DadosSuma

- 12. Se arrojan simultáneamente n dados, cada uno con k caras numeradas de 1 a k. Queremos calcular todas las maneras posibles de conseguir la suma total $s \in \mathbb{N}$ con una sola tirada. Tomamos dos variantes de este problema.
 - (A) Consideramos que los dados son **distinguibles**, es decir que si n=3 y k=4, entonces existen 10 posibilidades que suman s=6:
 - 1) 4 posibilidades en las que el primer dado vale 1
 - 2) 3 posibilidades en las que el primer dado vale 2
 - 3) 2 posibilidades en las que el primer dado vale 3
 - 4) Una posibilidad en la que el primer dado vale 4
 - (B) Consideramos que los dados son **indistinguibles**, es decir que si n=3 y k=4, entonces existen 3 posibilidades que suman s=6:
 - 1) Un dado vale 4, los otros dos valen 1
 - 2) Un dado vale 3, otro 2 y otro 1
 - 3) Todos los dados valen 2
 - a) Definir en forma recursiva la función $f: \mathbb{N}^2 \to \mathbb{N}$ tal que f(n, s) devuelve la respuesta para el escenario (A) (fijado k).
 - b) Definir en forma recursiva la función $g: \mathbb{N}^3 \to \mathbb{N}$ tal que f(n, s, k) devuelve la respuesta para el escenario (B).
 - c) Demostrar que f y g poseen la propiedad de superposición de subproblemas.
 - d) Definir algoritmos top-down para calcular f(n,s) y g(n,s,k) indicando claramente las estructuras de datos utilizadas y la complejidad resultante.
 - e) Escribir el (pseudo-)código de los algoritmos top-down resultantes.

Nota: Una solución correcta de este ejercicio debería indicar cómo se computa tanto f(n,s) como g(n,s,k) en tiempo $O(nk \min\{s,nk\})$.

	011		1.)													
	gn	1, 5,	L)		5	,		0	1	-)				
					() (= 1	91	n.,	, 5.	· 12	112	~ <u>L</u>)				
						5				s a de s	chico	_				
										5Q)	W. J.					
					,			_								
	gl	3,6,	4)=	91	2, 2	1,3) +	9/1	,2,	3)						
	U			U)								