Computer Vision

Dr. Syed Faisal Bukhari
Associate Professor
Department of Data Science
Faculty of Computing and Information Technology
University of the Punjab

Textbook

Multiple View Geometry in Computer Vision, Hartley, R., and Zisserman

Richard Szeliski, Computer Vision: Algorithms and Applications, 1st edition, 2010

Reference books

Readings for these lecture notes:

Hartley, R., and Zisserman, A. Multiple View Geometry in Computer Vision, Cambridge University Press, 2004, Chapters 1-3.

Forsyth, D., and Ponce, J. Computer Vision: A Modern Approach, Prentice-Hall, 2003, Chapter 2.

Linear Algebra and its application by David C Lay

These notes contain material c Hartley and Zisserman (2004), Forsyth and Ponce (2003), an Linear Algebra and its application by David C Lay

References

These notes are based

☐ Dr. Matthew N. Dailey's course: AT70.20: Machine Vision for Robotics and HCI

☐ Dr. Sohaib Ahmad Khan CS436 / CS5310 Computer Vision Fundamentals at LUMS

2D Transformation

- Definition: A mapping from one 2D coordinate system to another
- Also called
 - spatial transformation,
 - geometric transformation,
 - warp

Image Registration

•Image Registration: Process of transforming two images so that same features overlap

•Image registration aims to geometrically align one image with another and is a prerequisite for all brain imaging applications that compare images across subjects, across imaging modalities, or across time (Toga & Thompson, 2001).

What is Image Registration?

- Process of aligning two or more images of the same scene.
- OUsed when images are captured at different times, viewpoints, or sensors.
- Transforms one image to match another using spatial transformation models.

Steps in Image Registration

- **1. Feature Detection:** Identify key points (e.g., edges, corners).
- 2. Feature Matching: Pair corresponding features between images.
- **3. Transformation Estimation:** Compute a mathematical model to align images.
- **4. Resampling & Interpolation:** Transform and interpolate the image to match.

Applications of Image Registration

- Medical Imaging: Aligning MRI, CT, and PET scans for diagnosis.
- Remote Sensing: Change detection, disaster assessment, and multi-sensor fusion.
- Computer Vision & AR: Object tracking, video stabilization, and augmented reality.
- ORobotics & Autonomous Systems: SLAM for robotics, self-driving car navigation.
- Forensics & Security: Fingerprint recognition, facial authentication.
- •Astronomy & Space: Aligning celestial images for deep space observations.

Example: Medical Imaging

- Image registration helps align MRI and CT scans for accurate diagnosis.
- Detects tumor growth by comparing past and current scans.
- Used in PET-CT fusion to combine anatomical and functional imaging.

Example: Remote Sensing

- OSatellite images are aligned for change detection.
- Used for tracking deforestation, urban expansion, and disaster damage.
- Helps in merging optical and radar images for better analysis.

Conclusion

- •Image registration is crucial for various fields like healthcare, Al, and space.
- Aligns images from different sources for improved analysis.
- Enables better decision-making through accurate visual integration.

Example Application: Image Registration

Reference Image

Mission Images

Dr. Faisal Bukhari, DDS, PU

Registration = Computing Transformation

Dr. Faisal Bukhari, DDS, PU

Applications of 2D Image Registration

Panoramas Multiple Images Stitched Together

Panoramas Multiple Images Stitched Together

Applications of 2D Image Registration

Image by Sergey Semenov (http://www.sergesemenov.com/) - Winner of Epson International Photographic Pano Award 2013 http://www.dailymail.co.uk/sciencetech/article-2260276/NeW-York Wolve-SeehUncredible-interactive-panorama-lets-zoom.html

Spherical 360° Imaging

Lady Bug Camera, by Point Grey 6 0.8MP cameras image 75% of a full sphere http://www.ptgrey.com/products/ladybug2/ladybug2_360_video_camera.asp

Spherical 360° Imaging

Lady Bug Camera, by Point Grey
6 0.8MP cameras image 75% of a full sphere
http://www.ptgrey.com/products/ladybug2/ladybug2_360_video_camera.asp

2D Transformations

- ☐ Basic operation of all 2D transformations is matrix multiplication
 - \circ Point to be transformed: $(x, y)^{\mathsf{T}}$
 - \circ Point after transformation: $(x', y')^{\mathsf{T}}$

$$\begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}_{2 \times 2} \begin{bmatrix} x \\ y \end{bmatrix}_{2 \times 1} = \begin{bmatrix} a_1 x + a_2 y \\ a_3 x + a_4 y \end{bmatrix}_{2 \times 1} = \begin{bmatrix} x' \\ y' \end{bmatrix}_{2 \times 1}$$

Matrix

Transformation Position before transformation

Position after transformation

Example

$$\begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} a \\ 0 \end{bmatrix} = \begin{bmatrix} 0.5a \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 0 \\ a \end{bmatrix} = \begin{bmatrix} 0 \\ 0.5a \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} a \\ a \end{bmatrix} = \begin{bmatrix} 0.5a \\ 0.5a \end{bmatrix}$$

2D Transformations

$$\begin{bmatrix} 1.5 & 0 \\ 0 & 0.5 \end{bmatrix} = ?$$

In general, scaling (zoom / unzoom) transformation is given by

$$\begin{bmatrix} s_{\chi} & 0 \\ 0 & s_{y} \end{bmatrix}$$

2D Transformations

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = ?$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Shear in x-direction

$$\begin{bmatrix} 1 & e \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + ey \\ y \end{bmatrix}$$

x-coordinate moves with an amount proportional to the y-coordinate

For example:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 + 1 \times 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1+1\times1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Shear in y-direction

$$\begin{bmatrix} 1 & 0 \\ e & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ ex + y \end{bmatrix}$$

y-coordinate moves with an amount proportional to the x-coordinate

Rotation

▶ Task: Relate (x_2, y_2) to (x_1, y_1)

Rotation

$$x_2 = R\cos(\theta + \varphi)$$

$$y_2 = R\sin(\theta + \varphi)$$

$$x_2 = R\cos\theta\cos\varphi - R\sin\theta\sin\varphi$$
$$y_2 = R\sin\theta\cos\varphi + R\cos\theta\sin\varphi$$

$$x_2 = x_1 \cos \theta - y_1 \sin \theta$$

$$y_2 = x_1 \sin \theta + y_1 \cos \theta$$

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

R is rotation by θ counterclockwise about origin

Alternative Method for Derivation

Example Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates each point in \mathbb{R}^2 about the origin through an angle φ with counterclockwise rotation for a positive angle.

We could show geometrically that such a transformation is linear. Find the **standard matrix A** of this **transformation**.

Derivation of Rotation matrix:

$$x = r \cos \varphi$$
 ----(1)

$$y = r \sin \varphi$$
 -----(2)

Squaring (1) and (2) and then adding, we get

$$\mathbf{r} = \sqrt{x^2 + y^2}$$

$$x' = r \cos(\varphi + \theta)$$
 -----(3)

$$\because cos(\varphi + \theta) = cos\varphi cos \theta - sin\varphi sin \theta$$

Substitute the value of $cos(\varphi + \theta)$ in (3), we get

$$x' = r \cos \varphi \cos \theta - r \sin \varphi \sin \theta$$
 ----(4)

$$y' = r \sin(\varphi + \theta)$$
----(5)

: sin(A + B) = sinAcos B - cosAsin B

Substitute the value of $sin(\varphi + \theta)$ in (5), we get

$$y' = r \sin \varphi \cos \theta + r \cos \varphi \sin \theta$$
 -----(6)

Substitute the values of x and y from (1) and (2) in (4), we get

$$x' = x\cos\theta - y\sin\theta$$
 -----(7)

Substitute the values of x and y from (1) and (2) in (6), we get

$$y' = y\cos\theta + x\sin\theta$$

 $y' = x\sin\theta + y\cos\theta$ ----(8)

Using (7) and (8), we get

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotation

$$\bigcirc \mathsf{R}(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

- Rotation Matrix has some special properties
 - oEach row/column has norm of 1 [prove]
 - oEach row/column is orthogonal to the other [prove]
 - OSO Rotation matrix is an orthonormal matrix
- Olnverse of an orthonormal matrix is its transpose [prove]

To prove that each row (or column) is **orthogonal** to the other, we compute their dot product.

Step 1: Define Rows and Compute Dot Product

The first row of $R(\theta)$ is $r_1 = (\cos\theta, -\sin\theta)$

The second row of $R(\theta)$ is $r_2 = (\sin\theta, -\cos\theta)$

The dot product of these two row vectors is:

$$r_1 \cdot r_2 = (\cos\theta)(\sin\theta) + (-\sin\theta)(\cos\theta)$$

= cosθsinθ – sinθcosθ
= 0

Since their dot product is zero, the rows are orthogonal.

Step 2: Define Columns and Compute Dot Product

The first col of $R(\theta)$ is

$$c_1 = \begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$$

The second col of $R(\theta)$ is

$$c_2 = \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}$$

The dot product of these two row vectors is:

$$c_1 \cdot c_2 = (\cos\theta)(-\sin\theta) + (\sin\theta)(\cos\theta)$$

=-\cos\theta\sin\theta + \sin\theta\cos\theta
= 0

Since their dot product is zero, the columns are orthogonal.

Orthonormal Matrix

An orthonormal matrix is a square matrix whose columns and rows are both orthogonal and unit vectors (having a magnitude of 1).

- \circ Each row/column of $R(\theta)$ has norm of 1
- \circ Each row/column of $R(\theta)$ is orthogonal to the other
- \circ So Rotation matrix $R(\theta)$ is an orthonormal matrix
- Olnverse of an orthonormal matrix is its transpose

Inverse of an orthonormal matrix is its transpose

$$R(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Inverse of $R(\theta)$, an orthonormal matrix is its transpose.

Transpose of $R(\theta)$ is

$$R(\theta)^{-1} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

$$R(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

$$\det(\mathbf{R}) = (\cos\theta)(\cos\theta) - (-\sin\theta)(\sin\theta)$$

$$= \cos^2\theta + \sin^2\theta$$

$$= 1$$

$$\det(\mathbf{R}) = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

$$R^{-1} = \frac{1}{\det(R)} \operatorname{adj}(R)$$

$$=\frac{1}{1}\begin{bmatrix}\cos\theta & \sin\theta\\-\sin\theta & \cos\theta\end{bmatrix}$$

$$R(\theta)^{-1} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

Identifying Rotation and Reflection Matrices

$$\begin{vmatrix} -1 & 0 \\ 0 & -1 \end{vmatrix} = (-1)(-1) - 0 = 1$$

It is a rotation matrix

$$\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} = -1$$

It is a reflection matrix.

$$\begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix} = -1$$

It is a reflection matrix.

Homogeneous system

In general, a matrix multiplication lets us linearly combine components of a vector

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

• This is sufficient for scale, rotate, skew transformations.

OBut notice, we can't add a constant, within the same format.

Homogeneous system

Solution is to use homogeneous coordinates for vectors

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$

ONow we can rotate, scale, and skew like before, AND translate (note how the multiplication works out, above)

Translation

☐In matrix form

$$\begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

- We could not have written T multiplicatively without using homogeneous coordinates
- Compact way to write

$$\bigcirc x' = \begin{bmatrix} \mathbf{I}_{2 \times 2} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} x$$

Basic 2D Transformations

$$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} S_{x} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & e_x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ e_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Concatenation or Composition of Transformations

OSuppose we first want to scale, then rotate

$$\circ x' = Sx$$
 ----(1)

$$\circ x'' = Rx'$$
-----(2)

Substitute value of x' from (1) into (2), we get

- = R(Sx)
- = (RS) x (Using associate property of matrices)
- OSo two transformations can be represented by a single transformation matrix

$$\circ$$
M = RS

 Important: read from right-side to get order of application of transformations

Order of Transformations

Example 1:

Scaling of x and y coordinates by 0.5

$$\begin{bmatrix} S_{x} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation by 45⁰ in counter clock direction

$$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos45^{0} & -\sin45^{0} & 0 \\ \sin45^{0} & \cos45^{0} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Order of Transformations

Example 2: Scaling of x coordinates by 0.5

$$\begin{bmatrix} S_{x} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation by 45° in counter clock direction

$$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos45^0 & -\sin45^0 & 0 \\ \sin45^0 & \cos45^0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

