1. Tétel. Legyenek a, b, n egész számok, n > 1. Ekkor az $ax \equiv b \mod n$ megoldható \iff (a, n) | b. Ez esetben pontosan (a, n) darab inkongruens megoldás van mod n.

Bizonyítás. Definíció szerint

$$ax \equiv b \mod n \iff ax + ny = b.$$

Szükséges feltétel: Mivel (a, n) osztja a bal oldalt, osztja a jobb oldalt is, azaz $(a, n) \mid b$. Elégséges feltétel: A *bővített euklideszi algoritmus* szerint létezik olyan \hat{x}, \hat{y} , hogy

$$a\hat{x} + n\hat{y} = (a, n).$$

Beszorozva b/(a, n)-el kapjuk:

$$\frac{b}{(a,n)} \cdot \hat{x} \cdot a + \frac{b}{(a,n)} \cdot \hat{y} \cdot n = \frac{b}{(a,n)} \cdot (a,n) = b,$$

azaz

$$x \equiv \frac{b}{(a,n)}\hat{x} \mod n.$$

Jegyezzük meg, hogy ez egy megoldás modulo n, tehát nem csak x, hanem $\{x+kn:k\in\mathbb{Z}\}$ is megoldások.

Megoldások száma, speciális eset: Először megmutatjuk, hogy ha (a, n) = 1, akkor egy megoldás van modulo n (azaz, ha x_1, x_2 két megoldás, akkor $x_1 \equiv x_2 \mod n$).

Tegyük fel tehát, hogy (a,n)=1 és legyen (x_1,y_1) és (x_2,y_2) két megoldása az ax+ny=b egyenletnek. Ekkor

$$\begin{array}{l}
ax_1 + ny_1 = b \\
ax_2 + ny_2 = b
\end{array} \implies ax_1 + ny_1 = ax_2 + ny_2 \Longrightarrow a(x_1 - x_2) = n(y_2 - y_1).$$

Azaz $n \mid a(x_1 - x_2)$. Mivel (a, n) = 1, ezért $n \mid x_1 - x_2$, tehát $x_1 \equiv x_2 \mod n$.

Megoldások száma, általános eset: Az általános esetben legyen d=(a,n). Az általános esetet visszavezetjük a korábbi speciális esetre (mikor az együttható és a modulus relatív prímek voltak.) Legyen

$$a' = a/d$$
, $b' = b/d$, $n' = n/d$

és tekintsük az

$$a'x \equiv b' \mod n'$$

kongruenciát. Itt x pontosan akkor megoldás, ha x megoldása az eredeti $ax \equiv b \mod n$ kongruenciának.

A speciális eset miatt tudjuk, hogy mivel (a',n')=1, ezért ennek egyértelmű megoldása van modulo n', azaz az $\{x_0+kn':k\in\mathbb{Z}\}$ az összes megoldás. A korábbi megjegyzés szerint ezek lesznek az eredeti kongruencia megoldásai is. Ezek között keressük a lényegesen különböző megoldásokat, azaz melyek különböznek modulo n. Két ilyen megoldás azonos egymással modulo n, azaz

$$x_0 + k_1 n' \equiv x_0 + k_2 n' \mod n,$$

ha

$$n \mid (k_1 - k_2)n'$$
.

Mivel $n = d \cdot n'$, ezért ez pontosan akkor teljesül, ha $d \mid k_1 - k_2$. Tehát a különböző megoldások modulo n a következőek:

$$x_0 + kn' : k = 0, 1, \dots, d - 1.$$

Összefoglalva:

Tekintsük az $ax \equiv b \mod n$ kongruenciát.

1. A *bővített euklideszi algoritmus* segítségével számoljuk ki az \hat{x}, \hat{y} egészeket és az (a, n) legnagyobb közös osztót, melyre

$$a\hat{x} + n\hat{y} = (a, n).$$

- 2. Ha $(a, n) \nmid b$, akkor nincs megoldás.
- 3. Ha $(a, n) \mid b$, akkor (a, n) megoldás van modulo n, és ezek:

$$x_k = \frac{b}{(a,n)}\hat{x} + k \cdot \frac{n}{(a,n)}$$
: $k = 0, 1, ..., (a,n) - 1$.

Példa: Oldjuk meg a $21x \equiv 14 \mod 35$ konruenciát!

• A A bővített euklideszi algoritmus segítségével kiszámoljuk az \hat{x}, \hat{y} egészeket és a (21,35) legnagyobb közös osztót, melyre

$$21\hat{x} + 35\hat{y} = (21, 35).$$

Nevezetesen a szokásos számolási szabályok szerint (mivel a későbbiekben nem használjuk az \hat{y} -t, ezt nem tüntetjük fel a táblázatban):

i	q_i	r_i	\hat{x}_i
-1	_	21	1
0	_	35	0
1	0	21	1
2	1	14	-1
3	1	7	2
4	2	0	_

- Ekkor (21,35) = 7 és mivel $7 \mid 14$, így van megoldás.
- A lényegesesen különböző megoldások száma (21,35) = 7. Mivel $\hat{x} = 2$, ezek a következők:

2

$$x_k = \frac{14}{7} \cdot 2 + k \cdot \frac{35}{7} = 4 + 5k$$
: $k = 0, 1, 2, 3, 4, 5, 6$.