- 70. L'équation du cercle passant par les points A(2, 3), B(5, 0) et C(0, 4)
 - est: 1. $x^2 + y^2 + 11y + 7x 60 = 0$ 4. $x^2 + y^2 - 3/2 y + 3x - 10 = 0$ 5. $x^2 + y^2 + 16 - 6x + 8 = 0$ 2. $x^2 + y^2 - 2y + 2x - 8 = 0$ (M.2004)
- $3. x^2 + y^2 16y + 6x + 8 = 0$ 71. L'équation du cercle passant par les points A(-3, 5), B(1, 3) et dont le centre est sur la droite y - x + 1 = 0 est :
 - 1. $x^2 + y^2 + 4x 4y 2 = 0$ 4. $x^2 + y^2 68 = 0$ 2. $x^2 + y^2 + 14x + 16y - 72 = 0$ 5. $x^2 + y^2 + 12x + 12y - 58 = 0$ (M.2004)
- 3. $x^2 + y^2 + 2x 8y + 12 = 0$ 72. L'équation du cercle passant par les points d'intersection des cercles $x^{2} + y^{2} - 2x - 3y + 3 = 0$ et $x^{2} + y^{2} - 3x - 4y + 2 = 0$ et dont le centre a
 - pour ordonnée 4 est 4. $x^2 + y^2 + 3x + 2y + 8 = 0$ $[. x^2 + v^2 - x - 2y + 4 = 0]$ 5. $x^2 + y^2 - 7x - 8y - 2 = 0$ 2. $x^2 + y^2 - 5x + 4y + 10 = 0$ (M.2004) $3. 2x^2 + 2y^2 - 5x - 7y + 5 = 0$
- 73. On considère les cercles d'équations : $C_1 = x^2 + y^2 + 12x + 11 = 0$; $C_2 = x^2 + y^2 - 4x - 21 = 0$ et $C_3 \equiv x^2 + y^2 - 4x + 16y + 43 = 0$. La puissance du centre radical par rapport au cercleC2 est égale à :
- 4. 13 5. 4 3. 7 2. 9 74. La longueur de la tangente menée de l'origine des axes au cercle
- d'équation $2y^2 + 2x^2 + 3y + 5x + 9 = 0$ est égale à : 1. $\frac{7\sqrt{3}}{2}$ 2. $\frac{5\sqrt{2}}{2}$ 3. $\frac{3\sqrt{2}}{2}$ 4. $\frac{13\sqrt{2}}{2}$ 5. $\frac{17\sqrt{2}}{2}$ (M.-2005)
- 75. Le rayon du cercle d'équation polaire $\rho^2 4\rho (\cos \omega \sin \omega) 17 = 0$ est égal à :
 - 2. 3 3. $2\sqrt{2}$ 5. 2 - (B-2006)
- 1. 4 76. Le cercle tangent aux droites d'équations y + x - 2 = 0 et y + x - 10 = 0

et dont le centre est sur la première bissectrice des axes a pour Coordonnées du centre et rayon : www.ecoles-rdc.net

1.
$$\left(\frac{7}{2}, \frac{7}{2}\right)$$
 et $\frac{5\sqrt{2}}{2}$
3. (3, 3) et $2\sqrt{2}$
5. (3, 3) et $\frac{5\sqrt{2}}{2}$
2. $\left(\frac{15}{4}, \frac{15}{4}\right)$ et $\frac{9\sqrt{2}}{4}$
4. (5, 5) et $4\sqrt{2}$ (M-2006)