Московский физико-технический институт (госудраственный университет)

Лабораторная работа по электричеству

Спектры электрических сигналов (компьютер) [3.6.1]

Талашкевич Даниил Александрович Группа Б01-009

Содержание

1	Аннотация			
2	Теоретические сведения			
	2.1	Спектральный анализ электрических сигналов	1	
	2.2	Периодическая последовательность прямоугольных импуль-		
		COB	3	
	2.3	Периодическая последовательность цугов	4	
	2.4	Амплитудно-модулированные колебания	5	
3	Метод, результаты и обработка			
	3.1	Исследование спектра периодических последовательностей		
		прямоугольных импульсов	6	
	3.2	Исследование спектра периодической последовательности		
		цугов	7	
	3.3	Исследование спектра амплитудно модулированного сигнала	9	
4	Вы	вод	11	
5	Лиз	гература	11	

1 Аннотация

В работе изучается спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности цугов и амплитудно модулированных гармонических колебаний. Спектры этих сигналов наблюдаются с помощью промышленного анализатора спектра и сравниваются с рассчитанными теоретически.

2 Теоретические сведения

Сколь угодно сложный электрический сигнал V (t) может быть разложен на более простые сигналы. В радиотехнике широко используется разложение сигнала V (t) на совокупность гармонических сигналов различных частот ω . Функция $F(\omega)$, описывающая зависимость амплитуд отдельных гармоник от частоты, называется амплитудной спектральной характеристикой сигнала V(t). Представление сложного периодического сигнала в виде суммы дискретных гармонических сигналов в математике называется разложением в ряд Фурье.

Зная спектральный состав $F(\omega)$ периодической последовательности некоторого импульса V(t), мы можем осуществить обратное преобразование Фурье: сложив отдельные гармоники со своими амплитудами и фазами, получить необходимую последовательность импульсов. Степень совпадения полученного сигнала с V(t) определяется количеством синтезированных гармоник: чем их больше, тем лучше совпадение. Рассмотрим конкретные примеры периодических функции, которые будут предметом исследования в нашей работе.

Рассмотрим конкретные примеры периодических функций, которые будут предметом исследования в нашей работе.

2.1 Спектральный анализ электрических сигналов

Рис. П.1. График периодической функции с периодом повторения T

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1=2\pi/T$, где T- период повторения (рис. П.1). Её разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t) \right]$$

или

$$f(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n)$$

Здесь $a_0/2 = A_0/2$ — постоянная составляющая (среднее значение) функции f(t); a_n и b_n — амплитуды косинусных и синусных членов разложения. Они определяются выражениями

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt$$

Точку начала интегрирования t_1 можно выбрать произвольно. В тех случаях, когда сигнал четен относительно $\mathbf{t}=0$, в тригонометрическои записи остаются только косинусные члены, т.к. все коэффициенты b_n обращаются в нуль. Для нечетнои относительно $\mathbf{t}=0$ функции, наоборот, ряд состоит только из синусных членов.

Амплитуда A_n и фаза $\psi_n n$ -й гармоники выражаются через a_n и b_n следующим образом:

$$A_n = \sqrt{a_n^2 + b_n^2}; \quad \psi_n = \operatorname{arctg} \frac{b_n}{a_n}$$

Как мы видим, спектр любой периодической функции состоит из набора гармонических колебаний с дискретными частотами: $\Omega_1, 2\Omega_1, 3\Omega_1 \dots$ и постоянной составляющей, которую можно рассматривать как колебание с нулевой частотой $(0 \cdot \Omega_1)$.

Представим выражение в комплексной форме. Для этого заменим косинусы экспонентами в соответствии с формулой

$$\cos\alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2}$$

Подстановка даёт

$$f(t) = \frac{1}{2} \left(A_0 + \sum_{n=1}^{\infty} A_n e^{-i\psi_n} e^{in\Omega_1 t} + \sum_{n=1}^{\infty} A_n e^{i\psi_n} e^{-in\Omega_1 t} \right)$$

Введём комплексные амплитуды \tilde{A}_n и \tilde{A}_{-n}

$$\tilde{A}_n = A_n e^{-i\psi_n}; \quad \tilde{A}_{-n} = A_n e^{i\psi_n}; \quad \tilde{A}_0 = A_0$$

Разложение f(t) приобретает вид

$$f(t) = \frac{1}{2} \sum_{n = -\infty}^{\infty} \tilde{A}_n e^{in\Omega_1 t}$$

Как мы видим, введение отрицательных частот (типа $n\Omega_1$) позволяет записать разложение Фурье особенно поостым образом.

Для расчёта комплексных амплитуд A_n умножим левую и правую части на $e^{-ik\Omega_1t}$ и проинтегрируем полученное равенство по времени на отрезке, равном одному периоду, например, от $t_1=0$ до $t_2=2\pi/\Omega_1$. В правой части обратятся в нуль все члены, кроме одного, соответствующего n=k. Этот член даёт $A_kT/2$. Имеем поэтому

$$A_k = \frac{2}{T} \int_0^T f(t)e^{-ik\Omega_1 t} dt$$

Рассмотрим периодические функции, которые исследуются в нашей работе.

2.2 Периодическая последовательность прямоугольных импульсов

С амплитудой V_0 , длительностью τ , частотой повторения $f_{\text{повт}}=1/T$, где T- период повторения импульсов.

Среднее значение

$$\langle V \rangle = \frac{a_0}{2} = \frac{A_0}{2} = \frac{1}{T} \int_{-\tau/2}^{\tau/2} V_0 dt = V_0 \frac{\tau}{T}$$

Амплитуды косинусных составляющих равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}$$

Поскольку наша функция чётная, все амплитуды синусоидальных гармоник $b_n=0$. Спектр $F(\nu)$ последовательности прямоугольных импульсов представлен на рис. П.З. Амплитуды гармоник A_n меняются по Закону $(\sin x)/x$ На рис. П.З изображён спектр для случая, когда T кратно τ . Назовём шириной спектра $\Delta \omega$ (или $\Delta \nu$) расстояние от главного максимума ($\nu=0$) до первого нуля, возникающего, как нетрудно убедиться, при $\Omega_1=2\pi/\tau$ При этом

$$\Delta\omega au\simeq 2\pi$$
 или $\Delta
u\Delta t\simeq 1$

Полученное соотношение взаимной связи интервалов $\Delta \nu$ и Δt является частным случаем соотношения неопределенности в квантовой механике. Несовместимость острой локализации волнового процесса во времени с узким спектром частот - явление широко известное в радиотехнике. Ширина селективной настройки $\Delta \nu$ радиоприёмника ограничивает приём радиосигналов Длительностью $t < 1/\Delta \nu$

2.3 Периодическая последовательность цугов

Гармонического колебания $V_0 \cos{(\omega_0 t)}$ с длительностью цуга τ и периодом повторения T (рис. $\Pi.4$)

Функция f(t) снова является чётной относительно t=0. Амплитуда n -й гармоники равна

$$A_n = a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(\omega_o t) \cdot \cos(n\Omega_1 t) dt =$$

$$= V_0 \frac{\tau}{T} \left(\frac{\sin[(\omega_0 - n\Omega_1)\frac{\tau}{2}]}{(\omega_0 - n\Omega_1)\frac{\tau}{2}} + \frac{\sin[(\omega_0 + n\Omega_1)\frac{\tau}{2}]}{(\omega_0 + n\Omega_1)\frac{\tau}{2}} \right)$$

Такое спектральное распределение F (ω) для случая, когда $\frac{T}{\tau}$ равно целому числу, представлено на рис. П.5. Сравнивая спектр последовательности прямоугольных импульсов и спектр цугов (см. рис. П.3 и П.5), мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину ω_0 .

вательность цугов

 $\delta \omega$ $\delta \omega$ ω_0 $\Delta \omega + \Delta \omega + \Delta \omega + \Delta \omega$

Рис. П.5. Спектр периодической последовательности цугов

2.4 Амплитудно-модулированные колебания.

Рис. П.6. Гармонические колебания, модулированные по амплитуде

Рис. П.7. Спектр колебаний, модулированных по амплитуде

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой Ω ($\Omega \ll \omega_0$) (рис. Π .6):

$$f(t) = A_0[1 + m\cos(\Omega t)]\cos(\omega t)$$

Коэффициент m называют глубиной модуляции. При m < 1 амплитуда колебаний меняется от минимальной $A_{\min} = A_0(1-m)$ до максимальной $A_{\max} = A_0(1+m)$. Глубина модулящии может быть представлена в виде

$$m = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}}$$

Простым тригонометрическим преобразованием можно найти спектр амплитудномодулированных колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + A_0 m \cos(\Omega t) \cos(\omega_0 t) =$$

$$= A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega) t$$

Спектр $F(\omega)$ таких колебаний содержит три составляющих (рис. П. 7) Основная компонента представляет собой исходное немодулированное колебание с иесущей частотой ω_0 и амплитудой $A_{\rm oc}=A_0-$ первое слагаемое в правой части; боковые компоненты спектра соответствуют гармоническим колебаниям с частотами ($\omega_0+\Omega$) и ($\omega_0-\Omega$) — Второе и третье слагаемые. Амплитуды этих двух колебаний одинаковы и составляют m/2 от амплитуды немодулированного колебания: $A_{\rm 6ok}=A_0m/2$

3 Метод, результаты и обработка

3.1 Исследование спектра периодических последовательностей прямоугольных импульсов

Устанавливаем прямоугольные колебания с $\nu_{\text{повт}} = 1$ к Γ ц (период T=1 мс) и длительностью импульса $\tau = 100$ мкс.

Получаем на экране спектр сигнала и, изменяя либо τ , либо $\nu_{\text{повт}},$ наблюдаем, как изменяется спектр.

Из данных видно, что, при увеличении τ , уменьшается $\Delta \nu$, а при увеличении $\nu_{\text{повт}}$, увеличивается расстояние между пиками.

Измерим зависимость $\Delta \nu$ от τ :

τ , MKC	ν_0 , к Γ ц	$\Delta \nu_0$, к Γ ц	$1/\nu_0$, MKC	$\Delta 1/\nu_0$, MKC
40.0	30	30	40.0	0
60.0	17	17	59	3
80.0	13	13	77	6
100.0	10	10	100.0	0
120.0	8	8	125	16
140.0	7	7	140	20
160.0	6	6	170	30
180.0	6	6	170	30
200.0	5	5	200.0	0

Из графика $\Delta \nu \cdot \tau = 1.004 \pm 0.014$, что подтверждает соотношение неопределенностей.

3.2 Исследование спектра периодической последовательности цугов

Посмотрим на последовательность цугов с характерными параметрами: $\nu_0=50~{\rm k}\Gamma$ ц частота повторения импульсов $f_{\rm nobt}=1~{\rm k}\Gamma$ ц и исследуем спектр этого сигнала для разных длительностей импульса:

Из данных видно, что при изменении au значение $\Delta\omega$ обратнопропорционально меняется.

Рассмотрим поведение спектрограммы при фиксировнном значении τ и меняющемся значении ν_0 :

Из данных видно, что при изменении ν_0 картина смещается без изменения расстояния между спектральными компонентами.

Рассмотрим то, как это расстояние меняется при изменении $f_{\text{повт}}$:

$f_{\text{повт}}$	ν , к Γ ц
0.5	0.5
1.0	1.0
2.0	2.0
4.0	4.0
5.0	5.0

Погрешность результатов определяется погрешностью генератора — 0.5 Γ ц.

$$\frac{f_{\text{повт}}}{\nu, \text{k}\Gamma\text{ц}} = 1 \pm 0.1\%,$$

что согласуется с теорией.

3.3 Исследование спектра амплитудно модулированного сигнала

Рассмотрим амплитудно промодулированную синусоиду с параметрами $\nu_0=25$ к Γ ц, $\nu_{\rm mog}=1$ к Γ ц:

Посмотрим на спектрограмму этого сигнала: <тут должен быть скрин со спектрограммой, но у меня его нет>

Посмотрим зависимость отношения амплитуд $k = A_{\text{бок}}/A_{\text{осн}}$ у боковых и остовной частоты от параметра $m = (A_{max} - A_{min})/(A_{max} + A_{min})$.

$A_{max} - A_{min}$, B	$A_{\text{бок}}, B$	m	k
0.2	0.0160	0.1	0.0497
0.6	0.0470	0.3	0.1460
1.0	0.0750	0.5	0.2329
1.4	0.1070	0.7	0.3323
1.8	0.1390	0.9	0.4317
2.0	0.1530	1.0	0.4752

$$A_{
m och} = (322 \pm 0.5) {
m mB}, \ \Delta A_{
m fok} = 0.0005 \, {
m B}, \Delta k = 0.0016$$

Из графика

$$\frac{k}{m} = 0.476 \pm 0.015,$$

что сходится с теоретическим значением 0.5.

4 Вывод

В данной работе мы изучили понятие спектра и ознакомились с принципами спектрального анализа, а также исследовали спектральный состав периодических электрических сигналов.

Мы посмотрели на прямоугольные импульсы, цуги гармонических колебаний, а также гармонические сигналы, модулированные по амплитуде. Кроме того, был экспериментально проверен частный случай выполнения соотношения неопределённости.

XX

5 Литература

1. **Лабораторный практикум по общей физике:** учеб. пособие. В трёх томах. Т. 2. Электричество и магнетизм / Никулин М. Г., Попов П. В., Нозик А. А., и др.; под ред. А. В. Максимычева, М. Г. Никулина. — 2-е изд., перераб. и доп. — Москва : МФТИ, 2019. — 370 с. ISBN 978-5-7417-0709-8 (Т. 2. Электричество и магнетизм)