Continuous time signals

Example: speech signal

Basic transformations

Basic transformations

Signal energy and power

Instantaneous power $P(t)=x^{2}(t)$

$$E = \int_0^T x^2(t) \, dt$$

Energy
$$E = \int_0^T x^2(t) dt$$
 Average power
$$P = \frac{1}{T} \int_0^T x^2(t) dt$$

Signals of infinite duration

Signals of infinite duration may have finite or infinite energy:

e.g.
$$x(t) = \exp(-at), \quad t \in (0, \infty), \quad a > 0$$

has energy equal to $\frac{1}{2a}$

$$x(t) = 1(t)e^{-at}, \qquad a > 0$$

$$E = \int_{-\infty}^{\infty} x^{2}(t) dt = \int_{0}^{\infty} (e^{-at})^{2} dt = \int_{0}^{\infty} e^{-2at} dt = \frac{1}{-2a} e^{-2at} \Big|_{0}^{\infty} = \frac{1}{-2a} [0-1] = \frac{1}{2a}$$

Signals of infinite duration

Signals x(t)=A, $x(t)=A\cos(2\pi f_0 t)$, have infinite energy but finite power

E.g. for
$$x(t)=A$$
, $P=A^2$,
for $x(t) = A \cos(2\pi f_0 t)$, $P=A^2/2$

Energy may be calculated in a window od duration T, $E_T = \int_{-T/2}^{T/2} x^2(t) dt$

Then average power is estimated for $T \to \infty$ $P = \lim_{T \to \infty} \frac{E_T}{T}$

For x(t)=A:
$$E_T = \int_{-T/2}^{T/2} A^2 dt = A^2 T$$
 and $P = A^2$

Signals of infinite duration

For $x(t) = A \cos(2\pi f_0 t)$,

$$x^{2}(t) = A^{2} \cos^{2}(2\pi f_{0}t) = A^{2}\left[\frac{1}{2} + \frac{1}{2}\cos(4\pi f_{0}t)\right] = \frac{A^{2}}{2} + \frac{A^{2}}{2}\cos(4\pi f_{0}t)$$

$$E_T = \int_{-T/2}^{T/2} x^2(t) dt = \int_{-T/2}^{T/2} \frac{A^2}{2} dt + \frac{A^2}{2} \int_{-T/2}^{T/2} \cos(4\pi f_0 t) dt =$$

$$= \frac{A^2T}{2} + \frac{A^2}{8\pi f_0} \left[\sin(4\pi f_0 t) \right]_{-T/2}^{T/2} = \frac{A^2T}{2} + \frac{A^2}{8\pi f_0} \left[\sin(2\pi f_0 T) + \sin(2\pi f_0 T) \right] =$$

$$= \frac{A^2T}{2} + \frac{A^2}{4\pi f_0} \sin(2\pi f_0 T)$$

$$P = \lim_{T \to \infty} \frac{E_T}{T} = \lim_{T \to \infty} \left[\frac{A^2}{2} + \frac{A^2}{4\pi f_0 T} \sin(2\pi f_0 T) \right] = \frac{A^2}{2}$$

Similarity of signals. Correlation

Similarity of real signals x(t) and y(t) may be characterized by the scalar product:

$$\langle x, y \rangle = \int x(t) y(t) dt$$

The scalar product
$$\langle x, x \rangle = \int x^2(t) dt = ||x||^2 = E$$

is a squared norm of the signal x(t) and is equal to its energy.

Scalar product $\langle x, y \rangle$ is also called a correlation of x(t) and y(t), but correlation coefficient of x and y is usually calculated using the normalized

signals
$$\rho(x, y) = \langle \frac{x}{||x||}, \frac{y}{||y||} \rangle = \frac{\langle x, y \rangle}{\|x\| \|y\|}$$

If x(t)=y(t), then $\rho(x,y)=1$. If < x,y>=0 , signals x and y are orthogonal

Correlation function and convolution

Scalar product of x(t) and shifted signal $y(t-t_0)$ is a function of delay t_0 and is called the correlation function of signals x and y.

$$R_{xy}(t_0) = \int x(t) y(t - t_0) dt$$

The function $R_x(t_0) = \int x(t) x(t-t_0) dt$ is the autocorrelation function of x.

At
$$t_0 = 0$$
 the autocorrelation is equal to energy: $R_x(0) = \int x^2(t) dt = E$

The function
$$y(t) = x(t) * h(t) = \int x(\tau) h(t - \tau) d\tau$$

is called a convolution of x(t) and h(t).

Calculation of convolution – an example

$$y(t) = x(t) * h(t) = \int x(\tau) h(t - \tau) d\tau$$

For t > 1 and for t < -1 pulses $x(\tau)$ and $h(t-\tau)$ do not overlap , $x(\tau)h(t-\tau)=0$ and y(t)=0

For
$$0 < t < 1$$
 $x(\tau)h(t-\tau) = 1$, $t < \tau < 1$ and $y(t)=1-t$

For
$$-1 < t < 0$$
 $x(\tau)h(t-\tau) = 1$, $0 < \tau < t+1$ and $y(t)=t+1$

Finally the convolution equals:

Calculation of correlation function – an example

$$R_{xy}(t_0) = \int x(t) y(t - t_0) dt$$

For $t_0 > 2$ and for $t_0 < 0$ pulses x(t) and $y(t-t_0)$ do not overlap , x(t) $y(t-t_0) = 0$ and $R_{xy}(t_0) = 0$

For
$$0 < t_0 < 1$$
 $x(t)$ $y(t-t_0) = 1$, $0 < t < t_0$ and $y(t)=t_0$

For
$$1 < t_0 < 2$$
 $x(t) y(t-t_0) = 1$, $t_0-1 < t < 1$ and $y(t)=2-t_0$

Finally the correlation function equals:

Periodic signals

Periodic signal:

$$\forall_t \ x(t+T) = x(t)$$

T > 0 – period

Minimum value of T - fundamental period or just period

e.g. For $x(t) = cos(2\pi ft)$, fundamental period T=1/f

Are these signals periodic?

$$x(t) = 1 + \sin(2\pi t)$$
 Periodic signal, period T=1

$$x(t) = \cos^2(2\pi t)$$
 Periodic, period T=0.5, because $\cos^2(2\pi t) = \frac{1}{2} + \frac{1}{2}\cos(4\pi t)$

$$x(t) = \cos(2\pi t) + \cos(\pi t)$$
 periodic, T₁=1 , T₂=2, common period T=2

$$x(t) = \cos(2\pi t) + \cos(\frac{2\pi t}{\sqrt{2}})$$
 first period T₁=1 , second $T_2 = \sqrt{2}$

There is no common period, because T_1/T_2 is not a rational number. x(0)=2, but this value appears only once. The signal x(t) is not periodic.

Instantaneous values (samples)

Calculation of energy and power using signal samples

Energy:

Mean power:

$$E = \int_{0}^{T} x^{2}(t) dt$$

$$P = \frac{1}{T} \int_{0}^{T} x^2(t) dt$$

$$x_{N}^{2}$$
 x^{2} x^{2}

$$E = \sum_{n} x_n^2 T_s$$

$$T_s$$
 – sampling period x_n – n-th sample

$$P = \frac{1}{T} \sum_{n} x_{n}^{2} T_{s} = \frac{1}{NT_{s}} \sum_{n=1}^{N} x_{n}^{2} T_{s} = \frac{1}{N} \sum_{n} x_{n}^{2}$$

Calculation of signal parameters using signal samples

Continuous time

Discrete time

Energy:
$$E = \int_{0}^{t} x^{2}(t) dt$$

$$E = \sum_{n=1}^{N} x_n^2$$
 T_s is set to 1

Power:
$$P = \frac{1}{T} \int_{0}^{T} x^{2}(t) dt$$

$$P = \frac{1}{N} \sum_{n=1}^{N} x_n^2$$

Scalar product:
$$\langle x, y \rangle = \int_0^T x(t) y(t) dt$$

$$\langle x, y \rangle = \int_0^T x(t) y(t) dt$$
 $\langle x, y \rangle = \sum_{n=1}^N x_n y_n = \mathbf{x}^T \mathbf{y}$

x, y - column vectors of samples, T - transpose

$$||x||^2 = \int_0^T x^2(t) dt$$

$$\|x\|^2 = \sum_{n=1}^N x_n^2 = \mathbf{x}^T \mathbf{x}$$

$$R_{xy}(t_0) = \int x(t) y(t-t_0) dt$$
 $R_{xy}(m) = \sum x_n y_{n-m}$

$$R_{xy}(m) = \sum_{n} x_n y_{n-m}$$

$$x(t) * h(t) = \int x(\tau) h(t - \tau) d\tau$$

$$x_n * h_n = \sum_m x_m h_{n-m}$$

Calculation of convolution in discrete time

Statistical description – random signals

Samples are random variables described with probability density function p(x)

Gauss

$$p(x) = \frac{1}{\sqrt{2 \pi \sigma_x^2}} exp\left(-\frac{x^2}{2 \sigma_x^2}\right)$$

Laplace

$$p(x) = \frac{1}{\sqrt{2\sigma_x^2}} \exp\left(-\sqrt{2} \frac{|x|}{\sigma_x}\right)$$

$$\sigma_x^2$$
 – variance

Calculation of signal parameters using probability density function (pdf)

Given p(x) - pdf of samples x – we may calculate:

Mean value of signal samples
$$m_x = E[x] = \int x p(x) dx$$
 (here E – statistical average)

Instatnateous power: x²

Mean power
$$P = E[x^2] = \int x^2 p(x) dx$$

Variance of signal samples: $\sigma_x^2 = E[(x - m_x)^2] = \int (x - m_x)^2 p(x) dx$

$$\sigma_x^2 = E[(x - m_x)^2] = E[x^2 - 2xm_x + m_x^2] = E[x^2] - 2m_x E[x] + m_x^2 =$$

$$= E[x^2] - 2m_x^2 + m_x^2 = E[x^2] - m_x^2$$

Calculation of signal parameters using probability density function (pdf)

Example – sawtooth signal, amplitude A, period T

Mean power was calculated in time domain. On the next slide it will be calculated using probability density function of signal values.

Calculation of signal parameters using probability density function (pdf)

Example : sawtooth signal, amplitude A, period T

Instantaneous values (samples x) of this signal vary from -A to +A. Probability density function of these samples is equal to zero for x < -A and for x > A. Sawtooth function is linear, therefore probability density is the same for all the values between -A and A. Pdf of this signal is presented below.

Complex functions (revision)

Complex number:
$$z = x + jy$$
, $j^2 = -1$, $x = \text{Re}(z)$, $y = \text{Im}(z)$

Complex signal: $z(t) = x(t) + jy(t)$

In polar coordinates: $z(t) = |z(t)| (\cos \phi(t) + j\sin \phi(t))$, $|z(t)| = \sqrt{x^2(t) + y^2(t)}$
 $\phi(t) = \operatorname{arctg}(\frac{y(t)}{x(t)})$

Complex conjugate: z*(t) = x(t) - jy(t)

$$z(t)z^*(t) = [x(t) + jy(t)][x(t) - jy(t)] = x^2(t) + y^2(t) = |z(t)|^2$$

$$arctg(x) = tg^{-1}(x)$$

Complex functions

From Euler's formula:

$$\cos \phi + j \sin \phi = e^{j\phi}$$

 $\cos \varphi - j \sin \varphi = e^{-j\varphi}$

we obtain:

$$\cos\phi = \frac{1}{2}(e^{j\phi} + e^{-j\phi})$$

$$\sin \phi = \frac{1}{2j} (e^{j\phi} - e^{-j\phi})$$

A function

$$e^{j2\pi ft} = \exp(j2\pi ft) =$$

$$= \cos(2\pi ft) + j\sin(2\pi ft)$$

→ periodic, period T=1/f

Euler's formula

 $\cos\phi + j\sin\phi = e^{j\phi}$

Proof:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \dots$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$e^{j\phi} = 1 + j\phi + \frac{(j\phi)^2}{2!} + \frac{(j\phi)^3}{3!} + \frac{(j\phi)^4}{4!} + \frac{(j\phi)^5}{5!} + \dots$$
$$= 1 + j\phi - \frac{\phi^2}{2!} - \frac{j\phi^3}{3!} + \frac{\phi^4}{4!} + \frac{j\phi^5}{5!} - \dots$$

$$=1-\frac{\phi^2}{2!}+\frac{\phi^4}{4!}-\ldots+j\left(\phi-\frac{\phi^3}{3!}+\frac{\phi^5}{5!}-\ldots\right)=$$

$$=\cos(\phi)+j\sin(\phi)$$

Leonhard Euler

Calculation of complex signal parameters

Continuous time

Discrete time

Energy:
$$E = \int_{0}^{T} |x(t)|^{2} dt$$

$$E = \sum_{n=1}^{N} |x_n|^2 \qquad T_s \text{ is set to 1}$$

Power:
$$P = \frac{1}{T} \int_{0}^{T} |x(t)|^{2} dt$$

$$P = \frac{1}{N} \sum_{n=1}^{N} |x_n|^2$$

$$< x, y > = \int_0^T x(t) y^*(t) dt$$

$$< x, y > = \int_0^T x(t) y^*(t) dt$$
 $< x, y > = \sum_{n=1}^N x_n y_n^* = \mathbf{y}^H \mathbf{x}$

H – transpose and complex conjugate

$$||x||^2 = \int_0^T |x(t)|^2 dt$$

$$||x||^2 = \sum_{n=1}^{N} |x_n|^2 = \mathbf{x}^H \mathbf{x}$$

$$R_{xy}(t_0) = \int x(t) y^*(t-t_0) dt$$
 $R_{xy}(m) = \sum x_n y_{n-m}^*$

$$R_{xy}(m) = \sum x_n \ y_{n-m}^*$$

$$x(t) * h(t) = \int x(\tau) h^*(t-\tau) d\tau$$
 $x_n * h_n^* = \sum x_m h_{n-m}^*$

$$x_n * h_n^* = \sum_m x_m h_{n-m}^*$$