An easy computation shows that τ is a chain map and that the induced homomorphisms

$$\begin{array}{l} \tau_{\textstyle *} \colon H_{\textstyle *}(X,\!A;\,G) \to H_{\textstyle *}(\Delta(Y) \otimes M;\,G) \approx H_{\textstyle *}(Y;\!G) \otimes M \\ \tau^{\textstyle *} \colon H^{\textstyle *}(Y;\!G) \otimes M^{\textstyle *} \approx H^{\textstyle *}(\operatorname{Hom}\left(\Delta(Y) \otimes M,\,G\right)) \to H^{\textstyle *}(X,\!A;\,G) \end{array}$$

equal Φ and Φ^* , respectively. Since Φ is assumed to be an isomorphism for G=R, the chain map τ induces an isomorphism of homology. The universal-coefficient theorems for homology and cohomology then imply that Φ and Φ^* are isomorphisms for all G.

A fiber-bundle pair with base space B consists of a total pair (E, \dot{E}) , a fiber pair (F, \dot{F}) , and a projection $p: E \to B$ such that there exists an open covering $\{V\}$ of B and for each $V \in \{V\}$ a homeomorphism $\varphi_V: V \times (F, \dot{F}) \to (p^{-1}(V), p^{-1}(V) \cap \dot{E})$ such that the composite

$$V \times F \xrightarrow{\varphi_V} p^{-1}(V) \xrightarrow{p} V$$

is the projection to the first factor. If $A \subset B$, we let $E_A = p^{-1}(A)$ and $\dot{E}_A = p^{-1}(A) \cap \dot{E}$, and if $b \in B$, then (E_b, \dot{E}_b) is the fiber pair over b. Following are some examples.

- **2** For a space B and pair (F,\dot{F}) the *product-bundle pair* consists of the total pair $B \times (F,\dot{F})$ with projection to the first factor.
- **3** Given a bundle projection $\dot{p} \colon \dot{E} \to B$ with compact fiber \dot{F} , let E be the mapping cylinder of \dot{p} and $p \colon E \to B$ the canonical retraction. Then (E, \dot{E}) is the total pair of a fiber-bundle pair over B with fiber (F, \dot{F}) , where F is the cone over \dot{F} , and projection p.
- 4 If ξ is a q-sphere bundle over B, then (E_{ξ}, \dot{E}_{ξ}) is the total pair of a fiberbundle pair over B with fiber (E^{q+1}, S^q) and projection $p_{\xi}: E_{\xi} \to B$.

Given a fiber-bundle pair with total pair (E, \dot{E}) and fiber pair (F, \dot{F}) , a cohomology extension of the fiber is a homomorphism $\theta \colon H^*(F, \dot{F}; R) \to H^*(E, \dot{E}; R)$ of graded modules (of degree 0) such that for each $b \in B$ the composite

$$H^*(F,\dot{F};\,R)\xrightarrow{\theta} H^*(E,\dot{E};\,R) \to H^*(E_b,\dot{E}_b;\,R)$$

is an isomorphism. The following statements are easily verified.

5 Let \bar{p} : $B \times (F,\dot{F}) \to (F,\dot{F})$ be the projection to the second factor. Then

$$\theta = \bar{p} \, \hbox{*} \colon H \, \hbox{*}(\mathit{F},\!\dot{\mathit{F}};R) \to H \, \hbox{*}(B \times (\mathit{F},\!\dot{\mathit{F}});R)$$

is a cohomology extension of the fiber of the product-bundle pair. •

6 Let $\theta: H^*(F,\dot{F};R) \to H^*(E,\dot{E};R)$ be a cohomology extension of the fiber of a fiber-bundle pair over B and let $f: B' \to B$ be a map. There is an induced bundle pair over B', with total pair (E',\dot{E}') and fiber (F,\dot{F}) , and there is a map

 $\bar{f}: (E', \dot{E}') \to (E, \dot{E})$ commuting with projections. Then the composite

$$H^*(F,\dot{F};R) \xrightarrow{\theta} H^*(E,\dot{E};R) \xrightarrow{\bar{f}^*} H^*(E',\dot{E}';R)$$

is a cohomology extension of the fiber in the induced bundle.

Given a fiber-bundle pair over B with total pair (E, \dot{E}) , let the path components of B be $\{B_j\}$ and let (E_j, \dot{E}_j) be the induced total pair over B_j . A cohomology extension θ of the fiber of the bundle pair over B corresponds to a family of cohomology extensions $\{\theta_j\}$ of the induced bundle pairs over B_j .

We now establish the local form of the theorem toward which we are heading. It shows that any cohomology extension of the fiber in a product-bundle pair has homology properties as nice as the one given in statement 5 above.

8 LEMMA Let (F,\dot{F}) be a pair such that $H_*(F,\dot{F};R)$ is free and finitely generated over R and let θ : $H^*(F,\dot{F};R) \to H^*(B\times(F,\dot{F});R)$ be a cohomology extension of the fiber of the product-bundle pair. Then the homomorphisms

$$\Phi\colon H_{\textstyle \textstyle *}(B\times(F,\dot{F});\,G) \to H_{\textstyle \textstyle *}(B;G)\otimes H_{\textstyle \textstyle *}(F,\dot{F};\,R)$$

$$\Phi^{\textstyle \textstyle *}\colon H^{\textstyle \textstyle *}(B;G)\otimes H^{\textstyle \textstyle *}(F,\dot{F};\,R) \to H^{\textstyle \textstyle *}(B\times(F,\dot{F});\,G)$$

are isomorphisms for all R modules G.

PROOF By lemma 1, it suffices to prove that Φ is an isomorphism for G = R. If $\{B_i\}$ is the set of path components of B, then

$$H_{f *}(B\times (F,\dot{F});R) \approx \bigoplus_j H_{f *}(B_j\times (F,\dot{F});R)$$

and

$$H_*(B;R) \otimes H_*(F,\dot{F};R) \approx \bigoplus_j H_*(B_j;R) \otimes H_*(F,\dot{F};R)$$

Therefore it suffices to prove the result for a path-connected space B. For such a B, $R \approx H^0(B;R)$.

By the Künneth formula, $H_*(B \times (F,\dot{F});R) \approx H_*(B;R) \otimes H_*(F,\dot{F};R)$. We define graded submodules N_s of $H_*(B;R) \otimes H_*(F,\dot{F};R)$ by

$$(N_s)_q = \bigoplus_{i+j=q,\; j \geq s} H_i(B;R) \, \otimes \, H_j(F,\dot{F};\;R)$$

Then

$$H_*(B;R) \otimes H_*(F,\dot{F};R) = N_0 \supset N_1 \supset \cdots \supset N_s \supset N_{s+1}$$

and $N_s = 0$ for large enough s. If $u \in H^s(F,\dot{F};R)$, then $\theta(u) = 1 \times \lambda(u) + \bar{u}$, where $\bar{u} \in \bigoplus_{i+j=s,j<s} H^i(B;R) \otimes H^j(F,\dot{F};R)$ and $\theta(u) \mid [b \times (F,\dot{F})] = 1 \times \lambda(u)$. Because θ is a cohomology extension of the fiber, λ is an automorphism of $H^*(F,\dot{F};R)$. Let $z' \in H_s(F,\dot{F};R)$ and consider $z \times z' \in N_s$. Then

$$\Phi(z \times z') = \sum_{i} p_{*}(\theta(m_{i}^{*}) \land (z \times z')) \otimes m_{i}$$

and if deg $m_i < s$, then $\theta(m_i^*) \cap (z \times z') \in N_1$ and $p_*(N_1) = 0$. Therefore

 $\Phi(z \times z') \in N_s$, and so Φ maps N_s into itself for all s. Because of the short exact sequences

$$0 \rightarrow N_{s+1} \rightarrow N_s \rightarrow N_s/N_{s+1} \rightarrow 0$$

and the five lemma, it follows by downward induction on s that Φ is an isomorphism if and only if it induces an isomorphism of N_s/N_{s+1} onto itself for all s. For $z' \in H_s(F,\dot{F};R)$, computing $\Phi(z \times z')$ in N_s/N_{s+1} , we obtain

$$\Phi(z \times z') = \sum_{\deg m_i \ge s} p_* [(1 \times \lambda(m_i^*) + \bar{m}_i^*) \frown (z \times z')] \otimes m_i
= \sum_{\deg m_i = s} p^* [1 \times \lambda(m_i^*) \frown (z \times z')] \otimes m_i$$

because $\bar{m}_i^* \cap (z \times z') \in N_1$ and $p_*(N_1) = 0$. Now, by properties 5.6.21, 5.6.19, and 5.6.17,

$$\sum_{\deg m_i = s} p_* [1 \times \lambda(m_i^*) \cap (z \times z')] \otimes m_i$$

$$= \sum_{\deg m_i = s} z \otimes \langle \lambda(m_i^*), z' \rangle m_i = z \otimes \lambda_*(z')$$

where $\lambda_*: H_*(F,\dot{F};R) \to H_*(F,\dot{F};R)$ is the automorphism dual to λ . Hence $\Phi(z \times z') = z \times \lambda_*(z')$ in N_s/N_{s+1} , showing that Φ induces an isomorphism of N_s/N_{s+1} for all s.

The following *Leray-Hirsch theorem* shows that fiber-bundle pairs with cohomology extensions of the fiber have homology and cohomology modules isomorphic to those of the product of the fiber pair and the base.

9 THEOREM Let (E,\dot{E}) be the total pair of a fiber-bundle pair with base B and fiber pair (F,\dot{F}) . Assume that $H_*(F,\dot{F};R)$ is free and finitely generated over R and that θ is a cohomology extension of the fiber. Then the homomorphisms

$$\Phi: H_{*}(E, \dot{E}; G) \to H_{*}(B; G) \otimes H_{*}(F, \dot{F}; R) \qquad \Phi(z) = \sum_{i} p_{*}(\theta(m_{i}^{*}) \cap z) \otimes m_{i}$$

$$\Phi^{*}: H^{*}(B; G) \otimes H^{*}(F, \dot{F}; R) \to H^{*}(E, \dot{E}; G) \qquad \Phi^{*}(u \otimes v) = p^{*}(u) \cup \theta(v)$$

are isomorphisms (of graded modules) for all R modules G.

PROOF By lemma 1, it suffices to prove the result for the map Φ in the case G = R. For any subset $A \subset B$ let θ_A be the composite

$$H^*(F,\dot{F};R) \xrightarrow{\theta} H^*(E,\dot{E};R) \rightarrow H^*(E_A,\dot{E}_A;R)$$

Then θ_A is a cohomology extension of the fiber in the induced bundle over A. It follows from lemma 8 that if the induced bundle over A is homeomorphic to the product-bundle pair $A \times (F, \dot{F})$, then

$$\Phi_A: H_{*}(E_A, \dot{E}_A; R) \approx H_{*}(A; R) \otimes H_{*}(F, \dot{F}; R)$$

Hence Φ_V is an isomorphism for all sufficiently small open sets V.

If V and V' are open sets in B, then $\{(E_V, \dot{E}_V), (E_V, \dot{E}_V)\}$ is an excisive couple of pairs in E, and it follows from property 5.6.20 that Φ_V , Φ_V , $\Phi_{V\cap V}$, and $\Phi_{V\cup V'}$ map the exact Mayer-Vietoris sequence of (E_V, \dot{E}_V) and (E_V, \dot{E}_V) into

the tensor product of the exact Mayer-Vietoris sequence of V and V' by $H_*(F,\dot{F};R)$. Since $H_*(F,\dot{F};R)$ is free over R, its tensor product with any exact sequence is exact. Therefore, if Φ_V , Φ_V , and $\Phi_{V\cap V'}$ are isomorphisms, it follows from the five lemma that $\Phi_{V\cup V'}$ is also an isomorphism. By induction, Φ_U is an isomorphism for any U which is a finite union of sufficiently small open sets. Let \mathfrak{A} be the collection of these sets. Since any compact subset of B lies in some element of \mathfrak{A} , $H_*(B;R) \approx \lim_{\to} \{H_*(U;R)\}_{U\in\mathfrak{A}}$. Also, any compact subset of E lies in E_U for some $U\in\mathfrak{A}$, so $H_*(E,\dot{E};R) \approx \lim_{\to} \{H_*(E_U,\dot{E}_U;R)\}$. Because the tensor product commutes with direct limits and Φ corresponds to $\lim_{\to} \{\Phi_U\}_{U\in\mathfrak{A}}$ under these isomorphisms, Φ is also an isomorphism.

The above argument proves directly that Φ is an isomorphism for any coefficient module G. A similar argument does not appear possible for Φ^* , because it is not true that $H^*(B;R)$ is isomorphic to the inverse limit $\lim_{\leftarrow} \{H^*(U;R)\}_{U\in \mathfrak{Q}_L}$. It should be noted that in theorem 9 we have said nothing about commutativity of Φ^* with cup products, because it is not true, in general, that Φ^* preserves cup products.

We now specialize to the case of sphere bundles. Because

$$H^r\!(E^{q+1},S^q;\,R)pprox egin{cases} 0 & r
eq q+1 \ R & r=q+1 \end{cases}$$

if ξ is a q-sphere bundle, a cohomology extension of the fiber in ξ is an element $U \in H^{q+1}(E_{\xi}, \dot{E}_{\xi}; R)$ such that for any $b \in B$, the restriction of U to $(p^{-1}(b), p^{-1}(b) \cap \dot{E})$ is a generator of $H^{q+1}(p^{-1}(b), p^{-1}(b) \cap \dot{E}; R)$. Such a cohomology class is called an *orientation class* (over R) of the bundle. If orientations of the bundle exist, the bundle is called *orientable*. An *oriented sphere bundle* is a pair (ξ, U_{ξ}) consisting of a sphere bundle ξ and an orientation class of U_{ξ} of ξ .

If U is an orientation class of ξ over \mathbf{Z} and if 1 is the unit element of R, then $\mu(U \otimes 1)$ is an orientation class of ξ over R. Therefore a sphere bundle orientable over \mathbf{Z} is orientable over any R.

If (ξ, U_{ξ}) is an oriented sphere bundle over B and $f: B' \to B$, then $(f^*\xi, \bar{f}^*U_{\xi})$ is an oriented sphere bundle over B' [where $\bar{f}: (E_{f^*\xi}, \bar{E}_{f^*\xi}) \to (E_{\xi}, \bar{E}_{\xi})$ is associated to f].

From theorem 9 we get the following Thom isomorphism theorem.

10 THEOREM Let (ξ, U_{ξ}) be an oriented q-sphere bundle over B. There are natural isomorphisms for any R module G

$$\Phi_{\xi}: H_n(E_{\xi}, \dot{E}_{\xi}; G) \underset{\approx}{\Longrightarrow} H_{n-q-1}(B; G) \qquad \Phi_{\xi}(z) = p_{\ast}(U_{\xi} \cap z)
\Phi_{\xi}^{\ast}: H^r(B; G) \underset{\approx}{\Longrightarrow} H^{r+q+1}(E_{\xi}, \dot{E}_{\xi}; G) \qquad \Phi_{\xi}^{\ast}(v) = p^{\ast}v \cup U_{\xi}$$

PROOF Let m and m^* be dual generators of $H_{q+1}(\mathbb{E}^{q+1}, S^q; R)$ and $H^{q+1}(E^{q+1}, S^q; R)$, respectively, and define a cohomology extension θ by $\theta(m^*) = U_{\xi}$. Then Φ_{ξ} is the composite

$$H_n(E_{\xi},\dot{E}_{\xi};G) \xrightarrow{\Phi} H_{n-q-1}(B;G) \otimes H_{q+1}(E^{q+1},S^q;R) \approx H_{n-q-1}(B;G)$$

where the second map sends $z \otimes m$ to z. By theorem 9, Φ is an isomorphism,

and so Φ_{ξ} is an isomorphism. A similar argument shows that Φ_{ξ}^* is an isomorphism. These isomorphisms are natural for induced bundles because of naturality properties of the cup and cap products.

This result implies the exactness of the following *Thom-Gysin sequences* of a sphere bundle.

11 THEOREM Let (ξ, U_{ξ}) be an oriented q-sphere bundle with base B and projection $\dot{p} = p \mid \dot{E}: \dot{E} \rightarrow B$. For any R module G there are natural exact sequences

$$\cdots \to H_n(\dot{E}_{\xi};G) \xrightarrow{\dot{p}_*} H_n(B;G) \xrightarrow{\Psi_{\xi}} H_{n-q-1}(B;G) \xrightarrow{\rho} H_{n-1}(\dot{E}_{\xi};G) \to \cdots$$

$$\cdots \to H^r(B;G) \xrightarrow{\dot{p}_*} H^r(\dot{E}_{\xi};G) \xrightarrow{\rho^*} H^{r-q}(B;G) \xrightarrow{\Psi_{\xi}^*} H^{r+1}(B;G) \to \cdots$$

in which Ψ_{ξ} and Ψ_{ξ} * have properties

$$\Psi_{\boldsymbol{\xi}}(\boldsymbol{v} \frown \boldsymbol{z}) = (-1)^{(q+1) \deg v} \Psi_{\boldsymbol{\xi}}^*(\boldsymbol{v}) \frown \boldsymbol{z}$$

$$\Psi_{\boldsymbol{\xi}}^*(\boldsymbol{v}_1 \smile \boldsymbol{v}_2) = \boldsymbol{v}_1 \smile \Psi_{\boldsymbol{\xi}}^*(\boldsymbol{v}_2)$$

PROOF There is a commutative diagram (with any coefficient module)

the top row of which is exact. Since p is a deformation retraction of E onto B, p_* is an isomorphism. By theorem 10, Φ_ξ is an isomorphism. The desired sequence is obtained by defining $\Psi_\xi = \Phi_\xi j_* p_*^{-1}$ and $\rho = \partial \Phi_\xi^{-1}$. Similarly, the cohomology sequence is defined by $\Psi_\xi^* = p^{*-1}j^*\Phi_\xi^*$ and $\rho^* = \Phi_\xi^{*-1}\delta$. We verify the formula for Ψ_ξ .

$$\begin{array}{l} \Psi_{\xi}(v \frown z) \, = \, \Phi_{\xi} j_{*} p_{*}^{-1}(v \frown z) \, = \, \Phi_{\xi} j_{*}(p^{*}(v) \frown p_{*}^{-1}(z)) \\ = \, \Phi_{\xi}(p^{*}(v) \frown j_{*} \, p_{*}^{-1}(z)) \, = \, p_{*}(U \frown [p^{*}(v) \frown j_{*} \, p_{*}^{-1}(z)]) \\ = \, p_{*}(j^{*}[U \smile p^{*}(v)] \frown p_{*}^{-1}(z)) \\ = \, (-1)^{(q+1)\,\deg\,v} \, p_{*}[j^{*} \Phi_{\xi}^{*}(v) \frown p_{*}^{-1}(z)] \\ = \, (-1)^{(q+1)\,\deg\,v} \, \Psi_{\ell}^{*}(v) \frown z \end{array}$$

Note that the isomorphisms Φ and Φ^* of the Thom isomorphism theorem depend on the choice of the orientation class U of the bundle. Therefore the homomorphisms ρ and Ψ and ρ^* and Ψ^* of the Thom-Gysin sequences also depend on the orientation class. In case B is path connected and U and U' are orientation classes of a sphere bundle over B, it follows from theorem 10 that there is an element $r \in R$ such that

$$U' = p^*(r \times 1) \smile U = r[p^*(1) \smile U]$$

If $b_0 \in B$, then

$$U' \mid (p^{-1}(b_0), p^{-1}(b_0) \cap \dot{E}) = r[U \mid (p^{-1}(b_0), p^{-1}(b_0) \cap \dot{E})]$$

Therefore we have the next result.

12 LEMMA Two orientation classes U and U' of a sphere bundle over a path-connected base space B are equal if and only if for some $b_0 \in B$

$$U \mid (p^{-1}(b_0), p^{-1}(b_0) \cap \dot{E}) = U' \mid (p^{-1}(b_0), p^{-1}(b_0) \cap \dot{E})$$

If B is not path connected, let $\{B_j\}$ be the set of path components of B and let (E_j, \dot{E}_j) be the part of (E, \dot{E}) over B_j . Then

$$H^*(E, \dot{E}; R) \approx \times_j H^*(E_j, \dot{E}_j; R)$$

and we also obtain the following result.

13 LEMMA Two orientation classes U and U' of a sphere bundle with base space B are equal if and only if for all $b \in B$

$$U \mid (p^{-1}(b), p^{-1}(b) \cap \dot{E}) = U' \mid (p^{-1}(b), p^{-1}(b) \cap \dot{E})$$

In case $R = \mathbf{Z}_2$, then $H^{q+1}(p^{-1}(b), p^{-1}(b) \cap \dot{E}; \mathbf{Z}_2) \approx \mathbf{Z}_2$ for all $b \in B$. Therefore this module has a unique nonzero element, and we obtain the following consequence of lemma 13.

14 COROLLARY Any two orientation classes over \mathbb{Z}_2 of a sphere bundle are equal. \blacksquare

Thus, for $R={\bf Z}_2$ the homomorphisms $\Phi,\,\rho,$ and Ψ and $\Phi^*,\,\rho^*,$ and Ψ^* are all unique.

The characteristic class Ω_{ξ} of an oriented q-sphere bundle (ξ, U_{ξ}) is defined to be the element

$$\Omega_{\xi} = \Psi_{\xi}^*(1) \in H^{q+1}(B;R)$$

This is functorial (that is, $\Omega_{f^*\xi} = f^*\Omega_{\xi}$). From the multiplicative properties of Ψ_{ξ} and Ψ_{ξ}^* in theorem 11 we obtain the following equations.

15 For $z \in H_n(B;G)$

$$\Psi_{\boldsymbol{\xi}}(\boldsymbol{z}) \,=\, \Omega_{\boldsymbol{\xi}} \frown \boldsymbol{z}$$

and for $v \in H^r(B;G)$

$$\Psi_{\boldsymbol{\xi}}^*(v) = v \smile \Omega_{\boldsymbol{\xi}} \quad \blacksquare$$

We now investigate the existence of orientation classes for a sphere bundle. Let (X,X') be a pair and let $\{A_j\}_{j\in J}$ be an indexed collection of subsets $A_j \subset X$. An indexed collection

$$\{u_j \in H^n(A_j, A_j \cap X'; G)\}_{j \in J}$$

is said to be *compatible* if for all $j, j' \in J$

$$u_i \mid (A_i \cap A_{i'}, A_i \cap A_{i'} \cap X') = u_{i'} \mid (A_j \cap A_{j'}, A_j \cap A_{j'} \cap X')$$

The compatible collections $\{u_j\}$ constitute an R module $H^n(\{A_j\},X';G)$. Clearly, the restriction maps

$$H^n(X,X'; G) \rightarrow H^n(A_j, A_j \cap X'; G)$$

define a natural homomorphism $H^n(X,X'; G) \to H^n(\{A_i\},X'; G)$.

16 LEMMA Let (E, \dot{E}) be a fiber-bundle pair with base B, projection $p: E \to B$, and fiber pair (F, \dot{F}) . Assume that for some n > 0, $H_i(F, \dot{F}; R) = 0$ for i < n. Then

(a) For all $A \subset B$ and all R modules G

$$H_i(p^{-1}(A), p^{-1}(A) \cap \dot{E}; G) = 0 = H^i(p^{-1}(A), p^{-1}(A) \cap \dot{E}; G)$$
 $i < n$

(b) If $\{V\}$ is any open covering of B, then in degree n the natural homomorphism is an isomorphism

$$H^n(E,\dot{E}; G) \approx H^n(\{p^{-1}V\},\dot{E}; G)$$

PROOF By the universal-coefficient formula, it suffices to prove (a) for G = R. If $A \subset B$ is such that $(p^{-1}(A), p^{-1}(A) \cap \dot{E})$ is homeomorphic to $A \times (F, \dot{F})$, then by the Künneth formula,

$$H_i(p^{-1}(A), p^{-1}(A) \cap \dot{E}; R) \approx H_i(A \times (F, \dot{F}); R) = 0 \quad i < n$$

From this it follows (as in the proof of theorem 9) by induction on the number of coordinate neighborhoods of the bundle needed to cover A (using the Mayer-Vietoris sequence and the five lemma) that (a) holds for all compact $A \subset B$. By taking direct limits, (a) holds for any A.

For (b), let $\{W\}$ be the collection of finite unions of elements of $\{V\}$. By (a) and the universal-coefficient formula for cohomology, there is a commutative diagram

$$H^n(E,\dot{E};G)$$
 \approx Hom $(H_n(E,\dot{E};R),G)$ $\downarrow \approx$

$$\lim_{\leftarrow} \{H^n(p^{-1}(W), \, p^{-1}(W) \, \cap \, \dot{E}; \, G)\} \, \approx \, \lim_{\leftarrow} \{\text{Hom } (H_n(p^{-1}(W), \, p^{-1}(W) \, \cap \, \dot{E}; \, R), G)\}$$

Hence we need only prove that a compatible collection $\{u_V\}_{V\in\{V\}}$ extends to a unique compatible collection $\{u_W\}_{W\in\{W\}}$. This follows by using Mayer-Vietoris sequences again and from the fact that $H^i(p^{-1}(W), p^{-1}(W) \cap \dot{E}; G) = 0$ for i < n.

For sphere bundles we have the following immediate consequence.

17 COROLLARY A sphere bundle ξ with base B is orientable if and only if there is a covering $\{V\}$ of B and a compatible family $\{u_V\}$, where u_V is an orientation class of $\xi \mid V$ for each $V \in \{V\}$.

Since a trivial sphere bundle is orientable, corollaries 17 and 14 imply the following result.

18 COROLLARY Any sphere bundle has a unique orientation class over \mathbb{Z}_2 .

By theorem 2.8.12, there is a contravariant functor from the fundamental groupoid of the base space B of a sphere bundle ξ to the homotopy category which assigns to $b \in B$ the fiber pair (E_b, \dot{E}_b) over b and to a path class $[\omega]$ in B a homotopy class $h[\omega] \in [E_{\omega(0)}, \dot{E}_{\omega(0)}; E_{\omega(1)}, \dot{E}_{\omega(1)}]$. For fixed R there is then a

covariant functor from the fundamental groupoid of B to the category of R modules which assigns to $b \in B$ the module $H^{q+1}(E_b, \dot{E}_b; R)$ and to a path class $[\omega]$ the homomorphism

$$h[\omega] \, {}^{\displaystyle *} \colon H^{q+1}(E_{\omega(1)}, \! \dot{E}_{\omega(1)}; \, R) \to H^{q+1}(E_{\omega(0)}, \! \dot{E}_{\omega(0)}; \, R)$$

19 THEOREM A sphere bundle ξ is orientable over R if and only if for every closed path ω in B, $h[\omega]^* = 1$.

PROOF If ξ is orientable with orientation class $U \in H^{q+1}(E,\dot{E};R)$, for any small path ω in B (and hence for any path)

$$h[\omega] * (U \mid (E_{\omega(1)}, \dot{E}_{\omega(1)})) = U \mid (E_{\omega(0)}, \dot{E}_{\omega(0)})$$

Since $U \mid (E_b, \dot{E}_b)$ is a generator of $H^{q+1}(E_b, \dot{E}_b; R)$, this implies that $h[\omega]^* = 1$ for any closed path ω .

Conversely, if $h[\omega]^* = 1$ for every closed path ω in B, there exist generators $U_b \in H^{q+1}(E_b, \dot{E}_b; R)$ such that for any path class $[\omega]$ in B, $h[\omega]^*(U_{\omega(1)}) = U_{\omega(0)}$. If V is any subset of B such that $\xi \mid V$ is trivial, it is easy to see that there is an orientation class U_V of $\xi \mid V$ such that $U_V \mid (E_b, \dot{E}_b) = U_b$ for all $b \in V$. If $\{V\}$ is an open covering of B by sets such that $\xi \mid V$ is trivial for all V, then $\{U_V\}$ is a compatible family of orientations, and by corollary 17, ξ is orientable.

20 corollary A sphere bundle with a simply connected base is orientable over any R. ■

8 THE COHOMOLOGY ALGEBRA

The cup product in cohomology makes the cohomology (over R) of a topological pair a graded R algebra. In the first part of this section we define the relevant algebraic concepts and compute this algebra over \mathbb{Z}_2 for a real projective space and over any R for complex and quaternionic projective space. This is applied to prove the Borsuk-Ulam theorem.

For the case of an H space, there is even more algebraic structure that can be introduced in the cohomology algebra. The cohomology of such a space is a Hopf algebra, and the second part of the section is devoted to its definition and some results about its structure. The section concludes with a proof of the Hopf theorem about the cohomology algebra of a compact connected H space.

A graded R algebra consists of a graded R module $A=\{A^q\}$ and a homomorphism of degree 0

$$\mu: A \otimes A \to A$$

called the *product* of the algebra (μ then maps $A^p \otimes A^q$ into A^{p+q} for all p and q). For $a, a' \in A$ we write $aa' = \mu(a \otimes a')$. The product is associative if (aa')a'' = a(a'a'') for all $a, a', a'' \in A$ and is commutative if $aa' = (-1)^{\deg a \deg a'} a'a$ for all $a, a' \in A$.

1 EXAMPLE If (X,A) is a topological pair, then $H^*(X,A;R)$ is a graded R algebra whose product is the cup product (with respect to the multiplication pairing of R with itself to R). It follows from property 5.6.10 that this product is associative and from property 5.6.11 that it is commutative. If $A = \emptyset$, it follows from property 5.6.9 that 1 is a unit element of the algebra $H^*(X;R)$. $H^*(X,A;R)$ is called the *cohomology algebra* of (X,A) over R.

2 EXAMPLE The polynomial algebra over R generated by x of degree n > 0, denoted by $S_n(x)$, is defined by

$$[S_n(x)]^q = \begin{cases} 0 & q \not\equiv 0 \ (n) \text{ or } q < 0 \\ \text{free } R \text{ module generated by } x_p & q = pn, \ p \ge 0 \end{cases}$$

with the product $(\alpha x_p)(\beta x_q) = (\alpha \beta) x_{p+q}$ for α , $\beta \in R$. It is then clear that x_0 is a unit element and that $x_p = (x_1)^p$. If we denote x_1 by x, then $x_p = x^p$. Thus, disregarding the graded structure, $S_n(x)$ is simply the polynomial algebra over R in one indeterminate x. The truncated polynomial algebra over R generated by x of degree n and height n, denoted by n, is defined to be the quotient of n by the graded ideal generated by n. If n is called the exterior algebra generated by n of degree n and is denoted by n.

If A and B are graded R algebras, their tensor product $A \otimes B$ is also a graded R algebra with product

$$(a \otimes b)(a' \otimes b') = (-1)^{\deg b \deg a'} aa' \otimes bb'$$

If A and B have associative or commutative products, so does $A \otimes B$.

3 EXAMPLE If R is a field and (X,A) and (Y,B) are topological pairs such that either $H_*(X,A;R)$ or $H_*(Y,B;R)$ is of finite type, it follows from theorem 5.5.11 that

$$H^*(X,A;R) \otimes H^*(Y,B;R) \approx H^*((X,A) \times (Y,B);R)$$

We compute the graded \mathbb{Z}_2 algebra $H^*(P^n;\mathbb{Z}_2)$ for real projective space P^n . Note that the double covering $p; S^n \to P^n$ is a 0-sphere bundle. We let $w_n \in H^1(P^n;\mathbb{Z}_2)$ be the characteristic class (over \mathbb{Z}_2) of this bundle.

4 THEOREM For $n \geq 1$, $H^*(P^n; \mathbb{Z}_2)$ is a truncated polynomial algebra over \mathbb{Z}_2 generated by w_n of degree 1 and height n + 1.

PROOF All coefficients in the proof will be \mathbb{Z}_2 and will be omitted. By corollary 5.7.18 and theorem 5.7.11, there is an exact Thom-Gysin sequence

$$\cdots \to H^{q}(S^{n}) \xrightarrow{\rho^{*}} H^{q}(P^{n}) \xrightarrow{\Psi^{*}} H^{q+1}(P^{n}) \xrightarrow{p^{*}} H^{q+1}(S^{n}) \to \cdots$$

starting on the left with $0 \to H^0(P^n) \xrightarrow{p^*} H^0(S^n)$ and terminating on the right with $H^n(S^n) \xrightarrow{p^*} H^n(P^n) \to 0$ [note that $H^q(P^n) = 0$ for q > n, because P^n is a polyhedron of dimension n]. Because $H^q(S^n) = 0$ for 0 < q < n, it follows that

$$\Psi^{\textstyle *}\colon H^q(P^n) \longrightarrow H^{q+1}(P^n)$$