دورة سنة 2008 الاكمالية الاستثنائية	امتحانات الشهادة الثانوية العامة	وزارة التربية والتعليم العالي
	الفرع: علوم الحياة	المديرية العامة للتربية
		دائرة الامتحاثات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة ساعتان	عدد المسائل: اربع

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I- (4 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, avec justification, la réponse qui lui correspond.

Nº	Questions		Répo	onses	
11	Questions	a	b	c	d
1	Si $\frac{\pi}{6}$ est un argument de z, alors un argument de $\frac{i}{\overline{z}^2}$ est:	$-\frac{\pi}{6}$	$\frac{\pi}{6}$	$-\frac{5\pi}{6}$	$\frac{5\pi}{6}$
2	Si $z = -\sqrt{3} + e^{i\frac{\pi}{6}}$, alors la forme exponentielle de z est:	$e^{\frac{5\pi}{6}i}$	$e^{\frac{7\pi}{6}i}$	$\sqrt{3}e^{-\frac{\pi}{6}i}$	$e^{-\frac{5\pi}{6}i}$
3	Si z et z' sont deux nombres complexes tels que $ z = 2$ et z'= $z - \frac{1}{\overline{z}}$, alors $ z' =$	1	$\frac{1}{2}$	$\frac{3}{2}$	5/2
4	Si z est un nombre complexe tel que $ z = \sqrt{2}$, alors $ \overline{z} + i\overline{z} =$	$2\sqrt{2}$	2	$\sqrt{2}$	$\frac{\sqrt{2}}{2}$

II- (4 points)

Dans l'espace rapporté à un repère orthonormé (O; i, j, k) on donne les points : A(0; 1; -2), B(2; 1; 0), C(3; 0; -3) et H(2; 2; -2).

- 1) Montrer que x 2y z = 0 est une équation du plan (P) déterminé par les points H, A et B et vérifier que le point C n'appartient pas à ce plan.
- 2) a- Montrer que le triangle HAB est isocèle en H.
 - b- Montrer que (CH) est perpendiculaire à (P).
 - c- Prouver que CA = CB et déterminer un système d'équations paramétriques de la bissectrice intérieure (δ) de l'angle ACB.
- 3) Soit T le projeté orthogonal de H sur le plan (ABC). Montrer que T appartient à (δ).

III- (4 points)

Pour faire face à une certaine maladie, on vaccine 40% des personnes d'une population.

On remarque par la suite que 85% des personnes vaccinées ne sont pas atteintes par la maladie et que 75% des personnes non vaccinées sont atteintes par la maladie.

On choisit, au hasard, une personne de cette population.

Soit les événements suivants :

M: « la personne choisie est atteinte par la maladie ».

V : « la personne choisie est vaccinée».

- 1) a- Vérifier que la probabilité de l'événement $M \cap V$ est égale à $\frac{6}{100}$.
 - b- Quelle est la probabilité que la personne choisie soit atteinte par la maladie et non vaccinée?
 - c- En déduire la probabilité P (M).
- 2) La personne choisie est non atteinte par la maladie. Calculer la probabilité qu'elle soit vaccinée.
- 3) Dans cette partie, on suppose que cette population est formée de 300 personnes. On choisit, au hasard, 3 personnes de cette population. Quelle est la probabilité que, parmi les 3 personnes choisies, il y ait au moins une qui soit vaccinée?

IV- (8 points)

Soit f la fonction définie sur]1; $+\infty$ [par $f(x) = x - \frac{1}{x \ln x}$ et on désigne par (C) sa courbe représentative dans un repère orthonormé (O; i, j).

- 1) Calculer $\lim_{x\to 1} f(x)$ et en déduire une asymptote à (C).
- 2) Calculer $\lim_{x \to +\infty} f(x)$. Démontrer que la droite (d) d'équation y = x est une asymptote à (C) et étudier la position de (C) par rapport à (d).
- 3) Calculer f'(x) et montrer que f est strictement croissante. Dresser le tableau de variations de f.
- 4) Montrer que l'équation f(x) = 0 admet une racine unique α et vérifier que $1,5 < \alpha < 1,6$.
- 5) Tracer (d) et (C).
- 6) a- Calculer l'aire A(t) du domaine limité par la courbe (C), la droite (d) et les deux droites d'équations x = e et x = t où t > e.
 - b- Montrer que pour tout t > e, on a A(t) < t.

دورة سنة 2008 الاكمالية الاستثنائية	امتحانات الشهادة الثانوية العامة الفرع: علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية
		دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة ساعتان	عدد المسائل: أربع

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I- (4 points)

In the following table, only one of the proposed answers to each question is correct. Write the number of each question and give, with justification, the corresponding answer.

Nº	Questions		Ansv	wers	
11	Questions	a	b	c	d
1	If $\frac{\pi}{6}$ is an argument of z, then an argument of $\frac{i}{\overline{z}^2}$ is:	$-\frac{\pi}{6}$	$\frac{\pi}{6}$	$-\frac{5\pi}{6}$	$\frac{5\pi}{6}$
2	If $z = -\sqrt{3} + e^{i\frac{\pi}{6}}$, then the exponential form of z is:	$e^{\frac{5\pi}{6}i}$	$e^{\frac{7\pi}{6}i}$	$\sqrt{3}e^{-\frac{\pi}{6}i}$	$e^{-\frac{5\pi}{6}i}$
3	If z and z' are two complex numbers such that $ z = 2$ and $z' = z - \frac{1}{z}$, then $ z' =$	1	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{5}{2}$
4	If z is a complex number with $ z = \sqrt{2}$, then $ \overline{z} + i\overline{z} =$	$2\sqrt{2}$	2	$\sqrt{2}$	$\frac{\sqrt{2}}{2}$

II- (4 points)

In the space referred to an orthonormal system (O; i, j, k), consider the points: A(0; 1; -2), B(2; 1; 0), C(3; 0; -3) and H(2; 2; -2).

- 1) Show that x 2y z = 0 is an equation of the plane (P) determined by the points H, A and B and verify that the point C does not belong to this plane.
- 2) a- Show that triangle HAB is isosceles of vertex H.
 - b- Show that (CH) is perpendicular to (P).
 - c- Prove that CA = CB and determine a system of parametric equations of the interior bisector (δ) of angle ACB.
- 3) Let T be the orthogonal projection of H on plane (ABC). Prove that T belongs to (δ) .

III- (4 points)

In order to prevent a certain disease, we vaccinated 40% of persons of a population.

Then we noticed that 85% of the vaccinated persons were not affected by the disease and that 75% of the persons who were not vaccinated are affected by the disease.

A person is chosen randomly from this population.

Consider the following events:

D: « the chosen person is affected by the disease».

V: « the chosen person is vaccinated ».

- 1) a- Verify that the probability of the event $D \cap V$ is equal to $\frac{6}{100}$.
 - b- What is the probability that the chosen person is affected by the disease and is not vaccinated?
 - c- Deduce the probability P(D).
- 2) The chosen person is not affected by the disease. Calculate the probability that he/she is vaccinated.
- 3) In this part, suppose that this population is formed of 300 persons. We choose randomly 3 persons from this population. What is the probability that at least one, among the 3 chosen persons, is vaccinated?

IV- (8 points)

Let f be the function defined over]1; $+\infty$ [by $f(x) = x - \frac{1}{x \ln x}$ and designate by (C) its

representative curve in an orthonormal system (O; \vec{i} , \vec{j}).

- 1) Calculate $\lim_{x\to 1} f(x)$ and deduce an asymptote to (C).
- 2) Calculate $\lim_{x \to +\infty} f(x)$. Prove that the straight line (d) of equation y = x is an asymptote to (C) and study the position of (C) and (d).
- 3) Calculate f'(x) and show that f is strictly increasing. Set up the table of variations of f.
- 4) Show that the equation f(x) = 0 has a unique root α and verify that $1.5 < \alpha < 1.6$.
- 5) Draw (d) and (C).
- 6) a- Calculate the area A(t) of the region limited by the curve (C), the straight line (d) and the two straight lines of equations x = e and x = t where t > e.
 - b- Show that for all t > e, we have A(t) < t.

I	Corrigé	Note
1	$\arg\left(\frac{i}{\overline{z}^2}\right) = \arg(i) - 2\arg(\overline{z}) \left[2\pi\right] = \frac{\pi}{2} + 2\left(\frac{\pi}{6}\right) \left[2\pi\right] = \frac{5\pi}{6} \left[2\pi\right]$	1
2	$z = -\sqrt{3} + \frac{\sqrt{3}}{2} + \frac{1}{2}i = -\frac{\sqrt{3}}{2} + \frac{1}{2}i = e^{i\left(\frac{5\pi}{6}\right)}$	1
3	$z' = \frac{z\overline{z} - 1}{\overline{z}} = \frac{ z ^2 - 1}{\overline{z}} = \frac{3}{\overline{z}}, \text{ donc } z' = \frac{3}{ z } = \frac{3}{2}$	1
4	$ \overline{z} + i\overline{z} = \overline{z}(1+i) = \overline{z} \times 1+i = \sqrt{2} \times \sqrt{2} = 2$ b	1

QII	Corrigé	Note
1	A, B et H.	
	x_C – $2y_C$ – z_C = 3 – 0 +3 \neq 0, donc C n'appartient pas à (P).	
2a	$\overrightarrow{HA}(-2;-1;0); \overrightarrow{HB}(0;-1;2) \text{ donc } HA = HB = \sqrt{5}.$	
2b	\rightarrow HC(1;-2;-1) = \rightarrow N(P) donc (CH) est perpendiculaire à (P).	0.5
2c	Les triangles AHC et BHC sont égaux donc CA = CB et le triangle ABC est isocèle en C(ou CA = CB = $\sqrt{11}$) donc la bissectrice de l'angle AĈB est la médiane relative au côté [AB]. I(1; 1; -1) est le milieu de [AB]; CI(-2;1;2) est un vecteur directeur de (δ) et C \in (δ) donc un système d'équations paramétriques de (δ) est : x = -2m +3; y = m et z = 2m - 3.	1
3	(CH) est perpendiculaire au plan (P) donc (CH) est orthogonale à la droite (AB) de (P); la droite (AB) étant orthogonale à (CI) et à (CH) donc (AB) est perpendiculaire au plan (CHI), par suite les plans (ABC) et (CHI) sont perpendiculaires, d'où le projeté T de H sur (ABC) appartient à la droite (CI) = (δ) , intersection de ces plans. OU: $\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} + 8\overrightarrow{j} - 2\overrightarrow{k}$ Donc le plan (ABC) a pour équation : $2x + 8y - 2z - 12 = 0$ $(HT): \begin{cases} x = 2t + 2 \\ y = 8t + 2 \end{cases} (HT) \cap (ABC) = \{T\} \text{ par suite } T\left(\frac{5}{3}, \frac{2}{3}, -\frac{5}{3}\right)$ T appartient à (δ) pour $m = \frac{2}{3}$.	1

QIII	Corrigé	Note
1a	$P(M \cap V) = P(V) \times P(M/V) = \frac{40}{100} \times \frac{15}{100} = \frac{6}{100}.$	0.5
1b	$P(M \cap \overline{V}) = P(\overline{V}) \times P(M/\overline{V}) = \frac{60}{100} \times \frac{75}{100} = \frac{45}{100}.$	0.5

1c	$P(M) = P(M \cap V) + P(M \cap \overline{V}) = \frac{6}{100} + \frac{45}{100} = \frac{51}{100}.$	1
2	$P(V/\overline{M}) = \frac{P(V \cap \overline{M})}{P(\overline{M})} = \frac{\frac{40}{100} \times \frac{85}{100}}{1 - \frac{51}{100}} = \frac{34}{49}.$	1
3	Soit A l'événement : « au moins une personne vaccinée parmi les 3 personnes » $P(A) = 1 - P(\overline{A}) = 1 - \frac{C_{180}^3}{C_{300}^3} = 0,785.$	1

QIV	Corrigé	Note
1	$\lim_{x\to 1^+} f(x) = 1 - \infty = -\infty, \text{ la droite d'équation } x = 1 \text{ est une asymptote à la courbe (C)}.$	0.5
2.	$\lim_{x \to +\infty} f(x) = +\infty - 0 = +\infty; \lim_{x \to +\infty} [f(x) - x] = 0, \text{ donc la droite (d)}$ d'équation $y = x$ est une asymptote à (C). $f(x) - x = -\frac{1}{x \ln x} < 0, \text{ donc (C) est au-dessous de (d)}.$	1
3	$f'(x) = 1 + \frac{\ln x + 1}{x^2 \ln^2 x} > 0 \text{ pour } x > 1 \text{ , donc f est strictement croissante .}$ $\frac{x}{f'(x)} \begin{vmatrix} 1 & +\infty \\ +\infty & +\infty \end{vmatrix}$ $f(x) \begin{vmatrix} -\infty & -\infty \\ -\infty & -\infty \end{vmatrix}$	1.5
4	f est continue et strictement croissante et $f(x)$ croit de $-\infty$ à $+\infty$ donc l'équation $f(x) = 0$ admet une seule racine α et $f(1,5) \times f(1,6) = -0.14 \times 0.27 < 0$ donc $1.5 < \alpha < 1.6$.	1
5	y = x x x x x x x x x x	1.5
6a	$A(t) = \int_{e}^{t} [x - f(x)] . dx = \int_{e}^{t} \frac{1}{x \ln x} . dx = \int_{e}^{t} \frac{(\ln x)'}{\ln x} . dx = [\ln(\ln x)]_{e}^{t}$ $= \ln(\ln t) - \ln(\ln e) = \ln(\ln t).$	1.5
6b	$A(t) < t \text{ si ln(lnt)} < t$; lnt $< e^t$ ce qui est vrai, car la courbe représentative de la fonction ln est au-dessous de celle de la fonction exponentielle.	1

متثنائية	دورة سنة 2008 الاكمالية الاس	متحانات الشهادة الثانوية العامة الفرع : علوم الحياة		يار التصحيح	مشروع مع
 QI		Answer			Mark
1	$\arg\left(\frac{i}{\overline{z}^2}\right) = \arg(i) - 2\arg(\overline{z})$	$\left[2\pi\right] = \frac{\pi}{2} + 2\left(\frac{\pi}{6}\right) \left[2\pi\right] = \frac{5\pi}{6} \left[2\pi\right]$	d		1
2	$z = -\sqrt{3} + \frac{\sqrt{3}}{2} + \frac{1}{2}i = -\frac{\sqrt{3}}{2} + \frac{1}{2}i = -\frac{\sqrt{3}}{2} + \frac{1}{2}i = -\frac{\sqrt{3}}{2}i = -\frac{2}i = -\frac{\sqrt{3}}{2}i = -\frac{\sqrt{3}}{2}i = -\frac{\sqrt{3}}{2}i = -\frac{\sqrt{3}}{2}i =$	$-\frac{1}{2}i = e^{i\left(\frac{5\pi}{6}\right)}$	a		1
3	$z' = \frac{z\overline{z} - 1}{\overline{z}} = \frac{ z ^2 - 1}{\overline{z}} = \frac{3}{\overline{z}}$, so	$ z' = \frac{3}{ z } = \frac{3}{2}$	c		1
4	$ \overline{z} + i\overline{z} = \overline{z}(1+i) = \overline{z} \times 1+i $	$=\sqrt{2}\times\sqrt{2}=2$	b		1

QII	Answer	Mark
1	$ \begin{aligned} x_{A} - & 2y_{A} - z_{A} = 0 - 2 + 2 = 0 \; ; x_{B} - & 2y_{B} - z_{B} = 2 - 2 - 0 = 0 \; ; \\ x_{H} - & 2y_{H} - z_{H} = 2 - 4 + 2 = 0 \; , \text{ then } x - 2y - z = 0 \text{ is an equation of the plane (P) determined by A , B and H.} \\ x_{C} - & 2y_{C} - & z_{C} = 3 - 0 + 3 \neq 0 \; , \text{then C does not belong to (P).} \end{aligned} $	1
2a	$\overrightarrow{HA}(-2;-1;0); \overrightarrow{HB}(0;-1;2) \text{ then } HA = HB = \sqrt{5}.$	0.5
2b	\rightarrow HC(1;-2;-1) = \rightarrow N(P) then (CH) is perpendicular to (P).	0.5
2c	Triangles AHC and BHC are congruent so CA = CB and triangle ABC is isosceles of vertex C (or CA = CB = $\sqrt{11}$) hence, the bisector of angle AĈB is the median relative to the side [AB]. I(1;1;-1) is the midpoint of [AB]; CI(-2;1;2) is a direction vector of (δ) and C∈(δ). Thus, a system of parametric equations of (δ) is: x = -2m +3; y = m and z = 2m - 3.	1
3	(CH) is perpendicular to plane (P) then (CH) is orthogonal to the straight line (AB) in (P); the straight line (AB) being orthogonal to (CI) and (CH), then (AB) is perpendicular to plane (CHI), consequently planes (ABC) and (CHI) are perpendicular, Therefore T the foot of the perpendicular through H to plane (ABC) belongs to the straight line (CI) = (δ) , intersection of the two planes. •OR: $\overrightarrow{AB} \times \overrightarrow{AC} = 2\overrightarrow{i} + 8\overrightarrow{j} - 2\overrightarrow{k}$ Then, plane (ABC) has an equation: $2x + 8y - 2z - 12 = 0$ $\begin{cases} x = 2t + 2 \\ y = 8t + 2 \end{cases} (HT) \cap (ABC) = \{T\} \text{ then } T\left(\frac{5}{3}, \frac{2}{3}, -\frac{5}{3}\right)$ T belongs to (δ) for $m = \frac{2}{3}$.	1

QIII	Answer	Mark
1a	$P(M \cap V) = P(V) \times P(M/V) = \frac{40}{100} \times \frac{15}{100} = \frac{6}{100}.$	0.5
1b	$P(M \cap \overline{V}) = P(\overline{V}) \times P(M/\overline{V}) = \frac{60}{100} \times \frac{75}{100} = \frac{45}{100}.$	0.5

1c	$P(M) = P(M \cap V) + P(M \cap \overline{V}) = \frac{6}{100} + \frac{45}{100} = \frac{51}{100}.$	1
2	$P(V/\overline{M}) = \frac{P(V \cap \overline{M})}{P(\overline{M})} = \frac{\frac{40}{100} \times \frac{85}{100}}{1 - \frac{51}{100}} = \frac{34}{49}.$	1
3	Let A be the event : « at least one is vaccinated among the three persons » $P(A) = 1 - P(\overline{A}) = 1 - \frac{C_{180}^3}{C_{300}^3} = 0.785.$	1

QIV	Answer	Mark
1	$\lim_{x \to 1^+} f(x) = 1 - \infty = -\infty \text{ : the straight line of equation } x = 1 \text{ is an asymptote to (C)}.$	0.5
2	$\lim_{x \to +\infty} f(x) = +\infty - 0 = +\infty; \lim_{x \to +\infty} [f(x) - x] = 0, \text{ then the straight line (d) of equation}$ $y = x \text{ is an asymptote to (C)}.$ $f(x) - x = -\frac{1}{x \ln x} < 0, \text{ so (C) is below (d)}.$	1
3	$f'(x) = 1 + \frac{\ln x + 1}{x^2 \ln^2 x} > 0 \text{ for } x > 1 \text{ , then f is strictly increasing .}$ $\frac{x}{f'(x)} \frac{1}{+} + \infty$ $f(x) \frac{1}{-\infty} + \infty$	1.5
4	f is continuous and strictly increasing and $f(x)$ increases from $-\infty$ to $+\infty$ then the equation $f(x) = 0$ has a unique root α . and $f(1.5) \times f(1.6) = -0.14 \times 0.27 < 0$ then $1.5 < \alpha < 1.6$.	1
5	y = x $x = x$ $x =$	1.5
6a	$A(t) = \int_{e}^{t} [x - f(x)] dx = \int_{e}^{t} \frac{1}{x \ln x} dx = \int_{e}^{t} \frac{(\ln x)'}{\ln x} dx = [\ln(\ln x)]_{e}^{t} = \ln(\ln t) - \ln(\ln e) = \ln(\ln t).$	1.5
6b	$A(t) < t$ if $ln(lnt) < t$; $lnt < e^t$ which is true since the representative curve of the ln function is below that of the exponential function.	1