THE PAPER TITLE*

Your Name[†] Department of Economics

2023

ABSTRACT

Nulla malesuada portitior diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa. Download this template at the Github repository.

Keywords: keyword1, keyword2

JEL Codes: J02, R10

^{*}We thank someone for excellent research assistance. We thank someone for their comments and suggestions.

[†]Your address; Email: yourEmail@email.com.

1 Introduction

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer. Many previous research has has studied this problem (Lee, 2018, Dong and Shen, 2018). Download this template at the Github repository.

2 Model

Equation 1 or eq. (1) or Equation (1). Donec vitae turpis. Suspendisse portitor. Mauris aliquam purus vitae tellus. Morbi metus diam, tempus ac, cursus ut, ultricies quis, nulla. Praesent nec justo. In lobortis. Donec nec lectus a neque laoreet rhoncus. Quisque in risus nec wisi lacinia ullamcorper. In placerat. Proin facilisis sollicitudin libero. Integer eget neque et pede placerat aliquet. Aliquam purus nulla, pulvinar ut, facilisis quis, sodales sed, magna. Curabitur nulla lectus, rutrum id, bibendum ut, sagittis eget, diam. Sed porta dolor eget est. Integer hendrerit orci. In hac habitasse platea dictumst.

Ut facilisis. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed pellentesque, turpis sit amet aliquet porta, risus odio venenatis felis, at porta tellus lacus vitae nisl. Donec augue. Quisque consequat, pede laoreet pellentesque posuere, urna sapien tempor justo, eu aliquam tortor nunc id mauris. Fusce pretium, purus facilisis consequat mattis, ligula leo pretium mauris, ac suscipit augue sapien sit amet ipsum. Praesent et ligula eget tortor dapibus blandit. Duis rutrum felis eget dolor. Vestibulum quis elit. Integer dignissim, velit at scelerisque congue, ipsum nulla dignissim dolor, lacinia scelerisque neque erat a mi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Quisque ipsum lectus, euismod et, lacinia eu, iaculis eu, pede. Etiam justo quam, cursus ut, vulputate vel, feugiat ut, eros. Fusce eleifend mollis ipsum. More are discussed in Appendix A.

Theorem 1 (Envelope Theorem). Only the direct effects of a change in an exogenous variable need be considered, even though the exogenous variable may enter the maximum value function indirectly as part of the solution to the endogenous choice variables. The proof is in Appendix B.

The competition can be illustrated with the following graph with the implementation is presented in Listing 1 or listing 1:

Figure 1: This is a graph

Note: some notes. The graph should be self-contained. Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem. Vivamus viverra consequat enim.

3 Comparative Statics

This is also demonstrated in Figure 1 or fig. 1 and the results are presented in Appendix B.1b. Download this template at the Github repository. Donec metus metus, condimentum eu, accumsan nec, vulputate non, purus. Vestibulum ullamcorper vehicula sapien. Mauris risus odio, hendrerit ac, congue ac, ullamcorper at, odio. Aenean leo justo, commodo vitae, placerat blandit, malesuada vel, sem. Donec sit amet ante eget mauris adipiscing sollicitudin. Curabitur posuere sem et leo. Nulla ultricies mauris. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Fusce sollicitudin augue vel tellus. Vivamus mauris eros, pharetra vel, lacinia pretium, egestas a, nibh. Morbi a ligula.

Listing 1: Long short-term memory

```
class network_LSTM(nn.Module):
2
           _init__(self, input_size=1, hidden_size=256, output_size=1):
         super().__init__()
         self.hidden_size = hidden_size
4
         self.lstm = nn.LSTM(input_size, hidden_size)
5
         # fully-connected
         self.linear = nn.Linear(hidden_size, output_size)
         self.hidden = (
10
            torch.zeros(1, 1, self.hidden_size),
11
            torch.zeros(1, 1, self.hidden_size)
12
13
14
      def forward(self, vec):
15
         lstm_output, self.hidden = self.lstm(vec.view(len(vec),1,-1), self.hidden)
16
         prediction = self.linear(lstm_output.view(len(vec),-1))
17
         return prediction[-1]
18
```

4 Empirical Results

We follow the approach from Harding and Lamarche (2019). By using this approach, comparable results can be obtained (Chen, Esteban and Shum, 2013). To calculate the ELBO³, we start from using the property of the KL-divergence. The data can be summarized by the tables with decimal alignment in Table table B.1a.

Nulla facilisi. Nunc nec elit. Integer ornare convallis tortor. Proin ac diam. In est sapien, laoreet euismod, mattis a, tincidunt at, risus. Vivamus risus. Vestibulum aliquam, urna aliquam porttitor accumsan, nulla tortor ullamcorper elit, ut consequat augue purus sit amet libero. Vivamus nisl lacus, commodo vel, dignissim ut, vestibulum id, pede. Curabitur malesuada hendrerit libero. Mauris quis dolor in tellus varius posuere. Sed vulputate elit at wisi. Fusce vitae neque. Nulla consectetuer, nunc ac eleifend laoreet, mi nulla commodo wisi, vel faucibus ligula lectus ut arcu. Vivamus hendrerit.

Sed varius, nulla vitae tincidunt lobortis, nibh ipsum sollicitudin libero, et commodo tellus massa in neque. Nulla facilisi. Aenean nec lectus. Aliquam fermentum. Duis ut magna et augue interdum gravida. Morbi elit. Fusce malesuada tempus ipsum. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris iaculis enim non metus. Nullam dui magna, congue et, suscipit sed, aliquam vel, turpis. Quisque ultricies.

Suspendisse feugiat sapien laoreet ante. Integer fringilla, erat eget adipiscing ultrices, nibh dui sollicitudin nunc, in lobortis arcu odio vitae erat. Fusce bibendum ultricies lacus. Mauris eleifend ligula a ante. Etiam faucibus cursus pede. Mauris enim eros, malesuada eu, mattis sit amet, blandit in, nulla. Fusce sit amet purus id mi posuere tincidunt. Mauris sit amet quam vitae quam semper accumsan. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nam a justo at quam accumsan euismod. Duis tincidunt tristique risus. Ut vel nibh vel libero varius malesuada. In hac habitasse platea dictumst. Morbi sagittis mattis lorem. Pellentesque metus tellus, rutrum vitae, malesuada et, pharetra accumsan, ante. Quisque ac metus ac nisl gravida pellentesque. Sed dapibus feugiat sapien. Vestibulum nec nunc eget sem aliquam lobortis. Suspendisse aliquam quam quis metus.

Table B.1a: First Table

Category	Total	Shares (%)	Female	Male	Asian	Black/AA	His./Latino	White/Cau.	Zeros (%)
child care	19.39	0.08	12.32	20.12	23.14	63.78	20.24	19.00	0.07
eating	30.35	6.12	35.97	6.23	24.61	21.58	38.18	2.02	0.00
education	9.91	0.04	9.94	90.54	9.69	7.99	10.64	10.14	0.90
entertainment (not TV	7) 26.05	0.10	29.19	26.60	33.36	26.13	4.43	25.15	0.45

Note: This is the first table.

³More information about the evidence lower bound (ELBO) can be found on the Wikipedia.

Table B.1b: Second Table

Category	Total	Shares (%)	Female	Male	Asian	Black/AA	His./Latino	White/Cau.	Zeros (%)
child care	19.39	0.08	39.32	40.12	23.14	18.78	20.24	19.00	0.07
personal care	13.92	0.06	24.00	23.14	16.12	1.76	15.15	13.66	0.00
sports/exercise	20.44	0.08	20.38	31.00	24.99	25.48	20.71	20.07	0.53
TV	28.61	0.12	48.47	9.93	2.35	63.70	29.22	80.20	0.46

Note: This is the second table.

5 Algorithm

Quisque facilisis auctor sapien. Pellentesque gravida hendrerit lectus. Mauris rutrum sodales sapien. Fusce hendrerit sem vel lorem. Integer pellentesque massa vel augue. Integer elit tortor, feugiat quis, sagittis et, ornare non, lacus. Vestibulum posuere pellentesque eros. Quisque venenatis ipsum dictum nulla. Aliquam quis quam non metus eleifend interdum. Nam eget sapien ac mauris malesuada adipiscing. Etiam eleifend neque sed quam. Nulla facilisi. Proin a ligula. Sed id dui eu nibh egestas tincidunt. Suspendisse arcu. In the following, we present the algorithm:

Algorithm 1: Euclid's algorithm for finding the greatest common divisor of two nonnegative integers

```
function Euclid (a,b);

Input : Two nonnegative integers a and b

Output: \gcd(a,b)

if b=0 then

| return a;

else
| return Euclid(b,a \mod b);

end
```

Maecenas dui. Aliquam volutpat auctor lorem. Cras placerat est vitae lectus. Curabitur massa lectus, rutrum euismod, dignissim ut, dapibus a, odio. Ut eros erat, vulputate ut, interdum non, porta eu, erat. Cras fermentum, felis in porta congue, velit leo facilisis odio, vitae consectetuer lorem quam vitae orci. Sed ultrices, pede eu placerat auctor, ante ligula rutrum tellus, vel posuere nibh lacus nec nibh. Maecenas laoreet dolor at enim. Donec molestie dolor nec metus. Vestibulum libero. Sed quis erat. Sed tristique. Duis pede leo, fermentum quis, consectetuer eget, vulputate sit amet, erat.

Table 2: Summary Statistics

	Cohort				
	2006	2007	2008		
Students registered	1535	1584	1767		
Gender (%)					
Male	61.1	64.5	57.7		
Female	38.9	35.5	42.3		
Race (%)					
White	43.3	43.4	40.6		
Black	29.8	33.4	34.8		

Note: Source: UCT Institutional Planning Department.

Lemma 1 (This is a lemma).

- (a) For any feasible disclosure policy $G \in \mathcal{G}$, $W_G(p)$ is a convex function. Moreover, for all $p \in [0, 1]$, $W_{G_{\pi}}(p) \leq W_G(p) \leq W_{G_{\pi}(p)}$.
- (b) The converse of the above statement is also true. That is, if $W:[0,1] \to \mathbb{R}$ is a convex function that satisfies $W_{G_{\overline{\pi}}}(p) \leq W(p) \leq W_{G_{\overline{\pi}}(p)}$, then there exists a feasible $G \in \mathcal{G}$ such that $W_G(p) = W(p)$ for all $p \in [0,1]$.

6 Conclusion

The timing of the game is as follows:

- 1. Seller chooses p.
- 2. Intermediary observes seller's pricing decision and announces the disclosure policy G.
- 3. Buyer observes both the price p and the disclosure policy G. Buyer's private search cost ξ realizes according to H. She will visit the intermediary if and only if $W_G(p) \geq s$. Otherwise, he does not visit and no purchase is made.
- 4. When buyer pays his visit, his posterior expected value s is drawn according to G. He purchases the product if $\mathbb{E}(v|s) \geq p$. Otherwise, no purchase is made.

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accumsan laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus. Pellentesque

vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero vel turpis. Donec rutrum mauris et libero. Proin euismod porta felis. Nam lobortis, metus quis elementum commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Aenean nonummy magna non leo. Sed felis erat, ullamcorper in, dictum non, ultricies ut, lectus. Proin vel arcu a odio lobortis euismod. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est. Aliquam odio. Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus faucibus, augue. We graph with tikz in LATEX:

References

- **Chen, Jiawei, Susanna Esteban, and Matthew Shum.** 2013. "When Do Secondary Markets Harm Firms?" *American Economic Review*, 103(7): 2911–2934.
- **Dong, Yingying, and Shu Shen.** 2018. "Testing for Rank Invariance or Similarity in Program Evaluation." *Review of Economics and Statistics*, 100(1): 78–85.
- **Harding, Matthew, and Carlos Lamarche.** 2019. "A panel quantile approach to attrition bias in Big Data: Evidence from a randomized experiment." *Journal of Econometrics*, 211(1): 61–82.
- **Lee, Ying-Ying.** 2018. "Efficient propensity score regression estimators of multivalued treatment effects for the treated." *Journal of Econometrics*, 204(2): 207–222.

Appendices

A Additional Discussion

Curabitur ullamcorper est in mauris. Praesent ac massa. Quisque enim odio, lobortis nec, mattis ut, luctus et, mauris. Mauris eu risus. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Duis eu ligula. Nulla vehicula leo tincidunt erat. Maecenas et nunc. Sed ut sapien. Vestibulum in est. Vestibulum rhoncus.

B Proof of Theorem 1

We will prove the following large frac $\frac{1}{2}$ and inline frac $\frac{1}{2}$ equations:

Proof. Given
$$y, x, \Delta, \nu, \eta, \mathcal{L} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 & 7 \end{pmatrix}$$
, and $\Pi = \begin{vmatrix} A & B & C \\ D & E & F \end{vmatrix}$, if

$$\begin{cases} \text{trade}, & p(\text{trade}) = \frac{y}{v} \\ \text{no trade}, & p(\text{no trade}) = 1 - \frac{y}{v} \end{cases}$$

$$y = \mathbb{E}\left(\beta x + \epsilon\right) \neq \sum_{i} \beta_{i}(\underbrace{\alpha + \xi}) + \epsilon$$

$$\Longrightarrow \int_{0}^{10} r\left(\frac{r}{50}\right) dr \xrightarrow{\text{text here}} \frac{r^{3}}{150} \Big|_{0}^{10}, \forall x \in (a, b)$$
(1)

So from \widehat{ABCD} , \widehat{ABCD} , \widehat{ABCD} , and \overline{ABCD} , we get the desire result.

Consider g(x) = f(x) - x, since f(x) and x are continuous, then $g: [a,b] \to \mathbb{R}$ is continuous. Then

$$g(a) = f(a) - a > 0, g(b) = f(b) - b < 0$$

By IVT: $\exists c \in (a,b) \text{ s.t. } g(c) = 0 \implies \exists c \in (a,b) \text{ s.t. } f(c) - c = 0 \implies f(c) = c.$

C More Tikz

Figure 2: Caption above figure

Figure 3: Caption below figure

→ prior

Figure 4: Caption below figure