你永远不知道一个强迫症能干出什么事情

倪兴程¹

2024年10月18日

¹Email: 19975022383@163.com

Todo list

域的概念
齐次方程组的解
齐次方程组的解与逆矩阵
回头改证明,同时注意数域问题 32
线性方程组解链接
链接方程组秩与维数的公式 32
数域问题 40
链接线性方程组的关系 46
Schimidt 正交化链接
可逆矩阵行列式链接 6
可逆矩阵行列式链接 62
有空证明 64
行列式等于特征值的积,行列式大于0矩阵可逆 69
转置秩不变
对称幂等阵

目录

第一章	线性空间	1		
1.1	线性空间	1		
	1.1.1 线性空间的概念与基本性质	1		
	1.1.2 线性相关与线性无关	3		
	1.1.3 子空间	11		
	1.1.4 线性空间的同构	8		
	1.1.5 商空间	20		
1.2	线性变换 2	23		
	1.2.1 线性变换的定义与基本性质	23		
	1.2.2 线性映射的矩阵表示	26		
	1.2.3 常见线性映射 2	26		
1.3	内积空间 2	29		
第二章	矩阵 30			
2.1	72,12,4	30		
	2.1.1 矩阵的运算 3	30		
	2.1.2 矩阵的行列式	32		
2.2	矩阵的向量空间			
2.3	线性方程组			
2.4	矩阵的等价关系 3	34		
	2.4.1 相抵	34		
	2.4.2 相似	35		
	2.4.3 合同 3	35		
2.5	相抵的应用	38		
	2.5.1 广义逆 3	38		
	2.5.2 Moore-Penrose 广义逆	11		
	2.5.3 线性方程组的解	15		
2.6	相似的应用	17		
	2.6.1 特征值与特征向量 4	17		

目录	iii

	2.62	65 Pt 66 24 A. D.	~ 1
		矩阵的对角化	
	2.6.3	Hermitian 矩阵的对角化	52
2.7	合同的	∮应用──二次型	56
	2.7.1	二次型的规范形	57
	2.7.2	正定二次型与正定矩阵	59
2.8	特殊矩	巨阵	64
	2.8.1	幂等阵	64
2.9	矩阵的	5分解	66
	2.9.1	SVD 分解	66
第三章	线性模	莫型 では、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	68

iv

Chapter 1

线性空间

1.1 线性空间

1.1.1 线性空间的概念与基本性质

Definition 1.1. 设 S 是一个非空集合, $S \times S$ 是 S 与自身的一个 Cartesian product (定义可见??),则 $f: S \times S \to S$ 称为 S 上一个二元代数运算 (binary algebraic operation),简称为 S 上的一个运算。

线性空间的定义

Definition 1.2. 设 X 是一个非空集合,F 是一个域。如果 X 上有一个运算,即 $f:(\alpha,\beta)$ → 域的概念 $\gamma(\alpha,\beta,\gamma\in X)$,将该运算称为加法 (addition),把 γ 称为 α 与 β 的和 (sum),记作 $\alpha+\beta=\gamma$;同时 F 与 X 有一个运算,即 $g:(k,\alpha)\to\delta(k\in F,\alpha,\delta\in X)$,将该运算称为纯量乘法 (scalar multiplication),把 δ 称为 k 与 α 的纯量乘积 (scalar multiple),记作 $k\alpha=\delta$ 。若上述 两个运算还满足以下 8 条运算法则:

- *I.* $\forall \alpha, \beta \in X, \alpha + \beta = \beta + \alpha$;
- 2. $\forall \alpha, \beta, \gamma \in X$, $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$;
- 3. X 中有一个元素,记作 $\mathbf{0}$, 称为 X 的零元 (zero vector),它使得:

$$\forall \alpha \in X, \ \alpha + \mathbf{0} = \alpha$$

4. 对于任意的 $\alpha \in X$,存在与之对应的 $\beta \in X$,称为 α 的负元 (additive inverse),记作 $-\alpha$,它使得:

$$\alpha + \beta = \mathbf{0}$$

- 5. F 中的单位元 1 满足 $\forall \alpha \in X$, $1\alpha = \alpha$;
- 6. $\forall \alpha \in X, k, l \in F, (kl)\alpha = k(l\alpha);$

- 7. $\forall \alpha \in X, k, l \in F, (k+l)\alpha = k\alpha + l\alpha$;
- 8. $\forall \alpha, \beta \in X, k \in F, k(\alpha + \beta) = k\alpha + k\beta$.

那么称 X 是域 F 上的一个线性空间 (linear space), 称 X 中的元素为向量 (vector)。

线性空间的基本性质

Property 1.1.1. 域 F 上的线性空间 X 具有如下性质:

- I. X 中的零元是唯一的;
- 2. X 中每个元素的负元是唯一的;
- 3. $\forall \alpha \in X, 0\alpha = \mathbf{0};$
- 4. $\forall k \in F, k0 = 0$;
- 5. 设 $k \in F$, $\alpha \in X$ 。如果 $k\alpha = 0$, 那么 k = 0 或 $\alpha = 0$ 。
- 6. $\forall \alpha \in X, (-1)\alpha = -\alpha;$

Proof. (1) 假设 X 中有两个零元 $\mathbf{0}_1, \mathbf{0}_2 \perp \mathbf{0}_1 \neq \mathbf{0}_2$,由线性空间运算法则 (3) 可得:

$$\mathbf{0}_1 + \mathbf{0}_2 = \mathbf{0}_1, \ \mathbf{0}_2 + \mathbf{0}_1 = \mathbf{0}_2$$

而由线性空间运算法则(1)可得:

$$\mathbf{0}_1 + \mathbf{0}_2 = \mathbf{0}_2 + \mathbf{0}_1$$

于是 $\mathbf{0}_1 = \mathbf{0}_2$,产生矛盾,所以 X 中的零元是唯一的。

(2) 任取 X 中的一个元素 α ,假设它有两个负元 β_1, β_2 。由线性空间运算法则 (4)(3)(2) 可得:

$$(\beta_1 + \alpha) + \beta_2 = \mathbf{0} + \beta_2 = \beta_2$$

 $(\beta_1 + \alpha) + \beta_2 = \beta_1 + (\alpha + \beta_2) = \beta_1 + \mathbf{0} = \beta_1$

所以 $\beta_1 = \beta_2$,产生矛盾。由 α 的任意性,X 中每个元素的负元都是唯一的。

(3) 由线性空间运算法则 (7) 可得:

$$0\alpha + 0\alpha = (0+0)\alpha = 0\alpha$$

两边同时加上 -0α 可得:

$$0\alpha + 0\alpha + (-0\alpha) = 0\alpha + (-0\alpha)$$

由线性空间运算法则 (2)(4) 和 (3) 可得:

(4) 由线性空间运算法则(8)和(3)可得:

$$k\mathbf{0} + k\mathbf{0} = k(\mathbf{0} + \mathbf{0}) = k\mathbf{0}$$

两边加上 $-k\mathbf{0}$ 再由线性空间运算法则 (2)(4) 和 (3) 可得:

$$k\mathbf{0} = \mathbf{0}$$

(5) 如果 $k \neq 0$,依次由线性空间运算法则 (5)、(6) 和线性空间基本性质 (4) 可得:

$$\alpha = 1\alpha = (k^{-1}k)\alpha = k^{-1}(k\alpha) = k^{-1}\mathbf{0} = \mathbf{0}$$

(6) 由线性空间运算法则 (5) 与 (7) 以及线性空间基本性质 (3) 可得:

$$\alpha + (-1)\alpha = 1\alpha + (-1)\alpha = (1-1)\alpha = 0\alpha = \mathbf{0}$$

再由负元的定义, $(-1)\alpha = -\alpha$ 。

Definition 1.3. 设 X 是域 F 上的线性空间。由性质 I.I.I(2),定义 $f:(\alpha,\beta) \to \alpha + (-\beta) \in X(\alpha,\beta \in X)$,将该运算称为减法 (subtraction),把 $\alpha + (-\beta)$ 称为 α 与 β 的差 (difference),记作 $\alpha - \beta = \alpha + (-\beta)$ 。

1.1.2 线性相关与线性无关

Definition 1.4. X 是域 F 上的线性空间。按照一定顺序写出的有限多个向量(允许有相同的向量)称为 X 的一个向量组 (set of vectors),如 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 。

Definition 1.5. X 是域 F 上的线性空间。对于 X 中的一组向量 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 和 F 中的一组元素 k_1, k_2, \ldots, k_n ,作纯量乘法和加法得到:

$$\sum_{i=1}^{n} k_i \alpha_i \in X$$

称该向量为 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 的一个线性组合 (linear combination)。

Definition 1.6. X 是域 F 上的线性空间。若 $\beta \in X$ 可以表示成向量组 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 的一个线性组合,则称 β 可以由 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性表出。

Definition 1.7. X 是域 F 上的线性空间。按照如下方式定义 X 中对象的与:

Theorem 1.1. 在域 F 上的线性空间 X 中,如果向量组的一个部分组线性相关,那么这个向量组线性相关。

Proof. 取 X 中的向量组 $\alpha_1, \alpha_2, ..., \alpha_n$,其部分组 $\alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_m}$, $i_m, m \leq n$ 线性相关,即 F 中存在不全为 0 的一组元素 $k_{i_1}, k_{i_2}, ..., k_{i_m}$ 使得:

$$k_{i_1}\alpha_{i_1} + k_{i_2}\alpha_{i_2} + \cdots + k_{i_m}a_{i_m} = \mathbf{0}$$

研究对象	线性相关	线性无关
X 中的向量组	F 中有不全为 0 的元素	从 $\sum\limits_{i=1}^n k_i lpha_i = 0$ 可以推出 $k_1 = k_2 = \cdots = k_n = 0$
$\alpha_1, \alpha_2, \dots, \alpha_n$	k_1, k_2, \dots, k_n 使得 $\sum_{i=1}^n k_i \alpha_i = 0$	$k_1 = k_2 = \dots = k_n = 0$
空集		定义空集是线性无关的
X 的非空有限子集	给这个子集的元素一种编号	给这个子集的元素一种编号所得的
	所得的向量组线性相关	向量组线性无关
X 的无限子集 W	W 有一个有限子集线性相关	W 的任一有限子集都线性无关

在:

$$l_1\alpha_1 + l_2\alpha_2 + \dots + l_n\alpha_n$$

中取 $l_{i_j} = k_{i_j}, \ j = 1, 2, ..., m$,其余系数为 0,则 $l_1, l_2, ..., l_n$ 不全为 0 同时上式值为 **0**,即向量组 $\alpha_1, \alpha_2, ..., \alpha_n$ 线性相关。

Corollary 1.1. 在域 F 上的线性空间 X 中,包含 0 的向量组是线性相关的。

Proof. 0 作为向量组的部分组是线性相关的。

Theorem 1.2. 在域 F 上的线性空间 X 中,元素个数大于 1 的向量集 W 线性相关当且仅当 W 中至少有一个向量可以由其余向量中的有限多个线性表出,从而 W 线性无关当且仅当 W 中的每一个向量都不能由其余向量中的有限多个线性表出。

Proof. 由线性相关的定义立即得出。

Definition 1.8. X 是域 F 上的线性空间。设向量 $\beta \in X$ 可以由向量集 $W \subseteq X$ 中有限多个向量线性表出,则称 β 可以由向量集 W 线性表出。

Theorem 1.3. X 是域 F 上的线性空间,向量 $\beta \in X$ 可以由向量集 $W \subseteq X$ 线性表出,则表示方法唯一的充分必要条件是 W 线性无关。

Proof. (1) 充分性: 因为 β 可以由向量集 W 线性表出,假设此时 β 有以下两种表出方式:

$$\beta = k_1 \alpha_1 + \dots + k_r \alpha_r + k_{r+1} u_1 + \dots + k_{r+s} u_s$$
$$\beta = l_1 \alpha_1 + \dots + l_r \alpha_r + l_{r+1} v_1 + \dots + l_{r+t} v_t$$

其中 $\alpha_1, \alpha_2, \ldots, \alpha_r, u_1, u_2, \ldots, u_s, v_1, v_2, \ldots, v_t \in W, k_1, \ldots, k_{r+s}, l_1, \ldots, l_{r+t} \in F, r, s, t \ge 0$ 。二式作差可得:

$$\mathbf{0} = (k_1 - l_1)\alpha_1 + \dots + (k_r - l_r)\alpha_r + k_{r+1}u_1 + \dots + k_{r+s}u_s - l_{r+1}v_1 - \dots - l_{r+t}v_t$$

因为 W 线性无关,所以向量组 $\alpha_1, \alpha_2, \ldots, \alpha_r, u_1, u_2, \ldots, u_s, v_1, v_2, \ldots, v_t$ 线性无关,于是:

$$k_1 - l_1 = 0, \dots, k_r - l_r = 0, k_{r+1} = 0, \dots, k_{r+s} = 0, l_{r+1} = 0, \dots, l_{r+t} = 0$$

所以两个表出方式完全相同, β 由 W 线性表出的表示方法唯一。

(2) 必要性: 如果 W 线性相关,则 W 有一个有限子集 $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ 线性相关,于是 F 中有不全为 0 的元素 $k_1, k_2, ..., k_n$ 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n = \mathbf{0}$$

由于 β 可以由 W 线性表出,所以:

$$\beta = l_1 \alpha_1 + \dots + l_n \alpha_n + l_{n+1} v_1 + \dots + l_{n+s} v_s$$

其中 $l_i \in F$, i = 1, 2, ..., n; $v_j \in X$, j = 1, 2, ..., s。 将上两式相加可得:

$$\beta = (l_1 + k_1)\alpha_1 + \dots + (l_n + k_n)\alpha_n + l_{n+1}v_1 + \dots + l_{n+s}v_s$$

因为 k_1, k_2, \ldots, k_n 不全为 0, 所以有序元素组:

$$(l_1,\ldots,l_n,l_{n+1},\ldots,l_{n+s}) \neq (l_1+k_1,\ldots,l_n+k_n,l_{n+1},\ldots,l_{n+s})$$

于是 β 由W线性表出的方式不唯一,矛盾,所以W线性无关。

Theorem 1.4. 在域 F 上的线性空间 X 中,若向量组 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关,则向量 β 可以由向量组 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性表出的充分必要条件为 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性相关。

Proof. (1) 充分性: 因为 $\alpha_1, \alpha_2, ..., \alpha_n, \beta$ 线性相关, 所以域 F 中存在不全为 0 的元素 $k_1, k_2, ..., k_n, l$ 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n + l\beta = \mathbf{0}$$

若 l=0,则域 F 中存在不全为 0 的元素 k_1,k_2,\ldots,k_n 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n = \mathbf{0}$$

这与向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关矛盾, 所以 $l \neq 0$ 。于是:

$$\beta = -\frac{k_1}{l}\alpha_1 - \frac{k_2}{l}\alpha_2 - \dots - \frac{k_n}{l}\alpha_n$$

即向量 β 可以由向量组 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性表出。

(2) 必要性: 因为 β 可以由向量组 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性表出,所以域 F 中存在不全为 0 的元素 k_1, k_2, \ldots, k_n, l 使得:

$$\beta = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n$$

移项即可得到:

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n - \beta = \mathbf{0}$$

因为 $-1 \neq 0$,所以 $\alpha_1, \alpha_2, \ldots, \alpha_n, \beta$ 线性相关。

第一章 线性空间

极大线性无关组与秩

Definition 1.9. 设 X 是域 F 上的一个线性空间。向量组 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 中的一个部分组若满足下述条件:

- 1. 本身线性无关;
- 2. 若该部分组不等于向量组,则从向量组的其余向量中任取一个向量添加进该部分组 都将使部分组线性相关。若该部分组等于向量组,则跳过此条件。

则称该部分组是向量组的一个极大线性无关组 (maximal linearly independent system)。

Definition 1.10. 如果向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 的每一个向量都可以由向量组 $\beta_1, \beta_2, \ldots, \beta_r$ 线性表出,那么称向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可以由向量组 $\beta_1, \beta_2, \ldots, \beta_r$ 线性表出。如果向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 和向量组 $\beta_1, \beta_2, \ldots, \beta_r$ 可以互相线性表出,则称两个向量组等价 (equivalent),记作:

$$\{\alpha_1, \alpha_2, \dots, \alpha_s\} \cong \{\beta_1, \beta_2, \dots, \beta_r\}$$

Theorem 1.5. X 是数域 K 上的一个线性空间。X 中向量组的等价是 X 中向量组的一个等价关系。

Proof. (1) 反身性与 (2) 对称性显然成立。

(3) 传递性: 若向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可以由向量组 $\beta_1, \beta_2, \ldots, \beta_r$ 线性表出,且向量组 $\beta_1, \beta_2, \ldots, \beta_r$ 可以由向量组 $\gamma_1, \gamma_2, \ldots, \gamma_t$ 线性表出,于是有:

$$\alpha_i = \sum_{j=1}^r k_{j_i} \beta_j, \ i = 1, 2, \dots, s \quad \beta_j = \sum_{l=1}^t q_{l_j} \gamma_l, \ j = 1, 2, \dots, r$$

于是:

$$\alpha_i = \sum_{j=1}^r k_{j_i} \left(\sum_{l=1}^t q_{l_j} \gamma_l \right) = \sum_{j=1}^r \sum_{l=1}^t k_{j_i} q_{l_j} \gamma_l = \sum_{l=1}^t \left(\sum_{j=1}^r k_{j_i} q_{l_j} \right) \gamma_l, \ i = 1, 2, \dots, s$$

即向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可以由向量组 $\gamma_1, \gamma_2, \ldots, \gamma_t$ 线性表出。传递性得证。

Theorem 1.6. 一个向量组与它的任意一个极大线性无关组等价。

Proof. 设 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 是一个向量组,任取它的一个极大线性无关组 $\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_n}$ 。显然 $\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_n}$ 可以由 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性表出。由极大线性无关组的定义与定理 1.4可直接得到 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可以由 $\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_n}$ 线性表出。

Corollary 1.2. 一个向量组的任意两个极大线性无关组等价。

Proof. 由上一个定理以及向量组等价的对称性与传递性可直接推出。 □

Theorem 1.7. 在域 F 上的线性空间 X 中, 若向量组 $\beta_1, \beta_2, \ldots, \beta_r$ 可以由向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性表出,同时 r > s,那么向量组 $\beta_1, \beta_2, \ldots, \beta_r$ 线性相关。

Proof. 考虑方程:

$$k_1\beta_1 + k_2\beta_2 + \dots + k_r\beta_r = \mathbf{0}$$

因为向量组 $\beta_1, \beta_2, \ldots, \beta_r$ 可以由向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性表出,所以:

$$\begin{cases} \beta_1 = a_{11}\alpha_1 + a_{12}\alpha_2 + \dots + a_{1s}\alpha_s \\ \beta_2 = a_{21}\alpha_1 + a_{22}\alpha_2 + \dots + a_{2s}\alpha_s \\ \vdots \\ \beta_r = a_{r1}\alpha_1 + a_{r2}\alpha_2 + \dots + a_{rs}\alpha_s \end{cases}$$

则有:

$$k_{1}\beta_{1} + k_{2}\beta_{2} + \dots + k_{r}\beta_{r} = k_{1}(a_{11}\alpha_{1} + a_{12}\alpha_{2} + \dots + a_{1s}\alpha_{s})$$

$$+ k_{2}(a_{21}\alpha_{1} + a_{22}\alpha_{2} + \dots + a_{2s}\alpha_{s}) + \dots$$

$$+ k_{r}(a_{r1}\alpha_{1} + a_{r2}\alpha_{2} + \dots + a_{rs}\alpha_{s})$$

$$= (k_{1}a_{11} + k_{2}a_{21} + \dots + k_{r}a_{r1})\alpha_{1}$$

$$+ (k_{1}a_{12} + k_{2}a_{22} + \dots + k_{r}a_{r2})\alpha_{2} + \dots$$

$$+ (k_{1}a_{1s} + k_{2}a_{2s} + \dots + k_{r}a_{rs})\alpha_{s}$$

$$= \mathbf{0}$$

将上式看作 k_1, k_2, \ldots, k_r 的线性方程,考虑如下齐次线性方程组:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1s} \\ a_{21} & a_{22} & \cdots & a_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rs} \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_r \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

因为 s < r,所以上述齐次线性方程组必有非零解。取它的一个非零解 (k_1, k_2, \ldots, k_r) ,由性质 1.1.1(3) 和线性空间运算法则 (3) 即可得:

_ 齐次方程组 的解

$$k_1\beta_1 + k_2\beta_2 + \dots + k_r\beta_r = 0\alpha_1 + 0\alpha_2 + \dots + 0\alpha_s = \mathbf{0}$$

于是向量组 $\beta_1, \beta_2, \ldots, \beta_r$ 线性相关。

Corollary 1.3. 上述定理可以得到如下推论:

- I. 在域 F 上的线性空间 X 中,若向量组 $\beta_1, \beta_2, \ldots, \beta_r$ 可以由向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性表出,同时向量组 $\beta_1, \beta_2, \ldots, \beta_r$ 线性无关,就有 $r \leq s$ 。
- 2. 等价的线性无关的向量组所含向量的个数相同。
- 3. 一个向量组的任意两个极大线性无关组所含向量的个数相同。

Proof. (1) 是上述定理的逆否命题, (2) 可由 (1) 直接得到, (3) 可由 (2) 直接得到。 □

Definition 1.11. 向量组的极大线性无关组所含向量的个数称为这个向量组的秩 (rank)。把向量组 $\alpha_1,\alpha_2,\ldots,\alpha_s$ 的秩记作 $rank\{\alpha_1,\alpha_2,\ldots,\alpha_s\}$ 。全由零向量组成的向量组的秩规定为 0。

Theorem 1.8. 从向量组秩的定义可推出下述定理:

- I. 在域 F 上的线性空间 X 中,向量组 $\alpha_1,\alpha_2,\ldots,\alpha_s$ 线性无关的充分必要条件是它的 秩等于它所含向量的个数。
- 2. 如果向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可以由向量组 $\beta_1, \beta_2, \ldots, \beta_r$ 线性表出, 那么:

$$rank{\alpha_1, \alpha_2, \dots, \alpha_s} \leq rank{\beta_1, \beta_2, \dots, \beta_r}$$

3. 等价的向量组具有相等的秩。

Proof. (1) $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性无关 ⇔ 极大线性无关组就是自身 ⇔ 秩等于所含向量的个数。

(2) 任取向量组 $\alpha_1, \alpha_2, ..., \alpha_s$ 的一个极大线性无关组 $\alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_n}$,再取向量组 $\beta_1, \beta_2, ..., \beta_r$ 的一个极大线性无关组 $\beta_{j_1}, \beta_{j_2}, ..., \beta_{j_m}$ 。因为向量组 $\alpha_1, \alpha_2, ..., \alpha_s$ 可以由 向量组 $\beta_1, \beta_2, ..., \beta_r$ 线性表出,所以 $\alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_n}$ 可以由 $\beta_{j_1}, \beta_{j_2}, ..., \beta_{j_m}$ 线性表出,因为 $\alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_n}$ 线性无关,由推论 1.3(1) 可得, $n \leq m$,即 $rank\{\alpha_1, \alpha_2, ..., \alpha_s\} \leq rank\{\beta_1, \beta_2, ..., \beta_r\}$ 。

基与维数

Definition 1.12. 设 X 是域 F 上的一个线性空间。X 中的向量集 S 若满足下述条件:

- 1. 本身线性无关:
- 2. X 中的每一个向量都可以由 S 中有限多个向量线性表出。

则称 S 是向量组的一个基 (basis)。

Theorem 1.9. 任一域 F 上的任一线性空间 X 都有一个基。

该定理的证明不提供, 涉及 Zorn 引理。

Definition 1.13. X 是域 F 上的线性空间。如果 X 的一个基是由有限多个向量组成的,那 么称 X 是有限维的 (finite-dimensional);如果 X 有一个基含有无穷多个向量,则称 X 是无限维的 (infinite-dimensional)。

Theorem 1.10. 如果域 F 上的线性空间 X 是有限维的,那么 X 的任意两个基所含向量的个数相同。

Proof. 由有限维线性空间的定义,X 存在一个基只有有限多个向量,记为 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 。 再取 X 的一个基 S,从中取出 n+1 个向量 $\beta_1,\beta_2,\ldots,\beta_{n+1}$ (考虑 S 可能含有无数个向量的情况)。因为 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 是 X 的基,所以 $\beta_1,\beta_2,\ldots,\beta_{n+1}$ 可以由 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 线性表出。因为 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 线性无关,所以 $\beta_1,\beta_2,\ldots,\beta_{n+1}$ 线性相关,而此时 S 也应线性相关,矛盾,所以 S 中的元素小于 n+1 个。设 $S=\{\beta_1,\beta_2,\ldots,\beta_m\}$,则 S 与 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 都线性无关且二者等价,由推论 1.3(2),它们具有相同的秩,即所含向量个数相同。由 S 的任意性与向量组等价的传递性、对称性,X 的任意两个基所含向量的个数相同。

Corollary 1.4. 如果域 F 上的线性空间 X 是无限维的,那么 X 的任意一个基都含有无穷多个向量。

Proof. 如果 X 有一个基由有限多个向量组成,那么 X 也是一个有限维线性空间,而有限维线性空间所有基所含向量的个数都相同,那么 X 就不可能有一个基含有无穷多个向量,与无穷维线性空间的定义矛盾。

Definition 1.14. X 是域 F 上的线性空间。如果 X 是有限维的,那么把 X 的基所含向量的个数称为 X 的,记作 $\dim V$; 如果 X 是无限维的,那么记 $\dim V = +\infty$ 。

Theorem 1.11. n 维线性空间中任意 n+1 个向量都线性相关。

Proof. 任意 n+1 个向量都可以由一组基线性表出,而每一组基所含向量个数都是 n,由定理 1.7,这 n+1 个向量线性相关。。 □

Theorem 1.12. 设 X 是域 F 上的 n 维线性空间,则:

- 1. X 中任意 n 个线性无关的向量都是 X 的一组基;
- 2. 如果 X 中任一向量都可以由 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 线性表出,则 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 是 X 的一组 基。

Proof. (1) 任取 X 中 n 个线性无关的向量 $\alpha_1, \alpha_2, \ldots, \alpha_n$,对任意的 $\beta \in X$,由上一个定理,向量组 $\alpha_1, \alpha_2, \ldots, \alpha_n$,线性相关。由定理 1.4, β 可以由 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性表出。由基的 定义, $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是 X 的一组基。由 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 的任意性,命题成立。

(2) 取 X 的一组基 $\beta_1, \beta_2, \ldots, \beta_n$,则 $\beta_1, \beta_2, \ldots, \beta_n$ 可以由 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性表出。由定理 $1.8(2), n = \text{rank}\{\beta_1, \beta_2, \ldots, \beta_n\} \leq \text{rank}\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \leq n$,所以 $\text{rank}\{\alpha_1, \alpha_2, \ldots, \alpha_n\} = n$, $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关。由 (1), $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是 X 的一组基。

Theorem 1.13. X 是域 F 上的 n 维线性空间,则 X 中任意一个线性无关的向量组都可以扩充成 X 的一组基。

Proof. 任取 X 中一个线性无关的向量组 $\alpha_1, \alpha_2, \ldots, \alpha_r$,若 r = n,由定理 1.12(1) 可知, $\alpha_1, \alpha_2, \ldots, \alpha_r$ 是 X 的一组基;若 r < n,则 X 中必定存在一个元素不能由 $\alpha_1, \alpha_2, \ldots, \alpha_r$ 线性表出,将其记为 α_{r+1} ,否则的话 $\alpha_1, \alpha_2, \ldots, \alpha_r$ 就是 X 的一组基,进而 X 的维数应是 r,矛盾。不断重复上述过程即可得到一个向量组 $\alpha_1, \alpha_2, \ldots, \alpha_n$,这就是 X 的一组基。 \square

10 第一章 线性空间

坐标与坐标变换

Definition 1.15. X 是域 F 上的 n 维线性空间, $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是 X 的一个基,由定理 I.3可知 X 中任一向量 α 由 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性表出的方式唯一:

$$\alpha = a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_n \alpha_n$$

把系数构成的 n 元有序数组写成列向量的形式,得到 $(a_1, a_2, ..., a_n)^T$,该列向量被称为 α 在基 $\alpha_1, \alpha_2, ..., \alpha_n$ 下的坐标 (coordinate)。

接下来我们要讨论的是 X 中某一向量在不同基下的坐标之间有什么关系,首先我们需要定义什么叫不同的基。

Definition 1.16. X 是域 F 上的 n 维线性空间。X 中的两个向量组 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 与 $\beta_1, \beta_2, \ldots, \beta_n$ 如果满足 $\alpha_i = \beta_i, i = 1, 2, \ldots, n$,那么称这两个向量组相等。

Definition 1.17. X 是域 F 上的 n 维线性空间。给定 V 的两个基:

$$\alpha_1, \alpha_2, \dots, \alpha_n \quad \beta_1, \beta_2, \dots, \beta_n$$

因为 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是 V 的一个基, 所以有:

$$\begin{cases} \beta_1 = a_{11}\alpha_1 + a_{12}\alpha_2 + \dots + a_{1n}\alpha_n \\ \beta_2 = a_{21}\alpha_1 + a_{22}\alpha_2 + \dots + a_{2n}\alpha_n \\ \dots \\ \beta_n = a_{n1}\alpha_1 + a_{n2}\alpha_2 + \dots + a_{nn}\alpha_n \end{cases}$$

模仿矩阵乘法的定义将上式写作:

$$(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n) \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$

将上式右端的矩阵记作 A, 称它是基 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 到基 $\beta_1, \beta_2, \ldots, \beta_n$ 的过渡矩阵 (transition matrix)。于是上式可以写作:

$$(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)A$$

由于这种写法是模仿矩阵乘法的定义,所以矩阵乘法所满足的运算法则对于这种写法也成立。

Theorem 1.14. X 是域 F 上的 n 维线性空间, $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是 X 的一个基,且向量组 $\beta_1, \beta_2, \ldots, \beta_n$ 满足:

$$(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)A$$

则 $\beta_1, \beta_2, \dots, \beta_n$ 是 X 的一个基当且仅当 A 是可逆矩阵。

齐次方程组^{*} 的解与逆矩 阵 Proof. 由可得:

$$\beta_{1},\beta_{2},\ldots,\beta_{n}$$
是 X 的一组基 \Leftrightarrow 由 $(\beta_{1},\beta_{2},\ldots,\beta_{n})$ $\begin{pmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{n} \end{pmatrix} = \mathbf{0}$ 可推出 $k_{1}=k_{2}=\cdots=k_{n}=0$
$$\Leftrightarrow$$
 由 A $\begin{pmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{n} \end{pmatrix} = \mathbf{0}$ 可推出 $k_{1}=k_{2}=\cdots=k_{n}=0$
$$\Leftrightarrow$$
 A 所线性方程组 $Ax=\mathbf{0}$ 只有零解
$$\Leftrightarrow$$
 A 可逆

Theorem 1.15. X 是域 F 上的 n 维线性空间, $\alpha_1, \alpha_2, \ldots, \alpha_n$ 和 $\beta_1, \beta_2, \ldots, \beta_n$ 是 X 上的两个基,A 是由基 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 到基 $\beta_1, \beta_2, \ldots, \beta_n$ 的过渡矩阵。若 X 中向量 α 在这两个基下的坐标分别为:

$$x = (x_1, x_2, \dots, x_n)^T, y = (y_1, y_2, \dots, y_n)^T$$

则有:

$$y = A^{-1}x$$

Proof. 因为:

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)(x_1, x_2, \dots, x_n)^T$$

$$= (\beta_1, \beta_2, \dots, \beta_n)(y_1, y_2, \dots, y_n)^T$$

$$= (\alpha_1, \alpha_2, \dots, \alpha_n)A(y_1, y_2, \dots, y_n)^T$$

所以:

$$(x_1, x_2, \dots, x_n)^T = A(y_1, y_2, \dots, y_n)^T$$

即 x=Ay。因为 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 和 $\beta_1,\beta_2,\ldots,\beta_n$ 是 X 上的两个基,所以 A 可逆,于是 $y=A^{-1}x$ 。

1.1.3 子空间

12 第一章 线性空间

子空间的定义及其判别

Definition 1.18. X 是域 F 上的一个线性空间,E 是 X 的一个非空子集。若 E 对于 X 上的加法和纯量乘法也构成域 F 上的一个线性空间,则称 E 是 X 的一个线性子空间 (linear subspace),简称为子空间 (subspace)。

Theorem 1.16. X 是域 F 上的一个线性空间,E 是 X 的一个非空子集。E 是 X 的一个子空间的充分必要条件是 E 对 X 中的加法和纯量乘法封闭,即:

$$\alpha, \beta \in E \Rightarrow \alpha + \beta \in E$$

 $k \in F, \alpha \in E \Rightarrow k\alpha \in E$

Proof. (1) 必要性:因为 $E \in X$ 的子空间,由子空间的定义,E 中的加法和纯量乘法就是 X 中的加法和纯量乘法,由加法和纯量乘法的定义,E 对 X 中的加法和纯量乘法封闭。

- **(2) 充分性**:由条件可知此时已经对 E 定义了加法和纯量乘法,且就是 X 中的加法和纯量乘法,还需要证明的是 E 对于它自身的加法和纯量乘法满足线性空间的八条运算法则。对 $\forall \alpha, \beta, \gamma \in E, \ \forall \ k, l \in F$:
 - 1. 因为 α , β , $\gamma \in E$, 所以 α , β , $\gamma \in X$, 对于 X 上的加法,有 $\alpha + \beta = \beta + \alpha$, $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$, 而 X 上的加法就是 E 上的加法,所以 E 上的加法满足线性空间运算法则 (1)(2); 同理, E 上的纯量乘法满足线性空间运算法则 (5)(6)(7)(8);
 - 2. 因为 E 不是空集,所以存在 $\delta \in E$ 。因为 $\delta \in X$,所以由 X 中的纯量乘法可得 $0\delta = \mathbf{0}_x \in E$ 。对任意的 $\alpha \in E$,有 $\alpha \in X$,根据 X 中的加法有 $\alpha + \mathbf{0}_x = \alpha$,于是 $\mathbf{0}_x$ 是 E 中的零元,即 E 满足线性空间运算法则 (3);
 - 3. 因为 E 对纯量乘法封闭,所以 $(-1)\alpha \in E$ 。因为 $\alpha + (-1)\alpha = [1 + (-1)]\alpha = 0\alpha = \mathbf{0}$ (第一步到第二步由 1,第三步到第四步因为 $\alpha \in X$),所以 $(-1)\alpha$ 是 α 的负元,即 E 满足线性空间运算法则 (4)。

子空间的性质

Theorem 1.17. 设 X 是域 F 上的一个线性空间, E 是 X 的任意一个子空间, 则有 $\dim E \leq \dim X$ 。X 是有限维时等号成立当且仅当 E = X。

Proof. 由定理 1.13可得,E 的一组基可以扩充成 X 的一组基,所以 $\dim E \leq \dim X$ 。当 E = X 时,显然 $\dim E = \dim X$ 。当 $\dim E = \dim X$ 时,由定理 1.12可知 E 的一组基就是 X 的一组基,所以 X 中的任一向量可以由 E 的基线性表出,于是 $X \subset E$,从而 E = X。

张成的子空间

Definition 1.19. 设 X 是域 F 上的一个线性空间, $\alpha_1, \alpha_2, \ldots, \alpha_n \in X$, 称:

$$W = \left\{ \sum_{i=1}^{n} k_i \alpha_i : k_i \in F \right\}$$

为向量组 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 张成的线性子空间,记作 $<\alpha_1, \alpha_2, \ldots, \alpha_n>$ 。

Property 1.1.2. 设 X 是域 F 上的一个线性空间, $\alpha_1, \alpha_2, \ldots, \alpha_n \in X$ 。 $<\alpha_1, \alpha_2, \ldots, \alpha_n>$ 具有如下性质:

- $I. < \alpha_1, \alpha_2, \dots, \alpha_n >$ 是X的一个子空间;
- $2. < \alpha_1, \alpha_2, \ldots, \alpha_n >$ 是 X 中包含 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 的最小的子空间;
- $3. < \alpha_1, \alpha_2, \ldots, \alpha_n >$ 的极大线性无关组是 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 的基;
- 4. dim $\langle \alpha_1, \alpha_2, \dots, \alpha_n \rangle = \text{rank}\{\alpha_1, \alpha_2, \dots, \alpha_n\};$
- 5. 若 $\beta_1, \beta_2, \ldots, \beta_m \in X$, 则有:

$$<\alpha_1,\alpha_2,\ldots,\alpha_n>=<\beta_1,\beta_2,\ldots,\beta_m>\Leftrightarrow \{\alpha_1,\alpha_2,\ldots,\alpha_n\}\cong \{\beta_1,\beta_2,\ldots,\beta_m\}$$

6. 若 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是 X 的一组基,则 $X = <\alpha_1, \alpha_2, \ldots, \alpha_n>$ 。

Proof. (1) 显然 $< \alpha_1, \alpha_2, \dots, \alpha_n >$ 中的元素对 X 中的加法与纯量乘法封闭。

- (2) 由子空间对加法与纯量乘法的封闭性,包含 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 的子空间必然包含 $< \alpha_1, \alpha_2, \ldots, \alpha_n > \circ$
 - (3)显然。
 - (4)由(3)直接得到。
 - (5) 充分性显然,必要性由反证法可得。
 - (6) 显然。 □

子空间的交与和

Theorem 1.18. 设 X 是域 F 上的一个线性空间,I 是一个指标集,对任意的 $i \in I$ 有 X_i 是 X 的子空间,则

$$\bigcap_{i \in I} X_i = \{\alpha : \alpha \in X_i, \ \forall \ i \in I\}$$

也是X的子空间。

Proof. 任取 $\alpha, \beta \in \bigcap_{i \in I} X_i$ 和 $k_1, k_2 \in F$ 。对任意的 $i \in I$,因为 X_i 是 X 的子空间, $\alpha, \beta \in X_i$,所以 $k_1\alpha + k_2\beta \in X_i$,于是 $k_1\alpha + k_2\beta \in \bigcap_{i \in I} X_i$ 。由定理 1.16可知 $\bigcap_{i \in I} X_i$ 是 X 的子空间。 \square

Definition 1.20. 设 X 是域 F 上的一个线性空间, X_1, X_2, \ldots, X_n 是 X 的子空间。定义:

$$\sum_{i=1}^{n} X_i = \left\{ \sum_{i=1}^{n} \alpha_i : \alpha_i \in X_i \right\}$$

Theorem 1.19. 设 X 是域 F 上的一个线性空间, $X_1, X_2, ..., X_n$ 是 X 的子空间, $n \in \mathbb{N}^+$,则 $X_1 + X_2 + ... + X_n$ 也是 X 的子空间。

Proof. 任取 $\alpha, \beta \in X_1 + X_2 + \cdots + X_n$ 和 $k_1, k_2 \in F$,则:

$$\alpha = \gamma_1 + \gamma_2 + \cdots + \gamma_n, \ \beta = \delta_1 + \delta_2 + \cdots + \delta_n$$

其中 $\gamma_i, \delta_i \in X_i, i = 1, 2, ..., n$,于是:

$$k_1\alpha + k_2\beta = \sum_{i=1}^{n} (k_i\gamma_i + k_2\delta_i)$$

因为 X_i 是 X 的子空间,所以 $k_i\gamma_i + k_2\delta_i \in X_i$,i = 1, 2, ..., n,于是 $k_1\alpha + k_2\beta \in X_1 + X_2 + \cdots + X_n$ 。由定理 1.16可得 $X_1 + X_2 + \cdots + X_n$ 是 X 的子空间。

Lemma 1.1. 设 X 是域 F 上的一个线性空间, $\alpha_1, \alpha_2, \ldots, \alpha_m, \beta_1, \beta_2, \ldots, \beta_n \in X$,则:

$$<\alpha_1,\alpha_2,\ldots,\alpha_m>+<\beta_1,\beta_2,\ldots,\beta_n>=<\alpha_1,\alpha_2,\ldots,\alpha_m,\beta_1,\beta_2,\ldots,\beta_n>$$

Proof. 由子空间与子空间和的定义可直接得到。

Theorem 1.20. 设 X 是域 F 上的一个线性空间, X_1, X_2 为 X 的有限维子空间,则 $X_1 \cap X_2, X_1 + X_2$ 也是有限维的,并且有:

$$\dim X_1 + \dim X_2 = \dim(X_1 + X_2) + \dim(X_1 \cap X_2)$$

Proof. 显然 $X_1 \cap X_2$ 是有限维的,设 $X_1, X_2, X_1 \cap X_2$ 的维数分别为 n_1, n_2, m 。取 $X_1 \cap X_2$ 的一个基 $\alpha_1, \alpha_2, \ldots, \alpha_m$,把它分别扩充为 X_1 和 X_2 的一个基 $\alpha_1, \alpha_2, \ldots, \alpha_m, \beta_1, \beta_2, \ldots, \beta_{n_1-m}$ 与 $\alpha_1, \alpha_2, \ldots, \alpha_m, \gamma_1, \gamma_2, \ldots, \gamma_{n_2-m}$ 。由引理 1.1和性质 1.1.2(6) 可得:

$$X_1 + X_2 = <\alpha_1, \alpha_2, \dots, \alpha_m, \beta_1, \beta_2, \dots, \beta_{n_1 - m} > + <\alpha_1, \alpha_2, \dots, \alpha_m, \gamma_1, \gamma_2, \dots, \gamma_{n_2 - m} >$$

$$= <\alpha_1, \alpha_2, \dots, \alpha_m, \beta_1, \beta_2, \dots, \beta_{n_1 - m}, \gamma_1, \gamma_2, \dots, \gamma_{n_2 - m} >$$

所以 $\dim(X_1 + X_2) < n_1 + n_2 - m$,即 $X_1 + X_2$ 是有限维的。设:

$$k_1\alpha_1 + \dots + k_m\alpha_m + l_1\beta_1 + \dots + l_{n_1-m}\beta_{n_1-m} + q_1\gamma_1 + \dots + q_{n_2-m}\gamma_{n_2-m} = \mathbf{0}$$

于是:

$$k_1\alpha_1 + \cdots + k_m\alpha_m + l_1\beta_1 + \cdots + l_{n_1-m}\beta_{n_1-m} = -(q_1\gamma_1 + \cdots + q_{n_2-m}\gamma_{n_2-m})$$

左边属于 X_1 ,右边属于 X_2 ,所以它们属于 $X_1 \cap X_2$ 。于是右边的向量也可以由 $\alpha_1, \alpha_2, \ldots, \alpha_m$ 线性表出,即:

$$(q_1\gamma_1 + \dots + q_{n_2-m}\gamma_{n_2-m}) = p_1\alpha_1 + \dots + p_m\alpha_m$$

因为 $\alpha_1, \alpha_2, \ldots, \alpha_m, \gamma_1, \gamma_2, \ldots, \gamma_{n_2-m}$ 是 X_2 的一个基,所以:

$$q_1 = q_2 = \dots = q_{n_2 - m} = p_1 = p_2 = \dots = p_m = 0$$

又因为 $\alpha_1, \alpha_2, \ldots, \alpha_m, \beta_1, \beta_2, \ldots, \beta_{n_1-m}$ 是 X_1 的一个基,所以:

$$k_1 = k_2 = \dots = k_m = l_1 = l_2 = \dots = l_{n_1 - m} = 0$$

于是 $\alpha_1, \alpha_2, \ldots, \alpha_m, \beta_1, \beta_2, \ldots, \beta_{n_1-m}, \gamma_1, \gamma_2, \ldots, \gamma_{n_2-m}$ 线性无关。由基的定义,它们是 X 的一组基,于是有:

$$\dim(X_1 + X_2) = m + n_1 - m + n_2 - m$$

$$= \dim(X_1 \cap X_2) + \dim(X_1) - \dim(X_1 \cap X_2) + \dim(X_2) - \dim(X_1 \cap X_2)$$

$$= \dim(X_1) + \dim(X_2) - \dim(X_1 \cap X_2)$$

即:

$$\dim X_1 + \dim X_2 = \dim(X_1 + X_2) + \dim(X_1 \cap X_2)$$

子空间的直和

Definition 1.21. 设 X 是域 F 上的线性空间, X_1, X_2, \ldots, X_n 是 X 的子空间。如果 $X_1 + X_2 + \cdots + X_n$ 中的每个向量 α 都能唯一地表示为:

$$\alpha = \sum_{i=1}^{n} \alpha_i, \ \alpha_i \in X_i$$

则称和 $X_1+X_2+\cdots+X_n$ 为直和 (direct sum),记为 $X_1\oplus X_2\oplus\cdots\oplus X_n$,也可以写作 $\oplus_{i=1}^n X_i$ 。若 $X=X_1\oplus X_2$,则称 X_2 为 X_1 的补空间 (complement)。

Theorem 1.21. 设 X 是域 F 上的线性空间, X_1, X_2, \ldots, X_n 是 X 的有限维子空间,则下列 命题等价:

- 1. 和 $X_1 + X_2 + \cdots + X_n$ 是直和;
- 2. 和 $X_1 + X_2 + \cdots + X_n$ 中零向量的表示方法唯一:
- 3. $X_i \cap \left(\sum_{j \neq i} X_j\right) = \mathbf{0}, \ i, j = 1, 2, \dots, n;$
- 4. $\dim(X_1 + X_2 + \cdots + X_n) = \dim X_1 + \dim X_2 + \cdots + \dim X_n$;
- 5. X_i , i = 1, 2, ..., n 的基合起来是和 $X_1 + X_2 + ... + X_n$ 的一个基。

前三条在 X_1, X_2, \ldots, X_n 是无限维子空间时也成立。

Proof. $1 \Rightarrow 2$: 由直和的定义是显然的。

 $2\Rightarrow 3$: 任取 $\alpha\in X_i\cap\left(\sum\limits_{j\neq i}X_j\right)$ 。因为 $\alpha\in X_i$, X_i 是一个子空间,所以 $-\alpha\in X_i$ 。因为 $\alpha\in\left(\sum\limits_{j\neq i}X_j\right)$,所以 α 可表示为:

$$\alpha = \sum_{j \neq i} \alpha_j, \ j = 1, 2, \dots, i - 1, i + 1, \dots n$$

于是:

$$\mathbf{0} = \alpha + (-\alpha) = -\alpha + \sum_{j \neq i} \alpha_j$$

因为 $\mathbf{0} = \mathbf{0} + \mathbf{0} + \dots + \mathbf{0}$,所以 $-\alpha = \mathbf{0}$, $\alpha = \mathbf{0}$ 。由 α 的任意性, $X_i \cap \left(\sum_{j \neq i} X_j\right) = \mathbf{0}$, $i, j = 1, 2, \dots, n$ 。

 $3 \Rightarrow 1$: 假设和 $X_1 + X_2 + \cdots + X_n$ 不是直和,则存在 $\alpha \in X_1 + X_2 + \cdots + X_n$ 有两种表示方式,设:

$$\alpha = \sum_{i=1}^{n} \alpha_i = \sum_{i=1}^{n} \beta_i, \ \alpha_i, \beta_i \in X_i, \ \alpha_i \neq \beta_i$$

则:

$$\alpha_i - \beta_i = \sum_{j \neq i} (\beta_j - \alpha_j), \ i, j = 1, 2, \dots, n$$

注意到左边属于 X_i , 右边属于 $\sum_{j\neq i} X_j$, 所以:

$$\alpha_i - \beta_i \in X_i \cap \left(\sum_{j \neq i} X_j\right) = \mathbf{0}$$

于是 $\alpha_i = \beta_i$, 矛盾, 因此和 $X_1 + X_2 + \cdots + X_n$ 是直和。

 $1 \Rightarrow 4$: 因为和 $X_1 + X_2 + \dots + X_n$ 是直和,所以 $X_i \cap \left(\sum_{j \neq i} X_j\right) = \mathbf{0}, \ i, j = 1, 2, \dots, n$ 。 由定理 1.20可得:

$$\dim\left(\sum_{i=1}^{n} X_i\right) = \dim\left(X_1 + \sum_{i=2}^{n} X_i\right) = \dim X_1 + \dim\left(\sum_{i=2}^{n} X_i\right) - \dim\left(X_1 \cap \sum_{i=2}^{n} X_i\right)$$
$$= \dim X_1 + \dim\left(\sum_{i=2}^{n} X_i\right)$$

注意到:

$$X_2 \cap \sum_{i=3}^n X_i \subset X_2 \cap \left(X_1 + \sum_{i=3}^n X_i\right) = \mathbf{0}$$

所以:

$$\dim\left(\sum_{i=2}^{n} X_i\right) = \dim X_2 + \dim\left(\sum_{i=3}^{n} X_i\right)$$

17

由数学归纳法可得:

$$\dim(X_1 + X_2 + \dots + X_n) = \dim X_1 + \dim X_2 + \dots + \dim X_n$$

 $4 \Rightarrow 5$: 在 X_i 中取一个基 $\alpha_{i1}, \alpha_{i2}, \dots, \alpha_{ir_i}, i = 1, 2, \dots, n$, 由引理 1.1和性质 1.1.2(6) 可得:

$$\sum_{i=1}^{n} X_{i} = <\alpha_{11}, \alpha_{12}, \dots, \alpha_{1r_{1}} > + <\alpha_{21}, \alpha_{22}, \dots, \alpha_{2r_{2}} > + \dots + <\alpha_{n1}, \alpha_{n2}, \dots, \alpha_{nr_{n}} >$$

$$= <\alpha_{11}, \alpha_{12}, \dots, \alpha_{1r_{1}}, \alpha_{21}, \alpha_{22}, \dots, \alpha_{2r_{2}}, \dots, \alpha_{n1}, \alpha_{n2}, \dots, \alpha_{nr_{n}} >$$

因为:

$$\dim(X_1 + X_2 + \dots + X_n) = \dim X_1 + \dim X_2 + \dots + \dim X_n = \sum_{i=1}^n r_i$$

所以 α_{ij} , $i=1,2,\ldots,n$, $j=1,2,\ldots,r_i$ 线性无关,否则的话, $X_1+X_2+\cdots+X_n$ 中线性无关的向量数目就会小于 $\sum_{i=1}^n r_i$,这与它的维数产生了矛盾。因此 α_{ij} , $i=1,2,\ldots,n$, $j=1,2,\ldots,r_i$ 是 $X_1+X_2+\cdots+X_n$ 的一个基,即 X_i , $i=1,2,\ldots,n$ 的基合起来是和 $X_1+X_2+\cdots+X_n$ 的一个基。

 $5 \Rightarrow 1$: 在 X_i 中取一个基 $\alpha_{i1}, \alpha_{i2}, \dots, \alpha_{ir_i}, i = 1, 2, \dots, n$, 则 $\alpha_{ij}, i = 1, 2, \dots, n$, j = $1, 2, \dots, r_i$ 是 $X_1 + X_2 + \dots + X_n$ 的一个基。设:

$$\mathbf{0} = \alpha_1 + \alpha_2 + \cdots + \alpha_n, \ \alpha_i \in X_i$$

则有:

$$\alpha_1 + \alpha_2 + \dots + \alpha_n = \sum_{i=1}^n \sum_{j=1}^{r_i} k_{ij} \alpha_{ij} = \mathbf{0}$$

 $k_{ij} \in F$ 。 因为 α_{ij} , i = 1, 2, ..., n, $j = 1, 2, ..., r_i$ 是 $X_1 + X_2 + ... + X_n$ 的一个基,所以 $k_{ij} = 0$, i = 1, 2, ..., n, $j = 1, 2, ..., r_i$, 于是 $\alpha_i = \mathbf{0}$,即和 $X_1 + X_2 + ... + X_n$ 中零向量 的表示方法唯一,所以和 $X_1 + X_2 + ... + X_n$ 是直和。

Theorem 1.22. 设 X 是域 F 上的线性空间,则 X 的任一子空间 E 都有补空间。

Proof. (1) dim $X = n < +\infty$: 取 E 的一个基 $\alpha_1, \alpha_2, \ldots, \alpha_m$, 把它扩充为 X 的一个基 $\alpha_1, \alpha_2, \ldots, \alpha_m, \beta_1, \beta_2, \ldots, \beta_{n-m}$, 由引理 1.1可知:

$$X = <\alpha_1, \alpha_2, \dots, \alpha_m, \beta_1, \beta_2, \dots, \beta_{n-m} >$$
$$= <\alpha_1, \alpha_2, \dots, \alpha_m > + <\beta_1, \beta_2, \dots, \beta_{n-m} > = E + W$$

其中 $W = < \beta_1, \beta_2, ..., \beta_{n-m} >$ 。因为 $\alpha_1, \alpha_2, ..., \alpha_m, \beta_1, \beta_2, ..., \beta_{n-m}$ 线性无关,由定理 1.1可知 $\beta_1, \beta_2, ..., \beta_{n-m}$ 线性无关,所以 $\beta_1, \beta_2, ..., \beta_{n-m}$ 是 W 的一组基。于是 E 的一

组基和 W 的一组基合起来就是 X 的一组基。由定理 1.21可知 $X = E \oplus W$,于是 W 是 E 的补空间。

(2) $\dim X = +\infty$: 考虑商空间 X/E,设其一个基为 $\alpha_i + E$, $i \in I$,其中 I 是一个指标集。由推论 1.5可知 α_i , $i \in I$ 线性无关。令:

$$W = \left\{ \sum_{i=1}^{n} k_i \alpha_{r_i} : k_i \in F, \ n \in \mathbb{N}^+ \right\}$$

显然 α_i , $i \in I$ 是 W 的一个基。下面证明 W 是 E 的一个补空间。

任取 $\alpha \in X$, 因为 $\alpha_i + E$, $i \in I$ 是 X/E 的一个基,所以:

$$\alpha + E = \sum_{i=1}^{m} l_i \alpha_{r_i} + E, \ l_j \in F$$

即:

$$\alpha - \sum_{i=1}^{m} l_i \alpha_{r_i} \in E$$

于是 α 可以表示为 E 和 W 中两个元素的和。由 α 的任意性,X = E + W。

任取 $\beta \in W \cap E$,因为 $\beta \in W$,所以:

$$\beta = \sum_{i=1}^{t} p_i a_{r_i}, \ p_i \in F$$

又因为 $\beta \in E$,所以:

$$E = \beta + E = \sum_{i=1}^{t} p_i a_{r_i} + E = \sum_{i=1}^{t} p_i (a_{r_i} + E)$$

因为 $\alpha_i + E$, $i \in I$ 线性无关,所以 $p_i = 0$, i = 1, 2, ..., t ($E \not\in X/E$ 的零元),于是 $\beta = \mathbf{0}$ 。 由定理 1.21(3) 可知 $X = E \oplus W$, $W \not\in E$ 的补空间。

综上,
$$X$$
 的任一子空间 E 都有补空间。

1.1.4 线性空间的同构

Definition 1.22. 设 X, Y 为域 F 上的线性空间。如果存在 X 到 Y 的一个双射 σ ,使得对于 任意的 $\alpha, \beta \in X, k_1, k_2 \in F$,有:

$$\sigma(k_1\alpha + k_2\beta) = k_1\sigma(\alpha) + k_2\sigma(\beta)$$

则称 σ 是 X 到 Y 的一个同构映射 (isomorphism),此时称 X 与 Y 同构 (isomorphic),记作 $X \cong Y$ 。

Property 1.1.3. 设 X, Y 为域 F 上的线性空间, 且 X, Y 同构, σ 是 X 到 Y 的同构映射, 则:

- 1. $\sigma(\mathbf{0}_{X}) = \mathbf{0}_{Y}$;
- 2. 对于任意的 $\alpha \in X$, 有 $\sigma(-\alpha) = -\sigma(\alpha)$;

3. 对于任意的 $\alpha_1, \alpha_2, \ldots, \alpha_n \in X, k_1, k_2, \ldots, k_n \in F$, 有:

$$\sigma\left(\sum_{i=1}^{n} k_i \alpha_i\right) = \sum_{i=1}^{n} k_i \sigma(\alpha_i)$$

- 4. $\alpha_1, \alpha_2, \ldots, \alpha_n \in X$ 线性相关当且仅当 $\sigma(\alpha_1), \sigma(\alpha_2), \ldots, \sigma(\alpha_n)$ 线性相关;
- 5. 如果 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是 X 的一组基,则 $\sigma(\alpha_1), \sigma(\alpha_2), \ldots, \sigma(\alpha_n)$ 是 Y 的一组基;
- 6. 若 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是 X 的一组基,则 $\alpha \in X$ 在基 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 下的坐标和 $\sigma(\alpha) \in Y$ 在基 $\sigma(\alpha_1), \sigma(\alpha_2), \ldots, \sigma(\alpha_n)$ 下的坐标相同。
- 7. 若 $E \not\in X$ 的一个子空间,则 $\sigma(E) \not\in Y$ 的一个子空间。若 $\dim E = n < +\infty$,则 $\dim \sigma(E) = n$;
- 8. 线性空间的同构是一个等价关系, 其等价类被称为同构类。

Proof. (1) 任取 $\alpha \in X$,由线性空间的运算法则和同构映射的定义可得 $\sigma(\mathbf{0}_X) = \sigma(0\alpha) = 0$ $\sigma(\alpha) = \mathbf{0}_Y$ 。

- (2) 显然 $\sigma(-\alpha) = \sigma[(-1)\alpha] = (-1)\sigma(\alpha) = -\sigma(\alpha)$ 。
- (3) 由同构映射的定义直接可得。
- (4) 设:

$$\sum_{i=1}^{n} k_i \alpha_i = \mathbf{0}_X, \ k_i \in F$$

由(3)和(1)可得:

$$\sum_{i=1}^{n} k_i \sigma(\alpha_i) = \sigma(\mathbf{0}_X) = \mathbf{0}_Y$$

 E_i 不全为 0,即 $\alpha_1, \alpha_2, \ldots, \alpha_n \in X$ 或 $\sigma(\alpha_1), \sigma(\alpha_2), \ldots, \sigma(\alpha_n)$ 线性相关,显然此时另一个也线性相关。

(5) 由 (4) 可得 $\sigma(\alpha_1)$, $\sigma(\alpha_2)$, ..., $\sigma(\alpha_n)$ 线性无关。任取 $\beta \in Y$, 因为 σ 是一个满射,则存在 $\alpha \in X$ 使得 $\sigma(\alpha) = \beta$ 。因为 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是 X 的一组基,所以存在 $k_1, k_2, \ldots, k_n \in F$ 使得:

$$\alpha = \sum_{i=1}^{n} k_i \alpha_i$$

由(3)可得:

$$\beta = \sigma(\alpha) = \sigma\left(\sum_{i=1}^{n} k_i \alpha_i\right) = \sum_{i=1}^{n} k_i \sigma(\alpha_i)$$

于是 β 可由 $\sigma(\alpha_i)$, $i=1,2,\ldots,n$ 线性表出。由 β 的任意性, $\sigma(\alpha_i)$, $i=1,2,\ldots,n$ 是 Y 的一组基。

(6) 由 (3)(5) 直接得到。

- (7) 任取 $\alpha, \beta \in \sigma(E)$, $k_1, k_2 \in F$, 考虑 $k_1\alpha + k_2\beta$ 。因为 σ 是 X 到 Y 的一个双射,所以对于 α, β ,存在 $a, b \in X$ 满足 $\sigma(a) = \alpha$, $\sigma(b) = \beta$ 。因为 E 是 X 的一个子空间,所以 $k_1a + k_2b \in E$,于是 $\sigma(k_1a + k_2b) = k_1\alpha + k_2\beta \in \sigma(E)$,所以 $\sigma(E)$ 是 Y 的一个子空间。由 (5) 可直接得到有限维情况下 E 与 $\sigma(E)$ 之间的维数关系。
 - (8) 反身性由恒等映射保证,对称性由双射保证,传递性由复合映射可直接得到。 □

Theorem 1.23. 设 X,Y 为域 F 上的有限维线性空间,则 X 与 Y 同构的充分必要条件为它们的维数相同,于是维数是有限维线性空间同构类的完全不变量。

Proof. (1) 必要性: 由性质 1.1.3(5) 直接得到。

(2) 充分性: 设二者维数都是 n,取 X 的一组基 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 和 Y 的一组基 $\beta_1, \beta_2, \ldots, \beta_n$ 。 令:

$$\sigma: \sum_{i=1}^{n} k_i \alpha_i \longrightarrow \sum_{i=1}^{n} k_i \beta_i$$

显然它是一个线性映射并且是一个双射,于是X与Y同构。

1.1.5 商空间

商空间的定义

Theorem 1.24. 设 X 是域 F 上的一个线性空间,L 是 E 的子空间。对于 $\forall x, y \in X$,若 $x-y \in L$,则称 x,y 是等价的,记为 $x \sim y$ 。该关系是一个等价关系。对于该关系的任意 等价类 α ,任取 $x \in \alpha$, α 可由 $\{x+y:y \in L\}$ 来表示,简记为 x+L。

Proof. 任取 $x, y, z \in X$ 。

- (1) 因为 $x x = \mathbf{0} \in L$,所以该关系满足自反性。
- (2) 若 $x \sim y$,即 $x y \in L$,因为 L 是一个线性空间,所以 $y x = (-1)(x y) \in L$,于是 $y \sim x$,该关系满足对称性。
- (3) 若 $x \sim y$, $y \sim z$, 则有 $x y \in L$, $y z \in L$, 因为 L 是一个线性空间,所以 $x z = (x y) + (y z) \in L$, 即 $x \sim z$ 。该关系满足传递性。

综上,该关系是一个等价关系。

下证明表示方法的正确性。

对任意的 $a \in \alpha$,因为 $x \in \alpha$,所以 $x - a \in L$,于是存在 $z \in L$ 使得 x - a = -z,即 a = x + z。

Theorem 1.25. 设 X 是域 F 上的一个线性空间,L 是 X 的子空间, \hat{X} 为 X 中所有等价类构成的集合,确定等价类的关系为定理 I.24中的关系。对任意的 $\alpha, \beta \in \hat{X}, k \in F$,在 \hat{X} 中定义线性运算如下:

$$\alpha + \beta = x + y + L, \ x \in \alpha, \ y \in \beta$$

$$k\alpha = kx + L, \ x \in \alpha$$

则 \hat{X} 成为一个线性空间, 称其为 X 关于 L 的商空间 (quotient space), 记作 X/L。

Proof. 先证明上述线性运算与 x, y 的选择无关。

(1) 任取 $x' \in \alpha$, $y' \in \beta$, 满足 $x \neq x'$, $y \neq y'$ 。于是有:

$$x' + y' + L = x + y + (x' - x) + (y' - y) + L$$

因为 $x, x' \in \alpha$, $y, y' \in \beta$, 所以 $x' - x, y' - y \in L$, 于是 x' + y' + L = x + y + L。

(2) 任取 $x' \in \alpha$,满足 $x \neq x'$ 。于是有:

$$kx' + L = kx + k(x' - x) + L$$

因为 $x, x' \in \alpha$,所以 $x'-x \in L$ 。因为L是线性空间,所以 $k(x'-x) \in L$,于是kx'+L = kx+L。 下证明 \hat{X} 是一个线性空间。

- 1. 任取 \hat{X} 中的两个元素 $\alpha = x + L$, $\beta = y + L$ 。因为 $x, y \in X$,X 是一个线性空间,所以 x + y = y + x,于是 $\alpha + \beta = x + y + L = y + x + L = \beta + \alpha$ 。由 α, β 的任意性, \hat{X} 上的加法满足线性空间运算法则 (1);
- 2. 任取 \hat{X} 中的三个元素 $\alpha = x + L$, $\beta = y + L$, $\gamma = z + L$ 。因为 $x, y, z \in X$,X 是一个线性空间,所以 (x + y) + z = x + (y + z),于是 $(\alpha + \beta) + \gamma = (x + y) + z + L = x + (y + z) + L = \alpha + (\beta + \gamma)$ 。由 α, β, γ 的任意性, \hat{X} 上的加法满足线性空间运算法则 (2);
- 3. 任取 $\alpha = x + L \in \hat{X}$,则 $\alpha + \mathbf{0} + L = x + \mathbf{0} + L = x + L = \alpha$,于是 $\mathbf{0} + L$ 是 \hat{X} 中的零元。 \hat{X} 上的加法满足线性空间运算法则 (3);
- 4. 任取 $\alpha = x + L \in \hat{X}$,则 $\alpha + -x + L = x + (-x) + L = \mathbf{0} + L$,于是 -x + L 是 α 的 负元。由 α 的任意性, \hat{X} 上的加法满足线性空间运算法则 (4);
- 5. 任取 $\alpha = x + L \in \hat{X}$ 。因为 $x \in X$,X 是一个线性空间,所以 1x = x,于是 $1\alpha = 1x + L = x + L = \alpha$ 。由 α 的任意性, \hat{X} 上的纯量乘法满足线性空间运算法则 (5);
- 6. 任取 $\alpha = x + L \in \hat{X}$, $k, l \in F$ 。因为 $x \in X$,X 是一个线性空间,所以 (kl)x = k(lx),于是 $(kl)\alpha = (kl)x + L = k(lx) + L = k(l\alpha)$ 。由 α, k, l 的任意性, \hat{X} 上的纯量乘法满足线性空间运算法则 (6);
- 7. 任取 $\alpha = x + L \in \hat{X}$, $k, l \in F$ 。因为 $x \in X$,X 是一个线性空间,所以 (k+l)x = kx + lx,于是 $(k+l)\alpha = (k+l)x + L = kx + lx + L = k\alpha + l\alpha$ 。由 α, k, l 的任意性, \hat{X} 上的 纯量乘法满足线性空间运算法则 (7);
- 8. 任取 \hat{X} 中的两个元素 $\alpha = x + L$, $\beta = y + L$ 。因为 $x, y \in X$,X 是一个线性空间,所以 k(x+y) = ky + kx,于是 $k(\alpha + \beta) = k(x+y) + L = kx + ky + L = k\beta + k\alpha$ 。由 α, β, k 的任意性, \hat{X} 上的加法满足线性空间运算法则 (8)。

综上, \hat{X} 是一个线性空间。

商空间的性质

Theorem 1.26. 设 X 是域 F 上的一个有限维线性空间, E 是 X 的一个子空间, 则:

$$\dim(X/E) = \dim(X) - \dim(E)$$

Proof. 设 dim X = n, dim E = m, 取 E 的一组基 $\alpha_1, \alpha_2, \ldots, \alpha_m$, 把它扩充为 X 的一组基 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 。任取 $\beta + W \in X/E$,因为 $\beta \in X$,于是:

$$\beta + E = \sum_{i=1}^{n} k_i \alpha_i + E = \sum_{i=1}^{m} k_i \alpha_i + \sum_{i=m+1}^{n} k_i \alpha_i + E = \sum_{i=m+1}^{n} k_i \alpha_i + E$$

其中 $k_i \in F$, i = 1, 2, ..., n。上式表明,对任意的 $\beta + W \in X/E$,都可以用 $\alpha_i + W$, i = m + 1, m + 2, ..., n 的线性组合表示。下证明它们线性无关。

设:

$$\sum_{i=m+1}^{n} k_i \alpha_i + E = E$$

则 $\sum_{i=m+1}^{n} k_i \alpha_i \in E$,于是存在 $l_j \in F$, $j = 1, 2, \ldots, m$ 使得:

$$\sum_{j=1}^{m} l_j \alpha_j = \sum_{i=m+1}^{n} k_i \alpha_i$$

因为 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关,所以 $k_i = l_j = 0$, $i = m + 1, m + 2, \ldots, n$, $j = 1, 2, \ldots, m$, 因此 $\alpha_i + W$, $i = m + 1, m + 2, \ldots, n$ 线性无关,即它们是 X/E 的一组基, $\dim(X/E) = n - m = \dim X - \dim E$ 。

Definition 1.23. 设 X 是域 F 上的一个线性空间,E 是 X 的一个子空间。若 X/E 是有限维的,则称 $\dim(X/E)$ 是 E 在 X 中的余维数 (codimension),记作 $\operatorname{codim} E$ 。

标准映射

Definition 1.24. 设 X 是域 F 上的一个线性空间, E 是 X 的一个子空间, 定义映射:

$$\pi: \alpha \longrightarrow \alpha + E, \ \forall \ \alpha \in X$$

称之为标准映射 (canonical mapping)。

Property 1.1.4. 设 X 是域 F 上的一个线性空间, E 是 X 的一个子空间, π 是 X 到 X/E 的标准映射, 则 π 具有如下性质:

1. X/E 中的一个元素 $\alpha + E$ 在 π 下的原像是:

$$\{\alpha + \beta : \beta \in E\}$$

 $2. \pi$ 是一个满射。当且仅当 E 是零空间时, π 是一个双射;

1.2 线性变换 23

3. π 是一个线性映射;

4. 若 $\alpha_1, \alpha_2, \ldots, \alpha_n \in X$ 线性相关,则 $\pi(\alpha_1), \pi(\alpha_2), \ldots, \pi(\alpha_n)$ 线性相关。

Proof. (1) 显然:

$$\gamma \in \pi^{-1}(\alpha + E) \Leftrightarrow \gamma + E = \alpha + E \Leftrightarrow \gamma - \alpha \in E$$

 $\Leftrightarrow \exists \beta \in E, \ \gamma = \alpha + \beta \Leftrightarrow \gamma \in \{\alpha + \beta : \beta \in E\}$

- (2) 满射是显然的结论。当 E 是零空间时, π 是 X 上的恒等变换,恒等变换显然是双射。当 π 是双射时, π 是一个单射,即对任何的 $\alpha + E \in X/E$,有且仅有 $\alpha \in X$ 使得 $\pi(\alpha) = \alpha + E$,也即不存在 $\beta \in X$, $\beta \neq \alpha$,使得 $\beta \alpha \in E$,此时 E 只能为零空间。
 - $(3) \forall \alpha, \beta \in X, k_1, k_2 \in F$,有:

$$\pi(k_1\alpha + k_2\beta) = k_1\alpha + k_2\beta + E = k_1\alpha + E + k_2\alpha + E = k_1\pi(\alpha) + k_2\pi(\beta)$$

于是 π 是一个线性映射。

(4) 因为 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性相关,所以存在不全为零的 $k_1, k_2, \ldots, k_n \in F$ 使得:

$$\sum_{i=1}^{n} k_i \alpha_i = \mathbf{0}$$

由(3)可得:

$$\pi\left(\sum_{i=1}^n k_i \alpha_i\right) = \sum_{i=1}^n k_i \pi(\alpha_i) = \mathbf{0}$$

于是 $\pi(\alpha_i)$, i = 1, 2, ..., n 线性相关。

Corollary 1.5. 设 X 是域 F 上的一个线性空间, E 是 X 的一个子空间。若 $\{\alpha_i + W : i \in I\}$ 是 X/E 的一组基, I 是一个指标集, 则 α_i , $i \in I$ 线性无关。

Proof. 就 X/E 是无限维的给出证明,有限维情况类似。

若此时 α_i , $i \in I$ 线性相关,则存在 $\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_n}$ 线性相关,其中 $n \in \mathbb{N}^+$ 。由性 质 1.1.4(4) 可得 $\alpha_{i_j} + W$, $j = 1, 2, \ldots, n$ 线性相关,于是 $\{\alpha_i + W : i \in I\}$ 线性相关,矛盾。

1.2 线性变换

1.2.1 线性变换的定义与基本性质

Definition 1.25. 设 X,Y 是域 F 上的线性空间, X 到 Y 上的一个映射 T 如果对任意的 $\alpha,\beta \in X$ 和任意的 $k_1,k_2 \in F$, 有:

$$\mathcal{T}(k_1\alpha + k_2\beta) = k_1\mathcal{T}\alpha + k_2\mathcal{T}\beta$$

则称 \mathcal{T} 是 X 到 Y 的一个线性映射 (linear mapping)。若 Y = X, 则称 \mathcal{T} 为 X 上的线性变换 (linear transformation);若 Y = F, 则称 \mathcal{T} 为 X 上的线性函数 (linear function)。

线性映射空间与线性映射的运算

Definition 1.26. 设 X, Y 是域 F 上的线性空间,将 X 到 Y 的所有线性映射组成的集合记为 $\operatorname{Hom}(X,Y)$ 。设 $\mathcal{T}_1, \mathcal{T}_2 \in \operatorname{Hom}(X,Y)$, $k \in F$,定义线性映射的加法与纯量乘法如下:

$$(\mathcal{T}_1 + \mathcal{T}_2)\alpha = \mathcal{T}_1\alpha + \mathcal{T}_2\alpha, \ \forall \ \alpha \in X$$
$$(k\mathcal{T}_1) = k\mathcal{T}_1\alpha, \ \forall \ \alpha \in X$$

容易验证 $\operatorname{Hom}(X,Y)$ 成为域 F 上的一个线性空间。X=Y 时将 $\operatorname{Hom}(X,Y)$ 简记为 $\operatorname{Hom}(X)$ 。

Definition 1.27. 设 X, Y 是域 F 上的线性空间, $\mathcal{T}_1, \mathcal{T}_2 \in \text{Hom}(X, Y)$, 定义线性映射的减法 如下:

$$\mathcal{T}_1 - \mathcal{T}_2 = \mathcal{T}_1 + (-\mathcal{T}_2)$$

Definition 1.28. 设 X,Y,Z 是域 F 上的线性空间, $\mathcal{T}_1 \in \operatorname{Hom}(X,Y), \mathcal{T}_2 \in \operatorname{Hom}(Z,Y)$, 定义线性映射乘法如下:

$$\forall \alpha \in X, (\mathcal{T}_2 \mathcal{T}_1) \alpha = \mathcal{T}_2(\mathcal{T}_1 \alpha)$$

Theorem 1.27. 设 X, Y, Z 是域 F 上的线性空间, $\mathcal{T}_1 \in \text{Hom}(X, Y), \mathcal{T}_2 \in \text{Hom}(Z, Y)$, 则 $\mathcal{T}_2\mathcal{T}_1 \in \text{Hom}(X, Z)$ 。

Proof. 只需注意到对任意的 $\alpha, \beta \in X, k_1, k_2 \in F$,有:

$$(\mathcal{T}_2 \mathcal{T}_1)(k_1 \alpha + k_2 \beta) = \mathcal{T}_2[\mathcal{T}_1(k_1 \alpha + k_2 \beta)] = \mathcal{T}_2(k_1 \mathcal{T}_1 \alpha + k_2 \mathcal{T}_1 \beta)$$
$$= k_1 \mathcal{T}_2(\mathcal{T}_1 \alpha) + k_2 \mathcal{T}_2(\mathcal{T}_1 \beta) = k_1 (\mathcal{T}_2 \mathcal{T}_1) \alpha + k_2 (\mathcal{T}_2 \mathcal{T}_1) \beta$$

Definition 1.29. 设 X 是域 F 上的线性空间, $T \in \text{Hom}(X)$, 定义 T 的正整数指数幂如下:

$$\mathcal{T}^n = \underbrace{\mathcal{T} \cdot \mathcal{T} \cdots \mathcal{T}}_{n \wedge \mathcal{T}}, \ n \in \mathbb{N}^+$$

若 T 可逆, 还可以定义 T 的负整数指数幂如下:

$$\mathcal{T}^{-n} = (\mathcal{T}^{-1})^n, \ n \in \mathbb{N}^+$$

Definition 1.30. 设 X, Y 是域 F 上的线性空间, T 是 X 到 Y 上的一个线性映射, 分别称:

$$\{\alpha \in X : \mathcal{T}\alpha = \mathbf{0}_Y\}, \quad \{\mathcal{T}\alpha : \alpha \in X\}$$

为T的核 (kernel)与象 (image),将它们分别记作 Ker T和 Im T。

Property 1.2.1. 设 X, Y 是域 F 上的线性空间, T 是 X 到 Y 上的线性映射, 则:

1. 若T可逆,则T是X到Y上的同构映射;

1.2 线性变换 25

- 2. T**0**_X = **0**_Y;
- 3. 对于任意的 $\alpha \in X$, 有 $\mathcal{T}(-\alpha) = -\mathcal{T}\alpha$;
- 4. 对于任意的 $\alpha_1, \alpha_2, \ldots, \alpha_n \in X, k_1, k_2, \ldots, k_n \in F$, 有:

$$\mathcal{T}\left(\sum_{i=1}^{n} k_i \alpha_i\right) = \sum_{i=1}^{n} k_i \mathcal{T}\alpha_i$$

这表明,如果X是有限维的,那么只要知道X的一个基在T下的象,那么X中所有向量在T下的象就都确定了。

- 5. 若 $\alpha_1, \alpha_2, \ldots, \alpha_n \in X$ 线性相关,则 $T\alpha_1, T\alpha_2, \ldots, T\alpha_n$ 线性相关。
- 6. Ker T 和 Im T 分别是 X 和 Y 的子空间;
- 7. T 是单射当且仅当 $Ker T = \mathbf{0}_X$;
- 8. T 是满射当且仅当 Im T = Y。
- 9. X/Ker T 与 Im T 在映射:

$$\sigma: \alpha + \operatorname{Ker} \mathcal{T} \longrightarrow \mathcal{T} \alpha$$

下同构;

10. 若 X 是有限维的,则 Ker T 和 Im T 都是有限维的,且有:

$$\dim X = \dim(\operatorname{Ker} \mathcal{T}) + \dim(\operatorname{Im} \mathcal{T})$$

11. 若 $\dim X = \dim Y = n < +\infty$,则 T 是单射当且仅当 T 是满射。

Proof. (1)(2)(3)(4)(5)(8) 证明都是显然的,只需参考性质 1.1.3即可,这是因为线性映射只比同构映射少了双射这一条件,所以同构映射不涉及双射条件的性质对于线性映射也成立。

(6) 任取 $\alpha, \beta \in \text{Ker } \mathcal{T}$ 和 $k_1, k_2 \in F$,则有:

$$\mathcal{T}(k_1\alpha + k_2\beta) = k_1\mathcal{T}\alpha + k_2\mathcal{T}\beta = \mathbf{0}$$

于是 $k_1\alpha + k_2\beta \in \text{Ker } \mathcal{T}$,所以 $\text{Ker } \mathcal{T}$ 是 X 的子空间。

任取 $\mathcal{T}\alpha, \mathcal{T}\beta \in \text{Im }\mathcal{T}$ 和 $k_1, k_2 \in F$,则有:

$$k_1 \mathcal{T} \alpha + k_2 \mathcal{T} \beta = \mathcal{T} (k_1 \alpha + k_2 \beta)$$

因为 X 是一个线性空间,所以 $k_1\alpha + k_2\beta \in X$,于是 $\mathcal{T}(k_1\alpha + k_2\beta) \in \operatorname{Im} \mathcal{T}$,因此 $\operatorname{Im} \mathcal{T}$ 是 Y 的子空间。

(7) **充分性**: 假设此时 \mathcal{T} 不是单射,则存在 $\mathcal{T}\alpha$, $\mathcal{T}\beta \in \mathcal{T}$ 使得 $\mathcal{T}\alpha = \mathcal{T}\beta$ 且 $\alpha \neq \beta$,而此时 $\mathcal{T}\alpha - \mathcal{T}\beta = \mathcal{T}(\alpha - \beta) = \mathbf{0}_{Y}$,由己知条件可得 $\alpha - \beta = \mathbf{0}_{X}$,即 $\alpha = \beta$,矛盾。

必要性:由(2)可知 $\mathcal{T}\mathbf{0}_X = \mathbf{0}_Y$,因为 \mathcal{T} 是一个单射,所以 $\operatorname{Ker}\mathcal{T} = \mathbf{0}_X$ 。

- (8) 由满射的定义立即可得。
- (9) 先证明 σ 是一个映射。若 α + Ker $\mathcal{T} = \beta$ + Ker \mathcal{T} ,则 $\alpha \beta \in$ Ker \mathcal{T} ,即 $\mathcal{T}(\alpha \beta) = \mathcal{T}\alpha \mathcal{T}\beta = \mathbf{0}_Y$,于是 $\mathcal{T}\alpha = \mathcal{T}\beta$,所以 σ 是一个映射。

任取 $\alpha + \operatorname{Ker} \mathcal{T}, \beta + \operatorname{Ker} \mathcal{T} \in X / \operatorname{Ker} \mathcal{T}$ 和 $k_1, k_2 \in F$,则有:

$$\sigma[k_1(\alpha + \operatorname{Ker} \mathcal{T}) + k_2(\beta + \operatorname{Ker} \mathcal{T})] = \sigma(k_1\alpha + k_2\beta + \operatorname{Ker} \mathcal{T}) = \mathcal{T}(k_1\alpha + k_2\beta)$$
$$= k_1\mathcal{T}\alpha + k_2\mathcal{T}\beta = k_1\sigma(\alpha + \operatorname{Ker} \mathcal{T}) + k_2(\beta + \operatorname{Ker} \mathcal{T})$$

所以 σ 是一个线性映射。

26

显然 σ 是一个满射。

若存在 $\alpha + \operatorname{Ker} \mathcal{T}, \beta + \operatorname{Ker} \mathcal{T} \in X$ 满足 $\alpha + \operatorname{Ker} \mathcal{T} \neq \beta + \operatorname{Ker} \mathcal{T}$ 且 $\mathcal{T}\alpha = \mathcal{T}\beta$,则此时 有 $\mathcal{T}(\alpha - \beta) = \mathcal{T}\alpha - \mathcal{T}\beta = \mathbf{0}_Y$,所以 $\alpha - \beta \in \operatorname{Ker} \mathcal{T}$,即 $\alpha + \operatorname{Ker} \mathcal{T} = \beta + \operatorname{Ker} \mathcal{T}$,矛盾,因此 σ 是个单射。

综上, σ 是一个双射且是一个线性映射,于是 $X/\operatorname{Ker} \mathcal{T}$ 与 $\operatorname{Im} \mathcal{T}$ 在 σ 下同构。

(10) 因为 X 是有限维的,所以 $X/\operatorname{Ker} \mathcal{T}$ 和 $\operatorname{Ker} \mathcal{T}$ 都是有限维的。由定理 1.23和 (9) 可知 $\dim(X/\operatorname{Ker} \mathcal{T}) = \dim(\operatorname{Im} \mathcal{T})$,于是 $\operatorname{Im} \mathcal{T}$ 也是有限维的。由定理 1.26可得:

$$\dim(\operatorname{Im} \mathcal{T}) = \dim(X/\operatorname{Ker} \mathcal{T}) = \dim X - \dim(\operatorname{Ker} \mathcal{T})$$

(11)由(7)和(10)可得:

$$\mathcal{T}$$
是单射 \Leftrightarrow $\operatorname{Ker} \mathcal{T} = \mathbf{0}_X \Leftrightarrow \dim(\operatorname{Ker} \mathcal{T}) = 0$ \Leftrightarrow $\dim Y = \dim X = \dim(\operatorname{Im} \mathcal{T}) \Leftrightarrow \mathcal{T}$ 是满射

Definition 1.31. 设 X, Y 是域 F 上的线性空间, $\mathcal{T} \in \text{Hom}(X, Y)$, 称 $Y/\text{Im } \mathcal{T}$ 为 \mathcal{T} 的余核 (cokernel)。

Theorem 1.28. 设 X,Y 是域 F 上的线性空间, $\mathcal{T} \in \text{Hom}(X,Y)$, 则 \mathcal{T} 是满射当且仅当 $\text{Coker } \mathcal{T} = \mathbf{0}$ 。

Proof. \mathcal{T} 是满射 ⇔ Im $\mathcal{T} = Y$ ⇔ Y/ Im $\mathcal{T} = \mathbf{0}$ 。这里的 $\mathbf{0}$ 实际上是商空间的零元,也即 Y。

1.2.2 线性映射的矩阵表示

Definition 1.32. 设 X,Y 分别为域 F 上的 m 维、n 维线性空间,T 是 X 到 Y 的一个线性 映射。由性质 1.2.1(4) 可知

1.2.3 常见线性映射

Definition 1.33. 设 X, Y 是域 F 上的线性空间, $\mathcal{T}_1 \in \text{Hom}(X, Y)$, $\mathcal{T}_2 \in \text{Hom}(X)$, 则:

1.2 线性变换 27

1. 若对任意的 $\alpha \in X$, 有 $\mathcal{T}_1 \alpha = \mathbf{0}_Y$, 则称 \mathcal{T}_1 为 X 到 Y 的零映射 (zero mapping), 记作 \mathcal{O} ;

- 2. 若对任意的 $\alpha \in X$,有 $\mathcal{T}_2\alpha = \alpha$,则称 \mathcal{T}_2 为 X 到 Y 的恒等变换 (identity transformation), 记作 \mathcal{I} :
- 3. 给定 $k \in F$, 若对任意的 $\alpha \in X$, 有 $\mathcal{T}_2 \alpha = k \alpha$, 则称 $\mathcal{T}_2 \beta X$ 到 Y 的数乘变换 (scalar transformation), 记作 \mathcal{K} ;
- 4. 若 $T_2^2 = \mathcal{I}$, 则称 T_2 为对合变换 (involution);
- 5. 若 $T_2^2 = T_2$, 则称 T_2 为幂等变换 (idempotent transformation);
- 6. 若存在 $n \in \mathbb{N}^+$ 使得 $T_2^n = \mathcal{O}$, 则称 T_2 为幂零变换 (nilpotent transformation), 使得 $T_2^n = \mathcal{O}$ 成立的最小正整数 n 被称为是 T_2 的幂零指数 (nilpotent index);
- 7. 若 E 和 W 是 X 的子空间,且有 $X = E \oplus W$,若对任意的 $\alpha = \alpha_1 + \alpha_2 \in X$, $\alpha_1 \in E$, $\alpha_2 \in W$,有:

$$\mathcal{T}_2\alpha=\alpha_1$$

则称 T_2 为平行于 W 在 E 上的投影变换 (projection transformation),记为 \mathcal{P}_E 。

Definition 1.34. 设 X 是域 F 上的线性空间, $\mathcal{T}_1, \mathcal{T}_2 \in \operatorname{Hom}(X)$ 。若 $\mathcal{T}_1\mathcal{T}_2 = \mathcal{T}_2\mathcal{T}_1 = \mathcal{O}$,则 称 \mathcal{T}_1 和 \mathcal{T}_2 正交。

投影变换

Property 1.2.2. 设 X 是域 F 上的线性空间,E 和 W 是 X 的子空间,且有 $X = E \oplus W$, \mathcal{P}_E 是平行于 W 在 E 上的投影变换, \mathcal{P}_W 是平行于 E 在 W 上的投影变换,则:

- 1. P_E 是线性变换;
- 2. PE 是幂等变换;
- 3. 幂等变换 $\mathcal{T} \in \text{Hom}(X)$ 是平行于 $\text{Ker } \mathcal{T}$ 在 $\text{Im } \mathcal{T}$ 上的投影变换,此时 $X = \text{Im } \mathcal{T} \oplus \text{Ker } \mathcal{T}$;
- 4. P_E 与 P_W 正交;
- 5. $\mathcal{P}_E + \mathcal{P}_W = \mathcal{I}$;
- 6. 若 $T_1, T_2 \in \text{Hom}(X)$, T_1 和 T_2 是正交的幂等变换, 且 $T_1 + T_2 = T$, 则 $X = \text{Im } T_1 \oplus \text{Im } T_2$, 并且有 T_1 是平行于 $\text{Im } T_2$ 在 $\text{Im } T_1$ 上的投影, T_2 是平行于 $\text{Im } T_2$ 上的投影;

Proof. (1) 任取 $\alpha, \beta \in X$ 和 $k_1, k_2 \in F$,其中 $\alpha = \alpha_1 + \alpha_2$, $\beta = \beta_1 + \beta_2$, $\alpha_1, \beta_1 \in E$, $\alpha_2, \beta_2 \in W$,于是有:

 $\mathcal{P}_{E}(k_{1}\alpha + k_{2}\beta) = \mathcal{P}_{E}[(k_{1}\alpha_{1} + k_{2}\beta_{1}) + (k_{1}\alpha_{2} + k_{2}\beta_{2})] = k_{1}\alpha_{1} + k_{2}\beta_{1} = k_{1}\mathcal{P}_{E}\alpha + k_{2}\mathcal{P}_{E}\beta$

所以 \mathcal{P}_E 是线性变换。

(2) 任取 $\alpha = \alpha_1 + \alpha_2 \in X$, $\alpha_1 \in E$, $\alpha_2 \in W$, 则:

$$\mathcal{P}_E(\mathcal{P}_E\alpha) = \mathcal{P}_E(\alpha_1) = \alpha_1 = \mathcal{P}_E\alpha$$

所以 \mathcal{P}_E 是幂等变换。

(3) 任取 $\alpha \in X$,则 $\mathcal{T}\alpha \in \text{Im }\mathcal{T}$ 。因为:

$$\mathcal{T}(\alpha - \mathcal{T}\alpha) = \mathcal{T}\alpha - \mathcal{T}^2\alpha = \mathcal{T}\alpha - \mathcal{T}\alpha = \mathbf{0}$$

所以 $\alpha - T\alpha \in \operatorname{Ker} T$ 。因为 $\alpha = T\alpha + \alpha - T\alpha$,所以 $X = \operatorname{Im} T + \operatorname{Ker} T$ 。

任取 $\beta \in \text{Im } \mathcal{T} \cap \text{Ker } \mathcal{T}$,则存在 $\gamma \in X$ 使得 $\mathcal{T} \gamma = \beta$,且有 $\mathcal{T} \beta = \mathbf{0}$,于是:

$$\mathbf{0} = \mathcal{T}\beta = \mathcal{T}(\mathcal{T}\gamma) = \mathcal{T}^2\gamma = \mathcal{T}\gamma = \beta$$

所以 $\operatorname{Im} \mathcal{T} \cap \operatorname{Ker} \mathcal{T} = \mathbf{0}$,由定理 1.21(3) 可知 $X = \operatorname{Im} \mathcal{T} \oplus \operatorname{Ker} \mathcal{T}$ 。

记 $\operatorname{Im} \mathcal{T} = E$, $\operatorname{Ker} \mathcal{T} = W$, 对上述 $\alpha = \mathcal{T}\alpha + \alpha - \mathcal{T}\alpha$, 有 $\mathcal{P}_E \alpha = \mathcal{T}\alpha$ 。由 α 的任意性, $\mathcal{T} = \mathcal{P}_E$ 。

(4) 任取 $\alpha = \alpha_1 + \alpha_2 \in X$, $\alpha_1 \in E$, $\alpha_2 \in W$, 则:

$$\mathcal{P}_E(\mathcal{P}_W\alpha) = \mathcal{P}_E\alpha_2 = \mathbf{0}, \ \mathcal{P}_W(\mathcal{P}_E\alpha) = \mathcal{P}_W\alpha_2 = \mathbf{0}$$

所以 $\mathcal{P}_E \mathcal{P}_W = \mathcal{P}_W \mathcal{P}_E = \mathcal{O}$,即 $\mathcal{P}_E \ni \mathcal{P}_W$ 正交。

(5) 任取 $\alpha = \alpha_1 + \alpha_2 \in X$, $\alpha_1 \in E$, $\alpha_2 \in W$, 则:

$$(\mathcal{P}_E + \mathcal{P}_W)\alpha = \mathcal{P}_E\alpha + \mathcal{P}_W\alpha = \alpha_1 + \alpha_2 = \alpha$$

于是 $\mathcal{P}_E + \mathcal{P}_W = \mathcal{I}$ 。

(6) 任取 $\alpha \in X$,则 $\alpha = (\mathcal{T}_1 + \mathcal{T}_2)\alpha = \mathcal{T}_1\alpha + \mathcal{T}_2\alpha$,所以 $X = \operatorname{Im} \mathcal{T}_1 + \operatorname{Im} \mathcal{T}_2$ 。

任取 $\beta \in \text{Im } \mathcal{T}_1 \cap \text{Im } \mathcal{T}_2$,则存在 $\gamma, \delta \in X$ 使得 $\mathcal{T}_1 \gamma = \beta$, $\mathcal{T}_2 \delta = \beta$,于是有 $\beta = \mathcal{T}_1 \gamma = \mathcal{T}_1^2 \gamma = \mathcal{T}_1(\mathcal{T}_1 \gamma) = \mathcal{T}_1 \beta$ 。因为 $\mathcal{T}_1 = \mathcal{T}_2 \mathcal{T}_2 \mathcal{T}_3 \mathcal{T}_4 \mathcal{T}_4$

$$\mathcal{T}_1\beta = \mathcal{T}_1(\mathcal{T}_2\delta) = (\mathcal{T}_1\mathcal{T}_2)\delta = \mathbf{0}$$

于是 $\beta = \mathbf{0}$,即 $\operatorname{Im} \mathcal{T}_1 \cap \operatorname{Im} \mathcal{T}_2 = \mathbf{0}$ 。由定理 1.21可得 $X = \operatorname{Im} \mathcal{T}_1 \oplus \operatorname{Im} \mathcal{T}_2$ 。

任取 $\varepsilon = \mathcal{T}_1 \varepsilon_1 + \mathcal{T}_2 \varepsilon_2 \in X$,其中 $\varepsilon_1, \varepsilon_2 \in X$ 。因为 \mathcal{T}_1 与 \mathcal{T}_2 正交、 \mathcal{T}_1 是幂等变换,所以显然有:

$$\mathcal{T}_1 \varepsilon = \mathcal{T}_1 (\mathcal{T}_1 \varepsilon_1 + \mathcal{T}_2 \varepsilon_2) = \mathcal{T}_1^2 \varepsilon_1 + (\mathcal{T}_1 \mathcal{T}_2) \varepsilon_2 = \mathcal{T}_1 \varepsilon_1$$

于是 T_1 是平行于 $\operatorname{Im} T_2$ 在 $\operatorname{Im} T_1$ 上的投影。 T_2 同理。

Corollary 1.6. 设 X 是域 F 上的线性空间,由性质 I.2.2(3) 可得到如下推论:

1. 若 $X = E \oplus W$, \mathcal{P}_E 为平行于 W 在 E 上的投影变换, 则:

$$E = \operatorname{Im} \mathcal{P}_E, \ W = \operatorname{Ker} \mathcal{P}_E$$

1.3 内积空间 29

- 2. X 的任一子空间 E 是平行于 E 的一个补空间在 E 上的投影变换的象;
- 3. X 的任一子空间 E 是平行于 E 在 E 的一个补空间上的投影变换的核。

Proof. (1) 任取 $\alpha = \alpha_1 + \alpha_2 \in X$, $\alpha_1 \in E$, $\alpha_2 \in W$, 则 $\mathcal{P}_E \alpha = \alpha_1 \in E$, 所以 $\operatorname{Im} \mathcal{P}_E \subset E$ 。 任取 $\beta \in E$,有 $\mathcal{P}_E \beta = \beta \in \operatorname{Im} \mathcal{P}_E$,所以 $E \subset \operatorname{Im} \mathcal{P}_E$ 。因此 $E = \operatorname{Im} \mathcal{P}_E$ 。

任取 $\gamma \in W$,有 $\mathcal{P}_{E}\gamma = \mathbf{0}$,所以 $\gamma \in \operatorname{Ker} \mathcal{P}_{E}$,于是 $W \subset \operatorname{Ker} \mathcal{P}_{E}$ 。任取 $\delta = \delta_{1} + \delta_{2} \in \operatorname{Ker} \mathcal{P}_{E}$, $\delta_{1} \in E$, $\delta_{2} \in W$,则 $\mathcal{P}_{E}\delta = \delta_{1} = \mathbf{0}$,所以 $\delta = \delta_{2} \in W$,于是 $\operatorname{Ker} \mathcal{P}_{E} \subset W$ 。因此 $W = \operatorname{Ker} \mathcal{P}_{E}$ 。

(2) 由定理 1.22可知 E 必定存在一个补空间 W,于是 $X=E\oplus W$,由 (1) 即可得到 $E=\operatorname{Im}\mathcal{P}_{E}$ 。

(3) 与(2) 类似可得。

1.3 内积空间

内积空间的定义

Definition 1.35. 设 X 为实(复)数域 K 上的线性空间。若 X 中任意一对元素 x,y 都对应于 K 中的一个数,记为 (x,y),满足:

- 1. 线性性: $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$, 这里 $z \in X$ 。
- 2. 对称性: 当 K 为实数域时, (x,y) = (y,x); 当 K 为复数域时, $(x,y) = \overline{(y,x)}$ 。
- 3. 非负性: $(x,x) \ge 0$, 等号成立当且仅当 x = 0。

那么就称 X 为实(复)内积空间 (inner product space), 称 (x,y) 为元素 x,y 的内积 (inner product)。

Chapter 2

矩阵

2.1 矩阵空间

Definition 2.1. 由 $s \cdot m$ 个数排成 s 行、m 列的一张表称为一个 $s \times m$ 矩阵 (matrix),通常用大写英文字母表示,其中的每一个数称为这个矩阵的一个元素,第 i 行与第 j 列交叉位置的元素称为矩阵的 (i,j) 元,记作 A(i;j)。一个 $s \times m$ 矩阵可以简单地记作 $A_{s \times m}$ 。如果矩阵 A 的 (i,j) 元是 a_{ij} ,那么可以记作 $A = (a_{ij})$ 。如果一个矩阵的行数和列数相同,则称它为方阵,n 行 n 列的方阵也成为 n 阶矩阵。对于两个矩阵 A 和 B,如果它们的行数都等于 s 且列数都等于 m,同时还有 $A(i;j) = B(i;j), i = 1,2,\ldots,s, j = 1,2,\ldots,m$,那么称 A 和 B 相等,记作 A = B。

2.1.1 矩阵的运算

加减法与数量乘法

Definition 2.2. 将数域 K 上所有 $s \times m$ 矩阵组成的集合记作 $M_{s \times m}(K)$,当 s = m 时, $M_{s \times s}(K)$ 可以简记作 $M_s(K)$ 。在 $M_{s \times m}(K)$ 中定义如下运算:

1. 加法:

$$\forall A = (a_{ij}), B = (b_{ij}) \in M_{s \times m}(K), A + B = (a_{ij} + b_{ij})$$

2. 纯量乘法:

$$\forall k \in K, \forall A = (a_{ij}), kA = (ka_{ij})$$

那么 $M_{s \times m}(K)$ 构成一个线性空间。

Proof. 首先证明如上定义的加法和纯量乘法对 $M_{s\times m}(K)$ 是封闭的。由数域中加法和乘法的封闭性, $a_{ij}+b_{ij}\in K$, $ka_{ij}\in K$ $i=1,2,\ldots,s,\ j=1,2,\ldots,m$,所以如上定义的加法与纯量乘法对 $M_{s\times m}(K)$ 是封闭的。

接下来证明如上定义的加法和纯量乘法满足线性空间中的 8 条运算法则:

2.1 矩阵空间 31

1. 因为数域内的数满足加法交换律与加法结合律,所以 $M_{s\times m}(K)$ 上的加法满足线性 空间运算法则 (1)(2);

- 2. 取一个元素全为 0 的 $s \times m$ 矩阵,将其记作 $\mathbf{0}$,显然对 $\forall A \in M_{s \times m}(K)$,有 $A + \mathbf{0} = A$,因此 $M_{s \times m}(K)$ 中存在零元且它就是元素全为 0 的 $s \times m$ 矩阵,称其为零矩阵 (zero matrix),就记作 $\mathbf{0}$ 。因此, $M_{s \times m}(K)$ 上的加法满足线性空间运算法则 (3);
- 3. 对 $\forall A \in M_{s \times m}(K)$,取 $-A = (-a_{ij})$,则有 $A + (-A) = (a_{ij} a_{ij}) = \mathbf{0}$ 。由 A 的任意性, $M_{s \times m}(K)$ 中的每个元素都具有负元,将 $\forall A \in M_{s \times m}(K)$ 的负元就记作 -A。因此, $M_{s \times m}(K)$ 上的加法满足线性空间运算法则 (4);
- 4. 因为数域内的数满足乘法结合律和乘法分配律,同时它们乘 1 的积是自身,所以 $M_{s\times n}$ 上的纯量乘法满足线性空间运算法则 (5)(6)(7)(8)。

证明完毕。

Definition 2.3. 定义 $M_{s\times m}(K)$ 上矩阵的减法如下: 设 $A,B\in M_{s\times m}(K)$, 则:

$$A - B \stackrel{def}{=} A + (-B)$$

乘法

Definition 2.4. 设 $A=(a_{ij})_{s\times n},\ B=(b_{ij})_{n\times m},\ \diamondsuit C=(c_{ij})_{s\times m},\ 其中:$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \ i = 1, 2, \dots, s, \ j = 1, 2, \dots, m$$

则矩阵 C 称作矩阵 A 与 B 的乘积,记作 C = AB。

初等变换

Definition 2.5. 称以下变换为矩阵的初等行变换 (elementary row operation):

- 1. 把一行的倍数加到另一行上:
- 2. 互换两行的位置;
- 3. 用一个非零数乘某一行。

称以下变换为矩阵的初等列变换 (elementary column operation):

- 1. 把一列的倍数加到另一列上;
- 2. 互换两列的位置;
- 3. 用一个非零数乘某一列。

2.1.2 矩阵的行列式

2.2 矩阵的向量空间

Definition 2.6. 设 $A = (\alpha_1, \alpha_2, \dots, \alpha_n) \in M_{m \times n}(K)$, 将:

$$\left\{ \sum_{i=1}^{n} k_i \alpha_i : k_i \in K \right\} \stackrel{def}{=} \mathcal{M}(A)$$

Theorem 2.1. 设 $A \in M_{m \times n}(K)$, 则:

$$\mathcal{M}(A) = \mathcal{M}(AA^T)$$

Proof. 由定义,显然 $\mathcal{M}(AA^T) \subset \mathcal{M}(A)$ 。对于任意的 $x \perp \mathcal{M}(AA^T)$,有 $x^TAA^T = \mathbf{0}$,于是 $||A^Tx||^2 = x^TAA^Tx = \mathbf{0}$,即 $A^Tx = \mathbf{0}$,于是 $x \perp \mathcal{M}(A)$ 。

回头改证 明,同时注 意数域问题

Theorem 2.2. 设 $A \in M_{m \times n}(\mathbb{C})$,则有:

$$rank(AA^H) = rank(A^H A) = rank(A)$$

线性方程组 解链接

链接方程组 秩与维数的

公式

Proof. 只需证明方程 $A^HAx = \mathbf{0}$ 与 $Ax = \mathbf{0}$ 同解。注意到 $Ax = \mathbf{0}$ 则必然有 $A^HAx = \mathbf{0}$,而若 $A^HAx = \mathbf{0}$,则必有 $x^HA^HAx = ||Ax|| = 0$,所以 $Ax = \mathbf{0}$ 。

可若 $A^H Ax = \mathbf{0}$,则必有 $x^H A^H Ax = ||Ax|| = 0$,所以 $Ax = \mathbf{0}$

$$n - \operatorname{rank}(A^H A) = n - \operatorname{rank}(A)$$

所以:

$$\operatorname{rank}(A^H A) = \operatorname{rank}(A)$$

同理可得:

$$\operatorname{rank}(AA^H)=\operatorname{rank}(A^H)=\operatorname{rank}(A)$$

于是有:

$$\operatorname{rank}(AA^{H}) = \operatorname{rank}(A^{H}A) = \operatorname{rank}(A) \qquad \qquad \Box$$

2.3 线性方程组

Definition 2.7. 设 $x_1, x_2, ..., x_n$ 为 n 个未知数, 若一个方程具有如下形式:

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$

其中, a_1, a_2, \ldots, a_n 为系数 (coefficient), b 为常数项 (constant term), 则称该方程为线性方程 (linear equation)。由 m 个形如上式的方程组成的方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

2.3 线性方程组 33

被称为 n 元线性方程组 (system of linear equations, SLE)。由矩阵乘法的定义,该方程组也可以写作矩阵形式:

$$Ax = b$$

其中,

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Definition 2.8. 给定线性方程组 Ax = b, 称如下矩阵

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}.$$

为该线性方程组的增广矩阵 (augmented matrix),记为 [A|b]。

Definition 2.9. 一个矩阵被称为行阶梯形矩阵 (row echelon form, REF), 如果它满足以下条件:

- 1. 所有零行(全为零的行)位于非零行的下方;
- 2. 若某一行非零,则该行的首个非零元素(称为主元 (pivot))位于该行之前所有行的主元右侧。

一个矩阵被称为简化行阶梯形矩阵 (reduced row echelon form, RREF), 如果满足以下条件:

- 1. 它是阶梯形矩阵;
- 2. 每个非零行的主元都是1;
- 3. 每个主元所在列的其他元素均为0。

Theorem 2.3. 任意一个矩阵都可以经过一系列初等行变换化成行阶梯形矩阵,进而可以经过一系列初等行变换化成简化行阶梯形矩阵。

Definition 2.10. 设增广矩阵化简后变为阶梯形矩阵,称每一行主元所在列所对应的未知数为主变量 (pivot variable),同时称非主元所在列对应的未知数为自由未知量 (free variable)。

Theorem 2.4. 数域 K 上线性方程组 Ax = b 有解的充分必要条件为 rank(A) = rank([A|b])。

2.4 矩阵的等价关系

2.4.1 相抵

Definition 2.11. $A, B \in M_{s \times m}(K)$, 如果满足下述条件中的任意一个:

- 1. A 能够通过初等行变换和初等列变换变成 B;
- 2. 存在数域 K 上的 s 阶初等矩阵 P_1, P_2, \ldots, P_t 与 m 阶初等矩阵 Q_1, Q_2, \ldots, Q_n 使得:

$$P_t \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_n = B$$

3. 存在数域 K 上的 s 阶可逆矩阵 P 与 m 阶可逆矩阵 Q 使得:

$$PAQ = B$$

则称 A 与 B相抵 (equivalent)。

上述三个条件显然是等价的。

Theorem 2.5. 相抵是 $M_{s\times m}(K)$ 上的一个等价关系。在相抵关系下,矩阵 A 的等价类称为 A 的相抵类。

Proof. 证明是显然的。 □

Theorem 2.6. 设 $A \in M_{s \times m}(K)$, 且 rank(A) = r。如果 r > 0,那么 A 相抵于如下形式的矩阵:

$$\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

称该矩阵为A的相抵标准形。如果r=0,则A相抵于零矩阵,此时称零矩阵为A的相抵标准形。

Proof. 一个矩阵通过初等行变换一定可以变成一个简化行阶梯型矩阵,再由初等列变换即可得到上述矩阵。 □

Theorem 2.7 (相抵的完全不变量). $A, B \in M_{s \times m}(K)$, $A \vdash B$ 相抵当且仅当它们的秩相同。

Proof. (1) 必要性:初等行变换和初等列变换不改变矩阵的秩。

(2) 充分性: 若 A, B 的秩相同,则它们的相抵标准形相同。因为相抵是一个等价关系,由等价关系的对称性与传递性即可得到 A 与 B 相抵。

2.4 矩阵的等价关系

2.4.2 相似

Definition 2.12. $A, B \in M_n(K)$ 。如果存在可逆矩阵 $P \in M_n(K)$,使得:

$$P^{-1}AP = B$$

35

则称 A与 B相似 (similar)。

Theorem 2.8. 相似是 $M_n(K)$ 上的一个等价关系。在相似关系下,矩阵 A 的等价类称为 A 的相似类。

Proof. 证明是显然的。 □

Property 2.4.1 (相似的不变量). 相似的矩阵具有相同的行列式值、秩、迹、特征多项式、特征值(包括重数相同)。

Proof. 设 $A, B \in M_n(K)$ 且 $A \subseteq B$ 相似,于是存在可逆矩阵 $P \in M_n(K)$ 使得 $P^{-1}AP = B$.

- $(1)|A| = |P^{-1}AP| = |P^{-1}| |B| |P| = |P^{-1}| |P| |B| = |B|_{\circ}$
- (2) 初等行变换与初等列变换不改变矩阵的秩。
- (3) 由**??**(3) 可得 $\operatorname{tr}(A) = \operatorname{tr}(P^{-1}BP) = \operatorname{tr}(BPP^{-1}) = \operatorname{tr}(B)$ 。
- (4)(5)参考定理 2.23。

2.4.3 合同

Definition 2.13. $A, B \in M_n(K)$ 。如果存在可逆矩阵 $C \in M_n(K)$,使得:

$$C^T A C = B$$

则称 $A \subseteq B$ 合同 (congruent),记作 $A \cong B$ 。如果对称矩阵 A 合同于一个对角矩阵,那么称这个对角矩阵为 A 的一个合同标准形。

Theorem 2.9. 合同是 $M_n(K)$ 上的一个等价关系。在合同关系下,矩阵 A 的等价类称为 A 的合同类。

Proof. 证明是显然的。 □

Definition 2.14. 对 n 阶矩阵的行作初等行变换,再对该矩阵的同样标号的列作相同的初等列变换,这种变换被称为成对初等行、列变换。

Lemma 2.1. $A, B \in M_n(K)$, 则 A 合同于 B 当且仅当 A 经过一系列成对初等行、列变换可以变成 B, 此时对 I 作其中的初等列变换即可得到可逆矩阵 C, 使得 $C^TAC = B$ 。

Proof. 由可逆矩阵的初等矩阵分解,可得:

 $A \cong B \Leftrightarrow$ 存在数域 K 上的可逆矩阵 C,使得 $C^TAC = B$ \Leftrightarrow 存在数域 K 上的初等矩阵 P_1, P_2, \ldots, P_t 使得

$$C = P_1 P_2 \cdots P_t$$

$$P_t^T \cdots P_2^T P_1^T A P_1 P_2 \cdots P_t = B$$

Theorem 2.10. 数域 K 上的任一对称矩阵都合同于一个对角矩阵。

Proof. 对数域 K 上对称矩阵的阶数 n 作数学归纳法,。

当n=1时,因为矩阵合同于自身,同时一阶矩阵都是对角矩阵,所以结论成立。

假设 n-1 阶对称矩阵都合同于对角矩阵,考虑 n 阶矩阵 $A=(a_{ij})$ 。

情形一: $a_{11} \neq 0$

把 A 写成分块矩阵的形式, 然后对 A 作初等行变换与初等列变换可得:

$$\begin{pmatrix} a_{11} & A_1 \\ A_1^T & A_2 \end{pmatrix} \longrightarrow \begin{pmatrix} a_{11} & A_1 \\ \mathbf{0} & A_2 - a_{11}^{-1} A_1^T A_1 \end{pmatrix} \longrightarrow \begin{pmatrix} a_{11} & \mathbf{0} \\ \mathbf{0} & A_2 - a_{11}^{-1} A_1^T A_1 \end{pmatrix}$$

于是有:

$$\begin{pmatrix} 1 & \mathbf{0} \\ -a_{11}^{-1} A_1^T & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{11} & A_1 \\ A_1^T & A_2 \end{pmatrix} \begin{pmatrix} 1 & -a_{11}^{-1} A_1 \\ \mathbf{0} & I_{n-1} \end{pmatrix} = \begin{pmatrix} a_{11} & \mathbf{0} \\ \mathbf{0} & A_2 - a_{11}^{-1} A_1^T A_1 \end{pmatrix}$$

因为A是一个对称矩阵,所以A2是一个对称矩阵,于是:

$$(A_2 - a_{11}^{-1} A_1^T A_1)^T = A_2^T - a_{11}^{-1} A_1^T (A_1^T)^T = A_2 - a_{11}^{-1} A_1^T A_1$$

所以 $A_2 - a_{11}^{-1} A_1' A_1$ 是 n-1 阶对称矩阵。由归纳假设可知存在可逆矩阵 $C \in M_{n-1}(K)$ 使得 $C^T(A_2 - a_{11}^{-1} A_1' A_1)C = D$,其中 D 是一个对角矩阵,即:

$$\begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & C^T \end{pmatrix} \begin{pmatrix} a_{11} & \mathbf{0} \\ \mathbf{0} & A_2 - a_{11}^{-1} A_1^T A_1 \end{pmatrix} \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & C \end{pmatrix} = \begin{pmatrix} a_{11} & \mathbf{0} \\ \mathbf{0} & D \end{pmatrix}$$

于是有:

$$\begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & C^T \end{pmatrix} \begin{pmatrix} 1 & \mathbf{0} \\ -a_{11}^{-1} A_1 & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{11} & A_1 \\ A_1^T & A_2 \end{pmatrix} \begin{pmatrix} 1 & -a_{11}^{-1} A_1 \\ \mathbf{0} & I_{n-1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & C \end{pmatrix} = \begin{pmatrix} a_{11} & \mathbf{0} \\ \mathbf{0} & D \end{pmatrix}$$

因为:

$$\begin{bmatrix} \begin{pmatrix} 1 & -a_{11}^{-1} A_1 \\ \mathbf{0} & I_{n-1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & C \end{pmatrix} \end{bmatrix}^T = \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & C \end{pmatrix}^T \begin{pmatrix} 1 & -a_{11}^{-1} A_1 \\ \mathbf{0} & I_{n-1} \end{pmatrix}^T = \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & C^T \end{pmatrix} \begin{pmatrix} 1 & \mathbf{0} \\ -a_{11}^{-1} A_1 & I_{n-1} \end{pmatrix}$$

并且:

$$\begin{pmatrix} 1 & -a_{11}^{-1}A_1 \\ \mathbf{0} & I_{n-1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & C \end{pmatrix}$$

是一个可逆矩阵,所以A合同于对角矩阵:

$$\begin{pmatrix} a_{11} & \mathbf{0} \\ \mathbf{0} & D \end{pmatrix}$$

情形二: $a_{11} = 0$, 存在 $i \neq 1$ 使得 $a_{ii} \neq 0$

2.4 矩阵的等价关系 37

把 A 的第 1, i 行呼唤,再把所得矩阵的第 1, i 列呼唤,得到的矩阵 B 的 (1,1) 元即为 $a_{ii} \neq 0$ 。根据情形一的讨论,B 合同于一个对角矩阵。因为 B 是由 A 作成对初等行、列变换得到的,由引理 2.1可得 $A \cong B$ 。由合同的传递性,A 也合同于一个对角矩阵。

情形三: $a_{ii} = 0, \forall i = 1, 2, ..., n,$ 存在 $a_{ij} \neq 0, i \neq j$

把 A 的第 j 行加到第 i 行上,再把所得矩阵的第 j 列加到第 i 列上,得到的矩阵 E 的 (i,i) 元即为 $2a_{ij} \neq 0$ 。由情形二的讨论,E 合同于一个对角矩阵。因为 E 是由 A 作成对初等行、列变换得到的,由引理 2.1 可得 $A \cong E$ 。由合同的传递性,A 也合同于一个对角矩阵。

情形四: A = 0

因为0是一个对角矩阵,所以结论显然成立。

Theorem 2.11. 设对角矩阵 B 是对称矩阵 A 的合同标准形,则 B 对角线上不为 0 的元素的个数等于 A 的秩。

Proof. 因为 $A \cong B$,所以存在可逆矩阵 C 使得 $C^TAC = B$,于是 $\mathrm{rank}(A) = \mathrm{rank}(B)$ 。 \square

实对称矩阵的合同规范形

Theorem 2.12. 对于任意的对称矩阵 $A \in M_n(\mathbb{R})$, A 都合同于对角矩阵 $\operatorname{diag}\{1,1,\ldots,1,-1,-1,\ldots,-1,0,0,\ldots,0\}$, 系数为 1 的平方项个数称为 A 的正惯性指数 (positive inertia index), 系数为 -1 的平方项个数称为 A 的负惯性指数 (negative inertia index), 这个对角矩阵称为 A 的合同规范形。

Proof. 任取矩阵 $A \in M_n(\mathbb{R})$,由定理 2.10可得 A 合同一个对角矩阵 B。对 B 作成对初等 行、列变换可将 B 对角线上的元素重新排列,使得正值在前,负值在中间,零值在最后,如此得到对角矩阵 C,C 可写作:

$$C = \begin{pmatrix} c_1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & c_2 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c_p & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & -c_{p+1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & -c_{p+2} & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & -c_r & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}$$

其中 $c_1, c_2, \ldots, c_r > 0$ 。再对 C 作成对初等行、列变换,即先对第 i 行除 $\sqrt{c_i}$,再对第 i 列

除 $\sqrt{c_i}$, $i=1,2,\ldots,n$, 即可得到对角矩阵 D:

$$D = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & -1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & -1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}$$

由引理 2.1可得, $D \cong C$, $C \cong B$,又因为 $A \cong B$,由合同的传递性与对称性即可得 $A \cong D$ 。由 A 的任意性结论得证。

复对称矩阵的合同规范形

Theorem 2.13. 对于任意的 $A \in M_n(\mathbb{C})$, A 都合同于对角矩阵 $\operatorname{diag}\{1,1,\ldots,1,0,0,\ldots,0\}$, 这个对角矩阵称为 A 的合同规范形。

Proof. 任取矩阵 $A \in M_n(\mathbb{C})$,由定理 2.10可得 $A \cong B = \text{diag}\{b_1, b_2, \dots, b_r, 0, 0, \dots, 0\}$,其中 r 是矩阵 B 的秩, $b_1, b_2, \dots, b_r \neq 0$ 。设 $b_j = r_j \cos \theta_j + i r_j \sin \theta_j$, $\theta_j \in [0, 2\pi)$, $j = 1, 2, \dots, r$ 。因为:

$$\left[\sqrt{r_j}\left(\cos\frac{\theta_j}{2} + i\sin\frac{\theta_j}{2}\right)\right]^2 = b_j$$

将 $\sqrt{r_j}\left(\cos\frac{\theta_j}{2}+i\sin\frac{\theta_j}{2}\right)$ 记作 $\sqrt{b_j}$,作成对初等行、列变换,即先对第 j 行除 $\sqrt{b_j}$,再对第 j 列除 $\sqrt{b_j}$,则可得到矩阵 $C=\mathrm{diag}\{1,1,\ldots,1,0,0\ldots,0\}$,其中 1 的个数为 r。由引理 2.1可得, $B\cong C$ 。因为 $A\cong B$,由合同的传递性, $A\cong C$ 。由 A 的任意性,结论成立。

2.5 相抵的应用

2.5.1 广义逆

Definition 2.15. 设 $A \in M_{m \times n}(K)$, 一切满足方程组:

$$AXA = A$$

的矩阵 X 都被称为是 A 的广义逆 (generalized inverse),记为 A^- 。

2.5 相抵的应用 39

Theorem 2.14. 设非零矩阵 $A \in M_{m \times n}(K)$, rank(A) = r 且:

$$A = P \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q$$

其中P,Q分别为数域K上的m阶可逆矩阵和n阶可逆矩阵,则矩阵方程:

$$AXA = A$$

一定有解, 且其通解可表示为:

$$X = Q^{-1} \begin{pmatrix} I_r & B \\ C & D \end{pmatrix} P^{-1}$$

其中 B,C,D 分别为数域 K 上任意的 $r \times (m-r), \ (n-r) \times r, \ (n-r) \times (m-r)$ 矩阵。

Proof. 若 X 是上述矩阵方程的一个解,则:

$$P\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} QXP\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q = P\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q$$
$$\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} QXP\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

将 QXP 写作如下分块矩阵的形式:

$$QXP = \begin{pmatrix} H & B \\ C & D \end{pmatrix}$$

其中 H,B,C,D 分别为数域 K 上任意的 $r \times r, \ r \times (m-r), \ (n-r) \times r, \ (n-r) \times (m-r)$ 矩阵。于是:

$$\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} H & B \\ C & D \end{pmatrix} \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$
$$\begin{pmatrix} H & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

所以 $H = I_r$,因此:

$$X = Q^{-1} \begin{pmatrix} I_r & B \\ C & D \end{pmatrix} P^{-1}$$

Property 2.5.1. 设 $A, \in M_{m \times n}(K)$, $B \in M_{m \times q}(K)$, $C \in M_{p \times n}(K)$, 则广义逆 A^- 具有如下性质:

- $I. A^-$ 唯一的充分必要条件为 A 可逆, 此时 $A^- = A^{-1}$;
- 2. $\operatorname{rank}(A^{-}) \geqslant \operatorname{rank}(A) = \operatorname{rank}(AA^{-}) = \operatorname{rank}(A^{-}A)$;

3. 若 $\mathcal{M}(B) \subset \mathcal{M}(A), \mathcal{M}(C) \subset \mathcal{M}(A^T)$,则 C^TA^-B 与 A^- 的选择无关;

4. $A(A^{T}A)^{-}A^{T}$ 与 $(A^{T}A)^{-}$ 的选择无关:

数域问题

- 5. $A(A^TA)^-A^TA = A$, $A^TA(A^TA)^-A^T = A^T$;
- 6. 若 A 对称,则 $[(A)^{-}]^{T} = (A)^{-}$ 。

Proof. (1) **充分性**: 若 A 可逆,则 r=n,由 A^- 的通解公式,显然此时 A^- 唯一。

必要性: 若 A^- 唯一,则 r=n,显然此时 A 可逆。

(2) 由 A^- 的通解公式, $\operatorname{rank}(A^-) \geqslant r = \operatorname{rank}(A)$ 。因为:

$$AA^{-} = P \begin{pmatrix} I_{r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} QQ^{-1} \begin{pmatrix} I_{r} & B \\ C & D \end{pmatrix} P^{-1} = P \begin{pmatrix} I_{r} & B \\ \mathbf{0} & \mathbf{0} \end{pmatrix} p^{-1}$$
$$A^{-}A = Q^{-1} \begin{pmatrix} I_{r} & B \\ C & D \end{pmatrix} P^{-1}P \begin{pmatrix} I_{r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q = Q^{-1} \begin{pmatrix} I_{r} & \mathbf{0} \\ C & \mathbf{0} \end{pmatrix} Q$$

显然, $\operatorname{rank}(AA^{-}) = \operatorname{rank}(A^{-}A) = \operatorname{rank}(A) = r$ 。

(3) 由己知条件,存在矩阵 D_1, D_2 使得 $B = AD_1, C = A^TD_2$,于是:

$$C^T A^- B = D_2^T A A^- A D_1 = D_2^T A D_1$$

(4) 由定理 2.1可知 $\mathcal{M}(A^T) = \mathcal{M}(A^T A)$,于是存在矩阵 B 使得 $A^T = A^T A B$,所以有:

$$A(A^TA)^-A^T = B^TA^TA(A^TA)^-A^TAB = B^TA^TAB$$

与 $(A^TA)^-$ 无关。

(5) 设
$$B = A(A^TA)^-A^TA - A$$
,则:

$$B^{T}B = \{A^{T}A[(A^{T}A)^{-}]^{T}A^{T} - A^{T}\}[A(A^{T}A)^{-}A^{T}A - A]$$

$$= A^{T}A[(A^{T}A)^{-}]^{T}A^{T}A(A^{T}A)^{-}A^{T}A - A^{T}A[(A^{T}A)^{-}]^{T}A^{T}A$$

$$- A^{T}A(A^{T}A)^{-}A^{T}A + A^{T}A$$

$$= A^{T}A[(A^{T}A)^{-}]^{T}A^{T}A - A^{T}A[(A^{T}A)^{-}]^{T}A^{T}A - A^{T}A + A^{T}A = \mathbf{0}$$

所以 $B = \mathbf{0}$ (考虑 $B^T B$ 主对角线上的元素),于是 $A(A^T A)^- A^T A = A$ 。

设
$$C = A^T A (A^T A)^- A^T - A^T$$
, 则:

$$CC^{T} = [A^{T}A(A^{T}A)^{-}A^{T} - A^{T}]\{A[(A^{T}A)^{-}]^{T}A^{T}A - A\}$$

$$= A^{T}A(A^{T}A)^{-}A^{T}A[(A^{T}A)^{-}]^{T}A^{T}A - A^{T}A(A^{T}A)^{-}A^{T}A$$

$$- A^{T}A[(A^{T}A)^{-}]^{T}A^{T}A + A^{T}A$$

$$= A^{T}A[(A^{T}A)^{-}]^{T}A^{T}A - A^{T}A - A^{T}A[(A^{T}A)^{-}]^{T}A^{T}A + A^{T}A = \mathbf{0}$$

所以 $C = \mathbf{0}$,于是 $A^T A (A^T A)^- A^T = A^T$ 。

(6) 此时有:

$$AXA = A \Leftrightarrow A^T X^T A^T = A^T \Leftrightarrow AX^T A = A$$

2.5 相抵的应用 41

2.5.2 Moore-Penrose 广义逆

Definition 2.16. 设 $A \in M_{m \times n}(\mathbb{C})$ 。若 $X \in M_{n \times m}(\mathbb{C})$ 满足:

$$\begin{cases} AXA = A \\ XAX = X \\ (AX)^{H} = AX \\ (XA)^{H} = XA \end{cases}$$

则称 X 为 A 的 Moore-Penrose 广义逆,记作 A^+ ,上述方程组被称为 A 的 Penrose 方程组。

满秩分解导出的广义逆

Theorem 2.15. 设 $A \in M_{m \times n}(\mathbb{C})$, 则 A 的 Penrose 方程组一定有唯一解。对 A 进行满秩分解,设 A = BC,其中 B, C 分别为列满秩矩阵与行满秩矩阵,则 A 的 Penrose 方程组的解可表示为:

$$X = C^{H}(CC^{H})^{-1}(B^{H}B)^{-1}B^{H}$$

Proof. 由定理 2.2可知 $(B^H B)^{-1}$, $(CC^H)^{-1}$ 存在,将上述 X 代入 A 的 Penrose 方程组可得:

$$\begin{split} XAX &= C^H (CC^H)^{-1} (B^H B)^{-1} B^H BCC^H (CC^H)^{-1} (B^H B)^{-1} B^H \\ &= C^H (CC^H)^{-1} (B^H B)^{-1} B^H = X \\ AXA &= BCC^H (CC^H)^{-1} (B^H B)^{-1} B^H BC = BC = A \\ (AX)^H &= X^H A^H = B[(B^H B)^{-1}]^H [(CC^H)^{-1}]^H CC^H B^H \\ &= B[(B^H B)^{-1}]^H [(CC^H)^{-1}]^H CC^H B^H \\ &= B[(B^H B)^H]^{-1} [(CC^H)^H]^{-1} CC^H B^H \\ &= B(B^H B)^{-1} B^H \\ &= B(CC^H) (CC^H)^{-1} (B^H B)^{-1} B^H = AX \\ (XA)^H &= A^H X^H = C^H B^H B[(B^H B)^{-1}]^H [(CC^H)^{-1}]^H C \\ &= C^H (CC^H)^{-1} C = C^H (CC^H)^{-1} (B^H B)^{-1} (B^H B)^{-1} (B^H B) C = XA \end{split}$$

于是 X 与 A 的 Penrose 方程组相容, 所以 X 是解。

奇异值分解导出的广义逆

Theorem 2.16. 设 $A \in M_{m \times n}(\mathbb{C})$,则有:

$$A^{+} = Q \begin{pmatrix} A^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}$$

其中 P,Q,Λ 为A的奇异值分解中相关矩阵。

Proof. 将之代入到 A 的 Penrose 方程组中可得:

$$\begin{split} AQ\begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^H A &= P\begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^H Q\begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^H P\begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^H \\ &= P\begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^H &= A \\ Q\begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^H AQ\begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^H &= Q\begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^H P\begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^H Q\begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^H \\ &= Q\begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^H \\ AQ\begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^H &= Q\begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^H A &= I \end{split}$$

因为 I 是 Hermitian 矩阵,于是 $Q\begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^H$ 与 A 的 Penrose 方程组相容,所以它是解。

Moore-Penrose 广义逆的性质

Property 2.5.2. 设 $A \in M_{m \times n}(\mathbb{C})$,则 A 的 Moore-Penrose 广义逆 A^+ 具有如下性质:

- 1. A+ 是唯一的;
- 2. $(A^+)^+ = A$:
- 3. $(A^+)^H = (A^H)^+$;
- 4. $\operatorname{rank}(A^+) = \operatorname{rank}(A)$;
- 5. 若 A 是一个 Hermitian 矩阵, 则:

$$A^{+} = P \begin{pmatrix} A^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}$$

其中 Λ 为A的非零特征值构成的对角矩阵,P是一个正交矩阵;

- 6. 若 α 是一个非零向量,则 $\alpha^+ = \frac{\alpha^H}{||\alpha||^2}$;
- 7. $I A^{+}A \ge 0$:
- 8. $(A^H A)^+ = A^+ (A^H)^+$;
- 9. $A^+ = (A^H A)^+ A^H = A^H (AA^H)^+$

2.5 相抵的应用 43

Proof. (1) 设 X_1, X_2 都是 A 的 Penrose 方程组的解,则:

$$X_{1} = X_{1}AX_{1} = X_{1}(AX_{2}A)X_{1} = X_{1}(AX_{2})(AX_{1})$$

$$= X_{1}(AX_{2})^{H}(AX_{1})^{H} = X_{1}(AX_{1}AX_{2})^{H} = X_{1}X_{2}^{H}(AX_{1}A)^{H}$$

$$= X_{1}X_{2}^{H}A^{H} = X_{1}(AX_{2})^{H} = X_{1}AX_{2} = X_{1}(AX_{2}A)X_{2}$$

$$= (X_{1}A)(X_{2}A)X_{2} = (X_{1}A)^{H}(X_{2}A)^{H}X_{2} = (X_{2}AX_{1}A)^{H}X_{2}$$

$$= (X_{2}A)^{H}X_{2} = X_{2}AX_{2} = X_{2}$$

所以 Penrose 方程组的解是唯一的。

- (2) 由 Penrose 方程的对称性可直接得到。
- (3) 由 A^+ 的奇异值分解表示(定理 2.16)可得:

$$(A^{+})^{H} = \begin{bmatrix} Q \begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H} \end{bmatrix}^{H} = P \begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}^{H} Q^{H}$$
$$= P \begin{pmatrix} (\Lambda^{-1})^{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H} = P \begin{pmatrix} (\Lambda^{H})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H}$$

将其代入 A^H 的 Penrose 方程组可得:

$$A^{H}(A^{+})^{H}A^{H} = Q \begin{pmatrix} A^{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}P \begin{pmatrix} (A^{H})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H}Q \begin{pmatrix} A^{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}$$

$$= Q \begin{pmatrix} A^{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H} = A^{H}$$

$$(A^{+})^{H}A^{H}(A^{+})^{H} = P \begin{pmatrix} (A^{H})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H} \begin{pmatrix} A^{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}P \begin{pmatrix} (A^{H})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H}$$

$$= P \begin{pmatrix} (A^{H})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H} = (A^{+})^{H}$$

$$[A^{H}(A^{+})^{H}]^{H} = [(A^{+})^{H}A^{H}]^{H} = A^{+}A = I$$

因为 I 是 Hermitian 矩阵,于是 $(A^+)^H$ 与 A^H 的 Penrose 方程组相容,所以 $(A^+)^H = (A^H)^+$ 。

- (4) 由 A^+ 的奇异值分解表示 (定理 2.16) 显然可得 $\mathrm{rank}(A^+) = \mathrm{rank}(A)$,而 $\mathrm{rank}(A)$ = $\mathrm{rank}(A)$,所以有 $\mathrm{rank}(A^+) = \mathrm{rank}(A)$ 。
 - (5) 因为 A 是一个 Hermitian 矩阵,由性质 2.6.2(3) 可知存在正交矩阵 P 使得:

$$A = P \begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^H$$

将
$$P\begin{pmatrix} A^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^H$$
 代入 A 的 Penrose 方程组可得:

$$AP \begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}A = P \begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}P \begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}P \begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}$$

$$= P \begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H} = A$$

$$P \begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}AP \begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H} = P \begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}P \begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}P \begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}$$

$$= P \begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}$$

$$\left[AP \begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H} \right]^{H} = \left[P \begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}A \right]^{H} = P \begin{pmatrix} I & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}$$

因为 $P\begin{pmatrix} I & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$ P^H 是 Hermitian 矩阵,于是 $P\begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$ P^H 与 A 的 Penrose 方程组相容,所以 $P\begin{pmatrix} \Lambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$ $P^H = A^+$ 。

(6) 将 $\frac{\alpha^H}{||\alpha||^2}$ 代入 α 的 Penrose 方程组可得:

$$\alpha \frac{\alpha^H}{||\alpha||^2} \alpha = \alpha$$

$$\frac{\alpha^H}{||\alpha||^2} \alpha \frac{\alpha^H}{||\alpha||^2} = \frac{\alpha^H}{||\alpha||^2}$$

$$\left(\alpha \frac{\alpha^H}{||\alpha||^2}\right)^H = \left(\frac{\alpha^H}{||\alpha||^2} \alpha\right)^H = 1$$

显然 $\frac{\alpha^H}{||\alpha||^2} = \alpha^+$ 。

(7) 由 A^+ 的奇异值分解表示(定理 2.16)可得:

$$I - A^{+}A = I - Q \begin{pmatrix} A^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}P \begin{pmatrix} A & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H} = I - Q \begin{pmatrix} I & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H}$$
$$= I - \begin{pmatrix} I & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & I \end{pmatrix} \cong \begin{pmatrix} I & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

由定理 2.43(3) 的第三条可知 $I - A^+A \ge 0$ 。

(8)由(3)可得:

$$\begin{split} A^{+}(A^{H})^{+} &= A^{+}(A^{+})^{H} = Q \begin{pmatrix} \varLambda^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H} P \begin{pmatrix} (\varLambda^{H})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H} Q^{H} \\ &= Q \begin{pmatrix} \varLambda^{-1}(\varLambda^{H})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H} = \begin{pmatrix} \varLambda^{-1}(\varLambda^{H})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \end{split}$$

2.5 相抵的应用 45

由 A 的奇异值分解 (定理 2.46) 可得:

$$A^{H}A = \begin{bmatrix} P \begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H} \end{bmatrix}^{H} P \begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H}$$
$$= Q \begin{pmatrix} \Lambda^{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}P \begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H} = \begin{pmatrix} \Lambda^{H}\Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

将 $A^+(A^H)^+$ 代入 A^HA 的 Penrose 方程组中即可验证得到 $(A^HA)^+ = A^+(A^H)^+$ 。

(9) 由 (8)、(3) 和 A^+ 的奇异值分解表示(定理 2.16)可得:

$$(A^{H}A)^{+}A^{H} = A^{+}(A^{H})^{+}A^{H} = A^{+}(A^{+})^{H}A^{H}$$

$$= Q \begin{pmatrix} A^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}P \begin{pmatrix} (A^{H})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H}Q \begin{pmatrix} A^{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}$$

$$= Q \begin{pmatrix} A^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H} = A^{+}$$

$$A^{H}(AA^{H})^{+} = A^{H}(A^{H})^{+}A^{+} = A^{H}(A^{+})^{H}A^{+}$$

$$= Q \begin{pmatrix} A^{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}P \begin{pmatrix} (A^{H})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H}Q \begin{pmatrix} A^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H}$$

$$= Q \begin{pmatrix} A^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^{H} = A^{+}$$

2.5.3 线性方程组的解

Theorem 2.17. 数域 $K \perp n$ 元非齐次线性方程组 $Ax = \beta$ 有解的充分必要条件为对 A 的任一广义逆 A^- 都有:

$$\beta = AA^{-}\beta$$

Proof. (1) 必要性: 若 $Ax = \beta$ 有解,取其一个解 α ,于是对 A 的任一广义逆有:

$$\beta = A\alpha = AA^{-}A\alpha = AA^{-}\beta$$

(2) 充分性: 若此时对 A 的任一广义逆 A^- 有 $\beta = AA^-\beta$,则方程组可化为:

$$Ax = AA^{-}\beta$$

容易看出 $A^{-}\beta$ 就是 $Ax = \beta$ 的一个解。

齐次方程组解的结构

Theorem 2.18. 若数域 $K \perp n$ 元齐次线性方程组 Ax = 0 有解,则它的通解为:

$$x = (I_n - A^- A)y$$

其中 A^- 是 A 的任意一个给定的广义逆, y 取遍 K^n 中的列向量。

Proof. 任取 $y \in K^n$, 有:

$$A(I_n - A^- A)y = Ay - AA^- Ay = Ay - Ay = \mathbf{0}$$

所以对任意的 $y \in K^n$, $(I_n - A^- A)y$ 都是 $Ax = \mathbf{0}$ 的解。

若 η 是 $Ax = \mathbf{0}$ 的一个解,则:

$$(I_n - A^- A)\eta = \eta - A^- A \eta = \eta - A^- \mathbf{0} = \eta$$

所以 $Ax = \mathbf{0}$ 的任意一个解 x 都可以表示为 $(I_n - A^- A)x$ 的形式。

综上,
$$Ax = \mathbf{0}$$
 的通解为 $x = (I_n - A^- A)y$ 。

非齐次方程组解的结构

Theorem 2.19 (结构 1). 若数域 $K \perp n$ 元非齐次线性方程组 $Ax = \beta$ 有解,则它的通解为:

$$x = A^{-}\beta + (I_n - A^{-}A)y$$

其中 A^- 是 A 的任意一个给定的广义逆, y 取遍 K^n 中的列向量。

链接线性方 程组的关系 *Proof.* 由定理 2.17的充分性可知对于给定的这一 A^- , A^- β 为 Ax = β 的一个特解,而由 定理 2.18可知齐次线性方程组 $Ax = \mathbf{0}$ 的通解为 $(I_n - A^-A)y$,由可得 Ax = β 的通解为 $x = A^-\beta + (I_n - A^-A)y$ 。

Theorem 2.20 (结构 2). 若数域 $K \perp n$ 元非齐次线性方程组 $Ax = \beta$ 有解,则它的通解为:

$$x = A^{-}\beta$$

 A^- 取遍 A 的所有广义逆。

Proof. 由定理 2.17的充分性可知对于任意的 A^- , $A^-\beta$ 都是 $Ax = \beta$ 的解。

对于 $Ax = \beta$ 的任意一个解 y,由定理 2.19可知存在 A 的一个广义逆 G 和 K^n 上的一个列向量 z,使得:

$$y = G\beta + (I_n - GA)z$$

因为 $\beta \neq \mathbf{0}$,所以 $\beta^H \beta \neq 0$,于是存在数域 K 上的矩阵 $B = z(\beta^H \beta)^{-1}\beta^H$ 使得 $B\beta = z$,于是:

$$y = G\beta + (I_n - GA)B\beta = [G + (I_n - GA)B]\beta$$

因为:

$$A[G + (I_n - GA)B]A = AGA + A(I_n - GA)BA$$
$$= A + ABA - AGABA$$
$$= A + ABA - ABA = A$$

所以 $G + (I_n - GA)B$ 是 A 的一个广义逆,即 $Ax = \beta$ 的任一解可以表示为 $A^-\beta$ 。

2.6 相似的应用 47

Theorem 2.21. 在数域 K 上相容线性方程组 $Ax = \beta$ 的解集中, $x_0 = A^+\beta$ 为长度最小者。

Proof. 由定理 2.19可知, $Ax = \beta$ 的通解可以表示为:

$$x = A^{+}\beta + (I - A^{+}A)y$$

于是:

$$||x|| = [A^{+}\beta + (I - A^{+}A)y]^{H}[A^{+}\beta + (I - A^{+}A)y]$$

$$= ||x_{0}|| + \beta^{H}(A^{+})^{H}(I - A^{+}A)y$$

$$+ y^{H}(I - A^{+}A)^{H}A^{+}\beta + y^{H}(I - A^{+}A)^{H}(I - A^{+}A)y$$

$$= ||x_{0}|| + 2\beta^{H}(A^{+})^{H}(I - A^{+}A)y + ||(I - A^{+}A)y||$$

由性质 2.5.2(9) 可得:

$$(A^{+})^{H}(I - A^{+}A) = (A^{+})^{H} - (A^{+})^{H}A^{+}A = (A^{H})^{+} - (A^{H})^{+}A^{+}A$$
$$= (A^{H})^{+} - [A(A^{H})]^{+}A = \mathbf{0}$$

于是有 $2\beta^H(A^+)^H(I-A^+A)y=0$ 。因为 $||(I-A^+A)y|| \ge 0$,等号成立当且仅当 $(I-A^+A)y=0$,所以 $x=A^+\beta=x_0$ 时长度最小。

2.6 相似的应用

2.6.1 特征值与特征向量

Definition 2.17. $A \in M_n(K)$ 。如果 K^n 中存在非零列向量 α ,使得:

$$A\alpha = \lambda \alpha, \ \lambda \in K$$

则称 λ 是 A 的一个特征值 (eigenvalue), α 是 A 属于特征值 λ 的一个特征向量 (eigenvector)。

求解特征值与特征向量

Definition 2.18. $A \in M_n(K)$, 称 $|\lambda I - A|$ 为 A 的特征多项式 (characteristic polynomial)。

Theorem 2.22. $A \in M_n(K)$, \mathbb{N} :

- 1. λ 是 A 的一个特征值当且仅当 λ 是 A 的特征多项式在数域 K 中的一个根;
- 2. α 是 A 属于特征值 λ 的一个特征向量当且仅当 α 是齐次线性方程组 $(\lambda I A)x = \mathbf{0}$ 的一个非零解。

Proof. 显然:

 $\lambda \in A$ 的一个特征值, $\alpha \in A$ 属于 λ 的一个特征向量

$$\Leftrightarrow A\alpha = \lambda\alpha, \ \alpha \neq \mathbf{0}, \ \lambda \in K$$

$$\Leftrightarrow (\lambda I - A)\alpha = \mathbf{0}, \ a \neq \mathbf{0}, \ \lambda \in K$$

- $\Leftrightarrow \alpha$ 是齐次线性方程组($\lambda I A$) $x = \mathbf{0}$ 的一个非零解, $\lambda \in K$
- $\Leftrightarrow |\lambda I A| = 0$, α 是齐次线性方程组 $(\lambda I A)x = \mathbf{0}$ 的一个非零解, $\lambda \in K$

⇔ λ 是多项式| $\lambda I - A$ |在K中的一个根,

$$\alpha$$
是齐次线性方程组($\lambda I - A$) $x = \mathbf{0}$ 的一个非零解, $\lambda \in K$

特征向量的性质

Property 2.6.1. $A \in M_n(K)$, 其特征向量具有如下性质:

- I. 设入是A的一个特征值,则A属于 λ 的所有特征向量构成 K^n 的一个子空间。因此,把齐次线性方程组 $(\lambda I A)x = \mathbf{0}$ 的解空间称为A属于 λ 的特征子空间(eigenspace);
- 2. A 的属于不同特征值的特征向量是线性无关的。

Proof. (1) 任取 $k_1, k_2 \in K$ 和 A 属于特征值 λ 的两个特征向量 α, β ,则

$$A(k_1\alpha + k_2\beta) = k_1A\alpha + k_2A\beta = k_1\lambda\alpha + k_2\lambda\beta = \lambda(k_1\alpha + k_2\beta)$$

于是 $k_1\alpha + k_2\beta$ 也是 A 属于特征值 λ 的特征向量。由定理 1.16可知 A 属于 λ 的所有特征向量构成 K^n 的一个子空间。

(2) 我们来证明: 设 $\lambda_1, \lambda_2, \ldots, \lambda_m$ 是 $A \in M_n(K)$ 的不同的特征值, $a_{j1}, a_{j2}, \ldots, a_{jr_j}$ 是 A 属于 λ_j 的线性无关的特征向量, $j = 1, 2, \ldots, m$,则向量组:

$$a_{11}, a_{12}, \dots, a_{1r_1}, a_{21}, a_{22}, \dots, a_{2r_2}, a_{m1}, a_{m2}, \dots, a_{mr_m}$$

线性无关。

1. 证明对 n=2 成立: 对于 λ_1 和 λ_2 的线性无关的特征向量 $a_{11},a_{12},\ldots,a_{1r_1}$ 和 $a_{21},a_{22},\ldots,a_{2r_2}$,设:

$$k_1a_{11} + k_2a_{12} + \cdots + k_{r_1}a_{1r_1} + l_1a_{21} + l_2a_{22} + \cdots + l_{r_2}a_{2r_2} = \mathbf{0}$$

两边同乘 A 可得:

$$k_1 A a_{11} + k_2 A a_{12} + \dots + k_{r_1} A a_{1r_1} + l_1 A a_{21} + l_2 A a_{22} + \dots + l_{r_2} A a_{2r_2} = \mathbf{0}$$

$$k_1 \lambda_1 a_{11} + k_2 \lambda_1 a_{12} + \dots + k_{r_1} \lambda_1 a_{1r_1} + l_1 \lambda_2 a_{21} + l_2 \lambda_2 a_{22} + \dots + l_{r_2} \lambda_2 a_{2r_2} = \mathbf{0}$$

2.6 相似的应用 49

因为 $\lambda_1 \neq \lambda_2$,所以 λ_1, λ_2 不全为 0。设 $\lambda_2 \neq 0$,在上上上个式子两端乘以 λ_2 (若 $\lambda_2 = 0$,则同乘 λ_1)得:

 $k_1\lambda_2a_{11}+k_2\lambda_2a_{12}+\cdots+k_{r_1}\lambda_2a_{1r_1}+l_1\lambda_2a_{21}+l_2\lambda_2a_{22}+\cdots+l_{r_2}\lambda_2a_{2r_2}=\mathbf{0}$ 于是:

$$k_1(\lambda_1 - \lambda_2)a_{11} + k_2(\lambda_1 - \lambda_2)a_{12} + \dots + k_{r_1}(\lambda_1 - \lambda_2)a_{1r_1} = \mathbf{0}$$

因为 $\lambda_1 \neq \lambda_2$, 所以:

$$k_1a_{11} + k_2a_{12} + \cdots + k_{r_1}a_{1r_1} = \mathbf{0}$$

因为 $a_{11}, a_{12}, \ldots, a_{1r_1}$ 线性无关,所以 $k_1 = k_2 = \cdots = k_{r_1} = 0$,从而:

$$l_1a_{21} + l_2a_{22} + \cdots + l_{r_2}a_{2r_2} = \mathbf{0}$$

因为 $a_{21}, a_{22}, \ldots, a_{2r_2}$ 线性无关,所以 $l_1 = l_2 = \cdots = l_{r_2} = 0$ 。 综上,向量组 $a_{11}, a_{12}, \ldots, a_{1r_1}, a_{21}, a_{22}, \ldots, a_{2r_2}$ 线性无关。

2. 归纳假设:假设对 n 个不同的特征值都有上述结论(即 n 个不同特征值的线性无关的特征向量构成的向量组线性无关),下面来证明对 n+1 个不同的特征值也成立。

设:

 $k_{11}a_{11}+k_{12}a_{12}+\cdots k_{1r_1}a_{1r_1}+\cdots+k_{nr_n}a_{nr_n}+l_1a_{(n+1)1}+l_2a_{(n+1)2}+\cdots+l_{r_{n+1}}a_{(n+1)r_{n+1}}=\mathbf{0}$ 两边同乘 A 可得:

$$k_{11}Aa_{11} + k_{12}Aa_{12} + \cdots + k_{1r_1}Aa_{1r_1} + \cdots + k_{nr_n}Aa_{nr_n}$$

$$+l_1Aa_{(n+1)1} + l_2Aa_{(n+1)2} + \cdots + l_{r_{n+1}}Aa_{(n+1)r_{n+1}} = \mathbf{0}$$

$$k_{11}\lambda_1a_{11} + k_{12}\lambda_1a_{12} + \cdots + k_{1r_1}\lambda_1a_{1r_1} + \cdots + k_{nr_n}\lambda_na_{nr_n}$$

$$+l_1\lambda_{n+1}a_{(n+1)1} + l_2\lambda_{n+1}a_{(n+1)2} + \cdots + l_{r_{n+1}}\lambda_{n+1}a_{(n+1)r_{n+1}} = \mathbf{0}$$

2.1. $\lambda_{n+1} \neq 0$: 若 $\lambda_{n+1} \neq 0$,则在上上上式两边同乘 λ_{n+1} 可得:

$$k_{11}\lambda_{n+1}a_{11} + k_{12}\lambda_{n+1}a_{12} + \cdots + k_{1r_1}\lambda_{n+1}a_{1r_1} + \cdots + k_{nr_n}\lambda_{n+1}a_{nr_n}$$
$$+l_1\lambda_{n+1}a_{(n+1)1} + l_2\lambda_{n+1}a_{(n+1)2} + \cdots + l_{r_{n+1}}\lambda_{n+1}a_{(n+1)r_{n+1}} = \mathbf{0}$$

于是有:

 $k_{11}(\lambda_{n+1}-\lambda_1)a_{11}+k_{12}(\lambda_{n+1}-\lambda_1)a_{12}+\cdots k_{1r_1}(\lambda_{n+1}-\lambda_1)a_{1r_1}+\cdots +k_{nr_n}(\lambda_{n+1}-\lambda_n)a_{nr_n}=\mathbf{0}$ 由归纳假定 $a_{11},a_{12},\ldots,a_{1r_1},\ldots,a_{nr_n}$ 线性无关,所以

$$k_{11}(\lambda_{n+1} - \lambda_1) = k_{12}(\lambda_{n+1} - \lambda_1) = \dots = k_{1r_1}(\lambda_{n+1} - \lambda_1) = \dots = k_{nr_n}(\lambda_{n+1} - \lambda_n) = 0$$

因为 λ_i , $i=1,2,\ldots,n$ 之间互不相同,所以 $\lambda_{n+1}-\lambda_1,\lambda_{n+1}-\lambda_2,\ldots,\lambda_{n+1}-\lambda_n$ 不为 0,于是 $k_{11}=k_{12}=\cdots=k_{1r_1}=\cdots=k_{nr_n}=0$,所以:

$$l_1 a_{(n+1)1} + l_2 a_{(n+1)2} + \dots + l_{r_{n+1}} a_{(n+1)r_{n+1}} = \mathbf{0}$$

因为 $a_{(n+1)1}, a_{(n+1)2}, \ldots, a_{(n+1)r_{n+1}}$ 线性无关,所以有 $l_1 = l_2 = \cdots = l_{r_{n+1}} = 0$ 。 综上 $a_{11}, a_{12}, \ldots, a_{1r_1}, \ldots, a_{nr_n}, a_{(n+1)1}, a_{(n+1)2}, \ldots, a_{(n+1)r_{n+1}}$ 线性无关。 **2.2.** $\lambda_{n+1} = 0$:若 $\lambda_{n+1} = 0$,则此时有:

$$k_{11}\lambda_{1}a_{11} + k_{12}\lambda_{1}a_{12} + \cdots + k_{1r_{1}}\lambda_{1}a_{1r_{1}} + \cdots + k_{nr_{n}}\lambda_{n}a_{nr_{n}}$$

$$+l_{1}\lambda_{n+1}a_{(n+1)1} + l_{2}\lambda_{n+1}a_{(n+1)2} + \cdots + l_{r_{n+1}}\lambda_{n+1}a_{(n+1)r_{n+1}}$$

$$= k_{11}\lambda_{1}a_{11} + k_{12}\lambda_{1}a_{12} + \cdots + k_{1r_{1}}\lambda_{1}a_{1r_{1}} + \cdots + k_{nr_{n}}\lambda_{n}a_{nr_{n}} = \mathbf{0}$$

由归纳假定 $a_{11}, a_{12}, \ldots, a_{1r_1}, \ldots, a_{nr_n}$ 线性无关,所以 $k_{11}\lambda_1 = k_{12}\lambda_1 = \cdots = k_{1r_1}\lambda_1 = \cdots = k_{nr_n}\lambda_n = 0$ 。因为 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 都不是 0 ($\lambda_i, i = 1, 2, \ldots, n+1$ 互不相同,已经有 $\lambda_{n+1} = 0$ 了),所以 $k_{11} = k_{12} = \cdots = k_{1r_1} = \cdots = k_{nr_n} = 0$,于是有:

$$l_1 a_{(n+1)1} + l_2 a_{(n+1)2} + \dots + l_{r_{n+1}} a_{(n+1)r_{n+1}} = \mathbf{0}$$

因为 $a_{(n+1)1}, a_{(n+1)2}, \ldots, a_{(n+1)r_{n+1}}$ 线性无关,所以有 $l_1 = l_2 = \cdots = l_{r_{n+1}} = 0$ 。 综上, $a_{11}, a_{12}, \ldots, a_{1r_1}, \ldots, a_{nr_n}, a_{(n+1)1}, a_{(n+1)2}, \ldots, a_{(n+1)r_{n+1}}$ 线性无关。 假设存在属于不同特征值的特征向量 $\alpha_1, \alpha_2, \ldots, \alpha_m$ 线性相关,则有:

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = \mathbf{0}$$

其中 $k_1, k_2, ..., k_m$ 不全为 0。注意到 α_i , i = 1, 2, ..., m 可由其对应特征值的特征子空间中的一组基线性表出,于是有:

$$\alpha_i = \sum_{n=1}^{r_i} l_n \beta_{in}$$

其中 β_{in} , $n=1,2,\ldots,r_i$ 为 α_i 对应特征值的特征子空间的一组基,所以:

$$\sum_{i=1}^{m} k_i \sum_{n=1}^{r_i} l_n \beta_{in} = \sum_{i=1}^{m} \sum_{n=1}^{r_i} k_i l_n \beta_{in} = \mathbf{0}$$

而 β_{in} , i = 1, 2, ..., m, $n = 1, 2, ..., r_i$ 是线性无关的,所以:

$$k_i l_n = 0, \ \forall \ i = 1, 2, \dots, m, \ n = 1, 2, \dots, r_i$$

因为 k_1, k_2, \ldots, k_m 不全为 0,所以存在一组 l_n 全为 0,于是 α_i 中存在零向量,而特征向量不是零向量,矛盾。

Theorem 2.23. 相似的矩阵有相同的特征多项式,进而有相同的特征值(包括重数相同)。

Proof. 设 $A, B \in M_n(K)$ 且 A 与 B 相似,于是存在可逆矩阵 $P \in M_n(K)$ 使得 $P^{-1}AP = B$, 就有:

$$|\lambda I - B| = |\lambda I - P^{-1}AP| = |P^{-1}\lambda IP - P^{-1}AP|$$
$$= |P^{-1}(\lambda I - A)P| = |P^{-1}| |\lambda I - A| |P| = |\lambda I - A|$$

2.6 相似的应用 51

几何重数与代数重数

Definition 2.19. $A \in M_n(K)$, $\lambda \in A$ 的一个特征值。把 A 属于 λ 的特征子空间的维数叫作 λ 的几何重数 (geometric multiplicity), 把 λ 作为 A 的特征多项式的根的重数叫作 λ 的代数重数 (algebraic multiplicity)。

Theorem 2.24. $A \in M_n(K)$, $\lambda_1 \not\in A$ 的一个特征值,则 λ_1 的几何重数不超过它的代数重数。

Proof. 设 A 属于特征值 λ_1 的特征子空间 W_1 的维数为 r。在 W_1 中取一个基 $\alpha_1, \alpha_2, \ldots, \alpha_r$,把它扩充为 K^n 的一组基 $\alpha_1, \alpha_2, \ldots, \alpha_r, \beta_1, \beta_2, \ldots, \beta_{n-r}$ 。令:

$$P = (\alpha_1, \alpha_2, \dots, \alpha_r, \beta_1, \beta_2, \dots, \beta_{n-r})$$

则 P 是数域 K 上的 n 阶可逆矩阵,并且有:

$$P^{-1}AP = P^{-1}(A\alpha_1, A\alpha_2, \dots, A\alpha_r, A\beta_1, A\beta_2, \dots, A\beta_{n-r})$$

$$= P^{-1}(\lambda_1\alpha_1, \lambda_1\alpha_2, \dots, \lambda_1\alpha_r, A\beta_1, A\beta_2, \dots, A\beta_{n-r})$$

$$= (\lambda_1\varepsilon_1, \lambda_1\varepsilon_2, \dots, \lambda_1\varepsilon_r, P^{-1}A\beta_1, P^{-1}A\beta_2, \dots, P^{-1}A\beta_{n-r})$$

$$= \begin{pmatrix} \lambda_1I_r & B \\ \mathbf{0} & C \end{pmatrix}$$

由定理 2.23可得:

$$|\lambda I - A| = \begin{vmatrix} \lambda I_r - \lambda_1 I_r & -B \\ \mathbf{0} & \lambda I_{n-r} - C \end{vmatrix}$$
$$= |\lambda I_r - \lambda_1 I_r| |\lambda I_{n-r} - C|$$
$$= (\lambda - \lambda_1)^r |\lambda I_{n-r} - C|$$

即 λ_1 的几何重数小于或等于 r,也即 λ_1 的几何重数小于或等于它的代数重数。

2.6.2 矩阵的对角化

Definition 2.20. 如果n 阶矩阵A能够相似于一个对角矩阵,那么称A可对角化(diagonalizable)。 研究矩阵是否可对角化是为了计算矩阵的幂,因为对角矩阵的幂是很好计算的。

Theorem 2.25 (矩阵可对角化的第一个充分必要条件). $A \in M_n(K)$ 可对角化的充分必要条件为: A 有 n 个线性无关的特征向量 $\alpha_1, \alpha_2, \ldots, \alpha_n$, 此时令 $P = (\alpha_1, \alpha_2, \ldots, \alpha_n)$, 则:

$$P^{-1}AP = \operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}$$

其中 λ_i 是 α_i 所属的特征值, $i=1,2,\ldots,n$ 。上述对角矩阵称为 A 的相似标准形,除了主对角线上元素的排列次序外,A 的相似标准形是唯一的。

Proof. 显然:

A与对角矩阵 $D = \operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ 相似,其中 $\lambda_i \in K, i = 1, 2, \dots, n$

 \Leftrightarrow 如果存在可逆矩阵 $P \in M_n(K)$,使得 $P^{-1}AP = D$

即
$$AP = PD$$

$$\mathbb{P} A(\alpha_1, \alpha_2, \dots, \alpha_n) = (\alpha_1, \alpha_2, \dots, \alpha_n) D$$

$$\mathbb{I}(A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1\alpha_1, \lambda_2\alpha_2, \dots, \lambda_n\alpha_n)$$

 $\Leftrightarrow K^n$ 中有 n 个线性无关的列向量 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 使得 $A\alpha_i = \lambda_i \alpha_i, i = 1, 2, \ldots, n$

Theorem 2.26 (矩阵可对角化的第二个充分必要条件). $A \in M_n(K)$ 可对角化的充分必要条件是: A 的属于不同特征值的特征子空间的维数之和等于 n。

Proof. (1) 充分性: 由性质 2.6.1(2) 和定理 2.25的充分性可直接得出。

(2) 必要性:设 A 的所有不同的特征值是 $\lambda_1, \lambda_2, ..., \lambda_m$,它们的几何重数分别为 $r_1, r_2, ..., r_m$ 。若此时 A 的属于不同特征值的特征子空间的维数之和不等于 n,由定理 2.24可知此时 $r_1 + r_2 + \cdots + r_m < n$,那么 A 没有 n 个线性无关的特征向量,由定理 2.25的必要性可得 A 不可以对角化。

Corollary 2.1. $A \in M_n(K)$ 如果有 n 个不同的特征值,那么 A 可对角化。

Theorem 2.27 (矩阵可对角化的第三个充分必要条件). $A \in M_n(K)$ 可对角化的充分必要条件是: A 的特征多项式的全部复根都属于 K, 且 A 的每个特征值的几何重数等于它的代数重数。

Proof. (1) 充分性:由定理 2.26的充分性可直接得到。

(2) 必要性:因为A可对角化,由可对角化的定义可知A相似于:

$$\operatorname{diag}(\lambda_1, \dots, \lambda_1, \dots, \lambda_m, \dots, \lambda_m) \in M_n(K)$$

其中 $\lambda_1, \lambda_2, \ldots, \lambda_m$ 是 A 的全部不同的特征值,每个特征值重复的次数为对应特征子空间的维数, λ_i 对应特征子空间的维数记为 r_i , $i=1,2,\ldots,m$ 。因为相似的矩阵具有相同的特征多项式,所以:

$$|\lambda I - A| = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_m)^{r_m}$$

于是 A 的特征多项式的根为 $\lambda_1, \lambda_2, \ldots, \lambda_m$ 。因为 $\operatorname{diag}(\lambda_1, \cdots, \lambda_1, \ldots, \lambda_m, \ldots, \lambda_m) \in M_n(K)$,所以 $\lambda_1, \lambda_2, \ldots, \lambda_m \in K$,于是 A 的特征多项式的全部根都属于 K 且每一个特征值的代数 重数等于它的几何重数。

2.6.3 Hermitian 矩阵的对角化

Definition 2.21. 若对于 $A, B \in M_n(\mathbb{C})$,存在一个 n 阶正交矩阵 Q,使得 $Q^{-1}AQ = B$,则 称 A 正交相似于 B。

2.6 相似的应用 53

Theorem 2.28. 正交相似是 $M_n(\mathbb{C})$ 上的一个等价关系。

Theorem 2.29. $A \in M_n(\mathbb{C})$ 。若 A 正交相似与一个对角矩阵 D,则 A 一定是 Hermitian 矩阵。

Proof. 因为 A 正交相似于 D,所以存在正交矩阵 Q 使得 $Q^{-1}AQ = D$,即 $A = QDQ^{-1}$,于是有:

$$A^{H} = (QDQ^{-1})^{H} = (Q^{-1})^{H}D^{H}Q^{H} = (Q^{H})^{H}DQ^{-1} = QDQ^{-1} = A$$

所以 A 是一个 Hermitian 矩阵。

Corollary 2.2. 正交相似一定相似,相似不一定正交相似。

Proof. 设非 Hermitian 矩阵 A 相似于一个对角矩阵 D,若 A 正交相似于 D,则 A 得是一个 Hermitian 矩阵,而 A 不是一个 Hermitian 矩阵。

Property 2.6.2. 设 *Hermitian* 矩阵 $A, B \in M_n(\mathbb{C})$, 则:

- 1. A 的特征多项式的每一个根都是实数, 从而都是 A 的特征值;
- 2. A 属于不同特征值的特征向量是正交的;
- 3. A 一定正交相似于由它的特征值构成的对角矩阵;
- 4. A与B正交相似的充分必要条件为A与B相似。

Proof. (1) 设 λ 是 A 的特征多项式的任意一个根,将 A 看作是复数域 \mathbb{C} 上的矩阵,取 A 属于特征值 λ 的一个特征向量 α ,考虑 \mathbb{C}^n 中的内积,有:

$$(A\alpha, \alpha) = (\lambda \alpha, \alpha) = \lambda(\alpha, \alpha)$$
$$(\alpha, A\alpha) = (\alpha, \lambda \alpha) = \overline{\lambda}(\alpha, \alpha)$$
$$(A\alpha, \alpha) = (A\alpha)^H \alpha = \alpha^H A^H \alpha = \alpha^H A\alpha = (\alpha, A\alpha)$$

所以 $\lambda(\alpha,\alpha) = \overline{\lambda}(\alpha,\alpha)$ 。因为 α 是特征向量,所以 $\alpha \neq \mathbf{0}$,于是 $\lambda = \overline{\lambda}$,因此 λ 是一个实数。由 λ 的任意性,结论成立。

(2) 设 λ_1, λ_2 是 A 的不同的特征值(由 (1) 得它们都是实数), α_1, α_2 分别是 A 属于 λ_1, λ_2 的一个特征向量,考虑 \mathbb{C}^n 上的标准内积:

$$\lambda_1(\alpha_1, \alpha_2) = (\lambda_1 \alpha_1, \alpha_2) = (A\alpha_1, \alpha_2) = A(\alpha_1, \alpha_2) = (\alpha_1, A^H \alpha_2)$$
$$= (\alpha_1, A\alpha_2) = (\alpha_1, \lambda_2 \alpha_2) = \overline{\lambda_2}(\alpha_1, \alpha_2) = \lambda_2(\alpha_1, \alpha_2)$$

于是有 $(\lambda_1 - \lambda_2)(\alpha_1, \alpha_2) = 0$ 。因为 $\lambda_1 \neq \lambda_2$,所以 $(\alpha_1, \alpha_2) = 0$ 。

(3) 对 n 作数学归纳法。

当
$$n=1$$
 时, $(1)^{-1}A(1)=A$,结论成立。

假设对于n-1阶的实对称矩阵都成立,考虑n阶实对称矩阵A。

由 (2) 可知 A 必有特征值,取 A 的一个特征值 λ_1 和 A 属于 λ_1 的一个特征向量 η_1 ,满足 $||\eta_1|| = 1$ 。把 η_1 扩充为 \mathbb{C}^n 的一个基并进行 Schimidt 正交化和单位化,可得到 \mathbb{C}^n 的一个标准正交基 $\eta_1, \eta_2, \ldots, \eta_n$ 。令:

$$Q_1 = (\eta_1, \eta_2, \dots, \eta_n)$$

显然 Q_1 是一个正交矩阵,于是有 $Q_1^{-1}Q_1=(Q_1^{-1}\eta_1,Q_1^{-1}\eta_2,\ldots,Q_1^{-1}\eta_n)=(e_1,e_2,\ldots,e_n)$ 。 注意到:

$$Q_1^{-1}AQ_1 = Q_1^{-1}(A\eta_1, A\eta_2, \dots, A\eta_n) = (Q_1^{-1}\lambda\eta_1, Q_1^{-1}A\eta_2, \dots, Q_1^{-1}A\eta_n) = \begin{pmatrix} \lambda_1 & \alpha \\ \mathbf{0} & B \end{pmatrix}$$

因为 $(Q_1^{-1}AQ_1)^H = Q_1^H A^H (Q_1^{-1})^H = Q_1^{-1} A (Q_1^H)^H = Q_1^{-1} A Q_1$,所以 $Q_1^{-1} A Q_1$ 是一个对称阵,于是 $\alpha = \mathbf{0}$,B 是一个 n-1 阶 Hermitian 阵。由归纳假设,存在 n-1 阶正交矩阵 Q_2 使得 $Q_2^{-1} B Q_2 = \operatorname{diag}\{\lambda_2, \lambda_3, \dots, \lambda_n\}$ 。令:

$$Q = Q_1 \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & Q_2 \end{pmatrix}$$

则:

54

$$Q^{H}Q = \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & Q_{2}^{H} \end{pmatrix} Q_{1}^{H}Q_{1} \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & Q_{2} \end{pmatrix} = I$$

即 Q 是一个正交矩阵。同时:

$$Q^{-1}AQ = \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & Q_2^H \end{pmatrix} Q_1^H A Q_1 \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & Q_2 \end{pmatrix} = \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & Q_2^H \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0} & B \end{pmatrix} \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & Q_2 \end{pmatrix}$$
$$= \begin{pmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0} & Q_2^H B Q_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0} & \operatorname{diag}\{\lambda_2, \lambda_3, \dots, \lambda_n\} \end{pmatrix} = \operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}$$

所以 A 正交相似于对角矩阵 $\operatorname{diag}\{\lambda_1,\lambda_2,\ldots,\lambda_n\}$ 。由 $AQ=Q\operatorname{diag}\{\lambda_1,\lambda_2,\ldots,\lambda_n\}$ 可以得到 $\lambda_2,\lambda_3,\ldots,\lambda_n$ 是 A 的特征值。

综上,结论成立。

(4) 必要性:正交相似也是相似。

充分性: 因为 A 与 B 相似,由定理 2.23可知 A 与 B 有相同的特征值(包括重数) $\lambda_1, \lambda_2, \ldots, \lambda_n$ 。由 (3) 可得 A 与 B 都正交相似于 $\mathrm{diag}\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ (考虑 λ_i 的顺序的话只需要更改 Q 中列向量的顺序)。因为正交相似具有对称性与传递性,所以 A 正交相似于 B。

求解正交矩阵 (2)

Theorem 2.30. 对于 *Hermitian* 阵 $A \in M_n(\mathbb{C})$,求正交矩阵 Q 使得 $Q^{-1}AQ$ 为对角阵的步骤如下:

2.6 相似的应用 55

- 1. 求出 A 的所有特征值 $\lambda_1, \lambda_2, \ldots, \lambda_m$;
- 2. 对于每一个特征值 λ_i , 求得其特征子空间的一组基 $\alpha_{1i}, \alpha_{2i}, \ldots, \alpha_{r,i}$, 并对它们进行 Schimidt 正交化与单位化, 得到 $\eta_{1i}, \eta_{2i}, \ldots, \eta_{rii}$;
- 3. 令 $Q = (\eta_{11}, \eta_{21}, \dots, \eta_{r_11}, \dots, \eta_{r_mm}), Q$ 即为所求。

Proof. 由可知 $\eta_{ij},\ i=1,2,\ldots,r_j,\ j=1,2,\ldots,m$ 是 A 属于 λ_j 的特征值。根据性质 2.6.2(2) Schimidt 正 可知:

$$Q^{-1}AQ = Q^{H}(A\eta_{11}, A\eta_{21}, \dots, A\eta_{r_{11}}, \dots, A\eta_{r_{mm}})$$

$$= \begin{pmatrix} \eta_{11}^{H} \\ \eta_{21}^{H} \\ \vdots \\ \eta_{r_{11}}^{H} \\ \vdots \\ \eta_{r_{mm}}^{H} \end{pmatrix} (\lambda_{1}\eta_{11}, \lambda_{1}\eta_{21}, \dots, \lambda_{1}\eta_{r_{11}}, \dots, \lambda_{m}\eta_{r_{mm}})$$

$$= \operatorname{diag}\{\lambda_{1}\eta_{11}^{H}\eta_{11}, \lambda_{1}\eta_{21}^{H}\eta_{21}, \dots, \lambda_{1}\eta_{r_{11}}^{H}\eta_{r_{11}}, \dots, \lambda_{m}\eta_{r_{mm}}^{H}\eta_{r_{mm}}\}$$

$$= \operatorname{diag}\{\lambda_{1}, \dots, \lambda_{1}, \dots, \lambda_{m}, \dots, \lambda_{m}\}$$

实对称矩阵特征值的极值性质

Theorem 2.31. 设 $A \in M_n(\mathbb{R})$, A 的特征值从大到小记作 $\lambda_1, \lambda_2, \ldots, \lambda_n$, $\varphi_1, \varphi_2, \ldots, \varphi_n$ 为 对应的标准正交化特征向量,则:

$$\max_{x \neq \mathbf{0}} \frac{x^T A x}{x^T x} = \lambda_1 = \varphi_1^T A \varphi_1 \quad \min_{x \neq \mathbf{0}} \frac{x^T A x}{x^T x} = \lambda_n = \varphi_n^T A \varphi_n$$

Proof. 由性质 2.6.2(3) 可知存在一个正交矩阵 Q 使得 $Q^{-1}AQ = \operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\} = \Lambda$. 对任意的 $x \in \mathbb{R}^n$,因为 Q 为正交矩阵,Q 可逆,所以关于 y 的非齐次线性方程组 Qy = x有唯一解,于是对于这个存在且唯一的y,有:

$$\frac{x^{T}Ax}{x^{T}x} = \frac{y^{T}Q^{T}AQy}{y^{T}Q^{T}Qy} = \frac{y^{T}Ay}{y^{T}y} = \frac{\sum_{i=1}^{n} \lambda_{i}y_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}} \leqslant \lambda_{1} \frac{\sum_{i=1}^{n} y_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}} = \lambda_{1}$$
$$\frac{x^{T}Ax}{x^{T}x} = \frac{y^{T}Q^{T}AQy}{y^{T}Q^{T}Qy} = \frac{y^{T}Ay}{y^{T}y} = \frac{\sum_{i=1}^{n} \lambda_{i}y_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}} \geqslant \lambda_{n} \frac{\sum_{i=1}^{n} y_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}} = \lambda_{n}$$

当 y 为 $(1,0,0,\ldots,0)^T$ 时第一式取等号, 当 y 为 $(0,0,\ldots,0,1)^T$ 时第二式取等号, 此时 x分别为 φ_1 和 φ_n 。

2.7 合同的应用——二次型

Definition 2.22. 数域 K 上的一个 n 元二次型 (quadratic form)是系数在 K 中的 n 个变量的二元齐次多项式,它的一般形式为:

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

其中 $a_{ij} = a_{ji}, 1 \leq i, j \leq n$ 。 矩阵:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$

被称为二次型 $f(x_1, x_2, ..., x_n)$ 的矩阵,它是一个对称矩阵,主对角元依次是 $x_1^2, x_2^2, ..., x_n^2$ 的系数, (i, j) 元是 $x_i x_j$ 系数的一半,其中 $i \neq j$ 。令:

$$x = (x_1, x_2, \dots, x_n)^T$$

则二次型 $f(x_1, x_2, \ldots, x_n)$ 可写作 $x^T A x$ 。

Definition 2.23. 令 $x = (x_1, x_2, ..., x_n)^T$, $y = (y_1, y_2, ..., y_n)^T$, 可逆矩阵 $C \in M_n(K)$, 则关系式 x = Cy 称为变量 $x_1, x_2, ..., x_n$ 到变量 $y_1, y_2, ..., y_n$ 的一个非退化线性变换 (invertible linear transformation)。 如果 C 是一个正交矩阵,则称变量变换 x = Cy 为一个正交变换 (orthogonal transformation)。

Definition 2.24. 对于数域 K 上的两个 n 元二次型 x^TAx 与 y^TAy , 如果存在一个非退化线性变换 x = Cy, 把 x^TAx 变成 y^TBy , 那么称二次型 x^TAx 与 y^TBy 等价,记作 $x^TAx \cong y^TBy$ 。如果二次型 x^TAx 等价于一个只含平方项的二次型,那么称这个只含平方项的二次型是 x^TAx 的一个标准形。

Theorem 2.32. 数域 K 上两个 n 元二次型 x^TAx 与 y^TBy 等价当且仅当 n 阶对称矩阵 A 与 B 合同,于是二次型的等价也是一个等价关系。

Proof. (1) 充分性: 因为 $A \cong B$,所以存在可逆矩阵 C 使得 $C^TAC = B$ 。作非退化线性变换 x = Cy,可得到 $(Cy)^TA(Cy) = y^TC^TACy = y^TBy$,所以 $x^TAx \cong y^TBy$ 。

(2) 必要性: 因为 $x^T A x \cong y^T B y$,所以存在非退化线性变换 x = C y,C 是一个可逆矩阵,把 $x^T A x$ 变为 $y^T B y$,即 $(C y)^T A (C y) = y^T C^T A C y = y^T B y$,所以 $C^T A C = B$,即 $A \cong B$ 。

因为合同是一个等价关系,显然可得二次型的等价也是一个等价关系。 □

Theorem 2.33. 数域 K 上任一n 元二次型都等价于一个只含平方项的二次型。

Proof. 当二次型的矩阵是对角矩阵时该二次型只含平方项,由定理 2.10与定理 2.32可立即得出结论。 □

Theorem 2.34. 设 n 元二次型 x^TAx 的矩阵 A 合同于对角矩阵 $D = \text{diag}\{d_1, d_2, \ldots, d_n\}$, 即存在可逆矩阵 C 使得 $C^TAC = D$ 。令 x = Cy,则可以得到 x^TAx 的一个标准形:

$$d_1y_1^2 + d_2y_2^2 + \dots + d_ny_n^2$$

Proof. 将 x = Cy 代入可得:

$$x^{T}Ax = (Cy)^{T}A(Cy) = y^{T}C^{T}ACy = y^{T}Dy = \sum_{i=1}^{n} d_{i}y_{i}^{2}$$

Theorem 2.35. 数域 $K \perp n$ 元二次型 $x^T A x$ 的任一标准形中,系数不为 0 的平方项个数等于它的矩阵 A 的秩。

Proof. 设 n 元二次型 $x^T A x$ 经过非退化线性变换 x = C y 化成标准形 $d_1 y_1^2 + d_2 y_2^2 + \cdots + d_r y_r^2$,其中 d_1, d_2, \ldots, d_r 都不为 0,则:

$$C^T A C = \text{diag}\{d_1, d_2, \dots, d_r, 0, \dots, 0\}$$

于是 $\operatorname{diag}\{d_1,d_2,\ldots,d_r,0,\ldots,0\}$ 是 A 的一个合同标准形。由定理 2.11可得 $\operatorname{rank}(A) = r$ 。

Definition 2.25. 称二次型 x^TAx 的矩阵 A 的秩为二次型 x^TAx 的秩。

2.7.1 二次型的规范形

实二次型的规范形

Definition 2.26. 实数域上的二次型称为**实二次型**。由定理 2.12可知 n 元实二次型 $x^T A x$ 的矩阵 A 合同于一个对角矩阵 $\mathrm{diag}\{1,1,\ldots,1,-1,-1,\ldots,-1,0,0,\ldots,0\}$,再由定理 2.32可知经过一个适当的非退化线性变换可以将 $x^T A x$ 化作:

$$z_1^2 + z_2^2 + \dots + z_p^2 - z_{p+1}^2 - z_{p+2}^2 - z_r^2$$

称此形式为二次型 x^TAx 的规范形, 其特征为: 只含平方项且平方项系数为 1,-1,0,系数为 1 的平方项在最前面,系数为 -1 的平方项在中间,系数为 0 的平方项在最后。实二次型 x^TAx 的规范形被两个自然数 p 和 r 决定。

Theorem 2.36 (Sylvester's Law of Inertia). n 元实二次型 x^TAx 的规范形是唯一的。

Proof. 设 n 元实二次型 x^TAx 的秩为 r,假设 x^TAx 分别经过非退化线性变换 x = Cy 和 x = Bz 变成两个规范形:

$$x^{T}Ax = y_1^2 + y_2^2 + \dots + y_p^2 - y_{p+1}^2 - y_{p+2}^2 - \dots - y_r^2$$
$$x^{T}Ax = z_1^2 + z_2^2 + \dots + z_q^2 - z_{q+1}^2 - z_{q+2}^2 - \dots - z_r^2$$

要证规范形唯一,即证p=q。

由 x = Cy 和 x = Bz 可知, 经过非退化线性变换 $z = (B^{-1}C)y$ 后有:

$$z_1^2 + z_2^2 + \dots + z_q^2 - z_{q+1}^2 - z_{q+2}^2 - \dots - z_r^2 = y_1^2 + y_2^2 + \dots + y_p^2 - y_{p+1}^2 - y_{p+2}^2 - \dots - y_r^2$$

记 $D = B^{-1}C = (d_{ij})$ 。 假设 p > q, 我们想找到变量 y_1, y_2, \ldots, y_n 的一组取值, 使得上式 右端大于 0,而左端小于或等于 0,从而产生矛盾。令:

$$y = (y_1, y_2, \dots, y_p, 0, 0, \dots, 0)^T$$

其中 y_1, y_2, \ldots, y_p 是待定的实数, 使得变量 z_1, z_2, \ldots, z_q 的值全为 0。因为 z = Dy,所以:

$$\begin{pmatrix} d_{11} & d_{12} & \cdots & d_{1p} \\ d_{21} & d_{22} & \cdots & d_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ d_{q1} & d_{q2} & \cdots & d_{qp} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_q \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

因为p > q,所以上述齐次线性方程组有非零解,即存在非零向量 $y = (y_1, y_2, \dots, y_p, 0, 0, \dots, 0)^T$ 使得 $z_1 = z_2 = \dots = z_q = 0$ 。此时有:

$$z_1^2 + z_2^2 + \dots + z_q^2 - z_{q+1}^2 - z_{q+2}^2 - \dots - z_r^2 \le 0$$

$$y_1^2 + y_2^2 + \dots + y_p^2 - y_{p+1}^2 - y_{p+2}^2 - \dots - y_r^2 > 0$$

矛盾。因此 $p \leq q$ 。同理可得 $q \leq p$,于是 p = q,规范形唯一。

Definition 2.27. 在实二次型 x^TAx 的规范形中,系数为 1 的平方项个数 p 称为 x^TAx 的正惯性指数,系数为 -1 的平方项个数 r-p 称为 x^TAx 的负惯性指数,正惯性指数减去负惯性指数所得的差 2p-r 称为 x^TAx 称为 x^TAx 的符号差 (signature)。

Theorem 2.37. 两个n元实二次型等价

- ⇔它们的规范形相同
- ⇔它们的秩相等,并且正惯性指数也相等。

Proof. 第一条由定理 2.36以及二次型等价的传递性、对称性可直接得到(必要性的证明中需要考虑规范形的定义,然后使用定理 2.36),第二条是显然的。 □

显然矩阵 A 的正惯性指数与负惯性指数就等于二次型 x^TAx 的正惯性指数与负惯性指数,也等于 A 的合同标准形主对角线上大于 0 的元素的个数与小于 0 的个数。

Theorem 2.38. 两个 n 阶实对称矩阵合同 \Leftrightarrow 它们的秩相等, 并且正惯性指数也相等。

Proof. 由定理 2.32可得矩阵合同等价于各自对应的二次型等价,再由定理 2.37可得两个二次型的秩与正惯性指数都相等。因为矩阵的秩与正惯性指数等于对应的二次型的秩与正惯性指数,所以结论成立。 □

复二次型的规范形

Definition 2.28. 复数域上的二次型称为**复二次型**。由定理 2.13可知 n 元复二次型 $x^T Ax$ 的矩阵 A 合同于一个对角矩阵 $\operatorname{diag}\{1,1,\ldots,1,0,0,\ldots,0\}$,再由定理 2.32可知经过一个适当的非退化线性变换可以将 $x^T Ax$ 化作:

$$z_1^2 + z_2^2 + \dots + z_r^2$$

称此形式为二次型 $x^T Ax$ 的规范形, 其特征为: 只含平方项且平方项系数为 1,0,系数为 1 的平方项在前面, 系数为 0 的平方项在后面。

Theorem 2.39. 复二次型 $x^T A x$ 的规范形是唯一的。

Proof. 复二次型 $x^T Ax$ 的规范形完全由它的秩 r 所决定。

Theorem 2.40. 两个n元复二次型等价

- ⇔它们的规范形相同
- ⇔它们的秩相等。

Proof. 第一条由定理 2.39以及二次型的传递性、对称性可直接得到(必要性的证明中需要 考虑规范形的定义,然后使用定理 2.39),第二条是显然的。 □

2.7.2 正定二次型与正定矩阵

Definition 2.29. 如果对 \mathbb{R}^n 中任意非零列向量 α , 都有 $\alpha^T A \alpha > 0$, 则称 n 元实二次型 $x^T A x$ 是正定 (positive definite)的。

Definition 2.30. 若实二次型 $x^T A x$ 是正定的,则称实对称矩阵 A 是正定的,并称 A 为正定矩阵 (positive definite matrix),记为 A > 0。

Theorem 2.41. n 元实二次型 $x^T A x$ 是正定的当且仅当它的正惯性指数等于 n。

Proof. (1) 必要性:设 $x^T A x$ 是正定的,作非退化线性变换x = C y 化成规范形:

$$y_1^2 + y_2^2 + \dots + y_p^2 - y_{p+1}^2 - y_{p+2}^2 - y_r^2$$

如果 p < n,则 y_n^2 的系数为 0 或 -1,取 $y = (0,0,\ldots,1)^T$,则有 $y^T C^T A C y = -y_n^2$ 为 0 或 -1,取 $\alpha = C y$ 即有 $\alpha^T A \alpha$ 为 0 或 -1,与二次型 $x^T A x$ 的正定性矛盾,所以 p = n。

(2) 充分性: 设 $x^T A x$ 的正惯性指数等于 n,则可以作一个非退化线性变换 x = C y 将该二次型化作规范形:

$$y^T C^T A C y = y_1^2 + y_2^2 + \dots + y_n^2$$

因为矩阵 C 可逆,所以关于 y 的齐次线性方程组 $C^{-1}x = \mathbf{0}$ 只有零解。任取非零向量 $\alpha \in \mathbb{R}^n$,则 $C^{-1}\alpha$ 不是零向量,令 $y = C^{-1}\alpha$,于是 $\alpha^T(C^{-1})^TC^TACC^{-1}\alpha > 0$,即 $\alpha^TA\alpha > 0$ 。由 α 的任意性, x^TAx 是正定的。

Theorem 2.42. 由上述定理可得到如下推论:

- 1. 对于 n 元实二次型 $x^T A x$, 下述说法等价:
 - $x^T A x$ 是正定的;
 - $x^T A x$ 的规范形为 $y_1^2 + y_2^2 + \cdots + y_n^2$;
 - $x^T A x$ 的标准形中的 n 个系数都大于 0:
- 2. 与正定二次型等价的实二次型也是正定的;
- 3. 对于 n 阶实对称矩阵 A,下述说法等价:
 - *A* 是正定的:
 - A 的正惯性指数为 n;
 - $A \cong I$:
 - A 的合同标准形中主对角元都大于 0:
 - A 的特征值都大于 0;
 - A 的顺序主子式都大于 0。
- 4. 与正定矩阵合同的实对称矩阵也是正定矩阵。
- 5. 正定矩阵的行列式大于0;
- Proof. (1)1 \Leftrightarrow 2: 由上一定理, x^TAx 正定当且仅当它的正惯性指数为 n,而 x^TAx 的正惯性指数为 n 当且仅当它的规范形为 $y_1^2+y_2^2+\cdots+y_n^2$ 。
- $2 \Rightarrow 3$: 由标准形化规范形的步骤,若 $x^T A x$ 的规范形为 $y_1^2 + y_2^2 + \cdots + y_n^2$,则其标准形中的 n 个系数必然都大于 0;
- $3 \Rightarrow 2$: 当 $x^T A x$ 的标准形中的 n 个系数都大于 0 时,也必然可以将其化为 $y_1^2 + y_2^2 + \cdots + y_n^2$ 。
 - (2) 由(4)、定理2.32和正定矩阵的定义可直接得到。
- (3)1 \Rightarrow 2: 因为 A 是正定的,所以 n 元二次型 x^TAx 是正定的,由上一定理可得 x^TAx 的正惯性指数为 n。因为 A 的正惯性指数等于 x^TAx 的正惯性指数,所以 A 的正惯性指数为 n。
 - $2 \Rightarrow 3$: 因为 A 的正惯性指数为 n, 由矩阵正惯性指数的定义, A 合同于 I。
- $3 \Rightarrow 4$: 因为 A 合同于 I, 由合同规范形的定义,I 是 A 的合同规范形,由合同标准型化合同规范形的步骤,A 的合同标准型中主对角元都大于 0。
- $4 \Rightarrow 5$: 由性质 2.6.2(3) 可知 $A \cong \operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}$,其中 λ_i , $i = 1, 2, \dots, n$ 是 A 的特征值。显然 $\operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ 是 A 的一个合同标准型,因为 A 的合同标准型中主对角元都大于 0,所以 A 的特征值都大于 0。
 - $5 \Rightarrow 2$: 显然。
 - $2 \Rightarrow 1$: 由定理 2.32、上一定理和矩阵正定的定义可直接得到。

 $1 \Rightarrow 6$: 设 n 阶实对称矩阵 A 是正定的,则对于 k = 1, 2, ..., n-1,把 A 写成分块矩 阵:

$$A = \begin{pmatrix} A_k & B_1 \\ B_1^T & B_2 \end{pmatrix}$$

其中 $|A_k|$ 是 A 的 k 阶顺序主子式。在 \mathbb{R}^k 中任取一个非零向量 δ ,因为 A 是正定矩阵,所 以:

$$\begin{pmatrix} \delta \\ \mathbf{0} \end{pmatrix}^T A \begin{pmatrix} \delta \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \delta^T & \mathbf{0} \end{pmatrix} \begin{pmatrix} A_k & B_1 \\ B_1^T & B_2 \end{pmatrix} \begin{pmatrix} \delta \\ \mathbf{0} \end{pmatrix} = \delta^T A_k \delta > 0$$

由 δ 的任意性, A_k 是正定矩阵。由 (5), $|A_k| > 0$, k = 1, 2, ..., n - 1, |A| > 0。

 $6 \Rightarrow 1$: 对实对称矩阵 A 的阶数 n 作数学归纳法。

当 n=1 时,因为 A 的顺序主子式都大于 0,所以 A 的唯一一个元素大于 0,显然此 时 A 是正定矩阵。

假设对于 n-1 阶实对称矩阵命题为真,考虑 n 阶实对称矩阵 $A=(a_{ij})$,将其写作分 块矩阵的形式:

$$A = \begin{pmatrix} A_{n-1} & \alpha \\ \alpha^T & a_{nn} \end{pmatrix}$$

其中 A_{n-1} 是 n-1 阶实对称矩阵,因为 A_{n-1} 的所有顺序主子式是 A 的 1 到 n-1 阶顺序 主子式,它们都大于0,由归纳假设可得 A_{n-1} 是正定的。根据(5)可知 A_{n-1} 可逆。由(3)可逆矩阵行 的第三条可知存在可逆矩阵 $C \in M_{n-1}(\mathbb{R})$ 使得 $C^T A_{n-1} C = I$ 。因为:

列式链接

$$\begin{pmatrix} I & \mathbf{0} \\ -\alpha^T A_{n-1}^{-1} & 1 \end{pmatrix} \begin{pmatrix} A_{n-1} & \alpha \\ \alpha^T & a_{nn} \end{pmatrix} \begin{pmatrix} I & -A_{n-1}^{-1} \alpha \\ \mathbf{0} & 1 \end{pmatrix} = \begin{pmatrix} A_{n-1} & \mathbf{0} \\ \mathbf{0} & a_{nn} - \alpha^T A_{n-1}^{-1} \alpha \end{pmatrix}$$

注意到:

$$\begin{pmatrix} I & \mathbf{0} \\ -\alpha^T A_{n-1}^{-1} & 1 \end{pmatrix}^T = \begin{pmatrix} I & (-\alpha^T A_{n-1}^{-1})^T \\ \mathbf{0} & 1 \end{pmatrix} = \begin{pmatrix} I & -A_{n-1}^{-1} \alpha \\ \mathbf{0} & 1 \end{pmatrix}$$

且:

$$\begin{pmatrix} I & \mathbf{0} \\ -\alpha^T A_{n-1}^{-1} & 1 \end{pmatrix}$$

可逆,所以A合同于矩阵:

$$\begin{pmatrix} A_{n-1} & \mathbf{0} \\ \mathbf{0} & a_{nn} - \alpha^T A_{n-1}^{-1} \alpha \end{pmatrix}$$

因为:

$$\begin{vmatrix} A_{n-1} & \mathbf{0} \\ \mathbf{0} & a_{nn} - \alpha^T A_{n-1}^{-1} \alpha \end{vmatrix} = \begin{vmatrix} I & \mathbf{0} \\ -\alpha^T A_{n-1}^{-1} & 1 \end{vmatrix} \begin{vmatrix} A_{n-1} & \alpha \\ \alpha^T & a_{nn} \end{vmatrix} \begin{vmatrix} I & -A_{n-1}^{-1} \alpha \\ \mathbf{0} & 1 \end{vmatrix}$$
$$= \begin{vmatrix} A_{n-1} & \alpha \\ \alpha^T & a_{nn} \end{vmatrix} = |A|$$

所以 $|A_{n-1}|(a_{nn}-\alpha^TA_{n-1}^{-1}\alpha)=|A|>0$,而 $|A_{n-1}|>0$,所以 $a_{nn}-\alpha^TA_{n-1}^{-1}\alpha>0$ 。因为:

$$\begin{pmatrix} C & \mathbf{0} \\ \mathbf{0} & 1 \end{pmatrix}^T \begin{pmatrix} A_{n-1} & \mathbf{0} \\ \mathbf{0} & a_{nn} - \alpha^T A_{n-1}^{-1} \alpha \end{pmatrix} \begin{pmatrix} C & \mathbf{0} \\ \mathbf{0} & 1 \end{pmatrix}$$
$$= \begin{pmatrix} C^T A_{n-1} C & \mathbf{0} \\ \mathbf{0} & a_{nn} - \alpha^T A_{n-1}^{-1} \alpha \end{pmatrix} = \begin{pmatrix} I & \mathbf{0} \\ \mathbf{0} & a_{nn} - \alpha^T A_{n-1}^{-1} \alpha \end{pmatrix}$$

而:

$$B = \begin{pmatrix} I & \mathbf{0} \\ \mathbf{0} & a_{nn} - \alpha^T A_{n-1}^{-1} \alpha \end{pmatrix}$$

主对角线上的元素都大于 0,由 (3) 的第四条可知 B 是一个正定矩阵。因为 $|C|1 = |C| \neq 0$, 所以:

可逆矩阵行 列式链接

$$\begin{pmatrix} C & \mathbf{0} \\ \mathbf{0} & 1 \end{pmatrix}$$

可逆。于是:

$$\begin{pmatrix} A_{n-1} & \mathbf{0} \\ \mathbf{0} & a_{nn} - \alpha^T A_{n-1}^{-1} \alpha \end{pmatrix}$$

合同于 B。根据合同的传递性,A 合同于正定矩阵 B。由 (4),A 是一个正定矩阵。

- (4) 设 A 是一个正定矩阵,B 是一个实对称矩阵且合同于 A。由 (3) 的第三条可知 A 合同于 I,根据合同的传递性,B 也合同于 I。再由 (3) 的第三条可得 B 也是一个正定矩阵。
- (5) 设 A 是一个正定矩阵,由 (3) 的第三条可得 $A \cong I$,即存在可逆矩阵 C,使得 $C^TAC = I$,于是:

$$|C^T A C| = |C^T| |A| |C| = |A| |C|^2 = 1$$

因为 $|C|^2 > 0$,所以 |A| > 0。

半正定二次型与半正定矩阵

Definition 2.31. 如果对 \mathbb{R}^n 中任意非零列向量 α , 都有 $\alpha^T A \alpha \geqslant 0$, 则称 n 元实二次型 $x^T A x$ 是半正定 (positive semidefinite)的。

Definition 2.32. 若实二次型 $x^T A x$ 是半正定的,则称实对称矩阵 A 是半正定的,并称 A 为半正定矩阵 (positive semidefinite matrix),记为 $A \ge 0$ 。

Theorem 2.43. 由上述定理可得到如下推论:

- 1. 对于 n 元实二次型 $x^T A x$, rank(A) = r, 下述说法等价:
 - $x^T A x$ 是半正定的:
 - $x^T A x$ 的正惯性指数等于 r;
 - $x^T A x$ 的规范形为 $y_1^2 + y_2^2 + \cdots + y_r^2$;
 - $x^T A x$ 的标准形中的 n 个系数都非负:

- 2. 与半正定二次型等价的实二次型也是半正定的;
- 3. 对于 n 阶实对称矩阵 A, rank(A) = r, 下述说法等价:
 - A 是半正定的:
 - A 的正惯性指数为 r:
 - $A \cong \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$;
 - · A 的合同标准形中主对角元都非负;
 - A 的特征值都非负;
 - A 的主子式都非负。
- 4. 与半正定矩阵合同的实对称矩阵也是半正定矩阵。
- 5. 半正定矩阵的行列式为 0:

Proof. (1)1 \Rightarrow 3: 作非退化线性变换 x = Cy 把 $x^T Ax$ 化作规范形:

$$y_1^2 + y_2^2 + \dots + y_p^2 - y_{p+1}^2 - y_{p+2}^2 - y_r^2$$

若 p < r,取 $\alpha = (0,0,\ldots,0,1,0,0,\ldots,0)$,其中只有第 r 位为 1,则 $(C\alpha)^T A(C\alpha) = \alpha C^T A C \alpha = -1$,与 $x^T A x$ 的非负定性矛盾,所以 p = r。

 $3 \Rightarrow 2$: 显然。

 $2 \Rightarrow 4$: 显然。

 $4 \Rightarrow 1$: 作非退化线性变换 x = Cy 把 $x^T Ax$ 化作一个标准形 $d_1 y_1^2 + d_2 y_2^2 + \cdots + d_n y_n^2$, 其中 $d_i \geqslant 0$, $i = 1, 2, \ldots, n$ 。 任取 $\alpha \in \mathbb{R}^n$ 且 $\alpha \neq \mathbf{0}$ 。 因为 C 可逆,所以 $C^{-1}x = \mathbf{0}$ 只有零解,于是 $C^{-1}\alpha = (b_1, b_2, \ldots, b_n) \neq \mathbf{0}$,所以:

$$(C^{-1}\alpha)^T C^T A C C^{-1} \alpha = \sum_{i=1}^n d_i b_i^2 \geqslant 0$$

而:

$$(C^{-1}\alpha)^TC^TACC^{-1}\alpha = \alpha^T(C^{-1})^TC^TACC^{-1}\alpha = \alpha^T(C^T)^{-1}C^TACC^{-1}\alpha = \alpha^TA\alpha$$

所以 $\alpha^T A \alpha \ge 0$ 。由 α 的任意性, $x^T A x$ 半正定。

- (2) 由 (4)、定理 2.32和半正定矩阵的定义可直接得到。
- (3)1 \Rightarrow 2: 因为 A 是半正定的,所以 x^TAx 是半正定的。由 (1) 的第二条, x^TAx 的正惯性指数等于 r,而 A 的正惯性指数等于 x^TAx 的正惯性指数,所以 A 的正惯性指数为 r。

$$2 \Rightarrow 3$$
: 因为 A 的正惯性指数为 r ,由矩阵正惯性指数的定义, $A \cong \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$ 。

 $3 \Rightarrow 4$: 因为 $A \cong C = \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$,所以 $C \neq A$ 的合同规范形。由合同标准形化合同规范形的步骤,A 的合同标准形中主对角元都大于 0。

 $4 \Rightarrow 5$: 由性质 2.6.2(3) 可知 $A \cong \operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}$,其中 λ_i , $i = 1, 2, \dots, n$ 是 A 的特征值。显然 $\operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ 是 A 的一个合同标准型,因为 A 的合同标准型中主对角元都非负,所以 A 的特征值都非负。

 $5 \Rightarrow 2$: 因为 rank = r, 所以 A 的相似标准形主对角线上的元素有且只有 r 个非零,由条件它们也非负,于是它们为正数,显然此时 A 的正惯性指数为 r。

 $2 \Rightarrow 1$: 由定理 2.32、(1) 的第二条和矩阵半正定的定义可直接得到。

 $1 \Rightarrow 6$:

有空证明

 $6 \Rightarrow 5$:

(4) 设 A 是一个半正定矩阵,B 是一个实对称矩阵且合同于 A。由 (3) 的第三条可知 $A\cong C=\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$,根据合同的传递性, $B\cong C$ 。再由 (3) 的第三条可得 B 也是一个半正定矩阵。

(5) 设 A 是一个 n 阶半正定矩阵,由 (3) 的第三条,存在可逆矩阵 C 使得:

$$C^T A C = B = \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

而 $\operatorname{rank}(B) = r$,因为可逆变换不改变矩阵的秩,所以 $\operatorname{rank}(A) = r < n$,于是 |A| = 0。 \square

负定矩阵

Definition 2.33. 如果对 \mathbb{R}^n 中任意非零列向量 α , 都有 $\alpha^T A \alpha < 0$, 则称 n 元实二次型 $x^T A x$ 是负定 (negative definite)的。

Definition 2.34. 若实二次型 $x^T A x$ 是负定的,则称实对称矩阵 A 是负定的,并称 A 为负定矩阵 (negative definite matrix),记为 A < 0。

Theorem 2.44. 对称矩阵 $A \in M_n(\mathbb{R})$ 负定的充分必要条件为: 它的奇数阶顺序主子式都小于 0,偶数阶顺序主子式都大于 0。

Proof. 设 $|A_k|$ 为 A 的 k 阶顺序主子式,由定理 2.42(3)的第六条:

A是负定矩阵

$$\Leftrightarrow (-A)$$
是正定矩阵
$$\Leftrightarrow (-1)^k |A_k| > 0$$

$$\Leftrightarrow \begin{cases} |A_k| > 0, & k$$
 为偶数
$$|A_k| < 0, & k$$
 为奇数

2.8 特殊矩阵

2.8.1 幂等阵

Definition 2.35. 若矩阵 $A \in M_n(K)$ 满足 $A^2 = I_n$, 则称 A 为幂等矩阵 (idempotent matrix)。

2.8 特殊矩阵 65

Property 2.8.1. 设 $A \in M_n(K)$ 是一个幂等阵, $\operatorname{rank}(A) = r$, 则:

- I. A 的特征值只能是1或0;
- 2. $\operatorname{tr}(A) = \operatorname{rank}(A)$;
- 3. A幂等 \Leftrightarrow rank(A) + rank $(I_n A) = n$;
- 4. 存在秩为 r 的 $B \in M_n(K)$ 使得 $A = B(B^TB)^-B^T$;

Proof. (1) 设 λ 为 A 的一个特征值, φ 为对应的特征向量,因为 A 是一个幂等阵,所以 $A^2\varphi=A\varphi=\lambda\varphi$,又因为:

$$A^2\varphi = AA\varphi = A\lambda\varphi = \lambda A\varphi = \lambda^2\varphi$$

所以 $(\lambda^2 - \lambda)\varphi = \mathbf{0}$ 。因为 φ 是特征向量,所以 $\varphi \neq \mathbf{0}$,于是 $\lambda^2 - \lambda = 0$,即 $\lambda = 1$ 或 $\lambda = 0$ 。由 λ 的任意性,结论成立。

(2) 因为 rank(A) = r,所以存在可逆矩阵 P,Q 使得:

$$A = P \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q = \begin{pmatrix} P_1 & P_2 \end{pmatrix} \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix}$$

其中 P_1 为 $n \times r$ 矩阵, Q_1 为 $r \times n$ 矩阵, 于是 $A = P_1Q_1$ 。因为 A 是一个幂等阵, 所以:

$$P\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q P\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q = P\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q$$

$$\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q P\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

$$\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} P_1 & P_2 \end{pmatrix} \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

$$\begin{pmatrix} Q_1 P_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

即 $Q_1P_1 = I_r$ 。由??(3) 可得:

$$tr(A) = tr(P_1Q_1) = tr(Q_1P_1) = tr(I_r) = r = rank(A)$$

$$\square$$

Property 2.8.2. 设 $A \in M_n(\mathbb{C})$ 是一个 Hermitian 幂等阵,则:

1.

2.
$$\operatorname{rank}(A) = \operatorname{tr}(A)$$
.

Proof. (1)(2)由性质 2.6.2(3)和(1)可知存在一个正交矩阵 Q 使得:

$$A = Q^{-1} \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q$$

由性质 2.4.1可得:

$$rank(A) = rank(I_r) = r$$

根据??(3) 可得:

$$\operatorname{tr}(A) = \operatorname{tr} \left[Q^{-1} \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q \right] = \operatorname{tr} \left[\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q Q^{-1} \right] = \operatorname{tr} \left[\begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \right] = r$$

所以有 $\operatorname{rank}(A) = \operatorname{tr}(A)$ 。

2.9 矩阵的分解

2.9.1 SVD 分解

Theorem 2.45. 设 $A \in M_{m \times n}(\mathbb{C})$,则 AA^H, A^HA 是半正定矩阵。

Proof. 设 λ_i , i = 1, 2, ..., n 是矩阵 $A^H A$ 的特征值, ξ_i 是对应的特征向量, 则:

$$A^{H}A\xi_{i} = \lambda_{i}\xi_{i} \to \xi_{i}^{H}A^{H}A\xi_{i} = \lambda_{i}\xi_{i}^{H}\xi_{i} \to ||A\xi_{i}||^{2} = \lambda_{i}||\xi_{i}||^{2}$$

由于左式非负,所以右式非负,而 $||\xi_i||^2$ 非负,因此 λ_i 非负,由定理 2.43(3) 的第五条可知 AA^T 是半正定矩阵。

Theorem 2.46. 设 $A \in M_{m \times n}(\mathbb{C})$, $\operatorname{rank}(A) = r$, 则存在两个正交矩阵 $P \in M_m(\mathbb{C})$, $Q \in M_n(\mathbb{C})$ 使得:

$$A = P \begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^H$$

其中 $\Lambda = \operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_r\}$, $\lambda_i > 0$, λ_i^2 为 $A^H A$ 的正特征值。

Proof. 由定理 2.2可知 $\operatorname{rank}(A^H A) = \operatorname{rank}(A)$ 。于是 $A^H A$ 确实有 r 个正特征值。因为 $A^H A$ 是一个 Hermitian 矩阵,由性质 2.6.2可知存在正交矩阵 $Q \in M_n(\mathbb{C})$ 使得:

$$Q^H A^H A Q = \begin{pmatrix} \Lambda^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

记 B = AQ,则:

$$B^H B = \begin{pmatrix} A^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

2.9 矩阵的分解 67

这表明 B 的列向量相互正交,且前 r 个列向量的长度分别为 $\lambda_1, \lambda_2, \ldots, \lambda_r$,后 n-r 个列向量为零向量,于是存在一个正交矩阵 $P \in M_m(\mathbb{C})$ 使得:

$$B = P \begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

因为 B = AQ, 所以:

$$A = P \begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{-1} = P \begin{pmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q^{H}$$

Definition 2.36. 设 $A \in M_{m \times n}(\mathbb{C})$, $\operatorname{rank}(A) = r$, $A^H A$ 的正特征值为 λ_i , $i = 1, 2, \ldots, r$, 称 $\delta_i = \sqrt{\lambda_i}$ 为矩阵 A 的奇异值 (singular value)。

Chapter 3

线性模型

Definition 3.1.

$$\begin{cases} y = X\beta + \varepsilon \\ E(\varepsilon) = \mathbf{0} \\ Cov(\varepsilon) = \sigma^2 I_n \end{cases}$$

其中 y 为 $n \times 1$ 观测向量, X 为 $n \times p$ 的设计矩阵, β 为 $p \times 1$ 的未知参数向量, ε 为随机误差, σ^2 为误差方差。

Definition 3.2. 称方程 $X^TX\beta = X^Ty$ 为正则方程。

Theorem 3.1. 对于定义 3.1, $\hat{\beta} = (X^T X)^- X^T y$ 是其唯一的最小二乘解。

Proof. 注意到:

$$\begin{split} Q(\beta) &= ||y - X\beta||^2 = (y - X\beta)^T (y - X\beta) \\ &= y^T y - y^T X \beta - \beta^T X^T y - \beta^T X^T X \beta \\ &= y^T y - 2 y^T X \beta - \beta^T X^T X \beta \\ \frac{\partial y^T X \beta}{\beta} &= X^T y, \quad \frac{\partial \beta^T X^T X \beta}{\beta} = 2 X^T X \beta \\ \frac{\partial Q(\beta)}{\partial \beta} &= 2 X^T y - 2 X^T X \beta = 0 \\ X^T X \beta &= X^T y \end{split}$$

由定理 2.1可知方程 $X^TX\beta = X^Ty$ 是相容的,根据定理 2.20可知其通解为:

$$\hat{\beta} = (X^T X)^- X^T y$$

其中 $(X^TX)^-$ 是 X^TX 的任意一个广义逆矩阵。 对任意的 β ,有:

$$Q(\beta) = ||y - X\beta||^2 = ||y - X\hat{\beta} + X\hat{\beta} - X\beta||^2 = ||y - X\hat{\beta} + X(\hat{\beta} - \beta)||^2$$
$$= ||y - X\hat{\beta}||^2 + ||X(\hat{\beta} - \beta)||^2 + 2(y - X\hat{\beta})^T X(\hat{\beta} - \beta)$$

注意到正则方程即为:

$$X^T(y - X\beta) = \mathbf{0}$$

于是:

$$2(y - X\hat{\beta})^T X(\hat{\beta} - \beta) = 2[X^T (y - X\hat{\beta})]^T (\hat{\beta} - \beta) = 0$$

所以:

$$Q(\beta) = ||y - X\hat{\beta}||^2 + ||X(\hat{\beta} - \beta)||^2$$

上第二项总是非负的,由范数的性质其为 0 当且仅当 $X\hat{\beta}=X\beta$,即当且仅当 $X^TX\beta=X^TX\hat{\beta}=X^Ty$,所以使 $Q(\beta)$ 达到最小值的 β 必为正则方程的解 $\hat{\beta}=(X^TX)^-X^Ty$ 。 \Box

推导 3.1. 若 $\operatorname{rank}(X) = p$,则 X 的列向量组线性无关。考虑二次型 $y^T X^T X y$, $y^T X^T X y = 0 \Leftrightarrow ||Xy|| = 0 \Leftrightarrow X y = \mathbf{0}$,而 X 的列向量是线性无关的,所以不存在非零向量的 y 使得 $X y = \mathbf{0}$,于是 $y^T X^T X y$ 是一个正定二次型, $X^T X$ 是一个正定矩阵。由定理 2.42(3) 的第五点和可得 $X^T X$ 可逆。此时 $\hat{\beta} = (X^T X)^{-1} X^T y$,称 $\hat{\beta}$ 为 β 的最小二乘估计 (least squares estimate)。

Definition 3.3. 若存在 $n \times 1$ 向量 α 使得 $\mathrm{E}(\alpha^T y) = c^T \beta$ 对一切的 β 成立,则称 $c^T \beta$ 为可估函数 (estimable function)。

行列式等于特征值的积,行列式大于0矩阵可逆

Property 3.0.1. 对于定义 3.1, $c^T\beta$ 和 $d^T\beta$ 是可估函数, $\hat{\beta}$ 是正则方程的解, 则:

- 1. 使 $c^T\beta$ 成为可估函数的全体向量 c 构成 $\mathcal{M}(X^T)$;
- 2. 若 $c_1^T \beta$ 和 $c_2^T \beta$ 都是可估函数,则对任意常数 $a_1, a_2, a_1 c_1^T \beta + a_2 c_2^T \beta$ 也是可估函数;
- 3. 线性无关的可估函数组最多有 rank(X) 个可估函数;
- 4. $c^T \hat{\beta}$ 与 $(X^T X)^-$ 的选择无关;
- 5. $c^T \hat{\beta}$ 为 $c^T \beta$ 的无偏估计;
- 6. $\operatorname{Var}(c^T\hat{\beta}) = \sigma^2 c^T (X^T X)^- c$, $\operatorname{Cov}(c^T \hat{\beta}, d^T \hat{\beta}) = \sigma^2 c^T (X^T X)^- d$, 且与 $(X^T X)^-$ 的选择无关;
- 7. $c^T \hat{\beta} \not\in c^T \beta$ 唯一的 BLUE;
- 8. 设 $\varphi_i = c_i^T \beta$, i = 1, 2, ..., k 都是可估函数, $\alpha_1, \alpha_2, ..., \alpha_k \in \mathbb{R}$, 则 $\varphi = \sum_{i=1}^k \alpha_i \varphi_i$ 也是可估的,且 $\hat{\varphi} = \sum_{i=1}^k \alpha_i c_i^T \hat{\beta}$ 是 φ 的 BLU 估计。

Proof. (1) $c^T \beta$ 是可估函数 \Leftrightarrow 存在 $n \times 1$ 向量 α 使得 $\mathrm{E}(\alpha^T y) = \alpha^T \mathrm{E}(y) = \alpha^T X \beta = c^T \beta$ 对一切的 β 成立 \Leftrightarrow $c = X^T \alpha$ 。

- (2)由(1)直接可得。
- (3)由(1)和直接可得。

转置秩不变

(4) 因为 $c^T \beta$ 可估,由 (1) 可知存在 $n \times 1$ 向量 α 使得 $c = X^T \alpha$,于是:

$$c^T \hat{\beta} = \alpha^T X (X^T X)^- X^T y$$

由性质 2.5.1(4) 即可得出结论。

(5) 因为 $c^T \beta$ 可估,由 (1) 可知存在 $n \times 1$ 向量 α 使得 $c = X^T \alpha$,根据性质 2.5.1(5) 可得:

$$E(c^T\hat{\beta}) = E[\alpha^T X (X^T X)^- X^T y] = \alpha^T X (X^T X)^- X^T X \beta = \alpha^T X \beta = c^T \beta$$

(6) 因为 $c^T \beta$, $d^T \beta$ 是可估函数,所以存在 α , γ 使得 $c = X^T \alpha$, $d = X^T \gamma$ 。由**??**(3) 和性质 2.5.1(6)(5) 可知:

$$\operatorname{Cov}(c^T \hat{\beta}, d^T \hat{\beta}) = \operatorname{Cov}[\alpha^T X (X^T X)^- X^T y, \gamma^T X (X^T X)^- X^T y]$$

$$= \alpha^T X (X^T X)^- X^T \operatorname{Cov}(y) X [(X^T X)^-]^T X^T \gamma$$

$$= \alpha^T X (X^T X)^- X^T \sigma^2 I_n X (X^T X)^- X^T \gamma$$

$$= \sigma^2 \alpha^T X (X^T X)^- d$$

$$= \sigma^2 c^T (X^T X)^- d$$

由性质 2.5.1(4) 及上第三行可知 $Cov(c^T\hat{\beta}, d^T\hat{\beta})$ 与 $(X^TX)^-$ 的选择无关。

(7) 无偏性由 (5) 可得,线性性由正则方程可知,下证方差最小。设 $a^T y$ 为 $c^T \beta$ 的任一无偏估计,由 (1) 的过程可知 $c = X^T a$ 。根据性质 2.5.2(3) 和 (6) 可得:

$$\begin{aligned} \operatorname{Var}(a^{T}y) - \operatorname{Var}(c^{T}\hat{\beta}) &= \sigma^{2}[a^{T}a - c^{T}(X^{T}X)^{-}c] \\ &= \sigma^{2}[a^{T} - c^{T}(X^{T}X)^{-}X^{T}][a - X(X^{T}X)^{-}c] \\ &= \sigma^{2}||a - X(X^{T}X)^{-}c||^{2} \geqslant 0 \end{aligned}$$

上式第一行到第二行是由于性质 2.5.2(3):

$$\begin{split} &[a^T - c^T (X^T X)^- X^T][a - X (X^T X)^- c] \\ = & a^T a - a^T X (X^T X)^- c - c^T (X^T X)^- X^T a + c^T (X^T X)^- X^T X (X^T X)^- c \\ = & a^T a - c^T (X^T X)^- c - a^T X (X^T X)^- c + a^T X (X^T X)^- X^T X (X^T X)^- c \\ = & a^T a - c^T (X^T X)^- c - a^T X (X^T X)^- c + a^T X (X^T X)^- c \\ = & a^T a - c^T (X^T X)^- c - a^T X (X^T X)^- c + a^T X (X^T X)^- c \\ = & a^T a - c^T (X^T X)^- c \end{split}$$

由范数的性质可知 $\operatorname{Var}(a^Ty) = \operatorname{Var}(c^T\hat{\beta})$ 当且仅当 $a = X(X^TX)^-c$,由性质 2.5.2(3) 可知 $a = X(X^TX)^-c \Leftrightarrow a^T = c^T(X^TX)^-X^T \Leftrightarrow a^Ty = c^T(X^TX)^-X^Ty = c^T\hat{\beta}$ 。

(8) 因为 $\varphi_1, \varphi_2, \ldots, \varphi_k$ 都是可估函数,所以存在 b_1, b_2, \ldots, b_k 使得 $\mathbf{E}(b_i^T y) = c_i^T \beta$,于是:

$$E\left(\sum_{i=1}^k \alpha_i b_i^T y\right) = \sum_{i=1}^k \alpha_i E(b_i^T y) = \sum_{i=1}^k \alpha_i c_i^T \beta = \sum_{i=1}^k a_i \varphi_i = \varphi$$

所以取 $\alpha = \sum_{i=1}^k \alpha_i b_i$ 即可得到 $E(\alpha^T y) = \varphi$, φ 是可估的。

由 (5) 可得 $c_i^T \hat{\beta}$ 是 $c_i^T \beta$ 的无偏估计,所以:

$$E(\hat{\varphi}) = E\left(\sum_{i=1}^k \alpha_i c_i^T \hat{\beta}\right) = \sum_{i=1}^k \alpha_i E(c_i^T \hat{\beta}) = \sum_{i=1}^k \alpha_i c_i^T \beta = \varphi$$

即 $\hat{\varphi}$ 是一个无偏估计。

令 $c = \sum_{i=1}^k \alpha_i c_i$,则 $\varphi = c^T \beta$ 。设 $\gamma^T y$ 是 φ 的一个无偏估计,于是由 (7) 可得:

$$\operatorname{Var}(\gamma^T y) - \operatorname{Var}(c^T \hat{\beta}) = \sigma^2 ||\gamma - X(X^T X)^{-} c||^2$$

上式等于 $0 \Leftrightarrow \gamma^T y = c^T \hat{\beta} = \hat{\varphi}$,即 $\hat{\varphi}$ 是唯一的 BLUE。

Definition 3.4. 对于定义 3.1, 若 $c^T\beta$ 是可估函数,称 $c^T\hat{\beta}$ 为 $c^T\beta$ 的 LS 估计,其中 $\hat{\beta}$ 为正则方程的解。

Definition 3.5. 称 $\hat{e} = y - X\hat{\beta}$ 为残差向量。

Property 3.0.2. 对于定义 *3.1*, $\hat{\beta}$ 为正则方程的解,则残差向量 \hat{e} 满足 $E(\hat{e}) = 0$, $Cov(\hat{e}) = \sigma^2(I - P_X)$ 。

Proof. 由可知:

对称幂等阵

$$E(\hat{e}) = E(y - X\hat{\beta}) = E[I_n y - X(X^T X)^- X^T y] = (I_n - P_X) E(y)$$

$$= (I_n - P_X) X \beta = (X - X) \beta = 0$$

$$Cov(\hat{e}) = Cov[(I_n - P_X)y] = (I_n - P_X) Cov(y) (I_n - P_X) = \sigma^2 (I_n - P_X)$$