LØSNINGER

DANMARKS TEKNISKE UNIVERSITET

Skriftlig prøve, den 14. december 2017

Kursus navn: Diskret Matematik

Kursus nummer: 01017

Hjælpemidler: Alle hjælpemidler er tilladt.

Varighed: 2 timer.

Vægtning:

Opgave 1: 10%

Opgave 2: 20%

Opgave 3: 10%

Opgave 4: 10%

Opgave 5: 10%

Opgave 6: 15%

Opgave 7: 15%

Opgave 8: 10%

Alle opgaver besvares ved at udfylde de dertil indrettede tomme pladser på de følgende sider.

Side 1

Bord Kursus nr.: 01017 Dato: 14. december 2017 Ark nr.

Kursusnavn: Diskret Matematik

Studienr.: ______ Fødselsdato: ______

Navn: ______

Opgave 1 (Logik og bevissystemer) 10%

Brug herunder tableau-metoden til at afgøre om følgende påstand holder. Hvis den **ikke** holder, skal du angive en konkret sandhedstilskrivning, som gør præmisserne sande og konklusionen falsk.

$$p \to q, \ r \lor (s \land \neg q), \ \neg r \models \neg p$$

LØSNING.

Alle grene lukker, så den er gyldig.

Opgave 2 (Formalisering i prædikatlogik) 20%

Betragt en fortolkning \mathcal{F} , hvor domænet er alle mennesker, film og filmserier. Vi har to konstantsymboler m og s og to prædikatsymboler M og K, hvor

- $m^{\mathcal{F}} = \text{Mark Hamill}$
- $s^{\mathcal{F}} = \text{Star Wars}$
- $M^{\mathcal{F}} =$ er et menneske

Bord	Kursus nr.: 01017	Dato: 14. december 2017		Ark nr.			
nr.	Kursusnavn: Diskret Matematik						
	Studienr.:	Fødselsdato:					
	Navn:						
• K	$^{\mathcal{F}}=$ _ kender _						
	åledes i fortolkningen \mathcal{F} at $M(m)$ udtrykker er at Mark Hamill kender Star Wars.	at Mark Hamill er et menn	ieske, o	og $K(m,s)$			
	r følgende sætninger til formler i prædikatlogil r benyttes "alle" eller "nogen", så refererer de						
1. A	lle som kender Mark Hamill kender Star War	·S.					
	$\forall x (M(x) \wedge K(x, r))$	$n) \to K(x,s)$					
2. <i>N</i>	ogen kender Star Wars uden at kende Mark E	Hamill.					
	$\exists x (M(x) \land K(x, s))$	$(x) \wedge \neg K(x,m))$					
	vis to mennesker kender hinanden, så kender aden gør.	den ene Star Wars hvis og	kun h	vis den			
	$\forall x \forall y (M(x) \land M(y) \land K(x,y) \land K(y)) \land K(y) \land K($	$K(y,x) \to (K(x,s) \leftrightarrow K(y,s))$	s)))				
4. A.	lle kender nogen som kender Star Wars.						
	$\forall x (M(x) \to \exists y (M(y) \land $	$K(x,y) \wedge K(y,s)))$					
Besvar i	nedenstående spørgsmål ved at krydse af i de:	n rigtige boks. Forkerte del	svar ta	æller			
1. Min	dst én af formlerne du skrev på foregående si	de er opfyldelig?	ja ⊠	nej			
2. Min	dst én af formlerne du skrev på foregående si	de er gyldig?		\boxtimes			
	kan afgøre om formlerne på foregående side 1-metoden?	er gyldige ved at bruge	\boxtimes				
	an afgøre om formlerne på foregående side e 1-metoden?	opfyldelige ved at bruge	\boxtimes				
	an afgøre om formlerne på foregående side er s at bruge tableau-metoden?	sande under fortolkningen		\boxtimes			

LØSNING. 1. Fx den første formel er opfyldelig i en model hvor vi antager at alle som kender Mark Hamill også kender Star Wars. Men kan selvfølgelig også vise opfyldelighed i mere abstrakte matematiske modeller. Hvis fx K(x,y) er sand for alle x,y i domænet bliver formlen nødvendigvis sand. 2. Ingen af dem er gyldige, det ville kræve at de var sande i **alle**

Bord	Kursus nr.: 01017	Dato: 14. december 2017	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	
	Navn:		

fortolkninger. 3. Ja, tableaumetoden er lavet til at afgøre gyldighed. 4. Ja, vi kan også afgøre opfyldelighed: Vi sætter formlen sand i roden og ser om vi får en åben, mættet gren. 5. Nej, tableau-metoden kan ikke afgøre sandhed under en specifik fortolkning. Forskellige grene i et tableau svarer til forskellige fortolkninger.

Opgave 3 (Prædikatlogik) 10%

Betragt fortolkningen \mathcal{R} givet ved dom $(\mathcal{R}) = \mathbb{R}$ (de reelle tal) og

- $\cdot^{\mathcal{R}} = \text{sædvanlig multiplikation}$.
- =, <, >, \leq , \geq og \neq har de sædvanlige betydninger.
- $\mathbf{0}^{\mathcal{N}} = 0; \mathbf{1}^{\mathcal{N}} = 1.$

Afgør hvilke af følgende formler der er sande i fortolkningen \mathcal{R} . Forkerte delsvar tæller negativt.

$1. \ \forall x \exists y (x \cdot y = 1)$	sand	
2. $\forall x \exists y (x \cdot y = 1 \to y > 0)$	\boxtimes	
3. $\forall x \exists y (x \cdot y = 1 \land y > 0)$		\boxtimes
$4. \ \forall x \exists y (x \cdot y = 1 \lor y > 0)$	\boxtimes	
5. $\forall x \exists y (x \cdot y = 1 \leftrightarrow y > 0)$	\boxtimes	
6. $\forall x (x > 0 \rightarrow \exists y (y > 0 \land x \cdot y = 1))$	\boxtimes	

LØSNING.

- 1. Formlen siger: for ethvert x findes et y så x gange y er lig 1. Det er falsk. Når x=0 kan vi ikke finde et sådant y.
- 2. Formlen siger: for ethvert x findes et y så parentesen er sand. Og parentesen siger at hvis $x \cdot y = 1$ er y positiv. Husk nu på at en implikation også er sand når antecedenten er falsk. Altså kan vi altid gøre parentesen sand ved blot at gøre antecedenten falsk. Og vi kan gøre antecedenten falsk ved fx at vælge y = 0. Nu kan vi bevise at formlen er sand: Lad x være valgt **vilkårligt** (fordi der er en alkvantor på x). Vi skal så vise at vi kan **vælge** et y så parentesen er sand (fordi der er en eksistenskvantor på y). Men vi kan så bare vælge y = 0, for så bliver antecedenten i parentesen falsk, og dermed bliver hele parentesen sand.
- 3. Formlen siger: for ethvert x findes et y så $x \cdot y = 1$ og y > 0. Lad x være valgt vilkårligt. Så skal vi kunne finde et y som både opfylder $x \cdot y = 1$ og y > 0. Men det kan vi ikke altid. Hvis fx

Bord	Kursus nr.: 01017	Dato: 14. december 2017	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	
	Navn:		

x er 0, så kan vi ikke finde et y som opfylder $x \cdot y = 1$. Dermed er formlen falsk (det er falsk at vi for **alle** x kan finde **mindst ét** y som gør parentesen sand).

- 4. Det er den samme som 3, pånær at "og" er erstattet af "eller". Lad x være valgt vilkårligt. Vi skal så vise at vi kan vælge et y, så parentesen er sand. Men fordi der står "eller" i parentesen, behøver kun en af de to disjunkter at være sande. Lige gyldigt hvilket x der blev valgt, kan vi altid vælge y = 1. Så bliver parentesen sand, fordi 1 > 0. Derfor er formlen sand.
- 5. Det er den samme som 4, pånær at "eller" er erstattet af "hvis og kun hvis". Bemærk at parentesen er sand netop når venstre- og højresiden af dobbeltpilen har samme sandhedsværdi. Så vi skal altså vise at for et vilkårligt valgt x kan vi altid finde et y så de to sider af dobbeltpilen har samme sandhedsværdi. Det er ikke svært: lige gyldigt hvilket x vi har valgt, kan vi vælge at negativt y så $x \cdot y \neq 1$. Dermed bliver begge sider af dobbeltpilen falske, og hele parentesen bliver dermed sand.
- 6. Formlen siger: for ethvert positivt x findes et y som er positivt og som opfylder $x \cdot y = 1$. Så vi starter med et vilkårligt positivt x. Nu skal vi så finde et y som opfylder parentesen. Da x er positiv er $\frac{1}{x}$ også positiv. Hvis vi derfor vælger $y = \frac{1}{x}$ får vi at både y > 0 og $x \cdot y = 1$, som ønsket

Opgave 4 (Mængder og relationer) 10%

Vis at der for alle mængder A, B og C gælder $A \times B \subseteq A \times (B \cup C)$.

LØSNING. Lad $(x, y) \in A \times B$ være valgt vilkårligt. Da gælder per definition af krydsproduktet at $x \in A$ og $y \in B$. Da B er en delmængde af $B \cup C$ fås $y \in B \cup C$. Bruger vi igen definitionen af krydsprodukt får vi så $(x, y) \in A \times (B \cup C)$.

Opgave 5 (Kombinatorik) 10%

En almindelig terning har seks sider, der er nummerede fra 1 til 6. Vi betragter slag med to almindelige terninger T_1 og T_2 .

1. Forklar hvorfor der er 36 forskellige slag.

Løsning. Der er 6 mulige slag med T_1 og det samme med T_2 , og da vi slår med begge terninger, fortæller produktreglen at der er $6 \cdot 6 = 36$ muligheder.

2. Bestem antal udfald af slag med to terninger, hvor mindst en af terningerne er en sekser eller begge terningerne viser det samme. Husk at argumentere for dit svar.

Løsning. Lad A_1 være mængden af slag, hvor T_1 slår 6, A_2 være mængden af slag hvor T_2 slår 6, og A_3 være mængden af slag hvor T_1 og T_2 slår det samme. Spørgsmålet går ud på at bestemme $|A_1 \cup A_2 \cup A_3|$. Det er klart at

$$|A_1| = |A_2| = |A_3| = 6.$$

Bord	Kursus nr.: 01017	Dato: 14. december 2017	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	
	Navn·		

Hvis man skal slå seks med en af terningerne og det samme med de to terninger kan det kun ske ved at begge terninger slå 6. Derfor er

$$A_1 \cap A_2 = A_1 \cap A_3 = A_2 \cap A_3 = A_1 \cap A_2 \cap A_3$$

for alle de angivne fællesmængder svarer nemlig til at slå 6 med begge terninger. Specielt er

$$|A_1 \cap A_2| = |A_1 \cap A_3| = |A_2 \cap A_3| = |A_1 \cap A_2 \cap A_3| = 1.$$

Noternes Sætning 1.2 fortæller derfor

$$|A_1 \cup A_2 \cup A_3| = 6 + 6 + 6 - 1 - 1 - 1 + 1 = 16.$$

Opgave 6 (Rekursion og induktion) 15%

En funktion f(n) er for $n = 0, 1, 2, \ldots$ rekursivt defineret ved

$$f(n) = \begin{cases} 1 & \text{for } n = 0, 1 \\ 1 + f(n/2) & \text{for } n > 0 \text{ og } n \text{ lige} \\ f(n+1) & \text{for } n > 1 \text{ og } n \text{ ulige }. \end{cases}$$

1. Angiv f(5).

Løsning. Ved at bruge definitionen gentagne gange ses

$$f(5) = f(6) = 1 + f(3) = 1 + f(4) = 2 + f(2) = 3 + f(1) = 4.$$

2. Før et induktionsbevis for at

$$f(2^n) = n + 1$$
, for $n = 0, 1, 2, ...$

Løsning. Vi beviser formlen ved hjælp af induktion.

Basistilfældet er for n = 0, og da $2^0 = 1$ skal vi altså vise f(1) = 1. Men det fås direkte af den rekursive definition af f(n).

I induktionstrinnet antager vi at formlen gælder for et vist $n \in \mathbb{N}$, altså at $f(2^n) = n + 1$, og skal vise at der også gælder $f(2^{n+1}) = n + 2$. Da $2^{n+1} = 2 \cdot 2^n$ er et lige tal større end 0, får vi af den rekursive definition

$$f(2^{n+1}) = 1 + f(2^n).$$

Ifølge induktionsantagelsen er $f(2^n) = n + 1$, så

$$f(2^{n+1}) = 1 + (n+1) = n+2,$$

hvilket var det vi skulle vise.

Ifølge induktionsprincippet gælder formlen derfor for alle $n = 0, 1, 2, \dots$

Bord	Kursus nr.: 01017	Dato: 14. december 2017	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	
	Navn:		

Opgave 7 (Kongruenser) 15%

1. Tegn en streg mellem de par a, b hvor $a \equiv b \pmod{13}$ i følgende skema.

a	b
-7	0
1	2
132	6
13^{9}	27

Løsning. Der skal streg mellem parrene (-7,6), (1,27), (132,2) og $(13^9,0)$.

2. Angiv løsningsmængden til

$$9x \equiv 102 \pmod{30}.$$

Husk mellemregninger.

Løsning. Vi finder sfd(9,30) ved at bruge Euklids udvidede algoritme

k	r_k	s_k	t_k	
0	30	1	0	startværdi
1	9	0	1	startværdi
2	3	1	-3	$da 30 = 3 \cdot 9 + 3$
3	0	*	*	$da 9 = 3 \cdot 3.$

Så sfd $(9,30) = 3 = 1 \cdot 30 - 3 \cdot 9$. Da nu d=3 går op i 102 får vi af Sætning 5.2 at kongruensligningen er ækvivalent med

$$3x \equiv 34 \pmod{10}$$
.

Vi har allerede set $3 = 1 \cdot 30 - 3 \cdot 9$ og dividerer vi med 3 får vi

$$1 = 1 \cdot 10 - 3 \cdot 3.$$

Det viser at

$$-3 \cdot 3 \equiv 1 \pmod{10}$$
.

Så vi kan tage c = -3 i Sætning 5.3 og kommer frem til

$$x \equiv -3 \cdot 34 \pmod{10}$$
.

Løsningsmængden er derfor $L = -102 + 10\mathbb{Z}$, hvilket også kan skrives

$$L = 8 + 10\mathbb{Z}.$$

3. Angiv en værdi af b så kongruensligningen

$$9x \equiv b \pmod{30}$$

ikke har nogen løsninger. Husk at forklare hvorfor der ikke er nogen løsninger for denne værdi af b.

Løsning. Vi har allerede set at sfd(9,30) = 3. Sætning 5.1 fortæller os, at kongruensligningen kun har løsninger hvis $3 \mid b$. Så tager vi b til et tal som 3 ikke går op i, for eksempel b = 1, har kongruensligningen ingen løsninger.

Opgave 8 (Euklids algoritme og polynomier) 10%

Lad der være givet to polynomier

$$N(x) = 2x^5 - 3x^4 + 3x^2 - 2x$$

$$M(x) = x^5 - 2x^4 + x^3 + x^2 - x$$

En kørsel af Euklids algoritme giver følgende

\overline{k}	R_k
0	$2x^5 - 3x^4 + 3x^2 - 2x$
1	$x^5 - 2x^4 + x^3 + x^2 - x$
2	$x^4 - 2x^3 + x^2$
3	$R_3(x)$
4	0

Her er forskriften for polynomiet $R_3(x)$ dog ikke skrevet.

1. Beregn $R_3(x)$.

Løsning. Udføres polynomiers division fås

$$x \leftarrow \text{kvotient}$$

$$x^4 - 2x^3 + x^2 \begin{vmatrix} 2x^5 - 2x^4 + x^3 + x^2 - x \\ -(x^5 - 2x^4 + x^3) \end{vmatrix}$$

$$x^2 - x \leftarrow \text{rest}$$

Heraf ses $R_3(x) = x^2 - x$.

2. Angiv sfd(N(x), M(x)).

Løsning. Fra skemaet og besvarelsen af sidste spørgsmål ses at $sfd(N(x), M(x)) = R_3(x) = x^2 - x$.

Bord	Kursus nr.: 01017	Dato: 14. december 2017	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	
	Navn:		-

3. Om to andre polynomier P(x) og Q(x) vides det at

$$\operatorname{sfd}(P(x), Q(x)) = x^2.$$

Angiv om P(x) og Q(x) har fælles rod/rødder.

Løsning. Ifølge Sætning 6.3 er de fælles rødder for P(x), og Q(x) de samme som rødderne for det ene polynomium x^2 , der har (dobbelt)roden x = 0. Så vi konkluderer at P(x) og Q(x) har den fælles dobbeltrod x = 0.