PN - JP62262165 A 19871114

PD - 1987-11-14

PR - JP19860103888 19860508

OPD - 1986-05-08

TI - INFORMATION PROCESSOR

IN - UCHIDA AKIO

PA - NIPPON ELECTRIC CO

EC - G06F13/42C1S

- G06F1/04; G06F11/24; G06F13/42

OPALLIPO

PN - JP62262165 A 19871114

PD - 1987-11-14

AP - JP19860103888 19860508

IN - UCHIDA AKIO PA - NEC CORP

TI - INFORMATION PROCESSOR

AB - PURPOSE:To periodically and automatically execute a clock margin test by executing the instruction of an information processor itself, by providing a monitor consisting of plural clock generating circuits and a means such as for selecting one of them in the information processor.

- CONSTITUTION:A bus monitor 4 is constituted of a clock generating circuit 101, a selecting circuit 102, a bus clock circuit 103, an instruction receiving circuit 104, a watch dog timer circuit 105, and a selection control circuit 106, and connected to a bus 5. The circuit 101 consists of a clock for generating a standard frequency, and other prescribed number of clocks for generating a frequency increased or decreased by a prescribed amount from the standard frequency. A processor 1 operates the circuit 102 by a prescribed program, performs periodically and automatically a clock margin test, and in case of a failure, the circuit 105 is operated and it is displayed by a buzzer, and a part in which a clock margin is short is informed beforehand.
- G06F13/42 ;G06F1/04 ;G06F11/24

⑲ 日本国特許庁(JP)

⑪特許出願公開

四公開特許公報(A)

昭62-262165

⑤Int Cl.⁴

識別記号

庁内整理番号

❷公開 昭和62年(1987)11月14日

G 06 F 13/42 1/04 11/24 3 5 0 B - 7165 - 5B

7157—5B 7368—5B 看

/368-5B 審査請求 未請求 発明の数 1 (全4頁)

劉発明の名称 情報処理装置

②特 願 昭61-103888

塑出 願 昭61(1986)5月8日

砂発 明 者 内 田

昭雄

東京都港区芝5丁目33番1号 日本電気株式会社内

⑪出 願 人 日本電気株式会社

東京都港区芝5丁目33番1号

迎代 理 人 弁理士 芦田 坦 外2名

明 細 雪

1. 発明の名称

情報処理装置

2. 特許請求の範囲

3. 発明の詳細な説明

〔 産業上の利用分野 〕

本発明は情報処理装置に関し、特にパスクロック変動試験を自動実行する情報処理装置に関する。 〔従来の技術〕

従来,情報処理装置において,その装置を構成する論理者子の不良を摘出したり,あるいは制制を含む各種入出力制御装置されたプロセッサを含む各種入出力制御装置、主記憶装置の動作マージン不良を摘出出る方法として,動作クロックを若干変動させて動作の知られている。特に関する場合に、有効であるとも知られている。

一般に上記試験方法はクロックマージン試験と呼ばれ、当該試験を実施することで、動作の安定性、すなわち半導体素子の遅延特性のバラッキ等による誤動作の要因がないことを保証することにもなり、予防保守的に実施される。

しかし、従来との種の情報処理装置、特に中、 小型の情報処理装置においては、前記クロックマ ージン試験を手動操作かもしくは侍殊測定工具を 用いて行うにすぎなかった。すなわち、当該情報 処理装置内のクロック原を手動で切替えるか、ま たは、外部から印加させることで、情報処理装置 全体の効作を確認せざるを得なかった。

[発明が解決しようとする問題点]

上述した従来の情報処理装置のクロックマージン試験方法は,手動操作のため,少くとも通常運転中にある情報処理装置を一旦停止させ業務を中断して試験するという運用上の問題点がある。

〔問題点を解決するための手段〕

ックマージン試験を実施する際の動作について主 に説明する。

第2図は第1図のパス監視装置4の構成をより 詳細に説明するための図である。なおこのパス監 視装置4は本発明に関係ある部分のみを図示して ある。

第2図で101-1はクロック発生回路の1つで、通常動作に必要な周波数のパスクロックを発じくクロック発生回路の1つで、前記クロック発生回路の1つで、前記クロック発生回路の1つで、前記クロック発生回路の1つでが対してそれぞの発生の投資が低い周波数でパスクロは+10分、一10分高いか低い周波数でレクト回路により、前記のようを選択する。101-2、101-3の1つを選択する機能を有す。103にのックの路で、前記のドライバ回路、スキュー補正回路である。

さらに201はパスドライパレシーパ回路。

散とする情報処理装置が得られる。

〔與施例〕

次に本発明について図面を参照して説明する。 第1図は本発明の一実施例を示すプロック図、第 2図は第1図のペス監視装置の主要部分の一例を 示すプロック図である。

第1図において、1はプロセッサ、2は主記憶装置、3は各種入出力装置、4はパス監視装置であり、各々は単一パス5を介してデータ送受が行なわれる。また101は複数のクロック発生回絡、102はセレクト回路、103はパスクロック回路、104は命令受信回路、105はウォッチドッグタイマ回路、106は選択制御回路である。

この実施例の情報処理装置はバス監視回路 4 からバス 5 上に印加されるクロックを基準にすべてのデータ送受の動作が行なわれるものであり、通常すなわち初期状態においては、あらかじめ定められた規定の周波数のクロックに同期して動作する。

以下に、本発明の情報処理装置において、クロ

202はバス制御回路,203は命令デコーグ回路で,以上によりプロセッサからの命令を解釈する命令受信回路(第1図の104)を構成する。

また・105はウォッチドッグタイマ回路で、 定期的に本回路に信号が印加されるものとし、万 一動作不良でプロセッサからの信号印加が断たれ たときにアラーム信号を発生するものである。

一方,204は選択信号デコーダ回路,205. 206は各々信号線220,221に対応するフリップ・フロップであり、以上で選択制御回路 (第1図の106)を構成する。信号線222は 初期化信号線で、バスから供給され、また207 はオアゲートである。

次にこの実施例の動作を説明する。電源投入時等初期状態においては、フリップ・フロップ 205、206 は各々リセットされ、信号線220,221によりクロック発生回路101-1の出力がパス5に印加され、パス5上の全装置は通常の動作を行

さて,当放クロックマーツン試験を行う祭プロ

セッサ1は、プログラム命令によりバス監視装置4に対し、クロック周波数の変更、例えば+10%又は-10%の変更を指示する。前記命令は命令アコーダ回路203、選択信号アコーダ回路204によりフリップ・フロップ205、206のいずれかをセットし、クロック発生回路101-2又は101-3のいずれか対応する方のクロック信号が選択され、バス5に供給される。

このとき・クロック信号の切替時の位相調整が必要になり・選択信号アコーダ回路 2 0 4 の出力によりパスクロック回路 1 0 3 はチャッタ等の不正パルスを出さないよう・最小パルス間隔を保証するよう機能する。

以上によりクロック変更後の情報処理装置全体の動作に異常がなければ、クロックマージン試験は終了されるが、不幸にして動作不良が発生した場合は、プロセッサ1のプログラム命令により、ウォッチドッグタイマ回路105への信号が断たれ、アラーム信号が出力される。 アラーム信号は信号紋223によりオアゲート207に印加され

接躍、4 … バス監視装置、5 … バス、1 0 1 … クロック発生回路、1 0 2 … セレクト回路、1 0 3 … ベスクロック回路、1 0 4 … 命令受信回路、1 0 5 … ウォッチドッグタイマ回路、1 0 6 … 選択制御回路、2 0 1 … バスドライバレシーバ回路.2 0 2 … バス別御回路、2 0 3 … 命令デコーダ回路、2 0 4 … 選択信号デコーダ回路、2 0 5 、2 0 6 … フリップ・フロップ、2 0 7 … オアケート。

代理人 (7783) 并理士 池 田 窓 保

初期化時と同様,クロック発生回路 101-1を選択するよう 機能する。よって正常に試験が実行されたならば,このとき当該情報処理装置はその時点でクロックマーツンは充分であり,予防保守としても実施されたことになる。また,エラーがあった場合はクロックマーツンの不足しているのかを事前に把握できるので障害発生を未然に防ぐことができる。

[発明の効果]

本発明は,以上説明したように,情報処理接置自身の命令実行により,自らのパスクロックを制御することで自動的に,且つ定期的にクロックマージン試験を実施し,機能動作の安定性を確認し. 不具合を事前に発見できるという効果がある。

4.図面の簡単な説明

第1図は本発明の一実施例のプロック構成図、 第2図は第1図のパス監視装置の主要部分の1例 のプロック構成図である。

1 …プロセッサ . 2 … 主 記 憶 装 履 . 3 … 入 出 力

