Cálculo Diferencial e Integral I LMAC/MEFT

 $1^{\rm o}$ Teste (VA) - 10 de Novembro de 2018 - 9:00 às 10:30

Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam 20 valores.

Problema 1 (4,5 val.) Calcule as derivadas das seguintes funções:

(a)
$$f(x) = \frac{\sin(2+x^3)}{x}$$
 (b) $g(x) = \ln(1+\sqrt{1+\tan^2 x})$ (c) $h(x) = (\arctan(2x+1))^x$

Problema 2 (4,5 val.) Calcule, se existirem (finitos ou infinitos), os seguintes limites:

(a)
$$\lim_{x\to 0} \frac{\ln(1+2x^2)}{\cosh x - 1}$$
 (b) $\lim_{x\to +\infty} \frac{e^x}{x^2 + \cos x^3}$ (c) $\lim_{x\to 0} \left[1 + \sin(x^2)/3\right]^{1/(\cos x - 1)}$

Problema 3 (3 val.) Seja $f(x) = \operatorname{senh} x$ e p_n o polinómio de Taylor de f de ordem n no ponto a = 0.

- (a) Calcule p_4 .
- (b) Mostre que $0 < f(x) p_n(x)$ para qualquer x > 0 e qualquer $n \in \mathbb{N}$.
- (c) Mostre que $0 < f(x) p_4(x) < 1/50$ quando 0 < x < 1.

Problema 4 (4 val.) Considere a função $f: \mathbb{R} \to \mathbb{R}$ dada por:

$$f(x) = \begin{cases} 1 - xe^{-x^2} & \text{se } x \le 0\\ 2 - x^x & \text{se } x > 0 \end{cases}$$

- (a) Mostre que f é contínua em x = 0.
- (b) Determine os intervalos de monotonia de f, a concavidade do seu gráfico e, se existirem, as suas assímptotas.
- (c) Esboce o gráfico de f.
- (d) Mostre que f restringida ao intervalo $I =]1, +\infty[$ tem inversa $g = f^{-1}$ definida e diferenciável no intervalo J = g(I). Determine J e calcule g'(t) no ponto t = -2.

Problema 5 (4 val.) Sejam $f, g : \mathbb{R} \to \mathbb{R}$ funções diferenciáveis em \mathbb{R} .

- (a) Prove que se $\lim_{x\to +\infty} f(x) = \alpha \in \mathbb{R}, \ f(0) > \alpha \ e \ a \le 0$ então f tem máximo em $[a,+\infty[$.
- (b) Prove que se f(x) = g(x) tem 2 soluções então a equação f'(x) = g'(x) tem solução.
- (c) Prove que se f' é crescente em \mathbb{R} então g(x) = f(x)/x tem limite (finito ou infinito) quando $x \to +\infty$.
- (d) Supondo que $f^{(3)}$ existe em $V_{\delta}(0)$ e $(f(x)-2+x^2)/x^3 \to 4$ quando $x \to 0$, determine o polinómio de Taylor de f de ordem 3 no ponto a=0.

Cálculo Diferencial e Integral I LMAC/MEFT

1º Teste (VB) - 10 de Novembro de 2018 - 9:00 às 10:30

Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam 20 valores.

Problema 1 (4,5 val.) Calcule as derivadas das seguintes funções:

(a)
$$f(x) = x \ln(1 + \sqrt[3]{1 + x^2})$$
 (b) $g(x) = \sqrt{1 + \cos^2(x^3 - 1)}$ (c) $h(x) = x^{\arctan(e^x)}$

Problema 2 (4,5 val.) Calcule, se existirem (finitos ou infinitos), os seguintes limites:

(a)
$$\lim_{x \to 0} \frac{e^{-2x} - 1 + 2x - 2x^2}{x \operatorname{sen} x}$$
 (b) $\lim_{x \to +\infty} \frac{x^3 - x \operatorname{sen} x^2 + 1}{e^{x+1}}$ (c) $\lim_{x \to 0} \frac{x^x - 1}{x \ln x}$

Problema 3 (3 val.) Seja $f(x) = \cosh x$ e p_n o polinómio de Taylor de f de ordem n no ponto a = 0.

- (a) Calcule p_5 .
- (b) Mostre que $0 < f(x) p_n(x)$ para qualquer $x \in \mathbb{R}$ e qualquer $n \in \mathbb{N}$.
- (c) Mostre que $0 < f(x) p_5(x) < 1/300$ quando 0 < x < 1.

Problema 4 (4 val.) Considere a função $f: \mathbb{R} \to \mathbb{R}$ dada por:

$$f(x) = \begin{cases} x^x & \text{se } x > 0\\ 1 + xe^{-x^2} & \text{se } x \le 0 \end{cases}$$

- (a) Mostre que f é contínua em x = 0.
- (b) Determine os intervalos de monotonia de f, a concavidade do seu gráfico e, se existirem, as suas assímptotas.
- (c) Esboce o gráfico de f.
- (d) Mostre que f restringida ao intervalo $I =]1, +\infty[$ tem inversa $g = f^{-1}$ definida e diferenciável no intervalo J = g(I). Determine J e calcule g'(t) no ponto t = 4.

Problema 5 (4 val.) Sejam $f, g : \mathbb{R} \to \mathbb{R}$ funções diferenciáveis em \mathbb{R} .

- (a) Prove que se $\lim_{x\to -\infty} f(x) = \beta \in \mathbb{R}, \ f(0) < \beta \in b \ge 0$ então f tem mínimo em $]-\infty,b].$
- (b) Prove que se $f'(x) \neq g'(x)$ para qualquer $x \in \mathbb{R}$ então a equação f(x) = g(x) tem no máximo uma solução em \mathbb{R} .
- (c) Prove que se f' é decrescente em \mathbb{R} então g(x) = f(x)/x tem limite (finito ou infinito) quando $x \to +\infty$.
- (d) Supondo que $f^{(3)}$ existe em] -1,1[e $(f(x)-3+2x^2)/x^3 \to 3$ quando $x \to 0$, determine o polinómio de Taylor de f de ordem 3 no ponto a=0.