250.14

THOMAS BREYDO

Problem. Suppose V is an inner product space and $N \in \mathcal{L}(V)$ is nilpotent. Prove that there exists an orthonormal basis of V with respect to which N has an upper-triangular matrix.

By 8.19 Matrix of a nilpotent operator, there exists a basis v_1, \ldots, v_n of V such that

$$\mathcal{M}(N,(v_1,\ldots,v_n)) = \begin{pmatrix} 0 & & * \\ & \ddots & \\ 0 & & 0 \end{pmatrix}.$$

If we apply the Gram—Schmidt procedure to v_1, \ldots, v_n , we will obtain a orthonormal basis e_1, \ldots, e_n of V such that $\mathcal{M}(N, (e_1, \ldots, e_n))$ is still upper-triangular.

Thus, there exists an orthonormal basis of V with respect to which N has an upper-triangular matrix.

Note. You can view the source code for this solution here.