

THE CLAIMS

The following listing of claims replaces all prior versions and listings of claims in the above-referenced application:

- 1 1. (Original) A device, comprising:
 - 2 a growth surface;
 - 3 a growth mask on the growth surface, the growth mask defining an elongate growth window;
 - 5 an optical waveguide core mesa located in the growth window and having a trapezoidal cross-sectional shape; and
 - 7 a cladding layer covering the optical waveguide core mesa and extending over at least part of the growth mask.

- 1 2. (Original) The device of claim 1, in which:
 - 2 the growth surface has a [100] crystalline orientation; and
 - 3 the optical waveguide core mesa comprises sidewalls having a [111] crystalline orientation.

- 1 3. (Original) The device of claim 2, in which the growth mask comprises opposed edges aligned parallel to the [011] crystalline direction of the growth surface.

- 1 4. (Original) The device of claim 1, in which the optical waveguide core mesa is homogeneous in structure and has a greater refractive index than the cladding layer.

- 1 5. (Original) The device of claim 1, in which: the device is an optoelectronic device; and the optical waveguide core mesa comprises a quantum well structure.

1 6. (Original) The device of claim 5, in which the quantum well
2 structure comprises quantum well layers comprising aluminum, gallium, indium and
3 arsenic.

1 7. (Original) The device of claim 5, in which the quantum well
2 structure comprises quantum well layers comprising gallium, indium, arsenic and
3 phosphorus.

1 8. (Original) The device of claim 5, in which the optical waveguide
2 core additionally comprises a separate confinement heterostructure in which the
3 quantum well structure is located.

1 9. (Original) The device of claim 5, in which the optical waveguide
2 core mesa comprises materials having a greater refractive index than the cladding
3 layer.

1 10. (Original) The device of claim 1, in which: the cladding layer is a
2 first cladding layer; the device additionally comprises a second cladding layer; and the
3 growth surface is a surface of the second cladding layer.

1 11. (Original) The device of claim 1, in which the growth mask and
2 the optical waveguide core mesa are similar in thickness.

1 12. (Original) A device fabrication method, comprising: providing a
2 growth chamber; providing a wafer comprising a growth surface; and in the growth
3 chamber, performing a fabrication process, comprising: growing an optical waveguide
4 core mesa on the growth surface by micro-selective area growth, and without
5 removing the wafer from the growth chamber after the fabricating, covering the
6 optical waveguide core mesa with cladding material.

1 13. (Original) The method of claim 12, in which the growing
2 comprises: forming a growth mask on the growth surface, the growth mask defining
3 an elongate growth window; and growing the optical waveguide core mesa in the
4 growth window by the micro-selective area growth.

1 14. (Original) The method of claim 13, in which: the growth surface
2 has a [100] crystalline orientation; and the forming comprises aligning opposed edges
3 of the growth mask parallel to the [011] crystalline direction of the growth surface.

1 15. (Original) The method of claim 13, in which the fabrication
2 process lacks an etching process performed after completion of the forming and before
3 completion of the covering.

1 16. (Original) The method of claim 12, in which: the optical
2 waveguide core mesa comprises sloped sidewalls and a top surface extending between
3 the sidewalls; the growing comprises growing the optical waveguide core mesa at a
4 growth temperature above that at which adatoms migrate from the sidewalls to the top
5 surface of the optical waveguide; and the covering comprises growing the cladding
6 material at a growth temperature below that at which adatoms migrate off the side
7 walls of the optical waveguide core mesa.

1 17. (Original) The method of claim 16, in which the covering
2 comprises growing the cladding material laterally over part of the growth mask.

1 18. (Original) The method of claim 12, in which the covering
2 comprises growing the cladding material under growth conditions in which the
3 cladding material grows on the sidewalls of the optical waveguide core mesa in
4 addition to the top surface thereof.

1 19. (Original) A device fabrication method, comprising: providing a
2 wafer comprising a growth surface; at a first growth temperature, growing an optical
3 waveguide core mesa on the growth surface by micro-selective area growth, and at a
4 second growth temperature, lower than the first growth temperature, covering the
5 optical waveguide core mesa with cladding material.

1 20. (Original) The method of claim 19, in which: the optical
2 waveguide core mesa comprises sidewalls having a width; the first growth
3 temperature is at a temperature at which adatoms have a surface diffusion length
4 greater than the width of the sidewalls; and the second growth temperature is at a
5 temperature at which the adatoms have a surface diffusion length less than the width
6 of the sidewalls.

1 21. (Original) The method of claim 19, additionally comprising
2 growing a sublayer of the cladding material on the optical waveguide core mesa by
3 micro-selective area growth.

1 22. (Original) The method of claim 21, in which growing the sublayer
2 of the cladding material comprises setting the growth temperature to a temperature
3 intermediate between the first growth temperature and the second growth temperature.