Oinarrizko Programazioa

2. Programazioko oinarrizko kontzeptuak

• • | Edukiak

- 1. Sarrera
- 2. Programazioko oinarrizko kontzeptuak
- 3. Programen beheranzko diseinua
- 4. Oinarrizko datu-egiturak
- 5. Programazio-lengoaien erabilera
- 6. Aplikazio-adibideak

• • Algoritmoen elementuak

- Objektuak
 - Informazioaren errepresentazioa
 - Objektu sinpleak eta egituratuak
- Adierazpenak (espresioak)
- Objektuak erabiltzeko oinarrizko aginduak
 - Datuak irakurri
 - Datuak idatzi
 - Asignazioa
- Kontrol-egiturak
 - Baldintzazko egiturak
 - Iterazio-egiturak
- Moduluak

Oinarrizko elementuak asignaturan

Objektuak. 2.Oinarrizko kontzeptuak 2.1.Informazioaren Objektu sinpleak errepresentazioa Objektu egituratuak 2.2. Adierazpenak. Adierazpenak 2.3. Aginduak. Objektuak erabiltzeko 2.4. Kontrol-egiturak. oinarrizko aginduak → 3. Azpiprogramak. Kontrol-egiturak 4. Oinarrizko datu-egiturak Moduluak

• • Oinarrizko Programazioa

2. Programazioko oinarrizko kontzeptuak.

- 2.1. Sarrera
- 2.2. Informazioaren errepresentazioa.

Objektu konstanteak eta aldagaiak.

Oinarrizko datu-motak.

- 2.3. Adierazpenak.
- 2.4. Datuak manipulatzeko oinarrizko aginduak.
- 2.5. Kontrol-egiturak.

Baldintzazko egiturak Iterazioa. Inbariantearen kontzeptua

2.6. Algoritmoen idazkera. Oinarrizko eskemak.

2.2. Objektuak. Informazioaren errepresentazioa

- Zerbait behar dugu datuak errepresentatzeko
- Algoritmoak balio behar du exekuzio desberdinetan datu desberdinekin erabilia izateko. Adibidez: zkh
- Aldagaia:
 - kutxa bat balio bat uzteko balio duena
 - balio hori ikusi ahal izango da gero
 - Balio berri bat jar daiteke (asignazioa), baina horrelakoetan lehengo balioa galdu egiten da.
- Balio sinpleak (letra bat, zenbaki bat, ...) eta balio egituratuak (persona bat: izena, deiturak, adina,...)

Objektuak erabiltzeko oinarrizko aginduak

- Datuak irakurri
 - Datuen balioak sarreratik eskuratzeko
- Datuak idatzi
 - Datuen balioak eta mezuak erakusteko
- Asignazioa
 - Datuen balioak manipulatzeko: eragiketa aritmetikoak, balioak kopiatzeko...

• • Adierazpenak

Kalkulatu behar diren espresioak adierazteko

$$\frac{Ax^2+3}{Bx-1}$$

$$A*(X*X)+3 / B*X-1$$

Kontrol-egiturak

- Programak agindu-sekuentziak dira.
- Programa exekutatzea bere aginduak banan-banan exekutatzea da, sekuentziako ordena errespetatuz.
- Baina aldagaietan dauden balioak erabiliz baldintza bat (adierazpen boolear bat) betetzen bada, posible da aginduen exekuzio sekuentziala aldatzea:
 - Agindu multzo bat egin edo ez.
 - Agindu multzo bat hainbatetan errepikatzea.
 - Agindu multzo bat errepikatu etengabe baldintza bete arte.

9

• • • Moduluak

- Algoritmoak oso konplexuak izan daitezke
 - ulertzeko, konpontzeko edo berrerabiltzeko
- Moduluak, azpialgoritmoak, errutinak, klaseak:
 - logikoki independenteak diren datu- eta agindu-multzotan banatzeko erabiltzen dira
- Lana banatu ahal izango da horrela

Informazioaren errepresentazioa

- Konstanteak eta aldagaiak
- Literalak
- Oinarrizko datu-motak:
 - zenbaki osoak, zenbaki errealak, karaktereak, boolearrak

11

• • Objektuak

- Datu-objektu bakoitzak hiru ezaugarri ditu:
 - IZENA: identifikadore bat
 - MOTA: Mota batek definitzen du:
 - bere balio posibleen multzoa.
 - balio horiekin egin daitezkeen eragiketak.
 - Adibidez: osokoa, erreala, karakterea.
 - BALIOA: programaren exekuzioko une zehatz batean daukana

12

Konstanteak eta aldagaiak

Objektu konstantea		Objektu aldagaia		
(konstantea)		(aldagaia)		
Izena	aldaezina	Izena	aldaezina	
Mota	aldaezina	Mota	aldaezina	
Balioa	aldaezina	Balioa	aldagaia	

• • Konstanteak eta aldagaiak

- Konstante batean, programaren exekuzioan behin bere balioa finkatu denetik aurrera, ezin izango zaio balio hori aldatu objektuari.
 - Adibidez:
 - Pi 3.14159
 - Seg_Orduko 3600
- Aldagai batean, berriz, uneko balioa alda daiteke exekuzioan zehar nahi beste aldiz.
 - Adibidez:
 - Kontagailua 21
 - Urtea 2014

• • Literalak

- Noski, balioa bera ere erabil daiteke programetan. Halakoetan balioari "literal" esaten zaio.
 - Ez dago beti identifikadore bat erabili beharrik.
 - Adibidez:
 - Osoko literalak: 0 1 60 1000000
 - Literal errealak: 0.0 3.14158
 - Karaktereak: 'H' ':' ''
 - Karaktere-kateak: "Ordua: "????"

• • Identifikadoreak

- Konstante, aldagai, mota, algoritmo eta programetako beste entitate batzuei ematen zaizkien izenak dira.
- Horrelako entitate bat identifikadore batekin lotu ondoren, aurrerantzean identifikadore hori erabiliko da programan entitate hori aipatzeko.

Programazio-estiloa Iruzkinak eta identifikadore egokiak

- Komeni da iruzkinak erabiltzea programaren eginkizuna adierazteko eta zati bakoitzaren funtzionamendua esplikatzeko.
 - Iruzkinak adan: "--" ondoren lerro bukaeraraino
- Identifikadore ahalik eta deskriptiboenak aukeratu behar dira.

Oinarrizko DATU-MOTAK

Balio bakarra hartzen dutenak dira oinarrizkoak:

<u>Datu-mota</u> <u>Balioak</u> <u>Ada-z</u>

Osokoa Zenbaki osoak Integer

Erreala Zenbaki errealak *Float*

Karakterea Karaktereak *Character*

Boolearra Balio boolearrak Boolean

Katea Karaktere-kateak *String*

Osoko datu-mota (*Integer*)

- Zenbaki osoen datu-mota
 - Domeinua:

- Erne! Errepresentazio bitarra dela eta mugak ditu goitik eta behetik
 - 16 bitekin: [-32768,+32767]
 - Adaz: [Integer'First, Integer'Last]

Osoko datu-mota

• Eragiketak:

- Eragigaiak eta emaitzak osokoa motakoak dira derrigorrez.
- Adi zatiketarekin!

Eragile diadikoak

- + batuketa
- kenketa
- * biderkaketa
- / zatiketa moztua
- rem zatiketaren hondarra
- mod modulua
- ** berreketa

Eragile monadikoak

abs balio absolutua

ukapena

eta gainera eragiketa erlazionalak: <, <=, >, >=, /=

• • Erreal datu-mota

- Zenbaki errealak adierazteko datu-mota
 - Domeinua:
 - 0.0 1.5 3.86473e5 3.0e+8 0.1234E-20
 - Eragiketak:
 - Eragigaiak eta emaitzak zenbaki errealak motakoak dira.

Eragile diadikoak + batuketa abs balio absolutua - kenketa - ukapena * biderkaketa / zatiketa ** berreketa (berretzailea osoko motakoa) eta gainera eragiketa erlazionalak: <, <=, >, >=, /=

Boolear datu-mota

- Domeinua: {true, false} (egiazkoa eta faltsua)
- Eragiketak:
 - Eragile erlazionalak.
 - eragigai biak mota berekoak dira
 - emaitza boolearra.

```
= berdin <= txikiago edo berdin
```

/= desberdin >= handiago edo berdin

< txikiago > handiago

- Eragile logikoak.
 - eragigai biak eta emaitza boolearrak dira.
 and (eta), or (edo), xor (edo esklusiboa), not (ez)

Eragiketa boolearren egi-taulak

A	В	A eta B A and B	A edo B A or B	A ala B A xor B	ez B not B
False	False	False	False	False	True
False	True	False	True	True	False
True	False	False	True	True	
True	True	True	True False		

Karaktere datu-mota

- Karaktereak adierazteko datu-mota
 - Domeinua:
 - ISO standarreko 128 karaktereak
 - 95 grafikoak: 'a' 'A' '1' '?' ...
 - 33 kontrolekoak: ff cr ...
 - Kontuz! 3 eta '3' balio desberdinak dira.
 - Eragiketak:
 - Eragiketa erlazionalak: <, <=, >, >=, /=, =

Karaktere datu-mota (Character)

	0	1	2	3	4	5	6	7
0	NULL	SOH	STX	ETX	EOT	ENQ	ACK	BEL
8	BS	HT	LF	VT	FF	CR	SO	SI
16	DLE	DC1	DC2	DC3	DC4	NAC	SYN	ETB
24	CAN	EM	SUB	ESC	FS	GS	RS	US
32	SP	ļ	II .	#	\$	%	&	ı
40	()	*	+	,	-		1
48	0	1	2	3	4	5	6	7
56	8	9	:	•	<	=	>	?
64	@	Α	В	С	D	E	F	G
72	Н	I	J	K	L	М	N	0
80	Р	Q	R	S	Т	U	V	W
88	X	Υ	Z	[\]	^	_
96	`	a	b	С	d	е	f	g
104	h	İ	j	k	I	m	n	0
112	р	q	r	S	t	u	V	W
120	Χ	У	Z	{		}	~	DEI

Kate datu-mota (string)

- Karaktere-kateak adierazteko datu-mota
 - Domeinua:
 - Karaktere-kateak komatxoen artean "Maite"
 "Kale Nagusia 12, 3.C"
 - Kontuz! "3", 3 eta '3' balio desberdinak dira.
 - Eragiketak:

Eragiketa erlazionalak: <, <=, >, >=, /=, =

• • 2.3. Adierazpenak

- Balio bat kalkulatzeko "formulak"
 - Aldagai bati balio berri bat esleitzeko aginduetan, adibidez
- Eragiketen arteko lehentasuna inplizituki definituta dago
- Eragile batzuek lehentasun handiagoa dute
 Adibidez, I+J/K adierazpena: I+(J/K)? (I+J)/K?
- Lehentasun-maila bereko bi eragile batera erabiltzen direnean ezker aldetik elkartzen dira.
 - Adibidez, I/J*K adierazpena: (I/J)*K? I/(J*K)?
- Parentesiak beti erabil daitezke lehentasun esplizitua ezartzeko

• • Adierazpenak Eragileak eta lehentasunak

Eragile diadikoak	Erag. monadikoak	Lehentasuna	
** * / mod rem	abs not	Handiena ↑	
+ - & = /= < <= >= > and or xor	• ————————————————————————————————————	Txikiena	

Adierazpenak. Ariketa

Zein izango da adierazpen hauek ebaluatzeko ordena?

• abs
$$(1 + A) + B$$

•
$$(-4)*(A**(5+1))$$

2.4. Datuak manipulatzeko oinarrizko aginduak

- Datuen irakurketa
- Datuen idazketa
- Asignazioa

Helburua:

 Programetako objektuekin burutzen diren oinarrizko ekintzak ezagutzea eta erabiltzea.

Ekintza: Datu-irakurketa

- Datuak sekuentzia batetik irakurtzen dira.
- Sekuentziako elementu guztiak mota berekoak dira
- Irakurri_Osokoa (aldagai1)
 sekuentzian oraindik irakurri gabe dagoen
 lehenengo osokoa aldagai1 aldagaiari
 asignatzen dio

Ekintza: Datu-irakurketa

Antzekoak

Irakurri_Erreala (aldagai2)
Irakurri _Karakterea (aldagai3)

- Sekuentziako elementuen mota eta aldagaiarena berdinak dira
- Sekuentziako elementu bat irakurtzeko aldez aurretik irakurri behar izan dira aurrean dauden guztiak.

Ekintza: Datu-idazketa

Emaitzak beste sekuentzia batean idazten dira.

Idatzi_Osokoa (adierazpen1)

adierazpena ebaluatuz lortzen den balioa (osokoa) idatzi egiten du irteera-sekuentzian

- Adibidez: Idatzi_Osokoa ((X+Y)*2)
- Antzekoak

Idatzi _Erreala (adierazpen2)

Idatzi_Karakterea (adierazpen3)

Idatzi_Katea (adierazpen4)

Ekintza: Asignazioa

<aldagaia> := <adierazpena>

- Adibidez: M := (N + P) * 6
- (N + P) * 6 adierazpena ebaluatuz lortzen den balioa
 M aldagaiari ezarriko zaio balio berri bezala.
- M aldagaiak galtzen du lehenago zeukan balioa.
- Adierazpenean aldagairik azaltzen bada (N eta P), adierazpena ebaluatzen denean aldagaiak une horretan daukan balioa erabiltzen da.
 - Aldagaiaren balioa ez da aldatzen erabiltzeagatik

Ekintza: Asignazioa (Adibideak)

Hasierako egoera:

N: 2 P:4 X: 1.0 Y: 4.5

Asignazioak

$$M := (N + P) * 6$$

$$Z := Y - X$$

$$P := P + 1$$

Asignazioak egikaritu ondoko egoera:

N: 2 **P:5** X: 1.0 Y: 4.5

M: 36 Z: 3.5

• • 2.5. Kontrol-egiturak

- Algoritmoko ekintza-sekuentzia pausoz pauso eta ordenan egikaritzen da.
- Ordena sekuentzial lineal hori aldatzeko erabiltzen dira kontrol-egiturak:
 - Baldintzazko egiturak
 - Iterazioa

• • Baldintzazko egitura

 Pauso bat (edo gehiago) baldintza bat betez gero egin behar bada

baldin baldintza orduan
 ekintza₁... ekintza_n

bestela ekintza_{b1}... ekintza_{bn}
ambaldin

• • Baldintzazko egitura

baldin baldintza orduan
 ekintza₁... ekintza_n
ambaldin

• • Baldintzazko egitura

baldin baldintza orduan
 ekintza₁... ekintza_n
bestela
 ekintza_{b1}... ekintza_{bn}
ambaldin

• • Iterazioa

 Pauso bat (edo gehiago) errepikatu behar direla adierazteko, bitartean eskema erabiltzen dugu:

• • Iterazioa

bitartean baldintza egin
 ekintza₁ ... ekintza_n
ambitartean

• • Aldi kopuru jakineko iterazioa

egin I guztietarako n_1 tik n_2 raino

ekintza₁ ... ekintza_n

amguztietarako

• • • guztietarako kontrol-egitura. Adibidea

```
Algoritmoa Kuboak_1_30
hasiera
egin I guztietarako 1 tik 30 eraino
Idatzi_Osokoa (I**3)
amguztietarako
amaia
```

Emaitza:

1 8 27 64 125 ... 27000

• • guztietarako kontrol-egitura

Bi bertsio baliokide:

```
algoritmoa Kuboak_1_30
hasiera
    egin I guztietarako 1 tik 30eraino
        Idatzi_0sokoa (I**3)
    amguztietarako
amaia
```

```
algoritmoa Kuboak_1_30
hasiera
    I := 1
    bitartean I <=30 egin
        Idatzi_Osokoa (I**3)
        I := I + 1
    ambitartean
amaia</pre>
```

• • 2.6. Algoritmoen idazkera

Algoritmoen idazkera. Adibidea

Irakurri triangelu baten oinarria eta altuera eta triangeluaren azalera idatzi.

```
algoritmo Kalkulatu_Azalera
hasiera

Idatzi_Katea (G,"Triangelu baten Azalera kalkulatuko dugu")
Idatzi_Katea (G,"Zein da triangeluaren Oinarria?")
Irakurri_Erreala (F,Oinarria)
Idatzi_Katea (G,"Zein da triangeluaren altuera?")
Irakurri_Erreala (F,Altuera)

Azalera := Oinarria*Altuera/2.0

Idatzi_Katea (G,"Hau da triangeluaren azalera:")
Idatzi_Erreala (G,Azalera)
amaia
```

Algoritmoen idazkera (II) Zehaztapenarekin eta aldagaien erazagupenarekin

algoritmo Kalkulatu_Azalera

hasiera Aginduak

```
Idatzi_Katea (G,"Triangelu baten azalera kalkulatuko dugu")
Idatzi_Katea (G,"Zein da triangeluaren oinarria?")
Irakurri_Erreala (F,Oinarria)
Idatzi_Katea (G,"Zein da triangeluaren altuera?")
Irakurri_Erreala (F,Altuera)
Azalera := Oinarria*Altuera/2.0
Idatzi_Katea (G,"Hau da triangeluaren azalera:")
Idatzi_Erreala (F,Azalera)
amaia
```

• • Oinarrizko eskemak

- Sekuentziako elementuen tratamendua.
 - Korritze osoa
 - Sekuentziako elementu guztiak tratatzen dira.
 - Adibidez: kontatu zenbat 'a', bilatu maximoa.
 - Korritze partziala
 - Ez da ailegatzen sekuentziako elementu guztiak tratatzera.
 - Adibidez: Elementu bat bilatu.

Sekuentziako elementu guztien tratamendua (korritze osoa)

hasiera

Hasierakoak

Lortu lehenengo elementua

bitartean elementua ez da azkena egin

Tratatu elementua

Lortu hurrengo elementua

ambitartean

Tratatu azken elementua

Bukaerakoak

amaia

Karaktere-sekuentzia bateko elementu guztien tratamendua

hasiera Hasierakoak Irakurri_Karakterea (Kar) bitartean Kar /= '.' egin Tratatu elementua Irakurri_Karakterea (Kar) ambitartean Tratatu puntua Bukaerakoak amaia

Osoko-sekuentzia bateko elementu guztien tratamendua

Suposatuz sekuentzia 0 zenbakiarekin bukatzen dela.

```
hasiera

Hasierakoak

Irakurri_Osoa (N)

bitartean N /= 0 egin

Tratatu elementua

Irakurri_Osoa (N)

ambitartean

Tratatu zeroa

Bukaerakoak

amaia
```

Sekuentziako elementuen <u>korritze</u> <u>partziala</u> (elementu baten bilaketa)

hasiera Hasierakoak Lortu lehenengo elementua Aurkitua := Faltsua **bitartean ez** (*elementua azkena da*) **eta** Aurkitua=Faltsua **egin** baldin elementua bilatu bada orduan Aurkitua := Egiazkoa ambaldin Lortu hurrengo elementua ambitartean Tratatu azken elementua Bukaerakoak

amaia

Karaktere-sekuentziako elementuen <u>korritze</u> <u>partziala</u> (karaktere baten bilaketa)

hasiera

```
Hasierakoak
 Irakurri_Karakterea (Kar)
 Aurkitua := Faltsua
 bitartean Kar/='.' eta Aurkitua= Faltsua egin
     baldin elementua bilatu bada orduan
      Aurkitua := Egiazkoa
     ambaldin
     Irakurri_Karakterea (Kar)
 ambitartean
 Tratatu puntua
 Bukaerakoak
amaia
```

Osoko-sekuentzia bateko elementuen korritze partziala (zenbaki bat bilatu)

hasiera

```
Hasierakoak
 Irakurri_Osoa(N)
 Aurkitua := Faltsua
 bitartean N/=0 eta Aurkitua=Faltsua egin
     baldin elementua bilatu bada orduan
      Aurkitua := Egiazkoa
     ambaldin
     Irakurri_osoa(N)
 ambitartean
 Tratatu zeroa
 Bukaerakoak
amaia
```