A 30 minute read summary on a paper on Liver Cirrhosis Detection

Notebook: Machine learning

Created: 31/05/2020 16:01 **Updated:** 31/05/2020 16:36

Author: tasnimislam1999@gmail.com

Ref: https://pubmed.ncbi.nlm.nih.gov/32232524/

Main Idea:

- Performance relies on -
 - 1. genetic Algorithm
 - 2. Singular value decomposition
 - 3. Particle swarm organizing
- Extract Liver Capsule
 - 1. Sliding Window detector
 - 1. AdaBoost for selecting most discriminative feature
 - 2. 4 kinds of channels are created-
 - 1. original image
 - 2. gradient magnitude
 - 3. gradient histograms
 - 4. DOG(Difference of Gaussian)

They are compared with conventional VI detection, result: generate a response map

- 2. linking by dynamic programming
 - 1. purpose: extract a complete curve from the detection response(per-pixel classification happened)
- CNN for feature extraction
 - 1. Classification model: trained to classify each pitch triplet
 - 2. produce feature vector input for SVM
- SVM classifier for binary classification
 - 1. Deep classification model with transfer learning
 - 2. Evaluation
 - 1. 3-fold cross-validation scheme
 - 2. ROC-AUC values
 - 3. two low level features re listed:
 - 1. histogram of oriented gradients
 - 2. local binary pattern
 - 4. Impact of patch size
 - 1. patch size of 30-40 cm(plotting the 3-D curve and get the highest Laplac0ian value)
 - 5. Impact of Detection Error
 - 1. AUC value: 0.968
 - 2. performance of the detector 88%

Experiments:

- 1. Performance of the detector
- 2. Impact of detection error
- 3. CNN vs Hand Crafted Features
- 4. Impact of patch size

Cirrhosis diagnosis system focuses on -

- 1. quantitatively analyzing features
- 2. fractal
- 3. statistical texture
- 4. spectral
- 5. combined

Suggested Models

- 1. Random Forest
- 2. SVM
- 3. WPT (Wavelet packet transform)
- 4. M-band wavelet