Physics

Lecture 10 Introduction to Work

Review: General Approaches to Problems in Kinetics

Procedures for Analysis to Solve Problems in Kinetics

Step 1

Construct free body diagram

Step 2

Construct equations of motion

Step 3

Use kinematics to find solution

Equation of Motion

$$\sum \mathbf{F} = m\mathbf{a} = m\ddot{\mathbf{r}}$$

$$\sum \mathbf{F} - m\mathbf{a} = 0$$

D'Alembert's Principle

An imaginary force that is collinear with $\Sigma \mathbf{F}$ but oppositely sensed and of magnitude ma would, if applied to a particle, cause it to be in equilibrium

Free Body Diagram (FBD) & Kinetic Diagram (KD)

$$\mathbf{F}_R = \sum \mathbf{F} = m\mathbf{a}$$

The diagram of an isolated body with the representation of all external forces acting on it is called a Free Body Diagram

Today's Contents

Definition of work

Calculation of work

Types of work

Principle of work and energy

Power and efficiency

Work of a Force

Differential work

 $dU = \mathbf{F} \bullet d\mathbf{r} = F \cos \alpha \, ds$

Work done by F

$$U_{1-2} = \int_{r_1}^{r_2} \mathbf{F} \bullet d\mathbf{r}$$

Unit of work in SI system is joule (J): 1 J = 1 N-m

Expressions for Work(1)

Work done by F

Incremental work

Geometric interpretation

Incremental work

Expressions for Work(2)

(1) Incremental work using force

$$dU = F_t ds$$

= (Working component of \mathbf{F})×(Magnitude of d \mathbf{r})

(2) Incremental work using displacement

$$dU = F \cos \alpha \, ds$$

(3) Expression for work in rectangular coordinates

$$U_{1-2} = \int_{r_1}^{r_2} \mathbf{F} \cdot d\mathbf{r} = \int_{s_1}^{s_2} F \cos \alpha \, ds$$

Types of Work Encountered

- Work of a variable force
- Work of a constant force
- Work of a central force
 - Work of a spring force
 - Work of a weight

Work of a Constant Force

Work done by F

$$U_{1-2} = \mathbf{F} \bullet \int_{r_1}^{r_2} d\mathbf{r} = \mathbf{F} \bullet \Delta \mathbf{r}$$

$$U_{1-2} = F\Delta d$$

Work done by weight W

$$U_{1-2} = -W\Delta h$$

Work of a Central Force

Characteristics of central force

- Always directed toward a fixed point
- Magnitude is a function of the distance between the fixed point and the point of application

Examples of central force

- Force exerted by a spring
- Gravitational attraction

Incremental work

Work of a Spring Force

Work done

Valid for both elongation (positive x) as well as contraction (negative x)

Work of a Gravitational Force(1)

Two types

- Near the surface (g = constant)
- Away from the surface (g NOT constant) use Newton's law of Gravitation

$$\left(F = G\frac{m_1 m_2}{r^2}\right)$$

F: Mutual force of attraction between particles

G: Constant of Gravitation

 m_1 , m_2 : masses of the two particles

r: Distance between the centers of the particles

Work of a Gravitational Force (2)

Work done

$$U_{1-2} = -Gm_e m \int_{r_1}^{r_2} \frac{dr}{r^2} = Gm_e m \left(\frac{1}{r_2} - \frac{1}{r_1} \right) = mgR^2 \left(\frac{1}{r_2} - \frac{1}{r_1} \right)$$

R: Radius of the earth

g: Acceleration due to gravity

Principles of Work and Energy

Principle

$$\sum U_{1-2} = \frac{1}{2}m(v_2^2 - v_1^2)$$

$$= T_2 - T_1$$

Advantages of Work Energy Method over FMA Method

- Sometimes work can be calculated without integration
- Only forces that DO work need be considered
- Determine speed as a function of position of the particle

Few Important Points Related to Work Energy Method

- Work of a force is a scalar quantity (positive, negative or zero) that is associated with the change in the position of the point of application
- Kinetic energy is a scalar quantity (always positive) associated with the speed of a particle at a given instant of time.

Procedures for Analysis

- Establish the inertial coordinate system and draw a free body diagram of the particle in order to account for all the forces that DO WORK on the particle
- The kinetic energy is always positive, since it involves the speed squared
- Work is positive when the force component is in the same sense of direction as its displacement, otherwise it is negative

Power and Efficiency

Power (P)

The rate at which work is done

$$P = \frac{dU}{dt} = \frac{F \cdot dr}{dt} = F \cdot \frac{dr}{dt} = F \cdot V$$

Efficiency (η)

$$\eta = \frac{Output\ power}{Input\ power} \times 100\%$$