Domain Adversarial Training for Accented Speech Recognition

Sining Sun [1-3], Ching-Feng Yeh [2], Mei-Yuh Hwang [2], Mari Ostendorf [3], Lei Xie [1]

Northwestern Polytechnical University [1]
Mobvoi Al Lab, Seattle, USA [2]
University of Washington, Seattle, USA [3]

Outline

- Introduction
- Domain Adaptation
- Domain Adversarial Training (DAT)
- DAT for ASR
- Experimental Results
- Conclusion

Introduction

- Challenges in ASR
 - Noise, reverberation, accents......
 - Mismatch between training and test data
 - Lack of supervised training data
- Our work
 - Improve ASR performance for accented speech, using unsupervised domain adaptation
 - Learn accent-invariant features using DAT
 - Explore how semi-supervised learning can influence the performance of DAT

Domain Adaptation

- Domain adaptation
 - Training data
 - Labeled source domain data
 - Labeled or unlabeled target domain data
 - Test data
 - Data with the similar distribution of target domain
 - Task
 - Improve performance on test set using limited target domain data

Domain Adversarial Training

- Given labeled or unlabeled target domain data
 - DAT tries to learn features that are
 - Domain-invariant
 - Classification-discriminative

DAT for Speech Recognition

Gradient reverse layer (GRL) based adversarial training

□ GRL: multiply a constant **negative** factor to gradients generated by $G_d(f, \theta_d)$

DAT for Speech Recognition

- Training
 - Loss function

Indicator for labeled or not

Domain cross entropy

$$E(\theta_f, \theta_y, \theta_d) = \frac{1}{N} \sum_{i=1}^{N} \left(I_d(i) L_y^i(\theta_f, \theta_y) - \lambda I_{vad}(i) L_d^i(\theta_f, \theta_d) \right)$$

Senone cross entropy

Indicator for speech or not

Optimization

$$\theta_{y}^{*}, \theta_{f}^{*} = \min_{\theta_{y}, \theta_{f}} E(\theta_{y}, \theta_{f}, \theta_{d})$$

$$\theta_{d}^{*} = \max_{\theta_{d}} E(\theta_{y}, \theta_{f}, \theta_{d})$$

$$\theta_{d}^{*} = \max_{\theta_{d}} E(\theta_{y}, \theta_{f}, \theta_{d})$$

$$\theta_{d}^{*} = \max_{\theta_{d}} E(\theta_{y}, \theta_{f}, \theta_{d})$$

$$\theta_{d}^{*} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial L_{y}^{i}}{\partial \theta_{y}} I_{d}(i)$$

$$\theta_{d}^{*} = \frac{1}{N} \sum_{i=1}^{N} \lambda \frac{\partial L_{d}^{i}}{\partial \theta_{d}} I_{vad}(i)$$

DAT for Speech Recognition

DAT versus Multi-Task Learning (MTL)

$$E(\theta_f, \theta_y, \theta_d) = \frac{1}{N} \sum_{i=1}^{N} \left(I_d(i) L_y^i(\theta_f, \theta_y) - \lambda I_{vad}(i) L_d^i(\theta_f, \theta_d) \right)$$

- ullet If $\lambda < 0$, it is the regular MTL
- \Box If $\lambda = 0$, no domain information is used
- \Box If $\lambda > 0$, it becomes DAT

- Dataset
 - Source domain data
 - 360 hours standard accent Mandarin training data with transcriptions (Std)
 - Target domain data
 - 600 hours accented Mandarin speech from 6 different provinces (HN, SC, GD, JX JS and FJ) of China
 - 100 hours per accent
 - These data were transcribed

- Acoustic feature
 - 23-dimensional filterbanks with 3-dimensional pitch
- Acoustic model
 - TDNN with LF-MMI
 - 7 layers and each layer has 625 hidden units with ReLU
 - 5998 output units
 - Trained by Kaldi

Accent-invariant feature extraction across all accents using unsupervised DAT

Baseline:

Trained using 360 hours Std data

Oracle:

Trained using all 960 hours training data with transcriptions

DAT:

Trained with unsupervised DAT, all accented data were used.

Using unsupervised DAT can improve the ASR performance on accented test data

Per-Accent Experiments

- Accent-specific DAT
 - Three accents selected: FJ, SC, HN
 - A different baseline system for each of the following conditions on 100 hours accented speech data

(1) No Transcripts **Baseline**: 300hrs Std data with human transcripts

DAT/MTL: 300hrs Std + 100hrs accented

data without transcripts

HN

SC

FJ

(2) ASR Transcripts

(3) Human Transcripts

Baseline/DAT/MTL:

300hrs Std data with human transcripts + 100hrs accented data with ASR transcripts

Baseline/DAT/MTL:

300hrs Std data with human transcripts

+ 100hrs accented data with *human transcripts*

Relative CER improvement of accent-specific DAT

- In no transcriptions case, DAT can always help
- In ASR transcriptions case, DAT contribution shrinks
- DAT is almost better than MTL on accented test data

Conclusion

Conclusion

- Integrated DAT into TDNN AM training for accented speech recognition
- 7.4% relative CER reduction using unsupervised DAT
- Explored how automatic transcripts can influence DAT performance
- 20% relative CER reduction when combining DAT and ASR transcripts
- Future work
 - Compare DAT with other emerging deep domain adaption method
 - Extend DAT to far-field scenario

Thank you!

