PRODIGY INFOTECH INTERNSHIP

TASK 5: Analyze traffic accident data to identify patterns related to road conditions, weather, and time of day. Visualize accident hotspots and contributing factors.

DONE BY: Krupa J Shetty

Email: krupajshetty@gmail.com

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

IMPORTING THE DATASET

data=pd.read_csv('accident data.csv')
data

₹		Index	Accident_Severity	Accident Date	Latitude	Light_Conditions	Dis1
	0	200701BS64157	Serious	05-06- 2019	51.506187	Darkness - lights lit	Kensi Ch
	1	200701BS65737	Serious	02-07- 2019	51.495029	Daylight	Kensi Ch
	2	200701BS66127	Serious	26-08- 2019	51.517715	Darkness - lighting unknown	Kensi Ch
	3	200701BS66128	Serious	16-08- 2019	51.495478	Daylight	Kensi Ch
	4	200701BS66837	Slight	03-09- 2019	51.488576	Darkness - lights lit	Kensi Ch
	75158	200720K088502	Slight	30-08- 2019	52.506153	Daylight	Sar
	75159	200720K088602	Slight	01-09- 2019	52.500668	Daylight	Sar
	75160	200720K089001	Slight	28-10- 2019	52.509656	Daylight	Sar
	75161	200720K089201	Serious	30-10- 2019	52.551004	Daylight	Sar
	75162	200720K089301	Slight	30-10- 2019	52.539593	Daylight	Sar
	75163 rows × 14 columns						

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 75163 entries, 0 to 75162

Pata columns (total 14 columns):

Data	columns (total 14 column	s):	
#	Column	Non-Null Count	Dtype
0	Index	75163 non-null	object
1	Accident_Severity	75163 non-null	object
2	Accident Date	75163 non-null	object
3	Latitude	75163 non-null	float64
4	Light_Conditions	75163 non-null	object
5	District Area	75163 non-null	object
6	Longitude	75163 non-null	float64
7	Number_of_Casualties	75163 non-null	int64
8	Number_of_Vehicles	75163 non-null	int64
9	Road_Surface_Conditions	75141 non-null	object
10	Road_Type	74347 non-null	object
11	Urban_or_Rural_Area	75163 non-null	object
12	Weather_Conditions	73713 non-null	object
13	Vehicle Type	75162 non-null	object

dtypes: float64(2), int64(2), object(10)
memory usage: 8.0+ MB

data.describe(include='all')

/usr/local/lib/python3.10/dist-packages/lida/components/summarizer.py:74: UserWarning cast_date_col = pd.to_datetime(df[column], errors='coerce')

	Index	Accident_Severity	Accident Date	Latitude	Light_Conditions	Distr A
count	75163	75163	75163	75163.000000	75163	75
unique	56217	3	365	NaN	5	
top	2.01E+12	Slight	13-07- 2019	NaN	Daylight	Birmingl
freq	18947	64078	299	NaN	54821	3
mean	NaN	NaN	NaN	52.999004	NaN	1
std	NaN	NaN	NaN	1.140564	NaN	1
min	NaN	NaN	NaN	51.292694	NaN	1
25%	NaN	NaN	NaN	51.569584	NaN	1
50%	NaN	NaN	NaN	53.415654	NaN	1
75%	NaN	NaN	NaN	53.758457	NaN	I
max	NaN	NaN	NaN	55.785544	NaN	I

data.head(10)

_		Index	Accident_Severity	Accident Date	Latitude	Light_Conditions	District Area
	0	200701BS64157	Serious	05-06- 2019	51.506187	Darkness - lights lit	Kensingtor and Chelsea
	1	200701BS65737	Serious	02-07- 2019	51.495029	Daylight	Kensingtor and Chelsea
	2	200701BS66127	Serious	26-08- 2019	51.517715	Darkness - lighting unknown	Kensingtor and Chelsea
	3	200701BS66128	Serious	16-08- 2019	51.495478	Daylight	Kensingtor and Chelsea
	4	200701BS66837	Slight	03-09- 2019	51.488576	Darkness - lights lit	Kensingtor and Chelsea
	5	200701BS67159	Serious	18-09- 2019	51.497750	Daylight	Kensingtor and Chelsea
	6	200701BS67207	Serious	05-09- 2019	51.501405	Daylight	Kensingtor and Chelsea
	7	200701BS67370	Fatal	03-10- 2019	51.482260	Darkness - lights lit	Kensingtor and Chelsea
	8	200701BS67515	Slight	31-10- 2019	51.493319	Darkness - lights lit	Kensingtor and Chelsea
	9	200701BS67543	Slight	18-10- 2019	51.484539	Daylight	Kensingtor and Chelsea

ANALYSIS

₹

```
plt.figure(figsize=(8,8))
sns.countplot(x='Accident_Severity',data=data,hue='Urban_or_Rural_Area')
plt.title('Accident Severity by Area of Accident')
plt.xlabel('Accident Severity')
plt.ylabel('Number of Accidents')
plt.show()
```



```
light_conditions_counts=data['Light_Conditions'].value_counts()
print(light_conditions_counts)

plt.figure(figsize=(10,8))
sns.barplot(x=light_conditions_counts.index, y=light_conditions_counts.values)
plt.title('Distribution of Accidents by Light Conditions')
plt.xlabel('Light Conditions')
plt.ylabel('Number of Accidents')
plt.show()
```

```
Daylight 54821
Darkness - lights lit 17472
Darkness - no lighting 1967
Darkness - lighting unknown 676
Darkness - lights unlit 227
Name: Light_Conditions, dtype: int64
```



```
plt.figure(figsize=(10,8))
sns.countplot(x='Accident_Severity', data=data,hue='Light_Conditions')
plt.title(' Accident Severity by Light Conditions')
plt.xlabel('Accident Severity')
plt.ylabel('Number of Accidents')
plt.show()
```


TIME ANALYSIS

```
data['Accident Date']=pd.to_datetime(data['Accident Date'])
data['Month']=data['Accident Date'].dt.month
plt.figure(figsize=(12,6))
sns.countplot(x='Month',data=data,hue='Accident_Severity')
plt.title(' Accident by Month')
plt.xlabel('Month')
plt.ylabel('Count')
plt.show()
```

₹


```
plt.figure(figsize=(10,6))
sns.countplot(x='Weather_Conditions',data=data,palette='viridis')
plt.title('Distribution of Weather Conditions')
plt.xlabel('Weather Conditions')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.show()
```

<ipython-input-14-e29ce067e67b>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le sns.countplot(x='Weather_Conditions',data=data,palette='viridis')


```
plt.figure(figsize=(10,6))
sns.boxplot(x='Accident_Severity',y='Number_of_Vehicles',data=data,palette='pastel')
plt.title('Box Plot of Number of Vehicles Involved by Accident Severity')
plt.xlabel('Accident Severity')
plt.ylabel('Number of Vehicles')
plt.show()
```

<ipython-input-16-a756784b405d>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `less sns.boxplot(x='Accident_Severity',y='Number_of_Vehicles',data=data,palette='pastel')

Inference:- The number of vehicles involved in accidents tends to increase with the severity of the accident. This is likely because more serious accidents often involve multiple vehicles colliding with each other, while slight accidents may only involve two vehicles.

The distribution of the number of vehicles involved in accidents is relatively symmetrical for all three severities. There are a few outliers in each of the severity categories. These outliers could be due to factors such as chain-reaction accidents or accidents involving large trucks or buses.

```
plt.figure[[figsize=(10,8)]]
columns=['Latitude','Longitude','Number_of_Casualties','Number_of_Vehicles','Month']
correlation_matrix=data[columns].corr()
sns.heatmap(correlation_matrix,annot=True,cmap='coolwarm',linewidths=.5)
plt.title('Correlation Matrix')
plt.show()
```

