Factors, multiples, primes and powers

• Writing numbers as the product of prime factors

Using index notation

• Calculating approximate ranges for square roots and cube roots

Using the index laws

• Using prime factors to find the highest common factor and lowest common multiple

explanation 1a

explanation 1b

explanation 1c

- 1 a Write down five multiples of 9 that are greater than 100.
 - **b** What is the smallest multiple of 9 that has no odd digits?
 - **c** Write down three multiples of 6 that are between 50 and 70.
 - **d** Write down all the multiples of 8 that are between 80 and 120.
- **2** Write down all the factors of each of these numbers.

a 24

b 30

c 45

d 64

e 60

f 81

g 144

h 154

3 Write which of the following are *not* prime numbers, and why.

17, 93, 71, 59, 87, 1, 91, 32

4 Write the prime factors of these numbers by using a factor tree.

a 24

b 72

c 144

d 256

5 Write each of these numbers as the product of prime factors by using a factor tree.

a 42

b 33

c 24

d 45

e 53

Keywords

6 Use a factor tree to write these numbers as the product of prime factors.

a 360

b 1020

c 576

7 This fraction sum consists of four different digits and adds up to 1.

$$\frac{4}{8} + \frac{1}{2} = 1$$

Find five other possible fraction sums which add up to 1 and are each made from four different digits.

8 Think of a two-digit number where the tens digit is equal to the units digit. Show that this number is divisible by 11. Is this true for any two-digit number where the digits are the same? Try to prove it.

explanation 2

9 Write these without indices. The first one has been done for you.

a
$$16^5 = 16 \times 16 \times 16 \times 16 \times 16$$

b 23^3

 $c 100^4$

d 36^5 e 3^6 f 7^4

g 16^3 **h** 25^5

10 Copy and complete these.

a
$$4 = 2^{\square}$$

a $4 = 2^{\square}$ **b** $27 = 3^{\square}$ **c** $16 = 2^{\square}$ **d** $625 = 5^{\square}$ **e** $400 = {\square}^{\square}$

11 At the start of an experiment, a colony of bacteria contains 6 bacteria.

Every hour, the colony doubles in size.

a Write down how many bacteria there are after 1 hour, 2 hours, 3 hours, 4 hours and 5 hours.

- **b** Try to find a formula to work out how many bacteria there would be after any number of hours.
- **c** How many would there be after 100 hours?
- **12** We can write 3 as $2^2 1$. Is $2^3 1$ a prime number?

Find two more prime numbers which can be written in the form $2^n - 1$ (a power of 2 minus 1). These are known as Mersenne primes.

explanation 3

13 Work these out using a calculator.

a
$$15^3 + 27^2$$

b
$$26^3 - 17^3$$

$$c 72^4 - 8^3$$

a
$$15^3 + 27^2$$
 b $26^3 - 17^3$ **c** $72^4 - 8^3$ **d** $101^3 + 92^3$

$$e 34^5 - 98^2$$

$$\mathbf{f} \quad 67^3 + 33^2 - 24^3$$

$$\mathbf{g} \quad 3(57^4 - 38^3)$$

e
$$34^5 - 98^2$$
 f $67^3 + 33^2 - 24^3$ **g** $3(57^4 - 38^3)$ **h** $\frac{(8^6 - 4^5)}{2}$

14 a Work out the difference of these two squares: $83^2 - 71^2$.

b Now work out (83 - 71)(83 + 71).

c Comment on your answers to parts a and b.

d Is this true for the difference of any two squares? Investigate by choosing your own numbers.

15 Work these out without a calculator.

a
$$\sqrt{25} + \sqrt{64}$$

b
$$\sqrt{121} - \sqrt{49}$$

$$c \sqrt{144} + \sqrt{81}$$

a
$$\sqrt{25} + \sqrt{64}$$
 b $\sqrt{121} - \sqrt{49}$ **c** $\sqrt{144} + \sqrt{81}$ **d** $\sqrt{100} - \sqrt{16}$

explanation 4a

explanation 4b

16 Work out these cube roots using the information given in the box.

Use your calculator to check the answers.

a
$$\sqrt[3]{64}$$

b
$$\sqrt[3]{125}$$

$$c$$
 $\sqrt[3]{4913}$

d
$$\sqrt[3]{1000000}$$

$$4^{3} = 64$$

 $5^{3} = 125$
 $17^{3} = 4913$
 $4913 \div 3 = 1637.67$
 $64 \div 3 = 21.33$
 $100^{3} = 1000000$

17 Imagine that the $\sqrt{}$ button on your calculator is broken. Use another method to estimate the value of these square roots. Give each answer as an inequality involving numbers with 2 decimal places.

- $\mathbf{a} = \sqrt{29}$
- **b** $\sqrt{57}$
- $\sqrt{93}$
- $d \sqrt{101}$

18 Using a similar method, estimate the value of $\sqrt[3]{20}$.

explanation 5a

explanation 5b

19 Write each expression as a single power of a number.

a
$$5^2 \times 5^9$$

b
$$17^6 \div 17^3$$

c
$$24^8 \div 24^7$$

d
$$37^4 \times 37^6$$

e
$$54^3 \times 54^6$$

f
$$21^{12} \div 21^4$$

$$\mathbf{g} \quad 26^{15} \times 26$$

h
$$23^5 \div 23$$

i
$$14^7 \div 14^5$$

20 Simplify each expression, then use your calculator to work out the answer.

a
$$6^2 \times 6^3$$

b
$$12^{13} \div 12^9$$
 c $5^3 \times 5^4$

c
$$5^3 \times 5^4$$

d
$$4^{30} \div 4^{20}$$

e
$$14^5 \div 14^2$$

e
$$14^5 \div 14^2$$
 f $18^4 \times 18^1$

g
$$11^7 \div 11^3$$

h
$$23^2 \times 23^2$$

g
$$11^7 \div 11^3$$
 h $23^2 \times 23$ **i** $32^{16} \div 32^{14}$

21 Work these out without using a calculator.

a
$$11^8 \div 11^6$$

b
$$10^5 \times 10^2$$

c
$$7^9 \div 7^7$$

d
$$18^{23} \div 18^{22}$$
 e $8^6 \div 8^4$

$$e 8^6 \div 8^4$$

$$f 2^3 \times 2^1$$

g
$$3^2 \times 3^2$$

h
$$9^{11} \div 9^9$$

i
$$1^2 \times 1^3$$

22 Work these out without using a calculator.

a
$$16^8 \div 16^8$$

b
$$2^{16} \div 2^{11}$$

$$c 6^2 \div 6^0$$

d
$$2^{13} \div 2^{15}$$

e
$$1^4 \div 1^3$$

f
$$3^7 \div 3^4$$

23 Work these out without using a calculator. Show your working.

Remember to use BIDMAS.

a
$$(7-4)^2$$

b
$$(2+3)^3$$

c
$$(9 \div 3)^2$$

d
$$(4 \times 3)^2$$

$$(3 \times 5 - 11)^3$$

$$\mathbf{f} (24-19+2)^2$$

$$\mathbf{g} (48 - 92 \div 2)^4$$

h
$$(108 \div 12 - 21 \div 7)^2$$

24 Simplify these. (Remember to work from left to right when there are multiplications and divisions in a question.)

a
$$3^4 \times 3^7 \times 3^6$$

b
$$6^5 \div 6^4 \times 6^2$$

c
$$7^8 \times 7^8 \div 7^{15}$$

d
$$9^{14} \div 9^7 \div 9^8$$

e
$$4^7 \times 4^3 \div 4^8$$

f
$$12^8 \div 12^5 \div 12^2$$

explanation 6a

explanation 6b

25 Find the highest common factor (HCF) of each pair.

26 Find the lowest common multiple (LCM) of each pair.

27 Find the HCF and LCM of these pairs of numbers.

- **28** a Find the LCM of 12 and 16.
- **b** Find the LCM of 20 and 40.
- c Find the LCM of 30 and 42.
- d Find the HCF of 22 and 42.
- e Find the HCF of 132 and 156.
- f Find the HCF of 144 and 30.
- 29 Identify the odd one out in each list of numbers and give a reason for your choice.