CS & IT

ENGINEERING

DIGITAL LOGIC

Number System

Lecture No. 2

By- CHANDAN SIR

TOPICS TO BE COVERED 01 Magnitude Comparator

02 Practice & DISCUSSION

Decimal	BCD 3421	Excess - 3	Octal digits	BCO	Hexadecimal	BCH
Digits					Digits	
0	0000	0011	0	000	0	0000
1	0001	0100	1	001	1	0001
2	0010	0101	2	010	2	0010
3	0011	0110	3	011	3	0011
4	0100	0111	4	100	4	0100
5	0101	1000	5	101	5	0101
6	0110	1001	6	110	6	0110
7	0111	1010	7	111	7	0111
8	1000	1011			8	1000
9	1001	1100			9	1001
	1 1971 4				A	1010
					В	1011
					С	1100
					D	1101
					E	1110
					F	1111

1	1	1	1
0	1	0	
1	0	1	()

Unsigned Representation

Binary	Decimal
000	0
001	1
010	2
011	3

100	4
101	5
110	C
111	7

'n' bit un signed

Signed Representation

$$-\{a^{4-1}, a^{4-1}, a^{4-1},$$

Ronge => -{2h-1-1} to + {2h-1-1}

Range => -7 to +7

Signed Number	Equivalence Decimal
0000	+ 0
1000	+1
0010	+2
0011	+3
0100	+9
0101	+5
0110	+6
0 T T T	+7

Signed Number	Equivalence Decimal
1000	-0
1001	<u> </u>
1010	— <u>2</u>
1011	-3
1100	-4
1 10 1	-2
1110	
1111	

1's Complement Representations

'n'bit

4 Bit number -{+} +0 + {+}

-{an-1	1} to	+ {2	N-1-L}
Ü)	C	

	_	
Equivalence Decimal	1 1s Complement	Equivalence Decimal
+0/	011 1000	-7
+1	0110 1	-5
+2	3 10 TO	- 5
+ 3	(0100) > 10 11	-4
+4	t9 1100	-3
+5	1 1 0 1	-2
+6	11110	-1
<i>†</i> 7	0000	-0-
	+0\\ +1 +2 +3 +4 +5 +6	+6 000 0 1111 +2 000 0 11111 +4 1100 +5 1101 +6 11110

2's Complement Representations

4 Bit number

2s Complement	Equivalence Decimal
0000	+0
0001	+1
0010	12
0017	431
0100	+4
0101	+5
0110	16
0111	+7-

2s Complement	Equivalence Decimal
1000	- 8
1001	-7
70TO	6
1011	- 5
1100	-4
1101	-3
1110	-2
1111	-1

Range - { an-1 } to + { an-1 -

a. If the number given below ore written in (1's) complement convert it into Equivalance Recimal?

Q. If the number given below ore written in (2's) complement convert it into Equivalence Decimal?

$$(2) \ \ 11110010 \rightarrow (-1)$$

01101

A 19

B 13

C -19

D -13

$$- [2^{n-1}]_{3}$$
 $- [2^{8-1}]_{3} = -3$
 $- [2^{8}]_{4}$

What is the resultant of $(C4)_{16}$ - $(7B)_{16}$ = ?

 $(59)_{16}$

 \mathbf{B} (39)₁₆

 $(69)_{16}$

 $(49)_{16}$

The number of bytes required to represent the decimal number 1856357 in packed BCD (Binary coded Decimal) form is _____.

MB

A

) 4

C 28

D

Q.

- A 25, 9 and 57 respectively
 - B -6, -6 and -6 respectively
- C /-7, -7 and -7 respectively
- –25, –9 and –57 respectively

Q.

P, Q and R are the decimal integers corresponding to the 4-bit binary number 1100 considered in signed magnitude, 1's complement and 2's complement representations, respectively. The 6-bit 2's complement representation of (P + Q + R) is

ı	
4	
4	
4	
4	
^	
d	

- B 110101
- C 110010
- D 111001

$$P = -4$$
 $Q = -3$
 $R = -4$

$$\sqrt{41} = 5$$

- A 4
- B
- **C** 10
- **D** 6

$$\int 4xx+1 = 5$$

$$4x+1=25$$

-13 in 2's complement will be-

B 01101

D 110011

A=10

$$B = -36$$

$$128 64 32 18 8 4 21$$

$$01 1 1 1 1 1 0 10 7 250$$

$$1 1 0 0 0 0 1 10 (-950)$$

-24 in 2's complement form is

- B 01001000
- C 01111111
- D 00111111

$$00011000 -7+24$$
 $1110100 -(-24)$

THANK YOU