Christian-Albrechts-Universität zu Kiel

06_chiquadrat/zusammenhangsmaße

Chi-quadrat, Cramers V

Nachtrag KS-Test, Mann-Whitney-U-Test [1]

Christian-Albrechts-Universität zu Kiel

Teststärke

MWU-Test ist generell teststärker.

Methode

KS-Test testet auf Form und Lage der Verteilungen, MWU-Test testet nur auf Lage der Verteilung


```
Two-sample Kolmogorov-Smirnov test

data: placement_small[race_small == "T"] and placement_small[race_small == "H"]

[-1]

0 = 0.4737, p-value = 0.02878

0 siternative hypothesis: two-sided

0 wilcox.test(placement_small[race_small=="T"],placement_small[race_small=="H"][

1])

Wilcoxon rank sum test

data: placement_small[race_small == "T"] and placement_small[race_small == "H"]

[-1]

W = 185, p-value = 0.1469

0 siternative hypothesis: true location_shift_is_not_equal_to_0
```

ks.test(placement small[race small=="T"],placement small[race small=="H"][-1]

ННННННННТТТТТТТТТТННННННННННТТТТТТТТТ

Nachtrag KS-Test, Mann-Whitney-U-Test [2]

Christian-Albrechts-Universität zu Kiel

Teststärke

MWU-Test ist generell teststärker.

Methode

KS-Test testet auf Form und Lage der Verteilungen, MWU-Test testet nur auf Lage der Verteilung

Voraussetzungen

MWU-Test: Form der Verteilungen ähnlich

Christian-Albrechts-Universität zu Kiel

Hypothesen-Test

Überprüfung von Annahmen über die Grundgesamtheit

Es wird eine Annahme (Hypothese) über die Grundgesamtheit aufgestellt und dann anhand der Stichprobe auf ihre Wahrscheinlichkeit getestet.

Gängige Fragen:

Wie hoch ist die Wahrscheinlichkeit, das zwei oder mehr Stichproben von unterschiedlichen Grundgesamtheiten stammen? (Ist die Ausstattungssitte mit Grabbeigaben zwischen Männern und Frauen so unterschiedlich, das sich hier zwei unterschiedliche gesellschaftliche Gruppen zeigen?)

Zwei Stichproben "Vergleichstest"?

Wie hoch ist die Wahrscheinlichkeit das eine gegebene Stichprobe von einer Grundgesamtheit mit bestimmten Eigenschaften stammt? (Ist die Anzahl der Grabbeigaben zufällig oder gibt es ein Muster?)

Eine Stichprobe Anpassungstest

Nichtparametrische Tests

Christian-Albrechts-Universität zu Kiel

parametrisch vs. nicht-parametrisch/parameterfrei:

parametrisch: Werte müssen bestimmter Verteilung folgen (z. B. Normalverteilung); Grundannahmen zur Verteilung sind notwendig

nicht-parametrisch: Annahmen zur Werteverteilung entfallen; keine Grundannahmen notwendig

Nicht-parametrische Tests, Vorteile - Nachteile:

Vorteil: Sind auch anwendbar, wenn keine Aussage über die Verteilung möglich ist oder die Verteilung nicht den für parametrische Tests gegebenen Anforderungen entspricht.

Es können auch relativ kleine Stichproben getestet werden.

Nachteil: Haben meist eine geringere Power (Teststärke),

X²-Test

Christian-Albrechts-Universität zu Kiel

X²-Test [1]

Mögliche Fragestellungen

Befinden sich Siedlungen eher auf besonders guten Böden oder ist die Verteilung zufällig?

Rückschlüsse auf Siedlungsverhalten und Wirtschaftsweise wären möglich.

Haben ältere Personen mehr Schuhleistenkeile als Grabbeigabe als jüngere?

Wenn Schuhleistenkeile Zeichen sozialen Ranges sind, würden sich Rückschlüsse auf Erblichkeit oder Erwerb während der Lebenszeit des sozialen Ranges ergeben.

Tests für nominale Daten sind möglich!

Daher von besonderem Wert für die Archäologie, weil wir häufig mit nominalen Daten arbeiten.

Christian-Albrechts-Universität zu Kiel

X²-Test [2]

Test auf Gleichverteilung zweier Verteilungen

Voraussetzung: mindestens 1 nominal skalierte Variable (bei einer Stichprobe) und 1 nominalskalierte Gruppierungsvariable (bei 2 Stichproben)

Vorgehensweise bei einer Stichprobe: beobachtete Werte werden mit erwarteten Werten bei spezifischer Verteilung verglichen; kein Erwartungswert sollte < 5 sein; n sollte > 50 sein

Vorgehensweise bei 2 Stichproben: beobachtete Werte beider Verteilungen werden mit erwarteten Werten bei Gleichverteilung verglichen; kein Erwartungswert sollte < 5 sein; n sollte > 50 sein

Prüfgröße: x2

Signifikanz ist abhängig von der Zahl der Freiheitsgrade (df)

Christian-Albrechts-Universität zu Kiel

Exkurs Freiheitsgrade

	Männlich	Weiblich	Summe
Brandbestattung			201
Körperbestattung			197
Summe	216	182	398

Christian-Albrechts-Universität zu Kiel

Exkurs Freiheitsgrade

	Männlich	Weiblich	Summe
Brandbestattung	123		201
Körperbestattung			197
Summe	216	182	398

Christian-Albrechts-Universität zu Kiel

Exkurs Freiheitsgrade

Anzahl der frei wählbaren Elemente bei gg. Randsummen

	Männlich	Weiblich	Summe
Brandbestattung	123	78	201
Körperbestattung	93	104	197
Summe	216	182	398

df=1: Wenn ein Wert gewählt ist, ergeben sich die anderen aus den Randsummen

(Zahl der Spalten – 1)*(Zahl der Zeilen – 1)

Christian-Albrechts-Universität zu Kiel

Exkurs Freiheitsgrade

	Männlich	Weiblich	unsicher	Summe
Brandbestattung				201
Körperbestattung				197
Summe	196	179	23	398

Christian-Albrechts-Universität zu Kiel

Exkurs Freiheitsgrade

	Männlich	Weiblich	unsicher	Summe
Brandbestattung		78		201
Körperbestattung				197
Summe	196	179	23	398

Christian-Albrechts-Universität zu Kiel

Exkurs Freiheitsgrade

	Männlich	Weiblich	unsicher	Summe
Brandbestattung	113	78		201
Körperbestattung				197
Summe	196	179	23	398

CAIC

Christian-Albrechts-Universität zu Kiel

Exkurs Freiheitsgrade

Anzahl der frei wählbaren Elemente bei gg. Randsummen

	Männlich	Weiblich	unsicher	Summe
Brandbestattung	113	78	10	201
Körperbestattung	83	101	13	197
Summe	196	179	23	398

df=2: Wenn zwei Werte gewählt sind, ergeben sich die anderen aus den Randsummen

(Zahl der Spalten – 1)*(Zahl der Zeilen – 1)

CAU

Christian-Albrechts-Universität zu Kiel

Exkurs Freiheitsgrade

	Männlich	Weiblich	unsicher	Summe
Brandbestattung				201
Körperbestattung				197
unsicher				30
Summe	201	187	40	398

CAIU

Christian-Albrechts-Universität zu Kiel

Exkurs Freiheitsgrade

	Männlich	Weiblich	unsicher	Summe
Brandbestattung		78		201
Körperbestattung	83		13	197
unsicher		8		30
Summe	201	187	40	398

CAU

Christian-Albrechts-Universität zu Kiel

Exkurs Freiheitsgrade

Anzahl der frei wählbaren Elemente bei gg. Randsummen

	Männlich	Weiblich	unsicher	Summe
Brandbestattung	113	78	10	201
Körperbestattung	83	101	13	197
unsicher	5	8	17	30
Summe	201	187	40	398

df=4: Wenn vier Werte gewählt sind, ergeben sich die anderen aus den Randsummen

(Zahl der Spalten – 1)*(Zahl der Zeilen – 1)

CAU

Christian-Albrechts-Universität zu Kiel

X²-Test [3]

Test für eine Stichprobe (Beispiel nach Shennan)

Anzahlen neolithischer Siedlungen nach Bodentyp im östlichen Frankreich.

Bodenart	Anzahl der Siedlungen
Rendzina	26
Alluvial	9
Braunerde	18
Gesamt	53

Frage: Gibt es eine signifikante Bevorzugung für einen Bodentyp? Wir berechnen zwei Varianten:

- 1. Gleichmäßig verteilt
- 2. Gleichmäßig verteilt mit Berücksichtigung des Anteils der Bodentypen an der Gesamtfläche

Christian-Albrechts-Universität zu Kiel

X²-Test [4]

Variante 1: Gleichmäßige Verteilung

Bodenart	Anzahl der Siedlungen	Anteil der Bodenart	Erwartete Anzahl der Siedlungen
Rendzina	26	1/3	17,66667
Alluvial	9	1/3	17,66667
Braunerde	18	1/3	17,66667
Gesamt	53	1	53

1. Gleichmäßig verteilt

H_n: Die Siedlungen sind gleichmäßig über alle Bodentypen verteilt

H₁: Die Siedlungen sind nicht gleichmäßig über alle Bodentypen verteilt

Christian-Albrechts-Universität zu Kiel

X²-Test [5]

Variante 1: Gleichmäßige Verteilung

Bodenart	Anzahl der Siedlungen	Anteil der Bodenart	Erwartete Anzahl der Siedlungen
Rendzina	26	1/3	17,66667
Alluvial	9	1/3	17,66667
Braunerde	18	1/3	17,66667
Gesamt	53	1	53

Formel für X²

$$\chi^2 = \sum_{i=1}^k \frac{(B_i - E_i)^2}{E_i}$$

 B_i : Anzahl der Beobachteten Fälle

*E*_i: *Anzahl der Erwarteten Fälle*

k: Anzahl der Kategorien

 χ^2 : Symbol für die Testgröße Chi – Quadrat

Christian-Albrechts-Universität zu Kiel

X²-Test [6]

Variante 1: Gleichmäßige Verteilung

$\chi^2 = \sum_{i=1}^k \frac{(B_i - E_i)^2}{E_i}$

Berechnen des X²-Wertes

Bodenart	Anzahl der Siedlungen	Erwartete Anzahl der Siedlungen	O _i -E _i	(O _i -E _i) ²	$(O_i-E_i)^2/E_i$
Rendzina	26	17,66667	8,33333	69,44439	3,93081
Alluvial	9	17,66667	-8,66667	75,11117	4,25158
Braunerde	18	17,66667	0,33333	0,11111	0,00629
Gesamt	53	53			8,18868

Nachschlagen in Tabelle (z.B. Shennan):

Df=2 (2 Spalten (Beobachtet, Erwartet), 3 Kategorien)

Signifikanzniveau: 0,05 Grenzwert: 5,99145

Signifikanter Unterschied: Die Verteilung weicht von einer gleichmäßigen Verteilung ab!

Christian-Albrechts-Universität zu Kiel

X²-Test [7]

Variante 2: Gleichmäßig verteilt mit Berücksichtigung des Anteils der Bodentypen an der Gesamtfläche

Bodenart	Anzahl der Siedlungen	Anteil der Bodenart	Erwartete Anzahl der Siedlungen
Rendzina	26	32%	16,96
Alluvial	9	25%	13,25
Braunerde	18	34%	22,79
Gesamt	53	1	53

Formel für
$$\chi^2$$
 $\chi^2 = \sum_{i=1}^k \frac{(B_i - E_i)^2}{E_i}$

Christian-Albrechts-Universität zu Kiel

X²-Test [8]

Variante 2: Gleichmäßig verteilt mit Berü	cksichtigung des Anteils
der Bodentypen an der Gesamtfläche	$_{2} \sum_{i=1}^{k} (B_{i} - E_{i})^{2}$
	$\chi^{2} = \sum_{i=1}^{k} \frac{(B_{i} - E_{i})^{2}}{E_{i}}$

Bodenart	Anzahl der Siedlungen	Erwartete Anzahl der Siedlungen	O _i -E _i	(O _i -E _i) ²	$(O_i-E_i)^2/E_i$
Rendzina	26	16,96	9,04	81,7216	4,81849
Alluvial	9	13,25	-4,25	18,0625	1,36321
Braunerde	18	22,79	-4,79	22,9441	1,00676
Gesamt	53	53			7,18846

Nachschlagen in Tabelle (z.B. Shennan):

Df=2 (2 Spalten (Beobachtet, Erwartet), 3 Kategorien)

Signifikanzniveau: 0,05 Grenzwert: 5,99145

Signifikanter Unterschied: Die Verteilung weicht von der prozentual erwarteten Verteilung ab!

X²-Test [9]

Das ganze in R

Variante 1: Gleichmäßig verteilt

Variante 1: Gleichmäßig verteilt nach prozentualen Anteilen

X-squared = 7.1885, df = 2, p-value = 0.02748

CAU

X2-Test [10]

Test für zwei Stichproben (Test auf Unabhängigkeit) (Beispiel nach Hinz, geschönt)

Vergleich von Vorhandensein von Bernstein in Gräbern und Siedlungen Klassischer Vier-Felder-Test

Fundkategorie	Bernstein		Randsumme
	+	-	
Siedlung	6	18	24
Grab	132	44	176
Randsumme	138	62	200

Ist Bernstein primär als Grabbeigabe anzusehen?

Df=1

Signifikanzniveau=0.05

Christian-Albrechts-Universität zu Kiel

X²-Test [11]

Berechnen der Erwartungswerte

Multiplikation der Randsummen, geteilt durch Gesamtzahl

Fundkategorie	Bernstein +	-	Randsumme
Siedlung	6 E=24*138/200 =16,56	18 E=24*62/200 =7,44	24
Grab	132 E=138*176/20 0 =121,44	44 E=62*176/200 =54,56	176
Randsumme	138	62	200

CAU

Christian-Albrechts-Universität zu Kiel

X²-Test [12]

Berechnen	der	X ² -Werte
(Beobachtet	t/Erv	vartet)²/Erwartet

$$\chi^2 = \sum_{i=1}^k \frac{(B_i - E_i)^2}{E_i}$$

Fundkategorie	Bernstein		Randsumme
	+	-	
Siedlung	(6-16,56) ² /16,56 =6,73	(18-7,44) ² /7,44 =14,99	24
Grab	(132- 121,44)²/121,44 =0,92	(44-54,56) ² /54,56 =2,04	176
Randsumme	138	62	200

Ist Bernstein primär als Grabbeigabe anzusehen?

Df=1; Signifikanzniveau=0.05

X²=24,68; Grenzwert bei df=1 und p=0.05: 3,84146

Der Unterschied in der Verteilung ist statistisch signifikant nicht zufällig! Die beiden Variablen sind abhängig voneinander!

X²-Test [13]

```
Das ganze in R
```

```
> vergleich<-matrix(c(6,132,18,44),ncol=2)</pre>
> colnames(vergleich)<-c("mit Bernstein","ohne Bernstein")</pre>
> rownames (vergleich) <-c ("Siedlung", "Grab")</pre>
> vergleich
         mit Bernstein ohne Bernstein
Siedlung
                                     18
Grab
                    132
                                     44
> chisq.test(vergleich)
     Pearson's Chi-squared test with Yates' continuity correction
data: vergleich
X-squared = 22.4022, df = 1, p-value = 2.211e-06
> chisq.test(vergleich,correct=F)
     Pearson's Chi-squared test
data: vergleich
X-squared = 24.6844, df = 1, p-value = 6.753e-07
```

Correct: Yates Korrektur für kleine Datenmengen $\rightarrow (|O-E|-0.5)^2/E$

X²-Test Aufgabe

Tierknochen aus den Mittel- und Spätneolithischen Schichten in Wolkenwehe (Mischka et al. 2005)

Gegeben sind folgende Werte:

Schicht	Haustierknochen	Wildtierknochen
202 (Spätneolithikum)	159	32
203 (Mittelneolithikum)	84	54

Prüfen Sie, ob die beobachteten Unterschiede statistisch signifikant sind!

X²-Test Aufgabe

Tierknochen aus den Mittel- und Spätneolithischen Schichten in Wolkenwehe (Mischka et al. 2005)

Schicht	Haustierknochen	Wildtierknochen
202 (Spätneolithikum)	159	32
203 (Mittelneolithikum)	84	54

```
> test<-matrix(c(159,84,32,54),ncol=2)
```

- > colnames(test)<-c("schicht 202", "schicht 203")</pre>
- > rownames(test)<-c("Haustier","Wildtier")</pre>
- > test

```
schicht 202 schicht 203
Haustier 159 32
Wildtier 84 54
> chisq.test(test)
```

Pearson's Chi-squared test with Yates' continuity correction

data: test
X-squared = 19.6344, df = 1, p-value = 9.376e-06

Christian-Albrechts-Universität zu Kiel

Zusammenhangsmaße [1]

Messen der Stärke des Zusammenhangs zweier Variablen X² ist bereits ein Maß für die Stärke des Zusammenhangs:

Zusammenhang $\uparrow X^2 \uparrow \leftrightarrow$ Zusammenhang $\downarrow X^2 \downarrow$

Aber: X² Abhängig von N

Fundkategorie	Bernstein		Randsumme
	+	-	
Siedlung	6	18	24
Grab	132	44	176
Randsumme	138	62	200
	Bernstein		
Fundkategorie	Berns	tein	Randsumme
Fundkategorie	Bernst	tein -	Randsumme
Fundkategorie Siedlung		tein - 36	Randsumme 48
, and the second	+	-	

$$X^2 = 24.6844$$

$$X^2 = 49.3689$$

Cramers V (oder φ)

Christian-Albrechts-Universität zu Kiel

Zusammenhangsmaße [2]

Cramers V

Normalisieren von X² auf die Anzahl der Beobachtungen N, Wurzel ziehen,

Teilen durch den kleineren Wert von (Spaltenzahl, Zeilenzahl) -1

Fundkategorie	Bernstein		Randsumme
	+	-	
Siedlung	6	18	24
Grab	132	44	176
Randsumme	138	62	200

$$X^{2} = 24.6844$$

$$\phi = \sqrt{\frac{\chi^{2}}{n * (min(zeilen, spalten) - 1)}}$$

$$\phi = \sqrt{\frac{22,6844}{200 * (min(2,2) - 1)}}$$

$$\phi = 0,351314901$$

Fundkategorie	Bernstein		Randsumme
	+	-	
Siedlung	12	36	48
Grab	264	88	352
Randsumme	276	124	400

$$X^{2} = 49.3689$$

$$\Phi = \sqrt{\frac{\chi^{2}}{n*(min(zeilen, spalten) - 1)}}$$

$$\Phi = \sqrt{\frac{49,3689}{400*(min(2,2) - 1)}}$$

$$\Phi = 0,351314901$$

Christian-Albrechts-Universität zu Kiel

Zusammenhangsmaße [3]

Cramers V

```
\phi = \sqrt{\frac{\chi^2}{n * (min(zeilen, spalten) - 1)}}
```

Ist immer ein Wert zwischen 0 und 1 0: kein Zusammenhang 1: perfekter Zusammenhang

```
In R:
```


Yules Q

Christian-Albrechts-Universität zu Kiel

Zusammenhangsmaße [4]

Yule's Q

Ein anderes, einfacheres Maß für Zusammenhang, nur bei 2x2-Tafeln anwendbar

 $Q = \frac{ad - bc}{ad + bc}$

Idee: Je größer die Zahl im linken oberen Feld im Verhältnis zur Gesamtzahl, desto größer der positive Zusammenhang

Fundkategorie	Bernstein		Randsumme
	+	-	
Siedlung	6	18	24
Grab (=nicht Siedlung)	132	44	176
Randsumme	138	62	200

$$Q = \frac{6*44-18*132}{6*44+18*132} = -0.8$$

Starker negativer Zusammenhang: Gräber (nicht Siedlungen) haben eine deutlich höhere Chance, Bernstein zu enthalten.

Allerdings: nicht anwendbar, wenn in einer der Zellen ein Null-Wert vorkommt!

Zusammenhangsmaße [3]

Christian-Albrechts-Universität zu Kiel

Yules Q

 $Q = \frac{ad - bc}{ad + bc}$

```
Ist immer ein Wert zwischen -1 und 1
-1: perfekter negativer Zusammenhang
0: kein Zusammenhang
1: perfekter positiver Zusammenhang
```

```
In R:
```

```
calc.YQ <- function(x)
{
YQ <- (x[1,1]*x[2,2]-x[1,2]*x[2,1])/(x[1,1]*x[2,2]+x[1,2]*x[2,1])
as.numeric(YQ)
}
> calc.YQ(matrix(c(6,132,18,44),ncol=2))
[1] -0.8
```


X²-Test Aufgabe

Tierknochen aus den Mittel- und Spätneolithischen Schichten in Wolkenwehe (Mischka et al. 2005)

Gegeben sind folgende Werte:

Schicht	Haustierknochen	Wildtierknochen
202 (Spätneolithikum)	159	32
203 (Mittelneolithikum)	84	54

Prüfen Sie, wie stark der Zusammenhang (und damit die Änderung in der Wirtschaftsweise) ist!

Christian-Albrechts-Universität zu Kiel

X²-Test Aufgabe

Tierknochen aus den Mittel- und Spätneolithischen Schichten in Wolkenwehe (Mischka et al. 2005)

Schicht	Haustierknochen	Wildtierknochen
202 (Spätneolithikum)	159	32
203 (Mittelneolithikum)	84	54

> calc.CV(test)
[1] 0.2513021

Cramers V ist 0,25, schwache Assoziation von Haustierknochen mit dem Spät-, Wildtierknochen mit dem Mittelneolithikum

> calc.YQ(test)
[1] 0.5231506

Yules Q ist 0,52, positiver Zusammenhang zwischen Haustierknochen und dem Spätneolithikum

Christian-Albrechts-Universität zu Kiel

Fishers Test [1]

Problem bei zu kleinen Erwartungswerten

Fundkategorie	Bernstein +		Randsumme
Siedlung	3 E=12*69/100 =8,28	9 E=24*62/200 =3,72	12
Grab	66 E=138*176/20 0 =60,72	22 E=62*176/200 =27 28	88
Randsumme	69	31	200
		Claiper ala El	

Kleiner als 5!

Fishers Test [2]

Test für zwei Stichproben (Test auf Unabhängigkeit) (Beispiel nach Hinz, orginal)

Exakter Test nach Fisher!

Fundkategorie	Bernstein		Randsumme
	+	-	
Siedlung	a: 3	b: 9	12
Grab	c: 66	d: 22	88
Randsumme	69	31	n: 100

$$\varphi = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{n!a!b!c!d!} = \frac{(3+9)!(66+22)!(3+66)!(9+22)!}{100!3!9!66!22!}$$

Fishers Test [3]

```
Das ganze in R
```

```
> vergleich<-matrix(c(3,66,9,22),ncol=2)</pre>
> colnames(vergleich)<-c("mit Bernstein", "ohne Bernstein")</pre>
> rownames (vergleich) <-c("Siedlung", "Grab")</pre>
> vergleich
         mit Bernstein ohne Bernstein
Siedlung
Grab
                     66
                                     22
> fisher.test(vergleich)
     Fisher's Exact Test for Count Data
data: vergleich
p-value = 0.001110
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.01825286 0.50879869
sample estimates:
odds ratio
 0.1141018
```


Christian-Albrechts-Universität zu Kiel

X²-Test Aufgabe

Eberzähne bei Kugelamphorengräbern (Müller 2001, Zahlen verändert)

Gegeben sind folgende Werte:

Geschlecht	Eberzähne	Eberzähne		
	Ja	Nein		
Mann	11	7		
Frau	1	6		

Prüfen Sie, ob ein stat. Signifikanter Zusammenhang besteht!

X²-Test Aufgabe

Eberzähne bei Kugelamphorengräbern (Müller 2001, Zahlen verändert)

Gegeben sind folgende Werte: Prüfen Sie, ob ein stat. Signifikanter Zusammenhang besteht!

> test<-matrix(c(11,7,1,6),ncol=2)

> chisq.test(test)

ornoq.toot(toot

X-squared = 2.7501, df = 1, p-value = 0.09725

> chisq.test(test,correct=F)

X-squared = 4.4274, df = 1, p-value = 0.03537

> fisher.test(test)

p-value = 0.07304

Geschlecht	Eberzähne	
	Ja	Nein
Mann	11	7
Frau	1	6

Christian-Albrechts-Universität zu Kiel

Interpretation von Tests

Statistische Assoziation bedeutet nicht Kausaler Zusammenhang!

Beispiel nach Shennan: Grabgröße und Geschlecht

Auch wenn ein statistisch signifikanter Zusammenhang zwischen Grabgröße und Geschlecht besteht, kann dieser durch einen dritten Faktor (hier Körpergröße) bedingt sein.

Eine Schlußfolgerung, wonach Grabgröße durch das Geschlecht bestimmt wird, wäre daher falsch!

