Fondamenti dell'Informatica

Compito scritto

2

	25 gennaio 201
Cognome:	

Note

Nome:

Matricola:

- 1. Per i quiz a risposta multipla, fare una croce sulla/e lettera/e che identifica/no la/e risposta/e desiderata/e.
- 2. Per i quiz a risposta multipla, c'è sempre almeno una risposta corretta. Talvolta ci sono più risposte corrette. Si richiede che siano marcate tutte e sole le risposte corrette. In altre parole, una crocetta in più o in meno invalida l'esercizio.
- 3. Per i quiz descrittivi e gli esercizi, la risposta va data sulla stessa facciata che contiene il testo dell'esercizio. Lo spazio lasciato a questo scopo è sempre sufficiente.
- 4. È possibile usare il retro dei fogli per eventuali calcoli e verifiche.
- 5. L'orario di consegna scritto alla lavagna è tassativo.
- 6. Non è consentita la consultazione di alcunché.
- 7. Gli esercizi verranno corretti solo se il numero di punti conseguiti nei quiz supera la soglia di 23 punti riducibili a 20 a patto che le risposte ai quiz 1, 2, 3, 4, 5, 9, 11 e 12 siano corrette. In caso contrario il compito è insufficiente.

Quiz

- 1. (1 punto) Un linguaggio monotono
 - (A) è di tipo 0; (B) è di tipo 00; (C) è di tipo 1; (D) né (A) né (B) né (C).
- 2. (1 punto) Qual è la cardinalità dell'insieme dei linguaggi finiti che si possono definire su di un alfabeto Σ di n>0 simboli?
- (A) 2^n ; (B) 2^{2^n} ; (C) $|\mathbb{N}|$; (D) $|\wp(\mathbb{N})|$;
- (E) $n\acute{e}$ (A) $n\acute{e}$ (B) $n\acute{e}$ (C) $n\acute{e}$ (D).
- 3. (2 punti) I linguaggi finiti sono chiusi rispetto a
- (A) complementazione; (B) concatenazione; (C) intersezione;
- (D) stella di Kleene; (E) unione; (F) nessuna di queste.
- 4. (2 punti) Si descriva, usando una notazione $\it formale,$ il linguaggio accettato dall'automa M qui sotto:

$$L(M) =$$

5. (2 punti) Si consideri la relazione $R \subset \{a,b,c,d,e\}^2$ data dalla tabella qui sotto, dove 1 o 0 all'incrocio tra la riga x e la colonna y indicano se $(x,y) \in R$ o se $(x,y) \notin R$, rispettivamente:

R	a	b	c	d	e
a	1	0	0	0	0
b	0	1	0	0	1
c	0	0	0	1	0
d	0	0	1	1	0
e	0	1	0	0	1

Le classi di equivalenza di R sono

- (A) (a, c), (c, d), (d, a), (b, e), (e, b);
- (B) $\{a\}, \{b\}, \{c,d\}, \{e\};$
- (C) $\{a\}, \{c,d\}, \{b,e\};$
- (D) nessuna: R non è di equivalenza.

6. (4 punti) Quali dei seguenti linguaggi sull'alfabeto $\Sigma = \{a, b\}$ sono regolari?

$$L_{1} = \{ a^{m}b^{n} \in \Sigma^{\star} \mid m \geq 1, n \geq 1 \}; \quad L_{2} = \{ x \in \Sigma^{\star} \mid x \text{ ha più } a \text{ che } b \};$$

$$L_{3} = \{ a^{n}b^{n} \in \Sigma^{\star} \mid n \geq 1 \}, \quad L_{4} = \{ x \in \Sigma^{\star} \mid x \text{ ha tante } a \text{ quante } b \};$$

$$L_{5} = \{ a^{n}a^{(n+1)^{2}-n^{2}} \in \Sigma^{\star} \mid n \geq 0 \};$$

- $\begin{array}{lll} \text{(A)} \ L_1; & \text{(B)} \ L_2; & \text{(C)} \ L_3; \\ \text{(D)} \ L_4; & \text{(E)} \ L_5; & \text{(F)} \ nessuno \ di \ essi. \end{array}$

7. (1 punto) Si dia un'espressione regolare e_1 per il seguente linguaggio su $\{a,b\}$:

$$L_1 = \{ a^n b^m \mid n < 4, m \le 3 \}.$$

 $e_1 =$

8. (3 punti) Si dia un'espressione regolare e_2 per il seguente linguaggio su $\{a,b\}$:

$$L_2 = \{a, b\}^* \setminus \{a^n b^m \mid n < 4, m \le 3\}.$$

 $e_2 =$

9. (2 punti) Si dia un'espressione regolare e_3 per il seguente linguaggio su $\{a,b\}$:

 $L_3 = \{ \text{tutte le stringhe che contengono esattamente una } b \text{ ed un numero pari di } a \}.$

 $e_3 =$

10. (3 punti) Quali delle seguenti espressioni regolari è tale che il linguaggio denotato non contiene stringhe con due 1 consecutivi?

$$e_1 = (1 + \epsilon)(01 + 0)^*;$$

 $e_2 = (01 + 10)^*;$
 $e_3 = (0 + 1)^*(0 + \epsilon).$

- (A) e_1 ; (B) e_2 ; (C) e_3 ; (D) nessuna di esse.
- 11. (2 punti) Si consideri la MdT definita dal seguente programma:

Q	0	1	\$
q_0	$q_0 \ 0 \ \mathrm{R}$	$q_0 1 R$	$q_1 \ $ L
q_1	q ₂ 1 L	$q_1 \ 0 \ \mathrm{L}$	q_2 1 L
q_2	q_2 1 L		q_2 1 L

Si supponga che la MdT cominci la computazione nello stato q_0 , avendo per input sul nastro la stringa "110", con la testina posizionata sul primo simbolo (da sinistra) della stringa stessa. Allora la computazione suddetta:

- (A) termina dopo 3 passi; (B) termina dopo 5 passi; (C) termina dopo 6 passi;

- (D) non termina;
- (E) nessuna di queste.
- 12. (2 punti) L'affermazione "Se $I \ \dot{e} \ un \ insieme \ X \ e \ I' \subseteq I \ allora \ anche \ I' \ \dot{e}$
- (A) è vera, se al posto di X scrivo "ricorsivo";
- (B) è vera, se al posto di X scrivo "ricorsivamente enumerabile";
- (C) è vera, se al posto di X scrivo "non ricorsivamente enumerabile";
- (D) $n\acute{e}$ (A) $n\acute{e}$ (B) $n\acute{e}$ (C).
- **13.** (1 punto) Vero o falso?
- (A) ogni funzione totale è primitiva ricorsiva;
- (B) ogni funzione primitiva ricorsiva è totale;
- (C) ogni funzione totale è parziale ricorsiva;
- (D) ogni funzione parziale ricorsiva è totale;
- (E) ogni funzione parziale è parziale ricorsiva;
- (F) $n\acute{e}$ (A) $n\acute{e}$ (B) $n\acute{e}$ (C) $n\acute{e}$ (D) $n\acute{e}$ (E).
- 14. (2 punti) Gli insiemi ricorsivi sono chiusi rispetto a
- (A) complementazione;
- (B) differenza;
- (C) intersezione;

- (D) unione;
- (E) nessuna di queste.
- 15. (3 punti) Sia G = (S, a, b, P, S) una grammatica acontestuale con P dato da $S \to aSb|SS|\epsilon$.
 - (A) esistono $x, y \in L(G)$ tali che $xy \notin L(G)$; (B) G è ambigua;
 - (C) G è in forma normale di Chomsky;
- (D) $n\acute{e}$ (A) $n\acute{e}$ (B) $n\acute{e}$ (C).

Esercizio 1

Si enunci e si dimostri (formalmente!) il teorema di Myhill-Nerode.

Esercizio

Sia $A\subseteq \mathbb{N}$ un insieme ricorsivamente enumerabile e sia $f\colon \mathbb{N}\to \mathbb{N}$ una funzione ricorsiva

 $\bullet\,$ Si dimostri che l'immagine di A secondo f, ovvero l'insieme

$$f[A] = \{ f(x) \in \mathbb{N} \mid x \in A \},\$$

è ricorsivamente enumerabile.

• Si dica, dimostrando la verità della risposta, se $B=\{\,x^2+1\mid x\in A\,\}$ è ricorsivamente enumerabile.

Esercizio 3

Sia $G = \big(\{S\}, \{a,b\}, P, S\big)$ una grammatica acontestuale con P dato da

$$S \to Aab|S$$

$$A \to Aab|A|B$$

$$B \to a|aB$$

Si definisca un automa a pila non deterministico con che accetti L(G) tale che il numero complessivo dei suoi stati e dei simboli del suo alfabeto della pila non superi 6 ($|Q| + |R| \le 6$).