Đồ họa máy tính

Tuần 9: Phép biến đổi hình học hai chiều

Nội dung

- 9.1. Phép biến đổi affine 2D
- 9.2. Phép biến đổi hình học cơ sở
- 9.3. Ứng dụng của phép biến đổi hình học

9.1. Phép biến đổi affine 2D

9.1.1. Định nghĩa phép biến đổi affine 2D

Phép biến đổi affine 2D là phép biến đổi có dạng

$$w: \mathbb{R}^2 \to \mathbb{R}^2$$
,

$$w(x, y) = (ax + by + e, cx + dy + f),$$

 $a,b,c,d,e \in R$.

$$w(X) = w \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix} = AX + T$$

PGS.TS. Lý Quốc Ngọc

9.1. Phép biến đổi affine 2D

9.1.2. Tính chất

- Biến các đường thẳng song song thành các đường thẳng song song.
- Biến các điểm hữu hạn thành các điểm hữu hạn.
- Phép biến đổi affine được tạo sinh từ các phép biến đổi hình học cơ sở (**phép biến đổi tuyến tính** và **phép tịnh tiến:** phép tịnh tiến, quay, co giãn, đối xứng, trượt).

9.2.1. Phép tịnh tiến.

$$P(x, y) \rightarrow P(x', y')$$

$$P'=T(t_x,t_y).P$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

9.2.2. Phép quay.

$$P(x, y) \rightarrow P(x', y')$$

 $P' = R(\theta) \cdot P$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

9.2.3. Phép co giãn.

Tâm co O(o,o,o)

$$P(x, y) \rightarrow P(x', y')$$

$$P'=S(O,s_x,s_y).P$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

9.2.4. Phép đối xứng.

Trục đối xứng: Ox

$$P(x, y) \rightarrow P(x', y')$$

$$P' = MIR(Ox) \cdot P$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

9.2.4. Phép đối xứng.

Trục đối xứng: Oy

$$P(x, y) \rightarrow P(x', y')$$

$$P' = MIR(Oy) \cdot P$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

9.2.4. Phép đối xứng.

Tâm đối xứng: O(0,0)

$$P(x, y) \rightarrow P(x', y')$$

$$P' = MIR(O) \cdot P$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

9.2.5. Phép trượt.

Trượt theo hướng x đối với trục Ox

$$P(x, y) \rightarrow P(x', y')$$

$$P' = SHX(Ox) \cdot P$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & shx & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

9.2.5. Phép trượt.

Trượt theo hướng y đối với trục Oy

$$P(x, y) \rightarrow P'(x', y')$$

$$P' = SHY(Oy) \cdot P$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ shy & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

9.3. Ứng dụng phép biến đổi hình học

9.3.1. Biến đổi tọa độ thế giới thực vào tọa độ màn hình.

Giả sử vùng **window** được xác định trong hệ tọa độ thế giới thực bởi 2 điểm trên đường chéo của window là: wmin và wmax.

Vùng viewport được xác định trong hệ tọa độ màn hình bởi 2 điểm trên đường chéo của viewport là: vmin và vmax.

👊 9.3. Ứng dụng phép biến đổi hình học

9.3.1. Biến đổi tọa độ thế giới thực vào tọa độ màn hình.

$$P(x, y) \rightarrow P'(x', y')$$

$$P' = WTV. P$$

$$WTV = S(v \min, s_x, s_y) \cdot T(t_x, t_y)$$

$$s_x = \frac{v \max .x - v \min .x}{w \max .x - w \min .x}, \ s_y = \frac{v \max .y - v \min .y}{w \max .y - w \min .y},$$

$$t_x = v \min .x - w \min .x$$
, $t_y = v \min .y - w \min .y$

👖 🚾 9.3. Ứng dụng phép biến đổi hình học

9.3.1. Biến đổi tọa độ thế giới thực vào tọa độ màn hình.

$$WTV = \begin{pmatrix} s_x & 0 & v \min.x - s_x.v \min.x \\ 0 & s_y & v \min.y - s_y.v \min.y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & v \min.x - w \min.x \\ 0 & 1 & v \min.y - w \min.y \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} s_x & 0 & v\min.x - s_x.w\min.x \\ 0 & s_y & v\min.y - s_y.w\min.y \\ 0 & 0 & 1 \end{pmatrix}$$

👊 9.3. Ứng dụng phép biến đổi hình học

9.3.2. Biến đổi tọa độ màn hình vào tọa độ thế giới thực.

$$P'(x', y') \rightarrow P(x, y)$$

$$P = VTW.P'$$

$$VTW = S(w \min, s_x, s_y) . T(t_x, t_y)$$

$$s_x = \frac{w \max .x - w \min .x}{v \max .x - v \min .x}, \ s_y = \frac{w \max .y - w \min .y}{v \max .y - v \min .y},$$

$$t_x = w \min .x - v \min .x$$
, $t_y = w \min .y - v \min .y$

👖 🚾 9.3. Ứng dụng phép biến đổi hình học

9.3.2. Biến đổi tọa độ màn hình vào tọa độ thế giới thực.

$$VTW = \begin{pmatrix} s_x & 0 & wmin.x - s_x.wmin.x \\ 0 & s_y & wmin.y - s_y.wmin.y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & wmin.x - vmin.x \\ 0 & 1 & wmin.y - vmin.y \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} s_x & 0 & wmin.x - s_x.vmin.x \\ 0 & s_y & wmin.y - s_y.vmin.y \\ 0 & 0 & 1 \end{pmatrix}$$