Программирование Python

Лекция 7

Кафедра ИВТ и ПМ

2017

План

Прошлые темы

Множества

Пакет matplotlib

О параметрах функций

Outline

Прошлые темы

Множества

Пакет matplotlib

О параметрах функций

Что будет выведено на экран?

```
11 = [1,2,3,4]
12 = 11 * 2
print(12)
```

Что будет выведено на экран?

```
11 = [1,2,3,4]

12 = 11 * 2

print(12)
```

[1, 2, 3, 1, 2, 3]

- ▶ Как удалить элементы с индексами от 1 до 3 из списка? del 12[1:4]
- Что будет выведено на экран?

```
11 = [10, 20, 30]
12 = 11
11[2] = 999
print(12)
```


Что будет выведено на экран?

```
11 = [1,2,3,4]
12 = 11 * 2
print(12)
```

[1, 2, 3, 1, 2, 3]

- ▶ Как удалить элементы с индексами от 1 до 3 из списка? del 12[1:4]
- Что будет выведено на экран?

[10, 20, 999]

Что будет выведено на экран?

```
11 = [10, 20, 30]
12 = 11
11[2] = 999
print(12)
```

Что будет выведено на экран?
11 = [10, 20, 30]
12 = 11
11[2] = 999
print(12)
[10, 20, 999]

▶ Как создать копию списка?

Что будет выведено на экран? 11 = [10, 20, 30]12 = 1111[2] = 999print(12) [10, 20, 999] Как создать копию списка? 12 = 11.copy()или 13 = 11[:]

Что будет выведено на экран?
11 = [10, 20, 30]
12 = 11
11[2] = 999
print(12)
[10, 20, 999]

▶ Как создать копию списка?

```
12 = 11.copy()
или
13 = 11[:]
```

Что означает [:] в предыдущем примере?

Что будет выведено на экран?

```
11 = [10, 20, 30]
12 = 11
11[2] = 999
print(12)
```

[10, 20, 999]

Как создать копию списка?

```
12 = 11.copy()
или
13 = 11[:]
```

Что означает [:] в предыдущем примере?
 Это срез содержащий элементы списка от начала до конца.

Как определить находится ли слово в строке?

S = "Один Бритый Англичанин Финики Жевал, Как Морковь"

Как определить находится ли слово в строке?

S = "Один Бритый Англичанин Финики Жевал, Как Морковь"

```
if "Финики" in S:
    print("Есть такое слово!")
else:
    print("Нет такого слова")
```


Как добавить Юникод-символ с кодом?

S = "Один Бритый Англичанин Финики Жевал, Как Морковь"

Как добавить Юникод-символ с кодом?

S = "Один Бритый Англичанин Финики Жевал, Как Морковь"

```
S = "blah blah blah \u2211" или
```

S = "blah blah blah " + chr(0x2211)

Как работает сортировка выбором?

▶ Как работает сортировка выбором?

```
    72854
    27548
    251478
    24578

    27854
    217548
    251478
    24578

    271854
    225748
    24578
    (done)

    27584
    2251748
    (done)
```


Как работает алгоритм пузырьковой сортировки?

Как работает алгоритм пузырьковой сортировки?


```
print( list( range(5) ) )
```

```
print( list( range(5) ) )
  [0, 1, 2, 3, 4]
print( list( range(1,6) ) )
```

```
print( list( range(5) ) )
  [0, 1, 2, 3, 4]
print( list( range(1,6) ) )
  [1, 2, 3, 4, 5]
print( list( range(5,17, 3) ) )
```

```
print( list( range(5) ) )
  [0, 1, 2, 3, 4]

print( list( range(1,6) ) )
  [1, 2, 3, 4, 5]

print( list( range(5,17, 3) ) )
  [5, 8, 11, 14]
```

Какой из этих двух сниплетов лучше? Почему?

```
L = []
L = [0]*N
                                sum = 0
                                for i in range(2,N*2+1,2):
for i in range(1,N*2+1):
                                    sum += L[-1]
    L[i] = (2*i)**2 + L[i]
                                    L += (2*i)**2
```

Какой из этих двух сниплетов лучше? Почему?

```
L = [0]*N L = [] sum = 0 for i in range(1,N*2+1): L[i] = (2*i)**2 + L[i] L = (2*i)**2 L = [] L = [] sum = 0 for i in range(2,N*2+1,2): sum += L[-1] L = (2*i)**2 Правый вариант лучше: операция индексирования списка - медленная; здесь нет необходимости создавать список заренее.
```

Какой список будет создать в результате?

```
L = [ i % 2 for i in range(10) ]
```

Какой список будет создать в результате?

```
L = [ i % 2 for i in range(10) ]
[0, 1, 0, 1, 0, 1, 0, 1]
```

Какой список будет создан в результате?

```
L = [i*j for i,j in [(1,2),(3,4)]]
```

Какой список будет создать в результате?

```
L = [ i % 2 for i in range(10) ]
[0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
```

Какой список будет создан в результате?

```
L = [ i*j for i,j in [(1,2),(3,4)] ]
[2, 12]
```


- Как создать список из случайных целых чисел?
 - L = [randint(0, 100) for i in range(10)]
- Как создать список из случайных чётных чисел?

- ► Как создать список из случайных целых чисел?
 - L = [randint(0, 100) for i in range(10)]
- Как создать список из случайных чётных чисел?
 - L = [randint(0, 100)*2 for i in range(10)]

Как найти сумму каждого второго элемента в списке?

▶ Как найти сумму каждого второго элемента в списке?

```
L = [1,2,3,4,8]

sum = 0

for e in L[::2]:

sum += e

sum = 12
```

Outline

Прошлые темь

Множества

Пакет matplotlib

О параметрах функций

Множества

Что такое множество (в математике)?

Множества

- Что такое множество (в математике)?
- Может ли множество содержать один и тот же элемент дважды?

Множества

- Что такое множество (в математике)?
- Может ли множество содержать один и тот же элемент дважды?
- Определено ли отношение порядка для элементов множества?

- Что такое множество (в математике)?
- Может ли множество содержать один и тот же элемент дважды?
- Определено ли отношение порядка для элементов множества?

Создание множества

- ► Пустое множество s0 = set()
- ▶ Непустое множество s0 = {1, 3, -8, 4}

Используя пустые фигурные скобки создать пустое множество нельзя.

Создание множества из другого набора данных

▶ создание множества из списка

$$s1 = set([1, 0, -8, 22])$$

создание множества из кортежа

$$s2 = set((1, 0, -8, 22))$$

создание множества из строки

$$\# s3 = {' ', 'c', 'f', 'i', 'k', 'o', 'q', 'u', 'x'}$$

Каждый символ строки будет считаться отдельным элементом множества.

Множество может содержать элементы любого типа s4 = set([1, 7.125, "Hello"])

```
Mножество не допускат хранение одинаковых элементов s4 = set( ["A", 1, True, False, "A"] ) # s4 -> {False, 1, 'A'}
```

Добавление элементов в множество происходит в указанном порядке.

True не добавится потому, что 1 уже есть в множестве.

Операции с множествами

- ▶ получение размера множества len(s0)
- ▶ Проверка вхождения элемента в множество 0 in {-6,2,0, 8} # True
- Сравнение множеств

```
set1 == set2
```

True если все элементы множества set1 совпадают с элементами в set2

Операции с множествами

- Является ли множество set подмножеством other? set.issubset(other)
- Является лм множество set надмножеством other?set.issuperset(other)
- ► Все ли элементов множеств различны? set.isdisjoint(other) истина, если set и other не имеют общих элементов.

Операции с множествами

▶ Пересечение множеств
 newset = set.intersection(other, ...)
 aналогично
 newset = set & other & ...
 ▶ Является лм множество set надмножеством of

- Является лм множество set надмножеством other? newset = set.union(other, ...) аналогично minttext|newset = set | other | ...|
- ► Симметрическая разность

 newset = set.symmetric_difference(other)

 аналогично

 newset = set ^ other

Операции с множествами

- ▶ set.add(elem) добавляет элемент в множество.
- ► set.remove(elem) удаляет элемент из множества. KeyError, если такого элемента не существует.
- set.discard(elem) удаляет элемент, если он находится в множестве.
- set.pop() удаляет первый элемент из множества. Так как множества не упорядочены, нельзя точно сказать, какой элемент будет первым.
- ▶ set.clear() очистка множества.

Когда использовать множества?

Когда нужна коллекция элементов без повторений, в которой порядок не имеет значения.

Быстродействие

- операция проверки вхождения элемента в множество быстрее такой же операции для списка или кортежа.
- ▶ Но операция перебора множества медленнее чем аналогичная для списка.

Outline

Прошлые темь

Множества

Пакет matplotlib

О параметрах функций

Пакет matplotlib содержит модули предназначенные для построения диаграмм и графиков.

Модуль pyplot из этого пакета предназначен непосредственно для построения графиков. Этого модуля будет достаточно для построения относительно простых графиков.

Остальные модули пакета matplotlib содержат преимущественно функции для гибкой настройки вида графиков, осей, подписей к осям, компоновки нескольких графиков на одном листе и т.п.

from matplotlib.pyplot import plot

Основные функции модуля pyplot Создание графика **plot** - функция с переменным числом параметров. Если некоторые параметры не указаны, то им задаётся значение по-умолчанию.

plot(y-list) - создаёт график в памяти программы
y-list - список ординат (значений y).
 В качестве абсцисс (значений у) используются номера
значений из списка y-list, т.е. индексы.

help(plot)

plot(x-list, y-list)

```
x-list - список абсцисс (значений x).
y-list - список ординат (знаений y).
Длинны списков x-list и y-list должны быть одинаковы.
```

Дополнительные параметры

- plot(x-list, y-list, style)
 style стиль графика. Определяет цвет, вид кривой и точек
 - прямая линия
 - - пунктирная линия
 - только точки
 - ▶ v треугольники вместо точек

Цвета

- **▶ 'b'** blue
- ▶ 'g' green
- **▶ 'r'** red
- ▶ 'k' black

Дополнительную информацию о стилях см. в документации

Дополнительные параметры

- plot(x-list, y-list, style, label)
 label подпись к графику. По-умолчанию не показывается.
- ▶ plot(x-list, y-list, style, label, linewidth)
 linewidth толщина линии. По-умолчанию 1.

from matplotlib.pyplot import grid, xlabel, ylabel, legend

- grid(True) "включает" координатную сетку.
 Шаг сетки выбирается автоматически.
- ▶ xlabel("подпись") добавляет название для оси x
- ▶ ylabel("подпись") добавляет название для оси y
- legend(loc) добавляет к графикам пояснения (легенду)
 loc положение блока с пояснениями. По-умолчанию справа сверху.

Для автоматического выбора положения следует задать параметр loc = 'best'

from matplotlib.pyplot import show, savefig

- ▶ show() создаёт и показывает окно содержащие построенные функциями plot() графики. Оси координат строятся строятся автоматически, масштаб выбирается в зависимости от ширины и высоты графика.
- ▶ savefig(filename [, dpi]) сохраняет изображение графика в файл. Графический формат определяется по расширению файла. filename - имя файла

dpi - количество точек на дюйм (DPI)

Типичный алгоритм построения графика

- 1. Создать графики
- 2. Настроить оформление графика
- 3. Показать или сохранить график


```
X = list(range(-10,11))
Y = [x**2 for x in X]
plot(X,Y,'-o')
grid(True)
show()
```


На одном поле можно построить несколько графиков. Чтобы их различать стоит указать для них названия. Для этого будем явно задавать имя параметра: label

```
X = list(range(20))
Y1 = [x**2 for x in X]
Y2 = [x * log(x) for x in X]
plot(X,Y, label = 'mapa6ona')
plot(X,Y, label = 'x * log(x)')
grid(True)
show()
```


Гистограммы

Гистограмма - столбчатая диаграмма, способ графического представления табличных данных


```
from matplotlib.pyplot import bar bar(x-values, y-values) - строит гистограмму. x-values - значения х y-values - значения у (высоты столбцов)
```

```
X = [2,3,4,5]

Y = [10,20, 15,5]

bar(X,Y)

show()
```


Добавление дополнительных элементов на график

```
▶ Заголовок
title('1a TITLE')
```

```
► Tekct
text(x,y, 'Tekct')
```


Matplotlib и Jupyter По-умолчанию графики построенные в Jupyter будут показаны в ячейке вывода.

Чтобы показать их в отдельном окне, с возможностью масштабирования и перемещения следует перед построением графиков выполнить в Jupyter команду:

%matplotlib

Чтобы вернуть построение графиков в блокнот нужно выполнить команду %matplotlib inline

Эстетика графиков

На основе matplotlib создано много пакетов для визуализации данных. Один из них - sebaorn. Этот пакет предназначен для представления статистических данных и поэтому работа с ним может показаться немного сложнее.

Графики построенные этим модулем смотрятся лучше, чем аналогичные, построенные с помощью matplotlib (со стандартными настройками)

Для того чтобы использовать стиль оформления seaborn достаточно просто подключить этот модуль и далее работать с maplotlib.

Эстетика графиков

На основе matplotlib создано много пакетов для визуализации данных. Один из них - **sebaorn**. Этот пакет предназначен для представления статистических данных и поэтому работа с ним может показаться немного сложнее.

Графики построенные этим модулем могут выглядеть лучше, чем аналогичные, построенные с помощью matplotlib (со стандартными настройками)

Для того чтобы использовать стиль оформления seaborn достаточно просто подключить этот модуль и далее работать с maplotlib.

import seaborn

Пакет seaborn не входит в стандартную библиотеку Python. Поэтому его придётся установить отдельно используя программу рір (поставляется вместе с Python)

pip.exe install seaborn

Outline

Прошлые темь

Множества

Пакет matplotlib

О параметрах функций

Формальные параметры - параметры описанные при объявлении функции.

Фактические параметры - параметры которые фактически передаются в функцию при её вызове. В качестве таких параметров выступают выражения.

Число и порядок формальных параметров определяют число и порядок фактических параметров.

Рассмотрим *описание* функции range приведённое в документации:

range(start, stop) -> range object start, stop - формальные параметры.

При вызове на место формальных параметров нужно подставить фактические.

range(2, 10*2)

2 и 10*2 - фактические параметры.

Таким образом порядок и тип параметров, которые должны передаваться функции, чётко определён.

Функция plot не исключение. Например, если ей передано три параметра, то первый обязательно должен содержать абсциссы точек, второй - ординаты и третий - строку описывающую стиль графика.

Однако такой способ передачи параметров не всегда удобен: например нельзя оставить значение третьего параметра на усмотрение языка, передавая первый со вторым и четвёртый.

plot(X,Y, ,"парабола") # SyntaxError: invalid syntax

Нельзя предать в функцию название графика игнорируя параметр стиля.

Каждому параметру внутри функции может быть дано отдельно имя. Тогда можно передавать параметры в функцию не в строго определённом функцией порядке, а явно указывая имя параметра.

```
function ( param-name = expr )

param-name - имя формального параметра.
```

Используя этот способ можно задавать свои значения только определённым формальным параметрам.

Например:

```
plot(X, Y, label = 'график 1')
print("....", end="")
```

Ссылки и литература

- wikipedia: Matplotlib
- Matplotlib documentation
- Matplotlib: Научная графика в Python
- ▶ Использование библиотеки Matplotlib

Ссылки и литература

Ссылка на слайды

github.com/VetrovSV/Programming