

Nome:	T) A
Nome:	R A ·
1101110.	10/1.

Disciplina: Física Quântica

Lista 13

Prof. Márcio Sampaio Gomes Filho

- 1. Escreva a equação de Schrodinger em três dimensões, considerando as duas formas de coordenadas a seguir:
 - a) Em coordenadas cartesianas: (x, y, z)
 - b) Em coordenadas esféricas: (r, θ, ϕ)

Explique o significado de cada termo presente nas equações e suas implicações físicas.

- 2. Considere uma partícula que esteja se movendo em um espaço bidimensional definido por V = 0 para 0 < x < L e 0 < y < L e $V = \infty$ para qualquer outro valor de x e y.
 - (a) Escreva as funções de onda da partícula neste poço de potencial.
 - (b) Escreva uma expressão para as energias correspondentes.
 - (c) Quais são os conjuntos de números quânticos do estado degenerado de menor energia?
- 3. Desenhe um diagrama vetorial que mostre as possíveis orientações do vetor momento angular \vec{L} . (a) Para $\ell=1$; (b) para $\ell=2$; (c) para $\ell=4$. (d) Calcule o módulo de \vec{L} em cada caso.
- 4. Para o estado fundamental do átomo de hidrogênio, determine (a) o valor de Ψ ; (b) o valor de $|\Psi|^2$; (c) a densidade de probabilidade radial P(r) no ponto $r = a_0$. A resposta deve ser dada em unidades de a_0 .