California State University, Sacramento The College of Engineering and Computer Science

EEE 180 Signals & Systems

Midterm 2

Spring 2023

Student Name: VIGOMAR KIM ALGADOR

Unilateral Laplace	Transform
Table	

	f(t)	F(s)
1	$\delta(t)$	1
2	u(t)	$\frac{1}{s}$
3	tu(t)	$\frac{1}{s^2}$
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
5	$e^{\lambda t}u(t)$	$\frac{1}{s-\lambda}$

Unilateral Z-transform Pair Table

	f[k]	F[z]
1	$\delta[k-j]$	z-j
2	u[k]	$\frac{z}{z-1}$
3	ku[k]	$\frac{z}{(z-1)^2}$
4	$k^2u[k]$	$\frac{z(z+1)}{(z-1)^3}$
5	$k^3u[k]$	$\frac{z(z^2+4z+1)}{(z-1)^4}$
6	$\gamma^{k-1}u[k-1]$	$\frac{1}{z-\gamma}$
7	$\gamma^k u[k]$	$\frac{z}{z-\gamma}$

1.[25 points]

The discrete system equation and initial conditions are given below:

$$y[k+2] + \frac{3}{2}y[k+1] + \frac{1}{2}y[k] = 0, y[-1] = -3, y[-2] = 1.$$

Please find the system output response for the above discrete-time system by using the following three steps.

(1). What is the characteristic polynomial equation for the above system?

$$\lambda^2 + \frac{3}{2}\lambda + \frac{1}{2} = 0$$

(2). What are the values of the two roots of the characteristic polynomial equation for this system?

$$(\lambda + 1)(\lambda + 1/2) = 0$$

 $\lambda = -1, -1/2$

(3). Find the output system response of this discrete time system.

$$y[K] = B_1(-1)^K + B_2(-1/2)^K$$

FOR $y[-1] = -3$:
 $B_1(-1)^{-1} + B_2(-1/2)^{-1} = -3$
 $-B_1 - 2B_2 = -3$
 $-B_1 - 2B_2 = -3$
FOR $y[-2] = 1$:
 $B_1(-1)^{-2} + B_2(-1/2)^{-2} = 1$
 $B_1 + 4B_2 = 1$
 $B_1 + 4B_2 = 1$
 $B_1 + 4B_2 = 1$

2. [35 points]

(1). Determine the Inverse Laplace transform of $F(s) = \frac{5}{s+3} + \frac{8}{s-4}$ by using the unilateral Laplace transform table.

Your solution: $f(t) = (5e^{-3t} + 8e^{4t})u(t)$

(2). Determine the Inverse Laplace transform of $F(s) = 2 + \frac{2}{s^2}$ by using the unilateral Laplace transform table.

Your solution: $f(t) = _{2\delta(t) + 2tu(t)}$

(3). Calculate Laplace transform $F(s) = \int_0^\infty f(t) \, e^{-st} dt$ of the following signal and find the region of convergence.

$$f(t) = \begin{cases} 1, & 1 \le t < 2 \\ 2, & 2 \le t < 3 \end{cases}.$$

$$F(s): \int_{0}^{\infty} f(t)e^{-st}dt$$

$$= \int_{0}^{1} 0e^{-st}dt + \int_{1}^{2} 1e^{-st}dt + \int_{2}^{3} 2e^{-st}dt$$

$$= 0 + \left[-\frac{1}{5}(e^{-st})\right]_{1}^{2} + \left[-\frac{2}{5}(e^{-st})\right]_{2}^{3}$$

$$= -\frac{1}{5}(e^{-2s} - e^{-s}) - \frac{2}{5}(e^{-3s} - e^{-2s})$$

$$= -\frac{1}{5}(e^{-s} + e^{-2s} - 2e^{-3s})$$

Missing ROC x -2

3. [40 points]

(1). The discrete-time system is described by y[k+1] + 2y[k] = f[k], with f[k] = u[k] and y[0] = 0. Solve the above equation iteratively to determine y[1] and y[2] values.

$$y[k+1]+2y[k]=f[k]$$

when k=0:
 $y[1]+2y[0]=f[0]$
 $y[1]+2y[0]=f[0]$
 $y[2]+2y[1]=f[1]$
 $y[1]+2(0)=u(0)$
 $y[2]+2(0)=1$
 $y[1]=0$
 $y[2]=1$

(2). The transformed direct form II structure is shown below.

The system transfer function is:

$$H[z] = \frac{Y[z]}{X[z]} = \frac{Az^{-1} + Bz^{-2} + Cz^{-3}}{D + Ez^{-1} + Fz^{-2} + Gz^{-3}}$$

According to the structure on the left,

- E=_**5**__, F=_**-8**__, G=_**2**__.
- (3). Find the z-transform for the following discrete-time signal.

$$x[2] = 0 + \frac{1}{2} + \frac{2}{2^2} + \frac{1}{2^3} - \frac{1}{2^4} + \frac{2}{2^8}$$

= $2^{-1} + 22^{-2} + 2^{-3} - 2^{-4} + 22^{-5}$

(4). Find the inverse z-transform of the following function with ROC: |z| > 4.

$$F[z] = \frac{z(z-3)}{z^2 - 6z + 8}$$

$$F[z] = \frac{1}{z^{2}-6z+8} = \frac{A}{z-4} + \frac{B}{z-2}$$

$$\frac{7}{z-3} = A(z-2) + B(z-4)$$
when $z = 2: -1 = A(0) + B(-2) \longrightarrow B = \frac{1}{2}$

$$z = 4: 1 = A(2) + B(0) \longrightarrow A = \frac{1}{2}$$

$$F[z] = \frac{\frac{1}{2}z}{z-4} + \frac{\frac{1}{2}z}{z-2}$$

$$f[k] = \frac{1}{2}[(4)^{k} + (2)^{k}] u[k]$$