FETAL ECG DETECTION METHOD FOR ABDOMINAL RECORDINGS

final project presentation for Biomedical Signal Processing

Zofia Mizgalewicz

SELECTED ARTICLE

IOP Publishing Physiological Measurement

doi:10.1088/0967-3334/28/4/004

Physiol. Meas. 28 (2007) 373-388

A robust fetal ECG detection method for abdominal recordings

Suzanna M M Martens¹, Chiara Rabotti¹, Massimo Mischi¹ and Rob J Sluijter²

E-mail: smm.martens@gmail.com

Received 29 November 2006, accepted for publication 8 February 2007 Published 7 March 2007 Online at stacks.iop.org/PM/28/373

¹ Department of Electrical Engineering, University of Technology Eindhoven, Eindhoven, The Netherlands

² Philips Research Laboratories, Eindhoven, The Netherlands

DATASET

- 25 recordings of abdominal ECG
- 4 channel ECG
- each 1 minute long
- sampling frequency of 1000Hz

Noninvasive Fetal ECG: The PhysioNet/Computing in Cardiology Challenge 2013

Ikaro Silva 🚯 , Joachim Behar 🚯 , Reza Sameni 🚯 , Tingting Zhu 🚯 , Gari D. Clifford 🚯 , George Moody 🚯

PIPELINE

01

DATA LOADING AND PREPROCESSING

02

QRS DETECTOR

03

MECG CANCELLATION METHOD

04

FECG FEATURE EXTRACTION

05

EVALUATION

06

RESULTS

Figure 1. Nomenclature of the electrocardiogram (ECG).

DATA PREPROCESSING

LOADING AND SIGNAL INTERPOLATION

BASELINE WANDERING REMOVAL

high pass FIR filter
cutoff 3Hz
1001 taps
sampling frequency 1000Hz

POWER-LINE INTERFERENC E CANCELLER

notch filter cutoff 50Hz fs 1000Hz

UPSAMPLING OF THE SIGNAL

from 1000 Hz to 2000 Hz

FILTERING

Baseline wander removal. Left plot shows part of one abdominal ECG channel before and after baseline wander removal with the filter. The right plot shows the amplitude (left) and phase (right) of the high-pass filter transfer function.

MISUAL INSPECTION

comparison of the original signal and signal after preprocessing

QRS DETECTOR

optimal combination of the channels is derived by performing a principal component analysis

ENHANCE THE QRS SIGNAL

minimal distance between R peaks:

- 0.6s for MECG (HR 100bpm)
- 0.34s for FECG (FHR 175bpm)

take a bunch of segments of the enhanced signal that contains a QRS complex and take the mean that will serve as a QRS template

CREATE A QRS
TEMPLATE

use cross-correlation
between the enhanced
signal and the QRS
template to identify
potential QRS
complexes

DETECT QRS
PEAKS

QRS detection for the MECG (left plot) and FECG (right plot). Plots show signals from 4 leads and the signal generated by the multi-channel QRS enhancement method (bottom signal). The detected QRS complexes are indicated by purple x.

MECG CANCELLER

FECG DETECTOR

averages FECG complexes synchronized on the fetal QRS complex returns FECG complex template and FHR trace

EVALUATION

RESULTS

Accuracy for patient 1: 56.72% Accuracy for patient 2: 50.77% Accuracy for patient 3: 82.81% Accuracy for patient 4: 95.45% Accuracy for patient 5: 100.00% Accuracy for patient 6: 49.21% Accuracy for patient 7: 56.35% Accuracy for patient 8: 97.66% Accuracy for patient 9: 54.47% Accuracy for patient 10: 56.91% Accuracy for patient 11: 58.73% Accuracy for patient 12: 84.78% Accuracy for patient 13: 99.21% Accuracy for patient 14: 80.31% Accuracy for patient 15: 75.37% Accuracy for patient 16: 49.12% Accuracy for patient 17: 96.97% Accuracy for patient 18: 50.00% Accuracy for patient 19: 94.49% Accuracy for patient 20: 95.45% Accuracy for patient 21: 66.91% Accuracy for patient 22: 60.28% Accuracy for patient 23: 98.43% Accuracy for patient 24: 99.19% Accuracy for patient 25: 98.40% Mean accuracy: 76.32%

