Athletic Runner Injury Prediction System

T Akhila, A Divya Sri, K Sunidhi, B Amulya

Under the esteemed guidance of

Dr. P. Kayal

Associate Professor

Bachelor of Technology
Department of Information Technology
BVRIT HYDERABAD College of Engineering for Women

December 6, 2023

Contents

- Overview
- Problem Statement
- Objectives
- 4 Literature Survey
- Methodology
- Tools and Technologies
- Implementation
- Results and Discussion
- Progress
- References

Overview

 By leveraging advanced machine learning techniques, we empower athletes to proactively manage their well-being, optimize performance, and contribute to the broader goals of health, innovation, and sustainability in sports and society.

Problem Statement

- Running is one of the most popular sports in the world.
- 60 million people participated in jogging, running, or trail running in America alone in 2017. But it is reported that 50 percent of runners get injured every year.

Objectives

Model Development

- Performing feature extraction and identifying the feature importance for Injury Prediction For Athletic Runners.
- Building model for injury prediction for athletic runners using machine learning techniques.

S.no	Title	Objective	Methods	Description	Performance	Author, Year and Conference/Jo urnal
1.	Just How Confident Can We Be in Predicting Sports Injuries?	To evaluate the methodological conduct and completeness of reporting of musculoskeletal injury prediction models in sport.	Regression, Machine Learn ing, and regression	Thirty studies were conducted where 204 models were included which used regression, machine learning Techniques.	Poorly developed and has high risk of bias	Garrett S. Bullock, 2022, Sports medicine 52.10.

S.no	Title	Objective	Methods	Description	Performance	Author, Year
						and
						Conference/Jo
						urnal
2.	Investigating	To recognize the	Feature	System	Mean	Alexander
	Individual- and	runner's exertion	Selection,	consists of a	Absolute	Kathan, 2022,
	Group-Level	as soon as	FFNN, Baseline	feature	Error (MAE)	Shahin
	Model	possible and take	model,	selection and	is less for the	Amiriparian E-
	Adaptation for	possible	individual-	three model	group-level	Health and
	Self-Reported	precautions.	level adaption,	training	adaption.	Bioengineerin
	Runner Exertion		group-level	components.		g Conference.
	Prediction		adaption			

S.no	Title	Objective	Methods	Description	Performance	Author, Year and Conference/J ournal
3.	Ultra marathon Result and Injury Prediction using PyTorch.	To develop and assess multilayer neural network models using PyTorch to predict ultramarathon runner performance and injury occurrence based on training, competition, and weather data.	Implementing multilayer neural network models with PyTorch for regression and classification tasks	Two Predictions based on MLNN are implemented using PyTorch framework for Python.	Up to a 2% relative error for the regression model and a 70% correct classification for injury prediction.	Valentina Nejkovic, 2021, 15th International Conference on Advanced Technologies

S.no	Title	Objective	Methods	Description	Performance	Author, Year and Conference/Jour nal
4.	Data monitoring and sports injury prediction model based on embedded systems	To develop an Artificial Neural Network-based system for early prediction of injuries in sports by analysing player health, exercise load, and emotional status. Through a hierarchical machine learning approach.	PCA, Decision tree, ANN	A layered machine that makes accurate predictions of player damage.	PCA- 86% Decision tree- 89% ANN - 95%	Chen Huang, 2021, Microprocessors and Microsystems 81.

S.no	Title	Objective	Methods	Description	Performance	Author, Year
						and
						Conference/Jo
						urnal
5.	Prediction	To prevent over-	Convolutional	Depth image	Accuracy-	Bin Wang,
	method of	fatigue exercises that	Neural	human	87.692%	2021, 2020
	Running	may occur during	Network,	running		International
	fatigue based	running and accurately	SVM.	fatigue		Symposium on
	on depth	capture every small		prediction		Wearable
	image.	posture change of		method.		Computers.
		runners				

 S.no	Title	Objective	Methods	Description	Performance	Author, Year and Conference/Jo urnal
6.	Machine learning methods in sport injury prediction and prevention	To improve injury prediction and allow proper approaches to injury prevention.	Tree based Ensembled Methods, SVM, ANN.	Eleven out of 249 studies met inclusion/ex- clusion criteria	performance ranged from poor (Accuracy = 52%,) to strong (Accuracy=8 5%).	Hans Van E, 2021, Journal of experimental orthopaedics

Methodology

- DataSet: https://www.kaggle.com/datasets/shashwatwork/injury-prediction-for-competitive-runners
- Algorithms : Support Vector Machine XGBooster Bagging

Tools and Technologies

- Tools : Google Colab
- Technologies : Python
 Python Libraries

Implementation

Results and Discussion

Algorithms Used	Accuracy
SVM	60%
Bagging	98%
XgBooster	98%

Progress

SNo	Title
1	Identified the data
	set
2	Literature Survey
	completed
3	Understanding the
	features of data
4	Started implemen-
	tation

References

- Bullock, Garrett S., et al. "Just how confident can we be in predicting sports injuries? A systematic review of the methodological conduct and performance of existing musculoskeletal injury prediction models in sport." Sports medicine 52.10 (2022): 2469-2482.
- Kathan, Alexander, et al. "Investigating Individual-and Group-Level Model Adaptation for Self-Reported Runner Exertion Prediction from Biomechanics." 2022 E-Health and Bioengineering Conference (EHB). IEEE, 2022.
- Huang, Chen, and Lei Jiang. "Data monitoring and sports injury prediction model based on embedded system and machine learning algorithm." Microprocessors and Microsystems 81 (2021): 103654.

References

- Van Eetvelde, Hans, et al. "Machine learning methods in sport injury prediction and prevention: a systematic review." Journal of experimental orthopaedics 8 (2021): 1-15.
- Nejković, Valentina, Maša Radenković, and Nenad Petrović.
 "Ultramarathon result and injury prediction using PyTorch." 2021
 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS). IEEE, 2021.
- Bai Y, Guan Y, Ng W F. Fatigue assessment using ECG and actigraphy sensors[C]//Proceedings of the 2020 International Symposium on Wearable Computers. 2020: 12-16.

Thank you