

팀번호 : 12

과목명 : 오픈소스AI응용 1분반

교수명: 김동재 교수님

과제명: 기말대체텀프 발표

문제 제시

현대 사회에서 건강에 대한 염려는 지속적으로 증가하고 있는 상황인데, 정보들이 지나치게 흩어져 있으며 정제되어 있지 않은 환경에서 필요한 정보를 얻기보다 혼란스러움만 얻는 경험을 할 수 있었습니다.

데이터 수집

충분한 양의 질병과 증상들을 질병을 예측하는데 영향을 줄 확보할 수 있는 데이터를 찾 수 있는 변수들인지 파악해야 는 것이 쉽지 않을 것 같습니 합니다. 다.

데이터의 신뢰도

신뢰할 수 있는 의료용 데이 터인지 판단하는 과정이 필요 합니다.

질병과의 관련성

진행 순서

데이터 수집

증상과 나이, 성별과 같은 변수 들로 질병을 예측하는 머신을 학습시키기에 적절한 데이터를 찾아야 합니다.

데이터 전처리

확보한 데이터를 효과적으로 활용하기 위해서 전처리를 해 야 합니다.

모델, 신경망구조 작성

분류 문제에 맞는 모델과 활성 함수, 신경망 구조 등을 작성해 줘야 합니다.

분석, 문제점 발견

과제를 통해서 유의미한 결과 를 얻었는지 분석해보고 진행 중에 어떤 문제점들이 있었는 지, 개선해야 할 부분은 있는지 에 대해 분석해야 합니다.

데이터 소개

target I											feature I					
			증/	증상			증상의 강.		도 나이		d 별	ВМІ	ЗМІ		예절	
1	A	В	Œ	D	E	F	G	Н				K		L	N	
1	Disease	Disease_C	Symptom	Symptom_	Weight	Height	Intensit	ty Severity	Age		Gender	BMI_L	.eve	Region	Season	
2	influenza	C0162565	uncoordin	C0039239	68	180	high	medium		24	female		27.9	southwest	Summer	
3	influenza	C0162565	fever	C0000737	68	170	low	medium		23	male	3.	3.77	southeast	Summer	
4	influenza	C0162565	pleuritic pa	C0235704	68	162	low	low		24	male		33	southeast	Summer	
5	influenza	C0162565	snuffle	C0030554	68	162	high	medium		34	male	22.	705	northwest	Summer	
6	influenza	C0162565	throat sore	C0030552	68	185	low	high		21	male	2	8.88	northwest	Winter	
7	influenza	C0162565	malaise	C0020538	68	185	mediun	m medium		21	female	2	5.74	southeast	Winter	
8	influenza	C0162565	debilitation	C0020555	68	185	mediun	m medium		25	female	3:	3.44	southeast	Winter	

Datasetfinal.csv

코드 설명

핵심 코드

전처리

데이터가 스트링이기 때문에 Numerical Data로 변환해주는 전처리를 합니다.

MLP

CNN이나 RNN을 사용하기에는 부적합해 보여서 MLP를 활용하 려고 합니다.

신경망 구조

레이어를 세 개 넣으려고 합니다.

```
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
encoder.fit(df_die)
train_die = pd.Series(encoder.transform(df_die))
encoder.fit(df_sym)
train_sym = pd.Series(encoder.transform(df_sym))
encoder.fit(df_int)
train_int = pd.Series(encoder.transform(df_int))
train_age = df_age
encoder.fit(df_gen)
train_gen = pd.Series(encoder.transform(df_gen))
train_bmi = df_bmi
encoder.fit(df_sea)
train_sea = pd.Series(encoder.transform(df_sea))
```

전처리

LableEncoder

Numerical Data로 변환해서 학 습하려고 하기 때문에 disease, symptom, intensity, age, gender, bmi, season에 각각 정 수값 라벨링을 해줍니다. 12世 三 登 昭 4

추 머신

Q

NORMALIZATION

from sklearn.preprocessing import MinMaxScaler minmax_scaler = MinMaxScaler()

x_train = minmax_scaler.fit_transform(x_train)
x_test = minmax_scaler.fit_transform(x_test)

데이터 값을 0에서 1사이의 값 으로 fitting 해주는 노말라이제 이션도 중요합니다.

10

```
class NeuralNet(nn.Module):
    def __init__(self, input_size,output_size):
        super(NeuralNet, self).__init__()
        self.fc1 = nn.Linear(Input_size, 32)
        self.fc2 = nn.Linear(32,16)
        self.fc3 = nn.Linear(16,output_size)

def forward(self, x):
    out_fc1 = F.relu(self.fc1(x))
    # out_ac1 = F.relu(self.activation(out_fc1))
    out_fc2 = F.relu(self.fc2(out_fc1))
    # out_ac2 = self.activation(out_fc2)
    out_fc3 = F.softmax(self.fc3(out_fc2))
    return out_fc3
```

렐루와 소프트맥스를 사용했는데 마지막 레이어에 소프트맥스를 사용한 이유는 각 클래스별 확률을 출력해주기 때문입니다.

MLP

세개의 레이어

세 개의 레이어로 구성하려고 합니다.

첫 번째 레이어는 input을 6개의 디멘션으로 합니다.

출력 노드 수는 32개이고 따라 서 32채널로 출력이 됩니다.

두 번째 레이어는 input을 32 개로 받고 16개를 출력하게 됩 니다.

세 번째 레이어는 16개를 입력 받고 질병의 개수인 148개를 출력하게 됩니다.

```
# Define Optimizer: Stochastic Gradient Descent method
loss_fn = nn.CrossEntropyLoss()
# optimizer = torch.optim.SGD(model.parameters(), Ir=0.05)
optimizer = torch.optim.SGD (model.parameters(), Ir=0.05, momentum=0.9)
# optimizer = torch.optim.Adam(model.parameters(), Ir=0.05)
```

Loss function은 CrossEntropyLoss를 optimizer는 SGD를 사용했습니다. # Economic no model.

epochs = 00

Centre coss function (Gross Energy Lass Nere).

total_step = _enitraln_datalpacen).

Upload to gou

Forward case.

Inages in Transstop("ouga") tabels - she's n('sma')

obe s = 1 design source of n = 1.

.normat(epoch* _ ecochs, 1- , total_step, loss fem()))

backward pass & Cp _ rize. obtim Ser Serb great!

注170(file)(//2010/00== */*);

print (reges shope)

non econy in name (econo).

```
for in timeses, lebels) in entrerelettrain datalogue(1 - 4 min tratch for dou-
   outputs - code (inages) - # forward Practice on
   loss - loss_th(outputs, labels) # Calculate the loss # Thithe predicted labels (butputs) & ground-truth labels (labels)
   loss.bookwoody) w Automatic gradient calculation (autograd)
   potin zen steb() a Update node iparameter wich requires_gradminue.
       print ('Eosch [{],({}], 8 op [{})/{}]], cas {: 41}
```

```
Epoch [82/100], Step [600/1596], Loss: 5.5773
Epoch [82/100], Step [700/1596], Loss: 5,4021
Epoch [82/100], Step [800/1596], Loss: 5.2730
Epoch [82/100], Step [900/1596], Loss: 4,4092
Epoch [82/100], Step [1000/1596], Loss: 4.3961
Epoch [82/100], Step [1100/1596], Loss: 4.6453
Epoch [82/100], Step [1200/1596], Loss: 4.6633
Epoch [82/100], Step [1300/1596], Loss: 5.5394
Epoch [82/100], Step [1400/1596], Loss: 4.5442
Epoch [82/100], Step [1500/1596], Loss: 4.4099
Epoch [83/100], Step [100/1596], Loss: 4.5644
Epoch [83/100], Step [200/1596], Loss: 4.4099
Epoch [83/100], Step [300/1596], Loss: 4.6089
Epoch [83/100], Step [400/1596], Loss: 4.5824
Epoch [83/100], Step [500/1596], Loss: 4.5917
Epoch [83/100], Step [600/1596], Loss: 4.5582
Epoch [83/100], Step [700/1596], Loss; 5.5781
Epoch [83/100], Step [800/1596], Loss: 4.5388
Epoch [83/100], Step [900/1596], Loss: 5.6447
Epoch [83/100], Step [1000/1596], Loss: 4.4022
Epoch [83/100], Step [1100/1596], Loss: 4.5851
Epoch [83/100], Step [1200/1596], Loss: 5.5299
Epoch [83/100], Step [1300/1596], Loss: 4.6109
Epoch [83/100], Step [1400/1596], Loss: 4.6128
Epoch [83/100], Step [1500/1596], Loss: 4.5310
Epoch [84/100], Step [100/1596], Loss: 4.6494
Epoch [84/100], Step [200/1596], Loss: 4.6498
Epoch [84/100], Step [300/1596], Loss: 5.5397
Epoch [84/100], Step [400/1596], Loss: 4.6103
```

결과

만족스러운 결과가 나오지는 않았습니다... 아무래도 데이터의 숫자가 적 은 편이기 때문에 로스가 떨어 지지 않는 것과 제대로 학습되 지 않고 있다는 것을 확인할 수 있었습니다. 그리고 비정형 데이터가 많은 것도 요인중에 있는 것 같습니 다.

개선해야 할 문제점

데이터 양 부족

데이터의 절대적인 양이 적어서 제대로 학습이 되지 않았다는 문제가 있습니다.

지역에 의한 차이

지역에 따라서 걸리기 쉬운 질병과 어려운 질병이 상이한 차이를 보일 수 있으나 데이터의 부족으로 지역마다의 증상과 질병의 관련성을 입증하지 못했습니다.

팀 소개

32207825 정재호 데이터 수집 데이터 전처리 코딩

32207265 김형주 데이터 수집

??????? 교수님 마법

15

감사합니다.

부족한 내용이지만 들어주셔서 감사합니다.

