Quiz 17.3 - Reaction Mechanisms

Name: Key

Substrate Concentration

On the figure at left, mark the values of v_{max} and K_{M}

Reaction rates for an enzyme-catalyzed reaction were recorded at different substrate concentrations. The data are tabulated below:

Trial	Rate (M/s)	$[S]_{o}(M)$	- 11 R 4 - Km
1	2.7×10^{-3}	0.0100	rate Vmax
2	3.5×10^{-3}	0.0300	Ym vmx

Use these data to give v_{max} and K_M for the reaction

1 51	1 = (4)	1 - (2)	$Slope = \frac{(285.7-370)}{(33.23-100)} = 1.275$	$y = mx + b \rightarrow b = y - mx$
triar	ES] (M)	rate (M)	(2857-370g) - 127C	J . V
	100	5 70.9	36pe= (38.83-100)	6=-1.27.100 +370.7 -212.
2	33.33	285,7	$V_{\text{max}} = \frac{1}{b} = 4.1 \cdot 10^{-3} \text{M/s} K_{\text{m}} = 50$	

For these trials, [E]_o = 0.020M. What is the catalytic efficiency, η , for the reaction?

$$\mathcal{T} = \frac{k_{\text{cat}}}{k_{\text{M}}} = \frac{0.2055^{-1}}{0.0052 \,\text{M}} = 39 \frac{1}{\text{M.S}}$$

After an inhibitor is added, v_{max} remains the same but K_M is substantially greater. What type of inhibitor was added?

A fluorophore is known to have $k_F=3.0\times 10^8 s^{-1}$, $k_{IC}=1.0\times 10^8 s^{-1}$, and $k_{ISC}=6.0\times 10^7 s^{-1}$ Give the observed fluorescence lifetime (τ) and the quantum efficiency (ϕ_F) for this fluorophore

$$T = \frac{1}{k_F + k_{Ic} + k_{Isc}} = 2.17.10^{-9} s = 2.17 \text{ ns}$$

$$\phi_{F} = \frac{k_{F}}{k_{F} + k_{F}} = k_{F} \cdot \gamma = 0.652$$

A quencher is then added to the solution and the quantum efficiency is monitored. Data for the trials are shown in the table below

	Trial	ϕ	$rac{\phi_0}{\phi}$	[Q](M)	0				
	1	0.513	1.27	0.0010	Slope = Joka				
	2	0.423	1.54	0.0020					
72	Find the quenching rate constant k_O (with proper units)								

Find the quenching rate constant k_Q (with proper units)

Slope =
$$\frac{(1.54 - 1.27)}{0.0020 \text{ M} - 0.0010 \text{ M}} = 270 \text{ M}^{-1}$$

Assuming this quenching rate holds for auto-quenching, at what concentration of fluorophore will the quantum yield reach 10% of its value in the dilute limit?

$$\frac{\phi_6}{\phi} = 1 + 56pe \cdot [a]$$
 $\frac{\phi_6}{\phi} = 100$ $100 = 1 + 270 \,\text{M}^4[a] \rightarrow [a] = 0.37 \,\text{M}$

A pair of fluorophores is capable of Förster resonant energy transfer with $R_0 = 3.9nm$. These fluorophores are placed on two sites of a protein, and the energy transfer is observed to have $\eta_T = 0.14$ (14% efficiency of energy transfer). What is the distance between the two sites on the protein?