Groverize Monotone Local Search. (Short Note)

David Ponarovsky

April 25, 2023

1 Todo.

- 1. Write the table (sage script).
- 2. Add definitions. Problem description.
- 3. Complete the 'proof'.
- 4. Prove lower bound.

2 Introduction.

We follow the study of [Fom+15], who relate between the parametrized complexity to the general average case complexity. Crudely put, they shown that for particular wide range of **NP** hard problems, a solution which run exponentially at some complexity parameter, for example the treewidth of a graph, can be used to derive a batter than bruteforce solution for the general problem. We continue their work by plugin the Grover search [Gro96] routine instead the original sampling process.

We will simplify the definitions given at [Fom+15] and use the following definitions instead:

Definition 1 (extension problems). Consider a decision problem inside NP, in this paper, we will associate two verifiers U,V with each language. U stands for input validation, conceptually it uses for checking that the solution 'live' inside the problem world. For example, for the 3-SAT, U checks that the input indeed encode an assignment. Formally the role of U is to restrict the inputs to certain form. And V responsible to verify that the word indeed in the language, ie check that the assignment satisfies the formula. We will say that a problem is an extension problem if requiring any of the input bits to be 1 could reduced to another instance of the problem. For example, consider 3-SAT, fixing an aribtray bit x_i to be 1 could reduced to another 3-SAT formula by erase any of the closures contain x_i and replacing any of the occurrents of \bar{x}_i by other terminal on the same clouser (i.e $\bar{x}_i \wedge \bar{y} \wedge z \mapsto \bar{y} \wedge \bar{y} \wedge z$). the input any instance of the problem could be representated as the bit-wise union of two strings which pass U verification. For example, any assignment satisfies a 3-SAT instance could be write as or-wise of two assignments.

Definition 2. A directed graph G is a pair (V, E) where V is a set of vertices and E is a set of directed edges.

Definition 3. The directed shortest path problem is the problem of finding the directed path with the minimum weight between two given vertices in a directed weighted graph.

$$\begin{split} & \sum_{k' \leq k} \frac{1}{\sqrt{p(k')}} \cdot c^{k'-t} N^{\mathcal{O}(1)} \leq \max_{k' \leq k} \left(\frac{\binom{n-|X|}{t}}{\binom{k'}{t}} \right)^{\frac{1}{2}} \cdot c^{k'-t} N^{\mathcal{O}(1)} = \\ & \left(\max_{k' \leq k} \frac{\binom{n-|X|}{t}}{\binom{k'}{t}} \cdot c^{2\binom{k'-t}{t}} \right)^{\frac{1}{2}} N^{\mathcal{O}(1)} = \left(\max_{k \leq n-|X|} \frac{\binom{n-|X|}{t}}{\binom{k}{t}} \right)^{\frac{1}{2}} \cdot c^{2(k-t)} N^{\mathcal{O}(1)} \leq \\ & \Rightarrow \left(2 - \frac{1}{c^2} \right)^{\frac{n-|X|}{2}} N^{\mathcal{O}(1)} \end{split}$$

Problem Name	Parameterized	Groverize	New bound	Previous Bound
FEEDBACK VERTEX SET	3^k (r) [Cyg+11]	1.3744^{k}	1.6667^{n} (r)	
Feedback Vertex Set	3.592^k [KP14]	1.3865^{k}	1.7217^n	1.7347 ⁿ [FTV18
Subset Feedback Vertex Set	4^k [Wahlstrom14]	1.3919^{k}	1.7500^n	1.8638^n [Fom+14]
FEEDBACK VERTEX SET IN TOURNAMENTS	1.6181^k [KL16]	1.2720^{k}	1.3820^{n}	1.4656^n [KL16]
Group Feedback Vertex Set	4^k [Wahlstrom14]	1.3919^{k}	1.7500^{n}	NPR
Node Unique Label Cover	$ \Sigma ^{2k}$ [Wahlstrom14]	1.3919^{k}	$\left(2 - \frac{1}{ \Sigma ^2}\right)^n$	NPR
Vertex (r, ℓ) -Partization $(r, \ell \leq 2)$	3.3146^k [KolayP15; Bas+17]	1.3817^{k}	1.6984^{n}	NPR
Interval Vertex Deletion	8^k [Cao16]	1.3466^{k}	1.8750^{n}	$(2-\varepsilon)^n$ for $\varepsilon < 10^{-20}$ [BFP13
Proper Interval Vertex Deletion	6^k [tV13; Cao15]	1.4087^{k}	1.8334^{n}	$(2-\varepsilon)^n$ for $\varepsilon < 10^{-20}$ [BFP13
BLOCK GRAPH VERTEX DELETION	4^k [Agr+16]		1.7500^{n}	$(2-\varepsilon)^n$ for $\varepsilon < 10^{-20}$ [BFP13
Cluster Vertex Deletion	1.9102^k [Bor+14]	1.3919^{k}	1.4765^{n}	1.6181^n [Fom+10]
THREAD GRAPH VERTEX DELETION	8^k [Kan+15]	1.3919^{k}	1.8750^{n}	NPR
Multicut on Trees	1.5538^k [Kan+14]	1.3138^{k}	1.3565^{n}	NPR
3-HITTING SET	2.0755^k [MagnusPhD07]	1.4087^{k}	1.5182^{n}	1.6278^n [MagnusPhD07
4-HITTING SET	3.0755^k [Fom+10]	1.2593^{k}	1.6750^{n}	1.8704^n [Fom+10]
d -Hitting Set $(d \ge 3)$	$(d - 0.9245)^k$ [Fom+10]	1.1763^{k}	$(2-\frac{1}{(d-0.9245)})^n$	[Coc+16; Fom+10]
Min-Ones 3-SAT	2.562^k [abs-1007-1166]	1.3296^{k}	1.6097^n	NPR
Min-Ones d-SAT $(d > 4)$	d^k	1.3763^{k}	$(2-\frac{1}{d})^n$	NPR
Weighted d -SAT $(d > 3)$	d^k	1.3763^{k}	$(2-\frac{1}{d})^n$	NPR
Weighted Feedback Vertex Set	3.6181^k [Agr+16]	1.1763^{k}	1.7237^{n}	1.8638^n [Fom+08]
Weighted 3-Hitting Set	2.168^k [SZ15]	1.3593^{k}	1.5388^{n}	1.6755^n [Coc+16]
Weighted d -Hitting Set $(d \ge 4)$	L J	_	$(2 - \frac{1}{d - 0.932})^n$	[Coc+16

Table 1: Summary of known and new results for different optimization problems. NPR means that we are not aware of any previous algorithms faster than brute-force. All bounds suppress factors polynomial in the input size N. The algorithms in the first row are randomized (r).

References

- [Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. 1996. arXiv: quant-ph/9605043 [quant-ph].
- [Fom+08] Fedor V. Fomin et al. "On the minimum feedback vertex set problem: exact and enumeration algorithms". In: *Algorithmica* 52.2 (2008), pp. 293–307. ISSN: 0178-4617. DOI: 10.1007/s00453-007-9152-0. URL: https://doi.org/10.1007/s00453-007-9152-0.
- [Fom+10] Fedor V. Fomin et al. "Iterative compression and exact algorithms". In: *Theoret. Comput. Sci.* 411.7-9 (2010), pp. 1045–1053. ISSN: 0304-3975. DOI: 10.1016/j.tcs.2009. 11.012. URL: https://doi.org/10.1016/j.tcs.2009.11.012.
- [Cyg+11] Marek Cygan et al. "Solving connectivity problems parameterized by treewidth in single exponential time (extended abstract)". In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science—FOCS 2011. IEEE Computer Soc., Los Alamitos, CA, 2011, pp. 150–159. DOI: 10.1109/FOCS.2011.23. URL: https://doi.org/10.1109/FOCS.2011.23.
- [tV13] Pim van 't Hof and Yngve Villanger. "Proper interval vertex deletion". In: *Algorithmica* 65.4 (2013), pp. 845–867. ISSN: 0178-4617. DOI: 10.1007/s00453-012-9661-3. URL: https://doi.org/10.1007/s00453-012-9661-3.
- [BFP13] Ivan Bliznets, Fedor V. Fomin, and Yngve Pilipczuk Michałand Villanger. "Largest chordal and interval subgraphs faster than 2ⁿ". In: *Algorithms—ESA 2013*. Vol. 8125. Lecture Notes in Comput. Sci. Springer, Heidelberg, 2013, pp. 193–204. DOI: 10.1007/978-3-642-40450-4_17. URL: https://doi.org/10.1007/978-3-642-40450-4_17.
- [Bor+14] Anudhyan Boral et al. "A fast branching algorithm for cluster vertex deletion". In: Computer science—theory and applications. Vol. 8476. Lecture Notes in Comput. Sci. Springer, Cham, 2014, pp. 111–124. DOI: 10.1007/978-3-319-06686-8_9. URL: https://doi.org/10.1007/978-3-319-06686-8_9.

- [Fom+14] Fedor V. Fomin et al. "Enumerating minimal subset feedback vertex sets". In: Algorithmica 69.1 (2014), pp. 216–231. ISSN: 0178-4617. DOI: 10.1007/s00453-012-9731-6. URL: https://doi.org/10.1007/s00453-012-9731-6.
- [Kan+14] Iyad Kanj et al. "Algorithms for cut problems on trees". In: Combinatorial optimization and applications. Vol. 8881. Lecture Notes in Comput. Sci. Springer, Cham, 2014, pp. 283–298. DOI: 10.1007/978-3-319-12691-3_22. URL: https://doi.org/10.1007/978-3-319-12691-3_22.
- [KP14] Tomasz Kociumaka and Marcin Pilipczuk. "Faster deterministic Feedback Vertex Set".
 In: Inform. Process. Lett. 114.10 (2014), pp. 556-560. ISSN: 0020-0190. DOI: 10.1016/j.ipl.2014.05.001. URL: https://doi.org/10.1016/j.ipl.2014.05.001.
- [Cao15] Yixin Cao. "Unit interval editing is fixed-parameter tractable". In: Automata, languages, and programming. Part I. Vol. 9134. Lecture Notes in Comput. Sci. Springer, Heidelberg, 2015, pp. 306–317. DOI: 10.1007/978-3-662-47672-7_25. URL: https://doi.org/10.1007/978-3-662-47672-7_25.
- [FTV15] Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. "Large induced subgraphs via triangulations and CMSO". In: *SIAM J. Comput.* 44.1 (2015), pp. 54–87. ISSN: 0097-5397. DOI: 10.1137/140964801. URL: https://doi.org/10.1137/140964801.
- [Fom+15] Fedor V. Fomin et al. Exact Algorithms via Monotone Local Search. 2015. arXiv: 1512. 01621 [cs.DS].
- [Kan+15] Mamadou Moustapha Kanté et al. "An FPT algorithm and a polynomial kernel for linear rankwidth-1 vertex deletion". In: 10th International Symposium on Parameterized and Exact Computation. Vol. 43. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2015, pp. 138–150.
- [SZ15] Hadas Shachnai and Meirav Zehavi. "A multivariate approach for weighted FPT algorithms". In: Algorithms—ESA 2015. Vol. 9294. Lecture Notes in Comput. Sci. Springer, Heidelberg, 2015, pp. 965–976. DOI: 10.1007/978-3-662-48350-3_80. URL: https://doi.org/10.1007/978-3-662-48350-3_80.
- [Agr+16] Akanksha Agrawal et al. "A faster FPT algorithm and a smaller kernel for block graph vertex deletion". In: LATIN 2016: theoretical informatics. Vol. 9644. Lecture Notes in Comput. Sci. Springer, Berlin, 2016, pp. 1–13. DOI: 10.1007/978-3-662-49529-2_1. URL: https://doi.org/10.1007/978-3-662-49529-2_1.
- [Cao16] Yixin Cao. "Linear recognition of almost interval graphs". In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 2016, pp. 1096–1115. DOI: 10.1137/1.9781611974331.ch77. URL: https://doi.org/10.1137/1.9781611974331.ch77.
- [Coc+16] Manfred Cochefert et al. "Faster algorithms to enumerate hypergraph transversals". In: LATIN 2016: theoretical informatics. Vol. 9644. Lecture Notes in Comput. Sci. Springer, Berlin, 2016, pp. 306-318. DOI: 10.1007/978-3-662-49529-2_23. URL: https://doi.org/10.1007/978-3-662-49529-2_23.
- [KL16] Mithilesh Kumar and Daniel Lokshtanov. "Faster exact and parameterized algorithm for feedback vertex set in tournaments". In: 33rd Symposium on Theoretical Aspects of Computer Science. Vol. 47. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016, Art. No. 49, 13.
- [Bas+17] Julien Baste et al. "Parameterized complexity dichotomy for (r, ℓ) -vertex deletion". In: Theory Comput. Syst. 61.3 (2017), pp. 777–794. ISSN: 1432-4350. DOI: 10.1007/s00224-016-9716-y. URL: https://doi.org/10.1007/s00224-016-9716-y.