Harvard College

Math 21b: Linear Algebra and Differential Equations

FORMULA AND THEOREM REVIEW

Tommy MacWilliam, '13

tmacwilliam@college.harvard.edu May 5, 2010

Contents

Ta	able o	of Contents	4						
1	Linear Equations								
	1.1	Standard Representation of a Vector	5						
	1.2	Reduced Row Echelon Form	5						
	1.3	Elementary Row Operations	5						
	1.4	Rank of a Matrix	5						
	1.5	Dot Product of Vectors	5						
	1.6	The Product $A\vec{x}$	5						
	1.7	Algebraic Rules for $A\vec{x}$	5						
2	Line	Linear Transformations 6							
	2.1	Linear Transformations	6						
	2.2	Scaling Matrix	6						
	2.3	Orthogonal Projection onto a Line	6						
	2.4	Reflection Matrix	6						
	2.5	Rotation Matrix	6						
	2.6	Shear Matrix	6						
	2.7	Matrix Multiplication	7						
	2.8	Invertibility	7						
	2.9	Finding the Inverse	7						
	2.10	Properties of Invertible Matrices	7						
3	Subspaces of \mathbb{R}^n and Their Dimensions								
	3.1	Image of a Function	8						
	3.2	Span	8						
	3.3	Kernel	8						
	3.4	Subspaces of \mathbb{R}^n	8						
	3.5	Linear Independence	8						
	3.6	Dimension	9						
	3.7	Rank-Nullity Theorem	9						
	3.8	Coordinates	9						
	3.9	Linearity of Coordinates	9						
	3.10	Matrix of a Linear Transformation	9						
	3.11	Similar Matrices	9						
4	Linear Spaces 10								
	4.1	Linear Spaces	10						
	4.2	Finding a Basis of a Linear Space V	10						
	4.3	Isomorphisms	10						

5	Ort	hogonality and Least Squares	11				
	5.1	Orthongality and Length	11				
	5.2	Orthonormal Vectors	11				
	5.3	Orthogonal Projection onto a Subspace	11				
	5.4	Orthogonal Complement	11				
	5.5	Pythongorean Theorem	11				
	5.6	Cauchy-Schwarz Inequality	11				
	5.7	Angle Between Two Vectors	12				
	5.8	Gram-Schmidt Process	12				
	5.9	QR Decomposition	12				
	5.10	Orthongonal Transformation	12				
	5.11	Transpose	12				
	5.12	Symmetric and Skew Symmetric Matrices	13				
		Matrix of an Orthogonal Projection	13				
		Least-Squares Solution	13				
	5.15	Inner Product Spaces	13				
		Norm and Orthongonality	13				
		Trace of a Matrix	13				
		Orthogonal Projection of an Inner Product Space	14				
	5.19	Fourier Analysis	14				
6	Determinants 14						
	6.1	Sarrus's Rule	14				
	6.2	Patterns	14				
	6.3	Determinants and Gauss-Jordan Elimination	15				
	6.4	Laplace Expansion	15				
	6.5	Properties of the Determinant	15				
7	Eigenvalues and Eigenvectors 15						
•	7.1	Eigenvalues	15				
	7.2	Characteristic Polynomial	15				
	7.3	Algebraic Multiplicity	16				
	7.4	Eigenvalues, Determinant, and Trace	16				
	7.5	Eigenspace	16				
	7.6	Eigenbasis	16				
	7.7	Geometric Multiplicty	16				
	7.8	Diagonalization	16				
	7.9	Powers of a Diagonalizable Matrix	16				
		Stable Equilibrium	17				

9	${ m Lin}\epsilon$	ear Differential Equations	17
	9.1	Exponential Growth and Decay	17
	9.2	Linear Dynamical Systems	17
	9.3	Continuous Dynamical Systems with Real Eigenvalues	17
	9.4	Continuous Dynamical Systems with Complex Eigenvalues	17
	9.5	Strategy for Solving Linear Differential Equations	17
	9.6	Eigenfunctions	18
	9.7	Characteristic Polynomial of a Linear Differential Operator	18
	9.8	Kernel of a Linear Differential Operator	18
	9.9	Characteristic Polynomial with Complex Solution	18
	9.10	First-Order Linear Differential Equations	18
	9.11	Strategy for Solving Linear Differential Equations	18
	9.12	Linearization of a Nonlinear System	19
	9.13	The Heat Equation	19
		The Wave Equation	19

1 Linear Equations

1.1 Standard Representation of a Vector

$$\vec{v} = \left[\begin{array}{c} x \\ y \end{array} \right]$$

1.2 Reduced Row Echelon Form

- If a column contains a leading 1, then all ther other entires in that column are 0.
- If a row contains a leading 1, then each row above it contains a leading 1 further to the left.

1.3 Elementary Row Operations

- Divide a row by a nonzero scalar.
- Subtract a multiple of a row from another row.
- Swap two rows.

1.4 Rank of a Matrix

The rank of a matrix A is the number of leading 1's in rref(A).

1.5 Dot Product of Vectors

$$\vec{v} \cdot \vec{w} = v_1 w_1 + \dots + v_n w_n$$

1.6 The Product $A\vec{x}$

$$A\vec{x} = \begin{bmatrix} \cdots & \vec{w}_1 & \cdots \\ & \vdots & \\ \cdots & \vec{w}_n & \cdots \end{bmatrix} \vec{x} = \begin{bmatrix} \vec{w}_1 \cdot \vec{x} \\ \vdots \\ \vec{w}_n \cdot \vec{x} \end{bmatrix}$$

5

1.7 Algebraic Rules for $A\vec{x}$

- $\bullet \ A(\vec{x}\vec{y}) = A\vec{x} + A\vec{y}$
- $A(k\vec{x}) = k(A\vec{x})$

2 Linear Transformations

2.1 Linear Transformations

A function T from \mathbb{R}^m to \mathbb{R}^n is called a linear transformation if there exists a matrix A such that

$$T(\vec{x}) = A\vec{x}$$

A transformation is called linear if and only if

- $T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$
- $T(k\vec{v}) = kT(\vec{v})$

2.2 Scaling Matrix

A scaling matrix by k has the form:

$$\left[\begin{array}{cc} k & 0 \\ 0 & k \end{array}\right]$$

2.3 Orthogonal Projection onto a Line

$$\operatorname{proj}_L(\vec{x}) = \left(\frac{\vec{x} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}$$

where \vec{w} is a vector parallel to the line L.

2.4 Reflection Matrix

A reflection matrix has the form:

$$\left[\begin{array}{cc} a & b \\ b & -a \end{array}\right]$$

2.5 Rotation Matrix

A rotation matrix has the form:

$$\left[\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right]$$

2.6 Shear Matrix

A horizontal shear matrix has the form:

$$\left[\begin{array}{cc} 1 & k \\ 0 & 1 \end{array}\right]$$

and a vertical shear matrix has the form:

$$\left[\begin{array}{cc} 1 & 0 \\ k & 1 \end{array}\right]$$

2.7 Matrix Multiplication

The product of matrices BA is defined as the matrix of the linear transformation $T(\vec{x}) = B(A\vec{x}) = (BA)\vec{x}$.

- (AB)C = A(BC)
- A(B+C) = AB + AC
- (kA)B = A(kB) = k(AB)

2.8 Invertibility

An $n \times n$ matrix A is invertible if and only if:

- 1. $rref(A) = I_n$
- 2. rank(A) = n

or, more simply, if and only if $det(A) \neq 0$.

2.9 Finding the Inverse

- 1. Form the $n \times (2n)$ matrix $[A|I_n]$
- 2. Compute $rref[A|I_n]$
- 3. If $rref[A|I_n]$ is of the form $[I_n|B]$ then $A^{-1}=B$
- 4. If $rref[A|I_n]$ is of another form, then A is not invertible

2.10 Properties of Invertible Matrices

If an $n \times n$ matrix A is invertible:

- The linear system $A\vec{x} = \vec{b}$ has a unique solution \vec{x} for all \vec{b} in \mathbb{R}^n
- $rref(A) = I_n$
- rank(A) = n
- $im(A) = \mathbb{R}^n$
- $ker(A) = \vec{0}$
- The column vectors of A are linearly independent and form a basis of \mathbb{R}^n

3 Subspaces of \mathbb{R}^n and Their Dimensions

3.1 Image of a Function

$$image(f) = \{f(x) : x \text{ in } X\} = \{b \text{ in } Y : b = f(x), \text{ for some } x \text{ in } X\}$$

For a linear transformation T:

- The zero vector is in the image of T
- If \vec{v}_1 and \vec{v}_2 are in the image of T, then so is $\vec{v}_1 + \vec{v}_2$
- If \vec{v} is in the image of T, then so is $k\vec{v}$

3.2 Span

$$span(\vec{v}_1, \dots, \vec{v}_n) = \{c_1\vec{v}_1 + \dots + c_m\vec{v}_m : c_1 \dots c_n \text{ in } \mathbb{R}\}\$$

3.3 Kernel

The kernel of a linear transformation T is the solution set of the linear system:

$$A\vec{x} = \vec{0}$$

- The zero vector is in the kernel of T
- If \vec{v}_1 and \vec{v}_2 are in the kerne; of T, then so is $\vec{v}_1 + \vec{v}_2$
- If \vec{v} is in the kernel of T, then so is $k\vec{v}$

3.4 Subspaces of \mathbb{R}^n

A subset W of the vector space \mathbb{R}^n is a linear subspace if and only if:

- 1. W contains the zero vector
- 2. W is closed under addition
- 3. W is closed under scalar multiplication

The image and kernel of a linear transformation are linear subspaces.

3.5 Linear Independence

- 1. If a vector \vec{v}_i in $\vec{v}_1, \dots, \vec{v}_n$ can be expressed as a linear combination of the vectors $\vec{v}_1, \dots, \vec{v}_{i-1}$, then \vec{v}_i is redundant.
- 2. The vectors $\vec{v}_1, \dots, \vec{v}_n$ are linearly independent if no vector is redundant.
- 3. The vectors $\vec{v}_1, \dots, \vec{v}_n$ form a basis of a subspace V if they span V and are linearly independent

3.6 Dimension

The number of vectors in a subspace V is the dimension of V.

3.7 Rank-Nullity Theorem

For an $n \times m$ matrix A:

$$dim(kerA) + dim(imA) = m$$

3.8 Coordinates

For a basis $\mathfrak{B} = (\vec{v}_1, \dots, \vec{v}_n)$ of a subspace V, any vector \vec{x} can be written as:

$$\vec{x} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n$$

 c_1, \dots, c_n are called the \mathfrak{B} -coordinates of \vec{x} , with

$$[\vec{x}]_{\mathfrak{B}} = \left[\begin{array}{c} c_1 \\ \vdots \\ c_n \end{array} \right]$$

$$\vec{x} = S[\vec{x}]_{\mathfrak{B}}$$
 and $[\vec{x}]_{\mathfrak{B}} = S^{-1}\vec{x}$

where $S = [v_1 \cdots v_n]$

3.9 Linearity of Coordinates

- $[\vec{x} + \vec{y}]_{\mathfrak{B}} = [\vec{x}]_{\mathfrak{B}} + [\vec{y}]_{\mathfrak{B}}$
- $[k\vec{x}]_{\mathfrak{B}} = k[\vec{x}]_{\mathfrak{B}}$

3.10 Matrix of a Linear Transformation

The matrix B that transforms $[\vec{x}]_{\mathfrak{B}}$ into $[T(\vec{x})]_{\mathfrak{B}}$ is called the \mathfrak{B} -matrix of T:

$$[T(\vec{x})]_{\mathfrak{B}} = B[\vec{x}]_{\mathfrak{B}}, \quad \text{where } B = [[T(\vec{v}_1)]_{\mathfrak{B}} \cdots [T(\vec{v}_n)]_{\mathfrak{B}}]$$

3.11 Similar Matrices

Two matrices A and B are similar if and only if:

$$AS = SB$$
 or $B = S^{-1}AS$

4 Linear Spaces

4.1 Linear Spaces

A linear space V is a set with rules for addition and scalar multiplication that satisfies the following properties:

- 1. (f+g) + h = f + (g+h)
- 2. f + g = g + f
- 3. There exists a neutral element n in V such that f + n = f
- 4. For each f in V there exists a g in V such that f + g = 0
- $5. \ k(f+g) = kf + kg$
- $6. \ (c+k)f = cf + kf$
- 7. c(kf) = (ck)f
- 8. 1f = f

4.2 Finding a Basis of a Linear Space V

- 1. Find a typical element w of V in terms of arbitrary constants.
- 2. Express w as a linear combination of elements in V.
- 3. If these elements are linearly independent, they will for a basis of V.

4.3 Isomorphisms

- ullet A linear transformation T is an isomorphism of T is invertible.
- A linear transformation T from V to W is an isomorphism if any only if ker(T) = 0 and im(T) = W.
- Coordinate changes are isomorphisms.
- If V is isomorphic to W, then dim(V) = dim(W).

5 Orthogonality and Least Squares

5.1 Orthongality and Length

- Two vectors \vec{c} and \vec{w} are orthogonal if $\vec{v} \cdot \vec{w} = 0$.
- The length of a vector \vec{v} is $||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}}$.
- A vector \vec{u} is a unit vector if its length is 1.

5.2 Orthonormal Vectors

The vectors \vec{u}_1, \dots, u_n are orthonormal if they are unit vectors orthogonal to each other.

$$\vec{u}_i \cdot \vec{u}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

5.3 Orthogonal Projection onto a Subspace

If V is a subspace with an orthonormal basis $\vec{u}_1, \dots, \vec{u}_n$:

$$\operatorname{proj}_{V}(\vec{x}) = (\vec{u}_{1} \cdot \vec{x})\vec{u}_{1} + \dots + (\vec{u}_{n} \cdot \vec{x})\vec{u}_{n}$$

5.4 Orthogonal Complement

The orthogonal complement V^{\perp} of a subspace V is the set of vectors \vec{x} orthogonal to all vectors in V:

$$V^{\perp} = \{ \vec{x} \text{ in } \mathbb{R}^n : \vec{v} \cdot \vec{x} = 0, \text{ for all } \vec{v} \text{ in } V \}$$

- V^{\perp} is a subspace of V
- $\bullet \ V \cap V^\perp = \vec{0}$
- $\bullet \ dim(V) + dim(V^{\perp}) = n$
- $\bullet \ (V^\perp)^\perp = V$

5.5 Pythongorean Theorem

$$||\vec{x} + \vec{y}||^2 = ||\vec{x}||^2 + ||\vec{y}||^2$$

5.6 Cauchy-Schwarz Inequality

$$||\vec{x} \cdot \vec{y}|| \le ||\vec{x}||||\vec{y}||$$

5.7 Angle Between Two Vectors

$$\theta = \arccos \frac{\vec{x} \cdot \vec{y}}{||\vec{x}||||\vec{y}||}$$

5.8 Gram-Schmidt Process

For a basis $\vec{v}_1, \dots, \vec{v}_n$ of a subspace V:

$$\vec{u}_1 = \frac{1}{||\vec{v}_1||} \vec{v}_1, \cdots, \vec{u}_n = \frac{1}{||\vec{v}_n^{\perp}||}$$

where

$$\vec{v}_i^{\perp} = \vec{v}_i - (\vec{u}_1 \cdot v_i)\vec{u}_1 - \dots - (\vec{u}_{i-1} \cdot v_i)\vec{v}_{i-1}$$

5.9 QR Decomposition

For an $n \times m$ matrix M, M = QR, where Q is an $n \times m$ matrix whose columns $\vec{u}_1, \dots, \vec{u}_n$ are orthonormal and R has entries satisfying:

$$r_1 1 = ||\vec{v}_1||, \quad r_{jj} = ||\vec{v}_j^{\perp}||, \quad r_{ij} = \vec{u}_i \cdot \vec{v}_j \text{ for } i < j$$

5.10 Orthongonal Transformation

A linear transformation T is considered orthogonal if it preserves the length of vectors, such that

$$||T(\vec{x})|| = ||\vec{x}||$$

- T is orthogonal if the vectors $T(\vec{e}_1), \dots, T(\vec{e}_n)$ form an orthonormal basis of \mathbb{R}^n .
- The matrix A is orthogonal if $A^T A = I_n$.
- The matrix A is orthogonal if $A^{-1} = A^{T}$.
- A matrix A is orthogonal if its columns form an orthonormal basis of \mathbb{R}^n .
- The product AB of two orthogonal matrices A and B is orthogonal.
- \bullet The inverse A^{-1} of an orthogonal matrix A is orthogonal.

5.11 Transpose

The transpose A^T of an $m \times n$ matrix A is the $n \times m$ matrix whose ijth entry is the jith entry of A.

- $\bullet \ (AB)^T = B^T A^T$
- $(A^T)^{-1} = (A^{-1})^T$
- $rank(A) = rank(A^T)$.

5.12 Symmetric and Skew Symmetric Matrices

- An $n \times n$ matrix A is symmetric if $A^T = A$.
- An $n \times n$ matrix A is skew-symmetric if $A^T = -A$.

5.13 Matrix of an Orthogonal Projection

The orthonormal projection onto a subspace V with an orthonormal basis $\vec{u}_1, \dots, \vec{u}_n$ is

$$QQ^T$$
, where $Q = [\vec{u}_1 \cdots \vec{u}_n]$

or equivalently,

$$A(A^T A)^{-1} A^T$$
 where $A = [\vec{v}_1 \cdots \vec{v}_n]$

5.14 Least-Squares Solution

The unique least-squares solution of a linear system $A\vec{x} = \vec{b}$ where $ker(A) = \vec{0}$ is

$$\vec{x}^* = (A^T A)^{-1} A^T \vec{b}$$

5.15 Inner Product Spaces

The inner product of a linear space V, denoted $\langle f, g \rangle$, has the following properties:

- $\bullet \ \langle f,g\rangle = \langle g,f\rangle$
- $\langle f + h, g \rangle = \langle f, g \rangle + \langle h, g \rangle$
- $\bullet \ \langle cf,g\rangle = c\langle f,g\rangle$
- $\langle f, f \rangle > 0$

5.16 Norm and Orthonognality

The norm of an element f of an inner product space is

$$||f|| = \sqrt{\langle f, f \rangle}$$

Two elements f and g of an inner product space are orthonoral if

$$\langle f, g \rangle = 0$$

5.17 Trace of a Matrix

The trace tr(A) of a matrix A is the sum of its diagonal entries.

5.18 Orthogonal Projection of an Inner Product Space

If g_1, \dots, g_n is an orthonormal basis of a subspace W of an inner product space V:

$$\operatorname{proj}_W f = \langle g_1, f \rangle g_1 + \dots + \langle g_n, f \rangle g_n$$

5.19 Fourier Analysis

$$f_n(t) = a_0 \frac{1}{\sqrt{2}} + b_1 \sin(t) + c_1 \cos(t) + \dots + b_n \sin(nt) + c_n \cos(nt)$$

where

$$a_0 = \langle f, \frac{1}{\sqrt{2}} \rangle = \frac{1}{\pi \sqrt{2}} \int_{-\pi}^{\pi} f(t) dt$$

$$b_k = \langle f, \sin(kt) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(kt) dt$$

$$c_k = \langle f, \cos(kt) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(kt) dt$$

6 Determinants

6.1 Sarrus's Rule

For an $n \times n$ matrix A, write the first n-1 columns to the right of A, then multiply along the diagonal to get 2n products. Subtract the first n products, then add the second n products to get the determinant.

6.2 Patterns

- A pattern of an $n \times n$ matrix A is a way to choose n entries of A such that each entry is in a unique row and column.
- The product of a pattern is designated P.
- Two entries in a pattern are an inversion if one is located above and to the right of the other.
- The signature of a pattern is defined as sgn P = (-1) (inversions in P)

$$det(A) = \sum (sgn \ P)(prod \ P)$$

6.3 Determinants and Gauss-Jordan Elimination

If B is an $n \times n$ matrix obtained from applying an elementary row operation on an $n \times n$ matrix A:

- If B is obtained by row division: $det(B) = \frac{1}{k} det(A)$
- If B is obtained by row swap: det(B) = -det(A)
- If B is obtained by row addition: det(B) = det(A)

6.4 Laplace Expansion

Expansion down the jth column:

$$det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij})$$

Expansion along the *i*th row:

$$det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij})$$

6.5 Properties of the Determinant

- $det(A^T) = det(A)$
- det(AB) = det(A)det(B)
- If A and B are similar, then det(A) = det(B)
- $det(A^{-1}) = \frac{1}{det(A)} = det(A)^{-1}$

7 Eigenvalues and Eigenvectors

7.1 Eigenvalues

 λ is an eigenvalues of an $n \times n$ matrix A if and only if

$$det(A - \lambda I_n) = 0$$

7.2 Characteristic Polynomial

$$det(A - \lambda I_n) = (-1)^n \lambda^n + (-1)^{n-1} tr(A) \lambda^{n-1} + \dots + det(A)$$

7.3 Algebraic Multiplicity

An eigenvalue λ has algebraic multiplicity k if it is a root of multiplicity k of the characteristic polynomial.

7.4 Eigenvalues, Determinant, and Trace

For an $n \times n$ matrix A

$$det(A) = \lambda_1 \cdots \lambda_n = \prod_{k=1}^n \lambda_k$$

$$tr(A) = \lambda_1 + \dots + \lambda_n = \sum_{k=1}^n \lambda_k$$

7.5 Eigenspace

$$E_{\lambda} = ker(A - \lambda I_n) = \{ \vec{v} \text{ in } \mathbb{R}^n : A\vec{v} = \lambda \vec{v} \}$$

7.6 Eigenbasis

An eigenbasis for an $n \times n$ matrix A consists of the eigenvectors of A and forms a basis for \mathbb{R}^n .

7.7 Geometric Multiplicty

The dimension of the eignspace E_{λ} is the geometric multiplicity of the eigenvalue λ .

7.8 Diagonalization

- 1. Find the eigenvalues and corresponding eigenvectors of the matrix A.
- 2. Let S be the eigenbasis for A and D be a matrix with the eigenvalues of A along the diagonal.
- 3. $D = S^{-1}AS$ and $A = SDS^{-1}$

7.9 Powers of a Diagonalizable Matrix

If
$$A = SDS^{-1}$$
, then

$$A^t = SD^t S^{-1}$$

7.10 Stable Equilibrium

 $\vec{0}$ is an asymptotically stable equilibrium for the system $\vec{x}(t+1) = A\vec{x}(t)$ if

$$\lim_{t \to \infty} \vec{x}(t) = \lim_{t \to \infty} A^t = \vec{0}$$

9 Linear Differential Equations

9.1 Exponential Growth and Decay

$$\frac{dx}{dt} = kx, \quad x(t) = e^{kt}x_0$$

9.2 Linear Dynamical Systems

- Discrete model: $\vec{x}(t+1) = B\vec{x}(t)$
- Continuous model: $\frac{d\vec{x}}{dt} = A\vec{x}$

9.3 Continuous Dynamical Systems with Real Eigenvalues

$$\frac{d\vec{x}}{dt} = A\vec{x}, \quad \vec{x}(t) = c_1 e^{\lambda_1 t} \vec{v}_1 + \dots + c_n e^{\lambda_n t} \vec{v}_n$$

where $\vec{v}_1, \cdots \vec{v}_n$ forms a real eigenbasis of A with eignvalues $\lambda_1, \cdots, \lambda_n$

9.4 Continuous Dynamical Systems with Complex Eigenvalues

$$\frac{d\vec{x}}{dt} = A\vec{x}, \quad \vec{x}(t) = e^{pt} S \begin{bmatrix} \cos(qt) & -\sin(qt) \\ \sin(qt) & \cos(qt) \end{bmatrix} S^{-1} \vec{x}_0$$

17

where $p \pm q$ are eigenvalues with eigenvectors $\vec{v} \pm \vec{w}$ and $S = [\vec{w}\vec{v}]$.

9.5 Strategy for Solving Linear Differential Equations

To solve an nth order linear differential equation with the form T(f) = g:

- 1. Find a basis f_1, \dots, f_n of ker(T).
- 2. Find a particular solution f_p .
- 3. The solutions f are in the form $f = c_1 f_1 + \cdots + c_n f_n + f_p$.

9.6 Eigenfunctions

A smooth function F is an eigenfunction of T if

$$T(f) = \lambda f$$

9.7 Characteristic Polynomial of a Linear Differential Operator

For $T(f) = f^{(n)} + a_{n-1}f^{(n-1)} + \cdots + a_1f + a_0f$, the characteristic polynomial is defined as:

$$p_T(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$

If $e^{\lambda t}$ is an eigenfunction of T with eigenvalue $p_T(\lambda)$:

$$T(e^{\lambda t}) = p_T(\lambda)e^{\lambda t}$$

9.8 Kernel of a Linear Differential Operator

If T is a linear differential operator with characteristic polynomial $p_T(\lambda)$ with roots $\lambda_1, \dots, \lambda_n$, then the kernel of T is formed by

$$e^{\lambda_1 t}, e^{\lambda_2 t}, \cdots, e^{\lambda_n t}$$

9.9 Characteristic Polynomial with Complex Solution

If the zeros of $p_T(\lambda)$ are $p \pm q$, then the solutions to its differential equation are of the form

$$f(t) = e^{pt}(c_1 \cos(qt) + c_2 \sin(qt))$$

9.10 First-Order Linear Differential Equations

A differential equation of the form f'(t) - af(t) = g(t) has a solution of the form

$$f(t) = e^{at} \int e^{-at} g(t) \ dt$$

9.11 Strategy for Solving Linear Differential Equations

To solve the *n*th order linear differential equation T(f) = g:

- 1. Find n linearly independent solutions of T(f) = 0.
 - Write the characteristic polynomial $p_T(\lambda)$ of T by replacing $f^{(k)}$ with λ^k
 - Find the solutions $\lambda_1, \dots, \lambda_n$ of the equation $p_T(\lambda) = 0$.
 - If λ is a solution of $p_T(\lambda) = 0$, then $e^{\lambda t}$ is a solution of T(f) = 0.

- If λ is a solution of $p_t(\lambda) = 0$ with multiplicity m, then $e^{\lambda t}$, $te^{\lambda t}$, $t^2e^{\lambda t}$, \cdots , $t^{m-1}e^{\lambda t}$ are the solutions of T(f) = 0.
- If $p \pm q$ are complex solutions of $p_T(\lambda) = 0$, then $e^{pt} \cos(qt)$ and $e^{pt} \sin(qt)$ are real solutions of T(f) = 0.
- 2. If T(f) is inhomogenous, find one particular solution f_p of the equation T(f) = g.
 - If g is of the form $g(t) = A\cos(\omega t) + B\sin(\omega t)$, $g(t) = A\cos(\omega t)$, or $g(t) = A\sin(\omega t)$, look for a particular solution of the form $f_p(t) = P\cos(\omega t) + Q\sin(\omega t)$.
 - If g is of the form $g(t) = a_0 + a_1 t + \cdots + a_n t^n$, look for a particular solution of the form $f_p(t) = c_0 + c_1 t + \cdots + c_n t^n$
 - If g is constant, look for a particular solution of the form $f_p(t) = c$.
 - If g is of the form g(t) = f'(t) af(t), use the formula $f(t) = e^{at} \int e^{-at} g(t) dt$.
- 3. The solutions of T(f) = g are of the form

$$f(t) = c_1 f_1(t) + c_2 f_2(t) + \dots + c_n f_n(t) + f_p(t)$$

where f_1, \dots, f_n are the solutions from Step 1 and f_p is the solution from Step 2.

9.12 Linearization of a Nonlinear System

If (a, b) is an equilibrium point of the system $\begin{bmatrix} f(x, y) \\ g(x, y) \end{bmatrix}$, such that f(a, b) = 0 and g(a, b) = 0, then the system is approximated near (a, b) by the Jacobian matrix:

$$\begin{bmatrix} \frac{du}{dt} \\ \frac{dv}{dt} \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x}(a,b) & \frac{\partial f}{\partial y}(a,b) \\ \frac{\partial g}{\partial x}(a,b) & \frac{\partial g}{\partial y}(a,b) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

9.13 The Heat Equation

$$f_t(x,t) = \mu f_{xx}(x,t)$$

has solutions of the form

$$f(x,t) = \sum_{n=1}^{\infty} b_n \sin(nx) e^{-n^2 \mu t}$$
 where $b_n = \frac{2}{\pi} \int_0^{\pi} f(x,0) \sin(nx) dx$

9.14 The Wave Equation

$$f_{tt}(x,t) = c^2 f_{xx}(x,t)$$

has solutions of the form

$$f(x,t) = \sum_{n=1}^{\infty} a_n \sin(nx) \cos(nct) + \frac{b_n}{nc} \sin(nx) \sin(nct)$$

where $a_n = \frac{2}{\pi} \int_0^{\pi} f(x,0) \sin(nx) \ dx$ and $b_n = \frac{2}{\pi} \int_0^{\pi} f_t(x,0) \sin(nx) \ dx$.