Modelação de Sistemas Físicos

1ª Aula Teórica

Sumário:

- Informações. Docentes, programa, bibliografia, avaliação. Atendimento a alunos.
- Cap. 1. Física: Medição e Modelação

Bibliografia:

Guião

Serway, cap. 1

Sørenssen, cap. 3

e-learning: com as informações, notas e problemas, apresentações, testes e pautas, ...

Modelação de Sistemas Físicos

GUIÃO

2022/2023

Universidade de Aveiro
DEPARTAMENTO DE FÍSICA

Informações prévias aos alunos:

- 1. A leitura deste guião é imprescindível. Também a consulta do Regulamento de Estudos da Universidade de Aveiro é importante.
- 2. A inscrição é obrigatória, na plataforma digital PACO, aos 2 tipos de aulas: Teóricas-Práticas (TP) e Práticas (P).
- 3. Na plataforma digital e-learning está colocada a informação pertinente desta unidade curricular e irá sendo adicionado material de apoio, nomeadamente as apresentações das aulas (não são resumos) e listas de problemas. Porém é essencial que o estudo se faça pela consulta da bibliografia recomendada.
- 4. Nas aulas teóricas-práticas e as aulas práticas serão propostos problemas a resolver, quer por via analítica, quer por via computacional-numérica, a resolver no computador pessoal, usando a linguagem Python 3. As salas de aula que vamos usar não estão equipadas com computadores. Por isso devem ter o vosso PC portátil nas aulas TP e P.
- 5. Esclarecimento de dúvidas é efetuado nas sessões tutoriais ou no horário de atendimento do docente. Uma maneira conveniente de esclarecimento de dúvidas é colocarem as vossas questões ao docente no final das aulas. Não serão esclarecidas dúvidas via e-mail, pois será uma fonte de equívocos.
- 6. Questões sobre organização desta unidade curricular colocadas por correio eletrónico só serão respondidas se a resposta não estiver contemplada neste guião ou no e-learning.
- 7. Os testes e o exame da parte computacional são de consulta, a realizar no vosso PC, mas sem acesso à internet. Aconselho a terem os vossos ficheiros no vosso PC ou numa caneta.

Equipa Docente

```
Prof. Doutor Gareth Baxter , Coordenador gabinete 13.3.33.3, <a href="mailto:gjbaxter@ua.pt">gjbaxter@ua.pt</a>, <a href="mailto:TP1">TP1</a>, TP2, P1, P3 e P4
```

Prof. Doutor José Castanheira,

P5

Dr. Nuno Monteiro,

P2 e P6

Aulas Teóricas 2horas/semana, 2 turmas Aulas Práticas 2 horas/semana, 6 turmas

Avaliação

Existem dois regimes de avaliação:

Avaliação Discreta, por testes

Nesta modalidade, são realizados 3 testes, cada teste vale 1/3 do total. Cada teste terá aproximadamente 1/3 da matéria lecionada.

OU

Exame Final

Para quem não realizou o 1º teste, fará o exame, o qual é sobre toda a matéria.

Cada teste e o exame tem duas componentes:

Cálculo analítico - 50 %
Cálculo computacional-numérico - 50 %

Avaliação

Testes:

1º Teste 22 de Março, 16h30

2º Teste 10 de Maio, 16h30

3º Teste Dia do exame, a confirmar

Duração de cada teste:

Parte Analítica: ½ hora, Parte Computacional: 1 hora.

Aprovação: Nota média igual ou superior a 10.

Exame:

Época dos exames, data a confirmar

Duração do exame:

Parte Analítica: 1 hora,
Parte Computacional: 2 horas.

Aprovação: Nota igual ou superior a 10.

Organização da Aulas

Aulas Teórico-Práticas (TP, 2 horas por semana),

São apresentados e trabalhados os conteúdos teóricos e resolvidos exercícios tipoe

Aulas Práticas (P, 2 horas por semana),

Os alunos resolvem problemas quer usando cálculo analítico quer usando cálculo computacional-numérico.

Regime de Faltas:

Os alunos que faltem

a mais de 20% do número total de aulas práticas

ou

a mais de 30% do número total de aulas teóricas,

ficam automaticamente reprovados por faltas, não podendo apresentar-se a qualquer exame da unidade curricular durante o presente ano letivo.

Inquéritos Pedagógicos

- Relevante a participação responsável e justa no processo (refletindo previamente sobre o funcionamento da UC e desempenho do docente), através da <u>resposta aos inquéritos pedagógicos</u> e contribuição para a elaboração do relatório de discência:
- Importância para a autoavaliação do curso e consequente creditação pela Agência de Avaliação e Acreditação do Ensino Superior (A3ES)
- Importância para a melhoria da qualidade do ensino, com impacto nas competências adquiridas pelos alunos, prestígio do curso e consequente empregabilidade
- Apenas responder efetivamente caso tenham assistido à maioria das aulas (caso contrário indicar que não tem opinião)
- Classificação de 1 a 9 (alerta-se que < 5 representa uma avaliação negativa, pelo que as classificações positivas são iguais ou superiores a 5)

Modelação de Sistemas Físicos

Objetivos

- Aprender conceitos fundamentais de Física que permitam uma compreensão dos fenómenos físicos relevantes para a Engenharia Informática, numa abordagem algorítmica
- Adquirir competências no desenvolvimento de modelos computacionais com o objetivo de fazer previsões numéricas ou simulações que descrevam o comportamento de sistemas do interesse da Engenharia Informática

Outros objetivos secundários

- Desenvolver aptidão lógica e de raciocínio, medição, entendimento de causa e efeito, pensamento crítico
- Analisar problemas para desenvolver uma representação computacional

Modelação de Sistemas Físicos

- 1. Física: Medição e modelação
- 2. Movimento a uma dimensão
- 3. Forças e vetores
- 4. Movimento no plano e no espaço
- 5. Leis de Conservação: Energia e Potência
- 6. Oscilações Mecânicas e Elétricas
- 7. Osciladores Amortecido e forçados: Ressonância e Caos
- 8. Osciladores acoplados: Modos Normais e Ondas

Bibliografia recomendada

- R.A. Serway, Physics for Scientists and Engineers with Modern Physics, 2008, 9a edição, Saunders College Publishing.
 Contém quase todos o conteúdo de física que vamos cobrir
 Apresenta exemplos resolvidos
- Anders Malthe-Sørenssen, Elementary Mechanics Using Python, 2016, Springer.
 Apresenta exemplos desenvolvidos e propõe problemas e projetos
 Exemplos de resolução de problemas com Python

Bibliografia suplementar

- Jaime E. Villate, Dinâmica e Sistemas Dinâmicos, (2019), 5a edição, do autor.
 Disponibilizado pelo autor em https://def.fe.up.pt/dinamica/index.html
 Alguns problemas resolvidos estão em https://def.fe.up.pt/dinamica/problemas.html
- Jeffrey Elkner, Allen B. Downey, e Chris Meyers, *How to Think Like a Computer Scientist: Interactive Edition*.

 Disponível em https://runestone.academy/runestone/books/published/thinkcspy/index.html
- Allen Downey. Think Python: How to Think Like a Computer Scientist, Green Tea Press (2015), 2a edição.
 Disponível em https://greenteapress.com/wp/think-python-2e/

Cap. 1

Física: Medição e Modelação

Física:

- Procura identificar um número limitado de leis fundamentais que governam os fenómenos naturais
- Está baseada em observações experimentais e medições quantitativas

Medidas estão sempre sujeitas a uma indeterminação (erro) (a desenvolver nas aulas práticas)

Requerem

- Instrumentos de medição
- Medidas Padrão
- Sistema de unidades (e conversão entre unidades)
- Indicação das grandezas (muito grande e muito pequeno)
- A análise dos dados medidos fornecem relações matemáticas entre as quantidades medidas (ou não)

Modelação significa construir modelo: um conjunto de equações matemáticas que sejam capazes de representarem com exatidão os fenómenos naturais (em estudo).

Importante: Pode-se simular fenómenos que não sejam observados (por serem caros, ou demorados, ...)

Cada medição tem associado uma quantidade física. Por exemplo o comprimento (de um objeto).

Em Mecânica temos 3 quantidades básicas:

- Comprimento (*L*)
- Massa (*M*)
- Tempo (T)
- Todas as outras quantidades estão relacionadas com estas três.

Sistema Internacional de Unidades (1960)

Quantidades básicas

Quantidade	unidade	símbolo
Comprimento	metro	m
Massa	quilograma	kg
Tempo	segundo	S
Temperatura	kelvin	K
Corrente elétrica	ampere	Α

Sistema Internacional de Unidades (1960)

Outras quantidades importantes

Quantidade	unidade	símbolo
Velocidade	metro/segundo	m/s
Aceleração	metro/segundo ²	m/s ²
Força	kilograma X metro/segundo ² = newton	$kg m/s^2 = N$
Energia	kilograma X metro ² /segundo ² = joule	$kg m^2/s^2 = J$
Potência	kilograma X metro ² /segundo ³ = watt	W

Em cálculo científico usam-se sistemas adequados, em que as constantes tomam o valor da unidade.

Assim evitam-se cálculos, propagação de erros e reduz-se o tempo de cálculo.

Ex: - Sistema astronómico (Para o sistema solar)

- Sistema atómico de unidades (Para cálculos envolvendo átomos)

Cap. 1 Física: Medição e Modelação

Para indicar múltiplos e submúltiplos usam-se:

		Fator	Prefixo	Simbole
SUBMULTÍPLOS	10-24	= 0,000 000 000 000 000 000 000 001	yocto	у
	10-21	= 0,000 000 000 000 000 000 001	zepto	z
	10-18	= 0,000 000 000 000 000 001	ato	a
	10-15	= 0,000000000 000 001	fento	f
	10 ⁻¹²	= 0,00000000001	pico	р
	10 ⁻⁹	= 0,000000001	nano	n
	10 ⁻⁶	= 0,000001	micro	μ
	10-3	= 0,001	mili	m
	10 ⁻²	= 0,01	centi	c
	10 ⁻¹	= 0,1	deci	d
	10 ⁰	=1		
MULTIPLOS	10 ¹	= 10	deca	da
	10 ²	= 100	hecto	h
	10 ³	= 1 000	quilo	k
	10 ⁶	= 1 000 000	mega	M
	10 ⁹	= 1 000 000 000	giga	G
	10 ¹²	= 1 000 000 000 000	tera	T
	10 ¹⁵	= 1 000 000 000 000 000	peta	P
	10 ¹⁸	= 1 000 000 000 000 000 000	exa	E
	1021	= 1 000 000 000 000 000 000 000	zetta	Z
	1024	= 1 000 000 000 000 000 000 000 000	yotta	Y

A natureza física é indicada pela Dimensão da quantidade.

Exemplo: Distância entre dois pontos.

Pode ser medida em metros, cm, pés, polegadas, ..

Mas é sempre um comprimento (L)

- Comprimento (*L*)
- Massa (*M*)
- Tempo (T)

Outras quantidades são compostas por estas:

Dimensão é escula com [] [v] = L/TVelocidade *v* dimensão

 $[A] = L^2$ Área A

 $[F] = ML/T^2$ Força *F*

As equações respeitam a igualdade dimensional

$$V = \frac{x}{t}$$

$$Q = \frac{v}{t} = Q Q = \frac{x}{t^2}$$

A natureza física é indicada pela Dimensão da quantidade.

- Comprimento (*L*)
- Massa (*M*)
- Tempo (*T*)

$$[F] = H \cdot [a]$$

$$D[a] = \begin{bmatrix} v \\ T \end{bmatrix} = \frac{L}{T} = \frac{L}{T^2}$$

Força F tem dimensão: $[F] = ML/T^2$

- As equações respeitam a igualdade dimensional Se A=B

Então A e B têm a mesma dimensão

Exemplo:

Movimento uniformemente acelerado $x = \frac{1}{2}a t^2$

$$[x] = [a] [t^2]$$

$$L = \frac{L}{T^2} T^2 \text{ correto! } L = L$$

Conversões de unidades

Muitas vezes é necessário converter unidades de sistemas diferentes ou no mesmo sistema

nplos:
$$1 k_{x} = 1000 x$$

Exemplos:

kg em g:
$$1 \text{ kg} = 1000 \text{ g}$$

cm em m:
$$1 \text{ cm} = 0.01 \text{ m}$$

pés em cm:
$$1 \text{ ft} = 12 \text{ in} = 30,48 \text{ cm}$$

milhas em km:
$$1 \text{ mi} = 1,609344 \text{ km}$$

km/h em m/s:
$$1 \text{ km/h} = 0.27777... \text{ m/s}$$

Como se converte:

$$v = 60 \text{ km/h} \text{ em m/s}?$$

$$v = 60 \text{ km/h} \underline{\text{em m/s?}}$$

 $v = 60 \frac{\text{km}}{\text{h}} = 60 \frac{1000 \text{ m}}{3600 \text{ s}} = 60 \times 0.27777 \frac{\text{m}}{\text{s}} = 16,666 \text{ m/s}$

Análise de Dados experimentais (resultado de medições)

Apresentam-se numa tabela, ou em registo papel, ou ficheiro digital (que são tabelas)

Ex: Numa experiência de difração por uma dupla fenda de um feixe de luz, em que L é a distância da dupla fenda ao alvo e X a distância entre máximos luminosos consecutivos da figura de difração, registaram-se estas valores:

Que relação existe entre L e X?

<i>L</i> (cm)	<i>X</i> (cm)	
222.0	2.3	
207.5	2.2	
194.0	2.0	
171.5	1.8	
153.0	1.6	
133.0	1.4	
113.0	1.2	
92.0	1.0	
Porece que tem uma relação limeor (L/100 ≃ x)		

Difícil de vislumbrar, se só olharmos para a tabela!

Análise de Dados experimentais (resultado de medições)

Ex: Numa experiência de difração por uma dupla fenda de um feixe de luz, em que L é a distância da dupla fenda ao alvo e X a distância entre máximos luminosos consecutivos da figura de difração, registaram-se estas valores:

Que relação existe entre L e X?

L (cm)	<i>X</i> (cm)
222.0	2.3
207.5	2.2
194.0	2.0
171.5	1.8
153.0	1.6
133.0	1.4
113.0	1.2
92.0	1.0

E se os dados forem apresentados num gráfico:

Parece haver uma relação linear.

Análise de Dados experimentais (resultado de medições)

Matematicamente como se extrai as caraterísticas de uma reta deste

gráfico?

Regressão linear pelo método dos mínimos quadráticos

Dados experimentais: (x_i, y_i)

Pontos da reta: (x_i, p_i) dados pela reta $p_i = mx_i + b$

não se conhece m e b

Hedin o ever

$$S(m,b) = \sum_{i=1}^{N} (y_i - p_i)^2$$

soma das diferenças (ao quadrado, para ser sempre positivas) entre o valor expeimental e o valor da reta do modelo teórico)

Condições:

Mínimo de

$$\frac{\partial S(m,b)}{\partial m} = 0$$

$$\frac{\partial S(m,b)}{\partial h} = 0$$

Cap. 1 Física: Medição e Modelação
$$\begin{cases} \frac{\partial S(m,b)}{\partial m} = 0 \\ \frac{\partial S(m,b)}{\partial b} = 0 \end{cases} \Rightarrow \begin{cases} m = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i\right)^2} \\ b = \frac{\sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \end{cases} \Rightarrow \begin{cases} m = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \\ m = \frac{N \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \end{cases} \Rightarrow \begin{cases} m = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \end{cases} \end{cases} \Rightarrow \begin{cases} m = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \end{cases} \Rightarrow \begin{cases} m = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i}{N \sum_{i=1}^{N} x_i} = \frac{N \sum_{i=1}^{N} x_i}{N \sum_{i=1$$

O coeficiente de determinação r^2 é tal que quando $^{\sim}1$ indica um ótimo ajuste, enquanto que $^{\sim}$ 0 indica que não o modelo não é linear

$$r^{2} = \frac{\left(N \sum_{i=1}^{N} x_{i} y_{i} - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i}\right)^{2}}{\left[N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}\right)^{2}\right] \left[N \sum_{i=1}^{N} y_{i}^{2} - \left(\sum_{i=1}^{N} y_{i}\right)^{2}\right]}$$

$$\frac{N = 1 \rightarrow \text{reta } \text{ is perfect to } \text{ times}$$

$$N = 0 \rightarrow \text{modelo mode } \text{ is linear}$$

$$\frac{N = 1 \rightarrow \text{reta } \text{ is perfect to } \text{ times}$$

$$\frac{N = 1 \rightarrow \text{reta } \text{ is perfect to } \text{ times}$$

$$\frac{N = 1 \rightarrow \text{reta } \text{ is perfect to } \text{ times}$$

$$\frac{N = 0 \rightarrow \text{modelo mode } \text{ times}$$

Os erros associados são:

$$\begin{cases} \Delta m = |m| \sqrt{\frac{1}{N^2 - 1}} & \text{if } k \text{ for } k = 1 \text{ = } b \text{ } \Delta m = 0 \\ \Delta b = \Delta m \sqrt{\frac{\sum_{i=1}^{N} x_i^2}{N}} \end{cases}$$

Cap. 1 Física: Medição e Modelação

m=0.010155051683894637+-0.00016296903598678832

b=0.05507544181393875 +- 0.02713076554383449

 r^2 =0.9984571397353084

Muito porto de 1, quose perfe; to

$$m = 0.0102 \pm 0.0002 \frac{\text{cm}}{\text{cm}} = 0.0102 \pm 0.0002$$

 $b = 0.06 \pm 0.03 \text{ cm}$

Cap. 1 Física: Medição e Modelação

$$r^2 = 0.993$$

 $\begin{cases} m = 0.0102 \pm 0.0002 \\ b = 0.06 \pm 0.03 \text{ cm} \end{cases}$

$$f^2 = 0.889$$
 Pior ajuste $m = 0.0101 \pm 0.0004$ $b = 0.08 \pm 0.06$ cm Os erros são maiores