Package 'NGBVS'

October 12, 2022

Type Package

Title Bayesian Variable Selection for SNP Data using Normal-Gamma
Version 0.3.0
URL
Date 2022-09-12
Author Abdulaziz Alenazi [aut, cre]
Maintainer Abdulaziz Alenazi <a.alenazi@nbu.edu.sa></a.alenazi@nbu.edu.sa>
Depends R (>= 3.6.0)
Imports stats, Rfast
Description Posterior distribution of case-control fine-mapping. Specifically, Bayesian variable selection for single-nucleotide polymorphism (SNP) data using the normal-gamma prior. Alenazi A.A., Cox A., Juarez M., Lin W-Y. and Walters, K. (2019) Bayesian variable selection using partially observed categorical prior information in fine-mapping association studies, Genetic Epidemiology. <doi:10.1002 gepi.22213="">.</doi:10.1002>
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2022-09-16 16:36:05 UTC
R topics documented:
NGBVS-package 2 asym_m_ng 2 asym_s_ng 4 m_ng 5 Random value generation from the Generalized Inverse Gaussian Distribution 6 s_ng 7
Index

2 asym_m_ng

NGBVS-package

Bayesian Variable Selection for SNP Data using Normal-Gamma

Description

The NGBVS package provides posterior distribution of case-control fine-mapping. Specifically Bayesian variable selection for Single-Nucleotide Polymorphism (SNP) data using the Normal-Gamma prior.

Details

Package: NG
Type: Package
Version: 0.3.0
Date: 2022-09-112
License: GPL-2

Maintainers

Abdulaziz Alenazi <a.alenazi@nbu.edu.sa>

Author(s)

Abdulaziz Alenazi <a.alenazi@nbu.edu.sa>

asym_m_ng

Modified NG prior via FS scores

Description

Modified Normal Gamma prior calculates the posterior distribution for the fine mapping cases-controls study. The number of case-controls must be greater than the number of SNPs.

Usage

```
asym_m g (y, data, FS, medstar = c(0.01, 0.0001), numb = 100, burnin = 1, every = 1)
```

asym_m_ng 3

Arguments

y A vector of the pheontype, where takes 0s and 1s.

data An $N \times p$ finemap data, where N and p denote the samples and number of SNPs

respectively.

FS FS scores for each SNP and it takes value from 0 and 1 or NA for missing FS.

medstar The value of M where M takes two values.

numb Number of samples for each SNP.

burnin The amount of burn-in for the MCMC sample.

every The amount of thining for the MCMC sample.

Value

A list including:

alpha A vector of the posterior distribution of the intercept.

beta A matrix of the posterior distribution of the effect sizes.

psi A matrix of the posterior distribution of ψ .

lambda A vector of the posterior distribution of λ .

gammasq A vector of the posterior distribution of γ^2 .

W A vector of the posterior distribution of W.

H A vector of the posterior distribution of H.

Author(s)

Abulaziz Alenazi.

R implementation and documentation: Abulaziz Alenazi <a.alenazi@nbu.edu.sa>.

Examples

```
set.seed(1)
data <- matrix(sample( c( 0, 1, 2 ), 500 * 30, replace = TRUE,
prob <- c( 0.35, 0.35, 0.3)), ncol = 30 )
FS <- sample( c( 0.1, 0.5, 0.7, NA ), ncol( data ), replace = TRUE)
asym_m_ng(y = rbinom(500, 1, 0.5), data = data, FS = FS)</pre>
```

4 asym_s_ng

asym_s_ng	Standard NG prior	

Description

Standard Normal Gammp prior calculates the posterior distribution for the fine mapping cases-controls study. The number of case-controls must be greater than the number of SNPs.

Usage

```
asym_s_ng(y, data, medstar = 1, numb = 100, burnin = 1, every = 1)
```

Arguments

y A vector of the pheontype, where takes 0s and 1s.

data An $N \times p$ finemap data, where N and p denote the samples and number of SNPs

respectively.

medstar The value of M.

numb Number of samples for each SNP.

burnin The amount of burn-in for the MCMC sample.

every The amount of thining for the MCMC sample.

Value

A list including:

alpha A vector of the posterior distribution of the intercept.

beta A matrix of the posterior distribution of the effect sizes.

psi A matrix of the posterior distribution of ψ .

A vector of the posterior distribution of λ .

A vector of the posterior distribution of γ^2 .

Author(s)

Abulaziz Alenazi.

R implementation and documentation: Abulaziz Alenazi <a.alenazi@nbu.edu.sa>.

Examples

```
set.seed( 1 )
data <- matrix(sample( c( 0, 1, 2 ), 500 * 30, replace = TRUE,
prob = c( 0.35, 0.35, 0.3)), ncol = 30)
asym_s_ng(y = rbinom(500, 1, 0.5), data = data)</pre>
```

m_ng 5

m_ng	Modified NG prior via FS scores

Description

Modified Normal Gammp prior calculates the posterior distribution for the fine mapping study. The number of individuals must be greater than the number of SNPs.

Usage

```
m_ng (y, data, FS, medstar = c(0.01, 0.0001), numb = 100, burnin = 1, every = 1)
```

Arguments

y A vector of the pheontype.

data An $N \times p$ finemap data, where N and p denote the samples and number of SNPs

respectively.

FS FS scores for each SNP and it takes value from 0 and 1 or NA for missing FS.

medstar The value of M where M takes two values.

numb Number of samples for each SNP.

burnin The amount of burn-in for the MCMC sample.

every The amount of thining for the MCMC sample.

Value

A list including:

alpha A vector of the posterior distribution of the intercept. beta A matrix of the posterior distribution of the effect sizes. sigmasq A vector of the posterior distribution of σ^2 . psi A matrix of the posterior distribution of ψ .

lambda A vector of the posterior distribution of λ .

A vector of the posterior distribution of γ^2 .

A vector of the posterior distribution of W.

A vector of the posterior distribution of H.

Author(s)

Abulaziz Alenazi.

R implementation and documentation: Abulaziz Alenazi <a.alenazi@nbu.edu.sa>.

Examples

```
set.seed( 1 )
data <- matrix(rnorm(500 * 30), ncol = 30)
FS <- sample( c( 0.1, 0.5, 0.7, NA ), ncol( data ), replace = TRUE)
m_ng(y = rnorm( 500 ), data = data, FS = FS)</pre>
```

Random value generation from the Generalized Inverse Gaussian Distribution $Random\ value\ generation\ from\ the\ Generalized\ Inverse\ Gaussian\ Distribution$

Description

Random value generation from the Generalized Inverse Gaussian (GIG) Distribution.

Usage

```
rgig(n = 10, lambda = 1, chi = 1, psi = 1)
```

Arguments

n	Number of observations.
lambda	A shape and scale and parameter.
chi	Shape parameter. Must be positive.
psi	Scale parameter. Must be positive.

Details

rgig uses the code from the GIG-random number generator from the R package *fBasics*. I copied the code from the "ghyp" package because it had not longer a maintainer.

Value

A vector with random values from the GIG distrigution.

Author(s)

David Luethi. Minor changes made by Abdulaziz Alenazi <a.alenazi@nbu.edu.sa>.

References

The algorithm for simulating generalized inverse gaussian variates is copied from the R package fBasics from Diethelm Wuertz.

Dagpunar, J.S. (1989). An easily implemented generalised inverse Gaussian generator. Communications in Statistics-Computation and Simulation, 18, 703–710.

Raible S. (2000). *Levy Processes in Finance: Theory, Numerics and Empirical Facts*, PhD Thesis, University of Freiburg, Germany, 161 pages.

s_ng 7

Examples

```
x <- rgig(n = 10, lambda = 1, chi = 1, psi = 1)
```

s_ng

Standard NG prior

Description

Standard Normal Gammp prior calculates the posterior distribution for the fine mapping study. The number of individuals must be greater than the number of SNPs.

Usage

```
s_ng(y, data, medstar = 1, numb = 100, burnin = 1, every = 1)
```

Arguments

y A vector of the pheontype.

data An $N \times p$ finemap data, where N and p denote the samples and number of SNPs

respectively.

medstar The value of M.

numb Number of samples for each SNP.

burnin The amount of burn-in for the MCMC sample. every The amount of thining for the MCMC sample.

Value

A list including:

alpha A vector of the posterior distribution of the intercept.

beta A matrix of the posterior distribution of the effect sizes.

sigmasq A vector of the posterior distribution of σ^2 .

A matrix of the posterior distribution of ψ .

A vector of the posterior distribution of λ .

A vector of the posterior distribution of γ^2 .

Author(s)

Abulaziz Alenazi.

R implementation and documentation: Abulaziz Alenazi <a.alenazi@nbu.edu.sa>.

Examples

```
set.seed(1)
data <- matrix( rnorm(500 * 30), ncol = 30)
s_ng(y = rnorm(500), data = data)</pre>
```

Index

```
asym_m_ng, 2
asym_s_ng, 4

m_ng, 5

NGBVS-package, 2

Random value generation from the
Generalized Inverse Gaussian
Distribution, 6

rgig (Random value generation from the
Generalized Inverse Gaussian
Distribution), 6

s_ng, 7
```