PatternMatching

The purpose of the pattern matching routine is to generate defocused (or focused) model images of single dipole emitters as imaged by a standard wide-field microscope on a CCD, an to use these generate model images for identifying and localizing corresponding images in a measure wide-field image. First at all, the routine reads in the measured image to process. This is done in the first four lines, for example by

```
if exist('im')==0
    im = double(imread('c:\Joerg\example.png'));
    im = im(100:end-101,100:end-100);
end
```

where one first asks whether the image im is already within working memory, and if not, it reads the image from the specified location (here at c:\Joerg\example.png).

Next, the routine calculates the model images of a single molecule emitter for a discrete set of possible orientations. This is done by

```
model = PatternGeneration(z, NA, n0, n, n1, d0, d, d1, lamem, mag,
focus, atf, ring, pixel, nn, be_res, al_res, pic);
```

PatternGeneration calculates the images of an oscillating electric dipole emitter (e.g. single molecule) within a planar stratified structure as imaged by a high-aperture microscope onto a CCD chip. The emitter is assumed to be located at the bottom interface of a layer with refractive index n and thickness d that is sandwiched between two stacks of layers with refractive indices $n_{1,1}$ through $n_{1,k1}$ and thickness values $d_{1,1}$ through $d_{1,k1-1}$ (bottom stack, from bottom to top) and refractive indices $n_{2,1}$ through $n_{2,k2}$ and thickness values $d_{2,1}$ through $d_{2,k2-1}$ (top stack, from bottom to top).

Fig.1: Geometry of he sample space: the sample solution is stacked between stacks of layers with homogeneous optical properties.

Images are calculated for all possible orientations of the emitter defined by the two angles β and α , where β is the inclination towards the optical axis and α the azimuthal

angle around the optical axis. The values of θ and ϕ are varied incrementally by steps defined by be_res (β) and al_res (α). The image is calculated for a CCD camera with assumed pixel size of pixel in μ m, the generated images have square size of (2*nn + 1)*(2*nn + 1).

The following table gives a detailed description of the input and output variables.

Input variables:

– position of emitter above bottom of its layer in μm; z numerical aperture; NΑ vector of refractive indices of the stack below the molecule's n1 layer; - refractive index of the molecule's layer; n - vector of refractive indices of the stack above the molecule's layer; n2 - vector of layer thickness values of the stack below the molecule's layer d1 (length(d1) = length(n1)-1);- thickness of molecule's layer; đ - vector of layer thickness values of the stack above the molecule's layer d2 (length(d2) = length(n2)-1).- center emission wavelength in μm; lamem - imaging magnification; mag - defocusing value in μm, giving the distance the objective is moved out focus of focus towards the sample; - correction vector for coverslide thickness effects. If atf = [], no covatf erslide effects are taken into account. If atf is a 2-element vector, the first is the refractive index of the coverslide glass, the second the deviation (in µm) of the coverslide thickness from its design value; optional parameter for a potential phase plate (default []); ring - side length of one pixel in μm; pixel - the image is calculated over (2*nn +1)*(2*nn +1) pixels nn (default nn = 10)- increment in polar angle (default 10°) be_res - increment in azimuthal angle (default 10°) al_res - if non-zero and non-empty, the calculated images are shown in a figure pic (default 0)

Output variable:

model – structure with the following fields:

The next and final step is to locate modeled patterns within the measured image. This is done by the commands

```
bck = Disk((size(model.mask,1)-1)/2);
[err, bim, cim, sim, xc, yc, bc, cc, sc, len, imm] = FindPat-
tern(im,model.mask,bck,bck);
```

where the first line calculates a background pattern (uniform disc with a radius nn pixel), and the pattern-finding routine FindPattern.m. The general call of this latter routine is

```
[err, bim, cim, sim, xc, yc, bc, cc, sc, len, imm] = FindPat-
tern(im,mask,sup,bck,sze,tsh,fun,flag)
```

Before explaining the meaning of all the variables, I will describe here briefly the pattern matching algorithm. Let x_{ik} be the intensity value of the pixel with co-ordinates (j,k) in the original image. The task is to identify and localize pre-defined patterns within the image. Thus, the algorithm has to compare all possible sub-regions of the image with a discrete set of R predefined patterns $p_{jk}^{(r)}$ which shall have the size $(2L+1)\times(2L+1)$ (with $1\leq r\leq R$ counting the patterns and $-L\leq j\leq L$ and $-L\leq k\leq L$ counting the pixels of the patterns). Additionally, a uniform background pattern b may be super-imposed, and the pattern-matching may be restricted to non-rectangular subareas defined by the support matrices $s_{ik}^{(r)}$ of same size as the patterns but having values one and zero only. Furthermore it is assumed that within any given sub-area of the image, only one of the R patterns can be present. Pattern comparison is done in the following way. The algorithm fits, by a least-square method, each of the R patterns (plus a flat background) to all possible sub-areas of the image. For every sub-area, the algorithm chooses the pattern yielding minimal least-square error to be the most likely pattern present in the given sub-area. Thus, for any given sub-area of the image x with pixels $m-L \le j \le m+L$ and $n-L \le k \le n+L$, the algorithm tries to find 2R parameters $c_{jk}^{(r)}$ and $d_{nm}^{(r)}$ so that the least-square errors $e_{mn}^{(r)}$,

$$e_{mn}^{(r)} = \sum_{j=-L}^{L} \sum_{k=-L}^{L} s_{jk} \left(x_{m+j,n+k} - c_{mn}^{(r)} p_{jk}^{(r)} - d_{mn}^{(r)} b_{jk} \right)^{2}, \tag{1}$$

are minimized. Subsequently, it is assumed that the patterns $p^{(r)}_{jk}$ as well as the background pattern b_{jk} are all square normalized so that

$$\sum_{j=-L}^{L} \sum_{k=-L}^{L} s_{jk} \left(p_{jk}^{(r)} \right)^2 = 1 \text{ and } \sum_{j=-L}^{L} \sum_{k=-L}^{L} s_{jk} \left(b_{jk} \right)^2 = 1.$$
 (2)

By differentiating with respect to the coefficients $c_{mn}^{(r)}$ and $d_{mn}^{(r)}$, these conditions lead to the 2R equations

$$\frac{\partial e_{mn}^{(r)}}{\partial c_{mn}^{(r)}} = \sum_{j=-L}^{L} \sum_{k=-L}^{L} s_{jk} \left(x_{m+j,n+k} - c_{mn}^{(r)} p_{jk}^{(r)} - d_{mn}^{(r)} b_{jk} \right) p_{jk}^{(r)} = 0,$$

$$\frac{\partial e_{mn}^{(r)}}{\partial d_{jk}^{(r)}} = \sum_{k=-L}^{L} \sum_{k=-L}^{L} s_{jk} \left(x_{m+j,n+k} - c_{mn}^{(r)} p_{jk}^{(r)} - d_{mn}^{(r)} b_{jk} \right) b_{jk} = 0,$$
(3)

with $1 \le r \le R$. Introducing the abbreviations

$$X_{mn} \equiv \sum_{j=-L}^{L} \sum_{k=-L}^{L} s_{jk} x_{m+j,n+k} b_{jk} ,$$

$$Q_{mn}^{(r)} \equiv \sum_{j=-L}^{L} \sum_{k=-L}^{L} s_{jk} x_{m+j,n+k} p_{jk}^{(r)} ,$$

$$P^{(r)} \equiv \sum_{j=-L}^{L} \sum_{k=-L}^{L} s_{jk} p_{jk}^{(r)} b_{jk}$$

$$(4)$$

the two equations can be rewritten in matrix form as

$$\begin{pmatrix}
1 & P^{(r)} \\
P^{(r)} & 1
\end{pmatrix}
\begin{pmatrix}
c_{mn}^{(r)} \\
d_{mn}^{(r)}
\end{pmatrix} = \begin{pmatrix}
Q_{mn}^{(r)} \\
X_{mn}
\end{pmatrix}$$
(5)

with the explicit solution

$$\begin{pmatrix} c_{mn}^{(r)} \\ d_{mn}^{(r)} \end{pmatrix} = \begin{pmatrix} 1 & P^{(r)} \\ P^{(r)} & 1 \end{pmatrix}^{-1} \begin{pmatrix} Q_{mn}^{(r)} \\ X_{mn} \end{pmatrix} = \frac{1}{1 - \left(P^{(r)}\right)^2} \begin{pmatrix} 1 & -P^{(r)} \\ -P^{(r)} & 1 \end{pmatrix} \begin{pmatrix} Q_{mn}^{(r)} \\ X_{mn} \end{pmatrix}.$$
(6)

The square normalization of the patterns, together with the condition that all pixel values of the patterns are non-negative (and at least one pixel value positive), assures that $0 < P^{(r)} < 1$ and that the solution is well-defined and real. With the coefficients $c_{mn}^{(r)}$ and $b_{mn}^{(r)}$ explicitly known, the *R* errors $e_{mn}^{(r)}$ are calculated as

$$e_{mn}^{(r)} = \left(X^{2}\right)_{mn} - \frac{\left(Q_{mn}^{(r)}\right)^{2} + \left(X_{mn}\right)^{2} - 2P^{(r)}Q_{mn}^{(r)}X_{mn}}{1 - \left(P^{(r)}\right)^{2}}$$

$$(7)$$

where the additional abbreviation

$$(X^{2})_{mn} \equiv \sum_{j=-L}^{L} \sum_{k=-L}^{L} s_{jk} x_{m+j,n+k}^{2}$$
(8)

was introduced. The beauty of equations (6) through (8) is that they involve only twodimensional convolutions of the image x with the patterns $p^{(r)}$ and b, which can be calculated efficiently by using fast Fourier transforms. Thus, the flow of the image analysis algorithm is summarized as follows:

- 1. Calculate the R+1 two-dimensional convolutions of the image x with the R patterns $p^{(r)}$ and the background pattern b, see Eqs.(4).
- 2. Calculate the 2R "coefficient images" $c^{(r)}$ and $d^{(r)}$ according to Eq.(6).
- 3. Calculate the R "error images" $e^{(r)}$ according to Eq.(7), involving the calculation of the "squared image" X^2 .
- 4. For all positions (m,n), the pattern with minimum error $e_{mn}^{(r)}$ is chosen as the most likely pattern for that position. Thus, two new images \tilde{c} and \tilde{e} are generated with values \tilde{c}_{mn} and \tilde{e}_{mn} composed by those values $c_{mn}^{(r)}$ and $e_{mn}^{(r)}$ having minimum $e_{mn}^{(r)}$.
- 5. Finally, pattern positions are localized by asking for positions (m,n) where the ratio $\tilde{c}_{mn}/\sqrt{\tilde{e}_{mn}}$ exceeds some predefined value κ . A good value for κ yielding excellent pattern recognition is close to one.

Now, we can specify the meaning of the input and output variables of FindPattern.m:

Input variables:

 measured image im - 3D stack of model patterns mask - support of pattern matching, see s_{ik} above; usually a square sup or circular disk - background b_{ik} , usually the same as sup bck - a threshold parameter which can be used to make the pattern sze recognition more discriminating for suppressing false positives (default 1) - threshold value κ , see above (default 1). tsh - string with function for deciding a match, default is fun 'cim>tsh*sqrt(err)', where cim is $c_{\scriptscriptstyle mn}^{(r)}$ and err is $e_{\scriptscriptstyle mn}^{(r)}$ from above. - if flag is 1, then pattern matching is suppressed ate the image flag borders within a stripe of half the width of the model

border region (default 1).

images; this is important to prevent false recognitions in the

Output variables:

```
- error image \min_{r} \left( e_{jk}^{(r)} \right)
err
                             - \min_{e_{jk}^{(r)}} \left(d_{jk}^{(r)}\right)
bim
                             - \quad \min_{e_{jk}^{(r)}} \Bigl( c_{jk}^{(r)} \Bigr)
cim
                             - \min_{e_{jk}^{(r)}} (r)
sim

    center coordinates of found patterns

xc, yc
                             - corresponding values of bim
bc
                             - corresponding values of cim
CC

    corresponding pattern index

sc
                             number of found patterns
len

    reconstructed image with found model patterns

imm
```

Example

As example consider the following defocused single-molecule image:

The parameters used for the pattern generation are:

```
z = 0;
NA = 1.40;
n0 = 1.52;
n = 1.49;
n1 = 1.0;
d0 = [];
d = 0.01;
d1 = [];
lamem = 0.57;
mag = 140;
focus = 0.65;
atf = [];
ring = [];
pixel = 16;
pic = 0;
be_res = [];
```

```
al_res = [];
nn = [];
```

The resulting model patterns are displayed by CombineImages (model.mask, 15, 15):

•	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0		•	3	0	0	0	0	0	0	0	0	0	0
0	0	0	0			0	0	0	0	0	0	0	0	0
0	0	0	0	0	3	3	•	•	0	3	9	0	0	0
0	0	0	0	0	0	0	e	c	0	C	G	0	0	0
0	0	0			0	0	0	0	0	2	3	3	3	0
0	0	0	0	0	0	C	0	0	0	c	C	C	C	c
O	O	3	3	9		•	•	0	9	•	3	3	3	•
3	0	0	0	0	C	C	C	c	C	C	C	C	C	C
O	ů	3	3	•	9	3	3	3	3	3	•	3	•	•
•	•	•	0	•	•	C	C	C	C	C	٠	٠	•	3
3	•	9	•	•	•	•	•	•	•	C	C	C	C	•
C	U	C	•	•	•	3	•	•	0	0	0	•	•	•
•		•	•	•	•	•	•	•	•	•				

After applying the pattern matching algorithm, one can display the found coordinates of the patterns with mim(im); hold on; plot(xc,yc,'oc'); hold off

Or one can display, the original and the reconstructed image by CombineImages(cat(3,im,imm),1,2):

The index of the corresponding pattern is stored in the vector sc, thus for the j_{th} pattern, the best matching angular orientations are model.theta(sc(j)) and model.phi(sc(j)).