# Web Algorithms – Sponsored Search

Eng. Fabio Persia, PhD





## **Matching Markets**



# Prime example of network-structured interaction between many people/agents

#### Basic principles:

- People may have different preferences for different kinds of goods
- Prices can decentralize the allocation of goods to people
- 3. Prices can lead to allocations that are socially optimal

### 1<sup>st</sup> Scenario: Room Assigning



- Assigning rooms to students:
  - Each room is designed for a single student
  - Students may have different preferences over rooms





(a) Bipartite Graph



(b) A Perfect Matching



# In order to provide a suitable formalization, let us recall some basic concepts:

- Bipartite graphs
- Perfect matchings
- Constricted sets
- The Hall Matching Theorem



### Bipartite graph

- Nodes are divided into two categories
- Edges connect nodes in one category to nodes in the other category



(a) Bipartite Graph



### Perfect matching

- A choice of edges in the bipartite graph so that each node is the endpoint of exactly one of the chosen edges
- In other words, a matching without isolated nodes



(b) A Perfect Matching



- A set of nodes such that their edges on the other side of the bipartite graph "constrict" the formation of a perfect matching
- It implies the nonexistence of a perfect matching



 If G has a constricted set, then it does not admit a perfect matching



- Question: is the reverse also true? If G does not admit a perfect matching then G has a constricted set?
- Answer: yes, a famous theorem states that it in fact the if and only if holds
- Hall's Matching Theorem

A bipartite graph *G* (with equal number of nodes on the left and right) has not a perfect matching if and only if it contains a constricted set

Actually, the standard (equivalent) formulation of the theorem is:
A bipartite graph G (with equal number of nodes on the left and right) has a perfect matching if and only if it does not contain a constricted set



#### Hall's Matching Theorem

A bipartite graph G (with equal number of nodes on the left and right) has a not perfect matching if and only if it contains a constricted set

#### Proof.

Clearly if G contains a constricted set, then it cannot have a perfect matching

It remains to show that if there is not a perfect matching, then there is a constricted set



How can we identify a constricted set in a bipartite graph, knowing only that it does not have a perfect matching?

#### Idea:

- Start from any (non perfect) matching M
- Try to enlarge
- If SUCCESS switch to enlarged matching and iterate else identify a constricted set

Clearly, by the hypothesis, we must finally arrive to a non perfect matching *M* which is not enlargeable, and thus determine a constricted set



#### **Definitions:**

- Matching edges: edges used in given matching M
- Non-matching edges: the other edges.
- 3. Alternating path: a simple path that alternates between non-matching and matching edges



Augmenting path: alternating path whose endpoints are unmatched nodes → matching M can be enlarged



(a) A matching that is not of maximum size



(b) An augmenting path



(c) A larger (perfect) matching



# Searching for an augmenting path (starting from a non perfect matching *M*)

#### **Alternating Breadth-First Search**

- Start at any unmatched node W on the right (layer 0)
- Explore the rest of the graph layer by layer, using non-matching edges at odd steps and matching edges at even steps
- At every step add new nodes to the next layer if there are corresponding edges

Let's see an example of execution in the following figure ...







#### **Augmenting path**

W -> B -> Y -> D

#### **Augmented matching**

 Swapping matching and non-matching edges in the augmenting path



### The BFS tree ....







#### Properties of BFS tree:

- Even layers contain nodes on the right-hand side of the bipartite graph (buyers)
- 2. Odd layers contain nodes on the left-hand side of the bipartite graph (sellers)
- If there is an unmatched node Z in an odd layer, then the path from W to Z in BFS tree is an augmenting path

Thus, if there is an unmatched node Z in an odd layer, the current matching is enlargeable

We can then switch to the enlarged matching and iterate

# Assume then that in the BFS tree there is not any unmatched node in an odd layer







# Under the assumption of no unmatched nodes in odd layers:

- Number of nodes in any odd layer i = number of nodes in even layer i+1 (since we follow matching edges)
- Thus, not counting node W in layer O, number of nodes in all odd layers = number of nodes in all even layers
- 3. Every node in an even layer has all its neighbors in the graph occurring in the odd layers of the BFS tree:
  - Its matched neighbor in previous layer
  - All the remaining neighbors not occurring in previous layers are in next layer
- Constricted set: W and all the nodes in even layers (one more than ones in odd layers)



So we have finally proven the following claim (hence the Hall's Matching theorem)

**Claim:** Consider any bipartite graph *G* (with equal number of nodes on the left and right) and a non perfect matching *M*, and let *W* be any unmatched node on the right-hand side.

Then either there is an augmenting path beginning at *W*, or there is a constricted set containing *W*.





Remark: The previous proof also provides an algorithm for determining an eventual perfect matching in a bipartite graph:

- Start with an empty matching
- 2. Look for an unmatched node W on the right
- 3. Use alternating BFS to search for an augmenting path beginning at W
- If found, use this path to enlarge the matching and iterate, else indicate the constricted set

So, either we end up with a perfect matching, or we can provide a constricted set

### Computing a <u>Maximum</u> Matching



#### Consider graph in figure

- Starting from W, we fail to find augmenting path.
- Starting from Y, we can produce the path Y B Z D.



### Computing a <u>Maximum</u> Matching

• Starting from Y, we can produce the path Y - B - Z - D.

#### **OLD MATCHING**



#### **NEW MATCHING**





- Remark: if there is not an augmenting path from a specific unmatched node W in the right, it doesn't mean that the matching is maximum
- However, if there is no augmenting path beginning from any unmatched node on the right, the current matching has maximum size
- The previous procedure can then be adapted to compute also a maximum matching: modify the alternating BFS by putting all the unmatched nodes on the right to layer 0

# Back to Room Assigning: Refinement with Valuations



More than a binary choice "accept-or-not"

#### Valuations:

- individuals evaluating a objects
- numbers expressing degree of preference

Quality of an assignment of objects to individuals



Sum of each individual's valuation for what he gets



#### Optimal assignment: an assignment that maximizes the total happiness of everyone



Quality of the assignment: 12+6+5 = 23





The previous scenario assumed a "central administrator" determining a perfect matching or an optimal assignment

A typical market instead consists of individuals making independent or autonomous free choices based on prices and valuations

Question: how can we decentralize markets using prices?