

Théorie des modèles

Exercices

Question 1. Soient \mathcal{M} une \mathcal{L} -structure, A un sous-ensemble de M et $a \in M$. On dit que a est algébrique sur A s'il existe une formule $\varphi(x,y_1,\ldots,y_n)$ et $a_1,\ldots,a_n\in A$ tels que $\mathcal{M}\models\varphi(a,a_1,\ldots,a_n)$ et l'ensemble $\{b\in M|\mathcal{M}\models\varphi(b,a_1,\ldots,a_n)\}$ est fini. On note acl $\mathcal{M}(A)$ l'ensemble des éléments de M algébriques sur A.

- (a) $A \subset \operatorname{acl}^{\mathscr{M}}(A)$;
- (b) si $a \in \operatorname{acl}^{\mathcal{M}}(A)$, alors $a \in \operatorname{acl}^{\mathcal{M}}(A_0)$ pour un certain $A_0 \subset A$ fini;
- (c) si $A \subset B$, alors $\operatorname{acl}^{\mathcal{M}}(A) \subset \operatorname{acl}^{\mathcal{M}}(B)$;
- (d) $\operatorname{acl}^{\mathcal{M}}(\operatorname{acl}^{\mathcal{M}}(A)) = \operatorname{acl}^{\mathcal{M}}(A)$.
- (e) Supposons que $A \neq \emptyset$. L'ensemble acl $^{\mathcal{M}}(A)$ est-il le domaine d'une sous-structure de \mathcal{M} ?
- (f) Si $\mathcal{M} \prec \mathcal{N}$, alors $\operatorname{acl}^{\mathcal{M}}(A) = \operatorname{acl}^{\mathcal{N}}(A)$.
- (g) Soit \mathcal{K} un corps algébriquement clos et $A \subset K$. Que vaut $\operatorname{acl}^{\mathcal{K}}(A)$?

Question 2. Soit \mathcal{M} une \mathcal{L} -structure et $A \subset M$. Soit $D \subset M^n$ définissable sur A. Alors $\sigma(D) = D$ pour tout $\sigma \in \operatorname{Aut}_A(\mathcal{M})$.

Question 3. Soit $\mathcal{L} = \{0, 1, +, \cdot, <\}$, $\mathcal{N} = (\mathbf{N}, 0, 1, +, \cdot, <)$ et $T = \operatorname{Th}(\mathcal{N})$. Alors il existe $\mathcal{M} \succ \mathcal{N}$ et $a \in M$ tels que $\mathbf{N} < a$ et a est divisible par n pour tout $n \in \mathbf{N}$.

Question 4. $\mathcal{M} \prec \mathcal{N}$ si et seulement si pour tout $\bar{a} \in M$, $\operatorname{tp}^{\mathcal{M}}(\bar{a}) = \operatorname{tp}^{\mathcal{N}}(\bar{a})$.

Question 5. Soit \mathcal{M} une \mathcal{L} -structure et $A \subset M$.

- (a) Soit $D \subset M^{n+1}$ définissable sur A. Alors la projection de D sur M^n est définissable sur A.
- (b) On dit d'une fonction $f:M^\ell\to M^k$ qu'elle est *définissable* sur A si son graphe est un sous-ensemble de $M^{\ell+k}$ définissable sur A.
 - (1) Soit \mathcal{K} un corps. Montrez que l'application det : $K^{2\times 2} \to K$ est définissable.
 - (2) Donnez d'autres exemples de fonctions définissables.

Question 6. Soit \mathcal{M} une \mathcal{L} -structure et posons $T=\operatorname{Th}(\mathcal{M})$. Soient c_1,\ldots,c_n des constantes qui ne sont pas dans \mathcal{L} . Soit T' une $\mathcal{L}\cup\{c_1,\cdots,c_n\}$ -théorie complète contenant T et notons $p(x_1,\ldots,x_n)$ l'ensemble de \mathcal{L} -formules $\{\varphi(x_1,\ldots,x_n)|\varphi(c_1,\ldots,c_n)\in T'\}$. Alors, il existe $\mathcal{N}\models T$ et $\bar{a}\in N$ tels que $\operatorname{tp}^{\mathcal{N}}(\bar{a})=p(x_1,\ldots,x_n)$.

Question 7. Soit $\mathscr{L}=\{+,-,0,\cdot q|q\in\mathbf{Q}\}$, où $\cdot q$ est un symbole de fonction unaire. Soit $T_{\mathbf{Q}}$ la \mathscr{L} -théorie des \mathbf{Q} -espaces vectoriels.

- (a) Donnez une axiomatisation de T_0 ;
- (b) montrez que, dans $T_{\mathbf{Q}}$, toute formule existentielle est équivalente à une formule sans quantificateurs:
- (c) en déduire que $T_{\mathbf{Q}}$ a l'élimination des quantificateurs;
- (d) montrez que **R**, vu comme **Q**-espace vectoriel, est l'union d'une chaîne élémentaire de **Q**-sous-espaces vectoriels propres.

Exercices

Théorie des modèles

Question 8. En admettant que ACF a l'élimination des quantificateurs, montrez que $(\mathbf{C}, +, -, \cdot, 0, 1)$ est l'union d'une chaîne propre de corps algébriquement clos.

Question 9. Soit $\mathcal{L} = \{E\}$, où E est un symbole de relation binaire.

- (a) Soit T_1 la théorie qui exprime la propriété suivante : E est une relation d'équivalence ayant, pour chaque $n \in \mathbb{N}^{>0}$, une unique classe d'équivalence contenant n éléments.
 - (1) Axiomatisez T_1 ;
 - (2) T_1 est-elle \aleph_0 -catégorique?
 - (3) montrez que $|S_1(T)| \geqslant \aleph_0$;
 - (4) Montrez que T_1 n'a pas l'élimination des quantificateurs;
 - (5) Soit $\mathcal{L}' = \mathcal{L} \cup \{c_n | n \in \mathbb{N}^{>0}\}$. Soit T'_1 la \mathcal{L}' -théorie contenant T exprimant le fait que c_n est en relation avec exactement n éléments, pour chaque $n \in \mathbb{N}$. Montrez que T'_1 a l'élimination des quantificateurs.
- (b) Soit T_2 la théorie qui exprime la propriété suivante : E est une relation d'équivalence ayant une infinite de classes d'équivalence, toutes infinies.
 - (1) T_2 est-elle \aleph_0 -catégorique?
 - (2) T a-t-elle l'élimination des quantificateurs?