Introduction to OKD

Alan Adi Prastyo from I3

About Me

Alan Adi Prastyo

Senior Consultant at Inovasi Informatika Indonesia (I3)

Linux Geek, Kubernetes & Openshift Enthusiast

RHCSA, RHCE, RHCSA in Openstack, Red Hat Certified Specialist in Openshift Administration, MTCNA, Certified Openstack Administration (COA), DevOps Foundation Certified, 3Scale API Management.

Learning Objectives

- Discuss OKD
- Learn Basic OKD Terminology
- Learn Architecture OKD
- Learn Installation and Configuration tools

Borg Heritage

What is OKD?

OKD is a **distribution of Kubernetes** optimized for continuous application development and multi-tenant deployment. OKD adds **developer and operations-centric** tools on top of Kubernetes to enable rapid application development, easy deployment and scaling, and long-term lifecycle maintenance for small and large teams. OKD is the upstream Kubernetes distribution embedded in Red Hat OpenShift.

Source: https://www.okd.io/#v3

OKD Features

Self-Service

Multi-language

Automation

Collaboration

Multi-tenant

Web-scale

Open source

Standard-based

OKD Architecture

OKD Architecture

OKD Architecture

YOUR CHOICE OF INFRASTRUCTURE

NODES INSTANCES WHERE APPS RUN

APPS RUN IN CONTAINERS

A Container is the smallest compute unit

Container

Container are created from container images

POD

POD
Container

IP: 10.0.1.20

IP: 10.0.1.30

PODS ARE THE UNIT OF ORCHESTRATION

MASTERS ARE THE CONTROL PLANE

API AND AUTHENTICATION

DESIRED AND CURRENT STATE

INTEGRATED CONTAINER REGISTRY

ORCHESTRATION AND SCHEDULING

PLACEMENT BY POLICY

AUTOSCALING PODS

SERVICE DISCOVERY

BUILT-IN SERVICE DISCOVERY INTERNAL LOAD-BALANCING

ROUTING AND LOAD-BALANCING

ROUTE EXPOSES SERVICES EXTERNALLY

OKD NETWORK PLUGINS

OKD NETWORKING

PERSISTENT DATA IN CONTAINERS

PERSISTENT STORAGE

- Persistent Volume (PV) is tied to a piece of network storage
- Provisioned by an administrator (static or dynamically)
- Allows admins to describe storage and users to request storage
- Assigned to pods based on the requested size, access mode, labels and type

NFS	OpenStack Cinder	iSCSI	Azure Disk	AWS EBS	FlexVolume
GlusterFS	Ceph RBD	Fiber Channel	Azure File	GCE Persistent Disk	VMWare vSphere VMDK

PERSISTENT STORAGE

DYNAMIC VOLUME PROVISIONING

ACCESS VIA WEB, CLI, IDE AND API

BUILD AND DEPLOY CONTAINER IMAGE

BUILD AND DEPLOY CONTAINER IMAGES

DEPLOY YOUR SOURCE CODE

APP BINARY

DEPLOY YOUR CONTAINER IMAGE

DEPLOY SOURCE CODE WITH SOURCE-TO-IMAGE (S2I)

DEPLOY APP BINARY WITH SOURCE-TO-IMAGE (S2I)

DEPLOY DOCKER IMAGE

Demo Time!

Q&A

https://www.okd.io/

https://github.com/alanadiprastyo/meetup-okd-001-JKT