Geometria Analítica e Vetores

Vetores no plano e no espaço: Noções básicas

Docente: $\operatorname{Prof}^{\operatorname{a}}$. $\operatorname{Dr}^{\operatorname{a}}$. Thuy Nguyen IBILCE/ UNESP São Paulo - Brasil

Estrutura da aula

- Segmentos orientados no plano e no espaço
- Vetores no plano e no espaço

Referência: BOULOS, P. e CAMARGO, I. Geometria Analítica: Um Tratamento Vetorial, 3ª edição, São Paulo: Editora Pearson.

Reta orientada - eixo: Uma reta r é orientada quando se fixa nela um sentido de percurso, considerado positivo e indicado por uma seta:

O sentido oposto é negativo. Uma reta orientada é denominada **eixo**.

Segmento orientado: um segmento orientado é determinado por um par ordenado de pontos, o primeiro é chamado de origem, o segundo é chamado de extremidade do segmento orientado.

Segmento orientado: um segmento orientado é determinado por um par ordenado de pontos, o primeiro é chamado de origem, o segundo é chamado de extremidade do segmento orientado.

Segmento nulo: um segmento nulo é aquele cuja extremidade coincide com a origem.

Segmento orientado: um segmento orientado é determinado por um par ordenado de pontos, o primeiro é chamado de origem, o segundo é chamado de extremidade do segmento orientado.

Segmento nulo: um segmento nulo é aquele cuja extremidade coincide com a origem.

Segmentos opostos: Se *AB* é um segmento orientado, o segmento orientado *BA* é oposto de *AB*:

Segmento orientado: um segmento orientado é determinado por um par ordenado de pontos, o primeiro é chamado de origem, o segundo é chamado de extremidade do segmento orientado.

Segmento nulo: um segmento nulo é aquele cuja extremidade coincide com a origem.

Segmentos opostos: Se *AB* é um segmento orientado, o segmento orientado *BA* é oposto de *AB*:

Segmento orientado: um segmento orientado é determinado por um par ordenado de pontos, o primeiro é chamado de origem, o segundo é chamado de extremidade do segmento orientado.

Segmento nulo: um segmento nulo é aquele cuja extremidade coincide com a origem.

Segmentos opostos: Se *AB* é um segmento orientado, o segmento orientado *BA* é oposto de *AB*:

Direção e sentido:

• Dois segmentos orientados não nulos *AB* e *CD* têm a mesma **direção** se as retas suportes desses segmentos são paralelas ou coincidentes.

Direção e sentido:

- Dois segmentos orientados não nulos *AB* e *CD* têm a mesma **direção** se as retas suportes desses segmentos são paralelas ou coincidentes.
- Dois segmentos orientados não nulos *AB* e *CD* têm o mesmo **sentido** se eles têm a mesma direção e o mesmo sentido.

Direção e sentido:

- Dois segmentos orientados não nulos *AB* e *CD* têm a mesma **direção** se as retas suportes desses segmentos são paralelas ou coincidentes.
- Dois segmentos orientados não nulos *AB* e *CD* têm o mesmo **sentido** se eles têm a mesma direção e o mesmo sentido.

Observação

- Obis segmentos orientados opostos têm sentidos contrários.
- Só pode comparar os sentidos de dois segmentos orientados se eles têm a mesma direção.

Direção e sentido:

- Dois segmentos orientados não nulos *AB* e *CD* têm a mesma **direção** se as retas suportes desses segmentos são paralelas ou coincidentes.
- Dois segmentos orientados não nulos *AB* e *CD* têm o mesmo **sentido** se eles têm a mesma direção e o mesmo sentido.

Observação

- Obis segmentos orientados opostos têm sentidos contrários.
- Só pode comparar os sentidos de dois segmentos orientados se eles têm a mesma direção.

Aceitação: Segmento (orientado) nulo têm a mesma direção e o mesmo sentido com qualquer outro segmento orientado.

Medida de um segmento: Fixada uma unidade de comprimento, a cada segmento orientado pode-se associar um número real não negativo, que é a medida do segmento em relação àquela unidade. A medida do segmento orientado é seu comprimento ou seu módulo.

Exemplo:

A medida do segmento orientado AB é 3.

Segmentos equipolentes: Dois segmentos orientados *AB* e *CD* são ditos **equipolentes** quando têm a mesma direção, o mesmo sentido e o mesmo comprimento.

Segmentos equipolentes: Dois segmentos orientados *AB* e *CD* são ditos **equipolentes** quando têm a mesma direção, o mesmo sentido e o mesmo comprimento.

Observação

Se dois segmentos AB e CD não pertencem à mesma reta, para que AB e CD sejam equipolentes, é necessário que AB e CD são paralelos e os comprimentos de AB e CD são iguais.

Segmentos equipolentes: Dois segmentos orientados *AB* e *CD* são ditos **equipolentes** quando têm a mesma direção, o mesmo sentido e o mesmo comprimento.

Observação

Segmentos equipolentes: Dois segmentos orientados *AB* e *CD* são ditos **equipolentes** quando têm a mesma direção, o mesmo sentido e o mesmo comprimento.

Observação

Segmentos equipolentes: Dois segmentos orientados *AB* e *CD* são ditos **equipolentes** quando têm a mesma direção, o mesmo sentido e o mesmo comprimento.

Observação

Segmentos equipolentes: Dois segmentos orientados *AB* e *CD* são ditos **equipolentes** quando têm a mesma direção, o mesmo sentido e o mesmo comprimento.

Observação

Observação

Dois segmentos nulos são sempre equipolentes.

Vetores

Vetor determinado por um segmento orientado AB é todos os segmentos orientados equipolentes a AB.

Notação

- O vetor determinado pelo segmento orientado \overrightarrow{AB} é indicado por \overrightarrow{AB} .
- ② Usamos as letras minúsculas para indicar vetores: $\vec{u}, \vec{v}, \vec{w}$, etc.

Vetor determinado por um segmento orientado AB é todos os segmentos orientados equipolentes a AB.

Notação

- O vetor determinado pelo segmento orientado \overrightarrow{AB} é indicado por \overrightarrow{AB} .
- ② Usamos as letras minúsculas para indicar vetores: $\vec{u}, \vec{v}, \vec{w}$, etc.

Observação

As características de um vetor são mesmas de um segmento orientado: módulo, a direção e o sentido.

O módulo de \vec{v} se indica por $||\vec{v}||$.

- 1 têm a mesma direção;
- têm o mesmo sentido;
- têm o mesmo comprimento.

- 1 têm a mesma direção;
- 2 têm o mesmo sentido;
- têm o mesmo comprimento.

- 1 têm a mesma direção;
- 2 têm o mesmo sentido;
- têm o mesmo comprimento.

- 1 têm a mesma direção;
- 2 têm o mesmo sentido;
- 3 têm o mesmo comprimento.

Vetor nulo: Os segmentos nulos, por serem equipolentes entre si, determinam um único vetor, chamado de vetor nulo e que é indicado por $\vec{0}$.

Vetores opostos: Dois vetores são opostos se têm

- a mesma direção;
- opostos sentidos;
- o mesmo comprimento.

Vetores opostos: Dois vetores são opostos se têm

- a mesma direção;
- opostos sentidos;
- o mesmo comprimento.

Vetor unitário: um vetor \vec{v} é dito *unitário* se $\|\vec{v}\| = 1$.

Vetor unitário: um vetor \vec{v} é dito *unitário* se $||\vec{v}|| = 1$.

Vetor unitário: um vetor \vec{v} é dito *unitário* se $||\vec{v}|| = 1$.

Vetor unitário: um vetor \vec{v} é dito *unitário* se $\|\vec{v}\| = 1$.

Vetor unitário: um vetor \vec{v} é dito *unitário* se $||\vec{v}|| = 1$.

Vetores coplanares: os vetores (o número de vetores não importa) são coplanares se possuem representantes pertencentes a um mesmo plano.

Vetores coplanares: os vetores (o número de vetores não importa) são coplanares se possuem representantes pertencentes a um mesmo plano.

Observação

- Obois vetores quaisquer são sempre coplanares.
- 2 Três vetores (no espaço) podem ser ou não coplanares.

Vetores coplanares: os vetores (o número de vetores não importa) são coplanares se possuem representantes pertencentes a um mesmo plano.

Observação

- Obois vetores quaisquer são sempre coplanares.
- 2 Três vetores (no espaço) podem ser ou não coplanares.

A partir de agora, estudamos vetores tanto no plano, quanto no espaço.

Bom estudo!!