AI Heuristic Performance Analysis in Chain Reaction

Shemanty Mahjabin Student ID: 2105091

June 16, 2025

1 Introduction and Experimental Setup

This report evaluates the performance of various heuristics used in a Minimax-based AI agent for the Chain Reaction game. The experiments were run in two main configurations:

- Minimax vs Minimax: Two AIs using different heuristics played against each other for 200 games per heuristic.
- Minimax vs Random: Each AI played 20 games against a purely random move generator.

Each agent was constrained by 2 and 3 depth and a 3-second time limit. If the AI failed to respond within this limit, a random move was chosen to ensure the game progressed without stalling.

2 Heuristic Descriptions

- Orb Count Difference: Computes the difference between the number of orbs owned by the AI and those owned by the opponent. Simple yet effective in balanced board states.
- Potential Chain Reactions: Rewards game states where the AI has cells close to exploding, which can trigger beneficial chain reactions. Penalizes similar conditions for the opponent.
- Strategic Position: Gives higher value to corners and edge positions since they are safer from chain reactions and easier to defend.
- Conversion Potential: Evaluates how likely the AI can capture and convert opponent orbs in upcoming turns.
- Mobility: Counts the number of cells the AI can safely place orbs in. Useful in defensive or congested board states.

3 Results

3.1 Minimax vs Minimax Analysis

Heuristic	Wins	Games	WinRate (%)	Avg Time (s)	Avg Moves
$strategic_{\mathtt{position}}$	140	200	70.0	2.33	55.9
potential_chain_reactions	140	200	70.0	2.82	59.9
$\mathtt{count_difference}$	135	200	67.5	2.37	60.1
mobility	60	200	30.0	0.23	12.2
${\tt conversion_potential}$	25	200	12.5	0.65	28.7

Table 1: Minimax vs Minimax Performance

3.2 Minimax vs Random Analysis

Heuristic	Wins	Games	WinRate (%)	Avg Time (s)	Avg Moves
${\tt count_difference}$	20	20	100.0	0.73	48.4
${ t strategic_position}$	20	20	100.0	1.21	54.5
potential_chain_reactions	20	20	100.0	1.33	49.1
mobility	20	20	100.0	0.33	31.8
${\tt conversion_potential}$	16	20	80.0	0.91	44.2

Table 2: Minimax vs Random Performance

3.3 Overall Ranking

Rank	Heuristic
1	strategic_position (Score: 82.0)
2	potential_chain_reactions (Score: 82.0)
3	<pre>count_difference (Score: 80.5)</pre>
4	mobility (Score: 58.0)
5	${\tt conversion_potential}~(Score:~39.5)$

Table 3: Overall Heuristic Performance Ranking

4 Comparative Analysis

From the data above, we can draw the following conclusions about the relative performance of each heuristic:

- 1. Strategic Position vs All: This heuristic performed the best overall due to its focus on corner and edge safety. Its stability and defensiveness likely explain its consistent 70% win rate in competitive matches and 100% win rate against random play.
- 2. **Potential Chain Reactions:** Equal in score to strategic_position, this heuristic focuses on creating offensive opportunities. Its higher average move count and evaluation time indicate deeper tactical planning, which proved effective but computationally heavier.
- 3. Count Difference: A simple yet surprisingly strong baseline. Although not as dominant in head-to-head matches, it still achieved 100% win rate vs random and a solid 67.5% against minimax agents.
- 4. **Mobility:** Despite achieving 100% against random agents, its performance drops significantly in real matches (only 30% win rate). This shows that safety and flexibility alone aren't enough without positional advantage or offensive potential.
- 5. Conversion Potential: While conceptually promising, it was the weakest in competitive matches. Likely due to overvaluing risky aggressive plays or inaccurate capture estimation.

5 Bar Graph: Win Rates of Heuristics

Figure 1: Win Rate Comparison of Heuristics

6 Conclusion

The results indicate that the heuristics strategic_position and potential_chain_reactions perform best overall, achieving:

- 70% win rate against other Minimax agents.
- 100% win rate against the random move agent.

These heuristics balance both offensive and defensive strategies well. Meanwhile, simpler heuristics like count_difference offer competitive performance with faster evaluation time. However, heuristics like conversion_potential and mobility need further tuning to compete effectively in adversarial settings.