

Segmenter des clients d'un site e-commerce

Sommaire

- 1. Problématique
- 2. Exploration
- 3. Cleaning, feature engineering
- 4. Pistes de modélisation et modèle final sélectionné
- 5. Présentation de la simulation pour définir le délai de maintenance du modèle (contrat de maintenance)

1. Problématique

Projet de segmentation des clients

- Olist : entreprise brésilienne qui propose une solution de vente sur les marketplaces en ligne
- But : améliorer les campagnes de communication
- Mission 1: Différencier les bons et moins bons clients en termes de commandes et de satisfaction
- Mission 2 : Déterminer la fréquence de relance de la segmentation

2. Exploration

Fichiers sources et présentation

- 9 fichiers dont 7 en rapport avec la problématique
- Environ 100 000 commandes venant de multiples marketplaces au Brésil entre 2016 et 2018
- Données anonymisées, fournies par Olist

	Fichiers	Nombre de lignes	Nombre de colonnes	Valeurs manquantes
0	Clients	99441	5	0
1	Produits	32951	9	2448
2	Commandes	99441	8	4908
3	Paiements	103886	5	0
4	Traduction des catégories de produits	71	2	0
5	Informations sur les commandes	112650	7	0
6	Avis clients	99224	7	145903

Remarques sur les fichiers

- 1 commande sans paiement, le client précise en commentaire que le colis n'est jamais arrivé : commande et client supprimés
- 99440 commandes, pour chacune un numéro de client, différent du numéro de client unique
- 96095 clients différents
- Chaque commande est détaillée par article, avec le type de paiement, si le paiement est fractionné, avec le montant de chaque article, et les frais de transport sont partagés équitablement sur chaque article
- Certains paiements sont faits en « voucher », 9 commandes ont tout ou partie à 0 euros
- Le client donne un avis sur la commande avec une note et un commentaire. Parfois il met un 2^e avis pour la même commande, choix de ne prendre que le 2^e avis avec sa note.
- Il y a 73 catégories différentes (hors « Inconnue »), et il ne manquait que 2 traductions en anglais qui ont été rajoutées. 1,42% des produits commandés n'ont pas de catégorie

Répartition des catégories de produits achetés

Remarque sur les catégories de produit achetés

Autres catégories représentant moins de 4% chacune

3. Feature engineering

Regroupement des variables pertinentes en seul dataset comportant les variables suivantes :

- Numéro unique du client
- Numéro du client pour chaque commande
- Date de la commande
- Numéro de la commande
- Prix de la commande avec frais de transport
- Avis du client sur la commande

Nombre de lignes du dataset : 99440 (c'est le nombre de commandes) Nombre de valeurs manquantes :

customer_unique_id	0
customer_id	0
order_purchase_timestamp	0
order_id	0
payment_value_agreg	0
review_score	768
dtype: int64	

Traitement des valeurs manquantes:

- Pour les commandes avec un seul article, on associe une catégorie
- Pour les commandes avec un seul article et une catégorie : on remplace par la moyenne des avis pour cette catégorie
- Pour les commandes restantes (140), on remplace par la moyenne de tous les avis sur toutes les commandes

Remarque : la monnaie brésilienne est le réal (R\$),

pluriel : réaux

1 R\$ $\approx 0.19 euros$

count	99440.000000
mean	160.990267
std	221.951257
min	0.000000
25%	62.010000
50%	105.290000
75%	176.970000
max	13664.080000

Point blanc : moyenne

11 sur 36

Etude préliminaire des fichiers de données : outliers catégorie bed_bath_table

Remarque: la monnaie brésilienne est le réal (R\$),

pluriel : réaux

1 R\$ $\approx 0.19 euros$

count	11115.000000
mean	111.712256
std	87.615626
min	15.890000
25%	62.815000
50%	94.670000
75%	135.160000
max	2225.690000

Point blanc: moyenne

Etude préliminaire des fichiers de données : outliers catégorie health_beauty

Remarque: la monnaie brésilienne est le réal (R\$),

pluriel : réaux

Point blanc: moyenne

count	9667.000000
mean	149.074647
std	187.615017
min	9.090000
25%	56.100000
50%	96.220000
75%	155.450000
max	3297,400000

Etude préliminaire des fichiers de données : outliers catégorie sports_leisure

Remarque: la monnaie brésilienne est le réal (R\$),

pluriel : réaux

1 R\$ $\approx 0.19 euros$

Point blanc: moyenne

count	8641.000000
mean	133.856785
std	170.653999
min	11.820000
25%	58.620000
50%	96.470000
75%	153.170000
max	4163.510000

Etude préliminaire des fichiers de données : panier moyen par catégorie : bed_bath_table

Somme payée pour la catégorie bed_bath_table par commande

count	9417.0000	000
mean	131.8553	338
std	111.7791	143
min	15.8900	000
25%	70.9700	000
50%	105.2800	000
75%	160.4700	000
max	2225.6900	000

Remarque : la monnaie brésilienne est le réal (R\$),

pluriel : réaux

1 R\$ $\approx 0.19 euros$

Dans une commande il peut y avoir plusieurs articles de même catégorie. Ici le panier moyen d'articles dans la catégorie bed_bath_table est de 131,86 R\$ alors que le prix moyen d'un article de cette catégorie parmi toutes les commandes est de 111,71 R\$. Le panier moyen général est de 160,99 R\$.

Etude préliminaire des fichiers de données : panier moyen par catégorie : health_beauty

	Somme payée pour la catégorie health_beauty par command					
count		8835.000000				
mean		163.113142				
std		201.976919				
min		9.590000				
25%		64.090000				
50%		103.590000				
75%		174.430000				
max		3297.400000				

Remarque : la monnaie brésilienne est le réal (R\$), pluriel : réaux

1 R\$ $\approx 0.19 euros$

Dans une commande il peut y avoir plusieurs articles de même catégorie. Ici le panier moyen d'articles dans la catégorie health_beauty est de 163,11 R\$ alors que le prix moyen d'un article de cette catégorie parmi toutes les commandes est de 149,07 R\$. Le panier moyen général est de 160,99 R\$.

Etude préliminaire des fichiers de données : panier moyen par catégorie : sports_leisure

Somme payée pour la catégorie sports_leisure par commande

count	7720.000000
mean	149.825969
std	186.361093
min	11.820000
25%	65.780000
50%	110.590000
75%	167.755000
max	4163.510000

Remarque: la monnaie brésilienne est le réal (R\$),

pluriel : réaux

1 R\$ $\approx 0.19 euros$

Dans une commande il peut y avoir plusieurs articles de même catégorie. Ici le panier moyen d'articles dans la catégorie sports_leisure est de 149,83 R\$ alors que le prix moyen d'un article de cette catégorie parmi toutes les commandes est de 133,86 R\$. Le panier moyen général est de 160,99 R\$.

4. Pistes de modélisation et modèle final sélectionné

Construction tableau RFM par client

Calcul de la récence : - Date référence de la dernière commande sur tout le dataset : 17/10/2018

- Par client : calcul du nombre de jours entre sa dernière commande et cette date référence
- Récence max : 772 jours

Calcul de la fréquence :

- Calcul du nombre de commandes total du client
- Varie de 1 à 17
- Pourcentage de clients ayant commandé plus d'une fois : 3,12%

	Nombre de commandes	Nombre de clients	Pourcentage
0	1	93098	96.88
1	2	2745	2.86
2	3	203	0.21
3	4	30	0.03
4	5	8	0.01
5	6	6	0.01
6	7	3	0.00
7	9	1	0.00
8	17	1	0.00

Construction tableau RFM par client

- Calcul du montant par client : Montant total payé par client

<u>Tableau RFM avec avis du moyen du client, calcul du RFM_score et RFM_segment :</u>

	customer_unique_id	Recency	Frequency	Monetary	R_rank_norm	F_rank_norm	M_rank_norm	RFM_Score	avis moyen du client	RFM_segment
0	87ab9fec999db8bd5774917de3cdf01c	0	1	89.71	100.0	48.44	41.25	3.16	1.0	143
1	262e1f1e26e92e86375f86840b4ffd63	0	2	444.06	100.0	98.31	94.41	4.88	5.0	111
2	af5454198a97379394cacf676e1e96cb	13	3	592.65	100.0	99.84	96.39	4.94	1.0	111
3	634420a0ea42302205032ed44ac7fccc	16	2	160.76	100.0	98.31	69.17	4.46	2.0	112
4	9bb92bebd4cb7511e1a02d5e50bc4655	18	1	137.03	100.0	48.44	61.44	3.50	1.0	142
96090	2f64e403852e6893ae37485d5fcacdaf	744	1	39.09	0.0	48.44	9.37	0.96	4.0	414
96091	0eb1ee9dba87f5b36b4613a65074337c	744	1	109.34	0.0	48.44	50.56	1.65	1.0	412
96092	009b0127b727ab0ba422f6d9604487c7	764	1	40.95	0.0	48.44	10.45	0.98	1.0	414
96093	4854e9b3feff728c13ee5fc7d1547e92	772	1	75.06	0.0	48.44	33.04	1.36	1.0	413
96094	b7d76e111c89f7ebf14761390f0f7d17	772	1	136.23	0.0	48.44	61.14	1.83	1.0	412

Clustering simple

Score RFM sur 5 : S	Cluster
3,5 < S ≤ 5	1 Top Customer
2,8 < S ≤ 3,5	2 High value Customer
1,9 < S ≤ 2,8	3 Medium Value Customer
1,4 < S ≤ 1,9	4 Low value Customer
S ≤ 1,4	5 Lost Customers

Sans review_score

I Clustering k-means1) RFM sans rang

Avec review_score

Proportion de chaque cluster pour k-means 4 et 5 clusters :

0	0.541714
1	0.402258
2	0.030824
3	0.025204

Clustering k-means 2) RFM avec rang

Sans review_score

Nombre de clusters

Proportion de chaque cluster pour k-means 5 clusters :

23 sur 36

Nombre de clusters

II DBScan

1) RFM sans review_score

Sans rang

Avec rang

<u>Méthode</u>: recherche des meilleurs hyper-paramètres eps et min_samples:

- ❖ eps à déterminer avec NearestNeighbors et KneeLocator
- min_samples = 2 x nombre de variables (ici 2x3 = 6)

1ci y = 2,11 = eps

Silhouette score = 0,707

Estimated number of clusters: 5
Estimated number of noise points: 30

Proportion des 5 clusters :

0	0.968739
1	0.028513
2	0.002081
-1	0.000312
3	0.000281
4	0.000073

Ici y = 0,39 = eps Proportion des 2 clusters :

0	0.968812
1	0.031188

Silhouette score = 0,707

Estimated number of clusters: 2
Estimated number of noise points: 0

DBScan

2) RFM avec review_score

Sans rang

<u>Méthode</u>: recherche des meilleurs hyper-paramètres eps et min_samples:

- ❖ eps à déterminer avec NearestNeighbors et KneeLocator
- min_samples = 2 x nombre de variables (ici 2x4 = 8)

1ci y = 2,02 = eps

Silhouette score = 0,617

Estimated number of clusters: 4
Estimated number of noise points: 49

Proportion des 4 clusters :

Avec rang

Proportion des 10 clusters :

0.000125

7 0.553702 5 0.194360 0 0.110807 6 0.079307 9 0.030636 1 0.014808 4 0.009366 8 0.003205 3 0.001956 2 0.001727

-1

Estimated number of clusters: 10 Estimated number of noise points: 12

III Agglomerativ clustering

<u>Méthode</u>:

- ❖ RFM avec review_score
- ❖ Sampling de 10000 lignes

Sans rang

Proportion pour 4 clusters:

0 0.8399 3 0.1096 1 0.0313 2 0.0192

Proportion pour 5 clusters:

0 0.6937 4 0.1462 3 0.1096 1 0.0313 2 0.0192

Proportion pour 6 clusters:

0 0.4952 5 0.1985 4 0.1462 3 0.1096 1 0.0313 2 0.0192

Avec rang

Proportion pour 5 clusters avec rang:

Modèle choisi

Modèle choisi : K-means 5 clusters avec rang et

review_score:

Résultats sur la récence par cluster pour ce modèle :

Cluster 0 : clients qui n'ont pas commandé depuis très longtemps

Cluster 1: clients qui ont commandé récemment

Cluster 2: clients qui n'ont pas commandé depuis longtemps

Cluster 3: clients qui n'ont pas commandé depuis très longtemps Cluster 4: clients qui n'ont pas commandé depuis

longtemps

Point blanc : moyenne

Résultats sur la fréquence par cluster pour ce modèle :

	0	1	2	3	4
count	25427.0	30283.0	2997.000000	22941.0	14447.0
mean	1.0	1.0	2.116116	1.0	1.0
std	0.0	0.0	0.516610	0.0	0.0
min	1.0	1.0	2.000000	1.0	1.0
25%	1.0	1.0	2.000000	1.0	1.0
50%	1.0	1.0	2.000000	1.0	1.0
75%	1.0	1.0	2.000000	1.0	1.0
max	1.0	1.0	17.000000	1.0	1.0

Cluster 0 : clients qui ont commandé une seule fois

Cluster 1 : clients qui ont commandé une seule fois

Cluster 2 : clients qui ont commandé au moins 2 fois

Cluster 3 : clients qui ont commandé une seule fois

Cluster 4 : clients qui ont commandé une seule fois

Modèle choisi: K-means 5 clusters avec rang et

review_score:

Résultats sur le montant par cluster pour ce modèle:

Moyenne = 160,99

K-means 5 clusters avec rang (zoom sur les montants)

Cluster 0: clients qui ne dépensent pas beaucoup en moyenne

Cluster 1: clients qui dépensent un montant dans la moyenne général

Cluster 2: clients aui dépensent 2 fois plus que la moyenne

Cluster 3: clients aui dépensent plus que la movenne, avec des montants assez hauts

Cluster 4: clients aui dépensent un peu plus que la movenne. avec des montants qui vont du mini (0) au maxi (13 664)

Point blanc: moyenne

Résultats sur l'avis client moven par cluster pour ce modèle :

Numéro du cluster

Cluster 0: clients plutôt satisfaits en moyenne mais pouvant être assez insatisfaits

Cluster 1: clients très satisfaits en movenne mais pouvant être un peu insatisfaits

Cluster 2: clients assez satisfaits en movenne mais pouvant être très insatisfaits

Cluster 3: clients plutôt satisfaits en movenne mais pouvant être assez insatisfaits

Cluster 4: clients très insatisfaits

> Point blanc: movenne

> > 29 sur 36

Résumé des clusters :

<u>Cluster 0 : anciens clients pas dépensiers :</u> clients qui n'ont pas commandé depuis très longtemps, qui ont commandé une seule fois, qui ne dépensent pas beaucoup en moyenne, plutôt satisfaits en moyenne mais pouvant être assez insatisfaits

Cluster 1: clients récents dans la moyenne: clients qui ont commandé récemment, qui ont commandé une seule fois, qui dépensent un montant dans la moyenne général, très satisfaits en moyenne mais pouvant être un peu insatisfaits Cluster 2: clients dépensiers qui ont commandé plusieurs fois: clients qui n'ont pas commandé depuis longtemps, qui ont commandé au moins 2 fois, qui dépensent 2 fois plus que la moyenne, assez satisfaits en moyenne mais pouvant être très insatisfaits

<u>Cluster 3 : anciens clients dépensiers :</u> clients qui n'ont pas commandé depuis très longtemps, qui ont commandé une seule fois, qui dépensent plus que la moyenne, avec des montants assez hauts, plutôt satisfaits en moyenne mais pouvant être assez insatisfaits

<u>Cluster 4 : Clients insatisfaits :</u> clients qui n'ont pas commandé depuis longtemps, qui ont commandé une seule fois, qui dépensent un peu plus que la moyenne, avec des montants qui vont du mini (0) au maxi (13664), mais très insatisfaits

Visualisation clusters:

En 3D avec RFM

Visualisation clusters:

	R_rank_norm	F_rank_norm	M_rank_norm	avis moyen du client
F1	0.11	0.67	0.70	-0.21
F2	-0.70	-0.16	0.05	-0.70
F3	-0.71	0.27	0.04	0.65
F4	0.02	0.67	-0.71	-0.22

En 3D: ACP avec rank RFM et review-score

5. Présentation de la simulation pour définir le délai de maintenance du modèle (contrat de maintenance)

Méthode : ❖ K-mea

- K-means 5 clusters avec rangs RFM et review_score
- Détermination de la date de début T_{début} et de fin T_{fin} de toutes les commandes
- Découpage de la période de commande en 2 parties : le k-means est entraîné sur la première partie : de T_{début} jusqu'à une date T qui varie, avec création du RFM et du review-score au préalable (données normalisées) et on applique le predict sur tout le dataset, comme si de T à T_{fin} il y avait de nouveaux clients,
- Raisonnement à rebours : date T qui est la date du ler k-means, et date T_{fin} qui est la date du 2ème k-means,
- ❖ Ensuite on compare les résultats entre le k-means sur tout le dataset avec le predict précédent

Résultats:

❖ Sur 16 semaines : on n'est pas venu depuis 1 semaine, 2 semaine, 16 semaines :

Sur 8 mois: on n'est pas venu depuis 1 mois, 2 mois, ..., 10 mois:

On observe ici une chute importante de l'ARI-score qui indique un changement de profil des commandes, il se peut qu'il y ait eu des promotions sur le site par exemple, à voir avec l'entreprise (T = 17 mars 2018) alors qu'il y a chaque mois environ 7000 commandes

Conclusion:

On peut proposer de refaire un kmeans complet **tous les 6 mois.**

SOURCE

 https://www.kaggle.com/datasets/olistbr/brazilianecommerce?select=olist_orders_dataset.csv