1.

G is cyclic. Hence, there is a generator g such that $G = \{g^k : k \in \mathbb{Z}\}$. Since f is homomorphism, we have that $g' \in G : \exists k \in \mathbb{Z} : g' = g^k$ and therefore, $f(g') = f(g^k) = (f(g))^k$. f(g). f is surjective therefore, f(g) is the generator of H. Hence, H is also a cyclic group.

2.

If any group G is isomorphic to a cyclic group H, there is a surjective isomorphism function that maps the cyclic group H to G. Hence, it is also a cyclic group.

3.

Suppose N is a normal subgroup of G. Then $(g^k \cdot N) = (g \cdot N)^k$, hence $g \cdot N$ is the generator of G/N. Which means that any quotient of a cyclic group is again cyclic.

```
From the Langrange's Theorem, we know that every subgroup of D_8 must
have 1,2,4 or 8 elements.
1 elements: \{1\}
2 elements: since 1 must be included, the other element inverse is itself.
Every element in D_8 can be written in the form s^i r^j where i \in \{0,1\} and
j \in \{0, 1, 2, 3\}.
If s=0 then the only element not 1 that is an inverse of itself is r^2.
If s = 1 then sr^{j}sr^{j} = sr^{j}r^{4-j}s = sr^{4}s = s^{2} = 1.
Hence, the subgroup having 2 elements are \{1, r^2\}, \{1, s\}, \{1, sr\}, \{1, sr^2\}, \{1, sr^3\}.
4 elements: 1 is an element of the subgroup.
If there is zero elements of the form sr^i then we have that \{1, r, r^2, r^3\} is a
subgroup. If there is one elements of the form sr^i then there is an element
of the form r^j where 1 \leq j \leq 3, which means that sr^i \cdot r^j = sr^{i+j} \neq sr^i and
hence not in the set which means there is no subgroup in this case.
If there is two or three elements of the form sr^i then let 2 of them be sr^i
and sr^{j}, we have that sr^{i}sr^{j} = sr^{i}r^{4-j}s = sr^{4-j+i}s = ssr^{4-(4-j+i)} = r^{j-i}.
r^{j-i} must also be an inverse of itself which means that j-i=2.
Hence, the subgroup in this case is \{1, s, r^2, sr^2\}, \{1, sr, r^2, sr^3\}.
Therefore the subgroup having 4 elements are \{1, r, r^2, r^3\}, \{1, s, r^2, sr^2\}, \{1, sr, r^2, sr^3\}.
8 elements: itself
```

2.

From the Langrange's Theorem, we know that every subgroup of S_3 must have 1,2,3 or 6 elements.

1 elements: $\{()\}$ 2 elements: since 1 is in any subgroup, the othere element is an inverse of itself. Hence, the subgroups are $\{(), (12)\}, \{(), (23)\}, \{(), (13)\}$ 3 elements: length 2 length 3 cant, 2 length 2 cant, 2 length 3 only 1 case 6 elements: itself

3.

1 elements: $\{1\}$

2 elements: since 1 is in any subgroup, the othere element is an inverse of itself. Hence, the subgroups is $\{1,-1\}$ 4 elements: since 1 is in any subgroup, order 4 so one elements must be an inverse of itself so -1 must also be in the subgroup. As -1 is in the subgroup if i is in the subgroup then so does -i, similar to j and -j, k and -k. Hence the subgroups are $\{1,-1,i,-i\},\{1,-1,j,-j\},\{1,-1,k,-k\}$ 8 elements: itself

1.

Since $\varphi_k(g) = g^k$, $\forall g^i \in G : \varphi_k(g^i) = (\varphi_k(g))^i = (g^k)^i = g^k i$. Hence, the function is unique as every element is mapped to a predeterimend element in G. $\forall g^i, g^j \in G : \varphi_k(g^i) \cdot \varphi_k(g^j) = g^{ik} \cdot g^{kj} = g^{k(j+i)} = \varphi_k(g^{i+j})$. Hence, φ_k is a homomorphism.

2.

If $gcd(k, n) \neq 1$, then $\exists m \in \mathbb{Z} : mn = k$ or mk = n.

If mn = k, then $\forall g^i \in G : \varphi_k(g^i) = g^{ik} = g^{imn} = 1$. Which means the function is not surjective and therefore does not have an inverse hence not an automorphism.

If mk = n, then $\varphi_k(g^m) = g^{mk} = 1 = \varphi_k(1)$. Hence, φ_k is not injective and therefore do not have an inverse hence not an automorphism.

If gcd(k, n) = 1, then let k = an + b where $a, b \in \mathbb{Z}, 0 \le b < n$.

 $\forall g^i \in G : \varphi_{n-b}(g^i) \cdot \varphi_k(g^i) = g^{i(n-b)} \cdot g^{i(an+b)} = 1$. Therefore φ_k has an inverse and is automorphism.

3.

It is obvious that $\forall g^i \in G$:

the function is well-defined.

$$(\varphi_a \circ \varphi_b)(g^i) = ((g^i)^b)^a = g^{iba} = (g^i)^{ab} = \varphi_{a \cdot b}(g^i)$$

4.

 $\forall a, b \in \mathbb{Z}$ such that $a \equiv b \pmod{n}$: $\exists t \in \mathbb{Z} : a = b + tn$ $\forall g^i \in G : \varphi_a(g^i) = g^{i(b+tn)} = g^{ib} = \varphi_b(g^i)$. Hence, $\varphi_a = \varphi_b$ and therefore

If we restrict $\{a \bmod n\}$ to $\{a \bmod n | \gcd(a, n) = 1\}$. Then we know that φ_a is an automorphism hence we can restrict the original function to a bijection

$$f: (\mathbb{Z}/n)^{\times} \cong \operatorname{Aut}(G), \quad (a \mod n) \to \varphi_a \text{ with } \gcd(a, n) = 1$$

because every function $\varphi_k = f(k)$ and if $\varphi_k = \varphi_l$ then $k \equiv l \pmod n$

5.

$$f(ab) = \varphi_{ab} = \varphi_a \cdot \varphi_b = f(a) \cdot f(b)$$

Hence it is isormorphic.

6.

If H is an infinite cyclic group with generator q, then consider

$$\varphi: \mathbb{Z} \to H, \quad a \to g^a$$

The function is surjective. It is injective as if $g^a=g^b$ then g has order a-b or b-a which is finite. We also have that

$$\forall a, b \in \mathbb{Z} : \varphi(a \cdot b) = g^{a \cdot b} = g^a \cdot g^b = \varphi(a) \cdot \varphi(b)$$

Hence, φ is in isomorphic. Hence, $\operatorname{Aut}(\mathbb{Z})$ is isomorphic to $\operatorname{Aut}(H)$. Consider the group action:

$$\psi: \mathbb{Z} \to \operatorname{Aut}(\mathbb{Z})$$

 $\forall f \in \text{Aut}(\mathbb{Z}) \ f(0) = 0, f(n) = f(-n), f(n) = nf(1).$

If $|f(1)| \ge 2$ then $\nexists n : f(n) = 1$, which is a contradiction.

If f(1)=1 then let $g\in \operatorname{Aut}(\mathbb{Z})$ such that g(1)=-1. Then $\forall a\in\mathbb{Z}: f(g(a))=f(-a)=a$.

If f(1)=0 then $\forall a\in\mathbb{Z}: f(a)=0$ and hence leads to a contradiction. Hence, H also have two automorphisms, one maps g^a to g^a and the other maps g^a to g^{-a}

1.

If $\forall g \in \ker(\pi) : \pi(g) = 1$ therefore $\psi(g) = \delta(\pi(g)) = \delta(1) = 1$. Hence, $g \in \ker(\psi)$ and hence $\ker(\pi) \subset \ker(\psi)$.

2.

Since, $\ker(\pi) \subseteq \ker(\psi)$. We can create a function δ such that $\forall g \in G : \pi(g) = h, \psi(g) = k$, then let $\delta(h) = k$ hence $\psi = \delta \circ \pi$. $\forall g_1, g_2 \in G$: let $\pi(g_1) = h_1, \pi(g_2) = h_2, \psi(g_1) = k_1, \psi(g_2) = k_2, \delta(h_1) = k_1, \delta(h_2) = k_2$. We have: $\delta(h_1 \cdot h_2) = \delta(\pi(g_1) \cdot \pi(g_2)) = \delta(\pi(g_1 \cdot g_2)) = \psi(g_1 \cdot g_2) = \psi(g_1) \cdot \psi(g_2) = \delta(\pi(g_1)) \cdot \delta(\pi(g_2)) = \delta(h_1) \cdot \delta(h_2)$. Hence, δ is homomorphic. If there is a function δ such that $\delta(h_1) = k_2$ then $k_1 = \psi(g_1) = \delta(\pi(g_1)) = \delta(h_1) = k_2$. Therefore, the function is unique.

3.

Let $\pi: G \to G/\ker(\varphi)$

First, let restrict φ to a surjective function: $\varphi': G \to \operatorname{im}(\varphi)$.

We know that $\ker(\varphi') = \ker(\varphi)$ are normal subgroups of G. Hence, from the universal property of quotients,

there exsists a unique homomorphism $\overline{\varphi}: G/\ker(\varphi') \to \operatorname{im}(\varphi')$ satisfies $\overline{\varphi} \circ \pi = \varphi'$ and since $\forall g \in G: \varphi'(g) = \varphi(g), \ker(\varphi') = \ker(\varphi), \operatorname{im}(\varphi') = \operatorname{im}(\varphi)$.

We can rewrite it as $\overline{\varphi}: G/\ker(\varphi) \to \operatorname{im}(\varphi)$ satisfies $\overline{\varphi} \circ \pi = \varphi$.

The kernel of $\overline{\varphi}$ consists of cosets of the form $g \cdot \ker(\varphi)$ with $\varphi(g) = 1$, equivalently, $g \in \ker(\varphi)$. Since $g \cdot \ker(\varphi) = \ker(\varphi) \iff g \in \ker(\varphi)$. Hence, $\overline{\varphi}$ is injective.

 φ is surjective, hence so does $\overline{\varphi}$.

Therefore, $G/\ker(\varphi) \cong \operatorname{im}(\varphi)$.

As a result, if φ is surjective, that is if $H = \operatorname{im}(\varphi)$ then $G/\ker(\varphi)$ is isomorphic to H.

Since the size of is 2. One coset is $1 \cdot H = H$ and the other is $G \backslash H$. Pick $x \in G$

If $x \in H$ then obviously, $\forall h \in H : xhx^{-1} \in H$.

If $x \notin H$ then as right cosets are also $H \cdot 1 = H$ and hence $G \backslash H$. Hence, as $xH \neq H, xH = G \backslash H$ and $Hx \neq H, Hx = G \backslash H$ and therefore xH = Hx. In both cases, H is proven normal.

Consider $G = S_3$ and its subgroup $H = \{(), (12)\}.$

[G:H]=3 as $()\cdot H=H,$ $(23)\cdot H=\{(23),(123)\},$ $(13)\cdot H=\{(13),(321)\}$ but $(23)(12)(23)=(13)\notin H.$

1.

From definition Z(G) is normal in G as it is a subgroup of G and $\forall g' \in Z(G) : \forall g \in G : gg' = g'g$.

2.

(a) \iff (b): already proven in homework 3

(b) \iff (d): directly, we have that G/Z(G) is trivial if and only if $Z(G)=1\cdot Z(G)=G$

(c) \Longrightarrow (a): $\exists G' \in G/Z(G) : G/Z(G) = \langle G' \rangle$. Since G' is a cosets, $\exists g \in G : G' = tZ(G)$. Hence each cosets is equals to $(G')^n = (tZ(G))^n = t^nZ(G)$. For arbitary $x,y \in G : \exists i,j : x \in t^iZ(G)$ and $y \in t^jZ(G)$ and hence $\exists z_1,z_2 \in Z(G) : x = t^iz_1$ and $y = t^jz_2$.

$$xy = t^{i}z_{1}t^{j}z_{2}$$

$$= t^{i}t^{j}z_{1}z_{2}$$

$$= t^{j}t^{i}z_{2}z_{1}$$

$$= t^{j}z_{2}t^{i}z_{1}$$

$$= yx$$

and hence G is abelian.

(d) \implies (c): G/Z(G) is trivial hence cyclic.

3.

G is a finite group of order $p \cdot q$ where p and q are primes. Hence Z(G), subgroup of G, must have 1, p, q or pq elements.

If the number of elements in Z(G) is either p or q then Z(G) is cyclic hence G is abelian.

If Z(G) has pq elements then Z(G) = G and hence G is abelian.

If Z(G) has 1 element then it is trivial.

4.

Consider the map

$$\rho: G \to \operatorname{Aut}(G), \quad \rho(g)(h) = g \cdot h \cdot g^{-1}$$

We have that:

 $\ker(\rho) = \{g : \forall h \in G : \rho(g)(h) = h\} = \{g : \forall h \in G : gh = hg\} = Z(G).$ Hence, $G/\ker(\rho) = G/Z(G) \cong \operatorname{im}(\rho) = \operatorname{Inn}(G)$. As $\operatorname{Inn}(G)$ is a normal subgroup of Z(G) and Z(G) is cyclic, G/Z(G) is also cyclic and hence G is abelian.