Name:

Date:

s17 Geometric Series Exam (Solution v39)

Question 1

Consider the partial geometric series represented below with first term a=620, common ratio $r=\left(\frac{41}{62}\right)^{1/10}$, and n=10 terms.

$$S \ = \ 620 + 594.88 + 570.78 + 547.66 + 525.47 + 504.18 + 483.76 + 464.16 + 445.35 + 427.31$$

We can multiply both sides by r.

$$rS = 594.88 + 570.78 + 547.66 + 525.47 + 504.18 + 483.76 + 464.16 + 445.35 + 427.31 + 410$$

What is the value of S - rS?

Most terms cancel.

$$620 - 410 = 210$$

Question 2

Consider the geometric series shown below, using ellipsis notation to indicate a continuation of the pattern without writing every term.

$$S = 3 + 3(2) + 3(2)^{2} + 3(2)^{3} + \cdots + 3(2)^{88} + 3(2)^{89} + 3(2)^{90} + 3(2)^{91}$$

Identify the initial term, the common ratio, and the number of terms.

first term
$$= a = 3$$

common ratio =
$$r = 2$$

number of terms =
$$n = 92$$

Question 3

Write a proof for the partial geometric series formula.

- a. Define the variables.
- b. Write the sum using variables and ellipsis notation. You can implicitly assume the number of terms is more than the number of terms you choose to write.
- c. Using annotated algebraic manipulation, produce the partial geometric series formula.

Definitions

a =first term

r = common ratio

n = number of terms

S = sum of partial geometric series

The partial geometric series is expressed using ellipsis notation.

$$S = a + ar + ar^{2} + ar^{3} + \dots + ar^{n-4} + ar^{n-3} + ar^{n-2} + ar^{n-1}$$

Multiply both sides by r.

$$rS = ar + ar^2 + ar^3 + ar^4 + \dots + ar^{n-3} + ar^{n-2} + ar^{n-1} + ar^n$$

Subtract the second equation from the first equation.

$$S - rS = a - ar^n$$

Factor out S from left side.

$$S(1-r) = a - ar^n$$

Divide both sides by (1-r). We technically need to enforce $r \neq 1$ as a condition of the formula because otherwise we'd be dividing by 0 in this step, and division by 0 is not defined.

$$S = \frac{a - ar^n}{1 - r}$$