PROGRAMMING IN JAVA

BCA-DS-402

Manav Rachna International Institute of Research and Studies School of Computer Applications

Department of Computer Applications

Submitted By		
Student Name	Hardik Linzara	
Roll No	23/SCA/BCA(DS&BDA)/013	
Programme	Bachelor of Computer Applications	
Semester	4th Semester	
Section/Group	4 - E	
Department	School of Computer Applications	
Batch	2023-26	
	Submitted To	
Faculty Name	Dr. Priyanka Sharma	

SCHOOL OF COMPUTER APPLICATIONS

INDEX

S.No	Program	Signature
1	Hello World Program	
2	Sum of Two Numbers	
3	Check Even or Odd	
4	Sum and Average of 5 Numbers	
5	Factorial of a number	
6	Fibonacci Series	
7	Reverse a Number	
8	Check Palindrome (Number)	
9	Simple Calculator	
10	Check Prime Number	
11	Check Armstrong Number	
12	Largest of two numbers using ternary operator	
13	Multiplication Table	
14	Sum and Average of Array Elements	
15	Reverse a String	
16	Factorial using Recursion	
17	Sort an Array	
18	Check Palindrome (String)	
19	Count Vowels and Consonants	
20	Simple Banking System	
21	Type Casting Demonstration	

22	Generate Prime Numbers in a Range	
23	Simple Class with Methods	
24	Class with Parameterized Constructor	
25	Find Area of Rectangle	
26	Bank Account with Deposit & Withdraw Methods	
27	Method Overloading	
28	Static Methods Demonstration	
29	Method Overriding	
30	Getters and Setters	
31	Class with Multiple Methods	
32	Object Passing in Methods	
33	Area & Perimeter using Super & This	
34	Counting Objects using Static Members	
35	Abstract Classes & Methods	
36	Multilevel Inheritance	
37	Multiple Inheritance using Interfaces	

1. Write a java program to print hello world.

```
Ans.) public class Main {
   public static void main(String[] args) {
      System.out.println("Hello World!");
   }
}
```

```
Output

Hello World!

=== Code Execution Successful ===
```

2. Java Program to take input from the user and print the sum of two numbers.

```
Ans.) import java.util.Scanner;
public class Main {
    public static void main(String[] args) {
        Scanner scanner=new Scanner(System.in);
        System.out.println("Enter two numbers");
        int a=scanner.nextInt();
        int b=scanner.nextInt();
        int sum=a+b;
        System.out.println("Sum is: " + sum);
    }
}
```

```
Output
```

```
Enter two numbers

5

9

Sum is: 14

=== Code Execution Successful ===
```

3. Create a java program to check whether a number entered by the user is even or odd.

```
Ans.) import java.util.Scanner;
public class Main {
    public static void main(String[] args) {
        Scanner scanner=new Scanner(System.in);
        System.out.println("Enter a number");
        int a=scanner.nextInt();
        if(a%2==0)
            System.out.println(a+" is even");
        else
            System.out.println(a+" is odd");
        }
}
```

```
Output

Enter a number

8

8 is even

=== Code Execution Successful ===
```

4. Create a java program to print the average and sum of 5 numbers entered by the user.

```
Ans.) import java.util.Scanner;
public class Main {
  public static void main(String[] args) {
     Scanner scanner=new Scanner(System.in);
     System.out.println("Enter 5 numbers");
     int a=scanner.nextInt();
     int b=scanner.nextInt();
     int c=scanner.nextInt();
     int d=scanner.nextInt();
     int e=scanner.nextInt();
     int sum=a+b+c+d+e;
     int average=sum/5;
     System.out.println("Sum is: "+sum);
      System.out.println("Average is: "+average);
  }
}
```

```
Output
Enter 5 numbers
7
```

5. Program to calculate the factorial of a number.

```
Ans.) import java.util.Scanner;
public class Main {
    public static void main(String[] args) {
        Scanner scanner=new Scanner(System.in);
        int factorial=1;
        System.out.println("Enter a number");
        int a=scanner.nextInt();
        for(int i=a;i>=1;i--)
        {
            factorial=factorial*i;
        }
        System.out.println("Factorial is: "+factorial);
        }
}
```

```
Enter a number

5
Factorial is: 120

=== Code Execution Successful ===
```

Output

6. Program to print Fibonacci series up to n terms.

```
Ans.) import java.util.Scanner;
public class Main {
   public static void main(String[] args) {
      int a=0,b=1,c;
      Scanner scanner=new Scanner(System.in);
      System.out.println("Enter a number");
      int n=scanner.nextInt();
      System.out.print(a);
      System.out.print(b);
      for(int i=3;i<=n;i++)
      {
            c=a+b;
      }
}</pre>
```

```
System.out.print(c);
a=b;
b=c;
}
}

Output

Enter a number
8
011235813
=== Code Execution Successful ===
```

7. Program to reverse a number.

```
Ans.) import java.util.Scanner;
public class ReverseNumber {
   public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter a number: ");
        int number = scanner.nextInt();
        int reversed = 0;
        while (number != 0) {
            int digit = number % 10;
            reversed = reversed * 10 + digit;
            number /= 10;
        }
        System.out.println("Reversed Number: " + reversed);
        }
}
```

```
Output
```

```
Enter a number: 78925
Reversed Number: 52987
=== Code Execution Successful ===
```

8.) Program to check if a number is palindrome.

```
Ans.) import java.util.Scanner;
public class PalindromeCheck {
  public static void main(String[] args) {
     Scanner scanner = new Scanner(System.in);
     System.out.print("Enter a number: ");
     int number = scanner.nextInt();
     int original = number;
     int reversed = 0;
     while (number != 0) {
       int digit = number % 10;
       reversed = reversed * 10 + digit;
       number = 10:
     if (original == reversed) {
       System.out.println("The number is a palindrome.");
     } else {
       System.out.println("The number is not a palindrome.");
}
```

```
Output

Enter a number: 8118

The number is a palindrome.

=== Code Execution Successful ===
```

9.) Program for a simple calculator.

```
Ans.) import java.util.Scanner;
public class SimpleCalculator {
   public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.println("Enter first number: ");
        double num1 = scanner.nextDouble();
        System.out.println("Enter an operator (+, -, *, /): ");
        char operator = scanner.next().charAt(0);
        System.out.println("Enter second number: ");
        double num2 = scanner.nextDouble();
        double result;
        switch (operator) {
            case '+':
                 result = num1 + num2;
```

```
break:
       case '-':
         result = num1 - num2;
         break;
       case '*':
         result = num1 * num2;
         break;
       case '/':
         if (num2 != 0) {
            result = num1 / num2;
         } else {
            System.out.println("Division by zero is not allowed.");
            scanner.close();
            return;
         break;
       default:
         System.out.println("Invalid operator.");
         scanner.close();
         return;
     System.out.println("The result is: " + result);
  }
}
  Output
Enter first number:
Enter an operator (+, -, *, /):
Enter second number:
15
The result is: 0.533333333333333333
=== Code Execution Successful ===
```

10.) Program to check if a number is prime.

```
Ans.) import java.util.Scanner;
public class PrimeCheck {
   public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter a number: ");
        int number = scanner.nextInt();
        boolean isPrime = true;
```

```
if (number <= 1) {
        isPrime = false;
} else {
        for (int i = 2; i <= Math.sqrt(number); i++) {
            if (number % i == 0) {
                isPrime = false;
                break;
            }
        }
        if (isPrime) {
                System.out.println("The number is prime.");
        } else {
                      System.out.println("The number is not prime.");
        }
    }
}</pre>
```

Output

```
Enter a number: 5
The number is prime.
=== Code Execution Successful ===
```

11.) Program to check if a number is an armstrong number.

```
Ans.) import java.util.Scanner;
public class ArmstrongNumber {
  public static void main(String[] args) {
     Scanner scanner = new Scanner(System.in);
     System.out.print("Enter a number: ");
     int number = scanner.nextInt();
     int original = number;
     int sum = 0;
     while (number != 0) {
       int digit = number % 10;
       sum += Math.pow(digit, 3);
       number /= 10;
     if (sum == original) {
       System.out.println("The number is an Armstrong number.");
     } else {
       System.out.println("The number is not an Armstrong number.");
```

```
Output

Enter a number: 153
The number is an Armstrong number.

=== Code Execution Successful ===
```

12.) Program to find the largest of two numbers using ternary operators.

```
Ans.) import java.util.Scanner;
public class LargestOfTwo {
   public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter the first number: ");
        int num1 = scanner.nextInt();
        System.out.print("Enter the second number: ");
        int num2 = scanner.nextInt();

        int largest = (num1 > num2) ? num1 : num2;
        System.out.println("The largest number is: " + largest);
      }
}
```

```
Output

Enter the first number: 5
Enter the second number: 7
The largest number is: 7

=== Code Execution Successful ===
```

13.) Program to print multiplication table.

```
Ans.) import java.util.Scanner;
public class MultiplicationTable {
   public static void main(String[] args) {
      Scanner scanner = new Scanner(System.in);
```

```
System.out.print("Enter a number: ");
int number = scanner.nextInt();

for (int i = 1; i <= 10; i++) {
        System.out.println(number + " x " + i + " = " + (number * i));
    }
}</pre>
}
```

```
Output

Enter a number: 12

12 x 1 = 12

12 x 2 = 24

12 x 3 = 36

12 x 4 = 48

12 x 5 = 60

12 x 6 = 72

12 x 7 = 84

12 x 8 = 96

12 x 9 = 108

12 x 10 = 120

=== Code Execution Successful ===
```

14.) Program to calculate sum and average of array elements.

```
Ans.) import java.util.Scanner;
public class SumAndAverage {
   public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter the number of elements in the array: ");
        int n = scanner.nextInt();
        int[] array = new int[n];
        System.out.println("Enter the elements of the array:");
        for (int i = 0; i < n; i++) {
            array[i] = scanner.nextInt();
        }
        int sum = 0;
        for (int i = 0; i < n; i++) {
            sum += array[i];
        }
        double average = (double) sum / n;</pre>
```

```
System.out.println("Sum of array elements: " + sum);
    System.out.println("Average of array elements: " + average);
  }
}
  Output
Enter the number of elements in the array: 5
Enter the elements of the array:
4
6
7
8
9
Sum of array elements: 34
Average of array elements: 6.8
=== Code Execution Successful ===
15.) Program to reverse a string.
Ans.) import java.util.Scanner;
public class ReverseString {
 public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
     System.out.print("Enter a string: ");
    String input = scanner.nextLine();
    String reversed = "";
    for (int i = input.length() - 1; i >= 0; i--) {
       reversed += input.charAt(i);
    System.out.println("Reversed String: " + reversed);
}
    Output
  Enter a string: manavrachna
  Reversed String: anhcarvanam
  === Code Execution Successful ===
```

16.) Program to find factorial of a number using recursion.

```
Ans.) import java.util.Scanner;
public class FactorialRecursion {
   public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter a number: ");
        int number = scanner.nextInt();
        long factorial = findFactorial(number);
        System.out.println("Factorial of " + number + " is: " + factorial);
    }
   public static long findFactorial(int n) {
        if (n == 0 || n == 1) {
            return 1;
        }
        return n * findFactorial(n - 1);
    }
}
```

```
Output

Enter a number: 8
Factorial of 8 is: 40320

=== Code Execution Successful ===
```

17.) Program to sort an array in ascending order.

```
Ans.) import java.util.Scanner;
import java.util.Arrays;
public class SortArray {
  public static void main(String[] args) {
     Scanner scanner = new Scanner(System.in);
     System.out.print("Enter the number of elements in the array: ");
     int n = scanner.nextInt();
     int[] array = new int[n];
     System.out.println("Enter the elements of the array:");
     for (int i = 0; i < n; i++) {
       array[i] = scanner.nextInt();
     Arrays.sort(array);
     System.out.println("Array in ascending order:");
     for (int num: array) {
        System.out.print(num + " ");
  }
}
```

```
Output
Enter the number of elements in the array: 5
Enter the elements of the array:
2
8
9
7
4
Array in ascending order:
2 4 7 8 9
=== Code Execution Successful ===
18.) Program to check palindrome for a string.
Ans.) import java.util.Scanner;
public class PalindromeString {
  public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    System.out.print("Enter a string: ");
    String input = scanner.nextLine();
    String reversed = new StringBuilder(input).reverse().toString();
    if (input.equalsIgnoreCase(reversed)) {
       System.out.println("The string is a palindrome.");
       System.out.println("The string is not a palindrome.");
  }
}
  Output
Enter a string: mvmvmvm
The string is a palindrome.
=== Code Execution Successful ===
```

19.) Program to count vowels and consonants in a string.

```
Ans.) import java.util.Scanner;
public class VowelConsonantCount {
  public static void main(String[] args) {
     Scanner scanner = new Scanner(System.in);
     System.out.print("Enter a string: ");
     String input = scanner.nextLine().toLowerCase();
     int vowelCount = 0;
     int consonantCount = 0:
     for (char c : input.toCharArray()) {
       if (c >= 'a' \&\& c <= 'z') {
          if (c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u') {
             vowelCount++;
          } else {
             consonantCount++;
       }
     System.out.println("Number of vowels: " + vowelCount);
     System.out.println("Number of consonants: " + consonantCount);
  }
}
```

```
Output

Enter a string: manavrachna
Number of vowels: 4
Number of consonants: 7

=== Code Execution Successful ===
```

20.) Program to implement a simple banking system.

```
Ans.) import java.util.Scanner;
public class SimpleBankingSystem {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        double balance = 0.0;
        while (true) {
            System.out.println("\n--- Banking System ---");
            System.out.println("1. Deposit");
            System.out.println("2. Withdraw");
            System.out.println("3. Check Balance");
            System.out.println("4. Exit");
```

```
System.out.print("Choose an option: ");
     int choice = scanner.nextInt();
     switch (choice) {
       case 1:
          System.out.print("Enter the amount to deposit: ");
          double depositAmount = scanner.nextDouble();
          if (depositAmount > 0) {
            balance += depositAmount;
             System.out.println("Amount deposited successfully. Current balance: " + balance);
             System.out.println("Invalid deposit amount.");
          break;
       case 2:
          System.out.print("Enter the amount to withdraw: ");
          double withdrawalAmount = scanner.nextDouble();
          if (withdrawalAmount > 0 && withdrawalAmount <= balance) {
            balance -= withdrawalAmount:
             System.out.println("Amount withdrawn successfully. Current balance: " + balance);
          } else if (withdrawalAmount > balance) {
             System.out.println("Insufficient balance.");
          } else {
             System.out.println("Invalid withdrawal amount.");
          break;
       case 3:
          System.out.println("Your current balance is: " + balance);
          break;
       case 4:
          System.out.println("Thank you!");
          scanner.close();
          return;
       default:
          System.out.println("Invalid option. Please choose again.");
     }
  }
}
```

Output

```
--- Banking System ---
1. Deposit
2. Withdraw
3. Check Balance
4. Exit
Choose an option: 1
Enter the amount to deposit: 400
Amount deposited successfully. Current balance: 400.0
--- Banking System ---
1. Deposit
2. Withdraw
3. Check Balance
4. Exit
Choose an option: 3
Your current balance is: 400.0
--- Banking System ---
1. Deposit
2. Withdraw
3. Check Balance
4. Exit
Choose an option: 2
Enter the amount to withdraw: 200
Amount withdrawn successfully. Current balance: 200.0
--- Banking System ---
1. Deposit
2. Withdraw
3. Check Balance
4. Exit
Choose an option: 3
Your current balance is: 200.0
```

21.) Program to demonstrate type casting.

```
Ans.) public class TypeCastingDemo {
    public static void main(String[] args) {
        int intValue = 42;
        double doubleValue = intValue;
        System.out.println("Implicit Type Casting (int to double): " + doubleValue);
        double originalDouble = 42.99;
        int narrowedInt = (int) originalDouble;
        System.out.println("Explicit Type Casting (double to int): " + narrowedInt);
        int num1 = 10;
        int num2 = 3;
        double result = (double) num1 / num2;
        System.out.println("Type Casting in Expressions (int to double): " + result);
    }
}
```

22.) Program to generate prime numbers between 1 and a given number.

```
for (int i = 2; i <= Math.sqrt(number); i++) {
       if (number \% i == 0) {
         return false;
       }
    return true;
}
  Output
Enter a number: 30
Prime numbers between 1 and 30:
2 3 5 7 11 13 17 19 23 29
=== Code Execution Successful ===
23.) Program to demonstrate a simple class with methods.
Ans.) public class newclass {
  public int add(int num1, int num2) {
    return num1 + num2;
  }
  public void exit() {
    System.out.println("Exit");
  public static void main(String[] args) {
    newclass newclass = new newclass();
    int sum = newclass.add(10, 20);
    System.out.println("The sum of 10 and 20 is: " + sum);
    newclass.exit();
  }
}
  Output
The sum of 10 and 20 is: 30
Exit
=== Code Execution Successful ===
```

24.) Program for a class with parameterized constructor.

```
Ans.) public class ParameterizedConstructor {
    String name;
    int age;
    public ParameterizedConstructor(String name, int age) {
        this.name = name;
        this.age = age;
    }
    public void displayInfo() {
        System.out.println("Name: " + name);
        System.out.println("Age: " + age);
    }
    public static void main(String[] args) {
        ParameterizedConstructor person = new ParameterizedConstructor("Chandler", 25);
        person.displayInfo();
    }
}
```

Output Name: Chandler Age: 25 === Code Execution Successful ===

25.) Program to find area of rectangle using methods.

```
Ans.) import java.util.Scanner;
public class RectangleArea {
    public double calculateArea(double length, double width) {
        return length * width;
    }
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter the length of the rectangle: ");
        double length = scanner.nextDouble();
        System.out.print("Enter the width of the rectangle: ");
        double width = scanner.nextDouble();
        RectangleArea rectangle = new RectangleArea();
        double area = rectangle.calculateArea(length, width);
        System.out.println("Area of the rectangle: " + area);
    }
}
```

```
Output
```

```
Enter the length of the rectangle: 6
Enter the width of the rectangle: 8
Area of the rectangle: 48.0
```

26.) Program for Bank account class with deposit and withdraw methods.

```
Ans.) public class BankAccount {
  private double balance;
  public BankAccount(double initialBalance) {
     this.balance = initialBalance;
  public void deposit(double amount) {
     if (amount > 0) {
       balance += amount;
       System.out.println("Successfully deposited: " + amount);
     } else {
       System.out.println("Invalid deposit amount.");
  public void withdraw(double amount) {
     if (amount > 0 && amount <= balance) {
       balance -= amount;
       System.out.println("Successfully withdrawn: " + amount);
     } else if (amount > balance) {
       System.out.println("Insufficient balance.");
     } else {
       System.out.println("Invalid withdrawal amount.");
  public double getBalance() {
     return balance:
  public static void main(String[] args) {
     BankAccount account = new BankAccount(1000.0);
     account.deposit(500.0);
     System.out.println("Current balance: " + account.getBalance());
     account.withdraw(300.0);
     System.out.println("Current balance: " + account.getBalance());
     account.withdraw(1500.0);
     System.out.println("Current balance: " + account.getBalance());
  }
}
```

Output

```
Successfully deposited: 500.0
Current balance: 1500.0
Successfully withdrawn: 300.0
Current balance: 1200.0
Insufficient balance.
Current balance: 1200.0

=== Code Execution Successful ===
```

27.) Program to demonstrate method overloading.

```
Ans.) public class MethodOverloading {
   public void display(int number) {
        System.out.println("Integer: " + number);
   }
   public void display(String text) {
        System.out.println("String: " + text);
   }
   public void display(double value) {
        System.out.println("Double: " + value);
   }
   public static void main(String[] args) {
        MethodOverloading example = new MethodOverloading();
        example.display(25);
        example.display("Hello, World!");
        example.display(12.34);
   }
}
```

Output Integer: 25 String: Hello, World! Double: 12.34

28.) Program to demonstrate static methods.

=== Code Execution Successful ===

```
Ans.) public class StaticMethod{
    public static int addNumbers(int a, int b) {
        return a + b;
    }
    public static void displayMessage() {
        System.out.println("Static method called");
    }
    public static void main(String[] args) {
        int sum = StaticMethod.addNumbers(10, 20);
        System.out.println("Sum of 10 and 20 is: " + sum);
        StaticMethod.displayMessage();
    }
}
Output

Sum of 10 and 20 is: 30
Static method called

=== Code Execution Successful ===
```

29.) Program to demonstrate method overriding.

```
Ans.) class Animal {
  public void move() {
    System.out.println("Animal is moving.");
  public void eat() {
    System.out.println("Animal is eating.");
}
class Dog extends Animal {
  @Override
  public void move() {
    System.out.println("Dog is running.");
  public void bark() {
    System.out.println("Dog is barking.");
  }
}
public class Main {
  public static void main(String[] args) {
    Dog d = new Dog();
    d.move();
    d.eat();
    d.bark();
}
 Dog is running.
 Animal is eating.
 Dog is barking.
 ...Program finished with exit code 0
 Press ENTER to exit console.
```

30.) Program to demonstrate getters and setters.

```
Ans.) public class Person {
   private String name;
   private int age;
   public String getName() {
      return name;
   }
   public void setName(String name) {
      this.name = name;
   }
   public int getAge() {
      return age;
   }
}
```

```
public void setAge(int age) {
    if (age > 0) {
        this.age = age;
    } else {
        System.out.println("Age must be a positive number.");
    }
}

public static void main(String[] args) {
    Person person = new Person();
    person.setName("Chandler");
    person.setAge(25);
    System.out.println("Name: " + person.getName());
    System.out.println("Age: " + person.getAge());
}
```

Output Name: Chandler Age: 25

31.) Program to demonstrate class with multiple methods.

=== Code Execution Successful ===

```
Ans.) public class Person {
  private String name;
  private int age;
  public String getName() {
     return name;
  public void setName(String name) {
     this.name = name;
  public int getAge() {
     return age;
  public void setAge(int age) {
     if (age > 0) {
       this.age = age;
     } else {
       System.out.println("Age must be a positive number.");
     }
  public static void main(String[] args) {
     Person person = new Person();
```

```
person.setName("Chandler");
  person.setAge(25);
  System.out.println("Name: " + person.getName());
  System.out.println("Age: " + person.getAge());
}
```

```
Output

Name: Chandler

Age: 25

=== Code Execution Successful ===
```

32.) Program to demonstrate object passing in methods.

```
Ans.) class Rectangle {
  private double length;
  private double width;
  public Rectangle(double length, double width) {
     this.length = length;
     this.width = width;
  }
  public double calculateArea() {
     return length * width;
  public void displayDimensions() {
     System.out.println("Length: " + length + ", Width: " + width);
  }
}
public class ObjectPassing {
  public void printRectangleDetails(Rectangle rectangle) {
     rectangle.displayDimensions();
     System.out.println("Area: " + rectangle.calculateArea());
  public static void main(String[] args) {
     Rectangle rect = new Rectangle(10.5, 5.0);
     ObjectPassing objPass = new ObjectPassing();
     objPass.printRectangleDetails(rect);
  }
}
```

```
Length: 10.5, Width: 5.0
Area: 52.5
...Program finished with exit code 0
Press ENTER to exit console.
```

33.) Program to create a simple class to find out the area and perimeter of rectangle using super and this keyword.

```
Ans.) class Shape {
  protected double length;
  protected double width;
  public Shape(double length, double width) {
     this.length = length;
     this.width = width;
  public void displayDimensions() {
     System.out.println("Length: " + this.length + ", Width: " + this.width);
  }
}
class Rectangle extends Shape {
  public Rectangle(double length, double width) {
     super(length, width); // Calls the constructor of the parent class
  public double calculateArea() {
     return this.length * this.width; // Refers to the current object's variables
  public double calculatePerimeter() {
     return 2 * (this.length + this.width); // Refers to the current object's variables
  public void displayDetails() {
     super.displayDimensions(); // Calls the method from the parent class
     System.out.println("Area: " + calculateArea());
     System.out.println("Perimeter: " + calculatePerimeter());
  }
public class Main {
  public static void main(String[] args) {
     Rectangle rectangle = new Rectangle(10.5, 5.0);
     rectangle.displayDetails();
  }
}
Length: 10.5, Width: 5.0
Area: 52.5
Perimeter: 31.0
 ... Program finished with exit code 0
Press ENTER to exit console.
```

34.) Program to count the number of objects created for class using static member functions.

```
Ans.) public class ObjectCounter {
  private static int count = 0;
  public ObjectCounter() {
    count++;
  public static int getObjectCount() {
    return count:
  public static void main(String[] args) {
    ObjectCounter obj1 = new ObjectCounter();
    ObjectCounter obj2 = new ObjectCounter();
    ObjectCounter obj3 = new ObjectCounter();
    System.out.println("Number of objects created: " + ObjectCounter.getObjectCount());
  }
}
Number of objects created: 3
 .. Program finished with exit code 0
Press ENTER to exit console.
```

35.) Program to design a class using abstract methods and abstract classes.

```
Ans.) abstract class Shape {
  public abstract double calculateArea():
  public abstract double calculatePerimeter();
  public void displayDetails() {
     System.out.println("This is a shape.");
  }
}
class Rectangle extends Shape {
  private double length;
  private double width;
  public Rectangle(double length, double width) {
     this.length = length;
     this.width = width;
  @Override
  public double calculateArea() {
     return length * width;
   @Override
```

```
public double calculatePerimeter() {
     return 2 * (length + width);
  @Override
  public void displayDetails() {
     System.out.println("Rectangle:");
     System.out.println("Length: " + length + ", Width: " + width);
     System.out.println("Area: " + calculateArea());
     System.out.println("Perimeter: " + calculatePerimeter());
  }
}
public class Main {
  public static void main(String[] args) {
     Rectangle rectangle = new Rectangle(10.5, 5.0);
     rectangle.displayDetails();
  }
}
Rectangle:
Length: 10.5, Width: 5.0
Area: 52.5
Perimeter: 31.0
 ...Program finished with exit code 0
Press ENTER to exit console.
36.) Program to demonstrate the use of multilevel inheritance.
Ans.) class Animal {
  public void eat() {
     System.out.println("This animal eats food.");
  }
}
class Mammal extends Animal {
  public void walk() {
     System.out.println("This mammal walks on land.");
  }
}
class Dog extends Mammal {
  public void bark() {
     System.out.println("The dog barks.");
  }
public class MultilevelInheritance {
  public static void main(String[] args) {
     Dog dog = new Dog();
     dog.eat();
     dog.walk();
```

```
dog.bark();
  }
}
This animal eats food.
This mammal walks on land.
The dog barks.
 ...Program finished with exit code 0
 Press ENTER to exit console.
37.) Program to demonstrate the use of multiple inheritance.
Ans.) interface Animal {
  void eat();
interface Bird {
  void fly();
class Bat implements Animal, Bird {
  @Override
  public void eat() {
     System.out.println("Bat eats insects.");
  @Override
  public void fly() {
     System.out.println("Bat flies in the night.");
  }
public class MultipleInheritance{
  public static void main(String[] args) {
     Bat bat = new Bat();
     bat.eat();
     bat.fly();
  }
```

```
Bat eats insects.
Bat flies in the night.
...Program finished with exit code 0
Press ENTER to exit console.
```

}