

Introduction

Electrical & Electronic Circuits and Elements

Embedded Systems & Embedded Programming

- Is a passive element that stores energy in its magnetic field
- ❖ Is used in power supplies, transformers, radios, radars, electric motors and etc.
- Any conductor of electric current has inductive properties and may be regarded as an inductor
- ❖ To enhance the inductive effect, a practical inductor consists of a coil of conducting wire
- ♦ Inductance is the property that an inductor shows opposition to the change of current
 - ➤ Measured in henrys (**H**)
 - > Depends on the physical dimension and construction of the inductor
 - > Represented by L

$$L = \frac{N^2 \mu A}{\ell}$$

 μ is the permeability of the core μ for air is 1.257 x 10⁻⁶ H/m

Circuit symbols for inductors: (a) air-core, (b) iron-core, (c) variable iron-core.

- The voltage across an inductor is directly proportional to the time rate of change of the current
- An inductor acts like a short circuit to dc current
 - > The voltage across an inductor is zero when the current is constant
- ❖ The current through an inductor cannot change instantaneously
 - > Discontinuous change in the current requires an infinite voltage

Inductors and Inductance

$$v = L \frac{di}{dt}$$

$$w = \frac{1}{2}Li^2$$

Stored energy

Voltage-current relationship of an inductor.

- An ideal inductor does not dissipate energy
 - > It takes power from the circuit when storing energy
 - > Delivers power to the circuit when returning previously stored energy
- ❖ A practical inductor has significant:
 - > Resistance because of the
 - Conducting material
 - > Capacitance because of the

Circuit model for a practical inductor.

- ❖ Impedance of an inductor is sL where
 - > s is the complex frequency of the source signal
 - > s for a DC signal is 0 and for a sinusoidal AC signal is $j\omega$
 - $\gg \omega = 2\pi f$ where f is the frequency of the signal

Measured by

- ➤ Online Calculator
- > Inductance meter
- > By text or color marking on the inductor
- Some useful links
 - ➤ The Inductor
 - ➤ Inductance of a Coil
 - ➤ <u>Mutual Inductance</u>
 - ➤ <u>Inductors in Series</u>
 - ➤ <u>Inductors in Parallel</u>

Various types of inductors: (a) solenoidal wound inductor, (b) toroidal inductor, (c) chip inductor.

- Store and release energy
 - > LR Series Circuit
- AC, puls and etc. responses
- Applications
 - > Filters
 - > Transformers

$$\frac{N_P}{N_S} = \frac{V_P}{V_S} = n = Turns Ratio$$

Fundamentals of Electric Circuits (Electromagnetism)

- A moving electric charge (current) generates a magnetic field
- A magnetic field induces electric charge movement (current)
- Electricity and magnetism are two related phenomena produced by the electromagnetic force
- In an <u>electromagnetic wave</u>, the electric and magnetic fields are perpendicular to each other

Fundamentals of Electric Circuits (Transmission Line)

- ❖ To deliver power, connection of two wires between the source and the load is required
- At low frequencies, power is delivered to the load in electric fields
- At higher frequencies, power is delivered in electric and magnetic fields
- Transmission line is a material structure that transfers energy in form of electromagnetic field
- If the impedance of the load and the transmission line are not matched
 - > Some part of the power will be reflected to the source
 - The reflection coefficient at the load is $\Gamma_L = \frac{Z_L Z_o}{Z_L + Z_o}$

Transmission Lines - Signal Transmission and Reflection

Fundamentals of Electric Circuits (Ground Loops)

- Ground loop exists when an electrical system is connected through more than one path to the ground
- Ideally, all grounded points of an electrical system should be at the same potential
- ❖ The ground loop forms a large loop antenna that picks up interference currents easily
- The larger the loop the more interference (EMI)
- Result: The ground is no longer stable
- Ground Loops: Avoid Them!
- Grounding and Shielding of electric circuits
- Galvanic Isolation: Purpose and Methodologies

Fundamentals of Electric Circuits (Crosstalk)

- Electromagnetic (EM) Crosstalk is an unwanted interference
- It is caused by the electric and magnetic fields of one or more signals affecting another signal
- Crosstalk occurs via two mechanisms
 - Capacitive crosstalk caused by the electrical field
 - Inductive crosstalk caused by the magnetic field
- Some solutions
 - Shielding
 - Increase the distance between lines
 - Using twisted pair wires
- Crosstalk (electronics)
- CrossTalk

Fundamentals of Electric Circuits

References

- Fundamentals of Electric Circuits, 5th Edition, Charles K. Alexander and Matthew N.O. Sadiku, ISBN 978-0-07-338057-5
- Fundamentals of Electrical Engineering, First Edition, Giorgio Rizzoni, ISBN 978-0-07-338037-7
- > Some of the images have been copied from these two books

Some useful links

- Electronic Basics #12: Coils / Inductors (Part 1)
- Inductance basics
- Do Volts or Amps Kill You? Voltage, Current and Resistance
- ➤ How does an Antenna work? | ICT #4
- Electromagnetic interferences
- What is Hall Effect and How Hall Effect Sensors Work

The SI prefixes.

Multiplier	Prefix	Symbol
10 ¹⁸	exa	Е
10 ¹⁵	peta	P
1012	tera	T
10 ⁹	giga	G
10 ⁶	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

