

PROPOSAL TESIS

ANALISA EFISIENSI SPEKTRUM SISTEM MULTI USER MASSIVE MIMO SEL TUNGGAL PADA KANAL RAYLEIGH DAN RANDOM LINE OF SIGHT

Oleh: Ika Rohmatul Aini Dosen Pembimbing: Dr. Ir . Puji Handayani, MT.

PENDAHULUAN

LATAR BELAKANG

- Sistem Massive MIMO merupakan sistem yang menggunakan jumlah antena yang sangat banyak di sisi BTS
- Antena yang digunakan pada sistem Massive MIMO bisa berjumlah ratusan atau bahkan lebih.
- Sistem Massive MIMO dapat meningkatkan effifiensi spektrum, efisiensi energy dan meningkatkan kehandalan sistem.

LATAR BELAKANG PENELITIAN (CONT...)

- Pada penelitian ini akan dilakukan analisa untuk sel tunggal sistem komunikasi Multi User
 Massive MIMO transmisi downlink.
- Analisa didasarkan pada kondisi yang merepresentasikan adanya perubahan kanal dengan menerapkan teknik estimasi Channel State Information (CSI).
- Parameter output yang diamati dari sistem ini adalah efisiensi spektrum untuk kanal Rayleigh dan kanal random Line of Sight (LOS).

RUMUSAN MASALAH

- Bagaimana sistem komunikasi Massive MIMO dibangun dengan menggunakan blok-blok dasar sistem komunikasi.
- Bagaimana metode untuk estimasi Channel State Information (CSI) pada sistem komunikasi Massive MIMO.
- Bagaimana teknik deteksi pada masing-masing user untuk untuk multi user Massive MIMO.
- Bagaimana kinerja sistem Massive MIMO yang akan dibangun dengan parameter output efisiensi spektrum.

TUJUAN PENELITIAN

 Tujuan dari penelitian ini diantaranya adalah untuk membangun sistem komunikasi Multi User Massive MIMO berdasarkan literatur yang ada, dan menganalisa kinerjanya berdasarkan parameter efisiensi spektrum.

BATASAN MASALAH

- Sistem komunikasi ini akan dianalisa untuk sel tunggal transmisi downlink yang terdiri dari satu BTS dan beberapa user dimana tidak ada interferensi dari sel lain.
- Sistem yang dibangun menggunakan konfigurasi jumlah antena di BTS yang jauh lebih banyak daripada jumlah user yang dilayani. Dimana masing-masing user menggunakan antena tunggal.
- Model kanal yang digunakan adalah Rayleigh dan Line of Sight (LOS) pada satu interval frekuensi tertentu (coherence interval).
- Untuk kanal Line of Sight (LOS) posisi masing-masing user sudah diketahui oleh BTS.

KONTRIBUSI PENELITIAN

- Hasil dari penelitian ini kedepannya dapat digunakan sebagai acuan untuk merancang sistem komunikasi Massive MIMO dalam rangka mendukung pengembangan teknologi 5G.
- Hasil simulasi yang berupa efisiensi spektrum dapat dijadikan tolak ukur untuk memberikan rekomendasi pada sistem Massive MIMO agar bisa menghasilkan kapasitas sistem sesuai dengan kebutuhan.

METODOLOGI PENELITIAN

DIAGRAM ALUR SISTEM

S

м

VI

 \mathbf{U}

 \mathbf{L}

4

S

Ι

MODEL SISTEM

- Sistem sel tunggal terdiri dari sebuah BTS yang dilengkapi dengan antena sejumlah M, dan melayani user sebanyak K.
- Masing-masing user memiliki satu antena.
- Jumlah antena di pemancar jauh lebih banyak daripada jumlah user $(M \gg K)$. Proses transmisi uplink dan downlink menggunakan skema TDD karena estimasi kanal hanya dibutuhkan di sisi BTS.
- Respon kanal pada mode TDD bersifat resiprokal selama kanal dalam interval waktu tertentu (coherence interval) belum berubah.

BLOK DIAGRAM SISTEM KOMUNIKASI MASSIVE MIMO

Receiver

PEMANCAR SISTEM MASSIVE MIMO

- Pemancar adalah BTS yang melayani beberapa user dalam satu sel secara simultan.
- lacktriangle BTS menggunakan antena array sebanyak M antenna dengan spasi antar elemen antena adalah $^{\lambda}\!/_{2}$
- Deretan data dibangkitkan untuk tiap user, kemudian dimodulasi dengan sistem modulasi 4-QAM.
 Deretan data serial dikonversikan ke paralel.
- Kemudian dilakukan proses *Invers Dicrete Fourier Transform* (DFT) untuk memodulasi *N subcarrier* oleh sinyal informasi (**q**). Setelah itu dilakukan penambahan cyclic prefix.
- Data paralel ini lalu diubah menjadi bentuk serial dan dikalikan dengan precoding matrix yang diperoleh dari estimasi kanal.

KANAL RAYLEIGH SISTEM MASSIVE MIMO

- Pada model kanal Rayleigh terdapat banyak penghambur dan tidak ada lintasan Line of Sight (LOS)
- Sinyal yang diterima BTS maupun user adalah jumlahan dari sinyal yang telah mengahalami hamburan.
- Model kanal Rayleigh merupakan nilai random CN $(0,\beta_k)$, dengan β_k merupakan koefisien large-scale fading.
- Untuk masing-masing user diasumsikan mengalami large-scale fading yang berbeda sehingga nilai dari β_k dibangkitkan secara random

KANAL LOS SISTEM MASSIVE MIMO

- Pada scenario Line of Sight (LOS) tidak ada penghambur dan penghalang antara BTS dan user.
- Posisi masing-masing user berada pada sudut θ_k yang diukur relative terhadap array boresight.
- Pada skenario ini diasumsikan bahwa BTS sudah mengetahui posisi masing-masing user.

ESTIMASI KANAL

- User mengirimkan sinyal pilot ke BTS. Pada setiap coherence interval.
- User menggunakan pilot sejumlah τ_p pada tiap coherence interval τ_c , dimana $\tau_c \geq \tau_p \geq K$.
- BTS menerima sinyal pilot yang ditransmisikan user melalui uplink channel.
- BTS melakukan proses de-spreading pilot, yaitu mengalikan sinyal pilot dengan unitary matrix.
- BTS melakukan estimasi kanal dengan metode Minimum Mean Square Error (MMSE).

PENERIMA SISTEM MASSIVE MIMO

- Penerima adalah user yang berada di dalam satu sel dengan posisi random.
- Penerima akan menerima sinyal dari BTS yang sudah melewati kanal dan mengalami interferensi dengan noise.
- Proses pada perima ini adalah adalah menghilangkan cyclic prefix dari sinyal yang diterima, kemudian masuk ke blok DFT. Setelah itu masuk ke proses detector.
- Pada penelitian ini digunakan metode Zero Forcing pada sisi detector

EFISIENSI SPEKTRUM SISTEM MASSIVE MIMO

- Parameter output yang diamati dari sistem ini adalah efisiensi spektrum.
- Metode untuk memperoleh efisiensi spektrum dari hasil simulasi sistem adalah dengan menentukan covariance dari hasil estimasi bit.
- Pada penelitian ini efisiensi spektrum dianalisa untuk model kanal Rayleigh dan random Line of Sight

PARAMETER SISTEM

Parameter	Suburban area							
Frekuensi carrier (f_c)	3.4GHz							
Spectral bandwidth (B)	20MHz							
Jumlah Antena BTS (M)	100 antena							
Jumlah user (N)	30user							
Gain antena BTS (G_T)	27dBi							
Gain antena terminal (G_R)	2.2dBi							
Noise figure BTS (F_T)	7dB							
Noise figure perangkat user (F_R)	7dB							
Temperatur noise (T)	290K							
Kecepatan mobitilas user (v)	71km/h							
Daya radias BTS (P_{ul})	IW							
Daya radiasi perangkat user (P_{dl})	200mw							
Coherence Bandwidth (B_c)	210 kHz							

KEMAJUAN PENELITIAN

Menentukan kosep sistem

Perancangan parameter sistem

- Perhitungan jumlah pilot
- Perhitungan coherence time
- Perhitungan coherence interval

Estimasi CSI

- o Transmisi pilot dari user ke BTS (jumlah elemen antenna array diperkecil)
- Pembangkitan kanal Rayleigh.
- De-spreading sinyal di BTS
- Transmisi sinyal downlink

KEMAJUAN PENELITIAN

JADWAL PENELITIAN

No	T7 2 - 4		Se	me	ste	r 1			Se	me	ste	r 2		Semester 3						
No	Kegiatan		2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	
1	Studi Literatur																			
2	Membangun sistem																			
	pemancar																			
	Membangun																			
3	skenario model																			
	kanal																			
4	Membangun sistem																			
	penerima																			
5	Simulasi																			
	pembangkitan kanal																			
	Simulasi estimasi																			
6	CSI dengan jumlah																			
	user skala kecil																			
	Simulasi transmisi																			
7	dengan elemen array																			
	skala kecil																			
UJIAN PROPOSAL																				

JADWAL PENELITIAN (CONT..)

	Simulasi estimasi CSI													
6	dengan jumlah													
	elemen array Massive													
	Simulasi			\vdash	_									\dashv
_	pembangkitan data													
7	dan multiplexing													
	OFDM													
	Simulasi transmisi													
8	dengan kanal													
	Rayleigh													Ш
	Simulasi transmisi													
9	dengan kanal													
	random LOS													Щ
10	Simulasi proses													
10	decoding di receiver													Щ
11	Analisa													
12	Penulisan paper													
13	Penulisan thesis													
		U	J	[A]	N	ΤI	\mathbf{S}	IS						

TERIMA KASIH