3. Напишите, используя методы теории индуктивных функций, программу, определяющую значение в целой точке t многочлена, заданного последовательностью его коэффициентов в порядке убывания степеней. Решите аналогичную задачу для случая задания коэффициентов в порядке возрастания степеней и задачу нахождения в целой точке t производной многочлена, заданного последовательностью его коэффициентов в порядке убывания степеней.

Всё, что нашел, ниже

Задача 6 Напишите, используя методы теории индуктивных функций, программу, определяющую значение в целой точке t производной многочлена, заданного последовательностью его коэффициентов (в порядке возрастания степеней).

Избранные задачи, задача 9 Решение. Алексей.

 $X = R_M$

 $Y=R_M$ $f:X^*->Y,f$ — значение производной многочлена, заданного последовательностью его коэффициентов в порядке возрастания степеней, в точке t. Взяв $t=1,a=\{0\},b=\{0,0\},x=1,$ находим f(a)=f(b)=0, но $f(a\circ x)=1\neq 2=f(b\circ x),$ то есть, по отрицанию критерия индуктивности, f не является индуктивной функцией.

$$f(\omega \circ x) = |\omega| * x * t^{(|\omega| - 1)} + f(\omega)$$

. Таким образом в качестве дополнительной функции f_1 возьмем $|\omega|$, в качестве $f_2 - - - t(|\omega| - 1)$ и построим индуктивное расширение $F(\omega) = (f(\omega), f_1(\omega), f_2(\omega))$:

$$F(\omega \circ x) = (f_1(\omega) * x * f_2(\omega) + f(\omega), f_1(\omega) + 1, t * f_2(\omega))$$

$$F: (R_M)_1^* - > R_M X Z_M^+ X Z_M$$

. Обратим внимание, что индуктивное расширение не определено на ε , так как на ε не определено $f_2(\varepsilon) = t^{(-1)} = 1/t \notin Z_M$ и $f(\epsilon)$. Поэтому на пустой цепочке программа ничего не должна печатать, а начальное значение F(x) = (0, 1, 1), где |x| = 1. Это начальное значение будет корректно и при t = 0, когда, вообще говоря, $f(x) = 0^0$ — величина неопределенная. Функция перевычисления G определена как:

$$G : R_M X Z_M^+ X Z_M X R_M - > R_M X Z_M^+ X Z_M$$

 $G((y_1, y_2, y_3), x) = (y_2 * x * y_3 + y_1, y_2 + 1, t * y_3)$

. Отображение $\pi: R_M X Z_M^+ X Z_M \to R_M$ тривиально: $\pi(y_1, y_2, y_3) = y_1$. Построенное индуктивное расширение, однако, не является минимальным, так как область значений F не сюръективна. Например, ни на одной цепочке F не может принять значение (0,3,2), так как 2 не представляется в виде квадрата целого числа. Однако, если в качестве множества значений F взять сюрьективную часть исходного множества, то F будет минимально (для $t \neq 0$). Покажем, что $\forall a, b \in X_1^*F(a)! = F(b) => a! b$, где отношение эквивалентности задается формулой $a\ b\Leftrightarrow \forall\omega\in X^*f(a\circ\omega)=f(b\circ\omega).$ Нам необходимо найти такое ω для любых $a, b \in X_1^* \land F(a)! = F(b)$, что $f(a \circ \omega)! = f(b \circ \omega)$. Случай, когда у F(a) и F(b) не совпадает y_1 , тривиален, так как, в силу вида функции π , в качестве ω можно взять ϵ . В случае, когда у F(a) и F(b) совпадают y_1 , но различны y_2 , в качестве ω можно взять, например, 1, после чего $f(a \circ 1) = |a| * t(|a| - 1) + f(a), f(b \circ 1) = |b| * t(|b| - 1) + f(b)$ и $f(a\circ 1)!=f(b\circ 1)$, так как $|a|*t^{(}|a|-1)!=|b|*t^{(}|b|-1)$ (ведь |a|!=|b|). Наконец, случая, когда совпадают y_1, y_2 , но различны y_3 , просто не бывает, так как $y_3 = t(y_2 - 1)$, и если совпадают y_2 , то совпадают и y_3 . Миним альность индуктивного расширения доказана для t! = 0. Для t = 0 функция f индуктивна сама по себе, и, следовательно, минимальна, так как множество ее значений R_M сюръективно.

Соответствующая программа, с учетом стационарности при t=0 и отсутствии необходимости в индуктивном распирении в этом же случае, имеет вид

```
print "t -> "
t = readline.to_i
print "x -> "
x = readline.to_i
begin
  if t != 0
    y1, y2, y3 = 0, 1, 1
    while true
      print "x -> "
      x = readline.to_i
      y1, y2, y3 = y2*x*y3+y1, y2+1, t*y3
    end
  else
   print "x -> "
    x = readline.to_i
    y1 = x
  end
rescue EOFError
  puts ''(P_n')(#\{t\}) = #\{y1\}''
end
```