150 CD(351) 4471 194 CTEI 14,17			2000	-	4121	217
CFL2I CIØY CIØY 14,15,16 150 T(501) CIØY 17 150 CD(1401) 5521 175 CKD (LETEI) 14 50 CD(1951) 6071 173 CKD CKD 15 50 CD(1951) 6071 173 CKD CKD 15 50 CD(1951) 6071 173 CKD CLEI 14,17 150 CD(1551) 6071 188 CLEI 14,17 150 CD(1551) 6071 188 CLEI 14,17 150 CD(1551) 5371 185 CNT 18 91 T(1541) 1541 202 CTBI 17 150 CD(351) 4471 194 CTBW 9,17,18 150 T(1541) 1541 193 CTEI 14,17 150 CD(801) 4921 174 D Al1 2060 - 2061 8 D (array references) Al1 2060 - 2061 8 D (array reference 1 ist) D (input data adjustment) 8 2060 - 2061 12 DAF DAILK 14 30 D(765) 3825 164 DC Al1 100 DC (array references) Al1 100 D(1401) 3461 10 DC (array references) Al1 100 D(1401) 3461 14 DDIFS 18 220 CD(661) 4781 221 DDIC DDISTR 18 220 CD(221) 4341 219 DDIRSTR 18 330 CT(1321) 8441 222 DDUC	1 '	15,17	150	CD (951)	5071	187
CIØY		15,17	150	CD(1101)	5221	187
CIØY 17 150 CD(1401) 5521 175 CKD (LETEI) 14 50 CD(1951) 6071 173 CKD 15 50 CD(1951) 6071 188 CLEI 14,17 150 CD(651) 4771 174 CMII 15,16,17 150 CD(1251) 5371 185 CNT 18 91 T(1541) 1541 202 CTBI 17 150 CD(351) 4471 194 CTBW 9,17,18 150 T(1541) 1541 193 CTEI 14,17 150 CD(801) 4921 174 D Al1 2060 - 2061 8 D (array references) Al1 2060 - 2061 11 D (variable reference list) Al1 2060 - 2061 12 DAILK 14 30 D(1765) 3825 164 DC Al1 100 D(1401) 3461 10 DC (array references) Al1 </td <td>CIØY</td> <td></td> <td>150</td> <td></td> <td>501</td> <td>175</td>	CIØY		150		501	175
CKD (LETEI) 14 50 CD(1951) 6071 173 CKD 15 50 CD(1951) 6071 188 CLEI 14,17 150 CD(651) 4771 174 CMII 15,16,17 150 CD(1251) 5371 185 CNT 18 91 T(1541) 1541 202 CTBI 17 150 CD(351) 4471 194 CTBW 9,17,18 150 T(1541) 1541 193 CTEI 14,17 150 CD(801) 4921 174 D Al1 2060 - 2061 8 D (array references) Al1 2060 - 2061 12 DAF 8 500 T(1401) 1401 25 DAILK 14 30 D(1765) 3825 164 DC Al1 100 D(1401) 3461 10 DC (array references) Al1 100 D(1401) 3461 14 DDFS 18 220	•		150	, ,	5521	175
CKD 15 50 CD(1951) 6071 188 CLEI 14,17 150 CD(651) 4771 174 CMII 15,16,17 150 CD(1251) 5371 185 CNT 18 91 T(1541) 1541 202 CTBI 17 150 CD(351) 4471 194 CTBW 9,17,18 150 T(1541) 1541 193 CTEI 14,17 150 CD(801) 4921 174 D A11 2060 - 2061 8 D (array references) A11 2060 - 2061 11 D (input data adjustment) 8 2060 - 2061 12 DAF 8 500 T(1401) 1401 25 DAILK 14 30 D(1765) 3825 164 DC A11 100 D(1401) 3461 10 DC (array references) A11 100 D(1401) 3461 14 DDIS 18 22		14	50		6071	173
CLEI 14,17 150 CD(651) 4771 174 CMII 15,16,17 150 CD(1251) 5371 185 CNT 18 91 T(1541) 1541 202 CTBI 17 150 CD(351) 4471 194 CTBW 9,17,18 150 T(1541) 1541 193 CTEI 14,17 150 CD(801) 4921 174 D Al1 2060 - 2061 8 D (array references) Al1 2060 - 2061 11 D (input data adjustment) 8 2060 - 2061 12 DAF 8 500 T(1401) 1401 25 DAILK 14 30 D(1765) 3825 164 DC Al1 100 D(1401) 3461 10 DC (array references) Al1 100 D(1401) 3461 14 DDIS 18 220 CD(661) 4781 221 DDIS 18 2	1	15	50		6071	188
CMII 15,16,17 150 CD(1251) 5371 185 CNT 18 91 T(1541) 1541 202 CTBI 17 150 CD(351) 4471 194 CTBW 9,17,18 150 T(1541) 1541 193 CTEI 14,17 150 CD(801) 4921 174 D Al1 2060 - 2061 8 D (array references) Al1 2060 - 2061 11 D (input data adjustment) 8 2060 - 2061 12 DAF 8 500 T(1401) 1401 25 DAILK 14 30 D(1765) 3825 164 DC Al1 100 D(1401) 3461 10 DC (array references) Al1 100 D(1401) 3461 14 DDIS 18 220 CD(661) 4781 221 DDIS 18 220 CD(221) 4341 219 DDISC 18 220		14,17			4771	
CNT CTBI CTBI CTBW CTBW Sylin 150 CD(351) CD(361) CD(3				, ,	5371	185
CTBI 17 150 CD(351) 4471 194 CTBW 9,17,18 150 T(1541) 1541 193 CTEI 14,17 150 CD(801) 4921 174 D Al1 2060 - 2061 8 D (array references) Al1 2060 - 2061 11 D (input data adjustment) 8 2060 - 2061 42 DAF 8 500 T(1401) 1401 25 DAILK 14 30 D(1765) 3825 164 DC Al1 100 D(1401) 3461 10 DC (array references) Al1 100 D(1401) 3461 14 DDFS 18 220 CD(661) 4781 221 DDIS 18 220 CD(441) 4561 220 DDLC 18 220 CD(221) 4341 219 DDRS 18 220 CD(881) 5001 221 DINSTR 18 330 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CTBW 9,17,18 150 T(1541) 1541 193 CTEI 14,17 150 CD(801) 4921 174 D Al1 2060 - 2061 8 D (array references) Al1 2060 - 2061 11 D (input data adjustment) 8 2060 - 2061 42 DAF 8 500 T(1401) 1401 25 DAILK 14 30 D(1765) 3825 164 DC Al1 100 D(1401) 3461 10 DC (array references) Al1 100 D(1401) 3461 14 DDFS 18 220 CD(661) 4781 221 DDIS 18 220 CD(441) 4561 220 DDLC 18 220 CD(221) 4341 219 DDRS 18 220 CD(881) 5001 221 DINSTR 18 330 CT(1321) 8441 222 DDUC 18 220 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CTEI 14,17 150 CD(801) 4921 174 D Al1 2060 - 2061 8 D (array references) Al1 2060 - 2061 11 D (variable reference list) Al1 2060 - 2061 12 D (input data adjustment) 8 2060 - 2061 42 DAF 8 500 T(1401) 1401 25 DAILK 14 30 D(1765) 3825 164 DC Al1 100 D(1401) 3461 10 DC (array references) Al1 100 D(1401) 3461 14 DDIS 18 220 CD(661) 4781 221 DDLC 18 220 CD(221) 4341 219 DDRS 18 220 CD(881) 5001 221 DDISTR 18 330 CT(1321) 8441 222 DDUC 18 220 CD(1) 4121 219		9.17.18	l .	` '	1541	193
D						
D (array references)	1			-		
D (variable reference list)				_		
D (input data adjustment) 8 2060 - 2061 42 DAF 8 500 T(1401) 1401 25 DAILK 14 30 D(1765) 3825 164 DC A11 100 D(1401) 3461 10 DC (array references) A11 100 D(1401) 3461 14 DDFS 18 220 CD(661) 4781 221 DDLC 18 220 CD(441) 4561 220 DDRS 18 220 CD(881) 5001 221 DDSTR 18 330 CT(1321) 8441 222 DDUC 18 220 CD(1) 4121 219				-		12
DAF 8 500 T(1401) 1401 25 DAILK 14 30 D(1765) 3825 164 DC A11 100 D(1401) 3461 10 DC (array references) A11 100 D(1401) 3461 14 DDFS 18 220 CD(661) 4781 221 DDLC 18 220 CD(441) 4561 220 DDRS 18 220 CD(221) 4341 219 DDSTR 18 220 CD(881) 5001 221 DIXTR 18 330 CT(1321) 8441 222 DDUC 18 220 CD(1) 4121 219		1		-	2061	42
DAILK 14 30 D(1765) 3825 164 DC A11 100 D(1401) 3461 10 DC (array references) A11 100 D(1401) 3461 14 DDFS 18 220 CD(661) 4781 221 DDLC 18 220 CD(441) 4561 220 DDRS 18 220 CD(881) 5001 221 DDSTR 18 330 CT(1321) 8441 222 DDUC 18 220 CD(1) 4121 219		8	500	T(1401)	1401	25
DC A11 100 D(1401) 3461 10 DC (array references) A11 100 D(1401) 3461 14 DDFS 18 220 CD(661) 4781 221 DDLC 18 220 CD(441) 4561 220 DDRS 18 220 CD(221) 4341 219 DDSTR 18 330 CT(1321) 8441 222 DDUC 18 220 CD(1) 4121 219		14	30		3825	164
DC (array references) A11 100 D(1401) 3461 14 DDFS 18 220 CD(661) 4781 221 DDIS 18 220 CD(441) 4561 220 DDC 18 220 CD(221) 4341 219 DDRS 18 220 CD(881) 5001 221 DDSTR 18 330 CT(1321) 8441 222 DDUC 18 220 CD(1) 4121 219					1	
DDFS 18 220 CD(661) 4781 221 DDIS 18 220 CD(441) 4561 220 DDLC 18 220 CD(221) 4341 219 DDRS 18 220 CD(881) 5001 221 DDSTR 18 330 CT(1321) 8441 222 DDUC 18 220 CD(1) 4121 219			1	, ,	1	
DDIS 18 220 CD(441) 4561 220 DDLC 18 220 CD(221) 4341 219 DDRS 18 220 CD(881) 5001 221 DINSTR 18 330 CT (1321) 8441 222 DDUC 18 220 CD(1) 4121 219			I .	, ,	L .	
DDLC 18 220 CD(221) 4341 219 DDRS 18 220 CD(881) 5001 221 DDSTR 18 330 CT(1321) 8441 222 DDUC 18 220 CD(1) 4121 219						
DDRS 18 220 CD(881) 5001 221 DDSTR 18 330 CT (1321) 8441 222 DDUC 18 220 CD(1) 4121 219				, ,		
DESTR 18 330 CT (1321) 8441 222 DDUC 18 220 CD(1) 4121 219				, , ,		
DDUC 18 220 CD(1) 4121 219				' '		
				, ,		
, , , , , , , , , , , , , , , , , , ,		,		, ,		

TABLE 155. CROSS-REFERENCE LIST FOR ARRAY CORE MAPS (CONT)

			Core Loc	ation	
		۵.	FORTRAN	Blank	Table
Array Name	Overlay	Size	Ref.	Common	Ref.
DFSP	14	25	D(1795)	3855	165
DLE	8	23	D(1985)	4045	22
DLE	14	30	D(1205)	4265	156
DLEDK	14	50	D(1530)	3590	159
DLED1	14	30	D(1500)	3560	158
DSPDK	14	15	D(1730)	3790	162
DSPLØ	10,18	7	D(58)	2118	223
DTC	8	22	D(2031)	4091	24
DTE	8	23	D(2008)	4068	23
DLE	14	45	D(1235)	3295	157
DTED1	14	30	D(1580)	3640	160
DTED2	14	120	D(1610)	3670	161
EL	18	15	T(1300)	1300	205
ENQ	18	100	TW(601)	6821	200
ENQC	18	24	TW(787)	7007	201
ENX	18	60	TW(701)	6921	204
FDAT	17	60	/FDATT/		5
IEL	18	165	TW(1)	6221	206
IP	A11	80	/1PRINT/		• 7
ND	A11	100	_	6121	9
ND (array references)	A11	100	-	6121	13
PT	9,18	100	T(901)	901	234
S	9,18	200	T(1001)	1001	235
SPAL	8	50	T(1001)	1001	21
SPB	18	33	T(1232)	1232	207
SPN	18	33	T(1265)	1265	208
STRESS	18	1320	CT(1)	7121	203
STRING	18	220	T(1676)	1676	213
T (1 - 200)	A11	2060	-	1	34
T (201 - 900)	9,10,17,18	2060] -	1	190
T ((201 - 900) references)	9,10,17,18	2060	-	1	191
TA	18	40	CD(401)	4521	216
TAF	8	350	T(431)	431	29
TCS	14	250	CD(1401)	5521	172
TD	8	600	CD(1101)	5221	40
TDC, metallic analysis	9,10	200	T(1341)	1341	224
TDC, advanced composite analysis	18	200	T(1341)	1341	218

TABLE 155. CROSS-REFERENCE LIST FOR ARRAY CORE MAPS (CONT)

			Core Location		
			FORTRAN	B1ank	Table
Array Name	Overlay	Size	Ref.	Common	Ref.
TE	14	150	CD(1251)	5371	183
TEIGJ	18	4	TW(783)	7003	199
TF	18	40	T(2021)	2021	209
TFRDK	8,14	60	T(1986)	1986	37
TG	14,15,16,17	300	T(1001)	1001	166
TGA	14,15,16,17	135	T(1851)	1851	167
TGJ	8,16.	200	T(1761)	1761	36
TGR (LETEI)	14	100	T(1751)	1751	181
TGR (LEWT)	14	100	T(1751)	1751	176
TGR (TEWT, TEWTI)	14	100	T(1751)	1751	180
TLED	14	25	TGR(51)	1801	176
TØ	9,10	40	T(920)	920	237
TR (TBWDC)	8	16	T(1301)	1301	50
TS	8	600	CD(1)	4121	41
TSC	9,10,18	420	T(1541)	1541	225
TSEC	9,10,18	300	CD(1501)	5621	226
TSF	18	60	CD(441)	4561	215
TSS (SFSCH, TSCH)	10	100	T(1961)	1961	227
TSS (STRIB)	10	100	T(1961)	1961	228
TSS (STWEB)	10	100	T(1961)	1961	229
TSS (TBØPT, ATBØPT)	9,18	100	T(1961)	1961	236
TST (LETEI)	14	50	T(1701)	1701	182
TST (LEWT)	14	50	T(1701)	1701	177
TST (TEWTI, TEDEV)	14	50	T(1701)	1701	179
TST (WLETE)	14	50	T(1701)	1701	184
TT (GEØNW)	8	20	T(1317)	1317	45
TT (TBWDC, ABØXC)	8	20	T(1317)	1317	51
TTED	14	40	TGR(51)	1801	178
TVF	16	100	T(1961)	1961	192
TVMC	15,16	250	CD(51)	4171	189
TVS	8	400	CD(601)	4721	35
TWG	14,15,16,17	40u	T(1301)	1301	169
TWT (1 - 330)	9,10,18	400	CD(1101)	5221	230
TWT (CSECW)	9,18	400	CD(1101)	5221	232
TWT (DLPVT)	9,18	400	CD(1101)	5221	233
TWT (WTP1N)	10,18	400	CD(1101)	5221	231
TX	18	160	CD(1)	4121	211
TXS	18	100	CD(161)	4281	212

TABLE 155. CROSS-REFERENCE LIST FOR ARRAY CORE MAPS (CONCL)

			Core Location		
Array Name	Overlay	Size	FORTRAN Ref.	Blank Common	Table Ref.
TXY	8,14	500	T(801)	801	30
V	18	660	CD(1321)	8441	198
W(WEIGH1)	18	30	(WEIGH1)		210
W(WEIGH2)	18	35	(WEIGH2)		214
WCG	17	126	TW(701)	6921	195
WI)	8	200	T(1)	1	20
XMISC	A11	100	/MISC/		6
YC	8	150	T(201)	201	38
YC	14,15,17	150	T(201)	201	168
YLE	8	109	TXY (179)	979	32
YTB	8	124	TXY (55)	855	31
YTC	8,14,15,17	60	T(351)	351	39
YTE	8	109	TXY (288)	1088	33
			L		

TABLE 156. DLE ARRAY, VARIABLE DATA SUBARRAY FOR FIXED LEADING EDGE STRUCTURES

General information for array DLE:

Blank common reference location = D(1205)

Array size = 30 cells

Array used by subroutine LEWT for estimation of fixed leading edge weights and mass distributions

Array Location	D Array Ref Location	Default Value	Description
	tions 1-10 39) = 0.0.	contain va	riable data for wing analysis,
1	1205	0.0	<pre>(W/S)LE, input unit weight to be used in lieu of calculated values, if specified. If 0.0, computed values are used, lb/sq ft.</pre>
2	1206	1.0	K _{wt} , weight factor, applied to both calculated and input unit weight.
3	1207	8.0	<pre>λwt, chordwise taper ratio of weight distribution surface, z_{FS}/z_{LE}.</pre>
4	1208	1.5	K ₁ , weight equation coefficient
5	1209	0.00077	C ₁ , weight equation coefficient
6	1210	0.80	C2, weight equation coefficient
7	1211	0.830	C ₃ , weight equation coefficient
8	1212	0.10	K ₂ , equation coefficient for (t/c) effects
9	1213	0.25	C ₄ , equation coefficient for (t/c) effects
10	1214	0.10	(t/c) _{ref} , reference (t/c) for (t/c) effects
	itions 11-20 (289) = -1.0		rariable data for horizontal tail analysis,
11	1215	0.0	(W/S) _{LE} , same as DLE(1)
12	1216	1.0	K _{wt} , same as DLE(2)
13	1217	8.0	λwt, same as DLE(3)
14	1218	1.75	K ₁ , same as DLE(4)
15	1219	0.00040	C ₁ , same as DLE(5)
16	1220	0.80	C2, same as DLE(6)
17	1221	0.540	C ₃ , same as DLE(7)
18	1222	0.10	K2, same as DLE(8)
19	1223	0.25	C4, same as DLE(9)
20	1224	0.10	(t/c) ref, same as DLE(10)

TABLE 156. DLE ARRAY, VARIABLE DATA SUBARRAY FOR FIXED LEADING EDGE STRUCTURES (CONCL)

Array Location	D Array Ref Location	Default Value	Description
	tions 21-30 (289) = +N.) contain v	variable data for vertical tail analysis,
21	1225	0.0	(W/S) _{LE} , same as DLE(1)
22	1226	1.0	Kwt, same as DLE(2)
23	1227	8.0	λwt, same as DLE(3)
24	1228	1.50	K ₁ , same as DLE(4)
25	1229	0.00040	C ₁ , same as DLE(5)
26	1230	0.80	C ₂ , same as DLE(6)
27	1231	0.540	C ₃ , same as DLE(7)
28	1232	0.10	K2, same as DLE(8)
. 29	1233	0.25	C ₄ , same as DLE(9)
30	1234	0.10	(t/c) ref, same as DLE(10)

TABLE 157. DTE ARRAY, VARIABLE DATA SUBARRAY FOR FIXED TRAILING EDGE STRUCTURES

General information for array DTE:

Blank common reference location = D(1235)

Array size = 45 cells

Array used by subroutine TEWT for estimation of fixed trailing edge weights and mass distribution.

Array Location	D Array Ref Location	Default Value	Description
	tion 1-15 (289) = 0.0		riable data for wing analysis,
1	1235	0.0	<pre>(W/S)TE, input unit weight to be used in lieu of calculated values, if specified. If 0.0, computed values are used, lb/sq ft.</pre>
2	1236	1.0	Kwt, weight factor, applied to both calculated and input unit weight.
3	1237	0.01	λ_{wt} , chordwise taper ratio of weight distribution surface, z_{TE}/z_{RS} .
4	1238	1.0	K ₁ , weight equation coefficient
5	1239	0.35	C ₁ , weight equation coefficient
6	1240	0.0165	C2, weight equation coefficient
7	1241	1.45	C ₃ , weight equation coefficient
8	1242	1.00	C4, Q correction factor equation coefficient
9	1243	0.70	C5, Q correction factor equation coefficient
10	1244	950.0	C ₆ , Q ₀ , reference Q for correction factor equation, psf
11	1245	1.0	C ₇ , Q correction factor equation coefficient
12	1246	0.0	Not used
13	1247	0.10	K_2 , equation coefficient for (t/c) effects
14	1248	0.25	Cg, equation coefficient for (t/c) effects
15	1249	0.10	(t/c) _{ref} , reference (t/c) for (t/c) effects
	ations 16-3 (289) = -1.		variable data for horizontal tail analysis,
16	1250	0.0	(W/S) _{TE} , same as DTE(1)
17	1251	1.0	Kwt, same as DTE(2)
18	1252	0.01	Awt, same as DTE(3)
19	1253	1.0	K1, same as DTE(4)

TABLE 157. DTE ARRAY, VARIABLE DATA SUBARRAY FOR FIXED TRAILING EDGE STRUCTURES (CONCL)

Array Location	D Array Ref Location	Default Value	Description
20	1254	0.35	C ₁ , same as DTE(5)
21	1255	0.0145	C ₂ , same as DTE(6)
22	1256	1.35	C ₃ , same as DTE(7)
23	1257	0.75	C4, same as DTE(8)
24	1258	0.70	C ₅ , same as DTE(9)
25	1259	950.0	C ₆ , same as DTE(10)
26	1260	1.0	C7, same as DTE(11)
27	1261	0.0	Not used
28	1262	0.10	K_2 , same as DTE(13)
29	1263	0.25	Cg, same as DTE(14)
30	1264	0.10	$(t/c)_{ref}$, same as DTE(15)
31	1265	0.0	(W/S)TE, same as DTE(1)
32	1266	1.0	K _{wt} , same as DTE(2)
33	1267	0.01	λ_{wt} , same as DTE(3)
34	1268	1.0	K ₁ , same as DTE(4)
35	1269	0.35	C ₁ , same as DTE(5)
36	1270	0.0145	C ₂ , same as DTE(6)
37	1271	1.35	C3, same as DTE(7)
38	1272	0.75	C4, same as DTE(8)
39	1273	0.70	C ₅ , same as DTE(9)
40	1274	950.0	C ₆ , same as DTE(10)
41	1275	1.0	C ₇ , same as DTE(11)
42	1276	0.0	Not used
43	1277	0.10	K ₂ , same as DTE(13)
44	1278	0.25	C ₈ , same as DTE(14)
45	1279	0.10	(t/c) _{ref} , same as DTE(15)

in disease delicate the same and

TABLE 158. DLEDI ARRAY, VARIABLE DATA SUBARRAY FOR LEADING EDGE CONTROL SURFACES

General information for array DLED1:

Blank common reference location = D(1500)

Array size = 30 cells

Array used by subroutine LEWT for estimation of leading edge control surface weights and mass distributions. Array contains three 10-cell data sets, each to be used to describe separate leading edge devices.

	D Array Ref Location	Default Value	Description
Loca	tions 1-10	contain va	riable data for leading edge device 1.
1	1500	0.0	ID1, type-of-device code for leading edge device 1. 0.0 = No device, locations 2-9 not processed 1.0 = Slat 2.0 = Kruger flap 3.0 = Droop nose
2 3	1501 1502	0.0	Number of panel segments, 1, 2, or 3. YIB, spanwise location for inboard edge of device (program assumes device edges to be parallel to vehicle centerline). Input value options: 0.XX = fraction of semispan X.XX = buttock plane, in.
4	1503	0.0	YøB, spanwise location for outboard edge of device. Same as Y1B.
5	1504	0.0	CTE IB, chordwise location of device trailing edge at inboard station. Input value options: 0.XX = fraction of local trapezoidal chord, forward (-) or aft (+) of local trapezoidal leading edge. X.XX = distance forward (-) or aft (+) of local trapezoidal leading edge, in.

TABLE 158. DLEDI ARRAY, VARIABLE DATA SUBARRAY FOR LEADING EDGE CONTROL SURFACES (CONT)

Array Location	D Array Ref Location	Default Value	Description
6	1505	0.0	C_{TE} ϕ_{B} , chordwise location of device trailing edge at the outboard station. Same as C_{TE-IB} .
7	1506	0.0	ΔCfixed IB, chordwise location of fixed structure leading edge at inboard station. This point and outboard point, ΔCfixed ØB, defines aft control line for determination of fixed structures to be deleted; all fixed structures forward of this line between Y _{IB} and Y _{ØB} are deleted. Input value options:
			0.XX = fraction of local trapezoidal chord, forward (-) or aft (+) of local trapezoidal leading edge. X.XX = distance forward (-) or aft (+) of local trapedoidal leading
			edge, in. NOTE: In slats, specify location of understructure leading edge. For Kruger flaps, specify 0.0. For droop nose, specify hinge
8	1507	0.0	point location. ΔC _{fixed} ØB, chordwise location of fixed structure leading edge at outboard station. Same as ΔC _{fixed} IB.
9	1508	0.0	<pre>(W/S)1, input unit weight for device to be used in lieu of calculated values. Input options: 0.0 = use program calculated values X.XX = use input values (all data in</pre>
10	1509	0.0	required), 1b/sq ft Kwt, weight factor for estimated weight of device, applied to both calculated and input unit weight.

TABLE 158. DLED1 ARRAY, VARIABLE DATA SUBARRAY FOR LEADING EDGE CONTROL SURFACES (CONCL)

Array Location	D Array Ref Location	Default Value	Description
Loca	tions 11-20	contain	variable data for leading edge device 2.
11	1510	0.0	ID2, same as DLED1(1). Same device type may be specified.
12	1511	0.0	Number of panels, device 2
13	1512	0.0	Y _{IB} , same as DLED1(3)
14	1513	0.0	$Y \phi_B$, same as DLED1(4)
15	1514	0.0	CTE IB, same as DLED1(5)
16	1515	0.0	CTE ØB, same as DLED1(6)
17	1516	0.0	ACfixed IB, same as DLED1(7)
18	1517	0.0	ΔCfixed ØB, same as DLED1(8)
19	1518	0.0	(W/S) ₂ , same as DLED1(9)
20	1519	0.0	K _{wt} , same as DLED1(10)
Loca	tions 21-30	contain	variable data for leading edge device 3.
21	1520	0.0	ID3, same as DLED1(1)
22	1521	0.0	Number of panels, device 3
23	1522	0.0	Y _{IB} , same as DLED1(3)
24	1523	0.0	Y_{OB} , same as DLED1(4)
25	1524	0.0	CTE IB, same as DLED1(5)
26	1525	0.0	C _{TE} ØB same as DLED1(6)
27	1526	0.0	ΔCfixed IB, same as DLED1(7)
28	1527	0.0	ΔCfixed ØB, same as DLED1(8)
29	1528	0.0	(W/S) ₃ , same as DLED1(9)
30	1529	0.0	Kwt, same as DLED1(10)

TABLE 159. DLEDK ARRAY, VARIABLE DATA SUBARRAY, LEADING EDGE CONTROL SURFACE ANALYSIS CONSTANTS

General information for array DLEDK:

Blank common reference location = D(1530)

Array size = 50 cells

Array contains equation and design constants for estimation of leading edge control surface weights and mass distributions.

			<u> </u>		
Array Location	D Array Ref Location	Default Value	Description		
Loca	tions 1-15	contain da	ata for analysis of leading edge slats.		
1	1530	1.0	KALE, weight factor to be applied to calculated fixed leading edge weights that are deleted (replaced by slat structure weights).		
2	1531	0.145	λ _{Slat wt} , chordwise taper ratio of slat weight distribution surface, z _{TE} /z _{LE} .		
3	1532	1.0	K ₁ , slat weight equation coefficient		
4	1533	0.551	C ₁ , slat weight equation coefficient		
5	1534	0.32	C ₂ , slat weight equation coefficient		
6	1535	1.0	C ₃ , slat weight equation coefficient		
7	1536	0.80	C4, slat weight equation coefficient		
8	1537	0.25	C5, slat weight equation coefficient		
9	1538	0.10	K ₂ , equation coefficient for (t/c) effects		
10	1539	0.25	C6, equation coefficient for (t/c) effects		
11	1540	0.10	(t/c) _{ref} , reference (t/c) for (t/c) effects		
12	1541	0.01	K3, weight factor for volume effects		
13	1542	1.0	K4, weight coefficient for actuator effects		
14	1543	0.125	Cg, equation coefficient for actuator effects		
15	1544	1.0	Nact, number of actuators per panel.		
	Locations 16-30 contain data for analysis of leading edge Kruger flaps.				
16	1545	1.0	KALE, same as DLEDK(1)		
17	1546	1.50	λ _{Kruger wt} , same as DLEDK(2)		
18	1547	1.0	Kruger wt, same as DLEDK(2) K1, same as DLEDK(3)		
19	1548	0.413	C ₁ , same as DLEDK(4)		
20	1549	0.32	C2, same as DLEDK(5)		
21	1550	0.667	C ₃ , same as DLEDK(6)		
22	1551	0.80	C ₄ , same as DLEDK(7)		
			7,		

TABLE 159. DLEDK ARRAY, VARIABLE DATA SUBARRAY, LEADING EDGE CONTROL SURFACE ANALYSIS CONSTANTS (CONCL)

	D Array		
Array	Ref	Default	
Location		Value	Description
23	1552	0.25	C5, same as DLEDK(8)
24	1553	0.10	K ₂ , same as DLEDK(9)
25	1554	0.25	C6, same as DLEDK(10)
26	1555	0.10	(t/c)ref, same as DLEDK(11)
27	1556	0.01	K ₃ , same as DLEDK(12)
28	1557	0.75	K4, same as DLEDK(13)
29	1558	0.125	C7, same as DLEDK(14)
30	1559	1.0	Nact, same as DLEDK(15)
31	1560	1.0	KALE, same as DLEDK(1)
32	1561	9.0	Adroop nose wt, same as DLEDK(2)
33			
34	1562	1.725	K ₁ , same as DLÉDK(3)
	1563	0.00077	
35	1563 1564	0.00077 0.80	K ₁ , same as DLEDK(3) C ₁ , same as DLEDK(4) C ₂ , same as DLEDK(5)
36	1563 1564 1565	0.00077 0.80 0.330	K ₁ , same as DLEDK(3) C ₁ , same as DLEDK(4)
36 37	1563 1564 1565 1566	0.00077 0.80 0.330 0.80	K1, same as DLEDK(3) C1, same as DLEDK(4) C2, same as DLEDK(5) C3, same as DLEDK(6) C4, same as DLEDK(7)
36 37 38	1563 1564 1565 1566 1567	0.00077 0.80 0.330 0.80 0.25	K1, same as DLEDK(3) C1, same as DLEDK(4) C2, same as DLEDK(5) C3, same as DLEDK(6) C4, same as DLEDK(7) C5, same as DLEDK(8)
36 37 38 39	1563 1564 1565 1566 1567 1568	0.00077 0.80 0.330 0.80 0.25 0.10	K1, same as DLEDK(3) C1, same as DLEDK(4) C2, same as DLEDK(5) C3, same as DLEDK(6) C4, same as DLEDK(7) C5, same as DLEDK(8) K2, same as DLEDK(9)
36 37 38 39 40	1563 1564 1565 1566 1567 1568 1569	0.00077 0.80 0.330 0.80 0.25 0.10 0.25	K1, same as DLEDK(3) C1, same as DLEDK(4) C2, same as DLEDK(5) C3, same as DLEDK(6) C4, same as DLEDK(7) C5, same as DLEDK(8) K2, same as DLEDK(9) C6, same as DLEDK(10)
36 37 38 39 40 41	1563 1564 1565 1566 1567 1568 1569 1570	0.00077 0.80 0.330 0.80 0.25 0.10 0.25 0.10	K1, same as DLEDK(3) C1, same as DLEDK(4) C2, same as DLEDK(5) C3, same as DLEDK(6) C4, same as DLEDK(7) C5, same as DLEDK(8) K2, same as DLEDK(9) C6, same as DLEDK(10) (t/c)ref, same as DLEDK(11)
36 37 38 39 40 41 42	1563 1564 1565 1566 1567 1568 1569 1570	0.00077 0.80 0.330 0.80 0.25 0.10 0.25 0.10 0.01	K1, same as DLEDK(3) C1, same as DLEDK(4) C2, same as DLEDK(5) C3, same as DLEDK(6) C4, same as DLEDK(7) C5, same as DLEDK(8) K2, same as DLEDK(9) C6, same as DLEDK(10) (t/c)ref, same as DLEDK(11) K3, same as DLEDK(12)
36 37 38 39 40 41	1563 1564 1565 1566 1567 1568 1569 1570	0.00077 0.80 0.330 0.80 0.25 0.10 0.25 0.10	K1, same as DLEDK(3) C1, same as DLEDK(4) C2, same as DLEDK(5) C3, same as DLEDK(6) C4, same as DLEDK(7) C5, same as DLEDK(8) K2, same as DLEDK(9) C6, same as DLEDK(10) (t/c)ref, same as DLEDK(11)

C7, same as DLEDK(14)

Not used

Not used

Not used

Not used

Nact, same as DLEDK(15)

Cg, droop nose weight equation coefficient.

44

45

46

47

48

49

50

1573

1574

1575

1576

1577

1578

1579

0.125

1.0 0.830

0.0

0.0

0.0

0.0

TABLE 160. DTED1 ARRAY, VARIABLE DATA SUBARRAY FOR TRAILING EDGE CONTROL SURFACES, SPOILERS

General information for array DTED1:

Blank common reference location = D(1580)

Array size = 30 cells

Array used by subroutines TEDEV and TEWTI for estimation of trailing edge spoiler weights and mass distributions. Array contains two 15-cell data sets, each to be used to describe separate spoiler devices.

	r	·	
Location Array Location	Location Ref Location	Default Value	Description
Loca	tions 1-15	contain d	ata for analysis of spoiler device 1.
1	1580	0.0	Number of panel segments, 1, 2, or 3. Value in this location used to determine if spoiler device is being specified. A value of 0.0 is interpreted as no spoiler, locations 2-15 not processed.
2	1581	0.0	YIB, spanwise location for inboard edge of device (program assumes device edges to be parallel to the vehicle centerline. Spoiler device may be located at the same spanwise positions as trailing edge flaps). Input value options: 0.XX = fraction of semi-span X.XX = buttock plane, in.
3	1582	0.0	YøB, spanwise location for outboard edge of device. Same as YIB.
4	1.583	0.0	CFWD IB, chordwise location of spoiler leading edge (hinge line) at inboard station. Input value options: ≤2.0 = fraction of local trapezoidal chord aft of local trapezoidal leading edge >2.0 = distance aft of local trapezoidal leading edge, in
5	1584	0.0	CFWD ØB, chordwise location of spoiler leading edge at outboard station. Same as CFWD IB.

TABLE 160. DTED1 ARRAY, VARIABLE DATA SUBARRAY FOR TRAILING EDGE CONTROL SURFACES, SPOILERS (CONT)

Array Location	D Array Ref Location	Default Value	Description
6	1585	0.0	CAFT IB, chordwise location of spoiler trailing edge at the inboard station. Same as CFWD IB.
7	1586	0.0	CAFT ØB, chordwise location of spoiler trailing edge at the outboard station.
8	1587	0.0	Same as CFWD IB. (W/S)1, input unit weight for device to be used in lieu of calculated values. Input options:
	·		0.0 = use program calculated values X.XX = use input values (all data in locations 1-7, 9 and 10 are required), lb/sq ft
9	1588	0.0	K _{wt} , weight factor for estimated weight of device, applied to both calculated and input unit weight.
10	1589	0.0	IDATE spoilers, control indicator for processing of fixed trailing edge structure replaced with spoiler structure: 0.0 = No processing of fixed trailing edge structure. Program assumes spoiler positioned over flaps; deletion of fixed trailing edge structure based on flap analysis 1.0 = Process data for deletion of fixed trailing edge structure
11	1590	0.0	Not used
12	1591	0.0	Not used
13	1592	0.0	Not used
14	1593	0.0	Not used
15	1594	0.0	Not used
Loca	ations 16-30	O contain	data for analysis of spoiler device 2.
16	1595	0.0	Number of panel segments, same as DTED1(1)
17	1596	0.0	Y _{IR} , same as DTED1(2)
18	1597	0.0	YØB, same as DTED1(3)
19	1598	0.0	CIWD IB, same as DTED1(4)

TABLE 160. DTED1 ARRAY, VARIABLE DATA SUBARRAY FOR TRAILING EDGE CONTROL SURFACES, SPOILERS (CONCL')

Array Location	D Array Ref Location	Default Value	Description
20 21 22 23 24 25 26 27 28 29 30	1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CFWD ØB, same as DTED1(5) CAFT IB, same as DTED1(6) CAFT ØB, same as DTED1(7) (W/S)2, same as DTED1(8) Kwt, same as DTED1(9) IDATE spoilers, same as DTED1(10) Not used Not used Not used Not used Not used

TABLE 161. DTED2 ARRAY, VARIABLE DATA SUBARRAY FOR TRAILING EDGE FLAP-TYPE CONTROL SURFACES

General information for array DTED2:

Blank common reference location = D(1610)

Array size = 120 cells

Array used by subroutines TEDEV and TEWTI for estimation of trailing edge flap-type control surface weight and mass distribution. Array contains six 20-cell data sets to be used to describe up to four separate flap-type devices for wing and empennage. The first four sets are for wing design: sets 1-3 for flaps, and set 4 for flaps or ailerons. Set 5 is used for horizontal tail elevators; set 6 is used for vertical tail rudders. The first three sets are always processed for wing and empennage analysis. Sets 4, 5, and 6 are processed only in accordance to the surface type.

			· · · · · · · · · · · · · · · · · · ·
Array Location	D Array Ref Location	Default Value	Description
	tions 1-20 vice 1:	contain d	data for analysis of trailing edge flap
2	1611	0.0	ID1, type of flap code: 0.0 = plain flap 1.0 = single-slotted flaps 2.0 = double-slotted flaps 3.0 = triple-slotted flaps NOTE: Data requirements in locations 5-14 based on code value. Required data are: Code value 0.0 and 1.0, locations 5 and 6 Code value 2.0, locations 5-10 Code value 3.0, locations 5-14 Number of panel segments, 1, 2, or 3. Value in this location is used to determine if flap device is to be processed. A value of 0.0 is interpreted as no flap; data in locations 1 and 3-20 are not processed.

TABLE 161. DTED2 ARRAY, VARIABLE DATA SUBARRAY FOR TRAILING EDGE FLAP-TYPE CONTROL SURFACES (CONT)

Array Location	D Array Ref Location	Default Value	Description
3	1612	0.0	YIB, spanwise location for inboard edge of device. (Program assumes device edge to be parallel to vehicle centerline. Flap device may be located at the same spanwise position as spoiler devices.) Input value options: 0.XX = fraction of semi-span X.XX = buttock plane, in.
4	1613	0.0	YoB, spanwise location for outboard edge of device. Same as YIB.
NOTE	for these $\leq 2.0 =$	e location fraction trapezoid	tain chordwise location data. Input options is are: of local trapezoidal chord aft of local lal leading edge. aft of local trapezoidal leading edge, in.
5	1614	0.0	C _{1 IB} , leading edge location of forward flap panel at inboard station.
6	1615	0.0	C_1 ϕ_B , leading edge location of forward flap panel at outboard station.
7	1616	0.0	C2 IB, trailing edge location of forward flap panel at inboard station, required only for double- and triple-slotted flaps, flap ID = 2 or 3.
8	1617	. 0.0	C _{2 ØB} , trailing edge location of forward flap panel at outboard station.
9	1618	0.0	C3 IB, leading edge location at inboard station for second flap panel; aft-panel for double-slotted flaps, mid-panel for triple-slotted flaps.
10	1619	0.0	C ₃ Ø _B , leading edge location at outboard station for second flap panel.
11	1620	0.0	C4 IB, trailing edge location at inboard station of midpanel for triple-slotted flaps. Not required for double-slotted flaps.

TABLE 161. DTED2 ARRAY, VARIABLE DATA SUBARRAY FOR TRAILING EDGE FLAP-TYPE CONTROL SURFACES (CONT)

Array Location	D Array Ref Location	Default Value	Description
12	1621	0.0	C4 ØB, trailing edge location at outboard station of midpanel for triple-slotted flaps.
13	1622	0.0	C ₅ IB, leading edge location at inboard station of aft panel for triple-slotted flaps.
14	1623	0.0	C5 ØB, leading edge location at outboard station of aft panel for triple-slotted flaps.
15	1624	0.0	CTE UPR IB, fixed trailing edge upper surface cutoff location (trailing edge of upper shroud) at inboard station.
16	1625	0.0	CTE UPR ØB, fixed trailing edge upper surface cutoff location at outboard station.
17	1626	0.0	CTE LWR IB, fixed trailing edge lower surface cutoff location (trailing edge of lower shroud) at inboard station.
18	1627	0.0	CTE LWR ØB, fixed trailing edge lower surface cutoff location at outboard station.
19	1628	0.0	<pre>(W/S)₁, input unit weight for flaps to be used in lieu of calculated values. Unit weight value based on sum of projected area for all panels. Input options: 0.0 = use program calculated values. X.XX = use input values (all data in locations 1-18 and 20 are</pre>
20	1629	0.0	required), 1b/sq ft Kwt, weight factor for estimated weight of device, applied to both calculated and input unit weight.
ľ	tions 21-4 evice 2.	0 contain d	lata for analysis of trailing edge flap
21 22	1630 1631	0.0 0.0	ID ₂ , same as DTED2(1) Number of panel segments, control code for processing of flap 2 data.

TABLE 161. DTED2 ARRAY, VARIABLE DATA SUBARRAY FOR TRAILING EDGE FLAP-TYPE CONTROL SURFACES (CONT)

Array Location	D Array Ref Location	Default Value	Description
23	1632	0.0	Y _{IB} , same as DTED2(3)
24	1633	0.0	YOB, same as DTED2(4)
25	1634	0.0	C ₁ IB, same as DTED2(5)
26	1635	0.0	C ₁ ϕ_B , same as DTED2(6)
27	1636	0.0	C2 IB, same as DTED2(7)
28	1637	0.0	C2 ØB, same as DTED2(8)
29	1638	0.0	C3 IB, same as DTED2(9)
30	1639	0.0	C ₃ ØB, same as DTED2(10)
31	1640	0.0	C4 IB, same as DTED2(11)
3 2	1641	0.0	C4 ØB, same as DTED2(12)
33	1642	0.0	C5 IB, same as DTED2(13)
34	1643	0.0	C5 ØB, same as DTED2(14)
35	1644	0.0	CTE UPR IB, same as DTED2(15)
36	1645	0.0	CTE UPR ØB, same as DTED2(16)
37	1646	0.0	CTE LWR IB, same as DTED2(17)
38	1647	0.0	CTE LWR ØB, same as DTED2(18)
39	1648	0.0	$(W/S)_2$, same as DTED2(19)
40	1649	0.0	K _{wt} , same as DTED2(20)
	tions 41-60 vice 3.) contain d	lata for analysis of trailing edge flap
41	1650	0.0	ID ₃ , same as DTED2(1)
42	1651	0.0	Number of panel segments, control code for
, , ,	1001	""	processing of flap 3 data
43	1652	0.0	YIR, same as DTED2(3)
44	1653	0.0	Your as DTED2(4)
45	1654	0.0	C ₁ IB, same as DTED2(5)
46	1655	0.0	$C_1 \not O_B$, same as DTED2(6)
47	1656	0.0	C ₂ IB, same as DTED2(7)
48	1657	0.0	C_2 ϕ_B , same as DTED2(8)
49	1658	0.0	C ₃ IB, same as DTED2(9)
50	1659	0.0	$C_3 \not OB$, same as DTED2(10)
51	1660	0.0	C ₄ IB, same as DTED2(11)
52	1661	0.0	C4 ØB, same as DTED2(12)
53	1662	0.0	C ₅ IB, same as DTED2(13)
		i	
54	1663	0.0	C ₅ ØB, same as DTED2(14)

TABLE 161. DTED2 ARRAY, VARIABLE DATA SUBARRAY FOR TRAILING EDGE FLAP-TYPE CONTROL SURFACES (CONT)

Array Location	D Array Ref Location	Default Value	Description
56	1665	0.0	CTE UPR ØB, same as DTED2(16)
5 7	1666	0.0	CTE LWR IB, same as DTED2(17)
58	1667	0.0	CTE LWR ØB, same as DTED2(18)
59	1668	0.0	$(W/S)_3$, same as DTED2(19)
60	1669	0.0	K _{wt} , same as DTED2(20)
d	ations 61-80 evice 4, or mpennage sur	(2) wing a	data for analysis of (1) trailing edge flap ailerons. This data set not processed for
61	1670	0.0	ID4, type code for wing flap-type device 4. If flaps, use same code as DTED2(1). If ailerons, specify code value of 4.0. NOTE: Treat aileron as simple flaps for
62	1671	0.0	geometry inputs.
02	10/1	0.0	Number of panel segments, control code for
63	1672	0.0	processing of device 4 data Y _{IB} , same as DTED2(3)
64	1673	0.0	YØB, same as DTED2(4)
65	1674	0.0	C ₁ IB, same as DTED2(5)
66	1675	0.0	C ₁ ØB, same as DTED2(6)
67	1676	0.0	C ₂ IB, same as DTED2(7)
68	1677	0.0	C2 ØB, same as DTED2(8)
69	1678	0.0	C3 2B, same as DTED2(9)
70	1679	0.0	C ₃ $\phi_{\rm B}$, same as DTED2(10)
71	1680	0.0	C4 IB, same as DTED2(11)
72	1681	0.0	C4 ØB, same as DTED2(12)
73	1682	0.0	C ₅ IB, same as DTED2(13)
74	1683	0.0	C5 ØB, same as DTED2(14)
75	1684	0.0	CTE UPR IB, same as DTED2(15)
76	1685	0.0	CTE UPR ØB, same as DTED2(16)
77	1686	0.0	CTE LWR IB, same as DTED2(17)
	1687	0.0	C _{TE} LWR ØB, same as DTED2(18)
78	1007		I OLE LME DID! Sould as DIEDELIO!
78 79	1688	0.0	(W/S) ₄ , same as DTED2(19)

TABLE 161. DTED2 ARRAY, VARIABLE DATA SUBARRAY FOR TRAILING EDGE FLAP-TYPE CONTROL SURFACES (CONT)

Array Location	D Array Ref Location	Default Value	Description			
e1	Locations 81-100 contain data for analysis of horizontal tail elevators. This data set is processed in lieu of data in locations 61-80 for horizontal tails only.					
81	1690	0.0	ID ₅ , type code for device. Specify 5.0 for elevator analysis. NOTE: Treat elevator as simple flaps for geometry inputs.			
82	1691	0.0	Number of panel segments, control code for processing of device data			
83	1692	0.0	Y _{IB} , same as DTED2(3)			
84	1693	0.0	YOB, same as DTED2(4)			
85	1694	0.0	C _{1 IB} , same as DTED2(5)			
86	1695	0.0	C1 ØB, same as DTED2(6)			
87	1696	0.0	Not required			
88	1697	0.0	Not required			
89	1698	0.0	Not required			
90	1699	0.0	Not required			
91	1700	0.0	Not required			
92	1701	0.0	Not required			
93	1702	0.0	Not required			
94	1703	0.0	Not required			
95	1704	0.0	C _{TE UPR IB} , same as DTED2(15)			
96	1705	0.0	CTE UPR ØB, same as DTED2(16)			
97	1706	0.0	CTE LWR IB, same as DTED2(17)			
98	1707	0.0	CTE LWR ØB, same as DTED2(18)			
99	1708	0.0	(W/S) ₅ , same as DTED2(19)			
100	1709	0.0	K _{wt} , same as DTED2(20)			
n	Locations 101-120 contain data for analysis of vertical tail rudders. This data set is processed in lieu of data in locations 61-80 for vertical tails only.					
101	1710	0.0	ID ₆ , type code for device. Specify 6.0 for rudder analysis.			
102	1711	0.0	NOTE: Treat rudder as simple flaps for geometry inputs. Number of panel segments, control code for processing of device data.			

TABLE 161. DTED2 ARRAY, VARIABLE DATA SUBARRAY FOR TRAILING EDGE FLAP-TYPE CONTROL SURFACES (CONCL)

Array Location	D Array Ref Location	Default Value	Description
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	YIB, same as DTED2(3) YØB, same as DTED2(4) C1 IB, same as DTED2(5) C1 ØB, same as DTED2(6) Not required Not required Not required Not required Not required Not required CTE UPR IB, same as DTED2(15) CTE UPR ØB, same as DTED2(16) CTE LWR ØB, same as DTED2(17) CTE LWR ØB, same as DTED2(18) (W/S)6, same as DTED2(19) Kwt, same as DTED2(20)

TABLE 162. DSPDK ARRAY, VARIABLE DATA SUBARRAY, SPOILER CONTROL SURFACE ANALYSIS

General information for array DSPDK:

Blank common reference location = D(1730)

Array size = 15 cells

Array contains equation and design constants for estimation of spoiler control surface weights and mass distributions.

	•		
Array Location	D Array Ref Location	Default Value	Description
1	1730	0.0	λ_{wt} , chordwise taper ratio of spoiler weight distribution surface z_{TE}/z_{LE}
2	1731	1.0	K ₁ , spoiler weight equation coefficient
2 3	1732	0.008	C ₁ , spoiler weight equation coefficient
4	1733	0.80	C2, spoiler weight equation coefficient
5	1734	1.95	C ₃ , spoiler weight equation coefficient
6	1735	0.10	K_2 , equation coefficient for (t/c) effects
7	1736	0.25	C ₄ , equation coefficient for (t/c) effects
8	1737	0.10	$(t/c)_{ref}$, reference (t/c) for (t/c) effects
9	1738	0.01	K ₃ , weight factor for volume effects
10	1739	1.0	K ₄ , weight coefficients for actuator effects
11	1740	0.125	C ₅ , equation coefficient for actuator effects
12	1741	1.0	Nact, number of actuators per panel
13	1742	0.45	K(-ATE), weight factor to be used for computation of fixed trailing edge weight to be deleted and replaced with spoiler structure, used only if DTED1(10), D(1589) or DTED1(25), D(1604) is a nonzero value (no trailing edge flaps positioned under the spoilers). Factor applied to ordinate of fixed structure unit weight at the spoiler leading edge for approximation of deleted structure. Delta weight ordinate at spoiler trailing edge is assumed to be 0.0.
14	1743	0.15	K _(+ATE) , weight factor to be applied to fixed trailing edge structure between rear spar and spoiler leading edge to account for weight increment to fixed trailing edge structure for spoiler installation, used only if DTED1(10) or DTED1(25) is a nonzero value
15	1744	0.0	Not used

TABLE 163. DFLPK ARRAY, VARIABLE DATA SUBARRAY, TRAILING EDGE FLAP CONTROL SURFACE ANALYSIS

General information for array DFLPK:

Blank common reference location = D(1745)

Array size = 20 cells

Array contains equation and design constants for estimation of trailing edge flap control surf e weights and mass distribution.

ļ			
Array Location	D Array Ref Location	Default Value	Description
Location	Location	value	Description
1	1745	0.001	λ_{wt} , chordwise taper ratio of flap weight distribution surface, panels in retracted position.
2	1746	0.69	C ₁ , flap weight equation coefficient
2 3	1747	14.4	C2, flap weight equation coefficient
4	1748	0.25	C ₃ , flap weight equation coefficient
5	1749	0.0	C ₄ , flap weight equation coefficient
6	1750	1.0	K ₁ , flap weight equation coefficient, type 0, simple flap
7	1751	1.25	K ₁ , flap weight equation coefficient, type 1, single-slotted flap
8	1752	1.50	K ₁ , flap weight equation coefficient, type 2, double-slotted flap
9	1753	1.75	K ₁ , flap weight equation coefficient, type 3, triple-slotted flap
10	1754	0.10	K ₂ , equation coefficient for (t/c) effects
11	1755	0.25	C ₅ , equation coefficient for (t/c) effects
12	1756	0.10	(t/c) _{ref} , reference (t/c) for (t/c) effects
13	1757	0.01	K ₃ , weight coefficient for volume effects
14	1758	0.25	K ₄ , equation coefficient for actuator effects
15	1759	0.125	C ₆ , equation coefficient for actuator effects
16	1760	1.0	N _{act} , number of actuators per panel
17	1761	0.25	KATE UPR, weight factor to be applied to fixed trailing edge structure between rear spar and flap leading edge to account for weight increment to upper surface of fixed trailing edge structure for flap installation
18	1761	0.125	K _{ΔTE LWR} , weight factor, same as the foregoing, but for lower surface increment
19	1763	0.0	Not used
20	1764	0.0	Not used
			L

TABLE 164. DAILK ARRAY, VARIABLE DATA SUBARRAY, AILEPON, ELEVATOR AND RUDDER CONTROL SURFACE ANALYSIS

General information for array DAILK:

Blank common reference location = D(1765)

Array size = 30 cells

Array contains equation and design constants for estimation of aileron, elevator and rudder control surface weights and mass distributions.

Array Location	D Array Ref Location	Default Value	Description		
1	Locations 1-20 contain data for analysis of ailerons. Locations 8-18 are also used for elevator and rudder analysis.				
1	1765	0.0	$\lambda_{\rm wt}$, chordwise taper ratic of aileron weight distribution surface, $z_{\rm TE}/z_{\rm LE}$.		
2	1766	1.0	K ₁ , aileron weight equation coefficient		
3	1767	0.01825	C ₁ , aileron weight equation coefficient		
4	1768	0.35	C ₂ , aileron weight equation coefficient		
5	1769	1.55	C ₃ , aileron weight equation coefficient		
6	1770	0.50	C ₄ , aileron weight equation coefficient		
7	1771	0.25	C ₅ , aileron weight equation coefficient		
8	1772	0.10	K ₂ , equation coefficient for (t/c) effects		
9	1773	0.25	C ₆ , equation coefficient for (t/c) effects		
10	1774	0.10	(t/c) _{ref} , reference (t/c) for (t/c) effects		
11	1775	0.01	(, weight factor for volume effects		
12	1776	0.10	k ₄ , equation coefficient for actuator effects		
13	1777	0.125	C ₇ , equation coefficient for actuator effects		
14	1778	1.0	Nact, number of actuators per panel		
15	1779	0.10	KATE UPR, weight factor to be applied to fixed trailing edge structure between rear spar and device leading edge to account for weight increment to upper surface of fixed trailing edge structure for aileron, elevator, or rudder installation.		
16	1780	0.05	K ATE LWR, weight factor, same as the foregoing, but for lower surface increment		
17	1781	0.0	Not used		
18	1782	0.0	Not used		
19	1783	0.0	Not used		
20	1784	0.0	Not used		

TABLE 164. DAILK ARRAY, VARIABLE DATA SUBARRAY, AILERON, ELEVATOR AND RUDDER CONTROL SURFACE ANALYSIS (CONCL)

Array Location	D Array Ref Location	Default Value	Description
Locat	ions 21-25	contain	elevator weight equation coefficients
21 22 23 24 25	1785 1786 1787 1788 1789	1.40 0.773 0.35 0.3069 0.0	K ₁ , elevator weight equation coefficient C ₁ , elevator weight equation coefficient C ₂ , elevator weight equation coefficient C ₃ , elevator weight equation coefficient C ₄ , elevator weight equation coefficient
Locat	ions 26-30	contain	rudder weight equation coefficients
26 27 28 29 30	1790 1791 1792 1793 1794	1.50 0.02442 0.35 1.36027 0.0	K ₁ , rudder weight equation coefficient C ₁ , rudder weight equation coefficient C ₂ , rudder weight equation coefficient C ₃ , rudder weight equation coefficient C ₄ , rudder weight equation coefficient

TABLE 165. DFSP ARRAY, VARIABLE DATA SUBARRAY, TRAILING EDGE FLAP-TYPE CONTROL SURFACE SUPPORT STRUCTURE DISTRIBUTION CONSTANTS

General information for array DFSP:

Blank common reference location = D(1795)

Array size = 25 cells

Array contains weight and distribution constants for support tracks, carriages, hinges and fittings for flap-type control surfaces.

Array Location	D Array Ref Location	Default Value	Description
			ight fraction of total estimated device weight ted as support-type structures.
1	1795	0.10	K _{supt wt(0)} , support weight fraction, type 0 device, plain flap
2	1796	0.28	<pre>K_{supt wt(1)}, support weight fraction, type 1 device, single-slotted flap</pre>
3	1797	0.40	<pre>K_{supt wt(2)}, support weight fraction, type 2 device, double-slotted flap</pre>
4	1798	0.55	K _{supt wt(3)} , support weight fraction, type 3 device, triple-slotted flap
5	1799	0.10	K _{supt wt(4)} , support weight fraction, type 4 device, aileron
6	1800	0.10	K _{supt wt(5)} , support weight fraction, type 5 device, elevator
7	1801	0.10	K _{supt wt(6)} , support weight fraction, type 6 device, rudder

Locations 8-14 contain chord factor for aft location of chordwise weight distribution surface for device support structure. Total panel chord dimensions used for device types 0, 1, 4, 5, and 6. Aft panel chord is used as reference chord length for device type 2, double-slotted flaps. Chord distance between leading edge of midpanel and aft panel trailing edge is used as reference chord length for device type 3, triple-slotted flaps. Support structure weights are distributed between rear spar and coordinate points defined from this data set.

8	1802	0.10	K _{supt TE(0)} , type 0 device, plain flap K _{supt TE(1)} , type 1 device, single-slotted flap
9	1803	0.15	

TABLE 165. DFSP ARRAY, VARIABLE DATA SUBARRAY, TRAILING EDGE FLAP-TYPE CONTROL SURFACE SUPPORT STRUCTURE DISTRIBUTION CONSTANTS (CONCL)

Array Location	D Array Ref Location	Default Value	Description
10 11 12 13 14	1804 1805 1806 1807 1808	0.20 0.20 0.10 0.10 0.10	K _{supt} TE(2), type 2 device, double-slotted flap K _{supt} TE(3), type 3 device, triple-slotted flap K _{supt} TE(4), type 4 device, aileron K _{supt} TE(5), type 5 device, elevator K _{supt} TE(6), type 6 device, rudder
•			taper ratio constants for chordwise weight or device support structure, z _{TE} /z _{RS} .
15 16 17 18 19 20 21 22 23 24 25	1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819	0.475 0.40 0.30 0.25 0.475 0.475 0.475 0.0 0.0	<pre>λ₀, type 0 device, plain flap λ₁, type 1 device, single-slotted flap λ₂, type 2 device, double-slotted flap λ₃, type 3 device, triple-slotted flap λ₄, type 4 device, aileron λ₅, type 5 device, elevator λ₆, type 6 device, rudder Not used Not used Not used</pre> Not used

General information for array TG:

Blank common reference location = T(1001)

Array size = 300 cells

Array TG contains geometry data used for mass distribution calculations in overlays (14,0), (15,0), and (17,0). Array data are created by subroutine GCNTL, overlay (14,0). They are saved on mass storage file 1, record 146, by subroutine WCØNT, overlay (15,0), to be read into core by subroutine WØDATA, overlay (17,0).

Array Location

Description

Locations 1 through 44 contain coordinate data for the 11 structural analysis stations.

1-11	$\gamma_{\Lambda(1-11)}$, structural analysis stations, root to tip
12-22	$Y_{EA(1-11)}$, Y-coordinate for structural analysis stations
23-33	$X_{EA(1-11)}$, X-coordinate for structural analysis stations
34 - 14	$C_{CS(1-11)}$, X-axis intercept for lines normal to structural
	reference line and passing through Y $\Lambda(1-11)$

Locations 45 through 92 contain coordinate data for the 12 control points defining the 11 structural panel strips for flutter optimization program mass distribution computations. $Y'_{\Lambda 1} = Y_{\Lambda 1}, Y'_{\Lambda 12} = Y_{\Lambda 11}$ Y $Y_{\Lambda 1}(2-11) = 0$ coordinate of planform centroid of the 10 structural panels defined by Y $Y_{\Lambda 1}(1-11)$.

45-56	Υ'Λ(1-12)		
57-68	$Y' = \frac{X(1-12)}{EA(1-12)}$		
69-80	V!		
81-92	C'CC(1.12)		
	SC(1-12)		

Locations 93 through 155 contain planform areas, sq ft/side, for torque-box, leading edge, and trailing edge panels of the 10 structural panels defined by Y $\Lambda(1-11)$.

TABLE 166. TG ARRAY (CONT)

Array		
Location	Description	
93	$\Sigma S'_{TB}_{S}$, total torque-box planform area, sum of the following	
04 107	panels 1-10	
94-103	$S_{TB(1-10)}$, individual torque-box panel planform area	
104	Σ S'LE, total true leading edge planform area, sum of panels	
	1-12. The following panels 1-12 defined by the 11 structural chords, root chord, and tip chord - panels 1-10 between the 11 structural chords, root to tip; panel 11 for segment inboard of station 1; panel 12 for segment outboard of station 11. (Note: for positive sweep of structural reference line, panel 11 is calculated, panel 12 = 0.0. Panel 12 exists for negative sweep, and panel 11 will be 0.0	
105-116	S' _{LE(1-12)} , individual leading edge panel planform areas, structural reference system	
117-129	Same as 104 through 116, except for trapezoidal planform	
130	ΣS' _{TES} , total true trailing edge planform area, sum of the	
	following panels 1-12. Same assumptions as for preceding leading edge.	
131-142	$S'_{TE(1-12)}$, individual trailing edge panel planform areas,	
143-155	structural reference system. Same as 130 through 142, except for trapezoidal planform.	
Locations 156 through 265 contain leading and trailing edge chord data and panel areas. X-coordinates and delta chords are computed at Y-coordinates of the 11 structural analysis control stations $Y_{\rm EA(1-11)}$, locations 12 through 22. Panel areas are for panels between these stations. All areas are sq ft/side.		
156-166	X _{FLE} (1-11), X-coordinate, true leading edge	
167-177	X _{ALE (1-11)} , X-coordinate, front spar	
178-188	$\Delta_{\text{CLE}\ (1-11)}$, leading edge chord, distance between front spar	
189	and true leading edge $\Sigma S'_{ m LE}$, total true leading edge planform area, sum of the	
190-199	following panels (1-10) S'LE (1-10), individual leading edge panel planform areas, aerodynamic reference system	

TABLE 166. TG ARRAY (CONCL)

Array Location	Description
200-210 211-221	Same as 189-199, except for trapezoidal planform X _{FTE(1-11)} , X-coordinate, rear spar
222-232	XATE(1-11), X-coordinate, true trailing edge
233-243	$\Delta C_{TE(1-11)}$, trailing edge chord, distance between true trailing
244	edge and rear spar $\Sigma S'_{TE}$, total true trailing edge planform area, sum of the
245-254	following panels (1-10) $S'_{TE(1-10)}$, individual trailing edge panel planform areas,
255-265	aerodynamic reference system Same as 244-254, except for trapezoidal planform
1	ions 266 through 298 contain torque-box cross-sectional data ne 11 structural analysis control stations.
266-276	W _{TB} (1-11), torque-box width, root to tip. Also referenced as
277-287	TBW, dimension 11. $D_{TB (1-11)}$, torque-box average depth, root to tip. Also referenced as TBD, dimension 11.
288-298	XA _{TB} (1-11), torque-box cross-sectional area, root to tip,
299-300	sq in. Not used
ļ	

General information for array TGA:

Blank common reference location = T(1851)

Array size = 135 cells

Array TGA contains geometry data used for mass distribution calculations in overlays (14,0), (15,0) and (17,0). Array data in locations 1 through 42 is created by subroutine GCNTL, overlay (14,0). Data in locations 43 through 135 is created from array CCI data by subroutine FDIS, overlay (15,0), required data to be saved for computations in overlay (17,0). Array data is saved on mass storage file 1, record 145 by subroutine WCONT, overlay (15,0). Array TGA is recreated from this record by subroutine WODATA, overlay (17,0).

Array	•
Location	

Description

Locations 1 through 42 contain control station data for mass distribution calculations for flexible loads analysis. Y₁₋₁₁ are coordinates of

11 equally spaced stations between structural analysis control station 1 and the tip station, b/2. These stations define the 10 aerodynamic strips for which mass distribution data are computed as output under data generation option for flexible analysis program. Y-coordinates for panel centroids, locations 23 through 32, re assumed to be at panel midpoints.

1-11	$Y_{(1-11)}$, Y-coordinates for aerodynamic strip boundaries,
	control stations for mass distribution calculations in aero- dynamic system, root to tip.
12-22	$X_{(1-11)}$, X-coordinates of structural reference line for
	Y ₍₁₋₁₁₎ .
23-32	$Y_{CG(1-10)}$, strip centroid Y-coordinate for the 10 panels
	defined by $Y_{(1-11)}$, mass distribution integration stations
	for all items within strip.
33-42	$X_{CG(1-10)}$, X-coordinates of structural reference line for
	YCG (1-11)'

Data in locations 43 through 135 are created from array CCI by subroutine FDIS. They contain torque-box geometry information used to recreate array CCI data in overlay (17,0) for mass distribution integration of final design torque-box weights by subroutine TBFWI. Locations 43 through 119 contain data from array CCI locations 1 through 77, locations 120 through 124 from CCI(97) through CCI(102) and locations 125 through 133 from CCI(127) through CCI(137).

TABLE 167. TGA ARRAY (CONCL)

Array Location	Description
43-53	$Y_{\Lambda(1-11)}$, structural reference line stations, initially
	created from array TG, locations 1 through 11, reference
54-64	stations for torque-box weight per inch data X_{AFS} (1-11), X_A -distance to the front spar reference line
	from the structural analysis stations $Y_{\Lambda(1-11)}$.
65-75	W_{TB} (1-11), torque-box width at the 11 structural analysis
	stations
76-86	$Y_{FS (1-11)}$, Y-coordinate for $(Y_{\Lambda}, X_{\Lambda FS})$ (1-11)
87-97	$X_{FS (1-11)}$, X-coordinate for $(Y_{\Lambda}, X_{\Lambda FS})$ (1-11)
98-108	$Y_{RS (1-11)}$, Y-coordinate for $(Y_{\Lambda}, X_{\Lambda RS})$ (1-11)
109-119	$X_{RS (1-11)}$, X-coordinate for $(Y_{\Lambda}, X_{\Lambda RS})$ (1-11)
Locati	ons 120-124 contain torque-box integration control data.
120	ID, control code for type of integration: $0.0 = \text{integration for } \Sigma W_{\chi} \text{ and } \Sigma W_{\gamma} \text{ in weight analysis}$
	reference system only. 1.0 = integration for all mass properties in all three
121	analysis reference systems. No maximum number of chordwise strips for each torque-box
141	N _Y , maximum number of chordwise strips for each torque-box panel, initially created from variable data subarray
	DINTI, location 1.
122	$\Delta \gamma_{\Lambda min}$, minimum width of chordwise strips for each torque-
123	box panel, initially created from DINTI(4). N_y , maximum number of grids in each chordwise strip, initially
	created from DINII(7).
124	$\Delta X_{\Lambda \text{ min}}$, minimum grid height in each chordwise strip, initially
175 175	created from DINTI(10).
135-135	D ave (1-11), torque-box depth at the 11 structural analysis
	stations.

General information for array YC: Blank common reference location = T(201)Array size = 150 cells Array data in locations 1 through 92 are created by GEØMC when either linear or nonlinear leading edge options are used. Created data subset size = number of input control stations plus 1. Data in locations 1 through 92 are used in overlays (14,0), (15,0), and (17,0) for true aerodynamic and structural chord calculations. Arrangement of data used from this array along with the storage of and the data items calculated are different from that of overlay (8,0). Descriptions for array YC used in overlay (8,0) can be found in Section III. Locations 1 through 40 contain local aerodynamic and structural chord information computed by subroutine CTØT for the using subroutines. Coordinates (Y_i, X_i) defining the planform reference point are specified in array locations TT(1), and TT(2), respectively. Array Location Description

Locat	tions 1 through 10 chord data for the aerodynamic chord at Yi.
1	X _{LE} , true leading edge X-coordinate
2	X _{LE} , leading edge element line X-coordinate for theoretical planform
3	X _{FS} , front spar reference line X-coordinate
4	X _{EA} , structure reference line X-coordinate
5	X _{RS} , rear spar reference line X-coordinate
6	X _{TE} , trailing edge element line X-coordinate for theoretical
	planform
7	X _{TE} , true trailing edge X-coordinate
8	C _{total} , true aerodynamic chord, [YC(7) - YC(1)]
9	C _{trap} , aerodynamic chord for theoretical planform,
	[YC(6) - YC(2)]
10	C _{box} , torque box chord [YC(5) - YC(3)]

TABLE 168. YC ARRAY, OVERLAYS (14,0), (15,0), AND (17,0) (CONT)

Array Location	Description
pass:	tions 11 through 31 contain chord data for the structural chording through (Y_i, X_i) . Structural chord intersection points with seven spanwise control lines are defined in terms of the Y_i and pordinates.
11	Y _{LEC} , true leading edge
12	Y _{LE} , theoretical planform leading edge element line
13	Y _{FS} , front spar element line
14	Y _{EA} , structural reference line
15	Y _{RS} , rear spar reference line
16	Y _{TE} , theoretical planform trailing edge element line
17	$Y_{\overline{\text{TE}}_C}$, true trailing edge
18	$X_{ m LE}_{ m C}$, true leading edge
19	X _{LE} , theoretical planform leading edge element line
20	X _{FS} , front spar reference line
21	X _{FA} , structural reference line
22	X _{RS} , rear spar reference line
23	${f X}_{ m TE}$, theoretical planform trailing edge element line
24	X_{TE_C} , true trailing edge
25	C structural chord for true planform
26	C _{trap} , structural chord for theoretical planform
27	C _{box} , structural chord for torque box
28	C _C , X-axis intercept line normal to structural reference
29	line and passing through point (Y_i, X_i) $(-1/TAN \Lambda_{EA} - TAN \Lambda_i)$
30	D_{\max_i} , maximum airfoil depth as station Y_i
31	(t/c), thickness ratio at station Y _i (D _{max,} /C _{total})
32-40	Not used

TABLE 168. YC ARRAY, OVERLAYS (14,0), (15,0), AND (17,0) (CONCL)

Array Location	Description
41-52	$Y_{LE(1-12)}$, Y-coordinates for the up to 11 input control stations used for defining locations of true planform leading edge. Tip station value is added to data set.
53-64	X _{LE(1-12)} , X-coordinates corresponding to stations defined in locations 41 through 52. Tip station coordinate is assumed to be for leading edge element line of theoretical trapezoidal planform.
65-75	$ an_{ ext{LE}(1-11)}$, slope of straight lines passed through adjacent points defined by preceding X-, Y-coordinates.
76-86	$C_{\mathrm{LE}(1\text{-}11)}$, X-axis intercepts for straight lines defined by slopes and preceding X-, Y-coordinates.
87-98	$Y_{\mathrm{TE}(1-12)}$, Y-coordinates for trailing edge, similar to preceding locations 41 through 52.
99-110	$X_{TE(1-12)}$, X-coordinate for trailing edge, similar to preceding locations 55 through 64.
111-121	$Tan_{TE(1-11)}$, slope of trailing edge lines, similar to preceding locations 65 through 75.
122-132	$C_{\mathrm{TE}(1-11)}$, X-axis intercept for trailing edge lines, similar to preceding locations 76 through 86.
133-150	Not used

TABLE 169. TWG ARRAY

General information for array TWG:

Blank common reference location = T(1301)

Array size = 400 cells

Array TWG contains weight, mass distribution, and 1-g loads data created by overlays (14,0) and (15,0). This array is saved on mass storage file 1, record 147, by subroutine WCØNT, overlay (15,0). It is recreated in overlay (17,0) by subroutine WØDATA from this source. TWG array locations are initially set to 0.0 by subroutine LEWT, overlay (14,0).

Array Location	Description	
data c	Locations 1 through 9 are used to store exposed panel component weight data computed by overlays (14,0) and (15,0) routines. Computed data, 1b/side, are stored in array TWG locations by subroutines identified.	
1	ΣW, total outer panel weight, processed by FDIS. Initially set to weight indicated through variable-data value in D(144), subsequently adjusted to sum of computed values in locations 2 through 5.	
2	Σ W _{TB} , initial torque-box weight, set up by FDIS.	
3	\(\mathbb{E}\)_\text{LE}, total estimated leading edge weight, set up by WLETE	
	from CCW(1)	
4	ΣW _{TE} , total estimated trailing edge weight, set up by WLETE	
5	from CCW(2) \[\sum_{\text{TIP}}, total estimated tip weight, set up by WCONT from \]	
6	$\Sigma\Delta W_{CDL}$, total incremental structural provision weights for the	
	up to seven concentrated mass items. Set up by CDL during computation loop. This weight is equal to sum of values in locations 10 through 16 and is assumed to be included in preceding ΣW_{TB} .	
7-9	Not used	

Locations 10 through 16 contain computed structural provision weights for each of the seven concentrated mass items computed by CDL. Information in location 17 is not created. It is intended to contain incremental weights for tip provisions for T-tail vertical tail and root previsions for T-tail horizontal tails.

10-16 \(\Delta W_{\text{CDL}(1-7)} \)

TABLE 169. TWG ARRAY (CONT)

Array Location	Description
17	ΔW_{T-tail} , T-tailincremental weight at tip (not created; however, processing provisions are programmed). Set up by WCØNT from TCS(242)
Locati seven	ons 18 through 60 contain torque-box distribution data for the ΔW_{CDL} items. This data set is created by FDIS.
18-27	ΔW _{CDL} , torque-box panel (1-10). Torque-box panel-point
	weights of the seven structural provision weights for con- centrated masses, distribution based on concentrated mass locations relative to spanwise torque-box panel boundaries.
28-38	$V_{\Lambda(1-11)}$ (ΔCDL), 1-g shear at the 11 structural analysis sta-
39-49	tions for preceding panel weights, 1b MXA(1-11) (\(\Delta CDL\)), 1-g bending moment for preceding panel
50-60	weights, in1b $M_{Y\Lambda(1-11)}(\Delta CDL)$, 1-g torsional moment for preceding panel weights above, in1b
Locations 61 through 65 will contain 0.0 values transferred from TCS(242) through TCS(246) by WCØNT. Data for these locations are not created. This data set is intended to contain indicated information for incremental structural provision weights for T-tail configurations.	
61	ΔW _{T-tail prov.} , 1b/side
62	Y _{cg} , Y-coordinate for centroid of preceding weight
63	X _{cg} , X-coordinate for centroid of preceding weight
64	Y_{Λ}_{cg} , Y_{Λ} -coordinate for point (Y_{cg}, X_{cg})
65	X_{Λ} cg, X_{Λ} -coordinate for point (Y_{cg}, X_{cg})

Locations 66 through 73 contain leading and trailing edge component data created by WLETE from arrays CCW and CCL. This data set is used to create WTLT array data by WØDATA in overlay (17,0). All eight items are stored in terms of pounds per air vehicle.

TABLE 169. TWG ARRAY (CONT)

Array Location	Description
66	W _{FIX LE} , fixed leading edge structure weight, from CCW(3)
67	W _{D1} , weight of leading edge device 1, from CCL(64)
68	W _{D2} , weight of leading edge device 2, from CCL(65)
69	W ₁₎₃ , weight of leading edge device 3, from CCL(66)
70	W _{FIX TE} , fixed trailing edge structure weight, from CCW(5)
71	W _{FL} , total weight of trailing edge flaps, from CCW(6)
72	W _{SP} , total weight of spoilers, from CCW(7)
73	W _{AIL} , weight of ailerons for wing, elevators for horizontal
	tail, and rudders for vertical tail, from CCW(8)
74-85	Not used
Locations 86 through 95 contain initial estimated panel weights for torque-box, created by FDIS from array TCS. This data set is used by WDDATA, overlay (16,0), to initialize subarrays WPNLS and TPNLW.	
86-95	$W_{\mbox{TB}(1-10)}$, initial structure weight estimates for the 10 torquebox-panels, lb/side

Locations 96 through 332 contain data sets for deadweight 1-g shears and moments. The first data set, locations 96 through 128, is computed by FDIS. It contains total 1-g deadweight loads for all components except fuel and expendable concentrated masses (data sets in locations 267 through 332).

Data sets in locations 129 through 161 contain initial load estimates for torque-box structures, set up by FDIS from array TCS.

Data sets in locations 162 through 233 contain load sets for total leading and trailing edge structures. These sets are set up by LETEI, array TCS data. These two data sets contain 12 items for each load. Second through twelfth items are for the 11 structural analysis stations. The first item is computed at the centerline station, showing the effect of any structures inboard of the first structural cut.

TABLE 169. TWG ARRAY (CONT)

Array Location	Description	
Data sets in locations 234 through 266 contain loads for miscellaneous contents. These are set up by MISCNT from array CCI, locations 169 through 201.		
data s remain	et in locations 267 through 299 contains loads for fuel. This et is computed by FDIS from fuel cell 1 and 2 loads data. The ing-fuel load factor at DGWØ for each cell (data cells TWG(382) G(395) is used to compute these loads.	
trated able i using	et in locations 300 through 332 contains loads due to concenmass items 1 and 2 (the two masses that can be treated as expendtems). The loads set is created by MISCNT from array CCI data the remaining-mass factor for these two items stored in TCS(228) S(229).	
Load v for mo	alues are computed in terms of pounds for shear, and inch-pounds ments.	
96-106	$\Sigma V_{\Lambda(1-11)}$, 1-g shear for total outer panel, less fuel and concentrated masses	
107-117	$\Sigma_{X\Lambda(1-11)}^{M}$, 1-g bending moment for preceding shear load	
118-128	$\Sigma_{\text{YA}(1-11)}^{\text{NA}(1-11)}$, 1-g torsional moment for preceding shear load	
129-139	$V_{\Lambda(1-11)(TB)}$, 1-g shear for initial estimate weight of torquebox structures	
140-150	$M_{X\Lambda(1-11)\text{ (TB)}}$, 1-g bending moment for preceding torque-box shear	
151-161	$M_{Y\Lambda(1-11)\text{ (TB)}}$, 1-g torsional moment for preceding torque-box shear	
162-173	$V_{\Lambda(0-11)(LE)}$, 1-g shear for total leading edge structures	
174-185	MyA(0-11)(LE), 1-g bending moment for preceding LE shear	
186-197	$M_{\Upsilon\Lambda(0-11)(LE)}$, 1-g torsional moment for preceding LE shear	
198-209	$V_{\Lambda(0-11)}$ (TE), 1-g shear for total trailing edge structures	
210-221	MXA(0-11)(TE), 1-g bending moment for preceding TE shear	
222-233	$M_{Y\Lambda(0-11)(TE)}$, 1-g torsional moment for preceding TE shear	

TABLE 169. TWG ARRAY (CONT)		
Array Location	Description	
234-244	$V_{\Lambda(1-11)(MISC)}$, 1-g shear for miscellaneous items (includes tip structure; does not include structural provision weights for concentrated masses).	
245-255	$M_{X\Lambda(1-11) \text{ (MISC)}}$, 1-g bending moment for preceding MISC shear	
256-266	$M_{Y\Lambda(1-11)(MISC)}$, 1-g torsional moment for preceding MISC shear	
267-277	$V_{\Lambda(1\text{-}11)\text{(FUEL)}}$, 1-g shear for design fuel in cells 1 and 2 at DWGØ	
278-288	M _{XΛ(1-11)} (FUEL), 1-g bending moment for preceding fuel shear	
289-299	$M_{Y\Lambda(1-11) \text{ (FUEL)}}$, 1-g torsional moment for preceding fuel shear	
300-310	$V_{\Lambda(1-11) \text{ (CDL 1,2)}}$, 1-g shear for design weight for concentrated mass items 1 and 2 at DGWØ	
311-321	$M_{XA(1-11)}$ (CDL 1,2), 1-g bending moment for preceding CDL shear	
322-332	$M_{Y\Lambda(1-11) \text{ (CDL 1,2)}}$, 1-g torsional moment for preceding CDL shear	
edge, by WDD and TH torque are av tions length	ons 333 through 367 contain weight-per-inch data sets for leading trailing edge, and torque-box structures. These data sets are used ATA, overlay (16,0), to create array data in subarrays WPILE, WPITE BWPI. The torque-box data set is created by FDIS based on initial e-box weight estimate. LE and TE data sets contain 12 items. These verage wt/in. for the 12 LE and TE panels stored in array TCS, local-1-12. Each panel weight is divided by corresponding panel spanwise in the structural reference system. LE and TE wt/in. information ed by PRTA, overlay (9,0), or ACPRTA, overlay (18,0), on outer panel a summary page is obtained from these data sets.	

Wt/in.(0-11)(LE), spanwise distribution of total leading edge 333-344 structures, average panel spanwise unit weight 345-356 Wt/in.(0-11)(TE), spanwise distribution of total trailing edge structures, average panel spanwise unit weight 357-367 Wt/in.(1-11)(TB), spanwise distribution of torque-box structures, initial weight estimate

Locations 368 through 374 contain data processing code information for the seven concentrated masses. This data set is created by subroutine MISCNT from array TCS, locations 228 through 234.

TABLE 169. TWG ARRAY (CONT)

Array Location	Description
368-374	<pre>K_{WT(1-7)}, data processing code for concentrated masses 1-7: 0.0 = no mass exists +1.0 = compute all mass distribution information -1.0 = compute structural provisions only</pre>

Locations 375 through 400 contain design data for fuel cells 1 and 2. Subroutine FDIS creates these data sets from array CCI, locations 114 through 126, after evaluation process for each fuel cell. Subroutine WDDATA uses these data sets to create array data for subarray TFLD. Processing of fuel mass properties by subroutines WFLDD and WVFDD, overlay (17,0), is based on information in this data set. All fuel cell data are computed and stored as per side values.

(375-387)	Fuel cell 1, same as CCI(114) through CCI(126) for fuel cell 1.
375	Y _{IB} , Y-coordinate of structural reference line identifying
376	location of inboard closeout rib for fuel cell 1. You will be a structural reference line identifying
377	location of outboard closeout rib for fuel cell 1. X_{IB} , X-coordinate corresponding to preceding Y_{IB}
378	$X_{\emptyset B}$, X-coordinate corresponding to preceding $Y_{\emptyset B}$
379	ΔY_A , Y-station increment, $(Y_{\emptyset B} - Y_{IB})/10.0$
380	W _Ø , computed fuel capacity of cell, based on input density
381	Kg, (W _{cap} +W _{FS})/(W _g), full-capacity scaling factor to adjust
382	initial value of calculated mass distribution data to sum of required full-capacity plus fuel system weights KDES, (WDES+WFS)/(Wtotal), design capacity scaling factor to adjust full-capacity mass distribution data to fuel cell load at DGWØ
383	W _{total} , (W _{cap} +W _{FS}), full-capacity weight, sum of full-capacity
704	fuel plus fuel-system weight
384	WDES total, (WDES+WFS), design capacity weight, sum of fuel
385	load at DGWØ plus fuel system weight W required full-capacity fuel weight for cell. If not
363	W _{cap} , required full-capacity fuel weight for cell. If not
	specified in input data set, calculated value is used. If specified, smaller of input value and calculated capacity is
	used.

TABLE 169. TWG ARRAY (CONCL)

	
Array Location	Description
386	W _{DES} , design fuel load at DGWØ as specified in item 4 of input
387	data set $W_{ extsf{FS}}$, fuel system weight associated with fuel cell 1, assumed
	to be distributed proportional to fuel distribution surface
(388-400)	Fuel cell 2, same as CCI(114) through CCI(126) and data set
388	in locations 375 through 387 Y IB
389	Y _{ØB}
390	X _{IB}
391	Х ø В
392	Δ _{YA}
393	W _Ø
394	K_{\emptyset}
395	K _{DES}
396	Wtotal
397	WDES total
398	W cap
399	W _{DES}
400	W _{FS}

General information for array CCW:

Blank common reference location = CD(1)

Array size = 50 cells

Array CCW contains leading and trailing edge structure weight summary information created in overlay (14,0) by subroutines WLETE, LEWT, TEWT, TEWTI, and LETEI. This array is saved on mass storage file 1, record 148, by subroutine WCØNT, overlay (15,0). It is recreated in overlay (17,0) by subroutine WØDATA from this source for processing of LE and TE data by that subroutine.

CCW array locations are initially set to 0.0 by subroutine LEWT.

Array Location	Description
TE str per s	ions 1 through 16 contain weights and unit weights for LE and ructures. Weight data set is initially computed as pounds ide values by computing routines and converted to pounds per chicle values by subroutine WLETE.
1	ΣW _{LE} , total leading edge structure weight
2	ΣW _{TF} , total trailing edge structure weight
3	W _{FIX LF} , fixed leading edge structure weight
4	ΣW _{DEV LE} , total leading edge device weight
5	W _{FIX TE} , fixed trailing edge structure weight
6	$\Sigma W_{FL, TE}$, total trailing edge flaps, sum of input flap-type
7	device sets 1, 2, and 3. (NOTE: Subroutine nomenclature for these devices is trailing edge devices 3, 4, and 5.) WALL, aileron weight for wing, elevators for horizontal tail,
8	and rudders for vertical tails specified by input flap-type device sets 4, 5, or 6. (NOTE: Subroutine nomenclature for this device is trailing edge device 6.) \(\Sigmu_{\text{Sp}} \), spoiler weights, sum of input spoiler devices 1 and 2,
9	internally identified as trailing edge devices 1 and 2. (W/S) _{LE} , unit weight for total leading edge structures, weight
10	in location 1 divided by area in location 17. $(W/S)_{TE}$, unit weight for total trailing edge structure,
11	weight in location 2 divided by area in location 18. (W/S) _{FIX LE} , unit weight for fixed leading edge structures,
	weight in location 3 divided by area in location 19.

TABLE 170. CCW ARRAY (CONT)

Array Location	Description
12	(W/S) _{DEV LE} , average unit weight for leading edge devices, total
13	weight in location 4 divided by sum of device planform areas in location 20. (W/S) _{FIX TE} , unit weight for fixed trailing edge structures,
14	weight in location 5 divided by area in location 21. (W/S) _{FL TE} , average unit weight for trailing edge flaps, total weight in location 6 divided by total device planform area in location 22.
15	(W/S)AIL, unit weight for aileron-type devices, weight in loca-
16	tion 7 divided by area in location 23. (W/S) _{SP} , average unit weight for spoiler devices, total weight
	in location 8 divided by total device planform area in location 24.
and tra area va	ons 17 through 26 contain computed planform areas for leading ailing edge items identified in locations 1 through 8. These alues are initially computed in terms of square feet per side esequently converted to square feet per air vehicle values by
17	S _{LE} , total planform area for leading edge
18	S _{TE} , total planform area for trailing edge
19	S _{FIX LE} , planform area for fixed leading edge, total area less
20	segments deleted for leading edge devices SDEV LE, total leading edge device planform area, sum of areas for devices, 1, 2, and 3.
21	S _{FIX TE} , planform area for fixed trailing edge, total area less
22	segments deleted for trailing edge devices $S_{\mbox{FL TE}}$, total planform area for trailing edge flap-type devices,
23	internally identified as TE devices 3, 4, and 5. $S_{ m AIL}$, planform area for aileron-type device, internally identi-
24	fied as TE device 6. S _{SP} , total planform area for spoiler-type devices, internally identified as TE devices 1 and 2.

TABLE 170. CCW ARRAY (CONT)

Array Location	Description
25	S_{LE} trap, total planform area of leading edge, based on
26	trapezoidal planform STE trap, total planform area of trailing edge, based on trapezoidal planform
	ons 27 through 42 contain CG coordinates (Y,X) for the eight items in locations 1 through 8.
27	Y _{CG} for Σ W _{LE}
28	X _{CG} for ΣW _{LE}
29	Y _{CG} for \(\Sigmu_{TE}\)
30	X _{CG} for ΣW _{TE}
31	Y _{CG} for W _{FIX LE}
32	X _{CG} for W _{FIX LE} .
33	Y _{CG} for Σ W _{DEV} LE
34	X _{CG} for Σ W _{DEV} LE
35	Y _{CG} for W _{FIX TE}
3 6	X _{CG} for W _{FIX TE}
37	Y _{CG} for Σ W _{FL TE}
38	X _{CG} for Σ W _{FL} TE
3 9	Y _{CG} for W _{AIL}
40	X _{CG} for W _{AIL}
41	Y _{CG} for ΣW _{SP}
42	X _{CG} for Σ W _{SP}

Locations 43 through 49 contain type-of-device identification code for leading and trailing edge devices. This data set is created by subroutine LEWT, locations 43, 44, and 45, and by subroutine TEWTI, locations 46 through 49. These control codes are used by subroutine WLETE to identify device type during output print of calculated leading and trailing edge summary information under control of IP(12), control card 2, column 12. Set created by LEWT is device type for each of the

TABLE 170. CCW ARRAY (CONCL)

	TABLE 170. CCW ARRAI (CONCE)
Array Location	Description
	sets of devices, internally identified as leading edge device 1, 3. Code value definitions are:
	1.0 = leading edge slats 2.0 = leading edge kruger flaps 3.0 = droop leading edge
interna	ng edge sets created by TEWTI are for flap/aileron-type devices, ally identified as trailing edge device 3, 4, 5, and 6. Code definitions are:
	<pre>0.0 = simple flaps 1.0 = single-slotted flaps 2.0 = double-slotted flaps 3.0 = triple-slotted flaps 4.0 = aileron 5.0 = elevator 6.0 = rudder</pre>
43	N _{LE1} , device-type code for LE device 1.
44	N _{LE2} , device-type code for LE device 2.
45	N _{LE3} , device-type code for LE device 3.
46	N _{TE3} , device-type code for TE device 3.
47	N _{TE4} , device-type code for TE device 4.
48	N _{TE5} , device-type code for TE device 5.
49	N _{TE6} , device-type code for TE device 6.
50	Not used

General information for arrays CCI, CCL, and CCT:

Blank common reference location: CCI = CD (1651)

CCL = CD (51)

CCT = CD (351)

Array size = 300 cells

Arrays CCI, CCL, and CCT all contain same type of information. CCI is working array for overlay (14,0) subroutines that compute leading and trailing edge mass distribution data. CCL and CCT are temporary storage routines for CCI data computed for LE and TE structures, respectively. Array CCL is created by subroutine LEWT, array CCT by subroutine TEWT. Both arrays are used by mass integration subroutine LETEI to recreate CCI array data during separate calculation passes for mass properties integration programmed in LETEI.

Array CCI is created by both subroutines LEWT and TEWT. It contains necessary weight and control geometry information for all LE and TE structural components. Data sets created for storage of each type of control surface device data are sized to contain information for up to six separate devices stored in consecutive cell locations. However, number of LE devices is limited to three. In TE control device analysis, each cell location in data sets refer to a specific type of TE device.

All weight data are computed in terms of weight per side. CCI array locations are set to 0.0 by subroutines LEWT and TEWT.

Array
Location

Description

Locations 1 through 63 contain fixed structure panel weight, distribution, and control geometry data. These data sets describe fixed structure without any control surface devices. Panels are the 10 planform segments with parallel aerodynamic chords that are defined by Y-coordinates for the 11 structural analysis stations. Spanwise and chordwise distribution parameters are computed in aerodynamic reference system.

1	system.
1	ΣW basic, total weight of fixed structures, sum of W pn1 (1-10), following
2-11	$W_{ m pnl~(1-10)}$, panel weights for the 10 aerodynamic LE or TE strips defined by $Y_{ m EA}(1-11)$

TABLE 171. CCI, CCL, and CCT ARRAYS, OVERLAY (14,0) (CONT)

Array			
Location	Description		
12-21	TAN Z pnl (1-10), slope of spanwise distribution line for the		
	10 panels, based on weight poutboard stations of each particle puted as product of unit weight chord at control stations.	er inch ordinates nel. Each weight	at inboard and ordinate is com-
22-31	C _Z (1-10), X-axis intercept	corresponding to	preceding slope
32-41		for the 10 panel weight distribution lines $\lambda_{X(1-10)}$, taper ratio for chordwise distribution of spanwise	
42-52		weight ordinates for each panel, $\lambda = Z_{AFT}/Z_{FWD}$ X_{FWD} (1-11), X-coordinate for forward panel control point at	
	Y _{EA 1-11} , computed location		
53-63	panels, or rear spar for TE panels $X_{AFT\ (1-11)}$, X-coordinate for aft panel control point at		
	Y _{EA 1-11} , front spar for LE		ed location for
	true trailing edge for TE pa	neis	~
	ions 64 through 147 contain weightry data for up to six control s		and control
64-69	$W_{\rm DEV~(1-6)}$, weight for each of the separate control devices,		
	1, 2, and 3 for LE, 1 through 6 for TE. The variable input data array D locations for data sets corresponding to these are:		
	Device No.	LE	TE
	1 2 3 4	D(1500-1509) D(1510-1519) D(1520-1529)	D(1580-1594) D(1595-1609) D(1610-1629) D(1630-1649)
	5	-	D(1650-1669)
	6 (Wing = aileron	-	D(1670-1689)
	(Hori = elevator) (Vert = rudder)		D(1690-1709) D(1710-1729)
70.75		wish+ 1h/ss f+	2(2120 2123)
70 - 75	(W/S) DEV (1-6), device unit	vergnt, ib/sq it	
76-81	S _{DEV} (1-6), device planform	area, lb/sq ft	
L	<u> </u>		

TABLE 171. CCI, CCL, and CCT ARRAYS, OVERLAY (14,0) (CONT)

Array Location	Description
82-87	Y_{lB} (1-6), Y-coordinate for inboard edge of device
88-93	$Y_{\emptyset B}$ (1-6), Y-coordinate for outboard edge of device
94-99	$Y_{CG}^{(1-6)}$, Y-coordinate for centroid of device weight
100-105	$X_{CG(1-6)}$, X-coordinate for centroid of device weight
106-111	TAN Z _{DEV (1-6)} , slope of spanwise distribution line for each device
112-117	$C_{Z DEV (1-6)}$, X-axis intercept corresponding to preceding slopes
118-123	$\lambda_{X \text{ DEV } (1-6)}$, taper ratio for chordwise distribution of span-
	wise weight ordinates for each device, $\lambda = Z_{FWD}/Z_{AFT}$
124-129	TAN X _{FWD DEV (1-6)} , slope of forward control line defining device LE
130-135	$C_{X \text{ FWD DEV } (1-6)}$, X-axis intercept corresponding to preceding
136-141	slopes for forward control lines TAN X AFT DEV (1-6), slope of aft control line defining device
142-147	TE C X AFT DEV (1-6), X-axis intercept corresponding to preceding slopes for aft control lines
geomet	ons 148 through 219 contain weight, distribution, and control cry data for processing of fixed structures to be deleted and sed with control surface devices.
148-153	WARLY () (1 6)
154-159	W _Δ F1X (-) (1-6) (W/S) ΔF1X (-) (1-6)
160-165	S _Δ FIX(-)(1-6)
166-171	Υ _{CG Δ} FIX(-)(1-6)
172-177	X _{CG} ΔFIX(-)(1-6)
178-183	TAN Z ΔFIX(-)(1-6)
184-189	C _Z ΔFIX(-) (1-6)
190-195	$\lambda_{X \Delta FIX(-)(1-6)}$
196-201	TAN X FWD \(\Delta \) FIX(-)(1-6)

TABLE 171. CCI, CCL, and CCT ARRAYS, OVERLAY (14,0) (CONT)

Array Location	Description
202-207 208-213 214-219	C _X FWD ΔFIX(-)(1-6) TAN X AFT ΔFIX(-)(1-6) C _X FWD ΔFIX(-)(1-6)

Locations 220 through 291 contain weight, distribution, and control geometry data for processing of incremental fixed TE structures to be added to basic fixed TE panel weights. This data set is created during processing of TE devices only and in accordance to type-of-device and input control information.

220-225	W _Δ FIX (+) (1-6)
226-231	(W/S) $\Delta FIX(+)(1-6)$
232-237	$S_{\Delta}FIX(+)(1-6)$
238-243	YCG ΔFIX(+) (1-6)
244-249	^X CG ΔFIX(+) (1-6)
250-255	$\frac{\text{TAN Z}}{\Delta \text{FIX}(+) (1-6)}$
256-261	^C Z \(\Delta \) FIX(+) (1-6)
262-267	$\lambda_{X} \Delta FIX(+) (1-6)$
268-273	TAN X FWD Δ FIX(+)(1-6)
274-279	C _X FWD △ FIX(+) (1-6)
280-285	TAN X AFT Δ FIX(+)(1-6)
286-291	^C X FWD △ FIX(+)(1-6)

Locations 292 through 295 contain grid size control data created from subarray DINTI of variable input data array D, locations 1143 through 1154.

292	N_{γ} , maximum number of chordwise strips for each panel,
293	DINTI(2) for LE and DINTI(3) for TE \[\Delta Y_{\text{min}}, \text{ minimum width of chordwise strips for each panel,} \] DINTI(5) for LE and DINTI(6) for TE

TABLE 171. CCI, CCL, and CCT ARRAYS, OVERLAY (14,0) (CONCL)

	TABLE 171. CCT, CCL, and CCT ARRATS, OVERLAT (14,0) (CONCL)
Array Location	Description
294	N_{χ} , maximum number of grids in each chordwise strip,
295	DINTI(8) for LE and DINTI(9) for TE \[\Delta X \\ \text{min}, \text{mininum grid height in each chordwise strip, DINTI(11)} \] for LE and DINTI(12) for TE
	ions 296 through 300 contain data created and used during compu- ns of basic fixed structure weights by subroutines LEWT and TFWT.
296	K _{W/S} , computed weight factor to be applied to basic calculated
	$(W/S)_{\emptyset}$ value. If (W/S) is input, only input $K_{W/S}$, item 22 of
297	fixed LE and TE input data sets, is used. (W/S), computed or input basic unit weight, including applicable $K_{W/S}$, lb/sq in.
298	$\Delta C_{cp}/\Delta C_{ave}$, average chordwise centroid location for basic
	weight, fraction of average chord from forward control line, computed as $CP = (1 + 2\lambda)/(3 + 3\lambda)$, where $\lambda = input value$, location 229
299	λ_{XCP} , taper ratio for average chordwise distribution of basic
	fixed structure, input value, item 3 of fixed LE and TE input data sets
300	Cave, average fixed structure chord computed at Y-station
	$= 1/2 (Y_1 + Y_{11})$

General information for array TCS:

Blank common reference location = CD(1401)

Array size = 250 cells

Array TCS contains mass distribution data resulting from numerical integration procedures programmed in subroutine LETEI for leading edge and trailing edge structures. Mass distribution data are computed and stored for each distribution panel defined for weight analysis, flutter optimization, and flexible loads analysis reference systems.

Array TCS data are used by LETE2 to create LE and TE data in arrays CLEI, CTEI, CIØY for use by overlay (17,0) subroutine WØDATA, WVFDD; and WFLDD.

Array	
Locat ion	Description

Locations 1 through 36 contain weight and moment data for LE or TE structures integrated in the weight analysis system. This data set contains weight and moment data for 12 panels defined by the 11 structural analysis control stations, centerline station, and tip station. Panel (0) is defined by the X-axis and the structural chord defined by control station 1, $Y_{\Lambda 1}$. Panel (11) is defined by the structural chord of control station 11, $Y_{\Lambda 11}$, and the aerodynamic tip chord. Any LE or TE structures within these panels are assigned to these panels.

stru	ctures within these panels are assigned to these panels.
1	ΣW pnl(0), weight of structure inboard of structural chord.
2-11	ΣW pnl(1-10), weight of structure between control stations 1 and 11
12	ΣW pn1(11), weight of structure outboard of structural chord 11
13-14	$\Sigma(W\cdot\Delta Y_{\Lambda})_{(0-11)}$, sum of grid spanwise moments for each of the 12 preceding panels. Moments are computed at inboard control station, $Y_{\Lambda i}$, for each panel.
25-36	$\Sigma(W\cdot\Delta X_{\Lambda})_{(0-11)}$, sum of grid chordwise moments for each of the 12 preceding panels. Moments are computed at inboard control station, $X_{\Lambda i} = 0$, for each panel.

Array Location	Description
for LE system panels Y A (1- by Y'	ons 37 through 113 contain weight, moment, and inertia data or TE structures integrated in the flutter optimization reference. This data set contains data for the 11 structural strip defined for the 11 structural synthesis control stations, (TG(1) - TG(11)). The spanwise panel boundaries are defined (1-12), (TG(45) - TG(56)). All weights, moments and inertia are to the structural synthesis control points for the panel,
(Υ _{Λi} ,	$X_{\Lambda i} = 0$.
37-47	$\Sigma_{\text{pn1}(1-11)}^{\text{N}}$, sum of grid weights for structural strip panels
48-58	defined for flutter optimization program F (W.AY.) sum of grid spanwise moments for each of the
40-30	$\Sigma(W\cdot\Delta Y_{\Lambda})_{(1-11)}$, sum of grid spanwise moments for each of the 11 flutter optimization panels, moments computed at structural synthesis control station, $Y_{\Lambda i}$, of panel
59-69	$\Sigma(W\cdot\Delta X_{\Lambda})_{(1-11)}$, sum of grid chordwise moments computed at
70-80	structural synthesis control station, $X_{\Lambda_i} = 0$, for each panel $\Sigma(\mathbb{W} \cdot \Delta X_{\Lambda}^2)$, and $\Sigma(1_Y)$ (1-11). Initially, sum of second weight moment for pitch inertia calculations. Final value is the pitch inertia, $I_{Yi} = \Sigma(\mathbb{W} \cdot \Delta X^2)_i + \Sigma(I_{OY})_i$
81-91	$\Sigma(W \cdot \Delta Y_{\Lambda}^{2})_{(1-11)}$ and $\Sigma(I_{X})_{(1-11)}$, roll inertia data
92-102	$\Sigma(I_{OY})$ (1-11) sum of grid pitch (I_O) 's
103-113	$\Sigma(I_{OY_A})$ (1-11) sum of grid pitch (I_O) 's $\Sigma(I_{OX_A})$ (1-11), sum of grid roll (I_O) 's
LE or system strip fined	ions 114 through 190 contain weight, moment, and inertia data for TE structures integrated in the flexible loads analysis reference
114-123	ΣW pnl(1-10), sum of grid weights for aerodynamic strip panels defined for flexible loads analysis program
124 125-134	Not used $\Sigma(W \cdot \Delta Y)$ (1-10), sum of grid spanwise moments for each of the 10 flexible loads analysis panels, moments computed at panel control station, Y_i , defined in TGA(23)-TGA(32).

TABLE 172. TCS ARRAY, OVERLAY (14,0) (CONCL)

Array		
Locat ion	Description	
135	Not used.	
136-145	$\Sigma(W \cdot \Delta X)_{(1-10)}$, sum of grid chordwise moments computed at	
	panel control station, X _i , defined in TGA(33)-TGA(42)	
146	Not used.	
147-156	$\Sigma(W \cdot \Delta X^2)_{(1-10)}$, and $(I_Y)_{(1-10)}$, Initially, sum of	
	second weight moment for pitch inertia calculations.	
	Final value is pitch inertia, $I_{Yi} = \Sigma(W \cdot \Delta X^2)_i + \Sigma(I_{OY})_i$	
157	Not used	
158-167	$\Sigma(W\cdot\Delta Y^2)_{(1-10)}$ and $\Sigma(I_X)_{(1-10)}$, roll inertia data	
168	Not used	
169-178	$\Sigma(I_{OY})_{(1-10)}$, sum of grid pitch (I_{O}) 's	
179	Not used	
180-189	$\Sigma(I_{OX})_{(1-10)}$, sum of grid roll (I_{O}) 's	
190	Not used	
TE str	ons 192 through 227 contain shear and moment data for LE or uctures computed from panel integration results stored in ons 1 through 36.	
192	V _{\(\lambda(0)\)} , 1-g shear at centerline	
193-203	$V_{\Lambda(1-11)}$, 1-g shear at structural analysis control stations	
	$Y_{\Lambda(1-11)}$.	
204-215	$M_{X\Lambda(0-11)}$, 1-g bending moments for preceding shears	
216-227	$M_{Y\Lambda(0-11)}$, 1-g torsional moments for preceding shears	
	Locations 228 through 237 contain yaw inertia data computed for the 10 aerodynamic strips defined for flexible loads analysis program	
228-237	$\Sigma(I_{Z})_{(1-10)}$, sum of grid yaw inertia computed at control	
	stations (Y _i ,X _i) defined in TGA(23) - TGA(42).	
238-250	Not used	

TABLE 173. CKD ARRAY, SUBROUTINE LETEI

General information for array CKD:

Blank common reference location = CD(1951)

Array size = 50 cells

Array CKD is used by subroutine LETEI, overlay (14,0), for storage and retrieval of local airfoil depth data used during integration loops of leading and trailing edge structure weights. Parameter values for depth variations stored in locations 1 through 40 are created from array TFRDK for each integration pass. Locations 41 through 50 are used for storage of pertinent parameter values computed during integration of LE and TE structures.

gracion of the and the structures.		
Array Location	Description	
1-10	Tan KD _{FWD(1-10)} , from TFRDK(1)-TFRDK(10) for LE and	
11-20	TFRDK(41)-TFRDK(50) for TE C KD FWD(1-10), from TFRKD(11)-TFRDK(20) for LE and TFRDK(51)- TFRDK(60) for TE	
21-30	Tan KD _{AFT (1-10)} , from TFRDK(21)-TFRDK(30) for LE and	
31-40	0.0 for TE C _{KDAFT} (1-10), from TFRDK(31)-TFRDK(40) for LE and 0.0 for TE	
41	KD _{FWD} at station Y	
42	KD _{AFT} at station Y	
43	Tan KD _i , chordwise KD slope at strip (KD _{AFT} -KD _{FWD})/ΔX	
44 ·	KD at station (Y, X,), depth factor at grid centroid	
45	$K_{\emptyset}(KD)^2$	
46	K_{\emptyset} for component, from DKDIN(2) for LE and DKDIN(3) for TE	
47	$W_{grid} \cdot K_{\emptyset} (KD)^2$, weight (I_{\emptyset}) term for local airfoil depth	
48-50	effect for each grid Not used	
	·	

TABLE 174. CLEI and CTEI ARRAYS

General information for arrays CLEI and CTEI:

Blank common reference locations: CLEI = CD(651)

CTEI = CD(801)

Array sizes = 150 cells

Arrays CLEI and CTEI contain mass distribution data for leading edge and trailing edge structures created by subroutine LETEI from computed data stored in array TCS. CLEI and CTEI are saved on mass storage file 1, records 149 and 150, by subroutine WLETE. The arrays are recreated from this source by subroutine WDDATA for overlay (17,0) computations.

A	r	r	a	y	
Loc	а	t	i	റ	n

Description

Locations 1 through 36 contain mass distribution data integrated in the weight analysis-reference system. This data set is created from array TCS, locations 1 through 36.

1-12	Σ_{pnl}^{W} (0-11), weight analysis reference system
13-24	$\Sigma(W \cdot \Delta Y_{\Lambda}) (0-11)$
25-36	$\Sigma(W \cdot \Delta X \setminus) (0-11)$

Locations 37 through 91 contain mass distribution data integrated in the flutter optimization reference system. This data set is created from array TCS, locations 37 through 91.

37-47	ΣW pnl (1-11), flutter optimization reference system
48-58	$\Sigma(W \cdot \Delta Y_{\Lambda})_{(1-11)}$
59-69	$\Sigma(\mathbb{N}\cdot\Delta X_{\Lambda}) \frac{(1-11)}{(1-11)}$
70-80	$\Sigma(I_{Y\Lambda})_{(1-11)}$
81-91	$\Sigma(I_{X\Lambda})_{(1-11)}$

Locations 92 through 146 contain mass distribution data integrated in the flexible loads analysis reference system. This data set is created from array TCS, locations 114 through 168.

92-101	ΣW pnl (1-10), flexible loads analysis reference system
102	0.0
103-112	$\Sigma(W\cdot\Delta Y)_{(1-10)}$
113	0.0
114-123	$(W \cdot \Delta X)$ (1-10)

TABLE 174. CLEI and CTEI ARRAYS (CONCL)

Array Location	Description	
124 125-134 135 136-145 146	$\Sigma(I_{Y})$ (1-10) 0.0 $\Sigma(I_{X})$ (1-10) 0.0 Not used	

TABLE 175. CIØY ARRAY

General information for array CIØY:

Blank common reference location = T(501) in overlays (14,0), (15,0), and (16,0). CD (1401) in overlay (17,0).

Array size = 150 cells

Array CIØY contains yaw inertia data, I_Z, computed in overlays (14,0) and (15,0) for use in overlay (17,0) for total weight, CG, and inertia computations by subroutine WØDATA. This array also contains mass distribution data for concentrated masses. Array CIØY is saved on mass storage file 1, record 190, by subroutine WDDATA, overlay (16,0). This record is read into core by WØDATA, updated with final torque-box (I_Z)'s and rewritten. Array CIØY is subsequently recreated by WØDATA for total surface mass distribution calculations. Array CIØY is initialized to .0.0 by subroutine WLETE.

Array Location	Description	
	Locations 1 through 70 contain yaw inertia for the 10 aerodynamic panels defined for flexible loads analysis.	
1-10	$\Sigma(I_Z)_{TB(1-10)}$, torque-box structures, created by WØDATA from TCS(201)-TCS(210).	
11-20	$\Sigma(I_Z)_{LE(1-10)}$, leading edge structures, created by LETEI from TCS(228)-TCS(237).	
21-30	$\Sigma(1_Z)_{TE(1-10)}$, trailing edge structures, created by LETEI from TCS(228)-TCS(237)	
31-40	$\Sigma(I_Z)_{\mbox{MISC}(1-10)}$, miscellaneous contents, created by MISCIT from CKD(21)-CKD(30)	
41-50	$\Sigma(I_z)_{\text{CDL}(1-10)}$, concentrated masses, created by CDL from CKD(31)-CKD(40)	
51-60	$\Sigma(I_Z)_{\text{FL1}(1-10)}$, fuel in cell 1, created by FDIS from TCS(201)-TCS(210)	
61 - 70	$\Sigma(1_2)_{\mathrm{FL2}(1-10)}$, fuel in cell 2, created by FDIS from TCS(201)-TCS(210)	

Locations 71 through 120 contain mass distribution data for deleted weights of concentrated mass items 1 and 2 at the design point for flexible loads analysis. This data set is computed by subroutine CDL, overlay (15,0). Values are added to distribution data for concentrated masses stored in array CMII, flexible loads analysis set, for computations of total panel and CG computations by subroutine WØDATA, overlay (17,0).

TABLE 175. CIØY ARRAY (CONCL)

Array Location	Description
71-80	ΣΔW CDL 1,2 pnl(1-10), flexible loads analysis reference system panel weights for that portion of concentrated mass items 1 and 2 which are deleted for mass status at the design condition for flexible loads analysis. Weights in affected panels are based on "beamed reaction" weight at panel CG's that straddle concentrated mass CG.
81-90	$\Sigma(\Delta W-Y)$ CDL 1,2 pn1(1-10), first mass moment for preceding
91-100	weights $\Sigma(\Delta W-X) = \Sigma(\Delta W-X) = \Sigma$
101-110	$\Sigma(I_{Y})_{CDL\ 1,2\ pn1(1-10)}$, pitch inertia for preceding weights
111-120	$\Sigma(1_X)_{\text{CDL }1,2 \text{ pnl}(1-10)}$, roll inertia for preceding weights
121-150	Not used

General information for array TGR:

Blank common reference location = T(1751)

Array size = 100

Array TGR is used for storage and retrieval of input variable data for analysis of fixed leading edge and leading edge control surfaces. Subarray TLED, dimension 25, is assigned to locations TGR(51)-TGR(75). This subarray contains variable data from array DLE for fixed leading edge analysis and from arrays DLED1 and DLEDK for control surface analysis. Locations 1-50 and 76-78 are used for storage of calculated data.

Array Location	Subarray TLED Location	Fixed Leading Edge Analysis	Leading Edge Control Surface Analysis		
1	-	<pre>Z_{root}, fixed weight/inch at inboard control station.</pre>	ΔW _{LE} , fixed structure weight to be deleted for device i		
2	_	z_2	YCG, centroid for deleted weight		
2 3	_	23	XCG, centroid for deleted weight		
4	-	24	Z _{IB} , fixed structure weight/inch, inboard station of device		
5	-	Z ₅	ZØB, fixed structure weight/inch outboard station of device		
6	_	26	ΔZ _{IB}		
7	-	27	ΔZøB		
8	-	28	$z_{ m LE~IB}$, ordinate of weight distribution surface at $Y_{ m IB}$, $X_{ m LE}$		
9	_	Z ₉	z_{LE} p_B , ordinate of weight distribution surface at Y_{LE} , X_{LE}		
10	_	Z ₁₀	ZFS IB		
11		211	zFS ØB		
12	-		z _{ΔC} IB, ordinate of weight distribution surface at Y _{IB} and fixed LE weight deletion X-control station defined by the input data in TLED(7)		
13	_	_	$z_{\Delta C} \not o_B$, same as the foregoing except at Y_{OB} and $X(TLED(8))$		

TABLE 176. TGR ARRAY, SUBROUTINE LEWT (CONT)

Array Location	Subarray TLED Location	Fixed Leading Edge Analysis	Leading Edge Control Surface Analysis
14	-	1	X _{CG IB} , centroid of deleted part of fixed LE surface at the inboard station
15	-	-	X _{CG ØB} , same as the foregoing except at outboard station
16	-	-	λ ΔWT, spanwise taper ratio of deleted LE weights, ΔZØB/ΔZIB
17	-	-	λ Δ_{WT} $_{IB}$, chordwise taper ratio of deleted weight distribution
10			surface, (z AC IB)/(zLE IB)
18 19-36	_		$\lambda_{\Delta WT} \phi_B$, $(z_{\Delta C} \phi_B)/(z_{LE} \phi_B)$
i i	_	i -	
37	_	_	CGY DEV, spanwise centroid of device weight, fraction of device span
38	_	_	_
39	-	_	λ _{Y DEV} , spanwise taper ratio of device weight distribution line
40	-	_	Z _{IB} , weight ordinate at inboard station of device weight distri- bution line
41	-	_	ZøB, weight ordinate or outboard station
42	-	-	CG _{X DEV} , chordwise centroid of device weight, fraction of average device chord
43	_	_	λχ DEV, chordwise taper ratio of device weight distribution line
44-50	_	_	-
51	1	(W/S) _{LE} , input unit weight	TYPE, device type code
52	2	K _{wt}	Number of panels
53	3	λwt	Y _{IB}
54	4	K ₁ "	YØB
55	5	c_1	CTE IB
56	6	C ₂	CTE ØB
57	7	C3	ΔCfixed IB
58	8	K ₂	$\Delta C_{\text{fixed } \emptyset B}$
59	9	C ₄	(W/S)DEV, input unit weight
60	10	(t/c) _{ref}	Kwt
			<u> </u>

TABLE 176. TGR ARRAY, SUBROUTINE LEWT (CONCL)

61 11	Array Location	Subarray TLED Location	Fixed Leading Edge Analysis	Leading Edge Control Surface Analysis
76 K ₁ + K ₃ + K ₄ 77 (Q·S _{pn1})/b _{pn1} 78 - K _{DEV} , device weight index factor	62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	12 13 14 15 16 17 18 19 20 21 22 23 24		λ wt K ₁ C ₁ C ₂ C ₃ C ₄ C ₅ K ₂ C ₆ (t/c) _{ref} K ₃ K ₄ C ₇ N _{act} K ₁ + K ₃ + K ₄

TABLE 177. TST ARRAY, SUBROUTINE LEWT

General information for array TST:

Blank common reference location = T(1701)

Array size = 50 cells

Array TST is used for storage and retrieval of calculated leading edge control device geometry and weight distribution data. This array is used during computations for each of three devices analyzed by subroutine LEWT, array locations are initially set to 0.0 before each analysis.

Array Location 1 YIB, inboard control station for device i 2 Y@B, outboard control station for device i 3 XFWD IB, X-coordinate of true leading edge at YIB 4 XFWD @B, X-coordinate of true leading edge at Y@B 5 XAFT IB, X-coordinate of device trailing edge at Y@B 6 XAFT @B, X-coordinate of device trailing edge at Y@B 7 CIB, device chord at YIB 8 C@B, device chord at Y@B 9 S, total projected plan from area for device i, sq ft/side 10 LAFT, device span, distance along device trailing edge 11 Tan C, slope of device aerodynamic chord equation 12 CC, center line intercept for device aerodynamic chord equation 13 LAFT/Npn1, panel lengths 14 S1, inboard panel area, sq ft/side 15 S2, middle panel area, sq ft/side 16 S3, outboard panel area, sq ft/side 17 W1, inboard panel weight, lb/side 18 W2, middle panel weight, lb/side 19 W3, outboard panel weight, lb/side 20 (W/S)1, inboard panel weight, lb/side 21 (W/S)2, middle panel unit weight, lb/sq ft 22 (W/S)3, outboard panel unit weight, lb/sq ft 23 Y1, inboard station, panel 1 24 Y2, outboard station, panel 1 25 Y3, outboard station, panel 2 26 Y4, outboard station, panel 3 27 C1, device chord at Y1 28 C2, device chord at Y2 29 C3, device chord at Y3 30 C4, device chord at Y4		
YIB, inboard control station for device i YMB, outboard control station for device i XFWD IB, X-coordinate of true leading edge at YIB XFWD ØB, X-coordinate of true leading edge at YMB XAFT IB, X-coordinate of device trailing edge at YMB XAFT ØB, X-coordinate of device trailing edge at YMB CIB, device chord at YIB CØB, device chord at YMB S, total projected plan from area for device i, sq ft/side LAFT, device span, distance along device trailing edge Tan C, slope of device aerodynamic chord equation CC, center line intercept for device aerodynamic chord equation LAFT/Npn1, panel lengths S1, inboard panel area, sq ft/side S2, middle panel area, sq ft/side S3, outboard panel area, sq ft/side W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel weight, lb/side (M/S)1, inboard panel unit weight, lb/sq ft (M/S)2, middle panel unit weight, lb/sq ft (M/S)3, outboard panel unit weight, lb/sq ft Y1, inboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 C1, device chord at Y1 C2, device chord at Y2 C3, device chord at Y3		
York, outboard control station for device i XFWD IB, X-coordinate of true leading edge at YIB XFWD OB, X-coordinate of true leading edge at YOR XAFT IB, X-coordinate of device trailing edge at YOR XAFT OB, X-coordinate of device trailing edge at YOR CIB, device chord at YIR COB, device chord at YOR S, total projected plan from area for device i, sq ft/side LAFT, device span, distance along device trailing edge Tan C, slope of device aerodynamic chord equation CC, center line intercept for device aerodynamic chord equation LAFT/Npn1, panel lengths S1, inboard panel area, sq ft/side S2, middle panel area, sq ft/side S3, outboard panel area, sq ft/side W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel weight, lb/side (W/S)1, inboard panel unit weight, lb/sq ft (W/S)2, middle panel unit weight, lb/sq ft (W/S)3, outboard panel unit weight, lb/sq ft (Y)3, outboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 C1, device chord at Y1 C2, device chord at Y2 C3, device chord at Y3	Location	Description
Yobb, outboard control station for device i XFWD IB, X-coordinate of true leading edge at YIB XFWD OB, X-coordinate of true leading edge at YOB XAFT IB, X-coordinate of device trailing edge at YOB XAFT IB, X-coordinate of device trailing edge at YOB CIB, device chord at YIB COB, device chord at YOB S, total projected plan from area for device i, sq ft/side LAFT, device span, distance along device trailing edge Tan C, slope of device aerodynamic chord equation CC, center line intercept for device aerodynamic chord equation LAFT/Npn1, panel lengths S1, inboard panel area, sq ft/side S2, middle panel area, sq ft/side S3, outboard panel area, sq ft/side W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel weight, lb/side (W/S)1, inboard panel unit weight, lb/sq ft (W/S)2, middle panel unit weight, lb/sq ft (W/S)3, outboard panel unit weight, lb/sq ft (Y5)2, middle panel unit weight, lb/sq ft Y1, inboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 C1, device chord at Y1 C2, device chord at Y2 C3, device chord at Y3	1	YIR, inboard control station for device i
XFND IB, X-coordinate of true leading edge at YIB XPND ØB, X-coordinate of true leading edge at YØB XAFT IB, X-coordinate of device trailing edge at YIB XAFT ØB, X-coordinate of device trailing edge at YØB CIB, device chord at YIB CØB, device chord at YIB SØB, device chord at YØB SøB, total projected plan from area for device i, sq ft/side LAFT, device span, distance along device trailing edge Tan C, slope of device aerodynamic chord equation CCC, center line intercept for device aerodynamic chord equation LAFT/Npnl, panel lengths S1, inboard panel area, sq ft/side S2, middle panel area, sq ft/side S3, outboard panel area, sq ft/side W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel weight, lb/side (W/S)1, inboard panel unit weight, lb/sq ft (W/S)2, middle panel unit weight, lb/sq ft (W/S)3, outboard panel unit weight, lb/sq ft Y1, inboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 CC1, device chord at Y2 C2, device chord at Y2 C3, device chord at Y3		
XHVD ØB, X-coordinate of true leading edge at YØB XAFT IB, X-coordinate of device trailing edge at YIB XAFT ØB, X-coordinate of device trailing edge at YØB CIB, device chord at YIB CØB, device chord at YØB S, total projected plan from area for device i, sq ft/side LAFT, device span, distance along device trailing edge Tan C, slope of device aerodynamic chord equation CC, center line intercept for device aerodynamic chord equation LAFT/Npn1, panel lengths S1, inboard panel area, sq ft/side S2, middle panel area, sq ft/side S3, outboard panel area, sq ft/side W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel weight, lb/side (W/S)1, inboard panel unit weight, lb/sq ft (W/S)2, middle panel unit weight, lb/sq ft (W/S)3, outboard panel unit weight, lb/sq ft Y1, inboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 C1, device chord at Y1 C2, device chord at Y2 C3, device chord at Y3	3	1 22
XAFT IB, X-coordinate of device trailing edge at YIB XAFT ØB, X-coordinate of device trailing edge at YØB CIB, device chord at YIB CØB, device chord at YØB S, total projected plan from area for device i, sq ft/side LAFT, device span, distance along device trailing edge Tan C, slope of device aerodynamic chord equation CC, center line intercept for device aerodynamic chord equation LAFT/Npn1, panel lengths S1, inboard panel area, sq ft/side S2, middle panel area, sq ft/side S3, outboard panel weight, lb/side W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel unit weight, lb/sq ft (W/S)2, middle panel unit weight, lb/sq ft (W/S)3, outboard panel unit weight, lb/sq ft Y1, inboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 C1, device chord at Y2 C2, device chord at Y3		
CIB, device chord at YIB COB, device chord at YOB S, total projected plan from area for device i, sq ft/side LAFT, device span, distance along device trailing edge Tan C, slope of device aerodynamic chord equation CC, center line intercept for device aerodynamic chord equation LAFT/Npn1, panel lengths S1, inboard panel area, sq ft/side S2, middle panel area, sq ft/side S3, outboard panel area, sq ft/side W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel weight, lb/side (W/S)1, inboard panel unit weight, lb/sq ft (W/S)2, middle panel unit weight, lb/sq ft (W/S)3, outboard panel unit weight, lb/sq ft Y1, inboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 C1, device chord at Y1 C2, device chord at Y2 C3, device chord at Y3	5	
Cobb, device chord at Yobb S, total projected plan from area for device i, sq ft/side LAFT, device span, distance along device trailing edge Tan C, slope of device aerodynamic chord equation CC, center line intercept for device aerodynamic chord equation LAFT/Npn1, panel lengths S1, inboard panel area, sq ft/side S2, middle panel area, sq ft/side S3, outboard panel area, sq ft/side W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel weight, lb/side (W/S)1, inboard panel unit weight, lb/sq ft (W/S)2, middle panel unit weight, lb/sq ft (W/S)3, outboard panel unit weight, lb/sq ft Y1, inboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 C1, device chord at Y1 C2, device chord at Y2 C3, device chord at Y3	6	XAFT OB, X-coordinate of device trailing edge at YOB
S, total projected plan from area for device i, sq ft/side LAFT, device span, distance along device trailing edge Tan C, slope of device aerodynamic chord equation C _C , center line intercept for device aerodynamic chord equation LAFT/Npn1, panel lengths S1, inboard panel area, sq ft/side S2, middle panel area, sq ft/side S3, outboard panel area, sq ft/side W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel weight, lb/side (W/S)1, inboard panel unit weight, lb/sq ft (W/S)2, middle panel unit weight, lb/sq ft (W/S)3, outboard panel unit weight, lb/sq ft Y1, inboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 C1, device chord at Y1 C2, device chord at Y2 C3, device chord at Y3		CIB, device chord at YIB
LAFT, device span, distance along device trailing edge Tan C, slope of device aerodynamic chord equation C _C , center line intercept for device aerodynamic chord equation LAFT/Npn1, panel lengths 14 S1, inboard panel area, sq ft/side S2, middle panel area, sq ft/side S3, outboard panel area, sq ft/side W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel weight, lb/side (W/S)1, inboard panel unit weight, lb/sq ft (W/S)2, middle panel unit weight, lb/sq ft (W/S)3, outboard panel unit weight, lb/sq ft Y1, inboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 C1, device chord at Y1 C2, device chord at Y2 C3, device chord at Y3		CgB, device chord at YgB
Tan C, slope of device aerodynamic chord equation C _C , center line intercept for device aerodynamic chord equation L _{AFT} /N _{pnl} , panel lengths 14 S ₁ , inboard panel area, sq ft/side S ₂ , middle panel area, sq ft/side S ₃ , outboard panel area, sq ft/side W ₁ , inboard panel weight, lb/side W ₂ , middle panel weight, lb/side W ₃ , outboard panel weight, lb/side (W/S) ₁ , inboard panel unit weight, lb/sq ft (W/S) ₂ , middle panel unit weight, lb/sq ft (W/S) ₃ , outboard panel unit weight, lb/sq ft Y ₁ , inboard station, panel 1 Y ₂ , outboard station, panel 1 Y ₃ , outboard station, panel 2 Y ₄ , outboard station, panel 3 C ₁ , device chord at Y ₁ C ₂ , device chord at Y ₂ C ₃ , device chord at Y ₃	9	S, total projected plan from area for device i, sq ft/side
C _C , center line intercept for device aerodynamic chord equation L _{AFT} /N _{pn1} , panel lengths 14 S ₁ , inboard panel area, sq ft/side 15 S ₂ , middle panel area, sq ft/side 16 S ₃ , outboard panel weight, lb/side 17 W ₁ , inboard panel weight, lb/side 18 W ₂ , middle panel weight, lb/side 19 W ₃ , outboard panel weight, lb/side 20 (W/S) ₁ , inboard panel unit weight, lb/sq ft 21 (W/S) ₂ , middle panel unit weight, lb/sq ft 22 (W/S) ₃ , outboard panel unit weight, lb/sq ft 23 Y ₁ , inboard station, panel 1 24 Y ₂ , outboard station, panel 1 25 Y ₃ , outboard station, panel 2 26 Y ₄ , outboard station, panel 3 27 C ₁ , device chord at Y ₁ 28 C ₂ , device chord at Y ₂ 29 C ₃ , device chord at Y ₃		
LAFT/Npn1, panel lengths S1, inboard panel area, sq ft/side S2, middle panel area, sq ft/side S3, outboard panel area, sq ft/side W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel weight, lb/side W3, outboard panel weight, lb/side (W/S)1, inboard panel unit weight, lb/sq ft (W/S)2, middle panel unit weight, lb/sq ft (W/S)3, outboard panel unit weight, lb/sq ft Y1, inboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 C1, device chord at Y1 C2, device chord at Y2 C3, device chord at Y3	N .	_ · · · · · · · · · · · · · · · · · · ·
S1, inboard panel area, sq ft/side S2, middle panel area, sq ft/side S3, outboard panel area, sq ft/side W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel weight, lb/side (W/S)1, inboard panel unit weight, lb/sq ft (W/S)2, middle panel unit weight, lb/sq ft (W/S)3, outboard panel unit weight, lb/sq ft Y1, inboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 C1, device chord at Y1 C2, device chord at Y2 C3, device chord at Y3		- · · · · · · · · · · · · · · · · · · ·
S2, middle panel area, sq ft/side S3, outboard panel area, sq ft/side W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel weight, lb/side (W/S)1, inboard panel unit weight, lb/sq ft (W/S)2, middle panel unit weight, lb/sq ft (W/S)3, outboard panel unit weight, lb/sq ft Y1, inboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 C1, device chord at Y1 C2, device chord at Y2 C3, device chord at Y3		1 14 1 F
S3, outboard panel area, sq ft/side W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel weight, lb/side (W/S)1, inboard panel unit weight, lb/sq ft (W/S)2, middle panel unit weight, lb/sq ft (W/S)3, outboard panel unit weight, lb/sq ft Y1, inboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 C1, device chord at Y1 C2, device chord at Y2 C3, device chord at Y3		
W1, inboard panel weight, lb/side W2, middle panel weight, lb/side W3, outboard panel weight, lb/side (W/S)1, inboard panel unit weight, lb/sq ft (W/S)2, middle panel unit weight, lb/sq ft (W/S)3, outboard panel unit weight, lb/sq ft Y1, inboard station, panel 1 Y2, outboard station, panel 1 Y3, outboard station, panel 2 Y4, outboard station, panel 3 C1, device chord at Y1 C2, device chord at Y2 C3, device chord at Y3		
W ₂ , middle panel weight, 1b/side W ₃ , outboard panel weight, 1b/side (W/S) ₁ , inboard panel unit weight, 1b/sq ft (W/S) ₂ , middle panel unit weight, 1b/sq ft (W/S) ₃ , outboard panel unit weight, 1b/sq ft Y ₁ , inboard station, panel 1 Y ₂ , outboard station, panel 1 Y ₃ , outboard station, panel 2 Y ₄ , outboard station, panel 3 C ₁ , device chord at Y ₁ C ₂ , device chord at Y ₂ C ₃ , device chord at Y ₃		
W3, outboard panel weight, lb/side (W/S) ₁ , inboard panel unit weight, lb/sq ft (W/S) ₂ , middle panel unit weight, lb/sq ft (W/S) ₃ , outboard panel unit weight, lb/sq ft Y ₁ , inboard station, panel 1 Y ₂ , outboard station, panel 1 Y ₃ , outboard station, panel 2 Y ₄ , outboard station, panel 3 C ₁ , device chord at Y ₁ C ₂ , device chord at Y ₂ C ₃ , device chord at Y ₃		
(W/S) ₁ , inboard panel unit weight, lb/sq ft (W/S) ₂ , middle panel unit weight, lb/sq ft (W/S) ₃ , outboard panel unit weight, lb/sq ft Y ₁ , inboard station, panel 1 Y ₂ , outboard station, panel 1 Y ₃ , outboard station, panel 2 Y ₄ , outboard station, panel 3 C ₁ , device chord at Y ₁ C ₂ , device chord at Y ₂ C ₃ , device chord at Y ₃		
(W/S) ₂ , middle panel unit weight, 1b/sq ft (W/S) ₃ , outboard panel unit weight, 1b/sq ft Y ₁ , inboard station, panel 1 Y ₂ , outboard station, panel 1 Y ₃ , outboard station, panel 2 Y ₄ , outboard station, panel 3 C ₁ , device chord at Y ₁ C ₂ , device chord at Y ₂ C ₃ , device chord at Y ₃		1 -
(W/S) ₃ , outboard panel unit weight, 1b/sq ft Y ₁ , inboard station, panel 1 Y ₂ , outboard station, panel 1 Y ₃ , outboard station, panel 2 Y ₄ , outboard station, panel 3 C ₁ , device chord at Y ₁ C ₂ , device chord at Y ₂ C ₃ , device chord at Y ₃		
Y ₁ , inboard station, panel 1 Y ₂ , outboard station, panel 1 Y ₃ , outboard station, panel 2 Y ₄ , outboard station, panel 3 C ₁ , device chord at Y ₁ C ₂ , device chord at Y ₂ C ₃ , device chord at Y ₃) ' W' "
Y ₂ , outboard station, panel 1 Y ₃ , outboard station, panel 2 Y ₄ , outboard station, panel 3 C ₁ , device chord at Y ₁ C ₂ , device chord at Y ₂ C ₃ , device chord at Y ₃		1 · · · · · · · · · · · · · · · · · · ·
Y ₃ , outboard station, panel 2 Y ₄ , outboard station, panel 3 C ₁ , device chord at Y ₁ C ₂ , device chord at Y ₂ C ₃ , device chord at Y ₃		
26 Y ₄ , outboard station, panel 3 27 C ₁ , device chord at Y ₁ 28 C ₂ , device chord at Y ₂ 29 C ₃ , device chord at Y ₃		
27 C ₁ , device chord at Y ₁ 28 C ₂ , device chord at Y ₂ 29 C ₃ , device chord at Y ₃		
28 C ₂ , device chord at Y ₂ 29 C ₃ , device chord at Y ₃		1 3'
29 C ₃ , device chord at Y ₃		
\mathbf{J}	1	
	1	, o,

TABLE 177. TST ARRAY, SUBROUTINE LEWT (CONCL)

Array Location	Description
31	CGY1, spanwise centroid, panel 1
32	CGy2, spanwise centroid, panel 2
33	CG _{Y3} , spanwise centroid, panel 3
34	CGy1, chordwise centroid, panel 1
35	CG _{X2} , chordwise centroid, panel 2
36	CG _{X3} , chordwise centroid, panel 3
37	ΔΥ1.2.3
38	λ_1 , planform taper ratio, panel 1
39	λ_2 , planform taper ratio, panel 2
40	λ_3 , planform taper ratio, panel 3
41	CG_X , chordwise centroid, fraction of chord at Y_{CG}
42	λχ, chordwise taper ratio of weight distribution surface
43	XALE IB, chordwise station for fixed leading edge cutoff at YIB CALE IB, chord for fixed leading edge deletion at YIB
44	X _{ALE} \(\rho_B \), chordwise station for fixed leading edge cutoff at Y _{\rho_B} C _{\rho_LE} \(\rho_B \), chord for fixed leading edge deletion at Y _{\rho_B}
45	Tan CALE, slope of CALE equation
46	CCALE, centerline intercept for CALE equation
47	(N _{ZULT} · DGW)/S _{surface}
48	ΣW, total device weight, 1b/side
49	Σ M _X , total moment about the X-axis, in1b
50	Σ My, total moment about the Y-axis, in1b

TABLE 178. TTED ARRAY

General information for array TTED:

Blank common reference location = TGR(51)

Array size = 40

Array TTED is used for storage in retrieval of input variable data for analysis of fixed trailing edge and trailing edge devices. Subroutine TEWT initializes array locations to zero and transfers input data subarray DTE information to TTED for analysis of fixed TE structures. In the evaluation loop for TE devices, subroutine TEDEV organizes device variable data into array TTED in accordance to device type. Variable-data subarrays DTED1, DTED2, DSPDK, DFLPK, and DAILK are used to create required TTED data.

Array TTED is printed by subroutine TEWTI, as part of array TGR, under control of IP(11), case control card 1, column 11.

	Fixed TE Structure	Spoilers, Devices 1, 2	Flaps; Devices 3, 4, 5, 6; Types 0, 1, 2, 3	Ailerons; Elevators; Rudders; Device 6; Types 4, 5, 6
Array Location	Ref Data Array DTE	Ref Data Arrays DTED1, DSPDK	Ref Data Arrays DTED2, DFLPK	Ref Data Arrays DTED2, DAILK
1	(W/S) _{TE}	-	ID type	ID _{type}
2	K wt	N pn1	N pn1	N pn1
3	λ _{wt}	YIB	YIB	Y _{IB}
4	К1	Y _{ØB}	Y _{ØB}	^Y øB
5	^C 1	C _{FWD IB}	C _{1 IB}	C _{1 IB}
6	c ₂	C _{FWD} ØB	C _{1 ØB}	C _{1 ØB}
7	C ₃	C AFT IB	C _{2 IB}	C _{2 IB}
8	C ₄	C AFT ØB	C ₂ ØB	C _{2 ØB}
9	C ₅	-	C _{3 IB}	C _{3 IB}
10	^C 6	-	C _{3 ØB}	C _{3 ØB}
11	C ₇	-	C _{4 IB}	C _{4 IB}

TABLE 178. TTED ARRAY (CONT)

	Fixed TE Structure	Spoilers, Devices 1, 2	Flaps; Devices 3, 4, 5, 6; Types 0, 1, 2, 3	Ailerons; Elevators; Rudders; Device 6; Types 4, 5, 6
Array Location	Ref Data Array DTE	Ref Data Arrays DTED1, DSPDK	Ref Data Arrays DTED2, DFLPK	Ref Data Arrays DTED2, DAILK
12	- -	-	C _{4 ØB}	C ₄ ØB
13	К2	ID ATE	C _{5 IB}	C _{5 IB}
14	C ₈	-	C ₅ ØB	C ₅ ØE
15	(t/c) _{ref}	-	C _{TE UPR IB}	C _{TE UPR IB}
16	-	-	C _{T1:} UPR ØB	C _{TE UPR} ØB
17	-	-	C _{TE LWR IB}	C _{TE LWR} IB
18	-	-	C _{TE LWR} ØB	C _{TE LWR} ØB
19	-	(W/S)	(W/S)	(W/S)
20	•	K wt	K wt	K _{wt}
21	-	λ _{wt}	λwt	$\lambda_{ m wt}$
22	-	К ₁	^C 1	К ₁
23	-	c_1	C ₂	c ₁
24	-	C ₂	c ₃	c ₂
25	-	C ₃	C ₄	C ₃
26	-	-	K ₁ , type 0	C ₄
27	-	_	K _{1, type 1}	C ₅ (ailerons only)
28	-	-	K ₁ , type 2	-
29	-	-	K ₁ , type 3	-

TABLE 178. TTED ARRAY (CONCL)

Fixed TE Structure Ref Data Array	Spoilers Devices 1, 2 Ref Data Arrays	Flaps; Devices 3, 4, 5, 6; Types 0, 1, 2, 3 Ref Data Arrays	Ailerons; Elevators; Rudders; Device 6; Types 4, 5, 6 Ref Data Arrays
DTE			DTED2, DAILK
-	к ₂	K ₂	к ₂
• • ₂ = 11	$C_{\mathbf{A}}$	C ₅	c ₆
g g	(t/c) _{ref}	(t/c) _{ref}	(t/c) _{ref}
-	K _z	K _z	K ₃
-	K ₄	K ₄	K ₄
•	C ₅	C ₆	C ₇
-	N act	Nact	N _{act}
-	K _(-ATE)	K(-ATE)	K _(-ΛTE)
-	K _(+ATE)	K _(+ATE)	K _(+ATE)
-	•	-	-
P -	• !	<u>-</u>	-
	Structure Ref Data Array	Structure Ref Data Array DTE Ref Data Arrays DTED1, DSPDK K ₂ C ₄ (t/c) ref K ₃ K ₄ C ₅ Nact K _(-ATE)	Fixed TE Structure Spoilers Devices 1, 2 3, 4, 5, 6; Types 0, 1, 2, 3 Ref Data Array DTE Ref Data Arrays DTED1, DSPDK Ref Data Arrays DTED2, DFLPK - K2 C5 - (t/c)ref (t/c)ref - K3 K4 - C5 C6 Nact Nact Nact - K(-ATE) K(-ATE)

General information for array LEWT:

Blank common reference location = T(1701)

Array size = 50 cells

Array TST is used for storage and retrieval of calculated trailing edge control device geometry and weight distribution data. This array is used during computations for each of six devices analyzed by subroutine TEWTI and TEDEV. Array locations are initially set to 0.0 by TEWTI before analysis of each device. The contents of this array are printed by TEWTI after each analysis under control of IP(11), case control card 1. column 11.

TE control devices are internally identified by code value of N and are sequentially evaluated. Code definitions are:

N	Device and Input Data Set Location
1	Spoiler No. 1, D(1580-1594)
2	Spoiler No. 2, D(1595-1609)
3	Flap No. 1, D(1610-1609)
4	Flap No. 2, D(1630-1649)
5	Flap No. 3, D(1650-1669)
6	Flap No. 4 or aileron for wing, D(1670-1689)
6	Elevator for horizontal tails, D(1690-1709)
6	Rudder for vertical tails, D(1710-1729)

Device No. 6 is treated as a special type and processed in accordance to surface type being analyzed.

Devices No. 3, 4, 5, and 6 are evaluated based on type code specified in first item of device input data set. Type code definitions are:

Code Value	Туре	
0	Simple flaps	
1	Single-slotted	flaps
2	Double-slotted	flaps
3	Triple-slotted	flaps
4	Ailerons	
5	Elevators	
6	Rudders	

Information stored in array TST is created according to device number and type. The following cross-section sketches are presented to supplement data descriptions of array TST. Roman numeral points correspond to chordwise data points which must be specified in each input data set at inboard and outboard control stations Y_{IP} and Y_{ØB}. (Refer to Tables 160 and 161, arrays DTED1 and DTED2.)

TABLE 179. TST ARRAY, SUBROUTINES TEWTI AND TEDEV (CONT)

- A. Device No. 1 and 2, Spoilers.
- B. Device No. 3-6, Types 0, 1, 4, 5 and 6.

- C. Device No. 3-6, Type 2.
- D. Device No. 3-6, Type 3.

- E. Fixed TE Without Shroud.
- F. Fixed TE With Shroud.

TABLE 179. TST ARRAY, SUBROUTINES TEWTI AND TEDEV (CONT)

		_	Sket	ch Ref	
Array Location	Description	A	B,E, F	C,E, F	D,E, F
1	Y _{IB} , inboard control station	-	-	-	•
2	$Y_{\emptyset B}$, outboard control station	-	-	1-1	-
3	X _{FWD IB} , forward X-control station at	I	I	1	I
	Y _{IB} . Also X-coordinate reference for				
	$_{1}^{+}$ TE $_{a}$ and $_{1}^{+}$ TE $_{d}$.				
4	X _{FWD} ØB	I	. I	I	I
5	$X_{AFT\ IB}$, aft X-control station at Y_{IB} .	II	TE	II	II
6	X _{AFT} ØB	II	TE	II	II
7	X _{RS IB} , rear spar X-coordinate at Y _{IB} .	RS	RS	RS	RS
0	Also X-coordinate reference for +TE _c .				
8	X _{RS} ØB				
9	$X_{TE\ IB}$, X-coordinate of true trailing edge at Y_{IB} .	TE	TE	TE	TE
10	X _{TE} ØB	TE	TE	TE	TE
11	X _{FWD(III)} IB, X-control station for LE of second flap panel, double- and	-	-	111	111
	triple-slotted flaps.				
12	X _{FWD} (III)ØB	-	-	III	III
13	$X_{AFT(IV)IB}$, X-control station for TE	-	-	-	IV
	of second flap panel, triple-slotted				
	flaps only.			1	1
14	X AFT(IV)ØB	-	-	-	IV
15	$X_{FWD(V)IB}$, X-control station for LE of		-	-	v
1	aft flap panel, triple-slotted flaps		!		
	only.				
16	X _{FWD} (V)ØB	-	1-	-	v
17	XAFT(-TE)IB, X-control station for -TE _b .	11	TE	TE	TE

TABLE 179. TST ARRAY, SUBROUTINES TEWTI AND TEDEV (CONT)

	Description		Sketch Ref			
Array Location			B,E F	C,E,	D,E,	
18			TE	TE	TE	
19	X _{+TE_UIB} , X-control station for TE of	-	VI	VI	VI	
	upper surface of fixed trailing edge structure (upper shroud).					
20	X+TE _U ØB	•	VI	VI	VI	
21	X +TE $_{L}$ IB, X-control station for TE of	•	VII	VII	VII	
	lower surface of fixed trailing edge structure (lower shroud).					
22	X+TE _L ØB	-	VII	VII	VII	
23	C ₁ IB, device reference chord at Y _{IB} ,	c_1	с ₁	c ₁	c ₁	
	[XAFT(-TE)-XFWD], for fixed trailing edge deletion.					
24	C ₁ ØB	c ₁	c ₁	c ₁	C ₁	
25	C _{TE IB} , true total trailing edge	X	Х	X	X	
26	chord at Y _{IB} , [X _{TE} -X _{RS}].		x	x	x	
	C _{TE} ØB					
27	$C_{\mathrm{WT~pn1~IB}}$, reference device chord for weight equation at Y_{IB} . Also	C ₁	^C 1	X	Х	
	used for extended position planform area calculations for double- and triple-slotted flaps.					
28	CWT pn1 ØB	c_1	c,	x	х	
29	C _{+TE FWD IB} , forward reference chord	X	X	х	х	
. "	for fixed TE structure at Y _{IB} ,					
	$\left[X_{FWD} - X_{RS} \right]$.	X				
30	C+TE FWD ØB		Х	X	X	
31	Not used		-	-	-	
32	Not used	-	=	-	•	

TABLE 179. TST ARRAY, SUBROUTINES TEWTI AND TEDEV (CONT)

		Sketch Ref			
Array Location	Description		B,E F	C,E F	D,E,
33	$\Delta C_{TE(-S)\ IB}$ reference chord for fixed trailing edge planform area adjustment at Y_{IB} , represents basic deleted portion of TE, set to C_1 for device No.3,		· c ₁	с ₁	с ₁
34	4, 5, and 6. Δ ^C _{TE} (-S) ØB		c ₁	c ₁	c ₁
35	ΔC _{TE(+S) 1B} , reference chord for fixed trailing edge planform area adjustment at Y _{IB} , represents chord width for area to be added due to	0.0	х	х	х
	shroud structures. See sketches E and F.				
36	$\Delta C_{TE(+S) \not OB}$	0.0	Х	х	х
37	Z _{-TE IB} , spanwise weight per inch	X	х	х	х
	of fixed trailing edge structure to be replaced with control surface device at Y _{IB} .	E			
38	Z-TE ØB	χ	Х	x	х
39	X_{CG} -TE IB, X-coordinate for chordwise centroid of Z_{-TE} above at Y_{IB} .	Х	х	х	Х
40	X _{CG} -TE ØB	χ	Х	x	x
41	Z _{+TE IB} , spanwise weight per inch of trailing edge structure provisions for control devices at Y _{IB} , weight to be added to fixed	X	Х	x	Х
4.0	trailing edge weights.				
42	Z+TE ØB	Х	Х	X	X
43	$(Z_{+TE\ IB})(X_{CG\ +TE\ IB})$ first moment of trailing edge structure provision weight per inch at Y_{IB} .	Х	Х	X	X
44	(Z _{+TE} ØB)(X _{CG} +TE ØB)	Х	Х	Х	Х

TABLE 179. TST ARRAY, SUBROUTINES TEWTI AND TEDEV (CONCL)

			Sketch Ref			
Array Location	Description	A	B,E F	C,E F	D,E,	
45	$X_{\rm AFT~IB}$ supt, aft X-control station for device support weight distribution at $Y_{\rm IB}$ (forward X-control station assumed to be at $X_{\rm RS}$).	I	X	х	х	
46	X AFT ØB supt	I	Х	х	Х	
47	z _{RS IB} , weight per square inch of	x	х	х	х	
	fixed trailing edge structure at (Y_{IB}, X_{RS}) , based on basic fixed trailing edge weight per inch at Y_{IB} , $C_{TE\ IB}$ and $\lambda_{X\ CD}$.		1			
48						
49	^Z RS IB Tan z _{IB} , slope of chordwise distribution line for basic fixed trailing edge, based on basic fixed trailing edge weight per inch at	X	х	х	х	
50	Y _{IB} , C _{TE IB} and $\lambda_{X \text{ cp}}$. Tan $z_{\emptyset B}$	х	х	х	х	

General information for array TGR:

Blank common reference location = T(1751)

Array size = 100 cells

Array TGR is used for storage and retrieval of data calculated during analysis of fixed trailing edge structures and trailing edge devices by subroutines TEWT and TEWTI. Array TGR is set to 0.0 by TEWT before analysis. Subroutine TEWTI sets TGR locations 1 through 50 to 0.0 before each analysis pass for the six TE devices. Array locations 51 through 90 are assigned to array TTED (Table 178).

Array TGR is printed by subroutine TEWTI at the end of each analysis pass under control of IP(11), case control card 1, column 11.

Array Location	Fixed Trailing Edge Analysis	Trailing Edge Control Surface Analysis
1	Z _{root} , basic fixed TE wt/in. at Y ₁	W _{dev} , device weight. For flap-type devices devices 3,4,5, and 6, this item is initially the panel plus support weight; subsequentially changed to panel structure weight from TGR(43)
2	z ₂ .	-
3	² 3	-
4	² 4	-
5	² 5	W supts, support structure weights for devices 3, 4, 5, 6
6	^Z ₆	W _{-TE} , fixed TE weight to be deleted and replaced with device weights
7	Z.,	W _{+TE} , incremental fixed TE weights to be added for device structural provisions. Initially equal to delta fixed TE, subsequently changed to include devices support weights for integration purposes only.
8	Z ₈	ΔY , $(Y_{\emptyset B} - Y_{IB})$
9	z ₉	ΔY/2.0
10	² 10	(ΔY/2.0)/144.0

TABLE 180. TGR ARRAY, SUBROUTINES TEWT AND TEWTI (CONT)

Array Location	Fixed Trailing Edge Analysis	Trailing Edge Control Surface Analysis
11	Z ₁₁ , basic fixed TE wt/in. at Y ₁₁	ΔS _{-TE} , planform area to be deleted from fixed structure area due to device, sq ft/side
12	.	Y _{CG +TE} and [(\(\Delta W_{+TE} \) + (W _{supt} \(Y_{CG supt} \)]
13	-	X _{CG +TE} and [(\(\Delta W_{+TE} \cdot X_{CG +TE} \) + (W _{supt} \(X_{CG supt} \)]
14	-	$X_{CG + TE} = [\Sigma(Z_{+TE} \cdot X_{CG + TE}) / \Sigma Z_{+TE}]$
15	-	K ₁ + K _{act} + K ₃
16	•	$K_{act} = f(K_4, N_{act}, C)$
17	-	Q·C ₂
18	•	L _{HL} , device span, length along device LE
19	-	L _{IL} /N _{pnl}
20	-	Tan C, slope of device aerodynamic chord equation (extended chords for flaps)
21	-	C _c , X-axis intercept for device
		aerodynamic chord equation (extended chords for flaps)
22	-	S _{pn1} , panel areas, sq ft/side, used in weight equation based on panel lengths, L _{HL} /N _{pn1} and extended position chords
23	-	S _{dev} , planform area for device, retracted position, sq ft/side
24	•	S dev ext, planform area for device in extended position, sq ft/side
25	-	$\Delta X = (X_{AFT} + TE^{-X}_{FWD} + TE^{-X}_{CG} + TE^{-X}_{CG} + TE^{-X}_{CG}$

TABLE 180. TGR ARRAY, SUBROUTINES TEWI AND TEWTI (CONT)

Array Location	Fixed Trailing Edge Analysis	Trailing Edge Control Surface Analysis
26	-	$W_{pn1} = (W/S)_{pn1} \cdot S_{pn1}$
27	-	(W/S) calculated device panel unit weight, 1b/sq ft
28	-	Y _{IB pn1} , inboard Y-coordinate for panel i
29	-	YøB pnl, outboard Y-coordinate for panel i
30	-	C _{IB pn1} , inboard chord, panel i
31	-	Cob pn1, outboard chord, panel i
32	-	Σ (Wpn1 · YCG pn1)
33	-	Σ (W _{pn1} ·X _{CG pn1})
34	-	-
35		X _{FWD pn1} at Y _{CG pn1}
36	-	XÁFT pnl at YCG pnl
37	-	ΔY/N _{pn1}
38	-	N pn1
39	-	Y _{CG pnl} , Y-coordinate of panel weight centroid
40	-	$K_{\text{wt}} = K_1 + K_{\text{act}} + K_3 + K_{(t/c)}$
41	•	$K_{(t/c)} = f [K_2, C_{(t/c)}, (t/c)_{ref}, (t/c)_{pn1}]$
42	•	X _{CG pnl} , X-coordinate of panel weight centroid
43	-	ΣW _{DEV pn1} , total weight of device panel structures
44	-	Wsupt 'YCG supt

TABLE 180. TGR ARRAY, SUBROUTINES TEWT AND TEWTI (CONCL)

Array Location	Fixed Trailing Edge Analysis	Trailing Edge Control Surface Analysis
45	-	Wsupt XCG supt
46	- •	X _{FWD} +TE at Y _{CG} +TE
47	- 1	XAFT +TE at YCG +TE
48	-	Y _{CG} +TE
49	-	X _{CG}
50	-	λx _{CG}
51-90	Array TTED	Array TTED (Table 178)
91-100	Not used	Not used
	•	

TABLE 181. TGR ARRAY, SUBROUTINE LETEI

General information for array TGR:

Blank common reference location = T(1751)

Array size = 100 cells

Array TGR is used by subroutine LETEI for storage and retrieval of strip data describing structural components of leading or trailing edges. Data are created for each integration strip from information stored in array CCI. Locations 94 through 99 are used after completion of integration procedure to compute weight scaling factors to correct results to initial estimated weight values.

Array Location	Description	
1	Z _{FIX} , spanwise weight per inch of fixed structure at Y _{CG} strip.	
2	Tan Z, slope of chordwise distribution line for Z _{FIX} preceding.	
3	C_Z , Z-ordinate of chordwise distribution line for $Z_{\mbox{FIX}}$ preceding at $X_{\mbox{FWD}}$ strip CG^{\bullet}	
4-9	Z _{DEV} (1-6), spanwise weight per inch of each device at Y _{CG} strip	
10-15	Tan Z _{DEV} (1-6), slope of chordwise distribution line for device weight per inch preceding.	
16-21	C _{Z DEV} (1-6), Z-ordinate for chordwise distribution line for device at X _{FWD} strip CG.	
22-27	XFWD DEV (1-6) strip CG, X-coordinate of device forward control line at YCG strip.	
28-33	XAFT DEV (1-6) strip CG, X-coordinate of device aft control line at YCG strip.	

TABLE 181. TGR ARRAY, SUBROUTINE LETEI (CONT)

Array Location	Description	
34-39	Z _{(-struct)(1-6)} , spanwise weight per inch at Y _{CG} strip for fixed structure weights to be deleted and replaced with control surface device weights, computed as positive weight values.	
40-45	Tan Z _{(-struct)(1-6)}	
46-51	C _Z (-struct) (1-6)	
52-57	X _{FWD} (-struct)(1-6)	
58-63	XAFT (-struct)(1-6)	
64-69	Z _{(+struct)(1-6)} , spanwise weight per inch at Y _{CG} strip for fixed structures to be added for control surface device provisions, TE only, computed as positive weight values.	
70-75	Tan Z (+struct) (1-6)	
76-81	C _Z (+struct) (1-6)	
82-87	X _{FWD} (+struct) (1-6)	
88-93	XAFT (+struct)(1-6)	
94	AX _{strip} , (X _{AFT strip CG} - X _{FWD strip CG})	
95	ΔX _{DEV} , (X _{AFT DEV} - X _{FWD DEV})	
96	(ε Y/ΔY) strip, scaling factor for device weight in strip, used to scale device weight down to account for condition where device Y-control stations, Y _{IB} or Y _{ØB} , is between strip Y _{IB} and Y _{ØB} .	
97	ΔX (-struct), (XAFT (-struct) - XFWD (-struct)	
98	ΔX (+struct), (XAFT (+struct) - XFWD (+struct)	

TABLE 181. TGR ARRAY, SUBROUTINE LETEI (CONCL)

Array Location	Description
99	<pre>(ε X/Δ X) grid, scaling factor for device, (-struct) and (+struct) weights, to account for conditions where the device forward or aft control points, X_{FWD} or X_{AFT}, fall between grid control points, X_{FWD} and X_{AFT}.</pre>
100	Not used.
	tions 94 through 99 are used after the 10 panel integration s to store total integrated weights and integration scaling ors.
94	ΣW sys, sum of integrated panel weights for the weight analysis reference system.
95	ΣW flutter opt sys, sum of integrated panel weights for the flutter optimization reference system.
96	ΣW flexible loads sys, sum of integrated panel weights for the flexible loads analysis reference system.
97	K wt sys, weight factor to correct weight analysis reference system mass distribution data to required weights.
98	K flutter opt sys, weight factor to correct flutter optimization reference system mass distribution data to required weights.
99	K flexible loads sys, weight factor to correct flexible loads analysis reference system mass distribution data to required weights.

TABLE 182. TST ARRAY, SUBROUTINE LETEI

General information for array TST:

Blank common reference location = T(1701)

Array size = 50 cells

Array TST is used by subroutine LETEI for storage and retrieval of detail geometry and weight distribution data during numerical integration of leading edge or trailing edge structures.

Array Location	n Description	
1	^{AY} strip	
2	YIB strip	
3	YØB strip	
4	YCG strip	
5	X _{FWD, strip} CG	
6	XAFT strip CG	
7	AX _{FWD} strip	
8	[∆] X _{AFT} strip	
9	N _{strips} and (Y _{CG strip} /COS A _{EA})	
10	X _{EA} at Y _{CG} strip	
11	$\Delta Y^2/12.0$	
12	$\Delta x^2/12.0$	
13	ΔΥ grid, Y-distance from grid CG to flexible loads control station	
14	ΔX grid, X-distance from grid CG to flexible loads control station	

TABLE 182. TST ARRAY, SUBROUTINE LETEI (CONT)

Array Location	Description YACG grid	
15		
16	X _{ACG} grid	
17	M_{grids} and ΔY_{Λ} $grid$, Y_{Λ} distance from grid CG to weight or flutter optimization control station.	
18	△Xgrid at YCG strip	
19	X _{FWD} grid	
20	X _{AFT} grid	
21	X _{CG grid}	
22	ΔX grid CG to FWD, X-distance between grid CG and forward control line of strip at Y _{CG} strip.	
23	Agrid, grid area.	
24	ΣWgrid	
25	ΣΙ _{ΟΥ(A)} , pitch inertia for grid, aerodynamic system	
26	ΣΙ _{ΟΧ(A)} , roll inertia for grid, aerodynamic system.	
27	ΣΙ _{ΟΥ(S)} , pitch inertia for grid, structural system.	
28	ΣΙ _{ΟΧ(S)} , roll inertia for grid, structural system.	
29	ΣW grid • ΔY grid, first weight moment for grid, used for aerodynamic and structural system calculations.	
30	ΣW _{grid} • ΔX grid, first weight moment for grid, used for aerodynamic and structural system calculations.	
31	W _{FIX} grid	

TABLE 182. TST ARRAY, SUBROUTINE LETEI (CONCL)

Array Location	Description	
31-37	W _{DEV(1-6)} grid	
38-43	ΔW _{(-struct)(1-6)} grid, fixed structure weights to be deleted and replaced with control surface device weights, calculated as positive values, always subtracted from totals.	
44-49	△W _{(+struct)(1-6)} grid, fixed structure weights to be added for control surface device provisions, calculated as positive values, always added to totals.	
50	Not used.	

General information for array TE:

Blank common reference location = CD(1251)

Array size = 150 cells

Array TE contains detail weight and geometry information for trailing edge devices 3, 4, 5, and 6, flap-type devices. Array data are created by subroutine TEWTI for use by WLETE during output print of trailing edge device summary data under control of IP(12) (case control card 1, column 12). Array locations are initialized to 0.0 values by WLETE before TEWTI analysis. Output dump of array TE is made by subroutine TEWT under control of IP(11) (case control card 1, column 11) after all trailing edge structures have been analyzed. Weights and planform areas are stored in terms of pounds and square feet per air vehicle values.

Array Location	Description
1-4	S _{EXT 3-6} , planform areas, extended position
5-8	$(W_{tot}/S_{EXT})_{(3-6)}$, unit weight for panels plus supports
9-12	$(W_{pn1}/S_{EXT})_{(3-6)}$, unit weight for panels
13-16	(W _{supt} /S _{EXT}) ₍₃₋₆₎ , unit weight for supports
17-20	W _{tot(3-6)} , total device weights, panels plus supports
21-24	(W _{tot} /S) ₍₃₋₆₎ , unit weight for panels plus supports based on
25-28	retracted position planform area YCG tot(3-6), Y-coordinate for panels plus supports CG, retracted position
29-32	X _{CG} tot(3-6), X-coordinate for panels plus supports CG, retracted position
33-36	Y _{CG} tot(3-6), YA-coordinate for preceding CG
37-40	X _{CG} tot (3-6), XA-coordinate for preceding CG
41-44	W supt (3-6)
45-48	$(W_{supt}/S)_{(3-6)}$, unit weight for supports based on retracted
49-52	position planform area Y CG supt(3-6)
53-56	YCG supt (3-6)
57-60	YACG supt (3-6)
61-64	X ACG supt(3-6)

TABLE 183. TE ARRAY (CONCL)

Array Location	Description	
65	W _{tot} , total weight, lb/side	
66-69	YCG pn1(3-6)	
70-73	X _{CG} pn1(3-6)	
74-77	YACG pn1(3-6)	
78-81	XACG pn1 (3-6)	
82-109	Values in TST(1) through TST(28), set up by WLETE after processing of TE data for print. Refer to TST ARRAY, WLETE, Table 184.	
110-15C	Not used	
	, · · · · · · · · · · · · · · · · · · ·	

TABLE 184. TST ARRAY, SUBROUTINE WLETE

General information for array TST:

Blank common reference location = T(1701)

Array size = 50 cells

Array TST contains leading edge and trailing edge summary data computed by subroutine WLETE and used for LE and TE data printed under control of IP(12) (case control card 1, column 12).

Locations 1 through 17 are used during processing of LE data. These are subsequently replaced with TE data, locations 1 through 29. Weights are stored as pounds per air vehicle values; planform areas are stored as square feet per air vehicle values.

•	Description	
Array Location	Leading Edge Structure	Trailing Edge Structure
1	YACG, total LE structure	Y _{ACG} , total TE structure
2	YACG FIX, fixed LE structure	YACG FIX, fixed TE structure
3	YACG DEV 1, LE device 1	YACG DEV 1, TE device 1, spoilers
4	YACG DEV 2, LE device 2	YACG DEV 2, TE device 2, spoilers
5	YACG DEV 3, LE device 3	Y _{ACG DEV 3} , TE device 3, flaps
6	X _{ACG} , total LE structure	YACG DEV 4, TE device 4, flaps
7	X ACG FIX	Y _{ACG DEV 5} , TE device 5, flaps
8	XACG DEV 1	YACG DEV 6, TE device 6, ailerons
9	XACG DEV 2	X _{ACG} , total TE structure
10	XACG DEV 3	X _{ACG} FIX
11	W _{DEV 1} , weight of LE device 1	X _{ACG DEV 1}
12	W _{DEV 2} , weight of LE device 2	X _{ACG DEV 2}
13	W _{DEV} 3, weight of LE device 3	X ACG DEV 3
14	S _{DEV 1} , planform area of LE device 1	X _{ACG DEV 4}
15	S _{DEV 2} , planform area of LE device 2	X _{ACG DEV 5}
16	S _{DEV 3} , planform area of LE device 3	X _{ACG DEV 6}

* TABLE 184. TST ARRAY, SUBROUTINE WLETE (CONCL)

	Description	
Array Location	Leading Edge Structure	Trailing Edge Structure
17	ΔX_{i} , X-distance from CG to EA	W _{DEV 1} , weight of TE device 1
18	Not used	W _{DEV 2} , weight of TE device 2
19	Not used	W _{DEV 3} , weight of TE device 3
20	Not used	W _{DEV 4} , weight of TE device 4
21	Not used	W _{DEV 5} , weight of TE device 5
22	Not used	W _{DEV 6} , weight of TE device 6
-23	Not used	S _{DEV 1} , planform area of TE device 1
24	Not used	S _{DEV 2} , planform area of TE device 2
25	Not used	S _{DEV 3} , planform area of TE device 3
26	Not used	S _{DEV 4} , planform area of TE
27	Not used	device 4 S _{DEV 5} , planform area of TE
28	Not used	device 5 S _{DEV 6} , planform area of TE
29	Not used	device 6 ΔX _i , X-distance from CG to EA
		line
30-50	Not used	Not used
		_
	*	
L		

General information for array CMII:

Blank common reference location = CD(1251).

Array size = 150 cells.

Array CMII contains mass distribution data computed by overlay. (15,0) subroutines MISCNT, MISCIT, and CDL. The array information is created by MISCNT from results stored in array TCS. It is saved on mass storage file 1, record 153, by subroutine WDDATA. Subroutine WDDATA, overlay (17,0), resets the array in core from this source for computations of total surface weight distribution information and for output design data calculations by subroutines WFLDD and WVFDD. Subroutine WDDATA, overlay (16,0) creates array WTIP data from CMII locations 147 through 150. The array is initialized to 0.0 values by subroutine MISCNT. It is printed by WØDATA under control of IP(38), case control card 1, column 38.

Array CMII data summarizes the distribution characteristics of surface content items other than fuel, the surface tip structure and the concentrated masses that are to be treated as panel weight items during the computation for the three separate mass distribution data sets.

Array Location

Description

Locations 1 through 36 contain mass distribution data integrated in the weight analysis-reference system. Contents and tip structure weights only are used to create this data set. Mass data for 11 structural panels are stored in this set - the 10 panels defined by the 11 analysis control stations and the tip panel between station 11 and the surface tip station, b/2, if station 11 is specified inboard of b/2. Masses that are located inboard of the structural chord defined by station 1 are not considered; the total weight of these masses is stored in TGR(24) of subroutine MISCIT.

1	0.0 not magnined
	0.0 not required.
2-12	$\Sigma W_{pn1(1-11)}$, sum of masses in the 11 weight analysis panels
13	0.0 not required.
14-24	$\Sigma(W \cdot \Delta Y_{\Lambda})$ pnl(1-11), sum of spanwise moments for masses in the foregoing 11 weight panels, computed at inboard control station $Y_{\Lambda i}$, of each panel.
25	0.0, not required.

TABLE 185. CMII ARRAY (CONT)

Array Location	Description	
25-36	Σ(W.Δ.X _A)pnl(1-11), sum of chordwise moment for masses in the foregoing 11 weight panels; computed at inboard control station, X _A i = 0.0, of each panel.	

Locations 37 through 91 contain mass distribution data integrated in the flutter optimization reference system. This data set contains data for 11 structural strip panels defined by $Y'_{\Lambda(1-12)}$, (TG(45)-TG(56), for the 11 structural analysis control stations $Y_{\Lambda(1-11)}$, (TG(1)-TG(11)). Distributed items consists of contents, tip structure, and concentrated masses 1 and 2 if item 12 in the input data sets for these masses is specified as a 0.0 value. If this situation exists, the total specified weight for masses 1 and 2 are used. If the code is specified as a positive non-zero value, masses 1 and 2 are not processed.

	i i
37-47	$\Sigma_{\text{Wpnl}(1-11)}$, sum of masses in the 11 flutter optimization panels.
45-58	Σ(W·ΔY _Λ) _{pnl(1-11)} , sum of the spanwise moments for the 11 masses above, computed at the control stations, Y _{Λi} , of each panel.
59-69	$\Sigma(W-\Delta X_{\Lambda})_{pnl(1-11)}$, sum of chordwise moments for the 11 masses above, computed at the control stations, $X_{\Lambda i} = 0.0$, of each panel.
70-80	$\Sigma(I_{YA})_{pnl(1-11)}$, pitch inertia for the foregiven 11 masses, computed at the control station, Y_{Ai} , of each panel, $\Sigma(I_{YA})_i = \Sigma(W \cdot \Delta X_A^2)_i \cdot \Sigma(I_{OYA})_i$.
81-91	$\Sigma(I_{X\Lambda})_{pn1(1-11)}$, roll inertia for the foregoing 11 masses, computed at the control station, $X_{\Lambda i} = 0.0$, of each panel, $\Sigma(I_{X\Lambda})_i = \Sigma(W \cdot \Delta Y_{\Lambda}^2)_i + (I_{OX\Lambda})_i$.

Locations 92 through 146 contain mass distribution data integrated in the flexible loads analysis reference system. This data set is sized to contain 11 aerodynamic strip panels; however, data for only 10 panels is computed. Panel boundaries are defined in TGA(1)-TGA(11). Integration control stations for each panel, (Y,X), are defined in

Array Location	Description
and conc the expe dition a (Input d amount d	TGA(42). Distributed items consists of contents, tip structure, entrated masses 1-7. Masses 1 and 2 are treated as store stations; nded weights at these stations for the flexible loads design conre deleted as required by input specifications in D(274) and D(275) ata variables DFXC(1) and DFXC(2)). Distribution data for the eleted at these stations are computed and saved in array CIØY for 1 surface mass distribution calculations in overlay (17,0). (See 5.)
92-101	$\Sigma_{\text{pnl}(1-10)}^{\text{W}}$, sum of masses in the 10 flexible loads analysis panels.
102 103-112	0.0, not required. (W·ΔY) _{pnl(1-10)} , sum of spanwise moments for the foregoing 10 masses, computed as control stations, Y _i , of each panel.
113 114-123	0.0, not required. (W·AX) _{pnl(1-10)} , sum of chordwise moments for the foregoing, 10 masses, computed as control stations, X _i , of each panel.
124 125-134	0.0, not required. $\Sigma(I_Y)_{pn1(1-10)}$, pitch inertia for the foregoing 10 masses, computed as control station, Y_i , of each panel, $\Sigma(I_Y)_i = \Sigma(W\cdot\Delta X^2)_i + \Sigma(I_{OY})_i$.
135 136-145	0.0, not required. $\Sigma(I_X)_{pn1(1-10)}$, roll inertia for the foregoing 10 masses, computed at control station, X_i , of each panel, $\Sigma(I_X)_i$
146	= $\Sigma(W \Delta Y^2)_i + \Sigma(I_{OX})_i$. 0.0, not required.
	147 through 150 contain total weights of the four mass items ed by subroutines MISCNT and MISCIT.
147	W _{tip} , tip structure, from CCI(91), 1b/side.
148	Wunif, weight of uniformly distributed weights, from TCS(248), specified in input data location D(1820), lb/side.
149	W _{line} , weight of control items distributed along spanwise lines, from CCI(31)-CCI(34), specified in input data locations D(1821) and D(1829), lb/side.
150	W _{CONC} , weight of control items treated as concentrated masses, from CCI(1)-CCI(6), specified in input data locations D(1837), D(1840), D(1843), D(1846), D(1849) and D(1852), lb/side.

General information for array CCDLI:

Blank common reference location = CD(501)

Array size = 150 cells

Array CCDLI is used for storage of data primarily associated with concentrated mass items. The information is created by subroutine WCØNT, overlay (15,0), from data computed by subroutines CDL, FDIS, and MISCNT for use in overlays (16,0) and (17,0). CCDLI is saved on mass storage file 1, record 154, by subroutine WCØNT. In overlay (17,0), subroutine WCØNTA initializes array CCDLI from this source for retrieval of required data. WØDATA prints the contents of CCDLI as stored on record 154 under control of IP(38), case control card 1, column 38.

If the data generation option for output of design data for the flutter optimization program is selected, CCDLI information stored in locations 1 through 48 is necessary for processing of add-mass data. Array locations 92 through 150 is used by WVFDD for storage and retrieval of processed add-mass and other design information. This version of array CCDLI is printed by WVFDD under control of IP(34), case control card 1, column 34.

The following descriptions are presented in two parts. The first set defines the contents of CCDLI as created by WCØNT. The second set defines the data created and used by WVFDD.

Ammore		
Array Location	Description	

Locations 1 through 91 contain detail information for each of seven concentrated mass items evaluated by subroutine CDL. This data set is created by WCØNT from array TC5, locations 144 through 234. Design data for the seven concentrated masses are specified in locations 1855 through 1938, consisting of 12 items for each mass. This set is identified as array DCDL1.

Array Location	Description
1	W _{CDL1} , weight of concentrated mass No. 1, 1b/side.
1	CDL1, weight of concentrated mass No. 1, 10/51de.

TABLE 186. CCDLI ARRAY, OVERLAYS (15,0), (16,0), AND (17,0) (CONT)

Array Location	Description
2	YACDL1, YA-coordinate of location of concentrated mass item 1, (YCDL1/COS EA).
3	ΔX_{CDL1} , chordwise distance between mass centroid and structural reference line, $(Y_{EA}^{-}Y_{CG})$.
4	ΔZ _{CDL1} , vertical distance between mass centroid and wing reference plane Z-coordinate at structural reference line, (Z _{EA} -Z _{CG}).
5	IOY CDL1, pitch inertial of concentrated mass No. 1 about mass CG, 1b-in ² .
6	I _{OX CDL1} , roll inertia of concentrated mass No. 1 about mass CG, 1b-in ² .
7	I _{OZ CDL1} , yaw inertia of concentrated mass No. 1 about mass CG. 1b-in ² .
8	Y _{CG CDL1} , spanwise location of mass CG.
9	Y _{CG CDL1} , chordwise location of mass CG.
10	ZCG CDL1, vertical location of mass CG.
11	YACG CDL1, YA-coordinate of mass CG.
12	XACG CDL1, XA-coordinate of mass CG.
13-24	Concentrated mass No. 1, 12 items as previously defined.
25-36	Concentrated mass No. 3, 12 items as previously defined.
37-48	Concentrated mass No. 4, 12 items as previously defined.
49-60	Concentrated mass No. 5, 12 items as previously defined.
61-72	Concentrated mass No. 6, 12 items as previously defined.
73-84	Concentrated mass No. 7, 12 items as previously defined.

Locations 85 through 91 contain control codes for internal data processing of concentrated masses. These code values identify the type of loads data processing and the mass distribution computations to be made for flexible loads and flutter optimization data. The code values are computed as the ratio of the input weight value to the absolute value of that weight (the input weight value can be (0.0), (-), or (+) to denote the type of internal processing to be made). A zero value indicates no mass data to be processed. A positive value indicates all required data be computed for loads, flexible loads, and flutter optimization. A negative value indicates special processing by subroutines CDL and WVFDD, as explained later. In all cases, the absolute value of the specified weight is used to compute structural provision weights and 1-g shears and moments due to the concentrated masses.

Array Location

Description

- Weight Analysis for Inertia Loads: Three 1-g shears and moments data sets are created as output for inertia loads processing in overlays (16,0), (9,0), and (18,0); separate data sets for concentrated masses 1 and 2, and one set for the sum of masses 3 through 7. The code word value directs the processing of shears and moments of masses 3 through 7. A negative value directs CDL to transmit structural provision weights only for that mass; the shears and moments are not to be added to the output data set. However, load sets for 1 and 2 are always created; thus, the appropriate specification for mass status at the structural design point must be specified in the input data set D array locations 167 through 174. The negative code values allow for computations of provision weights only (computed as a function of the total mass) without affecting the inertia loads.
- ullet Mass Distribution Analysis for Flexible Loads Design Data: Mass characteristics of the concentrated masses for flexible loads analysis are computed and processed with the distributed-weight information for the adjacent aerodynamic strips corresponding to the integration control stations that straddle the mass Y_{CG} . Concentrated masses 1 through 7 are not processed if their code value is negative.
- Mass Distribution Analysis for Flutter Optimization Design Data:
 Mass distributions for flutter optimization output are not processed
 in subroutine CDL for masses with negative code values. For positive
 code values, masses 5, 6, and 7 are merged with distributed-weight
 strip data. Masses 3 and 4 are not distributed by CDL; the descriptive information in locations 25 through 48 are used by WVFDD. Processing of masses 1 and 2 is dependent on the value of item 12 of the
 input data set for these masses (variable data array D, locations
 1866 and 1878). A 0.0 value directs CDL to process these masses into
 the strip data sets (similar to masses 5, 6, and 7). A code value of
 1.0 directs CDL to bypass the processing operation. In overlay
 (17,0), the 1.0 code directs WVFDD to process the descriptive information for these masses in locations 1 through 24 with the data
 created for masses 3 and 4 during the generation of output information for the flutter optimization program.

TABLE 186. CCDLI ARRAY, OVERLAYS (15,0), (16,0), AND (17,0) (CONT)

Array Location	Description
85-91	K _{CDL(1-7)} , processing code for concentrated masses 1 through 7. (Refer to the preceding notes.)
concentr subrouti	92 through 139 contain structural provision data for the seven ated masses. This data set is created by WCØNT from results of ne FDIS computations stored in array CCI. Item 8 of each paramehis set is provided for future computations of T-tail provisions.
92-98	ΔW _{CDL(1-7)} , structural fitting and provision weights for the specified concentrated masses (addition to computed torque-box weight), lb/side.
99	ΔW _{T-tail} , structural weights for T-tail provisions, tip station
	for vertical tail, root station for horizontal tails, lb/side.
100-107	$Y_{CG(1-8)}$, Y-coordinate, centroid of the foregoing masses. $X_{CG(1-8)}$, X-coordinate, centroid of the foregoing masses.
108-115	X _{CG(1-8)} , X-coordinate, centroid of the foregoing masses.
116-123 124-131	YACG(1-8), IA-coordinate for the foregoing (YCC, YCG).
132-139	X _{CG} (1-8), X-coordinate, centrold of the foregoing masses. Y _{ΛCG} (1-8), Y _Λ -coordinate for the foregoing (Y _{CG} , X _{CG}). X _{ΛCG} (1-8), X _Λ -coordinate for the foregoing (Y _{CG} , X _{CG}). (ΔW · KD ²) 1-8, weight (I _O) term for local airfoil depth effect of each item, lb-in ² .
	140 through 150 contain surface tip data. This data set is by WCØNT from results of subroutine MISCNT calculations stored in I.
104	W _{TIP} , tip structure weight, lb/side.
141	STIP, tip planform surface area, sq ft/side.
142	(W/S) _{TIP} , unit weight of tip structural, 1b/sq ft.
143	YCG TIP, Y-coordinate, centroid of tip structure.
144	X _{CG} TIP, X-coordinate, centroid of tip structure.
	YACG TIP, YA-coordinate for the foregoing (YCG, XCG) TIP.
145 146	XACG TIP, YA-coordinate for the foregoing (YCG, XCG) TIP.
145	XACG TIP, YA-coordinate for the foregoing (YCG, XCG) TIP.

TABLE 186. CCDLI ARRAY, OVERLAYS (15,0), (16,0), AND (17,0) (CONT)

Array Location	Description
147	$(I_{V})_{TIP}$, pitch inertia of tip structure abort centroid, Y-axis.
148	$(I_Y)_{TIP}$, pitch inertia of tip structure abort centroid, Y-axis. $(I_X)_{TIP}$, roll inertia of tip structure abort centroid x-axis.
149	(I _V) _{TID} , pitch inertia, structural reference system.
150	(I _X) _{TIP} , roll inertia, structural reference system.

The following descriptions for CCDLI array locations are for data items used and/or created by subroutine WVFDD, overlay (17,0). Data for concentrated masses 1, 2, 3, and 4 originally stored in locations 1 through 9 are used by WVFDD for creation of output data describing "add-masses". Masses 1 and 3, and 2 and 4, are combined in accordance with input specifications, and the resulting data set stored in locations 1 through 24 in the same form as previously described.

1-91	Same as defined previously. (Refer to the preceding notes.)
92-10?	EI ₁₋₁₁ , structural box bending stiffness, EI, stored root to tip.
103-113	GJ_{1-11}^{1-11} , structural box torsional stiffness, GJ , stored root to
	tip.
114	E, torque-box material reference modulus of elasticity for metallic design, psi.
115	G, torque box material reference modulus of rigidity for metallic
	design, psi.
116	$ ho_{\mathrm{TB}}$, torque-box material reference density, 1b/cu in.
117	ρ _{air} , density of air at flutter optimization design point, lb/cu in.
118	V _r , required flutter speed, knots.
119	W _{TF} , vehicle weight less surface plus contents, 1b/side
120	ΔX_{CG} , X-distance from centroid of W_{TF} to root station, positive
	if CG is aft of root station, in.
121	I_{YY} , pitch inertia for W_{TF} , $1b \cdot in^2$.
122	b ₁ /2, Y-coordinate for root station.
123	I_{XX} , roll inertia for W_{TF} , 1b-in ² .
124	YA mass 1, structural station for "add-mass" 1, derived from processed data in locations 1 through 12.
125	YEA mass 1, Y-coordinate for "add-mass" 1.
126	EI mass 1, torque box bending stiffness at Y _{Amass 1} , interpolated value.
127	GJ _{Amass 1} , torque box torsional stiffness at Y _{Amass 1} , interpolated value.

TABLE 186. CCDLI ARRAY, OVERLAYS (15,0), (16,0), AND (17,0) (CONCL)

	8
Array Location	Description
128	1, 1 element of "add-mass" (3 x 3) matrix, 1b.
129	2, 1 element of 'add-mass' matrix, in1b.
130	3, 1 element of "add-mass" matrix, in1b.
131	1, 2 element of "add-mass" matrix, in1b.
132	2, 2 element of "add-mass" matrix, 1b-in.2
133	3, 2 element of "add-mass" matrix 1b-in.2
134	1, 3 element of "add-mass" matrix, in1b.
135	2, 3 element of "add-mass" matrix, 1b-in.2
136	3, 3 element of "add-mass" matrix, 1b-in. ²
137-149	Data for "add-mass" 2, derived from processed data in locations 13 through 24. Items as previously defined for "add-mass" 1.
150	ID mass 1, internal code to indicate status of "add-mass" 1 during processing of "add-mass" 2 data, indicates whether "add-mass" 1 exists. 0.0 = no "add-mass" 1, 1.0 = "add-mass" 1 has been processed.
	0
	**
•	
į.	
1	

General information for arrays CFL11 and CFL21:

Blank common reference locations: CFL11 = CD(951)

CFL2I = CD(1101)

Array sizes = 150 cells

Arrays CFL1I and CFL2I contain mass distribution data for fuel cells 1 and 2 created by subroutine FDIS, overlay (15,0), from computed data stored in array TCS, the output array for subroutine TBFWI1. CFL1I and CFL2I are saved on mass storage file 1, records 151 and 152, by subroutine WCONT. The arrays are recreated from this source by subroutine WCONTA in overlay (17,0) for final processing of surface mass distribution data. WCONTA prints the contents of these arrays under control of IP(38), case control card 1, column 38.

CFL11 and CFL21 contains the same information as defined for CTBI, the torque-box mass distribution array. Refer to Table 194 for detail definitions of locations 1 through 146. Subroutine FDIS creates data for locations 1 through 146 from TCS(1)-TCS(146). Since the array locations are not set to 0.0 values, locations 147, 148, 149, and 150 will contain data existing in the blank common locations from overlay (8,0) conputations. Currently, these locations for CFL11 will contain 0.0 values, and CFL21 locations will contain values found in overlay (8,0) array TD, locations 147 through 150. Records 151 and 152 are always created by FDIS, and will contain 0.0 values in locations 1 through 146 when input data for fuel cells are not specified.

Array Location	Description
1 2-11 12-13 14-23 24-25 26-35 36 27-47 48-58 59-69	0.0, not required \[\mathbb{D}_{\text{pn1}(1-10)}, \text{ weight analysis reference system} \] 0.0, not required \[\mathbb{L}(\mathbb{W}-\Delta Y_\Lambda) \text{pn1}(1-10) \] 0.0, not required \[\mathbb{L}(\mathbb{W}-\Delta X_\Lambda) \text{pn1}(1-10) \] 0.0, not required \[\mathbb{L}(\mathbb{W} \text{pn1}(1-11), \text{ flutter optimization reference system} \] \[\mathbb{L}(\mathbb{W}-\Delta Y_\Lambda) \text{pn1}(1-11) \] \[\mathbb{L}(\mathbb{W}-\Delta X_\Lambda) \text{pn1}(1-11) \]

TABLE 187. CFL11 AND CFL21 ARRAYS (CONCL)

Array Location	Description
70-80 81-91 92-101 102 103-112 113 114-123 124 125-134 135 136-145 146	\$\mathcal{E}(\lambda \text{A})\text{pn1}(1-\text{1})\$ \$\mathcal{E}(\lambda \text{A})\text{pn1}(1-\text{1})\$, flexible loads analysis reference system 0.0, not required \$\mathcal{E}(\text{W-AY})\text{pn1}(1-\text{10})\$ 0.0 not required \$\mathcal{E}(\text{W-AX})\text{pn1}(1-\text{10})\$ 0.0, not required \$\mathcal{E}(\text{Iy})\text{pn1}(1-\text{10})\$ 0.0, not required \$\mathcal{E}(\text{Ix})\text{pn1}(1-\text{10})\$ 0.0, not required Not required (refer to notes)

General information for array CKD: Blank common reference location = CD(1951) Array size = 50 cells Array CKD is used for storage and retrieval of local airfoil depth data and for storage of yaw inertia values computed by overlay (15,0) subroutines MISCNT, MISCIT, and CDL. Array CKD locations are initialized to 0.0 values by MISCNT before any CKD variables are computed in overlay (15,0). Array location Description locations 1 through 19 contain data computed and used by subroutine MISCIT. Data in locations 1 through 10 are used in the inertia computations for the uniformly distributed mass item. Locations 11 and 12 are used during inertia computations for distribution line items. 1 (DTB), torque-box average depth at integration control station .YAi for flutter optimization strip panels (YAi value stored in TGR(28)). (DTB)'i, interpolated value of average torque-box depth at out-2 board $Y_{\Lambda i}$ control station for current flutter optimization structural strip. The $Y_{\Lambda i}$ -coordinates are panel boundary coordinates, $Y_{\Lambda(2-12)}$, stored in TG(46)-TG(56), for panel index values (1-11). 3 (DTB)_{i-1}, torque-box average depth value for integration control station Y_{Ai-1} , stored in TGR(30). (DTB) IB, torque-box average depth at inboard control station 4 for flexible loads acrodynamic panels, defined by the $(Y_{IB})_i$ value stored in TGR(32). 5 (D_{TB}); interpolated value of average torque-box depth at current flexible loads panel integration control station, Yi, stored in TGR(33). 6 (DTB)OB, torque-box average depth at outboard control station for flexible loads aerodynamic panel, defined by (YO/B); value stored in TGR(34).

TABLE 188. CKD ARRAY, OVERLAY (15,0) (CONT)

Array Location	Description
7	Dave, average depth value computed for two torque-box sub- panels defined by Y-coordinates in TGR(32), TGR(33) and TGR(34) for current flexible loads panel. Dave = 0.5 [(DTB)1B + (DTB)i] or 0.5 [(DTB)i + (DTB)ØB]. These depth values used to compute the following Z-dimension
8	term of the general mass inertia equation W _{sub-pnl} K D _{ave²} , Z-dimension term for mass inertia, where K = 1/12 (assumed vertical distribution factor), 1b-in. ² . (NOTE: K is specified in DKDIN(6), input data array location D(1975).)
9	Dave, average depth for the two torque-box subpanels defined by Y -coordinates in TGR(28), TGR(29) and TGR(30) for current flutter optimization panel, Dare = 0.5 [(DTB) _i + (DTB)' _i] or 0.5 [(DTB)' _i + (DTB) _{i-1}].
10	W _{sub-pn1} ·K·D _{ave} ² , Z-dimension term for mass inertia, same as the foregoing.
11	D _i , torque-box depth for distribution lines, computed from depth variation parameters stored in CCI(128)-CCI(151).
12	Wline·KD _i ² , Z-dimension term for inertia, same as the foregoing except K specified in DKDIN(7), D(1976).
13-19	Not used.
flexible location computes by subro l and 2 tions 21	20 through 50 contain yaw inertia data (I_Z) , computed in the loads analysis reference system. The tip structure (I_Z) , 20, is computed by MISCNT and used by MISCIT. Subroutine MISCIT data in locations 21-30. The concentrated mass (I_Z) are computed utine CDL for masses 1-7. The total weights specified for masses are used in these calculations. The yaw inertia values in loca-40 is transferred into array CIØY by computing subroutines for e in overlay $(17,0)$.
20	(I _Z) _{TIP} , yaw inertia of tip structure, compute at the tip centroid, 1b-in. ² .

TABLE 188. CKD ARRAY, OVERLAY (15,0) (CONCL)

Array Location	Description		
21-30	(IZ)MISC pn1(1-10), yaw inertia for content items evaluated by MISCIT, computed at flexible loads integration control stations, 1b-in. ² . (NOTE: Tip structure (I _Z) is included in panel 10 of this set.) (IZ)CDL pn1(1-10), yaw inertia for the seven concentrated masses, computed at flexible loads integration control stations for each panel, 1b-in. ² . Masses located between two control stations are distributed to these stations based on values of "simple beam" reactions at stations for mass.		
31-40			
41-50	Not used.		
	9		
	3		
	5.		

General information for array TVMI:

Blank common reference location = CD(51)

Array size = 250 cells

Array TVMT is used to transmit 1-g loads information computed by subroutines CDL and FDIS, overlay (15,0), to overlay (16,0) for processing by subroutine WDDATA. Array data consists of shears and moments for concentrated mass items and internal fuel, plus the pertinent information for each of the 7 concentrated masses.

WDDATA uses TVMT to create inertia loads array data stored in the T(201-T(900) region for use by overlays (9,0) and (10,0) or (18,0). Subroutine MISCNT, overlay (15,0), first initializes array TVMT to 0.0

values. After execution of subroutine CDL, MISCNT transfers the results of CDL calculations stored in arrays CCI and TCS to the proper TVMT locations. MISCNT then prints the contents of TVMT under control of IP(14), case control card 1, column 14. Subroutine FDIS subsequently transfers computed shears and moments for fuel cells 1 and 2 into TVMT from array TCS. FDIS then prints the final contents of TVMT under control of IP(17), case control card 1, column 17.

Array
Location

Description

Locations 1 through 66 contain 1-g load data sets for fuel cells 1 and 2 computed by subroutine FDIS. The fuel cell data set will contain 0.0 values if fuel cell design information is not specified in the input data for the surface. The load values are for full-capacity plus fuel system/ weights for the cell.

1-11	VAFL1(1-11), 1-g shears for fuel cell 1 as the 11 structural analysis control stations.
12-22	MX AFL1(1-11), 1-g bending moments for fuel cell 1 shears above. MY AFL1(1-11), 1-g torsional moments for fuel cell 1 shears
27 77	W. 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
23-33	My A FI.1(1-11), 1-g torsional moments for fuel cell I shears above.
34-44	$V_{\Lambda}FL2(1-11)$, 1-g shears for fuel cell 2.
45-55	Manager 1 a harding magnets for first gall 2 shares share
45-55	$M_{X \wedge FL2(1-11)}$, 1-g bending moments for fuel cell 2 shears above.
56-66	MYAFL2(1-11), 1-g torsional moments for fuel cell 2 shears above.

TABLE 189. TVMT ARRAY (CONT)

Location	Description
1-7 compand 2 and	67 through 165 contain 1-g load data sets for concentrated masses outed and stored in CCI(202)-CC1(300) by subroutine CDL. Sets 1 we for the input weight values specified for masses 1 and 2. Ontains the total 1-g loads due to masses 3-7.
67-77 78-88 89-99 100-110 111-121 122-132 133-143 144-154 155-165	VACDL1(1-11), 1-g shear for concentrated mass 1 MX ACDL1(1-11), 1-g bending moment for concentrated mass 1 MY ACDL1(1-11), 1-g torsional moment for concentrated mass 1 VACDL2(1-11) MX ACDL2(1-11) MY ACDL3-7(1-11) MX ACDL3-7(1-11) MY ACDL3-7(1-11) MY ACDL3-7(1-11)
of the s	166 through 249 contain the detail information computed for each seven concentrated mass items evaluated by subroutine CDL. This is created from array TCS, locations 144 through 227. This set cical to the variables stored in array CCDLI, location 1 through 86).
166 167 168	WCDL1, weight of concentrated mass No. 1 YACDL1 AXCDL1

TABLE 189. TVMT ARRAY (CONCL)

Array Location	Description		
178-189 190-201 202-213 214-225 226-237 238-249	Concentrated mass No. 2, 12 items as defined for No. 1 Concentrated mass No. 3, 12 items as defined for No. 1 Concentrated mass No. 4, 12 items as defined for No. 1 Concentrated mass No. 5, 12 items as defined for No. 1 Concentrated mass No. 6, 12 items as defined for No. 1 Concentrated mass No. 7, 12 items as defined for No. 1 Not used		
250	Not used		

General information for array T:

Blank common reference location = 1

Array size = 2,060 cells

Locations 201 through 900 contain design data computed and/or used by the structural synthesis/weight analysis routines of overlays (9,0), (10,0), and (18,0). Initial values for some of the variables are created by overlay (16,0) routines.

This region of the T array containing initial design values created by overlay (16,0) computations is printed by subroutine WDDATA before execution of overlay (9,0) for metallic design or overlay (18,0) for advanced composite design, under control of IP(23), case control card 1, column 23.

T Array Location	Variable Name	Description
(201-219)	(DMTTLB(1-11))	Torque-box material properties, metallic design. Required for proper program operation when analyzing advanced composite designs, specify any available metallic material from data bank.
201	DMTLB(1)	Design temperature for torque-box material set.
202	DMTLB(2)	Variable SDMU, μ, Poissons' ratio.
203	DMTLB(3)	A _C equation constant for compression stress- strain curve.
204	DMTLB(4)	B _C , equation constant for compression stress- strain curve.
205	DMTLB(5)	E _c , compression modulus of elasticity.
206	DMTLB(6)	Variable SDFY. F _{CY} , compression yield stress.
207	DMTLB(7)	A _t , equation constant for tension stress-strain curve.
208	DMTLB(8)	B _t , equation constant for tension stress-strain curve.
209	DMTLB(9)	E _t , tension modulus of elasticity.
210	DMTLB(10)	Variable SDTY. F _{ty} , tension yield stress.
211	DMTLB(11)	ρ , material density.
212	DMTLB(12)	Variable SDTU. F _{tu} , tension ultimate stress.
213	DMTLB(13)	Variable SDFY. F _{CP} , proportional limit stress, compression.
214	DMTLB(14)	Variable ERT. E _C at room temperature.
215	DMTLB(15)	Variable GRT. G at room temperature.

TABLE 190. T ARRAY, LOCATIONS 201-900 (CONT)

T Array Location	Variable Name	Description
216	DMTLB(16)	Variable SDFSU. F _{su} , ultimate shear allowable stress.
217	DMTLB(17)	Variable SDBRU. Fbru, ultimate bearing allowable stress.
218	DMTLB(18)	KFtu(b1/2), limit load tension allowable factor for fatigue, side of body.
219	DMTLB(19)	KFtu(2), limit load tension allowable factor for fatigue, station 2.
220-229	DPCDL(1-10)	ΔWCDL pnl(1-10), incremental torque-box panel weights for structural provision required for concentrated masses 1-7, 1b/panel.
230-240	DCDLV (1-11)	V _A (1-11) (ACDL), 1-g shears due to the preceding AWCOL.
241-251	DCDLM(1-11)	MXA(1-11) (ΔCDL), 1-g bending moments due to the preceding ΔWCDL.
252-262	DCDLT(1-11)	My _Λ (1-11) (ΔCDL), 1-g torsional moments due to the preceding ΔW _{CDL} .
263-273	WPILE(1-11)	Wt/in.(1-11)(LE), total leading edge structure weight/inch.
274-284	WPITE(1-11)	Wt/in.(1-11)(TE), total trailing edge structure weight/inch.
285-296	WPLLE(1-12)	\(\sum_{\text{pnl}(0-11)(LE)}\), panel weights for total leading edge structures.
297-308	WPLTE(1-12)	ΣWpn1(0-11)(TE), panel weights for total trailing edge structures.
309-319	CDLV1(1-11)	VA(1-11) (CDL1), 1-g shears due to concentrated mass No. 1, values for total weight at mass station.
320-330	CDLM1 (1-11)	MXA(1-11)(CDL1), 1-g bending moments for concentrated mass No. 1.
331-341	CDLT1(1-11)	MXA(1-11)(CDL1), 1-g torsional moments for concentrated mass No. 1.
342-352	CDLV2(1-11)	VA ₍₁₋₁₁₎ (CDL2), 1-g shears due to concentrated mass No. 2, values for total weight at mass station.
353-363	CDLM2(1-11)	MXA(1-11)(CDL2), 1-g bending moments for concentrated mass No. 2.
364-374	CDLT2(1-11)	MYΛ(1-11)(CDL2), 1-g torsional moments for concentrated mass No. 2.

TABLE 190. T ARRAY, LOCATIONS 201-900 (CONT)

		T
T Array Location	Variable Name	Description
375-385	CDLV3(1-11)	V _A (1-11)(CDL3-7), 1-g shears due to concentrated masses 3-7.
386-396	CDLM3(1-11)	MXΛ(1-11)(CDL3-7), 1-g bending moments for concentrated masses 3-7.
397-407	CDLT3(1-11)	MyΛ(1-11)(CDL3-7), 1-g tersional moments for concentrated masses 3-7.
408-418	FLM2(1-11)	MXΛ(1-11)(FL2), 1-g bending moments for total contents of fuel cell 2.
· 419 - 429	FLT2(1-11)	MyΛ(1-11)(FL2), 1-g torsional moments for total contents of fuel cell 2.
(430-444)	(TDGW(1-15))	Definitions follow.
430	TDGW(1)	Variable DGWRI. { [Ky(DWG);/(DGW)] - 1.0}.
431	TDGW(2)	Variable DGWR. [Ky(DGW) _i /(DGW) _o].
432	TDGW(3)	Variable DDWK. Factor for inertia loads. 0.0 if
		D(110) = 0.0, for vertical tails and if
		input loads are net loads. 1.0 if D(110) for
		wing and horizontal tails for calculated air-
		loads and input gross airloads.
433	TDGW(4)	Variable TBXK. Value is set to 1.0 by ABDW and
		is not changed. Used by VLOAD and AVLØAD as
		factor applied to total inertia loads.
434	TDGW(5)	Not used.
435	TDGW(6)	Not used.
436	TDGW(7)	Not used.
437	TDGW(8)	V _{AL} , airload shear on surface. Used by ALØAD only if module calculates loads distributions, value of input or calculated airload, 1b/side.
438	TDGW(9)	Spanwise center of pressure location for the preceding airload shear, fraction of airload distribution span.
439	TDGW(10)	Chordwise location of center of pressure for the preceding airload shear, fraction of chord.
440	TDGW(11)	Variable RFL1. Scaling factor for loads due to fuel cell 1 contents for current design weight.
441	TDGW(12)	Variable RFL2. Scaling factor for loads due to fuel cell 2 contents for current design weight.
442	TDGW(13)	Varaiable CDLK1. Scaling factor for loads due to retained masses at concentrated mass station 1 for current design weight.

TABLE 190. T ARRAY, LOCATIONS 201-900 (CONT)

T Array Location	Variable Name	Description
443	TDGW(14)	Variable CDLK2. Scaling factor for loads due to retained masses at concentrated mass station 2 for current design weight.
444	TDGW(15)	Variable CDLK3. Scaling factor for loads due to masses at concentrated mass stations 3-7, always 1.0.
445-455	FLV1 (1-11)	V _{A(1-11)} (FL1), 1-g shears for total contents of fuel cell 1.
456-466	FIM1(1-11)	M _{XΛ(1-11)} (FL1), 1-g bending moments for total contents of fuel cell 1.
467-477	FLT1(1-11)	MYΛ(1-11) (FL1), 1-g torsional moments for total contents of fuel cell 1.
478-488	FLV2(1-11)	V _A (1-11)(FL2), 1-g shears for total contents of fuel cell 2.
489-499	XBP(1-11)	X ₍₁₋₁₁₎ , X-coordinates for the 11 structural analysis control stations.
500-510	YBP(1-11)	Y ₍₁₋₁₁₎ , Y-coordinates for the 11 structural analysis control stations.
511-521	YST(1-11)	$Y_{\Lambda(1-11)}$, Y -coordinate for the 11 structural analysis control stations.
(322-529)	(RFDGW(1-8))	Definitions follow.
522	RFDGW(1)	KFL1(DGWØ), fuel cell l scale factor for content weight at DGWØ.
523	RFDGW(2)	<pre>KFL1(DGW1), fuel cell l scale factor for content weight at DGW(1).</pre>
524	RFDGW(3)	<pre>KFL1(DGW2), fuel cell 1 scale factor for content weight at DGW(2).</pre>
525	RFDGW(4)	<pre>KFL1(DGW3), fuel cell 1 scale factor for content weight at DGW(3).</pre>
526	RFDGW(5)	KF1.2(DGWO), fuel cell 2 scale factor for content weight at DGWØ.
527	RFDGW(6)	<pre>KFL2(DGW1), fuel cell 2 scale factor for content weight at DGW(1).</pre>
528	RFDGW(7)	<pre>KFL2(DGW2), fuel cell 2 scale factor for content weight at DGW(2).</pre>
529	RFDGW(8)	K _{FL2} (DGW3), fuel cell 2 scale factor for content weight at DGW(3).

TABLE 190. T ARRAY, LOCATIONS 201-900 (CONT)

T Array Location	Variable Name	Description
530-540 541	TBD(1-11)	$D_{ m ave}$ $(1-11)$, average torque-box depths. Not used.
542-552 553	TBW(1-11)	W _{TB(1-11)} , torque-box widths.
554-564	ALPV(1-11).	$V_{\Lambda(1-11)}(+AL)$, limit shears for airloads, up-bending condition.
565-575	ALPM(1-11)	M _{XA} (1-11)(+AL), limit bending moments for air- loads, up-bending condition
576-586	ALNV(1-11)	$V_{\Lambda(1-11)(-AL)}$, limit shears for airloads, down-bending condition.
587-597	ALNM(1-11)	M _{XΛ(1-11)(-AL)} , limit bending moments for air- loads, down-bending condition.
598-608	DW (1-11)	$V_{\Lambda(1-11)}(TB)$, 1-g shears for torque-box structures.
609-619	DWM(1-11)	M _{XΛ(1-11)(TB)} , 1-g bending moments for torque- box structures.
620-630	DWΓ(1-11)	$M_{Y\Lambda(1-11)}$ (TB), 1-g torsional moments for torquebox structures.
(631-640) 631	(TFLD(1-10)) TFLD(1)	Fuel cell data, definitions follow. KDES(FL1), scaling factor for fuel cell 1 at
632	TFLD(2)	DGWØ. KDES(FL2), scaling factor for fuel cell 2 at
633	TFLD(3)	DGWØ. W _{DES(FL1)} , design fuel in cell 1 at DGWØ, 1b/side.
634	TFLD(4)	WDES(FL2), design fuel in cell 2 at DGWØ, 1b/side.
635	TFLD(5)	W _{total(FL1)} , total contents for fuel cell 1, fuel plus fuel-systems, lb/side.
636.	TFLD(6)	W _{total(FL2)} , total contents for fuel cell 2, fuel plus fuel-systems, lb/side.
637	TFLD(7)	W _{Cap(FL1)} , full-capacity fuel weight in fuel cell 1, lb/side.
638	TFLD(8)	W _{cap(FL2)} , full-capacity fuel weight for fuel cell 2, lb/side.
639	TFLD(9)	W _{FS(Fl.1)} , fuel-systems weight in fuel cell 1, lb/side.

TABLE 190. T ARRAY, LOCATIONS 201-900 (CONT)

T Array Location	Variable Name	Description
640	TFLD(10)	W _{FS(FL2)} , fuel-systems weight in fuel cell 2, lb/side.
(641-644)	(WTIP(1-4))	Definitions follow.
641	WTIP(1)	W _{TIP} , tip structure weight, 1b/side.
642	WTIP(2)	Wunif, weight of uniformly distributed content items, lb/side.
643	WTIP(3)	W _{line} , weight of line distribution content items, 1b/side.
644	WTIP(4)	W _{conc} , weight of content items treated as concentrated masses, 1b/side.
645-654	WPNLS(1-10)	W _{TB(1-10)} , panel weights for distributed torque- box structures, strength design only, 1b/side.
655		Not used.
656-665	TPNLW(1-10)	W _{tot TB(1-10)} , panel weights for total torque- box plus secondary structures, lb/side.
(666-667)	(DTTRB(1-2))	Definitions follow.
666	DTTRB(1)	△W _{T-tail root} , weight increment for T-tail provisions at root chord station (horizontal tail), lb/side. For future use only, currently not computed.
667	DTTRB(2)	△W _{T-tail tip} , weight increment for T-tail provisions at tip chord station (vertical tail), 1b/side. For future use only, currently not computed.
668-678	GJRQD(1-11)	GJ _{VF(1-11)} , required stiffness to prevent surface flutter, lb-in. ² .
668-678	GJRTT(1-11)	Same as the preceding.
679-689	YBUD(1-11)	Yupr(1-11), load centroid for upper cover, distance from outer mold line.
690-700	YBLD(1-11)	$\overline{Y}_{1WT}(1-11)$, load centroid for lower cover, distance from outer mold line.
701-711	DWMII(1-11)	<pre>(MXΛ)DW(1-11), 1-g bending moment for torque- box structures, previous deadweight or grossweight pass.</pre>
	Ca .	**
		,

TABLE 190. T ARRAY, LOCATIONS 201-900 (CONT)

T Array Location	Variable Name	Description
712-722	DBM11(1-11)	(Mχ _Λ) _{ult+NZ(1-11)} , up-bending design bending moment for previous deadweight or grossweight pass.
723-733	DNXII(1-11)	N _{X(1-11)} , upper cover design compression load, previous deadweight or grossweight pass, lb/in.
(734-744)	(SWT(1-11))	Weight data to be transferred to CTBW array, refer to Table 193. Created by TBØPT, overlay (9,0), or ATBØPT, overlay (18,0).
734	SWT(1)	Σ WSURFACE, 1b/air vehicle
735	SWT(2)	\(\Supprox \text{Normal}\), 1b/air vehicle.
736	SWT(3)	Σωρινώς, 1b/air vehicle.
737	SWT(4)	Σw _{C-SEC} , lb/air vehicle.
738	SWT(5)	$\Sigma_{\rm WTB}$, 1b/air vehicle.
739	SWI(6)	$\Sigma_{\rm WLE}$, 1b/air vehicle.
740	SWT(7)	ΣW _{TE} , 1b/air vehicle.
741	STW(8)	ΣWMISC, 1h/air vehicle.
742	SWT(9)	W _{TIP} , lb/air vehicle.
743	SWT(10)	ΣW _{ΔT-tail} , lb/air vehicle.
		NOTE: This item not calculated.
744	SWI (11)	ΣΔW _{VF} , 1b/air vehicle.
745-755	TBWP1(1-11)	Z _{TB(1-11)} , weight per inch of torque-box structures, strength design only, 1b/in.
756-766	VFWP1(1-11)	Z _{AVF(1-11)} , weight per inch of torque-box structure increment required to satisfy
2/2 222	7776777 (1 11)	flutter, lb/in.
767-777	TDWPI(1-11)	ΔZ _{TB(1-11)} , weight-per-inch increment of structure weights for inertia loads calculation for next deadweight or grossweight
		pass, lh/in.
778-788	TMWPI(1-11)	Z _{MISC(1-11)} , weight per inch of secondary structures, 1b/in.
789-799	TBCWT(1-11)	WACONC(1-11), incremental chordwise torque-box
		structure weights at structural analysis control stations, lb/side. Weight of bulkhead and splice provision increments over and above estimated weights per inch of distributed items.
	12	

TABLE 190. T ARRAY, LOCATIONS 201-900 (CONCL)

DEFFI(1-11) Deff(1-11), effective couple-arm of torque-levalue used to compute current loads. Set WTCAL, overlay (10,0) or (18,0), used to pute load change effects during inertia least estimation for next deadweight or gross-weight pass. STMV(1-11) STMV(1	
STMV(1-11) \(\sum_{\text{N}}\(\lambda(1-11) \) \(\text{N}\(\lambda(1-11) \) (MISC), total 1-g shears for leading edge, contents other than and concentrated items 3-7. \(\sum_{\text{N}}\(\lambda(1-11) \) (MISC), 1-g bending moments for the preceding shear load. \(\sum_{\text{N}}\(\lambda(1-11) \) (MISC), 1-g torsional moments for preceding shear load. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), total 1-g shears for outer preceding shear load. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), total 1-g shears for outer preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g bending moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\sum_{\text{N}}\(\lambda(1-11) \) (DW), 1-g torsional moments for the preceding shears. \(\s	up by
 STMM(1-11) STMT(1-11) STMT(1-11)	ng fuel
SIMT(1-11) SIMT(1-11) SIMYA(1-11) (MISC), 1-g torsional moments for preceding shear load. SIMT(1-11) SIMYA(1-11) (DW), total 1-g shears for outer particles torque-box weights, constant for all deadweight passes. SIMT(1-11) SIMYA(1-11) (DW), 1-g bending moments for the preceding shears. SIMT(1-11) SIMYA(1-11) (DW), 1-g torsional moments for the preceding shears.	he
SDWV(1-11) SDWV(1-11) SUM(1-11) (DW), total 1-g shears for outer pless torque-box weights, constant for all deadweight passes. SDWM(1-11) SDWT(1-11)	the
855-865 SDWM(1-11) $\Sigma_{MXA(1-n)(DW)}$, 1-g bending moments for the preceding shears. $\Sigma_{MYA(1-11)(DW)}$, 1-g torsional moments for the preceding shears.	ane1
866-876 SDWT(1-11) $\Sigma_{MYA(1-11)(DW)}$, 1-g torsional moments for the preceding shears.	
	he
877-887 ALPT(1-11) $MY_{\Lambda}(1-11)$ (+AL), limit torsional moments for loads, up-bending condition.	air-
888-898 ALNT(1-11) MYA(1-11)(-AL), limit torsional moments for loads, down-bending condition.	air-
899 Not used.	
Not used; however, used by subroutine PIVØT overlays (9,0) and (18,0).	,

TABLE 191. SUBROUTINE REFERENCES FOR T(201)-T(900)
VARIABLES

The variables names listed herein are for the data items stored in the array T created and/or used by overlays (9,0), (10,0), (16,0), (17,0), and (18,0). These variables are some of the design information necessary for the synthesis of both metallic and advanced composite torque boxes. They are also used in the weight analysis of the structures and for data processing of computed data for output print.

Definitions for these variables can be found in Table 190.

Variable Name	Size	Reference Location	References		
			Overlay	Defined	Used
ALNM	11	T(587)	16	ALØAD	ALØAD, VLØAD1
		,	9		VL/AD
			18		ACLØAD, AVLØAD
ALNT	11	T(888)	16	ALØAD	ALØAD VLØAD1
			9		VLØAD
			18		ACLØAD, AVLØAD
ALM	11	T(576)	16	ALØAD	ALØAD, VLØAD1
			9		VLØAD
			18		ACLØAD, AVLØAD
ALPM	11	T(565)	16	ALØAD	ALØAD, VLØAD1
			9		VLØAD
			18		ACLØAD, AVLØAD
ALPT	11	T(877)	16	ALØAD	ALØAD, VLØAD1
			9		VLØAD
		1	18		ACLØAD, AVLØAD
ALPV	11	T(554)	16	ALØAD	ALØAD, VLØAD
			9		VLØAD
			18		ACLØAD, AVLØAD
CDLK1	1	TDGW(13)	16	ABDW	ABDW
			9	PRØG	PRØG
			18	ACPRØG	ACPRØG
CDLK2	1	TDGW(14)	16	ABDW	ABDW
	ł		9	PRØG	PRØG
			18	ACPRØG	ACPRØG
CDLK3	1	TDGW(15)	16	ABDW	ABDW
			9	PRØG	PRØG
			18	ACPRØG	ACPRØG, AVLØAD

TABLE 191. SUBROUTINE REFERENCES FOR T(201)-T(900) VARIABLES (CONT)

Si ze 11	Reference Location T(320)	Overlay	Defined	Used
	T(320)	1.6		
11	, ,	16	WDDATA	ABDW
11	1	9		PRØG
11	1	18		ACPRØG, AVLØAD
* *	T(353)	16	WDDATA	ABDW
		9		P RØ G
		18		ACPRØG, AVLØAD
11	T(386)	16	WDDATA	ABDW
		9		PRØG
		18		ACPRØG, AVLØAD
11	T(331)	16	WDDATA	ABDW
		9		PRØG
		18		ACPRØG, AVLØAD
11	T(364)	16	WDDATA	ABDW
	` ′	9		P RØ G
		18		ACPRØG, AVLØAD
11	T(397)	16	WDDATA	ABDW
	. ,	9		PRØG
		18		ACPRØG, AVLØAD
11	T(309)		WDDATA	ABDW
		9		PRØG
		18		ACPRØG, AVLØAD
11	T(342)		WDDATA	ABDW
	,	9		PRØ G
		18		ACPRØG, AVLØAD
11	T(375)		WDDATA	ABDW
	, ,			PRØG
		I .		ACPRØG, AVLØAD
11	T(712)		YBSET	YBSET
				PRØG, DWYBA
				DWYBA
11	T(241)			a = -
				DEADW
				DEADW .
11	T(230)		WDDATA	
-				DEADW
				DEADW
	11 11 11 11	11 T(364) 11 T(397) 11 T(309) 11 T(342) 11 T(375) 11 T(712) 11 T(241)	11 T(331) 18 16 9 18 16 11 T(364) 16 9 18 11 T(397) 16 9 18 11 T(309) 16 9 18 11 T(342) 16 9 18 11 T(712) 16 9 18 11 T(241) 16 9 18 11 T(241) 16 9 18	11 T(331) 16 WDDATA 9 18 11 T(364) 16 WDDATA 9 18 11 T(397) 16 WDDATA 9 18 11 T(309) 16 WDDATA 9 18 11 T(342) 16 WDDATA 9 18 11 T(375) 16 WDDATA 9 18 11 T(712) 16 YBSET 9 PRØG, DWYBA 11 T(241) 16 WDDATA 9 18 11 T(230) 16 WDDATA 9 18 11 T(230) 16 WDDATA 9 18 19 WDDATA 9 18 ACPRØG, DWYBA 18 ACPRØG, DWYBA

TABLE 191. SUBROUTINE REFERENCES FOR T(201)-T(900)
VARIABLES (CONT)

.,		D. C.		Ref	erences
Variable Name	Size	Reference Location	Overlay	Defined	Used
DCDLV	11	T(220)	16	WDDATA	
			9		DEADW
			18		DEADW
DDWK	1	TDGW(3)	16	ABDW	VLØAD1
			9	₩ ↔ ₩	VLØAD
			18	w #0 #0	AVLØAD
DEFFI	11	T(800)	16	YBSET	YBSET
	l		9	PRØG,DWYBA,TBØPT	PRØG,DWYBA
			10	WICAL	CNSTR, WTCAL
			18	DWYBA	DWYBA, WTCAL
DGWR	1	TDGW(2)	16	ABDW	VLØAD1
			9	PRØG	PRØG, VLØAD
			18	ACPRØG	ACPRØG, AVI ØAD
DCWRI	1	TDGW(1)	9	PRØG	DWYBA
			18	ACPRØG	DWYBA
DMTLB	19	T(201)	16	MTLCW	CNSTC,GJCAL
			10		STRIL
			18		ACPRØG
DNXII	11	T(723)	16	YBSET	YBSET
	J		9	PRØG,TBØPT	PRØG,DWYBA
			10	WTCAL	CNSTR, WTCAL
			18	WTCAL	DWYBA, WTCAL
DPCDL	10	T(220)	16	WDDATA	
			9		PRØG .
			10		WTCAL
			18		ACPRØG, WTCAL
DITRB	2	T(666)	16	WDDATA	
			10		CNSTR, WICAL
			18		ATBØPT,WTCAL
DWM	11	T(609)	16	WDDATA	ABDW, YBSET, VLØAD1
			9	PRØG, DEADW	PRØG, DEADW, DWYBA, VLØAD
			18	DEADW	ACPRØG, DEADW, DWYBA, AVLØAD

TABLE 191. SUBROUTINE REFERENCES FOR T(201)-T(900) VARIABLES (CONT)

		D 6.		1	References
Variable Name	Size	Reference Location	Overlay	Defined	Used
DWM I	11	T(701)	16	YBSET	
		24	9	PRØG .	PRØG, DWYBA
		4	18	ACPRØG	DWYBA
DWT	11	T(620)	16	WDDATA	ABDW, VLØAD1
			9	DEADW	DEADW, VLØAD
DIA!	١,,	T(500)	18	DEADW	DEADW, AVLØAD
DWV	11	T(598)	16 9	WDDATA	ABDW, VLØAD1
			18	DEADW DEADW	DEADW, VLØAD DEADW, AVLØAD
ERT	1	DMTLB(14)	16	DEADN	CNSTC
FLM1	11	T(456)	16	WDDATA	ABDW
LIMI	**	1 (430)	9	MUDAIA	PRØG
			18		ACPRØG, AVLØAD
FLM2	11	T(408)	16	WDDATA	ABDW
1 1116	**	1(400)	9		PRØG
			18		ACPRØG, AVLØAD
FLT1	11	T(467)	16	WDDATA	ABDW
			9		PRØG .
			18		ACPRØG, AVLØAD
FLT2	11	T(419)	16	WDDATA	ABDW
	1 11		9		P RØ G
			18		ACPRØG, AVLØAD
FLV1	11	T(445)	16	WDDATA	ABDW
			9		PRØG
		C	18		ACPRØG, AVLØAD
FLV2	11	T(478)	16	WDDATA	ABDW
			9		PRØG
			18		ACPRØG, AVLØAD
GRT	1	DMTLB(15)	16		CNSTC,GJCAL
GJRQD	11	T(668)	16	GJCAL	GJCAL, VLØAD1
			9		VLØAD, PRTA
			10 18	** **	EIGJC
GJRTT	11	Т(668)	18	GJTT	ASTIFF, AYLØAD, ACPRTA GJTT
		. (330)	-0		

TABLE 191. SUBROUTINE REFERENCES FOR T(201)-T(900)
VARIABLES (CONT)

Variable Name Size		Reference Location		References		
	Size		Overlay	Defined	Used	
RFDGW	8	T(522)	16	ABDW	ABDW	
			9		PRØG	
			18		ACPRØG	
RFL1	1	TDGW(11)	16	ABDW	ABDW	
			9	PRØG	PRØG	
			18	ACPRØG	ACPRØG	
RFL2	1	TDG1(12)	16	ABDW	ABDW	
	_	` ' '	9	PRØG	PRØG	
			18	ACPRØG	ACPRØG	
SDBRU	1	DMTLB(17)	16		CNSTC	
SDFP	1	DMTLB(13)	16		CNSTC	
SDFSU	1	DMTLB(16)	16		CNSTC	
SDFY	1	DMTLB(6)	16		CNSTC	
SDMU	1	DMTLB(2)	16		CNSTC	
			10		STRIL	
SDTU	1	DMTLB(12)	16		CNSTC	
SDTY	ī	DMTLB(10)	16		CNSTC	
SDWM	111	T(855)	16	ABDW	ABDW, VLØAD1	
CONT. ANT.		(000)	9	PRØG	VLØAD	
			18	ACPRØG	AVLØAD	
SDWT	11	T(866)	16	ABDW	ABDW, VLØAD1	
	"	. (00.)	9	PRØG	VLØAD	
			18	ACPRØG	AVLØAD	
SDWV	11	T(844)	16	ABDW	ABDW, VLØAD1	
		(3.1)	9	PRØG	VLØAD	
			18	ACPRØG	AVLØAD	
STMM	11	T(822)	16	WDDATA	ABDW, VLØAD1	
		1.(022)	9		VLØAD	
			18		ACPRØG, AVLØAD	
STMT	11	T(833)	16	WDDATA	ABDW, VLØAD1	
	••	1(000)	9	"DDKIK	VLØAD	
			18		ACPRØG, AVLØAD	
STMV	11	T(811)	16	WDDATA	ABDW, VLØAD1	
- 41 17	**	• (011)	9	""""	VLØAD	
			18		ACPRØG, AVLØAD	
					The state of the section	

TABLE 191. SUBROUTINE REFERENCES FOR T(201)-T(900) VARIABLES (CONT)

1/ : . b 1 .		De Comon on		Ref	erences
Variable Name	Size	Reference Location	Overlay	Defined	Used
SWT	11	T(734)	9 18	ТВØРГ	PRØG
TBCWT	111	T(789)	16	WDDATA	ACPRØG, ATBØPT
TIXWI	11	1(709)	9	PRØG, DWYBA, TBØPT	PRØG, DEADW, DWYBA
		11	10	WTCAL	CNSTR, WTCAL
			18	DWYBA, WTCAL	ACPRØG, DEADW, DWYBA, WTCAL
TBD	11	T(530)	16	WDDATA	WDDATA, YBSET
		((22)	9		DWYBA
	=		18		ACPROG, DWYBA, ASTIFF
TBW	11	T(542)	16	WDDATA	WDDATA, YBSET
		, ,	10		TBØPT
			18		ACPRØG, ATBØPT, ASTIFF
TBWPI	11	T(745)	16	WDDATA	
			9	PRØG	PRØG,DEADW,DWYBA, TBØPT,PRTA
			10	WICAL	CNSTR, WTCAL
			18	WTCAL	ACPRØG, DEADW, DWYBA, WTCAL, ACPRTA
TBXK	1	TDGW(4)	16	ABDW	VLØAD1
			9		VLØAD
			18		AVLØAD
TDGW	15	T(430)	16	ALØAD, ABDW	ALØAD,ABDW,VLØAD1
			9	PRØG	PRØG, DWYBA, VLØAD
		Ì	18	ACPRØG	ACPRØG, DWYBA, AVLØAD
TDWPI	11	T(767)	9	DWYBA	DWYBA, DEADW
mirit es	١.,		18	DWYBA	DWYBA, DEADW
TFLD	10	T(631)	16	WDDATA	ABDW
TAGET		m(mma)	18	node modem	ACLØAD
TMWPI	11	T(778)	9	PRØG, TBØPT	PP@G, DEADW
		b	10	WTCAL	CNSTR, WTCAL
TPNLW 10	10	T(656)	18	WTCAL	ACPRØG, DEADW, WTCAL
T I 141%	10	1 (030)	16 9	WDDATA	DDAC DEADW
			10	PRØG,TBØPT WTCAL	PRØG,DEADW

TABLE 191. SUBROUTINE REFERENCES FOR T(201)-T(900)
VARIABLES (CONCL)

Variable Name Size		D. C.		References		
	Location	Reference Location Overlay Defined	Defined	Used		
VFWPI	11	T(756)	9	PRØG,TBØPT	PRØG, DEADW, DWYBA	
		,	10	WTCAL	CNSTR	
			18	WTCAL	ACPRØG, DEADW, DWYBA	
WPILE	11	T(263)	16	WDDATA		
		i	10	~	WTPIN	
			18		WTPIN	
WPITE	11	T(274)	16	WDDATA		
			10		WTPIN	
			18		WIPIN	
WPLLE	12	T(285)	16	WDDATA		
			10		WICAL	
			18		WTCAL	
WPLTE	12	T(297)	16	WDDATA		
			10		WTCAL	
			18		WTCAL	
WPNLS	10	T(645)	16	WDDATA	WDDATA	
			9	PRØG, TBØPT	PRØG, DEADW	
		TI.	10	WTCAL	CNSTR, WTCAL	
			18	WTCAL	ACPRØG, DEADW, WTCAL	
WTIP	4	T(641)	16	WDDATA		
			10		WTCAL	
		11	18		WTCAL	
	ì		17	~~*	WØDATA	
XBP	11	T(489)	16	WDDATA		
YBLD	11	T(690)	16	YBSET		
	1		9	PRØG,TBØPT	PRØG,DWYBA,PRTA	
		1	10	SECTO	CNSTR, EIGJC	
			18	ACNSTR	DWYBA, ACPRTA	
YBP	11	T(500)	16	WDDATA		
YBUD	11	T(679)	16	YBSET	***	
			9	PRØG, TBØPT	PRØG,DWYBA,PRTA	
	- 1		10	SECTD	CNSTR_EIGJC	
		17	18	ACNSTR	DWYBA, ACPRTA	
YST	11	T(511)	16	WDDATA	WDDATA	
		()	18		ACWMS, ACWRBS	
		T _a st				

General information for array TVF:

Blank common reference location = T(1961)

Array size = 100

Array TVF contains surface flutter data, computed and used by subroutine GJCAL, for estimation of flutter design requirement of lifting surfaces. Geometry and flutter design point information from array TGJ stored on record 10, mass storage file 1, is used to create array TVF data necessary for the analysis by subroutines GJCAL and GJSI. GJCAL prints the contents of TVF for each structural station analyzed, under control of IP(22), control card 2, column 22. Array TVF is initially set to 0.0 values by GJCAL.

Array Location	Description
1	(GJreqd); computed value of required GJ at station YAi, calculated by subroutine GJSI during analysis for each analysis control station (Equation 14), lb-in. ² . This value is output when array TVF is printed under control of IP(22). Also, Gdes, material shear modulus at the reference structure design temperature, created and used by subroutine GJCAL during final processing of required GJ values, psi.
2	K_{ee} term of Equation 14. Kq of this term modified and programmed as $K_{flex} \cdot 22.5 \cdot K_{sp}^2$, where $K_{flex} =$ flexibility factor with a value of 1.10 (1.10 · 22.5 = 24.75). Default value of K_{flex} , location D(1441), is currently set to 1.0, but may be changed by the user. Value of K_{ee} is programmed as follows:
	$K_{j} K_{sp}^{2} \left[\frac{-1.116 \text{ Q } AR^{2} (22.5 \text{ K}_{flex})}{1480 (0.8 + AR)^{2}} \right]$
	where $K_d = GJ$ factor in location D(312) and
	K = flutter speed margin of safety factor in location D(252).
3	K_{swp} term of Equation 14, $(b_{\text{s}}^{1}/2)^{2}$ [0.4 + 0.7 COS (Λ_{EA} - 10.0°)]
	$(b_s^{'}/2)$ is the effective exposed structural semispan for surface flutter analysis, the inboard control station assumed to be that indicated by the value in location $D(246)$, unless superceded by a nonzero value in location $D(343)$.

TABLE 192. TVF ARRAY (CONT)

Array Location	Description
4	Kgi, planform constant term for Kgeomi term of Equation 14
5	(refer to Equation 14c), (CRS τ^2) [3(1 - λ ')]. Product of general constants of Equation 14 divided by material G at flutter design points $(K_{ee} \cdot K_{swp} \cdot K_{gi})/G$.
6	C ₁ term of Equation 14, $(1 - \lambda')^3 / \{[3(1-\lambda'\sigma')^3] [AC(1-\lambda'\sigma')(t/c)']\}$.
7	C_2 term of Equation 14, $(1)/[(1-\lambda') (RS-FS)_{\perp}]$.
8	C ₃ term of Equation 14, $\left\{-\theta_{T}/(\theta_{R}-\theta_{T})\right\}$ $\left\{L_{n}(\lambda'\sigma')/AC(1-\lambda'\sigma')\right\}$ $\left\{(t/c)'\right\} + Ln(\lambda')/[(1-\lambda')(RS-FS)_{\perp}]$.
9	C ₁ V ₁ term of Equation 14, calculated by GJS1.
10	C ₂ V ₂ term of Equation 14, calculated by GJSI.
11	C ₃ V ₃ term of Equation 14, calculated by GJSI.
12	$C_1V_1 + C_2V_2 + C_3V_3$, calculated by GJSI.
13	J _{ref} , reference value of J as derived from Equation 14, to be modified by computed local chord factor, K _{mac} , and G to derive required GJ value stored in location 1 for the current analysis station, calculated by GJSI.
14	Not used.
15	G, shear modulus of torque-box material, design temperature value at the critical clutter design point.
16	τ, rotational factor to convert aerodynamic chords to structural chords.
17	b'/2, exposed structural span for surface flutter analysis.
18	CR', exposed aerodynamic root chord.
19	DR', average torque-box depth at the exposed root chord station.
20	$Y_{\Lambda i}$, structural station location for current analysis points, distance from tip chord station.
21	C_{i} , aerodynamic chord at the Y-coordinate for $Y_{\Lambda i}$.
22	D_{i} , average torque-box depth at $Y_{\Lambda i}$.
23	W _i torque-box width at Y _{Ai} .

TABLE 192. TVF ARRAY (CONT)

Array Location	Description
24	K _i , variable GJ factor to be applied to the final calculated value, factors that are specified in D(346)-D(356) when option of input factors is selected; if not, this factor will be the derived factor based on the current station location relative to the two control stations in locations 25 and 26 and the factors in locations 80 and 81. For the option of constant GJ values inboard of the station defined in location 25 and outboard of the station defined in location 26 (VFID, D(251), specified as -1.0), this factor is set to 1.0
25	$(Y'_{\Lambda})_{\mathrm{IB}}$, inboard control station for GJ factor calculation based on factors input in D(314) and D(316) or for constant GJ value option, distance from tip chord station along structural reference line.
26	(Y'A ØB), outboard control station for GJ factor specified in D(316) or station along structural reference line.
27	GJ _{IB} , required GJ at (Y'_{Λ}) IB, computed when constant GJ option is selected. This value used for all analysis stations inboard of $(Y'_{\Lambda})_{IB}$. (Note: Flutter factor derived from values in D(314) and D(316) or input in D(346)-D(356) are not used to compute this value.
28	$GJ_{\emptyset B}$, required GJ at $(Y'_{\Lambda})_{\emptyset B}$, computed when constant GJ option is selected. This value used for all analysis control stations outboard of $(Y'_{\Lambda})_{\emptyset B}$. (Note: Flutter factor restriction as noted for GJ_{IB} apply.)
29	Not used.
30	CD ₃ , planform constant for term V _{1i} in Equation 14 (refer to Equation 14f), $[9(\lambda')^2(1-\sigma')^2]/[1-\lambda')^2$].
31	CD ₂ planform constant for term V_{ij} in Equation 14 (refer to Equation 14f), $[3 \lambda' (1-\sigma')/[2(1-\lambda')]$.
32	CD ₁ , 1.0 for programming purposes.
33	$\lambda' \sigma'$, planform constant for term V_{1i} in Equation 14 (refer to Equation 14f).
34	$(\lambda' \sigma')^2$ planform constant for term V_{1i} in Equation 14 (refer to Equation 14f).
35	$(\lambda' \sigma')^3$, planform constant for term V_{1i} in Equation 14 (refer to Equation 14f).

TABLE 192. TVF ARRAY (CONT)

Array Location	Description
36	$1/\lambda'$ or $1/0.00001$ if $\lambda' = 0.0$.
37	$1/(\lambda' \sigma')$ or $1/0.00001$ if $(\lambda' \sigma') = 0.0$.
38	$(\lambda')^3$
39	$(\lambda')^3/3.0.$
40	$(1-\lambda'\sigma')$, 0.00001 if value is computed as (-) or 0.0.
41	$(1-\lambda')$, 0.00001 if value is computed as (-) or 0.0.
42	$(1-\sigma')$
43	σ ', exposed thickness ratio taper.
44	(RS-FS), structural box width factor.
45	(t/c)', thickness ratio as exposed root chord.
46	AC, arc centroid of torque-box sections.
47	λ', exposed planform taper ratio.
48	$(\lambda')^2$,
49	$(\lambda')^3$,
50	$D_i \cdot W_i$, calculated by GJSI.
51	$D_{i} + W_{i}$, calculated by GJSI.
52	C _i /C _R ', calculated by GJSI.
53	D_i/D_R' , calculated by GJSI.
54	$(C_i/C_R')^3$, calculated by GJSI.
55	$(D_i/D_R')^2$, calculated by GJSI.
56	$\operatorname{Ln}\left(\left(c_{i}/C_{R}'\right)(1/\lambda')\right)$, calculated by GJSI.
57	Ln [$(D_i/D_R')(1/\lambda'\sigma')$], calculated by GJSI.
58	Variable for term V_{1_i} in Equation 14, calculated by GJSI and used
	in a loop. (D_i/D_R') for I=1, $(D_i/D_R')^2$ for I=2, $(D_i/D_R')^3$ for
	I=3.

TABLE 192. TVF ARRAY (CONT)

Array location	Description
59	Variable for term V ₁ in Equation 14, calculated by GJSI
	and used in a loop. (Ln (D_i/D_R') and λ') - 1) for $1 = 1$,
	$(2 \text{Ln } (D_i/D_R' \lambda') -1) \text{ for } 1=2, (3 \text{ Ln } (D_i/D_R' \lambda') -1) \text{ for } 1=3.$
60	Variable for term V_{1i} in Equation 14, $CD_{3} \cdot \{(D_{i}/D_{R}) \mid [Ln (D_{i}/D_{R}) \mid \lambda')\}$
	+1] + $\sigma' \lambda'$, calculated by GJSI.
61	Variable for term V_{1i} in Equation 14, $CD_2 \cdot \{(D_i/D_R')^2\}$
	[2Ln $(D_i/D_R^i \lambda^i)$ -1] + $(\sigma^i \lambda^i)^2$, calculated by GJSI.
62	Variable for term V_{1_i} in Equation 14, $CD_i \left(D_i / D_R' \right)^3$
	[3LN $(D_i/D_R' \lambda')$ -1] + $(\sigma' \lambda')^3$, calculated by GJSI.
63	V_{1_i} term of Equation 14, sum of values in location 60, 61 and 62,
	calculated by GJSI.
64	V_{2_i} , term of Equation 14, $\{(C_i/C_R')^3 [Ln (C_i/C_R' \lambda') - 0.333] + (\lambda')^3/3\}$,
	calculated by GISI
65	V_{3} term of Equation 14, $[(C_{1}/C_{R}')^{3} - (\lambda')^{3}]$, calculated by GJSI.
66	AR, planform aspect ratio of exposed surface.
67	$(D_i W_i) / (D_i + W_i)$, calculated by GJSI.
68	Not used
69	Not used
70	Not used

TABLE 192. TVF ARRAY (CONT)

Array	
Location	Description
71	K _{MAC} , GJ factor for local chord effect computed by GJSI as a
	function of the ratio of local aerodynamic chord to exposed panel MAC.
72	Not used
73	Not used
74	C _{TIP} , tip chord.
73	C' _R , exposed root chord.
76	C'MAC, MAC of exposed panel.
77	C _i /C' _{MAC} , calculated by GJSI.
78	Tan K _{GJ} , slope of GJ factor variation line.
79	C _K , tip station intercept for GJ factor variation line, for
	computations using Y' values measured from the tip chord station to the analysis station.
80	K_{IB} , GJ factor at the inboard control station, $(Y_{\Lambda}')_{IB}$, value
01	as specified in D(314).
81	$K_{\emptyset B}$, GJ factor at the outboard control station, $(Y_{\Lambda}')_{\emptyset B}$, value as specified in D(315).
82	Not used
83	0.8 + AR
84	COS (A _{EA} - 10.0°)
85	Planform constant for C_3 term in Equation 14, $\{Ln (\lambda' \sigma')/[AC]\}$
	$(1-\lambda'\sigma')$ $(t/c)']$
86	Planform constant for C_3 term in Equation 14, $\{Ln(\lambda')/[(1-\lambda')]\}$
·	(RS - FS) ₁]

TABLE 192. TVF ARRAY (CONCL)

Array Location	Description
87	Planform constant for C_3 term in Equation 14, $\left[-\theta_{\rm T}/(\theta_{\rm R}-\theta_{\rm T})\right]$
88	(1-λ'/(1-λ'σ')
89	3λ'(1-σ')/(1-λ')
90	(1-λ') (RS-FS) ₁
91	AC $(1-\lambda'\sigma')(t/c)'$
92	AC (t/c)'
93	C _R '/(b _s '/2)
94	K, K _{flex} K _{SP} ²
95	$\left[C_{R}'(1-\lambda')(RS-FS)_{L}\right]/b_{S}'/2)$
96	C _{TIP} (RS - FS) ₁
97	$[C_R'AC (1-\lambda'\sigma')(t/c)']/(b_s'/2)$
98,	C _{TIP} AC (t/c)'o'
99	$\left[{c_{R}}' (1-\lambda') \right] / (b_{s}'/2)$
100	C _R ' \(\lambda'\)
	,

General information for array CTBW:

Blank common reference location = T(1541)

Array size = 150 cells

Array CTBW contains design information computed for the torque box. Array data are used in overlay (17,0) for mass distribution calculations. Metallic analysis subroutine PRØG, overlay (9,0), and advanced composite analysis subroutine ACPRØG, overlay (18,0), create CTBW arrays for each of three grossweights that are evaluated from the results of synthesis and weight analysis routines. Each set is saved on mass storage file 1, records 156, 157, and 158. Subroutine WØDATA, overlay (17,0), uses data from these records as inputs to data arrays for torque-box mass distribution calculations by subroutine TBFWI. The torque-box stiffness information stored in the grossweight 2 data set is processed for use by subroutines WFLDD and WFLDD, the output data generation routines for support of the stand-alone flexible loads and flutter optimization programs.

The contents of array CTBW for each gross weight are printed by subroutine WØDATA under control of IP(38), case control card 1, column 38.

Array Location	Data Source	Description
1-11 12-22	TBWPI	 Z_{TB}(1-11), torque-box structure weight at each analysis control station, lb/inch. ΔWconc(1-11), incremental weights at each analysis control station for local chordwise torque-box structures, assumed to be uniformly distributed between the front and rear spars at the station,
23-33	-	lb/side. EI ₍₁₋₁₁₎ , torque-box bending stiffness at each analysis control station. Flutter design EI values stored in CD(34) through CD(44) are used for metallic design. The modulus of elasticity value stored in TWT(173) is used for the EI calculations. The TWT(173) value is created by subroutine CNSTC, overlay (16,0). For advanced composite torque boxes, the EI values stored in CD(276) through CD(286) are used by advanced composite torque-box stiffness data array EICFL). These values reflect lamina

TABLE 193. CTBW ARRAY (CONT)

Array Location	Data Source	Description
	554.55	2000.19010
34-44	-	properties for the flexible analysis design temperature stored in TEIGJ(3). GJ ₍₁₋₁₁₎ , torque-box torsional stiffness at each analysis control station. In metallic design, from CD(23) through CD(33), based on G-value stored in TWT(174). For advanced composite torque boxes, from CD(265) through CD(275)
45	DEVF	on design temperature stored in TEIGJ(3). Eref, reference modulus of elasticity for preceding El values, to be used for scaling of metallic structure El values by WFLDD and WVFDD.
		Subroutine WFLDD is programmed to use this value to compute EI scale factor; therefore, for advanced composite torque-boxes, the input data value in location D(290) must be specified as 0.0 or, if scaling is required, with a value of less than 10.0. Subroutine WVFDD does not use this value for advanced composite torque boxes.
46	DGVF	G _{ref} , reference modulus of rigidity for preceding GJ values. Same as for E _{ref} .
47	SDRHØ	ρ _{ref} , reference torque-box material density, lb/cu in.
48-57	WPNLS	W _{TB pn1} (1-10), panel weights for torque-box structures for strength design only, lb/side.
58-67	TPNLW	W _{tot pnl(1-10)} , total torque-box panel weights, lb/side.
69-77	DPCDL.	WACDL pn1(1-10), structure provision weights for the 7 concentrated masses in the 10 torque-box panels, 1b/side.
78-88	TMWP1	Z _{MISC} (1-11), weight per inch values for surface secondary structures, based on § _{MISC} (D(604)), lb/in.
89-99	VFWP1	<pre>ZVF (1-11), weight per inch values for torque-box structure increment due to flutter stiffness requirements, lb/in.</pre>
(100-110)	(SWT)	Total weight summary data. Array SWT created by subroutine TBØPT, overlay (9,0), or ATBØPT, overlay (18,0).

TABLE 193. CTBW ARRAY (CONCL)

Array Location	Data Source	Description
100	SWT(1)	ΣW _{SURFACE} , total surface structure weight, lb/air vehicle.
101	SWT(2)	ΣWapNL, total outer panel structure weight, lb/air vehicle.
102	SWT(3)	ΣWp _{IVØT} , total pivot structure weight, lb/air vehicle.
103	SWT(4)	ΣW _{C-SEC} , total center-section structure weight, lb/air vehicle.
104	SWT(5)	ΣW _{TB} , total torque-box structure weight, 1b/air vehicle
105	SWT(6)	Σ W _{LE} , total leading edge structure weight, lb/air vehicle.
106	SWT(7)	Σ Wre, total trailing edge structure weight, 1b/air vehicle.
107	SWT(8)	ΣMISC, total secondary structure weight, lb/air vehicle
108	SWT(9)	W _{TIP} , surface tip structure weight, 1b/air vehicle
109	SWT(10)	EWAT-tail, T-tail structure provision weights, lb/air vehicle. (Note: This item is not computed; storage cell is allocated for future use.
110	SWT(11)	ΣΔW _{VF} , total weight increment due to flutter stiff ness requirements, lb/air vehicle.
111-121	ACVFDE	EVF(1-11), equivalent modulus of elasticity for advanced composite torque boxes only. Values reflect design temperature specified in TEIGJ(3). Subroutine ACPRØG creates ACVFDE values from CD(298) through CD(308) (advanced composite torque-box stiffness data array ECFL). ACVFDE is set to 0.0 value by subroutine PRØG for metallic torque boxes.
122-132	ACVFDG	GVF(1-11), equivalent modulus of rigidity for advanced composite storque boxes only. Same as preceding EVF(1-11), created from CD(289) through CD(297) (stiffness data array GCFL).
133-150	-	Not used.

General information for array CTBI:

Blank common reference location = CD(351)

Array size = 150 cells

Array CTBI contains mass distribution data for torque-box structures computed by subroutine TBFWI, overlay (17,0). Subroutine WØDATA creates CTBI data from TBFWI outputs stored in array TCS, locations 1 through 150. Torque-box mass distributions are computed for gross weight 2 only. WØDATA saves CTBI on mass storage file 1, record 155. Array CTBI is recreated later from this source for total surface mass distribution calculations, and for processing of output data for the flexible loads and flutter optimization programs by subroutines WFLDD and WVFDD. WØDATA prints the contents of array CTBI under control of IP(38), case control card 1, column 38.

Array Location	Description
	1 through 36 contain mass distribution data integrated in the malysis-reference system.
1	0.0, not required.
2-11	ΣW _{pnl} (1-10), weight of torque-box structures between control stations 1-11.
12-13	0.0, not required.
14-23	$\Sigma(W\cdot\Delta Y_{\Lambda})_{pn1}(1-10)$, sum of grid spanwise moments for the preceding 10 weight panels. Moments are computed at the inboard control station, Y_{Λ_i} , of each panel.
24-25	0.0, not required. Al
26-35	$\Sigma(W \Delta X_{\Lambda})_{pn1}$ (1-10), sum of grid chordwise moments for the preceding 10 weight panels. Moments are computed at the inboard control station, $X_{\Lambda i} = 0.0$, of each panel.
36	0.0, not required.

Locations 37 through 91 contain mass distribution data integrated in the flutter optimization reference system. This data set contains data for the 11 structural strip panels defined for the 11 structural analysis control stations $Y_{\Lambda(1-11)}$, (TG(1) - TG(11)). The spanwise panel boundaries are defined by $Y'_{\Lambda(1-12)}$, (TG(45) - TG(56)). All weights, moments, and inertias are summed to the structural analysis control station for the panel $(Y_{\Lambda i}, X_{\Lambda i} = 0.0)$.

TABLE 194. CTBI ARRAY (CONT)

Array Location	Description
37-47	\(\mathbb{E}_{\text{pnl}(1-11)} \), sum of grid weights for the structural strip panels defined for flutter optimization.
48-58	$\Sigma(W\cdot\Delta Y_{\Lambda})_{pnl}$ $(1-11)$, sum of grid spanwise moments for the preceding 11 weight panels, computed at the structural analysis control station, $Y_{\Lambda i}$, of each panel.
59-69	$\Sigma(W \Delta X_{\Lambda})_{pnl(1-11)}$, sum of grid chordwise moments for the preceding 11 weight panels, computed at the structural analysis control station, $X_{\Lambda i} = 0.0$, of each panel.
70-80	$\Sigma(I_{YA})$ pnl (1-11), pitch inertia for the preceding 11 weight
81-91	$Y_{\Lambda i}$, of each panel, $(I_{Y\Lambda})_i = \sum (W \cdot \Delta X_{\Lambda}^2)_i + \sum (I_{OY\Lambda})_i$ $\sum (I_{X\Lambda})_{pnl}(1-11)_i$, roll inertia for the preceding 11 weight panels, computed at the structural analysis control station, $X_{\Lambda} = 0.0$, of each panel, $(I_{X\Lambda})_i = \sum (W \cdot \Delta Y_{\Lambda}^2)_i + \sum (I_{OX\Lambda})_i$.
	92 through 146 contain mass distribution data integrated in the
flexible tain 11 computed	e loads analysis reference system. This data set is sized to con- aerodynamic strip panels; however, data for only 10 panels are 1. The panel boundaries are defined in TGA(1) - TGA(11). Integra- atrol stations for each panel, (Y,X); are defined in TGA(23) -
flexible tain 11 computed tion cor TGA(42).	E loads analysis reference system. This data set is sized to conaerodynamic strip panels; however, data for only 10 panels are l. The panel boundaries are defined in TGA(1) - TGA(11). Integrateral stations for each panel, (Y,X) ₁ , are defined in TGA(23) - ΣWpnl(1-10), sum of grid weights for the 10 aerodynamic strips defined for flexible loads analysis.
flexible tain 11 computed tion cor TGA(42). 92-101 102 103-112	 loads analysis reference system. This data set is sized to conaerodynamic strip panels; however, data for only 10 panels are I. The panel boundaries are defined in TGA(1) - TGA(11). Integratoral stations for each panel, (Y,X)_i, are defined in TGA(23) - ΣWpnl(1-10), sum of grid weights for the 10 aerodynamic strips defined for flexible loads analysis. 0.0, not required. Σ(W·ΔY)_{pnl}(1-10), sum of grid spanwise moments for the preceding 10 weight panels, computed at the integration control station, Y_i, defined in TGA(23) - TGA(32).
flexible tain 11 computed tion cor TGA(42). 92-101 102 103-112	 loads analysis reference system. This data set is sized to conaerodynamic strip panels; however, data for only 10 panels are The panel boundaries are defined in TGA(1) - TGA(11). Integratoral stations for each panel, (Y,X)_i, are defined in TGA(23) - ΣWpnl(1-10), sum of grid weights for the 10 aerodynamic strips defined for flexible loads analysis. 0.0, not required. Σ(W·ΔY)_{pnl}(1-10), sum of grid spanwise moments for the preceding 10 weight panels, computed at the integration control station,
flexible tain 11 computed tion cor TGA(42). 92-101 102 103-112	Place loads analysis reference system. This data set is sized to conaerodynamic strip panels; however, data for only 10 panels are l. The panel boundaries are defined in TGA(1) - TGA(11). Integratively, and the panel boundaries are defined in TGA(23) - TGA(11), sum of grid weights for the 10 aerodynamic strips defined for flexible loads analysis. 1. **Output** Output** Output*

TABLE 194. CTBI ARRAY (CONCL)

Array Location	Description
124 125-134	<pre>0.0, not required. \[\Sigma(\text{I}_Y)\) \[\sigma(\text{I}_1)\) \[\text{computed at the integration control station, Yi. (Iy)i = } \[\Sigma(\text{W} \times \Delta \text{X}^2)\) \[\text{i} \sigma(\text{I}_{OY}). \] </pre>
135 136-145	0.0, not required. $\Sigma(I_X)_{\text{pnl}(1-10)}$, roll inertia for the preceding 10 weight panels, computed at the integration control station X_i . $(I_X)_i = \Sigma(W \cdot \Delta Y^2)_i + \Sigma(I_{OX})_i$.
147-150	Not required. These locations will contain 1-g shear values for stations 1 through 4. Data computed by TBFWI and transferred from TCS(147 - TCS (150) by WØDATA.

General information for array WCG:

Blank common reference location = TW(701)

Array size = 126 cells

Array WCG contains estimated centers-of-gravity coordinates for the total surface and major surface components. Coordinates in the vehicle reference system, (Y,X), and the surface structural system, (YA, XA), are computed for each gross weight that is evaluated. The information is computed by subroutine WDDATA based on final sizing data for the torque boxes and on the CG information computed in overlays (8,0), (14,0), and (15,0) for the other components. WCG data are used by subroutine PRTD for output of surface weight summary information.

Array locations are initialized to 0.0 value by subroutine WØDATA before computations are made. WØDATA prints the contents of WCG under control of IP(38), case control card, column 38.

Array Location	Description
1-3	Y _{CG GW(1-3)} total surface structure weights.
4-6	Xoc CW(1 7), total surface weights.
7-9	YACG GW(1-3), (YCG, XCG) preceding.
10-12	XACG GW(1-3), (YCG, XCG) preceding.
13-24	CG coordinates for total outer panel structure weights.
25-36	CG coordinates for center-section structure weights. YCG values
	assumed as 0.5 ($b_1/2$). X_{CG} values assumed to be for midchord station of the center section.
37-48	CG coordinates for pivot structure weights, assumed to be at the pivot point (YpVT, XpVT).
49-60	CG coordinates for secondary structure weights, assumed to be the same as for the torque box.
61-72	CG coordinates for torque-box structure weights.
73-84	CG coordinates for total leading edge structure weights.
85-96	CG coordinates for total trailing edge structure weights.
97-108	CG coordinates for tip structure weights.
109-120	CG coordinates for miscellaneous outer panel weights, same as locations 49 through 60.
121-126	Not used.

General information for array ACL:

Blank common references location = CT(1)

Array size = 900 cells

Array ACL contains gross limit airloads and design condition data processed by subroutine ACLØAD, overlay (18,0) for use by subroutine AVLØAD during computations of net ultimate design loads for advanced composite torque-box analysis. ACL contains the necessary data for up to 20 design conditions and is saved on mass storage file 1, record 30, by ACLØAD. Subroutine AVLØAD reinitializes array ACL from this data source during each pass in the gross weight/deadweight iteration loop controlled by subroutine ACPRØG.

The contents of ACL will depend upon the load calculation options selected for the analysis. Data for two sets of design loads will be created if the load option for module calculations or input loads is selected. Loads information created and processed by subroutine ALØAD, overlay (16,0) is used as the data source. Selection of the option to utilize data computed by the airloads module of SWEEP results in processing of the BØ array data stored on mass storage file 1, records 160 through 183, by subroutine MAXLDS, overlay (4,0).

Subroutine ACLØAD processes information for only those design conditions for which BØ data records have been created by MAXLDS. Computed design condition data is indicated by the status of code words in array WHVLID. The processed information are sequentially stored in array ACL.

Array ACL data created for vertical tails from array BØ data are created to contain a maximum of 10 design loads sets only. This restriction is programmed so that equal and opposite load sets can be created. The advanced composite synthesis routines can then evaluate the effects of both tension and compression loads for each design condition during the separate analysis passes made for each cover. Processing of T-tail vertical tail loads are made in reverse order; i.e., from load set record 183 back to 160. Sets created for SWEEP design conditions Al4WV through Al7WV are not processed.

Array ACL is initialized to 0.0 values before data are processed into the array. At the conclusion of data processing, subroutine ACLØAD prints the contents of ACL under control of IP(20), case control cards 1, column 20.

Airloads module output array BØ is renamed WBØ when used by subroutine ACLØAD. For data definitions, refer to Table 24, Volume III, "Airloads Estimation Module."

TABLE 196. ACL ARRAY (CONT)

Array Location	Description	
Locations 1 through 660 contain limit airloads shears and moments for the 11 structural analysis stations. This data set will contain up to 20 consecutively stored sets of design airloads, each 33-cell set consisting of 11 shears followed by 11 bending moments and ending with 11 torsional moments. These load items are stored root-to-tip. (NOTE: load sets 1 and 2 will always exist. load sets 3 through 20 will depend upon contents of array WHVLID.)		
1-11 12-22	<pre>V_A(1-11) cond 1, design airload shears, first load set, 1b. MXA(1-11) cond 1, design bending moments, first load set, inlb.</pre>	
23-33	MyΛ(1-11) cond 1, design torsional moments, first load set, in1b.	
34-66	Load set 2.	
67-99	Load set 3.	
100-132	Load set 4.	
133-165	Load set 5.	
166-198	Load set 6.	
199-231	Load set 7.	
232-264	Load set 8.	
265-297	Load set 9.	
298-330	Load set 10.	
331-363	Load set 11.	
364-396	Load set 12.	
397-429	Load set 13.	
430-462	Load set 14.	
463-495	Load set 15.	
496-528	loud set 16.	
529-561	Load set 17.	
562-594	Load set 18.	
595-627	Load set 19.	
628-660	Load set 20.	

Locations 661 through 900 contain pertinent design condition information associated with each processed loads set stored in the foregoing locations 1 through 660.

TABLE 196. ACL ARRAY (CONCL)

Array Location	Description
661-680 681-700	N _{Z(1-20)} , load factor. TEMP(1-20), surface structural design temperature, from BØ(186) for wing, BØ(187) for horizontal tails and BØ(188)
701-720	for vertical tails. $R_{DW(1-20)}$, factor for deadweight loads, (+1.0) for wings and vertical tails ($0/0$) for horizontal tails ($0/0$).
721-740	R _{FL1(1-20)} , factor for fuel cell 1 loads, ratio of remaining fuel plus fuel system weight to total at takeoff.
741-760 761-780	RFL2(1-20), tactor for fuel cell 2 loads, same as for 1. RCDL1(1-20), factor for concentrated mass 1, ratio of remaining store weight to total at takeoff.
781-800 801-820	$R_{\text{CDL2}(1-20)}$, factor for concentrated mass 2, same as for 1. $TOCW_{(1-20)}$, takeoff gross weight, 1b/air vehicle.
821-840	DGW ₍₁₋₂₀₎ , vehicle weight at design, 1b/air vehicle.
841-860	COND NO _{$(1-20)$} , design condition number, same as variable ACNW in Table 24, Volume III.
861-880 881 - 900	△FL ₁₋₂₀ , consumed fuel out to design weight, .lb/air vehicle. △UL ₁₋₂₀ , expended useful load out to design weight, .lb/air vehicle.
ı	
	·

General description for array ACLT:

Blank common reference location = CD(532)

Array size = 66 cells

Array ACLT is used by subroutine AVLØAD for storage and retrieval of gross air load shears and moments, and for storage of computed design loads during computations of net ultimate loads for advanced composite structure analysis. Locations 1 through 33 are used to store load values from array ACL for each design load condition processed. Computed design loads are stored in locations 34 through 66 for later processing into array ACVMT. The contents of array ACLT are printed after each load set has been processed under control of IP(24) or IP(25), case control card 1, columns 24 and 25.

Array Location	Description
1-11 12-22 23-33	V _{\Lambda(1-11)i} , limit airload shears at structural analysis control stations 1 through 11 for load set i. M _{\text{X}\Lambda(1-11)i}} , limit airload bending moment, load set i. M _{\text{Y}\Lambda(1-11)i}} , limit airload torsional moment, load set i.
34-44 45-55 56-66	V _{Λ(1-11)i} , net ultimate shear at structural analysis control stations 1 through 11 for load set i. M _{χΛ(1-11)i} , net ultimate bending moment, load set i. M _{γΛ(1-11)i} , net ultimate torsional moment, load set i.
	·

General information for arrays ACVMT and V:

Blank common reference location = CT(1321)

Array sizes = 660 cells

Array dimensions: ACVMT = 1320, V = (3,11,20)

Arrays ACVMT and V are identical arrays containing net ultimate designs loads for advanced composite torque-box analysis. Subroutine AVLØAD uses array name ACVMT. Array name V is used by subroutines ACWMS and ACWRBS, accessing the design loads information through indexes (i,j,k), where i = load type (shear, bending moment and torsional moment), j = analysis control station and k = design load condition set.

Subroutine AVLØAD creates ACVMT data from array ACLT, locations 34 through 66. The number of load sets stored in ACVMT is governed by the value of variable ILCASE, the number-of-design loads counter for advanced composite analysis. ACVMT is initialized to 0.0 values by AVLØAD before processing of loads data. The contents of ACVMT are not printed; however, AVLØAD prints array ACLT under control of IP(24) or IP(25), case control card 1, columns 24 and 25.

Array Location		December
ACVMT	V	Description
1	1,1,1	VA1 (LD 1), net ultimate shear, station 1,
2	2,1,1	load set 1. MxA1 (LD 1), net ultimate bending moment, sta-
3	3,1,1	tion 1, load set 1. MyA1 (LD 1), net ultimate torsional moment,
4	1,2,1	station 1, load set 1. VA2 (LD 1), station 2, load set 1.
5	2,2,1	M _X A ₂ (LD 1), station 2, load set 1.
6	3,2,1	$M_{YA2 \text{ (LD 1)}}$, station 2, load set 1.
7-9	(1-3),3,1	$V_{\mathbf{A}}$, $M_{\mathbf{X}\mathbf{A}}$, $M_{\mathbf{Y}\mathbf{A}}$ for station 3, load set 1.
10-12	(1-3),4,1	V_{Λ} , $M_{\chi\Lambda}$, $M_{\gamma\Lambda}$ for station 4, load set 1.
13-15	(1-3),5,1	V_{Λ} , $M_{\chi\Lambda}$, $M_{\chi\Lambda}$ for station 5, load set 1.
16-18	(1-3),6,1	V_{Λ} , $M_{\chi\Lambda}$, $M_{\gamma\Lambda}$ for station 6, load set 1.
19-21	(1-3),7,1	V_{Λ} , $M_{\chi\Lambda}$, $M_{\chi\Lambda}$ for station 7, load set 1.
22-24	(1-3),8,1	V_{Λ} , $M_{\chi\Lambda}$, $M_{\chi\Lambda}$ for station 8, load set 1.

TABLE 198. ACVMT AND V ARRAYS (CONCL)

Array Location		Description
ACVMI'	V	Description
25-27	(1-3),9,1	V_{Λ} , $M_{\chi\Lambda}$, $M_{\gamma\Lambda}$ for station 9, load set 1.
28-30	(1-3),10,1	V_{Λ} , $M_{\chi\Lambda}$, $M_{\gamma\Lambda}$ for station 10, load set 1.
31-33	(1-3),11,1	V_{Λ} , $M_{X\Lambda}$, $M_{Y\Lambda}$ for station 11, load set 1.
34-66	(1-3),(1-11),2	Shears and moment, stations 1 through 11, load set 2.
1	(1-3), (1-11), 3	Load set 3.
100-132	(1-3), (1-11), 4	Load set 4.
1	(1-3), (1-11),5 (1-3), (1-11),6	Load set 5. Load set 6.
•		Load set 7.
•	(1-3),(1-11),8	
	(1-3), $(1-11)$, 9	
1	(1-3), (1-11), 10	
331 - 363	(1-3), (1-11), 11	Load set 11.
364-396	(1-3), (1-11), 12	Load set 12.
397-429 430-462	(1-3), (1-11), 13 (1-3), (1-11), 14	Load set 13. Load set 14.
463-495	(1-3),(1-11),14 (1-3),(1-11),15	
	(1-3),(1-11),16	
529-561	(1-3), $(1-11)$, 17	
562-594	(1-3), (1-11), 18	
595-627	(1-3), (1-11), 19	
628-660	(1-3),(1-11),20	Load set 20.
1		
	}	

General information for array TEIGJ:

Blank common reference location = TW(783)

Array size = 4 cells

Array TEIGJ contains special evaluation temperatures for advanced composite designs. This temperature set is determined by subroutine ACPRØG, overlay (18,0) for use by subroutine TEMPC for computations of the at-temperature material properties necessary for bending and torsional stiffness calculations. The material stiffness characteristics for these temperatures are stored in array ENQC.

Array	A		
Location	Description		
1	T _{ST DES} , reference temperature for output of stiffness characteristics, strength design, °F. Represents selected		
	temperature to be used to compute nominal stiffness distribu- tion information for output evaluation. This value is always specified. Desired evaluation temperature can be specified		
	in input data location D(281), variable DTMPB. If DMTPB is specified as a 0.0 or negative value, the temperature value for basic torque-box design, DMTLB(1) is used. (Note:		
2	DMTLB(1) is derived from D(259), variable DMT.) T _{VF DES} , design temperature for flutter design, °F. Computed only if flutter analysis is to be made. Temperature value		
3	specified in D(282), variable VFDTMP.		
	T _{FØ DES} , evaluation temperature for torque-box stiffness characteristics for flutter optimization output, °F. Computed only if data generation option for flutter optimization design data is selected. Temperature is specified in D(283), variable DTMPFØ. If this input value is 0.0 or negative, the value in location 1 is used.		
4	T _{FL DES} , evaluation temperature for torque-box stiffness characteristics for flexible loads output, °F. Computed only if data generation option for flexible loads design data is selected. Temperature is specified in D(284), variable DTMPFL. If this input value is 0.0 or negative, the value in location 1 is used.		

General information for array ENQ:

Blank common reference location = TW(601)

Array size = 100 cells

Array dimension = (5,20)

Array ENQ contains material stiffness parameters for the 20 load cases that can be evaluated by the advanced composite torque-box synthesis routines. The design temperatures for these properties are specified in array TEMP, created by subroutine ACLØAD. The stiffness parameters in ENQ are computed by subroutine TEMPC. This data set is used to compute stability allowables for plate laminates which are assumed to be configured as a balanced, symmetric laminate of the form $[0^{\circ}/\pm 45^{\circ}/90^{\circ}]_{n}$. The array is organized so that the i-index of

the (i,j) array dimension refers to the 5 applicable Q matrix elements for each temperature specified by the j-index. The ENQ array is printed by subroutine TEMPC under control of IP(19), case control card 1, column 19, for each load to be evaluated.

Relative Core Location	Array Index Value	Description
1	1,1	Q_{11}^0 for load set 1, Q_{11} term for 0°-ply =
2	2,1	$[E_L/(1-\nu_{LT}\nu_{TL})]$. (Also equal to Q_{22} term for 90°-ply.) Q_{22}^0 for load set 1, Q_{22} term for 0°-ply = $[E_T/(1-\nu_{LT}\nu_{TI})]$. (Also equal to Q_{11} term for 90°-ply.)
5	3,1	Q_{12}^0 for load set 1, Q_{12} term for 0°-ply =
4	4,1	$ \nu_{LT}Q_{22}^{0} = \nu_{LT}Q_{11}^{0} $. (Also equal to Q_{12} term for 90°-ply.) Q_{11}^{45} for load set 1, Q_{11} term for ±45°-ply =
5	5,1	0.25 $[Q_{11}^{0} + Q_{22}^{0} + 2.0 (Q_{12}^{0} + 2.0 G_{LT}^{0})]$. (Also equal to Q_{22} term for $\pm 45^{\circ}$ -ply.) Q_{12}^{45} for load set 1, Q_{12} term for $\pm 45^{\circ}$ -ply = 0.25 $[Q_{11}^{0} + Q_{22}^{0} + 2.0 (Q_{12}^{0} - 2.0 G_{LT}^{0})]$.

TABLE 200. ENQ ARRAY (CONCL)

Relative Array Core Index Location Value	Description
51-55 (1-5),1 56-60 (1-5),1 61-65 (1-5),1 66-70 (1-5),1 71-75 (1-5),1 76-80 (1-5),1 81-85 (1-5),1 86-90 (1-5),1	Q-terms for load set 3. Q-terms for load set 4. Q-terms for load set 5. Q-terms for load set 6. Q-terms for load set 7. Q-terms for load set 8. Q-terms for load set 9. Q-terms for load set 10. Q-terms for load set 11. Q-terms for load set 12. Q-terms for load set 13. Q-terms for load set 14. Q-terms for load set 15. Q-terms for load set 16. Q-terms for load set 17. Q-terms for load set 18. Q-terms for load set 19.

General information for array ENQC:

Blank common reference location = TW(787)

Array size = 24 cells

Array dimension = (6.4)

Array ENQC contains material stiffness parameters for the temperature values found in array TEIGJ. These parameters are used to compute stiffness characteristics for the balanced, symmetrical advanced composite laminate with the assumed configuration $[0^{\circ}_{1}/\pm 45^{\circ}_{m}/90^{\circ}_{n}]_{s}$.

Properties for each temperature consists of 6 items, the applicable elements of the Q matrices as defined in Section II, Equations 66 and 68. The array is organized so that the i-index of the (i,j) array dimension refers to the 6 Q-matrix elements and the j-index refer to the 4 temperatures of array TEIGJ.

The ENQC data is computed by subroutine TEMPC. Array locations are initially set to 0.0 values by TEMPC. Subroutine TEMPC prints the Q elements for each temperature evaluated, under control of IP(19), case control card 1, column 19.

Relative Core Location	Array Index Value	Description
1	1,1	Q_{11}^0 for $T_{ST DES}$, Q_{11} term for 0°-ply = $[E_L/(1-\nu_{LT}\nu_{TL})]$. (Also equal to Q_{22} term for 90°-ply.)
2	2,1	Q_{22}^0 for $T_{ST\ DES}^0$, Q_{22}^0 term for 0°-ply = $[E_T/(1-\nu_{LT}\nu_{TL})]$. (Also equal to Q_{11}^0 term for 90°-ply.)
3	3,1	Q_{12}^{0} for $T_{ST DES}^{0}$, Q_{12}^{0} term for 0°-ply = $\nu_{LT}^{0}Q_{22}^{0} = \nu_{TL}^{0}Q_{11}^{0}$.
4	4,1	(Also equal to Q_{12} term for 90°-ply.) $Q_{11}^{45} \text{ for } T_{ST DES}, Q_{11} \text{ term for } \pm 45^{\circ}\text{-ply} = 0.25 [Q_{11}^{0} + Q_{11}^{0}]$
		Q_{22}^{0} + 2.0 (Q_{12}^{0} + 2.0 G_{LT}^{0})]. (Also equal to Q_{22} term for $\pm 45^{\circ}$ -ply.)
5	5,1	Q_{12}^{45} for $T_{ST DES}^{0}$, Q_{12}^{0} term for ±45°-ply = 0.25 $[Q_{11}^{0} +$
		$Q_{22}^0 + 2.0 (Q_{12}^0 - 2.0 G_{LT})$].
6	6,1	Q_{66}^{45} for $T_{ST DES}^{0}$, Q_{66}^{0} term for $\pm 45^{\circ}$ -ply = 0.25 $[Q_{11}^{0} +$
		Q_{22}^0 -2.0 Q_{12}^0]

TABLE 201. ENQC ARRAY (CONCL)

Relative Core Location	Array Index Value	Description
7-12	(1-6),2	Q-terms for T _{VF DES}
13-18	(1-6),3	Q-terms for T _{EO DEC}
19-24	(1-6),4	Q-terms for T _{FL DES}
,		
<u> </u>		

TABLE 202. ONT ARRAY

General information for array CNT:

Blank common reference location = T(1541)

Array size = 91

Array CNT is used as a common data source for analysis control word and design constants. Data in this array are used by all advanced composite structural synthesis routines. Most of the information stored in CNT is created by subroutine ATBØPT. The array locations are initially set to 0.0 values before creation of the appropriate design values which are derived from input data specifications for the torque-box design type and optimization options. The contents of array CNT is printed by subroutine ACWMS or ACWRBS under control of APRTID(12).

Array Location	Variable Name	Description
1	XSTRU	Code word for type of stringer to be used for upper cover analysis, multirib design only, set up by ATBOPT from D(432), variable ACVSTU. Default value = 1.0 if D(432) specified as 0.0 or negative value. Code value 1-5 interpreted as: 1.0 = "I" stringer, 2.0 = "Z" stringer, 3.0 = "T" stringer, 4.0 = "hat" stringer, 5.0 = not used.
2	XSTRL	Same as the foregoing except for lower cover, from D(433), variable ACVSTL.
3	BRMIN	Minimum rib spacing for multirib design, setup by ATBØPT from D(375), variable STLMN, in.
4	BRMAX	Maximum rib spacing for multirib design, setup by ATBOPT from D(376), variable STLMX. This value must be greater or equal to BRMIN, in.
5	BSMIN	Minimum spar spacing for multispar design or stringer spacing for multirib design, set up by ATBOPT from D(380), variable BMIN, in.
6	BSMAX	Maximum spar spacing for multispar design or stringer spacing for multirib design, set up by ATBOPT from D(381), variable BMAX, in.
7	BWMAX	Maximum stringer height for multirib design, setup by ATBØPT from D(378), variable HSTMX, in.
8	SLUMIN	Minimum number of 0° plies in upper cover skin for multirib design, setup by ATBØPT from D(440), variable DSKLMU.
9	SLLMIN	Minimum number of 0° plies in lower cover skin for multirib design, setup by ATBOPT from D(441), variable DSKLML.

TABLE 202. CNT ARRAY (CONT)

Array Location	Variable Name	Description
10	ХТҮРЕ	Code word to indicate the spar or stringer arrangement, equally spaced or constant number of elements, to be used to compute the unsupported skin span b at each station,
11	C1	setup by ATBØPT from D(383), variable STRCN. Code value of 1.0 = constant number of spar or stringer elements, 2.0 = constant spar or stringer spacings. Computed factor for design shear on the front spar web, calculated at each station by ACWMS or ACWRBS,
		$(1/2 \text{ KyFS } (1-11) \cdot \text{ KyEA} (1-11))$, where KVFS $(1-11)$ are input factors in locatrons D(842)-D(852), variable DVFS(1-11), and KyEA $(1-11)$ are beam reaction factors for the front spar based on the relative location of the
12	C2	structural reference line to the front and rear spars. Computed factor for design shear on the rear spar web, similar to above for front spar. $KVRS(1-11)$ are the factors input in $D(853) - D(863)$, variable $DVRS(1-11)$.
13	C3	Constant used for rounding operations for integer number of ply calculations, setup by ATBOPT from D(579), variable DKMPLI.
14	C4	Torque box effective width increment to account for bending loads reacted by spar cap and cover overhang material, computed at each station by ACWMS or ACWRBS, in. This increment is added to the local station torque-box width in the computations for cover Nx.
15	STUMIN	Minimum number of 0° plies in the upper cover stringers for multirib designs, setup by ATBOPT from D(442), variable DSTLMU.
16	STLMIN	Minimum number of 0° plies in the lower cover stringers for multispar designs, setup by ATBOPT from D(443), variable DSTLML.
17	NSPMIN	Minimum number of spars (including the front and rear spars) for multispar designs or stringers for multirib designs; setup by ATBØPT from D(382), variable SNMIN. Subroutine ACWRBS identifies this location as NSTRMN. NSPMIN and NSTRMN are specified as real variables.
18	NSPMAX	Maximum number of spars (including front and rear spars) for multispar designs or stringers for multirib designs, setup by ATBØPT from D(399), variable SNMAX. Subroutine ACWRBS identifies this location as NSTRMX. NSPMAX and NSTRMX are specified as real variables.

TABLE 202, ONT ARRAY (CONT)

•		
Array Location	Variable Name	Description
19	XKCØDE	Cover construction code for multispar designs, set up by ATBOPT from D(430), variable ACCVID. Code value of 1.0 = plate construction, 2.0 = honeycomb panel construction. XKCODE is set to 1.0 for fulldepth honeycomb sandwich and multirib designs.
20	XPOØDE -	Internal cover support structure construction code, set- up by ATBØPT from D(435), variable ACSPID. Code value of 1.0 = corrugated intermediate spar or rib webs, 2.0 = honeycomb panel spar or rib webs, 3.0 = fulldepth honey- comb sandwich design.
21	NSPAR	Number of spars (including front and rear spars) for the current analysis station for multispar design, set-up by ACWMS. Number of stringers for multirib design, setup by ACWRBS and identified as variable NSTR. NSPAR and NSTR are specified as real variables.
22	C7	Intermediate spar cap factor for multispar designs, set up by ATBØPT from D(457), variable ACKIC.
23	C8	Number of 90° ply factor, setup by ATBOPT from D(429), variable ACKNP.
24	HS	Effective height of intermediate spars or ribs, for the current analysis station, set up by ACWMS or ACWRBS, in.
25	HF	Effective height of front spar for the current analysis station, set up by ACWMS or ACWRBS, in.
26	HIR	Effective height of rear spar for the current analysis station, set ups by ACWMS or ACWRBS, in.
27	XFOØDE .	Front spar web construction code setup by ATBOPT from D(436), variable ACFSID. Code value of 1.0 = corrugated web, 2.0 = honeycomb panel.
28	XRCØDE	Rear spar web construction code, setup by ATBOPT from D(437), variable ACRSID, code value of 1.0 = corrugated webs, 2.0 = honeycomb panels.
29	TCPNLU	Upper cover honeycomb core thickness for multispar, honeycomb panel cover designs, set up by ATBOPT from D(462), variable DTC, 0.0 for all other designs, in
30	TCPNLL	Lower cover honeycomb core thickness for multispar honeycomb panel cover designs, set up by ATBOPT from D(466), variable DTCL, 0.0 for all other designs, in.
31	TCPNLI	Intermediate spar or rib web honeycomb core thickness if specificd as honeycomb panel webs, 0.0 if not, set up by ATBOPT from D(458), vairable ACPNLI, in.

TABLE 202. CNT ARRAY (CONCL)

Array Location	Variable Name	Description
32	TCPNLF	Front spar web honeycomb core thickness if specified as
33	TCPNLR	honeycomb panel web, 0.0 if not, set up by ATBØPT from D(459), variable ACPNLF, in. Rear spar web honeycomb core thickness if specified as honeycomb panel web, 0.0 if not, set up by ATBØPT
34	С9	from D(460), variable ACPNLR, in. Equivalent area for upper cover inserts of each intermediate spar location for multispar honeycomb panel cover design, 0.0 for all other designs, used for weight calculation only. Set up by ATBOPT from inserts data in
35	C10	D(465) and D(469), variables DINS and DINRHØ, sq. in. Equivalent area for lower cover inserts, same as C9 except that D(467), variable DINSL, is used, sq. in.
36-39	-	Not used. (These core locations referenced as TSC(36)-TSC(39) variables.)
40	BWMIN	Minimum stringer height for multirib design, set up by ATBØPT from D(377), variable HSTMN, n.
41	BFMAX	Jaximum stringer flange width for multirib design, set up by ATBØPT from D(379), variable STFMN, in.
42	BFMIN	Minimum stringer flange width for multirib design, ser- up by ATBØPT from D(384), variable STFMN, in.
43	XSTIFF	Stringer type code for current cover analysis, multirib design, set up by ACWSTR at the start of upper or lower
44-91	ir.	cover analysis passes. Not used.
77 31		net asea.
	÷	

General information for array STRESS:

Blank common reference location = CT(1)

Array size = 1320 cells

Array dimension = (6,11,20)

Array STRESS contains design N_X and N_{XY} data for each of the 11 torque-box structural analysis control stations. Data sets for each of the 20 design conditions are stored in this array. Array data is created from locations 1-6 of the WS array for all applicable design conditions during the initial data computation phase for the current analysis control station. The number of design load sets created is governed by the index value of ILCASE, created and stored in ND(41) by subroutine ACLOAD.

Array STRESS is organized so that the i-index of the (i,j,k) array dimension, refers to the 6 design load intensities at each of the 11 stations specified by the j-index. The k-index refers to the design condition data sets.

Relative Core Location	Array Index Value	Description
1	1,1,1	(N _X) upper cover design axial load, sta-
2	2,1,1	tion 1, load set 1, (+) = compression, (-) = tension, lb/in. (N _X) _{1wr} , lower cover design axial load, station 1, load set 1, (+) = compression, (-) =
3	3,1,1	tension, lb/in. (N _{XY}) _{cov} , cover design shear load, station 1,
4	4,1,1	load set 1, lb/in. (N _{XY}) _{FS} , front spar web design shear load,
5	5,1,1	station 1, load set 1, lb/in. (N _{XY}) _{IS} , intermediate spar web design shear
6	6,1,1	load, station 1, load set 1, multispar design only, lb/in. (N _{XY}) _{RS} , rear spar web design shear load, station 1, load set 1, lb/in.
7-12	(1-6),2,1	Design loads, station 2, load set 1.
13-18	(1-6),3,1	Design loads, station 3, load set 1.
19-24	(1-6),4,1	Design loads, station 4, load set 1.
25-30	(1-6),5,1	Design loads, station 5, load set 1.

TABLE 203. STRESS ARRAY (CONCL)

Relative Core Relation	Array Index Value	Description
31-36 37-42 43-48 49-54 55-60 61-66 67-132 133-198 199-264 265-330 331-396 397-462 463-528 529-594 595-660 661-726 727-792 793-858 859-924 925-990 991-1056 1057-1122 1123-1188 1189-1254 1255-1320	(1-6),6,1 (1-6),7,1 (1-6),8,1 (1-6),9,1 (1-6),11,1 (1-6),(1-11),2 (1-6),(1-11),3 (1-6),(1-11),5 (1-6),(1-11),6 (1-6),(1-11),7 (1-6),(1-11),10 (1-6),(1-11),10 (1-6),(1-11),11 (1-6),(1-11),12 (1-6),(1-11),13 (1-6),(1-11),15 (1-6),(1-11),16 (1-6),(1-11),17 (1-6),(1-11),18 (1-6),(1-11),19 (1-6),(1-11),20	Design loads, station 6, load set 1. Design loads, station 7, load set 1. Design loads, station 8, load set 1. Design loads, station 9, load set 1. Design loads, station 10, load set 1. Design loads, stations 1-11, load set 2. Design loads, stations 1-11, load set 3. Design loads, stations 1-11, load set 4. Design loads, stations 1-11, load set 5. Design loads, stations 1-11, load set 6. Design loads, stations 1-11, load set 7. Design loads, stations 1-11, load set 7. Design loads, stations 1-11, load set 8. Design loads, stations 1-11, load set 10. Design loads, stations 1-11, load set 11. Design loads, stations 1-11, load set 12. Design loads, stations 1-11, load set 13. Design loads, stations 1-11, load set 14. Design loads, stations 1-11, load set 15. Design loads, stations 1-11, load set 16. Design loads, stations 1-11, load set 17. Design loads, stations 1-11, load set 18. Design loads, stations 1-11, load set 19. Design loads, stations 1-11, load set 20.

General information for array ENX:

Blank common reference location = TW (701)

Array size = 60 cells

Array dimension = (3,20)

Array ENX contain allowable lamina loads for the 20 load conditions analyzed for advanced composite torque-boxes. allowable at-temperature loads are used to compute the number of 1 and m plies (0° and ±45°) required to resist applied tension, compression and shear loads on the web members of the torque-box. This array is organized so that the i-index of the (i,j) array dimension refers to the three computed allowable lamina loads for the 20 load conditions specified by the j-index. In the notation used for defining the ply makeup of a laminate, $[01/\pm45\text{m}/90\text{n}]_s$, 1, m and n, the number of plies for each filament direction, refers to the ply-set in one-half of the laminate. Thus, since the load intensity values, $+N_X$, $-N_X$ and N_{XY} , are computed for the total laminate, the lamina allowable loads are computed for two plies. Computed values stored in array ENX are printed by subroutine TEMPC under control of IP(19), case control card 1, column 19. Subroutines ACWMS and ACWRBS prints the contents of array ENX at the start of each torque-box synthesis pass if APRTID(12) contains a positive nonzero value. The print code values in array APRTID are computed by subroutine ATBOPT based on input specifications in D(574)-D(578), data array DBKP. This print control array is used for detail analysis data print at selected analysis control stations.

Relative Core Location	Array Index Value	Description
1	1,1	Allowable compression N_{χ} for two 0° plies, load set 1. $(+N_{\chi})_{allow} = 2.0 t_{L}F_{0}^{cu}$, where t_{L} = lamina thickness, lb/in.
2	-2,1	Allowable tension N_X for two 0° plies, load set 1. $(-N_X)_{allow} = 2.0 t_L F_0^{tu}$, 1b/in.
3	3,1	Allowable shear N_{XY} for two +45° and two -45° plies, load set 1. $(N_{XY})_{allow} = 4.0 t_L F_{45}^{su}$, lb/in.

TABLE 204. ENX ARRAY (CONCL)

Relative Core Location	Array Index Value	Description
4-6 7-9 10-12 13-15 16-18 19-21 22-24 25-27 28-30 31-33 34-36 37-39 40-42 43-45 46-48 49-51 52-54 55-57 58-60	(1-3),12 (1-3),13 (1-3),14 (1-3),15 (1-3),16 (1-3),17	Allowable lamina loads, load set 11. Allowable lamina loads, load set 12. Allowable lamina loads, load set 13. Allowable lamina loads, load set 14. Allowable lamina loads, load set 15. Allowable lamina loads, load set 16. Allowable lamina loads, load set 17. Allowable lamina loads, load set 18. Allowable lamina loads, load set 19.

General information for array EL:

Blank common reference location = T(1300)

Array size = 15 cells

Array EL contains the number of 1, m and n plies for the five torquebox web members that are syrthesized at each structural analysis control station. This array is used as the storage and retrieval source by all advanced composite synthesis and analysis routines. Final design laminate configuration information from this array is used to create the station-station information stored in real data array IEL. Locations 1-6 of array EL is initially used for storage of number of 1 and m plies required for strength, during the evaluation of each design load set for the analysis control station being analyzed. This procedure is designed to select the 1 and m ply sets that are required for critical strength design; 1 plies for the upper and lower skins for compression or tension loads and m plies for shears in the upper end lower cover skins, front and rear spar webs and intermediate spar webs for multispar designs. Array EL is then initialized with integer values reflecting the strength-critical set of 1 and m plies of each web. The array data is then used in the stability check and resizing procedures programmed for each web; m and n plies are changed as required to satisfy web stability requirements. All 1, m and n values represent required number of 0°, ±45° and 90° plies in each half-laminate of the webs.

Array Location	Description		
	wing descriptions for locations 1 through 6 are for the data computed during the design loads evaluation phase at each		
2	Upper cover 0° ply requirement for the current load set, tension = $-N_X$, compression = $+N_X$. Value computed as $ [(-N_X)/(-N_X)_{allow} + C3] \text{ or } [(+N_X)/(+N_X)_{allow} + C3]. C3 = 0.999, $ constant for rounding the computed values up to the next higher integer. (Note: The critical values are selected first before integer values are computed.) Lower cover 0° ply requirement for the current load set, tension or compression, same as for upper cover.		

TABLE 205. EL ARRAY (CONT)

Array Location	Description
3	Upper and lower cover $\pm 45^{\circ}$ ply requirement for the current load set torque shear, $(N_{XY})_{cov}$. Value computed as $[(N_{XY})_{cov}/(N_{XY})_{allow}]$ + C3].
4	Front spar web *45° ply requirement for the current load set shear, $(N_{XY})_{FS}$. Value computed as $[(N_{XY})_{FS}/(N_{XY})_{allow} + C3]$.
5	Intermediate spar web $\pm 45^{\circ}$ ply requirement for the current load set shear, $(N_{XY})_{IS}$. Value computed as $[(N_{XY})_{IS}/(N_{XY})_{allow} + C3]$. The value of $(N_{XY})_{IS}$ is computed for multispar designs only; this value is set to 0.0 for fulldepth honeycomb sandwich and multirib designs.
6	Rear spar web $\pm 45^{\circ}$ ply requirement for the current load set shear, $(N_{XY})_{RS}$. Value computed as $[(N_{XY})_{RS}/(N_{XY})_{allow} + C3]$.

The following descriptions for locations 1 through 15 are for the array data created and used during the synthesis analysis of the torque-box. The final laminate 1, m and n plies for the torque-box webs are stored in these locations. General and special rules governing the creation of data values in these locations are:

- All number of plies are created and used as integer values, minimum value = 1.0 except locations 10,11 and 12 are set to 0.0 for full depth honeycomb sandwich design.
- Initial values in locations 1,2,4,5,8,11 and 14 are created from the required ply values for strength design.
- L-ply values for vertical webs in locations 7,10 and 13 are based on crushing loads on the webs
- M-ply values in locations 2,5,8,11 and 14 are adjusted as required to satisfy plate buckling requirements.
- N-ply values are always computed for any (1,m) set based on the integer value of $C8 \cdot (1 + 2m) + C3$, where C8 is the assumed minimum ratio of n-plies to the total number of 1 and m plies in the laminate.

Array Location	Description	
• Initial cover m-ply values, locations 2 and 5, for multispar designs are tested and adjusted as required to larger starting values to reduce computation time in the stability evaluation loop. These adjustments are made from previously calculated data consisting of final design m-ply data from the previous synthesis pass and from the final design m-ply data for the previous station design of the current synthesis pass.		
init anal valu skin p¹ 3 the	1-ply values, locations 1 and 4, for multirib designs are ially computed to represent total cover requirements. The ysis under control of ACWSTR uses these values as sizing limit es in the determination of 1-ply distribution in the cover and stringer elements. The final value in these locations the m- and n-ply values in locations 2,3,5 and 6, represent cover skin laminate configuration resulting from the ACWSTR ulations.	
1	lupr cov, number of 0° plies in upper cover skin.	
2	m upr cov, number of ±45° ply-sets in upper cover skin.	
3	n upr cov, number of 90° plies in upper cover skin.	
4	1 number of 0° plies in lower cover skin.	
5	m _{lwr cov} , number of ±45° ply-sets in lower cover skin.	
6	n _{lwr cov} , number of 90° plies in lower cover skin.	
7	1 _{FS} , number of 0° plies in front spar web.	
8	m _{FS} , number of ±45° ply-sets in front spar web.	
9	n _{ES} , number of 90° plies in front spar web.	
10	1 _{IS} , number of 0° plies in intermediate spar or rib webs.	
11	m _{IS} , number of ±45° ply-sets in intermediate spar or rib webs.	
12	n _{IS} , number of 90° plies in intermediate spar or rib webs.	
13	1 _{RS} , number of 0° plies in rear spar web.	
14	m _{pg} , number of ±45° ply-sets in rear spar web.	
15	n _{RS} , number of 90° plies in rear spar web.	

General information for array IEL:

Blank common reference location = TW(1)

Array size = 165 cells

Array dimension = (15,11)

Array data type = real

Array IEL contains the final laminate configuration information for the five torque-box webs at the 11 structural analysis control stations. This array is initially used to store current pass data during the synthesis loop and the final design set to be used for stiffness and weight analysis. Array IEL values are for the half-laminate configuration necessary to satisfy strength and stability requirements only. The i-index of the (i,j) array dimension refers to the 15 elements contained in array EL for the 11 analysis control stations specified by the j-index. The EL data sets are stored root to tip.

Relative Core Location	Array Index Value	Description
1	1,1	1 _{upr cov} , station 1.
2	2,1	m , station 1.
3	3,1	n upr cov, station 1.
4	4,1	1 lwr cov, station 1.
5	5,1	mlwr cov, station 1.
6	6,1	n _{lwr cov} , station 1
7	7,1	1 _{ES} , station 1.
8	8,1	m _{FS} , station 1.
9	9,1	n _{FS} , station 1.
10	10,1	1 _{IS} , station 1
11	11,1	m _{IS} , station 1.
12	12,1	n _{IS} , station 1.
13	13,1	1 _{RS} , station 1.
14	14,1	m _{RS} , station 1.
15	15,1	n _{RS} , station 1.
16-30	(1-15),2	Laminate configuration set for station 2.
31-45	(1-15),3	Laminate configuration set for station 3.

TABLE 206. IEL ARRAY (CONCL)

Relative Core Location	Array Index Value	Description
46-60 61-75 76-90 91-105 106-120 121-135 136-150 151-165	(1-15),4 (1-15),5 (1-15),6 (1-15),7 (1-15),8 (1-15),9 (1-15),10 (1-15),11	Laminate configuration set for station 4. Laminate configuration set for station 5. Laminate configuration set for station 6. Laminate configuration set for station 7. Laminate configuration set for station 8. Laminate configuration set for station 9. Laminate configuration set for station 10. Laminate configuration set for station 11.
		•

General information for array SPB:

Blank common reference location = T(1232)

Array size = 33 cells

Array SPB contains internal support design data for multispar (M/S), multirib (M/R), and fulldepth honeycomb sandwich (FDH) designs. This array is used for storage of spar/stringer spacings or honeycomb core information during the torque-box synthesis loop under control of subroutines ACWMS and ACWRBS. The data type will be dependent upon the basic torque-box design to be analyzed. For each design, the creation and use of the three l1-station data sets is governed by computational requirements for the optimization and input design specification options selected for the analysis. At the conclusion of the optimization loop, the selected spacings for spars or stringers will be the first set stored in locations 1-11.

Array Location	Description
1-11	bi 1-11, current pass spacings for intermediate spar or stringers for M/S and M/R designs, in. Initial and subsequent pass values are setup as follows: • In optimization search option on spacings the initial value will be as specified in D(380), bmin; subsequent values are derived as (bi-1 + 4 bi) or (bi-1 ± 4 bi), depending upon search status. 4 bi = D(1373) and 4 bi = 4 (1374). • In optimization search option on number of elements, the initial value is derived from the corresponding NØS values created in SPN(1-11) (initial value from D(399), NØSmax). Each station value for b is computed as (b = W/(NØS-1.0)) for M/S, and (b = W/(NØS+1.0)) for M/R, where W = torque-box width at the station and NØS is the number of elements, total number of webs including the front and rear spars for M/S or total number of stringers for M/R. Subsequent pass values are based on new values created for SPN(1-11). • For input 11-station spacing option, analysis values are derived from input data locations D(765)-D(775), array DCBST(1-11). • For input number of element option, analysis values are computed from SPN(1-11) as previously described. The initial set is the only one analyzed for this option. • In FDH designs, this set is set to 1.0. • bi-1 1-11, spacings for pass (i-1) for M/S and M/R optimization search option only, derived from data set in locations 1-11. In FDH design, initial core density, lb/cu in., from D(1164), ENH(1)

TABLE 207. SPB ARRAY (CONCL)

Descrip' ion	
or from D(776)-D(786) for core densities specified at all 11 stations (this second option processed if D(438), variable ACSSID = 1.0). b_{i-2} 1-11, spacings for pass (i-2) for M/S and M/R designs. FDH designs this set contains core foil density, ρ_f .	In
	·
	į
	or from D(776)-D(786) for core densities specified at all 11 stations (this second option processed if D(438), variable ACSSID = 1.0). bi-2 1-11, spacings for pass (i-2) for M/S and M/R designs.

General information for array SPN:

Blank common reference location = T(1265)

Array size = 33 cells

Array SPN contains internal support design data for multispar (M/S), multirib (M/R), and full-depth honeycomb sandwich (FDH) designs. This array is used for storage of number of spar/stringer elements or honeycomb core information during the torque-box synthesis loop under control of subroutines ACWMS and ACWRBS. The three 11-station data sets defined herein are created and used under the same conditions as array SPB (Table 207).

Array Location	Description
1-11 12-22 23-33	NØS _i 1-11, current pass number of spar or stringer elements for M/S or M/R designs. Initial and subsequent pass values are setup as follows: • For optimization search option on number of elements, the initial value will be as specified in D(399), NØS _{max} ; subsequent values are derived as (NØS _{i-1} - ΔNØS ₁) or (NØS _{i-1} ± ΔNØS ₂), depending upon search status. ΔNØS ₁ = D(1369) and ΔNØS ₂ = D(1370). • For optimization search option on spacings, the initial value is derived from the corresponding b values created in SPB(1-11) (initial values from D(380), b _{min}). Number of elements for each station is computed as [NØS = W/b + 1.0] for M/S, and [NØS = W/B - 1.0] for M/R, where W = torque-box width at the station and b = spacing. Subsequent pass values are computed from the new values created for SPB(1-11). • For the input option of specifying number of elements at each of the 11 stations, analysis values are as specified in D(776) -D(786), array DCNØS(1-11). The initial set is the only one analyzed for this option. • For the input option of specifying spacings at each of the 11 stations, analysis values are computed from SPB(1-11) as previously described. The initial set is the only one analyzed for this option. • For FDH designs, the values in this data set is the core density computed as 1b/cu ft. NØS _{i-1} 1-11, number of spar/stringer elements for pass (i-1) for M/S and M/R optimization search option only, derived from data set in locations 1-11. For FDH designs, core foil thickness, t _f , in NØS _{i-2} 1-11, number of elements for pass (i-2) for M/S and M/R designs. In FDH design, final values for core densities, 1b/cu in.

General information for array TF:

Blank common reference location = T(2021)

Array size = 40 cells

Array TF contains structural synthesis data for full-depth honeycomb sandwich design. Subroutines ACWFDH and CKSFDH use TF for storage and retrieval of data for each torque-box section that is analyzed under control of subroutine ACWMS. Array TF is initialized to 0.0 values by ACWFDH at the start of each station analysis. The content of TF is printed by CKSFDH under control of the analysis station print control array, APRTID, locations 1-11.

Array Location	Variable Name	Description
	**	

Locations 1 through 9 contain the basic design variables that are used by ACWFDH and CKSFDH. Data in these locations are set up by ACWFDH. Locations 1 through 6 are first initialized with upper and lower cover 1., m- and n-ply data required for strength, (P/A), from EL(1)-EL(6). Skin ply adjustments necessary to satisfy stability requirements are always made to the ply sets in locations 1-3. These values are the final ply set for the cover being analyzed and are processed into the appropriate EL array locations by subroutine ACWFDH after each cover has been analyzed. TF(1)-TF(3) are set to the lower cover strength ply requirements after the conclusion of the upper cover analysis.

1	-	(COV, 0° plies for cover being analyzed, initially the value in EL(1) for upper, EL(4) for lower.
2		M _{COV} , ± 45° ply sets for cover being analyzed, initially the values in EL(2) for upper, EL(5) for lower.
3	-	N _{COV} , 90° plies for cover being analyzed, initially the valves in EL(3) for upper, EL(6) for lower.
4	-	ℓ_0 , 0° plies for the opposite cover to the one being analyzed, value in EL(4) for the upper cover pass and the final upper cover value in TF(1) for the lower cover pass, used to compute the cover thickness value in location 11, TFCOV(2).
5	-	M_0 , $\pm 45^{\circ}$ ply sets corresponding to the foregoing ℓ_0 .
5 6 7	_	N_0 , 90° plies corresponding to the foregoing ℓ_0 .
7	CNX	N _x , cover compression load of current load condition, from STRESS (1 or 2, STA _i , LOAD _i), lb/in.

TABLE 209. TF ARRAY (CONT)

Array Location	Variable Name	Description
8	CRHØ	\$\mathcal{\rho}_{\text{Core}}\$, core density, 1b/cu in. Initially set up as input density from SPB(12-22), adjusted as required if analysis option specifies optimization of core requirements.
9	HML	D _{TB} , average torque-box depth, in.

Locations 10 through 40, except 31 and 32, contain the analysis variables that are computed and used by CKSFDH. Data in locations 31 and 32 are computed and used by ACWFDH.

and used	by ACMFUR.	
10	TFCØV(1)	t _{COV} , skin thickness of the cover being analyzed, in.
11	TFCØV(2)	t _o , skin thickness of the opposite cover to the one being analyzed, in.
12	E11	$(E_X)_{1am}$, 'aminate elastic modulus based on the plate rigidity parameter D_{11} (Section II, Equation 109), psi.
13	E22	(E _y) _{lam} , laminate elastic modulus based on the plate rigidity parameter D ₂₂ (Section II, Equation 109), psi.
14	ЕВ	E _B , cover elastic modulus term for allwable core wrinkling stress equation (Section II, Equation 109), psi.
15	CEP	E', core compression modulus for CRHØ, psi.
16	CGP	G', core shear modulus for CRHØ, psi.
17	FCW	f _{CW} , allowable core wrinkling stress, psi.
18	CRWNX	$(N_X)_{CW}$ allowable core wrinkling load, based on CRHØ, 1b/in.
19	PCRUSH	P_{C} , core crushing load, pounds per inch span per in. width.
20	PCRUA	(P _C) _{allow} , allowable core crushing load, based on CRHØ, lb/in./in.
21	RCW	R_{CW} , ratio of applied to allowable core wrinkling loads, $((N_X)/(N_X)_{CW})_{CW}$
22	RCC	R_C , ratio of applied to allowable core crushing loads, $(P_C/(P_C)_{allow})$
23	RHØCW	$\hat{\boldsymbol{\rho}}_{\text{CW}}^{i}$, required core density to prevent core wrinkling for given applied load and skin configuration, 1b/cu in.
24	RHØCC	ρ_{CC} , required core density to prevent core crushing for given applied load and skin configuration, 1b/cu in.
25	HC	D', effective core depth, D_{TB} -ti-to, in.
26	-	$\rho_{\rm l}/\rho_{\rm f}$, ratio of initial core density to core foil density
27	-	$(\rho'/\rho_{\rm f})_{\rm C}$, ratio of calculated core density to core foil density.
		1

TABLE 209. TF ARRAY (CONCL)

1	r	
Array Location	Variable Name	Description
28	CRNXCP	(N _X) _{Cr} , allowable core wrinkling load based on RHØMAX, to be used by ACWFDH for variable core density
29	CRPCCP	analysis, 1b/in. (P _C) _{Cr} , allowable core crushing load based on RHØMAX, to be used by ACWFDH for variable core density analysis,
30	RHØMAX	1b/in./in. (P _C) _{max} , core density required to satisfy conditions for core wrinkling, core crushing and minimum input density for the given load and skin configuration, maximum of RIØCW, RIØCC and CRIØ, to be used by ACWFDH during the core density/cover laminate analysis options for a) variable core density for initial skin ply set or b) optimum core/cover configuration, 1b/cu in.
31	-	(W) _{i-1} , weight of skin plus core for last skin ply set, $(Pt_{i-1} + Pcore_{i-1} + HC)$, computed by ACWFDH during optimum core/cover configuration search, 1b/sq in.
32	- 12	$(W)_i$, weight of skin plus core for current skin ply set, same as the foregoing $(W)_{i-1}$.
33 34	-	E', core compression modulus for RHØMAX, psi. G', core shear modulus for RHØMAX, psi.
35-40		Not used.

General information for array W:

Reference location: Subroutine WEIGH1

Array size = 30 cells

Array W contains thickness, area and weight data for the torque box structural components at the current analysis control station. The information is computed by subroutine WEIGHI from design data resulting from the multispar or fulldepth honeycomb sandwich analysis of subroutine ACWMS. Array locations are initialized to 0.0 values before computations are made. Subroutine WEIGHI prints the contents of array W under control of the analysis station print control array APRTID, locations 1-11.

ARTID, Tocacions I II.		
Array Location	Description	
1	(W _{skin}) _{upr} , upper cover skin weight, including front and rear spar overhang material, lb/in.	
2	(W _{skin}) _{lwr} , lower cover skin weight, including front and rear spar overhang material, lb/in.	
3	(Wweb)FS, front spar web weight, 1b/in.	
4	(W _{web}) _{IS} , total weight of intermediate spar webs for multispar design, total core weight for fulldepth honeycomb sandwich design, lb/in.	
5	(W _{web}) _{RS} , rear spar web weight, 1b/in.	
6	(Wmisc)upr, weight of nonstructural items for the upper cover; exterior flame spray and interior protective finish for multispar/plate design and plus honeycomb core and bond for multispar/	
	honeycomb panel design; exterior flame spray only for full-	
-	depth honeycomb sandwich design, 1b/in.	
7 8	(W _{misc}) _{1wr} , same as location 6 except for lower cover.	
8	(Wmisc) _{FS} , weight of nonstructural items for the front spar web; protective finish for corrugated webs, plus core and bond for honeycomb panel design, 1b/in.	
9	(Wmisc) IS, total weight of intermediate spar nonstructural items for multispar designs only, 0.0 for fulldepth honeycomb sandwich designs, 1b/in. Protective finish only for corrugated webs, plus core and bond for honeycomb panel design.	
10	(Wmisc)RS, same as location 8, except for rear spar.	
11	(W _{CU}) _{FS} , weight of front spar upper cap, including insert weight	
	if multispar honeycomb panel design, 1b/in.	
12	(WCL)FS, weight of front spar lower cap, including insert weight if multispar honeycomb panel design, 1b/in.	
13	(W _{CU}) _{RS} , weight of rear spar upper cap, including insert weight if multispar honeycomb panel design, 1b/in.	

TABLE 210. W ARRAY, SUBROUTINE WEIGHI (CONCL)

Array Location	Descript ion
14	$(W_{\mathrm{CL}})_{\mathrm{RS}}$, weight of rear spar lower cap, including insert weight
15	if multispar honeycomb panel design, $1b/in$. $(W_C)_{1S}$, total weight of intermediate spar caps, including insert weights if multispar honeycomb panel design; total bond weight if fulldepth honeycomb sandwich design, $1b/in$.
16	WMISC, total weight of miscellaneous items for front, rear and intermediate spars, computed as a fraction of the weights of these structures, except for cover to intermediate spar attachments, lb/in.
17	N _{IS} , number of intermediate spars.
18	Weff, effective torque-box width for cover material weight calculations, in.
19	Not used
20	Cap thickness term for caluclation of front and rear spar cap areas in.
21	(t _{fill}) _{upr} , upper cover filler material thickness, added material required in upper cover along cover to intermediate spar attach line, multispar design only, 0.0 for full depth honeycomb sandwich design, in.
22	$(t_{\rm fill})_{\rm lwr}$, lower cover filler material, same as previously defined for upper cover.
23	(Wfill) upr, total weight of upper cover filler material, lb/in.
24	(Wfill) lwr, total weight of lower cover filler material, lb/in.
25	(Watt)upr, total weight of upper cover to intermediate spar attachments, 1b/in.
26	(Watt) _{lwr} , total weight of lower cover to intermediate spar attachments, lb/in.
27	(Latt)upr, effective length of each upper cover to intermediate spar fastener for weight calculation, 0.0 for fulldepth honey comb sandwich design, in.
28	(Latt) lwr, effective length of each lower cover to intermediate spar fastener for weight calculation, 0.0 for fulldepth honeycomb sandwich design, in.
29-30	Not used.

General information for array TX:

Blank common reference location = CD (1)

Array size = 160 cells

Array TX contains cover analysis data for the current assumed value of skin 1-ply. This array is used as the basic data storage and retrieved retrieval source by subroutines ACWSTR, ACMRSK, and ACSTRG. Selected data items from this array are printed by ACMRSK and ACSTRG under control of analysis station print control array APRTID, locations 1 through 11. Subroutine ACWSTR prints the complete contents of array TX at the conclusion of each 1-ply synthesis pass, under control of APRTID(12).

-		
Array	Variable	
Location		Description
Location	Name	bescription

Locations 1 through 29 contain data items computed by subroutine ACMRSK during the load distribution/skin stability analysis of the skin/stringer section. Computations by ACMRSK are based on a given combination of skin 1-plies and stringer area as specified by subroutine ACWSTR. Data computed during the ACMRSK skin sizing loop reflect the set of skin 1-, m-, and n plies that will result in skin stability due to skin N\u03c4 and N\u03c4\u03c4 loads only, without regard to lamina and stringer P/A compression or tension stresses. These stress conditions are examined in the second load evaluation loop. Results from this loop are examined by subroutine ACWSTR to determine if the assumed stringer area and skin are acceptable.

1	EMI	M _{skin} , number of ±45° ply sets in the skin half-laminate
		that will prevent skin buckling under combined shear
		and compression or pure shear, initially set is
		EMØ + DLEMI and incremented as required.
2	ENI	N _{skin} , number of 90° plies in the skin half-laminate, initially computed as ENØ + DLENI and recomputed each
1		time FMI is changed.
3	SKRMX	(P _{sk} /P _{tot}) _{max} , maximum ratio of skin load to total load
		for all design load conditions.
4	TSK	t _{sk} , skin gage for current skin 1-, m- and n-ply set, in.
5	ASKT	A _{skin} , area of skin for skin/stringer column, t _{sk} · b _s ,
	П	sq in.
6	ASKL	(A _{skin}) ₁ , area of skin 0° plies for skin/stringer column,
		$2.0 t_L \times 1_{skin} \times b_s$, sq in.
7	ASTRI.	LT _{str} , developed length of stringer, in.
L	<u> </u>	<u> </u>

TABLE 211. TX ARRAY (CONT)

Array Location	Variable Name	Description
3	RSKPØA _	$(f_{skin}/f_{allow})_{1\ max}$, maximum ratio of skin 0° ply P/A stress to allowable 0° ply stress for all design load conditions.
9	RSTPØA	$(f_{\rm str}/f_{\rm allow})_{\rm 1~max}$, maximum ratio of stringer 0° ply P/A stress to allowable 0° ply stress for all design load conditions.
10	RAE	AE ratio for skin and stringer sections, (AE)skin/ (AE)str.
11	DLEMI	Am _{skin} , incremental number of ±45° ply sets in the skin half-laminate necessary to prevent skin buckling, computed as EMI-EMØ, initial value specified by ACWSTR, final value calculated by ACWSSK.
12	DLIMI	Δn _{skin} , incremental number of 90° plies corresponding to Δm _{skin} .
13	ESKCRL	(E _{skin}) _{cr} , effective elastic modulus of skin for the load condition producing the maximum skin load if the skin is not stability critical.
14	PSKCRL	(P _{skin}) _{cr} , maximum axial load in skin, lb.
15	PSTCRL	(P _{str}) _{cr} , stringer load for the design condition specified for (P _{skin}) _{cr} , 1b.
16	PNXCRL	(NX) _{cr skin} , maximum skin N _X load corresponding to (P _{skin}) _{cr} , lb/in.
17	QSKCRL.	(N _{XY}) _{Cr} , skin shear load at the critical load condition, lb/in.
18	PCCRI	(N _X) _{allow} , allowable skin compression load, computed value for each load condition, lb/in.
19	PSCRI	(N _{XY}) _{allow} , allowable skin shear load, computed value for each load condition, 1b/in.
20	RMAX	R _{max} , maximum value of interaction ratios for all design load conditions.
21	RI	R_i , interaction ratio computed for each design load condition, $R_c + R_c^2$.
22	RCI	R _C , ratio of applied skin load to allowable skin load for each design load condition.
23	RSI	R _S , ratio of applied skin shear load to allowable skin shear load for each design load condition.
24	FCI	P _{tot} , total load on skin/stringer column for each design load condition, N _X · b _s , 1b.

TABLE 211. TX ARRAY (CONT)

Array Location	Variable Name	Description
25	PNXI	$(N_X)_{skin}$, skin load resulting from load distribution calculations, initially total cover load, lb/in.
26	PNXYI	(Nxx) _{skin} , cover shear load, 1b/in.
27	RASKI	$(f_{skin}/f_{allow})_{1 \text{ skin}}$, ratio of skin 0° ply P/A stress to allowable 0° ply stress.
28	RAST I	$(f_{str}/f_{allow})_{l str}$, ratio of stringer 0° ply P/A stress to allowable 0° ply stress.
29	EØØ	E_{skin} , effective elastic modulus of skin, $[E_{11}-E_{12}^2/E_{22}]$.
	_	h 80 contain data items computed during the skin/stringer ion analysis for assumed values of skin 1-plies.
30	BS	b _s , stringer spacing for current analysis station, specified by subroutine ACWRBS as variable B, in.
31	WIDE	W _{TB} , torque-box width for current analysis station, specified by subroutine ACWRBS, in.
32	ELL	<pre>1_{st}, number of 0° plies in cover half-laminate for basic P/A as computed by subroutine ACWRBS, setup by ACWSTR from EL(1) for upper cover, EL(4) for lower cover.</pre>
33	ELØ	<pre>(l_{skin})_o, number of 0° plies in skin half-laminate, current analysis pass value.</pre>
34	EMØ	(m _{skin}) _o , number of ±45° ply sets in skin half-laminate for basic P/A as computed by subroutine ACWRBS, setup by ACWSTR from EL(2) for upper cover and EL(5) for lower cover.
35	ENØ	(n _{skin}) _o , initial value for number of 90° plies in skin half laminate compatible with variables ELL and EMØ.
36	ELSK	<pre>1_{skin}, final design value for number of 0° plies in skin half-laminate.</pre>
37	EMSK	m _{skin} , final design value for number of ±45° ply sets in skin half-laminate.
38	ENSK	n _{skin} , final design value for number of 90° plies in skin half-laminate.
39	DELL	Al _{skin} , difference between the number of initial 0° plies required for cover P/A requirements and number of 0° plies in the skin for the current analysis pass, i.e., (ELL-ELØ), used to determine available 0° ply area for stringers.

TABLE 211. TX ARRAY (CONT)

	17 1 . 1	
Array Location	Variable Name	Description
40	ASTRA	(A _{str}) _{avail} , available 0° ply area for stringer, computed as DELL • BS, sq in.
41	SKMNL	(1 _{skin}) _{min} , minimum number of 0° plies in current cover skin half laminate, starting value for skin 1-ply
42	DLSK 1	analysis (absolute minimum value = 1.0). 1 _{skin} , current value of skin 1-ply increment to be used during skin 1-ply search, set to 4.0 first for initial convergence to the optimum and then changed to 2.0 or 1.0 for selection of the true optimum number of skin 1-plies.
43	SKLUMN	Initial estimate for minimum number of 0° plies for upper cover skin half-laminate based on 1) final design data for previous stringer spacing and analysis station and 2) minimum specified as input.
44	SKLLMN	Initial estimate for minimum number of 0° plies for lower cover skin half-laminate, computed as described for variable SKLUMN.
45	STRLUM	Initial estimate for minimum number of 0° plies for upper cover stringers, similar to computations for variables SKLUMN and SKLLMN.
46	STRLLM	Initial estimate for minimum number of 0° plies for lower cover stringer, similar to STRLUM.
47	BRIBR	(L _{rib} /L _{rib max}), ratio of allowable rib spacing to maximum spacing.
48	DLSTRL	Al _{str} , current value of stringer 1-ply increment to be used during stringer area search, initially set to 16.0 or to the starting number of stringer 1-plies if larger, for initial convergence computations. This value is reduced by halves after an acceptable stringer 1-ply value is determined until a value of 4.0 is obtained.
49	ASTRØ	(A _{str}) _{min} , minimum stringer area, based on minimum gage and size, sq in.
50	STRLØ	$(1_{str})_{min}$, minimum number of 0° plies in stringer.
51	STRLTØ	(LT _{str}) _{min} , minimum developed length of stringer, in.
52	BRIBMN	(Lrib) _{min} , minimum required rib spacing, in.
53	BRIBMX	(L _{rib}) _{max} , maximum required rib spacing, in.
54	BRIB	L _{rib} , allowable rib spacing, in.
55	ASTR	A _{str} , stringer area for current analysis, sq in.
56	STRL	1 _{str} , number of stringer 0° plies for current analysis.

TABLE 211. TX ARRAY (CONT)

Array Location	Variable Name	Description
57	STRLT	LT _{str} , developed length of stringer for current analysis, in.
58	AESTR	(A·E) _{str} , product of stringer area and stringer elastic modulus for loading condition critical for column length, compatible with L _{rib} , lb.
59	TBSTR	t _{str} , equivalent gage for stringer, A _{str} /BS, in.
60	TSTR	t _{str} , stringer gage, in.
61	FSTR	$(f_c)_{str}$, maximum applied compression stress in stringer, computed by subroutine ACMRSK, psi.
62	BW	h _{str} , stringer web height, in.
63	BF	f _{Str} , stringer flange width, in.
64	ISTR	(1 ₀) _{str} , stringer area moment of inertia about its centroid, in. ⁴
65	YBAR	\overline{Y}_{str} , stringer centroid, distance from inner surface of _skin, in.
66	YPLATE	(Yp) _{str} , cover load centroid, distance from plane of symmetry of skin laminate, in.
67	TRIB	t _{rib} , rib web gage, in.
68	EIREQD	(EI _{reqd}) _{rib} , rib stiffness required for skin/stringer column support, lb-in ² .
69	EIRIB	(EI) _{rib} , available rib stiffness for current design condition, 1b-in ² .
70	ERIB	E _{rib} , elastic modulus for rib web laminate, psi.
71	TRIQT	ttot, equivalent gage for total cover and support material, sum of t for cover, rib and skin-to-rib attachments and skin filler material, in.
72	TBCØV	t _{cov} , equivalent gage for cover material, sum of t _{skin} and t _{str} , in.
73	TBRIB	trib, equivalent gage for rib, sum of caps, web and protective finish, plus core and bond for honeycomb panel design, in.
74	TBFIL	t _{filler} , equivalent gage for skin filler material required in skin laminate along skin-to-rib attachment lines, in.
75	TBATT	tatt, equivalent gage for skin-to-rib attachments, in.
76	BWØTS	(b/t) _w , minimum allowable stringer web b/t.
77	BFØTS	(b/t)f, minimum allowable stringer flange b/t.
78	BØTA	(b/t) _W , stringer web b/t.

TABLE 211. TX ARRAY (CONCL)

Array Location	Variable Name	Description
79	STFNT	Factor for stringer developed length equation to account for tstr effects at web-to-flange intersections, function of stringer type. Values are 0.0 for "I," 1.0 for "Z," 1.0 for "T" and 2.0 for hat.
80	TSTRØ	(t _{str}) _{min} , minimum stringer gage, in.
	•	h 160 contain four 20-cell subarrays, ESK, PSK, PSTR and subroutine ACMRSK.
81-100	ESK(1-20)	E _{skin} (1-20), skin elastic modulus for the 20 design load conditions, psi.
101-120	PSK(1-20)	P _{skin} (1-20), skin load for each individual skin/stringer column for the 20 design load conditions, 1b/column.
121-140	PSTR (1-20)	P _{str} (1-20), stringer load for each individual skin/ stringer column for the 20 design load conditions, lb/column.
141-160	SKR(1-20)	R _{skin (1-20)} , skin load ratio for the 20 design load conditions.

General information for array TXS:

Blank common reference location = CD(161)

Array size = 100 cells

Array TXS contains two types of data sets. The first set consists of pertinent design information resulting from the current synthesis pass for multirib designs. The data are created and used by subroutine ACWSTR during the search logic for selection of the optimum design for the stringer spacing specified by subroutine ACWRBS at the current analysis control station. The second set is used by subroutine ACSTRG for storage and retrieval of stringer geometry information. Data from this set, along with other stringer section data are printed by ACSTRG under control of analysis station print control array APRTID, locations 1-11. Subroutine ACWSTR prints the complete contents of array TXS at the conclusion of each synthesis pass for each assumed skin 1-ply value, under control of location 12 of array APRTID.

Array	Variable	
Location	Name	Description

Locations 1 through 29 contain the data set created and used by subroutine ACWSTR.

The data set in locations 1-10, 23 and 24 is initialized first from the results of the first synthesis pass. If more than two skin L-ply synthesis passes are required, data in this set are replaced by the current L-ply results if the total weight slope dictates additional passes with increase value for skin L-plies, i.e., $(\Sigma \bar{t}_{j} < \Sigma \ \bar{t}_{j-1})$. This data set is used during the separate analysis for the upper cover and lower cover.

1	<u>-</u>	$\Sigma \bar{t}$, sum of current cover \bar{t}_{cov} , \bar{t}_{rib} , \bar{t}_{filler} , and $\bar{t}_{att.}$, in.
2	1	\$\ell_{sk}\$, number of 0° plies in skin half-laminate.
.5	-	m _{sk} , number of ±45° ply sets in skin half-laminate.
4	-	n_{sk} , number of 90° plies in skin half-laminate.
5	-	t _{sk} , skin gage, in.
()	-	A _{str} , stringer area, sq. in.
7	-	lstr, number of 0° plies in stringer.
8	-	LT _{Str} , developed length of stringer, (A _{Str} /t _{Str}), in.
9	-	t _{str} , stringer gage, in.
10	-	L _{rib} , rib spacing, in.

TABLE 212. TXS ARRAY (CONT)

Array Location	Variable Name	Description
design station value	values for a	tion 11 through 15, and 21 contain final upper cover the specified stringer spacing of the current analysis this set is used in the selection of the initial search ver skin (-ply and stringer (-ply for the next analysis
11	-	(lst) _{upr} , total number of 0° plies required for P/A requirements in upper cover half-laminate, the initial value in EL(1).
12 12	-	((sk)upr, number of 0° plies in upper cover skin half-laminate.
13	-	(lstr)upr, number of 0° plies in upper cover stringer.
14	-	(A _{Str}) _{upr} , upper cover stringer area, sq. in.
15		
The data		tions 16 through 20 and 22 contain final lower cover e used as previously described for the upper cover.
The data		e used as previously described for the upper cover. (Lst)lwr
The data design		tions 16 through 20 and 22 contain final lower cover e used as previously described for the upper cover. (*\mathbb{l}_{\text{st}})_{\text{lwr}}(*\mathbb{l}_{\text{sk}})_{\text{lwr}}
The data design 16		tions 16 through 20 and 22 contain final lower cover e used as previously described for the upper cover. (*\mathbb{l}_{\text{st}})_{\text{lwr}} (*\mathbb{l}_{\text{sk}})_{\text{lwr}} (*\mathbb{l}_{\text{str}})_{\text{lwr}}
The data design 16 17 18		tions 16 through 20 and 22 contain final lower cover e used as previously described for the upper cover. (*\mathbb{l}_{\text{st}})_{\text{lwr}}(*\mathbb{l}_{\text{sk}})_{\text{lwr}}
The data design 16 17 18 19		tions 16 through 20 and 22 contain final lower cover e used as previously described for the upper cover. (*\mathbb{l}_{\text{st}})_{\text{lwr}} (*\mathbb{l}_{\text{str}})_{\text{lwr}} (*\mathbb{l}_{\text{lwr}})_{\text{lwr}} (*\mathbb{l}_{\text{lwr}})_{\text{lwr}} (*\mathbb{l}_{\text{lwr}})_{\text{lwr}} (*\mathbb{l}_{\text{lwr}})_{\text{lwr}} (*\mathbb{l}_{\text{lwr}})_{\text{lwr}} (*\mathbb{l}_{\text{lwr}})_{\text{lwr}} (*\mathbb{l}_{l
The data design 16 17 18 19 20		tions 16 through 20 and 22 contain final lower cover e used as previously described for the upper cover. (*\mathbb{l}_{\text{st}})_{\text{lwr}} (*\mathbb{l}_{\text{str}})_{\text{lwr}} (*\mathbb{l}_{\text{lwr}})_{\text{lwr}} (*\mathbb{l}_{\text{lwr}})_{\text{lwr}} (*\mathbb{l}_{\text{lwr}})_{\text{lwr}} (*\mathbb{l}_{\text{lwr}})_{\text{lwr}} (*\mathbb{l}_{\text{lwr}})_{\text{lwr}} (*\mathbb{l}_{\text{lwr}})_{\text{lwr}} (*\mathbb{l}_{l
The data design 16 17 18 19 20		tions 16 through 20 and 22 contain final lower cover e used as previously described for the upper cover. (*\begin{align*} (\ell_{st})_{lwr} \\ (\ell_{st})_{lwr} \\ (\ell_{str})_{lwr} \\ (\ell_{str}
The data design 16 17 18 19 20 21		tions 16 through 20 and 22 contain final lower cover e used as previously described for the upper cover. (*\begin{align*} (\ell_{st})_{lwr} \text{(*\ell_{str})_{lwr}} \text{(*\ell_{str})_{lwr}} \text{(*\ell_{str})_{lwr}} \text{(*\ell_{str})_{lwr}} \text{(*\ell_{str})_{lwr}} \text{(*\ell_{str})_{lwr}} \text{(*\ell_{str})_{lwr}} \text{incremental number of \$\pm 45^\circ \text{ply sets added to the initial value of upper cover half-laminate mplies in \$\text{EL}(2)\$. (*\ell_{sk})_{lwr} \text{(*\ell_{sk})_{lwr}} \text{(*\ell_{sk})_{lwr

Locations 30 through 40 contain data computed by subroutine ACSTRG. Locations 41 through 100 are not used.

TAE'LE 212. TXS ARRAY (CONCL)

Array	Variable	
Locat ion	Name	Description
		Description Lstr, number of 0° plies in final stringer configuration tstr, stringer thickness for final configuration, in. LTstr, stringer developed length for final configuration, in. Not used. Not used. (Lstr)i, 0° plies for second stringer geometry. (tstr)i, stringer thickness for BWLI, in. (LTstr)i, stringer developed length for BWLI, in. (hstr)i, stringer web height for BWLI, in. (fstr)i, stringer flange width for BWLI, in. (b/t)f, stringer flange b/t. Not used.

General information for array STRING:

Blank common reference location = T(1676)

Array size = 220 cells

Array dimension = (2,10,11)

Array STRING contains upper and lower design data for multirib designs to supplement the ply data stored in array IEL. Array locations are used initially to store current synthesis pass data resulting from the analysis under control of subroutine ACWSTR. This array is also used to store final design data to be used for stiffness and weight analysis. The design information stored in STRING reflect sizing data necessary to satisfy strength and stability requirements only. The i-index of the (i,j,k) array dimension refers to the upper cover, i = 1, and lower cover, i = 2, except as noted. The cover design parameters are referenced by the j-index. These are stored in data sets for each of the 11 structural synthesis control stations identified by the k-index.

	r	
Relative Core Location	Index	Description
1	1,1,1	b _{str} , stringer spacing for upper cover, station 1, in.
2	2,1,1	(lower cover spacing is assumed to be the same.) (f) critical stress, upper cover stringer, station
3	1,2,1	l, psi b _{rib} , intermediate rib spacing based on upper cover
4		design, station 1, in. (f st) lwr, critical stress, lower cover stringer, sta-
5	1,3,1	tion 1, psi $(\overline{Y})_{upr}$, distance between the total load centroid
6	<u> </u>	plane and the skin load plane for upper cover, station 1, in. $(\overline{Y}_p)_{lwr}$, distance between the total load centroid plane and the skin load plane for lower cover, station 1,
7		psi. (I _{str}) _{upr} , upper cover stringer section area moment of inertia about the stringer section centroid, station 1, in ⁴ .

TABLE 213. STRING ARRAY (CONT)

Relative Core Location	Array Index Value	Description
8	2,4,1	(I _{str}) _{lwr} , lower cover stringer section area
9	1,5,1	moment of inertia about the stringer section centroid, station 1, in ⁴ . $(\overline{Y}_{str})_{upr}$, distance between the stringer section centroid and the inner surface of the
10	2,5,1	skin, upper cover, station 1, in. (Y str) lwr, distance between the stringer
11	1,6,1	section centroid and the inner surface of the skin, lower cover, station 1, in. (b _w) _{upr} , upper cover stringer web height, sta-
12	2,6,1	tion 1, in. (b _w) _{lwr} , lower cover stringer web height,
13	1,7,1	station 1, in. (b _f) _{upr} , upper cover stringer flange width,
14	2,7,1	station 1, in. (b _f) _{lwr} , lower cover stringer flange width,
15	1,8,1	station 2, in. (t str) upr, upper cover stringer gage, station 1,
16	2,8,1	in. (t _{str}) _{lwr} , lower cover stringer gage, station 1,
17	1,9,1	in. (A _{str}) _{upr} , upper cover stringer area, station 1,
18	2,9,1	sq. in. (A _{str}) _{lwr} , lower cover stringer area, station 1,
19	1,10,1	sq. in. (1 str)upr, number of 0° ply layers in the
20	2,10,1	upper cover stringer, station 1. (1 _{str}) _{lwr} , number of 0° ply layers in the
21 40	(1 2) (1 10) 2	lower cover stringer, station 1.
21-40 41-60	(1-2), (1-10), 2 (1-2), (1-10), 3	Cover design data, station 2.
61-80	(1-2), (1-10), 3 (1-2), (1-10), 4	Cover design data, station 3. Cover design data, station 4.

TABLE 213. STRING ARRAY (CONCL)

Relative Array Core Index Description Location Value	

TABLE 214. W ARRAY, SUBROUTINE WEIGH2

General information for array W:

Reference location: Subroutine WEIGH2

Array size = 35 cells

Array W contains thickness, area, and weight data for multirib torque-box structural components at the current analysis control station. The information is computed by subroutine WEIGH2 from design data resulting from the multirib analysis under the control of subroutine ACWRBS. The array locations are initialized to 0.0 values before computations are made. Subroutine WEIGH2 prints the contents of array W under control of analysis station print control array APRTID, locations 1-11.

Array Location	Description
Docacion	Descripcion
1	(W _{skin}) _{upr} , upper cover skin weight, including front end rear spar overhang material, 1b/in.
2	(W _{skin}) _{lwr} , lower cover skin weight, including front end rear spar overhang material, lb/in.
3	(W _{web}) _{FS} , front spar web weight, lb/in.
4	(W _{web}) _{IR} , total weight of intermediate rib webs, 1b/in.
5	(Wweb)RS, rear spar web weight, 1b/in.
6	(Wmisc) _{upr} , weight of upper cover skin exterior flame spray and interior protective finish material, lb/in.
7	(Wmisc) _{lwr} , weight of lower cover skin exterior flame spray and interior protective finish material, lb/in.
8	(W _{misc}) _{FS} , weight of nonstructural items for front spar web, protective finish for corrugated web, plus core and bond for honeycomb panel design, 1b/in.
9	(Wmisc) IR, total weight of nonstructural items for intermediate rib webs, protective finish for corrugated webs, plus core and bond for honeycomb panel design lb/in.
10	(Wmisc)RS, weight of nonstructural items for rear spar web, protective finish for corrugated web, plus core and bond for honeycomb panel design, lb/in.
11	(WCU)FS, weight of front spar upper cap, 1b/in.
12	(WCL)FS, weight of front spar lower cap, 1b/in.
13	(W(II)RS, weight of rear spar upper cap, 1b/in.
14	(WCL)RS, weight of rear spar lower cap, 1b/in.
15	(Wstr)upr, total weight of upper cover stringers, 1b/in.
16	W _{misc} , total weight of miscellaneous items for front spar, rear
	spor and intermediate ribs, computed as a fraction of the
	weight of these structures, except for cover to rib attachments, 1b/in.

TABLE 214. W ARRAY, SUBROUTINE WEIGH2 (CONCL)

	1 ADDE 214. II Advil, SODICOTINI IIII CE (CONCE)
Amora	
Array	Dii
Location	Description
17	
17	(W _{str}) _{lwr} , total weight of lower cover stringers, lb/in.
18	Weff, effective torque-box width for skin material weight calcu-
	lations, in.
19	tupr, equivalent thickness of upper cover material, in.
20	tlwr, equivalent thickness of lower cover material, in.
21	(Wmisc)str upr, total weight of protective finish material for
	upper cover stringers, 1b/in.
22	(Wmisc) _{str lwr} , total weight of protective finish material for
	lower cover stringers, 1b/in.
23	Not used.
24	Not used.
25	Temporary storage. Initially cap thickness term for calculation of
1	front and rear spar cap areas, in. Rib spacing for filler and
	attachment weight calculations, in. Rib weight term for inter-
	mediate rib weight calculations, in.
26	(tfill)upr, upper cover filler material thickness, added material
	required in upper cover along skin to intermediate rib attach
	line, in.
27	(tfill) _{lwr} , lower cover filler material, in.
28	(Wfill)upr, total weight of upper cover filler material, lb/in.
29	
	(Wfill) lwr, total weight of lower cover filler material, 1b/in.
30	(Watt)upr, total weight of upper cover to intermediate rib
	attachments, 1b/in.
31	(Watt) _{lwr} , total weight of lower cover to intermediate rib
	attachments, 1b/in.
52	(Latt)upr, effective length of each upper cover to intermediate rib
	fastener for weight calculations, in.
33	(Latt) _{lwr} , effective length of each lower cover to intermediate rib
	fastener for weight calculations, in.
34	(W _{cap}) _{IR} , total weight of intermediate rib caps, 1b/in.
35	Not used.
1	
1	

TABLE 215. TSF ARRAY

General information for array TSF:

Blank common reference location = CD(441)

Array Size = 60 cells

Array TFS contains torque-box stiffness calculation data created by subroutine ASTIFF. The information consists of detail cross-sectional geometry properties of those elements of the torque-box affecting the bending and torsional stiffness characteristics at each analysis station. The information is used by subroutine ACEIGJ to compute EI, GJ, E and G values at analysis temperatures specified in array TEIGJ. The contents of array TSF is printed under control of analysis station print control array APRTID, locations 1 through 11. Array TSF is initialized to 0.0 values by subroutine ASTIFF before calculation of stiffness data for each of the 11 analysis control stations.

Array Location	Description
1	$(\underline{t}_{cov})_{upr}$, upper cover equivalent thickness, in.
2 3	$(t_{COV})_{1wr}$, lower cover equivalent thickness, in.
3	(t _{cap}) _{upr} , for multispar design, (t _{str}) _{upr} , for multirib design, 0.0 for full-depth honeycomb sandwich design, in.
4	$(\overline{t}_{cap})_{1wr}$, for multispar design, $(\overline{t}_{str})_{1wr}$, for multirib design, 0.0 for full depth honeycomb sandwich design, in.
5	(I _o) _{Cap upr} , area moment of inertia for thickness in location 3, in ⁴ /in.
6	$(I_0)_{\text{cap lwr}}$, area moment of inertia for thickness in location 4, in 4/in.
7	(Y _{cap}) _{upr} , centroid of upper cover intermediate spar cap or stringer defined by thickness in location 3, distance from inner surface of skin, in.
8	$(\overline{Y}_{cap})_{1wr}$, centroid of lower cover intermediate spar cap or stringer defined by thickness in location 4, distance from inner surface of skin, in.
9	K _{nos} , factor for cap t-bar, number of elements divided by the sum of 1.0 plus the number of elements for multispar design; 1.0 for multirib design.
10	NOS, symber of intermediate spars for multispar design.
11	Calculation code for subroutine ACEIGJ processing of array TA data from data in array TSF. Code value of 0.0 indicates calculations to be made, 1.0 indicates no calculations.

TABLE 215. TSF ARRAY (CONT)

Array Location	Description
12	D'eff, average torque-box height, distance between the skin centroids, including honeycomb core thickness if multispar
13	honeycomb panel cover design, in. Weff, effective width of torque-box section, distance between the centroids of the front spar and rear spar webs, including honeycomb core if honeycomb panel web design, in.
14	(ds) _{upr} , web width for upper cover skin, in.
15	(ds) _{lwr} , web width for lower cover skin, in.
16	(ds) _{FS} , web width for front spar web, in.
17	(ds) _{RS} , web width for rear spar web, in.
18	(t _{skin}) _{upr} , upper cover skin thickness, in.
19	$(t_{skin})_{lwr}$, lower cover skin thickness, in.
20	(t _{wcb}) _{FS} , front spar web thickness, in.
21	(tweb)RS, rear spar web thickness, in.
22	(t _{core}) _{upr} , upper cover honeycomb core thickness if multispar honeycomb panel design, 0.0 for other designs, in.
23	(t _{core}) _{1wr} , lower cover honeycomb core thickness if multispar honeycomb panel design, 0.0 for other designs, in.
24	(t _{core}) _{FS} , front spar honeycomb core thickness if honeycomb panel design, 0.0 for corrugated web design, in.
25	(t _{core}) _{RS} , rear spar honeycomb core thickness if honeycomb panel design, 0.0 for corrugated web design, in.
26	$(\overline{Y}_{skin})_{upr}$, centroid of upper cover skin, distance from outer surface of skin, in.
27	$(\overline{Y}_{skin})_{1wr}$, centroid of lower cover skin, distance from outer surface of skin, in.
28	0.5 $[(t_{web})_{FS} + (t_{web})_{RS} + (t_{core})_{FS} + (t_{core})_{RS}]$, in.
29	$(\Lambda_{can})_{FS,unr}$, upper front spar cap area, sq in.
30	$(A_{cap})_{FS}$ 1_{WT} , lower front spar cap area, sq in.
31	(A _{cap}) _{RS upr} , upper rear spar cap area, sq in.
32	(Acan) ps tum. lower rear spar cap area, sq in.
33	(Y _{cap}) _{FS upr} , centroid of upper front spar cap, distance from inner surface of upper skin, in.
34	$(\overline{Y}_{cap})_{FS}$ 1_{WT} , centroid of lower front spar cap, distance from inner surface of lower skin, in.
35	$(\Lambda\Lambda_{COV})_{ES}$ upp, upper cover overhang area at front spar, sq in.
36	(4A _{COV}) _{FS 1wr} , lower cover overhang area at front spar, sq in.
37	(AA _{COV}) _{RS upr} , upper cover overhang area at rear spar, sq in.
38	(AAcov) RS lwr, lower cover overhang area at rear spar, sq in.

TABLE 215. TSF ARRAY (CONT)

Array Location	Description	
39	$(\overline{Y}_{cap})_{RS}$ upr, centroid of upper rear spar cap, distance from inner surface of upper skin, in.	
40	(Y _{cap}) _{RS lwr} , centroid of lower rear spar cap, distance from inner surface of lower skin, in.	
41	(I _o) _{dcov FS upr} , area moment of inertia for upper cover overhang material at front spar, in ⁴ .	
42	(I _O) _{ACOV FS lwr} , area moment of inertia for lower cover overhang material at front spar, in ⁴ .	
43	(I _o) _{Acov RS upr} , area moment of inertia for upper cover overhang material at rear spar, in ⁴ .	
44	(I _o) _{Acov RS lwr} , area moment of inertia for lower cover overhang material at rear spar, in	
45	(I _O) _{cap FS upr} , area moment of inertia for upper front spar cap, in ⁴ .	
46	(I _O) _{Cap FS lwr} , area moment of inertia for lower front spar cap, in ⁴ .	
47	(I _o) _{cap RS upr} , area moment of inertia for upper rear spar cap, in ⁴ .	
48	(I _o) _{cap RS lwr} , area moment of inertia for lower rear spar cap, in ⁴ .	
Locations 49 through 60 contain flutter stiffness increment data created by subroutine ASTIFF and used by subroutine ACEIGJ for determination of m-plies in the four torque-box webs necessary to satisfy flutter torsional stiffness requirements. This data set is created only for torque-box sections that do not satisfy flutter stiffness criteria.		
49	(SAm _{skin}) _{upr} , number of ±45° ply sets to be added to upper skin half-laminate to increase torsional stiffness of torque-box section.	
50	(\$\mathcal{E}_{\text{Skin}}\)_{lwr}, number of ±45° ply sets to be added to lower skin half-laminate to increase torsional stiffness of torque-box section.	
51	(Samweb) _{FS} , number of ±45° ply sets to be added to front spar web half-laminate to increase torsional stiffness of torque-box section.	
52	(£Amweb) _{RS} , number of ±45° ply sets to be added to rear spar web half-laminate to increase torsional stiffness of torque-box section.	
53	$(\Delta t_{VF})_{upr}$, incremental thickness added to upper skin to increase torsional stiffness of torque-box section, in.	

TABLE 215. TSF ARRAY (CONCL)

Array Location	Description
54	(AtVF) _{1wr} , incremental thickness added to lower cover skin to increase torsional stiffness of torque-box section, in.
55	(AtVF)FS, incremental thickness added to front spar web to increase torsional stiffness of torque-box section, in.
56	(AtVF)RS, incremental thickness added to rear spar web to increase torsional stiffness of torque-box section, in.
57 58	$(\Sigma PLIES)_{upr}$, total number of plies in upper cover skin laminate. $(\Sigma PLIES)_{lwr}$, total number of plies in lower cover skin laminate.
59 60	(ΣPLIES) _{FS} , total number of plies in front spar web laminate. (ΣPLIES) _{RS} , total number of plies in rear spar web laminate.
	(Constant)

General information for array TA:

Blank common reference location = CD(401)

Array size = 40 cells

Array TA is used by subroutine ACEIGJ for storage and retrieval of torque-box stiffness data. Array data is created during each analysis pass by ACEIGJ under control of subroutine ASTIFF. Array TA is printed by subroutine ACEIGJ at the conclusion of each analysis pass under control of analysis station print control array APRTID, locations 1 through 11. The array locations are initially set to 0.0 values by subroutine ASTIFF before computations are made for each of the 11 analysis control stations.

Array		
Location	Description	
1	Elsec, area moment of inertia of the torque-box, in4.	
2	LJ _{sec} , polar moment of inertia of the torque-box, in ⁴ .	
3	I _{upr} , area moment of inertia of upper cover structures, in ⁴ .	
4	I_{1wr} , area moment of inertia of lower cover structures, in ⁴ .	
5	(E _{skin}) _{upr} , elastic modulus for upper cover skin, psi.	
6	$(E_{skin})_{1wr}$, elastic modulus for lower cover skin, psi.	
7	(Gskin)upr, shear modulus for upper cover skin, psi.	
8	(G _{skin}) _{lwr} , shear modulus for lower cover skin, psi.	
9	(Gweb) _{FS} , shear modulus for front spar web, psi.	
10	(Gweb) RS, shear modulus for rear spar web, psi.	
11	$(A')^2$, square of effective torque-box cross-sectional area for GJ calculations, $(D'' \cdot W'')^2$, in ⁴ .	
12	D'', effective depth for torque-box skins, distance between the centroids of cover skins, in.	
13	W'', effective width of skin webs for GJ calculations, distance between the centroids of front spar and rear spar webs, in.	
14	(ds")upr, web width of upper cover skin for GJ calculations, in.	
15	(ds") _{lwr} , web width of lower cover skin for GJ calculations, in.	
16	(ds")FS, web width of front spar web for GJ calculations, in.	
17	(ds")RS, web width of rear spar web for GJ calculations, in.	
18	(t _{skin}) _{upr} , upper cover skin thickness, in.	
19	(t _{skin}) _{lwr} , lower cover skin thickness, in.	
20	(tweb) FS, front spar web thickness, in.	
21	(tweb)RS, rear spar web thickness, in.	
22	(I _{skin}) _{upr} , area moment of inertia for upper cover skin, (I _o) _{skin} + transfer term, in ⁴ .	
23	(I _{skin}) _{lwr} , area moment of inertia for lower cover skin, (I _o) _{skin} + transfer term, in ⁴ .	

TABLE 216. TA ARRAY (CONCL)

Array Location	Description
24	(I _{caps}) _{upr} , area moment of inertia for upper cover intermediate spar caps or stringers, (I _o) _{caps} + transfer term, in ⁴ . (I _{caps}) _{lwr} , area moment of inertia for lower cover intermediate
25	(I _{caps}) _{lwr} , area moment of inertia for lower cover intermediate spar caps or stringers, (I _o) _{caps} + transfer term, in ⁴ .
26	spar caps or stringers, $(I_0)_{\text{caps}}$ + transfer term, in ⁴ . $(I_{\text{Acov}})_{\text{FS upr}}$, area moment of inertia for upper cover overhang material at front spar, $(I_0)_{\text{Acov}}$ + transfer term, in ⁴ .
27	$(I_{ACOV})_{FS}$ lwr, area moment of inertia for lower cover overhang material at front spar, $(I_O)_{ACOV}$ + transfer term, in ⁴ .
28	(I _{ACOV}) _{RS upr} , area moment of inertia for upper cover overhang material at rear spar. (I _a) _{Acov} + transfer term, in ⁴ .
29	(I _{ACOV}) _{RS lwr} , area moment of inertia for lower cover overhang material at rear spar, (I _O) _{ACOV} + transfer term, in ⁴ .
3 0	$(I_{cap})_{FS}$ upr, area moment of inertia for upper front spar cap, $(I_o)_{cap}$ + transfer term, in ⁴ .
31	$(I_{cap})_{FS}$ I_{WT} , area moment of inertia for lower front spar cap,
32	(I _{cap}) _{RS upr} , area moment of inertia for upper rear spar cap, (I _o) _{cap} + transfer term, in ⁴ .
33	$(l_{cap})_{RS}$ l_{Wr} , area moment of inertia for lower real spar cap, $(l_o)_{cap}$ + transfer term, in ⁴ .
34	(Y'skin)upr, centroid of upper cover skin, distance from outer surface of skin, same as TSF(26) for strength design, revised to account for added m-ply thicknesses for flutter design, in.
35	$(\overline{Y}_{skin}^{"})_{1wr}$, centroid of lower cover skin, distance from outer surface of skin, same as TSF(27) for strength design, revised to account for added m-ply thicknesses for flutter design, in.
36	0.5 $[(\Delta t_{VF})_{upr} + (\Delta t_{VF})_{lwr}]$, in.
37	0.5 [(\Delta tyF)FS + (\Delta tyF)RS], in.
38-40	Not used.

General information for torque-box stiffness arrays:

Blank common reference location: CD(1) = 4121, stiffness data arrays referenced to array CD

Array sizes: (1) = 2000 cells, stiffness arrays = 11 cells Locations 1 through 400 contains data sets describing the stiffness characteristics of the advanced composite torque-box. The torquebox stiffness parameters are computed for the 11 structural synthesis control stations. The values are stored in 11 consecutive cells which are identified by unique variable names. Data sets are computed for strength-only design and for combined requirements for strength and flutter stiffness, under control of subroutine ASTIFF. Locations 1-400 of array CD is initially set to 0.0 values by ASTIFF. Subroutine ASTIFF prints the CD array stiffness data block under control of print control code IPB. The stiffness data block for the current gross weight pass is saved on mass storage file 1, record 40, by subroutine ACNSTR. It is reinitialized from this source by subroutines ATBOPT or ACPRTA for use by ACPRTA and ACPROG. Subroutine ACPRØG saves the data sets for each gross weight on mass storage file 1, records 13, 14 and 15 for use in overlay (17,0).

CD Array Location	Variable Name	Description
		Description

Locations 1 through 88 contain torque-box stiffness information evaluated at the design reference temperature specified in TEIGJ(1). The data set in locations 45 through 88, will be identical to that in locations 1 through 44 if flutter stiffness requirements are not evaluated or if the surface is not flutter critical.

1-11	GJSTD(1-11)	(GJ) st (1-11), torsional stiffness at the 11 structural analysis control stations, based on structural requirements for
12-22	EISTD(1-11)	strength and stability only, 1b-in ² .
12-22	E1510(1-11)	(EI) _{st (1-11)} , bending stiffness at the 11 structural analysis control stations, based
27.77	(2077) (1 11)	on structural requirements for strength and stability only, lb/in ² .
23-33	GSTD(1-11)	(G) st (1-11), equivalent material shear
		modulus for the previous (GJ) _{st} , calculated
		as $[(GJ)_{st}/(J)_{st}]$, psi.

TABLE 217. (D) ARRAY, LOCATIONS 1-400, STIFFNESS DATA ARRAYS (CONT)

CD Array Location	Variable Name	Description
34 - 44	ESTD(1-11)	(E) _{st} (1-11), equivalent material elastic modulus for the previous (EI) _{st} , calculated as [(EI) _{st} /(I) _{st}], psi.
45-55	GJCD(1-11)	(GJ) comp (1-11), torsional stiffness based on structural requirements for strength, stabil-
56-66	EICD(1-11)	ity and flutter stiffness, 1b-in ² . (EI) comp (1-11), bending stiffness based on
67-77	GCMD(1-11)	structural requirements for strength, stability and flutter stiffness, $1b-in^2$. (G) comp $(1-11)$, equivalent material shear
		modulus for the previous (GJ) comp, psi.
78-88	ECMD(1-11)	(E) comp (1-11), equivalent material elastic modulus for the previous (EI) comp, psi.

Locations 89 through 132 contain torque-box stiffness information for flutter design evaluated at the design temperature specified in TEIGJ(2). This data set will contain 0.0 values if the flutter stiffness analysis option is not selected, variable VFID = 0.0 (input data D(251)). The stiffness data for strength and stability design only for this set is stored in locations 353 through 396.

	<u> </u>	
89-99	GJVFD(1-11)	(GJ) comp VF (1-11), torsional stiffness
		based on structural requirements for strength, stability and flutter stiffness, evaluated at the design temperature for flutter analysis, lb-in ² .
100-110	EIVFD(1-11)	(EI) comp VF (1-11), bending stiffness based
		on structural requirements for strength, stability and flutter stiffness, evaluated
		at the design temperature for flutter analysis, lb-in ² .
111-121	GVFD (1-11)	(G) comp VF (1-11), equivalent material shear
	I	modulus for the previous $(GJ)_{VF}$, psi.

TABLE 217. CD ARRAY, LOCATIONS 1-400, STIFFNESS DATA ARRAYS (CONT)

Cl Array Location	Variable Name	Description
122-132	EVFD(1-11)	(E) comp VF $(1-11)$, equivalent material elastic modulus for the previous (EI) $_{ m VF}$, psi

Locations 133 through 220 contain torque-box stiffness information identical to that in locations 1-88 but based on the evaluation temperature specified in TEIGJ(3), design temperature for flutter optimization. This data set will contain 0.0 values if the flutter optimization design data output option is not selected, variable DINID = 0.0 or 2.0. The data set in locations 177 through 220 will be identical to that in 133 through 176 if flutter stiffness requirements are not evaluated or if the surface is not flutter critical.

1		
133-143	GJSFØ(1-11)	(GJ) _{st FØ (1-11)}
144-154	EISFØ(1-11)	(EI)st FØ (1-11)
155-165	GSFØ(1-11)	(G) _{st FØ} (1-11)
166-176	ESFØ(1-11)	(E) _{st FØ} (1-11)
177-187	GJCFØ(1-11)	(GJ) comp FØ (1-11)
188-198	EICFØ(1-11)	(EI) comp FØ (1-11)
199-209	GCFØ(1-11)	(G) comp FØ (1-11)
210-220	ECFØ(1-11)	(E) comp FØ (1-11)

Locations 221 through 308 contain torque-box stiffness information identical to that in locations 1-88 but based on the evaluation temperature specified in TEIGJ(4), design temperature for flexible loads analysis. This data set will contain 0.0 values if the flexible loads analysis design data output option is not selected, variable DINID = 0.0 or 3.0. The data set in locations 265 through 308 will be identical to that in 221 through 264 if flutter stiffness requirements are not evaluated or if the surface is not flutter critical.

221-231 232-242	GJSFL(1-11) EISFL(1-11)	(GJ) _{st FL} (1-11)
243-253	GSFL(1-11)	(EI) _{st FL} (1-11) (G) _{st FL} (1-11)

TABLE 217. CD ARRAY, LOCATIONS 1-400, STIFFNESS DATA ARRAYS (CONCL)

CD Array Location	Variable Name	Description
254-264 265-275 276-286 287-297 298-308	ESFL(1-11) GJCFL(1-11) EICFL(1-11) GCFL (1-11) ECFL(1-11)	(E) st FL (1-11) (GJ) comp FL (1-11) (EI) comp FL (1-11) (G) comp FL (1-11) (E) comp FL (1-11)

Locations 309 through 352 contain m-ply set increments for the four torque-box webs necessary to increase structure torsional stiffness to satisfy flutter stiffness requirements. This data set will contain 0.0 values if flutter stiffness requirements are not evaluated or if the surface is not flutter critical.

309-319	DLRGJM(1-11)	(Am) upr (1-11), m-ply set increment, upper
320 - 330	DLRGJM(12-22)	cover skin. (Am) lwr (1-11), m-ply set increment, lower
331 - 341	DLRGJM(23-33)	cover skin. $(\Delta m)_{FS}$ (1-11), m-ply set increment, front
342-352	DLRGJM(34-44)	spar web. $(\Delta m)_{RS}$ (1-11), m-ply set increment, rear spar
		web.

locations 353 through 396 contain the torque-box stiffness data set for strength and stability design only that is related to the data set in locations 89 through 132.

353-363	GJVFS(1-11)	^(GJ) st VF (1-11)
364-374	EIVFS(1-11)	(Ei) st VF (1-11)
375-385	GVFS(1-11)	(G) _{st VF} (1-11)
386-396	EVFS(1-11)	(E) _{st VF} (1-11)
397-400		Not used
L		

TABLE 218. TDC ARRAY, OVERLAY (18.0)

General information for array TDC:

Blank common reference location = T(1341)

Array size = 200 cells

Array TDC is used in overlay (18,0) as the primary array for data compatibility between the advanced composite analysis routines and the weight analysis routines programmed initially for metallic structure analysis. Section design data sets are created by subroutine ACNSTR to contain data similar to the metallic analysis data set described in Table 224, except for additional design information unique to advanced composite structures. These data sets are created after current pass synthesis operations are complete for all 11 analysis control stations. ACNSTR initiates a new 11-station analysis loop, creating required TDC array data for each station for current pass weight calculations. The weight analysis operations are initially performed by routines under control of subroutine WTCAL and subsequently by subroutine ATBOPT after the 11-station analysis loop is completed. During execution of advanced composite routines, values of the metallic analysis constants created by subroutine CNSTC are not altered locations 1 through 67.

Array	
Location	

Description

Locations 1 through 67 contain the same information as array TDC, overlays (9,0) and (10,0), described in Table 224. These locations are not used, however, during the execution of overlay (18,0) routine. This part of array TDC will contain data calculated by subroutine CNSTC, overlay (16,0), for use by overlays (9,0) and (10,0) during analysis of metallic designs. Since overlay (16,0) computations are made for both advanced composite and metallic analysis, these locations plus 162 through 165 will contain CNSTC calculated data. The T array print by subroutine WDDATA under control of IP(23) will reflect these values in T(1341) - T(1407) and T(1502) - T(1505).

1 - 67

Not used, metallic torque-box analysis only. (Refer to Table 224.)

TABLE 218. TDC ARRAY, OVERLAY (18,0) (COMT)

Array Location	Description
Locations 68 through 120 contain advanced composite analysis data which are similar to those defined for metallic designs in Table 224. Data in these locations are computed by subroutine ACNSTR, overlay (18,0), for use by weight analysis and output print routines in overlay (18,0) that are the same as those found in the metallic analysis overlays. This data set is created by ACNSTR for each analysis control station and is printed by subroutine PRTB under control of internal print control word IPB. Code value for IPB is determined by subroutine ATBØPT, overlay (18,0), from IP(31) or IP(32).	
68 69	Not used. D _{ES} , front spar mold line depth, in.
70	D _{RS} , rear spar mold line depth, in.
71	$-N_{\chi}$ cover axial load for down-bending condition, lb/in. ult.
72	+N _X cover axial load for up-bending condition, lb/in. ult.
73	D', effective torque-box depth for cover axial loads, in.
74	GJ _{VF} , section torsional stiffness required to prevent surface flutter, 1b-in.
75	V _{ES} , shear load on front spar, 1b ult.
76	V _{RS} , shear load on rear spar, 1b uli.
77	W, structure width of torque box, in.
78	D, average torque-box depth, in.
79	+V, design shear load for up-bending condition, 1b ult.
80	+M, design bending moment for up-bending condition, in1b ult.
81	NØS, number of stringers or intermediate spars.
82	b, stringer or intermediate spar spacing, in.
83	(f _{ccr}) _{skin} , allowable compression stress at the critical sta-
84	bility design condition for upper cover skins, psi. (f _c) _{skin} , upper cover compression stress at critical design
85	condition, psi. (f _{scr}) _{skin} , allowable shear stress at critical stability design condition for upper cover skin, psi.
86	(f _s) _{skin} , upper cover skin shear st. ess at critical design con-
87	dition, psi. t_lwr, lower cover t, in.

TABLE 218. TDC ARRAY, OVERLAY (18,0) (CONT)

Array Location	Description
88	t _{upr} , upper cover t, in.
89	Σt_{rib} , rib \bar{t} for multirib designs (MR), intermediate spar \bar{t} for
	multispar designs (MS), or honeycomb core t for fulldepth honeycomb sandwich designs (FDH), in.
90	(t) misc skins upr, upper cover exterior and interior protective film t for MR and MS/plates, plus core and bond t for MS/
91	honeycomb panel or exterior protection material t for FDH, in. (t _{att}) _{upr} , rib-to-upper-cover attachment t for MR, intermediate
92	_spar-to-upper-cover attachment t for MS, 0.0 for FOH, in. (t_misc)rib, rib or spar miscellaneous structure t for MR and MS, 0.0 for FDH, in.
93	(t _{misc skin}) _{rib} , upper cover filler material t for MR and MS
	(material added to skins along rib or spar attachment lines) or 0.0 for FDH, in.
94	Not used.
95	(A _{str}) area for each upper cover stringer for MR, area for each upper cover intermediate spar caps for MS/plates, plus equivalent area of upper cover core inserts at spar lines for MS/honeycomb panels, or equivalent area/inch for upper skinto-core bond for FDH, sq in.
96	(t _{str}) _{upr} , t for (A _{str}) _{upr} , in.
97	(t _{str}) _{upr} , upper cover stringer gage for MR, 0.0 for MS or FDH, in.
98	(h _{str}) _{upr} , upper cover stringer web height for MR, 0.0 for MS or FDH, in.
99	(f _{str}) _{upr} , upper cover stringer flange width for MR, 0.0 for MS or FDH, in.
100	L _{rib} , rib spacing for MR, spar spacing for MS, 1.0 for FDH, in.
101	(t _{core}) _{upr} , equivalent t for upper cover panel core and bond for MS/honeycomb panels, 0.0 for MR, MS/plates or FDH, in.
102	(t _{core}) _{lwr} , equivalent t for lower cover panel core and bond for MS/honeycomb panels, 0.0 for MR, MS/plates or FDH, in.

TABLE 218. TDC ARRAY, OVERLAY (18,0) (CONT)

Array	
Location	Description
103	(t _{core}) _{rib} , equivalent t for rib or spar core and web if webs
104	are honeycomb panel_design, 0.0 if corrugated webs or FDH, in. $(t_{pf})_{upr}$, equivalent t for upper cover exterior and interior
	protective finish for MR or MS, exterior protection material only for FDH, in.
105	(t _{pf}) _{lwr} , equivalent t for lower cover exterior and interior protective finish for MR or MS, exterior protection material
106	only for FDH, in. (tpf) _{rib} , equivalent t for rib or spar web protective film for
107	MR or MS, 0.0 for FDH, in. (t _{web}) _{rib} , rib web gage for MR, intermediate spar web gage for
108	MS, in.; ratio of core density to foil density for FDH. Not used.
109	\overline{Y}_{upr} , load centroid for upper cover, distance from outer mold
110	line of cover, in. Y lwr, load centroid for lower cover, distance from outer mold
111	line of cover, in. Not used.
112	(t _{skin}) _{lwr} , lower cover skin gage, in.
113	Not used.
114	(t _{skin}) _{upr} , upper cover skin gage, in.
115	Not used.
116	(Δt _{skin}) _{VF upr} , upper cover skin gage increment for flutter
117	design, in. (Δt _{skin}) _{VI: 1wr} , lower cover skin gage increment for flutter
118	design, in. $(\Delta t_{str})_{VF}$ upper cover stringer/cap t increment for flutter
119	design, value set to 0.0 for all designs, in. $(\Delta t_{str})_{VF}$ lwr, lower cover stringer/cap t increment for flutter
120	design, value set to 0.0 for all designs, in. $(\Delta t_{rib})_{VF}$, rib or intermediate spar t increment for flutter
	design, value set to 0.0 for all designs, in.

TABLE 218. TDC ARRAY, OVERLAY (18,0) (CONT)

Array Location	Description
stre thro for	121 through 139 contain skin and web laminate ply data for ngth (121 through 135) and increments for flutter design (136 ugh 139). The values reflect total number of 0°, 45°, and 90° plies each laminate. This set is printed by subroutine PRTB under confinternal print control code IPB.
121	0° plies, upper cover skin.
122	45° plies, upper cover skin, total of +45° and -45° plies.
123	90° plies, upper cover skin.
124	0° plies, lower cover skin.
125	45° plies, lower cover skin, total of +45° and -45° plies.
126	90° plies, lower cover skin.
127	0° plies, rib or spar webs, 0.0 for FDH.
128	45° plies, rib or spar webs, total of +45° and -45° plies, 0.0 for FDH.
129	90° plies, rib or spar webs, 0.0 for FDH.
130	0° plies, front spar web.
131	45° plies, front spar web, total of +45° and -45° plies.
132	90° plies, front spar web.
133	0° plies, rear spar web.
134	45° plies, rear spar web, total of +45° and -45° plies.
135	90° plies, rear spar web.
136	△45° plies, for flutter design, upper cover skin, total of +45° and -45° plies.
137	Δ 45° plies, for flutter design, lower cover skin, total of +45° and -45° plies.
138	Δ45° plies for flutter design, front spar web, total of +45° and -45° plies.
139	Δ 45° plies for flutter design, rear spar web, total of +45° and -45° plies.
140-160	Not used.
Locations	161 through 174 contain lower cover data.
161	Not used.
162	(f _{ccr}) _{lwr} , allowable compression stress at critical stability
	design condition for lower cover skins, psi.
163	(t _{str}) _{lwr} , lower cover stringer gage for MR, 0.0 for MS or FDH, in.

TABLE 218. TDC ARRAY, OVERLAY (18,0) (CONT)

Array Location	Description
164	(h _{str}) _{lwr} , lower cover stringer web height for MR, 0.0 for MS
165	or FDH, in. (f _{str}) _{lwr} , lower cover stringer flange width for MR, 0.0 for MS
166	or FDH, in. $(f_c)_{lwr}$, lower cover compression stress at critical design con-
	dition, psi.
167	Not used.
168	Not used.
169	$(\bar{t}_{\text{misc skins}})_{\text{lwr}}$, same as location 90 except for lower cover, in.
170	$(\overline{t}_{att})_{lwr}$, same as location 91 except for lower cover, in.
171	$(\bar{t}_{\text{misc skin}})_{\text{rib}}$, same as location 93 except for lower cover, in.
172	Not used.
173	(A _{str}) _{lwr} , same as location 95 except for lower cover, sq in.
174	Not used.
Locations	175 through 194 contain front spar and rear spar data.
175	$(\Delta t_w)_{VF}$ Front spar web gage increment for flutter design,
176	in. $(\Delta t_w)_{VF}$ RS, rear spar web gage increment for flutter design,
177	in. $(\Delta A_{VI})_{FS}$, incremented area of front spar web for flutter
178	design, sq in. $(\Delta \Lambda_{VF})_{FS}$, incremental area of rear spar web for flutter
179	design, sq in. $\Sigma \Lambda_{FS}$, cross-sectional area of front spar caps plus webs for
180	strength design, sq in. $(t_w)_{FS}$, front spar web gage for strength design, in.
181	$(\Lambda_{cap})_{FS}$, front spar cap area, total of upper and lower caps,
	sq in.

TABLE 218. TDC ARRAY, OVERLAY (18,0) (CONCL)

Array	
Location	Description
182	(t pf, core, bond) FS, equivalent web thickness for front spar protective film for corrugated web design, plus core and bond material if honeycomb panel design, in.
183	(f _s) _{FS} , front spar web shear stress at critical design condition, psi.
184	(f _{scr}) _{FS} , allowable shear stress at critical design condition for front spar web, psi.
185	(t _{core}) _{FS} , front spar honeycomb panel core thickness for honey- comb panel design, 0.0 if corrugated web design, in.
186	ΣA _{RS} , cross-sectional area of rear spar caps plus webs for
187	strength design, sq in. $(t_w)_{RS}$, rear spar web gage for strength design, in.
188	(A _{cap}) _{RS} , rear spar cap area, total of upper and lower caps, sq in.
189	(tpf, core, bond) RS, equivalent web thickness for rear spar protective film for corrugated web design, plus core and bond material if honeycomb panel design, in.
190	(f _s) _{RS} , rear spar web shear stress at critical design condition, psi.
191	(f _{SC}) _{RS} , allowable shear stress or critical design condition for rear spar web, psi.
192	(t _{core}) _{RS} , rear spar honeycomb panel core thickness for honey-
193	comb panel design, 0.0 if corrugated web design, in. (A _{web}) _{FS} , cross-sectional area of front spar web material for
194	strength design, including effects of corrugation if corrugated web design, sq in. (A _{web}) _{RS} , cross-sectional area of rear spar web material for
	strength design, including effects of corrugation if corrugated web design, sq in.
195-200	Not used.

General information for arrays DDUC and DDLC:

Blank common reference locations: DDUC = CD(1), DDLC = CD(221)

Array sizes: 220 cells

Arrays DDUC and DDLC contain upper and lower cover data for the final design. This array is created by subroutine ACNSTR from output arrays of the structural synthesis routines for advanced composite torque-box analysis. Array data are used by ACNSTR to create input data for the weight analysis routines. Subroutine ACPRTA uses arrays DDUC and DDLC to print design summary output data. Subroutine ACNSTR initilizes array location to 0.0 values before processing design information into the arrays. DDUC and DDLC are printed by ACNSTR under control of print control code IPB, created by ATBØPT for each gross weight pass based on the status of IP(31) and IP(32), case control card 1, columns 31 and 32.

Description
Critical load indicator for axial load, from CRLC(1,(1-11)) for upper cover, CRLC(2,(1-11)) for lower cover.
Critical load indicators for skin shear load, from CRLC(3,(1-11))
for both upper and lower cover. If upper cover is critical for combined shear and compression loads, this situation is indicated by the value of the critical load condition number plus 20. $(N_{\widetilde{X}})_{\text{cov}}$, cover axial load for critical P/A condition from
STRESS(1,(1-11), N_{cr}) for upper cover, STRESS(2,(1-11), N_{cr}) for
lower cover, 1b/in. $(N_{XY})_{cov}$, skin shear load for critical shear condition, from
STRESS(3,(1-11), N_{cr}), for both covers, 1b/in.
(f) skin, skin stress at critical load, $(N_X)_{cr}/t_{skin}$, psi.
(f _s) _{skin} , skin shear stress at critical load, (N _{XY}) _{cr} /t _{skin} , psi.
$l_{\rm skin}^{}$, number of 0° plies in skin, calculated 1 x 2.0.
m _{skin} , number of 45° plies in skin, calculated m x 4.0.
n _{skin} , number of 90° ply in skin, calculated n x 2.0.
($\Delta m_{ m VF}$) _{skin} , number of incremental 45° plies necessary to satisfy
flutter stiffness requirements in skin, calculated $\Delta m \times 4.0$.

TABLE 219. DDUC AND DDLC ARRAYS (CONCL)

Array Location	Description
111-121	t core, cover core thickness, multispar honeycomb panel design
122-132	only, in. t _{skin} , skin gage, total number of plies x t _L , in.
133-143	t cov, equivalent cover gage, sum of skin plus intermediate
144-154	spar cap equivalent gage for multispar design, skin gage only for fulldepth honeycomb sandwich design and sum of skin plus stringer equivalent gage for multirib design, in. At VF, skin gage increment required to satisfy flutter stiffness
155-165	requirements, in. \overline{Y} , load centroid for cover load, distance between the outer mold line of the cover to the load point, in.
166-176	Not used
177-187	$(N_{\chi})_{cr}$, allowable skin axial load for the critical stability
188-198	design condition, from $FCR(1,(1-11))$ for upper cover, $FCR(3,(1-11))$ for lower cover, Ib/in . $(N_{XY})_{CR}$, allowable skin shear load for the critical stability
	design condition, from FCR(2,(1-11)) for upper cover, FCR (4,(1-11)) for lower cover, 1b/in.
199-209	(f _c) _{cr} , allowable skin compression stress at the critical
	stability design condition, $(N_{\chi})_{cr}/t_{skin}$, psi
210-220	(f _s) _{cr} , allowable skin shear stress at the critical stability
	design condition, (N _{XY}) _{cr} /t _{skin} , psi.
L	I

TABLE 220. DDIS ARRAY

General information for array DDIS:

Blank common reference location = (1)(441)

Array size = 220 cells

Array DDIS contains final design data for interior structures: intermediate spars for multispar designs, intermediate ribs for multirib designs and honeycomb for fulldepth honeycomb sandwich designs. This array is similar to arrays DDUC and DDLC, Table 219.

Array Location	Description
1-11	Critical load indicator for crushing load on spar and rib webs only, from CRLC(7,(1-11)), same value as for front and rear spars.
12-22	Critical load indicator for spar web shear load for multispar, rib web crushing or column support condition, or core crushing or wrinkling condition, from CRLC(5,(1-11)).
23-33	(P) spar, spar or rib web axial load for the critical P/A condition, from SPCRUH(1-11), 1b/in.
34-44	$(N_{XY})_{spar}$, spar web shear load for the critical shear condition, from STRESS(5,(1-11), N_{cr}), for multispar design only. Value = 0.0 for multirib and fulldepth honeycomb designs, 1b/in.
45-55	(f _c) _{web} , web compression stress, (P) _{spar} /t _{web} , psi
56-66	(f _s) _{web} , web shear stress, (N _{XY}) _{spar} /t _{web} , psi.
67-77	l_{web} , number of 0° plies (vertical direction) in web, calculated $l \times 2.0$.
78-88	m_{web} , number of 45° plies in web, calculated m x 4.0.
89-99	n web, number of 90° plies (spanwise direction for intermediate
	spars, chordwise direction for intermediate ribs) in webs, calculated n x 2.0.
100-110	Not used
111-121	t core, web core thickness for multispar and multirib designs
	if intermediate spar/rib web specified as honeycomb panel construction, value = 0.0 for fulldepth honeycomb design, in.
122-132	t _{web} , web gage, total number of plies x t _L for multispar and
	multirib designs, in. $(\rho_{\rm core}/\rho_{\rm f})$ for fulldepth honeycomb sandwich designs.
133-143	A cap, intermediate spar cap area for multispar design, sq in.
	Value = 0.0 for multirib design. $(\rho_{bond}/\rho_{skin})$ for fulldepth
	honeycomb sandwich designs.

TABLE 220. DDIS ARRAY (CONCL)

Array Location	Description Description
144-154	Not used
155-165	b spar, spar spacing for multispar design and L rib, rib spacing for multirib design, from SPB(1-11), in. (t_f/ρ_f)
	for fulldepth honeycomb sandwich design.
166-176	NØS, number of intermediate spars for multispar design, from [SPN(1-11)-2.0)], number of stringers for multirib design from SPN(1-11). Core density, lb/cu ft, for fulldepth
177-187	honeycomb sandwich design. (P) allowable web or core axial load for the critical
188-198	stability design condition, from FCR(7,(1-11)), 1b/in. $(N_{CY})_{CT}$, allowable web shear load for the critical stability
	design condition, multispar and multirib design, allowable core axial load for fulldepth honeycomb sandwich design; from PCR(8,(1-11)), lb/in.
199-209	(f _c) _{cr} , allowable compression stress for webs at the critical
210-220	stability design condition, (P) _{cr} /t _{web} , psi. (f _s) _{cr} , allowable shear stress for webs at the critical
	stability design condition, $(N_{CY})_{cr}/t_{web}$, psi.

TABLE 221. DDFS AND DDRS ARRAYS

General information for arrays DDFS and DDRS:

Blank common reference location: DDFS = CD(661), DDRS = CD(881)

Array sizes = 220 cells

Array DDFS and DDRS contain front spar and rear spar data for the final design. These arrays are similar to arrays DDUC and DDLC, Table 219. The processing of data in these arrays is the same as for DDUC and DDLC.

	T
Array Location	Description
1-11	Critical load indicator for crushing load on spar webs, from CRLC(7,(1-11)).
12-22	Critical load indicator for web shear load, from CRLC (4,(1-11)) for front spar, CRLC(6,(1-11)) for rear spar. If the web is critical for combined shear and compression loads, this situation is indicated by the value of the critical load condition number plus 20.
23-33	(P) spar, spar web axial load for the critical P/A condition, from SPCRUH(1-11), lb/in.
34-44	$(N_{XY})_{spar}$, spar web shear load for the critical shear condition, from STRESS(4,(1-11), N_{cr}) for front spar, STRESS
	(6,(1-11), N _{Cr}) for rear spar, 1b/in.
45-55	(f _c) _{web} , web compression stress, (P) _{spar} /t _{web} , psi.
56-66	$(f_s)_{web}$, web shear stress, $(N_{XY})_{spar}/t_{web}$, psi.
67-77	1 web, number of 0° plies (vertical direction) in spar webs,
78-88	calculated 1 x 2.0. m , number of 45° plies in spar web, calculated m x 4.0.
89-99	m , number of 45° plies in spar web, calculated m x 4.0. n , number of 90° plies (spanwise direction) in spar web, calculated n x 2.0
100-110	$(\Delta m_{VF})_{web}$, number of incremental 45° plies necessary to satisfy flutter stiffness requirements in web, calculated $\Delta m \times 4.0$.
111-121	t _{core} , spar web core thickness if specified as honeycomb panel
122-132	construction, in. t _{web} , web gage, total number of plies x t _L , in.
133-143	(A _{cap}) _{upr} , upper spar cap area, sq. in.

TABLE 221. DDFS AND DDRS ARRAYS (CONCL)

	
Array Location	Description
144-154	Δ t $_{ m VF}$, web gage increment required to satisfy flutter stiff-
155-165	ness requirements, in. (A _{cap}) _{lwr} , lower spar cap area, sq. in.
166-176	Not used
177-187	(P) cr, allowable spar with axial load for the critical stability
188-198	design condition, from FCR(5,(1-11)) for front spar, FCR (9,(1-11)) for rear spar, lb/in . $(N_{XY})_{cr}$, allowable spar web shear load for the critical
. 100 200	stability design condition, from FCR(1,(1-11)) for front spar, FCR(10,(1-11)) for rear spar, lb/in.
199 - 209	(f _c) _{cr} , allowable spar web compression stress at the critical
	stability design condition, (P) _{cr} /t _{web} , psi
210-220	$(f_c)_{cr}$, allowable spar web shear stress at the critical
i	stability design condition (N _{XY}) _{cr} /t _{web} , psi
ļ	
1	
1	
1	

General information for array DDSTR:

Blank common reference location = CT(1321)

Array size = 330 cells

Array DDSTR contains final cover design data for multirib designs to supplement the information stored in arrays DDUC, DDLC, DDIS, DDFS and DDRS. The processing of data for DDSTR is similar to these arrays, refer to Table 219 for additional details.

<u></u>	
Array Location	Description
1-11	(b _{str}) _{upr} , upper cover stringer spacing, from STRING
12-22	(1,1,(1-11)), in. (A _{str}) _{upr} , upper cover stringer area, from STRING (1,9,
23- 33	(1-11)), sq. in. (t _{str}) _{upr} , upper cover stringer gage, from STRING (1,8,
34-44	(1-11)), in. (h _{str}) _{upr} , upper cover stringer height, from STRING (1,6,
45-55	(1-11)), in. (f open cover stringer flange width, from STRING strupr, upper cover stringer flange width, from STRING
56-66	(1,7,(1-11)), in. (1 str upr, number of 0° plies in upper cover stringer, from
67-77	STRING(1,10,(1-11)) $(\overline{Y}_{str})_{upr}$, upper cover stringer centroid location, distance
50.00	from stringer centroid to inner surface of the skin, from STRING(1,5,(1-11)), in.
78-88	(I _{str}) _{upr} , upper cover stringer area moment of inertia, from STRING(1,4,(1-11)), in ⁴ .
89-99	L _{rib} , rib spacing, from STRING(1,2,(1-11)), in.
100-110	(t _{str}) _{upr} , equivalent stringer gage, upper cover, (A _{str} /b _{str}) _{upr} , in.
111-121	(b _{str}) _{lwr} , lower cover stringer spacing, from STRING
122-132	(1,1,(1-11)), in. (A _{str}) _{lwr} , lower cover stringer area, from STRING(2,9,
133-143	(1-11)), sq. in. (t _{str}) _{lwr} , lower cover stringer gage, from STRING(2,8, (1-11)), in.
	(//)

TABLE 222. DDSTR ARRAY (CONT)

Array Location	Description
144-154	(h str lwr, lower cover stringer height, from STRING(2,6,
155-165	(1-11)), in. (f _{str}) _{lwr} , lower cover stringer flange width, from STRING
166-176	(2,7,(1-11)), in. (1 _{str}) _{lwr} , number of 0° plies in lower cover stringer, from
177-187	STRING(2,10,(1-11)). $(\overline{Y}_{str})_{lwr}$, lower cover stringer centroid location, distance
188-198	from stringer centroid to inner surface of the skin, from STRING(2,5,(1-11)), in. (I _{str}) _{lwr} , lower cover stringer area moment of inertia, from
	STRING(2,4,(1-11)), in ⁴ .
199-209	L _{rib} , rib spacing, from STRING(1,2,(1-11)), in.
210-220	(t _{str}) _{lwr} , equivalent stringer gage, lower cover, (A _{str} /b _{str})
	lwr, in.
221-231	(N _X) _{sk} upr, upper cover skin load for the critical condition,
232-242	from SKNXU(1-11), 1b/in. (N _X) _{str upr} , upper cover stringer load for the critical con-
243-253	dition, from STNXU(1-11), 1b/in. (f) _{sk upr} , upper cover skin stress for the critical condi-
254-264	tion, (+) = compression, (-) = tension, from FSKU(1-11), psi. (f) trupr, upper cover stringer stress for the critical con-
	<pre>dition, (+) = compression, (-) = tension, from FSTU(1-11), psi.</pre>
265-275	(L _{rib allow} /L _{min}) _{upr} , ratio of allowable rib spacing for
	upper cover skin/stringer column to minimum spacing, from BRRU(1-11).
276-286	$(N_{\chi})_{sk\ lwr}$, lower cover skin load for the critical condition,
287-297	from $SKNXL(1-11)$, $1b/in$. $(N_X)_{str\ lwr}$, lower cover strings load for the critical condi-
298-308	tion, from STNXL(1-11), 1b/in. (f) _{sk lur} , lower cover skin stress for the critical condi-
	tion, from FSKL(1-11), psi.
_	
298-308	(f) sk lwr, lower cover skin stress for the critical condi-

TABLE 222. DDSTR ARRAY (CONCL)

Array Location	Description
309-319 320-330	(f) str lwr, lower cover stringer stress for the critical condition, from FSTL(1-11), psi. (Lrib allow/Lmin) lwr, ratio of allowable rib spacing for lower cover skin/stringer column to minimum spacing, from BRRL(1-11).

TABLE 223. DSPLØ ARRAY, ANALYSIS CONSTANTS

General information for array DSPLØ:

Blank common reference location = D(58)

Array size = 7 cells

Array contains constants for bulkhead and chordwise splice analysis.

This array is part of the D array; initial values are contained in the wing deck of the SWEEP permanent data bank. All initial array values can be changed by revising the permanent data deck or through D array reference cards in the input variable data deck for wing and empennage, locations D(58) through D(64).

(Note: Location DSPLØ(7) is used as a search constant by subroutines BØT, TSCH, and SFSCH, referenced as D(64).

Array Loc	Data Bank Value	Description
1	0.250	D min bolt, minimum splice bolt diameter, in.
2	0.750	D _{max. bolt} , maximum splice bolt diameter, in.
3	1.500	K _{head} , factor for diameters of bolthead diameter calculations
4	0.156	t _{sk min} , minimum skin thickness at chordwise splice, in.
5	1.333	K _{sk} , factor for skin thickness at chordwise splice
6	1.250	K _L , factor for delta skin splice machine runout area, factor for bolthead volume
7	0.0001	Tolerance for search control, subroutines BØT, TSCH and SFSCH, referenced as D(64).

General information for array TDC:

Blank common reference location = T(1341)

Array size = 200 cells

Array TDC is used for storage and retrieval of analysis constants for metallic design and primary design data output from the structural synthesis analysis at each of the 11 analysis control stations. The section design data set is created by both metallic and advanced composite routines for use by the same weight analysis routines. Metallic analysis data set is created primarily by subroutines CNSTR and SECTD, overlay (10,0), and are defined in this table. The advanced composite data set created by subroutine ACNSTR, overlay (18.0), is similar in content and is described in Table 218. The analysis constants data set is created by subroutine CNSTC, overlay (16,0), before execution of either the metallic or advanced composite analysis routines. Initial values in array TDC after CNSTC calculations are printed by subroutine WDDATA as part of array T, printed under control of IP(23), case control card 1, column 23. WDDATA initializes all TDC array locations to 0.0 values prior to execution of subroutine CNSTC.

Array
Location

Description

Locations 1 through 36 contain material properties data in table form used by overlay (10,0) routines. Table data are used in the numerical interpolation procedures programmed to determine design values of stress levels. This table is created by subroutine CNSTC, overlay (16,0). The table consists of b/t and $E_{\rm T}$ values for 12 compression stress level

points. The first five points define the elastic part of the stress-strain curve with five equally spaced stresses up to the proportional limit stress. Points 5 through 12 define the plastic part of the stress-stain curve; the stresses are equally spaced between the proportional limit and compression yield stresses. The b/t values are computed for plate buckling coefficient of 4,0.

1	(f _c) ₁ , psi
2	(f _c) ₁ , psi (f _c) ₂ , psi (f _c) ₃ , psi (f _c) ₄ , psi
3	(f _c) ₃ , psi
4	$(f_c)_4$, psi

TABLE 224. TDC ARRAY, OVERLAYS (9,0) AND (10,0) (CONT)

Array Location	Description
5	(f _c) ₅ , proportional limit stress, psi.
6	$(f_c)_6$, psi.
7	(f _c) ₇ , psi.
8	(f _c) ₈ , psi.
9	(f _c) ₉ , psi.
10	(f _c) ₁₀ , psi.
11	(f _c) ₁₁ , psi.
12	(f _c) ₁₂ , compression yield stress, psi.
13	(b/t) ₁
14	(b/t) ₂
15	(b/t) ₃
16	(b/t) ₄
17	(b/t) ₅
18	(b/t) ₆
19	(b/t) ₇
20	(b/t) ₈
21	(b/t) ₉
22	(b/t) ₁₀
23	(b/t) ₁₁
24	(b/t) ₁₂
25	(E _T), psi.
26	(E _T) ₂ , psi.
27	(E _T) ₃ , psi.
28	$(E_T)_4$, psi.
29	(E _T) ₅ , psi.
30	(E _T) ₆ , psi.
31	(E _T) ₇ , psi.
32	(E _T) ₈ , psi.

TABLE 224. TIX ARRAY, OVERLAYS (9,0) AND (10,0) (CONT)

Array Location	Description	
33	(E _T) ₉ , psi.	
34	$(E_T)_{10}$, psi.	
35	$(E_{\mathrm{T}})_{11}$, psi.	
36	$(E_T)_{11}$, psi.	

Locations 37 through 45 contain strain, elastic moduli, and b/t values computed by subroutines SS and SS2 for the compression stress level stored in location 51, variable SFC. These nine locations are referenced by SS and SS2 as array SA variables, locations 1 through 9. Calling subroutines reference these locations in terms of array TDC locations.

rout	routines reference these locations in terms of array TDC locations.	
37	$\epsilon_{\rm i}$, material strain, variable SA(1), in./in.	
38	(E _T); tangent modulus, variable SA(2), psi.	
39	$(E_S)_i$, secant modulus, variable SA(3), psi.	
40	$(E_{RL1})_i$, reduced modulus of form $(E_T E_S)^{1/2}$, currently not used, variable SA(4), psi.	
41	(E _{RL2}); reduced modulus of form E _S , currently not used, variable SA(5), psi.	
42	(E _{RG1}); reduced modulus of form E _T , currently not used, variable SA(6), psi.	
43	$(E_{RG2})_i$, reduced modulus of form E_S [0.83 + 0.17 (E_T/E_S], currently not used, variable SA(7), psi.	
44	$(E_{RSK1})_i$, reduced modulus of form E_S { 0.5 + 0.5 [0.25 + 0.75] (E_{Γ}/E_S) for plate buckling of skins and webs, variable $SA(8)$, psi.	
45	(b/t), allowable plate buckling b/t for infinitely long plates, simply supported at edges (buckling coefficient = 4.0), variable SA(9).	
46	(f _c) _{max upr cov} , maximum compression stress level for upper cover design, initially set up by CNSTC and revised by CNSTR, psi.	

TABLE 224. TDC ARRAY, OVERLAYS (9,0) AND (10,0) (CONT)

Array Location	Description
47	X _i , variable CXI computed by subroutine CG3P. For evaluation
	code $IK = 1.0$, X-value at minimum y determined from parabolic equation fit, $y = f(x)$, for three specified points; or for code $IK = 2.0$, value of X at $Y = 1.0$. Subroutine BØTC uses this location for storage of f_{ci} , variable SFC, current analysis value of stress, psi.
48	Δf_{c1} , $f_{p1}/5.0$, proportional limit stress/5.0, calculated and
	used by CNSTC to compute stress values in locations 1, 2, 3, and 4, psi. Subsequently changed to ratio $[(f_t)_{max}/$
	$\Delta(f_c)_{max}$ upr cov by CNSTC and CNSTR. Used by CNSTR for esti-
	mation of maximum f _c value in TDC(55), which represents cutoff
	compression stress for P/A design, one of the limiting values used to determine starting f_c values in stress level search
49	100p of subroutine SFSCH. Δf_{c2} , $(f_{cy} - f_{p1})/7.0$, difference between yield and propor-
	tional limit stresses divided by 7.0, calculated and used by CNSTC to compute stress values in locations 6 through 11, psi. Subsequently changed to $(f_t)_{max}$ upr cov, by CNSTC and CNSTR,
50	maximum tension stress level for upper cover design, psi. ϵ_{fc} , larger of $\Delta f_{c2}/25.0$ or 50, stress level interval used in
	stress level searches, psi.

Locations 51 through 54 contain stress-strain information for use by subroutines SS and SS2. SS and SS2 use location 51 as the storage location for variable SFC, evaluation stress value. Locations 52, 53, and 54 contain equation constants for the stress-strain curve to be evaluated by SS and SS2. These constants are created by CNSTC from array DMTLB, locations 3, 4, and 5. Subroutine SS and SS2 reference locations 52, 53, and 54 as array SD variables, locations SD(1), SD(2), and SD(3).

TABLE 224. TDC ARRAY, OVERLAYS (9,0) AND (10,0) (CONT)

Array Location	Description
51	$(f_c)_i$, evaluation stress for subroutines SS and SS2, variable
52	SFC, psi. (a), coefficient (a) for stress-strain curve equation, variable SD(1).
53	(b), coefficient (b) for stress-strain curve equation, variable SD(2).
54	E, elastic modulus for stress-strain curve equation, variable SD(3), psi.
55	(f _c) _{max} , maximum compression stress level for upper cover design, (P/A) allowable, larger of input compression stress cutoff value or (P/A) _{comp} due to required t _{up} for upper cover tension load requirement, set up initially by CNSTC, revised by CNSTR for use by SECTD and SFSCH, psi.
56	(b/t) fcmax, allowable plate buckling b/t for compression stress in location 55.
57	$(K_{\rm b/t})_{\rm skin}$, constant for skin buckling equation, $(K\pi^2/12)_{\rm skin}$, set up by CNSTC, where $K=4.0$.
58	$(K_{\rm b/t})_{\rm str}$, $[K_{\rm str}/K_{\rm skin}]^{1/2}$, factor for stringer web allowable
	b/t, applied to allowable skin b/t, K _{str} = 0.426 for integral I-stringers, 4.0 for riveted and integral Z-stringers, K _{skin} = 4.0, calculated by CNSTC.
59	K _{str} , buckling coefficient for stringer web, 0.426 for integral
60	I-stringers, 4.0 for riveted and integral Z-stringers. (f _t) _{max lwr cov} , maximum tension stress level for lower cover, (P/A) design, initially set up by CNSTC and revised by CNSTR, psi.
61	$(f_s)_{max}$, maximum shear stress for cover design, set up by CNSTC
62	but not used, psi. (K _L) _{rib} , coefficient for allowable local instability compression stress on corrugated rib web, 0.40, input value from D(401), set up by CNSTC for use by STRIB and SRRIB.

TABLE 224. TDC ARRAY, OVERLAYS (9,0) AND (10,0) (CONT)

Array Location	Description
63	(Kg) _{rib} , coefficient for allowable general instability compres-
	sion stress on corrugated rib web, 1.425, input value from D(402), set up by CNSTC for use by STRIB.
64	(K _{tsk}) _{min} , variable TKKMN, minimum ratio of skin gage to cover t-bar, initially set up by CNSTC from input value of D(365), or if 0.0, from D(67). Value changed for every analysis control station if integer code word ICD, ND(49), has a value other than +1, (K _{tsk}) _i values moved from D(721) - D(731) if input as
65	positive values. Code word ICD set up by CNSTC from value of input variable CØNTC, D(367), ICD = 1 for CØNTC = (0.0) or (-), +2 for CØNTC = positive nonzero value. (K _{tsk}) _{max} , variable TKKMX, maximum ratio of skin gage to cover
	t-bar, initially set up by CNSTC from input value of D(366), or if 0.0, from D(68). Value changed by CNSTR as explained previously, for (Ktsk)min.
66	$\left[K_{E}/(1 - \mu^{2})\right]_{FS}$, material constant of stability equation used
67	for front spar web analysis, where K_E is factor applied to compression cover E to obtain front spar material E. $((K_E)_{FS})_{FS}$ is stored in TWT(180)). $ \left[K_E / (1 - \mu^2)_{RS} \right]_{RS}, \text{ material constant for stability equation used} $
	for rear spar web analysis, where K_E is factor applied to compression cover E to obtain rear spar material E. $((K_E)_{RS})$ is stored in TWT(181)).

Locations 68 through 80 contain torque-box design information for the current analysis control station. This data set, except for location 68, is set up by CNSTR. Subroutine SECTD computes the value of NOS in location 68.

TABLE 224. TDC ARRAY, OVERLAYS (9,0) AND (10,0) (CONT)

Array Location	Description
68	NØS maximum number of intermediate spars or stringers to be
	used in analysis, value computed on the basis of type of analysis option selected. This value is used as the starting value for the basic search loop for number of spanwise supporting elements for multispar design or number of skin stiffening elements for multirib design programmed in SECTD.
69	D _{FS} , front spar mold line depth, in.
70	D _{RS} , rear spar mold line depth, in.
71	$-N_{\chi}$, cover axial load for down-bending condition, 1b/in. ult.
72	+N _X , cover axial load for up-bending condition, 1b/in. ult.
73	D', effective torque-box depth for axial load calculations, in.
74	GJ _{VF} , section torsional stiffness required to prevent surface flutter. 1b-in. ²
75	V _{FS} , shear load on front spar, 1b ult.
76	V _{RS} , shear load on rear spar, 1b ult.
77	W, structural width of torque-box, in.
78	D, average torque-box depth, in.
79	+V, design shear load, up-bending condition, 1b ult.
80	+M, design bending moment, up-bending condition, in1b ult.

Locations 81 through 120 initially contain design data resulting from the torque-box synthesis analysis for strength requirements. This data set is set up by SECTD from TSC(1 - 40) or TSC(81 - 120), depending upon the NØS value selected as the optimum point. The data blocks stored in TSC(4) - TSC(38) and TSC(84) - TSC(118) were originally calculated by the synthesis routines and stored in locations TSC(381) - TSC(415) for each point evaluated under control of subroutines SFSCH and TSCH. (Refer to Table 225.)

Contents of locations 87, 103, 105, 107, 109 - 113, and 116 - 120 are subsequently changed by SECID. Changes are made as required for (1) tension cover design, (2) flutter stiffness requirements, (3) vertical tail analysis where tension cover requirements are set equal to the compression cover requirements, and (4) data set arrangement for output print by subroutine PRTB.

TABLE 224. TDC ARRAY, OVERLAYS (9,0) AND (10,0) (CONT)

Array Location	Description
81	NØS, number of stringers or intermediate spars, same as TSC(1), originally calculated by SFSCH.
82	b, stringer or intermediate spar spacing, same as TSC(2), originally calculated by SFSCH, in.
83	(f _c) _{max} , maximum compression stress used in stress level search,
84	same as TSC(3), originally calculated by SFSCH, psi. $(f_c)_{opt}$, design compression stress level, same as TSC(381), psi.
85	A _{upr} , compression cover area for each stringer or spar bay,
86	same as TSC(382), sq in./stringer or sq in./spar. Σt_{upr} , total material equivalent gage, same as TSC(383), in.
87	\overline{t}_{lwr} , lower cover \overline{t} , originally 0.0 from TSC(384), revised by
	SECTD during tension cover analysis or set to value in TDC(88) if vertical tail, $(t_{skin} + \overline{t}_{str/spar cap})_{lwr}$, in.
88	tunr, upper cover t, same as TSC(385), in.
89	Σt_{rib} , rib or spar \overline{t} , same as TSC(386), in.
90	(t _{misc skin}) _{upr} , same as TSC(387), in.
91	$(\overline{t}_{att})_{upr}$, same as TSC(388), in.
92	$(\overline{t}_{misc})_{rib}$, same as TSC(389), in.
93	(t _{misc skin}) _{rib upr} , same as TSC(390), in.
94	(A _{str}) _{min upr} , same as TSC(391), sq. in.
95	(A _{str}) _{upr} , same as TSC(392), sq in.
96	(t _{str}) _{upr} , same as TSC(393), in.
97	(t _{str}) _{upr} , same as TSC(394), in.
98	(h _{str}) _{upr} , same as TSC(395), in.
99	(f _u) _{upr} , same as TSC(396), in.
100	L _{rib} , same as TSC(397), in.
101	(I _{str}) _{upr} , same as TSC(398), in. ⁴ /in.
102	$(\rho_{\text{str}})_{\text{upr}}$, same as TSC(399), in.
103	(E _R) _{sk upr} , same as TSC(402), psi.
104	(E _T) _{upr} , same as TSC(401), psi.

TABLE 224. TDC ARRAY, OVERLAYS (9,0) AND 10,0) (CONT)

Array Location	Description
105	(b/t) _{str upr} , same as TSC(410).
106	(b/t) _{h cr upr} , same as TSC(403).
107	$(t_w)_{rih}$, same as TSC(408), in.
108	L_{rib}/L_{min} , same as TSC(405).
109	(b/t) skin upr, same as TSC(409).
110	(b/t) skin lwr, calculated by SECTD.
111	(f _t) _{lwr} , tension stress for lower cover, calculated by SECTD, psi.
112	(t _{skin}) _{lwr} , lower cover skin gage, calculated by SECTD, in.
113	$(\Sigma \overline{t}_{COV})_{WT}$, lower cover \overline{t} , calculated by SECTD, in.
114	(t _{skin}) _{upr} , upper cover skin gage, same as TSC(411), in.
115	(A _{skin}) _{upr} , same as TSC(412), sq in.
116	(Δt_{skin}) _{VF upr} , incremental upper cover skin gage for flutter
117	design, calculated by SECTD during flutter analysis pass, in. (Δt_{skin}) _{VF lwr} , incremental lower cover skin gage for flutter
118	design, calculated by SECTD during flutter analysis pass, in. $(\Delta \bar{t}_{str})_{VF}$ upr, incremented upper cover stringer t for flutter
119	design, calculated by SECTD during flutter analysis pass, in. $(\Delta t_{str})_{VF\ lwr}$, incremented lower cover stringer t for flutter
120	design, calculated by SECTD during flutter analysis pass, in. $(\Delta t_{rib})_{VF}$, incremental rib or spar t for flutter design, cal-
	culated by SECTD during flutter analysis pass, in.
Locations 121 through 160 contain TDC(81) - TDC(120) data for analysis station i-1, saved by subroutine WTCAL.	
121 - 160	TDC(81) - TDC(120) data set for previous analysis station.
Locations 161 through 174 contain lower cover (tension design) data calculated by CNSTC, CNSTR, or SECTD.	

lated by CNSTC, CNSTR, or SECTD.

TABLE 224. TDC ARRAY, OVERLAYS (9,0) AND (10,0) (CONT)

Array Location	Description
161	K_{NXL} , ratio of down-bending N_{χ} to upbending N_{χ} , calculated by CNSTR.
162	(f _c) _{max lwr cav} , maximum allowable compression stress level for lower cover design; calculated initially by CNSTC and revised by CNSTR, psi.
163	E _{lwr} , elastic modulus for lower cover, calculated by CNSTC, psi.
164	ρ_{lwr} , density of lower cover material, calculated by CNSTC, lb/in^3 .
165	eff _{lwr} , factor for lower cover compression analysis, calculated
166	by CNSTC based on cover construction type: $(f_c)_{lwr}$, lower cover compression stress, calculated by SECTD, psi.
167	$\alpha_{\rm bw}$, optimum stringer web factor for lower cover stringer com-
168	pression analysis, calculated by SGCTD. at tw, optimum stringer gage factor for lower cover stringer com-
169	pression analysis, calculated by SECTD. Changed to $(f_L)_{upr}$ (same as TSC(404)) by SECTD for output print, in. α_{μ} , optimum stringer factor for lower cover compression analysis, calculated by SECTD. Changed to $(\overline{t}_{misc\ skin})_{lwr}$ (similar
170	to TDC (901)) by SECTD, in. β_{μ} , optimum stringer factor for lower cover compression analysis, calculated by SECTD. Changed to $(\bar{t}_{att})_{lwr}$ (similar to
171	TDC(91)) by SECTD, in. γ_{μ} , optimum stringer factor for lower cover compression analy-
172	sis, calculated by SECTD. Changed to (tmisc skin) rib lwr (similar to TDC(93)) by SECTD, in. (tmisc skin) rib lwr complex, lower cover t required for compression, calculated
173	by SECTD, in. (A _{str}) _{lwr} , lower cover stringer or spar cap area for each
174	stringer or spar bay, calculated by SECTD, sq in. (b _{str}) _{lwr} , stringer or spar spacing for lower cover design, set to value in TDC(82) by SECTD, in.

TABLE 224. TDC ARRAY, OVERLAYS (9,0) AND (10,0) (CONT)

Array Location	Description
Locations 175 through 192 contain front spar and rear spar data calculated by SECTD.	
175	(Δt_{w}) _{VF FS} , incremental front spar web gage for flutter design,
176	in. (\(\Delta t_w \)_{VF RS}, incremental rear spar web gage for flutter design,
177	in. $(\Delta A_{VF})_{FS}$, incremental area of front spar web for flutter design,
178	sq in. (ΔA _{VF}) _{RS} , incremental area of rear spar web for flutter design,
179	sq in. ΣA_{FS} , cross-sectional area of front spar caps plus web for
180	strength design, sq in. (t _w) _{FS} , front spar web gage for strength design, in.
181	(A _{cap}) _{FS} , total area of upper and lower front spar caps, sq in.
182	b _{FS} , stiffener spacing for front spar web, in.
183	(f _s) _{FS} , shear stress on front spar web, psi.
184	(f _{scr}) _{FS} , allowable shear stability stress for front spar web,
185	psi. $(\Delta A_{VF})_{FS}$, same as location 177, sq in.
186	ΣA_{RS} , cross-sectional area of rear spar caps plus web for
187	strength design, sq in. (t _w) _{RS} , rear spar web gage for strength design, in.
188	(A _{cap}) _{RS} , total area of upper and lower rear spar caps, sq in.
189	b _{RS} , stiffener spacing for rear spar web, in.
190	(f _s) _{RS} , shear stress on rear spar web, psi.
191	(f _{scr}) _{RS} , allowable shear stability stress for rear spar web,
192	psi. $(\Delta A_{VF})_{RS}$, same as location 178, sq in.

TABLE 224. TDC ANRAY, OVERLAYS (9,0) AND (10,0) (CONCL)

Array Location	Description
Locations 193 through 200 contain general analysis control data created by CNSTR, SECTD, and SFSCH during the analysis for each control station.	
193	(f _c) _{min geom} , stress level based on minimum skin gage and minimum (t _{skin})/t ratio, computed by SECTD, psi.
194	(A _{str}) _{min} , minimum stringer in cap area, calculated by SECTD
195	and TSCH, sq in. (f _c) _{max} , P/A cutoff stress for compression design, calculated by
196	SECTD, sq in. (f _c) _{kskmx} , maximum allowable compression stress level for skin
197	stability with t = (K skin max t and minimum stringer or spar cap area, determined by SFSCH from subroutine BØT analysis with BØT analysis code word IK set to 2, psi. KNYL, input value of item in location 161 to be used as lower
	limit value for ratio by CNSTR. Initialized by CNSTR from input variable CKNXL, D(392), and changed by CNSTR to input option values for stations 1-11 from D(831) - D(841), input array DKNXL, if the value of data processing code word ICD = 2; i.e., D(367), input variable CØNTC, is specified as +1.0 or +2.0.
198	NØS min, minimum number of stringers or spars for the current control station, calculated by SECTD from input data and local
199	width. (NØS) bmax, integer member of stringer or spars at the current control station assuming specified value of bmax, calculated and used by SECTD to determine design value of NØS min.
200	(NØS) input, design value for NØS at current control station if input option for stations 1 - 11 is selected and data are input in D(776) - D(786), input array DCNØS. Set up by CNSTR only if data processing code word ICD = 2 (D(376) = +1.0 or +2.0) and array DCNØS contains input values. If no inputs, CNSTR sets value to 0.0 to conform to SECTD computation logic requirements.

General information for array TSC:

Blank common reference location = T(1541)

Array size = 420 cells

Array TSC is used by the metallic structure synthesis routines of overlay (10, 0) for storage and retrieval of torque-box design data computed during optimization analysis for each analysis station. Computed data are stored in one of four array blocks, each block associated with a specific level of the synthesis/optimization operations.

The first block, locations 1 through 120, is used during the first optimization search level for number of stringer or spar elements. These operations are controlled by subroutine SECTD. Two analysis passes are made by SECTD; first, optimization for strength-only requirements, and second, a strength plus flutter stiffness analysis, if required. Torque-box design data sets resulting from both analysis passes are saved for later use by the primary control subroutine CNSTR and subroutine WTCAL.

The second block is used to save data resulting from the second search level operations for optimum design stress. Subroutine SFSCH uses this block for storage of four 35-cell data sets in locations 121 through 260.

The third block, locations 261 through 380, contains four 30-cell data sets created during the third search level operations for optimum design thickness of the compression cover. Subroutine TSCH controls the skin gage analysis, using analysis results of subroutine STBAR that are stored in the fourth block, locations 381 through 420. This fourth block contains detail design data for the current analysis point identified by the parameters b_i , $(f_c)_i$, and $(t_{skin})_i$.

Subroutines SFSCH, TSCH, and STBAR use print subroutine PRTBK for output print of selected values from array TSC. These printing operations are governed by input controls in D(575) - D(578). The code value in D(578) identifies the iteration pass during which printed output is desired - 0.0 for no print, and value of 1, 2, 3, or 4 for print. The positive code value should be equal to or less than the value specified in D(369), input data variable DWNØ. (NOTE: Iteration passes are made in descending order of the DWNØ value, with 1.0 denoting the last pass. Internally, this code is identified as integer variable NØDW, ND(56).)

D(575), D(576), and D(577) identify the analysis station for which data are to be printed; 0.0 meaning no print, and values of 1.0 through 11.0 for the station - 1.0 for the tip station, and 11.0 for the root station.

	Array
L	ocation

Description

Locations 1 through 120 contain three sets of compression cover design data computed for first-level search parameter values of NØS, number of stringer or intermediate spar elements at the current torque-box anal-These 40-cell data sets are created under control of ysis station. subroutine SECTD from results of the second- and third-level searches programmed in subroutines SFSCH and TSCH. The first set, locations 1 through 40, consists of data computed for NØS; the current search parameter value specified to subroutine SFSCH during the two analysis passes of subroutine SECTD; first the strength-only analysis pass, and second, if required, strength analysis pass with compression cover skin constrained to required thickness for flutter. Locations 4 through 38 contain data identical to those in locations 381 through 415, the TSC array locations used by second- and third-level routines for storage of data computed for design stress levels, f, and skin thickness, t_{skin}. The second set is created from first set data resulting from the strength/flutter analysis pass. The third set is used during the strength-only pass for storage of data computed for NØS; 1-1.

1	NØS; number of stringers or intermediate spars, current search
	parameter value,
2	b _i , stringer or spar spacing, [W/(NØS _i +1)], in.
3	(f _c) _{max} , maximum compression stress level, limiting value for
4	stress level search by SFSCH. Initially, the smaller of the compression cutoff stress and the P/A stress at minimum geometry. Value subsequently reduced by SFSCH as required to limiting stress levels dictated by conditions for skin stability and distribution of available material to satisfy skin/stringer geometry constraints. (f _c) opt, value selected by SFSCH as the optimum design stress
	level for NØS, same as TSC(381), psi.

TABLE 225. TSC ARRAY (CONT)

Array Location	Description
5	A _{upr} , compression cover area for each stringer or spar bay,
	t bi, same as TSC(382), sq in./stringer or sq in./spar.
6	$\Sigma t_{\rm upr}^{\rm upr}$, total material equivalent gage, same as TSC(383), in.
7	t_{lwr} , lower cover t , set to 0.0 for compression cover search,
	same as TSC(384), in.
8	tupr, upper cover t, same as TSC(385), in.
9	$\Sigma \overline{t}_{rib}$, rib or spar \overline{t} , same as TSC(386), in.
10	(tmisc skin) upr spanwise skin pad t, same as TSC(387), in.
11	(tatt) str, spanwise cover attachment t, same as TSC(388), in.
12	$(\overline{t}_{misc})_{rib}$, rib miscellaneous material \overline{t} , same as TSC(389), in.
13	$(\overline{t}_{\text{misc skin}})_{\text{rib}}$, chordwise skin pad \overline{t} , same as TSC(390), in.
14	(A _{str}) _{min} , minimum stringer or cap area, same as TSC(391), sq in.
15	A _{str} , stringer or cap area, same as TSC(392), sq in.
16	t stringer or cap t, same as TSC(393), in.
17	t _{str} , stringer or cap gage, same as TSC(394), in.
18	h _{str} , stringer or cap web width, same as TSC(395), in.
19	f_u , riveting flange width, same as TSC(396), in.
20	L _{rib} , rib or spar spacing, same as TSC(397), in.
21	I _{str} , area moment of inertia for column, same as TSC(398),
22	in. 4 /in. ρ_{str} , radius of gyration of stringer column, same as TSC(399), in.
23	$\epsilon_{\rm sk}$, strain for $(f_{\rm c})_{\rm opt}$, same as TSC(400), psi.
24	E_{T} , tangent modulus for $(f_{c})_{opt}$, same as TSC(401), psi.
25	(E _R) _{skin} , effective modulus of skin plate for (f _c) _{opt} , same as
26	TSC(402), psi. $(b/t)_{h\ cr}$, allowable crippling b/t for stringer web, same as TSC(403), psi.

TABLE 225. TSC ARRAY (CONT)

Array Location	Description
27	f _L , outstanding stringer flange width, same as TSC(404), in.
28	L _{rib} /L _{min} , ratio of allowable to minimum rib spacing, same as
29	TSC(405). \overline{Y}_{cov} , cover centroid, same as TSC(406), in.
30	(b/t) _{f cr} , allowable crippling b/t for stringer flange, same as
31	TSC(407), in. (t _w) _{rib} , rib or spar web gage, same as TSC(408), in.
32	(b/t) _{skin} , allowable b/t for skin, same as TSC(409).
33	(b/t) _{str} , allowable b/t for stringer web, same as TSC(410).
34	t _{skin} , skin gage, same as TSC(411), in.
35	A _{skin} , area of skin for stringer column, same as TSC(412), sq in.
36	(At misc skin) VF upr, incremental upper cover miscellaneous skin
	t for flutter design, calculated by SECTD during flutter analysis pass, in.
37	$(\Delta t_{att})_{VF str}$, incremental cover attachment t for flutter design,
38	calculated by SECTD during flutter analysis pass, in.
36	($\Delta t_{misc\ skin}$) _{VF lwr} , incremental lower cover miscellaneous skin t for flutter design, calculated by SECTD during flutter
39	analysis pass, in. $(\Delta t_{\text{misc}})_{\text{VF rib}}, \text{ incremental rib miscellaneous material } t \text{ for}$
	flutter design, calculated by SECTD during flutter analysis
40	pass, in. Not used.
41 - 80	TSC(1-40) data set for NØS _{i-1} during flutter analysis pass NØS
	search by SECTD. Set to strength pass data set if flutter analysis is required, but increase in compression skin gage is not necessary for compression skin.
81 - 120	TSC(1-40) data set for NØS _{i-1} during strength analysis NØS search
	by SECTD.

Array Location	Description	
in lo secon the 1 155, patib tions value locat point	121 through 260 contain four 35-cell data sets, similar to the items cations 381 through 416, saved by subroutine SFSCH during the d-level search for optimum stress level. Data sets saved are for ast three valid stress level points stored in locations 121 through 156 through 190, and 191 through 225. These data sets are comple with the search point stress levels stored in array TSS, locato, 11, and 12, and are located by the value of the storage index for LF1 for f_{c1} , LF2 for f_{c2} , and LF3 for f_{c3} . The data set in ions 226 through 260 contains the values for the first optimum computed by SFSCH. This set is transferred to SECTD if the total less than that for the second optimum point.	
156 - 190	TSC(381) - TSC(416) data set 1 for stress level search. TSC(381) - TSC(416) data set 2 for stress level search. TSC(381) - TSC(416) data set 3 for stress level search. TSC(381) - TSC(416) data set for first optimum stress level.	
Locations 261 through 380 contain four 30-cell data sets, similar to the items in locations 383 through 412, saved by subroutine TSCH during the third-level optimum skin gage search for specified stress levels. These data sets are used in the same manner as the data sets in locations 121 through 260. Storage location index values in LT1, LT2, and LT3 are used to identify data set locations for the three skin gage search point values in array TSS, locations 4, 5, and 6. The fourth data set, locations 351 through 380, contains data for the first optimum skin gage point.		
291 - 320	TSC(383) - TSC(412) data set 1 for skin gage search. TSC(383) - TSC(412) data set 2 for skin gage search. TSC(383) - TSC(412) data set 3 for skin gage search. TSC(383) - TSC(412) data set for first optimum skin gage.	
ysis	Locations 381 through 420 contain design data computed for the current analysis point identified by the three search parameter values NØS; (f _c); and (t _{skin}); stored in TSC(1), TSC(381), and TSC(411).	
381	$(f_c)_i$, stress level for current analysis point, value selected by subroutine SFSCH for use by subroutine TSCH for third-level skin thickness search and determination of optimum stringer geometry, psi.	

TABLE 225. TSC ARRAY (CONT)

Array Location	Description
382	A _i , compression cover area for each stringer or spar bay,
	$b_i \cdot \overline{t_i}$, calculated by TSCH, sq in./stringer or sq in./spar.
383	$\Sigma \bar{t}_i$, total material equivalent gage used for optimum search,
384	defined as the sum of equivalent material gage required for covers, supports, and fabrication (attachment and miscellaneous), calculated by STBAR as the sum of the t-bars stored in locations 384 through 390, in.
304	t _{lwr} , tension cover t, set to 0.0 for compression cover analysis, in.
385	$[\bar{t}_i]$, compression cover \bar{t} , $[N_X/(f_c)_i]$, computed by TSCH, in.
386	$\Sigma \bar{t}_{rib}$, equivalent material gage of cover support structures,
	intermediate ribs for multirib designs (MR), intermediate spars for multispar designs (MS) and honeycomb core for fulldepth honeycomb sandwich designs (FDH), calculated by subroutine STRIB, in.
387	(t misc skin upr, equivalent material gage of skin pads along spanwise attachment lines for MR, riveted stringer, and MS, plus core for MS, honeycomb panels, or stringer fillets for MR integral stringers and 0.0 for FDH, calculated by STBAR, in.
388	(tatt) str, equivalent material gage of cover attachments for spanwise elements, stringer-to-skin for MR (0.0 for integral stringers), spar-to-skin for MS and 0.0 for FDH, calculated by STBAR, in.
389	(tmisc)rib, equivalent material gage of miscellaneous items for supporting structures for MR and MS, 0.0 for FDH, calculated by STRIB, in.
390	(tmisc skin)rib, equivalent material gage of skin pads along chordwise ribs for MR, 0.0 for MS and FDH, cover panel bond for MS honeycomb panel, calculated by STRIB, in.
391	(A str min, minimum stringer or spar cap area for current analysis point, calculated by STRCØ, in.
392	A _{str} , stringer or intermediate cap area for current analysis
393	_ point, calculated by STBAR, in. t _{str} , equivalent material gage for A _{str} , calculated by STBAR, in.

TABLE 225. TSC ARRAY (CONT)

Array Location	Description
394	t _{str} , web and flange gage for A _{str} , calculated by STRG, in.
395	h _{str} , stringer height or cap width for A _{str} , calculated by STRG, in.
396	f _u , riveting flange width for MR, riveted stringers, 0.0 for MR
397	integral stringers, cap flange for MS, calculated by STRG, in. L., rib spacing for MR, spar spacing for MS, 1.0 for FDH, calculated by STRIL, in.
398	I str, area moment of inertia for stringer- or cap-plus-skin
399	column, calculated by STRIL, in. 4 /in. $\rho_{\rm str}$, radius of gyration for stringer- or cap-plus-skin column,
400	calculated by STRIL, in. ϵ_{sk} , strain of cover material for $(f_c)_i$, calculated by TSCH, in.
401	E_T , tangent modulus for $(f_c)_i$, calculated by TSCH, psi.
402	$(E_R)_{sk}$, effective modulus of skin plate for $(f_c)_i$, calculated by
403	TSCH, psi. (f _{ccr}) _{rib} , critical compression stress for rib or spar web
404	column, calculated by STRIB, psi; changed by STBAR to $(b/t)_{h\ cr}$, allowable crippling b/t for stringer web. $(E_R)_{rib}$, effective modulus for rib or intermediate spar web, calculated by STRIB, psi; changed by STBAR to f_L , outstanding
	flange width for riveted or integral Z-stringers for MR, and f_{11} for MS, in.
405	L _{rib} /L _{min} , ratio of allowable rib or spar spacing to minimum,
406	calculated by STBAR, in. \overline{Y}_{cov} , centroid of cover material, distance from outer surface of
407	skin, moved from location 413 by STBAR, in. R _{corrug} , radius of corrugation for rib webs, calculated by STRIB, in; changed by STBAR to (b/t) _{f cr} , allowable crippling b/t for
408	stringer flanges. (t _w) _{rib} , with gage for intermediate ribs or spars, calculated by STRIB, in.

TABLE 225. TSC ARRAY (CONCL)

Array Location	Description
409	(b/t) _{skin} , allowable b/t for skin, calculated by TSCH.
410	(b/t) _{str} , allowable b/t for stringer web, calculated by TSCH.
411	(t _{sk}), skin gage for current analysis point, created by STBAR
412	from subroutine argument, in. (A _{skin}), area of skin plate for each stringer or spar bay,
413	calculated by STRG, sq in. Y cov, cover centroid, same as location 406, calculated by STRIL, in.
414 - 420	
	•

TABLE 226. TSEC ARPAY

General information for array TSEC:

Blank common reference location = CD(1501)

Array size = 300 cells

Array TSEC contains torque-box design data and constants used by the structural synthesis and weight analysis routines of overlays (9,0) and (10,0) for metallic designs and overlay (18,0) for advanced composite designs. Data stored in this array are initially created by overlay (16,0) routines. Additional constants are created and saved by the synthesis overlays in this array.

Subroutine WDDATA, overlay (16,0), prints the contents of array TSEC as part of the CD array output under control of IP(23), case control card 1, column 23.

Ameny		-
Array Location	Description	

Locations 1 through 220 are arranged into 22 11-cell data sets for storage of current values for design parameters or output results. All of these data sets contain parameter values for the 11 structural analysis control stations, stored in sequential order from tip to root. Geometry parameters are created by subroutine WDDATA in overlay (16,0) and are not changed. Values for all other parameters are created first in overlay (16,0) and subsequently changed by the analysis routines for metallic or advanced composite designs.

1 - 11 (+M_{χΛ})₁₁₋₁, subarray ULTPM, ultimate design bending moment for up-bending design condition, computed by subroutines VLØAD1, VLØAD, and AVLØAD, in.-1b.
12 - 22 (+V_Λ)₁₁₋₁, subarray ULTPV, ultimate design shear for up-bending design condition, 1b.
23 - 33 (+V_{FS})₁₁₋₁, subarray UVFS, ultimate design shear for front spar web design, up-bending design condition, 1b.

TABLE 226. TSEC ARRAY (CONT)

Array Location	Description
34 - 44	(+V _{RS}) ₁₁₋₁ , subarray UVRS, ultimate design shear for rear spar
	web design, up-bending design condition, 1b.
45 - 55	(W _{struct}) ₁₁₋₁ , structural width of torque-box, distance between
	the front and rear spar planes along the structural chord of each analysis control station, created by WDDATA, in.
56 - 66	(D _{ave) 11-1} , average depth of torque-box, created by WDDATA, in.
67 - 77	(GJ _{VF}) ₁₁₋₁ , subarray GJR, required section stiffness for flutter
	design, calculated by subroutine GJCAL, 1b-in. ²
78 - 88	(D _{ES}) ₁₁₋₁ , front spar depth, distance between upper and lower
	mold lines, created by WDDATA, in.
89 - 99	(D _{RS}) ₁₁₋₁ , rear spar depth, distance between upper and lower
	mold lines, created by WDDATA, in.
100 - 110	Not used.
111 - 121	(-V _A) ₁₁₋₁ , subarray ULTNV, ultimate design shear for down-bending
	design condition, 1b.
122 - 132	(-M _{xA}) ₁₁₋₁ , subarray ULTNM, ultimate design bending moment for
	down-bending design condition, in1b.
133 - 143	$(\overline{Y}_0)_{upr 11-1}$, subarray YBUI, assumed centroid for upper cover,
	used for calculations of design N_{χ} for current analysis pass,
	initially calculated by subroutine YBSET and recomputed by subroutine DWYBA at the conclusion of each analysis pass, distance from outer mold line of upper cover, in.
144 - 154	$(+M_{y\Lambda})_{11-1}$, subarray ULTPT, ultimate design torsional moment for
	up-hending design condition, inlb.
155 - 165	$(-M_{VA})_{11-1}$, subarray ULTNT, ultimate design torsional moment for
	down-bending design condition, inlb.
166 - 176	$(Y_{\Lambda})_{11-1}$, subarray YSTRC, structural analysis control station
	coordinates along the structural reference line, created by WDDATA, in.

TABLE 226. TSEC ARRAY (CONT)

Array Location	Description
177 - 187 188 - 198	
199 - 209	Not used.
210 - 220	Not used.
for me and ad TSCH,	tallic structural synthesis and weight analysis of both metallic lyanced composite structures. Subroutines CNSTR, SECTD, SFSCH, and overlay (10,0), and subroutine ACNSTR, overlay (18,0), create the mation stored in these locations.
221	$K_{(b/t)f}$, stringer flange buckling coefficient factor, $(K_f/K_{skin})^{1/2}$, used for computing allowable flange b/t for metallic flanged stringers as a function of skin b/t values, initially calculated by QNSTC. TSCH revises this initial value at stress levels

TABLE 226. TSEC ARRAY (CONT)

Array Location	Description
ı	where plate members are critical for crippling. TSCH saves the initial value in location 255 for reset operations on exit back to SFSCH.
222	N _{f1} , constant to indicate existence of outstanding stringer
	flange, 0.0 for integral I-stringers, 1.0 for integral and riveted Z-stringers, created by CNSTC from input stringer-type code in D(361), input data variable STRFN.
223	N _{fu} , riveting flange indicator similar to N _{fl} , except value set
	to 0.0 for integral Z-stringers.
224	$(K_1)_{str}$, stringer length constant, initially computed by CNSTC
	as $(1 + N_{f1} K_{(b/t)f})$ for multirib designs (MR), $(1 + f_{min}/h_{min})$
	for multispar designs (MS), and 1.0 for fulldepth honeycomb sandwich designs (FDH). Revised by TSCH when K (b/t)f is changed. Initial value saved in location 256.
225	(A _{inst}) _{upr} , cross-sectional area of honeycomb panel inserts at
	upper cover to substructure attachment lines, calculated by CNSTC and ACNSTR from upper cover core thickness and input effective insert width, 0.0 for MR, MS plate, and FDH designs, sq in.
226	$(\overline{t}_{inst})_{upr}$, upper cover insert \overline{t} for load reaction, calculated by
	SFSCH based on current spar spacing value, in.
227	$(\overline{t}_{core})_{upr}$, equivalent \overline{t} for upper cover core for MS honeycomb panel, calculated by CNSTC as $t_{core} \cdot \rho_{core}/\rho_{o}$, and equivalent \overline{t} for 1-inch core depth for FDH for calculation of equivalent core \overline{t} at any station, calculated by CNSTC as ρ_{core}/ρ_{o} , 0.0 for MR and MS plates, in.
228	t equivalent t for facesheet-to-core bonding material for
	two facesheets, calculated by CNSTC as ρ_{bond}/ρ_{o} for MS honevcomb
	panel and FDH, 0.0 for MR and MS plates, in.
229	(A _{inst}) ₁ , he eycomb panel insert area for lower cover, similar
	to (A inst in location 225, sq in.

TABLE 226. TSEC ARRAY (CONT)

Array Location	Description
230	$(\overline{t}_{inst})_{lwr}$, equivalent \overline{t} for $(A_{inst})_{lwr}$, in.
231	$(\overline{t}_{core})_{lwr}$, equivalent \overline{t} for lower cover core, similar to $(\overline{t}_{core})_{upr}$ in location 227, 0.0 for FDH, in.
232	$(K_{\overline{t}})_{str}$, equivalent stringer or cap \overline{t} factor for load reaction calculations for MR and MS, calculated by SFSCH as [NØS/(NØS + 1.0)], and 1.0 for FDH.
233	$(K_{\overline{t}})_{rib}$, equivalent intermediate rib or spar \overline{t} factor, calculated by SFSCH as 1.0 for MR, [NØS/(NØS + 1.0)] for MS, and 1.0 for FDH.
234	$(f_c)_{max\ upr\ cov}$, save location for initial value of TDC (54) variable, created by CNSTC, psi.
235	$(f_t)_{max\ lwr\ cov}$, save location for initial value of TDC(60) variable, created by CNSTC, psi.
236	$(f_t)_{max\ upr\ cov}$, save location for initial value of TDC(49) variable, created by CNSTC, psi.
237	$[(f_t)_{max}/(f_c)_{max}]_{upr\ cov}$, save location of initial value of TDC(48) variable, created by CNSTC.
238	$^{(f)}_{c)}$ max lwr cov, save location of initial value of TDC(162) variable, created by CNSTC, psi.
239	$(K_{\rm weff})_{\rm comp}$, effective width factor for cover compression load calculations, calculated by CNSTR as $[(W_{\rm TR} + \Delta W_{\rm FS} + \Delta W_{\rm RS})/W_{\rm TB}]$.
240	$(K_{\rm weff})_{\rm skin\ upr}$, effective width factor for upper cover skin weight calculations, calculated by CNSTR and ACNSTR as $[(W_{\rm TB} + \Delta W_{\rm skin\ FS} + \Delta W_{\rm skin\ RS})/W_{\rm TB}]$.
241	(K weff) str upr, effective width factor for upper cover stringer or cap weight calculations, created by SECTD from value in location 232 and calculated by ACNSTR as [NØS/(NØS + 1.0)] for MR and MS, and 1.0 for FDH.

TABLE 226. TSEC ARRAY (CONT)

Array Location	Description
242	(K _{weff}) _{skin lwr} , effective width factor for lower cover skin weight calculations, created by SECTD and ACNSTR from value in location 240.
243	(Kweff) str lwr, effective width factor for lower cover stringer or cap weight calculations, created by SECTD and ACNSTR from value in location 241.
244	$(K_{\text{weff}})_{\text{ten}}$, effective width factor for cover tension load calculations, net section load, calculated by SFSCH for upper cover analysis and SECTD for lower cover analysis as $[(W_{\text{TB}} + \Delta W_{\text{FS}} + \Delta W_{\text{RS}} - \Sigma \Delta W_{\text{hole}})/W_{\text{TB}}]$, where $\Sigma \Delta W_{\text{hole}}$ = total effective width
245	loss due to cover to stringer and/or spar attachments.
245	Not used.
246	Not used.
247	Not used.
248	(b/t) _{h cr} , variable BØTHR, critical b/t for stringer web, calculated by TSCH from smaller value of plate buckling b/t and crippling b/t.
249	(b/t) _{f cr} , variable BØTFR, critical b/t for stringer flange, calculated by TSCH from smaller value of plate buckling b/t and crippling b/t.
250	(b/t) _{h ccr} , variable BØTHC, critical stringer web b/t for crippling criteria, calculated by TSCH.
251	(b/t) f ccr, variable BØTFC, critical stringer flange b/t for crippling criteria, calculated by TSCH.
252	$({\rm C_e})_{\rm h}$, variable CCRSH, web crippling coefficient, created by CNSTC.
253	$(^{\rm C}_{\rm e})_{\rm f}$, variable CCRSF, flange crippling coefficient, created by CNSTC.

TABLE 226. TSEC ARRAY (CONT)

Array Location	Description
254	$(E/f_{cy})^{2/3}$, material constant for crippling equation, created by CNSTC.
255	$K_{(b/t)f}$, save location for initial value of TSEC(221) variable, created by TSCH.
256	(K ₁) _{str} , save location for initial value of TSEC(224) variable, created by TSOH.
257	(L _{min}) _{str} , save location for initial value of TWT(305) variable, created by TSCH.
258	(b/t) _{max} , save location for initial value of TWT(307) variable, created by TSCH.
259	(A _{str}) _{min} , save location for initial value of TDC(194) variable, created by TSCH.
260	D_{att} , fastener diameter for $(K_{weff})_{ten}$ calculations by SFSCH for upper cover design, in.
261	$(K_{\text{weff}})_{\text{comp}}$ W_{TB} , effective upper cover structural width for compression loads, calculated by SFSCH for calculations of $(K_{\text{weff}})_{\text{ten}}$:
262	$(K_{tsk})_{min}$, save location for initial value of variable TKKMN, TDC(64), created by SFSCH. Initially used by CNSTC for shear-tie material constant calculations, $\rho_{shear-tie}$, density for shear-tie material lb/cu in.
263	$(K_{tsk})_{max}$, save location for initial value of variable TKKMX, TDC(65), created by SFSCH. Initially used by CNSTC for shear-tie material constant calculations, f_{CY} , compression yield stress for shear-tie material, psi.
264	${ m f}_{ m TU}$, ultimate tension stress for shear-tie material, calculated by CNSTC, psi.
265	\mathbf{f}_{SU} , ultimate shear stress for shear-tie material, calculated by CNSTC, psi.

TABLE 226. TSEC ARRAY (CONCL)

Array Location	Description
266	f _{BRU} , ultimate bearing stress for shear-tie material, calculated by CNSTC, psi.
267	C ₁ , coefficient for shear-tie weight equation, computed by CNSTC as function of specified shear-tie to reference material properties.
268	C_2 , coefficient for shear-tie weight equation computed by QNSTC as for C_1 .
269	Not used.
270	(K ₁) _{FS} , length correction factor for front spar weight calculations, calculated by CNSTC as function of sweep angle of front spar and structural reference lines.
271	$(K_1)_{RS}$, length correction factor for rear spar weight calculations, calculated by CNSTC as function of sweep angle of rear spar and structural reference lines.
272 - 300	Not used.

General information for array TSS:

Blank common reference location = T(1961)

Array size = 100 cells

Array TSS is used by the metallic structural synthesis routines for storage and retrieval of parameter values during the numerical search computations for optimization of compression covers and support structures. TSS locations used by subroutines SFSCH and TSCH are described in this table. Locations 13 through 40, used by subroutine STRIB during the same sequence of calculations, are described in Table 228. Subroutine STWEB also uses array TSS, Table 229, after completion of cover analysis.

Array	
ocation	

Description

Locations 1 through 12 contain the primary search parameter values for the second and third optimization levels controlled by subroutines SFSCH and TSCH, overlay (10,0). Locations 1 through 6 include three specified $t_{
m skin}$ values and corresponding values of computed $\Sigma ar{t}$ for the t-skin optimization of subroutine TSCH. Locations 7 through 12 contain $\boldsymbol{f}_{_{\boldsymbol{C}}}$ and $\Sigma \bar{t}$ values for the stress level optimization of subroutine SFSCH. These 6-cell sets are specified to subroutine CG3P for parabolic curve fit/ minimum value evaluation to determine the optimum value of t skin or fc. Subroutine TSCH data in locations 1 through 6 are computed for multirib designs only. Only one value for t is evaluated for multispar or fulldepth honeycomb sandwich designs.

- $\Sigma \bar{t}_1$, total \bar{t} , sum of cover, supports, and miscellaneous item t-bars (from TSC(363)), for $(t_{skin})_1$, in.
- $\Sigma \bar{t}_2$, total \bar{t} for $(t_{skin})_2$, in. $\Sigma \bar{t}_3$, total \bar{t} for $(t_{skin})_3$, in.
- - (tskin)₁, first-point skin gage value for current set of 3-tskin values, subroutine TSCH optimum t-skin search for specified value of $f_{\rm C}$ in TSC(381) and b in TSC(2), in. Computed data associated with this point, stored in TSC(383) - TSC(412), are saved in one of three 30-cell blocks, starting at TSC(261), TSC(291), and TSC(321). Variable LT1, ND(26), is used by TSCH to idertify the location of the (tskin)1 data set.

TABLE 227. TSS ARRAY, SUBROUTINES SFSCH AND TSCH (CONT)

Array Location	Description
5	(t _{skin}) ₂ , second-point skin gage value for current 3-t _{skin} set, in.
6	Variable LT2, ND(27), identifies location of saved data set. (Refer to discussion for location 4.) (t _{skin}) ₃ , third-point skin gage value for current 3-t _{skin} set, in.
7	Variable LT3, ND(28), identifies location of saved data set. (Refer to discussion for location 4.) Σt_1 , total t for $(f_c)_1$, Σt for optimum t_{skin} resulting from TSCH
8	t-skin optimization search, in. Σt_2 , total t for $(f_c)_2$, in.
9	Σt_3 , total \bar{t} for $(f_c)_3$, in.
10	$(f_c)_1$, first-point stress value for current set of 3-f _c values,
	subroutine SFSCH optimum f_c search for specified value of b in
	TSC(2), psi. Computed data associated with this point, stored in TSC(381)-TSC(415), are saved in one of three 35-cell blocks, starting at TSC(121), TSC(156), and TSC(191). Variable LF1, ND(42), is used by SFSCH to identify the location of the $\binom{f}{c}_1$
11	data set.
11	(f _c) ₂ , second-point stress value for current 3-f _c set, psi.
	Variable LF2, ND(43), identifies location of saved data set. (Refer to discussion for location 10.)
12	$(f_c)_3$, third-point stress value for current 3- f_c set, psi. Vari-
	able LF3, ND(44), identifies location of saved data set. (Refer to discussion for location 10.) This point represents the first of the 3-point sets evaluated by SFSCH. Location 12 is used by SFSCH during the initial computations for $(f_c)_{max}$, TSC(3), and
	starting value for the f_c search, TSS(67), and also during the
	secondary searches for largest f value that will result in an
	acceptable design based on evaluations by subroutines TSCH, STBAR, STRG, and/or STRIL, current search $(f_c)_{max}$, TSC(3).

Locations 13 through 40 are not used by subroutines SFSCH or TSCH. These locations contain current analysis point rib or spar web data computed and used by subroutine STRIB during the optimization analysis by SFSCH and TSCH. (Refer to Table 228.)

TABLE 227. TSS ARRAY, SUBROUTINES SFSCH AND TSCH (CONT)

Array Location	Description
13-40	Subroutine STRIB variables. (Refer to Table 228.)

Locations 41 through 57 contain search constants and search parameter limiting values computed and used by subroutine TSCH. Values in locations 41, 42, 49, and 57 are computed differently for multirib, multispar, and full-depth honeycomb sandwich designs. They are also dependent upon the t-skin analysis specified for TSCH by the value of control code IDSK, ND(51): 1 = strength optimization analysis, 2 = strength analysis with required flutter skin gage specified, and 3 = strength analysis with t-skin value specified through input data array DTSKU, D(743)-D(753). (NOTE: Currently, the value of IDSK is limited to 1 or 2 by subroutines CNSTR, SECTD, and VFCAL - referenced as variable IVF. However, TSCH contains the necessary logic for this option. T-skin values input through array DTSKU are processed into D(370), variable SKMN, by subroutine CNSTR and used by the analysis routines as the current station value for minimum skin gage.

41

 $(t_{skin})_{min}$, minimum skin gage for current analysis defined by $(f_{c})_{i}$ in TSC(381), and b_{i} in TSC(2), in. For multirib designs (MR), the strength optimization analysis (ST/OPT) value is computed as the maximum value of (1) minimum skin gage defined by variable SKMN, (2) skin gage required for buckling stability, $t_{skin} = b_{i}/(b/t)_{skin}$, and (3) skin gage based on specified minimum skin gage-to- \bar{t} ratio, $t_{skin} = (K_{skin})_{min} \cdot \bar{t}_{i}$, where K_{skin} is the value specified in D(365). The flutter analysis (VF) value is computed as the maximum value of the preceding items 1 and 3 plus the required flutter skin gage $(t_{skin})_{VF}$. This value for strength optimization with input skin gage analysis (ST/IN) is set to the input value defined by variable SKMN.

For multispar designs (MS), this value is set to $(\bar{t} - \bar{t}_{cap})$ for ST/ØPT and ST/IN. The input value can be treated only as a minimum value for MR-ST/IN because if b, N_{x} , and A_{cap} are specified, there is only one solution for t_{skin} . In VF analysis, this value is set to $(t_{skin})_{VF}$. For fulldepth honeycomb sandwich design (FDH), the ST/ØPT and ST/IN value is set to t_{i} , TSC(385); to $(t_{skin})_{VF}$ for VF analysis.

TABLE 227. TSS ARRAY, SUBROUTINES SFSCH AND TSCH (CONT)

Array Location	Description
42	$(t_{skin})_{max}$, maximum skin gage for current analysis point, in. MR analysis: $(K_{skin})_{max}$. \bar{t}_{i} for ST/OPT where K_{skin} is the maximum skin-to- \bar{t} ratio specified in D(366); input value for for ST/IN.
43	MS and FDH analysis: set equal to (t _{skin}) _{min} for the three analysis types. (A _{str}) _{min} , minimum stringer or cap area for MR and MS, from TDC(94), not used in FDH analysis, sq in. In the MR analysis, subroutine TSCH recomputes this value if ratio t _{str} /t _{skin} is less than the
44	value of variable STRSK, D(455), minimum stringer gage-to-skin gage for designs with buckling critical skins. Subroutine STRCØ also recomputes this value if the allowable web buckling (b/t), TSC(410), is less than the initial value of h str/str/min computed by TSCH and stored in TWT(307). (t str)min, minimum stringer or cap gage, initially derived from input variable STRMN, D(371), by TSCH and change by TSCH and STRCØ when (A str)min is changed. (Refer to location 43.) Not
45	used in FDH analysis in. (h) , minimum stringer height or cap width, initially derived str min, warishle UCTAL D(777) has TSCH. Not used in FDH.
46	from input variable HSTMN, D(377), by TSCH. Not used in FDH analysis, in. (f _u) _{min} , minimum stringer riveting flange or cap flange width, computed by TSCH as the larger value of input variable STFMN, D(384), or K _(b/t) . (h _{str}) _{min} , for riveted Z-stringer or MS
47	designs only, 0.0 for integral I- and Z-stringers. Not used for FDH designs, in. (f _L) _{min} , minimum stringer outstanding flange or cap flange width, value computed by TSCH as described for (f _u) _{min} , but for riveted and integral Z-stringers or MS designs, 0.0 for integral I-stringers. Not used for FDH designs, in.

TABLE 227. TSS ARRAY, SUBROUTINES SFSCH AND TSCH (CONT)

Array Location	Description
48	(Δt_{sk}), search interval for t_{skin} , computed as $(t_{skin})_{max}$ - $(t_{skin})_{min}$ by TSCH for MR analysis only, set to 0.0 for MS and
·	FDH analysis, in. For ST/ \emptyset PT and VF analysis, a negative value causes TSCH to reject the current stress value (f_c) and returns
	control to subroutine SFSCH, specifying f_{C} too large, value of 2
	for status code ISK1, ND(45). For ST/IN analysis, TSCH sets this value to 0.0 if the current $(f_c)_i$ value is valid, indicating that
	no t skin search is to be made; however, the preceding rejection
	procedure is used if the skin gage required for buckling is greater than the input value.
49	(t _{sk}) _o , starting value for skin gage search, first t _{skin} value to
	be analyzed by subroutine STBAR at b _i ,(f _c) _i for MR, only t _{skin}
50	value analyzed by STBAR at b. (f _c) for MS and FDH designs. Same value as in location 41, in.
30	$\Sigma \bar{t}_0$, total section \bar{t} for $(t_{sk})_0$ only if the analysis status code
	returned by subroutine STBAR indicates an acceptable design, value of 1 or 2 for variable IL2, ND(33). Not used if design is unacceptable, IL2 = 3 or 4, MR analysis only, in. Computed data for $(t_{sk})_0$ stored in TSC(383) - TSC(412) are saved in locations
51	69 through 98.
31	$(\Delta t_{\rm sk})_{\rm o}/10.0$, search increment for skin gage, MR analysis only,
52	in. (t _{sk}) _{max} , maximum skin gage for t _{skin} search, initially set equal
	to (t skin max for MR analysis only, in. Used in TSCH logic to
	indicate approximate value of t _{skin} where valid designs cannot be
	computed by subroutine STBAR. Initial value reduced by secondary search loops when a t_{skin} point, $(t_{skin})_{min}$ + $n (\Delta t_{sk})_{o}/10.0$,
F.7	n = 1, 10, results in an unacceptable design.
53	$(t_{ m skin})_{ m opt~1}$, skin gage value where initial optimum Σt is found, MR analysis only, in.

TABLE 227. TSS ARRAY, SUBROUTINES SFSCH AND TSCH (CONT)

Array Location	Description
54	$(\Sigma \bar{t})_{\text{opt 1}}$, computed value of $\Sigma \bar{t}$ at $(t_{\text{skin}})_{\text{opt 1}}$, used for final
	selection of optimum point, MR analysis only, in. If evaluation of computed minimum point (t _{skin}) _{opt 1} results in an acceptable
	design, total \bar{t} values for the four existing points $\Sigma \bar{t}_1$, $\Sigma \bar{t}_2$,
	Σ t ₃ , and Σ t _o are used to select $(t_{skin})_{design}$ for return to subroutine SFSCH. Computed data for $(t_{skin})_{opt}$ stored in
	TSC(383) - TSC(412) are saved in TSC(351) - TSC(380).
55	$(t_{skin})_{opt 2}$, skin gage value resulting from second optimum search about the initial optimum point, MR analysis only, in. $\Sigma \bar{t}$ computed for this point and compared with $(\Sigma \bar{t})_{opt 1}$ for selection
	of optimum t _{skin} . If (t _{skin}) opt 2 results in an unacceptable design, (t _{skin}) opt 1 is selected and compared with points 1, 2,
56 57	and 3. Not used. $(t_{skin})_{(b/t)}$, skin gage required for local stability, $b_i/(b/t)_{skin}$
	for ST/ \emptyset PT and ST/IN analysis for MR, in. Changed to $(\bar{t}_i - \bar{t}_{cap})$
	for MS ST/ØPT and ST/IN analysis. Not required for FDH. For VF analysis set to (t _{skin}) _{VF} value computed by SECTD and stored in
	location 99, applicable to all designs.
subrouti only; us code IØ2 availabl A lower	58 through 68 contain search parameter values computed and used by ine SFSCH. Locations 58 through 63 are required for MR analysis sed during secondary searches for valid stress levels when analysis 2, ND(46), indicates rib spacing less than required, $I\emptyset 2 = 3$, or le stringer area is too small, less than minimum size, $I\emptyset 2 = 2$. stress level is computed by interpolation based on computing calto required ratios for assumed values of f_c .
58	R_1 , for $I\emptyset2 = 2$, ratio of allowable to minimum rib spacing and for
	$I\emptyset 2 = 3$, ratio of available to minimum stringer area for f_{c1} in
59	location 61. R ₂ , same as R ₁ except for f _{c2} in location 62.

TABLE 227. TSS ARRAY, SUBROUTINES SESCH AND TSCH (CONT)

Array Location	Description
60	R_3 , same as R_1 except for f_{C3} in location 63.
61	f _{cl} , first stress level point for secondary stress level search
62	for acceptable rib spacing or stringer area, psi. This point is always a stress value that results in an acceptable design; i.e., R ₁ larger than 1.0. f _{c2} , second stress level for secondary search, psi. R ₂ for this
	point is always greater than 1.0, but less than R ₁ .
63	f _{c3} , third stress level for secondary search, psi. R ₃ for this point is always less than 1.0.
64	(f _c) opt 1, stress level where initial optimum $\Sigma \bar{t}$ is found. MR analysis only, psi.
65	$(\Sigma \bar{t})_{\text{opt 1}}$, computed value of $\Sigma \bar{t}$ for $(f_{\text{c}})_{\text{opt 1}}$, in. Computed data stored in TSC(381) - TSC(415) are saved in TSC(226) -
66	TSC(260). (f _c) opt 2 stress level resulting from second optimum search about the initial optimum point. MR analysis only, psi. $\Sigma \bar{t}$ computed for this point and compared wit ($\Sigma \bar{t}$) opt 1
67	design point. $(f_c)_0$, starting value for stress level search, psi. This value
68	will be equal to or less than the initial value of the current maximum stress stored in TSC(3), used to initialize TSS(12) for evaluation of the first stress level point. The value in this location is not changed during the search; however, the value in TSC(3) is always reduced when evaluated points result in unacceptable design. Δf_c , stress level increment for search between the starting stress
	value and $(f_{c})_{max}$, TSC(3), when optimum search is directed to a
	larger value than $(f_c)_{start}$, TSS(12), and if $(f_c)_{start}$ is less
	than $(f_c)_{max}$, $0.10 \cdot [(f_c)_{max} - (f_c)_{start}]$. For MR analysis
	only, psi.

TABLE 227. TSS ARRAY, SUBROUTINES SESCH AND TSCH (CONCL)

Array Location	Description	
optimum	locations 69 through 98 contain the saved design data block for the first optimum point, (t _{skin}) _{opt 1} , resulting from the t _{skin} search of subroutine TSCH, computed at a specified stress level, (f _c) _i , stringer spacing, b _i	
and loa	ad level (N _X) _i .	
69-98	Computed data from TSC(383) - TSC(412) for (t _{skin}) _{opt 1} , TSS(53).	
99	(t _{VF}); required skin gage for flutter analysis. Computed by subroutine SECTD, and used by subroutines SFSCH and TSCH only during the flutter analysis pass, 2.0 value for code word IVF, ND(51), in.	
100	(b/t) at $(t_{skin})_{min}$ or $(t_{VF})_i$ and (f_c) for the stored value of b/t, computed by subroutine SFSCH for MR analysis only. (b/t) value specified to subroutine BOT for computation of f_c ; 1.0 for BOT analysis code IKI, ND(32).	

TABLE 228. TSS ARRAY, SUBROUTINE STRIB

General information for array TSS:

Blank common reference location = T(1961)

Array size = 100 cells

Array TSS is used as a common storage and retrieval array by synthesis routines for metallic structure. Locations 13 through 40 only are used by subroutines STRIB and SRRIB. The other locations are used by subroutine SFSCH and TSCH. Subroutine STRIB uses TSS array locations during computations of intermediate rib webs for multirib designs and intermediate spar webs for multispar designs. Subroutine STRIB is not used in the analysis of fulldepth honeycomb sandwich designs.

Location	Description
1-12	Used by subroutines SFSCH and TSCH, see Table 227.
loops;	s 13 through 18 are used by STRIB during each of the two interpolation first, to determine gage required for column support (multirib designs and second, to determine web gage required for flexure-induced column
13	f_1 , assumed stress level point 1 for support stiffness search, psi,or $(t_w)_1$, assumed web gage point 1 for column stability search, in.
14	f_2 , point 2 stress level, psi, or $(t_w)_2$, point 2 web gage, in.
15	f_3 , point 3 stress level, psi, or $(t_w)_3$, point 3 web gage, in.
16	r_1 , $(t_w)_{p/a}/(t_w)_{stiff}$ at f_1 , computed by STRIB, or f_c/f_{ccr} at $(t_w)_1$. Set up by STRIB from value computed by SRRIB, and
17	stored in location TSS(40). r_2 , web ratio for f_2 or stress ratio for $(t_w)_2$.

Locations 19 through 23 are used by SRRIB during computations of critical local and general instability stresses for specified web gages.

 r_3 , web ratio for f_3 or stress ratio for $(t_w)_3$.

- (f_c), applied compression stress, psi.
- (E_T); tangent modulus for (f_c) ; psi.

TABLE 228. TSS ARRAY, SUBROUTINE STRIB (CONT)

Array Location	Description
Docution	beset ip tion
21	(f _{ccr}), critical stability stress. Smaller of the local and
	general stability stresses calculated and stored in TSS(38) and TSS(39), psi.
22	R, corrugated web radius, computed value between input minimum value CØRMN, D(403), and maximum value, CØRMX, D(404), in.
23	(t _w), specified web gage for SRRIB analysis, in.
Locations	24 through 37 contain web analysis data computed and used by STRIB.
24	∆t, web gage increment for stability search. Smaller of input value in D(406), variable DELTW, and initial point gage, in. P _i , compression load on web column, 1b/in.
26	$K_{\rm t}$, constant for corrugation radius calculations, ratio of local to general stability constants times the square of the web column height, $K_{\rm L}/K_{\rm G}(h_{\rm w})^2$, in. ²
27	K_{fg} , constant for general stability stress, $K_{G}/(h_{W})^{2}$, in. ⁻²
28	(t _w) _{min} , minimum web gage, from D(372), variable RBMG, in.
29	(t _w) _{stiff} , web gage for support stiffness, initially gage at
1	proportional limit stress, changed to gage at the design stress level stress for support requirements, in.
30	$(t_w)_{cy}$, web gage for strength, (P/A), at yield stress, in.
31	$(h_w)_i$, effective column height for web, in.
32	K _{stiff} , constant for web stiffness gage calculations, 1b/in.
33	$(t_w)_{P/A}$, web gage for strength, (P/A) , at proportional limit
34	stress, in. Not used.
35	(t _w) stiff cy, web gage for support stiffness at yield stress, in.
36	$((t_w)_{P/A})_i$, P/A web gage for current assumed stress level, in.
37	((t _w) _{stiff}) _i , support stiffness web gage for current assumed stress level, in.
Locations	38 through 40 are used for SRRIB calculations.
38	$((f_{ccr})_L)_i$, local stability stress. Calculated for specified
	$(t_w)_i$, TSS(23), and calculated radius, R_i , TSS(22), psi.

TABLE 228. TSS ARRAY, SUBROUTINE STRIB (CONCL)

Array Location	Description
39 40	$((f_{ccr})_G)_i$, general stability stress, for $(t_w)_i$ and R_i , psi. r_i , ratio of applied to allowable stress.
41-100	Used by subroutines SFSCH and TSCH. (Refer to Table 227.)
	

General information for array TSS:

Blank common reference location = T(1961)

Array size = 100 cells

Array TSS is used by subroutine STWEB for storage and retrieval of front and rear spar strength analysis data. This array is used during the plate-stiffenened web analysis of each spar after compression cover analysis has been completed. Array locations are not set to 0.0 values before use by STWEB; data computed during the cover analysis stored in locations 1 through 36 only are replaced with STWEB data. The remaining data items are not changed. (Refer to Tables 227 and 228.) Spar data stored in locations 4 through 9 are moved by subroutine SECTD to the station summary data block in array TDC, locations 179 through 184 for front spar, and 186 through 191 for rear spar. If the specified web shear load at any station has a value of 0.0, the current station requirements are set equal to that computed for the adjacent outboard station, except for the tip station, where minimum web gage is used. Values for locations 1 through 12, 20, and 29 only are computed for zero shear condition.

Array Location	Description
1	D _{eff} , effective depth of spar web, in.
2	A _{web} , cross-sectional area of web plus stiffeners, sq in.
3	D _i , mold line depth of spar, in.
4	£A _{spar} , total cross-sectional area of spar, sq in.
5	(t _w) _{spar} , spar web gage, in.
6	(A spar, cross-sectional area of upper and lower spar caps, sq in
7	b _{stiff} , stiffener spacing, input value for D(420) or D(421), input data array SWBST, in.
8	(f _s) _{spar} , spar web shear stress, psi.
9	f _{scr}) _{spar} , spar web critical shear stress, psi.
10	$(f_s)_{max}$, spar web shear stress cutoff value, value from TWI(171) or
	TWT(172), computed by subroutine CNSTC from material f _{SU} and/or input cutoff factor/stress in D(412) or D(413), input data array SFSRS, psi.

TABLE 229. TSS ARRAY, SUBROUTINE STWEB (CONT)

Array Location	Description	
11	V spar, shear load on spar, lb (ult).	
12	K, constant for critical clear stress equation, $\left[K_{E} \cdot F_{cov}/(1-\mu^{2})\right]$, psi.	
values Locatio shear b	Locations 13 through 18 are used for storage of web gage search parameter values computed and used by STWEB to determine the optimum spar web gage. Locations 13 through 15 are also used during interpolation for flat plate shear buckling coefficient based on panel aspect ratios, using tabular values of b/a and associated K from D(550) through D(571), input data array DKS.	
13	$(t_w)_1$, assumed web gage point 1 for spar web analysis, in. Also,	
14	Δ (b/a) from shear buckling coefficient table. $(t_w)_2$, assumed web gage point 2, in. Also, Δ K from shear buckling table.	
15	$(t_w)_3$, assumed web gage point 3, in. Also, $(b/a)_{regd}$ - $(b/a)_i$.	
16	Γ_i , ratio of applied to allowable shear stress for $(t_w)_1$. Value setup by STWEB from data computed and stored in location 22 by subroutine SKWEB.	
17	Γ_2 , same as Γ_1 for $(t_w)_2$.	
18	Γ_3 , same as Γ_1 for $(t_w)_3$.	
1	Locations 19 through 36 contain spar web analysis data computed and or used by STWFB and SKWEB.	
19	(f _s), applied clear stress for web gage in location 23, variable TI, computed by SKWEB, psi.	
20	(t _{cap}) _{equiv} , equivalent gage for spar cap, A _{calc} /L _{cap} , used for	
21	minimum gage tests, computed and used by STWEB, in.	
21	(f _{scr}), allowable shear stress for (t _w), computed by SKWEB, psi.	
22	Γ _i , ratio of applied to allowable shear stress computed by SKWEB as variable RI.	
23	<pre>(t_W)_i, web gage for current analysis point, variable TI, sub- routine SKWEB, in.</pre>	
24	$\Delta t_{\rm w}$, web gage increment for search, computed by STWEB from largest value of $(t_{\rm w})_{\rm min}/2.0$, $(t_{\rm w})_{\rm 0}/5.0$ and input $\Delta t_{\rm w}$, variable DELTW,	
25	D(422), in.	
25	q _{web} , web shear, 1b/in.	

TABLE 229. TSS ARRAY, SUBROUTINE STWEB (CONCL)

Array Location	Description
26	K ₁ , shear buckling coefficient, computed by STWEB as a function
27	of panel aspect ratio, (b/a), used in Equation 51. K _S , shear buckling coefficient for combined shear and bending on web, computed by SKWEB as a function of applied shear stress and peak compression stress, used in Equation 52. The critical shear stress from Equation 52 can affect the web gage size if DKS(24), D(573) is input with a value of 1.0. The current default value of 100.0 results in higher allowables than for the pure shear allowable computed from Equation 51.
28	$(t_w)_0$, starting thickness for web gage search, in.
29	(t _w) _{min} , minimum web gage, from input value in D(373) or D(374), input data array SWBMG, in.
30	$(t_w)_{fsmax}$, web gage based on $(f_s)_{max}$, location 10, in.
31	b web, short dimension for web aspect ratio (b/a), shorter of web depth, TSS(1), and stiffener spacing, TSS(7), in.
32	(f _c) _{web} , peak bending stress on web, based on cover design stress and ratio of web to average box depth, psi.
33	K, constant terms for critical shear stress calculations using Equation 51, used to compute initial web gage required for pure shear, 1b/in ⁴ .
34	K _D , constant term for critical shear stress calculations using Equation 52, used by SKWEB during t search for webs under shear and bending loads, 1b/in ⁴ .
35	aweb, long dimension for web aspect ratio (b/a), larger of web depth or stiffener spacing, in.
36	$(b/a)_{web}$, panel aspect ratio of web used to determine shear buckling coefficient K_1 .
37-100	Not used. Values computed by subroutines SFSCH, TSCH, and STR1B. (Refer to Tables 227 and 228.)
1.0	

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS

General information for array TWT:

Blank common reference location = CD(1101)

Array size = 400 cells

Array TWT is used for storage of calculated weight data by the weight analysis routines for metallic and advanced composite designs in locations 1 through 162 and 185 through 250; storage of weight analysis constants and coefficients. locations 166 through 184 and 257 through 280; and storage of intermediate calculation data, locations 163, 164, and 281 through 330. Outer panel component and torque-box element weight summary information processed and printed by subroutines WØDATA and PRTD of overlay (17,0) are based on information computed and stored in locations 1 through 72 by subroutine WTCAL of overlays (10,0) and (18,0). Station panel and accumulated weight data in locations 1 through 123, 145 through 153, and 185 through 230 are printed by subroutine PRTC of overlays (10,0) and (18,0) under control of internal print control word IPB. Stiffness calculation data for metallic designs in locations 282 through 300 resulting from the strength-only analysis pass are printed by subroutine PRTB, while the data set for the flutter analysis pass is printed by subroutine PRTC, both under control of IPB. Subroutine EIGJC saves the strength-only data set in CD(1855) - CD(1872) for the subsequent print by PRTB.

Subroutine VFCAL is used for flutter stiffness requirement analysis of metallic design. Locations 57 through 96 are used by VFCAL for section stiffness analysis after strength-only analysis to provide the necessary web requirement information for the subsequent strength plus flutter requirement synthesis pass. Subroutine WTCAL subsequently uses these locations for weight analysis calculations. The WTCAL variables are described first; the VFCAL variables are defined as the last block in this table. This VFCAL data set is created only during metallic analysis. It is printed by subroutine PRTB under control of IPB only of flutter stiffness requirements are evaluated and only for stations that are flutter stiffness critical.

TABLE 230. TWI ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description	
Locations 1 through 72 contain outer-panel and torque-box summary weight data computed by subroutine WTCAL in terms of accumulated weight of all applicable structures outboard of the current analysis station. Subroutine CNSTR, overlay (10,0) for metallic designs, and ATBØPT, overlay (18,0) for advanced composite designs, further process these weight items before processing of data for overlay (17,0) by subroutines TBØPT, overlay (9,0), and ATBØPT, overlay (18,0). Data in locations 1 through 59 and 145 through 149 for the root section are printed under control of internal print control word IPA by subroutines PRTA, overlay (9,0), and ACPRTA, overlay (18,0). Weight summary at station J (refer to Table 237 for description), consisting of identical data, is also printed by subroutine PRTA for metallic designs. This data set is saved by subroutine CNSTR, overlay (10,0), in TW(801) - TW(900) for use by TBØPT and output print by PRTA. Data items are computed and used as pounds per side by subroutines WTCAL, CNSTR, and ACNSTR, and pounds per air vehicle by TBØPT and ATBØPT.		
1	Σ W $_{ m TR}$, total torque-box weight, 1b/side or 1b per A/V.	
2	(\(\sum_{\text{cov}}\)) upr, total upper cover weight, lb/side or lb per A/V.	
3	(\(\sum_{\text{cov}}\)_{\text{lwr}}, total lower cover weight, lb/side or lb per A/V.	
4	(EAW TB) VF, total torque-box weight increment for flutter design,	
5	1b/side or 1b per Λ/V . $\Sigma_{\text{rib}}^{\text{W}}$, total intermediate rib or spar weight, 1b/side or 1b per Λ/V .	
6	Tib' Negative Tib'	
ł	\(\mathcal{E}\mathbb{W}_{\mathbb{RS}}\), total rear spar weight, 1b/side or 1b per A/V.	
1	ΣW, total miscellaneous structure and attachment weight, 1b/side or 1b per A/V.	
9	(W _{skin}) _{upr} , upper cover skin weight, 1b/side or 1b per A/V.	
10	(W str) upr, upper cover stringer or cap weight, lb/side or lb per A/V.	
11	(W misc skin) upr, upper cover miscellaneous skin weight, 1h/side or	
	1b per A/V.	
12	(W _{skin}) _{lwr} , lower cover skin weight, lb/side or lb per A/V.	

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description
13	(W _{str}) _{lwr} , lower cover stringer or cap weight, lb/side or lb per A/V.
14	(W misc skin) lwr, lower cover miscellaneous skin weight, lb/side or
10	1b per A/V. (W) front ones can weight 1b/gide on 1b non A/V
15	(W _{cap}) _{FS} , front spar cap weight, 1b/side or 1b per A/V.
16	(Wweb) _{FS} , front spar web weight, 1b/side or 1b per A/V.
17	(W _{cap}) _{RS} , rear spar cap weight, 1b/ side or 1b per A/V.
18	(Wweb) RS, rear spar web weight, 1b/side or 1b per A/V.
19	(AW skin) upr VF, upper cover skin weight increment for flutter design,
20	1b/side or 1b per A/V.
20	(\Delta W str) upr VF, upper cover stringer or cap weight increment for
21	flutter design, 1b/side or 1b per A/V. (AW misc skin upr VF, upper cover miscellaneous skin weight increment
1	for flutter design, 1b/side or 1b per A/V.
22	(\(\Delta \) \(\lambda \) \(\text{kin}\) \(\lambda \) \(\text{VF}\), lower cover skin weight increment for flutter design, lb/side or lb per A/V.
23	(AW str) lwr VF, lower cover stringer or cap weight increment for
24	flutter design, 1b/side or 1b per A/V. (AW misc skin lwr VF, lower cover miscellaneous skin weight increment for flutter design, 1b/side or 1b per A/V.
25	(\(\Delta W_{\text{rib}}\)_{\text{VF}}, intermediate rib or spar weight increment for flutter design, 1b/side or 1b per A/V.
26	(\(\Delta W_{\text{web}}\) FS VF, front spar web weight increment for flutter design, 1b/side or 1b per A/V.
27	(AW) RS VF, rear spar web weight increment for flutter design, lb/side or lb per A.V.
28	(\(\Delta W_{\text{att}}\)_{\text{VF}}, miscellaneous cover attachment weight increment for flutter design, 1b/side or 1b per A/V.
29	(2W misc) rib VF, intermediate rib or spar miscellaneous structure
	items weight increment for flutter design, 1h/side or 1h per A/V.
30	W _{blhd} , bulkhead weights, 1b/side or 1b per A/V.

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description
31	(AW skin chordwise) upr, upper cover skin weight increment for
	chordwise splices or skin pads for bulkhead attach, lb/side or lb per A/V.
32	(AW skin chordwise) lwr, lower cover skin weight increment for
	chordwise skin splices or skin pads for bulkhead attach, lb/side or lb per A/V.
33	(Watt) blhd, attachment weight for chordwise splices or bulkhead
34	to cover attach, 1b/side or 1b per A/V. AW _{rib} , weight of intermediate ribs replaced with bulkhead ribs for
	multirib design only, 0.0 for multispar or fulldepth honeycomb sandwich designs, 1b/side or 1b per A/V.
35	W _{RR} , root rib weight, calculated by subroutine RTRIB for station
	1 only (root panel), 0.0 for all other stations, 1b/side or 1b per A/V.
36	(W cap) RR, root rib cap weight, calculated by RTRIB, 1b/side or
37	1b per A/V. (W web) RR, root rib web weight, calculated by RTRIB, 1b/side or
3	web RR, 1000 115 web weight, calculated by Kikib, 15/31de of 15/2per A/V.
38	(W misc) _{RR} , root rib miscellaneous structure and attachment weight,
39	calculated by RTRIB, 1b/side or 1b per A/V.
39	W shear ftg, outer-panel-to-fuselage shear-tie fitting weight, calculated by RTRIB, 1b/side or 1b per A/V.
40	EW _{SURFACE} , total surface weight, outer-panel and center-section,
	1b/side or 1b per A/V.
41	DW _{OPNL} , total outer-panel weight, 1b/side or 1b per A/V.
1	Not used.
1	W _{C-SEC} , total center-section weight, 1b/side or 1b per A/V.
44	b _{str} , stringer or spar spacing from TDC(82), for use with PRTC
	output print of section J and root section weight summary, particularly to indicate spacing used in optional torque-box optimi-
	zation by subroutine TBØPT for metallic designs, set up by CNSTR
	for metallic design and ACNSTR for advanced composite designs, in.

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description
Bocacion	
45	$\Sigma_{ m OPNL}^{ m W}$, cummulative sum of outer-panel structures panel weights
46	stored in location 61, lb/side or lb per A/V. ΣW_{TB} , cummulative sum of torque-box panel weights stored in
47	location 61, 1b/side or 1b per A/V. ΣW_{LE} , cummulative sum of leading edge panel weights stored in
48	location 62, 1b/side or 1b per A/V. Σ W. TE, cummulative sum of trailing edge panel weights stored in
49	location 63, 1b/side or 1b per A/V. $\Sigma W_{\rm MISC}$, cummulative sum of outer panel secondary structure panel
50	weights stored in location 64, lb/side or lb per A/V. W_TIP surface tip panel structure weight, lb/side or lb per A/V.
51	ΔW _{T-Tail} , weight increment of T-tail provisions for horizontal or
52	vertical tail if T-tail design, currently 0.0, values not calculated, 1b/side or 1b per A/V.
52	ΣΔW _{VF} , cummulative sum of weight increment for flutter design,
53	panel weights stored in location 65, lb/side or lb per A/V. $\Sigma\Delta W_{\text{CDL}}$, cummulative sum of structural provision weights for con-
	centrated masses, panel weights stored in location 108, lb/side or lb per A/V.
54	W _{RR} , total root rib weight, root station only, 1b/side or 1b per A/V.
55	\(\mathbb{E}\mathbb{W}\) pnl o, total weight of structures inboard of root panel, sum of
	root rib, T-tail provisions at the root panel, weights of leading or trailing edge structures inboard of the structural chord for analysis station 1 and associated secondary structure weight computed as a fraction of these weights. 1b/side or 1b per A/V.
56	(W _{TB}) _{pnl o} , sum of root rib and T-tail provisions at root station,
57	1b/side or 1b per A/V. (W_LE)pnl o, leading edge structure weight inboard of structural
58	chord of root station, 1b/side or 1b per A/V. (W _{TE}) _{pnl} o, trailing edge structure weight inboard of structural
59	chord of root station, 1b/side or 1b per A/V. (WMISC) pn1 o, secondary structure weight based on weights of items assumed to be in inboard panel o, 1b/side or 1b per A/V.

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description
Locations 60 through 65 contain outer panel component weights for the current panel, including tip panel data computed during the analysis for structural station 11.	
60	$\Sigma_{\rm pnl}$, total weight for current panel, 1b/side.
61	(W _{TB}) _{pn1} , torque-box weight for current panel, 1b/side.
62	(W _{LE}) _{pn1} , leading edge weight for current panel, 1b/side.
63	(W _{TE}) _{pn1} , trailing edge weight for current panel, 1b/side.
64	(W _{MISC}) _{pnl} , secondary structure weight for current panel, 1b/side.
65	$(\Delta W_{ m VF})_{ m pn1}$, flutter design weight increment for current panel, lb/side.
Locations 66 through 72 contain weight increment data for T-tail configurations. Currently, data for these items are not computed. Locations 66, 67, and 70 are currently used by WTCAL for temporary T-tail calculations.	
66	[Market and Tail of the content of t
67	(EAW rib) T-tail, total weight increment for rib structures for
68	T-tail horizontal and vertical tail surfaces, 1b/side. (\(\Delta \text{v} \) T-tail HORZ, weight increment for root panel of T-tail
69	horizontal tail surface, lb/side. (\(\Delta W \) \(\text{rib} \) \(\text{T-tail VERT} \), weight increment for tip panel of T-tail vertical tail surface, lb/panel.
70	(ΣΔW cone) T-tail, total weight for tail cone, 1b/side.
71	(\(\Delta\) \(\Ome\)
72	(AW cone) T-tail VERT, tail cone weight for T-tail vertical tail surface, 1b/panel.
Locations 73 through 96 contain torque-box structural element weights for the current panel computed from cross-sectional areas computed for the current station, locations 121 through 144, and areas for the previous station saved in locations 227 through 250.	

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYS'S DATA AND CONSTANTS (CONT)

Array Location	Description
	
73	(W _{skin}) _{upr} , upper cover skin weight, 1b/panel.
74	(W _{skin}) _{lwr} , lower cover skin weight, lb/panel.
75	W _{rib} , intermediate rib or spar weight, lb/panel.
76	(W _{str}) _{upr} , upper cover stringer or cap weight, 1b/panel.
7.7	(W _{str}) _{lwr} , lower cover stringer or cap weight, lb/panel.
78	(W misc skin) upr, upper cover miscellaneous skin weight, lb/panel.
79	(W misc skin) lwr, lower cover miscellaneous skin weight, lb/panel.
80	Watt, miscellaneous structural attachment weight, 1b/panel.
81	(W _{misc}) _{rib} , miscellaneous rib or spar structure weight, lb/panel.
82	(AW skin) upr VF, upper cover skin weight increment for flutter
	design, lb/panel.
83	(AW skin) lwr VF, lower cover skin weight increment for flutter
84	design, lb/panel. (\Delta W \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	flutter design, 1b/panel.
85	$(\Delta W_{\text{str}})_{\text{lwr VF}}$, lower cover stringer or cap weight increment for
	flutter design, 1b/panel.
86	(W web) _{FS} , front spar web weight, lb/panel.
87	(W _{web}) _{RS} , rear spar web weight, lb/panel.
88	(W _{cap}) _{FS} , front spar cap weight, 1b/panel.
89	(W _{cap}) _{RS} , rear spar cap weight, 1b/panel.
90	$(\Delta W_{\text{web}})_{\text{FS VF}}$, front spar web weight increment for flutter design,
	1b/panel.
91	(AW web) RS VF, rear spar web weight increment for flutter design,
	1b/pane1.
92	$(\Delta W_{rib})_{VF}$, intermediate rib or spar weight increment for flutter
	design, 1b/panel.

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description	
93	(AW misc skin upr VF, upper cover miscellaneous skin weight increment for flutter design, lb/panel.	
94	(AW misc skin) lwr VF, lower cover miscellaneous skin weight increment for flutter design, 1b/panel.	
95	$(\Delta W_{att})_{VF}$, miscellaneous attachment weight increment for flutter	
96	design, 1b/panel. (AW misc) rib VF, miscellaneous rib or spar weight increment for flutter design, 1b/panel.	
	ons 97 through 104 contain torque-box component weights for the ent panel, computed from data stored in locations 73 through 96.	
97	ΣW _{TB} , total torque-box weight, not including local increments	
98	stored in locations 105 through 114, lb/panel. (W_cov upr, upper cover weight, lb/panel.	
99	(W cov) lwr, lower cover weight, lb/panel.	
100	($\Sigma\!$	
101	W _{rib} , intermediate rib or spar weight, lb/panel.	
102	W _{FS} , front spar weight, 1b/panel.	
103	W _{RS} , rear spar weight, 1b/panel.	
104	W_{MISC} , secondary structure weight, computed as fraction of sum of	
	panel weights in locations 98 through 103, 1b/panel.	
	Locations 105 through 114 contain torque-box weight increments to be added to the distributed structure weights stored in locations 97 through 104.	
105	(\(\Sigma \) \(\Delta \) \(\De	
106	1b/panel. (\(\Delta W_{\text{TB}}\)) torque-box weight increment based on input panel weight	
107	factor, D(1088) - D(1097), input data array DTBX(1) - DTBX(10), internally stored as array DLPNL, T(177) - T(186), 1b/panel. (AW _{TB}) input, torque-box weight increment input in D(1098) - D(1107), input data array DTBX(11) - DTBX(20), 1b/panel.	

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description	
108	∆W _{CDI} , structural provision weights for concentrated masses,	
109	1b/panel. \[\sum_{\text{chord wise}}^{\text{AW}}\) chord wise, torque-box weight increment for chordwise splice and/or bulkhead ribs at inboard and/or outboard station of	
110	current panel, stored in locations 110 through 114, 1b/panel. (W _{b1hd}) _{pn1} , bulkhead weight assigned to current panel, sum of	
111	one-half of the bulkhead weights at the inboard and outboard stations, 1b/panel. (\(\Delta W_{\text{skin chordwise}}\)) upper cover skin increment for chordwise	
	splice and pads, one-half of weights at the inboard and out- board stations, 1b/panel.	
112	(ΔW skin chordwise) lwr, lower cover skin increment for chordwise splice and pads, one-half of weights at the inboard and outboard stations, lb/panel.	
113	(Watt chordwise, cover splice and bulkhead attachment weight increment, one-half of weights at the inboard and outboard	
114	stations, 1b/panel. ΔW_{rib} , weight of intermediate rib replaced by bulkhead rib, one-	
	half of weight at the inboard and outboard stations, multirib designs only, 0.0 for multispar or fulldepth honeycomb sandwich designs, 1b/panel.	
increme	Locations 115 through 120 contain torque-box component flutter design weight increments for the current panel computed from data stored in locations 73 through 96.	
115	(AW cov upr VF, upper cover weight increment for flutter design, lb/panel.	
116	(AW cov) lwr VF, lower cover weight increment for flutter design, lb/panel.	
117	(AW _{rib}) _{VF} , intermediate rib or spar weight increment for flutter design, lb/panel.	
118	$(\Delta W_{FS})_{VF}$, front spar weight increment for flutter design, 1b/panel.	
119	(AW _{RS}) _{VF} , rear spar weight increment for flutter design, 1b/panel.	
120	(ΔW misc) _{VF} , miscellaneous structure and attachment weight increment for flutter design, 1b/panel.	

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Descripti o n
Locations structu resulti and ove element	s 121 through 144 contain cross-sectional areas for torque-box aral elements for the current analysis station based on sizing dataing from the synthesis routines, overlay (10,0) for metallic designs, erlay (18,0) for advanced composite designs. Definitions for each are the same as those in locations 73 through 96. All areas are ed in terms of square inches of material for the structural chord.
121	^{(A} skin ⁾ upr sta i
122	(A _{skin}) _{lwr} sta i
123	(Arib)sta i
124	(A _{str}) _{upr sta i}
125	(A _{str}) _{lwr} sta i
126	(A _{misc} skin)upr sta i
127	(A misc skin) lwr sta i
128	(Aatt) _{sta i}
129	(A _{misc}) _{rib} sta i
130	(AA _{skin}) _{upr VF} sta i
131	(AA skin) lwr VF sta i
132	(AA str) upr VF sta i
133	(AA _{str}) _{lwr VF} sta i
134	(A _{web}) _{FS} sta i
135	(A _{web}) _{RS} sta i
136	(Acap) FS sta i
137	(A _{cap}) _{RS} sta i
138	(ΔA_{web}) _{FS VF sta i}

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description
139	(ΔA_{web}) _{RS VF sta i}
140	rib VF sta i
141	(\(\Delta A \) misc skin upr VF sta i
142	(\(\Delta A\) misc skin upi vi sta i
143	(ΔA_{att}) _{VF} sta i
144	(AA _{misc}) rib VF sta i
	ons 145 through 149 contain outer panel component weights for actures outboard of the tip station, analysis station 11.
145	ΣW _{OBD pn1} , total weight of structures outboard of station 11,
146	1b/side a 1b per A/V. (W _{TB}) _{OBD pn1} , weight of structures outboard of station 11,
147	assigned to the outer-panel torque-box, 1b/side or 1b per A/V. (W_LE)OBD pnl, weight of leading edge structures outboard of
148	station 11, 1b/side or 1b per A/V. (W_TE)OBD pn1, weight of trailing edge structures outboard of
149	station 11, 1b/side or 1b per A/V. (W _{MISC}) OBD pn1, secondary structure weight for structures outboard of station 11, 1b/side or 1b per A/V.
desi thic sub ACNS weig	ions 150 through 153 contain skin and web gage data for strength-only ign. These values are based on skin weight coefficients applied to cknesses resulting from structural sizing data, calculated by routine SECTD, overlay (10,0), for metallic designs, and subroutine STR, overlay (18,0), for advanced composite designs. Skin and spar ght coefficients for metallic designs are not applied to minimum e sizings.
150	(t skin eff)upr, effective upper cover skin gage for strength design, in.
151	(tskin eff) lwr, effective lower cover skin gage for strength
152	design, in. (t web eff) _{FS} , effective front spar web gage for strength design in.

TABLE 230. TWF ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description
153	(t web eff) RS, effective rear spar web gage for strength design, in.
154	Not used.
155	Not used.
156	Not used.
	ons 157 through 162 contain front and rear spar element weights uted for the current panel.
157	(W _{cap}) _{FS} , front spar cap weight, 1b/panel.
158	(W _{web}) _{FS} , front spar web weight, 1b/panel.
159	(W misc) _{FS} , miscellaneous structure and attachment weight for
160	front spar, 1b/panel. (W cap) RS, rear spar cap weight, 1b/panel.
161	(W _{web}) _{RS} , rear spar web weight, 1b/panel.
162	(W _{misc}) _{RS} , miscellaneous structure and attachment weight for rear spar, 1b/panel.
163 164	Temporary storage for intermediate calculation data. Temporary storage for intermediate calculation data.
Locati	ons 165 through 184 contain current panel and torque-box material tants.
165	$\rho_{\rm lwr}/\rho_{\rm upr}$, density ratio for lower cover weight calculations,
	calculated by CNSTC, overlay (16,0), for metallic analysis and set to 1.0 by subroutine ACPRØG, overlay (18,0), for advanced composite analysis.
166	ΔY_A , structural length of current analysis panel, calculated by WTCAL, in.
167	(f _t) _{max} , maximum allowable tension stress for splice design by
168	subroutine BHDJT, overlays (10,0) and (18,0), set up by CNSTC for metallic analysis and ACNSTR for advanced composite analysis, psi. (f _b) maximum allowable bearing stress for splice design by BHDJT, set up by CNSTC for metallic analysis and ACNSTR for
	advanced composite analysis, psi.

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description
169	$(-N_x)_{i-1}$, cover load intensity, down-bending condition for
170	previous station, set up by WTCAL for use in metallic analysis only, lb/in. (+N _x):-1, cover load intensity, up-bending condition for previous station, set up by WTCAL for use in metallic analysis only,
171	1b/in. (f _s) _{max FS} , maximum allowable shear stress for front spar web design by STWEB, set up by CNSIC for metallic analysis, not used in advanced sermosite analysis, noi
172	used in advanced composite analysis, psi. $(f_s)_{max \ RS}$, maximum allowable shear stress for rear spar web
173	design, similar to location 171, psi. $E_{\rm upr}$, elastic modulus of upper cover material for use in stiffness
174	calculations by subroutine EIGJC, set up by CNSTC for metallic analysis, not used in advanced composite analysis, psi. Gupr, shear modulus of upper cover material, similar to Eupr, psi
175	$ ho_{ m upr}^{ m upr}$, density of upper cover material, variable SDHRØ, reference
	density for torque-box weight calculations, set up by CNSTC for metallic analysis and ACPRØG for advanced composite analysis, 1b/in ³ .
176	(K _G) _{lwr} , ratio of lower cover to upper cover shear modulus, setup by CNSTC for use in stiffness calculations, metallic
177	analysis only.
177	$(K_{G})_{FS}$, ratio of front spar web to upper cover shear modulus, similar to $(K_{G})_{1wr}$.
178	(K _G) _{RS} , ratio of rear spar web to upper cover shear modulus, similar to (K _G) _{lwr} .
179	$(K_E)_{1wr}$, ratio of lower cover to upper cover elastic modulus, similar to $(K_G)_{1wr}$.
180	(K _E) _{FS} , ratio of front spar web to upper cover elastic modulus,
181	similar to $(K_G)_{1WI}$.
181	$(K_E)_{RS}$, ratio of rear spar web to upper cover elastic modulus, similar to $(K_G)_{1wr}$.

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description
182	$(\rho_{\rm upr}\cdot\Delta Y_{\Lambda})/2.0$, constant for panel weight calculation, 1b/in.
183	$(\rho_{\rm upr}\cdot\Delta Y_{\Lambda})/2.0$, constant for panel weight calculation, 1b/in. $(\rho_{\rm FS}/\rho_{\rm upr})$, density ratio for front spar weight calculations,
184	similar to location 165. $(\rho_{\rm RS}/\rho_{\rm upr})$, density ratio for rear spar weight calculations, similar to location 165.
over	ons 185 through 214 are used by subroutines WTCAL and BHDJT, lays (10,0) and (18,0), for storage of skin overhang, chordwise ce, and bulkhead data.
185	(W skin FS/RS)upr, upper cover skin overhang material weight at the front and rear spars for current panel, 1b/panel.
186	(W _{skin FS/RS}) _{1wr} , lower cover skin overhang material weight
187	at the front and rear spars for current panel, 1b/panel. (\(\Delta W\) skin chordwise upr, upper cover skin increment for chordwise splice and pads at the current analysis station, calculated
188	by BHDJT, 1b/side. (AW skin chordwise lwr, lower cover skin increment for chordwise splice and pads at the current analysis station, calculated
189	by BHDJT, 1b/side. (Watt) chordwise, cover splice and bulkhead attachment weight increment at the current analysis station, calculated by BHDJT,
190	lb/side. W _{blhd} , bulkhead weight at the current analysis station,
191	calculated by BHDJT, 1b/side. Wrib, weight of intermediate rib replaced by bulkhead rib,
4.05	multirib designs only, 0.0 for multispar or fulldepth honeycomb sandwich designs, calculated by BHDJT, 1b/side.
192	K _{blhd} , weight coefficient for bulkhead weight calculation, BHDJ1.
193	(Askin FS/RS) upr sta i, cross-sectional area of upper cover skin overhang material at front and rear spars for current analysis station, calculated by BHDJT, sq in.

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description
194	(A skin FS/RS) lwr sta i, cross-sectional area of lower cover skin
105	overhang material as front and rear spars for current analysis station, calculated by BHDJT, sq in.
195	(\(\Delta W \) skin upr, upper cover skin weight increment, storage location for detail calculations by BHDJT, used to create value in
196	location 187, 1b/side. (AW) lower cover skin weight increment storage location
	(ΔW skin) lwr, lower cover skin weight increment, storage location for detail calculations by BHDJT, used to create value in location 188, lb/side.
197	W _{att} , attachment weight, storage location for detail calculations
198	by BHDJT, used to create value in location 189, 1b/side. (A skin FS/RS) upr sta i-1, upper cover skin overhang area for
	previous station, set up by WTCAL from value in location 193, sq in.
199	(A _{skin FS/RS}) _{lwr} sta i-1, lower cover skin overhang area for previous station, set up by WTCAL from value in location 194,
200	sq in. K _{blhd} , bulkhead calculation code word and weight coefficient for
	current analysis station, variable CBLHD, set up by CNSTR and ACNSTR from D(650) - D(660), input data array DBLHD.
201	K _{joint} , chordwise splice calculation code word and joint width
	factor for current analysis station, variable CJØNT, set up by CNSTR and ACNSTR from D(661) - (671), input data array DJØNT.
Locati	ons 202 through 214 are used by BHDJT for cover splice calculations.
202	0.0, not used for weight calculations.
203	d _b , fastener diameter for cover splice joint, in.
204	t, skin thickness required for splice joint, in.
205	(t _s) _{upr} , upper cover skin thickness at splice joint, in.
206	(t _s) _{lwr} , lower cover skin thickness as splice joint, in.

TABLE 230. TWI ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description
Locacion	
207	0.5 (W skin) upr, one-half of upper skin weight at the splice, used
	for weight allocation to skin splice plate or bulkhead cap, lb/side
208	0.5 (W _{skin}) _{lwr} , same as location 207, except for lower cover,
209	lb/side. (\(\Delta W \) cap \(\text{blbd} \), splice weight increases for bulkhead, if single
203	shear twice the sum of weights in locations 207 and 208, added to bulkhead weights in location 190, lb/side.
210	(AW skin) upr, upper cover skin increases for splice plate if
	double shear design, 0.0 if single shear, added to upper cover skin incremens in location 195, lb/side.
211	(\Delta W skin) lwr, same as location 210, except for lower cover,
21.2	1b/side. Not used.
212 213	Not used.
213	Not used.
These o	e inboard and outboard control stations of the current panel. lata sets are created and used by WTCAL from the BHDJT calculated 1 locations 187 through 191.
215	(ΣΔW _{chordwise}) IBD
216	(W _{b1hd}) IBD
217	(\Delta W \text{skin}) upr IBD
218	(\Delta W \text{skin}) \text{lwr IBD}
219	(ΔW _{att}) IBD
220	(ΔW_{rib}) IBD
221	(ΣΔW _{chordwise}) ØBD
222	(Wblhd) ØBD
223	(ΔW _{skin}) upr ØBD
224	(ΔW_{skin}) lwr ØBD
225	(Watt) ØBD
226	(ΔW _{rib}) ØBD

all of the religion of the

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Locations 227 through 250 contain cross-sectional areas for torque-box structural elements for the previous analysis station created by WPCAL from the similar data set in locations 121 through 144. (Refer to locations 73 through 96 for definitions.) Areas are in terms of square inches of material for the structural chord.

Array Location	Description
227	^{(A} skin ⁾ upr sta i-1
228	(A _{skin}) lwr sta i-1
229	^{(A} rib ⁾ sta i-1
230	(A _{str}) upr sta i-1
231	(A _{str}) lwr sta i-1
	^{(A} misc skin ⁾ upr sta i-1
	(A misc skin) lwr sta i-1
	^{(A} att ⁾ sta i-l
	^{(A} misc) rib sta i-1
	(AA _{skin}) upr VF sta i-1
237	(AA skin) lwr VF sta i-1
238	(AA _{str}) upr VF sta i-1
239	(ΔA_{str}) lwr VF sta i-1
	(A _{web}) FS sta i-1
241	(A _{web}) RS sta i-1
242	(A _{cap}) FS sta i-1
	(A _{cap}) RS sta i-1
244	(Δ A _{web}) FS VF sta i-1
245	(Δ A _{web}) RS VF sta i-1
246	(AA _{rib}) VF sta i-1
	(AA misc skin) upr VF sta i-1
248	(AA misc skin) lwr VF sta i-1
249	(ΔA _{att}) VF sta i-1
250	(AA misc) rib VF sta i-1

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Locations 251 through 274 contain weight coefficients for torque-box structural elements. This data set is created by CNSTC from D(604 - D(627), input data array DLTB(5) - DLTB(28) as array DEL variables. Each coefficient is also referenced by variable name as defined in the following.

Locations 275 through 281 are used for storage of data items in locations 66 through 72.

tillough	
Array Location	Description
251	(ocov) upr, variable DLCVU, upper cover coefficient.
252	$\left(\frac{\delta}{8}\right)$ upr, variable DLSKU, upper cover skin coefficient.
253	$(\delta_{\text{str}})_{\text{upr}}$, variable DLSTU, upper cover stringer or cap coefficient
254	(o cov) lwr, variable DLCVL, lower cover coefficient.
255	(\$\delta_{\text{skin}}\) lwr, variable DLSKL, lower cover skin coefficient.
256	(str) lwr, variable DLSTL, lower cover stringer or cap coefficient.
257	(misc skin) upr/lwr, variable DLSKM, miscellaneous skin coefficient
258	(misc att) TB, variable DLATT, torque-box attachment coefficient.
259	$\delta_{\rm rib}$, variable DLIRB, intermediate rib or spar coefficient.
260	(web) rib, variable DLIRW, intermediate rib or spar web cofficient.
261	(\$\delta_{\text{misc}}\) rib, variable DLIRM, miscellaneous structure and attachment coefficient for intermediate rib or spar.
262	(8 misc) blhd, variable DBLAT, bulkhead attachment coefficient.
263	δ _{FS} , variable DELFS, front spar coefficient.
264	$(\delta_{cap})_{FS}$, variable DLFSC, front spar cap coefficient.
265	(8 web) FS, variable DLFSW, front spar web coefficient.
	(& misc) FS, variable DLFSM, miscellaneous structure and attach-
267	ment coefficient for front spar. δ_{RS} , variable DELRS, rear spar coefficient.
268	(cap) RS, variable DLRSC, rear spar cap coefficient.

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Discription
269	(8 web) RS, variable DLRSW, rear spar web coefficient.
270	(8 misc) RS, variable DLRSM, miscellaneous structural attachment coefficient for rear spar.
271	• variable DELRR, root rib coefficient.
272	(8 cap) RR, variable DLRRC, root rib cap coefficient.
273	$(\delta_{\text{web}})_{\text{RR}}$, variable DLRRW, root rib web coefficient.
274	(8 misc) RR, variable DLRRM, miscellaneous structure and attachment coefficient for root rib.
275-281	Save locations for data in locations 66 through 72.

Locations 282 through 300 are used for storage of section stiffness data by subroutine EIGJC, overlay (10,0). This set is always created after completion of strength-only analysis of metallic designs. If subsequent requirements for flutter design exists for the current analysis stations, EIGJC is executed again, resulting in loss of the strength-only data set. Thus, since section analysis data are printed after the flutter analysis pass, this set is always saved in CD(1855) - CD(1872), as previously discused.

Array Location	Discription
282	A', effective cross-sectional area of torque-box for GJ calculation.
283	[(ds/t _{skin} upr + (K _G) _{lwr} ·(ds/t _{skin}) _{lwr}], sum of cover web ds/t terms, lower cover term corrected for lower cover term corrected for lower cover shear modulus effect.
284	[(K _G) FS · (ds/· web) FS · (K _G) RS · (ds/t web) BS], sum of spar web ds/t terms, front and rear spar terms corrected for shear modulus effects.
285	Σ ds/t, sum of ds/t terms.
286	J_{sect} , $4(A')^2/\Sigma ds/t$, in. ⁴

TABLE 230. TWT ARRAY LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description
287	\bar{Y}_{sect} , neutral axis of section, distance from upper mold line
286	of section, in. (Y cov) lwr, centroid of lower cover, distance from lower mold
289	line of section, in. (\(\Sigma\) M) area, total moment of cover and caps about the upper mold
290	line of section, in. (\(\mathcal{L}\)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
291	about the neutral axis, and initially $(\Sigma I_0)_{\text{cov}}$, sum of upper and lower cover area moments of inertia about their respective centroids, lower cover term corrected for elastic modulus effects, in. ⁴ $(I_X)_{\text{FS}}$, area moment of enertia of front spar caps about the
	neutral axis, in. Initially used for upper cover transfer term calculations: $\Delta \bar{Y}$ distance between the upper cover centroid and the section neutral axis, in., and A upr $\Delta \bar{Y}$ upr transfer term for upper cover inertia, in.
292	(ΣI_x) sect, section area moment of inertia about the neutral axis, in. ⁴ Initially used for lower cover transfer term calculations: $\Delta \bar{Y}_{lwr}$, distance between the lower cover centroid and the section neutral axis, in., and $A_{lwr} \cdot (K_E)_{lwr} \cdot (\Delta \bar{Y}_{lwr})^2$, transfer term for lower cover inertia, in. ⁴ Also used in inertia calculations for rear spar caps, $(I_x)_{RS}$, in. ⁴
293	ΣA _{upr} , upper cover area, sq in. ²
294	ΣA _{lwr} , lower cover area, sq in.
295	(ΣA_{cap}) FS, front spar cap area, in. ²
296	(ΣA_{cap}) _{RS} , rear spar cap area, in. ²
297	ΣA, total area of structural material at section, in. ²
298 299	Not used.
300	Not used.

TABLE 230. TWT ARRAY LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Locations 301 through 330 contain analysis control constants and variables for metallic stringer or cap synthesis created and/or used by overlay (10,0) subroutines SECTD, SFSCH, BØTC, TSCH, STRG, and STRGØ. Data in this set are initially computed by SECTD from input design constraint information for each analysis station. Subroutines TSCH and STRGØ revise current station data as required during the evaluation of synthesis search points specified by subroutine SFSCH as $\mathbf{b_s}$, $(\mathbf{f_c})_i$. These adjustments are made if control values for stringer geometry synthesis by subroutine STRG are affected by crippling criteria relative to plate buckling or by limiting values of stringer gage to skin gage ratios.

Array	
Location	Description
301	(L _{str}) tmg, developed length of current stringer based on minimum
302	stringer gage, calculated by STRG, in. 2.0 (f_u) min, minimum length for two flanges, calculated by SECTD
202	for riveted Z-stringer analysis by STRG, in.
303	h min + n f max, developed length of stringer for minimum height
304	and maximum flange width configuration, calculated by SECTD for integral or riveted Z-stringer analysis by STRG, in. (A _{max}) tmg, maximum stringer area for minimum gage configuration,
	initially calculated by SECTD, subsequently adjusted and reset by TSCH and STRG, sq in.
305	(L _{str}) min, minimum developed length of stringer, initially calculated by SECTD, revised by TSCH if (b/t) based on crippling criteria for minimum area calculations for current stress level, reset to SECTD value on TSCH return to SESCH, in. Used also by SESCH and BØTC for initial data calculations for new stringer spacing specified by SECTD to SESCH.

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description
306	(L _{str}) _{max} , maximum developed length of stringer, calculated by
307	SECTD from input maximum height and flange values, in. (b/t) _{max} , control point for integral or riveted Z-stringer synthesis
	by STRG, current design allowable b/t values less than this value are checked for local stability, larger values direct STRG to size stringer to satisfy physical geometry relationships. SECTD initially computes this value as the larger of h max/mg or
	f /t . If the control value is based on h max, stringer
	analysis code word IMX, ND(71), is set to 1, and to 2 if based on f_{max} . Subroutine TSCH recomputes these values if crippling
	criteria dictates local stability requirements or if stringer minimum gage increase is necessary due to minimum stringer gage
308	to skin gage ratio requirements. h /t , minimum stringer web b/t for minimum size configuration, min mg,
	initially calculated by SECTD, revised by TSCH for changes in minimum stringer gage.
3 09	h /t mg, maximum stringer web b/t for maximum size minimum gage
310	stringer, similar to location 308.
310	f /t mg, similar to location 309, except for maximum flange width.
	Value initially calculated by SECTD, revised by TSCH if b/t based on crippling criteria.
311	f /t , similar to location 310, except for minimum flange width.
312	(b/t) f reqd, minimum b/t for flange design, calculated by TSCH from
	allowable plate buckling or crippling b/t for current stress level.
313	(A _{str}) min i, maximum stringer area for current stress level point,
	calculated by STRGØ as the larger of stringer area based on minimum specified size or minimum size dictated by minimum gage and associated web height and/or flange widths required for local stability, sq in.
314	(h _{str}) min i, minimum stringer height for current stress level point,
	calculated by STRGØ is the larger of input h_{\min} or minimum web height indicated by local stability and minimum gage, in.

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Locations	Description
315	(fupr) min i, minimum width of riveting flange for riveted Z-stringer
	analysis only, calculated by STRGØ, similar to location 314, 0.0 for integral I- or Z-stringers, in.
316	(f _{lwr}) min i, minimum width of outstanding flange for integral Z-
	or riveted Z-stringer analysis, similar to locations 314 and 315, 0.0 for integral I-stringers, in.
317	(A _{max}) _{(b/t) i} , maximum stringer area based on stringer gage
	dictated by local stability b/t at maximum stringer height or flange widths, calculated by STRGØ for current stress level point, sq in.
318	Not used.
319 320	Storage location for intermediate calculation data, STRG and STRGØ. Storage location for intermediate calculation data, STRG and STRGØ
stringer calcula	321, 322, 323 and 324 are used by STRG for temporary storage of ranalysis control data computed and used during initial STRG tions for minimum stringer gage adjustments and during data reset
stringer calcula	r analysis control data computed and used during initial STRG
stringer calcula	r analysis control data computed and used during initial STRG tions for minimum stringer gage adjustments and during data reset ons at the conclusion of STRG analysis for stringer design. (t _{str}) _{min i} , stringer gage computed as a function of skin gage based
stringer calcular operation	r analysis control data computed and used during initial STRG tions for minimum stringer gage adjustments and during data reset ons at the conclusion of STRG analysis for stringer design.
stringer calcular operation	r analysis control data computed and used during initial STRG tions for minimum stringer gage adjustments and during data reset ons at the conclusion of STRG analysis for stringer design. (t _{str}) _{min i} , stringer gage computed as a function of skin gage based on factor specified in D(455), input variable STRSK, assumed to be minimum stringer gage if larger than input value, variable STRMN, D(371), when skin gage is critical for local stability b/t. If the skin is not b/t critical, the initial value is reduced by the square root of the ratio of required skin b/t to available skin b/t, with the lower limit for the resulting gage limited by
stringer calcular operation	r analysis control data computed and used during initial STRG tions for minimum stringer gage adjustments and during data reset ons at the conclusion of STRG analysis for stringer design. (t _{str}) _{min i} , stringer gage computed as a function of skin gage based on factor specified in D(455), input variable STRSK, assumed to be minimum stringer gage if larger than input value, variable STRNN, D(371), when skin gage is critical for local stability b/t. If the skin is not b/t critical, the initial value is reduced by the square root of the ratio of required skin b/t to available
stringer calcular operation 321	r analysis control data computed and used during initial STRG tions for minimum stringer gage adjustments and during data reset ons at the conclusion of STRG analysis for stringer design. (t _{str}) _{min i} , stringer gage computed as a function of skin gage based on factor specified in D(455), input variable STRSK, assumed to be minimum stringer gage if larger than input value, variable STRMN, D(371), when skin gage is critical for local stability b/t. If the skin is not b/t critical, the initial value is reduced by the square root of the ratio of required skin b/t to available skin b/t, with the lower limit for the resulting gage limited by the factor specified in D(456), variable STRRØ. (t _{str}) _{min o} , temporary storage location for input minimum stringer gage, variable STRMN, D(271). Used for initial scaling operation
stringer calcular operation 321	r analysis control data computed and used during initial STRG tions for minimum stringer gage adjustments and during data reset ons at the conclusion of STRG analysis for stringer design. (t _{str}) _{min i} , stringer gage computed as a function of skin gage based on factor specified in D(455), input variable STRSK, assumed to be minimum stringer gage if larger than input value, variable STRNN, D(371), when skin gage is critical for local stability b/t. If the skin is not b/t critical, the initial value is reduced by the square root of the ratio of required skin b/t to available skin b/t, with the lower limit for the resulting gage limited by the factor specified in D(456), variable STRRØ. (t _{str}) _{min o} , temporary storage location for input minimum stringer
stringer calcular operation 321	r analysis control data computed and used during initial STRG tions for minimum stringer gage adjustments and during data reset ons at the conclusion of STRG analysis for stringer design. (t str min i, stringer gage computed as a function of skin gage based on factor specified in D(455), input variable STRSK, assumed to be minimum stringer gage if larger than input value, variable STRNN, D(371), when skin gage is critical for local stability b/t. If the skin is not b/t critical, the initial value is reduced by the square root of the ratio of required skin b/t to available skin b/t, with the lower limit for the resulting gage limited by the factor specified in D(456), variable STRRØ. (t str min o, temporary storage location for input minimum stringer gage, variable STRMN, D(271). Used for initial scaling operation and exit reset operations.
stringer calcular operation 321	ranalysis control data computed and used during initial STRG tions for minimum stringer gage adjustments and during data reset ons at the conclusion of STRG analysis for stringer design. (tstr)min i, stringer gage computed as a function of skin gage based on factor specified in D(455), input variable STRSK, assumed to be minimum stringer gage if larger than input value, variable STRNN, D(371), when skin gage is critical for local stability b/t. If the skin is not b/t critical, the initial value is reduced by the square root of the ratio of required skin b/t to available skin b/t, with the lower limit for the resulting gage limited by the factor specified in D(456), variable STRRØ. (tstr)min o, temporary storage location for input minimum stringer gage, variable STRMN, D(271). Used for initial scaling operation and exit reset operations. Rtstr, ratio of calculated minimum stringer gage to input minimum gage for initial scaling operations, reciprocal of this value for

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Locations	Description
for STR that TS	325, 326, and 327 are used for TSCH calculations similar to those G discussed previously for locations 321, 322, 323, and 324, except CH operations are made for the skin gage value critical for local ty b/t, TSS(57).
325	(t _{str}) _{min o} , same as location 322, in.
326	(t _{str}) _{cal min} , same as location 324, in.
327	R _{tstr} , same as location 323.
328 329 330	Not used. Not used. Not used.
by subr	wing descriptions are for TWT array locations 57 through 96 as used outine VFCAL during evaluation of torque-box web requirements for stiffness criteria. Refer to general discussion text of this table itional information. This data set is described here for clarity.
57	$(K_G)_{upr}(ds)_{upr}$, web length for upper skin corrected for effective shear modulus of web, in. Initially $(K_G)_{upr}$, upper skin effective shear modulus factor = 1.0.
58	(K _G) _{lwr} (ds) _{lwr} , web length for lower skin corrected for effective shear modulus of lower cover, in. Initially (K _G) _{lwr} from
59	location 176. $(K_G)_{FS}(ds)_{FS}$, web length for front spar web corrected for effective shear modulus of front spar, in. Initially $(K_G)_{FS}$ from location
60	177. $(K_G)_{RS}(ds)_{RS}$, web length for rear spar web corrected for effective shear modulus of rear spar, in. Initially $(K_G)_{RS}$ from location
61	178. (K _G) _{upr} (ds) _{upr} /(t _{skin}) _{upr} , effective ds/t for strength design upper skin. Initially (ds) _{upr} , in.
62	(K _G) _{lwr} (ds) _{lwr} /(t _{skin}) _{lwr} , effective ds/t for strength design lower skin. Initially (ds) _{lwr} , in.

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Locations	Description
63	(K _G) _{FS} (ds) _{FS} /(t _{web}) _{FS} , effective ds/t for strength design front spar web. Initially (ds) _{FS} , in.
64	(K _G) _{RS} (ds) _{RS} /(t _{web}) _{RS} , effective ds/t for strength design rear spar web. Initially (ds) _{RS} , in.
65	($\Delta t_{\rm skin}$) upr VF, upper skin gage increment for flutter design, in.
66	(\Delta t skin) lwr VF, lower skin gage increment for flutter design, in.
67	($\Delta t_{\rm web}$) _{FS VF} , front spar web gage increment for flutter design in.
68	(Δt_{web}) _{RS VF} , rear spar web gage increment for flutter design, in.

Locations 69 through 76 and 79 through 94 contain 4-cell data sets of step-wise stiffness increase parameters for the 4-web system in which the webs are arranged in the order of strength-design gage values, starting with the thinnest web as the first element, through the thickest as the fourth element. Integer variables N1, N2, N3, and N4 (ND(41), ND(42), ND(43), and ND(44)) contain the code value for the torque-box web assigned to the ordered set, 1 for upper skin, 2 for lower skin, 3 for front spar web, and 4 for rear spar web. Locations 77 and 78 contain data for the current web from the ordered set. VFCAL uses integer variable J, ND(30), for the ordered set and analysis step index, and integer variable N, ND(31), for the torque-box web index.

	 ,
69	ΣΔt ₁ , web gage increase for web 1, sum of thickness increment for
70	steps 1, 2, 3, and 4, in. $\Sigma\Delta t_2$, web gage increase for web 2, sum of thickness increments for
71	for steps 2, 3, and 4, in. $\Sigma \Delta t_3$, web gage increase for web 3, sum of thickness increments for
72	steps 3 and 4, in. $\Sigma \Delta t_4$, web gage increase for web 4, sum of thickness increment for
73	step 4, in. Δt_1 , web gage increase for step 1, web gage difference between webs
	2 and 1, or less if ds_1 and Δt_1 results in required stiffness, in.
74	Δt ₂ , web gage increase for step 2, web gage difference between webs
	3 and 2, or less if $ds_2 + ds_1$ and Δt_2 results in required stiff-
	ness after accounting for Δt_1 effects, in.

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONT)

Array Location	Description
75	Δt_3 , web gage increase for step 3, web gage difference between webs
	4 and 3, or less if ds ₃ + ds ₂ + ds ₁ and ∆t ₃ results in required
	stiffness after accounting for Δt_1 and Δt_2 effects, in.
76	Δt_4 , web gage increase for step 4, web gage increase required using
	$ds_4 + ds_3 + ds_2 + ds_1$ to satisfy requirement after accounting for effects of Δt_1 , Δt_2 , and Δt_3 , in.
77	$(t_0)_{i+1}$, web gage for step i + 1, used in steps 1, 2, and 3, in.
78	$(d_s)_i/(t_o)_{i+1}$, ds/t value for current web element using $(t_o)_{i+1}$.
79	$[K_G ds/(t_0)]_1$, ds/t term for first web element of ordered set.
80	$[K_G ds/(t_0)]_2$, ds/t term for second web element of ordered set.
81	$[K_G ds/(t_0)]_3$, ds/t term for third web element of ordered set.
82	$[K_G^{ds/(t_0)}]_4$, ds/t term for fourth web element of ordered set.
83	(K _G ds), ds value for first web element of ordered set, in.
84	$(K_{G}^{ds})_{2}^{2}$, ds value for second web element of ordered set, in.
85	(K _G ds) ₃ , ds value for third web element of ordered set, in.
86	(K _G ds) ₄ , ds value for fourth web element of ordered set, in.
87	(t _o) ₁ , first web thickness of ordered set, in.
88	(t _o) ₂ , second web thickness of ordered set, in.
89	(t _o) ₃ , third web thickness of ordered set, in.
90	(t _o) ₄ , fourth web thickness of ordered set, in.
91	(K _G ds); web length for first step calculations, in.
92	$(K_{G}^{ds})_{2}^{1}$, web length for second step calculations, sum of first and
	second ds of ordered set, in.
93	(K _G ds)' ₃ , web length for third step calculations, sum of first,
	second, and third ds of ordered set, in.
94	$(K_{G}^{ds})_{4}^{\dagger}$, web length for fourth step calculations, sum of first,
	second, third, and fourth ds of ordered set, in.

TABLE 230. TWT ARRAY, LOCATIONS 1 THROUGH 330, WEIGHT ANALYSIS DATA AND CONSTANTS (CONCL)

Array Location	Description
95 96	$(\Sigma ds/t)_{reqd}$, ds/t required for flutter stiffness, $(4A^2/J_{VF})$. Initially ΔJ , difference between required and available J , in. $(\Sigma ds/t)_{avail}$, current step ds/t value, initially available ds/t for strength design, $(4A^2/J_{st})$.

TABLE 231. TWT ARRAY, LOCATIONS 331-400, SECTION WEIGHT PER INCH DATA, SUBROUTINE WTPIN

General information for array TWT:

Blank common reference location = CD(1101)

Array size = 400 cells

Locations 331 through 400 of array TWT are used for storage and retrieval of section weight per inch data calculated by subroutine WTPIN at each analysis station, for metallic structures in overlay (10,0) and advanced composite structures in overlay (18,0). Computed data for each station are saved by WTPIN in array TW, locations 1 through 550, arranged in 11 50-cell data sets - set 1 in locations 1 through 50 for the tip station, and locations 501 through 550 for the root station. Each set consists of station data from TWT(331) - TWT(380). These 11-station data sets are used by subroutine CSECW for weight analysis of center-section structures and by subroutine DLPVT for weight estimation of fixed torque-box structures deleted and replaced with pivot structures of variable-sweep wing designs. Locations 331 through 400 are set to 0.0 values by WTPIN before current station analysis is made. Subroutine PRTC prints the contents of locations 331 through 393 under control of internal print control word IPB for each station analyzed.

Array Location	Description
1-330	Defined in Table 330. Station weight data computed by subroutines WTCAL and BHDJT and stored in locations 121-144, 186-190, 193, and 194 are used by WTPIN. Torque-box weight coefficients used by WTPIN as array DEL variables are stored in locations 251 through 280. The coefficient values of array DEL are created by subroutine CNSTC.

Locations 331 through 354 contain weight-per-inch values computed from the cross-sectional areas stored in TWT(121) - TWT(144). Values for data items in locations 333, 339, 344 through 347, 353, and 354 are subsequently changed by WTPIN.

331	(w _{skin}) _{upr} , upper cover skin weight, 1b/in.
332	(w skin) lwr, lower cover skin weight, lb/in.
333	(w_{rib}) , intermediate rib or spar weight, $\delta_{rib} \cdot \delta_{rib}$ web $A_{rib} \cdot \rho$, 1b/in.
334	(w _{str}) _{upr} , upper cover stringer or cap weight, lb/in.
335	(w _{str}) _{lwr} , lower cover stringer or cap weight, lb/in.

TABLE 231. TWT ARRAY, LOCATIONS 331-400, SECTION WEIGHT PER INCH DATA, SUBROUTINE WIPIN (CONT)

Array Location	Description
336	(w _{misc skin}) _{upr} , upper cover miscellaneous skin weight, 1b/in.
337	(w misc skin lwr, lower cover miscellaneous skin weight, lb/in.
338	w _{att} , cover-to-support structure attachment weight, 1b/in.
339	$(\Delta w_{att})_{VF}$, miscellaneous attachment weight increment for flutter design, initially $(w_{misc})_{rib}$, $^{1b/in}$.
340	(\(\Delta w_{\text{skin}}\) upr VF, upper cover skin weight increment for flutter design, lb/in.
341	$(\Delta w_{\rm skin})_{\rm lwr~VF}$, lower cover skin weight increment for flutter design, lb/in.
342	$(\Delta w_{\text{str}})_{\text{upr VF}}$, upper cover stringer or cap weight increment for flutter design, lb/in.
343	$(\Delta w_{\rm str})_{\rm lwr\ VF}$, lower cover stringer or cap weight increment for flutter design, lb/in.
344	$(w_{\text{web}})_{\text{FS}}$, front spar web weight, initially Σw_{FS} , 1b/in.
345	(w _{web}) _{RS} , rear spar web weight, initially Σ w _{RS} , 1b/in.
346	(w _{cap}) _{FS} , front spar cap weight, 1b/in.
347	(w _{cap}) _{RS} , rear spar cap weight, 1b/in.
348	$(\Delta w_{\text{web}})_{\text{FS VF}}$, front spar web weight increment for flutter design, lb/in.
349	$(\Delta w_{\text{web}})_{\text{RS VF}}$, rear spar web weight increment for flutter design, lb/in.
350	$(\Delta w_{rib})_{VF}$, intermediate rib or spar weight increment for flutter design, 1t,
351	(Δw misc skin upper vF, upper cover miscellaneous skin weight increment for flutter design, 1b/in.
352	(Δw misc skin) lwr VF, lower cover miscellaneous skin weight increment for flutter design, lb/in.

TABLE 231. TWT ARRAY, LOCATIONS 331-400, SECTION WEIGHT PER INCH DATA, SUBROUTINE WTPIN (CONT)

Array Location	Description
353	(w _{skin FS/RS}) _{upr} , weight of upper cover skin overhang material at front and rear spar, initially (Δw _{att}) _{str VF} , stringer-to-skin attachment weight increment for flutter design, 1b/in.
354	$(w_{skin\ FS/RS})_{lwr}$, weight of lower cover skin overhang material at front and rear spar, initially $(\Delta w_{misc})_{rib\ VF}$, miscellaneous rib or spar structure weight increment for flutter design, lb/in.
355	$(w_{misc})_{FS}$, weight of miscellaneous structure and attachment items for front spar, lb/in.
356	(w _{misc}) _{RS} , weight of miscellaneous structure and attachment items for rear spar, 1b/in.
357	(w _{misc}) _{rib} , miscellaneous rib or spar structure weight, lb/in.
358	(\(\Sigmu_{\text{cov}}\)) upr, total upper cover weight, strength and flutter design, lb/in.
359	$(\Sigma w_{cov})_{upr}$, total lower cover weight, strength and flutter design, lb/in.
360	$\Sigma_{\rm w}$ total intermediate rib or spar weight, strength and flutter design, lb/in.
361	$\Sigma_{W_{\mbox{FS}}}$, total front spar up and web weight, strength and flutter design, lb/in.
362	Σw _{RS} , total rear spar cap and web weight, strength and flutter design, lb/in.
363	W _{rib} , weight of one rib at the current analysis control station, multirib designs only, 0.0 for multispar and fulldepth honeycomb sandwich designs, lb/side.
364	W _{RR} , root rib weight, root station only, 1b/side.
365	(W _{cap}) _{RR} , root rib cap weight, root station only, lb/side.

TABLE 231. TWT ARRAY, LOCATIONS 331-400, SECTION WEIGHT PER INCH DATA, SUBROUTINE WIPIN (CONT)

Array Location	Description
366 367	(W _{web}) _{RR} , root rib cap weight, root station only, lb/side. (W _{misc}) _{RR} , root rib miscellaneous and attachment weight, root station only, lb/side.
368	Not used.
369	Not used.
370	Not used.
371	Σ w $_{ ext{TB}}$, total torque-box weight, strength and flutter design, lb/in.
372	Not used.
373	Not used.
374	Σw total miscellaneous structure and attachment weight, strength and flutter design, 1b/in.
375	(Δw skin chordwise upr, incremental weight of upper cover skin splice or pad material, distributed as a chordwise strip along
j	the structural chord of the current analysis station, lb/side.
376	(\Delta weight of lower cover skin splice or pad material, distributed as a chordwise strip along
	the structural chord of the current analysis station, lb/side.
377	$(\Delta w_{att})_{chordwise}$, attachment weight for chordwise splice or bulkhead, distributed as a chordwise strip along the structural
	chord of the current analysis station, lb/side.
378	w _{blhd} , weight of bulkhead, distributed as a chordwise strip along the structural chord of the current analysis station, lb/side.
379	Wrib, weight of one intermediate rib at the current analysis station, rib to be locally replaced with bulkhead, computed for
	multirib designs only, 0.0 for multispar or fulldepth honeycomb
	sandwich designs, 1b/side.

TABLE 231. TWT ARRAY, LOCATIONS 331-400, SECTION WEIGHT PER INCH DATA, SUBROUTINE WTPIN (CONI')

	T
Array Location	Description
380	$\Sigma \Delta w_{ m VF}$, total torque-box weight increment for flutter design,
	lb/in.
381	Σw _{PNL} , total surface weight, 1b/in.
382	Σw _{TB} , total torque-box weight, 1b/in.
383	Σw _{LE} , total leading edge weight, 1b/in.
384	Σw _{TE} , total trailing edge weight, 1b/in.
385	Σw _{MISC} , total surface secondary structure weight, 1b/in.
386	$\Sigma \Delta w_{VF}$, total weight increment for flutter design, 1b/in.
387	(ΣΔW _{TB}) _{chordwise} , total weight of local chordwise structures of
	torque-box, computed by subroutine WTCAL as additional weights
	to be combined with spanwise structures, 1b/side. These items
	are assumed to be uniformly distributed along the structural
	chord of the current analysis station for mass distribution
	analysis. `
388	(ΣΔW _{TB}) _{chordwise ØB} , total weight of local chordwise structures
	at the outboard station of the current torque-box panel, computed
	by WTCAL as one-half of the calculated weights of these struc-
1	tures for the previous analysis station, if any, 1b/side.
389	(ΣΔW _{TB}) _{chordwise IB} , total weight of local chordwise structures
	at the inboard station of the current torque-box panel, computed
:	by WTCAL as one-half of the calculated weights of these struc-
	tures for the current analysis station, if any, lb/side. Total
1	calculated weight used for the root panel.
<u> </u>	

TABLE 231. TWT ARRAY, LOCATIONS 331-400, SECTION WEIGHT PER INCH DATA, SUBROUTINE WIPIN (CONCL)

Array Location	Description
390	$(\Sigma \Delta W_{TB})_{CDL}$, total weight of torque-box structural provisions and fittings for concentrated mass attachment to the current torque-box panel, set up by WICAL from structure weight increments computer by subroutine CDL, overlay (15,0), and currently stored in subarray DPCDL (reference location T(220) - T(229)), lb/side.
391	$(\Sigma\Delta W_{TE})_{conc}$, total weight of torque-box structures for the current panel, consisting of items not represented by ΣW_{TE} in location 382. Computed by WTCAL as the total weight of the items stored in location TWT(106) - TWT(109), plus TWT(146) if tip panel, or TWT(56) if root panel (Table 230), lb/side.
392-398	Not used.
399	$(\delta_{\rm cov})_{\rm upr}$ or $(\delta_{\rm cov})_{\rm lwr}$, temporary storage location for upper or lower cover weight coefficient, used by WIPIN for total cover weight per inch calculations. Initially $(t_{\rm w})_{\rm FS}$ or $(t_{\rm w})_{\rm RS}$, front and rear spar web gage, used by WIPIN for front spar weight per inch calculations, in.
400	(wweb)FS/K misc FS or (wweb)RS/K misc RS, temporary storage for front and rear spar calculations by WTPIN, 1b/in.

TABLE 232. TWT ARRAY, LOCATIONS 331-400, CENTER-SECTION WEIGHT DATA, SUBROUTINE CSECW

General information for array TWT:

Blank common reference location = CD(1101)

Array size = 400 cells

Locations 331 through 400 of array TWT are used for storage and retrieval of center-section weight per inch data calculated by subroutine CSECW, and used to estimate center-section structure weights for metallic designs in overlay (9,0) and advanced composite designs in overlay (18,0). Computed data are based on outer panel root station design reflected in the station 1 weight-per-inch data set stored as a 50-cell block in TW(501) - TW(550) by subroutine WIPIN (Table 231). Center-section weight-per-inch at the side of body, $Y = b_1/2$, and vehicle centerline, Y = 0.0, are computed by CSECW and stored as identical sets in locations 331 plus 333 through 354, and 332 plus 357 through 378. These items, plus additional centerline rib data in locations 355, 356, 379, and 380, are saved as a 50-cell data set in array TW, locations 551 through 600, for use by subroutine DLPVT in the weight estimation of fixed torque-box structures deleted and replaced with pivot structures of variablesweep wing designs. Calculated weights for center-section structures are stored in array TSS, locations 1 through 50 (Table 236). (380), TSS(1) - TSS(50), and TW(550) - TW(600) are all set to 0.0 values by CSECW before logic check for center-section weight analysis. Subroutines TBOPT, overlay (9,0), and ATROPT, overlay (18,0), use subroutine PRIH to print the contents of TWT(331) -TWT(393) plus TSS(1) - TSS(54) under control of internal print control word IPA (logic tests made only if center-section weights are calculated).

Array Location	Description
331	$(\Sigma w_{CSEC})_{b_1/2}$, center-section weight at side-of-body, 1b/in.
332	$(\Sigma w_{CSEC})_{C/L}$, center-section weight at centerline, 1b/in.

Locations 333 through 354 contain weight per inch data for the centersection components at the side-of-body station, b₁/2. These weights are based on root station weights of corresponding outer-panel torque-box components adjusted for differences in weight coefficient values.

(Σw_{cov})_{upr, b₁/2}, total upper cover weight at side-of-body lb/in.

TABLE 232. TWI ARRAY, LOCATIONS 331-400, CENTER-SECTION WEIGHT DATA, SUBROUTINE CSECW (CONT)

Array Location	Description
334	$(\Sigma w_{\text{cov}})_{\text{upr }b_1/2}$, total lower cover weight at side-of-body, 1b/in.
335	$(\Sigma w_{rib})_{b_1/2}$, total intermediate rib or spar weight at side-of-body, 1b/in.
330	$(\Sigma w_{FS})_{b_1/2}$, total front spar weight at side-of-body, lb/in.
337	$(\Sigma w_{RS})_{b_1/2}$, total rear spar weight as side-of-body, lb/in.
338	$(\Sigma w_{\text{misc}})_{b_1/2}$, total miscellaneous structure and attachment weight at side-of-body, 1b/in.
339	$(w_{skin})_{upr} b_1/2$, upper cover skin weight at side-of-body, 1b/in.
340	(w _{str}) _{upr b₁/2} , upper cover stringer or cap weight at side-of-body, 1b/in.
341	(w misc skin upr b ₁ /2, upper cover miscellaneous skin weight at side-of body, 1b/in.
342	$(w_{skin})_{lwr} b_{1/2}$, lower cover skin weight at side-of-body, lb/in.
343	(w _{str}) _{lwr b₁/2} , lower cover stringer or cap weight at side-of-body, lb/in.
344	(w misc skin) lwr b ₁ /2, lower cover miscellaneous skin weight at side-of-body, lb/in.
345	$(w_{cap})_{FS}$ $b_1/2$, front spar cap weight at side-of-body, 1b/in.
346	$(w_{cap})_{RS}$ $b_{1/2}$, rear spar cap weight at side-of-body, lb/in.
347	$(w_{\text{web}})_{\text{FS}} \frac{1}{b_1/2}$, front spar web weight at side-of-body, 1b/in.
348	$(w_{\text{web}})_{\text{RS}} \frac{b_1}{2}$, rear spar web weight at side-of-body, $1b/\text{in}$.
349	Not used.
350	Not used.
351	Not used.
352	(Δw skin chord wise upr h ₁ /2, incremental weight for upper cover skin material distributed as a chordwise strip at the side-of-body, provisions for chordwise skin splice or bulkhead attach skin pads, 1b/side.
353	$(\Delta w_{\rm skin\ chord\ wise})_{\rm lwr\ b_1/2}$, incremental weight for lower cover skin material distributed as a chord wise strip at the side-of-body for skin splice or pad, 1b/side.

TABLE 232. TWT ARRAY, LOCATIONS 331-400, CENTER-SECTION WEIGHT DATA, SUBROUTINE CSECW (CONT)

Array Location	Description
354	(Δw) att chord wise $b_1/2$, attachment weight for skin splice or bulkhead, distributed as a chordwise strip at the side-of-body, $1b/side$.
355	(W _{blhd}) _{C/L} , weight of bulkhead at centerline, lb/side.
356	(Watt) C/L blhd, weight of cover attachments for centerline bulkhead, lb/side.
section side-of-	357 through 378 contain weight per inch data for the center-components at the centerline station. These weights are based on body weights stored in locations 333 through 354 adjusted for ection differences between the stations.
357	(Σw _{cov}) _{upr C/L} , total upper cover weight at centerline, 1b/in.
358	$(\Sigma_{\text{cov}})_{\text{lwr C/L}}$, total lower cover weight at centerline, lb/in.
359	(\(\Sigma_{\text{rib}}\)_{\text{C/L}}, total intermediate rib or spar weight at centerline, lb/in.
36 0	$(\Sigma w_{FS})_{C/L}$, total front spar weight at centerline, 1b/in.
361	(Σw _{RS}) _{C/L} , total rear spar weight at centerline, 1b/in.
362	$(\Sigma_{\text{misc}})_{\text{C/L}}$, total miscellaneous structure and attachment weight at centerline, 1b/in.
363	(w _{skin}) _{upr C/L} , upper cover skin weight at centerline, 1b/in.
364	(w _{str}) _{upr C/L} , upper cover stringer or cap weight at centerline, lb/in.
365	(w misc skin upr C/L, upper cover miscellaneous skin weight at centerline, lb/in.
366	(w _{skin}) _{lwr C/L} ; lower cover skin weight at centerline, lb/in.
367	(w _{str}) _{lwr C/L} , lower cover stringer or cap weight at centerline, lb/in.
368	(w _{misc skin}) _{lwr C/L} , lower cover miscellaneous skin weight at centerline, lb/in.
369	(w _{cap}) _{FS C/L} , front spar cap weight at centerline, 1b/in.
370	(w _{cap}) _{RS C/L} , rear spar cap weight at centerline, 1b/in.

TABLE 232. TWT ARRAY, LOCATIONS 331-400, CENTER-SECTION WEIGHT DATA, SUBROUTINE CSECW (CONCL)

	
Array Location	Description
371	(wweb)FS C/L, front spar web weight at centerline, lb/in.
372	(wweb) RS C/L, rear spar web weight at centerline, lb/in.
373	Not used.
374	Not used.
375	Not used.
376	(\(\Delta w \) skin chord wise upr C/L, incremental weight for upper cover skin material distributed as a chordwise strip at the centerline, provisions for chordwise skin splice or bulkhead attach skin pods, 1b/side.
377	(Δw skin chord wise lwr C/L; incremental weight of lower cover skin material distributed as a chordwise strip at the centerline for skin splice or pad, lb/side.
378	(Δw att chord wise) C/L, attachment weight for skin splice or bulkhead, distributed as a chordwise strip at the centerline, lb/side.
379	(W cap) C/L blhd, centerline bulkhead cap weight, lb/side.
380	(W web) C/L blhd, centerline bulkhead web weight, lb/side.
381	Not used.
397	
398	(W _{misc}) _{FS} or (W _{misc}) _{RS} , temporary storage for front and rear calculations, 1b/in.
399	(W misc) rib, temporary storage for miscellaneous weight
400	calculations, 1b/in. Watt, temporary storage for miscellaneous weight calculations, 1b/in.

TABLE 233. TWT ARRAY, LOCATIONS 1 THROUGH 50 AND 311 THROUGH 400, TORQUE-BOX WEIGHT INCREMENT DATA FOR PIVOT DESIGNS, SUBROUTINE DLPVT

General information for array TWT:

Blank common reference location = CD(1101)

Array size = 400 cells

Locations 331 through 400 of array TWT are used by subroutine DLPVT to compute weights of outer-panel torque-box and centersection structures to be replaced with pivot structures. Weights are computed from the 12 50-cell weight-per-inch data sets stored in array TW, locations 1 through 600. Incremental weight for the outer-panel torque-box are stored in array TWT, locations 1 through 50; center-section weights are stored in array TSS, locations 1 through 50. These output arrays are subsequently combined with the basic 'clean wing' weight summary sets and used in overlay (17.0) for final weight calculations. Outer-panel data used by DLPVT, TW(1) - TW(550), consist of subroutine WTPIN data computed and stored in TWT(331) - TWT(380), Table 231. Center-section data, TW(551) - TW(600), are computed by subroutine CSEW, stored in TWT(331) - TWT(380), Table 232. Subroutine DLPVT initializes TWT(331) - TWT(400) to 0.0 values before calculations are made. Locations 1 through 50 of output arrays TWT and TSS are set to 0.0 values by subroutines TBOPT, overlay (9,0), for metallic designs, or subroutine ATBOPT, overlay (18,0), for advanced composite designs. These subroutines use subroutine PRIH to print the contents of arrays TSS and TWT, under control of internal print control word IPA (logic tests are made only if pivot designs are evaluated).

Array Locations

Description

Locations 1 through 50 contain outer-panel torque-box weights to be subtracted from the basic "clean wing" weights calculated and stored in TWT(1) - TWT(50) by subroutine WTCAL (Table 230). Data in these locations are identical to those of Table 230, except that locations 39 through 50 are not used by DLPVT and contain 0.0 values. Subroutine DLPVT initially computes these items in terms of weights per side then converts them into weights per air vehicle. The weights are computed as positive values; in overlay (17,0), subroutine PRTD subtracts these values from "clean wing" totals during computations of final weights.

TABLE 233. TWT ARRAY, LOCATIONS 1 THROUGH 50 AND 311 THROUGH 400, TORQUE-BOX WEIGHT INCREMENT DATA FOR PIVOT DESIGNS, SUBROUTINE DLPVT (CONT)

1	$(\Delta \Sigma W_{TR})$, total torque-box weight, 1b per A/V.
2	$(\Delta \Sigma W_{cov})_{upr}$, total lower cover weight, 1b per A/V.
3	$(\Delta \Sigma W_{cov})_{lwr}$, total lower cover weight, 1b per A/V.
4	$(\Delta \Sigma \Delta W_{TR})_{VF}$, total torque-box weight increment for flutter
	design, 1b per A/V.
5	ΔΣW _{rib} , total intermediate rib or spar weight, 1b per A/V
6	$\Delta \Sigma W_{FS}$, total front spar weight, 1b per A/V.
7	$\Delta \Sigma W_{RS}$, total rear spar weight, 1b per A/V.
8	$\Delta \Sigma W$ misc, total miscellaneous structure and attachment weight,
	1b per A/V.
ö	(Δ W skin) upr, upper cover skin weight, 1b per A/V.
10	(Δ W str) upr, upper cover stringer or cap weight, 1b per A/V.
11	(Δ W misc skin upr, upper cover miscellaneous skin weight, 1b
	per A/V.
12	$(\Delta W_{\text{skin}})_{\text{lwr}}$, lower cover skin weight, 1b per A/V.
13	$(\Delta W_{\text{str}})_{\text{lwr}}$, lower cover stringer or cap weight, 1b per A/V.
14	$(\Delta W_{\text{misc skin}})_{\text{lwr}}$, lower cover miscellaneous skin weight, 1b
	per A/V
15	$(\Delta W_{cap})_{FS}$, front spar cap weight, 1b per A/V.
16	$(\Delta W_{\text{web}})_{\text{FS}}$, front spar web weight, 1b per A/V.
17	$(\Delta W_{\text{cap}})_{\text{RS}}$, rear spar cap weight, 1b per A/V.
18	$(\Delta W)_{\text{web}}$, rear spar web weight, 1b per A/V.
19	$(\Delta W_{skin})_{upr}$ VF, upper cover skin weight increment for flutter
	design, 1b per A/V.
20	$(\Delta W_{\rm str})_{\rm upr}$ VF, upper cover stringer or cap weight increment for
21	flutter design, 1b per A/V. $(\Delta W_{\text{misc skip}})_{\text{uppr VE}}$, upper cover miscelleneous skin weight
21.	(ΔW misc skin upr VF, upper cover miscelleneous skin weight increment for flutter design, 1b per A/V
22	$(\Delta W_{\text{skin}})_{\text{lwr VF}}$, lower cover skin weight increment for flutter
	design, 1b per A/V.
23	$(\Delta W_{str})_{lwr}$ VI; lower cover stringer or cap weight increment
	for flutter design, 1b per A/V

TABLE 233. TWT ARRAY, LOCATIONS 1 THROUGH 50 AND 311 THROUGH 400, TORQUE-BOX WEIGHT INCREMENT DATA FOR PIVOT DESIGNS, SUBROUTINE DLPVT (CONT)

Array Location	Description
24	(ΔW misc skin lwr VF, lower cover miscellaneous skin weight increment for flutter design, lb per A/V.
25	$(\Delta W_{\rm rib})_{\rm VF}$, intermediate rib or spar weight increment for flutter design, 1b per A/V.
26	$(\Delta W_{\text{web}})_{\text{FS VI}}$, front spar web weight increment for flutter design, 1b per A/V.
27	$(\Delta W_{\text{web}})_{\text{RS VF}}$, rear spar web weight increment for flutter design, lb per A/V.
28	$(\Delta W_{att})_{VF}$, miscellaneous structure and attachment weight increment for flutter design, 1b per A/V.
29	0.0, not used.
30	ΔW_{b1hd} , bulkhead weight, 1b per A/V.
31	ΔW_{RR} , root rib weight, from location 35, 1b per A/V.
32	$(\Delta W_{\text{cap}})_{\text{RR}}$, root rib cap weight, from location 36, 1b per A/V.
33	$(\Delta W_{\text{web}})_{RR}$, root rib web weight, from location 37, lb per A/V.
34	$(\Delta W_{\text{misc}})_{\text{RR}}$, root rib miscellaneous and attachment weight, from location 38, 1b per A/V.
35	ΔW_{RR} , root rib weight, 1b per A/V.
36	$(\Delta W_{\text{cap}})_{RR}$, root rib cap weight, 1b per A/V.
37	$(\Delta W_{\text{web}})_{\text{RR}}$, root rib web weight, 1b per A/V.
38	$(\Delta W_{\text{misc}})_{\text{RR}}$, root rib miscellaneous and attachment weight, 1b per A/V.
39-50	0.0, not used.
Locations 51 through 330 are not used for DLPVT calculations. (Refer to Table 230.)	
51-330	Not used.

TABLE 233. TWT ARRAY, LOCATIONS 1 THROUGH 50 AND 311 THROUGH 400, TORQUE BOX WEIGHT INCREMENT DATA FOR PIVOT DESIGNS, SUBROUTINE DLPVT (CONT)

Array Location	Description
from the weight lug-rile by substant analys program partial which rib is additionally additional	the weight-per-inch data stored in TW(1) through TW(550). These include the torque-box structures between the inboard and outboard be stations determined by subroutine PIVØT. These locations are used routine DLPVT to sum the weights of affected torque-box panel weights on the structural reference line stations for the 11 outer panel is stations and the lug-rib stations. Subroutine DLPVT logic is mimed to start the accumulation of weights at the outermost full or 1 panel first, proceeding inboard until the root panel or the panel contains the inboard lug-rib has been evaluated. If the inboard lugwithin the center-section, outer-panel integration is stopped and conal computations made for estimation of center-section weights deleted.
331	(W _{skin}) _{upr} , upper cover skin weight, 1h/side.
332	(W _{skin}) _{lwr} , lower cover skin weight, lb/side.
333	(W _{rib} , intermediate rib or spar weight, 1b/side.
334	(W _{str}) _{upr} , upper cover stringer or cap weight, 1b/side.
335	(W _{str}) _{lvr} , lower cover stringer or cap weight, lb/side.
336	(W misc skin) upr, upper cover miscellaneous skin weight, lb/side.
337	(W misc skin) lwr, lower cover miscellaneous skin weight, lb/side.
338	W att, cover attachment weight, 1b/side.
339	$(\Delta W_{att})_{VF}$, miscellaneous attachment weight increment for flutter design, lb/side.
340	$(\Delta W_{skin})_{upr\ VF}$, upper cover skin weight increment for flutter design, lb/side.
341	(\Delta W skin) lwr VF, lower cover skin weight increment for flutter design, Jb/side.
342	$(\Delta W)_{\text{str}}$ upper cover stringer or cap weight increment for flutter design, 1b/side.
343	(ΔW _{str}) _{lwr VF} , lower cover stringer or cap weight increment for flutter design, lb/side.

TABLE 233. TWT ARRAY, LOCATIONS 1 THROUGH 50 AND 311 THROUGH 400, TORQUE-BOX WEIGHT INCREMENT DATA FOR PIVOT DESIGNS, SUBROUTINE DLPVT (CONT)

Array Location	Description
344	(W _{web}) _{FS} , front spar web weight, lb/side.
345	(W _{web}) _{RS} , rear spar web weight, 1b/side.
346	(W _{cap}) _{FS} , front spar cap weight, 1b/side.
347	(W _{cap}) _{RS} , rear spar cap weight, 1b/side.
348	$(\Delta W_{\text{web}})_{\text{FS VF}}$, front spar web weight increment for flutter design, lb/side.
349	$(\Delta W_{\text{web}})_{\text{RS VF}}$, rear spar web weight increment for flutter design, lb/side.
350	$(\Delta W_{rib})_{ m VF}$, intermediate rib or spar weight increment for flutter design, lb/side.
351	(ΔW) misc skin upr VF, upper cover miscellaneous skin weight increment for flutter design, 1b/side.
352	$(\Delta W_{\text{misc skin}})_{\text{lwr VF}}$, lower cover miscellaneous skin weight increment for flutter design, lb/side.
353	(W _{skin FS/RS}) _{upr} , weight of upper cover skin overhang material at front and rear spars, lb/side.
354	(W skin FS/RS) lwr, weight of lower cover skin overhang material at front and rear spars, lb/side.
355	(W _{misc}) _{FS} , weight of miscellaneous structure and attachment items for front spar, 1b/side.
356	(W _{misc}) _{RS} , weight of miscellaneous structure and attachment items for rear spar, 1b/side.
357	(W _{misc}) _{rib} , miscellaneous rib or spar structure weight, lb/side.
358	(ΔW skin chordwise) upr, incremental weight of upper cover skin splice or pad material along the structural chords of affected
	analysis stations, 1b/side.

TABLE 233. TWI ARRAY, LOCATIONS 1 THROUGH 50 and 511 THROUGH 400, TORQUE-BOX WEIGHT INCREMENT DATA FOR PIVOT DESIGNS, SUBROUTINE DLPVT (CONT)

Array Location	Description
359	(\Delta W skin chordwise) lwr, incremental weight of lower cover skin splice or pad material along the structural chords of affected
	analysis stations, 1b/side.
360	(ΔW _{att}) _{chordwise} , attachment weight for chordwise cover splice or bulkheads at the affected analysis stations, lb/side.
361	W _{blhd} , weight of bulkheads at affected analysis stations, lb/side.
362	ΔW rib, weight of intermediate ribs replaced with bulkhead ribs at
	affected analysis stations, multirib designs only, 0.0 for
	multispar or fulldepth honeycomb sandwich designs, 1b/side.
363	W _{RR} , weight of root rib, 1b/side.
364	(W _{cap}) _{RR} , weight of root rib caps, lb/side.
365	(Wweb) RR, weight of root rib web, lb/side.
366	(W _{misc}) _{RR} , weight of miscellaneous structure and attachment items for root rib, 1b/side.
367-377	Not used.
control	378 through 400 are used for storage and retrieval of geometry station values and weight calculation constants computed during anel torque-box and center-section analysis.
378	(\Delta W skin chordwise) upr, upper cover skin increment for chordwise splice and pads, center-section analysis only, lb/side.
379	(ΔW _{skin} chordwise) _{lwr} , lower cover skin increment for chordwise splice and pads, center-section analysis only, lb/side.
380	$(width_{TB})_{\emptyset B}$, structural width of torque-box at outboard analysis control station for current outer-panel torque-box panel, in.
	Also, $(\Delta W_{att})_{chordwise}$, cover splice or bulkhead pad weights for center-section analysis, lb/side.

TABLE 233. TWT ARRAY, LOCATIONS 1 THROUGH 50 AND 311 THROUGH 400, TORQUE-BOX WEIGHT INCREMENT DATA FOR PIVOT DESIGNS, SUBROUTINE DLPVT (CONT)

Array Location	Description
381	K width, width factor for calculation of chordwise element weights, outer-panel and center-section analysis.
382	$(Y_{A TB})_{IB}$, inboard analysis control station for current outerpanel torque-box panel, in.
383	$(Y_{\Lambda TB})_{\emptyset B}$, outboard analysis control station for current outerpanel torque-box panel, in.
384	$(\Delta Y_{\Lambda})/2.0$, one-half of affected panel span, in.
385	W _{IB} , weight at inboard station of affected panel for current structural element, 1b/in.
386	W _{ØB} , weight at outboard station of affected panel for current structural element, lb/in.
387	(W _{IB}) _{ref} , inboard station weight of reference outer-panel torque- box or center-section panel for current structural element,
	lb/in.
388	$(W_{ extstyle B})_{ ext{ref}}$, outboard station weight of reference outer-panel torquebox or center-section panel for current structural element,
	lb/in.
389	$(R_{\Lambda})_{IB}$, ratio of distance between affected panel inboard station and inboard control station of reference outer-panel torque-box or center-section panel to structural span of reference panel.
390	$(R_{\Lambda})_{\emptyset B}$, outboard station factor for affected panel similar to location 389.
391	$(\Delta Y_{\Lambda})_{IB}$, distance between inboard station of affected panel and inboard control station of reference outer-panel torque-box panel, in.

TABLE 233. TWT ARRAY, LOCATIONS 1 THROUGH 50 AND 311 THROUGH 400, TORQUE-BOX WEIGHT INCREMENT DATA FOR PIVOT DESIGNS, SUBROUTINE DLPVI (CONCL)

Array Location	Description
392	$(\Delta Y_{\Lambda})_{0B}$, distance between outboard station of affected panel and
	inboard control station of reference outer-panel torque-box
	panel, in.
393	$(\Delta Y_{\Lambda})_{ref}$, span of reference outer-panel torque-box panel, in.
394	$(Y_{\Lambda})_{IB}$, inboard station of affected panel, inboard lug-rib station
	or inboard outer-panel analysis station of current reference
	panel, in.
395	$(Y_{\Lambda})_{\emptyset B}$, outboard station of affected panel, outboard lug-rib
	station or inboard outer-panel analysis station of current
	reference panel, or side-of-fuselage station for center-section,
	in.
396	(Y _Λ) _{ØB rib} , structural station for inboard lug-rib, in.
397	(Y _{\Lambda}) IB rib, structural station for outboard lug-rib, in.
398	(Y@B) _{rib} , Y-coordinate of inboard lug-rib, in.
399	(Y _{IB}) _{rib} , Y-coordinate of outboard lug-rib, in.
400	Intermediate calculation data.
1	

TABLE 234. PT ARRAY, SUBROUTINE PIVØT

General information for array PT:

Blank common reference location = T(901)

Array size = 100 cells

Array PT in conjunction with array S (Table 235) is used for storage and retrieval of the calculated data for pivot structure analysis. The contents of PT and S are printed by subroutine PIVØT at the end of the pivot analysis under control of IP(26), case control card 1, column 26. The output is identified by the title "T at End Pivot." Contents of locations T(881) through T(1200) are printed with PT array starting at location 901, and S array at location 1001.

The included sketches, identified and referred to as sketches a through e, are included as part of this table to supplement the descriptions of each array location. The sketches are also referred to in the S array descriptions of Table 235.

Array		Sketch	
Location	Variable	Ref	Description
1	YCPVI	a	Structural distance from tip to centerline of pivot parallel to elastic axis, in.
2 3	CKEC	-	Cube of inboard rib web thickness, in ³ .
3	ARM	d	Couple-arm, distance between midpoints of outboard lugs at pivot centerline, in.
4	Y _M	a	Structural distance from tip station to line normal to the elastic axis passing through the pivot centerline, in.
5	DXPVT	a	Location of pivot centerline aft of local leading edge as fraction of pivot station chord.
6-7	-	-	Not used
8	PVľV	-	V _A , net ultimate design shear at pivot centerline computed at pivot station projection on elastic axis, lb.
9	PVIM	-	M _{XA} , net ultimate design bending moment at pivot station projection on elastic axis, in-lb.
10	PVTD	-	Mold line depth of wing at pivot station, in.
11-29	-	-	Not used
30	-	-	Tangent of rear spar sweep angle of reference planform.
31	XR ₁	e	Difference between fuselage station of rear spar intercept at centerline and fuselage station of pivot, in.

TABLE 234. PT ARRAY, SUBROUTINE PIVOT (CONT)

TABLE 234. PT ARRAY, SUBROUTINE PIVØT (CONT)

TABLE 234. PT ARRAY, SUBROUTINE PIVOT (CONT)

TABLE 234. PT ARRAY, SUBROUTINE PIVØT (CONT)

TABLE 234. PT ARRAY, SUBROUTINE PIVOT (CONT)

TABLE 234. PT ARRAY, SUBROUTINE PIVØT (CONT)

Array Location	Variable	Sketch Ref	Description
32	Ro	е	Length of line labeled "Ro," line passing through pivot centerline and rear spar intercept of planform centerline, in.
33	$\cos (\alpha)$	e	Cosine of angle labeled "\a."
34	$Sin(\alpha)$	е	Sine of angle labeled "\alpha."
35	$Cos(\Lambda_{RS})$	-	Cosine of rear spar sweep angle.
36	Sin (A _{RS})	_	Sine of rear spar sweep angle.
37	$ \begin{array}{c} \operatorname{Sin} \\ (\Lambda_{RS} + \alpha) \end{array} $	е	Sine of sum of rear spar sweep angle and angle labeled "a."
38	n ^{UH}	е	Difference between most-aft and most- forward sweep positions of leading edge, radians.
39	SINDTH	-	Sine of Dni.
40	CØSDIH	-	Cosine of DTH.
41	-	-	Not used.
42	x ₁	С	Length of line labeled " X_1 ," in. When $Y_R = 0$, this equals X_{R1} .
43	R_{n-1}	e	Refer to location 32, in.
44	-	-	Not used.
45	R _n	e	Length of line labeled " R_n ," in. e.g.: lst pass - $R_n = R_0$ 2nd pass - $R_n = R_1$ 3rd pass - $R_n = R_2$
46	$\cos (\alpha_n)$	e	Cosine of angle labeled "\and n."
47	Sin (α_n)	e	Sine of angle labeled 'an."
48	Sin $(\Delta \alpha)$	e	Sine of angle labeled " $\Delta \alpha$," $(\alpha - \alpha_n)$.
49	$\cos (\Delta \alpha)$	e	Cosine of angle labeled 'Δα."
50	Sin (D _{IH} +∆∞)	e	Sine of $(D_{IH} + \Delta \alpha)$.
51	Cos (D _{IH} + Δ α)	e	Cosine of $(D_{TH} + \Delta \alpha)$.
52	- MI - 7	-	Ratio of squares of $Sin(D_{TH} + \Delta \alpha)$ and $Sin(\Lambda_{RS} + \Delta \alpha)$.
53	$\frac{\frac{R_n+1}{R_0}}{\frac{R_0}{R_0}}$	-	Ratio of $(R_n + 1)$ to R_0 .

TABLE 234. PT ARRAY, SUBROUTINE PIVØT (CONT)

Array Location	Variable	Sketch Ref	Description
54	EØD		Ratio of edge distance to outer-diameter.
55	IØТ	-	Ratio of outer-diameter to lug thickness.
56	SØD	-	Required outer-diameter based on input bearing stress, in.
57-59	-	-	Not used.
60	TUI	d	Thickness of upper inboard lug at pivot centerline, in.
61	TLI	d	Thickness of lower inboard lug at pivot centerline, in.
62	Tuy	d	Thickness of upper outboard lug at pivot centerline, in.
63	T LØ	d	Thickness of lower outboard lug at pivot centerline, in.
64	P	d	Couple force on outboard lug for design bending moment, 1b.
65	F_{BR}	-	Allowable bearing stress for pivot bearings, psi.
66	ØD	d	Outer-diameter of pivot pin, in.
67	\$ F _{TU}	-	Tension cutoff stress for lug design based on input factor in D(189), variable PERFTU, psi.
68	LD	d	Inner-diameter of pivot pin, in.
69	EDIST	b,c	Pivot lug edge distance, in.
70	YR	С	Y-coordinate, inboard rib, in.
71	YRIB	-	Distance from tip station to inboard rib
72-74	-	-	along elastic axis, in. Not used. (Any data in these locations not pertinent to pivot analysis.)
75	N#IB	-	Net ultimate design bending moment at inboard rib for most-forward planform position, in-1b.
76	^T UR	-	Thickness of inboard upper lug at inboard rib, in.
7 7	TLR	-	Thickness of inboard lower lug at inboard rib, in.
78	DRIB	-	Depth of section at inboard rib, in.
79	CARIB	-	Depth of inboard rib, in.

TABLE 234. PT ARRAY, SUBROUTINE PIVØT (CONT)

Array		Sketch	
Location	Variable	Ref	Description
80 81	W _{RIB} Tan A _{LE}	-	Width of inboard rib, in. Tangent of sweep of leading edge element line for reference position.
82	f(A _{IJE})	-	A function based on sweep angle of leading edge and used to estimate bending moment at pivot in swept position based on known bending moment in forward position, used
83	T _{RI BM}	-	in conjunction with value in location 86. Maximum required web thickness for inboard
84	$\mathcal{\Sigma}\Delta heta$	-	rib for all sweep positions analyzed, in. Sum of total incremental sweep angles between forward and aft positions,
85	$\Delta heta$	•	radians. Incremental sweep angle required to sweep movable panel through each sweep position through the most-aft position, radians.
86	$f(\Lambda_{LE} + \alpha)$	-	Definition same as location 82, but angle as sweep of leading edge in swept position.
87	M _{RIB} '	-	Bending moment at rib for sweep position being analyzed, in-1b.
88	A _{LE FWD}	-	Sweep angle of leading edge, most-forward position, radians.
89	Λ _{LE AFT}	-	Sweep angle of leading edge, most-aft position, radians.
90-91	-	_	Not used.
92	-	-	Sinc of leading edge sweep angle for position being analyzed.
93	-	-	Width of inboard rib divided by couple arm at inboard rib (rib aspect ratio).
94	K _{RIB}	-	Buckling coefficient for rib web. Used in shear buckling equation for web with simply supported edges.
95	-	-	Not used.
96	T _{RIB}	-	Thickness of inboard rib web based on loads at sweep position being analyzed, in.

TABLE 234. PT ARRAY, SUBROUTINE PIVØT (CONCL)

Array Location	Variable	Sketch Rof	Description
97 98 99	Y _{RI}	- c	Not used. Distance between inboard rib station and pivot station, in. Distance between chord element lines of pivot and rear spar plane at centerline
100	SPAN	-	of reference planform, in. b/2, semi-span of reference planform, in.
			NOTE: YPVT is Y-coordinate of pivot centerline, blank common reference location = T(900), in.

TABLE 235. S ARRAY, SUBROUTINE PIVOT

General information for array S:

Blank common reference location = T(1001)

Array size = 200 cells

Array S in conjunction with array PT (Table 234) is used for storage and retrieval of the calculated data for pivot structure analysis. The contents of S and PT are printed by subroutine PIVØT at the end of the pivot analysis under control of IP(26), case control card 1, column 26. The output is identified by the title "T at End Pivot." Contents of locations T(881) through T(1290) are printed, with S array starting at location 1001 and PT array at location 901.

Sketches for the identification letters a through e referred to in array descriptions that follow are included with the PT array descriptions. Refer to Table 234 for the sketches and a pictorial representation of dimensional data stored in array S.

Array Location	Variable	Sketch Ref	Description
1	x_1	С	Length of line labeled "X1" of inboard lug, in.
2	x_2	С	Length of line labeled "X2" of inboard lug, in.
3	L ₁	С	Length of line labeled " L_1 " of inboard lug and equals square root of $(X_1^2 + Y_{RI}^2)$, in.
4	L ₂	С	Length of line labeled " L_2 " of inboard lug and equals square root of $(X_2^2 + Y_{RI}^2)$, in.
5	L ₁₁	С	Length of line labeled " L_{11} " of inboard lug and equals square root of $(L_1^2 - EDIST^2)$, in.
6	L ₂₂	С	Length of line labeled " L_{22} " of inboard lug and equals square root of $(L_{2}^{2} - EDIST^{2})$, in.
7	-	С	Sum of two products $((L_{22})(Y_{RI}) + (EDIST)(X_2))$, in ² .

TABLE 235. S ARRAY, SUBROUTINE PIVØT (CONT)

Array		Sketch	
Location	Variable	Ref	Description
8	-	С	Difference of two products ,
			$((EDIST) (Y_{RI}) - (L_{22})(X_2)), in^2.$
9	TAN (a + b)	C	Tangent of angles (a + b).
10	-	C	Sum of products $((LL_{11})(Y_{RI}) + (EDIST)(X_1)),$ in ² .
11	-	С	Difference of two products ((EDIST)
			$(Y_{RI}) - (L_{11})(X_1), in^2.$
12	TAN (d+c)	С	Tangent of angles (d + c).
13		1 🗷	Counter for iteration loop in subroutine
			THE.
14	Ø	C	Angle labeled "Ø" on inboard lug, radians.
15	λ	C	Twice area of triangles "55" and "22" and
			circular sector "33" of inboard lug,
			computed as EDIST ($L_{11} + L_{22} + \emptyset \cdot \text{EDIST}$),
			in ² .
16	A_{INB}	c	Total area of inboard lug less area of hole
	INB		for pin, computed as $1/2$ (A + (X_1 + X_2)
			Y_{RI}) - $\pi(\emptyset D)^2/4.0$, in ² .
17	B _{FWD}	c	Effective inboard lug width forward of
	LMD		pin hole at pivot centerline, computed as
			$X_2 - \emptyset D/2 + Y_{RI}/TAN(a + b)$, in.
18	B _{AFT}	С	Effective inboard lug width aft of pin
	Al·1		hole at pivot centerline, computed as
			$X_1 - \emptyset D/2 + Y_{RI}/TAN(d + c)$, in.
19	$^{\mathrm{B}}\mathrm{x}$	С	Total effective inboard lug width at pivot
	λ		centerline, (BAFT + BDWD), in.
20	В	-	Smaller of the two effective widths (Bpwp,
			BAFT) for use in subroutines TEE and TEL
			when lug is being sized at pivot center-
			line, or width of total lug when sizing
			is for wider portion of lug, in.
21	Λ	-	Length of lug being analyzed by subroutines
			TEE and TEL, in.
22	CA	d	Couple arm at point being analyzed by
			subroutines TEE and TEL, in.
23	М	-	Net ultimate design bending moment at point
	M _x A		being analyzed by subroutines TEE and
			TEL, in-1b.
<u> </u>			

TABLE 235. S ARRAY, SUBROUTINE PIVOT (CONT)

Array Location	Variable	Sketch Ref	Description
24	L _{RS}	e	Length of rear spar between spar intercepts of R_n and R_0 , in.
25	^{Y}A	b	Location of outboard lug-rib referenced to vehicle centerline, in.
26	-	-	Width of structural box at vehicle center- line in aerodynamic reference system, in.
27	$C_{\mathbf{a}}$	b	Width of structural box at outboard lug- rib, in.
28	-	b	Distance between pivot and rear spar plane at pivot centerline, in.
29	X ₁₁	ь	Length of line labeled "X ₁₁ " of outboard lug, in.
30	x ₂₂	b	Length of line labeled "X ₂₂ " of outboard lug, in.
31	L ₂₀	ь	Length of line labeled "L ₂₀ " of outboard lug, in.
32	L ₃₀	b	Length of line labeled "L ₃₀ " of outboard lug, in.
33	^L 40	ь	Length of line labeled "L ₄₀ " of outboard lug, in.
34	-	b	Sum of two products $((Y_{AYP})(L_{30}) + (X_{22})(EDIST))$, in ² .
35	YAYP	ь	Length of outboard lug measured from pivot centerline to outboard lug-rib, in.
36	-	b	Difference of two products ((EDIST) (Y_{AYP}) - $(L_{30})(X_{22})$), in ² .
37	TAN (a _O + b _O)	Ъ	Tangent of angle $(a_0 + b_0)$.
38	-· (40 · 00)	ь	Sum of two products ((EDIST)(X_{11}) + (L_{40}) (Y_{AYP}), in ² .
39	-	ь	Difference of two products ((EDIST) (Y_{AYP}) - $(L_{40})(X_{11})$, in ² .
40	TAN (c _o + d _o)	Ъ	Tangent of angle $(c_0 + d_0)$.
41	-	_	Not used.
42	Ø _O	Ъ	Angle labeled ''Øo'' on outboard lug, radians.
43	Ao	ь	Twice area of triangles "3" and "5" and circular sector "6" of outboard lug, in ² .
44	^A øur	b	Total area of outboard lug less area of hole for pivot pin, in ² .

TABLE 235. S ARRAY, SUBROUTINE PIVØT (CONT)

Array Location	Variable	Sketch Ref	Description
45	$^{\mathrm{B}}$ FWD $_{\mathrm{O}}$	b	Effective outboard lug width forward of pin hole at pivot centerline, in.
46	^B AFT _O	b	Effective outboard lug width aft of pin hole at pivot centerline, in.
47	-	-	Wing box depth at outboard lug-rib, in.
48	-	-	Couple arm to react design bending load at outboard rib, in.
49	T _{UØR}	-	Thickness of upper outboard lug at outboard rib location, in.
50	T _{LØR}	-	Thickness of lower outboard lug at outboard rib location, in.
51	Y _{RIB} Ø	-	Structural distance between tip station and outboard lug-rib, in.
52-53	-	-	Not used.
54	-	-	Difference between pin outer-diameter from current sizing pass and pin outer- diameter from previous sizing, pass, in.
55	ØD ₁	-	Outer-diameter of pivot pin from previous sizing pass, in.
56	K	-	Buckling coefficient for plate shear buckling equation based on plate aspect ratio of lug from subroutine TEE.
57	T _{MAX}	-	Maximum thickness of lug from all sweep positions analyzed with subroutine TEE, in.
58	-	-	Difference between leading edge sweep angle of current position and initial forward position, radians.
59	-	-	Not used.
60	ΔΛ	-	Incremental sweep angle to rotate movable panel to aft position, subroutine TEE, radians.
61	$^{M}_{X\Lambda}$	-	Net ultimate design bending moment at current position being analyzed by subroutine TEE, in-1b.
62	Λ _{LE}	-	Sweep angle of leading edge at sweep position currently being analyzed by subroutine TEE, radians.
63	-	-	Not used.
64	-	-	Sine of current leading edge sweep angle, subroutine TEE.

TABLE 235. S ARRAY, SUBROUTINE PIVOT (CONT)

	170014	. 233, 3 A	RRAY, SUBROUTINE PIVOT (CONT)
Array Location	Variable	Sketch Ref	Description
65	-	-	Cosine of current leading edge sweep angle, subroutine TEE.
66	Ps	-	Side load applied to lug at current sweep position, subroutine TEE, 1b.
67	Pc	-	Compression load applied to lug at current sweep position, subroutine TEE, 1b.
ú8	-	-	Intermediate calculation for location 69.
69	Α	-	Term 'A' for a cubic equation involving thickness of lug under combined shear and compression loads to insure zero or
70	В	-	positive margins, subroutine TEE. Term "B" of preceding cubic expression, defined as:
			$\frac{A}{(t^3)^{3/2}} + \frac{B}{t^3} = 1.0$
			Let $X = t^3$, then
			$\frac{A}{(X)^{3/2}} + \frac{B}{X} = 1$
			or
			$\sqrt{\frac{A}{X}} + B = X$
			or
			$\sqrt{X} (X-B) -A = 0 = f(X)$
71 72	$ \sqrt{X} $ $ f(X) $	-	Square root of X. Function of $X = \sqrt{X} (X-B)-A$, subroutine TEE.
73	Х	-	Assumed value for X, subroutine TEE.

TABLE 235. S ARRAY, SUBROUTINE PIVOT (CONT)

r 			NAME OF THE PROPERTY OF THE PR
Array Location	Variable	Sketch Ref	Description
74	T _{LUG}	-	Thickness of lug for current sweep position being analyzed by subroutine TEE, in.
75	-	-	Sweep angle of leading edge at sweep position currently being analyzed by subroutine TEE, radians.
76	К	-	Buckling coefficient for plate shear buckling equation based on plate aspect ratio of lug, subroutine TEL.
77	T _{MAX}	-	Maximum thickness of lug from all sweep positions analyzed by subroutine TEL, in.
78	-	-	Difference between sweep angles of leading edge in current sweep position being analyzed by subroutine TEL and initial forward sweep position, radians.
79	M _X A	-	Net ultimate design bending moment at current sweep position being analyzed by subroutine TEL, in-lb.
80	$\Lambda_{ ext{HE}}$	-	Current sweep angle of leading edge, sub- routine TEL, radians.
81	-	-	Not used.
82	-	-	Sine of current leading edge sweep angle, subroutine TEL.
83	-	-	Cosine of current leading edge sweep angle subroutine TEL.
84	P _s	-	Side load applied to lug at current sweep position, subroutine TEL, lb.
85	Pt	-	Tension load applied to lug at current sweep position, subroutine TEL, lb.
86-87	_	_	Not used.
88	Α	-	Term "A" for cubic equation involving lug thickness for lug under combined shear and tension loads to insure positive or zero margins, subroutine, TEL.
89	В	-	Term "B" for preceding cubic equation, subroutine TEL.
90	X _o	-	Assumed value of X for iterative solution of cubic equation by subroutine TEL, equation defined as:
			$f(X) = 0 = X - (A + BX^2)^{1/3}$

TABLE 235. S ARRAY, SUBROUTINE PIVOT (CONT)

Array		Sketch	
Location	Variable	Ref	Description
91	x ₁	-	Calculated value for X, using assumed
	1	I	value in location 90, subroutine TEL.
92	x ₁ -x _o	-	Difference between calculated and assumed
	1 70	:	X, subroutine TEL.
93	Т.,,,	-	Thickness of lug for current sweep position
20	TLUG		being analyzed by subroutine TEL, in.
94	_	_	Not used.
95	_	_	Weight of inboard lugs, lb/side.
96	_	-	weight of outboard lugs, lb/side.
97	l <u>-</u>	-	Weight of pivot pin, lb/side.
98	_	_	Weight of inboard, lug rib, lb/side.
99	Υ		Structural distance between tip station
33	Y _{RIB} o		and outboard lug-rib, in.
100-120	_	_	Not used.
121	$1D^2$	_	Square of inner-diameter of pivot pin, in ² .
122		ь	Length of line labeled "L ₁₀ " of outboard
120	L ₁₀		lug, in.
123	a + b	c	Sum of angles labeled "a" and "b" of
15.7			inboard lug, radians.
124	d+c	С	Sum of angles labeled "d" and "c" of
15.	" "		inboard lug, radians.
125	a + b	b	Sum of angles labeled "a" and "b" of
123	a _o + b _o		outboard lug, radians.
126	c ₀ + d ₀	ь	Sum of angles labeled "c" and "d" of
120	0 0		outhoard lug, radians.
127	FBRo	_	Bearing stress from previous sizing
	PKO		pass, psi.
128	-	-	Difference between current and previous
			bearing stresses, psi.
129	c _o	b	Angle labeled "co" of outboard lug when
	0		YAYP equals EDIST, radians.
130	α	e	Angle labeled "\a," radians.
131	ΔΨ	h,e	Difference between 2π and sum of angles
		,	c_0 , α , and D_{TH} , radians.
132	-	b,e	Sine of $\Delta \psi$
133	-	b,e	Cosine of ∆Ψ
134	_	b,e	Sine of $(\alpha + \Delta \psi)$.
135	-	h,e	Cosine of $(\alpha + \Delta \psi)$.
136	-	b,e	Sine of $(\Lambda_{RS} + \Delta \psi)$.
137	-	b,e	Ratio of squares of sines of angles D _{TH}
			and $(\Lambda_{RS} + \psi)$.
		i.	1.0
-	J	L	

TABLE 235. S ARRAY, SUBROUTINE PIVØT (CONCL)

Array			
Location	Variabl e	Sketch Ref	Description
138	-	-	Intermediate calculation for estimating location of inboard lug-rib.
139	$\mathbf{L_{1}}$	c	Estimated length of L_1 when Y_{AYP} is less than EDIST, in.
140	-	b,c	Analysis code, value of $(+1)$ indicates that Y_A and Y_R were estimated by logic for the condition: Y_{AYP} less than EDIST.
141	-	-	Not used.
142	-	-	Leading edge sweep angle for sweep position yielding maximum upper inboard lug thickness at pivot centerline, radians.
143	-	-	Leading edge sweep angle for sweep position yielding maximum lower inboard lug thickness at pivot centerline.
144	-	-	Leading edge sweep angle for sweep position yielding maximum upper inboard lugthickness at inboard lug-rib, radians.
145	-	-	Leading edge sweep angle of sweep position yielding maximum lower inboard lug thickness at inboard lug-rib, radians.
146	-	-	Leading edge sweep angle of sweep position yielding maximum upper outboard lug thickness at pivo centerline, radians.
147	-	-	Leading edge sweep angle of sweep position yielding maximum lower outboard lug thickness at pivot centerline, radians.
148	-	-	Leading edge sweep angle of sweep position yielding maximum upper outboard lug thickness at outboard lug-rib, radians.
1.49	-	-	Leading edge sweep angle of sweep position yielding maximum 1 ower outboard lugthickness at outboard lug-rib, radians.
150-154	-	-	Not used.
155	f'(X)	-	First derivative of $f(X)$ defined for location 70.
156	f''(X)	-	Second derivative of f(X) defined for location 70.
157	-	-	An intermediate calculated value used in estimating a new value of X based on previous estimate of X.
158-200	-	-	Not used.

General information for array TSS:

Blank common reference location = T(1961)

Array size = 100 cells

Total calculated weight summary information for the three gross weight points that can be analyzed by the wing and empennage module is transmitted from the structural synthesis/weight analysis overlays to the output data processing overlay by way of mass storage file 1, records 184 through 189. Subroutine TBOPT, overlay (9,0), for metallic designs, and subroutine ATBOPT, overlay (18,0), for advanced composite designs, create these records at the conclusion of the final iteration pass for each gross weight. Array TSS is used during the lata processing operations by these subroutines.

Two weight summary data sets are created for each gross weight " one containing "fixed surface" data and the other containing variable-sweep surface data, including pivot structure summary data and "fixed structure" weight increments. Each set is stored in consecutive records on mass storage file 1; records 184, 185, and 186 for gross weight 1, 2, and 3 "fixed surface" data sets and records 187, 188, and 189 for gross weight 1, 2, and 3 variable-sweep data sets. The data sets are recreated in array CD, locations 400 through 699 and 800 through 1099, by subroutine WDDATA in overlay (17,0) and used by subroutine PRTD to create array TS data during final data processing of module outputs.

The first data set is created from arrays TWT and TSS, which contain weight summary information for the surface outer-panel components and center-section as computed by subroutines WTCAL and CSECW. The second data set is created from the output information of subroutine DLPVT stored in arrays TWT and TSS.

Array TSS is set to 0.0 values before data processing for each set is initiated. Array locations used for storage or center-section and variable-sweep subsets will contain 0.0 values if these structures are not analyzed. Records 184 through 189 will also contain 0.0 values for gross weight points not analyzed. These records are initialized to 0.0 values by subroutine PRØG, overlay (9,0), or ACPRØG, overlay (18,0).

The two versions of array TSS are described in the following in separate blocks. All weights are computed in terms of pounds per air vehicle values.

Array Location	Description	Source
throu Locat	I surface" data set is described in the following. Locations 50 contain outer-panel data derived from array TWF (Taitions 51 through 100 contain center-section data from the Woutput data version of array TSS.	ble 230).
1	Σ W _{TR} , total torque-box weight.	TWI(1)
2	$(\Sigma W_{cov})_{upr}$, total upper cover weight.	TWT(2)
3	(\(\sum_{\text{cov}}\) _{\text{lwr}}, total lower cover weight.	TWF(3)
4	$(\Sigma \Delta W_{TB})_{VF}$, total torque-box weight increment for	TWT(4)
5	flutter design. $\Sigma W_{\text{rib}}, \text{ total intermediate rib or spar weight.}$	TWI (5)
6	ΣW_{pq} , total front spar weight.	TWΓ(6)
7	ΣW_{RS} , total rear spar weight.	TWI (7)
8	Σ Wmisc, total miscellaneous structure and attachment	TWI (8)
9	weight. (Wskin)upr, upper cover skin weight.	TWI(9)
10	(W _{str}) _{upr} , upper cover stringer or cap weight.	TWF(10)
11	(Wmisc skin)upr, upper cover miscellaneous skin weight.	TWT(11)
12	(W _{skin}) lwr, lower cover skin weight.	TWF(12)
13	(W _{str}) _{lwr} , lower cover stringer or cap weight.	TWI (13)
14	(W _{misc skin}) _{1wr} , lower cover miscellaneous skin weight.	TWF(14)
15	(W _{cap}) _{FS} , front spar cap weight.	TWI (15)
16	(W _{web}) _{FS} , front spar web weight.	TWF(16)
17	(W _{cap}) _{RS} , rear spar cap weight.	TWF(17)
18	(W _{web}) _{RS} , rear spar web weight.	TWI (18)
19	(ΔW_{skin}) upper cover skin weight increment for flutter design.	TWF(19)
20	(\(\Delta W_{\text{str}}\) upper cover stringer or cap weight increment for flutter design.	TWI (20)

Array Location	Description	Source
21	(A W misc skin) upr VF, upper cover miscellaneour skin	TWT(21)
22	weight increment for flutter design. (\(\Delta W \) skin \(\lambda W \) VF, lower cover skin weight increment for skin weight in skin weight i	TWT(22)
23	flutter design. (\Delta W \\ \text{str} \crop \text{flutter design} \text{ cover stringer or cap weight}	TWT (23)
24	increment for flutter design. (AW misc skin) lwr VF, lower cover miscellaneous skin increment for flutter design.	TWT (24)
25	increment for flutter design. (ΔW_{rib}) _{VF} , intermediate rib or spar weight increment	TWT (25)
26	for flutter design. (ΔW_{web}) _{FS VF} , front spar web weight increment for	TWT (26)
27	flutter design. (\(\Delta W \text{web} \)_{RS \(\VF \)}, rear spar web weight increment for	TWT (27)
28	flutter design. $(\Delta W_{att})_{VF}$, miscellaneous cover attachment weight for	TWT (28)
29	flutter design. (\(\Delta W \ \ \misc \) rib VF, intermediate rib or spar miscellaneous structure items weight increment for flutter design.	TWT (29)
30	W _{blhd} , bulkhead weight.	TWT(30)
31	W _{RR} , root rib weight.	TWT(35)
32	(W cap) RR, root rib cap weight.	TWT (36)
33	(W _{web}) _{RR} , root rib web weight.	TWT(37)
34	(W _{misc}) _{RR} , root rib miscellaneous structure and	TWT (38)
35	attachment weight. W shear ftg, outer panel-to-fuselage shear-tie fitting	TWT (39)
36	weight. ΣW _{SURFACE} , total surface weight, outer-panel and	TWT (40)
37	center section. Σ W _{OPNL} , total outer-panel weight.	TWT (41)
38	0.0	TWT(42)

Array Location	Description	Source
39	ΣW _{C-SEC} , total center section weight.	TWI (43)
40	ΣW _{OPNL} , total outer-panel weight.	TWI (45)
41	ΣW_{TR} , total torque-box weight.	TWT (46)
42	$\Sigma W_{ m LE}$, total leading edge weight	TWI (47)
43	ΣW_{TP} , total trailing edge weight.	TWF(48)
44	$\Sigma W_{\overline{ m MISC}}$, total outer panel secondary structure weight.	TWF (49)
45	ΣW _{TIP} , total tip weight.	TWT(50)
46	ΣΔW _{T-tail} , total weight increment for T-tail designs	TWI (51)
47	$\Sigma\Delta$ W _{\gamma\sig}	TWI (52)
48	$\Sigma \Delta$ W _{CDL} , total weight increment for concentrated mass	TWI (53)
49	provisions. $(\Sigma \Delta W_{rib})_{T-tail}$, total weight increment of rib structures for T-tail horizontal and vertical tail	TWI (67)
50	surfaces. (ΣΔW cone T-tail, total tail cone weight for T-tail designs.	TWF(70)
51	ΣW _{C-SEC} , total center section weight.	TSS(1)
52	W _{MISC} , total center section secondary structure weight.	TSS(2)
53	(W _{cov}) _{upr} , upper cover weight for center-section.	TSS(3)
54	(W _{cov}) _{1wr} , lower cones weight for center-section.	TSS(4)
55	Wrib, intermediate rib or spar weight for center- section.	TSS(5)
56	W _{FS} , front spar weight for center section.	TSS(6)
57	W _{RS} , rear spar weight for center-section.	TSS(7)
58	W _{misc} , miscellaneous structure and attachment weight for center section.	TSS(8)
59	(Wskin)upr, upper cover skin weight for center section.	TSS(9)
60	(W _{str}) _{upr} , upper cover stringer or cap weight for center section.	TSS(10)

Array Location	Description	Source
61	(W misc skin upr, upper cover miscellaneous skin weight for center-section.	TSS(11)
62	(W _{skin}) _{lwr} , lower cover skin weight for center-section.	TSS (12)
63	(W _{str}) _{lwr} , lower cover stringer or cap weight for center-section.	TSS(13)
64	(W _{misc skin}) _{1wr} , lower cover miscellaneous skin weight for center-section.	TSS(14)
65	(W _{cap}) _{FS} , front spar cap weight for center-section.	TSS(15)
66	(W _{web}) _{FS} , front spar web weight for center-section.	TSS(16)
67	(W _{cap}) _{RS} , rear spar cap weight for center-section.	TSS(17)
68	(W _{web}) _{RS} , rear spar web weight for center-section.	TSS(18)
69	(W _{rib}) _{C/L} , centerline rib weight for center-section.	TSS(19)
70	W _{blhd} , bulkhead weight for center-section.	TSS(20)
71	0.0	TSS(21)
72	0.0	TSS(22)
73	0.0	TSS (23)
74	0.0	TSS (24)
75	0.0	TSS (25)
76	(Width) _{b1/2} , center-section box width at side-of-body station, in.	TSS (26)
77	(Width) _{C/L} , center-section box width at centerline, in.	TSS (27)
78	b ₁ /2, side-of-body station, in.	TSS (28)
79	$D_{b_1/2}$, center-section depth as side-of-body station, in.	TSS(29)
80	D _{C/L} , center-section depth at centerline, in.	TSS (30)
81	ρ b ₁ /2, factor for weight calculation, 1b/in. ²	TSS (31)
82	(K _{cap}) _{C/L} , geometry factor for centerline rib cap weight.	TSS (32)
83	(K _{web}) _{C/L} , geometry factor for centerline rib web weight.	TSS (33)
84	K cov, geometry factor for center-section cover weight.	TSS(34)

TABLE 236. TSS ARRAY, TOTAL WEIGHT SUMMARY DATA, SUBROUTINES TBØPT AND ATBØPT (CONT)

Array Location	Description	Source
85	Krib, geometry factor for center-section intermediate rib or spar weight.	TSS(35)
86	(W _{cap}) _{C/L} , centerline rib cap weight.	TSS(36)
87	(Wweb) _{C/L} , centerline rib web weight.	TSS(37)
88	(Wmisc) _{C/L} , centerline rib miscellaneous weight.	TSS(38)
89	(K misc) FS/RS, geometry factor for front and rear spar miscellaneous item weight.	TSS (39)
90	(K _{web}) _{FS/RS} , geometry factor for front and rear spar weight.	TSS (40)
91	0.0	TSS(41)
92	0.0	TSS (42)
93	0.0	TSS(43)
94	0.0	TSS (44)
95	0.0	TSS(45)
96	0.0	TSS, 46)
9-	0.0	TSS (47)
98	0.0	TSS (48)
99	0.0	TSS(49)
100	0.0	TSS(50)

The variable-sweep surface data set is described in the following. Locations 1 through 50 contain weights of outer panel torque-box structures to be replaced with pivot structures, derived from array TWT (Table 233). Locations 51 through 75 contain weights of center section structures to be replaced with pivot structures, derived from the subroutine DLPVT output data version of array TSS. Locations 76 through 100 contain pivot structure weight and design data.

-		-
1	$\Delta \Sigma$ W _{TB} , total torque-box weight to be deleted.	TWI(1)
2	$\Delta(\Sigma_{\rm cov})_{\rm upr}$, total upper cover weight to be deleted.	TWI (2)
5	$\Delta(\Sigma_{\text{cov}}^{\text{W}})_{\text{lwr}}$, total lower cover weight to be deleted.	TWT(3)
4	$\Delta(\Sigma \Delta W_{\mathrm{TB}})_{\mathrm{VF}}$, total flutter design weight increment to be deleted.	TWI (4)
5	$\Delta \Sigma W_{ m rib}$, total intermediate rib or spar weight to be deleted.	TWI (5)

Array Location	Description	Source
6	$\Delta\Sigma$ W _{FS} , total front spar weight to be deleted.	TWT(6)
7	$\Delta\Sigma$ W _{RS} , total rear spar weight to be deleted.	TWT (7)
8	$\Delta \Sigma W_{\text{misc}}$, total miscellaneous structure and attach-	TWT(8)
9	ment weight to be deleted. $\Delta(W_{skin})_{upr}$, upper cover skin weight to be deleted.	TWT (9)
10	△(W _{str}) _{upr} , upper cover stringer or cap weight to be deleted.	TWT(10)
11	Δ(W _{misc skin}) _{upr} , upper cover miscellaneous skin weight to be deleted.	TWT(11)
12	$\Delta(W_{\rm skin})_{\rm lwr}$, lower cover skin weight to be deleted.	TWT (12)
13	Δ(W _{str}) _{lwr} , lower cover stringer or cap weight to be deleted.	TWT (13)
14	△(W _{misc skin}) _{lwr} , lower cover miscellaneous skin	TWT (14)
15	weight to be deleted. $\Delta(W_{\text{cap}})_{FS}$, front spar cap weight to be deleted.	TWT (15)
16	$\Delta(W_{\text{web}})_{\text{FS}}$, front spar web weight to be deleted.	TWT(16)
17	$\Delta(W_{\text{cap}})_{\text{RS}}$, rear spar cap weight to be deleted.	TWT (17)
18	Δ(W _{web}) _{RS} , rear spar web weight to be deleted.	TWT (18)
19	Δ(ΔW _{skin}) _{upr VF} , upper cover skin flutter design	TWT (19)
20	increment to be deleted. $\Delta(\Delta W_{\text{str}})_{\text{upr VF}}$, upper cover stringer or cap flutter design increment to be deleted.	TWT (20)
21	Δ(ΔW _{misc skin}) _{upr VF} , upper cover miscellaneous skin	TWT(21)
22	flutter design increment to be deleted. $\Delta(\Delta W_{skin})_{lwr \ VF}$, lower cover skin flutter design	TWT (22)
23	increment to be deleted. $\Delta (\Delta W_{str})_{lwr \ VF}, \text{ lower cover stringer or cap flutter}$	TWT (23)
24	design increment to be deleted. $\Delta \left(\Delta W_{\text{misc skin}} \right)_{\text{lwr VF}}, \text{ lower cover miscellaneous skin flutter design increment to be deleted.}$	TWT(24)

Array		
Location	Description	Source
25	Δ(ΔW _{rib}) _{VF} , intermediate rib or spar flutter design	TWI (25)
	increment to be deleted.	
26	Δ(ΔW _{web}) _{FS VF} , front spar web flutter design incre-	TWT (26)
27	ment to be deleted. $\Delta(\Delta W_{\text{web}})_{\text{RS VF}}, \text{ rear spar web flutter design incre-}$	TWT (27)
	ment to be deleted.	
28	$\Delta (\Delta W_{att})_{VF}$, miscellaneous structure and attachment	TWI (28)
	flutter design increment to be deleted.	GT 50 () ()
29		TWI (29)
30	ΔW_{blhd} , bulkhead weight to be deleted.	TWI (30)
31	ΔW_{RR} , root rib weight to be deleted.	TWI (31)
32	Δ (W _{cap}) _{RR} , root rib cap weight to be deleted.	TWI (32)
33	$\Delta (W_{\text{web}})_{RR}$, root rib web weight to be deleted.	TWI (33)
34	$\Delta(W_{\text{misc}})_{RR}$, root rib miscellaneous and attachment	TWF (34)
	weight to be deleted.	
35	ΔW_{RR} , root rib weight increment.	TWT (35)
36	$\Delta(W_{\text{cap}})_{\text{RR}}$, root rib cap weight increment.	TWI (36)
37	$\Delta(W_{\text{web}})_{RR}$, root rib web weight increment.	TWΓ(37)
38	$\Delta(W_{\rm misc})_{\rm RR}$, root rib miscellaneous and attachment	TWF (38)
	weight increment.	
39	0.0	TWT (39)
40	0.0	TWT (40)
41	0.0	TWI (41)
42	0.0	TWT (42)
43	0.0	TWI (43)
44	0.0	TWT (44)
45	0.0	TWT (45)
46	0.0	TWT (46)
47	0.0	TWT (47)
48	0.0	TWI (48)
49	0.0	TWI (49)
50 51	0.0 ATW total center section would to be deleted	TWI (50)
O.T.	$\Delta \Sigma$ W _{C-SEC} , total center section weight to be deleted.	TSS(1)

Array Location	Description	Source
52	$\Delta\Sigma$ W _{MISC} , center-section secondary structure weight	TSS(2)
53	to be deleted. Δ(W _{cov}) _{upr} , center-section upper cover weight to be deleted.	TSS(3)
54	$\Delta(W_{\text{cov}})_{\text{lwr}}$, center-section lower cover weight to be	TSS(4)
55	deleted. \[\Delta W \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TSS(5)
56	ΔW_{FS} , center-section front spar weight to be deleted.	TSS(6)
57	ΔW_{RS} , center-section rear spar weight to be deleted.	TSS(7)
58	ΔW_{misc} , center-section miscellaneous structure and	TSS(8)
59	attachment weight to be deleted. $\Delta(W_{skin})_{upr}$, center-section upper cover skin weight	TSS(9)
60	to be deleted. $\Delta (W_{str})_{upr}$, center-section upper cover stringer or cap	TSS(10)
61	weight to be deleted. Δ(W _{misc skin}) _{upr} , center-section upper cover miscella-	TSS(11)
62	neous skin weight to be deleted. \$\Delta(\mathbb{W}_{\text{skin}})\mathbb{lwr}, \text{ center-section lower cover skin weight to be deleted.}	TSS(12)
63	$\Delta (W_{str})_{lwr}$, center-section lower cover stringer or cap	TSS (13)
64	weight to be deleted. Δ(W misc skin) lwr, center-section lower cover miscel-	TSS(14)
65	laneous skin weight to be deleted. $\Delta(W_{\text{cap}})_{\text{FS}}$, center-section front spar cap weight to be	TSS (15)
66	deleted. $\Delta(W_{\text{web}})_{FS}$, center-section front spar web weight to be	TSS(16)
67	deleted. $\Delta (W_{\text{cap}})_{\text{RS}}, \text{ center-section rear spar cap weight to be}$	TSS(17)
68	deleted. $\Delta(W_{\text{web}})_{\text{RS}}$, center-section rear spar web weight to be deleted.	TSS(18)

TABLE 236. TSS ARRAY, TOTAL WEIGHT SUMMARY DATA, SUBROUTINES TBOPT AND ATBOPT (CONT)

Array Location	Description	Source
69	Δ(W _{rib}) _{C/L} , center-section centerline rib weight to be deleted.	TSS(19)
70	ΔW_{blhd} , center-section bulkhead weight to be deleted.	TSS(?
71	0.0	TSS
72	0.0	TSS (22
7.5	0.0	TSS(2
74	0.0	TSS(24)
75	0.0	TSS(25)
76	0.0	TSS(26)
77	0.0	TSS(27)
78 78	0.0	TSS (28)
79	0.0	TSS(29)
80	0.0	TSS (30)
81	D'ØBD lug, couple-arm for outboard lugs, in.	TSS(31)
82	(M _X \) pivot, ultimate bending moment at structural reference line station of the pivot centerline, in-1b.	TSS(32)
83	pivot, mold line depth at pivot centerline, in.	TSS(33)
84	PØBD lug, axial load on outboard pivot lugs, 1b.	TSS(34)
85	f _{br} , allowable bearing stress for pivot bearings, psi.	TSS(35)
86	ØD pin, outer-diameter of pivot pin, in.	TSS(36)
87	ID inner-diameter of pivot pin, in.	TSS(37)
88	0.0	TSS(38)
89	0.0	TSS(39)
90	0.0	TSS(40)
91	Σ W pivot, total pivot structure weight.	TSS(41)
92	(W _{lug}) _{IBD} , inboard lug weight.	TSS(42)
93	(W _{lug}) _{ØBD} , outboard lug weight.	TSS(43)
94	W _{pin} , pivot pin weight.	TSS(44)
95	(Wrib) IBD, inboard lug-rib weight.	TSS(45)
96	(W misc) pivot, miscellaneous structure weight for pivot.	TSS(46)

Array Location	Description	Source
97	(Width) IBD, structural chord of fixed structure at	TSS(47)
98	the inboard lug-rib station, in. (Width) pBD, structural chord of fixed structure at	TSS(48)
99	the outboard lug-rib station, in. (Y _{lug-rib}) IBD, Y-coordinate of inboard lug-rib, in.	TSS(49)
100	(Y _{lug-rib}) ØBD, Y-coordinate of outboard lug-rib, in.	TSS(50)
		ı
	4	
		1

General information for array TØ:

Blank common reference location = T(920)

Array size = 40 cells

Array TØ contains metallic torque-box optimization data created and used by subroutines TBOPT, overlay (9,0) and CNSTR, overlay (10,0), during the optional single-value torque-box NØS or b optimization procedure, specified by analysis control code DØPT, D(1365). For multirib or multispar designs, an input value of 2 directs TBOPT to optimize total torque-box weight for constant number of stringer or spar elements, NØS, at all 11 stations; an input value of 3 causes TBOPT to optimize total torque-box weight for constant spacings, b. at each station. These codes direct TROPT to perform the optimization when analysis pass counter NØDW, ND(56), equals 3. TØ array data are then created for optimum NØS or b selection between specified minimum and maximum values, using subroutine CNSTR and assuming constant design loads based on the loads computed for pass 3. The selected optimum value is kept constant for the two subsequent passes, NODW - 2 and 1, but the design loads are adjusted for changes in torque-box weight distribution and couple-aims. TØ array data are not created when DØPT is specified as 0.0 or 1.0.

Array Location

Description

Locations 1 through 3 contain calculated torque-box weights for the current analysis point. Subroutine CNSTR sets up these weights from results of subroutine WTCAL computations after all 11 stations have been analyzed. Station J weight is derived from the total surface weight summary data set saved by CNSTR in TW(801) - TW(900) after completion of analysis at Station J. Station J is the analysis station specified in D(1366), input data variable DOPTJ, used to segment to torque-box into two panels for which calculated weights are saved in locations 2 and 3. The weight summary for the panel outboard of station J is printed by subroutine PRTA as part of the design summary output. Currently, these inboard/outboard panel data are used for information purposes only, but logic changes can be made to optimize these panels separately for NOS or b, or to change the type of search. The input data set default value for DOPTJ is station 6. However, if this variable is specified as 0.0, subroutine TBOPT will assume station 5 as the internal default value.

TABLE 237. TØ ARRAY, SUBROUTINES TBØPT AND CNSTR (CONT)

Array Location	Description
1	(\(\mathbb{E}\)\(\mathbb{T}_B\)\(\mathbb{B}\)\(\mathbb{D}_1\), total torque-box weight of current analysis point, lb/side. The optimization type is identified by the value of code word I\(\mathbb{D}\)Pl, ND(82); 2 = number of stringer or spars, 3 = stringer or spar spacing. Location 6 contains the current value for the search variable.
2	(\(\mathbb{E}W_{TB}\))_{sta(1-J)i}, torque-box weight of inboard panel between root station and station J, lb/side.
3	(EWTB) _{sta(J-11)i} , torque-box weight of outboard panel between station J and tip station, 1b/side.
4	ΔY _{ΛIB} , structural span of inboard panel, distance between root station and station J along structural reference line, in.
5	$\Delta Y_{\Lambda ØB}$, structural span of outboard panel, distance between station J and tip station along structural reference line, in.
Locations 6 through 17 contain search variable and limits data computed and used by TBØPT. Values are dependent upon torque-box optimization type. Search limits and intervals are determined from values specified in D(1367) - D(1370), input data array DØP2, for NØS search and D(1371) - D(1374), input data array DØP3 for b search.	
6	NØS _i or b _i , search parameter value of current point, computed by TBØPT and used by CNSTR at each analysis station.
7 8	Not used. NØS _{max} or b _{max} , maximum value for search parameter, set up by TBØPT from DØP2(1) or DØP3(1), value used as the first analysis point in torque-box optimization.
9	NØS _{min} or b _{min} , minimum value for search parameter, set up by TBØPT from DØP2(2) or DØP3(2).
10	ΔNØS1 or Δb1, search parameter increment for initial optimum point search, set up by TBØPT from DØP2(3) or DØP3(3).
11	ΔNØS2 or Δb2, search parameter increment for evaluation of intermediate points after optimum search parameter region has been found, set up by TBØPT from DØP2(4) or DØP3(4).
12-17	Not used

TABLE 237. TØ ARRAY, SUBROUTINES TBØPT AND CNSTR (CONCL)

Array Location	Description	
Locations 18 through 24 contain data for search point i-1 and i-2, saved and used by TBØPT.		
18	(EWTB) _{i-1} , total torque-box weight of point NØS _{i-1} or b _{i-1} , computed during initial search using NØS ₁ or b ₁ , lb/side.	
19	(SWTB) _{sta(1-J)i-1} , torque-box weight of inboard panel for point NOS _{i-1} or b _{i-1} , 1b/side.	
20	(SWTB) _{sta(J-11) i-1} , torque-box weight of outboard panel for point NOS _{i-1} or b _{i-1} , 1b/side.	
21 22	<pre>NØS_{i-1} or b_{i-1}, search parameter value of point i-1. N_i, search point counter, number of primary and intermediate points analyzed.</pre>	
23	($\mathcal{E}W_{TB}$) _{i-2} , total torque-box weight of point NØS _{i-2} or \mathbf{b}_{i-2} , 1b/side.	
24	$NØS_{i-2}$ or b_{i-2} , search parameter value for point i-2.	
25-40	Not used.	

PEFERENCES

- 1. Bruhn, E. F., Analysis and Design of Flight Vehicle Structures, Tri State Offset-Company, Ohio, 1965
- 2. Gerard, G., <u>Minimum Weight Analysis of Compression Structures</u>, University Press, New York, 1956
- 3. Peery, David J., Aircraft Structures, McGraw-Hill, New York, 1950
- 4. Roark, Raymond J., Formulas for Stress and Strain, McGraw-Hill New York, 1954
- 5. Shanley, F. R., Weight-Strength Analysis of Aircraft Structures, McGraw-Hill, New York, 1952
- 6. Timoshenko, S., Theory of Elastic Stability, McGraw-Hill, New York, 1936
- 7. Military Standardization Handbook MIL-HDBK-5B, Metallic Materials and Elements for Aerospace Vehicle Structures, Department of Defense, Washington, D.C., 1971
- 8. Military Handbook MIL-HDBK-23A, <u>Structural Sandwich Composites</u>, Department of Defense, Washington, D.C., 1968
- 9. Advanced Composites Design Guide, Rockwell International/Los Angeles Aircraft Division Draft Report for Contract F33615-71-C-1362, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, 1973
- 10. <u>Honeycomb Sandwich Structures Manual</u>, NA-58-889, Rockwell International, Los Angeles, Calif., 1958
- 11. <u>Structures Manual</u>, NA-52-400, Rockwell International, Los Angeles, Calif., 1952
- 12. Crawford, R. F., and Burns, A. B., "Minimum Weight Potentials and Design Information for Stiffened Plates and Shells," American Rocket Society Launch Vehicles Structures and Materials Conference, April 1962
- 13. Emero, D. H., and Spunt, L., 'Minimum Weight Analysis of Multirib and Multiweb Wing Box Structures," NA-64-923, Rockwell International, Los Angeles, Calif., 1964

- 14. Gerard, G., "Minimum Weight Analysis of Orthotropic Plates Under Compressive Loading," Journal of Aerospace Sciences, January 1960
- 15. Konishi, D. Y., and Lackman, L. M., 'Minimum Weight Analysis of Shear Loaded Structures," NA-67-669, Rockwell International, Los Angeles, Calif., 1967
- 16. Land, Norman S., and Fox, Annie G., "An Experimental Investigation of the Effect of Mach Number, Stabilizer Dihedral, and Fin Torsional Stiffness on the Transonic Flutter Characteristics of a Tee-Tail," TND-923, National Aeronautics and Space Administration, Virginia, 1957
- 17. Posluszny, D. A., and Carpenter, J., "Derivation of A Spanwise Torsional Constant J, for a Multi-Station Weight Increment," NA-61-1039, Rockwell International, Los Angeles, Calif., 1961
- 18. Schilling, J. F., "Approximate Flutter Stiffness Requirements for Preliminary Design Parametric Studies," NA-66-959, Rockwell International, Los Angeles, Calif., 1966
- 19. Spunt, L., "Preliminary Optimization and Evaluation of Multiweb and Multispar Wings," NA-64-645, Rockwell International, Los Angeles, Calif., 1964