Semester 2 (Units 3 and 4) Examination, 2016 Question/Answer Booklet

MATHEMATICS METHODS

Section One:	Calculator-free
Student Name/Number:	
Teacher Name:	
Time allowed for the Reading time before com	nis section mencing work: five minutes

Materials required/recommended for this section

To be provided by the supervisor: This Question/Answer Booklet

Formula Sheet

fifty minutes

To be provided by the candidate:

Working time for this section:

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener,

correction fluid/tape, eraser, ruler, highlighters

Special items: nil

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Section One: Calculator-free

(54 Marks) Weighting 35%

This section has **10 (ten)** questions. Answer **all** questions. Write your answers in the spaces provided.

Suggested working time: 50 minutes.

Question 1 (6 marks)

Determine the exact value of m, m > 0, for each of the following equations.

(a)
$$2 \ln m = 3$$
 (2 marks)

(b)
$$\log(m+3) + \log m - 1 = 0$$
 (4 marks)

Question 2 (9 marks)

(a) Differentiate each of the following with respect to χ . Do **not** simplify your answers.

$$y = \frac{4e^x}{6x^4 - x^3 + e}$$
 (3 marks)

$$y = \ln\left(\frac{5x^3 + 3}{\sin(x)}\right)$$
 (3 marks)

(b) Show how to use the chain rule to determine $\frac{dy}{dx}$ when $y = \frac{e^{x^2 - \cos(x)}}{2}$ (3 marks)

Question 3 (3 marks)

Describe each of the following as either a discrete random variable, a continuous random variable or a non-random variable.

- (a) the number of dots showing on a die after being thrown. (1 mark)
- (b) the distance between Sydney and Melbourne. (1 mark)
- (c) the thickness of wire coming off a production line. (1 mark)

Question 4 (4 marks)

Determine the value of k if f(x) represents a probability density function.

$$f(x) = \begin{cases} kx \left(1 - \frac{x^2}{3}\right), & 0 \le x \le 1 \\ 0, & \text{elsewhere} \end{cases}$$

SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

Question 5 (4 marks)

The probability density function for a Bernoulli distribution is:

$$P(X = x) = \begin{cases} 1 - p, & \text{for } x = 0 \\ p, & \text{for } x = 1 \end{cases}$$

Given that the standard deviation for a particular Bernoulli distribution is $\frac{\sqrt{3}}{4}$, determine the value(s) of p.

Question 6 (4 marks)

Consider the graph of $g(x) = \ln(2x+6) - 4$

(a) For what values of *x* is the function valid? (1 mark)

Determine the χ -coordinate of the point on $g(\chi)$ where the slope of the tangent is 4. (b) (3 marks) Question 7 (4 marks)

The probability density function of a discrete random variable Y is given by

$$P(Y = y) = ky^2$$
, for $y = 0, 1, 2, 3, 4$.

(a) Complete the probability distribution for Y

(2 marks)

у	0	1	2	3	4
P(Y=y)			4 <i>k</i>		

(b) Determine the value of k.

(2 marks)

Question 8 (3 marks)

Given $\int e^{f(x)} f'(x) dx = e^{f(x)}$. If $f'(x) = 2xe^{3x^2-1}$ and f(0) = 0 determine f(x).

CALCULATOR-FREE SEMESTER 2 (UNITS 3 AND 4) EXAMINATION (12 marks)

Question 9

When calculating a confidence interval for a population proportion from a sample an associated z score is used. Use the table below to answer the following questions:

Confidence Interval	z score (rounded to 1 decimal	
	place)	
95%	2.0	
87%	1.5	
68%	1.0	

- (a) In a random sample of 100 people, 20 said they had watched an AFL game in the last year.
 - (i) Determine the proportion of those in the sample who had watched an AFL game in the last year (1 mark)
 - (ii) Determine a 95% confidence interval for the proportion of the population who had watched an AFL game in the last year. (4 marks)

A random sample of size n_1 was taken and the proportion of people who had watched a game of AFL in the last year was m .

(b) Determine a 68% confidence interval for the proportion of the population who had watched an AFL game in the last year in terms of n_1 and m. (2 marks)

(c) A new sample of size n_2 was taken and the proportion of people who had watched a game of AFL in the last year was again n_2 . When an 87% confidence interval was determined it was found to be the same as the interval determined in part (b).

(i) Is n_2 larger or smaller than n_1 ? Explain (2 marks)

(ii) What is the relationship between n_1 and n_2 ?

(3 marks)

Question 10

The graph of y = f(x) is shown below. It consists of two straight lines followed by a curve. The area between the function and the x-axis is equal to 50 square units.

$$\int_{0}^{5} f(x)dx$$
 (2 marks)

$$\int_{7}^{10} f(x)dx$$
 (3 marks)

10 CALCULATOR-FREE SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

End of Questions