Пятое домашнее задание: непрерывные с.в.

12 марта 2021 г.

1 Игла Бюффона

На бесконечной плоскости нарисовано бесконечно много параллельных прямых, расстояние между двумя соседними равно d. Мы бросаем на эту плоскость иголку длины ℓ . Вычислите вероятность того, что иголка не пересечет ни одной прямой. Посчитайте матожидание числа пересеченных прямых.

2 Плотность вероятности функции от с.в.

Пусть X имеет непрерывную плотность вероятности $f_X(x)$, причем существуют α и $\beta > \alpha$, что $\Pr(\alpha \leq X \leq \beta)$. Пусть g(x) — монотонно возрастающая и дифференцируемая функция на $[\alpha, \beta]$. Докажите, что у с.в. Y = g(X) плотность вероятности

$$f_Y(y) = egin{cases} rac{f(g^{-1}(y))}{g'(g^{-1}(y))}, & ext{ если } y \in [g(lpha), g(eta)] \\ 0, & ext{ иначе.} \end{cases}$$

Продемонстрируйте правильность на $X \sim U(\alpha, \beta)$ и g(x) = ax + b.

3 Квадрат с.в.

Пусть у непрерывной с.в. X плотность вероятности $f_X(x)$. Найдите плотность вероятности с.в. X^2 . Вычислите ее, если известно, что $X \sim N(0,1)$ (стандартное нормальное распределение).

4 Преобразования нормального распределения 1

Пусть $X \sim N(0,1)$. Найдите $E[X\cos X]$ и $E[\frac{X}{1+X^2}]$.

5 Преобразования нормального распределения 2

Пусть $X \sim N(0,1)$. Найдите $E[\cos X]$ и $Var[\cos X]$.

6 Про трамвай

Для трамвайного маршрута длины d известна функция F(x,y), которая равна вероятности того, что пассажир, проехавший на этом трамвае, зашел на расстоянии не более x от начала маршрута и сошел на расстоянии не более y от начала маршрута. Определите для каждой точки маршрута $z \in [0,d]$ вероятность того, что пассажир проехал точку z.

7 Случайный вектор

Две случайных величины имеют совместную плотность распределения

$$f_{X,Y}(x,y) = \begin{cases} xe^{-x(y+1)}, & \text{если } x,y \ge 0 \\ 0, & \text{иначе.} \end{cases}$$

Найти их маргинальные плотности распределения и условные плотности распределения $f_{X|Y}(x\mid y)$ и $f_{Y|X}(y\mid x)$.

8 Распад атомов

У вас есть m_0 радиоактивных атомов. Определите матожидание массы атомов m(t), которая у вас останется через время t, если известно, что для любого целого атома вероятность p распасться в ближайшую единицу времени равна e^{-1} .