Wei CHEN

Place of Birth: Shanghai, China Present residence: Wavre, Belgium

https://orcid.org/0000-0002-7496-0341

https://github.com/wch3n

Université catholique de Louvain

Institute of Condensed Matter and Nanosciences

Chemin des Étoiles, 8 bte L7.03.01 B-1348, Louvain-la-Neuve, Belgium

wei.chen_at_uclouvain.be

Education

08.2007 – 04.2011 Dr. rer. nat, *summa cum laude*

Leibniz Universität Hannover, Germany

Institut für Festkörperphysik (Prof. Herbert Pfnür)

· Adsorption of organic molecules on wide band-gap insulators

07.2005 – 08.2007 Research assistant, Fudan University

Institute of Microelectronic

· High-k dielectrics in nonvolatile memory

09.2002 – 07.2005 MSc. in Electrical Engineering, Fudan University

Institute of Microelectronics

· DFT study on atomic layer deposition of high-k gate dielectrics

09.1998 – 07.2002 BSc., Fudan University, Shanghai, China

Research Experience

06.2016 – present Post-doctoral researcher, UCLouvain, Belgium

Institute of Condensed Matter and Nanosciences Profs. Gian-Marco Rignanese and Geoffroy Hautier

· Multicomponent alloys

· Emerging kesterite solar absorbers

· Many-body perturbation theory

· Nonempirical hybrid density functional

· High-throughput computational screening

04.2011 – 03.2016 Post-doctoral researcher, Ecole Polytechnique Fédérale de Lausanne (EPFL)

Chair of Atomic Scale Simulation

Prof. Alfredo Pasquarello

· Defects in semiconductors and insulators

· Interfaces in semiconductor heterojunctions

 \cdot Advanced electronic-structure methods: GW approximation and hybrid functionals

· Electronic structure of liquid water: many-body and nuclear quantum effects

Coding skills

FORTRAN, C, PYTHON, GNU BASH, MPI.

Active developer for ABINIT and QUANTUM ESPRESSO.

Code developments

Abinit Bootstrap exchange-correlation kernel for accurate GW quasiparticle energies,

Gygi-Baldereschi auxiliary function for the treatment of Coulomb singularity

QUANTUM-ESPRESSO Range-separated hybrid density functional

FNV Python class for finite-size-corrections of periodic charged defects

(https://github.com/wayn3/FNV)

Teaching Activities

03.2019 - 06.2019	Masters course: Atomistic and Nanoscopic Simulations
	Teaching assistance, UCLouvain
04.2012 - 04.2016	Masters course: Computational Simulation and Physical Systems I & II
	Teaching assistance, EPFL
06.2013 - 04.2014	Masters thesis supervisor
	Project: Band-offset of lattice matched semiconductor heterojunctions (K. Steiner)

Recent Talks and Seminars

05.2021	MRS Spring Meeting 2021 (virtual)
	Talk: "Origin of Low Conversion Efficiency of Cu ₂ ZnSnS ₄ Kesterite Solar Absorber"
09.2018	Swiss Physics Society Annual Meeting 2018, Lausanne, Switzerland
	Invited talk: "Electronic structures through GW and hybrid functionals"
08.2017	29th International Conference on Defects in Semiconductors (ICDS), Matsue, Japan
	Invited talk: "Towards accurate determination of defect levels in semiconductors"
05.2017	ABINIT Developer Workshop 2017, Frèjus, France
	Invited talk: "Accurate band gaps via efficient vertex corrections in GW "
10.2015	Université catholique de Louvain, Belgium
	Invited seminar: "Efficient vertex corrections in GW "
09.2015	Psi-к 2015 conference, San Sebastian, Spain
	Talk: "Accurate band gaps via efficient vertex corrections in GW "
07.2015	International Conference on Defects in Semiconductors (ICDS 15), Espoo, Finland
	Talk: "Determination of defect energy levels through GW "
04.2015	"Nothing is Perfect" workshop, Ascona, Switzerland
	Invited Talk: "First-principles determination of defect energy levels through GW "
08.2014	International conference on the physics of semiconductors (ICPS 14), Austin, USA
	Talk: "Band offset of lattice-matched semiconductor heterojunctions"
07.2013	International Conference on Defects in Semiconductors (ICDS 13), Bologna, Italy
	Talk: "Defect energy levels: Hybrid functionals vs GW "

Awards

05.2021 Best oral presentation, MRS Spring Meeting 2021

Miscellaneous

Referee for Phys. Rev. Lett., Phys. Rev. B, Appl. Phys. Lett., J. Phys. Chem. Lett., J. Phys. Chem., npj Comput. Mater.

Publications in Chronological Order

- [1] J. M. de Almeida, N. L. Nguyen, N. Colonna, W. Chen, C. Rodrigues Miranda, A. Pasquarello, and N. Marzari, "Electronic structure of water from koopmans-compliant functionals", J. Chem. Theory Comput. **0**, ASAP (2021).
- [2] G. Bokas, W. Chen, A. Hilhorst, P. Jacques, S. Gorsse, and G. Hautier, "Unveiling the thermodynamic driving forces for high entropy alloys formation through big data ab initio analysis", Scr. Mater. **202**, 114000 (2021).
- [3] W. Chen, D. Dahliah, G.-M. Rignanese, and G. Hautier, "Origin of the low conversion efficiency in Cu₂ZnSnS₄ kesterite solar cells: the actual role of cation disorder", Energy Environ. Sci., (2021).
- [4] M. Markov et al., "Ferroelectricity and multiferroicity in anti–Ruddlesden–Popper structures", Proc. Natl. Acad. Sci. 118, e2026020118 (2021).
- [5] A. Tal, W. Chen, and A. Pasquarello, "Vertex function compliant with the Ward identity for quasiparticle self-consistent calculations beyond *GW*", Phys. Rev. B **103**, L161104 (2021).
- [6] X. Gonze et al., "The Abinit project: impact, environment and recent developments", Comput. Phys. Commun. **248**, 107042 (2020).
- [7] T. Bischoff, J. Wiktor, W. Chen, and A. Pasquarello, "Nonempirical hybrid functionals for band gaps of inorganic metal-halide perovskites", Phys. Rev. Materials 3, 123802 (2019).
- [8] W. Chen, J. George, J. B. Varley, G.-M. Rignanese, and G. Hautier, "High-throughput computational discovery of In₂Mn₂O₇ as a high Curie temperature ferromagnetic semiconductor for spintronics", npj Comput. Mater. **5**, 72 (2019).
- [9] S. Hadke, W. Chen, J. M. R. Tan, M. Guc, V. Izquierdo-Roca, G.-M. Rignanese, G. Hautier, and L. H. Wong, "Effect of Cd on cation redistribution and order-disorder transition in Cu₂(Zn, Cd)SnS₄", J. Mater. Chem. A 7, 26927 (2019).
- [10] L. A. Burton, F. Ricci, W. Chen, G.-M. Rignanese, and G. Hautier, "High-throughput identification of electrides from all known inorganic materials", Chem. Mater. **30**, 7521 (2018).
- [11] W. Chen, G. Miceli, G.-M. Rignanese, and A. Pasquarello, "Nonempirical dielectric-dependent hybrid functional with range separation for semiconductors and insulators", Phys. Rev. Materials **2**, 073803 (2018).
- [12] W. Chen and A. Pasquarello, "Comment on 'Fundamental resolution of difficulties in the theory of charged point defects in semiconductors", Phys. Rev. Lett. **120**, 039603 (2018).
- [13] Z. Guo, F. Ambrosio, W. Chen, P. Gono, and A. Pasquarello, "Alignment of redox levels at semiconductor–water interfaces", Chem. Mater. **30**, 94 (2018).
- [14] G. Miceli, W. Chen, I. Reshetnyak, and A. Pasquarello, "Nonempirical hybrid functionals for band gaps and polaronic distortions in solids", Phys. Rev. B **97**, 121112(R) (2018).
- [15] W. Chen and A. Pasquarello, "Accuracy of GW for calculating defect energy levels in solids", Phys. Rev. B **96**, 020101(R) (2017).
- [16] A. Faghaninia et al., "A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions", Phys. Chem. Chem. Phys. 19, 6743 (2017).
- [17] W. Chen, F. Ambrosio, G. Miceli, and A. Pasquarello, "*Ab initio* electronic structure of liquid water", Phys. Rev. Lett. **117**, 186401 (2016).

- [18] W. Chen and A. Pasquarello, "Accurate band gaps of extended systems via efficient vertex corrections in GW", Phys. Rev. B **92**, 041115(R) (2015).
- [19] W. Chen and A. Pasquarello, "First-principles determination of defect energy levels through hybrid density functionals and *GW*", J. Phys.: Condens. Matter **27**, 133202 (2015).
- [20] W. Chen and A. Pasquarello, "Band-edge positions in GW: Effects of starting point and self-consistency", Phys. Rev. B **90**, 165133 (2014).
- [21] K. Steiner, W. Chen, and A. Pasquarello, "Band offsets of lattice-matched semiconductor heterojunctions through hybrid functionals and G₀W₀", Phys. Rev. B **89**, 205309 (2014).
- [22] W. Chen and A. Pasquarello, "Correspondence of defect energy levels in hybrid density functional theory and many-body perturbation theory", Phys. Rev. B **88**, 115104 (2013).
- [23] W. Chen and A. Pasquarello, "Band-edge levels in semiconductors and insulators: Hybrid density functional theory versus many-body perturbation theory", Phys. Rev. B **86**, 035134 (2012).
- [24] W. Chen, C. Tegenkamp, H. Pfnür, and T. Bredow, "Anomalous molecular orbital variation upon adsorption on a wide band gap insulator", J. Chem. Phys. **132**, 214706 (2010).
- [25] W. Chen, C. Tegenkamp, H. Pfnür, and T. Bredow, "Color centers in NaCl by hybrid functionals", Phys. Rev. B 82, 104106 (2010).
- [26] W. Chen, C. Tegenkamp, H. Pfnür, and T. Bredow, "Insight from first-principles calculations into the interactions between hydroxybenzoic acids and alkali chloride surfaces", J. Phys. Chem. C **114**, 460 (2010).
- [27] W. Chen, C. Tegenkamp, H. Pfnür, and T. Bredow, "Tailoring band gaps of insulators by adsorption at surface defects: Benzoic acids on NaCl surfaces", Phys. Rev. B **79**, 235419 (2009).
- [28] W. Chen, C. Tegenkamp, H. Pfnür, and T. Bredow, "The interplay of van der Waals and weak chemical forces in the adsorption of salicylic acid on NaCl(001)", Phys. Chem. Chem. Phys. 11, 9337 (2009).
- [29] M. Zhang, W. Chen, S.-J. Ding, Z.-Y. Liu, Y. Huang, Z.-W. Liao, and D. W. Zhang, "Physical and electrical characterization of atomic-layer-deposited Ru nanocrystals embedded into Al2O3 for memory applications", J. Phys. D: Appl. Phys. 41, 032007 (2008).
- [30] W. Chen, W.-J. Liu, M. Zhang, S.-J. Ding, D. W. Zhang, and M.-F. Li, "Multistacked Al₂O₃-HfO₂-SiO₂ tunnel layer for high-density nonvolatile memory application", Appl. Phys. Lett. **91**, 022908 (2007).
- [31] W. Chen, Q.-Q. Sun, M. Xu, S.-J. Ding, D. W. Zhang, and L.-K. Wang, "Atomic layer deposition of hafnium oxide from tetrakis-(ethylmethylamino)-hafnium and water precursors", J. Phys. Chem. C 111, 6495 (2007).
- [32] W. Chen, M. Zhang, D. Zhang, S.-J. Ding, J.-J. Tan, M. Xu, X.-P. Qu, and L.-K. Wang, "Growth of high-density Ru- and RuO₂-composite nanodots on atomic-layer-deposited Al₂O₃ film", Appl. Surf. Sci. **253**, 4045 (2007).
- [33] S.-J. Ding, M. Zhang, W. Chen, D. W. Zhang, and L.-K. Wang, "Memory effect of metal-insulator-silicon capacitor with HfO₂-Al₂O₃ multilayer and hafnium nitride gate", J. Electron. Mater. **36**, 253 (2007).
- [34] H.-L. Lu, W. Chen, S.-J. Ding, D. W. Zhang, and L.-K. Wang, "DFT calculations of NH₃ adsorption and dissociation on gallium-rich GaAs(001)-4×2 surface", Chem. Phys. Lett. **445**, 188 (2007).
- [35] H.-L. Lu, M. Xu, S.-J. Ding, W. Chen, D. W. Zhang, and L.-K. Wang, "X-ray reflectometry and spectroscopic ellipsometry characterization of Al₂O₃ atomic layer deposition on HF-last and NH₃ plasma pretreatment Si substrates", J. Mater. Res. **22**, 1214 (2007).
- [36] Q.-Q. Sun, W. Chen, S.-J. Ding, M. Xu, H.-L. Lu, H.-C. Lindh-Rengifo, D. W. Zhang, and L.-K. Wang, "Comparative study of passivation mechanism of oxygen vacancy with fluorine in HfO₂ and HfSiO₄", Appl. Phys. Lett. **90**, 142904 (2007).
- [37] Q.-Q. Sun, W. Chen, S.-J. Ding, M. Xu, D. W. Zhang, and L.-K. Wang, "Effects of chlorine residue in atomic layer deposition hafnium oxide: A density-functional-theory study", Appl. Phys. Lett. **91**, 022901 (2007).

- [38] M. Zhang, W. Chen, S.-J. Ding, X.-P. Wang, D. W. Zhang, and L.-K. Wang, "Investigation of atomic-layer-deposited ruthenium nanocrystal growth on SiO₂ and Al₂O₃ films", J. Vac. Sci. Technol., A **25**, 775 (2007).
- [39] W. Chen, Q.-Q. Sun, S.-J. Ding, D. W. Zhang, and L.-K. Wang, "First principles calculations of oxygen vacancy passivation by fluorine in hafnium oxide", Appl. Phys. Lett. **89**, 152904 (2006).
- [40] S.-J. Ding, M. Zhang, W. Chen, D. W. Zhang, L.-K. Wang, X. P. Wang, C. Zhu, and M.-F. Li, "High density and program-erasable metal-insulator-silicon capacitor with a dielectric structure of SiO₂-HfO₂-Al₂O₃ nanolaminate-Al₂O₃", Appl. Phys. Lett. **88**, 042905 (2006).
- [41] H.-L. Lu, W. Chen, S.-J. Ding, M. Xu, D. W. Zhang, and L.-K. Wang, "Quantum chemical study of adsorption and dissociation of H₂S on the gallium-rich GaAs (001)-4×2 surface", J. Phys. Chem. B **110**, 9529 (2006).
- [42] H.-L. Lu, W. Chen, S.-J. Ding, M. Xu, D. W. Zhang, and L.-K. Wang, "Quantum chemical study of the initial surface reactions in atomic layer deposition of TiN on the SiO₂ surface", J. Phys.: Condens. Matter **18**, 5937 (2006).
- [43] H.-L. Lu, M. Xu, S.-J. Ding, W. Chen, D. W. Zhang, and L.-K. Wang, "Quantum chemical study of the initial surface reactions of HfO₂ atomic layer deposition on the hydroxylated GaAs(001)-4×2 surface", Appl. Phys. Lett. **89**, 162905 (2006).
- [44] J. Ren, W. Chen, H. Lu, M. Xu, and W. Zhang, "Density functional theory study on surface reaction mechanism of atomic layer deposition of ZrO₂ on Si(100)-2×1", Acta Chim. Sinica **64**, 1133 (2006).
- [45] J. Ren, H.-L. Lu, W. Chen, M. Xu, and D. W. Zhang, "Surface reaction mechanism of atomic layer deposition of HfO₂ on Ge(100)-2×1: A density functional theory study", Appl. Surf. Sci. **252**, 8466 (2006).
- [46] M. Xu, C. Zhang, S.-J. Ding, H.-L. Lu, W. Chen, Q.-Q. Sun, D. W. Zhang, and L.-K. Wang, "Mechanism of interfacial layer suppression after performing surface Al(CH₃)₃ pretreatment during atomic layer deposition of Al₂O₃", J. Appl. Phys. 100, 106101 (2006).
- [47] W. Chen, H.-L. Lu, D. W. Zhang, M. Xu, J. Ren, J.-Y. Zhang, J.-T. Wang, and L.-K. Wang, "Density functional theory study of adsorption and dissociation of HfCl₄ and H₂O on Ge/Si(100)-(2×1): Initial stage of atomic layer deposition of HfO₂ on SiGe surface", Appl. Phys. Lett. **86**, 142901 (2005).
- [48] W. Chen, D. W. Zhang, J. Ren, H.-L. Lu, J.-Y. Zhang, M. Xu, J.-T. Wang, and L.-K. Wang, "Density functional theory study of initial stage of ZrO₂ atomic layer deposition on Ge/Si(100)-(2×1) surface", Thin Solid Films **479**, 73 (2005).
- [49] H.-L. Lu, W. Chen, S.-J. Ding, M. Xu, D. W. Zhang, and L.-K. Wang, "Initial surface reactions in atomic layer deposition of Al₂O₃ on the hydroxylated GaAs(001)-4×2 surface", J. Phys.: Condens. Matter **17**, 7517 (2005).

Updated on July 3, 2021.