ST5215 Advanced Statistical Theory, Lecture 2

HUANG Dongming

National University of Singapore

13 Aug 2020

Last time

• σ -field (Borel filed \mathcal{B} on \mathcal{R} , product σ -field)

Last time

- σ -field (Borel filed \mathcal{B} on \mathcal{R} , product σ -field)
- Measure (counting measure, Lebesgue measure, σ -finite)

Last time

- σ -field (Borel filed \mathcal{B} on \mathcal{R} , product σ -field)
- Measure (counting measure, Lebesgue measure, σ -finite)
- Measurable functions (indicator functions, simple functions)

Last time

- σ -field (Borel filed \mathcal{B} on \mathcal{R} , product σ -field)
- Measure (counting measure, Lebesgue measure, σ -finite)
- Measurable functions (indicator functions, simple functions)
- Lebesgue Integration (3 steps)

Last time

- σ -field (Borel filed \mathcal{B} on \mathcal{R} , product σ -field)
- Measure (counting measure, Lebesgue measure, σ -finite)
- Measurable functions (indicator functions, simple functions)
- Lebesgue Integration (3 steps)

Some clarifications

• Cartesian product of two sets $A \times B = \{(a, b) : a \in A, b \in B\}$

Last time

- σ -field (Borel filed \mathcal{B} on \mathcal{R} , product σ -field)
- Measure (counting measure, Lebesgue measure, σ -finite)
- Measurable functions (indicator functions, simple functions)
- Lebesgue Integration (3 steps)

Some clarifications

- Cartesian product of two sets $A \times B = \{(a, b) : a \in A, b \in B\}$
- "Homework" mentioned in slides

Last time

- σ -field (Borel filed \mathcal{B} on \mathcal{R} , product σ -field)
- Measure (counting measure, Lebesgue measure, σ -finite)
- Measurable functions (indicator functions, simple functions)
- Lebesgue Integration (3 steps)

Some clarifications

- Cartesian product of two sets $A \times B = \{(a, b) : a \in A, b \in B\}$
- "Homework" mentioned in slides
- P9 of the old slide has some typos

Properties of measures

Let $(\Omega, \mathcal{F}, \nu)$ be a measure space. Assume all sets below are \mathcal{F} -measurable

- (Monotonicity) If $A \subset B$, then $\nu(A) \leq \nu(B)$.
- (Subadditivity) For any sequence of sets A_n 's, $\nu(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \nu(A_n)$.
- (Continuity) If A_n 's is an increasing sequence of sets, and $\lim_{n\to\infty}A_n:=\cup_{n=1}^\infty A_n$, then $\nu(\lim_{n\to\infty}A_n)=\lim_{n\to\infty}\nu(A_n)$.
- If A_n 's is a decreasing sequence of sets and $\lim_{n\to\infty} A_n := \bigcap_{n=1}^{\infty} A_n$, and if $\nu(A_1) < \infty$, then $\nu(\lim_{n\to\infty} A_n) = \lim_{n\to\infty} \nu(A_n)$.

Sets under mappings

For any function $f: \Omega \mapsto \Lambda$ and any index set I, we have

• $f(\bigcup_{\alpha \in I} A_{\alpha}) = \bigcup_{\alpha \in I} f(A_{\alpha})$, where $A_{\alpha} \subset \Omega$

Sets under mappings

For any function $f: \Omega \mapsto \Lambda$ and any index set I, we have

- $f(\bigcup_{\alpha\in I}A_{\alpha})=\bigcup_{\alpha\in I}f(A_{\alpha})$, where $A_{\alpha}\subset\Omega$
- $f^{-1}(\bigcup_{\alpha\in I}B_{\alpha})=\bigcup_{\alpha\in I}f^{-1}(B_{\alpha})$, where $B_{\alpha}\subset\Lambda$

Sets under mappings

For any function $f: \Omega \mapsto \Lambda$ and any index set I, we have

- $f(\bigcup_{\alpha\in I}A_{\alpha})=\bigcup_{\alpha\in I}f(A_{\alpha})$, where $A_{\alpha}\subset\Omega$
- $f^{-1}(\bigcup_{\alpha\in I}B_{\alpha})=\bigcup_{\alpha\in I}f^{-1}(B_{\alpha})$, where $B_{\alpha}\subset\Lambda$
- $f^{-1}(B^c) = (f^{-1}(B))^c$, where $B \subset \Lambda$

• If A is measurable and $\nu(A) = 0$, then A is called a *null set*.

- If A is measurable and $\nu(A) = 0$, then A is called a *null set*.
- a.e. (almost everywhere) and a.s. statements: A statement holds ν -a.e. (or simply a.e.) if there is a null set A, the statement holds for all ω in A^c

- If A is measurable and $\nu(A) = 0$, then A is called a *null set*.
- a.e. (almost everywhere) and a.s. statements: A statement holds ν -a.e. (or simply a.e.) if there is a null set A, the statement holds for all ω in A^c
- ullet if u is a probability, a.e. is often written as a.s. (almost surely)

- If A is measurable and $\nu(A) = 0$, then A is called a *null set*.
- a.e. (almost everywhere) and a.s. statements: A statement holds ν -a.e. (or simply a.e.) if there is a null set A, the statement holds for all ω in A^c
- if ν is a probability, a.e. is often written as a.s. (almost surely) Sometimes, we says the statement holds with probability 1 (w.p. 1)

- If A is measurable and $\nu(A) = 0$, then A is called a *null set*.
- a.e. (almost everywhere) and a.s. statements: A statement holds ν -a.e. (or simply a.e.) if there is a null set A, the statement holds for all ω in A^c
- if ν is a probability, a.e. is often written as a.s. (almost surely) Sometimes, we says the statement holds with probability 1 (w.p. 1)

Examples

• Let $f(x) = x^2$, then f(x) > 0 *m*-a.e. (recall: m denotes the Lebesgue measure on \mathcal{R}): $f(x) \le 0$ iff x = 0, and $m(\{0\}) = 0$

ST5215 (NUS) Lecture 2 13 Aug 2020 5/35

- If A is measurable and $\nu(A) = 0$, then A is called a *null set*.
- a.e. (almost everywhere) and a.s. statements: A statement holds ν -a.e. (or simply a.e.) if there is a null set A, the statement holds for all ω in A^c
- if ν is a probability, a.e. is often written as a.s. (almost surely) Sometimes, we says the statement holds with probability 1 (w.p. 1)

Examples

- Let $f(x) = x^2$, then f(x) > 0 m-a.e. (recall: m denotes the Lebesgue measure on \mathcal{R}): $f(x) \le 0$ iff x = 0, and $m(\{0\}) = 0$
- Let $f_n(x) = 1/(1 + nx^2)$. Then $f_n \to 0$ m-a.e. : $f_n(x) \nrightarrow 0$ iff x = 0
- If f=0 ν -a.e. then $\int f \ \mathrm{d}\nu=0$: For any simple function g such that $0\leq g\leq f_+$, easy to see $\int g \ \mathrm{d}\nu=0$.

Assume the expectation of random variables below exists

- **1** Linearity: $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$
- ② $\mathbb{E}X$ is finite if and only if $\mathbb{E}|X|$ is finite
- **3** If $X \ge 0$ a.s., then $\mathbb{E}X \ge 0$
 - ▶ If $X \leq Y$ a.s., then $\mathbb{E}X \leq \mathbb{E}Y$
 - ▶ If X = Y a.s., then $\mathbb{E}X = \mathbb{E}Y$
- $|\mathbb{E}X| \leq \mathbb{E}|X|$
- **5** If $X \ge 0$ a.s., and $\mathbb{E}X = 0$, then X = 0 a.s.

Assume the expectation of random variables below exists

- **1** Linearity: $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$
- ② $\mathbb{E}X$ is finite if and only if $\mathbb{E}|X|$ is finite
- **3** If $X \ge 0$ a.s., then $\mathbb{E}X \ge 0$
 - ▶ If $X \le Y$ a.s., then $\mathbb{E}X \le \mathbb{E}Y$
 - ▶ If X = Y a.s., then $\mathbb{E}X = \mathbb{E}Y$
- $|\mathbb{E}X| \leq \mathbb{E}|X|$
- **5** If $X \ge 0$ a.s., and $\mathbb{E}X = 0$, then X = 0 a.s.

Assume the expectation of random variables below exists

- **1** Linearity: $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$
- ② $\mathbb{E}X$ is finite if and only if $\mathbb{E}|X|$ is finite
- **3** If $X \ge 0$ a.s., then $\mathbb{E}X \ge 0$
 - ▶ If $X \leq Y$ a.s., then $\mathbb{E}X \leq \mathbb{E}Y$
 - ▶ If X = Y a.s., then $\mathbb{E}X = \mathbb{E}Y$
- $|\mathbb{E}X| \leq \mathbb{E}|X|$
- **5** If $X \ge 0$ a.s., and $\mathbb{E}X = 0$, then X = 0 a.s.

Standard method to prove (1) in 3 steps: simple functions, nonnegative functions, and then general functions. W.L.O.G. (with out loss of generality) assume a, b > 0 (2 – 4) follows from the definition of integration.

Assume the expectation of random variables below exists

- **1** Linearity: $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$
- ② $\mathbb{E}X$ is finite if and only if $\mathbb{E}|X|$ is finite
- **3** If $X \ge 0$ a.s., then $\mathbb{E}X \ge 0$
 - ▶ If $X \leq Y$ a.s., then $\mathbb{E}X \leq \mathbb{E}Y$
 - ▶ If X = Y a.s., then $\mathbb{E}X = \mathbb{E}Y$
- \bullet $|\mathbb{E}X| \leq \mathbb{E}|X|$
- **5** If $X \ge 0$ a.s., and $\mathbb{E}X = 0$, then X = 0 a.s.

- (2-4) follows from the definition of integration.
- (5): Let $A = \{X > 0\}$ and $A_n = \{X > 1/n\}$.

Assume the expectation of random variables below exists

- **1** Linearity: $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$
- ② $\mathbb{E}X$ is finite if and only if $\mathbb{E}|X|$ is finite
- **3** If $X \ge 0$ a.s., then $\mathbb{E}X \ge 0$
 - ▶ If $X \leq Y$ a.s., then $\mathbb{E}X \leq \mathbb{E}Y$
 - ▶ If X = Y a.s., then $\mathbb{E}X = \mathbb{E}Y$
- \bullet $|\mathbb{E}X| \leq \mathbb{E}|X|$

- (2-4) follows from the definition of integration.
- (5): Let $A = \{X > 0\}$ and $A_n = \{X > 1/n\}$. Since $X \ge XI_{A_n} \ge \frac{1}{n}I_{A_n}$,

Assume the expectation of random variables below exists

- **1** Linearity: $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$
- ② $\mathbb{E}X$ is finite if and only if $\mathbb{E}|X|$ is finite
- **3** If $X \ge 0$ a.s., then $\mathbb{E}X \ge 0$
 - ▶ If $X \leq Y$ a.s., then $\mathbb{E}X \leq \mathbb{E}Y$
 - ▶ If X = Y a.s., then $\mathbb{E}X = \mathbb{E}Y$
- \bullet $|\mathbb{E}X| \leq \mathbb{E}|X|$
- **5** If $X \ge 0$ a.s., and $\mathbb{E}X = 0$, then X = 0 a.s.

- (2-4) follows from the definition of integration.
- (5): Let $A = \{X > 0\}$ and $A_n = \{X > 1/n\}$. Since $X \ge XI_{A_n} \ge \frac{1}{n}I_{A_n}$, we have $0 = \mathbb{E}X \ge \frac{1}{n}\mathbb{E}I_{A_n}$,

Assume the expectation of random variables below exists

- **1** Linearity: $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$
- ② $\mathbb{E}X$ is finite if and only if $\mathbb{E}|X|$ is finite
- **3** If $X \ge 0$ a.s., then $\mathbb{E}X \ge 0$
 - ▶ If $X \le Y$ a.s., then $\mathbb{E}X \le \mathbb{E}Y$
 - ▶ If X = Y a.s., then $\mathbb{E}X = \mathbb{E}Y$
- \bullet $|\mathbb{E}X| \leq \mathbb{E}|X|$

- (2-4) follows from the definition of integration.
- (5): Let $A = \{X > 0\}$ and $A_n = \{X > 1/n\}$. Since $X \ge XI_{A_n} \ge \frac{1}{n}I_{A_n}$, we have $0 = \mathbb{E}X \ge \frac{1}{n}\mathbb{E}I_{A_n}$, so $\mathbb{P}(A_n) = 0$.

Assume the expectation of random variables below exists

- **1** Linearity: $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$
- ② $\mathbb{E}X$ is finite if and only if $\mathbb{E}|X|$ is finite
- **3** If $X \ge 0$ a.s., then $\mathbb{E}X \ge 0$
 - ▶ If $X \leq Y$ a.s., then $\mathbb{E}X \leq \mathbb{E}Y$
 - ▶ If X = Y a.s., then $\mathbb{E}X = \mathbb{E}Y$
- \bullet $|\mathbb{E}X| \leq \mathbb{E}|X|$

- (2-4) follows from the definition of integration.
- (5): Let $A = \{X > 0\}$ and $A_n = \{X > 1/n\}$. Since $X \ge XI_{A_n} \ge \frac{1}{n}I_{A_n}$, we have $0 = \mathbb{E}X \ge \frac{1}{n}\mathbb{E}I_{A_n}$, so $\mathbb{P}(A_n) = 0$. Since $A_n \uparrow A$, we have $\mathbb{P}(A) = 0$.

Theorem

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of Borel functions on $(\Omega, \mathcal{F}, \nu)$.

Theorem

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of Borel functions on $(\Omega, \mathcal{F}, \nu)$.

• Monotone convergence theorem: If $0 \le f_1 \le \cdots$ and $\lim_n f_n = f$ a.e., then

$$\int \lim_{n} f_{n} \, d\nu = \lim_{n} \int f_{n} \, d\nu. \tag{1}$$

Theorem

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of Borel functions on $(\Omega, \mathcal{F}, \nu)$.

• Monotone convergence theorem: If $0 \le f_1 \le \cdots$ and $\lim_n f_n = f$ a.e., then

$$\int \lim_{n} f_{n} \, d\nu = \lim_{n} \int f_{n} \, d\nu. \tag{1}$$

• Fatou's lemma: If $f_n \ge 0$, then

$$\int \liminf_{n} f_{n} d\nu \leq \liminf_{n} \int f_{n} d\nu.$$
 (2)

Theorem

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of Borel functions on $(\Omega, \mathcal{F}, \nu)$.

• Monotone convergence theorem: If $0 \le f_1 \le \cdots$ and $\lim_n f_n = f$ a.e., then

$$\int \lim_{n} f_n \, d\nu = \lim_{n} \int f_n \, d\nu. \tag{1}$$

• Fatou's lemma: If $f_n \ge 0$, then

$$\int \liminf_{n} f_{n} d\nu \leq \liminf_{n} \int f_{n} d\nu.$$
 (2)

• Dominated convergence theorem: If $\lim_{n\to\infty} f_n = f$ a.e. and there exists an integrable function g such that $|f_n| \leq g$ a.e., then

$$\int \lim_{n} f_n \, d\nu = \lim_{n} \int f_n \, d\nu. \tag{3}$$

ST5215 (NUS) Lecture 2 13 Aug 2020 7/35

Without the dominating integrable function

On the measure space $(\mathcal{R}, \mathcal{B}, m)$

- Let $f_n(x) = I_{(n,n+1)}(x)$.
- Let f(x) = 0
- $f_n \rightarrow f$ a.e.

Without the dominating integrable function

On the measure space $(\mathcal{R}, \mathcal{B}, m)$

- Let $f_n(x) = I_{(n,n+1)}(x)$.
- Let f(x) = 0
- $f_n \rightarrow f$ a.e.
- but $\int f_n dm = 1$ and $\int f dm = 0$,

Without the dominating integrable function

On the measure space $(\mathcal{R}, \mathcal{B}, m)$

- Let $f_n(x) = I_{(n,n+1)}(x)$.
- Let f(x) = 0
- $f_n \rightarrow f$ a.e.
- but $\int f_n dm = 1$ and $\int f dm = 0$, so $\lim_n \int f_n dm \neq \int f dm$.

Change of variables

• Let $(\Omega, \mathcal{F}, \nu)$ be a measure space, and (Λ, \mathcal{G}) be a measurable space

Change of variables

- Let $(\Omega, \mathcal{F}, \nu)$ be a measure space, and (Λ, \mathcal{G}) be a measurable space
- Let f be measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) .

Change of variables

- Let $(\Omega, \mathcal{F}, \nu)$ be a measure space, and (Λ, \mathcal{G}) be a measurable space
- Let f be measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) .
- Then f induces a measure on Λ , denoted by $\nu \circ f^{-1}$ and defined by

$$\nu \circ f^{-1}(B) = \nu(f^{-1}(B)), \qquad \forall B \in \mathcal{G}. \tag{4}$$

Change of variables

- Let $(\Omega, \mathcal{F}, \nu)$ be a measure space, and (Λ, \mathcal{G}) be a measurable space
- Let f be measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) .
- Then f induces a measure on Λ , denoted by $\nu \circ f^{-1}$ and defined by

$$\nu \circ f^{-1}(B) = \nu(f^{-1}(B)), \qquad \forall B \in \mathcal{G}. \tag{4}$$

Theorem (Change of variables)

Suppose g is a Borel function on (Λ, \mathcal{G}) . The integral of Borel function $g \circ f$ is computed via

$$\int_{\Omega} g \circ f \, d\nu = \int_{\Lambda} g \, d(\nu \circ f^{-1}). \tag{5}$$

If either integral exists, then so does the other, and the two are the same.

ST5215 (NUS) Lecture 2 13 Aug 2020 9/35

If $\nu = P$ is a probability measure and $\Lambda = \mathcal{R}$ and f = X is a random variable, then $P \circ X^{-1}$ is often denoted by P_X .

If $\nu=P$ is a probability measure and $\Lambda=\mathcal{R}$ and f=X is a random variable, then $P\circ X^{-1}$ is often denoted by P_X .

 \bullet P_X is called the law (or the distribution) of X

If $\nu=P$ is a probability measure and $\Lambda=\mathcal{R}$ and f=X is a random variable, then $P\circ X^{-1}$ is often denoted by P_X .

- \bullet P_X is called the law (or the distribution) of X
- The cumulative distribution function (CDF, c.d.f.) of X is denoted by F_X and defined by $F_X(x) = P(X \le x)$.

If $\nu=P$ is a probability measure and $\Lambda=\mathcal{R}$ and f=X is a random variable, then $P\circ X^{-1}$ is often denoted by P_X .

- \bullet P_X is called the law (or the distribution) of X
- The cumulative distribution function (CDF, c.d.f.) of X is denoted by F_X and defined by $F_X(x) = P(X \le x)$.
- Using the theorem, we have $\mathbb{E}X = \int_{\Omega} X(\omega) \, dP(\omega) = \int_{\mathcal{B}} x \, dP_X(x)$

Let ν_i be a σ -finite measure on $(\Omega_i, \mathcal{F}_i)$, i = 1, 2, and let f be a Borel function on $(\Omega_1 \times \Omega_2, \sigma(\mathcal{F}_1 \times \mathcal{F}_2))$.

Let ν_i be a σ -finite measure on $(\Omega_i, \mathcal{F}_i)$, i=1,2, and let f be a Borel function on $(\Omega_1 \times \Omega_2, \sigma(\mathcal{F}_1 \times \mathcal{F}_2))$. Suppose that either $f \geq 0$ or $\int |f| \ \mathrm{d}(\nu_1 \times \nu_2) < \infty$.

Let ν_i be a σ -finite measure on $(\Omega_i, \mathcal{F}_i)$, i = 1, 2, and let f be a Borel function on $(\Omega_1 \times \Omega_2, \sigma(\mathcal{F}_1 \times \mathcal{F}_2))$.

Suppose that either $f \geq 0$ or $\int |f| d(\nu_1 \times \nu_2) < \infty$. Then

$$g(\omega_2) = \int_{\Omega_1} f(\omega_1, \omega_2) \, d\nu_1(\omega_1) \tag{6}$$

exists ν_2 -a.e., g is a Borel function on $(\Omega_2, \mathcal{F}_2)$, and the integral of g exists.

ST5215 (NUS) Lecture 2 13 Aug 2020 11 / 35

Let ν_i be a σ -finite measure on $(\Omega_i, \mathcal{F}_i)$, i = 1, 2, and let f be a Borel function on $(\Omega_1 \times \Omega_2, \sigma(\mathcal{F}_1 \times \mathcal{F}_2))$.

Suppose that either $f \ge 0$ or $\int |f| d(\nu_1 \times \nu_2) < \infty$. Then

$$g(\omega_2) = \int_{\Omega_1} f(\omega_1, \omega_2) \, d\nu_1(\omega_1)$$
 (6)

exists ν_2 -a.e., g is a Borel function on $(\Omega_2, \mathcal{F}_2)$, and the integral of g exists.

•

$$\int_{\Omega_1 \times \Omega_2} f \, d(\nu_1 \times \nu_2) = \int_{\Omega_2} \left[\int_{\Omega_1} f(\omega_1, \omega_2) \, d\nu_1(\omega_1) \right] \, d\nu_2(\omega_2)$$
$$= \int_{\Omega_1} \left[\int_{\Omega_2} f(\omega_1, \omega_2) \, d\nu_2(\omega_2) \right] \, d\nu_1(\omega_1).$$

Example

Let $\Omega_1 = \Omega_2 = \{1, 2, \ldots\}$, and $\nu_1 = \nu_2$ be the counting measure. A function a on $\Omega_1 \times \Omega_2$ defines a double sequence, and a(i,j) is often denoted by a_{ij} .

Example

Let $\Omega_1 = \Omega_2 = \{1, 2, \ldots\}$, and $\nu_1 = \nu_2$ be the counting measure. A function a on $\Omega_1 \times \Omega_2$ defines a double sequence, and a(i,j) is often denoted by a_{ij} .

If either $a_{ij} \geq 0$ for all i, j or $\int |a| \ \mathrm{d}(\nu_1 \times \nu_2) = \sum_{ii} |a_{ij}| < \infty$, then

$$\sum_{ij} a_{ij} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.$$
 (7)

Assume X is a non-negative r.v. on (Ω, \mathcal{F}, P) .

Assume X is a non-negative r.v. on (Ω, \mathcal{F}, P) . Show: $\mathbb{E}X = \int_0^\infty P(X > t) \, \mathrm{d}m(t)$.

Assume X is a non-negative r.v. on (Ω, \mathcal{F}, P) . Show: $\mathbb{E}X = \int_0^\infty P(X > t) \, \mathrm{d}m(t)$. Proof:

• $X = \int_0^\infty I_{X>t} dm(t)$

Assume X is a non-negative r.v. on (Ω, \mathcal{F}, P) . Show: $\mathbb{E}X = \int_0^\infty P(X > t) \, \mathrm{d}m(t)$. Proof:

- $X = \int_0^\infty I_{X>t} dm(t)$
- By Fubini's theorem

$$\mathbb{E}X = \int_{\Omega} \left[\int_{0}^{\infty} I_{X>t} \, dm(t) \right] \, dP(\omega)$$
$$= \int_{0}^{\infty} \left[\int_{\Omega} I_{X>t} \, dP(\omega) \right] \, dm(t)$$
$$= \int_{0}^{\infty} P(X>t) \, dm(t)$$

Let λ and ν be two measures on a measurable space (Ω, \mathcal{F}) . We say λ is absolutely continuous w.r.t. ν and write $\lambda \ll \nu$ iff

$$\nu(A) = 0$$
 implies $\lambda(A) = 0$. (8)

Let λ and ν be two measures on a measurable space (Ω, \mathcal{F}) . We say λ is absolutely continuous w.r.t. ν and write $\lambda \ll \nu$ iff

$$\nu(A) = 0$$
 implies $\lambda(A) = 0$. (8)

Exercise: Show that if the measure λ defined by

$$\lambda(A) := \int_{A} f \, d\nu, A \in \mathcal{F}$$
 (9)

for a non-negative Borel function f, then $\lambda \ll \nu$.

Let λ and ν be two measures on a measurable space (Ω, \mathcal{F}) . We say λ is absolutely continuous w.r.t. ν and write $\lambda \ll \nu$ iff

$$\nu(A) = 0$$
 implies $\lambda(A) = 0$. (8)

Exercise: Show that if the measure λ defined by

$$\lambda(A) := \int_{A} f \, d\nu, A \in \mathcal{F}$$
 (9)

for a non-negative Borel function f, then $\lambda \ll \nu$.

Proof: It is easy to check λ is a measure.

Let λ and ν be two measures on a measurable space (Ω, \mathcal{F}) . We say λ is absolutely continuous w.r.t. ν and write $\lambda \ll \nu$ iff

$$\nu(A) = 0$$
 implies $\lambda(A) = 0$. (8)

Exercise: Show that if the measure λ defined by

$$\lambda(A) := \int_{A} f \, d\nu, A \in \mathcal{F}$$
 (9)

for a non-negative Borel function f, then $\lambda \ll \nu$.

Proof: It is easy to check λ is a measure.

Suppose $A \in \mathcal{F}$ and $\nu(A) = 0$.

ST5215 (NUS) Lecture 2 13 Aug 2020 14 / 35

Let λ and ν be two measures on a measurable space (Ω, \mathcal{F}) . We say λ is absolutely continuous w.r.t. ν and write $\lambda \ll \nu$ iff

$$\nu(A) = 0$$
 implies $\lambda(A) = 0$. (8)

Exercise: Show that if the measure λ defined by

$$\lambda(A) := \int_{A} f \, d\nu, A \in \mathcal{F}$$
 (9)

for a non-negative Borel function f, then $\lambda \ll \nu$.

Proof: It is easy to check λ is a measure.

Suppose $A \in \mathcal{F}$ and $\nu(A) = 0$. Since $I_A f = 0$ ν -a.e.,

ST5215 (NUS) Lecture 2 13 Aug 2020 14 / 35

Let λ and ν be two measures on a measurable space (Ω, \mathcal{F}) . We say λ is absolutely continuous w.r.t. ν and write $\lambda \ll \nu$ iff

$$\nu(A) = 0$$
 implies $\lambda(A) = 0$. (8)

Exercise: Show that if the measure λ defined by

$$\lambda(A) := \int_{A} f \, d\nu, A \in \mathcal{F}$$
 (9)

for a non-negative Borel function f, then $\lambda \ll \nu$.

Proof: It is easy to check λ is a measure.

Suppose
$$A \in \mathcal{F}$$
 and $\nu(A) = 0$. Since $I_A f = 0$ ν -a.e., we have $\int_A f \, d\nu = \int I_A f \, d\nu = 0$, i.e., $\lambda(A) = 0$.

ST5215 (NUS) Lecture 2 13 Aug 2020 14 / 35

Let λ and ν be two measures on a measurable space (Ω, \mathcal{F}) . We say λ is absolutely continuous w.r.t. ν and write $\lambda \ll \nu$ iff

$$\nu(A) = 0$$
 implies $\lambda(A) = 0$. (8)

Exercise: Show that if the measure λ defined by

$$\lambda(A) := \int_{A} f \, d\nu, A \in \mathcal{F}$$
 (9)

for a non-negative Borel function f, then $\lambda \ll \nu$.

Proof: It is easy to check λ is a measure.

Suppose
$$A \in \mathcal{F}$$
 and $\nu(A) = 0$. Since $I_A f = 0$ ν -a.e.,we have $\int_A f \, d\nu = \int I_A f \, d\nu = 0$, i.e., $\lambda(A) = 0$.

Conversely, if $\lambda \ll \nu$, can we find a Borel function f s.t. $\lambda(A) = \int_A f \, d\nu$?

ST5215 (NUS) Lecture 2 13 Aug 2020 14/35

Let λ and ν be two measures on a measurable space (Ω, \mathcal{F}) . We say λ is absolutely continuous w.r.t. ν and write $\lambda \ll \nu$ iff

$$\nu(A) = 0$$
 implies $\lambda(A) = 0$. (8)

Exercise: Show that if the measure λ defined by

$$\lambda(A) := \int_{A} f \, d\nu, A \in \mathcal{F}$$
 (9)

for a non-negative Borel function f, then $\lambda \ll \nu$.

Proof: It is easy to check λ is a measure.

Suppose
$$A \in \mathcal{F}$$
 and $\nu(A) = 0$. Since $I_A f = 0$ ν -a.e., we have $\int_A f \, d\nu = \int I_A f \, d\nu = 0$, i.e., $\lambda(A) = 0$.

Conversely, if $\lambda \ll \nu$, can we find a Borel function f s.t. $\lambda(A) = \int_A f \ d\nu$? Yes, if ν is σ -finite.

ST5215 (NUS) Lecture 2 13 Aug 2020 14/35

Let ν and λ be two measures on (Ω, \mathcal{F}) and ν be σ -finite. If $\lambda \ll \nu$, then there exists a nonnegative Borel function f on Ω such that

$$\lambda(A) = \int_A f \, d\nu, \qquad A \in \mathcal{F}.$$
 (10)

In addition, f is unique ν -a.e., i.e., if another g also satisfies this equation then $f = g \ \nu$ -a.e.

Let ν and λ be two measures on (Ω, \mathcal{F}) and ν be σ -finite. If $\lambda \ll \nu$, then there exists a nonnegative Borel function f on Ω such that

$$\lambda(A) = \int_A f \, d\nu, \qquad A \in \mathcal{F}.$$
 (10)

In addition, f is unique ν -a.e., i.e., if another g also satisfies this equation then $f = g \ \nu$ -a.e.

• The function f above is called the *Radon-Nikodym derivative* or density of λ w.r.t. ν , and denoted by $\frac{d\lambda}{d\nu}$.

ST5215 (NUS) Lecture 2 13 Aug 2020 15 / 35

Let ν and λ be two measures on (Ω, \mathcal{F}) and ν be σ -finite. If $\lambda \ll \nu$, then there exists a nonnegative Borel function f on Ω such that

$$\lambda(A) = \int_A f \, d\nu, \qquad A \in \mathcal{F}.$$
 (10)

In addition, f is unique ν -a.e., i.e., if another g also satisfies this equation then $f = g \ \nu$ -a.e.

- The function f above is called the *Radon-Nikodym derivative* or density of λ w.r.t. ν , and denoted by $\frac{d\lambda}{d\nu}$.
- The proof of existence is beyond this course.

Let ν and λ be two measures on (Ω, \mathcal{F}) and ν be σ -finite. If $\lambda \ll \nu$, then there exists a nonnegative Borel function f on Ω such that

$$\lambda(A) = \int_A f \, d\nu, \qquad A \in \mathcal{F}.$$
 (10)

In addition, f is unique ν -a.e., i.e., if another g also satisfies this equation then $f = g \ \nu$ -a.e.

- The function f above is called the *Radon-Nikodym derivative* or density of λ w.r.t. ν , and denoted by $\frac{d\lambda}{d\nu}$.
- The proof of existence is beyond this course.
- The uniqueness can be proved: Let $A = \{f \ge g\}$.

Let ν and λ be two measures on (Ω, \mathcal{F}) and ν be σ -finite. If $\lambda \ll \nu$, then there exists a nonnegative Borel function f on Ω such that

$$\lambda(A) = \int_A f \, d\nu, \qquad A \in \mathcal{F}.$$
 (10)

In addition, f is unique ν -a.e., i.e., if another g also satisfies this equation then $f = g \ \nu$ -a.e.

- The function f above is called the $Radon-Nikodym\ derivative$ or density of λ w.r.t. ν , and denoted by $\frac{d\lambda}{d\nu}$.
- The proof of existence is beyond this course.
- The uniqueness can be proved: Let $A = \{f \ge g\}$. Note that $I_A \cdot (f g)$ is nonnegative and $\int I_A \cdot (f g) d\nu = 0$,

ST5215 (NUS) Lecture 2 13 Aug 2020 15 / 35

Let ν and λ be two measures on (Ω, \mathcal{F}) and ν be σ -finite. If $\lambda \ll \nu$, then there exists a nonnegative Borel function f on Ω such that

$$\lambda(A) = \int_A f \, d\nu, \qquad A \in \mathcal{F}.$$
 (10)

In addition, f is unique ν -a.e., i.e., if another g also satisfies this equation then f=g ν -a.e.

- The function f above is called the $Radon-Nikodym\ derivative$ or density of λ w.r.t. ν , and denoted by $\frac{d\lambda}{d\nu}$.
- The proof of existence is beyond this course.
- The uniqueness can be proved: Let $A = \{f \geq g\}$. Note that $I_A \cdot (f g)$ is nonnegative and $\int I_A \cdot (f g) \, \mathrm{d}\nu = 0$, so $I_A \cdot (f g) = 0$ ν -a.e.

Let ν and λ be two measures on (Ω, \mathcal{F}) and ν be σ -finite. If $\lambda \ll \nu$, then there exists a nonnegative Borel function f on Ω such that

$$\lambda(A) = \int_A f \, d\nu, \qquad A \in \mathcal{F}.$$
 (10)

In addition, f is unique ν -a.e., i.e., if another g also satisfies this equation then $f = g \ \nu$ -a.e.

- The function f above is called the $Radon-Nikodym\ derivative$ or density of λ w.r.t. ν , and denoted by $\frac{d\lambda}{d\nu}$.
- The proof of existence is beyond this course.
- The uniqueness can be proved: Let $A = \{f \geq g\}$. Note that $I_A \cdot (f g)$ is nonnegative and $\int I_A \cdot (f g) \, d\nu = 0$, so $I_A \cdot (f g) = 0$ ν -a.e. Similarly, we have $I_{f < g} \cdot (g f) = 0$ ν -a.e.

Let ν and λ be two measures on (Ω, \mathcal{F}) and ν be σ -finite. If $\lambda \ll \nu$, then there exists a nonnegative Borel function f on Ω such that

$$\lambda(A) = \int_A f \, d\nu, \qquad A \in \mathcal{F}.$$
 (10)

In addition, f is unique ν -a.e., i.e., if another g also satisfies this equation then f=g ν -a.e.

- The function f above is called the $Radon-Nikodym\ derivative$ or density of λ w.r.t. ν , and denoted by $\frac{\mathrm{d}\lambda}{\mathrm{d}\nu}$.
- The proof of existence is beyond this course.
- The uniqueness can be proved: Let $A=\{f\geq g\}$. Note that $I_A\cdot (f-g)$ is nonnegative and $\int I_A\cdot (f-g)\,\mathrm{d}\nu=0$, so $I_A\cdot (f-g)=0$ ν -a.e. Similarly, we have $I_{f< g}\cdot (g-f)=0$ ν -a.e. Subtracting yields f-g=0 ν -a.e.

Example (Probability density)

Let $\lambda = P$ be a probability measure on $\mathcal R$ corresponding to a CDF F, and $\nu = m$ is the Lebesgue measure.

Example (Probability density)

Let $\lambda=P$ be a probability measure on $\mathcal R$ corresponding to a CDF F, and $\nu=m$ is the Lebesgue measure. If $P\ll m$, its Radon-Nikodym derivative w.r.t. m, $\frac{\mathrm{d}P}{\mathrm{d}m}$, is called the (Lebesgue) PDF of F.

Example (Probability density)

Let $\lambda=P$ be a probability measure on $\mathcal R$ corresponding to a CDF F, and $\nu=m$ is the Lebesgue measure. If $P\ll m$, its Radon-Nikodym derivative w.r.t. $m, \frac{\mathrm{d}P}{\mathrm{d}m}$, is called the (Lebesgue) PDF of F.

In particular, suppose F has a derivative f in the usual sense of calculus:

$$P((-\infty, x]) = F(x) = \int_{-\infty}^{x} f(y) \, dm(y) = \int_{-\infty}^{x} f(y) \, dy.$$
 (11)

In this case, one can show that the Radon-Nikodym derivative is the same as the usual derivative in calculus, that is, $\frac{\mathrm{d}P}{\mathrm{d}m}=f$, a.e.

Example (Probability density)

Let $\lambda=P$ be a probability measure on $\mathcal R$ corresponding to a CDF F, and $\nu=m$ is the Lebesgue measure. If $P\ll m$, its Radon-Nikodym derivative w.r.t. $m, \frac{\mathrm{d}P}{\mathrm{d}m}$, is called the (Lebesgue) PDF of F.

In particular, suppose F has a derivative f in the usual sense of calculus:

$$P((-\infty, x]) = F(x) = \int_{-\infty}^{x} f(y) \, dm(y) = \int_{-\infty}^{x} f(y) \, dy.$$
 (11)

In this case, one can show that the Radon-Nikodym derivative is the same as the usual derivative in calculus, that is, $\frac{\mathrm{d}P}{\mathrm{d}m}=f$, a.e.

For any general σ -finite ν , if P is a probability measure on $\mathcal R$ corresponding to a CDF F and $P\ll \nu$, then $\frac{\mathrm{d}P}{\mathrm{d}\nu}$ is called the PDF of F w.r.t. ν .

Example (Discrete CDF and PDF)

Let $a_1 < a_2 < \cdots$ be a sequence of real numbers and X a random variable that $X \in \Lambda = \{a_1, a_2, \ldots\}$. Let $p_n = P(X = a_n)$.

Let $a_1 < a_2 < \cdots$ be a sequence of real numbers and X a random variable that $X \in \Lambda = \{a_1, a_2, \ldots\}$. Let $p_n = P(X = a_n)$. Then the CDF of X is

$$F(x) = \begin{cases} \sum_{i=1}^{n} p_i & a_n \le x < a_{n+1}, \\ 0 & -\infty < x < a_1. \end{cases}$$
 (12)

Let $a_1 < a_2 < \cdots$ be a sequence of real numbers and X a random variable that $X \in \Lambda = \{a_1, a_2, \ldots\}$. Let $p_n = P(X = a_n)$. Then the CDF of X is

$$F(x) = \begin{cases} \sum_{i=1}^{n} p_i & a_n \le x < a_{n+1}, \\ 0 & -\infty < x < a_1. \end{cases}$$
 (12)

This CDF is a stepwise function, and called a discrete CDF.

Let $a_1 < a_2 < \cdots$ be a sequence of real numbers and X a random variable that $X \in \Lambda = \{a_1, a_2, \ldots\}$. Let $p_n = P(X = a_n)$. Then the CDF of X is

$$F(x) = \begin{cases} \sum_{i=1}^{n} p_i & a_n \le x < a_{n+1}, \\ 0 & -\infty < x < a_1. \end{cases}$$
 (12)

This CDF is a stepwise function, and called a discrete CDF. The corresponding probability measure on Λ is given by

$$P_X(A) = \sum_{i:a_i \in A} p_i, \quad A \in \mathcal{F} = \text{the power set of } \Lambda.$$
 (13)

Let ν be the counting measure on \mathcal{F} and define f on Λ by $f(a_i) = p_i$.

Let $a_1 < a_2 < \cdots$ be a sequence of real numbers and X a random variable that $X \in \Lambda = \{a_1, a_2, \ldots\}$. Let $p_n = P(X = a_n)$. Then the CDF of X is

$$F(x) = \begin{cases} \sum_{i=1}^{n} p_i & a_n \le x < a_{n+1}, \\ 0 & -\infty < x < a_1. \end{cases}$$
 (12)

This CDF is a stepwise function, and called a discrete CDF. The corresponding probability measure on Λ is given by

$$P_X(A) = \sum_{i:a_i \in A} p_i, \quad A \in \mathcal{F} = \text{the power set of } \Lambda.$$
 (13)

Let ν be the counting measure on $\mathcal F$ and define f on Λ by $f(a_i) = p_i$. Then $P_X(A) = \int_A f \ \mathrm{d}\nu$. So f is the PDF of F w.r.t. the counting measure.

Let $a_1 < a_2 < \cdots$ be a sequence of real numbers and X a random variable that $X \in \Lambda = \{a_1, a_2, \ldots\}$. Let $p_n = P(X = a_n)$. Then the CDF of X is

$$F(x) = \begin{cases} \sum_{i=1}^{n} p_i & a_n \le x < a_{n+1}, \\ 0 & -\infty < x < a_1. \end{cases}$$
 (12)

This CDF is a stepwise function, and called a discrete CDF. The corresponding probability measure on Λ is given by

$$P_X(A) = \sum_{i:a_i \in A} p_i, \quad A \in \mathcal{F} = \text{the power set of } \Lambda.$$
 (13)

Let ν be the counting measure on $\mathcal F$ and define f on Λ by $f(a_i) = p_i$. Then $P_X(A) = \int_A f \, \mathrm{d}\nu$. So f is the PDF of F w.r.t. the counting measure.

Any discrete CDF has a PDF w.r.t. the counting measure, and such PDF is called discrete PDF (or PMF, probability mass function).

Calculus with Radon-Nikodym derivatives

Let ν be a σ -finite measure on a measurable space (Ω, \mathcal{F}) . Suppose all other measures in (1-3) are also defined on (Ω, \mathcal{F})

(1) If $\lambda \ll \nu$ and $f \geq 0$, then

$$\int f \, \mathrm{d}\lambda = \int f \frac{\mathrm{d}\lambda}{\mathrm{d}\nu} \, \mathrm{d}\nu. \tag{14}$$

(2) If $\lambda_i \ll \nu$, then $\lambda_1 + \lambda_2 \ll \nu$ and

$$\frac{\mathrm{d}(\lambda_1 + \lambda_2)}{\mathrm{d}\nu} = \frac{\mathrm{d}\lambda_1}{\mathrm{d}\nu} + \frac{\mathrm{d}\lambda_2}{\mathrm{d}\nu} \qquad \nu\text{-a.e.}$$
 (15)

Properties of Radon-Nikodym derivatives (Cont.)

(3) Chain rule: If λ is σ -finite and $\tau \ll \lambda \ll \nu$, then

$$\frac{\mathrm{d}\tau}{\mathrm{d}\nu} = \frac{\mathrm{d}\tau}{\mathrm{d}\lambda} \frac{\mathrm{d}\lambda}{\mathrm{d}\nu} \qquad \nu\text{-a.e.} \tag{16}$$

In particular, if $\lambda \ll \nu$ and $\nu \ll \lambda$,then let $\tau = \nu$ in the above, and we have

$$\frac{\mathrm{d}\lambda}{\mathrm{d}\nu} = \left(\frac{\mathrm{d}\nu}{\mathrm{d}\lambda}\right)^{-1} \qquad \nu \text{ or } \lambda\text{-a.e.}$$
 (17)

(4) Let $(\Omega_i, \mathcal{F}_i, \nu_i)$ be a measure space and ν_i be σ -finite, i=1,2. Let λ_i be a measure on $(\Omega_i, \mathcal{F}_i)$ and $\lambda_i \ll \nu_i$, i=1,2. Then $\lambda_1 \times \lambda_2 \ll \nu_1 \times \nu_2$ and

$$\frac{\mathrm{d}(\lambda_1 \times \lambda_2)}{\mathrm{d}(\nu_1 \times \nu_2)}(\omega_1, \omega_2) = \frac{\mathrm{d}\lambda_1}{\mathrm{d}\nu_1}(\omega_1) \cdot \frac{\mathrm{d}\lambda_2}{\mathrm{d}\nu_2}(\omega_2), \quad (\nu_1 \times \nu_2) - \text{a.e.} \quad (18)$$

Definitions of moments of a random variable X:

• If $\mathbb{E}|X|^p < \infty$ for some real number p, then $\mathbb{E}|X|^p$ is called the pth absolute moment of X or its law P_X

Definitions of moments of a random variable X:

- If $\mathbb{E}|X|^p < \infty$ for some real number p, then $\mathbb{E}|X|^p$ is called the pth absolute moment of X or its law P_X
- If $\mathbb{E}X^k$ is finite, where k is a positive integer, then $\mathbb{E}X^k$ is called the kth moment of X or P_X
 - when k = 1, it is the expectation of X

Definitions of moments of a random variable X:

- If $\mathbb{E}|X|^p < \infty$ for some real number p, then $\mathbb{E}|X|^p$ is called the pth absolute moment of X or its law P_X
- If $\mathbb{E}X^k$ is finite, where k is a positive integer, then $\mathbb{E}X^k$ is called the kth moment of X or P_X
 - when k = 1, it is the expectation of X
- If $\mu = \mathbb{E}X$ and $\mathbb{E}(X \mu)^k$ are finite for a positive integer k, then $\mathbb{E}(X \mu)^k$ is called the kth central moment of X or P_X

Definitions of moments of a random variable X:

- If $\mathbb{E}|X|^p < \infty$ for some real number p, then $\mathbb{E}|X|^p$ is called the pth absolute moment of X or its law P_X
- If $\mathbb{E}X^k$ is finite, where k is a positive integer, then $\mathbb{E}X^k$ is called the kth moment of X or P_X
 - when k = 1, it is the expectation of X
- If $\mu = \mathbb{E}X$ and $\mathbb{E}(X \mu)^k$ are finite for a positive integer k, then $\mathbb{E}(X \mu)^k$ is called the kth central moment of X or P_X
 - ▶ When k = 2, it is called the *variance* of X or P_X , and denoted by Var(X) or σ_X^2
 - $ightharpoonup \sqrt{{
 m Var}(X)}$ is called the standard deviation of X, often denoted by σ_X

ST5215 (NUS) Lecture 2 13 Aug 2020 20 / 35

We have similar definitions for a random vector $X \in \mathcal{R}^d$ or a random matrix $X \in \mathcal{R}^{d_1 \times d_2}$

• (a_1, a_2, \dots, a_d) denotes a row vector, and $(a_1, a_2, \dots, a_d)^{\top}$ denotes its transport, which is a column vector

We have similar definitions for a random vector $X \in \mathcal{R}^d$ or a random matrix $X \in \mathcal{R}^{d_1 \times d_2}$

- (a_1, a_2, \dots, a_d) denotes a row vector, and $(a_1, a_2, \dots, a_d)^{\top}$ denotes its transport, which is a column vector
- For a random vector $X = (X_1, \dots, X_d)^\top$, we use $\mathbb{E}X$ to denote $(\mathbb{E}X_1, \dots, \mathbb{E}X_d)^\top$

We have similar definitions for a random vector $X \in \mathcal{R}^d$ or a random matrix $X \in \mathcal{R}^{d_1 \times d_2}$

- (a_1, a_2, \ldots, a_d) denotes a row vector, and $(a_1, a_2, \ldots, a_d)^{\top}$ denotes its transport, which is a column vector
- For a random vector $X=(X_1,\ldots,X_d)^{\top}$, we use $\mathbb{E}X$ to denote $(\mathbb{E}X_1,\ldots,\mathbb{E}X_d)^{\top}$
- Similarly, for a random matrix

$$X = \begin{pmatrix} X_{11} & X_{21} & \cdots & X_{1d} \\ X_{21} & X_{22} & \cdots & X_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ X_{d1} & X_{d2} & \cdots & X_{dd} \end{pmatrix}$$
(19)

we denote

$$\mathbb{E}X = \begin{pmatrix} \mathbb{E}X_{11} & \mathbb{E}X_{21} & \cdots & \mathbb{E}X_{1d} \\ \mathbb{E}X_{21} & \mathbb{E}X_{22} & \cdots & \mathbb{E}X_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{E}X_{d1} & \mathbb{E}X_{d2} & \cdots & \mathbb{E}X_{dd} \end{pmatrix}$$
(20)

• For a random vector $X \in \mathcal{R}^d$, $\operatorname{Var}(X) = \mathbb{E}\{(X - \mathbb{E}X)(X - \mathbb{E}X)^\top \text{ is called the covariance matrix of } X$

• For a random vector $X \in \mathcal{R}^d$, $\operatorname{Var}(X) = \mathbb{E}\{(X - \mathbb{E}X)(X - \mathbb{E}X)^\top \text{ is called the covariance matrix of } X$ $\operatorname{Var}(X)$ is a matrix, whose (i,j)th element is $\mathbb{E}\{(X_i - \mathbb{E}X_i)(X_j - \mathbb{E}X_j)\}.$

- For a random vector $X \in \mathcal{R}^d$, $\operatorname{Var}(X) = \mathbb{E}\{(X \mathbb{E}X)(X \mathbb{E}X)^{\top} \text{ is called the covariance matrix of } X$ $\operatorname{Var}(X)$ is a matrix, whose (i,j)th element is $\mathbb{E}\{(X_i - \mathbb{E}X_i)(X_j - \mathbb{E}X_j)\}.$
- For two random variables X and Y, the quantity $\mathbb{E}\{(X \mathbb{E}X)(X \mathbb{E}Y)\}$, denoted by Cov(X, Y), is called the covariance of X and Y
 - ▶ If Cov(X, Y) = 0, then we say X and Y are uncorrelated
 - ► The standardized covariance, $Cov(X, Y)/(\sigma_X \sigma_Y)$, is called the *correlation* of X and Y, and denoted by Corr(X, Y)

Assume all the moments below exist

• Symmetry of covariance: Cov(X, Y) = Cov(Y, X)

Assume all the moments below exist.

- Symmetry of covariance: Cov(X, Y) = Cov(Y, X)
- $\operatorname{Cov}(\sum_i a_i X_i, \sum_j b_j Y_j) = \sum_i \sum_j a_i b_j \operatorname{Cov}(X_i, Y_j)$

Assume all the moments below exist

- Symmetry of covariance: Cov(X, Y) = Cov(Y, X)
- $\operatorname{Cov}(\sum_i a_i X_i, \sum_j b_j Y_j) = \sum_i \sum_j a_i b_j \operatorname{Cov}(X_i, Y_j)$
- If X is a random matrix, then $\mathbb{E}(AXB) = A\mathbb{E}(X)B$ for non-random matrices A and B

Assume all the moments below exist

- Symmetry of covariance: Cov(X, Y) = Cov(Y, X)
- $\operatorname{Cov}(\sum_i a_i X_i, \sum_j b_j Y_j) = \sum_i \sum_j a_i b_j \operatorname{Cov}(X_i, Y_j)$
- If X is a random matrix, then $\mathbb{E}(AXB) = A\mathbb{E}(X)B$ for non-random matrices A and B
- For some non-random vector $a \in \mathbb{R}^d$, we have

 - $\operatorname{Var}(a^{\top}X) = a^{\top}\operatorname{Var}(X)a$

Assume all the moments below exist

- Symmetry of covariance: Cov(X, Y) = Cov(Y, X)
- $\operatorname{Cov}(\sum_i a_i X_i, \sum_j b_j Y_j) = \sum_i \sum_j a_i b_j \operatorname{Cov}(X_i, Y_j)$
- If X is a random matrix, then $\mathbb{E}(AXB) = A\mathbb{E}(X)B$ for non-random matrices A and B
- For some non-random vector $a \in \mathbb{R}^d$, we have

 - $\operatorname{Var}(a^{\top}X) = a^{\top}\operatorname{Var}(X)a$

Basic properties (Cont.)

For a random vector X, Var(X) is a symmetric positive semi-definite (SPSD) matrix

- a matrix M is symmetric if $M = M^{\top}$
- a $d \times d$ square matrix M is positive semi-definite (PSD) if for any $v \in \mathcal{R}^d$, $v^\top M v > 0$.

Basic properties (Cont.)

For a random vector X, $\mathrm{Var}(X)$ is a symmetric positive semi-definite (SPSD) matrix

- a matrix M is symmetric if $M = M^{\top}$
- a $d \times d$ square matrix M is positive semi-definite (PSD) if for any $v \in \mathcal{R}^d$, $v^\top M v \ge 0$.

Proof: Let M = Var(X).

• symmetry: $M_{ij} = \operatorname{Cov}(X_i, X_j) = \operatorname{Cov}(X_j, X_i) = M_{ji}$.

Basic properties (Cont.)

For a random vector X, $\mathrm{Var}(X)$ is a symmetric positive semi-definite (SPSD) matrix

- a matrix M is symmetric if $M = M^{\top}$
- a $d \times d$ square matrix M is positive semi-definite (PSD) if for any $v \in \mathcal{R}^d$, $v^\top M v \ge 0$.

Proof: Let M = Var(X).

- symmetry: $M_{ij} = \operatorname{Cov}(X_i, X_j) = \operatorname{Cov}(X_j, X_i) = M_{ji}$.
- positive semi-definite:

$$v^{\top}Mv = v^{\top}\mathbb{E}\{(X - \mathbb{E}X)(X - \mathbb{E}X)^{\top}\}v$$

= $\mathbb{E}\{v^{\top}(X - \mathbb{E}X)(X - \mathbb{E}X)^{\top}v\}.$

Let $Y = v^{\top}(X - \mathbb{E}X)$. Note that Y is a scalar. Then $v^{\top}Mv = \mathbb{E}(YY^{\top}) = \mathbb{E}(Y^2) \geq 0$.

$$Cov(X, Y)^2 \le Var(X)Var(Y)$$
 and $[\mathbb{E}(XY)]^2 \le \mathbb{E}(X^2)\mathbb{E}(Y^2)$

$$\operatorname{Cov}(X,Y)^2 \leq \operatorname{Var}(X)\operatorname{Var}(Y)$$
 and $[\mathbb{E}(XY)]^2 \leq \mathbb{E}(X^2)\mathbb{E}(Y^2)$

Proof:

• Since the variance of $(X,Y)^{\top}$ is SPSD, its determinant is nonnegative

$$\operatorname{Cov}(X,Y)^2 \leq \operatorname{Var}(X)\operatorname{Var}(Y)$$
 and $[\mathbb{E}(XY)]^2 \leq \mathbb{E}(X^2)\mathbb{E}(Y^2)$

Proof:

- Since the variance of $(X, Y)^{\top}$ is SPSD, its determinant is nonnegative
- $\det (\operatorname{Var}((X, Y)^{\top})) = \operatorname{Var}(X)\operatorname{Var}(Y) \operatorname{Cov}(X, Y)^2$

$$\operatorname{Cov}(X,Y)^2 \leq \operatorname{Var}(X)\operatorname{Var}(Y)$$
 and $[\mathbb{E}(XY)]^2 \leq \mathbb{E}(X^2)\mathbb{E}(Y^2)$

Proof:

- Since the variance of $(X, Y)^{\top}$ is SPSD, its determinant is nonnegative
- $\det (\operatorname{Var}((X, Y)^{\top})) = \operatorname{Var}(X)\operatorname{Var}(Y) \operatorname{Cov}(X, Y)^2$
- Apply the same argument to the 2nd absolute moment to obtain the other inequality

Jensen's Inequality

• A set $A \subset \mathbb{R}^d$ is *convex* if for any $x, y \in A$, $tx + (1 - t)y \in A$.

Jensen's Inequality

- A set $A \subset \mathbb{R}^d$ is *convex* if for any $x, y \in A$, $tx + (1 t)y \in A$.
- A real function f is convex on A if

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$
 (21)

holds for any $x, y \in A$ and $t \in [0,1]$. If the inequality holds with \leq replaced by <, then f is *strictly convex*.

Jensen's Inequality

- A set $A \subset \mathbb{R}^d$ is *convex* if for any $x, y \in A$, $tx + (1 t)y \in A$.
- A real function f is convex on A if

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$
 (21)

holds for any $x, y \in A$ and $t \in [0,1]$. If the inequality holds with \leq replaced by <, then f is *strictly convex*.

Theorem

For a random vector and a convex function φ ,

$$\varphi(\mathbb{E}X) \le \mathbb{E}\varphi(X). \tag{22}$$

If φ is strictly convex and $\varphi(X)$ is not a constant, then $\varphi(\mathbb{E}X) < \mathbb{E}\varphi(X)$.

• If φ is twice differentiable, then the convexity of φ is implied by the positive semi-definiteness of its Hessian (or second derivative if φ is univariate) φ'' .

• A well known fact: For any $y \in A$, there exists a vector $c_y \in \mathcal{R}^d$ such that

$$\varphi(x) \ge \varphi(y) + \langle c_y, x - y \rangle, \forall x \in A.$$
 (23)

• A well known fact: For any $y \in A$, there exists a vector $c_y \in \mathcal{R}^d$ such that

$$\varphi(x) \ge \varphi(y) + \langle c_y, x - y \rangle, \forall x \in A.$$
 (23)

• Set $y = \mathbb{E}X$. Substitute x = X, and then take expectation on both sides.

ST5215 (NUS) Lecture 2 13 Aug 2020 27 / 35

• A well known fact: For any $y \in A$, there exists a vector $c_y \in \mathcal{R}^d$ such that

$$\varphi(x) \ge \varphi(y) + \langle c_y, x - y \rangle, \forall x \in A.$$
 (23)

• Set $y = \mathbb{E}X$. Substitute x = X, and then take expectation on both sides.

Examples: Suppose X is a nonconstant positive r.v., then

 $\bullet \ (\mathbb{E}X)^{-1} < \mathbb{E}(X^{-1})$

ST5215 (NUS) Lecture 2 13 Aug 2020 27 / 35

• A well known fact: For any $y \in A$, there exists a vector $c_v \in \mathbb{R}^d$ such that

$$\varphi(x) \ge \varphi(y) + \langle c_y, x - y \rangle, \forall x \in A.$$
 (23)

• Set $y = \mathbb{E}X$. Substitute x = X, and then take expectation on both sides.

Examples: Suppose X is a nonconstant positive r.v., then

• $(\mathbb{E}X)^{-1} < \mathbb{E}(X^{-1})$ (since $f(x) = x^{-1}$ is convex)

ST5215 (NUS) 13 Aug 2020 27 / 35

Proof:

• A well known fact: For any $y \in A$, there exists a vector $c_y \in \mathcal{R}^d$ such that

$$\varphi(x) \ge \varphi(y) + \langle c_y, x - y \rangle, \forall x \in A.$$
 (23)

• Set $y = \mathbb{E}X$. Substitute x = X, and then take expectation on both sides.

Examples: Suppose X is a nonconstant positive r.v., then

- $(\mathbb{E}X)^{-1} < \mathbb{E}(X^{-1})$ (since $f(x) = x^{-1}$ is convex)
- $\mathbb{E}(\log X) < \log(\mathbb{E}X)$

ST5215 (NUS) Lecture 2 13 Aug 2020 27 / 35

Proof:

• A well known fact: For any $y \in A$, there exists a vector $c_v \in \mathbb{R}^d$ such that

$$\varphi(x) \ge \varphi(y) + \langle c_y, x - y \rangle, \forall x \in A.$$
 (23)

• Set $y = \mathbb{E}X$. Substitute x = X, and then take expectation on both sides.

Examples: Suppose X is a nonconstant positive r.v., then

- $(\mathbb{E}X)^{-1} < \mathbb{E}(X^{-1})$ (since $f(x) = x^{-1}$ is convex)
- $\mathbb{E}(\log X) < \log(\mathbb{E}X)$ (since $f(x) = \log(x)$ is concave, i.e. $-\log(x)$ is convex)

ST5215 (NUS) 13 Aug 2020 27 / 35

Theorem (Chebyshev)

Let X be a random variable and φ a nonnegative and nondecreasing function on $[0,\infty)$ and $\varphi(-t)=\varphi(t)$ for all real t. Then, for each constant $t\geq 0$,

$$\varphi(t)P(|X| \ge t) \le \int_{\{|X| \ge t\}} \varphi(X) dP \le \mathbb{E}\varphi(X).$$
 (24)

Theorem (Chebyshev)

Let X be a random variable and φ a nonnegative and nondecreasing function on $[0,\infty)$ and $\varphi(-t)=\varphi(t)$ for all real t. Then, for each constant $t\geq 0$,

$$\varphi(t)P(|X| \ge t) \le \int_{\{|X| \ge t\}} \varphi(X) dP \le \mathbb{E}\varphi(X).$$
 (24)

Examples:

• $\varphi(t) = |t|$, we have Markov's inequality

$$P(|X| \ge t) \le \frac{\mathbb{E}\varphi(X)}{t}, \quad \forall t > 0.$$
 (25)

Theorem (Chebyshev)

Let X be a random variable and φ a nonnegative and nondecreasing function on $[0,\infty)$ and $\varphi(-t)=\varphi(t)$ for all real t. Then, for each constant $t\geq 0$,

$$\varphi(t)P(|X| \ge t) \le \int_{\{|X| \ge t\}} \varphi(X) dP \le \mathbb{E}\varphi(X).$$
 (24)

Examples:

• $\varphi(t) = |t|$, we have Markov's inequality

$$P(|X| \ge t) \le \frac{\mathbb{E}\varphi(X)}{t}, \quad \forall t > 0.$$
 (25)

• $\varphi(t) = t^2$ and X is replaced with $X - \mu$ where $\mu = \mathbb{E}X$, we obtain the classic Chebyshev' inequality:

$$P(|X - \mu| \ge t^2) \le \frac{\sigma_X^2}{t^2}.$$
 (26)

- Let $\mathcal C$ be a collection of subsets of Ω and $\Gamma = \{\mathcal F : \mathcal F \text{ is a } \sigma\text{-field on }\Omega \text{ and }\mathcal C \subset \mathcal F\}.$ Show that $\Gamma \neq \emptyset$ and $\sigma(\mathcal C) = \bigcap_{\mathcal F \in \Gamma} \mathcal F.$
- ② Let (Ω, \mathcal{F}) be a measurable space. $f : \Omega \mapsto \mathcal{R}$ is Borel if and only if $f^{-1}(a, \infty) \in \mathcal{F}$ for all $a \in \mathcal{R}$.
- ullet Show that a monotone function from $\mathcal R$ to $\mathcal R$ is Borel
- Let f be a Borel function on \mathbb{R}^2 . Define a function g from \mathbb{R} to \mathbb{R} as $g(x) = f(x, y_0)$, where y_0 is a fixed point in \mathbb{R} . Show that g is Borel.

Let $\mathcal C$ be a collection of subsets of Ω and $\Gamma=\{\mathcal F:\mathcal F \text{ is a } \sigma\text{-field on }\Omega \text{ and }\mathcal C\subset\mathcal F\}.$ Show that $\Gamma\neq\emptyset$ and $\sigma(\mathcal C)=\underset{\mathcal F\in\Gamma}{\cap}\mathcal F.$

Let $\mathcal C$ be a collection of subsets of Ω and $\Gamma=\{\mathcal F:\mathcal F \text{ is a } \sigma\text{-field on }\Omega \text{ and }\mathcal C\subset\mathcal F\}.$ Show that $\Gamma\neq\emptyset$ and $\sigma(\mathcal C)=\underset{\mathcal F\in\Gamma}{\cap}\mathcal F.$

Proof:

• Since $C \subset 2^{\Omega} \in \Gamma$, Γ is not empty.

Let $\mathcal C$ be a collection of subsets of Ω and $\Gamma=\{\mathcal F:\mathcal F \text{ is a } \sigma\text{-field on }\Omega \text{ and }\mathcal C\subset\mathcal F\}.$ Show that $\Gamma\neq\emptyset$ and $\sigma(\mathcal C)=\underset{\mathcal F\in\Gamma}{\cap}\mathcal F.$

Proof:

- Since $C \subset 2^{\Omega} \in \Gamma$, Γ is not empty.
- It is straightforward to show that $\bigcap_{\mathcal{F} \in \Gamma} \mathcal{F}$ is a σ -field by checking the 3 conditions.

Let $\mathcal C$ be a collection of subsets of Ω and $\Gamma=\{\mathcal F:\mathcal F \text{ is a } \sigma\text{-field on }\Omega \text{ and }\mathcal C\subset\mathcal F\}.$ Show that $\Gamma\neq\emptyset$ and $\sigma(\mathcal C)=\underset{\mathcal F\in\Gamma}{\cap}\mathcal F.$

Proof:

- Since $C \subset 2^{\Omega} \in \Gamma$, Γ is not empty.
- It is straightforward to show that $\bigcap_{\mathcal{F} \in \Gamma} \mathcal{F}$ is a σ -field by checking the 3 conditions.

For instance, if $A \in \underset{\mathcal{F} \in \Gamma}{\cap} \mathcal{F}$ then for any $\mathcal{F} \in \Gamma$, $A \in \mathcal{F}$, and thus $A^c \in \mathcal{F}$. So $A^c \in \underset{\mathcal{F} \in \Gamma}{\cap} \mathcal{F}$.

Let $\mathcal C$ be a collection of subsets of Ω and $\Gamma=\{\mathcal F:\mathcal F \text{ is a } \sigma\text{-field on }\Omega \text{ and }\mathcal C\subset\mathcal F\}.$ Show that $\Gamma\neq\emptyset$ and $\sigma(\mathcal C)=\underset{\mathcal F\in\Gamma}{\cap}\mathcal F.$

Proof:

- Since $C \subset 2^{\Omega} \in \Gamma$, Γ is not empty.
- It is straightforward to show that $\bigcap_{\mathcal{F} \in \Gamma} \mathcal{F}$ is a σ -field by checking the 3 conditions.

For instance, if $A \in \underset{\mathcal{F} \in \Gamma}{\cap} \mathcal{F}$ then for any $\mathcal{F} \in \Gamma$, $A \in \mathcal{F}$, and thus $A^c \in \mathcal{F}$. So $A^c \in \underset{\mathcal{F} \in \Gamma}{\cap} \mathcal{F}$.

• If \mathcal{E} is a σ -field and $\mathcal{C} \subset \mathcal{E}$, then $\mathcal{E} \in \Gamma$.

Let $\mathcal C$ be a collection of subsets of Ω and $\Gamma=\{\mathcal F:\mathcal F \text{ is a } \sigma\text{-field on }\Omega \text{ and }\mathcal C\subset\mathcal F\}.$ Show that $\Gamma\neq\emptyset$ and $\sigma(\mathcal C)=\underset{\mathcal F\in\Gamma}{\cap}\mathcal F.$

Proof:

- Since $C \subset 2^{\Omega} \in \Gamma$, Γ is not empty.
- It is straightforward to show that $\bigcap_{\mathcal{F} \in \Gamma} \mathcal{F}$ is a σ -field by checking the 3 conditions.

For instance, if $A \in \underset{\mathcal{F} \in \Gamma}{\cap} \mathcal{F}$ then for any $\mathcal{F} \in \Gamma$, $A \in \mathcal{F}$, and thus $A^c \in \mathcal{F}$. So $A^c \in \underset{\mathcal{F} \in \Gamma}{\cap} \mathcal{F}$.

• If $\mathcal E$ is a σ -field and $\mathcal C \subset \mathcal E$, then $\mathcal E \in \Gamma$. So $\underset{\mathcal F \in \Gamma}{\cap} \mathcal F \subset \mathcal E$.

Let (Ω, \mathcal{F}) be a measurable space. $f : \Omega \mapsto \mathcal{R}$ is Borel if and only if $f^{-1}(a, \infty) \in \mathcal{F}$ for all $a \in \mathcal{R}$.

Let (Ω, \mathcal{F}) be a measurable space. $f : \Omega \mapsto \mathcal{R}$ is Borel if and only if $f^{-1}(a, \infty) \in \mathcal{F}$ for all $a \in \mathcal{R}$.

Proof: "Only if" is trivial. We only prove the "if" part.

ST5215 (NUS) Lecture 2 13 Aug 2020 31 / 35

Let (Ω, \mathcal{F}) be a measurable space. $f : \Omega \mapsto \mathcal{R}$ is Borel if and only if $f^{-1}(a, \infty) \in \mathcal{F}$ for all $a \in \mathcal{R}$.

Proof: "Only if" is trivial. We only prove the "if" part.

• Let $\mathcal{G} = \{A \subset \mathcal{R} : f^{-1}(A) \in \mathcal{F}\}$. Only need to show $\mathcal{B} \subset \mathcal{G}$.

Let (Ω, \mathcal{F}) be a measurable space. $f : \Omega \mapsto \mathcal{R}$ is Borel if and only if $f^{-1}(a, \infty) \in \mathcal{F}$ for all $a \in \mathcal{R}$.

Proof: "Only if" is trivial. We only prove the "if" part.

- Let $\mathcal{G} = \{A \subset \mathcal{R} : f^{-1}(A) \in \mathcal{F}\}$. Only need to show $\mathcal{B} \subset \mathcal{G}$.
- **2** Check \mathcal{G} is a σ -field

Let (Ω, \mathcal{F}) be a measurable space. $f : \Omega \mapsto \mathcal{R}$ is Borel if and only if $f^{-1}(a, \infty) \in \mathcal{F}$ for all $a \in \mathcal{R}$.

Proof: "Only if" is trivial. We only prove the "if" part.

- Let $\mathcal{G} = \{A \subset \mathcal{R} : f^{-1}(A) \in \mathcal{F}\}$. Only need to show $\mathcal{B} \subset \mathcal{G}$.
- **2** Check \mathcal{G} is a σ -field
- **3** Let $\mathcal{K} = \{(a, \infty) : a \in \mathcal{R}\}$. Show $\sigma(\mathcal{K}) = \mathcal{B}$.

Let (Ω, \mathcal{F}) be a measurable space. $f : \Omega \mapsto \mathcal{R}$ is Borel if and only if $f^{-1}(a, \infty) \in \mathcal{F}$ for all $a \in \mathcal{R}$.

Proof: "Only if" is trivial. We only prove the "if" part.

- Let $\mathcal{G} = \{A \subset \mathcal{R} : f^{-1}(A) \in \mathcal{F}\}$. Only need to show $\mathcal{B} \subset \mathcal{G}$.
- **2** Check \mathcal{G} is a σ -field
- **3** Let $\mathcal{K} = \{(a, \infty) : a \in \mathcal{R}\}$. Show $\sigma(\mathcal{K}) = \mathcal{B}$.
- Since $\mathcal{K} \subset \mathcal{G}$, $\sigma(\mathcal{K}) \subset \mathcal{G}$, i.e. $\mathcal{B} \subset \mathcal{G}$.

Let (Ω, \mathcal{F}) be a measurable space. $f : \Omega \mapsto \mathcal{R}$ is Borel if and only if $f^{-1}(a, \infty) \in \mathcal{F}$ for all $a \in \mathcal{R}$.

Proof: "Only if" is trivial. We only prove the "if" part.

- Let $\mathcal{G} = \{A \subset \mathcal{R} : f^{-1}(A) \in \mathcal{F}\}$. Only need to show $\mathcal{B} \subset \mathcal{G}$.
- **2** Check \mathcal{G} is a σ -field
- **3** Let $\mathcal{K} = \{(a, \infty) : a \in \mathcal{R}\}$. Show $\sigma(\mathcal{K}) = \mathcal{B}$.
- **3** Since $\mathcal{K} \subset \mathcal{G}$, $\sigma(\mathcal{K}) \subset \mathcal{G}$, i.e. $\mathcal{B} \subset \mathcal{G}$.

We need a theorem (see page 6 of $Real\ Analysis$ by E. Stein and R. Shakarchi):

Every open set of ${\cal R}$ can be written as a countable union of disjoint open intervals.

Show that a monotone function f from \mathcal{R} to \mathcal{R} is Borel.

Show that a monotone function f from $\mathcal R$ to $\mathcal R$ is Borel.

Proof: Use Exercise 2.

Show that a monotone function f from \mathcal{R} to \mathcal{R} is Borel.

Proof: Use Exercise 2.

For any $a \in \mathcal{R}$, $f^{-1}(a, \infty)$ is either (b, ∞) or $[b, \infty)$ for some b, so it is a Borel set. So f is Borel.

Let f be a Borel function on \mathbb{R}^2 . Define a function g from \mathbb{R} to \mathbb{R} as $g(x) = f(x, y_0)$, where y_0 is a fixed point in \mathbb{R} . Show that g is Borel. Proof:

• For any $B \in \mathcal{B}$, we want to show $g^{-1}(B) \in \mathcal{B}$.

- For any $B \in \mathcal{B}$, we want to show $g^{-1}(B) \in \mathcal{B}$.
- $g^{-1}(B) = \{x : f(x, y_0) \in B\} = \{x : (x, y_0) \in f^{-1}(B)\}$

- For any $B \in \mathcal{B}$, we want to show $g^{-1}(B) \in \mathcal{B}$.
- $g^{-1}(B) = \{x : f(x, y_0) \in B\} = \{x : (x, y_0) \in f^{-1}(B)\}$
- Note that $f^{-1}(B) \subset \mathbb{R}^2$. If $f^{-1}(B)$ makes the above set a Borel set, then it has a "good property".

- For any $B \in \mathcal{B}$, we want to show $g^{-1}(B) \in \mathcal{B}$.
- $g^{-1}(B) = \{x : f(x, y_0) \in B\} = \{x : (x, y_0) \in f^{-1}(B)\}$
- Note that $f^{-1}(B) \subset \mathbb{R}^2$. If $f^{-1}(B)$ makes the above set a Borel set, then it has a "good property".
- Define the collection of sets of "good property":

$$\mathcal{G} = \left\{ C \subset \mathcal{R}^2 : \left\{ x : (x, y_0) \in C \right\} \in \mathcal{B} \right\} \tag{27}$$

Let f be a Borel function on \mathbb{R}^2 . Define a function g from \mathbb{R} to \mathbb{R} as $g(x) = f(x, y_0)$, where y_0 is a fixed point in \mathbb{R} . Show that g is Borel. Proof:

- For any $B \in \mathcal{B}$, we want to show $g^{-1}(B) \in \mathcal{B}$.
- $g^{-1}(B) = \{x : f(x, y_0) \in B\} = \{x : (x, y_0) \in f^{-1}(B)\}$
- Note that $f^{-1}(B) \subset \mathbb{R}^2$. If $f^{-1}(B)$ makes the above set a Borel set, then it has a "good property".
- Define the collection of sets of "good property":

$$\mathcal{G} = \left\{ C \subset \mathcal{R}^2 : \left\{ x : (x, y_0) \in C \right\} \in \mathcal{B} \right\} \tag{27}$$

• We want to show $f^{-1}(B) \in \mathcal{G}$.

- For any $B \in \mathcal{B}$, we want to show $g^{-1}(B) \in \mathcal{B}$.
- $g^{-1}(B) = \{x : f(x, y_0) \in B\} = \{x : (x, y_0) \in f^{-1}(B)\}$
- Note that $f^{-1}(B) \subset \mathbb{R}^2$. If $f^{-1}(B)$ makes the above set a Borel set, then it has a "good property".
- Define the collection of sets of "good property":

$$\mathcal{G} = \left\{ C \subset \mathcal{R}^2 : \left\{ x : (x, y_0) \in C \right\} \in \mathcal{B} \right\} \tag{27}$$

- We want to show $f^{-1}(B) \in \mathcal{G}$.
- Since f is Borel, $f^{-1}(B) \in \mathcal{B}^2$. We only need to show $\mathcal{B}^2 \subset \mathcal{G}$.

Let f be a Borel function on \mathbb{R}^2 . Define a function g from \mathbb{R} to \mathbb{R} as $g(x) = f(x, y_0)$, where y_0 is a fixed point in \mathbb{R} . Show that g is Borel.

It remains to show $\mathcal{B}^2 \subset \mathcal{G}$:

ullet Check ${\cal G}$ is a σ -field

Let f be a Borel function on \mathbb{R}^2 . Define a function g from \mathbb{R} to \mathbb{R} as $g(x) = f(x, y_0)$, where y_0 is a fixed point in \mathbb{R} . Show that g is Borel.

It remains to show $\mathcal{B}^2 \subset \mathcal{G}$:

- Check \mathcal{G} is a σ -field
 - $\triangleright \emptyset \in \mathcal{G}.$
 - ▶ If $C \in \mathcal{G}$, then $\{x : (x, y_0) \in C^c\} = \{x : (x, y_0) \in C\}^c \in \mathcal{B}$, i.e., $C^c \in \mathcal{G}$.
 - ▶ If $C_i \in \mathcal{G}$, i = 1, 2, ..., then

$${x:(x,y_0)\in \cup_i C_i} = \cup_i {x:(x,y_0)\in C_i} \in \mathcal{B},$$

i.e.,
$$\cup_i C_i \in \mathcal{G}$$

Let f be a Borel function on \mathbb{R}^2 . Define a function g from \mathbb{R} to \mathbb{R} as $g(x) = f(x, y_0)$, where y_0 is a fixed point in \mathbb{R} . Show that g is Borel.

It remains to show $\mathcal{B}^2 \subset \mathcal{G}$:

- Check \mathcal{G} is a σ -field
 - $\triangleright \emptyset \in \mathcal{G}.$
 - ▶ If $C \in \mathcal{G}$, then $\{x : (x, y_0) \in C^c\} = \{x : (x, y_0) \in C\}^c \in \mathcal{B}$, i.e., $C^c \in \mathcal{G}$.
 - ▶ If $C_i \in \mathcal{G}$, i = 1, 2, ..., then

$${x:(x,y_0)\in \cup_i C_i} = \cup_i {x:(x,y_0)\in C_i} \in \mathcal{B},$$

i.e.,
$$\bigcup_i C_i \in \mathcal{G}$$

ullet Check that any closed cube $[a,b] imes [c,d]\in \mathcal{G}$

Let f be a Borel function on \mathbb{R}^2 . Define a function g from \mathbb{R} to \mathbb{R} as $g(x) = f(x, y_0)$, where y_0 is a fixed point in \mathbb{R} . Show that g is Borel.

It remains to show $\mathcal{B}^2 \subset \mathcal{G}$:

- Check \mathcal{G} is a σ -field
 - \blacktriangleright $\emptyset \in \mathcal{G}$.
 - ▶ If $C \in \mathcal{G}$, then $\{x : (x, y_0) \in C^c\} = \{x : (x, y_0) \in C\}^c \in \mathcal{B}$, i.e., $C^c \in \mathcal{G}$.
 - ▶ If $C_i \in \mathcal{G}$, i = 1, 2, ..., then

$${x:(x,y_0)\in \cup_i C_i} = \cup_i {x:(x,y_0)\in C_i} \in \mathcal{B},$$

i.e.,
$$\cup_i C_i \in \mathcal{G}$$

- ullet Check that any closed cube $[a,b] imes [c,d]\in \mathcal{G}$
- $\mathcal{O}^2 \subset \mathcal{G}$. We need a theorem: Every open subset of \mathcal{R}^d can be written as a countable union of closed cubes. (see p7 of *Real Analysis*)