

Цифровая обработка сигналов

Лабораторная работа № 7 Линейная фильтрация

Содержание

1 Теоретические сведения	2
1.1 Квазиоптимальная фильтрация	2
1.2 Развёртка сигнала	2
2 Задание на лабораторную работу	4
2.1 Оценка искажающей импульсной характеристики	4
2.2 Восстановление с помощью фильтра нижних частот и развёртки	5
2.3 Декодирование кода Морзе и вычисление ошибки восстановления	7
2.4 Квазиоптимальное восстановление с помощью фильтра Винера	8
2.5 Вычисление ошибки восстановления	10
3 Формат сдачи	10
Приложение 1. Код Морзе	11

Организация:	Самарский университет
Подразделение:	Кафедра геоинформатики и информационной безопасности
Версия:	2023.11.27-rc

1 Теоретические сведения

1.1 Квазиоптимальная фильтрация

Линейная модель наблюдения в дискретном времени:

$$y[n] = x[n] * h[n] + v[n],$$

где y[n] — наблюдаемый сигнал, x[n] — полезный сигнал, h[n] — импульсная характеристика искажающей системы, v[n] — шум.

Восстановление полезного сигнала осуществляется с помощью ЛИС-системы с импульсной характеристикой $h_{\rm B}[n]$:

$$\widehat{x}[n] = y[n] * h_{\mathbf{B}}[n].$$

Если восстанавливающий фильтр строится так, чтобы обеспечить минимум среднеквадратичной ошибки восстановления, то его отсчёты определяются уравнением Винера-Хопфа:

$$\begin{cases} \sum_{k \in D} h_{B}[k] R_{y}[m-k] = R_{xy}[-m], & m \in D, \\ h_{B}[m] = 0, & m \notin D, \end{cases}$$

где D — область определения восстанавливающего фильтра.

Средняя ошибка восстановления может быть оценена по формуле:

$$\sigma_e^2 = \sigma_x^2 - \sum_{m \in D} h_{\rm B}[m] R_{xy}[-m].$$

Если сигнал и шум независимы ($R_{xv}[n]=0$), то $R_{xy}[n]$ и $R_y[n]$ выражаются следующим образом:

$$R_{xy}[n] = R_x[n] * h[n],$$

 $R_y[n] = R_x[n] * h[n] * h[-n] + R_v[n].$

1.2 Развёртка сигнала

Развёртка (обратная свёртка, деконволюция) — операция, обратная свёртке сигналов. Пусть g[n]=f[n]*h[n]. Задача заключается в восстановлении сигнала f[n] по имеющимся сигналам g[n] и h[n].

По теореме о свёртке $G(z)=F(z)\cdot H(z)$. Отсюда $F(z)=G(z)\cdot \frac{1}{H(z)}$, то есть для получения сигнала f[n] необходимо к сигналу g[n] применить фильтр с передаточной функцией вида $\frac{1}{H(z)}$.

Пусть h[n] — конечная импульсная характеристика, состоящая из N отсчётов. Тогда передаточная функция $H(z)=\sum_{n=0}^{N-1}h[n]z^{-n}$ имеет вид многочлена, который

можно факторизовать, то есть представить в виде $h[0] \cdot \prod_{k=0}^{N-1} (1-p_k z^{-1})$, где p_k —

корни многочлена H(z). В итоге передаточная функция для операции развёртки примет вид

$$\frac{1}{h[0] \cdot \prod_{k=0}^{N-1} (1 - p_k z^{-1})}, |z| > \max_{k} |p_k|.$$

Для получения адекватных результатов данная система должна быть устойчивой, то есть $\max_k |p_k| < 1.$

В практическом плане для вычисления развёртки может использоваться scipy.signal.deconvolve, который внутренне реализован через деление многочленов (с учётом конечности всех сигналов). Обратите внимание, что функция возвращает два сигнала — результат развёртки и остаток. При применении этой функции необходимо убедиться в том, что процедура восстановления будет устойчивой, в противном случае на результат её работы полагаться нельзя. Сделать это можно явно (определить максимальный модуль корня многочлена $\max_k |p_k|$ и убедиться, что он меньше 1) или косвенно (значения остатка должны быть близки к нулю).

Рассмотрим случай, когда надо произвести развёртку для уравнения вида g[n]=f[n]*h[n]*h[-n]. В этом случае развёртка задаётся передаточной функцией $\frac{1}{H(z)\cdot H(z^{-1})}$. Допустим, что передаточная функция $\frac{1}{H(z)}$ удовлетворяет условию устойчивости: $\max_k |p_k| < 1$. Полюсами ЛИС-системы с передаточной функцией $\frac{1}{H(z^{-1})}$ будут значения $\frac{1}{p_k}$, а значит $\max_k \left|\frac{1}{p_k}\right| > 1$. С учётом особенности реализации $\frac{1}{H(z^{-1})}$ состойчивой.

Обойти неустойчивость можно, если решать задачу в два шага. На первом шаге вычисляется развёртка для f[n]*h[n]*h[-n] и h[n]. Получим вспомогательный сигнал p[n], который можно трактовать как оценку f[n]*h[-n]. На втором шаге необходимо вычислить развёртку $p[n] \approx f[n]*h[-n]$ и h[-n], но это процедура при применении «в лоб» неустойчива. Однако в выражении $p[n] \approx f[n]*h[-n]$ можно из-

менить направление всех сигналов: $p[-n] \approx f[-n] * h[n]$ и вычислить устойчивую развёртку сигналов p[-n] и h[n]. При этом получится обращённый по времени результат f[-n], который необходимо перевернуть обратно.

Обратим внимание, что обращение во времени возможно, только если сигнал присутствует в памяти целиком. Применить данный прием для построения фильтра с обработкой в реальном времени нельзя.

Пример демонстрации неустойчивой развёртки вида f[n]*h[n]*h[-n] приведён в файле deconvolve.py, который можно найти в репозитории курса.

2 Задание на лабораторную работу

2.1 Оценка искажающей импульсной характеристики

Скачайте из репозитория файл lab7.py, в котором будет выполняться лабораторная работа. Скачайте <u>отсюда</u> файл с данными XX.npy, где XX – номер вашего варианта.

Файл с данными представлен в виде матрицы, первая строка которой соответствует реализации y[n], вторая строка — реализации v[n], все оставшиеся строки — зашумленные реализации h[n].

y[n] — принятый (наблюдаемый) сигнал, в котором с помощью кода Морзе (см. Приложение 1) закодировано сообщение. Наблюдаемый сигнал является искажённым, поэтому непосредственное декодирование сообщения невозможно — сначала необходимо восстановить сигнал.

Для восстановления сигнала необходима дополнительная информация об искажениях, вносимых каналом связи. Для этого предоставлены сигналы v[n] и h[n].

v[n] — одна из реализаций принимаемого сигнала в условиях отсутствия передаваемого (полезного) сигнала x[n]=0, то есть содержит одну из возможных реализаций шума.

h[n] — тысяча реализаций принимаемого сигнала при передаче единичного импульса $x[n] = \delta[n]$. Каждая строка соответствует очередной реализации.

Шаг 1. В основной функции main загрузите все имеющиеся сигналы:

```
data = np.load("?.npy")
y = np.ravel(data[0, :])
v = np.ravel(data[1, :])
h = data[2:, :]
```

Получите оценку искажающей импульсной характеристики h[n]. В случае белого шума усреднение по множеству реализаций может дать достаточно хорошую оценку импульсной характеристики искажающей системы. Результат «прихорошите»:

Запишите полученную оценку ИХ на бумаге в виде функции. Проанализируйте обратный фильтр с передаточной функцией вида $\frac{1}{H(z)}$ на предмет устойчивости.

2.2 Восстановление с помощью фильтра нижних частот и развёртки

Напишите реализацию функции lowpass_reconstruct. Функция должна принимать наблюдаемый сигнал y[n] и импульсную характеристику искажающей системы h[n] (в этом варианте восстановления параметры шума не нужны; лишь предполагается, что он белый). Результатом работы функции должен являться восстановленный сигнал.

Пусть одна точка в коде Морзе занимает M отсчётов. Верхняя частота в полезном сигнале определяется сигналом, состоящим из одних только точек, то есть гармоникой с периодом 2M отсчётов. Обозначим относительную частоту, соответствующую такой гармонике, как ω_0 . Тогда основная энергия полезного сигнала сосредоточена в интервале частот $[0;\omega_0]$. Если шум белый, то в спектре он занимает всю полосу частот $[0;\pi]$. Тогда для реконструирования сигнала можно построить низкочастотный фильтр с частотой среза ω_0 :

$$H_{\rm B}(\omega) = \begin{cases} 1, & 0 < \omega < \omega_0; \\ 0, & \omega_0 < \omega < \pi. \end{cases}$$

Такой фильтр уберёт высокочастотные составляющие, в которых в основном сосредоточен только шум, не трогая при этом низкочастотные составляющие, в которых сосредоточен в основном полезный сигнал. На область отрицательных частот фильтр дополняется симметричным образом в условиях требования вещественности $h_{\rm B}[n]$.

Шаг 2.1. Проведите развертку наблюдаемого сигнала y[n] с импульсной характеристикой h[n] и получите оценку пока ещё зашумленного полезного сигнала $x_1[n]$.

Шаг 2.2. Постройте амплитудный спектр $|X_1[m]|$. При построении амплитудного спектра, чтобы избежать неинтересующего нас пика в области нулевой частоты (пропорциональному среднему значению сигнала) предварительно можно вычесть сред-

нее значение из всего сигнала. По позиции максимума в спектре определите размер одной точки Морзе M и соответствующую частоту среза ω_0 .

Пример получающегося амплитудного спектра приведён на рисунке ниже. Обратите внимание, что помимо ярко выраженного пика с частотой ω_0 , есть также пики на частотах $3\omega_0$, $5\omega_0$, $7\omega_0$ и т. д. Таким образом, для более надёжного определения значения ω_0 можно (но необязательно) воспользоваться кепстром. Однако в случае использования кепстра будьте готовы объяснить, почему не наблюдаются пики на частотах $2\omega_0$, $4\omega_0$ и т. д.

Шаг 2.3. С помощью обратного ДВПФ рассчитайте на бумаге вид импульсной характеристики $h_{\rm B}[n]$ для идеального низкочастотного фильтра $H_{\rm B}(\omega)$ с частотой среза ω_0 . Получится физически нереализуемая БИХ-система, при этом $\lim_{n \to \pm \infty} h_{\rm B}[n] = 0$. Можно построить неидеальную КИХ-аппроксимацию такого фильтра, если искусственно ограничить область определения, положив $h_{\rm B}[n] = 0$ при $n \notin [-(N \ {
m div}\ 2); N \ {
m div}\ 2]$, где N — нечётное число, определяющее размер фильтра (количество ненулевых отсчётов импульсной характеристики).

Чтобы фильтр сделать окончательно реализуемым, импульсную характеристику необходимо задержать (сдвинуть вправо) на $N \ {
m div} \ 2$ отсчёта.

Для выполнения этого шага реализуйте вспомогательную функцию build_lowpass для расчёта низкочастотного КИХ-фильтра с частотой среза ω_0 и размером в N отсчётов.

Если всё сделано верно, то рассчитанная импульсная характеристика, например, для $\omega_0=0.2\pi$ и n=51, должна выглядеть следующим образом:

Обратите внимание, что за счёт задержки импульсной характеристики для обеспечения физической реализуемости фильтра, применение такого фильтра будет вносить задержку на $N \ {
m div} \ 2$ отсчёта.

Шаг 2.4. Используя значение частоты среза ω_0 (из шага 2.2) и функцию build_lowpass (из шага 2.3), рассчитайте $h_{\rm B}[n]$. Размер фильтра положите равным 51.

Примените рассчитанный фильтр к сигналу $x_1[n]$ (из шага 2.1) — рассчитайте свёртку $x_1[n]*h_{\rm B}[n]$ с помощью <code>scipy.signal.convolve</code> и получите оценку полезного сигнала $\hat{x}[n]$ — основной результат работы функции lowpass_reconstruct.

2.3 Декодирование кода Морзе и вычисление ошибки восстановления

Данный подраздел выполняется в функции main. Вызовите функцию lowpass_reconstruct и визуализируйте восстановленный сигнал.

Шаг 3.1. По сигналу $\hat{x}[n]$ восстановите закодированное с помощью кода Морзе сообщение. Если всё сделано верно, но сигнал $\hat{x}[n]$ должен выглядеть следующим образом:

Можно немного упростить процесс декодирования, если провести пороговую обработку сигнала (все значения меньше 0,5 заменить на 0, все значения больше или равные 0,5 заменить на 1):

Обратите внимание, что восстановленный сигнал не является идеальным — например, в первом тире присутствует провал, а после трёх точек — ложный пик.

Далее восстановите закодированое сообщение. Разрешается сделать это как вручную (просто — визуально по графику), так и автоматически (сложнее — придётся подумать и написать какой-то код).

Шаг 3.2. Имея декодированное сообщение и значение M, постройте идеальный сигнал x[n] с помощью функции morse_encode (реализация данной функции присутствует в данном вам шаблоне). Если вы использовали автоматическое восстановление с дополнительной фильтрацией на прошлом шаге, то сигнал с прошлого шага должен полностью совпадать с идеальным. Пример идеального сигнала приведён на рисунке ниже.

Рассчитайте среднеквадратичную ошибку (MSE) между идеальным сигналом x[n] и восстановленным сигналом $\hat{x}[n]$ (из шага 2.4, до применения пороговой обработки).

Учтите, что $\hat{x}[n]$ является сдвинутым по сравнению с x[n] из-за задержки, вносимой восстанавливающим фильтром. То есть при сравнении сигналов их предварительно нужно выровнять по времени (компенсировать задержку). Кроме того, наблюдаемый сигнал y[n] (а значит, и восстановленный сигнал) дан с некоторым запасом по длине. При сравнении обрежьте восстановленный сигнал до размера идеального сигнала.

2.4 Квазиоптимальное восстановление с помощью фильтра Винера

Рассчитайте и примените квазиоптимальный фильтр, построенный на той же области, что и низкочастотный фильтр из подраздела 2.2: $D=\{-(N~{
m div}~2),...,N~{
m div}~2\}, N=51.$

Обратите внимание на два момента. Во-первых, при построении фильтра на такой области будут нужны отсчёты АКФ в области нуля. Для того, чтобы избежать различных краевых эффектов при развёртке, формируйте оценки АКФ так, чтобы нулевой отсчёт АКФ оказывался примерно в центре сигнала (т. е. задерживайте АКФ как минимум на величину порядка $N \ {
m div} \ 2$). Во-вторых, в условиях построения фильтра Винера необходимо получить ненормированные оценки АКФ — такие, что $R[0] = \sigma^2$.

Шаги данного подраздела выполняются в функции suboptimal reconstruct.

Шаг 4.1. С помощью statsmodels.tsa.stattools.acf и numpy.var оцените $R_u[n]$ и $R_v[n]$ по имеющимся реализациям.

Шаг 4.2. Используя известные выражения для $R_{xy}[n]$ и $R_x[n]$ в условиях независимости полезного сигнала и шума, оцените эти АКФ с помощью развёртки.

Так как на шаге 3.2 был получен идеальный полезный сигнал, можно (но необязательно) построить оценку АКФ по самому полезному сигналу и сравнить её с оценкой, полученной на данном шаге. Отметим, что такое сравнение делается исключительно для факультативной проверки правильности выполнения данного шага и не требуется для решения поставленной задачи (ведь строится фильтр для получения оценки полезного сигнала, самого полезного сигнала пока нет).

Если всё сделано правильно, то оценки АКФ (по полезному сигналу и через развёртку по АКФ наблюдаемого сигнала) должны выглядеть примерно так:

Обратите внимание, что оценки задержаны примерно на 100 отсчётов и построены на области D с запасом по краям.

Шаг 4.3. Составьте систему линейных уравнений Винера-Хопфа, решите систему с помощью numpy.linalg.solve и примените (вычислите свёртку) построенный фильтр к наблюдаемому сигналу для получения оценки $\hat{x}[n]$. Обратите внимание, что здесь аналогичным образом нужно компенсировать задержку, вызванную обеспечением физической реализуемости восстанавливающего фильтра.

Шаг 4.4. По оценке дисперсии полезного сигнала $R_x[0]$ и вычисленной $h_{\rm B}[n]$ оцените погрешность восстановления по формуле из подраздела <u>1.1</u>.

2.5 Вычисление ошибки восстановления

Шаг 5. В функции main вызовите функцию suboptimal_reconstruct. Рассчитайте среднеквадратичную ошибку. Как и в прошлом случае, ошибку нужно считать между идеальным полезным сигналам (шаг 3.2) и оценкой, непосредственно получаемой сразу после применения квазиоптимального фильтра (но до всяких пороговых обработок).

3 Формат сдачи

Помимо файла (файлов) с выполненной лабораторной работой, предоставить в письменном виде на бумаге:

- 1) аналитический вид искажающей h[n] и доказательство устойчивости обратного фильтра $\frac{1}{H(z)}$ (шаг 1);
- 2) значение M[отсчёты] размер одной точки кода Морзе и соответствующее значение частоты среза ω_0 $\left[\frac{\text{рад}}{\text{отсчёт}}\right]$ (шаг 2.2);
- 3) аналитический вид $h_{\rm B}[n]$ идеального фильтра нижних частот с частотой среза ω_0 (шаг 2.3);
 - 4) текст восстановленного сообщения (шаг 3.1);
- 5) значение среднеквадратичной ошибки $\sigma_{e_1}^2$ при восстановлении сигнала с помощью фильтра нижних частот (шаг 3.2, рассчитывается с использованием идеального и восстановленного сигналов);
- 6) значение среднеквадратичной ошибки $\sigma_{e_2}^2$ при восстановлении сигнала с помощью фильтра Винера (шаг 5, рассчитывается с использованием идеального и восстановленного сигналов);
- 7) оценка MSE-ошибки σ_e^2 при восстановлении сигнала с помощью фильтра Винера (шаг 4.4, рассчитывается по соответствующему уравнению без использования непосредственных реализаций сигналов, лишь с использованием их статистических характеристик и $h_{\rm B}[n]$).

Если всё сделано верно, то $\sigma_{e_1}^2 > \sigma_{e_2}^2$. Значения $\sigma_{e_2}^2$ и σ_e^2 в общем случае могут отличаться друг от друга в обе стороны (и достаточно сильно, это нормально). Примерный диапазон верного значения $\sigma_{e_1}^2$ — [0.04...0.07].

Приложение 1. Код Морзе

- 1. The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.
- 5. The space between words is seven units.

