Desde conjuntos a relaciones

Clase 10

IIC 1253

Prof. Cristian Riveros

Outline

Conjunto potencia

Modelación con conjuntos

Producto cartesiano

Relaciones

Conjunto potencia

Definición

Para un conjunto A, se define el **conjunto potencia** $\mathcal{P}(A)$ de todos los subconjuntos de A:

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

Ejemplo

Suponga que $A = \{1, 2, 3, 4\}$, entonces:

- ¿es cierto que $2 \in \mathcal{P}(A)$?
- ¿es cierto que $\{1,2\} \in \mathcal{P}(A)$?
- **■** ¿es cierto que $A \in \mathcal{P}(A)$?
- **■** ¿es cierto que $\emptyset \in \mathcal{P}(A)$?

¿cuál es el resultado de $\cup \mathcal{P}(A)$? ¿o de $\cap \mathcal{P}(A)$?

Conjunto potencia

Ejemplo 1

Para el conjunto $\{1,2\}$, ¿cuáles son todos los elementos de $\mathcal{P}(\{1,2\})$?

(¿qué flecha estaría faltando?)

Conjunto potencia

Ejemplo 2

Para el conjunto $\{1,2,3\}$, ¿cuáles son todos los elementos de $\mathcal{P}(\{1,2,3\})$?

Definición

Para todo conjunto A, se define el valor:

|A| = número de elementos distintos en A.

Ejemplo

- $|\{1,2\}| = 2$
- $|\{1,1,2\}| = 2$
- $|\{1,2,3,\ldots\}| = \infty$

¿para cuál conjunto se tiene que |A| = 0?

¿cuál es la cardinalidad de $\mathcal{P}(A)$?

Suponga $A = \{1, 2, ..., n\}$, ¿cuál es la **cardinalidad** de $\mathcal{P}(A)$ según n?

¿2ⁿ? ¿cómo lo demostramos?

Demostración por inducción

Demostración por inducción

Suponga que deseamos demostrar una afirmación $\forall x. P(x)$ sobre \mathbb{N} .

Principio de inducción

Para una afirmación P(x) sobre los naturales, si P(x) cumple que:

- 1. P(0) es verdadero,
- 2. si P(n) es verdadero, entonces P(n+1) es verdadero, entonces para todo n en los naturales se tiene que P(n) es verdadero.

Notación

- P(0) se llama el **caso base**.
- En el paso 2.
 - P(n) se llama la hipótesis de inducción.
 - P(n+1) se llama la **tesis de inducción** o paso inductivo.

Teorema

Si
$$A = \{1, 2, ..., n\}$$
, entonces $|\mathcal{P}(A)| = 2^n$.

Demostración

Demostramos que se cumple para n = 0:

Caso base
$$(n = 0)$$
: $|\mathcal{P}(\emptyset)| = |\{\emptyset\}| = 1 = 2^0$

Demostración (continuación)

Suponemos que se cumple para un n cualquiera y demostramos para n + 1:

Hipótesis de inducción:

$$|\mathcal{P}(\{1,\ldots,n\})| = 2^n$$

Inducción (idea):

Demostración (continuación)

Suponemos que se cumple para un n cualquiera y demostramos para n + 1:

Hipótesis de inducción:

$$|\mathcal{P}(\{1,\ldots,n\})| = 2^n$$

Inducción:

$$\begin{aligned} |\mathcal{P}(\{1,\ldots,n+1\})| &= |\mathcal{P}(\{1,\ldots,n\}) \cup \{A \cup \{n+1\} \mid A \in \mathcal{P}(\{1,\ldots,n\})\}| \\ &= |\mathcal{P}(\{1,\ldots,n\})| + |\{A \cup \{n+1\} \mid A \in \mathcal{P}(\{1,\ldots,n\})\}| \\ &= |\mathcal{P}(\{1,\ldots,n\})| + |\mathcal{P}(\{1,\ldots,n\})| \\ &= 2^n + 2^n = 2^{n+1} \end{aligned}$$

Outline

Conjunto potencia

Modelación con conjuntos

Producto cartesiano

Relaciones

Teoría de conjuntos es la base de las matemáticas

Con conjuntos podemos representar:

- Números naturales, enteros, racionales, ...
- Funciones, secuencias, . . .
- Grafos, árboles, tablas, matrices, ...

Veremos algunos ejemplos

¿desde donde empiezan los naturales? ¿0 o 1?

Para todo conjunto A considere el operador:

$$\sigma(A) = A \cup \{A\}$$

El conjunto de los números naturales se define como sigue:

$$\begin{array}{lll} 0 & = & \varnothing \\ \\ 1 & = & \sigma(0) = \sigma(\varnothing) = \varnothing \cup \{\varnothing\} = \{\varnothing\} = \{0\} \\ \\ 2 & = & \sigma(1) = \sigma(\{\varnothing\}) = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\} = \{0, 1\} \\ \\ 3 & = & \sigma(2) = \sigma(\{\varnothing, \{\varnothing\}\}) = \{\varnothing, \{\varnothing\}\} \cup \{\{\varnothing, \{\varnothing\}\}\} \\ \\ & = & \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\} = \{0, 1, 2\} \\ \\ \vdots \end{array}$$

¿cuál es el significado del operador σ en \mathbb{N} ?

¿cómo representamos redes con teoría de conjuntos?

¿cómo representamos redes con teoría de conjuntos?

¿cómo modelamos las conecciones entre los nodos?

Grafos como conjuntos

Definición

Un **grafo** G sobre el dominio V es un subconjunto $E \subseteq \mathcal{P}(V)$ tal que para todo $e \in E$ se cumple que |e| = 2.

Ejemplo

- $V = \{a, b, c, d, e, f, g\}$
- $E = \{ \{a,b\}, \{a,c\}, \{a,d\}, \{a,g\}, \{b,e\}, \{c,d\}, \{d,e\}, \{d,f\}, \{e,f\}, \{e,g\} \}$

Grafos como conjuntos

Definición

Un grafo G sobre el dominio V es un subconjunto $E \subseteq \mathcal{P}(V)$ tal que para todo $e \in E$ se cumple que |e| = 2.

Notación

- $lue{}$ Los elementos en V los llamaremos los vértices o nodos del grafo.
- Los elementos en E los llamaremos las aristas del grafo.

Grafos serán estructuras muy útiles durante el curso!

¿cómo representamos tablas con teoría de conjuntos?

Nombre	Curso
Marcelo	Criptografía
Juan	Lógica
Cristian	Matemáticas Discretas

¿cómo representamos esta estructura con conjuntos?

Necesitamos relaciones

Una relación es una correspondencia entre objetos.

Varios ejemplos en matemáticas como:

'menor que', 'subconjunto', 'igualdad', . . .

Relaciones nos darán orden a nuestros objectos

Outline

Conjunto potencia

Modelación con conjuntos

Producto cartesiano

Relaciones

Pares ordenados

Definición (informal)

Un pareja de objetos (a, b) es un par ordenado si se distingue un primer elemento y un segundo elemento.

Definición

Para dos elementos a y b, se define el par ordenado (a,b) como:

$$(a,b) = \{\{a\},\{a,b\}\}$$

Proposición

$$(a,b) = (c,d)$$
 si, y solo si, $a = c$ y $b = d$

En particular,
$$(a, b) \neq (b, a)$$

Pares ordenados

Demostración: (a, b) = (c, d) ssi a = c y b = d

- (⇐) Por definición de par ordenado.
- (\Rightarrow) Suponga que (a,b) = (c,d). Por casos:
- 1. Si c = d, entonces:
 - Como c = d, entonces $\{\{c\}, \{c, d\}\} = \{\{c\}\}.$
 - Como (a, b) = (c, d), entonces:

$$\{\{a\},\{a,b\}\}\subseteq\{\{c\}\}$$

- Entonces $\{a\} = \{c\}$ y $\{a,b\} = \{c\}$.
- Como $\{a\} = \{c\}$, entonces a = c.
- Como $\{a, b\} = \{c\}$, entonces b = c = d.

Por lo tanto, a = c y b = d.

Pares ordenados

Demostración: (a, b) = (c, d) ssi a = c y b = d

- (←) Por definición de par ordenado.
- (\Rightarrow) Suponga que (a,b)=(c,d). Por casos:
- 1. Si c = d, entonces . . .
- 2. Si $c \neq d$, entonces:
 - Como (a, b) = (c, d), entonces:

$$\{\{c\},\{c,d\}\}\subseteq\{\{a\},\{a,b\}\}$$

- De (*), sabemos que $\{c,d\} \in \{\{a\},\{a,b\}\}$:
 - Como $c \neq d$, entonces $a \neq b$.
 - Como $a \neq b$, entonces $\{c, d\} = \{a, b\}$.
- De (*), sabemos que $\{c\} \in \{\{a\}, \{a, b\}\}$:
 - Como $a \neq b$, entonces a = c.
- Como $\{c, d\} = \{a, b\}$ y a = c, entonces b = d.

Pares ordenados (generalización)

Definición

Para tres elementos a, b, c se define el **triple ordenado** (a, b, c) como:

$$(a,b,c) = ((a,b),c)$$

■ En general, para $a_1, ..., a_n$, se define una n-tupla ordenada como:

$$(a_1, a_2, \ldots, a_n) = ((a_1, a_2, \ldots, a_{n-1}), a_n)$$

Proposición

$$(a_1, \ldots, a_n) = (b_1, \ldots, b_n)$$
 si, y solo si $a_i = b_i$ para todo $i \le n$

Demostración: ejercicio.

Producto cartesiano

Definición

■ Para dos conjuntos A y B se define el **producto cartesiano** como:

$$A \times B = \{ (a,b) \mid a \in A \land b \in B \}$$

■ En general, para conjuntos $A_1, ..., A_n$ se define el **producto cartesiano generalizado**:

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \mid a_i \in A_i\}$$

Ejemplos

- $\blacksquare \mathbb{R} \times \mathbb{R}$
- $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$

Producto cartesiano

Algunas preguntas

- 1. $i A \times B = B \times A$?
- 2. $\iota(A \times B) \times C = A \times (B \times C)$?

Ejemplo

- $\{1\} \times \{2\} = \{2\} \times \{1\}$?

Outline

Conjunto potencia

Modelación con conjuntos

Producto cartesiano

Relaciones

Relaciones

Definición

Dado un conjunto A y B, R es una relación binaria sobre A y B si:

$$R \subseteq A \times B$$

Si B = A decimos que R es una relación binaria sobre A.

¿qué relaciones binarias conocen?

Relaciones (ejemplos)

Ejemplo 1

Considere el conjunto A:

$$A = \{a, b, c, d, e\}$$

Considere la siguiente relación:

$$R_2 = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

- ¿es cierto que $(d, a) \in R_2$?
- ¿es cierto que $(c,c) \in R_2$?

Relaciones (ejemplos)

Ejemplo 2

Nombre	Curso
Marcelo	Criptografía
Marcelo	Matemáticas Discretas
Juan	Lógica
Cristian	Matemáticas Discretas

Considere los siguientes conjuntos A y B:

```
A = \{Marcelo, Juan, Cristian\}

B = \{Criptografía, Lógica, MD\}
```

Una relación que modela la tabla anterior es:

```
R_1 = \{(Marcelo, Criptografía), (Marcelo, MD), (Juan, Lógica), (Cristian, MD)\}
```

¿cuál es la diferencia entre una "tabla" y una relación?

Relaciones (ejemplos)

Ejemplo 3

Considere el conjunto $\mathbb N$ y las relaciones:

$$T_1 = \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a \le b\}$$

$$T_2 = \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a < b\}$$

$$T_3 = \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a = b\}$$

- ¿es cierto que $T_1 \subseteq T_2$?
- ¿es cierto que $T_3 \subseteq T_1$?
- ¿es cierto que $(T_2 \cup T_3) = T_1$?

Relaciones (notación)

Definición

Para una relación R y un par (a,b) usaremos la siguiente notación:

$$\left. \begin{array}{c} (a,b) \in R \\ \text{o} \\ a \ R \ b \end{array} \right\} \quad \left(a,b \right) \text{ pertenece a la relación } R$$

$$\left(a,b \right) \notin R \\ \text{o} \\ a \ R \ b \end{array} \right\} \quad \left(a,b \right) \text{ NO pertenece a la relación } R$$

Ejemplos

- $(2,3) \in \{0,1\}$
- $(5,2) \notin ≤ 0 5 \nleq 2$