2x2 y" - xy' + (+x) y = 0. + want to solve (1) -> of the form a(x) y" + b(x) y" + ((x) y = 0. Xo is a sugular pt. if a(xo)=0. Xo is regular singular of $\lim_{X\to X_0} \frac{b(x)}{a(x)} (x-x_0) = \text{Anite}$ memorite tuese criteria for qualifica and lim $\frac{\mathbf{L}(x)}{a(x)}(x-x_0)^2 = \mathbf{f}$ mite. In this case, b(x) = -x, $a(x) = 2x^2$, and (1+x) = C(x). And X=0 is the trugalar pt. $\lim_{X\to 0} \frac{-x}{2x^2} (x)^{\frac{x}{2}} = \lim_{X\to 0} \frac{-1}{2x^2} = \frac{1}{2} \int_{\mathbb{R}} \operatorname{Regular}.$ $\lim_{X\to 0} \frac{1+x}{2x^2} (x)^2 = \lim_{X\to 0} \frac{1}{2} (4+x) = \frac{1}{2} \int_{\mathbb{R}} \operatorname{Regular}.$ Therefore use the sendus's method to solve (1). Let y = x = anx n = Eanx nor. then I' = 2 an m+nx n+r-1 and $y'' = \frac{2}{2} a_n (n+r)(n+r-1) \times n+r-2$. Substitute the derivatives listo (1). $2x^{2} = \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \left(n + r - 1 \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r - 1}{n = 0} + \left(1 + x \right) \sum_{n=0}^{\infty} a_{n} \left(n + r \right) \times \frac{n + r$ $2 \underset{n=0}{\overset{\infty}{\xi}} a_n (n+r)(n+r-1) x^{n+r} - \underset{n=0}{\overset{\infty}{\xi}} a_n (n+r) x^{n+r} + \underset{n=0}{\overset{\infty}{\xi}} a_n x^{n+r} + \underset{n=0}{\overset{\infty}{\xi}} a_n x^{n+r} + (n+r-1) x^{n+$

$$\sum_{n=0}^{\infty} \left[2a_n \left(n + n \right) \left(n + r - 1 \right) \times n + r - a_n \left(n + r \right) \times n + r + a_n \times n + r \right] \\
+ \sum_{n=1}^{\infty} a_{n-1} \times n + r = 0.$$

In order to combine the funnations, the n=0 term needs to be removed from the first surmations p; i.e., (first rewrite it) $\sum_{n=0}^{\infty} \left[2(n+n)(n+r-1) - (n+r) + 1 \right] a_n \times^{n+r} + \sum_{n=0}^{\infty} a_{n-1} \times^{n+r} = 0$.

 $[2r(r-1)-r+1]a_0x^n+\sum_{n=1}^{\infty}[2(n+r)(n+r-1)-(n+n)+1]A_n+a_{n-1}]x^{n+r}=($

Every term above (i.e., every power of x) must be 0 because the RHS is 0. Therefore, since a. \(\psi\).

"indicial eq." $\longrightarrow 2n(n-1)-\nu+1=0$.

 $2r^{2} - 2r - r + 1 = 0$ $2r^{2} - 3r + 1 = 0$ (2r - 1)(r - 1) = 0

texponents @

the fingularity!

The Characteristic equation from setting & = 0 must be considered for the exposurents at the langularity:

(2) ---- $a_n = \frac{-a_{n-1}}{2(n+r)(n+r-1)-(n+r)+1}$. for $n \geq 1$.

We will consider first eq. (2) for n= 1:

for r=1, equation (2) becomes $a_{n} = \frac{-a_{n-1}}{2(n+1)n - n(+1)+1} = \frac{-a_{n-1}}{2n^{2}+2n-n}$ $\Rightarrow a_n = \frac{-a_{n-1}}{n(2n+1)}, for \\ n \ge 1$ Choose ao = 1. then $a_1 = \frac{-a_1}{1/2 \cdot 1 + 1} = -\frac{1}{1 \cdot 2}$ n=2 $a_2 = \frac{-a_1}{2(2\cdot 2+1)} = \frac{-a_1}{2\cdot 5} = \pm \frac{1}{1\cdot 3\cdot 2\cdot 5}$ h=3 $a_3 = \frac{-a_2}{3(6+1)} = \frac{-a_2}{3\cdot 7} = \frac{1}{1\cdot 3\cdot 2\cdot 5\cdot 3\cdot 7}$ 1 = 3 0 = 3 0 = 3 0 = 4 0 =So an = (-1) = (-1) = (3.5.7 -- 2n+1). The first sol. is thus Eanxner = Eanxner $y_1 = A_0 x + \frac{3}{2} \frac{(-1)^n}{n! \, 3.5.7.(2n+1)} \times n+1.$ for r= 2, eq. (2) becomes $a_n = \frac{-a_{n-1}}{2(n+\frac{1}{2})(n+\frac{1}{2}-1)-6+\frac{1}{2})+1$

 $= \frac{-a_{n-1}}{2n^2 - \frac{1}{2} - n - \frac{1}{2} + 1} = \frac{-a_{n-1}}{2n^2 - n}$ In (2n-1).

Again pick
$$a_0 = 1$$
 $n = 1$
 $a_1 = \frac{-a_0}{2 - 1} = -1$
 $n = 2$
 $a_2 = \frac{-a_1}{2(4 - 1)} = \frac{1}{2 \cdot 3}$
 $n = 3$
 $a_3 = \frac{-a_1}{3(6 - 1)} = \frac{1}{2 \cdot 3 \cdot 3 \cdot 5}$
 $n = 4$
 $a_4 = \frac{-a_5}{4(8 - 1)} = \frac{1}{2 \cdot 3 \cdot 3 \cdot 5}$

So $a_n = \frac{(-1)^n}{n! \cdot 3 \cdot 5 \cdot 4 \cdot (2n - 1)}$
 $a_1 = \frac{(-1)^n}{3 \cdot 5 \cdot 4 \cdot (2n - 1)}$
 $a_2 = \frac{1}{2 \cdot 3 \cdot 3 \cdot 5 \cdot 4 \cdot (2n - 1)}$
 $a_3 = \frac{(-1)^n}{n! \cdot 3 \cdot 5 \cdot 4 \cdot (2n - 1)}$

So $y_{2} = \sum_{n=0}^{\infty} G_{n} \times^{n+r} = \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n! 3 \cdot 5 \cdot 7} \frac{x^{n+2}}{(2n-1)}$

the sun y, + y, is the general solution,