Comenzado en Wednesday, 9 de November de 2022, 16:25

Estado Terminados

Finalizado en Wednesday, 9 de November de 2022, 18:24

Tiempo empleado

Calificación 51.00 de un total de 100.00

Pregunta 1

Correcta

Puntúa 10.00 sobre 10.00

Determine el intervalo abierto y radio de convergencia de la serie.

$$\sum_{n=1}^{\infty} \frac{(n!)^2 (x+3)^n}{(2n)!}$$

Seleccione una:

- \bigcirc a. $I:(-\frac{1}{2},\frac{1}{2}), R=\frac{1}{2}$.
- b. I:(-7,1), R=4.
- \bigcirc c. $I:(-rac{5}{2},rac{5}{2}), R=rac{5}{2}.$
- O d. Ninguna de las otras opciones es correcta.
- \bigcirc e. $I:(-\frac{3}{2},\frac{3}{2}),R=\frac{3}{2}.$

Respuesta correcta

La respuesta correcta es: I: (-7,1), R=4.

Pregunta 2

Incorrecta

Puntúa 0.00 sobre 10.00

La coordenada $ar{x}$ del centroide de la región del primer cuadrante, $\,$ limitada por el $eje\,y$, la función $f(x)=3x^2+1$ y la recta $y=10\,$ es:

Respuesta: 1.4

La respuesta correcta es: 0.65

Pregunta 3

Correcta

Puntúa 10.00 sobre 10.00

Plantee la o las integrales que calculen el área de la región que es exterior a la curva $r_1=\cos^2\theta$ e interior a la curva $r_2=1$

Seleccione una:

- igcap a. $A=rac{1}{2}\int_0^{rac{\pi}{2}}[1-(\cos^2 heta)^2]d heta$
- \bigcirc b. $A=\int_0^{rac{\pi}{2}}[1-(\cos^2 heta)^2]d heta$
- \bigcirc c. $A=\int_0^{rac{\pi}{2}}[-1+(\cos^2 heta)^2]d heta$
- lacksquare d. $A=2\int_0^{rac{\pi}{2}}[1-(\cos^2 heta)^2]d heta$
- . $(A = \int_{0}^{\frac{0}{2}} [1+(\cos^{2}\theta)^{2}] d\theta$
- of. Ninguna de las otras opciones es correcta.

Su respuesta es correcta.

 $\label{lagrange} La\ respuesta\ correcta\ es: \ (A = 2\ int_{0}^{\left(\frac{1}{(\infty ^{2})} [1-(\cos ^{2})\theta)^{2}]}\ d\theta) \ d\theta)$

Pregunta 4

Incorrecta

Puntúa 0.00 sobre 10.00

Para calcular el área de la superficie obtenida al hacer girar la curva

 $(x=sen(t)) (y=cos(t^2)) (0 \leq t \leq v)$ alrededor del eje y, es necesario resolver la integral

Seleccione una:

- a. Ninguna de las otras opciones es correcta
- b. \(2\pi \int_{0}^{\pi}{sen(t) \sqrt[]{(cos(t))+(-2tsen(t^2))} }dt \)
- o. \($2\pi \int_{0}^{\phi} \cos(t^2) \operatorname{l}(\cos(t)) + (-2t\sin(t^2))} dt \)$
- d. \(2\pi\\int_{0}^{\pi}{\cos(t^2) \sqrt[]{(\cos(t))^2+(-2\tsen(t^2))^2} }\dt \)
- e. \(2\pi \int_{0}^{\pi}{sen(t) \sqrt[]{(cos(t))^2+(-2tsen(t^2))^2} }dt \)

Su respuesta es incorrecta.

La respuesta correcta es: $(2\pi \int_{0}^{\phi} \left(\frac{0}{\sin(0)}^2 + (-2\tan(t^2))^2 \right) dt$

Pregunta 5

Parcialmente correcta

Puntúa 4.00 sobre 10.00

Dada la integral NOTA (En cada respuesta escriba la literal correcta)

\$\$ \int_{}^{{ \frac{5}{ {3-2\ cos\ x} } } dx \$\$

1.) ¿Qué sustitución elegiría?

\(e.\ Ninguna\ opción\ es\ correcta. \)

2.) Después de hacer la sustitución correcta,

¿Qué técnica de integración utilizaría?

f. \(Fracciones\ parciales\ solo\ con\ factores\ cuadráticos.\)

- g. \(No\ necesita\ técnica\ de\ integración. \)
- h. \(Fracciones\ parciales\ solo\ con\ factores\ lineales.\)
- i. \(Fracciones\ parciales\ con\ factores\ lineales\ y\ cuadráticos.\)
- j. \(Ninguna\ opción\ es\ correcta.\)

Pregunta 6

Incorrecta

Puntúa 0.00 sobre 10.00

Las coordenadas esféricas del punto dado en coordenadas cilíndricas \((4, \frac{\pi}{2}, -4) \) son:

- \bigcirc a. (ρ,θ,φ) =(5.66, 3π/2, 2.36)
- \bigcirc b. (ρ,θ,φ) =(5.66, π/2, 2.36)
- c. (ρ,θ,φ) = (5.66, π/2, -0.79) ×
- d. Ninguna de las otras opciones es correcta.
- \circ e. $(\rho,\theta,\phi) = (5.66, 3\pi/2, -0.79)$

Su respuesta es incorrecta.

La respuesta correcta es: (ρ,θ,ϕ) =(5.66, $\pi/2$, 2.36)

Pregunta 7	
Incorrecta	
Puntúa 0.00 sobre 10.00	

Encuentre la ecuación en coordenadas polares de la cónica que tiene como directriz la recta \(y=-4\) y que pasa por el punto \(\\left (4,\pi \right)\).

Seleccione una:

- \bigcirc a. \(r=\frac{6}{1-\sin \theta } \)
- b. \(r=\frac{4}{1-\sin \theta } \)
- o. Ninguna de las otras es correcta.
- \bigcirc d. \(r=\frac{4}{1-\cos \theta } \)
- e. \(r= \frac{4}{1+\cos \theta } \)

Respuesta incorrecta.

La respuesta correcta es: $(r=\frac{4}{1-\sin \theta})$

Pregunta 8
Correcta

Puntúa 10.00 sobre 10.00

Identifique la ecuación de la siguiente gráfica

Seleccione una:

- a. \(-4x^2+y-z^2=0 \)
- b. $(\frac{x^2}{9} + \frac{y^2}{16} + \frac{z^2}{9} = 1)$
- \bigcirc c. \(4x^2-y^2+4z^2=4 \)
- Od. Ninguna de las respuestas anteriores es correcta
- \bigcirc e. \(15x^2-4y^2+15z^2=-4 \)

Su respuesta es correcta.

La respuesta correcta es: $(-4x^2+y-z^2=0)$

Pregunta 9

Parcialmente correcta

Puntúa 7.00 sobre 10.00

Dada la ecuación del plano \(x-2y+z=6 \) y la recta \(\frac{x-3}{2} = \frac{y+2}{3} = \frac{z+1}{4} \), determine lo siguiente:

a) El plano y la recta son:

Perpendiculares **

bn) La distancia entre la recta y el plano es:

0

▼ TERCER EXAMEN PARCIAL MATEMÁTICA INTERMEDIA 1

Ir a...

PRIMERA RETRASADA MATEMÁTICA INTERMEDIA 1 >