Ejercicios de Cálculo II

Relación 4: Derivadas (III)

1) Expresa el polinomio $x^4 - 5x^3 - 3x^2 + 7x + 6$ en potencias de (x - 2).

2) (*) Sea f una función cuyo polinomio de Taylor de grado 3 centrado en 0 es

$$1+x+\frac{x^2}{2}+\frac{x^3}{3}$$
.

Calcula el polinomio de Taylor de grado 3 centrado en cero de la función g(x) = xf(x).

3) Estudia el comportamiento de la función $f \colon A \to \mathbb{R}$ en el punto α en cada uno de los siguientes casos:

a)
$$A = \frac{\pi}{2}, \frac{\pi}{2} [\setminus \{0\}, f(x)] = \frac{\tan(x) \arctan(x) - x^2}{x^6}, \alpha = 0$$

b)
$$A = \mathbb{R}^*, f(x) = \frac{1}{x^4} - \frac{1}{6x^2} - \frac{\sin(x)}{x^5}, \alpha = 0$$

4) Prueba que

$$\lim_{x \to 0} \frac{1}{x^4} \left(2x\sqrt[3]{1+x^3} + 2\sqrt{1+x^2} - 2 - 2x - x^2 \right) = \frac{5}{12}.$$

5) Estudia el comportamiento en $-\infty$, 0 y $+\infty$ de la función $f\colon \mathbb{R}^* \to \mathbb{R}$ dada por

$$f(x) = \frac{x - \text{sen}(x)}{x^6} \left(e^x - 1 - x - \frac{x^2}{2} \right).$$

6) Encuentra los extremos relativos de la función $f \colon \mathbb{R} \to \mathbb{R}$ en cada uno de los siguientes casos:

a)
$$f(x) = x^5 - 5x^4 + 5x^3 + 10$$
,

b)
$$f(x) = \frac{x^2 - 3x + 2}{x^2 + 1}$$
,

c)
$$f(x) = x^2 |x| e^{-|x|}$$

- 7) Sea $f: \mathbb{R} \to \mathbb{R}$ una función dos veces derivable con f'(0) = 0 y $g: \mathbb{R} \to \mathbb{R}$ la función definida por $g(x) = x^2 f(x)$ para todo $x \in \mathbb{R}$. Prueba que si $f(0) \neq 0$, entonces g tiene un extremo relativo en 0.
- 8) Sea I un intervalo g $f: I \to \mathbb{R}$ una función dos veces derivable tal que f''(x) = f(x) para todo $g \in I$. Prueba que si existe $g \in I$ tal g(g) = f'(g) = 0, entonces g(g) = 0 para todo $g \in I$.
- 9) Prueba que $1 \frac{x^2}{2} \le \cos(x) \le 1 \frac{x^2}{2} + \frac{x^4}{24}$ para todo $x \in [0, \pi]$.
- 10) Calcula un valor aproximado del número real α con un error menor de 10^{-2} en cada uno de los casos siguientes:
 - a) $\alpha = \sqrt{e}$,
 - b) $\alpha = \operatorname{sen}\left(\frac{1}{2}\right)$,
 - c) (*) $\alpha = \sqrt[3]{7}$,
 - d) $\alpha = \sqrt{102}$.