If φ_1 and φ_2 are symmetric bilinear forms, then $f^{*_l} = f^{*_r}$. This also holds if φ is ϵ -Hermitian. Indeed, since

$$\varphi_2(u, f(x)) = \varphi_1(f^{*_r}(u), x),$$

we get

$$\epsilon \overline{\varphi_2(f(x), u)} = \epsilon \overline{\varphi_1(x, f^{*_r}(u))}$$

and since $\lambda \mapsto \overline{\lambda}$ is an involution, we get

$$\varphi_2(f(x), u) = \varphi_1(x, f^{*_r}(u)).$$

Since we also have

$$\varphi_2(f(x), u) = \varphi_1(x, f^{*_l}(u)),$$

we obtain

$$\varphi_1(x, f^{*_r}(u)) = \varphi_1(x, f^{*_l}(u))$$
 for all $x \in E_1$, and all $u \in E_2$,

and since φ_1 is nondegenerate, we conclude that $f^{*_l} = f^{*_r}$. Whenever $f^{*_l} = f^{*_r}$, we use the simpler notation f^* .

If $f: E_1 \to E_2$ and $g: E_1 \to E_2$ are two linear maps, we have the following properties:

$$(f+g)^{*_l} = f^{*_l} + g^{*_l}$$
$$id^{*_l} = id$$
$$(\lambda f)^{*_l} = \overline{\lambda} f^{*_l},$$

and similarly for right adjoints. If E_3 is another space, φ_3 is a sesquilinear form on E_3 , and if l_{φ_2} and r_{φ_2} are bijective, then for any linear maps $f: E_1 \to E_2$ and $g: E_2 \to E_3$, we have

$$(g \circ f)^{*_l} = f^{*_l} \circ g^{*_l},$$

and similarly for right adjoints. Furthermore, if $E_1 = E_2 = E$ and $\varphi \colon E \times E \to K$ is ϵ -Hermitian, for any linear map $f \colon E \to E$ (recall that in this case $f^{*_l} = f^{*_r} = f^*$), we have

$$f^{**} = \epsilon \overline{\epsilon} f.$$

29.5 Isometries Associated with Sesquilinear Forms

The notion of adjoint is a good tool to investigate the notion of isometry between spaces equipped with sesquilinear forms. First, we define metric maps and isometries.

Definition 29.15. If (E_1, φ_1) and (E_2, φ_2) are two pairs of spaces and sesquilinear maps $\varphi_1 \colon E_1 \times E_1 \to K$ and $\varphi_2 \colon E_2 \times E_2 \to K$, a metric map from (E_1, φ_1) to (E_2, φ_2) is a linear map $f \colon E_1 \to E_2$ such that

$$\varphi_1(u,v) = \varphi_2(f(u),f(v))$$
 for all $u,v \in E_1$.

We say that φ_1 and φ_2 are *equivalent* iff there is a metric map $f: E_1 \to E_2$ which is bijective. Such a metric map is called an *isometry*.