# Estimación de la calidad de imágenes médicas 3D por medio de aprendizaje automático

Titulacion:

Grado en Ingeniería Informática

**Autor:** 

Brian Sena Simons.

**Directores:** 

Dr. Pablo Mesejo Santiago.

Dr. Enrique Bermejo Nievas.



# Índice

- Introducción
  - Contexto
  - Motivación
  - Objetivos
- Estado del arte
  - Búsquedas Scopus
  - Estado del arte IQA: métricas
  - Estado del arte PCQA: métodos
  - Estado del arte en imágenes médicas

- Materiales y métodos
  - Materiales: datos generalistas
  - Materiales: datos sintéticos
  - Métodos
  - Entorno
- Experimentación
  - Modelo NR3DQA
  - Modelo VQA-PC
  - Conclusiones y trabajos futuros



#### **Contexto**

- La información visual es cada vez más importante.
  - Tanto para el entretenimiento como para el ámbito biomédico.
- Tarea de medir y cuantificar la calidad perceptual humana de una imagen (IQA).
  - Factores importantes: contenido, contraste, distorsiones y la percepción humana



Imágenes distorsionadas equidistantes<sup>1</sup>

Brian Sena Simons UGR 7 de septiembre de 2023 2 / 28

<sup>&</sup>lt;sup>1</sup>Kalpana Seshadrinathan, Thrasyvoulos Pappas, Robert Safranek, Junqing Chen, Zhou Wang, Hamid Sheikh y Alan Bovik. «Image Quality Assessment». En: The Essential Guide to Image Processing (2009), págs. 553-595.

# **Subproblemas**

Figuras (a) y (b): problemas con referencia (FR) y sin referencia (NR).





(b) es el subproblema más difícil.

Estado del arte

- Debemos disponer de conocimientos generales sobre:
  - Naturaleza de las imágenes.
  - Efecto de las distorsiones.



# **Aplicaciones**

- **Comparativa** entre algoritmos de compresión.
- Recuperación de la información.
- Evaluar errores de transmisión.



Eliminación de refleios en imágenes<sup>2</sup> con medida de calidad BRISQUE<sup>3</sup> (menor es meior).

<sup>&</sup>lt;sup>3</sup> Anish Mittal, Anush Krishna Moorthy v Alan Conrad Boyik, «No-reference image quality assessment in the spatial domain». En: IEEE Transactions on Image Processing (TIP) 21.12 (2012), págs. 4695-4708



<sup>&</sup>lt;sup>2</sup> Maimoona Rafiq, Usama Bajwa, Ghulam Gilanie y Waqas Anwar. «Reconstruction of scene using corneal reflection». En: Multimedia Tools and Applications 80

#### Motivación

- Cada vez más frecuentemente se emplean volúmenes tridimensionales.
- Las contribuciones relativas al IQA en la medicina resulta en:
  - Reducción de costes.
  - Reducción de tiempo de consulta.
  - Mejora de calidad del diagnóstico.
- La naturaleza de las imagenes médicas reduce la precisión de modelos IQA estándares.



Ejemplo de visualización 3D (Slicer<sup>4</sup>).



Brian Sena Simons UGR 7 de septiembre de 2023 5 / 28

<sup>&</sup>lt;sup>4</sup>Andriy Fedorov et al. «3D Slicer as an image computing platform for the Quantitative Imaging Network». En: Magnetic Resonance Imaging 30.9 (2012), págs. 1323-1341.

#### Motivación

As veces no tenemos acceso a las imágenes médicas 2D.

Estado del arte

- Las distorsiones sobre dichas imágenes afectan al volumen 3D generado.
- Dichas reconstrucciones suelen ser en forma de nubes de puntos.
- El número de métodos propuestos para 3D decrece sustancialmente.



Ejemplo de distorsiones médicas<sup>5</sup>.

<sup>&</sup>lt;sup>5</sup>Igor Stepien v Mariusz Oszust. «A Brief Survey on No-Reference Image Quality Assessment Methods for Magnetic Resonance Images». En: Journal of Imaging



6/28

**Brian Sena Simons** 7 de septiembre de 2023

# **Objetivos**

- Estudio exhaustivo del estado del arte.
- Generación de datos sintéticos.
- Validar métodos más prometedores.





# **Tendencia Scopus**



Aprendizaje automático en medicina (azul) y nubes de puntos (naranja). **Ambos superan los 6000 documentos**.



Estimación de calidad en imágenes médicas (azul), nubes de puntos (naranja) y en imágenes médicas 3D (verde). Esta última, tan solo llega a **60 publicaciones** 



8 / 28

Brian Sena Simons UGR 7 de s

- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
  - Cuantificación de la señal.
  - 2 La sensibilidad al contraste.
  - Hipótesis de percepción a través de: brillo, contraste y estructuras.
  - La saliencia visual.
  - Empleo de modelos DL.

| Métrica | LIVE  |       |        |  |
|---------|-------|-------|--------|--|
| Metrica | SRCC  | PLCC  | RMSE   |  |
| PSNRHVS | 0.919 | 0.903 | 12.540 |  |
| UQI     | 0.894 | 0.899 | 11.982 |  |
| SSIM    | 0.948 | 0.845 | 8.946  |  |
| VSI     | 0.952 | 0.948 | 8.682  |  |
| WaDIQaM | 0.970 | 0.980 | -      |  |

Progreso de las métricas FR conforme avanza los conocimientos del HVS. ML v DL<sup>6</sup>.

Brian Sena Simons UGR 7 de septiembre de 2023 9 / 28

<sup>6</sup>Yuzhen Niu, Yini Zhong, Wenzhong Guo, Yiqing Shi y Peikun Chen. «2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges». En: IEEE Access 7 (2019), págs. 782-801.

- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
  - Cuantificación de la señal.
  - La sensibilidad al contraste
  - Hipótesis de percepción a través de: brillo, contraste v estructuras.
  - La saliencia visual.
  - Empleo de modelos DL.

| Métrica | LIVE  |       |        |  |
|---------|-------|-------|--------|--|
| Metrica | SRCC  | PLCC  | RMSE   |  |
| PSNRHVS | 0.919 | 0.903 | 12.540 |  |
| UQI     | 0.894 | 0.899 | 11.982 |  |
| SSIM    | 0.948 | 0.845 | 8.946  |  |
| VSI     | 0.952 | 0.948 | 8.682  |  |
| WaDIQaM | 0.970 | 0.980 | -      |  |

Progreso de las métricas FR conforme avanza los conocimientos del HVS. ML v DL<sup>6</sup>.



- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
  - Cuantificación de la señal.
  - La sensibilidad al contraste
  - Hipótesis de percepción a través de: brillo, contraste v estructuras.
  - La saliencia visual.
  - Empleo de modelos DL.

| Métrica |       | LIVE  |        |  |  |
|---------|-------|-------|--------|--|--|
| Metrica | SRCC  | PLCC  | RMSE   |  |  |
| PSNRHVS | 0.919 | 0.903 | 12.540 |  |  |
| UQI     | 0.894 | 0.899 | 11.982 |  |  |
| SSIM    | 0.948 | 0.845 | 8.946  |  |  |
| VSI     | 0.952 | 0.948 | 8.682  |  |  |
| WaDIQaM | 0.970 | 0.980 | -      |  |  |

Progreso de las métricas FR conforme avanza los conocimientos del HVS. ML v DL<sup>6</sup>.



- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
  - Cuantificación de la señal.
  - 2 La sensibilidad al contraste.
  - Hipótesis de percepción a través de: brillo, contraste y estructuras.
  - La saliencia visual.
  - Empleo de modelos DL.

| Métrica | LIVE  |       |        |  |
|---------|-------|-------|--------|--|
| Metrica | SRCC  | PLCC  | RMSE   |  |
| PSNRHVS | 0.919 | 0.903 | 12.540 |  |
| UQI     | 0.894 | 0.899 | 11.982 |  |
| SSIM    | 0.948 | 0.845 | 8.946  |  |
| VSI     | 0.952 | 0.948 | 8.682  |  |
| WaDIQaM | 0.970 | 0.980 | -      |  |

Progreso de las métricas FR conforme avanza los conocimientos del HVS, ML y DL<sup>6</sup>.



- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
  - Cuantificación de la señal.
  - 2 La sensibilidad al contraste.
  - Hipótesis de percepción a través de: brillo, contraste y estructuras.
  - La saliencia visual.
  - Empleo de modelos DL.

| Métrica | LIVE  |       |        |
|---------|-------|-------|--------|
| Metrica | SRCC  | PLCC  | RMSE   |
| PSNRHVS | 0.919 | 0.903 | 12.540 |
| UQI     | 0.894 | 0.899 | 11.982 |
| SSIM    | 0.948 | 0.845 | 8.946  |
| VSI     | 0.952 | 0.948 | 8.682  |
| WaDIQaM | 0.970 | 0.980 | -      |

Progreso de las métricas FR conforme avanza los conocimientos del HVS, ML y DL<sup>6</sup>.



# Estado del arte PCQA: métodos

- Métodos para casos específicos.
- Extracción de características del vecindario del punto.
  - Características geométricas.
  - Características lumínicas.
- Métodos genéricos por DL.
  - Proyecciones 2D.
  - Interpretación 3D directa.
  - Mixto.

| Método  | STJU-PCQA |       | WPC   |       |
|---------|-----------|-------|-------|-------|
| Metodo  | PLCC      | SRCC  | PLCC  | SRCC  |
| IT-PCQA | 0.58      | 0.63  | 0.55  | 0.54  |
| NR3DQA  | 0.738     | 0.714 | 0.651 | 0.647 |
| GPA-Net | 0.806     | 0.78  | -     | -     |
| ResSCNN | 0.86      | 0.81  | 0.72  | 0.75  |
| VQA-PC  | 0.863     | 0.85  | 0.797 | 0.796 |
| MM-PCQA | 0.92      | 0.91  | 0.83  | 0.83  |

Resumen del estado del arte de modelos NR-PCQA en dos datasets SJTU v WPC.



# Estado del arte PCQA: métodos

- Métodos para casos específicos.
- Extracción de características del vecindario del punto.
  - Características geométricas.
  - Características lumínicas.
- Métodos genéricos por DL.
  - Proyecciones 2D.
  - Interpretación 3D directa.
  - Mixto.

| Método  | STJU-PCQA |       | WPC   |       |
|---------|-----------|-------|-------|-------|
| Metodo  | PLCC      | SRCC  | PLCC  | SRCC  |
| IT-PCQA | 0.58      | 0.63  | 0.55  | 0.54  |
| NR3DQA  | 0.738     | 0.714 | 0.651 | 0.647 |
| GPA-Net | 0.806     | 0.78  | -     | -     |
| ResSCNN | 0.86      | 0.81  | 0.72  | 0.75  |
| VQA-PC  | 0.863     | 0.85  | 0.797 | 0.796 |
| MM-PCQA | 0.92      | 0.91  | 0.83  | 0.83  |

Resumen del estado del arte de modelos NR-PCQA en dos datasets SJTU v WPC.



# Estado del arte PCQA: métodos

- Métodos para casos específicos.
- Extracción de características del vecindario del punto.
  - Características geométricas.
  - Características lumínicas.
- Métodos genéricos por DL.
  - Proyecciones 2D.
  - Interpretación 3D directa.
  - Mixto.

| Método  | STJU-PCQA |       | WPC   |       |
|---------|-----------|-------|-------|-------|
| Metodo  | PLCC      | SRCC  | PLCC  | SRCC  |
| IT-PCQA | 0.58      | 0.63  | 0.55  | 0.54  |
| NR3DQA  | 0.738     | 0.714 | 0.651 | 0.647 |
| GPA-Net | 0.806     | 0.78  | -     | -     |
| ResSCNN | 0.86      | 0.81  | 0.72  | 0.75  |
| VQA-PC  | 0.863     | 0.85  | 0.797 | 0.796 |
| MM-PCQA | 0.92      | 0.91  | 0.83  | 0.83  |

Resumen del estado del arte de modelos NR-PCQA en dos datasets SJTU v WPC.



# Estado del arte en imágenes médicas

- O No existe una imagen o representación "sin distorsión" en la medicina.
- 2 Los métodos actuales utilizan adaptaciones IQA para exámenes médicos concretos, como MRI.
- No se ha encontrado nada específico en la literatura sobre métodos aplicados directamente a 3D.
  - Reconstrucción.
  - Escaneo laser forense.
  - Segmentación.
- Este TFG se centra en la estimación de calidad, sin referencia, de nubes de puntos biomédicas.



Brian Sena Simons UGR 7 de septiembre de 2023 11 / 28

12 / 28

# Materiales: datos generalistas (SJTU)

- 10 nubes de puntos de referencia.
- 7 tipos de distorsiones: compresión. ruido al color, ruido geométrico, ruido gaussiano y combinación entre ellas.
- **6 niveles** de intensidad.
- Total de 420 nubes de puntos.



Eiemplo de conjuntos de datos SJTU<sup>7</sup>

**Brian Sena Simons** 7 de septiembre de 2023

Materiales v métodos

000000000

Oian Yang, Haichuan Chen, Zhihua Ma, Yue Xu, Rui Tang y Jian Sun, «Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based Exploration».

# Materiales: datos generalistas (WPC)

- **25 nubes de puntos** de referencia.
- 5 tipos de distorsiones: sumuestreo, ruido gaussiano, trisoup, V-PCC y octree.
- Longitud de intensidades variantes.
- Total de 741 nubes de puntos.



Ejemplo de conjuntos de datos WPC<sup>8</sup>

Materiales v métodos

000000000



Brian Sena Simons UGR 7 de septiembre de 2023 13 / 28

<sup>&</sup>lt;sup>8</sup>Qi Liu, Honglei Su, Zhengfang Duanmu, Wentao Liu y Zhou Wang. «Perceptual Quality Assessment of Colored 3D Point Clouds». En: IEEE Transactions on Visualization and Computer Graphics (TVCG) (2022), págs. 1-1.

# Materiales: datos generalistas (LS-PCQA)

- **104 nubes de puntos** de referencia.
- **31** tipos de **distorsiones**.
- **o 7 niveles** de intensidad.
- Total de 22000 nubes de puntos.



Ejemplo de conjuntos de datos LS-PCQA9

<sup>&</sup>lt;sup>9</sup>Yipeng Liu, Qi Yang, Yiling Xu y Le Yang. «Point Cloud Quality Assessment: Dataset Construction and Learning-based No-Reference Metric». En: (2022). arXiv: 2012.11895.



Brian Sena Simons UGR 7 de septiembre de 2023 14 / 28

#### Materiales: datos sintéticos



Ejemplo de distorsiones generadas sobre clavículas, donde (a) es la imagen original, (b) la distorsionada por submuestreo y (c) por movimiento local.

- 11 nubes de puntos de referencia.
- **5** tipos de **distorsiones**: submuestreo, compresión, ruido, rotación y movimiento local.
- 7 niveles de intensidad para un total de 385 nubes de puntos.



Brian Sena Simons UGR 7 de septiembre de 2023 15 / 28

# Materiales: Generación de etiquetas

- Evitamos el problema logístico de obtención de la opinión media de calidad (MOS).
  - Evaluación manual por grupo de personas en un entorno controlado.

Materiales v métodos

- Hacemos uso de las mejores métricas con referencia.
  - Desglosamos el rendimiento por tipo de distorsión.

|       | Parte I  | Parte II |
|-------|----------|----------|
| SROCC | 0.902697 | 0.878517 |
| PLCC  | 0.910713 | 0.871917 |

Correlación de métricas sintéticas con experimento subjetivo de Liu et al<sup>9</sup>.



Brian Sena Simons UGR 7 de septiembre de 2023 16 / 28

<sup>&</sup>lt;sup>9</sup>Liu, Yang, Xu y Yang, «Point Cloud Quality Assessment: Dataset Construction and Learning-based No-Reference Metric»

#### **Métricas**

#### Correlación lineal de Pearson (PLCC)

$$PLCC(x,y) = \frac{\sum_{i=1}^{m} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{m} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{m} (y_i - \bar{y})^2}}$$

Evalúa si existe una **relación lineal** entre conjuntos.

# Correlación de orden de rango de Kendall (KROCC)

$$KROCC(x, y) = \frac{C-D}{\frac{1}{2}m(m-1)}$$

Evalúa la **concordancia y discordancia** de relación entre pares.

#### Correlación de rangos de Spearman (SROCC)

SROCC(x, y) = 
$$\frac{\sum_{i}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i}(x_{i} - \bar{x})^{2}}\sqrt{\sum_{i}(y_{i} - \bar{y})^{2}}}$$

Evalúa la relación lineal entre los *rankings*.

#### Raíz del error cuadrático medio (RMSE)

RMSE(x, y) = 
$$\sqrt{\frac{1}{m} \sum_{i=1}^{m} (x_i - y_i)^2}$$

Evalúa la **diferencia media** de los pares de valores.



# Modelo NR3DQA<sup>10</sup>

- Extracción independiente del modelo.
  - Anisotropía
  - Planaridad
  - **Esfericidad**
  - Curvatura
  - Linealidad
- **Descartamos** las características lumínicas.
- Usamos: media, desviación y entropía.



Extracción de características del vecindario.

<sup>10</sup> Zicheng Zhang, Wei Sun, Xiongkuo Min, Tao Wang, Wei Lu y Guangtao Zhai, «No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models».



Materiales y métodos

- Extracción automática de características.
- Extracción espacial y temporal de las reconstrucciones.
  - Espacial por fotogramas estáticos de distintas perspectivas.
  - Temporal por tratar la nube como video.
- Es como un meta-modelo de aprendizaje profundo.



Estructura del modelo VQA-PC<sup>11</sup>

<sup>&</sup>lt;sup>11</sup>Zicheng Zhang, Wei Sun, Yucheng Zhu, Xiongkuo Min, Wei Wu, Ying Chen y Guangtao Zhai. «Treating Point Cloud as Moving Camera Videos: A No-Reference Quality Assessment Metric». En: (2022). arXiv: 2208.14085



stado del arte Materiales y métodos Experimentación Conclusi

# Tecnologías utilizadas





















#### Introducción

- Para la validación hacemos uso de validación cruzada ó K-fold.
- Primeramente, replicamos los resultados de las publicaciones originales.
- A continuación adaptamos los modelos.
- Por último, proponemos mejoras y analizamos los resultados.



**Brian Sena Simons** 7 de septiembre de 2023 21 / 28

# Modelo NR3DQA<sup>10</sup>

| Dataset                 | Modelo       | Escalado       | PLCC     | SROCC    |
|-------------------------|--------------|----------------|----------|----------|
| SJTU                    | SVM          | MinMaxScaler   | 0.810325 | 0.777403 |
| WPC                     | SVM          | MinMaxScaler   | 0.637953 | 0.634853 |
| Biomédico               | SVM          | RobustScaler   | 0.2017   | 0.1776   |
| Biomédico normalizado   | KNNRegressor | RobustScaler   | 0.2671   | 0.1882   |
| Biomédico en escala 0-5 | DecisionTree | StandardScaler | 0.309176 | 0.196713 |

Resultados de prueba preliminar con NR3DQA<sup>10</sup>.



7 de septiembre de 2023 22 / 28

<sup>&</sup>lt;sup>10</sup>Zhang, Sun, Min, Wang, Lu y Zhai, «No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models»

#### **Modificaciones**

Resultado de mejoras sobre el método NR3DQA.

| Dataset                 | Modelo       | Escalado       | PLCC     | SROCC    |
|-------------------------|--------------|----------------|----------|----------|
| SJTU                    | SVM          | MinMaxScaler   | 0.853709 | 0.820057 |
| WPC                     | SVM          | MinMaxScaler   | 0.642356 | 0.62917  |
| Biomédico               | SVM          | StandardScaler | 0.344601 | 0.170793 |
| Biomédico en escala 0-5 | DecisionTree | StandardScaler | 0.30025  | 0.182296 |

- Weinmann et al<sup>12</sup> estudiaron los procesos de:
  - Segmentación.
  - Detección.
  - Clasificación.

- Justifican la importancia de las características de:
  - Omnivarianza.
  - Entropía de los valores singulares.
  - Verticalidad del vecindario.

<sup>&</sup>lt;sup>12</sup>Martin Weinmann, Boris Jutzi, Clément Mallet y Michael Weinmann. «Geometric Features and Their Relevance for 3D Point Cloud Classification». En: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences IV-1/W1 ().



# **Experimentos preliminares VQA-PC**

| Kfold    | MSE         | SROCC  |
|----------|-------------|--------|
| 0        | 13.9222     | 0.8995 |
| 1        | 418120.5625 | 0.8547 |
| 2        | 10.9271     | 0.9081 |
| 3        | 19.8226     | 0.9295 |
| 4        | 443.6077    | 0.8700 |
| 5        | 28.3165     | 0.9544 |
| 6        | 292.239     | 0.7675 |
| 7        | 329.0685    | 0.8833 |
| 8        | 357.0455    | 0.8647 |
| Promedio | 46623.94    | 0.8813 |

Resultados de experimento preliminar VQA-PC<sup>11</sup> en SJTU<sup>7</sup>.



Brian Sena Simons UGR 7 de septiembre de 2023 24 / 28

<sup>11</sup> Zhang, Sun, Zhu, Min, Wu, Chen y Zhai, «Treating Point Cloud as Moving Camera Videos: A No-Reference Quality Assessment Metric»

<sup>&</sup>lt;sup>7</sup>Yang, Chen, Ma, Xu, Tang y Sun, «Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based Exploration»

# **Modificaciones VQA-PC**

|               | Valor medio SROCC |             |            |        |  |
|---------------|-------------------|-------------|------------|--------|--|
| Modelo        | Estándar          | Normalizado | Reescalado | Ambos  |  |
| VQA-PC (SJTU) | 0.7094            | 0.6235      | 0.8425     | 0.7126 |  |

Tabla de resultados iniciales sobre imágenes médicas.

- Experimentamos con etiquetas normalizadas o no.
- En vez de recortar una selección local, reescalar la imagen entera.
- Es evidente la importancia del reescalado.



**Brian Sena Simons** 7 de septiembre de 2023 25 / 28

# **Modificaciones VQA-PC**

- Abouelaziz et al<sup>13</sup> experimentaron distintos métodos de fusión de características.
  - Fusión por concatenación (Fo).
  - Fusión por multiplicación (F1).
  - Fusión por convolución 1x1 (F2).
  - Fusión por compact multi-linear pooling (F3).

|           | SROCC  |            |         |  |  |
|-----------|--------|------------|---------|--|--|
| Modelo    | Media  | Desviación | Mediana |  |  |
| VQA-PC Fo | 0.8261 | 0.1589     | 0.8657  |  |  |
| VQA-PC F1 | 0.8164 | 0.1752     | 0.8637  |  |  |
| VQA-PC F2 | 0.8057 | 0.1741     | 0.8538  |  |  |
| VQA-PC F3 | 0.7482 | 0.1326     | 0.7518  |  |  |

Análisis de mejoras de fusión de características en VOA-PC sin pre-entrenar.

|           | SROCC  |            |         |  |
|-----------|--------|------------|---------|--|
| Modelo    | Media  | Desviación | Mediana |  |
| VQA-PC Fo | 0.8325 | 0.2017     | 0.9140  |  |
| VQA-PC F1 | 0.8242 | 0.2025     | 0.9095  |  |
| VQA-PC F2 | 0.8757 | 0.1468     | 0.9347  |  |
| VQA-PC F3 | 0.8071 | 0.1811     | 0.8692  |  |

Análisis de mejoras de fusión de características en VOA-PC pre-entrenado en LS-PCOA.

Brian Sena Simons UGR 7 de septiembre de 2023 26 / 28

<sup>&</sup>lt;sup>13</sup> Ilyass Abouelaziz, Aladine Chetouani, Mohammed El Hassouni, Longin Jan Latecki y Hocine Cherifi. «No-reference mesh visual quality assessment via ensemble of convolutional neural networks and compact multi-linear pooling». En: Pattern Recognition 100 (2020), pág. 107174.

#### Conclusiones

- Primer método que estima la calidad de reconstrucciones biomédicas 3D.
- Se logra generar un conjunto de datos médicos sintéticos para PCQA.
- Pese a ser un estudio preliminar:
  - Se justifica el uso de modelos de aprendizaje profundo experimentalmente.
  - Obtenemos una alta correlación (88 %).
  - Indicador de lo prometedora que es esta línea de investigación.
- Se han completado satisfactoriamente los objetivos planteados.
- https://github.com/CodeBoy-source/TFG NRPCQA



# **Trabajos futuros**

- Rehacer el experimento con etiquetas generadas manualmente.
- Para mejorar el modelo, se podria permitir la adaptación del modelo de extracción de características temporales.
- Simular distorsiones sobre las **imágenes 2D** para obtener datos más **realistas**.
- Explorar otros métodos de la literatura.



# **Agradecimientos**

# Gracias por su atención.

¿Dudas, preguntas o comentarios?



Brian Sena Simons UGR 7 de septiembre de 2023 28 / 28