Control Estadístico de Procesos

Gustavo Ahumada

Variables aleatorias discretas y distribuciones de probabilidad

Variable aleatoria discreta

Una variable aletatoria discreta asume cada uno de sus valorescon cierta probabilidad. Cuando dos dados son lanzados, la probabilidad de que su suma sea 7, escrita f(x) = P(X = x), es igual 1/6. La función que asigna la probabilidad a los valores de las variables aleatorias es llamada función de densidad de probabilidad (pdf) o distribución de probabilidad. Toda pdf debe satisfacer las siguientes condiciones:

```
1. f(x) \ge 0.

2. \sum_{x} f(x) = 1.

3. P(X = x) = f(x).
```

Hay muchos problemas en los cuales deseamos calcular la probabilidad de que el valor observado de una variable aleatoria X sea mayor o igual que algún número real x. Al escribir $F(X) = P(X \le x)$ para cualquier número real x, definimos la **distribución acumulada (cdf)** F(X) de una variable aleatoria discreta X con distribución f(x). Se define como:

$$F(X) = P(X \le x) = \sum_{t \le x} f(x) \text{ para } -\infty < x < \infty.$$

Tiene las siguientes propiedades:

- 1. $0 \le F(X) \le 1$.
- 2. Si a < b, entonces F(a) < F(b) para cualquier números reales a y b. Por lo tanto, F(X) es una función no decreciente de x.
- 3. $\lim_{x\to\infty} F(X) = 1$.
- 4. $\lim_{x\to-\infty} F(X) = 0$.

Ejemplo 1 Lanzar una moneda equilibrada tres veces y sea las variable aleatoria X el número de caras observadas en los tres intentos.

Solución El espacio muestral para el experimento es:

```
S = \{TTT, HTT, THT, HHT, TTH, HTH, THH, HHH\}
```

La variable aleatoria X puede tomar los valores de 0, 1, 2, y 3 con probabilidades $\frac{1}{8}, \frac{3}{8}, \frac{3}{8}, y$ $\frac{1}{8}$, respectivamente. Definir la cdf para X, $F(x) = P(X \le x)$ como sigue:

```
opar <- par(no.readonly = TRUE)
library(MASS)
par(mfrow=c(1,2), pty = "s")
S <- expand.grid(moneda1 = 0:1, moneda2 = 0:1, moneda3 = 0:1)
n.heads <- apply(S, 1, sum)
cbind(S, n.heads)</pre>
```

```
moneda1 moneda2 moneda3 n.heads
##
## 1
           0
                    0
                             0
                                      0
## 2
           1
                    0
                             0
                                      1
           0
                    1
                             0
## 3
                                      1
```

```
0
                                   2
## 4
          1
                   1
## 5
           0
                   0
                           1
                                   1
## 6
                   0
                                   2
           1
## 7
           0
                   1
                                   2
                           1
## 8
T1 <- table(n.heads)/length(n.heads)
fractions(T1)
## n.heads
             2 3
##
   0 1
## 1/8 3/8 3/8 1/8
plot(T1, xlab = "x", ylab = "P(X=x)", yaxt = "n", main = "PDF para X") +
axis(2, at = c(1/8, 3/8), labels = c("1/8", "3/8"), las = 1)
```

PDF para X

[1] 0.125 1.375 2.125 3.375

```
plot(ecdf(n.heads), main = "CDF para X", ylab = "F(X)", xlab = "x",
    yaxt = "n") +
axis(2, at = c(1/8, 4/8, 7/8, 1), labels = c("1/8", "4/8", "7/8", "1"),
    las = 1) +
segments(1, 1/8, 4/8, lty = 2) +
text(2.6, 2.5/8, "P(X=1) = F(1)-F(0)")
```


numeric(0)