Molecular orbitals

Sergei Vyboishchikov

Chemical bond within quantum mechanics

- From the viewpoint of the quantum mechanics, there is no chemical bonds! There are nuclei and electrons, and there is the wavefunction $\Psi(1,2,..,N)$, which bears all the information about the molecule.
- *Bonds*, as something linking two atoms (nuclei) in a molecule, is a chemical concept born long before the advent of quantum mechanics or the discovery of electron.
 - ► Still, *chemical bond* is a powerful, extremely useful concept central to chemistry.
 - ► Related concepts are also widely used in chemistry: atomic charges, bond orders (multiplicities), bond strengths (energies) none of them has a clear quantum-mechanical counterpart.
- We often wish to extract some bonding information from the wavefunction obtained in a quantum-mechanical calculation.
 - ▶ No easy way! We have to invent extra methods ("tools") to do so.

Chemical bond – types

- Covalent bond: most universal bond type.
- *Ionic bond*: usually regarded as electrostatic interactions between two ions, but can be also seen as a limiting case of a polar covalent bond.
- *Donor-acceptor bond*: is also similar to and sometimes indistinguishable from a covalent bond. **Exercise**: consider the NH₄ example.
- *Ligand-metal bonds*: can be quite different, but usually described as donor-acceptor.
- Hypervalent bonds: still covalent.
- *Metallic bond*: a kind of highly delocalized bond in metals.
- *Charge-shift bond*: a special sort of covalent bond (such as F_2).
- There is no absolute limits between those bond types. They can be described as special cases of a covalent bond.

Chemical bond – weaker interactions

Weaker interactions:

(often called "non-covalent")

- "Orbital" (i.e. in part covalent) interactions:
 - ► *Hydrogen bond*: partly electrostatic, partly covalent. The stronger, the more covalent! (3-center 4-electron bond) A—H···:D

$$A-H:D \leftrightarrow \overset{\ominus}{A}:H-\overset{\ominus}{D}$$

is an electron-withdrawing group.

MO description: $n(D) \rightarrow \sigma^*(A-H)$. Exercise: consider H₂O.

► *Halogen, chalcogen, and pnictogen* bonds:

$$CI-I:NR_3 \leftrightarrow CI: I-NR_3$$

 $Me_2As-C\equiv N\text{: }AsMe_2-C\equiv N\text{: }\leftrightarrow Me_2As-C\equiv \stackrel{\oplus}{N}-AsMe_2\stackrel{\ominus}{C}\equiv N\text{: }$

► Also *triel* and *tetrel* bonds (and others):

Me₃Sn–C=N: SnMe₃–C=N:
$$\leftrightarrow$$
 Me₃Sn–C= $\stackrel{\oplus}{N}$ –SnMe₃ $\stackrel{\ominus}{C}$ =N:

Halogen bond:

Pnictogen bond:

Tetrel bond:

Chemical bond – weaker interactions

Weaker interactions:

(often called "non-covalent")

- "Orbital" (i.e. in part covalent) interactions:
 - ► Hydrogen, halogen, chalcogen, pnictogen, trie, tetrel bonds ...
- Non-orbital (non-covalent) interactions:
 - ► *Electrostatic interactions*: dipole-dipole, dipole-quadrupole,... Note: Dipole-induced dipole etc. are *not* purely electrostatic (polarization = induction)
 - ► Dispersion interactions: non-covalent: long-distance correlation effects.

Molecular Orbitals – general remarks

- In general, a *molecular orbital* (MO) is a one-electron wavefunction of any kind.
 - ► For a many-electron system (atom or molecule), an MO is *not* the same as the total wavefunction. The latter depends on coordinates and spins of all N electrons in the system: $\Psi(1,2,..,N)$.
 - ► Terminology: a *spin-orbital* $\varphi(1)$ depends on coordinates and spins of one electron. A *spatial orbital* (or just an *orbital*) $\psi(\mathbf{r}_1)$ depends on coordinates only. They are related through a spin function:

$$\varphi(1) = \psi(\mathbf{r}_1)\alpha(\sigma_1)$$
, or $\varphi(1) = \psi(\mathbf{r}_1)\beta(\sigma_1)$, or $\varphi(1) = \psi_1(\mathbf{r}_1)\alpha(\sigma_1) + \psi_2(\mathbf{r}_1)\beta(\sigma_1)$
Thus, $(1) = (\mathbf{r}_1, \sigma_1)$, where σ is the spin coordinate, α and β are spin eigen-

functions $(\hat{S}_z \alpha(\sigma) = \frac{1}{2}\alpha(\sigma))$, where σ is the spin coordinate, α and β are spin eigenfunctions $(\hat{S}_z \alpha(\sigma) = \frac{1}{2}\alpha(\sigma))$, "spin-up" +; $\hat{S}_z \beta(\sigma) = -\frac{1}{2}\beta(\sigma)$, "spin-down" +).

▶ Spin-orbitals are related to the total many-electron wavefunction $\Psi(1,2,..,N)$. In the Hartree–Fock approximation, Ψ is constructed from the spin-orbitals as a Slater determinant:

$$\Psi(1,2,...,N) = \frac{1}{\sqrt{N!}} \det[\varphi_i(j)] = \frac{1}{\sqrt{N!}} \begin{vmatrix} \varphi_1(1) & \varphi_1(2) & \dots & \varphi_1(N) \\ \varphi_2(1) & \varphi_2(2) & \dots & \varphi_2(N) \\ \dots & \dots & \dots & \dots \\ \varphi_N(1) & \varphi_N(2) & \dots & \varphi_N(N) \end{vmatrix}$$

▶ In the DFT, the meaning of orbitals is similar, but not identical.

Molecular Orbitals – RHF and UHF

• A well-known concept of an orbital occupied by *two* electrons is based on construction of two spin-orbitals from the same spatial orbitals, which is an additional approximation:

$$\varphi_1(1) = \psi(\mathbf{r}_1)\alpha(\sigma_1)$$
, or $\varphi_2(2) = \psi(\mathbf{r}_2)\beta(\sigma_2)$;

If there is an even number of electrons N, we need only N/2 doubly occupied spatial orbitals, giving rise to N spin orbitals. This corresponds to a <u>Restricted closed-shell Hartree-Fock</u> wavefunction. The orbitals are obtained as a solution of a one-electron equation (Hartree-Fock equation):

$$\hat{F}\psi_i(\mathbf{r}) = \varepsilon_i \psi_i(\mathbf{r})$$

where \hat{F} is the one-electron Fock operator (Fockian) and ε_i is the eigenvalue (orbital energy).

Note: The sum of the occupied orbital energies is *not* equal to the total molecular energy.

Note: In the DFT, the molecular orbitals are eigenfunctions of another one-electron operator (Kohn–Sham operator), but work in a similar fashion.

Molecular Orbitals – UHR and ROHF

- Alternatively, we can use different orbitals for different spins (*DODS*, or <u>unrestricted</u> formalism). $\varphi_1(1) = \psi^{\alpha}(\mathbf{r}_1)\alpha(\sigma_1)$, $\varphi_2(2) = \psi^{\beta}(\mathbf{r}_2)\beta(\sigma_2)$, where in general, $\psi^{\alpha} \neq \psi^{\beta}$ and $\varepsilon^{\alpha} \neq \varepsilon^{\beta}$. ψ^{α} and ψ^{β} are eigenfunction of two different Fockians (or Kohn–Sham operators): $\hat{F}^{\alpha}\psi_i^{\alpha}(\mathbf{r}) = \varepsilon_i^{\alpha}\psi_i^{\alpha}(\mathbf{r})$; $\hat{F}^{\beta}\psi_i^{\beta}(\mathbf{r}) = \varepsilon_i^{\beta}\psi_i^{\beta}(\mathbf{r})$.
- Even if the numbers of α and β -electrons are different, we can *force* the spatial α -spin-orbitals to be identical with β -spin-orbitals: $\psi_i^{\alpha} = \psi_i^{\beta}$. This is the *restricted open-shell* method. The formalism is quite complicated; there are special rules of constructing the Fockian depending on the spin state. *Note*: The method is of little use nowadays. It is *not* used at all within the DFT.

RHF	UHF	ROHF
	α — β	
	$\alpha - \beta$	
	α —	
\uparrow	$\alpha + \beta$	
\uparrow	$ \begin{array}{c} \alpha & \uparrow & -\beta \\ \alpha & \uparrow & \downarrow \beta \end{array} $	\uparrow
$\uparrow\downarrow$	$ \begin{array}{c} \alpha + \downarrow \beta \\ \alpha + \downarrow \beta \end{array} $	$\uparrow \downarrow$
	$\alpha \stackrel{\bigstar}{+} {+} \beta$ Vyboishchikov (10)	

Molecular Orbitals – MO-LCAO

• The basic concept of the qualitative MO theory is that the MOs are composed from AOs (the *MO-LCAO approximation*). Mathematically, this means that the MOs are linear combination of AOs (atomic-centered *basis functions*) χ_{μ} :

$$\psi_i(\mathbf{r}) = \sum_{\mu}^{N_{bas}} c_{\mu i} \chi_{\mu}(\mathbf{r})$$

- ► Technically, basis functions $\chi_{\mu}(\mathbf{r})$ are not necessarily atomic eigenfunctions.
- ▶ The coefficients $c_{i\mu}$ are variationally adjustable: a self-consistent procedure to solve the Roothaan–Hall equations (RHF case):

$$\mathbf{FC} = \mathbf{SC}$$
ε
$$\sum_{\mu=1}^{N_{bas}} F_{\nu\mu} c_{\mu i} = \sum_{\mu=1}^{N_{bas}} S_{\nu\mu} c_{\mu i} \varepsilon_i$$

where **F** is the Fock matrix in an AO basis;

C is the matrix of orbital coefficients (one MO is one column);

S is the overlap matrix;

 ϵ is the diagonal matrix of orbital energies.

▶ A problem of the type $FC = SC\varepsilon$ is a generalized eigenvalue problem.

Molecular Orbitals and electron density

• *Electron density* (Hartree–Fock and DFT only) can be obtained from the orbitals as follows:

$$\rho(\mathbf{r}) = \sum_{k=1}^{N} \psi_k(\mathbf{r})^2 = \sum_{k=1}^{N_{\alpha}} \psi_k^{\alpha}(\mathbf{r})^2 + \sum_{k=1}^{N_{\beta}} \psi_k^{\beta}(\mathbf{r})^2$$

$$\rho(\mathbf{r}) = 2\sum_{k=1}^{N/2} \psi_k(\mathbf{r})^2$$
 for closed-shell case

Molecular Orbitals – H₂ example

- Consider RHF for the H_2 molecule in a minimal basis set $\{\chi_a, \chi_b\}$,
 - \triangleright Solution for the 2×2 matrix giving two eigenvalue and two eigenfunctions:

$$\varphi_1 = \frac{1}{\sqrt{2(1+S)}} (\chi_a + \chi_b) \qquad \varphi_2 = \frac{1}{\sqrt{2(1-S)}} (\chi_a - \chi_b)$$

 \triangleright Electron density in the bonding orbital φ_1 :

$$\begin{split} \rho_{\text{bonding}}(\mathbf{r}) &= 2\varphi_1(\mathbf{r})^2 = \frac{1}{1+S} \left(\chi_a^2(\mathbf{r}) + \chi_b^2(\mathbf{r}) + 2\chi_a(\mathbf{r})\chi_b(\mathbf{r}) \right) = \\ &= \frac{1}{1+S} \left(\rho_a(\mathbf{r}) + \rho_b(\mathbf{r}) + 2\chi_a(\mathbf{r})\chi_b(\mathbf{r}) \right) \end{split}$$

- \Rightarrow density *accumulation* in the internuclear area.
- \blacktriangleright Electron density in the anti-bonding orbital φ_2 :

$$\begin{split} \rho_{\text{anti-bonding}}(\mathbf{r}) &= 2\varphi_2(\mathbf{r})^2 = \frac{1}{1-S} \left(\chi_a^2(\mathbf{r}) + \chi_b^2(\mathbf{r}) - 2\chi_a(\mathbf{r})\chi_b(\mathbf{r}) \right) = \\ &= \frac{1}{1-S} \left(\rho_a(\mathbf{r}) + \rho_b(\mathbf{r}) - 2\chi_a(\mathbf{r})\chi_b(\mathbf{r}) \right) \end{split}$$

 \Rightarrow density *depletion* in the internuclear area.

Molecular Orbitals – H₂ example

• This is how a typical MO picture emerges:

• Mathematical origin for the MO splitting: off-diagonal Fock-matrix elements. If the diagonal elements $F_{aa} = F_{bb}$, then the eigenvalues of the Fockian matrix \mathbf{F} are $\varepsilon_1 = F_{aa} - |F_{ab}|$, $\varepsilon_2 = F_{aa} + |F_{ab}|$.

$$\mathbf{F} = \left(egin{array}{cc} F_{aa} & F_{ab} \ F_{ba} & F_{bb} \end{array}
ight)$$

Thus, the splitting comes from the *orbital interaction*.

Note that F_{aa} and F_{bb} are related to energies of the atomic orbitals χ_a and χ_b . **Exercise**: Express the eigenvalues ε_1 , ε_2 of matrix **F** analytically for the case $F_{aa} = F_{bb}$ and demonstrate that $\varepsilon_1 = F_{aa} - |F_{ab}|$, $\varepsilon_2 = F_{aa} + |F_{ab}|$.

Molecular Orbitals – two different orbitals

• This is how a typical MO picture emerges (e.g., HeH⁺ or LiH):

Question: where is He⁺ and where is H on this diagram? Where is Li and where is H?

In this case $F_{bb} < F_{aa}$, and the eigenvalues are:

$$\mathbf{F} = \begin{pmatrix} F_{aa} & F_{ab} \\ F_{ba} & F_{bb} \end{pmatrix} \quad \varepsilon_{2,1} = \frac{\left(F_{aa} + F_{bb}\right) \pm \sqrt{\left(F_{aa} - F_{bb}\right)^2 + |2F_{ab}|^2}}{2}$$

If $|F_{aa} - F_{bb}| \gg 2 |F_{ab}|$ then $\varepsilon_1 \approx \varepsilon_b$, $\varepsilon_2 \approx \varepsilon_a$. Moreover, $\varphi_1 \approx \chi_b$, $\varphi_2 \approx \chi_a$.

► This is how an ionic bond emerges from the viewpoint of the MO theory!

Exercises: (a) Derive the equation for ε_1 , ε_2 above by analytically exressing the eigenvalues of matrix \mathbf{F} ; (b) Using the approximation $(1+x)^{1/2} \approx 1+x/2$ (valid if $x \ll 1$) obtain another approximation for ε_1 and ε_2 without a square root.

Molecular Orbitals – AO energy variation

• AO energy variation (orbital energies in kJ·mol⁻¹):

- ► All AO energies go down with increasing nuclear charge;
- ightharpoonup The s-p splitting increases with increasing nuclear charge.

Question: what is the 2s-2p splitting for the hydrogen atom?

Molecular Orbitals – homonuclear diatomic molecules

• MO energy variation:

- ▶ Watch change in MO energy order $F_2 \rightarrow O_2 \rightarrow N_2!$
 - $-F_2$ has 'pure' s- and p-contributions
 - $-N_2$, C_2 , B_2 ,... has more 'hybride' s- and p-contributions.

Question: what happens with 1s orbitals?

Molecular Orbitals – heteronuclear diatomic molecules

• CO molecule:

• HF molecule

