LECTURE 4

Author

Tom Jeong

January 15, 2025

Contents

1	Polynomials in Fields	2
2	Eisenstein's Criterion	3
	2.1 Applications of Eisenstein's criterion	3

1 Polynomials in Fields

$$p(x) \in K(x)$$

$$p = f \cdot g, f, g \in K(x)$$

$$\partial f, \partial g > 0$$

$$\partial f, \partial g < \partial p$$

$$\operatorname{case } 1 \ \partial p = 2$$

$$p = f \cdot g$$

$$\partial f = \partial g = 1$$

$$p \text{ is irreduciable } \leftrightarrow p \text{ doesn't have units in } K \text{ (quadrati formula)}$$

$$\operatorname{case } 2: \partial p = 3$$

$$\partial f = 1,$$

$$\partial g = 2$$

$$p \text{ is irrudicible } \leftrightarrow p \text{ doens't have a root in } K$$

$$\operatorname{case } 3: \partial p = 4$$

$$\partial f = 2, \partial g = 2 \text{ or } \partial f = 1, \partial g = 3$$

$$\mathbb{Q}[x]$$

Lemma 1.1 (Gauss' Lemma).

 $h \in \mathbb{Z}[x]$ irriducible \Rightarrow h is irreducible in $\mathbb{Q}[x]$

 (\Leftarrow) : is this true? (no)

$$h = f \cdot g$$

 $h = 2x + 2 = 2(x+1)$ where $\partial f, \partial g < \partial h$

 $p \in \mathbb{Z}[x]$?

this constant is not a unit.

Proof.

Suppose $h = f \cdot g$ where $f, g \in \mathbb{Q}[x]$. Clear denominators in f, g.

There is the smallest positive integer k such that $k \cdot h = \bar{f} \cdot \bar{g}$ where $\bar{f}, \bar{g} \in \mathbb{Z}[x]$

There is a prime p dividing k. Let's look at $kh = \bar{f}\bar{g}$ in $\mathbb{Z}_p(x)$

in \mathbb{Z}_p , $0 = \bar{f}_p \cdot \bar{g}_p$ Z: integral domain, so either one must be 0,

 $\bar{f}_p = 0$ or $\bar{g}_p = 0 \rightarrow$ either all coefficients of \bar{f} or all coefficients of \bar{g} iare divisible by $p \rightarrow k$ can be reduced. contradiction.

2 Eisenstein's Criterion

$$h \in \mathbb{Z}[x]$$

 $h = a_0 + a_1 x + \dots + a_n x^n$

suppose that there exists a prime p such that:

- 1. $p|a_0,\ldots,a_{n-1}|$
- 2. $p \nmid a_n$
- 3. p^2 / a_0
- $\to f$ is irreducible in $\mathbb{Q}[x]$

Proof.

suffice to show that h is irridubcible in $\mathbb{Z}[x]$ (Gauss lemma)

Suppose $h = f \cdot g$, where $f, g \in \mathbb{Z}[x]$ and $\partial f, \partial g < \partial h$

Let's look at $h = fg \mod p$

 $h_p = f_p g_p$

 $a_n x^n = f_p g_p$

 $a_n \not\equiv 0 \mod p$

look $a_0, p \mid a_o, p^2 \nmid a_0$

 $\rightarrow p$ divides constant term g, f or g but not both

WLOG,

 $p \mid \text{constant term of } g \text{ and } p \nmid \text{constant term of } g \rightarrow g_p \text{ is a polynomial with a constant term}$

$$a_n x^n = f_p \cdot g_p$$

 $\mathbb{Z}_p(x)$ UFD but we have two different factorizations.. contradiction $rightarrown\mathbb{Z}[x]$ can only factor $h = fg, \partial f = 0$ but then divide h by f

2.1 Applications of Eisenstein's criterion

ex.

$$x^4 - 2$$

is irriducible, p=2

$$2x^5 - 4x^3 + 8x^3 + 14x^2 + 7 = h(x)$$

h(x)irreducible $\Leftrightarrow h(\frac{1}{x})x^u, u=\partial h$

 $2-4x+8x^2+15x^3+7x^5$ is irreducible by eisenstein p=2.

$$h = 1 + x + x^2 + \dots + x^{p-1}$$

p - prime

Proposition 2.1.
$$h(x)$$
 is irreducible in $\mathbb{Q}[x]$

$$h(x) = \frac{x^p - 1}{x - 1}$$

$$h(x) = \frac{x}{x-1}$$
Proof.
$$\cosh h(x+1) = \frac{(x+1)^p - 1}{x} = \sum_{k=1}^p (\binom{p}{k} x^{p-1})$$

$$(x+1)^p = \frac{x^p + px^{p-1} + \binom{p}{2} p^{x-2} + \dots px + 1 - 1}{x}$$
here $p \mid \binom{p}{k} \ 0 < k < p$

Several notations of field extentsions

 $L/KK \subseteq L$, where K, L fields

L:K,M:L:K where L/K,M/L

[L:K] =degree of field extesion (dimension L as K vector space)L/K, L:K

Theorem 2.2 (Tower Theorem). Let $K \subseteq L \subseteq M$ be fields. Then [M:K] = [M:K] $[L] \cdot [L:K]$

Proof. Let a_1, \ldots, a_s be a basis of L as a K-vector space, so [L:K] = s. Let b_1, \ldots, b_t be a basis of M as an L-vector space, so [M:L]=t. For any $l\in L$, we can write $l=\sum_{i=1}^s f_i a_i$ where $f_i \in K$. Claim: The set $a_i b_j : 1 \le i \le s, 1 \le j \le t$ forms a basis of M as a K-vector space. To prove this claim, we need to show:

Linear Independence: Any linear combination $\sum_{i,j} k_{ij}(a_i b_j) = 0$ with $k_{ij} \in K$ implies all $k_{ij} = 0$ Spanning: Any element of M can be written as a linear combination of the $a_i b_j$ with coefficients in K

- 1. To show $a_i b_j$ are linearly independent: Suppose $\sum_{i=1}^s \sum_{j=1}^t k_{ij}(a_i b_j) = 0$ where $k_{ij} \in$ K. For each fixed j, let $c_j = \sum_{i=1}^s k_{ij} a_i \in L$ Then our equation becomes $\sum_{j=1}^t c_j b_j = 0$ Since b_j is a basis of M over L, we must have $c_j = 0$ for all j For each j: $0 = c_j =$ $\sum_{i=1}^{s} k_{ij} a_i$ Since a_i is a basis of L over K, we must have $k_{ij} = 0$ for all i, j
- 2. To show a_ib_j span M as a K-vector space: Let $m \in M$. Since b_j is a basis of M over L, we can write: $m = \sum_{j=1}^{t} l_j b_j$ where $l_j \in L$ For each l_j , since a_i is a basis of L over K, we can write: $l_j = \sum_{i=1}^s k_{ij} a_i$ where $k_{ij} \in K$ Substituting: $m = \sum_{j=1}^t (\sum_{i=1}^s k_{ij} a_i) b_j = \sum_{i=1}^s \sum_{j=1}^t k_{ij} (a_i b_j)$ Therefore, m is in the span of $a_i b_j$