Practice Problems Module 5

- 1. For an npn BJT, the voltage v_{BE} =0.74 V for i_C =9.5mA. What i_C for v_{BE} =0.714 V?
- 2. For a given BJT, i_B =0.010mA and i_C =0.6mA. What are I_S , β , α , and i_E ?
- 3. A BJT has $I_S=5x10^{-15}$ A and β fall in the range of 50 to 500. If the BJT operates in the active mode with $v_{BE}=0.64V$, find the expected range of the collector, base, and emitter currents.
- 4. For Q_1 and Q_2 below, find the collector, base, and emitter currents for β =50 and $|V_{BE}|$ =0.8V. What is the mode of operation for each circuit?

5. For the pnp transistor circuit below, find I_C and β .

6. For the following transistor, find the collector, base, and emitter currents and the collector and emitter voltages for the case where β =100 and β being very large. Assume $V_{BE}=0.7 \text{ V}$. Do this for each of the following base voltages: $V_B=0 \text{ V}$, $V_B=1 \text{ V}$, and $V_B=2 \text{ V}$

$$V_E = -0.7v = 0.3v = 1.3v$$

$$V_B$$
 V_B
 V_B

$$\begin{array}{c}
\mathbf{I}_{\mathcal{L}} \\
\mathbf{I}_{\mathcal{B}} \\
\mathbf{I}_{\mathcal{E}}
\end{array}$$

$$\begin{array}{c}
\mathbf{I}_{\mathcal{L}} = \frac{5 - V_{\mathcal{L}}}{2.5} \\
\mathbf{I}_{\mathcal{E}} \\
\mathbf{V}_{\mathcal{L}}
\end{array}$$

$$\begin{array}{c}
\mathbf{V}_{\mathcal{L}} \\
\mathbf{V}_{\mathcal{E}}
\end{array}$$

$$I_B = -2.7mA$$
 $I_{E=} -.28mA$
= 1.2mA = .12mA

$$I_{E} = \frac{-0.7 - 0}{2.5 \text{ k/s}}$$
 $I_{E} = \frac{0.3 - 0}{2.5 \text{ k/s}}$ $I_{E} = \frac{1.3 - 0}{2.5 \text{ k/s}}$

$$I_{g} = \frac{-.27mA}{100}$$
 $I_{g} = \frac{.12}{100}$ $I_{g} = \frac{.515}{100}$

1. For an npn BJT, the voltage v_{BE}=0.74 V for i_C=9.5mA. What i_C for v_{BE}=0.714 V?

$$0.714 - 0.74 = .025 \ln \left(\frac{icz}{4.5} \right)$$

$$-1.04 = \ln \left(\frac{icz}{4.5} \right)$$

$$X = \frac{4.5}{c^{1.04}} ; X = 3.36 \text{ m A}$$

Metric Prefix	Symbol	Multiplier (Traditional Notation)	Exponential	Description
Yotta	Y	1,000,000,000,000,000,000,000,000	10 ²⁴	Septillion
Zetta	z	1,000,000,000,000,000,000,000	10 ²¹	Sextillion
Exa	E	1,000,000,000,000,000,000	10 ¹⁸	Quintillion
Peta	P	1,000,000,000,000,000	10 ¹⁵	Quadrillion
Tera	т	1,000,000,000,000	10 ¹²	Trillion
Giga	G	1,000,000,000	10°	Billion
Mega	м	1,000,000	10 ⁶	Million
kilo	k	1,000	10 ³	Thousand
hecto	h	100	10 ²	Hundred
deca	da	10	10 ¹	Ten
base	b	1	10°	One
deci	d	1/10	10-1	Tenth
centi	с	1/100	10-2	Hundredth
milli	m	1/1,000	10 ⁻³	Thousandth
micro	и	1/1,000,000	10 ⁻⁶	Millionth
nano	n	1/1,000,000,000	10-9	Billionth
pico	р	1/1,000,000,000,000	10-12	Trillionth
femto	f	1/1,000,000,000,000,000	10-15	Quadrillionth
atto	a	1/1,000,000,000,000,000,000	10-18	Quintillionth
zepto	z	1/1,000,000,000,000,000,000,000	10-21	Sextillionth
yocto	У	1/1,000,000,000,000,000,000,000,000	10-24	Septillionth

2. For a given BJT, i_B =0.010mA and i_C =0.6mA. What are Is, β , α , and i_E ?

$$\beta = 0.010 \text{ mA}$$
 $\beta = 60$
 $\beta = 0.6 \text{ mA}$ $\beta = 60$

ie? = 0.61 mA

$$ig = \frac{ic}{\beta} \qquad \beta = \frac{\alpha}{\alpha - 1} \qquad \alpha = \frac{\beta}{\beta}$$

$$ig = ig = ic$$

$$ig = ig + ic$$

$$\beta = \frac{0.6}{.010} = 60$$

$$\alpha = \frac{60}{61} = .984$$

3. A BJT has Is= $5x10^{-15}$ A and β fall in the range of 50 to 500. If the BJT operates in the active mode with $v_{BE}=0.64V$, find the expected range of the collector, base, and emitter currents.

$$I_{S} = 5E-1S$$

$$I_{C} = I_{S} \exp\left(\frac{V_{BE}}{V_{T}}\right)$$

$$I_{B} = \frac{i_{C}}{\beta} = \frac{\alpha}{\alpha-1} = \frac{\beta}{\beta+1}$$

$$I_{C} = I_{S} \exp\left(\frac{V_{BE}}{V_{T}}\right)$$

Active mode ; VBE = 0.640

$$I_{c} = 5E-15 exp(\frac{0.64}{.025}) = .000656$$
 0.656 mA

$$ig = \frac{ic}{B} = \frac{.656E-4}{50}$$
 or $\frac{.656E-4}{500}$

$$\hat{I}_{E} = \hat{I}_{C} + \hat{I}_{B}$$
 $\hat{I}_{E} = 13.1 \text{ NA} + .656 \text{ mA}$
 $\hat{I}_{E} = 13.1 \text{ E} - 6 + .656 \text{ E} - 3$
 $\hat{I}_{E} = 1.31 \text{ E} - 6 + .656 \text{ E} - 3$

4. For Q_1 and Q_2 below, find the collector, base, and emitter currents for β =50 and $|V_{BE}|$ =0.8V. What is the mode of operation for each circuit?

$$I_{E=1}, g_{MA}$$
 $J_{C=1}, 784MA$
 $J_{G=1}, 02MA$
 $J_{G=1}, 02MA$
 $J_{G=1}, 02MA$
 $J_{G=1}, 02MA$
 $J_{G=1}, 02MA$
 $J_{G=1}, 02MA$

4. For Q_1 and Q_2 below, find the collector, base, and emitter currents for β =50 and $|V_{BE}|=0.8V$. What is the mode of operation for each circuit?

Answers
$$\beta = 50 \qquad V_B = 0 \qquad I_E = .6mA$$

$$|VBE| = .8v \qquad V_E = .8v \quad i_C = .58mA$$

$$|VBE| = .8v \qquad V_C = -1.42v \quad i_B = .02mA$$

$$V_C = V_B \quad V_C = -2.44v \quad V_C$$

Work

$$V_E - V_B = .8v$$
 $I_E = \frac{2 - .8v}{2 k L} = .6mA$
 $\alpha = \frac{50}{51} = .98$
 $i_C = .98 (.6E-3)$

$$\alpha = \frac{50}{51} = .98$$

$$I_c = \frac{V_c + 2}{1000} \Rightarrow V_c + 2 = .58$$
 $V_c = -1.42 \times 1000$

5. For the pnp transistor circuit below, find I_{C} and $\beta.$

$$I_{y} = \frac{2.3-0}{230} = 10 \text{mA}$$

$$I_{x} = \frac{4.3-2.3}{2000} = .1 \text{mA}$$

$$\beta = \frac{I_c}{I_B} = \frac{9.4}{0.1} = 99$$

$$\beta = 99$$