Question - 1 (Parkinson's disease prediction)

**V TEJAS** 

CSE - B

3122 21 5001 116

UCS 2612 - MACHINE LEARNING LABORATORY

Lab Test - 1

Question - 1 (Parkinson's disease prediction)

## Importing necessary libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

## Loading the dataset from GDrive

data = pd.read\_csv('/content/drive/MyDrive/SEM-6/ML Lab/test-1/parkinsons.csv')
data.head()

|   | name             | MDVP:Fo(Hz) | MDVP:Fhi(Hz) | MDVP:Flo(Hz) | MDVP:Jitter(%) |
|---|------------------|-------------|--------------|--------------|----------------|
| C | phon_R01_S01_1   | 119.992     | 157.302      | 74.997       | 0.00784        |
| 1 | . phon_R01_S01_2 | 122.400     | 148.650      | 113.819      | 0.00968        |
| 2 | phon_R01_S01_3   | 116.682     | 131.111      | 111.555      | 0.01050        |
| 3 | s phon_R01_S01_4 | 116.676     | 137.871      | 111.366      | 0.00997        |
| 4 | phon_R01_S01_5   | 116.014     | 141.781      | 110.655      | 0.01284        |
|   |                  |             |              |              |                |

 $5 \text{ rows} \times 24 \text{ columns}$ 

data.describe()

MDVP:Fo(Hz) MDVP:Fhi(Hz) MDVP:Flo(Hz) MDVP:Jitter(%) MDVP:Jitter

|             | ,          | ,          | ,          |            |        |
|-------------|------------|------------|------------|------------|--------|
| count       | 195.000000 | 195.000000 | 195.000000 | 195.000000 | 195.00 |
| mean        | 154.228641 | 197.104918 | 116.324631 | 0.006220   | 0.00   |
| std         | 41.390065  | 91.491548  | 43.521413  | 0.004848   | 0.00   |
| min         | 88.333000  | 102.145000 | 65.476000  | 0.001680   | 0.00   |
| 25%         | 117.572000 | 134.862500 | 84.291000  | 0.003460   | 0.00   |
| <b>50</b> % | 148.790000 | 175.829000 | 104.315000 | 0.004940   | 0.00   |
| <b>75</b> % | 182.769000 | 224.205500 | 140.018500 | 0.007365   | 0.00   |
| max         | 260.105000 | 592.030000 | 239.170000 | 0.033160   | 0.00   |

 $8 \text{ rows} \times 23 \text{ columns}$ 

#### data.info()

| #    | Column                      | Non-Null Count  | Dtype   |
|------|-----------------------------|-----------------|---------|
|      |                             |                 |         |
| 0    | name                        | 195 non-null    | object  |
| 1    | MDVP:Fo(Hz)                 | 195 non-null    | float64 |
| 2    | MDVP:Fhi(Hz)                | 195 non-null    | float64 |
| 3    | MDVP:Flo(Hz)                | 195 non-null    | float64 |
| 4    | MDVP:Jitter(%)              | 195 non-null    | float64 |
| 5    | <pre>MDVP:Jitter(Abs)</pre> | 195 non-null    | float64 |
| 6    | MDVP:RAP                    | 195 non-null    | float64 |
| 7    | MDVP:PPQ                    | 195 non-null    | float64 |
| 8    | Jitter:DDP                  | 195 non-null    | float64 |
| 9    | MDVP:Shimmer                | 195 non-null    | float64 |
| 10   | <pre>MDVP:Shimmer(dB)</pre> | 195 non-null    | float64 |
| 11   | Shimmer:APQ3                | 195 non-null    | float64 |
| 12   | Shimmer:APQ5                | 195 non-null    | float64 |
| 13   | MDVP: APQ                   | 195 non-null    | float64 |
| 14   | Shimmer:DDA                 | 195 non-null    | float64 |
| 15   | NHR                         | 195 non-null    | float64 |
| 16   | HNR                         | 195 non-null    | float64 |
| 17   | status                      | 195 non-null    | int64   |
| 18   | RPDE                        | 195 non-null    | float64 |
| 19   | DFA                         | 195 non-null    | float64 |
| 20   | spread1                     | 195 non-null    | float64 |
| 21   | spread2                     | 195 non-null    | float64 |
| 22   | D2                          | 195 non-null    | float64 |
| 23   | PPE                         | 195 non-null    | float64 |
| d+vn | $as \cdot float64(22) i$    | n+6/(1) object( | 1)      |

dtypes: float64(22), int64(1), object(1)

memory usage: 36.7+ KB

#### data.isnull().sum()

| name         | 0 |
|--------------|---|
| MDVP:Fo(Hz)  | 0 |
| MDVP:Fhi(Hz) | 0 |
|              |   |

```
MDVP:Flo(Hz)
                      0
MDVP:Jitter(%)
                      0
MDVP:Jitter(Abs)
                      0
MDVP:RAP
                      0
MDVP: PPQ
                      0
                      0
Jitter:DDP
MDVP:Shimmer
                      0
MDVP:Shimmer(dB)
                      0
Shimmer: APQ3
                      0
Shimmer: APQ5
                      0
MDVP: APQ
                      0
Shimmer:DDA
                      0
NHR
                      0
HNR
                      0
                      0
status
RPDE
                      0
DFA
                      0
                      0
spread1
spread2
                      0
D2
                      0
PPE
                      0
dtype: int64
```

data.shape (195, 24)

# Exploratory Data Analysis

```
#Histogram
```

```
if 'MDVP:Jitter(%)' in data.columns: # Check if the column exists
  plt.figure(figsize=(10, 6))
  sns.histplot(data['MDVP:Jitter(%)'], kde=True)
  plt.title('Histogram of MDVP Jitter in %')
  plt.xlabel('MDVP')
  plt.ylabel('Frequency')
  plt.show()
```





#### #BoxPlot

```
if 'MDVP:Jitter(%)' in data.columns and 'status' in data.columns: # Ensure bot
  plt.figure(figsize=(10, 6))
  sns.boxplot(x='MDVP:Jitter(%)', y='status', data=data)
  plt.title('Boxplot of Status by MDVP as %')
  plt.show()
```



#HeatMan

```
....
```

```
numerical_data = data.select_dtypes(exclude=['object'])
corr = numerical_data.corr()
plt.figure(figsize=(10, 8))
sns.heatmap(corr, annot=True, fmt=".2f", cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```



## Pre-Processing

```
#Cleaning Data by considering Percentile Functions Values
numerical features = data.select dtypes(exclude=['object']).columns.tolist()
len(numerical features)
def handle outliers(data, feature names):
    for feature in feature names:
        Q1 = data[feature].quantile(0.25)
        Q3 = data[feature].quantile(0.75)
        IQR = Q3 - Q1
        lower bound = Q1 - 2.5 * IQR
        upper bound = Q3 + 2.5 * IQR
        data[feature] = np.clip(data[feature], lower bound, upper bound)
    return data
data clean = handle outliers(data.copy(), numerical features)
data clean.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 195 entries, 0 to 194
    Data columns (total 24 columns):
     #
         Column
                            Non-Null Count Dtype
         -----
    - - -
                            -----
     0
         name
                            195 non-null
                                            object
     1
                                            float64
         MDVP:Fo(Hz)
                            195 non-null
     2
         MDVP:Fhi(Hz)
                            195 non-null
                                            float64
     3
                            195 non-null
         MDVP:Flo(Hz)
                                            float64
     4
         MDVP:Jitter(%)
                            195 non-null
                                            float64
     5
         MDVP:Jitter(Abs) 195 non-null
                                            float64
     6
                            195 non-null
         MDVP: RAP
                                            float64
     7
         MDVP: PPQ
                            195 non-null
                                            float64
     8
         Jitter:DDP
                            195 non-null
                                            float64
         MDVP:Shimmer
     9
                            195 non-null
                                            float64
                                            float64
     10
         MDVP:Shimmer(dB) 195 non-null
     11
         Shimmer:APQ3
                            195 non-null
                                            float64
     12
         Shimmer:APQ5
                            195 non-null
                                            float64
     13
         MDVP: APQ
                            195 non-null
                                            float64
     14
         Shimmer:DDA
                            195 non-null
                                            float64
     15
         NHR
                            195 non-null
                                            float64
     16
                            195 non-null
         HNR
                                            float64
     17
         status
                            195 non-null
                                            int64
     18
         RPDE
                            195 non-null
                                            float64
     19
         DFA
                            195 non-null
                                            float64
     20
                            195 non-null
         spread1
                                            float64
     21
                            195 non-null
                                            float64
         spread2
     22
         D2
                            195 non-null
                                            float64
     23
         PPE
                            195 non-null
                                            float64
    dtypes: float64(22), int64(1), object(1)
    memory usage: 36.7+ KB
```

6 of 16 15/04/24, 15:12

Tuninium and Tantium Onlit

### Iraining and Testing Split

```
#dropping the first column as it is a non-numerical type of data (name)

x = data.drop(columns=['status']).iloc[:,1:]
y = data['status']

from sklearn.model_selection import train_test_split
X train, X test, y train, y test = train test split(x, y, test size = 0.2, rance)
```

## Logistic Regression

```
from sklearn.linear model import LogisticRegression
from sklearn.datasets import make classification
from sklearn.metrics import accuracy score
log reg = LogisticRegression()
# Training the model on the training data
log reg.fit(X train, y train)
# Making predictions on the testing data
predictions = log reg.predict(X test)
# Evaluating the model
accuracy = accuracy_score(y_test, predictions)
print("Accuracy:", accuracy)
print(classification report(y test, predictions))
    Accuracy: 0.8974358974358975
                                recall
                   precision
                                        f1-score
                                                    support
                        1.00
                                  0.43
                                             0.60
                                                          7
                1
                        0.89
                                  1.00
                                             0.94
                                                         32
                                             0.90
                                                         39
        accuracy
                                             0.77
                                                         39
       macro avg
                        0.94
                                  0.71
    weighted avg
                        0.91
                                  0.90
                                             0.88
                                                         39
```

/usr/local/lib/python3.10/dist-packages/sklearn/linear\_model/\_logistic.py:4 STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

### PLA

```
from sklearn.metrics import classification report
from sklearn.metrics import roc curve
from sklearn.metrics import auc
from sklearn.linear model import Perceptron
# Training the Perceptron model
perceptron = Perceptron()
perceptron.fit(X_train, y_train)
# Testing the model
y_pred = perceptron.predict(X_test)
print(classification_report(y_test, y_pred))
# ROC Curve
y_scores = perceptron.decision_function(X_test)
fpr, tpr, thresholds = roc curve(y test, y scores)
roc auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='green', lw=2, label='ROC curve (area = %0.2f)' % roc_
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('PLA ROC')
plt.legend(loc="lower right")
plt.show()
```

|                                       | precision    | recall       | f1-score             | support        |
|---------------------------------------|--------------|--------------|----------------------|----------------|
| 0<br>1                                | 0.00<br>0.81 | 0.00<br>0.94 | 0.00<br>0.87         | 7<br>32        |
| accuracy<br>macro avg<br>weighted avg | 0.41<br>0.67 | 0.47<br>0.77 | 0.77<br>0.43<br>0.71 | 39<br>39<br>39 |





### MLP

```
from sklearn.metrics import classification report
from sklearn.metrics import roc curve
from sklearn.metrics import auc
from sklearn.neural network import MLPClassifier
# Training the MLP model
mlp = MLPClassifier(random state=1, max iter=300)
mlp.fit(X train, y train)
# Testing and evaluating the model
y pred mlp = mlp.predict(X test)
print("MLP Classification Report:")
print(classification_report(y_test, y_pred_mlp))
y scores mlp = mlp.predict proba(X test)[:, 1]
fpr_mlp, tpr_mlp, thresholds_mlp = roc_curve(y_test, y_scores_mlp)
roc auc mlp = auc(fpr mlp, tpr mlp)
plt.figure()
plt.plot(fpr mlp, tpr mlp, color='green', lw=2, label='ROC curve (area = %0.2f)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('MLP ROC')
plt.legend(loc="lower right")
plt.show()
    MLP Classification Report:
```

|                                       | precision    | recall       | f1-score             | support        |
|---------------------------------------|--------------|--------------|----------------------|----------------|
| 0<br>1                                | 0.60<br>0.88 | 0.43<br>0.94 | 0.50<br>0.91         | 7<br>32        |
| accuracy<br>macro avg<br>weighted avg | 0.74<br>0.83 | 0.68<br>0.85 | 0.85<br>0.70<br>0.84 | 39<br>39<br>39 |

/usr/local/lib/python3.10/dist-packages/sklearn/neural\_network/\_multilayer\_
warnings.warn(



## KNN

```
from sklearn.neighbors import KNeighborsClassifier
```

```
# Training the KNN model
knn = KNeighborsClassifier(n neighbors=3)
knn.fit(X train, y train)
# Predicting and evaluating the model
y pred knn = knn.predict(X test)
print("KNN Classification Report:")
print(classification_report(y_test, y_pred_knn))
# ROC Curve for KNN
y_scores_knn = knn.predict_proba(X_test)[:, 1]
fpr_knn, tpr_knn, thresholds_knn = roc_curve(y_test, y_scores_knn)
roc auc knn = auc(fpr knn, tpr knn)
plt.figure()
plt.plot(fpr knn, tpr knn, color='green', lw=2, label='ROC curve (area = %0.2f)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
```

```
pit.xiapei( raise rositive kate )
plt.ylabel('True Positive Rate')
plt.title('KNN ROC')
plt.legend(loc="lower right")
plt.show()
```

### KNN Classification Report:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Θ            | 0.43      | 0.43   | 0.43     | 7       |
| 1            | 0.88      | 0.88   | 0.88     | 32      |
| accuracy     |           |        | 0.79     | 39      |
| macro avg    | 0.65      | 0.65   | 0.65     | 39      |
| weighted avg | 0.79      | 0.79   | 0.79     | 39      |



# SVM

```
from sklearn.svm import SVC

# Training the SVM model
svm = SVC(probability=True)
svm.fit(X_train, y_train)

# Predicting and evaluating the model
y_pred_svm = svm.predict(X_test)
print("SVM Classification Report:")
```

```
print(classification_report(y_test, y_pred_svm))

# ROC Curve for SVM
y_scores_svm = svm.predict_proba(X_test)[:, 1]
fpr_svm, tpr_svm, thresholds_svm = roc_curve(y_test, y_scores_svm)
roc_auc_svm = auc(fpr_svm, tpr_svm)

plt.figure()
plt.plot(fpr_svm, tpr_svm, color='green', lw=2, label='ROC curve (area = %0.2f)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.xlim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('SVM ROC')
plt.legend(loc="lower right")
plt.show()
```

### SVM Classification Report:

| JVII CCGJJIII                         | precision    | recall       | f1-score             | support        |
|---------------------------------------|--------------|--------------|----------------------|----------------|
| 0<br>1                                | 0.67<br>0.86 | 0.29<br>0.97 | 0.40<br>0.91         | 7<br>32        |
| accuracy<br>macro avg<br>weighted avg | 0.76<br>0.83 | 0.63<br>0.85 | 0.85<br>0.66<br>0.82 | 39<br>39<br>39 |



## Naive Bayes

```
from sklearn.naive bayes import GaussianNB
# Training the Naïve Bayes model
nb = GaussianNB()
nb.fit(X_train, y_train)
# Testing and evaluating the model
y pred nb = nb.predict(X test)
print("Naïve Bayes Classification Report:")
print(classification report(y test, y pred nb))
# ROC Curve for Naïve Bayes
y scores nb = nb.predict proba(X test)[:, 1]
fpr nb, tpr nb, thresholds nb = roc curve(y test, y scores nb)
roc auc nb = auc(fpr nb, tpr nb)
plt.figure()
plt.plot(fpr_nb, tpr_nb, color='green', lw=2, label='ROC curve (area = %0.2f)'
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Naïve Bayes ROC')
plt.legend(loc="lower right")
plt.show()
```

#### Naïve Bayes Classification Report:

| support        | f1-score             | recall       | precision    | •                                     |
|----------------|----------------------|--------------|--------------|---------------------------------------|
| 7<br>32        | 0.45<br>0.79         | 0.71<br>0.69 | 0.33<br>0.92 | 0<br>1                                |
| 39<br>39<br>39 | 0.69<br>0.62<br>0.73 | 0.70<br>0.69 | 0.62<br>0.81 | accuracy<br>macro avg<br>weighted avg |





### COMPARISON ACROSS MODELS

```
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy score
import numpy as np
train accuracies = {}
test accuracies = {}
def train_evaluate(model, name, X_train, y_train, X_test, y_test):
    # Train the model
   model.fit(X train, y train)
    y_train_pred = model.predict(X_train)
    y test pred = model.predict(X test)
   # Calculate accuracies
    train_accuracy = accuracy_score(y_train, y_train_pred)
    test accuracy = accuracy score(y test, y test pred)
    train_accuracies[name] = train_accuracy
    test accuracies[name] = test accuracy
    print(f"{name} Classification Report (Test):")
    print(classification report(y test, y test pred))
    print(f"{name} Training Accuracy: {train accuracy:.4f}")
    print(f"{name} Testing Accuracy: {test accuracy:.4f}")
    print("\n\n")
# Train and evaluate MLPClassifier
train evaluate(MLPClassifier(random_state=1, max_iter=300), 'MLP', X_train, y_tr
# Train and evaluate Perceptron
train_evaluate(Perceptron(), 'Perceptron', X_train, y_train, X_test, y_test)
# Train and evaluate KNeighborsClassifier
train evaluate(KNeighborsClassifier(n neighbors=3), 'KNN', X train, y train, X t
# Train and evaluate SVC
train_evaluate(SVC(probability=True), 'SVM', X train, v train, X test, v test)
```

```
# Train and evaluate GaussianNB(), 'Naïve Bayes', X_train, y_train, X_test, y_test)

print("\n\n")
models = list(test_accuracies.keys())
test_accuracy_values = [test_accuracies[model] for model in models]
train_accuracy_values = [train_accuracies[model] for model in models]
```

best\_model = max(test\_accuracies, key=test\_accuracies.get)
best\_accuracy = test\_accuracies[best\_model]
print(f"The best model is {best\_model} with a testing accuracy of {best\_accuracy

/usr/local/lib/python3.10/dist-packages/sklearn/neural\_network/\_multilayer\_ warnings.warn(

MLP Classification Report (Test):

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Θ            | 0.60      | 0.43   | 0.50     | 7       |
| 1            | 0.88      | 0.94   | 0.91     | 32      |
| accuracy     |           |        | 0.85     | 39      |
| macro avg    | 0.74      | 0.68   | 0.70     | 39      |
| weighted avg | 0.83      | 0.85   | 0.84     | 39      |
|              |           |        |          |         |

MLP Training Accuracy: 0.8718 MLP Testing Accuracy: 0.8462

Perceptron Classification Report (Test):

|                                       | precision    | recall       | f1-score             | support        |
|---------------------------------------|--------------|--------------|----------------------|----------------|
| 9<br>1                                | 0.00<br>0.81 | 0.00<br>0.94 | 0.00<br>0.87         | 7<br>32        |
| accuracy<br>macro avg<br>weighted avg | 0.41<br>0.67 | 0.47<br>0.77 | 0.77<br>0.43<br>0.71 | 39<br>39<br>39 |

Perceptron Training Accuracy: 0.7308 Perceptron Testing Accuracy: 0.7692

| VINI CLASSIIICALIUII NEDUIL IIESLI | KNN | Classification | Report | (Test) | : |
|------------------------------------|-----|----------------|--------|--------|---|
|------------------------------------|-----|----------------|--------|--------|---|

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Θ            | 0.43      | 0.43   | 0.43     | 7       |
| 1            | 0.88      | 0.88   | 0.88     | 32      |
| accuracy     |           |        | 0.79     | 39      |
| macro avg    | 0.65      | 0.65   | 0.65     | 39      |
| weighted avg | 0.79      | 0.79   | 0.79     | 39      |

KNN Training Accuracy: 0.9295 KNN Testing Accuracy: 0.7949

| support        | f1-score             |              | rtion Report<br>precision | SVM Classifica                        |
|----------------|----------------------|--------------|---------------------------|---------------------------------------|
| 7<br>32        | 0.40<br>0.91         | 0.29<br>0.97 | 0.67<br>0.86              | 0<br>1                                |
| 39<br>39<br>39 | 0.85<br>0.66<br>0.82 | 0.63<br>0.85 | 0.76<br>0.83              | accuracy<br>macro avg<br>weighted avg |

SVM Training Accuracy: 0.8077

### ✓ INFERENCES

#### By comparing all the models above, we can infer that:

- 1) The best performing model by accuracy is the Logistic Regression Model.
- 2) Based on the ROC-AUC parameter, the MLP (Multi Layer Perceptron) model and SVM (Support Vector Machine) models perform equally giving an 85% accuracy each. MLP edges out SVM marginally.
- 3) PLA (Perceptrion Learning Algorithm) model is the weakest among all based on the ROC-AUC graphs that are observed.