UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA INGENIERÍA DE SISTEMAS E INFORMÁTICA

ALGORITMOS EVOLUTIVOS DE APRENDIZAJE

Código: 1411-2278

ACTIVIDAD EN AULA GRUPAL SEMANA 9 CALIFICADA (0-20)

Operadores de Selección y Cruce en Algoritmos Genéticos

Docente: Ms. Ing. Johan Max Alexander López Heredia Semestre: 2025-I Duración: 35 minutos

Código	Apellidos y Nombres	Firma

INSTRUCCIONES GENERALES

- Grupos: Máximo 4-5 integrantes por grupo
- Tiempo: 35 minutos para completar todas las actividades
- Material: Solo lapicero (no calculadora, no laptop)
- Entrega: Al finalizar, entregar esta separata completa al docente
- Calificación: Evaluación grupal (0-20 puntos)

CONTEXTO: Recordando la Semana Anterior

En la **Semana 8** trabajamos con **representaciones cromosómicas** para el problema de distribución de estudiantes. Teníamos 39 alumnos que debían distribuirse en 3 exámenes (A, B, C) con 13 alumnos cada uno, buscando equilibrio en las notas.

Implementamos tres representaciones:

■ Binaria: 117 bits (39 alumnos \times 3 bits c/u)

• Real: 117 valores normalizados

■ Permutacional: Orden de 39 índices

Ahora en la **Semana 9**, estudiaremos cómo crear nuevas generaciones usando **operadores de** selección y cruce.

CASO PRÁCTICO: Sistema de Distribución Inteligente

Situación: Eres parte del equipo que desarrolla un sistema para optimizar la distribución de estudiantes. Tu algoritmo genético ya tiene una población de 6 soluciones candidatas. Ahora debes aplicar operadores de selección y cruce para generar la siguiente generación.

Población Actual (Generación 0)

Individuo	Fitness	Descripción
A	85	Muy buena distribución
В	45	Distribución regular
С	70	Buena distribución
D	20	Distribución deficiente
E	60	Distribución aceptable
F	90	Excelente distribución

ACTIVIDAD 1: SELECCIÓN POR TORNEO (8 puntos)

La selección por torneo elige individuos comparando pequeños grupos al azar.

Proceso: Para cada torneo, selecciona 2 individuos al azar, compara sus fitness y el mejor "gana".

Pregunta 1.1 (2 puntos)

Realiza 3 torneos de tamaño 2. Para cada torneo, indica:

- Los 2 individuos seleccionados al azar
- Sus respectivos fitness
- El ganador del torneo

Torneo 1:

Individuos seleccionados:	(fitness:) y	(fitness:)
Ganador:;Por	qué?			
Torneo 2:				
Individuos seleccionados:	(fitness:) v	(fitness:)

Ganador:	¿Por qué?	
Torneo 3:		
Individuos seleccio	onados: (fitness:) y (fitness:)	
Ganador:	;Por qué?	
Pregunta 1.2 (3 puntos)	
	ié individuos tienen mayor probabilidad de ser seleccionados? Explica babilidad de selección.	la relación
Pregunta 1.3 (3 puntos)	
Comparación mejor individuo?	n: ¿Qué ventajas tiene la selección por torneo sobre simplemente elegir	siempre al

ACTIVIDAD 2: CRUCE PMX PARA PERMUTACIONES (8 puntos)

El PMX (Partially-Mapped Crossover) es ideal para problemas donde el orden importa y no se pueden repetir elementos.

Contexto: En nuestro problema de distribución, la representación permutacional ordena a los estudiantes: posiciones $[0-12] \rightarrow \text{Examen A}$, $[13-25] \rightarrow \text{Examen B}$, $[26-38] \rightarrow \text{Examen C}$.

Ejemplo de Cruce PMX

Padres (8 elementos para simplificar):

Padre 1:	1	2	3	4	5	6	7	8
Padre 2:	8	7	6	5	4	3	2	1

Puntos de cruce: Entre posiciones 3 y 6 (segmento resaltado en rojo)

Pregunta	2.1	(3	puntos))
----------	-----	----	---------	---

Paso 1: Identifica el map	peo del segmento intercambiado.
Segmento del Padre 1:	\longleftrightarrow Segmento del Padre 2:

Maneo	generado:	\leftrightarrow
mapco	gondiado.	\ /

Pregunta 2.2 (5 puntos)

Paso 2: Construye el Hijo 1 aplicando PMX.

a) Copia el segmento del Padre 2 al Hijo 1:

Hijo 1: _ _	- -
-----------------	-------

b) Completa las posiciones restantes usando el mapeo y el Padre 1:

Posición 0: Valor del Padre $1 = $	_, ¿está en el segmento?
Si está, usar mapeo:	, sino copiar directamente:

Posición 1: Valor del Padre 1 =	, ¿está en el segmento?
Si está, usar mapeo:	, sino copiar directamente:

c) Hijo 1 completo:

Hijo 1:	 	 	 	

ACTIVIDAD 3: ANÁLISIS COMPARATIVO (4 puntos)

Pregunta 3.1 (2 puntos)

Selección por Ruleta vs Torneo: ¿En que situación preferirías usar selección lugar de selección por ruleta?	por torneo en
Pregunta 3.2 (2 puntos)	
Aplicación práctica: Si tuvieras que resolver un problema del viajante de comer 20 ciudades, ¿qué representación cromosómica y qué operador de cruce usarías? Justific	,
Representación: Cruce:	a va respaesta.
Justificación:	

GLOSARIO

Algoritmo Genético (AG)

Técnica de optimización inspirada en la evolución natural que usa operadores como selección, cruce y mutación.

Cromosoma

Representación codificada de una solución al problema (equivale a un individuo).

Fitness Valor numérico que indica qué tan buena es una solución (aptitud).

Generación

Conjunto de individuos en un momento específico del algoritmo.

PMX (Partially-Mapped Crossover)

Operador de cruce específico para representaciones permutacionales que mantiene la validez de la permutación.

Población

Conjunto de todas las soluciones candidatas en una generación.

Presión Selectiva

Intensidad con la que se favorece a los individuos más aptos durante la selección.

Representación Permutacional

Codificación donde la solución es un ordenamiento de elementos sin repetición.

Selección por Torneo

Método que elige padres comparando pequeños grupos de individuos seleccionados al azar.

Selección por Ruleta

Método que asigna probabilidades de selección proporcionales al fitness de cada individuo.

¡Éxito en la actividad!

Recuerden: La evolución artificial requiere los mismos principios que la natural: selección y recombinación.