- 1. Demonstrate whether each of these statements is true or false for polynomials over a field.
 - (a) The product of monic polynomials is monic. (5%)
 - (b) The product of polynomials of degrees m and n has degree m + n. (5%)
 - (c) The sum of polynomials of degrees m and n has degree $\max\{m, n\}$. (5%)

(a) let
$$f_1(x) = 1 \cdot x^n + \sum_{k=1}^n a_k x^{n-k}$$

 $f_2(x) = 1 \cdot x^m + \sum_{k=1}^n b_k x^{m-k}$ $f_1(x) \cdot f_2(x) = 1 \cdot x^{n+m} + \cdots$

已天D全員導係牧=|且 |⁻¹=| in any field, → True

0716074

验有主 ^^

(c) let m+n and $f_1(x) = a_0 x^m + a_1 x^{m-1} + \cdots + a_m = f_2(x)$ over $(x + e_1)$ $f_1(x) + f_2(x) = \sum (a_0 x^m + a_1 x^m + e_1) + a_m = 0$ over $(x + e_2)$ $f_1(x) + f_2(x) = \sum (a_0 x^m + a_1 x^m + e_1) + a_m = 0$ over $(x + e_2)$ $f_1(x) + f_2(x) = 0 + max \{m, n\} \Rightarrow False$

2. Determine which of the following polynomials are reducible over GF(2).

```
(a) x^2 + 1. (5%)
```

(b)
$$x^2 + x + 1$$
. (5%)

(c)
$$x^4 + x + 1$$
. (5%)

(a) let
$$f(x) = x^2+1$$

 $f(0) = 0+1 = 1$
 $f(1) = 1+1 = x = 0$ over $(F(2))$
 $(x^2+1) = (x+1)(x+1)$ over $(F(2))$ is reducible

(b)
$$|et f(x) = x^2 + x + |$$

 $f(0) = 0 + 0 + |ex f(0)| = |ex f(0$

(C) let
$$f(x) = x^4 + x + 1$$

 $f(0) = 0 + 0 + 1 = 1$
 $f(1) = 1 + 1 + 1 = 3 = 1$ over $(x + 1) = 1$ i irreductible

- 3. Determine the gcd of the following pairs of polynomials.
 - (a) $(x^3 + x + 1)$ and $(x^2 + 1)$ over GF(3). (5%)
 - (b) $(x^3 2x + 1)$ and $(x^2 x 2)$ over GF(5). (5%)

(a)
$$\frac{\chi}{\chi^3+\chi+1}$$
 $\frac{\chi^3+\chi+1}{\chi^3+\chi}$ $\frac{\chi^3+\chi}{\chi^2+1}$ $\frac{\chi^2+1}{\chi^2+1}$ $\frac{\chi^2+1}{\chi^2-\chi-2}$ $\frac{\chi^3-\chi^2-\chi+1}{\chi^3-\chi^2-\chi}$ $\frac{\chi^2-\chi-2}{\chi^2+3\chi}$ $\frac{\chi^2+1}{\chi^2-\chi-2}$ $\frac{\chi^2+1}{\chi^2-\chi-2}$

4. Determine the multiplicative inverse of $x^2 + 1$ in $GF(2^3)$ with $m(x) = x^3 + x - 1$. (10%)

$$(F(2^3) = \mathbb{Z}[2[X])/(x^3+x-1) = \frac{1}{2} \circ (1, x, x+1, x^2, x^2+x) x^2+1 \cdot x^2+1 \cdot y^2+1 \cdot y$$

5. Develop a set of tables similar to Table 5.3 for GF(4) with $m(x) = x^2 + x + 1$. (10%)

$$F(x^{2}) = \frac{2Z_{2}[X]}{2X_{1}^{2} \times X_{1}^{2}} = \frac{1}{2} \circ_{1} \cdot_{1} \cdot_{1} \cdot_{1} \times \frac{1}{2} \times$$