An introduction to GAM(M)s

Stefano Coretta

12/07/2018

Some (fairly) linear data...

- ▶ A general formula: $y = \beta_0 + \beta_1 x$
 - y is the **outcome variable**
 - x is the predictor
 - \triangleright β_0 is the **intercept**
 - $ightharpoonup eta_1$ is the **slope**
- ▶ We know x and y
 - we need to estimate β_0 , β_1
- ► We can add more predictors
 - $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$

code in R

```
lm(y ~ x, data = sim_traj)
```

estimated intercept and slope

Is it linear?

How to account for non-linearity in a linear model?

- ► Use higher-degree polynomials
 - quadratic: $y = \beta_0 + \beta_1 x + \beta_2 x^2$
 - cubic: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$
 - nth: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + ... + \beta_n x^n$

