Blade design according to Schmitz

Planform

$$t(r) = \frac{16 \cdot \pi \cdot r}{N \cdot c_l} \cdot \sin^2\left(\frac{1}{3} \cdot \alpha_1\right)$$

Twist

$$\alpha(r) = \frac{2}{3} \cdot \alpha_1$$

$$\alpha_{wist}(r) = \alpha(r) - \alpha_{A}$$

where

$$\alpha_1 = \arctan\left(\frac{R}{\lambda_A \cdot r}\right)$$

where

 α : inflow angle

 $lpha_{\scriptscriptstyle A}$: angle of attack

 $lpha_{\scriptscriptstyle wist}$: blade twist

 λ_{A} : design tip speed ratio

N : number of blades

R: rotor radius

 c_l : lift coefficient

r: radial distance of the element station along the blade

t: center chord length

Blade design (Betz)

Blade design (Schmitz)

Implementation in NREL codes