P3

a) $U_{t|t} = U_{t-1|t-1} + Cos (y_t - U_{t-1|t-1})$ $= Cos y_t + (1 - Cos) U_{t-1|t-1}$ $= Cos y_t + (1 - Cos) (Cos y_{t-1} + (1 - Cos) U_{t-1|t-1})$ Suppose $Cos = 2 - 1 - Cos = \beta$ $= 2y_t + \beta (2y_{t-1} + \beta U_{t-2|t-2})$ Fewerskly $= 2y_t + \beta (2y_{t-1} + \beta U_{t-2|t-2})$

recursively = $2(y_{+} + \beta(2y_{+} - 1 + \beta(2y_{+} - 1 + \beta(2y_{+} - 2)))$ = $2(y_{+} + \beta(2y_{+} - 1 + \beta(2y_{+} - 2))$ = $2(y_{+} + \beta(2y_{+} - 2))$ = $2(\beta(2y_{+} - 2y_{+} - 2))$ = $2(\beta(2y_{+} - 2y_{+} - 2))$ = $2(\beta(2y_{+} - 2y_{+} - 2y_{+}))$

b) $\vec{y} = (y_1...,y_T)$ H= $\{y_{t-1},...,y_1\}$ Otto = $E[x_t|y_t,H_t]$ "Otto is weighted linear combination of y_t . y_t in a forward director, for backward, Otto shall also the linear combination of y_t , $y_{t+1}...,y_t$ with a reverse order. (symmetric)

Since only $\{y_{t+1},...,y_{t+1}\}$, R << T are non-zon and Otto

is a linear combination of y_s , other points $(y_t = 0)$ would contribute to $(0, Therefore, taking all non-zen <math>y_t$ into consideration, $(0, t_1) = d \stackrel{R}{\geq} p(t-t_1) y_t$.

c).
$$k(t_{1},t_{1}) = e^{r|t_{1}-t_{1}|}$$
, $r>0$

$$\hat{\theta}(t) = arg_{min} \frac{1}{2e} \frac{2}{e^{-(t_{1}-t_{1})^{2}}} + \lambda \|\theta(t)\|_{H}^{2}$$

$$8 = (y + k(1)^{2})^{7} (y - k(1)^{2}) + 26\lambda \sqrt{0} = 0$$

$$\theta = (k(1)^{2}k(1) + 26\lambda \sqrt{1})^{2}k(1)^{2}k(1)^{2}y = (k+26\lambda 1)^{2}k(1)^{2}y$$

$$(k(1) = [k(1,1), k(1,1) - k(1,1)]$$

$$k = [k(1,1) - k(1,1)]$$

$$k(1,1) - k(1,1)$$

$$k(1,1) - k(1,1)$$

$$2 = (k+CI)^{2}y = c = 26^{-1}$$

$$4i$$

$$4i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + c = 26^{-1}$$

$$64i = \frac{2}{e^{-1}} |k|^{2} + tr|_{y}^{2} + tr|_$$