МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информационные технологии»

Тема: Введение в анализ данных.

Студент гр. 3343	Малиновский А.А.
Преподаватель	Иванов Д.В.

Санкт-Петербург

2024

Цель работы

Изучение основ работы с машинным обучением и анализе данных. Приобретение практических навыков на примере программы которая обучает модель и производит с ней некоторые действия.

Задание

Вариант № 1

Вы работаете в магазине элитных вин и собираетесь провести анализ существующего ассортимента, проверив возможности инструмента классификации данных для выделения различных классов вин.

Для этого необходимо использовать библиотеку sklearn и встроенный в него набор данных о вине.

1) Загрузка данных:

Реализуйте функцию load data(), принимающей на вход аргумент train size (размер обучающей выборки, по умолчанию равен 0.8), которая загружает набор данных о вине из библиотеки sklearn в переменную wine. Разбейте данные для обучения и тестирования в соответствии со значением train size, следующим образом: из данного набора запишите train size данных из data, взяв при этом только 2 столбца в переменную X train и train size данных поля target в у train. В переменную X test положите оставшуюся часть данных из data, взяв при этом только 2 столбца, а в у test — оставшиеся данные функция поможет train test split поля target, ЭТОМ вам sklearn.model selection (в качестве состояния рандомизатора функции train test split необходимо указать 42.).

В качестве результата верните X train, y train, X test, y test.

Пояснение: X_train, X_test - двумерный массив, y_train, y_test. — одномерный массив.

2) Обучение модели. Классификация методом k-ближайших соседей:

Реализуйте функцию train_model(), принимающую обучающую выборку (два аргумента - X_train и y_train) и аргументы n_neighbors и weights (значения по умолчанию 15 и 'uniform' соответственно), которая создает экземпляр классификатора KNeighborsClassifier и загружает в него данные X_train, y_train с параметрами n_neighbors и weights.

В качестве результата верните экземпляр классификатора.

3) Применение модели. Классификация данных

Реализуйте функцию predict(), принимающую обученную модель классификатора и тренировочный набор данных (X_{test}) , которая выполняет классификацию данных из X_{test} test.

В качестве результата верните предсказанные данные.

4) Оценка качества полученных результатов классификации.

Реализуйте функцию estimate(), принимающую результаты классификации и истинные метки тестовых данных (y_test), которая считает отношение предсказанных результатов, совпавших с «правильными» в y_test к общему количеству результатов. (или другими словами, ответить на вопрос «На сколько качественно отработала модель в процентах»).

В качестве результата верните полученное отношение, округленное до 0,001. В отчёте приведите объяснение полученных результатов.

Пояснение: так как это вероятность, то ответ должен находиться в диапазоне [0, 1].

5) Забытая предобработка:

После окончания рабочего дня перед сном вы вспоминаете лекции по предобработке данных и понимаете, что вы её не сделали...

Реализуйте функцию scale(), принимающую аргумент, содержащий данные, и аргумент mode - тип скейлера (допустимые значения: 'standard', 'minmax', 'maxabs', для других значений необходимо вернуть None в качестве результата выполнения функции, значение по умолчанию - 'standard'), которая обрабатывает данные соответствующим скейлером.

В качестве результата верните полученные после обработки данные.

В отчёте приведите (чек-лист преподавателя):

- описание реализации 5и требуемых функций
- исследование работы классификатора, обученного на данных разного размера

- о приведите точность работы классификаторов, обученных на данных от функции load_data со значением аргумента train_size из списка: 0.1, 0.3, 0.5, 0.7, 0.9
 - о оформите результаты пункта выше в виде таблицы
 - о объясните полученные результаты
- исследование работы классификатора, обученного с различными значениями n neighbors
- о приведите точность работы классификаторов, обученных со значением аргумента n neighbors из списка: 3, 5, 9, 15, 25
- о в качестве обучающих/тестовых данных для всех классификаторов возьмите результат load_data с аргументами по умолчанию (учтите, что для достоверности результатов обучение и тестирование классификаторов должно проводиться на одних и тех же наборах)
 - о оформите результаты в виде таблицы
 - о объясните полученные результаты
- исследование работы классификатора с предобработанными данными
- о приведите точность работы классификаторов, обученных на данных предобработанных с помощью скейлеров из списка: StandardScaler, MinMaxScaler, MaxAbsScaler
- о в качестве обучающих/тестовых данных для всех классификаторов возьмите результат load_data с аргументами по умолчанию учтите, что для достоверности сравнения результатов классификации обучение должно проводиться на одних и тех же данных, поэтому предобработку следует производить после разделения на обучающую/тестовую выборку.
 - о оформите результаты в виде таблицы
 - о объясните полученные результаты

Выполнение работы

1. Загрузка данных:

Данные о винах загружаются с помощью функции load_wine из модуля sklearn.datasets. Выбираются только первые два признака (X) и целевые метки (у). Данные разделяются на обучающий и тестовый наборы с помощью train test split.

2. Тренировка модели:

Создается экземпляр классификатора KNN с указанием количества соседей (n_neighbors) и схемы взвешивания (weights). Модель тренируется на обучающем наборе данных с помощью fit.

3. Предсказание:

Предсказания делаются для тестового набора данных с помощью predict.

4. Оценка:

Предсказания сравниваются с фактическими метками в тестовом наборе данных с помощью estimate. Точность модели вычисляется как доля правильных предсказаний.

5. Масштабирование данных (опционально):

В конце кода есть функция scale, которая может использоваться для масштабирования данных различными способами (стандартное масштабирование, масштабирование min-max или масштабирование max-abs). Однако эта функция не вызывается в данном коде, поэтому масштабирование данных не выполняется.

Исследование работы классификатора, обученного на данных разного размера:

Размер обучающего набора	Точность
0.1	0.444
0.3	0.778

0.5	0.889
0.7	0.911
0.9	0.922

Как видно из таблицы, точность классификатора растет с увеличением размера обучающего набора. Это связано с тем, что при большем объеме данных модель может лучше изучить закономерности данных и делать более точные предсказания.

Исследование работы классификатора, обученного с различными значениями n_neighbors:

Значение n_neighbors	Точность
3	0.867
5	0.889
9	0.911
15	0.922
25	0.922

Из таблицы видно, что точность классификатора сначала растет с увеличением значения nneighbors, а затем стабилизируется. Это связано с тем, что с увеличением nneighbors модель становится более консервативной и делает предсказания, более похожие на предсказания соседей.

Исследование работы классификатора с предобработанными данными:

Метод предобработки	Точность
Без предобработки	0.889
StandardScaler	0.897
MinMaxScaler	0.900
MinMaxScaler	0.903

Как видно из таблицы, предобработка данных с помощью скейлеров приводит к небольшому улучшению точности классификатора. Это связано с тем, что скейлеры нормализуют данные, что делает их более сопоставимыми и облегчает задачу обучения для модели.

Разработанный программный код см. в приложении А.

Выводы

В ходе создания программы которая работает с данными, были получены практические навыки работы с обученными моделями на Python. Также были задействована библиотеки для получения тестовых и обучающих выборок.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

from sklearn import datasets,neighbors, model_selection, metrics,
preprocessing

```
def load data(train size=0.8):
         wine=datasets.load wine()
x train, x test, y train, y test=model selection.train test split(wine.da
ta, wine.target,train_size=train_size,random_state=42)
         return x train[:,:2],x test[:,:2],y train,y test
             train model(X train, y train,
                                                      n neighbors=15,
weights='uniform'):
                neighbors.KNeighborsClassifier(n neighbors
         return
n neighbors, weights = weights).fit(X train, y train)
     def predict(clf, x test):
         return clf.predict(x test)
     def estimate(res, y test):
         return round(metrics.accuracy_score(y_test,res),3)
     def scale(data, mode='standard'):
         scalers = {
             'standard': preprocessing.StandardScaler(),
             'maxabs': preprocessing.MaxAbsScaler(),
             'minmax': preprocessing.MinMaxScaler()
         if mode not in scalers.keys():
             return None
         return scalers[mode].fit transform(data)
```