Esercizio 1

- 1. Discutere il funzionamento dell'IFU: in quale architettura è stata introdotta, per quale motivo, in cosa consiste, ...
- 2. Facendo riferimento alla figura data, immaginate un metodo A (con due parametri e alcune variabili) che invoca, nell'architettura MIC1, un metodo B con tre parametri e altre variabili. Spiegate come funziona il meccanismo di *invokevirtual*.

Esercizi IJVM 2

Si scriva un metodo IJVM stampa(n, s), dove n è un numero naturale maggiore di zero e s una variabile booleana con il seguente significato: se essa vale zero, il metodo deve stampare i numeri pari tra 2 e n, se invece vale uno, allora il metodo stampa i numeri dispari compresi tra 1 ed n. Per es., stampa(10, 0) produce: 2, 4, 6, 8, 10; stampa(6, 1) genera 1, 3, 5.

Esercizio 3

- 1) Una cache contiene sia codice che dati, quindi i blocchi che contiene possono essere soggetti sia a lettura/fetch che a scrittura (cioè possono essere modificati da qualche istruzione) e in caso di scrittura si usa la politica write back. Supponiamo inoltre che essa sia organizzata come una cache associativa a insiemi a 2 vie con 2048 righe (essendo a 2 vie, ciascuna riga potrà ospitare 2 blocchi) e che la dimensione dei blocchi sia 32 byte. Tutte le domande seguenti si riferiscono a questa struttura di cache.
 - **1.1)** In cosa consiste la politica *write back* per la gestione delle scritture, e in che modo la memorizzazione di un "dirty bit" (o bit di modifica) per ogni blocco contenuto in cache può migliorarne l'efficienza?
 - **1.2)** Nell'ipotesi che gli indirizzi di memoria siano da 30 bit, come dev'essere partizionato un indirizzo nei tre campi "Tag", "numero riga" e "offset" per poter verificare se è presente in cache? (cioè in quale posizione si trova e quanti bit occupa nell'indirizzo ciascuno dei tre campi elencati sopra? Spiegare come si può ricavare questa informazione dai dati sulla struttura della cache riportati all'inizio).
 - **1.3)** Calcolare la dimensione **totale** in bit della cache (sommando ai bit di dati / istruzioni che sono contenuti nei blocchi anche quelli relativi alle informazioni associate a ciascun blocco necessarie al funzionamento della cache). Non basta indicare un valore, mostrare la FORMULA usata per ottenerlo.
 - **1.4)** Se il byte di indirizzo X viene trovato nella seconda via della riga numero 0x038 della cache, dove è memorizzato il Tag 0x00CA, e supponendo che il bye cercato sia il numero 18 nel blocco dati (gli indici di byte dentro il blocco vanno da 0 a 31) qual è l'indirizzo X? (esprimere l'indirizzo X sotto forma di sequenza di 30 bit).

 Scegliere 4 modalità d'indirizzamento dalla seguente tabella e spiegare quali informazioni devono essere contenute nel formato di una istruzione di linguaggio macchina per indicare dove trovare un operando quando si utilizzano tali modalità d'indirizzamento (eventualmente fare qualche esempio).

a. indirizzamento dello stack	e. indirizzamento indiretto tramite registro
b. indirizzamento diretto	f. indirizzamento di registro
c. indirizzamento indicizzato	g. indirizzamento immediato
d. indirizzamento indicizzato esteso (base-indice)	

TABELLA DELLE MODALITA' DI INDIRIZZAMENTO

- 3) 3.1) Nel contesto della memoria virtuale paginata spiegare: cosa è la tabella delle pagine, cosa è il Translation Lookaside Buffer (TLB), cosa è la Memory Management Unit (MMU). Si possono utilizzare anche schemi ed esempi per rendere più chiara la spiegazione.
 - **3.2)** Come avviene la traduzione da indirizzo logico a indirizzo fisico nella memoria virtuale paginata? Cosa accade se la pagina che contiene un dato indirizzo logico NON è caricata in memoria RAM?