GroupProject

LAUREN

11/23/2021

```
varinterst = c("Age", "Gender", "Race1", "PhysActive", "Depressed", "Diabetes", "BPSysAve", "BPDiaAve", "TotC
nh1 = nh[,varinterst]
nh1 \leftarrow nh1[ which(nh1$Age >=18 \& nh1$Age <=59), ]
nh1 <- nh1 %>%
  mutate(HypT = if_else(nh1$BPSysAve >= 130 | nh1$BPDiaAve >=80, 1, 0)) #Add hypertension variable
nh1 <- nh1 %>%
  mutate(Sex = ifelse(nh1$Gender == "female", 1, 0))
nh1 <- nh1 %>%
 mutate(PhysAc = ifelse(nh1$PhysActive == "No", 0, 1))
nh1 <- nh1 %>%
  mutate(Diabete = ifelse(nh1$Diabetes == "No", 0, 1))
nh1 <- nh1 %>%
  mutate(Depress = ifelse(nh1$Depressed == "None", 0, 1))
nh1 <- nh1 %>%
  mutate(RegularMarij2 = ifelse(nh1$RegularMarij == "No", 0, 1))
nh1$TotChol = log(nh1$TotChol)
nh1$Incomplete = complete.cases(nh1)
nh1$Race1 = as.factor(nh1$Race1)
drops = c("Sex")
nhF= nh1[ which(nh1$Sex == 1), ]
nhM = nh1[ which(nh1$Sex == 0), ]
nhF = nhF[,!(names(nhF) %in% drops)]
nhM = nhM[,!(names(nhM) %in% drops)]
## Shiny app
nhF %>%
tbl_summary(by = Incomplete,
              missing = "no",
              statistic = list(all_continuous() ~ "{mean} ({sd})",
                                all_categorical() ~ "{n} ({p}%)"),
              ) %>%
  add_n %>%
  add_p(test = list(Age ~ "t.test",
                    Race1 ~ "chisq.test",
                    PhysAc ~ "chisq.test",
                    Depress ~ "chisq.test",
                    Diabete ~ "chisq.test",
                    HypT ~ "chisq.test",
```

Table printed with 'knitr::kable()', not {gt}. Learn why at
http://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include 'message = FALSE' in code chunk header.

Characteristic	N	FALSE , $N = 1,723$	TRUE , $N = 1,051$	p-value
$\overline{\mathbf{Age}}$	2,774	38 (12)	39 (12)	0.50
Gender	2,774			> 0.99
female		$1,723 \ (100\%)$	$1,051 \ (100\%)$	
male		0 (0%)	0 (0%)	
Race1	2,774			0.19
Black		$224 \ (13\%)$	133~(13%)	
Hispanic		$118 \ (6.8\%)$	68~(6.5%)	
Mexican		165 (9.6%)	$86 \ (8.2\%)$	
White		1,048 (61%)	682~(65%)	
Other		168 (9.8%)	82 (7.8%)	
PhysActive	2,774	887 (51%)	642 (61%)	< 0.001
Depressed	2,367			0.003
None		941 (72%)	807 (77%)	
Several		266 (20%)	$156 \ (15\%)$	
Most		109~(8.3%)	88 (8.4%)	
Diabetes	2,774	83 (4.8%)	53 (5.0%)	0.79
BPSysAve	2,644	113 (14)	115 (15)	0.001
BPDiaAve	2,644	68 (12)	70 (11)	< 0.001
TotChol	2,626	1.59(0.20)	1.60(0.21)	0.31
Testosterone	$1,\!253$	23 (12)	26(21)	0.053
Regular Marij	2,347	269 (21%)	238 (23%)	0.27
HypT	2,644	318 (20%)	230~(22%)	0.25
PhysAc	2,774	887 (51%)	642 (61%)	< 0.001
Diabete	2,774	83 (4.8%)	53 (5.0%)	0.86
Depress	2,367	375~(28%)	244~(23%)	0.004
RegularMarij2	2,347	269 (21%)	238 (23%)	0.29

```
Diabete ~ "chisq.test",

HypT ~ "chisq.test",

TotChol ~ "t.test",

Testosterone ~ "t.test",

RegularMarij2 ~ "chisq.test"),

test.args = all_tests("t.test") ~ list(var.equal = TRUE),## Important argument!

pvalue_fun = function(x) style_pvalue(x, digits = 2)) %>%

bold_p(t = 0.05) %>%

bold_labels
```

```
## Table printed with 'knitr::kable()', not {gt}. Learn why at
## http://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
## To suppress this message, include 'message = FALSE' in code chunk header.
```

Characteristic	N	FALSE , $N = 1,664$	TRUE , $N = 1,204$	p-value
$\overline{ m Age}$	2,868	38 (12)	39 (12)	0.10
Gender	$2,\!868$			> 0.99
female		0 (0%)	0 (0%)	
male		1,664 (100%)	1,204 (100%)	
Race1	2,868			0.070
Black		201 (12%)	114 (9.5%)	
Hispanic		93 (5.6%)	76~(6.3%)	
Mexican		202 (12%)	124 (10%)	
White		1,039 (62%)	785~(65%)	
Other		129 (7.8%)	105 (8.7%)	
PhysActive	2,868	962 (58%)	709 (59%)	0.56
Depressed	2,617			0.47
None		1,129 (80%)	985 (82%)	
Several		203 (14%)	157 (13%)	
Most		81 (5.7%)	62 (5.1%)	
Diabetes	2,868	111(6.7%)	82 (6.8%)	0.88
BPSysAve	2,784	121 (15)	120 (14)	0.74
BPDiaAve	2,784	72 (12)	73 (11)	0.019
TotChol	2,723	1.60(0.21)	1.57(0.21)	< 0.001
Testosterone	1,333	397 (165)	415 (170)	0.27
RegularMarij	2,594	462 (33%)	397 (33%)	0.89
HypT	2,784	566 (36%)	419 (35%)	0.60
PhysAc	2,868	962 (58%)	709 (59%)	0.59
Diabete	2,868	111(6.7%)	82 (6.8%)	0.94
Depress	2,617	284 (20%)	219 (18%)	0.24
${\bf Regular Marij 2}$	$2,\!594$	462 (33%)	397 (33%)	0.92

```
nh2 <- nh1 %>% drop_na() #drop anything with NA
m1 = lm(log(Testosterone)~Age + Sex + Race1 + PhysAc + Depress + Diabete + HypT+ TotChol + RegularMari
summary(m1)
```

```
##
## Call:
## Im(formula = log(Testosterone) ~ Age + Sex + Race1 + PhysAc +
## Depress + Diabete + HypT + TotChol + RegularMarij2, data = nh2)
```

```
##
## Residuals:
                 1Q Median
## -2.10497 -0.27713 0.01199 0.31695 2.60208
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.3613175 0.0859337
                                       74.026 < 2e-16 ***
                -0.0096663 0.0009369 -10.318 < 2e-16 ***
## Age
## Sex
                -2.8848479 0.0210884 -136.798 < 2e-16 ***
## Race1Hispanic -0.0271273 0.0511246 -0.531 0.59574
## Race1Mexican -0.0768069 0.0460189 -1.669 0.09525 .
## Race1White -0.0659921 0.0336581 -1.961 0.05004 .
## Race10ther -0.1241461 0.0473209 -2.623 0.00876 **
              0.0132567 0.0214976 0.617 0.53752
-0.0128492 0.0257615 -0.499 0.61799
## PhysAc
                -0.0128492 0.0257615 -0.499 0.61799
## Depress
## Diabete
                -0.1106606 0.0440763 -2.511 0.01212 *
## HypT
                -0.0354984 0.0238415 -1.489 0.13665
                 0.0103321 0.0523056
                                       0.198 0.84343
## TotChol
## RegularMarij2 0.0489403 0.0232149
                                         2.108 0.03513 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.4856 on 2242 degrees of freedom
## Multiple R-squared: 0.8985, Adjusted R-squared: 0.898
## F-statistic: 1654 on 12 and 2242 DF, p-value: < 2.2e-16
quantile(nh2\$Age, probs = seq(0, 1, 0.25))
##
     0% 25% 50% 75% 100%
##
     18
         28
              39
                   49
                        59
AgeQ1 <- nh2$Age<28
AgeQ2 \leftarrow nh2$Age>=28 \& nh2$Age<39
AgeQ3 \leftarrow nh2$Age>=39 & nh2$Age<49
AgeQ4 \leftarrow nh2$Age>=49 & nh2$Age<59
m_ageC <- lm(log(Testosterone)~AgeQ2+AgeQ3+AgeQ4 + Sex + Race1 + PhysAc + Depress + Diabete + HypT+ Tot
summary(m_ageC)
##
## lm(formula = log(Testosterone) ~ AgeQ2 + AgeQ3 + AgeQ4 + Sex +
       Race1 + PhysAc + Depress + Diabete + HypT + TotChol + RegularMarij2,
##
##
       data = nh2)
##
## Residuals:
               1Q Median
                               3Q
                                      Max
## -2.1181 -0.2700 0.0174 0.3190 2.5819
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.17519 0.08624
                                     71.605 < 2e-16 ***
```

```
## AgeQ2TRUE
                 -0.03579
                             0.02900
                                       -1.234 0.21723
## AgeQ3TRUE
                 -0.20570
                             0.02983
                                       -6.895 6.99e-12 ***
## AgeQ4TRUE
                 -0.25300
                             0.03058
                                       -8.274
                                              < 2e-16 ***
                             0.02115 -136.374
## Sex
                 -2.88415
                                              < 2e-16 ***
## Race1Hispanic -0.02009
                             0.05124
                                       -0.392
                                              0.69501
## Race1Mexican -0.07766
                             0.04616
                                       -1.682 0.09266
## Race1White
                 -0.07090
                             0.03374
                                       -2.102 0.03570 *
## Race10ther
                             0.04749
                                       -2.685 0.00730 **
                 -0.12752
## PhysAc
                 0.02563
                             0.02143
                                        1.196
                                              0.23197
                             0.02582
## Depress
                 -0.01337
                                       -0.518
                                              0.60467
## Diabete
                 -0.12108
                             0.04423
                                       -2.738
                                               0.00623 **
## HypT
                 -0.04978
                             0.02370
                                       -2.100
                                               0.03581 *
## TotChol
                             0.05168
                                       -0.608 0.54349
                 -0.03140
## RegularMarij2 0.04880
                             0.02328
                                        2.096 0.03621 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.4867 on 2240 degrees of freedom
## Multiple R-squared: 0.8981, Adjusted R-squared: 0.8975
## F-statistic: 1411 on 14 and 2240 DF, p-value: < 2.2e-16
```

```
plot(1:3, m_ageC$coefficients[2:4])
```


m_ageC <- lm(log(Testosterone)~AgeQ2+AgeQ3+AgeQ4 + Sex + Race1 + PhysAc + Depress + Diabete + HypT+ Tot

cor(nh2[c("Diabete", "TotChol", "HypT", "PhysAc", "Depress")])

```
## Diabete TotChol HypT PhysAc Depress
## Diabete 1.00000000 0.01684888 0.08317883 -0.05294167 0.03832360
## TotChol 0.01684888 1.00000000 0.18259500 -0.06464567 0.06684462
## HypT 0.08317883 0.18259500 1.00000000 -0.01563832 0.05758225
## PhysAc -0.05294167 -0.06464567 -0.01563832 1.00000000 -0.11063907
## Depress 0.03832360 0.06684462 0.05758225 -0.11063907 1.00000000
```

car::vif(m_ageC)

```
GVIF Df GVIF<sup>(1/(2*Df))</sup>
##
## AgeQ2
                         2.040759 1
                                            1.428551
## AgeQ3
                         2.114436 1
                                            1.454110
## AgeQ4
                         2.398694 1
                                            1.548772
## Sex
                         1.449860 1
                                            1.204101
## Race1
                         3.394524 4
                                            1.165058
## PhysAc
                         1.512573 1
                                            1.229867
## Depress
                        1.558318 1
                                            1.248326
## Diabete
                        1.490743 1
                                            1.220960
## HypT
                         1.518555 1
                                            1.232297
## TotChol
                        1.602995 1
                                            1.266095
## RegularMarij2
                        64.969309 1
                                            8.060354
## AgeQ2:RegularMarij2
                         2.514017 1
                                            1.585565
## AgeQ3:RegularMarij2
                         2.678259 1
                                            1.636539
## AgeQ4:RegularMarij2
                         3.243785 1
                                            1.801051
## Sex:RegularMarij2
                         2.110015 1
                                            1.452589
## Race1:RegularMarij2
                        21.745286 4
                                            1.469504
## PhysAc:RegularMarij2
                         2.775730 1
                                            1.666052
## Depress:RegularMarij2 1.940016 1
                                            1.392845
## Diabete:RegularMarij2 1.592168 1
                                            1.261811
## HypT:RegularMarij2
                         1.983350 1
                                            1.408315
## TotChol:RegularMarij2 63.334636 1
                                            7.958306
```

linearity check

car::avPlots(m_ageC)

