SJK006 - Master in Intelligent Systems Big Data Architectures Implementing Data Value Chains at large scale

Summary

We are going to

- recap. Big Data concepts
- introduce a Use Case for BD architectures
- analyze the logic of BD architectures
- introduce the main ETLing concepts
- practice with a Use Case example

The 4 V's of Big Data

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS

Big Data Value Chain

Data

Curation

Data Acquisition · Structured data Unstructured Event

Data

Analysis

Storage

Data

Data Usage

- data
- processing
- Sensor networks
- · Protocols
- · Real-time
- Data streams
- Multimodality

- Stream mining
- Semantic analysis
- Machine learning
- Information extraction
- Linked Data
- Data discovery
- · 'Whole world' semantics
- Ecosystems
- Community data analysis
- Cross-sectorial data analysis

- Data Quality
- Trust / Provenance
- Annotation
- Data validation
- Human-Data Interaction
- · Top-down/Bottomup
- Community / Crowd
- Human Computation
- Curation at scale
- Incentivisation
- Automation
- Interoperability

- In-Memory DBs
- NoSQL DBs
- NewSQL DBs
- Cloud storage
- Query Interfaces
- Scalability and Performance
- Data Models
- Consistency, Availability, Partition-tolerance
- Security and Privacy
- Standardization

- Decision support
- Prediction
- In-use analytics
- Simulation
- Exploration
- Visualisation
- Modeling
- Control
- Domain-specific usage

Use Case

Intelligent Transport

- Global view of the transport scenario in a city
- Gather data from all the perspectives
 - Sensor data
 - Citizen interactions
 - Transport Modalities
 - City's Infrastructures
 - etc.

Smart Cities for Public Transportation

TRANSPORTS

BIG DATA (big picture)

CITIZENS

Data Chain Values

Rent-a-bike datasets (PayNoPain)

benches bench_status benches_anchors benches_messages benches_notifications

anchors

incidents

bicycles

bans users subscriptions payments

loans

putbacks

Datasets/tables

```
anchors(uuid, bench uuid, number)
bans(uuid, use uuid, date start, date expire, date created, reason)
benches anchors(bench uuid, anchor uuid, anchor number, bicycle number, date created)
benches(uuid, name, latitude, longitude, date created)
benches notifications(uuid, bench uuid, notification, priority, date created)
bench messages(uuid, message, date start, date expire, date created)
bicycles(uuid, number, date created, status)
incidents(uuid, error key, use uuid, anchor uuid, status, date created, bike uuid)
loans(uuid, use uuid, bicycle uuid, anchor uuid, date created, type access)
putbacks(uuid, bicycle uuid, anchor uuid, date created)
users(change uuid, uuid, <del>document</del>, <del>name</del>, <del>surname</del>, <del>street</del>, city, postcode, birthday, <del>phone</del>, <del>email</del>, gender,
date created, date change, deleted)
bench status(bench uuid, date lastseen, ip, queue, version, number_loans)
loan_historical(uuid, loan_uuid, use_uuid, bicycle_uuid, loan_anchor_uuid, loan_date_created,
                putback uuid, putback anchor uuid, putback date created, type access, app loan)
```

Exercise: data chain values

HISTORICAL

Incidentes por demografía, geografía

Rutas más frecuentadas + temporalidad

Histórico de ocupación de bancadas con respecto a la demanda

Simulación de movimiento de recursos (modelo generativo probabilistico)

Estudiar el "estado" de calidad de las bancadas y las bicicletas (kms que lleva la bicicleta)

Recorrido de una bicicleta.

Popularidad de las bicicletas.

Bicicletas con problemas técnicos (se devuelven en la misma bancada con un tiempo corto entre loan y putback).

Mapa por código postal de demanda.

STREAMING

Incidentes: cálculo real de bicicletas operativas

Situación actual + modelo predictivo de demanda -> movilidad de recursos

Avisos dirigidos

Modelo predictivo de posible "relleno" de bicicletas en bancadas vacías

Recomendación de bancadas cercanas y tiempo previsto (localización del usuario)

Alerta de bancada llena.

IMPLEMENTING DATA VALUE CHAINS

Big Data Architectures

- Data warehousing
- Data lakes
- Kappa architecture
- Lambda architecture

DATA WAREHOUSING

DATA LAKES

ETL/Q

Basic operations for capturing and transforming data

An ETL is a workflow of transformations on source data, which is aimed at integrating and concealing data for analytical purposes

Improving the quality of data

Data Cleaning:

- Detect and fix omitted or missing values
- Remove noisy data (no relevant for analysis)
- Detect incoherent data

Data integration:

- Duplicate removal
- Gathering data of the same entities
- Homogenization of terms and keys

Data transformation:

- Change of formats, scaling and normalization
- Data reduction:
 - Selection of attributes and aggregation of data

ETL: Workflows of transformation operators

Vassiliadis et al. Information Systems 30 (2005)

Some examples of operators

Tools for ETLing: KNIME

Tools for ETLing: KNIME

Exercise: Pandas for ETLing

SELECTION

DUPLICATE REMOVAL

MISSING VALUES

GROUP-BY

JOIN

DIFFERENCE (anti-join)

UNION of recordsets

PROJECT columns

CONCAT columns

SPLIT a column

APPLY a function to a column (or several)

DISTRIBUTION (reverse of join)

(complete with Pandas methods)

Lambda Architecture (Streaming data)

Kappa Architecture

- Use of "logs" (append-only files) to store data.
- The "batch" layer of the Lambda architecture is removed.
- Greatly simplifies code maintenance.
- Great processing speed.

Lambda or Kappa?

