Generatore di corrente alternata, Studio di funzione e Media integrale

1 Calcolo della fem indotta $\varepsilon(t)$ nella spira

Tesi:

All'istante t=0s l'angolo tra la normale della spira e il campo magnetico costante B è θ =0°.

La spira presenta un'area di dimensioni A e viene fatta roteare con una velocità angolare costante ω intorno al suo asse.

Dimostrazione di $\theta(t) = \omega t$:

Dato che la velocità angolare è il rapporto tra lo spostamento angolare $\Delta \theta$ e la variazione di tempo Δt

Sapendo che $\Delta\theta = \theta(t) - \theta_0$ e $\Delta t = t - 0$ allora $\omega = (\theta(t) - 0) / t = \theta(t) / t$

A questo punto moltiplicando entrambi lati per t e scambiando i termini si ottiene che $\theta(t) = \omega t$

Dimostrazione di $\Phi(\vec{B})$ =ABcos(ωt)

Il flusso di campo magnetico, ovvero la quantità di campo magnetico B che attraversa una certa area A in una spira immobile si misura facendo il prodotto scalare tra il vettore \overrightarrow{B} del campo e il vettore \overrightarrow{A} perpendicolare alla superficie dell'area, e quindi $\Phi(\overrightarrow{B}) = \overrightarrow{B} \times \overrightarrow{A} = \text{BAcos}(\theta)$

Come prima ho dimostrato in questa spira che sta ruotando e quindi con un angolo che cambia in base al tempo $\theta(t) = \omega t$, e se sostituiamo nell'equazione si ottiene che $\Phi(B) = BAcos(\omega t)$

Calcolo della fem indotta ε (t) tramite la legge di Faraday-Neumann

Secondo la legge di Faraday (o legge di Faraday-Neumann) la fem indotta è proporzionale al numero di avvolgimenti N e alla rapidità di variazione del flusso del campo magnetico nel tempo $\Phi(\vec{B})/\Delta t$ e quindi $\varepsilon(t) = -N\Phi(\vec{B})/\Delta t = -NBA\cos(\omega t)/\Delta t$

Il segno meno nell'equazione è dovuto al fatto che la fem indotta si oppone alla variazione del flusso di campo magnetico.

Samuele Garzon Esame di Stato a.s. 2020/2021 - Classe 5F L.S.S. "A. Messedaglia"

Finora ho parlato di fem indotta riferendomi al valore medio di questa in un intervallo Δt ma se si ricerca il valore istantaneo della fem indotta è necessario calcolare non più la variazione di flusso in un intervallo ma la derivata di questo flusso, ovvero $d\Phi(\vec{B})/dt = D[-NBAcos(\omega t)] = -NBA D[cos(\omega t)]$

Utilizzando il metodo delle derivate composte per cui h'(x)=g'(f(x))*f'(x), D[cos(ωt)] = -sin(ωt)* ω Si ottiene quindi che ε = NBA ω sin(ωt)

Rappresentazione della funzione sul piano cartesiano e motivo dell'aggettivo alternata

Utilizzando il programma GeoGebra ho realizzato il grafico della funzione

Samuele Garzon Esame di Stato a.s. 2020/2021 - Classe 5F L.S.S. "A. Messedaglia"

Per motivi legati al programma ho dovuto assegnare valori inventati alle variabili e sostituire t con x ma comunque è possibile notare il motivo per cui la fem indotta viene detta alternata, ovvero la sua periodicità nel tempo

La funzione avrà massimi e minimi quando $\sin(\omega t)$ sarà 1 e -1 ovvero quando $\omega t = \pi/2$ e $\omega t = \pi 3/2$ mentre sarà 0 quando $\omega t = 0$, $\omega t = \pi$ e $\omega t = 2\pi$

Guardando il grafico infatti si può leggere che per t \approx 2 è presente uno 0 e infatti 2*1,5 $\stackrel{\circ}{=}$ π

Inoltre i valori massimi e minimi, dato che corrispondono a quando $sin(\omega t)=\pm 1$, sono $\pm NBA\omega$ (se calcolati con i valori che ho inserito i massimi e minimi sono infatti ± 6)

2 Calcolo della corrente indotta I(t) e calcolo del valore efficace tramite media integrale

Tesi

Viene collegato il generatore di fem alternata ad un circuito di resistenza R.

Calcolo dell'espressione analitica della corrente indotta I(t) nel circuito

Secondo la prima legge di Ohm la differenza di potenziale V agli estremi di un filo percorso da corrente è direttamente proporzionale alla corrente e la costante di proporzionalità la resistenza R del filo, quindi V = IR

Dato che V = ε , ε = IR e, dividendo entrambi i termini per R, I = ε / R

Sostituendo a ε quello che è stato calcolato prima risulta che la corrente media è = -NBAcos(ωt) / Δt mentre la corrente in un istante t è I = NBA ω sin(ωt)

Dimostrazione che, nel periodo di un oscillazione completa, il valore efficace di I(t) è pari a $I_{max}/\sqrt{2}$ (dove I_{max} è il valore massimo della corrente indotta)

 $I_{\rm m}$

Per calcolare la corrente media, ricordando la formula precedente si può notare che la corrente dipende da una variabile, ε , e da una costante, 1/R.

Dato che ε è una funzione periodica, per calcolare la media posso utilizzare la tecnica del calcolo della media integrale applicandola all'intervallo $[0,2\pi/\omega]$, ovvero l'intervallo in cui il sin(ω t) passa da 0, 1, di nuovo 0, -1 e infine 0, compiendo un giro completo quindi.

Dato però che le due aree sono poste una nella fascia delle y>0 e una nella fascia delle y<0 e quindi avrebbero segno opposto, elevo tutta l'equazione al quadrato così da poter calcolare tutto nella fascia delle y positive.

Alla fine poi per avere la ε media o efficace da mettere nella formula del calcolo della I(t) efficace basterà mettere la media ottenuta sotto radice

$$\frac{1}{\frac{2\pi}{\omega}-0}\int_{0}^{\frac{2\pi}{\omega}}N^{2}B^{2}A^{2}\omega^{2}\sin^{2}(\omega t) dt = \frac{\omega}{2\pi}\int_{0}^{\frac{2\pi}{\omega}}N^{2}B^{2}A^{2}\omega^{2}\sin^{2}(\omega t) dt$$

$$=\frac{N^2B^2A^2\omega^2}{2\pi}\int_{0}^{\frac{2\pi}{\omega}}\omega sin^2(\omega t) dt =$$

In questi primi passaggi, dopo aver scritto la formula e messo i dati in ordine, ho portato fuori, in quanto costanti, $N^2B^2A^2$ e solo ω , non alla seconda, e il motivo di questa scelta sarà chiaro nel passaggio successivo.

Ora infatti sostituirò ω t con x e, dato che cambio variabile, dovrò cambiare dt con il rapporto tra dx e la derivata di ω t rispetto a t, ovvero ω

$$x = \omega t \frac{dx}{dt} = \omega dt = \frac{dx}{\omega}$$

$$= \frac{N^2 B^2 A^2 \omega^2}{2\pi} \int_{0}^{\frac{2\pi}{\omega}} \omega \sin^2(x) \frac{dx}{\omega} = \frac{N^2 B^2 A^2 \omega^2}{2\pi} \int_{0}^{\frac{2\pi}{\omega}} \sin^2(x) dx =$$

Applicando le formule di duplicazione ora per la quale $cos(2x) = cos^2(x) - sin^2(x)$ che diventa poi $sin^2(x) = \frac{1-cos(2x)}{2}$ posso sostituire questo risultato nell'integrale, ottenendo:

$$cos(2x) = cos^{2}(x) - sin^{2}(x) \rightarrow sin^{2}(x) = \frac{1 - cos(2x)}{2}$$

$$= \frac{N^2 B^2 A^2 \omega^2}{2\pi} \int_{0}^{\frac{2\pi}{\omega}} \frac{1 - \cos(2x)}{2} dx = \frac{N^2 B^2 A^2 \omega^2}{2\pi} \int_{0}^{\frac{2\pi}{\omega}} \frac{1}{2} - \frac{\cos(2x)}{2} dx =$$

Samuele Garzon Esame di Stato a.s. 2020/2021 - Classe 5F L.S.S. "A. Messedaglia"

$$=\frac{N^2B^2A^2\omega^2}{2\pi}\left[\frac{1}{2}x-\frac{\sin(2x)}{4}\right]_0^{\frac{2\pi}{\omega}}=\frac{N^2B^2A^2\omega^2}{2\pi}\left[\frac{1}{2}\omega t-\frac{\sin(2\omega t)}{4}\right]_0^{\frac{2\pi}{\omega}}$$

$$= \frac{N^2 B^2 A^2 \omega^2}{2\pi} \left(\frac{2\pi \omega}{2\omega} - \frac{\sin(\frac{2\pi \omega}{\omega})}{4} - 0 + \frac{\sin(0)}{4} \right) = \frac{N^2 B^2 A^2 \omega^2}{2\pi} (\pi) = \frac{N^2 B^2 A^2 \omega^2}{2\pi} (\pi)$$

A questo punto si può fare la radice del risultato e la si può inserire nella formula per I(t) ottenendo:

$$I(t) = \frac{NBA\omega}{R} * \frac{1}{\sqrt{2}}$$

A questo punto però bisogna ricordare che, la formula per il valore della corrente massima è proprio il primo termine della moltiplicazione, ovvero NBA ω / R e quindi ho con questo ho dimostrato che:

$$I(t) = \frac{I_{max}}{\sqrt{2}}$$