Basics of Quantitative Genetics (Part 2)

Peter von Rohr

04 Oktober 2019

Variances

- selection can only be done with variation
- variation is assessed by variance

$$Var[X] = \sum_{x_i \in \mathcal{X}} (x_i - \mu_X)^2 * f(x_i)$$

where \mathcal{X} : set of all possible x-values $f(x_i)$ probability that x assumes the value of x_i expected value E[X] of X

Variation of Genotypic Values

$$\sigma_G^2 = Var[V] = (V_{11} - \mu)^2 * f(G_1G_1)$$

$$+ (V_{12} - \mu)^2 * f(G_1G_2)$$

$$+ (V_{22} - \mu)^2 * f(G_2G_2)$$

$$= (BV_{11} + D_{11})^2 * f(G_1G_1)$$

$$+ (BV_{12} + D_{12})^2 * f(G_1G_2)$$

$$+ (BV_{22} + D_{22})^2 * f(G_2G_2)$$

$$= 2pq\alpha^2 + (2pqd)^2$$

$$= \sigma_A^2 + \sigma_D^2$$

where $\mu = (p-q)a + 2pqd$ the population mean and $V_{ij} - \mu = BV_{ij} + D_{ij}$

Additive Genetic Variance

$$\sigma_{A}^{2} = Var[BV] = BV_{11}^{2} * f(G_{1}G_{1}) + BV_{12}^{2} * f(G_{1}G_{2}) + BV_{22}^{2} * f(G_{2}G_{2})$$

$$= (2q\alpha)^{2} * p^{2} + ((q - p)\alpha)^{2} * 2pq + (-2p\alpha)^{2} * q^{2}$$

$$= 4p^{2}q^{2}\alpha^{2} + (q^{2}\alpha^{2} - 2pq\alpha^{2} + p^{2}\alpha^{2}) * 2pq + 4p^{2}q^{2}\alpha^{2}$$

$$= 8p^{2}q^{2}\alpha^{2} + 2pq^{3}\alpha^{2} - 4p^{2}q^{2}\alpha^{2} + 2p^{3}q\alpha^{2}$$

$$= 4p^{2}q^{2}\alpha^{2} + 2pq^{3}\alpha^{2} + 2p^{3}q\alpha^{2}$$

$$= 2pq\alpha^{2}(2pq + q^{2} + p^{2})$$

$$= 2pq\alpha^{2}$$

because E[BV] = 0

Dominance Variance

$$\sigma_D^2 = D_{11}^2 * f(G_1G_1) + D_{12}^2 * f(G_1G_2) + D_{22}^2 * f(G_2G_2)$$

$$= (-2q^2d)^2 * p^2 + (2pqd)^2 * 2pq + (-2p^2d)^2 * q^2$$

$$= 4p^2q^4d^2 + 8p^3q^3d^2 + 4p^4q^2d^2$$

$$= 4p^2q^2d^2\left(q^2 + 2pq + p^2\right)$$

$$= 4p^2q^2d^2$$

because E[D] = 0

Extension To More Loci

Population (N = 10)

Epistatic Interaction

Decomposition of overall genotypic value V

$$V = V_A + V_B + I_{AB}$$

where I_{AB} : deviation from additively combining A and B

▶ Decomposition of V_A and V_B as before and re-grouping additive and dominance terms

$$V = \mu + A + D + I_{AB}$$

where A: breeding values and D: Dominance deviations

Interaction Variance

▶ Interaction deviation lead to new variance component σ_I^2

$$\sigma_G^2 = var(V) = var(\mu + A + D + I_{AB})$$
$$= var(A) + var(D) + var(I_{AB})$$
$$= \sigma_A^2 + \sigma_D^2 + \sigma_I^2$$

Summary of Effects

Importance for Livestock Breeding

- Breeding values measure effects of alleles
- Dominance deviations measure effects of genotypes
- ▶ Interaction deviations measure effects of different loci
- \rightarrow for livestock breeding
 - parents pass random sample of allels to offspring
- \rightarrow breeding value and associated genetic additive variance are important
- \rightarrow dominance and interaction deviations and associated variance components rarely considered

Genetic Models

polygenic model

- large but finite number of loci affect phenotype
- used in genomic selection

infinitesimal model

- infinite number of loci affect phenotype
- breeding value is the sum of infinitely small single locus breeding values
- breeding value converges to normal distribution (Central Limit Theorem)
- used in traditional breeding value estimation

Central Limit Theorem

Figure 1: Distribution of Sums of Different Numbers of Components