FIRST EDITION

MATHEMATICAL FOUNDATIONS OF NEURAL NETWORKS

From CNNs to PINNs, QINNs, and Deep Reinforcement Learning

RAPHAEL NORIEGA

Contents

Co	ontents	iii
I.	Mathematical Preliminaries	1
1.	Introduction 1.1. Historical context of AI and neural networks	3 3 3 3
2.	Linear Algebra Essentials 2.1. Vector spaces and inner products 2.2. Eigenvalues, eigenvectors, diagonalization 2.3. Singular value decomposition (SVD) 2.4. Tensor notation and operations	5 5 5 5
3.	Multivariable Calculus and Analysis3.1. Gradients, Jacobians, Hessians3.2. Taylor expansions in multiple variables3.3. Divergence, curl, and Laplacians3.4. Variational principles	7 7 7 7 7
4.	Probability, Statistics, and Information Theory 4.1. Random variables and distributions	9 9 9 9
5.	Optimization Theory5.1. Convexity, duality, and Lagrangians5.2. Gradient descent and its variants5.3. Stochastic optimization and convergence5.4. Newton and quasi-Newton methods	11 11 11 11 11
6.	Functional Analysis Foundations 6.1. Normed spaces, Banach and Hilbert spaces 6.2. Orthogonal polynomials (Hermite, Laguerre, Legendre) 6.3. Special functions (Gamma, Beta, Bessel) 6.4. Operator theory foundations for PINNs and QINNs	13 13 13 13 13
II.	. Classical Neural Networks	15
7.	The Perceptron and Linear Models 7.1. McCulloch–Pitts neurons	17 17 17 17
8.	Feedforward Networks (MLPs) 8.1. Activation functions (ReLU, sigmoid, tanh, GELU, softmax) 8.2. Universal Approximation Theorem 8.3. Forward and backward propagation 8.4. Vanishing and exploding gradients	19 19 19 19

9.	Con	volutional Neural Networks (CNNs)	21
	9.1.	Mathematical basis of convolution	21
	9.2.	Feature maps, receptive fields, pooling	21
	9.3.	Modern CNN architectures (AlexNet, VGG, ResNet)	21
	9.4.	Applications in vision, audio, and physics	21
10.		urrent Neural Networks (RNNs)	23
		Sequences as dynamical systems	23
		Gradient vanishing and exploding	23
		LSTMs and GRUs	23
	10.4.	Applications in NLP, speech, time-series	23
11	A 1	and deve and Developmentation Learning	25
11.		bencoders and Representation Learning Linear autoencoders and PCA	2525
		Nonlinear autoencoders	25
			25
		Variational Autoencoders (VAEs)	
	11.4.	Latent space geometry	25
12.	Grai	ph Neural Networks (GNNs)	27
	12.1.	Graph Laplacians and spectral methods	27
	12.2.	Message passing frameworks	27
		Applications in chemistry, materials, biology	27
		7,, r, r, r, r, r, r, r, r	
III	. N	eural Networks for Differential Equations	29
13.		hematical Methods for Differential Equations	31
		Classification of ODEs and PDEs	31
		Boundary and initial conditions	31
		Separation of variables	31
		Sturm–Liouville problems and orthogonal expansions	31
		Fourier and Laplace transforms	31
		Spectral methods (Chebyshev, Legendre)	31
		Galerkin and Finite Element Methods (FEM)	31
	13.8.	Method of Frobenius and special functions	31
14	Phy	sics-Informed Neural Networks (PINNs)	33
14.		Embedding PDEs into loss functions	33
		Collocation and weak formulations	33
		Elliptic, parabolic, and hyperbolic PDEs	33
		Applications: fluids, electromagnetism, quantum mechanics	33
		Extensions: XPINNs, VPINNs, Bayesian PINNs	33
		Inverse problems (intro to iPINNs)	33
	11.0.	inverse problems (interest in inverse)	00
15.	Inve	erse Physics-Informed Neural Networks (iPINNs)	35
	15.1.	Motivation: the role of inverse problems	35
	15.2.	Formulation with unknown coefficients	35
		Loss functions for parameter estimation	35
		Applications: heat, waves, Schrödinger, materials	35
		Ill-posedness and regularization	35
		Sensitivity to noise and data quality	35
16.		ntum Neural Networks (QINNs)	37
		Hilbert spaces and Dirac notation	37
		Quantum perceptron and gates as layers	37
		Variational quantum circuits (VQE, QAOA)	37
		Quantum Boltzmann Machines, QCNNs, Quantum Reservoirs	37
	16.5.	Parameter-shift rule for gradients	37

16.6. Challenges: barren plateaus, NISQ hardware	37 37
17. Neural Operators and DeepONets 17.1. Learning operators between function spaces	39 39 39 39
IV. Reinforcement Learning	41
18. Classical Reinforcement Learning 18.1. Agents, environments, states, actions, rewards 18.2. Markov Decision Processes (MDPs) 18.3. Value functions and Bellman equations 18.4. Tabular methods: SARSA, Q-learning	43 43 43 43
19.1. Deep Q-Networks (DQN) 19.2. Policy gradient methods (REINFORCE, PPO) 19.3. Actor–Critic architectures (A2C, A3C) 19.4. Landmark systems: AlphaGo, AlphaZero, MuZero	45 45 45 45 45
V. Modern Architectures	47
20. Generative Models 20.1. GANs and minimax optimization 20.2. Wasserstein GANs, StyleGAN 20.3. Diffusion models and stochastic processes 20.4. Applications in synthesis and design 21. Transformers and Attention Mechanisms 21.1. Self-attention: queries, keys, values 21.2. Multi-head attention 21.3. Positional encodings	49 49 49 49 51 51 51 51
21.4. Transformer architectures: BERT, GPT, multimodal	51 51
VI. Advanced Topics	53
22. Optimization Beyond Gradient Descent 22.1. Variational inference 22.2. Expectation-Maximization (EM) 22.3. Federated optimization challenges	55 55 55 55
23. Mathematical Frontiers of Neural Networks 23.1. Neural Tangent Kernels (NTK)	57 57 57 57 57
24. Meta-Learning and Transfer Learning 24.1. Few-shot learning 24.2. Pretraining and fine-tuning 24.3. Continual learning	59 59 59

	Explainability and Interpretability 25.1. Saliency maps and Grad-CAM	61 61 61
	Ethical and Societal Aspects 26.1. Bias and fairness in AI 26.2. Privacy and security 26.3. AI regulation and governance	63 63 63
VI	I. Practical Implementation	65
	Computational Frameworks 27.1. PyTorch fundamentals	67 67 67
	Efficient Training and Scaling 28.1. Hardware acceleration: GPUs, TPUs	69 69 69
	Case Studies in Scientific Machine Learning 29.1. Navier–Stokes with PINNs	71 71 71 71 71
A.	Mathematical Notation and Symbols	73
B.	Linear Algebra Toolbox	75
C.	Probability Distributions	77
D.	Special Functions (Gamma, Beta, Bessel, etc.)	79
E.	Implementations in PyTorch and TensorFlow	81

Part I.

Mathematical Preliminaries

Introduction 1.

- 1.1. Historical context of AI and neural networks
- 1.2. AI winters and the deep learning revolution
- 1.3. Why mathematics matters in deep learning

- 2.1. Vector spaces and inner products
- 2.2. Eigenvalues, eigenvectors, diagonalization
- 2.3. Singular value decomposition (SVD)
- 2.4. Tensor notation and operations

- 3.1. Gradients, Jacobians, Hessians
- 3.2. Taylor expansions in multiple variables
- 3.3. Divergence, curl, and Laplacians
- 3.4. Variational principles

Probability, Statistics, and Information Theory 4.

- 4.1. Random variables and distributions
- 4.2. Expectation, variance, covariance
- 4.3. Gaussian and exponential families
- 4.4. Entropy, KL divergence, mutual information

- 5.1. Convexity, duality, and Lagrangians
- 5.2. Gradient descent and its variants
- 5.3. Stochastic optimization and convergence
- 5.4. Newton and quasi-Newton methods

Functional Analysis Foundations 6

- 6.1. Normed spaces, Banach and Hilbert spaces
- 6.2. Orthogonal polynomials (Hermite, Laguerre, Legendre)
- 6.3. Special functions (Gamma, Beta, Bessel)
- 6.4. Operator theory foundations for PINNs and QINNs

Part II.

Classical Neural Networks

The Perceptron and Linear Models 7.

- 7.1. McCulloch-Pitts neurons
- 7.2. Rosenblatt's perceptron and linear separability
- 7.3. Logistic regression as probabilistic perceptron

- 8.1. Activation functions (ReLU, sigmoid, tanh, GELU, softmax)
- 8.2. Universal Approximation Theorem
- 8.3. Forward and backward propagation
- 8.4. Vanishing and exploding gradients

Convolutional Neural Networks (CNNs) 9.

- 9.1. Mathematical basis of convolution
- 9.2. Feature maps, receptive fields, pooling
- 9.3. Modern CNN architectures (AlexNet, VGG, ResNet)
- 9.4. Applications in vision, audio, and physics

Recurrent Neural Networks (RNNs) 10.

- 10.1. Sequences as dynamical systems
- 10.2. Gradient vanishing and exploding
- 10.3. LSTMs and GRUs
- 10.4. Applications in NLP, speech, time-series

Autoencoders and Representation Learning 11.

- 11.1. Linear autoencoders and PCA
- 11.2. Nonlinear autoencoders
- 11.3. Variational Autoencoders (VAEs)
- 11.4. Latent space geometry

Graph Neural Networks (GNNs) 12.

- 12.1. Graph Laplacians and spectral methods
- 12.2. Message passing frameworks
- 12.3. Applications in chemistry, materials, biology

Part III.

Neural Networks for Differential Equations

Mathematical Methods for Differential Equations 13.

- 13.1. Classification of ODEs and PDEs
- 13.2. Boundary and initial conditions
- 13.3. Separation of variables
- 13.4. Sturm–Liouville problems and orthogonal expansions
- 13.5. Fourier and Laplace transforms
- 13.6. Spectral methods (Chebyshev, Legendre)
- 13.7. Galerkin and Finite Element Methods (FEM)
- 13.8. Method of Frobenius and special functions

Physics-Informed Neural Networks (PINNs) 14.

- 14.1. Embedding PDEs into loss functions
- 14.2. Collocation and weak formulations
- 14.3. Elliptic, parabolic, and hyperbolic PDEs
- 14.4. Applications: fluids, electromagnetism, quantum mechanics
- 14.5. Extensions: XPINNs, VPINNs, Bayesian PINNs
- 14.6. Inverse problems (intro to iPINNs)

- 15.1. Motivation: the role of inverse problems
- 15.2. Formulation with unknown coefficients
- 15.3. Loss functions for parameter estimation
- 15.4. Applications: heat, waves, Schrödinger, materials
- 15.5. Ill-posedness and regularization
- 15.6. Sensitivity to noise and data quality

Quantum Neural Networks (QINNs) 16.

- 16.1. Hilbert spaces and Dirac notation
- 16.2. Quantum perceptron and gates as layers
- 16.3. Variational quantum circuits (VQE, QAOA)
- 16.4. Quantum Boltzmann Machines, QCNNs, Quantum Reservoirs
- 16.5. Parameter-shift rule for gradients
- 16.6. Challenges: barren plateaus, NISQ hardware
- 16.7. Applications in optimization, chemistry, cryptography

Neural Operators and DeepONets 17.

- 17.1. Learning operators between function spaces
- 17.2. Comparison with PINNs, iPINNs, FEM
- 17.3. Applications in PDEs and scientific computing

Part IV. REINFORCEMENT LEARNING

- 18.1. Agents, environments, states, actions, rewards
- 18.2. Markov Decision Processes (MDPs)
- 18.3. Value functions and Bellman equations
- 18.4. Tabular methods: SARSA, Q-learning

- 19.1. Deep Q-Networks (DQN)
- 19.2. Policy gradient methods (REINFORCE, PPO)
- 19.3. Actor-Critic architectures (A2C, A3C)
- 19.4. Landmark systems: AlphaGo, AlphaZero, MuZero

Part V. Modern Architectures

- 20.1. GANs and minimax optimization
- 20.2. Wasserstein GANs, StyleGAN
- 20.3. Diffusion models and stochastic processes
- 20.4. Applications in synthesis and design

- 21.1. Self-attention: queries, keys, values
- 21.2. Multi-head attention
- 21.3. Positional encodings
- 21.4. Transformer architectures: BERT, GPT, multimodal
- 21.5. Applications in PDEs and symbolic regression

Part VI. Advanced Topics

Optimization Beyond Gradient Descent 22.

- 22.1. Variational inference
- 22.2. Expectation-Maximization (EM)
- 22.3. Federated optimization challenges

- 23.1. Neural Tangent Kernels (NTK)
- 23.2. Infinite-width limits and mean-field theory
- 23.3. Geometry of loss landscapes
- 23.4. Generalization bounds and capacity

Meta-Learning and Transfer Learning 24.

- 24.1. Few-shot learning
- 24.2. Pretraining and fine-tuning
- 24.3. Continual learning

Explainability and Interpretability 25.

- 25.1. Saliency maps and Grad-CAM
- 25.2. SHAP and LIME
- 25.3. Interpretable PINNs and DRL policies

- 26.1. Bias and fairness in AI
- 26.2. Privacy and security
- 26.3. AI regulation and governance

Part VII. PRACTICAL IMPLEMENTATION

- 27.1. PyTorch fundamentals
- 27.2. TensorFlow and Keras
- 27.3. JAX and differentiable programming

- 28.1. Hardware acceleration: GPUs, TPUs
- 28.2. Parallelization and distributed training
- 28.3. Memory-efficient backpropagation

Case Studies in Scientific Machine Learning 29.

- 29.1. Navier-Stokes with PINNs
- 29.2. QINNs for quantum chemistry
- 29.3. DRL for robotics and control
- 29.4. CNNs/GNNs for materials science

Mathematical Notation and Symbols A.

Linear Algebra Toolbox $f B_ullet$

Probability Distributions C.

Special Functions (Gamma, Beta, Bessel, etc.) D.

###