Modelado
matemático, basado
en cadenas de
Markov, para
servicios de video en
vivo soportados por
redes híbridas P2PCDN

Presentan:

- Muñoz Ruiz Ulises
- Ortiz Islas José Manuel

Video en vivo

- Es dinámico
- Fases captura, procesamiento y distribución
- Está contenido en una hiperventana
- Ventanas de 0 a C
- Chunks

Archivo de Video

Características

No es un simulador

Es un modelo de un sistema de distribución de video en vivo

Únicamente se analiza el proceso de descarga de un video en vivo

Diseñado para condiciones de abundancia y penuria

Los parámetros de evaluación son tomados de mediciones de sistemas reales

Cadena de Markov para servicios de video en vivo (Modelo)

Eventos

Conexión de un peer

$$\{X_c, X_{c-1}, \dots, X_i, X_{i-1}, \dots, X_0\}$$

$$\xrightarrow{\lambda} \{X_c, X_{c-1}, \dots, X_i, X_1, X_0 + 1\}$$

Sección A

{X_c, X_{c-1}, ..., X₁, X₀ +1}

Transferencia de un peer a la ventana inferior inmediata

$$\{X_{c}, X_{c-1}, \dots, X_{i}, X_{i-1}, \dots, X_{0}\}$$

$$\xrightarrow{P_{\omega}} \{0, X_{c}, X_{c-1}, \dots, X_{i}, X_{1}\}$$

Eventos

Transferencia de un peer a la ventana superior inmediata

$$\{X_c, X_{c-1}, \dots, X_{i+1}, X_i, \dots, X_0\}$$

$$\xrightarrow{\tau_i} \{X_c, X_{c-1}, \dots, X_{i+1} + 1, X_i - 1, \dots, X_0\}$$

Desconexión de un peer

$$\{X_c, X_{c-1}, \dots, X_i, X_{i-1}, \dots, X_0\} \xrightarrow{\theta * X_i}$$

 $\to \{X_c, X_{c-1}, \dots, X_i - 1, X_{i-1}, \dots, X_0\}$

Parámetros

Parámetro	Descripción	Valor
С	Número de Ventanas	(12: 4: 36)
heta	Tasa de Desconexión para poblaciones X_i , $1 \le i \le C$	$(2-10)*10^{-3}$
$ heta_0$	Tasa de Desconexión para la Población X ₀	$\theta + P_{\omega}$
λ	Tasa de Conexión	0.04
С	Tasa de Descarga General	0.00407
μ	Tasa de Subida General	0.00255
$\mu_{\scriptscriptstyle \mathcal{S}}$	Tasa de Subida de la red CDN	1.24
\mathcal{C}_{ω}	Tasa de Descarga de un <i>peer</i>	C * c
μ_{ω}	Tasa de Subida de un <i>peer</i>	$C*\mu$
P_{ω}	Tasa de Producción del Video	$0.5C_{\omega}$
Q	Número de Ventanas hacia atrás	$Q \leq C$

^{*} Q es un parámetro exclusivo para el esquema de asignación de recursos Q ventanas hacia atrás

Cálculo de Anchos de Banda Consumido

Descarga máxima de la población X_i

$$BW = C_{\omega} * X_i$$

$$B_d^i = \min\{C_\omega * X_i, \sum_{k=i+1}^C \frac{\mu_\omega * X_k * X_i}{\sum_{j=0}^{k-1} X_j} + \frac{\mu_S * X_i}{\sum_{j=0}^{C-1} X_j}\}$$

Recursos que proporciona la red P2P

$$B_{u,p}^{i} = \sum_{k=i+1}^{C} \frac{\mu_{\omega} * X_{k} * X_{i}}{\sum_{j=0}^{k-1} X_{j}}$$

Recursos que proporciona la red CDN

$$B_{u,s}^{i} = \frac{\mu_{s} * X_{i}}{\sum_{j=0}^{C-1} X_{j}}$$

Abundancia

$$B_d^i = C_\omega * X_i \dots \dots (BW)$$

$$B_{p2p}^i = \min\{B_d^i, B_{u,p}^i\}$$

Caso
$$B_{p2p}^i = B_{u,p}^i$$

$$B_{serv}^i = B_{d}^i - B_{p2p}^i$$

$$B_{serv}^i \neq 0$$

Caso
$$B_{p2p}^i = B_d^i$$

$$B_{serv}^i = B_d^i - B_{p2p}^i$$

$$B_{serv}^i = 0$$

Penuria

$$B_d^i = \sum_{k=i+1}^C \frac{\mu_\omega * X_k * X_i}{\sum_{j=0}^{k-1} X_j} + \frac{\mu_S * X_i}{\sum_{j=0}^{C-1} X_j} \left(B_{u,p}^i + B_{u,S}^i \right)$$

$$B_{p2p}^{i} = B_{u,p}^{i} = \sum_{k=i+1}^{C} \frac{\mu_{\omega} * X_{k} * X_{i}}{\sum_{j=0}^{k-1} X_{j}}$$

$$B_{serv}^{i} = B_{u,s}^{i} = \frac{\mu_{s} * X_{i}}{\sum_{j=0}^{C-1} X_{j}}$$

DU (poblaciones, iteraciones, estable)

Esquema Q ventanas hacia atrás (poblaciones, iteraciones, estable)

Gráfica tridimensional DU

Gráfica tridimensional Q

3 D para 3 valores de (