

Mark Scheme (Results)

June 2013

GCE Further Pure Mathematics FP3 (6669/01) Original Paper

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code N/A
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

June 2013 6669 Further Pure Mathematics 3 Mark Scheme

Question Number	Scheme	Marks	
1.	(a) $b^{2} = a^{2} \left(e^{2} - 1\right) \Rightarrow k^{2} = 4k^{2} \left(e^{2} - 1\right)$ Leading to $e = \frac{\sqrt{5}}{2}$ awrt 1.1	M1 A1	(2)
	(b) $2ae = 6\sqrt{5} \implies 4k \times \frac{\sqrt{5}}{2} = 6\sqrt{5}$ $k = 3$	M1 A1	(2) [4]
2.	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2 + 2\tan 2t, \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = 2 - 2\tan 2t$ $\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}$	B1	
	$\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} = (2 + 2\tan 2t)^{2} + (2 - 2\tan 2t)^{2}$ $= 8 + 8\tan^{2} 2t = 8\sec^{2} 2t$	M1 M1	
	$\int \left(\left(\frac{\mathrm{d}x}{\mathrm{d}t} \right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t} \right)^2 \right)^{\frac{1}{2}} \mathrm{d}t = 2\sqrt{2} \int \sec 2t \mathrm{d}t$	N/1 A 1	
	$= \sqrt{2\ln\left(\sec 2t + \tan 2t\right)} (+C)$ $s = \left[\sqrt{2\ln\left(\sec 2t + \tan 2t\right)}\right]_0^{\frac{\pi}{6}} = \sqrt{2\ln\left(2 + \sqrt{3}\right)} * \csc$	M1 A1	(7) [7]

Question Number	Scheme	Marks
3.	(a) $\lambda = 1 \Rightarrow \mathbf{r} = \begin{pmatrix} 0 \\ -3 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \Rightarrow (2, -1, 3) \in l_1$	B1
	$\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} - \begin{pmatrix} 4 \\ -7 \\ 7 \end{bmatrix} \times \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 6 \\ -4 \end{pmatrix} \times \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 - 12 \\ 4 - 4 \\ 6 - 6 \end{pmatrix}$	M1
	$= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \implies (2, -1, 3) \in l_2$	A1 (3)
	(b) $ \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -5 \\ -8 \end{pmatrix} $ or any multiple	M1 A2(1, 0)
	(c) $\mathbf{r.n} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -5 \\ -8 \end{pmatrix} = 2 + 5 - 24 = -17$ Leading to $x - 5y - 8z = -17$ or any multiple	(3) M1 M1 A1 (3)
		[9]
	Alternative to (c)	
	Three points on the plane are $(2,-1,3)$, $(0,-3,4)$, $(4,-7,7)$ x + by + cz = d -2-b+3c = d	
	-3b + 4c = d $4 - 7b + 7c = d$ Solving to $b = -5, c = -8, d = -17$	M1 M1 A1 (3)

Question Number	Scheme	Marks
4.	(a) $y = \operatorname{arsinh} x \implies \sinh y = x$ $\frac{e^{y} - e^{-y}}{2} = x$ $e^{2y} - 2x e^{y} - 1 = 0$ $e^{y} = \frac{2x + \sqrt{4x^{2} + 4}}{2}$ $= x + \sqrt{x^{2} + 1}$ $y = \ln(x + \sqrt{1 + x^{2}})$ condone \pm	M1 M1 M1 A1
	(b) $\arcsin (4x-2) = \ln 4x$ $\ln \left(4x-2+\sqrt{\left[\left(4x-2\right)^2+1\right]}\right) = \ln 4x$ $4x-2+\sqrt{\left[\left(4x-2\right)^2+1\right]} = 4x$ $\left(4x-2\right)^2+1=4$ $\left(4x-2\right)^2=3 \text{ or } 16x^2-16x+1=0$ $x=\frac{2\pm\sqrt{3}}{4} \qquad \text{accept exact equivalents}$	M1 M1 M1 A1 A1 (5) [10]
	Alternative to (b) $4x-2 = \frac{e^{\ln 4x} - e^{-\ln 4x}}{2}$ $= 2x - \frac{1}{8x}$ Leading to $16x^2 - 16x + 1 = 0$ $x = \frac{2 \pm \sqrt{3}}{4}$	M1 M1 M1 A1 A1 (5)

Question Number	Scheme	Marks	
5.	(a) $\frac{\mathrm{d}x}{\mathrm{d}\theta} = -a\sin\theta, \frac{\mathrm{d}y}{\mathrm{d}\theta} = b\cos\theta$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{b\cos\theta}{a\sin\theta} \implies m' = \frac{a\sin\theta}{b\cos\theta}$	M1 A1	
	$y - b\sin\theta = \frac{a\sin\theta}{b\cos\theta} (x - a\cos\theta)$	M1	
	Leading to $ax \sin \theta - by \cos \theta = (a^2 - b^2) \cos \theta \sin \theta$ * cso	A1 ((5)
	(b) x -coordinate of R : $\frac{a^2 - b^2}{a} \cos \theta$		
	y-coordinate of S: $-\frac{a^2-b^2}{b}\sin\theta$ both	B1	
	$M: \left(\frac{a^2 - b^2}{2a}\cos\theta, -\frac{a^2 - b^2}{2b}\sin\theta\right)$	M1	
	$\frac{x^2}{\left(\frac{a^2-b^2}{2a}\right)^2} + \frac{y^2}{\left(\frac{a^2-b^2}{2b}\right)^2} = 1$ or equivalent	M1 A1 ((4)
	24 / 25 /	Γ	[9]

Question Number	Scheme	Marks
6.	(a) $\frac{d}{dx} \left(\arctan\left(\frac{3}{x}\right) \right) = \frac{1}{1 + \left(\frac{3}{x}\right)^2} \times -\frac{3}{x^2}$	M1 A1
	$=-\frac{3}{x^2+9}$	A1 (3)
	Note: $\arctan\left(\frac{3}{x}\right)$ can be written as $\operatorname{arccot}\left(\frac{x}{3}\right)$ or as $\frac{\pi}{2} - \arctan\left(\frac{x}{3}\right)$. The mark scheme above essentially still applies.	
	(b) $\int x \arctan\left(\frac{3}{x}\right) dx = \frac{x^2}{2} \arctan\left(\frac{3}{x}\right) + \frac{3}{2} \int \frac{x^2}{x^2 + 9} dx$ $= \dots + \frac{3}{2} \int \frac{x^2 + 9 - 9}{x^2 + 9} dx$	M1 A1
	$= \dots + \frac{3}{2} \int \left(1 - \frac{9}{x^2 + 9}\right) dx$	M1
	$= \dots + \frac{3}{2}x - \frac{9}{2}\arctan\left(\frac{x}{3}\right) (+C)$	M1 A1
	<i>Note</i> : $+\frac{3}{2}x + \frac{9}{2}\arctan\left(\frac{3}{x}\right)$ (+C) is also a correct form.	
		M1
	$= \frac{9}{2} - \frac{3\sqrt{3}}{2} + \frac{\pi}{4}$	M1 A1 (8) [11]

Question Number	Scheme	Marks
7.	(a) $\begin{vmatrix} 2-\lambda & 4 & -6 \\ 0 & 2-\lambda & 0 \\ 1 & 0 & -5-\lambda \end{vmatrix} = 0$ $(2-\lambda)(2-\lambda)(-5-\lambda) + 6(2-\lambda) = 0$ Leading to $(2-\lambda)(\lambda-1)(\lambda+4) = 0$ $\lambda = 2; 1, -4$	M1 M1 B1; A1 (4)
	The B for $\lambda = 2$ can be awarded at any stage and for direct verification $ \begin{pmatrix} 2 & 4 & -6 \\ 0 & 2 & 0 \\ 1 & 0 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2\begin{pmatrix} x \\ y \\ z \end{pmatrix} $ $ 2x + 4y - 6z = 2x \qquad (2y = 3z) $ $ (2y = 2y) $	
	$(2y-2y)$ $x-5z=2z (x=7z)$ Let $z=2$, then $x=14$, $y=3$ An eigenvector is $\begin{pmatrix} 14\\3\\2 \end{pmatrix}$ or any multiple	M1 M1 A1 (3)
	(c) A cartesian equation of Π_1 is $4y - 5z = 20$ and a parametric form is $ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & 4 & -6 \\ 0 & 2 & 0 \\ 1 & 0 & -5 \end{pmatrix} \begin{pmatrix} s \\ t \\ \frac{4}{5}t - 4 \end{pmatrix} = \begin{pmatrix} 2s - \frac{4}{5}t + 24 \\ 2t \\ s - 4t + 20 \end{pmatrix} $ $ x = 2s - \frac{4}{5}t + 24, y = 2t, z = s - 4t + 20$	M1 M1 A1 M1
	Eliminating s and t 5x-10z = 36t-80 5x-10z = 18y-80 5x-18y-10z = -80 A vector equation of II_x is \mathbf{r} , $\begin{bmatrix} 5 \\ -18 \end{bmatrix} = -80$	M1 A1 (6)
	A vector equation of Π_2 is $\mathbf{r} \cdot \begin{pmatrix} 5 \\ -18 \\ -10 \end{pmatrix} = -80$	[13]

Question Number	Scheme	Mark	S
8.	(a) $\frac{d}{dx} \left(x^{n-1} \left(x^2 + 1 \right)^{\frac{1}{2}} \right) = (n-1) x^{n-2} \left(x^2 + 1 \right)^{\frac{1}{2}} + x^n \left(x^2 + 1 \right)^{-\frac{1}{2}}$ Accept unsimplified forms	M1 A1	(2)
	(b) $\frac{nx^{n}}{\left(x^{2}+1\right)^{\frac{1}{2}}} + \frac{\left(n-1\right)x^{n-2}}{\left(x^{2}+1\right)^{\frac{1}{2}}} = \frac{\left(n-1\right)x^{n} + \left(n-1\right)x^{n-2}}{\left(x^{2}+1\right)^{\frac{1}{2}}} + \frac{x^{n}}{\left(x^{2}+1\right)^{\frac{1}{2}}}$ $= \frac{\left(n-1\right)x^{n-2}\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{\frac{1}{2}}} + \frac{x^{n}}{\left(x^{2}+1\right)^{\frac{1}{2}}}$	M1	
	$(x^{2}+1)^{2} \qquad (x^{2}+1)^{2}$ $= (n-1)x^{n-2}(x^{2}+1)^{\frac{1}{2}} + x^{n}(x^{2}+1)^{-\frac{1}{2}} \text{(the answer to (a))}$ The argument above can be reversed. Hence, using (a) and integrating	M1 A1	
	$nI_n + (n-1)I_{n-2} = x^{n-1}\sqrt{(x^2+1)}$ * cso	M1 A1	(5)
	(c) $I_0 = \int_0^1 \frac{1}{\sqrt{(x^2 + 1)}} dx = \left[\operatorname{arsinh} x \right]_0^1 = \operatorname{arsinh} 1 \left(= \ln(1 + \sqrt{2}) \right)$	B1	
	Using (b) $2I_2 + I_0 = \left[x\sqrt{(x^2+1)}\right]_0^1 = \sqrt{2}$	M1 A1	
	$I_2 = \frac{\sqrt{2 - I_0}}{2} = \frac{\sqrt{2 - \ln(1 + \sqrt{2})}}{2}$	M1 A1	(5) [12]
	Alternative to (b)		
	$I_n = \int x^{n-1} \frac{x}{\sqrt{(x^2+1)}} dx = x^{n-1} (x^2+1)^{\frac{1}{2}} - \int (n-1)x^{n-2} (x^2+1)^{\frac{1}{2}} dx$	M1 A1	
	$= x^{n-1} \left(x^2 + 1\right)^{\frac{1}{2}} - \int \frac{(n-1)x^{n-2} \left(x^2 + 1\right)}{\left(x^2 + 1\right)^{\frac{1}{2}}} dx$	M1	
	$= x^{n-1} \left(x^2 + 1\right)^{\frac{1}{2}} - \left(n - 1\right) \int \frac{x^n}{\left(x^2 + 1\right)^{\frac{1}{2}}} dx - \left(n - 1\right) \int \frac{x^{n-2}}{\left(x^2 + 1\right)^{\frac{1}{2}}} dx$		
	$= x^{n-1} (x^2 + 1)^{\frac{1}{2}} - (n-1) I_n - (n-1) I_{n-2}$	M1	
	Hence $nI_n + (n-1)I_{n-2} = x^{n-1}\sqrt{(x^2+1)}$ * cso	A1	(5)

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code N/A Summer 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

