Materiales complementarios 2. Modelo Relacional

Contenidos:	Epígrafes unidades:
1. Diagrama entidad/relación extendido	Unidad 3 (1.,2.,3.,4.,5.,6.,7.,8.)
2. Modelo relacional	Unidad 2 (1.,2.,3.,4.,5.)
3. Transformación MER- Modelo relacional	Unidad 3 (9.,10.)
4. Normalización	Unidad 3 (11.)

1. Introducción

- El diseño de datos es el proceso por el que se determina la organización de la información necesaria para el sistema.
- Se realiza generalmente en tres fases:
 - Diseño conceptual
 Diseño lógico
 Diseño físico
 Diseño
- Cada fase es un proceso iterativo, se van produciendo refinamientos sucesivos antes de pasar a la siguiente fase

1. Introducción

Objetivos de cada fase:

Diseño conceptual:

Representación de los recursos de información del sistema, con independencia de usuarios, aplicaciones en particular, y fuera de consideraciones sobre dispositivos físicos

Diseño lógico

Transformación del modelo conceptual de datos obtenido en la etapa anterior, adaptándolo al sistema de gestión de datos que se vaya a utilizar y definición de especificaciones para los programas de acceso a los datos

Diseño físico

Estructuración y almacenamiento del conjunto de datos del modelo lógico anterior, en un determinado dispositivo físico, optimizando la relación costes/beneficios

Modelo relacional

- Introducción
- Estructura de los datos
- Reglas de integridad
- Arquitectura

Introducción

- Se basa en dos ramas matemáticas:
 - Teoría de conjuntos
 - Lógica de predicados de primer orden
- Esto hace que sea un modelo seguro, fiable, robusto, predecible.
- Proporciona, además los elementos básicos necesarios para crear una BD relacional con una buena estructura
- Introducido por Codd en 1970.
- Sencillez de sus estructura lógica (tablas=filas x columnas)

Estructura de los datos

Los datos se organizan en **RELACIONES** (representación gráfica tabular)

Empleado

NIF	Nombre	Edad	Dpto	
1111A	Juan	55	Dpto1	•••
2222B	Ana	60	Dpto1	
3333C	Eva	47	Dpto2	
		•••		

Departamento

Nombre	Función	
Dpto1	Ventas	•••
Dpto2	Estadística	•••
Dpto3	Compras	•••

Estructura de los datos

- Una relación R definida sobre un conjunto de dominios D1, D2,Dn, consta de:
 - Cabecera = conjunto finito de pares atributo:dominio {(A1:D1),(A2:D2),.....(An:Dn)} donde cada atributo Aj se corresponde con un único dominio Dj (y no al contrario) no habiendo dos atributos que se llamen igual
 - Cuerpo = conjunto variable de tuplas
- **TUPLA:** Cada tupla es un conjunto de pares *atributo:valor* {(A1:Vi1),(A2:Vi2),.....(An:Vin)} con i=1, 2,....m, donde m es la cardinalidad de R

En cada par (Aj:Vij) se tiene que Vij € Dj

Estructura de los datos

TUPLA: cada una de la filas de la tabla

ATRIBUTO: cada columna de la tabla

DOMINIO: conjunto de valores al que pertenece cada uno de

los valores de una columna específica

GRADO: no de atributos de una relación

CARDINALIDAD: no de tuplas de una relación

BASE DE DATOS RELACIONAL: conjunto de relaciones

normalizadas

Estructura de los datos

Ejemplo: la relación Departamento

Nombre	Función
Dpto1	Ventas
Dpto2	Estadística
Dpto3	Compras

Cabecera: {(Nombre: NOMBRE), (Función: FUNCIÓN)}

Cuerpo: una tupla {(Nombre: Dpto1), (Función: Ventas)}

Estructura de los datos

Propiedades de las relaciones:

- Cada R tiene un nombre y éste es distinto del de las demás
- Cada R tiene un no fijo de atributos para todas las tuplas
- Cada atributo tiene un único dominio
- El orden de los atributos no importa
- Dos atributos de una R no tienen el mismo nombre
- Los valores de los atributos son atómicos: en cada tupla un atributo toma un solo valor del dominio
- Cada tupla es distinta de las demás. No hay tuplas duplicadas
- El orden de las tuplas no importa

Estructura de los datos

Claves:

En una R no hay tuplas repetidas, por lo que se pueden distinguir unas de otras, es decir, se pueden identificar mediante los valores de sus atributos

Superclave:

atributo o conjunto de atributos que identifican de modo único las tuplas de una R

Clave candidata:

superclave en la que ninguno de sus subconjuntos es superclave de la R

Un atributo o conjunto de atributos K de R es clave candidata si y solo si satisface:

a) Unicidad: no hay dos tuplas en R con el mismo valor de K

b) Minimalidad: ningún subconjunto de K tiene la propiedad de unicidad, es decir, no se pueden eliminar componentes de K sin destruir la unicidad

Estructura de los datos

Claves:

- Una R puede tener varias claves candidatas
- Una R siempre tiene al menos una clave candidata (aunque tenga que estar formada por todos los atributos)
- Para identificar las claves candidatas de una R no hay que fijarse en un estado o instancia de la BD, porque el hecho de que en un momento dado no haya duplicados no quiere decir que no los vaya a haber.
- El único modo de identificar las claves candidatas es conociendo el significado real de los atributos, ya que estos permite saber si es posible que aparezcan duplicados

Estructura de los datos

Claves:

Clave primaria:

clave candidata que se escoge (por algún criterio) para identificar de modo único las tuplas de la R

 Una R siempre tiene una clave primaria (ya que al menos existe una clave candidata)

Claves alternativas:

claves candidatas que no son elegidas como clave primaria

Claves ajenas:

atributo o conjunto de atributos de una R que son clave primaria en otra R

- Las claves ajenas representan relaciones entre datos
- Se dice que una clave ajena <u>referencia</u> a la tupla que contiene el mismo valor en su clave primaria (tupla referenciada)

Estructura de los datos

Claves:

Criterios para elegir la clave primaria:

- Elegir la clave que sirva para acceder directamente a las ocurrencias en el mayor nº de operaciones
- 2. No debe cambiar a lo largo del tiempo (si además es clave ajena en otras R supone un problema los cambios)
- 3. Es preferible una clave simple a una compuesta

(Si la clave >= tres atributos → identificador arbitrario)

Identificador arbitrario: valor único generado por la BD en el momento de insertar la trupla

 Se debe evitar que las claves ajenas formen parte de la clave primaria

Reglas de Integridad de datos

- La integridad es uno de los objetivos que debe cumplir cualquier SGBD
- Parte de este objetivo se cumple si se cumple la coherencia y veracidad de la información de la BD
- Las operaciones de inserción, borrado y modificación de tuplas pueden afectar a la integridad
- Si el SGBD no asegura desde un principio la integridad, deberá ser garantizada por las aplicaciones
- Para mantener la integridad de la BD hay que tener en cuenta algunas restricciones, por ej., restricciones de dominio cada vez que se inserte o modifique algún valor de un atributo
- Las restricciones principales que se deben cumplir en todas las BD relaciones (y en todos sus estados o instancias, o sea, siempre) son:
 - a) Reglas de Integridad de la Entidad
 - b) Reglas de Integridad Referencial
 - c) Reglas (restricciones) del negocio

Reglas de Integridad de datos

a) Integridad de la entidad

Ningún atributo que forma parte de la clave primaria puede ser nulo

Nulo= ausencia de valor, valor desconocido No se trata del valor 0, o ħ, o cadena vacía

→ Comprobaciones en cada inserción y modificación

Reglas de Integridad de datos

b) Integridad referencial

los valores de una clave ajena o coinciden con un valor de la clave primaria a la que referencian o son nulos

- Un valor nulo en la clave ajena significa que la interrelación entre las entidades es opcional
- Si la clave ajena no toma nunca valores nulos la interrelación es obligatoria
- Para cada clave ajena se debe especificar si debe o no tomar valor nulo y determinar las consecuencias de las operaciones de inserción, borrado y modificación sobre las tuplas de la relación referenciada
- ¿Qué hacer si estando en un estado legal (íntegro) de la BD llega una petición para realizar una operación que conduce a un estado ilegal?
 - Rechazar la operación
 - Aceptar la operación y realizar operaciones adicionales compensatorias que conduzcan a un estado legal

Reglas de Integridad de datos

Opciones para mantener la Integridad referencial

NULOS NO PERMITIDOS:

No se admiten valores nulos de la clave ajena, siempre han de coincidir con un valor de la calve primaria

RESTRINGIDO:

Un valor de clave primaria no puede ser modificado ni borrado si existe alguna tupla en otra R que lo contenga como clave ajena

TRANSMISIÓN EN CASCADA:

El borrado o modificación de una tupla de una R que contiene la clave primaria referenciada en otra R' por una clave ajena

El borrado o modificación en cascada de todas las tuplas de las R's en las que contengan esa clave como ajena

Reglas de Integridad de datos

Opciones para mantener la Integridad referencial

PUESTA A NULOS:

El borrado o modificación de una tupla de una R que contiene la clave primaria referenciada en otra R' por una clave ajena

La puesta a nulo del valor de la clave ajena en todas las tuplas de las R's en las que contengan esa clave como ajena

PUESTA A UN VALOR POR DEFECTO

El borrado o modificación de una tupla de una R que contiene la clave primaria referenciada en otra R' por una clave ajena

La puesta a un valor por defecto de la clave ajena en todas las tuplas de las R's en las que contengan esa clave como ajena

Reglas de Integridad de datos

b) Reglas (restricciones) del negocio:

Además de las restricciones anteriores, los administradores de la BD deben imponer ciertas restricciones específicas sobre los datos, como:

Restricciones de dominio:
No se permite introducir valores

de atributos que no pertenezcan

al dominio

- Definir atributos opcionales u obligatorios
- Reglas del negocio:

Ejemplo: "No se pueden prestar más de tres ejemplares"

"El stock no debe ser inferior a x unidades"

Arquitectura

Como todos los SGBD se basa en la arquitectura tres niveles

ESQUEMA CONCEPTUAL:

- Se define mediante las relaciones, con su nombre, atributos, dominios y claves (primarias, alternativas, ajenas)
- Restricciones
- Se representa mediante un grafo (GRAFO RELACIONAL)

GRAFO RELACIONAL

grafo dirigido cuyos nodos son las relaciones de la BD y los arcos representan las restricciones de clave ajena, y en el que aparecen además las restricciones de clave primaria, unicidad y obligatoriedad

Arquitectura

ESQUEMA CONCEPTUAL:

GRAFO RELACIONAL

Convenciones de representación:

- Nombre de las tablas en mayúsculas y negrita
- Nombre de atributos en mayúsculas y entre ()
- Clave primaria subrayada
- Claves alternativas en negrita
- Claves ajenas en cursiva y flecha dirigida hacia la tabla referenciada
- Atributos que pueden tomar valores nulos con *
- Opciones de integridad referencial:

Borrado: B:R B:C B:N B:D

Modificación: M:R M:C M:N M:D

Arquitectura

ESQUEMA CONCEPTUAL:

GRAFO RELACIONAL

Ejemplo:

➤ **PINTORES** (<u>NOMBRE-ART</u>, **NOMBRE**, PAIS, FECHA-NAC, FECHA-DEF*)

(B:N, M:C)

CUADROS (TITULO, DIMENSIONES, AUTOR*, TIPO)

Arquitectura

ESQUEMA CONCEPTUAL:

Otros mecanismos que proporciona el modelo relacional para recoger restricciones semánticas o de usuario

PRIMARY KEY Clave primaria:

UNIQUE (para claves alternativas) Unicidad:

□ Obligatoriedad: NOT NULL

FOREIGN KEY B:R B:C B:N B:D

M:R M:C M:N M:D ☐ Clave ajena:

□ Aserción: ASSERTION { Restricción entre elementos de distintas relaciones

Disparadores: TRIGGER Especifica qué hacer cuando se produce un rechazo pro no cumplir alguna restricción semántica (no todos los SGBD los soportan)

Arquitectura

ESQUEMA INTERNO:

- Cada tabla del esquema conceptual se almacena en un archivo.
- Para cada clave candidata se crea un índice
- Métodos de acceso a cada archivo
- _____

Arquitectura

ESQUEMA EXTERNO:

Se define mediante VISTAS

VISTA: tabla virtual que se forma a partir de las tablas del esquema conceptual.

- No tienen correspondencia con el nivel interno,
- No se almacenan físicamente.
- Su definición estará en el DD
- Las vista no pueden modificar los datos (normalmente)
- Las pueden manejar los usuarios
- Las tuplas de las vistas son el resultado de consultas a la BD
- o Se forman:
 - Seleccionando atributos de una tabla
 - Uniendo tablas por atributos comunes
 - De ambas formas anteriores
 - A partir de otras vistas

Arquitectura

ESQUEMA EXTERNO

ESQUEMA CONCEPTUAL

ESQUEMA INTERNO

