схемотехника

Лекция № 4. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ. ПОЛЕВЫЕ ТРАНЗИСТОРЫ.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

Транзистор — прибор, содержащий два или более электронно-дырочных перехода, имеющий не менее трех выводов и пригодный для усиления, генерирования и преобразования электрических сигналов.

Полупроводниковые материалы: Si, Ge, Se, GaAs, SiC.

Существенным свойством полупроводника является возможность в широких пределах изменять свою проводимость под действием температуры, облучения и введения примесей.

Основные режимы работы транзистора

- *Активный режим основной* или *нормальный* эмиттер смещен в прямом направлении, коллектор в обратном. Транзистор наилучшим образом проявляет свои усилительные свойства.
- Инверсный режим наоборот. Транзистор также может использоваться для усиления.
- *Режим от сечки* к обоим переходам подведены обратные напряжения. Используется в ключевых схемах.
- *Режим насыщения* (*режим двойной инжекции*) оба перехода транзистора находятся под прямым смещением. Используется в электронных ключах.

Принцип действия биполярного транзистора

р-п-переходы:

Эмиттер – источник НЗ.

Коллектор – область сбора НЗ.

База – средняя область между Э и К.

, Закон Кирхгофа для токов:

$$I_{\mathfrak{I}} = I_{\mathfrak{K}} + I_{\mathfrak{B}}.$$

Коэффициент усиления тока базы:

$$h_{21} = I_{K} / I_{B}$$
.

Усилительные свойства транзистора

Пусть $E_3 = 0.5 \text{ B, } i_3 = 5 \text{ мA.}$

Мощность, расходуемая на управление транзистором (входная мощность):

$$P_{\text{bx}} = E_3 i_3 = 2.5 \text{ MBT}.$$

Пусть коллекторная нагрузка $R_{\scriptscriptstyle
m K}=1$ к0м

$$i_{_{\mathrm{K}}} \approx i_{_{\scriptscriptstyle 3}}$$

$$P_{\scriptscriptstyle \rm H}=i_{\scriptscriptstyle \rm K}^2R_{\scriptscriptstyle \rm K}=25~{\rm MBT}$$

$$K = \frac{P_{\text{вых}}}{P_{\text{вx}}} = 10$$

К — коэффициент усиления по мощности

Способы включения биполярных транзисторов

Выбор схемы включения зависит от конкретных требований к данной схеме.

Один из электродов транзистора является общей точкой входа и выхода каскада. Различают три схемы включения транзистора.

Схема БТ с ОК

выходной цепи. Различают три схемы включения: с общим эмиттером (ОЭ), с общей базой В каждой из схем включения, один из электродов является общим для входной и (ОБ), с общим коллектором (ОК).

Основные параметры схем включения транзистора:

Коэффициент усиления по току:

$$K_i = \frac{\Delta I_{\text{BbIX}}}{\Delta I_{\text{BX}}}$$

Коэффициент усиления по напряжению:

$$K_U = \frac{\Delta U_{\text{\tiny IRMX}}}{\Delta U_{\text{\tiny UX}}}$$

Коэффициент усиления по мощности:

$$K_p = \frac{\Delta P_{\text{\tiny UblX}}}{\Delta P_{\text{\tiny BX}}}$$

Входное сопротивление:

$$R_{\rm bx} = \frac{\Delta U_{\rm bx}}{\Delta I_{\rm bx}}$$

Выходное сопротивление:

$$R_{\rm Bbix} = \frac{\Delta U_{\rm Bbix}}{\Delta I_{\rm Bbix}}$$

Схема с общей базой (ОБ)

Достоинством схемы с общей базой являются лучшие частотные и температурные свойства по сравнению со схемой с общим эмиттером.

К недостаткам относятся низкое входное сопротивление и малый коэффициент усиления мощности.

Параметр	Значение
K_i	< 1 (порядка <i>а</i>)
K_u	10 – 100
K_p	10 – 100
$R_{_{ m BX}}$	10 Ом — 100 Ом
$R_{\scriptscriptstyle m Bbix}$	100 кОм — 1 МОм
Фазовый сдвиг между $U_{\scriptscriptstyle m BMX}$ и $U_{\scriptscriptstyle m BX}$	Отсутствует

Схема с общим эмиттером (ОЭ)

Достоинства схемы включения транзистора с общим эмиттером:

- Удобство питания от одного источника (на коллектор и базу подается напряжение одного знака).
- Высокие значения *Ки, Кі, Кр*.

Недостатки схемы:

- Режим работы транзистора сильно зависит от температуры.
 - Худшие частотные свойства.

Параметр	Значение
K_{i}	10 — 100 (порядка β)
K_u	10 – 100
K_p	100 — 10000
$R_{_{ m BX}}$	100 0м — 1 кОм
$R_{\scriptscriptstyle m BMX}$	1 — 10 кОм
Фазовый сдвиг между $U_{\scriptscriptstyle \mathrm{BLIX}}$ и $U_{\scriptscriptstyle \mathrm{BX}}$	180° (переворачивает фазу)

Схема с общим коллектором (ОК)

Достоинства схемы:

- высокое входное сопротивление
- малое выходное сопротивление.
- наилучшие частотные свойства.

Недостатки схемы:

отсутствие усиления напряжения.

Параметр	Значение
K_{i}	10 – 100
K_u	< 1
K_p	10 - 100
$R_{_{ m BX}}$	10 — 100 кОм
$R_{\scriptscriptstyle m BMX}$	100 Ом — 1кОм
Фазовый сдвиг между $U_{_{\mathrm{BMX}}}$ и $U_{_{\mathrm{BX}}}$	Отсутствует

Параметры схем включения биполярного транзистора

Тип включения	K_i	K_u	K_p	R_{sx}	$R_{s_{blX}}$	Сдвиг фаз, ^о
09	10-100	10-100	100-10000	100 Ом – 1 кОм	100 кОм	180
ОБ	<1	10-100	10-100	1-10 Ом	100 Ом – 1 кОм	0
OK	10-100	< 1	10-100	10 кОм	1-10 Ом	0

Вольт-амперные характеристики биполярных транзисторов

Статические характеристики — это зависимости между токами и напряжениями в транзисторе, снятые при постоянном токе в отсутствие нагрузки. Они взаимно связывают четыре величины $i_{\rm BX},\ i_{\rm BыX},\ U_{\rm BX},\ U_{\rm BыX}$ — входные и выходные токи и напряжения. Для описания режима работы транзистора необходимо иметь два семейства характеристик:

- \bullet входные характеристики $i_{BX} = f(U_{BX})$ при $U_{BbIX} = \text{const}$;
- \bullet выходные характеристики $i_{\rm BMX} = f(U_{\rm BMX})$ при $i_{\rm BX} = {\rm const.}$

Для каждой схемы включения транзистора существует свое семейство характеристик. Они приводятся в справочниках. В общем случае они подобны вольт-амперным характеристикам полупроводниковых диодов.

Вольт-амперные характеристики для схемы с общей базой

характеристики транзистора при включении его по схеме с ОБ Входные

На выходных ВАХ биполярного транзистора можно выделить области, соответствующие различным режимам его работы:

I – активная область работы транзистора,

II – область отсечки (оба перехода закрыты, i > < >),

III – область насыщения (оба перехода открыты).

Вольт-амперные характеристики для схемы с общим эмиттером

характеристики транзистора при включении его по схеме с ОЭ Входные

На выходных ВАХ биполярного транзистора можно выделить области, соответствующие различным режимам его работы:

I – активная область работы транзистора (усиление),

II – область отсечки,

III – область насыщения.

рабочий режим и точка покоя

Расчет усилителя должен начинаться с постоянного тока.

По постоянному току $X_{\rm C} \to \infty$, т.е. C – обрыв цепи;

 $X_{\rm L}
ightarrow 0$. т.е. $oldsymbol{L}$ – короткозамкнутый

провод.

Состояние, в котором находится *У*Э, при отсутствии на его входе усиливаемого сигнала, называется *состоянием покоя*.

Постоянные токи и напряжения в состоянии покоя определяют на входной и выходной статических характеристиках *точку покоя*.

При выборе положения точки учитываются:

- 1. Линейность усиления и уровень усиления.
- 2. Потребляемая мощность.
- 3. Условия эксплуатации УЭ.
- 4. Способ включения УЭ.
- 5. Работа в активном режиме.

ПОНЯТИЕ О КЛАССАХ УСИЛЕНИЯ Класс усиления *A*

- минимальными нелинейными искажениями сигнала (К_г ≤ 1%).
- ❖ небольшим КПД усилительного каскада (всегда меньше 40 %), т.е. наименее экономичный режим.

Класс усиления В

- высокий КПД (до 70%) и малая мощность тепловых потерь, рассеиваемых в транзисторе.
- □ большой уровень нелинейных искажений сигнала ($K_{\Gamma} \le 10 \%$).
- **П** угол отсечки $\theta = 90^{\circ}$.

Угол отсечки - это угол, соответствующий моменту прекращения тока.

Класс усиления АВ

Незначительное понижение КПД усилительного каскада в классе AB компенсируется существенным уменьшением нелинейных искажений при усилении одного из полупериодов входного сигнала.

угол отсечки $\theta = 120...130^{\circ}$.

Эквивалентные схемы усилительных элементов

Схемы замещения — математические модели, характеризующие некоторые его свойства с заданной точностью и в определённых пределах.

В общем случае транзистор представляет собой активный (способный преобразовывать энергию источника сигнала) нелинейный четырехполюсник.

Его можно описать семействами характеристик – нелинейными функциями двух переменных:

$$\begin{cases} I_2 = f(I_1, U_2), \\ U_1 = f(I_1, U_2) \end{cases}$$

Схема замещения четырехполюсника по постоянному току в h-параметрах

система линейных уравнений

$$\begin{cases} U_1 = h_{11}I_1 + h_{12}U_2 \\ I_2 = h_{21}I_1 + h_{22}U_2 \end{cases}$$

входное сопротивление транзистора по постоянному току:

$$h_{119} = \mathbf{U}_{\mathbf{E}\Theta\mathbf{0}} / \mathbf{I}_{\mathbf{E}\mathbf{0}}.$$

дифференциальный коэффициент обратной связи по напряжению в схеме включения ОЭ: $h_{123} = d\mathbf{U}_{\mathbf{Б}} / d\mathbf{U}_{\mathbf{K}} | npu I_{\mathbf{B}} \sim 0$.

коэффициент передачи (усиления) тока: $h_{213} = d\mathbf{I}_{K}/d\mathbf{I}_{B} \mid npu \mid U_{K3} = 0$.

дифференциальная выходная проводимость транзистора:

$$h_{229} = dI_K / dU_{K9} | npu I_B \sim 0$$

ТИПОВЫЕ ЗНАЧЕНИЯ *h*-ПАРАМЕТРОВ

	h_{11}	h_{12}	h_{21}	h_{22}
Ī	10 ³ 10 ⁴ Ом	$2 \cdot 10^{-4} \dots 2 \cdot 10^{-3}$	20200	10 ⁻⁵ 10 ⁻⁶ См

Переход от *h*-параметров схемы с общим эмиттером к *h*-параметрам схемы с общей базой или общим коллектором

<i>h</i> -параметры схемы	h-параметры схемы с общей	h-параметры схемы с
с общим эмиттером	базой	общим коллектором
h ₁₁₉	$h_{116} = \frac{h_{119}}{1 - h_{229} + h_{219} + \Delta h_9}$	$h_{11\kappa} = h_{11\mathfrak{s}}$
h_{129}	$h_{126} = \frac{\Delta h_{3} - h_{123}}{1 + h_{123} + h_{213} + \Delta h_{3}}$	$h_{12\kappa} = 1 - h_{12\mathfrak{s}}$
h ₂₁₉	$h_{216} = \frac{-\left(h_{213} + \Delta h_{3}\right)}{1 - h_{123} + h_{213} + \Delta h_{3}}$	$h_{21{\rm K}} = - \big(1 + h_{21{\rm 9}}\big)$
h ₂₂₉	$h_{226} = \frac{h_{223}}{1 - h_{123} + h_{213} + \Delta h_3}$	$h_{22\mathbf{k}} = h_{22\mathfrak{s}}$
	$\Delta h_{\mathfrak{s}} = h_{11\mathfrak{s}} \cdot h_{22\mathfrak{s}} - h_{12\mathfrak{s}} \cdot h_{21\mathfrak{s}}$	

ЭКВИВАЛЕНТНЫЕ СХЕМЫ ЗАМЕЩЕНИЯ

Схема вклю-	Эквивалентная электрическая	Упрощенная эквивалент-
чения транзи- стора	схема (h-модель)	ная электрическая схема
K U _{BX} 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B I₁
Э K R _н	3 I ₁	Э I ₁
Э К	I ₁	I ₁

Формулы расчета основных параметров для каскада усилителя по эквивалентной схеме

Параметры	Общий эмиттер	Общая база	Общий коллектор
v	$-\frac{h_{21\flat}\cdot R_{\scriptscriptstyle \rm H}}{h_{11\flat}+\Delta h_{\flat}\cdot R_{\scriptscriptstyle \rm H}}$	$\frac{\left(h_{213} + \Delta h_{3}\right) \cdot R_{\text{\tiny H}}}{h_{113} + \Delta h_{3} \cdot R_{\text{\tiny H}}}$	$\frac{(1+h_{213})\cdot R_{\text{H}}}{h_{113}+(1-h_{123}+h_{213}+\Delta h_{3})\cdot R_{\text{H}}}$
K_U	$-\frac{h_{21\mathfrak{s}}\cdot R_{\scriptscriptstyle{\mathtt{H}}}}{R_{\scriptscriptstyle{\mathtt{T.3KB}}}+h_{11\mathfrak{s}}}$	$\frac{h_{21} \cdot R_{\text{H}}}{R_{\text{r.secb}} + h_{11}}$	$\frac{h_{21} \cdot R_{\text{H}}}{h_{11} \cdot H_{11} \cdot R_{11} \cdot R_{\text{H}}}$
v	$\frac{h_{21\flat}}{1 + h_{22\flat} \cdot R_{\mathtt{H}}}$	$\frac{h_{213} + \Delta h_{3}}{1 - h_{123} + h_{213} + \Delta h_{3} + h_{223} \cdot R_{H}}$	$-\frac{1+h_{213}}{1+h_{223}\cdot R_{_{\rm H}}}$
K_I	$\frac{h_{21}}{1 + h_{22} \cdot R_{\text{H}}}$	$\frac{h_{21\mathfrak{s}}}{h_{21\mathfrak{s}}+h_{22\mathfrak{s}}\cdot R_{\mathtt{H}}}$	$-\frac{1+h_{21}}{1+h_{22}\cdot R_{_{\mathbf{H}}}}$
R _{BX}	$\frac{h_{113} + \Delta h_3 \cdot R_{_{\mathbf{H}}}}{1 + h_{223} \cdot R_{_{\mathbf{H}}}}$	$\frac{h_{113} + \Delta h_{3} \cdot R_{_{\rm H}}}{1 - h_{123} + h_{213} + \Delta h_{_{3}} + h_{223} \cdot R_{_{\rm H}}}$	$\frac{h_{113} + (1 - h_{123} + h_{213} + \Delta h_3) \cdot R_{_{\mathbf{H}}}}{\Delta h_3 + h_{223} \cdot R_{_{\mathbf{H}}}}$
	h_{11}	$\frac{h_{11 \ 3}}{h_{21 \ 3}} \qquad \left(\frac{h_{11 \ 3} + R_{\pi}}{h_{21 \ 3}}\right)$	$h_{113} + (h_{213} + 1) \cdot R_{H}$
$R_{\scriptscriptstyle \mathtt{BLDX}}$	$\frac{h_{113} + R_{r}}{\Delta h_{s} + h_{223} \cdot R_{r}}$	$\frac{h_{113} + (1 - h_{123} + h_{213} + \Delta h_3) \cdot R_r}{\Delta h_3 + h_{223} \cdot R_r}$	$\frac{h_{113} + R_{r}}{1 - h_{123} + h_{213} + \Delta h_{3} + h_{223} \cdot R_{H}}$
	1 h 22 3	$\frac{h_{113} + h_{213} \cdot R_{r}}{h_{223} \cdot R_{r}}$	$\frac{h_{11} + R_{r}}{h_{21}}$

Примечания: 1. Нижние значения в таблице являются приближенными.

- 2. $\Delta h_3 = h_{113} \cdot h_{223} h_{123} \cdot h_{113}$.
- R_r сопротивление источника входного сигнала (сопротивление генератора).

Эквивалентная схема биполярного транзистора по переменному сигналу на примере схемы с общим эмиттером

В ОВЧ необходимо учитывать барьерные емкости эмиттерного и коллекторного переходов и диффузионную емкость.

Параметры модели вычисляются аналитически в области точки покоя:

$$S=\mathrm{d}I_\mathrm{K}$$
 / $\mathrm{d}U_\mathrm{E9}=I_\mathrm{K}$ / ϕ_T . ϕ_T – тепловой потенциал, (ϕ_T =25 мВ для $T=27^0\mathrm{C}$).

 $C_{\rm K}$ – емкость коллекторного перехода. Является элементом внутренней ОС;

С б 'э – емкость прямосмещенного перехода БЭ;

r б 'б = τ_{OC} / C_{KE} [Ом] — распределенное (объемное) сопротивление базовой области (омическое сопротивление базы);

 τ_{OC} – постоянная времени цепи обратной связи [пс].

r б'э – активное сопротивление эмиттера:

ИТУТ с h_{21} – управляемый генератор тока.

Выходной ток: $I_K = S \cdot U_{E3}$.

Входное напряжение транзистора: $U_{\mathbf{6'k}} = (1 + SR_{\mathbf{H}})U_{\mathbf{6'3}}$.

$$r_{6/9} = (1 + h_{21}) \cdot \frac{\varphi(t)}{I_{K0}}$$

частотные свойства эквивалентной схемы биполярного транзистора с общим эмиттером

Суммарная ёмкость входной цепи: $C = C_{\text{БЭ}} + C_{\text{Б'K}} \cdot (1 + S \cdot R_{\text{H}})$.

Входное сопротивление: $Z_{\rm BX} = r_{6/6} \frac{r_{\rm B'9}}{1 + j\omega C_0 r_{\rm B'9}}$.

Сквозной коэффициент усиления:

$$\mathbf{K}_{\text{CKB}} = k_1 \cdot \mathbf{K}_U = \frac{r_{\text{B'}3}}{1 + j\omega C_0 r_{\text{B'}3}} \cdot SR_H$$

Граничная частота рабочего диапазона:

$$f_{\sqrt{2}} = \frac{1}{2\pi \cdot C \cdot r_{\text{B}/3}}$$

График, отражающий частотную зависимость модуля входного сопротивления транзистора

Классификация биполярных транзисторов

- **1.** По структуре различают n-p-n и p-n-p транзисторы.
- 2. По диапазону используемых рабочих частот различают:
- низкочастотные транзисторы $f_{\rm rp} \le 3~{
 m M}\Gamma$ ц;
- среднечастотные транзисторы 3 МГц $\leq f_{\rm rp} \leq$ 30 МГц;
- высокочастотные транзисторы 30 МГц $\leq f_{\rm rp} \leq$ 300 МГц;
- СВЧ-транзисторы $f_{\rm rp} \ge 300$ МГц.
- 3. По мощности выделяют:
- транзисторы малой мощности $P_{\max} \le 0.3 \; \mathrm{Bt};$
- транзисторы средней мощности $0.3~{\rm Br} \le P_{\rm max} \le 1.5~{\rm Br};$
- транзисторы большой мощности $P_{\max} \ge 1.5 \ \mathrm{Bt}.$
- **4.** По технологии изготовления классификация аналогична классификации полупроводниковых диодов.

маркировка биполярных транзисторов

включает в себя 5 позиций:

- *1)* материал:
 - Γ , 1 германий; K, 2 кремний; A, 3 арсенид галлия;
- 2) букву Т, означающую, что это биполярный транзистор;
- 3) диапазон основных параметров (мощность, частота) число от 1 до 9:
 - 1 транзисторы низкочастотные малой мощности;
 - 2 транзисторы среднечастотные малой мощности;
 - 3 транзисторы высокочастотные малой мощности;
 - 4 транзисторы низкочастотные средней мощности;
 - 5 транзисторы среднечастотные средней мощности;
 - 6 транзисторы высокочастотные средней мощности;
 - 7 транзисторы низкочастотные большой мощности;
 - 8 транзисторы среднечастотные большой мощности;
 - 9 транзисторы высокочастотные большой мощности;
- 4) порядковый номер разработки (1-99);
- 5) букву, определяющую классификацию по основным параметрам (β , fгр).

Пример: ГТ313А – германиевый транзистор, маломощный, высокочастотный, номер разработки 13, группа А.

ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Классификация основных типов транзисторов и обозначение в схеме

Принцип действия полевых транзисторов основан на использовании носителей заряда только одного знака (электронов или дырок), т.е. это униполярные приборы.

Полевой транзистор управляется напряжением на входе, $i_{\rm BX} \approx 0$.

Полевые транзисторы с управляющим *p-n*-переходом (JFET)

Канал протекания тока представляет собой слой проводника, заключенный между двумя *p-n*-переходами.

И – исток – source (S) – электрод, от которого движутся носители заряда.

С – **сток** – **drain** (**D**) – электрод, к которому движутся носители заряда.

3 – затвор – gate (G) – электрод, управляющий сечением канала, а => сопротивлением канала.

УГО полевого транзистора с управляющим р-п-переходом: а) п-канал; б) р-канал.

Стрелкой показано положительное направление тока через переход.

Если на затвор подать напряжение $U_{3и}$ с полярностью, противоположной указанной на рисунке, то оба перехода получат прямое смещение и входное сопртивление транзистора будет мало. Такой режим для данного транзистора — **НЕРАБОЧИЙ** !!!

На затвор необходимо подавать обратное напряжение для переходов. Это напряжение – управляющее для транзистора.

статические характеристики полевых транзисторов

□ Выходные (стоковые) характеристики

$$i_c = f(U_{\scriptscriptstyle extsf{CM}}) = U_{\scriptscriptstyle extsf{3M}} = const.$$

С ростом напряжения $U_{\text{СИ}}$ ток $I_{\text{С}}$ сначала увеличивается согласно закону Ома, а затем достигает насыщения. Это объясняется равновесием двух противоположных процессов: с одной стороны ток растет по закону Ома, с другой уменьшается за счет уменьшения толщины канала.

При увеличении модуля напряжения $U_{3\mathrm{U}}$ ток стока падает (уменьшается толщина канала). При большом напряжении $U_{\mathrm{C}\mathrm{U}}$ возникает пробой перехода.

Параметры ВАХ:

 $U_{\mathrm{CИ, \, Hac}}$ – напряжение насыщения; $I_{\mathrm{C_{\, , \, Haq}}}$ – начальный ток стока.

статические характеристики полевых транзисторов

Управляющие (стокзатворные) характеристики (сквозная ВАХ)

$$i_c = f(U_{\scriptscriptstyle \mathrm{SM}})|U_{\scriptscriptstyle \mathrm{CM}} = const.$$

Они иллюстрируют управляющее действие затвора

Стокзатворные ВАХ иллюстрируют управляющее $-I_{c0} = I_{c max}$ действие затвора.

Параметры ВАХ:
$$U_{\rm 3И,\,0\,(otc)} - {\rm напряжением\,\,otceчки:} \quad U_{\rm 3И} = U_{\rm 3И0} \bigg(1 - \sqrt{\frac{I_{\rm c}}{I_{\rm c0}}} \bigg).$$

$$I_{\rm C\,,\, нач\,(max)}$$
 — начальный ток стока: $I_{\rm c} = I_{\rm c0} \left(1 - \frac{U_{\rm зи}}{U_{\rm зи0}}\right)^2$

S – крутизна стокзатворной BAX – отражает влияние $U_{3\text{M}}$ на выходной ток I_{C} транзистора:

$$S = \frac{dI_{c}}{dU_{_{\mathrm{SM}}}}\Bigg|_{U_{_{\mathrm{CM}}} = \mathrm{const}} = \frac{2I_{_{\mathrm{C0}}}}{U_{_{\mathrm{3M0}}}} \cdot \left(1 - \frac{U_{_{\mathrm{3M}}}}{U_{_{\mathrm{3M0}}}}\right)$$
 - уравнение линейной функции

Максимальная крутизна $S_{\max} = S_0 = S_{\max}$ будет при $U_{\text{зи}} = 0$.

Основные параметры полевого транзистора

Входное сопротивление определяется сопротивлением обратносмещенных p-nпереходов и составляет $r_{\rm BX} = 10^8 \dots 10^9$ Ом: $r_{\rm BX} = \frac{dU_{_{\rm 3M}}}{dl_{_{\rm 3}}}$ сопротивлением обратносмещенных p-n-

Межэлектродные ёмкости транзистора обусловлены наличием p-n-переходов, примыкающих к истоку и к стоку. $C_{3N} = C_{CN} = 6 \dots 20 \text{ п}\Phi; \qquad C_{3C} = 2 \dots 8 \text{ п}\Phi$

Полевые транзисторы с управляющим p-n-переходом выпускаются на токи до 50 мА и напряжения до 50 В.

Полевые транзисторы с изолированным затвором

Эти транзисторы называют МДП- (металл—диэлектрик—полупроводник) или МОП- (металл—оксид—полупроводник) транзисторами.

Разновидности МДП-транзисторов:

- *а*) с индуцированным каналом (канал возникает под действием напряжения, приложенного к управляющим электродам);
- *б*) со встроенным каналом (канал создается при изготовлении).

У МДП-транзистора, в отличие от ПТ с управляющим p–n-переходом, металлический затвор изолирован от полупроводника слоем диэлектрика и имеется дополнительный вывод П от кристалла, называемый подложкой.

статические характеристики полевых транзисторов с изолированным затвором

Передаточные характеристики

Условные графические обозначения различных типов полевых транзисторов на принципиальных схемах

	<i>n</i> -типа	p-типа
Транзистор с управляющим $p-n$ переходом		
МДП-транзистор с встроенным каналом		
МДП-транзистор с индуцированным каналом		

Маркировка полевых транзисторов

включает в себя 5 позиций:

- *1)* материал:
 - Γ , 1 германий; K, 2 кремний; A, 3 арсенид галлия;
- 2) букву П, означающую, что это полевой транзистор;
- 3) диапазон основных параметров (мощность, частота) число от 1 до 9:
 - 1 транзисторы низкочастотные малой мощности;
 - 2 транзисторы среднечастотные малой мощности;
 - 3 транзисторы высокочастотные малой мощности;
 - 4 транзисторы низкочастотные средней мощности;
 - 5 транзисторы среднечастотные средней мощности;
 - 6 транзисторы высокочастотные средней мощности;
 - 7 транзисторы низкочастотные большой мощности;
 - 8 транзисторы среднечастотные большой мощности;
 - 9 транзисторы высокочастотные большой мощности;
- 4) порядковый номер разработки (1-99);
- 5) букву, определяющую классификацию по основным параметрам (β , fгр).

Пример: КП103А – кремниевый транзистор, маломощный, высокочастотный, номер разработки 03, группа А.

преимущества полевых транзисторов по сравнению с биполярными транзисторами

Основа цифровых и аналоговых интегральных схем;
 Ждущие и следящие устройства;
 Основа flash-памяти;
 ССD – матрицы (приборы с зарядовой связью);
 Электронные ключи;
 Логические элементы;

СХЕМЫ ВКЛЮЧЕНИЯ ПОЛЕВОГО ТРАНЗИСТОРА

Параметр	Схема		
	ОИ	О3	OC
$R_{\scriptscriptstyle \mathrm{BX}}$	Единицы МОм	Единицы,	Единицы МОм
		десятки Ом	
$R_{\scriptscriptstyle m BMX}$	Единицы кОм	Единицы кОм	Единицы, десятки Ом
K_U	>>1	>>1	<1
K_I	_	≅1	_

Полевой транзистор как четырёхполюсник

При малых сигналах наиболее удобна система *g-параметров*.

Система уравнений четырехполюсника имеет вид:

$$I_{1\sim} = g_{11} U_{1\sim} + g_{12} U_{2\sim}; \quad I_2 = g_{21} U_{1\sim} + g_{22} U_{2\sim}.$$

Коэффициенты данной системы имеют размерности проводимостей и являются универсальными параметрами, которые для каждой из схем включения ПТ имеют свои значения.

Для схемы ОИ:

- g11 входная проводимость при $U2 \sim = 0$;
- g12 проводимость обратной передачи при $U1 \sim = 0$;
- g21 проводимость прямой передачи при $U2\sim =0$;
- g22 выходная проводимость при U1 ~ = 0.

Режимы U_{BX} = 0, U_{BMX} = 0 включением емкостей (достаточно больших), представляющих малое сопротивление для переменных составляющих.

Малосигнальная схема замещения полевого транзистора

Схема замещения справедлива для всех типов полевого транзистора.

 $C_{_{\mathrm{3U}}},\ C_{_{\mathrm{3C}}},\ C_{_{\mathrm{CU}}}$ – межэлектродные емкости - оказывают влияние на в области верхних частот.

 $SU_{\scriptscriptstyle
m 3M}$ – источник тока, отражающий влияние Uзи на ток Ic.

 r_{i} – внутренне сопротивление - учитывает влияние напряжения Ucи на ток Ic.

 $r_{\rm BX}$ — входное сопротивление транзистора (пренебрегаем).

Граничная частота единичного усиления: $f_T = 1/(2\pi\tau)$, где $\tau = C_{3H}/S_0$.

B отличие от биполярного транзистора, в схемах на ΠT зависимость крутизны S от частоты можно не учитывать до сотен $M\Gamma$ μ .