그러나 원형 CFT의 경우, 합성 정도에 관계없이 부재 모두 동일한 중립축을 가지게 되므로, 합성 정도에 관계없이 하나의 부재처럼 거동함을 알 수 있었다.

본 절에서는, 합성 구조물 중 원형 CFT와 같이 이종 재료의 합성 정도에 관계없이 동일한 중립축을 가지는 경우의 합성거동을 정척 수치해석을 통하여 검토하였으며, 원형 CFT단면과 같이 단일 중립축을 가지는 단면은 합성 정도에 관계없이 이종재료가 동일하게 거동하였다.

나. 신형식 말뚝의 성능 평가 결과

(1) 강성 평가

CFT 말뚝의 단부 마감 조건에 따른 3가지 형태 (Type A: 양단 강판 폐합형, Type B: 양단 개방형, Type C: 양단 철근 보강형)에 대한 휨 실험 결과를 중첩해 보면 아래와 같이 강성 및 강도에서 거의 차이가 없었다. 세 가지 실험체는 탄성구간에서 완전합성거동과 같이 압축과 인장의 변형률이 선형을 보여주며, 단부에 발생하는 강재와 콘크리트의 상대변위도 거의 발생하지 않았다. 따라서 세 가지 실험체 모두 완전 합성거동 을 보이는 것으로 판단된다.

[그림 3.3.49] CFT Type별 하중-변위 곡선

이러한 근본적인 이유는 원형 CFT의 수치해석 결과 분석 통하여 얻은 결론 - 합성정도에 관계없이 원형 CFT 단면의 강재와 콘크리트의 중립축이 일치하기 때문이다. 하지만 실험 결과에도 나와 있듯이 강재가 항복하고 내부 콘크리트의 균열이 발생하여 두 재료의 중립축이 변하게 되면 완전합성거동을 보이지 않는 것을 알 수 있다. 이상의 실험과 해석을 통하여 콘크리트와 강재가 전단연결이 되어 있지 않아도 CFT말뚝이 완전