Chapter 15

ASSOCIATION RULES (2)

(關聯規則)

一開始先以 titanic 資料集 測試套件是否成功安裝及可正常使用

```
install.packages("arules")
library(arules)

t_data <- Titanic

ftr(t_data)

tdf <- as.data.frame(t_data)

head(tdf)
View(tdf)</pre>
```

```
Terminal ×
Console
~/ @
> str(t data)
table [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
 - attr(*, "dimnames")=List of 4
  ..$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"
  ..$ Sex : chr [1:2] "Male" "Female"
  ..$ Age : chr [1:2] "Child" "Adult"
  ..$ Survived: chr [1:2] "No" "Yes"
> tdf <- as.data.frame(t data)</pre>
> head(tdf)
 Class
        Sex Age Survived Freq
         Male Child
    1st
                           No
         Male Child
    2nd
                                 0
                           No
         Male Child
    3rd
                                35
                           No
         Male Child
                                 0
  Crew
                           No
   1st Female Child
                           No
                                 0
    2nd Female Child
                           No
```

若將 table 直接轉成 data.frame 只會剩下 32 筆資料原本是描述重複次數的 Freq 被獨立變成一個欄位

*	Class ‡	Sex [‡]	Age ‡	Survived	Freq ÷
1	1st	Male	Child	No	0
2	2nd	Male	Child	No	0
3	3rd	Male	Child	No	35
4	Crew	Male	Child	No	0
5	1st	Female	Child	No	0
6	2nd	Female	Child	No	0
7	3rd	Female	Child	No	17
8	Crew	Female	Child	No	0
9	1st	Male	Adult	No	118
10	2nd	Male	Adult	No	154
11	3rd	Male	Adult	No	387
12	Crew	Male	Adult	No	670
13	1st	Female	Adult	No	4
14	2nd	Female	Adult	No	13
15	3rd	Female	Adult	No	89
16	Crew	Female	Adult	No	3

17	1st	Male	Child	Yes	5
18	2nd	Male	Child	Yes	11
19	3rd	Male	Child	Yes	13
20	Crew	Male	Child	Yes	0
21	1st	Female	Child	Yes	1
22	2nd	Female	Child	Yes	13
23	3rd	Female	Child	Yes	14
24	Crew	Female	Child	Yes	0
25	1st	Male	Adult	Yes	57
26	2nd	Male	Adult	Yes	14
27	3rd	Male	Adult	Yes	75
28	Crew	Male	Adult	Yes	192
29	1st	Female	Adult	Yes	140
30	2nd	Female	Adult	Yes	80
31	3rd	Female	Adult	Yes	76
32	Crew	Female	Adult	Yes	20

```
library(arules)
    t data <- Titanic
    str(t data)
    tdf <- as.data.frame(t data)
    head(tdf)
    #View(tdf)
    tdf$Freq <- NULL
11
    ar <- apriori(tdf, parameter =list(minlen=3, supp =0.1, conf=0.5),
13
                         appearance =list(rhs=c("Survived=No",
                                                    "Survived=Yes"), default="lhs"),
14
              control=list(verbose=T)
15
16
    inspect(ar)
Apriori
Parameter specification:
 confidence minval smax arem aval original Support maxtime support minlen maxlen target ext
       0.5
                  1 none FALSE
                                       TRUE
                                                      0.1
                                                                   10 rules FALSE
Algorithmic control:
                                                                > inspect(ar)
 filter tree heap memopt load sort verbose
                                                                    1hs
                                                                                                  rhs
                                                                                                                   support confidence lift count
   0.1 TRUE TRUE FALSE TRUE
                                                                [1] {Sex=Male,Age=Child}
                                                                                               => {Survived=Yes} 0.125
                                                                                                                                              4
Absolute minimum support count: 3
                                                                [2] {Sex=Male,Age=Adult}
                                                                                              => {Survived=Yes} 0.125
                                                                                                                            0.5
                                                                                                                                        1
                                                                [3] {Sex=Female,Age=Child} => {Survived=Yes} 0.125
                                                                                                                            0.5
set item appearances ...[2 item(s)] done [0.00s].
                                                                [4] {Sex=Female,Age=Adult} => {Survived=Yes} 0.125
                                                                                                                            0.5
set transactions ...[10 item(s), 32 transaction(s)] done [0.00s].
sorting and recoding items ... [10 item(s)] done [0.00s].
                                                                [5] {Sex=Male,Age=Child}
                                                                                              => {Survived=No} 0.125
                                                                                                                            0.5
creating transaction tree ... done [0.00s].
                                                                [6] {Sex=Male,Age=Adult}
                                                                                              => {Survived=No}
                                                                                                                            0.5
                                                                                                                                        1
                                                                                                                   0.125
checking subsets of size 1 2 3 done [0.00s].
                                                                [7] {Sex=Female,Age=Child} => {Survived=No}
                                                                                                                   0.125
                                                                                                                            0.5
                                                                                                                                        1
writing ... [8 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
                                                                [8] {Sex=Female,Age=Adult} => {Survived=No} 0.125
                                                                                                                            0.5
```

Apriori 演算法參數說明

參數	子參數	說明		
paprmeter	minlen / maxlen :	項目集長度最小 / 大值		
	supp / conf:	最小支持度和最大信心度		
	target = "rules" / "frequent itemsets"	產生 Rule 或 FP		
apperance	可以對先決條件 lhs 和關聯結果 rhs 實際包含那些項目進行限製	ex. rhs = $c("Age")$ ex. none = $c("Sex")$		
control	sort	結果排序 1: 昇冪 -1: 降冪		
	verbose	秀出處理程序 T/F		

Titanic data preprocessing

確定套件可運作後 現在把 Titanic dataset 依據 Freq 的次數進行資料前處理

```
1 library(arules)
 2 t data <- Titanic
 3 tdf <- as.data.frame(t_data)</pre>
   dp df <- NULL
   hname <- c("Class", "Sex", "Age", "Survived")</pre>
    |#前4個維度才是我們要的,因為第5個是Freq
   for(i in 1:4)
                                                         > dp df <- as.data.frame(dp df)</pre>
9 +
                                                         > str(dp df)
       #依據Freq 數值複製幾次
10
                                                         'data.frame':
11
                                                                         2201 obs. of 4 variables:
       x<- rep(as.character(tdf[,i]),tdf$Freq)</pre>
12
13
14
15
                                                         $ Class : Factor w/ 4 levels "1st", "2nd", "3rd", ...: 3 3
       dp df <- cbind(dp df,x)</pre>
                                                         $ Sex : Factor w/ 2 levels "Female", "Male": 2 2 2 2
       colnames(dp df)[i]<-hname[i]</pre>
                                                          $ Age : Factor w/ 2 levels "Adult", "Child": 2 2 2 2
                                                          $ Survived: Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 1 1
    dp_df <- as.data.frame(dp df)</pre>
    str(dp_df)
    ar <- apriori(dp df, parameter =list(minlen=3, supp =0.15, conf=0.75),
18
                   control=list(verbose=F))
19
20 inspect(ar)
```

Titanic data preprocessing

前處理後可依據不同的 sup, conf, minlen, maxlen, target 找出不同的結果 Ex. Target = FP

```
ar <- apriori(dp_df, parameter =list(minlen=3,
20
                                         supp =0.3, conf=0.75,
                                         target = "frequent itemsets"),
21
22
                  control=list(verbose=F))
   > inspect(ar)
       items
                                                    support
                                                              count
   [1] {Class=Crew, Sex=Male, Survived=No}
                                                    0.3044071 670
   [2] {Class=Crew,Age=Adult,Survived=No}
                                                    0.3057701 673
   [3] {Class=Crew,Sex=Male,Age=Adult}
                                                    0.3916402 862
   [4] {Sex=Male,Age=Adult,Survived=No}
                                                    0.6038164 1329
   [5] {Class=Crew,Sex=Male,Age=Adult,Survived=No} 0.3044071 670
```

Titanic data preprocessing

前處理後可依據不同的 sup, conf, minlen, maxlen, target 找出不同的結果 Ex. Target = Rule

```
ar <- apriori(dp_df, parameter =list(minlen=3, supp =0.15, conf=0.75),
19
                     control=list(verbose=F))
    inspect(ar)
> inspect(ar)
                                                                   confidence lift
     lhs
                                           rhs
                                                         support
                                                                                        count
    {Class=3rd,Survived=No}
                                        => {Sex=Male}
                                                         0.1917310 0.7992424 1.0162522
                                                                                        422
     {Class=3rd,Sex=Male}
                                       => {Survived=No} 0.1917310 0.8274510 1.2222950
                                                                                        422
    {Class=3rd,Survived=No}
                                        => {Age=Adult}
                                                         0.2162653 0.9015152
                                                                             0.9484870
                                                                                        476
    {Class=3rd,Age=Adult}
                                       => {Survived=No} 0.2162653 0.7591707
                                                                             1.1214326
                                                                                        476
     {Class=3rd,Sex=Male}
                                       => {Age=Adult}
                                                                             0.9530818
[5]
                                                         0.2099046 0.9058824
                                                                                        462
    {Sex=Male,Survived=Yes}
                                       => {Age=Adult}
                                                                             0.9689670
                                                                                        338
[6]
                                                        0.1535666 0.9209809
    {Class=Crew,Survived=No}
                                       => {Sex=Male}
                                                                             1.2658514
                                                         0.3044071 0.9955423
                                                                                        670
    {Class=Crew,Sex=Male}
                                       => {Survived=No} 0.3044071 0.7772622 1.1481571
                                                                                        670
    {Class=Crew,Survived=No}
                                       => {Age=Adult}
                                                        0.3057701 1.0000000
                                                                            1.0521033
                                                                                        673
[10] {Class=Crew,Age=Adult}
                                       => {Survived=No} 0.3057701 0.7604520
                                                                             1.1233254
                                                                                        673
[11] {Class=Crew,Sex=Male}
                                       => {Age=Adult}
                                                         0.3916402 1.0000000
                                                                             1.0521033
                                                                                        862
[12] {Class=Crew,Age=Adult}
                                        => {Sex=Male}
                                                                             1.2384742
                                                         0.3916402 0.9740113
[13] {Sex=Male,Survived=No}
                                       => {Age=Adult}
                                                        0.6038164 0.9743402
                                                                            1.0251065 1329
[14] {Age=Adult,Survived=No}
                                       => {Sex=Male}
                                                         0.6038164 0.9242003 1.1751385 1329
[15] {Sex=Male,Age=Adult}
                                       => {Survived=No} 0.6038164 0.7972406
                                                                            1.1776688 1329
[16] {Class=3rd,Sex=Male,Survived=No}
                                       => {Age=Adult}
                                                        0.1758292 0.9170616
                                                                             0.9648435
                                                                                        387
[17] {Class=3rd,Age=Adult,Survived=No}
                                       => {Sex=Male}
                                                         0.1758292 0.8130252 1.0337773
                                                                                        387
                                        => {Survived=No} 0.1758292 0.8376623
[18] {Class=3rd,Sex=Male,Age=Adult}
                                                                             1.2373791
                                                                                        387
[19] {Class=Crew,Sex=Male,Survived=No}
                                       => {Age=Adult}
                                                         0.3044071 1.0000000
                                                                             1.0521033
                                                                                        670
[20] {Class=Crew,Age=Adult,Survived=No} => {Sex=Male}
                                                        0.3044071 0.9955423
                                                                             1.2658514
                                                                                        670
[21] {Class=Crew,Sex=Male,Age=Adult}
                                        => {Survived=No} 0.3044071 0.7772622 1.1481571 670
```

安裝並使用 arulesViz 套件

產生互動式散佈圖

```
1 rm(list=ls())
2 library(arules)
 3 library(arulesViz)
4 t data <- Titanic
 5 tdf <- as.data.frame(t_data)</pre>
  dp df <- NULL
   hname <- c("Class", "Sex", "Age", "Survived")</pre>
8
   for(i in 1:4)
10 • {
11
     x<- rep(as.character(tdf[,i]),tdf$Freq)</pre>
12
     dp_df <- cbind(dp_df,x)</pre>
13
      colnames(dp df)[i]<-hname[i]</pre>
14
   dp_df <- as.data.frame(dp_df)</pre>
15
16
   str(dp_df)
17
18
   ar <- apriori(dp_df, parameter =list(supp =0.05, conf=0.5),
19
                   control=list(verbose=F))
20 #inspect(ar)
21 plot(ar, interactive=T)
```

產生互動式散佈圖

產生互動式散佈圖

```
Number of rules selected: 8
    1hs
                                            rhs
                                                           support
                                                                      confidence lift
                                                                                           count order
[1] {Class=1st,Sex=Female}
                                        => {Survived=Yes} 0.06406179 0.9724138
                                                                                                 3
[2] {Class=1st,Sex=Female,Age=Adult}
                                        => {Survived=Yes} 0.06360745 0.9722222
                                                                                 3.009650 140
                                                                                                 4
[3] {Class=1st,Survived=No}
                                        => {Sex=Male}
                                                           0.05361199 0.9672131 1.229830 118
                                                                                                 3
[4] {Class=1st,Age=Adult,Survived=No}
                                        => {Sex=Male}
                                                           0.05361199 0.9672131
                                                                                 1.229830 118
                                                                                                 4
[5] {Class=1st,Sex=Female}
                                        => {Age=Adult}
                                                           0.06542481 0.9931034
                                                                                 1.044847 144
                                                                                                 3
[6] {Class=1st,Sex=Female,Survived=Yes} => {Age=Adult}
                                                           0.06360745 0.9929078
                                                                                 1.044642 140
                                                                                                 4
[7] {Class=1st,Sex=Male}
                                        => {Age=Adult}
                                                           0.07950931 0.9722222
                                                                                 1.022878 175
                                                                                                 3
[8] {Class=1st,Survived=Yes}
                                        => {Age=Adult}
                                                           0.08950477 0.9704433
                                                                                1.021007 197
                                                                                                 3
```

Scatter plot for 85 rules

產生互動式散佈圖

Two-key point plot 顏色愈深代表規則的數量愈多

21 plot(ar, shading="order",control=list(main ="Two key plot"))

ECLAT algorithm using R package (arules)

eclat(...) #eclat 只能跑出 FP,不能跑出 Rule

```
Eclat
parameter specification:
tidLists support minlen maxlen
                                           target
    FALSE
             0.15
                       1
                             10 frequent itemsets FALSE
algorithmic control:
 sparse sort verbose
      7
         -2
                TRUE
Absolute minimum support count: 1475
create itemset ...
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [4 item(s)] done [0.00s].
creating bit matrix ... [4 row(s), 9835 column(s)] done [0.00s].
writing ... [4 set(s)] done [0.00s].
Creating S4 object ... done [0.00s].
> inspect(er)
    items
                       support count
[1] {whole milk}
                       0.2555160 2513
[2] {other vegetables} 0.1934926 1903
[3] {rolls/buns}
                       0.1839349 1809
[4] {soda}
                       0.1743772 1715
```

1. 讀取內建資料集 Groceries

```
> g_data<-Groceries
> summary(g_data)
transactions as itemMatrix in sparse format with
9835 rows (elements/itemsets/transactions) and
169 columns (items) and a density of 0.02609146
most frequent items:
      whole milk other vegetables
                                        rolls/buns
                                                                soda
                                                                               yogurt
                                                                                               (Other)
                                              1809
            2513
                             1903
                                                                1715
                                                                                 1372
                                                                                                 34055
```

2. 觀測前5筆交易資料

```
> inspect (g_data[1:5])
   items
[1] {citrus fruit,semi-finished bread,margarine,ready soups}
[2] {tropical fruit,yogurt,coffee}
[3] {whole milk}
[4] {pip fruit,yogurt,cream cheese ,meat spreads}
[5] {other vegetables,whole milk,condensed milk,long life bakery product}
> |
```

3. 使用 Apriori 找出 Rule (supp = 0.01, conf = 0.5)

```
lhs
                                               rhs
                                                                  support
                                                                             confidence lift
                                                                                                  count
[1]
    {curd,yogurt}
                                           => {whole milk}
                                                                  0.01006609 0.5823529
                                                                                        2.279125
                                                                                                   99
[2]
    {other vegetables,butter}
                                           => {whole milk}
                                                                  0.01148958 0.5736041
                                                                                        2.244885 113
[3]
    {other vegetables,domestic eggs}
                                           => {whole milk}
                                                                  0.01230300 0.5525114
                                                                                        2.162336 121
    {yogurt,whipped/sour cream}
                                           => {whole milk}
[4]
                                                                  0.01087951 0.5245098
                                                                                        2.052747 107
[5]
    {other vegetables, whipped/sour cream} => {whole milk}
                                                                  0.01464159 0.5070423
                                                                                        1.984385 144
[6]
    {pip fruit,other vegetables}
                                           => {whole milk}
                                                                  0.01352313 0.5175097
                                                                                        2.025351 133
                                           => {other vegetables} 0.01037112 0.5862069
[7]
    {citrus fruit,root vegetables}
                                                                                        3.029608 102
    {tropical fruit, root vegetables}
                                           => {other vegetables} 0.01230300 0.5845411
                                                                                        3.020999 121
[8]
    {tropical fruit, root vegetables}
                                           => {whole milk}
                                                                  0.01199797 0.5700483
                                                                                        2.230969 118
[10] {tropical fruit, yogurt}
                                           => {whole milk}
                                                                                        2.024770 149
                                                                  0.01514997 0.5173611
[11] {root vegetables, yogurt}
                                           => {other vegetables} 0.01291307 0.5000000
                                                                                        2.584078 127
[12] {root vegetables, yogurt}
                                           => {whole milk}
                                                                  0.01453991 0.5629921
                                                                                        2.203354 143
[13] {root vegetables,rolls/buns}
                                           => {other vegetables} 0.01220132 0.5020921
                                                                                        2.594890 120
[14] {root vegetables,rolls/buns}
                                           => {whole milk}
                                                                  0.01270971 0.5230126
                                                                                        2.046888 125
[15] {other vegetables, yogurt}
                                           => {whole milk}
                                                                  0.02226741 0.5128806
                                                                                        2.007235 219
```

4. 限制 Rule 的 rhs 只能是 whole milk

```
lhs
                                             rhs
                                                          support
                                                                     confidence lift
                                                                                         count
[1] {curd, yogurt}
                                          => {whole milk} 0.01006609 0.5823529 2.279125 99
[2] {other vegetables,butter}
                                          => {whole milk} 0.01148958 0.5736041 2.244885 113
[3] {other vegetables,domestic eggs}
                                          => {whole milk} 0.01230300 0.5525114 2.162336 121
[4] {yogurt,whipped/sour cream}
                                          => {whole milk} 0.01087951 0.5245098 2.052747 107
[5] {other vegetables, whipped/sour cream} => {whole milk} 0.01464159 0.5070423 1.984385 144
[6] {pip fruit,other vegetables}
                                          => {whole milk} 0.01352313 0.5175097 2.025351 133
[7] {tropical fruit,root vegetables}
                                          => {whole milk} 0.01199797 0.5700483 2.230969 118
[8] {tropical fruit, yogurt}
                                          => {whole milk} 0.01514997 0.5173611 2.024770 149
[9] {root vegetables, yogurt}
                                          => {whole milk} 0.01453991 0.5629921 2.203354 143
[10] {root vegetables,rolls/buns}
                                          => {whole milk} 0.01270971 0.5230126 2.046888 125
[11] {other vegetables, yogurt}
                                          => {whole milk} 0.02226741 0.5128806 2.007235 219
```

5. 產生互動散佈圖

Scatter plot for 11 rules

20 018/05/25

Any Questions!?