On Variational Bounds of Mutual Information

Ben Poole, Sherjil Ozair, Aäron van den Oord, Alexander A. Alemi, George Tucker

Presented by **Doruk Çetin**

Oct 29, 2019

Outline

- Why estimate Mutual Information (MI)?
- Review of variational bounds of MI
- Experimental analysis of lower bounds
- Discussion and future work

Unsupervised representation learning

- Automatically discovering useful low-dimensional features to summarize high-dimensional data
- Disentanglement: separating the distinct, informative factors of variations in the data

3D disentanglement

- Red
- Ferrari Testarossa
- Seen from right-side

Why estimate Mutual Information (MI)?

- InfoMax (Linsker, 1988; Bell & Sejnowski, 1995)
 - Maximize the MI between inputs and outputs of an encoder (possibly subject to some structural constraints)

$$\max_{g \in \mathcal{G}} I(X; g(X))$$

Multi-view formulation, lower-bound the original objective

$$I(g_1(X^{(1)}); g_2(X^{(2)})) < I(X; g_1(X^{(1)}), g_2(X^{(2)}))$$

by data processing inequality

Representation learning with Deep InfoMax

- Deep InfoMax (Hjelm et al., 2019)
 - Maximize MI between global and local features

$$\max_{g_1 \in \mathcal{G}_1, g_2 \in \mathcal{G}_2} I(g_1(X^{(1)}); g_2(X^{(2)}))$$

InfoMax

Deep InfoMax

Image taken from https://www.microsoft.com

Unsupervised State Representation Learning in Atari

- Spatiotemporal Deep Infomax (ST-DIM) (Anand et al., 2019)
 - Maximize MI across both spatial and temporal axes

Probe F1 scores averaged across categories (data collected by random agents)

GAME	MAJ-CLF	RANDOM-CNN	VAE	PIXEL-PRED	CPC	ST-DIM	SUPERVISED
MONTEZUMAREVENGE	0.08	0.68	0.69	0.74	0.75	0.78	0.87
MSPACMAN	0.10	0.48	0.38	0.74	0.65	0.70	0.87
PITFALL	0.07	0.34	0.56	0.44	0.46	0.60	0.83
PONG	0.10	0.17	0.09	0.70	0.71	0.81	0.87
PRIVATEEYE	0.23	0.70	0.71	0.83	0.81	0.91	0.97
QBERT	0.29	0.49	0.49	0.52	0.65	0.73	0.76
MEAN	0.14	0.44	0.39	0.58	0.60	0.68	0.83

Montezuma's Revenge

Recent work on MI estimation

We need scalable, tractable and differentiable objectives

$$\max_{g_1 \in \mathcal{G}_1, g_2 \in \mathcal{G}_2} I(g_1(X^{(1)}); g_2(X^{(2)}))$$

Combine variational lower bounds with deep learning

$$\max_{g_1 \in \mathcal{G}_1, g_2 \in \mathcal{G}_2} I_{EST}(g_1(X^{(1)}); g_2(X^{(2)}))$$

 Use "critic" function to distinguish samples from joint and product of marginals, if classifier can distinguish, then X and Y have a high MI

$$I(X;Y) = D_{KL}(p(x,y) \parallel p(x)p(y))$$

Review of existing estimators

Contribution: unify recent developments in a single framework

Classical (normalized) lower bound (Barber & Agakov, 2003)

$$I(X;Y) = \mathbb{E}_{p(x,y)} \left[\log \frac{p(x|y)}{p(x)} \right] = \mathbb{E}_{p(x,y)} \left[\log \frac{p(x|y)q(x|y)}{q(x|y)p(x)} \right]$$

$$= \mathbb{E}_{p(x,y)} \left[\log \frac{q(x|y)}{p(x)} \right] + \mathbb{E}_{p(y)} \left[D_{KL}(p(x|y) \parallel q(x|y)) \right] \ge \underline{\mathbb{E}_{p(x,y)}} \left[\log q(x|y) \right] + h(X) \triangleq I_{BA}$$

- Requires a tractable decoder q(x|y)
- Intractable because h(X) is often unknown
- We can compare the amount of information different variables (e.g. Y_1 and Y_2) carry about X

- Unnormalized lower bound
 - Choose a variational family that uses critic f(x, y) and substitute into I_{BA}

$$q(x|y) = \frac{p(x)}{Z(y)}e^{f(x,y)}, Z(y) = \mathbb{E}_{p(x)}\left[e^{f(x,y)}\right] \longrightarrow I_{BA}$$

• Unnormalized version of the classical bound, intractable because of $\log Z(y)$

$$\mathbb{E}_{p(x,y)}[f(x,y)] - \mathbb{E}_{p(y)}[\log Z(y)] \triangleq I_{UBA}$$

Critic functions revisited:

(x,y) drawn from joint $p(x,y) \implies f(x,y)$ is high

(x,y) drawn from product of marginals $p(x)p(y) \implies f(x,y)$ is low

- Tractable unnormalized lower bound
 - Upper bound the log partition to form a tractable bound

$$\log Z(y) \le \frac{Z(y)}{a(y)} + \log(a(y)) - 1, \forall Z(y), a(y) \longrightarrow I_{UBA}$$

• Holds for any a(y) > 0, maximize w.r.t. variational parameter a(y) and f to tighten the bound

$$I \ge I_{UBA} \ge \mathbb{E}_{p(x,y)}[f(x,y)] - \mathbb{E}_{p(y)} \left[\frac{\mathbb{E}_{p(x)}[e^{f(x,y)}]}{a(y)} + \log(a(y)) - 1 \right] \triangleq I_{TUBA}$$

Bound of Nguyen, Wainwright and Jordan (Nguyen et al., 2010)

$$a(y) \leftarrow e \implies \mathbb{E}_{p(x,y)}[f(x,y)] - e^{-1} \mathbb{E}_{p(y)}[Z(y)] \triangleq I_{NWJ}$$

Also known as f-GAN KL (Nowozin et al., 2016) and MINE-f (Belghazi et al., 2018)

- InfoNCE (multi-sample unnormalized bound) (Oord et al., 2018)
 - Idea is to use multiple samples to lower the variance of unnormalized bounds
 - 1. Get a random minibatch of size *K*

$$(x_1, y_1)$$
 (x_2, y_2) (x_3, y_3) ··· (x_K, y_K)

2. For each x_i predict which of the K samples $y_1, y_2, ..., y_K$ it was jointly drawn with

$$I(X;Y) \ge \mathbb{E}\left[\frac{1}{K} \sum_{i=1}^{K} \log \frac{e^{f(x_i,y_i)}}{\frac{1}{K} \sum_{j=1}^{K} e^{f(x_i,y_j)}}\right] \triangleq I_{NCE}$$

- InfoNCE loss the categorical crossentropy of classifying the positive example
- InfoNCE is upper bounded by $\log K$, becomes loose when $I(X;Y) > \log K$

Advanced Topics in Machine Learning, Fall 2019

Nonlinearly interpolated lower bounds

Contribution: a new continuum of multi-sample lower bounds

$$1 + \mathbb{E}_{p(x_{1:K})p(y|x_1)} \left[\log \frac{e^{f(x_1,y)}}{\alpha m(y;x_{1:K}) + (1-\alpha)q(y)} \right] - \mathbb{E}_{p(x_{1:K})p(y)} \left[\frac{e^{f(x_1,y)}}{\alpha m(y;x_{1:K}) + (1-\alpha)q(y)} \right] \triangleq \mathbf{I}_{\alpha}$$

• Upper bounded by $\log \frac{K}{\alpha}$

$$\alpha = 0$$

 I_{NWJ} Low bias High variance

 I_{α}

 I_{NCE} Low variance High bias

Flexibly tradeoff bias and variance

Review of existing estimators

A single framework of variational bounds

Tractability for optimization and estimation

Both optimization and estimation

Optimization but not estimation

Neither optimization, nor estimation

Correlated 20-dim Gaussian problem (Belghazi et al., 2018)

- Two toy problems
 - Sampling from (x, y)
 - 2. Sampling from $(x, (Wy)^3)$
 - For full rank linear transformations:

$$I(x,y) = I(x, (Wy)^3)$$

- Vary correlation coefficient ρ for different values of MI
- Can compute true MI: $I(x,y) = -\frac{d}{2}\log(1-\rho^2)$

- Two critic architectures
 - Both are fully connected networks with ReLU activations
 - 1. Separable critic (van den Oord et al., 2018)
 - Map x, y to embedding space and take inner product

$$f(x,y) = h(x)^T g(y)$$

 Requires 2N forward passes for a batch-size of N

- 2. Joint critic (Belghazi et al., 2018)
 - Concatenate x, y before feeding it into network

$$f(x,y) = h([x,y])$$

Requires *N*² forward passes for a batch-size of *N*

Efficiency-accuracy tradeoffs for critic architectures

Bias-variance tradeoff for optimal critics

Bias-variance tradeoffs for representation learning

dSprites dataset for disentanglement testing

- Color: white
- Shape: square, ellipse, heart
- Scale: 6 values linearly spaced in [0.5, 1]
- Orientation: 40 values in [0, 2 pi]
- Position X: 32 values in [0, 1]
- Position Y: 32 values in [0, 1]

Images taken from https://github.com/deepmind/dsprites-dataset and https://github.com/deepmind/dsprites-dataset and https://blog.adeel.io

- Decoder-free repr. learning on dSprites
 - Objective includes three terms:
 - 1. Mutual information maximization
 - 2. Statistical dependency minimization
 - 3. Smoothness regularization
 - Use I_{IS} lower bound for the estimation

- axes: x/y position
- color: average activation of the latent variable
- y-axis: avg. value of the latent variable
- x-axis: value of the ground truth factor

Discussion

- Unify recent developments in a single framework
 - Proof that I_{NCE} loss is indeed a lower bound on MI
- New interpolated bounds to tradeoff bias and variance
 - No low-variance, low-bias estimator for large MI and small batch size
- Systematic evaluation of estimators
 - Study is limited to infinite dataset and no overfitting setting, not realistic
- An open question
 - Is mutual information maximization more useful for representation learning than other unsupervised and self-supervised approaches?

Should we use MI maximization?

- Maximizing MI does not necessarily lead to useful representations
 - Invariances under arbitrary invertible transformations, need for regularization
- Yet, many promising results using InfoMax
 - Image and video classification, natural language understanding...

- On Mutual Information Maximization for Representation Learning (Tschannen et al., 2019)
 - "Success of these methods might be loosely attributed to the properties of MI"

Large MI is not predictive of downstream performance

- Encoders g_1 and g_2 are parameterized to be always invertible
- MI is constant for any choice of parameters: $I(g_1(X^{(1)});g_2(X^{(2)}))=I(X^{(1)};X^{(2)})$

Thought experiment:

- Pixel space
- PNG compressed bit stream

Estimators bias the encoders towards solutions suitable for the downstream task

Encoder architecture can be more important than the specific estimator

- All configurations are ensured to achieve same lower bound
- Despite matching bounds ConvNets have better results than MLPs

Connection to deep metric learning and triplet losses

Triplet example

$$I_{\text{NCE}} = \mathbb{E}\left[\frac{1}{K} \sum_{i=1}^{K} \log \frac{e^{f(x_i, y_i)}}{\frac{1}{K} \sum_{j=1}^{K} e^{f(x_i, y_j)}}\right]$$
$$= \log K - \mathbb{E}\left[\frac{1}{K} \sum_{i=1}^{K} \log \left(1 + \sum_{j \neq i} e^{f(x_i, y_j) - f(x_i, y_i)}\right)\right]$$

InfoNCE objective rewritten

$$L_{\text{K-pair-mc}}\left(\left\{(x_{i}, y_{i})\right\}_{i=1}^{K}, \phi\right) = \frac{1}{K} \sum_{i=1}^{K} \log \left(1 + \sum_{j \neq i} e^{\phi(x_{i})^{\top} \phi(y_{j}) - \phi(x_{i})^{\top} \phi(y_{i})}\right)$$

Multi-class k-pair loss

Conclusion

Maximizing MI is not always a good idea

Common estimators and architectures have strong inductive biases

Triplet-based metric learning may serve plausible explanations

References

- A. Anand, E. Racah, S. Ozair, Y. Bengio, M.-A. Côté, and R. D. Hjelm. Unsupervised State Representation Learning in Atari. June 19, 2019. arXiv: 1906.08226 [cs, stat].
- D. Barber and F. Agakov. The IM Algorithm: A Variational Approach to Information Maximization. In *Proceedings of the 16th International Conference on Neural Information Processing Systems* (Whistler, British Columbia, Canada), NIPS'03, pages 201–208, Cambridge, MA, USA. MIT Press, 2003.
- M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio, A. Courville, and R. D. Hjelm. MINE: Mutual Information Neural Estimation. Jan. 12, 2018. arXiv: 1801.04062 [cs, stat].
- A. J. Bell and T. J. Sejnowski. An Information-maximization Approach to Blind Separation and Blind Deconvolution. *Neural Comput.*, 7(6):1129–1159, Nov. 1995. ISSN: 0899-7667. DOI: 10.1162/neco.1995.7.6.1129.
- R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and Y. Bengio. Learning deep representations by mutual information estimation and maximization. Aug. 20, 2018. arXiv: 1808.06670 [cs, stat].
- R. Linsker. An Application of the Principle of Maximum Information Preservation to Linear Systems. In D. S. Touretzky, editor, *Advances in Neural Information Processing Systems 1*, pages 186–194. Morgan-Kaufmann, 1989.
- X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating Divergence Functionals and the Likelihood Ratio by Convex Risk Minimization. *IEEE Transactions on Information Theory*, 56(11):5847–5861, Nov. 2010. ISSN: 0018-9448, 1557-9654. DOI: 10.1109/TIT.2010.2068870.
- B. Poole, S. Ozair, A. van den Oord, A. A. Alemi, and G. Tucker. On Variational Bounds of Mutual Information. May 16, 2019. arXiv: 1905.06922 [cs, stat].
- M. Tschannen, J. Djolonga, P. K. Rubenstein, S. Gelly, and M. Lucic. On Mutual Information Maximization for Representation Learning. July 31, 2019. arXiv: 1907.13625 [cs, stat].

A. van den Oord, Y. Li, and O. Vinyals. Representation Learning with Contrastive Predictive Coding. July 10, 2018. arXiv: 1807.03748 [cs, stat].

Questions?

Image taken from https://www.linkedin.com

Summary of mutual information lower bounds

Characterization of mutual information lower bounds

	Lower Bound	$\mid L$	∇L	\perp BS	Var.	Norm.
$I_{ m BA}$	Barber & Agakov (2003)	Х	1	1	1	X
$I_{ m DV}$	Donsker & Varadhan (1983)	X	X	_	–	_
$I_{ m NWJ}$	Nguyen et al. (2010)	1	1	✓	X	✓
$I_{ m MINE}$	Belghazi et al. (2018)	X	1	✓	X	✓
$I_{ m NCE}$	van den Oord et al. (2018)	1	1	X	1	✓
$I_{ m JS}$	Appendix D	1	1	✓	×	✓
I_{lpha}	Eq. 11	1	1	X	1	✓

Table 1. Characterization of mutual information lower bounds. Estimators can have a tractable (\checkmark) or intractable (X) objective (L), tractable (\checkmark) or intractable (X) gradients (∇L), be dependent (X) or independent (\checkmark) of batch size (\bot BS), have high (X) or low (\checkmark) variance (Var.), and requires a normalized (X) vs unnormalized (\checkmark) critic (Norm.).

Summary of mutual information lower bounds

Parameters and objectives for mutual information estimators

Lower Bound	Parameters	Objective
$I_{ m BA}$	q(x y) tractable decoder	$\mathbb{E}_{p(x,y)} \left[\log q(x y) - \log p(x) \right]$
$I_{ m DV}$	f(x,y) critic	$\mathbb{E}_{p(x,y)} \left[\log f(x,y) \right] - \log \left(\mathbb{E}_{p(x)p(y)} \left[f(x,y) \right] \right)$
$I_{ m NWJ}$	f(x,y)	$\mathbb{E}_{p(x,y)}\left[\log f(x,y)\right] - \frac{1}{e}\mathbb{E}_{p(x)p(y)}\left[f(x,y)\right]$
$I_{ m MINE}$	f(x,y), EMA(log f)	I_{DV} for evaluation, $I_{\text{TUBA}}(f, \text{EMA}(\log f))$ for gradient
$I_{ m NCE}$	f(x,y)	$\mathbb{E}_{p^{K}(x,y)} \left[\frac{1}{K} \sum_{i=1}^{K} \log \frac{f(y_{i},x_{i})}{\frac{1}{K} \sum_{j=1}^{K} f(y_{i},x_{j})} \right]$
$I_{ m JS}$	f(x,y)	I_{NWJ} for evaluation, f -GAN JS for gradient
$I_{ m TUBA}$	f(x,y), a(y) > 0	$\mathbb{E}_{p(x,y)}\left[\log f(x,y)\right] - \mathbb{E}_{p(y)}\left[\frac{\mathbb{E}_{p(x)}[f(x,y)]}{a(y)} + \log(a(y)) - 1\right]$
$I_{ m TNCE}$	e(y x) tractable encocder	I_{NCE} with $f(x, y) = e(y x)$
I_{lpha}	$f(x,y), \alpha, q(y)$	$1 + \mathbb{E}_{p(x_{1:K},y)} \left[\log \frac{e^{f(x_1,y)}}{\alpha m(y;x_{1:K}) + (1-\alpha)q(y)} \right]$
		$-\mathbb{E}_{p(x_{1:K})p(y)} \left[\frac{e^{f(x_{1},y)}}{\alpha m(y;x_{1:K}) + (1-\alpha)q(y)} \right]$

Table 2. Parameters and objectives for mutual information estimators.

More on Deep InfoMax

- Complete DIM objective
 - Local MI max.

$$(\hat{\omega}, \hat{\psi})_L = \underset{\omega, \psi}{\operatorname{arg\,max}} \frac{1}{M^2} \sum_{i=1}^{M^2} \widehat{\mathcal{I}}_{\omega, \psi} \left(C_{\psi}^{(i)}(X); E_{\psi}(X) \right)$$

Global MI max.

$$(\hat{\omega}, \hat{\psi})_G = \underset{\omega, \psi}{\operatorname{arg\,max}} \widehat{\mathcal{I}}_{\omega} (X; E_{\psi}(X))$$

M x M features drawn from another image

Prior matching

$$(\hat{\omega}, \hat{\psi})_{P} = \operatorname*{arg\,min}_{\psi} \operatorname*{arg\,max} \widehat{\mathcal{D}}_{\phi} \left(\mathbb{V} \| \mathbb{U}_{\psi, P} \right) = \mathbb{E}_{\mathbb{V}} \left[\log D_{\phi}(y) \right] + \mathbb{E}_{\mathbb{P}} \left[\log \left(1 - D_{\phi} \left(E_{\psi}(x) \right) \right) \right]$$

■ MINE: Mutual Information Neural Estimation (Belghazi et al., 2018)

Produces estimates that are neither an upper or lower bound on MI

$$I \ge I_{UBA} \ge \mathbb{E}_{p(x,y)}[f(x,y)] - \mathbb{E}_{p(y)} \left| \frac{\mathbb{E}_{p(x)}[e^{f(x,y)}]}{a(y)} + \log(a(y)) - 1 \right| \triangleq I_{TUBA}$$

- Improved MINE gradient estimator
 - Sound justification for the heuristic optimization procedure through I_{TUBA}
 - Set a(y) to be the scalar exponential moving average (EMA) of $e^{f(x,y)}$ across minibatches