4/16/25, 7:58 PM

pca.ipynb - Colab import pandas as pd df = pd.read_csv("/content/iris.csv") df **→** sepal_length sepal_width petal_length petal_width species 丽 0 5.1 0.2 3.5 1.4 setosa ıl. 1 3.0 0.2 4.9 1.4 setosa 2 4.7 3.2 1.3 0.2 setosa 3 4.6 3.1 0.2 1.5 setosa 4 5.0 3.6 1.4 0.2 setosa 145 6.7 3.0 5.2 2.3 virginica 146 6.3 2.5 5.0 virginica 147 6.5 3.0 5.2 2.0 virginica 3.4 148 6.2 5.4 2.3 virginica 149 5.9 3.0 5.1 1.8 virginica 150 rows × 5 columns Generate code with df View recommended plots Next steps: (New interactive sheet from sklearn.preprocessing import StandardScaler features = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width'] # Separating out the features x = df.loc[:, features].values # Separating out the target y = df.loc[:,['species']].values # Standardizing the features x = StandardScaler().fit_transform(x) from sklearn.decomposition import PCA

pca = PCA(n_components=2) principalComponents = pca.fit_transform(x)

principalDf = pd.DataFrame(data = principalComponents

, columns = ["principal component 1", "principal component 2"]) finalDf = pd.concat([principalDf, df[['species']]], axis = 1)

finalDf

_ _ *		principal component 1	principal component 2	species	
	0	-2.264542	0.505704	setosa	ıl.
	1	-2.086426	-0.655405	setosa	+/
	2	-2.367950	-0.318477	setosa	
	3	-2.304197	-0.575368	setosa	
	4	-2.388777	0.674767	setosa	
	145	1.870522	0.382822	virginica	
	146	1.558492	-0.905314	virginica	
•	147	1.520845	0.266795	virginica	
	148	1.376391	1.016362	virginica	
	149	0.959299	-0.022284	virginica	
1!		ows × 3 columns			

Generate code with finalDf Next steps: (

View recommended plots

New interactive sheet

import matplotlib.pyplot as plt

```
fig = plt.figure(figsize = (8,8))
ax = fig.add_subplot(1,1,1)
ax.set_xlabel('Principal Component 1', fontsize = 15)
ax.set_ylabel('Principal Component 2', fontsize = 15)
ax.set_title('2 component PCA', fontsize = 20)
species = ['setosa', 'versicolor', 'virginica']
colors = ['r', 'g', 'b']
for species, color in zip(species,colors):
    indicesToKeep = finalDf['species'] == species
    ax.scatter(finalDf.loc[indicesToKeep, 'principal component 1']
               , finalDf.loc[indicesToKeep, 'principal component 2']
               , c = color
               , s = 50)
ax.legend(species)
ax.grid()
```


