Math 448 Fall 2011, Computer Algebra

Instructor: Sreekar M. Shastry Solutions to the Final Examination

24-Nov-2011 1430-1730, Ramanujan Hall in Sai Trinity (Happy Thanksgiving!)

- ★ There are 9 problems. Each problem is worth 5 points. The maximum score is 45 points.
- * Clearly state the results you invoke.
- 1. (a) Write down a nondeterministic automaton which accepts the set of strings over $\{a, b, c\}$ such that the final letter has appeared before.
 - (b) Write down a regular expression which accepts the same language.

Solution. (a)

(b) Put $r := \varepsilon + a + b + c$. Then the sought regular expression is

$$r^*ar^*a + r^*br^*b + r^*cr^*c$$
.

2. Show that the set of strings over $\{0,1\}$ of the form ww for some $w \in \{0,1\}^*$ is not a regular language.

Solution. Write L for the set in question and suppose for contradiction that L is regular. Then by the pumping lemma there exists N > 0 such that a given string $\nu = ww$ of length > N may be decomposed as $\nu = xyz$ with $xy^iz \in L$ for all $i \geqslant 0$ and $y \neq \epsilon$ and $|xy| \leqslant N$. (This is the pumping lemma as stated in Hopcroft et al.) Let

$$w_0 = 1 \underbrace{00 \cdots 0}_{N}$$

be a 1 followed by N zeros. Put $v_0 := w_0w_0$. Then $|v_0| = 2N+2 > N$ and the pumping lemma applies. For a word $u \in \{0,1\}^*$ write $O(u) := \#\{1\text{'s in }u\}$. Since $|xy| \leqslant N < |v_0|/2 = N+1$ it follows that y can contain at most one of the 1's in v_0 . If O(y) = 0 then xy^iz has the number of zeros before the middle 1 not equal to the number of zeros after the middle one, and thus it cannot be of the form ww i.e. cannot be in L. If O(y) = 1 then for odd i, xy^iz has an odd number of ones and again it cannot be of the form ww.

3. Let us recall some definitions. Let X be a set and \mathcal{R} be a subset of $X^* \times X^*$. We define $\text{Mon}\langle X|\mathcal{R}\rangle$ to be the quotient of X^* modulo the congruence generated by \mathcal{R} . Let $X^{\pm} := X \times \{1, -1\}$. We write x or x^1 for $(x, 1) \in X^{\pm}$ and x^{-1} for $(x, -1) \in X^{\pm}$. Put

$$\mathfrak{F}_X := \{(x^\alpha x^{-\alpha}, \epsilon) \in (X^\pm)^* \times (X^\pm)^* : x \in X, \alpha \in \{1, -1\}\}$$

and

$$\operatorname{Grp}\langle X|S\rangle := \operatorname{Mon}\langle X^{\pm}|\mathcal{F}_X \cup S\rangle.$$

We also use the notation $Grp\langle x_1,\ldots,x_s|U_1=V_1,\ldots,U_t=V_t\rangle$ to mean $Grp\langle X|\mathbb{S}\rangle$ where $X=\{x_1,\ldots,x_s\}, \mathbb{S}=\{(U_i,V_i)\}_{i=1}^t.$

Let \mathbb{Z} be the additive group of integers and let \mathbb{Z}/n be the quotient by the subgroup $n\mathbb{Z}$. Show that $Grp\langle x|x^n=1\rangle$ is isomorphic to \mathbb{Z}/n .

Solution. We define a map $\mathbb{Z}\simeq\{x,x^{-1}\}^*/\mathcal{F}_{\{x,x^{-1}\}}\to\mathbb{Z}/n$ by sending $\varepsilon\mapsto 0,x\mapsto 1,x^{-1}\mapsto -1$. Here, the isomorphism $\mathbb{Z}\simeq\{x,x^{-1}\}^*/\mathcal{F}_{\{x,x^{-1}\}}$ is just the fact that $\{x,x^{-1}\}^*/\mathcal{F}_{\{x,x^{-1}\}}$ is the free group on one generator, i.e. \mathbb{Z} .

We now invoke the following proposition from the course notes.

Proposition 0.1. Let M be a monoid and Q be the quotient of M mod the congruence \sim generated by $S \subset M \times M$. Let $f: M \to N$ be a monoid homomorphism such that f(s) = f(t) for all $(s,t) \in S$. Then there is a unique $g: Q \to N$ such that

commutes.

Thus we have a unique homomorphism of monoids $Grp\langle x|x^n=1\rangle\to \mathbb{Z}/n$. Now we can write down a map $\mathbb{Z}\simeq\{u,u^{-1}\}^*/\mathfrak{F}_{\{u,u^{-1}\}}\to Grp\langle x|x^n=1\rangle$ by $u\mapsto x$. Again we use the above proposition to get the monoid homomorphism $\mathbb{Z}/n\to Grp\langle x|x^n=1\rangle$. One computes directly that the maps are inverse (at this point, we have reduced to the intuitive proof from a first course in group theory).

4. Let X be a set with at least two elements. Show that X^* has an infinite strictly increasing sequence of ideals.

Solution. Recall that an ideal in a monoid M is by definition a subset $I \subset M$ such that $IM \subset I$ and $MI \subset I$. Let $a \in X$ are distinct elements. For $n \ge 2$ put

$$I_n := \{ w \in X^* : w(\mathfrak{i}) = w(\mathfrak{j}) = \mathfrak{a} \text{ for some } 1 \leqslant \mathfrak{i} < \mathfrak{j} \leqslant \mathfrak{n} \}.$$

One checks that the I_n are ideals and that we have

$$I_2 \subsetneq I_3 \subsetneq \cdots$$

as required. (Note that if X had only one element then all of the I_n would coincide.)

5. Draw a van Kampen diagram which shows that the group

$$\langle a, b | abab^2 = baba^2 = e \rangle$$

is cyclic.

Solution. In the diagram on the left, the pentagon is $abab^2 = e$, the outer boundary is $baba^2 = e$ and the remaining bounded region is $abb^{-1}b^{-1} = ab^{-1} = e$ so that a = b and the group is cyclic. The diagram on the right proceeds likewise.

- 6. Let < be a reduction ordering on X^* and let $\mathfrak R$ be a confluent rewriting system with respect to it. For a word $U \in X^*$ write $U^\#$ for the reverse of U. Define $<^\#$ by $U <^\# V$ iff $U^\# < V^\#$.
 - (a) Show that <# is a reduction ordering.
 - (b) Show that $\{(P^{\#}, Q^{\#}) : (P, Q) \in \mathcal{R}\}$ is a confluent rewriting system with respect to $<^{\#}$.

Solution. (a) Given U, V we must show that $U <^{\#} V \Rightarrow AUB <^{\#} AVB$ for all A, B. The latter holds iff $(AUB)^{\#} = B^{\#}U^{\#}A^{\#} < (AVB)^{\#} = B^{\#}V^{\#}A^{\#}$. Now this last condition does hold since < is translation invariant and $U^{\#} < V^{\#}$. Thus $<^{\#}$ is translation invariant.

To see that it is a well ordering suppose not; then there is an infinite strictly decreasing sequence $U_1^{\#} > U_2^{\#} > \cdots$ contradicting the fact that < is a well ordering.

- (b) Unwind the definitions. (Note: the students were required to write out a detailed proof to receive full credit.)
- 7. Let $X := \{x, y, z\}$ and consider the finite rewriting system

$$\mathcal{R} := \{(x^2, \varepsilon), (yz, \varepsilon), (zy, \varepsilon)\}.$$

Show that \Re is confluent.

Solution.

Let us first recall the idea behind the algorithm CONFLUENT.

We have the following proposition from the course notes:

Proposition 0.2. Let W be a word such that local confluence fails at W but does not fail at any proper subword of W. Then one of the following holds:

- (1) W appears as the left side of two distinct elements of \Re .
- (2) W is a left side in \mathbb{R} which contains another left side as a proper subword.
- (3) W = ABC where A, B, C are nonempty words such that AB and BC are left sides in \Re .

Definition 0.3. If W is as in the proposition, then we call W an *overlap of left sides* in \mathbb{R} . If the third condition holds then we say that W is a *proper overlap*.

Since \Re is finite, the set $\mathscr W$ of words which are overlaps of left sides in \Re is also finite. For each $W \in \mathscr W$, write $\mathscr U$ for the finite set of words U such that $W \stackrel{\Re}{\to} U$ is a derivation consisting of a single step. For each $U \in \mathscr W$ we put $V := REWRITE(X, \Re, U)$. As U varies, if more than one V is obtained, then \Re is not confluent. The reason is that in this case we have found two words which are irreducible with respect to \Re and define the same element of M.

On the other hand, if only one value of V is seen as U varies in \mathcal{U} , then local confluence does not fail at W.

Performing this test for all $W \in \mathcal{W}$, we have an algorithm Confluent for determining whether or not \mathcal{R} is confluent.

Now, to solve the problem at hand, we must first determine \mathcal{W} . Cases (1) and (2) of the proposition do not arise. For case (3): corresponding to (x^2, ε) we have A = x, B = x, C = x in the notation of the proposition, so that W = ABC with $AB = BC = x^2$ a left side. If we take A = y, B = z, C = y then we have AB = yz, BC = zy are left sides so that W = ABC = yzy is in \mathcal{W} . Similarly if we take A = z, B = y, C = z then AB = zy, BC = yz are left sides and it follows that $W = zyz \in \mathcal{W}$. This exhausts all possible elements of \mathcal{W} since we have checked all left sides for candidates for AB, BC and A, B, C.

Now, $\mathcal{W} = \{x^3, yzy, zyz\}$. Fix $W \in \mathcal{W}$. We must find the set \mathcal{U}_W of words that can be obtained in one step from W. Inspecting \mathcal{R} we see that

$$\mathscr{U}_{\mathsf{x}^3} = \{\mathsf{x}\}, \ \mathscr{U}_{\mathsf{y}\,\mathsf{z}\,\mathsf{y}} = \{\mathsf{y}\}, \ \mathscr{U}_{\mathsf{z}\,\mathsf{y}\,\mathsf{z}} = \{\mathsf{z}\}.$$

Finally, for each $W \in \mathcal{W}$ we see that the set

$$\{Rewrite(X, \mathcal{R}, U) : U \in \mathcal{U}_{W}\}\$$

is a singleton, a fact which verifies confluence.

8. Let us recall the Knuth-Bendix algorithm and the supporting subroutines, as well as the Euclidean algorithm.

- 1: **procedure** RewriteLeft(X, \mathcal{R} , U)
- 2: Input: X = generators, $\Re = \text{rewriting system}$, U = a word;
- 3: Output: the rewritten form of U
- 4: $V := \varepsilon, W := U;$
- 5: **while** $W \neq \varepsilon$ **do**
- 6: Let $W = xW_1$ where $x \in X$; $W := W_1, V := Vx$;

```
for i = 1, ..., n do
 7:
               if P<sub>i</sub> is a suffix of V then
 8:
                    V := RP_i, W := Q_iW, V := R;
 9:
                   break
10:
               end if
11:
12:
            end for
13:
        end while
14: end procedure
 1: procedure UPDATE(S, U, V)
        Input: S = \{(P_1, Q_1), (P_2, Q_2), \dots, (P_n, Q_n)\} a finite rewriting system; U, V = words;
        Output: none; the state of S is modified in place;
 3:
 4:
        A := REWRITELEFT(U);
 5:
        B := REWRITELEFT(V);
        if A \neq B then
 6:
           \textbf{if} \ A < B \ \textbf{then}
 7:
               swap A and B;
 8:
 9.
            end if
            append (A, B) to S;
10:
        end if
11:
12: end procedure
 1: procedure Overlap(S, i, j)
        Input: S = \{(P_1, Q_1), (P_2, Q_2), \dots, (P_n, Q_n)\}; i, j = positive integers \leq |S|
        Output: none; the state of S is modified in place;
 3:
 4:
        for k := 1, ..., |P_i| do
            Let P_i = AB where |B| = k;
 5:
            Let U be the longest word which is a prefix of both B and P<sub>i</sub>;
 6:
            Let B = UD and P_i = UE;
 7:
            if D = \varepsilon or E = \varepsilon then
 8:
 9:
               UPDATE(S, AQ_iD, Q_iE);
            end if
10:
        end for
12: end procedure
 1: procedure KnuthBendix(X, <, \Re)
        Input:
 2:
        X = a finite set, < = reduction ordering on X^*, \Re \subset X^* \times X^* a finite subset;
 3:
 4:
        Output: T = RC(X, <, \mathcal{R}) if it is finite
 5:
        S := \{\}; i := 1;
 6:
 7:
        for (u, V) \in \mathbb{R} do
 8:
            UPDATE(S, U, V);
 9:
        end for
        while i \le n do
10:
            for j := 1, \ldots, i do
11:
               OVERLAP(S, i, j);
12:
               if j < i then
13:
14:
                    OVERLAP(S, j, i);
               end if
15:
            end for
16:
           i := i + 1;
17:
18:
        end while
        Let \mathcal{P} := \{P_i : \text{every proper subword of } P_i \text{ is irreducible wrt } S\};
19:
20:
        \mathfrak{T} := \{\};
        for P\in \mathfrak{P} do
21:
            Q := REWRITELEFT(X, \mathcal{R}, P);
```

```
23: append (P, Q) to T;
24: end for
25: end procedure
```

The following is the Euclidean algorithm for positive integers a, b:

```
1: procedure GCD(a,b)
        if a = 0 then
 3:
           return b
        end if
 4.
        while b \neq 0 do
 5:
           if a > b then
 6:
                a := a - b
 7:
            else
 8:
               b := b - a
9:
            end if
10:
11:
        end while
        return a
12:
13: end procedure
  Let X = \{x\} and let
                                             \mathcal{R} := \{x^m \to \varepsilon, x^n \to \varepsilon\}
```

where $\mathfrak{m},\mathfrak{n}\in\mathbb{Z}_{>0}$.

Show that the Knuth-Bendix algorithm returns a confluent rewriting system consisting of the single rule

$$x^{\text{gcd}(m,n)} \to \epsilon$$
.

In writing your proof, refer to the line numbers given in the above code. In the course of your proof, compare the execution of $gcd(\mathfrak{m},\mathfrak{n})$ using the Euclidean algorithm with the execution of the Knuth-Bendix algorithm.

Solution. Suppose without loss that $\mathfrak{m}>\mathfrak{n}$. Line 7-8 of KnuthBendix starts us off with $\mathfrak{S}=\{(x^{\mathfrak{m}},\epsilon),(x^{\mathfrak{n}},\epsilon)\}$ and then line 12 of KnuthBendix gives rise to an Update call in line 9 of Overlap. This appends $(x^{\mathfrak{m}-\mathfrak{n}},\epsilon)$ to \mathfrak{S} , corresponding to line 7 of the gcd algorithm. The successive calls to Overlap lines 12 and 14 (and the resulting calls to Update in line 9 of Overlap) of KnuthBendix correspond to lines 7 and 9 of gcd.

A much more in depth discussion of the similarities between the Knuth-Bendix algorithm and the Gröbner-Buchberger algorithm (of which the gcd is the basic example) may be found in the paper "Algebraic Simplification" by Buchberger and Loos (1982).

9. Given $w \in \{0,1\}^*$ we write $w = a_n a_{n-1} \cdots a_0$ with $a_i \in \{0,1\}$ for all i. We define $eval(w) := \sum_{i=0}^n a_i 2^i$. Thus $eval: \{0,1\}^* \to \mathbb{Z}_{\geqslant 0}$ is a well defined function. In other words, using the eval function, we regard w as representing a nonnegative integer written in base 2 in the usual way. Show that the language

```
\mathcal{L} := \{ w \in \{0,1\}^* : w \text{ starts with a 1 and eval}(w) \text{ is a prime number} \}
```

is not regular.

Solution. This was a challenge problem. None of the students could solve it on the exam. The the solution is on page 57 of Analytic Combinatorics by Flajolet and Sedgewick.