Econ C103: Introduction to Mathematical Economics UC Berkeley, Fall 2019

Assignment 2 (total points: 75). Due Date: October 16.

Problem 1 (10 points): Construct the Stackelberg games (i.e. one player moves before the other) of the following static game, and determine which players have a first-mover advantage by comparing SPNE payoffs in each Stackleberg game to the set of MNE expected payoffs in the static game. Hint: First show that L is never played by j in any MNE of the static game.

		j	
	L	C	R
, T	1,-1	3,-3	-3,3
В	2,4/5	-3,3	3,-1

Problem 2 (10 points): Find the BNE of the following game. To do this, construct the corresponding normal-form game in which players' action sets equal their strategies in the Bayesian game, and certain payoffs equal their ex-ante expected payoffs in the Bayesian game as a function of the strategy profile.

Problem 3 (10 points): Find the BNE of the following game. To do this, complete the normal-form game (below) in which players' action sets equal their strategies in the Bayesian game, and certain payoffs equal the ex-ante expected payoffs in the Bayesian game as a function of the strategy profile.

/-	$Pr(\omega_1)=1/4$			$\Pr(\omega_2)=1/2$			$Pr(\omega_3)=1/4$	
	I.	R	\	I.	R	t_j^2	L	R
Т	2,1	0,0	Т	1,1	1,1	T	0,0	1,2
ı ı B	0,0	1,2	В	1,1	1,1	В	2,1	0,0
1	$State \omega_1 \qquad State \omega_2 \qquad State \omega_3$					te ω ₃		

		LL	LR	j RL	RR
i	TT	$\frac{1}{4}2 + \frac{1}{2}1 + \frac{1}{4}0 = 1$, $\frac{1}{4}1 + \frac{1}{2}1 + \frac{1}{4}0 = \frac{3}{4}$	$\frac{1}{4}2+\frac{1}{2}1+\frac{1}{4}1=5/4$, $\frac{1}{4}1+\frac{1}{2}1+\frac{1}{4}2=5/4$	$\frac{1}{4}0 + \frac{1}{2}1 + \frac{1}{4}0 = \frac{1}{2},$ $\frac{1}{4}0 + \frac{1}{2}1 + \frac{1}{4}0 = \frac{1}{2}$	
	ТВ				$\frac{1}{4}0 + \frac{1}{2}1 + \frac{1}{4}0 = \frac{1}{2},$ $\frac{1}{4}0 + \frac{1}{2}1 + \frac{1}{4}0 = \frac{1}{2}$
	ВТ	$\frac{1}{4}0 + \frac{1}{2}1 + \frac{1}{4}0 = \frac{1}{2},$ $\frac{1}{4}0 + \frac{1}{2}1 + \frac{1}{4}0 = \frac{1}{2}$	$\frac{1}{4}0 + \frac{1}{2}1 + \frac{1}{4}1 = \frac{3}{4},$ $\frac{1}{4}0 + \frac{1}{2}1 + \frac{1}{4}2 = 1$		
	BB	$\frac{1}{4}0 + \frac{1}{2}1 + \frac{1}{4}2 = 1$, $\frac{1}{4}0 + \frac{1}{2}1 + \frac{1}{4}1 = \frac{3}{4}$			

Problem 4 (10 points): Recall the Diamond-Dybvig model of lecture 11. Now consider the following variation of the model where the central bank secures consumers' deposits. If a consumer arrives at the bank at t = 2 and the bank is illiquid (i.e. has no funds left to offer the consumer), then the central bank will reimburse the consumer an amount C' > 0. What are the set of symmetric BNE of the game for each C' value (by "symmetric" I mean the BNE in which all consumers of each given type use the same strategy)?

Problem 5 (10 points): This problem tests your intuition for BNE in auctions.

Part 1) Consider a sealed-bid auction with i.i.d. values distributed via cdf $F(\cdot)$. Prove that if the mechanism $P(\boldsymbol{b})$ is given by the k^{th} -highest bid (i.e. a k^{th} -price auction) for k>2 then the symmetric BNE involves equilibrium bidding $b^*(v)$ above ones values (i.e. $b^*(v)>v$; show this must hold for some values of v, though this is actually true for all values). You can use all results/theorems provided in lecture. Hint: use the fact that $F^{[k]}(v) < F^{[k+1]}(v)$ for all v and k, where $F^{[k]}$ gives the cdf of the k^{th} -highest statistic, and the fact that:

$$\int_{\underline{v}}^{\overline{v}} f(v) dF^{[k]}(v) > \int_{\underline{v}}^{\overline{v}} f(v) dF^{[k+1]}(v)$$

for any monotonically increasing f(v). The proof will require limited math, but careful use of results.

Part 2) Again consider a sealed-bid auction with i.i.d. values distributed via cdf $F(\cdot)$. By considering the equilibrium bidding of the 1^{st} - and 2^{nd} - price auctions, and using your intuition, postulate what equilibrium bidding in the k^{th} -price auction, for k>2, will converge to as the number of bidders grows very large. Do you expect $b^*(v)$ to be increasing or decreasing in n for k>2? Is expected revenue increasing or decreasing in n? Explain.

Problem 6 (10 points): Find the set of beliefs of the (Inc)umbent regarding the probability that (Ch)allenger chose In-L, and the set of strategies of Inc that are supported in PBNE.

Problem 7 (15 points): Find the set of PBNE of the following signaling game.

