PEPSI : Fast Image Inpainting with Parallel Decoding Network (CVPR 2019)

PEPSI++: Fast and Lightweight Network for Image Inpainting(arxiv 1905.09010)

Generative Image Inpainting with Contextual Attention (CVPR 2018)

PEPSI: Fast Image Inpainting with Parallel Decoding Network (CVPR 2019)

Figure 1. An architecture of PEPSI. The coarse path and inpainting path share their weights to improve each other. The coarse path is trained only with the ℓ_1 reconstruction loss while the inpainting path is trained with both of ℓ_1 and adversarial loss

PEPSI (CVPR 2019)

Contextual Attention (CVPR 2018)

Type	Kernel	Dilation	Stride	Outputs
Convolution	5×5	1	1 × 1	32
Convolution	3×3	1	2×2	64
Convolution	3×3	1	1×1	64
Convolution	3×3	1	2×2	128
Convolution	3×3	1	1×1	128
Convolution	3×3	1	2×2	256
Dialated convolution	3×3	2	1×1	256
Dialated convolution	3×3	4	1×1	256
Dialated convolution	3×3	8	1×1	256
Dialated convolution	3×3	16	1×1	256

Table 2. Detail architecture of encoding network.

Туре	Kernel	Dilation	Stride	Outputs
Convolution ×2	3×3	1	1 × 1	128
Nearest Neighbor ($\times 2 \uparrow$)	-	-	-	-
Convolution $\times 2$	3×3	1	1×1	64
Nearest Neighbor ($\times 2 \uparrow$)	-	-	-	-
Convolution $\times 2$	3×3	1	1×1	32
Nearest Neighbor $(\times 2 \uparrow)$	-	-	-	-
Convolution $\times 2$	3×3	1	1×1	16
Convolution (Output)	3×3	1	1×1	3

Table 3. Detail architecture of decoding network. The output layer consists of a convolution layer clipped value to the [-1, 1].

Modified CAM

Figure 2. The illustration of the CAM. The conventional CAM reconstructs foreground patches by measuring the cosine similarities with background patches. In contrast, the modified CAM uses the Euclidean distance to compute similarity scores.

Output : [0,∞)

$$s_{(x,y),(x',y')} = \left\langle \frac{f_{x,y}}{\|f_{x,y}\|}, \frac{b_{x',y'}}{\|b_{x',y'}\|} \right\rangle, \tag{2}$$

$$s_{(x,y),(x',y')}^* = \operatorname{softmax}(\lambda s_{(x,y),(x',y')}),$$
 (3)

where λ is a hyper-parameter for scaled *softmax*. By using $(s^*_{(x,y),(x',y')})$ as weights, the CAM reconstructs features of foreground regions by a weighted sum of background patches to learn the relation between them.

Output : [-1, 1]

$$\widetilde{d}_{(x,y),(x',y')} = \tanh\left(-\left(\frac{d_{(x,y),(x',y')} - m(d_{(x,y),(x',y')})}{\sigma(d_{(x,y),(x',y')})}\right)\right),\tag{4}$$

where

$$d_{(x,y),(x',y')} = ||f_{x,y} - b_{x',y'}||.$$
 (5)

the truncated distance similarity scores

Figure 4. A comparison of the image reconstruction between the cosine similarity and the truncated distance similarity: (a) The original image, (b) masked image, (c) image reconstructed by using the cosine similarity and (d) image reconstructed by using the truncated distance similarity.

	squan	e mask	free-form mask		
	PSNR	SSIM	PSNR	SSIM	
Cosine similarity	25.16	0.8950	27.95	0.9218	
Euclidean distance	25.57	0.9007	28.59	0.9293	

Table 4. Comparison of the performance between the cosine similarity and the Euclidean distance applying on the PEPSI.

RED(region ensemble discriminator)

- combine global and local discriminators

Figure 5. The overview of the RED. The RED aims to classify hole regions which may appear any region with any sizes in an image.

Type	Kernel	Stride	Outputs
Convolution	5×5	2×2	64
Convolution	5×5	2×2	128
Convolution	5×5	2×2	256
Convolution	5×5	2×2	256
Convolution	5×5	2×2	256
Convolution	5×5	2×2	512
FC	1×1	1×1	1

Table 5. Detailed architecture of RED. After each convolution layer, except last one, there is a leaky-ReLU as the activation function. Every layer is normalized by a spectral normalization. The fully-connected layer is applied to every pixel-wise feature block.

Figure 8. Comparison of our method and conventional methods on free-form masked CelebA-HQ datasets. (a) The ground truth (b) The input image of the network (c)Results of the Context Encoder [21] (d) Results of the Globally-Locally [10] (e) Results of the GatedConv [27] (f) Results of the proposed method

	S	quare mas	sk	Free-form mask				
Method	PSNR		SSIM	PSNR		SSIM	Time (ms)	
Wictiod	Local	Global	Sollvi	Local	Global	SSIM		
CE [21]	17.7	23.7	0.872	9.7	16.3	0.794	5.8	
GL [10]	<u>19.4</u>	25.0	0.896	15.1	21.5	0.843	39.4	
GCA [28]	19.0	24.9	0.898	12.4	18.9	0.798	22.5	
GatedConv [27]	18.7	24.7	0.895	21.2	<u>27.8</u>	0.925	21.4	
GatedConv *	17.5	23.5	0.882	19.8	26.4	0.910	14.3	
PEPSI(Ours)	19.5	25.6	0.901	22.0	28.6	0.929	0.2	
PEPSI *	19.2	25.2	0.894	21.6	28.2	0.923	9.2	

Table 6. Results of global and local PSNR, SSIM and operation time with both of square and free-formed masks on CelebA-HQ dataset.

* means a model without coarse results.

PEPSI++: Fast and Lightweight Network for Image Inpainting

Fig. 6. Architecture of Diet-PEPSI. We replace the multiple dilated convolutional layers with DPUs. In the DPUs, rate-adaptive convolution layers share their weights whereas the 1×1 standard convolutional layers do not share their weights.

the rate-adaptive dilated convolutional layers

$$W_d = \gamma_d \cdot W + \beta_d,$$

scale $\gamma_d \in \mathbb{R}^{1 \times 1 \times C_{\text{in}} \times C_{\text{out}}}$ and bias $\beta_d \in \mathbb{R}^{1 \times 1 \times C_{\text{in}} \times C_{\text{out}}}$

$$y = x \otimes (\gamma_d W + \beta_d) = x \otimes \gamma_d W + x \otimes \beta_d,$$

$$(9+3n) \times C_{\mathrm{in}} \times C_{\mathrm{out}}$$
 network parameters

Rate-adaptive scaling and shifting

3x3
dilated convolution

Fig. 5. Rate-adaptive scaling and shifting operations. β_d and γ_d have different values depending on the given rate. Tensor broadcasting is included in scaling and shifting operations.

$$3 \times 3 \times C_{\text{in}} \times C_{\text{out}} \times n$$
 network parameters.

Fig. 12. Illustration of techniques to aggregate the global contextual information while reducing the number of parameters. (a) Dilated convolutional layer with pruning channel. (b) Residual block consisting of group convolutional layers.

TABLE VIII
EXPERIMENTAL RESULTS USING DIFFERENT LIGHTWEIGHT UNITS.

	Squar	e mask	Free-for	Free-form mask		
	PSNR	SSIM	PSNR	SSIM		
Pruning	25.21	0.8961	28.28	0.9270		
DGC	25.28	0.8959	28.43	0.9270		
DPU	25.38	0.8960	28.53	0.9278		

TABLE V
RESULTS OF GLOBAL AND LOCAL PSNRS, SSIM, AND OPERATION TIME WITH SQUARE AND FREE-FORMED MASKS ON CELEBA-HQ DATASET.

		Square mask Free-form mask						Number of
Method	PS	NR	SSIM	PS	NR	SSIM	Time (ms)	Network
	Local	Global	551111	Local	Global	oon ii		Parameters
CE [10]	17.7	23.7	0.872	9.7	16.3	0.794	5.8	5.1M
GL [7]	19.4	25.0	0.896	15.1	21.5	0.843	39.4	5.8M
GCA [4]	19.0	24.9	0.898	12.4	18.9	0.798	22.5	2.9M
GatedConv [19]	18.7	24.7	0.895	21.2	27.8	0.925	21.4	4.1M
PEPSI	19.5	25.6	0.901	22.0	28.6	0.929	0.2	2 5M
PEPSI w/o coarse path	19.2	25.2	0.894	21.6	28.2	0.923	9.2	3.5M
Diet-PEPSI	19.4	25.5	0.898	22.0	28.5	0.928	10.9	2.5M

TABLE VI
EXPERIMENTAL RESULTS THAT FURTHER REDUCE THE NETWORK PARAMETERS USING THE GROUP CONVOLUTION TECHNIQUE.

	Square mask		Free-for	m mask	Number of
	PSNR	SSIM	PSNR	SSIM	parameters
PEPSI	25.6	0.901	28.6	0.929	3.5M
Diet-PEPSI	25.5	0.898	28.5	0.928	2.5M
Diet-PEPSI $(g = 2)$	25.4	0.896	28.5	0.928	1.8M
Diet-PEPSI $(g = 4)$	25.2	0.894	28.4	0.926	1.5M