-

MINI ENSAYO DE MATEMÁTICA Nº 3

1.
$$\frac{\frac{3}{4} - 1}{1 - \frac{1}{2}} + 1 - \frac{1}{1 - 0.25} =$$

- A) $-\frac{5}{6}$
- B) $-\frac{3}{4}$
- C) $-\frac{21}{12}$
- D) $\frac{19}{24}$
- E) 2

2. Los números p, q y r son primos. Si $\mathbf{n} = (\mathbf{p} \cdot \mathbf{q})^r$, entonces la cantidad de divisores que tiene \mathbf{n} es

- A) $r^2 + 1$
- B) $(r + 1)^2$
- C) r^{2}
- D) $r^2 1$
- E) 2r

3. Si **m** y **n** son números primos y distintos. ¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?

- I) $\sqrt{m+n}$ es irracional.
- II) $\sqrt{m} + \sqrt{n}$ es irracional.
- III) $\sqrt{m \cdot n}$ es irracional.
- A) Sólo I
- B) Sólo II
- C) Sólo III
- D) Sólo II y III
- E) I, II y III

- 4. Si \mathbf{p} y \mathbf{q} son dos números irracionales de modo que \mathbf{p} : \mathbf{q} = 3 : 5, entonces \mathbf{p} y \mathbf{q} pueden ser, respectivamente
 - p q
 - A) $\sqrt{3}$
 - B) √27

 - D) √54 $\sqrt{120}$
 - E) $\sqrt{27}$ √75
- 5. Si ${f n}$ es un número entero positivo de modo que $\sqrt{\sqrt{n}}$ es primo, entonces ¿cuál de los siguientes valores puede ser n?

 - A) 2²
 B) 3²
 C) 4²
 D) 5²
 E) 7²
- 6. Si x = 10^{-4} , entonces $\frac{(0,01) \cdot (0,0001) \cdot 10^{-1}}{10 \cdot 0,001}$ es igual a

 - A) x³
 B) 1000 x²
 C) 2000 x²

 - D) $\frac{x^2}{1000}$
 - E) $\frac{x^3}{10}$
- 7. Si A = $\frac{\sqrt{8}}{9}$, B = $\frac{1}{3\sqrt{2}}$ y C = $\frac{\sqrt{32}}{7}$, entonces el orden creciente es
 - A) A, B, C
 - B) B, A, C

 - C) C, A ,B D) A, C, B
 - E) C, B, A

- 8. Si 3 pies equivalen a una yarda y 12 pulgadas son equivalentes a 1 pie, entonces ¿a cuántas yardas equivalen r pulgadas?
 - A) 36 r
 - B) 12 r
 - C) $\frac{r}{36}$
 - D) $\frac{r}{12}$
 - E) $\frac{1}{36}$
- 9. El 15% de un número resulta ser un número entero, entonces el número no puede ser
 - A) $33,\bar{3}$
 - B) $6,\overline{6}$
 - C) 10
 - D) 15
 - E) -40
- 10. Para obtener el 115% de ganancia en la venta de un artículo, éste se debe vender en \$ 150.500. ¿Cuál era el precio del artículo?
 - A) \$ 7.000
 - B) \$ 12.475
 - C) \$ 70.000
 - D) \$ 121.915
 - E) \$ 137.075
- 11. Si una entidad financiera ofrece un préstamo de \$ 2.000.000 al 1,4% mensual de interés compuesto, ¿cuál será la deuda en 3 años más?
 - A) 2.000.000(1,14)³⁶
 - B) $2.000.000(1,014)^{36}$
 - C) $2.000.000 (1,014)^3$
 - D) $2.000.000 (0.014)^{36}$
 - E) $2.000.000(0.14)^3$

- 12. El gráfico de la figura 1, representa el promedio de hurto semanal entre los meses de Enero y Abril del año 2009 en Santiago (Fuente: Diario "El Mercurio"). ¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) El promedio de delitos el día Viernes aumenta en un 33,3 % con respecto al día Jueves.
 - II) La disminución de robos que se produce el Domingo con respecto al Sábado es aproximadamente 41%.
 - III) Los días viernes y sábado la variación porcentual es igual a la variación porcentual de los días miércoles y jueves.
 - A) Sólo I
 - B) Sólo II
 - C) Sólo I y III
 - D) Sólo II y III
 - E) I, II y III

- 13. En un número de tres dígitos, **a** es el dígito de las centenas, **b** es el dígito de las decenas y la unidad es **c**, entonces la deferencia de los números abc cba es **siempre** múltiplo de
 - A) 17
 - B) 11
 - C) 7
 - D) 5
 - E) 2
- 14. Al dividir $(p^2x^2 px^2 p + 1)$ por (p 1) se obtiene
 - A) $(x\sqrt{p} 1)(x\sqrt{p} + 1)$
 - B) $(x\sqrt{p} + 1)^2$
 - C) $(x\sqrt{p} 1)$
 - D) $(x\sqrt{p} 1)^2$
 - E) No se puede determinar

15. En el \triangle ABC de la figura 2, $\overline{AB} \perp \overline{BC}$ y el triángulo AEC es isósceles de base \overline{AC} . Si \measuredangle $ACB = 15^{\circ}$ y \overline{AD} es bisectriz, entonces la medida del ángulo ADB es

E) 60°

16. Si $A = Bpq + Bp^2$, entonces q =

A)
$$\frac{A}{BP} - p^2$$

B)
$$\frac{A}{B(q+p)}$$

C)
$$\sqrt{\frac{A}{B}} - pq$$

D)
$$\frac{A}{Bp} - p$$

E)
$$\frac{A}{B}$$
 - p

17. Si p y q son números naturales, entonces en el triángulo PQR de la figura 3, se cumple que

B)
$$p < q$$

C)
$$q < p$$

D)
$$p < 2q$$

E)
$$q = 3p$$

18. En la figura 4, el punto G es el centro de gravedad del triángulo equilátero ABC de lado 18 cm. Entonces, el perímetro del triángulo ABG es

B)
$$(18\sqrt{3} + 2)$$
 cm

19. En el cuadrilátero ABCD de la figura 5, \overline{AB} // \overline{CD} y $\overline{BC} \perp \overline{CD}$. Si $\triangle ABD$ isósceles de base \overline{AD} y $\angle BAD$: $\angle BDC = 2:1$, entonces la medida del ángulo CBD es

fig. 5

- A) 18°
- B) 36°
- C) 54°
- D) 72°
- E) no se puede determinar
- 20. En la figura 6, $\overline{BC} \perp \overline{AB}$, $\overline{CD} \perp L_2$ y L_1 // L_2 . Si \overline{AD} es bisectriz del ángulo BAC, entonces ¿cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) $\overline{AB} \cong \overline{BD}$
 - II) \triangle CDE isósceles de base \overline{DE} .
 - III) ∡BAC = ∡BCD

- B) Sólo I y II
- C) Sólo I y III
- D) Sólo II y III
- E) I, II y III

- 21. En la figura 7, L_1 es simetral de \overline{AB} y L_2 es simetral de \overline{CB} . Si P es un punto cualquiera de L_1 y Q es un punto cualquiera de L_2 , ¿cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) $\angle PBC = \angle QBC$
 - II) \overline{AP} // \overline{CQ}
 - III) \overline{PC} y \overline{QC} son bisectrices de los ángulos APB y CQB, respectivamente.

- A) Sólo I
- B) Sólo II
- C) Sólo III
- D) Sólo II y III
- E) I, II y III
- 22. En la circunferencia de centro O de la figura 8, $\overline{\text{CD}} \perp \overline{\text{AB}}$ y $\angle \text{ACD} = \frac{1}{2} \angle \text{DCB}$. Si

- B) $36\sqrt{3} \ \pi \ cm^2$
- C) $48\pi \text{ cm}^2$
- D) $108\pi \text{ cm}^2$
- E) $48\sqrt{3} \, \pi \, \text{cm}^2$

fig. 8

23. En el triángulo ABC de la figura 9, \angle CAB = 50°, $\overline{CF} \cong \overline{CE}$ y $\overline{DB} \cong \overline{EB}$, entonces la medida del ángulo DEF es

- D) 230°
- E) no se puede determinar

24. Si los catetos del triángulo ABC rectángulo en C de la figura 10, miden 15 cm y 20 cm, entonces el área de la región achurada es

A)
$$\left(150 - \frac{7}{25}\pi\right) \text{ cm}^2$$

B)
$$\left(150 - \frac{49}{4}\pi\right) \text{ cm}^2$$

C)
$$(150 - 5\pi)$$
 cm²

D)
$$(150 - 25\pi)$$
 cm²

E) no se puede determinar

25. En la circunferencia de centro O de la figura 11, $\overline{BD} \cong \overline{AD}$ y $\overline{OD} = 2$ cm. Si $\angle BCO = 30^{\circ}$, entonces ¿cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?

I)
$$\angle BOD = 60^{\circ}$$

II)
$$\overline{BC} = 2\overline{BD}$$

III) El área del círculo es 16π cm².

fig. 11

- A) Sólo I
- B) Sólo II
- C) Sólo III
- D) Sólo I y III
- E) I, II y III

26. En la figura 12, la suma de las áreas de los tres círculos congruentes es 3π , entonces el área del triángulo equilátero PQR es

B)
$$16\sqrt{3}$$

C)
$$6 + 3\sqrt{3}$$

D)
$$7\sqrt{3} + 12$$

E) $144\sqrt{3}$

27. En el cuadrado ABCD de la figura 13, de lado 8 cm, H y F son puntos medios de $\overline{\text{IJ}}$ y $\overline{\text{AB}}$, respectivamente. Si $\overline{\text{BG}}$: $\overline{\text{GC}}$ = 1 : 7, entonces el área de la región achurada es

fig. 13

28. En el cuadrado ABCD de la figura 14, \angle BAC = 20°, \triangle DEC es equilátero de lado 6 cm. \triangle Cuánto mide el área achurada?

A)
$$\frac{54 - 18\sqrt{3}}{2}$$

B)
$$18\sqrt{3} - 9$$

C)
$$9\sqrt{3} - 9$$

D)
$$36 - 3\sqrt{3}$$

E)
$$3\sqrt{3}$$

fig. 14

- 29. En el trapecio ABCD de la figura 15, se puede determinar la medida del ∡CEB si :
 - (1) ABCD trapecio rectángulo y $\angle ABC = \frac{1}{5} \angle DCB$.
 - (2) CE y BE son bisectrices de ∡DCB y ∡ABC, respectivamente.
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional

- 30. Si en el triángulo ABC de la figura 16, \triangle BCD es isósceles de base \overline{BC} y \measuredangle CBD= 20°, entonces se puede determinar la medida del \measuredangle ECD si :
 - (1) $\overline{AC} \cong \overline{DC}$ y E es punto medio.
 - (2) \overline{CE} es altura.
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional

CLAVES

1	Α	6	В	11	В	16	D	21	С	26	D
2	В	7	В	12	Α	17	С	22	С	27	D
3	D	8	С	13	В	18	Α	23	Α	28	С
4	E	9	D	14	Α	19	С	24	D	29	С
5	С	10	С	15	Ε	20	Α	25	Ε	30	D