FIGURE 363

ACACTGGCCAAACAAAACGAAAGCACTCCGTGCTGGAAGTAGGAGGAGAGTCAGGACTC CCAGGACAGAGGTGCACAAACTACCCAGCACAGCCCCCTCCGCCCCCTCTGGAGGCTGA AGAGGGATTCCAGCCCCTGCCACCCACAGACACGGGCTGACTGGGGTGTCTGCCCCCCTT GGGGGGGGCACACAGGCCTCAGGCCTGGGTGCCACCTGGCACCTAGAAGATGCCTGT GCCCTGGTTCTTGCTGTCCTTGGCACTGGGCCGAAGCCCAGTGGTCCTTTCTCTGGAGAG GCTTGTGGGGCCTCAGGACGCTACCCACTGCTCTCCGGGCCTCTCCTGCCGCCTCTGGGA CAGTGACATACTCTGCCTGCGGGGACATCGTGCCTGCTCCGGGCCCCGTGCTGGCGCCC TACGCACCTGCAGACAGAGCTGGTGCTGAGGTGCCAGAAGGAGACCGACTGTGACCTCTG TCTGCGTGTGGCTGTCCACTTGGCCGTGCATGGGCACTGGGAAGAGCCTGAAGATGAGGA AAAGTTTGGAGGAGCAGCTGACTCAGGGGTGGAGGAGCCTAGGAATGCCTCTCTCCAGGC CCAAGTCGTGCTCCTTCCAGGCCTACCCTACTGCCCGCTGCGTCCTGCTGGAGGTGCA AGTGCCTGCTGCCCTTGTGCAGTTTGGTCAGTCTGTGGGCTCTGTGGTATATGACTGCTT CGAGGCTGCCCTAGGGAGTGAGGTACGAATCTGGTCCTATACTCAGCCCAGGTACGAGAA GGAACTCAACCACACAGCAGCTGCCTGCCCTGCCCTGGCTCAACGTGTCAGCAGATGG TGACAACGTGCATCTGGTTCTGAATGTCTCTGAGGAGCAGCACTTCGGCCTCTCCCTGTA CTGGAATCAGGTCCAGGGCCCCCAAAACCCCGGTGGCACAAAAACCTGACTGGACCGCA GATCATTACCTTGAACCACACACACGCTGGTTCCCTGCCTCTGTATTCAGGTGTGGCCTCT GGAACCTGACTCCGTTAGGACGAACATCTGCCCCTTCAGGGAGGACCCCCGCGCACACCA ACCGTGCTCGCTGCCCGCAGAAGCGGCACTGTGCTGGCGGGCTCCGGGTGGGGACCCCTG CCAGCCACTGGTCCCACCGCTTTCCTGGGAGAACGTCACTGTGGACAAGGTTCTCGAGTT CCCATTGCTGAAAGGCCACCCTAACCTCTGTGTTCAGGTGAACAGCTCGGAGAAGCTGCA GCTGCAGGAGTGCTTGTGGGCTGACTCCCTGGGGCCTCTCAAAGACGATGTGCTACTGTT GGAGACACGAGGCCCCCAGGACAACAGATCCCTCTGTGCCTTGGAACCCAGTGGCTGTAC CCTGCAGTCAGGCCAGTGTCTGCAGCTATGGGACGATGACTTGGGAGCGCTATGGGCCTG TGCCGCTGCGCTTTCCCTCATCCTCCTCTCAAAAAGGATCACGCGAAAGGGTGGCTGAG CTACTCAGCGATGACTCGGGTTTCGAGCGCCTGGTGGGCGCCCTGGCGTCGGCCCTGTG CCAGCTGCCGCTGCGCGTGGCCGTAGACCTGTGGAGCCGTCGTGAACTGAGCGCGCAGGG GCCCGTGGCTTGGTTTCACGCGCAGCGCGCCCAGACCCTGCAGGAGGGCGGCGTGGTGGT CTTGCTCTCTCCCGGTGCGGTGGCGCTGTGCAGCGAGTGGCTACAGGATGGGGTGTC CGGGCCCGGGGCGCACGACGCCTTCCGCGCCTCGCTCAGCTGCGTGCTGCC CGACTTCTTGCAGGGCCGGGCGCCCGGCAGCTACGTGGGGGCCTGCTTCGACAGGCTGCT CCACCGGACGCGTACCCGCCCTTTTCCGCACCGTGCCCGTCTTCACACTGCCCTCCCA ACTGCCAGACTTCCTGGGGGCCCTGCAGCAGCCTCGCGCCCCGCGTTCCGGGCGGCTCCA CCCGGGGACTCCCGCGCCGGGACGCGGGGTGGGACCAGGGGCGGGACCTGGGGCGGGGGA CGGGACTTAAATAAAGGCAGACGCTGTTTTTCTAAAAAAA

FIGURE 364

MPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRLWDSDILCLPGDIVPAPGPV
LAPTHLQTELVLRCQKETDCDLCLRVAVHLAVHGHWEEPEDEEKFGGAADSGVEEPRNAS
LQAQVVLSFQAYPTARCVLLEVQVPAALVQFGQSVGSVVYDCFEAALGSEVRIWSYTQPR
YEKELNHTQQLPALPWLNVSADGDNVHLVLNVSEEQHFGLSLYWNQVQGPPKPRWHKNLT
GPQIITLNHTDLVPCLCIQVWPLEPDSVRTNICPFREDPRAHQNLWQAARLRLLTLQSWL
LDAPCSLPAEAALCWRAPGGDPCQPLVPPLSWENVTVDKVLEFPLLKGHPNLCVQVNSSE
KLQLQECLWADSLGPLKDDVLLLETRGPQDNRSLCALEPSGCTSLPSKASTRAARLGEYL
LQDLQSGQCLQLWDDDLGALWACPMDKYIHKRWALVWLACLLFAAALSLILLLKKDHAKG
WLRLLKQDVRSGAAARGRAALLLYSADDSGFERLVGALASALCQLPLRVAVDLWSRRELS
AQGPVAWFHAQRRQTLQEGGVVVLLFSPGAVALCSEWLQDGVSGPGAHGPHDAFRASLSC
VLPDFLQGRAPGSYVGACFDRLLHPDAVPALFRTVPVFTLPSQLPDFLGALQQPRAPRSG
RLQERAEQVSRALQPALDSYFHPPGTPAPGRGVGPGAGPGAGDGT

Signal sequence:

amino acids 1-20

Transmembrane domain:

amino acids 453-475

N-glycosylation sites:

amino acids 118-121, 186-189, 198-201, 211-214, 238-241, 248-251, 334-337, 357-360, 391-394

Glycosaminoglycan attachment site:

amino acids 583-586

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 552-555

N-myristoylation sites:

amino acids 107-112, 152-157, 319-324, 438-443, 516-521, 612-617, 692-697, 696-701, 700-705

FIGURE 365

AATAGAAGTCCTCAGGACGGAGCAGAGGTGGCCGGCGGGCCGGCTGACTGCGCCTCTGC TTTCTTTCCATAACCTTTTCTTTCGGACTCGAATCACGGCTGCGGAAGGGTCTAGTTC CGGACACTAGGGTGCCCGAACGCGCTGATGCCCCGAGTGCTCGCAGGGCTTCCCGCTAAC $\mathtt{CATGCTGCCGCCGCCGCGCCCGCAGCTGCCTTGGCGCTGCCTGTGCTCCTGCTACTGCT}$ GGTGGTGCTGACGCCCCCCGACCGGCGCAAGGCCATCCCCAGGCCCAGATTACCTGCG GCGCGGCTGGATGCGGCTGCTAGCGGAGGGCGAGGGCTGCGCTCCCTGCCGGCCAGAAGA GTGCGCCGCGCGGGCTGCCTGGCGGGCAGGGTGCGCGACGCGTGCGGCTGCTGCTG GGAATGCGCCAACCTCGAGGGCCAGCTCTGCGACCTGGACCCCAGTGCTCACTTCTACGG GCACTGCGGCGAGCAGCTTGAGTGCCGGCTGGACACAGGCGGCGACCTGAGCCGCGGAGA GGTGCCGGAACCTCTGTGTGCCTGTCGTTCGCAGAGTCCGCTCTGCGGGTCCGACGGTCA CACCTACTCCCAGATCTGCCGCCTGCAGGAGGCGGCCCGCGCTCGGCCCGATGCCAACCT CACTGTGGCACACCCGGGGCCCTGCGAATCGGGGCCCCAGATCGTGTCACATCCATATGA CACTTGGAATGTGACAGGGCAGGATGTGATCTTTGGCTGTGAAGTGTTTGCCTACCCCAT GGCCTCCATCGAGTGGAGGAAGGATGGCTTGGACATCCAGCTGCCAGGGGATGACCCCCA CCAGGCTGTGCGTCCCAGTGATGAGGGCACTTACCGCTGCCTTGGCCGCAATGCCCTGGG TCAAGTGGAGGCCCCTGCTAGCTTGACAGTGCTCACACCTGACCAGCTGAACTCTACAGG TCATCCCTGCTCTTGAAAAGACCTGGAAAGGGGAGCAGGGTCCCTTCATCGACTGCTTTC ATGCTGTCAGTAGGGATGATCATGGGAGGCCTATTTGACTCCAAGGTAGCAGTGTGGTAG GATAGAGACAAAAGCTGGAGGAGGGTAGGGAGAAGCTGAGACCAGGACCGGTGGGGTA CAAAGGGGCCCATGCAGGAGATGCCCTGGCCAGTAGGACCTCCAACAGGTTGTTTCCCAG GCTGGGGTGGGGCCTGAGCAGACACAGAGGTGCAGGCACCAGGATTCTCCACTTCTTCC AGCCCTGCTGGGCCACAGTTCTAACTGCCCTTCCTCCCAGGCCCTGGTTCTTGCTATTTC CTGGTCCCCAACGTTTATCTAGCTTGTTTGCCCTTTCCCCAAACTCATCTTCCAGAACTT TTCCCTCTCCTAAGCCCCAGTTGCACCTACTAACTGCAGTCCCTTTTGCTGTCTGCCG TCTTTTGTACAAGAGAGAGAACAGCGGAGCATGACTTAGTTCAGTGCAGAGAGATTT

FIGURE 366

MLPPPRPAAALALPVLLLLLVVLTPPPTGARPSPGPDYLRRGWMRLLAEGEGCAPCRPEE CAAPRGCLAGRVRDACGCCWECANLEGQLCDLDPSAHFYGHCGEQLECRLDTGGDLSRGE VPEPLCACRSQSPLCGSDGHTYSQICRLQEAARARPDANLTVAHPGPCESGPQIVSHPYD TWNVTGQDVIFGCEVFAYPMASIEWRKDGLDIQLPGDDPHISVQFRGGPQRFEVTGWLQI QAVRPSDEGTYRCLGRNALGQVEAPASLTVLTPDQLNSTGIPQLRSLNLVPEEEAESEEN DDYY

Important features of the protein:

Signal peptide:

1-30

Transmembrane domain:

None

N-glycosylation site:

159-163, 183-187, 277-281

Tyrosine kinase phosphorylation site:

244-252

N-myristoylation site:

52-58, 66-72, 113-119, 249-255

Kazal-type serine protease inhibitor domain:

121-168

Immunoglobulin domain:

186-255

Insulin-like growth factor binding proteins:

53-90

PCT/US01/19692

WO 02/00690

382/392

FIGURE 367

WO 02/00690 PCT/US01/19692

383/392

FIGURE 368

MERGAGAKLLPLLLLRATGFTCAQTDGRNGYTAVIEVTSGGPWGDWAWPEMCPDGFFAS GFSLKVEPPQGIPGDDTALNGIRLHCARGNVLGNTHVVESQSGSWGEWSEPLWCRGGAYL VAFSLRVEAPTTLGDNTAANNVRFRCSDGEELQGPGLSWGDFGDWSDHCPKGACGLQTKI QGPRGLGDDTALNDARLFCCRS

Important features of the protein:

Signal peptide:

1-24

Transmembrane domain:

None ·

N-myristoylation site:

41-47

89~95

156-162

Growth factor and cytokines receptors family signature 2: 103-110

FIGURE 369

GCCAACACTGGCCAAACCTCGGAGACCGTCCTGCGCTCTCTGGAGACGCGCTGTCCGCGC GTACTGCCACGGCTGGACGCGCAGGGCGTCTGGCGCATCGGCTTCCAGTGTCCCGA GCGCTTCGACGCGGCGACGCCACCATCTGCTGCGCAGCTGCGCGTTGCGCTACTGCTG CTCCAGCGCCGAGGCGCCTGGACCAGGGCGCTGCGACAATGACCGCCAGCAGGGCGC TGGCGAGCCTGGCCGGCCGACAAAGACGCCCCGACGCTCGGCAGTGCCCATCTACGT GCCGTTCCTCATTGTTGGCTCCGTGTTTGTCGCCTTTATCATCTTGGGGTCCCTGGTGGC AGCCTGTTGCTGCAGATGTCTCCGGCCTAAGCAGGATCCCCAGCAGAGCCGAGCCCCAGG GGGTAACCGCTTGATGGAGACCATCCCCATGATCCCCAGTGCCAGCACCTCCCGGGGGTC GTCCTCACGCCAGTCCAGCACAGCTGCCAGTTCCAGCTCCAGCGCCAACTCAGGGGCCCG GGCGCCCCAACAAGGTCACAGACCAACTGTTGCTTGCCGGAAGGGACCATGAACAACGT GTATGTCAACATGCCCACGAATTTCTCTGTGCTGAACTGTCAGCAGGCCACCCAGATTGT GCCACATCAAGGGCAGTATCTGCATCCCCCATACGTGGGGTACACGGTGCAGCACGACTC TGTGCCCATGACAGCTGTGCCACCTTTCATGGACGGCCTGCAGCCTGGCTACAGGCAGAT TCAGTCCCCCTTCCCTCACACCAACAGTGAACAGAAGATGTACCCAGCGGTGACTGTA<u>TA</u> ACCGAGAGTCACTGGTGGGTTCCTTTACTGAAGGGAGACGAAGGCAGGGGTGGATTTTCG AGGTGGAAGT

FIGURE 370

MWGARRSSVSSSWNAASLLQLLLAALLAAGARASGEYCHGWLDAQGVWRIGFQCPERFDG GDATICCGSCALRYCCSSAEARLDQGGCDNDRQQGAGEPGRADKDGPDGSAVPIYVPFLI VGSVFVAFIILGSLVAACCCRCLRPKQDPQQSRAPGGNRLMETIPMIPSASTSRGSSSRQ SSTAASSSSANSGARAPPTRSQTNCCLPEGTMNNVYVNMPTNFSVLNCQQATQIVPHQG QYLHPPYVGYTVQHDSVPMTAVPPFMDGLQPGYRQIQSPFPHTNSEQKMYPAVTV

Important features of the protein: .

Signal peptide:

1-33

Transmembrane domain:

54-78

N-glycosylation site:

N-myristoylation site:

223-226

cAMP- and cGMP-dependent protein kinase phosphorylation site: 5-8

3-8, 30-35, 60-65, 86-91, 132-137, 211-216, 268-273

Prokaryotic membrane lipoprotein lipid attachment site: 128-138

FIGURE 371

CACCAGACAGCACTCCAGCACTCTGTTTGGGGGGCATTCGAAACAGCAAAATCACTCATA AAAGGCAAAAAATTGCAAAAAAAAATAGTAATAACCAGCATGGCACTAAATAGACCATGA AAAGACATGTGTGCAGTATGAAAATTGAGACAGGAAGGCAGAGTGTCAGCTTGTTCCA CCTCAGCTGGGA<u>ATG</u>TGCATCAGGCAACTCAAGTTTTTCACCACGGCATGTGTCTGTGAA TGTCCGCAAAACATTCTCTCTCCCCAGCCTTCATGTGTTAACCTGGGGATGATGTGGACC TGGGCACTGTGGATGCTCCCTTCACTCTGCAAATTCAGCCTGGCAGCTCTGCCAGCTAAG CCTGAGAACATTTCCTGTGTCTACTACTATAGGAAAAATTTAACCTGCACTTGGAGTCCA GGAAAGGAAACCAGTTATACCCAGTACACAGTTAAGAGAACTTACGCTTTTGGAGAAAAA CATGATAATTGTACAACCAATAGTTCTACAAGTGAAAATCGTGCTTCGTGCTCTTTTTTC CTTCCAAGAATAACGATCCCAGATAATTATACCATTGAGGTGGAAGCTGAAAATGGAGAT GGTGTAATTAAATCTCATATGACATACTGGAGATTAGAGAACATAGCGAAAACTGAACCA CCTAAGATTTTCCGTGTGAAACCAGTTTTGGGCATCAAACGAATGATTCAAATTGAATGG ATAAAGCCTGAGTTGGCGCCTGTTTCATCTGATTTAAAATACACACTTCGATTCAGGACA GTCAACAGTACCAGCTGGATGGAAGTCAACTTCGCTAAGAACCGTAAGGATAAAAACCAA ACGTACAACCTCACGGGGCTGCAGCCTTTTACAGAATATGTCATAGCTCTGCGATGTGCG GTCAAGGAGTCAAAGTTCTGGAGTGACTGGAGCCAAGAAAAAATGGGAATGACTGAGGAA GAAGCTCCATGTGGCCTGGAACTGTGGAGAGTCCTGAAACCAGCTGAGGCGGATGGAAGA AGGCCAGTGCGGTTGTTATGGAAGAAGGCAAGAGGAGCCCCAGTCCTAGAGAAAACACTT GGCTACAACATATGGTACTATCCAGAAAGCAACACTAACCTCACAGAAACAATGAACACT ACTAACCAGCAGCTTGAACTGCATCTGGGAGGCGAGAGCTTTTGGGTGTCTATGATTTCT TATAATTCTCTTGGGAAGTCTCCAGTGGCCACCCTGAGGATTCCAGCTATTCAAGAAAAA TCATTCAGTGCATTGAGGTCATGCAGGCCTGCGTTGCTGAGGACCAGCTAGTGGTGAAG TGGCAAAGCTCTGCTCTAGACGTGAACACTTGGATGATTGAATGGTTTCCGGATGTGGAC TCAGAGCCCACCACTTTCCTGGGAATCTGTGTCTCAGGCCACGAACTGGACGATCCAG CAAGATAAATTAAAACCTTTCTGGTGCTATAACATCTCTGTGTATCCAATGTTGCATGAC AAAGTTGGCGAGCCATATTCCATCCAGGCTTATGCCAAAGAAGGCGTTCCATCAGAAGGT CCTGAGACCAAGGTGGAGAACATTGGCGTGAAGACGGTCACGATCACATGGAAAGAGATT CCCAAGAGTGAGAGAAAGGGTATCATCTGCAACTACACCATCTTTTACCAAGCTGAAGGT GGAAAAGGATTCTGTAAGCACGCCCATAGCGAAGTGGAAAAAAACCCCAAGCCCCAGATA GATGCTATGGATAGACCTGTTGTAGGCATGGCTCCCCCATCTCATTGTGACTTGCAACCT TTGGGGTTTTGGGGGTTAAATGAGAGTGAAGTGACAGTACCTGAGAGGAGAGTCCTGAGG AAATGGAAGGAGTTGTTA<u>TAA</u>TTTGTCCTGGTTAGGCCCTGAATTGACCTCCCGGGAGCT CCCCGACCATCATTCCCAGGAATGGCGTGCCTGGCTTAAAGAGTGAGGAGGAACAGACCC TGTCACCATGACTTCTACTGCCCCTGCCAAATCATGCTTTTGTTTTTCAGTCCACCTTAT CTCCTGACATCTTAAATACTGGGCAAGGCTTGGATTCTTGCTTAGGCTAAATAATTTTTT CTTATGGTAAAATACACGTAAAATATTTTTCCAGTTTAAACATTTGAAAGTGTACAATTT AGTGGCATTAGAAGCATTCACAATATTGTGCAACCATCACCACTATTTCCAGAACTCTTC TATTTCTGCCCAAATAGAAGCCCTATACCCATTCATTAGTCACTCCCCATTCCTCTCCTC CCACAGCCCCTGGCAACTACCAAACTGCTTTGTGTCTCTATGGATTGCCTATTTTGGATA

FIGURE 372

MCIRQLKFFTTACVCECPQNILSPQPSCVNLGMMWTWALWMLPSLCKFSLAALPAKPENI SCVYYYRKNLTCTWSPGKETSYTQYTVKRTYAFGEKHDNCTTNSSTSENRASCSFFLPRI TIPDNYTIEVEAENGDGVIKSHMTYWRLENIAKTEPPKIFRVKPVLGIKRMIQIEWIKPE LAPVSSDLKYTLRFRTVNSTSWMEVNFAKNRKDKNQTYNLTGLQPFTEYVIALRCAVKES KFWSDWSQEKMGMTEEEAPCGLELWRVLKPAEADGRRPVRLLWKKARGAPVLEKTLGYNI WYYPESNTNLTETMNTTNQQLELHLGGESFWVSMISYNSLGKSPVATLRIPAIQEKSFQC IEVMQACVAEDQLVVKWQSSALDVNTWMIEWFPDVDSEPTTLSWESVSQATNWTIQQDKL KPFWCYNISVYPMLHDKVGEPYSIQAYAKEGVPSEGPETKVENIGVKTVTITWKEIPKSE RKGIICNYTIFYQAEGGKGFCKHAHSEVEKNPKPQIDAMDRPVVGMAPPSHCDLQPGMNH LASLNLSENGAKSTHLLGFWGLNESEVTVPERRVLRKWKELL

Important features of the protein:

Signal peptide:

1-46

Transmembrane domain:

None

N-glycosylation site:

59-63, 69-73, 99-103, 103-107, 125-129, 198-202, 215-219, 219-223, 309-313, 315-319, 412-416, 427-431, 487-491, 545-549, 563-567

N-myristoylation site:

32-38, 137-143, 483-489, 550-556, 561-567

Amidation site:

274-278

Growth factor and cytokines receptors family signature 1: 62-75

Fibronectin type III domain:

54-144

154-247

FIGURE 373

 ${\tt CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCC}$ CTCGACCTCGACCCACGCGTCCGCCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTG TGGACAGGCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGC CCCAGCAAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCAC GCCTGGGCTCCAGCAGCATCAGCAGCCCCCAGGACCGGGGGAGGCACAGGTGGCCCCCAC CACCGGAGGAGCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCC ACCCAGAGGAGAAGGCCACCCCGCCTGGAGGCCACAGGCCATGAGGGGCTCTCAGGAGGTG CTGCTGATGTGGCTGTTGGCAGTGGGCGCACAGAGCACGCCTACCGGCCCGGC GTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAA CCATTTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCTGCCAGGCCTCGCTACG CGTGCTGCCCGGCTGGAAGAGGACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATAT GCCAGCCGCATGCCGGAACGGAGGGAGCTGTGTCCAGCCTGGCCGCTGCCCCTG CAGGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGAATGCAGTGCTAGGAGGGGCG GCTGTCCCCAGCGCTGCATCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGC CCAACCCGACAGGAGTGGACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGG TGGACCTGCTGGAGGAGAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGC AGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGC ${\tt GCTCCTGCAAGAAGACTCG\underline{TGA}CTGCCCAGCGCCCCAGGCTGGACTGAGCCCCTCACGC}$ CGCCTGCAGCCCCATGCCCTGCCCAACATGCTGGGGGTCCAGAAGCCACCTCGGGGT GACTGAGCGGAAGGCCAGGCAGGCCTTCCTCCTTTTCCTCCTCCCCTTCCCTCGGGAGG CCCCACCCTGGTTACCCCAACGCCATCCCAAGGCCAGGTGGGCCCTCAGCTGAGGGAAGG TACGAGTTCCCCTGCTGGAGCCTGGGACCCATGGCACGGCCAGGCAGCCCGGAGGCTGG GTGGGGCCTCAGTGGGGGCTGCTGCCTGACCCCCAGCACAATAAAAATGAAACGTGAAAA GACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAAT

WO 02/00690 PCT/US01/19692

389/392

FIGURE 374

MTDSPPPGHPEEKATPPGGTGHEGLSGGAADVASGVGSGRHRARLPARPLGCVLSRAHGD PVSESFVQRVYQPFLTTCDGHRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGL PGACGAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCINTAGS YWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVL APLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDS

FIGURE 375

Wholemount In Situ with PRO1449 Orthologue

PRO1449 is expressed in vasculature of many inflamed and diseased tissues

FIGURE 377

Mouse orthologue of PRO1449 induces ectopic vessels in the eyes of chicken embryos