Recent developments in direct labeled graphics

http://directlabels.r-forge.r-project.org

Toby Dylan Hocking toby.hocking@inria.fr

29 March 2012

Motivation: confusing legends

How to add direct labels to some common plots

Recent developments in direct labeling

Conclusions

Problem 1: legend inconsistent with data

```
library(lattice)
dens <- densityplot(~score,loci,groups=type,</pre>
  auto.key=list(space="top",columns=3),n=500,
  main="Distribution of scores by selection type")
print(dens)
                      Distribution of scores by selection type
                    Balancing
   10
   8
Density
   2
   0 -
                0.0
                                    0.5
                                                        1.0
                                     score
```

Problem 2: too many classes render legend unreadable

```
data(BodyWeight,package="nlme")
library(ggplot2)
ratplot <- ggplot(BodyWeight,aes(Time,weight,colour=Rat))+</pre>
  facet_grid(.~Diet)+
  geom_line()
print(ratplot)
                                   2
  600 -
  500
weight
                                                                    - 10
                                                                     12
  300
                                                                     13
                                                                     15
                                                                    - 14
                                  Time
```

Motivation: confusing legends

How to add direct labels to some common plots

Recent developments in direct labeling

Conclusions

The protocol I use for everyday plots in practice:

Do as many steps as needed until the plot is readable:

- 1. Make a lattice or ggplot2 plot p using colors and default legends.
- 2. Try the default direct labels: direct.label(p).
- 3. Check to see if another Positioning Method exists on http://directlabels.r-forge.r-project.org/docs/index.html then use direct.label(p,"method").
- 4. If no Positioning Methods exist you can always write your own.

Add default direct labels at the mode of each density

With 2 groups, we label the min and max points

Label a scatterplot of the iris data by species

```
set.seed(1)
irisp <- xyplot(jitter(Sepal.Length)~jitter(Petal.Length),</pre>
                     iris,groups=Species)
direct.label(irisp)
   8
itter(Sepal.Length)
   5 -
                                  jitter(Petal.Length)
```

Default direct labels for lineplots

Look up the Positioning Method on the directlabels website

Construct your own custom Positioning Method

```
rp2 <- ratplot+
  xlim(0,70)+ylim(150,650)
big.last <- list(cex=1.5, "last.qp")</pre>
direct.label(rp2, "big.last")
  600 -
  500 -
veight
400
   300
  200
                                10 20 30 40 50 60 70 0 10 20
Time
```

Direct label the LASSO path to visualize variables

```
lasso.plot <-
ggplot(path,aes(arclength,standardized.coef,colour=variable))+
  geom_line(aes(group=variable))+
  opts(title="LASSO path for prostate cancer data
calculated using the LARS")+
  xlim(0,20)
direct.label(lasso.plot)</pre>
```


Label the zero point to emphasize variable importance

Increase text size to make reading easier

Motivation: confusing legends

How to add direct labels to some common plots

Recent developments in direct labeling

Conclusions

Changes in recent versions of directlabels

directlabels version plotting package	< 2.0 lattice	< 2.0 ggplot2	$\geq 2.0 \\ \text{lattice}$	≥ 2.0 ggplot2
basic Positioning Methods	✓	✓	✓	√
smart Positioning Methods				
that avoid label collisions	\checkmark		\checkmark	\checkmark
redraw labels				
after window resize			\checkmark	\checkmark
fontface and fontfamily				
text parameters	\checkmark		\checkmark	\checkmark
label black and white plots	✓		✓	√
label aesthetics				
other than color				\checkmark

Label a scatterplot of the iris data by species

Show the grid for the search

Find a label position on a grid (grey rectangles) that is near the center of each point cloud (green dots), but does not overlap any points or other labels (black dots).

Increase text size before calculating label positions

```
rp2 <- ratplot+
  xlim(0,70)+ylim(150,650)
big.last <- list(cex=1.5, "last.qp")</pre>
direct.label(rp2, "big.last")
  600 -
  500 -
veight
400
   300
  200
                                10 20 30 40 50 60 70 0 10
Time
```

Show the label borders used in the position calculation

Label positions for lineplots are the solutions of a QP

Assume that for each text label i = 1, ..., k we have its position t_i and height h_i .

Then optimal direct labels do not overlap, and are as close as possible to the target locations:

$$\min_{b \in \mathbb{R}^k} \qquad \sum_{i=1}^k (b_i - t_i)^2 = ||b - t||^2$$
subject to $b_{i+1} > b_i + h_{i+1}/2 + h_i/2, \ \forall \ i = 1, \dots, k-1$

This is a quadratic program (QP). QPs are convex so there is a unique global minimum which corresponds to the best labels.

We can solve this using quadprog::solve.QP() and use the optimal b for the direct label positions.

Start with boxes at the end of each line

Adjust box height if desired

Apply QP solver to get optimal labels

```
direct.label(rp2,list("last.points",cex=1.5,"calc.boxes",
                         dl.trans(h=h+h/3), "calc.borders",
                         qp.labels("y","h")))
  600 -
  500 -
  300
  200 -
                              20
```

Motivation: confusing legends

How to add direct labels to some common plots

Recent developments in direct labeling

Conclusions

What directlabels is NOT

- Automatic publication-quality direct labels.
 (some manual tweaking will always be necessary)
- ▶ Optimal labels for individual points on scatterplots. (it is a bit more complicated)

Use directlabels instead of confusing legends!

- ▶ Works with lattice and ggplot2.
- Sensible defaults.
- Useful in everyday plots in practice.
- Smart Positioning Methods that avoid label collisions.
- ► Customizable: you can write your own Positioning Methods.

Future work

- ► Automatically adjust xlim/ylim so labels stay on plot region?
- Contourplot labels as in contour()?
- Label using images instead of textual factor names? Possible Google Summer of Code 2012 project: http://rwiki.sciviews.org/doku.php?id=developers:projects:gsoc2012

Petal.Length

Sepal.Length