LVC 2: Glossary of Notations

L = The original user-item interaction matrix

 L_{ij} = Likelihood of the i^{th} user matching with the j^{th} item in user- item interaction matrix

 L_{i} = The average of observed entries in row i of the user-item interaction matrix

 $n_{i}^{}$ = The number of observed entries in row i of the user-item interaction matrix

 L_{j} = The average of observed entries in column j of the user-item interaction matrix

 n_{j} = The number of observed entries in column j of the user-item interaction matrix

 x_i = Features of the i^{th} user

 y_{j} = Features of the j^{th} item

U = A user embedding matrix $U \in \mathbb{R}^{n \times d}$, where row i is the embedding for user i denoted by u_i

S = The sigma matrix; a diagonal matrix with shape $r \times r$, where r is the rank / number of latent features

 V^T = An item embedding matrix $V \in R^{m \times d}$, where row j is the embedding for item j denoted by v_j

r = The rank / number of latent features

 $s_{\nu} = k^{th}$ value of sigma matrix S

 u_{ik} = The value in the i^{th} row and the k^{th} column of the matrix U

 v_{jk} = The value in the j^{th} row and the k^{th} column of the matrix \boldsymbol{V}^T

 \hat{p} = The fraction of observed entities

 $X = An m \times n matrix$

 X_{ij} = The i^{th} row and the j^{th} column of matrix X