Ma trận của ánh xạ tuyến tính

Nguyễn Hoàng Thạch nhthach@math.ac.vn

19/05/2020

Tóm tắt

Ma trận của ánh xạ tuyến tính

Ma trận đồng dạng

Tóm tắt

Ma trận của ánh xạ tuyến tính

Ma trận đồng dạng

Ma trận chính tắc

Xét ánh xạ tuyến tính $T: \mathbb{R}^n \to \mathbb{R}^m$. Gọi $B = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ và $B' = \{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_m\}$ tương ứng là các cơ sở chính tắc của \mathbb{R}^n và \mathbb{R}^m .

Định nghĩa

Ma trận chính tắc của T là ma trận $A \in M_{m,n}$ gồm n cột $T(\mathbf{e}_1), T(\mathbf{e}_2), \ldots, T(\mathbf{e}_n)$. Cụ thể, $A = (a_{ij})$ sao cho

$$T(\mathbf{e}_j) = \left(egin{array}{c} a_{1i} \ a_{2i} \ dots \ a_{mi} \end{array}
ight) \, ,$$

 $v\'{o}i \ moi \ j = 1, 2, ..., n.$

Nhận xét: Nếu A là ma trận chính tắc của ánh xạ tuyến tính $T: \mathbb{R}^n \to \mathbb{R}^m$ thì với mọi $\mathbf{v} \in \mathbb{R}^n$, $T(\mathbf{v}) = A\mathbf{v}$

Ma trận của ánh xạ tuyến tính

Thí dụ: $T: \mathbb{R}^3 \to \mathbb{R}^2$ sao cho T(x, y, z) = (x - 2y, 2x + y)

Ta có:

$$T(\mathbf{e}_1) = \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \,, \, T(\mathbf{e}_2) = \left(\begin{array}{c} -2 \\ 1 \end{array} \right) \,, \, T(\mathbf{e}_3) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \,,$$

do đó ma trận chính tắc của T là:

$$\left(\begin{array}{ccc} 1 & -2 & 0 \\ 2 & 1 & 0 \end{array}\right).$$

Hợp thành của hai ánh xạ tuyến tính

Định nghĩa

Cho $T_1: \mathbb{R}^n \to \mathbb{R}^m$ và $T_2: \mathbb{R}^m \to \mathbb{R}^p$ là các ánh xạ tuyến tính. Ánh xạ hợp thành của T_1 và T_2 , ký hiệu là $T_2 \circ T_1$, là một ánh xạ $\mathbb{R}^n \to R_p$ được định nghĩa bởi

$$(T_2 \circ T_1)(\mathbf{v}) = T_2(T_1(\mathbf{v})).$$

Định lý

Nếu T_1 và T_2 là các ánh xạ tuyến tính thì $T_2 \circ T_1$ cũng là một ánh xạ tuyến tính. Nếu A_1 và A_2 là các ma trận chính tắc của T_1 và T_2 thì ma trận chính tắc của $T_2 \circ T_1$ là A_2A_1 .

Thí dụ:
$$T_1: \mathbb{R}^3 \to \mathbb{R}^3$$
, $T_1(x, y, z) = (2x + y, 0, x + z)$, $T_2: \mathbb{R}^3 \to \mathbb{R}^3$, $T_2(x, y, z) = (x - y, z, y)$. $(T_2 \circ T_1)(x, y, z) = (2x + y, x + z, 0)$ $(T_1 \circ T_2)(x, y, z) = (2x - 2y + z, 0, x)$

Ánh xạ tuyến tính khả nghịch

Định nghĩa

Nếu các ánh xạ tuyến tính $T_1:\mathbb{R}^n\to\mathbb{R}^n$ và $T_2:\mathbb{R}^n\to\mathbb{R}^n$ thỏa mãn $T_2\circ T_1=T_1\circ T_2=id$ thì ta nói rằng T_1 khả nghịch và T_2 là ánh xạ nghịch đảo của T_1 .

Nhận xét:

- Nếu $T: \mathbb{R}^n \to \mathbb{R}^m$ khả nghịch thì m = n.
- Nếu T là một ánh xạ tuyến tính khả nghịch thì ánh xạ nghịch đảo của nó là duy nhất và được ký hiệu là T^{-1} .

Định lý

Cho ánh xạ tuyến tính $T:\mathbb{R}^n \to \mathbb{R}^n$ với ma trận chính tắc A. Các khẳng định sau là tương đương:

- T là khả nghịch.
- T là một đẳng cấu.
- A là khả nghịch.

Hơn nữa, nếu T là khả nghịch thì ma trận chính tắc của T^{-1} là A^{-1} .

Ánh xạ tuyến tính khả nghịch

Thí dụ:
$$T:\mathbb{R}^3\to\mathbb{R}^3$$
 sao cho $T(x,y,z)=(2x+3y+z,3x+3y+z,2x+4y+z).$ Ma trận chính tắc của T là $A=\begin{pmatrix}2&3&1\\3&3&1\\2&4&1\end{pmatrix}$. Ma trận này khả nghịch và $A^{-1}=\begin{pmatrix}-1&1&0\\-1&0&1\\6&-2&-3\end{pmatrix}$ Từ đó, T là khả nghịch và $T^{-1}(x,y,z)=(-x+y,-x+z,6x-2y-3z).$

Không gian và cơ sở bất kỳ

Cho V,W là các không gian vector hữu hạn chiều. Giả sử $B=\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ và $B'=\{\mathbf{w}_1,\ldots,\mathbf{w}_m\}$ tương ứng là cơ sở của V và W.

Định nghĩa

Ma trận của T trong cặp cơ sở B, B' là ma trận $A = (a_{ij}) \in M_{m,n}$ sao cho với mọi $j = 1, \ldots, n$:

$$\left[T(\mathbf{v}_{j})\right]_{B'} = \left(egin{array}{c} a_{1j} \ a_{2j} \ dots \ a_{mj} \end{array}
ight).$$

Mênh đề

Nếu A là ma trận của ánh xạ tuyến tính $T:V\to W$ trong cặp cơ sở B,B' thì với moi $\mathbf{v}\in V$,

$$[T(\mathbf{v})]_{B'} = A[\mathbf{v}]_B.$$

Không gian và cơ sở bất kỳ

Thí dụ:
$$T : \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x,y) = (x+y,2x-y)$. $B = \{\mathbf{u}_1, \mathbf{u}_2\} = \{(1,2), (-1,1)\}$, $B' = \{\mathbf{e}_1, \mathbf{e}_2\}$.

Ta có:

$$T(\mathbf{u}_1) = (3,0) = 3\mathbf{e}_1 + 0\mathbf{e}_2$$

 $T(\mathbf{u}_2) = (0,-3) = 0\mathbf{e}_1 - 3\mathbf{e}_2$

Từ đó, ma trận của T trong cặp cơ sở B, B' là $A = \begin{pmatrix} 3 & 0 \\ 0 & -3 \end{pmatrix}$.

Ma trận của ánh xạ hợp thành

Cho U,V,W là các không gian vector hữu hạn chiều và B,B',B'' tương ứng là cơ sở của U,V,W.

Định lý

Nếu $T_1: U \to V$ và $T_2: V \to W$ là các ánh xạ tuyến tính thì $T_2 \circ T_1$ cũng là một ánh xạ tuyến tính.

Hơn nữa, nếu A_1 là ma trận của T_1 trong cặp cơ sở B,B' và A_2 là ma trận của T_2 trong cặp cơ sở B',B'' thì A_2A_1 là ma trận của $T_2\circ T_1$ trong cặp cơ sở B,B''.

11 / 16

Ma trận của ánh xạ khả nghịch

Định nghĩa

Một ánh xạ tuyến tính $T_1: V \to V$ là khả nghịch nếu tồn tại một ánh xạ tuyến tính $T_2: V \to V$ sao cho $T_1 \circ T_2 = T_2 \circ T_1 = id$. Khi đó, T_2 được gọi là ánh xa nghịch đảo của T_1 .

Mệnh đề

Nếu $T:V\to V$ là khả nghịch thì ánh xạ nghịch đảo của nó là duy nhất. Khi đó, ánh xạ nghịch đảo của T được ký hiệu là T^{-1} .

Định lý

Cho ánh xạ tuyến tính $T:V\to V$ với ma trận A trong cơ sở B. Các khẳng định sau là tương đương:

- 1 T là khả nghịch.
- T là một đẳng cấu.
- A là khả nghịch.

Hơn nữa, nếu T là khả nghịch thì ma trận của T^{-1} trong cơ sở B là A^{-1} .

Tóm tắt

Ma trận của ánh xạ tuyến tính

Ma trận đồng dạng

Chuyển cơ sở

Cho V là một không gian tuyến tính hữu hạn chiều, B và B' là hai cơ sở của V và $T:V\to V$ là một ánh xạ tuyến tính.

Gọi A (tương ứng, A') là ma trận của T trong cơ sở B (tương ứng, B'). Gọi P là ma trận chuyển cơ sở từ B sang B'.

Định lý

$$A' = P^{-1}AP$$
.

Chứng minh: Với mọi $\mathbf{v} \in V$, ta có $[T(\mathbf{v})]_B = A[\mathbf{v}]_B$; $[T(\mathbf{v})]_{B'} = A'[\mathbf{v}]_{B'}$; $[\mathbf{v}]_B = P[\mathbf{v}]_{B'}$; $[T(\mathbf{v})]_{B'} = P^{-1}[T(\mathbf{v})]_B$. Kết hợp lại:

$$T(\mathbf{v})_{B'} = P^{-1} [T(\mathbf{v})]_B = P^{-1} A [\mathbf{v}]_B = P^{-1} A P [\mathbf{v}]_{B'}$$
.

Suy ra $P^{-1}AP$ cũng là ma trận của T trong cơ sở B', do đó $P^{-1}AP = A'$.

Chuyển cơ sở

Thí dụ: $T : \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (2x - 2y, -x + 3y), B là cơ sở chính tắc và $B' = \{(1,0),(1,1)\}$.

Ta có
$$A = \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix}$$
, $P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $P^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$
Từ đó $A' = P^{-1}AP = \begin{pmatrix} 3 & -2 \\ -1 & 2 \end{pmatrix}$

Ma trận đồng dạng

Định nghĩa

Hai ma trận vuông cấp n A và A' được gọi là đồng dạng với nhau nếu tồn tại một ma trận khả nghịch P (cấp n) sao cho $A' = P^{-1}AP$.

Định lý

Cho các ma trận vuông cùng cấp A, B, C. Khi đó:

- A đồng dạng với chính nó.
- Nếu A đồng dạng với B thì B đồng dạng với A.
- Nếu A đồng dạng với B và B đồng dạng với C thì A đồng dạng với C.

Nhận xét: Hai ma trận của cùng một ánh xạ tuyến tính trong hai cơ sở khác nhau là hai ma trận đồng dạng với nhau.