Pflichtenheft

Conways's

Game of Life

"Eine universelle Software zur Simulation zellulärer Automaten"

Auftraggeber:

- Hochschule Bochum
- Ansprechpartner: Dipl.-Inform. Christian Düntgen
- Raum: D 3-30

Auftragnehmer:

- Die 5 Kranken Schwestern
- Weder krank noch Frauen
- Definitionsphasenmanager: Jörg Galilee Uwimana
- Architekt (Entwurfsbeauftragter): Felix Reinhardt
- Gruppenschuldiger, Spezifikationsbeauftragter: Alex Chojnatzki
 - Implementierungs-Beauftragter: Nicholas Schuran
- Kundenbetreuer, Außenminister, Abnahmebeauftrgter: Diaa El Bathich

Stand: Donnerstag, 18. November 2021 - 00:41

Contents

1	Ziel	bestimmung	3
	1.1	Musskriterien	3
	1.2	Wunschkriterien	6
2	Pro	dukt-Einsatz	7
	2.1	Anwendungsbereich	7
	2.2	Zielgruppen	7
	2.3	Produktumgebung	7
		2.3.1 Softwareanforderungen	7
		2.3.2 Hardwareanforderungen	7
	2.4	Betriebsbedingungen	8
3	Pro	duktfunktionen	9
	3.1	Funktionale Anforderungen	9
		3.1.1 Benutzeroberfläche	9
	3.2	Transitionsregeleditor: Heimlicher Star der ganzen Show	21
	3.3	Nichtfunktionale Anforderungen	24
		3.3.1 Performance	24
4	Tes	tszenarien	25
	4.1	UI	25
	4.2	Verarbeitung	25
	4.3	Speichern	25
	4.4	Performance	25
	4.5	Stabilität	25
5	Ent	wicklungsumgebung	26
	5.1	Verwendete Software	26
	5.2	Verwendete Hardware	26
	5.3	verwendete Organisation	26

1 Zielbestimmung

1.1 Musskriterien

Das Programm soll dazu dienen, Zelluläre Automaten auf einem 2D orthogonalen Spielfeld darstellen zu können. Dazu werden als Beispiel die Regeln für Conway's Game of Life verwendet. Hierzu sind unbedingt die folgenden Features erforderlich:

M0001	UI	Das Programm muss eine graphische Oberfläche haben.
M0002	Scope	Es soll ein zellulärer Automat mit möglichst großer Freiheit definiert und simuliert werden können.
M0003	Darstellung Spielfeld	Die Darstellung des Zellulären Automaten Er- folgt über eine 2D Matrix aus Quadraten deren Farbe und Helligkeit den Zustand eines Feldes wiedergeben.
M0004	Transitionsregeleditor	Die Transitionsregeln sollen über eine definierte und im Handbuch dokumentierte Syntax (invers Polnische Notation, ggf. auch mathematische Schreibweise) formuliert werden können. Der neue Zustand einer Zelle darf dabei von der Zelle selbst, sowie von den umliegenden acht benachbarten Zellen abhängen. Ihr Status wird in Variablen bereitgestellt.
M0005	Spielfeldaufbau	Das Spielfeld soll als 2D Array von Integerw- erten ausgeführt sein, welche den Zellzustand repräsentieren.
0006	Spielfeldgröße	Die Spielfeldgröße soll vor Simulationsstart vom Benutzer über (Text-)Eingabefelder fest-gelegt werden können.
M0007	Speichern & Laden	Spielfeldzustand und Transitionsregeln sollen seperat gespeichert und geladen werden können.

	T.	
M0008	Einfügen	Es sollen Figuren in das Spielfeld eingefügt werden können. Dies soll so geschehen, dass Figuren als Spielstände mit kleinerer Feldgröße als ganzes geladen und eingefügt werden können.
M0009	Navigation	es soll möglich sein, das Spielfeld mit Zoom und Pan verschieden zu betrachten.
M0010	Spielfeldmanipulation	Der Zustand einer Zelle soll durch Mausklick darauf auf einen wählbaren Wert einstellbar sein. Das Wählen des Werts soll durch ein Texteingabefeld auf der Benutzeroberfläche Erfolgten. Details in der Beschreibung der Benutzeroberfläche.
M0011	Topologie	Das Randverhalten des Spielfelds soll zwischen begrenztem Rechteck und Torus (Zellen an den Kanten sind mit den ihnen gegenüberliegen zellen benachbart) wählbar sein.
M0012	Automatische Simula- tion	Die Simulationsgeschwindigkeit soll über einen Slider einstellbar sein. Die Simulation soll über einen Button gestartet und unterbrochen wer- den können.
M0013	Manuelle Simulation	Über einen Button soll die nächste Generation berechnet und angezeigt werden können.
M0014	Zufälliger Anfangszus- tand	Der Spielfeldzustand soll zufällig generier- bar sein. Dazu soll einem Zellzustand eine Wahrscheinlichkeit zugewiesen werden können, mit dem Default-Zustand 0, sodass jede Zelle genau einen Zustand erhält.
M0015	Startbedingungen	Beim Programmstart soll ein 80x80 Zellen großes Spielfeld präsentiert werden, auf welches die Spielregeln für Conway's Game of Life verwendet werden.

M0016	Nachbarschaftswahl	Die Verwendung von sowohl Moore als auch Neumann Nachbarschaft muss ermöglicht werden. Am Rand einer endlichen Fläche können nicht alle Nachbarn existieren und werden auch nicht gezählt.
M0017	Numerische Anzeige	Der genaue Wert einer Zelle muss irgendwie
M0017	des Zellzustandes	anzeigbar sein.

1.2 Wunschkriterien

W0001	Undo	Es sollen Eingaben rückgängig gemacht wer- den können.
W0002	Regeleditor	Eingabe der Regeln in für Menschen gut les- barer Mathematischer Schreibweise, mit Grun- drechenarten und logischen Operationen
W0003	Performance	Multithreading parallelisierbarer Prozesse
W0004	Farbanpassung	Wenn möglich soll die Farbe eines Zustands durch den Benutzer einstellbar sein.
W0005	Wahl der Nach- barschaft	Es wurde gewünscht, zwischen der Von- Neumann-Nachbarschaft und Moore- Nachbarschaft wählen zu können. Hierzu sei angemerkt dass dies nichts anderes erfordert, als zwei verschiedene Transitionsregeln mitzuliefern, welche entsprechend benannt sind und dann geladen werden können. Es kann genauso ein Transitionsregel-Ausdruck für Von-Neumann Nachbarschaft wie für Moore-Nachbarschaft gebaut werden, indem die entsprechenden diagonalliegenden Zellen berücksichtigt werden oder eben nicht. Daher ist für dieses Feature keine Ergänzung in der Programmarchitektur erforderlich.

2 Produkt-Einsatz

2.1 Anwendungsbereich

Das Programm soll dazu dienen, Zelluläre Automaten mit recht großer Freiheit bauen zu können. Ob es sich dann um Game of Life, einen Waldbrandsimulator handelt, ist dann außen vor.

2.2 Zielgruppen

Die Verwendung dieses Programms für Conway's Game of life ist einfach, da die Spielregeln mitgeliefert werden. Dies kann von allen interessierten ausprobiert werden, da die Manipulation des Spielfelds zum ausprobieren einlädt.

Leider ist es nicht möglich, den Regeleditor intuitiv bedienbar zu gestalten, da es für eine effiziente Verarbeitung notwendig ist, den Zustand einer Zelle in der nächsten Generation als Mathematische Funktion der Zustönde der Nachbarzellen darzustellen. Aus diesem Grund gibt es zwar einen Leitfaden, um Mathematische Funktionen mit den Umliegenden Zellen als Ausgangsdaten zu erstellen, es ist jedoch nicht einfach, dies zu tun. Deal with it.

2.3 Produktumgebung

2.3.1 Softwareanforderungen

- Ein "Java Runtime Envrionment" der Version 1.8.x oder neuer. Ältere Versionen werden nicht getestet.
- Betriebssystem, was in der Lage ist, besagte JRE auszuführen.

2.3.2 Hardwareanforderungen

- Ein Computer aus diesem Jahrtausend mit einer Prozessorarchitektur für die eine JRE verfügbar ist. Dual-Core oder besser empfohlen, Dienstalter nicht über 1,6 Dekaden.
- Farbmonitor mit ausreichend Nutzfläche mindestens 80 *80 Pixel. Empfohlen wird ein HD Ready Display mit 720*1280 Pixeln.
- Maus die mit Links.-/ Rechtsklicktasten und einem Mausrad bestückt ist.
- Tastatur

2.4 Betriebsbedingungen

- Schreib- und Leserechte für die Speicherstände.
- Verfügbarer Speicherplatz (großzügigerweise werden 500 MB Festplattenspeicher empfohlen).
- Arbeitsspeicher angepasst an die Feldgröße (Standardtkonfiguration benötigt 128 MB).

3 Produktfunktionen

3.1 Funktionale Anforderungen

3.1.1 Benutzeroberfläche

Nach dem Start wird folgende Oberfläche als Standard erscheinen. Im folgenden werden die (numerierten) UI-Elemente erläutert.

Hauptbenutzerfläche

AF-01	Spielfeldeditor	Mausklick auf den Button Spielfeldeditor öffnet das
AL-01		Dropdownmenü "Spielfeldeditor".
AF-02	Regeleditor	Mausklick auf den "Regeleditor- Button " öffnet das
AF-02		Dropdownmenü "Regeleditor"
	Undo/Redo	Mausklick auf "undo" macht die letzte Eingabe des
AF-03		Spielers rückgängig. "Redo" stellt sie wieder her
		(Hochoptional)
AF-04	Simulation starten / un-	Mausklick auf den Button schaltet die automatische
Ar-04	terbrechen	Simulation an oder aus.

AF OF	Stepover	Mauklick auf den "STEP- Button" führt genau einen
AF-05		Simulationsschritt aus.
	Delay–Slider	Mit diesem Slider kann die Verzögerung zwischen
AF-06		zwei Generationen zwischen 1 und 0 sekunden
		stufenlos ausgewählt werden.
	Zellmodifikation	In diesem Textfeld kann (nur int) der Wert festgelegt
AF-07		werden, auf den eine Zelle gesetzt werden soll, falls
		man mit der Maus darauf klickt.

Anwendungsfall ID	AF-01
AF Name	Spielfeldeditor
Akteur	Benutzer des Programms
Vorbedingung	Programm gestartet, Benutzer lebendig
Auslösendes Ereignis	Mausklick auf den "Spielfeldeditor-Button"
Nachbedingung Erfolgt	Öffnen des Dropdownmenü "Spielfeldeditor"
Nachhadingung Eablachlag	Ausgeben der programminternen Fehlermeldung im
Nachbedingung Fehlschlag	Dialogfenster.
Ablauf	Nutzer klickt auf Button und das Dropdown-Menü
Ablaui	"Spielfeldeditor" (SE-0X) öffnet sich.
Anwendungsfall ID	AF-02
AF Name	Regeleditor
Akteur	Benutzer des Programms
Vorbedingung	Programm gestartet, Benutzer lebendig
Auslösendes Ereignis	Mausklick auf den "Regeleditor-Button"
Nachbedingung Erfolgt	Öffnen des Fensters "Regeleditor"
Nachhadingung Fahlachlag	Ausgeben der programminternen Fehlermelung im
Nachbedingung Fehlschlag	Dialogfenster.
slauf	Nutzer klickt auf Button und das Regeleditor-
Ablauf	Dropdownmenü öffnet sich.
Anwendungsfall ID	AF-03
AF Name	Undo/Redo
Akteur	Benutzer des Programms
Voule oding our g	Irgendeine Aktion im Programm wurde bereits
Vorbedingung	durchgeführt.
Auslösendes Ereignis	Mausklick auf den Undo- bzw. Redo-Button
Nachhadinguna Erfalat	Undo: Rückgängig machen der zuletzt ausgeführten
Nachbedingung Erfolgt	Aktion. Redo: Wiederherstellen. Hochoptional.
Nachhadingung Fahlachlac	Undo: Fehlermeldung : "Nichts zurückzusetzen",
Nachbedingung Fehlschlag	Redo: Fehlermeldung: "nichts wiederherzustellen".
	Nutzer klickt auf Undo, die zuletzt ausgeführte Aktion
Ablauf	wird zurückgesetzt. REDO: die zuletzt ausgeführte
	Aktion wird wiederhergestellt.

Anwendungsfall ID	AF-04
AF Name	Play/Pause
Akteur	Benutzer des Programms
Vorbedingung	Programm gestartet, Benutzer lebendig
Auslösendes Ereignis	Mausklick auf den "Play/Pause-Button"
	Umschalten der Simulation zwischen "Simulation
	läuft" und "Pausiert" Anzeige des aktuellen Spielzu-
Nachbedingung Erfolgt	stands durch Icon oder Farbe. Automatischer fortlauf
	Zeitdiskreter Aktualisierung aller Zellzustände an-
	hand der Transitionsregeln.
Nachbedingung Fehlschlag	Ausgeben der programminternen Fehlermelung im
Nachbeumgung i entschag	Dialogfenster.
	Simulation gestoppt: User klickt auf Button, Simu-
	lation startet, Button zeigt nun ein rotes Quadrat an.
Ablauf	Simulation läuft: User klickt auf Button, Simulation
	stoppt. Button zeigt nun ein rechtsweisendes grünes
	Dreieck an.
Anwendungsfall ID	AF-05
AF Name	STEPOVER
Akteur	Benutzer des Programms
Vorbedingung	Programm gestartet, Benutzer lebendig und im
Voibeungung	Vollbesitz seiner Maus
Auslösendes Ereignis	Mausklick auf den "STEPOVER-Button"
Nachbedingung Erfolgt	Einamlige Zeitdiskrete Aktualisierung aller Zel-
Nachbedingting Enouge	lzustände anhand der Transitionsregeln.
Nachbedingung Fehlschlag	Ausgeben der programminternen Fehlermelung im
ivacinocumyung remschiag	Dialogfenster.
Ablauf	Nutzer klickt auf Button und der Zelluläre Automat
ADIAUI	bewegt sich genau einen Simulationsschritt weiter.

Anwendungsfall ID	AF-06
AF Name	Delay-Slider
Akteur	Benutzer des Programms
Vorbedingung	Programm gestartet, Benutzer lebendig
Auslösendes Ereignis	Mausklick und Ziehen auf dem "Delayslider"
No alaba din anno a Enfalat	Anpassung des Simulationsschritt-Delays zwischen
Nachbedingung Erfolgt	0 und 5 Sekunden
Nachhadinauna Fahlachlac	Ausgeben der programminternen Fehlermelung im
Nachbedingung Fehlschlag	Dialogfenster.
	Nicht im Ernst Sliderbedienungsfähigkeit wird
	vorausgesetzt.
	Die Verzögerung ist genau als solche zu verstehen:
Ablauf	Sie definiert die Zeit, die das Programm zwischen
	zwei Spielfeldzustandsiterationen verstreichen lässt.
	Über den Wertebereich kann bei Bedarf verhandelt
	werden.

Anwendungsfall ID	AF-07
AF Name	Zellmodifikation
Akteur	Benutzer des Programms
Vorhodingung	Programm gestartet, Benutzer lebendig und mit
/orbedingung	einem Alkoholpegel < 5 %
Auslösendes Ereignis	Mausklick auf das "Zustandstextfeld" oder auf das
Austoseniues Lieigins	"Spielfeld"
	Textfeld: User kann neuen Edit-Zielzustand
Nachbedingung Erfolgt	angeben und mit Enter bestätigen. Spielfeld:
Nachbeungung Enoigt	Zustand der angeklickten Zelle wird auf den Zustand
	im Textfeld gesetzt.
	Textfeld: Bei Eingabe einer Zeichenfolge welche
Nachbedingung Fehlschlag	keinen signed Integer repräsentiert: Fehlermeldung
	und bisherigen Zustand beibehalten.
	Textfeld: Nutzer klickt auf Textfeld.
	Nutzer gibt ein, welcher Zielzustand
	gewünscht ist. Nutzer bestätigt mit Enter.
	Spielfeld: Nutzer klickt beliebige Zelle
	an. Zustand der Zelle wird überschrieben
	durch Zustand im Textfeld Bei Abbruch
Ablauf	wird der vorherige Wert weiterverwendet.
	Hinweis: Die Alkoholprüfung wird beim Programm-
	start durch bestätigung eines Pop-Ups durchgeführt
	"Dieses Programm darf nur von Personen mit einem
	Alkoholpegel < 5% verwendet werden. Durch klick
	auf OK bestätigen Sie, dass sie diese Bedingung
	erfüllen"

Nachtrag Dialogfenster:

Dialogfenster lassen sich innerhalb des Pragrammes nicht den Fokus entnehmen, bis die Interaktion abgeschlossen ist.

Regeleditor

RF-01	Laden	Ruft den Filechooser zum Laden eines anderen
Kr-01		Regelausdrucks auf
RF-02	Speichern	Ruft den Java-Swing-Filechooser zum Speichern
Kr-02		des aktuellen Regelausdrucks auf.
RF-03	Topologiewechsler	Auswahlschalter für das Spielfeldrandverhalten.
DE 04	Regel Bearbeiten	Ruft das Popup-Fenster zum Regelausdruck bear-
RF-04		beiten auf.

Anwendungsfall ID	RF-01
AF Name	Laden
Akteur	Benutzer des Programms
Vorkadingung	Programm gestartet, Benutzer lebendig, Dropdown-
Vorbedingung	menü "Regeleditor" auswählen
Auslösendes Ereignis	Mausklick auf den "Laden- Button"
Nachhadingung Erfolgt	Öffnen des Java-Swing-Fensters mit FileChooser
Nachbedingung Erfolgt	zum öffnen einer Regeldatei
	Fehlermeldung "Laden Fehlgeschlagen", ggf. mit
Nachhadingung Fahlachlag	Ursache "fehlerhafter Ausdruck" oder "zugriffsfehler"
Nachbedingung Fehlschlag	und Rückkehr zur Haupt-Oberfläche. Beibehalten
	der bisherigen Regeln.
	Nutzer klickt auf Button und öffnet das Fenster
	zum laden einer Regeldatei. Durch auswählen
Ablauf	und Bestätigen durch klick auf "Öffnen" wird die
Addui	aktuell aktive Regel durch die geladene ersetzt.
	Prüfung mittels Algorithmus, ob die Regel der Syntax
	entspricht. Filechooser gibt Dateiformat .txt vor.
Anwendungsfall ID	RF-02
AF Name	Speichern
Akteur	Benutzer des Programms
Vorhedingung	Programm gestartet, Benutzer lebendig, Dropdown-
Vorbedingung	menü "Regeleditor" auswählen
Auslösendes Ereignis	Mausklick auf den "Speichern- Button"
Nachbedingung Erfolgt	Öffnen des Java-Swing-Fensters mit FileChooser
Nachbeumgung Enougt	zum speichern einer Regeldatei als plain text string.
Nachbedingung Fehlschlag	Fehlermeldung "Fehler beim Speichern" und
Nachbeumgung i entschag	Rückkehr zur Haupt-Oberfläche.
	Nutzer klickt auf Button und öffnet das Fenster zum
	Speichern einer Regeldatei. Durch auswählen und
Ablauf	Bestätigen durch klick auf "Öffnen" wird die aktuell
	aktive Regel an besagter Stelle im Dateiformat .txt
	gespeichert.

Anwendungsfall ID	RF-03
AF Name	Topologie
Akteur	Benutzer des Programms
Vorhodingung	Programm gestartet, Benutzer lebendig, Dropdown-
Vorbedingung	menü "Regeleditor" auswählen
Auslösendes Ereignis	Mausklick auf den "Topologie- Radio- Button"
Nachhadingung Erfolgt	Setzen der Spielfeldkantenbehandlung auf Torus
Nachbedingung Erfolgt	oder Beschränkt, je nach Wunsch.
Nachhadingung Fahlachlag	Ausgeben der programminternen Fehlermeldung im
Nachbedingung Fehlschlag	Dialogfenster.
	Durch Klick auf "Standard" wird das Spielfeld als
Ablauf	endliches Spielfeld behandelt, an den Kanten wer-
	den alle nachbarzellen als "Zustand 0" angenom-
	men. Durch klick auf "Torus" werden die Zellen an
	den Kanten die Zellen an gegenüberliegenden Kan-
	ten als Nachbarn behandeln.

Regeleditor Popup-Fenster mit Texteingabe:

Anwendungsfall ID	RF-04	
AF Name	Regel Bearbeiten	
Akteur	Benutzer des Programms	
Vorbedingung	Programm gestartet, Benutzer lebendig, Dropdownmenü	
Vorbealinguing	"Regeleditor" ausgewählt.	
Auslösendes Ereignis	Mausklick auf den "Regel Bearbeiten"-Button im Regeleditor-	
Austosenues Lieignis	Dropdownmenü	
Nachbedingung Erfolgt	Öffnen des Popupfensters "Regeleditor" (siehe oben).	
N 11 P = 11 11	Ausgeben der programminternen Fehlermeldung im Dialogfen-	
Nachbedingung Fehlschlag	ster.	
	Öffnen des Übergangsregel-Editors. Beim Öffnen steht im	
	Textfeld die zurzeit verwendete Transitionsregel. Durch Tas-	
	tatureingabe kann der String im Textfeld verändert werden, womit	
Ablauf	die Transitionsregel angepasst wird. Ferner gibt es ein Bild links,	
Ablaul	welches als Hilfestellung die Variablen angibt, welche die Zel-	
	lzustände von Nachbarzellen angeben. Auf die Weise kann der	
	Zustand der akuell betrachteten Zelle für die nächste Iteration auf	
	Basis ihrer Nachbarn berechnet werden	

Spielfeldeditor Dropdown

SE-01	E-01 Laden	Ruft Filechooser auf, worüber ein bereits gespe-
SE-01 Lauen	ichertes Spielfeld geladen wird.	
SE-02	CF 03 Finfings	Einen kleineren Spielfeldzustand in das Aktuelle wird
3L-02	Einfügen	an einer beliebigen Stelle eingefügt.
SE 02	Spaicharn	Aktueller Zustand des Spielfeldes wird in einer Datei
SE-03	SE-03 Speichern	gesichert.
	Dimensionen: Das erste Eintragskästchen gibt die	
SE-04	SE-04 Größe	Breite an, das Zweite die Höhe des gewünschten
	Spielfeldes.	
CE AF		Das aktuelle Spielfeld wird auf die gewünschten Di-
SE-05 Anwenden	mensionen gebracht.	
CE OC	SE-06 Zufallsgenerator	Werkzeug um das Spielfeld mit Zufälligen werten zu
SE-00		füllen.
SE-07	Clear	Generiert ein leeres Spielfeld.

Anwendungsfall ID	SE-01
AF Name	Laden
Akteur	Benutzer des Programms
	Simulation über den "Play/Pause- Button"
Vorbedingung	pausieren. Hintergrundfarbe des Buttons färbt
	sich grau.
Auslösendes Ereignis	Mausklick auf den "Laden- Button"
	Öffnen des Java- Swing- Filechoosers zum öffnen
Nachbedingung Erfolgt	der Spielfeld .csv Datei. Nach beenden des
	Auswählens: Rückkehr auf die Hauptoberfläche.
Nachbedingung Fehlschlag	Ausgbe der programminternen Fehlermeldung im Di-
Nachbedingung Fentschlag	alogfenster.
	Nutzer klickt auf den Laden-Button und wählt die
Ablauf	jeweilige Datei aus, die in das Spiel eingebunden
	werden soll.
Anwendungsfall ID	SE-02
AF Name	Einfügen
Akteur	Benutzer des Programms
	Simulation über den "Play/Pause- Button"
Vorbedingung	pausieren. Hintergrundfarbe des Buttons färbt
	sich grau.
Auslösendes Ereignis	Mausklick auf den "Einfügen- Button"
	Öffnen des Java- Swing- Fensters mit Filechooser
Nachbedingung Erfolgt	zum öffnen einer Datei um ein kleineren Spielzustand
	per "Drag and Drop" in das aktuelle Spiel einzufügen.
Nachbedingung Fehlschlag	Ausgbe der programminternen Fehlermeldung im Di-
Nachbeumgung Fentschlag	alogfenster.
	Nutzer klickt auf den "Einfügen-Button" und wählt
	aus dem Pop-Up-Fenster den jeweiligen Spielzu-
	stand aus, der in das Spielfeld eingebunden wer-
Ablauf	den soll. Anschließend Rückkehr zur Haupto-
	berfläche, auf welcher der Nutzer den einzufügenden
	Spielstand nun per linksklick an gewünschter Stelle
	einfügen kann.

3.2 Transitionsregeleditor: Heimlicher Star der ganzen Show

Die Forderung, die Transitionsregeln des Spiels zur Laufzeit (nicht zur Simulationszeit) verändern zu können, benötigt einen Interpreter, weil Code nicht wirklich nachkompiliert werden kann. Da die Zellzustände als Integer-Variablen gespeichert sind, ist es leicht, Arithmetik mit ihnen zu betreiben. Vergleichsoperationen können dadurch eingesetzt werden, dass "wahr" wie "1" und "falsch" wie "0" behandelt wird. Ferner ist es zwingend notwendig, das Verwenden von Klammern zu erlauben. Es ist Nützlich, den Ausdruck in gewohnter Mathematischer Schreibweise angeben zu können, dies für jede Zelle auszuwerten ist jedoch ressourcenintensiv und daher ungeeignet. Denselben Ausdruck in invers polnischer Notation anzugeben verkürzt die Berechnungsdauer enorm, weil sie jetzt proportional zur Länge des invers polnisch aufgeschriebenen Ausdrucks ist, statt dass darüber hinaus jedes mal der Ausdruck rekursiv geparst werden muss. Ob es in der vorgegebenen Zeit gelingt, einen Übersetzer zu schreiben ist fraglich. Daher werden hier Beispiele für mathematische und Polnische Notation angegeben.

Erforderlich ist es dafür, die Zellzustände der Nachbarzellen in Variablen bereitzustellen, welche in der Syntax verwendet werden können, zur Vereinfachung wird für Moore-Nachbarschaft und Von-Neumann-Nachbarschaft zusätzlich die Summe der betreffenden Variablen geliefert, um Schreibaufwand zu sparen. Aus Zeit- und Lohngründen ist es nicht vorgesehen, die Verwendung von eigenen Variablen zu ermöglichen.

Die zur Verfügung stehenden Variablen und Operatoren:

Symbol	Name	Beschreibung
	Addition	Addiert die Zahlen links und rechts des
+	Addition	Operators
	Subtraktion	addiert den linken Wert mit dem neg-
_	Subtraktion	ativen des rechten Wertes
.1.	multiplikation	multipliziert den linken Wert mit dem
*		rechnten Wert
	/ division	dividiert den linken durch den rechten
		Wert. Achtung: Zellzustände sind
1		integer, daher wird die Division wie
		Division von Integern in Java stets
		abgerundete Ergebnisse produzieren.

=	gleichheit	gibt 1 zurück, wenn die linke Seite gleich der rechten ist, andernfalls gibt es 0 zurück VORSICHT: Es ist kein Zuweisungsoperator
&	AND	gibt den Integer zurück, den die bitweise Und-Operation auf linker und rechter Seite produziert. Die Verant- wortung, gültige Ausdrücke zu finden wird dem Benutzer auferlegt.
_	OR	gibt den Integer zurück, welchen die bitwesie Oder-Operation auf linker und rechter Seite produziert. Die Verantwortung, Regeln gültig aufzuschreiben wird dem Benutzer auferlegt.
#	XOR	gibt den Integer zurück, welcher bei der bitweisen XOR-Verknüpfung zwiischen linker und rechter Seite entsteht. Benutzung auf eigene Gefahr.
<	kleiner	gibt 1 zurück, wenn der linke Wert strikt kleiner ist als der rechte, anson- sten 0
>	größer	gibt 1 zurück wenn der linke Wert strikt größer ist als der rechte, ansonsten 0
0	Klammern	Klammern legen wie üblich fest, welche Operationen vor anderen Operationen ausgeführt werden sollen. Sie entfallen in polnischer Schreibweise

a, b, c, d, e,		Variablen, welche die Werte der be- nachbarten Zellen enthalten. Die
f, g, h	Nachbarn	Anordnung entnehmen Sie bitte dem
		Bild "Regeleditor"
		Variable, welche den Wert der be-
7	Zellzustand	trachteten Zelle zurückgibt, sodass
Z	Zelizustanu	dieser in der Berechnung verwendet
		werden kann.
		Variable welche die Summe aller
		Nachbarzellen zurückgibt. Nützlich,
m	moore-	um Schreibaufwand zu sparen,
	Nachbar	wenn die einzelnen Zellzustände
		nicht interessant sind.Äquivalent zu
		(a+b+c+d+e+f+g+h)
		Variable welche die Summe aller
	Neumann-	Neumann-Nachbarzellen zurückgibt,
n	Nachbar	um Schreibaufwand zu sparen.
		Äquivalent zu (b+d+f+h)

In dieser Schrebweise sieht die Transitionsregel für Conways Game of Life wie folgt aus:

$$Zn:((m=2)\&(z=1))|(m=3)$$

In umgekehrt polnischer Notation für den Rechner:

$$|,=,m,3,\&,=,z,1,=,m,2|$$

Dabei stehen Zahlen bzw. Variablen für die Operation "lege auf den Stack", ein Operator nimmt die beiden vorhergehenden Werte von links nach rechts vom Stack und legt das Ergebnis zurück auf den Stack. Wird dieser Ausdruck von Rechts nach links durchlaufen, so ist die Berechnung dieselbe wie in geklammerter Schreibweise, weniger Übersichtlich für einen Menschen, aber für einen Computer mittels eines nachgebauten Stacks und switch-Case-Anweisungen schneller ausführbar als der geklammerte Ausdruck. Hoffentlich ist diese Methode effizient genug, um eine zügige Simulation zu ermöglichen. Natürlich würde es in Hardware direkt schneller gehen, aber wir habe

3.3 Nichtfunktionale Anforderungen

3.3.1 Performance

• Lineare Laufzeit der Generationsberechnung pro Spielfeldgröße

4 Testszenarien

4.1 UI

Das UserInterface bietet einige Möglichkeiten für Probleme. Für alle Texteingabefelder muss zur Laufzeit geprüft werden, ob der User-Input in Ordnung ist und bei Bedarf Fehlermeldungen ausspucken. Beispiel: Die Spielfeldgröße muss unbedingt vom Typ int sein. "abeuiae" ist keine valide Spielfeldgröße. Ferner muss geprüft werden, ob alle Knöpfe ausschließlich das tun, was sie sollen und nicht spaßige Nebeneffekte erzeugen. Knöpfe, die was am Spielfeld ändern, dürfen während der Simulation nicht betätigbar sein. Man muss fähig sein Zustände wieder zu verlassen, ohne das Programm zu beenden. Überschreiten des Wertebereiches von int darf nicht zum Absturz oder unvorhersehbarem Verhalten führen.

4.2 Verarbeitung

Der Regelinterpreter bekommt den Regelsatz für Game of Life und es werden bekannte Formationen eigegeben und geschaut, ob diese sich auf Langzeit stabil verhalten. Es wird eine Regelsatz entworfen, welcher zu Überschreitung des Zahlenbereichs int führt. Das Programm muss weiter Funkitionieren. Es wird empirisch getestet, ob bei dem Zufallsgenerator ausschließlich erwünschte Zustände mit jeweiligen Verteilungen generiert werden. Die Funktion der Topologien wird überprüft.

4.3 Speichern

Der Java Filechooser wird wohl funktionieren, nicht wahr? Zugriffsfehler(Rechte oder Speicherplatz bedingt) müssen abgefangen werden.

4.4 Performance

Eine flüssige Interaktion mit der UI ist gewährleistet, wenn die Hardwareanforderungen (s. 2.3.3) eigehalten werden.

4.5 Stabilität

Langzeittest mit Testperson. Ist eher ein Test der Ausdauer von besagter Person.

5 Entwicklungsumgebung

5.1 Verwendete Software

Betriebssysteme:	MacOS X, Windoof X, Linux X
Bildbearbeitung & Diaagramme	GIMP, Photoshop, Modelio
Programmierung & Versionierung	Eclipse, Eclipse Window builder, GIT

5.2 Verwendete Hardware

Intelligente Frühstücksbrettchen mit abwaschbarer Benutzeroberfläche verschiedener Hubraumk-lassen.

5.3 verwendete Organisation

Haben Sie wirklich den Eindruck, dass hier irgendwas organisiert abläuft? Aber gut, ein Versuch: Wenn etwas schief geht, ist Alex schuld. Wenn jemand Ahnung hat, dann Nico. Wenn jemand Protokoll schreibt, dann Felix. Wenn jemand gute Laune hat, dann Jörg. Wenn jemand Photoshop macht, dann Diaa.

Glossar

Performance Geschwindigkeit der Software. Java Runtime Environment. Ein Stück erhältliche Software, die es Ermöglicht Jappengramme auszuführen. "Comma separated values" simples Tabelle Dateiformat. Trennung von Spalten du Kommata und Zeilen durch Umbrüche. .txt Dateiendung für Textdateien. Ein Konzept zur Modellierung dynamisch	
Programme auszuführen. "Comma separated values" simples Tabelle .csv Dateiformat. Trennung von Spalten du Kommata und Zeilen durch Umbrüchetxt Dateiendung für Textdateien.	<u> </u>
.csv Dateiformat. Trennung von Spalten du Kommata und Zeilen durch Umbrüchetxt Dateiendung für Textdateien.	
Ein Konzept zur Modellierung dynamisc	
Systeme. Zellen die eine bestimmte Mei von zuständen einnehmen können befind sich in einem Raum. Die Räumlich nächs Zellen bilden die Nachbarschaft. Aus deigenen Zustand und dem der Nachbarn erg sich über eine Transitionsregel der Folgezeitand.	enge nden sten dem rgibt
Vorschrift die unter Verwendung vorhande Transiitonsregel Daten den Zustand einer Zelle in den Nächs überfuhrt.	
Dynamische Abbildung, meist realer Sachv Simulation halte, anhand eines Modells, durch Anwe dung des Modells über Zeit.	
Spielfeld Zweidimensionales Feld aus Zellen	
Zelle Ein zellular Automat (Zelle), der einen Zusta (lebendig oder tot) annehmen kann.	tand
Beste Erfindung der Welt. Klammerfreie No tion von Algorithmen, die auf einem Stack au geführt werden können.	
Syntax Regeln zur Anordnung und Reihenfolge v Zeichensystemen	von
Spielfeld Ein abgegrenztes 2D Feld aus Zellen.	

Der Zustand einer Zelle (lebendig oder tot) in
der Folgegeneration hängt nur vom aktuellen
Zustand der Zelle selbst und den aktuellen
Zuständen ihrer Nachbarzellen ab.
Zellen mit dem Zustand "lebendig", die über
Kanten oder Ecken mit der aktuellen Zelle ver-
bunden sind.
Leute die auf MEINEM Parkplatz parken und
den Hund mitten in der Nacht bellen lassen.
Benachbarte Zellen sind die, die über Ecken
und Kanten verbunden sind.
Benachbarte Zellen sind die, die über Kanten
verbunden sind. 4 an der Zahl.
Das was man sieht wenn man das Programm
Startet. Enthält alle Editoren, das Spielfeld und
die Knöpfe zur Steuerung der Simulation.
Enthält alle Einstellungen zum festlegen der
Zellen Zustände und Größe.
Enthält alle Einstellungen der Transisition-
sregeln.