Problem 2. We have seen that in a naive Bayes model with features $f_1, f_2...$, for a specific text with corresponding feature counts $n_1, n_2...$, the log probability that the text belongs in a particular class is given by the model as follows:

$$\log P(class|text) \approx \log P(class) + n_1 \log P(f_1|class) + n_2 \log P(f_2|class) + \cdots$$

That is, the log probability of class membership is proportional to the distance above a plane corresponding to the class. The normal to the plane is a weight vector $\mathbf{w} = w_1, w_2...$ where for all features f_i , $w_i = \log P(f_i|class)$. (We can consider the log prior probability $\log P(class)$ as an extra feature w_0 where for all texts, $n_0 = 1$.)

For the following parts, assume we have two classes C_1 and C_2 , with associated weight vectors \mathbf{w}_1 and \mathbf{w}_2 .

a. (4 points) Given a text represented by a feature count vector $\mathbf{n} = n_1, n_2 \dots$, when will the model classify the text as belonging to class C_1 ? When will the model classify the text as belonging to class C_2 ? Give the answers in terms of \mathbf{w}_1 , \mathbf{w}_2 and \mathbf{n} .

b. (4 points) Given your answer above, how can we represent the *decision boundary* between the classes C_1 and C_2 ? In which direction from the boundary are texts classified as C_1 , and in which direction as C_2 ? Give the answers in terms of \mathbf{w}_1 and \mathbf{w}_2 .