Анализ

Галкина

05.09.2022

## Оглавление

| 1 | Иде | еи и номера с практики                             | 5  |
|---|-----|----------------------------------------------------|----|
|   | 1.1 | Знакопостоянные несобственные интегралы            | 5  |
|   | 1.2 | Знакопеременные несобственные интегралы            | 6  |
| 2 | Hec | собственный интеграл                               | 9  |
|   | 2.1 | Основные определения                               | 9  |
|   |     | 2.1.1 Критерии сходимости несобственного интеграла | 9  |
|   |     | 2.1.2 Признаки сравнения в предельной форме        | 10 |

OГЛAВЛEНUЕ

## Глава 1

## Идеи и номера с практики

Идеи Тимура, достойные того, чтобы быть запечатленными. Те места, которые на слух отмечаются словами типа «финт ушами», будут отмечаться знаком «опасный поворот» в стиле Бурбаки (а не то, что вы подумали).

### 1.1 Знакопостоянные несобственные интегралы

Для знакопеременных интегралов можно использовать признак сравнения. Обычно сравнение происходит с обобщенной степенной функцией. При этом имеется два различных типа особых точек: на бесконечности и с уходом на бесконечность в точке. Разберем подробнее.

Пример 1. Интеграл

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx$$

сходится при  $\alpha>1$  и расходится при  $\alpha\leqslant 1.$ 

Пример 2. Интеграл

$$\int_{a}^{b} \frac{1}{(x-a)^{\alpha}} dx$$

сходится при  $\alpha < 1$  и расходится при  $\alpha \geqslant 1$ .

**Пример.** Интеграл  $\int\limits_{1}^{\infty} \frac{x^2 dx}{x^4 - x^2 + 1}$  сходится, поскольку подынтегральная функция эквивалентна  $\frac{1}{x^2}$  - сходящейся штуке.

**Пример** (№2374). Исследуем на сходимость в зависимости от параметров интеграл

$$\int_{1}^{\infty} \frac{1}{x^p \ln^q x} dx$$

Имеем 2 особые точки: 1 и  $\infty$ , поэтому разобъем область исследования на две части и будет исследовать интеграл  $\int\limits_{10}^{\infty}$ .

Нам поторебуется следующий признак сравнения: для  $\varepsilon>0$ 

$$\frac{1}{r^{\varepsilon}} < \ln^{\alpha}(x) < x^{\varepsilon}, \ x > \delta(\alpha, \varepsilon)$$

(доказательство через правило Лопиталя: действительно,  $\lim_{n\to\infty} \frac{\ln^{\alpha}(x)}{x^{\varepsilon}} = 0$ ). Значит, имеем

$$\frac{1}{x^{p+\varepsilon}} \leqslant \frac{1}{x^p \ln^q x} \leqslant \frac{1}{x^{p-\varepsilon}}$$



Итак, интеграл сходится при  $p > 1 + \varepsilon$  и расходится при  $p < 1 - \varepsilon$ . Так как  $\varepsilon$  вообще-то произвольный, то и условие сходимости не должно зависеть от него; иначе говоря, интеграл сходится при p > 1 и расходится p < 1.

Рассмотрим случай, когда p = 1. Имеем

$$\int_{10}^{\infty} \frac{1}{x \ln^q x} dx = \begin{cases} \ln(x) = t \\ dt = \frac{dx}{x} \end{cases} = \int_{\ln 10}^{\infty} \frac{dt}{t^q}$$

Значит, этот интеграл сходится при q>1. Соберем ответ:

$$\begin{cases} 1. \ p > 1 - \text{сходится;} \\ 2. \ p < 1 - \text{расходится;} \\ 3. \ p = 1, q > 1 - \text{сходится;} \\ 4. \ p = 1, q \leqslant 1 - \text{расходится.} \end{cases}$$

## 1.2 Знакопеременные несобственные интегралы

Напомним, что для применения признаков Абеля и Дирихле в интеграле  $\int\limits_a^\infty f(x)g(x)dx$ , необходимо, чтобы f(x) и g'(x) были непрерывными функциями.

Пример.

$$\int_{1}^{\infty} \frac{\sin(x)}{x^{\alpha}}$$

Интеграл имеет одну особую точку:  $+\infty$ .

Сначала расмотрим абсолютную сходимость:  $\frac{|\sin(x)|}{x^{\alpha}} \leqslant \frac{1}{x^{\alpha}}$ , откуда по признаку сравнения получаем, что интеграл сходится абсолютно при  $\alpha > 1$ . Рассмотрим обычную сходимость: интеграл удовлетворяет признаку Ди-

рихле, поскольку  $\forall y>a: \int\limits_a^y \sin(x) dx = -\cos(y) + \cos(a) \leqslant 20$  и  $\frac{1}{x^\alpha} \to 0$  монотонно. Значит, интеграл сходится при  $\alpha>0$ .

Теперь рассмотрим расходимость интерала. Докажем условную сходимость на (0,1]. Оценим снизу увадратом синуса:

$$\frac{|\sin(x)|}{x^{\alpha}} \geqslant \frac{\sin^2(x)}{x^{\alpha}} = \frac{1 - \cos(2x)}{2x^{\alpha}} = \frac{1}{2x^{\alpha}} - \frac{\cos(2x)}{2x^{\alpha}}$$

Вторая дробь сходится по Дирихле, откуда весь интеграл расходится абсолютно при  $\alpha \leqslant 1$ .

Осталось установить сходимость при  $\alpha \leqslant 0$ . Вспомним определение **пре**дела по Гейне:

$$\forall \{y_n\} \to 0: \lim_{n \to \infty} \int_{a}^{y_n} f(x)dx \to const$$

Тогда интеграл можно предстваить в виде  $\sum_{n=1}^{\infty} \int_{y_n}^{y_{n+1}} f(x) dx$ . Найдем какуюнибудь последовательность, на которой будет расходимость. Итак, пусть  $y_n = \pi n$ .

Теперь нам потребуется следующая

Теорема 1 (о среднем)

Eсли f(x) непрерывна и g(x) знакопостоянна, тогда

$$\int_{a}^{b} = f(\xi) \cdot \int_{a}^{b} g(x)dx, \ \xi \in (a,b)$$

Из теоремы получаем, что

$$\int_{\pi n}^{\pi n + \pi} \frac{\sin(x)}{x^{\alpha}} dx = \frac{1}{\xi_n^{\alpha}} \int_{\pi n}^{\pi n + \pi} \sin(x) dx = \frac{2 \cdot (-1)^n}{\xi_n^{\alpha}}$$

Тогда интеграл равен

$$\sum_{n=1}^{\infty} \frac{2 \cdot (-1)^n}{\xi_n^{\alpha}}$$

Ряд расходится по необходимому признаку, поэтому интеграл расходится по опредлению Гейне.

Можно доказать то же самое по критерию Коши. Именно, при  $\alpha \leqslant 0$ :

$$\exists \varepsilon > 0 \ \forall \delta \ \exists y_1, y_2 > \delta : \left| \int_{y_1}^{y_2} \frac{\sin(x)}{x^{\alpha}} \right| > \varepsilon$$

Чтобы убить модули, выберем такие пределы интегрирования, на которых синус знакопостоянен. Имеем

$$\int_{2\pi n}^{2\pi n+n} \frac{\sin(x)}{x^{\alpha}} dx = \frac{1}{\xi_n^{\alpha}} \cdot 2, \ 2\pi n \leqslant \xi_n \leqslant 2\pi n + \pi$$

Подставив худший вариант, получаем  $\frac{2}{(2\pi n)^{\alpha}} \geqslant 2$ , то есть расходимость. Соберем ответ:

$$\begin{cases} 1. \ \alpha > 1 - \text{сходится абсолютно;} \\ 2. \ 0 < \alpha \leqslant 1 - \text{сходится условно;} \\ 3. \ \alpha \leqslant 0 - \text{расходится.} \end{cases}$$

### Глава 2

## Несобственный интеграл

#### 2.1 Основные определения

**Определение 1** Пусть функция f интегрируема на отрезке [a,b] для b > a. Тогда несобственный интеграл первого рода (c одной особой точкой) - предел

$$\int_{a}^{\infty} f(x)dx := \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

Если таковой предел существует, то интеграл сходится; если предел равен бесконечности или не существует, то интеграл расходится. Аналогично определяется и интеграл с нижним пределом  $-\infty$ .

Пример. 
$$\int_{0}^{1} \ln x dx = \lim_{\varepsilon \to +0} \left( \int_{\varepsilon}^{1} \ln x dx \right) = \lim_{\varepsilon \to +0} \left( x \ln x \Big|_{\varepsilon}^{1} - \int_{\varepsilon}^{1} dx \right) = \lim_{\varepsilon \to +0} \frac{-\varepsilon^{2}}{1/\varepsilon} - 1 = -1$$
 - интеграл сходится.

Рассмотрим случай конечного числа особых точек.

# 2.1.1 Критерии сходимости несобственного интеграла

**Теорема 2** (критерий Коши) Пусть  $\forall b \geqslant a$  функция интегрируема на [a,b]. Тогда  $\int_a^{\infty} f(x)dx$  сходится  $\Leftrightarrow \forall \varepsilon > 0$   $\exists b_0(\varepsilon) > 0$   $\forall b_1, b_2 > b_0$ :  $\left| \int_{b_1}^{b_2} f(x)dx \right| < \varepsilon$ 

**Доказательство.** По условию, существует предел  $\lim_{b\to +\infty} F(b) = A \in \mathbb{R}$ , где  $F(b) = \int_a^b f(x) dx$ . Зафиксируем  $\varepsilon > 0$ . Тогда из существования предела следует для  $\frac{\varepsilon}{2}$ :  $\exists b_o(\varepsilon) > a : |F(b) - A| < \frac{\varepsilon}{2}$ . Пусть  $b_1 > b_0$ ,  $b_2 > b_0$ .

Тогда  $|F(b_2) - F(b_1)| = |F(b_2) - A| + |F(b_1) - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ . Достаточность. Докажем существование предела  $\lim_{b \to \infty} F(b)$  из определения предела по Гейне. Пусть  $b_n \to \infty$ , тогда  $\forall b_0 > a \; \exists n_0(\varepsilon) \in \mathbb{N} \; \forall n > n_0$  Покажем, что предел не зависит от выбора последовательности  $b_n$ . Выберем другую последовательность  $b_n^*$ . Обозначим предел  $\lim_{n \to \infty} F(b_n^*) = B$ . Составим последовательность  $b_1, b_1^*, b_2, b_2^*, \dots \to \infty$ . Тогда предел F от этой последовательности обозначим как C. Так как пределы подпоследовательностей сходятся к пределу последовательности, то A = B = C. Значит, выполняется условие определения предела по Гейне, значит, интеграл сходится.  $\square$ 

**Пример.**  $\int_1^\infty \frac{\sin x}{x^\alpha} dx$  сходится при  $\alpha > 0$ , расходится при  $\alpha \leqslant 0$ . Докажем это.

1. 
$$\alpha > 0$$
. Поехали:  $\forall \varepsilon > o \; \exists b_0(\varepsilon) > 1 \; \forall b_1 > b_0, b_2 > b_0 : \left| \int_{b_1}^{b_2} \frac{\sin x}{x^{\alpha}} dx \right| < \varepsilon$ . Доказываем:  $\left| \int_{b_1}^{b_2} \frac{\sin x}{x^{\alpha}} dx \right| = \left| \int_{b_1}^{b_2} \frac{1}{x^{\alpha}} d\cos x \right| = \left| \frac{\cos x}{x^{\alpha}} \right|_{b_1}^{b_2} - \int_{b_1}^{b_2} \cos x d(\frac{1}{x^{\alpha}}) \leqslant \ldots \leqslant \frac{4}{b_0^{\alpha}}$ . Значит,  $b_0 > (\frac{4}{\varepsilon})^{\frac{1}{\alpha}}$ .

2.  $\alpha \leqslant 0$ . Синус теперь принимает разные знаки. Пусть  $b_k = 2\pi k$ . Тогда по критерию Коши интеграл расходится.

**Теорема 3** (критерий сходимости через остаток) Пусть  $\int_a^{\infty} = \int_a^b + \int_b^{\infty}$ , (b > 0).

- 1. Если интеграл сходится, то и любой из его остатков сходится.
- 2. Если хотя бы один из остатков сходится, то интеграл сходится.

#### Доказательство. 🗆

**Теорема 4** (критерий сходимости несобственного интеграла от несобственной функции)

Пусть  $\forall b > a$  функция интегрируема на [a,b] и неотрицательная . Тогда  $\int_a^\infty f(x) dx$  сходится  $\Leftrightarrow$  первообразная F(b) < M ограниченна.

**Доказательство.** F(b) неубывает и имеет конечный предел. Значит, интеграл сходится. Обратно, пусть существует конечный предел  $\lim_{b\to\infty} F(b)$ , то F(b) ограниченна в некоторой окрестности.  $\square$ 

#### 2.1.2 Признаки сравнения в предельной форме

Теорема 5 (признак сравнения)

Пусть f(x) > g(x) > 0 начиная с некоторого x > a, и для любого b > a функции интегрируемы на [a,b]. Тогда

- 1. Если  $\int f(x)$  сходится, то и  $\int g(x)$  сходится.
- 2. Если  $\int g(x)$  расходится, то и  $\int f(x)$  расходится.

Доказательство. По свойству определенного интеграла (транзитивность числовых неравенств),  $F(b) \leq M$ . Тогда по критерию 3 интеграл сходится. 2. Погодите, это реально?

Теорема 6 (второй признак сравнения)

Eсли  $\frac{f(x)}{g(x)}=k, \ \infty \neq k \neq 0, \ mo \ ux \ интегралы <math>cxodsmcs$  или pacxodsmcsодновременно.

Доказательство. 

□

Теорема 7 (о непрерывности интеграла) Если функция определена и непрерывна,

Доказательство.  $\square$ 

Теорема 8 (о дифференцируемости собственного интеграла, зависящего от параметра/ правило Лейбница)

 $\Pi y cm b f(x,y)$ 

- 1. непрерывна на  $P = [a, b] \times [c, d];$
- 2.  $\frac{\partial f}{\partial y}(x,y)$  непрерывна на P; Тогда:

1. 
$$F(y) = \int_a^b f(x,y) dx$$
 дифференцируема на  $[c,d]$ ; 2.  $F'(y) = \int_a^b \frac{\partial f}{\partial y}(x,y) dx$ 

**Доказательство.** Пусть  $y \in [c,d], \ y+h \in [c,d].$  Рассмотрим F(y+1) $h) - F(y) = \int_{a}^{b} (f(x, y + h) - f(x, y)) dx$ , значит, по теореме Лагранжа это равно  $\int\limits_a^b \frac{\partial f}{\partial y}(x,y+\theta h)h\,dx$ , где  $\theta\in(0,1)$ . Дифференцируем: F'(y)= $\lim_{h\to 0} rac{F(y+h)-F(y)}{h} = \lim_{h\to 0} \int\limits_a^b rac{\partial f}{\partial y}(x,y+\theta h) dx$ . При  $h\to 0$  делаем замену u= $y+\theta h,\ u o y.$  Тогда предел  $\lim_{h o 0}\int\limits_a^b rac{\partial f}{\partial y}(x,u)dx=$  по теореме о предельном переходе!!!!!!!! □

Следующая теорема обощает правило Лейбница:

**Теорема 9** (обобщенное правило Лейбница) Пусть f(x,y) непрерывна на  $D = \{(x,y) \mid a(y) \leqslant x \leqslant b(y), c \leqslant y \leqslant d\}$ ,  $\frac{\partial f}{\partial x}(x,y)$  непрерывна на D и a'(y),b'(y) непрерывны на [c,d]. Тогда  $F(y) = \int\limits_{a(y)}^{b(y)} f(x,y) dx$  дифференцируема на  $y \in [c,d]$ , причем  $F'(y) = \int\limits_{a(y)}^{b(y)} \frac{\partial f}{\partial y}(x,y) dx + f(b(y),y) \cdot b'(y) - f(a(y),y) \cdot a'(y)$ .

**Доказательство.** F(y) = F(y,a(y),b(y)). По правилу производной сложной функции  $\frac{dF}{dy} = \frac{\partial F}{\partial y} + \frac{\partial F}{\partial a} \cdot \frac{\partial a}{\partial y} \frac{\partial F}{\partial b} \cdot \frac{\partial b}{\partial y} = \int\limits_{a(y)}^{b(y)} \frac{\partial F}{\partial y}(x,y) dx + f(b(y),y) \cdot b'(y) - f(a(y),y) \cdot a'(y)$  Дальше здеь была куча поясняющего текста (см фото 10.11.22 в 13620)

**Пример.** Посчитаем 
$$F(a) = \int\limits_0^{\frac{\pi}{2}} \frac{\ln(1+a^2\sin^2(x))}{\sin(x)}$$
. тут я отрубился

**Теорема 10** (об интегрировании интеграла, зависящего от параметра)  $P(x) = \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} \right) \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left( \frac{1}{2} - \frac{1}$ 

Пусть f(x,y) непрерывна на  $P=[a,b]\times [c,d]$ . Тогда

$$\int_{c}^{d} dy \int_{a}^{b} f(x,y) dx = \int_{a}^{b} dy \int_{c}^{d} f(x,y)$$

**Доказательство.** Введем функции  $G(t) = \int\limits_{c}^{d} dy \int\limits_{a}^{t} f(x,y) dy, \ H(t) = \int\limits_{a}^{t} dx \int\limits_{c}^{d} f(x,y) dy.$  Докажем, что G(b) = H(b) (что доказывает требуемое утверждение). Введем функцию  $g(t,y) = \int\limits_{a}^{t} f(x,y) dx,$  тогда  $G(t) = \int\limits_{c}^{d} g(t,y)$  - применима теорема о дифференцировании сложной функции:  $\frac{\partial g}{\partial t} = \left(\int\limits_{a}^{t} f(x,y) dx\right)'_{t} = f(t,y)$  - непрерывна на P по условию. Теперь докажем, что g(t,y) непрерывна на P, для этого покажем, что  $\int\limits_{\Delta t \to 0, \Delta y \to 0}^{l} \Delta g = 0$ . Имеем  $\Delta g = g(t + \Delta t, y + \Delta y) - g(t,y) = \int\limits_{a}^{t} f(x,y + \Delta y) dx$ 

13

 $\int\limits_a^t f(x,y) dx = \int\limits_a^t (f(x,y+\Delta y) - f(x,y)) dx + \int\limits_t^{t+\Delta t} f(x,y+\Delta y) dx$ . Так как f(x,y) непрерывна на компакте P, то она равномерно непрерывна на P и ограниченна константой M. Зафиксируем  $\varepsilon>0$ . Из равномерной непрерывности для

$$\frac{\varepsilon}{2(b-a)} > 0 \,\exists \delta_1 > 0 \,\forall (x_1, y_1) \in P \,\forall (x_2, y_2) \in P : \sqrt{(x_1 - x_2)^2 - (y_1 - y_2)^2} < \delta_1 \implies$$

Если  $|\Delta y|<\delta,$  то  $|f(x,y+\Delta y)-f(x,y)|<\frac{\varepsilon}{2(b-a)};$  тогда можно оценить интеграл:

$$\left| \int_{a}^{t} (f(x, y + \Delta y) - f(x, y)) dx \right| < \frac{\varepsilon}{2} \cdot \frac{t - a}{b - a} \leqslant \frac{\varepsilon}{2}$$

Если 
$$|\Delta t| < \frac{\varepsilon}{2M}$$
, то