Class test-2 Full Marks: 20 CSE (A Section) Time: 30 Minutes Course No.: Math-1213

1. Reduce the equation $x^2 + 12xy - 4y^2 - 6x + 4y + 9 = 0$ to the standard form. Find also the equations of axes. 10

2. What is direction cosine? Find the d.c's of the line which is equally inclined to the axis.

Class test-1 Full Marks: 20 CSE (A Section) Time: 30 Minutes Course No.: Math-1213

1. What is Invariants? If by the rotation of axis system without changing the origin $ax^2 + 2hxy + by^2$ transforms into the equation $ax_0^2 + 2hx_1y_1 + by_2^2$ then show that $a + b = a_1 + b_1$ and $ab - h^2 = a_1b_1 - b_1^2$.

2. Find the area of the triangle formed by the lines $6x^2 + xy - y^2 = 0$ and x + 6y - 19 = 0.

05

Heaven's Light is Our Guide

RAJSHAHI UNIVERSITY OF ENGINEERING & TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

1st Year Even Semester Examination 2017

I fedi Everi Semester Examination Ever			
COURSE NO:	Math 1213	COURSE TITLE:	Co-ordinate geometry & Ordinary
FILL MARKS.	70	TIME.	Differential Equation

FULL MARKS: 72 TIME: 3 HRS

- (i) Answer any SIX questions taking any THREE from each section.
 - (ii) Figures in the right margin indicate full marks.
 - (iii) Use separate answer script for each section.

SECTION: A

- (a) If by the rotation of the rectangular co-ordinate axes about the origin, the Q.1. expression $ax^2 + 2hxy + by^2$ changes to a'x'' + 2h'xy' + b'y''. Show that
 - a + b = a' + b' and ab h' = a'b' h''Determine the equation of parabola x2-2xy+y2+2x-4y+3=0 after rotating of axes through 45°
- (a) Prove that the straight lines represented by the equation ax2+2hxy+by2+2gx+2fy+c=0 Q.2. will be equidistance from the origin if $f^4-g^4 = bf^2-ag^2$.
 - lines of the rectangle formed (b) Find area $9x^{2} - 6xy + y^{2} + 45x - 15y + 54 = 0$ and $x^{2} + 6xy + 9y^{2} + 4x + 12y - 5 = 0$
- (a) If (l_1,m_1,n_1) and (l_2,m_2,n_2) be the direction cosines of any two lines AB and CD and θ Q.3. be the angle between them then show that $\cos\theta = l_1 l_2 + m_1 m_2 + n_1 n_2$
 - (b) Find the equation of the plane through the points (1,-2,2), (-3,1,-2) and perpendicular to the plane 2x+y-z+6=0.
- (a) Find the equation of the line perpendicular to both the lines $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z+2}{3}$ Q.4. and $\frac{x+2}{2} = \frac{y-5}{-1} = \frac{z+3}{2}$ and passing through their intersection point.
 - (b) Find the angle between the line 2x+4y-2z+3=0=4x-2y+6z+5 and the plane 5x-4y+3z-5=0.

SECTION: B 9/

- (a) Define linear and non-linear differential equation with example. Find the DE of all 0.5. circles passing through the origin.
- Solve the ODE $x^2dy+y(x+y)dx=0$ Solve the initial value problem $(2x\cos y + 3x^2y)dx + (x^3 - x^2\sin y - y)dy = 0$; y(0) = 2.
- What is integrating factor. Solve the ODE by first finding an integrating factor Q.6. $(2xy^2+y)dx + (2y^3-x)dy = 0$
- Solve the initial value problem $(x^2+1)dy + (4xy-x)dx = 0$ and the initial condition is y(2) = 1.
- (a) Solve $(D^2-5D+6)y = e^{3x}+e^{2x}\cos x$ 5 5
- Solve y = $px+p^3$ where $p = \frac{dy}{dx}$ 22_ C Solve (D2-4)y=x2e2x+sin3x 5 <
- (a) Find the general solution of Q.8. 7 $\frac{d^{1}y}{dx^{2}} + y = \tan x \sec x$
 - (b) A circuit has in series an electromotive force given by E = 100 sin(40t)V, a resistor of 5 100 and an inductor of 0.5H. If the initial current is zero, find the current at time t>0.

•••