

# **Todays focus**

- Thermodynamic properties
- Ensembles
- Molecular dynamics
- Nonbonded interactions

2

# Thermodynamic properties

- Calculating thermodynamic properties is not determined by just a single conformation, but rather more average properties
  - Diffusion, density, viscosity
  - Free energy of solvation, binding
  - Phase transitions, protein folding
- All of these are averages over a huge number of molecules (N $_{\rm Avogadro} \sim \! 6x10^{23})$

# How do we calculate them?

- · Average over time?
  - Simulate the motions of the system for "infinity"
- Average over space? What space?
  - All possible combinations of coordinates and velocities, i.e.m every state the molecule can be in (phase space)
  - Unlikely to be in high energy states, so weight it with Boltzmann factor:



4

#### Sampling a landscape

- 3N-dimensional space
- Native structure is the free energy minimum
- Ideally, we would sample all of phase space exhaustively
- In practice, we are limited to the most populated parts



5

# **Ensemble properties**

- Focus on average thermodynamic properties not just single configurations of the system
- Move around in "representative parts" of the energy landscape - how we do it is less important!
- If know the entire energy landscape we then know everything!



| Sam | nlin | a m | eth | ods |
|-----|------|-----|-----|-----|

- Monte Carlo
  - No time-dependence
  - Require smart moves
- · Newton's equations of motion
  - Deterministic
  - Dynamic events
- Stochastic or Brownian dynamics

# **Molecular dynamics**

Tries to calculate paths or trajectories of the individual particles

Gives you:

- Time dependence
- Conformational properties of molecules
- How is motion calculated?

8

# **Molecular dynamics**

- Start with a set of coordinates
- · Calculate the potential and forces using a force field
- From the force acting on each particle we can calculate the acceleration working on it:

$$a_i = \frac{F_i}{m_i}$$
 Newton's second law

# **Molecular dynamics**

• From the acceleration we can calculate how the atomic velocities change

$$v_i(t + \Delta t) = v_i(t) + a_i \Delta t$$

• From the velocities we can calculate new atomic positions

$$x_i(t + \Delta t) = x_i(t) + v_i \Delta t$$

• Repeat force calculation with new coordinates

10

#### More formal definition

• Solve Newton's equations of motion:

$$m_i \frac{\partial^2 r_i}{\partial t^2} = F_i \qquad i = 1...N$$
$$F_i = -\frac{\partial V(r)}{\partial r}$$

- $F_i = -\frac{\partial V(r)}{\partial r_i}$  Time step must be small (typically femtosecond)
- Forces depend on all particles in the system expensive to calculate
- Generates a system trajectory over time

11

# **Trajectory**

• K+ permation through the Kv1.2 channel



# Time step (∆t)

- The choice of time step is crucial; too short and phase space is sampled inefficiently, too long and the energy will fluctuate widely
- Instabilities are caused by motion of atoms being extrapolated into regions where the potential energy is prohibitively high (overlap)
- For flexible molecules, the time step should an order of magnitude less than the fastest motions in the system (C-H vibrations 10 fs =>  $\Delta t$ =1 fs)

13

#### **Boundary conditions**

- · Vacuum no solvent
- Implicit model for solvent (not as good as explicit)
- Droplet: Spherical layer of water around a molecule or a protein, solvent molecules are restrained with random forces
- Periodic boundary conditions: Simulation box repeated in all directions, resembles bulk fluid

14

#### **Example**

- Spherical entire molecule immersed in a sphere
- Outermost molecules are restrained





# **Example**

- Spherical: Active site immersed in solvent
- "Green region" frozen in the simulations



16

# **Example: Periodic conditions**





17

# **Periodic cell shapes**

- Cubic or rectangular is by far the most common shape
- Truncated octahedron
- Rhombic dodecahedron





#### Thermodynamic ensembles

- · What are you simulating?
  - Energy is conserved for an isolated system, unless sharp cutoffs are used
    - If potential energy goes down, kinetic goes up (temperature increases)
  - Fixed temperature may be preferred?
  - Pressure, volume, number of particles?
- What are the physical "rules" for the simulation?

19

#### Some common ensembles

- Microcanonical ensemble NVE
  - Most "pure" physical variant
  - Constant number of particles (N)
  - Constant volume (V)
  - Constant energy (E) temperature varies

Mostly used in physics, can be problematic for proteins, what happens when the structure improves and we find lower parts in the energy landscape?

20

#### Some common ensembles

- Canonical ensemble NVT
  - Constant number of particles (N)
  - Constant volume (V)
  - Constant temperature (T)
- NPT is common too!!

This ensemble uses special techniques to maintain the temperature e.g. at experimental conditions 298 K

# Some common ensembles

- Isothermal-isobaric NPT
  - Constant number of particles (N)
  - Constant pressure (P)
  - Constant temperature (T)
- Chemical reactions are usually carried under these conditions

22

#### **Nonbonded interactions**

- We get lots of interactions when water is added
   Most time-consuming part of simulations
- What happens at the boundaries?
  - Interact with atoms in neighbor cells
- Impossible to interact with all periodic copies
   Introduce cutoffs and neighbor lists

23

# **Cutoffs and minimum image**

Atoms interact with all other atoms that are within the cutoff distance

Atoms interact only with the closest periodic copy of each atom - minimum image convention



Cutoffs does not lead to dramatically speed reductions - we still need to calculate all the N(N-1) distances

# Nonbonded neighbor lists

- Atom's neighbors do not change must during 20-50 simulation steps
- Make a list to keep track of the neighbors within the cutoff distance



25

# Nonbonded neighbor lists

- · Also known as Verlet's neighbors list
- · Update interval depends on your system
  - e.g. SHAKE/LINCS/RATTLE
  - Time step for integration
- Too often updating => no speed gain
- Too seldom updating => instabilities in the simulations

26

# Electrostatic interactions or support of the control of the contro





29

#### **Ewald summation**

- It is possible to solve the full electrostatic problem
- Add a screening function around charges to make their interactions decay fast
- Solve the rest in reciprocal space by using Fourier transforms



# **PME - Particle Mesh Ewald**

- · Particle-Mesh-Ewald
- Modern, fast way to perform Ewald summation
- Charge spreading on 3D grid
- Solve Poisson equation on grid
- Transform back, interpolate to get forces

31

#### **Reaction field methods**

- A sphere is constructed around the atom/molecule with a radius equal to the cutoff
  - => interactions within are computed directly
- Outside the cavity the system is treated as a dielectric continuum



τ<sub>c</sub>

32

#### **Reaction field methods**

 Any net dipole in the cavity induces a polarization in the dielectric, which in turn polarizes the charge distribution in the cavity



 Treating this mutual polarization in a seir consistent manner leads to the reaction field in the cavity:

$$\mathbf{E}_i = \frac{2(\varepsilon - 1)}{(\varepsilon + 1)r_c^3} \sum_j \mu_j$$

# **Problems with reaction field methods**

- · Permitivity ad hoc
- · Cavity radius
  - adjustable
  - problematic to determine
- Poor energy conservation
  - Discontinuities when a molecule leaves cavity

34

# **Temperature control**

- How do we control the temperature?
- Temperature is just kinetic energy
- If we change velocities we change temperature
- Several alternative, for example:
  - Calculate actual temperature at each step
  - Too low? Scale up velocities
  - Too high? Scale down velocities

35

#### It's statistical mechanics!!!

- Remember:
   Just because you see something in a simulation does
   NOT mean it is real
- Everything is about statistics
- When you see it 10 times it's significant a single event is not!
- You should always try to calculate error estimates for predicted properties

| MD | programs   |   |
|----|------------|---|
|    | p. og. am. | • |

- GROMACS, Amber, Charmm, NAMD, ESPRESSO, Encad, BOSS, LAMMPS...
- Programs are closely tied to force fields (Amber99, Charmm19, OPLS)
- · Most are freely available to academia
- We will use Q and different force fields...

#### A typical simulation

- Get structure (typically from PDB)
- Fix missing residue, segements, protonation states, His/Gln/Asn etc.
- Prepare topology and parameters
- Add solvent (normally water)
- Energy minimization
- · Heating and equilibration
- Data production
- · Analyze the trajectories produced

38

# **Summary**

- Think first then simulate!!!
- Time scales & limitations
- · Empirical force fields
- Phase space, dynamics, Monte Carlo
- Sampling distributions
- · Algorithms, approximations, quality
- Boundary conditions, interactions, etc