EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

: 2002329578

PUBLICATION DATE

15-11-02

APPLICATION DATE

: 27-04-01

APPLICATION NUMBER

: 2001133598

APPLICANT:

FUJI PHOTO FILM CO LTD:

INVENTOR

OKADA HISASHI;

INT.CL.

H05B 33/14 C09K 11/06 H05B 33/22

TITLE

ORGANIC ELECTROLUMINESCENT

ELEMENT

(R₂₁)q₂₁

(R₂₁)q₂₁

(R₂₂)q₂₂

(I)

$$R_1 \sim R_7$$
の少なくとも2つが式(4) $R_1 \sim R_7$ の少なくとも2つが式(4) $R_1 \sim R_7$ の少なくとも2つが式(4) $R_1 \sim R_7$ の少なくとも2つが式(4)

ABSTRACT

PROBLEM TO BE SOLVED: To provide blue color and white color luminescent elements with high color purity and high durability.

SOLUTION: White color light is emitted by utilizing lights of blue color and orange color of complementary colors, an organic compound layer 200 is placed between an anode 12 and a cathode 14, and the organic compound layer 200 has a luminescent layer containing an organic compound represented by chemical formula i (in the formula R_{21} - R_{26} represent an optional substituent group, q_{21} - q_{23} represent an integer of 0-9) and a luminescent layer containing an organic compound represented by a chemical formula 3 in which at least two of R_1 - R_7 in the formula are a substituent group of a chemical formula 4. The luminescent layer is formed by doping as a guest material the compound represented by the chemical formula 3 in part or the whole of a luminescent layer having the compound represented by the chemical formula i as a host material. The compound represented by the chemical formula 3 efficiently emits blue color light and is chemically stable. The compound represented by the chemical formula 3 efficiently emits orange color light, and is chemically stable, and an excellent white color luminescent element is realized by these two materials.

COPYRIGHT: (C)2003, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-329578 (P2002-329578A)

(43)公開日 平成14年11月15日(2002.11.15)

(51) Int.Cl. ** 議別記号									
C 0 9 K 11/06 6 1 0 C 0 9 K 11/06 6 1 0 6 2 5 6 2 5 6 4 5 H 0 5 B 33/22 B		•	識別記号		FΙ			Ť	-7]-}*(参考)
6 2 5 6 4 5 H 0 5 B 33/22 B	H 0 5 B 33/1	4			H05B	33/14		В	3 K O O 7
6 4 5 H 0 5 B 33/22 H 0 5 B 33/22 B	CO9K 11/0	6	610	•	C09K	11/06		610	
H 0 5 B 33/22 H 0 5 B 33/22 B			6 2 5					625	
110 0 2 00/12			6 4 5					6 4 5	
審査請求 未請求 請求項の数7 OL (全 20 頁) 最終頁に続く	H 0 5 B 33/2	2			H05B	33/22		. В	
				審查請求	未請求 請求	成項の数7	ÖL	(全 20 頁)	最終頁に続く

(21)出願番号 特願2001-133598(P2001-133598) (71)出願人 000003609 株式会社豊田中央研究所 愛知県愛知郡長久手町大字長湫字横道41番 地の 1 (71)出願人 000005201 富士写真フイルム株式会社 神奈川県南足柄市中沼210番地 (72)発明者 石井 昌彦 愛知県愛知郡長久手町大字長湫字横道41番 地の 1 株式会社豊田中央研究所内 (74)代理人 100075258

最終頁に続く

(54) 【発明の名称】 有機電界発光素子

(57)【要約】

(修正有)

【課題】 色純度が高くかつ高耐久性の青色と白色発光 素子を実現すること。

【解決手段】 補色関係にある青色と橙色を利用して白色発光を実現しており、陽極12と陰極14の間に有機化合物層200を備え、この有機化合物層200は、下記化学式(i)

$$(R_{21})q_{21}$$
 R_{24}
 R_{25}
 (i)

(但し式中の $R_{21} \sim R_{20}$ は任意の置換基、 $q_{21} \sim q_{20}$ は、 $0 \sim 9$ の整数)で表される有機化合物を含む発光

層と、下記化学式(3)

弁理士 吉田 研二 (外2名)

で表され、式中のR1~R7の少なくとも2以上が化学式(4)の置換基よりなる有機化合物を含む発光層とを有する。又は化学式(i)の化合物をホスト材料とする発光層の一部または全域に上記化学式(3)の化合物をゲスト材料としてドープした発光層とする。化学式(i)の化合物は高効率な青色発光を示し、化学的にも安定である。化学式(3)の化合物はドープされた状態で橙色に高効率で発光し、かつ化学的に安定で、2つの材料により優れた白色発光素子が実現される。

【特許請求の範囲】

【請求項1】 第1及び第2電極間に有機化合物層を備える有機電界発光素子であり、前記有機化合物層は、下記化学式(i)

【化1】

$$(R_{21})q_{21}$$
 R_{24}
 R_{25}
 $(R_{22})q_{22}$
 $(R_{22})q_{22}$

(但し式中の $R_{21}\sim R_{26}$ は任意の置換基、 $q_{21}\sim q_{28}$ は、 $0\sim 9$ の整数)で表される有機化合物を含む発光層を少なくとも有し、該発光層中には、少なくとも1種以上の蛍光色素を0.1mo1%から10mo1%含有

することを特徴とする有機電界発光素子。

【請求項2】 請求項1に記載の有機電界発光素子に おいて、前記有機化合物層は、正孔輸送層を有し、該正 孔輸送層は、下記化学式(1)

【化2】

(但し式中の $Ar_{31} \sim Ar_{33}$ は任意のアリール基または 芳香族へテロ環基を示す。)で表される有機化合物を含 有することを特徴とする有機電界発光素子。

【請求項3】 請求項1又は請求項2に記載の有機電 界発光素子において,前記蛍光色素が,下記化学式 (2)

【化3】

$$\begin{array}{c|c} R_{44} & -N \\ \hline R_{45} & -N \\ \hline R_{45} & -N \\ \hline \end{array}$$

(但し式中のR41~R44は任意の置換基を示し、 Ar41は、任意のアリール基または芳香族へテロ環基を示す。)で表されることを特徴とする有機電界発光素子。 【請求項4】 第1及び第2電極間に有機化合物層を備える有機電界発光素子であって、

前記有機化合物層は、下記化学式(i)

【化4】

で表され、式中の $R_1 \sim R_2$ の少なくとも 2以上が化学式

(但し式中の $R_{21} \sim R_{26}$ は任意の置換基、 $q_{21} \sim q_{23}$ は、 $0 \sim 9$ の整数)で表される有機化合物を含む第1発光層と、

下記化学式(3)

【化5】

R,~R,の少なくとも2つが式(4)

$$\begin{array}{c}
 & \text{Rn} \\
 & \text{Rn}
\end{array}$$
(4)

(4)で示される置換基(但し式中のR。とR、。は任意

の置換基, nは1以上の整数, Qは芳香族基)より構成される有機化合物を含む第2発光層と

を有することを特徴とする有機電界発光素子。

【請求項5】 第1及び第2電極間に少なくとも1つの 有機化合物層を備える有機電界発光素子であり、

前記有機化合物層は、下記化学式(i)

1461

で表され、式中の $R_1 \sim R_7$ の少なくとも2以上が化学式 (4)で示される置換基(但し式中の R_n と R_n " は任意の 置換基、nは1以上の整数、Qは芳香族基)より構成される有機化合物を含有することを特徴とする有機電界発光素子。

【請求項6】 請求項4又は請求項5に記載の有機電界発光素子において。

前記化学式(4)中のQは、下記化学式(5) 【化8】

$$Q: \begin{array}{c} R_{\theta} \\ R_{10} \\ R_{11} \end{array}$$
 (5)

Ro: R8-R12

(但し式中のR₂〜R₁₂は任意の置換基)で表されることを特徴とする有機電界発光素子。

【請求項7】 請求項4~6のいずれか一つに記載の有機電界発光素子において、前記化学式(4)中のnが、2以上であることを特徴とする有機電界発光素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、有機電界発光素子(以下、有機Eし素子という)、特に青色発光機能を備えた有機Eし素子、及び、その青色発光機能を用いた白色発光機能を備えた素子に関する。

(但し式中の $R_{21} \sim R_{20}$ は任意の置換基、 $q_{21} \sim q_{22}$ は、 $O \sim 9$ の整数)で表される有機化合物を含む発光層を有し、該発光層の少なくとも一部の領域では、さらに、下記化学式(3) 【化7】

R,~R,の少なくとも2つが式(4)

$$R_n$$
 (4)

[000.2]

【従来の技術】有機EL素子は、省電力に有利であり、 高視野角かつ高輝度発光が可能であるという特性を備え ており、次世代平面ディスプレイ素子や、その平面光源 として注目されている。

【0003】このような有機EL素子において、白色発光を実現することは、表示パネルの多色化、フルカラー化の要求に加えて、白色発光そのものを表示光としたり、液晶ディスプレイ等のバックライトへのニーズもあり、その波及効果は大きい。しかし、従来技術において、白色発光機能を実現するための青色発光が低輝度でしかも駆動寿命が短いといった問題があった。

【0004】白色発光を達成するためには、まず、高効率長寿命の青色発光を実現し、

- 1) RGB3波長からの発光を用いる方法、
- 2) 青+黄色〜橙色、または、青緑+赤の2波長の補色 関係を用いる方法

があり、また、1)の3波長方式の場合、RGB各色の発光層を積層する方法(1-a)とRGB各蛍光色素を発光層中に同時にドープする方法(1-b)とがある。

【0005】(1-a)の方法では、駆動によって青色ELの成分の強度が低下し、それに伴い白色ELスペクトルが変化することによる色ずれや再結合ゾーンが複数の層にまたがるために発光効率が低いという問題があった。(1-b)の方法では、さらに高分子系と低分子系とに分けられる。高分子系の場合、塗布液調整の段階で各色の蛍

光色素を混合することにより白色を得るが、色素混合の 制御が困難なため発光効率および駆動安定性が実用には 遠い、低分子系では、真空蒸着法により各色の蛍光色素 を同一発光層中にドープすることは可能であるが、同時 に多数の蒸着源の蒸着速度を制御して各色素のドープ量 を調整するので、実際の生産を考えると非常に困難であ る。

【0006】2)の2波長の補色を用いる方法にも、2 色の発光層を積層する方法(特許2991450号、特 開平4-284395号公報、特開平6-158038 号公報、W098/08360)と、一つの発光層で2 色の発光を得る方法(特開平9-208946号公報、 特開平9-219289号公報、特開平11-3297 34号公報)がある。

【0007】2つの発光層を積層する方法においては、電子及び正孔の注入・再結合・発光の機会が増加するなどの効率向上効果も期待できる。また、1つの発光層で2色の発光を得る方法では、構造が簡略化され、かつ、駆動に伴う色ずれが起きにくいと予想される。

[0008]

【発明が解決しようとする課題】しかしながら、2色の補色を用いる場合、青緑と赤色の組み合わせにおいては、現在提案されている多くの赤色色素では、正孔輸送層中にドープして用いる場合に、その蛍光ピークが短波長側にシフトしてしまう。従って、赤色発光が得られなくなり、結果として白色の色すれが発生するという問題がある。また、今日現在において、緑色色素に匹敵がある。また、今日現在において、緑色色素に匹敵がある。また、今日現在において、緑色色素に匹敵がある。また、今日現在において、緑色色素に匹敵がある。また、今日現在において、緑色色素に匹敵がある。また、今日現在において、緑色色素に匹敵がある。また、今日現在において、緑色色素とである。しかし、この場合には、白色発光を得る上で純度の高い青色発光が要求されることが必須条件となる。

【0009】本発明の目的は、色純度が高く、しかも高 効率長寿命の青色発光を実現する事である。また他の目 的は、さらに上記青色発光を利用し、純度の高い白色光 を効率良くかつ安定に得ることの可能な有機EL素子を 提供することである。

[0010]

【課題を解決するための手段】上記目的を達成するため に本発明に係る有機EL素子は、まず、良好。特性を有 する青色素子を構成し、その青色発光と黄、橙色発光の補色を利用して白色発光を実現しており、青色発光に関して具体的には、第1及び第2電極間に有機化合物層を備える有機EL素子であって、前記有機化合物層は、下記化学式(i)

【化9】

(但し式中の $R_{21} \sim R_{26}$ は任意の置換基、 $q_{21} \sim q_{20}$ は、 $0 \sim 9$ の整数)で表される有機化合物を含む発光層を有し、該発光層中に、少なくとも1種以上の蛍光色素を0.1mol%から10mol%含有する。

【0011】化学式(i)で表される有機化合物は、蛍 光色素をドープすることなく、それ自体を発光層に用い ても高効率な青発光を得ることができるが、蛍光色素を ドープすることで、さらに、高輝度化と長寿命化が図ら れる。

【0012】ここで、上記蛍光色素として、発光波長ピークが480 nm以下であり、化学式(i)の蛍光波長領域に吸収をもつ蛍光色素を用いれば、より効率よく蛍光色素に化学式(i)からのエネルギーを伝達することでき、高効率の青色発光を実現できる。さらに、蛍光色素をドープすることで、励起エネルギーが蛍光色素に伝達するので、化学式(i)が励起状態になる時間が短くなり、化学式(i)の有機材料が電気化学的に劣化するのを防ぐこともでき、長寿命化にも役立つ。このような条件を満たす蛍光色素としてスチリルベンゼン誘導体、ペリレン誘導体、ビススチリルアントラセン誘導体、スチリルアミン誘導体、ビススチリルアントラセン誘導体、スチリルアミン誘導体などが代表され、一般式としては、下記化学式(2)

【化1.0】

$$R_{44} - N - R_{45}$$
 R_{45}
 R_{45}
 R_{45}
 R_{46}
 R_{47}

で表される色素を用いることができる。

【0013】駆動時の電流によるジュール熱による有機 化合物層のモルフォロジーの変化や結晶化が膜(素子) 寿命を短くするが、ドープした蛍光色素による構造の安 定化による効果で劣化を緩和する効果もある。このよう な効果が高い有機色素は、ガラス転移温度や融点が高い ことが要求され、比較的分子量が大きいスチリルベンゼ ン誘導体、ビススチリルアントラセン誘導体、スチリル アミン誘導体などが好適である。

【0014】これらの蛍光色素のドープ量としては、十分にホストからエネルギー移動されるために、ホスト材料の0.1mo1%以上、蛍光色素同士の会合などによる濃度消光を避けるために10mo1%以下が適量である。このような条件を考慮して蛍光色素材料とドープ量を選択することで、蛍光色素をドープすることなく良好な青発光が得られている化学式(i)の特性をさらに向上させることができる。

で表され、式中の $R_1 \sim R_7$ の少なくとも 2以上が化学式 (4)で示される置換基(但し式中の R_n と R_n は任意の 置換基、nは 1以上の整数、Qは例えば後述する化学式 (5)などで表される芳香族基)より構成される有機化 合物を含む第 2 発光層と、を有する。

【0016】化学式(i)で表される有機化合物は、色素をドープすることなく、それ自体を発光層に用いても高効率な青色発光を得ることができる。また、この化合物は160℃以上のTgを有し、化学的にも安定である。

【0017】また、化学式(3)で表される有機化合物は、電子輸送性発光層のホストとして広く用いられているAlq(キノリノールアルミ錯体)中にドープしても、正孔輸送層として用いられる芳香族三級アミン中にドープしても550~600nm付近にピーク波長を有する橙色発光を高効率で示す。特に、正孔輸送層中にドープした場合に安定な黄色発光を示すことで知られているルブレンをドープした場合と比較して、より長波長側にピーク波長を有し、かつ、同等の高耐久性(輝度半減寿命)を示す。

【0018】上記化学式(i)の有機化合物及び化学式(3)の有機化合物をそれぞれ用いることで、同一素子からの青色発光と橙色発光の混色により色純度の優れた白色光が得られ、かつ高効率発光が可能で、さらに高耐久性を有する有機電界発光素子を実現できる。

【0019】本発明の他の態様は、第1及び第2電極間に複数の有機化合物層を備える有機EL素子であり、前記有機化合物層は、上記化学式(i)で表される有機化合物を含む発光層を有し、この発光層はその少なくとも一部の領域又は層内全域に、上記化学式(3)で表され、式中のR₁~R₇の少なくとも2以上が化学式(4)で示される置換基より構成される有機化合物を含有することである。

【0020】また以上において、化学式(4)の末端基 Qとしては、下記化学式(5) 【0015】本発明の他の態様に係る有機EL素子は、上記のような青色発光と、これと補色関係にある発光とを利用して白色発光を実現しており、具体的は、第1及び第2電極間に有機化合物層を備える有機EL素子であって、前記有機化合物層は、上記化学式(i)(但し式中のR₂₁~R₂₆は任意の置換基、q₂₁~q₂₅は、0~9の整数)で表される有機化合物を含む第1発光層と、下記化学式(3)

【化11】

R、~R,の少なくとも2つが式(4)

$$\begin{array}{c}
Rn \\
Rn
\end{array}$$
(4)

【化12】

Q:
$$R_{6} = R_{10}$$
 (5)

.

で示される構成を採用することができる。

【0021】化学式(i)に示す有機化合物と化学式(3)に示す有機化合物とは同一層中に存在した場合にも共に発光する。従って、同一発光層中で、化学式

(i)の有機化合物に起因した青色の光と、化学式

(3)の有機化合物に起因した橙色の光を得ることができる。この2種類の有機化合物のうち、化学式(i)に示す化合物はホスト材料として用いることができ、また化学式(3)に示す化合物は、上記ホスト材料中にドープされるゲスト材料として用いることができる。

【0022】特に、発光層全域において、化学式(i)に示す有機化合物と、化学式(3)に示す有機化合物とを含む構成の場合、発光層全域で青色と橙色の発光が得られる。よって二つの発光色の発光位置が異なる積層型の素子と比較すると、色度の視野角依存性を著しく改善することができる。また、積層型では輝度を変化させたときに印加される電界が変化することにより再結合領域が変動し、そのため、色度が輝度依存性を示す可能性がある。しかし、発光層全域で異なる2色が発光する構成とすれば、二つの発光色の発光位置が相対的にみて変化しないので、色度の輝度依存性を示さない。

[0023]

【発明の実施の形態】以下、図面を用いてこの発明の好適な実施の形態(以下実施形態という)について説明する。

【0024】図1は本発明に係る青色あるいは白色発光を示す有機EL素子の概略断面構成を示している。図1 において、ガラスなどの透明基板10の上に透明電極と してIT〇 (Indium Tin Oxide)等を用いた陽極12が形成され、その上に多層構造の有機化合物層200が形成され、この有機化合物層200の上に金属材料として、例えばLiFとA1を用いて陰極14が形成されている。各層は、基板側から順に、例えば真空蓋着によって積層される。有機化合物層200は、少なくとも発光層30を備え、発光層の単層構造の他、正孔輸送層と発光層との積層構造、発光層と電子輸送層との積層構造、正孔輸送層及び発光層及び電子輸送層の積層構造などを取りうることができる。図1の例では、この有機化合物層200は、陽極12側がら順に正孔注入層20、正孔輸送層22、発光層30及び電子輸送層28が積層されている。

【0025】[実施形態1]実施形態1に係る有機LL索子では、上記発光層30が下記化学式(i)

【化13】

$$(R_{21})q_{21}$$
 R_{24}
 R_{25}
 $(R_{22})q_{22}$
 R_{44}
 R_{43}
 $(R_{22})q_{22}$
 R_{44}
 R_{45}
 R_{42}

で表されるような有機化合物を用いることができる。 【0027】また正孔輸送層としては、特にこれに限られるものではないが、下記化学式(1)

(但し式中のAra)~Ara。は任意のアリール基または

(但し式中のR₂₁~R₂₆は任意の置換基、Q₂₁~Q₂₂は、0~9の整数)に示す有機化合物を含み、青色蛍光色素がゲスト材料としてドープされている。この発光層30に対し、陰極14から電子が注入され、陽極12から正孔が注入されると正孔と電子が上記化合物(i)中で再結合し励起子が生成され、そのエネルギーがゲストの蛍光色素に移動し、蛍光材料に起因した青色発光が得られる。

【0026】ここでこの蛍光色素としては下記化学式(2)

【化14】

芳香族へテロ環基を示す。)で表される有機化合物を採用することができる。具体的には、後述する化学式(8)などに表されるTPTEなどが挙げられる。

【0028】[実施形態2]実施形態2に係る有機EL素子は、上記発光層30が第1発光層と第2発光層とからなる2層構造を備える。この発光層30のうち第1発光層(ここでは電子輸送層28側に形成)は、上記化学式(i)(但し式中のR₂₁~R₂₆は任意の置換基、Q₂₁~Q₂₃は、0~9の整数)に示す有機化合物を含む。また、第2発光層(正孔輸送層22側に形成)は、下記化学式(3)

【化16】

R₁~R₇の少なくとも2つが式(4)

$$\begin{array}{c}
 & \text{Rn} \\
 & \text{Rn}
\end{array}$$
(4)

で表される有機化合物 (式中の $R_1 \sim R_2$ の少なくとも2以上は化学式(4)で示される遺換基)を含む。

【0029】このような2層構造の発光層30に対し、 陰極14から電子が注入され、陽極12から正孔が注入 されると上記化学式(i)に示される有機化合物に起因 した青色発光が第1発光層(青色発光層)で得られ、か つ上記化学式(3)で示される有機化合物に起因した橙 色発光が第2発光層(橙色発光層)で得られる。両発光 層で得られる青色と橙色とは補色関係にあるため、この 2色が対応する第1及び第2発光層で得られることで本 実施形態2に係る有機EL素子は、白色発光が実現され る。

【0030】[実施形態3]次に、実施形態3に係る有機EL素子について説明する。実施形態2と相違する点は、発光層30の構成である。実施形態2では、発光層は、青色発光層(第1発光層)と橙色発光層(第2発光層)の2層構造であったが、実施形態3に係る有機EL素子において、発光層30は、上記化学式(i)に示される有機化合物をホスト材料として含有し、この発光層の一部の領域(ドーピング発光層)に上記化学式(3)に示される有機化合物をゲスト材料として含有した構成である。

【0031】ここで、発光層30の一部領域に含むとは、特に、積層方向の特定位置の面内において化学式(3)の有機化合物が含まれていることを意味している。このような発光層30のドーピング発光層は、例えば図1において正孔輸送層22の形成後、ホスト材料である化学式(i)の有機化合物の蒸着と同時に、ゲスト材料として化学式(3)の有機化合物を蒸着することで得ることができる。正孔輸送層22上に所定の厚さのドーピング発光層を堆積した後、化学式(3)の有機化合物の蒸着を止め、連続して化学式(i)の有機化合物の革着を止め、連続して化学式(i)の有機化合物の

【0032】このような構成によっても、発光層30に陰極14から電子を注入し、陽極12から正孔を注入すると発光層30中の単独発光層中で青色の光が得られる。このため、本実施形態3の有機Eし素子においても、補色関係にある青色と橙色の光が得られ、白色の発光を実改できる。実施形態2と比較して、発光層30全体の厚さは薄く、その中で2色の光が得られるため、単独発光層領域とドーピング発光層領域とが非常に近接して形成され、色度の視野角依存性を向上することができる。また、発光層30の形成時、単独発光層及びドーピング発光層のいずれでも化学式(i)の有機化合物を用い、ドーピング発光層を形成するときには、さらに化学式(3)の有機化合物材料を蒸着雰囲気中に加えればよい。

【0033】[実施形態4]上記実施形態3では、発光 層30が単独発光層領域とドーピング発光層領域とを備 えているが、本実施形態3に係る有機EL素子は、発光層30全体が上記化学式(i)の有機化合物と化学式(3)の有機化合物を含む。具体的には、化学式(i)の化合物をホスト材料として用い、この材料中にゲスト材料としての化学式(3)に示す有機化合物を分散させている。素子の他の構成は上記実施形態3と同一である。このような単層の発光層30を採用することで、色純度の高い白色発光素子が実現できると共に、発光層30内の各領域において青色発光と橙色発光が均一に起こるため、色度の視野角依存性を非常に小さくすることができる。また、印加する電界を変化させても再結合領域の発光位置は変化せず色度の輝度依存性を非常に小さくすることができる。

【0034】[本発明の有機化合物]次に、上記各実施形 態において用いる化学式(i)に示す有機化合物及び化 学式(3)に示す有機化合物について詳しく説明する。 【0035】(化学式(i)に示す有機化合物)この化 合物は上述のように青色発光を示し、そのガラス転移温 度Tgは160℃以上で、化学的に安定である。式 (i)中のR₂₁、R₂₂、R₂₃は、それぞれ置換基であ る。この置換基R₂₁, R₂₂, R₂₃は、アルキル基、アル ケニル基、アリール基、ヘテロアリール基、アルコキシ 基等が好適であり、より好ましくは、アルキル基、アリ ール基であり、さらに好ましくは、アリール基である。 【0036】また、式中のq21、q22, q23は、0~9 の整数を表す。 q21. q22. q23は、好ましくは0~3 であり、より好ましくは0~2であり、さらに好ましく は0,1である。q₂₁,q₂₂,q₂₀が2~9の場合、R 21. R22. R23は同一または互いに異なってもよい。 【0037】また、式(i)中のR₂₄、R₂₅、R₂₆ は 置換基を表し、置換基としては、前記R21で説明した基 が挙げられる。R24、R25、R26 は好ましくは水素原 子、アルキル基、アリール基であり、より好ましくは水 素原子、アルキル基である。

【0038】上記置換基 $R_{21}\sim R_{23}$ のより具体的な例としては以下があげられる。アルキル基(好ましくは炭素数 $1\sim30$ 、より好ましくは炭素数 $1\sim20$ 、特に好ましくは炭素数 $1\sim10$ であり、例えばメチル、エチル、iso-プロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシル、シクロプロピル、シクロペンチル、シクロペキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数 $2\sim30$ 、より好ましくは炭素数 $2\sim20$ 、特に好ましくは炭素数 $2\sim10$ であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数 $2\sim10$ であり、例えばプロバルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数 $6\sim30$ 、より好ましくは炭素数 $6\sim30$

~20、特に好ましくは炭素数6~12であり、例えば フェニル、p-メチルフェニル、ナフチル、アントラニ ルなどが挙げられる。)、アミノ基(好ましくは炭素数 0~30、より好ましくは炭素数0~20、特に好まし くは炭素数0~10であり、例えばアミノ、メチルアミ ノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミ ノ、ジフェニルアミノ、ジトリルアミノなどが挙げられ る。)、アルコキシ基(好ましくは炭素数1~30、よ り好ましくは炭素数1~20、特に好ましくは炭素数1 ~10であり、例えばメトキシ、エトキシ、ブトキシ、 2-エチルヘキシロキシなどが挙げられる。)、アリー ルオキシ基 (好ましくは炭素数6~30、より好ましく は炭素数6~20、特に好ましくは炭素数6~12であ り、例えばフェニルオキシ、1ーナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロアリール オキシ基 (好ましくは炭素数1~30、より好ましくは 炭素数1~20、特に好ましくは炭素数1~12であ り、例えばピリジルオキシ、ピラジルオキシ、ピリミジ ルオキシ、キノリルオキシなどが挙げられる。)、アシ ル基 (好ましくは炭素数1~30、より好ましくは炭素 数1~20、特に好ましくは炭素数1~12であり、例 えばアセチル、ベンゾイル、ホルミル、ピバロイルなど が挙げられる。)、アルコキシカルボニル基(好ましく は炭素数2~30、より好ましくは炭素数2~20、特 に好ましくは炭素数2~12であり、例えばメトキシカ ルボニル、エトキシカルボニルなどが挙げられる。)、 アリールオキシカルボニル基 (好ましくは炭素数7~3 0、より好ましくは炭素数7~20、特に好ましくは炭 素数7~12であり、例えばフェニルオキシカルボニル などが挙げられる。)、アシルオキシ基(好ましくは炭 素数2~30、より好ましくは炭素数2~20、特に好 ましくは炭素数2~10であり、例えばアセトキシ、ベ ンゾイルオキシなどが挙げられる。)、アシルアミノ基 (好ましくは炭素数2~30、より好ましくは炭素数2 ~20、特に好ましくは炭素数2~10であり、例えば アセチルアミノ、ベンゾイルアミノなどが挙げられ る。)、アルコキシカルボニルアミノ基(好ましくは炭 素数2~30、より好ましくは炭素数2~20、特に好 ましくは炭素数2~12であり、例えばメトキシカルボ ニルアミノなどが挙げられる。)、アリールオキシカル ボニルアミノ基 (好ましくは炭素数7~30、より好ま しくは炭素数7~20、特に好ましくは炭素数7~12 であり、例えばフェニルオキシカルボニルアミノなどが 挙げられる。)、スルホニルアミノ基(好ましくは炭素 数1~30、より好ましくは炭素数1~20、特に好ま しくは炭素数1~12であり、例えばメタンスルホニル アミノ、ベンゼンスルホニルアミノなどが挙げられ る。)、スルファモイル基(好ましくは炭素数0~3 0、より好ましくは炭素数0~20、特に好ましくは炭 索数0~12であり、例えばスルファモイル、メチルス

ルファモイル、ジメチルスルファモイル、フェニルスル ファモイルなどが挙げられる。)、カルバモイル基(好 ましくは炭素数1~30、より好ましくは炭素数1~2 0、特に好ましくは炭素数1~12であり、例えばカル バモイル、メチルカルバモイル、ジエチルカルバモイ ル、フェニルカルバモイルなどが挙げられる。)、アル キルチオ基(好ましくは炭素数1~30、より好ましく は炭素数1~20、特に好ましくは炭素数1~12であ り、例えばメチルチオ、エチルチオなどが挙げられ る。)、アリールチオ基(好ましくは炭素数6~30、 より好ましくは炭素数6~20、特に好ましくは炭素数 6~12であり、例えばフェニルチオなどが挙げられ る。)、ヘテロアリールチオ基(好ましくは炭素数1~ 30、より好ましくは炭素数1~20、特に好ましくは 炭素数1~12であり、例えばピリジルチオ、2-ベン ズイミゾリルチオ、2ーベンズオキサゾリルチオ、2ー ベンズチアゾリルチオなどが挙げられる。)、スルホニ ル基(好ましくは炭素数1~30、より好ましくは炭素 数1~20、特に好ましくは炭素数1~12であり、例 えばメシル、トシルなどが挙げられる。)、スルフィニ ル基(好ましくは炭素数1~30、より好ましくは炭素 数1~20、特に好ましくは炭素数1~12であり、例 えばメタンスルフィニル、ベンゼンスルフィニルなどが 挙げられる。)、ウレイド基(好ましくは炭素数1~3 0、より好ましくは炭素数1~20、特に好ましくは炭 素数1~12であり、例えばウレイド、メチルウレイ ド、フェニルウレイドなどが挙げられる。)、リン酸ア ミド基 (好ましくは炭素数1~30、より好ましくは炭 素数 $1\sim20$ 、特に好ましくは炭素数 $1\sim12$ であり、 例えばジエチルリン酸アミド、フェニルリン酸アミドな どが挙げられる。)、ヒドロキシ基、メルカプト基、ハ ロゲン原子(例えばフッ素原子、塩素原子、臭素原子、 ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、 ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジ ノ基、イミノ基、ヘテロ環基 (好ましくは炭素数 1~3 0、より好ましくは炭素数1~12であり、ヘテロ原子 としては、例えば窒素原子、酸素原子、硫黄原子、具体 的には例えばイミダゾリル、ピリジル、キノリル、フリ ル、チエニル、ピペリジル、モルホリノ、ベンズオキサ ゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが 挙げられる。)、シリル基(好ましくは炭素数3~4 0、より好ましくは炭素数3~30、特に好ましくは炭 素数3~24であり、例えばトリメチルシリル、トリフ ェニルシリルなどが挙げられる。) などが挙げられる。 これらの置換基は更に置換されてもよい。以上説明した 化学式(i)に示される有機化合物としては、例えば下 記化学式 (ii) ~ (viii) 【化17】

【化18】

【化20】

【化21】

H₃C CH₃ (vi)

【化22】

【化23】

に示されるような有機化合物があげられる。

【0039】(化学式(3)に示す有機化合物)この有 機化合物は、キノリン誘導体化合物であり、化学式

(3) 中の置換基 $R_1 \sim R_7$ の内、少なくとも2以上は、 化学式(4)で表されるn個(n:1以上の整数)の二 重結合を備える置換基で置換された構造を備える。

【0040】また、化学式(4)の末端基Qは特に芳香族基(芳香族炭化水素または芳香族複素環基)とすることが好適である。一例としては下記化学式(5) 【化24】

$$Q: \begin{array}{c} R_{\theta} \\ R_{10} \\ R_{11} \end{array}$$
 (5)

Ro: R. - R12

に示すようなフェニル基が採用可能である。

【0041】化学式(4)で置換されていないR₁~R₇ の残りの基は、互いに独立していて、水素原子、または水素原子以外の任意の置換基が採用可能である。例えば、水素原子、水酸基、メルカプト基、ハロゲン原子、アルキル基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、アミノ基、シアノ基、ニトロ基、アシル基、エステル基(アル

コキシカルボニル基、アリールオキシカルボニル基)、カルボキシル基(アシルオキシ基)、アシルアミノ基、アリールオキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイル基、カルバモイル基、スルホニル基、スルフィニル基、スルフィニル基、スルフィノ基、ヒドラジノ基、イミノ基、ウレイド基、リン酸アミド基、ヒドロキサム酸基、シリル基などを採用することができる。また、上記化学式(4)で示される置換基は外の基において、 $R_1 と R_2$ 、 $R_2 と R_3$ 、 $R_0 と R_4$ 、 R_4 と R_6 、 $R_5 と R_6$ 、 $R_6 と R_7$ のいずれかは、互いに結合して芳香族環あるいは脂肪族環を形成する構造でもよく、また芳香族環、またはヘテロ芳香族環、脂肪族環の置換基として採用可能な置換基は上記に列挙した特性基と同様である。

【0042】化学式(4)において置換基RnとR'nは任 意の特性基が採用可能であり、互いに独立していて、例 えば水素原子、水酸基、メルカプト基、ハロゲン原子、 アルキル基、アルキル基、アルケニル基、アルキニル 基、アリール基、ヘテロアリール基、アルコキシ基、ア リールオキシ基、ヘテロアリールオキシ基、アルキルチ オ基、アリールチオ基、ヘテロアリールチオ基、アミノ 基。シアノ基、ニトロ基、アシル基、エステル基(アル コキシカルボニル基、アリールオキシカルボニル基)、 カルボキシル基 (アシルオキシ基)、アシルアミノ基、 アルコキシカルボニルアミノ基、アリールオキシカルボ ニルアミノ基、スルファモイル基、カルバモイル基、ス ルホ基、スルホニル基、スルフィニル基、スルフィノ 基、ヒドラジノ基、イミノ基、ウレイド基、リン酸アミ ド基、ヒドロキサム酸基、シリル基などを採用すること ができる。化学式(4)のnの数が2以上の場合、二重 結合の置換基RnとR'nは全て同じ、または全て相違、或 いは一部同一のいずれでもよい。

【0043】末端基Qは上記化学式(5)で示すような フェニル基に代表される芳香族基(芳香族炭化水素また は芳香族複素環基)が好適である。末端基Qの置換基R a(置換基R $1s \sim R_{12}$) は特に限定されないが、互いに 独立していて、例えば水素原子、水酸基、メルカプト 基、ハロゲン原子、アルキル基、アルキル基、アルケニ ル基、アルキニル基、アリール基、ヘテロアリール基、 アルコキシ基、アリールオキシ基、ヘテロアリールオキ シ基、アルキルチオ基、アリールチオ基、ヘテロアリー ルチオ基、アミノ基、シアノ基、ニトロ基、アシル基、 エステル基(アルコキシカルボニル基、アリールオキシ カルボニル基)、カルボキシル基(アシルオキシ基)、 アシルアミノ基、アルコキシカルボニルアミノ基、アリ ールオキシカルボニルアミノ基、スルファモイル基、カ ルバモイル基、スルホ基、スルホニル基、スルフィニル 基、スルフィノ基、ヒドラジノ基、イミノ基、ウレイド 基、リン酸アミド基、ヒドロキサム酸基、シリル基など を採用することができる。また、隣接する置換基R。同

士(例えば R_8 と R_9 、 R_9 と R_{10} 、 R_{10} と R_{11} 、 R_{11} と R_{12})が互いに結合して芳香族環あるいは脂肪族環を形成する構造でもよく、また芳香族環、またはヘテロ芳香族環、脂肪族環、脂肪族環の置換基として採用可能な置換基は $R_1 \sim R_7$ に採用可能であるとして以上に列挙した特性基と同様である。

【0044】化学式(3)の置換基 $R_1 \sim R_7$ のうち、少なくとも2つが化学式(4)で表される置換基である。 残りの置換基は特に限定されないが、少なくとも1つに電子吸引性の置換基を導入することが好ましい。 【0045】化学式(5)の置換基R₀は特別に限定されるものではないが、電子供与性の置換基であることが好ましい。電子供与性の置換基としては、例えば、アミノ基、アルコキシ基、アルキルチオ基、アルキル基、またはアルキル基で置換されたアミノ基などが挙げられる。

【0046】以上説明した化学式(3)に示される有機 化合物としては、例えば下記化学式(6) 【化25】

$$R_3 = CN CF_3 CF_3$$
 (6)

【化26】

に示されるような有機化合物があげられる。

【0047】この化学式(6)などのように一般式(3)で表される有機化合物は、電子輸送性発光層のホストとして用いられるAlq中にドープしても、正孔輸送層として用いられる芳香族三級アミン中にドープしても550nm~600nm付近にピーク波長を有する橙色の光を高効率で発光する。また、融点も高く(221℃)、化学的にも安定である。

[0048]

【実施例】[実施例1]

(実施例1-1:化学式(ii)の有機化合物に下記化学式(7)の蛍光色素をドープした青色発光素子)発光層に化学式(i)で表され有機化合物として、下記化学式(ii)

に示す有機化合物を用い、上述の一般式 (2)で表されるゲストの蛍光色素として下記化学式 (7) 【化27】

に示す有機化合物を3.8%ドープした図2に示す断面構造を有する有機比素子を作製した。

【0049】まず、ITOの透明電極(陽極)が子め形成されているガラス基板上に、真空蒸着(7×10-5Pa)により、正孔注入層(CuPc:銅フタロシアニン)を15nm、続いて、正孔輸送層を35nm堆積した。正孔輸送層としては一般式(1)で示される化合物として、下記化学式(8)

【化28】

に示すようなTPTEを材料に用いた。

【0050】次いで、青色発光層の材料として上記化学式(ii)に示す有機化合物を用い20nmの発光層を化学式(7)の化合物と同時蒸着により堆積し、さらに、電子輸送層の材料として下記化学式(9) 【化29】

に示す有機化合物を2.3%ドープした有機Eし素子を作製した。図4はこの素子の断面構造を示す。実施例1-1と異なる点は、ドープする蛍光色素材料であり、他は共通するので説明を省略する。

【0054】この素子に11mA/cm²の直流電流を流したところ、669cd/m²の発光を得た。発光色は、CIE色度座標においてX=0.155.Y=0.213であった。ELスペクトルを図5に示す。475 nm 付近のピークが化学式(10)に示した有機化合物からの発光ビークであり、色純度に優れた青色発光を呈した。【0055】(実施例1-3:化学式(ii)の有機化合物に化学式(11)の黄光色素ペリレンをドープした青色発光素子)

発光層に化学式(i)で表される有機化合物として、上記化学式(ii)に示す有機化合物を用い、ゲストの蛍光色素として下記化学式(11)

【化31】

で表される有機化合物を40mm蒸着した。

【0051】さらにこの後、LiFを0.5nm、Alを150nm蒸着し積層構造の金属電極(隆極)を形成し、素子部を作製した。この素子部が形成されたものを、高真空排気したチャンバーに搬送し、チャンバー内を窒素置換した後、エボキシ樹脂を用いて金属製の封止キャップの端部を透明電極の表面に接着し密封した。

【0052】この素子に11mA。cm²の直流電流を流したところ、863cd/m²の発光を得た。発光色は、CIE色度座標においてX=0.181.Y=0.338であった。ELスペクトルを図3に示す。470nm付近のピークが化学式(7)に示した有機化合物からの発光ピークである。NTSC標準の青色発光色の色度座標X=0.14,Y=0.08に比べてY方向のずれが大きいものの、青色発光を呈する。

【0053】(実施例1-2:化学式(ii)の有機化合物 に下記化学式(10)の蛍光色素をドープした青色発光 素子)

発光層に化学式(i)で表され有機化合物として、化学式(ii)に示す有機化合物を用い、化学式(2)で表されるゲストの蛍光色素として下記化学式(10) 【化30】

に示す有機化合物を O. 2%ドープした有機E L素子を作製した。図6はこの素子の断面構造を示す。実施例1-1と異なる点は、ドープする蛍光色素材料と電子輸送層材料であり、電子輸送層として A L q (アルミキノリノール錯体)の下記化合物(12)

【化32】

を用いた他は、共通するので説明を省略する。

【0056】この栗子に11mA. cm²の直流電流を流したところ、505cd/m²の発光を得た。発光色は、CIE 色度座標においてX=0.155.Y=0.234であった。ELスペクトルを図7に示す。460 nmと490 nm付近のピークが化学式(11)に示した有機化合物からの特徴的な発光ピークであり、色純度に優れた青色発光を呈した。

【0057】(比較例)

(比較例1:化学式(i)の有機化合物を用いた背色発光素子) 発光層に化学式(i)で表される有機化合物として、下記化学式(ii)に示す有機化合物を用い、図8に示すような断面構造を有する有機EL素子を作製した。実施例1-1~1-3と異なる点は、化学式(ii)で表される有機化合物の発光層A中に蛍光色素をドープ材料として含有しないことであり、電子輸送材料として化学式(9)を用いたことであり、他は共通するので説明を省略する。

【0058】以上のようにして作製した有機EL素子に 11mA/cm²の直流電流を流したところ、545cd/m²の発光を得た。発光色は、CIE色度座標においてX=0.179、Y=0.303であった。図9は、この比較例1に係る素子のELスペクトルを示す。図9において、475nm付近のピークが上記化学式(ii)に示した有機化合物からの発光ピークである。NTSC標準の青色発光色の色度座標X=0.14、Y=0.08に比べてY方向のずれが大きいものの、青色発光を呈する。しかしながら、ELピークの半値幅が広いために、青色発光素子として使用するためには、青色のフィルターを用いるなどの対策が必要である。

【0059】実施例1-1~1-3と比較例1の有機E L素子において、11mA/cm²のDC電流を流した ときの素子の発光輝度、視感効率、色度座標を表1に示 す。 【0060】 【表1】

	輝度	視感効率	CIE 也.	CIE仓度座標	
	(cd/m²)	(lm/W)	X	Y	
実施例1-1	863	4.8	0.181	0.338	
実施例1-2	669	3.9	0.155	0.213	
実施例1-3	505	3.1	0.166	0.234	
比較例1	545	2.6	0.179	0.303	

青色蛍光色素のドープの効果で、高輝度化している。また、蛍光色素のドープすることによる駆動電圧も上昇も少ないことから電圧を考慮した視感効率も比較例1と比べて実施例1-1~1-3は、1、2から1、8倍に向上した。ホスト材料である化合物式(ii)から蛍光色素へエネルギーが効率よく伝達したためである。

【0061】また、実施例1-1~1-3と比較例1の素子の初期輝度が2400cd/m²になるように電流駆動して耐久試験を実施した。その結果を図10に示す。実施例の素子では、比較例1のノンドープ素子に比べて、輝度が半減するときの時間(半減寿命)が大幅に改善した。また、2400cd/m²と高輝度どの寿命測定では、電流による素子の温度も上昇しているので、蛍光色素をドープすることで、高温での安定性も増していると判断できる。

【0062】[実施例2]

(実施例2-1:化学式(3)の有機化合物を用いた橙 色発光素子)

(2-1a)化学式(13)の有機化合物を使用 この実施例2-1aでは、発光材料(ここではゲスト材料)として、上記一般式(3)で表される有機化合物として下記化学式(13)

【化33】

に示す有機化合物を用いた。図11はこの実施例2-2 aに係る有機EL素子の断面構造を示している。上記実施例1-1~1~3と相違する点は、正孔輸送層、発光層および電子輸送層の厚さと、発光層および電子輸送層の材料であり、他は共通するので説明を省略する。正孔輸送層は、上記化学式(8)に示すTPTEを材料として用い35nmの厚さに蒸着によって形成し、電子輸送層は、化学式(12)のキノリノールアルミ錯体(A1 q3)を材料とし、以下の発光層の上に60nmの厚さに蒸着によって形成した。発光層は、正孔輸送層と同じ材料であるTPTEをホスト材料として用い、このホスト材料中に上記化学式(13)に示す有機化合物を0.

8%ドープして形成されている。すなわち、上記正孔輸送層の電子輸送層との界面から10nmの領域に化学式(13)に示す有機化合物が0.8%ドープされ、この10nmの厚さの領域が発光層Bを構成している。

【0063】得られた実施例2-1aに係る有機EL素子に、11mA/cm²の直流電流を流したところ、600cd/m²の発光を得た。発光色は、橙色の発光を呈し、CIE色度座標においてX=0.468、Y=0.487であった。図12は、この素子のELスペクトルを示す。図12からもわかるように580nm付近に発光ピークを有する橙色の発光が得られている。

【0064】(2-1 b)化学式(14)の有機化合物

を使用

この実施例2-1 bでは、発光層の発光材料(ここでは ゲスト材料)として、上記一般式(3)で表される有機 化合物として下記化学式(14) 【化34】

$$CF_3$$
 CF_3
 CF_3
 CF_3
 CF_3
 CF_3
 CF_3
 CF_3
 CF_3
 CF_3
 CF_3

に示す有機化合物を用いた。上記実施例2-1aと同様に正孔輸送層の電子輸送層との界面から10nmの領域に、ホスト材料であるTPTEに対して化学式(14)の有機化合物を1.0%ドープして発光層Bを形成した。この実施例2-1bに係る有機EL素子は、発光材料として化学式(13)で表される有機化合物の代わりに上記のような化学式(14)で表される有機化合物をドープした以外は、実施例2-1aの有機EL素子と同じ構成である(断面構造は図11参照)。

【0065】実施例2-1bに係る有機EL素子に11 m A / c m²の直流電流を流したところ、676 c d / m²の発光を得た。発光色は、黄橙色の発光を呈し、C IE色度座標においてX=0.433, Y=0.516 であった。図13は、この素子のELスペクトルを示し、 ており、560mm付近に発光ピークが得られている。 【0066】図14は、比較例1の有機EL素子および 実施例2-1 aおよび2-1 bの有機E L素子でそれぞ れ得られた発光色の色度座標を示している。比較例1の ように化学式(ii)に示す有機化合物に起因した発光 (青色発光)と、実施例2-1aのように化学式(1-3) に起因した発光あるいは実施例2-1 bのように化 学式(14)に示す有機化合物に起因した発光とで2色 の補色を利用する場合、それらの組合せから得られる発 光は、図14に示した、比較例1の素子の発光色の色度 座標と、実施例2-1a又は1bの素子の発光色の色度 座標とを結んだ直線上のいずれか色度を示すものと考え られる。

【0067】ここで、図14の中央領域に記載した曲線に囲まれた領域は、C1E色度座標中、「およそ白色を示す領域」である。青色発光層として化学式(ii)で表される有機化合物を青色発光材料として用い、かつ青色発光を呈する他の色素をこの材料中にドープしない場合には、橙色発光材料として化学式(13)の有機化合物を用いた方(実施例2-1a)が、実施例2-1bよりも、上記図14に示す白色を示す領域と重なる部分が多いことがわかる。従って、実施例2-1aのように橙色発光材料としては、化学式(13)の有機化合物の方が化学式(14)の有機化合物よりも、容易に白色に近い発光を得ることが可能であることがわかる。

【0068】なお、図14に示した「およそ白色を示す

領域」は、JIS Z 8110に記載されている参考付 図1「系統色名の一般的な色度区分」に示された黄みの 白、緑みの白、青みの白および紫みの白を含んだ白色の 領域である。

【0069】また、青色発光層として、化学式(ii) の有機化合物をホスト材料として用い、実施例1-1, 1-2,又は1-3に示すように、ここに青色発光を呈する他の色素をゲストとしてドープした場合には、青色の色純度をより向上させることも可能となる(NTSC標準に近づく)。そして、このような場合には、橙色発光材料として、化学式(14)の有機化合物を用いても白色発光を得ることが可能となる。

【0070】(実施例2-2:化学式(ii)の有機化合物と化学式(13)の有機化合物とを用いた白色発光)図15は、実施例2-2に係る有機EL素子の断面構造を示している。本実施例2-2では、青色発光層(発光層A)に、上記比較例1と同じ化学式(ii)の有機化合物を用いている。また橙色発光層(発光層B)には、正孔輸送層(TPTE)と同一材料であるTPTEをホスト材料とし、ゲスト材料として上記実施例2-1aで用いた化学式(13)の有機化合物を採用した。この発光層Bは、正孔輸送層の青色発光層Aとの界面から5nmの領域に化学式(13)の有機化合物を1.0%ドープして形成した。電子輸送層には、上記比較例1と同様、上記化学式(9)で表される有機化合物を用いた。

【0071】 【表2】

電流密度	輝度	CIE色度座標		
(mA/cm²)	(cd/m²)	X	Υ	
0.11	7.4	0.247	0.361	
1.1	88.6	0.309	0.391	
11	964	0.361	0.412	

上記表2には、得られた実施例2-2に係る有機EL素子に0.11mA/cm²、1.1mA/cm²、1.1mA/cm²、1.1mA/cm²、11mA/cm²、11mA/cm²、0直流電流を流したときの輝度と発光色のCIE色度座標を示している。また、図16は、この実施例2-2に係る素子のCIE色度座標を示している。図16より、得られた発光色の色度座標は、いずれの電流条件においても、比較例1で得られた素子の青色発光の色度座標と実施例2-1aで得られた素子の橙色発光の

色度座標とを結んだ直線上に位置することがわかる。また、本実施例2-2では、電流が小さく輝度が低いときには背色成分が強く、電流を増し輝度が高くなるにつれて橙色成分が強くなり、色度の輝度(電流)依存性があるが、およそ白色を示す領域に収まっている。このような色度の輝度依存性は、陽極と陰極との間に供給する電流(電圧)を変化させることにより発光領域が変化することに起因すると考えられる。以上のことから、色度の輝度依存性がやや大きいものの本実施例2-2で得られることに起因すると考えられる。以上のことから、色度の輝度依存性がやや大きいものの本実施例2-2で得られることがわかる。また、発光層B、つまりゲスト材料として用いる化学式(13)の有機化合物をドープする層の厚さやドープ量を最適化することにより、色度の輝度依存性を小さくすることが可能であると考えられる。

【0072】[比較例]

(比較例2-1:ルブレンを正孔輸送層中にドープした 素子の作製および素子の発光特性)比較例2-1として、正孔輸送層の電子輸送層との界面から5nmの領域 にルブレンを4.7%ドープした有機EL素子を作製した。この素子は、実施例2-1a.1bに示した素子と 同構造を有し発光層Bにドープした化合物のみが異なる 素子である。

【0073】得られた素子に $11mA/cm^2$ の直流電流を流したところ、 $965cd/m^2$ の発光を得た。発光色は、黄橙色の発光を呈し、CIE色度座標においてX=0.451,Y=0.528であった。

【0074】図17では、この比較例2-1に係る有機 EL素子の発光色の色度座標と、比較例1に係る素子の 青色の色度座標とをプロットしている。比較例2-1で 発光材料として用いたルブレンに起因した発光(橙色 光)と、化学式(ii)に示す有機化合物からの発光 (青色光)との2色の補色を利用して白色を得ようとす る場合、図17の中央付近に示した両素子の色度座標を 結んだ直線上のいずれかの位置に、この2種類の材料を 用いた白色発光素子による発光色度が存在すると考えら れる。

【0075】図17からわかるように、この2点を結んだ直線は「およそ白色を示す領域」とほとんど交わらない。従って、比較例2-1で採用したルブレンと、比較例1で採用した化学式(ii)の有機化合物との組合せでは良好な白色を得ることは期待できない。

【0076】(比較例2-2:化学式(ii)の有機化合物とルブレンとを用いた素子の作製および素子の発光特性)次に比較例2-2では、青色発光層(発光層A)に上記化学式(ii)の有機化合物を用いた層を用い、橙色発光層(発光層B)は、正孔輸送層の青色発光層との界面から5nmの領域にルブレンを5.0%ドープして形成した有機EL素子を作製した。素子構造は、発光層Bとして化学式(13)の有機化合物の代わりにルブレンをドープした以外は、上記図15に示した実施例2

- 2に係る素子構造と同じである。

[0077]

【表3】

電流密度 輝度		CIE色	度座標
(mA/cm²)	(cd/m²)	Х	Y
0.11	5.0	0.256	0.369
1.1	85.2	0.339	0.438
11	1120	0.391	0.479

上記表3は、得られた比較例2-2に係る有機EL素子に0.11mA/cm²、1.1mA/cm² 1.1mA/cm² 1.1mA/c

[0.078]

【表4】

	色度の変化量		
	⊿x		
実施例2-2	0.114	0.051	
比較例2-2	0.135.	0.110	

上記表4は、実施例2-2の素子、および、比較例2-2の素子について、0.11mA/cm²から11mA/cm²から11mA/cm²まで電流を変化させた時の発光色の変化をCIE色度座標における座標の変化量で表している。表4より、いずれの素子も輝度(電流)による色度の変化が大きいが、比較例2-2の素子に比して実施例2-2の素子の方が変化が小さいことがわかる。

【0079】[実施例3]実施例3として、一般式(i)で表される有機化合物を含む発光層の一部に化学式(13)で表される有機化合物をドーブした白色発光有機EL素子を作製した。図19は、この実施例3に係る有機EL素子の構成を表している。図示するように、青色発光層(発光層A)は、化学式(ii)で表される有機化合物を蒸着形成し、この青色発光層の正孔輸送層との界面から5nmの領域には、発光層Cとして、化学式(13)で表される有機化合物を1.0%ドープした素子を作製した。電子輸送層には上記実施例2-2と同様化学式(9)で表される有機化合物を用いた。素子構成としては、実施例2-2の素子と発光層の構成以外は同一である。

[0080]

【表5】

電流密度	辉度	CIE色	宜座標
(mA/cm²)	(cd/m²)	X	Y
0.11	6.5	0.213	0.308
1.1	73.0	0.252	0.324
11	714	0.284	0.336

上記表 5 は、得られた実施例 3 に係る有機 E L 素子に 0.11 m A / c m²、1.1 m A / c m²、1.1 m A / c m²、1.1 m A / c m²の直流電流を流したときの輝度と発光色のC I E 色度座標を示す。また、図 2 0 はC I E 色度座標を示す。また、図 2 0 はC I E 色度座標を示す。実施例 3 に係る有機 E L 素子の場合、各電流条件で得られる発光色の色度座標は、比較例 1 の素子の色度座標(青色)と実施例 2 - 1 a の素子(橙色)の色度座標とを結んだ直線上にのっていない。これは、本実施例 3 に係る素子は、化学式(13)の有機化合物を、正孔輸送層ではなく青色発光層にドープしており、化学式(13)の有機化合物の発光スペクトルがホスト材料依存性を有するためであると考えられる。

【0081】本実施例3に係る素子は、図20からもわかるように低輝度では青色を呈したが、数十cd/m²以上の輝度では、青みを帯びた白色発光を呈した。化学式(13)の有機化合物のドープ量の調整や、あるいは、ドープした層の厚さを変えることで発光色の最適化を図ることが可能である。

【0082】[実施例4]実施例4として、一般式

(i)で表される有機化合物を含む発光層の全域に化学式(3)で表される有機化合物をドープした白色発光有機EL素子を作製した。図21は、この実施例4に係る素子の構成を示している。図19に示した上記実施例3の素子とは発光層の構成を以外は同一である。本実施例4では、発光層Dは単層であり、この発光層Dは、化学式(ii)で表される有機化合物をホスト材料として用い、また、化学式(13)で表される有機化合物をゲスト材料として用いホスト中に0.2%ドープして作製している。発光層D内で、このゲスト材料のドープ(分散)割合は一定である。

[0083]

【表6】

輝度	CE色	变座標
(cd/m²)	Χ.	Y
6.5	0.320	0.362
69.7	0.324	0.359
710	0.323	353
	(cd/m²) 6.5 69.7	(cd/m²) X 6.5 0.320 69.7 0.324

上記表6は、実施例4に係る有機E 子に〇.11m A.cm²、1.1mA.cm²、11mA.cm²の直流電流を流したときの輝度と発光色の〇.1E色度座標を示す。また、図22は、この実施例4に係る素子のC.1E色度座標を示す。この実施例4に係る素子においても、化学式(13)で表される有機化合物を化学式(i)で表される有機化合物中にドープしていることから、図22に示すように発光色の色度座標は図中の直線上にはのらず、一層「およそ白色を示す領域」、即ち一

層目的とする高純度の白色に近づいている。さらに、表 6及び図22に示されるように、電流条件を変化させて も、色度の変化が非常に小さく、色度の輝度依存性が極 めて小さいことがわかる。このように、本実施例4の素 子は、色度変化が少なくかつ白色としても極めて良好な 白色を呈することができる。

【0084】また、本実施例4に係る有機Eし素子をDC低電流駆動にて初期輝度2400cd/m²で輝度が半減するまで駆動した後、11mA/cm²の電流を流し、発光色の色度座標を測定した。輝度半減前後での色度座標を図23に示す。図23には、比較のため、実施例2-2の素子に対して同様の測定をした結果も示した。この図から、本実施例4の場合には、輝度半減後の色度ずれも極めて小さいことがわかる。

【0085】以上のことから、実施例4の青色発光層全層に化学式(13)で表される有機化合物をドープする方法が、色度の輝度依存性や駆動時間依存性を最も小さくでき、本発明形態の中で最も好ましい方法であることがわかる。

[0086]

【発明の効果】以上説明したように、この発明においては、化学式(i)で表される化合物に蛍光色素を0.1 mol%~10mol%含有させることで高効率長寿命の青色有機EL素子が実現できる。また、化学式(i)で表される化合物と化学式(3)で表される化合物とを組み合わせて用いることで、青色発光と橙色発光を同時に同一発光面内で得ることができ、色純度に優れた白色発光が達成でき、かつ、高効率で高耐久性を有する白色発光素子が実現できる。

【図面の簡単な説明】

【図1】 本発明に係る有機EL素子の概略断面構成を示す図である。

【図2】 実施例1-1に係る青色発光素子の断面構成を示す図である。

【図3】 実施例1-1に係る青色発光素子のELスペクトルを示す図である。

【図4】 実施例1-2に係る青色発光素子の断面構成を示す図である。

【図5】 実施例1-2に係る青色発光素子のELスペクトルを示す図である。

【図6】 実施例1-3に係る青色発光素子の断面構成を示す図である。

【図7】 実施例1-3に係る青色発光素子のELスペクトルを示す図である。

【図8】 比較例1に係る青色発光素子の断面構成を示す図である。

【図9】 比較例1に係る背色発光素子のE Lスペクトルを示す図である。

【図10】 実施例1-1、1-2及び1-3と比較例 1に係る青色発光素子の動作寿命を示す図である。 【図11】 実施例2-1aに係る橙色発光素子の断面 構造を示す図である。

【図12】 実施例2-1aに係る橙色発光素子のELスペクトルを示す図である。

【図13】 実施例2-1bに係る橙色発光素子のEL スペクトルを示す図である。

【図14】 比較例1.実施例2-1a及び2-1bの各素子の発光色のCIE色度座標である。

【図15】 実施例2-2に係る白色発光素子の断面構造を示す図である。

【図16】 実施例2-2の素子の白色光のCIE色度座標である。

【図17】 比較例1及び比較例2-1の各素子の発光 色のCIE色度座標である。

【図18】 比較例2-2の素子の発光色のCIE色度

座標である。

【図19】 実施例3の白色発光素子の断面構造を示す図である。

【図20】 実施例3の業子の発光色のCIE色度座標である。

【図21】 実施例4の白色発光素子の断面構造を示す 図である。

【図22】 実施例4の素子の発光色のCIE色度座標である。

【図23】 実施例4と実施例2-2の各素子の輝度半 減前後におけるCIE色度座標である。

【符号の説明】

10 基板、12 陽極(透明電極)、14 陰極(金 属電極)、20 正孔注入層、22 正孔輸送層、28 電子輸送層、30 発光層、200 有機化合物層。

300

400

500

600

Wavelength (nm)

700

800

ガラス

【図23】

フロントページの続き

(51) Int. Cl.⁷

識別記号

H 0 5 B 33/22

(72) 発明者 野田 浩司 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内

- (72)発明者 森 朋彦 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内
- (72)発明者 多賀 康訓 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内
- (72) 発明者 竹内 久人 愛知県愛知郡長久手町大字長漱字横道41番 地の1 株式会社豊田中央研究所内

FΙ

テーマコード(参考)

H O 5 B 33/22

D

(72) 発明者 毛利 誠

愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内

- (72) 発明者 五十嵐 達也 神奈川県南足柄市中沼210番地 富士写真 フイルム株式会社内
- (72) 発明者 岡田 久 神奈川県南足柄市中沼210番地 富士写真 フイルム株式会社内

Fターム(参考) 3K007 AB02 AB03 AB04 AB11 BB01 CA01 CB01 DA01 DB03 EB00