result. exists its associate $y_k \mid x = y_1 y_2 \cdots y_m$ which is the required show that $y_k | x_k$. I.e. for each packet $x_k | x = x_1 x_2 \dots x_n$ there (y_k , y_1y_2 ... y_m) = y_k that is x_k $|y_k$, and similarly we can same minimal subvalued prime q , then $x_k \mid (y_k, x) =$ Suppose that Ji are permuted such that, xk,Jk are in the hence of the minimal subvalued primes) remains the same.

Proof. We recall that a *GKD R is a ring of Krull type an HCF *-GKD is a Semirigid Domain. Corollary 1. In an HCF *-GKD a packet is rigid and hence

with the family { P $_{\alpha_{\in}}$ I primes defining it, such that for

Tet q be a packet in the HOF *-GKD R and let Q be the Def.3 Ch. 2, and Def.3 of this chapter). $-\alpha \neq \beta \in I$, P \cap P contains no non zero prime ideal(cf

Now let q1, q2 be two non unit factors of q then minimal subvalued prime Q' of q such that $Q \neq Q$.). with no containment relation between P and P'; P' contains a not be in a single minimal subvalued prime e.g. if q ∈ P ≠ P' every non unit factor of q is in P (since otherwise q will prime P of R(because of *3 of Def.3, Ch. 2). And obviously subvalued prime), then q is contained in a single valued type an element x is a packet iff it has a single minimal deduced from Lemmas 2 and 3 that in an HCF ring of Krull minimal subvalued prime containing q(it can be easily

any two non unit factors q', q'" of q and that no two non unit factors of q are co-prime. We now take at least one of q, og is not in P a contradiction implying one of q_{1} of in a keans that then since R is an HCF domain $(q_1,q_2)=1$ in $R_{\rm p}$ i.e. at least $q_1, q_2 \in P$. We claim that $(q_1, q_2) \neq 1$ for if $(q_1, q_2) = 1$ in R