

Agenda

Introduction

Introducing Reference Signals

Zero Assignment Example: Zero Assignment

Random Variables

The Kalman Filter
Evaluation of the Course

Introduction

Curriculum for Reguleringsteknik (REG)

Matematiske og grafiske metoder til syntese af lineære tidsinvariante systemer:

- diskret og kontinuert tilstandsbeskrivelse
- analyse i tid og frekvens
- stabilitet, reguleringshastighed, følsomhed og fejl
- ► digitale PI, PID, LEAD og LAG regulatorer (serieregulatorer)
- ► tilstandsregulering, pole-placement og tilstands-estimering (observer)
- ► optimal regulering (least squares) og optimal tilstands-estimation (Kalman-filter)

Færdigheder:

Efter gennemførelse af kurset kan den succesfulde studerende:

 kunne analysere, dimensionere og implementere såvel kontinuert som tidsdiskret regulering af lineære tidsinvariante og stokastiske systemer

Kompetencer:

Efter gennemførelse af kurset kan den succesfulde studerende:

 anvende og implementere klassiske og moderne reguleringsteknikker for at kunne styre og regulere en robot hurtig og præcist

¹ Based on https://fagbesk.sam.sdu.dk/?fag_id=39673

The twelve lectures of the course are

- ► Lecture 1: Introduction to Linear Time-Invariant Systems
- ► Lecture 2: Stability and Performance Analysis
- ► Lecture 3: Introduction to Control
- ► Lecture 4: Design of PID Controllers
- ► Lecture 5: Root Locus
- ► Lecture 6: The Nyquist Plot
- ► Lecture 7: Dynamic Compensators and Stability Margins
- ► Lecture 8: Implementation
- ► Lecture 9: State Feedback
- ► Lecture 10: Observer Design
- ► Lecture 11: Optimal Control (Linear Quadratic Control)
- ► Lecture 12: The Kalman Filter

Introducing Reference Signals

Introduction

Introducing Reference Signals

Zero Assignment Example: Zero Assignment

Random Variables

The Kalman Filter
Evaluation of the Course

Introducing Reference Signals Block Diagram

Introducing Reference Signals Block Diagram

Introducing Reference Signals System Description

System:

$$\dot{x} = Ax + B(F\hat{x} + Nr)
y = Cx$$

Observer:

$$\dot{\hat{x}} = A\hat{x} + BF\hat{x} + L(C\hat{x} - y) + Mr$$

Introducing Reference Signals System Description

System:

$$\dot{\hat{x}} = Ax + B(F\hat{x} + Nr)
y = Cx$$

Observer:

$$\dot{\hat{x}} = A\hat{x} + BF\hat{x} + L(C\hat{x} - y) + Mr$$

$$\begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} A & BF \\ -LC & A + BF + LC \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} + \begin{bmatrix} BN \\ M \end{bmatrix} r$$

$$y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}$$

Introducing Reference Signals Zeros of State Space Model

Recall from Lecture 2 how to find the zeros of a state space model.

LEMMA. A square (#inputs=#outputs) system with a state space model of the form

has a zero with value $z\in\mathbb{C}$ only if

$$\det \left[\begin{array}{cc} A - zI & B \\ C & D \end{array} \right] = 0$$

$$\det\begin{pmatrix}\begin{bmatrix} A_{\mathsf{cl}} - zI & B_{\mathsf{cl}} \\ C_{\mathsf{cl}} & D_{\mathsf{cl}} \end{bmatrix}\end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} A_{\mathsf{cl}} - zI & B_{\mathsf{cl}} \\ C_{\mathsf{cl}} & D_{\mathsf{cl}} \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} A - zI & BF & BN \\ -LC & A + BF + LC - zI & M \\ C & 0 & 0 \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} A_{\mathsf{cl}} - zI & B_{\mathsf{cl}} \\ C_{\mathsf{cl}} & D_{\mathsf{cl}} \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} A - zI & BF & BN \\ -LC & A + BF + LC - zI & M \\ C & 0 & 0 \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} A - zI & BF - BNN^{-1}F & BN \\ -LC & A + BF + LC - zI - MN^{-1}F & M \\ C & 0 & 0 \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} A_{\mathsf{cl}} - zI & B_{\mathsf{cl}} \\ C_{\mathsf{cl}} & D_{\mathsf{cl}} \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} A - zI & BF & BN \\ -LC & A + BF + LC - zI & M \\ C & 0 & 0 \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} A - zI & BF - BNN^{-1}F & BN \\ -LC & A + BF + LC - zI - MN^{-1}F & M \\ C & 0 & 0 \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} A - zI & 0 & BN \\ -LC & A + BF + LC - MN^{-1}F - zI & M \\ C & 0 & 0 \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} A-zI & BF & BN \\ -LC & A+BF+LC-zI & M \\ C & 0 & 0 \end{pmatrix} = 0$$

$$\det \begin{pmatrix} A-zI & BF-BNN^{-1}F & BN \\ -LC & A+BF+LC-zI-MN^{-1}F & M \\ C & 0 & 0 \end{pmatrix} = 0$$

$$\det \begin{pmatrix} A-zI & 0 & BN \\ -LC & A+BF+LC-MN^{-1}F-zI & M \\ C & 0 & 0 \end{pmatrix} = 0$$

$$\det \begin{pmatrix} A-zI & 0 & BN \\ -LC & A+BF+LC-MF-zI & M \\ C & 0 & 0 \end{pmatrix} = 0$$

$$\det \begin{pmatrix} A-zI & 0 & B \\ -LC & A+BF+LC-MF-zI & M \\ C & 0 & 0 \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} A-zI & BF-BNN^{-1}F & BN \\ -LC & A+BF+LC-zI-MN^{-1}F & M \\ C & 0 & 0 \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} A-zI & 0 & BN \\ -LC & A+BF+LC-MN^{-1}F-zI & M \\ C & 0 & 0 \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} A-zI & 0 & B \\ -LC & A+BF+LC-\tilde{M}F-zI & \tilde{M} \\ C & 0 \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} A-zI & 0 & B \\ -LC & A+BF+LC-\tilde{M}F-zI & \tilde{M} \\ C & 0 \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} A-zI & B \\ C & 0 \end{bmatrix} \end{pmatrix} = 0 \quad \text{or}$$

$$\det \begin{pmatrix} A+BF+LC-\tilde{M}F-zI \end{pmatrix} = 0$$

Zero Assignment

Introduction

Introducing Reference Signals

Zero Assignment Example: Zero Assignment

Random Variables

The Kalman Filter
Evaluation of the Course

LEMMA. If M is an 'observer gain' such that the characteristic polynomial of the matrix $A_{\rm za} + \tilde{M}C_{\rm za}$ has the characteristic polynomial

$$\det\left(sI - \left(A_{\mathsf{za}} + \tilde{M}C_{\mathsf{za}}\right)\right) = (s - z_1)\cdots(s - z_n)$$

with $A_{za} = A + BF + LC$ and $C_{za} = -F$, then the numbers z_1, \ldots, z_n are all zeros of the closed loop transfer function from r to y.

Zero Assignment Algorithm for Zero Assignment

1. Design \tilde{M} assigning zeros close to the cut-off frequency of the Bode plot, such that the 'horizontal' part is extended.

- 1. Design M assigning zeros close to the cut-off frequency of the Bode plot, such that the 'horizontal' part is extended.
- 2. Compute N such that the DC-value of the transfer function from r to y is unity:

$$N = -\left(C_{\mathsf{cl}}A_{\mathsf{cl}}^{-1}\tilde{B}_{\mathsf{cl}}\right)^{-1}$$

where

$$\begin{split} A_{\text{cl}} &= \begin{bmatrix} A & BF \\ -\boldsymbol{L}C & \boldsymbol{A} + \boldsymbol{B}F + \boldsymbol{L}C \end{bmatrix} \;, \quad \tilde{B}_{\text{cl}} = \begin{bmatrix} B \\ \tilde{M} \end{bmatrix} \\ C_{\text{cl}} &= \begin{bmatrix} C & 0 \end{bmatrix} \end{split}$$

- 1. Design M assigning zeros close to the cut-off frequency of the Bode plot, such that the 'horizontal' part is extended.
- 2. Compute N such that the DC-value of the transfer function from r to y is unity:

$$N = -\left(C_{\mathsf{cl}}A_{\mathsf{cl}}^{-1}\tilde{B}_{\mathsf{cl}}\right)^{-1}$$

where

$$A_{\text{cl}} = \begin{bmatrix} A & BF \\ -LC & A + BF + LC \end{bmatrix}, \quad \tilde{B}_{\text{cl}} = \begin{bmatrix} B \\ \tilde{M} \end{bmatrix}$$
$$C_{\text{cl}} = \begin{bmatrix} C & 0 \end{bmatrix}$$

3. Compute $M = MN^{-1}N = \tilde{M}N$.

Zero Assignment

Introduction

Introducing Reference Signals

Zero Assignment Example: Zero Assignment

Random Variables

The Kalman Filter
Evaluation of the Course

We consider again the system

$$\dot{x} = \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix} x + \begin{bmatrix} 2 \\ 3 \end{bmatrix} u$$

$$y = \begin{bmatrix} -3 & 2 \end{bmatrix} x$$

A state feedback F that assign poles in $\{-3, -4\}$ and an observer gain L that assigns poles in $\{-9, -12\}$ are given by:

$$F = \begin{bmatrix} 22 & -16 \end{bmatrix}, \quad \mathbf{L} = \begin{bmatrix} -122 \\ -192 \end{bmatrix}$$

We would like to assign zeros from r to y in $\{-3, -4\}$ to cancel the poles from F.

With these values of F and L we obtain:

$$A_{za} = A + BF + LC = \begin{bmatrix} 412 & -279 \\ 646 & -437 \end{bmatrix}$$

 $C_{za} = -F = \begin{bmatrix} -22 & 16 \end{bmatrix}$

An 'observer gain' that assigns poles in $\{-3,-4\}$ for $A_{\rm za}+\bar{M}C_{\rm za}$ is

$$\tilde{M} = \begin{bmatrix} 7.0460 \\ 10.8133 \end{bmatrix}$$

N can be computed as:

$$N = -\left(\begin{pmatrix} C & 0 \end{pmatrix} \begin{pmatrix} A & BF \\ -LC & A + BF + LC \end{pmatrix}^{-1} \begin{pmatrix} B \\ \tilde{M} \end{pmatrix} \right)^{-1}$$

$$= 108$$

M is obtained from:

$$M = \tilde{M}N = \begin{bmatrix} 7.0460 \\ 10.8133 \end{bmatrix} \cdot 108 = \begin{bmatrix} 760.97 \\ 1167.84 \end{bmatrix}$$

Zero Assignment Example: Step Response

Introduction

Introducing Reference Signals

Zero Assignment Example: Zero Assignment

Random Variables

The Kalman Filter
Evaluation of the Course

Random Variables Motivating Example

How is it possible to combine noisy measurements, and and an uncertain system model to provide a "good" state estimate?

Random Variables Motivating Example

How is it possible to combine noisy measurements, and and an uncertain system model to provide a "good" state estimate?

The solution is a *Kalman filter* that relies on a stochastic model, and noisy measurements.

Probability Mass Function (Discrete Random Variable)

To introduce uncertainty and noise in the considered system models, we introduce *random variables*.

Probability Mass Function (Discrete Random Variable)

To introduce uncertainty and noise in the considered system models, we introduce *random variables*.

Let X be a random variable describing the outcome of rolling a fair dice. The fair dice is characterized by

- ▶ It has 6 different outcomes $\{1, 2, 3, 4, 5, 6\}$.
- ▶ The probability of getting each of the six outcomes is the same, i.e., $Pr(X = 4) = \frac{1}{6}$.
- ► The outcome of each roll of the dice is independent.

Probability Mass Function (Discrete Random Variable)

To introduce uncertainty and noise in the considered system models, we introduce *random variables*.

Let X be a random variable describing the outcome of rolling a fair dice. The fair dice is characterized by

- ▶ It has 6 different outcomes $\{1, 2, 3, 4, 5, 6\}$.
- ▶ The probability of getting each of the six outcomes is the same, i.e., $Pr(X = 4) = \frac{1}{6}$.
- ► The outcome of each roll of the dice is independent.

To describe the above dice mathematically, a *probability mass function* p_X is associated to X that determines the probability that X equals x, i.e.,

$$p_X(x) = \Pr(\{X = x\})$$

Probability Mass Function (Discrete Random Variable)

To introduce uncertainty and noise in the considered system models, we introduce *random variables*.

Let X be a random variable describing the outcome of rolling a fair dice. The fair dice is characterized by

- ▶ It has 6 different outcomes $\{1, 2, 3, 4, 5, 6\}$.
- ▶ The probability of getting each of the six outcomes is the same, i.e., $Pr(X = 4) = \frac{1}{6}$.
- ► The outcome of each roll of the dice is independent.

To describe the above dice mathematically, a **probability mass function** p_X is associated to X that determines the probability that X equals x, i.e.,

$$p_X(x) = \Pr(\{X = x\})$$

and for the fair dice

$$\Pr(\{X=1\}) = \Pr(\{X=2\}) = \dots = \Pr(\{X=6\}) = \frac{1}{6}$$

Expectation and Variance (Discrete Random Variable)

The *expected value* (mean value) of a random variable X with n outcomes $\{x_1, x_2, \ldots, x_n\}$ can be determined from the probability mass function p_X as

$$E[X] \equiv \sum_{i=1}^{n} x_i p_X(x_i).$$

Expectation and Variance (Discrete Random Variable)

The *expected value* (mean value) of a random variable X with n outcomes $\{x_1, x_2, \ldots, x_n\}$ can be determined from the probability mass function p_X as

$$E[X] \equiv \sum_{i=1}^{n} x_i p_X(x_i).$$

The *variance* quantifies how much a random variable is varying around the mean value and is defined as

$$Var(X) = E[(X - \mu)^2]$$

where $\mu = E(X)$.

Probability Density Function (Continuous Random Variable)

A continuous random variable X often has zero probability of being one particular value; thus, its outcome is described with a *probability density function* f_X as

$$\Pr(\{a \le X \le b\}) = \int_a^b f_X(x) dx.$$

Probability Density Function (Continuous Random Variable)

A continuous random variable X often has zero probability of being one particular value; thus, its outcome is described with a *probability density function* f_X as

$$\Pr(\{a \le X \le b\}) = \int_a^b f_X(x) dx.$$

This means that the probability of the random value being in a particular range $[a\ b]$ can be determined as shown above.

Expectation and Variance (Continuous Random Variable)

The *expected value* (mean value) of a continuous random variable X can be determined from the probability density function f_X as

$$E[X] \equiv \int_{-\infty}^{\infty} x f_X(x) dx.$$

Expectation and Variance (Continuous Random Variable)

The *expected value* (mean value) of a continuous random variable X can be determined from the probability density function f_X as

$$E[X] \equiv \int_{-\infty}^{\infty} x f_X(x) dx.$$

The *variance* of X is defined as

$$Var(X) = E[(X - \mu)^2]$$

where $\mu = E(X)$.

The random variable X is said to be normally distributed if it has probability density function

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where μ is the expectation of X and σ is the standard deviation of X (the standard deviation is defined from $\sigma^2 = \text{Var}(X)$).

Normal Distribution

The random variable X is said to be normally distributed if it has probability density function

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where μ is the expectation of X and σ is the standard deviation of X (the standard deviation is defined from $\sigma^2 = \text{Var}(X)$).

For a multivariate random variable

$$X = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}$$

the *covariance matrix* is

$$\Sigma = E\left[(X - E[X])(X - E[X])^T \right]$$

For a multivariate random variable

$$X = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}$$

the *covariance matrix* is

$$\Sigma = E\left[(X - E[X])(X - E[X])^T \right]$$

We consider random variables that are *independent*, i.e., for a dice the probability of getting a 6 is the same independent on the previous outcome.

Introduction

Introducing Reference Signals

Zero Assignment Example: Zero Assignment

Random Variables

The Kalman Filter
Evaluation of the Course

Recall from Lecture 1 that a deterministic discrete-time state space model is given by

$$x_{k+1} = \Phi x_k + \Gamma u_k$$
$$y_k = Cx_k + Du_k$$

Recall from Lecture 1 that a deterministic discrete-time state space model is given by

$$x_{k+1} = \Phi x_k + \Gamma u_k$$
$$y_k = Cx_k + Du_k$$

Now the following stochastic discrete-time state space model is considered

$$x_{k+1} = \Phi x_k + \Gamma u_k + w_k$$
$$y_k = Cx_k + Du_k + v_k$$

where w_k is the **process noise** (drawn from a zero mean normal distribution with covariance matrix Q_k) and v_k is the **measurement noise** (drawn from a zero mean normal distribution with covariance matrix R_k).

The Kalman Filter Properties of Kalman Filter

The Kalman filter finds an *unbiased state estimate* \hat{x}_k of x_k ($E[x_k - \hat{x}_k] = 0$) *with minimal variance*, by exploiting

- ▶ a model of the system
- ▶ a noise model

The Kalman Filter Properties of Kalman Filter

The Kalman filter finds an *unbiased state estimate* \hat{x}_k of x_k ($E[x_k - \hat{x}_k] = 0$) *with minimal variance*, by exploiting

- ▶ a model of the system
- a noise model

The Kalman filter is similar to the observer that was introduced in Lecture 10; however, the observer did not take into account the process noise w_k and the measurement noise v_k .

The Kalman filter consists of two stages

1. Prediction:
$$\begin{cases} \hat{x}_{k+1|k} &= \Phi \hat{x}_{k|k} + \Gamma u_k \\ P_{k+1|k} &= \Phi P_{k|k} \Phi^T + Q_k \end{cases}$$

2. Update:
$$\begin{cases} \hat{x}_{k+1|k+1} &= \hat{x}_{k+1|k} + K_k (y_k - C \hat{x}_{k+1|k}) \\ P_{k+1|k+1} &= P_{k+1|k} - K_k C P_{k+1|k} \end{cases}$$

where the Kalman gain is given by

$$K_k = P_{k+1|k}C^T (CP_{k+1|k}C^T + R_k)^{-1}$$

The Kalman Filter Principle of the Kalman Filter

$$k = 0$$

The Kalman Filter Principle of the Kalman Filter

$$k = 0$$

Principle of the Kalman Filter

$$k = 0$$

Predict:
$$\begin{cases} \hat{x}_{1|0} = \Phi \hat{x}_{0|0} + \Gamma u_0 \\ P_{1|0} = \Phi P_{0|0} \Phi^T + Q \end{cases}$$

Principle of the Kalman Filter

$$k = 0$$

Predict :
$$\begin{cases} \hat{x}_{1|0} = \Phi \hat{x}_{0|0} + \Gamma u_0 \\ P_{1|0} = \Phi P_{0|0} \Phi^T + Q \end{cases}$$

$$k = 1$$

Principle of the Kalman Filter

$$k = 0$$

Initialize: Provide $\hat{x}_{0|0}$ and $P_{0|0}$.

Predict :
$$\begin{cases} \hat{x}_{1|0} = \Phi \hat{x}_{0|0} + \Gamma u_0 \\ P_{1|0} = \Phi P_{0|0} \Phi^T + Q \end{cases}$$

k=1 (Get measurement y_1)

Principle of the Kalman Filter

$$k = 0$$

Initialize: Provide $\hat{x}_{0|0}$ and $P_{0|0}$.

Predict :
$$\begin{cases} \hat{x}_{1|0} = \Phi \hat{x}_{0|0} + \Gamma u_0 \\ P_{1|0} = \Phi P_{0|0} \Phi^T + Q \end{cases}$$

k=1 (Get measurement y_1)

Update :
$$\begin{cases} \hat{x}_{1|1} &= \hat{x}_{1|0} + K_k (y_1 - C\hat{x}_{1|0}) \\ P_{1|1} &= P_{1|0} - K_k C P_{1|0} \end{cases}$$

Principle of the Kalman Filter

$$k = 0$$

Initialize: Provide $\hat{x}_{0|0}$ and $P_{0|0}$.

Predict :
$$\begin{cases} \hat{x}_{1|0} = \Phi \hat{x}_{0|0} + \Gamma u_0 \\ P_{1|0} = \Phi P_{0|0} \Phi^T + Q \end{cases}$$

 $\begin{array}{c|c} P_{0|0} & P_{1|0} \\ \hline \\ \hat{x}_{0|0} & \hat{x}_{1|0} \\ \end{array}$

k=1 (Get measurement y_1)

Update :
$$\begin{cases} \hat{x}_{1|1} &= \hat{x}_{1|0} + K_k (y_1 - C\hat{x}_{1|0}) \\ P_{1|1} &= P_{1|0} - K_k C P_{1|0} \end{cases}$$

Predict:
$$\begin{cases} \hat{x}_{2|1} &= \Phi \hat{x}_{1|1} + \Gamma u_1 \\ P_{2|1} &= \Phi P_{1|1} \Phi^T + Q \end{cases}$$

Evaluation of the Course

What has been good and bad about the course?