BESIII Charm Meeting Measurement of $\delta_D^{K\pi}$ with $D \to K_{S,L} \pi^+ \pi^-$ tags

Martin Tat

University of Oxford

31st August 2021

$D \to K_{S,L}^0 \pi^+ \pi^-$ tags

Measurement of $\delta_D^{K\pi}$ with $D \to K_{S,L} \pi^+ \pi^-$ tags

- Measurement of <u>both</u> $r_D^{K\pi}\cos\delta_D^{K\pi}$ and $r_D^{K\pi}\sin\delta_D^{K\pi}$
- Equal- $\Delta \delta_D$ phase space binning
- Double tag yields taken from Phys. Rev. D 101 (2020)
- K_i , c_i , s_i re-determined without $D \to K^- \pi^+$ inputs (by Lei Li)

$D \to K_{S,L}^0 \pi^+ \pi^-$ inputs

$K^-\pi^+$ vs $K^0_{S,L}\pi^+\pi^-$ double tag yield prediction

$$Y(K^{-}\pi^{+}|K_{S,L}^{0}\pi^{+}\pi^{-})_{i} = H^{(\prime)}\left(K_{i}^{(\prime)} + (r_{D}^{K\pi})^{2}K_{-i}^{(\prime)} \mp 2r_{D}^{K\pi}\sqrt{K_{i}^{(\prime)}K_{-i}^{(\prime)}}\left[c_{i}^{(\prime)}\cos\delta_{D}^{K\pi} - s_{i}^{(\prime)}\sin\delta_{D}^{K\pi}\right]\right)$$

- K_i: Flavour tag yields
 - $D \rightarrow K_{S,I}^0 \pi^+ \pi^- \text{ vs } D \rightarrow K^- \pi^+ \pi^0$
 - $D \rightarrow K_{S,I}^0 \pi^+ \pi^- \text{ vs } D \rightarrow K^- \pi^+ \pi^- \pi^+$
 - $D o K_S^0 \pi^+ \pi^-$ vs $D o K^- e^+
 u_e$
 - Updated coherence factors from J. High Energ. Phys. 2021, 164
- c_i and s_i: Amplitude-averaged strong phases
 - Updated with no $D \to K^-\pi^+$ inputs

Fit setup and results

- Minimize $\chi^2 = \sum \left(\frac{Y_{\rm obs} Y_{\rm exp}}{\Delta Y_{\rm obs}} \right)^2$
 - $\Delta Y_{\rm obs}$ statistical uncertainty only
- Systematic uncertainties: Run 10⁵ fits with smearing
 - K_i: Independent Gaussian smearing according to uncertainties

Final results

$$r_D^{K\pi}\cos\delta_D^{K\pi} = -0.0547 \pm 0.0084 \pm 0.0049 \pm 0.0010$$

$$r_D^{K\pi} \sin \delta_D^{K\pi} = -0.010 \pm 0.012 \pm 0.007 \pm 0.003$$

Uncertainties: Statistical $\pm K_i$ systematics $\pm c_i/s_i$ systematics

• $r_D^{K\pi} \cos \delta_D^{K\pi} / r_D^{K\pi} \sin \delta_D^{K\pi}$ correlations are small:

$$K^-\pi^+$$
 $K_i^{(\prime)}$ $c_i^{(\prime)}, s_i^{(\prime)}$ 0.035 -0.005 0.021

Bin yield yield vs fit prediction

Bin yield yield vs fit prediction

Separate $K_S^0\pi^+\pi^-$ and $K_L^0\pi^+\pi^-$ fits

Sample	$r_D^{K\pi}\cos\delta_D^{K\pi}$	$r_D^{K\pi} \sin \delta_D^{K\pi}$	χ^2/ndf
$K_S^0\pi^+\pi^-$	-0.0491 ± 0.0134	0.001 ± 0.018	14.4/14
$\mathcal{K}_{L}^{0}\pi^{+}\pi^{-}$	-0.0584 ± 0.0108	-0.019 ± 0.016	20.1/14
$K^0_{S,L}\pi^+\pi^-$	$\text{-0.0547}\pm0.0084$	-0.010 ± 0.012	35.4/30
CP tags	-0.0605 ± 0.0053	-	

Combination of measurements

Inputs to combination:

•
$$r_D^{K\pi} \cos \delta_D^{K\pi} = -0.0588 \pm 0.0052$$

- $K_{5}^{0}, \pi^{+}\pi^{-}$
- CP tags

•
$$r_D^{K\pi} \sin \delta_D^{K\pi} = -0.010 \pm 0.014$$

• $K_{S,I}^0 \pi^+ \pi^-$

Final result:

•
$$\delta_D^{K\pi} = (188.7^{+11.2}_{-13.0})^{\circ}$$

•
$$\delta_D^{K\pi} = (189.8^{+14.3}_{-13.7})^{\circ}$$

from $r_D^{K\pi} \sin \delta_D^{K\pi}$ only

Summary

- ullet Have performed an updated measurement of ${\cal A}_{K\pi}=0.127\pm0.012$
- As part of this analysis, BR of three K_LX modes in a manner independent of flavour-tag input were determined
 - These will be valuable inputs for future strong-phase studies
- Have fitted $K^-\pi^+$ vs $K_{S,L}\pi^+\pi^-$ in bins of phase space
 - Gain sensitivity to both $r_D^{K\pi}\cos\delta_D^{K\pi}$ and $r_D^{K\pi}\sin\delta_D^{K\pi}$
- Final result: $\delta_D^{K\pi} = \left(188.7^{+11.2}_{-13.0}\right)^{\circ}$
- Precision compares favourably with that from ensemble of charm-mixing data, will improve significantly with increase in data set foreseen at $\psi(3770)$
- MEMO in preparation, and will be circulated in coming week

Thank you!