```
In []: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [4]: data =pd.read_csv("MI6_GW_MTW_GA.csv");
In [6]: data
```

Out[6]:		state_name	district_name	block_tehsil_name	village_name	s_no_of_scheme	schem
	0	GOA	NORTH GOA	SATARI	ADVOI	7	
	1	GOA	NORTH GOA	SATARI	AMBEDEM	17	
	2	GOA	NORTH GOA	SATARI	BIRONDEM	3	
	3	GOA	NORTH GOA	SATARI	BIRONDEM	2	
	4	GOA	NORTH GOA	SATARI	DONGURLI	11	
	5	GOA	NORTH GOA	SATARI	PALE	8	
	6	GOA	NORTH GOA	SATARI	PALE	13	
	7	GOA	NORTH GOA	SATARI	PISSURLEM	4	
	8	GOA	NORTH GOA	SATARI	AMBEDEM	13	
	9	GOA	NORTH GOA	PERNEM	TORXEM	10	
	10	GOA	NORTH GOA	PERNEM	TORXEM	17	
	11	GOA	NORTH GOA	PERNEM	ARAMBOL	33	
	12	GOA	SOUTH GOA	PONDA	QUERIM	83	
	13	GOA	SOUTH GOA	DHARBANDORA	PILIEM	2	
	14	GOA	SOUTH GOA	DHARBANDORA	PILIEM	3	
	15	GOA	SOUTH GOA	QUEPEM	ASSOLDA	4	
	16	GOA	NORTH GOA	SATARI	CODIEM	2	
	17	GOA	SOUTH GOA	SANGUEM	RIVONA	19	
	18	GOA	SOUTH GOA	DHARBANDORA	SIGAO	11	
	19	GOA	NORTH GOA	SATARI	SIGONEM	3	

	state_name	district_name	block_tehsil_name	village_name	s_no_of_scheme	schem
20	GOA	NORTH GOA	SATARI	SIGONEM	4	

21 rows × 61 columns

```
In [7]: sns.set(style="whitegrid")
In [8]: plt.figure(figsize=(10, 5))
    sns.countplot(data=data, x='district_name')
    plt.title('Number of Schemes by District')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [9]: plt.figure(figsize=(10, 5))
    sns.countplot(data=data, x='tubewell_type')
    plt.title('Number of Schemes by Tubewell Type')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [10]: plt.figure(figsize=(8, 8))
   data['scheme_owner_name'].value_counts().plot.pie(autopct='%1.1f%%')
   plt.title('Scheme Ownership Distribution')
   plt.ylabel('')
   plt.show()
```

Scheme Ownership Distribution


```
In [28]: plt.figure(figsize=(10, 5))
    plt.hist(data['scheme_depth'], bins=10, color='red')
    plt.title('Distribution of Scheme Depths')
    plt.xlabel('Depth')
    plt.ylabel('Frequency')
    plt.show()
```



```
In [12]: plt.figure(figsize=(10, 5))
    sns.boxplot(data['scheme_construction_cost'])
    plt.title('Scheme Construction Costs')
    plt.show()
```



```
In [13]: plt.figure(figsize=(10, 5))
    sns.scatterplot(x='scheme_depth', y='scheme_machinery_cost', data=data)
    plt.title('Scheme Depth vs Machinery Cost')
    plt.show()
```



```
In [14]: plt.figure(figsize=(12, 5))
    sns.lineplot(x='village_name', y='avg_pumping_per_day_perennial_season', data=da
    plt.xticks(rotation=45)
    plt.title('Average Pumping Per Day (Perennial Season)')
    plt.show()
```



```
In [15]: seasonal_cols = ['ipc_kharif_season', 'ipc_rabi_season', 'ipc_perennial_season',
    data[seasonal_cols].plot(kind='bar', stacked=True, figsize=(12, 6))
    plt.title('Seasonal Irrigation Potential')
    plt.ylabel('Irrigation Potential')
    plt.show()
```



```
In [16]: plt.figure(figsize=(10, 5))
    sns.countplot(data=data, x='scheme_status_name')
    plt.title('Count of Schemes by Status')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [17]: plt.figure(figsize=(12, 8))
    sns.heatmap(data.corr(numeric_only=True), annot=True, cmap='coolwarm')
    plt.title('Correlation Matrix')
    plt.show()
```



```
In [18]: plt.figure(figsize=(10, 5))
    sns.countplot(data=data, x='water_distribution_method_name')
    plt.title('Water Distribution Method Usage')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [20]: plt.figure(figsize=(10, 5))
    sns.countplot(data=data, x='lifting_device_enrgy_source_name')
```

```
plt.title('Energy Source Frequency')
plt.xticks(rotation=45)
plt.show()
```



```
In [21]: plt.figure(figsize=(10, 5))
    sns.boxplot(data['horse_power_of_lifting_device'])
    plt.title('Horsepower of Lifting Devices')
    plt.show()
```



```
In [22]: plt.figure(figsize=(8, 8))
    data['ref_scheme_recharge_of_ground_water_name'].value_counts().plot.pie(autopct
    plt.title('Recharge of Groundwater Schemes')
    plt.ylabel('')
    plt.show()
```

Recharge of Groundwater Schemes


```
In [23]: plt.figure(figsize=(10, 5))
    sns.scatterplot(x='culturable_command_area', y='ipu_total', data=data)
    plt.title('Culturable Command Area vs Total Irrigation Potential')
    plt.show()
```



```
In [24]: plt.figure(figsize=(10, 5))
    sns.countplot(data=data, x='ref_selection_under_utilisation_name')
    plt.title('Number of Under-utilized Schemes')
    plt.show()
```



```
In [25]: plt.figure(figsize=(10, 5))
    sns.lineplot(x='scheme_construction_cost', y='scheme_maintainence_cost', data=da
    plt.title('Construction Cost vs Maintenance Cost')
    plt.show()
```


In [26]: subsidy_cols = ['machinery_subsidy', 'construction_subsidy']
 data[subsidy_cols].plot(kind='bar', stacked=True, figsize=(10, 6))
 plt.title('Machinery Subsidy vs Construction Subsidy')
 plt.show()


```
In [29]: plt.figure(figsize=(10, 5))
    plt.hist(data['nearest_scheme_distance'], bins=10, color='green')
    plt.title('Distribution of Nearest Scheme Distances')
    plt.xlabel('Distance (meters)')
    plt.ylabel('Frequency')
    plt.show()
```


In []: