```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

Import Data

```
In [2]: shop=pd.read_csv("shopping.csv")
shop.head()
```

Out[2]:		Administrative	Administrative_Duration	Informational	Informational_Duration	ProductRelated	ProductRelated_Duration	BounceRates	ExitRates	Pag
	0	0	0.0	0	0.0	1	0.000000	0.20	0.20	
	1	0	0.0	0	0.0	2	64.000000	0.00	0.10	
	2	0	0.0	0	0.0	1	0.000000	0.20	0.20	
	3	0	0.0	0	0.0	2	2.666667	0.05	0.14	
	4	0	0.0	0	0.0	10	627.500000	0.02	0.05	
						_				

Basic Metric

In [5]: shop.ndim

```
In [3]: shop.shape
Out[3]: (12330, 18)

In [4]: shop.size
Out[4]: 221940
```

```
Out[5]: 2
```

shop.dtypes			
Administrative	int64		
Administrative_Duration	float64		
Informational	int64		
Informational_Duration	float64		
ProductRelated	int64		
ProductRelated_Duration	float64		
BounceRates	float64		
ExitRates	float64		
PageValues	float64		
SpecialDay	float64		
Month	object		
OperatingSystems	int64		
Browser	int64		
Region	int64		
TrafficType	int64		
VisitorType	object		
Weekend	bool		
Revenue	bool		
dtype: object			

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12330 entries, 0 to 12329
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype				
0	Administrative	12330 non-null	int64				
1	Administrative_Duration	12330 non-null	float64				
2	Informational	12330 non-null	int64				
3	Informational_Duration	12330 non-null	float64				
4	ProductRelated	12330 non-null	int64				
5	ProductRelated_Duration	12330 non-null	float64				
6	BounceRates	12330 non-null	float64				
7	ExitRates	12330 non-null	float64				
8	PageValues	12330 non-null	float64				
9	SpecialDay	12330 non-null	float64				
10	Month	12330 non-null	object				
11	OperatingSystems	12330 non-null	int64				
12	Browser	12330 non-null	int64				
13	Region	12330 non-null	int64				
14	TrafficType	12330 non-null	int64				
15	VisitorType	12330 non-null	object				
16	Weekend	12330 non-null	bool				
17	Revenue	12330 non-null	bool				
<pre>dtypes: bool(2), float64(7), int64(7), object(2)</pre>							
memory usage: 1.5+ MB							

In [8]: shop.describe()

Out[8]:		Administrative	Administrative_Duration	Informational	Informational_Duration	ProductRelated	${\bf Product Related_Duration}$	BounceRates	ExitRa
	count	12330.000000	12330.000000	12330.000000	12330.000000	12330.000000	12330.000000	12330.000000	12330.0000
	mean	2.315166	80.818611	0.503569	34.472398	31.731468	1194.746220	0.022191	0.0430
	std	3.321784	176.779107	1.270156	140.749294	44.475503	1913.669288	0.048488	0.048
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
	25%	0.000000	0.000000	0.000000	0.000000	7.000000	184.137500	0.000000	0.0142
	50%	1.000000	7.500000	0.000000	0.000000	18.000000	598.936905	0.003112	0.025
	75%	4.000000	93.256250	0.000000	0.000000	38.000000	1464.157214	0.016813	0.0500
	max	27.000000	3398.750000	24.000000	2549.375000	705.000000	63973.522230	0.200000	0.2000
4									•

Checking for NULL

```
In [9]:
         shop.isna().sum()
        Administrative
                                   0
Out[9]:
        Administrative Duration
                                   0
        Informational
                                   0
        Informational_Duration
                                   0
        ProductRelated
                                   0
        ProductRelated Duration
                                   0
        BounceRates
                                   0
         ExitRates
                                   0
        PageValues
                                    0
        SpecialDay
                                    0
        Month
                                    0
        OperatingSystems
                                   0
        Browser
                                   0
        Region
                                    0
        TrafficType
                                    0
        VisitorType
                                   0
        Weekend
                                   0
        Revenue
                                   0
        dtype: int64
```

• There is no null in data set

Checking for duplicate

Non-Graphical Analysis

```
Administrative
0
     5768
1
     1354
2
     1114
3
      915
4
      765
5
      575
6
      432
7
      338
8
      287
9
      225
10
      153
11
      105
12
      86
       56
13
14
       44
15
       38
16
       24
17
       16
       12
18
19
        6
22
        4
24
        4
23
        3
20
        2
21
        2
26
        1
27
        1
```

Name: count, dtype: int64

Informational

```
2
14
11
        1
13
        1
16
        1
24
        1
Name: count, dtype: int64
Month
May
       3364
       2998
Nov
       1907
Mar
Dec
      1727
     549
0ct
      448
Sep
Aug
        433
        432
Jul
        288
June
Feb
        184
Name: count, dtype: int64
OperatingSystems
2
     6601
1
     2585
3
     2555
4
     478
8
      79
6
      19
       7
7
Name: count, dtype: int64
Browser
2
     7961
1
     2462
4
      736
5
      467
6
      174
10
      163
8
      135
3
       105
13
       61
```

```
7
     49
12
     10
11
      6
9
      1
Name: count, dtype: int64
Region
1
   4780
3
   2403
4
   1182
2
   1136
6
    805
7
    761
9
    511
8
    434
5
    318
Name: count, dtype: int64
*************************************
TrafficType
    3913
2
    2451
1
3
    2052
    1069
4
13
    738
10
    450
6
    444
8
    343
5
    260
11
    247
20
    198
9
     42
     40
7
15
     38
19
     17
14
     13
18
     10
16
      3
12
      1
17
Name: count, dtype: int64
```

```
Weekend
False
         9462
         2868
True
Name: count, dtype: int64
VisitorType
Returning Visitor
                     10551
New Visitor
                      1694
Other
                        85
Name: count, dtype: int64
Revenue
False
         10422
True
          1908
Name: count, dtype: int64
```

Graphical Analysis1

Univariate

```
In [12]: fig, axs = plt.subplots(nrows=3, ncols=3, figsize=(20, 12))
    columns = ['Administrative','Informational','Region', 'Weekend', 'VisitorType', 'Revenue', 'OperatingSystems', 'Browser']
    for ax, col in zip(axs.flatten(), columns):
        sns.countplot(data=shop, x=col, ax=ax, palette='viridis')
    plt.tight_layout()
    plt.show()
```


- People are visiting the 0th page more, and the visits gradually decrease towards the last page.
- The same pattern is observed for informal page visits, where the 0th page is visited the most, and it gradually decreases.
- It appears that, in the first region, most customers are from a specific demographic group.
- People are not preferring to shop on weekends.
- Retention is higher than the rate of new customer acquisition.
- Operating systems 1, 2, 3, and 4 are the most commonly used.

Bivarite

```
In [13]: fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(15, 8))
    columns = ['Weekend', 'Region', 'Browser', 'OperatingSystems', 'Month', 'SpecialDay']
    positions = [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]

for col, pos in zip(columns, positions):
        sns.countplot(data=shop, x=col, hue='Revenue', ax=axs[pos[0], pos[1]])

plt.tight_layout()
    plt.show()
```


- There is no significant increase in revenue on weekends.
- Compared to other regions, Region 1 had more customer purchases.
- The second browser appears to have a higher number of users.
- The revenue generated from the second operating system seems to be higher.
- In the current month, the revenue is higher compared to May and December.

• Almost all the distributions are right-skewed.

Correlation Analysis:

```
In [17]: corr=shop.corr(numeric_only=True)
In [18]: plt.figure(figsize=(15, 8))
    sns.heatmap(corr, annot=True, cmap='RdYlBu', vmin=-1, vmax=1)
    plt.show()
```


- BounceRates and ExitRates are highly correlated with each other compared to other features.
- The second most highly correlated pair are ProductRelated_Duration and ProductRelated.
- Information and Information_Duration are also 62% correlated with each other.
- PageValue and Revenue are highly correlated with each other.

• Administrative and Product_Related are also 43% correlated.

ExitRates vs BounceRates

```
In [19]: sns.scatterplot(data=shop,x='ExitRates',y='BounceRates',hue = 'Revenue')
plt.show()
```


• There is a 91% correlation between the two features

ProductRelated vs ProductRelated_Duration

```
In [20]: sns.scatterplot(data=shop,x='ProductRelated',y='ProductRelated_Duration',hue = 'Revenue')
plt.show()
```


• There is a 86% correlation between the two features

Pair Plot

```
In [21]: sns.pairplot(shop,hue = 'Revenue')
plt.show()
```


Class Distribution

```
In [22]: sns.displot(data=shop,x='Revenue')
    ax=plt.gca()
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.show()
```


• The distribution is not balanced, with approximately 90% of the values being 0.0 and only 10% being 1.0.

Analyze SpecialDay distribution and its correlation with Revenue

```
In [23]: sns.displot(data=shop,x='SpecialDay')
plt.show()
```



```
In [24]: sns.scatterplot(shop,x='SpecialDay',y='Revenue')
Out[24]: <Axes: xlabel='SpecialDay', ylabel='Revenue'>
```


• There is no correlation between Revenue and Special Day.

visited all three page categories.

```
In [25]: shop['visited_all_3_pages'] = (shop['Administrative'] > 0) & (shop['Informational'] > 0) & (shop['ProductRelated'] > 0)
shop['visited_all_3_pages']
```

```
False
Out[25]:
                   False
                   False
          3
                   False
          4
                   False
                   . . .
         12325
                   False
         12326
                   False
         12327
                   False
         12328
                   False
         12329
                   False
         Name: visited all 3 pages, Length: 12330, dtype: bool
In [26]: shop.visited_all_3_pages.value_counts()
         visited_all_3_pages
Out[26]:
         False
                   10163
         True
                    2167
         Name: count, dtype: int64
```

PageValues Vs TrafficType, VisitorType, and Region

```
In [27]: plt.figure(figsize=(8, 6))
    sns.histplot(shop['PageValues'], bins=30, kde=True)
    plt.title('Distribution of PageValues')
    plt.xlabel('PageValues')
    plt.ylabel('Frequency')
    plt.show()
```

Distribution of PageValues

• Almost values are between 0 to 25

PageValues Vs TrafficType

```
In [28]: sns.scatterplot(data=shop,x='PageValues',y='TrafficType',hue = 'Revenue')
plt.show()
```


PageValues Vs VisitorType

```
In [29]: sns.scatterplot(data=shop,x='PageValues',y='VisitorType',hue = 'Revenue')
plt.show()
```


PageValues Vs Region

```
In [30]: sns.scatterplot(data=shop,x='PageValues',y='Region',hue = 'Revenue')
plt.show()
```



```
In [31]: grouped = shop.groupby(['TrafficType', 'VisitorType'])['PageValues'].mean().unstack()
    plt.figure(figsize=(12, 8))
    sns.heatmap(grouped, cmap='YlGnBu', annot=True, fmt=".2f")
    plt.title('Average PageValues by TrafficType and VisitorType')
    plt.xlabel('VisitorType')
    plt.ylabel('TrafficType')
    plt.show()
```


Investigating user session lengths and their impact on conversion rates

```
In [32]: #Total session duration
    shop['Total_Duration'] = shop['Administrative_Duration'] + shop['Informational_Duration'] + shop['ProductRelated_Duration']
In [33]: plt.figure(figsize=(8, 6))
    sns.histplot(shop['Total_Duration'], bins=30, kde=True)
    plt.title('Distribution of Total Session Length')
    plt.xlabel('Total Session Duration (seconds)')
    plt.ylabel('Frequency')
    plt.show()
```

Distribution of Total Session Length

Compare Session Who Completed a Purchase vs Those Who Did Not

```
In [34]: plt.figure(figsize=(8, 6))
    sns.boxplot(data=shop, x='Revenue', y='Total_Duration')
    plt.title('Total Session Duration: Conversion vs. Non-Conversion')
    plt.xlabel('Revenue (Completed Purchase)')
    plt.ylabel('Total Session Duration (seconds)')
```

```
plt.xticks([0, 1], ['No', 'Yes'])
plt.show()
```


• The longer people spend time on the site, the higher the conversion rate tends to be.

```
In [35]: fig, axes = plt.subplots(1, 3, figsize=(18, 6))
sns.boxplot(data=shop, x='Revenue', y='Administrative_Duration', ax=axes[0])
```

```
axes[0].set_title('Administrative Duration vs. Revenue')
axes[0].set_xlabel('Revenue')
axes[0].set_ylabel('Administrative Duration (seconds)')

sns.boxplot(data=shop, x='Revenue', y='Informational_Duration', ax=axes[1])
axes[1].set_title('Informational Duration vs. Revenue')
axes[1].set_xlabel('Revenue')
axes[1].set_ylabel('Informational Duration (seconds)')

sns.boxplot(data=shop, x='Revenue', y='ProductRelated_Duration', ax=axes[2])
axes[2].set_title('ProductRelated Duration vs. Revenue')
axes[2].set_xlabel('Revenue')
axes[2].set_ylabel('ProductRelated Duration (seconds)')

plt.tight_layout()
plt.show()
```


• Here, we can see that the more time customers spend on administrative and product-related pages, the higher the chances of conversion.

Differences in behavior and conversion rates.

```
In [36]: sns.barplot(data=shop,x='VisitorType',y='Total_Duration',hue='Revenue')
```

Out[36]: <Axes: xlabel='VisitorType', ylabel='Total_Duration'>


```
In [37]: sns.barplot(data=shop,x='Region',y='Total_Duration',hue='Revenue')
```

Out[37]: <Axes: xlabel='Region', ylabel='Total_Duration'>

In [38]: sns.barplot(data=shop,x='OperatingSystems',y='Total_Duration',hue='Revenue')

Out[38]: <Axes: xlabel='OperatingSystems', ylabel='Total_Duration'>


```
VisitorType OperatingSystems Region Total Sessions \
0
           New Visitor
                                        1
                                                1
                                                               173
1
           New Visitor
                                        1
                                                2
                                                                41
2
           New Visitor
                                        1
                                                3
                                                                87
3
           New Visitor
                                        1
                                                                37
                                                4
4
           New Visitor
                                        1
                                                5
                                                                 6
                                                               . . .
. .
     Returning Visitor
                                        8
                                                4
                                                                 2
110
                                        8
111
     Returning Visitor
                                                5
                                                                 1
    Returning Visitor
                                        8
                                                6
112
                                                                 1
    Returning Visitor
                                                7
                                                                 1
    Returning Visitor
                                                9
                                                                 1
     Conversion Rate Avg Admin Duration Avg Info Duration \
0
            0.265896
                                83.730131
                                                    9.577360
1
            0.341463
                                62.360569
                                                   12.685366
2
            0.149425
                               114.667813
                                                   20.024521
3
            0.297297
                               103.591892
                                                    3.378378
4
            0.333333
                                68.516667
                                                    0.000000
110
            0.000000
                                 0.000000
                                                     0.000000
111
            0.000000
                                                    0.000000
                                 0.000000
112
            0.000000
                                 0.000000
                                                     0.000000
113
            0.000000
                                 0.000000
                                                     0.000000
114
            0.000000
                                 0.000000
                                                     0.000000
     Avg Product Duration
0
               458.403005
1
               508.990765
2
               486.277128
3
               465.826441
4
               354.758333
110
               955.750000
111
                87.916667
112
                 0.000000
113
                17.000000
114
                 0.000000
[115 rows x 8 columns]
```

In [40]: plt.figure(figsize=(14, 8))
 sns.barplot(data=grouped_data, x='VisitorType', y='Conversion_Rate', hue='OperatingSystems')
 plt.title('Conversion Rates by Visitor Type and Operating System')

```
plt.xlabel('Visitor Type')
plt.ylabel('Conversion Rate')
plt.legend(title='Operating Systems')
plt.show()
```


- New visitors have a higher conversion rate compared to returning customers.
- Users on operating systems 6 and 8 have the highest conversion rates.

• Returning visitors have a nearly identical conversion rate.

Segment users based on TrafficType and analyze their engagement patterns and purchase probability.

```
In [41]: traffic analysis = shop.groupby('TrafficType').agg(
             Total Sessions=('Revenue', 'count'), # Cnt of sessions
             Conversion Rate=('Revenue', 'mean'), # Avg conversion rate
             Total Admin Page Views=('Administrative', 'sum'), # Total administrative page views
             Total Info Page Views=('Informational', 'sum'), # Total informational page views
             Total Product Page Views=('ProductRelated', 'sum'), # Total product-related page views
             Avg Admin Duration=('Administrative Duration', 'mean'), # Avg duration on administrative pages
             Avg Info Duration=('Informational Duration', 'mean'), # Avg duration on informational pages
             Avg Product Duration=('ProductRelated Duration', 'mean') # Avg duration on product-related pages
         ).reset index()
         # Calculate total page views after aggregation
         traffic analysis['Total Page Views'] = (
             traffic analysis['Total Admin Page Views'] +
             traffic analysis['Total Info Page Views'] +
             traffic analysis['Total Product Page Views']
         traffic analysis=pd.DataFrame(traffic analysis)
         traffic analysis
```

[41]:	TrafficType	Total_Sessions	Conversion_Rate	Total_Admin_Page_Views	Total_Info_Page_Views	Total_Product_Page_Views	Avg_Admin_Duration	Avg_
0	1	2451	0.106895	4682	921	78232	65.726273	
1	2	3913	0.216458	11307	2893	149184	105.948043	
2	3	2052	0.087719	3698	616	52953	56.276246	
3	4	1069	0.154350	2511	533	30494	75.264396	
4	5	260	0.215385	906	123	4650	106.858500	
5	6	444	0.119369	903	201	13146	69.740664	
6	7	40	0.300000	116	21	1167	85.339598	
7	8	343	0.276968	987	171	8960	103.662376	
8	9	42	0.095238	82	14	619	67.793651	
9	10	450	0.200000	1051	237	14800	76.523634	
10	11	247	0.190283	435	92	6227	62.513994	
11	12	1	0.000000	0	0	3	0.000000	
12	13	738	0.058266	1317	274	24315	67.844474	
13	14	13	0.153846	44	28	1034	277.147741	
14	15	38	0.000000	52	16	613	70.160088	
15	16	3	0.333333	9	0	46	295.922222	
16	17	1	0.000000	0	0	4	0.000000	
17	18	10	0.000000	21	3	139	72.140000	
18	19	17	0.058824	24	5	674	40.172460	
19	20	198	0.252525	401	61	3989	79.874198	

Insights:

- Page Visits: Initial pages (0th page) receive more visits, with a gradual decrease toward the last page. This pattern holds for both formal and informal page visits.
- Shopping Behavior: Customers prefer not to shop on weekends, as no significant increase in revenue is observed.
- Customer Retention: Retention rates are higher than new customer acquisition rates.
- Geographical Trends: Region 1 shows a higher volume of purchases compared to other regions.
- Browser & OS Usage: The second browser and the second operating system have higher user counts and revenue, respectively.
- Monthly Revenue: Revenue is higher in the current month compared to May and December. #### Feature Correlation:
- BounceRates and ExitRates are strongly correlated.
- ProductRelated_Duration and ProductRelated are the second most correlated.
- Information and Information_Duration show a moderate correlation (62%).
- PageValue and Revenue have a high correlation.
- Administrative and Product_Related have a moderate correlation (43%).
- No correlation observed between Revenue and Special Day.

Recommendations:

- Enhance Page Navigation: Focus on improving engagement on later pages to reduce drop-offs. Consider adding recommendations or incentives on these pages.
- Weekend Promotions: Introduce targeted promotions on weekends to boost sales, as customers currently show lower activity during this period.
- Retention Strategies: Continue to prioritize retention programs, as retaining existing customers has proven more effective than acquiring new ones.
- Geographic Focus: Strengthen marketing efforts in Region 1 and replicate successful strategies in other regions.
- Browser & OS Compatibility: Optimize user experience on the second browser and operating system, ensuring smooth performance to capitalize on high usage.

Campaign Analysis

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
from scipy.stats import f_oneway,kruskal
```

Import Data set

```
In [2]: camp=pd.read_csv("campaign.csv")
    camp.head()
```

Out[2]:		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Recency	MntWines	•••	NumCatalogPurchases	NumStor
	0	1826	1970	Graduation	Divorced	\$84,835.00	0	0	6/16/14	0	189		4	
	1	1	1961	Graduation	Single	\$57,091.00	0	0	6/15/14	0	464		3	
	2	10476	1958	Graduation	Married	\$67,267.00	0	1	5/13/14	0	134		2	
	3	1386	1967	Graduation	Together	\$32,474.00	1	1	5/11/14	0	10		0	
	4	5371	1989	Graduation	Single	\$21,474.00	1	0	4/8/14	0	6		1	

5 rows × 27 columns

Basic Metric

In [3]: camp.shape
Out[3]: (2239, 27)
In [4]: camp.size

```
60453
Out[4]:
In [5]:
         camp.ndim
Out[5]:
         camp.info()
In [6]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 2239 entries, 0 to 2238
         Data columns (total 27 columns):
              Column
                                   Non-Null Count Dtype
          0
              ID
                                   2239 non-null
                                                    int64
                                   2239 non-null
                                                    int64
          1
              Year Birth
          2
                                   2239 non-null
              Education
                                                    object
              Marital Status
                                   2239 non-null
                                                    object
          4
                                   2239 non-null
              Income
                                                    object
                                   2239 non-null
              Kidhome
                                                    int64
          6
              Teenhome
                                   2239 non-null
                                                    int64
          7
              Dt Customer
                                   2239 non-null
                                                    object
          8
                                   2239 non-null
              Recency
                                                    int64
              MntWines
                                   2239 non-null
                                                    int64
              MntFruits
                                   2239 non-null
                                                    int64
          10
              MntMeatProducts
                                   2239 non-null
          11
                                                    int64
              MntFishProducts
                                   2239 non-null
                                                    int64
              MntSweetProducts
                                   2239 non-null
          13
                                                    int64
              MntGoldProds
                                   2239 non-null
          14
                                                    int64
              NumDealsPurchases
          15
                                   2239 non-null
                                                    int64
          16
             NumWebPurchases
                                   2239 non-null
                                                    int64
             NumCatalogPurchases
                                   2239 non-null
                                                    int64
                                   2239 non-null
              NumStorePurchases
                                                    int64
              NumWebVisitsMonth
                                   2239 non-null
                                                    int64
                                   2239 non-null
          20
              AcceptedCmp3
                                                    int64
          21
              AcceptedCmp4
                                   2239 non-null
                                                    int64
              AcceptedCmp5
                                   2239 non-null
                                                    int64
          22
             AcceptedCmp1
                                   2239 non-null
                                                    int64
             AcceptedCmp2
                                   2239 non-null
                                                    int64
             Complain
                                   2239 non-null
                                                    int64
          26 Country
                                   2239 non-null
                                                    object
         dtypes: int64(22), object(5)
         memory usage: 472.4+ KB
```

```
camp.dtypes
In [7]:
                                int64
        ID
Out[7]:
        Year Birth
                                int64
        Education
                               object
        Marital Status
                               object
        Income
                               object
        Kidhome
                                int64
                                int64
        Teenhome
        Dt Customer
                               object
        Recency
                                int64
        MntWines
                                int64
        MntFruits
                                int64
        MntMeatProducts
                                int64
        MntFishProducts
                                int64
        MntSweetProducts
                                int64
        MntGoldProds
                                int64
        NumDealsPurchases
                                int64
        NumWebPurchases
                                int64
        NumCatalogPurchases
                                int64
        NumStorePurchases
                                int64
        NumWebVisitsMonth
                                int64
        AcceptedCmp3
                                int64
        AcceptedCmp4
                                int64
        AcceptedCmp5
                                int64
        AcceptedCmp1
                                int64
        AcceptedCmp2
                                int64
        Complain
                                int64
        Country
                               object
        dtype: object
        camp.describe()
In [8]:
```

Out[8]:		ID	Year_Birth	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishProducts	MntSweetProdu
	count	2239.000000	2239.000000	2239.000000	2239.000000	2239.000000	2239.000000	2239.000000	2239.000000	2239.000000	2239.0000
	mean	5590.444841	1968.802144	0.443948	0.506476	49.121036	304.067441	26.307727	167.016525	37.538633	27.0745
	std	3246.372471	11.985494	0.538390	0.544555	28.963662	336.614830	39.781468	225.743829	54.637617	41.2860
	min	0.000000	1893.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
	25%	2827.500000	1959.000000	0.000000	0.000000	24.000000	24.000000	1.000000	16.000000	3.000000	1.0000
	50%	5455.000000	1970.000000	0.000000	0.000000	49.000000	174.000000	8.000000	67.000000	12.000000	8.0000
	75%	8423.500000	1977.000000	1.000000	1.000000	74.000000	504.500000	33.000000	232.000000	50.000000	33.0000
	max	11191.000000	1996.000000	2.000000	2.000000	99.000000	1493.000000	199.000000	1725.000000	259.000000	263.0000

8 rows × 22 columns

Feature engineering

```
In [9]: # # SPliting income
    camp['Income'] = camp['Income'].astype(str).str.replace('$', '', regex=False).str.replace(',', '', regex=False)
    camp['Income'] = camp['Income'].astype(float)
```

Checking for NULL

```
In [10]: camp.isna().sum()
```

```
0
Out[10]:
         Year Birth
                                  0
         Education
                                  0
         Marital Status
                                  0
         Income
                                 24
         Kidhome
                                  0
         Teenhome
                                  0
         Dt Customer
                                  0
         Recency
                                  0
         MntWines
                                  0
                                  0
         MntFruits
         MntMeatProducts
                                  0
         MntFishProducts
                                  0
                                  0
         MntSweetProducts
         MntGoldProds
                                  0
         NumDealsPurchases
                                  0
         NumWebPurchases
                                  0
         NumCatalogPurchases
                                  0
         NumStorePurchases
                                  0
         NumWebVisitsMonth
                                  0
         AcceptedCmp3
                                  0
         AcceptedCmp4
                                  0
         AcceptedCmp5
                                  0
         AcceptedCmp1
                                  0
         AcceptedCmp2
                                  0
         Complain
                                  0
         Country
                                  0
         dtype: int64
         camp['Income']
In [11]:
                 84835.0
Out[11]:
                 57091.0
          2
                  67267.0
          3
                  32474.0
          4
                  21474.0
                   . . .
         2234
                 66476.0
         2235
                 31056.0
```

Name: Income, Length: 2239, dtype: float64

2236

2237

2238

46310.0

65819.0

94871.0

Checking for Duplicate

• There is no Duplicates

Non Graphical Analysis

```
Education
Graduation
         1126
PhD
         486
Master
         370
2n Cycle
         203
Basic
          54
Name: count, dtype: int64
Marital Status
Married
       864
Together
       579
Single
       480
Divorced
       232
        77
Widow
Alone
         3
Absurd
         2
YOLO
         2
Name: count, dtype: int64
Kidhome
0
   1293
1
    898
2
    48
Name: count, dtype: int64
NumDealsPurchases
   970
1
2
    497
3
    297
4
    188
5
    94
6
    61
0
    46
7
    40
8
    14
9
     8
15
     7
10
11
     5
     4
12
13
     3
```

```
Name: count, dtype: int64
NumWebPurchases
   373
1
   354
3
   335
4
   280
5
   220
6
   205
   155
8
   102
9
    75
0
    49
11
    44
10
    43
27
    2
23
    1
25
    1
Name: count, dtype: int64
***********************************
NumWebVisitsMonth
7
   393
8
   342
6
   339
5
   281
4
   218
3
   205
2
   202
1
   153
9
    83
0
    11
    3
10
    3
20
14
    2
19
    2
13
    1
17
    1
Name: count, dtype: int64
************************************
NumCatalogPurchases
```

```
496
1
2
    276
3
    184
4
    182
5
    140
6
    128
     79
8
     55
10
     48
9
     42
11
     19
28
      3
22
      1
Name: count, dtype: int64
AcceptedCmp1
    2095
    144
Name: count, dtype: int64
AcceptedCmp3
    2076
1
    163
Name: count, dtype: int64
AcceptedCmp3
    2076
0
    163
Name: count, dtype: int64
AcceptedCmp4
    2072
0
1
    167
Name: count, dtype: int64
AcceptedCmp5
    2076
1
    163
Name: count, dtype: int64
```

```
Complain
0
    2218
       21
Name: count, dtype: int64
Country
SP
       1095
SA
        336
CA
       268
AUS
       160
IND
       148
GER
       120
US
        109
ME
         3
Name: count, dtype: int64
```

Graphical Analysis

Univariate

- The majority of customers are graduates.
- Most customers are married and living together.
- Most people have one child.
- Customers prefer buying one product, indicating a right-skewed distribution.
- People mostly buy two products from the website, with a slight difference between those buying one and three products.
- Customers tend to buy three products directly from the store.

- The majority of people do not prefer making purchases using a catalog.
- Customer acceptance of offers remains almost consistent until Campaign 4, but there is a sudden drop in Campaign 5.
- There are very few complaints, almost around 1-2%.
- Most purchases are made by customers from Spain.

Bivariate

```
In [15]: #Education vs Amount spend
col=['MntWines', 'MntFruits','MntMeatProducts', 'MntFishProducts', 'MntSweetProducts','MntGoldProds']
for i in col:
    plt.figure(figsize=(10, 6))
    sns.boxplot( x=i,y='Education', data=camp)
    plt.title(f'Education Distribution vs {i} Levels')
    plt.xticks(rotation=45)
    plt.show()
```

Education Distribution vs MntWines Levels

Education Distribution vs MntFruits Levels

Education Distribution vs MntMeatProducts Levels

Education Distribution vs MntFishProducts Levels

Education Distribution vs MntSweetProducts Levels

Education Distribution vs MntGoldProds Levels

- People with a PhD degree spend most of their money on wine.
- Except for those with only basic education, the rest of the educated individuals tend to spend money on meat.
- It appears that customers with a graduation or second-cycle degree spend the most on fish products.
- Graduates primarily spend their money on gold.

```
In [16]: # Marital_Status vs Complain
   plt.figure(figsize=(10,8))
   sns.countplot(data=camp,x='Complain',hue='Marital_Status')
   ax=plt.gca()
   for i in ax.containers:
       ax.bar_label(i)
   plt.show()
```


• Here we can see there not much compalin

```
In [17]: # Education vs Amount spend
col=['AcceptedCmp3', 'AcceptedCmp5', 'AcceptedCmp1','AcceptedCmp2']
for i in col:
    plt.figure(figsize=(10, 6))
    sns.countplot( hue=i,y='Education', data=camp)
    plt.title(f'Education Distribution vs {i} Levels')
    plt.xticks(rotation=45)
    plt.show()
```

Education Distribution vs AcceptedCmp3 Levels

Education Distribution vs AcceptedCmp4 Levels

Education Distribution vs AcceptedCmp5 Levels

Education Distribution vs AcceptedCmp1 Levels

Education Distribution vs AcceptedCmp2 Levels

• Most of the customers who accepted the offer have a graduation background.

```
In [19]: # Income vs Education
In [26]: # plt.figure(figsize=(10, 6))
sns.boxplot( x='Education',y='Income', data=camp)
```

```
plt.title(f'Education Distribution vs {i} Levels')
ax=plt.gca()
for i in ax.containers:
    ax.bar_label(i)
# plt.show()
```


• Except for those with a basic education, customers with other degrees have an income greater than 30,000

Outlier Detection Using Boxplot

```
In [22]:
    col=['Year_Birth','Income', 'Kidhome',
        'Teenhome', 'Recency', 'MntWines', 'MntFruits',
        'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts',
        'MntGoldProds', 'NumDealsPurchases', 'NumWebPurchases',
        'NumCatalogPurchases', 'NumStorePurchases', 'NumWebVisitsMonth',
        'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1',
        'AcceptedCmp2', 'Complain']
    for i in col:
        sns.boxplot(data=camp,x=i)
        plt.title(f"Box plot for {i}")
        plt.show()
```

Box plot for Year_Birth

Box plot for Income

Box plot for Kidhome

Box plot for Teenhome

Box plot for Recency

Box plot for MntWines

Box plot for MntFruits

Box plot for MntMeatProducts

Box plot for MntFishProducts

Box plot for MntSweetProducts

Box plot for MntGoldProds

Box plot for NumDealsPurchases

Box plot for NumWebPurchases

Box plot for NumCatalogPurchases

Box plot for NumStorePurchases

Box plot for NumWebVisitsMonth

Box plot for AcceptedCmp3

Box plot for Complain

Hypothesis Testing

Hypothesis:

- Null Hypothesis (H₀): Income is independent of education level.
- Alternative Hypothesis (H₁): Income is dependent on education level.

```
In [23]: s,p = stats.f_oneway(*[camp[camp['Education'] == edu]['Income'].dropna() for edu in camp['Education'].unique()])
print(f"stat value : {s} p_value : {p}")
if p < 0.05:
    print("Reject null")</pre>
```

```
else:
    print("Falied to reject")

stat value : 38.39294760713925 p_value : 4.188444786493969e-31
Reject null
```

Hypothesis:

- Null Hypothesis (H₀): Couples and singles spend the same amount on wine.
- Alternative Hypothesis (H₁): There is a difference in spending on wine between couples and singles.

stat value : -0.2711337908368919 p_value : 0.7863223090103292 Falied to reject

Hypothesis:

- Null Hypothesis (H₀): Customers with lower income are not more likely to accept campaigns.
- Alternative Hypothesis (H₁): Customers with lower income are more likely to accept campaigns.

```
In [25]: median_income = camp['Income'].median()
    camp['Income_Bracket'] = camp['Income'].apply(lambda x: 'Below Median' if x < median_income else 'Above Median')
    camp['Ever_Accepted_Campaign'] = (camp[['AcceptedCmp1', 'AcceptedCmp2', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5']].sum(axis
    contingency_table = pd.crosstab(camp['Income_Bracket'], camp['Ever_Accepted_Campaign'])
    chi,p,_, = stats.chi2_contingency(contingency_table)
    print(f'Chi-square value: {chi}, p-value: {p}')
    alpha = 0.05
    if p<alpha:
        print("Reject Ho")</pre>
```

```
else:
```

```
print("Failed to reject Ho")
```

Chi-square value: 140.11555527497433, p-value: 2.5115657237830455e-32

Reject Ho

Insights:

Education & Spending:

• Graduates and PhD holders are key spenders, with PhDs spending more on wine and graduates on gold. Except for basic-educated customers, others prefer spending on meat and fish products.

Marital Status & Buying Behavior:

- Couples and singles show no significant difference in spending on wine.
- Most customers are married or living together, indicating a family-oriented customer base.

Product Preferences:

- Majority buy one or two products, suggesting a skewed distribution toward fewer purchases.
- Customers purchasing three products tend to buy directly from stores.

Income & Campaign Acceptance:

- Income is dependent on education level.
- Lower-income customers are more likely to accept campaigns, indicating price sensitivity.

Geographic & Offer Insights:

- Most purchases come from Spanish customers.
- Catalog purchases are less preferred, while direct offers seem effective initially but drop significantly by Campaign 5.
- Complaints are minimal, showing general satisfaction.

Recommendations:

Targeted Campaigns:

- Focus campaigns on lower-income groups and highlight budget-friendly products to increase acceptance.
- Design promotions for graduates and PhD holders, leveraging their spending habits (wine and gold).

Product Strategy:

- Diversify product offerings to encourage multi-product purchases.
- Highlight meat, fish, and wine in marketing campaigns, especially toward educated and family-oriented segments.

Revisit Campaigns:

- Evaluate why acceptance drops by Campaign 5 and adjust the strategy to maintain engagement.
- Reduce emphasis on catalog sales and promote digital or store offers.

Localization:

• Tailor marketing specifically for the Spanish demographic to capitalize on the existing customer base.

In []:	
In []:	