Inteligência Computacional Atividade 01 - Template Matching

Marrielly Chrystina Martines¹

¹Ciência da Computação - Universidade Tecnológica Federal do Paraná (UTFPR) Campo Mourão - PR

marrielly@alunos.utfpr.edu.br

Resumo. Este artigo visa detalhar a execução do primeiro projeto da disciplina de Inteligência Computacional, cujo objetivo é mostrar as taxas de acerto obtidas ao calcular o Pearson Correlation Coefficient e o Erro Quadrático Médio entre uma seleção de imagens de duas bases de dados, a de formas e a de folhas, bem como explicar as vantagens e as desvantagens na utilização da abordagem Template Matching.

1. General Information

O projeto envolve escrever um código que calcula o Coeficiente de Correlação de Pearson e o Erro Quadrático Médio entre um conjunto de imagens de das bases de dados para validar as taxas de sucesso entre cada execução e avaliar a eficácia da abordagem de Template Matching. Foi utilizada a linguagem de programação Python, juntamente com as bibliotecas Numpy e OpenCV.

2. Etapa A

Nesta etapa, foi utilizada a base de formas. Primeiramente, foram selecionadas 10 imagens aleatórias de cada classe ("circle", "triangle", "square" e "star") utilizando a biblioteca Random. Então, foi escolhido uma imagem como "template" e 3 imagens da mesma classe como entradas e o Coeficiente de Correlação de Pearson e o Erro Quadrático Médio foram calculados entre elas. Posteriormente, o processo foi repetido, utilizando, desta vez, 3 imagens de outras classes, mantendo o mesmo template. Para demonstração da média dos resultados, foi escolhido "circle" e "triangle" como sendo as classes dos templates.

Template Class	Entries Class	MSE	PCC
Circle	Circle	1.44455833333333333	0.9757252818837779
Circle	Square	1.8590833333333333	0.8491038332477223
Circle	Star	2.198066666666667	0.6075173339903316
Circle	Triangle	2.0403333333333333	0.658168634775686

Template Class	Entries Class	MSE	PCC
Triangle	Circle	1.6825916666666665	0.5990772435721056
Triangle	Square	1.9027	0.6194769254994831
Triangle	Star	2.22893333333333334	0.5817109734502789
Triangle	Triangle	1.9247166666666669	0.5550156967897686

Nota-se que para a classe "circle" como template, o método foi bem efetivo, pois demonstrou uma média significantemente mais próxima, tanto com o MSE como com o PCC, para "circle" como classe de entrada, o que era o esperado. No entanto, ao utilizar a classe "triangle" como template, os mesmos resultados não são encontrados: utilizando o MSE, obtém-se que o template se aproxima mais da classe "circle", enquanto PCC resulta em maior aproximação da classe "square"; ambos não estão corretos.

É importante observar que as imagens da classe "circle" são todas muito similares em questão de posicionamento e rotação, diferentemente da "triangle", cujas imagens possuem direções e rotações diferentes. Isso pode ser um fator contribuinte na disparidade de valores nas correlações, explicaria o porquê de haver falso positivo nos cálculos para a última classe de template, em comparação da precisão e acertividade da primeira.

3. Etapa B

Nesta etapa, realizou-se os mesmos procedimentos que na etapa anterior, utilizando a base de dados de folhas e selecionando 3 imagens de cada classe ("Acer Capillipes", "Acer Mono" e "Acer Opalus"). As médias dos resultados foram os seguintets:

Template Class	Entries Class	MSE	PCC
Acer Capillipes	Acer Capillipes	3.6860879629629633	0.8864453037740471
Acer Capillipes	Acer Mono	4.063111111111111	0.5600827477781338
Acer Capillipes	Acer Opalus	3.9216388888888888	0.6258464539403911

Template Class	Entries Class	MSE	PCC
Acer Mono	Acer Capillipes	4.212134259259258	0.6282086227274842
Acer Mono	Acer Mono	3.854	0.8152597435697183
Acer Mono	Acer Opalus	4.174342592592593	0.6391668130269021

Template Class	Entries Class	MSE	PCC
Acer Opalus	Acer Capillipes	3.7168564814814813	0.6626542680678905
Acer Opalus	Acer Mono	3.720500000000000004	0.6933657343242055
Acer Opalus	Acer Opalus	3.5908148148148147	0.7593052990019166

Diferentemente da base de formas, a base de folhas apresenta resultados satisfatórios nas correlações, tanto nos cálculos do PCC quanto do MSE, em todas as classes, como pode ser observado na tabela. Ressalta-se que, nesta base, as imagens estavam na mesma orientação e rotação que as outras pertencentes à mesma classe. Este fator se mostrou, novamente, importante para a obtenção de resultados de acordo com o esperado.

4. Template Matching

Com base nos cálculos, percebe-se que a estratégia de Template Matching pode ser favorável quando os conjuntos de imagens são comparáveis - em posição, rotação, orientação, etc -, uma vez que os valores de correlação obtidos são considerados de grau alto ou até mesmo superior. Quando há variações, no entanto, seu desempenho pode ser prejudicado e os resultados podem não ser os esperados, gerando até mesmo falsos positivos com valores extremamente distantes dos valores da classe que deveria ser a adequada.