

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ДГТУ)

Подразделение, ответственное за реализацию дополнительной профессиональной программы профессиональной переподготовки «Искусственный интеллект и машинное обучение» (далее-ДПП ПП) - Центр «Цифровая культура»

Руководитель ДПП ПП — к.т.н., доцент, зав. каф. «Программное обеспечение вычислительной техники и автоматизированных систем» В.В. Долгов

ОТЧЕТ

По практической подготовке при проведении практики в ООО «Дельта-Дон»

Обучающийся — 13.05.2023 — Найдыш П.А. и.о.ф.

Группа МКИС22

Программа профессиональной переподготовки: «Искусственный интеллект и машинное обучение» (256ч.)

Руководитель практической

подготовки от ДГТУ: Пре

<u>Преподаватель</u>

Филиппенко В.А.

Оценка

Omelertes

3.03. 2023

Ростов-на-Дону

2023 г.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ДГТУ)

Подразделение, ответственное за реализацию ДПП ПП «Искусственный интеллект и машинное обучение» - Центр «Цифровая культура»

ЗАДАНИЕ

ЗАДАНИЕ					
По практической подготовке при проведении практики в ООО «Дельта-Дон»					
в период с «17» апреля 2023 г. по «13» мая 2023 г.					
Обучающийся Найдыш Павел Александрович					
Группа МКИС22					
Срок представления отчета в ДГТУ «13» мая 20 <u>23</u> г.					
Содержание индивидуального задания: Определение болезней риса на основе фотографий с помощью технологий					
искусственного интеллекта					
Руководитель практической подготовки от ДГТУ ———————————————————————————————————					
Задание принял к <u>Найдыш</u> <u>Павел Александрович</u> исполнению					

ДНЕВНИК ПРОХОЖДЕНИЯ ПРАКТИЧЕСКОЙ ПОДГОТОВКИ

Дата	Место работы/практики	Выполняемые работы	
17.04.2023	ООО «Дельта- дон»	Знакомство с предприятием, прохождение вводного инструктажа.	
17.04.2023	ООО «Дельта- дон»	Ознакомление с территорией предприятия, прохождение первичного инструктажа по ТБ, ПБ	
18.04.2023	ООО «Дельта- дон»	Получение индивидуального задания	
19.04.2023 – 22.04.2023	ООО «Дельта- дон»	Аналитический обзор предметной области, постановка задачи	
24.04.2023 – 30.04.2023	ООО «Дельта- дон»	Формирование датасета, выбор модели и определение ее архитектуры	
2.05.2023 - 8.05.2023	ООО «Дельта- дон»	Программная реализация	
10.05.2023	ООО «Дельта- дон»	Тестирование модели	
11.05.2023-12.05.202 3	ООО «Дельта- дон»	Подготовка и оформление отчета по практике	
13.05.2023	ООО «Дельта- дон»	Сдача итогового отчета	

ОТЗЫВ - ХАРАКТЕРИСТИКА

Обучающийся <u>Н</u>	<u> Найдыш Г</u>	<u> Іавел Алексан</u>	<u>ндрович</u>	
Второго курса	группь	•	я, имя, отчество	
1 11	1.0			
Наименование м	иеста пра	ктической п	одготовки	
	<u>O(</u>	ОО «Дельта-	дон»	
		наименова	ание предприятия	
Обучающийся	по і	программе	дополнительного	профессионального
образования пре	офессион	альной пере	еподготовки «Искус	ственный интеллект и
машинное обуче	ение» вы	полнил зада	ния предусмотреннь	ые рабочей программы
практической по	ЭДГОТОВКИ	и в полном о	бъёме.	
1				
Дополнительно	ознакоми	ился/изучил		
Заслуживает оце	енки	CY	Meerino	
			Руководитель	практической
			подготовки	
			Padiennepell	P RA
			" 13" " C"	2023 г

Содержание

Введение	6
1 Аналитический обзор предметной области	7
1.1 Обзор задачи классификации изображений	7
1.2 Обзор методов машинного обучения для классификации изображе	ний 8
1.3 Постановка задачи	10
2 Описание модели классификации изображений	12
2.1 Обоснование выбора модели	12
2.2 Архитектура модели	13
2.3 Алгоритм применения модели для классификации изображений	15
3 Программная реализация модели	16
3.1 Обоснование выбора средств разработки	16
3.2 Описание программной реализации	18
4. Тестирование модели	19
4.1 Описание процесса тестирования	19
Заключение	21
Перечень использованных информационных ресурсов	22
Приложение А Листинг программы	23

Введение

Задача распознавания изображений является очень важной, так как возможность автоматического распознавания компьютером изображений приносит множество новых возможностей в развитии науки и техники, таких, как разработка систем поиска лиц и других объектов на фотографиях, контроля качества производимой продукции без участия человека, автоматического управления транспортом и множество других.

В настоящее время модели глубокого обучения, основанные на нейронных сетях, очень успешно используются для определения заболеваний, хоть человека, хоть домашнего скота, хоть растений. И данные модели позволяют автоматизировать процесс анализа изображений и достичь высокой точности при определение патологий.

В контексте своей работы я хочу рассмотреть изображения риса. А точнее разработать модель, обучить ее, чтобы она могла спокойно определять основные заболевания риса.

1 Аналитический обзор предметной области

1.1 Обзор задачи классификации изображений

Задача классификации в области компьютерного зрения состоит в том, чтобы обучить нейронную сеть распознавать и отличать различные классы изображений на основе набора обучающих данных. В нашем случае, задача классификации состоит в том, чтобы обучить нейронную сеть распознавать и классифицировать фотографии риса по болезням.

Фотография представляет собой графическое изображение, зафиксированное с помощью камеры или другого устройства съемки. В контексте задачи классификации риса, фотография является входным быть обработан нейронной примером, который должен ДЛЯ определения, к какому классу она принадлежит. Фотография представлена в формате изображения (JPEG, PNG) и содержит пиксели, каждый из которых имеет значение интенсивности или цвета.

Задача классификации фотографий риса с болезнями заключается в том, чтобы обучить нейронную сеть на обучающем наборе изображений риса, где каждая фотография сопоставлена с соответствующей меткой класса (нормальный или с болезнью). В процессе обучения, нейронная сеть должна извлечь признаки изображений и научиться отличать характеристики здорового риса от признаков, связанных с болезнями.

1.2 Обзор методов машинного обучения для классификации изображений

Для классификации изображений существует множество методов машинного обучения, включая классические подходы и современные глубокие нейронные сети. Вот несколько наиболее популярных методов:

- Методы на основе признаков:
 - Извлечение признаков: Методы, такие как гистограммы цветов, градиентные ориентированные гистограммы (НОG) и габор-фильтры, используются для извлечения характеристик изображений. Затем классификатор, например, метод опорных векторов (SVM) или случайный лес, применяется к этим признакам для классификации изображений.
 - Байесовские классификаторы: Наивный байесовский классификатор использует вероятностные методы, основанные на теореме Байеса, для классификации изображений. Он моделирует распределение вероятностей каждого класса и применяет их к новым изображениям для определения класса.
- Конволюционные нейронные сети (CNN):
 - СNN это глубокие нейронные сети, специально разработанные для обработки изображений. Они состоят из слоев свертки, пулинга и полносвязных слоев. Сверточные слои обучаются для извлечения признаков изображений, пулинг слои уменьшают пространственное разрешение, а полносвязные слои выполняют окончательную классификацию. Примеры известных СNN-архитектур включают LeNet, AlexNet, VGG, ResNet и InceptionNet.

• Предобученные модели:

• Существуют предобученные модели CNN, которые были обучены на больших наборах данных, таких как ImageNet. Эти модели обладают способностью извлекать общие признаки изображений и могут быть использованы для классификации изображений на новых задачах с небольшим количеством обучающих данных.

Некоторые известные предобученные модели включают VGG, ResNet, InceptionNet и MobileNet.

• Сверточные автокодировщики:

• Это нейронные сети, которые обучаются изображать входные данные через энкодер и восстанавливать их через декодер. Сверточные автокодировщики могут использоваться для извлечения высокоуровневых признаков из изображений, которые затем могут быть использованы для классификации.

• Transfer Learning (перенос обучения):

 Transfer Learning - это метод, при котором предобученные модели, обученные на больших наборах данных, используются в качестве основы для классификации новых изображений.
 Предобученные модели могут быть дообучены на небольшом наборе данных, специфическом для вашей задачи, что обычно приводит к улучшению результатов.

Это лишь некоторые из методов машинного обучения, используемых для классификации изображений.

1.3 Постановка задачи

Проведенный обзор предметной области показал целесообразность и эффективность применения методов машинного обучения, а именно глубокого обучения, для классификации изображений. Поэтому целью данной работы является реализация модели глубокого обучения для классификации изображений риса.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- Сбор и подготовка данных: мы будем собирать и создавать набор данных, состоящий из фотографий риса с различными болезнями и фотографий здорового риса. Эти данные будут размечены и классифицированы, чтобы обеспечить основу для обучения модели.
- Разработка модели классификации: мы будем исследовать и выбирать подходящие модели машинного обучения, способные эффективно классифицировать фотографии риса на основе их визуальных признаков. В данном случае, сверточные нейронные сети (CNN) являются одним из наиболее эффективных выборов.
- Обучение и настройка модели: мы будем обучать выбранную модель на нашем подготовленном наборе данных.
- Оценка и валидация модели: мы будем оценивать производительность модели с помощью метрик. Мы также проведем валидацию модели на отдельном тестовом наборе данных, чтобы проверить ее обобщающую способность и надежность.
- Развертывание и применение модели: после успешного обучения и валидации модели, мы планируем интегрировать ее в систему для реального применения. Это позволит пользователям быстро и точно определять заболевания риса на основе фотографий, что поможет

принимать меры по предотвращению и управлению болезнями риса, улучшая его урожайность и качеств.

2 Описание модели классификации изображений

2.1 Обоснование выбора модели

В контексте этого проекта, где основной задачей является классификация изображений риса, сверточная модель представляет собой наиболее эффективное решение. Ниже приведены основные аргументы в пользу данного решения:

- 1. Архитектура: Сверточные нейронные сети имеют очень гибкую архитектуру. В нашем случае она состоит из 15 слоев, таких как сверточные, пулинговые и полносвязные слои. Данные слои в архитектуре позволяют модели извлекать абстрактные и высокоуровневые признаки из изображений, что способствует более точной классификации изображений риса.
- 2. Обучение: Сверточная модель может использовать метод переноса обучения. Точнее говоря, имеется возможность воспользоваться предварительно обученной сверточной моделью на большом наборе изображений и затем дообучить ее на нашем наборе изображений риса. Это позволяет извлечь высокоуровневые признаки из изображений риса и повысить точность классификации.
- 3. Производительность и точность: Сверточная модель имеет довольно высокую производительность, по сравнению с другими моделями, а также точность в классификации изображений по различным признакам.

Исходя из этих аргументов, выбор сверточной модели является обоснованным для нашего проекта по классификации изображений риса.

2.2 Архитектура модели

Данная нейронная сеть является сверточной нейронной сетью (Convolutional Neural Network, CNN) с последовательной архитектурой. Она принимает на вход изображения размером (img_dim, img_dim, 3), где img_dim представляет собой размер изображения по каждому измерению, а 3 соответствует количеству цветовых каналов (RGB).

Архитектура модели включает следующие слои:

InputLayer: Входной слой, который определяет форму входных данных.

Conv2D: Сверточный слой с 16 фильтрами размера (3, 3) и функцией активации SELU.

МахРооling2D: Слой пулинга (субдискретизации) с фильтром размера (2, 2), который уменьшает размерность пространственных измерений входных данных. Повторение слоев Conv2D и MaxPooling2D соответственно с 32 фильтрами, затем с 64 фильтрами и наконец с 128 фильтрами. После каждого сверточного слоя применяется слой пулинга для дальнейшего уменьшения размерности.

Flatten: Выпрямляющий слой, который преобразует многомерные данные в одномерный вектор перед подачей на полносвязные слои.

Полносвязные слои (Dense) с функцией активации SELU и указанными размерностями: 2048 нейронов, 1024 нейрона, 256 нейронов и 128 нейронов.

Dense слой с размерностью OUTPUT_SIZE и функцией активации softmax, который выдает вероятности принадлежности входных данных к различным классам.

На рисунке 1 представлен график архитектуры данной модели.

рис. 1 - Архитектура модели

2.3 Алгоритм применения модели для классификации изображений

Алгоритм применения сверточной модели для классификации изображений включает следующие шаги:

- 1. Подготовка датасета: сборка и подготовка набора изображения риса, здоровых и с различными заболеваниями.
- 2. Разработка архитектуры модели: разработка и продумывание расположение слоев и их порядка.
- 3. Извлечение признаков: прогон изображений с каждым заболеванием через модель, чтобы получить высокоуровневые признаки.
- 4. Обучение классификатора: используя извлеченные признаки и метки классов, обучение классификатора на данных признаках.
- 5. Оценка и тестирование модели: оценка производительность модели на проверочной выборке. Затем тестирование модель на тестовой выборке для оценки ее обобщающей способности и точности классификации.

Алгоритм применения сверточной модели для классификации изображений риса позволяет автоматизировать процесс диагностики и улучшить точность определения заболевания, что имеет важное практическое значение для сельскохозяйственной области.

3 Программная реализация модели

3.1 Обоснование выбора средств разработки

В рамках данного проекта были выбраны следующие средства разработки: NumPy, Matplotlib, TensorFlow, Keras, Pandas.

Ниже приведено обоснование выбора каждого из этих инструментов и описание их роли в реализации проекта:

- 1. NumPy является мощной библиотекой для работы с многомерными массивами данных. Она обеспечивает эффективные вычислительные возможности и функции, необходимые для научных вычислений, обработки и анализа данных в проекте. NumPy предоставляет множество операций для работы с массивами, включая математические операции, индексирование, срезы, агрегацию данных и многое другое. Благодаря своей эффективной реализации, NumPy является основой для многих других библиотек и инструментов в области научных вычислений и анализа данных.
- 2. Маtplotlib является мощной библиотекой для визуализации данных. Она предоставляет обширный набор возможностей для создания графиков, диаграмм, диагностических изображений и других типов визуализаций. Мatplotlib позволяет наглядно представить результаты анализа данных и визуально исследовать информацию. Библиотека предоставляет гибкий и настраиваемый интерфейс для создания различных типов графиков, включая линейные графики, точечные графики, гистограммы, круговые диаграммы и многое другое. Она также поддерживает добавление осей, меток, легенд и других элементов для улучшения визуализации. Matplotlib является широко используемым инструментом в научных и инженерных областях, а также в анализе данных и визуализации информации.

- 3. ТепsorFlow это мощная библиотека машинного обучения и глубокого обучения, разработанная для создания и обучения нейронных сетей. Она предоставляет гибкие инструменты и высокоуровневые абстракции, которые упрощают процесс построения и настройки моделей глубокого обучения. TensorFlow поддерживает разнообразные модели и алгоритмы, включая сверточные нейронные сети, рекуррентные нейронные сети, генеративные модели и многое другое.
- 4. Keras это интуитивный и простой в использовании высокоуровневый интерфейс, предназначенный для работы с TensorFlow и другими фреймворками глубокого обучения. Он облегчает процесс создания и обучения моделей нейронных сетей, предоставляя удобное API.
- 5. Pandas это библиотека программного обеспечения, предназначенная для обработки и анализа данных. Она предоставляет высокопроизводительные и гибкие структуры данных, называемые DataFrame, которые позволяют легко манипулировать и анализировать табличные данные. Pandas также предлагает множество инструментов для чтения и записи.

Выбор обусловлен ЭТИХ средств ИΧ функциональностью, гибкостью, поддержкой сообщества широкой И удобством использования. Они обеспечивают необходимые инструменты для обработки, анализа, визуализации данных и реализации моделей машинного обучения, что делает их подходящими для решения задач в проекте.

3.2 Описание программной реализации

- 1. Загрузка датасета: Для начала требуется загрузить набор данных, который состоит из снимков риса и соответствующих меток классов, указывающих на нормальное состояние или наличие конкретного заболевания.
- 2. Создание архитектуры модели: Для реализации сверточной модели глубокого обучения необходимо создать архитектуру модели. То есть, определить слои нейронной сети, их последовательность и конфигурацию параметров каждого слоя, таких как количество фильтров в сверточных слоях, размер окна свертки и т.д.
- 3. Обучение модели: Во время обучения модель подстраивается под данные, оптимизируя функции потерь с использованием оптимизатор. Обучение происходит на обучающей выборке, алгоритм автоматически оптимизирует веса модели, чтобы минимизировать ошибку на тренировочных данных.
- 4. Оценка модели: Для оценки используется отложенная тестовая выборка, с которой модель еще не работала. Оценка может включать вычисление различных метрик, например потери (loss). Метрики позволяют оценить качество классификации модели и ее способность распознавать заболевания риса.
- 5. Применение модели: после успешного обучения и оценки модели, ее можно применять для распознавания заболеваний риса на новых изображениях: загружаются новые снимки побегов риса, проходят через предварительную обработку и затем подаются на вход модели для классификации. Модель в свою очередь выдает предсказание, указывающее на наличие заболевания или нормальное состояние риса на изображении.

4. Тестирование модели

4.1 Описание процесса тестирования

Процесс тестирования модели глубокого обучения для распознавания заболеваний риса включает следующие шаги:

- 1. Подготовка тестовой выборки: для тестирования модели был подготовлен датасет, который не использовался в процессе обучения модели. Тестовая выборка представляет собой репрезентативный набор изображений с различными заболеваниями риса и нормальными состояниями.
- 2. Применение модели на тестовой выборке: загрузка тестовых изображений через загруженную модель. Каждое изображение подается на вход модели, и модель делает предсказание, болен ли побег риса или здоров.
- 3. Оценка производительности модели: сравнение предсказанных значений с истинными метками классов из тестовой выборки.

Весь процесс тестирования модели позволяет оценить ее эффективность и точность в распознавании заболеваний риса на новых изображениях. Это важный этап для оценки и верификации работы модели перед ее применением.

На рисунке 2 наглядно показано обучение модели по эпохам.

рис. 2 - обучение по эпохам

Заключение

В ходе выполнения данной работы была выбрана и реализована модель для классификации изображений риса, которая позволяет автоматизировать процесс распознавания здорово растение риса или больно, и может быть использована в различных практико-ориентированных приложениях

Получены и закреплены навыки работы с моделями: выбор, реализация, обучение, тестирование и возможность применения для решения практических задач.

Кроме этого, отработаны навыки формирования датасета и оценки возможности его использования для обучения моделей.

Перечень использованных информационных ресурсов

- 1. Хабр. «Что такое свёрточная нейронная сеть» [Электронный ресурс], URL: https://habr.com/ru/articles/309508/ (дата обращения: 10.05.2023г.)
- 2. Яндекс. «Сверточные нейросети» [Электронный ресурс], URL: https://academy.yandex.ru/handbook/ml/article/svyortochnye-nejroseti (дата обращения: 10.05.2023г.)
- 3. Хабр. «О компьютерном зрении в сельском хозяйстве» [Электронный ресурс], URL: https://habr.com/ru/companies/rshb/articles/710426/ (дата обращения: 11.05.2023г.)
- 4. Синергия Наук. «Применения машиного зрения в сельском хозяйстве» [Электронный ресурс], URL: http://synergy-journal.ru/archive/article0612 (дата обращения: 11.05.2023г.)
- 5. Pandia. «Болезни риса и меры борьбы с ними» [Электронный ресурс], URL: https://pandia.ru/text/80/684/39005.php (дата обращения: 11.05.2023г.)
- 6. Kvetok. «Болезни и вредители риса: симптомы и меры борьбы» [Электронный ресурс], URL: https://kvetok.ru/vrediteli/bolezni-i-vrediteli-risa-simptomy (дата обращения: 12.05.2023г.)

Приложение А Листинг объявления модели

```
from tensorflow.keras import layers
model = keras.Sequential([
     layers.InputLayer(input shape=(img dim, imt dim, 3)),
     layers.Conv2D(16, (3,3) activation='selu'),
     layers.MaxPooling2D(2,2),
     layers.Conv2D(32, (3,3) activation='selu'),
     layers.MaxPooling2D(2,2),
     layers.Conv2D(64, (3,3) activation='selu'),
     layers.MaxPooling2D(2,2),
     layers.Conv2D(128, (3,3) activation='selu'),
     layers.MaxPooling2D(2,2),
     layers.Flatten(),
     layers.Dense(2048, activation='selu'),
     layers.Dense(1024, activation='selu'),
     layers.Dense(256, activation='selu'),
     layers.Dense(128, activation='selu'),
     layers.Dense(OUTPUT SIZE, activation='softmax')
])
```