Hash Table Collision Exercises

Similar to the first three questions on Homework 6

Quadratic Probing

0	
1	
2	
3	3
4	
5	5
6	
7	
8	
9	
10	
11	
12	
13	
14	14

- Using Quadratic Probing, insert 21, 25, 18, 76, 36, and 12 into the hash table in the given order
- Then, search and remove 36 from the table
- Reminder:
 - Quadratic probing uses the following formula to determine an item's placement in the hash table
 - $(H + c1 * i + c2 * i^2)$ % (tablesize)
 - H is the result of the hash function
 - i starts out at 0 and increments by 1 for each collision encountered when trying to insert the item into the table

0	
1	
2	
3	3
4	
5	5
6	
7	
8	
9	
10	
11	
12	
13	
14	14

• Insert 21 into the hash table

• Find bucket to insert into:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(6 + 1 * 0 + 1 * 0^{2}) \% 15$
 $(6 + 0 + 0) \% 15$
 $6 \% 15$

0	
1	
2	
3	3
4	
5	5
6	21
7	
8	
9	
10	
11	
12	
13	
14	14

- Insert 21 into the hash table
- h(21) = 21 % 15 = 6
- Find bucket to insert into:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(6 + 1 * 0 + 1 * 0^{2}) \% 15$
 $(6 + 0 + 0) \% 15$
 $6 \% 15$

- So, we will try inserting into bucket 6
- Bucket 6 is empty, so we can insert 21 in it
- No collisions

0	
1	
2	
3	3
4	
5	5
6	21
7	
8	
9	
10	
11	
12	
13	
14	14
	•

- Insert 25 into the hash table
- h(25) = 25 % 15 = 10
- Find bucket to insert into:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(10 + 1 * 0 + 1 * 0^{2}) \% 15$
 $(10 + 0 + 0) \% 15$
 $10 \% 15$
 10

0	
1	
2	
3	3
4	
5	5
6	21
7	
8	
9	
10	25
11	
12	
13	
14	14

- Insert 25 into the hash table
- h(25) = 25 % 15 = 10
- Find bucket to insert into:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(10 + 1 * 0 + 1 * 0^{2}) \% 15$
 $(10 + 0 + 0) \% 15$
 $10 \% 15$
 10

- So, we will try inserting into bucket 10
- Bucket 10 is empty, so we can insert 25 in it
- No collisions

0	
1	
2	
3	3
4	
5	5
6	21
7	
8	
9	
10	25
11	
12	
13	
14	14

- Insert 18 into the hash table
- h(18) = 18 % 15 = 3
- Find bucket to insert into:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(3 + 1 * 0 + 1 * 0^{2}) \% 15$
 $(3 + 0 + 0) \% 15$
 $3 \% 15$
 3

0	
1	
2	
3	3
4	
5	5
6	21
7	
8	
9	
10	25
11	
12	
13	
14	14

- Insert 18 into the hash table
- h(18) = 18 % 15 = 3
- Find bucket to insert into:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(3 + 1 * 0 + 1 * 0^{2}) \% 15$
 $(3 + 0 + 0) \% 15$
 $3 \% 15$
 3

- So, we will try inserting into bucket 3
- There is already an item in bucket 3
- So, we must handle the collision using Quadratic Probing

0	
1	
2	
3	3
4	
5	5
6	21
7	
8	
9	
10	25
11	
12	
13	
14	14

• Increment *i* by 1 and find next bucket to insert into:

$$(H + c1 * i + c2 * i^{2})$$
 % (tablesize)
(3 + 1 * 1 + 1 * 1²) % 15
(3 + 1 + 1) % 15
5 % 15

0	
1	
2	
3	3
4	
5	5
6	21
7	
8	
9	
10	25
11	
12	
13	
14	14

• Increment *i* by 1 and find next bucket to insert into:

$$(H + c1 * i + c2 * i^{2})$$
 % (tablesize)
(3 + 1 * 1 + 1 * 1²) % 15
(3 + 1 + 1) % 15
5 % 15

- So, we will try inserting into bucket 5
- There is already an item in bucket 5
- So, we must handle the collision using Quadratic Probing

0	
1	
2	
3	3
4	
5	5
6	21
7	
8	
9	
10	25
11	
12	
13	
14	14

• Increment *i* by 1 and find next bucket to insert into:

$$(H + c1 * i + c2 * i^{2})$$
 % (tablesize)
(3 + 1 * 2 + 1 * 2²) % 15
(3 + 2 + 4) % 15
9 % 15

0	
1	
2	
3	3
4	
5	5
6	21
7	
8	
9	18
10	25
11	
12	
13	
14	14

• Increment *i* by 1 and find next bucket to insert into:

$$(H + c1 * i + c2 * i^{2})$$
 % (tablesize)
(3 + 1 * 2 + 1 * 2²) % 15
(3 + 2 + 4) % 15
9 % 15

- So, we will try inserting into bucket
- Bucket 9 is empty, so we insert 18 in it

0	
1	
2	
3	3
4	
5	5
6	21
7	
8	
9	18
10	25
11	
12	
13	
14	14

- Insert 76 into the hash table
- h(76) = 76 % 15 = 1
- Find bucket to insert into:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(1 + 1 * 0 + 1 * 0^{2}) \% 15$
 $(1 + 0 + 0) \% 15$
 $1 \% 15$

76
3
5
21
18
25
14

- Insert 76 into the hash table
- h(76) = 76 % 15 = 1
- Find bucket to insert into:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(1 + 1 * 0 + 1 * 0^{2}) \% 15$
 $(1 + 0 + 0) \% 15$
 $1 \% 15$

- So, we will try inserting into bucket 1
- Bucket 1 is empty, so we insert 76 into it
- No collisions

0	
1	76
2	
3	3
4	
5	5
6	21
7	
8	
9	18
10	25
11	
12	
13	
14	14

- Insert 36 into the hash table
- h(36) = 36 % 15 = 6
- Find bucket to insert into:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(6 + 1 * 0 + 1 * 0^{2}) \% 15$
 $(6 + 0 + 0) \% 15$
 $6 \% 15$

0	
1	76
2	
3	3
4	
5	5
6	21
7	
8	
9	18
10	25
11	
12	
13	
14	14

- Insert 36 into the hash table
- h(36) = 36 % 15 = 6
- Find bucket to insert into:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(6 + 1 * 0 + 1 * 0^{2}) \% 15$
 $(6 + 0 + 0) \% 15$
 $6 \% 15$

- So, we will try inserting into bucket 6
- There is already an item in bucket 5
- So, we must handle the collision using Quadratic Probing

0	
1	76
2	
3	3
4	
5	5
6	21
7	
8	
9	18
10	25
11	
12	
13	
14	14

• Increment i by 1 and find next bucket to insert into:

$$(H + c1 * i + c2 * i^{2})$$
 % (tablesize)
 $(6 + 1 * 1 + 1 * 1^{2})$ % 15
 $(6 + 1 + 1)$ % 15
 8 % 15
 8

0	
1	76
2	
3	3
4	
5	5
6	21
7	
8	36
9	18
10	25
11	
12	
13	
14	14

Increment i by 1 and find next bucket to insert into:

$$(H + c1 * i + c2 * i^{2})$$
 % (tablesize)
 $(6 + 1 * 1 + 1 * 1^{2})$ % 15
 $(6 + 1 + 1)$ % 15
 8 % 15
 8

- So, we will try inserting into bucket
- Bucket 8 is empty, so we insert 36 into it

0	
1	76
2	
3	3
4	
5	5
6	21
7	
8	36
9	18
10	25
11	
12	
13	
14	14

- Insert 12 into the hash table
- h(12) = 12 % 15 = 12
- Find bucket to insert into:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(12 + 1 * 0 + 1 * 0^{2}) \% 15$
 $(12 + 0 + 0) \% 15$
 $12 \% 15$
 12

0	
1	76
2	
3	3
4	
5	5
6	21
7	
8	36
9	18
10	25
11	
12	12
13	
14	14

- Insert 12 into the hash table
- h(12) = 12 % 15 = 12
- Find bucket to insert into:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(12 + 1 * 0 + 1 * 0^{2}) \% 15$
 $(12 + 0 + 0) \% 15$
 $12 \% 15$
 12

- So, we will try inserting into bucket 12
- Bucket 12 is empty, so we insert 12 into it
- No collisions

0	
1	76
2	
3	3
4	
5	5
6	21
7	
8	36
9	18
10	25
11	
12	12
13	
14	14

- Search and remove 36 from the table
- h(36) = 36 % 15 = 6
- Find bucket to remove from:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(6 + 1 * 0 + 1 * 0^{2}) \% 15$
 $(6 + 0 + 0) \% 15$
 $6 \% 15$

• So, we will check bucket 6 to see if 36 is in it

0	
1	76
2	
3	3
4	
5	5
6	21
7	
8	36
9	18
10	25
11	
12	12
13	
14	14

- Search and remove 36 from the table
- h(36) = 36 % 15 = 6
- Find bucket to remove from:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(6 + 1 * 0 + 1 * 0^{2}) \% 15$
 $(6 + 0 + 0) \% 15$
 $6 \% 15$

- So, we will check bucket 6 to see if 36 is in it
- Bucket 6 is non-empty and does not contain 36
- So, search for next place 36 could be with Quadratic Probing

0	
1	76
2	
3	3
4	
5	5
6	21
7	
8	36
9	18
10	25
11	
12	12
13	
14	14

Increment i by 1 and find next bucket to remove from:

$$(H + c1 * i + c2 * i^{2}) \% (tablesize)$$

 $(6 + 1 * 1 + 1 * 1^{2}) \% 15$
 $(6 + 1 + 1) \% 15$
 $8 \% 15$
 8

• So, we will check bucket 8 to see if 36 is in it

0	
1	76
2	
3	3
4	
5	5
6	21
7	
8	
9	18
10	25
11	
12	12
13	
14	14

Increment i by 1 and find next bucket to remove from:

$$(H + c1 * i + c2 * i^{2})$$
 % (tablesize)
 $(6 + 1 * 1 + 1 * 1^{2})$ % 15
 $(6 + 1 + 1)$ % 15
 8 % 15
 8

- So, we will check bucket 8 to see if 36 is in it
- 36 is in bucket 8
- Remove the entry in bucket 8
- Mark bucket 8 as empty-after-removal

Double Hashing

0	
1	
2	
3	
4	
5	5
6	
7	7
8	
9	
10	10
11	
12	
13	
14	

- Using Double Hashing, insert 4, 12, 21, 17, and 31 into the hash table in the given order
- Then, search and remove 17 from the table
- Reminder:
 - Double hashing uses the following formula to determine an item's placement in the hash table
 - (h1(key) + i * h2(key)) % (tablesize)
 - i starts out at 0 and increments by 1 for each collision encountered when trying to insert the item into the table

0	
0	
1	
2	
3	
4	
5	5
6	
7	7
8	
9	
10	10
11	
12	
13	
14	

Insert 4 into the hash table

•
$$h2(4) = 4 \% 3 = 1$$

• Find bucket to insert into:

$$(h1(key) + i * h2(key)) \% (tablesize)$$

 $(h1(4) + 0 * h2(4)) \% 15$
 $(4 + 0) \% 15$
 $4 \% 15$

4
5
7
10

- Insert 4 into the hash table
- h1(4) = 4 % 10 = 4
- h2(4) = 4 % 3 = 1
- Find bucket to insert into:

$$(h1(key) + i * h2(key)) \% (tablesize)$$

 $(h1(4) + 0 * h2(4)) \% 15$
 $(4 + 0) \% 15$
 $4 \% 15$

- So, we try inserting into bucket 4
- Bucket 4 is empty, so we can insert 4 into it
- No collisions

4
5
7
10

Insert 12 into the hash table

• Find bucket to insert into:

$$(h1(key) + i * h2(key)) \% (tablesize)$$

 $(h1(12) + 0 * h2(12)) \% 15$
 $(2 + 0) \% 15$
 $2 \% 15$
 2

0	
1	
<mark>2</mark>	12
3	
4	4
5	5
6	
7	7
8	
9	
10	10
11	
12	
13	
14	

- Insert 12 into the hash table
- h1(12) = 12 % 10 = 2
- h2(12) = 12 % 3 = 0
- Find bucket to insert into:

$$(h1(key) + i * h2(key)) \% (tablesize)$$

 $(h1(12) + 0 * h2(12)) \% 15$
 $(2 + 0) \% 15$
 $2 \% 15$
 2

- So, we try inserting into bucket 2
- Bucket 2 is empty, so we can insert 12 into it
- No collisions

0	
1	
2	12
3	
4	4
5	5
6	
7	7
8	
9	
10	10
11	
12	
13	
14	

Insert 21 into the hash table

• Find bucket to insert into:

$$(h1(key) + i * h2(key)) \% (tablesize)$$

 $(h1(21) + 0 * h2(21)) \% 15$
 $(1+0) \% 15$
 $1 \% 15$

0	
1	21
2	12
3	
4	4
5	5
6	
7	7
8	
9	
10	10
11	
12	
13	
14	

Insert 21 into the hash table

Find bucket to insert into:

$$(h1(key) + i * h2(key)) \% (tablesize)$$

 $(h1(21) + 0 * h2(21)) \% 15$
 $(1+0) \% 15$
 $1 \% 15$

- So, we try inserting into bucket 1
- Bucket 1 is empty, so we can insert 21 into it
- No collisions

0	
1	21
2	12
3	
4	4
5	5
6	
7	7
8	
9	
10	10
11	
12	
13	
14	

Insert 17 into the hash table

• Find bucket to insert into:

$$(h1(key) + i * h2(key)) \% (tablesize)$$

 $(h1(17) + 0 * h2(17)) \% 15$
 $(7 + 0) \% 15$
 $7 \% 15$

0	
1	21
2	12
3	
4	4
5	5
6	
7	7
8	
9	
10	10
11	
12	
13	
14	

Insert 17 into the hash table

• Find bucket to insert into:

$$(h1(key) + i * h2(key)) \% (tablesize)$$

 $(h1(17) + 0 * h2(17)) \% 15$
 $(7 + 0) \% 15$
 $7 \% 15$

- So, we try inserting into bucket 7
- There is already an item in bucket 7
- So, we must handle the collision using Double Hashing

0	
1	21
2	12
3	
4	4
5	5
6	
7	7
8	
9	
10	10
11	
12	
13	
14	

• Increment i by 1 and find next bucket to insert into:

0	
1	21
2	12
3	
4	4
5	5
6	
7	7
8	
9	17
10	10
11	
12	
13	
14	

Increment i by 1 and find next bucket to insert into:

- So, we try inserting into bucket 9
- Bucket 9 is empty, so we can insert 17 into it

0	
1	21
2	12
3	
4	4
5	5
6	
7	7
8	
9	17
10	10
11	
12	
13	
14	

Insert 31 into the hash table

• Find bucket to insert into:

$$(h1(key) + i * h2(key)) \% (tablesize)$$

 $(h1(31) + 0 * h2(31)) \% 15$
 $(1+0) \% 15$
 $1 \% 15$

So, we try inserting into bucket 1

0	
1	21
2	12
3	
4	4
5	5
6	
7	7
8	
9	17
10	10
11	
12	
13	
14	

Insert 31 into the hash table

Find bucket to insert into:

$$(h1(key) + i * h2(key)) \% (tablesize)$$

 $(h1(31) + 0 * h2(31)) \% 15$
 $(1+0) \% 15$
 $1 \% 15$

- So, we try inserting into bucket 1
- There is already an item in bucket 1
- So, we must handle the collision using Double Hashing

0	
1	21
2	12
3	
4	4
5	5
6	
7	7
8	
9	17
10	10
11	
12	
13	
14	

• Increment i by 1 and find next bucket to insert into:

So, we try inserting into bucket 2

0	
1	21
<mark>2</mark>	12
3	
4	4
5	5
6	
7	7
8	
9	17
10	10
11	
12	
13	
14	

Increment i by 1 and find next bucket to insert into:

```
(h1(key) + i * h2(key)) % (tablesize)

(h1(31) + 1 * h2(31)) % 15

(1 + 1 * 1) % 15

(1 + 1) % 15

2 % 15
```

- So, we try inserting into bucket 2
- There is already an item in bucket 2
- So, we must handle the collision using Double Hashing

0	
1	21
2	12
<mark>3</mark>	
4	4
5	5
6	
7	7
8	
9	17
10	10
11	
12	
13	
14	

Increment i by 1 and find next bucket to insert into:

So, we try inserting into bucket 3

0	
1	21
2	12
3	31
4	4
5	5
6	
7	7
8	
9	17
10	10
11	
12	
13	
14	

• Increment i by 1 and find next bucket to insert into:

- So, we try inserting into bucket 3
- Bucket 3 is empty so we can insert 31 into it

0	
1	21
2	12
3	31
4	4
5	5
6	
7	7
8	
9	17
10	10
11	
12	
13	
14	

Search and remove 17 from the table

Find bucket to remove from:

$$(h1(key) + i * h2(key)) \% (tablesize)$$

 $(h1(17) + 0 * h2(31)) \% 15$
 $(7 + 0) \% 15$
 $7 \% 15$

• So, we will check bucket 7 to see if 17 is in it

21
12
31
4
5
7
17
10

Search and remove 17 from the table

• Find bucket to remove from:

$$(h1(key) + i * h2(key)) \% (tablesize)$$

 $(h1(17) + 0 * h2(31)) \% 15$
 $(7 + 0) \% 15$
 $7 \% 15$

- So, we will check bucket 7 to see if 17 is in it
- Bucket 7 is non-empty and does not contain 17
- So, search for next place 17 could be with Double Hashing

0	
1	21
2	12
3	31
4	4
5	5
6	
7	7
8	
9	17
10	10
11	
12	
13	
14	

• Increment i by 1 and find next bucket to remove from:

• So, we will check bucket 9 to see if 17 is in it

0	
1	21
2	12
3	31
4	4
5	5
6	
7	7
8	
9	17
10	10
11	
12	
13	
14	

Increment i by 1 and find next bucket to remove from:

- So, we will check bucket 9 to see if 17 is in it
- 17 is in bucket 9
- Remove the entry in bucket 9
- Mark bucket 9 as empty-after-removal

Linear Probing

0	
1	
2	
3	
4	
5	5
6	
7	7
8	
9	
10	10
11	
12	
13	
14	

- Using Linear Probing, insert 6, 25, and 17 into the hash table in the given order
- Then, search and remove 10 from the table
- Then insert 12 and 34 into the hash table in the given order
- Then search and remove 25 from the table
- Reminder:
 - If a collision occurs and Linear Probing is used as the collision resolution method, subsequent buckets will be checked until an empty bucket is found for the insert to occur
 - The search starts from the bucket the collision occurred in

0	
1	
2	
3	
4	
5	5
<mark>6</mark>	
7	7
8	
9	
10	10
11	
12	
13	
14	

- Insert 6 into the hash table
- h(6) = 6 % 15 = 6
- So, we will try inserting into bucket 6

5
6
7
10

- Insert 6 into the hash table
- h(6) = 6 % 15 = 6
- So, we will try inserting into bucket 6
- Bucket 6 is empty, so we can insert 6 into it

0	
1	
2	
3	
4	
5	5
6	6
7	7
8	
9	
<mark>10</mark>	10
11	
12	
13	
14	

- Insert 25 into the hash table
- h(25) = 25 % 15 = 10
- So, we will try inserting into bucket 10

0	
1	
2	
3	
4	
5	5
6	6
7	7
8	
9	
<mark>10</mark>	10
11	
12	
13	
14	

- Insert 25 into the hash table
- h(25) = 25 % 15 = 10
- So, we will try inserting into bucket 10
- There is already an item in bucket 10
- To resolve this collision, check for the next empty bucket

0	
1	
2	
3	
4	
5	5
6	6
7	7
8	
9	
10	10
<mark>11</mark>	
12	
13	
14	

- Insert 25 into the hash table
- h(25) = 25 % 15 = 10
- So, we will try inserting into bucket 10
- There is already an item in bucket 10
- To resolve this collision, check for the next empty bucket
- In this case, it is 11

0	
1	
2	
3	
4	
5	5
6	6
7	7
8	
9	
10	10
<mark>11</mark>	25
12	
13	
14	

- Insert 25 into the hash table
- h(25) = 25 % 15 = 10
- So, we will try inserting into bucket 10
- There is already an item in bucket 10
- To resolve this collision, check for the next empty bucket
- In this case, it is 11
- So, we can insert 25 into bucket 11

0	
1	
<mark>2</mark>	
3	
4	
5	5
6	6
7	7
8	
9	
10	10
11	25
12	
13	
14	

- Insert 17 into the hash table
- h(17) = 17 % 15 = 2
- So, we will try inserting into bucket 2

0	
1	
2	17
3	
4	
5	5
6	6
7	7
8	
9	
10	10
11	25
12	
13	
14	

- Insert 17 into the hash table
- h(17) = 17 % 15 = 2
- So, we will try inserting into bucket 2
- Bucket 2 is empty, so we can insert 17 into it

0	
1	
2	17
3	
4	
5	5
6	6
7	7
8	
9	
<mark>10</mark>	10
11	25
12	
13	
14	

- Search and remove 10 from the hash table
- h(10) = 10 % 15 = 10
- So, we will check bucket 10 and see if 10 is in it

0	
1	
2	17
3	
4	
5	5
6	6
7	7
8	
9	
<mark>10</mark>	
11	25
12	
13	
14	
-	

- Search and remove 10 from the hash table
- h(10) = 10 % 15 = 10
- So, we will check bucket 10 and see if 10 is in it
- 10 is in bucket 10, so we can remove the entry
- Mark bucket 10 as empty-after-removal

0	
1	
2	17
3	
4	
5	5
6	6
7	7
8	
9	
10	
11	25
<mark>12</mark>	
13	
14	

- Insert 12 into the hash table
- h(12) = 12 % 15 = 12
- So, we will try inserting into bucket 12

0	
1	
2	17
3	
4	
5	5
6	6
7	7
8	
9	
10	
11	25
<mark>12</mark>	12
13	
14	

- Insert 12 into the hash table
- h(12) = 12 % 15 = 12
- So, we will try inserting into bucket 12
- Bucket 12 is empty, so we can insert 12 into it

0	
1	
2	17
3	
4	
5	5
6	6
7	7
8	
9	
10	
11	25
12	12
13	
14	

- Insert 34 into the hash table
- h(34) = 34 % 15 = 4
- So, we will try inserting into bucket 4

0	
1	
2	17
3	
<mark>4</mark>	34
5	5
6	6
7	7
8	
9	
10	
11	25
12	12
13	
14	

- Insert 34 into the hash table
- h(34) = 34 % 15 = 4
- So, we will try inserting into bucket 4
- Bucket 4 is empty, so we can insert 34 into it

0	
1	
2	17
3	
4	34
5	5
6	6
7	7
8	
9	
<mark>10</mark>	
11	25
12	12
13	
14	

- Search and remove 25 from the table
- h(25) = 25 % 15 = 10
- So, we will check Bucket 10 and see if 25 is in it

0	
1	
2	17
3	
4	34
5	5
6	6
7	7
8	
9	
<mark>10</mark>	
11	25
12	12
13	
14	

- Search and remove 25 from the table
- h(25) = 25 % 15 = 10
- So, we will check Bucket 10 and see if 25 is in it
- Bucket 10 is empty but was marked empty-after-removal (from earlier)

0	
1	
2	17
3	
4	34
5	5
6	6
7	7
8	
9	
10	
<mark>11</mark>	25
12	12
13	
14	

- Search and remove 25 from the table
- h(25) = 25 % 15 = 10
- So, we will check Bucket 10 and see if 25 is in it
- Bucket 10 is empty but was marked empty-after-removal (from earlier)
- So, we check the next bucket (11) for 25

0	
1	
2	17
3	
4	34
5	5
6	6
7	7
8	
9	
10	
<mark>11</mark>	
12	12
13	
14	
	<u> </u>

- Search and remove 25 from the table
- h(25) = 25 % 15 = 10
- So, we will check Bucket 10 and see if 25 is in it
- Bucket 10 is empty but was marked empty-after-removal (from earlier)
- So, we check the next bucket (11) for 25
- 25 is in bucket 11, so we can remove the entry from the bucket
- Mark bucket 11 as empty-after-removal