Cavalier

Contenu de l'épreuve

Cette épreuve, d'une durée de 20 heures maximum, permet d'apprécier l'aptitude du candidat à mobiliser ses compétences pour intégrer le prototypage dans la conception et la réalisation d'un produit industriel, en :

 participant à la définition et à la concrétisation d'une boucle de conception de tout ou partie d'un produit mécanique à l'aide de dispositifs de prototypage; validant le comportement du système conçu au regard du cahier des charges fonctionnel.

Le support de l'évaluation du projet est un dossier numérique qui décrit :

- les procédures de prototypage ;
- les itérations de conception ;
- procédures d'essais réalisées pour valider une solution initiale donnée vis à vis d'un cahier des charges fonctionnel.

Ce dossier, réalisé par le candidat, sert de support à la présentation des travaux réalisés et au dialogue avec les enseignants.

Origine et description

Le produit est utilisé sur des charpentes traditionnelles ou fermettes, pour réaliser l'étanchéité à l'air sous une isolation thermique par l'intérieur des plafonds. Le produit est composé de deux parties, le cavalier et le clip de fixation, il sert de raccord intermédiaire pour positionner et maintenir une membrane ainsi que l'isolant thermique.

Contexte

Le support, du côté de la charpente, sera des chevrons ou fermettes sur lesquels on viendra se fixer à l'aide d'une platine et d'une tige filetée M6.

Le support, du côté de l'étanchéité, sera une fourrure intermédiaire percée tout les 10 cm par des trous oblongs pour laisser passer la tige filetée. Sur cette fourrure il sera apposé un adhésif double face, la membrane et un accessoire métallique (en vert sur l'image ci-dessous) pour bloquer définitivement le système et protéger le percement de la membrane.

La fourrure intermédiaire, de type 45, est positionnée de manière horizontale ou inclinée.

L'existant

Actuellement une solution métallique de cavalier existe. Elle réalise le maintien définitif de la fourrure intermédiaire à l'aide de son taraudage mais elle est particulièrement longue et difficile à mettre en œuvre car il faut visser le cavalier sur une dizaine de centimètre.

Caractérisation du besoin

Verbalisation du besoin

Besoin exprimé: On souhaite pouvoir maintenir la fourrure intermédiaire à la tige filetée le temps du montage de l'accessoire de fixation.

Besoin énoncé : Le cavalier rend service au technicien plaquiste en lui permettant de mettre et maintenir en position temporairement la fourrure intermédiaire à la tige filetée

La validation du besoin

Pourquoi le besoin existe-t-il ? Il est actuellement difficile de régler le niveau de la fourrure intermédiaire avec le cavalier existant.

Qu'est-ce qui peut faire disparaitre le besoin ? Le réglage de la position qui s'effectue avec l'accessoire de fixation en dessous de la fourrure. **Probable**.

Qu'est-ce qui peut faire évoluer le besoin ? La reprise définitive de la charge par le cavalier (disparition de l'accessoire de fixation inférieur). **Probable**.

Le besoin n'est pas totalement validé.

Le client souhaite tout de même poursuivre l'étude afin de prendre une décision.

Diagramme des interacteurs

En phase de pose :

Caractérisation des éléments du milieu extérieur :

Elément caractérisé	Critère	Niveau	Flexibilité
Technicien	Latéralisation	Droitier et gaucher	F0
plaquiste	Force	Panel test	F0
Fourrure intermédiaire	Туре	F45 (cf. donnée client ci-dessous)	FO
Tige filetée	Diamètre	M6	F0
	Longueur	200mm	F1
Plafond	Température durant le montage	40°C max -10°C min	F2
	Humidité durant le stockage	Max 100% durant 1 mois	F2
	Isolant	Tout type d'isolant	F0
Conditionnement	Matière boite	Carton	F0
	Quantité dans la boîte	100	F2

Données client sur les fourrures F45

Note : Avant de lancer un produit il est testé par un panel de techniciens.

Caractérisation des fonctions de service :

Fonction de service	Critère	Niveau	Flexibilité
FP1 : Régler le niveau	Le pas de réglage minimum	0,5mm (soit un demi-pas de M6)	F1
	Force	Panel test	F0
FP2 : Maintenir et mettre en position	Force d'arrachement (selon DTU 25.41)	Max 400N	F1
	Durée	100N durant 24heures	F0
	Nombre de manipulations	5	FO
FC1 : Etre manipulable	Outils utilisés	Sans	FO
FC2: S'emboiter	Force	Panel test	F1
FC3 : Se visser	Taraudage	M6	F0
FC4 : Résister à l'ambiance	Température durant le montage	40°C max -10°C min	F2
	Humidité durant le stockage	Max 100% durant 1 mois	F2
	Emboitage avec des résidus de fibre dans la pièce	Quel que soit le type d'isolant	FO
FC5 : Se stocker	Nombre de manipulations (hors manipulations d'utilisation normale)	5	FO

Choix des solutions

Le client a voulu que l'on étudie un cavalier en polymère, voici les solutions possibles qui lui ont été présentées.

FT112: Verrouiller la vis

Solution 1121:

<u>Principe</u>: Les côtés de la fourrure referment le taraudage sur la vis par une flexion de la pièce.

Solution 1122:

Principe : Un demi-taraudage est emboité sur la vis à l'aide d'une charnière.

Solution 1123:

<u>Principe</u>: La tige est glissée entre les 2 demi-formes. Par un basculement elle rentre dans le taraudage.

Solution 1124:

<u>Principe</u>: Un seul demi-taraudage assure le maintien à la tige filetée.

Solution 1125:

<u>Principe</u>: 2 pièces identiques emboitées l'une avec l'autre : 2 demis taraudages.

FT121: Verrouiller la fourrure

Solution 1211:

<u>Principe</u>: Placée à l'extérieur de la fourrure, cette pièce s'emboîte dans la rainure oblongue. Le poids est supporté par les oreilles de vissage.

Solution 1212:

<u>Principe</u>: Par une rotation les rainures bloquent les cotés de la fourrure.

Solution 1213:

<u>Principe</u>: Idem ci-dessus mais l'épaisseur des oreilles est celle de la fourrure ; les encoches deviennent inutiles.

Conception préliminaire et choix de solution

Conception détaillée

En retravaillant les formes de la pièce avec un spécialiste de l'injection plastique les solutions suivantes ont été adoptées :

Partie fermeture

Partie cavalier

Leurs définitions numériques sont disponibles en annexe, elles seront votre point de départ.

Le travail demandé

Chaque étudiant a en charge le prototypage et l'optimisation d'une des 2 parties.

- 1. Identifier dans le tableau de caractérisation des fonctions au moins un critère objectif selon lequel vous allez essayer d'optimiser la solution proposée.
- 2. Déterminer et justifier un moyen de prototypage compatible avec le critère à valider.
- 3. Réaliser le prototypage (de tout ou d'une partie) de la solution initiale.
- 4. Caractériser à l'aide d'un moyen d'essai le prototype vis-à-vis du critère identifié en question 1.
- 5. Proposer une analyse des résultats de l'essai et des pistes d'amélioration.
- 6. Réaliser ces améliorations sur une définition numérique du produit.
- 7. Si le temps vous le permet vous pouvez recommencer la procédure jusqu'à l'obtention d'un produit conforme au critère que vous avez choisi.