

Model Optimization and Tuning Phase Template

Date	9 July 2024	
Team ID	team-739821	
Project Title	Precise Coffee Quality Prediction	
Maximum Marks	10 Marks	

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Logistic Regression	_	-
Decision Tree Classifier	-	-
Random Forest Classifier	-	-

NOTE: In our project not provided grid search and hyperparameters topic.

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric					
		precision	Lecali	+1-score	support	
	9	0.96	0.70	0.81	27	
	1	0.08	0.50	0.14	2	
Logistic Regression	accuracy			0.60	39	
	macro avg	0.52	0.60		39	
	weighted avg	0.92	0.69	0.78	39	
		precision	recall	F1-score	support	
Decision Tree	44	10.441	40.40	W-WK	47	
	- 1	25 - 2525	19.00	64 - 256		
01 :6:	accuracy			0.07	39	
Classifier	weighted ave	0.47	0.40	0.47	39	
	pr	ecision	recall	f1-score	support	
Random Forest		0.25	1.00	0.27	37	
Nandom Forest	0	0.00	0.00	0.00	2	
C1 . t.	accuracy			0.05	39	
Classifier	macro avg	0.47	0.50	0.40	32	
	weighted avg	0.00	0.95	0.02	39	

Final Model Selection Justification (2 Marks):

Final Model	Reasoning		
	Random Forest was chosen for the coffee quality prediction project due		
	to its superior accuracy and robustness against overfitting, achieving an optimized accuracy score of 94.9%. This ensemble method effectively		
	handles non-linear relationships and is less sensitive to noise and		
	outliers compared to other models. Additionally, Random Forest		
	provides valuable insights into feature importance, requires minimal		
	data preprocessing, and scales well with large datasets, making it the		
Random Forest	optimal choice for delivering consistent and reliable coffee quality		
Classifier	assessments		

