- 1. Write only ONE or TWO sentences for each of the following topics. Just write as you understood ©.
 - (a) Coherence time
 - (b) Coherence bandwidth
 - (c) Fast fading channel
 - (d) Flat fading channel
 - (e) Narrowband communications
- 2. (MATLAB) A multipath fast-fading channel of wireless communications system is given as

$$h = h_r + jh_i$$

which is a complex number. We assume that h follows \mathbf{H} is the average complex Gaussian distribution, i.e., $h \sim \mathcal{CN}(0, \Omega_p)$, where Ω_p is the average envelop power. This implies that h_r , $h_i \sim \mathcal{N}(0, \Omega_p/2)$ which are Gaussian distributions with mean promotering. Con Then, the envelop of h, i.e., |h|, follows a Rayleigh distribution.

PDFs and CDFs of |h| and $|h|^2$ can be given as follows (also see Slide#12 of the Lecture rough Slime#16 on at WDOSWCOO) CT

PDF of
$$|h|$$
: $f_{|h|}(z) = \frac{2z}{\Omega_p} e^{-\frac{z^2}{\Omega_p}}; z \ge 0$ (1)

CDF of
$$|h|$$
: $F_{|h|}(z) = 1 - e^{-\frac{z^2}{\Omega_p}}$ (2)

CDF of
$$|h|$$
: $F_{|h|}(z) = 1 - e^{-\frac{z^2}{\Omega_p}}$ (2)
PDF of $|h|^2$: $f_{|h|^2}(z) = \frac{1}{\Omega_p} e^{-\frac{t}{\Omega_p}}$ (3)

CDF of
$$|h|^2$$
: $F_{|h|^2}(z) = 1 - e^{-\frac{t}{\Omega_p}}$ (4)

Using MATLAB simulations, please verify above PDFs and CDFs when $\Omega_p = 5 \, \mathrm{dBm!}$

(Hint: For an example, you may generate a random variable h in MATLAB as

h = sqrt(omega/2) * randn(1,1) + 1i * sqrt(omega/2) * randn(1,1).

Try to get your plots as in Figure 1 ©)

Figure 1: Example.

3. We have a simple wireless system with a transmitter and receiver pair which are implemented with a single antenna. Then, the received signal at the receiver at time draw with at powcoder r(t) = h s(t) + n(t).

$$r(t) = h s(t) + n(t). \tag{5}$$

Here, h is the wireless channel as explained in Problem#2; s(t) is the transmitted signal which has the average transmit power $P_s(W)$; and n(t) is the additive white Gaussian noise (AWGN) which follows a circularly symmetric complex Gaussian distribution, i.e., $n(t) \sim \mathcal{CN}(0, N_0)$, where N_0 (W/Hz) is the average noise power. The channel bandwidth of the wireless system is B (Hz). We neglect path-loss and shadowing effects.

- (a) Write an expression for the instantaneous received signal-to-noise ratio (SNR) γ in terms of h, P_s , N_0 and B.
- (b) Derive an expression for the SNR outage probability, when the received SNR falls below a threshold γ_{th} . Please provide details of your derivation!
- (c) The wireless system requires the SNR outage probability less than 10^{-5} . What is the minimum signal power $P_s(W)$ which satisfies this requirement when $N_0 = 10^{-9} \, (W/Hz)$, $B = 1 \, (Hz)$, $\gamma_{th} = 5 \, (dB)$ and $\Omega_p = 10^{-9} \, (W/Hz)$ 5 (dBm)?