CSIT 6000M(L1) Reproduction and Improvement of xDeepFM

GROUP 13 ZHANG, Hexiao 20932780 ZHENG, Ke 20882179

CONTENT

- Background
- Previous Work
- Network Architecture
- Experiments
- Summary

BACKGROUND

- The explosive growth of online platforms, including e-commerce, social media, and online advertising, has made personalized recommendations ubiquitous in our daily lives
- 2 stages
 - a. Retrieval system: find relevant items in a database
 - b. Ranking system: rank the items based on predicted scores
- We focus on the score-predicting model of ranking system
 - a. Predict the score $P(y \mid x)$: the probability of a user action label y given the features x
 - b. Click- through rate (CTR) prediction

BACKGROUND

	zip_code	store_id	age	gender	previous_sales	target_sales
customer_id						
1215425	84342	425	34	0	4322.15	3119.64
8861344	86179	218	52	1	18.75	0.00
7886511	24306	101	42	1	341.17	440.91
***	-	100	344		144	
4452336	84094	218	46	0	1312.66	1430.36
7788899	75011	604	47	0	19.97	177.05
1234687	80011	123	23	- 1	426.18	398.61

- Features are often highly sparse
- More complex combinations are needed
- Key problem: Feature Interactions

PREVIOUS WORK

Model	Learning fashion	Interaction level	Interaction degree	Characteristics	
Manual Engineering				-High cost -Difficult in large-scale systems -Not generalize to unseen interactions	
Factorization Machine (FM)	Explicit	Vector-wise	Low-order	-Include useless interactions	
Deep Neural Networks (DNNS)	Implicit	Bit-wise	High-order	-Learn arbitrary function -Implicit -At the bit-wise level	
Hybrid model (e.g., Wide & Deep, DeepFM)	Implicit	Bit-wise	Low-order & High-order	-Learn arbitrary function -Implicit -At the bit-wise level	
Deep & Cross Network (DCN)	Explicit	Bit-wise	High-order	-Bit-wise level -Output is limited in a special form	

CIN ARCHITECTURE

$$\mathbf{X}_{h,*}^{k} = \sum_{i=1}^{H_{k-1}} \sum_{j=1}^{m} \mathbf{W}_{ij}^{k,h} (\mathbf{X}_{i,*}^{k-1} \circ \mathbf{X}_{j,*}^{0})$$

$$\mathbf{X}^0 \in \mathbb{R}^{m \times D}$$

CIN ARCHITECTURE

$$\mathbf{Z}^{k+1} = \mathbf{X}^k \times \mathbf{X}^0$$

$$\mathbf{X}_{h,*}^{k} = \sum_{i=1}^{H_{k-1}} \sum_{j=1}^{m} \mathbf{W}_{ij}^{k,h} (\mathbf{X}_{i,*}^{k-1} \circ \mathbf{X}_{j,*}^{0})$$

CIN ARCHITECTURE

$$p_i^k = \sum_{j=1}^D \mathbf{X}_{i,j}^k$$

$$\mathbf{p}^k = [p_1^k, p_2^k, \dots, p_{H_k}^k]$$

$$\mathbf{p}^+ = [\mathbf{p}^1, \mathbf{p}^2, ..., \mathbf{p}^T] \in \mathbb{R}^{\sum_{i=1}^T H_i}$$

$$y = \frac{1}{1 + exp(\mathbf{p}^{+\mathsf{T}}\mathbf{w}^o)}$$

xDeepFM ARCHITECTURE

- Embedding layer:
 raw features → feature embeddings
- Linear part: raw features → output Low-order feature interactions
- DNN part: feature embeddings → output Implicit high-order, bit-wise level
- CIN part: feature embeddings → output Explicit high-order, vector-wise level

IMPROVEMENT

Insights

- Original CIN can only handle category (sparse) features.
- The interactions related to dense features are modeled by other components of xDeepFM.

Our Proposed Improvement

Extend dense features into vectors by replication.

Criteo Dataset

- Classic dataset for predicting CTR
- Each sample contains its label, 26 sparse features and 13 dense features.
- Used 40% of training set due to limitation of computing resources.

Training set: Val set: Test set = 64%: 16%: 20%

Each epoch may take more than 1 hour.

Hyper Parameters

Followed the settings of the original xDeepFM paper.

Evaluation

- AUC (Area Under the ROC curve)
 Measure the probability that a positive instance will be ranked higher than a random negative one.
- Logloss (Cross Entropy)
 Measure the distance between the predicted score and the true label.

Reproduction and Ablation Studies

- Slightly lower performance compared to original paper due to the division of the dataset.
- Validate the effectiveness of combining CIN with DNN in xDeepFM.

3.6. 4.1	ATIC	Logloss	
Model	AUC	(Cross Entropy)	
Linear + CIN	0.7862	0.4635	
Linear + DNN	0.7955	0.4561	
xDeepFM	0.7959	0.4555	

Improved Models

- The performance improved after adding dense embedding to CIN
- Since CIN can model the relationships associated with dense features now, the role of DNN is no longer significant.

Model	Adding Dense Features or Not	AUC	Logloss (Cross Entropy)
T. CDI	×	0.7862	0.4635
Linear + CIN	✓	0.7974	0.4538
xDeepFM	×	0.7959	0.4555
(Linear + DNN + CIN)	✓	0.7974	0.4547

SUMMARY

- Reproduced xDeepFM on part of the Criteo dataset
- Proposed a simple method to vectorize dense features,
 enabling CIN to learn a comprehensive interactions for both sparse and dense features.

- Left for future work:
 - More comprehensive experiments and methods