Cálculo relacional

Carlos A. Heuser

Cálculo relacional

- Desenvolvimento do cálculo relacional:
 - 1. Proposta de Codd » ALPHA (Codd) » QUEL (Ingres).
 - 2. SQL (principalmente a primeira versão) incorpora algumas idéias do cálculo relacional.
- Poder de expressão é idêntico ao da álgebra relacional:
 - Toda consulta que é possível expressar com álgebra relacional também é expressável com cálculo e vice-versa.
- Há dois tipos de cálculo relacional:
 - Cálculo de tupla (variáveis correm sobre linhas de uma tabela)
 - Cálculo de domínios (variáveis correm sobre domínios)

Cálculo relacional

- Linguagem teórica baseada no cálculo de predicados.
- Através do cálculo de predicados escrevem-se expressões lógicas que falam sobre um universo de indivíduos:
 - Para todo aluno vale que o curso em que ele está inscrito é um dos cursos ativos na Universidade.

©Carlos A. Heuser

Expressões em cálculo relacional (de tuplas)

• Uma expressão de cálculo relacional tem a seguinte forma:

 $\{t \mid P(t)\}$

- onde t é uma váriavel de linha (tupla) e
- -P(t) é um predicado avaliável sobre t.
- O resultado desta expressão de cálculo relacional é uma tabela formada por todas tuplas t para as quais o predicado P(t) é verdadeiro.
- A expressão t.A denota o valor do atributo A da tabela que contém a linha t.

Exemplo: seleção

Exemplo equivalente à projeção na álgebra relacional:

 $\{p \mid p \in Peca \land p.CidadePeca = 'PoA'\}$

Peça

CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

©Carlos A. Heuser ©Carlos A. Heuser

Exemplo: seleção

Exemplo equivalente à projeção na álgebra relacional:

 $\{p \mid p \in Peca \land p.CidadePeca = 'PoA'\}$

predicado que deve ser verdadeiro para que uma linha p apareça no

Peca

1 cya					
CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça	
P1	Eixo	Cinza	10	PoA	
P2	Rolamento	Preto	16	Rio	
P3	Mancal	Verde	30	SãoPaulo	

Exemplo: seleção

Exemplo equivalente à projeção na álgebra relacional:

 $\{p \mid p \in Peca \land p.CidadePeca = 'PoA'\}$

pé a variável de linha (tupla)

Peca

CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Exemplo: seleção

• Exemplo equivalente à projeção na álgebra relacional:

 $\{p \mid p \in Peca \land p.CidadePeca = 'PoA'\}$ de Peca

Peca

1 CQU				
CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Exemplo: seleção

• Exemplo equivalente à projeção na álgebra relacional:

$$\{p \mid p \in Peca \land p.CidadePeca = 'PoA'\}$$
o atributo
CidadePeca da linha
 p tem o valor 'PoA'

Peça

· oşu				
CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

©Carlos A. Heuser 9

Exemplo: projeção

- · Consulta: obter os nomes de todas peças.
 - O resultado é uma tabela formada por linhas que contém somente a coluna NomePeca.
- A expressão deve ser algo como:

 $\{r \mid P(r)\}$

- onde r é uma variável que corre sobre as linhas da tabela resultante;
- não há na base de dados uma tabela que contém uma única coluna NomePeca.

Exemplo: seleção

Exemplo equivalente à seleção na álgebra relacional:

 $\{p \mid p \in Peca \land p.Cidade = 'PoA'\}$

- Conjunto de todas linhas p, tal que p é uma linha da tabela Peca e o atributo CidadePeca tem o valor 'PoA'.
 - ou, em outros termos:
- Obter as peças de Porto Alegre.

©Carlos A. Heuser 10

Quantificador existencial

• Para esta consulta, deve-se usar o quantificador existencial:

 $\exists t \in Tab (P(t))$

Esta fórmula é verdadeira, quando, na tabela Tab existir ao menos uma linha t, para a qual o predicado P(t) é verdadeiro.

Exemplo: projeção

· Consulta: obter os nomes de todas peças.

```
 \{r \mid \exists \ p \in Peca \ ( r.NomePeca = p.NomePeca )  \}
```

©Carlos A. Heuser

Exemplo: projeção

• Consulta: obter os nomes de todas peças.

```
\{r \mid \exists p \in Peca (\\ r.NomePeca = p.NomePeca \\ )
Define as colunas do resultado
```

Exemplo: projeção

· Consulta: obter os nomes de todas peças.

```
\{r \mid \exists \ p \in Peca \ (\\ r.NomePeca = p.NomePeca \\ \} Quantificador existencial - \exists A expressão \exists \ p \in Peca \ (P(p)) signfica que deve existir uma linha em Peca que satisfaça o predicado P(p)
```

©Carlos A. Heuser 14

Exemplo: projeção

· Consulta: obter os nomes de todas peças.

```
 \{r \mid \exists \ p \in Peca \ ( r.NomePeca = p.NomePeca ) }
```

BD exemplo

 Obter as linhas dos fornecedores que tem pelo menos um embarque.

Embarq

CodPeça	CodFornec	QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

Fornec

CodFornec	NomeFornec	StatusFornec	CidadeFornec
F1	Silva	5	SãoPaulo
F2	Souza	10	Rio
F3	Álvares	5	SãoPaulo
F4	Tavares	8	Rio

©Carlos A. Heuser 17

Exemplo: junção

• Obter as linhas dos fornecedores com embarques.

```
\{f \mid f \in Fornec \land \\ \exists e \in Fm
f \neq f \in f \text{ uma linha de } f \text{ ornec}
f \in f \text{ ornecedor}
```

Exemplo: junção

· Obter as linhas dos fornecedores com embarques.

©Carlos A. Heuser

Exemplo: junção

• Obter as linhas dos fornecedores com embarques.

©Carlos A. Heuser 20

BD exemplo

· Obter os nomes dos fornecedores com embarques.

Embarq

Lilibaiq		
CodPeça	CodFornec	QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

Fornec

CodFornec	NomeFornec	StatusFornec	CidadeFornec
F1	Silva	5	SãoPaulo
F2	Souza	10	Rio
F3	Álvares	5	SãoPaulo
F4	Tavares	8	Rio

©Carlos A. Heuser 21

Exemplo: junção

• Obter os nomes dos fornecedores com embarques

Exemplo: junção

• Obter os nomes dos fornecedores com embarques

©Carlos A. Heuser 22

Exemplo: junção

• Obter os nomes dos fornecedores com embarques

```
\{r \mid \exists \ f \in Fornec \ (
f.NomeFornec = r.NomeFornec \land
\exists \ e \in Enr^{1.}
e.Cot
aparece o
NomeFornec de f
)
```

 ©Carlos A. Heuser
 23
 ©Carlos A. Heuser
 24

Exemplo: junção

Obter os nomes dos fornecedores com embarques

```
 \{r \mid \exists \ f \in Fornec \ ( \\ f.NomeFornec = r.NomeFornec \land \\ \exists \ e \in Embarq \ ( \\ e.CodFornec = f.CodFornec \\ )  e existe um embarque para o fornecedor f
```

©Carlos A. Heuser

Exemplo: União

- Obter as cidades em que há uma peça ou um fornecedor.
- Em álgebra relacional, seria resolvida com o operador de união.

Peça				
CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Fornec

1 011100			
CodFornec	NomeFornec	StatusFornec	CidadeFornec
F1	Silva	5	SãoPaulo
F2	Souza	10	Rio
F3	Álvares	5	SãoPaulo
F4	Tavares	8	Rio

Exercício

Obter os nomes dos fornecedores de peças de cor Vermelha

Peça				
CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Embarq		
CodPeça	CodFornec	QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

_		
	or	

FULLEC			
CodFornec	NomeFornec	StatusFornec	CidadeFornec
F1	Silva	5	SãoPaulo
F2	Souza	10	Rio
F3	Álvares	5	SãoPaulo
F4	Tavares	8	Rio
C)Carlos A. Heuser			

Exemplo: União

· Obter as cidades em que há uma peça ou um fornecedor.

```
\{r \mid \exists \ f \in Fornec \ (
f.CidadeFornec = r.Cidade
)
\forall
\exists \ p \in I
do \ resultado
p.( contém \ valores
de \ CidadeFornec
\}
```

 ©Carlos A. Heuser
 27
 ©Carlos A. Heuser
 28

Exemplo: União

Obter as cidades em que há uma peça ou um fornecedor.

```
\{r \mid \exists f \in Fornec (
         f.CidadeFornec = r.Cidade
         p.CidadePeca = r.Cidade
```

©Carlos A. Heuser

Exemplo: Diferença

- Obter as cidades em que há uma peça, mas não há fornecedor.
- Em álgebra relacional, seria resolvida com o operador de diferença.

Peça
$C^{\alpha}AD$

ı oğu				
CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Fornec

1 011100			
CodFornec	NomeFornec	StatusFornec	CidadeFornec
F1	Silva	5	SãoPaulo
F2	Souza	10	Rio
F3	Álvares	5	SãoPaulo
F4	Tavares	8	Rio

Exemplo: União

• Obter as cidades em que há uma peça ou um fornecedor.

```
\{r \mid \exists f \in Fornec (
        f.CidadeFornec = r.Cidade
    \exists p \in Peca (
         p.CidadePeca = r.Cidade
              a coluna Cidade
                do resultado
               contém valores
               de CidadePeca
```

©Carlos A. Heuser

Exemplo: Diferença

• Obter as cidades em que há um fornecedor, mas não há peça.

```
\{r \mid \exists f \in Fornec (
          f.CidadeFornec = r.Cidade
     \neg \exists p \in Peca (
           p.CidadePeca = r.Cidade
```

Exemplo: Diferença

Obter as cidades em que há um fornecedor, mas não há peça.

```
\{r \mid \exists \ f \in Fornec \ (
f.CidadeFornec = r.Cidade
)
\neg \exists \ p
a \ coluna \ Cidade
do \ resultado
p.(b) \ de \ CidadeFornec
de \ CidadeFornec
```

©Carlos A. Heuser 33

Exemplo: Diferença

• Obter as cidades em que há um fornecedor, mas não há peça.

```
\{r \mid \exists \ f \in Fornec \ (
f.CidadeFornec = r.Cidade
)
\land \qquad \neg \exists \ p \in Peca \ (
p.CidadePeca = r.Cidade
)
\}
a \ coluna \ Cidade
do \ resultado
N\~AO \ cont\'em
valores \ de
CidadePeca
```

Exemplo: Diferença

• Obter as cidades em que há um fornecedor, mas não há peça.

©Carlos A. Heuser

Exercício

Obter os nomes dos fornecedores cuja cidade tem ao menos uma peça de cor Vermelha

Peça				
CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Embarq		
CodPeça	CodFornec	QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

Fornec			
CodFornec	NomeFornec	StatusFornec	CidadeFornec
F1	Silva	5	SãoPaulo
F2	Souza	10	Rio
F3	Álvares	5	SãoPaulo
F4	Tavares	8	Rio
Carlos A. Heuser			

35

Quantificador universal

 Obter os códigos dos fornecedores que possuem embarques para todas peças de 'PoA' ou de 'Rio'.

Peça

CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Embarq

CodPeça	CodFornec	QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

©Carlos A. Heuser 37

Quantificador universal

- Obter os códigos dos fornecedores que possuem embarques para todas peças de 'PoA' ou de 'Rio'.
- Esta consulta seria resolvida em álgebra relacional com operador de divisão.
- O enunciado pode ser reescrito para:
- Obter os códigos dos fornecedores, tal que, para toda peça de 'PoA' ou de 'Rio', exista um embarque para a peça em questão, feito pelo fornecedor em questão.

Quantificador universal

- Obter os códigos dos fornecedores que possuem embarques para todas peças de 'PoA' ou de 'Rio'.
- Para esta consulta, usa-se o quantificador universal:

```
\forall t \in Tab (P(t))
```

 Esta fórmula é verdadeira, quando para toda linha t da tabela Tab, o predicado P(t) é verdadeiro.

©Carlos A. Heuser 38

Quantificador universal

- Obter os códigos dos fornecedores que possuem embarques para todas peças de 'PoA' ou de 'Rio'.
- Obter os códigos dos fornecedores, tal que, para toda peça, ou ela não é de 'PoA' ou do 'Rio', ou então, exista um embarque para a peça em questão feito pelo fornecedor em questão.

©Carlos A. Heuser 40

Quantificador universal

• Interpretação do predicado P(r).

```
uma linha r faz parte do resultado se:  \forall p \in Peca \ ( \\ \neg (p.CidadePeca = 'PoA' \lor \\ p.CidadePeca = 'Rio' \\ )   \forall e \in Embarq \ ( \\ e.CodFornec = r.Codfornec \land \\ e.CodPeca = p.CodPeca \\ )   )   \}
```

©Carlos A. Heuser 41

Quantificador universal

• Interpretação do predicado P(r).

Quantificador universal

• Interpretação do predicado P(r).

```
 \begin{cases} r \mid \\ \forall p \in Peca \ (\\ \neg (p.CidadePeca = 'PoA' \lor p.CidadePeca = 'Rio' \lor p.CidadePeca = 'Rio' ) \\ \lor \\ \exists e \in Embarq \ (\\ e.CodFornec = r.Codfornec \land e.CodPeca = p.CodPeca \\ \end{pmatrix} )
```

©Carlos A. Heuser 42

Quantificador universal

• Interpretação do predicado P(r).

```
\{r \mid \\ \forall p \in Peca \ (\\ \neg (p.CidadePeca = 'PoA' \lor \\ p.CidadePeca = 'Rio' \\ )  ou deve existir ao menos um embarque desta peça pelo fornecedor que aparece no resultado  (e.CodFornec = r.Codfornec \land \\ e.CodPeca = p.CodPeca \\ )
```

Quantificador universal: modelo conceitual de execução

- Idéia por trás:
 - Para cada linha r do resultado:
 - percorrer a tabela Peca e verificar para cada peca p se:
 - ou a peça não é de PoA nem Rio
 - ou existe um embarque e desta peça para o fornecedor que aparece no resultado (r);
 - se isto for verdadeiro para todas peças, signfica que r deve aparecer no resultado

©Carlos A. Heuser

Quantificador universal: exemplo de execução

- Percorre-se cada peca p.
- Verifica-se para a peca se o predicado do quantificador universal é verdadeiro.

Peça

©Carlos A. Heuser

CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Embarq		
CodPeça	CodFornec	QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

Quantificador universal: exemplo de execução

- Toma-se uma linha r
- Por exemplo:

r.CodFornec = 'F1'

D---

Peça				
CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Embara

CodPeça	CodFornec	QtdeEmbarc	
P1	F1	300	
P1	F2	400	
P1	F3	200	
P2	F1	300	
P2	F4	350	

©Carlos A. Heuser

Quantificador universal: exemplo de execução

Percorre-se cada peça p.

Verifica-se para a peca se o predicado do quantificador universal é

Saoraulo

verdadeiro.

p.CidadePeca = 'Rio' $\exists e \in Embarq$ ($e.CodFornec = r.Codfornec \land$ e.CodPeca = p.CodPeca

 \neg (p.CidadePeca = 'PoA' \vee

Peça

CodPeça	NomePeça	CorPeça	Peso
P1	Eixo	Cinza	10
P2	Rolamento	Preto	16
P3	Mancal	Verde	30

	Embarq				
CodPeça		CodFornec	QtdeEmbarc		
	P1	F1	300		
	P1	F2	400		
	P1	F3	200		
	P2	F1	300		
	P2	F4	350		

47 ©Carlos A. Heuser

Percorre-se cada peça p.

Mancal

Verde

Verifica-se para a peça se o predicado do quantificador universal é

verdadeiro. $\neg (p.CidadePeca = 'PoA' \lor)$ ou a peça pp.CidadePeca = 'Rio'não é de PoA nem Rio $\exists e \in Embarq$ ($e.CodFornec = r.Codfornec \land$ CodPeca NomePeca CorPeca PesoPe e.CodPeca = p.CodPecaP1 P2 P3 Eixo Cinza Rolamento Preto 16 30

Saoraulo

Embarq				
CodPeça	CodFornec	QtdeEmbarc		
P1	F1	300		
P1	F2	400		
P1	F3	200		
P2	F1	300		
P2	F4	350		

©Carlos A. Heuser

Quantificador universal: exemplo de execução

- Percorre-se cada peca p.
- Verifica-se para a peca se o predicado do quantificador universal é verdadeiro.
- Se o predicado for verdadeiro para todas peças, o fornecedor r.CodFornec faz parte do resultado

Peça

CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Embarq		
CodPeça	CodPeça CodFornec	
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

Quantificador universal: exemplo de execução

Percorre-se cada peça p.

Verifica-se para a peça se o predicado do quantificador universal é

©Carlos A. Heuser

Quantificador universal: exemplo de execução

Vamos considerar como possível resultado:

rCodFornec = 'F1'

- Percorre-se cada peça p.
- Começamos com p na linha de 'P1' e verficamos se o predicado do quantificador universal é verdadeiro.

Peca

CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Embarq			
CodPeça		CodFornec	QtdeEmbarc
	P1	F1	300
	P1	F2	400
	P1	F3	200
	P2	F1	300
	P2	F4	350

r.CodFornec = 'F1'

p na linha de 'P1'

peça é de 'PoA' e existe um embarque de 'P1' para o fornecedor em questão

predicado é verdadeiro

Peça

ı oğu				
CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Embarg

CodPeça	CodFornec	QtdeEmbarc	
P1	F1	300	
P1	F2	400	
P1	F3	200	
P2	F1	300	
P2	F4	350	

©Carlos A. Heuser

53

Quantificador universal: exemplo de execução

r.CodFornec = 'F1'

p na linha de 'P1'

peça é de 'PoA' e existe um embarque de 'P1' para o fornecedor em auestão

predicado é verdadeiro

	гeça					
	CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça	i
V	P1	Eixo	Cinza	10	PoA	
	P2	Rolamento	Preto	16	Rio	
	P3	Mancal	Verde	30	SãoPaulo	

Embarq

CodPeça	CodFornec	QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

©Carlos A. Heuser

Quantificador universal: exemplo de execução

r.CodFornec = 'F1'

p na linha de 'P2'

peça é do 'Rio' e existe um embarque de 'P2' para o fornecedor em questão

predicado é verdadeiro

Peça

CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Embarq		
CodPeça	CodFornec	QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

Quantificador universal: exemplo de execução

r.CodFornec = 'F1'

p na linha de 'P2'

peça é do 'Rio' e existe um embarque de 'P2' para o fornecedor em questão

predicado é verdadeiro

Peca

	CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
√	P1	Eixo	Cinza	10	PoA
1	P2	Rolamento	Preto	16	Rio
	P3	Mancal	Verde	30	SãoPaulo

	Ŀm	barq
--	----	------

Lilibary		
CodPeça	CodFornec	QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

r.CodFornec = 'F1'

p na linha de 'P3'

Peca

ı cça				
CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Embara

CodPeça	CodFornec	QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

©Carlos A. Heuser

Quantificador universal: exemplo de execução

r.CodFornec = 'F1'

p na linha de 'P3'

'P3' não é de PoA nem Rio predicado é verdadeiro

Peca

i cça				
CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Embarq

CodPeça	CodFornec	QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

©Carlos A. Heuser

Quantificador universal: exemplo de execução

r.CodFornec = 'F1'

p na linha de 'P3'

'P3' não é de PoA nem Rio

predicado é verdadeiro

Peca

	CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
V	P1	Eixo	Cinza	10	PoA
V	P2	Rolamento	Preto	16	Rio
V	P3	Mancal	Verde	30	SãoPaulo

Lilibary		
CodPeça CodFornec		QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	l F4	I 350

Quantificador universal: exemplo de execução

r.CodFornec = 'F1'

predicado é verdadeiro para todas peças

linha r faz parte do resultado

Peca

	CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
√	P1	Eixo	Cinza	10	PoA
√	P2	Rolamento	Preto	16	Rio
√	P3	Mancal	Verde	30	SãoPaulo

Lilibaiq		
CodPeça	CodFornec	QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

Vamos considerar como possível resultado:

r.CodFornec = 'F2'

Peca

i ogu	1 000				
CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça	
P1	Eixo	Cinza	10	PoA	
P2	Rolamento	Preto	16	Rio	
P3	Mancal	Verde	30	SãoPaulo	

Embara

CodPeça	CodFornec	QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

©Carlos A. Heuser

Quantificador universal: exemplo de execução

r.CodFornec = 'F2'

p na linha de 'P1'

peça é de 'PoA' e existe um embarque de 'P1' para o fornecedor em auestão

predicado é verdadeiro

Peca

CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Embara

CodPeça	CodFornec	QtdeEmbarc	
P1	F1	300	
P1	F2	400	
P1	F3	200	
P2	F1	300	
P2	F4	350	

©Carlos A. Heuser

Quantificador universal: exemplo de execução

r.CodFornec = 'F2'

p na linha de 'P1'

peça é de 'PoA' e existe um embarque de 'P1' para o fornecedor em questão

predicado é verdadeiro

Peça

	CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
1	P1	Eixo	Cinza	10	PoA
	P2	Rolamento	Preto	16	Rio
	P3	Mancal	Verde	30	SãoPaulo

Embarq					
CodPeça	CodFornec	QtdeEmbarc			
P1	F1	300			
P1	F2	400			
P1	F3	200			
P2	F1	300			
P2	F4	350			

Quantificador universal: exemplo de execução

r.CodFornec = 'F2'

p na linha de 'P2'

'P2' é do Rio, mas não existe um embarque de 'P2' para o fornecedor em questão

predicado é falso

Peça

	CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça >
√	P1	Eixo	Cinza	10	PoA
Х	P2	Rolamento	Preto	16	Rio
	P3	Mancal	Verde	30	SãoPaulo

Lilibary		
CodPeça	CodFornec	QtdeEmbarc
P1	F1	300
P1	F2	400
P1	F3	200
P2	F1	300
P2	F4	350

	Peça				
	CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça 🦠
√	P1	Eixo	Cinza	10	PoA
х	P2	Rolamento	Preto	16	Rio
	P3	Mancal	Verde	30	SãoPaulo

Embarq						
CodPeça	CodFornec	QtdeEmbarc				
P1	F1	300				
P1	F2	400				
P1	F3	200				
P2	F1	300				
P2	F4	350				

©Carlos A. Heuser

©Carlos A. Heuser

Conector implica

- Fórmulas envolvendo o quantificador universal muitas vezes são escritas usando o conector lógico implica (⇒).
- A fórmula:

$$P \Rightarrow Q$$

significa:

- P implica Q, ou
- se P então Q (se P é verdadeiro, então Q também deve ser).
- A fórmula é equivalente a:

$$\neg P \lor Q$$

Conector implica – tabela verdade

• A tabela verdade para o conector implica é a seguinte:

P	Q	$P \Rightarrow Q$ $\neg P \lor Q$
Verdadeiro	Verdadeiro	Verdadeiro
Verdadeiro	Falso	Falso
Falso	Verdadeiro	Verdadeiro
Falso	Falso	Verdadeiro

Quantificador universal

- Obter os códigos dos fornecedores que possuem embarques para todas peças de 'PoA' ou de 'Rio'.
- Obter os códigos dos fornecedores, tal que, para toda peça de 'PoA' ou de 'Rio', exista um embarque para a peça em questão feito pelo fornecedor em questão.

Quantificador universal

• Interpretação do predicado *P*(*r*).

©Carlos A. Heuser

Quantificador universal

• Interpretação do predicado P(r).

Quantificador universal

• Interpretação do predicado P(r).

©Carlos A. Heuser

Quantificador universal

• Interpretação do predicado P(r).

Quantificador universal

• Interpretação do predicado P(r).

```
 \begin{cases} r \mid \\ \forall p \in Peca \ (\\ (p.CidadePeca = 'PoA' \lor \\ p.CidadePeca = 'Rio' \\ ) \\ \Rightarrow \\ \exists e \in Embarq \ (\\ e.CodFornec = r.Codfornec \land \\ e.CodPeca = p.CodPeca \\ ))
```

©Carlos A. Heuser 73

Cálculo sem o quantificador universal

- Obter os códigos dos fornecedores que possuem embarques para todas peças de 'PoA' ou de 'Rio'.
- O enunciado pode ser reescrito para:
- Obter os códigos dos fornecedores, tal que, não exista nenhuma peça de 'PoA' ou de 'Rio', para a qual não exista um embarque, feito pelo fornecedor em questão.

Cálculo sem o quantificador universal

- SQL implementa o quantificador existencial, mas não oferece o quantificador universal.
- O quantificador universal não é necessário do ponto de vista teórico. Seu efeito pode ser simulado usando o quantificador existencial:

```
\forall t \in Tab (P(t))
é equivalente a
\neg \exists t \in Tab (\neg P(t))
```

©Carlos A. Heuser 74

Cálculo sem o quantificador universal

- Obter os códigos dos fornecedores que possuem embarques para todas peças de 'PoA' ou de 'Rio'.
- Solução com quantificador universal:

Cálculo sem o quantificador universal

- Obter os códigos dos fornecedores que possuem embarques para todas peças de 'PoA' ou de 'Rio'.
- Substituindo quantificador universal por existencial:

©Carlos A. Heuser 77

Cálculo sem o quantificador universal

- Obter os códigos dos fornecedores que possuem embarques para todas peças de 'PoA' ou de 'Rio'.
- Alicando a Lei de De Morgan:

```
 \left\{ r \mid \\ \neg \exists \, p \in Peca \, ( \\ ( \\ \neg \neg (p.CidadePeca = 'PoA' \lor \\ p.CidadePeca = 'Rio' \\ ) \\ \land \\ \neg \exists \, e \in Embarq \, ( \\ e.CodFornec = r.Codfornec \land \\ e.CodPeca = p.CodPeca \\ ) \\ ) \\ ) \\ \right\}
```

©Carlos A. Heuser

Cálculo sem o quantificador universal

- Obter os códigos dos fornecedores, tal que, não exista nenhuma peça de 'PoA' ou de 'Rio', para a qual não exista um embarque, feito pelo fornecedor em questão
- Substituindo a dupla negação:

QUEL: Uma linguagem baseada em cálculo relacional

- O SGBD acadêmico Ingres utilizava a linguagem de consulta QUEL, cuja sintaxe baseia-se no cálculo relacional de tuplas
- A Instrução RANGE serve para definir o escopo das variáveis de tupla.
- A instrução RETRIEVE é a instrução de consulta a base de dados (forma e modelo de execução baseados em cálculo relacional)

Exemplo de Quel

```
RANGE OF
Peça IS Peça,
Fornec IS Fornec,
Embarq IS Embarq
RETRIEVE
(Fornec.CodigoFornec,
Fornec.NomeFornec,Fornec.StatusFornec)
WHERE (Fornec.StatusFornec > 5 AND
Fornec.CidadeFornec = 'Rio')
```

 O quantificador existencial n\u00e3o necessita ser especificado explicitamente em QUEL:

```
RETRIEVE (Fornec.NomeFornec) WHERE (Fornec.CodFornec=Embarq.CodFornec AND Peça.CodPeça=Embarq.CodPeça AND Peça.CorPeça="Verm"))
```

©Carlos A. Heuser 8

Cálculo relacional de domínios

· Exemplo:

 Obtém código e nome de peças que não são do Rio e cujo peso excede 5. Peca

CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

©Carlos A. Heuser 83

Cálculo relacional de domínios

- Há um outro cálculo relacional, chamado cálculo relacional de domínios.
- Neste, as variáveis correm sobre os domínios dos atributos e não sobre as tuplas (linhas de uma tabela).
- · Ambos tem o mesmo poder de expressão.

©Carlos A, Heuser 82