European Vanilla Call and Put Options

Generated by Doxygen 1.9.7

1 Namespace Index	1
1.1 Namespace List	1
2 Class Index	3
2.1 Class List	3
3 File Index	5
3.1 File List	5
4 Namespace Documentation	7
4.1 std_norm Namespace Reference	7
4.1.1 Function Documentation	7
4.1.1.1 cdf()	7
4.1.1.2 pdf()	8
4.1.2 Variable Documentation	8
4.1.2.1 norm_coeff	8
5 Class Documentation	9
5.1 EuropeanVanillaOption Class Reference	9
5.1.1 Constructor & Destructor Documentation	10
5.1.1.1 EuropeanVanillaOption() [1/2]	10
5.1.1.2 EuropeanVanillaOption() [2/2]	10
5.1.2 Member Function Documentation	10
5.1.2.1 calc_d_()	10
5.1.2.2 callPrice()	11
5.1.2.3 putPrice()	11
5.1.3 Member Data Documentation	11
5.1.3.1 d_1	11
5.1.3.2 d_2	11
5.1.3.3 K	11
5.1.3.4 r	12
5.1.3.5 S	12
5.1.3.6 sigma	12
5.1.3.7 T	12
6 File Documentation	13
6.1 src/eur_van_opt.hpp File Reference	13
6.1.1 Detailed Description	13
6.2 src/std_norm.hpp File Reference	14
6.2.1 Detailed Description	14
Index	15

Namespace Index

1	.1	1 1	Vа	m	29	na	ce	Ιi	ist
•	• '		14	•••	CO	μu	CC		3

lere is a list of all name	spaces with b	rief descrip	otions:		
std norm				 	

2 Namespace Index

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:	
EuropeanVanillaOption	g

4 Class Index

File Index

3.1 File List

Here is a list of all files with brief descriptions:

src/eur_van_opt.hpp	
European Vanilla Call and Put Options implementation	13
src/std_norm.hpp	
Standard normal distribution basic functions implementation	14

6 File Index

Namespace Documentation

4.1 std_norm Namespace Reference

Functions

```
• double pdf (double x) 
 Probability density function (PDF) for \mathcal{N}(0,1):
• double cdf (double x) 
 Cumulative distribution function (CDF) for \mathcal{N}(0,1):
```

Variables

• const auto norm_coeff = 1.0 / std::pow(2.0 * M_PI, 0.5)

4.1.1 Function Documentation

4.1.1.1 cdf()

```
double std_norm::cdf ( double x )
```

Cumulative distribution function (CDF) for $\mathcal{N}(0,1)$:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.$$

The definite integral calculation is adapted from Michael Halls-Moore. C++ for Quantitative Finance, 2010 which in turn is an adaptation from Mark S. Joshi. C++ Design Patterns and Derivatives Pricing, 2nd Ed. Cambridge University Press, 2008.

Parameters

Returns

double

References pdf().

Referenced by EuropeanVanillaOption::callPrice(), and EuropeanVanillaOption::putPrice().

4.1.1.2 pdf()

```
double std_norm::pdf ( double x )
```

Probability density function (PDF) for $\mathcal{N}(0,1)$:

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Parameters

Returns

double

References norm_coeff.

Referenced by cdf().

4.1.2 Variable Documentation

4.1.2.1 norm_coeff

```
const auto std_norm::norm_coeff = 1.0 / std::pow(2.0 * M_PI, 0.5)
```

Referenced by pdf().

Class Documentation

5.1 EuropeanVanillaOption Class Reference

```
#include <eur_van_opt.hpp>
```

Public Member Functions

• EuropeanVanillaOption ()

Default constructor a new European Vanilla Option object.

• EuropeanVanillaOption (const double &K, const double &r, const double &T, const double &S, const double &sigma)

Parametric constructor of a new European Vanilla Option object.

• double callPrice () const

Calculate Call option price:

• double putPrice () const

Calculate Put option price:

Private Member Functions

• void calc_d_ ()

Calculate intermediate variables:

Private Attributes

- double K
- double r_
- double T_
- double S_
- double sigma_
- double d_1_
- double d_2_

10 Class Documentation

5.1.1 Constructor & Destructor Documentation

5.1.1.1 EuropeanVanillaOption() [1/2]

```
EuropeanVanillaOption::EuropeanVanillaOption ( ) [inline]
```

Default constructor a new European Vanilla Option object.

References calc_d_().

5.1.1.2 EuropeanVanillaOption() [2/2]

```
EuropeanVanillaOption::EuropeanVanillaOption ( const double & K, const double & r, const double & T, const double & S, const double & S, const double & S, const double & S [inline]
```

Parametric constructor of a new European Vanilla Option object.

Parameters

K	Strike price of the option
r	Risk-free interest rate
T	Time to maturity (in years)
S	Current price of the underlying asset
sigma	Volatility of the underlying asset's returns

References calc_d_().

5.1.2 Member Function Documentation

5.1.2.1 calc_d_()

```
void EuropeanVanillaOption::calc_d_ ( ) [inline], [private]
```

Calculate intermediate variables:

 $d_1 = \frac{ln(S/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}, \text{ represents a standardized measure of how far the current price S is from the strike price K after accounting for the time to maturity, risk-free rate, and volatility.}$

 $d_2 = d_1 - \sigma \sqrt{T}$, reflects the uncertainty (volatility) over the time to maturity.

```
References d_1_, d_2_, K_, r_, S_, sigma_, and T_.
```

Referenced by EuropeanVanillaOption(), and EuropeanVanillaOption().

5.1.2.2 callPrice()

double EuropeanVanillaOption::callPrice () const [inline]

Calculate Call option price:

$$C(S) = SN(d_1) - Ke^{-rT}N(d_2)$$
, where $N = CDF_{\mathcal{N}(0,1)}$.

Returns

double

References std_norm::cdf(), d_1_, d_2_, K_, r_, S_, and T_.

5.1.2.3 putPrice()

double EuropeanVanillaOption::putPrice () const [inline]

Calculate Put option price:

$$P(S) = Ke^{-rT}N(-d_2) - SN(-d_1)$$
, where $N = CDF_{\mathcal{N}(0,1)}$.

Returns

double

References std_norm::cdf(), d_1_, d_2_, K_, r_, S_, and T_.

5.1.3 Member Data Documentation

5.1.3.1 d_1_

double EuropeanVanillaOption::d_1_ [private]

Referenced by calc_d_(), callPrice(), and putPrice().

5.1.3.2 d_2_

double EuropeanVanillaOption::d_2_ [private]

Referenced by calc_d_(), callPrice(), and putPrice().

5.1.3.3 K_

double EuropeanVanillaOption::K_ [private]

Referenced by calc_d_(), callPrice(), and putPrice().

12 Class Documentation

```
5.1.3.4 r_
double EuropeanVanillaOption::r_ [private]
Referenced by calc_d_(), callPrice(), and putPrice().

5.1.3.5 S_
double EuropeanVanillaOption::S_ [private]
Referenced by calc_d_(), callPrice(), and putPrice().

5.1.3.6 sigma_
double EuropeanVanillaOption::sigma_ [private]
Referenced by calc_d_().

5.1.3.7 T_
double EuropeanVanillaOption::T_ [private]
```

Referenced by calc_d_(), callPrice(), and putPrice().

The documentation for this class was generated from the following file:

src/eur_van_opt.hpp

File Documentation

6.1 src/eur_van_opt.hpp File Reference

European Vanilla Call and Put Options implementation.

```
#include "std_norm.hpp"
```

Classes

• class EuropeanVanillaOption

6.1.1 Detailed Description

European Vanilla Call and Put Options implementation.

Author

Andrei Batyrov

Version

0.1

Date

2024-12-01

Copyright

Copyright (c) 2024

14 File Documentation

6.2 src/std_norm.hpp File Reference

Standard normal distribution basic functions implementation.

```
#include <cmath>
```

Namespaces

namespace std_norm

Functions

```
• double std_norm::pdf (double x) 
 Probability density function (PDF) for \mathcal{N}(0,1):
• double std_norm::cdf (double x) 
 Cumulative distribution function (CDF) for \mathcal{N}(0,1):
```

Variables

• const auto std_norm::norm_coeff = 1.0 / std::pow(2.0 * M_PI, 0.5)

6.2.1 Detailed Description

Standard normal distribution basic functions implementation.

Author

Andrei Batyrov

Version

0.1

Date

2024-12-01

Copyright

Copyright (c) 2024

Index

```
calc_d_
     EuropeanVanillaOption, 10
     EuropeanVanillaOption, 10
cdf
     std_norm, 7
d_1_
     EuropeanVanillaOption, 11
d_2_
     EuropeanVanillaOption, 11
EuropeanVanillaOption, 9
     calc_d_, 10
     callPrice, 10
     d_1_, 11
     d_2_, 11
     EuropeanVanillaOption, 10
     K, 11
     putPrice, 11
     r_, 11
     S_, 12
     sigma_, 12
     T_, 12
\mathsf{K}_{-}
     EuropeanVanillaOption, 11
norm_coeff
     std_norm, 8
pdf
     std_norm, 8
putPrice
     EuropeanVanillaOption, 11
r_
     EuropeanVanillaOption, 11
S_{\underline{\phantom{a}}}
     EuropeanVanillaOption, 12
sigma_
     EuropeanVanillaOption, 12
src/eur_van_opt.hpp, 13
src/std_norm.hpp, 14
std_norm, 7
     cdf, 7
     norm_coeff, 8
     pdf, 8
\mathsf{T}_{-}
     EuropeanVanillaOption, 12
```