ALS Plant Research at NASA's Kennedy Space Center

Raymond M. Wheeler
NASA Biological Sciences
Mail Code KT-B-1
Kennedy Space Center, FL, USA
raymond.m.wheeler@nasa.gov

International Symposium on Closed Experimental Systems for Modeling ¹⁴C Transfer

Rokkasho-mura, Aomori, Japan 15 Nov 2007

Bioregenerative Life Support Testing around the World

NASA's Bioregenerative Life Support Testing

Proposed CELSS Testbed for Kennedy Space Center, 1978

Apollo Hypobaric Chambers O&C Bldg.

Crop Production Module

Waste Processing

Kennedy Space Center Bioregenerative Life Support Research

Lab Scale Testing with Plants

Recirculating Hydroponics

Carbon Dioxide Effects

Potato

K

Chard

Wheat

Bioreactor Effluent & Graywater Tests

Lighting Technology

Lab Scale Waste Processing Testing

Large-Scale
Bioreactors (STRs)
for Inedible Biomass

Trichoderma for Cellulase Production

Tilipia Fish --Biomass Conversion

NASA's Biomass Production Chamber

NASA's Biomass Production Chamber

- Plant growing area--20 m²
 - 64 hydroponic trays supported on four growing levels
- Atmospheric volume--113 m³
- Two 30-kW fans for air circulation--400 m³ min⁻¹
- 96 400-W HPS lamps-- 750 μmol m⁻² s⁻¹ PAR
- Two 53-kW chilling units
- Up to 150 kW of heating capability
- Atmospheric leakage rate of ~ 10% vol. day-1

Event Timeline for the KSC Biomass Production Chamber

Lettuce

Soybean

Effect of Light (PAR) on Crop Yield

(from NASA Biomass Production Chamber)

Closed System Studies from BPC Studies

- CO₂ Exchange Rates
 - photosynthesis and respiration
 - influence of environmental factors
- Volatile Organic Compounds--VOCs
 - ethylene
- Effects of Super-Elevated CO₂
- Water Use Rates
- Nutrient Uptake and Movement

Photosynthesis and Respiration of Soybean Stands

Effect of CO₂ Concentration on Photosynthesis (potato)

Some Biogenic Volatiles in Closed Systems

Humans ¹	Plants ²				
acetaldehyde	benzaldehyde				
acetone	2-butanone				
ammonia	carbon disulfide				
n-butyl alcohol	ethylene				
carbon monoxide	2-ethyl-1-hexanol				
caprylic acid	heptanal				
ethanol	hexanal				
ethyl mercaptan	2-hexen-1-ol acetate				
hydrogen	isoprene				
hydrogen sulfide	limonene				
indole	2-methylfuran				
methanol	nonanal				
methane	ocimene				
methyl mercaptan	α-pinene				
propyl mercaptan	β-pinene				
pyruvic acid	α-terpinene				
skatole	tetrahydrofuran				
valeraldehyde	tetramethylurea				
valeric acid	thiobismethane				

Ethylene Accumulation

Epinastic
Potato Leaves
at ~40 ppb

Super-Elevated CO₂ Effects on Stomata

Evapotranspiration from Plant Stand (potato)

Nutrient Uptake by Plants (potato)

Crop / Date	Photoper. ² / PPF	Daily PAR	Total Biomass			Edible Biomass		
	(h) /(μmol m ⁻² s ⁻¹)	(mol m ⁻² d ⁻¹)	(kg m ⁻²)	(g m ⁻² d ⁻¹)	(g mol ⁻¹ PAR)	(kg m ⁻²)	(g m ⁻² d ⁻¹)	(g mol ⁻¹ PAR)
Wheat 881	24 / 666	57.5	2.31	31.6	0.55	0.92	12.6	0.22
Wheat 891	20 / 535	38.5	1.89	23.1	0.60	0.55	6.7	0.17
Wheat 892	20 / 691	49.7	2.21	27.3	0.55	0.66	8.1	0.16
Wheat 931	20 / 930	67.0	3.21	39.6	0.59	0.91	11.3	0.17
Wheat 941	20/1177	84.7	3.33	39.7	0.47	0.95	11.4	0.13
Soybean 891	12 / 815	35.2	1.33	15.5	0.44	0.43	5.0	0.14
Soybean 901	12 / 477	20.6	0.95	10.2	0.50	0.32	3.4	0.17
Soybean 902	10 / 644	23.2	1.04	11.2	0.48	0.39	4.2	0.18
Soybean 951	12 / 845	36.5	1.35	15.7	0.43	0.52	6.0	0.16
Lettuce 902	16 / 280	16.1	0.14	5.8	0.36	0.13	5.4	0.34
Lettuce 911	16 / 293	16.9	0.18	7.5	0.44	0.16	6.7	0.40
Lettuce 921	16 / 336	19.4	0.18	7.5	0.39	0.17	7.1	0.37
Lettuce 931	16 / 291	16.8	0.20	7.7	0.46	0.19	7.1	0.42
Potato 911	12 / 655	28.3	2.28	22.4	0.79	0.74	7.3	0.26
Potato 912	12 / 866	37.4	2.53	29.1	0.78	1.10	12.6	0.34
Potato 921 ³	12/917	42.2	2.77	27.2	0.64	1.88	18.4	0.44
Potato 931 ³	12-16 / 849	42.7	2.74	27.4	0.64	1.71	16.7	0.40
Potato 9414	12 / 791	34.2	13.62	32.6	0.95	8.35	20.0	0.58
Tomato 951	12 / 549	23.7	1.10	13.1	0.55	0.51	6.1	0.26
Tomato 961	12 / 894	38.6	1.69	19.6	0.51	0.85	9.8	0.25

Crop / Date	Days of Operation	Total Biomass	Edible Biomass	CO ₂ 1 Fixed	O ₂ 1 Produced	Water Collected
	(d)	(kg)	(kg)	(kg)	(kg)	(kg)
Wheat 881	77	23.06	9.24	35.5	25.8	3615
Wheat 891	86	37.76	11.01	58.2	42.3	6903
Wheat 892	85	44.24	13.12	68.1	50.7	7809
Wheat 931	85	64.11	18.25	98.7	71.8	7500
Wheat 941	84	66.68	19.07	102.7	74.7	7600
Soybean 891	90	26.62	8.58	45.0	32.7	7758
Soybean 901	97	18.94	6.34	32.0	23.3	8211
Soybean 902	97	20.80	7.79	32.5	25.6	8450
Soybean 951	90	13.51	5.18	22.8	16.6	2594
Lettuce 902	28	2.84	2.60	4.2	3.1	976
Lettuce 911	28	3.54	3.24	5.2	3.8	998
Lettuce 921	28	3.57	3.36	5.2	3.8	1000
Lettuce 931	30	3.99	3.71	5.9	4.3	1074
Potato 911	105	45.58	14.89	68.4	49.7	8778
Potato 912	90	50.67	22.03	76.2	55.4	9361
Potato 921	105	55.42	37.64	83.1	60.5	7954
Potato 931	105	55.88	34.12	83.8	61.0	8546
Potato 941	418	272	167	409	296	28446
Tomato 951	(84)	11.03	5.15	16.6	12.1	3426
Tomato 961	878	33.87	17.06	50.9	37.0	12,700
Total	2243	880	409	1344	980	149390

Some Conclusions

- The Biomass (Plant) Production Chamber at Kennedy Space Center was operated as a closed testbed for 10 years (1988-1998).
- Results showed a close match between CO₂ flux and biomass production data.
- Manipulations of light, CO₂, and temperature showed expected responses in photosynthesis and respiration.
- A range of crop species (seed, vegetative, tuberous, and fruit) were grown successfully in recirculation hydroponics.
- Volatile organic compounds could be tracked throughout growth and development.
- No major equipment failures occurred, but some sensors, lamps, and pumps had to be replaced during the 10 years.

Some Conclusions

- The best gas exchange rates suggest that 20-25 m² of crops grown at ~750 μ mol m⁻² s⁻¹ PAR would provide the O₂ and CO₂ removal for one human.
- The best yields suggest that about 50 m² of crops grown at ~750 μ mol m⁻² s⁻¹ would provide the food (calories) for one human.

Some Conclusions

- After 10 years of near-continuous operation of the Biomass Production Chamber, system failures typically involved the support hardware, electrical power, and software.
- The plants proved to be very reliable and resilient as life support machines.

The End of the Biomass Production Chamber

