Data Analysis on Historical Weather Data

Group Zeus

CHAN, Chun Hin (20853893, chchanec@connect.ust.hk): CHAN, Long Ki (20774516, lkchanar@connect.ust.hk): CHUNG, Lok Wang (20852241, lwchung@connect.ust.hk)

Demo Video Link

Demo Video Link

- The YouTube video link of our 5-minute video is as shown below:
- https://youtu.be/FonI2BFH_Xw

Background & Aim

Background

- Climate change is a serious problem in current century
- Global average temperature increasing
- More frequency natural disasters

- Historical weather data is useful for analyzing climate change
- Obtain the weather data from different locations around the world
- Analyze the climate patterns

Aim

• Investigate the weather data in the recent years

- Analyze the weather patterns around the world
- Build a machine learning pipeline to do prediction on the weather data

Tools & Setting

Google Colaboratory

• an online platform to develop and run Jupyter Notebook

- Setting:
- RAM: 12.7 GB
- ROM: 107.7 GB
- CPU: Intel(R) Xeon(R) CPU @ 2.20GHz

PySpark

- Provides different APIs for:
- managing the RDDs
- analyzing the dataset
- creating machine learning pipelines for various regression tasks

- Setting:
- Version: 3.5.1

Introduction

Dataset

- Source: https://www.kaggle.com/datasets/balabaskar/historical-weather-data-of-all-country-capitals
- 324647 rows of weather data
- 11 columns:

date	The date where the weather data is recorded					
country	The name of the country					
city	The name of the city					
Latitude	The latitude value of the city location					
Longitude	itude The longitude value of the city location					
tavg	The average air temperature in °C					
tmin	in The minimum air temperature in °C					
tmax	The maximum air temperature in °C					
wdir	rdir The average wind direction in degrees (°)					
wspd	The average wind speed in km/h					
pres	pres The average sea-level air pressure in hPa					

Dataset

- 1745 distinct dates
- 193 distinct countries
- 191 distinct cities

```
Number of distinct dates:

+-----+

|count(DISTINCT date)|

+-----+

|1745 |

+-----+
```

```
Number of distinct countries:

+-----

|count(DISTINCT country)|

+-----

|193 |

+-----
```

```
Number of distinct cities:
+------
|count(DISTINCT city)|
+------
|191 |
+-----
```

Data Cleaning/Preprocessing

Data Preprocessing

• Convert the data type of some of the columns in the dataset

- string -> date: "date"
- string -> integer: "wdir"
- string -> double: "Latitude", "Longitude", "tavg", "tmin", "tmax", "wspd", "pres"

```
root
 -- date: date (nullable = true)
  -- country: string (nullable = true)
  -- city: string (nullable = true)
    Latitude: double (nullable = true)
    Longitude: double (nullable = true)
  -- tavg: double (nullable = true)
    tmin: double (nullable = true)
    tmax: double (nullable = true)
  -- wdir: integer (nullable = true)
    wspd: double (nullable = true)
 -- pres: double (nullable = true)
```

Data Cleaning

- Remove the rows of data that contains any NULL values in any column
- 277551 rows of data remained after data cleaning

summary	country	city	Latitude	Longitude	tavg	tmin	tmax	wdir	wspd	pres	
			++					+			
count	277551	277551	277551	277551	277551	277551	277551	277551	277551	277551	
mean	NULL	NULL	20.756738623535117	12.14380587077041	20.817601089529468 1	17.223447222312295	24.816747192407835	164.4588454013857	13.446140348980911	1013.2937553818939	
stddev	NULL	NULL	25.993528595821584	72.82123478430485	9.350438694717448	9.403817706778403	9.85308045415029	102.06904494374895	7.332545983445811	7.194732279250438	
min	Abkhazia A	Nbu Dhabi	-54.43	-176.176447	-29.6	-31.7	-26.0	0	0.0	922.8	
max	Western Sahara	Zagreb	78.062	179.198128	44.1	38.5	89.6	360	74.1	1058.0	
++			: ++	+		·					

- Characteristics of typhoon:
 - o uncommonly high wind speed on a certain date
 - o uncommonly low sea-level air pressure on a certain date

• Selected Hong Kong and Fiji as the tropical countries/cities

- Definition of typhoon(s) possibly occurred on a certain date:
 - wspd: >= 1.5 times the standard deviation greater than the mean of wspd
 - o pres: <=1.5 times the standard deviation smaller than the mean of pres

Hong Kong:

• Fiji:

- Key observations:
 - Hong Kong: number of days that strong typhoons occur is mostly at least 3 days: per year
 - Hong Kong: an overall increase in the maximum wind speed throughout 2018 to 2022, meaning a stronger typhoon in recent years
 - Fiji: number of days that strong typhoons that occur is no more than 3 days per year
 - Fiji: an overall increase in the number of days the strong typhoon occur
 - Fiji: even though the maximum wind speed in each year alternate each year, this still shows an overall increase in the maximum wind speed, meaning a stronger typhoon in recent years

• Short summary: intensity of the typhoon is becoming stronger and stronger.

Global Warming

Global warming

- Scatter graph of tavg of different time, not intuitive
- Changes to line chart of some selected places, did show increase in temperature, but...

Global warming may not be the major reason for the previous countries

• La Niña cause a colder eastern Pacific and a warmer western Pacific

- La Niña cause a colder eastern Pacific and a warmer western Pacific
- happened in 2020-2022
- The opposite event, El Niño happened during 2018-2019
- Eastern pacific follow the La Niña and El Niño
- Western pacific area temperature keep increase

Overall, the temperature keep increase

Linear Regression & Random Forest for Temperature Prediction

Regression problem on predicting temperature

- Feature column: ["Latitude", "Longitude", "wdir", "wspd", "pres", "date"]
- Using timestamp to convert date column
- User float to convert other columns
- RMSE:8.03(linear regression)4.46(random forest)

The temperature not heavily dependent on year but on month

- Use month of the date to encode the date column
- RMSE:7.99(linear regression)3.35(random forest)
- Getting lower RMSE score
- The change of percentage of absolute difference of (0-3)
 - o 0.2% increase in linear regression
 - o 7.1% increase in random forest

Extreme Weather

Extreme Weather

Features:

- Severe weather or climate conditions
- Unusual
- Devastating impact on society
- Caused by climate change

Our Analysis:

- Extremely hot weather (Heat Waves)
- Extremely cold weather (Cold Waves)
- Studied Greenland and Russia in Polar Region
- Studied India and Burkina Faso in Tropical Region

Occurrence of Extreme Weather

The increase in the number of days that extreme hot/cold weather has suggested that heat waves and cold waves are more frequent and occur for a longer period

Trend of Extreme Weather Temperature

The increase in maximum temperatures in both Polar Countries and Tropical Countries has shown that extreme heat weather has higher and higher temperatures.

The decreasing minimum temperatures in both Polar Countries and Tropical Countries have also shown that we are having much colder temperatures in extreme cold weather.

Reference

Reference

[1]http://www.bom.gov.au/climate/enso/#tabs=Pacific-Ocean&pacific=History&enso-impacts=La-Ni%C3%Bla-impacts

The End