A Notebook of Linear Model

Yuwen Long

2024

1 Basic Linear Model

1.1 Definition and Assumption

Consider the linear model of the form as

$$y = X\beta + \epsilon, \tag{1.1}$$

where $\mathbf{y} \in \mathbb{R}^{n \times 1}$ is the vector of responses and n is the number of observed samples, $\mathbf{X} \in \mathbb{R}^{n \times p'}$ is the design matrix of p explanatory variables of n observations and if the intercept is taken into consideration then p' = p + 1, $\boldsymbol{\beta} \in \mathbb{R}^{p' \times 1}$ is the coefficients vector and $\boldsymbol{\epsilon} \in \mathbb{R}^{n \times 1}$ is the random error vector. There are 2 common assumptions of this model.

Assumption 1.1. (Gauss-Markov Condition)

$$\mathbb{E}(\epsilon) = \mathbf{0},$$

$$\operatorname{Cov}(\epsilon) = \sigma^{2}\mathbf{I},$$

$$\operatorname{Cov}(\mathbf{X}, \epsilon) = \mathbf{0}.$$
(1.2)

Assumption 1.2. (Normality Condition)

$$\epsilon \sim \mathcal{N}\left(\mathbf{0}, \sigma^2 \mathbf{I}\right),$$
 (1.3)

combined with (1.1), we have

$$\mathbf{y}|\mathbf{X} \sim \mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}\right)$$
 (1.4)

1.2 Estimation

1.2.1 OLS

We can use the Ordinary Least Square (OLS) method to estimate β . First, we define the loss function as

$$Loss = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}). \tag{1.5}$$

Before use the OLS, we also need to assume the design matrix n > p' and **X** having rank equal to p', i.e. **X** has full rank.

Theorem 1.2.1. The OLS estimation of β is

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{y}.\tag{1.6}$$

Lemma 1.3. If **X** is a $m \times n$ matrix with rank equal to n, then $\mathbf{X}^{\top}\mathbf{X}$ is invertible.

Proof. It suffices to show that $(\mathbf{X}^{\top}\mathbf{X})\mathbf{v} = \mathbf{0}$ if and only if $\mathbf{v} = \mathbf{0}$. If $\mathbf{X}\mathbf{v} = \mathbf{0}$, then $\mathbf{X}^{\top}\mathbf{X}\mathbf{v} = \mathbf{0}$, thus nullity $(\mathbf{X}) \subset \text{nullity}(\mathbf{X}^{\top}\mathbf{X})$. For the other direction, if $\mathbf{X}^{\top}\mathbf{X}\mathbf{v} = \mathbf{0}$, then $\mathbf{v}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{v} = (\mathbf{X}\mathbf{v})^{\top}(\mathbf{X}\mathbf{v}) = \mathbf{0}$, if and only if $\mathbf{X}\mathbf{v} = \mathbf{0}$, thus nullity $(\mathbf{X}^{\top}\mathbf{X}) \subset \text{nullity}(\mathbf{X})$. In conclusion, we have nullity $(\mathbf{X}^{\top}\mathbf{X}) = \text{nullity}(\mathbf{X})$. And notice that nullity $(\mathbf{X}) = \mathbf{0}$, thus nullity $(\mathbf{X}) = \mathbf{0}$, which implies that $(\mathbf{X}) = \mathbf{0}$ is invertible.

Proof. Theorem 1.1

Using matrix calculus, we have

$$\frac{\partial Loss}{\partial \boldsymbol{\beta}} = -2\mathbf{X}^{\top} \boldsymbol{y} + 2\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}. \tag{1.7}$$

Let $\frac{\partial Loss}{\partial \boldsymbol{\beta}} = 0$, then we have

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{y}.\tag{1.8}$$

Remark 1.1. We can also use some linear algebraic techniques to prove this theorem. Minimizing the loss function is equal to find a β which minimizes the distance between \boldsymbol{y} and $\mathbf{X}\boldsymbol{\beta}$, i.e. minimize $\|\mathbf{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2$. Recall that only the projection of \boldsymbol{y} on the range(\mathbf{X}) can minimize this distance, so we only need to find the projection of \boldsymbol{y} , which implies that $\mathbf{X}\boldsymbol{\beta} - \boldsymbol{y}$ should be perpendicular to $\mathbf{X}\boldsymbol{\beta}$ which is in the range of \mathbf{X} . Recall that the *orthogonal complement* of range(\mathbf{X}) is nullity(\mathbf{X}^{\top}), thus such $\mathbf{X}\boldsymbol{\beta} - \boldsymbol{y}$ must in nullity(\mathbf{X}^{\top}), indicating $\mathbf{X}^{\top}(\mathbf{X}\boldsymbol{\beta} - \boldsymbol{y}) = \mathbf{0}$, leading to $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\boldsymbol{y}$.

1.3.1 MLE

We can also use the *Maximal Likelihood Estimation* to estimate β if the assumption of normality (1.2) holds. Under this assumption, the probability density function of y conditioned on X is given as (1.4), which takes the form as follows:

$$f(\mathbf{Y}|\mathbf{X}) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{\sigma^2}{2} (\mathbf{X}\boldsymbol{\beta} - \boldsymbol{y})^\top (\mathbf{X}\boldsymbol{\beta} - \boldsymbol{y})\right\}.$$
 (1.9)

Maximizing this likelihood function is equivalent to maximizing its log-likelihood function:

$$\log f(\mathbf{Y}|\mathbf{X}) = \frac{-1}{2} \log (2\pi\sigma^2) - \frac{\sigma^2}{2} (\mathbf{X}\boldsymbol{\beta} - \mathbf{y})^{\top} (\mathbf{X}\boldsymbol{\beta} - \mathbf{y}), \qquad (1.10)$$

which is equivalent to the OLS.

1.4 Properties of the Estimators

We can get the estimated value of y as

$$\hat{\boldsymbol{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \boldsymbol{y}. \tag{1.11}$$

We call $\mathbf{H} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top}$ hat matrix since it is a projection matrix which projects \mathbf{y} onto $\hat{\mathbf{y}}$.

Theorem 1.4.1. H is an orthogonal projection.

Proof.
$$\mathbf{H}^2 = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} = \mathbf{H};$$
 $\mathbf{H}^{\top} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} = \mathbf{H}.$

One can also verify that $(\mathbf{I} - \mathbf{H})(\mathbf{I} - \mathbf{H}) = \mathbf{I} - \mathbf{H}$.

Theorem 1.4.2. The OLS estimator $\hat{\beta}$ is an unbiased estimator of β .

Proof.
$$\mathbb{E}\left(\hat{\boldsymbol{\beta}}\right) = \mathbb{E}\left(\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{y}\right) = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbb{E}\left(\boldsymbol{y}\right) = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta} = \boldsymbol{\beta}.$$

From Theorem 1.4.2, we have \hat{y} is an unbiased estimator of y.

Corollary 1.4.2.1. \hat{y} is an unbiased estimator of y and $\mathbb{E}(e_i) = 0$.

Theorem 1.4.3. $\operatorname{Var}\left(\hat{\boldsymbol{\beta}}\right) = \sigma^2 \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$.

Proof.
$$\operatorname{Var}\left(\hat{\boldsymbol{\beta}}\right) = \operatorname{Var}\left(\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{y}\right) = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\operatorname{Var}\left(\boldsymbol{y}\right)\left(\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\right)^{\top} = \sigma^{2}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}.$$

Lemma 1.5. $tr(\mathbf{H}) = p' = p + 1$

Proof.
$$\operatorname{tr}(\mathbf{H}) = \operatorname{tr}\left(y\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\right) = \operatorname{tr}\left(\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}y\right) = \operatorname{tr}(\mathbf{I}) = p' = p + 1.$$

Further more, we estimate σ^2 as $\hat{\sigma}^2 = \frac{1}{n-p-1} (\boldsymbol{y} - \hat{\boldsymbol{y}})^\top (\boldsymbol{y} - \hat{\boldsymbol{y}}) = \frac{1}{n-p-1} \sum_{i=1}^n e_i^2$, where $e_i = y_i - \hat{y}_i$.

Theorem 1.5.1. $\hat{\sigma}^2 = \frac{1}{n-p-1} (y - \hat{y})^{\top} (y - \hat{y}) = \frac{1}{n-p-1} \sum_{i=1}^{n} e_i^2$ is an unbiased estimator of σ^2 .

Proof.
$$\mathbb{E}(\hat{\sigma}^2) = \frac{1}{n-p-1} \sum_{i=1}^n \mathbb{E}(e_i^2) = \frac{1}{n-p-1} \sum_{i=1}^n \left(\operatorname{Var}(e_i) - \mathbb{E}(e_i)^2 \right) = \frac{1}{n-p-1} \sum_{i=1}^n \operatorname{Var}(e_i) = \frac{1}{n-p-1} \operatorname{tr}(\operatorname{Cov}((\mathbf{I} - \mathbf{H}) \mathbf{y})) = \frac{1}{n-p-1} \operatorname{tr}\left((\mathbf{I} - \mathbf{H}) \sigma^2\right) = \frac{1}{n-p-1} \sigma^2 \left(\operatorname{tr}(\mathbf{I}) - \operatorname{tr}(\mathbf{H})\right) = \frac{1}{n-p-1} \sigma^2 (n-p-1) = \sigma^2.$$

Theorem 1.5.2. The $c^{\top}\hat{\beta}$ is the best estimator of $c^{\top}\beta$, which has the minimal variance, among the unbiased estimators of linear combination of y.

Proof. We have already known that $\hat{\beta}$ is an unbiased estimator. Let $a^{\top}y$ be another unbiased estimator, then $\mathbb{E}(a^{\top}y) = a^{\top}X\beta = c^{\top}\beta$, which implies that $a^{\top}X = c^{\top}$.

Then,
$$\operatorname{Var}\left(\boldsymbol{c}^{\top}\hat{\boldsymbol{\beta}}\right) - \operatorname{Var}\left(\boldsymbol{a}^{\top}\boldsymbol{y}\right) = \sigma^{2}\boldsymbol{c}^{\top}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\boldsymbol{c} - \sigma^{2}\boldsymbol{a}^{\top}\boldsymbol{a} = \sigma^{2}\boldsymbol{a}^{\top}\left(\mathbf{X}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top} - \mathbf{I}\right)\boldsymbol{a} = \sigma^{2}\boldsymbol{a}^{\top}\left(\mathbf{H} - \mathbf{I}\right)\boldsymbol{a},$$
 since $\mathbf{I} - \mathbf{H}$ is a positive semidefinite matrix, thus $\operatorname{Var}\left(\boldsymbol{c}^{\top}\hat{\boldsymbol{\beta}}\right) - \operatorname{Var}\left(\boldsymbol{a}^{\top}\boldsymbol{y}\right) = \sigma^{2}\boldsymbol{a}^{\top}\left(\mathbf{H} - \mathbf{I}\right)\boldsymbol{a} \leq 0.$

Theorem 1.5.3. Under the assumption of normality, we have $\hat{\beta}$ is independent from $\hat{\sigma}^2$.

Proof. It suffice to show that $\hat{\boldsymbol{\beta}}$ is independent from \boldsymbol{e} since $\hat{\sigma}^2 = \frac{1}{n-p-1}\boldsymbol{e}^{\top}\boldsymbol{e}$. What's more, we have $\hat{\boldsymbol{\beta}} \sim \mathcal{N}\left(\boldsymbol{\beta}, \sigma^2\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\right)$ and $\boldsymbol{e} \sim \mathcal{N}\left(0, \sigma^2\left(\boldsymbol{I} - \boldsymbol{H}\right)\right)$, thus it suffices to show that $\hat{\boldsymbol{\beta}}$ \boldsymbol{e} are uncorrelated.

$$\operatorname{Cov}\left(\hat{\boldsymbol{\beta}}, \boldsymbol{e}\right) = \operatorname{Cov}\left(\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{y}, \left(\boldsymbol{I} - \boldsymbol{H}\right)\boldsymbol{y}\right) = \sigma^{2}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\left(\mathbf{X}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top} - \boldsymbol{I}\right)^{\top} = \sigma^{2}\left(\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top} - \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\right) = \mathbf{0}.$$

Corollary 1.5.3.1. Define $S_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = e^{\top} e$ and $S_R = \sum_{i=1}^n (\hat{y} - \bar{y})^2 = \left(\mathbf{X}\hat{\boldsymbol{\beta}} - \bar{\boldsymbol{y}}\right)^{\top} \left(\mathbf{X}\hat{\boldsymbol{\beta}} - \bar{\boldsymbol{y}}\right)$. Then, from the above theorem, we have S_E is independent from S_R .

Lemma 1.6. Assume $\mathbf{y} \sim \mathcal{N}(0, \mathbf{I}_n)$ and \mathbf{H} with $\operatorname{tr}(\mathbf{H}) = h$ is a idempotent and positive semidefinite matrix, then we have $\mathbf{y}^{\top} \mathbf{H} \mathbf{y} \sim \chi^2(h)$.

Proof. Since **H** is idempotent and positive semidefinite, we can diagonalize it as $\mathbf{H} = \mathbf{P}^{\top} \mathbf{\Sigma} \mathbf{P}$, where **P** is a unitary matrix and $\mathbf{\Sigma}$ is a diagonal matrix with first h entries is 1 and else 0. Then, $\mathbf{y}^{\top} \mathbf{H} \mathbf{y} = \mathbf{y}^{\top} \mathbf{P}^{\top} \mathbf{\Sigma} \mathbf{P} \mathbf{y}$. Let $\mathbf{X} = \mathbf{y} \mathbf{P}$, then $\mathbf{X} \sim \mathcal{N}\left(0, \mathbf{P}^{\top} \mathbf{P}\right) = \mathcal{N}\left(0, \mathbf{I}\right)$, thus $\mathbf{y}^{\top} \mathbf{H} \mathbf{y} = \mathbf{X}^{\top} \mathbf{\Sigma} \mathbf{X} = \sum_{i=1}^{h} x_i^2 \sim \chi^2\left(h\right)$.

Theorem 1.6.1. Under the assumption of normality, we have $S_E/\sigma^2 \sim \chi^2 (n-p-1)$.

Proof. Without loss of generality, let $\sigma^2 = 1$.

$$S_E = \boldsymbol{e}^{\top} \boldsymbol{e} = \boldsymbol{y}^{\top} \left(\boldsymbol{I} - \boldsymbol{H} \right) \boldsymbol{y}.$$

Since I - H is a idempotent and positive semidefinite matrix, it ends with Lemma (1.6).

Theorem 1.6.2. Define $S_T = \sum_{i=1}^n (y_i - \bar{y})^2$, then $S_T = S_E + S_R$.

Remark 1.2. The term of S_T refers to the total deviation of $\{y_i\}$, S_E refers to the part that the fitted model cannot explain and the S_R represents the effectiveness of the fitted model. We also define $R^2 = \frac{S_R}{S_T} =$ $1 - \frac{S_E}{S_T} \in [0, 1]$ to imply the effectiveness of a fitted model. The closer R^2 to 1, the better the model.

Theorem 1.6.3. $S_T/\sigma^2 = \sum_{i=1}^n (y_i - \bar{y})^2 \sim \chi^2 (n-1)$.

Proof. S_T is the sample standard deviation of $\{y_i\}$, thus we know from mathematical statistics that $S_T/\sigma^2 \sim$

Corollary 1.6.3.1. $S_R \sim \chi^2(p)$.

Property 1.1. $\mathbf{X}^{\top} e = \mathbf{0}$.

Proof.
$$\mathbf{X}^{\top} e = \mathbf{X}^{\top} \left(\mathbf{I} - \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \right) y = \mathbf{0}.$$

Corollary 1.6.3.2. $\sum_{i=1}^{n} e_i = 0$.

Proof. Take the result from property (1.1) and notice that the first row of \mathbf{X}^{\top} is $\mathbf{1}_{1\times n}$.

Remark 1.3. $e = y - \hat{y} = y - X\hat{\beta}$ is perpendicular to $X\hat{\beta}$, implying that it is belong to the orthogonal complement of range(\mathbf{X}) which is nullity(\mathbf{X}^{\top}). Thus, e is also perpendicular to the whole range(\mathbf{X}).

Generalized Least Square 1.7

Suppose that the random errors now have covariance $Cov(\epsilon) = \sigma^2 \Sigma$, where Σ is a positive definite matrix. Then, we can decompose it with a unitary matrix \mathbf{P} and a diagonal matrix $\mathbf{\Lambda}$ with all entries positive as $\Sigma = \mathbf{P}^{\top} \Lambda \mathbf{P}$. Also, we have the principal square root of Σ as $\Sigma^{-1/2} = \mathbf{P}^{\top} \Lambda^{-1/2} \mathbf{P}$. Let $\mathbf{v} = \Sigma^{-1/2} \epsilon$, $\mathbf{U} = \Sigma^{-1/2} \mathbf{X}$, $\mathbf{z} = \Sigma^{-1/2} \mathbf{y}$, then we have

$$egin{aligned} oldsymbol{z} &= \mathbf{U}oldsymbol{eta} + oldsymbol{v}, \ \mathbb{E}\left(oldsymbol{v}
ight) &= oldsymbol{0}, \ \mathrm{Var}\left(oldsymbol{v}
ight) &= \sigma^2 oldsymbol{I}. \end{aligned}$$

Then, the OLS of the transformed model is $\boldsymbol{\beta}^* = (\mathbf{U}^\top \mathbf{U})^{-1} \mathbf{U}^\top \boldsymbol{z} = (\mathbf{X}^\top \boldsymbol{\Sigma}^{-1} \mathbf{X})^{-1} \mathbf{X}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{y}$, which is called generalized least square estimation(GLSE) or Gauss-Markov estimation.

Theorem 1.7.1. (1) $\mathbb{E}(\beta^*) = \beta$,

- (2) $\operatorname{Var}(\boldsymbol{\beta}^*) = \sigma^2 \left(\mathbf{X}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{X} \right)^{-1}$
- (3) For all fixed constant vector c, $c^{\top}\beta^*$ is the only linear by y unbiased estimator with minimal variance of $\boldsymbol{c}^{\top}\boldsymbol{\beta}$.

Proof. (1)
$$\mathbb{E}(\boldsymbol{\beta}^*) = \mathbb{E}\left(\left(\mathbf{X}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{y}\right) = \left(\mathbf{X}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{X} = 0.$$
(2)
$$\operatorname{Var}(\boldsymbol{\beta}^*) = \operatorname{Var}\left(\left(\mathbf{X}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{y}\right)$$

$$= \sigma^2\left(\mathbf{X}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{-1}\mathbf{X}^{\top}\left(\mathbf{X}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{X}\right)^{-1} = \sigma^2\left(\mathbf{X}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{X}\right)^{-1}.$$

(3) Suppose $\boldsymbol{a}^{\top}\boldsymbol{y}$ is any unbiased linear estimator of $\boldsymbol{\beta}$, then $\boldsymbol{a}^{\top}\boldsymbol{y} = \boldsymbol{a}^{\top}\boldsymbol{\Sigma}^{1/2}\boldsymbol{\Sigma}^{-1/2}\boldsymbol{y} = \boldsymbol{a}^{\top}\boldsymbol{\Sigma}^{1/2}\boldsymbol{z}$. And $\boldsymbol{c}^{\top}\boldsymbol{\beta}^{*} = \boldsymbol{c}^{\top}\left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\mathbf{U}^{\top}\boldsymbol{z}$ is a OLS estimator of $\boldsymbol{\beta}$ and $\boldsymbol{a}^{\top}\boldsymbol{\Sigma}^{1/2}\boldsymbol{z}$ is an unbiased linear estimator. Then, from Gauss-Markov theorem, we have $\operatorname{Var}\left(\boldsymbol{c}^{\top}\boldsymbol{\beta}^{*}\right) \leq \operatorname{Var}\left(\boldsymbol{a}^{\top}\boldsymbol{\Sigma}^{1/2}\boldsymbol{z}\right)$, where the equality holds if and only if $\boldsymbol{a}^{\top}\boldsymbol{y} = \boldsymbol{c}^{\top}\boldsymbol{\beta}^{*}$.

2 Linear Model with Linear Constraint

2.1 Estimation

Consider the cases where we have some constraints for the linear model as follow:

$$egin{cases} oldsymbol{y} = \mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon} \ \mathbf{H}oldsymbol{eta} = oldsymbol{c}, \end{cases}$$

where **H** is a $q \times (p+1)$ matrix and with rank(**H**)=q. We can use the Lagrange function to get estimation. Let the Lagrange function be

$$\mathcal{L}(\boldsymbol{\beta}, \boldsymbol{\lambda}) = (\boldsymbol{y} - \mathbf{X}\boldsymbol{\beta})^{\top} (\boldsymbol{y} - \mathbf{X}\boldsymbol{\beta}) + \boldsymbol{\lambda}^{\top} (\mathbf{H}\boldsymbol{\beta} - \boldsymbol{c}). \tag{2.1}$$

To solve this function, let

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}} = 2\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta} - 2\mathbf{X}^{\top} \boldsymbol{y} + \mathbf{H}^{\top} \boldsymbol{\lambda} = 0 \\ \frac{\partial \mathcal{L}}{\partial \boldsymbol{\lambda}} = \boldsymbol{c} - \mathbf{H} \boldsymbol{\beta} = 0, \end{cases}$$
(2.2)

Then, we have

$$\begin{cases} \boldsymbol{\beta} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1} \left(\mathbf{X}^{\top}\boldsymbol{y} - \frac{1}{2}\mathbf{H}^{\top}\boldsymbol{\lambda}\right) \\ \mathbf{H}\boldsymbol{\beta} = \boldsymbol{c} \end{cases}$$
(2.3)

$$\begin{cases}
\beta = (\mathbf{X}^{\top} \mathbf{X})^{-1} \left(\mathbf{X}^{\top} \mathbf{y} - \frac{1}{2} \mathbf{H}^{\top} \boldsymbol{\lambda} \right) \\
\mathbf{H} (\mathbf{X}^{\top} \mathbf{X})^{-1} \left(\mathbf{X}^{\top} \mathbf{y} - \frac{1}{2} \mathbf{H}^{\top} \boldsymbol{\lambda} \right) = \mathbf{H} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y} - \mathbf{H} (\mathbf{X}^{\top} \mathbf{X})^{-1} \frac{1}{2} \mathbf{H}^{\top} \boldsymbol{\lambda} = \mathbf{c}
\end{cases} (2.4)$$

$$\begin{cases}
\beta = (\mathbf{X}^{\top} \mathbf{X})^{-1} \left(\mathbf{X}^{\top} \mathbf{y} - \frac{1}{2} \mathbf{H}^{\top} \boldsymbol{\lambda} \right) \\
\hat{\boldsymbol{\lambda}} = 2 \left(\mathbf{H} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{H}^{\top} \right)^{-1} \left(\mathbf{H} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y} - c \right)
\end{cases} (2.5)$$

$$\begin{cases}
\beta = \hat{\beta} - \mathbf{H}^{\top} \left(\mathbf{H} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{H}^{\top} \right)^{-1} \left(\mathbf{H} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \boldsymbol{y} - \boldsymbol{c} \right) \\
= \hat{\beta} - \mathbf{H}^{\top} \left(\mathbf{H} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{H}^{\top} \right)^{-1} \left(\mathbf{H} \hat{\beta} - \boldsymbol{c} \right) \\
\hat{\lambda} = 2 \left(\mathbf{H} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{H}^{\top} \right)^{-1} \left(\mathbf{H} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \boldsymbol{y} - \boldsymbol{c} \right)
\end{cases} (2.6)$$

Thus, We have

Theorem 2.1.1. $\hat{\beta}_H = \hat{\beta} + (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{H}^{\top} (\mathbf{H}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{H}^{\top})^{-1} (\mathbf{c} - \mathbf{H}\hat{\beta})$. And $\hat{\beta}_H$ is the estimator such that minimizes S_{HE} under the constraints. But $S_{HE} \geq S_E$, where the S_E may not satisfy the constraints.

Property 2.1.
$$S_{HE} - S_E = (\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_H)^{\top} \mathbf{X}^{\top} \mathbf{X} (\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_H).$$

Proof.

$$S_{HE} = \left(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{H}\right)^{\top} \left(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{H}\right)$$

$$= \left(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}} + \mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{X}\hat{\boldsymbol{\beta}}_{H}\right)^{\top} \left(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}} + \mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{X}\hat{\boldsymbol{\beta}}_{H}\right)$$

$$= \left(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\right)^{\top} \left(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\right) + \left(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{H}\right)^{\top} \mathbf{X}^{\top} \mathbf{X} \left(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{H}\right) + 2\left(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\right)^{\top} \left(\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{X}\hat{\boldsymbol{\beta}}_{H}\right)$$

$$= S_{E} + \left(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{H}\right)^{\top} \mathbf{X}^{\top} \mathbf{X} \left(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{H}\right) + 2\left(\mathbf{X}^{\top} \mathbf{y} - \mathbf{X}^{\top} \mathbf{X}\hat{\boldsymbol{\beta}}\right)^{\top} \left(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{H}\right)$$

$$= S_{E} + \left(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{H}\right)^{\top} \mathbf{X}^{\top} \mathbf{X} \left(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{H}\right)$$

If the $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$, then we have the four following theorems.

Theorem 2.1.2. $\hat{\boldsymbol{\beta}}_{H} \sim \mathcal{N}\left(\boldsymbol{\beta}, \sigma^{2}\mathbf{G}\right)$, where

$$\mathbf{G} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\left\{\mathbf{I} - \mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\right\}$$

Proof.

$$\mathbb{E}\left(\hat{\boldsymbol{\beta}}_{H}\right) = \mathbb{E}\left(\hat{\boldsymbol{\beta}} + \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\left(\boldsymbol{c} - \mathbf{H}\hat{\boldsymbol{\beta}}\right)\right)$$

$$= \boldsymbol{\beta} + \mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\left(\boldsymbol{c} - \mathbf{H}\boldsymbol{\beta}\right) = \boldsymbol{\beta}.$$

$$\operatorname{For}\left(\hat{\boldsymbol{\beta}}_{L}\right) = \operatorname{Var}\left(\hat{\boldsymbol{\beta}}_{L} + \left(\mathbf{Y}^{\top}\mathbf{Y}\right)^{-1}\mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{Y}^{\top}\mathbf{Y}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\left(\boldsymbol{\beta}_{L} - \mathbf{H}\hat{\boldsymbol{\beta}}\right)\right)$$

$$Var\left(\hat{\beta}_{H}\right) = Var\left(\hat{\beta} + (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\left(\mathbf{c} - \mathbf{H}\hat{\beta}\right)\right)$$

$$= Var\left(\left(\mathbf{I} - (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\mathbf{H}\right)\beta\right)$$

$$= \sigma^{2}\left(\mathbf{I} - (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\mathbf{H}\right)(\mathbf{X}^{\top}\mathbf{X})^{-1}\left(\mathbf{I} - \mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\right)$$

$$= \sigma^{2}((\mathbf{X}^{\top}\mathbf{X})^{-1} + (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}$$

$$= \sigma^{2}((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\right)$$

$$= \sigma^{2}\left((\mathbf{X}^{\top}\mathbf{X})^{-1} - (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\right)$$

$$= \sigma^{2}G.$$

Theorem 2.1.3. $\hat{\lambda} \sim \mathcal{N}\left(\mathbf{0}, \sigma^2 \mathbf{D}\right)$, where $\mathbf{D} = 4\left(\mathbf{H}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{H}^{\top}\right)^{-1}$.

Proof.

$$\mathbb{E}\left(\hat{\boldsymbol{\lambda}}\right) = \mathbb{E}\left(2\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{y} - \boldsymbol{c}\right)\right)$$

$$= 2\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta} - \boldsymbol{c}\right)$$

$$= 2\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\left(\mathbf{H}\boldsymbol{\beta} - \boldsymbol{c}\right) = 0.$$

$$\operatorname{Var}\left(\hat{\boldsymbol{\lambda}}\right) = \operatorname{Var}\left(2\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{y} - \boldsymbol{c}\right)\right)$$

$$= 4\sigma^{2}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}$$

$$= 4\sigma^{2}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}.$$

Theorem 2.1.4. Let $\hat{y}_H = \mathbf{X}\hat{\beta}_H, \hat{e}_H = y - \hat{y}$, then $\hat{e}_H \sim \mathcal{N}\left(\mathbf{0}, \sigma^2\left(\mathbf{I} - \mathbf{X}\mathbf{G}\mathbf{X}^{\top}\right)\right)$.

Proof.

$$\mathbb{E}\left(\hat{\boldsymbol{e}}_{H}\right) = \mathbb{E}\left(\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{H}\right) = \mathbf{X}\boldsymbol{\beta} - \mathbf{X}\boldsymbol{\beta} = 0.$$

$$\operatorname{Var}\left(\hat{\boldsymbol{e}}_{H}\right) = \operatorname{Var}\left(\boldsymbol{y} - \hat{\boldsymbol{y}}_{H}\right) = \operatorname{Var}\left(\boldsymbol{y} - \mathbf{X}\left(\hat{\boldsymbol{\beta}} + \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\left(\boldsymbol{c} - \mathbf{H}\hat{\boldsymbol{\beta}}\right)\right)\right)$$

$$= \operatorname{Var}\left(\boldsymbol{y} - \left(\mathbf{X} + \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\mathbf{H}\right)\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{y}\right)$$

$$= \sigma^{2}\left(\mathbf{I} - \left(\mathbf{X} + \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\mathbf{H}\right)\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\right)$$

$$\left(\mathbf{I} - \left(\mathbf{X} + \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\mathbf{H}\right)\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\right)^{\top}$$

$$= \sigma^{2}\left(\mathbf{I} - \mathbf{X}\mathbf{G}\mathbf{X}^{\top}\right).$$

Theorem 2.1.5. $\mathbb{E}\left(S_{HE} = (n-p-1+q)\sigma^2\right)$, where $S_{HE} = (\boldsymbol{y} - \hat{\boldsymbol{y}}_H)^\top (\boldsymbol{y} - \hat{\boldsymbol{y}}_H)$.

Proof.

$$\mathbb{E}\left(S_{HE}\right) = \sum_{i=1}^{n} \mathbb{E}\left(e_{Hi}^{2}\right) = \sum_{i=1}^{n} \operatorname{Var}\left(e_{Hi}\right) = \operatorname{tr}\left(\mathbf{I} - \mathbf{X}\mathbf{G}\mathbf{X}^{\top}\right)$$

$$= \operatorname{tr}\left(\mathbf{I} - \mathbf{X}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top} + \mathbf{X}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\mathbf{H}\right)$$

$$= n - p - 1 + \operatorname{tr}\left(\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\mathbf{X}^{\top}\mathbf{X}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\right)$$

$$= n - p - 1 + q.$$

Corollary 2.1.5.1. From theorem (2.1.5), an unbiased estimator of σ^2 is $\hat{\sigma^2} = \frac{1}{n-p-1+q} S_{HE}$.

3 Hypothesis Testing and Interval Estimation

3.1 General Hypothesis Testing

Consider the hypothesis testing: $H_0: \mathbf{H}\beta = \mathbf{c}$. We can use content of section 2 to test this hypothesis. That is, we can fit a new linear model under the constraint of H_0 and then calculate its S_{HE} which we know is always no less than S_E . And if the S_{HE} is larger than the S_E too much, we can reject the null hypothesis.

From property (2.1), we have $S_{HE} - S_E = (\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_H)^\top (\mathbf{X}^\top \mathbf{X})^{-1} (\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_H)$, which can be written as

$$S_{HE} - S_{E} = \left(\left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{H} \left(\mathbf{H} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{H}^{\top} \right)^{-1} \left(\mathbf{H} \hat{\boldsymbol{\beta}} - \boldsymbol{c} \right) \right)^{\top} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \left(\left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{H} \left(\mathbf{H} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{H}^{\top} \right)^{-1} \left(\mathbf{H} \hat{\boldsymbol{\beta}} - \boldsymbol{c} \right) \right)$$

$$= \left(\mathbf{H} \hat{\boldsymbol{\beta}} - \boldsymbol{c} \right)^{\top} \left(\mathbf{H} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{H}^{\top} \right)^{-1} \left(\mathbf{H} \hat{\boldsymbol{\beta}} - \boldsymbol{c} \right).$$

$$(3.1)$$

Under the null hypothesis, we have $\mathbf{H}\hat{\boldsymbol{\beta}} - \boldsymbol{c} \sim \mathcal{N}\left(\mathbf{0}, \sigma^2 \mathbf{H} \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{H}^{\top}\right)$. Since $\mathbf{H} \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{H}^{\top}$ is positive definite, thus we further have $\left(\mathbf{H} \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{H}^{\top}\right)^{-1/2} \left(\mathbf{H}\hat{\boldsymbol{\beta}} - \boldsymbol{c}\right) / \sigma \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right)$, which indicates

$$\left(\mathbf{H}\hat{\boldsymbol{\beta}}-\boldsymbol{c}\right)^{\top}\left(\mathbf{H}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{H}^{\top}\right)^{-1}\left(\mathbf{H}\hat{\boldsymbol{\beta}}-\boldsymbol{c}\right)\sim\chi^{2}\left(q\right)$$

Also, we already have $S_E \sim \chi^2 \, (n-p-1)$ and S_E is independent from $\hat{\beta}$, which implies $S_{HE} - S_E$ is independent form S_E , thus we have $F = \frac{S_{HE} - S_E}{S_E} \frac{n-p-1}{q} \sim \mathcal{F} \, (q,n-p-1)$ under the null hypothesis. That is, we can use F to test the null hypothesis.

3.2 Goodness of Fit

We consider the following hypothesis testing in this section:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0,$$

which is a special case of the general hypothesis testing in section 3.1. The null hypothesis can also be

written as
$$\mathbf{H}\boldsymbol{\beta} = \mathbf{0}$$
, where $\mathbf{H} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}_{p \times (p+1)}$.

Under the null hypothesis, we have all coefficients equal to 0 except the intercept β_0 , which is the mean of $\{y_i\}$ in this case. Thus, the S_{HE} is simply equal to $S_T = \sum_{i=1}^n (y_i - \bar{y})^2$, which is $(n_1) S^2$ where S^2 is the sample variation.

Recall the equation $S_T = S_E + S_R$, then we can construct the F statistic, which is $\frac{S_R}{S_E} \frac{p}{n-p-1} = \frac{\sum_{i=1}^n (\hat{y}_i - \bar{y}_i)^2}{\sum_{i=1}^n (y_i - haty_i)^2} \frac{p}{n-p-1}$, to test the null hypothesis. Under the null hypothesis, $F \sim \mathcal{F}(p, n-p-1)$. Thus, if $F > \mathcal{F}_{1-\alpha}(p, n-p-1)$, then we can reject the null hypothesis.

3.3 Testing the Individual Coefficient

We now consider the individual testing: $H_{0j}: \beta_j = 0$. We can also use the general hypothesis to test this one. Let $\mathbf{H} = \mathbf{e}_{j+1}^{\mathsf{T}}$, where \mathbf{e}_{j+1} is vector with 1 in its j+1th entry and all other entries equal to 0. Then, we use $F = \frac{S_{HE} - S_E}{S_E} \frac{1}{n-p-1}$, which follows $\mathcal{F}(1, n-p-1)$ under the null hypothesis, to test the null

hypothesis. In this case, the $S_{HE} - S_E$ is called partial correlation of x_j . We can show that

$$S_{HE} - S_E = \left(\mathbf{H}\hat{\boldsymbol{\beta}} - \boldsymbol{c}\right)^{\top} \left(\mathbf{H} \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{H}^{\top}\right)^{-1} \left(\mathbf{H}\hat{\boldsymbol{\beta}} - \boldsymbol{c}\right)$$
$$= \beta_j^2 / c_{jj}, \tag{3.2}$$

where c_{jj} is the jth entry in the diagonal of $(\mathbf{X}^{\top}\mathbf{X})^{-1}$.

What's more, we can use the t test to do the work. We already have $\hat{\boldsymbol{\beta}} \sim \mathcal{N}\left(\boldsymbol{\beta}, \sigma^2\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\right)$. Use the property of multivariate normal distribution, we have $\hat{\beta}_j \sim \mathcal{N}\left(\beta_j, \sigma^2 c_{jj}\right)$, which implies $\frac{\hat{\beta}_j - \beta_j}{\sigma\sqrt{c_{jj}}} \sim \mathcal{N}\left(0, 1\right)$. Let $t_j = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{c_{jj}}}$, which follows $t\left(n-p-1\right)$ under the null hypothesis(recall that $\hat{\sigma}^2 = \frac{S_E}{n-p-1}$). Then, if $|t_j| > t_{1-\alpha/2}\left(n-p-1\right)$, we can reject the null hypothesis.

3.4 Forecast and Interval Estimation

Consider the case where we have a *new* sample with x_0^{\top} and we want to forecast the y_0 with our fitted model. Denote the fitted value as \hat{y}_0 . We have the following property:

Property 3.1. \hat{y}_0 is an unbiased estimator of y_0 .

$$Proof. \ \mathbb{E}\left(\hat{y}_{0}\right) = \mathbb{E}\left(\boldsymbol{x}_{0}^{\top}\hat{\boldsymbol{\beta}}\right) = \mathbb{E}\left(\boldsymbol{x}_{0}^{\top}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{y}\right) = \boldsymbol{x}_{0}^{\top}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta} = \boldsymbol{x}_{0}^{\top}\boldsymbol{\beta} = y_{0}.$$

Property 3.2. Among all the unbiased linear by y estimators of y_0 , \hat{y}_0 has the least variance.

Proof. Let $c^{\top}y$ be an unbiased estimator of y_0 . Then, we have $\mathbb{E}(c^{\top}y) = c^{\top}X\beta = x_0^{\top}\beta$, which implies that $c^{\top}X = x_0^{\top}$. We have

$$\operatorname{Var}(\boldsymbol{c}^{\top}\boldsymbol{y}) - \operatorname{Var}(\hat{y}_{0}) = \sigma^{2}\boldsymbol{c}^{\top}\boldsymbol{c} - \operatorname{Var}\left(\boldsymbol{x}_{0}^{\top}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{y}\right)$$

$$= \sigma^{2}\left(\boldsymbol{c}^{\top}\boldsymbol{c} - \boldsymbol{x}_{0}^{\top}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\boldsymbol{x}_{0}\right)$$

$$= \sigma^{2}\left(\boldsymbol{c}^{\top}\left(\mathbf{X}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\right)\boldsymbol{c}\right)$$

$$= \sigma^{2}\boldsymbol{c}^{\top}\left(\mathbf{I} - \mathbf{X}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\right)\boldsymbol{c}$$

$$= \sigma^{2}\boldsymbol{c}^{\top}\left(\mathbf{I} - \mathbf{H}\right)\boldsymbol{c}$$

$$\geq 0$$

since $\mathbf{I} - \mathbf{H}$ is positive semidefinite.

Property 3.3. Under the assumption of normality, we have

$$\hat{y}_0 - y_0 \sim \mathcal{N}\left(0, \sigma^2 \left(1 + \boldsymbol{x}_0^\top \left(\mathbf{X}^\top \mathbf{X}\right)^{-1} \boldsymbol{x}_0\right)\right).$$

Proof. We have $y_0 \sim \mathcal{N}\left(\boldsymbol{x}_0\boldsymbol{\beta}, \sigma^2\right)$ and $\hat{y}_0 \sim \mathcal{N}\left(\boldsymbol{x}_0\boldsymbol{\beta}, \sigma^2\boldsymbol{x}_0^\top \left(\mathbf{X}^\top \mathbf{X}\right)^{-1}\boldsymbol{x}_0\right)$, thus

$$\hat{y}_0 - y_0 \sim \mathcal{N}\left(0, \sigma^2 \left(1 + \boldsymbol{x}_0^{\top} \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \boldsymbol{x}_0\right)\right).$$

Property 3.4. $\frac{\hat{y}_0 - y_0}{\hat{\sigma}\sqrt{1 + x_0^{\top}(\mathbf{X}^{\top}\mathbf{X})^{-1}x_0}} \sim t(n - p - 1)$.

Property 3.5. The $1 - \alpha$ forecast interval of y_0 is

$$\hat{y}_0 - t_{1-\alpha/2} (n-p-1) \hat{\sigma} \sqrt{1 + \boldsymbol{x}_0^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \boldsymbol{x}_0}, \hat{y}_0 + t_{1-\alpha/2} (n-p-1) \hat{\sigma} \sqrt{1 + \boldsymbol{x}_0^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \boldsymbol{x}_0},$$

.

Model Selection 4

Some Criteria

- adjusted $R^2 = 1 \frac{n-1}{n-n'} (1 R^2)$
- AIC = $-2 \ln L + 2p'$, under the normal linear model, we have

$$-2\ln L = n\ln S_E$$

- **BIC** = $-2 \ln L + p' \ln n$
- RES = $\frac{S_E}{n-n'}$
- $C_p = \frac{S_e}{\hat{\sigma}^2} (n 2p')$, where $\hat{\sigma}^2$ is estimated under the full model.

Ridge Regression 5

The design matrix **X** in this section is centered, which means it has no intercept term.

5.1Multicollinearity

Let λ be a eigenvalue of $\mathbf{X}^{\top}\mathbf{X}$ and $\boldsymbol{\phi}$ be its scaled eigenvector with length equal to 1. We have $\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\phi} = \lambda \boldsymbol{\phi}$. Multiply $\boldsymbol{\phi}^{\top}$ to the both sides, $\boldsymbol{\phi}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\phi} = (\mathbf{X}\boldsymbol{\phi})^{\top}(\mathbf{X}\boldsymbol{\phi}) = \|\mathbf{X}\boldsymbol{\phi}\|_{2}^{2} = \boldsymbol{\phi}^{\top}\lambda\boldsymbol{\phi} = \lambda\|\underline{\boldsymbol{\phi}}\|_{2}^{2}$. If λ is close to 0, then we have $\mathbf{X}\phi = \phi_1 \mathbf{x}_1 + \dots + \phi_{p'} \mathbf{x}_{p'} \approx 0$. That is, if there is an eigenvalue of $\mathbf{X}^{\top} \mathbf{X}$ close to 0, then $\mathbf{X}^{\top}\mathbf{X}$ may have *multicollinearity* which may result the variance of the OLS estimators very large.

We introduce a criteria called MSE (mean squared error) here.

$$MSE = \mathbb{E} \left\| \hat{\boldsymbol{\theta}} - \boldsymbol{\theta} \right\|^{2} = \mathbb{E} \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta} \right)^{\top} \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta} \right) = \mathbb{E} \left(\hat{\boldsymbol{\theta}}^{\top} \hat{\boldsymbol{\theta}} - 2 \hat{\boldsymbol{\theta}}^{\top} \boldsymbol{\theta} + \boldsymbol{\theta}^{\top} \boldsymbol{\theta} \right)$$

$$= \mathbb{E} \left(\hat{\boldsymbol{\theta}}^{\top} \hat{\boldsymbol{\theta}} - 2 \hat{\boldsymbol{\theta}}^{\top} \boldsymbol{\theta} + \boldsymbol{\theta}^{\top} \boldsymbol{\theta} \right) + \mathbb{E} \left(\hat{\boldsymbol{\theta}} \right)^{\top} \mathbb{E} \left(\hat{\boldsymbol{\theta}} \right) - \mathbb{E} \left(\hat{\boldsymbol{\theta}} \right)^{\top} \mathbb{E} \left(\hat{\boldsymbol{\theta}} \right)$$

$$= \mathbb{E} \left(\hat{\boldsymbol{\theta}}^{\top} \hat{\boldsymbol{\theta}} \right) - \mathbb{E} \left(\hat{\boldsymbol{\theta}} \right)^{\top} \mathbb{E} \left(\hat{\boldsymbol{\theta}} \right) + \mathbb{E} \left(\hat{\boldsymbol{\theta}} \right)^{\top} \mathbb{E} \left(\hat{\boldsymbol{\theta}} \right) - 2 \mathbb{E} \left(\hat{\boldsymbol{\theta}}^{\top} \right) \boldsymbol{\theta} + \boldsymbol{\theta}^{\top} \boldsymbol{\theta}$$

$$= \operatorname{tr} \left(\operatorname{Cov} \left(\hat{\boldsymbol{\theta}} \right) \right) + \left(\mathbb{E} \hat{\boldsymbol{\theta}} - \boldsymbol{\theta} \right)^{\top} \left(\mathbb{E} \hat{\boldsymbol{\theta}} - \boldsymbol{\theta} \right)^{\top}$$

$$= \operatorname{tr} \left(\operatorname{Cov} \left(\hat{\boldsymbol{\theta}} \right) \right) + \left\| \mathbb{E} \hat{\boldsymbol{\theta}} - \boldsymbol{\theta} \right\|^{2}.$$
(5.1)

Then, we can derive the MSE of $\hat{\beta}$:

$$MSE\left(\hat{\boldsymbol{\beta}}\right) = tr\left(\sigma^{2}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\right) + \left\|\mathbb{E}\,\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right\|^{2} = \sigma^{2}tr\left(\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\right). \tag{5.2}$$

We have already known that $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is positive definite. Thus there exits unitary matrix \mathbf{P} and diagonal matrix

We have already known that
$$\mathbf{X}^{\top}\mathbf{X}$$
 is positive definite. Thus there exits unitary matrix \mathbf{P} and diagonal matrix $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_p)$ such that $\mathbf{X}^{\top}\mathbf{X} = \mathbf{P}\mathbf{\Lambda}\mathbf{P}$ which implies that $(\mathbf{X}^{\top}\mathbf{X})^{-1} = \mathbf{P}\begin{bmatrix} \frac{1}{\lambda_1} & & \\ & \frac{1}{\lambda_2} & & \\ & & \ddots & \frac{1}{\lambda_p} \end{bmatrix} \mathbf{P}^{\top}$.

Thus, $\text{MSE}\left(\hat{\beta}\right) = \sigma^2 \sum_{i=1}^p \frac{1}{\lambda_i}$. If there exists multicollinearity, then one of the λ_i would be close to zero, leading to the MSE of $\hat{\beta}$ expanding to large values and unstable estimator of β . To deal with this problem, Ridge regression is proposed.

5.2 Ridge Regression

Let k be any non-negative scalar. The OLS is modified as the following:

$$\hat{\boldsymbol{\beta}}(k) = (\mathbf{X}^{\top} \mathbf{X} + k\mathbf{I})^{-1} \mathbf{X}^{\top} \boldsymbol{y}. \tag{5.3}$$

The $k\mathbf{I}$ may decrease the variance of the estimator.

Property 5.1. $\hat{\boldsymbol{\beta}}(k)$ is a biased estimator of $\boldsymbol{\beta}$.

Property 5.2. $\hat{\boldsymbol{\beta}}(k)$ is a linear transformation of the OLS estimator.

$$Proof. \ \hat{\boldsymbol{\beta}}\left(k\right) = \left(\mathbf{X}^{\top}\mathbf{X} + k\mathbf{I}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{y} = \left(\mathbf{X}^{\top}\mathbf{X} + k\mathbf{I}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\boldsymbol{y} = \left(\mathbf{X}^{\top}\mathbf{X} + k\mathbf{I}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}}. \qquad \Box$$

Property 5.3. For all k > 0, $\|\hat{\boldsymbol{\beta}}\| \neq 0$, we always have

$$\|\hat{\boldsymbol{\beta}}(k)\| \leq \|\hat{\boldsymbol{\beta}}\|.$$

Proof. First, we denote $\Lambda(k) = \Lambda + k\mathbf{I} = \operatorname{diag}(\lambda_1 + k, \dots, \lambda_p + k)$.

$$\begin{split} \left\|\hat{\boldsymbol{\beta}}(k)\right\|^{2} &= \left(\left(\mathbf{X}^{\top}\mathbf{X} + k\mathbf{I}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}}\right)^{\top} \left(\left(\mathbf{X}^{\top}\mathbf{X} + k\mathbf{I}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}}\right) \\ &= \left(\left(\mathbf{P}\boldsymbol{\Lambda}\mathbf{P}^{\top} + k\mathbf{I}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}}\right)^{\top} \left(\left(\mathbf{P}\boldsymbol{\Lambda}\mathbf{P}^{\top} + k\mathbf{I}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}}\right) \\ &= \left(\left(\mathbf{P}\boldsymbol{\Lambda}(k)\mathbf{P}^{\top}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}}\right)^{\top} \left(\left(\mathbf{P}\boldsymbol{\Lambda}(k)\mathbf{P}^{\top}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}}\right) \\ &= \left(\mathbf{P}\boldsymbol{\Lambda}^{-1}(k)\mathbf{P}^{\top}\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}}\right)^{\top} \left(\mathbf{P}\boldsymbol{\Lambda}^{-1}(k)\mathbf{P}^{\top}\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}}\right) \\ &= \left(\mathbf{P}\boldsymbol{\Lambda}^{-1}(k)\mathbf{P}^{\top}\mathbf{P}\boldsymbol{\Lambda}\mathbf{P}^{\top}\hat{\boldsymbol{\beta}}\right)^{\top} \left(\mathbf{P}\boldsymbol{\Lambda}^{-1}(k)\mathbf{P}^{\top}\mathbf{P}\boldsymbol{\Lambda}\mathbf{P}^{\top}\hat{\boldsymbol{\beta}}\right) \\ &= \left(\mathbf{P}\boldsymbol{\Lambda}^{-1}(k)\boldsymbol{\Lambda}\mathbf{P}^{\top}\hat{\boldsymbol{\beta}}\right)^{\top} \left(\mathbf{P}\boldsymbol{\Lambda}^{-1}(k)\boldsymbol{\Lambda}\mathbf{P}^{\top}\hat{\boldsymbol{\beta}}\right) \\ &= \hat{\boldsymbol{\beta}}^{\top}\mathbf{P}\boldsymbol{\Lambda}^{2}\boldsymbol{\Lambda}^{-2}(k)\mathbf{P}^{\top}\hat{\boldsymbol{\beta}} \\ &= \left(\boldsymbol{\Lambda}\boldsymbol{\Lambda}^{-1}(k)\hat{\boldsymbol{\beta}}\right)^{\top}\mathbf{P}\mathbf{P}^{\top} \left(\boldsymbol{\Lambda}\boldsymbol{\Lambda}^{-1}(k)\hat{\boldsymbol{\beta}}\right) \\ &= \left\|\begin{bmatrix}\frac{\lambda_{1}}{\lambda_{1}+k} & \frac{\lambda_{2}}{\lambda_{2}+k} & \\ & \ddots & \frac{\lambda_{p}}{\lambda_{p}+k}\end{bmatrix}\hat{\boldsymbol{\beta}}\right\|^{2} \leq \left\|\hat{\boldsymbol{\beta}}\right\|^{2}. \end{split}$$

Property 5.4. There must exist a k > 0 such that $MSE(\hat{\beta}(k)) \leq MSE(\hat{\beta})$.

Proof. First, we transform the ordinary form of linear model

$$y = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

to $y = \mathbf{X} \mathbf{P} \mathbf{P}^{\top} \boldsymbol{\beta} + \boldsymbol{\epsilon} = \mathbf{Z} \boldsymbol{\alpha} + \boldsymbol{\epsilon}$, where $\mathbf{Z} = \mathbf{X} \mathbf{P}, \boldsymbol{\alpha} = \mathbf{P}^{\top} \boldsymbol{\beta}$. Then, we have $\mathbf{Z}^{\top} \mathbf{Z} = \boldsymbol{\Lambda}$.

The OLS estimator of $\boldsymbol{\alpha}$ is $\hat{\boldsymbol{\alpha}} = (\mathbf{Z}^{\top}\mathbf{Z})^{-1}\mathbf{Z}^{\top}\boldsymbol{y} = \boldsymbol{\Lambda}^{-1}\mathbf{Z}^{\top}\boldsymbol{y}$. And the ridge estimator of $\boldsymbol{\alpha}$ is $\hat{\boldsymbol{\alpha}}(k) = (\mathbf{Z}^{\top}\mathbf{Z} + k\mathbf{I})^{-1}\mathbf{Z}^{\top}\boldsymbol{y} = \boldsymbol{\Lambda}^{-1}(k)\mathbf{Z}^{\top}\boldsymbol{y}$. Also, we have

$$\begin{split} \left\| \hat{\boldsymbol{\beta}} \left(k \right) - \boldsymbol{\beta} \right\|^2 &= \left(\hat{\boldsymbol{\beta}} \left(k \right) - \boldsymbol{\beta} \right)^{\top} \left(\hat{\boldsymbol{\beta}} \left(k \right) - \boldsymbol{\beta} \right) \\ &= \left(\mathbf{P} \hat{\boldsymbol{\alpha}} \left(k \right) - \mathbf{P} \boldsymbol{\alpha} \right)^{\top} \left(\mathbf{P} \hat{\boldsymbol{\alpha}} \left(k \right) - \mathbf{P} \boldsymbol{\alpha} \right) \\ &= \left(\hat{\boldsymbol{\alpha}} \left(k \right) - \boldsymbol{\alpha} \right)^{\top} \left(\hat{\boldsymbol{\alpha}} \left(k \right) - \boldsymbol{\alpha} \right) \\ &= \left\| \hat{\boldsymbol{\alpha}} \left(k \right) - \boldsymbol{\alpha} \right\|^2. \end{split}$$

Specially, when k = 0, we have $\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\| = \|\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}\|$. Then, we have

$$MSE(\hat{\boldsymbol{\alpha}}(k)) = tr(Cov(\hat{\boldsymbol{\alpha}}(k))) + ||E(\hat{\boldsymbol{\alpha}}(k) - \boldsymbol{\alpha})||^{2}$$

$$= \sigma^{2}tr(\boldsymbol{\Lambda}^{-2}(k)\boldsymbol{\Lambda}) + (\boldsymbol{\Lambda}^{-1}(k)\boldsymbol{\Lambda}\boldsymbol{\alpha} - \boldsymbol{\alpha})^{\top}(\boldsymbol{\Lambda}^{-1}(k)\boldsymbol{\Lambda}\boldsymbol{\alpha} - \boldsymbol{\alpha})$$

$$= \sigma^{2}\sum_{i=1}^{p} \frac{\lambda_{i}}{(\lambda_{i} + k)^{2}} + \boldsymbol{\alpha}^{\top}(\boldsymbol{\Lambda}^{-1}(k)\boldsymbol{\Lambda} - \mathbf{I})^{\top}(\boldsymbol{\Lambda}^{-1}(k)\boldsymbol{\Lambda} - \mathbf{I})\boldsymbol{\alpha}$$

$$= \sigma^{2}\sum_{i=1}^{p} \frac{\lambda_{i}}{(\lambda_{i} + k)^{2}} + \boldsymbol{\alpha}^{\top}(\boldsymbol{\Lambda}^{-2}(k)\boldsymbol{\Lambda}^{2} - 2\boldsymbol{\Lambda}^{-1}(k)\boldsymbol{\Lambda} + \mathbf{I})\boldsymbol{\alpha}$$

$$= \sigma^{2}\sum_{i=1}^{p} \frac{\lambda_{i}}{(\lambda_{i} + k)^{2}} + \sum_{i=1}^{p} \alpha_{i}^{2}\left(\frac{\lambda_{i}^{2}}{(\lambda_{i} + k)^{2}} - 2\frac{\lambda_{i}}{\lambda_{i} + k} + 1\right)$$

$$= \sigma^{2}\sum_{i=1}^{p} \frac{\lambda_{i}}{(\lambda_{i} + k)^{2}} + \sum_{i=1}^{p} \alpha_{i}^{2}\left(\frac{\lambda_{i}^{2} - 2\lambda_{i}^{2} - 2k\lambda_{i} + \lambda_{i}^{2} + 2k\lambda_{i} + k^{2}}{(\lambda_{i} + k)^{2}}\right)$$

$$= \sigma^{2}\sum_{i=1}^{p} \frac{\lambda_{i}}{(\lambda_{i} + k)^{2}} + k^{2}\sum_{i=1}^{p}\left(\frac{\alpha_{i}}{\lambda_{i} + k}\right)^{2}.$$

Let $g_1(k) := \sigma^2 \sum_{i=1}^p \frac{\lambda_i}{(\lambda_i + k)^2}$, $g_2(k) = k^2 \sum_{i=1}^p \left(\frac{\alpha_i}{\lambda_i + k}\right)^2 = \sum_{i=1}^p \frac{\alpha_i^2 k^2}{(\lambda_i + k)^2}$, then $g(k) = \text{MSE}\left(\hat{\boldsymbol{\beta}}\left(k\right)\right) = \text{MSE}\left(\hat{\boldsymbol{\alpha}}\left(k\right)\right) = g_1(k) + g_2(k)$. And we have

$$\begin{split} g'\left(k\right) &= g_{1}'\left(k\right) + g_{2}'\left(k\right) \\ &= -2\sigma^{2}\sum_{i=1}^{p}\frac{\lambda_{i}}{\left(\lambda_{i} + k\right)^{3}} + \sum_{i=1}^{p}\frac{2\alpha_{i}^{2}k - 2\alpha_{i}^{2}k^{2}\left(\lambda_{i} + k\right)}{\left(\lambda_{i} + k\right)^{4}} \\ &= -2\sigma^{2}\sum_{i=1}^{p}\frac{\lambda_{i}}{\left(\lambda_{i} + k\right)^{3}} + \sum_{i=1}^{p}\frac{2\alpha_{i}^{2}k - 2\alpha_{i}^{2}k^{2}\lambda_{i} - 2\alpha_{i}^{2}k^{3}}{\left(\lambda_{i} + k\right)^{4}}, \end{split}$$

and when k = 0, we have $g'(0) = -2\sigma^2 \sum_{i=1}^p \frac{1}{\lambda_i^2} < 0$, thus in a neighbourhood of 0, there exists k > 0 such that $\text{MSE}\left(\hat{\boldsymbol{\beta}}\left(k\right)\right) \leq \text{MSE}\left(\hat{\boldsymbol{\beta}}\right)$.