Power Supply Output Cables

Brown/Blue	Ground
Green/ Yellow	12VDC (25VDC?)

Velocity Calculation

$$v_{pps} = rac{16 \cdot 10^6 \cdot v_{int}}{2^{pulse_div} \cdot 2048 \cdot 32} \ ext{(from Trinamics Docs)} \ v_{int} \equiv ext{velocity in TMCL code (-2047 to 2047)} \ v_{pps} \equiv ext{Microsteps per second}$$

We should choose pulse_div such that a max value of v_{int} (2047) provides the motor's max output speed desired (in microsteps per second)

$$v_{pps} = \frac{v_{rpm} n f_{\mu}}{60}$$

 $v_{rpm} \equiv$ revolutions per minute (1340 = max needed. 2500 = max capable by motor) $n \equiv$ full steps per revolution (200 for our motor) f_{μ} microsteps per full step ($f = 2^i \mid i \in \mathbb{Z}, 0 \leq i \leq 8$)

Note:pulse_div must be an integer between 0 and 8, inclusive.

Using MATLAB (getTMCLValues.m):

$$f = 64$$

$$pulseDiv = 0$$

$$v_{rpm,max} = 2342.6056RPM$$

Required current with both motors and driver: 8.7+- 0.5 Amps