Communications Lab

Experiment 2

180030036

Rishabh Tripathi

Message Signal:

The message signal is generated as:

$$m(t) = A_m \left[\cos(2\pi f_m t) + \sin(4\pi f_m t) \right]$$

$$f_m = 100 \text{ Hz}, \qquad A_m = 4$$

Frequency Modulation (FM) and Demodulation:

The modulated passband signal is given as follows:

$$u_p(t) = A_c \cos(2\pi f_c t + \theta(t))$$

$$\theta(t) = 2\pi k_f \int_0^t m(\tau) d\tau$$

$$f_c = 2000 \text{ Hz}, \quad A_c = 5, \quad k_f = 100$$

The frequency modulated signal looks like the following:

The derivative of the passband signal looks like the following in time domain:

We detect the upper envelope of this derivative (using Hilbert transform) to obtain the message signal.

The demodulated signal looks like the following:

