Final Project

Aksheytha Chelikavada 2023-05-14

1 DATA PREPARATION

Part 1.1

```
library(dplyr)
saipe_raw <- read.csv("C:\\Users\\akshe\\Downloads\\SAIPE_04-14-2023.csv")

saipe_mn <- saipe_raw %>% filter(!(Name == "Minnesota")) %>% filter(!(Name == "United States"))%
>% select(Year, FIPS = ID, Name, Pop = Poverty.Universe, Poverty = Number.in.Poverty)
```

Find the largest county, and the nine largest counties by population

```
largest_county_pop <- saipe_mn %>% group_by(FIPS, Name) %>% summarize(Pop = mean(Pop, na.rm = TR
UE)) %>% arrange(desc(Pop)) %>% head(n = 9)
```

```
## `summarise()` has grouped output by 'FIPS'. You can override using the
## `.groups` argument.
```

largest county pop

	Name <chr></chr>	Pop <dbl></dbl>
27053	Hennepin County	1152894.8
27123	Ramsey County	503860.2
27037	Dakota County	395766.3
27003	Anoka County	329222.4
27163	Washington County	232358.9
27137	St. Louis County	190716.9
27145	Stearns County	141531.2
27109	Olmsted County	141012.9
27139	Scott County	126144.7
2/139 9 rows	Scott County	126144.7

```
FIPSvalue <- saipe_mn %>% group_by(FIPS, Name) %>% summarize(Pop = mean(Pop, na.rm = TRUE)) %>%
arrange(desc(Pop)) %>% head(n = 9) %>% pull(FIPS)
```

`summarise()` has grouped output by 'FIPS'. You can override using the
`.groups` argument.

```
biggest_county <- saipe_mn %>% group_by(FIPS, Name) %>% summarize(Pop = mean(Pop, na.rm = TRUE))
%>% arrange(desc(Pop)) %>% head(n = 1)
```

`summarise()` has grouped output by 'FIPS'. You can override using the
`.groups` argument.

biggest_county

	Name <chr></chr>	Pop <dbl></dbl>
27053	Hennepin County	1152895
1 row		

Make a time plot showing the number in poverty for each of the nine largest counties

```
library(dplyr)
library(ggplot2)
library(gtrendsR)
library(tsibble)
library(feasts)

saipe_mn_tsibble <- saipe_mn %>% as_tsibble(index = Year, key = c(FIPS, Name)) %>% filter(FIPS % in% FIPSvalue)

saipe_mn_tsibble %>% autoplot(Poverty) + facet_wrap(vars(Name))
```


Part 1.2

```
library(stringr)
library(lubridate)
library(tidyverse)
library(readr)

cntySnap_raw <- read.csv("C:\\Users\\akshe\\Downloads\\cntysnap.csv",skip = 4, sep ="," )

mnCnty <- cntySnap_raw %>% filter(grepl("MN", Name))

code_mnCnty <- mnCnty %>% mutate(FIPS = paste("27",str_pad(County.FIPS.code, width = 3, pad = "0"), sep = ""))

pivot_code_mnCnty <- code_mnCnty %>% pivot_longer(cols = starts_with("Jul")) %>% mutate(value = as.integer(str_remove(value, ","))) %>% filter(FIPS %in% FIPSvalue) %>% mutate(Year = year(yearm onth(name))) %>% as_tsibble(index = Year, key = c(FIPS, Name))

pivot_code_mnCnty %>% ggplot2::autoplot((value))
```


Part 1.3

```
raw_irs <- read.csv("C:\\Users\\akshe\\Downloads\\irs.csv", skip = 4)

ts_irs <- raw_irs %>% filter(Name == "Minnesota") %>% mutate(Poor.exemptions = as.integer(str_re move(Poor.exemptions, ","))) %>% as_tsibble(index = Year)

ts_irs %>% autoplot(Poor.exemptions)
```


Part 1.4

```
library(lubridate)
library(tidyverse)
library(readr)
join_ts_irs <- raw_irs %>% filter(Name == "Minnesota") %>% dplyr::select(Year, Poor.exemptions)
%>% mutate(Poor.exemptions = as.integer(str_remove(Poor.exemptions, ","))) %>% as_tsibble(index
= Year)
pivot_code_mnCnty_all <- code_mnCnty %>% pivot_longer(cols = starts_with("Jul")) %>% mutate(valu
e = as.integer(str_remove(value, ","))) %>% mutate(Year = year(yearmonth(name))) %>% as_tsibble
(index = Year, key = c(FIPS, Name))
join_mnCnty_all <- pivot_code_mnCnty_all %>% dplyr::select(FIPS, value, Year)
new join mnCnty all <- join mnCnty all %>% mutate(FIPS = as.integer(FIPS))
saipe mn join1 <- left join(saipe mn, new join mnCnty all, by=c('Year','FIPS'))</pre>
final_join_ts <- left_join(saipe_mn_join1, join_ts_irs, by = 'Year') %>% filter(Year >= 1997) %
>% as tsibble(index = Year, key = c(FIPS, Name.x))
graph_final_ts <- final_join_ts %>% filter(FIPS %in% FIPSvalue)
graph_final_ts %>% autoplot(Pop)
```

Warning: Removed 9 rows containing missing values (`geom line()`).

graph_final_ts %>% autoplot(Poverty)

graph_final_ts %>% autoplot(value)

Warning: Removed 9 rows containing missing values (`geom_line()`).

graph_final_ts %>% autoplot(Poor.exemptions)

Warning: Removed 9 rows containing missing values (`geom_line()`).

graph_final_ts %>% as_tibble() %>% ggplot(aes(x = Pop, y = Poverty, color = Name.x)) + geom_poin
t() + facet_wrap(vars(Name.x), scales = "free")

Warning: Removed 9 rows containing missing values (`geom_point()`).

graph_final_ts %>% as_tibble() %>% ggplot(aes(x = value, y = Poverty, color = Name.x)) + geom_po
int() + facet_wrap(vars(Name.x), scales = "free")

Warning: Removed 9 rows containing missing values (`geom point()`).


```
graph_final_ts %>% as_tibble() %>% ggplot(aes(x = Poor.exemptions, y = Poverty, color = Name.x))
+ geom_point() + facet_wrap(vars(Name.x), scales = "free")
```

Warning: Removed 9 rows containing missing values (`geom_point()`).

2 Linear Models

Part 2.1

```
library(forecast)
library(dplyr)
library(lubridate)
library(fpp3)
test_final_ts <- final_join_ts %>% model(t1 = TSLM(log(Poverty) ~ log(Pop)),
                                           t2 = TSLM(log(Poverty) ~ log(value)),
                                           t3 = TSLM(log(Poverty) ~ log(Poor.exemptions)),
                                           t4 = TSLM(log(Poverty) ~ log(Poor.exemptions)+log(val
ue)),
                                           t5 = TSLM(log(Poverty) ~ log(Poor.exemptions)+log(Po
p)),
                                           t6 = TSLM(log(Poverty) ~ log(Pop)+ log(value)),
                                            t7 = TSLM(log(Poverty) \sim log(Pop) + log(value) + log
(Poor.exemptions)))
glance(test_final_ts) |> group_by(.model) %>% summarise(CV = sum(CV), AIC = sum(AIC)) %>% arrang
e(CV, AIC) >
  dplyr::select(.model,CV, AIC)
```

.model <chr></chr>	CV <dbl></dbl>	AIC <dbl></dbl>
t6	1.026588	-8915.156
t7	1.058490	-8948.438
t2	1.089927	-9094.049
t4	1.160378	-9076.633
t5	1.418251	-8325.862
t3	1.421167	-8548.495
t1	1.798562	-8143.715
7 rows		

The model that does the best across all counties is t6 which is $TSLM(log(Poverty) \sim log(Pop) + log(value))$. This best model includes poverty, population, and value.

```
bestModel <- final_join_ts %>% model(TSLM(log(Poverty) ~ log(Pop)+ log(value)))

bestModel %>% filter(FIPS %in% FIPSvalue) %>% augment() %>% autoplot(Poverty) + geom_line(aes(y = .fitted), color = "Black") + facet_wrap(vars(Name.x), scales = "free_y") + theme(legend.positi on = "none")
```

Warning: Removed 2 rows containing missing values (`geom line()`).

Part 2.2

```
plotRes<- bestModel %>% filter(FIPS %in% FIPSvalue) %>% augment()
autoplot(plotRes, .innov) + facet_wrap(vars(Name.x))
```

Warning: Removed 18 rows containing missing values (`geom_line()`).

FIPS/Name.x/.model

27003/Anoka County/TSLM(log(Poverty) ~ log(Pop) + log(value))

27037/Dakota County/TSLM(log(Poverty) ~ log(Pop) + log(value))

27053/Hennepin County/TSLM(log(Poverty) ~ log(Pop) + log(value))

27109/Olmsted County/TSLM(log(Poverty) ~ log(Pop) + log(value))

27123/Ramsey County/TSLM(log(Poverty) ~ log(Pop) + log(value))

27139/Scott County/TSLM(log(Poverty) ~ log(Pop) + log(value))

27137/St. Louis County/TSLM(log(Poverty) ~ log(Pop) + log(value))

27145/Stearns County/TSLM(log(Poverty) ~ log(Pop) + log(value))

27163/Washington County/TSLM(log(Poverty) ~ log(Pop) + log(value))

allCountyFIPS <- bestModel %>% pull(FIPS)

bestModel %>% augment() %>% features(.innov, ljung_box) %>% arrange(lb_pvalue)

FIPS Name.x <int> <chr></chr></int>	.model <chr></chr>	I
27097 Morrison County	TSLM(log(Poverty) ~ log(Pop) + log(value))	10.9893
27145 Stearns County	TSLM(log(Poverty) ~ log(Pop) + log(value))	6.6098
27053 Hennepin County	TSLM(log(Poverty) ~ log(Pop) + log(value))	5.5879
27049 Goodhue County	TSLM(log(Poverty) ~ log(Pop) + log(value))	5.2105
27015 Brown County	TSLM(log(Poverty) ~ log(Pop) + log(value))	4.7831
27149 Stevens County	TSLM(log(Poverty) ~ log(Pop) + log(value))	4.7304
27059 Isanti County	TSLM(log(Poverty) ~ log(Pop) + log(value))	4.6021
27083 Lyon County	TSLM(log(Poverty) ~ log(Pop) + log(value))	4.5081
27139 Scott County	TSLM(log(Poverty) ~ log(Pop) + log(value))	3.6793
27107 Norman County	TSLM(log(Poverty) ~ log(Pop) + log(value))	3.3470

1-10 of 87 rows Previous **1** 2 3 4 5 6 ... 9 Next

I found one county that was significantly different from white noise. The FIPS code for the county is 27097 and the name is Morrison County.

Because this p-value is so significantly different from white noise, I an going to make a residual plot of it

bestModel %>% filter(FIPS == 27097) %>% augment() %>% autoplot(Poverty) + geom_line(aes(y = .fit
ted), color = "Magenta") + facet_wrap(vars(Name.x), scales = "free") + theme(legend.position =
"none")

Warning: Removed 2 rows containing missing values (`geom_line()`).

model did a pretty good job as we have a few p values below 0.05. Except for one exception, Morrison county got a p value of 0.0009.

3 Stochastic Models

Part 3.1

glance(hen_model)

FIPS Name <int> <chr></chr></int>	.mo	sigma2	log_lik	AIC	AICc	BIC
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
27053 Hennepin County	naive	7.118151e-03	NA	NA	NA	NA

	Name <chr></chr>	.mo <chr></chr>	sigma2 <dbl></dbl>	log_lik <dbl></dbl>	AIC <dbl></dbl>	AICc <dbl></dbl>	BIC <dbl></dbl>	
27053	Hennepin County	mean	4.123677e-02	NA	NA	NA	NA	
27053	Hennepin County	ses	7.224379e-03	22.07102	-38.14204	-36.94204	-34.60788	0.006
27053	Hennepin County	adDamp	7.939057e-03	22.69826	-33.39652	-28.45535	-26.32820	0.006
27053	Hennepin County	ad	7.912110e-03	22.12354	-34.24708	-30.91375	-28.35681	0.006
27053	Hennepin County	mul	5.755145e-05	22.21374	-34.42747	-31.09414	-28.53720	0.006
27053	Hennepin County	arima	6.915717e-03	24.57451	-47.14901	-46.95854	-46.01352	
7 rows	1-9 of 13 columns							

The ARIMA model works the best.

Part 3.2

glance(all_model) |> group_by(.model) %>% summarise(AIC = sum(AIC)) %>% arrange(AIC) |>
 dplyr::select(.model, AIC)

.model <chr></chr>	AIC <dbl></dbl>
ses	-2096.389
mul	-1808.956
ad	-1792.932
adDamp	-1691.114
4 rows	

The ses model did the best compared to the rest of the models. The reason why I chose ses is because it has the lowest AIC score

Part 3.3

```
arimaFit <- saipe_all %>% model(ARIMA(log(Poverty)))
arimaFit
```

	Name					,	ARIN	1A(log		erty))
<int></int>	<chr></chr>								<ist< th=""><th>_mdl></th></ist<>	_mdl>
27001	Aitkin County								<lst< td=""><td>_mdl></td></lst<>	_mdl>
27003	Anoka County								<lst< td=""><td>_mdl></td></lst<>	_mdl>
27005	Becker County								<lst< td=""><td>_mdl></td></lst<>	_mdl>
27007	Beltrami County								<lst< td=""><td>_mdl></td></lst<>	_mdl>
27009	Benton County								<lst< td=""><td>_mdl></td></lst<>	_mdl>
27011	Big Stone County								<lst< td=""><td>_mdl></td></lst<>	_mdl>
27013	Blue Earth County								<lst< td=""><td>_mdl></td></lst<>	_mdl>
27015	Brown County								<lst< td=""><td>_mdl></td></lst<>	_mdl>
27017	Carlton County								<lst< td=""><td>_mdl></td></lst<>	_mdl>
27019	Carver County								<lst< td=""><td>_mdl></td></lst<>	_mdl>
1-10 of 87 r	ows	Previous	1	2	3	4	5	6	. 9	Next

.model <chr></chr>	AIC <dbl></dbl>
fit100	-2890.767
fit001	-2430.380
2 rows	

(1,0,0) with mean and (0,0,1) with mean are the most common. from the data, (1,0,0) did the best.

Part 3.4

```
saipe_all_tr <- saipe_all |>
   stretch_tsibble(.init = 15, .step = 1)

fit_mn <- saipe_all_tr |>
   model(fit100 = ARIMA(log(Poverty) ~ 1 + pdq(1,0,0)),
        ses = ETS(log(Poverty) ~ error("A") + trend("N") + season("N")))
```

```
## Warning in wrap_arima(y, order = c(p, d, q), seasonal = list(order = c(P, :
## possible convergence problem: optim gave code = 1
```

Warning in sqrt(diag(best\$var.coef)): NaNs produced

```
#{r crossValidate, cache = TRUE}
```

```
acc <- fit_mn %>% forecast(h = 5) %>% fabletools::accuracy(data = saipe_all)
```

Warning: The future dataset is incomplete, incomplete out-of-sample data will be treated as m issing.

5 observations are missing between 2022 and 2026

acc %>% group_by(.model) %>% summarize(sqrt(sum(RMSE*RMSE)))

.model <chr></chr>	sqrt(sum(RMSE * RMSE)) <dbl></dbl>
fit100	14767.56
ses	21093.26
2 rows	

fit100 is the winning model

4 Forecasts

```
county_fit <- saipe_all %>% model(fit100 = ARIMA(log(Poverty) ~ 1 + pdq(1,0,0)))
forecast_county_fit <- county_fit %>% forecast(h = '5 year') %>% filter(Year == 2026)
forecast_county_fit
```

	Name <chr></chr>	.model <chr></chr>	Year <dbl></dbl>	Poverty <dist></dist>	.mean <dbl></dbl>
27001	Aitkin County	fit100	2026	<dist></dist>	2016.5337
27003	Anoka County	fit100	2026	<dist></dist>	22947.8938
27005	Becker County	fit100	2026	<dist></dist>	3910.9250
27007	Beltrami County	fit100	2026	<dist></dist>	7371.4128
27009	Benton County	fit100	2026	<dist></dist>	3516.1425
27011	Big Stone County	fit100	2026	<dist></dist>	623.7314
27013	Blue Earth County	fit100	2026	<dist></dist>	8346.1491
27015	Brown County	fit100	2026	<dist></dist>	2038.4145
27017	Carlton County	fit100	2026	<dist></dist>	3437.9499

FIPS Name <int> <chr></chr></int>	.model <chr></chr>		•		•		•				.mean <dbl></dbl>
27019 Carver County	fit100	2026		<dist></dist>			4388.093		3.0930		
1-10 of 87 rows	Previous	1	2	3	4	5	6	. 9	Next		

```
saipe_all_2021 <- saipe_all %>% filter(Year == 2021)

predInterval <- forecast_county_fit$.mean - saipe_all_2021$Poverty

percentInc <- predInterval / saipe_all_2021$Pop
percentInc</pre>
```

```
##
   [1] 0.0199995975 -0.0043755936 -0.0005209070 0.0124713765 -0.0007564218
##
   [6] -0.0036471633 -0.0046760367 -0.0095197602 -0.0048081651 -0.0054919046
## [11] 0.0115031456 -0.0090543961 -0.0042551978 -0.0215181409 0.0108869987
## [16] -0.0078919837 -0.0067864864 -0.0077888530 -0.0005830512 0.0002750693
## [26] -0.0003449262 -0.0020378421 0.0063040356 0.0044579159 -0.0080759047
## [31] -0.0029374856 -0.0060809735 -0.0121038574 -0.0189781861 0.0108450052
## [36] 0.0077298588 0.0017628111 0.0004702091 0.0069274649 0.0020012624
## [41] 0.0187558132 -0.0004011838 -0.0047751445 0.0040135899 0.0075527731
## [46] 0.0056455305 -0.0033637636 -0.0032742624 0.0040771040 -0.0067401031
## [51] 0.0059574756 -0.0124413159 -0.0007550823 0.0058657569 -0.0063020511
## [56] 0.0068476062 0.0037474871 0.0097180598 0.0004393243 0.0007866880
## [61] 0.0047891879 -0.0017646822 0.0136849143 0.0033268525 0.0026286080
## [66] -0.0060105721 -0.0064095185 -0.0156758093 -0.0034687685 -0.0030712612
## [71] -0.0065165093 -0.0003586393 -0.0114680895 -0.0104184813 -0.0056770822
## [76] -0.0039706988 -0.0007174410 0.0089118977 0.0003044520 0.0114856323
## [81] 0.0001509818 -0.0049778942 -0.0098698974 -0.0034224433 -0.0018183674
## [86] -0.0022250308 0.0029996122
```

```
highestValues <- tail(sort(percentInc), 5)
index <- which(percentInc %in% highestValues)

fiveCounties <- saipe_all_2021[c(1,4,41,58,63), 'Name']
fiveCounties</pre>
```

```
Name
<chr>
Aitkin County

Beltrami County

Lincoln County

Pine County
```

Name

<chr>

Red Lake County

5 rows

```
library(usmap)
library(ggplot2)
forecast_county_fit_usmap <- forecast_county_fit %>% as_tibble()

colnames(forecast_county_fit_usmap)[1] <- "fips"

names(forecast_county_fit_usmap)</pre>
```

```
## [1] "fips" "Name" ".model" "Year" "Poverty" ".mean"
```

```
plot_usmap(data = forecast_county_fit_usmap, values = ".mean", include = c("MN"), color = "blu
e") +
    scale_fill_continuous(low = "white", high = "blue", name = "Poverty Estimates", label = scale
s::comma) +
    labs(title = "Minnesota", subtitle = "Poverty Estimates for Minnesota Counties in 2026") +
    theme(legend.position = "right")
```

Minnesota

Poverty Estimates for Minnesota Counties in 2026

