Eyeball

้ เครื่องคอมพิวเตอร์ในโบราณกาลมักมีโปรแกรมแสดงตาสองดวงที่มองตามเมาส์ (เมาส์เลื่อน ลูกตาดำก็มองตาม) ดังตัวอย่างที่แสดงในรูปข้างล่างนี้

สิ่งที่ต้องคำนวณหา คือ จุดศูนย์กลางของตาดำ (โจทย์ข้อนี้สนใจแค่ลูกตาลูกเดียว และกรณีเมาส์อยู่นอกลูกตาเท่านั้น) กำหนดให้

- x_m และ y_m เป็นตำแหน่งของตัวชี้เมาส์
- ullet x_e และ y_e เป็นจุดศูนย์กลางของลูกตา
- ullet r_e และ r_p คือรัศมีของลูกตาและตาดำตามลำดับ
- ullet ____ วงกลม P (วงกลมเส้นไข่ปลาในรูปช้างล่างนี้) คือวงกลมที่มีจุดศูนย์กลางที่ ($x_e,\ y_e$) มีรัศมี (r_e-r_p)
- ullet จุดศูนย์กลางของตาดำ x_p และ y_p หาได้จากการลากเส้นตรงจาก ($x_e,\ y_e$) ไปยัง ($x_m,\ y_m$) แล้วดูว่า ตัดเส้นรอบวงของวงกลม P ที่ใด
- ullet ข้อแนะนำ การคำนวณจุดตัด แค่หาค่าของ a และ b ในรูปทางขวา ซึ่งสามารถได้จากค่าของ $A,\,B,\,C$ และ c ซึ่งเป็นค่าที่รู้หมดแล้ว ให้สังเกตรูปข้างล่างขวาสุด สามเหลี่ยมเล็กสีเทา มีสัดส่วนของด้านเหมือนกับ สามเหลี่ยมที่ครอบอยู่ นั่นคือ $\dfrac{a}{A}=\dfrac{b}{B}=\dfrac{c}{C}$

จงเขียนโปรแกรมรับค่าของ x_e , y_e , r_e , r_p , x_m , และ y_m (เป็นจำนวนเต็ม) ที่อธิบายข้างบน แล้วคำนวณและแสดงพิกัดของตาดำ x_p และ y_p (ให้ แสดงเป็นจำนวนเต็ม โดยปัดเศษด้วย **round (x)**) คำเตือน: ถึงแม้ว่าข้อมูลขาเข้าและผลลัพธ์เป็นจำนวนเต็ม แต่การคำนวณต้องใช้จำนวนจริง

ตัวอย่าง	
Input (จากแป้นพิมพ์)	Output (ทางจอภาพ)
50 50 5 1 100 50	54 50
50 50 5 1 50 20	50 46
50 50 5 1 10 10	47 47
50 50 5 1 20 20	47 47