Class 13 OLS Regression Advanced

Dr Wei Miao

UCL School of Management

November 15, 2023

Section 1

Categorical Variables

Categorical variables

- So far, the independent variables we have used are Income and Kidhome, which are continuous variables.
- Some variables are intrinsically not countable; we need to treat them as categorical variables
 - e.g., gender, education group, city.

Handling Categorical Variables in R using factor()

- In R, we need to use a function factor() to explicitly inform R that this
 variable is a categorical variable, such that statistical models will treat
 them differently from continuous variables.
 - e.g., we can use factor(Education) to indicate that, Education is a categorical variable.

```
data_full <- data_full %>%
mutate(Education_factor = factor(Education))
```

- We can use levels() to check how many categories there are in the factor variable
 - e.g., Education has 5 different levels.

```
# check levels of a factor
levels(data_full$Education_factor)
```

```
[1] "2n Cycle" "Basic" "Graduation" "Master" "PhD"
```

Handling Categorical Variables using factor()

- factor() will check all levels of the categorical variables, and then choose the default level based on alphabetic order.
- If needed, we can revise the baseline group to another group using relevel() function.

```
# Create a new factor variable, with Basic as the baseline.
data_full <- data_full %>%
mutate(Education_factor_2 = relevel(Education_factor,
ref = "Basic") )

levels(data_full$Education_factor_2)
```

```
[1] "Basic" "2n Cycle" "Graduation" "Master" "PhD"
```

Running Regression with Factor Variables

	(1)
(Intercept)	-180.297**
	(56.305)
Income	0.020***
	(0.000)
Kidhome	-227.761***
	(16.961)
Education_factor_22n Cycle	-164.044**
	(60.448)
Education_factor_2Graduation	-119.695*
	(56.176)
Education_factor_2Master	-143.015*
	(58.443)
Education_factor_2PhD	-153.190**
	(57.751)
Num.Obs.	2000
R2	0.662

One-Hot Encoding of factor()

• In the raw data, Education is label-encoded with 5 levels.

```
TD Education
1 5524 Graduation
2 2174 Graduation
3 4141 Graduation
4 6182 Graduation
   5324
               PhD
  7446
            Master
   965 Graduation
8 6177
               PhD
9 4855
               PhD
10 5899
               PhD
```

After factorizing education with "Basic" as the baseline group, internally, we have 4 binary indicators as follows. Because we have the intercept, "Basic" is omitted as the baseline group. Other groups represent the comparison relative to the baseline group.

	ID	Edu_2n	Cycle	Edu_Graduation	Edu_Master	Edu_PhD
1:	5524		0	1	0	0
2:	2174		0	1	0	0
3:	4141		0	1	0	0
4:	6182		0	1	0	0
5:	5324		0	0	0	1
6:	7446		0	0	1	0
7:	965		0	1	0	0
8:	6177		0	0	0	1
9:	4855		0	0	0	1
10:	5899		0	0	0	1

Interpretation of Coefficients for Categorical Variables

- In general, R uses one-hot encoding to encode factor variables with K levels into K-1 binary variables.
 - As we have the intercept term, we can only have K-1 binary variables.
- The interpretation of coefficients for factor variables: Ceteris paribus, compared with the [baseline group], the [outcome variable] of [group X] is higher/lower by [coefficient], and the coefficient is statistically [significant/insignificant].
 - Ceteris paribus, compared with the basic education group, the total spending of PhD group is lower by 153.190 dollars. The coefficient is statistically significant at the 1% level.
- Now please rerun the regression using Education_factor and interpret the coefficients. What's your finding?
 - Conclusion: factor variables can only measure the relative difference in outcome variable across different groups rather than the absolute levels.

Application of Categorical Variables in Marketing

• Analyze the treatment effects in A/B/N testing, where $Treatment_i$ is a categorical variable that specifies the treatment group customer i is in:

$$Outcome_i = \beta_0 + \delta Treatment_i + \epsilon$$

Analyze the brand premiums or country-of-origin effects:

$$Sales_i = \beta_0 + \beta_1 Brand_i + \beta_2 Country_i + X\beta + \epsilon$$

Section 2

Non-linear Effects

Quadratic Terms

 If we believe the relationship between the outcome variable and explanatory variable is a quadratic function, we can include an additional quadratic term in the regression to model such non-linear relationship.

$$total spending = \beta_0 + \beta_1 Income + \beta_2 Income^2 + \epsilon$$

Quadratic Terms

- If the coefficient for $Income^2$ is negative, then we have an downward open parabola. That is, as income increases, total spending first increases and then decreases, i.e., a non-linear, non-monotonic effect.
 - As income first increases, customers increase their spending with Tesco due to the income effect; however, as customers get even richer, they may switch to more premium brands such as Waitrose, so their spending may decrease due to the substitution effect.

Quadratic Terms in Linear Regression

 Let's run two regressions in the Quarto document, with and without the quadratic term.

Quadratic Terms in Linear Regression

	(1)	(2)			
(Intercept)	$-5.57 \times 10^{2***}$	$-6.27 \times 10^{2***}$			
_	(2.17×10^1)	(3.65×10^1)			
Income	2.24×10^{-2}	2.53×10^{-2}			
	(3.84×10^{-4})	(1.30×10^{-3}) -2.66×10^{-8} *			
Income_squared		(1.12×10^{-8})			
Num.Obs.	2000	2000			
R2	0.629	0.630			
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001					

Quadratic Terms: Compute the Vertex

 We can compute the vertex point where total spending is maximized by income

```
# extract the coeffcient vector using $ sign
feols_coefficient <- feols_quadratic$coefficients
feols_coefficient
```

Income 475521.5

Section 3

Linear Probability Model

Linear Probability Model

- In Predictive Analytics, we learned how to use decision tree and random forest to make predictions for binary outcome variables.
- In fact, linear regression can also be used as another supervised learning model to predict binary outcomes. When the outcome variable is a binary variable, the linear regression model is also called linear probability model.
 - \bullet On the one hand, regression predicts the expectation of response Y conditional on X; that is

$$E[Y] = E[X\beta + \epsilon] = X\beta$$

ullet On the other hand, for a binary outcome variable, if the probability of outcome occurring is p, then we can write the expectation of Y is

$$E[Y] = 1 * p + 0 * (1 - p) = p$$

• As a result, we have the following equation

$$p=X\beta$$

• Interpretation of LPM coefficients: Everything else equal, a unit change in x will change the **probability of the outcome occurring** by β .

Pros and Cons of LPM

- We use linear regression function feols() to train the LPM on the **training data** and make predictions using predict(LPM, data_test) to make predictions on the **test data**.
- Advantages
 - Fast to run, even with a large number of fixed effects and features
 - High interpretability: coefficients have clear economic meanings
- Disadvantages
 - Predicted probabilities of occurring may fall out of the [0,1] range
 - Accuracy tends to be low