import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import LabelEncoder
from sklearn import metrics
import math

sales_data = pd.read_csv("train.csv")
sales_data.head()

[→	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type	Item_Outlet_Sales	7
(FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	OUT049	1999	Medium	Tier 1	Supermarket Type1	3735.1380	
1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	OUT018	2009	Medium	Tier 3	Supermarket Type2	443.4228	
2	PDN15	17.50	Low Fat	0.016760	Meat	141.6180	OUT049	1999	Medium	Tier 1	Supermarket Type1	2097.2700	
3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010	1998	NaN	Tier 3	Grocery Store	732.3800	
4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	OUT013	1987	High	Tier 3	Supermarket Type1	994.7052	

sales_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 8523 entries, 0 to 8522 Data columns (total 12 columns): Non-Null Count Dtype # Column -----8523 non-null object 0 Item_Identifier 7060 non-null float64 1 Item_Weight 2 Item_Fat_Content 8523 non-null object 3 Item_Visibility 8523 non-null float64 4 Item_Type 8523 non-null object 8523 non-null float64 5 Item_MRP 6 Outlet_Identifier 8523 non-null object 7 Outlet_Establishment_Year 8523 non-null int64 8 Outlet_Size 6113 non-null object 9 Outlet_Location_Type 8523 non-null object 8523 non-null object 10 Outlet_Type

11 Item_Outlet_Sales 8523 non-null float64

dtypes: float64(4), int64(1), object(7)

sales_data.isnull().sum()

memory usage: 799.2+ KB

Item_Identifier 0 Item_Weight 1463 Item_Fat_Content 0 Item_Visibility 0 Item_Type 0 Item_MRP 0 Outlet_Identifier 0 Outlet_Establishment_Year Outlet_Size 2410 Outlet_Location_Type Outlet_Type 0 Item_Outlet_Sales 0 dtype: int64

Imputation

sales_data['Item_Weight'] = sales_data['Item_Weight'].fillna(sales_data['Item_Weight'].mean())
sales_data['Outlet_Size'] = sales_data['Outlet_Size'].fillna(sales_data['Outlet_Size'].mode()[0])
sales_data.isnull().sum()

Item_Identifier 0 Item_Weight 0 Item_Fat_Content 0 Item_Visibility Item_Type Item_MRP 0 Outlet_Identifier Outlet_Establishment_Year 0 Outlet_Size Outlet_Location_Type 0 Outlet_Type 0 Item_Outlet_Sales 0 dtype: int64

sales_data.head()

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type
0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	OUT049	1999	Medium	Tier 1	Supermarket Type1
1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	OUT018	2009	Medium	Tier 3	Supermarket Type2
2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	OUT049	1999	Medium	Tier 1	Supermarket Type1
3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010	1998	Medium	Tier 3	Grocery Store
											Cunarmarkat

sales_data['Item_Fat_Content'].value_counts()

Low Fat 5089 Regular 2889 LF 316 reg 117 low fat 112

Name: Item_Fat_Content, dtype: int64

sales_data.describe()

	Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Item_Outlet_Sales
count	8523.000000	8523.000000	8523.000000	8523.000000	8523.000000
mean	12.857645	0.066132	140.992782	1997.831867	2181.288914
std	4.226124	0.051598	62.275067	8.371760	1706.499616
min	4.555000	0.000000	31.290000	1985.000000	33.290000
25%	9.310000	0.026989	93.826500	1987.000000	834.247400
50%	12.857645	0.053931	143.012800	1999.000000	1794.331000
75 %	16.000000	0.094585	185.643700	2004.000000	3101.296400
max	21.350000	0.328391	266.888400	2009.000000	13086.964800

sales_data.hist()

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7fee83d442d0>, <matplotlib.axes._subplots.AxesSubplot object at 0x7fee83d19910>], [<matplotlib.axes._subplots.AxesSubplot object at 0x7fee83cd1f10>, <matplotlib.axes._subplots.AxesSubplot object at 0x7fee83c92550>], [<matplotlib.axes._subplots.AxesSubplot object at 0x7fee83c4ab50>, <matplotlib.axes._subplots.AxesSubplot object at 0x7fee83c0c190>]], dtype=object) Item Weight Item_Visibility 2000 2000 1000 1000 Outlet_Establishmento Year 2000 -1000 500 -1000 ltemogOutlet_≨males 2000

Low Fat, LF and low fat are all same and Regular and reg are same so we need to combine them. sales_data.replace({'Item_Fat_Content':{'low fat':'Low Fat','LF':'Low Fat','reg':'Regular'}},inplace=True) sales_data['Item_Fat_Content'].value_counts()

Low Fat 5517 Regular 3006

Name: Item_Fat_Content, dtype: int64

encoder = LabelEncoder()

sales_data['Item_Identifier'] = encoder.fit_transform(sales_data['Item_Identifier'])

sales_data['Item_Fat_Content'] = encoder.fit_transform(sales_data['Item_Fat_Content'])

sales_data['Item_Type'] = encoder.fit_transform(sales_data['Item_Type'])

le_name_mapping = dict(zip(encoder.classes_, encoder.transform(encoder.classes_)))

print(le_name_mapping)

sales_data['Outlet_Identifier'] = encoder.fit_transform(sales_data['Outlet_Identifier'])

sales_data['Outlet_Size'] = encoder.fit_transform(sales_data['Outlet_Size'])

sales_data['Outlet_Location_Type'] = encoder.fit_transform(sales_data['Outlet_Location_Type'])

sales_data['Outlet_Type'] = encoder.fit_transform(sales_data['Outlet_Type'])

sales_data.head()

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type
	156	9.30	0	0.016047	4	249.8092	9	1999	1	0	1
	8	5.92	1	0.019278	14	48.2692	3	2009	1	2	2
2	2 662	17.50	0	0.016760	10	141.6180	9	1999	1	0	1
3	3 1121	19.20	1	0.000000	6	182.0950	0	1998	1	2	0
	1297	8.93	0	0.000000	9	53.8614	1	1987	0	2	1

corr = sales_data.corr()
plt.figure(figsize=(8,8))

sns.heatmap(corr,cbar=True,square=True,fmt='.1f',annot=True,cmap='Reds')

<matplotlib.axes._subplots.AxesSubplot at 0x7fee83b43610>

plt.figure(figsize=(20,10))
sns.barplot(x='Item_Type',y='Item_Outlet_Sales',data=sales_data)
plt.grid()

plt.figure(figsize=(10,10))
sns.countplot(x="Outlet_Establishment_Year", data=sales_data)

plt.figure(figsize=(10,10))
sns.countplot(x="Outlet_Type", data=sales_data)

<matplotlib.axes._subplots.AxesSubplot at 0x7fee8786a8d0>

We need to split the data

X = sales_data.drop(columns='Item_Outlet_Sales',axis=1) # We need all the variables (columns) as independent variables so we're just dropping the target column to make things easier. y = sales_data['Item_Outlet_Sales'] # Target

Then we split the data into training and testing data

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.2, random_state = 2) # 80% data will be used for training the model and rest 20% for testing.

print(X.shape,X_train.shape)

(8523, 11) (6818, 11)

def RegressionAlgorithm(func, **kwargs):

def innerFunction():

model = func(**kwargs)

model.fit(X_train, y_train)

y_pred = model.predict(X_test)

rmse = math.sqrt(metrics.mean_squared_error(y_test, y_pred))
print("Root Mean squared error: %.2f" % rmse)

print("Root Mean squared error: %.2f" % rmse)
print('R2 score: %.2f' % metrics.r2_score(y_test, y_pred))

return innerFunction

Regression Algorithm (Linear Regression) ()

Root Mean squared error: 1248.61 R2 score: 0.49

from sklearn.ensemble import RandomForestRegressor

RegressionAlgorithm(RandomForestRegressor,n_estimators=100)()

Root Mean squared error: 1176.34 R2 score: 0.55

from sklearn.ensemble import RandomForestRegressor

RegressionAlgorithm(RandomForestRegressor,n_estimators=100)()

Root Mean squared error: 1176.48 R2 score: 0.55

✓ 3s completed at 16:53