

HIGH RESOLUTION CLOCK SIGNAL GENERATOR

Background of the Invention

Field of the Invention

[0001] The present invention relates in general to programmable clock signal generators and in particular to a high resolution programmable clock signal generator for providing a clock signal selected from a set of timing signals.

Description of Related Art

[0002] FIG. 1 depicts in block diagram form a prior art clock signal generator 10 for providing an adjustable frequency clock signal CLOCK synchronized to a reference clock signal ROSC provided by a stable oscillator 12. Clock signal generator 10 includes a set of N logic gates 14 connected in series to form a delay line 16 providing a set of N tap signals T_0-T_{N-1} at the outputs of gates 14. Each gate 14 has a signal delay of T_p/N so that each tap signal T_k is delayed with respect to the ROSC signal by an interval of $P_d = (k/N) * T_p$, where T_p is the period of the ROSC signal.

[0003] The ROSC signal and tap signal T_N serve as inputs to a conventional phase lock (PL) controller 18 supplying a control signal (CONTROL) to all gates 14. The magnitude of the CONTROL signal controls the switching speed of the gates 14. When tap signal T_N lags the ROSC signal, controller 18 sets the CONTROL signal voltage to increase the switching speed of gates 14, and when tap signal T_N leads the ROSC signal, controller 18 adjusts the CONTROL signal voltage to decrease the switching speed of gates 14. Thus controller 18 compares signal ROSC to signal T_N and adjusts the switching speed of all gates 14 to phase lock the T_N signal to the ROSC signal, thereby making each gate 14 have the desired signal delay of T_p/N .

[0004] A multiplexer 20 having $N+1$ inputs 0 - N produces the output signal CLOCK. Tap signals T_0-T_{N-1} drive inputs 0 - (N-1) of multiplexer 20 and input N of multiplexer 20 is grounded. Multiplexer 20 controls the timing of each pulse

ET2358864

edge of the CLOCK signal by selecting one of its input signals. A sequencer 22 responds to each ROSC signal pulse by providing control data SW telling multiplexer 20 which input signal T_0-T_{N-1} (or ground) to select. Delay line 16, PL controller 18 and multiplexer 20 form a programmable delay circuit 24 for delaying any ROSC signal pulse with a delay determined by the input SW data to produce a CLOCK signal pulse. The sequence of SW data values therefore controls the timing of each pulse of the CLOCK signal, and thereby controls the phase and frequency of the CLOCK signal.

[0005] FIG. 2 is a timing diagram illustrating various signals associated with clock signal generator 10 of FIG. 1 in which $N=5$ and thus five gates 14 form delay line 16. In this example the five gates provide five tap signals T_0-T_4 as input signals to multiplexer 20 inputs 0 - 4. Multiplexer input T_5 is grounded. The ROSC signal and input signals T_0-T_4 all have the same frequency. Input signal T_1 is delayed with respect to the ROSC signal by $P_D = T_p/5$, the switching delay of one gate 14. Each successive signal of the remaining input signals T_k is delayed with respect to the ROSC signal by $k \cdot P_D$. Thus, for example, T_4 is delayed with respect to the ROSC signal by $4P_D$.

[0006] FIG. 2 also illustrates examples CLOCK(a)-CLOCK(d) of output signal CLOCK provided in response to four different SW signal patterns produced by sequencer 22 of FIG. 1. Suppose we want an output signal CLOCK(a) having the same frequency as ROSC but being shifted in phase by $2P_D$. To do this we program sequencer 22 to set signal SW so that multiplexer 20 selects input signal T_2 on each cycle of the ROSC signal. Thus, signal SW supplies a sequence of data values to multiplexer 20 of the form $SW=\{2,2,2,\dots\}$. As shown in FIG. 2 the resultant signal CLOCK(a) is shifted in phase by $2P$ with respect to the ROSC signal.

[0007] Alternatively, when we want clock signal generator 10 to produce an output signal CLOCK(b) having a period equal to $1.2T_p$, we program sequencer 22 to set signal SW to value $SW=0$ for the first ROSC period and then switch signal SW to value $SW=1$ at the start of the second ROSC period and so on.

Since CLOCK(b) is of lower frequency than ROSC, sequencer 22 must occasionally instruct multiplexer 20 to select its grounded input 5. In this example this occurs during every sixth ROSC cycle. Thus, to produce CLOCK(b) signal SW is a repetitive sequence of the form $SW=\{0,1,2,3,4,5\ldots\}$.

[0008] When we want clock signal generator 10 to produce an output signal CLOCK(c) with a period equal to $1.4T_p$, we program sequencer 22 to generate a repeating SW signal sequence of the form $SW=\{0,2,4,5,1,3,5\ldots\}$. A repetitive SW sequence of the form $SW=\{0,5,0,5\ldots\}$ produces an output signal CLOCK(d) with a period twice that of the ROSC signal, or $2T_p$.

[0009] Thus, clock signal generator 10 can produce a variety of output clock signals CLOCK whose frequencies depend on the programming of sequencer 22. However, the resolution with which the clock signal generator 10 can adjust the period of the CLOCK output signal is limited to $P_D = T_p/N$, the delay of one gate 14.

[00010] By increasing the number N of gates 14 in delay line 16 we can improve the period resolution P_D of clock signal generator 10. However, since all gates 14 must switch in succession during a single ROSC clock period, there is a limit to the number of gates that can be included in delay line 16. Thus, the resolution $P_D = T_p/N$ of clock signal generator 10 can be no smaller than the minimum switching speed of gates 14.

[00011] FIG. 3 depicts in block diagram form a prior art clock signal generator 30 for generating clock signals with a higher period resolution than possible with clock signal generator 10 of FIG. 1. In FIG. 3 a stable oscillator 32 provides a ROSC pulse with period T_p to a "coarse" delay circuit 34 similar to the programmable delay circuit 24 of FIG. 1 which can delay a pulse of the ROSC cycle to produce a CLOCK signal pulse with a delay of up to T_p adjustable with a "coarse" resolution of T_p/N . A "fine" delay circuit 38 further delays each CLOCK signal pulse with an adjustable delay over a narrow range of up to T_p/N with a "fine" resolution of $T_p/(M*N)$. In response to each ROSC signal

0
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552

pulse, a programmable sequencer 36 provides SW(A) data to coarse delay circuit 34 telling it how much to delay the ROSC pulse to produce a CLOCK signal pulse and provides SW(B) data to fine delay circuit 38 telling it how much to delay the CLOCK pulse to produce a CLOCK' signal pulse. Thus the total delay between a ROSC signal pulse and a corresponding CLOCK' signal pulse is $D_T = j*T_p/N + k*T_p/(M*N)$, where $0 \leq j \leq N$ and $0 \leq k \leq M$. Thus the period resolution of clock signal generator 30 is $P_D = T_p/(M*N)$ over the range spanning T_p .

[00012] FIG. 4 depicts prior art fine delay circuit 38 in more detailed block diagram form in an example where $M=32$. A set of five delay modules 40(1) - 40(5) connect to the output of delay circuit 34 of FIG. 3. Each module 40(1) - 40(5) has a pass gate 42 and a capacitor 44 connected in series between the CLOCK signal line and ground. Each bit SEL1 - SEL5 of the input 5-bit control data SW(B) controls whether the pass gate 42 of a corresponding module 40(1) - 40(5) is open or closed. When a gate 42 is open its respective capacitor 44 has no effect on a CLOCK signal pulse. When a gate 42 is closed its respective capacitor 44 increases the delay between the CLOCK and CLOCK' signals.

[00013] In the example of FIG. 4 the capacitors 44 range in value from C to $16C$ where the value of C is chosen so that a total capacitance of kC is connected to the CLOCK signal line adding a delay of $kT_p/(M*N)$ to a CLOCK signal pulse. Thus a pulse of the CLOCK signal can be delayed over a range spanning up to T_p/N with a delay resolution of $T_p/(M*N) = T_p/(N*(2^5)) = T_p/32N$ to provide a CLOCK' signal pulse, depending on the amount of capacitance gates 42 link to the CLOCK signal line.

[00014] In contrast to coarse delay circuit 34, where a delay line 16 (FIG. 1) is phase-locked to a stable reference signal ROSC and thus provides a highly accurate and "self-calibrating" delay resolution, delay modules 40(1) - 40(5) of fine delay circuit 38 must be calibrated to establish an accurate delay resolution for this circuit. The calibration process is difficult and time-consuming.

[00015] Thus we cannot increase the period resolution of the clock signal generator 10 of FIG. 1 by increasing the number N of gates 14 beyond that point at which the resolution becomes smaller than the minimum possible gate switching time. And, although we can enhance the period resolution of clock signal generator 10 through the use of fine delay circuit 38 (FIG. 4), calibration of fine delay circuit 38 is problematic. Since many potentially useful applications for clock signal generators require higher clock period resolutions than are attainable with clock signal generator 10, what is needed is a self-calibrating clock signal generator with a high period resolution.

Brief Summary of the Invention

[00016] In accordance with a first aspect of the invention, a clock signal generator includes two programmable delay circuits, a first of which adjustably delays pulses of a periodic reference signal over a range spanning at least T_p seconds where T_p is the period of the reference signal with a delay resolution of T_p/N seconds to provide an output signal. The second delay circuit adjustably delays the output signal of the first delay circuit over a range spanning at least T_p seconds with a delay resolution of T_p/M seconds to provide an output clock signal. Thus the total delay of the output clock signal is $T_D = j*T_p/N + k*T_p/M = (j*M + k*N)*T_p/N*M$. Where j and k are the number of unit delays provided by the first and second programmable delay circuits respectively.

[00017] In accordance with a second aspect of the invention the values of N and M are selected so that they are "relatively prime", having no common factors other than one. Thus the resolution with which the clock signal generator can delay a reference signal pulse, and therefore set the period of its output clock signal, is $T_p/(M*N)$.

[00018] In accordance with a third aspect of the invention both programmable delay circuits use phase-locked delay lines phase-locked to the reference signal to control the delay of their respective input signals. Thus both delay circuits are self-calibrating.

[00019] It is accordingly an object of the invention to provide a clock signal generator that can adjust a period of an output clock signal with high resolution.

[00020] The claims portion of this specification particularly points out and distinctly claims the subject matter of the present invention. However those skilled in the art will best understand both the organization and method of operation of the invention, together with further advantages and objects thereof, by reading the remaining portions of the specification in view of the accompanying drawing(s) wherein like reference characters refer to like elements.

Brief Description of the Drawing(s)

[00021] FIG. 1 depicts a prior art clock signal generator in block diagram form,

[00022] FIG. 2 is a timing diagram illustrating timing relationships between various signals of a prior art clock signal generator similar to the prior art clock signal generator of FIG. 1,

[00023] FIG. 3 depicts in block diagram form a prior art clock signal generator having a coarse delay circuit and a fine delay circuit,

[00024] FIG. 4 depicts the fine delay circuit of FIG. 3 in more detailed block diagram form,

[00025] FIG. 5 depicts in block diagram form a high resolution clock signal generator in accordance with the invention employing two coarse delay circuits,

[00026] FIG. 6 is a timing diagram illustrating timing relationships between the ROSC and CLOCK' signals of FIG. 5 when the period of the CLOCK' signal is 2.35 times the period of the ROSC signal,

[00027] FIG. 7 depicts the second coarse delay circuit of FIG. 5 in more detailed block diagram form, and

[00028] FIG. 8 depicts an alternative embodiment of the coarse delay circuit 54 of FIG. 5.

Detailed Description of the Invention

[00029] FIG. 5 depicts in block diagram form a high resolution programmable clock signal generator 50 in accordance with the invention for generating pulses of an output CLOCK' signal by adjustably delaying pulses of a periodic reference signal ROSC having a period T_p through a pair of coarse delay circuits 54 and 56 connected in series. First coarse delay circuit 54 adjustably delays pulses of the ROSC signal over a range spanning at least T_p seconds with a resolution of T_p/N to provide output CLOCK signal pulses. The second coarse delay circuit 56 adjustably delays the CLOCK signal pulses over a range spanning T_p seconds with a resolution of T_p/M to provide pulses of the output CLOCK' signal.

[00030] Although clock signal generator 50 and prior art clock signal generator 30 of FIG. 3 appear topologically somewhat similar, clock signal generator 30 employs one coarse delay circuit 34 and one fine delay circuit 38 whereas clock signal generator 50 employs two coarse delay circuits. A "coarse" delay circuit is capable of delaying ROSC pulses over a broad range (e.g., spanning T_p seconds) with a low resolution (e.g. T_p/N). While a "fine" delay circuit is capable of delaying pulses over a narrow range (e.g., spanning T_p/N seconds) with a high resolution ($T_p/(M*N)$). Even though neither coarse delay circuit 54 or 56 of FIG. 5 has as high a delay resolution as fine delay circuit 38 of FIG. 3, clock signal generators 30 and 50 have the same period resolution, $T_p/(M*N)$; much higher than the resolution of either delay circuit 54 or 56.

[00031] Referring to FIG. 5, the total delay D_T between a ROSC signal pulse input and a CLOCK' signal pulse output of clock signal generator 50 may be expressed as

$$D_T = (j/N)*T_p + (k/M)*T_p = ((j*M + k*N)/(M*N))*T_p \quad [1]$$

where integer j represents the number of unit delays T_p/N provided by delay circuit 54 and integer k represents the number of unit delays T_p/M provided by delay circuit 56.

[00032] Consider a simple example where N=4 and M=5 and the delay indices j and k range from 0 - 3 and 0 - 4 respectively. For N=4 delay circuit 54 has a delay resolution of $T_p/4 = 0.25T_p$ and for M=5 delay circuit 56 has a delay resolution of $T_p/5 = 0.2T_p$. For this choice of N and M the total delay of clock signal generator 50 is

$$D_T = ((5j + 4k)/20) * T_p \quad [2]$$

Table I lists the delay values, in units of T_p , for various choices of the indices j and k in equation [2]

TABLE I

j	k	Actual Delay (T_p)	Effective Delay (T_p)
0	0	$0/4 + 0/5 = 0/20$	$0/20$
1	4	$1/4 + 4/5 = 21/20$	$1/20$
2	3	$2/4 + 3/5 = 22/20$	$2/20$
3	2	$3/4 + 2/5 = 23/20$	$3/20$
0	1	$0/4 + 1/5 = 4/20$	$4/20$
1	0	$1/4 + 0/5 = 5/20$	$5/20$
2	4	$2/4 + 4/5 = 26/20$	$6/20$
3	3	$3/4 + 3/5 = 27/20$	$7/20$
0	2	$0/4 + 2/5 = 8/20$	$8/20$
1	1	$1/4 + 1/5 = 9/20$	$9/20$
2	0	$2/4 + 0/5 = 10/20$	$10/20$
3	4	$3/4 + 4/5 = 31/20$	$11/20$
0	3	$0/4 + 3/5 = 12/20$	$12/20$
1	2	$1/4 + 2/5 = 13/20$	$13/20$
2	1	$2/4 + 1/5 = 14/20$	$14/20$
3	0	$3/4 + 0/5 = 15/20$	$15/20$
0	4	$0/4 + 4/5 = 16/20$	$16/20$
1	3	$1/4 + 3/5 = 17/20$	$17/20$
2	2	$2/4 + 2/5 = 18/20$	$18/20$
3	1	$3/4 + 1/5 = 19/20$	$19/20$

In Table I the actual delay values represent the total ROSC signal pulse delay for particular choices of indices j and k. For example, a choice of $(j, k) = (3, 4)$ sets clock signal generator 50 to provide a CLOCK' signal pulse by delaying a ROSC signal pulse through $3T_p/4$ and then $4T_p/5$ to yield a total delay of $31T_p/20$. However since the total delay provided by either of coarse delay circuits 54 or 56 spans T_p seconds a CLOCK' signal pulse delay value of $31T_p/20 = T_p + 11T_p/20$ is indistinguishable from an effective CLOCK' signal pulse delay value of $(T_p + 11T_p/20) - T_p = 11T_p/20$.

[00033] From the effective delay values listed in Table I it can be seen that when N=4 and M=5, clock signal generator 50 can adjust the timing of CLOCK' signal pulses with a resolution $T_p/(M*N) = T_p/20$ over a range of 0 to $19T_p/20$, or 0 to $0.95T_p$. This is the same resolution provided by prior art clock signal generator 30 of FIG. 3 when N=4 and M=5 over the range spanning T_p . A resolution of $T_p/20$ represents a significant improvement over either the resolution $T_p/4$ of delay circuit 54 or the resolution $T_p/5$ of delay circuit 56 alone.

[00034] Clock signal generator 50 can be programmed to produce a variety of different CLOCK' signal periods by appropriately delaying selected ROSC signal pulses. FIG. 6 is a timing diagram showing the timing relationship between a series of ROSC signal pulses R1 - R8 in an example where clock signal generator 50 is programmed to produce a series of CLOCK' output signal pulses C1 - C3 having period $2.35*T_p$, when N=4 and M=5. The first ROSC signal pulse R1 passes without delay to produce the first CLOCK' signal pulse C1. The second ROSC pulse R2 is delayed by $1.35T_p$ to produce the second CLOCK' signal pulse C2. The fifth ROSC pulse R5 is delayed by $0.7T_p$ to produce the third CLOCK' signal pulse C3 and the fourth CLOCK' signal pulse C4 is produced by delaying the seventh ROSC signal pulse R7 by $1.05T_p$.

[00035] Table II lists the SW(A) and SW(B) data values sequencer 58 produces in response to the first eight ROSC signal pulses R1 - R8 (FIG. 6) for clock signal generator 50 to provide a CLOCK' signal period of $2.35T_p$ when N=4 and M=5.

The values of SW(A) and SW(B) listed in Table II reference the delay indices j and k respectively. When a ROSC pulse must be blocked from passing through either first coarse delay line 54 or second delay line 56, sequencer 58 sets control data values SW(A) or SW(B) to a particular value X.

TABLE II		
ROSC pulse	SW(A)=j	SW(B)=k
R1	0	0
R2	3	X
R3	X	3
R4	X	X
R5	2	1
R6	X	X
R7	3	X
R8	X	4

[00036] Referring to FIGS. 5 and 6 and Table II, the first CLOCK' signal pulse C1 of the CLOCK' signal having period $2.35T_p$ is generated by conveying the first ROSC signal pulse R1 without delay. When clocked by the R2 ROSC signal pulse, sequencer 58 supplies control data SW(A)=3 to first coarse delay circuit 54 and SW(B)=X to second coarse delay circuit 56. In response to SW(A)=3, first coarse delay circuit 54 delays pulse R2 by $0.75T_p$ and supplies that delayed R2 pulse in the form of a CLOCK signal pulse to second coarse delay circuit 56. Sequencer 58 supplies the control data value SW(B)=3 to second coarse delay circuit 56 in response to ROSC pulse R3 telling it to delay that CLOCK signal pulse by $0.6T_p$. ROSC signal pulse R2 is thus delayed to produce the second CLOCK' signal pulse C2 with a total delay of $0.75T_p + 0.6T_p = 1.35T_p$.

[00037] The SW(B)=X data supplied in response to the R2 ROSC pulse tells second coarse delay circuit 56 to ground its output so that it does not produce a CLOCK' signal pulse during the interval between the R2 and R3 ROSC signal pulses. Sequencer 58 supplies control data SW(A)=X to first coarse

delay circuit 54 in response to the R3 ROSC pulse telling it to block the ROSC pulse R3 since no CLOCK' pulse is to be derived from ROSC signal pulse R3.

[00038] To produce the third CLOCK' signal pulse C3 having a delay of $0.7T_p$ with respect to the R5 ROSC signal pulse, sequencer 58 concurrently supplies an SW(A)=2 data value to first coarse delay circuit 54 and an SW(B)=1 data value to second coarse delay circuit 56 in response to the R5 pulse. These SW(A) and SW(B) data values instruct coarse delay circuit 54 to delay the R5 pulse by $0.5T_p$ to produce another CLOCK signal pulse, and tell coarse delay circuit 56 to delay that CLOCK signal pulse by an additional $0.2T_p$ to produce CLOCK' signal pulse C3 having a total delay of $0.7T_p$ with respect to the R5 pulse. In a similar manner, clock signal generator 50 delays the R7 ROSC signal pulse of FIG. 6 by $1.05T_p$ to produce the remaining CLOCK' signal pulse C4. The R3, R4, R6 and R8 ROSC signal pulses are blocked and do not pass through coarse delay circuits 54 and 56 to become CLOCK' signal pulses.

Choosing N and M

[00039] Coarse delay circuits 54 and 56 of FIG. 5 provide a delay resolution of $T_p/(M*N)$ when N and M are "relatively prime" numbers, having no common factors other than 1. When N and M are not relatively prime numbers, the resolution with which clock signal generator 50 can adjust the delay of a given ROSC signal pulse will be lower than $T_p/(M*N)$.

[00040] The simple example of N=4 and M=5 used above in connection with Tables I and II illustrates the basic principle of the invention. However, in practice the values of N and M can be much larger than 4 and 5. Consider an example where N=16 and M=17 and the period T_p of the ROSC signal is 2.5ns. For this choice of relatively prime N and M numbers, the delay resolution of first coarse delay circuit 54 will be $2.5\text{ns}/16 = 156.25\text{ps}$ and the delay resolution of second coarse delay circuit 56 will be $2.5\text{ns}/17 = 147.06\text{ps}$, but the resolution with which the delay of a ROSC signal

pulse can be adjusted, will be $2.5\text{ns}/(16*17) = 2.5\text{ns}/272 = 9.19\text{ps}$.

Coarse Delay Circuit Architecture

[00041] First coarse delay circuit 54 is suitably similar to prior art programmable delay circuit 24 of FIG. 1 and thus has an internal delay line similar to delay line 16 formed from a series of N logic gates 14 where each gate 14 provides a unit delay of T_p/N .

[00042] FIG. 7 depicts second coarse delay circuit 56 of FIG. 5 in more detailed block diagram form. The CLOCK signal from first coarse delay circuit 54 serves as input to a series of M-1 gates 60 forming a delay line 62 producing a series of tap signals $B_1 - B_{M-1}$. The CLOCK signal (signal B_0) and tap signals $B_1 - B_{M-1}$ provide inputs to a multiplexer 64 producing the output signal CLOCK' of clock signal generator 50 (FIG. 5). One additional multiplexer 64 input is grounded. Multiplexer 64 generates each pulse of the CLOCK' signal by selecting a pulse at one of its inputs and passing that pulse to its output. Sequencer 58 (FIG. 5) provides a control data sequence SW(B) telling multiplexer 64 which input to select in response to each ROSC signal pulse.

[00043] Another delay line 68 having M gates 66 receives the ROSC clock signal as input and provides the output of it's Mth gate 66 as input to a phase lock controller 70. Controller 70 compares the output of the Mth gate of delay line 68 to the ROSC signal and provides a control signal CONTROL(B) for controlling the switching speed of all gates 66 to phase lock the Mth gate signal of delay line 68 to the ROSC signal thereby ensuring each gate 66 has a delay of T_p/M . The CONTROL(B) signal similarly adjusts the switching speed of the M-1 gates 60 of delay line 62 thereby ensuring that each gate 60 also provides a signal delay of T_p/M . Thus second coarse delay circuit 56 can adjustably delay CLOCK signal pulses over a range spanning $T_p*(1 - 1/M)$ with a resolution of T_p/M to provide CLOCK' signal pulses.

[00044] FIG. 8 depicts an alternative embodiment of first coarse delay circuit 54 of FIG. 5. Delay circuit 54 of FIG.

9 has N gates 102 connected in a loop to form a ring oscillator 104 producing a series of tap signals $T_0 - T_{N-1}$ at the outputs of gates 102. A multiplexer 110 receives the tap signals $T_0 - T_{N-1}$ as input signals after they have passed through a set of pulse-shaping circuits 108. Another multiplexer 110 input is grounded. A PL controller 106 compares the ROSC signal to the tap signal T_N and provides a CONTROL signal to adjust the speed of gates 102 in the manner described above for the PL controller 18 of FIG. 1. Multiplexer 110 controls the timing of each pulse of its output signal CLOCK by selecting one of its input signals. Sequencer 58 of FIG. 5 provides a control data sequence SW(A) telling multiplexer 110 which input signal to select. The sequence of SW(A) data values controls the delay of each pulse of the CLOCK signal.

[00045] Thus has been shown and described a high resolution clock signal generator having two coarse delay circuits 54 and 56 (FIG. 5). First coarse delay circuit 54 adjustably delays pulses of the ROSC signal over a range spanning nearly T_p seconds with a unit delay of T_p/N seconds to provide pulses of the CLOCK signal. Second coarse delay circuit 56 adjustably delays pulses of the CLOCK signal of the first coarse delay circuit 54 over a range spanning nearly T_p seconds with a unit delay of T_p/M seconds to provide pulses of the CLOCK' signal. Thus the total delay of the output CLOCK' clock signal is $T_D = j*T_p/N + k*T_p/M = (j*M + k*N)*T_p/N*M$, where j and k are the number of unit delays provided by coarse delay circuits 54 and 56 respectively.

[00046] Preferably, the numbers N and M are selected so that they are "relatively prime", having no common factors other than one. Thus the resolution with which the clock signal generator can delay a reference signal pulse, and therefore set the period of its output clock signal, is $T_p/(M*N)$.

[00047] First coarse delay circuit 54 of FIG. 5 preferably uses either phase-locked delay line 16 (FIG. 1) or phase-locked ring oscillator 104 (FIG. 8) phase-locked to the reference signal by phase-lock controllers 18 (FIG. 1) or 106

(FIG. 8), respectively, to control the delay of its input signal. Likewise, second coarse delay circuit 56 of FIG. 5 preferably uses phase-locked delay line 62 (FIG. 7) phase-locked to the reference signal by phase-lock controller 70 (FIG. 7) to control the delay of its input signal. Thus both coarse delay circuits 54 and 56 are self-calibrating.

[00048] While the foregoing specification has described preferred embodiment(s) of the present invention, one skilled in the art may make many modifications to the preferred embodiment without departing from the invention in its broader aspects. The appended claims therefore are intended to cover all such modifications as fall within the true scope and spirit of the invention.