Math 55, Handout 14.

GENERALIZED PERMUTATIONS AND COMBINATIONS.

- 1.1. **Permutations with repetition.** The number of r-permutations of a set with n elements with repetition allowed is n^r .
- 1.2 **Combinations with repetition.** The number of r-combinations from a set with n elements with repetition allowed is $\binom{n}{r}$.
- Q1. A croissant shop has plain croissants, apple croissants, chocolate croissants, cheese croissants, marzipan croissants, and almond croissants.
 - (a) How many ways are there to choose a dozen croissants? 6^{12}
 - (b) A dozen croissants with at least one of each kind?

$$6^{12}-1^{12}-2^{12}-3^{12}-4^{12}-5^{12}=1915328957$$

Permutations with (some) indistinguishable objects.

- 1.3. The number of permutations of n objects where there are n_j indistinguishable objects of type j, for $j = 1, \ldots, k$ (where $\sum_{j=1}^k n_j = \underline{n}$), is equal to $\frac{n!}{n_1!n_2!\dots n_k!}$
 - Q2. How many different strings can be made by reordering the letters of the word MATHEMATICS?

M 2; A 2; T 2; H 1; E 1; I 1; C 1; S 1

$$\frac{11!}{2! \, 2! \, 2! \, 1! \, 1! \, 1! \, 1! \, 1!} = 4989600$$

Putting objects into boxes.

Distinguishable objects and distinguishable boxes.

- 2.1. The number of ways to distribute n distinguishable objects into k distinguishable boxes so that n_j objects are placed into box $j, j = 1, \ldots, k$ (where $\sum_{j=1}^k n_j = n$), is equal to $\frac{n!}{n_1! n_2! \ldots n_k!}$
 - Q3. How many ways are there to distribute hands of five cards to each of six players from the standard deck of 52 cards?

Indistinguishable objects and distinguishable boxes.

2.2. The number of ways to place n indistinguishable objects into k distinguished boxes is the same as the number of \underline{r} -combinations from a set with \underline{n} elements when repetitions are $\binom{n+r-1}{r}$.

Distinguishable objects and indistinguishable boxes.

2.3. The number of ways to distribute n distinguishable objects into k indistinguishable boxes is given by the formula $\sum_{j=1}^{k} S(n,j)$ where the S(n,j)'s are called Stirling numbers of the second kind.

Each S(n, j), in turn, satisfies the formula

Q4. How many ways are there to assign 3 indistinguishable offices to 5 employees, where each office can accommodate any number of employees?

$$S(5,1) = 1$$

$$S(5,2) = {5 \choose 2} = 10$$

$$S(5,3) = {5 \choose 3} + \frac{{5 \choose 2} {3 \choose 2}}{2} = 10 + 15 = 25$$

Indistinguishable objects and indistinguishable boxes.

- 2.4. The number of ways to distribute n indistinguishable objects into k indistinguishable boxes is the same as the number of **partitions** of \underline{n} into \underline{k} parts. It is denoted by $\underline{p_k(n)}$.
- Q5. In how many ways can six identical DVDs be wrapped into wrapping paper if any number of DVDs can be wrapped together?

6 = 6 6 = 2 + 2 + 2 6 = 3 + 1 + 1 + 1 6 = 3 + 3 6 = 4 + 1 + 1 6 = 3 + 2 + 1 6 = 2 + 1 + 1 + 1 + 1 6 = 1 + 1 + 1 + 1 + 1 + 1

10 in total.