CE 382 Reinforced Concrete Fundamentals

Dr. Erdem Canbay

Choice of Concrete

Advantages

- ▶ Can be mold into any shape
- ▶ High compressive strength
- Economy; long-term, maintenance & durability
- ▶ Fire resistance
- Rigidity
- Availability

Disadvantages

- ▶ Low tensile strength
- ▶ Forms and shoring
- Relatively low strength per unit of weight or volume
- ▶ Time-dependent volume change

Introduction

▶ Binding Materials

- Clay
- Lime
- ▶ Gypsum
- ► Cement (developed by Roman; lime & volcanic ash; hydraulic cement at 18th century)

▶ Concrete

- ▶ Cement
- Sand
- ▶ Gravel (or other aggregate)
- Water
- Admixtures

2

Materials

▶ Cement

- ▶ Particle size strength
- > Special cements for low heat of hydration, less permeability

Water

- ▶ For chemical reactions
- No acids
- No high amount of salt

Aggregate

- ▶ Reduce the amount of cement paste & cost
- ▶ Reduce the volume change of concrete
- More durable

Mixing, Placing & Curing of Concrete

- Mix design for required strength & workability, durability & permeability
- Water/cement (w/c) \(\triansportation \) strength \(\triansportation \) workability \(\triansportation \) (transportation \(\triansportation \) placing)

5

Mechanical Properties of Concrete

- ▶ Concrete
 - Nonlinear
 - Inelastic
 - Nonhomogeneous
 - ▶ Time dependent
- Uniaxial Compressive Strength of Concrete
 - ▶ Cube (200×200×200 mm or 150×150 ×150 mm)
 - Cylinder (150×300 mm)
 - $\frac{f_{c,cylinder}}{f_{c,cube}} = 0.7 \sim 1.1 \quad \text{mean app. } 0.80 \text{-} 0.85$

Mixing, Placing & Curing of Concrete

- During transportation, prevent segregation, the separation of the larger pieces from the bulk of the mass
- ▶ Avoid honeycombed spots in finished concrete
- ▶ Prefer ready-mix concrete
- ▶ Proper curing; not let water to evaporate until concrete sets

6

Mechanical Properties of Concrete

- ▶ Rate of strength gain
 - ▶ 0-7 day: very fast
 - > 7-28 day: slower
 - ▶ After 28 days very slow
- ▶ Size effect: size strength strength
- $\blacktriangleright \ \, \mathsf{Rate} \,\, \mathsf{of} \,\, \mathsf{loading} \, \boxdot \quad \, \mathsf{strength} \, \boxdot$

Uniaxial Compression

- ε_{co}=0.002
- Failure at ε_{cu}
- Descending portion
- Different concrete strength
- Different initial Modulus of elasticity

Mathematical Model

Rate of Loading

- Strain rate
- Strength
- Strain capacity

10

Repeated (cyclic) loading → hysteresis

- ▶ Envelope curve
- Stiffness degradation
 - ▶ # of cycles ᄸ
 - ▶ Stiffness ⋈

Tensile Strength of Concrete

Direct Tensile Tests, f_{ct}

Tensile Strength of Concrete

Indirect Tensile Tests

15

▶ Split Cylinder Test, f_{cts}

$$f_{cts} = \frac{2 \cdot P}{\pi \cdot \ell \cdot d}$$

$$f_{cts} > f_{ct}$$

Tensile Strength of Concrete

- ▶ Indirect Tensile Tests
 - ▶ Modulus of Rupture Test, f_{ctf}

14

Tensile Strength of Concrete

16

Tensile Strength of Concrete

TS 500-2000

ightharpoonup Direct tensile strength $f_{ct}=0.35\sqrt{f_c}$

 \blacktriangleright Split tensile strength $\,f_{cts}=0.50\sqrt{f_{c}}$

Flexural tensile strength $f_{ctf} = 0.64\sqrt{f_c}$ (two point)

Flexural tensile strength $f_{ctf} = 0.70 \sqrt{f_c}$ (single point)

17

Shear Strength of Concrete

- ▶ Shear strength > tensile strength
- ▶ 35% 80% of compressive strength
- Not of primary importance
- ▶ Principal tensile stresses

Tensile Strength of Concrete

I8

Modulus of Elasticity

- ▶ Slope of the σ – ϵ curve
- ▶ Changes with the stress level
- Initial modulus
- Secant modulus
 - \bullet 0-0.5 f_c
- ▶ Tangent modulus
 - $0.4-0.5f_c$

Modulus of Elasticity

$$E_c = w_c^{1.5} \cdot 0.043 \cdot \sqrt{f_c'}$$
$$E_c = 4700 \cdot \sqrt{f_c'}$$

ACI 318-08

 w_c between 1440-2560 kg/m³

(in MPa)

$$E_{cm} = 22000 \left(\frac{f_{cm}}{10} \right)^{0.3}$$

EuroCode 2

$$E_{cj} = 3250 \cdot \sqrt{f_{ckj}} + 14000$$

21

Bearing strength

$$f_{cl} = f_c \sqrt{R} \le 2f_c$$

$$R = \frac{total\ area}{loaded\ area}$$

• f_{cl} : bearing strength

 $ightharpoonup R
ightharpoonup f_{cl}
ig$

Modulus of Elasticity

- ▶ Under sustained load \rightarrow time dependent deformations \rightarrow $E_c \odot$ to $^1/_2$ or even $^1/_3$ of its initial value
 - Level of loading
 - Age of concrete
 - Humidity
 - Temperature
 - time

22

Coefficient of thermal expansion

- of concrete 1×10^{-5} mm/mm/°C
- the same for steel

Poisson's Ratio

- $\mu = \frac{transverse\ strain}{longitudinal\ strain}$
- \blacktriangleright in the design μ is neglected

 $\sigma_c/f_c = 0.3 - 0.7 \rightarrow \mu_c = 0.15 - 0.25$

TS 500 μ_c = 0.20

25

Behavior under multi-axial stresses

Biaxial

- Tensile stresses in both direction
 - The strength is not different (comp.) than that of uniaxial tension
- One in tension, orthogonal in compression
 - Strength is less as compared to uniaxial tension
- Compression in both directions
 - Strength is greater than uniaxial compression

Shear modulus

• $G_c = \frac{E_c}{2(1+\mu_c)}$ elasticity equation

TS 500 $G_c = 0.4E_c$

26

Behavior under multi-axial stresses

- ▶ Triaxial
 - ▶ $\sigma_2 = \sigma_3 \oslash$ → strength and strain capacity of concrete \oslash

Behavior under multi-axial stresses

- If $\sigma_2 = \sigma_3$ and all stresses are compressive
- $f_{cl} = f_c + 4.0\sigma_2$

29

Time dependent deformations of concrete

- ightharpoonup Shrinkage depends on evaporation ightharpoonup function of
 - Temperature
 - Humidity
 - Area of exposed surface
 - Water content of mix
 - Time

Time dependent deformations of concrete

Shrinkage

- ightharpoonup Water necessary for hydration ightharpoonup appr. 25% of the cement by weight
- For workability more water is used
- ▶ Excess water evaporates → volume № (shrink)
- Shrinkage causes significant deformations & stresses in concrete structures
- Shrinkage can affect both strength and serviceability of the structure

30

Time dependent deformations of concrete

- ▶ Plain concrete → not strained → shrinkage causes no stresses
- ▶ RC members → not restrained → compression in steel & tension in concrete
- ▶ RC member restrained → internal forces due to shrinkage
- ▶ For long walls and buildings → expansion joints

Time dependent deformations of concrete

Creep

- ▶ Time dependent deformations under sustained load
- ▶ Depends on
 - ightharpoonup The age of concrete \oslash ightharpoonup creep \unlhd
 - \triangleright w/c ratio \nearrow \rightarrow creep \nearrow
 - ightharpoonup Humidity \nearrow \rightarrow creep $\$
 - ▶ Level of sustained load
 - ▶ Time
- Significant amount of redistribution due to creep in RC structures

33

Time dependent deformations of concrete

Time dependent deformations of concrete

Creep

▶ Level of sustained load

34

Steel reinforcement

- ▶ Plain bars, S220
- Deformed bars, \$420

Steel reinforcement

- ▶ Hot rolled
- Cold worked

Steel reinforcement

- ▶ \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 22\$
- **#5,#8**

39

> 37

 $E_s = 200\ 000\ MPa$

Steel reinforcement

Welded wire fabric

38

Steel reinforcement

- ▶ Behavior under repeated and reversed loading
 - ▶ Bauschinger effect

40

Concrete grades

- ▶ C16: characteristic cylinder compressive strength of 28 days in MPa
- ► C16, C18, C20, C25, C30,..., C50, → high strength concrete