

MSC ENGENHARIA E CIÊNCIA DE DADOS

MÉTODOS ESTATÍSTICOS EM DATA MINING

Relatório 2

Authors:

Diogo Vilela (96193) Pedro Rodrigues (96301) José Pedro Antunes (96260) Sebastião Caldas (96321) Nuno Marques (95758)

Grupo 04

IST ULisboa

CONTENTS

I	Introd	ução	3
II	Objeti	vo	3
Ш		os de Clustering	3
	III-A	Métodos Aglomerativos	
		III-A1 Distância de Hamming	
			3
	III-B	Métodos de Partição	4
		III-B1 K-means	4
	III-C	DBSCAN	4
IV	V Conclusão		
Refe	rences		4

IST ULisboa

I. Introdução II. Objetivo

III. MÉTODOS DE CLUSTERING

A. Métodos Aglomerativos

Os métodos de *clustering* aglomerativos baseiam-se na fusão recursiva de *clusters* em cada nível hierárquico de acordo com uma dada métrica ou medida. Inicialmente, as observações são os seus próprios *clusters*, que se vão unindo, sucessivamente, em cada iteração do algoritmo, fazendo com que cada nível tenha menos um *cluster* do que aquele que lhe precede. O algoritmo termina, naturalmente, com um único *cluster*, ao qual todas as observações originais pertencem.

Evidentemente, estes métodos dependem da escolha da relação de *dissemelhança* entre objetos e do critério de fusão de *clusters*; prendendo-se, sobretudo, com a natureza dos dados em questão. Visto que os nossos dados são maioritariamente categóricos binários, e após terem sido retiradas as variáveis contínuas, foram abordadas duas estratégias: aplicar *one-hot encodding* aos dados, considerando como métrica a distância de *hamming* e; não aplicar nenhuma transformação e considerar a distância de *gower*.

Apesar de se terem formulado duas estratégias distintas, a metodologia permaneceu igual. Efetivamente, consideram-se os métodos de agrupamento *complete-linkage*, *single-linkage* e, *average-linkage*, escolhendo-se o número de *clusters* de modo a maximizar o *silhouette coefficient*. Seguidamente, em função do método que apresenta ter *clusters* mais distintos, comparou-se os valores da partição com os valores da variável resposta, obtendo-se as métricas adequadas.

1) Distância de Hamming: Em seguida apresentam-se os resultados para a primeira estratégia de clustering aglomerativo

Fig. 1. Silhoutte Scores e dendrograma (truncado) para complete-linkage.

Fig. 2. Silhoutte Scores e dendrograma (truncado) para single-linkage.

Fig. 3. Silhoutte Scores e dendrograma (truncado) para average-linkage.

Fig. 4. Matriz de confusão para as true labels vs clusters.

ĺ		Random Index	Adjusted Random Index	Adjusted Mutual Index
	Score	0.921	0.026	0.020

TABLE I MÉTRICAS PARA DISTÂNCIA DE HAMMING

2) Distância de Gower: Em seguida apresentam-se os resultados para a primeira estratégia de clustering aglomerativo

Fig. 5. Silhoutte Scores e dendrograma (truncado) para complete-linkage.

Fig. 6. Silhoutte Scores e dendrograma (truncado) para single-linkage.

IST ULisboa

Fig. 7. Silhoutte Scores e dendrograma (truncado) para average-linkage.

Fig. 8. Matriz de confusão para as true labels vs clusters.

	Random Index	Adjusted Random Index	Adjusted Mutual Index
Score	0.921	0.026	0.020

TABLE II MÉTRICAS PARA DISTÂNCIA DE GOWER

B. Métodos de Partição

1) K-means:

C. DBSCAN

O DBSCAN (Density-Based Spatial Clustering of Applications with Noise) é um algoritmo de agrupamento baseado em densidade. Este método descobre clusters com forma arbitrária e é bastante eficiente para conjuntos de dados multi dimensionais.

O DBSCAN procura *clusters* através da vizinhança de cada ponto do *dataset* e verifica se contém mais do que um determinado número de observações.

Desta forma, é necessário definir dois parâmetros de entrada à *priori*: o raio de vizinhança (Eps) e o número mínimo de pontos para definir um *cluster* (minPts).

Pode-se definir três tipos de pontos neste algoritmo. Se uma determinada observação tiver mais pontos do que o número mínimo, definido num raio *Eps*, é considerado um *core point*. Se um ponto tiver menos pontos que número mínimo mas estiver na vizinhança de um *core point* é então definido como um *border point*. Um ponto que não seja nenhum dos anteriores é considerado um *noise point*.

O DBSCAN é capaz de detetar *clusters* de diferentes formas e densidades, e é menos afetado pelo ruído e *outliers* do que outros algoritmos de agrupamento. No entanto, é preciso ser muito rigoroso quando se define valores para o raio e para o número mínimo de pontos, uma vez que uma pequena alteração pode conduzir a resultados muito diferentes.

IV. CONCLUSÃO REFERENCES