Rutherford Scattering Detection through Gold Foil

Henry Shackleton

April 27, 2017

Plum Pudding Model

Plum Pudding Model

 Small electrons in a "soup" of positive charge

Plum Pudding Model

- Small electrons in a "soup" of positive charge
- Produces small-angle scattering that dies off exponentially

Plum Pudding Model

- Small electrons in a "soup" of positive charge
- Produces small-angle scattering that dies off exponentially
- $F(\theta) \propto e^{-\theta^2/\theta_m^2}$

Plum Pudding Model

- Small electrons in a "soup" of positive charge
- Produces small-angle scattering that dies off exponentially
- $F(\theta) \propto e^{-\theta^2/\theta_m^2}$

Plum Pudding Model

- Small electrons in a "soup" of positive charge
- Produces small-angle scattering that dies off exponentially
- $F(\theta) \propto e^{-\theta^2/\theta_m^2}$

Rutherford Model

 Electrons surround a concentrated positive charge

Plum Pudding Model

- Small electrons in a "soup" of positive charge
- Produces small-angle scattering that dies off exponentially
- $F(\theta) \propto e^{-\theta^2/\theta_m^2}$

Rutherford Model

- Electrons surround a concentrated positive charge
- Allows for large scattering angles

Plum Pudding Model

- Small electrons in a "soup" of positive charge
- Produces small-angle scattering that dies off exponentially
- $F(\theta) \propto e^{-\theta^2/\theta_m^2}$

Rutherford Model

- Electrons surround a concentrated positive charge
- Allows for large scattering angles
- $F(\theta) \propto \frac{1}{\sin^4(\theta/2)}$

Geometry of Detector Leads to Deviations from Scattering Predictions

• With the howitzer at an angle ϕ , what is the probability of detecting a particle scattered between θ and $\theta + d\theta$?

Geometry of Detector Leads to Deviations from Scattering Predictions

- With the howitzer at an angle ϕ , what is the probability of detecting a particle scattered between θ and $\theta + d\theta$?
- Ideally, $P(\theta) = \delta(\theta \phi)$.

8 / 17

Henry Shackleton Rutherford Scattering April 27, 2017

Geometry of Detector Leads to Deviations from Scattering Predictions

- With the howitzer at an angle ϕ , what is the probability of detecting a particle scattered between θ and $\theta + d\theta$?
- Ideally, $P(\theta) = \delta(\theta \phi)$.
- Realistically, we expect roughly a triangle-shaped distribution.

8 / 17

Henry Shackleton Rutherford Scattering April 27, 2017

Beam Profile Indicates Both Angular Spread and Systematic Angular Offset

Convolving Beam Profile Corrects for Beam/Detector Width

Rutherford

$$C_r(\phi) = C_{r,0} \int_0^{\pi} g(\phi,\theta) \sin^{-4}(\theta/2) d\theta$$

Thomson

$$C_t(\phi) = C_{t,0} \int_0^{\pi} g(\phi,\theta) e^{-\frac{\theta^2}{\theta_m^2}} d\theta$$

MCA Readout Centered Around Energy Range

Noise

Noise

 Took measurements with the howitzer pointed away from the source to measure noise

Noise

- Took measurements with the howitzer pointed away from the source to measure noise
- Minimal noise detected, all at energies much less than our range of interest

Noise

- Took measurements with the howitzer pointed away from the source to measure noise
- Minimal noise detected, all at energies much less than our range of interest

Energy Distribution

Noise

- Took measurements with the howitzer pointed away from the source to measure noise
- Minimal noise detected, all at energies much less than our range of interest

Energy Distribution

 Landau distribution of energy loss allows us to consider all points as valid data

Noise

- Took measurements with the howitzer pointed away from the source to measure noise
- Minimal noise detected, all at energies much less than our range of interest

Energy Distribution

- Landau distribution of energy loss allows us to consider all points as valid data
- Count rate still affected by counting uncertainty

Noise

- Took measurements with the howitzer pointed away from the source to measure noise
- Minimal noise detected, all at energies much less than our range of interest

Energy Distribution

- Landau distribution of energy loss allows us to consider all points as valid data
- Count rate still affected by counting uncertainty

Angular Uncertainty

Noise

- Took measurements with the howitzer pointed away from the source to measure noise
- Minimal noise detected, all at energies much less than our range of interest

Energy Distribution

- Landau distribution of energy loss allows us to consider all points as valid data
- Count rate still affected by counting uncertainty

Angular Uncertainty

ullet Protractor read by eye contributes ± 1 degree uncertainty to angular measurements

Rutherford Scattering Effectively Predicts High-Angle Scattering

Uncertainty in Convolution Contributes Small Uncertainty in χ^2/ndf

Model	χ^2/ndf
Rutherford	2.14 ± 0.11
Thomson	2096 ± 24

Henry Shackleton Rutherford Scattering April 27, 2017 15 / 17

 Thomson's plum pudding model is unable to predict scattering trends at high angles.

- Thomson's plum pudding model is unable to predict scattering trends at high angles.
- Rutherford model predicts these trends more accurately, leading one to suspect a Rutherford-like atomic model

- Thomson's plum pudding model is unable to predict scattering trends at high angles.
- Rutherford model predicts these trends more accurately, leading one to suspect a Rutherford-like atomic model
- When detecting scattering rates with non-point detectors and beams, angular response function allows for more accurate data modeling

Convolution Improves Results from Raw Rutherford Fit

Thomson with Free θ_m Unable to Capture Data

