Universidade de Aveiro Departamento de Matemática

Cálculo II – Agrupamento IV

2018/2019

Soluções do Exame Final (19/junho/2019) (E ALGUMAS SUGESTÕES DE RESOLUÇÃO)

- 1. (a) D =]-2,4[.
 - (b) $G(2) = \frac{3}{2}$
- 2. (a) $\sqrt{1,5} \approx T_0^2 f(0,5) = \frac{39}{32}$.
 - (b) O erro absoluto cometido é dado por $|R_0^2f(0,5)|$, escreva a expressão do resto e majore.
- 3. (a) $f(x) \sim \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} \sin(nx)}{n}$.
 - (b) Domínio de convergência: \mathbb{R} , onde converge apenas pontualmente.
- 4. (a) Mostre que $\lim_{(x,y)\to(0,0)} g(x,y)$ não existe.
 - (b) g não é diferenciável em (0,0), pois g não é contínua nesse ponto.
 - (c) $\frac{\sqrt{2}}{2}$.
- 5. (a) $(0,0), (-\frac{5}{3},0), (-1,2) \in (-1,-2).$
 - (b) (0,0) é um minimizante local e $(-\frac{5}{3},0)$ é um maximizante local de f.
 - (c) \mathcal{D} é fechado e limitado e f é contínua em \mathcal{D} , logo, pelo Teorema de Weierstrass, a restrição de f a \mathcal{D} tem extremos globais.
- 6. $y = \frac{x}{-\ln x + C}, C \in \mathbb{R}.$
- 7. (a) Verifique que y=x e $y=e^x$ são soluções da EDO homógenea associada e que são linearmente independentes.
 - (b) $y = C_1 x + C_2 e^x + x^2 + x + 1$, $C_1, C_2 \in \mathbb{R}$.
- 8. $y(t) = \frac{5}{4}e^{-t} \frac{5}{4}e^{t} + \frac{7}{2}te^{t}, t \ge 0.$