Фреймворк для конечно-разностного моделирования диффузионных задач на гибридных вычислительных кластерах

Фролов Д. А.

Ярославский государственный университет им. П. Г. Демидова

Научный руководитель: Глызин С. Д.

Ярославль 2015

Основные понятия

Система «реакция-диффузия» — нелинейная динамическая система, в которой пространственно неоднородные колебательные режимы обусловлены наличием диффузионной составляющей.

Актуальная проблема – разработка программного комплекса для моделирования диффузионных задач.

Основные требования:

- высокий уровень настраиваемости;
- эффективная работа на гибридных вычислительных системах.

Цель работы

Разработка части программного комплекса для моделирования диффузионных задач, отвечающей за повышение его производительности за счет применения распределенных вычислений.

Теоретические основы

Общий вид задачи «реакция-диффузия»

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + F(u);$$

$$\frac{\partial u}{\partial x} \Big|_{x=0} = \frac{\partial u}{\partial x} \Big|_{x=1} = 0, \ F(0) = 0.$$

Приближение оператора Лапласа его разностными аналогами

$$\frac{\partial^{2} u}{\partial x^{2}} \bigg|_{x=x_{j}} = \frac{u_{j-1} - 2u_{j} + u_{j+1}}{\triangle^{2}};$$

$$\dot{u}_{j} = D \frac{u_{j-1} - 2u_{j} + u_{j+1}}{\triangle^{2}} + F(u_{j});$$

$$u_{0} = u_{1}, \ u_{N+1} = u_{N}, \ j = \overline{1, N}.$$

Пример области задачи

Kласc Solver и его наследники

Kласс Block и его наследники

Общая схема классов приложения

Параллельность

- Крупнозернистый параллелизм разделение задачи на блоки
 - Передача данных между узлами кластера библиотека MPI
 - Обмен данными на одном узле pinned-память
- Мелкозернистый параллелизм
 - Центральный процессор OpenMP
 - Видеокарта CUDA

Схема расчетов

