MSO201A: Probability and Statistics

2021 (2nd Semester) Assignment-VI

- 1. Let $X_1, X_2, ...$ be a sequence of r.v.s, such that $X_n, n = 1, 2, ...$, has the d.f.: $F_n(x) = 0$, if x < -n, $= \frac{x+n}{2n}$, if $-n \le x < n$, and = 1, if $x \ge n$. Does $F_n(\cdot)$ converge to a d.f., as $n \to \infty$?
- 2. Let $X_1, X_2, ...$ be a sequence of i.i.d. r.v.s and let $X_{1:n} = \min\{X_1, ..., X_n\}$ and $Y_n = nX_{1:n}, n = 1, 2, ...$ Find the limiting distributions of $X_{1:n}$ and Y_n (as $n \to \infty$) when (a) $X_1 \sim U(0, \theta), \ \theta > 0$; (b) $X_1 \sim \operatorname{Exp}(\theta), \ \theta > 0$.
- 3. Let X_1, X_2, \ldots be a sequence of independent r.v.s with $P(X_n = x) = \frac{1}{2}$, if $x = -n^{\frac{1}{4}}$, $n^{\frac{1}{4}}$, and x = 0, otherwise. Show that $\overline{X}_n \stackrel{P}{\to} 0$, as $n \to \infty$.
- 4. (a) If $X_n \stackrel{P}{\to} a$ and $X_n \stackrel{P}{\to} b$, then show that a = b.
 - (b) Let a and r > 0 be real numbers. If $E(|X_n a|^r) \to 0$, as $n \to \infty$, then show that $X_n \stackrel{P}{\to} a$.
- 5. (a) For r > 0 and t > 0, show that $E(\frac{|X|^r}{1+|X|^r}) \frac{t^r}{1+t^r} \le P(|X| \ge t) \le \frac{1+t^r}{t^r} E(\frac{|X|^r}{1+|X|^r})$.
 - (b) Show that $X_n \stackrel{P}{\to} 0 \iff E(\frac{|X_n|^r}{1+|X_n|^r}) \to 0$, for some r > 0.
- 6. (a) If $\{X_n\}_{n\geq 1}$ are identically distributed and $a_n \to 0$, then show that $a_n X_n \stackrel{P}{\to} 0$.
 - (b) If $Y_n \leq X_n \leq Z_n$, $n = 1, 2, ..., Y_n \xrightarrow{P} a$ and $Z_n \xrightarrow{P} a$, then show that $X_n \xrightarrow{P} a$.
 - (c) If $X_n \stackrel{P}{\to} c$ and $a_n \to a$, then show that, as $n \to \infty$, $X_n + a_n \stackrel{P}{\to} c + a$ and $a_n X_n \stackrel{P}{\to} ac$.
 - (d) Let $X_n = \min(|Y_n|, a)$, n = 1, 2, ..., where a is a positive constant. Show that $X_n \xrightarrow{P} 0 \Leftrightarrow Y_n \xrightarrow{P} 0$.
- 7. Let X_1, X_2, \ldots be a sequence of i.i.d. r.v.s with mean μ and finite variance. Show that:
 - (a) $\frac{2}{n(n+1)} \sum_{i=1}^{n} iX_i \stackrel{P}{\to} \mu;$
 - (b) $\frac{6}{n(n+1)(2n+1)} \sum_{i=1}^{n} i^2 X_i \xrightarrow{P} \mu$.
- 8. Let X_n , n = 1, 2, ..., have a negative binomial distribution with parameters n and $p_n = 1 \frac{\theta}{n}$, i.e., X_n has the p.m.f. $P(X_n = x) = \binom{n+x-1}{x} p_n^n (1-p_n)^x$, x = 0, 1, 2, ...; n = 1, 2, ... Show that $X_n \xrightarrow{d} X \sim \text{Poisson}(\theta)$.

- 9. (a) Let $X_n \sim \text{Gamma}(\frac{1}{n}, n), n = 1, 2, \dots$ Show that $X_n \stackrel{P}{\to} 1$.
 - (b) Let $X_n \sim N(\frac{1}{n}, 1 \frac{1}{n}), n = 1, 2, \dots$ Show that $X_n \stackrel{d}{\to} Z \sim N(0, 1)$.
- 10. (a) Let $f(x) = \frac{1}{x^2}$, if $1 \le x < \infty$, and = 0, elsewhere, be the p.d.f. of a r.v. X. Consider the random sample of size 72 from the distribution having p.d.f. $f(\cdot)$. Compute, approximately, the possibility that more than 50 of the items of the random sample are less than 3.
 - (b) Let X_1, X_2, \ldots be a random sample from Poisson(3) distribution and let Y = $\sum_{i=1}^{100} X_i$. Find, approximately, $P(100 \le Y \le 200)$.
 - (c) Let $X \sim \text{Bin}(25, 0.6)$. Find, approximately, $P(10 \le X \le 16)$. What is the exact value of this probability?
- 11. (a) Show that $\lim_{n\to\infty} e^{-n} \sum_{k=0}^n \frac{n^k}{k!} = \frac{1}{2}$.
 - (b) Show that $\lim_{n\to\infty} 2^{-n} \sum_{k=0}^{r-n} {n \choose k} = \frac{1}{2}$, where r_n is the largest integer $\leq \frac{n}{2}$.
- 12. (a) If $T_n = \max(|X_1|, \dots, |X_n|) \stackrel{P}{\to} 0$, as $n \to \infty$, then show that $\overline{X}_n \stackrel{P}{\to} 0$. Is the conclusion true if only $S_n = \max(X_1, \dots, X_n) \stackrel{P}{\to} 0$.
 - (b) If $\{X_n\}_{n\geq 1}$ are i.i.d. U(0,1) r.v.s. and $Z_n = (\prod_{i=1}^n X_i)^{\frac{1}{n}}, n = 1, 2, \ldots$ Find a real α such that $Z_n \stackrel{P}{\to} \alpha$.
- 13. Let $\{E_n\}_{n\geq 1}$ be a sequence of i.i.d. Exp(1) r.v.s.

 - (a) Show that $T_n \equiv \sum_{i=1}^n E_i \sim \text{Gamma}(n,1), n=1,2,\ldots$ (b) For any real number x, show that $\lim_{n\to\infty} \int_0^{n+x\sqrt{n}} \frac{e^{-t}t^{n-1}}{\Gamma(n)} dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt$.
 - (c) For large values of n, show that an approximation (called the Stirling approximation) to the gamma function is: $\Gamma n \approx \sqrt{2\pi}e^{-n}n^{n-\frac{1}{2}}$.
- 14. Let X_1, X_2, \ldots be a sequence of i.i.d. r.v.s having the common Cauchy p.d.f. f(x) = $\frac{1}{\pi} \cdot \frac{1}{1+x^2}, \ -\infty < x < \infty.$
 - (a) For any $\alpha \in (0,1)$, show that $Y = \alpha X_1 + (1-\alpha)X_2$ again has a Cauchy p.d.f.
 - (b) Note that $\overline{X}_{n+1} = \frac{n}{n+1} \overline{X}_n + \frac{1}{n+1} X_{n+1}$ and hence, using induction, conclude that \overline{X}_n has the same distribution as X_1 .
 - (c) Show that \overline{X}_n does not converge in probability to any constant. (Note that $E(X_1)$ does not exist and hence the WLLN is not guaranteed).
- 15. Let $X_n \sim \text{Poisson}(4n), \ n = 1, 2, ..., \text{ and let } Y_n = \frac{X_n}{n}, \ n = 1, 2,$

(b) Show that $Y_n^2 + \sqrt{Y_n} \stackrel{P}{\to} 18$;

(a) Show that $Y_n \xrightarrow{P} 4$; (c) Show that $\frac{n^2 Y_n^2 + n Y_n}{n Y_n + n^2} \xrightarrow{P} 16$.

- 16. Let \overline{X}_n be the sample mean computed from a random sample of size n from a distribution with mean μ $(-\infty < \mu < \infty)$ and variance σ^2 $(0 < \sigma < \infty)$. Let $Z_n = \frac{\sqrt{n}(\overline{X}_n \mu)}{\sigma}$.
 - (a) If $Y_n \stackrel{\sigma}{\to} 4$, show that: $\frac{4Z_n}{Y_n} \stackrel{d}{\to} Z \sim N(0,1)$; $\frac{16Z_n^2}{Y_n^2} \stackrel{d}{\to} U \sim \chi_1^2$; and $\frac{(4n+Y_n)Z_n}{(nY_n+Y_n^2)} \stackrel{d}{\to} Z \sim N(0,1)$.
 - (b) If $\sigma = 1$ and $\mu > 0$, show that: $\sqrt{n}(\ln \overline{X}_n \ln \mu) \stackrel{d}{\to} V \sim N(0, \frac{1}{\mu^2})$;
 - (c) Show that $\frac{n^{\delta}(\overline{X}_n-\mu)}{\sigma} \stackrel{P}{\to} 0$, for any $\delta < 0.5$.
 - (d) Find the asymptotic distributions of: (i) $\sqrt{n}(\overline{X}_n^2 \mu^2)$; (ii) $n(\overline{X}_n \mu)^2$ and (iii) $\sqrt{n}(\overline{X}_n \mu)^2$.
- 17. Let X_1, X_2, \ldots be i.i.d. r.v.s having $\operatorname{Exp}(\theta)$ $(\theta > 0)$ distribution and let $\overline{X}_n = \frac{\sum_{i=1}^n X_i}{n}$, $n = 1, 2, \ldots$ Show that: $\sqrt{n}(\frac{1}{\overline{X}_n} \frac{1}{\theta}) \stackrel{d}{\to} N(0, \frac{1}{\theta^2})$, as $n \to \infty$.
- 18. Let $X_1, X_2, ...$ be a sequence of i.i.d. U(0,1) r.v.s. For the sequence of geometric means $G_n = (\prod_{i=1}^n X_i)^{\frac{1}{n}}$, n = 1, 2, ..., show that $\sqrt{n}(G_n \frac{1}{e}) \stackrel{d}{\to} N(0, \sigma^2)$, for some $\sigma^2 > 0$. Find σ^2 .
- 19. Let $(X_1, Y_1), (X_2, Y_2), \ldots$ be a sequence of independent bivariate random vectors having the same joint p.d.f. Let $E(X_1) = \mu$, $E(Y_1) = \nu$, $Var(X_1) = \sigma^2$, $Var(Y_1) = \tau^2$ and $Corr(X_1, Y_1) = \rho$. Let $Q_n = \frac{\sum_{i=1}^n (X_i \overline{X}_n)(Y_i \overline{Y}_n)}{n-1}$, $S_n^2 = \frac{\sum_{i=1}^n (X_i \overline{X}_n)^2}{n-1}$, $T_n^2 = \frac{\sum_{i=1}^n (Y_i \overline{Y}_n)^2}{n-1}$ and $R_n = \frac{Q_n}{S_n T_n}$.
 - (a) Show that $Q_n \xrightarrow{P} \rho \tau \sigma$ and $R_n \xrightarrow{P} \rho$.
 - (b) Let $\delta = \frac{E((X_1 \mu)^2 (Y_1 \nu)^2)}{\sigma^2 \tau^2}$. Show that $\sqrt{n}(Q_n \rho \sigma \tau) \stackrel{d}{\to} N(0, (\delta \rho^2) \sigma^2 \tau^2)$.