	What is claimed is:
71	1. An optical moisture detector for measuring ambient
Par	light conditions comprising:
3	an optical moisture sensor for sensing the presence of
4	moisture on a moisture collecting surface, the sensor operable to emit a
5	signal corresponding to sensed conditions; and
6	processor means for receiving the signal, for determining an
7	absolute ambient light value corresponding to existing ambient light
8	conditions, for comparing the value to a predetermined value, and for
9	emitting a control-signal if the value is less than the predetermined value
10	as a result of the comparison.
1	2. The optical moisture detector of claim 1 further
2	comprising:
3	means, responsive to the control signal, for controlling a
4	light generating device.
) 1	
11/2	3. The optical moisture detector of claim 1 further
\mathcal{Q}_2	comprising:
3	timer means for disabling the processor means from
4	comparing the value to the predetermined value for a predetermined
5	period of time.
	•
1	4. The optical moisture detector of claim 1 wherein the
2	optical moisture sensor is operably mountable with respect to a
3	windshield of a motor vehicle.

5. The optical moisture detector of claim 1 wherein the optical moisture sensor is operably positionable in a spaced relationship relative to a windshield of a motor vehicle.

generating device is to be sent.

	/	ſ
A	\ni_{n}	6. The optical moisture detector of claim 1 wherein the
B	2	optical moisture sensor further comprises:
•	3	a CD camera for collecting data to be sent as signals to the
	4	processor means
	1	7. The optical moisture detector of claim 1 wherein the
	2	optical moisture sensor further comprises:
	3	a CMOS camera for collecting data to be sent as signals to
	4	the processor means.
	1	8. The optical moisture detector of claim 1 wherein the
	2	optical moisture sensor further comprises:
	3	a photo array having a plurality of dark pixels and a plurality
	4	of standard pixels for collecting data to be sent as signals to the
	5	processor means.
	•	
	1	9. The optical moisture detector of claim 1 wherein the
	2	processor means further comprises:
	3	a microprocessor for operably receiving the signal from the
	4	sensor.
	7/	\
3(y >	The optical moisture detector of claim 1 wherein the
/	2	processing means compares the absolute ambient light value to a first
	3	predetermined value to determine if a signal to turn on a light generating
	4	device is to be sent, and compares the absolute ambient light value to a
	5	second predetermined value to determine if a signal to turn off the light

7	11. An optical moisture detector for measuring ambient
(O) >>	Hight conditions comprising:
) (D3	an optical moisture sensor for sensing the presence of
4	moisture on a windshield of a vehicle, the sensor operable to emit a
5	signal corresponding to sensed conditions; and
6	processor means for receiving the signal, for determining an
7	absolute ambient light value corresponding to existing ambient light
8	conditions, for comparing the value to a predetermined value, and for
9	emitting a control signal if the value is less than the predetermined value
10	as a result of the comparison.
1	12. The optical moisture detector of claim 11 further
2	comprising:
3	means, responsive to the control signal, for controlling a
4	light generating device.
0/	
30	13. The optical moisture detector of claim 11 further
Z	comprising:
3	time means for disabling the processor means from
4	comparing the value to the predetermined value for a predetermined
5	period of time.
D. "	
RAN	14. The optical moisture detector of claim 11 wherein the
2	processor means \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
3	emits the control signal only if at least two successive comparisons
4	indicate the value is less than the predetermined value.

1 15. The optical moisture detector of claim of claim 11 wherein the optical moisture sensor is operably mountable with respect to a windshield of a motor vehicle.

1	 The optical moisture detector of claim of claim 11
2	wherein the optical moisture sensor is operably positionable in a spaced
3	relationship relative to a windshield of a motor vehicle.
P10U	17. A method of measuring ambient light conditions comprising:
3	sensing the presence of moisture on a moisture collecting
4	surface with an optical moisture sensor, the sensor operable to emit a
5	signal corresponding to the sensed conditions;
6	receiving the signal and determining an absolute ambient
7	light value corresponding to the existing ambient light conditions with
8	processor means;
9	comparing the value to a predetermined value with the
10	processor means; and
11	emitting a control signal with the processor means if the
12	value is less than the predetermined value as a result of the comparing
13	step.
1	18. The method of claim 17 further comprising the step
2	of:
3	mounting the optical moisture sensor to the windshield of a
4	vehicle.
1	19. The method of claim 17 further comprising the step
2	of:
3	disposing the optical moisture sensor in a spatial relationship
4	relative to the windshield of a vehicle.

1 20. The method of claim 17 further comprising the step 2 of: 3 controlling a light generating device with controlling means 4 in response to the control signal.

and Barrell World W. H. Harris, aff. Hilling Worlds, Month, Month