Evaluating String Distance Metrics for Reduction of Automatically Generated Test Suites

Author details suppressed for double-blind review

Abstract—This document contains all the analysis tables and figures for the experiments made for evaluating the diversity-based reduction.

I. RESULTS

In this document, we report the results of the experiments. We made our experiments on 13 test subjects taken from the "Defects4J" framework. For each test subject, we generated test suites using EvoSuite and Randoop, used five similarity metrics as a basis for reduction in addition to random reduction, used three different sample sizes for reduction, ran our experiments 30 times for random, least diverse, and most diverse test suites respectively, and made an evaluation based on mutation scores. In total, we ran 25740 experiments in this study. It took around 2436 hours to run these experiments. Also, we ran another 1100 experiments using different regression test suites in the smaller study to verify our findings. Table ?? presents all 13 test subjects with information about the original test suites' sizes and mutation score generated from both Randoop and EvoSuite given 3000 seconds and an upper size limit of 1500. The first column shows the project ID as defined in the Defects4J framework. The second and third columns display the test suite (TS) size and test suite mutation score (MS) for the Randoop test suites, respectively. The fourth and fifth columns display the test suite size and test suite mutation score for the EvoSuite test suites, respectively.

Figures 1 and 2 show the box plots of all the analysis results for all projects. Tables I-XIII show the analysis results of the projects. In each table, the first column is the used similarity metric (SM), and the second column is the size of the reduced test suite (TS). The third, fourth, and fifth columns display the average (Avg) and standard deviation (SD) for the mutation scores using both Randoop (Rand) and EvoSuite (Evo) for least diverse, most diverse, and random reductions, respectively. The sixth column displays the pvalues of the statistical testing using both tools to show the statistical significance between LR (least diverse and random), and MR (most diverse and random). We used the The Mann-Whitney U test as our statistiscal test because the two samples (MR or LR) are independent and continues satisfying the preconditions of the Mann-Whitney U test. An α represents a number lower than 0.001, which is in the 99% significance level. The last column displays the A12 effect size proposed by Vargha and Delaney [1] using both tools between LR and MR. Effect size informs you how meaningful the relationship between LR and MR. The values in the effect size are in [0, 1], where higher values (> 0.8) means large effect, values around 0.5 means medium effect, and small values (< 0.2) means small effect. Figures 1 and 2 show box plots of the achieved mutation scores for least diverse, most diverse, and random reduced test suites.

REFERENCES

 A. Vargha and H. D. Delaney. A critique and improvement of the cl common language effect size statistics of mcgraw and wong. *Journal of Educational and Behavioral Statistics*, 25(2):101–132, 2000.

Fig. 1: The reduction analysis for "Chart", "Chart", "Chart", "Chart", "Chart", and "Gson".

Fig. 2: The reduction analysis for "JacksonCore", "JacksonDatabind", "Jsoup", "JxPath", "Lang", "Math", and "Time".

TABLE I: The reduction analysis for the Chart project.

SM	TS	L	east (diver	se	N	lost (livers	se	Ra	ndom	dive	rse		p-V	alue			Effec	t size	,
		Ra	nd	E	vo	Ra	ınd	E	vo	Ra	nd	E	vo	Raı	nd	Ev	O	Ra	nd	Е	vo
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	LR	MR	LR	MR	LR	MR	LR	MR
	37	11.6	0.96	8.9	1.6	17.9	0.73	20.5	1.2	12.5	2.28	16.1	2.5	0.055	α	α	α	0.36	0.99	0.01	0.92
Euc	63	13.2	0.58	22.8	1.13	20.0	0.73	30.8	0.34	16.5	2.00	24.1	2.18	α	α	α	α	0.06	0.96	0.26	1.00
	90	14.2	0.49	30.6	1.14	20.8	0.83	34.7	0.46	18.6	2.36	31.3	1.72	α	α	α	α	0.05	0.86	0.41	0.99
•	37	10.0	2.63	9.4	2.52	18.3	0.54	21.0	0.67	12.5	2.28	16.1	2.52	α	α	α	α	0.24	1.00	0.06	0.95
Ham	63	12.0	0.58	20.9	1.13	19.7	0.73	30.8	0.34	16.5	2.00	24.1	2.18	α	α	α	α	0.04	0.94	0.11	1.00
	90	13.0	0.49	32.0	1.14	21.3	0.83	37.4	0.46	18.6	2.36	31.3	1.72	α	α	0.074	α	0.04	0.92	0.63	0.97
	37	11.6	1.79	7.8	0.73	17.3	1.59	19.5	2.53	12.5	2.28	16.1	2.52	0.09	α	α	α	0.37	0.96	0.00	0.85
Lev	63	14.2	1.76	17.3	3.28	19.8	1.17	30.6	2.99	16.5	2.00	24.1	2.18	α	α	α	α	0.19	0.93	0.05	0.99
	90	16.3	1.12	30.8	1.35	21.0	0.84	34.9	0.1	18.6	2.36	31.3	1.72	α	α	0.231	α	0.16	0.89	0.41	1.00
	37	11.4	0.93	8.8	2.03	18.0	0.57	21.6	1.08	12.5	2.28	16.1	2.52	0.09	α	α	α	0.32	1.00	0.02	0.97
Man	63	13.0	0.97	21.7	1.85	19.7	0.65	31.1	1.52	16.5	2.00	24.1	2.18	α	α	α	α	0.06	0.94	0.19	1.00
	90	14.1	0.51	32.0	1.83	20.9	0.77	37.2	4.66	18.6	2.36	31.3	1.72	α	α	0.193	α	0.05	0.88	0.60	0.96
						17.6								0.09	α	α	α	0.08	0.97	0.03	0.87
NCD	63	10.9	2.51	20.8	1.77	20.0	1.02	26.7	1.01	16.5	2.00	24.1	2.18	α	α	α	α	0.03	0.95	0.12	0.86
	90	15.0	2.24	31.9	1.11	21.3	1.08	34.5	1.35	18.6	2.36	31.3	1.72	α	α	0.108	α	0.11	0.90	0.62	0.94

TABLE II: The reduction analysis for the Cli project.

SM	TS	I	_east	diver	se	N	lost o	divers	se	Ra	ndor	n div	erse		p-Va	alue			Effec	t size	
		Ra	nd	E	vo	Ra	nd	E	vo	Ra	ınd	E	vo	Ra	ınd	Ev	O	Ra	nd	E	vo
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	LR	MR	LR	MR	LR	MR	LR	MR
	5	25.0	0.00	30.2	15.90	26.9	2.86	51.5	6.79	23.1	7.24	32.9	14.43	0.65	0.24	0.42	α	0.14	0.39	0.41	0.84
Euc	8	25.0	0.00	40.4	14.32	29.8	2.64	60.6	2.86	24.2	7.35	49.2	10.17	0.18	α	0.01	α	0.14	0.69	0.30	0.86
	12	25.0	0.00	59.6	5.29	31.0	1.12	62.5	0.00	27.3	5.93	58.3	5.43	α	α	0.30	α	0.14	0.69	0.30	0.86
	5	21.9	5.53	26.9	14.08	30.2	2.33	54.6	3.20	23.1	7.24	32.9	14.43	0.03	α	0.11	α	0.11	0.78	0.35	0.92
Ham	8	22.1	5.53	37.5	8.54	31.3	0.00	59.0	3.10	24.2	7.35	49.2	10.17	α	α	α	α	0.11	0.81	0.18	0.79
	12	24.2	2.12	58.5	6.14	31.3	0.00	62.5	0.00	27.3	5.93	58.3	5.43	α	α	0.72	α	0.00	0.56	0.46	0.58
	5	18.1	5.19	22.7	10.76	28.1	3.12	53.5	6.39	23.1	7.24	32.9	14.43	α	0.02	α	α	0.06	0.52	0.26	0.88
Lev	8	21.3	4.45	40.8	12.15	30.0	2.50	61.0	2.64	24.2	7.35	49.2	10.17	α	α	α	α	0.09	0.70	0.27	0.87
	12	23.5	2.64	60.0	5.00	31.0	1.12	62.5	0.00	27.3	5.93	58.3	5.43	α	α	0.19	α	0.00	0.55	0.50	0.58
	5	25.0	0.00	28.1	14.77	28.1	3.12	50.0	6.04	23.1	7.24	32.9	14.43	0.65	0.02	0.18	α	0.14	0.52	0.37	0.80
Man	8	25.0	0.00	39.4	14.08	30.0	2.50	61.3	2.50	24.2	7.35	49.2	10.17	0.18	α	α	α	0.14	0.69	0.28	0.90
	12	25.0	0.00	60.6	4.88	30.6	1.88	62.5	0.00	27.3	5.93	58.3	5.43	α	0.02	0.09	α	0.00	0.52	0.53	0.58
	5	24.4	1.88	25.8	10.42	25.8	5.53	46.7	8.50	23.1	7.24	32.9	14.43	0.34	0.63	0.07	α	0.13	0.45	0.33	0.76
NCD	8	25.0	0.00	44.4	14.19	27.3	4.41	56.5	5.22	24.2	7.35	49.2	10.17	0.18	0.41	0.34	α	0.14	0.48	0.41	0.71
	12	25.0	0.00	50.8	7.86	31.0	1.12	62.5	0.00	27.3	5.93	58.3	5.43	α	α	α	α	0.00	0.55	0.20	0.58

TABLE III: The reduction analysis for the Codec project.

SM	TS	Least diverse Rand Evo			se	N	lost o	livers	se	Ra	ndom	dive	erse		p-V	alue			Effec	t size	,
																				_	vo
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	LR	MR	LR	MR	LR	MR	LR	MR
	12	41.0	4.99	17.8	1.67	48.8	2.42	17.5	3.77	43.3	4.01	18.5	2.89	0.10	α	0.15	0.48	0.38	0.86	0.39	0.45
Euc	22	46.6	2.70	25.2	1.47	52.8	2.07	25.9	1.55	46.3	3.34	24.8	2.46	0.73	α	0.59	0.14	0.52	0.97	0.54	0.61
	31	47.8	2.55	30.2	0.68	54.4	2.01	29.9	0.36	47.9	3.48	29.1	1.9	0.83	α	0.03	0.35	0.48	0.94	0.66	0.57
	12	2.1	0.07	16.3	2.22	51.3	1.46	19.5	1.09	43.3	4.01	18.5	2.89	α	α	α	0.21	0.00	0.98	0.24	0.59
Ham	22	2.6	2.47	22.5	1.98	52.6	1.74	26.4	1.56	46.3	3.34	24.8	2.46	α	α	α	0.02	0.00	0.97	0.26	0.68
	31	4.2	5.36	28.5	1.67	54.9	1.78	30.4	0.35	47.9	3.48	29.1	1.9	α	α	0.07	α	0.00	0.96	0.37	0.72
	12	31.5	3.66	15.9	2.32	53.3	2.25	20.1	2.32	43.3	4.01	18.5	2.89	α	α	α	0.03	0.01	0.99	0.21	0.66
Lev	22	38.9	3.28	24.8	2.40	55.5	0.47	27.6	0.61	46.3	3.34	24.8	2.46	α	α	0.93	α	0.06	1.00	0.50	0.86
	31	40.8	1.62	30.1	0.53	56.2	0.55	30.0	0.34	47.9	3.48	29.1	1.90	α	α	0.05	0.23	0.03	1.00	0.64	0.59
	12	37.0	5.00	17.7	1.20	50.3	2.38	19.3	1.63	43.3	4.01	18.5	2.89	α	α	0.05	0.34	0.19	0.92	0.36	0.57
Man	22	45.3	2.57	25.1	1.47	54.1	1.98	26.0	1.38	46.3	3.34	24.8	2.46	0.12	α	0.75	0.07	0.38	0.99	0.51	0.63
	31	47.5	2.26	30.2	0.55	55.6	0.82	30.3	0.30	47.9	3.48	29.1	1.90	0.48	α	0.03	α	0.44	0.98	0.67	0.69
	12	37.0	4.16	17.7	0.68	50.3	2.14	19.3	1.62	43.3	4.01	18.5	2.89	α	α	0.91	α	0.00	0.94	0.49	0.77
NCD	22	45.3	2.80	25.1	2.42	54.1	2.11	26.0	1.12	46.3	3.34	24.8	2.46	α	α	0.11	α	0.00	0.97	0.62	0.80
	31	47.5	0.54	30.2	1.27	55.6	1.87	30.3	0.27	47.9	3.48	29.1	1.90	α	α	0.27	α	0.00	0.90	0.58	0.81

TABLE IV: The reduction analysis for the JacksonCore project.

SM	TS	Least diverse Rand Evo			N	lost o	divers	se	Ra	ndom	dive	erse		p-V	/alue			Effec	t size		
							nd			Ra			vo		and		vo	Ra		_	vo
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	LR	MR	LR	MR	LR	MR	LR	MR
	18	0.9 ().95	33.4	0.52	26.7	1.55	42.4	1.44	11.4	3.23	35.2	3.89	α	α	0.01	α	0.00	1.00	0.31	0.99
Euc	31	2.1 ().74	38.0	1.03	29.7	1.29	51.4	1.26	15.9	3.21	45.3	4.23	α	α	α	α	0.00	1.00	0.07	0.95
	45	2.7 ().94	46.8	9.84	33.0	1.13	55.6	0.42	18.4	4.33	53.6	3.88	α	α	α	α	0.00	1.00	0.12	0.92
	18	0.7 ().65	29.2	5.75	24.9	2.55	44.5	1.40	11.4	3.23	35.2	3.89	α	α	α	α	0.00	1.00	0.14	1.00
Ham	31	1.0 (0.60	37.9	3.74	29.7	1.64	52.8	0.96	15.9	3.21	45.3	4.23	α	α	α	α	0.00	1.00	0.09	0.99
	45	1.5 ().94	45.9	9.79	32.6	1.02	55.6	0.30	18.4	4.33	53.6	3.88	α	α	α	α	0.00	1.00	0.11	0.94
	18	0.5 ().40	25.7	3.77	26.1	2.15	45.6	2.09	11.4	3.23	35.2	3.89	α	α	α	α	0.00	1.00	0.04	0.99
Lev	31	0.6 ().41	37.7	2.13	29.4	1.33	50.4	9.39	15.9	3.21	45.3	4.23	α	α	α	α	0.00	1.00	0.11	0.94
	45	0.9 ().33	44.4	4.17	30.5	1.45	54.9	0.58	18.4	4.33	53.6	3.88	α	α	α	α	0.00	1.00	0.04	0.74
	18	0.2 (0.00	32.7	1.69	26.5	1.36	43.3	1.46	11.4	3.23	35.2	3.89	α	α	α	α	0.00	1.00	0.28	0.99
Man	31	0.2 (00.0	38.3	0.96	30.2	1.48	52.4	0.76	15.9	3.21	45.3	4.23	α	α	α	α	0.00	1.00	0.08	0.98
	45	0.6).71	47.8	5.12	32.8	1.01	55.2	0.50	18.4	4.33	53.6	3.88	α	α	α	α	0.00	1.00	0.14	0.84
	18	0.2 (0.00	31.3	2.42	23.4	2.92	43.7	4.63	11.4	3.23	35.2	3.89	α	α	α	α	0.00	1.00	0.20	0.97
NCD	31	0.2 (00.0	48.2	3.69	26.6	2.73	51.1	3.03	15.9	3.21	45.3	4.23	α	α	α	α	0.00	0.99	0.72	0.91
	45	0.2 (0.00	54.8	0.37	29.2	2.30	54.6	0.76	18.4	4.33	53.6	3.88	α	α	α	0.01	0.00	0.99	0.73	0.67

TABLE V: The reduction analysis for the JxPath project.

SM	TS	L	east	diver	se	N	lost (divers	se	Ra	ndon	dive	erse		p-V	alue			Effec	t size	
		Ra	nd	E	vo	Ra	nd	E	vo	Ra	nd	E	vo	Ra	nd	E	vo	Ra	ınd	\mathbf{E}	vo
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	LR	MR	LR	MR	LR	MR	LR	MR
	19	9.6	2.40	34.0	2.54	11.6	1.48	31.8	4.30	9.1	3.31	26.6	5.68	0.77	α	α	α	0.52	0.69	0.88	0.75
Euc	33	12.9	2.10	40.6	0.75	13.9	1.75	43.3	2.84	10.8	3.23	38.8	3.99	α	α	0.14	α	0.73	0.77	0.61	0.80
	47	14.4	1.25	47.1	0.48	16.0	1.74	52.2	0.67	12.9	2.69	50.8	2.78	0.05	α	α	0.17	0.65	0.81	0.14	0.59
	19	6.0	1.87	33.1	4.73	11.6	1.22	34.0	4.87	9.1	3.31	26.6	5.68	α	0.02	α	α	0.14	0.68	0.80	0.83
Ham	33	8.4	2.50	41.6	1.15	13.5	4.43	44.4	4.88	10.8	3.23	38.8	3.99	α	α	0.06	α	0.17	0.78	0.64	0.81
	47	10.3	2.33	46.5	0.64	14.8	0.57	50.1	2.45	12.9	2.69	50.8	2.78	α	0.01	α	0.39	0.24	0.69	0.11	0.44
	19	3.3	1.01	22.6	3.70	11.5	1.71	35.4	3.33	9.1	3.31	26.6	5.68	α	0.01	α	α	0.01	0.69	0.29	0.88
Lev	33	6.3	1.79	41.0	4.09	14.7	2.09	47.4	3.49	10.8	3.23	38.8	3.99	α	α	0.09	α	0.08	0.85	0.63	0.96
	47	8.2	1.68	51.8	9.12	16.5	1.71	53.6	1.25	12.9	2.69	50.8	2.78	α	α	0.16	α	0.07	0.86	0.39	0.85
	19	9.3	2.47	32.3	3.88	11.9	1.43	30.8	5.92	9.1	3.31	26.6	5.68	0.82	α	α	α	0.48	0.72	0.79	0.69
Man	33	12.5	2.16	42.8	4.74	14.5	1.46	45.0	4.14	10.8	3.23	38.8	3.99	0.03	α	0.01	α	0.68	0.87	0.69	0.85
	47	14.7	0.33	50.2	4.89	16.5	1.49	52.7	0.70	12.9	2.69	50.8	2.78	0.02	α	0.12	α	0.67	0.87	0.37	0.72
	19	7.5	2.74	21.2	3.45	13.5	1.68	35.4	3.02	9.1	3.31	26.6	5.68	0.01	α	α	α	0.30	0.87	0.22	0.92
NCD	33	10.6	2.19	36.5	2.20	16.2	1.60	46.2	6.86	10.8	3.23	38.8	3.99	0.14	α	0.02	α	0.38	0.94	0.31	0.88
	47	12.9	0.77	45.7	1.47	18.3	1.42	53.7	1.10	12.9	2.69	50.8	2.78	0.86	α	α	α	0.48	0.96	0.08	0.83

TABLE VI: The reduction analysis for the Math project.

\mathbf{SM}	TS	Least diverse Rand Evo			se	N	lost o	livers	se	Ra	ndom	dive	rse		p-V	alue			Effec	t size	;
		Ra	nd	E	vo	Ra	ınd	E	vo	Ra	nd	Ev	vo	Ra	and	Е	vo	Ra	nd	E	vo
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	LR	MR	LR	MR	LR	MR	LR	MR
	39	0.0													α	α		0.00			
Euc	67	0.6	2.02	45.3	1.34	29.2	1.14	52.0	1.62	21.0	4.91	49.8	6.20	α	α	α	α	0.00	0.93	0.15	0.76
	95	2.2	3.03	54.5	1.25	31.5	1.69	60.9	0.52	25.3	3.70	56.0	2.89	α	α	α	α	0.00	0.89	0.05	0.90
	39	6.2	3.02	29.9	2.47	26.8	0.16	39.3	1.67	16.2	3.60	37.1	3.88	α	α	α	0.03	0.01	1.00	0.07	0.66
Ham	67	8.3	2.24	44.6	1.34	28.3	0.20	51.8	1.73	21.0	4.91	49.8	6.20	α	α	α	α	0.00	0.93	0.13	0.76
	95	9.3	2.60	56.0	2.64	31.7	1.24	58.6	1.18	25.3	3.70	59.0	2.89	α	α	α	0.23	0.00	0.92	0.10	0.40
	39	0.0	0.00	30.0	2.97	26.6	0.95	40.0	1.61	16.2	3.60	37.1	3.88	α	α	α	α	0.00	1.00	0.09	0.74
Lev	67	0.0	0.00	44.2	1.95	31.4	0.93	51.7	1.53	21.0	4.91	49.8	6.20	α	α	α	α	0.00	0.93	0.12	0.76
	95	0.1	0.65	55.7	1.40	33.8	0.34	59.3	1.48	25.3	3.70	59.0	2.89	α	α	α	0.15	0.00	0.99	0.08	0.61
	39	0.0	0.00	29.4	2.29	26.5	1.37	40.2	2.32	16.2	3.60	37.1	3.88	α	α	α	α	0.00	1.00	0.07	0.73
Man	67	0.84	2.30	43.7	0.99	29.0	0.84	51.5	2.13	21.0	4.91	49.8	6.20	α	α	α	α	0.00	0.93	0.10	0.72
	95	2.5	4.57	54.6	1.39	31.2	0.94	61.3	0.95	25.3	3.70	59.0	2.89	α	α	α	α	0.00	0.89	0.06	0.91
	39	0.0	0.00	36.4	5.73	28.8	2.10	40.0	2.20	16.2	3.60	37.1	3.88	α	α	α	α	0.00	1.00	0.07	0.73
NCD	67	0.00	0.00	51.6	1.24	31.9	1.30	50.1	1.52	21.0	4.91	49.8	6.20	α	α	α	α	0.00	0.93	0.10	0.72
	95	0.0	0.00	57.6	0.76	34.3	1.50	59.1	0.32	25.3	3.70	59.0	2.89	α	α	α	α	0.00	0.89	0.06	0.91

TABLE VII: The reduction analysis for the Compress project.

SM	TS	Least diverse Rand Evo			Most	divers	se	Ra	ndor	n div	erse		p-V	alue			Effec	t size	;		
		Ra	nd	E	vo	Ra	ınd	E	vo	Ra	nd	E	vo	R	and	E	vo	Ra	nd	E	vo
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	LR	MR	LR	MR	LR	MR	LR	MR
	7	1.4	0.93	35.8	1.20	5.1	0.85	26.6										0.05			
Euc	13	2.6	1.41	41.9	2.01	6.1	0.76	44.9	3.68	6.5	1.41	41.4	8.52	α	0.03	0.17	0.18	0.04	0.34	0.40	0.60
	18	3.2	1.18	47.2	2.24	6.6	0.84	48.6	3.05	6.7	1.63	48.4	10.82	α	0.39	0.01	0.32	0.03	0.42	0.31	0.57
	7	0.7	0.75	36.7	7.54	4.3	0.57	36.3	1.19	4.4	1.63	31.9	10.82	α	0.43	0.05	0.96	0.01	0.43	0.64	0.50
Ham	13	2.2	1.30	44.4	3.11	4.7	0.43	40.9	1.93	6.5	1.41	41.4	8.52	α	α	0.38	0.02	0.02	0.10	0.56	0.33
	18	2.9	1.34	47.7	2.57	4.9	0.64	51.7	0.21	6.7	1.20	48.4	3.06	α	α	0.19	α	0.03	0.10	0.39	0.96
	7	2.0	0.68	16.6	6.01	5.0	0.56	41.1	2.56	4.4	1.63	31.9	10.82	α	0.28	α	α	0.08	0.57	0.15	0.79
Lev	13	3.0	0.98	36.3	12.16	6.1	0.70	48.7	2.36	6.5	1.41	41.4	8.52	α	0.01	0.27	α	0.04	0.30	0.41	0.89
	18	3.5	0.90	48.9	3.49	6.8	0.62	51.7	0.16	6.7	1.20	48.4	3.06	α	0.64	0.07	α	0.04	0.45	0.63	0.98
	7	1.8	0.98	34.2	6.16	4.7	0.62	28.54	12.05	4.4	1.63	31.9	10.82	α	0.73	0.29	0.23	0.08	0.51	0.42	0.41
Man	13	2.7	1.20	42.4	1.64	5.4	0.67	44.7	3.65	6.5	1.41	41.4	8.52	α	α	0.28	0.17	0.03	0.19	0.42	0.60
	18	3.0	1.53	47.8	2.37	5.6	0.71	48.7	3.02	6.7	1.20	48.4	3.06	α	α	0.11	0.23	0.03	0.18	0.37	0.58
	7	1.4	0.41	13.1	4.48	4.4	0.91	42.8	2.34	4.4	1.63	31.9	10.82	α	0.71	α	α	0.02	0.47	0.06	0.87
NCD	13	2.1	0.58	25.2	11.92	5.4	0.57	49.3	0.42	6.5	1.41	41.4	8.52	α	α	α	α	0.00	0.17	0.13	0.92
	18	2.4	0.32	42.8	5.55	6.0	0.84	51.7	0.21	6.7	1.20	48.4	3.06	α	α	α	α	0.00	0.26	0.12	0.97

TABLE VIII: The reduction analysis for the Csv project.

SM	TS	Leas	diver	se	N	lost (divers	se	Ra	ndon	ı dive	erse		p-Va	alue			Effec	t size	;
		Rand	E	vo	Ra	ınd	E	vo	Ra	ınd	\mathbf{E}	vo	Ra	ınd	E	vo	Ra	nd	E	vo
		Avg Sl) Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	LR	MR	LR	MR	LR	MR	LR	MR
	7	2.2 2.0	8 16.8	2.98	2.0	2.09	26.2	3.24	2.4	2.19	18.2	6.87	0.40	0.24	0.55	α	0.24	0.22	0.45	0.84
Euc	13	1.8 1.5	7 33.1	5.23	1.5	1.69	41.3	3.04	3.6	2.91	33.4	6.46	α	α	0.72	α	0.17	0.09	0.52	0.84
	18	3.1 2.4	2 46.5	4.76	2.0	2.32	49.0	0.57	5.1	3.67	45.2	3.75	0.04	α	0.18	α	0.32	0.12	0.58	0.83
	7	4.6 1.2	7 16.0	3.15	1.0	0.00	28.1	3.26	2.4	2.19	18.2	6.87	α	α	0.26	α	0.83	0.00	0.41	0.88
Ham	13	5.0 0.7	3 30.5	5.55	1.0	0.00	38.5	3.50	3.6	2.91	33.4	6.46	α	α	0.08	α	0.80	0.00	0.37	0.75
	18	5.3 0.8	8 48.8	4.60	1.0	0.00	49.1	0.56	5.1	3.67	45.2	3.75	0.02	α	α	α	0.65	0.00	0.75	0.84
	7	2.1 1.7	5 14.4	4.32	1.0	1.50	29.3	2.89	2.4	2.19	18.2	6.87	0.49	0.02	0.04	α	0.27	0.10	0.34	0.91
Lev	13	4.0 2.0	2 23.7	3.10	1.0	1.72	39.6	2.09	3.6	2.91	33.4	6.46	0.15	α	α	α	0.57	0.09	0.07	0.81
	18	4.1 2.1	4 40.1	2.98	1.4	1.51	48.0	1.16	5.1	3.67	45.2	3.75	0.97	α	α	α	0.48	0.05	0.16	0.73
	7	2.4 1.9	8 17.3	2.20	1.5	1.16	27.1	3.08	2.4	2.19	18.2	6.87	0.87	0.05	0.77	α	0.32	0.13	0.48	0.87
Man	13	2.9 2.3	5 36.1	3.72	1.3	0.95	39.9	3.51	3.6	2.91	33.4	6.46	0.27	α	α	α	0.32	0.07	0.67	0.82
	18	3.1 2.1	6 49.3	1.97	1.4	0.96	49.0	0.50	5.1	3.67	45.2	3.75	0.06	α	α	α	0.34	0.04	0.84	0.83
	7	2.0 1.3	8 11.3	2.64	2.0	3.06	23.3	4.53	2.4	2.19	18.2	6.87	0.60	0.07	α	α	0.28	0.14	0.18	0.73
NCD	13	3.1 1.8	3 27.4	2.53	1.3	0.56	44.0	2.50	3.6	2.91	33.4	6.46	0.95	α	α	α	0.44	0.07	0.20	0.90
	18	4.4 1.1	5 44.8	2.98	1.5	1.22	49.1	0.49	5.1	3.67	45.2	3.75	0.33	α	0.51	α	0.55	0.08	0.44	0.85

TABLE IX: The reduction analysis for the Gson project.

SM	TS	L	east (diver	se	N	lost o	divers	se	Ra	ndon	dive	erse		p-V	alue			Effec	t size	,
		Ra	nd	E	vo	Ra	ınd	E	vo	Ra	nd	E	vo	Ra	ınd	E	vo	Ra	nd	Ev	vo
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	LR	MR	LR	MR	LR	MR	LR	MR
	23	9.7	0.84	16.8	1.17	13.1	1.68	25.4	3.53	11.4	1.73	25.5	4.48	α	α	α	0.77	0.16	0.81	0.04	0.47
Euc	39	10.7	1.27	23.9	1.65	14.3	2.11	33.9	2.80	12.3	1.47	35.2	3.81	α	α	α	0.09	0.18	0.77	0.00	0.36
	56	12.6	1.37	39.1	3.44	14.3	1.83	46.2	1.67	13.4	1.42	44.0	2.88	0.04	0.09	α	α	0.33	0.60	0.13	0.72
	23	6.5	0.39	19.1	3.99	13.0	0.25	23.9	1.00	11.4	1.73	25.5	4.48	α	α	α	0.21	0.00	0.84	0.15	0.40
Ham	39	10.0	0.51	26.5	3.21	13.1	0.33	30.7	1.18	12.3	1.47	35.2	3.81	α	0.02	α	α	0.00	0.68	0.04	0.18
	56	8.0	1.21	44.1	3.54	13.4	0.24	45.7	4.50	13.4	1.42	44.0	2.88	α	0.91	0.36	0.52	0.00	0.50	0.56	0.54
	23	5.8	0.73	22.0	3.48	14.1	1.63	25.1	3.36	11.4	1.73	25.5	4.48	α	α	α	0.62	0.00	0.89	0.30	0.46
Lev	39	6.7	0.27	29.1	2.58	14.2	0.47	36.3	1.52	12.3	1.47	35.2	3.81	α	α	α	0.71	0.00	0.87	0.13	0.53
	56	6.9	0.81	42.3	3.73	9.0	1.66	43.4	8.08	13.4	1.42	44.0	2.88	α	α	0.04	0.97	0.00	0.79	0.35	0.49
	23	9.6	0.58	16.7	0.97	13.6	1.98	26.1	2.61	11.4	1.73	25.5	4.48	α	α	α	0.53	0.11	0.85	0.03	0.54
Man	39	10.6	0.96	23.2	1.67	13.9	1.91	34.1	3.78	12.3	1.47	35.2	3.81	α	α	α	0.34	0.16	0.73	0.00	0.42
	56	12.1	1.32	41.4	3.48	13.6	1.12	45.3	1.12	13.4	1.42	44.0	2.88	α	0.81	α	0.19	0.23	0.51	0.25	0.59
	23	5.3	0.28	15.9	1.77	14.9	2.56	24.1	3.18	11.4	1.73	25.5	4.48	α	α	α	0.17	0.00	0.89	0.03	0.39
NCD	39	6.6	0.30	25.9	3.31	15.6	2.14	36.9	1.03	12.3	1.47	35.2	3.81	α	α	α	0.44	0.00	0.93	0.05	0.55
	56	6.8	0.20	42.0	4.15	15.8	2.13	43.1	1.16	13.4	1.42	44.0	2.88	α	α	0.06	α	0.00	0.84	0.35	0.30

TABLE X: The reduction analysis for the JacksonDatabind project.

SM	TS	L	east	diver	se	N	lost o	divers	se	Ra	ndon	dive	rse		p-Va	alue			Effec	t size	,
		Ra	ınd	E	vo	Ra	nd	E	vo	Ra	nd	E	vo	Ra	ınd	E	vo	Ra	nd	E	vo
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	LR	MR	LR	MR	LR	MR	LR	MR
	44	16.5	2.32	35.3	0.78	18.2	0.21	42.0	0.94	15.1	2.26	39.7	1.65	0.24	α	α	α	0.58	0.80	0.02	0.80
Euc	76	19.4	1.08	44.6	0.65	19.1	0.57	48.4	0.56	18.7	3.23	46.8	3.89	0.51	0.67	α	α	0.55	0.46	0.09	0.82
	108	20.5	0.39	49.6	0.57	20.1	1.05	52.0	0.20	20.2	1.36	50.9	0.93	0.11	0.52	α	α	0.60	0.43	0.12	0.90
	44	16.8	2.64	34.5	1.02	18.2	0.17	42.6	0.79	15.1	2.26	39.7	1.65	0.05	α	α	α	0.64	0.80	0.01	0.90
Ham	76	19.8	0.83	44.7	0.71	19.0	0.63	47.7	0.16	18.7	3.23	46.8	3.89	0.09	0.57	α	α	0.62	0.46	0.10	0.71
	108	20.5	0.23	49.6	0.50	19.3	0.48	52.3	0.13	20.2	1.36	50.9	0.93	0.04	α	α	α	0.65	0.19	0.12	0.95
	44	13.0	4.45	35.9	1.21	18.8	0.77	42.0	0.75	15.1	2.26	39.7	1.65	0.02	α	α	α	0.33	0.85	0.09	0.81
Lev	76	19.6	0.94	44.8	0.79	19.3	0.48	47.4	0.80	18.7	3.23	46.8	3.89	0.26	0.98	α	0.14	0.58	0.50	0.11	0.61
	108	20.3	0.17	49.6	0.54	21.6	1.19	52.1	0.23	20.2	1.36	50.9	0.93	0.27	α	α	α	0.57	0.76	0.13	0.92
	44	16.6	1.24	35.2	0.87	18.2	0.19	42.1	0.93	15.1	2.26	39.7	1.65	0.28	α	α	α	0.57	0.80	0.03	0.83
Man	76	19.3	1.17	44.5	0.54	19.4	0.88	47.9	0.43	18.7	3.23	46.8	3.89	0.58	0.74	α	α	0.54	0.52	0.08	0.73
	108	20.3	0.31	49.6	0.51	19.9	1.00	52.2	0.14	20.2	1.36	50.9	0.93	0.28	0.09	α	α	0.56	0.34	0.12	0.95
	44	16.8	1.38	34.8	1.76	17.9	1.88	38.8	1.97	15.1	2.26	39.7	1.65	0.17	α	α	0.10	0.60	0.78	0.05	0.38
NCD	76	19.3	0.99	45.2	1.31	19.6	0.83	46.8	1.33	18.7	3.23	46.8	3.89	0.55	0.36	α	0.89	0.54	0.56	0.21	0.49
	108	20.3	0.06	50.3	0.45	20.8	0.97	51.3	0.59	20.2	1.36	50.9	0.93	0.30	0.02	α	0.10	0.56	0.66	0.26	0.61

TABLE XI: The reduction analysis for the Jsoup project.

SM	TS	L	east	diver	se	N	lost (divers	se	Ra	ndon	dive	erse		p-V	alue			Effec	t size	•
		Ra	ınd	E	vo	Ra	ınd	E	vo	Ra	ınd	\mathbf{E}	vo	Ra	ınd	E	vo	Ra	ınd	\mathbf{E}	vo
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	LR	MR	LR	MR	LR	MR	LR	MR
																					0.55
Euc	11	16.4	2.70	16.5	0.67	24.1	8.97	16.0	0.61	20.4	7.19	16.2	1.04	0.10	0.05	0.52	0.32	0.37	0.64	0.50	0.36
	16	17.6	3.10	17.3	0.15	28.5	7.33	16.6	0.74	25.5	7.86	17.0	0.87	α	0.06	0.63	α	0.22	0.63	0.44	0.27
	6	5.1	3.16	14.3	1.07	16.9	4.18	14.3	1.06	19.4	9.02	14.2	1.39	α	0.64	0.98	0.25	0.03	0.45	0.49	0.56
Ham	11	7.8	3.91	15.9	0.50	32.5	0.20	16.1	0.66	20.4	7.19	16.2	1.04	α	α	0.07	0.51	0.01	0.91	0.26	0.38
	16	10.4	3.54	16.4	0.68	32.5	0.09	16.9	0.79	25.5	7.86	17.0	0.87	α	α	α	0.28	0.00	0.78	0.21	0.40
	6	5.8	3.89	15.1	0.68	24.7	8.99	14.3	1.29	19.4	9.02	14.2	1.39	α	0.23	α	0.51	0.05	0.67	0.72	0.52
Lev	11	6.3	3.87	15.9	0.38	33.6	3.82	16.0	0.75	20.4	7.19	16.2	1.04	α	α	0.09	0.23	0.01	0.93	0.28	0.35
	16	10.7	3.23	16.3	0.50	35.1	1.72	16.4	3.15	25.5	7.86	17.0	0.87	α	α	α	0.60	0.00	0.89	0.19	0.44
	6	12.5	4.33	15.6	0.67	18.3	5.03	14.9	1.14	19.4	9.02	14.2	1.39	α	0.73	α	0.02	0.27	0.52	0.81	0.67
Man	11	15.9	1.47	16.2	0.64	23.2	7.68	15.9	0.88	20.4	7.19	16.2	1.04	0.12	0.10	0.71	0.22	0.38	0.61	0.42	0.33
	16	16.6	3.09	17.3	0.15	34.5	2.47	17.4	4.06	25.5	7.86	17.0	0.87	α	α	0.63	0.11	0.15	0.85	0.44	0.32
	6	12.1	2.96	14.7	0.65	17.0	4.77	14.3	1.11	19.4	9.02	14.2	1.39	α	0.52	0.08	0.68	0.14	0.45	0.57	0.51
NCD	11	15.3	5.93	15.8	0.25	26.4	8.51	15.8	0.97	20.4	7.19	16.2	1.04	α	α	0.05	0.08	0.19	0.71	0.27	0.32
	16	21.0	7.54	16.3	0.54	29.9	6.97	17.1	2.43	25.5	7.86	17.0	0.87	α	0.01	α	0.15	0.28	0.69	0.18	0.34

TABLE XII: The reduction analysis for the Lang project.

SM	TS	L	east	diver	se	N	lost o	livers	se	Ra	ndom	dive	erse		p-V	alue			Effec	t size	,
		Ra	nd	E	vo	Ra	nd	E	vo	Ra	nd	E	vo	Ra	and	E	vo	Ra	nd	E	vo
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	LR	MR	LR	MR	LR	MR	LR	MR
	43	2.1	1.13	18.8	0.60	8.7	0.73	19.6	1.03	7.9	1.74	24.5	2.24	α	0.12	α	α	0.00	0.62	0.00	0.00
Euc	73	3.6	1.17	32.4	1.75	9.9	0.67	29.6	1.29	11.4	1.90	34.7	2.73	α	α	α	α	0.00	0.21	0.26	0.03
	104	5.2	0.82	44.6	1.07	10.8	0.56	44.2	0.85	13.8	1.99	55.1	1.48	α	α	0.15	0.79	0.00	0.06	0.60	0.48
	43	4.0	1.47	21.1	2.42	8.9	0.73	19.4	1.09	7.9	1.74	24.5	2.24	α	0.05	α	α	0.05	0.65	0.15	0.01
Ham	73	5.5	1.54	33.8	2.03	11.8	0.86	28.3	0.63	11.4	1.90	34.7	2.73	α	0.70	0.34	α	0.01	0.53	0.43	0.00
	104	6.4	1.77	45.8	0.59	12.6	0.92	42.9	1.74	13.8	1.99	55.1	1.48	α	α	α	0.01	0.00	0.28	0.88	0.31
	43	1.3	0.12	25.4	1.37	9.5	1.18	19.7	1.73	7.9	1.74	24.5	2.24	α	α	0.16	α	0.00	0.76	0.60	0.04
Lev	73	2.0	0.23	35.4	0.76	11.1	0.86	27.6	1.58	11.4	1.90	34.7	2.73	α	0.16	0.13	α	0.00	0.39	0.62	0.00
	104	2.4	0.12	45.5	0.38	12.3	1.06	43.1	0.64	13.8	1.99	55.1	1.48	α	α	α	α	0.00	0.25	0.82	0.26
	43	1.9	0.68	18.9	0.91	8.5	0.76	18.7	1.23	7.9	1.74	24.5	2.24	α	0.33	α	α	0.00	0.57	0.00	0.00
Man	73	3.0	1.13	32.8	1.88	10.3	0.77	29.0	1.16	11.4	1.90	34.7	2.73	α	α	α	α	0.00	0.26	0.28	0.01
	104	4.8	0.95	44.2	1.07	10.8	0.70	42.8	1.48	13.8	1.99	55.1	1.48	α	α	0.81	α	0.00	0.07	0.52	0.27
	43	2.7	0.22	24.9	1.95	10.9	0.82	20.7	2.09	7.9	1.74	24.5	2.24	α	α	0.60	α	0.00	0.94	0.54	0.12
NCD	73	3.6	0.43	36.1	0.70	13.5	1.45	28.9	1.22	11.4	1.90	34.7	2.73	α	α	α	α	0.00	0.81	0.70	0.00
	104	4.4	0.45	44.9	0.41	14.9	1.16	43.1	0.92	13.8	1.99	55.1	1.48	α	0.03	0.03	α	0.00	0.66	0.66	0.28

TABLE XIII: The reduction analysis for the Time project.

SM	TS	Least diverse				Most diverse			Random diverse				p-Value				Effect size				
		Rand		Evo		Rand		Evo		Rand		Evo				Evo		Rand		Evo	
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	LR	MR	LR	MR	LR	MR	LR	MR
Euc	26	7.2																0.12			
	45	8.3	0.43	39.7	2.78	9.0	0.29	43.0	4.18	8.6	0.60	49.1	4.24	0.02	0.04			0.32			
	63	8.7	0.22	58.1	0.56	8.9	0.27	53.4	1.45	9.1	0.43	58.9	1.64	α	α	α	α	0.18	0.26	0.27	0.02
Ham	26	2.5	1.06	31.3	3.18	8.6	0.11	30.5	2.17	8.3	0.71	36.5	9.92	α	0.03	α	α	0.00	0.66	0.19	0.18
	45	4.7	1.19	40.4	2.01	8.7	0.00	47.3	1.04	8.6	0.60	49.1	4.24	α	0.66	α	0.06	0.00	0.43	0.02	0.35
	63	5.8	0.96	54.7	2.55	8.7	0.09	54.5	6.02	9.1	0.43	58.9	1.64	α	α	α	α	0.00	0.17	0.09	0.12
Lev	26	2.5	1.41	36.6	3.39	8.0	0.31	36.2	5.23	8.3	0.71	36.5	9.92	α	0.02	0.19	0.19	0.00	0.30	0.40	0.40
	45	5.1	1.45	45.4	1.64	8.3	0.42	51.9	2.29	8.6	0.60	49.1	4.24	α	0.01	α	0.02	0.01	0.31	0.24	0.67
	63	5.9	1.30	57.5	0.79	8.6	0.46	61.0	0.43	9.1	0.43	58.9	1.64	α	α	α	α	0.00	0.21	0.18	0.93
Man	26	6.4	0.82	29.7	3.54	8.6	0.30	35.6	5.01	8.3	0.71	36.5	9.92	α	0.04	α	0.08	0.04	0.64	0.16	0.37
	45	7.6	0.97	40.7	3.75	8.7	0.12	47.9	1.95	8.6	0.60	49.1	4.24	α	0.95	α	0.11	0.17	0.48	0.08	0.38
	63	8.6	0.20	58.1	0.60	8.8	0.15	55.9	2.63	9.1	0.43	58.9	1.64	α	α	α	α	0.13	0.20	0.27	0.18
	26	7.4	0.91	26.2	9.33	8.2	0.65	36.0	5.18	8.3	0.71	36.5	9.92	α	0.34	α	0.17	0.21	0.40	0.15	0.40
NCD	45	8.1	0.44	49.2	2.51	8.6	0.57	53.0	2.80	8.6	0.60	49.1	4.24	α	0.67	0.87	α	0.22	0.45	0.48	0.74
	63	8.2	0.09	59.1	1.09	9.1	0.52	61.4	0.41	9.1	0.43	58.9	1.64	α	0.89	0.93	α	0.03	0.43	0.50	0.96