Let $(p_n)_{n\in\mathbb{N}}$ be a decreasing sequence of projections in M such that $\inf_n p_n=0$. Then $\lim_{n \to \infty} (p_n)=0$ for every $\phi \in \Phi$. Since

$$(T(t)p_n)^2 \le T(t)p_n$$
, $t \in \mathbb{R}_+$,

we obtain by a classical inequality of Kadison that

$$0 \leq \phi((T(t)p_n)^2) \leq \phi(T(t)p_n) \leq \phi(p_n) ,$$

hence $\lim_{n\phi} (\mathbf{T}(t) \, \mathbf{p}_n) = 0$ uniformly in $t \in \mathbb{R}_+$. Since the family ϕ is faithful on M , it follows from [Takesaki (1979), Proposition III.5.3] that $(\mathbf{T}(t) \, \mathbf{p}_n)$ converges to zero in the $s(M,M_\star)$ -topology uniformly in $t \in \mathbb{R}_+$. Since this topology is finer than the weak*topology on M we obtain the relative compactness of T which implies the strong ergodicity.

Let \mathcal{T} be an identity preserving semigroup of Schwarz type on the predual of a W*-algebra M . We call

$$p_r := \sup\{s(|\phi|) : \phi \in Fix(T)\}$$

the <u>recurrent projection</u> associated with 7 . For a motivation of this definition compare, e.g., [Davies (1976), Section 6.3].

Since $T(t)|\phi|=|\phi|$ for all $\phi\in Fix(T)$ (D-III, Cor. 1.5) we obtain $T(t)'p_r \geq p_r$ (see D-I,Sec.3.(c)). Let $T^{(r)}$ be the reduced semigroup on $p_rM_\star p_r$ with generator $A^{(r)}$. Then $T^{(r)}$ is identity preserving and of Schwarz type. Similarly, if R is a pseudo-resolvent on $D=\{\lambda\in\mathbb{C}: Re(\lambda)>0\}$ with values in M_\star such that R is identity preserving and of Schwarz type, then the recurrent projecton associated with R is defined using Fix(R).

Remark 3.2. (a) Let $\phi \in M_{\star}$ and $\alpha \in \mathbb{R}$ such that

$$(\mu - i\alpha)R(\mu)\phi = \phi$$
 for some $\mu \in \mathbb{R}_+$.

Since $s(|\phi|)$ and $s(|\phi^*|)$ are majorized by p_r (D-III,Prop.1.4) it follows that ϕ and ϕ^* are in $p_r M_* p_r$.

(b) From (a) and the observation that the family $\{|\phi|: \phi \in Fix(T)\}$ is