王艺霖 2200011456

RLC 电路的谐振现象

一、数据处理

1. 实验各项参数

电感 L=0.1H,电感的直流阻值为 $L_R=18.02\Omega$,定值电阻 $R=(100\pm0.01)\Omega$,电容箱固定取值为 $C=0.0500\mu F$

2. 测量谐振频率

根据谐振的定义可知,当电路的电流和电压达到相同相位时电路达到谐振,利用李萨如图的方法确定电流与电压同相时的频率:

$$f_0 = 2.2470kHz$$

测量过程中改变 1Hz 可以看到李萨如图发生变化,而改变 0.1Hz 则看不到较显著的变化,所以可以估计谐振频率的极限不确定度 $e_{f_0}=1Hz$,即有谐振频率的不确定度为

$$\sigma_{f_0} = \frac{e_{f_0}}{\sqrt{3}} = 0.58Hz$$

3. 谐振状态的测量结果

(1) Q_1 的计算

由于电感也有直流电阻,所以电路的总电阻应是 $R_t=R+R_L=118.02\Omega$,所以可以计算出

$$\begin{aligned} Q_1 &= \frac{\omega L}{R_t} = \frac{2\pi f_0 \omega}{R_t} = 11.963 \\ \sigma_{R_t} &= \sqrt{(\sigma_R)^2 + (\sigma_{R_L})^2} = 0.014\Omega \\ \sigma_{Q_1} &= Q1 \times \sqrt{(\frac{\sigma_{f_0}}{f_0})^2 + (\frac{\sigma_L}{L})^2 + (\frac{\sigma_{R_t}}{R_t})^2} = 0.012 \\ Q_1 &\pm \sigma_{Q_1} = 11.963 \pm 0.012 \end{aligned}$$

(2) Q_2 的计算

分别测量电路总端压和电容的端压,得到

$$u = 0.7622V$$
 $u_C = 8.250V$

因此得到

$$Q_2 = \frac{u_c}{u} = 10.824$$

根据万用电表的说明书[1],可以计算出电压测量的不确定度:

$$\sigma_u = 0.2\%u + 0.001V = 0.0025V$$

$$\sigma_{u_C} = 0.2\%u_C + 0.01V = 0.026V$$

$$\sigma_{Q_2} = Q_2 \times \sqrt{\left(\frac{\sigma_u}{u}\right)^2 + \left(\frac{u_C}{u_C}\right)^2} = 0.049$$

$$Q_2 \pm \sigma_{Q_2} = 10.824 \pm 0.049$$

王艺霖 2200011456

4. 相频特性测量

f/kHz	$\triangle t/\mu s$	φ	f/kHz	$\triangle t/\mu s$	φ
1.000	-244.0	-0.488	2.252	3.5	0.016
1.500	-155.5	-0.467	2.260	9.5	0.043
1.800	-121.5	-0.437	2.280	22.5	0.103
2.000	-96.5	-0.386	2.300	34.5	0.159
2.100	-74.0	-0.311	2.340	50.0	0.234
2.150	-59.0	-0.254	2.400	64.0	0.307
2.200	-31.0	-0.136	2.500	75.0	0.375
2.220	-19.5	-0.087	2.700	78.5	0.424
2.230	-11.5	-0.051	3.000	74.6	0.448
2.240	-4.0	-0.018	3.500	66.4	0.465
2.247	0.0	0.000	4.000	59.2	0.474

表 1: RLC 串联电路电流与电压相位差 φ 与频率 f 的关系

图 1: RLC 串联电路电流与电压相位差 φ 与频率 f 的关系

从图中可以看出当 f 很小时, $\triangle \varphi$ 趋于 $-\frac{\pi}{2}$,而当 f 很大时, φ 趋于 $\frac{\pi}{2}$.

5. 幅频特性测量

固定电路总端压为 u=1.000V, 测定 i-f 的关系, 其中电阻的大小为 $R=(100.00\pm0.01)\Omega$

王艺霖 2200011456

f/kHz	u_R/mV	i/mA	f/kHz	u_R/mV	i/mA
0.500	16.6	0.17	2.250	775.8	7.76
1.000	39.3	0.39	2.255	773.4	7.73
1.500	84.8	0.85	2.260	769.1	7.69
1.800	155.4	1.55	2.270	755.7	7.56
1.900	203.3	2.03	2.280	737.0	7.37
2.000	283.5	2.83	2.300	687.8	6.88
2.100	435.8	4.36	2.350	550.1	5.50
2.150	561.0	5.61	2.400	439.1	4.39
2.200	707.4	7.07	2.500	303.2	3.03
2.220	752.6	7.53	2.700	185.4	1.85
2.230	767.3	7.67	3.000	119.0	1.19
2.240	775.3	7.75	3.500	76.7	0.77
2.245	776.5	7.77	4.000	57.7	0.58
2.247	776.5	7.77	5.000	39.6	0.40

表 2: RLC 串联电路电流 i 与频率 f 的关系

图 2: RLC 串联电路电流 i 与频率 f 的关系

电流 i 的最大值为 $i_m=7.765mA$,从图中可以读出电流大小为 $\frac{i_m}{\sqrt{2}}$ 处的频率分别为:

$$f_1 = 2.1443kHz$$
 $f_2 = 2.3522kHz$

所以有

$$\triangle f = f_2 - f_1 = 0.208kHz$$

$$Q_3 = \frac{f_0}{\triangle f} = 10.806$$

视 $\triangle f$ 为标尺上的直接测量量,其不确定度估计为 1Hz,故有

$$\sigma_{Q_3} = Q_3 \times \sqrt{(\frac{\sigma f_0}{f_0})^2 + (\frac{\sigma \triangle f}{\triangle f})^2} = 0.052$$

$$Q_3 \pm \sigma_{Q_3} = 10.806 \pm 0.052$$

二、分析讨论

比较三种方法得到的 Q 值,可以发现, Q_2 和 Q_3 的差值小于 σ_{Q_2} 和 σ_{Q_3} ,在误差允许的范围内可视为一致。然而 Q_1 的值与 Q_2,Q_3 相去甚远,差值达到了二十多个 σ ,已经不再是简单的随机误差,而是系统误差。经过分析,应该是存在于电路中的交流损耗(如铜损、铁损等)未被纳入考虑。

参考文献

[1] https://www.tequipment.net/Fluke45.html