

Universidad Nacional Autónoma de México

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas

ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

Modelos de Ecuaciones Estructurales

Adicción juvenil y padres alcohólicos

Jesus Alberto Urrutia Camacho (urcajeal@gmail.com)

Ciudad de México

14 de junio de 2021

El Proyecto para el Desarrollo de la familia y el adolescente (The Adolescente and FAmily Development Project, en los Estados Unidos) diseñó una investigación que tiene por objetivo .evaluar la asociación entre el alcoholismo de los padres y el uso de sustancias en adolescentes y psicopatologías" (Zamora, 2021). Para tal propósito, se levantó una muestra aleatoria integrada por 316 adolescentes enret 10-16 años de edad. Cabe destacar que el estudio fue diseñado para evaluar la asociación entre el alcoholismo de los padres y uso de sustancias en adolescentes y psicopatología. Además, la muestra es compuesta íntegramente por variables medidas, por lo que se realiza un Análisis de Trayectoria o Path Analysis, para comprobar la validez de esta teoría.

Cuadro 1: Variables del modelo de adicciones

Variable	Sigla	Notación	Interpretación
Peer	Y_{peer}	Endógena continua	Consumo de sustancia adictivas por compañeros
Negaff	Y_{negaff}	Endógena continua	Ansiedad y depresión en adolescentes
Stress	Y_{stress}	Endógena continua	Percepción de Eventos estresantes en vida adolescente
Emotion	$Y_{emotion}$	Endógena continua	Percepción de Falta de control emocional en adolesentes
Coa	Y_{coa}	Exógena binaria	Padres alcohólicos $(X: x = 1, s\'alc\'olicos)$
Gen	Y_{gen}	Exógena binaria	Sexo del adolescente $(X: x = 1, Masculino)$
Age	Y_{age}	Exógena discreta	Edad adolescente

Específicamente, se parte de la siguiente teorización. Los padres alcohólicos (coa) inciden en vidas con efectos estresantes (stress) para las y los hijos, lo que aumenta la percepción de depresión y ansiedad en los adolescentes (negaff). Además, se considera que las familias alcoholicas provoca en los jóvenes falta de control emocional (emotion), lo que incrementa depresión y ansiedad (negaff) en estos últimos. Entonces, se podría argüir que eventos estresantes (stress) tiene una relación no direccional con falta de control emocional (emotion). En complemento a lo anterior, los resutlados negativos, como ansiedad y depresión, generan tasas altas de convivencia con compañeros que consumen drogas (peer), lo que podría generar adicciones. Finalmente, se considera que el estres (stres) y la dificultad emocional (emotion) son predichas por la edad (age) y el sexo (gen). Donde las variables exógenas están correlacionadas.

Dado que se cuenta con la base de datos se procede a hacer estadística descriptiva. Todas las variables son numéricas, pero coa y gen son variables dicotómias, donde $P(X|x_{coa}=0:Padresnoalcoholicos)$, y $P(X|x_{gen}=0:Mujer)$, respectivamente. Además, las variables, Stress, emotion, negaff y peer son variables continuas, que parecen ser tasas o índices, ya que tienen valores positivos y menores de 6. Cabe destacar que no se cuenta con un diccionario de datos.

A continuación se muestran dos correlogramas. Cabe señalar que no hay ninguna correlación significativa. El primer correlograma integra a las correlaciones biserial, tetracórica y de pearson. Mientras que el segundo sólamente usa la última correlación. Se evidencia, que las correlaciones para variables dicotómicas aumentaron (es decir, se intensificó su color).

1. Diagramar modelo

	lhs	ор	rhs	mi	epc	sepc.lv	sepc.all	sepc.nox
31	stress	~~	negaff	0.0259374	-0.0152928	-0.0152928	-0.0270116	-0.0270116
32	stress	~~	peer	4.0237507	0.0349662	0.0349662	0.1069179	0.1069179
36	emotion	~~	negaff	5.2347641	0.5722075	0.5722075	1.3051726	1.3051726
37	emotion	~~	peer	0.0199992	-0.0019580	-0.0019580	-0.0077317	-0.0077317
41	negaff	~~	peer	2.9686860	-0.1119252	-0.1119252	-0.2489338	-0.2489338
42	negaff	~~	coa	0.0087519	0.0024496	0.0024496	0.0055602	0.0055602
43	negaff	~~	gen	1.8379365	-0.0334242	-0.0334242	-0.0759899	-0.0759899
44	negaff	~~	age	10.8772250	0.2359540	0.2359540	0.1847870	0.1847870
45	peer	~~	coa	9.6255389	0.0444663	0.0444663	0.1747296	0.1747296
46	peer	~~	gen	0.1041031	-0.0045904	-0.0045904	-0.0180671	-0.0180671
47	peer	~~	age	44.5349587	0.2748803	0.2748803	0.3726732	0.3726732
49	stress	~	negaff	0.0259393	-0.0196480	-0.0196480	-0.0276729	-0.0276729
50	stress	~	peer	3.9243753	0.1323366	0.1323366	0.1044733	0.1044733
52	emotion	~	negaff	5.2347134	0.7351347	0.7351347	1.4022836	1.4022836
53	emotion	~	peer	0.0055424	-0.0039671	-0.0039671	-0.0042416	-0.0042416
54	negaff	~	peer	2.9687154	-0.4309495	-0.4309495	-0.2415551	-0.2415551
55	negaff	~	coa	0.0338277	-0.0193712	-0.0193712	-0.0100990	-0.0100990
56	negaff	~	gen	2.8302856	-0.1676035	-0.1676035	-0.0872376	-0.0872376
57	negaff	~	age	11.8893638	0.1186340	0.1186340	0.1792586	0.1792586
58	peer	~	stress	8.7863038	0.1301930	0.1301930	0.1649157	0.1649157
59	peer	~	emotion	0.2003238	0.0273214	0.0273214	0.0255532	0.0255532
60	peer	~	coa	6.7559492	0.1498469	0.1498469	0.1393727	0.1393727
61	peer	~	gen	0.9005045	-0.0545724	-0.0545724	-0.0506762	-0.0506762
62	peer	~	age	42.5397159	0.1292405	0.1292405	0.3484011	0.3484011
65	coa	~	negaff	0.0087516	0.0031471	0.0031471	0.0060365	0.0060365
66	coa	~	peer	9.0379313	0.1593674	0.1593674	0.1713443	0.1713443
71	gen	~	negaff	1.8379361	-0.0429415	-0.0429415	-0.0825004	-0.0825004
72	gen	~	peer	0.4957294	-0.0368917	-0.0368917	-0.0397281	-0.0397281
77	age	~	negaff	10.8772336	0.3031397	0.3031397	0.2006190	0.2006190
78	age	~	peer	53.9416014	1.1143595	1.1143595	0.4133751	0.4133751

Consumo sustancia entre adolescentes dado por padres alcohólicos y psicopatolog

2. Escribirlo matricialmente

$$\begin{split} Y_{stres} &= 0Y_{stres} + 0Y_{emo} + 0Y_{neg} + 0Y_{peer} + \gamma_{1,1}X_{coa} + \gamma_{1,2}X_{gen} + \gamma_{1,3}X_{age} + \varsigma_{1} \\ Y_{emo} &= 0Y_{stres} + 0Y_{emo} + 0Y_{neg} + 0Y_{peer} + \gamma_{2,1}X_{coa} + \gamma_{2,2}X_{gen} + \gamma_{2,3}X_{age} + \varsigma_{2} \\ Y_{neg} &= \beta_{1,1}Y_{stres} + \beta_{1,2}Y_{emo} + 0Y_{neg} + 0Y_{peer} + 0X_{coa} + 0X_{gen} + 0X_{age} + \varsigma_{3} \\ Y_{emo} &= 0Y_{stres} + 0Y_{emo} + \beta_{2,1}Y_{neg} + +0Y_{peer} + 0X_{coa} + 0X_{gen} + 0X_{age} + \varsigma_{4} \\ \end{split}$$

$$\begin{bmatrix} Y_{stre} \\ Y_{emo} \\ Y_{neg} \\ Y_{peer} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \beta_{1,1} & \beta_{1,2} & 0 & 0 \\ 0 & 0 & \beta_{2,1} & 0 \end{bmatrix} \begin{bmatrix} Y_{stre} \\ Y_{emo} \\ Y_{neg} \\ Y_{peer} \end{bmatrix} + \begin{bmatrix} \gamma_{1,1} & \gamma_{1,2} & \gamma_{1,3} \\ \gamma_{2,1} & \gamma_{2,2} & \gamma_{2,3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_{coa} \\ X_{gen} \\ X_{age} \end{bmatrix} + \begin{bmatrix} \varsigma_1 \\ \varsigma_2 \\ \varsigma_3 \\ \varsigma_4 \end{bmatrix}$$

3. Escribir matrices involucradas en modelo

Además, respéctivamente, cada matriz presentada con anterioridad puede se expresada como: $Y = BY + \Gamma x + \zeta \setminus$

$$\boldsymbol{\Psi} = \begin{bmatrix} \psi_{1,1} & 0 & 0 & 0 \\ \psi_{2,1} & \psi_{2,2} & 0 & 0 \\ 0 & 0 & \psi_{3,1} & 0 \\ 0 & 0 & 0 & \psi_{4,1} \end{bmatrix} \boldsymbol{\Phi} = \begin{bmatrix} \phi_{1,1} & 0 & 0 \\ \phi_{2,1} & \phi_{2,2} & 0 \\ \phi_{3,1} & \phi_{3,2} & \phi_{3,3} \end{bmatrix}$$

5

Cabe destacar que Ψ representa la matriz de correlación entre variables endógenas (Y_i) . Mientras que la matriz de Φ presenta a la correlación entre variables exógenas (X_i) . Cabe destacar que $\Psi_{2,1}$ es la correlación que existe entre Y_{stress} y $Y_{emotion}$, en función de la teoría de adicciones.

4. Ajuste del modelo

La estimación del modelo emplea el método bootstrap, como alternativa a las restricciones del supuesto de normalidad por el método delta. Lo anterior requiere que la muestra esté disponible para realizar el remuestreo (Hallquist, 2019).

Además, se emplean la paquetería *lavaan* como principal instrumento de ajuste computaciones, y se usa la información de la matriz de correlación de Pearson, biserial y tetracórica, según corresponda el tipo de variable. Se tienen 20 grados de libertad, lo que corresponde a las parte de información. A continuación se muestra el código empleado.

\begin{minted} [frame=lines, linenos, fontsize=] {r}

#Matriz de correlaciones CorMid <- ' 1.0 -0.09456621 1.0 0.01400000 0.12159467 1.0 0.41430068 -0.01973430 -0.01121133 1.0 0.14398422 -0.08074436 -0.04854675 0.3664796 1.0 0.10279496 0.15121667 -0.12520711 0.2807905 0.35387788 1.0 0.20542024 0.39572236 -0.10289694 0.2402493 0.13368237 0.3145978 1.0 ' #Matriz cuadrada de correlaciones con nombres de variables en columna comp.cor1 <- getCov(CorMid, sds = NULL, names = c("coa", "age", "gen", "stress", "emotion", "negaff", "peer"))

#Modelo teórico mod
1<- ' stress ~ acoa + $b{\rm gen}$ +
 cage emotion ~ ecoa + fgen + gage
negaff ~ xstress + $y{\rm emotion}$ peer ~ z*negaff

emotion ~~ stress coa ~~ gen gen ~~ age coa ~~ age

#Efectos indirectos

NegStresCoa := xa NegStresGen := xb NegStresAge := xc NegEmoCoa := ye NegEmoGen := yf NegEmoAge := yg PeNegStresCoa := zxa PeNegEmoCoa := zye

#Efetos Totales T1 := a + xa + zxa T2 := a + ye + zye '

n <- length(bd\$coa)

#ajuste del modelo mediante bootstrap sem1 <- sem(mod1, data = bd, sample.cov = comp.cor1, sample.nobs = n, se="bootstrap")

 $summary (sem 1, fit.measures = TRUE, standardized = T, \ rsquare = T) \ \#Brinda \ los \ estimadores \ estandarizados \ y \ el \ aporte \ de \ variabilidad \ de \ cada \ variable \ al \ modelo$

ML

\end{minted}

```
## lavaan 0.6-8 ended normally after 31 iterations
##
## Estimator
## Optimization method
```

Optimization method NLMINB
Number of model parameters 20
##
Number of observations 316
##
Model Test User Model:
##

Test statistic 81.173
Degrees of freedom 8
P-value (Chi-square) 0.000

Model Test Baseline Model:

##

Test statistic 255.823
Degrees of freedom 21

## ##	P-value					0.000				
	User Model ve	rsus B	aseline M	lodel:						
##	Comparative Fit Index (CFI) 0.688									
##	Comparative Tucker-Lewi			()		0.688 0.182				
##	Iuckel-Lewi									
	Loglikelihood and Information Criteria:									
##										
##	Loglikeliho				2179.133					
##	Loglikeliho	2138.547								
##	Akaike (AIC)				4398.267				
##	Bayesian (B	IC)				4473.382				
##	Sample-size	adjus	ted Bayes	ian (BIC)		4409.947				
##	Doot Maan Can	omo Em	man of Am							
##	Root Mean Squ	are Er	ror or ap	proximati	lon:					
##	RMSEA					0.170				
##	90 Percent	confid	ence inte	rval - lo	wer	0.138				
##	90 Percent	confid	ence inte	rval - up	per	0.205				
##	P-value RMS	EA <=	0.05			0.000				
##	C+	D + M	C	D	.T.					
##	Standardized	ROOT M	ean Squar	e kesidua	11:					
##	SRMR					0.095				
##										
##	Parameter Est	imates	:							
##					_					
##			ad baatat			ootstrap				
##	Number of r Number of s	_		-		1000 1000				
##	Number of S	иссевь	IUI DOOGS	crap draw	15	1000				
##	Regressions:									
##			Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all		
##		(-)	0.451	0 071	6 270	0 000	0.451	0 221		
##	coa gen		0.451	0.071 0.074						
##	age		0.002		0.074					
##	emotion ~									
##	coa	(e)		0.055	2.013	0.044	0.110	0.110		
##	gen	(f)		0.057						
##	age	(g)	-0.027	0.020	-1.313	0.189	-0.027	-0.077		
## ##	negaff ~ stress	(x)	0.246	0.096	2.557	0.011	0.246	0.175		
##	emotion	(y)		0.116	4.765		0.553	0.290		
##	peer ~									
##	negaff	(z)	0.176	0.031	5.768	0.000	0.176	0.315		
##										
	Covariances:		Patimata	C+ 3 E	1	D(>1-1)	C+3 7	נו- נייט		
## ##	.stress ~~		Estimate	Sta.Eff	z-value	P(> Z)	Std.lv	Std.all		
##	.emotion		0.112	0.019	6.030	0.000	0.112	0.352		
##	coa ~~									
##	gen		0.002	0.014	0.154	0.878	0.002	0.009		
##	gen ~~							_		
##	age		-0.070	0.040	-1.741	0.082	-0.070	-0.097		
11.11	-		0.0.0	0.040	1./41	0.002	0.0.0	0.001		
## ##	coa ~~ age		-0.055	0.040	-1.285	0.199	-0.055	-0.076		

##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.stress	0.412	0.041	10.054	0.000	0.412	0.890
##	.emotion	0.247	0.017	14.707	0.000	0.247	0.979
##	$.{ t negaff}$	0.778	0.070	11.183	0.000	0.778	0.848
##	.peer	0.260	0.033	7.832	0.000	0.260	0.901
##	coa	0.249	0.002	146.751	0.000	0.249	1.000
##	gen	0.249	0.002	103.804	0.000	0.249	1.000
##	age	2.095	0.127	16.465	0.000	2.095	1.000
##							
##	Defined Parameters	:					
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	${\tt NegStresCoa}$	0.111	0.046	2.408	0.016	0.111	0.058
##	NegStresGen	-0.004	0.019	-0.201	0.841	-0.004	-0.002
##	${\tt NegStresAge}$	0.000	0.007	0.070	0.944	0.000	0.001
##	NegEmoCoa	0.061	0.034	1.801	0.072	0.061	0.032
##	NegEmoGen	-0.026	0.033	-0.793	0.428	-0.026	-0.014
##	${\tt NegEmoAge}$	-0.015	0.011	-1.337	0.181	-0.015	-0.022
##	${\tt PeNegStresCoa}$	0.020	0.010	2.021	0.043	0.020	0.018
##	${\tt PeNegEmoCoa}$	0.011	0.006	1.663	0.096	0.011	0.010
##	T1	0.582	0.103	5.648	0.000	0.582	0.407
##	T2	0.182	0.093	1.960	0.050	0.182	0.151

La estimación se los parámetros se muestra a continuación:

5. Verifique lo adecuado del ajuste

A fin de verificar el ajuste del modelo, se deben considerar los índices de bondad de ajuste (GoF, por sus siglas en Inglés).

En el modelo propuesto, la prueba de la χ^2 rechaza la hipótesis nula, donde H_o : Modelo Si Ajusta, es decir que el modelo no ajusta a los datos, debido a que el Pvalor es mucho menor que la significancia. Lo anterior se puede visualizar en la sección de User Model. Cabe agregar que el modelo basal es mucho peor que el propuesto, donde este es el modelo nula, donde no hay asociación entre variables, ya que el Test Statistic representa el valor de la χ^2 .

 $\begin{minted}[frame=lines, linenos, fontsize=] {r} \end{minted}$

User Model:

Test statistic 81.173 Degrees of freedom 8 P-value (Chi-square) 0.000

Model Test Baseline Model:

Test statistic 255.823 Degrees of freedom 21 P-value 0.000

\end{minted}

Cuadro 2: Índices de ajuste del modelo

CFI	TLI	RMSEA	Pvalue RMSEA	SRMR
0.688	0.182	0.17	0.0	0.095

- CFI: Es el *Comparative Fit Index*, en que este modelo tiene un valor muy pequeño. Por lo que se puede sostener que el modelo es muy malo. Además, para valores "mayor 0.97 es indicativo de un buen ajuste en relación con el modelo de independencia" (Zamora, 2021).
- NNFI ,también conocido como TLI, es decir, "ındice de ajuste no normalizado (NNFI), también conocido como el índice de Tuker-Lewis (TLI)". Este modelo tiene un valor muy pequeño, lo que indica que el modelo es malo. Ya que "valores superiores a 0.95 pueden interpretarse como un ajuste aceptable" (Zamora, 2021).

- RMSEA, significa error cuadrático medio de aproximación de la raíz. Donde valores mayores a 0.1, implican valores de ajuste medriocres, por lo que este modelo no es bueno.
- Pvalur RMSEA, implica que el valor puntual de RMSAE sea contenido por un intervalor de confianza del 95
- SRMR, o indice de la raís del cuadrado medio del residuo estandarizado, "valores de SRMR menores a 0.05 evidencian un buen ajuste y que menores a 0.10 pueden interpretarse como un ajuste aceptable" (Zamora, 2021). Por lo que se puede afirmar que este modelo tiene un ajuste aceptable.

En adición a lo anterior, en la función rsquare brinda la medida de variabilidad que aporta cada variable independiente al modelo. El siguiente recuadro muestra el estimado. Se podría esperar que las variables en suma alcancen el 1 de variabilidad explicada, pero lo que explican es muy bajo. A lo más, la variable negaff aporta poco más del 15 %.

```
\begin{minted} [frame=lines, linenos, fontsize=] {r}
```

R-Square: Estimate stress 0.110 emotion 0.021 negaff 0.152 peer 0.099

\end{minted}

Por lo anterior es posible afirmar que el modelo, en general, no ajusta. Es decir, los datos no respaldan la teoría propuesta. Entonces, se sugiere modificar las relaciones entre variables, siempre y cuando esté mediada por conocimiento de área experta.

Dado lo anterior se propone reestructurar el modelo en función de conocimiento experto. Donde las únicas variables que medien el modelo sean el hecho que los padres sean alcoholicos (coa), su efecto sobre eventos estresantes (stres) y sobre falta de control de emociones (emotion) ambas en los adolescentes. Y la incidencia de las anteriores sobre ansiedad y depresión (negaff), y su vez sobre el consumo de sustancia (peer).

Entonces, la graficación del modelo quedaría como sigue. Respecto a la forma de estimación del modelo sigue los mismo procesos que el anterior modelo. Y a continuación se muestran los índices de bondad de ajute.

6. Interpretar efectos directos, indirectos, totales y concluir

El siguiente output de R muestra la estimación de los coeficientes, las covarianzas y varianzas de los parámetros estimados. Como se puede observar, solamente coa tiene una relación lineal significativa para la variable de Stress y Emotion, stress y emotion a su vez son significativas para la variable Negaff, y finalmente negaff es significativa para Peer, todas con un nivel de confianza del 95 %. Cabe recordar que la salida de Std.all se interpreta como todas las variables estadarizadas, y std. lv como la estandarización sólamente de variables latentes.

```
\begin{minted} [frame=lines, linenos, fontsize=] {r}
```

Regressions: Estimate Std. Err z-value P(>|z|) Std.lv Std.
all stress \sim

coa (a) 0.451 0.070 6.457 0.000 0.451 0.331 gen (b) -0.016 0.071 -0.219 0.826 -0.016 -0.011 age (c) 0.002 0.026 0.076 0.939 0.002 0.004 emotion \sim

coa (e) 0.110 0.056 1.956 0.050 0.110 0.110 gen (f) -0.048 0.056 -0.847 0.397 -0.048 -0.047 age (g) -0.027 0.021 -1.287 0.198 -0.027 -0.077 negaff \sim

stress (x) $0.246\ 0.094\ 2.602\ 0.009\ 0.246\ 0.175$ emotion (y) $0.553\ 0.115\ 4.792\ 0.000\ 0.553\ 0.290$ peer \sim negaff (z) $0.176\ 0.033\ 5.412\ 0.000\ 0.176\ 0.315$

\end{minted}

Respecto a las asociaciones entre variables, sólamente la relación entre eventos estresantes y la falta de control de emociones (stress y emotion) es significativa al $95\,\%$.

```
\begin{minted} [frame=lines, linenos, fontsize=] {r}
```

```
Covariances: Estimate Std.Err z-value P(>|z|) Std.lv Std.all .stress ~- .emotion 0.112 0.018 6.300 0.000 0.112 0.352 coa ~- gen 0.002 0.013 0.163 0.870 0.002 0.009 gen ~- age -0.070 0.039 -1.775 0.076 -0.070 -0.097 coa ~- age -0.055 0.039 -1.400 0.162 -0.055 -0.076 \end{minted}
```

La sección de **Interceptos** se interpreta como un β_0 en una regresión lineal. Es decir, dado que la variable independiente es cero, cuál es el valor de la respuesta. Por ejemplo, cuando todas las variables son 0, el coeficiente de peer es $Y_{peer} = -0.22$. Es decir, cuando los padres no son alcohólicos, se es mujer de 0 años, y no hay enfermedades psicolígicicas, el riesgo de relacionarse con sustancias adictivas es negativo.

\begin{minted} [frame=lines, linenos, fontsize=] {r}

Intercepts: Estimate Std.Err z-value P(>|z|) Std.lv Std.all .stress 0.687 0.332 2.069 0.039 0.687 1.010 .emotion 2.341 $0.276\ 8.485\ 0.000\ 2.341\ 4.663\ .negaff\ 1.527\ 0.201\ 7.596\ 0.000\ 1.527\ 1.594\ .peer\ -0.118\ 0.089\ -1.324\ 0.185\ -0.118\ -0.220$ $\mathbf{coa}\ 0.525\ 0.029\ 18.422\ 0.000\ 0.525\ 1.052\ \mathbf{gen}\ 0.538\ 0.027\ 19.686\ 0.000\ 0.538\ 1.079\ \mathbf{age}\ 12.718\ 0.081\ 156.060\ 0.000$ 12.718 8.788

\end{minted}

Todas las varianzas son significativas.

\begin{minted} [frame=lines, linenos, fontsize=] {r}

Variances: Estimate Std.Err z-value P(>|z|) Std.lv Std.all .stress 0.412 0.040 10.226 0.000 0.412 0.890 .emotion 0.247 (a) and the state of the st $0.017\ 14.738\ 0.000\ 0.247\ 0.979\ .negaff\ 0.778\ 0.070\ 11.073\ 0.000\ 0.778\ 0.848\ .peer\ 0.260\ 0.032\ 8.113\ 0.000\ 0.260\ 0.901$ $\mathbf{coa}\ 0.249\ 0.002\ 134.489\ 0.000\ 0.249\ 1.000\ \mathbf{gen}\ 0.249\ 0.002\ 105.258\ 0.000\ 0.249\ 1.000\ \mathbf{age}\ 2.095\ 0.123\ 17.001\ 0.000\ 2.095$ 1.000

\end{minted}

Respecto a la interpretación de los efectos indirectos, si se menos estricto con la confianza del intervalo y la significancia es del 90 %, sólamente los efectos indirectos mediados entre la variable de padres alcohólicos, estrés, falta de control emocional, y percepción de ansiedad y depresión son significativas.

Cuadro 3: Efecto indirecto al 90 % de confianza

Computada	Interpretación	Valor
NegStresCoa	Efecto indirecto entre NEGAFF y COA, a través STRESS	0.058
NegEmoCoa	Efecto indirecto entre NEGAFF y COA, a través de EMOTIO	0.032
${\bf PeNegStresCoa}$	Efecto indirecto entre PEER y COA, a través de STRESS y NEGAFF	0.018
${\bf PeNegEmoCoa}$	Efecto indirecto entre PEER y COA, a través de EMOTION y NEGAFF	0.01

Lo anterior implica que exclusivamente los efectos indirectos mostrados son significativos. Es decir, sí hay una asociación entre el hecho de que los padres sean alcohólicos y la vinculación de adolescentes con pares adictos, y su posible drogadicción. Además, la anterior teorización está mediada por las variables de salud mental, como son eventos de vida estresantes, dificultad de controlar emociones y la percepción de ansiedad y depresión en jóvenes. Sin embargo, el modelo rechaza que las variables como edad y sexo, tengan un efectos directo sobre Stress y emotion, y edad y sexo tengan efecto indirecto sobre peer dado que sean medidas por el modelo propuesto.

Además, respecto a la magnitud de las asociaciones, es posible afirmar que el efecto indirecto entre el hecho de alcoholismo en padres y la percepción de ansiedad/depresión en jóvenes mediado por el estrés (0.058), es casi el doble que el efecto indirecto entre el hecho de alcoholismo en padres y la percepción de ansiedad/depresión en jóvenes mediado por el falta de control emocional (0.032). Lo que podría hacer pensar que eventos estresantes stress genera más afiliación a sustancias adictiva. Lo anterior se reafirma con el efecto indirecto entre el alcoholismo de padres y la cercanía de sustancia adictivas mediado por estrés y ansiedad/depresión, con un efecto indirecto más alto (0.018) que el efecto de entre el alcoholismo de padres y la cercanía de sustancia adictivas mediado por falta de control emocional y ansiedad/depresión (0.01). Entonces, se podría concluir que stress y coa sí inciden de forma indirecta en peer.

 $\beta = \frac{1}{r}$ Defined Parameters: Estimate Std.Err z-value P(>|z|) Std.lv Std.all NegStresCoa~0.111~0.048~2.290~0.022~0.111~0.058~NegStresGen~-0.004~0.020~-0.190~0.849~-0.004~-0.002~NegStresAge $0.000\ 0.007\ 0.068\ 0.946\ 0.000\ 0.001\ \mathrm{NegEmoCoa}\ 0.061\ 0.034\ 1.787\ 0.074\ 0.061\ 0.032\ \mathrm{NegEmoGen}\ -0.026\ 0.033\ -0.785$ $0.432 - 0.026 - 0.014 \ \mathrm{NegEmoAge} - 0.015 \ 0.011 - 1.338 \ 0.181 - 0.015 - 0.022 \ \mathrm{PeNegStresCoa} \ 0.020 \ 0.010 \ 1.952 \ 0.051 \ 0.020 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \$ $0.018~{\rm PeNegEmoCoa}~0.011~0.006~1.660~0.097~0.011~0.010$

\end{minted}

Respecto a la interpretación de los efectos totales, estos se definen como la suma entre efectos directos e indirectos. En esta sección, los efectos computados fueron la ruta que se indica a continuación:\

 $T1 := coa - stress + coa * stress * \operatorname{negaff} + coa * stress * \operatorname{negaff} * peer \backslash T2 := coa - emotion + coa * emotion * \operatorname{negaff} + coa * emotion * \operatorname{negaff} * peer \backslash T2 := coa - emotion + coa * emotion * \operatorname{negaff} + coa * emotion * \operatorname{negaff} * peer \backslash T2 := coa - emotion + coa * emotion * \operatorname{negaff} + coa * emotion * \operatorname{negaff} * peer \backslash T2 := coa - emotion + coa * emotion * \operatorname{negaff} + coa * emotion * \operatorname{negaff} * peer \backslash T2 := coa - emotion + coa * emotion * \operatorname{negaff} + coa * emotion * \operatorname{negaff} * peer \backslash T2 := coa - emotion * peer \backslash T2 := coa - emotion * peer \backslash T2$

Con una confianza del 95 % solamente el efecto total (T1) es significativo, es decir que la suma de efectos directos e indirectos sí representan una asociación que se ajusta al modelo, esto para la ruta entre coa, stress, negaff, y peer.

|Defined Parameters: | Estimate Std.Err z-value P(>|z|) |Std.lv Std.all | T1 0.582 0.103 5.658 0.000 |0.582 0.407 | T2 0.182 0.095 1.918 0.055 |0.182 0.151

Entonces, dalo lo anterior es posible afirmar que el modelo propuesto por la teoría no ajusta con los datos. Por tanto, se propone un nuevo modelo basado en el conocimiento de área que propone excluir al sexo *gen* y la edad *age* como prodectoras directas del estrés y falta de control emocional. Es decir, que el único afecto directo entre las exógenas provenga de si los padres son alcoholicos o no *coa*.

Finalmente, para ajustar aún más el modelo se usa la función **modindices()** para sugerir relaciones significativas. Se integran las relaciones con un valor de de $\chi_1^2 = 6 > \chi_1^{2,95} = 3.84$. Cabe destacar que este criterio debe de ser mediado exclusivamente con conocimiento de área, en esta sección se integran las relaciones de forma ilustrativa. Y las relaciones directas que se desprenden son entre *coa* y *age* hacia *peer* y de forma exclusiva entre *age* hacia *Negaff*. El modelo graficado se muestra a continuación:

```
mod2v <- '
stress ~ a*coa
emotion ~ e*coa
negaff ~ x*stress + y*emotion
peer ~ z*negaff
peer ~ i*coa
peer ~ j*age
negaff ~ k*age

emotion ~~ stress
age ~~ coa
'
sem3v <- sem(mod2v, data = bd, sample.cov = comp.cor1, sample.nobs = n, se="bootstrap")
summary(sem3v, fit.measures = TRUE, standardized=T)
## lavaan 0.6-8 ended normally after 29 iterations</pre>
```

```
##
     Estimator
                                                          ML
##
##
     Optimization method
                                                      NLMINB
##
     Number of model parameters
                                                          16
##
##
                                                         316
     Number of observations
##
   Model Test User Model:
##
##
##
     Test statistic
                                                      10.044
##
     Degrees of freedom
##
     P-value (Chi-square)
                                                       0.074
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                     249.979
##
     Degrees of freedom
                                                          15
##
     P-value
                                                       0.000
##
## User Model versus Baseline Model:
##
     Comparative Fit Index (CFI)
                                                       0.979
##
##
     Tucker-Lewis Index (TLI)
                                                       0.936
##
```


	Loglikelihood and Information Criteria:								
##		,		110)		1010 050			
##	Loglikelihoo					1918.056			
##	Loglikelihood unrestricted model (H1) -1913.033								
##	Akaike (AIC)	3868.111							
##	Bayesian (BI	3928.203							
##	Sample-size		sted Bayes	ian (BIC)		3877.455			
##	•	3	•						
##	Root Mean Squa	re E	rror of Ap	proximati	on:				
##	•		•	•					
##	RMSEA					0.057			
##	90 Percent o	onfi	dence inte	rval - lo	wer	0.000			
##	90 Percent o	onfi	dence inte	rval - up	per	0.107			
##	P-value RMSE	:A <=	0.05	_	-	0.352			
##									
##	Standardized R	loot 1	Mean Squar	e Residua	1:				
##			•						
##	SRMR					0.033			
##									
##	Parameter Esti	mate	s:						
##									
##	Standard err	ors			В	ootstrap			
##	Number of re	ques	ted bootst	rap draws		1000			
##	Number of su	-		-		1000			
##				•					
##	Regressions:								
##	· ·		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	stress ~								
##	coa	(a)	0.451	0.070	6.418	0.000	0.451	0.331	
##	emotion ~								
##	coa	(e)	0.116	0.055	2.116	0.034	0.116	0.115	
##	negaff ~								
##	stress	(x)	0.243	0.093	2.612	0.009	0.243	0.172	
##	emotion	(y)	0.582	0.112	5.191	0.000	0.582	0.304	
##	peer ~								
##	negaff	(z)	0.137	0.031	4.361	0.000	0.137	0.245	
##	coa	(i)	0.185	0.053	3.464	0.001	0.185	0.172	
##	age	(j)	0.138	0.016	8.715	0.000	0.138	0.371	
##	negaff ~								
##	age	(k)	0.119	0.032	3.741	0.000	0.119	0.179	
##									
##	Covariances:								
##			Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.stress ~~								
##	.emotion		0.112	0.018	6.254	0.000	0.112	0.350	
##	coa ~~								
##	age		-0.055	0.040	-1.359	0.174	-0.055	-0.076	
##									
	Variances:								
##			Estimate	Std.Err	z-value		Std.lv	Std.all	
##	.stress		0.412	0.041	9.987	0.000	0.412	0.891	
##	.emotion		0.249	0.018	13.991	0.000	0.249	0.987	
##	.negaff		0.749	0.067	11.260	0.000	0.749	0.810	
##	.peer		0.216	0.028	7.808	0.000	0.216	0.745	
##	coa		0.249	0.002	134.125	0.000	0.249	1.000	
##	age		2.095	0.130	16.173	0.000	2.095	1.000	

semPaths(sem3v, "mod","par", col=rainbow(6), style="lisrel", layout = "tree2",curve=1.5,curvePivot = TRUE,rotation
legend("topright", legend=c("Modelo de trayectoria: Reajustado"),col="blue",cex=1.1)

