MOSDBDiscrete

In this module, we will have a brief overview of the MOSDBDiscrete class, which manages a transistor characterization database and provide methods for designers to query transistor small signal parameters.

MOSDBDiscrete example

To use the transistor characterization database, evaluate the following cell, which defines two methods, query() and plot_data().

```
In [1]: |%matplotlib inline
        import os
        import pprint
        import numpy as np
        import matplotlib.pyplot as plt
        # noinspection PyUnresolvedReferences
        from mpl toolkits.mplot3d import Axes3D
        from matplotlib import cm
        from matplotlib import ticker
        from verification_ec.mos.query import MOSDBDiscrete
        interp method = 'spline'
        spec file = os.path.join(os.environ['BAG WORK DIR'], 'demo data', 'mos char n
        env default = 'tt'
        intent = 'standard'
        def query(vgs=None, vds=None, vbs=0.0, vstar=None, env_list=None):
             ""Get interpolation function and plot/query."""
            spec_list = [spec_file]
            if env_list is None:
                env_list = [env_default]
            # initialize transistor database from simulation data
            nch_db = MOSDBDiscrete(spec_list, interp_method=interp_method)
            # set process corners
            nch_db.env_list = env_list
            # set layout parameters
            nch_db.set_dsn_params(intent=intent)
            # returns a dictionary of smal-signal parameters
            return nch db.query(vbs=vbs, vds=vds, vgs=vgs, vstar=vstar)
        def plot_data(name='ibias', bounds=None, unit_val=None, unit_label=None):
             """Get interpolation function and plot/query."""
            env list = [env default]
            vbs = 0.0
            nvds = 41
            nvgs = 81
            spec_list = [spec_file]
            print('create transistor database')
            nch_db = MOSDBDiscrete(spec_list, interp_method=interp_method)
            nch_db.env_list = env_list
            nch_db.set_dsn_params(intent=intent)
            f = nch_db.get_function(name)
            vds_min, vds_max = f.get_input_range(1)
            vgs_min, vgs_max = f.get_input_range(2)
            if bounds is not None:
                if 'vgs' in bounds:
                    v0, v1 = bounds['vqs']
                    if v0 is not None:
                         vgs_min = max(vgs_min, v0)
                    if v1 is not None:
                         vgs max = min(vgs max, v1)
                if 'vds' in bounds:
                    v0, v1 = bounds['vds']
                    if vA is not None:
```

Querying Small-Signal Parameters

To lookup transistor small signal parameters given a bias point, use the query() method by evaluating the following cell. Feel free to play around with the numbers.

```
In [2]: auerv(vas=0.4. vds=0.5. vbs=0.0)
Out[2]: {'cdb': 6.248976739750922e-17,
          'cdd': 2.0328230225209543e-16,
         'cds': -2.4163000626635453e-17,
         'cgb': 9.966702597590937e-19,
         'cgd': 1.6495553548122168e-16,
         'cgg': 3.6228642234598553e-16,
         'cgs': 1.9633421660500474e-16,
         'csb': 1.1021134465725374e-16,
         'css': 2.82382560635623e-16,
         'gb': 1.983603067386341e-05,
         'gds': 4.719944723025589e-06,
         'gm': 9.49214016617884e-05,
         'ibias': 1.2299113540770929e-05,
         'vstar': 0.25914310841286414,
         'vgs': 0.4,
         'vds': 0.5,
         'vbs': 0.0}
```

Plotting Small-Signal Parameters

MOSDBDiscrete stores each small signal parameter as a continuous function interpolated from simulation data. This makes it easy to manipulate those functions directly (such as using an optimization solver). For a simple example, the $plot_data()$ method simply plots the functions versus V_{gs} and V_{ds} . Evaluate the following cell to see plots of various different small signal parameters.

```
In [5]: %matplotlib inline
        nlot data(name='ihias')
        create transistor database
        {'cdb': 6.40259557187212e-17,
         'cdd': 2.0379145885397679e-16,
         'cds': -3.5466715265482257e-17,
         'cgb': 1.5429673845401091e-18,
         'cgd': 1.7523221840073783e-16,
         'cgg': 3.827084324971782e-16,
         'cgs': 2.0593324671190025e-16,
         'csb': 1.0744529426477165e-16,
         'css': 2.7791182571118964e-16,
         'gb': 3.64811900000001e-05,
         'gds': 7.59896000000004e-06,
         'gm': 0.00016568942500000004,
         'ibias': 3.931712000000002e-05,
         'vbs': 0.0,
         'vds': 0.5025,
         'vgs': 0.604000000000001,
         'vstar': 0.4745881639700302}
```

