EPITA

Mathematics

Midterm exam S3

November 2022

Duration: 3 hours

Name:
First name:
Class:
MARK:
The marking system is for a mark from 0 to 40. It will be divided by 2, to get a mark from 0 to 20.
Instructions:
 Documents and pocket calculators are not allowed. Write your answers on the stapled sheets provided for answering. No other sheet will be corrected. Please, do not use lead pencils for answering.

Exercise 1 (6 points)

1.	Find the nature of the series whose general term is: $u_n = \frac{\sin\left(\frac{1}{n}\right)}{n^2}$. Justify carefully.
2.	Find the nature of the series whose general term is: $u_n = \frac{n^2 e^{-\sqrt{n}}}{2^{2n}}$. Justify carefully.
3.	Find the nature of the series whose general term is: $u_n = (-1)^n \frac{n}{e^n}$. Justify carefully.

Exercise 2 (6 points)

Let $a \in \mathbb{R}$ such that a > 0 and consider the sequence (u_n) defined for all $n \ge 2$ by: $u_n = \frac{(-1)^n}{\sqrt{n^a + (-1)^n}}$.

The purpose of the exercise is to study the nature of $\sum u_n$.

1.	Find $c \in \mathbb{R}$ such that $u_n = \frac{(-1)^n}{n^{a/2}} + \frac{c}{n^{3a/2}} + o\left(\frac{1}{n^{3a/2}}\right)$.
2.	Using the previous question, discuss the nature of $\sum u_n$ depending on the value of a .

Exercise 3 (8 points)

The purpose of this exercise is to study the sequence (u_n) defined for all $n \in \mathbb{N}^*$ by: $u_n = \frac{z - n!}{1 \times 3 \times 5 \times \cdots \times (2n-1)}$. In that purpose, consider the auxiliary sequence (v_n) defined by: $v_n = \ln(u_n) - \frac{1}{2}\ln(n)$. 1. Let $n \in \mathbb{N}^*$. Compute $\frac{u_{n+1}}{u_n}$ 2. Deduce that $v_{n+1} - v_n = \frac{1}{2} \ln \left(1 + \frac{1}{n} \right) - \ln \left(1 + \frac{1}{2n} \right)$ $v_{n+1} - v_n \sim \frac{a}{n^2}$. 3. Find $a \in \mathbb{R}$ such that 4. Show that (v_n) converges. Let ℓ denote its limit.

5	. Using the previous question, show that there exists $k \in \mathbb{R}$ such that $u_n \sim k \sqrt{n}$. Express k as a function of ℓ .
Exe	ercise 4: Leibniz's rule (5 points)
Let (u_n) be a numerical sequence with an alternating sign.
1	. Write the statement of the Leibniz's theorem about $\sum u_n$.
	N.B.: prove only the convergence of the series $\sum u_n$. It is not required to prove the upper bound of the remainders.

xercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1,3\}, \text{ such that for all } i \in \llbracket 1,3 \rrbracket, \\ P(X_i=1) = \frac{1}{3} \text{ and } P(X_i=3) = \frac{2}{3}$ 1. What are the generating functions G_{X_i} of these variables? 2. Consider the random variable $Y = X_1 + X_2 + X_3$. Compute its generating function G_Y and deduce its distribution				
xercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in \{1,3\}, such that for all i \in [\![1,3]\!], P(X_i = 1) = \frac{1}{3} \text{ and } P(X_i = 3) = \frac{2}{3} 1. What are the generating functions G_{X_i} of these variables? 2. Consider the random variable Y = X_1 + X_2 + X_3. Compute its generating function G_Y and deduce its distribution.$				
xercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in \{1,3\}, such that for all i \in [\![1,3]\!], P(X_i = 1) = \frac{1}{3} \text{and} P(X_i = 3) = \frac{2}{3} 1. What are the generating functions G_{X_1} of these variables? 2. Consider the random variable Y = X_1 + X_2 + X_3. Compute its generating function G_Y and deduce its distribution.$				
xercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in \{1,3\}, such that for all i \in [1,3], P(X_i=1) = \frac{1}{3} \text{and} P(X_i=3) = \frac{2}{3} 1. What are the generating functions G_{X_i} of these variables? 2. \text{ Consider the random variable } Y = X_1 + X_2 + X_3. \text{ Compute its generating function } G_Y \text{ and deduce its distribution.}$				
xercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1, 3\}, \text{ such that for all } i \in \llbracket 1, 3 \rrbracket,$ $P(X_i = 1) = \frac{1}{3} \text{and} P(X_i = 3) = \frac{2}{3}$ 1. What are the generating functions G_{X_i} of these variables? $P(X_i = 1) = \frac{1}{3} \text{and} P(X_i = 3) = \frac{2}{3}$ 2. Consider the random variable $Y = X_1 + X_2 + X_3$. Compute its generating function G_Y and deduce its distribution.				
cercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1, 3\}, \text{ such that for all } i \in [\![1, 3]\!],$ $P(X_i = 1) = \frac{1}{3} \text{and} P(X_i = 3) = \frac{2}{3}$ 1. What are the generating functions G_{X_i} of these variables? $P(X_i = 1) = \frac{1}{3} \text{and} P(X_i = 3) = \frac{2}{3}$ 2. Consider the random variable $Y = X_1 + X_2 + X_3$. Compute its generating function G_Y and deduce its distribution.				
tercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1,3\}, \text{ such that for all } i \in \llbracket 1,3 \rrbracket, \\ P(X_i=1) = \frac{1}{3} \text{and} P(X_i=3) = \frac{2}{3}$ 1. What are the generating functions G_{X_i} of these variables? 2. Consider the random variable $Y = X_1 + X_2 + X_3$. Compute its generating function G_Y and deduce its distribution.				
Sercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1,3\}, \text{ such that for all } i \in \llbracket 1,3 \rrbracket, \\ P(X_i=1) = \frac{1}{3} \text{ and } P(X_i=3) = \frac{2}{3} \\ \text{1. What are the generating functions } G_{X_i} \text{ of these variables?}$ $2. \text{ Consider the random variable } Y = X_1 + X_2 + X_3. \text{ Compute its generating function } G_Y \text{ and deduce its distribution.}$				
tercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1,3\}, \text{ such that for all } i \in \llbracket 1,3 \rrbracket, \\ P(X_i=1) = \frac{1}{3} \text{ and } P(X_i=3) = \frac{2}{3} $ 1. What are the generating functions G_{X_i} of these variables? 2. Consider the random variable $Y = X_1 + X_2 + X_3$. Compute its generating function G_Y and deduce its distribution.				
Service 5: probabilities (5 points) X_1, X_2 and X_3 be three independent random variables, taking their values in $\{1,3\}$, such that for all $i \in [\![1,3]\!]$, $P(X_i=1)=\frac{1}{3}$ and $P(X_i=3)=\frac{2}{3}$ 1. What are the generating functions G_{X_i} of these variables? 2. Consider the random variable $Y=X_1+X_2+X_3$. Compute its generating function G_Y and deduce its distribution.				
tercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1,3\}, \text{ such that for all } i \in \llbracket 1,3 \rrbracket, \\ P(X_i=1) = \frac{1}{3} \text{and} P(X_i=3) = \frac{2}{3}$ 1. What are the generating functions G_{X_i} of these variables? 2. Consider the random variable $Y = X_1 + X_2 + X_3$. Compute its generating function G_Y and deduce its distribution.				
tercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1, 3\}, \text{ such that for all } i \in \llbracket 1, 3 \rrbracket, \\ P(X_i = 1) = \frac{1}{3} \text{ and } P(X_i = 3) = \frac{2}{3} \\ \text{1. What are the generating functions } G_{X_i} \text{ of these variables?}$ $2. \text{ Consider the random variable } Y = X_1 + X_2 + X_3. \text{ Compute its generating function } G_Y \text{ and deduce its distribution.}$				
ercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1,3\}, \text{ such that for all } i \in \llbracket 1,3 \rrbracket, \\ P(X_i=1) = \frac{1}{3} \text{and} P(X_i=3) = \frac{2}{3}$ 1. What are the generating functions G_{X_i} of these variables? 2. Consider the random variable $Y = X_1 + X_2 + X_3$. Compute its generating function G_Y and deduce its distribution.				
ercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1,3\}, \text{ such that for all } i \in \llbracket 1,3 \rrbracket, \\ P(X_i=1) = \frac{1}{3} \text{and} P(X_i=3) = \frac{2}{3} \\ \text{1. What are the generating functions } G_{X_i} \text{ of these variables?}$ $2. \text{ Consider the random variable } Y = X_1 + X_2 + X_3. \text{ Compute its generating function } G_Y \text{ and deduce its distribution.}$				
ercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1,3\}, \text{ such that for all } i \in [\![1,3]\!],$ $P(X_i=1) = \frac{1}{3} \text{ and } P(X_i=3) = \frac{2}{3}$ 1. What are the generating functions G_{X_i} of these variables? 2. Consider the random variable $Y = X_1 + X_2 + X_3$. Compute its generating function G_Y and deduce its distribution.				
ercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1,3\}, \text{ such that for all } i \in \llbracket 1,3 \rrbracket,$ $P(X_i=1) = \frac{1}{3} \text{ and } P(X_i=3) = \frac{2}{3}$ $\therefore \text{ What are the generating functions } G_{X_i} \text{ of these variables?}$ $\therefore Consider the random variable Y = X_1 + X_2 + X_3. Compute its generating function G_Y and deduce its distribution.$				
ercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1,3\}, \text{ such that for all } i \in \llbracket 1,3 \rrbracket, \\ P(X_i=1) = \frac{1}{3} \text{ and } P(X_i=3) = \frac{2}{3}$ 1. What are the generating functions G_{X_i} of these variables? 2. Consider the random variable $Y = X_1 + X_2 + X_3$. Compute its generating function G_Y and deduce its distribution.				
ercise 5: probabilities (5 points) $ Y_1, \ X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1,3\}, \text{ such that for all } i \in \llbracket 1,3 \rrbracket, \\ P(X_i=1) = \frac{1}{3} \text{ and } P(X_i=3) = \frac{2}{3} $. What are the generating functions G_{X_i} of these variables? $ (Consider the random variable Y = X_1 + X_2 + X_3. Compute its generating function G_Y and deduce its distribution.$				
ercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1,3\}, \text{ such that for all } i \in \llbracket 1,3 \rrbracket,$ $P(X_i=1) = \frac{1}{3} \text{ and } P(X_i=3) = \frac{2}{3}$ 1. What are the generating functions G_{X_i} of these variables? $P(X_i=1) = \frac{1}{3} \text{ and } P(X_i=3) = \frac{2}{3}$ 2. Consider the random variable $Y = X_1 + X_2 + X_3$. Compute its generating function G_Y and deduce its distribution.				
ercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1,3\}, \text{ such that for all } i \in \llbracket 1,3 \rrbracket,$ $P(X_i=1) = \frac{1}{3} \text{ and } P(X_i=3) = \frac{2}{3}$ $\therefore \text{ What are the generating functions } G_{X_i} \text{ of these variables?}$ $\therefore \text{ Consider the random variable } Y = X_1 + X_2 + X_3. \text{ Compute its generating function } G_Y \text{ and deduce its distribution.}$				
ercise 5: probabilities (5 points) $X_1, X_2 \text{ and } X_3 \text{ be three independent random variables, taking their values in } \{1,3\}, \text{ such that for all } i \in \llbracket 1,3 \rrbracket,$ $P(X_i=1) = \frac{1}{3} \text{and} P(X_i=3) = \frac{2}{3}$ $\text{What are the generating functions } G_{X_i} \text{ of these variables?}$ $\text{Consider the random variable } Y = X_1 + X_2 + X_3. \text{ Compute its generating function } G_Y \text{ and deduce its distribution.}$				
1. What are the generating functions G_{X_i} of these variables? 2. Consider the random variable $Y = X_1 + X_2 + X_3$. Compute its generating function G_Y and deduce its distribution.		,	sing their values in $\{1,3\}$, such	a that for all $i \in \llbracket 1, 3 rbracket$,
2. Consider the random variable $Y = X_1 + X_2 + X_3$. Compute its generating function G_Y and deduce its distribution.		dependent random variables, tak		a that for all $i \in [1, 3]$,
2. Consider the random variable $Y = X_1 + X_2 + X_3$. Compute its generating function G_Y and deduce its distribution.	X_1,X_2 and X_3 be three in	dependent random variables, tak $P(X_i = 1) = \frac{1}{3}$ and	$P(X_i=3) = \frac{2}{3}$	a that for all $i \in [1, 3]$,
	X_1,X_2 and X_3 be three in	dependent random variables, tak $P(X_i = 1) = \frac{1}{3}$ and	$P(X_i=3) = \frac{2}{3}$	a that for all $i \in \llbracket 1, 3 rbracket$,
	X_1,X_2 and X_3 be three inc.	dependent random variables, tak $P(X_i{=}1) = rac{1}{3}$ and G functions G_{X_i} of these variables	$P(X_i=3) = \frac{2}{3}$	
	X_1,X_2 and X_3 be three inc.	dependent random variables, tak $P(X_i{=}1) = rac{1}{3}$ and G functions G_{X_i} of these variables	$P(X_i=3) = \frac{2}{3}$	
	X_1, X_2 and X_3 be three inc. What are the generating	dependent random variables, tak $P(X_i{=}1) = rac{1}{3}$ and G functions G_{X_i} of these variables	$P(X_i=3) = \frac{2}{3}$	
	$X_1, \ X_2$ and X_3 be three inc. . What are the generating	dependent random variables, tak $P(X_i{=}1) = rac{1}{3}$ and g functions G_{X_i} of these variables	$P(X_i=3) = \frac{2}{3}$	
	X_1,X_2 and X_3 be three inc What are the generating	dependent random variables, tak $P(X_i{=}1) = rac{1}{3}$ and g functions G_{X_i} of these variables	d $P(X_i=3)=rac{2}{3}$ s?	$_{Y}$ and deduce its distribution.
	X_1,X_2 and X_3 be three inc What are the generating	dependent random variables, tak $P(X_i{=}1) = rac{1}{3}$ and g functions G_{X_i} of these variables	d $P(X_i=3)=rac{2}{3}$ s?	$_{Y}$ and deduce its distribution.
	X_1,X_2 and X_3 be three inc.	dependent random variables, tak $P(X_i{=}1) = rac{1}{3}$ and grunctions G_{X_i} of these variables riable $Y = X_1 + X_2 + X_3$. Comp	d $P(X_i=3)=rac{2}{3}$ s?	$_{Y}$ and deduce its distribution.
	X_1,X_2 and X_3 be three inc.	dependent random variables, tak $P(X_i{=}1) = rac{1}{3}$ and grunctions G_{X_i} of these variables riable $Y = X_1 + X_2 + X_3$. Comp	d $P(X_i=3)=rac{2}{3}$ s?	$_{Y}$ and deduce its distribution.
	X_1,X_2 and X_3 be three incl. What are the generating	dependent random variables, tak $P(X_i{=}1) = rac{1}{3}$ and grunctions G_{X_i} of these variables riable $Y = X_1 + X_2 + X_3$. Comp	d $P(X_i=3)=rac{2}{3}$ s?	$_{Y}$ and deduce its distribution.
	X_1,X_2 and X_3 be three incl. What are the generating	dependent random variables, tak $P(X_i{=}1) = rac{1}{3}$ and grunctions G_{X_i} of these variables riable $Y = X_1 + X_2 + X_3$. Comp	d $P(X_i=3)=rac{2}{3}$ s?	$_{Y}$ and deduce its distribution.
	X_1,X_2 and X_3 be three inc.	dependent random variables, tak $P(X_i{=}1) = rac{1}{3}$ and grunctions G_{X_i} of these variables riable $Y = X_1 + X_2 + X_3$. Comp	d $P(X_i=3)=rac{2}{3}$ s?	$_{Y}$ and deduce its distribution.
	X_1,X_2 and X_3 be three inc. 1. What are the generating	dependent random variables, tak $P(X_i{=}1) = rac{1}{3}$ and grunctions G_{X_i} of these variables riable $Y = X_1 + X_2 + X_3$. Comp	d $P(X_i=3)=rac{2}{3}$ s?	$_{Y}$ and deduce its distribution.
	X_1 , X_2 and X_3 be three inc. 1. What are the generating	dependent random variables, tak $P(X_i{=}1) = rac{1}{3}$ and grunctions G_{X_i} of these variables riable $Y = X_1 + X_2 + X_3$. Comp	d $P(X_i=3)=rac{2}{3}$ s?	$_{Y}$ and deduce its distribution.
	X_1, X_2 and X_3 be three inc. 1. What are the generating	dependent random variables, tak $P(X_i{=}1) = rac{1}{3}$ and grunctions G_{X_i} of these variables riable $Y = X_1 + X_2 + X_3$. Comp	d $P(X_i=3)=rac{2}{3}$ s?	$_{Y}$ and deduce its distribution.

υ.	Compute the expectation and the variance of Y .
_	
Exer	cise 6: power series (10 points)
	(f', f', f', f', f', f', f', f', f', f',
Our pu	spose is to find a function f satisfying the following conditions (C) : $\begin{cases} f'' + xf' + f = 0 \\ f(0) = 1 \text{ and } f'(0) = 0 \end{cases}$
In that	purpose, assume there exists a power series $\sum a_n x^n$, admitting a radius of convergence $R > 0$, such that:
	$+\infty$
	$f(x) = \sum a_n x^n$ and f solution of (C) on $]-R, R[$
	$f(x) = \sum_{n=0}^{+\infty} a_n x^n$ and f solution of (C) on $]-R, R[$
to use	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work
to use for con	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations.
to use for con	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work
to use for con	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations.
to use for con	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations.
to use for con	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations.
to use for con	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations.
to use for con	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations.
to use for con 1.	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations. Express $f(0)$ and $f'(0)$ as functions of the sequence (a_n) . What can you deduce about the values of a_0 and a_1 ?
to use for con 1.	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations.
to use for con 1.	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations. Express $f(0)$ and $f'(0)$ as functions of the sequence (a_n) . What can you deduce about the values of a_0 and a_1 ? Define, as functions of (a_n) , two sequences (b_n) and (c_n) such that for all $x \in]-R, R[$,
to use for con 1.	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations. Express $f(0)$ and $f'(0)$ as functions of the sequence (a_n) . What can you deduce about the values of a_0 and a_1 ? Define, as functions of (a_n) , two sequences (b_n) and (c_n) such that for all $x \in]-R, R[$,
to use for con 1.	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations. Express $f(0)$ and $f'(0)$ as functions of the sequence (a_n) . What can you deduce about the values of a_0 and a_1 ?
to use for con 1.	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations. Express $f(0)$ and $f'(0)$ as functions of the sequence (a_n) . What can you deduce about the values of a_0 and a_1 ? Define, as functions of (a_n) , two sequences (b_n) and (c_n) such that for all $x \in]-R, R[$,
to use for con 1.	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations. Express $f(0)$ and $f'(0)$ as functions of the sequence (a_n) . What can you deduce about the values of a_0 and a_1 ? Define, as functions of (a_n) , two sequences (b_n) and (c_n) such that for all $x \in]-R, R[$,
to use for con 1.	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations. Express $f(0)$ and $f'(0)$ as functions of the sequence (a_n) . What can you deduce about the values of a_0 and a_1 ? Define, as functions of (a_n) , two sequences (b_n) and (c_n) such that for all $x \in]-R, R[$,
to use for con 1.	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations. Express $f(0)$ and $f'(0)$ as functions of the sequence (a_n) . What can you deduce about the values of a_0 and a_1 ? Define, as functions of (a_n) , two sequences (b_n) and (c_n) such that for all $x \in]-R, R[$,
to use for con 1.	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations. Express $f(0)$ and $f'(0)$ as functions of the sequence (a_n) . What can you deduce about the values of a_0 and a_1 ? Define, as functions of (a_n) , two sequences (b_n) and (c_n) such that for all $x \in]-R, R[$, $xf'(x) = \sum_{n=0}^{+\infty} b_n x^n$ and $f''(x) = \sum_{n=0}^{+\infty} c_n x^n$
to use for con 1.	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations. Express $f(0)$ and $f'(0)$ as functions of the sequence (a_n) . What can you deduce about the values of a_0 and a_1 ? Define, as functions of (a_n) , two sequences (b_n) and (c_n) such that for all $x \in]-R, R[$, $xf'(x) = \sum_{n=0}^{+\infty} b_n x^n$ and $f''(x) = \sum_{n=0}^{+\infty} c_n x^n$
to use for con 1.	the differential equation $f'' + xf' + f = 1$ is an order 2 linear equation with non-constant coefficients. Thus, don't try the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work tant coefficients equations. Express $f(0)$ and $f'(0)$ as functions of the sequence (a_n) . What can you deduce about the values of a_0 and a_1 ? Define, as functions of (a_n) , two sequences (b_n) and (c_n) such that for all $x \in]-R, R[$, $xf'(x) = \sum_{n=0}^{+\infty} b_n x^n$ and $f''(x) = \sum_{n=0}^{+\infty} c_n x^n$

4.

5.

6.

3. By injecting these expressions of xf'(x) and f''(x) into the equation f''(x) + xf'(x) + f(x) = 0, write this equation as:

$$\forall x \in]-R, R[, \quad \sum_{n=0}^{+\infty} d_n x^n = 0$$

$\forall x \in]-R, R[, \sum_{n=0}^{+\infty} d_n x^n = 0$
where the coefficients (d_n) depend on the sequence (a_n) .
Keep in mind that the condition $\sum_{n=0}^{+\infty} d_n x^n = 0$ implies that all the d_n equal zero. Using this property, show that
$a_2=-rac{1}{2}, \qquad a_3=0 \qquad \text{and, as a general rule:} \qquad \forall \in \mathbb{N}, \ a_{n+2}=-rac{a_n}{n+2}$
What is the value of a_n when n is odd?
Find the value of a_n when n is even.
<u>Hint:</u> you can set $n = 2k$ ($k \in \mathbb{N}$). To start with, express a_{2k} as a function of $a_{2(k-1)}$, then as a function of $a_{2(k-2)}$, and so on, until you get an expression of a_{2k} as a function of a_0 .

7.	Deduce $f(x)$. First, express it as a power series, then find an expression with the usual functions.
8.	(Bonus) Check that the final expression that you got at previous question is a solution of (C) on the whole set \mathbb{R} .