2023年度 日本留学試験

数学(80分)

【コース1(基本, Basic)・コース2(上級, Advanced)】

※ どちらかのコースを一つだけ選んで解答してください。

Ⅰ 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

Ⅱ 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

Ⅲ 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれ-(マイナスの符号), または、0から9までの数が一つずつ入ります。適するものを選び、解答用紙(マークシート)の対応する解答欄にマークしてください。
- 3. 同一の問題文中に **A** , **BC** などが繰り返し現れる場合, 2度目以降 は, **A** , **BC** のように表しています。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは、 $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し, $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) $\boxed{\mathbf{A}}\sqrt{\mathbf{B}}$ に $\frac{-\sqrt{3}}{4}$ と答える場合は、下のようにマークしてください。

【解答用紙】

1 / 10 / 1- 47												
Α		0	1	2	3	4	(5)	6	0	8	9	
В	Θ	0	1	2		4	(5)	6	0	8	9	
С	Θ	0	1	2	3		(5)	6	0	8	9	
D	0	0	1	2	3	4	(5)	6	0	8	9	
E	Θ	0		2	3	4	(5)	6	0	8	9	

4. 解答用紙に書いてある注意事項も必ず読んでください。

※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*	*		
名 前				

数学 コース 2 (上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」が ありますので、どちらかのコースを一つだけ 選んで解答してください。「コース2」を解答 する場合は, 右のように, 解答用紙の「解答 コース」の「コース 2」を ○ で囲み, その下 のマーク欄をマークしてください。

選択したコースを正しくマークしないと、採点されません。

問1 2つの2次関数

$$f(x) = \frac{1}{3}x^2 + ax - b,$$
 $g(x) = -x^2 + cx + b$

が,次の2つの条件(A),(B)を満たすようなa,b,cを求めよう。

- (A) グラフy = f(x)とグラフy = g(x)は2つの直線x = -1, x = 3上で交わっている。
- (B) g(x) の最大値と f(x) の最小値の差は $\frac{16}{3}$ である。

条件 (A) より 2 つの 2 次関数のグラフは直線 x = -1 上で交わっているから

$$3a +$$
 A $b -$ B $c =$ C ①

であり、また、直線 x=3 上で交わっているから

を得る。① と ② より $b = | \mathbf{F} |$ である。

次に、条件(B) と $b = \begin{bmatrix} F \end{bmatrix}$ より

G
$$a^2 + 3c^2 =$$
 HI

を得る。これらから

となる。

- 計算欄 (memo) -

A, B, C の 3 つの箱に,それぞれ 9 枚のカードが入っている。 9 枚のカードには, 1 から 9 の数字が 1 つずつ書かれている。
(1) A, B, C の箱から順に 1 枚ずつカードを取り出し、それらのカードに書かれた数字をそれぞれ $a,\ b,\ c$ とする。
(i) $a=b \neq c$ である確率は $lacktriangle$ である。
(ii) a, b, c の中に同じものがない確率は $lackbrackbrackbrackbrackbrackbrackbrackbr$
(iii) $a>2b>3c$ となる確率 p を求めよう。 条件を満たす $a,\ b,\ c$ の組が存在するような b の範囲は
lacksquare $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$
である。このことに注目して $p = lackbox{f Q}$
を得る。
を得る。 (2) A から 3 枚, B から 2 枚, 合わせて 5 枚のカードを取り出す。
 (2) A から 3 枚, B から 2 枚, 合わせて 5 枚のカードを取り出す。 (i) 取り出した 5 枚のカードの中に奇数が 4 枚, 偶数が 1 枚ある確率は R で

次の文中の O , P には、適する数を入れ、その他の には右のペー

ジの選択肢 ⑩ ~ ⑨ の中から適するものを選びなさい。

- ① $\frac{14}{81}$
- $2 \frac{56}{81}$
- $\frac{64}{81}$

- $4 \frac{25}{126}$
- \bigcirc $\frac{35}{126}$
- \bigcirc $\frac{115}{126}$
- $\sqrt{7} \quad \frac{125}{126}$

- $8 \frac{8}{729}$
- $9 \frac{10}{729}$

II

問 1 次の文中の $oldsymbol{J}$, $oldsymbol{K}$, $oldsymbol{L}$ には,右のページの選択肢 $oldsymbol{0}$ \sim $oldsymbol{0}$ の中から適するものを選びなさい。また,その他の $oldsymbol{L}$ には,適する数を入れなさい。

四角形 OABC において、 \angle OAB と \angle OCB は 直角であり、辺 OA、OC の長さはそれぞれ 2、 $\sqrt{2}$ であるとする。また、対角線 AC の長さは $\sqrt{3}$ で あるとする。

このとき, $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$ とおいて,内積 $\overrightarrow{a} \cdot \overrightarrow{b}$, $\overrightarrow{b} \cdot \overrightarrow{c}$, $\overrightarrow{c} \cdot \overrightarrow{a}$ を求め, \overrightarrow{b} を \overrightarrow{a} と \overrightarrow{c} で表そう。さらに,2 本の対角線 AC と OB の交点を D とするとき, \overrightarrow{OD} が \overrightarrow{b} の何倍であるか調べよう。

(1)
$$\overrightarrow{AC} = \overrightarrow{c} - \overrightarrow{a}$$
 \overrightarrow{c} \overrightarrow{a} \overrightarrow{c} \overrightarrow{b} $\overrightarrow{c} \cdot \overrightarrow{a} = \boxed{\frac{\textbf{A}}{\textbf{B}}}$ \overrightarrow{c} \overrightarrow{b} \overrightarrow{c} \overrightarrow{b} \overrightarrow{c} \overrightarrow{c}

- (2) \overrightarrow{a} と \overrightarrow{AB} は垂直であるから, $\overrightarrow{a} \cdot \overrightarrow{b} = \boxed{\textbf{C}}$ である。同様に $\overrightarrow{b} \cdot \overrightarrow{c} = \boxed{\textbf{D}}$ である。

$$\overrightarrow{a} \cdot \overrightarrow{b} = \mathbb{C}$$
 より, $\mathbf{E} s + \mathbf{F} t = \mathbf{G}$ であり $\overrightarrow{b} \cdot \overrightarrow{c} = \mathbb{D}$ より, $\mathbf{H} s + \mathbb{I} t = 4$ である。

よって

$$s = \boxed{ J }, \qquad t = \boxed{ K }$$

である。

(問1は次ページに続く)

(4) 点 D が線分 AC 上にあることから

$$\overrightarrow{\mathrm{OD}} = \boxed{\hspace{0.1cm}} \overrightarrow{b}$$

を得る。

- $0 \frac{8}{23}$
- ② $\frac{20}{23}$
- $3 \frac{28}{23}$
- $4) \frac{30}{23}$

- \bigcirc $\frac{23}{30}$
- \bigcirc $\frac{31}{46}$
- $8 \frac{51}{46}$
- $9 \frac{46}{51}$

問 a, b は実数とし、複素数平面上の異なる 3 点 $A(z_1)$, $B(z_2)$, $C(z_3)$ に対して

$$\frac{z_3 - z_2}{z_2 - z_1} = a + bi$$

とおく。

(1)	次の文中の	М	と	N	には,	この問いの下の選択肢	0 ~ 3	の中から	う適する
	ものを選びなさ	いっ							

a=0 ならば, \mathbf{M} となり, b=0 ならば, \mathbf{N} となる。

- ① 直線 AB と 直線 BC は垂直
- ① 直線 BC と 直線 CA は垂直
- ② 直線 CA と 直線 AB は垂直
- ③ 直線 AB と 直線 BC は同一直線

三角形 ABC の \angle A, \angle B, \angle C の大きさをそれぞれ A, B, C で表す。

$$a = \frac{\left(i\cos A + \sin A\right)\left(i\cos B - \sin B\right)}{\cos C - i\sin C}\,, \qquad b = \sqrt{3}$$

を満たす三角形 ABC について考える。この a の右辺は

$$\frac{(i\cos A + \sin A)(i\cos B - \sin B)}{\cos C - i\sin C} = \boxed{\mathbf{0}} \left(\cos \boxed{\mathbf{P}} + i\sin \boxed{\mathbf{P}}\right)$$

と変形できる。a が実数であるから,三角形 ABC は $\mathbf{Q}=\frac{\pi}{2}$ の直角三角形であり, $a=\mathbf{RS}$ である。

(問2は次ページに続く)

また,
$$a = RS$$
, $b = \sqrt{3}$ であるから

$$\theta = \arg\left(rac{z_3 - z_2}{z_2 - z_1}
ight) = rac{f T}{f U}\pi, \qquad \left|rac{z_3 - z_2}{z_2 - z_1}
ight| = f V$$

となる。ただし、偏角 θ の範囲は $0 \le \theta < 2\pi$ とする。したがって、三角形 ABC は

$$A = \frac{\pi}{\boxed{\mathbf{W}}}, \quad B = \frac{\pi}{\boxed{\mathbf{X}}}, \quad C = \frac{\pi}{\boxed{\mathbf{Y}}}$$

の直角三角形である。

$$\bigcirc$$
 $(A+B-C)$

①
$$A$$
 ① $(A+B-C)$ ② $(-A-B+C)$

$$\stackrel{\frown}{3}$$

$$\bigcirc$$
 $(A-B+C)$

(5)
$$(-A + B - C)$$

$$\bigcirc$$
 $(A-B-C)$

$$(3) \quad B$$
 $(4) \quad (A-B+C)$ $(5) \quad (-A+B-C)$ $(6) \quad C$ $(7) \quad (A-B-C)$ $(8) \quad (-A+B+C)$

III

関数 f(x) を

$$f(x) = \begin{cases} x+2 & (x<0) \\ -x^2 + x + 2 & (x \ge 0) \end{cases}$$

と定義する。このとき $S(a)=\int_a^{a+2}f(x)dx$ を最大にする a の値と S(a) の最大値を求めよう。

$$(1)$$
 $S(-2) =$ A , $S(0) =$ BC である。

(2) 次の文中の **E** と **F** には、下の選択肢 ① ~ ② の中から適するものを選びなさい。また、その他の には、適する数を入れなさい。

$$0 < 1 = 2 >$$

a の範囲で場合分けして, S(a) を考える。 y=f(x) のグラフより

$$a<-2$$
 のとき, $S(a)$ $lackbreak{\mathbf{E}}$ $S(-2)$

$$a>0$$
 のとき, $S(a)$ **F** $S(0)$

である。

 $-2 \le a \le 0$ のとき

$$S(a) = \frac{\boxed{\text{GH}}}{\boxed{\text{I}}} a^3 - \boxed{\text{J}} a^2 - \boxed{\text{K}} a + \frac{\boxed{\text{LM}}}{\boxed{\text{N}}}$$

である。S(a) の導関数 S'(a) は

$$S'(a) = -a^2 -$$
 0 $a -$ P

であるから、
$$S(a)$$
 は $a=-$ **Q** + $\sqrt{\mathbf{R}}$ のとき極大となる。

(III は次ページに続く)

したがって, S(a) を最大にする a の値は

$$- \boxed{ \textbf{S} } + \sqrt{ \boxed{ \textbf{T} } }$$

であり、S(a) の最大値は

$$\boxed{ \textbf{U} + \frac{ \textbf{V} \sqrt{\textbf{W}} }{\textbf{X} } }$$

である。

[III] の問題はこれで終わりです。[III] の解答欄 [Y], [Z] はマークしないでください。

a を実数とし、定積分で定義された関数

$$f(x) = \int_0^x t \left(a \sin^2 2t - 1 \right) dt \quad \left(0 < x < \frac{\pi}{2} \right)$$

を考える。

f(x) は $x = \frac{\pi}{12}$ で極値をもつと仮定する。

(1) f(x) は $x = \frac{\pi}{12}$ で極値をもつので

$$a = \boxed{A}$$

である。また、f(x) は $x=\frac{\pi}{12}$ 以外に、 $x=\frac{\mathbf{B}}{\mathbf{C}\mathbf{D}}$ π でも極値をもつ。

f(x) を求めよう。

f(x) は

$$f(x) = \int_0^x t \left(\boxed{\mathbf{E}} - \boxed{\mathbf{F}} \cos \boxed{\mathbf{G}} t \right) dt$$

と変形できるので

である。

(IV は次ページに続く)

- (3) 次の文中の \mathbf{R} , \mathbf{S} , \mathbf{T} には、この問いの下の選択肢 $\mathbf{0} \sim \mathbf{9}$ の中から 適するものを選びなさい。
 - f(x) の最大値は

R
$$\pi^2 +$$
 S $\pi +$ T

である。

- $\bigcirc 0 \quad \frac{1}{8} \qquad \bigcirc 0 \quad \frac{\sqrt{3}}{8} \qquad \bigcirc 0 \quad \frac{1}{16} \qquad \bigcirc 0 \quad \frac{\sqrt{3}}{16} \qquad \bigcirc 0 \quad \frac{\sqrt{3}}{24}$

- (4) 次の文中の $\boxed{\mathbf{U}}$, $\boxed{\mathbf{V}}$, $\boxed{\mathbf{W}}$ には,この問いの下の選択肢 $@\sim @$ の中から 適するものを選びなさい。

曲線 y = f(x) の点 $\left(\frac{\pi}{4}, f\left(\frac{\pi}{4}\right)\right)$ における接線の方程式は

$$y = \begin{bmatrix} \mathbf{U} & \pi x - \begin{bmatrix} \mathbf{V} & \pi^2 + \begin{bmatrix} \mathbf{W} \end{bmatrix} \end{bmatrix}$$

である。

- $oxed{IV}$ の問題はこれで終わりです。 $oxed{IV}$ の解答欄 $oxed{X}$ \sim $oxed{Z}$ はマークしないでください。 コース2の問題はこれですべて終わりです。解答用紙のVはマークしないでください。 解答用紙の解答コース欄に「コース 2」が正しくマークしてあるか, もう一度確かめてください。

この問題冊子を持ち帰ることはできません。