Prez	zime, ime, br. indeksa:	RESENTE			21.02.2021.
Stud	dijski program E1	E2 PR SV		(zaokruži)	KOLOKVIJUM 1
	akom zadatku dato je više odgo tačnih odgovora može biti 0,1				
-	Pri deljenju polinoma $x^4 + 4x$	x^2-6 sa x^2-1 nad \mathbb{R} , l	količnik je <u>X² </u>	+ 5 , a ostatak	je <u>- 1</u> .
5,2,0	Zaokružiti brojeve ispred tvr	đenja koja su tačna u	svakoj Bulovoj a	lgebri $(B, +, \cdot, ', 0, 1)$:	
4.0	1) $a'(a')' = (a' + a)'$	2) $a' \cdot a = 0'$	3) $a \cdot 0' = a'$	4) $1 + a = 1'$	5) $a \cdot b = (a'b')'$
4	Ako je $z\in\mathbb{C}$, upiši nedostaju	ıći element u skupu $z^{!}$	$5 = \frac{-\sqrt{3}-i}{2} \Leftrightarrow z \in$	$\left\{ e^{\frac{5\pi}{30}}, e^{i\frac{7\pi}{30}}, e^{i} \right\}$	$\left\{\frac{19\pi}{30}, e^{-i\frac{29\pi}{30}}, e^{-i\frac{17\pi}{30}}\right\}$
5×1	Neka su f i g funkcije definis $f^{-1} = \begin{pmatrix} a & b & c & d \\ c & b & c & d \end{pmatrix}$, g^{-1}	ane sa $f = \begin{pmatrix} a & b & c & d \\ d & b & a & c \end{pmatrix}$ i $g = \begin{pmatrix} a & b & c & d \\ d & b & a & c \end{pmatrix}$,	$f = \begin{pmatrix} a & b & c & d \\ c & b & d & a \end{pmatrix}.$ $(f \circ g)^{-1} = \begin{pmatrix} a & b & c \\ A & b & c \end{pmatrix}$	Tada je $f \circ g^{-1} \circ f^{-1}$	$g = \begin{pmatrix} a & b & c & d \\ A & b & c & d \end{pmatrix} ,$ $1 = \begin{pmatrix} a & b & c & d \\ A & b & c & d \end{pmatrix} .$
-	Izračunati: 1) $\arg(-13i) =$ 6) $\arg(-1+i) = \frac{3\pi}{4}$	T/2 2) arg(2,3i) -1	2) ong(6) -	1) and (0) t	T = (0:)
	Neka su $f : \mathbb{R} \to \mathbb{R}$ i $g : \mathbb{R} \to \mathbf{b}$) $g^{-1}(x) = \{+\chi^3 = \{\kappa\} \ \mathbf{c}\}$	\mathbb{R} definisane sa $f(x)$ =	$= 1 + x^3 + g(x) = 1$	$\sqrt[3]{x} - 1$. Izračunati:	a) $f^{-1}(x) = \sqrt{y-1} = 4(x)$
	Zaokružiti brojeve ispred bije 3) $f: (-\infty, 3] \to (-1, \infty), f$				
4,2,0,	Zaokružiti broj (ili brojeve) i $(\mathbb{Z}, +)$ 2) (\mathbb{Z}, \cdot)	spred struktura koje s $(\mathbb{R},+)$	su grupe. 4) (\mathbb{R},\cdot)	5) ((-1,1),·)	6) $([0,\infty),\cdot)$
F0	Zaokružiti broj (ili brojeve) i 1) $z\overline{z} = z ^2$ 2) $Re(z) = \frac{1}{2}$ (6) $\overline{z} \in \mathbb{R} \implies z = \overline{z}$ 7 $\overline{z_1 \cdot z_2}$	spred jednakosti koje $ z - z $ 3) $Im(z) = \overline{z} = \overline{z}_1 \cdot \overline{z}_2$ 8 $ z_1 \cdot z_2 = \overline{z}_1 \cdot \overline{z}_2$	su tačne u skupu $= \frac{1}{2}(z + z)$ 4 \overline{z} $= z_1 \cdot z_2 $ 9 $z \neq 0$	kompleksnih brojeva $\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$ 5) $\overline{z}_1 = \overline{z}_1 + \overline{z}_2$ 7	$ z_1 + z_2 = z_1 + z_2 $ $ z_1 + z_2 = 1 \Rightarrow z^{-1} = \overline{z}$
,	Ako su P i Q polinomi, $dg(PQ) \in \{ A \}$ i $dg(P+Q)$	g(Q) = 3 i dg(Q) = 1, tag			
E5310	Ako je $f \in \mathbb{R}[x]$, $f(i) = 0$, tad $x^2 + 1 \mid f(x)$;	da: (1) $x - i f(x)$ (5) $x + e^{i\frac{\pi}{2}} f(x)$	6) $x^2 - 1$	(x+i f(x)) (x+i f(x))	3) $x \mid f(x)$ $x^2 + x\sqrt{2} + 1 \mid f(x);$
E5310	Ako je $f \in \mathbb{R}[x]$, $f(i) = 0$, tad $x^2 + 1 \mid f(x)$; 1) $\arg z > 0 \Leftrightarrow I_m(z) > 0$ 4) $-\frac{\pi}{2} < \arg z < \frac{\pi}{2} \Rightarrow I_m(z)$	2) $\arg z < 0$	$<0 \Leftrightarrow I_m(z) \le 0$ $0 \Leftrightarrow I_m(z) < 0$	(a) $\{z \mid \arg z > 0\}$	$g z < 0 \Rightarrow I_m(z) \le 0$ = $\{z I_m(z) > 0\} \cup \mathbb{R}^-$
	Funkcija $f: (-\pi, \frac{\pi}{4}) \longrightarrow (-1)$ sirjektivna i nije injektivn	, 1] definisana sa $f(x)$	$=\cos x$ je:		
G	Funkcija $f: (\frac{\pi}{2}, \frac{3\pi}{4}) \longrightarrow (0, 1]$ 1) sirjektivna i nije injektivn	definisana sa $f(x) =$ a injektivna i nije s	$\sin x$ je: sirjektivna 3) nije	e injektivna i nije sirj	ektivna 4) bijektivna
(4) ·	Funkcija $f: (\frac{\pi}{6}, \frac{3\pi}{4}) \setminus \{\frac{\pi}{2}\}$ — 1) sirjektivna i nije injektivn	$ ightarrow \mathbb{R}$ definisana sa $f(x)$ a \bigcirc injektivna i nije s	0 = tg x je:sirjektivna 3) nije	e injektivna i nije sirj	ektivna 4) bijektivna
420	Dat je skup kompleksnih bro $\rho e^{i\varphi} \in A$ za svako $\rho > 0$. $\varphi \in$	jeva $A = \{w w \in \mathbb{C} \mid \{O, \pm J\}\}$	$ \wedge w^2 \ge 0 \}. \text{ Odre} $	editi sve vrednosti φ	$\in (-\pi,\pi]$ tako da je
4,2,0	Neka je $\{-2,1\}$ skup svih ko svih mogućnosti za a je $a \in \{$	rena polinoma $f(x) = 0,3$	$= x^3 + ax^2 + bx +$	c nad poljem realnih	n brojeva. Tada skup
8×1	Neka je $A = \{1, 2, 3\}$ i $B = \{1$ funkciju f i $f \nearrow$ označava nec	ppadajuću funkciju f :			
	$\left \{ f f : A \longrightarrow B \} \right = \frac{g}{g}, \left \{ f f : B \longrightarrow A \} \right = \frac{g}{g}, \left \{ f : B \longrightarrow A \} \right = \frac{g}{g}, \left \{ f : B \longrightarrow A \} \right = \frac{g}{g}, \left \{ f : B \longrightarrow A \} \right = \frac{g}{g}, \left \{ f : B \longrightarrow A \} \right = \frac{g}{g}, \left \{ f : B \longrightarrow A \} \right = \frac{g}{g}, \left \{ f : B \longrightarrow A \} \right = \frac{g}{g}, \left \{ f : B \longrightarrow A \} \right $	$ f:A \xrightarrow{1-1} B\} = \underline{\mathcal{O}},$ $ f:A \xrightarrow{1-1} A\} = \underline{\mathcal{G}},$	$\left \{ f f : A \longrightarrow B / A \} \right $ $\left \{ f f : B \longrightarrow A / A \} \right $	$\langle f \nearrow \rangle = 0, \{f f\}$ $\langle f \nearrow \} = 0, \{f f\}$	$ \{B \xrightarrow{na} B\} = \frac{2}{4},$ $ \{A \xrightarrow{na} B\} = \frac{6}{4}.$
5,2,0	Neka su $z_1 = 1 + i$, $z_2 = 2$ i efektivno izračunati $\not \exists z_2 z_3 z_1 = 1$	$z_3 = 1$. Izraziti u zav $= \sqrt[3]{2}$. Da li je o	visnosti od z_1,z_2 vaj ugao pozitivno	i z_3 ugao $\not z_2 z_3 z_1 \Rightarrow$ o orijentisan? \overrightarrow{DA}	\mathcal{Z}_{2} \mathcal{Z}_{3} i zatim ga
4,20	Neka je $g:(-1,0] \to \mathbb{R}, \ g(x)$	$=-\sqrt{1-x^2}$, inverzn	a funkcija je g^{-1}	$(x) = \frac{1}{\sqrt{1-x^2}}, g^{-1}$	$: A \to \mathbb{R}, \ A = \boxed{-1,0}$

\Pr	zime, ime, br. indeksa:	RESENTE			21.02.2021.
Stu	dijski program E1	E2 PR SV	IT IN (zaokru	uži) KOLO	KVIJUM 2
Usv	vakom zadatku dato je više od			ačnih odgovora. U jed	nom zadatku
broj	tačnih odgovora može biti 0,	1,2,3,,svi. U nekim za	dacima ostavljena su pr	azna mesta za upisiva	nie odgovora
1.00	Neka je α ravan čija je jedn	načina $x + y = 1$. Napisa	ti jedan vektor normale	ravni α·	
5×1	• Ako je $\vec{a} = (-1, 1, 1)$ i $\vec{b} = ($	$(1, -1, 1)$, tada je: 1) $ \vec{a} $	$=\sqrt{3}$ 2) $ \vec{b} = \sqrt{3}$ 3) $\vec{a}\vec{b} =$	$=$ 4) $\vec{a} \times \vec{b} =$ 5) $\neq (\vec{a}\vec{b}) = ARCCOS \left(-\frac{3}{2}\right)$
4,2,0	U vektorskom prostoru slob 1) uvek nezavisna, 2) uv	oodnih vektora, trojka ve ek zavisna, 🌖 nekad i	ektora (a, b, c) je: nezavisna a nekad zavisn	na, 4) generatorna, 5) nikad baza.
	U vektorskom prostoru slob 1) uvek nezavisna, ② uve	odnih vektora, trojka ve	ktora $(a, b, \vec{0})$ ie:		
6.3.0	Koje su od sledećih uređeni	h <i>n</i> -torki generatorne u	vektorskom prostoru \mathbb{R}^3	: 1) $((1,0,0),(0,1,0)$	0)
	(1,2,3), (1,0,0), (0,2,0)			(5), (7, 8, 9), (-3, 5, -9)	
0 1	Ispod svake matrice napisat	i broj koji predstavlja n	jen rang.		
	$\begin{bmatrix} 2 & 0 & 0 & 4 \\ 2 & 3 & 1 & 2 \\ 1 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 0 \end{bmatrix}$	1	1	1	1
, ,	$\left[\begin{array}{ccc} -1 & 1 \end{array}\right] \cdot \left[\begin{array}{ccc} 0 & -1 & 2 \\ 1 & 0 & 1 \end{array}\right] =$	0 0 2	1 0 1		2
4,2,0	Neka je $\psi : \mathbb{R}^3 \to V$ definis prostori svih uređenih trojk linearna transformacija	i i svih slobodnih vektor	$x_1\vec{i} + x_2\vec{j} + x_2\vec{j}$, gde su a. Da li je funkcija $\psi : \mathbb{R}$ 3) sirjektivna 4	$\mathbb{R}^3 \to V$,·) vektorski izomorfizam
330	Neka su $\vec{x}, \vec{i}, \vec{j}, \vec{k}$ slobodni ve $(\vec{x}\vec{i}, \vec{x}\vec{j}, \vec{x}\vec{k}) \in \mathbb{R}^3$ $(\vec{x}\vec{i})^2$	$(x+(xj)^2+(xk)^2=xx/4$	$(xi)i + (\vec{x}j)j + (\vec{x}k)k \in$	$\in \mathbb{R}^3$ 5) $(\vec{x}i)i + (\vec{x}j)\vec{j} + (\vec{x}j)\vec{j}$	$-(\vec{x}\vec{k})\vec{k} = \vec{x}\vec{x}$
-	Neka je $(\vec{a}, \vec{b}, \vec{c})$ uređena tro onezavisna $(\vec{a}, \vec{b}, \vec{c})$ trojka $(\vec{a}, \vec{b}, \vec{c})$ nezavisna $(\vec{a}, \vec{b}, \vec{c})$	c) je uvek linearno zavi	sna 3) postoje takvi	l) trojka $(\vec{a}, \vec{b}, \vec{c})$ je u vektori $\vec{a}, \vec{b}, \vec{c}$ da je tr	vek linearno rojka $(\vec{a}, \vec{b}, \vec{c})$
6530	U vektorskom prostoru svih 3) uvek zavisan, 4 nekad n	slobodnih vektora, par v ezavisan a nekad zavisar	rektora (a, b) je: 1) neka	d generatoran, 2) uve	ek nezavisan,
(1)	Izračunati vektor položaja \bar{r}	$_{\scriptscriptstyle T}$ tačke T , projekcije tač	ke $A(1,1,1)$ na rayan α	$x = 2 \vec{r} = /2 4$	1)
2	Izračunati vektor položaja \bar{r} Odrediti vrednosti parameta stem $\begin{array}{cccc} ax & + & y & = & 1 \\ ax & - & ay & = & b \end{array}$	ara $a,b\in\mathbb{R}$ za koje je si	- 2 (a) kontradiktoran: 2 (b) određen:	(a=0 16+0)V(a + (-1,0)	$=-1$ \wedge $(6 \neq 1)$
			2 (a) 2 para neodrede	iii	
	Koji od vektora su karakteri				
. 420	za neki skalar α 6) matric	$t(A) \neq 0 \land det(B) \neq 0$ e A i B imaju iste karak	(3) $Rang(A) = Rang($ teristične korene (7) \exists	$\begin{array}{ll} (B) & \textbf{4)} & A \cdot B = I \\ \exists A^{-1} & \Leftrightarrow & \exists B^{-1} \end{array}$	$5) A = \alpha B$
6530	Za proizvoljne kvadratne reg $A^2(B^2C^3) = (A^2B^2)C^3$	rularne matrice A, B, C r 2) $AB = BA$ 3 ?(eda $n > 1$ važi: $(A^2B^2)^{-1} = B^{-2}A^{-2}$	$\mathbf{4)} \ \det(A^3 B) = (\det(A^3 B) + \det(A^3 B))$	$(A))^3 \cdot det(B)$
(4)	Neka je u k -dimenzionalnom 1) $k < n$ 2 $k \le n$ 3) k	vektorskom prostoru V , = n 4) $k > n$ 5) k	n -torka vektora $(a_1, \dots \ge n - 6)$ ništa od preth	(a_n) generatorna. Ta aodno navedenog	da je:
(5)	Napisati $\vec{x} = (0, 0, 2)$ kao line	earnu kombinaciju vektor	ra $\vec{a} = (1, 0, 1), \ \vec{b} = (0, 1, 0, 1)$	(1) i $\vec{c} = (1, 1, 0)$: $\vec{x} =$	前一元
~	Za prave $m: \frac{x-2}{3} = \frac{y-1}{-2} = \frac{z}{5}$ b) paralelne su i različite (m	i $n: \frac{x-4}{6} = \frac{y+2}{4} = \frac{z-4}{1}$	aži: 🕡 mi	imoilazno su (m ∩ n -	$=\emptyset \wedge m \not\parallel n)$

1. Napisati SDNF, sve proste implikante i sve minimalne DNF Bulove funkcije

	,		•			•										
x	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
y	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
z	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
u	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
f	0	0	1	1	1	0	1	0	0	0	0	1	1	0	1	0

- 2. Naći količnik i ostatak pri delenju polinoma $p(x) = x^5 + 5x^4 + 6x^3 x^2 5x 6$ polinomom $q(x) = x^2 + x + 1$, i faktorisati polinom p nad poljima \mathbb{R} i \mathbb{C} .
- 3. U skupu kompleksnih brojeva rešiti jednačinu $z^3 = i\overline{z}$.
- 4. Prava p je određena tačkom P i vektorom pravca \vec{p} . Tačke $A \notin p$ i $B \notin p$ su takve da $AB \not\perp p$. U funkciji od \vec{r}_A , \vec{r}_B , \vec{r}_P i \vec{p} izraziti vektore položaja tačaka C i D, tako da ABCD bude pravougaonik čiji presek dijagonala AC i BD pripada pravoj p.
- 5. Neka je V vektorski prostor koji je generisan skupom vektora $\{a, b, c, d, e\}$, čije **sve** zavisnosti su date sledećim jednakostima i njihovim linearnim kombinacijama: a + b - 15c + 10d -

- (a) Odrediti dimenziju vektorskog prostora V.
- (b) Naći sve podskupove skupa $\{a, b, c, d, e\}$ koji su baze prostora V.
- 6. Za linearnu transformaciju $f: \mathbb{R}^2 \to \mathbb{R}^3$ je poznato da je f(1,0) = (1,a,0) i f(1,1) = (1,b,b), gde je $a,b \in \mathbb{R}$. (a) Izračunati f(x,y) za $(x,y) \in \mathbb{R}^2$ i napisati matricu M_f linearne transformacije f. (b) Ispitati za koje vrednosti $a, b \in \mathbb{R}$ je linearna transformacija f injektivna, za koje je sirjektivna, i za koje je izomorfizam.

ALGEBRA

21.02.2021.

1. Napisati SDNF, sve proste implikante i sve minimalne DNF Bulove funkcije

		,		•			-										
ſ	\overline{x}	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	y	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	z	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	u	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
ĺ	f																0

- 2. Naći količnik i ostatak pri delenju polinoma $p(x) = x^5 + 5x^4 + 6x^3 x^2 5x 6$ polinomom $q(x) = x^2 + x + 1$, i faktorisati polinom p nad poljima \mathbb{R} i \mathbb{C} .
- 3. U skupu kompleksnih brojeva rešiti jednačinu $z^3 = i\overline{z}$.
- 4. Prava p je određena tačkom P i vektorom pravca \vec{p} . Tačke $A \notin p$ i $B \notin p$ su takve da $AB \not\perp p$. U funkciji od \vec{r}_A , \vec{r}_B , \vec{r}_P i \vec{p} izraziti vektore položaja tačaka C i D, tako da ABCD bude pravougaonik čiji presek dijagonala AC i BD pripada pravoj p.
- 5. Neka je V vektorski prostor koji je generisan skupom vektora $\{a, b, c, d, e\}$, čije **sve** zavisnosti su date sledećim jednakostima i njihovim linearnim kombinacijama: a + b - 15c + 10d -

$$a + b - 13c + 10d - e = 0$$

 $2a + b + 18c - 12d + e = 0$
 $a + 33c - 22d + 2e = 0$

- (a) Odrediti dimenziju vektorskog prostora V.
- (b) Naći sve podskupove skupa $\{a, b, c, d, e\}$ koji su baze prostora V.
- 6. Za linearnu transformaciju $f: \mathbb{R}^2 \to \mathbb{R}^3$ je poznato da je f(1,0) = (1,a,0) i f(1,1) = (1,b,b), gde je $a,b \in \mathbb{R}$. (a) Izračunati f(x,y) za $(x,y) \in \mathbb{R}^2$ i napisati matricu M_f linearne transformacije f. (b) Ispitati za koje vrednosti $a, b \in \mathbb{R}$ je linearna transformacija f injektivna, za koje je sirjektivna, i za koje je izomorfizam.

1. Proste implikante:

$$yu', y'zu, x'y'z, x'zu'.$$

 $MDNF_1 = yu' + y'zu + x'y'z,$
 $MDNF_2 = yu' + y'zu + x'zu'.$

$$\Rightarrow$$
 $p(x) = (x^2 + x + 1)(x^3 + 4x^2 + x - 6).$

Kompleksni koreni polinoma $x^2 + x + 1$ su $x_{1,2} = \frac{-1 \pm \sqrt{1-4}}{2} = \left\{ -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i \right\}$, a kandidati za

racionalne korene polinoma $x^3 + 4x^2 + x - 6$ su $\{\pm 1, \pm 2, \pm 3, \pm 6\}$. Hornerovom šemom proveravamo koji od njih jesu koreni:

$$\Rightarrow p(x) = (x^2 + x + 1)(x - 1)(x + 2)(x + 3) \leftarrow \text{faktorizacija nad } \mathbb{R},$$

$$= \left(x - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right) \left(x - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right) (x - 1)(x + 2)(x + 3) \leftarrow \text{faktorizacija nad } \mathbb{C}.$$

3. Jednačina $z^3=i\overline{z}$ je definisana za svako $z\in\mathbb{C}$, i rešavamo je smenom $z=\rho e^{i\varphi},\,\rho\geq 0,\,\varphi\in[-\pi,\pi).$

$$\begin{split} & \left(z^3 = i\overline{z} \ \wedge \ z = \rho e^{i\varphi}\right) \quad \Leftrightarrow \quad \left(\rho^3 \rho e^{i3\varphi} = e^{i\frac{\pi}{2}} \rho e^{-i\varphi} = \rho e^{i\left(\varphi - \frac{\pi}{2}\right)} \ \wedge \ z = \rho e^{i\varphi}\right) \\ & \Leftrightarrow \quad \left(\left(\rho = 0 \ \vee \ \left(\rho = 1 \ \wedge \ 3\varphi = -\varphi + \frac{\pi}{2} + 2k\pi\right)\right) \ \wedge \ z = \rho e^{i\varphi}\right) \\ & \Leftrightarrow \quad \left(\left(\rho = 0 \ \vee \ \left(\rho = 1 \ \wedge \ \varphi = \frac{\pi}{8} + k\frac{\pi}{2}, \ k \in \{-2, -1, 0, 1\}\right)\right) \ \wedge \ z = \rho e^{i\varphi}\right) \\ & \Leftrightarrow \quad \left(\left(\rho = 0 \ \vee \ \left(\rho = 1 \ \wedge \ \varphi \in \left\{-\frac{7\pi}{8}, -\frac{3\pi}{8}, \frac{\pi}{8}, \frac{5\pi}{8}\right\}\right)\right) \ \wedge \ z = \rho e^{i\varphi}\right) \\ & \Leftrightarrow \quad z \in \left\{0, e^{-\frac{7\pi}{8}i}, e^{-\frac{3\pi}{8}i}, e^{\frac{\pi}{8}i}, e^{\frac{5\pi}{8}i}\right\}. \end{split}$$

4. Neka je $T = AC \cap BD$ (presek dijagonala). Tačka S sa vektorom položaja $\vec{r}_S = \frac{1}{2}(\vec{r}_A + \vec{r}_B)$ je sredina duži AB. Ravan α koja sadrži S i normalna je na \overrightarrow{AB} sadrži i tačku T, te je $T = \alpha \cap p$. Sledi da je $\vec{r}_T = \vec{r}_P + \frac{(\vec{r}_S - \vec{r}_P)\overrightarrow{AB}}{\overrightarrow{AB}\overrightarrow{n}}\vec{p}$. Iz $\overrightarrow{AT} = \overrightarrow{TC}$ i $\overrightarrow{BT} = \overrightarrow{TD}$ dobijamo $\vec{r}_C = 2\vec{r}_T - \vec{r}_A$ i $\vec{r}_D = 2\vec{r}_T - \vec{r}_B$.

Iz trougaonog oblika sistema vidimo da se a i b mogu izraziti preko c, d i e, a da se pri tome ni jedan od c, d i e ne može izraziti preko preostala dva. Sledi da je $\{c, d, e\}$ jedna baza prostora V i da je dim V = 3.

(b) Kako je

sledi da $\{c,d,e\}$, $\{b,d,e\}$, $\{b,c,e\}$, $\{b,c,d\}$, $\{a,d,e\}$, $\{a,c,e\}$, $\{a,c,d\}$, $\{a,b,d\}$ i $\{a,b,c\}$ jesu baze, a $\{a,b,e\}$ nije baza.

6. Iz $(x,y) = \alpha(1,0) + \beta(1,1) = (\alpha + \beta,\beta)$ dobijamo $\beta = y$ i $\alpha = x - y$, te sledi

$$f(x,y) = f((x-y)(1,0) + y(1,1)) = (x-y)f(1,0) + yf(1,1) = (x-y)f(1,0) + yf(1,1) = (x-y)(1,a,0) + y(1,b,b) = (x-y,ax-ay,0) + (y,by,by) = (x,ax+(b-a)y,by),$$

te iz oblika funkcije f vidimo da je ona linearna transformacija sa matricom $M_f = \begin{bmatrix} 1 & 0 \\ a & b-a \\ 0 & b \end{bmatrix}$.

Linearna transformacija f ne može biti sirjektivna ni za koje vrednosti parametara jer joj je dimenzija domena manja od dimenzije kodomena. Injektivna je u slučaju $rang M_f = 2$, a to je očigledno u slučaju kada je $(b \neq 0 \lor (b = 0 \land a \neq b = 0))$.