3. Эффективность

 ξ - случайная величина, измеряем n раз.

$$ec{x_n}^{(1)} = \{x_1^{(1)}, x_2^{(1)}, \dots, x_n^{(1)}\} \implies (\hat{ heta_1}^{(1)}, \hat{ heta_2}^{(1)}) \ ec{x_n}^{(2)} = \{x_1^{(2)}, x_2^{(2)}, \dots, x_n^{(2)}\} \implies (\hat{ heta_1}^{(2)}, \hat{ heta_2}^{(2)})$$

$$\vec{x_n}^{(k)} = \{x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}\} \implies (\hat{\theta_1}^{(k)}, \hat{\theta_2}^{(k)})$$

□ - значения оценок

 $\hat{\theta_1}^*$, $\hat{\theta_2}^*$ - смещенные оценки параметров θ_1 и θ_2 $\hat{\theta_1}', \hat{\theta_2}'$ - другие точные оценки значений тех же параметров θ_1 и θ_2 θ_1 , θ_2 - точные значения

<u>Опр.</u> Оценка $\hat{\theta}(\vec{x_n})$ называется эффективной, если среди прочих оценок этого параметраона обладает наименьшей мерой разброса вокруг истинного значения параметра.

Мера разброса: $M(\hat{ heta}(\vec{x_n}) - heta)^2$

Если $\hat{ heta}(ec{x_n})$ - несмещенная $\implies M(\hat{ heta}(ec{x_n}) - M(\hat{ heta}(ec{x_n})))^2 = D\hat{ heta}(ec{x_n})$

Функция правдоподобия (ФП)

 $ec{x_n} = \{x_1, x_2, \dots, x_n\}$ выборка из генеральной совокупности ξ (выборка измерений СВ ξ)

Пусть $p_{\xi}(x,\theta)$ - плотность СВ ξ , если ξ непрерывна, и $=P(\xi=x;\theta)$ - закон распределения ξ , если ξ дискретно.

heta - неизвестный параметр распределения CB ξ

$$L(\vec{x_n}, heta) = p_{\xi}(x_1, heta) p_{\xi}(x_2, heta) \cdot \ldots \cdot p_{\xi}(x_n, heta)$$

Совместное распределение $\vec{x_n}$ (элементов выборки, которая зависит от неизвестного параметра θ распределения CB ξ)

ФП $L(\vec{x_n}, \theta)$ показывает, насколько правдоподобны полученные измерения x_1, \dots, x_n случайной величины ξ при данном значении параметра θ .

 $L(ec{x_n}, heta)=f(ec{x_n})$ - ситуация нелувой информации в $ec{x_n}$ по heta.

Информация Фишера

<u>Опр.</u> Кол-во информации Фишера содержащейся в наблюдениях $\vec{x_n} = \{x_1, \dots, x_n\}$ определяется следующим образом.

$$I(heta,ec{x_n}) = Migg[rac{\partial \ln L(ec{x_n}, heta)}{\partial heta}igg]^2 = \int_{x_1} \cdots \int_{x_n} igg[rac{\partial \ln L(ec{x_n}, heta)}{\partial heta}igg]^2 \cdot L(ec{x_n}, heta) \, dx_1 \ldots dx_n$$

1. $I(\theta,\vec{x_n})=n\cdot\int_{x_1}\left[rac{\partial \ln p_\xi(x,\theta)}{\partial \theta}
ight]^2p_\xi(x_1,\theta)\,dx_1$ - т.к. x_1,\ldots,x_n одинаково распределены и взаимно независимы

Пример 1:

$$ec{x_n} = \{x_1, \dots, x_n\}$$
, где $x_i \sim \mathcal{N}(a, \sigma^2)$

$$I(a,ec{x_n}) = n \int_{-\infty}^{+\infty} rac{\partial \ln p_{\xi}(x,a,\sigma^2)}{\partial a} p_{\xi}(x,a,\sigma^2) \, dx = (1)$$
 $p_{\xi}(x,a,\sigma^2) = rac{1}{\sqrt{2\pi}\sigma} e^{-rac{(x-a)^2}{2\sigma^2}}$ $rac{\partial \ln p_{\xi}(x,a,\sigma^2)}{\partial a} = rac{x-a}{\sigma^2}$ $(1) = n \int_{-\infty}^{+\infty} rac{1}{\sqrt{2\pi}\sigma} e^{-rac{(x-a)^2}{2\sigma^2}} \cdot rac{(x-a)^2}{\sigma^4} \, dx = \left(rac{x-a}{\sigma} = y
ight) = rac{n}{\sqrt{2\pi}\sigma^2} \int_{-\infty}^{+\infty} y^2 e^{-y^2/2} \, dy = rac{n}{\sigma^2}$

Ищем нижнюю границу $M(\hat{ heta}(ec{x_n}) - heta)^2,\, heta$ - неизвестный параметр распределения ξ

Теорема (неравенство Р-К-Ф)

Рассмотрим класс всевозможных оценок $\hat{\theta}(\vec{x_n})$ параметра θ , от которого зависит плотность вероятности $p_{\ell}(x,\theta)$

Пусть

1.
$$M\hat{ heta}=\int\cdots\int\hat{ heta}(ec{x_n})L(ec{x_n}, heta)\,dx_1\cdots dx_n= heta+\delta_{\hat{ heta}}(heta)$$

 $\delta_{\hat{a}}(heta)$ - смещение, =0, если $\hat{ heta}$ - несмешенная

2. Плотность $p_{\xi}(x,\theta)$ удовлетворяет следующим условиям регулярности в смысле ее зависимости от θ .

2.1. Область всевозможных значений ξ ($p_{\xi}(x,\theta) \neq 0$) не щависит от θ .

2.2. В 1. и в $\int \cdots \int L(\vec{x_n}, \theta)\,dx_1\cdots dx_n=1$ допустимо дифференцирование под интегралом и $\exists rac{\partial L(\vec{x_n}, \theta)}{\partial heta}$, $L(\vec{x}, \theta)>0$

2.3. $I(\vec{x_n}, \theta) \neq 0$

Тогда \forall оценки $\hat{\theta}(\vec{x_n})$ параметра θ имеет место неравенство.

$$M(\hat{ heta}(ec{x_n}) - heta) \geq \left[rac{\partial M \hat{ heta}}{\partial heta}
ight]^2 / M \left[rac{\partial lnL(ec{x_n}, heta)}{\partial heta}
ight]^2$$

или

$$M(\hat{ heta}(ec{x_n}) - heta)^2 \geq rac{\left[1 + rac{\partial \delta_{\hat{ heta}}(heta)}{\partial heta}
ight]^2}{I(heta, ec{x_n})} \; (*)$$

Если $\hat{\theta}(\vec{x_n})$ - несмещенная $\implies D\hat{\theta}(\vec{x_n}) \geq \frac{1}{I(\theta,\vec{x_n})} = D_{\min} \ (**)$ $(\hat{\theta}(\vec{x_n})$ - эффективная) \iff (в неравенстве (*) (или (**)) достигается равенство)

Мера эффективности несмещенной оценки

$$e(\hat{ heta}) = rac{D_{\min}}{D(\hat{ heta}(ec{x_n}))} = rac{1}{I(ec{x_n}.\, heta)} \cdot rac{1}{D(\hat{ heta}(ec{x_n}))}$$

Если $e(\hat{ heta}) = 1 \implies \hat{ heta}$ - эффективная

Пример 2 (продолжение примера 1)

$$ec{x_n} = \{x_1, \dots, x_n\}, \, x_i \sim \mathcal{N}(a, \sigma^2)$$

Нашли ранее: $I(a; \vec{x_n}) = rac{n}{\sigma^2}$

$$ar{x}=rac{1}{n}\sum_{i=1}^n x_i \ Mar{x}=rac{1}{n}\sum_{i=1}^n Mx_i=M\xi=a \implies ar{x}$$
 — несмещенная

$$Dar{x}=rac{1}{n^2}\sum_{i=1}^n Dx_i=rac{nD\xi}{n^2}=rac{D\xi}{n}=rac{\sigma^2}{n}$$

$$e(ar{x}) = rac{\sigma^2}{n} \cdot rac{n}{\sigma^2} = 1 \implies ar{x}$$
 — эффективная оценка