ACTIVIDAD 4 - Integración de Raspberry Pi con AWS IoT Core

OBJETIVO GENERAL

Explorar la integración de una Raspberry Pi con AWS IoT Core utilizando Node-RED, para comprender cómo los dispositivos físicos pueden enviar y recibir datos de la nube. La práctica permitirá visualizar la interacción entre el procesamiento local (edge) y la gestión centralizada (cloud).

MODALIDAD DE TRABAJO

- **Grupos:** de 4 integrantes.
- Duración del trabajo en clase: 2 h 30 min (tiempo de laboratorio).
- Entrega del informe: dentro de los 10 días posteriores al trabajo práctico.
- **Presentación:** archivo en formato PDF que no supere los 10 Mb.

CONSIGNA GENERAL

Durante la práctica, cada grupo deberá construir un sistema IoT que funcione tanto de forma local como conectada a la nube mediante AWS IoT Core. El sistema deberá cumplir con las siguientes condiciones:

- 1. Usar al menos un sensor y un actuador del kit de 37 módulos.
- 2. Configurar la Raspberry Pi para enviar datos a AWS IoT Core usando MQTT seguro (certificados TLS).
- 3. Implementar flujos en Node-RED local (en la Raspberry) para publicar datos en AWS.
- 4. Configurar una instancia EC2 con Node-RED para recibir los datos desde AWS IoT Core y mostrarlos en un dashboard.
- 5. Implementar una lógica de control remoto: desde el dashboard en la nube se deberá poder enviar comandos hacia la Raspberry.

El objetivo es comprender la arquitectura IoT distribuida: cómo un dispositivo físico (edge) puede interactuar con una plataforma en la nube (cloud) mediante protocolos seguros y mensajería MQTT.

TRABAJO DURANTE LA CLASE (2H 30MIN APROX.)

Etapa	Tiempo estimado	Actividad
1. Configuración inicial	30 min	Registrar la Raspberry Pi en AWS IoT Core y descargar certificados.
2. Flujo local en Node-RED	40 min	Conectar sensores/actuadores y crear flujo que envíe datos a AWS IoT Core.
3. Flujo en la nube (EC2)	40 min	Suscribirse a los tópicos

CLOUD COMPUTING. CLOUD ROBOTICs 2025

		MQTT desde Node-RED en EC2 y mostrar datos en dashboard.
4. Pruebas y demostración	30 min	Probar la comunicación bidireccional y registrar evidencia del funcionamiento.
5. Documentación visual	10 min	Tomar fotos y capturas de ambos Node-RED (local y cloud).

INFORME

Cada grupo deberá entregar un informe en formato PDF que incluya:

- 1. Portada: título del proyecto, integrantes del grupo, fecha.
- 2. Descripción del sistema: qué hace y cómo se integra con AWS IoT Core.
- 3. Esquema o diagrama de la arquitectura (Raspberry AWS EC2).
- 4. Flujos de Node-RED (local y cloud) con capturas y explicaciones breves.
- 5. Dashboard: capturas del panel en la nube y su funcionalidad.
- 6. Evidencias: fotos o video mostrando la comunicación en ambos sentidos.
- 7. Conclusiones: aprendizajes, dificultades y mejoras posibles.

CRITERIOS DE EVALUACIÓN

Criterio	Descripción
Integración técnica	Conectividad entre la Raspberry, AWS IoT Core y Node-RED en la nube.
Flujo lógico y comunicación	Uso correcto de MQTT, tópicos, y lógica de ida/vuelta.
Documentación	Informe claro con imágenes y explicaciones de cada componente.
Creatividad y utilidad	Aplicación práctica o innovadora del sistema implementado.
Trabajo en equipo	Distribución de roles, organización y cumplimiento de tiempos.

SUGERENCIAS DE PROYECTOS POSIBLES

Monitor ambiental conectado

- Sensor: KY-015 (temp/humedad) + LED.
- Actuador: LED indicador.
- Lógica: Enviar temperatura y humedad a AWS cada 10 s. Si supera umbral → encender LED.

CLOUD COMPUTING. CLOUD ROBOTICs 2025

Dashboard: gráfico en tiempo real y botón remoto para encender/apagar LED.

Alarma distribuida de Sonido

- Sensor: KY-037 (ruido) + buzzer.
- Lógica: Enviar nivel de ruido a AWS IoT Core. Desde dashboard cloud se puede activar/desactivar alarma.
- Dashboard: indicador tipo gauge y botón de control remoto.

Control remoto de iluminación

- Sensor: KY-010 (luz) + relé KY-019.
- Lógica: La RPi reporta nivel de luz y el dashboard cloud puede activar la luz remotamente.
- Dashboard: slider de umbral e indicador on/off de lámpara.

Alerta de movimiento global

- Sensor: KY-032 (obstáculo IR) + LED.
- Lógica: Cada Raspberry notifica detección a AWS; el dashboard cloud muestra qué dispositivo se activó.
- Dashboard: lista de dispositivos activos y control para resetear alarma.

Mini estación IoT centralizada

- Sensor: varios (temp, luz, sonido).
- Lógica: cada Pi envía sus datos a AWS; el Node-RED cloud los grafica y almacena.
- Dashboard: gráficos comparativos de sensores y control de encendido general.