

Table des matières

0.1	Clôture algébrique
0.2	Bases normales
	éorie de Galois
1.1	Plongements et séparabilité
	1.1.1 Cadre
	1.1.2 Existence de prolongements
	1.1.3 Nombre de plongements
Qı	ielques notes et notes de lecture sur le Douady!

0.1 Clôture algébrique

C'est sombre mdr.

0.2 Bases normales

Représentations régulière isomorphe à représentation de Gal(L/K) naturelle, i.e. dans GL(L). Théorème de Krull-Schmidt sur les modules indécomposables.

0.2 Bases normales

Chapitre 1

Théorie de Galois

Y'a plusieurs points où j'suis pas au clair. Le nombre de plongements et la séparabilité. Les extensions successives et la séparabilité/normalité.

1.1 Plongements et séparabilité

En gros faut considérer les morphismes induits de $\varphi \colon K \to L$ à

$$K[X] \to L[X]$$

naturellement.

1.1.1 Cadre

Maintenant si $L = K[\alpha]/K$ est monogène, $K \to E$ et $E \to M$ des extensions. Y'a la bij pour P annulateur minimal de α :

 $\{\text{extensions de }\varphi \text{ en }L\to M\} \leftrightarrow \{\text{racines simples de }\varphi(P) \text{ dans }\}$

donné par $\hat{\varphi} \mapsto \hat{\varphi}(\alpha)$. L'injectivité est claire. La surjectivité on prends $\varphi(P)(\beta) = 0$ et on déf

$$\hat{\varphi}(x) = \hat{\varphi}(f(\alpha)) = \varphi(f)(\beta)$$

pour $f(\alpha) = x$. L'écriture est unique vue que f est vu modulo $P(\alpha)$.

1.1.2 Existence de prolongements

Quand on a juste $K - L = K(\alpha)$ monogène et K - E. On peut étendre $K \to L$ en $E \to F$ simplement en prenant F = un corps de rupture pour μ_{α} .

1.1.3 Nombre de plongements