Name of Lecture 34

Lemma 34.1 (Lemma 8.20)

Let $\{c_n\}_{n=1}^{\infty}$ be a sequence, with $c_n > 0$ for all n. Assume $\lim_{n \to \infty} \frac{c_{n+1}}{c_n} = L$. Then

- 1. If $0 \le L < 1$, then $\lim_{n \to \infty} c_n = 0$
- 2. If L > 1, then $\lim_{n \to \infty} c_n = \infty$

Proof. If $0 \le L < 1$, then let L < a < 1.

Then there is an N so that $n \ge N \implies \frac{c_{n+1}}{c_n} < a$, so $c_{n+1} < c_n a$. Then $c_{n+2} < c_{n+1} a < c_n a^2$, and for $k \ge 1$, $c_{n+k} < c_n a^k \to 0$. Thus, $\lim_{n \to \infty} c_n = 0$.

If L > 1, then let L > a > 1.

Then there is an N so that $n \ge N \implies \frac{c_{n+1}}{c_n} > a$, so $c_{n+1} > c_n a$.

Then $c_{n+k} > c_n a^k \to \infty$.

Question (Homework). What are the possibilities for $\lim_{n\to\infty} c_n$ if L=1?

34.1Section 9.1

A sequence is a function on all integers $n \ge n_0$ (usually $n_0 = 0$ or $n_0 = 1$).

A sequence $\{a_n\}_{n=1}^{\infty}$ converges to a if for any arbitrary $\epsilon > 0$, there is N_{ϵ} so $n \geq N_{\epsilon} \implies |a_n - a| < \epsilon$.

Definition 34.2

A sequence $\{a_n\}_{n=1}^{\infty}$ is a Cauchy sequence if for each $\epsilon > 0$ there is N_{ϵ} so $m, n \geq N_{\epsilon} \implies |a_m - a_n| < \epsilon$.

 $\{(-1)^n \frac{1}{n}\}_{n=1}^{\infty}$ is a Cauchy sequence, $\{n+\frac{1}{n}\}_{n=1}^{\infty}$ is not Cauchy.

Proposition 34.4 (Prop 9.2)

Every convergent sequence is a Cauchy sequence.

Proof. Let $\{a_n\}_{n=1}^{\infty}$ converge to L, and let $\epsilon > 0$ be arbitrary. Then there is an N_{ϵ} so $n \geq N_{\epsilon} \implies |a_n - L| < \frac{\epsilon}{2}$.

Then $m, n \ge N_{\epsilon} \implies |a_m - a_n| \le |a_m - L| + |L - a_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. So, $\{a_n\}_{n=1}^{\infty}$ is Cauchy.

Lemma 34.5 (Lemma 9.3)

Each Cauchy sequence is bounded.

Proof. Let $\epsilon > 0$ be arbitrary, and $\{a_n\}_{n=1}^{\infty}$ be a Cauchy sequence.

Then there is an N so that if $m, n \ge N$, then $|a_m - a_n| < \epsilon$, so $|a_m| < |a_n| + \epsilon$, or $|a_n| \le |a_N| + \epsilon$ if $n \ge N$.

Let $M = \sup\{|a_1|, |a_2|, \dots, |a_N|, |a_N| + \epsilon\}$. Since M is a number, then $\{a_n\}_{n=1}^{\infty}$ is bounded.

Theorem 34.6 (Thm 9.4)

A sequence $\{a_n\}_{n=1}^{\infty}$ is convergent if and only if it is Cauchy.

Proof. \Longrightarrow proved by 9.2

 \iff Assume $\{a_n\}_{n=1}^{\infty}$ is Cauchy, and let $\epsilon > 0$ be arbitrary.

Then there is an N^* so $m, n \ge N^* \implies |a_m - a_n| < \frac{\epsilon}{2}$.

Since $\{a_n\}_{n=1}^{\infty}$ is bounded by Lemma 9.3, then by the Sequential Comapctness Theorem (2.36), there is a subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ converging to some L. If $N \geq N^*$, if $n_k \geq N$, then $|a_{n_k} - L| < \epsilon$. If $n \geq N \geq N^*$, then $|a_n - L| \leq |a_n - a_{n_k}| + |a_{n_k} - L| < \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon$.

So $\{a_n\}_{n=1}^{\infty}$ converges to L.

Definition 34.7

Let $\{a_k\}_{k=1}^{\infty}$ be a sequence, and $s_n = \sum_{k=1}^n a_k = n$ th partial sum of series $\sum_{k=1}^{\infty} a_k$.

If $\lim_{n\to\infty} s_n = L$, then $\lim_{n\to\infty} s_n = \sum_{k=1}^{\infty} a_k$, so $\sum_{k=1}^{\infty}$ converges. Otherwise, $\sum_{k=1}^{\infty} a_k$ diverges.

Example 34.8

$$\sum_{k=1}^{\infty} \frac{1}{2^k} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$$

Since

$$\sum_{k=1}^{n} \frac{1}{2^k} = \frac{2^n - 1}{2^n} \to 1$$

Example 34.9

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \cdots$$

$$\geq 1 + \frac{1}{2}\left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \cdots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \cdots$$

$$= \infty$$

34.1.1Convergence Tests

1. kth Term Test: If $\lim_{k\to\infty} a_k \neq 0$, then $\sum_{k=1}^{\infty} a_k$ automatically diverges.

Proof. Consider $\sum_{k=1}^{\infty} a_k$ with $\lim_{k\to\infty} a_k \neq 0$. Then there is $\epsilon > 0$ so $s_n - s_{n-1} = \sum_{k=1}^n a_k - \sum_{k=1}^{n-1} a_k = a_n > \text{some } \epsilon > 0$ for infinitely many n. So $\sum_{k=1}^{\infty} a_k$ diverges.

2. Comparison Test: Let $0 \le a_k \le b_k$ for $k \ge 1$. If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges.

Proof. Note that $s_n = \sum_{k=1}^n a_k \leq \sum_{k=1}^\infty b_k$, so $\{s_n\}_{n=1}^\infty$ is bounded, and $\{s_n\}_{n=1}^\infty$ is increasing because $a_k \geq 0$.

Then the monotone convergence theorem implies that $\{s_n\}_{n=1}^{\infty}$ converges.

3. Comparison Test (ii): If $\sum_{k=1}^{\infty} a_k$ diverges, then $\sum_{k=1}^{\infty} b_k$ diverges.