Lenguaje matemático, conjuntos y números

Prueba Objetiva Calificable

Ejercicio 1

Sean A y B subconjuntos arbitrarios de un conjunto no vacío U. Consideramos las igualdades:

p;
$$\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$$
.

q;
$$\mathfrak{P}(A \cap B) = \mathfrak{P}(A) \cap \mathfrak{P}(B)$$
.

r;
$$\mathcal{P}(A \setminus B) = \mathcal{P}(A) \setminus \mathcal{P}(B)$$
.

Las igualdades que siempre son verdaderas son:

- a) pyq.
- b) qyr.
- c) Ninguna de las otras dos opciones.

Ejercicio 2

Sea $U = \mathbb{N}$ el universo de las variables x e y.

Consideramos las proposiciones:

p;
$$\forall x \,\exists y \text{ tal que } x = 2y \,\vee\, x = 2y + 1.$$

q;
$$\exists x \, \forall y \text{ tal que } x = 2y \, \lor \, x = 2y + 1.$$

s;
$$\exists x \, \forall y \text{ tal que } x < y < x + 2.$$

r;
$$\forall x \, \exists y \, \text{tal que } x < y < x + 2.$$

Se tiene:

- a) p, q y s son falsas.
- b) s y r son verdaderas.
- c) p es verdadera y s es falsa.

Ejercicio 3

Sean E un conjunto no vacío y $\mathbb S$ una relación en E reflexiva y transitiva que no es ni simétrica ni antisimétrica. Se define la relación $\mathcal R$ en E mediante:

$$x \mathcal{R} y$$
 si y sólo si $(x \mathcal{S} y) \wedge (y \mathcal{S} x)$

Sobre la relación \mathcal{R} se puede asegurar:

- a) No es simétrica ni antisimétrica.
- b) Es una relación de equivalencia.
- c) Es una relación de orden.

Ejercicio 4

Sean $a, b \in \mathbb{N}^*$ primos entre sí y sean u = 2a + 5b

y v = 5a + 13b. El valor de mcd(u, v) es:

- a) 1.
- b) 5.
- c) Ninguna de las otras dos opciones.

Ejercicio 5

Sea $f: \mathbb{Z} \to \mathbb{Z}$ la aplicación definida por $f(x) = \left| 2x + \frac{1}{2} \right| - \frac{1}{2}$. Se tiene:

- a) f es sobreyectiva.
- b) f no es inyectiva.
- c) $f(\mathbb{Z}) = \mathbb{N}$.

Ejercicio 1

p no es verdadera. Por ejemplo si $A = \{1, 2, 3\}$ y $B = \{3, 4\}$ y tomamos $X = \{1, 4\}$ se tiene que $X \in \mathcal{P}(A \cup B)$ y sin embargo $X \notin \mathcal{P}(A) \cup \mathcal{P}(B)$ pues $X \notin \mathcal{P}(A)$ y $X \notin \mathcal{P}(B)$. q es verdadera. En efecto,

$$X \in \mathcal{P}(A) \cap \mathcal{P}(B) \iff (X \in \mathcal{P}(A)) \wedge (X \in \mathcal{P}(B)) \iff (X \subset A) \wedge (X \subset B)$$
$$\iff X \subset A \cap B \iff X \in \mathcal{P}(A \cap (B))$$

r es falsa. Por ejemplo si $A = \{1, 2, 3\}$ y $B = \{3, 4\}$ y tomamos $X = \{1, 3\}$ se tiene que $A \setminus B = \{1, 2\}$ y por tanto $X \notin \mathcal{P}(A \setminus B)$ sin embargo $X \in \mathcal{P}(A) \setminus \mathcal{P}(B)$ pues $\mathcal{P}(A) \setminus \mathcal{P}(B) = \{\{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Ejercicio 2

La proposición p es verdadera pues $\forall x \in \mathbb{N}$, x es un número par o x es un número impar. En el primer caso existe $y \in \mathbb{N}$ tal que x = 2y, mientras que en el segundo caso existe $y \in \mathbb{N}$ tal que x = 2y + 1.

La proposición q es falsa pues no existe ningún número $x \in \mathbb{N}$ tal que para todo $y \in \mathbb{N}$ se tenga una de las dos igualdades x = 2y o x = 2y + 1. No hay un x válido para todos los posibles $y \in \mathbb{N}$.

La proposición r es verdadera pues si x es cualquier número natural, existe $y \in \mathbb{N}$, basta tomar y = x + 1, tal que x < y < x + 2.

La proposición s es falsa pues no existe ningún número $x \in \mathbb{N}$ tal que para todo $y \in \mathbb{N}$ se tengan las desigualdades tal que x < y < x + 2. Como en el caso de q, no hay un x válido para todos los posibles $y \in \mathbb{N}$. La opción correcta es la c).

Ejercicio 3

La relación \mathcal{R} es una relación de equivalencia en E.

Reflexiva: Para todo $a \in E$ a $\Re a$ pues a $\Im a$ al ser \Im una relación reflexiva.

Sim'etrica: Para todo $a,b\in E$, si $a\Re b$ entonces a& b y b& a y en consecuencia $b\Re a$.

Transitiva: Para todo $a, b, c \in E$, si $a\Re b$ y $b\Re c$ entonces a & b, b& a, b& c y c& b y teniendo en cuenta que & c es transitiva, se deduce que a& c y c& a. Por tanto, $a\Re c$.

Falta comprobar que la relación \mathcal{R} no es antisimétrica. En efecto, como \mathcal{S} no lo es, existen $a,b\in E,\,a\neq b$, tales que $a\mathcal{S}b$ y $b\mathcal{S}a$. Por tanto, $a\mathcal{R}b$ y $b\mathcal{R}a$ y $b\neq a$.

Ejercicio 4

Sea $d \in \mathbb{N}^*$ un divisor común de u y v. Entonces existen u' y $v' \in \mathbb{N}^*$ tales que $\begin{cases} u &= du' \\ v &= dv' \end{cases}$. Sustituyendo se obtiene

 $\begin{cases} 2a+5b &= du' \\ 5a+13b &= dv' \end{cases}$. Si multiplicamos la primera igualdad por 5 y restamos la segunda igualdad multiplicada por

2 se obtiene -b = d(5u' - 2v') y en consecuencia d es un divisor de b. Análogamente si multiplicamos la primera igualdad por 13 y restamos la segunda igualdad multiplicada por 5 se obtiene a = d(13u' - 5v') y en consecuencia d es también divisor de a. Como a y b son primos entre sí, resulta que mcd(u, v) = 1.

Ejercicio 5

La aplicación f no es sobreyectiva. En efecto, teniendo en cuenta que el valor absoluto es siempre un número mayor o igual que cero resulta $\left|2x+\frac{1}{2}\right|\geq 0$ y por tanto $f(x)=\left|2x+\frac{1}{2}\right|-\frac{1}{2}\geq -\frac{1}{2}$. En consecuencia f no toma valores enteros negativos.

La aplicación f es inyectiva. En efecto sean x y $x' \in \mathbb{Z}$ tales que f(x) = f(x'), sustituyendo se obtiene

$$\left|2x + \frac{1}{2}\right| - \frac{1}{2} = \left|2x' + \frac{1}{2}\right| - \frac{1}{2}$$

es decir, $2x + \frac{1}{2} = 2x' + \frac{1}{2}$ o $2x + \frac{1}{2} = -(2x' + \frac{1}{2})$. De la primera ecuación se obtiene x = x' mientras que de la segunda se debe cumplir 2(x + x') = -1, que no tiene solución en \mathbb{Z} pues 2(x + x') es un número par. Por tanto se cumple que x = x'.

 $f(\mathbb{Z})=\mathbb{N}$. En efecto, $2x+\frac{1}{2}\geq 0$ si y sólo si $x\geq -\frac{1}{4}$ y teniendo en cuenta que $x\in\mathbb{Z}$ resulta que $2x+\frac{1}{2}\geq 0$ si y sólo si $x\in\mathbb{N}$. En consecuencia

$$f(x) = \begin{cases} 2x + \frac{1}{2} - \frac{1}{2} = 2x & \text{si } x \in \mathbb{N} \\ -2x - \frac{1}{2} - \frac{1}{2} = -2x - 1 & \text{si } x \in \mathbb{Z} \setminus \mathbb{N} \end{cases}$$

Sea $y \in \mathbb{N}$.

Si y es par, existe $x \in \mathbb{N}$ tal que y = 2x y en consecuencia f(x) = y.

Si y es impar existe $n \in \mathbb{N}$ tal que y = 2n + 1 = -2(-n - 1) - 1 y por tanto y = f(-n - 1). Por tanto, $\mathbb{N} \subset f(\mathbb{Z})$.

Por un lado 2x y $-2x-1 \in \mathbb{Z}$ si $x \in \mathbb{Z}$ y por otro lado, vimos que f no toma valores enteros negativos, por tanto $f(\mathbb{Z}) \subset \mathbb{N}$.