

AIOT

Nhận diện đồ vật bằng bounding box

Ten: Lê Âu Xuân Dương MSSV: 19120488

code arduino deploy:

https://drive.google.com/drive/folders/15
U9S6c9FL8AjbJWOaemhH8xYdTvxJo
DU?usp=sharing

Giảng viên: Nguyễn Đức Hoàng Hạ Tài liệu tham khảo: Edge impulse https://docs.edgeimpulse.com/docs/tutori als/object-

detection

TABLE OF CONTENTS

04 MODEL

05 DEPLOY

01 BÀI TOÁN

Phát hiện vật thể bằng bounding box

Là một loại bài toán phổ biến ngày nay Cần nắm kiến thức về: image classification, kiến trúc convolutional neural network và CNN

Phát hiện vật thể bằng bounding box

image classification object localization object detection

Phát hiện vật thể bằng bounding box

object detection: ve bounding box, gán

Công cụ hỗ trợ

Edge impluse

Hỗ trợ developers Xây dựng, triển khai mở rộng quy mô cho machine learning. Hỗ trợ xây dựng trên thiết bị nhúng

Thu thập dữ liệu

DATA

85% -Training-

15%

Test

DATA COLLECTED

62 items

TRAIN / TEST SPLIT

85% / 15% ③

DATA

Labeling queue

Training setting

Number of training cycles ②	25	
Learning rate ②	0.015	
Validation set size ③	20	%
Neural network architecture		
Input	t layer (307,200 features)	
MobileN	NetV2 SSD FPN-Lite 320x320	
Chi	oose a different model	
0	utput layer (2 classes)	

Training setting

Training setting	5		
Number of traini	ng cycles ⑦	60	
Learning rate ③		0.001	
Validation set siz	e ③	20	9
Data augmentati	on ③		
Neural network		t layer (6,912 features)	
Neural network		t layer (6,912 features)	
Neural network	Inpu	t layer (6,912 features) ects, More Objects) MobileNetV2 0.1	
Neural network	I npu FOMO (Faster Ob)		

Mạng nơ ron TinyML được phát triển bởi Edge impulse. Đem lại hiệu quả khá tốt

Thiết bị sử dụng

Thiết bị sử dụng: ESP32 CAM ____

Hỗ trợ xây dựng thư viện, deploy trên nhiều thiết bị

Thử nghiệm trên thiết bị di động

Thử nghiệm trên ESP32-CAM

Basic-Image-Classification | Arduino IDE 2.0.3 File Edit Sketch Tools Help ♣ Al Thinker ESP32-CAM Basic-Image-Classification.ino camera index.h camera pins.h #include <Arduino.h> 包 #include <WiFi.h> III 4> #include "esp http server.h" #include "img converters.h" 14 #include "image util.h" #include "esp_camera.h" 18 // Select camera model 19 //#define CAMERA MODEL WROVER KIT // Has PSRAM 20 //#define CAMERA MODEL ESP EYE // Has PSRAM 21 //#define CAMERA MODEL M5STACK PSRAM // Has PSRAM 22 //#define CAMERA MODEL M5STACK V2 PSRAM // M5Camera version B Has PSRAM 23 //#define CAMERA MODEL M5STACK WIDE // Has PSRAM 24 //#define CAMERA MODEL M5STACK ESP32CAM // No PSRAM 25 #define CAMERA MODEL AI THINKER // Has PSRAM 26 //#define CAMERA MODEL TTGO T JOURNAL // No PSRAM Output Serial Monitor x Message (Enter to send message to 'Al Thinker ESP32-CAM' on 'COM3') capture image Converting to RGB888... Resizing the frame buffer ... Getting signal... Run classifier ... Predictions (DSP: 1 ms., Classification: 128 ms., Anomaly: 0 ms.): ly (0.503906) [x: 24, y: 32, width: 8, height: 8] Converting resized RGB888 frame to JPG... Sanding hack HTTD resnance

[1]Cách deploy và sử dụng ESP32-CAM:

https://github.com/edgeimpulse/example-esp32-cam

[2]Sửa lỗi: Edge impulse forum

[3]FOMO: https://docs.edgeimpulse.com/docs/edge-impulsestudio/learning-blocks/object-detection/fomo-object-detection-forconstrained-devices

