

Dr. Yue (Katherine) FENG

Recap: Supervised vs. Unsupervised Learning

- > **Supervised learning:** learns a model that predicts target outcome based on a set of other attributes/features (i.e., training data where target value is known).
 - Stock price prediction (numerical target variable)
 - Credit card default (binary target variable)
- > **Unsupervised learning:** finds relationships in the data without reference to target variable.
 - Beer and diaper
- > Key: is there a specific **target variable** that we are trying to predict?

Unsupervised Learning

- > How do I find items that occur together more than I might expect by chance?
 - Associations (relationship between columns)

- > How do I find natural groupings of data instances?
 - Clustering (relationship between rows/instances)

Commonly Used Algorithms

Association Rule Learning

Market-basket Analysis (Associations Rule Learning)

- > Are some items shopped together more than I might expect?
 - With this information, I could:
 - Put them close to each other in the store
 - Make suggestions/bundles on a website

Market Basket Data

Transaction NO.	Item 1	Item 2	Item 3	•••
1	Beer	Diapers	Chips	
2	Diaper	Orange		
3	Diaper	Milk		
4	Beer	Diaper	Orange	
5	Beer	Detergent		

Huggies Walle

4 8

.

9.

10.

Association "Rules" – Standard Format

> Rule format: If {set of items} -> Then {set of items}

What is an Interesting Association?

- > Some standard measures used for rule C -> R:
 - **Support(R, C)**: p(R&C)
 - proportion of transactions ("baskets") that contain both R and C.
 - Confidence(C->R): p(R|C)
 - proportion of transactions that R holds when C holds.
 - Lift and Leverage(C->R)

How do We Calculate Probabilities?

Again, count !!!

Support

> Support: how popular an item is, as measured by the proportion of transactions that contain an item.

Support(X) =
$$\frac{\text{\# transactions that contain X}}{\text{\# total transactions}}$$

Support

1.	Demon	Huggies —	<u>an</u>	
2.	Huccies			
3.	Hudgies — 4	Milk		
4.	House	HUGGIES TOTAL		
5.	Treme			
6.	Huggies	Tide 1		
7.	Huggies	6		
8.	Hemen	Hucgies ***	Milk	Canac
9.	Trompos	Huccies Town of A	Milk	
10.				

Support = 4/10 = 40%

Confidence

> Confidence (C->R): how often the association rule has been found to be true, as measured by the proportion of transactions that R holds when C holds.

Confidence
$$(C \to R) = \frac{Support(R, C)}{Support(C)}$$

Confidence

IF

Confidence =
$$\frac{\# \{ \text{ in }, \text{ in } \}}{\# \{ \text{ in } \}}$$
 = $\frac{4}{5}$ = 80%

Confidence for this association rule is the likelihood that a transaction contains given that it contains

80% Confidence Any problems?

What if Many People buy diaper?

$$\#\left\{\left\{\begin{array}{c} \text{Huggies agreed } \\ 4 \text{ } \end{array}\right\} = 8$$

80% Prevalence of

.....the confidence will be high for any item set (association) that **contains diapers as result**.

Important Measure: Lift (C->R)

Lift: measured by the ratio of the observed support to the expected support if C and R are independent. \Longrightarrow

Lift =
$$\frac{p(R\&C)}{p(R) p(C)} = \frac{40\%}{80\%*50\%} = 1$$

For the association rule to be meaningful, the

An Alternative: Leverage

Leverage: measured by the difference of the observed support to the expected support if C and R are independent. \Longrightarrow

Leverage =
$$p(R&C) - p(R) p(C) = 40\% - 40\% = 0$$

For the association rule to be meaningful, the

Exercise

IF

What are the Confidence, Lift, and Leverage?

- a) 50%, 1, 0
- b) 50%, 1.2, 0
- c) 70%, 0.8, 1
- d) 40%, 0.75, 1
- e) None of the above

Associations for More Than Two Items

IF

+

- > Support = 2/10
- > Confidence = 0.2/0.2 = 1
- > Lift = 0.2/0.2*0.8=1.25
- > Leverage = 0.2 0.2*0.8 = 0.04

1.		Hudoirs	Сарх	
2.	Hodars	6		
3.	Huodats ::	350		
4.	Care I	Hudgets -	6	
5.	Car.			
6.	Hoders			
7.	Hubarts	6		
8.		Hudgits	Nors	(CUS
9.	Sa. I	Hudaits	None	
10.				

How to Find "Interesting" Associations?

- > By setting threshold for being an "interesting" association
 - e.g., $support \ge 0.3$, or $confidence \ge 0.5$, or both
- > A common strategy in association rule learning algorithms has 3 steps:
 - 1. Frequent itemset generation: find all itemsets with support that is greater than the minimum support threshold.
 - 2. Rule generation: extract all high confidence rules from the frequent itemsets.
 - 3. Rule examination: use lift/leverage to remove spurious rules (it is not just a coincidence).

Association Rule: Other Applications

- > "Item" can be any features:
 - Owns-luxury-vehicle => Frequent-purchaser
 - age("30 39") & income("42 48K") => buys("car")
- > Association mined from Facebook:
 - Status=Undergrad & Political_Views=Liberal
 - => Interested_in_Men <lift:(1.66)>

Discussion

> How to use association rule learning in recommender systems? What are the transactions and what are the items?

Associations: Pros and Cons

> Pros

- Can quickly mine patterns describing business/customers, etc. without major effort in problem formulation
- Unparalleled tool for hypothesis generation

> Cons

- Unfocused
 - Not clear exactly how to apply mined "knowledge"
- Can produce many, many rules!
 - May only be a few nuggets among them (or none)

Thank You!

