Philosophische Modale Prädikatenlogik Eine sehr kurze Einführung

Conrad Friedrich

Universität zu Köln

January 15, 2017

Prädikatenlogik

Prädikatenlogik

"Baby Logic" Version

1. Alle Menschen sind sterblich.

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

1. *P*

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

- 1. P
- 2. *Q*

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

- 1. P
- 2. Q
- 3. Also: *R*

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

- 1. P
- 2. Q
- 3. Also: *R*

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

- 1. P
- 2. *Q*
- 3. Also: *R*

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

- 1. P
- Q
- 3. Also: *R*

 Mehr Struktur, als wir mit der Aussagenlogik abbilden können

1. Alle Menschen sind sterblich.

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

1. $\forall x (Mx \rightarrow Sx)$

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

- 1. $\forall x (Mx \rightarrow Sx)$
- 2. *Ms*

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

- 1. $\forall x (Mx \rightarrow Sx)$
- 2. *Ms*
- 3. Also: *Ss*

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

- 1. $\forall x (Mx \rightarrow Sx)$
- 2. *Ms*
- 3. Also: *Ss*

- 1. Alle Menschen sind sterblich.
- 2. Sokrates ist ein Mensch.
- 3. Also: Sokrates ist sterblich.

- 1. $\forall x (Mx \rightarrow Sx)$
- 2. *Ms*
- 3. Also: *Ss*

▶ Es gibt genau einen Gott.

- Es gibt genau einen Gott.
- gdw. Es gibt ein Ding, das Gott ist, und alle anderen Dinge sind, falls sie Gott sind, identisch mit diesem Ding.

- Es gibt genau einen Gott.
- gdw. Es gibt ein Ding, das Gott ist, und alle anderen Dinge sind, falls sie Gott sind, identisch mit diesem Ding.
- ▶ gdw. $\exists x (Gx \land \forall y (Gx \rightarrow x = y)).$

- Variablen
 - ▶ $\forall x (Mx \rightarrow Sx)$

- Variablen
 - ▶ $\forall x(Mx \rightarrow Sx)$
- ► Konstanten
 - ► Pc

- Variablen
 - ▶ $\forall x(Mx \rightarrow Sx)$
- Konstanten
 - ▶ Pc
- Prädikatensymbole (n-stellig)
 - ▶ $\forall x (\mathbf{M}x \rightarrow \mathbf{S}x)$, $\mathbf{G}xy$

- Variablen
 - ▶ $\forall x(Mx \rightarrow Sx)$
- Konstanten
 - ▶ Pc
- Prädikatensymbole (n-stellig)
 - ▶ $\forall x (\mathbf{M}x \rightarrow \mathbf{S}x)$, $\mathbf{G}xy$
- Konnektive wie in der Aussagenlogik
 - $\quad \ \, \neg, \rightarrow, \land, \lor, \leftrightarrow$

- Variablen
 - ▶ $\forall x(Mx \rightarrow Sx)$
- Konstanten
 - ▶ Pc
- Prädikatensymbole (n-stellig)
 - ▶ $\forall x (\mathbf{M}x \rightarrow \mathbf{S}x)$, $\mathbf{G}xy$
- Konnektive wie in der Aussagenlogik
 - ightharpoonup $\neg, \rightarrow, \land, \lor, \leftrightarrow$
- Quantorsymbole
 - ▶ ∀,∃

- Variablen
 - ▶ $\forall x(Mx \rightarrow Sx)$
- Konstanten
 - ▶ Pc
- Prädikatensymbole (n-stellig)
 - ▶ $\forall x (\mathbf{M}x \rightarrow \mathbf{S}x)$, $\mathbf{G}xy$
- Konnektive wie in der Aussagenlogik
 - ightharpoonup \neg , \rightarrow , \land , \lor , \leftrightarrow
- Quantorsymbole
 - ▶ ∀,∃
- (Funktionssymbole, Hilfszeichen...)

1. Wenn $t_1, ..., t_n$ Variablen oder Konstanten sind und P ein n-stelliges Prädikat ist, dann ist $Pt_1, ..., t_n$ eine (atomare, wohlgeformte) Formel.

- 1. Wenn $t_1, ..., t_n$ Variablen oder Konstanten sind und P ein n-stelliges Prädikat ist, dann ist $Pt_1, ..., t_n$ eine (atomare, wohlgeformte) Formel.
 - ► Fx, Rab

- 1. Wenn $t_1, ..., t_n$ Variablen oder Konstanten sind und P ein n-stelliges Prädikat ist, dann ist $Pt_1, ..., t_n$ eine (atomare, wohlgeformte) Formel.
 - ► Fx, Rab
- 2. Wenn A und B Formeln sind, dann sind auch $\neg A$, $A \rightarrow B$, $A \land B$, $A \lor B$, $A \leftrightarrow B$ Formeln.

- 1. Wenn $t_1, ..., t_n$ Variablen oder Konstanten sind und P ein n-stelliges Prädikat ist, dann ist $Pt_1, ..., t_n$ eine (atomare, wohlgeformte) Formel.
 - ► Fx, Rab
- 2. Wenn A und B Formeln sind, dann sind auch $\neg A$, $A \rightarrow B$, $A \land B$, $A \lor B$, $A \leftrightarrow B$ Formeln.
- 3. Wenn A eine Formel ist und x eine Variable, dann sind $\forall xA$ und $\exists xA$ Formeln.

Grammatik: Beispiele

Seien a, b, c Konstanten und P, Q Prädikatensymbole. Was wird intuitiv mit diesen Formeln ausgedrückt?

Grammatik: Beispiele

Seien a, b, c Konstanten und P, Q Prädikatensymbole. Was wird intuitiv mit diesen Formeln ausgedrückt?

▶ Pa, Qab

Grammatik: Beispiele

Seien a, b, c Konstanten und P, Q Prädikatensymbole. Was wird intuitiv mit diesen Formeln ausgedrückt?

- ► Pa, Qab
- ¬Pa

- ▶ Pa, Qab
- ¬Pa
- Qaa

- ▶ Pa, Qab
- ¬Pa
- Qaa
- $ightharpoonup Qab \leftrightarrow Qba$

- ▶ Pa, Qab
- ¬Pa
- Qaa
- ▶ Qab ↔ Qba
- $(Qab \land Qbc) \rightarrow Qac$

Seien x, y, z Variablen, a, b, c Konstanten und P, Q Prädikatensymbole. Was wird intuitiv mit diesen Formeln ausgedrückt?

► Px, Qxy

- ► Px, Qxy
- ∃xPx

- ► Px, Qxy
- ∃xPx
- ▶ $\forall x (Px \rightarrow Qax)$

- ► Px, Qxy
- ∃xPx
- ▶ $\forall x (Px \rightarrow Qax)$
- *∃yQxy*

- ► Px, Qxy
- ∃xPx
- ▶ $\forall x (Px \rightarrow Qax)$
- ∃yQxy
- ▶ $\forall x \exists y Qxy$

- ► Px, Qxy
- ∃xPx
- ▶ $\forall x (Px \rightarrow Qax)$
- *∃yQxy*
- ▶ $\forall x \exists y Qxy$
- ▶ Variablen, die in einer Formel im Skopus eines Quantors stehen, sind *gebunden*, sonst *frei*.

- ► Px, Qxy
- ∃xPx
- ▶ $\forall x (Px \rightarrow Qax)$
- *∃yQxy*
- ▶ $\forall x \exists y Qxy$
- ▶ Variablen, die in einer Formel im Skopus eines Quantors stehen, sind *gebunden*, sonst *frei*.
- ► Formeln, in denen keine freien Variablen vorkommen, heißen *Sätze*.

▶ Wann würden wir *Qab* intuitiv als wahr bezeichnen?

- ▶ Wann würden wir *Qab* intuitiv als wahr bezeichnen?
- ▶ Wenn die Dinge, für die *a*, *b* stehen, tatsächlich die Eigenschaft haben, die mit *Q* bezeichnet wird.

- ▶ Wann würden wir *Qab* intuitiv als wahr bezeichnen?
- ▶ Wenn die Dinge, für die *a*, *b* stehen, tatsächlich die Eigenschaft haben, die mit *Q* bezeichnet wird.
- ▶ Px?

- ▶ Wann würden wir *Qab* intuitiv als wahr bezeichnen?
- ▶ Wenn die Dinge, für die *a*, *b* stehen, tatsächlich die Eigenschaft haben, die mit *Q* bezeichnet wird.
- ▶ Px?
- ▶ Die Variable x hat die Eigenschaft *P*?

- ▶ Wann würden wir *Qab* intuitiv als wahr bezeichnen?
- ▶ Wenn die Dinge, für die *a*, *b* stehen, tatsächlich die Eigenschaft haben, die mit *Q* bezeichnet wird.
- ▶ Px?
- ▶ Die Variable x hat die Eigenschaft P?
- Nonsense. Wir können nur Sätzen Wahrheitswerte zuordnen (zumindest ohne Weiteres.)

▶ Wann würden wir intuitiv $\exists xPx$ als wahr bezeichnen?

- ▶ Wann würden wir intuitiv $\exists xPx$ als wahr bezeichnen?
- ▶ Wenn *irgendein* Ding *P* erfüllt.

- ▶ Wann würden wir intuitiv $\exists xPx$ als wahr bezeichnen?
- ▶ Wenn *irgendein* Ding *P* erfüllt.
- *∀xFx*?

- ▶ Wann würden wir intuitiv $\exists xPx$ als wahr bezeichnen?
- ▶ Wenn *irgendein* Ding *P* erfüllt.
- *∀xFx*?
- ▶ Wenn *alle* Dinge *F* erfüllen.

Eine Interpretation I besteht aus einem Tupel $\langle D, v \rangle$.

▶ *D* ist der (nicht-leere) Gegenstandsbereich, über die quantifiziert wird.

- ▶ *D* ist der (nicht-leere) Gegenstandsbereich, über die quantifiziert wird.
- v ist eine Funktion, so dass

- ▶ *D* ist der (nicht-leere) Gegenstandsbereich, über die quantifiziert wird.
- v ist eine Funktion, so dass
 - ▶ Wenn c eine Konstante ist, dann ist $v(c) \in D$.

- ▶ *D* ist der (nicht-leere) Gegenstandsbereich, über die quantifiziert wird.
- v ist eine Funktion, so dass
 - ▶ Wenn c eine Konstante ist, dann ist $v(c) \in D$.
 - ▶ Wenn P ein n-stelliges Prädikatensymbol ist, dann ist $v(P) \subseteq D^n$.

- ▶ *D* ist der (nicht-leere) Gegenstandsbereich, über die quantifiziert wird.
- v ist eine Funktion, so dass
 - ▶ Wenn c eine Konstante ist, dann ist $v(c) \in D$.
 - ▶ Wenn P ein n-stelliges Prädikatensymbol ist, dann ist $v(P) \subseteq D^n$.
- ▶ (Tafel)

 $V(Pc_1,...c_n) = 1 \text{ gdw. } \langle v(c_1),...,v(c_n) \rangle \in v(P), \text{ sonst } 0.$

- $\mathbf{v}(Pc_1,...c_n)=1$ gdw. $\langle \mathbf{v}(c_1),...,\mathbf{v}(c_n)\rangle\in \mathbf{v}(P)$, sonst 0.
 - ► Fa ist wahr gdw.
 v(a) (das Objekt von a) in v(F) (der Extension von F) enthalten ist

- $\mathbf{v}(Pc_1,...c_n)=1$ gdw. $\langle \mathbf{v}(c_1),...,\mathbf{v}(c_n)\rangle\in \mathbf{v}(P)$, sonst 0.
 - Fa ist wahr gdw. v(a) (das Objekt von a) in v(F) (der Extension von F) enthalten ist
- \triangleright $v(\neg A)$, $v(A \land B)$ usw. genau wie in der Aussagenlogik.

- $\mathbf{v}(Pc_1,...c_n)=1$ gdw. $\langle \mathbf{v}(c_1),...,\mathbf{v}(c_n)\rangle\in \mathbf{v}(P)$, sonst 0.
 - ► Fa ist wahr gdw.
 v(a) (das Objekt von a) in v(F) (der Extension von F) enthalten ist
- ▶ $v(\neg A)$, $v(A \land B)$ usw. genau wie in der Aussagenlogik.
- $v(\forall xA) = 1$ gdw. **jedes** Objekt des Gegenstandsbereiches A erfüllt, sonst 0.

- $\mathbf{v}(Pc_1,...c_n)=1$ gdw. $\langle \mathbf{v}(c_1),...,\mathbf{v}(c_n)\rangle\in \mathbf{v}(P)$, sonst 0.
 - Fa ist wahr gdw. v(a) (das Objekt von a) in v(F) (der Extension von F) enthalten ist
- ▶ $v(\neg A)$, $v(A \land B)$ usw. genau wie in der Aussagenlogik.
- $v(\forall xA) = 1$ gdw. **jedes** Objekt des Gegenstandsbereiches A erfüllt, sonst 0.
- $\nu(\exists xA) = 1$ gdw. **mindestens ein** Objekt des Gegenstandsbereiches A erfüllt, sonst 0.

- $\mathbf{v}(Pc_1,...c_n)=1$ gdw. $\langle \mathbf{v}(c_1),...,\mathbf{v}(c_n)\rangle\in \mathbf{v}(P)$, sonst 0.
 - Fa ist wahr gdw. v(a) (das Objekt von a) in v(F) (der Extension von F) enthalten ist
- ▶ $v(\neg A)$, $v(A \land B)$ usw. genau wie in der Aussagenlogik.
- $v(\forall xA) = 1$ gdw. **jedes** Objekt des Gegenstandsbereiches A erfüllt, sonst 0.
- $\nu(\exists xA) = 1$ gdw. **mindestens ein** Objekt des Gegenstandsbereiches A erfüllt, sonst 0.
 - ▶ Eine Formel *A* gilt in *I* gdw. v(I) = 1.

- $\mathbf{v}(Pc_1,...c_n)=1$ gdw. $\langle \mathbf{v}(c_1),...,\mathbf{v}(c_n)\rangle\in \mathbf{v}(P)$, sonst 0.
 - Fa ist wahr gdw. v(a) (das Objekt von a) in v(F) (der Extension von F) enthalten ist
- ▶ $v(\neg A)$, $v(A \land B)$ usw. genau wie in der Aussagenlogik.
- $v(\forall xA) = 1$ gdw. **jedes** Objekt des Gegenstandsbereiches A erfüllt, sonst 0.
- $\nu(\exists xA) = 1$ gdw. **mindestens ein** Objekt des Gegenstandsbereiches A erfüllt, sonst 0.
 - ▶ Eine Formel *A* gilt in *I* gdw. v(I) = 1.
 - ► (Formal unterbestimmt. Was heißt 'erfüllen'?)

```
Konstanten: a, b, c. Prädikatensymbole: P, Q. Sei I gegeben durch: D = \{\partial_a, \partial_b, \partial_c\}, v(a) = \partial_a usw., v(P) = \{\partial_a, \partial_b\}, v(Q) = \{\langle \partial_a, \partial_a \rangle \langle \partial_c, \partial_b \rangle\}. Welche der folgenden Formeln gilt in I?
```

▶ Pa ∨ Qac.

```
Konstanten: a, b, c. Prädikatensymbole: P, Q. Sei I gegeben durch: D = \{\partial_a, \partial_b, \partial_c\}, v(a) = \partial_a usw., v(P) = \{\partial_a, \partial_b\}, v(Q) = \{\langle \partial_a, \partial_a \rangle \langle \partial_c, \partial_b \rangle\}. Welche der folgenden Formeln gilt in I?
```

```
Konstanten: a, b, c. Prädikatensymbole: P, Q. Sei I gegeben durch: D = \{\partial_a, \partial_b, \partial_c\}, v(a) = \partial_a usw., v(P) = \{\partial_a, \partial_b\}, v(Q) = \{\langle \partial_a, \partial_a \rangle \langle \partial_c, \partial_b \rangle\}. Welche der folgenden Formeln gilt in I?
```

- ▶ Pa∨ Qac.
- ▶ $\exists x(Qxx \land Px)$.

```
Konstanten: a, b, c. Prädikatensymbole: P, Q. Sei I gegeben durch: D = \{\partial_a, \partial_b, \partial_c\}, v(a) = \partial_a usw., v(P) = \{\partial_a, \partial_b\}, v(Q) = \{\langle \partial_a, \partial_a \rangle \langle \partial_c, \partial_b \rangle\}. Welche der folgenden Formeln gilt in I?
```

- ▶ Pa∨ Qac.
- ▶ $\exists x(Qxx \land Px)$.

Semantik: Interpretation Beispiel

```
Konstanten: a, b, c. Prädikatensymbole: P, Q. Sei I gegeben durch: D = \{\partial_a, \partial_b, \partial_c\}, v(a) = \partial_a usw., v(P) = \{\partial_a, \partial_b\}, v(Q) = \{\langle \partial_a, \partial_a \rangle \langle \partial_c, \partial_b \rangle\}. Welche der folgenden Formeln gilt in I?
```

- ▶ Pa∨ Qac.
- $ightharpoonup \exists x (Qxx \wedge Px).$
- $\forall x (Px \to \exists y Qxy).$
- $\blacktriangleright \ \forall x (Px \lor Qxy).$

Notation

 $A_x(c)$ ist die Formel, die wir erhalten, wenn wir alle freien Vorkommnisse von x in A durch c ersetzen.

Notation

 $A_x(c)$ ist die Formel, die wir erhalten, wenn wir alle freien Vorkommnisse von x in A durch c ersetzen.

$$\frac{\forall xA}{A_x(a)}$$

a ist eine Konstante, die schon vorkam.

Notation

 $A_x(c)$ ist die Formel, die wir erhalten, wenn wir alle freien Vorkommnisse von x in A durch c ersetzen.

$$\frac{\forall xA}{A_x(a)} \qquad \frac{\exists xA}{A_x(c)}$$

a ist eine c ist eine neue Konstante, die Konstante. schon vorkam.

Notation

 $A_x(c)$ ist die Formel, die wir erhalten, wenn wir alle freien Vorkommnisse von x in A durch c ersetzen.

$$\frac{\forall xA}{A_x(a)} \qquad \frac{\exists xA}{A_x(c)} \qquad \frac{\neg \exists xA}{\forall x \neg A}$$

a ist einec ist eine neueKonstante, dieschon vorkam.

Notation

 $A_x(c)$ ist die Formel, die wir erhalten, wenn wir alle freien Vorkommnisse von x in A durch c ersetzen.

$$\frac{\forall x A}{A_x(a)}$$

$$\frac{\exists x A}{A_x(c)}$$

$$\neg \exists x A$$
$$\forall x \neg A$$

$$\frac{\neg \forall x A}{\exists x \neg A}$$

a ist eine Konstante, die schon vorkam. c ist eine neue

Konstante.

Notation

 $A_x(c)$ ist die Formel, die wir erhalten, wenn wir alle freien Vorkommnisse von x in A durch c ersetzen.

$$\frac{\forall xA}{A_x(a)} \qquad \frac{\exists xA}{A_x(c)} \qquad \frac{\neg \exists xA}{\forall x \neg A} \qquad \frac{\neg \forall xA}{\exists x \neg A}$$

a ist eine Konstante, die schon vorkam.

c ist eine neue Konstante

Konstante.

 \triangleright $Pc \vdash \exists xPx?$

Notation

 $A_x(c)$ ist die Formel, die wir erhalten, wenn wir alle freien Vorkommnisse von x in A durch c ersetzen.

$$\frac{\forall xA}{A_x(a)}$$

$$\frac{\exists x A}{A_x(c)}$$

$$\frac{\neg \exists x A}{\forall x \neg A}$$

$$\frac{\neg \forall x A}{\exists x \neg A}$$

a ist eine Konstante, die schon vorkam. c ist eine neue

Konstante.

$$\triangleright$$
 $Pc \vdash \exists xPx?$

$$\triangleright \forall x \neg Px \vdash \neg \exists x Px?$$

Notation

 $A_x(c)$ ist die Formel, die wir erhalten, wenn wir alle freien Vorkommnisse von x in A durch c ersetzen.

$$\frac{\forall xA}{A_x(a)}$$

$$\frac{\exists xA}{A_x(c)}$$

$$\frac{\neg \exists x A}{\forall x \neg A}$$

$$\frac{\neg \forall x A}{\exists x \neg A}$$

a ist eine Konstante, die schon vorkam. c ist eine neue

Konstante.

▶ $Pc \vdash \exists xPx$?

- $\lor \forall x \neg Px \vdash \neg \exists x Px?$
- $\rightarrow \exists x \neg Px \vdash \neg \forall x Px?$

Modale Prädikatenlogik

Constant Domain

Vokabular

Zum Vokabular werden \square und \lozenge hinzugefügt.

Vokabular

Zum Vokabular werden \square und \lozenge hinzugefügt.

Grammatik

Vokabular

Zum Vokabular werden \square und \lozenge hinzugefügt.

Grammatik

Wir erweitern die Grammatik der Prädikatenlogik, so dass:

▶ Wenn A eine Formel ist, dann ist auch $\Box A$ eine Formel.

Vokabular

Zum Vokabular werden \square und \lozenge hinzugefügt.

Grammatik

- ▶ Wenn A eine Formel ist, dann ist auch $\Box A$ eine Formel.
- ▶ Wenn A eine Formel ist, dann ist auch $\Diamond A$ eine Formel.

Vokabular

Zum Vokabular werden \square und \lozenge hinzugefügt.

Grammatik

- ▶ Wenn A eine Formel ist, dann ist auch $\Box A$ eine Formel.
- ▶ Wenn A eine Formel ist, dann ist auch $\Diamond A$ eine Formel.
 - $\forall x \Box (Px \land Qx) \rightarrow \Box \forall x Px$

Vokabular

Zum Vokabular werden \square und \lozenge hinzugefügt.

Grammatik

- ▶ Wenn A eine Formel ist, dann ist auch $\Box A$ eine Formel.
- ▶ Wenn A eine Formel ist, dann ist auch $\Diamond A$ eine Formel.
 - $\forall x \Box (Px \land Qx) \rightarrow \Box \forall x Px$

Vokabular

Zum Vokabular werden \square und \lozenge hinzugefügt.

Grammatik

- ▶ Wenn A eine Formel ist, dann ist auch $\Box A$ eine Formel.
- ▶ Wenn A eine Formel ist, dann ist auch $\Diamond A$ eine Formel.
 - $\forall x \Box (Px \land Qx) \rightarrow \Box \forall x Px$
- Restliche Grammatik wie in der klassischen Prädikatenlogik.

Semantik: Intuitiv

Wir wollen die Logik so erweitern, dass:

Semantik: Intuitiv

Wir wollen die Logik so erweitern, dass:

► Ein Gegenstand in einer Situation eine Eigenschaft haben kann, aber an einer anderen Welt nicht.

Semantik: Intuitiv

Wir wollen die Logik so erweitern, dass:

- ► Ein Gegenstand in einer Situation eine Eigenschaft haben kann, aber an einer anderen Welt nicht.
- v(Pa) = 1 an w_0 , aber v(Pb) = 0 an w_1 .

Die Interpretation I wird erweitert, so dass sie aus einem 4-tupel $\langle D, W, R, v \rangle$ besteht, wobei

▶ D wie in der klassischen Prädikatenlogik der nicht-leere Gegenstandsbereich ist,

- ▶ D wie in der klassischen Prädikatenlogik der nicht-leere Gegenstandsbereich ist,
- W wie in der modalen Aussagenlogik eine Menge möglicher Welten ist,

- D wie in der klassischen Prädikatenlogik der nicht-leere Gegenstandsbereich ist,
- W wie in der modalen Aussagenlogik eine Menge möglicher Welten ist,
- ▶ R wie in der modalen Aussagenlogik eine Relation auf W ist (d.h. $R \subseteq W \times W$),

- D wie in der klassischen Prädikatenlogik der nicht-leere Gegenstandsbereich ist,
- W wie in der modalen Aussagenlogik eine Menge möglicher Welten ist,
- ▶ R wie in der modalen Aussagenlogik eine Relation auf W ist (d.h. $R \subseteq W \times W$),
- v eine Funktion ist, so dass

- D wie in der klassischen Prädikatenlogik der nicht-leere Gegenstandsbereich ist,
- W wie in der modalen Aussagenlogik eine Menge möglicher Welten ist,
- ▶ R wie in der modalen Aussagenlogik eine Relation auf W ist (d.h. $R \subseteq W \times W$),
- v eine Funktion ist, so dass
 - ▶ Wenn c eine Konstante ist, dann ist $v(c) \in D$.

- D wie in der klassischen Prädikatenlogik der nicht-leere Gegenstandsbereich ist,
- W wie in der modalen Aussagenlogik eine Menge möglicher Welten ist,
- ▶ R wie in der modalen Aussagenlogik eine Relation auf W ist (d.h. $R \subseteq W \times W$),
- v eine Funktion ist, so dass
 - ▶ Wenn c eine Konstante ist, dann ist $v(c) \in D$.
 - ▶ Wenn P ein n-stelliges Prädikatensymbol ist und $w \in W$, dann ist $v_w(P) \subseteq D^n$.

Eine Formel ist nun wahr oder falsch in einer Interpretation an einer Welt. Also

 $\mathbf{v}_{\mathbf{w}}(Pc_1,...c_n) = 1 \text{ gdw. } \langle v(c_1),...,v(c_n) \rangle \in v_{\mathbf{w}}(P), \text{ sonst } 0.$

- $v_{\mathbf{w}}(Pc_1,...c_n) = 1$ gdw. $\langle v(c_1),...,v(c_n) \rangle \in v_{\mathbf{w}}(P)$, sonst 0.
- ► Ganz analog mit nicht atomaren Formeln:

- $v_{\mathbf{w}}(Pc_1,...c_n)=1$ gdw. $\langle v(c_1),...,v(c_n)\rangle\in v_{\mathbf{w}}(P)$, sonst 0.
- Ganz analog mit nicht atomaren Formeln:
 - $v_w(\neg A) = 1 \text{ gdw. } v_w(A) = 0.$

- $\mathbf{v}_{\mathbf{w}}(Pc_1,...c_n) = 1 \text{ gdw. } \langle v(c_1),...,v(c_n) \rangle \in v_{\mathbf{w}}(P), \text{ sonst } 0.$
- Ganz analog mit nicht atomaren Formeln:
 - $v_w(\neg A) = 1 \text{ gdw. } v_w(A) = 0.$
 - $v_w(A \wedge B) = 1 \text{ gdw. } v_w(A) = 1 \text{ und } v_w(B) = 1, \text{ sonst } 0.$

- $\mathbf{v}_{\mathbf{w}}(Pc_1,...c_n) = 1 \text{ gdw. } \langle v(c_1),...,v(c_n) \rangle \in v_{\mathbf{w}}(P), \text{ sonst } 0.$
- Ganz analog mit nicht atomaren Formeln:
 - $v_w(\neg A) = 1 \text{ gdw. } v_w(A) = 0.$
 - $ho_w(A \wedge B) = 1$ gdw. $v_w(A) = 1$ und $v_w(B) = 1$, sonst 0.
 - usw.

- $\mathbf{v}_{\mathbf{w}}(Pc_1,...c_n) = 1 \text{ gdw. } \langle v(c_1),...,v(c_n) \rangle \in v_{\mathbf{w}}(P), \text{ sonst } 0.$
- Ganz analog mit nicht atomaren Formeln:
 - $v_w(\neg A) = 1 \text{ gdw. } v_w(A) = 0.$
 - $v_w(A \wedge B) = 1 \text{ gdw. } v_w(A) = 1 \text{ und } v_w(B) = 1, \text{ sonst } 0.$
 - USW.
- ▶ $v_w(\Box A) = 1$ gdw. **für alle** $w' \in W$ mit wRw' gilt: $v_{w'}(A) = 1$.

- $\mathbf{v}_{\mathbf{w}}(Pc_1,...c_n) = 1 \text{ gdw. } \langle v(c_1),...,v(c_n) \rangle \in v_{\mathbf{w}}(P), \text{ sonst } 0.$
- Ganz analog mit nicht atomaren Formeln:
 - $v_w(\neg A) = 1 \text{ gdw. } v_w(A) = 0.$
 - $ho_w(A \wedge B) = 1$ gdw. $v_w(A) = 1$ und $v_w(B) = 1$, sonst 0.
 - USW.
- ▶ $v_w(\Box A) = 1$ gdw. **für alle** $w' \in W$ mit wRw' gilt: $v_{w'}(A) = 1$.
- ▶ $v_w(\lozenge A) = 1$ gdw. für mindestens ein $w' \in W$ mit wRw' gilt: $v_{w'}(A) = 1$.

Semantik: Beispiel

Sei eine Interpretation *I* gegeben durch:

Semantik: Beispiel

Sei eine Interpretation *I* gegeben durch:

$$D = \{ \partial_a, \partial_b, \partial_c \}$$

Sei eine Interpretation *I* gegeben durch:

- $D = \{ \partial_a, \partial_b, \partial_c \}$
- $W = \{w_0, w_1\}$

Sei eine Interpretation / gegeben durch:

- $D = \{\partial_a, \partial_b, \partial_c\}$
- $V = \{w_0, w_1\}$

Sei eine Interpretation *I* gegeben durch:

- $D = \{\partial_a, \partial_b, \partial_c\}$
- $V = \{w_0, w_1\}$
- $ightharpoonup v(a) = \partial_a \text{ usw., } v_0(P) =$

Sei eine Interpretation *I* gegeben durch:

- $D = \{\partial_a, \partial_b, \partial_c\}$
- $V = \{w_0, w_1\}$
- $ightharpoonup v(a) = \partial_a \text{ usw., } v_0(P) =$

Sei eine Interpretation *I* gegeben durch:

- $D = \{\partial_a, \partial_b, \partial_c\}$
- $V = \{w_0, w_1\}$
- $P = \{ \langle w_0, w_0 \rangle, \langle w_0, w_1 \rangle, \langle w_1, w_1 \rangle \}$
- $ightharpoonup v(a) = \partial_a$ usw., $v_0(P) =$

Welche Formeln gelten an der jeweiligen Welt?

ightharpoonup $\square Pa$ an w_1

Sei eine Interpretation *I* gegeben durch:

- $D = \{\partial_a, \partial_b, \partial_c\}$
- $V = \{w_0, w_1\}$
- $ightharpoonup v(a) = \partial_a \text{ usw., } v_0(P) =$

Welche Formeln gelten an der jeweiligen Welt?

- ightharpoonup $\square Pa$ an w_1
- ▶ $\exists x \Box Px$, w_0

Sei eine Interpretation *I* gegeben durch:

- $D = \{\partial_a, \partial_b, \partial_c\}$
- $V = \{w_0, w_1\}$
- $P = \{ \langle w_0, w_0 \rangle, \langle w_0, w_1 \rangle, \langle w_1, w_1 \rangle \}$
- $ightharpoonup v(a) = \partial_a \text{ usw., } v_0(P) =$

Welche Formeln gelten an der jeweiligen Welt?

- ightharpoonup $\square Pa$ an w_1
- $ightharpoonup \exists x \Box Px, w_0$
- ▶ $\square \exists x P x, w_0$

Sei eine Interpretation *I* gegeben durch:

$$D = \{\partial_a, \partial_b, \partial_c\}$$

$$V = \{w_0, w_1\}$$

$$P = \{\langle w_0, w_0 \rangle, \langle w_0, w_1 \rangle, \langle w_1, w_1 \rangle \}$$

$$ightharpoonup v(a) = \partial_a \text{ usw., } v_0(P) =$$

Welche Formeln gelten an der jeweiligen Welt?

- ightharpoonup $\square Pa$ an w_1
- $ightharpoonup \exists x \Box Px, w_0$
- ightharpoonup $\Box \exists x P x, w_0$

 $\rightarrow \forall x \Diamond Px, w_0$

Sei eine Interpretation *I* gegeben durch:

$$D = \{\partial_a, \partial_b, \partial_c\}$$

$$V = \{w_0, w_1\}$$

$$P = \{\langle w_0, w_0 \rangle, \langle w_0, w_1 \rangle, \langle w_1, w_1 \rangle \}$$

$$ightharpoonup v(a) = \partial_a ext{ usw., } v_0(P) =$$

Welche Formeln gelten an der jeweiligen Welt?

- $ightharpoonup \square Pa$ an w_1
- $ightharpoonup \exists x \Box Px, w_0$
- $\triangleright \Box \exists x P x, w_0$

- $\rightarrow \forall x \Diamond Px, w_0$
- $\triangleright \lozenge \forall x P x, w_0$

Tableaux: Regeln

Alle Regeln der klassischen Prädikatenlogik, relativ zu einer Welt, und die Regeln der modalen Aussagenlogik.

Tableaux: Regeln

Alle Regeln der klassischen Prädikatenlogik, relativ zu einer Welt, und die Regeln der modalen Aussagenlogik.

$$\frac{\forall xA, i}{A_x(a), i} \qquad \frac{\exists xA, i}{A_x(c), i} \qquad \frac{\neg \exists xA, i}{\forall x \neg A, i} \qquad \frac{\neg \forall xA, i}{\exists x \neg A, i}$$
(a kam schon (c ist eine neue vor.) Konstante.)

Tableaux: Regeln

Alle Regeln der klassischen Prädikatenlogik, relativ zu einer Welt, und die Regeln der modalen Aussagenlogik.

$$\frac{\forall xA, i}{A_x(a), i} \qquad \frac{\exists xA, i}{A_x(c), i} \qquad \frac{\neg \exists xA, i}{\forall x \neg A, i} \qquad \frac{\neg \forall xA, i}{\exists x \neg A, i}$$
(a kam schon (c ist eine neue Konstante.)
$$\frac{\Box A, i}{irj} \qquad \frac{\Diamond A, i}{irj} \qquad \frac{\Diamond A, i}{irj}$$

$$A, j \qquad A, j$$

(*i* ist neu.)

K ist eine Logik ohne Beschränkung der Relation R der Interpretationen.

1.
$$\vdash_K \forall x \Box Px \rightarrow \Box \forall x Px$$
?

K ist eine Logik ohne Beschränkung der Relation R der Interpretationen.

- 1. $\vdash_K \forall x \Box Px \rightarrow \Box \forall x Px$?
- 2. $\vdash_K \Box \forall x Px \rightarrow \forall x \Box Px$?

K ist eine Logik ohne Beschränkung der Relation R der Interpretationen.

- 1. $\vdash_{\kappa} \forall x \Box Px \rightarrow \Box \forall x Px$?
- 2. $\vdash_K \Box \forall x Px \rightarrow \forall x \Box Px$?
- 3. $\vdash_K \exists x \Box Px \rightarrow \Box \exists x Px$?

 ${\it K}$ ist eine Logik ohne Beschränkung der Relation ${\it R}$ der Interpretationen.

- 1. $\vdash_K \forall x \Box Px \rightarrow \Box \forall x Px$?
- 2. $\vdash_K \Box \forall x Px \rightarrow \forall x \Box Px$?
- 3. $\vdash_K \exists x \Box Px \rightarrow \Box \exists x Px$?
- 4. $\vdash_K \Box \exists x Px \rightarrow \exists x \Box Px$?

Philosophische Probleme und Fragen

Constant Domain Prädikatenlogik kommt mit einem heftigen Commitment:

Barcan Formula (BF): $\forall x \Box Px \rightarrow \Box \forall x Px$

Constant Domain Prädikatenlogik kommt mit einem heftigen Commitment:

Barcan Formula (BF): $\forall x \Box Px \rightarrow \Box \forall x Px$

▶ BF ist Theorem von K (und jeder stärkeren Logik).

Constant Domain Prädikatenlogik kommt mit einem heftigen Commitment:

Barcan Formula (BF): $\forall x \Box Px \rightarrow \Box \forall x Px$

- ▶ BF ist Theorem von K (und jeder stärkeren Logik).
- Wie lässt sich das interpretieren? Nehme an, das Antezedens von BF gilt an w₀: Alle Dinge an w₀ haben die Eigenschaft P an allen (zugänglichen) Welten. Dann gilt nach BF auch das Konsequenz: An allen Welten gilt ∀xPx. D.h. an jeder Welt gilt Px für alle dort existierenden Dinge.

Constant Domain Prädikatenlogik kommt mit einem heftigen Commitment:

Barcan Formula (BF): $\forall x \Box Px \rightarrow \Box \forall x Px$

- ▶ BF ist Theorem von K (und jeder stärkeren Logik).
- Wie lässt sich das interpretieren? Nehme an, das Antezedens von BF gilt an w₀: Alle Dinge an w₀ haben die Eigenschaft P an allen (zugänglichen) Welten. Dann gilt nach BF auch das Konsequenz: An allen Welten gilt ∀xPx. D.h. an jeder Welt gilt Px für alle dort existierenden Dinge.
- ▶ Ist das plausibel? Was ist, wenn an einer Welt w_1 andere Dinge existieren als an Welt w_0 ? Dann dürfte $\forall x \Box Px$ an w_0 nichts über diese Dinge implizieren.

Aquivalent zur Barcan Formula:

BF*:
$$\Diamond \exists x Px \rightarrow \exists x \Diamond Px$$

Literatur:

- ► Fitting, Melvin und Mendelsohn, Richard L. (1998). First Order Modal Logic. Kluwer Academic Publishers.
- ► Garson, James (Spring 2016 Edition). Modal Logic. The Stanford Encyclopedia of Philosophy.
- ► Priest, Graham (2001). Introduction to Non-Classical Logic. Cambridge University Press.