

S1 TITAN/TRACER 51

User Manual

FCC ID: 2AKJ9HMP001

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

In order to comply with FCC/ISED/MIC RF Exposure requirements, this device must be installed to provide at least 20 cm separation from the human body at all times.

Table of Contents

1. In	nstrument Description and Care	5
1.1.	Instrument Components	6
1.2.	TRACER 5 Collimators and Filters	8
1.3.	General Care and Maintenance	12
1.4.	Changing Windows	12
1.5.	Power Sources	
1.6.	Contacting Bruker	16
2. Ra	adiation Safety	17
2.1.	Radiation Profile – S1 TITAN	17
2.2.	Radiation Profile – TRACER 5 ⁱ	20
2.3.	Precautions	26
2.4.	Safety Features	28
3. St	tarting Up	29
4. AF	PPLICATION Button	33
5. M	1ETHOD Button	34
6. SE	ETTINGS Button	35
7. SE	ETTINGS Button – Spectrometer Mode	37
	ISPLAY Button	
8.1.	Display Settings	40
8.2.	Element Display Order	
8.3.	Grade ID Settings and More	
9. U1	tilities Button	43
9.1.	Back up Data	43
9.2.	Remote Control	
10.	Edit Info Button	46
11.	Results	48
11.1.	. Spectrum	50
11.2.	·	
12.	Quality Check	55
Append	dix A Additional TRACER 5 ⁱ Radiation Profile Test Results	56

This page is intentionally left blank.

030.0112.01.0 4 of 58

1. Instrument Description and Care

Introduction

User documentation for the S1 TITAN and TRACER 5ⁱ analyzers is in the form of a suite of Manuals, each with its own specific purpose. This document, the S1 TITAN and TRACER 5ⁱ User Manual, describes –

- Instruments.
- Safety precautions.
- Safety features.
- Basic use.

Complete kit

An instrument comes with the following -

- Software and calibrations.
- Check samples appropriate to the specific calibrations.
- A charger, power cord, and two batteries.
- A USB/CD loaded with Bruker Toolbox, all manuals, demonstration software for S1 DATA TOOLS, and utilities.
- Radiation safety video.
- Four extra windows.
- Screwdriver or Hex driver and two spare nose plate screws.
- USB flash drive.
- Filters and collimators for TRACER 5¹.
- Filter making tools for TRACER 5ⁱ.
- Pelican case.

X-ray use

The S1 TITAN and TRACER 5ⁱ are fully field portable analyzers based on energy dispersive X-ray fluorescence (EDXRF) technology and use an X-ray tube as their excitation source. When energized, the instruments generate low-energy X-rays.

Calibration options

The instrument is factory calibrated, based on customer-ordered configuration. Calibrations are available for various applications, such as:

- Alloy analysis.
- Mining analysis.
- Restriction of Hazardous Substances (RoHS) chemical content.
- Lead and other heavy metals in toys and consumer products.
- Soil contamination analysis.

Registration and licensing

For information on how to register and/or license your analyzer, See *Registration and Licensing FAQ*, Bruker document 030.0050.

030.0112.01.0 5 of 58

1.1. <u>Instrument Components</u>

S1 TITAN

TRACER 5ⁱ

030.0112.01.0 6 of 58

Descriptions

The following table, in alphabetical order, describes each component:

Component	Description
Armed indicator	Indicates that the instrument is ready to take a measurement.
Auxiliary trigger	Allows dual hand operation as required in certain countries.
Battery	Provides power to the instrument.
Battery door lock	Keeps the battery secure.
Collimator hatch	Accesses the collimator/filter assembly.
(TRACER 5 ⁱ only)	
Examination window	Source location of X-rays.
Hose fitting	Provides an attachment location for a vacuum or Helium flush hose.
(TRACER 5 ⁱ only)	
Ports	Provide connections for USB, remote, USB flash drive, and power.
Power switch	Powers the instrument on and off.
Proximity sensor	Prevents the instrument from activating without a sample in place.
Rail (TRACER 5 ⁱ only)	Allows accessories to be easily attached.
Touch screen	Controls the instrument through a pressure sensitive user interface.
	Using a stylus is helpful.
Trigger	Initiates a measurement.
X-ray warning light	Warns when X-ray is activated.

TRACER 5ⁱ windows

Both the S1 TITAN and the TRACER 5ⁱ come with a clear examination window but the TRACER 5ⁱ has additional window configurations for different applications.

Application	Configuration	Reason
Normal use	Clear window	The window protects the detector.
Vacuum	Gridded window	The grid reinforces the window against air pressure during the vacuum. However, during normal use, the grid interferes with measurements of light elements.
He flush	No window	Allows the Helium flow to escape.

Clear window for normal use

Gridded window for vacuum

No window for He flush

030.0112.01.0 7 of 58

1.2. Tracer 5ⁱ Collimators and Filters

Description

The Tracer 5ⁱ has additional, interchangeable features –

- Filters.
- Collimators, stamped with either an 8 or 3.

They are applied as an assembly: a filter is inserted into the filter holder, which is attached to the collimator with a screw.

Collimators

Filter types

The instrument comes with five filter options and five filter holders (below) marked in different colors to indicate the filter type.

Filter	Name on Screen	Holder Color
Ti 25μm	Blue	Blue
Cu 200μm:Ti 25μm:Al 300μm	Black	Black
Al 76μm	Orange	Orange
C 60μm:F 190μm	Teflon	White
No filter	None	Beige

Collimators

The collimator determines the size of the spot on the sample to be tested. For most applications, 8mm is best. The 3mm collimator reduces the focal point size and, therefore, the analyzed area. For safety reasons, a collimator must be installed at all times.

Then
The size is displayed in the status bar and recorded in the data file.
The instrument is prevented from entering the armed state and will not produce X-rays.
T

030.0112.01.0 8 of 58

Installing a collimator

To install an alternate collimator -

Step	Action	
1	Ensure that the instrument is powered off.	
2	Using the provided 0.050 inch hex screwdriver, open the collimator hatch located on the side of the instrument nose. Do not allow debris to get inside the hatch area.	Trans
3	Using a thumbnail on the lip of the currently installed collimator, slide it out. It may be tight.	
4	Line up the new collimator with the groove inside the hatch and slide it in until it clicks. Again, do not allow debris inside.	
5	Securely close the hatch and screw it shut.	

030.0112.01.0 9 of 58

Changing filters

To change manual filters attached to a collimator –

Step	Action	
1	Note the configuration of the current filter holder on the collimator.	
2	Using the provided 0.050 inch hex screwdriver, unscrew the filter holder from the collimator.	
3	Align the new filter holder with the collimator. Note the metal band fits into the collimator.	
4	Attach the screw.	

030.0112.01.0 10 of 58

Making a filter

To make a custom filter –

Step	Action	
1	Collect necessary tools: Hole punch Vacuum stick 0.050 inch hex screwdriver Collimator assembly	
2	Use the hole punch to cut the filter material.	
3	Retrieve the filter piece from the hole punch.	
4	Use the vacuum stick to pick up the filter piece without touching it. To operate the vacuum stick — 1. Press and hold the button. 2. Touch the tip to the filter piece. 3. Release the button.	
5	Place the filter piece in the collimator. Release the filter piece by pressing the vacuum stick button. For a multilayer filter, the filter piece with the highest atomic number must be placed in the collimator last so it is closest to the X-ray source.	
6	Screw the filter holder onto the collimator.	

030.0112.01.0 11 of 58

1.3. General Care and Maintenance

Low maintenance The instrument, when used properly, should require very little maintenance beyond –

- Battery recharging. See Power Sources, page 14.
- Window replacement. See below.
- Quality checking. See Quality Check, page 55.

Touch screen

The touch screen uses sensitive electronics and should be cleaned regularly using a soft, lint-free or microfiber cloth. **Do not** –

- Use cleaners as they may damage the screen.
- Use compressed air.
- Leave the analyzer where the touch screen is exposed to direct sunlight.

Cleaning exterior

If the exterior of the analyzer becomes dirty, wipe it gently with a damp, lint-free cloth. *Avoid harsh solvents and compressed air.*

1.4. Changing Windows

Description

The window in front of the detector is delicate, only 4 μm thick ProleneTM, and periodically requires replacement.

Never touch or use compressed air on the detector. The detector window is $8\mu m$ Be, fragile, and expensive.

030.0112.01.0

Changing windows

To change a window –

Step	Action	
1	If necessary, unscrew and remove the nose plate using the supplied screwdriver. TRACER 5 ⁱ	
2	Peel off the old window. Avoid any contact with the sensitive detector. S1 TITAN	
3	Remove old adhesive with isopropyl alcohol. TRACER 5 ⁱ	R
4	Peel the white backing from the new window. TRACER 5 ⁱ	
5	For the S1 TITAN, center alignment arrows over the middle of the aperture. S1 TITAN	
6	Carefully apply the new window to the nose. TRACER 5 ⁱ	R
7	Peel off the clear front protective cover. Otherwise, light element measurements will be inaccurate. TRACER 5 ⁱ	
8	Replace the nose plate. Firmly secure the screws but do not over-tighten.	

030.0112.01.0 13 of 58

1.5. Power Sources

What is provided

The analyzer is supplied with -

- Two Lithium ion (Li-ion) batteries, part number 160.0009.
- Battery charger with a cord, part number 160.0010. (Do not use a different charger with these batteries.) For more information, consult the manufacturer's battery charger manual.

S1 TITAN battery removal **To remove a battery from the S1 TITAN**, while pressing the base, lift up the locking clip and pull down the door. Pull out the battery.

Tracer 5ⁱ battery removal

To remove a battery from the TRACER 5ⁱ, press the battery door button, open the door, and pull out the battery.

Battery installation

To install a battery into an instrument, slide in the battery and close the door until the locking clip clicks. Note that the battery can be inserted completely in only one configuration.

030.0112.01.0

Remaining charge

To check the charge remaining on a battery -

On the "Bruker" side of the battery, push the white button on the left. Green lights indicate the approximate remaining charge in percent.

Charging To charge a battery –

Step	Action
1	To prolong battery life, ensure that the ambient temperature during charging is
	between +5 °C and +45 °C (40 °F to 115 °F).
2	Plug power adapter into back of charger.
3	Plug power cord into power adapter.
4	Plug power cord into a wall outlet.
5	Insert battery into charger with the Bruker name on the left side.

During charging, the green light blinks. A solid green light indicates the battery is fully charged. For more information, consult the manufacturer's battery charger manual.

Duration

A charge lasts, depending how the instrument is used, about four to eight hours.

Warnings

Do not -

- Disassemble, crush, or puncture a battery.
- Place a battery in fire or water.
- Charge a battery except with the supplied charger.
- Short battery terminals by allowing them to touch metal.
- Dispose of batteries in the trash.

030.0112.01.0 15 of 58

Disposal

To dispose of a battery -

- Contact your local waste management company regarding disposal and recycling programs.
- If there is no local disposal program, return used Bruker batteries to Bruker. A nominal shipping charge applies.
- If a battery fails to operate normally within the warranty period, return it to Bruker for evaluation and repair.

Using AC adapter

Optionally, the instrument may be powered by an AC adapter purchased from Bruker. (This is different from the *battery* AC adapter.) *To power the analyzer with an AC adapter* –

Step	Action
1	With the supplied cord, connect the AC adapter to a 90-240V AC wall outlet.
2	Connect the AC adapter to the analyzer's power port.

Maintaining power

The analyzer may be connected to the AC adapter prior to removing the battery so power to the unit is maintained.

Bruker brand only

Using another brand of adapter could damage the analyzer and voids the warranty.

1.6. Contacting Bruker

Email: support.hmp@bruker.com

Phone: +1 (509) 783-9850 Web: www.bruker.com/hhxrf Address: 415 N. Quay Street Kennewick, WA 99336 USA

030.0112.01.0

2. Radiation Safety

Description This section describes the radiation profiles of the S1 TITAN and TRACER 5ⁱ, X-ray warnings, and

safety recommendations.

Proper use When the instrument is used properly, X-ray radiation from instrument poses no harm to the user

or others. Use the instrument for only its intended use.

Each A radiation profile is measured on each instrument before it leaves the factory. instrument

Safe use Safe use of any XRF device is based on the principles of:

Principle	Description	
Time	Managing the amount of time during which X-rays are produced.	
Distance	 Keeping all parts of the user's body as far away from the X-ray producing nose as possible. Pointing the analyzer away from others. 	
	Keeping others away from the instrument during use.	
Shielding	Ensuring that the instrument is mechanically intact and sound.	
	When measuring small samples that might allow X-ray radiation to escape, use a benchtop or desktop stand and close the lid.	

ALARA

Collectively, these practices are known as "As Low as Reasonably Achievable" (ALARA). Safe practice is further discussed during user training. For more details, see the *Radiation Safety Manual*, Bruker document 030.0011.

Occupational limits

The following table lists the annual exposure limit.

TRACER 5 ⁱ	Eye	Skin
Rem	15	50
Sieverts	0.15	0.5

2.1. Radiation Profile - S1 TITAN

Testing standards

The radiation profile reflects the radiological conditions during worst-case (high voltage, high power) instrument operation.

To establish radiation profiles –

- IEC 62495 (2011), Nuclear instrumentation Portable X-ray fluorescence analysis equipment utilizing a miniature X-ray tube was used as a guide.
- The analyzer was set at the maximum voltage and current established for analysis, with a standard material sample over the examination window.
- Per the guide, measurement of stray radiation (leakage and scatter) was conducted at 10, 30, and 100 centimeter distances from the surface.
- Additionally, the geometric size of the X-ray beam and the open beam radiation dose equivalent rates were recorded at 0, 5, 10, 30, and 100 centimeters.

030.0112.01.0 17 of 58

General testing conditions Radiation measurements were conducted –

- Using a Thermo micro-rem low energy plastic scintillation radiation survey instrument.
- With the survey meter calibrated by the survey meter manufacturer.
- Referenced to the center of the detector volume.

Readings

Readings were taken at 50kV, 39 μ A, with a Duplex 2205 sample over the examination window and rounded up to the nearest 5 μ Rem/hr value.

Displayed isodistance contours show the maximum value likely to be encountered in $x10^{-6}$ Rem/hr (µrem/hr) or equivalently in $x10^{-8}$ Sieverts/hr.

	Duplex		
	μrad(μSie	everts)/hr	
Location	10cm	30cm	100cm
Α	≤45(0.45)	≤20(0.20)	≤5(0.05)
В	≤10(0.10)	Background	Background
С	≤5(0.05)	≤5(0.05)	Background
D	Background	Background	Background
Е	Background	Background	Background
F	Background	Background	Background
G	Background	Background	Background
Н	≤40(0.40)	≤5(0.05)	Background
I	≤40(0.40)	≤5(0.05)	Background
J	≤10(0.10)	Background	Background
K	≤10(0.10)	Background	Background
L	≤5(0.05)	Background	Background
М	≤5(0.05)	Background	Background

030.0112.01.0

X-ray beam diameter

The following table provides specific beam diameters at selected distances from the beam port when no sample is in place.

Beam Port Distance in cm	Beam Diameter in cm
1.50	1.20
5	2.5
10	4.23
30	11.34
100	36.5

Testing conditions, open beam

Radiation measurements were conducted -

- Using a Thermo RadEye B20-ER meter corrected by results from NanoDots.
- With the survey meter calibrated by the survey meter manufacturer.

The dose at the Beam Port for the open beam measurement was extrapolated from the 5cm and 10cm results on a logarithmic scale as described in IEC 62495.

Distance vs. dose

	Worst-Case			
		50KeV, 39μA		
		Blank,	No Filter	
Distance	Dose	Dose	With Duplex	With Duplex
(cm)	(Rem/hr)	(Sieverts/hr)	(μRem/hr)	(μSieverts/hr)
Beam Port	223.7	2.237	1300	13.00
5 cm	119.0	1.190	289.0	2.890
10 cm	63.24	0.6324	144.5	1.445
30 cm	19.9	0.199	44.2	0.442
100 cm	1.96	0.0196	Background	Background
Eye / Skin				
Time to	4.02 / 13.4	4.02 / 13.4		
Limit	Minutes	Minutes		

030.0112.01.0

2.2. Radiation Profile - TRACER 5

Testing standards

The radiation profile reflects the radiological conditions during normal and non-normal instrument operational conditions.

To establish radiation profiles –

- IEC 62495 (2011), Nuclear instrumentation Portable X-ray fluorescence analysis equipment utilizing a miniature X-ray tube was used as a guide.
- The analyzer was set at three conditions established for normal analysis and two worst-case conditions with and without a sample over the examination window. For ease in viewing, three of the settings are shown below.
- Per the guide, measurement of stray radiation (leakage and scatter) was conducted at 10, 30, and 100 centimeter distances from the surface, as well as at 5cm.
- The geometric size of the X-ray beam and the open beam radiation dose equivalent rates were recorded at 5, 10, 30, and 100cm and extrapolated back to the surface.

General testing conditions Radiation measurements were conducted -

- Using a Thermo RadEye B20-ER meter.
- With the survey meter calibrated by the survey meter manufacturer.

Readings

The instrument stray radiation profile was collected -

- Operating without a filter.
- With the larger 8cm collimator.
- At its effective maximum power (40keV and 99uA in the appendix) and maximum voltage (50keV and 39uA).
- At distances of 5, 10, 30, and 100cm.
- With and without a sample covering the opening at the nose of the instrument.
- Using a duplex (3mm thick) check sample.
- Operating at commonly used setting and corresponding filters for 50 (in the appendix),
 40, and 15 keV.

Locations for the stray radiation profiles and results are shown in the figures and tables below, and the appendix. Correction factors to agree with results from 80 pkV, 2.9mm Al HVL NanoDots (TLD dosimeters) from Landauer were applied.

030.0112.01.0 20 of 58

Worst-case 1 highest energy Tests were performed with the following settings:

Setting Type	Value
Voltage (keV)	50
Current (µA)	39
Filter	Blank #2

At 5 cm

At 5 cm		
Location	Open Beam	Duplex
Location	μrad(μSieverts)/hr	μrad(μSieverts)/hr
Α	2781439(27814.39)	83.1(0.831)
В	3272.7(32.727)	Background
C	726.1(7.261)	18.1(0.181)
D	1123.4(11.234)	21.7(0.217)
E	75.9(0.759)	Background
F	256.5(2.565)	Background
G	Background	Background
Τ	2351.6(23.516)	112.0(1.120)
	1419.6(14.196)	292.6(2.926)
J	191.5(1.915)	47.0(0.470)
K	151.7(1.517)	Background
L	Background	Background
М	Background	Background

At **10** cm

Location	Open Beam μrad(μSieverts)/hr	Duplex μrad(μSieverts)/hr
А	46204.9(462.049)	Background
В	1556.9(15.569)	Background
С	689.9(6.899)	Background
D	942.8(9.428)	Background
Е	86.7(0.867)	Background
F	54.2(0.542)	21.7(0.217)
G	Background	Background
Н	726.1(7.261)	39.7(0.397)
I	906.7(9.067)	90.3(0.903)
J	317.9(3.179)	79.5(0.795)
K	292.6(2.926)	68.6(0.686)
L	79.5(0.795)	65.0(0.650)
М	57.8(0.578)	75.9(0.759)

At **30** cm

At 30 CIII		
Location	Open Beam	Duplex
Location	μrad(μSieverts)/hr	μrad(μSieverts)/hr
Α	5869.6(58.696)	Background
В	386.2(3.862)	Background
С	386.2(3.862)	Background
D	386.2(3.862)	Background
E	132.7(1.327)	Background
F	209.3(2.093)	Background
G	Background	Background
Н	356.7(3.567)	Background
1	312.5(3.125)	Background
J	312.5(3.125)	Background
K	165.1(1.651)	Background
L	106.1(1.061)	Background
М	59.0(0.590)	Background

At **100** cm

Location	Open Beam (μrad/hr)	Duplex (μrad/hr)
Α	2980.1(29.801)	Background
В	128.4(1.284)	Background
С	163.5(1.635)	Background
D	134.3(1.343)	Background
E	99.2(0.992)	Background
F	119.7(1.197)	Background
G	61.3(0.613)	Background
Н	61.3(0.613)	Background
I	113.8(1.138)	Background
J	81.7(0.817)	Background
K	61.3(0.613)	Background
L	61.3(0.613)	Background
М	90.5(0.905)	Background
N	61.3(0.613)	Background
0	131.3(1.313)	Background

030.0112.01.0 21 of 58

Standard setting 1 alloy phase 1 Tests were performed with the following settings:

Setting Type	Value
Voltage (keV)	40
Current (μA)	5.2
Filter	Ti25/Al300mm #1

At 5 cm

At 3 CIII	I	
Location	Open Beam	Duplex
Location	μrad(μSieverts)/hr	μrad(μSieverts)/hr
Α	180582(1805.82)	Background
В	238.4(2.384)	Background
С	68.6(0.686)	Background
D	75.9(0.759)	Background
Е	Background	Background
F	Background	Background
G	Background	Background
Н	148.1(1.481)	7.2(0.072)
1	54.2(0.542)	7.2(0.072)
J	Background	Background
K	Background	Background
L	Background	Background
М	Background	Background

At **10** cm

Location	Open Beam μrad(μSieverts)/hr	Duplex μrad(μSieverts)/hr
А	2387.7(23.877)	Background
В	39.7(0.397)	Background
С	Background	Background
D	Background	Background
Е	Background	Background
F	Background	Background
G	Background	Background
Н	18.1(0.181)	Background
1	57.8(0.578)	Background
J	Background	Background
K	Background	Background
L	Background	Background
M	Background	Background

At **30** cm

At 30 cm		
Location	Open Beam μrad(μSieverts)/hr	Duplex μrad(μSieverts)/hr
Α	268.3(2.683)	Background
В	Background	Background
С	Background	Background
D	Background	Background
E	Background	Background
F	Background	Background
G	Background	Background
Н	Background	Background
I	23.6(0.236)	Background
J	Background	Background
K	Background	Background
L	Background	Background
М	Background	Background

At **100** cm

Location	Open Beam	Duplex
Location	μrad(μSieverts)/hr	μrad(μSieverts)/hr
Α	163.5(1.635)	Background
В	Background	Background
С	Background	Background
D	Background	Background
Е	Background	Background
F	Background	Background
G	Background	Background
Н	Background	Background
I	Background	Background
J	Background	Background
K	Background	Background
L	Background	Background
M	Background	Background
N	Background	Background
0	Background	Background

030.0112.01.0 22 of 58

Standard setting 2 alloy phase 2 Tests were performed with the following settings:

Setting Type	Value
Voltage (keV)	15
Current (μA)	11.35
Filter	Blank #2

At 5 cm

	Open Beam	Duplex
Location	μrad(μSieverts)/hr	μrad(μSieverts)/hr
Α	4374.5(43.745)	Background
В	68.6(0.686)	Background
С	Background	Background
D	Background	Background
E Background		Background
F Background		Background
G	Background	Background
Н	7.2(0.072)	Background
I	7.2(0.072)	Background
J	3.6(0.036)	Background
K	Background	Background
L	Background	Background
М	Background	Background

At **10** cm

Location	Open Beam μrad(μSieverts)/hr	Duplex μrad(μSieverts)/hr
А	148.1(1.481)	Background
В	28.9(0.289)	Background
С	Background	Background
D	Background	Background
Е	Background	Background
F	Background	Background
G	Background	Background
Н	Background	Background
1	Background	Background
J	Background	Background
K	Background	Background
L	Background	Background
M	Background	Background

At **30** cm

Location	Open Beam μrad(μSieverts)/hr	Duplex μrad(μSieverts)/hr
Α	53.1(0.531)	Background
В	Background	Background
С	Background	Background
D	Background	Background
E	Background	Background
F	Background	Background
G	Background	Background
Н	Background	Background
I	Background	Background
J	Background	Background
K	Background	Background
L	Background	Background
М	Background	Background

At **100** cm

Location	Open Beam	Duplex	
Location	μrad(μSieverts)/hr	μrad(μSieverts)/hr	
Α	20.4(0.204)	Background	
В	Background	Background	
С	Background	Background	
D	Background	Background	
E	Background	Background	
F	Background	Background	
G	Background	Background	
Н	Background	Background	
1	Background	Background	
J	Background	Background	
K	Background	Background	
L	Background	Background	
M	Background	Background	
N	Background	Background	
0	Background	Background	

030.0112.01.0 23 of 58

Testing conditions, open beam

Measurements of the main beam without a sample (open Beam) were collected at 5, 10, 30, and 100cm. The result at the sample position was extrapolated from measured results using a semilog plot as described in IEC 62495. The main beam leaves the front of the instrument going forward and up at a 45-degree angle. Locations where the intensity of the main beam falls to 10% and 1% of the intensity at its center were recorded using the "Standard Setting 1 Alloy Phase 1" only. See the following figure.

RadEye gives instantaneous results but is not accurate over large energy ranges. A second survey of the main beam was done with 80 pkV, 2.9mm Al HVL NanoDots (TLD dosimeters) from Landauer with a request to apply the correction factor for NIST H30 that most closely matches the X-rays in the beam for the setting used.

The NanoDots were exposed at the locations defined with the RadEye at 10, 30 and 100cm distances from the nose, for a measured time using the Standard Setting 1 Alloy Phase 1. NanoDots do not give instantaneous results but are more accurate. The RadEye was used to find the location of the center of the main beam. Its readings at that time were recorded so a comparison of the results from the NanoDots and RadEye could be made.

X-ray beam diameter

The following table provides specific beam diameters at selected distances from the beam port when no sample is in place.

Distance in cm	1% in cm	10% in cm
5	4.5	3.4
10	5.45	4.0
30	10.5	7.9
100	32.0	23.7

030.0112.01.0 24 of 58

Correction factors

During testing, the following correction factors were used:

Distance	Nist H30 Correction Factor
5 cm	3.612
10 cm	3.612
30 cm	2.948
100 cm	2.919

Distance vs. dose in mRad

	Worst-Case 1 Highest		Standard Setting 1		Standard Setting 2 Alloy		
	Energy		Alloy Phase 1		Phase 2		
	50Ke	V, 39μΑ	40Ke	40KeV, 5.2μA		15KeV, 11.35μA	
	Blank,	No Filter	Ti25/Al300µm filter		Blank, No Filter		
In mRad	m	ıRad	r	mRad	m	Rad	
Distance	Open		Open		Open		
(cm)	Beam	With Sample	Beam	With Sample	Beam	With Sample	
100	1839	Background	120	Background	34	Background	
30	3320	0.027	1126	Background	398	Background	
10	143697	0.220	9031	Background	2854	Background	
5	163420	0.372	10656	Background	3161	Background	
Surface	218936	0.632	14006		4310		
Eye / Skin							
Time to	4.2 / 13.7	2.7 / 9	66 / 214		214 / 696		
Limit	Minutes	Years	Minutes		Minutes		

Distance vs. dose in mSieverts

	Worst-case 1 Highest		Standard Setting 1		Standard Setting 2 Alloy		
	En	ergy	Alloy Phase 1		Phase 2		
	50Ke	V, 39μA	40Ke	40KeV, 5.2μA		15KeV, 11.35μA	
In	Blank,	No Filter	Ti25/Al300μm filter		Blank, No Filter		
mSieverts	mSi	everts	mS	Sieverts	mSi	everts	
Distance	Open		Open		Open		
(cm)	Beam	With Sample	Beam	With Sample	Beam	With Sample	
100	18.39	Background	1.197	Background	0.339	Background	
30	33.20	0.000265	11.262	Background	3.98	Background	
10	1437.0	0.002204	90.308	Background	28.537	Background	
5	1634.2	0.003721	106.563	Background	31.608	Background	
Surface	2189.4	0.006324	140.06		43.100		
Eye / Skin							
Time to	4.2 / 13.7	2.7 / 9	66 / 214		214 / 696		
Limit	Minutes	Years	Minutes		Minutes		

030.0112.01.0 25 of 58

2.3. Precautions

- Prior to using the instrument, read the Radiation Safety Manual, Bruker document 030.0011.
- Improper handling or use could result in radiation exposure.
- Do not allow anyone other than trained personnel to operate the analyzer.
- Only sell or transfer the analyzer to persons registered to receive it.
- Notify your regulatory agency upon the transfer or disposal of the analyzer.
- Comply with all instructions and labels provided with the device.
- Before pressing the trigger, be aware of the direction the X-rays travel.
- While measuring, do not place any part of your body, especially the eyes or hands, near the X-ray source.

• Do not hold a sample by hand to the window for analysis. Hold the window to the sample.

- Occasionally, a sample may not be reflective enough to trigger the proximity sensor. Place a
 piece of white paper or other reflective material between the sample and sensor. If necessary
 and allowed by law, a supervisor can deactivate the proximity sensor.
- To test small, thin, or low-density materials, such as plastic, wood, soil, paper, or ceramics, use the optional background plate, or benchtop or desktop stands.

- If required by a regulatory agency, wear an appropriate dosimeter.
- When in use, the device should be in the operator's possession at all times.
- Always store the instrument in a secure location.
- Keep the instrument cool and dry, including during transport.
- Know the instrument's location at all times. Track all instruments, operators assigned to use them, locations they were used, storage, removal, and transportation.

030.0112.01.0 26 of 58

If the analyzer is damaged, even if it remains operational, immediately -

- 1. Remove the battery pack and disconnect all power sources.
- 2. Notify Bruker at +1 (509) 783-9850, or support.hmp@bruker.com.

If the analyzer is lost or stolen, immediately notify -

- 1. The appropriate regulatory agency in the state or country in which the device was located.
- 2. Local law enforcement authorities.
- 3. Bruker at +1 (509) 783-9850, or support.hmp@bruker.com.

Never remove labels from the analyzer. This voids regulatory approval of the instrument.

Safety officer

If you have questions, check with your radiation safety officer or a Bruker radiation safety officer at +1 (509) 783-9850, or support.hmp@bruker.com.

030.0112.01.0 27 of 58

2.4. <u>Safety Features</u>

Introduction

The instrument includes a fail-safe electronic control system consisting of primary and secondary interlocks. The control system is designed to –

- Aid in the safe use of the instrument.
- Prevent accidental exposure to radiation.
- Prevent the instrument from generating radiation in case of damage.

As with any safety control system, it cannot prevent injury from intentional misuse. Never attempt to disable or otherwise circumvent a safety control.

Power switch interlock

A push-button main power switch interlock controls power to all components. The switch must be activated before any other actions can be initiated. When power is activated, X-ray warning lights flash and, after a few seconds, the touch screen displays.

Password

Once the instrument initializes, a password is requested. The analyzer will neither operate nor generate X-rays without a valid password.

X-ray warning

Once the password is successfully entered, an X-ray radiation warning is displayed. To continue, press and release the trigger.

Proximity sensor

The proximity sensor detects when an object is within range of the examination window. X-rays can be generated only if the sensor detects an object.

Disabling the interlock

For some less favorable testing conditions, the proximity sensor interlock may need to be bypassed. See *Supervisor Manual*, Bruker document 030.0113. Some locales may not allow this.

When the instrument is logged out or powered off, the interlock is not automatically re-enabled.

Trigger interlock

X-rays are generated when the trigger is pressed. When using the manual trigger setting (see **SETTINGS Button**, page 35), the trigger must be continuously squeezed during measurements. When the trigger is released, X-ray generation stops.

Auxiliary trigger In some countries, both hands are required to be on the instrument when X-rays are generated. The auxiliary trigger, built into each instrument, is part of that two stage implementation.

Minimum backscatter

During each measurement, the X-ray count-rate is continuously monitored. If the count-rate drops below the allowable threshold, as it would in the absence of a sample, X-ray generation discontinues, minimizing potential exposure.

X-ray warning lights

When X-rays are generated, red lamps along the instrument's side and beneath the screen illuminate. The lamp incorporates redundant LED elements for increased reliability. If more than two red LED elements fail, X-rays cannot be generated.

Buzzer

In Canada, when the trigger is pressed, an audible alarm indicates X-rays are being generated.

Automatic log off

If the analyzer remains idle for more than the time specified in Supervisor Mode (default 5 minutes), it logs off the user. Upon login, the previous session is restored.

Labels

Warning labels identify the analyzer as radiation producing. The manufacturer's plate underneath contains regulatory information. Do not tamper with or remove any labels.

TRACER 5ⁱ hatch

To generate X-rays, the collimator must be installed and the hatch must be securely closed.

030.0112.01.0 28 of 58

3. Starting Up

Powering on To use the analyzer, it must be powered on and logged into.

To power on the analyzer -

Firmly press the power switch	The instrument takes several moments to initialize. It is
for one second.	ready when Login is displayed.

S1 TITAN screen

Tracer 5ⁱ screen When a Tracer 5ⁱ boots up, the following screen is displayed. It describes the current instrument configuration, including the last application used and hardware settings.

To continue, tap OK.

TRACER 5ⁱ open hatch

If **OK** is not displayed, the hatch (little door in the nose) is open and the instrument is in an unsafe state. Close the hatch and the window closes.

Powering off **To turn off the analyzer –**

Firmly press the power switch for one second.	The instrument powers down.
---	-----------------------------

030.0112.01.0 29 of 58

Log in To log in -

Step	Action	Result
1	After powering on the analyzer, tap Login .	The login screen is displayed.
2	Tap the password. The default is 12345.	The field reflects the changes.
	To delete one character at a time, from right to left, tap DEL . To clear the field entirely, tap CLR .	
3	Тар ОК .	The radiation warning screen is displayed.
4	Press and release the trigger.	The Ready to Test screen is displayed.

Log in screen

U.S. Radiation Warning

Ready to Test screen

Wrong password

If an invalid password is entered, the message **Password is invalid OK** is displayed. Tap **OK** to remove the message and try again.

Screen description

The Ready to Test screen -

- Displays information in the status bar.
- Provides access to menu trees from which all analyzer functions can be performed.

Status bar icons

The status bar, across the top of the screen, always displays the user icon (♣ or ♣ for supervisor), and power status, but may show additional icons −

Icon	Description	
Print	Print. See the <i>Accessories Manual</i> , Bruker document 030.0116.	
GPS Or ®	GPS or No GPS. See the <i>Accessories Manual</i> , Bruker document 030.0116.	
A USB flash drive is installed.		
1001 (TRACER 5 ⁱ only) Pressure in millibars. This is an example value only.		

TRACER 5i collimator icons

e	3	8	(0)
Empty	3mm	8mm	Unknown

030.0112.01.0 30 of 58

Power status Power status is displayed in the status bar with one of the following icons –

Icon	Status	
⇒ -	External power	
-	Battery at 100%	
•	Battery at 75%	
	Battery at 50%	
	Battery at 25%	
	Empty battery	
×	Error connecting to battery	

Keyboards

From several screens an alphanumeric or numeric keyboard may be accessed for data entry.

Alphanumeric keyboard

Numeric keyboard

Keys

Key	Function	
CAPS	Toggles between all capital letters and all lower case letters.	
Shift	Changes the case of only the next letter tapped.	
Delete	Removes the character to the right of the cursor.	
Clear	Removes all characters from the field.	
Backspace	Removes the character to the left of the cursor.	
Reset	Restores the field without changes.	
OK	Saves changes and closes the keyboard.	
LT and RT	Move the cursor left or right in the selected field.	
Cancel	Closes without saving changes.	

Typical use

Typical use of the analyzer is –

- 1. Name a sample (optional).
- 2. Scan the sample.
- 3. Review the results of the scan.
- 4. Repeat steps 2-4 as necessary.
- 5. Back up data.
- 6. Run report.

030.0112.01.0 31 of 58

Main functions

The **Ready to Test** screen includes seven touch buttons, eight if a camera is installed –

Button name	Purpose	
APPLICATION	Specifies the purpose for which the instrument is used.	
METHOD	Specifies a calibration applicable to the selected application.	
SETTINGS	Specifies trigger behavior and measurement duration.	
DISPLAY	Specifies how measurement results are displayed.	
CAMERA	If a camera is installed, accesses camera features.	
Utilities	Accesses options to display results and back up data.	
Edit Info	Allows measurement data to be named and described.	
Logoff	Logs off the current user and displays the login screen.	

Created files

When a measurement is taken, the following files are created and saved on the instrument:

Data Type	Description	
Element concentrations	 Saves measurement data to Results.csv in the Bruker\Data folder, readable in Excel. What data is saved depends on the selected application. Saved data can be viewed on the Results screen or with a Windows Compatible PC running Bruker Instrument Tools. See the Bruker Toolbox User Guide, document number 030.0119. 	
Spectra	 Saves data as a .pdz file and can include spectra, element concentrations, and more. If copied to a PC, the file can be opened by Bruker Instrument Tools (see the <i>Bruker Toolbox User Guide</i>, document number 030.0119) to display spectra or generate a results report with grade IDs, limits results, or percent concentrations, depending on the selection from the DISPLAY screen. 	

030.0112.01.0 32 of 58

4. APPLICATION Button

Description

The **APPLICATION** Button accesses application options. The intended use of the instrument determines which option to select.

Possible options

Available applications based on the purchased configuration can include –

- Standard alloys.
- Restricted materials.
- Mining.
- Precious metals.
- Other custom applications.

Selecting application

To select an application -

Step	Action	Result
1	From the Ready to Test screen,	The Select Analysis Type screen is displayed.
	tap APPLICATION .	
2	Tap an application name.	The application name is highlighted.
3	Тар ОК .	The Ready to Test screen is displayed with the
		name of the selected application on the
		APPLICATION button.

Spectrometer mode Applications have a preset voltage, current, and filter that cannot be changed. **Spectrometer Mode** allows those settings to be adjusted within limits. Spectra are recorded, but data are not analyzed.

Settings

For each application, settings can be defined. Settings include –

- Method
- Display options
- Phase durations (measurement times)
- Manual or automatic trigger

Whenever the application is changed, settings are changed to those defined for that application.

030.0112.01.0 33 of 58

5. METHOD Button

Description

The instrument analyzes a sample using a specifically selected calibration, or method. The selection can be automatic or user-specified. Automatic is recommended.

The selected application determines available options in **METHOD**. For more information, see *Applications Module*, Bruker document 030.0115.

Selecting a method

To select a method other than Automatic Calibration Selection -

Step	Action	Result
1	From the Ready to Test screen,	The Select Method screen is displayed.
	tap METHOD .	
2	Ensure that Automatic	The box is empty.
	Calibration Selection box is not	
	checked. If it is checked, tap it.	
3	Tap a method name.	The method name is highlighted.
4	Тар ОК .	The Ready to Test screen is displayed with the name
		of the selected method on the METHOD button.

030.0112.01.0 34 of 58

6. SETTINGS Button

Description

The options in **SETTINGS** define trigger behavior and multiple measurement times, or phases. The selected application determines available phases. For example, PMI can have one phase; Alloys has two phases, and Geo Exploration can have three phases.

The following screens are for applications other than **Spectrometer Mode**. For **Spectrometer Mode**, see page 37.

Default settings

Default settings are set at the factory, or by the supervisor, and determine the length of the measurement. If **Use Default Settings** is checked, phase options are not displayed.

Use Default Settings *un*checked, single phase

Use Default Settings *un*checked, multi-phase

Phases

Phase	Description	
1 st	A quick, high level assay used to refine settings for the subsequent phase.	
2 nd	A more specific and accurate assay based on first phase information.	
3 rd	An additional assay available for some applications.	

Accuracy

The longer the measurement, the more accurate the results. Every second to several seconds of a measurement, depending on the application, displayed results are updated.

030.0112.01.0 35 of 58

Phase length To manually set the length of each phase -

Step	Action	Result
1	From the Ready to Test screen, tap SETTINGS .	The SETTINGS screen is displayed.
2	Ensure that Use Default Settings box is not	Phase options are displayed.
	checked. If it checked, tap it.	
3	Ensure the box below Unlimited is unchecked.	The box is empty and fields previously
		grayed out are available.
4	Set each phase duration in seconds by tapping	
	either the minus sign (-) or the plus sign (+) to	
	decrease or increase, respectively, the	
	measurement duration.	The field reflects the number change.
	OR	OR
	Tap the field.	A numeric keyboard is displayed.
5	On the keyboard, tap a number and OK .	The keyboard is removed and the field
		reflects the number change.
6	For subsequent phases, repeat steps 3-5.	
	To disable subsequent phases, set duration	
	to 0.	
7	Тар ОК .	The Settings are saved and the Ready
		to Test screen is displayed.

One phase

If a method does not use multiple phases, only one phase is displayed.

Unlimited

Unlimited indicates the measurement continues while the trigger is pressed and ends when the trigger is released. It is not a timed measurement but is limited to 300 seconds.

If **Unlimited** is checked for a phase, the instrument will NOT use that phase or additional phases.

First result

The interval in seconds between the start of an assay and when the **First Result** displays can be set manually. This assures that results from shorter, less accurate test times are not displayed.

First test

The time can be set manually before the **First Test** displays and records. Longer test times are more accurate. **First Test** settings must always be as long as, or longer, than **First Result** times.

Results of the first test are compared to the Grade Library and, if a match is found, the grade ID is displayed.

Activate beep

This checkbox determines if an audible alarm sounds when a grade match is found.

Trigger options

Manual Trigger Active – The instrument operates while the trigger is pressed or until safety criteria are exceeded.

Auto Trigger Active – The measurement begins when the trigger is pressed and released. Analysis time is controlled by defined phase durations. The measurement can be stopped at any time by pressing and releasing the trigger again. This option is not available in all markets.

030.0112.01.0 36 of 58

7. SETTINGS Button – Spectrometer Mode

Description

If **Spectrometer Mode** was selected under **APPLICATION**, then under **SETTINGS** one of the following screens is displayed, depending on instrument type.

S1 TITAN

TRACER 5ⁱ

Standard settings

To select a standard spectrometer setting -

Step	Action	Result
1	From the Ready to Test screen with application Spectrometer Mode selected, tap SETTINGS .	The Spectrometer Settings screen is displayed.
2	To select a defined setting, tap the down pointing triangle below Reset.	A dropdown list is displayed.
3	Tap a selection.	The setting name is displayed in the field and the kV and µA fields reflect appropriate settings.
4	Tap the down pointing triangle to the right of Wheel , scroll down if necessary, and tap a filter name.	The filter name is displayed.
	Note that S1 TITAN models 200 and 500 do not have Wheel displayed.	
5	Define System Settings as necessary.	
6	Тар ОК .	Settings are saved and the Ready to Test screen is displayed.

030.0112.01.0 37 of 58

Custom settings

To customize spectrometer settings –

Step	Action	Result
1	From the Spectrometer Settings screen,	The numeric keyboard is displayed.
	tap the field next to kV (kilovolts) or µA	
	(microamp).	
2	Tap a value and tap OK .	The keyboard is removed and the field
		reflects the change.
3	Repeat steps 1 and 2 for the other field.	

Reset

To restore values, tap Reset. Original values are displayed.

Additional TRACER 5ⁱ settings

The Tracer 5ⁱ has the described setting options plus the following. These settings are required to tell the instrument which hardware options are installed so the data is recorded in measurement files.

Option	Lists options for	
Manual	Filters that can be manually installed.	
Collimator	Collimators that can be manually installed. (If a collimator is installed but	
	another is selected here, the installed collimator number in the status bar is	
	displayed in red instead of black.)	
Atmosphere	Atmospheric measurement environments:	
	Air – normal use.	
	Vacuum – setting for use with a vacuum pump to eliminate air between the	
	sample and detector.	
	Flush – setting for use with a Helium flush to replace air between the sample	
	and detector.	

030.0112.01.0 38 of 58

8. DISPLAY Button

Description

How measurement results are displayed is determined by options selected under the **DISPLAY** button.

For information on **Grade Library** and **Grade Pass/Fail** options, see the *Alloy Module*, Bruker document 030.0114.

Limits Testing

Limits Testing displays measurement results against minimum and maximum values. For more information, see *Restricted Materials Screening Application Guide*, Bruker document 030.0117 and *Soil Application Guide*, Bruker document 030.0118.

None

Selecting **None** provides a sample analysis without a comparison to a grade library. The **Results** screen displays –

- Index number.
- Date and time of the assay.
- Assay duration in seconds.
- Detected elements.
- Element percentages or PPM and their statistical +/- error range. (The longer the measurement, the smaller the +/- error range.)

030.0112.01.0 39 of 58

8.1. Display Settings

Description How measurement results are displayed is specified on the **Display Settings** screen.

Description of options

Option	Description	
Display Units	Measurement results can be displayed in –	
	PPM – Parts per million.	
	• % – Percent.	
	Special – An application-defined setting; or as defined in EasyCal. See	
	EasyCal – a Comic Strip, Bruker document 030.0101.	
Display Size	The font size on the Results screen.	
Sort By	Results are sorted by element atomic number (El No) or alphabetically by	
	element name (El Name).	
Enable LOD	Results include analyzed elements with an assay less than the limits of	
Display detection (LOD). The LOD is defined as n*STD, where n is a number from		
	and STD is standard deviation.	
Number of	er of The number of digits displayed to the right of the decimal point of a percent	
Decimals	value.	
STD Display The number of standard deviations on the Results screen. The error disp		
Limit	with an assay is n*STD. If the assay is less than n*STD and Enable LOD Display	
	is checked, the assay is displayed as <lod.< td=""></lod.<>	

030.0112.01.0 40 of 58

8.2. Element Display Order

Description

Element order can be customized, rather than sorting by element atomic number or alphabetically by element name.

Note that results will list only those elements selected.

Sorting one at a time

To customize the element order on the Results screen one element at a time -

Step	Action	Result
1	Under DISPLAY and then Display Settings ,	The Element Sort Page is displayed.
	tap Element Display Order.	
2	Under the Element List , tap the name of	The selected element name is highlighted.
	the first element to be displayed in a result	
	list.	
3	Tap the right pointing arrow.	The selected element name is moved to
		the Sort Order list.
4	Populate the Sort Order list with element	The Sort Order list is populated with
	names in the desired order by repeating	element names in the order names are
	steps 2 and 3.	moved over.
5	To move an element name back to the	The selected element name is moved back
	Element List on the left, tap the name	to the Element List .
	under Sort Order and then the left	
	pointing arrow.	
6	To save the modified sort order, tap OK .	When assays are taken, results are listed
		in this order.

030.0112.01.0 41 of 58

Sorting multiple at a time

To customize the element order on the Results screen multiple elements at a time -

Step	Action	Result
1	Under DISPLAY and then Display Settings ,	The Element Sort Page is displayed.
	tap Element Display Order.	
2	Under the Element List , tap multiple	Selected element names are highlighted.
	element names to be displayed in a result	
	list.	
3	Tap the right pointing arrow.	The selected element names are moved to
		the Sort Order list in alphabetical order.
4	To change the order of elements in the	The element name is highlighted.
	Sort Order column, tap an element name.	
5	To move the element name up or down in	The selected element name moves up or
	the list, tap the up pointing or down	down accordingly.
	pointing carat on the right.	
6	To save the modified sort order, tap OK .	When assays are taken, results are listed in
		this order.

8.3. Grade ID Settings and More

Grade ID Settings

Options on the **Grade ID Settings** screen affect how measurement results are displayed. See the *Alloy Module*, Bruker document 030.0114.

More

To display additional options to customize for the Results screen – from the **Display Settings** screen, tap **More**.

Year – In addition to the date, displays the year of the measurement.

Calibration Name – Displays the name of the method.

Display User Field – Displays the value of the first user field. See **Edit Info Button**, page 46.

030.0112.01.0 42 of 58

9. Utilities Button

Description

The Utilities button accesses options to -

- Display Results of measurements. See Results, page 48.
- Back up Data by copying or moving, with the option to delete.
- Allow Remote Control of the instrument.

9.1. Back up Data

Description

This option under **Utilities** provides the ability to –

Copy – copies data to an external location, leaving data in the instrument memory.

Move – copies data to an external location and deletes data stored in the instrument.

Delete – removes data from the instrument memory without copying.

Reset counter

When the **Reset the Assay file name counter** box is checked, if data are moved or deleted, the index counter resets to 1. This function is not available when **Copy** is selected.

030.0112.01.0 43 of 58

Location fields

Data File Source Location and **Data File Destination Location** fields cannot be edited. For any additional available options, tap the drop down arrow.

Destination location

Data from the instrument is copied to a -

USB flash drive,	if a USB flash drive is installed.
New folder in the instrument memory,	if no USB flash drive is installed.

Flash drive recommendations

Subject	Description	
Large drives	Large flash drives take longer to be recognized.	
Powering on	If a flash drive is installed, instrument initialization time increases.	
Files on new	New flash drives may contain manufacturer files and programs unnecessary for	
drives	Bruker use. Use them at your own risk.	
Viruses Flash drives can spread viruses. Drives included with the analyzer are new guaranteed virus-free. PCs used with the instrument should have up-to-d antivirus software.		

Optimize performance

To optimize analyzer performance and reduce initialization time, data should be periodically removed from the instrument and the installed USB flash drive.

PC

Data in other locations on the instrument can be moved to a PC where results can be viewed via Bruker Instrument Tools. See the *Bruker Toolbox User Guide*, Bruker document 030.0119.

Copy/move

To copy or move data from the instrument to an external location -

Step	Action	Result
1	Tap the Utilities button and Backup Data .	The Backup Data screen is displayed.
2	Tap an option to Copy or Move .	
3	If moving, check the Reset Assay file name	The box is checked.
	counter box, if desired.	
4	Tap the Data File Source Location drop	
	down arrow to view possible source files	
	and select one.	
5	Tap the Data File Destination Location drop	
	down arrow to view possible destinations	
	and select one.	
6	Tap Execute.	After files are copied or moved, the
		Utilities screen is displayed.

Delete

To delete all assays from the selected Data File Source Location on the instrument – tap Delete and Execute. The measurements are deleted and the Utilities screen is displayed.

030.0112.01.0 44 of 58

9.2. Remote Control

Description

When the **Enable Remote Control** box is checked, the analyzer can be operated remotely from a PC. For instructions, See the *Bruker Toolbox User Guide*, Bruker document 030.0119.

030.0112.01.0 45 of 58

10. Edit Info Button

Description

Before a measurement is taken, an assay can be named and described. This information is saved to the Results.csv file and the <index>-<Application>.pdz (e.g., 00456-Alloys.pdz) spectrum file.

Sample ID

Whatever is entered in the first field under **Value** is what is displayed in the **SampleId** field in Results (and the **Name** field in **Report Generator** in Bruker Instrument Tools). If **Operator** is the first value, then the second value is used for **SampleId**.

File List

More than one source file may be available with different or additional Field Names.

To access additional source files, tap the downward pointing arrow to the right of the **File List** field. A dropdown list is displayed. Tap a selection.

Labeling an assay

To label subsequent assays -

Step	Action	Result
1	From the Ready to Test screen,	The Sample ID Fields screen is displayed.
	tap the Edit Info button.	
2	Double tap a field under Value.*	A keyboard is displayed.
3	Enter appropriate information.	The field reflects the change.
4	Тар ОК .	The keyboard is removed and information is saved
		in the field.
5	Repeat steps 2 - 4 as necessary.	
6	To save changes to the Sample ID	The Ready to Test screen is displayed and
	Fields screen, tap OK.	subsequent assays are labeled accordingly until
		these settings are changed.

*List option

If the **List** checkbox, available in Supervisor Mode, is checked for the applicable **Field Name**, when a field under **Value** is tapped once, a dropdown list is displayed, rather than a keyboard. Select from the list or **<Add New>**, as described below.

030.0112.01.0 46 of 58

Adding values with <Add New>

Note that once a value is added, it cannot be removed from the list.

To add values to a dropdown list if the List checkbox available in Supervisor Mode is checked for the applicable Field Name –

Step	Action	Result
1	From the Sample ID Fields screen,	A dropdown list with <add new=""></add> is displayed.
	tap a Value field.	
2	Tap <add new=""></add> .	The keyboard is displayed.
3	Enter a value and tap OK .	The new value is displayed in the Value field.
4	Тар ОК .	The change is saved and the Ready to Test
		screen is displayed.

030.0112.01.0 47 of 58

11. Results

Description

Results of a measurement are displayed two ways -

- During and immediately after a scan.
- Through the **Utilities** -> **Results** buttons.

The actual screen configuration varies depending on the selected method and settings defined under **DISPLAY**. See **DISPLAY Button**, page 39.

Past results

To review the results of a past analysis -

Step	Action	Result
1	From the Ready to Test screen,	The Utilities screen is displayed.
	tap the Utilities button.	
2	Tap Results .	A table showing every assay stored in memory, in
		reverse order of Index number (most recent
		measurement at the top), is displayed.
3	Touch scroll up and down, left	The sample is highlighted.
	and right, to see all assay names.	
	Tap a measurement to review.	
4	At the bottom of the screen, tap	Results of the sample's assay are displayed.
	the sample's index number.	

Display toolbar

To remove the lower toolbar, double tap the center of the screen. To display it again, double tap again.

030.0112.01.0 48 of 58

Toolbar displayed

Toolbar removed

1. ID match

If the sample matches grade IDs in the library, up to three matching IDs are displayed. If not, the application name is displayed.

2. Assay information

The following information is provided for quick reference –

- Index number of the sample.
- The date and time the assay was measured.
- Length of the measurement in seconds.
- If averaging, the index numbers of the selected assays.

3. Columns

Column Heading	Description
El	Element symbol.
Min and Max	Minimum and maximum percent allowed according to the grade
	library. Note that some applications do not use a grade library and Min
	and Max are not displayed.
%, PPM, or Special	Amount of the element in either percent, parts per million, or units
	defined in EasyCal. See EasyCal – a Comic Strip, Bruker document
	030.0101.
+/- [*n]	Standard deviation.

Sorting

To sort data in a column in descending or ascending order – tap a column heading.

4. < and >

To view different assays ordered by index number – use the back and forward options, < and >.

5. Info

To display the assay's name, ID, and other information, if applicable – tap **Info**. This information cannot be edited.

030.0112.01.0 49 of 58

11.1. Spectrum

Elemental spectrum

To view the spectrum and specific elements for the selected assay -

Step	Action	Result
1	From the Results screen of a	The Spectrum screen is displayed.
	specified assay, tap Spectrum.	
2	Tap El .	A list of element symbols is displayed.
3	Scroll down to see all elements.	The element is highlighted.
	Tap one.	
4	Тар ОК .	The spectrum is displayed with one or more red
		vertical bars identifying peaks for the selected
		element. EI is now replaced with the symbol of the
		selected element.
5	To identify a spectrum peak, tap it.	One or more red vertical bars is displayed and the
		element symbol is displayed on the EI button.

Alternative

To view the spectrum and specific elements for the selected assay an alternative way -

Step	Action	Result
1	From the Results screen of a	The element row is highlighted.
	specified assay, tap an element.	
2	Tap Spectrum .	The spectrum is displayed with that element's peaks noted by red vertical bars. The selected element's symbol is displayed on the El button.

030.0112.01.0 50 of 58

Vertical enhancement

To exaggerate peaks, tap the spectrum and drag upward.

Axis toolbar

The axis toolbar manipulates the spectrum display to better view details. *To display it*, tap the screen and hold.

Option	Description	
X+	Stretches the x-axis (keV) scale to zoom in on the spectrum. To view the entire	
	spectrum, tap and drag horizontally.	
X-	Compresses the x-axis (keV) scale to zoom out from the spectrum.	
X0	Re-centers and returns the spectrum to the original x-axis scale.	
Cent.	Re-centers the spectrum on both the x- and y-axes.	
Y+	Stretches the y-axis (count rate) scale.	
Υ-	Compresses the y-axis (count rate) scale.	
Y0	Returns the spectrum to the original scale along the y-axis.	
Def.	Restores the spectrum to its default setting; the spectrum is re-centered and the	
	original scale along both axes is restored.	

030.0112.01.0 51 of 58

11.2. Averaging

Averaging

Values from selected measurements can be averaged. Assays can be selected individually or by default.

Note: Only assays taken with the same method can be averaged.

Average results

Average results are -

- Calculated for elements and +/- values. If an element is missing from one of the averaged results, the value is 0. For example, results of three assays are averaged. All is detected at 60%, 60%, and 0%. The average is 40%.
- Analyzed for Grade Matching and Pass/Fail.
- Saved in the results list and in Results.csv.

Enable averaging

When Enable Averaging is checked for an assay –

- Averaging is available to all assays stored in the Results.csv file.
- The **Use in Average** and **Calculate Average** options are displayed on the Results screen.
- The ability to average remains in effect until **Enable Averaging** is unchecked.

2205SS Match 9.1 02-03 13:25 Time 1.0 e 62.000 65.968 73.000 2.353 21.000 22.359 23.000 4.500 5.462 0.749 6.500 0 187 Mo 2.500 3 096 0.160 0.128 0.058 0.175 Mn 0.000 0.434 0.957 0.606 0.257 0.165 □ Use in Average Averaging Calculate Average

Screen options when

Enable Averaging is **un**checked

Screen options when Enable Averaging is checked

To enable

To enable assays to be included in an average calculation -

Step	Action	Result		
1	If a Results screen does not display Use	The Averaging screen is displayed.		
	in Average, tap Averaging.			
2	Tap the Enable Averaging checkbox.	A checkmark is displayed.		
3	Тар ОК .	The Results screen is displayed and any		
		assay stored on the instrument can be used		
		in an average calculation.		

030.0112.01.0 52 of 58

Step	Action	Result
1	From the Results screen, tap Averaging .	The Averaging screen is displayed.
2	Tap User Selected Averages.	The radio button is filled.
3	Тар ОК .	The Results screen is displayed and any
		assay stored on the instrument can be
		used in a user selected average
		calculation.
4	Tap the Use in Average checkbox for each	A checkmark is displayed.
	assay included in the average calculation.	
	To display additional assays to be used in	
	the average calculation, use < and > to flip	
	through previous and subsequent assays.	
5	When all desired assays have checked Use	Index numbers of assays used in the
	in Average boxes, tap Calculate Average.	calculation are listed in the status bar
		(e.g. AVG 8 9 11 15). Their calculated
		average is displayed and stored in
		Results.csv.

Default selected

To average Default Selected assays –

Step	Action	Result
1	Display the assay with the highest index	
	number of the assays to be part of an average	
	calculation. For example, to average assays 7 -	
	9, display index number 9.	
2	Tap Averaging .	The Averaging screen is displayed.
3	Tap Default Selected Averages .	The radio button is filled.
4	Set the number of previous assays to be	
	included in the average calculation by tapping	
	either the up or down pointing triangle to	
	increase or decrease, respectively, the value.	The field reflects the change.
	OR	OR
	Tap the field.	A numeric keyboard is displayed.
5	Tap a number and OK to close the keyboard	The selected assay is displayed again.
	and OK to accept the settings.	
6	Tap Calculate Average.	The average values of the number of
		assays specified is displayed. Assays
		part of the average are identified in the
		status bar and in Results.csv by index
		number. For example, if the Number of
		Previous Results to Average is 3 and
		the starting index number is 9, AVG 78
		9 is displayed.

030.0112.01.0 53 of 58

Averaged results cannot be averaged

Results of an average calculation cannot be included in a subsequent average calculation. This means for –

- User Selected Averages The Use in Average option is not available for results of an average calculation.
- **Default Selected Averages** A current average does not include values from any averages falling within the specified range of assays to be averaged.

Example

For example, if –

- The Number of Previous Results to Average is 3.
- The starting index number is 9.
- Index number 7 is a previously average set of results.

The specified range backward skips index number 7 and instead includes index number 6. **AVG 6 8 9** is displayed in the status bar.

030.0112.01.0 54 of 58

12. Quality Check

Description This test verifies assays measured and recorded on the instrument are accurate.

Process To verify that your instrument is calibrated correctly –

Step	Action
1	Set APPLICATION to Alloys and Method to Automatic Calibration Selection.
2	From the Ready to Test screen, measure the supplied Duplex 2205 Check Sample 10
	times.
3	Average the 10 assays. See Averaging , page 52.
4	Compare the average measured value for each element against the Acceptance Limit
	maximum and minimum on the Check Sample Report supplied with your instrument.
5	If all averaged measurements fall within MAX and MIN limits, continue to use the
	instrument.
	If averages fall outside MAX and MIN limits, with respect to standard deviation, check – • Measurement times • Sample surface • Instrument window
	If the instrument does not perform as expected, contact Bruker at support.hmp@bruker.com , +1 (509) 783-9850.

Individual reports

The following figure is an example only. When performing a quality check, use the Check Sample Report included with your instrument. It contains values specific to it as determined during testing at the factory.

Measurement	Time	Si	Р	Ti	V	Cr	Mn	Fe	Ni	Cu	Nb	Mo
1	25 by 25	0.469	0.027	0.000	0.135	22.602	1.015	66.653	5.568	0.216	0.022	3.294
2	25 by 25	0.461	0.019	0.000	0.140	22.591	1.025	66.728	5.517	0.213	0.022	3.283
3	25 by 25	0.532	0.021	0.000	0.106	22.532	1.011	66.718	5.533	0.210	0.021	3.315
4	25 by 25	0.395	0.020	0.013	0.127	22.543	0.981	66.836	5.549	0.200	0.022	3.314
5	25 by 25	0.679	0.020	0.000	0.123	22.538	0.999	66.664	5.486	0.214	0.021	3.257
6	25 by 25	0.277	0.023	0.000	0.113	22.550	0.974	67.054	5.478	0.213	0.022	3.296
7	25 by 25	0.439	0.021	0.000	0.117	22.565	0.974	66.795	5.573	0.208	0.021	3.287
8	25 by 25	0.388	0.022	0.000	0.131	22.573	1.028	66.805	5.515	0.209	0.019	3.310
9	25 by 25	0.373	0.019	0.003	0.117	22.639	0.996	66.774	5.557	0.205	0.020	3.296
10	25 by 25	0.514	0.022	0.000	0.117	22.597	1.010	66.688	5.531	0.213	0.020	3.288
Average Me	asured Value	0.453	0.021	0.002	0.122	22.573	1.001	66.771	5.531	0.210	0.021	3.294
Standa	ard Deviation	0.109	0.002	0.004	0.010	0.034	0.020	0.117	0.032	0.005	0.001	0.017
	ce Limit MIN	0.000	0.000	0.000	0.070	22.402	0.902	66.187	5.370	0.162	0.011	3.208
	ce Limit MAX	0.997	0.045	0.042	0.175	22.744	1.101	67.356	5.692	0.259	0.031	3.380

Check Sample Report, example only

030.0112.01.0 55 of 58

Appendix A Additional TRACER 5ⁱ Radiation Profile Test Results

Description To read testing standards and conditions, see **Radiation Profile – Tracer 5**ⁱ on page 20.

Worst-case 2 highest

Tests were performed with the following settings:

Setting Type	Value
Voltage (keV)	40
Current (μA)	99
Filter	Blank #2

At 5 cm

power

Lasation	Open Beam	Duplex
Location	μrad(μSieverts)/hr	μrad(μSieverts)/hr
Α	458762102(4587621)	28.9(0.289)
В	6722.5(67.225)	Background
С	1520.8(15.208)	21.7(0.217)
D	2044.6(20.446)	Background
Е	198.7(1.987)	Background
F	581.6(5.816)	Background
G	39.7(0.397)	Background
H	4302.2(4.3022)	57.8(0.578)
I	2279.4(22.794)	104.8(1.048)
J	310.7(3.107)	Background
K	274.5(2.745)	Background
L	Background	Background
М	Background	Background

At **30** cm

Location	Open Beam	Duplex
	μrad(μSieverts)/hr	μrad(μSieverts)/hr
Α	10881.3(108.813)	Background
В	769.4(7.694)	Background
С	798.9(7.989)	Background
D	798.9(7.989)	Background
E	265.3(2.653)	Background
F	356.7(3.567)	Background
G	Background	Background
Н	542.4(5.424)	Background
I	622.0(6.220)	Background
J	415.7(4.157)	Background
K	474.6(4.746)	Background
L	173.9(1.739)	Background
M	259.4(2.594)	Background

At **10** cm

Location	Open Beam μrad(μSieverts)/hr	Duplex μrad(μSieverts)/hr	
А	81244.2(812.442)	Background	
В	2893.5(28.935)	Background	
С	1412.4(14.124)	Background	
D	2134.9(21.349)	Background	
Е	177.0(1.770)	Background	
F	516.6(5.166)	Background	
G	Background	Background	
Н	1556.9(15.569)	14.4(0.144)	
1	1773.6(17.736)	39.7(0.397)	
J	610.5(6.105)	39.7(0.397)	
K	466.0(4.660)	18.1(0.181)	
L	220.4(2.204)	28.9(0.289)	
M	93.9(0.939)	14.4(0.144)	

At **100** cm

Location	Open Beam	Duplex	
Location	μrad(μSieverts)/hr	μrad(μSieverts)/hr	
Α	5811.3(58.113)	Background	
В	207.2(2.072)	Background	
С	251.0(2.510)	Background	
D	154.7(1.547)	Background	
E	198.5(1.985)	Background	
F	131.3(1.313)	Background	
G	131.3(1.313)	Background	
Н	201.4(2.014)	Background	
1	207.2(2.072)	Background	
J	134.3(1.343)	Background	
К	157.6(1.576)	Background	
L	148.9(1.489)	Background	
M	125.5(1.255)	5) Background	
N	213.1(2.131)	13.1(2.131) Background	
0	236.4(2.364)	Background	

030.0112.01.0 56 of 58

Standard setting 3 high voltage Tests were performed with the following settings:

Setting Type	Value	
Voltage (keV)	50	
Current (μA)	9.7	
Filter	Cu75,Ti25,Al200mm #3	

At 5 cm

At 5 cm			
Location	Open Beam	Duplex	
	μrad(μSieverts)/hr	μrad(μSieverts)/hr	
Α	288951.5(2889.51)	Background	
В	184.2(1.842)	Background	
С	25.3(0.253)	Background	
D	65.0(0.650)	Background	
E	18.1(0.181)	Background	
F	Background	Background	
G	Background	Background	
Н	148.1(1.481)	43.3(0.433)	
	148.1(1.481)	104.8(1.048)	
J	Background	Background	
K	Background	Background	
Ĺ	Background	Background	
М	Background	Background	
	. 3	<u> </u>	

At **10** cm

Location	Open Beam μrad(μSieverts)/hr	Duplex μrad(μSieverts)/hr	
А	3001.8(30.018)	Background	
В	68.6(0.686)	Background	
С	25.3(0.253)	Background	
D	54.2(0.542)	Background	
E	Background	Background	
F	Background	18.1(0.181)	
G	Background	ound Background	
Н	25.3(0.253)	18.1(0.181)	
I	61.4(0.614)	79.5(0.795)	
J	Background	18.1(0.181)	
K	Background	18.1(0.181)	
L	Background	18.1(0.181)	
М	Background	18.1(0.181)	

At **30** cm

Location	Open Beam	Duplex	
	μrad(μSieverts)/hr	μrad(μSieverts)/hr	
Α	445.2(4.452)	Background	
В	Background Backgrou		
С	Background	Background	
D	26.5(0.265)	Background	
E	Background	Background	
F	Background Backgro		
G	Background	Background	
Н	Background	Background	
I	14.7(0.147)	Background	
J	Background	Background	
K	Background	Background	
L	Background	Background	
M	Background	Background	

At **100** cm

Location	Open Beam	Duplex	
Location	μrad(μSieverts)/hr	μrad(μSieverts)/hr	
Α	216.0(2.160)	Background	
В	Background	Background	
С	Background	Background	
D	Background	Background	
E	Background Backgr		
F	Background	Background	
G	Background	Background	
Н	Background	Background	
l	Background	Background	
J	Background	Background	
K	Background	Background	
L	Background	Background	
М	Background	Background	
N	Background	Background	
0	Background	Background	

030.0112.01.0 57 of 58

Distance vs. dose

	Worst-Case 2		Standard Setting 3	
	Highest Power		High Voltage	
	40KeV, 99🛮 A		50KeV, 9.7⊡A	
	Blank, No Filter		Cu75Ti25Al200@m filter	
	mRad/mSieverts		mRad/ı	mSieverts
Distance (cm)	Open Beam	With Sample	Open Beam	With Sample
100	4057 / 40.571	Background	81 / 0.809	Background
30	28891 / 288.91	Background	766 / 7.665	Background
	357618 /			0.033 /
10	3576.18	Background	6141 / 61.409	0.000325
	395525 /	0.054 /		0.033 /
5	3955.25	0.000542	7947 / 79.471	0.000325
	541677 /		10031/	
Surface	5416.77		100.31	
Eye / Skin	1.7 / 5.54		92 / 299	
Time to Limit	Minutes		Minutes	

030.0112.01.0 58 of 58