# MAT102 - College Algebra - Polynomial and Rational Functions

3.2 Introduction to Polynomial Functions [1]

Miraj Samarakkody

Tougaloo College

Updated - June 4, 2025

## Determine the End Behavior of a Polynomial Function

#### Definition of a Polynomial Function

Let n be a natural number and  $a_n, a_{n-1}, \ldots, a_1, a_0$  be real numbers, where  $a_n \neq 0$ . Then a function defined by

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

is called a Polynomial function of degree n.

## Determine the End Behavior of a Polynomial Function

#### Definition of a Polynomial Function

Let n be a natural number and  $a_n, a_{n-1}, \ldots, a_1, a_0$  be real numbers, where  $a_n \neq 0$ . Then a function defined by

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

is called a **Polynomial function of degree** *n*.

Examples for non-polynomial functions.

## Several Special Cases of Polynomial Functions

Let 
$$a \neq 0$$
.  
 $f(x) = c$  constant function degree 0  
 $g(x) = ax + b$  linear function degree 1  
 $h(x) = ax^2 + bx + c$  quadratic function degree 2  
 $j(x) = ax^3 + bx^2 + cx + d$  cubic function degree 3  
 $k(x) = ax^4 + bx^3 + cx^2 + dx + e$  quartic function degree 4

#### Smooth and Continuous



#### Not Smooth



#### Not continuous



#### Not continuous



 $x \to \infty$  x approaches infinity

```
x \to \infty   x approches infinity x \to -\infty   x approches negative infinity
```

```
egin{array}{lll} x 
ightarrow \infty & x 	ext{ approches infinity} \ x 
ightarrow -\infty & x 	ext{ approches negative infinity} \ f(x) 
ightarrow \infty & f(x) 	ext{ approches infinity} \end{array}
```

```
x 	o \infty x approches infinity x 	o -\infty x approches negative infinity f(x) 	o \infty f(x) approches infinity f(x) 	o -\infty f(x) approches negative infinity
```

```
x 	o \infty x approches infinity x 	o -\infty x approches negative infinity f(x) 	o \infty f(x) approches infinity f(x) 	o -\infty f(x) approches negative infinity
```

## The Leading Term

Consider the function defined by

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

## The Leading Term

Consider the function defined by

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

The leading term has the greatest exponent on x.

Consider a polynomial function given by

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

#### n is even and $a_n$ positive



End behavior: up left/up right

#### n is even and $a_n$ negative



End behavior: down left/down right

#### n is odd and $a_n$ positive



End behavior: down left/up right

#### n is odd and $a_n$ negative



End behavior: up left/down right

## Example - Determining End Behavior

Use the leading term to determine the end behavior of the graph of the function.

1. 
$$f(x) = -4x^5 + 6x^4 + 2x$$
 pause

2. 
$$g(x) = \frac{1}{4}x(2x-3)^3(x+4)^2$$

# Example - Determining the Zeros of a Polynomial Function

Find the zeros of the function defined by

$$f(x) = x^3 + x^2 - 9x - 9.$$

## Example - Determine the Zeros of a Polynomial Function

Find the zeros of the function defined by  $f(x) = -x^3 + 8x^2 - 16x$ .

#### Touch Points and Cross Points

Let f be a polynomial function and let c be a real zero of f. Then the point (c,0) is an x-intercept of the graph of f. Furethermore,

▶ If c is a zero of odd multiplicity, then the graph crosses the x-axis at c. The point (c,0) is called a **cross point**.

#### Touch Points and Cross Points

Let f be a polynomial function and let c be a real zero of f. Then the point (c,0) is an x-intercept of the graph of f. Furethermore,

- ▶ If c is a zero of odd multiplicity, then the graph crosses the x-axis at c. The point (c,0) is called a **cross point**.
- ▶ If c is a zero of even multiplicity, then the graph touches the x-axis at c and turns back around. The point (c,0) is called a **touch point**.

## Determining Zeros and Multiplicities

Determine the zeros and their multiplicities for the given functions.

$$m(x) = \frac{1}{10}(x-4)^2(2x+5)^3$$

## Determining Zeros and Multiplicities

Determine the zeros and their multiplicities for the given functions.

$$m(x) = \frac{1}{10}(x-4)^2(2x+5)^3$$

$$n(x) = x^4 - 2x^2$$

#### Intermediate Value Theorem

Let f be a polynomial function. For a < b, if f(a) and f(b) have opposite signs, then f has at least one zero on the interval [a, b].

## Example - Applying the Intermediate Value Theorem

Show that  $f(x) = x^4 + 6x^3 - 26x + 15$  has a zero on the interval [1, 2].

## Number of Turning Points of a Polynomial Function

Let f represent a polynomial function of degree n. Then the graph of f has at most n-1 turning points.

## Number of Turning Points of a Polynomial Function

Let f represent a polynomial function of degree n. Then the graph of f has at most n-1 turning points.

Why at most?

## Graphing a Polynomial Function

To graph a polynomial function defined by y = f(x),

- 1. Use the leading term to determine the end behavior of the graph.
- 2. Determine the y-intercept by evaluating f(0).
- 3.

#### References



Julie Miller and Donna Gerken.

College Algebra.

McGraw-Hill Education, New York, 2nd edition, 2016.