宏观经济学

李伦

北京大学经济学院

2025年4月15日

李伦 (北大经院) 2025/4/15 1

- 1 从增长到波动
- ② 基准 RBC 模型
- ③ 一个特殊情况
- 4 求解模型:一般情形
- 5 对数线性化
- 6 数值模拟
- 7 总结

 李伦 (北大经院)
 2025/4/15
 2 / 73

从增长到波动

- 我们目前为止学习的许多模型,都以分析经济的稳态(steady state)为主。
- 即使是在索洛、新古典增长模型当中,宏观经济指标沿着平衡增长路径增长,但实际上标准化后的经济指标依然处在稳态水平上。
- 在现实生活中, 我们观察到经济指标(如产出、消费)存在不少的波动。

李伦(北大经院) 2025/4/15 3/73

增长模型和经济周期

- 增长模型关注的是总产出(实际GDP)的增长趋势由哪些因素决定。
- 可像电影《大空头》里描述的2008年金融危机一样,经济体在短期内可能出现波动, 偏离长期的增长趋势。
- 这种偏离增长趋势的波动,我们就称之为经济周期。

李伦 (北大经院) 2025/4/15

为什么关注经济周期

- 从长期来看,经济周期的影响似乎不大。
- 但从短期来看, 经济周期会对个体、公司、社会产生严重的冲击, 并且影响可能会非 常持久。
- 例如: 2008年第四季度,美国的GDP相较去年同期下降了7.6%;从2008年1月 到2009年6月、失业率从5.0%上升到9.5%;经济周期对公司产生的影响具有持久性 (Moreira, 2015) 。
- 理解短期经济波动的产生机制、应对办法、对于政策指定者来说至关重要。

6 / 73

李伦 (北大经院) 2025/4/15

趋势与偏离

• 如果对数变化后的实际GDP按照线性趋势增长

$$\log GDP_t = \underbrace{\beta_0 + \beta_1 t}_{\text{trend}} + \underbrace{\epsilon_t}_{\text{deviation}}$$

• 那么短期经济波动就是实际值和趋势值的差别

$$\underbrace{\epsilon_t}_{\text{deviation}} = \underbrace{\log \textit{GDP}_t}_{\text{Actual Data}} - \underbrace{\log \hat{\textit{GDP}}_t}_{\text{Trend Value}}$$

李伦 (北大经院) 2025/4/15 7/73

8/73

李伦 (北大经院) 2025/4/15

Hodrick-Prescott Filter

当然,线性增长趋势是一种简化,在实际处理数据的时候,一种常用的平滑趋势的方 法叫做Hodrick-Prescott Filter。简称H-P filter。

$$\log \textit{GDP}_t = \underbrace{\tau_t}_{\mathsf{Trend}} + \underbrace{c_t}_{\mathsf{Cycle}} + \underbrace{\epsilon_t}_{\mathsf{Deviation}}$$

这种方法将对数变化后的实际GDP分解成三部分,趋势(trend),周期性变化 (Cycle),和偏离(Deviation)三部分。这种方法能够比线性模型更好地分离出发展趋 势和波动,但具体的操作方法比较复杂,不要求掌握理论。

李伦 (北大经院)

经济周期的特点

- 经济周期并非是规律的: 经济波动的长度,持续时间,剧烈程度都有所不同。
- 经济周期中,GDP的主要组成部分(消费、投资)都与GDP同向变化(procyclical), 政府采购则不随周期变化(acyclical)。
- 消费的调整主要通过表现为耐久品(durable goods)的消费变化;
- 投资的调整幅度大于消费的调整幅度,表现出平滑消费倾向。

李伦 (北大经院) 2025/4/15 12/73

Output component			
GNP	1.0	HSEMPLMT	.8.
Consumption expenditures		GNP/HSHOURS	.4
CONS	.83	Labor input based on	
CNDS	.77	establishment survey	
CD	.78	ESHOURS	.92
Investment		ESAVGHRS	.62
INV	.91	ESMPLMT	.89
INVF	.90	GNP/ESHOURS	.34
INVN	.79	Average hourly earnings	
INVR	.63	based on establishment	
Ch. INV	.67	survey	
Government purchases		WAGE	.68
GOVT	.04	Average hourly compen-	
Exports and imports		sation based on nation-	
EXP	.37	al income accounts	
IMP	.72	COMP	.03
Labor input based on household survey			
HSHOURS	.86		

Source: Cooley and Prescott (1995), Table 1.1.

HSAVGHRS

李伦 (北大经院) 2025/4/15

TABLE 5.2 Behavior of the components of output in recessions

Component of GDP	Average share in GDP	Average share in fall in GDP in recessions relative to normal growth
Consumption		
Durables	8.9%	14.6%
Nondurables	20.6	9.7
Services	35.2	10.9
Investment		
Residential	4.7	10.5
Fixed nonresidential	10.7	21.0
Inventories	0.6	44.8
Net exports	-1.0	-12.7
Government purchases	20.2	1.3

Source: Romer (2012)

李伦 (北大经院) 2025/4/15 14/73

经济周期: 历史

- 美国历史上最大的两次经济波动:大萧条和二战,远远超过 其他经济波动的幅度。
- 大萧条(1929)前和二战后, 经济波动的幅度基本相似

李伦(北大经院) 2025/4/15 15/73

经济周期的成因

- 核心问题: 是什么造成了经济周期?
- 可能的回答: 天灾、人祸、战争、贪婪(?)
- 关于这个问题,不同的学派有不同的答案。
- 在80-90年代比较有影响力的一派模型,是Kydland and Prescott (1982) 论文开创的实际经济周期模型(Real Business Cycle, or RBC模型),这个贡献也帮助两位学者获得了2004年的诺贝尔奖。

李伦(北大经院) 2025/4/15 16/73

实际经济周期模型

- 出发点:能否通过建立一个<mark>瓦尔拉斯模型</mark>(即,没有任何外部性,不对称信息,市场 缺失或其他市场不完备的竞争性模型),来解释总量的经济波动、经济周期。
- Ramsey模型是最自然的一个瓦尔拉斯基准模型,在此基础上进行两方面拓展,来讨论 总量波动的问题:
 - 一个扰动来源:如果没有外生冲击,那么经济体会收敛至一个平衡增长路径,之后平稳增长。
 - ② 考虑就业变动: 拉姆齐模型中, 劳动供给是外生的, 因此无法分析就业率在经济波动中起到的影响。

李伦 (北大经院) 2025/4/15 17/73

- 1 从增长到波动
- ② 基准 RBC 模型
- ③ 一个特殊情况
- 4 求解模型:一般情形
- 5 对数线性化
- 6 数值模拟
- 7 总结

李伦 (北大经院) 2025/4/15 18/73

基准 RBC 模型

我们在 Ramsey 模型的基础上,做出以下调整,从而得到一个基准的 RBC 模型:

- 加入不确定性与期望
- 将家庭的劳动供给决定内生化
- 加入外生科技冲击

李伦 (北大经院) 2025/4/15 19/73

基本设定

- 离散时间模型;
- 完全竞争市场;
- 外生冲击影响科技水平;
- 效用函数包含消费c和劳动/

李伦 (北大经院) 2025/4/15 20 / 73

生产函数

• Cobb-Douglas 生产函数:

$$Y_{t} = K_{t}^{\alpha} (A_{t}L_{t})^{1-\alpha}$$

$$w_{t} = (1-\alpha) \left(\frac{K_{t}}{A_{t}L_{t}}\right)^{\alpha} A_{t}$$

$$r_{t}^{k} = \alpha \left(\frac{K_{t}}{A_{t}L_{t}}\right)^{\alpha-1}$$

$$r_{t} = r_{t}^{k} - \delta$$

李伦 (北大经院) 2025/4/15 21/73

人口与科技增长

- 当x, t比较小的时候, $e^{xt} \approx (1+x)^t$
- 人口增长速度为n:

$$N_t = N_0 (1+n)^t \quad \Rightarrow \quad \ln N_t \approx \ln N_0 + nt$$

• 科技增长

$$\ln A_t pprox \ln A_0 + gt + \tilde{A}_t$$

其中 \tilde{A}_t 是一个随机技术冲击,服从一个一阶自回归AR(1)过程:

$$\tilde{A}_t = \rho_A \tilde{A}_{t-1} + \epsilon_{A,t}, \quad -1 < \rho_A < 1$$

李伦 (北大经院) 2025/4/15 22/73

家庭:效用函数

• 家庭的跨期效用函数:

$$U_t = \mathbb{E}_t \sum_{t=0}^\infty eta^t [\ln(c_t) + b \ln(1-I_t)] extit{N}_t$$

其中
$$\beta = \frac{1}{1+\rho}$$

- 效用随消费 (c_t) 和闲暇 $(1 l_t)$ 上升而上升
- b 表示了对闲暇的偏好程度(或者说对工作的厌恶程度)
- 由于家庭对未来的要素价格(工资、利息)存在不确定性,所以需要在效用函数上面加上期望符号

李伦 (北大经院) 2025/4/15 23/73

家庭: 预算约束

- 资本是唯一的储蓄手段
- 人均预算约束为:

$$\frac{K_{t+1}}{N_t} = w_t I_t + r_t \frac{K_t}{N_t} - c_t - g_t + \frac{K_t}{N_t}$$

- *I_t* = *L_t*/*N_t*: 人均劳动供给
- $c_t = C_t/N_t$: 人均消费
- $g_t = G_t/N_t$: 人均政府转移/税收

李伦 (北大经院) 2025/4/15 24/73

家庭问题:一阶条件

• 拉格朗日函数:

$$\mathcal{L}_t = \mathbb{E}_t \sum_{t=0}^{\infty} \beta^t \left\{ \left[\ln(c_t) + b \ln(1 - l_t) \right] N_t + \lambda_t [w_t l_t + r_t k_t - c_t - g_t - k_{t+1} (1 + n) + k_t + \pi_t \right]$$

• 一阶条件为:

$$[c_t] \quad \mathbb{E}_t \left\{ \beta^t \left[\frac{N_t}{c_t} - \lambda_t \right] \right\} = 0 \quad \Rightarrow \quad \frac{N_t}{c_t} = \lambda_t$$

$$[I_t] \quad \mathbb{E}_t \left\{ \beta^t \left[-\frac{bN_t}{1 - I_t} + \lambda_t w_t \right] \right\} = 0 \quad \Rightarrow \quad \frac{bN_t}{(1 - I_t)w_t} = \lambda_t$$

$$[k_{t+1}] \quad \mathbb{E}_t \left[\beta^t (-1)(1 + n)\lambda_t + \lambda_{t+1}(1 + r_{t+1})\beta^{t+1} \right] = 0$$

2025/4/15

李伦 (北大经院)

家庭问题:一阶条件

● 一阶条件 [ct] 和[lt] 联立:

$$\frac{bN_t}{1 - I_t} = \frac{w_t N_t}{c_t}$$

$$\Rightarrow \frac{c_t}{1 - I_t} = \frac{w_t}{b}$$

• 提供了每期当中消费、劳动供给、工资,以及闲暇偏好之间的固定关系。

李伦 (北大经院) 2025/4/15 26/73

欧拉方程

• 一阶条件 $[c_t]$ 和 $[k_{t+1}]$ 联立:

$$\mathbb{E}_t \beta^t \left[\frac{N_t}{c_t} * (-1)(1+n) + \frac{N_{t+1}}{c_{t+1}} (1+r_{t+1}) \beta \right] = 0$$

• 整理,得到消费的欧拉方程为:

$$rac{1}{c_t} = eta \mathbb{E}_t \left[rac{1}{c_{t+1}} (1 + r_{t+1})
ight]$$

• 和 Ramsey 模型中欧拉方程的不同: 对下期利率存在不确定性,不能把 c_{t+1} 从期望符号中移出来。

李伦 (北大经院) 2025/4/15 27/73

- 1 从增长到波动
- ② 基准 RBC 模型
- ③ 一个特殊情况
- 4 求解模型:一般情形
- 5 对数线性化
- 6 数值模拟
- 7 总结

李伦 (北大经院) 2025/4/15 28/73

特殊情况下的解

- 一般情况下, 求解模型比较困难: 我们先考虑一个特殊情况下的解
- 假设:不存在政府($g_t = 0$),完全折旧($\delta = 1$)
- 此时:

$$Y_t = C_t + K_{t+1} = w_t L_t + r_t K_t$$
$$r_t = \alpha \frac{Y_t}{K_t} - 1$$

• 假设储蓄率 \hat{s} 固定, $c_t = (1 - \hat{s})Y_t/N_t$, 欧拉方程变为:

$$\frac{N_t}{Y_t} \frac{1}{1-\hat{s}} = \beta \mathbb{E}_t \left[\frac{N_{t+1}}{Y_{t+1}} \frac{1}{1-\hat{s}} \cdot \alpha \frac{Y_{t+1}}{K_{t+1}} \right]$$

李伦 (北大经院) 29 / 73 2025/4/15

特殊情况下的解

• 代入 $K_{t+1} = Y_t - C_t = \hat{s}Y_t$:

$$\frac{N_t}{Y_t} = \beta \mathbb{E}_t \left[\frac{N_{t+1}}{Y_{t+1}} \cdot \alpha \frac{Y_{t+1}}{\hat{s} Y_t} \right] = \beta \mathbb{E}_t \left[\frac{\alpha}{\hat{s}} \frac{N_t (1+n)}{Y_t} \right]$$

$$\Rightarrow 1 = \frac{1+n}{1+\rho} \frac{\alpha}{\hat{s}}$$

$$\Rightarrow \hat{s}^* = \alpha \frac{1+n}{1+\rho}$$

李伦 (北大经院) 2025/4/15 30/73

特殊情况下的解

- 储蓄率随ρ上升而下降, 随n上升而上升。
- 在这种特殊情况下,储蓄率与技术、资本存量无关。这是由于对数形式的效用函数, Cobb-Douglas形式的生产函数,以及折旧率等于1这三个条件共同作用的结果,使得技术变动和资本变动均不影响储蓄率的大小。
- 正因为ŝ为常数, 所以才能计算出这个特殊情况下的解析解。

李伶 (北大经院) 2025/4/15 31/73

特殊情况下的解: 劳动供给

• 代入 $c_t = (1 - \hat{s})Y_t/N_t$, $w_t = (1 - \alpha)Y_t/L_t$, $L_t = I_tN_t$, 得到

$$\frac{c_t}{1 - l_t} = \frac{w_t}{b}$$

$$(1 - \hat{s}) \frac{Y_t}{N_t} \frac{1}{1 - l_t} = (1 - \alpha) \frac{1}{b} \frac{Y_t}{l_t N_t}$$

$$\frac{b(1 - \hat{s})}{1 - \alpha} = \frac{1 - l_t}{l_t} = \frac{1}{l_t} - 1$$

$$l^* = \frac{1 - \alpha}{1 - \alpha + (1 - \hat{s}^*)b}$$

$$= \frac{1 - \alpha}{1 - \alpha + (1 - \alpha(1 + n)/(1 + \rho))b}$$

32 / 73

ロ ト ◆ 個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

特殊情况下的解: 动态变化

• 将 $K_t = \hat{s}Y_{t-1}$, $L_t = IN_t$ 代入生产函数,两边取自然对数:

$$\ln(Y_t) = \alpha \ln(K_t) + (1 - \alpha)[\ln(A_t) + \ln(L_t)]$$

= $\alpha \ln(\hat{s}) + \alpha \ln(Y_{t-1}) + (1 - \alpha)[\ln(I) + \ln(N_t)] + (1 - \alpha)[\ln(A_0) + gt] + (1 - \alpha)\hat{A}_t$

• 用 \(\bar{Y}\)表示在平衡增长路径上的产出:

$$\ln(\bar{Y}_t) = \alpha \ln(\hat{s}) + \alpha \ln(\bar{Y}_{t-1}) + (1-\alpha)[\ln(I) + \ln(N_t)] + (1-\alpha)[\ln(A_0) + gt]$$

• 定义 $\tilde{Y}_t = \ln(Y_t) - \ln(\bar{Y}_t)$ 为实际产出与平衡增长路径上产出的对数偏离。

李伦 (北大经院) 2025/4/15 33/73

特殊情况下的解: 动态变化

产出的波动可以由下面两个方程概括:

$$\begin{split} \tilde{Y}_t &= \alpha \tilde{Y}_{t-1} + (1 - \alpha) \tilde{A}_t \\ \tilde{A}_t &= \rho_A \tilde{A}_{t-1} + \epsilon_{A,t} \end{split}$$

整理为

$$\tilde{Y}_t = \alpha \tilde{Y}_{t-1} + (1 - \alpha)\rho_A \tilde{A}_{t-1} + (1 - \alpha)\epsilon_{A,t}$$

李伦 (北大经院) 2025/4/15 34/73

特殊情况下的解: 动态变化

从上页第一个公式可以得到:

$$ilde{A}_t = rac{1}{1-lpha} (ilde{Y}_t - lpha ilde{Y}_{t-1})$$

使用上式, $ilde{A}_{t-1}$ 的表达式代入 \tilde{Y}_t 的表达式,得到

$$\tilde{Y}_{t} = \alpha \tilde{Y}_{t-1} + \rho_{A} \tilde{Y}_{t-1} - \rho_{A} \alpha \tilde{Y}_{t-2} + (1 - \alpha) \epsilon_{A,t}
= (\alpha + \rho_{A}) \tilde{Y}_{t-1} - \alpha \tilde{Y}_{t-2} + (1 - \alpha) \epsilon_{A,t}$$

说明 $\frac{\tilde{V}}{B}$ 服从一个二阶自回归过程,或 $\frac{\tilde{V}}{B}$ AR(2) 过程。也就是说, \tilde{V} 可以表达为其前两期值的 线性组合,加上一个随机扰动项。

李伦 (北大经院) 2025/4/15 35/73

特殊情况下的解: 讨论

$$\tilde{Y}_t = (\alpha + \rho_A)\tilde{Y}_{t-1} - \alpha\tilde{Y}_{t-2} + (1 - \alpha)\epsilon_{A,t}$$

- Y的1期滞后变量系数为正,2期滞后变量系数为负;
- 总产出对于扰动的反应具有 "驼峰形状":
- 产出的动态变化取决于技术冲击的持久性 ρ_A , 以及生产函数的系数 α_a 。
- 可以借助软件画出产出的冲击响应函数(impulse response function)。

李伦 (北大经院) 36 / 73 2025/4/15

例子

- 第6期发生对科技水平的外生冲击,之后逐渐衰减。
- 假设 $\alpha = 1/3$, $\rho_A = 0.5$, $\epsilon_{A.6} = 1/(1-\alpha)$

2025/4/15

例子

- 第6期发生对科技水平的外生冲击,之后逐渐衰减。
- 假设 $\alpha = 1/3$, $\rho_A = 0.8$, $\epsilon_{A.6} = 1/(1-\alpha)$

38 / 73

例子

- 第6期发生对科技水平的外生冲击,之后逐渐衰减。
- 假设 $\alpha = 1/3$, $\rho_A = -0.85$, $\epsilon_{A.6} = 1/(1-\alpha)$

39 / 73

李伦 (北大经院) 2025/4/15

特殊情况下的解: 讨论

- 在这个例子当中,技术冲击不会改变储蓄率,这意味着消费与投资有着相同的波动性。此外,劳动供给也保持不变。
- 一般情况下,技术冲击对劳动供给会产生"财富效应"与"替代效应"。一方面,当期的技术进步使得当期工资相对未来预期工资提高,从而使得劳动供给增加(替代效应);另一方面,技术进步使得永久收入提高,从而使劳动供给减少(财富效应)。
- 在这个例子中,劳动供给的财富效应与替代效应恰好抵消,这也是对数形式的效用函数, Cobb-Douglas 形式的生产函数, 以及折旧率等于1这三个条件共同作用的结果。

李伦(北大经院) 2025/4/15 40/73

- 1 从增长到波动
- ② 基准 RBC 模型
- ③ 一个特殊情况
- 4 求解模型:一般情形
- 5 对数线性化
- 6 数值模拟
- 7 总结

4□ ► 4□ ► 4 = ► 4 = ► 9 < 0</p>

李伦 (北大经院) 2025/4/15 41/73

我们假设效用函数采用以下形式:

$$u(c_t, l_t) = \frac{c_t^{1-\theta}}{1-\theta} + b(1-l_t)$$

欧拉方程变为

$$C_t^{-\theta} = \beta \mathbb{E}_t(C_{t+1}^{-\theta}R_{t+1})$$

其中 $R_{t+1} = 1 + r_{t+1}$ 。劳动和消费的替换关系变为:

$$-b + (1 - \alpha)c_t^{-\theta} \frac{y_t}{I_t} = 0$$

李伦 (北大经院) 2025/4/15 42/73

总结起来, RBC 模型可以由下面六个方程概括:

$$y_t = c_t + i_t$$
 $y_t = (k_t)^{\alpha} (A_t I_t)^{1-\alpha}$
 $k_{t+1}(1+n) = i_t + k_t (1-\delta)$
 $R_t = \alpha \frac{y_t}{k_t} + 1 - \delta$
 $c_t^{-\theta} = \beta \mathbb{E}_t (c_{t+1}^{-\theta} R_{t+1})$
 $\frac{y_t}{I_t} = \frac{b}{1-\alpha} c_t^{\theta}$

此外, 技术发展的速度为

$$\ln A_t = \bar{A} + gt + \tilde{A}_t$$

$$\tilde{A}_t = \rho_A \tilde{A}_{t-1} + \epsilon_t$$

李伦 (北大经院) 2025/4/15 43/73

- 1 从增长到波动
- ② 基准 RBC 模型
- ③ 一个特殊情况
- 4 求解模型:一般情形
- 5 对数线性化
- 6 数值模拟
- 7 总结

李伦 (北大经院) 2025/4/15 44/73

对数线性化

- 由于生产函数、效用函数不是线性的,这个完整模型是无法得到解析解的,这一问题 在几乎所有的实际经济周期模型,以及其他的一些现代宏观经济学模型中都会出现。
- 一个应对的办法是对模型进行"对数线性化"(log-linearization),通过在稳态位置进行一阶泰勒近似的方式,将模型近似表达为线性函数。

$$F(x_t, y_t) = F(x_t^*, y_t^*) + F_x(x_t^*, x_t^*)(x_t - x_t^*) + F_y(x_t^*, y_t^*)(y_t - y_t^*) + \dots$$

如果 (x_t, y_t) 距离 (x_t^*, y_t^*) 足够近,我们就可以把 $F(x_t, y_t)$ 近似表达成一个关于 x_t, y_t 的线性函数,类似下面的形式:

$$F(x_t, y_t) \approx A + B_1 x_t + B_2 y_t$$

李伦 (北大经院) 2025/4/15 45/73

- 宏观模型中的对数线性化,一般是将原方程先取对数,之后在经济稳态周围进行一阶泰勒近似。
- 这样做的原因是,在冲击过后,经济体会倾向于向稳态收敛,各个变量和稳态水平的 差距会随时间减小,由此得到的一阶近似比较精确;
- 直观上说,稳态(平衡增长路径)描述的是长期的经济增长,向稳态的收敛描述的是 短期的经济波动。

李伦 (北大经院) 2025/4/15 46 / 73

假设我们需要对数线性化的方程是

$$F(x_t) = \frac{G(x_t)}{H(x_t)}$$

首先, 两边取自然对数:

$$\ln F(x_t) = \ln G(x_t) - \ln H(x_t)$$

在稳态(\bar{x})附近做一阶泰勒近似:

$$\ln F(\bar{x}) + \frac{F'(\bar{x})}{F(\bar{x})}(x_t - \bar{x}) \approx \ln G(\bar{x}) + \frac{G'(\bar{x})}{G(\bar{x})}(x_t - \bar{x}) - \ln H(\bar{x}) - \frac{H'(\bar{x})}{H(\bar{x})}(x_t - \bar{x})$$

其中

$$\ln F(\bar{x}) = \ln G(\bar{x}) - \ln H(\bar{x})$$

李伦 (北大经院) 2025/4/15

根据稳态的定义,两边消掉 $\ln F(\bar{x})$,得到

$$\frac{F'(\bar{x})}{F(\bar{x})}(x_t - \bar{x}) \approx \frac{G'(\bar{x})}{G(\bar{x})}(x_t - \bar{x}) - \frac{H'(\bar{x})}{H(\bar{x})}(x_t - \bar{x})$$

例子: Cobb-Douglas 生产函数

$$Y_t = K_t^{\alpha} (A_t L_t)^{1-\alpha}$$

取自然对数:

$$\ln Y_t = \alpha \ln K_t + (1 - \alpha) \ln L_t + (1 - \alpha) \ln A_t$$

李伦 (北大经院) 2025/4/15 48/73

假设人口增长速度为0,稳态水平为

$$\bar{Y} = \bar{K}^{\alpha} (\bar{A}\bar{L})^{1-\alpha}$$

在 $Y_t = \bar{Y}$ 附近进行一阶泰勒近似:

$$\ln(\bar{Y}) + \frac{1}{\bar{Y}}(Y_t - \bar{Y}) = \alpha \ln(\bar{K}) + \alpha \frac{1}{\bar{K}}(K_t - \bar{K}) + (1 - \alpha) \ln(\bar{L}) + (1 - \alpha) \frac{1}{\bar{L}}(L_t - \bar{L}) + (1 - \alpha) \ln(\bar{A}) + (1 - \alpha) \frac{1}{\bar{A}}(A_t - \bar{A})$$

根据稳态的定义:

$$\ln(\bar{Y}) = \alpha \ln(\bar{K}) + (1 - \alpha)(\ln(\bar{A}) + \ln(\bar{L}))$$

整理得到

$$\frac{Y_t - \bar{Y}}{\bar{Y}} = \alpha \frac{K_t - \bar{K}}{\bar{K}} + (1 - \alpha) \frac{L_t - \bar{L}}{\bar{L}} + + (1 - \alpha) \frac{A_t - \bar{A}}{\bar{A}}$$

我们把变量 x_t 从稳态周围偏移的百分比表达为 \tilde{x}_t ,即

$$ilde{x}_t = rac{x_t - ar{x}}{ar{x}} pprox \mathsf{ln}(x_t) - \mathsf{ln}(ar{x})$$

可以将上页最后一行写作

$$\tilde{Y}_t = \alpha \tilde{K}_t + (1 - \alpha)\tilde{L}_t + (1 - \alpha)\tilde{A}_t$$

李伦 (北大经院) 2025/4/15 50 / 73

对数线性化: 方法二

Uhlig (1995): 简化的对数线性化方法

对于任何变量 x_t ,定义从稳态周围偏移的百分比为 \tilde{x}_t :

$$\tilde{x}_t = \ln(x_t) - \ln(\bar{x})$$

那么变量 x_t 可以写作:

$$x_t = \bar{x}e^{\tilde{x}_t}$$

将原式中所有变量替换为上面的形式,之后进行化简。

李伦 (北大经院) 2025/4/15 51/73

对数线性化: 方法二

例子:

$$egin{aligned} rac{A_t B_t^lpha}{C^\delta} &= rac{ar{A}e^{ ilde{A}_t}ar{B}^lpha}{ar{C}^\delta e^{\delta ilde{C}_t}} \ &= rac{ar{A}ar{B}^lpha}{ar{C}^\delta}e^{ ilde{A}_t+lpha ilde{B}_t-\delta ilde{C}_t} \ &pprox rac{ar{A}ar{B}^lpha}{ar{C}^\delta}(1+ ilde{A}_t+lpha ilde{B}_t+\delta ilde{C}_t) \end{aligned}$$

李伦 (北大经院) 2025/4/15 52/73

对数线性化: 方法二

例子: Cobb-Douglas 生产函数

$$Y_t = K_t^{\alpha} (A_t L_t)^{1-\alpha}$$

写成如下形式:

$$\begin{split} \bar{Y}e^{\tilde{Y}_t} &= \bar{K}^{\alpha}e^{\alpha\tilde{K}_t}(\bar{A}\bar{L})^{1-\alpha}e^{(1-\alpha)(\tilde{A}_t+\tilde{L}_t)} \\ e^{\tilde{Y}_t} &= e^{\alpha\tilde{K}_t+(1-\alpha)(\tilde{A}_t+\tilde{L}_t)} \\ \tilde{Y}_t &= \alpha\tilde{K}_t+(1-\alpha)(\tilde{A}_t)+(1-\alpha)\tilde{L}_t \end{split}$$

和方法一得到的结果一样。

李伦 (北大经院) 2025/4/15 53/73

RBC模型:对数线性化

出于简化,我们假设g=0, n=0的情形。此时基准 RBC 模型可以写作:

$$y_t = c_t + i_t$$

$$y_t = (k_t)^{\alpha} (A_t l_t)^{1-\alpha}$$

$$k_{t+1} = i_t + k_t (1 - \delta)$$

$$R_t = \alpha \frac{y_t}{k_t} + 1 - \delta$$

$$c_t^{-\theta} = \beta \mathbb{E}_t (c_{t+1}^{-\theta} R_{t+1})$$

$$\frac{y_t}{l_t} = \frac{b}{1 - \alpha} c_t^{\theta}$$

此时,技术冲击为:

$$\ln A_t = \rho \ln A_{t-1} + (1-\rho)\bar{A} + \epsilon_t$$

李伦 (北大经院) 2025/4/15 54/73

RBC模型:对数线性化

$$egin{aligned} ilde{y}_t &= rac{ar{c}}{ar{y}} ilde{c}_t + rac{ar{i}}{ar{y}} ilde{l}_t \ ilde{y}_t &= lpha ilde{k}_t + (1-lpha) ilde{l}_t + (1-lpha) ilde{A}_t \ ilde{k}_{t+1} &= rac{ar{i}}{ar{k}} ilde{l}_t + ilde{k}_t (1-\delta) \ ilde{R}_t &= \left(rac{lpha}{ar{R}} rac{ar{y}}{ar{k}}
ight) (ilde{y}_t - ilde{k}_t) \ ilde{c}_t &= \mathbb{E}_t ilde{c}_{t+1} - rac{1}{ heta} \mathbb{E}_t ilde{R}_{t+1} \ ilde{l}_t &= ilde{y}_t - heta ilde{c}_t \end{aligned}$$

李伦 (北大经院) 2025/4/15 55/73

• 我们还需要计算

$$\frac{\bar{c}}{\bar{y}}, \frac{\bar{i}}{\bar{y}}, \frac{\bar{i}}{\bar{k}}, \frac{\alpha}{\bar{R}} \frac{\bar{y}}{\bar{k}}$$

• 如何求解?

- 为了计算稳态、我们需要使用对数线性化之前的 RBC 系统。
- 稳态条件下, $c_t = c_{t+1} = \bar{c}$, $R_{t+1} = \bar{R}$, 欧拉方程变为

$$\bar{c}^{-\theta} = \beta \mathbb{E}_t(\bar{c}^{-\theta}\bar{R})$$

由此可得

$$ar{R}=rac{1}{eta}$$

稳态利率取决于消费者的耐心程度。

李伦 (北大经院) 2025/4/15 57 / 73

• 利率的表达式可以写作

$$R_{t+1} = \alpha \frac{y_t}{k_t} + 1 - \delta$$

• 稳态时:

$$\bar{R} = \frac{1}{\beta} = \alpha \frac{\bar{y}}{\bar{k}} + 1 - \delta$$

• 可得:

$$\frac{\bar{y}}{\bar{k}} = \frac{\beta^{-1} + \delta - 1}{\alpha}$$

• 代入稳态利率的表达式:

$$\frac{\alpha}{\overline{R}}\frac{\overline{y}}{\overline{k}} = \alpha\beta\left(\frac{\beta^{-1}+\delta-1}{\alpha}\right) = 1-\beta(1-\delta)$$

李伦 (北大经院) 2025/4/15 59/73

• 通过资本的运动方程,稳态条件下 $k_{t+1} = k_t = \bar{k}$,可得

$$\frac{\bar{I}}{\bar{K}} = \delta$$

• 最后,为了求 $\frac{i}{\overline{v}}$,可以使用之前的结果:

$$\frac{\overline{i}}{\overline{y}} = \frac{\frac{\overline{i}}{\overline{k}}}{\frac{\overline{y}}{\overline{k}}} = \frac{\alpha\delta}{\beta^{-1} + \delta - 1}$$

最后,

$$\frac{\bar{c}}{\bar{y}} = 1 - \frac{\alpha \delta}{\beta^{-1} + \delta - 1}$$

2025/4/15 60 / 73

代入我们解出的稳态结果, 可以得到

$$\tilde{y}_{t} = \left(1 - \frac{\alpha \delta}{\beta^{-1} + \delta - 1}\right) \tilde{c}_{t} + \left(\frac{\alpha \delta}{\beta^{-1} + \delta - 1}\right) \tilde{i}_{t}$$

$$\tilde{y}_{t} = \alpha \tilde{k}_{t} + (1 - \alpha) \tilde{l}_{t} + (1 - \alpha) \tilde{A}_{t}$$

$$\tilde{k}_{t+1} = \delta \tilde{i}_{t} + \tilde{k}_{t} (1 - \delta)$$

$$\tilde{R}_{t} = (1 - \beta(1 - \delta))(\tilde{y}_{t} - \tilde{k}_{t})$$

$$\tilde{c}_{t} = \mathbb{E}_{t} \tilde{c}_{t+1} - \frac{1}{\theta} \mathbb{E}_{t} \tilde{R}_{t+1}$$

$$\tilde{l}_{t} = \tilde{y}_{t} - \theta \tilde{c}_{t}$$

$$a_{t} = \rho a_{t-1} + \epsilon_{t}$$

得到模型的对数线性化形式之后,我们可以使用Blanchard-Kahn (1980) 或 Binder-Pesaran (1996) 的方法解出模型的近似解。这里不做要求。

PEKING UNIVERSITY

李伦 (北大经院) 2025/4/15 61/73

- 1 从增长到波动
- ② 基准 RBC 模型
- ③ 一个特殊情况
- 4 求解模型:一般情形
- 5 对数线性化
- 6 数值模拟
- 7 总结

李伦 (北大经院) 2025/4/15 62/7

- 我们可以设置一些参数的大小, 来对 RBC 模型进行模拟。
- 例如,我们可以设定

$$\alpha = 1/3$$

$$\beta = 0.99$$

$$\delta = 0.015$$

$$\rho = 0.95$$

$$\theta = 1$$

● 下页对基准的 RBC 模型进行了一个200期的模拟。我们看到,模型可以模拟出较为复杂的经济周期,这也是 RBC 模型的强项之一。

李伦 (北大经院) 2025/4/15 63 / 73

- RBC 模型的另外一个特点,在于其<mark>冲击传导机制</mark>。
- 技术冲击会改变人们的劳动、投资行为,从而改变全社会的要素供给,使得一个较小的技术冲击对产出造成较大的震荡。
- 我们可以从下图看到这一点。

李伦 (北大经院) 2025/4/15 65/73

对于 RBC 模型的批评

- 对 RBC 模型的批评主要集中在其对劳动市场的刻画与现实不符。
- 根据数据,在<mark>经济周期当中劳动供给的波动与产出的波动大小接近</mark>;而<mark>模型中劳动供给对于冲击的反应要小于产出对与冲击的反应</mark>。
- 模型预测就业与工资存在高度正相关,而数据中两者的相关性很弱,甚至为负。
- 不存在非自愿失业: "Great Depression" or "Great Vacation"?

李伦 (北大经院) 2025/4/15 67 / 73

PEKING UNIVERSITY

TABLE 5.4 A calibrated real-business-cycle model versus actual data

	U.S. data	Baseline real-business-cycle model
σ_{Y}	1.92	1.30
$\sigma_{\!C}/\sigma_{\!Y}$	0.45	0.31
σ_C/σ_Y σ_I/σ_Y σ_L/σ_Y	2.78	3.15
σ_L/σ_Y	0.96	0.49
Corr(L,Y/L)	-0.14	0.93

Source: Hansen and Wright (1992).

李伦 (北大经院) 2025/4/15 69/7

- 1 从增长到波动
- ② 基准 RBC 模型
- ③ 一个特殊情况
- 4 求解模型:一般情形
- 5 对数线性化
- 6 数值模拟
- 7 总结

李伦 (北大经院) 2025/4/15 70 / 1

总结: RBC 模型

- 一个具有微观基础的宏观模型,内核是一个<mark>具有外生波动的 Ramsey 模型</mark>。
- 可以在一个框架内同时分析长期增长与短期波动,推动了现代宏观经济学的研究范式发展。
- 校准后的模型可以拟合经济周期的一些基本特点(如<mark>消费的波动性小于产出的波动性</mark>, 投资的波动性大于产出的波动性),但对于<mark>劳动市场的刻画不够准确</mark>。

李伦 (北大经院) 2025/4/15 71/73

总结: RBC 模型

RBC 模型<mark>很难解答</mark>以下问题:

- 非自愿失业的出现
- 实际冲击的来源
- 货币政策对于经济的短期刺激作用

对于 RBC 模型的改进主要有以下两个方向:

- 在 RBC 模型的基础上加入其他因素(如<mark>资本的利用率</mark>,<mark>消费习惯</mark>,<mark>劳动市场中的搜索 模型</mark>)
- 打破货币中性的假设,引入价格粘性、工资粘性等名义刚性(新凯恩斯模型)

李伦(北大经院) 2025/4/15 72 / 73

延伸阅读

• McCandless, G. (2008). The ABCs of RBCs, Chapter 6

李伦 (北大经院) 2025/4/15 73/73