Assignment 2 Preeti Vishwakarma (G23Al1029) Salary Prediction Project Report

GitHub: https://github.com/vishwakpreeti/MLOps

Hugging face: https://huggingface.co/spaces/vishwakpreeti/Assignment2/tree/main

Introduction

The project involves creating a model to predict salaries using machine learning techniques. This will include conducting Exploratory Data Analysis (EDA) and preprocessing the data. The implementation will involve using MLflow to track experiments and Streamlit to build a user-friendly interface. I have prepared a detailed report that covers all the steps taken in the project, from exploring the data to deploying the model.1. Environment Setup

First, we ensured the necessary libraries were installed and updated:

!pip install --upgrade numpy cloudpickle

!pip install --upgrade plotly

!pip install --upgrade xarray

These installations are crucial for handling data manipulation, visualization, and machine learning model building.

2. Data Loading and Exploration

The dataset ds_salaries.csv was loaded into a pandas DataFrame:

df = pd.read csv("ds salaries.csv")

We then explored the dataset to understand its structure and basic statistics:

df.info()
df.describe()
df.head()

	work_year		employment_type	job_title	salary	salary_currency	salary_in_usd	employee_residence	remote_ratio	company_location	company_size
0	2023		FT	Principal Data Scientist	80000	EUR	85847	ES	100	ES	L
1	2023	МІ	СТ	ML Engineer	30000	USD	30000	US	100		S
2	2023	МІ	ст	ML Engineer	25500	USD	25500	US	100	US	S
3	2023		FT	Data Scientist	175000	USD	175000	CA	100	CA	М
4	2023	SE	FT	Data Scientist	120000	USD	120000	CA	100	CA	М

3. Data Preprocessing

Experience Level Mapping

Experience levels were mapped to more descriptive labels for better interpretability:

```
df['experience_level'] = df['experience_level'].replace({
    'EN': 'Entry-level/Junior',
    'MI': 'Mid-level/Intermediate',
    'SE': 'Senior-level/Expert',
    'EX': 'Executive-level/Director'
})
```

Experience Level

Data Visualization

We used Plotly for interactive visualizations to understand the distribution of experience levels and job titles:

import plotly.express as px

ex_level = df['experience_level'].value_counts()
fig = px.treemap(ex_level, path=[ex_level.index], values=ex_level.values, title='Experience
Level')
fig.show()

Top 15 Job Designations

4. Feature Engineering

To prepare the data for machine learning, we encoded categorical variables:

categorical_features = ['experience_level', 'job_title', 'employee_residence', 'company_location',
'company_size', 'job_category']
encoders = {feature: LabelEncoder().fit(df[feature]) for feature in categorical features}

```
for feature in categorical_features:
    df[feature] = encoders[feature].transform(df[feature])
```

5. Model Building

Data Splitting

The data was split into training and testing sets:

X = df.drop('salary', axis=1) y = df['salary']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Model Selection

Several models were considered, including Logistic Regression, Random Forest, and Gradient Boosting. Here's an example of setting up a Random Forest model:

from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(n_estimators=100, random_state=42) model.fit(X_train, y_train)

6. Model Evaluation

The performance of the models was evaluated using metrics such as accuracy, confusion matrix, and classification report:

from sklearn.metrics import accuracy score, classification report, confusion matrix

```
y_pred = model.predict(X_test)
print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
print(f"Classification Report:\n {classification_report(y_test, y_pred)}")
```

7. MLflow for Experiment Tracking

MLflow was integrated to track the experiments:

```
import mlflow import mlflow.sklearn

mlflow.start_run()
mlflow.log_param("n_estimators", 100)
mlflow.log_metric("accuracy", accuracy_score(y_test, y_pred))
mlflow.sklearn.log_model(model, "model")
mlflow.end_run()
```

8. Building a Streamlit App

A Streamlit application was developed to allow users to interact with the model and predict salary ranges:

```
import streamlit as st
import mlflow
import mlflow.sklearn
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
import joblib
logged model = 'model.pkl'
model = joblib.load(logged model)
categorical features = ['employment type', 'job category', 'experience level',
               'employee residence', 'remote ratio', 'company location', 'company size']
distinct values = {
  'experience level': ['Senior-level/Expert', 'Mid-level/Intermediate', 'Entry-level/Junior',
'Executive-level/Director'],
  'employment type': ['Full-time', 'Contractor', 'Freelancer', 'Part-time'], # Replace with actual
distinct values
  'employee residence': ['ES', 'US', 'CA', 'DE', 'GB', 'NG', 'IN', 'HK', 'PT', 'NL', 'CH', 'CF', 'FR',
'AU'.
'FI', 'UA', 'IE', 'IL', 'GH', 'AT', 'CO', 'SG', 'SE', 'SI', 'MX', 'UZ', 'BR', 'TH',
'HR', 'PL', 'KW', 'VN', 'CY', 'AR', 'AM', 'BA', 'KE', 'GR', 'MK', 'LV', 'RO', 'PK',
'IT', 'MA', 'LT', 'BE', 'AS', 'IR', 'HU', 'SK', 'CN', 'CZ', 'CR', 'TR', 'CL', 'PR',
'DK', 'BO', 'PH', 'DO', 'EG', 'ID', 'AE', 'MY', 'JP', 'EE', 'HN', 'TN', 'RU', 'DZ',
'IQ', 'BG', 'JE', 'RS', 'NZ', 'MD', 'LU', 'MT'],
  'remote ratio': ['Full-Remote', 'On-Site', 'Half-Remote'],
```

```
'company location': ['ES', 'US', 'CA', 'DE', 'GB', 'NG', 'IN', 'HK', 'NL', 'CH', 'CF', 'FR', 'FI',
'UA'.
'IE', 'IL', 'GH', 'CO', 'SG', 'AU', 'SE', 'SI', 'MX', 'BR', 'PT', 'RU', 'TH', 'HR',
'VN', 'EE', 'AM', 'BA', 'KE', 'GR', 'MK', 'LV', 'RO', 'PK', 'IT', 'MA', 'PL', 'AL',
'AR', 'LT', 'AS', 'CR', 'IR', 'BS', 'HU', 'AT', 'SK', 'CZ', 'TR', 'PR', 'DK', 'BO',
'PH', 'BE', 'ID', 'EG', 'AE', 'LU', 'MY', 'HN', 'JP', 'DZ', 'IQ', 'CN', 'NZ', 'CL',
'MD', 'MT'],
  'company size': ['LARGE', 'SMALL', 'MEDIUM'],
  'job_category': ['Other', 'Machine Learning', 'Data Science', 'Data Engineering'.
'Data Architecture', 'Management']
}
encoders = {feature: LabelEncoder().fit(values) for feature, values in distinct values.items()}
st.title("Salary Prediction")
user input = \{\}
for feature in categorical features:
  user input[feature] = st.selectbox(f"Select {feature}",distinct values[feature])
encoded input = [encoders[feature].transform([user input[feature]])[0] for feature in
categorical features]
if st.button("Predict Salary Range"):
  encoded input = np.array(encoded input).reshape(1, -1)
  prediction = model.predict(encoded input)
  salary labels = ['low', 'low-mid', 'mid', 'mid-high', 'high', 'very-high', 'Top']
  st.write(f"Predicted Salary Range: {prediction}")
```

Conclusion

This project demonstrated a comprehensive approach to salary prediction using machine learning. The steps covered data exploration, preprocessing, model building, evaluation, experiment tracking with MLflow, and deployment using Streamlit. Each component played a crucial role in ensuring the robustness and usability of the final application.

Salary Prediction

EC2 Configuration:

Instance ARN: arn:aws:ec2:eu-north-1:992382616292:instance/i-070cc272fefdce83e

AWS Credential: ec2-16-170-227-52.eu-north-1.compute.amazonaws.com

IP: 16.170.227.52

