Esame di Ricerca Operativa del 23/02/16

	(0	Cognome)		(Nome)		(Co	rso di laurea))
Esercizio	1. Con	npletare la	seguente tabel	la considerando il problema	a di progra	mmazione line	are:	
				$\begin{cases} \max -3 x_1 - 2 x_2 \\ -2 x_1 + x_2 \le 4 \\ -x_1 - 2 x_2 \le -13 \end{cases}$ $-x_1 + x_2 \le 6$ $2 x_1 + x_2 \le 15$ $2 x_1 - x_2 \le 1$ $x_1 + 2 x_2 \le 21$				
	Base	Soluzion	ne di base			Ammissibile (si/no)	Degenere (si/no)	
	{1, 2}	x =						
	$\{2, 3\}$	y =						
Esercizio	2. Effe	ttuare due	e iterazioni dell'	algoritmo del simplesso pri	imale per il	problema dell	'esercizio 1.	
		Base	x	y	Indice uscente		pporti	Indic entrar
1° iteraz	zione	{4,5}						
2° iteraz		_	-	_				
Esercizio per ogni o massimo o	o 3. Una chilo pro di 1000 l r C. Dete	dotto di I kg. I costi erminare l	B e 0.50 kg. per di manodopera	omposti chimici A,B e C. P r ogni chilo di C, che può a de dil prezzo di vendita son tima sapendo che di A biso	acquistare no rispettiv	al prezzo di 5 amente 12 e 2	euro al kg fin 5 per A, 5 e 2	o ad un 0 per B,
Esercizio per ogni o massimo o 4 e 30 per di C variabili	o 3. Una chilo pro di 1000 l r C. Dete	dotto di I kg. I costi erminare l	B e 0.50 kg. per di manodopera	r ogni chilo di C, che può a ded il prezzo di vendita son	acquistare no rispettiv ogna produ	al prezzo di 5 amente 12 e 2	euro al kg fin 5 per A, 5 e 2	o ad un 0 per B,
Esercizio per ogni o massimo o 4 e 30 per di C variabili	o 3. Una chilo pro di 1000 l r C. Dete	dotto di I kg. I costi erminare l	B e 0.50 kg. per di manodopera	r ogni chilo di C, che può a de ed il prezzo di vendita son di chima sapendo che di A biso	acquistare no rispettiv ogna produ	al prezzo di 5 amente 12 e 2	euro al kg fin 5 per A, 5 e 2	o ad un 0 per B,
Esercizio per ogni o massimo o 4 e 30 per di C variabili modello:	o 3. Una chilo pro di 1000 l r C. Dete	dotto di I kg. I costi erminare l	B e 0.50 kg. per di manodopera	r ogni chilo di C, che può a de ed il prezzo di vendita son di chima sapendo che di A biso	acquistare no rispettiv ogna produ	al prezzo di 5 amente 12 e 2	euro al kg fin 5 per A, 5 e 2	o ad un 0 per B,

ub=

lb=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) (3,2) (3,5)				
(4,6) $(5,4)$ $(7,6)$	(1,2)	x =		
(1,2) $(2,4)$ $(3,5)$				
(5,4) (6,5) (7,6)	(4,6)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 3.

	1° iterazione	2° iterazione
Archi di T	(1,3) (2,5) (3,5) (5,4) (5,7) (7,6)	
Archi di U	(4,6)	
x		
π		
Arco entrante		
θ^+, θ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo														
visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 5 x_1 + 12 x_2 \\ 16 x_1 + 12 x_2 \le 63 \\ 10 x_1 + 13 x_2 \le 44 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 518 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	15	10	17	7	22	18	24
Volumi	142	52	246	357	200	447	20

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -3x_1^2 - 3x_2^2 + 4x_1x_2$ sull'insieme

$${x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 4 \le 0, -x_1 - x_2 + 2 \le 0}.$$

Soluzioni del si	Mass	Massimo		Minimo			
x	λ	μ	globale	locale	globale	locale	
(0, 2)							
(2, 0)							
$\left(\sqrt{2},\sqrt{2}\right)$							
,							
(1, 1)							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \max 4 x_1^2 - 4 x_1 x_2 - 2 x_2^2 + 5 x_1 + 3 x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (3,2), (3,-4), (1,-5) e (-1,-2). Fare un passo del metodo di Frank-Wolfe.

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
(3,0)					

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max -3 x_1 - 2 x_2 \\ -2 x_1 + x_2 \le 4 \\ -x_1 - 2 x_2 \le -13 \\ -x_1 + x_2 \le 6 \\ 2 x_1 + x_2 \le 15 \\ 2 x_1 - x_2 \le 1 \\ x_1 + 2 x_2 \le 21 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (1, 6)	SI	NO
{2, 3}	$y = \left(0, \ \frac{5}{3}, \ \frac{4}{3}, \ 0, \ 0, \ 0\right)$	SI	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice uscente	Rapporti	Indice entrante
1° iterazione	$\{4, 5\}$	(4, 7)	$\left(0,\ 0,\ 0,\ -\frac{7}{4},\ \frac{1}{4},\ 0\right)$	4	4	2
2° iterazione	{2, 5}	(3, 5)	$\left(0, \frac{7}{5}, 0, 0, -\frac{4}{5}, 0\right)$	5	$5, \frac{20}{3}$	1

Esercizio 3.

COMANDI DI MATLAB

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
(1,3) (3,2) (3,5)			(81/118)	(81/110)
(4,6) $(5,4)$ $(7,6)$	(1,2)	x = (6, -2, 0, 0, -9, 11, 6, 8, 0, 0, -1)	NO	SI
(1,2) $(2,4)$ $(3,5)$				
(5,4) (6,5) (7,6)	(4,6)	$\pi = (0, 8, 0, 12, 9, 6, 1)$	NO	SI

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) (2,5) (3,5) (5,4) (5,7) (7,6)	(1,3) (2,4) (3,5) (5,4) (5,7) (7,6)
Archi di U	(4,6)	(4,6)
x	(0, 4, 0, 3, 0, 8, 4, 6, 2, 0, 1)	(0, 4, 3, 0, 0, 8, 4, 3, 2, 0, 1)
π	(0, 8, 4, 16, 13, 27, 22)	(0, 12, 4, 16, 13, 27, 22)
Arco entrante	(2,4)	(1,2)
ϑ^+,ϑ^-	12, 3	6, 3
Arco uscente	(2,5)	(5,4)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	· 2	ite	r 3	ite	r 4	iter 5		ite	r 6	iter 7	
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		4		(3	(}	ţ	Ď	7		2	
nodo 2	19	1	19	1	19	1	19	1	19	1	19	1	19	1
nodo 3	12	1	9	4	9	4	9	4	9	4	9	4	9	4
nodo 4	3	1	3	1	3	1	3	1	3	1	3	1	3	1
nodo 5	$+\infty$	-1	$+\infty$	-1	17	6	13	3	13	3	13	3	13	3
nodo 6	$+\infty$	-1	7	4	7	4	7	4	7	4	7	4	7	4
nodo 7	$+\infty$	-1	$+\infty$	-1	20	6	20	6	16	5	16	5	16	5
$\stackrel{\text{insieme}}{Q}$	2, 3	, 4	2, 3	, 6	2, 3,	5, 7	2, 5	5, 7	2,	2, 7		Q)	

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 5 - 7	7	(0, 7, 0, 0, 7, 0, 0, 0, 7, 0, 0)	7
1 - 4 - 6 - 7	5	(0, 7, 5, 0, 7, 0, 5, 0, 7, 0, 5)	12
1 - 4 - 6 - 5 - 7	4	(0, 7, 9, 0, 7, 0, 9, 0, 11, 4, 5)	16

Taglio di capacità minima: $N_s = \{1, 2, 3, 4\}$ $N_t = \{5, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 5 x_1 + 12 x_2 \\ 16 x_1 + 12 x_2 \le 63 \\ 10 x_1 + 13 x_2 \le 44 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, \frac{44}{13}\right)$$
 $v_S(P) = 40$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(0,3)$$
 $v_I(P) = 36$

c) Calcolare un taglio di Gomory.

$$\begin{vmatrix} r=2\\ r=3 \end{vmatrix} \qquad \qquad \begin{aligned} x_2 &\leq 3\\ x_2 &\leq 3 \end{aligned}$$

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 518 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	15	10	17	7	22	18	24
Volumi	142	52	246	357	200	447	20

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(1, 1, 0, 0, 1, 0, 1)$$
 $v_I(P) = 71$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(1, 1, \frac{52}{123}, 0, 1, 0, 1\right)$$
 $v_S(P) = 78$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

soluzione ottima = (0, 1, 1, 0, 1, 0, 1)

valore ottimo = 73

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -3x_1^2 - 3x_2^2 + 4x_1x_2$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 4 \le 0, -x_1 - x_2 + 2 \le 0\}.$$

Soluzioni del si	Massimo		Mini	Sella			
x	λ	μ	globale	locale	globale	locale	
(0, 2)	(5,8)		NO	NO	SI	SI	NO
(2, 0)	(5,8)		NO	NO	SI	SI	NO
$\left(\sqrt{2},\ \sqrt{2}\right)$	(1,0)		NO	NO	NO	NO	SI
(1, 1)	(0, -2)		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \max 4 x_1^2 - 4 x_1 x_2 - 2 x_2^2 + 5 x_1 + 3 x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (3,2) , (3,-4) , (1,-5) e (-1,-2). Fare una iterazione del metodo di Frank-Wolfe.

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
(3,0)	$29 x_1 - 9 x_2$	(3,-4)	(0, -4)	$\frac{9}{16}$	$\left(3,-\frac{9}{4}\right)$