The Relational Model

Only one structure – relation

 A relation is both a mathematical concept and just a table of values

The relational model models "everything" as relations

Example

Actor-Movies

Name	Movie	Character
Priyanka Chopra	Baywa tch	Victoria Leeds
Tom Cruise	MI-I	Ethan Hunt
Anthony Hopkins	Thor: Ragnar ok	Odin

Schema of the relation (without types): Actor-Movies (Name, Movie, Character)

More about relations

- A relation is a set of tuples, not a bag
- Permuting the order of attributes does not matter

Name	Movie	Character
Priyanka Chopra	Baywatch	Victoria Leeds
Tom Cruise	MI-I	Ethan Hunt
Anthony Hopkins	Thor: Ragnarok	Odin

ER to relational

- ER diagrams are easy to comprehend and closer to how we think
- Relational model is powerful because it is simple only one kind of object
 - Any operation on the relation, results in yet another relation
- So, let's convert our ER diagrams to relational!

Entity sets/attributes

Relationships to relations

Movie (<u>Title</u>, <u>Year</u>, Language)

PlaysIn (Name, DOB, Title, Year)

PlaysIn (Name, DOB, Title, Year, Salary)

Roles to relations

Weak entity sets to relations

Institution (Name, Location, Director)

Department (Name, InstName, Instlocation, NumFaculty)

Has (<u>DeptName</u>, <u>InstName</u>, <u>Instlocation</u>)

Hierarchies to relations

Movie (<u>Title</u>, <u>Year</u>, Language)

Animation (<u>Title</u>, <u>Year</u>, MainChar)

Actor (Name, DOB, City)

AnimationOnly (<u>Title</u>, <u>Year</u>, Language, MainChar)

AllMovies (<u>Title</u>, <u>Year</u>, Language, MainChar)

Combining relations (1/2)

Movie (<u>Title</u>, <u>Year</u>, Language)

Studio (Name, Address, President)

Produce (Title, Year, StudioName)

Movie (<u>Title</u>, <u>Year</u>, Language, StudioName)

Studio (Name, Address, President)

Combining relations (2/2)

Actor (Name, DOB, Address)

Movie (Title, Year, Language)

PlaysIn (Name, DOB, Title, Year)

Actor (Name, DOB, Address, MovieTitle, Year)

Movie (Title, Year, Language)

Actor (Name, DOB, Address)

Movie (Title, Year, Language, ActorName, DOB)

NORMALIZATION

Designing good schemas

Actor (Name, DOB, Address, MovieTitle, Year, Language)

Anomalies

Name	DOB	Address	MTitle	Year	Language
Priyanka Chopra	1992	Mumbai	Don	2006	Hindi
Priyanka Chopra	1992	Mumbai	Don II	2011	Hindi
Anthony Hopkins	1937	LA	Thor: Ragnarok	2017	English
Tom Cruise	1962	LA	Valkyrie	2008	English
Bill Nighy	1949	LA	Valkyrie	2008	English

- Redundancy
- Update Anomalies
 - Priyanka Chopra's changed to Priyankaa Chopra
- Deletion Anomalies
 - Delete the movie"Valkyrie" from the DB

Normalization is the process of systematically eliminating these anomalies

Functional Dependencies (1/2)

- A functional dependency is another kind of constraint
- If two tuples in a relation agree on the values of one set of attributes then they must also agree on the values of another set of attributes.

$$R(A_1,A_2,A_3,B_1,B_2,B_3)$$

$$A_1A_2A_3 \to B_1$$

$$A_1A_2A_3 \to B_2$$

$$\cdots$$
 Shorthand $A_1A_2A_3 \to B_1B_2B_3$

Functional Dependencies (2/2)

• Example (figure out the right FDs)

Actor (Name, DOB, Address)

Movie (Title, Year, Language)

PlaysIn (Name, DOB, Title, Year)

Name DOB → Address

Title → Language

Language → Title Year

Name DOB → Title Year

Actor (Name, DOB, Address, MovieTitle, Year, Language)

Name DOB \rightarrow Address

Name DOB Address → Language
Name DOB MovieTitle Year → Address
MovieTitle Year DOB → Name
DOB Address MovieTitle → Name

DOR Address MayinTitle Voor -> No

DOB Address MovieTitle Year > Name

Can you figure out the functional dependencies from the data?

Trivial and non-trivial FDs

```
Actor (Name, DOB, Address)
```

Movie (Title, Year, Language)

PlaysIn (Name, DOB, Title, Year)

Name DOB → Address

Name DOB → Name

Name DOB → Name Address

Keys and superkeys

Movie (Title, Year, Language, Length, ActorName)

Superkey

- Functionally determines all other attributes
- Not necessarily minimal

Terminology

- Superkey
- Candidate key
- Primary key
- Prime attribute

Inferring FDs

- Given a set of FDs, which other FDs follow from it?
- Example:
 - Given: $\{Name, DOB\} \rightarrow Address$
 - Address → City
 - Inferred: {Name, DOB} → City

Inferred through transitivity of FDs

Rules involving FDs

- When does a set of FDs S follow from another set of FDs T?
- When are two sets of FDs S and T equivalent?

Armstrong's Axioms

- Reflexivity
 - If B is a subset of A, then A \rightarrow B
- Augmentation

If
$$A \rightarrow B$$
, then $AC \rightarrow BC$

Transitivity

If
$$A \rightarrow B$$
 and $B \rightarrow C$, then $A \rightarrow C$

Closure of FDs

- Given: S, the set of FDs
- Output: S⁺, the *closure* of S, containing all FDs derivable from S

Closure of attributes (1/2)

Let S be a set of FDs
 Is F, a new FD, derivable from S?

Example:

 $AB \rightarrow C$, $BC \rightarrow AD$, $D \rightarrow E$, $CF \rightarrow B$ Does $AB \rightarrow D$ hold?

Closure of attributes (2/2)

```
AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B

AB \rightarrow D ?
```

```
Compute \{A,B\}^+:

AB \rightarrow C: \{A,B,C\}

BC \rightarrow AD: \{A,B,C,D\}

D \rightarrow E: \{A,B,C,D,E\}
```

```
Yes, AB \rightarrow D
```

```
Relation let.
For dosure le dosurel attentante dosurel
Z = Initial set of attributes
do {
  for each FD X \rightarrow Y in S {
     if X subset of Z
        Add Y to Z
     fi
  if Z unchanged, quit
```

NORMAL FORMS

Relation decomposition

- Breaking up a relation into two or more
- Tuples are projected accordingly
- Lossy and lossless decomposition
 - Can the original table be recovered from the decomposed tables?

First normal form

- 1NF (First normal form)
 - A relation is in 1NF iff every tuple contains an atomic value for each attribute
 - Follows directly from definition of relation
 - Relation contains a key

Second normal form (1/2)

No non-prime attribute in the table is functionally dependent on a proper subset of any candidate key

Name DOB MTitle Year > Address

Name	DOB	Address	MTitle	Year	Language
Priyanka Chopra	1992	Mumbai	Don	2006	Hindi
Priyanka Chopra	1992	Mumbai	Don II	2011	Hindi
Tom Cruise	1962	LA	MI-IV	2011	English
Anthony Hopkins	1937	LA	Thor: Ragnarok	2017	English
Bill Nighy	1949	ĽA	Valkyrie	2008	English

What dive five Missing Here? > Language

Name	DOB	Address
Priyanka Chopra	1992	Mumbai
Anthony Hopkins	1937	LA
Bill Nighy	1949	LA
Tom Cruise	1962	LA

MTitle	Year	Language
Don	2006	Hindi
Don II	2011	Hindi
MI-IV	2011	English
Valkyrie	2008	English
Thor: Ragnarok	2017	English

Second normal form (2/2)

	DOB	Address	MTitle	Year	Language
Chopra	1992	Mumbai	Don	2006	Hindi
Chopra	1992	Mumbai	Don II	2011	Hindi
Iopkins	1937	LA	MI-IV	2011	English
Iopkins	1937	LA	Valkyrie	2017	English
	1949	LA	Valkyrie	2008	English
	Chopra Chopra Hopkins Hopkins	Chopra 1992 Chopra 1992 Hopkins 1937 Hopkins 1937	Chopra 1992 Mumbai Chopra 1992 Mumbai Hopkins 1937 LA Hopkins 1937 LA	Chopra 1992 Mumbai Don Chopra 1992 Mumbai Don II Hopkins 1937 LA MI-IV Hopkins 1937 LA Valkyrie	Chopra 1992 Mumbai Don 2006 Chopra 1992 Mumbai Don II 2011 Hopkins 1937 LA MI-IV 2011 Hopkins 1937 LA Valkyrie 2017

No non-prime attribute in the table is functionally dependent on a proper subset of any candidate key

1			\ \	
	ID	Name	DOB	Address
	1	Priyanka Chopra	1992	Mumbai
	2	Anthony Hopkins	1937	LA
	3	Bill Nighy	1949	LA
	4	Tom Cruise	1962	LA

	AID	MID	1
, ->	1	1_	
	1 /	2	
	2	3	
\	3	4	
	4	5	
	4	3	/

	(
ID)	MTitle	Year	Language
	Don	2006	Hindi
2	Don II	2011	Hindi
3	MI-IV	2011	English
4	Valkyrie	2008	English
5	Thor: Ragnarok	2017	English

Third normal form

Name DOB Addr

- For a non-trivial FD $X \rightarrow Y$, X is a superkey or Y is prime

	<u>Name</u>	DOB	Address	Country
	Priyanka Chopra	1992	Mumbai	India
	Anthony Hopkins	1937	LA	USA
\	Bill Nighy	1949	LA /	USA 🎤

Violates 3NF

Address -> Country

Name, DOB -> Address

Name, DOB → Country

<u>Name</u>	<u>DOB</u>	AID
Priyanka Chopra	1992	1
Anthony Hopkins	1937	2
Bill Nighy	1949	2

ID	Address	Country
1	Mumbai	India
2	LA	USA

Boyce-Codd normal form

BCNF

For a non-trivial FD X \rightarrow Y,

X is a superkey

Addresses the following additional scenarios:

- Multiple candidate keys with intersecting elements
- All attributes are part of some key

Violates BCNF, not 3NF


```
Keys: Title, City
Theatre, Title

FDs:

Theatre → City
Title, City → Theatre
Theatre, Title → City
```

Lossless decomposition

- Algorithm:
 - If $X \rightarrow Y$ is a BCNF violation, then form two relations:

with attributes from X U Y

with attributes from X U (all-X-Y)

Multi-valued Dependencies

- What if no FDs hold?
- Redundancies can still occur
 - Clubbing together many-many relationships
- Homework
 - Find an example when this occurs
 - Study the definition of multi-valued dependency
 - Study 4NF