Upcoming Assignments and Assessments

> Homework Assignment #3 is due Friday 2/14

Quiz #3 will be administered during this week's recitation

Subspaces, Basis and Dimension

Subspaces, Basis and Dimension (1)

Definition:

A **subset** of \mathbb{R}^n is any collection of points in \mathbb{R}^n .

Examples of subsets

- ightharpoonup The unit circle = $\{(x, y) \text{ in } \mathbb{R}^2 | x^2 + y^2 = 1\}$.
- $ightharpoonup \{(0,0)\} \text{ in } \mathbb{R}^2$
- ightharpoonup A plane in $\mathbb{R}^3 = \{(x, y, z) \text{ in } \mathbb{R}^3 | x + 3y z = 0\}$

Definition:

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying the following properties:

- **1. Non-emptiness**: The zero vector is in *V*
- **2.** Closure under addition: If u and v are in V, then u + v is also in V
- **3.** Closure under scalar multiplication: If v is in V and c is in \mathbb{R} , then cv is also in V.

Examples of subspaces

- $ightharpoonup \mathbb{R}^n$ is a subspace of itself: it contains zero, it is closed under addition and scalar multiplication
- > The set {0}: contains zero, closed under addition and scalar multiplication

Subspaces, Basis and Dimension (2)

Some consequences of the properties of subspaces

- \triangleright If v is a vector in V, then all scalar multiples of v are in V by the third property. That is, the line through any nonzero vector in V is also contained in V.
- If u, v are in V and c, d are scalars, then cu, dv are also in V by the third property, so, cu + dv is in V by the second property. It follows that Span $\{u, v\}$ is contained in V.
- Generalizing the above, if $v_1, v_2, ..., v_n$ are all in V then $Span\{v_1, v_2, ..., v_n\}$ is contained in V. In other words, a subspace contains the span of any vectors in it.

If enough vectors in V are chosen, then eventually their span will fill up V, demonstrating that a subspace is a span.

More examples of subspaces

- ➤ A line *L* through the origin
- ➤ A plane *P* through the origin
- $> V = \{ \begin{bmatrix} a \\ b \end{bmatrix} \text{ in } \mathbb{R}^2 | 5a = 2b \} \text{ (Let's verify this last one)}$

Subspaces, Basis and Dimension (3)

Example 1

Verify that $V = \{ \begin{bmatrix} a \\ b \end{bmatrix}$ in $\mathbb{R}^2 | 5a = 2b \}$ is a subspace.

- \triangleright V contains $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ since 5(0) = 2(0).
- Now take two vectors $u = \begin{bmatrix} a \\ b \end{bmatrix}$ where $\underline{5a = 2b}$ and $v = \begin{bmatrix} c \\ d \end{bmatrix}$ where $\underline{5c = 2d}$. Note that $5a + 5c = 2b + 2d \Rightarrow 5(a + c) = 2(b + d)$, so the sum vector $u + v = \begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a + c \\ b + d \end{bmatrix}$ also satisfies the condition.
- Finally, $5a = 2b \Rightarrow 5ca = 2cb$ for any scalar c, so, the scalar multiple vector $cu = c \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ca \\ cb \end{bmatrix}$ also satisfies the condition.

This subspace is the line through the origin with slope $\frac{5}{2}$

Subspaces, Basis and Dimension (4)

Theorem (Spans are Subspaces and Subspaces are Spans). If $v_1, v_2, ..., v_p$ are any vectors in \mathbb{R}^n , then Span $\{v_1, v_2, ..., v_p\}$ is a subspace of \mathbb{R}^n . Moreover, any subspace of \mathbb{R}^n can be written as a span of p linearly independent vectors for $p \le n$.

Proof

Consider the Span $\{v_1, v_2, ..., v_p\}$.

- 1. The zero vector $0 = 0v_1 + 0v_2 + \cdots + 0v_p$ is in the span.
- 2. If $u = \underline{a_1}v_1 + a_2v_2 + \dots + a_pv_p$ and $v = \underline{b_1}v_1 + b_2v_2 + \dots + b_pv_p$ are in Span $\{v_1, v_2, \dots, v_p\}$, then $u + v = (a_1 + b_1)v_1 + (a_2 + b_2)v_2 + \dots + (a_p + b_p)v_p$ is also in Span $\{v_1, v_2, \dots, v_p\}$.
- 3. If $v = b_1v_1 + b_2v_2 + \dots + b_pv_p$ is in Span $\{v_1, v_2, \dots, v_p\}$ and c is a scalar, then $cv = cb_1v_1 + cb_2v_2 + \dots + cb_pv_p$ is also in Span $\{v_1, v_2, \dots, v_p\}$.
- So, Span $\{v_1, v_2, ..., v_p\}$ is a subspace of \mathbb{R}^n .

Now let V be a subspace of \mathbb{R}^n . If V is the zero subspace, then it is the span of the empty set (by definition). So, assume v_1 is a nonzero vector. If $V = \operatorname{Span}\{v_1\}$ we're done. Otherwise, there exists a vector v_2 in V but not in $\operatorname{Span}\{v_1\}$, then $\operatorname{Span}\{v_1,v_2\}$ is in V and the set $\{v_1,v_2\}$ is linearly independent. Again, if $V = \operatorname{Span}\{v_1,v_2\}$, we're done. Otherwise, we keep adding new vectors, one at a time, that are not in the current span but contribute to a larger span. Keep doing this until we can write $V = \operatorname{Span}\{v_1,v_2,\ldots,v_p\}$ for some linearly independent set $\{v_1,v_2,\ldots,v_p\}$. This process will take at most n steps.

Subspaces, Basis and Dimension (5)

Let $V = \text{Span}\{v_1, v_2, ..., v_p\}$. We say that V is the subspace **spanned by** or **generated by** the vectors $v_1, v_2, ..., v_p$. The set $\{v_1, v_2, ..., v_p\}$ is called a **spanning set** for V.

Definition: Let *A* be an $m \times n$ matrix.

- The **column space** of A, denoted by Col(A), is the subspace of \mathbb{R}^m spanned by the columns of A. (*Since it's a span, it must also be a <u>subspace</u>)
- The **null space** of A, denoted by Nul(A), is the subspace of \mathbb{R}^n consisting of all solutions of the homogeneous equation Ax = 0. (It is the solution set of Ax = 0)

the metry - vector product.

Now, we must show that Nul(*A*) is, indeed, a subspace:

- 1. The zero vector is in Nul(A) because A0 = 0.
- 2. Let u and v be in Nul(A). This means that Au = 0 and Av = 0. Now, A(u + v) = Au + Av = 0 + 0 = 0. It follows that u + v is also in Nul(A).
- 3. Let u be in Nul(A) and let c be a scalar. This means that Au = 0. Now A(cu) = cAu = c0 = 0 which implies that cu is also in Nul(A).

Since all three properties are satisfied, we can conclude that Nul(*A*) is a subspace,

Subspaces, Basis and Dimension (6)

Example 2

Describe the column space and null space of $A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \\ -1 & 2 \end{bmatrix}$

$$Col(A) = Span \left\{ \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 4 \\ 2 \end{bmatrix} \right\}$$
 but notice that the second vector is a scalar multiple of the first, so

the two vectors are dependent. We can remove the second vector without changing the span.

Therefore, $Col(A) = Span \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}$. This is a line in \mathbb{R}^3 .

$$\begin{bmatrix} 1 & -2 \\ -2 & 4 \\ 1 & 2 \end{bmatrix} \xrightarrow{R_2 + 2R_1} \begin{bmatrix} 1 & -2 \\ 0 & 0 \\ -1 & 2 \end{bmatrix} \xrightarrow{R_3 + R_1} \begin{bmatrix} 1 & -2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad x - 2y = 0$$

$$x = 2y$$
$$y = y$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = y \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$x = 2y$$

 $y = y$ $\begin{bmatrix} x \\ y \end{bmatrix} = y \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $\text{Nul}(A) = \text{Span}\{\begin{bmatrix} 2 \\ 1 \end{bmatrix}\}$

This is a line in \mathbb{R}^2 .

Subspaces, Basis and Dimension (7)

Example 3

Find a spanning set for the null space of
$$A = \begin{bmatrix} 2 & 6 & 0 & 4 \\ -1 & 2 & -5 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 2604 \\ -12-53 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1} \begin{bmatrix} 1302 \\ -12-53 \end{bmatrix} \xrightarrow{R_L+R_1} \begin{bmatrix} 1302 \\ 05-55 \end{bmatrix} \xrightarrow{\frac{1}{5}R_L}$$

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 1 & -1 & 1 \end{bmatrix} \xrightarrow{R_1 - 3R_L} \begin{bmatrix} 1 & 0 & 3 - 1 \\ 0 & 1 & -1 & 1 \end{bmatrix} \xrightarrow{X_1 + 3X_3 - X_4 = 0}$$

$$X_{1} = -3x_{3} + x_{4}$$

$$X_{2} = x_{3} - x_{4}$$

$$X_{3} = x_{3} + 0$$

$$X_{4} = 0 + x_{4}$$

$$Spanning Let = \left\{\begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}\right\}$$

Subspaces, Basis and Dimension (8)

Example 4

Express the subspace $V = \{ \begin{bmatrix} a \\ b \end{bmatrix}$ in $\mathbb{R}^2 | 5a = 2b \}$ as a null space of a matrix.

- \triangleright Note that *V* is the solution set of the homogeneous system 5x 2y = 0, so let $A = \begin{bmatrix} 5 & -2 \end{bmatrix}$
- The RREF of A is $\begin{bmatrix} 1 & -\frac{2}{5} \end{bmatrix} \implies x \frac{2}{5}y = 0 \implies x = \frac{2}{5}y$ $\begin{bmatrix} x \\ y \end{bmatrix} = y \begin{bmatrix} \frac{2}{5} \\ \frac{1}{5} \end{bmatrix}.$
- $V = \text{Nul}(A) = \text{Span}\left\{\begin{bmatrix} \frac{2}{5} \\ 1 \end{bmatrix}\right\}$

Subspaces, Basis and Dimension (9)

Definition: Let V be a subspace of \mathbb{R}^n . A **basis** of V is a set of vectors $\{v_1, v_2, ..., v_m\}$ in V such that:

- 1. $V = \text{Span}\{v_1, v_2, ..., v_m\}$, and
- 2. the set $\{v_1, v_2, ..., v_m\}$ is linearly independent.

Note that the above states that if $\{v_1, v_2, ..., v_m\}$ is a basis of V, then no proper subset of $\{v_1, v_2, ..., v_m\}$ will span V: it is a minimal spanning set. The removal of any vector will shrink the span.

A nonzero subspace has infinitely many different bases, but they all have the <u>same number</u> of vectors.

Definition: Let V be a subspace of \mathbb{R}^n . The number of vectors in any basis of V is called the dimension of V, denoted by dim V.

Subspaces, Basis and Dimension (10)

For example, the set $\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\}$ is a basis for \mathbb{R}^2 :

- Any vector $\begin{bmatrix} a \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix} \implies \mathbb{R}^2 = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$
- $\Rightarrow x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies x = y = 0 \implies \text{the set is linearly independent}$

This also shows that dim $\mathbb{R}^2 = 2$ (not surprisingly)

What do other bases of \mathbb{R}^2 look like?

They must contain two vectors, say v_1 and v_2 . These vectors must span \mathbb{R}^2 and they must be linearly independent.

Now let A be the matrix with columns v_1 and v_2 . As a consequence of earlier discussions about spans and linear independence, we have the following:

- \triangleright { v_1 , v_2 } spans \mathbb{R}^2 if and only if A has a pivot position in every row
- \triangleright { v_1 , v_2 } is linearly independent if and only if A has a pivot position in every column

A 2×2 matrix has a pivot in every row exactly when it has a pivot in every column

It follows that any two noncollinear vectors form a basis of \mathbb{R}^2 , so, for example, $\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}\}$ will do.

Subspaces, Basis and Dimension (11)

Similarly, it can be shown that
$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, \dots, e_{n-1} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix}, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$
 forms a basis for \mathbb{R}^n . It

follows that dim $\mathbb{R}^n = n$ (again, not very surprising). The above set of vectors is called the **standard basis** of \mathbb{R}^n .

Now, we can generalize the two statements about pivot positions we made earlier.

Let $v_1, v_2, ..., v_n$ be vectors in \mathbb{R}^n , and let A be the $n \times n$ matrix with these vectors as its columns.

- \triangleright { $v_1, v_2, ..., v_n$ } spans \mathbb{R}^n if and only if A has a pivot position in every row
- \triangleright { $v_1, v_2, ..., v_n$ } is linearly independent if and only if A has a pivot position in every column

An $n \times n$ matrix has a pivot position in every row exactly when it has a pivot position in every column, so either of these conditions imply that $v_1, v_2, ..., v_n$ form a basis for \mathbb{R}^n .

Subspaces, Basis and Dimension (12)

Example 5

Let
$$V = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 in $\mathbb{R}^3 \mid \underline{x - 3y + 2z = 0}$ and let $\mathcal{B} = \left\{ \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \right\}$

Verify that V is a subspace and show that \mathcal{B} is a basis for V.

V is the solution set of the homogeneous system $x - 3y + 2z = 0 \implies V$ is a span $\implies V$ is a subspace.

> Both vectors are in *V*:

$$3-3(1)+2(0) \neq 0$$

 $-2-3(0)+2(1) \neq 0$

> Solving the system:

$$x = 3y - 2z$$

 $y = y$
 $z = z$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = y \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}, \text{ so } \mathcal{B} \text{ spans } V$$

Subspaces, Basis and Dimension (13)

Theorem: The pivot columns of a matrix A form a basis for Col(A).

The above theorem is referring to the pivot columns in the *original* matrix, not its reduced row echelon form. Indeed, a matrix and its reduced row echelon form generally have different column spaces. For example, in the matrix *A* below:

$$A = \begin{pmatrix} 1 \\ -2 \\ 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 4 & 5 \\ 0 & -2 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ -8 & -7 \\ 4 & 3 \\ 0 & 0 \end{pmatrix}$$

pivot columns = basis ← pivot columns in RREF

the pivot columns are the first two columns, so a basis for Col(A) is

$$\left\{ \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} \right\}.$$

Corollary: The dimension of Col(A) is the number of pivot positions of A.

Subspaces, Basis and Dimension (14)

Example 6

Find a basis of the subspace
$$V = \text{Span}\left\{\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 5 \\ -2 \end{bmatrix}\right\}$$

$$\text{Boxis} = \left\{\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 5 \\ -2 \end{bmatrix}\right\}$$

Bosis =
$$\left\{\begin{bmatrix} -2 \\ 2 \end{bmatrix}\right\}\begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{bmatrix}$$
Find Col(A)

$$RREF$$

$$\begin{bmatrix} 1 & 0 - 8 - 7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} Pind \\ O & 0 & 0 \\ \hline \end{array}$$

$$\begin{array}{c} Pind \\ Col(M) \\ \hline \end{array}$$

$$\begin{array}{c} Pind \\ Col(M) \\ \hline \end{array}$$

$$\begin{array}{c} Pind \\ Col(M) \\ \hline \end{array}$$

Subspaces, Basis and Dimension (15)

Theorem: The vectors attached to the free variables in the parametric form of the solution set of Ax = 0 form a basis of Nul(A).

Example 7

Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 4 \\ 3 & 1 & 11 \end{bmatrix}$$
. Find a basis for Nul(A) and determine if the subspace is a line or a plane.

If it's a plane, give its equation, if it's a line, give its parametric equations.

$$\begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 4 \\ 3 & 1 & 11 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 4 & 8 \end{bmatrix} \xrightarrow{R_3 - 4R_2} \begin{bmatrix} 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2$$

A basis for a general subspace: when given a subspace written in a different form, in order to compute a basis, it is usually best to re-express it as a column space or a null space of a matrix.

Subspaces, Basis and Dimension (16)

Basis Theorem: Let V be a subspace of dimension m. Then:

- \triangleright Any *m* linearly independent vectors in *V* form a basis of *V*.
- \triangleright Any *m* vectors that span *V* form a basis for *V*.

In other words, if we already know that dim V = m and we're given a set of m vectors $\mathcal{B} = \{v_1, v_2, ..., v_m\}$ in V then we only need to check one of the following conditions:

- 1. \mathcal{B} is linearly independent, or
- 2. \mathcal{B} spans V,

in order to conclude that \mathcal{B} is a basis for V.

Example 8

Let
$$\mathcal{B} = \{ \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \}$$
 be a basis of V . Find a different basis for V .

Subspaces, Basis and Dimension (17)

Basis Theorem: Let V be a subspace of dimension m. Then:

- \triangleright Any *m* linearly independent vectors in *V* form a basis of *V*.
- \triangleright Any *m* vectors that span *V* form a basis for *V*.

Proof. Suppose that $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ is a set of linearly independent vectors in V. In order to show that \mathcal{B} is a basis for V, we must prove that $V = \operatorname{Span}\{v_1, v_2, \dots, v_m\}$. If not, then there exists some vector v_{m+1} in V that is not contained in $\operatorname{Span}\{v_1, v_2, \dots, v_m\}$. By the increasing span criterion in Section 2.5, the set $\{v_1, v_2, \dots, v_m, v_{m+1}\}$ is also linearly independent. Continuing in this way, we keep choosing vectors until we eventually do have a linearly independent spanning set: say $V = \operatorname{Span}\{v_1, v_2, \dots, v_m, \dots, v_{m+k}\}$. Then $\{v_1, v_2, \dots, v_{m+k}\}$ is a basis for V, which implies that $\dim(V) = m + k > m$. But we were assuming that V has dimension m, so \mathcal{B} must have already been a basis.

Now suppose that $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ spans V. If \mathcal{B} is not linearly independent, then by this theorem in Section 2.5, we can remove some number of vectors from \mathcal{B} without shrinking its span. After reordering, we can assume that we removed the last k vectors without shrinking the span, and that we cannot remove any more. Now $V = \operatorname{Span}\{v_1, v_2, \dots, v_{m-k}\}$, and $\{v_1, v_2, \dots, v_{m-k}\}$ is a basis for V because it is linearly independent. This implies that $\dim V = m - k < m$. But we were assuming that $\dim V = m$, so \mathcal{B} must have already been a basis.