Случайные процессы. ДЗ 9-10.

ПРОХОРОВ ЮРИЙ, 776

Задача 9.1

Пусть ОДМЦ $\{X_n\}_{n=0}^{\infty}$ задана матрицей переходов P и начальным распределением p(0). Найти

- (a) $\mathbb{P}\{X_n=j\}$
- (b) $\mathbb{P}\{X_{n+1} = j \mid X_{n-1} = i\}$
- (c) $\mathbb{P}\{X_{n+m} = j \mid X_n = i\}$

Решение:

Из формулы полной вероятности следует, что вероятность перехода из i-го состояния в j-ое за m шагов:

$$p_{i,j}(m) = (P^m)_{ij}$$

(а) По формуле полной вероятности,

$$\mathbb{P}\{X_n = j\} = \sum_{i \in E} \mathbb{P}\{X_n = j \mid X_0 = i\} \, \mathbb{P}\{X_0 = i\} = \sum_{i \in E} p_{i,j}(n) \, p_i(0) = \sum_{i \in E} (P^n)_{ij} \, p_i(0) = \left[P^n \, p(0)\right]_j$$

(b)
$$\mathbb{P}{X_{n+1} = j \mid X_{n-1} = i} = p_{i,j}(2) = (P^2)_{ij}$$
.

(c)
$$\mathbb{P}{X_{n+m} = j \mid X_n = i} = p_{i,j}(m) = (P^m)_{ij}$$
.

Задача 9.2

Для ОДМЦ, заданной графом

- (а) Выделить классы эквивалентности.
- (b) Для замкнутых классов определить период или показать апериодичность.

Решение:

Классы эквивалентности — это компоненты сильной связности стохастического графа:

1. $\{1\}$ — открытый класс.

- $2. \{2\}$ открытый класс.
- $3. \{3,4,5\}$ замкнутый класс.

Рассмотрим этот класс как отдельную неразложимую подцепь. Для состояния 3:

$${n \ge 1 \mid p_{3,3}(n) > 0} = {2, 3, 4, \dots}$$

НОД этого множества равен 1, поэтому данное состояние апериодично. По теореме солидарности, это распространяется на весь класс.

4. $\{6,7,8\}$ — замкнутый класс.

$$HOД{n \ge 1 \mid p_{6,6}(n) > 0} = HOД{3,6,9,...} = 3$$

Значит, период данного класса равен 3.

 $5. \{9, 10, 11\}$ — замкнутый класс.

$$HOД{n \ge 1 \mid p_{9,9}(n) > 0} = HOД{2,4,6,...} = 2$$

Значит, период данного класса равен 2.

 $6. \{12, 13, 14\}$ — замкнутый класс.

$$HOД{n \ge 1 \mid p_{14,14}(n) > 0} = HOД{1,2,3,...} = 1$$

Значит, данный класс апериодичен.

Задача 9.3

- (a) Доказать, что для апериодичности неразложимой ОДМЦ достаточно наличие ненулевого элемента на диагонали матрицы P (т.е. наличие петли в графе этой цепи).
- (b) Показать, что это условие не является необходимым.

Решение:

(a) Если существует состояние i, такое, что $p_{i,i} = p_{i,i}(1) > 0$, то

$$HOД{n \ge 1 \mid p_{i,i}(n) > 0} = HOД{1,...} = 1$$

Значит, это состояние апериодично. По теореме солидарности, все состояния в цепи апериодичны.

(b) Для апериодичности достаточно, чтобы во множестве, от которого берется НОД, были два последовательных числа. Например, для цепи

 $HOД\{n \ge 1 \mid p_{i,i}(n) > 0\} = HOД\{2,3,\ldots\} = 1$, поэтому эта цепь апериодична.

Задача 9.4

Для ОДМЦ, заданных графами (см. ниже)

- (a) Определить период d.
- (b) Выделить циклические подклассы C_0, \ldots, C_{d-1} .

(c) Показать блочную структуру матрицы P.

Решение:

В обоих случаях дана неразложимая ОДМЦ, поэтому по теореме солидарности, период цепи — период любого ее состояния.

1. $HOД\{n \ge 1 \mid p_{1,1}(n) > 0\} = HOД\{6,12,18,\ldots\} = 6$, значит, период этой цепи d=6.

Циклические подклассы:

$$C_0 = \{1\}, \qquad C_1 = \{3\}, \qquad C_2 = \{5\}, \qquad C_3 = \{2\}, \qquad C_4 = \{4\}, \qquad C_5 = \{6\}$$

Если в матрице P поменять местами соответствующие строки и столбцы (то есть переименовать состояния), то она будет иметь блочную структуру:

Цифры слева обозначают новую нумерацию вершин.

2. Перерисуем граф цепи в следующем виде:

Теперь видно, что

$$HOД{n \ge 1 \mid p_{1,1}(n) > 0} = HOД{3,6,9,...} = 3,$$

значит, период этой цепи d=3.

Циклические подклассы:

$$C_0 = \{1, 2\}, \qquad C_1 = \{3, 4\}, \qquad C_2 = \{5, 6\}$$

Матрица P имеет блочный вид:

$$P = \begin{bmatrix} p_{1,3} & p_{1,4} \\ p_{2,3} & p_{2,4} \end{bmatrix}$$

$$\begin{bmatrix} p_{3,5} & p_{3,6} \\ p_{4,5} & p_{4,6} \end{bmatrix}$$

$$\begin{bmatrix} p_{5,1} & p_{5,2} \\ p_{6,1} & p_{6,2} \end{bmatrix}$$

Задача 10.1

Доказать, что если в ОДМЦ состояние j невозвратно, то для любого состояния i выполнено

$$\sum_{n=1}^{\infty} p_{i,j}(n) < +\infty,$$

а, значит, и $p_{i,j}(n) \xrightarrow{n \to \infty} 0$.

Решение:

Обозначим $f_{i,j}(n)$ — вероятность первый раз придти в j из i за n шагов:

$$f_{i,j}(n) = \mathbb{P}\{X_n = j, \ X_k \neq j, \ k = \overline{1, n-1} \mid X_0 = i\}$$

Тогда по формуле полной вероятности:

$$p_{i,j}(n) = \sum_{k=1}^{n} f_{i,j}(k) p_{j,j}(n-k)$$

Суммируем это равенство от n=1 до ∞ (суммирование и перестановка местами сумм будут корректными, если все ряды сходятся):

$$= P_j \sum_{k=1}^{\infty} f_{i,j}(k) = P_j \cdot F_{i,j} < +\infty,$$

где $F_{i,j} \leq 1$ — вероятность дойти из i в j за конечное число шагов. Все ряды сходятся, значит, перестановка суммирований местами обоснована.

Задача 10.2

Крыса бегает по лабиринту из 5 клеток.

Стрелками указаны односторонние проходы, линиями — двусторонние, ■ — перекрестки. Дойдя до клетки или перекрестка, крыса выбирает случайный выход (включая тот, по которому прибежала).

Найти матрицу P, состоящую из переходных вероятностей между клетками. Классифицировать состояния (клетка — состояние).

Решение:

Составим марковскую цепь, состоящую из всех клеток и перекрестков:

Матрица переходов этой цепи:

Нас интересует матрица P, элементами которой являются числа $p_{i,j}$ — вероятности того, что следующая **клетка**, в которую придет крыса, стартуя из **клетки** $i \in \{1, ..., 5\}$, будет под номером $j \in \{1, ..., 5\}$.

Отметим, что так как данная цепь конечна, то если состояние j возвратно (\equiv существенно), то вероятность, что мы дойдем туда за конечное время равна 1 (см. предыдущую задачу), поэтому вероятности $p_{i,j}$ существуют.

Обозначим $\widetilde{p}_{i,j}$ — вероятность, того, что следующая **клетка**, в которую придет крыса, стартуя из **перекрестка** $i \in \{6, \dots, 10\}$, будет под номером $j \in \{1, \dots, 5\}$. Обозначим

$$p_j = \left[egin{array}{c} p_{1,j} \\ dots \\ p_{5,j} \end{array}
ight], \qquad \widetilde{p}_j = \left[egin{array}{c} \widetilde{p}_{6,j} \\ dots \\ \widetilde{p}_{10,j} \end{array}
ight]$$

Тогда легко видеть, что по формуле полной вероятности (первое равенство):

$$\left[\begin{array}{c} p_j \\ \widetilde{p}_j \end{array}\right] = Q \left[\begin{array}{c} e_j \\ \widetilde{p}_j \end{array}\right] = \left[\begin{array}{c|c} Q_{11} & Q_{12} \\ \hline Q_{21} & Q_{22} \end{array}\right] \left[\begin{array}{c} e_j \\ \widetilde{p}_j \end{array}\right] = \left[\begin{array}{c} Q_{11}e_j + Q_{12}\widetilde{p}_j \\ Q_{21}e_j + Q_{22}\widetilde{p}_j \end{array}\right]$$

Тут Q_{11} — матрица вероятностей переходов между клетками (в нашей задаче она нулевая), Q_{12} — между клетками и перекрестками, Q_{21} — между перекрестками и клетками, Q_{22} — между перекрестками.

Из второго уравнения находим

$$\widetilde{p}_j = (I - Q_{22})^{-1} Q_{21} e_j$$

и подставляем в первое. В итоге

$$p_j = (Q_{11} + Q_{12}(I - Q_{22})^{-1}Q_{21})e_j$$

Тогда искомая матрица P:

$$P = Q_{11} + Q_{12}(I - Q_{22})^{-1}Q_{21}$$

В нашей задаче получается после вычислений

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 4/9 & 1/9 & 1/9 & 1/6 & 1/6 \\ 1/6 & 1/6 & 1/6 & 1/4 & 1/4 \\ 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 1/2 \end{bmatrix}$$

Соответствующий граф:

Классификация состояний:

- 1. $\{1\}$ замкнутый класс. Состоит из положительного возвратного состояния (= существенного).
- $2. \{2,3\}$ открытый класс. Состоит из нулевых невозвратных состояний (= несущественных).
- 3. $\{4,5\}$ замкнутый класс. Состоит из положительных возвратных состояний (= существенных).

Задача 10.3(а)

Рассмотрим простое случайное симметричное блуждание на d-мерной решетке \mathbb{Z}^d . Находясь в состоянии $a=(a_1,\ldots,a_d)\in\mathbb{Z}^d$ цепь может равновероятно перейти в одну из 2^d вершин куба $\|x-a\|_1=1$.

Доказать, что при $d \le 2$ такое блуждание возвратно, а при $d \ge 3$ — невозвратно.

Решение:

Пусть $\mathbf{X_n}$ — данная (векторная) ОДМЦ.

Сделаем поворот системы координат с помощью ортогональной матрицы A, состоящей из столбцов

$$A = [h_1, \dots, h_d]$$

Для любого n определим случайные процессы $X_n^k,\ k=\overline{1,d}$ как коэффициенты разложения $A\mathbf{X}_n$ по базису h_1,\dots,h_d :

$$A\mathbf{X}_n = X_n^1 h_1 + \ldots + X_n^d h_d$$

Идея состоит в том, чтобы при таком значение X_{n+1}^k зависело только от X_n^k и не зависело от X_n^i при $i \neq k$.

В исходном базисе:

$$\mathbf{X}_{n+1} = \mathbf{X}_n + \xi_n,$$

где случайные величины $\{\xi_n\}$ независимы и равновероятно принимают значения в одной из 2^d вершин куба $\|x\|_1 = 1$. Выберем матрицу A такой, чтобы при действии ее на этот куб его ребра стали параллельны координатным осям.

Итак, при умножении последнего равенства на матрицу A имеем:

$$A\mathbf{X}_{n+1} = A\mathbf{X}_n + A\xi_n,\tag{*}$$

где случайная величина $A\xi_n$ теперь принимает случайное значение в вершинах куба

$$A\{\|x\|_1 = 1\} = \left\{ \|x\|_{\infty} = \frac{1}{2} \sqrt[d]{V_d} \right\} = \left\{ \|x\|_{\infty} = \frac{1}{\sqrt[d]{d!}} \right\},\,$$

где $V_d = \frac{2^d}{d!}$ — объем d-мерного куба $\|x\|_1 = 1$.

Координаты вершин повернутого куба задаются векторами $\left[\pm\frac{1}{\sqrt[d]{d!}},\ldots,\pm\frac{1}{\sqrt[d]{d!}}\right]^T$. Среди этих 2^d векторов есть векторы h_1,\ldots,h_d , так как $Ae_k=h_k$, и векторы e_k задавали вершины исходного куба. В итоге получаем, что

$$A\xi_n = \eta_1 h_1 + \dots \eta_n h_n,$$

где случайные величины $\eta_k \in \{-1, +1\}$ равновероятно, и все η_k независимы. Подставляя это равенство в (*) и приравнивая коэффициенты при базисных векторах h_k , получаем

$$X_{n+1}^k = X_n^k + \eta_k, \qquad \eta_k \in \{-1, +1\}, \qquad k = \overline{1, d}$$

Это равенство означает, что X_n^k — независимые одномерные симметричные случайные блуждания.

В случае d=2 имеем обычный поворот системы координат на 45 градусов:

$$h_1 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}, \qquad h_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

Итак, мы показали, что d-мерное симметричное случайное блуждание распадается на d независимых одномерных блужданий.

Рассмотрим теперь одномерное симметричное блуждание X_n . Для нулевого состояния вероятность вернуться после фиксированного числа шагов:

$$p_{0,0}(2n) = C_{2n}^n \left(\frac{1}{2}\right)^{2n}, \qquad p_{0,0}(2n+1) = 0$$

По формуле Стирлинга, $n! \sim \sqrt{2\pi n} \left(n/e\right)^n$:

$$p_{0,0}(2n) \sim \frac{\sqrt{4\pi n} (2n)^{2n}}{e^{2n}} \frac{e^{2n}}{2\pi n n^{2n}} \frac{1}{2^{2n}} = \frac{1}{\sqrt{\pi n}}, \quad n \to \infty$$

Поэтому для d-мерного блуждания в силу независимости компонент X_n^k : каждое из d блужданий должно вернуться в начало, значит,

$$p_{\mathbf{0},\mathbf{0}}(2n) = \left[p_{0,0}(2n)\right]^d \sim \frac{1}{(\pi n)^{d/2}} \longrightarrow 0, \quad n \to \infty$$

Значит, любое состояние в d-мерном блуждании является нулевым. Исследуем возвратность. Ряд

$$\sum_{k=1}^{\infty} p_{\mathbf{0},\mathbf{0}}(k) = \sum_{n=1}^{\infty} p_{\mathbf{0},\mathbf{0}}(2n) \sim \sum_{n=1}^{\infty} \frac{C}{n^{d/2}}$$

- при $d \le 2$: расходится, значит, состояния в цепи нуль возвратные;
- при $d \ge 3$: сходится, значит, состояния в цепи невозвратные.

Задача 10.3(б)

Рассмотрим произвольное симметричное блуждание на \mathbb{Z} :

$$X_n = \xi_1 + \ldots + \xi_n,$$

где ξ_k — i.i.d, симметричные (т.е. $\xi \stackrel{d}{=} -\xi$), целочисленные и с конечным матожиданием $\mathbb{E}\xi_k = 0$.

Доказать, что $\{X_n\}$ — нуль возвратная ОДМЦ.

Решение:

Сначала покажем, что это ОДМЦ, проверив свойство марковости:

$$\mathbb{P}\left\{X_{n+1} = j \mid X_1 = i_1, \dots, X_n = i_n\right\} = \mathbb{P}\left\{\xi_1 + \dots + \xi_{n+1} = j \mid \xi_1 = i_1, \dots, \xi_n = i_n - i_{n-1}\right\} = \mathbb{P}\left\{\xi_{n+1} = j - i_n \mid \xi_1 = i_1, \dots, \xi_n = i_n - i_{n-1}\right\} = \mathbb{P}\left\{\xi_{n+1} = j - i_n\right\} = \mathbb{P}\left\{X_{n+1} = j \mid X_n = i_n\right\}$$

Однородность следует из одинаковой распределенности ξ_k :

$$\mathbb{P}\{X_{n+1} = j \mid X_n = i\} = \mathbb{P}\{\xi_{n+1} = j - i\} = \mathbb{P}\{\xi_2 = j - 1\} = \mathbb{P}\{X_2 = j \mid X_1 = i\}$$

Найдем вероятность $p_{0,0}(n)$ вернуться в нулевое состояние через n шагов:

$$p_{0,0}(n) = \mathbb{P}\{X_n = 0\}$$

Пусть $\Phi_{\xi}(z) = \sum_{k \in \mathbb{Z}} \mathbb{P}\{\xi = k\} z^k$ — производящая функция ξ . Она представлена в виде своего ряда Лорана в окрестности нуля. Тогда в силу независимости $\xi_k \left[\Phi_{\xi}(z)\right]^n$ — производящая функция X_n .

Искомая вероятность $\mathbb{P}\{X_n=0\}$ является свободным членом в разложении $\left[\Phi_{\xi}(z)\right]^n$ в ряд Лорана. Из комплексного анализа мы знаем, что этот коэффициент находится по формуле Коши

$$p_{0,0}(n) = \mathbb{P}\{X_n = 0\} = \frac{1}{2\pi i} \oint_{|z|=1} \frac{\left[\Phi_{\xi}(z)\right]^n}{z} dz \tag{*}$$

Так как $\Phi_{\xi}(z) < 1$ при |z| = 1 (за исключением, быть может, конечного числа точек), то

$$\left[\Phi_{\xi}(z)\right]^{n} \xrightarrow{n \to \infty} 0 \qquad \Longrightarrow \qquad p_{0,0}(n) \xrightarrow{n \to \infty} 0$$

Отсюда следует, что все состояния в цепи нулевые. Покажем, что они возвратные. Просуммируем равенство (*) по n от 0 до ∞ . Ряд из подынтегральных функций сходится равномерно, поэтому можно переставить местами сумму и интеграл:

$$\sum_{n=0}^{\infty} p_{0,0}(n) = \frac{1}{2\pi i} \oint_{|z|=1} \frac{1}{z} \sum_{n=0}^{\infty} \left[\Phi_{\xi}(z) \right]^n dz = \frac{1}{2\pi i} \oint_{|z|=1} \frac{dz}{z \left[1 - \Phi_{\xi}(z) \right]} = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{d\varphi}{1 - \Phi_{\xi}(e^{i\varphi})}$$

Так как $\mathbb{E}\xi=0$, то можно разложить $\Phi_{\mathcal{E}}$ в окрестности $\varphi=0$ и получить при малом φ_0 :

$$0 \le 1 - \Phi_{\xi}(e^{i\varphi}) \le \varphi, \qquad \varphi \in [0, \varphi_0]$$

Отсюда следует оценка

$$\sum_{n=0}^{\infty} p_{0,0}(n) \ge \frac{1}{2\pi} \int_{0}^{\varphi_0} \frac{d\varphi}{\varphi} = \infty$$

Это означает, что состояния цепи нуль возвратные.

Теорема солидарности (формулировка из пособия)

Для неразложимой ОДМЦ справедливо, что

- (1) Если хотя бы одно состояние возвратное, то все состояния возвратные.
- (2) Если хотя бы одно состояние нулевое, то все состояния нулевые.
- (3) Если хотя бы одно состояние имеет период d, то все состояния имеют период d. Если хотя бы одно состояние апериодично, то все состояния апериодичны.

Вопросы:

- 1. Почему теорема солидарности формулируется только для замкнутых классов эквивалентности? Будет ли она неверна для открытых классов? Поэтому ли в задаче 9.2 требовалось найти период или доказать апериодичность только для замкнутых классов?
- 2. В теореме солидарности говорится о следствиях

хотя бы 1 возвратное \implies все возвратные, хотя бы 1 нулевое \implies все нулевые

Будут ли для замкнутых классов верны следующие следствия?

хотя бы 1 невозвратное \implies все невозвратные, хотя бы 1 ненулевое \implies все ненулевые

3. На семинаре мы говорили, что если $\mu_i = \mathbb{E}\sigma_i$, где σ_i — число шагов до первого возвращения в i-ое состояние, то

$$\lim_{n\to\infty} p_{i,i}(n) = \frac{1}{\mu_i},$$

если предел слева существует. А если он не существует, то пишем предел по Чезаро:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} p_{i,i}(k) = \frac{1}{\mu_i}$$

Для любых ли состояний существует предел по Чезаро?