Automatismes en premiére 2022/2023

Frédéric Junier

Lycée du Parc 1 Boulevard Anatole France 69006 Lyon

12 septembre 2023

Plan

- Calcul
- Calculs d'aire
- Second degré
- Dérivation locale
- Dérivation Globale
- 6 Suites numériques
- Exponentielle
- 8 Application du produit scalaire

Automatisme 1 thème : Puissances

- Écrire $(3^2 \times 3^5)^4$ sous la forme d'une puissance de 3.
- ② Soit ABC un triangle rectangle en A tel que AB = 5 et BC = 13, calculer la longueur AC.
- 3 Simplifier $(2\sqrt{3})^4$
- 4 Simplifier $\frac{4+\sqrt{60}}{2}$
- **5** Soit a et b des réels avec $b \ge 0$, simplifier $\frac{a-\sqrt{b}}{2} \frac{-a+\sqrt{b}}{2}$
- **o** Développer et réduire $\left(\frac{a+b+c}{2}\right)^2 \left(\frac{a+b-c}{2}\right)^2$

Automatisme 2 thème : Fractions

Réduire au même dénominateur et simplifier les expressions suivantes définies pour l'indéterminée x ou n.

•
$$\frac{1}{n} - \frac{1}{n+1}$$

•
$$\frac{1}{n-4} - n$$

$$\bullet \ \frac{1}{(n+1)^2} + \frac{1}{n+1} - \frac{1}{n}$$

$$\bullet \ \frac{1}{x} + \frac{x+2}{x^2-4} + \frac{2}{x^2-2x}$$

Automatisme 3 thème : Factoriser

Soit a un réel.

- Factoriser $a^4 16$
- Factoriser $a^2 1 + 3a 3$ par a 1
- Factoriser $2a^2 + 5a + 2$ par a + 2
- Factoriser $a^2 + a 2$
- Factoriser $a^2 + a 6$

Plan

- Calcul
- 2 Calculs d'aire
- Second degré
- 4 Dérivation locale
- Dérivation Globale
- 6 Suites numériques
- Exponentielle
- 8 Application du produit scalaire

Automatisme 4 thème : Calcul d'aire

Quelle fraction du triangle équilatéral est recouverte par l'aire bleue? Quelle est la valeur exacte de l'aire bleue?

Source : Daniel Mentrard

Automatisme 5 thème : Calcul d'aire

Quelle est la valeur exacte de l'aire bleue? Source : Daniel Mentrard

Automatisme 6 thème : Calcul d'aire

Quelle est la valeur exacte de l'aire bleue? Source : Daniel Mentrard

Plan

- Calcul
- Calculs d'aire
- Second degré
- Dérivation locale
- Dérivation Globale
- Suites numériques
- Exponentielle
- 8 Application du produit scalaire

Automatisme 7 thème : Résoudre une équation du second degré

- Déterminer le nombre de solutions dans \mathbb{R} de l'équation $x^2 = m$ si m > 0
- Déterminer le nombre de solutions dans \mathbb{R} de l'équation $x^2 = m$ si m = 0
- Déterminer le nombre de solutions dans \mathbb{R} de l'équation $x^2 = m$ si m < 0
- Résoudre mentalement dans \mathbb{R} l'équation $x^2 = 9$
- Résoudre mentalement dans \mathbb{R} l'équation $(x-1)^2 = 9$
- Résoudre mentalement dans \mathbb{R} l'équation $16 (x-1)^2 = 7$

Automatisme 8 thème : Déterminer l'axe de symétrie d'une parabole

- Déterminer l'axe de symétrie de la parabole d'équation $y = x^2$
- Déterminer l'axe de symétrie de la parabole d'équation $y = 3 x^2$
- Déterminer l'axe de symétrie de la parabole d'équation $y = (x-3)^2$
- Déterminer l'axe de symétrie de la parabole d'équation $y = (x + 3)^2$
- Déterminer l'axe de symétrie de la parabole d'équation $y = (3-x)^2 1$
- Déterminer l'axe de symétrie de la parabole d'équation $y = -3x^2 6x + 1$

Automatisme 9 thème : Déterminer les racines d'un trinôme

- Déterminer les racines du trinôme d'expression f(x) = -3(x+2)(1-x)
- Déterminer les racines du trinôme d'expression $f(x) = 16 x^2$
- Déterminer les racines du trinôme d'expression $f(x) = x^2 + 1$
- Déterminer les racines du trinôme d'expression $f(x) = 16 (x 1)^2$

Automatisme 10 thème : second degré

Pour chacun des trinômes suivants déterminer le signe de son discriminant sans le calculer.

- f_1 définie sur \mathbb{R} par $f_1(x) = x^2 + 100$
- f_2 définie sur \mathbb{R} par $f_2(x) = (x-100)^2$
- f_3 définie sur \mathbb{R} par $f_3(x) = (x+100)^2$
- f_4 définie sur \mathbb{R} par $f_4(x) = x^2 100$

Automatisme 11 thème : second degré

Un problème :

Un batelier descend une rivière de 120 km. Il la remonte ensuite et met un jour de plus, car, chaque jour, il fait 6 km de moins qu'en descendant.

Combien de jours a-t-il mis pour descendre?

Automatisme 12 thème : second degré

- Déterminer deux réels dont la somme est 2002 et le produit 2002.
- Peut-on construire un rectangle d'aire 7 cm² et de périmètre 10,6 cm?

Automatisme 13 thème : équations avec changement d'inconnue

- Résoudre l'équation d'inconnue réelle $x : x^2 2x = 3$.
- 2 Avec le changement d'inconnue $X = x^2$, résoudre l'équation d'inconnue réelle $x : x^4 2x^2 = 3$.
- **3** Avec le changement d'inconnue $X = \sqrt{x}$, résoudre l'équation d'inconnue réelle $x : x 2\sqrt{x} = 3$.
- 4 Avec le changement d'inconnue $X = \frac{1}{x}$, résoudre l'équation d'inconnue réelle $x : \frac{1}{x^2} 2\frac{1}{x} = 3$.

Plan

- Calcul
- Calculs d'aire
- Second degré
- 4 Dérivation locale
- Dérivation Globale
- Suites numériques
- Exponentielle
- 8 Application du produit scalaire

Automatisme 14 thème : dérivation locale

On considère la fonction affine f telle que :

$$f(0) = 5$$
 et $f(4) = 13$.

En notant f(x) = mx + p, déterminer m puis p.

Automatisme 15 thème : dérivation locale

On considère la fonction affine g telle que :

$$g(-2) = 7$$
 et $g(2) = 11$.

En notant g(x) = mx + p, déterminer m puis p.

Déterminer le coefficient directeur des droites suivantes.

- 1. \mathfrak{D}_{1} , droite passant par A(-1;5)et B(3:7).
- **2.** \mathfrak{D}_{γ} , droite passant par C(7;8)et D(-1;8).
- **3.** \mathfrak{D}_{3} , droite passant par E(4; 0.25)et F(13:0.75).

Automatisme 17 thème : dérivation locale

Soit f la fonction définie sur $]-\infty$; 0[par $f(x) = \frac{1}{x}$.

- Soit un réel a < 0 et un réel $h \neq 0$ tel que a + h < 0, démontrer que $\frac{f(a+h)-f(a)}{h} = \frac{-h}{(a+h)a}$.
- En déduire que f est dérivable en tout réel a < 0 et déterminer l'expression de f'(a).
- Déterminer une équation de la tangente à la courbe de f au point d'abscisse -2.

Automatisme 18 thème : dérivation locale

Soit f la fonction définie sur]-1; $+\infty[$ par $f(x) = \frac{2x-1}{x+1}$.

- Démontrer que f est dérivable en 0 et que f'(0) = 3.
- Déterminer une équation de la tangente à la courbe de f au point d'abscisse 0

Plan

- Calcul
- Calculs d'aire
- Second degré
- Dérivation locale
- Dérivation Globale
- 6 Suites numériques
- Exponentielle
- 8 Application du produit scalaire

Automatisme 19 thème : dérivation

Déterminer une expression de la fonction dérivée pour la fonction f dérivable sur l'intervalle I.

•
$$f: x \mapsto \frac{x^3-1}{5x^2+1}$$
 sur \mathbb{R} ;

•
$$f: x \mapsto x^2 \sqrt{x} \text{ sur }]0; +\infty[;$$

•
$$f: x \mapsto (8-3x)^7 \text{ sur }]0; +\infty[;$$

•
$$f: x \mapsto 4x - \frac{1}{x-3} \text{ sur }]3; +\infty[.$$

Automatisme 20 thème : dérivation

Soit f une fonction dérivable sur [-8; 6] dont on donne le tableau de variation ci-dessous.

X	-8	-5	2	3	6
f(x)	4 —	0	→ -1 -	→ 0 [—]	

- Dresser le tableau de signes de la fonction dérivée f' de f sur l'intervalle [-8; 6].
- ② Dresser le tableau de variations d'une fonction F dérivable sur l'intervalle [-8; 6] et dont la dérivée est f.

Automatisme 21 thème : dérivation

Déterminer une expression de la fonction dérivée pour la fonction f dérivable sur l'intervalle I.

•
$$f: x \mapsto \sqrt{3x+1} \text{ sur }]-\frac{1}{3}; +\infty[;$$

•
$$f: x \mapsto (5x-3)\sqrt{x} \text{ sur }]0; +\infty[;$$

•
$$f: x \mapsto (605x - 3)^{607} \text{ sur } \mathbb{R};$$

•
$$f: x \mapsto \frac{1}{3} - \frac{2}{3-x} \text{ sur }]3; +\infty[.$$

Plan

- Calcul
- Calculs d'aire
- Second degré
- 4 Dérivation locale
- Dérivation Globale
- 6 Suites numériques
- Exponentielle
- Application du produit scalaire

Automatisme 22 thème : suites

On considère deux modèles d'évolution d'un abonnement mensuel d'électricité dont le tarif évolue au premier janvier de chaque année.

- Modèle 1 : l'abonnement coûte 10 euros la première anné puis augmente de 1,5 euros chaque année
- Modèle 2 : l'abonnement coûte 10 euros la première anné puis augmente de 8 % chaque année.
- Avec le modèle 1, quel est le prix de l'abonnement la deuxième année? la troisième année? la n^{ième} année?
- Avec le modèle 1, quel est le prix de l'abonnement la deuxième année? la troisième année? la n^{ième} année?

Automatisme 23 thème : suites

On reprende les deux modèles d'évolution de la question précédente. Associez un graphique à chaque modèle.

Graphique A Graphique B

50 - 40 - 30 - 25 50 75 100 125 150 175

Automatisme 24 thème : suites

Pour tout n entier naturel, on définit l'expression $u(n) = 2n^2 - 3n + 1$.

- Calculer u(5). Peut-on calculer u(-5) et u(2,4) et u(12/3)?
- ② Soit m un entier naturel, exprimer u(m+1) en fonction de m.
- 3 Soit n un entier naturel, exprimer u(n+1) en fonction de n.
- Soit m un entier strictement positif, exprimer u(m-1) en fonction de m.
- Soit n un entier strictement positif, exprimer u(n-1) en fonction de n.

Automatisme 25 thème : suites

Pour tout *n* entier naturel, on définit l'expression $v(n) = \frac{3^{2n}}{2^n}$.

- Exprimer v(1) et v(4) sous forme de fractions irréductibles.
- ② Soit m un entier naturel, exprimer v(m+1) en fonction de m.
- **3** Soit *n* un entier naturel, exprimer $\frac{v(n+1)}{v(n)}$ en fonction de *n*.

Automatisme 26 thème : suites

Quel est le terme suivant de la suite logique ci-dessous?

```
0
1
2
3
4
4
5
```

Automatisme 27 thème : suites

- Soit la suite (u_n) définie pour tout entier naturel n par $u_n = n^2 n$. Calculer u_4 et u_7 puis démontrer que pour tout entier naturel n, on a $u_{n+1} u_n = 2n$.
- Soit la suite (u_n) définie pour tout entier naturel n par $u_0 = 4$ et $u_{n+1} = 2u_n 1$. Calculer u_1 , u_2 , u_3 et u_{30} .
- Soit la suite (u_n) définie pour tout entier naturel n par $u_0 = 1$ et $u_n = u_{n-1} n + 1$. Calculer u_1 , u_2 , u_3 et et u_{30} .

Automatisme 28 thème : suites

Pour tout *n* entier naturel, on définit l'expression $v(n) = \frac{3^{2n}}{2^n}$.

- Exprimer v(1) et v(4) sous forme de fractions irréductibles.
- ② Soit m un entier naturel, exprimer v(m+1) en fonction de m.
- **3** Soit *n* un entier naturel, exprimer $\frac{v(n+1)}{v(n)}$ en fonction de *n*.

Automatisme 29 thème : suites

```
#On définit la suite (Un) par Un=f(n)
def f(n):
 if n==0:
   return 1
 else:
   return 1/n**2
# n**2 signifie le carré de n
```

Interpréteur en ligne :

https://repl.it/@Reformelycee/suite-explicite.

- $u_0 = 1$ Vrai ou Faux?
- u₁ = 0,5 Vrai ou Faux?
- $u_{50} = 0,0004$ Vrai ou Faux?

Automatisme 30 thème : suites

On poursuit cette suite logique de construction de figures. Combien de carrés blancs seront sur la figure de l'étape 12?

Automatisme 31 thème : suites

Déterminer la nature (arithmétique, géométrique ou ni l'un ni l'autre) des suites ci-dessous définies par leur terme général :

- Pour tout entier naturel n, $u_n = e^{3n+4}$.
- Pour tout entier naturel n, $v_n = e^3 n + 5$.
- Pour tout entier naturel n, $v_n = \frac{e^{3n}e^{-4n}}{e^{-5}}$.
- Pour tout entier naturel n, $v_n = e^n + e^{2n}$.

Plan

- Calcul
- Calculs d'aire
- Second degré
- Dérivation locale
- Dérivation Globale
- Suites numériques
- Exponentielle
- 8 Application du produit scalaire

Automatisme 32 thème : Exponentielle

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1-2e^{-x}}{1+e^{-x}}$

- **1** Démontrer que pour tout réel x, on a $f(x) = \frac{e^x 2}{e^x + 1}$.
- 2 Déterminer une expression de f'(x) pour x réel.
- **3** En déduire le sens de variation de f sur \mathbb{R} .

Plan

- Calcul
- Calculs d'aire
- Second degré
- Dérivation locale
- Dérivation Globale
- Suites numériques
- Exponentielle
- 8 Application du produit scalaire

Automatisme 33 thème : Application du produit scalaire

On se place dans un repère orthonormé. Dans chacun des cas suivants, dire si les vecteurs \vec{u} et \vec{v} sont orthogonaux.

$$\mathbf{a}. \overrightarrow{u} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

b.
$$\vec{u} \begin{pmatrix} -5 \\ 2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 6 \\ 15 \end{pmatrix}$

c.
$$\vec{u} \begin{pmatrix} \sqrt{10} \\ -2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} \sqrt{2} \\ \sqrt{5} \end{pmatrix}$

Automatisme 34 thème : Application du produit scalaire

Dans le repère orthonormé ci-dessous, les points A, B, C et D ont des coordonnées entières.

Les droites (AB) et (CD)sont-elles perpendiculaires ?

Automatisme 35 thème : Application du produit scalaire

Soit
$$ABC$$
 un triangle tel que $AB = 4$, $AC = 5$ et $\widehat{BAC} = 60^{\circ}$.

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \dots$$

Automatisme 36 thème : Application du produit scalaire

QCM une seule réponse exacte

ABCD est un rectangle de centre O tel que AB = 4 et AD = 2.

$$\overrightarrow{CO} \cdot \overrightarrow{AB}$$
 vaut :

(a) 8

$$(c) -4\sqrt{5}$$

Automatisme 37 thème : Application du produit scalaire

VRAI ou FAUX

ABCD est un carré de centre O et de côté 1. Indiquer si les égalités suivantes sont vraies ou fausses.

$$\overrightarrow{OB} \cdot \overrightarrow{OD} = 0$$

$$\overrightarrow{BD} = 0$$

$$\overrightarrow{AC} \cdot \overrightarrow{AD} = 1$$

Automatisme 38 thème : Application du produit scalaire

Calculer la valeur exacte de la longueur *BC*.

Automatisme 39 thème : Application du produit scalaire

QCM une seule réponse exacte

A et B sont deux points distincts.

L'ensemble des points M vérifiant $\overrightarrow{AB} \cdot \overrightarrow{BM} = 0$:

- a est une droite;
- **b** est un cercle;
- c n'est ni une droite ni un cercle.

Automatisme 40 thème : Application du produit scalaire

QCM une seule réponse exacte

A et B sont deux points distincts.

L'ensemble des points M vérifiant $\overrightarrow{AM} \cdot \overrightarrow{BM} = 0$:

- a est une droite;
- **b** est un cercle;
- c n'est ni une droite ni un cercle.