Topologie et calcul différentiel

Théorème de Baire

Question 1/5

Théorème du graphe fermé

Réponse 1/5

Si E et F sont deux espaces de Banach, et $f: E \to F$ est linéaire, alors f est continue si et seulement si son graphe $(\{(x, f(x)), x \in E\})$ est fermé dans $E \times F$

Question 2/5

Théorème de l'application ouverte

Réponse 2/5

Si E et F sont deux espaces de Banach et si $f: E \to F$ est linéaire, continue et surjective alors il existe r > 0 tel que $f(\mathcal{B}_E(0,1)) \supset \mathcal{B}_F(0,r)$ En particulier, une telle application est ouverte

et f^{-1} est continue

Question 3/5

Théorème de Banach-Steinhauss

Réponse 3/5

Soient E un espace de Banach, F un evn et (f_i) une famille dénombrable d'applications linéaires $f_i: E \to F$ continues, alors Soit il existe M tel que $|||f_i||| \leq M$ pour tout i Soit il existe un G_{δ} dense A de E tel que pour tout $x \in A$, $\sup(\{\|f(x)\|\}) = +\infty$

Question 4/5

Théorème de Baire avec des ouverts

Réponse 4/5

Si (E, d) est un espace métrique complet et $(U_n)_{n\geqslant 1}$ une famille dénombrable d'ouverts

denses alors $\bigcap_{n=1}^{+\infty} U_n$ est dense

Question 5/5

Théorème de Baire avec des fermés

Réponse 5/5

Si (E, d) est un espace métrique complet et $(F_n)_{n \ge 1}$ une famille dénombrable de fermés

d'intérieur vide alors $\bigcup_{n=1}^{+\infty} F_n$ est d'intérieur vide