Calculus 1510 Tutorial #5

1. Find $\frac{dy}{dx}$ if: DO NOT SIMPLIFY.

(a)
$$y \tan x^2 = x \tan y^2$$

(a)
$$y \tan x^2 = x \tan y^2$$
 (b) $y = \sin \left(\sin \left(\sin \left(e^{x^2 + x} \right) \right) \right)$

(c)
$$y = \cos x (\cos x^3)$$
 (d) $y = \cos (\cos x^3)$

(d)
$$y = \cos(\cos x^3)$$

(e)
$$y = \log_5 \frac{\sin x}{x}$$

(e)
$$y = \log_5 \frac{\sin x}{x}$$
 (f) $y = e^{5x} \ln(2 - x^2)$

2. Find f'(1) if f(1) = 0 and $f(x) + x \cos f(x) = x^2$.

3. Find the limit, if it exists.

(a)
$$\lim_{x \to 0} \frac{\tan(6x)}{\sin(2x)}$$

(b)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{\cos(2x)}$$
 (c) $\lim_{x \to 1} \frac{x^2 + x - 2}{\sin(x - 1)}$

(c)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{\sin(x - 1)}$$

4. Find $f^{(21)}(x)$ if $f(x) = \sin(2x)$

5. Find
$$\frac{d^n y}{dx^n}$$
 if $y = xe^x$.

6. The tangent line to the graph of $f(x) = \sqrt[3]{x-2}$ at the point T(3,1) intersects the graph of f at another point P. Find the coordinates of P.