

Networked Life

Q1 Tutorial

- CDMA
- Games
- Feasible power example

CDMA concepts and examples

A CDMA primer

- How synchronous CDMA works
- https://en.wikipedia.org/wiki/Code-division_multiple_access

Example of orthogonal codes

$$C_i \otimes C_j = 0$$
, $C_i \otimes C_i = 4$

Orthogonal: $C_i \otimes C_j = 0$

 \otimes : inner product of the bit vectors

Generation of CDMA signal

Example of encoding and decoding

we encode bits as voltage values:

bit 0: +1v

bit 1: -1v

pointwise product of code×data

inner product ⊗ of code ⊗ data

Case1: Both senders send

Step	Encode sender0	Encode sender1
0	code0 = (1, -1), data0 = (1, 0, 1, 1)	code1 = (1, 1), data1 = (0, 0, 1, 1)
1	encode0 = $2(1, 0, 1, 1) - (1, 1, 1, 1) = (1, -1, 1, 1)$	encode1 = $2(0, 0, 1, 1) - (1, 1, 1, 1) = (-1, -1, 1, 1)$
2	signal0 = encode0 ⊗ code0	signal1 = encode1 ⊗ code1
	$=(1,-1,1,1)\otimes(1,-1)$	$=(-1,-1,1,1)\otimes(1,1)$
	= (1, -1, -1, 1, 1, -1, 1, -1)	= (-1, -1, -1, -1, 1, 1, 1)

Signal = signal0 + signal1 = (0, -2, -2, 0, 2, 0, 2, 0)

Step	Decode sender0	Decode sender1		
0	code0 = (1, -1), signal = (0, -2, -2, 0, 2, 0, 2, 0)	code1 = (1, 1), signal = (0, -2, -2, 0, 2, 0, 2, 0)		
1	decode0 = pattern.vector0	decode1 = pattern.vector1		
2	decode0 = ((0, -2), (-2, 0), (2, 0), (2, 0)).(1, -1)	decode1 = ((0, -2), (-2, 0), (2, 0), (2, 0)).(1, 1)		
3	decode0 = ((0 + 2), (-2 + 0), (2 + 0), (2 + 0))	decode1 = ((0-2), (-2+0), (2+0), (2+0))		
4	data0=(2, -2, 2, 2), meaning (1, 0, 1, 1)	data1=(-2, -2, 2, 2), meaning (0, 0, 1, 1)		

Case2: only sender0 sends

Step	Encode sender0		
0	code0 = (1, -1), data0 = (1, 0, 1, 1)		
1	encode0 = $2(1, 0, 1, 1) - (1, 1, 1, 1) = (1, -1, 1, 1)$		
2	signal0 = encode0 ⊗ code0		
	$=(1,-1,1,1)\otimes(1,-1)$		
	= (1, -1, -1, 1, 1, -1, 1, -1)		

Signal = signal0

Step	Decode sender0	Decode sender1	
0	code0 = (1, -1), signal = (1, -1, -1, 1, 1, -1, 1, -1)	code1 = (1, 1), signal = (1, -1, -1, 1, 1, -1, 1, -1)	
1	decode0 = pattern.vector0	decode1 = pattern.vector1	
2	decode0 = ((1, -1), (-1, 1), (1, -1), (1, -1)).(1, -1)	decode1 = ((1, -1), (-1, 1), (1, -1), (1, -1)).(1, 1)	
3	decode0 = ((1 + 1), (-1 - 1), (1 + 1), (1 + 1))	decode1 = ((1-1), (-1+1), (1-1), (1-1))	
4	data0 = (2, -2, 2, 2), meaning (1, 0, 1, 1)	data1 = (0, 0, 0, 0), meaning no data	

Non-cooperative behaviour: games and equilibria

What is a game

- A game is huge abstraction of reality. It forgets many behavioral aspects and approximate all this in the strategy set and the payoff functions
- 3-tuple definition:
 - Players
 - Strategy space per player
 - Payoff function per player
- The most commonly used solution concepts are equilibrium concepts, most famously the Nash equilibrium

- Game: Player A, Player B, Strategies: {deny, confess}
- Payoff matrix: $U_A(a,b)$, $U_B(a,b)$

• Game description: strategic form, extensive form (dynamics)

		Prisoner B		
		Deny	Confess	
ner A	Deny	(-5, -5)		
Prisoner A	Confess			

Simultaneous games Sequential games

$$U_A(deny, deny) = -5$$

 $U_B(deny, deny) = -5$

- Game: Player A, Player B, Strategies: {deny, confess}
- Best response strategies: $s \in BR_A(.,b)$ iff $U_A(s,b) \ge U_A(s',b)$ for all $s' \in S_A$

- Game: Player A, Player B, Strategies: {deny, confess}
- Best response strategies: $s \in BR_A(.,b)$ iff $U_A(s,b) \ge U_A(s',b)$ for all $s' \in S_A$

Nash Equilibrium NE:

$$(a,b)$$
 is a NE iff $a \in BR_A(.,b)$, $b \in BR_B(a,.)$

The most commonly used solution concept for a game

may apply a **refinement** to narrow down the solutions

- Game: Player A, Player B, Strategies: {deny, confess}
- Dominant strategy: $s \in D_A$ iff $U_A(s,b) \ge U_A(s',b)$ for all $s' \in S_A$, $b \in S_B$

 $confess \in D_A$, $confess \in D_B$

Solution: (confess, confess)
We eliminate all strictly
dominated strategies

- Game: Player A, Player B, Strategies: {deny, confess}
- Socially optimal strategies: maximize $U_A + U_B$
- Pareto optimal strategies

Example: the hawk – dove game

	Player 2		
		Compromise	Don't compromise
Player 1	Compromise	(0,0)	(-1,1)
	Don't compromise	(1,-1)	(-10,-10)

Find the Nash Equilibria in pure strategies

Mixed strategies

Generalized coins: many faces

- Flip a (generalized) coin to pick my action
- My strategy = type of coin (probabilities)
- Example: Player A has two pure strategies $\{a, b\}$
- ullet Her mixed strategy is the probability p to choose strategy a
- ullet In general: if k pure strategies, a mixed strategy is any vector

$$(p_1, p_2, ..., p_k)$$
, s.t. $p_i \ge 0$ and $p_1 + ... + p_k = 1$

Example of randomization: matching pennies

	Column			
		p Heads	1-p Tails	
Row	q Heads	(1, –1)	(-1, 1)	1p + -1(1-p) = 2p - 1
1	-9 Tails	(–1, 1)	(1, -1)	-1p + 1(1-p) = 1 - 2p

How to find the NE: if I randomize, I must be indifferent between the expected payoff resulting form any of the outcome

Assume an equilibrium with (q, p)

For row player to be indifferent between choosing H and T: 1p + (-1)(1-p) = (-1)p + 1(1-p) hence column players must use p = 0.5. Similarly, q = 0.5

Example of randomization: coordination game

coin of column player: 2/3 coin of row player: Action Movie Romance Movie Action Movie (2,1)(0,0)Romance Movie (0,0)(1,2)

column player

3 Nash equlibria: (A, A), (R, R), row player

Feasible power region example

Feasible power set example

Given the gains of the system, noises, and minimum values γ_i for SIR_i , are there *feasible* transmit powers to satisfy $SIR_i \ge \gamma_i$?

$$SIR_1 = \frac{G_{11}p_1}{G_{12}p_2 + n_1}, \quad SIR_2 = \frac{G_{22}p_2}{G_{21}p_1 + n_2}$$

We want $SIR_1 \ge \gamma_1, SIR_2 \ge \gamma_2$

Conditions for a solution?

$$\frac{G_{22}p_2}{G_{21}p_1 + n_2} \ge \gamma_2 \Rightarrow G_{22}p_2 \ge \gamma_2(G_{21}p_1 + n_2) \Rightarrow p_2 \ge \frac{\gamma_2G_{21}}{G_{22}}p_1 + \frac{\gamma_2n_2}{G_{22}}$$

$$\frac{G_{11}p_1}{G_{12}p_2 + n_1} \ge \gamma_1 \Rightarrow G_{12}p_2 + n_1 \le \frac{G_{11}p_1}{\gamma_1} \Rightarrow p_2 \le \frac{G_{11}}{\gamma_1 G_{12}} p_1 - \frac{n_1}{G_{12}}$$

Numerical example

$$G_{11} = 1, G_{22} = 1,$$

 $G_{12} = G_{21} = 0.2$
 $\gamma_1 = 5, \gamma_2 = 1, n = 0.3$

$$SIR_{i} = \frac{G_{ii}p_{i}}{G_{ij}p_{j} + n}$$

