Chapitre 3 Complexité.

Table des matières

1	Définitions.	2				
2	Ordre de grandeur					
3	Type de complexité :	3				
1	Estimation du temps de calcul en fonction de la complexité :					
5	6 Complément sur les suites récurrentes :					
	5.1 Récurrence linéaire d'ordre 1	4				
	5.2 Diviser pour régner	5				

1 Définitions.

Soit \mathcal{A} un algorithme et d une donnée d'entrée de \mathcal{A} . On appelle complexité de \mathcal{A} pour d (notée $C_{\mathcal{A}}(d)$) le nombre de fois que l'opération élémentaire est exécutée lors de l'exécution de \mathcal{A} sur d.

Soit \mathcal{A} un algorithme, et D(n) l'ensemble de toutes les données d'entrée possibles de \mathcal{A} de tailles n.

Définition 1:

Complexité dans le pire des cas :

On appelle complexité de \mathcal{A} dans le pire des cas (notée $C_{\mathcal{A},\text{pire}}(n)$ pour une entrée de taille n) la complexité de cet algorithme dans le cas le plus défavorable :

$$C_{\mathcal{A},\text{pire}}(n) = \max_{d \in D(n)} (C_{\mathcal{A}}(d))$$

Définition 2 :

Complexité dans le meilleur des cas :

On appelle complexité de \mathcal{A} dans le meilleur des cas (notée $C_{\mathcal{A},\text{meilleur}}(n)$ pour une entrée de taille n) la complexité de cet algorithme dans le cas le plus favorable :

$$C_{\mathcal{A}, \text{meilleur}}(n) = \min_{d \in D(n)} (C_{\mathcal{A}}(d))$$

Définition 3:

Complexité en moyenne :

On appelle complexité de \mathcal{A} en moyenne (notée $C_{\mathcal{A},\text{moyen}}(n)$ pour une entrée de taille n) la complexité de cet algorithme dans le cas moyen :

$$C_{\mathcal{A}, \text{moyen}}(n) = \frac{\sum_{d \in D(n)} (C_{\mathcal{A}}(d))}{\operatorname{card}(D(n))}$$

2 Ordre de grandeur

1. Domination asymptotique : Le grand O :

<u>Définition 4 :</u>

Soit deux fonctions $f: \mathbb{N}^* \to \mathbb{R}$ et $g: \mathbb{N}^* \to \mathbb{R}$.

On dira que f est dominée asymptotiquement par g si :

$$\exists c \in \mathbb{R}_+^*$$
, $\exists n_0 \in \mathbb{N}^*$ tels que $\forall n \in \mathbb{N}^*$, $n > n_0 \Rightarrow f(n) \leqslant c.g(n)$

On note f = O(g).

2. Ordre de grandeur : Le grand thêta :

Définition 5: Soit deux fonctions $f: \mathbb{N}^* \to \mathbb{R}$ et $g: \mathbb{N}^* \to \mathbb{R}$. On dira que f et g ont même ordre de grandeur asymptotique si : $\exists c \in \mathbb{R}_+^* \ , \ \exists d \in \mathbb{R}_+^* \ , \ \exists n_0 \in \mathbb{N}^* \ \text{tels que } \forall n \in \mathbb{N}^* \ , \ n > n_0 \Rightarrow d.g(n) \leqslant f(n) \leqslant c.g(n)$

3. Propriétés :

Propriété 1:
Pour tous
$$q > 1$$
, $\alpha > 0$ et $\beta > 0$:
$$\sum_{k=0}^{n} q^{k} = \Theta(q^{n+1}) \quad , \sum_{k=0}^{n} k^{\alpha} = \Theta(n^{\alpha+1}) \quad , \sum_{k=0}^{n} k^{\alpha} (\ln(k)^{\beta} = \Theta(n^{\alpha+1}(\ln n)^{\beta}))$$

3 Type de complexité:

On note $f = \Theta(g)$.

O(1)	complexité constante (indépendante de la taille de la donnée)
$O(\log(n))$	complexité logarithmique
O(n)	complexité linéaire
$O(n\log(n))$	complexité quasi-linéaire
$O(n^2)$	complexité quadratique
$O(n^p)$	complexité polynomiale
$(O(2^n))$	complexité exponentielle
(n!)	complexité factorielle

4 Estimation du temps de calcul en fonction de la complexité :

Taille $n / C(n)$	$\log(n)$	n	$n\log(n)$	n^2	n^3	2^n
10^{2}	$6,64 \ ns$	$0,1~\mu s$	$0,66~\mu s$	10 μs	1 ms	4.10^{13} années
10^{3}	$9,96 \ ns$	$1~\mu s$	$9,96~\mu s$	1 s	16,6 min	$3, 4.10^{284}$ années

Complément sur les suites récurrentes : 5

Récurrence linéaire d'ordre 1 5.1

Soit une suite (u_n) vérifiant la relation :

$$\begin{cases} u_0 \\ u_n = b(n).u_{n-1} + c(n) \end{cases}$$

Complexité

avec b et c des fonctions et u_0 une constante.

Méthode des facteurs sommant : On pose :
$$\begin{cases} f(0) &= 1 \\ f(n) &= \frac{1}{\frac{1}{n}b(i)} \end{cases}$$
, on obtient $\forall n > 0, f(n)u_n = f(n-1)u_{n-1} + f(n)c(n)$.

On obtient:

$$\forall n > 0 , u_n = \frac{1}{f(n)} \left(u_0 + \sum_{i=1}^n f(i)c(i) \right)$$

Exemple 1:

suite arithmético-géométrique:

Soit une suite (u_n) vérifiant la relation :

$$\begin{cases} u_0 \\ u_n = au_{n-1} + b \end{cases}$$

avec a , b et u_0 trois constantes réelles.

Pour a > 1, on trouve $u_n = O(a^n)$

Exemple 2:

Soit une suite (u_n) vérifiant la relation :

$$\begin{cases} u_0 \\ u_n = u_{n-1} + an + b \end{cases}$$

avec a , b et u_0 trois constantes réelles. On trouve $u_n = \Theta(n^2)$

Exemple 3:

Soit une suite (u_n) vérifiant la relation :

$$\begin{cases} u_0 \\ u_n = u_{n-1} + f(n) \end{cases}$$

avec $f(n) = O(n^{\alpha})$. On trouve $u_n = (n^{\alpha+1})$

Propriété 2 :

Si
$$f = O(g)$$
 alors $\sum_{k=1}^{n} f(k) = O\left(\sum_{k=1}^{n} g(k)\right)$.

5.2Diviser pour régner

Soit une suite (u_n) vérifiant la relation :

$$\left\{\begin{array}{lcl} u_0 \\ u_n &=& au_{\lfloor \frac{n}{2} \rfloor} + bu_{\lfloor \frac{n}{2} \rfloor} + c(n) \end{array}\right.$$

avec u_0, a, b constantes entières non nulles , c une fonction croissante.

Propriété 3 :

On pose $\alpha = \log(a+b)$:

- Si $c(n) = \Theta(n^{\beta})$, avec $\beta < \alpha$, alors $u_n = \Theta(n^{\alpha})$. Si $c(n) = \Theta(n^{\alpha})$, alors $u_n = \Theta(n^{\alpha} \log(n))$.
- Si $c(n) = \Theta(n^{\beta})$, avec $\beta > \alpha$, alors $u_n = \Theta(n^{\beta})$.