MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2016 SOLUTION KEY

Round 5

A) $AC^2 = AB^2 - BC^2 = 289 - 225 = 64 \Rightarrow AC = 8$ and the area of $\triangle ABC$ is $\frac{1}{2} \cdot 8 \cdot 15 = 60$.

 $AP:PC=3:1 \Rightarrow AP=6$

Since $\triangle APQ \sim \triangle ABC$, their areas are in the ratio of the square of their corresponding sides,

namely 9:16. Thus, the area of trapezoid PQBC is $\frac{7}{16}(60) = \frac{7 \cdot 15}{4} = \frac{105}{4}$ or 26.25.

Alternately, $\triangle APQ \sim \triangle ABC$ with corresponding sides in a ratio of 6:8 or 3:4

Therefore, $PQ = \frac{3}{4}(15) = \frac{45}{4}$ and the area of the trapezoid is $\frac{1}{2} \cdot 2 \cdot \left(\frac{45}{4} + 15\right) = \frac{105}{4}$.

B) $\Delta JAM \sim \Delta L_2 AN \Rightarrow \frac{L_2 N}{JM} = \frac{L_2 A}{JA} \Rightarrow \frac{L_2 N}{1} = \frac{5}{2} \Rightarrow L_2 N = 2.5$. $\begin{cases} L_1 L_2 = JK + KI = 6 \\ MK = 1 \end{cases} \Rightarrow MI = 5.$

Since
$$\triangle MOI \sim \triangle NOL_2$$
, $\frac{NO}{MO} = \frac{NL_2}{MI} = \frac{2.5}{5} \Longrightarrow = \underline{\mathbf{1:2}}$.

C) Since $\triangle ADE \sim \triangle ABC$, $\frac{AD}{AB} = \frac{AE}{AC} = \frac{DE}{BC} \Rightarrow \frac{AD}{DB} = \frac{AE}{EC}$ $\Rightarrow \frac{x+2}{2x+1} = \frac{x^2}{2(x^2-4)} \Rightarrow 2x^3 - 16 + 4x^2 - 8x = 2x^3 + x^2$ $\Rightarrow 3x^2 - 8x - 16 = (3x+4)(x-4) = 0 \Rightarrow x = 4.$ $x = -\frac{4}{3} \text{ is extraneous. } (\Rightarrow BD = 2x+1 < 0)$

Thus, AD = 6, DB = 9, DE = 10 and $\frac{6}{6+9} = \frac{10}{BC} \Rightarrow BC = 25$.