יחידה 13 שפות (בעיות) NP-שלמות נוספות

- \cdot ביחידה הקודמת הכרנו שתי שפות \mathbf{NP} -שלמות
- $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$
- CNF- $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable CNF Boolean } \text{formula} \}$
 - ביחידה הנוכחית נתוודע לכמה שפות (בעיות) \mathbf{NP}
 - שלמות קיימות במגוון של תחומים בעיות ${f NP}$

איך נוכיח על שפות נוספות?

- אפשר אחת, אפשר \mathbf{NP} -שלמה אחת, אפשר להוכיח על שפות נוספות שגם הן \mathbf{NP} -שלמות.
 - שלמה, ו-D מקיימת $\mathbf{NP}\,B$ שייכת ל- $\mathbf{NP}\,D$
 - (שימו לב היטב לכיוון של הרדוקציה!) $B \leq_{
 m P} \!\! D -$
 - אז גם $\mathbf{NP}\,D$ שלמה
 - תרגיל: הוכיחו את המשפט
 - זכרו שהיחס \leq_{p} הוא טרנזיטיבי -

3SAT

- פסוק בתחשיב הפסוקים הוא ב-3CNF אם
 - הפסוק ב-CNF
 - בכל פסוקית יש שלושה ליטרלים
 - $(x \lor \neg y \lor \neg z) \land (\neg x \lor y \lor w) :$
- $3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3CNF} \}$ Boolen formula
 - זוהי שפת הפסוקים הספיקים ב-3CNF.

(1) איא -NP איה 3SAT

- שלמה נוכיח ש-3SAT היא
- \mathbf{NP} תרגיל: הוכיחו ש-3SAT שייכת ל-
 - CNF- $SAT \leq_{P} 3SAT : ראה -$
- כל פסוקית שיש בה שלושה ליטרלים נשאיר כמות שהיא
- כל פסוקית שיש בה יותר משלושה ליטרלים,
 נחליף בקבוצת פסוקיות שבכל אחת שלושה ליטרלים,
 באופן שהפסוקית המקורית ספיקה, אם, ורק אם, קבוצת הפסוקיות שהחליפה אותה ספיקה
 - דוגמה : נחליף את הפסוקית ($l_1\lor l_2\lor l_3\lor l_4$) בשתי הפסוקיות דוגמה : נחליף את הפסוקית ($l_1\lor l_2\lor z$) בשתנה חדש $(l_1\lor l_2\lor z)\land (\neg z\lor l_3\lor l_4)$
 - מוסיפים משתנה חדש לכל פסוקית ארוכה

(2) אלמה -NP היא 3SAT

- תרגיל: הוכיחו שהפסוקית המקורית (4 ליטרלים) ספיקה אם ורק אם קבוצת שתי הפסוקיות (3 ליטרלים) ספיקה
- תרגיל: הכלילו את הרעיון הזה לכל פסוקית שיש בה יותר מ-3 ליטרלים (לאו דווקא 4 ליטרלים)
- שאלה: איך נטפל בפסוקיות שיש בהן פחות מ-3 ליטרלים!
 - אם מרשים מופעים כפולים של ליטרלים בפסוקית,נשכפל ליטרלים, עד שיהיו בפסוקית 3 ליטרלים
 - אם לא מרשים מופעים כפולים של ליטרלים בפסוקית,נחליף כל פסוקית עם 2 ליטרלים בשתי פסוקיות עם 3 ליטרלים
 - דוגמה : נחליף את הפסוקית $(l_1\lor l_2)$ בשתי הפסוקיות דוגמה : נחליף את הפסוקית , $(l_1\lor l_2\lor z)\land (\neg z\lor l_1\lor l_2)$
 - אפשר להשתמש באותו משתנה z לכל הפסוקיות הקצרות •

(3) איא -NP איה 3SAT

- תרגיל: הוכיחו שהפסוקית המקורית (2 ליטרלים) ספיקה אם ורק אם קבוצת שתי הפסוקיות (3 ליטרלים) ספיקה
 - (l) איך נטפל בפסוקיות עם ליטרל בודד
 - \mathbf{NP} הראינו ש-3SAT שייכת ל
 - 3SATל- CNF-SAT לי-
 - שלמה איא \mathbf{NP} שלמה להשלמת ההוכחה ש-3SAT
 - צריך להוכיח שהרדוקציה תקפה
 - וצריך להראות שהרדוקציה ניתנת לחישוב
 בזמן פולינומיאלי בגודל הקלט
 - **תרגיל:** השלימו את ההוכחה —

2SAT

• כמו שהגדרנו פסוקים ב-3CNF, אפשר להגדיר פסוקים ב-2CNF

```
(x \lor \neg y) \land (\neg x \lor y) : 2CNF- דוגמה - פסוק ב
```

- $2SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable}$ 2CNF Boolen formula \}
 - יוהי שפת הפסוקים הספיקים ב-2CNF •

(1) P-טייכת ל-2SAT

- \mathbf{P} משפט : 2SAT שייכת ל
- הוכחה בסוקית מהצורה ($l_1 \lor l_2$) שקולה לוגית הוכחה פסוקית מהצורה $-l_1 \to l_1$ שקולה לוגית לפסוק $-l_1 \to l_2$
 - מחליפים כל פסוקית $(l_1\lor l_2)$ בפסוק (ח-x=x כאשר $(\neg l_1 \rightarrow l_2) \land (\neg l_2 \rightarrow l_1)$
 - בונים גרף מכוון:
 - l אומת לכל ליטרל •
 - הקשתות: אם יש תת-פסוק $(l_1 {
 ightarrow} l_2)$, אז תהיה קשת פסוונת מ- l_1 אל l_1

(2) P-טייכת ל-2SAT

- תרגיל: הוכיחו שהפסוק ב- $2{
 m CNF}$ איננו ספיק, שם, ורק אם, יש בגרף מסלול מכוון מליטרל אל l אל l אם מסלול מכוון מ-l אל l
 - תרגיל: הוכיחו שזמן הריצה של האלגוריתם תרגיל: הוכיחו שזמן הריצה של האלגוריתם המתקבל להכרעת השייכות ל-2SAT הוא פולינומיאלי בגודל הקלט
 - תרגיל: הסבירו היטב למה אי אפשר להראות תרגיל: הסבירו היטב למה אי אפשר להראות רדוקציה של CNF-SAT בדומה לרדוקציה שהראינו ל-3SAT.

INDEPENDENT-SET

- תזכורת: קבוצה בלתי תלויה של צמתים בגרף לא מכוון G היא קבוצת צמתים שאין קשת בין כל שניים מהם
- INDEPENDENT-SET = $\{ \langle G, k \rangle \mid G \text{ is an }$ undirected graph that has a k-node independent-set $\}$
- היא (IS בקיצור, ובקיצור, INDEPENDENT-SET- נוכיח ש- \mathbf{NP}
 - .NP- כבר הראינו שהיא שייכת ל $SAT \leq_{\mathbf{p}} IS$ נראה כי

$(1) 3SAT \leq_{\mathbf{P}} IS$

- לכל פסוק ϕ ב-3CNF, יש לבנות, בזמן פולינומיאלי 3CNF, גרף לא מכוון G ומספר טבעי ϕ , כך בגודל של ϕ , גרף לא מכוון G ומספר טבעי G. שב-G יש קביית בגודל ϕ , אם, ורק אם, ϕ ספיק.
 - צומתי הגרף: לכל מופע של ליטרל בפסוק יהיה צומת
 - אם הליטרל l מופיע ב-m פסוקיות, אז יהיו בגרף m צמתים שמתאימים ל-l
 - קשתות הגרף: לכל פסוקית, מחברים בקשתות את שלושת הליטרלים שלה (בונים יימשולשיי)
 - יזה מבטיח שרק ליטרל אחד מן הפסוקית יוכל להשתייך אחד מבטיח שרק ליטרל אחד מן לקבוצה הבלתי תלויה (זה יהיה ליטרל שערכו true

NP אלמה IS

- קשתות הגרף (המשך) : בנוסף ליימשולשיםיי של l הפסוקיות, מחברים בקשת כל מופע של ליטרל -l עם כל מופע של
- יהיו בקבוצה -l בזה מבטיחים, שלא ייתכן שגם l וגם -l יהיו בקבוצה (true יקבלו ערך –l וגם l וגם l יקבלו ערך
- $3 \mathrm{CNF}$ המספר k יהיה מספר הפסוקיות בפסוק –
- תרגיל: הוכיחו שהרדוקציה תקפה, ושהיא ניתנת לחישוב בזמן פולינומיאלי.
 - שלמה NP היא IS:

אלמה -NP היא CLIQUE

- G היא קבוצה פגרף לא מכוון קליקה בגרף לא קבוצה של צמתים שיש קשת בין כל שניים מהם
- $CLIQUE = \{ \langle G, k \rangle \mid G \text{ is an undirected graph } \bullet \text{ with a } k\text{-clique} \}$
 - \mathbf{NP} שייכת ל-CLIQUE שייכת ל- $IS \leq_{\mathbf{P}} CLIQUE$ והראינו כי והראינו כי
 - שלמה \mathbf{NP} היא CLIQUE שלמה

כיסוי קדקודים

- G=(V, E) קבוצת צמתים U בגרף לא מכוון (u,v) ב-(u,v) ב-(u,v) אם לכל קשת ליסוי קדקודים, אם לכל v=(u) או v=u0, או v=u1, או v1, או v2, או v3, או v3, או v3, או v3, או v4, או v3, או v4, או
 - את כל קשתות הגרף צומתי U יימכסיםיי את כל -
 - תרגיל: מהו גודל כיסוי הקדקודים המינימלי
 - של יימשולשיי!
 - של ייכוכביי!
 - mשל מעגל בעל -
 - m צמתים! של מסלול פשוט (ללא מעגלים) בעל -

VERTEX-COVER

- $VERTEX-COVER = \{ \langle G, k \rangle \mid G \text{ is an undirected }$ graph that has a k-node vertex cover $\}$
 - \cdot נוכיח שזו שפה m NP-שלמה
 - \mathbf{NP} תרגיל: הוכיחו שהיא שייכת ל-
 - תרגיל: הוכיחו: קבוצת צמתים U בגרף לא מכוון G, היא קבוצה בלתי תלויה בG=(V,E) אם, ורק אם, V-U היא כיסוי קדקודים ב-C.
 - מומלץ להוכיח בשלילה כל אחד מן הכיוונים
 - שלמה \mathbf{NP} היא VERTEX-COVER שלמה 13-15

HAMPATH

- תזכורת: מסלול המילטון בגרף מכוון G הוא מסלול פשוט (ללא מעגלים) שמבקר בכל צומת פעם אחת ויחידה
- $HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed} \}$ graph with a Hamiltonian path from s to t
 - \cdot נוכיח שזו שפה \mathbf{NP} -שלמה
 - \mathbf{NP} כבר הראינו שהיא שייכת ל-
 - $3SAT \leq_{P} HAMPATH$ נראה כי (שקפים ממצגת אחרת)

SUBSET-SUM

t של מספרים ומספר S של הקלט: קבוצה S של הקלט: הקלט: הקלט: האם יש ל-S תת-קבוצה שהסכום שלה t?

$$SUBSET-SUM = \{ \langle S, t \rangle | S = \{x_1, ..., x_n\}, \\ \exists \{y_1, ..., y_k\} \subseteq \{x_1, ..., x_n\}, \Sigma_{yi} = t \}$$

- \cdot נוכיח שזו שפה \mathbf{NP} -שלמה
- \mathbf{NP} כבר הראינו שהיא שייכת ל
- $3SAT \leq_{P} SUBSET-SUM$ נראה כי -

$3SAT \leq_{\mathbf{P}} SUBSET-SUM$

- מפסוק ϕ ב-3CNF נבנה קבוצת מספרים טבעיים tטבעי טבעי S
 - כל המספרים יהיו בייצוג עשרוני –
 - כמרים אותם (carry) כדי שלא יהיה נשא •
- S יהיו רק 0, 1 ו- הספרות של כל המספרים בקבוצה -
 - אבל ב-t יהיו גם ספרות אחרות •
 - האורך של כל מספר (כולל t) יהיה כמספר המשתנים מספר הפסוקיות בפסוק +
- חלק מן המספרים יהיו קצרים יותר, משום שיהיו בהם 0-ים מובילים (בחלק השמאלי של המספר)

המשך הרדוקציה

- בכל מספר, הספרות המתאימות לפסוקיות יהיו
 הספרות הפחות חשובות, והספרות המתאימות
 למשתנים יהיו הספרות היותר חשובות.
- לכל משתנה (אטום) x_i יהיו שני מספרים, (x_i) אחד שמתאים להצבת x_i ב- (x_i) (מתאים לליטרל בת שמתאים להצבת $(-x_i)$ (מתאים ל- (x_i)).
 - x_i בכל מספר כזה יהיה 1 בספרה המתאימה למשתנה ו-0 בכל הספרות של המשתנים האחרים. כמו כן יהיה 1 בספרה של כל פסוקית שבה הליטרל המתאים (x_i או x_i) מופיע, ו-0 בספרה של כל פסוקית שבה הוא לא מופיע.

סיום הרדוקציה

- במספר t יהיה t בספרה של כל משתנה -
- ייבחר אחד ורק אחד t אחד ורק אחד המספרים של כל משתנה x_i אם להשמה שמספקת את הפסוק
 - לכל משתנה true/false ערך -
- בהשמה מספקת, בעמודה של כל פסוקית, במספריםשנבחרו לתת-קבוצה, יש 1 אחד, או 2 1-ים או 3 1-ים
 - אבל לא 0 1-ים (כי זו השמה מספקת)
- עני מספרים g_j שיהיה בהם C_j שיהיה בהם הוסיף לכל פסוקית בהל C_j שני מספרים לפסוקית פרט C_j בכל מקום, פרט למקום שמתאים לפסוקית פרט c_j במקום הזה יהיה 1 ב c_j ו-2 ב c_j במקום הזה יהיה 1 ב c_j ו-2 ב c_j

תרגול והוכחת נכונות

- תרגיל: איזו ספרה תהיה במספר t במקום של כל פסוקית!
- t את המספרים S ואת המספר המספר המספר המתאימים לפסוק הבא:

$$(x \lor \neg y \lor \neg z) \land (\neg x \lor y \lor w) \land (y \lor z \lor \neg w)$$

- תרגיל: הוכיחו שהרדוקציה תקפה. הוכיחו שהיא ניתנת לחישוב בזמן פולינומיאלי.
 - שלמה \mathbf{NP} היא $SUBSET ext{-}SUM:$

בעיות NP-שלמות נוספות

- גרפים לא מכוונים שיש להם צביעה חוקית בשלושה צבעים
 - 3SATרדוקציה של -
- גרפים לא מכוונים שיש להם מסלול המילטון t-ל s-מ
 - HAMPATHרדוקציה של -
 - ומאות בעיות נוספות •