Advanced Probabilistic Methods

Marshal Sinaga - marshal.sinaga@aalto.fi

This note will be updated regularly until April 16, 2024. All materials are adopted from Pekka Martinen (CS-E4820).

1 Variational Inference

1.1 Variational Bayes for Simple Model

Suppose we have N independent observations $\mathbf{x} = (x_1, \dots, x_N)$ from a two-component mixture of univariate Gaussian distributions.

$$p(x_n|\theta) = (1 - \tau)N(x_n|0, 1) + \tau N(x_n|\theta, 1)$$
(1)

that is with probability $1-\tau$ the observation x_n is generated from the first component $N(x_n|0,1)$, and with probability τ from the second component $N(x_n|\theta,1)$. The model 1 has two unknown parameters (τ,θ) , the mixture coefficient and the mean of the second component.

The goal is to carry out a full Bayesian analysis via mean-field variational Bayesian approximation. We place the following priors on the unknown parameters.

$$\tau \sim Beta(\alpha_0, \alpha_0)$$
$$\theta \sim N(0, \beta_0^{-1})$$

We formulate the model using latent variables $\mathbf{z} = (z_1, \dots, z_N)$, which explicitly specify the component responsible for generating observation x_n . In detail,

$$z_n = (z_{n1}, z_{n2})^{\top} = \begin{cases} (1, 0)^{\top} & x_n \text{ is from } N(x_n | 0, 1) \\ (0, 1)^{\top} & x_n \text{ is from } N(x_n | \theta, 1) \end{cases}$$

and place a prior on the latent variables

$$p(\mathbf{z}|\tau) = \prod_{n=1}^{N} \tau^{z_{n2}} (1-\tau)^{z_{n1}}$$

The likelihood in the latent variable model is given by

$$p(\mathbf{x}|\mathbf{z},\theta) = \prod_{n=1}^{N} N(x_n|0,1)^{z_{n1}} N(x_n|\theta,1)^{z_{n2}}$$

The joint distribution of all observed (**x**) and unobserved variables (**z**, τ , θ) factories as follows

$$p(\mathbf{x}, \mathbf{z}, \tau, \theta) = p(\tau)p(\theta)p(\mathbf{z}|\tau)p(\mathbf{x}|\mathbf{z}, \theta)$$

and the log joint distribution can correspondingly written as

$$\log p(\mathbf{x}, \mathbf{z}, \tau, \theta) = \log p(\tau) + \log p(\theta) + \log p(\mathbf{z}|\tau) + \log p(\mathbf{x}|\mathbf{z}, \theta)$$

We approximate the posterior distribution $p(\mathbf{z}, \tau, \theta | \mathbf{x})$ using the factorized variational distribution $q(\mathbf{z})q(\theta)q(\theta)$

Update factor $q(\mathbf{z})$ To compute the updated distribution $q^*(\mathbf{z})$, we first compute the expectation of the log of the joint distribution over all other unknowns in the model.

$$\log q^*(\mathbf{z}) = \mathbb{E}_{\tau,\theta}[\log p(\mathbf{x}, \mathbf{z}, \tau, \theta)]$$

$$= \mathbb{E}_{\tau}[\log p(\mathbf{z}|\tau) + \mathbb{E}_{\theta}[\log p(\mathbf{x}|\mathbf{z}, \theta)]] + \text{const}$$

$$= \mathbb{E}_{\tau}[\sum_{n=1}^{N} z_{n2} \log \tau + z_{n1} \log(1 - \tau)] + \mathbb{E}_{\theta}[\sum_{n=1}^{N} z_{n1} \log N(x_n|0, 1) + z_{n2} \log N(x_n|\theta, 1)] + \text{const}$$

$$= \sum_{n=1}^{N} z_{n2} \mathbb{E}_{\tau}[\log \tau] + z_{n1} \mathbb{E}_{\tau}[\log(1 - \tau)] + \sum_{n=1}^{N} z_{n1} \log N(x_n|0, 1) + z_{n2} \mathbb{E}_{\theta}[\log N(x_n|\theta, 1)] + \text{const}$$

$$= \sum_{n=1}^{N} z_{n1} \left(\mathbb{E}_{\tau}[\log(1 - \tau)] - \frac{1}{2} \log 2\pi - \frac{1}{2} x_n^2 \right) + \sum_{n=1}^{N} z_{n2} \left(\mathbb{E}_{\tau}[\log \tau] - \frac{1}{2} \log 2\pi - \frac{1}{2} \mathbb{E}_{\theta}[(x_n - \theta)^2] \right) + \text{const}$$

$$= \sum_{n=1}^{N} z_{n1} \log \rho_{n1} + z_{n2} \log \rho_{n2} + \text{const}$$

$$(2)$$

Where we have defined ρ_{n1} and ρ_{n2} for all n as follows

$$\log \rho_{n1} = \mathbb{E}_{\tau}[\log(1-\tau)] - \frac{1}{2}\log 2\pi - \frac{1}{2}x_n^2$$
 (3)

$$\log \rho_{n2} = \mathbb{E}_{\tau}[\log \tau] - \frac{1}{2} \log 2\pi - \frac{1}{2} \mathbb{E}_{\theta}[(x_n - \theta)^2]$$
 (4)

By exponentiating both sides of Equation 2, we obtain

$$q^*(\mathbf{z}) \propto \prod_{n=1}^N \prod_{k=1}^2 \rho_{nk}^{z_{nk}}$$

which can be normalized to make a proper distribution

$$q^*(\mathbf{z}) = \prod_{n=1}^{N} \prod_{k=1}^{2} r_{nk}^{z_{nk}}$$

where

$$r_{nk} = \frac{\rho_{nk}}{\sum_{j=1}^{2} \rho_{nj}}$$

Note that computing r_{nk} requires $\mathbb{E}_{\tau}[\log \tau]$, $\mathbb{E}_{\tau}[\log(1-\tau)]$, and $\mathbb{E}_{\theta}[(x_n-\theta)^2]$, where the expectations are computed over the distribution $q(\tau)$ and $q(\theta)$, which will be derived next.

Update factor $q(\tau)$

$$\log q^*(\tau) = \mathbb{E}_{\mathbf{z},\theta}[\log p(\mathbf{x}, \mathbf{z}, \tau, \theta)]$$

$$= \log p(\tau) + \mathbb{E}_{\mathbf{z}}[\log p(\mathbf{z}|\tau)] + \text{const}$$

$$= \log p(\tau) + \sum_{n=1}^{N} r_{n2} \log \tau + r_{n1} \log(1-\tau) + \text{const}$$

$$= \log \tau^{\alpha_0 - 1} + \log(1-\tau)^{\alpha_0 - 1} + \sum_{n=1}^{N} \log \tau^{r_{n2}} + \log(1-\tau)^{r_{n1}} + \text{const}$$
 (5)

We exponentiate and recognize the exponentiated form as

$$q^*(\tau) = Beta(\tau|N_2 + \alpha_0, N_1 + \alpha_0)$$

i.e., τ has Beta(a, b) with $a = N_2 + \alpha_0$ and $b = N_1 + \alpha_0$, where $N_k = \sum_{n=1}^N r_{nk}$ for k = 1, 2. Using this distribution, we get the following formulas for the terms required when updating $q(\mathbf{z})$

$$\mathbb{E}_{\tau}[\log \tau] = \psi(N_2 + \alpha_0) + \psi(N_1 + N_2 + 2\alpha_0) \tag{6}$$

$$\mathbb{E}_{\tau}[\log(1-\tau)] = \psi(N_1 + \alpha_0) + \psi(N_1 + N_2 + 2\alpha_0) \tag{7}$$

where ψ is the digamma function. Formulas above follow from the basic property of Beta distribution and the fact that if $\tau \sim Beta(a,b)$ then $1-\tau \sim Beta(b,a)$ Update factor $q(\theta)$

$$\log q^{*}(\theta) = \mathbb{E}_{\tau,\mathbf{z}}[\log p(\mathbf{x},\mathbf{z},\tau,\theta)]$$

$$= \log p(\theta) + \mathbb{E}_{\mathbf{z}}[\log p(\mathbf{x}|\mathbf{z},\theta)] + \text{const}$$

$$= -\frac{1}{2}\log \beta_{0}^{-1} - \frac{\beta_{0}}{2}\theta^{2} + \mathbb{E}_{\mathbf{z}}\left[\sum_{n=1}^{N} z_{n1}\left(-\frac{1}{2}x_{n}^{2}\right) + z_{n2}\left(-\frac{1}{2}(x_{n}-\theta)^{2}\right)\right] + \text{const}$$

$$= -\frac{1}{2}\log \beta_{0}^{-1} - \frac{\beta_{0}}{2}\theta^{2} + \sum_{n=1}^{N} r_{n1}\left(-\frac{1}{2}x_{n}^{2}\right) + r_{n2}\left(-\frac{1}{2}(x_{n}-\theta)^{2}\right) + \text{const}$$

$$= -\frac{\beta_{0}}{2}\theta^{2} + \sum_{n=1}^{N} -\frac{r_{n2}}{2}\left(x_{n}^{2} - 2x_{n}\theta + \theta^{2}\right) + \text{const}$$

$$= -\frac{1}{2}\left(\left(\beta_{0} + \sum_{n=1}^{N} r_{n2}\right)\theta^{2} + \sum_{n=1}^{N} r_{n2}x_{n}^{2} - 2\theta\sum_{n=1}^{N} r_{n2}x_{n}\right)$$

$$= -\frac{\beta_{0} + \sum_{n=1}^{N} r_{n2}}{2}\left(\theta - \frac{1}{\beta_{0} + \sum_{n=1}^{N} r_{n2}x_{n}}\right)^{2} + \text{const}$$
(8)

Again, we exponentiate both sides of 8 and recognize this as

$$q^*(\theta) = N(\theta|m_2, \beta_2^{-1}) \tag{9}$$

with

$$\beta_2 = \beta_0 + N_2$$
 and $m_2 = \beta_2^{-1} N_2 \bar{x}_2$

where we have defined

$$\bar{x}_2 = \frac{1}{N_2} \sum_{n=1}^{N} r_{n2} x_n$$

We can use the distribution 9 to compute $\mathbb{E}_{\theta}[(x_n - \theta)^2]$, needed when updating $q(\mathbf{z})$:

$$\mathbb{E}_{\theta}[(x_n - \theta)^2] = \mathbb{E}_{\theta}[(x_n - m_2 + m_2 - \theta)^2]$$

$$= (x_n - m_2)^2 + 2(x_n - m_2)\mathbb{E}[m_2 - \theta] + \mathbb{E}[(m_2 - \theta)^2]$$

$$= (x_n - m_2)^2 + \beta_2^{-1}$$
(10)

The overall VB algorithm is obtained by cycling through updating:

- The responsibilities r_{nk} using formulas 3, 4, 5
- The terms 10 needed when computing the responsibilities
- ullet The term 6 and 7 needed when computing the responsibilities