Theory of Automata

Practice Questions

Q1)3.9:

- 9. Find a regular expression corresponding to each of the following subsets of $\{0,1\}^*$.
 - a. The language of all strings containing exactly two 0's.
 - The language of all strings containing at least two 0's.
 - The language of all strings that do not end with 01.
 - The language of all strings that begin or end with 00 or 11.
 - The language of all strings not containing the substring 00.
 - f. The language of all strings in which the number of 0's is even.
 - g. The language of all strings containing no more than one occurrence of the string 00. (The string 000 should be viewed as containing two occurrences of 00.)
 - h. The language of all strings in which every 0 is followed immediately by 11.
 - The language of all strings containing both 11 and 010 as substrings.

Q2)

- For each of the following regular expressions, draw an FA recognizing the 3.20. corresponding language.
 - a. (0+1)*0
 - b. $(11+10)^*$
 - c. $(0+1)^*(1+00)(0+1)^*$
 - d. (111 + 100)*0
 - e. $0 + 10^* + 01^*0$
 - f. $(0+1)^*(01+110)$

Draw FAs recognizing the following languages.

- a. $L_1 \cup L_2$
- b. $L_1 \cap L_2$
- c. $L_1 L_2$
- d. $L_1 \cap L_3$
- e. L_3-L_2

- 3.36. Find a regular expression corresponding to each of the following subsets of $\{0, 1\}^*$.
 - a. The language of all strings not containing the substring 000.
 - b. The language of all strings that do not contain the substring 110.
 - c. The language of all strings containing both 101 and 010 as substrings.
 - d. The language of all strings in which both the number of 0's and the number of 1's are even.
 - e. The language of all strings in which both the number of 0's and the number of 1's are odd.

Q5)

0 (1, 404)

An NFA with states 1–5 and input alphabet $\{a, b\}$ has the following transition table.

\overline{q}	$\delta(q,a)$	$\delta(q,b)$
1	{1, 2}	{1}
2	{3}	{3}
3	{4}	{4}
4	{5}	Ø
5	Ø	{5}

- Draw a transition diagram.
- b. Calculate $\delta^*(1, ab)$.
- c. Calculate $\delta^*(1, abaab)$.

4.15. For each of the NFA-Λs shown in Figure 4.22, find a regular expression corresponding to the language it recognizes.

4.16. A transition table is given for an NFA- Λ with seven states.

		$\delta(q,b)$	$\delta(q,\Lambda)$
q	$\delta(q,a)$	Ø	{2}
1	Ø	Ø	{5}
2	{3}	{4}	Ø
3	Ø	0	{1}
4	{4}	{6,7}	Ø
5	Ø	(0, 1)	Ø
6	{5}	Ø	{1}
7	Ø	V	1 (-)

Find:

- a. $\Lambda(\{2,3\})$
- b. $\Lambda(\{1\})$
- c. $\Lambda(\{3,4\})$
- d. $\delta^*(1,ba)$
- e. $\delta^*(1, ab)$
- f. $\delta^*(1, ababa)$