1/7/1 DIALOG(R) File 351: Derwent WPI (c) 2003 Thomson Derwent. All rts. reserv. 007214939 WPI Acc No: 1987-211948/ 198730 Glass of reduced crystallisation tendency - formed by adding all rare earth oxide(s) except yttrium to aluminium magnesium silicate Patent Assignee: POPOVA G S (POPO-I) Inventor: KHAZANOV V E; SHAINA Z I Number of Countries: 001 Number of Patents: 001 Patent Family: Applicat No Date Week Patent No Kind Date Kind 19850122 198730 B 19861130 SU 3845461 SU 1273339 Α Α Priority Applications (No Type Date): SU 3845461 A 19850122 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes SU 1273339 Abstract (Basic): SU 1273339 A AlMg silicate glass for glass fibre prodn. is stabilised by a series of rare earth oxides. The tendency to crystallise which leads to instability is prevented by using the following oxide admixture (in % wt.): SiO2 45-65, Al2O3 15-25, MgO 10-19, CeO2 0.2-0.8, La2O3 0.6-2.4, Nd203 0.3-1.2, Pr203 0.5-2.0, Dy203 0.2-0.8, Ho203 0.3-1.2, Er203 0.4-1.6, Yb203 0.6-2.4, Sm203 0.25-1.0, Gd203 0.4-1.6, Tb203 0.35-1.4, Tm203 0.5-2.0, Lu203 0.4-1.6. (4pp Dwg.No.0/0) Derwent Class: F01; L01 International Patent Class (Additional): C03C-003/09; C03C-013/00

BEST AVAILABLE COPY

as <u>SU</u> as <u>1273339</u>

A 1

CSD 4 C 03 C 13/00, 3/095

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

13 1 23 263:

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

- (21) 3845461/29-33
- (22) 22.01.85
- (46) 30.11.86. Бюл. № 44
- (72) Г.С.Попова, З.И.Шаина, В.Е.Хазанов и Л.Г.Ермакова
- (53) 66.112.9:546(088.8)
- (56) Патент Франции № 1452006, кл. С 03 С, опублик. 1966. Авторское свидетельство СССР № 1069325, кл. С 03 С 13/00, 1983.
- (54) СТЕКЛО ДЛЯ СТЕКЛОВОЛОКНА (57) Изобретение позволяет обеспе-
- (57) Изобретение позволяет обеспечить стабильность процесса формования за счет снижения кристаллизацию онной способности стекла для стекловолокна путем введения в состав Sm_2O_3 , Gd_2O_3 , Tb_2O_3 , Tm_2O_3 , Lu_2O_3 при следующем соотношении компонентов, мас. Z : SiO_2 45-65, Al_2O_3 15-25, MgO 10-19, CeO_2 0,2-0,8, La_2O_3 0,6-2,4, Nd_2O_3 0,3-1,2, Pr_2O_3 0,5-2,0, Dy_2O_3 0,2-0,8, Ho_2O_3 0;3-1,2, Er_2O_3 0,4-1,6, Yb_2O_3 0,6-2,4, Sm_2O_3 0,25-1,0, Gd_2O_3 0,4-1,6, Tb_2O_3 0,35-1,4, Tm_2O_3 0,5-2,0 Lu_2O_3 0,4-1,6. 2 табл.

Изобретение относится к составам стекол для производства волокна, в частности непрерывного, которое может быть использовано в качестве армирующего материала для изготовления 5 стеклопластиков.

Цель изобретения - обеспечение стабильности процесса формования за счет снижения кристаллизационной способности.

Составы стекол приведены в табл.1.

Стекло варят по обычной технологии. Для введения в состав стекла оксидов редкоземельных элементов (РЗЭ) используют отходы горно-рудной промышленности.

Введение суммы указанных оксидов РЗЭ в количестве менее 5 мас. 8 вызывает значительное повышение температуры варки стекла (до 1650°С) и приводит к частичной кристаллизации образцов стекла при отливке, что характеризует высокую скорость роста кристаллов. Такой состав стекла непригоден для получения стекловолокна.

При введении оксидов РЭЗ в количестве более 20 мас. % стекла отличаются повышенной плотностью при уменьшенной вязкости, что вызывает расслоение стекломассы в процессе ее осветления.

Указанные составы стекол характеризуются вязкостью при формовании (10 2 - 10^{3,2} пауз при значительно сниженных температурах верхнего предела кристаллизации, что исключает растекание стекломассы по фильерной пластине, кристаллизацию стекломассы в фильерах и дает возможность применять для их формования стандартные многофильерные сосуды.

Свойства стекол приведены в табл. 2.

Такое сочетание вязкостных и кристаллизационных свойств позволя- ет формовать его на промышленных многофильерных сосудах без применения искусственного охлаждения. Низ-

котемпературное формование указанного стекла экономически выгодно из-за пониженного расхода платины на единицу продукции.

Уменьшение скорости роста кристаллов вблизи верхнего предела кристаллизации (КV при t₃ - 20°C) способствует большей стабильности процесса формования волокна, т.е. снижению кристаллизационной способности.

Эффективность от использования предлагаемого состава заключается в значительном улучшении технологитеских свойств стекла, позволяющих получить безобрывный процесс формования волокна при стабильных физико-механических характеристиках получаемого непрерывного стеклянного волокна.

Формула изобретения

Стекло для стекловолокна, включающее SiO_2 , AI_2O_3 , MgO, CeO_2 , La_2O_3 , Nd_2O_3 , Pr_2O_3 , Dy_2O_3 , Ho_2O_3 , Er_2O_3 , Yb_2O_3 , отличающеес я тем, что, с целью обеспечения стабильности процесса формования за счет снижения кристаллизационной способности, оно дополнительно содержит Sm_2O_3 , Gd_2C_3 , Tb_2O_3 , Tm_2C_3 , Lu_2O_3 при следующем соотношении компонентов, мас. Z:

35	SiO	45-65
3)	Al ₂ C ₃	15-25
	MgÕ 3.	10-19
	CeO ₂	0,2-0,8
	$\text{La}_{2}\tilde{0}_{3}$	0,6-2,4
40	$\operatorname{Nd}_{2}^{2}O_{3}^{2}$.	0,3-1,2
70	$Pr_{q}^{2}O_{3}$	0,5-2,0
	Dy ₂ O ₃	0,2-0,8
	HO 203	0,3-1,2
	Er ₂ 0 ₃	0,4-1,6
45	Yb ₂ O ₃	0,6-2,4
	Sm _a O _a	0,25-1,0
	Gđ Çu _x	0,4-1,6
	Gd 203 Tb 203	0,35-1,4
	Tm ₂ O ₃	0,5-2,0
50	Tm ₂ O ₃ Lu ₂ O ₃	0,4-1,6

Таблица 1

Оксиды, мас.%	Примеры						
,	1	2	3	4	5		
SiO ₂	<u>L</u> 45	65	55	50	50		
A1203	20	20	25	15	21		
MgO	15	10	15	15	19		
CeO ₁	0,80	0,20	0,20	0,80	0,40		
La ₂ 03	2,40	0,60	0,60	2,40.	1,20		
Nd 2Og.	1,20	0,30	0,30	1,20	0,60		
Pr ₀ 0 ₃	2,00	0,50	0,50	2,00	1,00		
Sm ₂ O ₃	1,00	·0,25	0,25	1,00	0,50		
Gd ₂ O ₃	1,60	0,40	0,40	1,60	0,80		
Tb ₂ O ₃	1,40	0,35	0,35	1,40	0,70		
Dy ₂ O ₃	0,80	0,20	0,20	0,80	0,40		
но ₂ о ₃	1,20	0,30	0,30	1,20	0,60		
Er ₂ O ₃	1,60	0,40	0,40	1,60	0,80		
Tm O3	2,00	0,50	0,50	2,00	1,00		
Yb ₂ O ₃	2,40	0,60	0,60	2,40	1,20		
Lu ₂ 03	1,60	0,40	0,40	1,6	0,80		

Таблица 2

Свойства	Стекло по примерам					
	1	2	3	4	5	
Температура верхнего предела кристаллизации, °C	. 1390	1440	1420	1350	1420	
Вязкость стек ла при формо- вании, Пз	- 10 ^{2,0.}	10 ^{3,}	102,6	10 ^{2,4}	10 ^{4,0}	
Плотность стекла, г/см ³	3,06	2,6	2,65	3,04	2,78	
Скорость роста кристаллов вблизи верх- него преде- ла кристалли- зации КV при tg - 20°C,		0,3		2 0,06	5 0,21	

Составитель Г.Каменских
Редактор Т.Митейко Техред А.Кравчук Корректор С.Шекмар

Заказ 6384/17 Тираж 457 Подписное
ВНИИПН Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-полиграфическое предприятие, г.Ужгород, ул.Проектная 4

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.