$(\bmod N^2 + 1)$

Input file: standard input
Output file: standard output

Time limit: 2 seconds

Memory limit: 1024 megabytes

You are given a positive integer N and a non-negative integer R.

You want to fill each cell of an $N \times N$ grid using each integer from 1 to N^2 exactly once while satisfying the following condition:

• For any 2×2 square, the remainder of the product of its four integers when divided by $N^2 + 1$ equals R.

Determine if it's possible to fill in numbers to satisfy the condition, and if so, output one example.

You have T test cases to solve.

Input

The input is given from Standard input in the following format, where $case_i$ represents the *i*-th test case:

```
T
case_1
case_2
\vdots
case_T
```

Each case is given in the following format:

```
N R
```

- $1 \le T \le 100$
- $1 \le N \le 50$
- $0 < R < N^2$
- All input values are integers

Output

Output the answers to each test case in order, line-separated.

For each test case, if it's impossible to fill in numbers to satisfy the condition, output No. Otherwise, output one solution in the following format:

```
Yes P_{1,1}\ P_{1,2}\ \dots\ P_{1,N} : P_{N,1}\ P_{N,2}\ \dots\ P_{N,N}
```

Here, $P_{i,j}$ represents the integer which is written in the square which is *i*-th from the top and *j*-th from the left.

You must meet the following conditions:

 $\bullet \ \text{ For any } i,j \ (1 \leq i \leq N-1, 1 \leq j \leq N-1), \ P_{i,j} \times P_{i+1,j} \times P_{i,j+1} \times P_{i+1,j+1} \equiv R \ (\text{mod } N^2+1).$

Example

standard input	standard output
3	Yes
2 4	1 2
3 3	3 4
4 2	No
	Yes
	7 4 10 13
	1 11 16 6
	5 9 12 8
	3 15 14 2