EECE423-01: 현대제어이론

Modern Control Theory

Chapter 2: Review of Linear Algebra

Kim, Jung Hoon

- ◆ The main topics of this chapter are
- 1. Matrices, Vectors, Addition and Multiplication, Transpose

Linear Independence, Rank, Vector space, Image and Kernel space

3. Determinant, Inverse, Eigenvalues and Eigenvectors

 Quadratic Form, Singular values, Cayley-Hamilton Theorem and Diagonalization

5. Jordan Canonical Form

1. Matrices, Vectors, Addition and Multiplication, Trai	ıspose

- ◆ What is a matrix?
- Matrix: A matrix is a rectangular array of numbers or functions enclosed in brackets

• Examples:
$$\begin{bmatrix} 1 & 2 & -1 \\ 3 & -1 & 2 \end{bmatrix}$$
, $\begin{bmatrix} e^{3t} & \cos t \\ \sin t & -\sin t \\ t+1 & -t^2+t \end{bmatrix}$, $\begin{bmatrix} 1 & e^{-3t} \end{bmatrix}$, $\begin{bmatrix} 2t \\ -t \end{bmatrix}$

• An $m \times n$ matrix: A matrix with m rows and n columns

•
$$a_{11}, a_{12}, \ldots, a_{mn}$$
: Entries $A = [a_{ij}] = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ \vdots & \ddots & \ddots & \vdots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$

- Horizontal lines: Rows Vertical lines: Columns
- The matrix is called a square matrix if m = n
- $a_{11}, a_{22}, \dots, a_{nn}$: Diagonal entries

- ◆ What is a vector?
- Vector: A vector is a matrix with only one row or column
 - Examples: $\begin{bmatrix} 1 & e^{-3t} \end{bmatrix}$, $\begin{bmatrix} 2t \\ -t \end{bmatrix}$
 - A column vector with n components: $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$
 - A row vector with n components: $x = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ (x_1, \dots, x_n : components)
 - Two matrices A and B are said to be equal, written A = B, if and only if they have same size and the corresponding entries are equal.
 - Matrices that are not equal are called different.

Addition of matrices

The sum of two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ of the same size is written A + B and has the entries $a_{ij} + b_{ij}$ obtained by adding the corresponding entries of A and B.

Remark: Matrices of different sizes cannot be added.

The product of any $m \times n$ matrix $A = [a_{ij}]$ and any scalar c is written cA and is the $m \times n$ matrix $cA = [ca_{ij}]$ obtained by multiplying each entry of A by c.

Rules for matrix addition and scalar multiplication

•
$$A + B = B + A$$

•
$$(A+B)+C=A+(B+C)$$
 (written $A+B+C$)

•
$$A + 0 = A$$

•
$$A + (-A) = 0$$

$$\bullet \ c(A+B) = cA + cB$$

$$\bullet (c+k)A = cA + kA$$

•
$$c(kA) = (ck)A$$
 (written ckA)

$$\bullet$$
 $1A = A$

◆ Examples

$$\bullet \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ -2 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -2 & -1 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix}$$

$$\bullet \left(\begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \right) + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} + \left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}$$

•
$$2\left(\begin{bmatrix}1 & 2\\0 & 3\end{bmatrix} + \begin{bmatrix}0 & 1\\1 & 1\end{bmatrix}\right) = 2\begin{bmatrix}1 & 2\\0 & 3\end{bmatrix} + 2\begin{bmatrix}0 & 1\\1 & 1\end{bmatrix} = \begin{bmatrix}2 & 6\\2 & 8\end{bmatrix}$$

$$\bullet (2+1)\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = 2\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 6 & 9 \end{bmatrix}$$

Multiplication of matrices

The product C = AB (in this order) of an $m \times n$ matrix $A = [a_{ij}]$ times an $r \times p$ matrix $B = [b_{ij}]$ is defined if n = r and the product $C = [c_{ij}]$ is an $m \times p$ matrix with entries

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj}$$

$$(i = 1, \dots, m, \ j = 1, \dots, p)$$

• Matrix multiplication is not commutative, i.e., $AB \neq BA$ in general

- Example:
$$\begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

Properties of matrix multiplication

•
$$k(A)B = k(AB) = A(kB)$$
 (written kAB or AkB)

•
$$(AB)C = A(BC)$$
 (written ABC)

$$\bullet \ (A+B)C = AC + BC$$

$$\bullet \ C(A+B) = CA + CB$$

◆ Examples

$$\bullet \quad \left(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \right) \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \left(\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$$

$$\bullet \quad \left(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \right) \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$$

$$\bullet \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$$

- ◆ Transpose of a matrix, symmetric matrix
 - The **transpose** of an $m \times n$ matrix $A = [a_{ij}]$ is the $n \times m$ matrix denoted by A^T and defined as

$$A^{T} = [a_{ji}] = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \ddots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

• If $A = A^T$, we call A is a symmetric matrix.

Properties of transpose

$$\bullet \ (A^T)^T = A$$

$$\bullet (A+B)^T = A^T + B^T$$

$$\bullet (cA)^T = cA^T$$

$$\bullet \ (AB)^T = B^T A^T$$

- If A is a square matrix, $|A| = |A^T|$
- If A is a nonsingular matrix, $(A^T)^{-1} = (A^{-1})^T$
- If A is a square matrix, the eigenvalues of A coincide with those of A^T

◆ Examples

$$\bullet \quad \left(\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right)^T = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}^T + \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$

$$\bullet \left(2\begin{bmatrix}1 & 1\\0 & 1\end{bmatrix}\right)^T = 2\begin{bmatrix}1 & 1\\0 & 1\end{bmatrix}^T = \begin{bmatrix}2 & 0\\2 & 2\end{bmatrix}$$

$$\bullet \quad \left(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \right)^T = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^T = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$$

$$\bullet \left| \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \right| = \left| \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}^T \right| = 5$$

$$\bullet \left(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^T \right)^{-1} = \left(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{-1} \right)^T = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

2. Linear Independence, Rank, Vector space, Image and Kernel space

- ◆ Linear independence
- Linear combination of a set of n vectors v_1, v_2, \ldots, v_n :

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

where $\alpha_1, \alpha_2, \ldots, \alpha_n$ are scalars.

• A set of n vectors v_1, v_2, \ldots, v_n is said to be linearly independent if

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$$

implies $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.

• A set of n vectors v_1, v_2, \ldots, v_n is said to be **linearly dependent** if there exist scalars $\alpha_1, \alpha_2, \ldots, \alpha_n$ that are not all zero such that

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$$

◆ Examples

•
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$: linearly dependent

•
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$: linearly independent

•
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$: linearly independent

◆ Rank of a matrix

■ The **rank** of a matrix A is the maximal number of linearly independent columns of A. It is denoted by rank (A).

- Examples

$$\operatorname{rank}\left(\begin{bmatrix} 3 & 1\\ 2 & 1\\ 1 & 2 \end{bmatrix}\right) = 2, \quad \operatorname{rank}\left(\begin{bmatrix} 1 & 2\\ 2 & 4\\ 1 & 2 \end{bmatrix}\right) = 1,$$

$$\operatorname{rank}\left(\begin{bmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ -1 & 2 & 0 \end{bmatrix}\right) = 3, \quad \operatorname{rank}\left(\begin{bmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 2 & -1 \end{bmatrix}\right) = 2$$

Properties of rank

- Interchange of two rows (or columns) does not alter the value of the rank. Addition of a multiple of a row (or column) to another row (or column) does not alter the value of the rank.
- Multiplication of a row (or column) by a nonzero constant c does not alter the value of the rank.
- \blacksquare rank $(A) = \operatorname{rank}(A^T)$.
- When A is an $n \times m$ matrix, rank $(A) \leq \min(n, m)$.
- rank $(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$.

◆ Vector space

- A nonempty set V of elements a, b, ... is called a real vector space (or real linear space), and these elements are called vectors, if, in V, there are defined two algebraic operations (called vector addition and scalar multiplication).
 - I. Vector addition $(a + b \in V, \forall a, b \in V)$
 - I.1. Commutativity: a + b = b + a, $\forall a, b \in V$
 - I.2. Associativity: $(a + b) + c = a + (b + c), \forall a, b, c \in V$
 - I.3. \exists unique $0 \in V$, such that a + 0 = a, $\forall a \in V$
 - I.4. For every a in V, there exists a unique vector in V, denoted by -a, and is such that a + (-a) = 0.
 - II. Scalar multiplication $(ca \in V, \forall c \in R, \forall a \in V)$
 - II.1. Distributivity: c(a + b) = ca + cb, $\forall c \in R, \forall a, b \in V$
 - II.2. Distributivity: (c + k)a = ca + ka, $\forall c, k \in R, \forall a \in V$
 - II.3. Associativity: c(ka) = (ck)a, $\forall c, k \in R, \forall a \in V$
 - II.4. $\forall a \in V$, 1a = a

◆ Dimension, span and basis

- The maximum number of linearly independent vectors in V is called the **dimension** of V and is denoted by $\dim V$.
- The set of all linear combinations of given vectors v_1, \ldots, v_n is called the **span** of these vectors.

- A set of vectors is a basis for a vector space V if
 - (1) the vectors in the set are linearly independent
 - (2) all the elements in V can be described by a linear combination of the vectors (i.e., the vectors span V)

◆ Image (range)

• Given an $m \times n$ matrix M, the **image** or range of M is the span (set of all possible linear combinations) of its column vectors.

$$\operatorname{Im} M := \{ y \in \mathbb{R}^m \mid \exists x \in \mathbb{R}^n, \ y = Mx \}$$

■ The **image** of M is a linear subspace of R^m , and its dimension coincides with the rank of the matrix M.

◆ Kernel space (null space)

• Given an $m \times n$ matrix M, the **kernel** or null space of M is the set

$$\text{Ker } M := \{ x \in \mathbb{R}^n \mid Mx = 0 \}$$

■ The **kernel** of M is a linear subspace of \mathbb{R}^n , and its dimension is called the nullity of the matrix M.

◆ Fundamental theorem of linear equations

• For every $m \times n$ matrix M, the following relation holds:

$$\dim \operatorname{Ker} M + \dim \operatorname{Im} M = n$$

■ Example
$$M = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 0 & 1 \\ -2 & -1 & 2 \end{bmatrix}$$

$$\operatorname{Ker} M = \left\{ c_1 \begin{bmatrix} -1\\4\\1 \end{bmatrix} \middle| \forall c_1 \in R \right\}$$

$$\operatorname{Im} M = \left\{ c_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} \mid \forall c_1, c_2 \in R \right\}$$

$$\rightarrow \dim \operatorname{Ker} M + \dim \operatorname{Im} M = 1 + 2 = 3$$

3.	Determinant	. Inverse.	Eigenvalu	ues and E	iaenvectors
_		,			- 3

♦ Determinant

- A determinant is a scalar and is defined for a square matrix.
- The **determinant** of an $n \times n$ matrix A is denoted by |A|.
- |A| is defined as follows:

$$|A| := \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$

or

$$|A| := \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$

where M_{ij} is the determinat of the submatrix of A obtained from omitting the ith row and jth column.

- Properties of determinant
 - Interchange of two rows (or columns) multiplies the value of the determinant by -1.
 - Addition of a multiple of a row (or column) to another row (or column) does not alter the value of the determinant.
 - Multiplication of a row (or column) by a nonzero constant c
 multiplies the value of the determinant by c.
 - When A and B are $n \times n$ matrices, |AB| = |A||B|
 - When A is an $n \times n$ matrix, rank (A) = n if and only if $|A| \neq 0$

◆ Examples

$$\bullet \left| \begin{bmatrix} 1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & 0 & 2 \end{bmatrix} \right| = 1 \left| \begin{bmatrix} 6 & 4 \\ 0 & 2 \end{bmatrix} \right| - 3 \left| \begin{bmatrix} 2 & 4 \\ -1 & 2 \end{bmatrix} \right| + 0 \left| \begin{bmatrix} 2 & 6 \\ -1 & 0 \end{bmatrix} \right| = -12$$

$$\bullet \left| \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} \right| = -1 \left| \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \right| = -1$$

$$\bullet \left| \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} \right| = \left| \begin{bmatrix} 2 & 3 \\ 7 & 10 \end{bmatrix} \right| = -1$$

$$\bullet \left| \begin{bmatrix} 4 & 6 \\ 3 & 4 \end{bmatrix} \right| = 2 \left| \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} \right| = -2$$

$$\bullet \quad \left| \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right| = \left| \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} \right| = \left| \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \right| \left| \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right| = -1$$

◆ Inverse matrix

The **inverse** of an $n \times n$ matrix A is denoted by A^{-1} and is an $n \times n$ matrix such that $AA^{-1} = A^{-1}A = I$.

If A has an inverse, the inverse is unique.

• If A has an inverse, then A is called a nonsingular matrix. If A has no inverse, then A is called a singular matrix.

- Computation method for a inverse matrix
 - The inverse of a nonsingular matrix A $(n \times n)$ can be given by

$$A^{-1} = \frac{1}{|A|} \operatorname{adj}(A)$$

where adj(A) is adjoint matrix with its (i, j)th element A_{ij} given by

$$A_{ij} = (-1)^{i+j} M_{ji}$$

 $(M_{ij} \text{ is the determinat of the submatrix of } A \text{ obtained from}$ omitting the ith row and jth column)

If you want to compute a inverse matrix by hand, a numerical method such as Gauss Elimination can be helpful, but this course omits the details for a limited time. Properties of a inverse matrix

■ The inverse A^{-1} of an $n \times n$ matrix A exists if and only if $|A| \neq 0$

■ If A $(n \times n)$ and B $(n \times n)$ are nonsingular, $(AB)^{-1} = B^{-1}A^{-1}$

- If A $(n \times n)$ is a nonsingular matrix and α is a scalar, $(\alpha A)^{-1} = A^{-1}/\alpha$
- If A $(n \times n)$ is a nonsingular matrix, $|A^{-1}| = 1/|A|$

◆ Examples

- For $A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$, there is no inverse of A
- $\bullet \left(\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right)^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$
- $\bullet \left(2\begin{bmatrix}1 & 1\\0 & 1\end{bmatrix}\right)^{-1} = \frac{1}{2}\begin{bmatrix}1 & -1\\0 & 1\end{bmatrix}$
- $\bullet \left| \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}^{-1} \right| = 1 / \left| \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \right| = \frac{1}{5}$

Eigenvalues and Eigenvectors

• For a given $n \times n$ matrix A, if there exists a scalar λ such and a nonzero vector v such that

$$Av = \lambda v$$

Then, v is called an **eigenvector** of A corresponding to this **eigenvalue** λ .

Properties of eigenvalues

■ The **eigenvalues** of an $n \times n$ matrix A are the roots of the characteristic equation

$$\det(sI - A) = 0$$

• When A is an $n \times n$ matrix and has the eigenvalues $\lambda_1, \ldots, \lambda_n$ (allowed for multiplicity), |A| is equal to $\lambda_1 \lambda_2 \cdots \lambda_n$

♦ Example

•
$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$
 has its characteristic equation given by

$$\det(sI - A) = s^3 + s^2 - 21s - 45 = (s - 5)(s + 3)^2 = 0$$

For
$$\lambda_1 = 5$$
, $(\lambda_1 I - A)v_1 = \begin{bmatrix} 7 & -2 & 3 \\ -2 & 4 & 6 \\ 1 & 2 & 5 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \\ v_{13} \end{bmatrix} = 0 \rightarrow v_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$

For
$$\lambda_2 = -3$$
, $(\lambda_2 I - A)v_2 = \begin{vmatrix} -1 & -2 & 3 \\ -2 & -4 & 6 \\ 1 & 2 & -3 \end{vmatrix} \begin{vmatrix} v_{21} \\ v_{22} \\ v_{23} \end{vmatrix} = 0$

$$\rightarrow v_2 = \begin{bmatrix} -2\\1\\0 \end{bmatrix} \text{ and } \begin{bmatrix} 3\\0\\1 \end{bmatrix}$$

Summary of determinant, inverse matrix and eigenvalue

• For an $n \times n$ matrix A, the followings are equivalent:

- (a) A is a nonsingular (i.e., there exists a A^{-1}).
- (b) $|A| \neq 0$.
- (c) rank (A) = n.
- (d) 0 is not an eigenvalue of A.

◆ Advanced issue 1 - Characteristics of Determinant

• When A is an $n \times n$ matrix and D is an $m \times m$ matrix, we obtain the following relations:

$$\begin{vmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \end{vmatrix} = |A||D - CA^{-1}B| \quad \text{(when } |A| \neq 0\text{)}$$
$$= |D||A - BD^{-1}C| \quad \text{(when } |D| \neq 0\text{)}$$

• When B is an $n \times m$ matrix and C is an $m \times n$ matrix, we obtain the following relation:

$$|I_n + BC| = |I_m + CB|$$

- Advanced issue 2 Matrix Inversion Lemma
 - If A is an $n \times n$ matrix and D is an $m \times m$ matrix,

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1}BS^{-1}CA^{-1} & -A^{-1}BS^{-1} \\ -S^{-1}CA^{-1} & S^{-1} \end{bmatrix}$$
where $S = D - CA^{-1}B$

$$(\text{when } |A| \neq 0, |S| \neq 0)$$

$$= \begin{bmatrix} K^{-1} & -K^{-1}BD^{-1} \\ -D^{-1}CK^{-1} & D^{-1} + D^{-1}CK^{-1}BD^{-1} \end{bmatrix}$$
where $K = A - BD^{-1}C$

$$(\text{when } |D| \neq 0, |K| \neq 0)$$

• If A is an $n \times n$ nonsingular matrix and B is an $n \times m$ matrix and C is an $m \times n$ matrix,

$$(A + BC)^{-1} = A^{-1} - A^{-1}B(I_m + CA^{-1}B)^{-1}CA^{-1}$$

4. Quadratic Form, Singular values, Cayley-Hamilton Theorem and Diagonalization

◆ Quadratic form

• A quadratic form in the components x_1, \ldots, x_n of a vector $x := [x_1 \cdots x_n]^T$ is a sum of n^2 terms, namely,

$$x^{T}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_{i}x_{j}$$

• Example

$$2x_1^2 - 2x_1x_2 + 4x_1x_3 + x_2^2 + 6x_3$$

$$= 2x_1^2 - x_1x_2 + 2x_1x_3 + x_2^2 - x_2x_1 + 6x_3^2 + 2x_3x_1$$

$$= \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 2 & -1 & 2 \\ -1 & 1 & 0 \\ 2 & 0 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

◆ Positive definite matrix

• A symmetric matrix $A(=A^T)$ is said to be positive definite, if $x^TAx > 0 \quad (\forall x \neq 0)$

• A symmetric matrix $A(=A^T)$ is said to be semi-positive definite, if $x^TAx \geq 0 \quad (\forall x \neq 0)$

◆ Basic property of a (semi-)positive definite matrix

• λ_i (i = 1, ..., n): Eigenvalues of an $n \times n$ symmetric matrix A

(1) A is a positive definite matrix $\Leftrightarrow \lambda_i > 0 \ (\forall i)$

(2) A is a semi-positive definite matrix $\Leftrightarrow \lambda_i \geq 0 \ (\forall i)$

*All eigenvalues of a real symmetric matrix are real

◆ Advanced properties of a (semi-)positive definite matrix

- The followings are equivalent for a symmetric $n \times n$ matrix Q.
 - (1) Q is a positive definite matrix.

(2) All eigenvalues of Q are strictly positive.

(3) There exists an $n \times n$ nonsingular matrix H such that $Q = H^T H$.

◆ Example

For
$$A = \begin{bmatrix} 2 & -1 & 2 \\ -1 & 1 & 0 \\ 2 & 0 & 6 \end{bmatrix}$$

- $x^T A x = (x_1 x_2)^2 + (x_1 + 2x_3)^2 + 2x_3^2$ $\rightarrow x^T A x = 0$ only if $x_1 = x_2 = x_3 = 0$ $\rightarrow A$ is a positive definite matrix
- $\det(sI A) = (s 2)(s^2 7s + 1) = 0$ \rightarrow Eigenvalues $\lambda = 2, (7 \pm \sqrt{5})/2$ are larger than 0 + A is a positive definite matrix

◆ Singular values

Let A be an $m \times n$ matrix, and consider the matrix $A^T A$.

Because $A^T A$ is an $n \times n$ (semi-)positive definite matrix,

- its eigenvalues are real
- its eigenvalues are equal or larger than 0
- let $\lambda_1, \ldots, \lambda_n$ denote the eigenvalues of $A^T A$ with repetitions.

The numbers $\sigma_1, \ldots, \sigma_n$ $(\sigma_i := \sqrt{\lambda_i})$ are called the **singular values** of A.

◆ Example

For
$$A = \begin{bmatrix} 5 & 2 \\ -3 & 0 \end{bmatrix}$$

• $|\lambda I - A| = \lambda^2 - 5\lambda + 6 = 0$ \rightarrow Eigenvalues: $\lambda = 2, 3$

• $|\lambda I - A^T A| = \lambda^2 - 38\lambda + 36 = 0$ \rightarrow Singular values: $\sigma = \sqrt{19 + 5\sqrt{13}}, \sqrt{19 - 5\sqrt{13}}$

◆ Cayley-Hamilton Theorem

• For an $n \times n$ matrix A whose characteristic equation given by

$$a(s) = s^{n} + a_{1}s^{n-1} + a_{2}s^{n-2} + \dots + a_{n-1}s + a_{n} = 0$$

the following relation holds:

$$a(A) = A^{n} + a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_{n-1} A + a_n I = 0$$

• Example $A = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$

$$a(s) = s^2 - s - 3 = 0$$

$$a(A) = A^{2} - A - 3I = \begin{bmatrix} 5 & 1 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

◆ Diagonalizable matrix

- A square $n \times n$ matrix A is called diagonalizable if there exist matrices P and P^{-1} such that $P^{-1}AP$ is a diagonal matrix.
- An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

• If v_1, \ldots, v_n are linearly independent eigenvectors of A corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_n$, respectively,

$$P^{-1}AP = \Lambda := \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}, \text{ where } P := \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$$

$$\to A^n = P\Lambda^n P^{-1}$$

Sufficient condition for diagonalizability

• If a square $n \times n$ matrix A has different eigenvalues $\lambda_1, \ldots, \lambda_n$ (i.e., $\lambda_i \neq \lambda_j, \forall i, j$), A is a diagonalizable matrix.

◆ Example

For
$$A_1 = \begin{bmatrix} 2 & 1 \\ -3 & -2 \end{bmatrix}$$
, $\lambda_1 = 1$, $\lambda_2 = -1$ and $v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 \\ -1 & -3 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 1 \\ -3 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

→ diagonalizable matrix

◆ Issues on diagonalizablity of a matrix

• If the characteristic equation det(sI - A) = 0for an $n \times n$ matrix A has multiple roots, there could exist a case such that A is non-diagonalizable.

• It is not true that a matrix whose characteristic equation has multiple roots is always non-diagonalizable.

• In contrast to the case of a nonsingular matrix, |A| = 0 does not mean A is non-diagonalizable and $|A| \neq 0$ does not mean A is diagonalizable.

◆ Example1

$$A = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}$$
 has the characteristic equation $(s-1)^2 = 0$ and only one corresponding eigenvector $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

→ non-diagonalizable matrix

◆ Example2

$$A = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \text{ has the characteristic equation } (s-3)s = 0$$
and the corresponding eigenvectors $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$$

→ diagonalizable matrix

◆ Example3

$$A_2 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \text{ has the characteristic equation } (s-2)(s+1)^2 = 0$$

and the corresponding eigenvectors
$$v_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v_{-11} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, v_{-12} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

→ diagonalizable matrix

5. Jordan Canonical Form

- ◆ Jordan canonical form (for a non-diagonalizable matrix)
 - For every $n \times n$ matrix A, there exists a nonsingular matrix P that transforms A into

$$J = P^{-1}AP = \begin{bmatrix} J_{p_1}(\lambda_1) & & & \\ & J_{p_2}(\lambda_2) & & \\ & & \ddots & \\ & & & J_{p_N}(\lambda_N) \end{bmatrix}$$

where $J_{p_i}(\lambda_i)$ is a Jordan block defined as

$$J_{p_i}(\lambda_i) = \begin{bmatrix} \lambda_i & 1 & 0 & \cdots & 0 \\ 0 & \lambda_i & 1 & \ddots & 0 \\ 0 & 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 0 & \lambda_i \end{bmatrix} \quad (p_i \times p_i)$$

and each λ_i is an eigenvalue of A.

Geometric and Algebraic Multiplicities

- For an eigenvalue λ_i of an $n \times n$ matrix A, assume that
 - 1. There are κ_i Jordan blocks which have λ_i as diagonal elements
 - 2. Each Jordan block has size of $n_{ip} \times n_{ip}$ $(p = 1, ..., \kappa_i)$

Then, the geometric and algebraic multiplicaties are defined as follows:

- κ_i : Geometric Multiplicity $\operatorname{rank}(A \lambda_i I) = n \kappa_i$

- $n_i := n_{i1} + \dots + n_{i\kappa_i}$: Algebraic Multiplicity $\det(sI A) = \prod_{i=1}^l (s \lambda_i)^{n_i}$

◆ Non-derogatory matrix and derogatory matrix

Case I: For all eigenvalues λ_i , $\kappa_i = n_i$ (i = 1, ..., l).

- \rightarrow All the Jordan blocks have size of 1×1 .
- $\rightarrow A$ is diagonalizable.

Case II: For all eigenvalues λ_i , $\kappa_i = 1$ (i = 1, ..., l).

- \rightarrow There exists only one Jordan block for each eigenvalue λ_i .
- \rightarrow In this case, we call A a **non-derogatory** matrix.

Case III: There exist an eigenvalue λ_i such that $\kappa_i \geq 2$.

- \rightarrow There exist two or more Jordan blocks for an eigenvalue λ_i .
- \rightarrow In this case, we call A a **derogatory** matrix.

lacktriangle Non-derogatory case (one Jordan block for each eigenvalue λ_i)

Let us assume for an $n \times n$ matrix A that

$$\det(sI - A) = (s - \lambda_1)^{n_1} (s - \lambda_2)^{n_2} \cdots (s - \lambda_l)^{n_l}$$
$$(\lambda_i \neq \lambda_j, \ \forall i, j; \quad n_1 + n_2 + \cdots + n_l = n)$$

For an eigenvalue λ_i with the algebraic multiplicity n_i ,

let us define the vectors $v_{i,1}, \ldots, v_{i,n_i}$ as follows:

$$(\lambda_i I - A)v_{i,1} = 0$$

$$(\lambda_i I - A)v_{i,2} = -v_{i,1}$$

$$\vdots$$

$$(\lambda_i I - A)v_{i,n_i} = -v_{i,n_i-1}$$

Then, we define the $n \times n_i$ matrix $P(\lambda_i)$ as

$$P(\lambda_i) := \begin{bmatrix} v_{i,1} & v_{i,2} & \cdots & v_{i,n_i} \end{bmatrix}$$

Applying this procedure to all the eigenvalues $\lambda_1, \ldots, \lambda_l$ leads to

$$P(\lambda_1) := [v_{1,1} \quad \cdots \quad v_{1,n_1}], \ldots, P(\lambda_l) := [v_{l,1} \quad \cdots \quad v_{l,n_l}]$$

Here, if we define the $n \times n$ matrix P as

$$P := \begin{bmatrix} P(\lambda_1) & P(\lambda_2) & \cdots & P(\lambda_l) \end{bmatrix}$$

we can obtain the following Jordan canonical form:

$$J = P^{-1}AP = \begin{bmatrix} J_{n_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{n_l}(\lambda_l) \end{bmatrix}$$

♦ Example

For
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -5 & -4 \end{bmatrix}$$
, we have $\det(sI - A) = (s+1)^2(s+2) = 0$

For
$$\lambda_1 = -1$$
, rank $(\lambda_1 I - A) = \text{rank} \begin{pmatrix} \begin{bmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \\ 2 & 5 & 3 \end{bmatrix} \end{pmatrix} = 2 = 3 - 1$

 $\rightarrow A$ is a non-derogatory matrix.

From
$$(\lambda_1 I - A)v_{1,1} = 0$$
, $(\lambda_1 I - A)v_{1,2} = -v_{1,1}$,

$$v_{1,1} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad v_{1,2} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

On the other hand, for $\lambda_2 = -2$,

$$(\lambda_2 I - A)v_{2,1} = 0$$
 leads to $v_{2,1} = \begin{bmatrix} -1/2 \\ 1 \\ -2 \end{bmatrix}$

By defining
$$P := \begin{bmatrix} v_{1,1} & v_{1,2} & v_{2,1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1/2 \\ -1 & 0 & 1 \\ 1 & -1 & -2 \end{bmatrix}$$
,

lacktriangle Derogatory case $(p_i \text{ Jordan block for each eigenvalue } \lambda_i)$

Let us assume for an $n \times n$ matrix A that

$$\det(sI - A) = (s - \lambda_1)^{n_1} (s - \lambda_2)^{n_2} \cdots (s - \lambda_l)^{n_l}$$
$$(\lambda_i \neq \lambda_j, \ \forall i, j; \quad n_1 + n_2 + \cdots + n_l = n)$$

For an eigenvalue λ_i with the geometric multiplicity p_i , i.e.,

$$rank(\lambda_i I - A) = n - p_i \ (p_i \ge 2)$$

we can compute the following r vectors through trial and error:

$$(\lambda_{i}I - A)v_{i,1,1} = 0 \qquad (\lambda_{i}I - A)v_{i,p_{i},1} = 0 (\lambda_{i}I - A)v_{i,1,2} = -v_{i,1,1} \qquad (\lambda_{i}I - A)v_{i,p_{i},2} = -v_{i,p_{i},1} \vdots \qquad \vdots \qquad \vdots (\lambda_{i}I - A)v_{i,1,m_{i1}} = -v_{i,1,m_{i1}-1} \qquad (\lambda_{i}I - A)v_{i,p_{i},m_{ip_{i}}} = -v_{i,p_{i},m_{ip_{i}}-1} m_{i1} + m_{i2} + \dots + m_{ip_{i}} = n_{i}$$

Then, we define the $n \times n_i$ matrix $P(\lambda_i)$ as

$$P(\lambda_i) := \begin{bmatrix} v_{i,1,1} & \cdots & v_{i,1,m_{i1}} & \cdots & v_{i,p_i,1} & \cdots & v_{i,p_i,m_{ip_i}} \end{bmatrix}$$

Applying this procedure to all the eigenvalues $\lambda_1, \ldots, \lambda_l$ leads to

$$P := \begin{bmatrix} P(\lambda_1) & P(\lambda_2) & \cdots & P(\lambda_l) \end{bmatrix}$$

Then, we can obtain the following Jordan canonical form:

$$J = P^{-1}AP = \begin{bmatrix} J_{m_{11}}(\lambda_1) & & & & & \\ & \ddots & & & & \\ & & J_{m_{1p_1}}(\lambda_1) & & & & \\ & & & \ddots & & & \\ & & & & J_{m_{l1}}(\lambda_l) & & & \\ & & & & \ddots & & \\ & & & & & J_{m_{lp_{lo2}}}(\lambda_l) \end{bmatrix}$$

◆ Example

For
$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & -2 \end{bmatrix}$$
, $\det(sI - A) = (s+1)^3 s = 0$

For
$$\lambda_1 = -1$$
,
$$\operatorname{rank}(\lambda_1 I - A) = \operatorname{rank} \left(\begin{bmatrix} -1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \right) = 2 = 4 - 2$$

 $\rightarrow A$ is a derogatory matrix.

For $\lambda_1 = -1$, there exsit 2 (=geometric multiplicity) Jordan blocks and the sum of their sizes is 3 (=algebraic multiplicity)

 \rightarrow Jordan blocks for λ_1 have sizes of 1 and 2.

From $(\lambda_1 I - A)v_{1,k,1} = 0$ (k = 1, 2),

$$v_{1,1,1} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \quad v_{1,2,1} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \end{bmatrix}$$

Becuase $v_{1,1,1} \notin \text{Im } (\lambda_1 I - A)$, there is no $v_{1,1,2}$ but $v_{1,2,2}$ such that

$$(\lambda_1 I - A)v_{1,2,2} = -v_{1,2,1}$$
 and thus $v_{1,2,2} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

On the other hand, for $\lambda_2 = 0$,

$$(\lambda_2 I - A)v_{2,1,1} = 0$$
 leads to $v_{2,1,1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

By defining
$$P := \begin{bmatrix} v_{1,1,1} & v_{1,2,1} & v_{1,2,2} & v_{2,1,1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix}$$
,

$$\rightarrow P^{-1}AP = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$