Computação Gráfica Unidade 2

prof. Dalton S. dos Reis dalton.reis@gmail.com

FURB - Universidade Regional de Blumenau DSC - Departamento de Sistemas e Computação Grupo de Pesquisa em Computação Gráfica, Processamento de Imagens e Entretenimento Digital http://www.inf.furb.br/gcg/

Unidade 02

Conceitos básicos de computação gráfica

- Estruturas de dados para geometria
- Sistemas de coordenadas no JOGL
- Primitivas básicas (vértices, linhas, polígonos)

- Objetivos Específicos
 - Aplicar os conceitos básicos de sistemas de referências e modelagem geométrica em computação gráfica 2D
- Procedimentos Metodológicos
 - Aula expositiva dialogadaMaterial programado
 - Atividades em grupo (laboratório)
- Instrumentos e Critérios de Avaliação
 - Trabalhos práticos (avaliação 2)

1. A GeForce GTX 1080Ti é a "palavra final" em placas de vídeo

E se você quer investir pesado e está procurando a melhor placa de vídeo do momento, a GeForce GTX 1080Ti oferece a tecnologia mais avançada, com 11GB de memória dedicada e um desempenho fora de série. Para suportar todo esse poder de processamento, é essencial que ela seja combinada com outros componentes de ponta, como os processadores i7 7700K ou Ryzen 7 1800X, uma combinação que permite fazer modelagens em 3D com uma performance até 20% superior em relação à GTX 1080, o que é um resultado surpreendente, considerando o alto poder de processamento dessas unidades gráficas. Ela também é a única placa de vídeo que consegue manter taxas próximas a 60FPS para quem é alucinado por gráficos e quer jogar em 4K.

Características da placa de vídeo:

- · Memória dedicada: 11GB GDDR5X
- · Conexões: DisplayPort, DVI e HDMI
- Compatível com G-Sync
- Ótima performance em jogos "Triplo A" (4K) e em Realidade Virtual

GEFORCE GTX 1080 Ti

Especificações do mecanismo da placa de vídeo:

NVIDIA CUDA' Cores	3584
Clock básico (MHz)	1582

Especificações de memória:

velocidade da memória	11 Gbps
Configuração de memória padrão	11 GB GDDR5X
Largura da interface de memória	352-bit
Largura de banda de memória (GB/s)	484

Software de interface para o hardware gráfico

OpenGL - Open Graphics Library

- Interface: aplicações de "renderização" gráfica
 - imagens coloridas de alta qualidade
 - primitivas geométricas (2D e 3D) e
 - por imagens
 - independência de sistemas de janelas
 - independência de sistemas operacionais
 - compatível com quase todas as arquiteturas
 - interface gráfica dominante

OpenGL - Open Graphics Library

http://www.opengl.org/about/overview/

renderização

- primitivas geométricas (2D e 3D) e
- por imagens

OpenGL – "Renderizador"

- Primitivas geométricas
 - pontos, linhas e polígonos
- Primitivas de imagens
 - imagens e bitmaps
 - canais independentes: geometria e imagem
 - ligação via mapeamento de textura
- "Renderização" dependente do estado
 - cores, materiais, fontes de luz, etc.

OpenGL - Sistema de Janelas

- Trata apenas de "renderização"
 - independente do sistema de janelas
 - X, Win32, Mac O/S
 - não possui funções de entrada
- Necessita interagir com o sistema operacional e o sistema de janelas
 - interface dependente do sistema é mínima
 - realizada através de bibliotecas adicionais : GLX, AGL, WGL

OpenGL - GLU, OpenGL Utility Library

- Funções para auxiliar a tarefa de produzir imagens complexas
 - manipulação de imagens
 - polígonos não-convexos
 - curvas
 - superfícies
 - esferas
 - etc.

OpenGL - GLUT, OpenGL Utility Toolkit

- API de janelas para o OpenGL
 - independente do sistema de janelas
 - indicado para programas:
 - pequeno e médio porte
 - processamento orientado à chamada de eventos (callbacks)
 - dispositivos de entrada
 - não pertence oficialmente ao OpenGL

API: Interface para Programação de Aplicações

OpenGL - Prefixos

- OpenGL
 - gl, GL, GL_
 - para comandos, tipos e constantes, respectivamente
- GLU
 - glu, GLU, GLU_
- GLUT
 - glut, GLUT, GLUT_

OpenGL -, Passos Básicos

- Configurar e abrir janela (canvas)
- Inicializar o estado do OpenGL
- Registrar funções de entrada de callback
 - desenho ("renderização")
 - redimensionamento do canvas
 - entrada : mouse, teclado, etc.

Programação Convencional

Programação por Eventos

Aplicação

Gerenciador de Callbacks

OpenGL: exemplos CG-N2

constantes.h

Algumas constantes e rotinas usadas em todos os códigos

CG-N2_HelloWorld

Exemplo simples usando OpenGL para desenhar um segmento de reta e tendo como referência o SRU

CG-N2_Teclado

Exemplo usando o CallBack do teclado no OpenGL

CG-N2_Mouse

Exemplo usando o CallBack do mouse no OpenGL

CG-N2_OnIdle

Exemplo usando o *CallBack OnIdle* (thread) no OpenGL

CG-N2_Point4D

Exemplo usando a classe Point4D (V-ART) para manipular um ponto no espaço 2D

CG-N2_BBox

Exemplo usando a classe BoundingBox (V-ART) para tratar a BBox de um objeto gráfico

OpenGL: exemplos CG-N2

constantes.h

Algumas constantes e rotinas usadas em todos os códigos

CG-N2_HelloWorld

Exemplo simples usando OpenGL para desenhar um segmento de reta e tendo como referência o SRU

CG-N2_Teclado

Exemplo usando o CallBack do teclado no OpenGL

CG-N2_Mouse

Exemplo usando o CallBack do mouse no OpenGL

CG-N2_OnIdle

Exemplo usando o *CallBack OnIdle* (thread) no OpenGL

CG-N2_Point4D

Exemplo usando a classe Point4D (V-ART) para manipular um ponto no espaço 2D

CG-N2_BBox

Exemplo usando a classe BoundingBox (V-ART) para tratar a BBox de um objeto gráfico

Exemplos Projetos+fontes http://gcg.inf.furb.br/cg/e2j

__GIT __ https://bitbucket.org/gcgfurb/ gcg-cg

OpenGL - Especificação de Primitivas Geométricas

primitivas são especificadas usando

```
glBegin( tipo_primitiva );
glEnd( );
```

tipo_primitiva: especifica como os vértices serão agrupados

```
gl.glColor3f( 0.0f, 0.0f, 0.0f );
gl.glBegin( GL.GL_LINES );
gl.glVertex2f( 0.0f, 0.0f );
gl.glVertex2f( 20.0f, 20.0f );
glEnd();
```


OpenGL - Primitivas Geométricas

Especificadas por vértices GL_LINES GL POLYGON GL_LINE_STRIP GL LINE LOOP GL_POINTS GL TRIANGLES GL_QUADS GL_QUAD_STRIP GL TRIANGLE FAN GL TRIANGLE STRIP

-(x,y)

3 - (x,y,z)

OpenGL - Formato, Especificação do Vértice

glVertex3fv(v) tipo do dado número de vetor componentes b - byte omitir "v" para ub - unsigned byte forma escalar - short us - unsigned short glVertex2f(x, y) -(x,y,z,w)- int ui - unsigned int

- float

- double

- Splines (ou curva polinomial)
 - origem:

- desenvolvida: De Casteljau em 1957 (P. De Casteljau, Citroen)
- formalizado: Bézier 1960 (Pierre Bézier)
- aplicações CAD/CAM
- pontos de controle
- bastante utilizada em modelagem tridimensional

178379
005.1, Z91em, MO (Anote para localizar o material)
Zoz, Jeverson
Estudo de metodos e algoritmos de Splines Bezier, Casteljau e B-Spline /Jeverson Zoz 1999. xii, 64p. :il.
Orientador: Dalton Solano dos Reis.

195268

006.6, S586pt, MO (Anote para localizar o material)

Silva, Fernanda Andrade Bordallo da

Prototipo de um ambiente para geracao de superficies 3D com uso de Spline Bezier /Fernanda Andrade Bordallo da Silva. - 2000. ix, 51p. :il.
Orientador: Dalton Solano dos Reis.

Tabela senos/cosenos e Teorema de Pitágoras Lembre que: radiano = grau * PI / 180; Então: public double RetornaX(double angulo, double raio) { return (raio * Math.cos(Math.PI * angulo / 180.0)); public double RetornaY(double angulo, double raio) { return (raio * Math.sin(Math.PI * angulo / 180.0));

Com base em:

CEN	COS

$$sen \alpha = \frac{CO}{HIP}$$

$$\cos \alpha = \frac{CA}{HI}$$

$$\cos \alpha = \frac{CA}{HIP} \qquad \hat{a} + \hat{b} + \hat{c} = 180^{\circ}$$

grau

30°

$$sen \alpha = 1 - cos \alpha$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$\cos \theta = \frac{ca}{h}$$

$$\cos(\alpha \pm \theta) = \cos \alpha \cdot \cos \theta \mp \sin \alpha \cdot \sin \theta$$

$$sen \theta = {co \atop h}$$

$$sen(\alpha \pm \theta) = sen \alpha \cdot cos \theta \pm cos \alpha \cdot sen \theta$$

 $a^2 = b^2 + c^2$

Tudo pode ser modelado por fórmulas, o problema é o custo envolvido Batman Equation $\left(\frac{x}{7}\right)^{2} \sqrt{\frac{||x|-3|}{|x|-3|}} + \left(\frac{y}{3}\right)^{2} \sqrt{\frac{|y+\frac{3\sqrt{33}}{7}|}{y+\frac{3\sqrt{33}}{7}}} - 1 \right) \cdot \left(\left|\frac{x}{2}\right| - \left(\frac{3\sqrt{33}-7}{112}\right)x^{2} - 3 + \sqrt{1 - \left(\left||x|-2\right|-1\right)^{2}} - y\right)$ $-\left(9\sqrt{\frac{|(|x|-1)(|x|-.75)|}{(1-|x|)(|x|-.75)}}-8|x|-y\right)-\left(3|x|+.75\sqrt{\frac{|(|x|-.75)(|x|-.5)|}{(.75-|x|)(|x|-.5)}}-y\right)$ $-\left(2.25\int\frac{|(x-5)(x+5)|}{(.5-x)(.5+x)}-y\right)-\left(\frac{6\sqrt{10}}{7}+(1.5-.5|x|)\int\frac{|x|-1}{|x|-1}-\frac{6\sqrt{10}}{14}\sqrt{4-(|x|-1)^2}-y\right)=0$ 2.8 -2.8 -4.2

http://blog.wolframalpha.com/data/uploads/2013/07/Batman_lamina_- Wolfram_Alpha.png

Unidade 02 – Conceitos Básicos Prof. Dalton Reis

```
function SPLINE_Inter(A,B,t,desenha)
     R = vec2(0,0)
     R.x = A.x + (B.x - A.x) * t/qtdPontos
     R.y = A.y + (B.y - A.y) * t/qtdPontos
     if desenha == 1 then
         stroke(0, 0, 255)
         rect(R.x-2,R.y-2,4,4)
     end
     return R
end
 function SPLINE_Desenha()
     if CurrentTouch.state == MOVING then
         ListaPtos[Ponto].x = CurrentTouch.x
         ListaPtos[Ponto].y = CurrentTouch.y
     end
     Pant = ListaPtos[1]
     for t = 0, qtdPontos do
         P1P2 = SPLINE_Inter(ListaPtos[1],ListaPtos[2],t,1)
         P2P3 = SPLINE_Inter(ListaPtos[2],ListaPtos[3],t,1)
         P3P4 = SPLINE_Inter(ListaPtos[3],ListaPtos[4],t,1)
         P1P2P3 = SPLINE_Inter(P1P2, P2P3, t, 1)
         P2P3P4 = SPLINE_Inter(P2P3, P3P4, t, 1)
         stroke(0,255,255)
         P1P2P3P4 = SPLINE_Inter(P1P2P3, P2P3P4, t, 0)
         line(Pant.x,Pant.y,P1P2P3P4.x,P1P2P3P4.y)
         Pant = P1P2P3P4
     end
```

end

http://en.wikipedia.org/wiki/B%C3%A9zier_curve

Splines (Casteljau)

Para o primeiro ponto calculado, t = 0.5: x=80 e y=100

Splines (Casteljau)

Segue os passos:

- Inicialmente devem-se definir os pontos de controle (poliedro de controle);
- Calcular o ponto pertencente à spline;
- Os pontos intermediários são utilizados para definir dois novos poliedros de controle, que deverão ser usados num processo recursivo.
- Expressão de Cálculo:

$$\frac{A_x + B_x}{2} \quad \frac{B_x + C_x}{2} \quad \frac{B_x + C_x}{2} \quad \frac{C_x + D_x}{2}$$

$$\frac{\frac{A_{y} + B_{y}}{2} - \frac{B_{y} + C_{y}}{2}}{2} - \frac{\frac{B_{y} + C_{y}}{2} - \frac{C_{y} + D_{y}}{2}}{2} - \frac{C_{y} + D_{y}}{2}}{2}$$

Splines (Bezier)

$$\mathbf{B}(t) = (1-t)^3 \mathbf{P}_0 + 3t(1-t)^2 \mathbf{P}_1 + 3t^2(1-t)\mathbf{P}_2 + t^3 \mathbf{P}_3, \ t \in [0,1].$$

$$B_x(0,5) = 0.125 * 30 + 0.375 * 30 + 0.375 * 130 + 0.125 * 130 = 80$$

 $B_y(0,5) = 0.125 * 20 + 0.375 * 100 + 0.375 * 130 + 0.125 * 20 = 100$

Pesos	0,000	0,100	0,200	0,300	0,400	0,500	0,600	0,700	0,800	0,900	1,000
P0	1,000	0,729	0,512	0,343	0,216	0,125	0,064	0,027	800,0	0,001	0,000
P1	0,000	0,243	0,384	0,441	0,432	0,375	0,288	0,189	0,096	0,027	0,000
P2	0,000	0,027	0,096	0,189	0,288	0,375	0,432	0,441	0,384	0,243	0,000
P3	0,000	0,001	800,0	0,027	0,064	0,125	0,216	0,343	0,512	0,729	1,000
Soma	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Pesos	0,000	0,100	0,200	0,300	0,400	0,500	0,600	0,700	0,800	0,900	1,000
P0	1,000	0,729	0,512	0,343	0,216	0,125	0,064	0,027	800,0	0,001	0,000
P1	0,000	0,243	0,384	0,441	0,432	0,375	0,288	0,189	0,096	0,027	0,000
P2	0,000	0,027	0,096	0,189	0,288	0,375	0,432	0,441	0,384	0,243	0,000
P3	0,000	0,001	800,0	0,027	0,064	0,125	0,216	0,343	0,512	0,729	1,000
Soma	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000


```
X1
X2
Х3
X4
Xr1 = x1 + (x2 - x1)t
Xr2 = x2 + (x3 - x2)t
Xr3 = x3 + (x4 - x3)t
Xrr1 = Xr1 + (Xr2 - Xr1)t
Xrr1 = (x1 + (x2 - x1)t) + ((x2 + (x3 - x2)t) - (x1 + (x2 - x1)t))t
Xrr1 = (x1 + x2t - x1t) + (x2 + x3t - x2t)t + (-x1 - x2t + x1t)t
Xrr1 = x1 + x2t - x1t + x2t + x3t \le -x2t \le -x1t - x2t \le +x1t \le
Xrr1 = x1 + 2(x2 - x1)t + (x3 - 2x2 + x1)t \le
Xrr2 = Xr2 + (Xr3 - Xr2)t
Xrr2 = x2 + 2(x3 - x2)t + (x4 - 2x3 + x2)t \le
Xrrr = Xrr1 + (Xrr2 - Xrr1)t
Xrrr = (x1 + 2(x2 - x1)t + (x3 - 2x2 + x1)t \le) + ((x2 + 2(x3 - x2)t + (x4 - 2x3 + x2)t \le) - (x1 + 2(x2 - x1)t + (x3 - 2x2 + x1)t \le))t
Xrrr = x1 + 2(x2 - x1)t + (x3 - 2x2 + x1)t \le + (x2 + 2(x3 - x2)t + (x4 - 2x3 + x2)t \le)t - (x1 + 2(x2 - x1)t + (x3 - 2x2 + x1)t \le)t
Xrrr = x1 + 2(x2 - x1)t + (x3 - 2x2 + x1)t \le + (x2 + 2x3t - 2x2t + x4t \le -2x3t \le + x2t \le)t - (x1 + 2x2t - 2x1t + x3t \le -2x2t \le + x1t \le)t
Xrrr = x1 + 2x2t - 2x1t + x3t \le -2x2t \le + x1t \le + x2t + 2x3t \le -2x2t \le + x4t \ge -2x3t \ge + x2t \ge -(x1t + 2x2t \le -2x1t \le + x3t \ge -2x2t \ge + x1t \ge)
Xrrr = x1 + 2x2t - 2x1t + x3t \le -2x2t \le + x1t \le + x2t + 2x3t \le -2x2t \le + x4t \ge -2x3t \ge + x2t \ge + (-x1t - 2x2t \le + 2x1t \le -x3t \ge + 2x2t \ge -x1t \ge)
Xrrr = x1 + 2x2t - 2x1t + x3t \le -2x2t \le + x1t \le + x2t + 2x3t \le -2x2t \le + x4t \ge -2x3t \ge + x2t \ge -x1t - 2x2t \le +2x1t \le -x3t \ge +2x2t \ge -x1t \ge -x1t \ge -x1t \le -x3t \ge -x1t \le -
Xrrr = x1 - 3x1t + 3x1t \le -x1t \ge +3x2t - 6x2t \le +3x2t \ge +3x3t \le -3x3t \ge +x4t \ge
Xrrr = x1(1 - 3t + 3t \le - t \ge) + x2(3t - 6t \le + 3t \ge) + x3(3t \le - 3t \ge) + x4t \ge
Xrrr = x1(1 - 3t + 3t \le -t \ge) + 3x2t(1 - 2t + t \le) + 3x3t \le (1-t) + x4t \ge
Xrrr = x1((1-t)(1-t)(1-t)) + 3x2t((1-t)(1-t)) + 3x3t \le (1-t) + x4t \ge 1
Xrrr = (1 - t) \ge x1 + 3t(1 - t) \le x2 + 3t \le (1 - t)x3 + t \ge x4
```


Prof. Dalton Reis

Ver exemplo: http://www.ibiblio.org/e-notes/Splines/http://www.ibiblio.org/e-notes/Splines/animation.html

WireFrame bordas ocultas

WireFrame uv isolinhas

Face WireFrame

Face Shaded

Shaded

Linhas de reflexão

Imagem refletida

Tabela senos/cosenos e Teorema de Pitágoras

SEN	COS	grau
$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	30°
$\frac{\sqrt{2}}{2}$	$\sqrt{2}/2$	45°
$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	60°
SEN	COS	grau
1	0	90°
0	1	0°


```
public double RetornaX(double a){
        return (5 * Math.cos(Math.PI * a / 180.0));
}

public double RetornaY(double a){
        return (5 * Math.sin(Math.PI * a / 180.0));
}
```


Computational Geometry Algorithms Library - CGAL http://www.cgal.org/

	Theoretical	Computer Science Cheat Sheet				
	Definitions	Series				
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$				
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cy(n) \ge 0 \ \forall n \ge n_0$.	In general:				
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^m = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^m \right) \right]$				
f(n)=o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{m-1} i^m = \frac{1}{m+1} \sum_{k=1}^{m} {m+1 \choose k} B_k n^{m+1-k}.$				
$\lim_{n\to\infty}a_n=a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:				
sup S	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{c=0}^{n} c^{c} = \frac{c^{n+1}-1}{c-1}, c \neq 1, \sum_{c=0}^{m} c^{c} = \frac{1}{1-c}, \sum_{c=1}^{m} c^{c} = \frac{c}{1-c}, c < 1,$				
inf S	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+1} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{m} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$				
liminf a.	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $ \begin{array}{cccccccccccccccccccccccccccccccccc$				
lim sup a _n	$\lim_{n\to\infty}\sup\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	$H_n = \sum_{i=1}^{n} \frac{1}{i}, \qquad \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$				
(%)	Combinations: Size k sub- sets of a size n set.	$\sum_{i=1}^{n} H_{i} = (n+1)H_{n} - n, \sum_{i=1}^{n} {i \choose m} H_{i} = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1}\right).$				
[2]	Stirling numbers (1st kind): Arrangements of an n ele- ment set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$, 3. $\binom{n}{k} = \binom{n}{n-k}$,				
{2}	Stirling numbers (2nd kind): Partitions of an n element	4. $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$, 5. $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$, $\binom{n}{k} \binom{n}{k} \binom{n-k}{k-1} = \binom{n-1}{k-1} \binom{n-1}{k-1}$,				
- I-1	set into k non-empty sets.	$s. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$				
(%)	1st order Eulerian numbers: Permutations π ₁ π ₂ π _n on	$s. \sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1},$ $s. \sum_{k=0}^{n} {r \choose k} {s \choose n-k} = {r+s \choose n},$				
	$\{1, 2, \dots, n\}$ with k ascents.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
(1)	2nd order Eulerian numbers.					
C _n	Catalan Numbers: Binary trees with $n + 1$ vertices.	12. ${n \choose 2} = 2^{n-1} - 1$, 13. ${n \choose k} = k {n-1 \choose k} + {n-1 \choose k-1}$,				
$14. \begin{bmatrix} n \\ 1 \end{bmatrix} = \{n-1$	i)t, is. $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n - 1)$	$-1)lH_{n-1}$, $16. \begin{bmatrix} n \\ n \end{bmatrix} = 1$, $17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix}$,				
$18. \begin{bmatrix} n \\ k \end{bmatrix} = (n-1)$	$\binom{n-1}{k} + \binom{n-1}{k-1}$, 19. $\binom{n}{n}$	$\begin{bmatrix} n \\ -1 \end{bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{pmatrix} n \\ 2 \end{pmatrix}$, 20. $\sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!$, 21. $C_n = \frac{1}{n+1} {2n \choose n}$,				
22. $\binom{n}{0} = \binom{n}{n}$	$\binom{n}{-1} = 1$, 29. $\binom{n}{k} = \binom{n}{k}$	$\binom{n}{n-1-k}$, $24.$ $\binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,				
25. $\binom{0}{k} = \begin{Bmatrix} 1 \\ 0 \end{Bmatrix}$	$26. \begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{cases}$ $26. \begin{pmatrix} n \\ 1 \end{pmatrix} = 2^n - n - 1, $ $27. \begin{pmatrix} n \\ 2 \end{pmatrix} = 3^n - (n+1)2^n + \binom{n+1}{2}, $ $28. x^n = \sum_{k=0}^n \binom{n}{k} \binom{x+k}{n}, $ $29. \begin{pmatrix} n \\ m \end{pmatrix} = \sum_{k=0}^n \binom{n+1}{k} (m+1-k)^n (-1)^k, $ $30. m! \binom{n}{m} = \sum_{k=0}^n \binom{n}{k} \binom{k}{n-m}, $					
28. $x^n = \sum_{k=0}^{n} \binom{n}{k}$	$\binom{x+k}{n}$, 29. $\binom{n}{m} = \sum_{k=1}^{n}$	$\int_{0}^{\infty} {n+1 \choose k} (m+1-k)^{n} (-1)^{k}, \qquad 30. m! \begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{k=0}^{n} {n \choose k} {k \choose n-m},$				
31. $\binom{n}{m} = \sum_{k=0}^{n}$	$\binom{n}{k}\binom{n-k}{m}(-1)^{n-k-m}B$,	32. $\binom{n}{0} - 1$, 33. $\binom{n}{n} - 0$ for $n \neq 0$,				
34. $\binom{n}{k} = (k + 1)$	$+1$ $\begin{pmatrix} n-1 \\ k \end{pmatrix}$ $+(2n-1-k)$ $\begin{pmatrix} n \\ k \end{pmatrix}$	$\begin{pmatrix} -1 \\ -1 \end{pmatrix}$, $36. \sum_{k=0}^{n} \left\langle \begin{pmatrix} n \\ k \end{pmatrix} \right\rangle = \frac{(2n)^k}{2^n}$,				
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{2}$	$\sum_{k=0}^{n} {n \choose k} {x+n-1-k \choose 2n},$	97. ${n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=0}^{n} {k \choose m} (m+1)^{n-k}$				

Theoretical Computer Science Chest Sheet Trees Identities Cont. 99. $\begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \binom{n}{k} \right\rangle \binom{x+k}{2n},$ 41. $\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} \binom{k}{m} (-1)^{m-k},$ Every tree with a wartious has n-1edges. 40. $\binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k}$, Kraft inequalky: If the depths of the leaves of a binary tree are $44. \binom{n}{m} = \sum_{L} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad 48. (n-m)! \binom{n}{m} = \sum_{L} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad \text{for } n \ge m,$ d_1, \dots, d_n : $\sum_{i=1}^n 2^{-\ell_i} \leq 1,$ $46. {n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose n+k} {m+k \choose k}, \qquad 47. {n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose k}$ and equality holds 49. $\binom{n}{\ell+m} \binom{\ell+m}{\ell} = \sum_{k} \binom{k}{\ell} \binom{n-k}{m} \binom{n}{k}$ only if every in-48. $\binom{n}{t+m} \binom{t+m}{t} = \sum_{\ell} \binom{k}{\ell} \binom{n-k}{m} \binom{n}{k}$ ternal node has 2

Recurrences

Master method:

$$T(n)=aT(n/b)+f(n),\quad a\geq 1, b>1$$

If $\exists s > 0$ such that $f(n) = O(n^{\log_2 n - s})$

$$T(n) = \Theta(n^{\log_2 n}).$$

If
$$f(n) = \Theta(n^{\log_2 n})$$
 then
 $T(n) = \Theta(n^{\log_2 n} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_k n + \epsilon})$. and $\exists c < 1$ such that $af(n/b) \le cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{c+1} = 2^{2^{i}} \cdot T_{c}^{2}, T_{1} = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have $t_{i+1} = 2^{i} + 2t_{i}, t_{i} = 1.$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2*+1 we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$a_{i+1} = \frac{1}{2} + a_i, \quad a_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{\tilde{G}^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 2T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving T are on the left side

$$T(n) - 2T(n/2) = n$$
.

Now expand the recurrence, and choose a factor which makes the left side "telescupe?

$$1(T(n) - 3T(n/2) = n)$$

 $3(T(n/2) - 3T(n/4) = n/2)$
 $\vdots \quad \vdots \quad \vdots$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^mT(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 2 \approx 1.88496$. Summing the right side we get

 $3^{\log m-1}(T(2) - 2T(1) = 2)$

$$\sum_{i=1}^{m-1} \frac{n}{2^i} J^i = n \sum_{i=0}^{m-1} {2 \choose 2}^i$$

Let $c = \frac{9}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^{i} = n \left(\frac{c^{m} - 1}{c - 1} \right)$$

$$= 2n(c^{\log_{2} n} - 1)$$

$$= 2n(c^{(k-1)\log_{2} n} - 1)$$

$$= 2n^{k} - 2n,$$

and so $T(n) = 2n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j$$
, $T_0 = 1$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{c} T_{j}$$
.

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{s+1} = 2T_s = 2^{s+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^4 .
- 2. Sum both sides over all i for which the equation is walld.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^{i}g_{i}$. 3. Rewrite the equation in terms of
- the generating function G(x).
- Solve for G(x).
- 5. The coefficient of x^* in G(x) is g_{ij} Example

$$g_{i+1} = 2g_i + 1$$
, $g_0 = 0$.

Multiply and sum:

$$\sum_{i \ge 0} g_{i+1} x^i = \sum_{i \ge 0} 2g_i x^i + \sum_{i \ge 0} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i>0} x^i$$
.

Simplify:
$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for G(x):

$$G(x) = \frac{x}{(1-x)(1-2x)}$$
.

Expand this using partial fractions:

$$G(x) = x \left(\frac{2}{1 - 2x} - \frac{1}{1 - x} \right)$$

$$= x \left(2 \sum_{i \ge 1} 2^i x^i - \sum_{i \ge 0} x^i \right)$$

$$= \sum_{i \ge 1} (2^{i+1} - 1) x^{i+1}.$$

$$g_i = 2^i - 1$$
.

Unidade 02 – Conceitos Básicos

	Theoretical Computer Science Cheat Sheet						
	$\pi \approx 3.14189,$	$\epsilon \approx 2.7$	1828, $\gamma \approx 0.87721$, $\phi = \frac{1+\sqrt{8}}{2} \approx$	1.61803, $\dot{\phi} = \frac{1-\sqrt{8}}{2} \approx61803$			
i	2*	Pr	General	Probability			
1	2	2	Bernoulli Numbers $(B_i = 0, \text{ odd } i \neq 1)$:	Continuous distributions: If			
2	4	3	$B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_4 = -\frac{1}{20}$,	$Pr[a < X < b] = \int_{-b}^{b} p(x) dx,$			
3	8	8	$B_6 = \frac{1}{22}$, $B_8 = -\frac{1}{20}$, $B_{10} = \frac{1}{64}$.	2.			
4	16	7	Change of base, quadratic formula:	then p is the probability density function of X. If			
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	Pr[X < a] = P(a),			
6	64	13		then P is the distribution function of X . If			
7	128	17	Euler's number e:	P and p both exist then			
8	256	19	$a = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{24} + \frac{1}{123} + \cdots$	$P(a) = \int_{-a}^{a} p(x) dx.$			
9	512	23	$\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = \epsilon^n.$	/			
10	1,024	29	$(1+\frac{1}{2})^n < \epsilon < (1+\frac{1}{2})^{n+1}$	Expectation: If X is discrete			
11	2,048	31		$E[g(X)] = \sum g(x) Pr[X = x].$			
12	4,096	37	$\left(1 + \frac{i}{n}\right)^n = \epsilon - \frac{\epsilon}{2n} + \frac{11\epsilon}{24n^2} - O\left(\frac{1}{n^2}\right).$	If X continuous then			
13	8,192	41	Harmonic numbers:	$E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x)$			
14	16,384	43	1, 2, 11, 25, 137, 40, 321, 161, 1129,				
18	32,768	47		Variance, standard deviation:			
16	65,536	13	$\ln n < H_n < \ln n + 1$,	$VAR[X] = E[X^2] - E[X]^2,$			
17	131,072	19	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right)$.	$\sigma = \sqrt{VAR[X]}$.			
18	262,144	61	Factorial, Stirling's approximation:	For events A and B:			
19 20	524,288	67 71	1, 2, 4, 24, 120, 720, 1840, 48328, 342881,	$Pr[A \vee B] = Pr[A] + Pr[B] - Pr[A \wedge B]$			
21	1,048,576	73	1, 2, 4, 24, 120, 120, 1120, 41111, 312111,	$Pr[A \wedge B] = Pr[A] \cdot Pr[B],$ iff A and B are independent.			
22	2,097,182 4,194,304	79	$nl = \sqrt{2\pi n} \left(\frac{n}{\epsilon}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	-			
23	8,288,608	83	(*/ \ *//	$Pr[A B] = \frac{Pr[A \land B]}{Pr[B]}$			
24	16,777,216	59	Adarmann's function and inverse:	For random variables X and Y:			
28	33,884,432	97	$a(i, j) = $ $\begin{cases} 2^{j} & i = 1 \\ a(i - 1, 2) & j = 1 \\ a(i - 1, a(i, j - 1)) & i, j \ge 2 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$			
26	67,108,864	101	$a(i-1,a(i,j-1))$ $i,j \ge 2$	#X and Y are independent.			
27	134,217,728	103	$a(i) = \min\{j \mid a(j, j) \ge i\}.$	E[X + Y] = E[X] + E[Y],			
28	268,438,486	107	Binomial distributions	$\mathbf{E}[cX] = c \mathbf{E}[X].$			
29	536,870,912	109	$Pr[X = k] = {n \choose k} p^k q^{n-k}, q = 1 - p,$	Bayes' theorems			
30	1,073,741,524	113	$Pr[X = k] = {k \choose k} p^{-q} - q$, $q = 1 - p$,	$Pr[A_i B] = \frac{Pr[B A_i]Pr[A_i]}{\sum_{i=1}^{n} Pr[A_i]Pr[B A_i]}.$			
31	2,147,483,648	127	$r_{ij} = \sum_{n=1}^{n} c_n (n) A_n r_{ij} = r_{ij} r_{ij}$				
32	4,294,987,298	131	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^{k} q^{n-k} = np.$	Inclusion-exclusion:			
	Pascal's Triangl	e .	Poisson distribution:	$\Pr\left[\bigvee_{i} X_{i}\right] = \sum_{i} \Pr[X_{i}] +$			
	1		$Pr[X = k] = \frac{e^{-\lambda}\lambda^k}{k!}, E[X] = \lambda.$				
	11		Normal (Gaussian) distribution:	$\sum_{k=1}^{n} (-1)^{k+1} \sum_{m \leq \cdots \leq m} \Pr \left[\bigwedge_{j=1}^{n} X_{ij} \right].$			
	121		$p(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	k=1 n<- <n j="1<br">Moment inequalities:</n>			
	1331						
	14641		The "coupon collector": We are given a random coupon each day, and there are n	$\Pr[X \ge \lambda E[X]] \le \frac{1}{\lambda}$			
	1 5 10 10 5 1		different types of coupons. The distribu-	$\Pr[X - E[X] \ge \lambda \cdot \sigma] \le \frac{1}{32}$.			
	1 7 21 35 35 21 7		tion of coupons is uniform. The expected	Geometric distribution:			
	1 8 28 56 70 56 28		number of days to pass before we to col- lect all n types is	$Pr[X = k] = pq^{k-1}, q = 1 - p,$			
1 1	9 36 84 126 126 84		nH _n .	$\sum_{i=1}^{n} a_{i} b_{i} = \frac{1}{2}$			
	120 210 282 210 1			$E[X] = \sum_{k=1} kpq^{k-1} = \frac{1}{p}.$			
			I.				

Theoretical Computer Science Cheat Sheet Theoretical Computer Science Chest Sheet Number Theory Graph Theory $\begin{aligned} \text{Wallie' identity:} \\ \pi &= 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot \delta \cdot \delta \cdot 7 \cdots} \end{aligned}$ The Chinese remainder theorem: There ex-Definitions: Notation: ists a number C such that: E(G)Edge set An edge connecting a ver-Leop V(G)Vertex set tex to itself. $C \equiv r_1 \mod m_2$ Number of components Brounder's continued fraction expansion: Directed Each edge has a direction. 4. $\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}, \quad \text{ S. } \frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2},$ Induced subgraph Graph with no loops or : : : Simple dog(v)Degree of u multi-edges. $C \equiv r_n \mod m_n$ Maximum degree Walk A sequence opequip ... erry. Miramum dogree A walk with distinct edges. Thad if m_i and m_i are relatively prime for $i \neq j$. Gregory's series: $\frac{7}{3} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{7} + \frac{1}{9} - \cdots$ Chromatic number A trail with distinct PathEuler's function: $\phi(x)$ is the number of $\chi_{\mathbb{F}}(G)$ Edge chromatic number vertices. positive integers less than x relatively Complement graph A graph where there exists prime to x. If $\prod_{i=1}^n p_i^m$ is the prime fac-torization of x then Newton's series 12. $\frac{d(\cot u)}{dx} = \cot^2 u \frac{du}{dx}$ Complete graph 11. $\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$ a path between any two Complete bipartite graph $\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 8 \cdot 2^3} + \cdots$ vertices. $\phi(x)=\prod p_i^{n_i-1}(p_i-1).$ $r(k, \ell)$ Remsey number Component A maximal connected subgraph. Geometry Euler's theorem: If a and b are relatively Thee A connected acyclic graph. 18. $\frac{d(xesinu)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx},$ Projective coordinates: triples $\frac{\pi}{4} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^4 \cdot 3} + \frac{1}{3^2 \cdot 6} - \frac{1}{3^3 \cdot 7} + \cdots \right)$ prime then Free tree A tree with no root. (x, y, z), not all x, y and z zero. $1 \equiv a^{\phi(b)} \mod b$. DAGDirected acyclic graph. $17. \ \frac{d(xrctsnu)}{dx} = \frac{1}{1+u^2} \frac{du}{dx},$ 18. $\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx},$ $(x,y,z) = (cx,cy,cz) \quad \forall c \neq 0.$ Eulerian Graph with a trail visiting Fermat's theorem: Cartesian Projective each edge exactly once. $1 \equiv a^{p-1} \mod p$. \$\frac{1}{2} = \frac{1}{2} + \ 19. $\frac{d(\arccos u)}{dx} = \frac{1}{u\sqrt{1-u^2}}\frac{du}{dx},$ Hamiltonian Graph with a cycle visiting $20.\ \frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx},$ (x, y)(x, y, 1)The Euclidean algorithm: if a > b are ineach writex exactly once. デーカーカーカーカーホー… y = mx + b (m, -1, b)terers then A set of edges whose re-(1,0,-c)x = c21. $\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$ 22. $\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$, $\frac{s^2}{12} = \frac{1}{12} - \frac{1}{20} + \frac{1}{20} - \frac{1}{22} + \frac{1}{12} - \cdots$ $gcd(a, b) = gcd(a \mod b, b).$ moval increases the num-Distance formula, L_p and L_m ber of components. If $\prod_{i=1}^{n} p_i^{n_i}$ is the prime factorization of xPartial Fractions 23. $\frac{d(\tanh u)}{dx} = \operatorname{such}^2 u \frac{du}{dx}$ $24. \ \frac{d(\coth u)}{dz} = -\cosh^2 u \frac{du}{dz},$ Cut-set A minimal cut. $\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}$ $S(x) = \sum d = \prod_{i=1}^{n} \frac{p_i^{n+1} - 1}{p_i - 1}.$ Cut edge A size 1 cut. Let N(x) and D(x) be polynomial func- $[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p}$ k-Connected A graph connected with tions of z. We can break down 28. $\frac{d(\operatorname{sech} u)}{dr} = -\operatorname{sech} u \tanh u \frac{du}{dr}$ $26. \ \frac{d(\cosh u)}{dr} = -\cosh u \ \coth u \frac{du}{dr},$ N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater $\lim [|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p}$ the removal of any k - 1vertices. Perfect Numbers: x is an even perfect num-Area of triangle (x_0, y_0) , (x_1, y_1) than or equal to the degree of D, divide k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. N by D, obtaining $k \cdot c|G - S| \le |S|$. and (x_2, y_2) : Wilson's theorem: n is a prime iff $\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$ $N^{T}(x)$ $90. \ \frac{d(\operatorname{srecoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx},$ $29. \ \frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1-u^2} \frac{du}{dx},$ A graph where all vertices $(n-1)! \equiv -1 \mod n$. k-Regular Möbius inversion: if i = 1. have degree k. A k-regular spanning k-Factor Angle formed by three points: where the degree of N' is less than that of $\mu(i) = \begin{cases} 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \end{cases}$ subgraph. D. Second, factor D(x). Use the follow-Matching A set of edges, no two of ing rules: For a non-repeated factor: $\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$ which are adjacent. r distinct prinse. 1. $\int cu dz = c \int u dz$, 2. $\int (u + v) dx = \int u dx + \int v dx,$ A set of vertices, all of Chique which are adjacent. A set of vertices, none of 3. $\int x^n dx = \frac{1}{n+1}x^{n+1}$, $n \neq -1$, 4. $\int \frac{1}{x}dx = \ln x$, 5. $\int e^x dx = e^x$, $A = \left[\frac{N(x)}{D(x)}\right]_{...}$ $\cos\theta = \frac{(x_1,y_1)\cdot(x_1,y_2)}{}$ which are adjacent. Vertex cover A set of vertices which $F(a) = \sum \mu(d)G(\frac{a}{d}).$ 6. $\int \frac{dx}{1+x^2} = \arctan x,$ 7. $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$ Line through two points $\{x_0, y_0\}$ For a repeated factor: cower all edges. Planar graph A graph which can be emand (x_1, y_1) : 8. $\int \sin x \, dx = -\cos x$, 9. $\int \cos x \, dx = \sin x$, beded in the plane. ine numbers: $p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$ z₁ y₂ 1 = 0. Plane graph. An embedding of a planar. 10. $\int \tan x \, dx = -\ln|\cos x|$, 11. $\int \cot x \, dx = \ln|\cos x|$, x₁ y₁ 1 $A_k = \frac{1}{k!} \left[\frac{d^n}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=0}$ Area of circle, volume of sphere: $\sum_{v \in V} \deg(v) = 2m.$ $\mathbf{12.} \ \int \sec x \, dx = \ln|\sec x + \tan x|, \qquad \qquad \mathbf{13.} \ \int \csc x \, dx = \ln|\csc x + \cot x|,$ $\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2ln}{(\ln n)^2}$ The reasonable man adapts himself to the If G is planar than n - m + f = 2, so If I have seen further than others. world; the unreasonable persists in trying $f \le 2n - 4$, $m \le 2n - 6$. it is because I have stood on the 14. $\int \arcsin \frac{\pi}{a} dx = \arcsin \frac{\pi}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$ to adapt the world to himself. Therefore Any planar graph has a vertex with doshoulders of giants. all progress depends on the unreasonable.

George Bernard Shaw

Issue Newton

Theoretical Computer Science Cheat Sheet Calculus Cont. 18. $\int \arccos \frac{\pi}{a} dx = \arccos \frac{\pi}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$ 16. $\int \arctan \frac{\pi}{a} dx = x \arctan \frac{\pi}{a} - \frac{\pi}{a} \ln(a^2 + x^2), \quad a > 0,$ 17. $\int \sin^2(ax)dx = \frac{1}{2a}(ax - \sin(ax)\cos(ax)),$ 18. $\int \cos^2(\alpha x) dx = \frac{1}{2\pi} (\alpha x + \sin(\alpha x) \cos(\alpha x)),$ 19. $\int \sec^2 x \, dx = \tan x,$ 20. $\int \csc^2 x \, dx = -\cot x,$ $21. \int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx, \qquad \qquad 22. \int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-1} x \, dx,$ 23. $\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx$, $n \neq 1$, 24. $\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx$, $n \neq 1$, $26. \ \int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-1} x \, dx, \quad n \neq 1,$ $28. \int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1, \quad 27. \int \sinh x \, dx = \cosh x, \quad 28. \int \cosh x \, dx = \sinh x,$ 34. $\int \cosh^2 x \, dx = \frac{1}{2} \sinh(2x) + \frac{1}{2}x$, 35. $\int \operatorname{sech}^2 x \, dx = \tanh x$, 33. $\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2\pi) - \frac{1}{2}x$, 98. $\int \operatorname{arcsinh} \frac{\pi}{a} dx = x \operatorname{arcsinh} \frac{\pi}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$ 37. $\int \operatorname{arctanh} \frac{\pi}{a} dx = x \operatorname{arctanh} \frac{\pi}{a} + \frac{\pi}{2} \ln |a^2 - x^2|,$ 98. $\int \operatorname{arccosh} \frac{\pi}{a} d\mathbf{r} = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{\pi}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{\pi}{a} < 0 \text{ and } a > 0, \end{cases}$ 39. $\int \frac{dx}{\sqrt{a^2+a^2}} = \ln(x + \sqrt{a^2+x^2}), \quad a > 0,$ 41. $\int \sqrt{a^2 - x^2} dx = \frac{a}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{a}{a}, \quad a > 0$ 40. $\int \frac{dx}{a^2 + a^2} = \frac{1}{a} \arctan \frac{a}{a}, \quad a > 0,$ 42. $\int (a^2 - x^2)^{3/2} dx = \frac{\pi}{8} (3a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{\pi}{4}, \quad a > 0,$ 43. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}$, a > 0, 44. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$, 45. $\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$, $46. \ \int \sqrt{a^2 \pm x^2} \, dx = \frac{\pi}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right| \, , \qquad \qquad 47. \ \int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right| \, , \quad a > 0 \, ,$ 48. $\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$ 49. $\int x\sqrt{a+bx} dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{4bx^2}$, $84. \ \int x^2 \sqrt{a^2 - x^2} \, dx = \frac{\pi}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{\pi^4}{8} \arcsin \frac{\pi}{4}, \quad a > 0, \qquad \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|, \quad a > 0, \qquad \\ 88. \ \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right| + \frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right| + \frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right| + \frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right| + \frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right| + \frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right| + \frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right| + \frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right| + \frac{1}{4} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right| + \frac{1}{4} \ln \left| \frac{a + \sqrt$ 57. $\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{\pi}{2} \sqrt{a^2 - x^2} + \frac{\pi^2}{2} \arcsin \frac{\pi}{a_1} \quad a > 0$, 58. $\int \frac{x dx}{\sqrt{x^2 - x^2}} = -\sqrt{x^2 - x^2}$, 88. $\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$ 89. $\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|a|}, \quad a > 0,$ 61. $\int \frac{dx}{x\sqrt{x^2+x^2}} = \frac{1}{4} \ln \left| \frac{x}{x+\sqrt{x^2+x^2}} \right|,$ 60. $\int x \sqrt{x^2 \pm a^2} dx = \frac{1}{2} (x^2 \pm a^2)^{3/2}$,

Theoretical Computer Science Chest S	heet
Calculus Cont.	Finite Calculus
62. $\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{ x }, a > 0,$ 63. $\int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2x},$	Difference, shift operators: $\Delta f(x) = f(x+1) - f(x),$
64. $\int \frac{x dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2}$, 68. $\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2x^2}$,	$\mathbf{E}f(x) = f(x+1).$ Fundamental Theorems
$66. \int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right , & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$	$f(x) = \Delta F(x) \Leftrightarrow \sum_{i} f(x)\delta x = F(x) + C.$ $\sum_{i} f(x)\delta x = \sum_{i=a}^{b-1} f(i).$ Differences:
67. $\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right , & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$	$\Delta(cu) = c\Delta u,$ $\Delta(u + v) = \Delta u + \Delta v,$ $\Delta(uv) = u\Delta v + Ev\Delta u,$ $\Delta(z^n) = nz^{n-1},$
68. $\int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$	$\Delta(H_{\bullet}) = x^{-1},$ $\Delta(2^{\bullet}) = 2^{\bullet},$ $\Delta(c^{\bullet}) = (c-1)c^{\bullet},$ $\Delta\binom{*}{n} = \binom{*}{m-1}.$ Sums:
69. $\int \frac{x dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$	$\sum cu \delta x = c \sum u \delta x,$ $\sum (u + v) \delta x = \sum u \delta x + \sum v \delta x,$
$70. \int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right , & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{ x \sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$	$\begin{split} & \sum u \Delta v \delta x = uv - \sum \mathbf{E} v \Delta u \delta x, \\ & \sum x^n \delta x = \frac{n+1}{m+1}, \qquad \sum x^{-1} \delta x = H_n, \\ & \sum c^n \delta x = \frac{s}{s-1}, \qquad \sum \binom{n}{n} \delta x = \binom{s}{m+1}. \end{split}$
71. $\int x^3 \sqrt{x^2 + a^2} dx = (\frac{1}{2}x^2 - \frac{1}{13}a^2)(x^2 + a^2)^{3/2},$	Falling Factorial Powers: $x^n = x(x-1) \cdots (x-n+1), n > 0,$
72. $\int x^n \sin(ax) dx = -\frac{1}{a}x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx$,	$x^{0} = 1,$ $x^{n} = \frac{1}{(x + 1) \cdots (x + n)}, n < 0,$
73. $\int x^n \cos(\alpha x) dx = \frac{1}{a}x^n \sin(\alpha x) - \frac{n}{a} \int x^{n-1} \sin(\alpha x) dx,$	$z^{\underline{m+m}} = z^{\underline{m}}(z - m)^{\underline{m}}.$
74. $\int x^n e^{ix} dx = \frac{x^n e^{ix}}{a} - \frac{n}{a} \int x^{n-1} e^{ix} dx$,	Rising Factorial Powers: $x^n = x(x+1) \cdots (x+n-1), n > 0,$
78. $\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$	$x^0 = 1,$ $x^0 = 1$
76. $\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx.$	$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x- n)}, n < 0,$ $x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}.$
$z^{i} = - z^{i} = - z^{T}$ $z^{2} = - z^{2} + z^{i} = - z^{T}$	Conversion: $x^n = (-1)^n (-x)^n = (x - n + 1)^n$
$x^2 = x^2 + x^4 = x^2 - x^2$ $x^3 = x^3 + 3x^2 + x^4 = x^3 - 3x^2 + x^2$	$= 1/(x+1)^{-n}$, $x^{N} = (-1)^{n}(-x)^{n} = (x+n-1)^{n}$
$x^4 = x^4 + 6x^3 + 7x^2 + x^4 = x^3 - 6x^5 + 7x^2 - x^7$	$z^{-1} = (-1)^{-1}(-x)^{-1} = (x+n-1)^{-1}$ = $1/(x-1)^{-n}$,
$x^{3} = -x^{3} + 18x^{4} + 28x^{3} + 10x^{3} + x^{4} = -x^{3} - 18x^{2} + 28x^{3} - 10x^{2} + x^{2}$	$x^n = \sum_{i=1}^{n} {n \choose k} x^k = \sum_{i=1}^{n} {n \choose k} (-1)^{n-k} x^k,$
z ^z - z ^z - z ^z	A
$x^2 = x^2 + x^4$ $x^2 = x^2 - x^4$ $x^3 = x^3 + 3x^2 + 2x^4$ $x^3 = x^2 - 3x^2 + 2x^4$	$x^{\underline{n}} = \sum_{k=1}^{n} {n \brack k} (-1)^{n-k} x^{\underline{k}},$
$x^{a} = x^{a} + 3x^{a} + 2x^{a}$ $x^{b} = x^{a} - 3x^{a} + 2x^{a}$ $x^{b} = x^{b} + 6x^{b} + 11x^{b} + 6x^{b}$ $x^{b} = x^{b} - 6x^{b} + 11x^{b} - 6x^{b}$	
$x^5 = x^5 + 6x^7 + 11x^7 + 6x^5$ $x^5 = x^5 - 6x^7 + 11x^7 - 6x^5$ $x^5 = x^5 + 10x^4 + 35x^5 + 50x^2 + 24x^4$ $x^5 = x^5 - 10x^4 + 35x^5 - 50x^2 + 24x^4$	$x^{k'} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k$.

Theoretical Computer Science Chest Sheet

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{m} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

Ordinary power series:

$$A(x) = \sum_{i=1}^{n} a_i x^i$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x}{i}$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{\alpha_i}{i^2}$$

Binomial theorems

$$(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

$$x^n - y^n = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^k.$$

$$aA(x) + \beta B(x) = \sum_{i=0}^{m} (aa_i + \beta b_i)x^i$$

$$x^kA(x)=\sum_{i=k}^m a_{i-k}x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{m} a_{i+k} x^i$$

$$A(cx) = \sum_{i=0}^{n} c^{i} a_{i}x^{i}$$
,

$$A'(x) = \sum_{i=0}^{n} (i+1)a_{i+1}x^{i}$$

$$(x) + A(-x) = \sum_{i=1}^{\infty} a_i x^{2i}$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=1}^{m} a_{2i+1}x^{2i+1}.$$

Summation: If $b_i = \sum_{j=0}^{i} a_i$ then

$$B(x) = \frac{1}{1-x}A(x)$$

$$A(x)B(x) = \sum_{i=0}^{m} \left(\sum_{j=0}^{i} a_{j}b_{i-j} \right) x^{i}$$

God made the natural numbers: all the rest is the work of man. Leopold Kronecker

Theoretical Computer Science Chest Sheet

Eacher's Knot

Expansions:

$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=1}^{m} (H_{n+i} - H_n) {n+i \choose i} x^i,$$

$$x^{\overline{n}} = \sum_{i=1}^{m} {n \brack i} x^i,$$

$$(1-x)^n = \sum_{i=1}^{m} [i] n! x^i$$

$$\left(\ln \frac{1}{1-x}\right)^n = \sum_{i=1}^{\frac{n}{n-1}} \begin{bmatrix} i \\ n \end{bmatrix} \frac{n!x^i}{i!},$$

$$tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i}-1)B_{2i}x^2}{(2i)!}$$

$$\zeta(x)$$
 = $\prod \frac{1}{x}$.

$$\zeta^{2}(x) = \sum_{i=1}^{m} \frac{d(i)}{x^{i}}$$
 where $d(n) = \sum_{i \mid n} 1$,

$$\zeta(z)\zeta(z-1) = \sum_{i=1}^{\infty} \frac{S(i)}{z^i}$$
 where $S(n) = \sum_{i \mid n} d$

$$\zeta(2n) = \frac{2^{2n-1}|B_{2n}|}{(2n)!} \pi^{2n}, \quad n \in \mathbb{N},$$

$$\frac{x}{\sin x} = \sum_{i=0}^{\infty} (-1)^{i-1} \frac{(i-2)D_{2i}x}{(2i)!}$$

$$\frac{1-\sqrt{1-4x}}{2x})^n = \sum_{i=0}^{\infty} \frac{n(2i+n-1)!}{i!(n+i)!}x^i,$$

$$e^{x} \sin x = \sum_{i=1}^{\infty} \frac{2^{i/2} \sin \frac{i\pi}{4}}{i!} x^{i},$$

$$\sqrt{\frac{1-\sqrt{1-x}}{x}} = \sum_{i=0}^{\infty} \frac{(4i)!}{16i\sqrt{2(2i)!(2i+1)!}} x^i,$$

$$\left(\frac{\arcsin x}{x}\right)^{2} = \sum_{i=0}^{\infty} \frac{4^{i}i!^{2}}{(i+1)(2i+1)!}x^{2i}.$$

Cramer's Rule

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,n}x_n = b_1$$

 $a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{1,n}x_n = b_2$
 \vdots \vdots \vdots

 $a_{n,1}x_1 + a_{n,2}x_2 + \cdots + a_{n,n}x_n = b_n$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be Awith column i replaced by B. Then $x_i = \frac{\det A_i}{\det A}.$

$$z_i = \frac{\operatorname{det} A}{\operatorname{det} A}$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius. William Blake (The Marriage of Heaven and Hell)

$$\left(\frac{1}{x}\right)^{\frac{1}{n}} = \sum_{i=0}^{n} \left\{\frac{i}{n}\right\} x^{i},$$
 $\sum_{i=0}^{n} \left(\frac{i}{n}\right) n! x^{i}$

$$x \cot x = \sum_{i=0}^{i=0} \frac{(-4)^i B_{2i} x^{2i}}{(2i)!},$$

$$\zeta(x) = \sum_{i=1}^{m} \frac{1}{i^x},$$

 $\zeta(x-1) = \sum_{i=1}^{m} \phi(i)$

$$\zeta(x) = \sum_{i=1}^{n} \frac{\dot{\varphi}(i)}{\dot{\varphi}^{i}},$$

$$\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{n} \frac{\dot{\varphi}(i)}{\dot{\varphi}^{i}},$$

Stielties Integration

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_{a}^{b} G(x) dF(x)$$

exists. If $a \le b \le c$ then

$$\int_{a}^{a} G(x) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{b}^{a} G(x) dF(x).$$

$$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d[F(x) + H(x)] = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d[c \cdot F(x)] = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x)F'(x) dx.$$

21 32 49 54 65 00 10 69 05 58 42 m3 64 On 16 20 31 58 19 87

The Fibonacci number system: Every integer n has a unique representation.

 $n = F_{k_0} + F_{k_0} + \cdots + F_{k_m}$, where $k_i \ge k_{i+1} + 2$ for all i, $1 \le i < m$ and $k_m \ge 2$.

Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . Definitions:

$$F_i = F_{i-1} + F_{i-2}, \quad F_0 = F_1 = 1,$$

 $F_{-i} = (-1)^{i-1}F_i,$
 $F_i = \frac{1}{2\pi} \left(\phi^i - \dot{\phi}^i \right),$

Cassini's identity: for i > 0: $F_{i+1}F_{i-1} - F_i^2 = (-1)^i$.

Additive rule:

 $F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$ $F_{2n} = F_n F_{n+1} + F_{n-1} F_n$ Calculation by matrices:

 $\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$

Computação Gráfica Unidade 02

prof. Dalton S. dos Reis dalton.reis@gmail.com

FURB - Universidade Regional de Blumenau DSC - Departamento de Sistemas e Computação Grupo de Pesquisa em Computação Gráfica, Processamento de Imagens e Entretenimento Digital http://www.inf.furb.br/gcg/

