Confidence Intervals for the Mean

Lecture 19

03/01/2013

(Lecture 19) 03/01/2013 1 / 16

Central Limit Theorem

- X_1, \ldots, X_n : simple random sample
- Large sample size (n > 30)

$$\bar{\mathbf{x}} \sim \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

(Lecture 19) 03/01/2013 2 / 16

Describe the Error

- How close is our estimate to the true value?
- How much uncertainty is there?
- Range of plausible values for μ .

(Lecture 19) 03/01/2013 3 / 16

(Lecture 19) 03/01/2013 4 / 16

(Lecture 19) 03/01/2013 5 / 16

95% Confidence Interval

Standard Normal Probability

▶
$$\mathbb{P}(Z < -1.96) = 0.025$$

$$ightharpoonup \mathbb{P}(-1.96 < Z < 1.96) = 0.95$$

- Generally
 - Within 1.96 sigmas of the mean.

(Lecture 19) 03/01/2013

(Lecture 19) 03/01/2013 7 / 16

2.5% Percentile

$$\mathbb{P}(Z < -1.96) = 0.025$$

From
$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$
 we get $\bar{x} = \mu + Z \cdot \frac{\sigma}{\sqrt{n}}$

Therefore,

$$\mathbb{P}\left(\bar{x} < \mu - 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.025$$

and

$$\mathbb{P}\left(\bar{x} > \mu + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.025$$

(Lecture 19) 03/01/2013

Sampling Distribution

(Lecture 19) 03/01/2013 9 / 16

68-95-99.7% Confidence intervals for μ

$$\left(\bar{x} - \frac{\sigma}{\sqrt{n}}, \, \bar{x} + \frac{\sigma}{\sqrt{n}}\right)$$

is an approximate 68% confidence interval for μ ,

$$\left(\bar{x}-1.96\frac{\sigma}{\sqrt{n}},\,\bar{x}+1.96\frac{\sigma}{\sqrt{n}}\right)$$

is an approximate 95% confidence interval for μ .

(Lecture 19) 03/01/2013

Interpretation

- A confidence interval is random.
- If you collect different samples of size n, you will observe a different value for \bar{x} each time and consequently you will obtain a different confidence interval each time.
- The CLT for \bar{x} guarantees that about 95% of these intervals will include the true average μ .

(Lecture 19) 03/01/2013 11 / 16

Significance Level: α

Each confidence level corresponds to a significance level

$$\alpha = 1$$
 – confidence level

• Example: A 68% CI corresponds to significance level equal to

$$\alpha = 1 - 0.68 = 0.32$$

CI for significance level α

$$\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}},$$

where α is the significance level and $z_{\alpha/2}$ is the z-score that corresponds to a probability equal to $\alpha/2$.

(Lecture 19) 03/01/2013 12 / 16

Margin of Error

CI for significance level α

$$\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

where α is the significance level and $z_{\alpha/2}$ is the z-score that corresponds to a probability equal to $\alpha/2$.

• The Margin of Error is

$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

(Lecture 19) 03/01/2013 13 / 16

Example: Vehicle's age

In a survey of 30 adults, the *average age of a person's primary vehicle* is 5.6 years.

Assuming that the population standard deviation is 0.8 years, find the best point estimate of the population mean and a 90% confidence interval for the population mean.

(Lecture 19) 03/01/2013 14 / 16

Example: Vehicle's age

- The best point estimate of the population mean is $\bar{x} = 5.6$ years.
- Since we care about a 90% confidence interval

$$\alpha = 1 - 0.9 = 0.1$$

• The following the z-score:

$$z_{\alpha/2} = z_{0.1/2} = z_{0.05} = -1.65$$

$$5.6 - 1.65 \frac{0.8}{\sqrt{30}} < \mu < 5.6 + 1.65 \frac{0.8}{\sqrt{30}}$$

 $5.6 - 0.24 < \mu 5.6 + 0.24$
 $5.36 < \mu < 5.84$

(Lecture 19) 03/01/2013

Steps to Compute a Confidence Interval for μ with known σ

- Step 1: Compute (if necessary) the sample mean of the sample. Sometimes this might be given to you.
- Step 2: Find $\alpha/2$. If you are asked to find a 95% confidence interval, then $\alpha = 1 0.95 = 0.05$ and $\alpha/2 = 0.025$.
- Step 3: Find $z_{\alpha/2}$, that is the corresponding z-score from the normal distribution table.
- Step 4: Substitute in the formula

$$\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

(Lecture 19) 03/01/2013 16 / 16