Package 'VetResearchLMM'

October 12, 2022

Type Package
Title Linear Mixed Models - An Introduction with Applications in Veterinary Research
Version 1.0.0
Maintainer Muhammad Yaseen <myaseen208@gmail.com></myaseen208@gmail.com>
Description R Codes and Datasets for Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Live stock Research Institute.
Depends R (>= 3.1)
Imports ggplot2, lme4, nlme, lmerTest, multcomp
License GPL-2
<pre>URL https://github.com/MYaseen208/VetResearchLMM</pre>
LazyData TRUE
RoxygenNote 6.0.1
Note Department of Mathematics and Statistics, University of Agriculture Faisalabad, Faisalabad-Pakistan.
NeedsCompilation no
Author Muhammad Yaseen [aut, cre], Luc Duchateau [ctb], Paul Janssen [ctb], John Rowlands [ctb]
Repository CRAN
Date/Publication 2018-04-22 05:44:50 UTC
R topics documented:
ex121

ex121		(1998).	Linea	r Mixe	d Mo	dels. A	n Introduc	P. and Row tion with ap Research In	plications i	
		101	C	D 1		* 1		D 1 D		
Index										29
	Examp3.3									25
	Examp3.2									
	Examp3.1									
	Examp2.6.1									19
	Examp2.5.4.1									18
	Examp2.5.3.1									16
	Examp2.5.2.1									14
	Examp2.5.1.1									13
	Examp2.4.3.1									12
	Examp2.4.2.2									10
	Examp1.3.2									9
	ex33									8
	ex32									7
	ex31									6

Description

ex121 is.

Usage

data(ex121)

Format

A data. frame with 40 rows and 4 variables.

Details

- herd two treatment 0 and 1
- drug unit of observation or observation ID
- dose is continuous \& may be assumed Gaussian
- PCVDif is the number of "successes" (N and F specify a binomial response)

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

Examples

data(ex121)

ex124

ex124 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

ex124 is.

Usage

data(ex124)

Format

A data. frame with 40 rows and 4 variables.

Details

- herd two treatment 0 and 1
- drug unit of observation or observation ID
- dose is continuous \& may be assumed Gaussian
- PCVDif is the number of "successes" (N and F specify a binomial response)

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

```
Examp1.3.2
```

```
data(ex124)
```

ex125

ex125 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

ex125 is.

Usage

data(ex125)

Format

A data. frame with 40 rows and 4 variables.

Details

- herd two treatment 0 and 1
- drug unit of observation or observation ID
- dose is continuous \& may be assumed Gaussian
- PCVDif is the number of "successes" (N and F specify a binomial response)

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

```
Examp1.3.2
```

Examples

data(ex125)

ex127 5

ex127

ex127 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

ex127 is.

Usage

data(ex127)

Format

A data. frame with 40 rows and 4 variables.

Details

- herd two treatment 0 and 1
- drug unit of observation or observation ID
- dose is continuous \& may be assumed Gaussian
- PCVDif is the number of "successes" (N and F specify a binomial response)

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

```
Examp1.3.2
```

Examples

data(ex127)

ex31

ex31 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

ex31 is.

Usage

data(ex31)

Format

A data. frame with 38 rows and 6 variables.

Details

- · herd Herds of Cattle
- animal_id Animal ID
- PCV1 Packed Cell Volume (PCV) determined at the time of treatment
- PCV2 Packed Cell Volume (PCV) determined at a month later following treatment
- · dose Dose of Drugs
- drug Two drugs against trypanosomosis, Berenil and Samorin, are studied

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

```
Examp1.3.2
```

Examples

data(ex31)

ex32

ex32 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

ex32 is.

Usage

data(ex32)

Format

A data. frame with 40 rows and 4 variables.

Details

- herd two treatment 0 and 1
- drug unit of observation or observation ID
- dose is continuous \& may be assumed Gaussian
- PCVDif is the number of "successes" (N and F specify a binomial response)

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

```
Examp1.3.2
```

Examples

data(ex32)

ex33

ex33 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

ex33 is.

Usage

data(ex33)

Format

A data. frame with 40 rows and 4 variables.

Details

- herd two treatment 0 and 1
- drug unit of observation or observation ID
- dose is continuous \& may be assumed Gaussian
- PCVDif is the number of "successes" (N and F specify a binomial response)

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

```
Examp1.3.2
```

Examples

data(ex33)

Examp1.3.2

Examp1.3.2

#' @title Examp1.3.2 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

Examp1.3.2 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.

Author(s)

1. Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

ex124

```
#-----
## Example 1.3.2 p-16
                  _____
# PROC GLM DATA=ex124;
# CLASS herd dose drug;
# MODEL PCVdif=drug herd(drug) dose dose*drug;
# RANDOM herd(drug);
# RUN;
library(lme4)
str(ex124)
summary(ex124)
ex124$herd1 <- factor(ex124$herd)
ex124$drug1 <- factor(ex124$drug)
ex124$dose1 <- factor(ex124$dose)
fm1.1 <-
 aov(
    formula
               = PCVdif ~ drug1 + Error(herd1:drug1) + dose1 + dose1:drug1
   , data
               = ex124
   , projections = FALSE
              = TRUE
   , qr
```

10 Examp2.4.2.2

```
, contrasts = NULL
# , ...
)
summary(fm1.1)
```

Examp2.4.2.2

Examp2.4.2.2 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

Examp2.4.2.2 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.

Author(s)

1. Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

ex124

```
#-----
## Example 2.4.2.2 p-64
#------
# PROC MIXED DATA=ex125 METHOD=ML;
# CLASS drug dose region;
# MODEL pcv=drug dose drug*dose;
# RANDOM region drug*region;
# RUN;
#
# PROC MIXED DATA=ex125 METHOD=REML;
# CLASS drug dose region;
# MODEL pcv=drug dose drug*dose;
# RANDOM region drug*region;
# MODEL pcv=drug dose drug*dose;
# RANDOM region drug*region;
# RUN;
```

Examp2.4.2.2

```
fm2.4 <-
 lme4::lmer(
        formula = Pcv ~ dose*Drug + (1|Region/Drug)
      , data = ex125
      , REML
                = FALSE
      , control = lmerControl()
                = NULL
      , start
      , verbose = 0L
   # , subset
     , weights
   # , na.action
     , offset
      , contrasts = NULL
      , devFunOnly = FALSE
summary(fm2.4)
anova(fm2.4)
fm2.5 <-
 lme4::lmer(
        formula = Pcv ~ dose*Drug + (1|Region/Drug)
      , data = ex125
                = TRUE
      , REML
      , control = lmerControl()
                = NULL
      , start
      , verbose = 0L
   # , subset
   # , weights
   # , na.action
   # , offset
      , contrasts = NULL
      , devFunOnly = FALSE
summary(fm2.5)
anova(fm2.5)
library(lmerTest)
fm2.6 <-
   lmerTest::lmer(
        formula = Pcv ~ dose*Drug + (1|Region/Drug)
      , data = ex125
      , REML
                = FALSE
      , control = lmerControl()
      , start = NULL
      , verbose = 0L
     # , subset
     # , weights
     # , na.action
     # , offset
      , contrasts = NULL
```

12 Examp2.4.3.1

```
, devFunOnly = FALSE
summary(fm2.6)
anova(fm2.6)
fm2.7 <-
   lmerTest::lmer(
        formula = Pcv ~ dose*Drug + (1|Region/Drug)
                 = ex125
       , data
                = TRUE
      , REML
      , control = lmerControl()
       , start
                   = NULL
      , verbose
                   = 0L
     # , subset
     # , weights
     # , na.action
     # , offset
      , contrasts = NULL
      , devFunOnly = FALSE
summary(fm2.7)
anova(fm2.7)
```

Examp2.4.3.1

Examp2.4.3.1 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

Examp2.4.3.1 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

ex124

Examp2.5.1.1

Examples

```
## Example 2.4.3.1 p-66
#-----
# PROC MIXED DATA=ex127;
# CLASS sire;
# MODEL ww=;
# RANDOM sire/solution;
# RUN;
library(lme4)
str(ex127)
fm2.8 <-
 lme4::lmer(
       formula
                = Ww~(1|sire)
      , data
                 = ex127
                 = TRUE
      , REML
                 = lmerControl()
      , control
      , start
                 = NULL
      , verbose
                 = 0L
      , subset
     , weights
     , na.action
     , offset
      , contrasts = NULL
      , devFunOnly = FALSE
      )
summary(fm2.8)
lme4::fixef(fm2.8)
lme4::ranef(fm2.8)
```

Examp2.5.1.1

Examp2.5.1.1 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

Examp2.5.1.1 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

14 Examp2.5.2.1

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

ex124

Examples

```
#-----
## Example 2.5.1.1 p-67
# PROC MIXED DATA=ex125;
# CLASS drug dose region;
# MODEL pcv=drug dose drug*dose / solution covb;
# RANDOM region drug*region;
# RUN;
library(lme4)
str(ex125)
fm2.9 <-
 lme4::lmer(
        formula
                = Pcv ~ dose*Drug + (1|Region/Drug)
                 = ex125
      , data
                  = TRUE
      , REML
      , control
                 = lmerControl()
      , start
                 = NULL
      , verbose
                 = 0L
      , subset
      , weights
      , na.action
     , offset
      , contrasts = list(dose = "contr.SAS", Drug = "contr.SAS")
      , devFunOnly = FALSE
      )
summary(fm2.9)
anova(fm2.9)
summary(fm2.9)$vcov
```

Examp2.5.2.1 Examp2.5.2.1 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Examp2.5.2.1

Description

Examp2.5.2.1 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

ex124

```
#-----
## Example 2.5.2.1 p-68
# PROC MIXED DATA=ex125;
# CLASS drug dose region;
# MODEL pcv=drug dose drug*dose / solution covb;
# RANDOM region drug*region;
# LSMEANS drug*dose;
# RUN;
library(lmerTest)
str(ex125)
fm2.10 <-
 lmerTest::lmer(
        formula
                = Pcv ~ dose*Drug + (1|Region/Drug)
      , data
                 = ex125
      , REML
                 = TRUE
      , control = lmerControl()
      , start = NULL
      , verbose = 0L
     , subset
     , weights
     , na.action
     , offset
      , contrasts = list(dose = "contr.SAS", Drug = "contr.SAS")
      , devFunOnly = FALSE
summary(fm2.10)
anova(fm2.10)
summary(fm2.10)$vcov
lsmeansLT(model = fm2.10)
```

16 Examp2.5.3.1

Examp2.5.3.1

Examp2.5.3.1 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

Examp2.5.3.1 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

ex124

```
#-----
## Example 2.5.3.1 p-70
# PROC GLM DATA=ex125;
# CLASS drug dose region;
# MODEL pcv=region drug region*drug dose drug*dose;
# RANDOM region drug*region;
# RUN;
# PROC MIXED DATA=ex125;
# CLASS drug dose region;
# MODEL pcv=drug dose drug*dose / ddfm=satterth;
# RANDOM region drug*region;
# ESTIMATE 'drug dif' drug -1 1 drug*dose -0.5 -0.5 0.5 0.5;
# ESTIMATE 'Samorin mean' INTERCEPT 1 drug 0 1 dose 0.5 0.5
                            drug*dose 0 0 0.5 0.5;
# ESTIMATE 'Samorin HvsL' dose 1 -1 drug*dose 0 0 1 -1;
# ESTIMATE 'Samorin high' INTERCEPT 1 drug 0 1 dose 1 0
                            drug*dose 0 0 1 0;
# RUN;
library(lme4)
str(ex125)
```

Examp2.5.3.1

```
ex125$Region1 <- factor(ex125$Region)</pre>
fm2.11 <-
 aov(
     formula
                 = Pcv ~ Region1 + Drug + Error(Drug:Region1) + dose + dose:Drug
                 = ex125
    , projections = FALSE
                = TRUE
   , qr
   , contrasts = NULL
   )
 summary(fm2.11)
 fm2.12 <-
 lmerTest::lmer(
        formula = Pcv ~ dose*Drug + (1|Region/Drug)
              = ex125
      , data
                  = TRUE
      , REML
      , control = lmerControl()
      , start = NULL
      , verbose = 0L
   # , subset
   # , weights
   # , na.action
     , offset
      , contrasts = list(dose = "contr.SAS", Drug = "contr.SAS")
      , devFunOnly = FALSE
      )
summary(fm2.12)
anova(object = fm2.12, ddf = "Satterthwaite")
library(multcomp)
Contrasts1 <-
         matrix(c(
                 1, 0.5, 0, 0
               , 0, 0, -1, -0.5
               , 1, 1, 0, 0
               , 0, 1, 0, 0
              , ncol = 4
              , byrow = TRUE
              , dimnames = list(
                 c("C1", "C2", "C3", "C4")
               , rownames(summary(fm2.12)$coef)
Contrasts1
summary(glht(fm2.12, linfct=Contrasts1))
```

18 Examp2.5.4.1

Examp2.5.4.1

Examp2.5.4.1 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

Examp2.5.4.1 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

ex124

```
#-----
## Example 2.5.4.1 p-74
# PROC MIXED DATA=ex125;
# CLASS drug dose region;
# MODEL pcv=drug dose drug*dose / ddfm=satterth;
# RANDOM region drug*region;
# ESTIMATE 'Samorin mean' INTERCEPT 1 drug 0 1 dose 0.5 0.5
#
                            drug*dose 0 0 0.5 0.5;
# RUN;
# PROC GLM DATA=ex125;
# CLASS drug dose region;
# MODEL pcv=region drug region*drug dose drug*dose;
# ESTIMATE 'Samorin mean' INTERCEPT 1 drug 0 1 dose 0.5 0.5
                            drug*dose 0 0 0.5 0.5;
# RUN;
library(lme4)
str(ex125)
ex125$Region1 <- factor(ex125$Region)
 fm2.13 <-
 lmerTest::lmer(
        formula
                  = Pcv ~ dose*Drug + (1|Region/Drug)
```

Examp2.6.1

```
, data
                   = ex125
      , REML
                   = TRUE
      , control
                   = lmerControl()
                   = NULL
      , start
      , verbose
                   = 0L
     , subset
     , weights
     , na.action
     , offset
      , contrasts = list(dose = "contr.SAS", Drug = "contr.SAS")
      , devFunOnly = FALSE
 summary(fm2.13)
library(multcomp)
Contrasts2 <-
          matrix(c(
                 1, 0.5, 0, 0
               , ncol = 4
               , byrow = TRUE
               , dimnames = list(
                  c("C5")
                  rownames(summary(fm2.13)$coef)
              )
Contrasts2
summary(glht(fm2.13, linfct=Contrasts2))
```

Examp2.6.1

Examp2.6.1 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

Examp2.6.1 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

20 Examp2.6.1

See Also

ex124

```
## Example 2.6.1 p-76
#-----
# PROC MIXED DATA=ex125;
# CLASS drug dose region;
# MODEL pcv=drug dose drug*dose / ddfm=satterth;
# RANDOM region drug*region;
# CONTRAST 'drug dif' drug -1 1 drug*dose -0.5 -0.5 0.5 0.5;
# CONTRAST 'all' drug 1 -1 dose 0 0 drug*dose 0.5 0.5 -0.5 -0.5,
                drug 0 0 dose 1 -1 drug*dose 0.5 -0.5 0.5 -0.5,
                drug 0 0 dose 0 0 drug*dose 0.5 -0.5 -0.5 0.5;
#
# RUN;
library(lmerTest)
str(ex125)
ex125$Region1 <- factor(ex125$Region)</pre>
fm2.14 <-
 lmerTest::lmer(
       formula = Pcv ~ dose*Drug + (1|Region/Drug)
      , data = ex125
      , REML
                 = TRUE
      , control = lmerControl()
                = NULL
      , start
      , verbose = 0L
   # , subset
   # , weights
   # , na.action
     , offset
      , contrasts = list(dose = "contr.SAS", Drug = "contr.SAS")
      , devFunOnly = FALSE
     , ...
      )
summary(fm2.14)
anova(object = fm2.14, ddf = "Satterthwaite")
library(multcomp)
Contrasts3 <-
         matrix(c(
                  0, 0, -1, -0.5
                 )
              , ncol = 4
               , byrow = TRUE
              , dimnames = list(
                 c("C1")
               , rownames(summary(fm2.14)$coef)
             )
```

Examp3.1 21

```
Contrasts3
summary(glht(fm2.14, linfct=Contrasts3))

if(packageVersion("lmerTest") >= "3.0")
    contest(fm2.14, Contrasts3, joint = FALSE)
```

Examp3.1

Examp3.1 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

Examp3.1 is.

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

ex124

22 Examp3.1

```
library(lmerTest)
str(ex31)
ex31$drug1 <- factor(ex31$drug)
ex31$dose1 <- factor(ex31$dose)
ex31$herd1 <- factor(ex31$herd)
fm3.1 <-
 lmerTest::lmer(
        formula = PCV2 ~ drug1 + dose1:drug1 + (1|herd1:drug1)
      , data
                 = ex31
                = TRUE
      , REML
      , control = lmerControl()
                 = NULL
      , start
      , verbose
                 = 0L
      , subset
      , weights
   # , na.action
     , offset
      , contrasts = list(dose1 = "contr.SAS", drug1 = "contr.SAS")
      , devFunOnly = FALSE
      )
summary(fm3.1)
anova(object = fm3.1, ddf = "Satterthwaite")
lsmeansLT(model = fm3.1, test.effs = "dose1:drug1")
## Example 3.1 Model 2 p-84
# PROC MIXED DATA=ex31;
# CLASS drug dose herd;
# MODEL PCV2=PCV1 drug dose(drug)/solution ddfm=satterth;
# RANDOM herd(drug);
# RUN;
library(lmerTest)
str(ex31)
ex31$drug1 <- factor(ex31$drug)
ex31$dose1 <- factor(ex31$dose)
ex31$herd1 <- factor(ex31$herd)
fm3.2 <-
 lmerTest::lmer(
        formula = PCV2 ~ PCV1 + drug1 + dose1:drug1 + (1|herd1:drug1)
      , data = ex31
                  = TRUE
      , REML
      , control = lmerControl()
      , start
                 = NULL
      , verbose = 0L
     , subset
      , weights
      , na.action
   # , offset
```

Examp3.2 23

```
, contrasts = list(dose1 = "contr.SAS", drug1 = "contr.SAS")
       , devFunOnly = FALSE
   #
      )
 summary(fm3.2)
 anova(object = fm3.2, ddf = "Satterthwaite")
 lsmeansLT(model = fm3.2, test.effs = "herd1:drug1")
## Example 3.1 Model 3 p-86
# PROC MIXED DATA=ex31;
# CLASS drug dose herd;
# MODEL PCV2=drug dose(drug) PCV1*dose(drug)/solution ddfm=satterth;
# RANDOM herd(drug);
# RUN;
library(lmerTest)
 str(ex31)
 ex31$drug1 <- factor(ex31$drug)
 ex31$dose1 <- factor(ex31$dose)
 ex31$herd1 <- factor(ex31$herd)
 fm3.3 <-
 lmerTest::lmer(
                   = PCV2 ~ drug1 + PCV1*dose1:drug1 + (1|herd1:drug1)
        formula
       , data
                   = ex31
       , REML
                   = TRUE
       , control = lmerControl()
                   = NULL
      , start
       , verbose = 0L
      , subset
      , weights
      , na.action
      , offset
       , contrasts = list(dose1 = "contr.SAS", drug1 = "contr.SAS")
       , devFunOnly = FALSE
    #
 summary(fm3.3)
 anova(object = fm3.3, ddf = "Satterthwaite")
 lsmeansLT(model = fm3.3, test.effs = "dose1:drug1")
```

Examp3.2 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

24 Examp3.2

Description

Examp3.2 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

ex124

```
#-----
## Example 3.3 p-88
#-----
# PROC MIXED DATA=ex32;
# CLASS sex sire_id breed;
# MODEL ww = sex agew breed/SOLUTION DDFM=SATTERTH;
# RANDOM sire_id(breed)/SOLUTION;
# LSMEANS breed/ADJUST = TUKEY;
# RUN;
library(lmerTest)
str(ex32)
ex32$sire_id1 <- factor(ex32$sire_id)
ex32$breed1 <- factor(ex32$breed)
fm3.4 <-
 lmerTest::lmer(
       formula = Ww ~ sex + agew + breed1 + (1|sire_id1:breed1)
     , data
               = ex32
     , REML
                = TRUE
     , control = lmerControl()
     , start
               = NULL
     , verbose = 0L
     , subset
     , weights
     , na.action
     , offset
     , contrasts = list(sex = "contr.SAS", breed1 = "contr.SAS")
     , devFunOnly = FALSE
     )
summary(fm3.4)
anova(object = fm3.4, ddf = "Satterthwaite")
```

Examp3.3 25

```
lsmeansLT(model = fm3.4)
```

Examp3.3

Examp3.3 from Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

Description

Examp3.3 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998). *Linear Mixed Models. An Introduction with applications in Veterinary Research*. International Livestock Research Institute.

See Also

ex124

```
## Example 3.3 Model 1 p-88
#-----
# PROC MIXED DATA=ex33;
# CLASS breed animal_id;
# MODEL pcv = breed breed*time/SOLUTION;
# RANDOM animal_id(breed)/SOLUTION;
# RUN;
options(contrasts = c(factor = "contr.SAS", ordered = "contr.poly"))
str(ex33)
fm3.5 <-
 lme4::lmer(
                 = PCV ~ breed + breed:time + (1|animal_id:breed)
       formula
      , data
      , REML
                 = TRUE
      , control
                 = lmerControl()
                 = NULL
      , start
      , verbose
                 = 0L
     , subset
```

26 *Examp3.3*

```
# , weights
     , na.action
   # , offset
      , contrasts = list(breed = "contr.SAS")
      , devFunOnly = FALSE
      )
summary(fm3.5)
anova(fm3.5)
library(lmerTest)
fm3.6 <-
 lmerTest::lmer(
        formula
                  = PCV ~ breed + breed:time + (1|animal_id:breed)
      , data
                  = ex33
      , REML
                  = TRUE
      , control = lmerControl()
      , start = NULL
      , verbose = 0L
   # , subset
   # , weights
   # , na.action
   # , offset
      , contrasts = list(breed = "contr.SAS")
      , devFunOnly = FALSE
   #
      , ...
summary(fm3.6)
anova(object = fm3.6, ddf = "Satterthwaite")
# PROC MIXED DATA=ex33;
# CLASS breed animal_id;
# MODEL pcv = breed breed*time/SOLUTION;
# REPEATED/TYPE=CS SUB = animal_id(breed) R;
# RUN;
library(nlme)
fm3.7 <-
     nlme::gls(
          model
                      = PCV ~ breed + breed:time
         , data
                      = ex33
         , correlation = corCompSymm(, form = ~1|animal_id/breed)
         , weights = NULL
       # , subset
         , method = "REML" # c("REML", "ML")
         , na.action = na.fail
         , control
                      = list()
summary(fm3.7)
anova(fm3.7)
```

Examp3.3 27

```
# PROC MIXED DATA=ex33;
# CLASS breed animal_id;
# MODEL pcv = time breed breed*time/SOLUTION;
# RANDOM animal_id(breed)/SOLUTION;
# RUN;
fm3.8 <-
 lme4::lmer(
        formula = PCV ~ time + breed + breed:time + (1|animal_id:breed)
                = ex33
      , data
                  = TRUE
      , REML
      , control
                  = lmerControl()
      , start
                  = NULL
      , verbose
                 = 0L
   # , subset
    # , weights
   # , na.action
   # , offset
      , contrasts = list(breed = "contr.SAS")
      , devFunOnly = FALSE
 summary(fm3.8)
 anova(fm3.8)
 fm3.9 <-
 lmerTest::lmer(
        formula = PCV ~ time + breed + breed:time + (1|animal_id:breed)
      , data = ex33
      , REML
                 = TRUE
      , control = lmerControl()
                 = NULL
      , start
      , verbose = 0L
   # , subset
      , weights
      , na.action
      , offset
      , contrasts = list(breed = "contr.SAS")
      , devFunOnly = FALSE
      )
 summary(fm3.9)
 anova(object = fm3.9, ddf = "Satterthwaite", type = 3)
# PROC MIXED DATA=ex33;
# CLASS breed animal_id;
# MODEL pcv = breed breed*time/SOLUTION;
# REPEATED/TYPE=AR(1) SUBJET = animal_id(breed) R;
# RUN;
```

28 *Examp3.3*

```
library(nlme)
 fm3.10 <-
      nlme::gls(
                      = PCV ~ breed + breed:time
          model
                      = ex33
          , correlation = corAR1(, form = ~ 1|animal_id/breed)
          , weights = NULL
        # , subset
          , method = "REML" # c("REML", "ML")
          , na.action = na.fail
          , control
                        = list()
 summary(fm3.10)
 anova(fm3.10)
# PROC MIXED DATA=ex33;
# CLASS breed animal_id;
# MODEL pcv = breed breed*time/SOLUTION;
# RANDOM INTERCEPT time/TYPE=UN SUBJET = animal_id(breed) SOLUTION;
# RUN;
library(nlme)
# fm3.11 <-
      nlme::gls(
         model = PCV ~ breed + breed
, data = ex33
, random = ~1|animal_id/breed
                         = PCV ~ breed + breed:time
         , correlation = corAR1(, form = ~ 1|animal_id/breed)
       , weights = NULL
# , subset =
, method = "REML" # c("REML", "ML")
          , na.action = na.fail
           , control = list()
# summary(fm3.11)
# anova(fm3.11)
```

Index

```
* datasets
    ex121, 2
    ex124, 3
    ex125, 4
    ex127, 5
    ex31, 6
    ex32, 7
    ex33, 8
    Examp1.3.2, 9
    Examp2.4.2.2, 10
    Examp2.4.3.1, 12
    Examp2.5.1.1, 13
    Examp2.5.2.1, 14
    Examp2.5.3.1, 16
    Examp2.5.4.1, 18
    Examp2.6.1, 19
    Examp3.1, 21
    Examp3.2, 23
    Examp3.3, 25
ex121, 2
ex124, 3, 9, 10, 12, 14–16, 18, 20, 21, 24, 25
ex125, 4
ex127, 5
ex31, 6
ex32, 7
ex33, 8
Examp1.3.2, 3-8, 9
Examp2.4.2.2, 10
Examp2.4.3.1, 12
Examp2.5.1.1, 13
Examp2.5.2.1, 14
Examp2.5.3.1, 16
Examp2.5.4.1, 18
Examp2.6.1, 19
Examp3.1, 21
Examp3.2, 23
Examp3.3, 25
```