前言

在学习物理学的过程中,基本技能的训练是加深理解和巩固 所学基础理论的必要手段。物理习题是学生掌握基础理论和提高 基本技能的重要环节。通过做习题,不仅可以加深理解和巩固已经 掌握的基本概念、基本原理,而且还可以举一反三,拓宽知识面,培 养运用所学知识的能力和提高分析、解决问题的能力。

由于量子力学在基本概念、基本原理和数学方法上与经典物理学区别较大,初学者往往感觉到所学概念不易理解,解题无从下手。目前,由于高校课程门类较多,包括量子力学在内的各门课程的教学时数有限,很难安排较多的习题课,这又增加了学生学习量子力学的难度。本书,一是为量子力学的任课教师提供由浅人深的各类典型题目,以便有效地指导学生学习,二是为学习量子力学的本科生、研究生提供难度不太大、题量又适宜,但又有助于掌握量子力学的基本概念、原理和方法,提高基本技能的参考书。对那些准备考研究生的读者来说,本书更是一本不可多得的参考书。作者也考虑过,正在学习量子力学的本科生,如果为了应付完成作业,不假思索地抄写本习题解中的答案,那对他们的学习一定是不利的。作者诚恳地希望读者,一定要先自己动脑去做每个题的基础上再去看习题解答,并反复思考,分析总结,以达到举一反三的效果。

除了国内流行的量子力学教材中的习题之外,我们还在美国、日本以及欧洲等国家一些大学通用量子力学教材的习题和研究生入学考题中,选择一些与我们编写的《量子力学》内容相匹配的题目编入本书,虽然所编入的题目不多,但类型齐全、难度适宜,相信本书会成为广大读者喜爱的参考书。

在本书的编写过程中,研究生李崇,郭彦青,于长水,陈青,苗 向阳等做了提供素材,计算机输入等大量工作,在此对他们表示诚 挚的谢意。在编写本书的过程中,尽管我们在题目的取舍、内容的 编排和解题的技巧上进行了反复的推敲,但由于作者水平有限和 编写时间仓促,书中错误和不当之处在所难免,真诚希望广大读者 提出宝贵意见,给予热诚的指正。

> 作 者 于大连理工大学 2004年8月20日

目 录

第	1		经	典	物	理	学	的'	危	机	."∓	n	t 子	カ	学	的	延生	Ξ.				• • • •	••••	• • • •	••	I
第	2	章	波	वह	数	与	Sc	hг	ŏd	inş	ger	方	程			• • • •		• • • •	• • • •	••••					••	7
第	3	章	不	含	时	Sc	hr	öd	inį	ger	方	程	及	其	解	法		•••		•••		٠			1	3
第	4	章	カ	学		算	符	的:	本行	狂化	直禾	0.4	军征	函	数			• • •		•••		٠			3	5
¥	5	章	态	矢		和	カ	学	1	庫名	计台	勺琴	\$	变	换			- • •	• • • •	•••	••••		• • • •	• • • •	4	8
第	6	莗	对	称	性	与:	守	恒	定权	聿·				,	•-•		••••	• • •	• • • •	•••		•••	• • • •		5	5
第	7	章	粒	子	Œ	势	场	中	ni	<u> </u>	.	· · · ·	• • • •	• • • •	•••	•••	••••	•••				•••	•••	• •	6	4
第	8	奪	角	动		理·	论	、粒	:子	的	自	旋	•••	• • • •	•••	••••	••••			•••	••••	٠	. , , ,	• • • •	8	1
第	9	章	定	态	敝	扰	论	••	• • •	• • • •	•••	•••	····				• • • •	•••	••••	• • • •	• • • •	•••	•••	•••	11	Ü
第	10	1章	Ħ	女身	珴	ľά	٠. ج	• • •	• • •	• • • •	•••	•••	••••				• • • •	• • •	• • • •		• • • •	•••	•••	•••	14	ť
第	1	1章	1	t 7	f	t	ļĶ	<u></u>	• • •	• • • •	•••	•••	••••					•••	• •	•••			••••	•••	15	6
奠	拟	试题																								
		试题 拟试		Α					• • •	, 	•••	•••							••••		• ••	,			16	4
	模		题																						16 16	
	模模	拟试	题题	В	••		•••				•••	•••	,	•••	** *		• • • •	••••			• • • •	•••	••••			7
	模模模	拟试	题题题	B C	••	 			• • • •	• • • •		•••	,	•••	** **	· · · · · · · · · · · · · · · · · · ·						••••	••••		16	7
橂	模模模模拟	拟拟拟拟试试	题题题题参	B C D		 案	•••		• • • •	· · · · ·	•••		••••	•••						••••		••••	••••		16 17	7
橂	模模模模拟	拟拟拟拟	题题题题参	B C D		 案	•••		• • • •	· · · · ·	•••		••••	•••						••••		••••	••••		16 17	7 0 3
模	模模模模拟模	拟拟拟拟试试	题题题题参题	B C D 考	答 参	案考	答		• • • •				••••										••••		16 17 17	7 6
慔	模模模模拟模模模	拟拟拟拟试拟拟拟拟	题题题题参题题题	B C D 考 A B C	答 参 参 参		答答答											****							16 17 17	7 0 3
慔	模模模模拟模模模	拟拟拟拟试拟拟拟拟	题题题题参题题题题	B C D 考 A B C D														****							16 17 17 17	7 6 1 6

第 1 章 经典物理学的"危机" 和量子力学的诞生

1. 利用 Planck 的量子假说证明,谐振子的平均能量为

$$\vec{\epsilon} = \frac{h\nu}{e^{h\nu/kT} - 1}$$

证明 根据统计平均值的定义和 Planck 的量子假说,

$$\bar{\varepsilon} = \sum_{n=0}^{\infty} \varepsilon_n e^{-\varepsilon_n/kT} / \sum_{n=0}^{\infty} e^{-\varepsilon_n/kT}$$

其中, $\epsilon_n = nh\nu_o$ 令 $e^{-h\nu/kT} = x, y = h\nu/kT$,则

$$\tilde{\epsilon} = \sum_{n=0}^{\infty} nh\nu e^{-ny} / \sum_{n=0}^{\infty} e^{-ny}$$

但由于

$$\sum_{n=0}^{\infty} e^{-ny} = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x},$$

$$\sum_{n=0}^{\infty} n e^{-ny} = -\frac{d}{dy} \sum_{n=0}^{\infty} e^{-ny} = -\frac{d}{dy} \left(\frac{1}{1 - e^{-y}} \right) = \frac{x}{(1 - x)^2}$$

因此最后得到

$$\bar{\epsilon} = \frac{h\nu x/(1-x)^2}{1/(1-x)} = \frac{h\nu e^{-y}}{1-e^{-y}} = \frac{h\nu}{e^y-1} = \frac{h\nu}{e^{h\nu/hT}-1}$$

2. 设一个质量为m 的粒子在阱宽为a 的一维无v(x) 限深方势阱

$$V(x) = \begin{cases} \infty, & x < 0, x > a \\ 0, & 0 < x < a \end{cases}$$

中运动,如图 1-1 所示。试用 de Broglie 的驻波条件, 求粒子能量的可能值。

图 1-1

解 根据 de Broglie 的驻波条件

$$a = \frac{\lambda}{2}n, \quad n = 1, 2, 3, \cdots$$

和利用 de Broglie 的假定

$$\lambda = \frac{h}{p}$$

得到动量

$$p = \frac{h}{\lambda} = \frac{nh}{2a} = \frac{2n\pi}{2a} = \frac{n\pi}{a} \frac{\hbar}{a}$$

因此,能量的可能取值是

$$E_n = \frac{p^2}{2m} = \frac{\hbar^2 \pi^2 n^2}{2ma^2}, \quad n = 1, 2, 3, \cdots$$

3. 设一质量为 m 的粒子限制在长、宽、高分别为 a、b、c 的箱内运动,试用驻波条件求粒子能量的可能值。

解 根据 de Broglie 的驻波条件(参考第2题),粒子在x,y,z三个方向分别满足

$$a = \frac{\lambda_x}{2} n_x$$
, $b = \frac{\lambda_y}{2} n_y$, $c = \frac{\lambda_x}{2} n_z$

从而

$$p_x = \frac{\pi \hbar n_x}{a}, \quad p_y = \frac{\pi \hbar n_y}{b}, \quad p_z = \frac{\pi \hbar n_z}{c}$$

因此,粒子的能量

$$E = \frac{p^2}{2m} = \frac{p_x^2 + p_y^2 + p_z^2}{2m} = \frac{\pi^2 \hbar^2}{2m} \left(\frac{n_x^2}{a^2} + \frac{n_y^2}{b^2} + \frac{n_z^2}{c^2} \right), (n_x, n_y, n_z = 1, 2, 3, \dots)$$

4. 设质量为 m 的粒子在一维谐振子势 $V(x) = \frac{1}{2}m\omega^2x^2$ 中运动,试用量子化条件求粒子能量 E 的可能取值。

解 谐振子的总能量

$$E = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

谐振子运动方程的解为

$$x = x_0 \sin \omega t$$

所以

$$p = m \dot{x} = m\omega x_0 \cos \omega t$$

根据角动量量子化条件 $\oint p dx = nh(代入上面的 x, p 并对一个周期求积分) 得$

$$\oint p dx = \int_0^T m \omega x_0 \cos \omega t \cdot x_0 \omega \cos \omega t dt$$

$$= m x_0^2 \omega^2 \int_0^T \cos^2 \omega t dt = \frac{1}{2} m x_0^2 \omega^2 T = nh$$

因此

$$\frac{1}{2}mx_0^2\omega^2 = \frac{nh}{T} = nh\nu, \quad \left(\nu = \frac{1}{T}, n = 1, 2, 3, \cdots\right)$$

由此得到

$$E = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

$$= \frac{1}{2}mx_0^2\omega^2(\cos^2\omega t + \sin^2\omega t)$$

$$= \frac{1}{2}mx_0^2\omega^2 = nh\nu = n\hbar\omega, \quad (\omega = 2\pi\nu)$$

5. 设一个平面转子的转动惯量为 I,求转子能量的可能取值。

解 平面转子(绕 z 轴旋转)的能量

$$E = \frac{1}{2}I\omega^2 = \frac{1}{2}I\dot{\varphi}^2$$
, (φ 为转角)

另一方面,角动量的z分量 $l_z=mvr=mr^2\dot{\varphi}$, $(v=r\dot{\varphi})$,因此

$$E = \frac{1}{2}I \frac{l_z^2}{m^2r^4} = \frac{l_z^2}{2I}, \quad (I = mr^2)$$

根据量子化条件 1,一, 最后得到

$$E = \frac{\hbar^2 n^2}{2I}, \quad n = \pm 1, \pm 2, \cdots$$

6. 一个正电子通过物质时,被原子捕获并与原子中的电子一 道湮没产生两个光子:

$$e^+ + e^- \rightarrow 2\gamma$$

求所产生光子的 de Broglie 波长,已知:m,=9.1×10-31 kg。

解 在 e^+ , e^- 的质心系里, 根据动量守恒定律, 两个光子的动量大小相等(方向相反):

$$p_1 = p_2 \equiv p$$
, $p = \frac{h}{\lambda}$

所以波长

$$\lambda_1 = \lambda_2 \equiv \lambda$$

根据能量守恒定律

$$2m_ec^2=2h\nu$$

所以

$$\nu = \frac{m_r c^2}{h}$$

从而,de Broglie 波长

$$\lambda = \frac{c}{\nu} = \frac{h}{m_e c} \approx 0.022 \text{ Å}$$

7. π^+ 介子可衰变为 μ^+ 轻子和中微子 ν_μ (其质量 m_ν =0),

$$\pi^+ \rightarrow \mu^+ + \nu_\mu$$

求 μ^+ 轻子和中微子 ν_μ 的 de Broglie 波长(考虑相对论效应)。

解 在 π^+ 介子的静止坐标系中, μ^+ 和 ν_μ 的动量大小相等、方向相反。设其动量为 ρ ,则按能量守恒定律

$$m_{\pi}c^{2} = \sqrt{m_{\mu}^{2}c^{4} + p_{\mu}^{2}c^{2} + p_{\nu}c}, \quad (p_{\mu} = p_{\nu} = p)$$

 $m_{\mu}^{2}c^{4} + p^{2}c^{2} = m_{\pi}^{2}c^{4} + p^{2}c^{2} - 2m_{\pi}c^{3}p$

由此可解出

$$p = \frac{(m_{\pi}^2 - m_{\mu}^2)c}{2m_{\pi}}$$

所以, μ+和 ν_ω 的 de Broglie 波长

$$\lambda_{\mu} = \frac{h}{\rho} = \frac{2m_{\pi}h}{(m_{\pi}^2 - m_{\mu}^2)c} = \lambda_{\nu}$$

8. 由角动量量子化条件 $J=n\hbar$ 推导出氢原子的"轨道半径" r_n 与能量 E_n 。

解 因为

$$J = mvr = n \hbar$$

所以

$$v = \frac{n \ h}{mr} \tag{1}$$

电子在核 Coulomb 势中的能量

$$E = \frac{1}{2}mv^2 - \frac{e^2}{r} \tag{2}$$

对圆轨道

$$\frac{e^2}{r^2} = \frac{mv^2}{r}$$

所以

$$v^2 = \frac{e^2}{mr} \tag{3}$$

将式(1)代人式(3)得轨道半径

$$r_n = \frac{n^2 \hbar^2}{me^2}, \quad (n = 1, 2, 3, \cdots)$$

再把 r。和 v 代入式(2)得

$$E_{n} = -\frac{me^{4}}{2 \, \hbar^{2} n^{2}}$$

9. 一质量为 m 的粒子禁闭在边长为 a 的立方体内,求粒子从基态跃迁到第一激发态所需能量值。

解 立方体内粒子的能量

$$E_{n_1,n_2,n_3} = \frac{\hbar^2 \pi^2}{2ma^2} (n_1^2 + n_2^2 + n_3^2) \quad n_1, n_2, n_3 = 1, 2, 3, \dots$$

基态能量为

$$E_{111} = \frac{3 \hbar^2 \pi^2}{2 m a^2}$$

第一激发态(三重简并)的能量为

$$E_{211} = E_{121} = E_{112} = \frac{6 \, h^2 \pi^2}{2ma^2} = \frac{3 \, h^2 \pi^2}{ma^2}$$

因此,由基态到第一激发态的激发能

$$E = E_{211} - E_{111} = \frac{3 \hbar^2 \pi^2}{2ma^2}$$

10. 在氯化钠晶体内有些负离子空穴,每个空穴束缚一个电子,因此可将这些电子看成束缚在边长为晶格常数 a 的立方体内的粒子。设在室温下电子处于基态,求处于基态的电子吸收电磁波跃迁到第一激发态时,所吸收电磁波的波长。

解 空穴中电子的能量

$$E_{n_1,n_2,n_3} = \frac{\hbar^2 \pi^2}{2ma^2} (n_1^2 + n_2^2 + n_3^2), n_1, n_2, n_3 = 1, 2, 3, \cdots$$

基态和第一激发态的能级能量分别为

$$E_{111} = \frac{3 \hbar^2 \pi^2}{2ma^2}, \quad E_{211} = E_{121} = E_{112} = \frac{3 \hbar^2 \pi^2}{ma^2}$$

因此,所吸收电磁波的频率满足

$$E = E_{211} - E_{111} = h\nu$$

电磁波的波长

$$\lambda = \frac{c}{\nu} = \frac{hc}{E} = \frac{2ma^2hc}{3\hbar^2\pi^2} = \frac{4ma^2c}{3\hbar\pi}$$

第2章 波函数与Schrödinger方程

1. 求证:如果 $\psi_1(x,t)$ 和 $\psi_2(x,t)$ 是同一个 Schrödinger 方程的两个解,则 $\psi(x,t)=c_1\psi_1(x,t)+c_2\psi_2(x,t)$ 也是该 Schrödinger 方程的解。

证明 设体系的 Hamilton 量为 \hat{H} ,则因为 $\phi_1(x,t)$ 和 $\phi_2(x,t)$ 是同一个 Schrödinger 方程的解,它们分别满足方程

$$i \hbar \frac{\partial \psi_1(x,t)}{\partial t} = \hat{H} \psi_1(x,t)$$

$$i \hbar \frac{\partial \psi_2(x,t)}{\partial t} = \hat{H} \psi_2(x,t)$$

因此,

$$i \hbar \frac{\partial \psi(x,t)}{\partial t} = i \hbar \frac{\partial \{c_1 \psi_1(x,t) + c_2 \psi_2(x,t)\}}{\partial t}$$

$$= c_1 i \hbar \frac{\partial \psi_1(x,t)}{\partial t} + c_2 i \hbar \frac{\partial \psi_2(x,t)}{\partial t}$$

$$= c_1 \hat{H} \psi_1(x,t) + c_2 \hat{H} \psi_2(x,t)$$

$$= \hat{H} \{c_1 \psi_1(x,t) + c_2 \psi_2(x,t)\} = \hat{H} \psi(x,t)$$

可见, $\phi(x,t)$ 也是该 Schrödinger 方程的解。

2. 平面转子的能量 $E=\frac{l_x^2}{2I}$ (见第 1 章习题),对应的能量算符 (Hamilton 算符)为

$$\hat{H} = \frac{\hat{\ell}_z^2}{2I}, \quad \hat{\ell}_z = -i \, \hbar \frac{\partial}{\partial \varphi}$$

求平面转子的波函数。

解 设平面转子的波函数为 $\psi(\varphi)$,则 Schrödinger 方程为

$$\hat{H}\psi(\varphi) = E\psi(\varphi)$$
 \vec{g} $-\frac{\hbar^2}{2I}\frac{d^2\psi(\varphi)}{d\varphi^2} = E\psi(\varphi)$

设 $2IE/\hbar^2=k^2$,则上式变为

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}\varphi^2} + k^2\psi = 0$$

此方程的两个特解为 $\phi(\varphi) \sim e^{\pm i k \varphi}$ 。由周期性条件

$$\psi(\varphi) = \psi(\varphi + 2\pi)$$

即

$$e^{2\pi i \delta} = 1$$

所以

$$k=n$$
, $n=0,\pm 1,\pm 2,\cdots$

从而得到

 $\psi(\varphi) = Ce^{in\varphi}$ (正转,n 取正数;反转,n 取负数)

归一化:

$$|C|^2 \int_0^{2\pi} \psi^* \psi \mathrm{d}\varphi = 1$$

由此可得

$$C = \frac{1}{\sqrt{2\pi}}$$

因此,最后得到归一化的波函数

$$\psi(\varphi) = \frac{1}{\sqrt{2\pi}} e^{in\varphi} \quad n = 0, \pm 1, \pm 2, \cdots$$

能量本征值

$$E_n = \frac{\hbar^2 k^2}{2I} = \frac{\hbar^2 n^2}{2I}, \quad n = 0, \pm 1, \pm 2, \cdots$$

- 3. 设质量为m的粒子束缚在势场V(r)中运动。
- (1)求证:粒子的能量平均值为 $\overline{E}=W$,其中

$$W = \frac{\hbar^2}{2m} \nabla \psi^* \cdot \nabla \psi + \psi^* V \psi$$
 (能量密度)。

(2)证明能量守恒公式

$$\frac{\partial W}{\partial t} + \nabla \cdot \mathbf{s} = 0$$

其中,

$$s = -\frac{\hbar^2}{2m} \left(\frac{\partial \, \psi^*}{\partial \, t} \nabla \, \psi + \frac{\partial \, \psi}{\partial \, t} \nabla \, \psi^* \right)$$
 (能流密度)。

证明 (1)在势场 V(r)中运动粒子的 Hamilton 为

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + V(r)$$

因此,能量平均值

$$\begin{split} \overline{E} &= \int \!\! \psi^* \; \hat{H} \psi \mathrm{d}^3 r = \int \!\! \psi^* \left[-\frac{\hbar^2}{2m} \nabla^2 \right] \!\! \psi \mathrm{d}^3 r + \int \!\! \psi^* V \psi \mathrm{d}^3 r \\ &= -\frac{\hbar^2}{2m} \!\! \int \!\! \psi^* \; \nabla^2 \psi \mathrm{d}^3 r + \int \!\! \psi^* V \psi \mathrm{d}^3 r \\ &= \int \!\! \left[\frac{\hbar^2}{2m} (-\nabla \cdot (\psi^* \nabla \psi) + \nabla \psi^* \cdot \nabla \psi) + \psi^* V \psi \right] \! \mathrm{d}^3 r \end{split}$$

利用高斯定理,上式右边第一项中的散度可化为

$$\iint \nabla \cdot (\psi^* \nabla \psi) \mathrm{d}^3 r = \oiint (\psi^* \nabla \psi) \cdot \mathrm{d} s$$

根据束缚态边界条件 $\psi|_{x=\pm\infty}=0$,上式变为零。因此最后得

$$\overline{E} = \int \left(\frac{\hbar^2}{2m} \nabla \psi^* \cdot \nabla \psi + \psi^* V \psi \right) d^3 r = \int W d^3 r$$

$$(2) \frac{\partial W}{\partial t} = \frac{\hbar^2}{2m} \left[\nabla \left(\frac{\partial \psi^*}{\partial t} \right) \nabla \psi + \nabla \psi^* \nabla \left(\frac{\partial \psi}{\partial t} \right) \right] + \frac{\partial \psi^*}{\partial t} V \psi + \psi^* V \frac{\partial \psi}{\partial t}$$

$$= \frac{\hbar^2}{2m} \nabla \cdot \left(\frac{\partial \psi^*}{\partial t} \nabla \psi + \frac{\partial \psi}{\partial t} \nabla \psi^* \right) - \frac{\hbar^2}{2m} \left(\frac{\partial \psi^*}{\partial t} \nabla^2 \psi + \frac{\partial \psi}{\partial t} \nabla^2 \psi^* \right) + \frac{\partial \psi^*}{\partial t} V \psi + \psi^* V \frac{\partial \psi}{\partial t}$$

$$\begin{split} &= -\nabla \cdot s + \frac{\partial \psi^*}{\partial t} \left(-\frac{\hbar^2}{2m} \nabla^2 + V \right) \psi + \\ &= \frac{\partial \psi}{\partial t} \left(-\frac{\hbar^2}{2m} \nabla^2 + V \right) \psi^* \\ &= -\nabla \cdot s + \frac{\partial \psi^*}{\partial t} \hat{H} \psi + \frac{\partial \psi}{\partial t} \hat{H} \psi^* \\ &= -\nabla \cdot s + i \, \hbar \frac{\partial \psi^*}{\partial t} \frac{\partial \psi}{\partial t} - i \, \hbar \frac{\partial \psi}{\partial t} \frac{\partial \psi^*}{\partial t} = -\nabla \cdot s \end{split}$$

所以

$$\frac{\partial W}{\partial t} + \nabla \cdot s = 0$$

4. 求证:在 Schrödinger 方程

$$i \hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \psi(\mathbf{r}, t)$$
 (1)

中,只有当势函数 V(r)为实函数时,连续性方程 $\frac{\partial \rho}{\partial t}$ + $\nabla \cdot \mathbf{j} = 0$ 才能得以满足。

证明 取上面 Schrödinger 方程的复共轭,则

$$-\mathrm{i}\,\hbar\frac{\partial}{\partial t}\psi^{\bullet}(\mathbf{r},t) = \left[-\frac{\hbar^{2}}{2m}\nabla^{2} + V^{\bullet}(\mathbf{r})\right]\psi^{\bullet}(\mathbf{r},t) \tag{2}$$

 $\psi^{\bullet}(r,t)\times(1)-\psi(r,t)\times(2)$

$$i \hbar \frac{\partial}{\partial t} (\psi^* (\mathbf{r}, t) \psi(\mathbf{r}, t))$$

$$= \frac{\hbar^2}{2m} [\psi(\mathbf{r}, t) \nabla^2 \psi^* (\mathbf{r}, t) - \psi^* (\mathbf{r}, t) \nabla^2 \psi(\mathbf{r}, t)] + [V(\mathbf{r}) - V^* (\mathbf{r})] \psi^* (\mathbf{r}, t) \psi(\mathbf{r}, t)$$

即

$$\frac{\partial}{\partial t}\rho(\mathbf{r},t) = -\frac{\mathrm{i}}{2m}\nabla \cdot \left[\psi(\mathbf{r},t)\nabla\psi^{*}(\mathbf{r},t) - \psi^{*}(\mathbf{r},t)\nabla\psi(\mathbf{r},t)\right] -$$

$$\frac{\mathrm{i}}{\hbar} [V(r) - V^*(r)] \psi^*(r,t) \psi(r,t)$$

或者

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = \frac{\mathrm{i}}{\hbar} \cdot \left[V^*(r) + V(r) \right] \psi^*(\mathbf{r}, t) \psi(\mathbf{r}, t)$$

几率要守恒,必须满足连续性方程 $\frac{\partial \rho}{\partial t}$ + $\nabla \cdot \mathbf{j}$ =0。由上式可见,只有当上式中的势函数 V(r)为实数时连续性方程才得以满足。

5. 设 ψ_1 和 ψ_2 是 Schrödinger 方程的两个解,试证明

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \psi_1^*(\mathbf{r},t) \psi_2(\mathbf{r},t) \mathrm{d}^3 \mathbf{r} = 0$$

证明
$$\frac{\mathrm{d}}{\mathrm{d}t} \int \psi_1^* (\boldsymbol{r}, t) \psi_2(\boldsymbol{r}, t) \mathrm{d}^3 \boldsymbol{r}$$

$$= \int \left[\psi_1^* (\boldsymbol{r}, t) \frac{\mathrm{d}}{\mathrm{d}t} \psi_2(\boldsymbol{r}, t) + \frac{\mathrm{d}}{\mathrm{d}t} \psi_1^* (\boldsymbol{r}, t) \cdot \psi_2(\boldsymbol{r}, t) \right] \mathrm{d}^3 \boldsymbol{r}$$

$$= -\frac{\mathrm{i}}{\hbar} \int \left[\psi_1^* \hat{H} \psi_2 - \psi_2 \hat{H} \psi_1^* \right] \mathrm{d}^3 \boldsymbol{r}$$

因为

$$\psi_{1}^{*} \hat{H} \psi_{2} - \psi_{2} \hat{H} \psi_{1}^{*}
= -\frac{\hbar^{2}}{2m} (\psi_{1}^{*} \nabla^{2} \psi_{2} - \psi_{2} \nabla^{2} \psi_{1}^{*}) + \psi_{1}^{*} V \psi_{2} - \psi_{2} V \psi_{1}^{*}
= -\frac{\hbar^{2}}{2m} (\psi_{1}^{*} \nabla^{2} \psi_{2} - \psi_{2} \nabla^{2} \psi_{1}^{*})
= -\frac{\hbar^{2}}{2m} \nabla \cdot (\psi_{1}^{*} \nabla \psi_{2} - \psi_{2} \nabla \psi_{1}^{*})$$

所以

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \psi_1^* \psi_2 \mathrm{d}^3 r = \frac{\mathrm{i} \, \hbar}{2m} \iint_{-\infty}^{\infty} \nabla \cdot (\psi_1^* \, \nabla \, \psi_2 - \psi_2 \nabla \, \psi_1^*) \mathrm{d}^3 r$$

$$= \frac{\mathrm{i} \, \hbar}{2m} \iint (\psi_1^* \, \nabla \, \psi_2 - \psi_2 \nabla \, \psi_1^*) \cdot \mathrm{d} s$$

由于在无穷远处,曲面上的 $\phi_1|_{-\infty} \to 0, \phi_2|_{-\infty} \to 0$,上面的曲面积分为零。所以

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \psi_1^* \psi_2 \mathrm{d}^3 \mathbf{r} = 0$$

6. 设一个一维自由粒子的初态 $\psi(x,0) = e^{\frac{i}{\hbar} P_0 x}$, 求 $\psi(x,t)$ 。

解 由于初态 $\phi(x,0)$ 是一个动量的本征态,具有确定的动量,因而具有确定的能量

$$E = \frac{p_0^2}{2m} \quad (定态)$$

因此

$$\psi(x,t) = \psi_E(x)f(t) = \psi(x,0)e^{-\frac{i}{\hbar}E_t} = e^{\frac{i}{\hbar}\left(\rho_0x - \frac{\rho_0^2}{2m'}\right)}$$

第3章 不含时 Schrödinger 方程及其解法

1. 求证:如果 $\phi(x)$ 是一维不含时 Schrödinger 方程的解,对应的能量本征值为 E,则 $\phi^*(x)$ 也是该 Schrödinger 方程的能量本征值为 E 的解。

证明 取一维不含时 Schrödinger 方程的共轭,则

$$\left[-\frac{\hbar}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}+V(x)\right]\psi^*(x)=E\psi^*(x),$$

因为 $V^*(x) = V(x)$, $E^* = E$ 。可见, $\phi^*(x)$ 也满足 Schrödinger 方程, 能量本征值为 E。也就是说, ϕ^* 也是 Schrödinger 方程的能量为 E 的解。

2. 在解束缚态 Schrödinger 方程时,对同一个能量本征值 E,如果方程具有两个或两个以上独立的波函数解,则我们说该能级是简并的(degenerate)。如果只有一个独立解,则叫无简并。

在无简并情况下,试证明:一维 Schrödinger 方程的解 $\psi(x)$ 可取实函数。

证明 如果 $\psi(x)$ 是 Schrödinger 方程的对应于能量本征值为 E 的一个解,则根据上题的结果 $\psi^*(x)$ 也是能量为 E 的一个解。如果能级不简并,则 $\psi^*(x)$ 和 $\psi(x)$ 描述同一个量子态,因此 $\psi^*(x)=c\psi(x),c$ 为一个常因子。取此式的复共轭得

$$\psi(x) = c^* \psi^*(x) = c^* c \psi(x) = |c|^2 \psi(x)$$

因此, $|c|^2=1$, $c=e^{i\theta}(\alpha$ 为实数)。考虑波函数的相因子不定性,可取 $\alpha=0$,因此 c=1,从而 $\phi^*(x)=\phi(x)$,即 $\phi(x)$ 为实函数,也就是说,在无简并的情况下,一维 Schrödinger 方程的解为实解。

3. 设势 V(x) 具有空间反演 (space reverse) 不变性,即 V(-x)=V(x)。试证明,如果 $\psi(x)$ 是不含时 Schrödinger 方程的能量为 E 的解,则 $\psi(-x)$ 也是能量为 E 的一个解。

证明 进行空间反演变换 $x \rightarrow -x$ 时, $\phi(x) \rightarrow \phi(-x)$ 。由于,

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2} \xrightarrow{x \to -x} \frac{\mathrm{d}^2}{\mathrm{d}x^2}, \quad V(x) \xrightarrow{x \to -x} V(-x) = V(x)$$

因此, $\phi(-x)$ 满足

$$\left[-\frac{\hbar}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x)\right]\phi(-x) = E\phi(-x)$$

也就是说, $\phi(-x)$ 也是 Schrödinger 方程的能量为 E 的一个解。

4. 一粒子在一维方势阱 V(x)中运动。V(x)具有空间反演不变性,即 V(x)=V(-x),求证,该粒子的不含时 Schrödinger 方程的任何解都可以用具有确定宇称的解来表示。

证明 根据上题的结果,当V(x)=V(-x)时,如果 $\phi(x)$ 是 Schrödinger 方程的解,则 $\phi(-x)$ 也是 Schrödinger 方程的解。定义

$$\psi_{\epsilon}(x) = \psi(x) + \psi(-x)$$

$$\psi_{\alpha}(x) = \psi(x) - \psi(-x)$$

则, $\psi_{\epsilon}(x)$ 和 $\psi_{\epsilon}(x)$ 也是 Schrödinger 方程的解,同时, $\psi_{\epsilon}(x)$ 和 $\psi_{\epsilon}(x)$ 在空间反演变换下分别具有偶字称和奇字称,由上式得到

$$\psi(x) = \frac{1}{2} \left[\psi_{\rm e}(x) + \psi_{\rm o}(x) \right]$$

$$\psi(-x) = \frac{1}{2} [\psi_{\epsilon}(x) - \psi_{\epsilon}(x)]$$

可见,Schrödinger 方程的任何解都可以用具有确定字称的解来表示。

5. 设一个质量为 m 的粒子束缚在势场 V(x) 中作一维运动,其能量本征值和本征函数分别为 $E_n, \psi_n, n=1,2,3,\cdots$ 。求证:

$$\int_{-\infty}^{\infty} \psi_m(x) \psi_n(x) \mathrm{d}x = 0, \quad m \neq n$$

证明 粒子的能量本征函数 ϕ_m 和 ϕ_n 都满足 Schrödinger 方程:

$$\frac{\mathrm{d}^2 \phi_m(x)}{\mathrm{d}x^2} + \frac{2m}{\hbar^2} \left[E_m - V(x) \right] \phi_m(x) = 0 \tag{1}$$

$$\frac{\mathrm{d}^2 \psi_n(x)}{\mathrm{d}x^2} + \frac{2m}{h} \left[E_n - V(x) \right] \psi_n(x) = 0 \tag{2}$$

$$(1) \times \psi_n - (2) \times \psi_m$$
,得

$$\psi_n \frac{\mathrm{d}^2 \psi_m}{\mathrm{d}x^2} - \psi_m \frac{\mathrm{d}^2 \psi_n}{\mathrm{d}x^2} = \frac{2m}{\hbar^2} [E_n - E_m] \psi_m \psi_n$$

或者

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\psi_{n}\frac{\mathrm{d}\psi_{m}}{\mathrm{d}x}-\psi_{m}\frac{\mathrm{d}\psi_{n}}{\mathrm{d}x}\right)=\frac{2m}{\hbar^{2}}\left[E_{n}-E_{m}\right]\psi_{m}\psi_{n}$$

在全空间积分得

$$\psi_n \frac{\mathrm{d}\psi_n}{\mathrm{d}x} - \psi_n \frac{\mathrm{d}\psi_n}{\mathrm{d}x}\Big|_{-\infty}^{\infty} = \frac{2m}{\hbar^2} [E_n - E_m] \int_{-\infty}^{\infty} \psi_n \psi_n \mathrm{d}x$$

因束缚态波函数满足 $\phi(x)|_{x\to\infty} \to 0$,上式的左边等于零。因此,对

$$m \neq n$$
, $\int_{-\infty}^{\infty} \psi_m \psi_n \mathrm{d}x = 0$.

6. 对一维运动的粒子,设 $\phi_1(x)$ 和 $\phi_2(x)$ 均为不含时 Schrödinger方程的具有相同能量E的解,求证: $\phi_1\phi_2'-\phi_2\phi_1'=常数。$

证明 按假设

$$\psi_1'' + \frac{2m}{\hbar^2} [E - V(x)] \psi_1 = 0$$
 (1)

$$\psi_2'' + \frac{2m}{\hbar^2} [E - V(x)] \psi_2 = 0$$
 (2)

 $\phi_1 \times (2) - \phi_2 \times (1)$,得

$$\phi_1\phi_2''-\phi_2\phi_1''=0$$

所以

$$(\phi_1 \phi_2' - \phi_2 \phi_1')' = 0$$

从而得

$$\psi_1\psi_2'-\psi_2\psi_1'=常数$$

对于束缚态,作为边界条件, $|x| \rightarrow \infty$ 时 $\phi(x) \rightarrow 0$,由此可确定上式中的常数必为零。因此,

$$\phi_1 \phi_2' - \phi_2 \phi_1' = 0$$

7. 设 $\hat{p} = -i \hbar \nabla$ 为粒子的动量, $F = -\nabla V(r)$ 表示粒子所受的力。求证动量和力的平均值满足 Newton 运动方程

$$\frac{\mathrm{d} \bar{p}}{\mathrm{d} t} = \bar{F}$$

证明 根据平均值的定义,

$$\overline{p} = -i \hbar \int_{-\infty}^{\infty} \psi^* \nabla \psi d^3 r$$

$$\overline{F} = -\int_{-\infty}^{\infty} \psi^* (\nabla V(r)) \psi d^3 r$$

由此得到

$$\frac{\mathrm{d}\bar{p}}{\mathrm{d}t} = -\mathrm{i}\,\hbar \int \left(\frac{\mathrm{d}\psi^*}{\mathrm{d}t}\nabla\psi + \psi^*\,\nabla\frac{\mathrm{d}\psi}{\mathrm{d}t}\right)\mathrm{d}^3r$$

方程右边第二项进行分部积分后得到

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = -\mathrm{i}\,\hbar \int \left(\frac{\mathrm{d}\phi^*}{\mathrm{d}t}\nabla\phi - \frac{\mathrm{d}\phi}{\mathrm{d}t}\nabla\phi^*\right)\mathrm{d}^3r$$

利用 Schrödinger 方程可得

$$i \hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + V(r) \psi$$
$$-i \hbar \frac{\partial \psi^*}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi^* + V(r) \psi^*$$

把上两式代入得

$$\frac{\mathrm{d}\overline{\boldsymbol{p}}}{\mathrm{d}t} = -\frac{\hbar^2}{2m} \int (\nabla^2 \boldsymbol{\psi}^* \cdot \nabla \boldsymbol{\psi} + \nabla^2 \boldsymbol{\psi} \cdot \nabla \boldsymbol{\psi}^*) \mathrm{d}^3 \boldsymbol{r} + \int V(\boldsymbol{r}) (\boldsymbol{\psi}^* \nabla \boldsymbol{\psi} + \boldsymbol{\psi} \nabla \boldsymbol{\psi}^*) \mathrm{d}^3 \boldsymbol{r}$$

利用分部积分

$$\int \nabla^2 \phi^* \cdot \nabla \phi d^3 r = - \int \nabla \phi^* \cdot \nabla^2 \phi d^3 r$$

和

$$\int V(r)\psi\nabla\psi^*\mathrm{d}^3r = -\int \psi^*\nabla(V\psi)\mathrm{d}^3r$$

得到

$$\frac{\mathrm{d}\bar{p}}{\mathrm{d}t} = \int \!\! \psi^* \left(V \nabla \psi - \nabla (V \psi) \right) \mathrm{d}^3 \mathbf{r}$$

再利用公式

$$\nabla (V\psi) = V \nabla \psi + \psi \nabla V$$

最后得到

$$\frac{\mathrm{d}\overline{\boldsymbol{p}}}{\mathrm{d}t} = -\int \phi^* (\nabla V) \phi \mathrm{d}^3 \boldsymbol{r} = \overline{\boldsymbol{F}}$$

8. 求证:如果势函数 V(r)可以写成一元函数之和 V(r) = $V_1(x)+V_2(y)+V_3(z)$,则不含时 Schrödinger 方程可以分解成如下形式的一维方程组:

$$\begin{split} &\frac{\mathrm{d}^{2}\psi_{1}(x)}{\mathrm{d}x^{2}} + \frac{2m}{\hbar^{2}} [E_{x} - V_{1}(x)] \psi_{1}(x) = 0\\ &\frac{\mathrm{d}^{2}\psi_{2}(y)}{\mathrm{d}y^{2}} + \frac{2m}{\hbar^{2}} [E_{y} - V_{2}(y)] \psi_{2}(y) = 0\\ &\frac{\mathrm{d}^{2}\psi_{3}(z)}{\mathrm{d}x^{2}} + \frac{2m}{\hbar^{2}} [E_{z} - V_{3}(z)] \psi_{3}(z) = 0 \end{split}$$

其中, $E = E_x + E_y + E_z$ 为体系的总能量。

证明 设体系的波函数为 $\phi(r)$,并把 $\phi(r)$ 写成

$$\psi(\mathbf{r}) = \psi_1(x)\psi_2(y)\psi_3(z)$$

代人到 Schrödinger 方程

$$\frac{\partial^2 \psi(\mathbf{r})}{\partial x^2} + \frac{\partial^2 \psi(\mathbf{r})}{\partial y^2} + \frac{\partial^2 \psi(\mathbf{r})}{\partial z^2} + \frac{2m}{\hbar^2} [E - V(\mathbf{r})] \psi(\mathbf{r}) = 0$$

并用 $\phi(\mathbf{r}) = \phi_1(x)\phi_2(y)\phi_3(z)$ 除方程两边得

$$\begin{split} &\frac{1}{\psi_1(x)} \frac{\mathrm{d}^2 \psi_1(x)}{\mathrm{d}x^2} - \frac{2m}{\hbar^2} V_1(x) + \frac{1}{\psi_2(y)} \frac{\mathrm{d}^2 \psi_2(y)}{\mathrm{d}y^2} - \frac{2m}{\hbar^2} V_2(y) + \\ &\frac{1}{\psi_3(z)} \frac{\mathrm{d}^2 \psi_3(z)}{\mathrm{d}z^2} - \frac{2m}{\hbar^2} V_3(z) = -\frac{2m}{\hbar^2} E \end{split}$$

可以看到,上式左边是三个独立变量函数之和,而右边是一个常数,要使等式对x,y,z都成立,等式左边的每一项必须分别为某一常数,因此得

$$\frac{\mathrm{d}^{2}\psi_{1}(x)}{\mathrm{d}x^{2}} - \frac{2m}{\hbar^{2}}V_{1}(x)\psi_{1}(x) = -\frac{2m}{\hbar^{2}}E_{x}\psi_{1}(x)$$

$$\frac{\mathrm{d}^{2}\psi_{2}(y)}{\mathrm{d}y^{2}} - \frac{2m}{\hbar^{2}}V_{2}(y)\psi_{2}(y) = -\frac{2m}{\hbar^{2}}E_{y}\psi_{2}(y)$$

$$\frac{\mathrm{d}^{2}\psi_{3}(z)}{\mathrm{d}x^{2}} - \frac{2m}{\hbar^{2}}V_{3}(z)\psi_{3}(z) = -\frac{2m}{\hbar^{2}}E_{z}\psi_{3}(z)$$

或者

$$\frac{\mathrm{d}^{z}\psi_{1}(x)}{\mathrm{d}x^{2}} + \frac{2m}{\hbar^{2}} [E_{x} - V_{1}(x)] \psi_{1}(x) = 0$$

$$\frac{\mathrm{d}^{2}\psi_{2}(y)}{\mathrm{d}y^{2}} + \frac{2m}{\hbar^{2}} [E_{y} - V_{2}(y)] \psi_{z}(y) = 0$$

$$\frac{\mathrm{d}^{2}\psi_{3}(z)}{\mathrm{d}z^{2}} + \frac{2m}{\hbar^{2}} [E_{z} - V_{3}(z)] \psi_{3}(z) = 0$$

其中、 $E=E_x+E_y+E_z$,故问题得证。

9. 设一个质量为 m 的粒子在一维方势阱

$$V(x) = \begin{cases} 0, & 0 < x < a \\ \infty, & x < 0, x > a \end{cases}$$

中运动,如图 3-1 所示。求粒子在阱内外的能量本征值与本征函

数。

解 因为势阱壁无限高,粒子不能越过阱壁。 因此阱外的波函数 $\psi_{tt}=0$ 。

在 阱 内
$$(0 < x < a)$$
, 由 于 $V(x) = 0$,

Schrödinger方程(能量本征值方程)变为

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} + \frac{2mE}{\hbar^2} \psi = 0 \quad (E > 0)$$

图 3-1

或

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} + k^2 \psi = 0 \quad \left(k^2 = \frac{2mE}{\hbar^2} \right)$$

方程的解为

$$\psi(x) = A\sin(kx + \delta)$$

其中,A 和δ是待定常数。

按照波函数的性质,在边界 x=0 和 x=a 处,波函数要连续,即

$$\begin{cases} \psi(0) = \psi_{\mathfrak{H}}(0) = 0 \\ \psi(a) = \psi_{\mathfrak{H}}(a) = 0 \end{cases}$$

由 $\phi(0)=0$ 求得 $\delta=0$,因此

$$\psi(x) = A \sin kx$$

再由 $\psi(a)=0$ 求得(因 $\delta=0, A\neq 0$)

$$k = \frac{n\pi}{a}, \quad n = 1, 2, 3, \cdots$$

当 n=0 时 $\phi=0$,无意义。若 n<0,则与对应的 n>0 的解只差一个常数 -1,因此只取 n>0。

把 k 代入其定义式得,能量本征值

$$E_n = \frac{\hbar^2 \pi^2 n^2}{2ma^2}, \quad n = 1, 2, 3, \cdots$$

此式说明,在阱内粒子的能量 E 是量子化的(取离散值),只有能

量本征值为上式的 E_n 时,对应的本征函数才满足边界条件,从而是满足物理条件的解。

对应于能量本征值 E, 的能量本征函数是

$$\psi_n(x) = A \sin \frac{n\pi x}{a}$$

利用归一化条件

$$\int_{0}^{a} |\psi_{n}(x)|^{2} \mathrm{d}x = 1$$

可求出归一化常数 $A=\sqrt{\frac{2}{a}}$,因此,最后得

$$\psi_n(x) = \begin{cases} \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}, & 0 < x < a \\ 0, & x < 0, x > a \end{cases}$$

讨论

①从 $E_n = \frac{\hbar^2 \pi^2 n^2}{2ma^2}$ 看到,粒子的最低能级的能量

$$E_1 = \frac{\hbar^2 \pi^2}{2ma^2} \neq 0$$

这与经典粒子不同(经典粒子的最低能量为 0)。这是微观粒子波动性的体现,因为静止的波是没有意义的。从不确定性关系也可以得到 $E_1 \neq 0$ 。因为粒子限制在 0 < x < a 内,粒子位置的不确定度 $\Delta x = a$ 。由不确定性关系 $\Delta x \cdot \Delta p > h$ 得 $\Delta p > \frac{h}{a}$ 。因此,粒子的能量 至少具有 $\Delta E > \frac{\Delta p^2}{2m} = \frac{\hbar^2}{2ma^2} \neq 0$ 的不确定度,最低能量不为零是自然的。

②由 E_n 和对应的 ψ_n 的图像(图 3-2)看,每一个能级的对应波函数满足: $a=\frac{\lambda}{2}n$ (驻波条件)关系。这是必然的,因为我们求得 k=

 $\frac{n\pi}{a}$,但同时由于 $k = \frac{2\pi}{\lambda}$,我们得到 $a = \frac{\lambda}{2}n$ 。从图中可以看到,除 x = 0 和 x = a 点外, ψ_1 没有节点, ψ_2 有一个节点, ψ_3 有两个节点等等。

③波函数 $\psi_n(x)$ 在全空间 $(-\infty < x$ $<+\infty)$ 连续,但 $\psi_n(x)$ 在 x=0 和 x=a (边界上势能无穷大)处不连续。

10. 设粒子(E>0)从左入射,被如图 3-3 所示的势阱(在 x<0 区, $V(x)=-V_0$;x>0 区,V(x)=0)散射。求反射系数。

解 粒子的能量本征值方程为

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} + \frac{2m}{\hbar^2} [E - V(x)] \psi(x) = 0$$

在 x < 0 的区域, $V(x) = -V_0$,因此上式化为

$$\frac{\mathrm{d}^{2}\psi_{1}}{\mathrm{d}x^{2}} + \frac{2m(E + V_{0})}{\hbar^{2}}\psi_{1} = 0$$

或

$$\frac{\mathrm{d}^2 \psi_1}{\mathrm{d} x^2} + k^2 \psi_1 = 0, \quad k^2 \equiv \frac{2m (E + V_0)}{\hbar^2}$$

方程的解为

$$\psi_{\perp}(x) = e^{ikx} + Re^{-ikx}$$

在 x>0 的区域,V(x)=0,因此 Schrödinger 方程为

$$\frac{\mathrm{d}^2 \psi_1}{\mathrm{d} x^2} + \frac{2mE}{\hbar^2} \psi_1 = 0$$

戝

$$\frac{\mathrm{d}^2 \psi_1}{\mathrm{d} x^2} + l^2 \psi_1 = 0, \quad l^2 \equiv \frac{2mE}{\hbar^2}$$

方程的解为 $\phi_1 = Se^{yx} \cdot \phi(x)$ 在 x=0 处应连续, $\phi_1(0) = \phi_1(0)$,即 1+R=S

再由 ψ 在 x=0 处(势能有限)的连续条件得

$$k(1-R)=St$$

因此, $R = \frac{k-l}{k+l}$,从而得到反射系数

$$|R|^2 = \left(\frac{k-l}{k+l}\right)^2 = \frac{j_r}{j_i} = F$$

把R代人原方程得

$$S = \frac{2k}{k+l}$$

由于 $l \neq k$, $|S|^2$ 并非透射系数 T, $T = j_i/j_i$ 。但由于

$$j_{i} = \frac{\mathrm{i} \, \hbar}{2m} \left(\psi_{i} \, \frac{\mathrm{d}}{\mathrm{d}x} \psi_{i}^{*} - \psi_{i}^{*} \, \frac{\mathrm{d}}{\mathrm{d}x} \psi_{i} \right)$$

$$= \frac{\mathrm{i} \, \hbar}{2m} \left[e^{\mathrm{i}kx} (-\mathrm{i}k) e^{-\mathrm{i}kx} - e^{-\mathrm{i}kx} (\mathrm{i}k) e^{\mathrm{i}kx} \right]$$

$$= \frac{\mathrm{i} \, \hbar}{2m} (-2\mathrm{i}k) = \frac{\hbar k}{m}$$

$$j_{i} = \frac{\mathrm{i} \, \hbar}{2m} \left(\psi_{i} \, \frac{\mathrm{d}}{\mathrm{d}x} \psi_{i}^{*} - \psi_{i}^{*} \, \frac{\mathrm{d}}{\mathrm{d}x} \psi_{i} \right)$$

$$= \frac{\mathrm{i} \, \hbar}{2m} \left[S e^{\mathrm{i}kx} (-\mathrm{i}t) S^{*} e^{-\mathrm{i}kx} - S^{*} e^{-\mathrm{i}kx} (\mathrm{i}t) S e^{\mathrm{i}kx} \right]$$

$$= \frac{\mathrm{i} \, \hbar}{2m} (-2\mathrm{i}t |S|^{2}) = \frac{\hbar t}{m} |S|^{2}$$

所以

$$T = \frac{j_1}{j_1} = \frac{l}{k} |S|^2 = \frac{l}{k} \left(\frac{2k}{k+l} \right)^2 = \frac{4kl}{(k+l)^2}$$
$$F + T = 1$$

11. 带电荷 q 的谐振子受到 z 方向的外电场 ϵ 的作用,谐振子的势能

$$V(x,y,z) = \frac{1}{2}m\omega^2(x^2+y^2+z^2) - q\varepsilon z$$
 (各向同性三维谐振子)

求能量本征值和本征函数。

解 粒子的 Schrödinger 方程为

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{2m}{\hbar^2} \left[E - \frac{1}{2} m \omega^2 (x^2 + y^2 + z^2) + q \varepsilon z \right] \psi = 0$$

令

$$\xi = \alpha x$$
, $\eta = \alpha y$, $\zeta = \alpha \left(z - \frac{q \varepsilon}{m \omega^2} \right)$, $\alpha = \sqrt{\frac{m \omega}{\hbar}}$

则原方程可化为

$$\frac{\partial^2 \psi}{\partial \xi^2} + \frac{\partial^2 \psi}{\partial \eta^2} + \frac{\partial^2 \psi}{\partial \zeta^2} + \left[\lambda - (\xi^2 + \eta^2 + \zeta^2)\right] \psi = 0$$

其中

$$\lambda = \frac{2}{h\omega} \left(E + \frac{q^2 \epsilon^2}{2m\omega^2} \right)$$

设

$$\psi(\xi,\eta,\xi) = X(\xi)Y(\eta)Z(\xi)$$

则原方程分离成如下三个独立方程:

$$\frac{\mathrm{d}^{2}X}{\mathrm{d}\xi^{2}} + (\lambda_{\xi} - \xi^{2})X = 0$$

$$\frac{\mathrm{d}^{2}Y}{\mathrm{d}\eta^{2}} + (\lambda_{\eta} - \eta^{2})Y = 0$$

$$\frac{\mathrm{d}^{2}Z}{\mathrm{d}\xi^{2}} + (\lambda_{\xi} - \xi^{2})Z = 0$$

其中, λ₂ + λ₃ + λ₄ = λ₆ 因此方程的形式与无外场的情况完全相同。 只不过体系的能量本征值变为

$$E = \left(n_x + n_y + n_z + \frac{3}{2}\right)\hbar\omega - \frac{q^2\epsilon^2}{2m\omega^2}$$

$$= \left(n + \frac{3}{2}\right)\hbar\omega - \frac{q^2\epsilon^2}{2m\omega^2}, \quad (n = n_x + n_y + n_z)$$

本征函数为

$$X_{n_x}(\xi) = N_{n_x} H_{n_x}(\xi) e^{-\frac{1}{2}a^2x^2}$$

$$Y_{n_y}(\eta) = N_{n_y} H_{n_y}(\eta) e^{-\frac{1}{2}a^2y^2}$$

$$Z_{n_x}(\zeta) = N_{n_x} H_{n_x}(\zeta) e^{-\frac{1}{2}a^2\left(\frac{1}{2} - \frac{q\tau}{m\omega^2}\right)^2}$$

12. 设粒子在无限深方势阱

$$V(x) = \begin{cases} 0, & 0 < x < a \\ \infty, & x < 0, x > a \end{cases}$$

中运动。

- (1)求坐标的几率分布和几率最大的位置;
- (2)证明 $\bar{x} = \frac{a}{2}$;
- (3)证明 $(\Delta x)^2 = \frac{a^2}{12} \left(1 \frac{6}{n^2 \pi^2} \right)$
- (4)求动量平均值 p。
- 解 (1)在无限深势阱中,粒子能量的本征函数

$$\psi_{n}(x) = \begin{cases} \sqrt{\frac{2}{a}} \sin \frac{n\pi}{a} x, & 0 < x < a \\ 0, & x < 0, x > a \end{cases}$$

因此,坐标的几率分布函数

$$\rho(x) = |\psi_n(x)|^2 = \begin{cases} \frac{2}{a} \sin^2 \frac{n\pi}{a} x, & 0 < x < a \\ 0, & x < 0, x > a \end{cases}$$

显然, $\frac{n\pi}{a}x = \frac{m\pi}{2}$, $m=1,3,5,\cdots$ 时几率最大。因此,粒子出现的几率最大的位置是

$$x = \frac{ma}{2n}, \quad n = 1, 2, 3, \dots; \quad m = 1, 3, 5, \dots$$

$$(2)\overline{x} = \int_0^a \psi_n^*(x) x \psi_n(x) dx = \frac{2}{a} \int x \sin^2 \frac{n\pi}{a} x dx = \frac{a}{2}.$$

(3) 量子涨落 $(\Delta x)^2 = \overline{(x-x)^2} = \overline{x^2} - \overline{x^2} = \overline{x^2} - \frac{a^2}{4}$ 。 但因为

$$\overline{x^2} = \int_0^a x^2 \psi_n^2(x) dx = \frac{2}{a} \int_0^a x^2 \sin^2 \frac{n\pi}{a} x dx = \frac{a^2}{3} - \frac{a^2}{2n^2\pi^2}$$

因此,

$$(\Delta x)^{2} = \overline{x^{2}} - \overline{x}^{2} = \frac{a^{2}}{12} \left(1 - \frac{6}{n^{2}\pi^{2}} \right)$$

$$\overline{p} = \frac{2}{a} \int_{0}^{a} \sin \frac{n\pi}{a} x \left(-i \hbar \frac{d}{dx} \sin \frac{n\pi}{a} x \right) dx$$

$$= \frac{2}{a} \left(-i \hbar \frac{n\pi}{a} \right) \int_{0}^{a} \sin \frac{n\pi}{a} x \cos \frac{n\pi}{a} x dx = 0$$

13. 利用厄米多项式的递推关系

$$H_{n+1}(\xi) - 2\xi H_n(\xi) + 2nH_{n-1}(\xi) = 0 \tag{1}$$

和

$$H'_{n}(\xi) = 2nH_{n-1}(\xi)$$
(2)
证明: (1) $x\psi_{n}(x) = \frac{1}{\alpha} \left[\sqrt{\frac{n}{2}} \psi_{n-1}(x) + \sqrt{\frac{n+1}{2}} \psi_{n+1}(x) \right];$
(2) $\frac{d}{dx} \psi_{n}(x) = \alpha \left[\sqrt{\frac{n}{2}} \psi_{n-1}(x) - \sqrt{\frac{n+1}{2}} \psi_{n+1}(x) \right];$
(3) $\psi_{n}(x)$ 态下 $\overline{x} = 0, \overline{p} = 0$ 。

证明 (1)因为 $\phi_n(x) = N_n e^{-\frac{1}{2}a^2x^2} H_n(\xi)$, $\xi = \alpha x$, 由递推公式 (1)得

$$2\xi H_n(\xi) = H_{n+1}(\xi) + 2nH_{n-1}(\xi)$$

因此,

$$xH_n(\xi) = \frac{1}{2\alpha} [H_{n+1}(\xi) + 2nH_{n-1}(\xi)]$$

由此得到

$$x\psi_{n}(x) = N_{n}e^{-\frac{1}{2}\sigma^{2}x^{2}}xH_{n}(\xi)$$

$$= N_{n}e^{-\frac{1}{2}\sigma^{2}x^{2}}\frac{1}{2\alpha}[H_{n+1}(\xi) + 2nH_{n-1}(\xi)]$$

$$= \frac{1}{2\alpha}N_{n}e^{-\frac{1}{2}\sigma^{2}x^{2}}H_{n+1}(\xi) + \frac{n}{\alpha}N_{n}e^{-\frac{1}{2}\sigma^{2}x^{2}}H_{n-1}(\xi)$$

由于归一化系数

$$N_{n+1} = \sqrt{\frac{\alpha}{\sqrt{\pi} \, 2^{n} n!}},$$

$$N_{n+1} = \sqrt{\frac{\alpha}{\sqrt{\pi} \, 2^{n+1} \, (n+1)!}} = \frac{N_{n}}{\sqrt{2(n+1)}}, \quad N_{n-1} = \sqrt{2n} N_{n}$$

因此,

$$x\phi_{n}(x) = \frac{\sqrt{2(n+1)}}{2\alpha} N_{n+1} e^{-\frac{1}{2}\alpha^{2}x^{2}} H_{n+1}(\xi) + \frac{n}{\alpha} \sqrt{2n} N_{n-1} e^{-\frac{1}{2}\alpha^{2}x^{2}} H_{n-1}(\xi)$$

$$= \frac{1}{\alpha} \left[\sqrt{\frac{n}{2}} \phi_{n-1}(x) + \sqrt{\frac{n+1}{2}} \phi_{n+1}(x) \right]$$

$$(2) \frac{d}{dx} \phi_{n}(x) = \frac{d}{dx} \left[N_{n} e^{-\frac{1}{2}\alpha^{2}x^{2}} H_{n}(\alpha x) \right]$$

$$= N_{n} \left[e^{-\frac{1}{2}\alpha^{2}x^{2}} \alpha H'_{n}(\alpha x) - \alpha^{2}x e^{-\frac{1}{2}\alpha^{2}x^{2}} H_{n}(\alpha x) \right]$$

$$= N_{n} e^{-\frac{1}{2}\alpha^{2}x^{2}} \alpha 2n H_{n-1}(\xi) - N_{n}\alpha^{2}x e^{-\frac{1}{2}\alpha^{2}x^{2}} H_{n}(\xi)$$

利用前面给出的 N_{n+1} 和 N_n, N_{n-1} 和 N_n 之间的关系,最后得到

$$\frac{\mathrm{d}}{\mathrm{d}x}\psi_n(x) = \alpha \left[\sqrt{\frac{n}{2}} \psi_{n-1}(x) - \sqrt{\frac{n+1}{2}} \psi_{n+1}(x) \right]$$

14. 利用上题的结果,求:

- (1) 在 $\psi_{n}(x)$ 态下, 一维谐振子的坐标 x 和动量 \hat{p} 的平均值。
- (2) 在 $\psi_n(x)$ 态下, 一维谐振子势能的平均值。
- (3) 在态 $\psi_{s}(x)$ 下,一维谐振子动能的平均值。

解
$$(1)\overline{x} = (\phi_n, x\psi_n) = \frac{1}{\alpha} \sqrt{\frac{n+1}{2}} (\phi_n, \phi_{n+1}) + \frac{1}{\alpha} \sqrt{\frac{n}{2}} (\phi_n, \phi_{n+1})$$

但因为

$$(\psi_n, \psi_{n+1}) = (\psi_n, \psi_{n-1}) = 0$$

所以

$$\bar{x} = 0$$

同理,

$$\widetilde{p} = (\psi_n, \widetilde{p}\psi_n) = -i \hbar \left(\psi_n, \frac{\mathrm{d}}{\mathrm{d}x} \psi_n \right)$$

$$= -i \hbar \alpha \sqrt{\frac{n}{2}} (\psi_n, \psi_{n-1}) + i \hbar \alpha \sqrt{\frac{n+1}{2}} (\psi_n, \psi_{n+1}) = 0$$
(2)利用公式:

$$x\psi_n = \frac{1}{\alpha} \left[\sqrt{\frac{n+1}{2}} \psi_{n+1} + \sqrt{\frac{n}{2}} \psi_{n-1} \right]$$

得到,

$$x^{2}\psi_{n} = x(x\psi_{n}) = \frac{1}{\alpha} \left[\sqrt{\frac{n+1}{2}} x \psi_{n+1} + \sqrt{\frac{n}{2}} x \psi_{n-1} \right]$$

$$= \frac{1}{\alpha^{2}} \left\{ \sqrt{\frac{n+1}{2}} \left[\sqrt{\frac{n+2}{2}} \psi_{n+2} + \sqrt{\frac{n+1}{2}} \psi_{n} \right] + \sqrt{\frac{n}{2}} \left[\sqrt{\frac{n}{2}} \psi_{n} + \sqrt{\frac{n-1}{2}} \psi_{n-2} \right] \right\}$$

$$= \frac{1}{2\alpha^{2}} \left[\sqrt{(n+1)(n+2)} \psi_{n+2} + (2n+1) \psi_{n} + \sqrt{n(n-1)} \psi_{n-2} \right]$$

因此,势能 $V(x) = \frac{1}{2}m\omega^2 x^2$ 的平均值

$$\overline{V(x)} = (\psi_n, V(x)\psi_n) = \frac{1}{2}m\omega^2(\psi_n, x^2\psi_n)$$

$$= \frac{1}{2}m\omega^2 \left(\psi_n, \frac{2n+1}{2\alpha^2}\psi_n\right) = \frac{m\omega^2}{4\alpha^2} (2n+1)$$
$$= \frac{1}{2} \left(n + \frac{1}{2}\right) \hbar \omega = \frac{1}{2} E_n$$

(3)谐振子的动能
$$T = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2}$$
的平均值
$$\overline{T} = -\frac{\hbar^2}{2m} \left(\psi_n, \frac{\mathrm{d}^2}{\mathrm{d}x^2} \psi_n \right)$$

利用

$$\frac{\mathrm{d}}{\mathrm{d}x}\psi_{\scriptscriptstyle n}(x) = \alpha \left[\sqrt{\frac{n}{2}} \psi_{\scriptscriptstyle n-1}(x) - \sqrt{\frac{n+1}{2}} \psi_{\scriptscriptstyle n+1}(x) \right]$$

可以得到

$$\begin{split} \frac{\mathrm{d}^{z}}{\mathrm{d}x^{2}} \psi_{n} &= \frac{\mathrm{d}}{\mathrm{d}x} \left[\alpha \left[\sqrt{\frac{n}{2}} \psi_{n-1} - \sqrt{\frac{n+1}{2}} \psi_{n+1} \right] \right] \\ &= \alpha \left[\sqrt{\frac{n}{2}} \frac{\mathrm{d}}{\mathrm{d}x} \psi_{n-1} - \sqrt{\frac{n+1}{2}} \frac{\mathrm{d}}{\mathrm{d}x} \psi_{n+1} \right] \\ &= \frac{\alpha^{z}}{2} \left[\sqrt{n(n+1)} \psi_{n-2} - (2n+1) \psi_{n} + \sqrt{(n+1)(n+2)} \psi_{n+2} \right] \end{split}$$

因此,

$$\overline{T} = \frac{\hbar^2}{2m} \left(\psi_n, \frac{\alpha^2}{2} (2n+1) \psi_n \right) = \frac{\hbar^2 \alpha^2}{4m} (2n+1) = \frac{1}{2} \left(n + \frac{1}{2} \right) \hbar \omega = \frac{1}{2} E_n$$

15. 设粒子在势阱

$$V(x) = \begin{cases} \infty, & x < 0 \\ \frac{1}{2}m\omega^2 x^2, & x > 0 \end{cases}$$

中运动,如图 3-4 所示,求粒子的能级。

7(A)

解 如果把x的定义域延拓到 $-\infty \rightarrow \infty$,

则问题化为通常的一维谐振子。此时由于

嫪 3-1

V(x)=V(-x),即势能 V(x)具有空间反射对称性。根据定理,如果 $\psi(x)$ 是 Schrödinger 方程的解,则 $\psi(-x)$ 也是 Schrödinger 方

程的解,且有

$$\psi_n(-x) = (-1)^n \psi_n(x) \tag{1}$$

现在,由于在区域 x<0, $V(x)=\infty$,因此,在 x<0 区域 $\psi_x(x)=0$ (包括 x=0)。因此,根据波函数在 x=0 处的连续性, $\psi(0)=0$ 。在 x=0 处,由式(1)得

$$\psi_n(0) = (-1)^n \psi_n(0) = 0 \tag{2}$$

式(2)只有在n为奇数时, $\phi_n(0) = -\phi_n(0)$,从而 $\phi(0) \equiv 0$ 才成立。因此,本题只有奇字称解:

$$\psi_n(x) = N_n e^{-\frac{1}{2}a^2x^2} H_n(\alpha x), \quad n = 1, 3, 5, \dots$$

因此,相应的能量

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega, \quad n = 1, 3, 5, \cdots$$

16. 设一维无限深势阱中运动粒子的波函数为 $\phi(x) = \frac{4}{\sqrt{a}}\sin\frac{\pi x}{a}\cos^2\frac{\pi x}{a}(0 < x < a)$,求在此任意态下,粒子能量的可能测值和相应的几率。

解 可以把 $\phi(x)$ 分解如下

$$\psi(x) = \frac{4}{\sqrt{a}} \sin \frac{\pi x}{a} \cos^2 \frac{\pi x}{a}$$

$$= \frac{4}{\sqrt{a}} \sin \frac{\pi x}{a} \frac{1}{2} \left(1 + \cos \frac{2\pi x}{a} \right)$$

$$= \frac{2}{\sqrt{a}} \sin \frac{\pi x}{a} + \frac{2}{\sqrt{a}} \sin \frac{\pi x}{a} \cos \frac{2\pi x}{a}$$

$$= \frac{2}{\sqrt{a}} \sin \frac{\pi x}{a} + \frac{1}{\sqrt{a}} \left(\sin \frac{3\pi x}{a} - \sin \frac{\pi x}{a} \right)$$

$$= \frac{1}{\sqrt{a}} \sin \frac{\pi x}{a} + \frac{1}{\sqrt{a}} \sin \frac{3\pi x}{a}$$

$$= \frac{1}{\sqrt{2}} \left[\sqrt{\frac{2}{a}} \sin \frac{\pi x}{a} + \sqrt{\frac{2}{a}} \sin \frac{3\pi x}{a} \right]$$

$$=\frac{1}{\sqrt{2}}\big[\psi_1(x)+\psi_3(x)\big]$$

其中, $\psi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$ 为无限深势阱中粒子能量的本征函数。因此, $\psi(x)$ 是 ψ_1 和 ψ_3 两态的叠加,能量的可能测值为

$$E_1 = \frac{\pi^2 \hbar^2}{2ma^2}$$
 $\mathbb{R}_3 = \frac{9\pi^2 \hbar^2}{2ma^2}$,

测值为 E_1 和 E_3 的几率各为 $\frac{1}{2}$ 。

17. 求一维谐振子处于基态(n=0)和第一激发态(n=1)时的能量,坐标的几率分布和几率最大的位置。

解 谐振子处于基态时,能量 $E_0 = \frac{1}{2}\hbar\omega$,波函数为 $\psi_0(x) = \frac{\sqrt{\alpha}}{\pi^{1/4}} e^{-\frac{1}{2}a^2x^2}$,因此,坐标的几率分布 $\rho(x) = |\psi_0(x)|^2 = \frac{\alpha}{\sqrt{\pi}} e^{-a^2x^2}$ 。 在几率最大的位置上, $\frac{d\rho}{dx} = 0$,即 $-\frac{2\alpha}{\sqrt{\pi}}a^2xe^{-\frac{1}{2}a^2x^2} = 0$,可见在x = 0点,粒子出现的几率最大。

谐振子处于第一激发态时,能量 $E_1 = \frac{3}{2}\hbar\omega$,波函数

$$\phi_1(x) = \frac{\sqrt{2\alpha}}{\pi^{1/4}} \alpha x e^{-\frac{1}{2}a^2x^2}$$

对几率取极值的位置

$$\frac{d\rho(x)}{dx} = 0, \quad xe^{-e^2x^2}(1-x^2\alpha^2) = 0$$

所以,粒子出现的几率最小的位置是 x=0,粒子出现几率最大的位置是 $x=\pm\frac{1}{\alpha}$ 。相应的几率

$$\rho(0) = 0, \quad \rho\left(\pm \frac{1}{\alpha}\right) = \frac{2\alpha}{\sqrt{\pi e}}$$

18. 在坐标表象中,粒子坐标的平均值为

$$\bar{r} = \int \!\! \psi^* (\mathbf{r}) \mathbf{r} \psi(\mathbf{r}) \mathrm{d}^3 \mathbf{r}$$

- (1) 试用动量表象中的波函数 $\psi(p)$ 计算 r 的平均值。
- (2)利用在动量表象中r的表示,写出动量表象中的不含时 Schrödinger方程。

$$\mathbf{P} \qquad (1) \quad \mathbf{r} = \int_{-\infty}^{\infty} \psi^*(\mathbf{r}) \mathbf{r} \psi(\mathbf{r}) \mathrm{d}^3 \mathbf{r}$$

$$= \int_{-\infty}^{\infty} \frac{1}{(2\pi \hbar)^{3/2}} \psi^*(\mathbf{p}) \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} \mathbf{p} \cdot \mathbf{r}} \mathbf{r} \psi(\mathbf{r}) \mathrm{d}^3 \mathbf{r} \mathrm{d}^3 \mathbf{p}$$

$$= \int_{-\infty}^{\infty} \frac{1}{(2\pi \hbar)^{3/2}} \psi^*(\mathbf{p}) \left(\mathrm{i} \, \hbar \, \frac{\partial}{\partial \, \mathbf{p}} \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} \mathbf{p} \cdot \mathbf{r}} \right) \psi(\mathbf{r}) \mathrm{d}^3 \mathbf{r} \mathrm{d}^3 \mathbf{p}$$

$$= \int_{-\infty}^{\infty} \psi^*(\mathbf{p}) \left(\mathrm{i} \, \hbar \, \frac{\partial}{\partial \, \mathbf{p}} \right) \psi(\mathbf{p}) \mathrm{d}^3 \mathbf{p}$$

由此可见,在动量表象中,坐标r的算符表示为 $i\hbar \frac{\partial}{\partial p}$ 。

显然,
$$x \rightarrow i \hbar \frac{\partial}{\partial p_x}$$
, $y \rightarrow i \hbar \frac{\partial}{\partial p_y}$, $x \rightarrow i \hbar \frac{\partial}{\partial p_z}$

(2)利用上述结果,不含时 Schrödinger 方程在动量表象中的 形式应为

$$\hat{H}\psi(p) = E\psi(p)$$

或

$$\left[\frac{p^2}{2m} + V\left(i \, \hbar \frac{\partial}{\partial p}\right)\right] \psi(p) = E\psi(p)$$

注意,在动量表象中,p不能写成一i ħ▽(这是坐标表象中的表示),例如,在动量表象中,一维谐振子的 Schrödinger 方程为

$$\left[\frac{p_x^2}{2m} + \frac{1}{2}m\omega^2 \left(i\hbar\frac{\partial}{\partial p_x}\right)^2\right] \psi(p) = E\psi(p)$$

$$\left(\frac{p_x^2}{2m} - \frac{1}{2}m\omega^2 \, \hbar^2 \, \frac{\partial^2}{\partial p_x^2}\right) \psi(p) = E\psi(p)$$

令 $M = \frac{1}{m\omega^2}$,则哈密顿算符变为

$$\hat{H} = -\frac{\hbar^2}{2M} \frac{\partial^2}{\partial p_x^2} + \frac{1}{2} M \omega^2 p_x^2$$

(如果是三维、则 $\hat{H} = -\frac{\hbar^2}{2M}\nabla_p^2 + \frac{1}{2}M\omega^2p^2$),因此,Schrödinger 方程变为

$$\left(-\frac{\hbar^2}{2M\partial p_x^2} + \frac{1}{2}M\omega^2 p_x^2\right)\psi(p) = E\psi(p)$$

该 Schrödinger 方程的解为

$$\psi(p) = N_n e^{-\frac{1}{2}a^2p^2} H_n(\alpha p)$$

其中,

$$\alpha = \sqrt{\frac{M\omega}{\hbar}} = \sqrt{\frac{1}{m\omega \hbar}}, \quad N_n = \left(\frac{\alpha}{\sqrt{2n!} 2^n}\right)^{\frac{1}{2}}$$

如果推广到三维谐振子,在动量空间中的 Schrödinger 方程为

$$\left(-\frac{\hbar^2}{2M}\nabla_p^2 + \frac{1}{2}M\omega^2 p^2\right)\psi(p) = E\psi(p)$$

可见,与坐标表象中的 Schrödinger 方程形式相同。

- 19. 一质量为 m 的粒子在势阱 $V(x) = -V_0 \delta(x)$ 内作一维运动。
 - (1)求证,束缚态(E<0)能级只有一个。
- (2)求归一化波函数和使粒子出现在 $|x| < x_0$ 的几率为 $\frac{1}{2}$ 的位置 x_0 。
 - 解 (1) 在 δ-势阱内,粒子的 Schrödinger 方程为

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + \frac{2m}{\hbar^2} (E + V_0 \delta(x)) \psi = 0$$

如果 E>0,粒子处于游离态,能量取连续值。只有 E<0 时才有束缚态存在,能量取离散值。由于

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\epsilon} \frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} \mathrm{d}x = \psi'(\epsilon) - \psi'(-\epsilon)|_{\epsilon \to 0} = \psi'(0^+) - \psi'(0^-)$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\epsilon} \psi(x) \mathrm{d}x = \psi(0) \cdot 2\epsilon = 0$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\epsilon} \delta(x) \psi(x) \mathrm{d}x = \psi(0)$$

因此 Schrödinger 方程的积分结果为

$$\psi'(0^+) - \psi'(0^-) = -\frac{2mV_0}{\hbar^2} \psi(0), (\psi'(x) \text{ at } x = 0 \text{ in } \text{ in$$

在 x≠0 处,Schrödinger 方程为

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} - k^2\psi = 0, \quad k = \frac{\sqrt{-2mE}}{\hbar}$$

其解为

$$\psi(x) = \begin{cases} Ae^{-kx}, & x > 0 \\ Be^{kx}, & x < 0 \end{cases}$$

当 A = B = C 时,

$$\psi(x) = \begin{cases} Ce^{-kx}, & x > 0 \\ Ce^{kx}, & x < 0 \end{cases}$$

 $\psi(x)$ 具有偶字称,此解在 x=0 两侧满足

$$\psi'(0^+) = -Ck, \quad \psi'(0^-) = Ck,$$

且 $\phi(0) = C$ 。由此得

$$\psi'(0^+) - \psi'(0^-) = -2Ck = -\frac{2mV_0}{\hbar^2}C$$

所以

$$k = \frac{mV_0}{\hbar^2}$$
, $E = -\frac{\hbar^2 k^2}{2m} = -\frac{mV_0^2}{2\hbar^2}$

可见,束缚态能级只有一个。很容易证明,奇字称的束缚态解不存

在。

(2)由归一化条件得

$$C^{2}\left[\int_{-\infty}^{0} e^{2kx} dx + \int_{0}^{\infty} e^{-2kx} dx\right] = 1, \quad C = \sqrt{k}$$

由此,归一化波函数

$$\psi(x) = \begin{cases} \sqrt{k} e^{-kx}, & x > 0 \\ \sqrt{k} e^{kx}, & x < 0 \end{cases}$$

设粒子出现在 $|x| < x_0$ 的几率为 P,则对使 $P = \frac{1}{2}$ 的 x_0 ,应有

$$2k \int_0^{x_0} e^{-2kx} dx = 2k \cdot \frac{1}{2k} (1 - e^{-2kx_0}) = \frac{1}{2}$$

因此,

$$1 - e^{-2kx_0} = \frac{1}{2}, \quad x_0 = \frac{1}{2k} \ln 2$$

第 4 章 力学量算符的本征值和 本征函数

1. 设 f(x)是可微函数,试利用基本对易式 $[x,\hat{p}_x]=i\hbar$,证明:

(1)
$$[x, \hat{p}_x^2 f(x)] = 2i\hbar \hat{p}_x f(x);$$

(2)
$$[x,\hat{p}_xf(x)\hat{p}_x]=i\hbar[f(x)\hat{p}_x+\hat{p}_xf(x)];$$

(3)
$$[\hat{p}_x, \hat{p}_x^2 f(x)] = -i \hbar \hat{p}_x^2 \frac{\mathrm{d}f}{\mathrm{d}x};$$

(4)
$$[\hat{p}_x, \hat{p}_x f(x) \hat{p}_x] = -i h \hat{p}_x \frac{\mathrm{d}f}{\mathrm{d}x} \hat{p}_x.$$

证明

$$(1)[x,\hat{p}_{x}^{2}f(x)] = [x,\hat{p}_{x}]\hat{p}_{x}f(x) + \hat{p}_{x}[x,\hat{p}_{x}f(x)]$$

$$= i \hbar \hat{p}_{x}f(x) + \hat{p}_{x}^{2}[x,f(x)] + \hat{p}_{x}[x,\hat{p}_{x}]f(x)$$

$$= i \hbar \hat{p}_{x}f(x) + i \hbar \hat{p}_{x}f(x)$$

$$= 2i \hbar \hat{p}_{x}f(x)$$

$$(2)[x,\hat{p}_xf(x)\hat{p}_x] = [x,\hat{p}_x]f(x)\hat{p}_x + \hat{p}_x[x,f(x)\hat{p}_x]$$

$$= i \hbar f(x)\hat{p}_x + \hat{p}_x[x,\hat{p}_x]f(x) + \hat{p}_x[x,f(x)]\hat{p}_x$$

$$= i \hbar [f(x)\hat{p}_x + \hat{p}_xf(x)]$$

(3)
$$[\hat{p}_x, \hat{p}_x^2 f(x)] = [\hat{p}_x, \hat{p}_x^2] f(x) + \hat{p}_x^2 [\hat{p}_x, f(x)]$$

= $\hat{p}_x^2 [\hat{p}_x, f(x)]$

因为

$$\begin{split} & [\hat{p}_x, f(x)] \psi(x) = -\mathrm{i} \, \hbar \frac{\mathrm{d}}{\mathrm{d}x} (f(x) \psi(x)) + f(x) (\mathrm{i} \, \hbar) \frac{\mathrm{d}\psi(x)}{\mathrm{d}x} \\ &= -\mathrm{i} \, \hbar \frac{\mathrm{d}f}{\mathrm{d}x} \psi - \mathrm{i} \, \hbar f \, \frac{\mathrm{d}\psi}{\mathrm{d}x} + \mathrm{i} \, \hbar \frac{\mathrm{d}\psi}{\mathrm{d}x} f \\ &= -\mathrm{i} \, \hbar \frac{\mathrm{d}f}{\mathrm{d}x} \psi \end{split}$$

由此得到

$$[\hat{p}_x, f] = -i \hbar \frac{\mathrm{d}f}{\mathrm{d}x}$$

因此,

$$\begin{split} \left[\hat{\rho}_{x},\hat{p}_{x}^{2}f(x)\right] &= -\mathrm{i}\,\hbar\hat{\rho}_{x}^{2}\,\frac{\mathrm{d}f}{\mathrm{d}x} \\ (4)\left[\hat{\rho}_{x},\hat{\rho}_{x}f(x)\hat{\rho}_{x}\right] &= \hat{\rho}_{x}f\left[\hat{\rho}_{x},\hat{\rho}_{x}\right] + \left[\hat{\rho}_{x},\hat{\rho}_{x}f\right]\hat{\rho}_{x} \\ &= \hat{\rho}_{x}\left[\hat{\rho}_{x},f\right]\hat{\rho}_{x} + \left[\hat{\rho}_{x},\hat{\rho}_{x}\right]f\,\hat{\rho}_{x} \\ &= -\mathrm{i}\,\hbar\frac{\mathrm{d}f}{\mathrm{d}x}\hat{\rho}_{x} \quad \left(\boxtimes \mathcal{B}\left[\hat{\rho}_{x},f\right] = -\mathrm{i}\,\hbar\frac{\mathrm{d}f}{\mathrm{d}x}\right) \end{split}$$

2. 设 $F(x,p) = \sum_{m,n=0}^{\infty} C_{mn} x^m p^n$, (x,p) 的整函数, 所有的 p 理解为 \hat{p}_x), 求证:

$$[p,F] = -i \hbar \frac{\partial F}{\partial x}, \quad [x,F] = i \hbar \frac{\partial F}{\partial p}$$
证明
$$[p,F] = \sum_{m,n=0}^{\infty} C_{mn}[p,x^mp^n]$$

$$= \sum_{m,n=0}^{\infty} C_{mn}\{x^m[p,p^n] + [p,x^m]p^n\}$$

$$= \sum_{m,n=0}^{\infty} C_{mn}\{p,x^m]p^n$$

$$= \sum_{m,n=0}^{\infty} C_{mn}\{[p,x]x^{m-1}p^n + x[p,x^{m-1}]p^n\}$$

$$= \sum_{m,n=0}^{\infty} C_{mn}\{-i \hbar x^{m-1}p^n + x([p,x]x^{m-2}p^n + [p,x^{m-2}]xp^n)\}$$

$$= \sum_{m,n=0}^{\infty} C_{mn}\{-2i \hbar x^{m-1}p^n + x^2[p,x^{m-2}]p^n\}$$

$$= \cdots = \sum_{m,n=0}^{\infty} -mi \hbar C_{mn}x^{m-1}p^n = -i \hbar \frac{\partial F}{\partial x}$$

同理,

$$[x,F] = \sum_{m} \sum_{n} C_{mn}[x,x^{m}p^{n}]$$

$$= \sum_{m,n=0}^{\infty} C_{mn}\{[x,x^{m}]p^{n} + x^{m}[x,p^{n}]\} = \sum_{m,n=0}^{\infty} C_{mn}x^{m}[x,p^{n}]$$

$$= \sum_{m,n=0}^{\infty} C_{mn}x^{m}\{[x,p]p^{n-1} + p[x,p^{n-1}]\}$$

$$= \sum_{m,n=0}^{\infty} C_{mn}\{i \hbar x^{m}p^{n-1} + x^{m}p^{n-1}[x,p] + x^{m}p^{3}[x,p^{n-3}] + i \hbar x^{m}p^{n-1}\}$$

$$= \sum_{m,n=0}^{\infty} C_{mn}\{4i \hbar x^{m}p^{n-1} + x^{m}p^{3}[x,p^{n-3}]\}$$

$$= \sum_{m,n=0}^{\infty} mi \hbar C_{mn}x^{m}p^{n-1} = i \hbar \frac{\partial F}{\partial p}$$
3. 求证: $\hat{p} \times \hat{l} + \hat{l} \times \hat{p} = 2i \hbar \hat{p}$ 。

证明 因为
$$[\hat{p} \times \hat{l} + \hat{l} \times \hat{p}]_{x} = p_{y}l_{x} - p_{z}l_{y} + l_{y}p_{z} - l_{z}p_{y}$$

$$= p_{y}(xp_{y} - yp_{x}) - p_{z}(zp_{x} - xp_{z}) + (zp_{x} - xp_{z})p_{z} - (xp_{y} - yp_{x})p_{y}$$

$$= p_{y}xp_{y} - p_{y}yp_{x} - p_{z}xp_{x} + p_{z}xp_{z} + zp_{x}p_{z} - xp_{z}p_{z} - xp_{y}p_{y} + yp_{x}p_{y}$$

$$= [y,p_{y}]p_{x} + [z,p_{z}]p_{x} = 2i \hbar p_{x}$$
同理,

$$[\hat{\boldsymbol{p}} \times \hat{\boldsymbol{l}} + \hat{\boldsymbol{l}} \times \hat{\boldsymbol{p}}]_{y} = 2i \, \hbar \, \hat{\boldsymbol{p}}_{y}$$

$$[\hat{\boldsymbol{p}} \times \hat{\boldsymbol{l}} + \hat{\boldsymbol{l}} \times \hat{\boldsymbol{p}}]_{z} = 2i \, \hbar \, \hat{\boldsymbol{p}}_{z}$$

所以

$$\hat{\mathbf{p}} \times \hat{\mathbf{l}} + \hat{\mathbf{l}} \times \hat{\mathbf{p}} = 2i \, \hbar \, \hat{\mathbf{p}}$$

4. 定义反对易式 $\{A,B\}$ = AB+BC,其中,A,B,C 均为线性算符。试证:

$$(1)[AB,C] = A\{B,C\} - \{A,C\}B;$$

$$(2)[A,BC] = \{A,B\}C - B\{A,C\}.$$

证明

$$(1)[AB,C] = A[B,C] + [A,C]B$$

$$= ABC - ACB + ACB - CAB$$

$$= A\{B,C\} - \{A,C\}B$$

$$(2)[A,BC] = [A,B]C + B[A,C]$$

$$= ABC - BAC + BAC - BCA$$

$$= \{A,B\}C - B\{A,C\}$$

5. 求证: $\phi_1 = y + iz$, $\phi_2 = z + ix$, $\phi_3 = x + iy$ 分别为角动量算符 \hat{l}_x , \hat{l}_y , \hat{l}_z 的本征值为 \hbar 的本征态。

证明 因为

$$\hat{l}_{x} = -i \hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right), \hat{l}_{y} = -i \hbar \left(z \frac{\partial}{\partial x} - z \frac{\partial}{\partial z} \right)$$

$$\hat{l}_{z} = -i \hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$$

因此,

$$\tilde{l}_x \phi_1 = -i \hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right) (y + iz) = i \hbar z + \hbar y = \hbar (y + iz) = \hbar \phi_1$$

可见, ϕ , 是 \hat{I}_x 的本征值为 δ 的本征态。同理可证明,

$$\hat{l}_z \phi_z = \hbar \phi_z, \quad \hat{l}_z \phi_z = \hbar \phi_z$$

6. 求证: $\phi(xyz)=x+y+z$ 是角动量平方算符 \hat{l}^2 的本征值为 $2\hbar^2$ 的本征函数。

证明 因为

$$\hat{l}_{x}\psi = -i \hbar \left(y \frac{\partial}{\partial x} - z \frac{\partial}{\partial y} \right) \psi = -i \hbar (y - z)$$

$$\hat{l}_{y}\psi = -i \hbar \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right) \psi = -i \hbar (z - x)$$

$$\hat{l}_{z}\psi = -i \hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) \psi = -i \hbar (x - y)$$

由此得到

 $\hat{l}_{x}^{2}\psi = \hbar^{2}(y+z)$, $\hat{l}_{y}^{2}\psi = \hbar^{2}(z+x)$, $\hat{l}_{x}^{2}\psi = \hbar^{2}(x+y)$ 因此,

 $\hat{\boldsymbol{l}}^2 \psi = \hat{\boldsymbol{l}}_x^2 \psi + \hat{\boldsymbol{l}}_y^2 \psi + \hat{\boldsymbol{l}}_z^2 \psi = 2 \, \hbar^2 (x + y + z) = 2 \, \hbar^2 \psi$ 可见, $\psi = x + y + z$ 是 $\hat{\boldsymbol{l}}^2$ 的本征值为 $2 \, \hbar^2$ 的本征函数。

7. 设一量子体系处于用波函数 $\phi(\theta,\varphi) = \frac{1}{\sqrt{4\pi}} (e^{i\varphi} \sin\theta + \cos\theta)$ 所描述的量子态。

求:(1)在该态下, \hat{l} 。的可能测值和各个值出现的几率; (2) \hat{l} 。的平均值。

解 因为球階函数 $Y_{10} = \sqrt{\frac{3}{4\pi}}\cos\theta$, $Y_{1\pm 1} = \mp \sqrt{\frac{3}{8\pi}}\sin\theta e^{\pm i\varphi}$, $\psi(\theta,\varphi) = \frac{1}{\sqrt{4\pi}}(e^{i\varphi}\sin\theta + \cos\theta)$ $= \frac{1}{\sqrt{3}}\left(\sqrt{2}\sqrt{\frac{3}{8\pi}}\sin\theta e^{i\varphi} + \sqrt{\frac{3}{4\pi}}\cos\theta\right)$ $= \frac{1}{\sqrt{3}}(-\sqrt{2}Y_{11} + Y_{10}) = \frac{1}{\sqrt{3}}Y_{10} - \sqrt{\frac{2}{3}}Y_{11}$

可见,体系的l=1,m=0,1。因此, \hat{l} 。的可能测值为0或 \hbar ,测值为0的几率是 $\frac{1}{3}$,测值为 \hbar 的几率是 $\frac{2}{3}$ 。

i, 的平均值为

$$\overline{l_x} = \frac{2}{3}\hbar + \frac{1}{3} \cdot 0 = \frac{2}{3}\hbar$$

8. 一个在球对称势场中运动粒子的波函数为

$$\psi(x,y,z) = k(x+y+2z)e^{-\alpha z}$$

其中,k、 α 为实常数, $r = (x^2 + y^2 + z^2)^{\frac{1}{2}}$ 。试求

- (1)粒子的角动量量子数 l。
- (2) 1, 的可能测值及其相应的几率。

(3) \hat{l} , 的平均值。

提示 利用球谐函数

$$Y_{00} = \frac{1}{\sqrt{4\pi}}, \quad Y_{10} = \sqrt{\frac{3}{4\pi}}\cos\theta, \quad Y_{1\pm 1} = \mp\sqrt{\frac{3}{8\pi}}\sin\theta e^{\pm i\varphi}$$

解 因为

$$x = r\sin\theta\cos\varphi = \frac{1}{2}r\sin\theta(e^{i\varphi} + e^{-i\varphi})$$

$$= \frac{1}{2}r\left[-\sqrt{\frac{8\pi}{3}}Y_{11} + \sqrt{\frac{8\pi}{3}}Y_{1-1}\right] = -r\sqrt{\frac{2\pi}{3}}[Y_{11} - Y_{1-1}]$$

$$y = r\sin\theta\sin\varphi = r\sin\theta\frac{1}{2i}(e^{i\varphi} - e^{-i\varphi})$$

$$= ir\sqrt{\frac{2\pi}{3}}(Y_{11} + Y_{1-1})$$

$$z = r\cos\theta = r\sqrt{\frac{4\pi}{3}}Y_{10}$$

因此,

$$\psi = k(x+y+2z)e^{-4\pi}$$

$$= k\sqrt{\frac{2\pi}{3}}re^{-4\pi}\{(i-1)Y_{11} + (i+1)Y_{1-1} + 2\sqrt{2}Y_{10}\}$$

由此可见

- (1)粒子的角动量量子数 l=1,对应的 m=1,0,-1。
- (2) \hat{l}_{z} 的可能测值为 \hbar ,0, $-\hbar$ 。测值为 \hbar ,0, $-\hbar$ 的几率可由 $\frac{|C_{n}|^{2}}{\sum |C_{n}|^{2}}$ 求得,分别为 $\frac{1}{6}$, $\frac{2}{3}$, $\frac{1}{6}$ 。

(3)
$$\hat{l}_z$$
 的平均值 $\overline{l}_z = \frac{\hbar}{6} + \frac{-\hbar}{6} + \frac{2}{3} \cdot 0 = 0$ 。

9. 设 \hat{U} 是一个幺正算符,且对t 可微,求证 \hat{H} =i $\hbar \frac{d\hat{U}}{dt} \cdot \hat{U}^{\dagger}$ 是厄米算符。

证明
$$\hat{H}^{\dagger} = \left(i \hbar \frac{\mathrm{d} \hat{U}}{\mathrm{d}t} \cdot \hat{U}^{\dagger} \right)^{\dagger} = -i \hbar \hat{U} \frac{\mathrm{d} \hat{U}^{\dagger}}{\mathrm{d}t}$$

$$= -i \hbar \left[\frac{\mathrm{d}}{\mathrm{d}t} (\hat{U} \hat{U}^{\dagger}) - \frac{\mathrm{d} \hat{U}}{\mathrm{d}t} \cdot \hat{U}^{\dagger} \right]$$

因为 \hat{U} 是幺正的, $\hat{U}\hat{U}^{\dagger}=1$,

$$\frac{\mathrm{d}}{\mathrm{d}t}(\hat{U}\,\hat{U}^{\dagger}) = 0$$

因此

$$\hat{H}^{\dagger} = \mathrm{i} \, \hbar \frac{\mathrm{d} \, \hat{U}}{\mathrm{d} t} \cdot \hat{U}^{\dagger} = \hat{H}$$

Ĥ是厄米算符。

10. 求证:两个厄米算符 \hat{A} 和 \hat{B} 同时被同一个幺正算符 \hat{U} 对角化的必要条件是 \hat{A} 和 \hat{B} 对易。

证明 按题意,

$$\hat{U}^{\dagger} \hat{A} \hat{U} = \hat{D}_A, \quad \hat{U}^{\dagger} \hat{B} \hat{U} = \hat{D}_B$$

但两个对角化的算符互为对易, $[\hat{D}_A,\hat{D}_B]=0$,因此,

$$\hat{U}^{\dagger} \hat{A} \hat{U} \hat{U}^{\dagger} \hat{B} \hat{U} = \hat{U}^{\dagger} \hat{B} \hat{U} \hat{U}^{\dagger} \hat{A} \hat{U}$$

上式的两边左乘 \hat{U} 和右乘 \hat{U}^{\dagger} 得 $\hat{A}\hat{B} = \hat{B}\hat{A}$,也就是说 \hat{A} 和 \hat{B} 对易。

- 11. 设一算符â具有性质â²=0,{â,â'}=1。求证:
- $(1)\hat{N} \equiv \hat{a}^{\dagger} \hat{a}$ 是一个厄米算符;
- $(2)\hat{N}^2 = \hat{N}$:
- (3) Ñ 的本征值为 0 或者 1;
- $(4)[\hat{N},\hat{a}] = -\hat{a}, [\hat{N},\hat{a}'] = \hat{a}^{\dagger}.$

证明 (1)因为 $\hat{N}^{\dagger} = (\hat{a}^{\dagger} \hat{a})^{\dagger} = \hat{a}^{\dagger} \hat{a} = \hat{N}$,所以 \hat{N} 是一个厄米算符。

- $(2)\hat{N}^{2} = \hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} \hat{a} = \hat{a}^{\dagger} (1 \hat{a}^{\dagger} \hat{a}) \hat{a} = \hat{a}^{\dagger} a = \hat{N}.$
- (3)设 \hat{N} 的本征值为n,本征矢量为 $|n\rangle$,则因为 $\hat{N}^2|n\rangle = \hat{N}|n\rangle, n^2|n\rangle = n|n\rangle, n^2-n=0$,因此, \hat{N} 的本征值为n=0或n=1。

$$(4)[\hat{N},\hat{a}] = [\hat{a}^{\dagger},\hat{a},\hat{a}] = [\hat{a}^{\dagger},\hat{a}]\hat{a} = (\hat{a}^{\dagger},\hat{a} - \hat{a}\hat{a}^{\dagger})\hat{a}$$
$$= -\hat{a}\hat{a}^{\dagger},\hat{a} = -(1 - \hat{a}^{\dagger},\hat{a})\hat{a} = -\hat{a}$$

同理可证明, $[\hat{N}, \hat{a}^{\dagger}] = \hat{a}^{\dagger}$ 。

12. 已知,在阱宽为 a 的无限深势阱中运动粒子的能量本征值 与本征函数分别为

$$E_n = \frac{n^2 \hbar^2 \pi^2}{2ma^2}, \quad \psi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}, \quad n = 1, 2, 3, \dots$$

设阱内粒子处于 $\psi(x) = x$ 的状态,求在该态下,能量的测值为 E_1 的几率。

解 对应于本征值 E_1 的本征函数为 $\psi_1 = \sqrt{\frac{2}{a}} \sin \frac{\pi x}{a}$ 。因为在任意态 ψ 下,能量测值为 E_k 的几率为 $|a_k|^2 = |(\psi_k, \psi)|^2$,因此能量的测值为 E_1 的几率

$$|a_1|^2 = |(\psi_1, \psi)|^2 = |\int \psi_1^* \psi dx|^2$$

但,

$$\int \psi_1^* \psi dx = \sqrt{\frac{2}{a}} \int_0^a \sin \frac{\pi x}{a} \cdot x dx = \sqrt{\frac{2}{a}} \cdot \frac{a^2}{\pi}$$

所以最后得

$$|a_1|^2 = \frac{2a^3}{\pi^2}$$

 $(注:\psi(x)$ 是没有归一化的波函数)。

13. 一维谐振子的基态 (n = 0) 波函数为 $\psi(x) = \sqrt{\frac{\alpha}{\sqrt{\pi}}} e^{-\frac{1}{2}e^2x^2}$,求在该态下的涨落 $(\Delta x)^2$ 和 $(\Delta p)^2$,并证明

$$\Delta x \cdot \Delta p \approx \frac{\hbar}{2}$$
$$(\Delta x)^2 = \overline{(x - \overline{x})^2} = \overline{x^2} - \overline{x}^2$$

因为

解

$$\overline{x} = (\psi, x\psi) = \frac{\alpha}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-a^2x^2} x dx = 0$$

$$\overline{x^2} = (\psi, x^2 \psi) = \frac{\alpha}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-a^2 x^2} x^2 dx$$

$$\overline{x^2} = \frac{2}{\sqrt{\pi} \alpha^2} \int_0^\infty e^{-y^2} y^2 dy = \frac{2}{\sqrt{\pi} \alpha^2} \frac{1}{2} \Gamma\left(\frac{3}{2}\right)$$
$$= \frac{1}{\sqrt{\pi} \alpha^2} \frac{\sqrt{\pi}}{2} = \frac{1}{2\alpha^2}$$

因此

$$(\Delta x)^2 = \frac{1}{2a^2}$$

又因为

$$\overline{p} = (\psi, \hat{p} \, \psi) = -i \, \hbar \int_{-\infty}^{\infty} \psi(x) \, \frac{\mathrm{d}}{\mathrm{d}x} \psi(x) \mathrm{d}x$$

$$= -i \, \hbar \frac{\alpha}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-a^2 x^2} (-\alpha^2 x) \mathrm{d}x = 0$$

$$\overline{p^2} = (\psi, \hat{p}^2 \psi) = -\hbar^2 \frac{\alpha}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}a^2 x^2} \frac{\mathrm{d}^2}{\mathrm{d}x^2} e^{-\frac{1}{2}a^2 x^2} \mathrm{d}x = \frac{1}{2} \alpha^2 \, \hbar^2$$

因此

$$(\Delta p)^2 = \overline{p^2} - \overline{p}^2 = \frac{1}{2} \alpha^2 \, \hbar^2$$

从而最后得

$$(\Delta x)^2 \cdot (\Delta p)^2 = \frac{\hbar^2}{4},$$

$$\Delta x \cdot \Delta p \approx \frac{\hbar}{2}$$

14. 已知一维谐振子处于基态,且测得其坐标的不确定度

求该谐振子跃迁到第一激发态所需能量。

解 我们已经知道,对一维谐振子

$$\overline{T} = \overline{V} = \frac{1}{2}E$$

谐振子的基态能量 $E_0 = \frac{1}{2}\hbar\omega$,因此,

$$\overline{V} = \frac{1}{2} m \omega^2 \ \overline{x^2} = \frac{1}{2} E_0 = \frac{\hbar \omega}{4}$$

所以

$$\omega = \frac{\hbar}{2m \, \overline{x^2}}$$

但因为

$$(\Delta x)^2 = \overline{(x-x)^2} = \overline{x^2} - \overline{x^2} = \overline{x^2} = t^2$$
 (因为 $\overline{x} = 0$)

因此,由基态到第一激发态所需能量

$$\Delta E = E_1 - E_0 = \hbar \omega = \frac{\hbar^2}{2m \, \overline{x^2}} = \frac{\hbar^2}{2m \, l^2}$$

15. 设一粒子的量子态在直角坐标系中可表示为 $\phi(x,y,z) = \frac{\alpha^{5/2}}{\sqrt{4\pi}}ze^{-a(x^2+y^2+y^2)^{1/2}}$,求在该量子态下,角动量 \hat{l}^2 和 \hat{l}_z 的可能测值。

解 在球坐标系中, ψ 可写成

$$\psi(r,\theta,\varphi) = \frac{\alpha^{5/2}}{\sqrt{4\pi}} r \cos\theta e^{-\alpha r}$$
$$= \frac{\alpha^{5/2}}{\sqrt{3}} r \sqrt{\frac{3}{4\pi}} \cos\theta e^{-\alpha r} = f(r) Y_{10}$$

其中,

$$f(r) = \frac{\alpha^{5/2}}{\sqrt{3}} r e^{-\alpha r}, \quad Y_{10} = \sqrt{\frac{3}{4\pi}} \cos\theta$$

由此可见,量子态 $\psi(r,\theta,\varphi)$ 是 l=1,m=0 的态,因此, \hat{l}^2 的本征值 (測值)为 $l(l+1)\hbar^2=2\,\hbar^2$; \hat{l}_z 的測值为 0。

16. 二维各向同性谐振子体系的 Hamilton 量可以用粒子数算符 N_1,N_2 表示如下

$$H = (N_1 + N_2 + 1)\hbar\omega = (a_1^{\dagger} a_1 + a_2^{\dagger} a_2 + 1)\hbar\omega$$

其中,

$$N_1 = a_1^{\dagger} a_1, \quad N_2 = a_2^{\dagger} a_2$$

粒子的产生、湮灭算符 a_i^{\dagger} , $a_i(i=1,2)$ 满足对易式

$$[a_{i},a_{j}^{\dagger}] = \delta_{ij}, \quad [a_{i},a_{j}] = 0$$

求证:(1)[H,J_{1}]=[H,J_{2}]=[H,J_{3}]=0;
(2)[J_{1},J_{2}]= $iJ_{3},[J_{2},J_{3}]$ = $iJ_{1},[J_{3},J_{1}]$ = iJ_{2}

其中,

$$J_{1} = \frac{1}{2} (a_{2}^{\dagger} a_{1} + a_{1}^{\dagger} a_{2}), \quad J_{2} = \frac{i}{2} (a_{2}^{\dagger} a_{1} - a_{1}^{\dagger} a_{2}),$$

$$J_{3} = \frac{1}{2} (a_{1}^{\dagger} a_{1} - a_{2}^{\dagger} a_{2})$$

证明 (1)利用公式

$$[AB,CD] = A[B,C]D + AC[B,D] + [A,C]BD + C[A,D]B,$$

$$[II,J_{1}] = \frac{\hbar\omega}{2} [a_{1}^{\dagger} a_{1} + a_{2}^{\dagger} a_{2} + 1, a_{2}^{\dagger} a_{1} + a_{1}^{\dagger} a_{2}]$$

$$= \frac{\hbar\omega}{2} \{ [a_{1}^{\dagger} a_{1}, a_{2}^{\dagger} a_{1}] + [a_{2}^{\dagger} a_{2}, a_{2}^{\dagger} a_{1}] + [a_{1}^{\dagger} a_{1}, a_{1}^{\dagger} a_{2}] + [a_{2}^{\dagger} a_{2}, a_{1}^{\dagger} a_{2}] \}$$

$$= \frac{\hbar\omega}{2} \{ -a_{2}^{\dagger} a_{1} + a_{2}^{\dagger} a_{1} + a_{1}^{\dagger} a_{2} - a_{1}^{\dagger} a_{2} \} = 0$$

同理可证,

$$[H, J_{2}] = [H, J_{3}] = 0$$

$$(2)[J_{1}, J_{2}] = \frac{i}{4}[a_{2}^{\dagger} a_{1} + a_{1}^{\dagger} a_{2}, a_{2}^{\dagger} a_{1} - a_{1}^{\dagger} a_{2}]$$

$$= \frac{i}{4}\{[a_{2}^{\dagger} a_{1}, a_{2}^{\dagger} a_{1}] + [a_{1}^{\dagger} a_{2}, a_{2}^{\dagger} a_{1}] - [a_{2}^{\dagger} a_{1}, a_{1}^{\dagger} a_{2}] - [a_{1}^{\dagger} a_{2}, a_{1}^{\dagger} a_{2}]\}$$

$$= \frac{i}{4}\{a_{1}^{\dagger} a_{1} - a_{2}^{\dagger} a_{2} - a_{2}^{\dagger} a_{2} + a_{1}^{\dagger} a_{1}\}$$

$$= \frac{i}{2}\{a_{1}^{\dagger} a_{1} - a_{2}^{\dagger} a_{2}\} = iJ_{3}$$

同理可证,

$$[J_2,J_3]=iJ_1, [J_3,J_1]=iJ_2$$

- 17. 设力学量算符 \hat{J}_x , \hat{J}_y , \hat{J}_z 是满足对易关系 $[\hat{J}_i,\hat{J}_j]=i \hbar \epsilon_{ij\nu}\hat{J}_k$ (i,j,k=x,y,z)的厄米矩阵。求证:
- (1)如果 \hat{J}_x , \hat{J}_z 是实矩阵,则 \hat{J}_y 具有 i 乘以一个反对称矩阵的形式。
- (2)如果 \hat{J}_{s} , \hat{J}_{s} ,中的两个算符与某一个算符 A 对易,则另一个算符也与 A 对易。

证明 (1)因为 \hat{J}_{r} , \hat{J}_{r} 是厄米的同时又是实矩阵,它们必定是对称矩阵。也就是说,

$$\hat{\hat{J}}_{z} = \hat{J}_{z}, \quad \hat{\hat{J}}_{z} = \hat{J}_{z}$$

从对易关系[\hat{J}_z , \hat{J}_z]=i $\hbar \hat{J}_z$ 可以求出

 $[\hat{J}_x,\hat{J}_x]=\hat{J}_x\hat{J}_x-\hat{J}_x\hat{J}_x-\hat{J}_x\hat{J}_x-\hat{J}_x\hat{J}_x=[\hat{J}_x,\hat{J}_x]=-[\hat{J}_x,\hat{J}_x]$ 可见, $[\hat{J}_x,\hat{J}_x]$ 是一个反对称矩阵。因此, $\hat{J}_y=-\frac{\mathrm{i}}{\hbar}[\hat{J}_x,\hat{J}_x]$ 具有 i 乘以一个反对称矩阵的形式。

(2)根据对易式

$$\hat{J}_{r}\hat{J}_{r}-\hat{J}_{r}\hat{J}_{r}=i\hbar\hat{J}_{r}$$

我们得到

 $A\hat{J}_x\hat{J}_y$ — $A\hat{J}_y\hat{J}_x$ = $i\,\hbar A\,\hat{J}_z$, $\hat{J}_x\hat{J}_yA$ — $\hat{J}_y\hat{J}_xA$ = $i\,\hbar\hat{J}_zA$ 但根据题意

$$A\hat{J}_x = \hat{J}_x A$$
, $A\hat{J}_y = \hat{J}_y A$

因此

 $\hat{J}_xA\hat{J}_y$ 一 $\hat{J}_yA\hat{J}_x$ =i $\hbar A\hat{J}_z$, $\hat{J}_xA\hat{J}_y$ 一 $\hat{J}_yA\hat{J}_x$ =i $\hbar \hat{J}_zA$ 由此得到

$$A \hat{J}_z = \hat{J}_z A$$

或

$$[A,\hat{J}_x]=0$$

18. 利用 Heisenberg 的不确定性关系

$$\Delta A \cdot \Delta B \geqslant \frac{1}{2} \langle \psi | [A, B] | \psi \rangle$$

证明在量子态 $|0\rangle$ 下,自旋算符 \hat{S}_x 和 \hat{S}_y 的不确定度满足

$$\Delta \hat{S}_x \cdot \Delta \hat{S}_y \geqslant \frac{\hbar^2}{4}$$

证明 在 $|0\rangle$ 态下, \hat{S} ,和 \hat{S} ,对易式的平均值

$$\langle 0 | [\hat{S}_x, \hat{S}_y] | 0 \rangle = i \hbar \langle 0 | \hat{S}_z | 0 \rangle = \frac{i \hbar^2}{2} \langle 0 | \sigma_z | 0 \rangle = \frac{i \hbar^2}{2}$$

因此,

$$\Delta \hat{S}_x \cdot \Delta \hat{S}_y \geqslant \frac{1}{2} |\langle 0| [\hat{S}_x, \hat{S}_y] |0 \rangle| = \frac{\hbar^2}{4}$$

第5章 态矢量和力学量算符的 表象变换

1. 求自由粒子的坐标 x, 动量 \hat{p}_x 和 Hamilton 量 \hat{H} 在 x 表象中的矩阵元。

解 自由粒子的坐标 x 的本征函数 $\psi_{x_n} = \delta(x - x_n), n = 1, 2, 3, \dots$ 是 x 表象中的基矢。因此,矩阵元

$$(x)_{x_{m}x_{n}} = (\psi_{x_{m}}(x), x\psi_{x_{n}}(x)) = (\delta(x - x_{m}), x\delta(x - x_{n}))$$

$$= \int \delta(x - x_{m})x\delta(x - x_{n})dx = x_{m}\delta(x_{m} - x_{n})$$

$$(p_{x})_{x_{m}x_{n}} = (\psi_{x_{m}}(x), \hat{p}_{x}\psi_{x_{n}}(x))$$

$$= -i h (\psi_{x_{m}}(x), \frac{\partial}{\partial x}\psi_{x_{n}}(x))$$

$$= -i h \int \delta(x - x_{m}) \frac{\partial}{\partial x}\delta(x - x_{n})dx$$

$$= -i h \frac{\partial}{\partial x_{m}}\delta(x_{m} - x_{n})$$

$$(H)_{x_{m}x_{n}} = (\psi_{x_{m}}(x), \hat{H}\psi_{x_{n}}(x))$$

$$= -\frac{\hbar^{2}}{2m}(\psi_{x_{m}}(x), \frac{\partial^{2}}{\partial x^{2}}\psi_{x_{n}}(x))$$

$$= -\frac{\hbar^{2}}{2m}\int_{-\infty}^{\infty} \delta(x - x_{m}) \frac{\partial^{2}}{\partial x^{2}}\delta(x - x_{n})dx$$

$$= -\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x_{m}^{2}}\delta(x_{m} - x_{n})$$

2. 在动量表象中,求x, \hat{p}_x 和 $\hat{H} = \frac{\hat{p}^2}{2m}x + V(x)$ 的矩阵元。

解 在动量表象中,动量本征函数是 $\delta(p-p')$,它构成动量

表象中的基矢。因此,矩阵元

$$(x)_{p'p'} = (\varphi_{p'}(p), x\varphi_{p'}(p)) = (\varphi_{p'}(p), i \hbar \frac{\partial}{\partial p} \varphi_{p'}(p))$$

$$= i \hbar \int \varphi_{p'}^*(p) \frac{\partial}{\partial p} \varphi_{p'}(p) dp$$

$$= i \hbar \int \delta(p - p') \frac{\partial}{\partial p} \delta(p - p'') dp$$

$$= i \hbar \frac{\partial}{\partial p'} \delta(p' - p'')$$

$$(p)_{p'p'} = (\varphi_{p'}(p), p\varphi_{p'}(p))$$

$$= \int \delta(p - p') p \delta(p - p'') dp$$

$$= p' \delta(p' - p'')$$

$$(H)_{p'p''} = (\varphi_{p'}(p), \hat{H} \varphi_{p'}(p))$$

$$= \int \delta(p - p') \left[\frac{\hat{p}^2}{2m} + V \left(i \hbar \frac{\partial}{\partial p} \right) \right] \delta(p - p'') dp$$

$$= \left[\frac{p'^2}{2m} + V \left(i \hbar \frac{\partial}{\partial p'} \right) \right] \delta(p' - p'')$$

3. 证明在 \hat{l}_x 的本征态 $|m\rangle$ 下, $\overline{l}_x=\overline{l}_y=0$ 。

证明 由于 $|m\rangle$ 是 \hat{l}_z 的本征态、故 $\hat{l}_z|m\rangle = m h|m\rangle$ 。利用对易式 $[\hat{l}_y,\hat{l}_z]=i \hbar \hat{l}_z$ 得

$$i \, \hbar \overline{l_x} = i \, \hbar \langle m \, | \, \hat{l}_x \, | \, m \rangle = \langle m \, | \, \hat{l}_y \, \hat{l}_z \, | \, m \rangle - \langle m \, | \, \hat{l}_z \, \hat{l}_y \, | \, m \rangle$$
$$= m \, \hbar \langle m \, | \, \hat{l}_y \, | \, m \rangle - m \, \hbar \langle m \, | \, \hat{l}_y \, | \, m \rangle = 0$$

同理,利用对易式[\hat{l}_z , \hat{l}_z]= $i \hbar \hat{l}_v$ 得

$$\begin{split} \mathrm{i} \, \hbar \tilde{l}_y &= \langle m \, | \, \hat{l}_z \, \hat{l}_z \, | m \rangle - \langle m \, | \, \hat{l}_x \, \hat{l}_z \, | m \rangle \\ &= m \, \hbar \, \langle m \, | \, \hat{l}_x \, | m \rangle - m \, \hbar \, \langle m \, | \, \hat{l}_x \, | m \rangle = 0 \end{split}$$

4. 求在 (\hat{l}^2, \hat{l}_z) 的共同本征态 $|lm\rangle$ 下 $,\hat{l}^2,$ 的平均值。

解 \hat{l}^2 和 \hat{l}_z 的本征值方程为

$$\begin{cases} \hat{l}^2 | lm \rangle = l(l+1)\hbar^2 | lm \rangle \\ \hat{l}_z | lm \rangle = m \hbar | lm \rangle \end{cases}$$

由对易关系[\hat{l}_{y} , \hat{l}_{z}]=i $\hbar \hat{l}_{x}$ 得(右乘 \hat{l}_{z})

$$i \hbar \hat{l}_x^2 = \hat{l}_y \hat{l}_z \hat{l}_x - \hat{l}_z \hat{l}_y \hat{l}_x \tag{1}$$

由 $[\hat{l}_z, \hat{l}_x] = i \, \hbar \hat{l}_x$ 得(左乘 \hat{l}_z)

$$i \hbar \hat{l}_{x}^{2} = \hat{l}_{x} \hat{l}_{z} \hat{l}_{x} - \hat{l}_{x} \hat{l}_{z} \hat{l}_{z}$$

$$(2)$$

由式(2)得

$$\hat{l}_{y}\hat{l}_{z}\hat{l}_{z}=i\hbar\hat{l}_{y}^{2}+\hat{l}_{y}\hat{l}_{z}\hat{l}_{z}$$

此式代入到式(1)得

$$i \hbar \hat{l}_x^2 = i \hbar \hat{l}_x^2 + \hat{l}_x \hat{l}_x \hat{l}_x - \hat{l}_z \hat{l}_x \hat{l}_x$$

因此,

$$i \, \hbar \overline{l_x^2} = i \, \hbar \langle lm \, | \, \hat{l}_y^2 \, | \, lm \rangle + \langle lm \, | \, \hat{l}_y \, \hat{l}_x \, \hat{l}_x \, | \, lm \rangle - \langle lm \, | \, \hat{l}_z \, \hat{l}_y \, \hat{l}_x \, | \, lm \rangle$$

$$= i \, \hbar \overline{l_y^2} + m \, \hbar \langle lm \, | \, \hat{l}_y \, \hat{l}_x | \, lm \rangle - m \, \hbar \langle lm \, | \, \hat{l}_y \, \hat{l}_x | \, lm \rangle = i \, \hbar \overline{l_y^2}$$

即

$$\overline{l_x^2} = \overline{l_y^2}$$

但, $\hat{l}_x^2 + \hat{l}_y^2 = \hat{l}^2 - \hat{l}_z^2$,因此

$$\overline{l_x^2} + \overline{l_y^2} = \overline{l^2} - \overline{l_z^2} = \langle lm \mid \hat{l}^2 \mid lm \rangle - \langle lm \mid \hat{l}_z^2 \mid lm \rangle
= l(l+1)\hbar^2 - m^2 \, \hbar^2 = [l(l+1) - m^2]\hbar^2$$

从而

$$\overline{l_x^2} = \overline{l_y^2} = \frac{1}{2} [l(l+1) - m^2] \hbar^2$$

- 5. 在 (\hat{l}^2,\hat{l}_z) 的共同本征态 Y_{10} 下,求 \hat{l}_z 的可能测值及相应的几率。
- 解 在 Y_{10} 下, \hat{l}_x 的可能测值显然为零,且根据第 3 题,平均值 $\overline{l}_x=0$ 。 \hat{l}_x 的可能测值是 h_x ,0,一 h_x (因为 l=1),如果设相应的几

率分别为 $w_1, w_0, w_{-1}, 则$

$$w_1 + w_0 + w_{-1} = 1 \tag{1}$$

但因在 (\hat{l}^2, \hat{l}_z) 下, $\overline{l}_z=0$,因此得

$$\overline{l_x} = \hbar w_1 - \hbar w_{-1} + w_0 \cdot 0 = 0$$

所以

$$w_1 = w_{-1} \tag{2}$$

又因

$$\overline{l_s^2} = \frac{1}{2} [l(l+1) - m^2] \hbar^2$$

因此,在Y10态下

$$\overline{l_x^2} = \frac{1}{2} [1(1+1) - 0] \hbar^2 = \hbar^2$$

丽

$$\overline{l_{\tau}^2} = w_1 \, h^2 + w_{-1} (-h)^2 + w_0 \cdot 0 = h^2$$

即

$$(w_1+w_{-1})\hbar^2=\hbar^2$$

所以

$$\boldsymbol{w}_1 + \boldsymbol{w}_{-1} = 1 \tag{3}$$

由式(1)、(2)、(3)最后得

$$w_1 = \frac{1}{2}, \quad w_{-1} = \frac{1}{2}, \quad w_0 = 0$$

6. 设一维线性谐振子的基态与第一激发态的正交、归一化波函数分别为实函数 ψ₀ 和 ψ₁,当谐振子处于

$$\psi = A\psi_0 + B\psi_1$$
 (A、B 均为实数)

所描述的量子态时,求证:

$$(1)A^2+B^2=1;$$

(2)坐标 x 的平均值 $x=2AB\langle \psi_0|x|\psi_1\rangle$ 。

证明 (1)因为 ϕ 。和 ϕ ,为实函数,由 ϕ 的归一化条件得

$$\int (A\psi_0 + B\psi_1)^2 dx$$

$$= A^2 \int \psi_0^2 dx + B^2 \int \psi_1^2 dx + 2AB \int \psi_0 \psi_1 dx = 1$$

但由于

$$\int \psi_0^2 dx = \int \psi_1^2 dx = 1$$
$$\int \psi_0 \psi_1 dx = (\psi_0, \psi_1) = 0$$

得

$$A^z + B^z = 1$$

(2) 根据平均值的定义,

$$\overline{x} = \int x (A\psi_0 + B\psi_1)^2 dx$$

$$= A^2 \int x \psi_0^2 dx + B^2 \int x \psi_1^2 dx + 2AB \int x \psi_0 \psi_1 dx$$

但对线性谐振子,由于

$$\int x \psi_0^2 dx = \langle \psi_0 | x | \psi_0 \rangle = 0$$
$$\int x \psi_1^2 dx = \langle \psi_1 | x | \psi_1 \rangle = 0$$

因此

$$\bar{x} = 2AB \int x \phi_0 \phi_1 dx = 2AB \langle \psi_0 | x | \phi_1 \rangle$$

7. 对于一维谐振子,已知能量本征值

$$E_n = \left(n + \frac{1}{2}\right)\hbar \omega, \quad n = 1, 2, 3, \cdots$$

求证:
$$(\Delta x)^2 \cdot (\Delta p)^2 = \left(n + \frac{1}{2}\right)^2 \hbar^2$$
。

证明 对于一维谐振子,能量本征态 $\psi_n = |n\rangle$ 满足

$$x^{2}|n\rangle = \frac{1}{2\alpha} \{ \sqrt{(n+1)(n+2)} |n+2\rangle + (2n+1)|n\rangle + \sqrt{n(n-1)} |n-2\rangle \}$$

因此,

$$\overline{x^2} = \langle n | x^2 | n \rangle = \frac{2}{\alpha^2} \left(n + \frac{1}{2} \right) = \frac{\hbar}{m\omega} \left(n + \frac{1}{2} \right)$$

再利用

$$\begin{aligned} \hat{p}^{2} | n \rangle &= -\hbar^{2} \frac{d^{2}}{dx^{2}} | n \rangle \\ &= -\frac{\hbar^{2} \alpha^{2}}{2} \left[\sqrt{(n+1)(n+2)} | n+2 \rangle - (2n+1) | n \rangle + \sqrt{n(n+1)} | n-2 \rangle \right] \end{aligned}$$

可得到

$$\overline{p^2} = \langle n \mid p^2 \mid n \rangle = \frac{m \hbar \omega}{2} (2n+1) = m\omega \hbar \left(n + \frac{1}{2} \right)$$

因此最后得到

$$(\Delta x)^2 \cdot (\Delta p)^2 = \overline{(x-\overline{x})^2} \cdot \overline{(p-\overline{p})^2} = \overline{x^2} \cdot \overline{p^2} = \left(n + \frac{1}{2}\right)^2 h^2$$

8. 设一个量子体系的 Hamilton 量为 $\hat{H} = \frac{\hat{p}^2}{2m} + V(r)$,能量本征函数为 $\phi_n(r)$, $n=1,2,3,\cdots$ 。求证:在体系能量的任意本征态下,动量的平均值p=0。

证明 利用对易关系

$$[x, \hat{p}_x] = i h, [y, \hat{p}_y] = i h, [z, \hat{p}_z] = i h$$

可得

$$[r,p]=ih$$

因此

$$[\hat{H}, r] = \frac{1}{2m} [\hat{p}^2 + V(r), r] = \frac{1}{2m} [\hat{p}^2, r]$$
$$= -\frac{1}{2m} 2i \, \hbar \, \hat{p} = -\frac{i}{m} \hat{p}$$

由此得到

$$\hat{p} = \frac{\mathrm{i}m}{\hbar} (\hat{H} r - r \, \hat{H})$$

根据平均值的定义,在能量的任意本征态 $\phi_n(r)$ 下,动量的平均值

$$\overline{p} = \langle \psi_n | \hat{p} | \psi_n \rangle = \frac{\mathrm{i}m}{\hbar} \langle \psi_n | (\hat{H} \mathbf{r} - \mathbf{r} \hat{H}) | \psi_n \rangle
= \frac{\mathrm{i}m}{\hbar} \left[\langle \psi_n | \hat{H} \mathbf{r} | \psi_n \rangle - \langle \psi_n | \mathbf{r} \hat{H} | \psi_n \rangle \right]
= \frac{\mathrm{i}m E_n}{\hbar} \left[\langle \psi_n | \mathbf{r} | \psi_n \rangle - \langle \psi_n | \mathbf{r} | \psi_n \rangle \right] = 0$$

第6章 对称性与守恒定律

1. 设一质量为m 的粒子在势场V(r)中运动,其 Hamilton 量为 \hat{H} 。求证:

(1)
$$[r, \hat{H}] = i \hbar \frac{\hat{p}}{m};$$
 (2) $m \frac{d \hat{r}}{dt} = \hat{p}_{\alpha}$
证明 (1) $[r, \hat{H}] = \left[xi + yj + zk, \frac{1}{2m}(\hat{p}_{x}^{2} + \hat{p}_{y}^{2} + \hat{p}_{z}^{2}) + V(r)\right]$
 $= \frac{i \hbar}{2m}(2 \hat{p}_{x}i + 2 \hat{p}_{y}j + 2 \hat{p}_{z}k) = i \hbar \frac{\hat{p}}{m}$

(2)因为

$$\frac{\mathrm{d}\,\bar{r}}{\mathrm{d}t} = \frac{1}{\mathrm{i}\,\hbar} \overline{[r,\hat{H}]} = \frac{\bar{p}}{m}$$

所以

$$m \frac{\mathrm{d} \, \bar{r}}{\mathrm{d} t} = \bar{p}$$

2. 设 x^2 不显含时间 t,求证:

$$\frac{\mathrm{d}\,\overline{x^2}}{\mathrm{d}t^2} = \frac{1}{m} (\overline{x\,\hat{p}_x + \hat{p}_x x})$$

其中 m 为质量。

证明

$$\frac{\mathrm{d}\,\overline{x^2}}{\mathrm{d}t} = \frac{1}{\mathrm{i}\,\hbar} \left[\overline{x^2, \hat{H}} \right]$$

但由于

$$\frac{1}{i\hbar}[x^2, \hat{H}] = \frac{1}{i\hbar} \left\{ \left[x^2, \frac{1}{2m} (\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2) \right] + \left[x^2, V(r) \right] \right\}$$

$$\begin{split} &= \frac{1}{2\min \hbar} \left[x^2, \hat{p}_x^2 \right] = \frac{1}{2\min \hbar} \left\{ x \left[x, \hat{p}_x^2 \right] + \left[x, \hat{p}_x^2 \right] x \right\} \\ &= \frac{1}{2\min \hbar} \left\{ x \, \hat{p}_x \left[x, \hat{p}_x \right] + x \left[x, \hat{p}_x \right] \hat{p}_x + \hat{p}_x \left[x, \hat{p}_x \right] x + \left[x, \hat{p}_x \right] \hat{p}_x x \right\} \\ &= \frac{1}{2\min \hbar} \left\{ i \, \hbar x \, \hat{p}_x + i \, \hbar x \, \hat{p}_x + i \, \hbar \hat{p}_x x + i \, \hbar \hat{p}_x x \right\} \\ &= \frac{1}{m} (x \, \hat{p}_x + \hat{p}_x x) \end{split}$$

因此

$$\frac{\mathrm{d} \overline{x^2}}{\mathrm{d}t} = \frac{1}{m} (\overline{x \ \hat{p} \ x + \hat{p} \ x})$$

3. 设力学量 \hat{A} 不显含时间 t。求证: $-\hbar^2 \frac{\mathrm{d}^2 \overline{A}}{\mathrm{d}t^2} = [[\hat{A}, \hat{H}], \hat{H}]$.

证明 由于
$$\frac{\mathrm{d} A}{\mathrm{d}t} = \frac{1}{\mathrm{i} \hbar} [\overline{\hat{A}}, \widehat{H}]$$
,因此
$$\frac{\mathrm{d}^2 \overline{A}}{\mathrm{d}t^2} = \frac{1}{\mathrm{i} \hbar} [\overline{\frac{\mathrm{d} \overline{A}}{\mathrm{d}t}}, \widehat{H}] = -\frac{1}{\hbar^2} [\overline{[\hat{A}}, \widehat{H}], \widehat{H}]$$

可见,

$$-\hbar^2 \frac{\mathrm{d}^2 \overline{A}}{\mathrm{d}t^2} = [\overline{[\hat{A}, \hat{H}], \hat{H}}]$$

4. 设力学量 \hat{A} 不显含时间 t。证明在束缚态下 $\frac{d\overline{A}}{dt}=0$ 。

证明 在束缚态下能量是量子化的,即能量取离散值。设 \hat{H} 为体系的 Hamilton 量,能量本征值为 E_n ,对应的本征函数为 ψ_n 。由于 $\hat{\Lambda}$ 不显含时间,

$$\frac{\mathrm{d}\,\overrightarrow{A}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(\psi, \hat{A}\,\psi) = \frac{1}{\mathrm{i}\,\hbar} \left[\overline{\hat{A}\,,\hat{H}}\right] = \frac{1}{\mathrm{i}\,\hbar} \left(\overline{\hat{A}\,\hat{H}} - \overline{\hat{H}\,\hat{A}}\right)$$

根据平均值的定义,对 \hat{H} 的任意本征函数 ϕ_a ,

$$\frac{d\overline{A}}{dt} = \frac{1}{i\hbar} \{ (\psi_n, \hat{A} \, \hat{H} \, \psi_n) - (\psi_n, \hat{H} \, \hat{A} \, \psi_n) \}$$

$$= \frac{1}{i\hbar} \{ (\psi_n, \hat{A} \, \hat{H} \, \psi_n) - (\hat{H} \, \psi_n, \hat{A} \, \psi_n) \}$$

$$= \frac{1}{i\hbar} \{ (\psi_n, E_n \, \hat{A} \, \psi_n) - (E_n \psi_n, \hat{A} \, \psi_n) \}$$

$$= \frac{E_n}{i\hbar} \{ (\psi_n, \hat{A} \, \psi_n) - (\psi_n, \hat{A} \, \psi_n) \} = 0$$

5. 求证: $\phi(x) = e^{ikx}\phi_k(x)$ 是空间平移算符 $S(a) = e^{\frac{i}{\hbar}a\hat{p}} = e^{ia\hat{k}}$ 的本征值为 e^{ika} 的本征态,已知: $\phi_k(x) = \phi_k(x+a)$ 。

证明 $S(a)\phi(x) = e^{ia\cdot x} e^{ikx}\phi_k(x) = e^{ik(x+a)}\phi_k(x+a) = e^{ika}e^{ikx}\phi_k(x+a) = e^{ika}e^{ikx}\phi_k(x+a) = e^{ika}e^{ikx}\phi_k(x) = e^{ika}\phi(x)$,因此, $\phi(x)$ 是 S(a)的本征值为 e^{iba} 的本征态。

6. 设 Hamilton 量 $\hat{H} = \frac{\hat{p}^2}{2m} + V(x)$ (不显含时间)。求证, $\sum_n (E_n - E_m) |x_{nm}|^2 = \frac{\hbar^2}{2m}, 其中, E_n, E_m 为能量本征值, x_n 为坐标 x 的矩阵元。$

证明 为计算方便,设 $\sum_{n} (E_{n} - E_{m}) |x_{nm}|^{2} \equiv y$,则由于 $x_{nm} = \langle n | x | m \rangle$ $y = \sum_{n} (E_{n} - E_{m}) \langle m | x | n \rangle \langle n | x | m \rangle$ $= \sum_{n} \langle E_{n} \langle m | x | n \rangle \langle n | x | m \rangle - E_{m} \langle m | x | n \rangle \langle n | x | m \rangle \rangle$ $= \sum_{n} \langle \langle m | x \hat{H} | n \rangle \langle n | x | m \rangle - \langle m | \hat{H} x | n \rangle \langle n | x | m \rangle \rangle$ $= \sum_{n} \langle \langle m | x \hat{H} | n \rangle - \langle m | \hat{H} x | n \rangle \rangle \langle n | x | m \rangle$ $= \sum_{n} \langle m | [x, \hat{H}] | n \rangle \langle n | x | m \rangle$

但,

$$\begin{split} \left[x,\hat{H}\right] &= \left[x,\frac{\hat{p}^2}{2m} + V(x)\right] = \left[x,\frac{1}{2m}(\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2)\right] \\ &= \frac{1}{2m}[x,\hat{p}_x^2] \\ &= \frac{1}{2m}\{\hat{p}_x[x,\hat{p}_x] + [x,\hat{p}_x]\,\hat{p}_x\} = \frac{\mathrm{i}\,\hbar}{m}\,\hat{p}_x \end{split}$$

因此,

$$y = \frac{\mathrm{i}\,\hbar}{m} \sum_{n} \langle m \,|\, \hat{p}_{x} | n \rangle \langle n \,| x \,| m \rangle = \frac{\mathrm{i}\,\hbar}{m} \langle m \,|\, \hat{p}_{x} x \,| m \rangle$$

由于

$$|x_{nm}|^2 = \langle m|x|n\rangle\langle n|x|m\rangle = \langle n|x|m\rangle\langle m|x|n\rangle$$

y 也可以表示为

$$y = \sum_{n} (E_{n} - E_{m}) \langle n | x | m \rangle \langle m | x | n \rangle$$

$$= \sum_{n} \{ E_{n} \langle n | x | m \rangle \langle m | x | n \rangle - E_{m} \langle n | x | m \rangle \langle m | x | n \rangle \}$$

$$= \sum_{n} \{ (\langle n | \hat{H} x | m \rangle - \langle n | x \hat{H} | m \rangle) \langle m | x | n \rangle \}$$

$$= \sum_{n} \langle n | [\hat{H}, x] | m \rangle \langle m | x | n \rangle$$

$$= -\frac{i \hbar}{m} \sum_{n} \langle n | \hat{p}_{x} | m \rangle \langle m | x | n \rangle$$

$$= -\frac{i \hbar}{m} \sum_{n} \langle m | x | n \rangle \langle n | \hat{p}_{x} | m \rangle = -\frac{i \hbar}{m} \langle m | x \hat{p}_{x} | m \rangle$$

从而,

$$2y = \frac{\mathrm{i}\,\hbar}{m} (\langle m \,|\, \hat{p}_x x - x\, \hat{p}_x \,|\, m \rangle) = \frac{\mathrm{i}\,\hbar}{m} \langle m \,|\, [\hat{p}_x, \hat{x}\,] \,|\, m \rangle$$
$$= \frac{\mathrm{i}\,\hbar}{m} (-\mathrm{i}\,\hbar) \langle m \,|\, m \rangle = \frac{\hbar^2}{m}$$

由此最后得

$$y = \sum_{n} (E_n - E_m) |x_{nm}|^2 = \frac{\hbar^2}{2m}$$

7. 由两个全同粒子构成的体系,每个粒子可取三个不同状态。

问,可构造多少种交换对称态和反对称态。

解 把每个粒子可能取的三个状态分别记作[1>, |2>, |3>,则 交换对称态和反对称态共有 3°=9个,其中,交换对称态:

$$\begin{aligned} \psi_1 &= |1\rangle |1\rangle, \quad \psi_2 &= |2\rangle |2\rangle, \quad \psi_3 &= |3\rangle |3\rangle \\ \psi_4 &= \frac{1}{\sqrt{2}} (|1\rangle |2\rangle + |2\rangle |1\rangle), \quad \psi_5 &= \frac{1}{\sqrt{2}} (|1\rangle |3\rangle + |3\rangle |1\rangle) \\ \psi_6 &= \frac{1}{\sqrt{2}} (|2\rangle |3\rangle + |3\rangle |2\rangle), \notin 6 \; \text{that is a simple formula} \; . \end{aligned}$$

交换反对称态:

$$\phi_1 = \frac{1}{\sqrt{2}}(|1\rangle|2\rangle - |2\rangle|1\rangle, \quad \phi_2 = \frac{1}{\sqrt{2}}(|1\rangle|3\rangle - |3\rangle|1\rangle)$$

$$\phi_3 = \frac{1}{\sqrt{2}}(|2\rangle|3\rangle - |3\rangle|2\rangle), \\ \sharp 3$$
 种反对称态。

也可以用 Young tableaux(杨图技巧)计算。每个粒子用一个方框 表示,3 个状态用 1、2、3 表示,则二粒子体系的交换对称态、反对称态数目为

$$\boxed{3 \otimes \boxed{3} = \boxed{3} \stackrel{4}{4} \oplus \boxed{2}}$$

$$n_{S} = \frac{3 \cdot 4}{2!} = 6_{S}, \quad n_{A} = \frac{3 \cdot 2}{2!} = 3_{A}$$

一般地,

$$N \otimes N = N N + 1 \oplus N$$

$$n_{S} = \frac{N(N+1)}{2!}, \quad n_{A} = \frac{N(N-1)}{2!}$$

8. 以全同二粒子的体系为例,证明交换算符 \hat{P}_{12} 是一个守恒量。

证明 设体系的波函数为 $\psi(1,2)$,则由于

$$\hat{H}(1,2) = \hat{H}(2,1)$$

 $\hat{P}_{12}\hat{H}(1,2)\psi(1,2) = \hat{H}(2,1)\psi(2,1) = \hat{H}(1,2)\hat{P}_{12}\psi(1,2)$ 因此,

$$(\hat{P}_{12}\hat{H}(1,2) - \hat{H}(1,2)\hat{P}_{12})\psi(1,2) = 0$$
$$[\hat{P}_{1,2}, \hat{H}(1,2)]\psi(1,2) = 0$$

从而

$$[\hat{P}_{12}, \hat{H}] = 0$$
, \hat{P}_{12} 为守恒量。

9. 氢的同位素氘(deuteron)由一个质子(proton,记作 p)和一个中子(neutron,记作 n)组成。设由两个氘组成的四粒子体系的波函数为 $\psi(p_1n_1,p_2n_2),n,p$ 都为 Fermion。

试问:波函数 ≠ 在两个氘的交换下对称还是反对称?

解 两个氘的交换相当于 $p_1 \leftrightarrow p_2, n_1 \leftrightarrow n_2$,对每一个费米子的交换 ϕ 是反对称。因为同时交换两次,因此,最后结果是交换对称。

10. 设两个力学量算符 \hat{A} 和 \hat{B} 均为守恒量,但[\hat{A} , \hat{B}] $\neq 0$ 。求证,体系的能级是简并的。

证明 因为 \hat{A} 是守恒量, \hat{A} 与体系的 Hamilton 量 \hat{H} 对易,即 $[\hat{A},\hat{H}]=0$,因此, \hat{A} 和 \hat{H} 具有共同本征函数 ϕ ,并有

$$\hat{H}\psi = E\psi$$
, $\hat{A}\psi = a\psi$

但由于 \hat{B} 也是守恒量, $[\hat{B},\hat{H}]=0$,因此得到

$$\hat{H}\hat{B}\psi = \hat{B}\hat{H}\psi = E\hat{B}\psi$$

可见, $\hat{B}\phi$ 也是 \hat{H} 的本征值为 E 的本征态。由于 $[\hat{A},\hat{B}]\neq 0$,对 \hat{A} 和 \hat{H} 的共同本征函数 ϕ

$$\hat{A}\,\hat{B}\,\psi\neq\hat{B}\,\hat{A}\,\psi=a\,\hat{B}\,\psi$$

这说明 $\hat{B}\psi$ 不是 \hat{A} 的本征态,但 ψ 是 \hat{A} 的本征态。因此, ψ 和 $\hat{B}\psi$ 不是同一个量子态,但它们却都是 \hat{H} 的本征值为 E 的本征态。可见

能级是简并的。

- 11. 一个电荷为 q,质量为 m 的粒子受到均匀静电场 E 的作用。
 - (1)写出粒子运动的含时 Schrödinger 方程。
- (2)证明,粒子的坐标r的平均值满足 Newton 运动方程 $m\frac{\mathrm{d}^2\overline{r}}{\mathrm{d}t^2}=q\overline{E}_{o}$
 - 解 (1)设波函数为 $\psi(r,t)$,则因体系的 Hamilton 量

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 - q \mathbf{E} \cdot \mathbf{r}$$

Schrödinger 方程为

i
$$\hbar \frac{\partial \psi(\mathbf{r},t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \nabla^2 - q\mathbf{E} \cdot \mathbf{r} \right] \psi(\mathbf{r},t)$$

(2)因为

$$\frac{\mathrm{d}\overline{r}}{\mathrm{d}t} = \frac{1}{\mathrm{i}} \overline{\left[r, \hat{H}\right]} = \frac{1}{\mathrm{i}} \overline{\left[r, \frac{\hat{p}^{2}}{2m} - qE \cdot r\right]},$$

$$\left[r, \frac{\hat{p}^{2}}{2m}\right] = \left[xi + yj + zk, \frac{1}{2m}(\hat{p}_{x}^{2} + \hat{p}_{y}^{2} + \hat{p}_{z}^{2})\right]$$

$$= \frac{1}{2m} \left\{2\mathrm{i} \, \hbar \hat{p}_{x} i + 2\mathrm{i} \, \hbar \hat{p}_{y} j + 2\mathrm{i} \, \hbar \hat{p}_{z} k\right\} = \frac{\mathrm{i} \, \hbar}{m} \hat{p}$$

$$\left[r, qE \cdot r\right] = 0,$$

所以

$$\frac{\mathrm{d}\bar{r}}{\mathrm{d}t} = \frac{\bar{p}}{m}$$

从而

$$\frac{\mathrm{d}^2 \bar{r}}{\mathrm{d}t^2} = \frac{1}{m} \frac{\mathrm{d} \bar{p}}{\mathrm{d}t} = \frac{1}{m} \cdot \frac{1}{\mathrm{i} \bar{h}} [\hat{p}, \hat{H}]$$

又因为

$$[\hat{p}, \hat{H}] = [\hat{p}, \frac{\hat{p}^2}{2m} - qE \cdot r] = -qE \cdot [\hat{p}, r] = i \hbar qE$$

因此,最后得

$$\frac{\mathrm{d}^2 \bar{r}}{\mathrm{d}t^2} = \frac{1}{m} q \bar{E} \quad \bar{g} \quad m \frac{\mathrm{d}^2 \bar{r}}{\mathrm{d}t^2} = q \bar{E}$$

- 12. 两个自旋均为 $\frac{1}{2}$ 的费米子体系的波函数为 ψ (12)。如果两个费米子是全同的。则
 - (1)φ(12)满足什么条件?
- (2)利用所给出的 ϕ (12)所满足的条件,说明 Pauli 不相容原理。

解 (1) ψ(12)要满足

$$\psi(12) = -\psi(21)$$
,

因为全同费米子体系的波函数对两个粒子的交换反对称。

(2)由 $\psi(12) = -\psi(21)$ 得,当两个粒子处于完全相同的量子态,即 1=2,则

$$\phi(11) = -\phi(11)$$

因此, $\phi(11) \equiv 0$,这就是说,两个全同费米子不能处于完全相同的量子态,这就是 Pauli 不相容原理。

13. 求证:字称算符P 和轨道角动量算符 I 对易。

证明 轨道角动量算符 $\hat{l}=r \times \hat{p}$,因此,对任意波函数 $\phi(r)$,

$$\hat{P} \; \hat{l} \; \psi(\mathbf{r}) = \hat{P} \; (\mathbf{r} \times \hat{\mathbf{p}} \;) \psi(\mathbf{r})$$

$$= (-r) \times (-\hat{p}) \psi(-r) = (r \times \hat{p}) \hat{P} \psi(r) = \hat{l} \hat{P} \psi(r)$$

由此可见,

$$[\hat{P},\hat{l}]=0$$

14. 求证;如果力学量算符 A、B、C 在 Schrödinger 绘景中满足对易关系[A,B]=iC,则这一关系在 Heisenberg 绘景中仍然成立。

证明 设 $A \setminus B \setminus C$ 在 Heisenberg 绘景中的表示分别为 A_H ,

 $B_{\rm H}$, $C_{\rm H}$,则

 $A_{\rm H} = U(t)AU^{-1}(t)$, $B_{\rm H} = U(t)BU^{-1}(t)$, $C_{\rm H} = U(t)CU^{-1}(t)$ 其中, $U(t) = \exp(iHt)$ 。因此,

$$[A_{\rm H}, B_{\rm H}] = [UAU^{-1}, UBU^{-1}] = UABU^{-1} - UBAU^{-1}$$

= $U[A, B]U^{-1} = iUCU^{-1} = iC_{\rm H}$

可见,对易关系与绘景无关。

第7章 粒子在势场中的运动

- 1. 二粒子体系的两个粒子的质量分别为 m_1 和 m_2 , 位矢分别为 r_1 和 r_2 , 求:
- (1)相对动量;(2)总动量;(3)总轨道角动量在坐标表象中的表示。

解 设质心坐标为 R,相对坐标为 r,则

$$R = \frac{1}{M}(m_1r_1 + m_2r_2), \quad (M = m_1 + m_2)$$

$$r = r_1 - r_2$$

由此解出,

$$r_1 = R + \frac{m_2}{M}r$$
, $r_2 = R - \frac{m_1}{M}r$

(1)相对动量:设两个粒子的折合质量为 μ,则相对动量

$$\hat{P}_{r} = \mu \, \dot{r} = \frac{m_{1} m_{2}}{M} (\dot{r}_{1} - \dot{r}_{2}) = \frac{m_{2}}{M} \hat{P}_{1} - \frac{m_{1}}{M} \hat{P}_{2}$$

$$= \frac{m_{2}}{M} (-i \, \hbar \nabla_{r_{1}}) - \frac{m_{1}}{M} (-i \, \hbar \nabla_{r_{2}})$$

因为

$$\nabla_{r_1} \equiv \frac{\partial}{\partial r_1} = \frac{\partial}{\partial r_1} \cdot \frac{\partial}{\partial R} + \frac{\partial}{\partial r_1} \cdot \frac{\partial}{\partial r} = \frac{m_1}{M} \frac{\partial}{\partial R} + \frac{\partial}{\partial r}$$

$$\nabla_{r_2} \equiv \frac{\partial}{\partial r_2} = \frac{\partial}{\partial r_2} \cdot \frac{\partial}{\partial R} + \frac{\partial}{\partial r_2} \cdot \frac{\partial}{\partial r} = \frac{m_2}{M} \frac{\partial}{\partial R} - \frac{\partial}{\partial r}$$

因此,

$$\hat{P}_r = -\frac{\mathrm{i}}{M} (m_2 \nabla_{r_1} - m_1 \nabla_{r_2})$$

$$= -\frac{\mathrm{i} \, \hbar}{M} \left(\frac{m_1 m_2}{M} \frac{\partial}{\partial R} + m_2 \frac{\partial}{\partial r} - \frac{m_1 m_2}{M} \frac{\partial}{\partial R} + m_1 \frac{\partial}{\partial r} \right)$$

$$= -\frac{\mathrm{i} \, \hbar}{M} (m_1 + m_2) \frac{\partial}{\partial r} = -\mathrm{i} \, \hbar \frac{\partial}{\partial r} = -\mathrm{i} \, \hbar \nabla_r$$

(2)总动量:

$$\hat{P}_{R} = \hat{P}_{1} + \hat{P}_{2} = -i \hbar \nabla_{r_{1}} - i \hbar \nabla_{r_{2}}$$

但由于

$$\nabla_{\mathbf{r}_1} = \frac{m_1}{M} \frac{\partial}{\partial \mathbf{R}} + \frac{\partial}{\partial \mathbf{r}}, \quad \nabla_{\mathbf{r}_2} = \frac{m_2}{M} \frac{\partial}{\partial \mathbf{R}} - \frac{\partial}{\partial \mathbf{r}}$$

因此

$$\hat{P}_R = -\mathrm{i} \; \hbar \left(\nabla_{r_1} + \nabla_{r_2} \right) = -\mathrm{i} \; \hbar \left(\frac{m_1 + m_2}{M} \frac{\partial}{\partial R} \right) = -\mathrm{i} \; \hbar \nabla_R$$

(3)总轨道角动量:

$$\hat{\boldsymbol{l}} = \hat{\boldsymbol{l}}_1 + \hat{\boldsymbol{l}}_2 = \boldsymbol{r}_1 \times \boldsymbol{P}_1 + \boldsymbol{r}_2 \times \boldsymbol{P}_2$$

因为

$$\hat{P}_{1} = -i \hbar \nabla_{r_{1}} = (-i \hbar) \left(\frac{m_{1}}{M} \frac{\partial}{\partial R} + \frac{\partial}{\partial r} \right), \quad r_{1} = R + \frac{m_{2}}{M} r$$

$$\hat{P}_{2} = -i \hbar \nabla_{r_{2}} = (-i \hbar) \left(\frac{m_{2}}{M} \frac{\partial}{\partial R} - \frac{\partial}{\partial r} \right), \quad r_{2} = R - \frac{m_{1}}{M} r$$

因此,

$$\hat{l} = -i \hbar \left(R + \frac{m_2}{M} r \right) \times \left(\frac{m_1}{M} \frac{\partial}{\partial R} + \frac{\partial}{\partial r} \right) - i \hbar \left(R - \frac{m_1}{M} r \right) \times \left(\frac{m_2}{M} \frac{\partial}{\partial R} - \frac{\partial}{\partial r} \right)$$

$$= -i \hbar \left(\frac{m_1}{M} R \times \frac{\partial}{\partial R} + \frac{m_1 m_2}{M^2} r \times \frac{\partial}{\partial R} + R \times \frac{\partial}{\partial r} + \frac{m_2}{M} r \times \frac{\partial}{\partial r} \right) - i \hbar \left(\frac{m_2}{M} R \times \frac{\partial}{\partial R} - \frac{m_1 m_2}{M^2} r \times \frac{\partial}{\partial R} - R \times \frac{\partial}{\partial r} + \frac{m_1}{M} r \times \frac{\partial}{\partial r} \right)$$

$$= -i \hbar R \times \frac{\partial}{\partial R} - i \hbar r \times \frac{\partial}{\partial r} = R \times \hat{P}_R + r \times \hat{P}_r$$

$$= \hat{l}_R + \hat{l}_r$$

2. 求氢原子 1s 电子的动能、势能的平均值。已知 1s 电子的波函数为

解 根据平均值公式,动能的平均值

势能的平均值

所以

$$\overline{E} = \overline{T} + \overline{V} = -\frac{me^4}{2\,\hbar^2}$$

这就是氢原子的基态能量。我们看到,由于原子的势能(负)的绝对值大于动能,因此总能量取负值。

3. 已知氢原子的基态波函数为

$$\psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0} \right)^{3/2} \cdot e^{-\frac{r}{a_0}}$$

求基态电子的动量几率分布。

解 设基态电子在动量表象中的波函数为 $\varphi(p)$,则

$$\varphi(\mathbf{p}) = \frac{1}{(2\pi h)^{3/2}} \int \psi_{100}(\mathbf{r}) e^{-\frac{i}{\hbar}\mathbf{p} \cdot \mathbf{r}} d^3 \mathbf{r} = \frac{1}{\pi^2 (2a_0 \hbar)^{3/2}} \int e^{-\frac{\mathbf{r}}{a_0}} e^{-\frac{i}{\hbar}\mathbf{p} \cdot \mathbf{r}} d^3 \mathbf{r}$$

选取动量 p 方向为 z 轴,则在球坐标系里 $\varphi(p)$ 可写为

$$\varphi(p) = \frac{1}{\pi^{2} (2a_{0} \hbar)^{3/2}} \int_{0}^{e^{-\frac{r}{a_{0}}}} e^{-\frac{i}{\hbar} \rho r \cos \theta} r^{2} dr \sin \theta d\theta d\varphi
= \frac{2}{\pi (2a_{0} \hbar)^{3/2}} \int_{0}^{\infty} \left[e^{-\frac{r}{a_{0}}} \int_{-1}^{1} e^{-\frac{i}{\hbar} \rho r \cos \theta} d(\cos \theta) \right] r^{2} dr
= \frac{1}{\pi \rho (2a_{0}^{3} \hbar)^{1/2}} \int_{0}^{\infty} \left[e^{-r \left(\frac{1}{a_{0}} + i \frac{p}{\hbar} \right)} - e^{-r \left(\frac{1}{a_{0}} - i \frac{p}{\hbar} \right)} \right] r dr
= \frac{1}{\pi} \left(\frac{2a_{0}}{\hbar} \right)^{3/2} \frac{1}{\left[1 + (p^{2} / \hbar^{2}) a_{0}^{2} \right]^{2}}$$

因此,动量几率分布

$$|\varphi(p)|^2 = \frac{8a_0^3}{\pi^2 \hbar^3 [1 + (p^2 a_0^2/\hbar^2)]^4}$$

容易证明

$$\int_{-\infty}^{\infty} |\varphi(p)|^2 d^3 p = \int |\varphi(p)|^2 4\pi p^2 dp = \frac{32}{\pi} \int \frac{x^2 dx}{(1+x^2)^4} = 1$$

其中, $x = pa_0/h$ 。

- 4. 利用氢原子能级公式,讨论下列体系的能谱。
- (1) 正、负电子 e+、e-的束缚体系。
- $(2)\mu^-$ 子原子 $(\mu^-$ 粒子绕质子 p^+ 运动, $m_\mu = 200m_e$)。
- (3)μ+、μ- 的束缚体系。

解 三个问题都是二粒子体系,并且两体之间的相互作用势都是 Coulomb 势 $V=-\frac{e^2}{r}$,差别只是在于它们的折合质量不同,因此,三个体系的能谱都与氢原子具有相同形式:

$$E_n = -\frac{\mu e^4}{2 \hbar^2 n^2}$$
 $(n = 1, 2, 3, \dots)$

其中的折合质量均可以用电子的质量表示。

(1) 正、负电子体系:折合质量

$$\mu = \frac{m_1 m_2}{m_1 + m_2} = \frac{m_e^2}{2m_e} = \frac{1}{2}m_e$$

因此,体系的能谱

$$E_n = -\frac{m_c e^4}{4 \hbar^2 n^2}$$

 $(2)\mu^{-}$ 子原子体系:所谓的 μ^{-} 子原子体系就是氢原子中的电子被 μ^{-} 子替换而形成的原子。因此, μ^{-} 子原子体系的折合质量

$$\mu = \frac{m_p m_\mu}{m_p + m_\mu} = \frac{200 m_p m_r}{m_p + 200 m_c}$$

能谱

$$E_n = -\frac{\mu e^4}{2 \, \hbar^2 n^2}$$

其中的 μ 代表 μ^- 子原子体系的折合质量。

(3) μ+、μ 束缚体系:折合质量

$$\mu = \frac{m_1 m_2}{m_1 + m_2} = \frac{m_\mu^2}{2m_\mu} = \frac{1}{2} m_\mu$$

因此,能谱

$$E_{n} = -\frac{\mu e^{4}}{2 \, \hbar^{2} n^{2}} = -\frac{m_{\mu} e^{4}}{4 \, \hbar^{2} n^{2}} = -\frac{200 m_{e} e^{4}}{4 \, \hbar^{2} n^{2}} = -\frac{50 m_{e} e^{4}}{\hbar^{2} n^{2}}$$

$$5. \, \, \, \, \vec{x} \, \, \vec{w} \, ; \frac{1}{2} \left[\vec{\nabla}^{2}, r \right] = \frac{1}{r} + \frac{\partial}{\partial r}.$$

$$\begin{split} \frac{1}{2} [\nabla^2, r] \psi &= \frac{1}{2} (\nabla^2 (r\psi) - r \nabla^2 \psi) \\ &= \frac{1}{2} (\nabla \cdot \nabla (r\varphi) - r \nabla^2 \psi) \\ &= \frac{1}{2} [\nabla \cdot (\nabla r \cdot \psi) + \nabla \cdot (r \nabla \psi) - r \nabla^2 \psi] \\ &= \frac{1}{2} [\nabla \cdot (\nabla r) \cdot \psi + 2 \nabla r \nabla \psi + r \nabla^2 \psi - r \nabla^2 \psi] \end{split}$$

$$= \frac{1}{2} \left[\nabla \cdot \nabla r \psi + 2 \nabla r \cdot \nabla \psi \right]$$
$$= \frac{1}{2} \left\{ \left(\nabla \cdot \frac{\mathbf{r}}{r} \right) \psi + 2 \frac{\mathbf{r}}{r} \cdot \nabla \psi \right\}$$

但由于

$$\nabla \cdot \frac{r}{r} = \frac{\partial}{\partial x} \left(\frac{x}{r} \right) + \frac{\partial}{\partial y} \left(\frac{y}{r} \right) + \frac{\partial}{\partial z} \left(\frac{z}{r} \right) = \frac{3}{r} - \frac{r^2}{r^3} = \frac{2}{r}$$

所以

$$\frac{1}{2} \left[\nabla^2, r \right] \psi = \frac{1}{2} \left\{ \frac{2}{r} + 2 \frac{r}{r} \cdot \nabla \right\} \psi$$

又因为

$$\frac{r}{r} \cdot \nabla = \frac{1}{r} \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z} \right)$$

$$= \frac{1}{r} \left(x \frac{\partial r}{\partial x} \frac{\partial}{\partial r} + y \frac{\partial r}{\partial y} \frac{\partial}{\partial r} + z \frac{\partial r}{\partial z} \frac{\partial}{\partial r} \right)$$

$$= \frac{1}{r} \left(\frac{x^2}{r} \frac{\partial}{\partial r} + \frac{y^2}{r} \frac{\partial}{\partial r} + \frac{z^2}{r} \frac{\partial}{\partial r} \right) = \frac{\partial}{\partial r}$$

所以

$$\frac{1}{2}[\nabla^2, r] = \frac{1}{r} + \frac{\partial}{\partial r}$$

6. 氢原子的基态波函数为 $\psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} e^{-\frac{r}{a_0}}$ 。求:在基态下涨落 Δx 和 Δp_x ,并验证不确定性关系。

解 因为 $(\Delta x)^2 = \overline{x^2} - \overline{x}^2, (\Delta p_x)^2 = \overline{p_x^2} - \overline{p}_x^2$

因此,首先需要求 \overline{x} , $\overline{p_x}$, $\overline{x^2}$, $\overline{p_x^2}$

$$\overline{x} = (\psi_{100}, x\psi_{100}) = \int x |\psi_{100}|^2 \mathrm{d}^3 r = 0,$$

因为 x 是奇函数,而 $|\phi_{100}|^2 = \frac{1}{\pi a_0^3} e^{-\frac{2t}{a_0}}$ 为偶函数,因此, $x|\phi_{100}|^2$ 在 对称积分区内的积分为零。同理,可以证明, $\overline{\rho_x} = 0$ 。另一方面,

$$\overline{r^{2}} = \int |\psi_{100}|^{2} r^{2} d^{3} r = \frac{1}{\pi a_{0}^{3}} \int_{0}^{\infty} \int_{0}^{\pi 2\pi} e^{-\frac{2r}{a_{0}}} r^{4} dr \sin\theta d\theta d\varphi$$

$$= \frac{4}{a_{0}^{3}} \int_{0}^{\infty} e^{-2\left(\frac{r}{a_{0}}\right)} r^{4} dr = 4a_{0}^{2} \int_{0}^{\infty} e^{-2x} x^{4} dx = 4a_{0}^{2} \frac{\Gamma(5)}{2^{5}} = 3a_{0}^{2}$$

$$\sharp \dot{p} x = \frac{r}{a_{0}} \circ$$

$$\bar{p}^{2} = (\psi_{100}, \hat{p}^{2} \psi_{100}) = (\bar{p} \psi_{100}, \hat{p} \psi_{100})$$

$$= \int |\hat{p} \psi_{100}|^{2} d^{3} r = \hbar^{2} \int |\nabla \psi_{100}|^{2} d^{3} r$$

但是,考虑到 ψ_{100} 与 θ , φ 无关,

$$\nabla = i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z} = i \frac{\partial r}{\partial x} \frac{\partial}{\partial r} + j \frac{\partial r}{\partial y} \frac{\partial}{\partial r} + k \frac{\partial r}{\partial z} \frac{\partial}{\partial r}$$
$$= i \frac{x}{r} \frac{\partial}{\partial r} + j \frac{y}{r} \frac{\partial}{\partial r} + k \frac{z}{r} \frac{\partial}{\partial r} = \frac{r}{r} \frac{\partial}{\partial r}, \quad \nabla^2 = \frac{\partial^2}{\partial r^2}$$

因此

$$\overline{\hat{p}^2} = \hbar^2 \int \left| \frac{\partial}{\partial r} \psi_{100} \right|^2 d^3 r = \hbar^2 \int_0^\infty \int_0^{\pi 2\pi} \frac{1}{\pi a_0^5} e^{-\frac{2r}{a_0}} r^2 dr \sin\theta d\theta d\varphi$$
$$= \frac{4 \hbar^2}{a_0^5} \int_0^\infty e^{-\frac{2r}{a_0}} r^2 dr = \frac{4 \hbar^2}{a_0} \frac{\Gamma(3)}{2^3} = \frac{\hbar^2}{a_0^2}$$

由于氢原子的波函数 ψ_{100} 与 θ 、 φ 无关,即球对称,因此,电子的位置、动量的几率分布对 x、y、z 也是对称的。即

$$\overline{x^2} = \overline{y^2} = \overline{z^2} = \frac{1}{3} \overline{r^2} = a_0^2$$
, $\overline{p_x^2} = \overline{p_y^2} = \overline{p_x^2} = \frac{1}{3} \overline{p^2} = \frac{\hbar^2}{3a_0}$ 由此得到

$$\Delta x = \sqrt{\overline{x^2} - \overline{x}^2} = a_0, \quad \Delta p_x = \sqrt{\overline{p_x^2} - \overline{p}_x^2} = \frac{\hbar}{\sqrt{3} a_0}$$

所以

$$\Delta x \cdot \Delta p = \frac{\hbar}{\sqrt{3}} > \frac{\hbar}{2}$$

符合不确定性关系。

7. 设在 t = 0 时刻, 氢原子处于状态:

$$|\psi_0\rangle = \frac{1}{\sqrt{10}} \left[2|100\rangle + |210\rangle + \sqrt{2}|211\rangle + \sqrt{3}|21-1\rangle \right]$$

求:(1) 在 $|\psi_0\rangle$ 态下能量的平均值。

(2) 在 t > 0 时,体系处于 $|lm\rangle = |11\rangle$ 态的几率。

解 (1)能量平均值 $\overline{E} = \langle \psi | \hat{H} | \psi \rangle$, \hat{H} 为 Hamilton 量。对于 $|\psi_0\rangle$ 态,由于

$$\begin{split} \hat{H} \mid \phi_0 \rangle &= \hat{H} \left[\frac{1}{\sqrt{10}} \left(\left. 2 \mid 100 \right) + \mid 210 \right) + \left. \sqrt{2} \mid 211 \right) + \left. \sqrt{3} \mid 21 - 1 \right) \right] \\ &= \frac{1}{\sqrt{10}} \left\{ 2E_1 \mid 100 \right) + E_2 \mid 210 \right) + \left. \sqrt{2} \left. E_2 \mid 211 \right) + \left. \sqrt{3} \left. E_2 \mid 21 - 1 \right) \right\} \end{split}$$
因此,

$$\overline{E} = \langle \psi_0 | \hat{H} | \psi_0 \rangle = \frac{1}{10} (4E_1 + E_2 + 2E_2 + 3E_2)$$

$$= \frac{1}{10} (4E_1 + 6E_2) = \frac{11}{20} E_1 = -\frac{11\mu e^4}{40\hbar^2}$$

(2) 状态 | 11) 出现的几率为

$$P = |\langle n11 | \psi(t) \rangle|^{2} = |\langle n11 | e^{-\frac{i}{\hbar}\hat{H}t} | \psi_{0} \rangle|^{2}$$

$$= \frac{1}{10} |\langle n11 | e^{-\frac{i}{\hbar}\hat{H}t} (2 | 100 \rangle + | 210 \rangle + |\langle n11 | e^{-\frac{i}{\hbar}\hat{H}t} (2 | 100 \rangle + |\langle n11 | e^{-\frac{i}{\hbar}\hat{H}t} | 211 \rangle)|^{2}$$

$$= \frac{1}{5} |\langle n11 | e^{-\frac{i}{\hbar}\hat{H}t} | 211 \rangle|^{2}$$

$$= \frac{1}{5} |\langle 211 | e^{\frac{i}{\hbar}\hat{H}t} | n11 \rangle \langle n11 | e^{-\frac{i}{\hbar}\hat{H}t} | 211 \rangle$$

$$= \frac{1}{5} e^{\frac{i}{\hbar}E_{n}t} \langle 211 | n11 \rangle \langle n11 | 211 \rangle e^{-\frac{i}{\hbar}E_{n}t}$$

$$= \frac{1}{5} |\langle n11 | 211 \rangle|^{2} = \frac{1}{5} \delta_{n2}$$

8. 氢原子处于基态 $\psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} e^{-\frac{r}{a_0}}$, 求氢原子中的电子处于经典不允许区(动能 T < 0) 的几率。

解 电子的动能 T=E-V。对氢原子, $E_n=-\frac{e^2}{2a_0n^2}$, $V=-\frac{e^2}{r}$,因此

$$T = -\frac{e^2}{2a_0n^2} + \frac{e^2}{r}$$

对经典禁区T < 0,即 $e^2 \left(\frac{1}{r} - \frac{1}{2a_0n^2} \right) < 0$ 或 $r > 2a_0n^2$ 的区域为经典禁区。对 ϕ_{100} ,由于 n = 1, $r > 2a_0$ 为经典禁区。所以,电子处于经典禁区的几率为

$$\rho = \int |\psi_{100}|^2 r^2 \sin\theta dr d\theta d\varphi = 4\pi \int_{2a_0}^{\infty} |\psi_{100}|^2 r^2 dr = \frac{4}{a_0^3} \int_{2a_0}^{\infty} e^{-\frac{2r}{a_0}} r^2 dr$$

利用分部积分法得

$$\begin{split} \int_{2a_0}^{\infty} e^{-\frac{2r}{a_0}} r^2 dr &= \int_{2a_0}^{\infty} \left(-\frac{a_0}{2} \right) r^2 d \left(e^{-\frac{2r}{a_0}} \right) \\ &= \left(-\frac{a_0}{2} \right) r^2 e^{-\frac{2r}{a_0}} \Big|_{2a_0}^{\infty} + \frac{a_0}{2} \int_{2a_0}^{\infty} e^{-\frac{2r}{a_0}} 2r dr \\ &= 2a_0^3 e^{-4} - \frac{a_0^2}{4} 2r e^{-\frac{2r}{a_0}} \Big|_{2a_0}^{\infty} + \frac{a_0^2}{4} 2 \int_{2a_0}^{\infty} e^{-\frac{2r}{a_0}} dr \\ &= 2a_0^3 e^{-4} + a_0^3 e^{-4} + \frac{1}{4} a_0^3 e^{-4} = \frac{13}{4} a_0^3 e^{-4} \end{split}$$

因此, $\rho = 13e^{-4}$ 为电子出现在经典禁区的几率。要记住,尽管电子的动能取负值的可能性存在,但基态电子动能的平均值要大于零(见本章习题第 2 题)。

9. 带电荷 Ze 的某一原子突然发生 β 衰变(原子核中的一个中

子发射一个电子后转变成质子) 后变成核电荷为(Z+1)e 的新原子。求:衰变前原子中的一个 k 态电子(处于 1s 态的电子) 在衰变后的新原子中仍处于 k 态的几率。

解 电荷为 Ze 的原子核经 β 衰变,转变成电荷为 (Z+1)e 的原子核。因此,原子核的 Coulomb 势由原来的 $V=-\frac{Ze^2}{r}$ 变为 $V=-\frac{(Z+1)e}{r}$ 。势能的改变导致核外电子状态的改变。设衰变后新原子中电子的状态矢量为 $\psi_{Mn}(Z+1,r)$ 。

把衰变前 k 电子的波函数用 ϕ_{alm} 展开,则

$$\psi_{100}(Z,r) = \sum_{nlm} c_{nlm} \psi_{nlm}(Z+1,r)$$

因此,k 电子在衰变后的新原子核中处于 $\psi_{nlm}(Z+1,r)$ 态的几率为

$$\rho = |c_{nlm}|^2$$

其中,

$$c_{nlm} = (\psi_{nlm}, \psi_{100}) \tag{1}$$

由于衰变是一个非常迅速的过程,在衰变发生的一瞬间,核外的电子状态来不及改变,在新原子中短暂时间内仍可以处于 $\psi_{100}(Z+1,r)$ 态的几率为 $\rho=|c_{100}|^2$ 。根据式(1),

$$c_{100} = (\psi_{100}(Z+1), \psi_{100}(Z))$$

但是,

$$\psi_{100}(Z) = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-\frac{Zr}{a_0}}$$

$$\psi_{100}(Z+1) = \frac{1}{\sqrt{\pi}} \left(\frac{Z+1}{a_0}\right)^{3/2} e^{-\frac{(Z+1)r}{a_0}}$$

因此,

$$c_{100} = \frac{1}{\pi} \left(\frac{Z(Z+1)}{a_0^2} \right)^{3/2} \int_{0}^{\pi/2\pi} e^{-(2Z+1)r/a_0} r^2 dr \sin\theta d\theta d\varphi$$

$$= 4 \left(\frac{Z(Z+1)}{a_0^2} \right)^{3/2} \int_{0}^{\infty} e^{-(2Z+1)r/a_0} r^2 dr$$

$$= \left\{ \frac{Z(Z+1)}{[Z+(1/2)]^2} \right\}^{3/2}$$

$$\rho = |c_{100}|^2 = \frac{Z^3(Z+1)^3}{[Z+(1/2)]^6}$$

10. 设一质量为 m 的粒子限制在半径分别为 a 和 b(b > a) 的两个同心球面之间运动,两个球面之间的势 V(r) = 0,求粒子的基态 (n = 1, l = 0) 波函数和能量。

解 设粒子的径向波函数为 $R(r) = \chi(r)/r$,则 $\chi(r)$ 满足方程。

$$\frac{\mathrm{d}^2 \chi}{\mathrm{d}r^2} + \left\{ \frac{2m}{\hbar} \left[E - V(r) \right] - \frac{l(l+1)}{r^2} \right\} \chi(r) = 0$$

由于在两个同心球面之间 V(r)=0,且对基态 l=0,方程化为

$$\frac{\mathrm{d}^2\chi}{\mathrm{d}r^2}+k^2\chi=0,\quad k^2=\frac{2mE}{\hbar^2}$$

边界条件: $\chi(a) = \chi(b) = 0$,方程的解为

$$\chi = A\sin(kr + \delta)$$

利用 $\chi(a) = 0$ 得

$$A\sin(ka + \delta) = 0$$

所以

$$\delta = -ka,$$

$$\gamma(r) = A\sin k(r-a)$$

由 $\chi(b) = 0$ 得

$$A\sin k(b-a)=0$$

所以

$$k=\frac{n\pi}{b-a}, \quad (n=1,2,\cdots)$$

从而得,能量本征值为

$$E_n = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2 \pi^2 n^2}{2m(b-a)^2}$$

对于基态

$$E_1 = \frac{\hbar^2 \pi^2}{2m(b-a)^2}$$

由归一化条件: $\int_{a}^{b} |R(r)|^{2} r^{2} dr = \int_{a}^{b} |\chi(r)|^{2} dr = 1$, 即

$$A^2 \int_a^b \sin^2 k(r-a) dr = 1,$$

得

$$A = \sqrt{\frac{2}{b-a}}$$

因此,

$$R(r) = \sqrt{\frac{2}{b-a}} \frac{1}{r} \sin \frac{\pi (r-a)}{b-a}$$

因为 $Y_{00}=\frac{1}{\sqrt{4\pi}}$,最后得

$$\psi_{100}(r) = \frac{1}{\sqrt{2\pi(b-a)}} \frac{1}{r} \sin \frac{\pi(r-a)}{b-a}$$

11. 定义
$$\mathbf{v} = \frac{1}{M} \left(\hat{\mathbf{p}} - \frac{q}{c} \mathbf{A} \right) = -\frac{1}{M} \left(-i \hbar \nabla - \frac{q}{c} \mathbf{A} \right)$$
 (速度算符)
求证: $\mathbf{v} \times \mathbf{v} = \frac{i \hbar q}{M^2 c} \mathbf{B}$ 。

证明
$$(\mathbf{v} \times \mathbf{v})_x = v_y v_z - v_z v_y = [v_y, v_z]$$

$$\begin{split} &= \frac{1}{M^2} \left[\hat{p}_y - \frac{q}{c} A_y, \hat{p}_z - \frac{q}{c} A_z \right] \\ &= \frac{1}{M^2} \left\{ \left[-\frac{q}{c} A_y, \hat{p}_z \right] + \left[\hat{p}_y, -\frac{q}{c} A_z \right] \right\} \\ &= -\frac{q}{cM^2} \left\{ \left[A_y, -i \, \hbar \frac{\partial}{\partial z} \right] + \left[-i \, \hbar \frac{\partial}{\partial y}, A_z \right] \right\} \end{split}$$

因为

$$\left[A_y, -i \, \hbar \frac{\partial}{\partial z} \right] \psi = -i \, \hbar A_y \, \frac{\partial \psi}{\partial z} + i \, \hbar \frac{\partial A_y}{\partial z} \psi + i \, \hbar A_y \, \frac{\partial \psi}{\partial z} = i \, \hbar \frac{\partial A_y}{\partial z} \psi$$
 所以

$$\left[A_{y}, -i \hbar \frac{\partial}{\partial z}\right] = i \hbar \frac{\partial A_{y}}{\partial z}$$

同理

$$\left[-i \hbar \frac{\partial}{\partial y}, A_{x}\right] \phi = -i \hbar \frac{\partial A_{x}}{\partial y} \phi - i \hbar A_{x} \frac{\partial \phi}{\partial y} + i \hbar A_{x} \frac{\partial \phi}{\partial y} = -i \hbar \frac{\partial A_{x}}{\partial y} \phi$$

$$\left[-i \hbar \frac{\partial}{\partial y}, A_{x}\right] = -i \hbar \frac{\partial A_{x}}{\partial y}$$

从而得到

$$(\mathbf{v}\times\mathbf{v})_{x} = -\frac{q\mathrm{i}\,\hbar}{cM^{2}}\left(\frac{\partial\,A_{y}}{\partial\,z} - \frac{\partial\,A_{z}}{\partial\,y}\right) = \frac{\mathrm{i}\,\hbar q}{cM^{2}}\left(\frac{\partial\,A_{z}}{\partial\,y} - \frac{\partial\,A_{y}}{\partial\,z}\right) = \frac{\mathrm{i}\,\hbar q}{M^{2}c}\mathbf{B}_{x}$$

同理可证

$$(\boldsymbol{v} \times \boldsymbol{v})_{y} = \frac{i \hbar q}{M^{2} c} \boldsymbol{B}_{y}, \quad (\boldsymbol{v} \times \boldsymbol{v})_{z} = \frac{i \hbar q}{M^{2} c} \boldsymbol{B}_{z}$$

因此最后得

$$\mathbf{v} \times \mathbf{v} = \frac{\mathrm{i} \hbar q}{M^2 c} \mathbf{B}$$

12. 设在电磁场中运动的带电粒子的几率密度 $\rho = \psi^* \psi$, 几率流密度

$$j = \frac{1}{2\mu} (\psi^* \hat{p} \psi - \psi \hat{p} \psi^*) - \frac{q}{\mu c} \psi^* A \psi$$

求证:连续性方程 $\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0$ 。

证明 在电磁场中运动的带电粒子(质量为 μ,电荷为 q)的 Schrödinger 方程为

$$i \, \hbar \frac{\partial \psi}{\partial t} = \left(\frac{\hat{\boldsymbol{p}}^2}{2\mu} - \frac{q}{\mu c} \boldsymbol{A} \cdot \hat{\boldsymbol{p}} + \frac{q^2}{2\mu c^2} \boldsymbol{A}^2 + q \phi \right) \psi \tag{1}$$

其中,A和 ø分别表示电磁场的失势和标势。

方程(1)的复共轭式为(注意 $\hat{p}^* = -\hat{p}$)

$$-i \hbar \frac{\partial \psi^*}{\partial t} = \left(\frac{\hat{\boldsymbol{p}}^2}{2\mu} + \frac{q}{\mu c} \boldsymbol{A} \cdot \hat{\boldsymbol{p}} + \frac{q^2}{2\mu c^2} \boldsymbol{A}^2 + q \boldsymbol{\phi} \right) \psi^* \tag{2}$$

 ϕ *×(1)- ϕ ×(2),得

左=i
$$\hbar \left(\psi^* \frac{\partial \psi}{\partial t} + \psi \frac{\partial \psi^*}{\partial t} \right)$$
 =i $\hbar \frac{\partial}{\partial t} (\psi^* \psi)$ =i $\hbar \frac{\partial}{\partial t} \rho$
右= $\frac{1}{2\mu} \left[\psi^* \hat{p}^2 \psi - \psi \hat{p}^2 \psi^* \right] - \frac{q}{\mu c} (\psi^* A \cdot \hat{p} \psi + \psi A \cdot \hat{p} \psi^*)$
= $\frac{1}{2\mu} \hat{p} \cdot (\psi^* \hat{p} \psi - \psi \hat{p} \psi^*) - \frac{q}{\mu c} \hat{p} \cdot (\psi^* A \psi)$ (因为 $\nabla \cdot A = 0$)
= $-i \hbar \nabla \cdot \left[\frac{1}{2\mu} (\psi^* \hat{p} \psi - \psi \hat{p} \psi^*) - \frac{q}{\mu c} \psi^* A \psi \right]$
= $-i \hbar \nabla \cdot \hat{j}$

因此得

$$\frac{\partial \rho}{\partial t} + \nabla \cdot j = 0$$

- 13. 设一带电荷 q 的粒子在 y 方向的均匀电场 $\varepsilon = (0, \varepsilon, 0)$ 和 Z 方向的均匀磁场 B = (0, 0, B) 中运动(B 不随时间变化)。
 - (1)证明矢势 A 可以选取 A=(-By,0,0);
 - (2)说明粒子是在 x-y 平面内运动;
 - (3)写出体系的 Hamilton 量(用 ε, B 表示);
- (4)证明 $[\hat{H}, \hat{p}_x] = 0$, $[\hat{H}, \hat{p}_x] \neq 0$,从而可以选取 $\{\hat{H}, \hat{p}_x\}$ 为力学量完全集;

- (5)设 \hat{H} , \hat{p}_x 的共同本征函数为 $\psi(x,y)=e^{\frac{i}{\hbar}\hat{P}_x\cdot x}$ 。 $\phi(y)$ 时,利用分离变量法写出能量本征函数 $\phi(y)$ 的本征值方程;
 - (6)解此本征值方程,解出能量本征值。
 - 解 (1)由 $B=\nabla \times A$ 可得,当 A=(-By,0,0)时

$$B_{x} = (\nabla \times A)_{x} = \frac{\partial A_{x}}{\partial y} - \frac{\partial A_{y}}{\partial z} = 0$$

$$B_y = (\nabla \times A)_y = \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} = 0$$

$$B_x = (\nabla \times A)_x = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} = \frac{\partial A_x}{\partial y} = B$$

因此,A = (-By, 0, 0)时 B = (0, 0, B),即 A 可选取(-By, 0, 0)。

- (2)因电场沿 y 方向,因此电荷沿 y 方向进入 z 方向的磁场,由 Lorentz 力 $F = \frac{q}{c} \mathbf{v} \times \mathbf{B}$ 可知,带电粒子受 x 方向的力,因此带电粒子在 x y 平面内运动。
 - (3)体系的 Hamilton 量为

$$\hat{H} = \frac{1}{2m} \left(\hat{\boldsymbol{p}} - \frac{q}{c} \boldsymbol{A} \right)^2 + q \boldsymbol{\phi}$$

但由于

$$E = E_x i + E_y j + E_z k = -\nabla \phi - \frac{1}{c} \frac{\partial A}{\partial t} = -\frac{\partial \phi}{\partial x} i - \frac{\partial \phi}{\partial y} j - \frac{\partial \phi}{\partial z} k$$

所以

$$E_{y} = \epsilon = -\frac{\partial \phi}{\partial y},$$

因电场是均匀的,

$$\frac{\partial A}{\partial t} = 0$$
, $\phi = -\epsilon y$

$$\hat{H} = \frac{1}{2m} \left[\left(\hat{p}_x + \frac{q}{c} B y \right)^2 + \hat{p}_y^2 \right] - q \varepsilon y$$

(4)因为

$$\left(\hat{p}_x + \frac{q}{c}By\right)^2 = \hat{p}_x^2 + \frac{qB}{c}(y\,\hat{p}_x + \hat{p}_x y) + \frac{q^2B^2}{c^2}y^2$$

很容易看出

$$[\hat{H}, \hat{p}_x] = 0$$

另一方面

$$\begin{split} [\hat{H}, \hat{p}_y] &= \frac{qB}{2mc} \{ [y \, \hat{p}_x, \hat{p}_y] + [\hat{p}_x y, \hat{p}_y] \} + \frac{q^2 B^2}{2mc^2} [y^2, \hat{p}_y] - q\varepsilon [y, \hat{p}_y] \\ &= \frac{qB}{mc} i \, \hbar \hat{p}_x + \frac{i \, \hbar y q^2 B^2}{mc^2} - i \, \hbar q \varepsilon \neq 0 \end{split}$$

因此,可以选取(\hat{H} , \hat{p}_x)为力学量完全集。

(5)设 (\hat{H},\hat{p}_x) 的共同本征函数为 $\psi(xy)=\psi(x)\varphi(y)=$ $\mathrm{e}^{\frac{\mathrm{i}}{\hbar}\hat{p}_xx}\varphi(y)$,则Schrödinger 方程为

$$\left\{ \frac{1}{2m} \left[\hat{p}_x^2 + \frac{2qB}{c} y \, \hat{p}_x + \frac{q^2 B^2}{c^2} y^2 + \hat{p}_y^2 \right] - q \varepsilon y \right\} e^{\frac{i}{\hbar} \hat{p}_x^x} \varphi(y) \\
= E e^{\frac{i}{\hbar} \hat{p}_x \cdot x} \varphi(x)$$

因为

$$\hat{p}_x^2\psi(x) = p_x^2\psi(x), \quad \hat{p}_x\psi(x) = p_x\psi(x)$$

Schrödinger 方程化为(能量本征值方程)

$$\left\{\frac{1}{2m}\left(\hat{p}_{y}^{2}+\frac{q^{2}B^{2}}{c^{2}}y^{2}+\frac{2qB}{c}p_{x}y\right)-q\epsilon y\right\}\varphi(y)=\left(E-\frac{p_{x}^{2}}{2m}\right)\varphi(y)$$

即

$$\left[-\frac{\hbar^2}{2m}\frac{d^2}{dy^2} + \frac{q^2B^2}{2mc^2}(y - y_0)^2\right]\varphi(y) = \left[E - \frac{p_x^2}{2m} + \frac{q^2B^2y_0^2}{2mc^2}\right]\varphi(y)$$

其中,

$$y_0 \equiv \frac{mc^2}{qB} \left(\epsilon - \frac{Bp_x}{mc} \right)$$

如果进一步设 $k = \frac{q^2 B^2}{mc^2}$,则能量本征值方程变为

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dy^2} + \frac{1}{2}k(y - y_0)^2\right)\varphi(y) = \left(E - \frac{p_x^2}{2m} + \frac{1}{2}ky_0^2\right)\varphi(y)$$

(6)这是一个一维线性谐振子的能量本征值方程,平衡点在 y₀处,因此,方程的解是一维谐振子方程的解,其能量本征值为

$$E = \left(n + \frac{1}{2}\right)\hbar\omega + \frac{p_x^2}{2m} - \frac{1}{2}ky_0^2$$

其中,

$$\omega = \sqrt{\frac{k}{m}} = \frac{|q|B}{mc}$$

把 y₀ 和 k 值代入后得

$$E = \left(n + \frac{1}{2}\right) \frac{\hbar |q|B}{mc} + \frac{cp_x \varepsilon}{B} - \frac{mc^2 \varepsilon^2}{2B^2}, \quad n = 0, 1, 2, \dots$$

第8章 角动量理论、粒子的自旋

1. 试证明, $(\sigma \cdot A)(\sigma \cdot B) = A \cdot B + i \sigma \cdot (A \times B)$,其中 $A \setminus B$ 为与 Pauli 矩阵 σ_x , σ_y , σ_z 对易的任意矢量。

证明

$$(\boldsymbol{\sigma} \cdot \boldsymbol{A})(\boldsymbol{\sigma} \cdot \boldsymbol{B}) = (\sigma_x A_x + \sigma_y A_y + \sigma_z A_z)(\sigma_x B_x + \sigma_y B_y + \sigma_z B_z)$$

$$= \sigma_x A_x \sigma_x B_x + \sigma_x A_x \sigma_y B_y + \sigma_x A_x \sigma_z B_z +$$

$$\sigma_y A_y \sigma_x B_x + \sigma_y A_y \sigma_y B_y + \sigma_y A_y \sigma_z B_z +$$

$$\sigma_z A_z \sigma_z B_z + \sigma_z A_z \sigma_y B_y + \sigma_z A_z \sigma_z B_z$$

因为 $\sigma_i^2 = 1(i=x,y,z)$ 和 σ_i 与 A,B 对易,上式变为

$$(\boldsymbol{\sigma} \cdot \boldsymbol{A})(\boldsymbol{\sigma} \cdot \boldsymbol{B}) = A_x B_x + A_y B_y + A_z B_z + \sigma_x \sigma_y (A_x B_y - A_y B_x) + \sigma_y \sigma_z (A_y B_z - A_z B_y) + \sigma_z \sigma_z (A_z B_z - A_z B_z)$$

$$= \boldsymbol{A} \cdot \boldsymbol{B} + i \sigma_z (A_x B_y - A_y B_x) + i \sigma_z (A_y B_z - A_z B_y) + i \sigma_y (A_z B_x - A_z B_z)$$

$$= \boldsymbol{A} \cdot \boldsymbol{B} + i \sigma_z (\boldsymbol{A} \times \boldsymbol{B})$$

$$= \boldsymbol{A} \cdot \boldsymbol{B} + i \sigma_z (\boldsymbol{A} \times \boldsymbol{B})$$

2. 利用上题结果证明: $(\sigma \cdot p)^2 = p^2$, $(\sigma \cdot l)^2 = l^2 - \hbar \sigma \cdot l$,其中,p为三维动量,l为三维角动量。

证明 由 $(\sigma \cdot A)(\sigma \cdot B) = A \cdot B + i \sigma \cdot (A \times B)$ 可看出,当 A = B 时,

$$(\sigma \cdot A)^2 = A^2 + i \sigma \cdot (A \times A)$$

当 A 的三个分量 A_x , A_y , A_z 互为对易时,上式中的 $A \times A = 0$, 当 A 的三个分量 A_x , A_y , A_z 互为不对易时, $A \times A \neq 0$ 。

 $\mathbf{M}(\boldsymbol{\sigma} \cdot \boldsymbol{p})^2$,由于 $p_i p_j = p_j p_i$ (对易),所以

$$(\sigma \cdot p)^2 = p^2$$

但对 $(\sigma \cdot l)^2$,由于l的三个分量不对易,且有 $l \times l = i \hbar l$,因此。

$$(\sigma \cdot l)^2 = l^2 + i \sigma \cdot (i \hbar l) = l^2 - \hbar \sigma \cdot l$$

3. 对自旋为 $\frac{1}{2}$ 的粒子体系,定义自旋交换算符:

$$P_{12} = \frac{1}{2}(1 + \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)$$

求证: $(1)(\sigma_1 \cdot \sigma_2)^2 = 3 - 2 \sigma_1 \cdot \sigma_2$;

(2)
$$P_{12}^2 = 1$$
 (所以 $P_{12}^{-1} = P_{12}$);

$$(3)P_{12}\left|\frac{1}{2},-\frac{1}{2}\right\rangle = \left|-\frac{1}{2},\frac{1}{2}\right\rangle, P_{12}\left|-\frac{1}{2},\frac{1}{2}\right\rangle = \left|\frac{1}{2},-\frac{1}{2}\right\rangle$$

(交换算符的含义)。

证明 (1)在第 2 题的结果 $(\sigma \cdot A)^2 = A^2 + i \sigma \cdot (A \times A) + i \sigma$,我们选取 $A = \sigma_2, \sigma = \sigma_1, y$,

$$(\sigma_1 \cdot \sigma_2)^2 = \sigma_2^2 + i \sigma_1 \cdot (\sigma_2 \times \sigma_2)$$

但,

$$\sigma^{2} = \sigma_{x}^{2} + \sigma_{y}^{2} + \sigma_{z}^{2} = 3,$$

$$\sigma \times \sigma = (\sigma_{y}\sigma_{x} - \sigma_{z}\sigma_{y})i + (\sigma_{x}\sigma_{x} - \sigma_{x}\sigma_{z})j + (\sigma_{x}\sigma_{y} - \sigma_{y}\sigma_{x})k$$

$$= 2i\sigma_{x}i + 2i\sigma_{y}j + 2i\sigma_{z}k = 2i\sigma_{z}$$

因此,

$$(\sigma_{1} \cdot \sigma_{2})^{2} = 3 + i \sigma_{1} \cdot (2i \sigma_{2}) = 3 - 2 \sigma_{1} \cdot \sigma_{2}$$

$$(2) \qquad P_{12}^{2} = \frac{1}{4} (1 + \sigma_{1} \cdot \sigma_{2})^{2}$$

$$= \frac{1}{4} \{1 + 2(\sigma_{1} \cdot \sigma_{2}) + (\sigma_{1} \cdot \sigma_{2})^{2}\}$$

$$= \frac{1}{4} \{1 + 2(\sigma_{1} \cdot \sigma_{2}) + 3 - 2 \sigma_{1} \cdot \sigma_{2}\} = 1$$

(3)
$$P_{12}\left|\frac{1}{2}, -\frac{1}{2}\right\rangle = P_{12}\left|\frac{1}{2}\right\rangle_{1} \otimes \left|-\frac{1}{2}\right\rangle_{2} = P_{12}\left|\frac{1}{0}\right\rangle_{1} \otimes \left|\frac{0}{1}\right\rangle_{2}$$

$$= \frac{1}{2} (1 + \sigma_{1x}\sigma_{2x} + \sigma_{1y}\sigma_{2y} + \sigma_{1x}\sigma_{2z}) \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{1} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{2}$$
考虑到 σ_{1} 只对 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}_{1}$ 作用, σ_{2} 只对 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}_{2}$ 作用,
$$P_{12} \begin{vmatrix} \frac{1}{2}, -\frac{1}{2} \rangle = \frac{1}{2} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{1} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{2} + \sigma_{1x} \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{1} \otimes \sigma_{2x} \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{2} + \sigma_{1y} \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{1} \otimes \sigma_{2y} \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{2} + \sigma_{1x} \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{1} \otimes \sigma_{2x} \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{2} \right\}$$

$$= \frac{1}{2} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{1} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{2} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{1} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{2} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{1} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{2} - \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{1} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{2} \right\}$$

$$= \frac{1}{2} \cdot 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{1} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{1} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{2} = \begin{bmatrix} -\frac{1}{2}, \frac{1}{2} \end{pmatrix}$$

同理,

$$P_{12}\left|-\frac{1}{2},\frac{1}{2}\right\rangle = P_{12}\left|-\frac{1}{2}\right\rangle_{1} \otimes \left|\frac{1}{2}\right\rangle_{2} = P_{12}\begin{bmatrix}0\\1\end{bmatrix}_{1} \otimes \begin{bmatrix}1\\0\end{bmatrix}_{2} = \left|\frac{1}{2},-\frac{1}{2}\right\rangle$$

4. 在 σ_ε 表象中,求 σ_ε 的本征值和本征矢量。

解 此题可用两种方法计算。

方法 1 我们已求得,在任意方向 n 上σ的投影 n • σ的本征矢量为

$$|\uparrow_{\pi}\rangle = \begin{bmatrix} e^{-i\varphi/2}\cos\frac{\theta}{2} \\ e^{i\varphi/2}\sin\frac{\theta}{2} \end{bmatrix}, \quad |\downarrow_{\pi}\rangle = \begin{bmatrix} e^{-i\varphi/2}\sin\frac{\theta}{2} \\ -e^{i\varphi/2}\cos\frac{\theta}{2} \end{bmatrix}$$

对应本征值分别为 1 和一1。在三个 Pauli 矩阵中, σ_z 是对角化的 $(\sigma_z$ 表象),因此, σ_z 表象中 σ_z 的本征矢量为

$$| \uparrow_{x} \rangle = | \uparrow_{x} \rangle |_{\substack{\varphi = 0 \\ \theta = \pi/2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$| \downarrow_{x} \rangle = | \downarrow_{x} \rangle |_{\substack{\varphi = 0 \\ \theta = \pi/2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

方法 2 在 σ_x 表象中, $\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$,设 σ_x 的本征值为 λ ,本征 矢为 $\begin{bmatrix} a \\ b \end{bmatrix}$,则本征值方程为

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \lambda \begin{bmatrix} a \\ b \end{bmatrix}$$

或

$$\begin{bmatrix} b \\ a \end{bmatrix} = \lambda \begin{bmatrix} a \\ b \end{bmatrix}$$

由此得

$$b = \lambda a$$
, $a = \lambda b$

所以

$$b=\lambda^2 b$$
, $\lambda=\pm 1$

对 $\lambda=1, a=b, 且 |a|^2+|b|^2=1, 所以 a=1/\sqrt{2}, b=1/\sqrt{2}, 因$ 此本征矢量为

$$|\uparrow\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

对 $\lambda = -1$, a = -b, $|a|^2 + |b|^2 = 1$, 本征矢量为

$$|\downarrow_x\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

如果把所得的两个列矢量排列成一个矩阵, $S = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$,则 S 就是可使 σ_s 对角化的矩阵(见线性代数)。容易证明

$$SS^{\dagger} = S^{\dagger} S = 1$$

因此,S 为幺正矩阵,且

$$S\sigma_{\mathbf{x}}S^{\dagger} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

所以S是使 σ 对角化的矩阵。

5. 在
$$S_r$$
 的本征态 $| \uparrow_z \rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 下,求 $(\Delta S_r)^2$ 和 $(\Delta S_r)^2$ 。

解
$$(\Delta S_x)^2 = \overline{S_x^2} - \overline{S_x^2}$$
,但

$$\overline{S}_x = \langle \uparrow_z | S_x | \uparrow_z \rangle = (1 \quad 0) \begin{bmatrix} 0 & \hbar/2 \\ \hbar/2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0$$

因此,

$$(\Delta S_x)^2 = \overline{S_x^2} = \langle \uparrow_z | S_x^2 | \uparrow_z \rangle = \frac{\hbar^2}{4} (1 \quad 0) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{\hbar^2}{4}$$

同理可证

$$(\Delta S_y)^2 = \frac{\hbar^2}{4}$$

6. 在 S_z 的本征态 $|\uparrow_z\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 下,求 $\sigma \cdot n$ 的可能测值及相应的几率。

解 我们知道, $\sigma_n = \sigma \cdot n$ 的本征值为 1 和 $-1(S \cdot n)$ 的本征值为 $\frac{\hbar}{2}$ 和 $-\frac{\hbar}{2}$)。由于,在任意态下, $\sigma \cdot n$ 的可能测值是其本征值当中的某一个。因此, $\sigma \cdot n$ 的可能测值为 1 或-1。

在 | ↑_s ⟩ 态下 , σ_n ≡ σ • n 测值为 1 的几率为

$$P_{\uparrow} = |\langle \uparrow_{\pi} | \uparrow_{z} \rangle|^{2} = \left| \left(e^{i\varphi/2} \cos \frac{\theta}{2}, e^{-i\varphi/2} \sin \frac{\theta}{2} \right) \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right|^{2}$$
$$= \left| e^{i\varphi/2} \cos \frac{\theta}{2} \right|^{2} = \cos^{2} \frac{\theta}{2}$$

在 | ↑。〉下, σ, 的测值为 - 1 的几率为

$$P_{\downarrow} = |\langle \downarrow , | \uparrow z \rangle|^{2}$$

$$= \left| \left(-e^{i\varphi/2} \sin \frac{\theta}{2}, e^{-i\varphi/2} \cos \frac{\theta}{2} \right) \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right|^{2} = \left| e^{-i\varphi/2} \sin \frac{\theta}{2} \right|^{2}$$

$$= \sin^{2} \frac{\theta}{2}$$

由此可见

$$P_1 + P_1 = 1$$

7. 求证下列关系式:

(1)
$$e^{i\theta\sigma_t} = \cos\theta + i\sigma_t\sin\theta$$
;

$$(2)e^{i\theta \cdot \theta} = \cos\theta + in \cdot \sigma\sin\theta;$$

(3) Tre^{$$\theta$$}· θ = 2cos θ ;

$$(4)e^{i\theta\sigma_x}\sigma_xe^{-i\theta\sigma_x} = \sigma_x\cos 2\theta - \sigma_y\sin 2\theta_o$$

证明

$$(1)e^{i\theta\sigma_{z}} = 1 + i\theta\sigma_{z} + \frac{1}{2!}(i\theta\sigma_{z})^{2} + \frac{1}{3!}(i\theta\sigma_{z})^{3} + \frac{1}{4!}(i\theta\sigma_{z})^{4} + \cdots$$

$$= 1 + i\theta\sigma_{z} - \frac{1}{2!}\theta^{2} - \frac{i}{3!}(\theta^{3}\sigma_{z}) + \frac{1}{4!}\theta^{4} + \cdots$$

$$= \left(1 - \frac{1}{2!}\theta^{2} + \frac{1}{4!}\theta^{4} - \cdots\right) + i\sigma_{z}\left(\theta - \frac{\theta^{3}}{3!} + \cdots\right)$$

$$= \cos\theta + i\sigma_{z}\sin\theta$$

(2)e^{ig·} = e^{ig·} · · 其中,n 为 0 方向的单位矢量。因此,

$$e^{i\theta \cdot \sigma} = 1 + i\theta n \cdot \sigma + \frac{1}{2!} (i\theta n \cdot \sigma)^2 + \frac{1}{3!} (i\theta n \cdot \sigma)^3 + \frac{1}{4!} (i\theta n \cdot \sigma)^4 + \cdots$$

$$=1+\mathrm{i}\theta n\cdot \sigma-\frac{1}{2!}\theta^2(n\cdot \sigma)^2-\frac{\mathrm{i}\theta^3}{3!}(n\cdot \sigma)^3+\frac{\theta^4}{4!}(n\cdot \sigma)^4+\cdots$$

但由 $(\sigma \cdot A)^2 = A^2 + i \sigma \cdot (A \times A)$ (见第2题)可知,当 A = n 时,

$$(\sigma \cdot n)^2 = n^2 + i\sigma \cdot (n \times n) = n^2 = 1$$

因此,

$$e^{i\theta \cdot \sigma} = 1 + i\theta n \cdot \sigma - \frac{1}{2!}\theta^2 - \frac{i\theta^3}{3!}(n \cdot \sigma) + \frac{\theta^4}{4!} + \cdots$$

$$= \left(1 - \frac{1}{2!}\theta^2 + \frac{1}{4}\theta^4 - \cdots\right) + in \cdot \sigma \left(\theta - \frac{\theta^3}{3!} + \cdots\right)$$

$$= \cos\theta + in \cdot \sigma \sin\theta$$

(3)
$$\operatorname{Tre}^{i\theta \cdot \sigma} = \operatorname{Tr}(\cos\theta + in \cdot \sigma\sin\theta) = \operatorname{Tr}(\cos\theta) + i\sin\theta\operatorname{Tr}(n \cdot \sigma)$$

$$=2\cos\theta$$
,(因为 $Tr\sigma_i=0$)

$$(4)e^{i\theta\sigma_x}\sigma_x e^{-i\theta\sigma_x} = (\cos\theta + i\sigma_x \sin\theta)\sigma_x (\cos\theta - i\sigma_x \sin\theta)$$

$$= \cos^2\theta\sigma_x + i\sin\theta \cos\theta [\sigma_x, \sigma_x] + \sin^2\theta\sigma_x\sigma_x\sigma_x$$

$$= (\cos^2\theta - \sin^2\theta)\sigma_x - 2\sin\theta \cos\theta\sigma_y$$

$$= \sigma_x \cos 2\theta - \sigma_y \sin 2\theta$$

8. 一电子(自旋 $s=\frac{1}{2}$)在沿 z 方向的磁场 B 中运动。设 t=0 时,电子的自旋波函数为

求在任意时刻 1,电子的自旋波函数。

解 电子在磁场中运动时,电子的自旋磁矩与外磁场相互作用。设自旋磁矩为µ,,则

$$\mu_i = \frac{e \hbar}{2m.c} \sigma$$

因此,电子的自旋磁矩与外磁场 B 的相互作用 Hamilton 量为

$$\hat{H} = -\mu$$
, $B = -\frac{e \hbar}{2m.c} \sigma \cdot B$

因磁场为B=(0,0,B),

$$\hat{H} = -\frac{e \, \hbar}{2m_e c} \sigma_z B = -\frac{e \, \hbar B}{2m_e c} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \omega \, \hbar \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \omega = \frac{|e|B}{2m_e c}$$

设电子在任意时刻的自旋波函数为 $\chi(t) = \begin{bmatrix} a(t) \\ b(t) \end{bmatrix}$,则Schrödinger方程为

$$i \hbar \frac{d}{dt} \begin{bmatrix} a(t) \\ b(t) \end{bmatrix} = \omega \hbar \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a(t) \\ b(t) \end{bmatrix}$$

由此得,

$$\frac{\mathrm{d}a(t)}{\mathrm{d}t} = -\mathrm{i}\omega a(t), \quad \frac{\mathrm{d}b(t)}{\mathrm{d}t} = \mathrm{i}\omega b(t)$$

其解为

$$a(t) = c_1 e^{-i\omega t}, \quad b(t) = c_2 e^{i\omega t}$$

因为

$$\begin{cases} a(0) = e^{-ia} \cos \beta \\ b(0) = e^{ia} \sin \beta \end{cases}$$

由此可得

$$c_1 = e^{-i\alpha}\cos\beta$$
, $c_2 = e^{i\alpha}\sin\beta$

因此,任意时刻电子的自旋波函数为

$$\chi = \begin{bmatrix} \cos \beta e^{-i(\alpha + \omega t)} \\ \sin \beta e^{i(\alpha + \omega t)} \end{bmatrix}$$

- 9. 设一电子在沿x方向的均匀磁场B中运动。在t=0时,电子的自旋向z轴的正向极化。求:
 - (1)在任意时刻t,电子的自旋波函数;
 - (2)Ŝ"Ŝ"Ŝ, 的平均值;
 - $(3)\hat{S}$, 的测值为 $\hbar/2$ 和 $-\hbar/2$ 的几率。

解 (1)电子的自旋磁矩与外磁场的相互作用 Hamilton 量

$$\hat{H} = -\mu$$
, $\cdot B = -\frac{e \hbar}{2m.c} \sigma \cdot B$

因为,B=(B,0,0),

$$\hat{H} = -\frac{e \hbar}{2m_{r}c}\sigma_{x}B = \omega \hbar \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \omega \equiv \frac{|e|B}{2m_{r}c}$$

设在任意时刻,电子的自旋波函数 $\chi = \begin{bmatrix} a(t) \\ b(t) \end{bmatrix}$,则 Schrödinger 方程为

$$i \hbar \frac{\mathrm{d}}{\mathrm{d}t} \chi(t) = \hat{H} \chi(t)$$

$$\mathrm{i}\,\hbar\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} a(t) \\ b(t) \end{bmatrix} = \omega\,\hbar \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a(t) \\ b(t) \end{bmatrix}$$

由此得到

$$\frac{\mathrm{d}a(t)}{\mathrm{d}t} = -\mathrm{i}\omega b(t), \quad \frac{\mathrm{d}b(t)}{\mathrm{d}t} = -\mathrm{i}\omega a(t)$$

两式相加得

$$\frac{\mathrm{d}}{\mathrm{d}t}(a+b) = -\mathrm{i}\omega(a+b)$$

两式相减得

$$\frac{\mathrm{d}}{\mathrm{d}t}(a-b) = \mathrm{i}\omega(a-b)$$

因此

$$a(t)+b(t)=c_1e^{-i\infty}, \quad a(t)-b(t)=c_2e^{i\pi}$$

因初始时刻(t=0),电子的自旋向z轴的正向极化,因此,

$$|\uparrow\rangle\rangle = \begin{bmatrix} a(0) \\ b(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

所以

$$a(0)=1, b(0)=0$$

由此得到

$$c_1 = a(0) = 1$$
, $c_2 = a(0) = 1$

从而,

$$\begin{cases} a(t)+b(t) = e^{-i\omega t} \\ a(t)-b(t) = e^{i\omega t} \end{cases}$$

$$\begin{cases} a(t) = \frac{1}{2} (e^{i\omega t} + e^{-i\omega t}) = \cos \omega t \\ b(t) = \frac{1}{2} (e^{-i\omega t} - e^{i\omega t}) = -i\sin \omega t \end{cases}$$

最后得到,电子在任意时刻的自旋波函数为

$$\chi = \begin{pmatrix} \cos \omega t \\ -i\sin \omega t \end{pmatrix} = \cos \omega t \begin{bmatrix} 1 \\ 0 \end{bmatrix} - i\sin \omega t \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

(2)在 $\chi(t)$ 状态下, \hat{S}_s , \hat{S}_s , 的平均值分别为

$$\overline{S_x} = \frac{\hbar}{2} \chi^{\dagger} \sigma_x \chi = \frac{\hbar}{2} (\cos \omega t, i \sin \omega t) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \cos \omega t \\ -i \sin \omega t \end{bmatrix} = 0$$

$$\overline{S_y} = \frac{\hbar}{2} \chi^t \sigma_y \chi = \frac{\hbar}{2} (\cos \omega t, i \sin \omega t) \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} \cos \omega t \\ -i \sin \omega t \end{bmatrix} = -\frac{\hbar}{2} \sin 2\omega t$$

$$\overline{S}_{z} = \frac{\hbar}{2} \chi^{\dagger} \sigma_{z} \chi = \frac{\hbar}{2} (\cos \omega t, i \sin \omega t) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos \omega t \\ -i \sin \omega t \end{bmatrix} = \frac{\hbar}{2} \cos 2\omega t$$

(3)在 $\chi(t)$ 态下 \hat{S} , 的测值为 $\frac{\hbar}{2}$ 的几率为

$$P_{z}(\uparrow) = |\langle \uparrow_{z} | \chi(t) \rangle|^{2} = \left| (1 \quad 0) \begin{pmatrix} \cos \omega t \\ -i\sin \omega t \end{pmatrix} \right|^{2} = \cos^{2} \omega t$$

 \hat{S}_{\star} 的测值为一 $\frac{\hbar}{2}$ 的几率为

$$P_{z}(\downarrow) = |\langle\downarrow_{z}|\chi(t)\rangle|^{2} = \left|\langle 0 \quad 1\rangle \begin{pmatrix} \cos\omega t \\ -i\sin\omega t \end{pmatrix}\right|^{2} = \sin^{2}\omega t$$

因此,

$$P_{\epsilon}(\uparrow)+P_{\epsilon}(\downarrow)=1$$

10. 一电子 $(s=\frac{1}{2})$ 在 t<0 时处于沿 z 方向的均匀磁场 B_0 中。当 $t\ge0$ 时,再加一个与 z 轴垂直的旋转磁场

$$B(t) = (B\cos 2\omega_0 t \cdot i + B\sin 2\omega_0 t \cdot j)$$

其中 $\omega_0 = \frac{|e|B_0}{2m_cc}$ 。已知在 $t \le 0$ 时,电子自旋向正 z 方向极化。

- (1)求 t>0 时的电子的自旋波函数。
- (2)问经多长时间,电子的自旋反向?
- 解 (1)电子的自旋磁矩μ,与外磁场的相互作用 Hamilton 量为

$$\hat{H} = -\mu, \cdot (B_0 + B) = -\frac{e \hbar}{2m_e c} \sigma \cdot (B_0 + B)$$

因此,在 σ_z 的表象中,

$$\begin{split} \hat{H} &= -\frac{e \, \hbar B_0}{2m_e c} \sigma_* - \frac{e \, \hbar}{2m_e c} \sigma \cdot B \\ &= -\frac{e \, \hbar B_0}{2m_e c} \sigma_* - \frac{e \, \hbar B}{2m_e c} (\sigma_x \cos 2\omega_0 t + \sigma_y \sin 2\omega_0 t) \\ &= \frac{|e| \hbar}{2m_e c} \begin{bmatrix} B_0 & Be^{-2i\omega_0 t} \\ Be^{2i\omega_0 t} & -B_0 \end{bmatrix} = \hbar \begin{bmatrix} \omega_0 & \omega e^{-2i\omega_0 t} \\ \omega e^{2i\omega_0 t} & -\omega_0 \end{bmatrix} \end{split}$$

其中,

$$\omega_0 = \frac{|e|B_0}{2m_ec}, \quad \omega = \frac{|e|B}{2m_ec}$$

设 $t \ge 0$ 时电子的自旋波函数为 $\chi(t) = \begin{bmatrix} a(t) \\ b(t) \end{bmatrix}$,则电子自旋的 Schrödinger 方程为

$$\mathrm{i}\,\,\hbar\frac{\mathrm{d}}{\mathrm{d}t}\begin{bmatrix}a(t)\\b(t)\end{bmatrix} = \hbar\begin{bmatrix}\omega_0 & \omega\mathrm{e}^{-2\mathrm{i}\omega_0t}\\\omega\mathrm{e}^{2\mathrm{i}\omega_0t} & -\omega_0\end{bmatrix}\begin{bmatrix}a(t)\\b(t)\end{bmatrix}$$

由此得

$$\begin{cases} \frac{\mathrm{d}a(t)}{\mathrm{d}t} = -\mathrm{i}\omega_0 a(t) - \mathrm{i}\omega b(t) \mathrm{e}^{-2\mathrm{i}\omega_0 t} \\ \frac{\mathrm{d}b(t)}{\mathrm{d}t} = \mathrm{i}\omega_0 b(t) - \mathrm{i}\omega a(t) \mathrm{e}^{2\mathrm{i}\omega_0 t} \end{cases}$$

设

$$\begin{cases} a(t) = C_1(t)e^{-i\omega_0 t} \\ b(t) = C_2(t)e^{i\omega_0 t} \end{cases}$$

代人原方程以后得到关于 $C_1(t)$ 和 $C_2(t)$ 的方程:

$$\frac{\mathrm{d}C_1(t)}{\mathrm{d}t} = -\mathrm{i}\omega C_2(t)$$

$$\frac{\mathrm{d}C_2(t)}{\mathrm{d}t} = -\mathrm{i}\omega C_1(t)$$

两式相加,得

$$\frac{\mathrm{d}}{\mathrm{d}t}(C_1(t)+C_2(t))=-\mathrm{i}\omega(C_1(t)+C_2(t))$$

两式相减得

$$\frac{\mathrm{d}}{\mathrm{d}t}(C_1(t)-C_2(t))=\mathrm{i}\omega(C_1(t)-C_2(t))$$

由此得到

$$\begin{cases}
C_1(t) + C_2(t) = K_1 e^{-i\omega t} \\
C_1(t) - C_2(t) = K_2 e^{i\omega t}
\end{cases}$$

根据题意,初始时刻电子的自旋向正 z 方向极化,即

因此,由
$$\begin{cases} a(t) = C_1(t)e^{-i\omega_0 t} \\ b(t) = C_2(t)e^{i\omega_0 t} \end{cases}$$

$$a(0) = C_1(0) = 1, \quad b(0) = C_2(0) = 0$$

从而, $K_1=K_2=1$ 。所以

$$\begin{cases} C_1(t) = \frac{1}{2} (e^{i\omega t} + e^{-i\omega t}) = \cos \omega t \\ C_2(t) = -\frac{1}{2} (e^{i\omega t} - e^{-i\omega t}) = -i\sin \omega t \end{cases}$$

或者

$$\begin{cases} a_1(t) = \cos \omega t \cdot e^{-i\omega_0 t} \\ b_1(t) = -i\sin \omega t \cdot e^{i\omega_0 t} \end{cases}$$

也就是说,t≥0时的自旋波函数

$$\chi(t) = \cos\omega t \cdot e^{-i\omega_0 t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} - i\sin\omega t \cdot e^{i\omega_0 t} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

(2)从自旋波函数 $\chi(t)$ 的表达式,我们可以看到:

当
$$t=0$$
 时, $\chi(0)=\begin{bmatrix}1\\0\end{bmatrix}$,自旋朝上;

当
$$t = \frac{\pi}{2\omega}$$
时, $\chi\left(t = \frac{\pi}{2\omega}\right) = -ie^{\frac{i\pi}{2}\left(\frac{\omega_0}{\omega}\right)} \begin{bmatrix} 0\\1 \end{bmatrix}$,自旋朝下;
当 $t = \frac{\pi}{\omega}$ 时, $\chi\left(t = \frac{\pi}{\omega}\right) = -e^{i\pi\left(\frac{\omega_0}{\omega}\right)} \begin{bmatrix} 1\\0 \end{bmatrix}$,自旋朝上;

由此可见,以周期 $T=\frac{\pi}{\omega}$,电子的自旋朝向来回变化。这种现象叫做磁共振现象。

- 11. 给定角动量量子数 i=1, 求:
- (1)在角动量算符 J_z 的表象中, J_x , J_y , J_z 和 J^z 的矩阵表示。
- (2)已知 J. 的本征值为ħ,0,一ħ的本征矢量分别为

$$|11\rangle = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad |10\rangle = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad |1-1\rangle = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

求在 $|11\rangle$ 态下, J_x , J_y ,的平均值。

解 我们当然可以从 J_x , J_y , J_z 的一般表达式中取 j=1, 直接写出它们的矩阵表示。作为练习, 下面具体计算它们的矩阵表示。

为了求 J_x,J_y,J_z 的矩阵表示,先求 J_+,J_- 。由矩阵元

$$\langle jm' | J_+ | jm \rangle = \sqrt{j(j+1) - m(m+1)} \hbar \delta_{m',m+1}$$

得

$$(J_{+})_{11} = (J_{+})_{22} = (J_{+})_{33} = 0$$

 $(J_{+})_{12} = \langle 11 | J_{+} | 10 \rangle$

其中,m',m=1,0,-1分别对应于行列式的第 1,2,3 行或列指标。因此,

$$(J_{+})_{12} = \sqrt{1(1+1)-0(0+1)}\hbar = \sqrt{2}\hbar$$

$$(J_{+})_{13} = \langle 11|J_{+}|1-1\rangle = 0$$

$$(J_{+})_{21} = \langle 10|J_{+}|11\rangle = 0$$

$$(J_{+})_{23} = \langle 10|J_{+}|1-1\rangle = \sqrt{1(1+1)+1(-1+1)}\hbar = \sqrt{2}\hbar$$

$$(J_{+})_{31} = \langle 1 - 1 | J_{+} | 11 \rangle = 0$$

 $(J_{+})_{32} = \langle 1 - 1 | J_{+} | 10 \rangle = 0$

因此,

$$J_{+} = \hbar \begin{bmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{bmatrix}$$

$$J_{-} = J_{+}^{\dagger} = \hbar \begin{bmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{bmatrix}$$

从而得到

$$J_{x} = \frac{1}{2}(J_{+} + J_{-}) = \frac{\hbar}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$J_{y} = \frac{1}{2i}(J_{+} - J_{-}) = \frac{\hbar}{\sqrt{2}} \begin{bmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{bmatrix}$$

再由 J_z 的矩阵元 $\langle jm' | J_z | jm \rangle = m \hbar \delta_{mm'}$,可求得

$$J_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

从而

$$J^{2} = J_{x}^{2} + J_{y}^{2} + J_{z}^{2} = 2 \, \hbar^{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(3)根据平均值公式,在 $|11\rangle$ 态下, J_z , J_y 的平均值分别为

$$\overline{J_{x}} = \langle 11 | J_{x} | 11 \rangle = \langle 1 \quad 0 \quad 0 \rangle \frac{\hbar}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 0$$

$$\overline{J_{y}} = \langle 11 | J_{y} | 11 \rangle = \langle 1 \quad 0 \quad 0 \rangle \frac{\hbar}{\sqrt{2}} \begin{bmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 0$$

12. 两个电子的自旋算符分别为Š₁和Š₂。两个自旋的无耦合基用 | S_{1z}S_{2z} > 表示,耦合基用 | SS_z > 表示。两种基之间的关系为

554)	····	
{11}	=	$\left \frac{1}{2}\frac{1}{2}\right>$
10>	=	$\left a \left \frac{1}{2} - \frac{1}{2} \right\rangle + b \left -\frac{1}{2} \frac{1}{2} \right\rangle \right $
(1-1)	=	$\left -\frac{1}{2} - \frac{1}{2} \right\rangle$
00>	=	$\left c \left \frac{1}{2} - \frac{1}{2} \right\rangle - d \left -\frac{1}{2} \frac{1}{2} \right\rangle \right $

试确定 C-G 系数 $a \ b \ c \ d$ 。计算时,可取 $\hbar = 1$ 。

解 因为

$$S_{\pm} = S_{1\pm} + S_{2\pm}$$

$$S_{\pm} | ss_{z} \rangle = \sqrt{s(s+1) - s_{z}(s_{z} \pm 1)} | s, s_{z} \pm 1 \rangle$$

$$S_{k\pm} | s_{kz}s_{lz} \rangle = \sqrt{s_{k}(s_{k} + 1) - s_{kz}(s_{kz} \pm 1)} | s_{kz} \pm 1, s_{lz} \rangle, \quad (k=1,2)$$

$$| \exists b |,$$

$$S_{-}|11\rangle = (S_{1-} + S_{2-}) \left| \frac{1}{2} \frac{1}{2} \right\rangle$$

$$S_{-}|11\rangle = \sqrt{1(1+1) - 1(1-1)} |10\rangle = \sqrt{2} |10\rangle$$

$$(S_{1-} + S_{2-}) \left| \frac{1}{2} \frac{1}{2} \right\rangle = S_{1-} \left| \frac{1}{2} \frac{1}{2} \right\rangle + S_{2-} \left| \frac{1}{2} \frac{1}{2} \right\rangle$$

$$= \sqrt{\frac{1}{2} \left(\frac{1}{2} + 1 \right) - \frac{1}{2} \left(\frac{1}{2} - 1 \right)} \left| -\frac{1}{2} \frac{1}{2} \right\rangle +$$

$$\sqrt{\frac{1}{2} \left(\frac{1}{2} + 1 \right) - \frac{1}{2} \left(\frac{1}{2} - 1 \right)} \left| \frac{1}{2} - \frac{1}{2} \right\rangle$$

$$= \left| -\frac{1}{2} \frac{1}{2} \right\rangle + \left| \frac{1}{2} - \frac{1}{2} \right\rangle$$

所以

$$|10\rangle = \frac{1}{\sqrt{2}} \left(\left| -\frac{1}{2} \frac{1}{2} \right\rangle + \left| \frac{1}{2} - \frac{1}{2} \right\rangle \right)$$

与表格中的(2)式比较得, $a=b=\frac{1}{\sqrt{2}}$ 。再由(2)式和(4)式的正交 性得

$$\langle 10|00\rangle = 0 = \frac{C}{\sqrt{2}} + \frac{D}{\sqrt{2}}$$

所以

$$C = -D$$

再由

$$\langle 00 | 00 \rangle = 1 = C^2 + D^2$$

得到

$$C = \frac{1}{\sqrt{2}}, \quad D = -\frac{1}{\sqrt{2}}$$

因此,最后得

$$|11\rangle = \left| \frac{1}{2} \frac{1}{2} \right\rangle$$

$$|10\rangle = \frac{1}{\sqrt{2}} \left(\left| \frac{1}{2} - \frac{1}{2} \right\rangle + \left| -\frac{1}{2} \frac{1}{2} \right\rangle \right)$$

$$|1-1\rangle = \left| -\frac{1}{2} - \frac{1}{2} \right\rangle$$

$$|00\rangle = \frac{1}{\sqrt{2}} \left(\left| \frac{1}{2} - \frac{1}{2} \right\rangle - \left| -\frac{1}{2} \frac{1}{2} \right\rangle \right)$$

这 4 个态就是 \hat{S}^2 和 \hat{S}_z 的共同本征态。

13. 利用第 12 题的结果,试计算:

$$(1)S_{1z}|11\rangle, S_{1z}|10\rangle, S_{1z}|1-1\rangle, S_{1z}|00\rangle_{o}$$

$$(2)S_x|11\rangle$$
, $S_x|10\rangle$, $S_x|1-1\rangle$, $S_x|00\rangle$.

计算时可取fi=1。

解
$$(1)S_{1z}|11\rangle = S_{1z}\left|\frac{1}{2}\frac{1}{2}\right\rangle = \frac{1}{2}\left|\frac{1}{2}\frac{1}{2}\right\rangle = \frac{1}{2}|11\rangle$$

$$S_{1z}|10\rangle = \frac{1}{\sqrt{2}}S_{1z}\left(\left|\frac{1}{2}-\frac{1}{2}\right\rangle + \left|-\frac{1}{2}\frac{1}{2}\right\rangle\right)$$

$$= \frac{1}{\sqrt{2}}\left(\frac{1}{2}\left|\frac{1}{2}-\frac{1}{2}\right\rangle - \frac{1}{2}\left|-\frac{1}{2}\frac{1}{2}\right\rangle\right)$$

$$= \frac{1}{2}\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2}-\frac{1}{2}\right\rangle - \left|-\frac{1}{2}\frac{1}{2}\right\rangle\right)$$

$$= \frac{1}{2}\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2}-\frac{1}{2}\right\rangle - \left|-\frac{1}{2}\frac{1}{2}\right\rangle\right) = \frac{1}{2}|00\rangle$$

$$S_{1z}|1-1\rangle = S_{1z}\left|-\frac{1}{2}-\frac{1}{2}\right\rangle$$

$$= -\frac{1}{2}\left|-\frac{1}{2}-\frac{1}{2}\right\rangle$$

$$= -\frac{1}{2}\left|-\frac{1}{2}-\frac{1}{2}\right\rangle - \left|-\frac{1}{2}\frac{1}{2}\right\rangle\right)$$

$$= \frac{1}{\sqrt{2}}\left(\frac{1}{2}\left|\frac{1}{2}-\frac{1}{2}\right\rangle + \frac{1}{2}\left|-\frac{1}{2}\frac{1}{2}\right\rangle\right)$$

$$= \frac{1}{2}\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2}-\frac{1}{2}\right\rangle + \left|-\frac{1}{2}\frac{1}{2}\right\rangle\right) = \frac{1}{2}|10\rangle$$

$$(2)S_{z}|11\rangle = (S_{1z}+S_{2z})\left|\frac{1}{2}\frac{1}{2}\right\rangle = S_{1z}\left|\frac{1}{2}\frac{1}{2}\right\rangle + S_{2z}\left|\frac{1}{2}\frac{1}{2}\right\rangle$$

$$(2)S_{z}|11\rangle = (S_{1z}+S_{2z})\left|\frac{1}{2}\frac{1}{2}\right\rangle = S_{1z}\left|\frac{1}{2}\frac{1}{2}\right\rangle + S_{2z}\left|\frac{1}{2}\frac{1}{2}\right\rangle$$

 $S_{2x}\left|\frac{1}{2}\right\rangle = \frac{1}{2}\left|-\frac{1}{2}\right\rangle$

所以

$$S_{x}|11\rangle = \frac{1}{2} \left| -\frac{1}{2} \frac{1}{2} \right\rangle + \frac{1}{2} \left| \frac{1}{2} - \frac{1}{2} \right\rangle = \frac{1}{\sqrt{2}} |10\rangle$$

$$S_{x}|10\rangle = (S_{1x} + S_{2x}) \frac{1}{\sqrt{2}} \left(\left| \frac{1}{2} - \frac{1}{2} \right\rangle + \left| -\frac{1}{2} \frac{1}{2} \right\rangle \right)$$

$$= \frac{1}{\sqrt{2}} \left[S_{1x} \left(\left| \frac{1}{2} - \frac{1}{2} \right\rangle + \left| -\frac{1}{2} \frac{1}{2} \right\rangle \right) +$$

$$S_{2x} \left(\left| \frac{1}{2} - \frac{1}{2} \right\rangle + \left| -\frac{1}{2} \frac{1}{2} \right\rangle \right) \right]$$

$$= \frac{1}{\sqrt{2}} \left[\frac{1}{2} \left| -\frac{1}{2} - \frac{1}{2} \right\rangle + \frac{1}{2} \left| \frac{1}{2} \frac{1}{2} \right\rangle +$$

$$\frac{1}{2} \left| \frac{1}{2} \frac{1}{2} \right\rangle + \frac{1}{2} \left| -\frac{1}{2} - \frac{1}{2} \right\rangle \right]$$

$$= \frac{1}{\sqrt{2}} \left(\left| \frac{1}{2} \frac{1}{2} \right\rangle + \left| -\frac{1}{2} - \frac{1}{2} \right\rangle \right)$$

$$= \frac{1}{\sqrt{2}} (|11\rangle + |1-1\rangle)$$

$$S_{x}|1-1\rangle = (S_{1x} + S_{2x}) \left| -\frac{1}{2} - \frac{1}{2} \right\rangle$$

$$= \frac{1}{2} \left| \frac{1}{2} - \frac{1}{2} \right\rangle + \frac{1}{2} \left| -\frac{1}{2} \frac{1}{2} \right\rangle$$

$$= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\left| \frac{1}{2} - \frac{1}{2} \right\rangle + \left| -\frac{1}{2} \frac{1}{2} \right\rangle \right) \right)$$

$$= \frac{1}{\sqrt{2}} |10\rangle$$

$$S_{x}|00\rangle = 0$$

14. 试利用 Pauli 矩阵的性质

$$\{\sigma_i,\sigma_j\}=2\delta_{ij},\quad (i,j=1,2,3)$$

不用 σ, 的具体表示,证明:

$$(1)\operatorname{Tr}(\sigma_i)=0;$$

(2) σ_i 的本征值 $\lambda=1,-1$;

- $(3)\det\sigma_i = -1$
- (4) 任何一个 2×2 矩阵 M 都可以用 $\{I, \sigma_i, i = 1, 2, 3\}$ 表示为 $M = m_0 I + \sum_{i=1}^3 m_i \sigma_i$, 试确定 m_0, m_i .

证明 (1) 因为
$$\sigma_i \sigma_j = -\sigma_j \sigma_i$$
, $(i \neq j)$, $\sigma_i^2 = 1$, $\sigma_i = -\sigma_i \sigma_i \sigma_i$

所以

$$\operatorname{Tr}(\sigma_i) = -\operatorname{Tr}(\sigma_j\sigma_i\sigma_j) = -\operatorname{Tr}(\sigma_j\sigma_j\sigma_i) = -\operatorname{Tr}(\sigma_i)$$

$$\operatorname{Tr}(\sigma_i) = 0$$

- (2) 由于 $\sigma_i^2 = 1$, 因此 σ_i 的本征值 λ 满足 $\lambda^2 = 1$, 因此 $\lambda = \pm 1$ 。
- (3) 由于本征值 $\lambda = \pm 1$, σ_i 的对角化矩阵的主对角线上元素必为 1 和 -1, 行列式的值为 -1。因此,其他 σ_i 的行列式值也必为 -1,即 $\det \sigma_i = -1$ 。

$$(4)M = m_0 I + \sum_{i=1}^3 m_i \sigma_{i,0}$$

上式两边求迹得

$$TrM = m_0 TrI + \sum_{i=1}^{3} m_i Tr\sigma_i = 2m_0$$

所以

$$m_0 = \frac{1}{2} \mathrm{Tr} M$$

原式两边乘 σ, 得

$$\sigma_j M = m_0 \sigma_j + \sum_{i=1}^3 m_i \sigma_j \sigma_i$$
$$\operatorname{Tr}(\sigma_j M) = m_0 \operatorname{Tr}(\sigma_j) + \sum_{i=1}^3 m_i \operatorname{Tr}(\sigma_j \sigma_i) = m_i 2 \delta_{ij}$$

从而

$$m_i = \frac{1}{2} \mathrm{Tr}(\sigma_i M)$$

15. 设一个置于中心力场中的粒子,其轨道角动量量子数 /= 2,自旋角动量量子数 s=1。体系的自旋一轨道相互作用 Hamilton量为

$$\hat{H} = A \hat{L} \cdot \hat{S}$$
 (A 为常数)

求体系的能级和各个能级的简并度。

解 选取 $\{\hat{H},\hat{J}^2,\hat{J}_s,\hat{L}^2,\hat{S}^2\}$ 为力学量完全集,设其共同本征矢量为 $\{j,m,l,s\}$,其中

$$\hat{J} = \hat{L} + \hat{S}$$

j,m 分别为 \hat{J} 和 \hat{J} 。的相应量子数。 $\hat{J}^2,\hat{J}_*,\hat{L}^2,\hat{S}^2$ 的本征值方程为

$$\hat{J}^{2}|j,m,l,s\rangle = j(j+1)\hbar^{2}|j,m,l,s\rangle$$

$$\hat{L}^{2}|j,m,l,s\rangle = l(l+1)\hbar^{2}|j,m,l,s\rangle$$

$$\hat{S}^{2}|j,m,l,s\rangle = s(s+1)\hbar^{2}|j,m,l,s\rangle$$

$$\hat{J}_{z}|j,m,l,s\rangle = m \, \hbar \, |j,m,l,s\rangle$$

由于

$$\hat{J}^{z} = (\hat{L} + \hat{S})^{z} = \hat{L}^{z} + \hat{S}^{z} + 2\hat{L} \cdot \hat{S}$$

相互作用 Hamilton 量及其本征值方程可以写成

$$\hat{H} = A \hat{L} \cdot \hat{S} = \frac{1}{2} A (\hat{J}^2 - \hat{L}^2 - \hat{S}^2)$$

$$\hat{H}|j,m,l,s\rangle = \frac{1}{2}A(\hat{J}^2 - \hat{L}^2 - \hat{S}^2)|j,m,l,s\rangle = E|j,m,l,s\rangle$$

同时,由于 l=2,s=1,体系的总角动量量子数

$$j=l+s, l+s-1, \dots, |l-s|=3,2,1$$

因此,体系的能量为,当j=3时,

$$E_{3} = \frac{A}{2} \hbar^{2} [j(j+1) - l(l+1) - s(s+1)]$$

$$= \frac{A}{2} \hbar^{2} [3(3+1) - 2(2+1) - 1(1+1)] = 2A \hbar^{2}$$

j=2时,

$$E_2 = \frac{A}{2} \hbar^2 \left[2(2+1) - 2(2+1) - 1(1+1) \right] = -A \hbar^2$$

j=1时,

$$E_1 = \frac{A}{2} \hbar^2 \left[1(1+1) - 2(2+1) - 1(1+1) \right] = -3A \, \hbar^2$$

简并度:

$$j=3$$
 时, $f=2j+1=7$, $j=2$ 时, $f=5$, $j=1$ 时, $f=3$.

16. 求算符 $\hat{T} = A \hat{S}_s + B \hat{S}_s$, 的本征值和归一化的本征函数,

其中、 \hat{S}_{s} 、 \hat{S}_{s} 、是自旋为 $\frac{1}{2}$ 粒子的自旋算符、 $A \setminus B$ 是任意实数。

$$\hat{T} = A \,\hat{S}_y + B \,\hat{S}_z = \frac{A}{2} \hbar \,\hat{\sigma}_y + \frac{B}{2} \hbar \,\hat{\sigma}_z$$

$$\hat{T}^z = \left(\frac{A}{2} \hbar \,\hat{\sigma}_y + \frac{B}{2} \hbar \,\hat{\sigma}_z\right)^2$$

$$= \frac{A^2}{4} \hbar^2 \,\hat{\sigma}_y^2 + \frac{AB}{4} \hbar^2 (\hat{\sigma}_y \,\hat{\sigma}_z + \hat{\sigma}_z \,\hat{\sigma}_y) + \frac{B^2}{4} \hbar^2 \,\hat{\sigma}_z^2$$

$$= \frac{\hbar^2}{4} (A^2 + B^2)$$

可 见, \hat{T} 的 本 征 值 为 $\lambda = \pm \frac{\hbar}{2} (A^2 + B^2)^{1/2}$ 。由 于 $\hat{T} = \frac{\hbar}{2} \begin{bmatrix} B & -\mathrm{i}A \\ \mathrm{i}A & -B \end{bmatrix}$,因此,如果设 \hat{T} 的本征函数为 $\psi = \begin{bmatrix} a \\ b \end{bmatrix}$,则本征值方程为

$$\frac{\hbar}{2} \begin{bmatrix} B & -\mathrm{i}A \\ \mathrm{i}A & -B \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \lambda \begin{bmatrix} a \\ b \end{bmatrix} \quad \text{gi} \quad \begin{bmatrix} B - \lambda & -\mathrm{i}A \\ \mathrm{i}A & -B - \lambda \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0$$

把 $\lambda = \pm \frac{\hbar}{2} (A^2 + B^2)^{1/2}$ 分别代人上式可得两个归一化的本征函数

$$\psi_{\lambda_1} = \frac{1}{\sqrt{A^2 + (B - \sqrt{A^2 + B^2})^2}} \left[\frac{iA}{B - \sqrt{A^2 + B^2}} \right]$$

$$\psi_{\lambda_2} = \frac{1}{\sqrt{A^2 + (B + \sqrt{A^2 + B^2})^2}} \begin{bmatrix} iA \\ B + \sqrt{A^2 + B^2} \end{bmatrix}$$

17. 设两个自旋为 $\frac{1}{2}$ 的粒子体系,其 Hamilton 量为

$$\hat{H} = A(\hat{S}_{1x} + \hat{S}_{2x}) + B\hat{S}_1 \cdot \hat{S}_2$$

其中 \hat{S}_1 , \hat{S}_2 表示两个粒子的自旋算符, \hat{S}_{1z} , \hat{S}_{2z} 表示它们的z分量。 A_1B_2 为任意常数,求体系的所有可能的能量本征值。

解 选取 $\{\hat{H},\hat{S}^2,\hat{S}_z\}$ 为力学量完全集,其中,

$$\hat{S}^{2} = (\hat{S}_{1} + \hat{S}_{2})^{2} = \hat{S}_{1}^{2} + \hat{S}_{2}^{2} + 2 \hat{S}_{1} \cdot \hat{S}_{2}$$
$$\hat{S}_{z} = \hat{S}_{1z} + \hat{S}_{2z}$$

设 $\{\hat{H},\hat{S}^2,\hat{S}_x\}$ 的共同本征函数为 $\{ss_z\}$,则

$$\hat{H} |ss_{z}\rangle = [A(\hat{S}_{1z} + \hat{S}_{2z}) + B \hat{S}_{1} \cdot \hat{S}_{2}] |ss_{z}\rangle$$

$$= [A\hat{S}_{z} + \frac{B}{2}(\hat{S}^{2} - \hat{S}_{1}^{2} - \hat{S}_{2}^{2})] |ss_{z}\rangle = E|ss_{z}\rangle$$

利用

$$\hat{S}_{z}|ss_{z}\rangle = s_{z} \, \hbar |ss_{z}\rangle$$

$$\hat{S}^{2}|ss_{z}\rangle = s(s+1)\hbar^{2}|ss_{z}\rangle$$

$$\hat{S}_{1}^{2} + \hat{S}_{2}^{2} = \frac{\hbar^{2}}{4}\hat{\sigma}_{1}^{2} + \frac{\hbar^{2}}{4}\hat{\sigma}_{2}^{2} = \frac{\hbar^{2}}{4} \cdot 3 + \frac{\hbar^{2}}{4} \cdot 3 = \frac{3}{2}\hbar^{2}$$

我们得到

$$\hat{H}|ss_z\rangle = \left[As_z \, \hbar + \frac{B}{2} \left[s(s+1)\hbar^2 - \frac{3}{2}\hbar^2\right]|ss_z\rangle = E|ss_z\rangle$$

因此,能量本征值

$$E = As_x \hbar + \frac{B}{2} \left[s(s+1)\hbar^2 - \frac{3}{2}\hbar^2 \right]$$

对两个自旋为 $\frac{1}{2}$ 的粒子耦合体系,s=1 或 0,相应的量子数 $s_{*}=1$, 0, -1 或 0。因此,当 s=1 时,

$$E = As_z \hbar + \frac{B}{2} \left[2 \hbar^2 - \frac{3}{2} \hbar^2 \right] = As_z \hbar + \frac{B}{4} \hbar^2, \quad s_z = 1, 0, -1$$

因此,

$$E_1 = A \hbar + \frac{B}{4} \hbar^2$$
, $E_2 = \frac{B}{4} \hbar^2$, $E_3 = -A \hbar + \frac{B}{4} \hbar^2$

当 s=0 时,s=0,因此,

$$E = \frac{B}{2} \left(-\frac{3}{2} \hbar^2 \right) = -\frac{3}{4} B \, \hbar^2$$

18. 电子的自旋磁矩为 $\mu = -\mu_0 \hat{S}$,将电子置于 x 方向的均匀磁场 B 中,在 t=0 时,电子的自旋向 z 的正向极化。求在任意时刻 t, \hat{S} ,的测值为 $\pm \frac{\hbar}{2}$ 的几率。

解 电子的自旋磁矩与外磁场的相互作用 Hamilton 量为

$$\hat{H} = -\mu \cdot \mathbf{B} = \mu_0 \, \hat{\mathbf{S}} \cdot \mathbf{B} = \frac{\mu_0 \, \hbar}{2} \boldsymbol{\sigma} \cdot \mathbf{B}$$

因磁场是沿 x 方向,

$$\hat{H} = \frac{\mu_0 \hbar}{2} B \sigma_x = \hbar \omega \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \omega = \frac{\mu_0 B}{2}$$

设在任意时刻的自旋波函数为 $\psi(t) = \begin{bmatrix} a(t) \\ b(t) \end{bmatrix}$, 则 Schrödinger 方程为

$$i \, \hbar \begin{bmatrix} a \\ b \end{bmatrix} = \hbar \omega \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

方程的解为

$$a+b=C_1e^{-i\omega t}$$
, $a-b=C_2e^{i\omega t}$

利用初始条件 $\binom{a(0)}{b(0)} = \binom{1}{0}$ 得 a(0) = 1, b(0) = 0,所以 $C_1 = C_2 = 1$ 。因此,

$$\psi = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \cos \omega t \\ -i\sin \omega t \end{bmatrix}$$

在 $\psi(t)$ 下 \hat{S}_s 的测值为 $\frac{\hbar}{2}$ 和 $-\frac{\hbar}{2}$ 的几率分别为

$$P\left(\frac{\hbar}{2}\right) = \left|\left\langle s_y = \frac{\hbar}{2} \left| \psi(t) \right\rangle \right|^2 = \left|\frac{1}{\sqrt{2}} (1 - i) \begin{pmatrix} \cos \omega t \\ -i\sin \omega t \end{pmatrix} \right|^2$$
$$= \frac{1}{2} (1 - \sin 2\omega t)$$

同理得

$$P\left(-\frac{\hbar}{2}\right) = \frac{1}{2}(1 + \sin 2\omega t)$$

19. 一电子置于沿z方向的均匀磁场 B 中,在初始时刻 t=0,电子的自旋是朝 y 轴正向极化。

- (1)求在 $t > t_0$ 时, \hat{S} ,的测值为 $\frac{\hbar}{2}$ 和一 $\frac{\hbar}{2}$ 的几率。
- (2)求在 $t > t_0$ 时, \hat{S} , 的平均值。

解 电子的自旋磁矩 $\mu = \frac{e \hbar}{2m,c}$ σ,自旋磁矩与外磁场的相互作用 Hamilton 量为

$$\hat{H} = -\mu \cdot B = -\frac{e \, \hbar}{2m_e c} \sigma \cdot B = \frac{|e| \hbar}{2m_e c} \sigma_z B = \omega \, \hbar \sigma_z \,, \quad \omega = \frac{|e| B}{2m_e c}$$

设 $t > t_0$ 时的自旋波函数为 $\psi(t) = \begin{bmatrix} a(t) \\ b(t) \end{bmatrix}$,则 Schrödinger 方程为

i
$$\hbar \frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} a \\ b \end{bmatrix} = \hbar \omega \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

所以

i
$$\hbar \frac{\mathrm{d}a}{\mathrm{d}t} = \hbar \omega a$$
, i $\hbar \frac{\mathrm{d}b}{\mathrm{d}t} = -\hbar \omega b$

由此得

$$a=a_0e^{-i\omega t}$$
, $b=b_0e^{i\omega t}$

由初始条件 $\begin{bmatrix} a(0) \\ b(0) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix}$ 得 $a_0 = \frac{1}{\sqrt{2}}$, $b_0 = \frac{i}{\sqrt{2}}$, 因此,

$$a = \frac{1}{\sqrt{2}} e^{-i\omega t}, \quad b = \frac{i}{\sqrt{2}} e^{i\omega t}$$

 \hat{S}_x 的测值为 $\frac{\hbar}{2}$ 的几率

$$P\left(\frac{\hbar}{2}\right) = \left|\left\langle S_x = \frac{\hbar}{2} \left| \psi \right\rangle \right|^2 = \left|\frac{1}{2} (1 - 1) \begin{bmatrix} e^{-i\omega t} \\ ie^{i\omega t} \end{bmatrix} \right|^2$$
$$= \frac{1}{4} (2 + i(e^{2i\omega t} - e^{-i\omega t})) = \frac{1}{2} (1 + \sin 2\omega t)$$

同理可求得

$$P\left(-\frac{\hbar}{2}\right) = \frac{1}{2}(1 - \sin 2\omega t)$$

 \hat{S}_z 的平均值为

$$\overline{S}_{x} = (e^{i\omega t} - ie^{-i\omega t}) \frac{\hbar}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} e^{-i\omega t} \\ ie^{i\omega t} \end{bmatrix} = \frac{\hbar}{2} \sin 2\omega t$$

20. 考虑两个电子的耦合体系。设其中的一个电子处于 $s_x = \frac{\hbar}{2}$ 的本征态,另一个电子处于 $s_x = \frac{\hbar}{2}$ 的本征态。求发现体系的总自旋 s = 0 的几率。

解 总自旋为零的态就是耦合基 | 00 > 态。但是,

$$|00\rangle = \frac{1}{\sqrt{2}} \left(\left| \frac{1}{2} - \frac{1}{2} \right\rangle_{L} - \left| -\frac{1}{2} \frac{1}{2} \right\rangle_{L} \right)$$

其中,

$$\left| \frac{1}{2} - \frac{1}{2} \right\rangle_{z} = \left| \frac{1}{2} \right\rangle_{z} \cdot \left| -\frac{1}{2} \right\rangle_{z}$$

$$\left| -\frac{1}{2} \frac{1}{2} \right\rangle_{z} = \left| -\frac{1}{2} \right\rangle_{z} \cdot \left| \frac{1}{2} \right\rangle_{z}$$

因此,在体系所处的自旋态

$$|\chi\rangle = \left|\frac{1}{2}\right\rangle_{z} \left|\frac{1}{2}\right\rangle_{z} = \left|\frac{1}{2}\right\rangle_{z} \frac{1}{\sqrt{2}} \left(\left|\frac{1}{2}\right\rangle_{z} + \left|-\frac{1}{2}\right\rangle_{z}\right)$$

下,发现总自旋为零的几率

$$P = |\langle 00 | \chi \rangle|^{2}$$

$$= \left| \frac{1}{2} \left\{ \left\langle \frac{1}{2} - \frac{1}{2} \left| \frac{1}{2} \frac{1}{2} \right\rangle_{z} - \left\langle -\frac{1}{2} \frac{1}{2} \left| \frac{1}{2} \frac{1}{2} \right\rangle_{z} + \left\langle \frac{1}{2} - \frac{1}{2} \left| \frac{1}{2} - \frac{1}{2} \right\rangle_{z} - \left\langle -\frac{1}{2} \frac{1}{2} \left| \frac{1}{2} - \frac{1}{2} \right\rangle_{z} \right\} \right|^{2} = \frac{1}{4}$$

21. 一个电子在 t=0 时,观测到自旋沿 z 轴正向。问在 t>0 时电子的自旋方向在 x-z 平面内与 z 轴成角 $\theta\left(\theta<\frac{\pi}{2}\right)$ 的几率是多少?

解 电子的自旋初态为 $|\psi_0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}$,自旋方向在 x-z 平面内(φ = 0)与 z 轴成 θ 角的态为

$$|\psi\rangle = \begin{bmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} \end{bmatrix}$$

因此,在t>0时,电子的自旋方向在x-z平面内与z轴成 θ 角的几率为

$$P(\theta) = |\langle \psi | \psi_0 \rangle|^2 = \left| \left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \right) \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right|^2 = \cos^2 \frac{\theta}{2}$$

22. 设镁(Mg)原子的某一激发态的两个价电子组态为(3s, 3p)。考虑轨道-自旋(L-S)耦合,指出体系的可能的 / 和 s 值,并写出体系空间波函数的可能形式。

解 电子组态(3s,3p)说明,两个价电子中的一个 l=0(s-1) 态),另一个 l=1(p-1) 态),而两个电子的自旋 $s_1=\frac{1}{2}$, $s_2=\frac{1}{2}$ 。因此,体系的总轨道角动量量子数 l=1,总自旋 s=1 或 0。对 s=1 的自旋态(三重态),其波函数对两个粒子的交换对称;

$$\chi_{1}^{(1)} = \left| \frac{1}{2} \frac{1}{2} \right\rangle, \quad \chi_{-1}^{(1)} = \left| -\frac{1}{2} - \frac{1}{2} \right\rangle$$

$$\chi_{0}^{(1)} = \frac{1}{\sqrt{2}} \left(\left| \frac{1}{2} - \frac{1}{2} \right\rangle + \left| -\frac{1}{2} \frac{1}{2} \right\rangle \right)$$

因此,为了使总的波函数 $\psi = \varphi((r_1r_2)\chi^{(1)})$ 对两个粒子的交换反对称,空间波函数 $\varphi(r_1r_2)$ 必须对 r_1,r_2 的交换反对称,即

$$\varphi_{1}^{1}(\mathbf{r}_{1}\mathbf{r}_{2}) = \frac{1}{\sqrt{2}} \left[\varphi_{i}(\mathbf{r}_{1})\varphi_{p}(\mathbf{r}_{2}) - \varphi_{i}(\mathbf{r}_{2})\varphi_{p}(\mathbf{r}_{1}) \right]$$

$$= \frac{1}{\sqrt{2}} (1 - \hat{P}_{12})\varphi_{i}(\mathbf{r}_{1})\varphi_{p}(\mathbf{r}_{2})$$

对 s=0 的态,由于自旋波函数

$$\chi_0^{(0)} = \frac{1}{\sqrt{2}} \left(\left| \frac{1}{2} - \frac{1}{2} \right\rangle - \left| -\frac{1}{2} \frac{1}{2} \right\rangle \right)$$

对两个电子的自旋量子数的交换反对称,因此,空间波函数要对空间坐标的交换对称,以保证总的波函数对两个粒子的交换反对称, 因此,

$$\varphi_0^1(\mathbf{r}_1\mathbf{r}_2) = \frac{1}{\sqrt{2}} \left[\varphi_s(\mathbf{r}_1) \varphi_p(\mathbf{r}_2) + \varphi_s(\mathbf{r}_2) \varphi_p(\mathbf{r}_1) \right]$$

$$= \frac{1}{\sqrt{2}} (1 + \hat{P}_{12}) \varphi_s(\mathbf{r}_1) \varphi_p(\mathbf{r}_2)$$

23. 角动量算符的三个分量 J_x , J_y , J_z 互为不对易,因而它们不能同时具有确定值。求证:在 J^2 和 J_z 共同本征态 $|jm\rangle$ 下,当 j=|m|时, J_x , J_y 的不确定度之和 $(\Delta J_x)^2+(\Delta J_y)^2$ 最小。

证明 因为

$$(\Delta J_x)^2 = \overline{(J_x - \overline{J}_x)^2} = \overline{J_x^2} - \overline{J_x^2} = \overline{J_x^2}$$
$$(\Delta J_y)^2 = \overline{(J_y - \overline{J}_y)^2} = \overline{J_y^2}$$

由此得到

$$(\Delta J_x)^2 + (\Delta J_y)^2 = \overline{J_x^2} + \overline{J_y^2} = \overline{J^2} - \overline{J_x^2}$$

但由于

 $\overline{J^2} = \langle jm | J^2 | jm \rangle = j(j+1)\hbar^2, \quad \overline{J_x^2} = \langle jm | J_x^2 | jm \rangle = m^2 \hbar^2$ 因此

$$(\Delta J_x)^2 + (\Delta J_y)^2 = \overline{J^2} - \overline{J_x^2} = (j^2 + j - m^2)\hbar^2$$

由此可见,当 j=|m|时, J_x , J_y 的不确定度之和最小。

24. 在角动量算符 J^2 , J_r 的共同本征态 $|jm\rangle$ 下,求 $J_r=J_r\cos\xi+J_r\cos\eta+J_r\cos\theta$

的平均值。上式中的 ξ 、 η 、 θ 分别为z'方向与x、y、z 轴之间的夹角。

解 我们已经证明,在 J^2 , J_z 的共同本征态 $\{jm\}$ 下, J_x , J_y 的平均值

$$\overline{J}_x = \langle jm | J_x | jm \rangle = 0, \quad \overline{J}_y = \langle jm | J_y | jm \rangle = 0$$

因此,在 J^2 ,J。的共同本征态 $|jm\rangle$ 下,J。的平均值

$$\overline{J_{z'}} = \langle jm | J_{z'} | jm \rangle
= \cos \xi \langle jm | J_x | jm \rangle + \cos \eta \langle jm | J_y | jm \rangle + \cos \theta \langle jm | J_z | jm \rangle
= m \hbar \cos \theta \langle jm | jm \rangle = m \hbar \cos \theta$$

25. 设 \hat{S}_1 , \hat{S}_2 代表两个自旋 $\frac{1}{2}$ 粒子的自旋算符。求证: \hat{S}^2 和 \hat{S}_2 的共同本征函数 $|jm\rangle$ 是 \hat{S}_1 · \hat{S}_2 的本征函数,其中, $\hat{S}=\hat{S}_1+\hat{S}_2$, $\hat{S}_x=\hat{S}_{1x}+\hat{S}_{2x}$ 。

证明 \hat{S}^2 和 \hat{S}_z 的共同本征函数可用非耦合基表示为

$$\chi_{i}^{(1)} = \left| \frac{1}{2} \frac{1}{2} \right\rangle$$

$$\chi_{0}^{(1)} = \frac{1}{\sqrt{2}} \left(\left| \frac{1}{2} - \frac{1}{2} \right\rangle + \left| -\frac{1}{2} \frac{1}{2} \right\rangle \right)$$

$$\chi_{-1}^{(1)} = \left| -\frac{1}{2} - \frac{1}{2} \right\rangle$$

$$\chi_{0}^{(0)} = \frac{1}{\sqrt{2}} \left(\left| \frac{1}{2} - \frac{1}{2} \right\rangle - \left| -\frac{1}{2} \frac{1}{2} \right\rangle \right)$$

由于 $\hat{S}^2 = (\hat{S}_1 + \hat{S}_2)^2 = \hat{S}_1^2 + \hat{S}_2^2 + 2\hat{S}_1 \cdot \hat{S}_2$,因此

$$\hat{\mathbf{S}}_{1} \cdot \hat{\mathbf{S}}_{2} = \frac{1}{2} (\hat{\mathbf{S}}^{2} - \hat{\mathbf{S}}_{1}^{2} - \hat{\mathbf{S}}_{2}^{2})$$

由此可求出

$$\hat{\mathbf{S}}_{1} \cdot \hat{\mathbf{S}}_{2} \chi_{0}^{(0)} = \frac{1}{2} (\hat{\mathbf{S}}^{2} - \hat{\mathbf{S}}_{1}^{2} - \hat{\mathbf{S}}_{2}^{2}) \chi_{0}^{(0)}$$

$$= -\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} + 1 \right) + \frac{1}{2} \left(\frac{1}{2} + 1 \right) \right) \hbar^{2} \chi_{0}^{(0)}$$

$$= -\frac{3}{4} \hbar^{2} \chi_{0}^{(0)}$$

可见, $\chi_0^{(n)}$ 是 $\hat{S}_1 \cdot \hat{S}_2$ 的本征值为 $-\frac{3}{4}\hbar^2$ 的本征态。

同理,我们可以证明

$$\hat{S}_{1} \cdot \hat{S}_{2} \chi_{0}^{(1)} = \frac{1}{2} (\hat{S}^{2} - \hat{S}_{1}^{2} - \hat{S}_{2}^{2}) \chi_{1}^{(1)}$$

$$= -\frac{1}{2} \left(1(1+1) - \frac{1}{2} \left(\frac{1}{2} + 1 \right) \right) \hbar^{2} \chi_{1}^{(1)} = \frac{\hbar^{2}}{4} \chi_{1}^{(1)}$$

可见, $\chi_1^{(1)}$ 是 $\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2$ 的本征值为 $\frac{\hbar^2}{4}$ 的本征态。同样可以证明 $\chi_2^{(1)}$, $\chi_2^{(1)}$ 也是 $\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2$ 的本征值为 $\frac{\hbar^2}{4}$ 的本征态。

第9章 定态微扰论

1. 一个粒子在如图 9-1 所示的一维无限深方势阱中运动,阱 内的势能 V(x)从 x=0 处,V(0)=0 开 始线性增加,到 x=a 处, $V(a)=V_0$,其 中,V。≪1。把阱内的势能当作对通常的 无限深方势阱问题的微批,计算在一级 近似下粒子基态与第一激发态的能量。

解 一维无限深方势阱中运动粒子 的能量本征值和本征函数分别为

图 9-1

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}, \quad \psi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi}{a} x, \quad n = 1, 2, 3, \dots$$

由图可见,阱内的势能 $V(x) = \frac{V_0}{a}x$ 。在微扰 $H' = V(x) = \frac{V_0}{a}x$ 的作 用下,能量的一级修正值 $E_n^{(1)} = H_n^{\prime}$,由此得到基态能量的一级修 正值

$$E_{1}^{(1)} = H'_{11} = \left\langle \psi_{1} \left| \frac{V_{0}}{a} x \right| \psi_{1} \right\rangle = \frac{V_{0}}{a} \cdot \frac{2}{a} \int_{0}^{a} \sin^{2} \frac{\pi x}{a} \cdot x dx = \frac{V_{0}}{2}$$

第一激发态能量的一级修正值

$$E_2^{(1)} = H'_{22} = \left\langle \psi_2 \left| \frac{V_0}{a} x \right| \psi_2 \right\rangle = \frac{V_0}{2}$$

因此,在一级近似下,

$$E_1 = \frac{\pi^2 \hbar^2}{2ma^2} + \frac{V_0}{2}, \quad E_2 = \frac{2\pi^2 \hbar^2}{ma^2} + \frac{V_0}{2}$$

2. 一粒子在一维方势阱

$$V(x) = \begin{cases} \infty, & x < 0, x > a \\ -V_0, & 0 < x < \frac{a}{2} \\ 0, & \frac{a}{2} < x < a \end{cases}$$

中运动,如图 9-2 所示。把 $V(x)=-V_0$ 当作对无限深势阱中运动粒子的微扰,计算在一级近似下粒子的基态能量。

解 在无限深方势阱中运动粒子的波函数与能量本征值分别为

$$\psi_{n}(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$$

$$E_{n} = \frac{n^{2}\pi^{2} \hbar^{2}}{2ma^{2}}, \quad n = 1, 2, 3, \dots$$

在微扰一 V_0 下,基态能量的一级修正值为

$$E_1^{(1)} = H_{11}' = -\frac{2V_0}{a} \int_0^{a/2} \sin^2 \frac{\pi x}{a} dx$$
$$= -\frac{V_0}{a} \int_0^{a/2} \left(1 - \cos \frac{2\pi x}{a}\right) dx = -\frac{V_0}{2}$$

因此,在一级近似下,粒子的基态能量

$$E_1 = \frac{\pi^2 \, \hbar^2}{2ma^2} - \frac{V_0}{2}$$
 .

3. 一个质量为 m 的粒子在一维势 阱(见图 9-3)

$$V(x) = \begin{cases} \infty, & x < -2a, x > 2a \\ 0, & -2a < x < -a \\ 0, & a < x < 2a \\ V_0, & -a < x < a \end{cases}$$

中运动。把 V。当做对在无限深方势阱

图 9-3

中运动粒子的微扰,求粒子基态能量的一级近似值。

解 在财宽为 4a 的一维无限深对称方势阱中运动粒子的能量本征值和本征函数分别为

$$E_n = \frac{\pi^2 \, \hbar^2 n^2}{32ma^2}, \quad n = 1, 2, 3, \dots$$

$$\psi_n(x) = \begin{cases} \sqrt{\frac{1}{2a}} \cos \frac{n\pi x}{4a}, & n = 1, 3, 5, \dots \\ \sqrt{\frac{1}{2a}} \sin \frac{n\pi x}{4a}, & n = 2, 4, 6, \dots \end{cases}$$

可见,基态能量和波函数分别为

$$E_1 = \frac{\pi^2 \, \hbar^2}{32ma^2}, \quad \psi_1(x) = \sqrt{\frac{1}{2a}} \cos \frac{\pi x}{4a}$$

在微扰 $\hat{H}'=V$ 。的作用下,粒子的基态能量的一级修正值

$$E_{1}^{(1)}=H_{11}'=\langle\psi_{1}|V_{0}|\psi_{1}\rangle=rac{V_{0}}{2a}\int_{-a}^{a}\cos^{2}rac{\pi x}{4a}\mathrm{d}x=V_{0}\Big(rac{1}{2}+rac{1}{\pi}\Big)$$

因此,在一级近似下的基态能量

$$E = E_1 + E_1^{(1)} = \frac{\pi^2 \, \hbar^2}{32ma^2} + V_0 \left(\frac{1}{2} + \frac{1}{\pi} \right)$$

- 4. 一根长为 / 的细绳 (忽略它的质量) 的一端固定,另一端系一质量为 m 的质点,在重力的作用下,质点在竖直平面内小角摆动(简谐振动)。用量子力学方法
 - (1) 求质点的简谐振动能级(势能计算到摆动角 θ 的平方项)。
- (2) 把小角近似带来的误差作为微扰(把势能的 f 项作为微扰),计算质点基态能量的一级近似值。
- 解 (1)以质点运动的平衡位置作为势能零点,则在小角近似下质点的势能

$$V = mg(l - l\cos\theta)$$

$$= mgl - mgl\left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots\right)$$

$$pprox rac{1}{2} mgl\theta^2$$
 (近似到 θ^2 项)

因此,体系的 Hamilton 量为

$$\hat{H} = \frac{1}{2}m(l\dot{\theta})^2 + \frac{1}{2}mgl\theta^2 = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2x^2$$

其中,

$$x = l\theta$$
, $\omega = \sqrt{\frac{g}{l}}$, $\hat{p} = ml\dot{\theta}$

由此可见,质点的简谐振动能级

$$E_n = \left(n + \frac{1}{2}\right)\hbar \omega, \quad n = 1, 2, 3, \cdots$$

(2) 小角近似带来的势能的误差(精确到 f* 项)

$$\Delta V = \hat{H}' = mg(l - l\cos\theta) - \frac{1}{2}mgl\theta^{2}$$

$$= -mgl\frac{\theta^{4}}{4!} = -\frac{mgl}{24}\theta^{4}$$

$$= -\frac{mg}{24l^{3}}x^{4}$$

因此,基态能量的一级修正值

$$\Delta E = H'_{00} = -\left\langle 0 \left| \frac{mg}{24l^3} x^4 \right| 0 \right\rangle = -\left| \frac{mg}{24l^3} \langle 0 | x^2 \cdot x^2 | 0 \rangle$$

利用

$$x^{2}|n\rangle = \frac{1}{2a^{2}} \left\{ \sqrt{(n+1)(n+2)} |n+2\rangle + (2n+1)|n\rangle + \sqrt{n(n-1)} |n-2\rangle \right\},$$
$$x^{2}|0\rangle = \frac{1}{a^{2}} \left\{ \sqrt{\frac{1}{2}} |2\rangle + \frac{1}{2} |0\rangle \right\}, \quad \alpha^{2} = \frac{m\omega}{\hbar}$$

得到

$$\langle 0 | x^4 | 0 \rangle = \frac{\hbar^2}{m^2 \omega^2} \left(\frac{1}{2} + \frac{1}{4} \right) = \frac{3 \, \hbar^2}{4 m^2 \omega^2}$$

因此,最后得到能量的一级修正值

$$\Delta E = -\frac{mg}{32l^3} \cdot \frac{\hbar^2}{m^2\omega^2} = -\frac{\hbar^2}{32ml^2}$$

能量的一级近似值

$$E = E_0 + \Delta E = \frac{1}{2} \hbar \omega - \frac{\hbar^2}{32ml^2}$$

- 5. 一条长为 d,质量为 M 的均匀棒绕着通过棒中心的轴在 x,y 平面内转动,棒两端分别带有点电荷 q 和 -q。
 - (1) 用量子力学方法,求解体系的能量本征值和本征函数。
- (2) 当沿 x 方向加一均匀电场 E 时,求体系第1激发态能量的一级修正值。

解 (1) 这是一个平面转子问题,体系的 Hamilton 量为

$$\hat{H} = -\frac{\hbar^2}{2I} \frac{\mathrm{d}^2}{\mathrm{d}\varphi^2}$$

其中, $I = \frac{1}{12}Md^2$ 为棒的转动惯量, φ 为转角。设转子的波函数为 ψ ,则能量本征值方程为

$$-\frac{\hbar^2}{2I}\frac{\mathrm{d}^2\psi}{\mathrm{d}\varphi^2}=E\psi$$

能量本征函数和本征值分别为

$$\psi_m(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi}, \quad m = 0, \pm 1, \pm 2, \pm 3, \cdots$$

$$E_m = \frac{m^2 \, \hbar^2}{2I} = \frac{6 \, \hbar^2 m^2}{M d^2}$$

(2) 外加电场 E 以后, 外电场和体系的电偶极矩 D = qd, 相互作用能量为 (d) 的方向为从 $-q \rightarrow q$ 的方向)

$$V = -\mathbf{D} \cdot \mathbf{E} = -q\mathbf{d} \cdot \mathbf{E} = -q\mathbf{d}E\cos\varphi$$

可以把这一相互作用势能当做对体系的微扰处理,即

$$\hat{H}' = V = -q dE \cos\varphi$$

第1激发态能量是二重简并的,但我们可以证明

$$\begin{split} H'_{m,-m} &= \langle -m | H' | m \rangle = \int\limits_0^{2\pi} (-q dE) \mathrm{cos} \varphi \cdot \frac{1}{2\pi} \mathrm{e}^{\langle -\mathrm{i} m \varphi \rangle^*} \mathrm{e}^{\mathrm{i} m \varphi} \mathrm{d} \varphi \\ &= -\frac{q dE}{2\pi} \int\limits_0^{2\pi} \mathrm{cos} \varphi \, \mathrm{e}^{2\mathrm{i} m \varphi} \mathrm{d} \varphi = 0 \,, \\ H'_{m,m} &= \langle m | H' | m \rangle = \frac{1}{2\pi} \int\limits_0^{2\pi} (-q \mathrm{d} E) \mathrm{cos} \varphi \cdot \mathrm{e}^{-\mathrm{i} m \varphi} \mathrm{e}^{\mathrm{i} m \varphi} \mathrm{d} \varphi = 0 \end{split}$$

因此,各个能级能量的一级修正值为零。

6. 在氢原子中,如果质子(原子核) 看成一个半径为 R 的带电球壳,则对氢原子的能量将产生影响。试用微扰方法计算原子核的非点模型导致的氢原子基态能量的一级修正值。

解 如果原子核看成一个半径为R的带电球壳(电荷 + e),则氢原子的势能

$$V(r) = \begin{cases} -\frac{e^2}{R}, & 0 \leqslant r \leqslant R \\ -\frac{e^2}{r}, & r > R \end{cases}$$

当氢原子的 Bohr 半径 $a_0 \gg R$ 时,势能 V(r) 对原子核的点模型的偏差可当作微扰,即

$$\hat{H}' = \begin{cases} \frac{e^2}{r} - \frac{e^2}{R}, & 0 \leqslant r \leqslant R \\ 0, & r > R \end{cases}$$

因此,氢原子基态能量的一级修正值 $(R \ll a_0)$

$$\Delta E = (R_{10}, H'R_{10}) = \int_{0}^{R} \left(\frac{e^{2}}{r} - \frac{e^{2}}{R}\right) R_{10}^{2} r^{2} dr$$

$$= \frac{4e^{2}}{a_{0}^{3}} \int_{0}^{R} \left(\frac{1}{r} - \frac{1}{R}\right) r^{2} e^{-\frac{2r}{a_{0}}} dr$$

$$\approx \frac{4e^{2}}{a_{0}^{3}} \int_{0}^{R} \left(\frac{1}{r} - \frac{1}{R}\right) r^{2} dr = \frac{2e^{2}R^{2}}{3a_{0}^{3}}$$

7. 平面转子的转动惯量为 I,电偶极矩为 D。转子在沿 x 方向的电场 ε 中运动。体系的 Hamilton 量为(转子绕 z 轴旋转):

$$\hat{H} = \hat{H}_0 + \hat{H}'$$

其中,

$$\hat{H}_0 = -\frac{\hbar^2}{2I}\frac{\mathrm{d}^2}{\mathrm{d}\varphi^2}, \quad \hat{H}' = -D\cos\varphi$$

求:(1) 一级近似下能量本征值与本征函数。

(2) 二级近似下的能量本征值。

解 我们已经知道,没有外场时平面转子的能量本征值和本征函数,即 \hat{H}_0 的本征值和本征函数为

$$\begin{cases} E_m^{(0)} = \frac{\hbar^2 m^2}{2I} \\ \phi_m^{(0)} = \frac{1}{\sqrt{2\pi}} e^{im\varphi}, & m = \pm 1, \pm 2, \pm 3, \cdots \end{cases}$$

能量的一级修正值:

$$E^{(1)} = H'_{mm} = (\psi_m^{(0)}, H'\psi_m^{(0)})$$
$$= \frac{-D\varepsilon}{2\pi} \int_0^{2\pi} e^{-im\varphi} \cos\varphi e^{im\varphi} d\varphi = 0$$

即能量的一级修正值为零。

能量的二级修正值:

$$E^{(2)} = \sum_{m'} \frac{|\langle m' | \hat{H}' | m \rangle|^2}{E_m^{(0)} - E_{m'}^{(0)}}$$

先计算微批 \hat{H}' 的矩阵元 $\langle m' \mid \hat{H}' \mid m \rangle$ 。

$$\begin{split} \langle m' \mid \hat{H}' \mid m \rangle &= (\psi_{m'}^{(0)}, H' \psi_{m}^{(0)}) = \frac{-D\epsilon}{2\pi} \int_{0}^{2\pi} \mathrm{e}^{-\mathrm{i}m'\varphi} \mathrm{cos}\varphi \, \mathrm{e}^{\mathrm{i}m\varphi} \mathrm{d}\varphi \\ &= -\frac{D\epsilon}{2\pi} \int_{0}^{2\pi} \mathrm{cos}\varphi \, \mathrm{e}^{\mathrm{i}(m-m')\varphi} \mathrm{d}\varphi \end{split}$$

因为

$$\int_{0}^{2\pi} \cos\varphi e^{i(m-m')\varphi} d\varphi = \frac{i}{(m'-m)} \int_{0}^{2\pi} \cos\varphi d(e^{i(m-m')\varphi})$$

$$= \frac{\cos\varphi e^{i(m-m')\varphi}}{i(m'-m)} \Big|_{0}^{2\pi} + \frac{1}{i(m'-m)} \int_{0}^{2\pi} \sin\varphi e^{i(m-m')\varphi} d\varphi$$

$$= \frac{1}{i(m'-m)} \Big[\frac{\sin\varphi e^{i(m-m')\varphi}}{i(m'-m)} \Big|_{0}^{2\pi} - \frac{i}{(m'-m)} \int_{0}^{2\pi} \cos\varphi e^{i(m-m')\varphi} d\varphi \Big]$$

$$= \frac{1}{(m'-m)^{2}} \int_{0}^{2\pi} \cos\varphi e^{i(m-m')\varphi} d\varphi$$

由此可得, $(m'-m)^2=1,m'=m\pm 1$ 或 $m'-m=\pm 1$,因此,

$$\int_{0}^{2\pi} \cos\varphi \, e^{\pm i\varphi} d\varphi = \int_{0}^{2\pi} (\cos\varphi \pm i\sin\varphi) \cos\varphi \, d\varphi$$

$$= \int_{0}^{2\pi} \cos^{2}\varphi \, d\varphi \pm i \int_{0}^{2\pi} \sin\varphi \cos\varphi \, d\varphi$$

$$= \int_{0}^{2\pi} \cos^{2}\varphi \, d\varphi = \pi$$

从而

因此,此矩阵元中非零项只有 $\langle m+1|H'|m\rangle$ 和 $\langle m-1|H'|m\rangle$,由此得

$$E^{(2)} = \sum_{m'} \frac{|\langle m' | \hat{H}' | m \rangle|^{2}}{E_{m}^{(0)} - E_{m'}^{(0)}}$$

$$= \frac{|\langle m+1 | \hat{H}' | m \rangle|^{2}}{E_{m}^{(0)} - E_{m+1}^{(0)}} + \frac{|\langle m-1 | \hat{H}' | m \rangle|^{2}}{E_{m}^{(0)} - E_{m-1}^{(0)}}$$

$$\begin{split} &= \frac{D^2 \varepsilon^2}{4} \left\{ \frac{1}{\hbar^2 [m^2 - (m+1)^2]/2I} + \frac{1}{\hbar^2 [m^2 - (m-1)^2]/2I} \right\} \\ &= \frac{D^2 \varepsilon^2 I}{2 \, \hbar^2} \left[\frac{1}{m^2 - (m+1)^2} + \frac{1}{m^2 - (m-1)^2} \right] \\ &= \frac{D^2 \varepsilon^2 I}{\hbar^2} \frac{1}{4m^2 - 1} \end{split}$$

在二级近似下,体系的能量

$$E_m = E_m^{(0)} + E_m^{(2)} = \frac{\hbar^2 m^2}{2I} + \frac{D^2 \epsilon^2 I}{\hbar^2} \frac{1}{4m^2 - 1},$$

$$m = 0, \pm 1, \pm 2, \cdots$$

从这个结果我们看到,对基态(m=0) 能量修正值为负,对激发态 $(|m| \ge 1)$,能量修正值为正。

一级近似下的波函数:

$$\begin{split} \psi_{m} &= \psi_{m}^{(0)} + \sum_{m'} \frac{\langle m' \mid \hat{H}' \mid m \rangle}{E_{m}^{(0)} - E_{m'}^{(0)}} \psi_{m'}^{(0)} \\ &= \frac{1}{\sqrt{2\pi}} \left[e^{im\phi} + \frac{\langle m+1 \mid \hat{H}' \mid m \rangle}{E_{m}^{(0)} - E_{m+1}^{(0)}} \psi_{m+1}^{(0)} + \frac{\langle m-1 \mid \hat{H}' \mid m \rangle}{E_{m}^{(0)} - E_{m-1}^{(0)}} \psi_{m-1}^{(0)} \right] \\ &= \frac{1}{\sqrt{2\pi}} \left\{ e^{im\phi} + \frac{D\varepsilon}{2} \frac{2I}{\hbar^{2}} \left[-\frac{e^{i(m+1)\phi}}{m^{2} - (m+1)^{2}} - \frac{e^{i(m-1)\phi}}{m^{2} - (m-1)^{2}} \right] \right\} \\ &= \frac{1}{\sqrt{2\pi}} \left\{ e^{im\phi} + \frac{D\varepsilon I}{\hbar^{2}} \left[\frac{e^{i(m+1)\phi}}{2m + 1} - \frac{e^{i(m-1)\phi}}{2m - 1} \right] \right\} \end{split}$$

8. 如果类氢离子的电荷数 Z 变成 Z + 1,基态能量将如何改变? 试用微扰方法计算基态能量的一级近似值。已知:类氢离子的基态能量本征值和本征函数分别为

$$E_n = -\frac{Z^2 e^2}{2a}, \quad \psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a}\right)^{3/2} e^{-\frac{Zr}{a}}$$

解 类氢离子的 Hamilton 量为

$$\hat{H}_0 = -\frac{\hbar^2}{2\mu}\nabla^2 - \frac{Ze^2}{r}$$

当 $Z \rightarrow Z + 1$ 时,体系的 Hamilton 量变为

$$\hat{H} = -\frac{\hbar^2}{2\mu}\nabla^2 - \frac{(Z+1)e^2}{r} = -\frac{\hbar^2}{2\mu}\nabla^2 - \frac{Ze^2}{r} - \frac{e^2}{r} = \hat{H}_0 + \hat{H}'$$

其中

$$\hat{H}' = -\frac{e^2}{r}$$

因此,能量的一级修正值

$$E^{(1)} = \hat{H}'_{11} = (\psi_{100}, \hat{H}'\psi_{100}) = -\frac{e^2}{\pi} \frac{Z^3}{a^3} \iiint \frac{1}{r} e^{-\frac{2Zr}{a}} d^3r$$

$$= -\frac{e^2 Z^3}{\pi a^3} \iiint \frac{1}{r} e^{-\frac{2Zr}{a}} r^2 dr \sin\theta d\theta d\varphi$$

$$= -\frac{e^2 Z^3}{\pi a^3} 4\pi \int_0^\infty r e^{-\frac{2Zr}{a}} dr = -\frac{Ze^2}{a}$$

在计算中利用了积分公式 $\int_0^\infty x e^{-2\alpha x} dx = \frac{1}{4\alpha^2}$.

能量变化的精确值为

$$E_0(Z+1) - E_0(Z) = -\frac{e^2}{2a}[(Z+1)^2 - Z^2] = -\frac{e^2}{a}(Z+\frac{1}{2})$$

我们看到, Z 越大, 微扰计算的结果越接近精确值。

9. 设一维谐振子的 Hamilton 量为

$$\hat{H} = \hat{H}_{\scriptscriptstyle 0} + \hat{H}'$$

其中,

$$\hat{H}_0 = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}kx^2, \quad \hat{H}' = k\lambda x$$

试用微扰方法计算基态能量的一级近似值,并与精确值加以比较。

解 先求精确解。谐振子的能量本征值方程为

$$\left[-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2}k(x^2 + 2\lambda x)\right]\psi(x) = E\psi(x)$$

此方程可以改写成

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + \frac{1}{2}k[(x+\lambda)^2 - \lambda^2]\psi = E\psi$$

或者

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + \frac{1}{2}k(x+\lambda)^2\psi = \left(E + \frac{1}{2}k\lambda^2\right)\psi$$

设 $y=x+\lambda$,则方程变为

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}^2\nu}+\frac{1}{2}ky^2\psi=E'\psi$$

这是一个标准的一维谐振子的能量本征值方程,其中

$$E' = E + \frac{1}{2}k\lambda^2 = \left(n + \frac{1}{2}\right)\hbar \,\omega, \quad n = 0, 1, 2, \cdots, \omega = \sqrt{\frac{k}{m}}$$

因此,谐振子的能量本征值

$$E = \left(n + \frac{1}{2}\right)\hbar \omega - \frac{1}{2}k\lambda^2$$

如果用微扰法计算,则能量的一级修正值是

$$E_0^{(i)} = \hat{H}'_{00} = \langle 0 | \hat{H}' | 0 \rangle = k\lambda \langle 0 | x | 0 \rangle$$

利用

$$x|n\rangle = \frac{1}{\alpha} \left[\sqrt{\frac{n+1}{2}} \phi_{n+1} + \sqrt{\frac{n}{2}} \phi_{n-1} \right]$$

可看出, $k\lambda\langle 0|x|0\rangle = 0$,即能量的一级修正值为零(非零项只有 $\langle 1|x|0\rangle$ 项)。二级修正值

$$E_0^{(2)} = \frac{|\langle 1 | x | 0 \rangle|^2}{(\hbar \omega/2) - (3 \hbar \omega/2)} = -\frac{(k\lambda/\alpha \sqrt{2})^2}{\hbar \omega}$$
$$= -\frac{k^2 \lambda^2}{2m\omega^2} = -\frac{1}{2}k\lambda^2$$

因此,基态能量的二级近似值是

$$E = \frac{1}{2} \hbar \omega - \frac{1}{2} k \lambda^2$$

这一结果与基态能量的精确解相同,可见,基态能量的高阶修正值均为零。

10. 设非线性谐振子的 Hamilton 量 $\hat{H} = \hat{H}_0 + \hat{H}'$,其中

$$\hat{H}_0 = -\frac{\hbar^2}{2\mu} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2}\mu\omega^2 x^2$$

$$\hat{H}' = \beta x^3 \quad (\beta \ \text{为实常数})$$

求二级近似下的能量本征值和一级波函数。

解 无微扰 \hat{H}' 时, \hat{H} 。的本征值和本征函数为

$$E_n = \left(n + \frac{1}{2}\right)\hbar \ \omega$$

$$\psi_n(x) = N_n e^{-\frac{1}{2}a^2x^2} H_n(\alpha x), \quad \alpha = \sqrt{\frac{\mu\omega}{\hbar}}$$

能量的一级修正值

$$E^{(1)} = H'_{nn} = (\psi_n^{(0)}, \beta x^3 \psi_n^{(0)})$$

能量的二级修正值

$$E^{(2)} = \sum_{n}' \frac{|\langle k | \hat{H}' | n \rangle|^2}{E_k^{(0)} - E_n^{(0)}}$$

先计算矩阵元 $\langle k | \hat{H}' | n \rangle = \beta \langle k | x^3 | n \rangle$ 。利用公式

$$x\psi_{n} = \frac{1}{\alpha} \left[\sqrt{\frac{n+1}{2}} \psi_{n+1} + \sqrt{\frac{n}{2}} \psi_{n-1} \right]$$

得到,

$$x^{2} \psi_{n} = x(x\psi_{n}) = \frac{1}{\alpha} \left[\sqrt{\frac{n+1}{2}} x \psi_{n+1} + \sqrt{\frac{n}{2}} x \psi_{n-1} \right]$$

$$= \frac{1}{\alpha^{2}} \left\{ \sqrt{\frac{n+1}{2}} \left[\sqrt{\frac{n+2}{2}} \psi_{n+2} + \sqrt{\frac{n+1}{2}} \psi_{n} \right] + \sqrt{\frac{n}{2}} \left[\sqrt{\frac{n}{2}} \psi_{n} + \sqrt{\frac{n-1}{2}} \psi_{n-2} \right] \right\}$$

$$= \frac{1}{2\alpha^{2}} \left[\sqrt{(n+1)(n+2)} \psi_{n+2} + (2n+1)\psi_{n} + \sqrt{n(n-1)} \psi_{n-2} \right]$$

$$x^{3} \psi_{n} = \frac{1}{2\alpha^{2}} \left\{ \sqrt{(n+1)(n+2)} x \psi_{n+2} + \right\}$$

$$(2n+1)x\psi_{n} + \sqrt{n(n-1)}x\psi_{n-2}$$

$$= \frac{1}{2\sqrt{2}a^{3}} \left\{ \sqrt{(n+1)(n+2)(n+3)}\psi_{n+3} + 3(n+1)\sqrt{(n+1)}\psi_{n+1} + 3n\sqrt{n}\psi_{n-1} + \sqrt{n(n-1)(n-2)}\psi_{n-3} \right\}$$

因此

$$\langle k | \hat{H}' | n \rangle = \frac{\beta}{2 \sqrt{2} a^3} (\psi_k, x^3 \psi_n)$$

$$= \frac{\beta}{2 \sqrt{2} a^3} \{ \sqrt{(n+1)(n+2)(n+3)} \delta_{k,n+3} + 3(n+1) \sqrt{(n+1)} \delta_{k,n+1} + 3n \sqrt{n} \delta_{k,n-1} + \sqrt{n(n-1)(n-2)} \delta_{k,n-3} \}$$

由此可见,在矩阵元 $(k \mid \hat{H}' \mid n)$ 中,只有n = k - 3, n = k - 1, n = k + 1, n = k + 3的项不为零,因此得到

$$E^{(1)}=0$$

$$\begin{split} E^{(2)} &= \sum_{n}' \frac{|\langle k | \hat{H}' | n \rangle|^2}{E_{k}^{(0)} - E_{n}^{(0)}} \\ &= \frac{\beta^2}{8\alpha^6} \left[\frac{k(k-1)(k-2)}{E_{k}^{(0)} - E_{k-3}^{(0)}} + \frac{9k^3}{E_{k}^{(0)} - E_{k-1}^{(0)}} + \frac{9(k+1)^3}{E_{k}^{(0)} - E_{k+1}^{(0)}} + \frac{(k+1)(k+2)(k+3)}{E_{k}^{(0)} - E_{k+3}^{(0)}} \right] \end{split}$$

因为

$$E_{k}^{(0)} - E_{k-3}^{(0)} = \left(k + \frac{1}{2}\right)\hbar \,\omega - \left(k - 3 + \frac{1}{2}\right)\hbar \,\omega = 3 \,\hbar \,\omega$$

$$E_{k}^{(0)} - E_{k-1}^{(0)} = \left(k + \frac{1}{2}\right)\hbar \,\omega - \left(k - 1 + \frac{1}{2}\right)\hbar \,\omega = \hbar \,\omega$$

$$E_{k}^{(0)} - E_{k+1}^{(0)} = \left(k + \frac{1}{2}\right)\hbar \,\omega - \left(k + 1 + \frac{1}{2}\right)\hbar \,\omega = - \hbar \,\omega$$

$$E_{k}^{(0)} - E_{k+3}^{(0)} = \left(k + \frac{1}{2}\right)\hbar \,\omega - \left(k + 3 + \frac{1}{2}\right)\hbar \,\omega = - 3 \,\hbar \,\omega$$

所以

$$E^{(2)} = \frac{\beta^2}{8\alpha^6} \frac{1}{\hbar \omega} \left\{ \frac{1}{3} k(k-1)(k-2) + 9k^3 - 9(k+1)^3 - \frac{1}{3} (k+1)(k+2)(k+3) \right\}$$
$$= \frac{\beta^2}{8\alpha^6 \hbar \omega} (-30k^2 - 30k - 11)$$

因此,在二级近似下,能量本征值为

$$E_{k} = \left(k + \frac{1}{2}\right)\hbar \omega - \frac{\beta^{2}}{8\alpha^{6} \hbar \omega}(30k^{2} + 30k + 11)$$
$$= \left(k + \frac{1}{2}\right)\hbar \omega - \frac{\beta^{2} \hbar^{2}}{8\mu^{3}\omega^{4}}(30k^{2} + 30k + 11)$$

一级波函数:

$$\psi_{k} = \psi_{k}^{(0)} + \sum_{n}' \frac{\langle k \mid \hat{H}' \mid n \rangle}{E_{k}^{(0)} - \psi_{n}^{(0)}} \psi_{n}^{(0)}
= \psi_{k}^{(0)} + \frac{\beta}{2 \sqrt{2} \alpha^{3} \hbar \omega} \left\{ \frac{1}{3} \sqrt{k(k-1)(k-2)} \psi_{k}^{(0)}_{3} + 3k \sqrt{k} \psi_{k-1}^{(0)} - 3(k+1) \sqrt{k+1} \psi_{k+1}^{(0)} - \frac{1}{3} \sqrt{(k-1)(k-2)(k-3)} \psi_{k+3}^{(0)} \right\}
= \psi_{k}^{(0)} + \frac{\beta}{6 \sqrt{2} \alpha^{3} \hbar \omega} \left\{ \sqrt{k(k-1)(k-2)} \psi_{k-3}^{(0)} + 9k \sqrt{k} \psi_{k-1}^{(0)} - 9(k+1) \sqrt{k+1} \psi_{k+1}^{(0)} - \sqrt{(k-1)(k-2)(k-3)} \psi_{k+3}^{(0)} \right\}$$

11. 考虑耦合谐振子,其 Hamilton 量为

$$\hat{H} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + \frac{1}{2} m \omega^2 (x_1^2 + x_2^2) - \lambda r_1 x_2$$
$$= \hat{H}_0 + \hat{H}'$$

微扰项 $\hat{H}' = -\lambda x_1 x_2 = \lambda \hat{w}$ 中的 λ 为实常数,表示耦合强度。

- (1) 写出 II_0 的本征值的表达式。
- (2) 在一级近似下,求第一激发态的能量。

解 (1) \hat{H}_{o} 的本征值为两个独立谐振子的能量和,因此,

$$E = \left(n_1 + \frac{1}{2}\right)\hbar \omega + \left(n_2 + \frac{1}{2}\right)\hbar \omega, \quad n_1, n_2 = 0, 1, 2, \dots$$

= $(N+1)\hbar \omega, \quad N = n_1 + n_2 = 0, 1, 2, \dots$

 \hat{H}_{o} 的波函数为(本征函数)

$$\psi_{n_1 n_2}^{(0)}(x_1 x_2) = \psi_{n_1}^{(0)}(x_1) \psi_{n_2}^{(0)}(x_2)$$

(2) 对第一激发态 (N=1), 由于 $N=1=n_1+n_2=$ $\begin{cases} 1+0\\ 0+1 \end{cases}$ 两种可能,即第一激发态是二重简并的,第一激发态的能

量本征值 $E_1=2\hbar\omega$,本征函数为

$$\begin{cases} \psi_{01}^{(0)}(x_1x_2) = \psi_0^{(0)}(x_1)\psi_1^{(0)}(x_2) \\ \psi_{10}^{(0)}(x_1x_2) = \psi_1^{(0)}(x_1)\psi_0^{(0)}(x_2) \end{cases}$$

利用简并微扰论,先计算 $\hat{w} = -x_1x_2$ 的矩阵元,由

$$\hat{w} = -\begin{bmatrix} (\psi_{01}, \hat{w} \, \psi_{01}) & (\psi_{01}, \hat{w} \, \psi_{10}) \\ (\psi_{10}, \hat{w} \, \psi_{01}) & (\psi_{10}, \hat{w} \, \psi_{10}) \end{bmatrix}$$

因为

$$w_{01,01} = - (\psi_{01}, \hat{w} \, \psi_{01})$$

$$= - (\psi_{0}(x_{1})\psi_{1}(x_{2}), x_{1}x_{2}\psi_{0}(x_{1})\psi_{1}(x_{2}))$$

$$= - (\psi_{0}(x_{1}), x_{1}\psi_{0}(x_{1}))(\psi_{1}(x_{2}), x_{2}\psi_{1}(x_{2}))$$

$$= - (x_{1})_{00}(x_{2})_{11}$$

$$w_{01,10} = - (\psi_{0}(x_{1}), x_{1}\psi_{1}(x_{1}))(\psi_{1}(x_{2}), x_{2}\psi_{0}(x_{2}))$$

$$= - (x_{1})_{01}(x_{2})_{10}$$

$$w_{10,01} = - (\psi_{1}(x_{1}), x_{1}\psi_{0}(x_{1}))(\psi_{0}(x_{2}), x_{2}\psi_{1}(x_{2}))$$

$$= - (x_{1})_{10}(x_{2})_{01}$$

$$w_{10,10} = - (\psi_{1}(x_{1}), x_{1}\psi_{0}(x_{1}))(\psi_{1}(x_{2}), x_{2}\psi_{0}(x_{2}))$$

$$= - (x_{1})_{10}(x_{2})_{10}$$

谐振子在能量表象中,x 的矩阵元

$$x_{mn} = \frac{1}{\alpha} \left[\sqrt{\frac{n+1}{2}} \delta_{m,n+1} + \sqrt{\frac{n}{2}} \delta_{m,n-1} \right]$$

由此得

$$x_{00} = x_{11} = 0$$
, $x_{10} = x_{01} = \frac{1}{\alpha} \sqrt{\frac{1}{2}}$ $w_{01.10} = w_{10.10} = 0$, $w_{01.01} = w_{10.01} = -\frac{1}{2\alpha^2} = -\frac{\hbar}{2m\omega}$

因此,

$$\mathbf{w} = -\frac{\hbar}{2m\omega} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

设 ω 的本征值为 $E^{(1)}$,则久期方程为

$$\begin{vmatrix} -E^{(1)} & -\frac{\hbar}{2m\omega} \\ -\frac{\hbar}{2m\omega} & -E^{(1)} \end{vmatrix} = 0$$

由此得到

$$E^{(1)} = \pm \frac{\hbar}{2m\omega}$$

因此,在一级近似下,第一激发态的能量本征值为

$$E = E_1^{(0)} + E_1^{(1)} = 2 \hbar \omega \pm \frac{\lambda \hbar}{2m\omega}$$

可见,简并全部被解除。

12. 设一维谐振子的 Hamilton 量 $\hat{H}_0 = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2}kx^2$,求该谐振子受到微批 $\hat{H}' = \frac{1}{2}\lambda x^2 (\lambda \ll k)$ 时,谐振子基态能量的一级修正值,并说明这一修正值是 $\hat{H} = \hat{H}_0 + \hat{H}' = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2}(k+\lambda)x^2$ 本征值方程的精确解按 λ 展开式的一次幂项。

解 没有微扰作用时, 户。的本征值与本征函数为

$$E_0^{(0)} = \left(n + \frac{1}{2}\right)\hbar \ \omega_0, \quad \omega_0 \equiv \sqrt{\frac{k}{m}}$$

$$\psi_n^{(0)} = N_n e^{-\frac{1}{2}a^2x^2} H_n(\alpha x), \quad \alpha = \sqrt{\frac{m\omega_0}{\hbar}}$$

微扰 Î! 作用后,谐振子基态能量的--级修正值为

$$E^{(1)} = \hat{H}_{00} = (\phi_0, \hat{H}'\phi_0)$$

因为基态波函数 $\psi_0 = N_n \mathrm{e}^{-\frac{1}{2}a^2x^2} H_0(\alpha x) = N_n \mathrm{e}^{-\frac{1}{2}a^2x^2}$,因此,

$$\begin{split} E^{(1)} &= N_n^2 \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2}\alpha^2 x^2} \, \frac{1}{2} \lambda x^2 \mathrm{d}x = \frac{\lambda N_n^2}{2} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2}\alpha^2 x^2} x^2 \mathrm{d}x \\ &= \frac{\lambda}{2} \, \frac{N_n^2}{\alpha^3} \int_{0}^{\infty} \mathrm{e}^{-\frac{1}{2}y^2} y^2 \mathrm{d}y = \frac{\lambda N_n^2}{\alpha^3} \, \frac{\sqrt{\pi}}{4}, \quad (y \equiv \alpha x) \end{split}$$

把 $N_n = \left[\frac{\alpha}{\sqrt{\pi} \, 2^n n!}\right]^{1/2}$ 和 $\alpha = \sqrt{\frac{m\omega_0}{h}}$ 代入后得基态能量的一级修正值

$$E^{(1)} = \frac{\lambda h}{4m\omega_0}$$

 $\hat{H} = \hat{H}_0 + \hat{H}'$ 的本征值方程的解(能量本征值) 应为

$$E_n = \left(n + \frac{1}{2}\right)\hbar \ \omega$$

其中,

$$\omega = \sqrt{\frac{k+\lambda}{m}} = \sqrt{\frac{k}{m} \left(1 + \frac{\lambda}{k}\right)} = \sqrt{\frac{k}{m}} \left(1 + \frac{\lambda}{k}\right)^{\frac{1}{2}}$$

由于 $\lambda \ll k, \omega$ 可以按 λ 的幂展开:

$$\omega = \sqrt{\frac{k}{m}} \left(1 + \frac{\lambda}{2k} - \frac{\lambda^2}{8k^2} + \cdots \right)$$

所以

$$E_n = \left(n + \frac{1}{2}\right)\hbar \ \omega = \left(n + \frac{1}{2}\right)\hbar \ \sqrt{\frac{k}{m}}\left(1 + \frac{\lambda}{2k} - \frac{\lambda^2}{8k^2} + \cdots\right)$$

$$= \left(n + \frac{1}{2}\right)h \,\omega_0 \left(1 + \frac{\lambda}{2k} - \frac{\lambda^2}{8k^2} + \cdots\right)$$

由此可见,基态能量(n=0),

$$E_{\scriptscriptstyle 0} = rac{1}{2} \, \hbar \, \omega_{\scriptscriptstyle 0} + rac{\hbar \, \omega_{\scriptscriptstyle 0}}{4k} \lambda - rac{\hbar \, \omega_{\scriptscriptstyle 0}}{16k^2} \lambda^2 + \cdots$$

此展开式 λ 的一次幂项 $\frac{h \omega_0}{4k} \lambda = \frac{\lambda \hbar}{4m\omega_0}$, (因为 $k = m\omega_0^2$), 这正是前面给出的能量的一级修正值 $E^{(1)}$ 。

13. 设一量子体系的 Hamilton 量为 $\hat{H} = \hat{H}_0 + \hat{H}'$,其中:

$$\hat{H}_{\scriptscriptstyle 0} = egin{bmatrix} E_1 & 0 \ 0 & E_2 \end{bmatrix}, \quad \hat{H}' = egin{bmatrix} a & b \ b & a \end{bmatrix}$$

 $a,b \ll 1$ 的实数。

求在二级近似下的能量本征值,并与精确解比较。

解 该量子体系为二能级体系, \hat{H}_0 的能量本征值为 E_1 和 E_2 ,相应的本征矢量为

微扰 ÎI' 作用后,两个能级能量的一级修正值分别为

$$E_1^{(1)} = \hat{H}_{11}' = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = a$$

$$E_2^{(1)} = \hat{H}_{22}' = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = a$$

可见, \hat{H}' 中的对角线上的元素 α 就是能量的一级修正值。

二级修正值:

$$E_1^{(2)} = \frac{|\dot{H}'_{12}|^2}{E_1 - E_2} = \frac{b^2}{E_1 - E_2}$$

同理可得,

$$E_z^{(2)} = \frac{b^2}{E_z - E_1}$$

因此,在二级近似下,两个能级的能量分别为

$$\begin{cases} E = E_1 + E_1^{(1)} + E_1^{(2)} = E_1 + a + \frac{b^2}{E_1 - E_2} \\ E = E_2 + E_2^{(1)} + E_2^{(2)} = E_2 + a + \frac{b^2}{E_2 - E_1} \end{cases}$$

 $\hat{H} = \hat{H}_0 + \hat{H}'$ 的本征值方程的精确解:本征值方程为

$$\hat{H}\psi = E\psi$$

即

$$\begin{bmatrix} E_1 + a - E & b \\ b & E_2 + a - E \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} = 0$$

久期方程为

$$\begin{vmatrix} E_1 + a - E & b \\ b & E_2 + a - E \end{vmatrix} = 0$$

由此得

$$[E_1 + (a - E)][E_2 + (a - E)] - b^2 = 0$$

设a-E=x,则此方程化为

$$x^2 + (E_1 + E_2)x + E_1E_2 - b^2 = 0$$

所以

$$x = \frac{1}{2} \Big[- (E_1 + E_2) \pm \sqrt{(E_1 + E_2)^2 - 4(E_1 E_2 - b^2)} \Big]$$

从而

$$E = a + \frac{1}{2} \left[(E_1 + E_2) \mp \sqrt{(E_1 - E_2)^2 + 4b^2} \right]$$

$$= a + \frac{1}{2} \left[(E_1 + E_2) \mp (E_1 - E_2) \sqrt{1 + \left(\frac{2b}{E_1 - E_2}\right)^2} \right]$$

当 $|b/(E_1-E_2)| \ll 1$ 时,

$$\left[1 + \left(\frac{2b}{E_1 - E_2}\right)^2\right]^{\frac{1}{2}} = 1 + \frac{1}{2}\left(\frac{2b}{E_1 - E_2}\right)^2 - \cdots$$

因此,

$$E = a + E_1 + \frac{b^2}{E_1 - E_2} + \cdots$$

或

$$E = a + E_2 + \frac{b^2}{E_2 - E_1} + \cdots$$

可见上面解出的能量二级近似解正是精确解的前三项之和。

14. 设一量子体系的 Hamilton 量为

$$\hat{H} = \begin{bmatrix} E_1 & a_1 & a_2 \\ a_1^* & E_2 & a_3 \\ a_2^* & a_3^* & E_3 \end{bmatrix}$$

而且, $|a_1|^2$, $|a_2|^2$, $|a_3|^2 \ll 1$,试利用微扰法计算体系能量的 1.2 级修正值。

解 先把 Hamilton 量分解成 $\hat{H} = \hat{H}_0 + \hat{H}'$,其中

$$\hat{H}_0 = \begin{bmatrix} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{bmatrix}, \quad \hat{H}' = \begin{bmatrix} 0 & a_1 & a_2 \\ a_1^* & 0 & a_3 \\ a_2^* & a_3^* & 0 \end{bmatrix}$$

很容易看出,能量的一级修正值

$$E_1^{(1)} = H_{11}' = 0, E_2^{(1)} = H_{22}' = 0, E_3^{(1)} = H_{33}' = 0$$

二级修正值

$$E_1^{(2)} = \frac{|H'_{12}|^2}{E_1 - E_2} + \frac{|H'_{13}|^2}{E_1 - E_3} = \frac{|a_1|^2}{E_1 - E_2} + \frac{|a_2|^2}{E_1 - E_3}$$

$$E_2^{(2)} = \frac{|a_1|^2}{E_2 - E_1} + \frac{|a_3|^2}{E_2 - E_3}, \quad E_3^{(2)} = \frac{|a_2|^2}{E_3 - E_1} + \frac{|a_3|^2}{E_3 - E_2}$$

15. 设一维无限深势阱(0 < x < a) 中运动的粒子受到微扰

$$\hat{H}'(x) = \begin{cases} \frac{2\lambda}{a}x, & 0 < x < \frac{a}{2} \\ \frac{2\lambda}{a}(a-x), & \frac{a}{2} < x < a \end{cases}$$

求基态(n=1)能量的一级修正值。

解 我们知道,没有微扰作用时,一维无限深势阱中运动粒子的能量本征值与本征函数分别为

$$E_n = \frac{\pi^2 \, \hbar^2 n^2}{2ma^2}, \quad n = 1, 2, 3, \cdots$$

$$\psi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi}{a} x, \quad (0 < x < a)$$

受到微扰Ĥ'的作用后,基态能量的一级修正值为

$$\begin{split} E^{(1)} &= H'_{11} = (\psi_1, \hat{H}'\psi_1) = \int_0^{\frac{a}{2}} \psi_1^* \; \hat{H}'\psi_1 \mathrm{d}x + \int_{\frac{a}{2}}^a \psi_1^* \; \hat{H}'\psi_1 \mathrm{d}x \\ &= \frac{2\lambda}{a} \frac{2}{a} \int_0^{\frac{a}{2}} x \sin^2 \frac{\pi}{a} x \mathrm{d}x + \frac{2\lambda}{a} \frac{2}{a} \int_{\frac{a}{2}}^a (a - x) \sin^2 \frac{\pi}{a} x \mathrm{d}x \\ &= \frac{2\lambda}{a^2} \int_0^a x \left(1 - \cos \frac{2\pi}{a} x \right) \mathrm{d}x + \frac{2\lambda}{a^2} \int_{\frac{a}{2}}^a (a - x) \left(1 - \cos \frac{2\pi}{a} x \right) \mathrm{d}x \\ &= \frac{2\lambda}{a^2} \left(\frac{1}{4} a^2 + \frac{a^2}{\pi^2} \right) = \lambda \left(\frac{1}{2} + \frac{2}{\pi^2} \right) \end{split}$$

16. 如果把氢原子核看作一个半径为 r。的均匀带电球体,则由 于隧穿效应,电子可以按一定的几率出现在核(球体)内。此时,由于球体内电势 φ的作用,电子将受到微扰

$$\hat{H}' = e\varphi = \begin{cases} 0, & r > r_0 \\ -\frac{3}{2} \frac{e^2}{r_0} + \frac{1}{2} \frac{e^2 r^2}{r_0^3} + \frac{e^2}{r}, & r < r_0 \end{cases}$$

求,氢原子基态(1s态)能级的一级修正值。

解 不考虑微批 \hat{H}' 的作用时,氢原子的基态波函数:

$$\psi^{(0)} = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0} \right)^{3/2} e^{-r/a_0} \quad (a_0 \text{ Bohr } \text{#} \text{@})$$

因此,当微扰 \hat{H}' 作用后(在 $r < r_0$ 区),能量的一级修正值为

$$E^{(1)} = H'_{00} = (\psi^{(0)}, \hat{H}'\psi^{(0)})$$

在 $r > r_0$ 区的能级不受到影响,而在 $r < r_0$ 区,

$$\begin{split} E^{(1)} &= \iiint \psi^{*}{}^{(0)} \, \hat{H}' \psi^{(0)} \mathrm{d}^3 r \\ &= \frac{1}{\pi a_0^3} \int_0^r \mathrm{e}^{-\frac{2r}{a_0}} \left(\frac{e^2}{r} - \frac{3}{2} \frac{e^2}{r_0} + \frac{1}{2} \frac{e^2 r^2}{r_0^3} \right) 4\pi r^2 \mathrm{d}r \\ &= \frac{4e^2}{a_0^3} \int_0^{r_0} \mathrm{e}^{-\frac{2r}{a_0}} \left(\frac{1}{r} - \frac{3}{2r_0} + \frac{r^2}{2r_0^3} \right) r^2 \mathrm{d}r \end{split}$$

由于 $r_0 \ll a_0$, $r < r_0$, 可取 $e^{-\frac{2r}{r_0}} \ll 1$, 因此

$$\begin{split} E^{(1)} &= \frac{4e^2}{a_0^3} \int_0^{r_0} \left(r - \frac{3}{2r_0} r^2 + \frac{r^4}{2r_0^3} \right) \mathrm{d}r \\ &= \frac{4e^2}{a_0^3} \left(\frac{r^2}{2} - \frac{r^3}{2r_0} + \frac{r^5}{10r_0^3} \right) \Big|_0^{r_0} \\ &= \frac{4e^2}{a_0^3} \left(\frac{r_0^2}{2} - \frac{r_0^2}{2} + \frac{r_0^2}{10} \right) = \frac{2}{5} \frac{e^2 r_0^2}{a_0^3} \end{split}$$

由此得到,球体内电子的基态能量在一级近似下的值

$$E = E_0 + E^{(1)} = \frac{e^2}{2a_0} + \frac{2}{5} \frac{e^2 r_0^2}{a_0^3}$$

17. 设一个有微批体系的 Hamilton 量为

$$\hat{H} = \begin{bmatrix} E_1 & 0 & \lambda_1 \\ 0 & E_2 & \lambda_2 \\ \lambda_1^* & \lambda_2^* & E_3 \end{bmatrix} = \hat{H}_0 + \hat{H}', \quad (E_1 < E_2 < E_3)$$

其中, \hat{H} 。是对角化的,而

$$\hat{H}' = \begin{bmatrix} 0 & 0 & \lambda_1 \\ 0 & 0 & \lambda_2 \\ \lambda_1^* & \lambda_2^* & 0 \end{bmatrix}$$

求:微扰并'的作用下,能量的二级修正值。

解 由题意, \hat{H}_0 是对角化的,且 $E_1 \neq E_2 \neq E_3$,无简并,可以

用非简并微扰论。能量的二级修正值为

$$E^{(2)} = \sum_{n}' \frac{|\langle k | \hat{H}' | n \rangle|^{2}}{E_{k}^{(0)} - E_{n}^{(0)}}$$

因此,对 E_1 的修正值为

$$E_1^{(2)} = \frac{|\langle 1 | \hat{H}' | 2 \rangle|^2}{E_1 - E_2} + \frac{|\langle 1 | \hat{H}' | 3 \rangle|^2}{E_1 - E_3} = \frac{|\lambda_1|^2}{E_1 - E_3}$$

对 E_2 的修正值为

$$E_{2}^{(2)} = \frac{|\langle 1 | \hat{H}' | 2 \rangle|^{2}}{E_{2} - E_{1}} + \frac{|\langle 3 | \hat{H}' | 2 \rangle|^{2}}{E_{2} - E_{3}} = \frac{|\lambda_{2}|^{2}}{E_{2} - E_{3}}$$

对 E_s 的修正值为

$$E_3^{(2)} = \frac{|\langle 1 | \hat{H}' | 3 \rangle|^2}{E_3 - E_1} + \frac{|\langle 2 | \hat{H}' | 3 \rangle|^2}{E_3 - E_2} = \frac{|\lambda_1|^2}{E_3 - E_1} + \frac{|\lambda_2|^2}{E_3 - E_1}$$

18. 已知一维谐振子的能量本征值和本征函数分别为

$$E_n = \left(n + \frac{1}{2}\right)\hbar \,\omega, \quad n = 0, 1, 2, \cdots$$

$$\psi_n(\alpha x) = N_n e^{-\frac{1}{2}\sigma^2 x^2} H_n(\alpha x)$$

求:(1)在微扰 $\hat{H}' = V_0 \delta(\alpha x)$ 的作用下,谐振子的各个能级能量的一级修正值。如果必要可利用:

$$H_{2n}(0) = (-1)^n \frac{(2n)!}{2}, \quad H_{2n+1}(0) = 0$$

(2) 在微批 $\hat{H}' = V_0 \delta(\alpha(x - \alpha))$ 的作用下,第 k 个能级能量的一级修正值。

解 (1) 考虑第 & 个能级能量的一级修正值。则

$$E_k^{(1)} = \hat{H}'_{kk} = (\phi_k, \hat{H}' \phi_k)$$

$$= \int_{-\infty}^{\infty} N_k^2 e^{-a^2 x^2} H_k^2(\alpha x) V_0 \delta(\alpha x) dx$$

$$= \frac{N_k^2 V_0}{\alpha} \int_{-\infty}^{\infty} e^{-a^2 x^2} H_k^2(\alpha x) \delta(\alpha x) d(\alpha x)$$

$$=\frac{N_k^2V_0}{\alpha}H_k^2(0)$$

当 k=2n+1,即 k 为奇数时,由于 $H_{2n+1}=0$, $E_{2n+1}^{(1)}=0$,不受微扰的影响。当 k=2n,即 k 为偶数时,由于 $H_{2n}(0)=(-1)^n\frac{(2n)!}{n!}$ 能量的一级修正值为

$$E_{2n}^{(1)} = (-1)^n \frac{N_{2n}^2 V_0}{\alpha} \frac{(2n)!}{n!}, \quad n = 0, 1, 2, 3, \cdots$$

(2) $\hat{H}' = V_0 \delta(\alpha(x - \alpha))$ 时,第 k 能级能量的一级修正值为

$$\begin{split} E_{k}^{(1)} &= \hat{H}_{kk}^{I} = N_{k}^{2} V_{0} \int_{-\infty}^{\infty} \mathrm{e}^{-a^{2}x^{2}} H_{k}^{2}(\alpha x) \delta(\alpha (x - \alpha)) \mathrm{d}x \\ &= \frac{N_{k}^{2} V_{0}}{\alpha} \int_{-\infty}^{\infty} \mathrm{e}^{-a^{2}x^{2}} H_{k}^{2}(\alpha x) \delta(x - \alpha) \mathrm{d}x \\ &= \frac{N_{k}^{2} V_{0}}{\alpha} \mathrm{e}^{-a^{4}} H_{k}^{2}(\alpha^{2}) \end{split}$$

19. 两个质量均为 m 的粒子束缚在边长为 a,b,c 的长方体盒子中运动,两个粒子间的相互作用势能

$$V(\mathbf{r}_1,\mathbf{r}_2) = A\delta^3(\mathbf{r}_1 - \mathbf{r}_2)$$

不考虑粒子的自旋,求体系基态能量本征值的一级近似值。

解 不考虑两个粒子间的相互作用时,体系基态的能量本征 值和本征函数分别为

$$E_0 = \frac{h^2 \pi^2}{2m} \left[\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \right]$$

$$\psi_0(\mathbf{r}_1,\mathbf{r}_2) = \begin{cases} 0, & \text{盒子外} \\ \frac{8}{abc}\sin\frac{\pi x_1}{a}\sin\frac{\pi x_2}{a}\sin\frac{\pi y_1}{b}\sin\frac{\pi y_2}{c}\sin\frac{\pi z_1}{c}\sin\frac{\pi z_2}{c}, & \text{盒子内} \end{cases}$$

因此,相互作用能

$$H' = V(\mathbf{r}_1, \mathbf{r}_2) = A\delta^3(\mathbf{r}_1 - \mathbf{r}_2)$$

所导致的基态能量的一级修正值

$$\Delta E = \langle \psi_0 | H' | \psi_0 \rangle = A \int \psi_0^2(\mathbf{r}_1, \mathbf{r}_2) \delta^3(\mathbf{r}_1 - \mathbf{r}_2) d^3 \mathbf{r}_1 d^3 \mathbf{r}_2$$

$$= A \int \psi_0^2(\mathbf{r}_1) d^3 \mathbf{r}_1$$

$$= A \int \int \int \int \sin^4 \frac{\pi x_1}{a} \sin^4 \frac{\pi y_1}{b} \sin^4 \frac{\pi z_1}{c} dx_1 dy_1 dz_1 = \frac{27A}{8abc}$$

所以

$$E = E_0 + \Delta E = \frac{\hbar^2 \pi^2}{m} \left[\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \right] + \frac{27A}{8abc}$$

20. 三维各向同性谐振子的第一激发态是三重简并的。用微扰法计算,当微扰 II' = cxy 时的第一激发态能量的一级修正值。

解 当没有微扰存在时,三维谐振子的能量本征值

$$E_n = \left(n_x + n_y + n_z + \frac{3}{2}\right)\hbar \,\omega, \quad n_x, n_y, n_z = 0, 1, 2, \cdots$$

相应的本征函数为

$$\psi_n(xyz) = \psi_{n_x}(x)\psi_{n_y}(y)\psi_{n_z}(z)$$

第一激发态的能量本征值

$$E_1 = \left(1 + \frac{3}{2}\right)\hbar \ \omega = \frac{5}{2} \ \hbar \ \omega$$

相应的三重简并态为

$$\psi_{1}(xyz) = \begin{cases} \psi_{1}(x)\psi_{0}(y)\psi_{0}(z) \\ \psi_{0}(x)\psi_{1}(y)\psi_{0}(z) \\ \psi_{0}(x)\psi_{0}(y)\psi_{1}(z) \end{cases}$$

因第一激发态是简并的,要用简并微扰理论计算能量修正值。由于 微扰 H' = cxy 只对 x,y 方向振动有影响,对 z 方向无影响,因此, H' 可表示为矩阵(参见第 9 章习题第 11 题)

$$H' = \frac{\hbar c}{2m\omega} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

很容易求出 H' 的本征值为 0,土 $\frac{\hbar c}{2m\omega}$ 。因此得到第一激发态的能级分裂成三条

$$E = \begin{cases} E_1 + \frac{\hbar c}{2m\omega} = \frac{5}{2} \hbar \omega + \frac{\hbar c}{2m\omega} \\ E_1 = \frac{5}{2} \hbar \omega \\ E_1 - \frac{\hbar c}{2m\omega} = \frac{5}{2} \hbar \omega - \frac{\hbar c}{2m\omega} \end{cases}$$

21. 电子偶素(正、负电子的束缚态)可看作类氢体系。基态电子偶素(l=0)的 Hamilton 量可以写成

$$\hat{H} = \hat{H}_0 + \hat{H}_s$$

其中, Îl。代表不考虑自旋时的类氢体系的 Hamilton 量, 而

$$\hat{H}_s = A \,\hat{\mathbf{S}}_p \cdot \hat{\mathbf{S}}_e$$

代表正电子(positron)和电子(electron)的自旋-自旋相互作用能量,A为常数。求 \hat{H} ,对电子偶素基态能量的修正值。

解 因为

$$\hat{H}_s = A \,\hat{\mathbf{S}}_p \cdot \hat{\mathbf{S}}_c = \frac{A}{2} [\hat{\mathbf{S}}^z - \hat{\mathbf{S}}_p^z - \hat{\mathbf{S}}_c^z]$$

其中, $\hat{S} = \hat{S}_{\mu} + \hat{S}_{\mu}$ 。因为轨道角动量量子数 l = 0,可选取[\hat{H} , \hat{S}^2 , \hat{S}_{μ}] 为力学量完全集,它们的共同本征矢量记作 [ss,),则

① If
$$l = 0$$
, $s = s_p + s_r = \frac{1}{2} + \frac{1}{2} = 1$ 的态,

$$\hat{H}_s | ss_z \rangle = \frac{A}{2} [\hat{S}^2 - \hat{S}_p^2 - \hat{S}_r^2] | ss_z \rangle$$

$$= \frac{A}{2} \{ s(s+1) \, \hbar^2 - s_p(s_p+1) \, \hbar^2 - s_r(s_r+1) \, \hbar^2 \} | ss_z \rangle$$

$$= \frac{A}{2} \{ 1(1+1) \, \hbar^2 - 2 \cdot \frac{1}{2} \left(1 + \frac{1}{2} \right) \hbar^2 \} | ss_z \rangle$$

$$=\frac{A}{4}\,\hbar^2\,|ss_{\tau}\rangle$$

因此,自旋-自旋相互作用导致的基态能量变化 $\Delta E = \frac{A}{4} \hbar^2$ 。

② 対
$$l = 0$$
, $s = s_p + s_r = \frac{1}{2} - \frac{1}{2} = 0$ 态,

$$\hat{H}_s | ss_z \rangle = \frac{A}{2} [\hat{S}^2 - \hat{S}_p^2 - \hat{S}_r^2] | ss_z \rangle$$

$$= \frac{A}{2} \Big\{ -2 \cdot \frac{1}{2} \Big(1 + \frac{1}{2} \Big) \hbar^2 \Big\} | ss_z \rangle$$

$$= -\frac{3A}{4} \hbar^2 | ss_z \rangle$$

因此,基态能量变化 $\Delta E = -\frac{3A}{4}\hbar^2$ 。

22. 在阱宽为 a 的一维无限深方势阱内放入两个质量均为 m 的无自旋粒子,两个粒子之间的相互作用势 $V(x_1,x_2) = V_0 \delta(x_1 - x_2)$,求粒子体系基态能量的一级近似值。

解 不考虑两个粒子的相互作用时,体系的 Hamilton 量为

$$\tilde{H} = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x_1^2} - \frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x_2^2} + V(x_1) + V(x_2)$$

体系的能量本征值和本征函数分别为

$$E_{n_1,n_2} = \frac{\hbar^2 \pi^2}{2ma^2} (n_1^2 + n_2^2), \quad n_1,n_2 = 1,2,3,\cdots$$

$$\psi_{n_1,n_2}(x_1x_2) = \psi_{n_1}(x_1)\psi_{n_2}(x_2) = \frac{2}{a}\sin\frac{n_1\pi}{a}x_1\sin\frac{n_2\pi}{a}x_2$$

对于基态 $(n_1 = n_2 = 1)$,能量本征值

$$E_{11}=\frac{\hbar^2\pi^2}{ma^2}$$

微扰 $H' = V_0 \delta(x_1 - x_2)$ 导致的基态能量的一级修正值为

$$\Delta E = H'_{11} = \langle \psi_{11} | V_0 \delta(x_1 - x_2) | \psi_{11} \rangle$$

$$= \frac{4V_0}{a^2} \int_{0.0}^{a} \sin^2 \frac{\pi x_1}{a} \sin^2 \frac{\pi x_2}{a} \delta(x_1 - x_2) dx_1 dx_2$$

$$= \frac{4V_0}{a^2} \int_0^a \sin^4 \frac{\pi x_1}{a} dx_1 = \frac{4V_0}{a^2} \cdot \frac{3a}{8} = \frac{3V_0}{2a}$$

23. 两个质量为 m 的粒子束缚在一维谐振子势 $V = \frac{1}{2}Kx^2$ 中运动。两个粒子的相互作用吸引力 $F_{12} = -k(x_1 - x_2)$,(k < K),求体系的能量本征值。

解 两个粒子的相互作用势能

$$V_{12} = -\int F_{12} d(x_1 - x_2) = \frac{1}{2} k(x_1 - x_2)^2$$

因此,体系的 Hamilton 量为

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x_1^2} - \frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x_2^2} + \frac{1}{2} K x_1^2 + \frac{1}{2} K x_2^2 + \frac{1}{2} k (x_1 - x_2)^2$$

(1) 精确解:设

$$X_1 = \frac{1}{\sqrt{2}}(x_1 + x_2), \quad X_2 = \frac{1}{\sqrt{2}}(x_1 - x_2)$$

则体系的 Hamilton 量可改写为

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}X_1^2} - \frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}X_2^2} + \frac{1}{2}KX_1^2 + \frac{1}{2}(K+2k)X_2^2$$

因此,我们立刻得到体系的能量本征值为

$$E_{n_1 n_2} = \left(n_1 + \frac{1}{2}\right)\hbar \ \omega_1 + \left(n_2 + \frac{1}{2}\right)\hbar \ \omega_2, \quad n_1, n_2 = 1, 2, 3, \cdots$$
其中,

$$\omega_1 = \sqrt{\frac{K}{m}}$$
, $\omega_2 = \sqrt{\frac{K+2k}{m}}$

(2) 近似解:把原 Hamilton 量改写成

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx_1^2} - \frac{\hbar^2}{2m} \frac{d^2}{dx_2^2} + \frac{1}{2}Kx_1^2 + \frac{1}{2}Kx_2^2 + \frac{1}{2}kx_1^2 + \frac{1}{2}kx_1^2 + \frac{1}{2}kx_1^2 - kx_1x_2$$

$$= -\frac{\hbar^2}{2m} \frac{d^2}{dx_1^2} - \frac{\hbar^2}{2m} \frac{d^2}{dx_2^2} + \frac{1}{2}(K+k)x_1^2 + \frac{1}{2}(K+k$$

$$\frac{1}{2}(K+k)x_2^2 - kx_1x_2$$

$$= \hat{H}_0 + \hat{H}'$$

其中,

$$\hat{H}' = -kx_1x_2$$

把 \hat{H}' 作为微扰,我们可以计算体系能量的近似值,其方法见第 9章习题第 17 题和第 20 题。

- 24. 有一量子体系,其 Hamilton 量为 \hat{H}_0 ,并已知 \hat{H}_0 的本征值和本征函数分别为 E_n 和 $\phi_n(n=1,2,3,\cdots)$ 。在初始时刻 t=0,体系处于 ϕ_n 态,当 t>0 时体系开始受到一微扰 $\hat{H}'=F(x)e^{-\beta}$ 的作用。在一级近似下求:
 - (1) 经充分长时间以后,体系跃迁到 ϕ ,态的几率。
 - (2) 如果该体系为一维谐振子,且F(x) = x,结果将如何?

解 (1) 在t>0时,体系的波函数为 $\psi(t)=\sum_{n=0}^{\infty}a(t)\mathrm{e}^{-\frac{i}{\hbar}E_{n}t}\psi_{n}$,在一级近似下,体系从能级 E_{n} 跃迁到 E_{n} 的跃迁振幅为

$$a_{n0}(t) = \frac{1}{\mathrm{i} h} \int_0^t \langle n | H' | 0 \rangle \mathrm{e}^{\mathrm{i} \omega_{n0} t} \mathrm{d}t$$

其中

$$\omega_{n0} = \frac{1}{h} (E_n - E_0)$$

把 $\langle n|H'|0\rangle = \langle n|F(x)|0\rangle e^{-\beta t}$ 代人得

$$a_{n0}(t) = \frac{F_{n0}}{\mathrm{i}\,\hbar} \int_{0}^{t} \mathrm{e}^{(\mathrm{i}\omega_{n0} - \beta)t} \mathrm{d}t = \frac{F_{n0}}{\mathrm{i}\,\hbar} \cdot \frac{\mathrm{e}^{(\mathrm{i}\omega_{n0} - \beta)t}}{\mathrm{i}\omega_{n0} - \beta} \Big|_{0}^{t} = \frac{F_{n0}(\mathrm{e}^{(\mathrm{i}\omega_{n0} - \beta)t} - 1)}{-\hbar (\omega_{n0} + \mathrm{i}\beta)}$$

充分长时间后 $(t = \infty)$,

$$a_{n0}(t\to\infty)=\frac{F_{n0}}{\hbar\ (\omega_{n0}+\mathrm{i}\beta)}$$

因此,跃迁几率为

$$P_{n0}(\infty) = |a_{n0}(\infty)|^2 = \frac{|F_{n0}|^2}{\hbar^2(\omega_{n0}^2 + \beta^2)} = \frac{|F_{n0}|^2}{(E_n - E_0)^2 + \beta^2 \, \hbar^2}$$

(2) 如果该体系为一维谐振子,则

$$E_n = \left(n + \frac{1}{2}\right)\hbar \ \omega, \quad \psi_n = N_n \mathrm{e}^{-\frac{1}{2}\alpha^2 x^2} H_n(\alpha x)$$

此时, $F_{n0} = \langle n | F(x) | 0 \rangle = \langle n | x | 0 \rangle$ 。

考虑到在谐振子的能量表象中,坐标 x 的矩阵元

$$x_{nk} = \frac{1}{\alpha} \left[\sqrt{\frac{n+1}{2}} \delta_{k,n+1} + \sqrt{\frac{n}{2}} \delta_{k,n-1} \right], \quad n = 1, 2, 3, \dots$$

 $x_{n0} = \langle n|x|0 \rangle$ 的非零项为 x_{10} ,即只能跃迁到 E_1 能级。 所以

$$x_{10} = \frac{1}{\alpha} \sqrt{\frac{1}{2}}$$

$$F_{*0} = \frac{1}{\alpha} \sqrt{\frac{1}{2}}$$

代入到 P_{n0} 的表达式得,从 $E_0 \rightarrow E_1$ 的跃迁几率为

$$P_{10}(\infty) = \frac{1}{(E_1 - E_0)^2 + \beta^2 \, \hbar^2} \cdot \frac{1}{2\alpha^2} = \frac{1}{2\alpha^2} \frac{1}{\hbar^2 (\omega^2 + \beta^2)}$$

25. 设处于基态 ψ_{100} 的氢原子受到沿z 方向的脉冲电场 $\varepsilon(t) = \varepsilon_0 \delta(t)$ (考虑 $t = -\varepsilon \to \varepsilon, \varepsilon \to 0$ 的微扰) 的作用。其中 ε_0 为常数。在一级近似下,求原子跃迁到各激发态的几率总和与原子仍处在基态的几率。

解 在没有微扰作用时,氢原子的能量本征函数和本征值为

$$\psi_{nlm}(r\theta\varphi) = R_{nl}(r)Y_{lm}(\theta\varphi), \quad E_n = -\frac{e^2}{2a_0n^2}, \quad n = 1, 2, 3, \dots$$

沿 z 方向的脉冲电场 $\varepsilon(t)$ 作用时,其微扰项 $\hat{H}'=e\varepsilon(t)z=e\varepsilon_0z\delta(t)$,因此,在微扰的作用下,原子从基态能级 E_1 跃迁到能级 E_a 的跃迁振幅为

$$a_{n1}(t) = \frac{1}{\mathrm{i} \, \hbar} \int_{-\epsilon}^{\epsilon} \langle n | H' | 1 \rangle \mathrm{e}^{\mathrm{i} \omega_{n1} t} \mathrm{d}t, \quad \epsilon \to 0$$

其中, $\omega_{a1} = (E_a - E_1)/\hbar$ 。把 H' 代入上式得,

$$a_{n1}(t) = \frac{1}{\mathrm{i} \, \hbar} \int_{-\epsilon}^{\epsilon} e \varepsilon_0 \langle n | z | 1 \rangle \delta(t) \mathrm{e}^{\mathrm{i} \omega_{n1} t} \mathrm{d}t = \frac{e \varepsilon_0}{\mathrm{i} \, \hbar} \langle n | z | 1 \rangle$$
$$|n\rangle \equiv \psi_{n10}, \quad |1\rangle \equiv \psi_{100}$$

由此得,原子跃迁几率为

$$P_{n1}(t) = |a_{n1}(t)|^2 = \frac{e^2 \epsilon_0^2}{\hbar^2} |\langle n|z|1\rangle|^2$$

根据选择定则: $\Delta l = \pm 1$, $\Delta m = 0$,由 ψ_{100} 只能跃迁到 ψ_{n10} 态,其中, $n = 2,3,4\cdots$,因此,跃迁到 ψ_{n10} 的几率总和为

$$P = \sum_{n} P_{n1}(t) = \frac{e^2 \varepsilon_0^2}{\hbar^2} \sum_{n} |\langle n | z | 1 \rangle|^2, \quad (n \neq 1)$$

因为

$$\sum_{n} |\langle n|z|1\rangle|^{2} = \sum_{n} \langle n|z|1\rangle\langle 1|z|n\rangle$$

$$= \sum_{n} \langle 1|z|n\rangle\langle n|z|1\rangle = \langle 1|z^{2}|1\rangle$$

$$= (\psi_{100}, z^{2}\psi_{100}) = \overline{z^{2}}$$

同时根据第7章第6题的结果: $\overline{z^2} = \frac{1}{3}\overline{r^2} = a_0^2$, $(a_0$ 为玻尔半径) 最后得,跃迁到各个激发态的几率总和 $P = \left(\frac{e\epsilon_0 a_0}{\hbar}\right)^2$, 原子仍处于基 ψ_{100} 的几率为 $P_1 = 1 - P = 1 - \left(\frac{e\epsilon_0 a_0}{\hbar}\right)^2$ 。

26. 在时间 $t \le 0$ 时,一电子(自旋 $s = \frac{1}{2}$) 置于沿 z 方向的均匀磁场 B 中。此时体系的 Hamilton 量

$$\hat{H}_0 = -\mu_{\star} \cdot \mathbf{B} = -\frac{e \, \hbar}{2m_e c} \, \sigma \cdot \mathbf{B} = -\frac{e B_0 \, \hbar}{2m_e c} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$= \hbar \, \omega_0 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

其中, $\omega_0 = \frac{|e|B_0}{2m_sc}$ 。当 t > 0 时再加上沿 x 方向的旋转磁场 $B_x =$

 $B_0\cos 2\omega t$ 和沿 y 方向的旋转磁场 $B_y=B_0\sin 2\omega t$ 。设初始时刻电子的自旋朝 Z 轴的正方向极化。把 B_z , B_y 与电子自旋磁矩的相互作用能作为微扰,求电子跃迁到自旋朝 Z 轴负向极化的几率。

解 如果设
$$|\uparrow_z\rangle \equiv \alpha = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, |\downarrow_z\rangle \equiv \beta = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, 则由于$$

$$\hat{H}_0 = \hbar \omega_0 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

所以

$$\begin{split} E_{s} &= \hbar \; \omega_{0}, \quad E_{\beta} = - \; \hbar \; \omega_{0} \\ \hat{H} &= - \; \mu_{s} \cdot \mathbf{B} = - \; \frac{e \; \hbar}{2 m_{e} c} \; \boldsymbol{\sigma} \; \cdot \mathbf{B} \\ &= - \; \frac{e \; \hbar}{2 m_{e} c} \{ \sigma_{x} B_{x} + \sigma_{y} B_{y} + \sigma_{z} B_{z} \} \\ &= - \; \frac{e B_{0} \; \hbar}{2 m_{e} c} \left\{ \begin{bmatrix} 0 & \cos 2 \omega t \\ \cos 2 \omega t & 0 \end{bmatrix} + \\ \begin{bmatrix} 0 & - \; \sin 2 \omega t \\ \sin 2 \omega t & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\} \\ &= \omega_{0} \; \hbar \; \begin{bmatrix} 0 & \mathrm{e}^{-2 \omega t} \\ \mathrm{e}^{2 \mathrm{i} \omega t} & 0 \end{bmatrix} + \omega_{0} \; \hbar \; \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \hat{H}_{0} + H' \end{split}$$

其中,

$$\hat{H}' = \omega_{\scriptscriptstyle 0} \, \hbar \, egin{bmatrix} 0 & \mathrm{e}^{-2\mathrm{i}\omega r} \ \mathrm{e}^{2\mathrm{i}\omega r} & 0 \end{bmatrix}$$

因此,从 α 态到 β 态的跃迁振幅为

$$a_{eta a}(t) = \frac{1}{\mathrm{i}} \int_{0}^{t} \langle eta | H' | a \rangle \mathrm{e}^{\mathrm{i} \omega_{eta a} t'} \mathrm{d}t'$$

因为

$$\langle \beta | H' | \alpha \rangle = (0 \quad 1) \begin{bmatrix} 0 & e^{-2i\omega t} \\ e^{2i\omega t} & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = e^{2i\omega t}$$

$$\omega_{\beta_0} = \frac{E_{\beta} - E_{\alpha}}{\hbar} = \frac{-\hbar \omega_0 - \hbar \omega_0}{\hbar} = -2\omega_0$$

所以

$$a_{\beta\sigma}(t) = \frac{1}{\mathrm{i}} \int_{0}^{t} \mathrm{e}^{2\mathrm{i}\omega t} \mathrm{e}^{-2\mathrm{i}\omega_{0}t'} \mathrm{d}t' = \frac{1}{\mathrm{i}} \int_{0}^{t} \mathrm{e}^{2\mathrm{i}(\omega-\omega_{0})t'} \mathrm{d}t'$$
$$= \frac{1}{\mathrm{i}} \frac{\mathrm{e}^{2\mathrm{i}(\omega-\omega_{0})t} - 1}{2\mathrm{i}(\omega-\omega_{0})} = -\frac{\mathrm{e}^{2\mathrm{i}(\omega-\omega_{0})t} - 1}{2\hbar(\omega-\omega_{0})}$$

由此得跃迁几率

$$P_{\beta\sigma}(t) = |a_{\beta\sigma}(t)|^2 = \frac{2(1 - \cos 2(\omega - \omega_0)t)}{4 h^2(\omega - \omega_0)^2} = \frac{\sin^2(\omega - \omega_0)t}{h^2(\omega - \omega_0)^2}$$

当 $t \to \infty$ (充分长时间以后),利用公式: $\lim_{t \to \infty} \frac{1}{\pi} \frac{\sin^2 xt}{tx^2} = \delta(x)$,便得

$$P_{\beta\sigma}(t\to\infty) = \frac{\pi t}{\hbar^2} \cdot \frac{1}{\pi} \frac{\sin^2(\omega-\omega_0)t}{(\omega-\omega_0)^2 t} = \frac{\pi t}{\hbar^2} \delta(\omega-\omega_0)$$

因此,跃迁速率

$$\Gamma = rac{\mathrm{d}P_{eta a}}{\mathrm{d}t} = rac{\pi}{\hbar^2}\delta(\omega - \omega_0)$$

即只有当 $\omega = \omega_0$ 时,跃迁才能发生。

27. 处于激发态的原子经 10⁻⁸ 秒(激发态寿命) 后,发射一个 光子的同时跃迁到低能级。求该激发态的能级宽度和所发射光频 率的不确定度。

解 激发态的寿命 $\Delta t = 10^{-8}$ s,根据不确定性关系 $\Delta E \cdot \Delta t \ge \frac{\hbar}{2}$,激发态的能级宽度,

$$\Delta E \geqslant \frac{\hbar}{2\Delta t} = \frac{1.05 \times 10^{-34} \text{ J} \cdot \text{s}}{2 \times 10^{-8} \text{ s}} \approx 5.3 \times 10^{-27} \text{ J}$$

发射光频率的不确定度:

$$\Delta \nu = \frac{\Delta E}{h} = \frac{\Delta E}{2\pi \, \hbar} = \frac{1}{4\pi \Delta t} = \frac{10^8 \mathrm{s}^{-1}}{3.14 \times 4} \approx 8 \times 10^6 \, \mathrm{Hz}$$

因此,观察到的光谱线的频率有一宽度 Δν:ν± Δν。

- **28.** 根据汤川理论,原子核中的质子 p 吸收一个 π 介子而转变成中子 n。所吸收的 π^- 介子的能量为 $\Delta E = m_* c^2$,其中 m_* 为 π^- 介子的质量,c 为光速。试利用不确定性关系求:
 - (1) 粒子反应 $p + \pi → n$ 发生的时间。
- (2) 已知在 Δt 内 π^- 介子以光速 c 前进了 $r=1.4\times 10^{-15}$ m 的距离,求 π^- 介子的质量。

解 根据不确定性关系,反应发生的时间: $\Delta t \sim \frac{\hbar}{2\Delta E} \sim \frac{\hbar}{m_s c^2}$ 。

因为 $r=c\Delta t=\frac{\hbar}{m_{\pi}c}=1.4\times10^{-15}\,\mathrm{m}$ 。因此, π^- 介子的质量和 反应时间 Δt 分别为

$$m_{\pi} = \frac{\hbar}{rc} = \frac{1.05 \times 10^{-34} \text{ Js}}{1.4 \times 10^{-15} \times 3 \times 10^8 \text{ ms}^{-1}} = 2.5 \times 10^{-28} \text{ kg}$$

$$\Delta t = \frac{r}{c} = \frac{1.4 \times 10^{-15} \text{ m}}{3 \times 10^8 \text{ ms}^{-1}} \approx 4.6 \times 10^{-8} \text{ s}$$

29. 设一氢原子在 t = 0 时处于基态 $(1s \, \&alpha)$ 。求沿 $z \, f$ 向加一电场 $\epsilon(t) = \epsilon_0 e^{-\alpha} \cos \omega t (\epsilon_0 = \epsilon(0), \alpha \, b$ 常数),并经充分长时间 $(t \rightarrow \infty)$ 以后,原子跃迁到 $2s \, \&alpha(\phi_{100})$ 和 $2p \, \&alpha(\phi_{210}, \phi_{211}, \phi_{21-1})$ 的几率。

解 原子吸收电磁波以后,可从基态跃迁到高能级:

$$\begin{array}{c}
1s = \psi_{100} \\
(n = 1, l = 0, m = 0)
\end{array}
\rightarrow
\begin{cases}
2p_0 \equiv \psi_{210} \\
2p_1 \equiv \psi_{211} \quad (n = 2, l = 1, m = 1, 0, -1) \\
2p_{-1} \equiv \psi_{21-1}
\end{cases}$$

可以证明, 跃迁满足选择定则(见第 9 章例题 Stark 效应) $\Delta l = \pm 1$, $\Delta m = 0$, 因此, $\psi_{100} \rightarrow \psi_{211}$, $\psi_{100} \rightarrow \psi_{21-1}$ 和 $\psi_{100} \rightarrow \psi_{200}$ 的跃迁几率等于零。可见, 只有 $\psi_{100} \rightarrow \psi_{210}$ 的跃迁才可能。

因为

$$\hat{H}'(t) = e\varepsilon(t)z = e\varepsilon_0 z e^{-at} \cos \omega t$$

$$\psi_{100} \equiv |1\rangle = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-\frac{r}{a_0}}$$

$$\psi_{210} \equiv |2\rangle = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{5/2} r e^{-\frac{r}{2a_0}} \cos \theta$$

为了求 $\psi_{100} \rightarrow \psi_{210}$ 即 $|1\rangle \rightarrow |2\rangle$ 的几率,先求:

$$H'_{21} = \langle 2|H'|1\rangle = \int \psi_{210}^* H'(t) \psi_{100} \mathrm{d}^3 r$$

$$= \frac{e\varepsilon(t)}{4\sqrt{2\pi}} \frac{1}{a_0^4} 2\pi \int_0^\infty \int_0^\pi \mathrm{e}^{-\frac{3r}{2a_0}} r^2 \mathrm{cos}^2 \theta r^2 \sin\theta \mathrm{d}\theta \mathrm{d}r$$

$$= \frac{e\varepsilon(t)}{2\sqrt{2}a_0^4} \cdot \frac{2}{3} \int_0^\infty r^4 \mathrm{e}^{-\frac{3r}{2a_0}} \mathrm{d}r$$

因为

$$\int_{0}^{\infty} r^{4} e^{-\frac{3r'}{2a_{0}}} dr = \int_{0}^{\infty} r^{4} e^{-br} dr \left(b = -\frac{3}{2a_{0}} \right)$$
$$= \frac{1}{b^{5}} \Gamma(5) = \frac{4!}{b^{5}} = \frac{1}{b^{5}} 2^{3} \cdot 3 = \frac{2^{8} \cdot a_{0}^{5}}{3^{4}}$$

因此, $H'_{21} = \frac{2^8 a_0 e \varepsilon(t)}{\sqrt{2} 3^5}$ 。由此得到,跃迁振幅(一级近似),

$$a_{21}(t) = \frac{1}{\mathrm{i} \hbar} \frac{2^8 a_0 e \epsilon_0}{\sqrt{2} 3^5} \int_0^t \mathrm{e}^{-at} \mathrm{cos} \omega t \mathrm{e}^{\mathrm{i} \omega_{21} t} \mathrm{d}t'$$

其中, $\omega_{21} = (E_2 - E_1)/\hbar = \frac{e^2}{8a_0 \hbar}$ 。经充分长时间以后 $(t \rightarrow \infty)$

$$a_{21}(\infty) = \int_{0}^{\infty} \cos \omega t e^{-(\alpha + i\omega_{21})t'} dt'$$

利用公式
$$\int_{0}^{\infty} e^{-ax} \cos bx dx = \frac{a}{a^2 + b^2}$$
,得

$$a_{21}(\infty) = \frac{\alpha + \mathrm{i}\omega_{21}}{(\alpha + \mathrm{i}\omega_{21})^2 + \omega^2}$$

因此,跃迁几率为

$$P_{21}(\infty) = |a_{21}(\infty)|^2 = \frac{2^{15}}{3^{10}} \frac{a_0^2 e^2 \varepsilon_0^2}{\hbar^2} \frac{\alpha^2 + \omega_{21}^2}{(\alpha^2 + \omega^2 - \omega_{21}^2) + 4\alpha^2 \omega_{21}^2}$$

30. 一电荷为q的粒子束缚在边长为2a的立方盒子中运动,在t=0时,粒子处于基态,在t>0时,沿x方向加一电场 $E(t)=E_0e^{-\alpha}$, (α 为大于零的常数),求经充分长时间($t\to\infty$)后,体系跃迁到第一激发态的几率。

解 无外场时,粒子的能量本征值和本征函数分别为

$$E_{\pi} = \frac{\pi^2 \, \hbar^2}{8ma^2} (n_x^2 + n_y^2 + n_z^2), \quad n_x, n_y, n_z = 1, 2, 3, \dots$$

$$\psi_{n_x n_y n_z}(x, y, z) = \sqrt{\frac{1}{a^3}} \sin \frac{n_x \pi}{2a} x \sin \frac{n_y \pi}{2a} y \sin \frac{n_z \pi}{2a} z$$

加外电场以后,电场与带电粒子的相互作用能 $H'=-qE_0xe^{-\alpha}$, 把 H' 作为微扰,则体系从基态 $\phi_{111}\equiv |111\rangle$ 跃迁到第一激发态 $\phi_{211}\equiv |211\rangle$, $\phi_{121}\equiv |121\rangle$, $\phi_{112}\equiv |112\rangle$ 的跃迁振幅

$$a = \frac{1}{\mathrm{i} \, \hbar} \Big\{ \langle \psi_1 | H' | \psi_0 \rangle \mathrm{e}^{\mathrm{i} \omega_{10} t} \mathrm{d}t$$

其中, ϕ_0 代表 $|111\rangle$, $|\phi_1\rangle$ 代表 $|211\rangle$, $|121\rangle$, $|112\rangle$, $\omega_{10} = \frac{1}{\hbar}(E_1 - E_0)$ 。但因为

$$\langle 111 | x | 211 \rangle = \frac{1}{a} \int_{0}^{2a} x \sin \frac{\pi x}{2a} \sin \frac{\pi x}{a} dx = -\frac{32a}{9\pi^{2}}$$
$$\langle 111 | x | 121 \rangle = \langle 111 | x | 112 \rangle = 0$$

所以

$$P = \frac{1}{\hbar^2} \left| \int_0^\infty \langle 211 | H' | 111 \rangle e^{\frac{i}{\hbar} \Delta E t} dt \right|^2$$

把
$$\Delta E = E_{211} - E_{111} = \frac{3\pi^2 \hbar^2}{8ma^2}$$
 代人到上式得

$$P = \left(\frac{32aqE_0}{9 \, \hbar \, \pi^2}\right)^2 \left| \int_0^\infty e^{-\alpha t + \frac{i}{\hbar} \Delta E t} dt \right|^2 = \left(\frac{32aqE_0}{9 \, \hbar \, \pi^2}\right)^2 \frac{\hbar^2}{\alpha^2 \, \hbar^2 + (\Delta E)^2}$$

第10章 散射理论

1. 试利用 Born 近似法计算,一个质量为 m 的的粒子被 δ 势 $V(r) = V_0 \delta^3(r)$

散射的微分截面和总截面。

解 根据 Born 近似,散射振幅

$$f(\theta) = -\frac{1}{4\pi} \frac{2mV_0}{\hbar^2} \int_0^\infty e^{-iq \cdot r'} \delta^3(r') d^3r' = -\frac{mV_0}{2\pi \hbar^2}$$

因此,微分散射截面

$$\sigma(\theta) = |f(\theta)|^2 = \frac{m^2 V_0^2}{4\pi^2 \hbar^4}$$

总截面

$$\sigma_T = \frac{m^2 V_0}{\pi \ h^4}$$

2. 设一质量为 m 的粒子被球对称势

$$V(r) = V_0 \delta(r - a)$$

散射,其中V。和a是常数。假定粒子能量很高,用Born 近似计算微分散射截面。

解 根据 Born 近似,散射振幅

$$f(\theta) = -\frac{2mV_0}{\hbar^2} \int_0^\infty r'^2 \frac{\sin q r'}{q r'} \delta(r' - a) dr'$$
$$= -\frac{2m\sin(qa)V_0 a}{\hbar^2 a}$$

因此,微分散射截面

$$\sigma(\theta) = \left(\frac{2m\sin(qa)V_0a}{\hbar^2q}\right)^2$$

3. 一质量为 m,电荷为 e 的粒子被一个电荷 — Ze 所产生的屏蔽 Coulomb 势(screened Coulomb potential) $\phi(r) = \frac{Ze}{r} e^{-r/a} (a)$ 常数) 散射。试用 Born 近似法求微分散射截面。

解 在屏蔽势 $\phi(r)$ 中,被散射粒子的势能为 $V(r)=e\phi(r)=\frac{Ze^2}{r}e^{-r/a}$,因为散射振幅 $f(\theta)$ 与V(r) 的 Fourier 变换 $V(|\mathbf{k}-\mathbf{k}'|)$ 有关,先求 V(r) 的 Fourier 积分:

$$V(|\mathbf{k}-\mathbf{k}'|) = Ze^2 \int \frac{e^{-r/a}}{r} e^{i(\mathbf{k}-\mathbf{k}') \cdot r} d\mathbf{r}$$

在以 k - k' 方向为 z 轴的球坐标系中,

$$e^{i(k-k')\cdot r} = e^{i|k-k'|r\cos\theta}, \quad dr = r^2\sin\theta dr d\theta d\varphi$$

因此,

$$V(|\mathbf{k} - \mathbf{k}'|) = Ze^{2} \int_{0}^{\infty} \frac{e^{-r/a}}{r} r^{2} dr \int_{0}^{\infty} \sin\theta e^{i(\mathbf{k} - \mathbf{k}') r \cos\theta} d\theta \int_{0}^{2\pi} d\varphi$$

$$= 2\pi Ze^{2} \int_{0}^{\infty} \frac{e^{-r/a}}{r} r^{2} dr \left[\frac{e^{ir|\mathbf{k} - \mathbf{k}'|} - e^{-ir|\mathbf{k} + \mathbf{k}'|}}{ir|\mathbf{k} - \mathbf{k}'|} \right]$$

$$= \frac{2\pi Ze^{2}}{i|\mathbf{k} - \mathbf{k}'|} \int_{0}^{\infty} \left[e^{-r/a + ir|\mathbf{k} - \mathbf{k}'|} - e^{-ir/a - ir|\mathbf{k} - \mathbf{k}'|} \right] dr$$

$$= \frac{4\pi Ze^{2}}{|\mathbf{k} - \mathbf{k}'|^{2} + (1/a^{2})} \quad (|\mathbf{k}| = |\mathbf{k}'| = k)$$

其中,

$$|\mathbf{k} - \mathbf{k}'|^2 = k^2 + k'^2 - 2\mathbf{k} \cdot \mathbf{k}' = 2k^2(1 - \cos\theta) = 4k^2\sin^2\frac{\theta}{2}$$

由此得到散射振幅

$$f(\theta) = -\frac{1}{4\pi} \int U(r) e^{i(\mathbf{k} - \mathbf{k}') \cdot \mathbf{r}} d^3 \mathbf{r} = -\frac{m}{2\pi \hbar^2} \int V(\mathbf{r}) e^{i(\mathbf{k} - \mathbf{k}') \cdot \mathbf{r}} d^3 \mathbf{r}$$

$$= -\frac{m}{2\pi \hbar^2} V(\mathbf{k} - \mathbf{k}') = -\frac{2mZe^2}{\hbar^2 \left(4k^2 \sin^2 \frac{\theta}{2} + \frac{1}{a^2}\right)}$$

$$= -\frac{Ze^2}{4 \cdot \frac{\hbar^2 k^2}{2m} \sin^2 \frac{\theta}{2} + \frac{\hbar^2}{2ma^2}} = -\frac{Ze^2}{4 \cdot E_k \sin^2 \frac{\theta}{2} + \frac{\hbar^2}{2ma^2}}$$

因此,微分散射截面

$$\sigma(\theta) = |f(\theta)|^2 = \left[\frac{Ze^2}{4 \cdot E_t \sin^2 \frac{\theta}{2} + \frac{\hbar^2}{2ma^2}}\right]^2$$

其中, E_* 为入射粒子的动能。当 $a \to \infty$ 时, $\sigma(\theta) = \frac{Z^2 e^4}{16 E_*^2 \sin^4(\theta/2)}$, 此即熟知的 Rutherford 散射公式。

4. 一低能粒子被势阱 $V(r) = \begin{cases} -V_0, & r < a \\ 0, & r > a \end{cases}$ 散射。只考虑 s 波,用分波法求微分散射截面。

解 粒子的径向波函数满足方程

$$\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R_l}{\mathrm{d}r}\right) + \left(k^2 - U(r) - \frac{l(l+1)}{r^2}\right)R_l(r) = 0$$

其中,

$$k^2 \equiv \frac{2\mu E}{\hbar^2}, \quad U(r) = \frac{2\mu}{\hbar^2}V(r)$$

对于s波,l=0,因此,

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR_0}{dr} \right) + (k^2 - U(r)) R_0(r) = 0$$

在r < a的区域, $V(r) = -V_o$,因此

$$\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R_0}{\mathrm{d}r}\right) + (k^2 + U_0)R_0(r) = 0, \quad U_0 = \frac{2\mu V_0}{\hbar^2}$$

令 $u(r) = rR_0(r)$,则上式变为

$$\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + k_1^2 u = 0, \quad k_1^2 = k^2 + U_0$$

由 R(r) 在 r = 0 处的有限性要求得 u(0) = 0。因此,在 r < a 区, 波动方程的解

$$u_{r}(r) = A \sin k_1 r$$

在 $r > a \boxtimes V(r) = 0$,方程变为,

$$\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + k^2 u = 0$$

此方程的解为

$$u_{fh} = B\sin(kr + \delta_0)$$

其中, δ 。就是s波的相移。在r = a处,

$$\begin{cases} u_{\mathfrak{H}}(a) = u_{\mathfrak{H}}(a) \\ u'_{\mathfrak{H}}(a) = u'_{\mathfrak{H}}(a) \end{cases}$$

由此得,

$$A\sin k_1 a = B\sin(ka + \delta_0)$$
$$Ak_1\cos k_1 a = Bk\cos(ka + \delta_0)$$

所以

$$\frac{1}{k}\tan(ka+\delta_0)=\frac{1}{k_1}\tan k_1a$$

对低能散射,如核内中子-质子散射,水→0,从而可取近似

$$k_1^2 = k^2 + U_0 \approx U_0$$
, $\tan(ka + \delta_0) \approx ka + \delta_0$

在此近似下

$$ka + \delta_0 = rac{k}{U_0} an U_0 a$$

由此得相移

$$\delta_{\mathrm{o}} = ka \Big(rac{1}{U_{\mathrm{o}}a} \mathrm{tan} U_{\mathrm{o}}a - 1 \Big)$$

从而得散射振幅

$$f(\theta) = \frac{1}{k} \sum_{l} (2l+1) \mathrm{e}^{\mathrm{i}\theta_l} \mathrm{sin} \delta_l P_l(\mathrm{cos}\theta) = \frac{1}{k} \mathrm{e}^{\mathrm{i}\theta_0} \mathrm{sin} \delta_0$$
(因为 $l=0$)

微分散射截面

$$\sigma(\theta) = \|f(\theta)\|^2 = \frac{1}{k^2} \sin^2 \delta_0 \approx \frac{1}{k^2} \delta_0^2 = a^2 \left(\frac{1}{U_0 a} \tan U_0 a - 1\right)^2$$

总散射截面

$$\sigma_T = rac{4\pi}{k^2} \mathrm{sin}^2 \delta_0 pprox rac{4\pi}{k^2} \delta_0^2 = 4\pi a^2 \Big(rac{\mathrm{tan} U_0 a}{U_0 a} - 1\Big)^2$$

如果粒子被球方势垒散射,即 $V(r) = \begin{cases} V_o, & r < a \\ 0, & r > a \end{cases}$,则在以上结果中,把 $U_o \rightarrow iU_o$,因此,

$$\sigma_T = 4\pi a^2 \left(\frac{\tan i U_0 a}{i U_0 a} - 1\right)^2 = 4\pi a^2 \left(\frac{\tanh U_0 a}{U_0 a} - 1\right)^2$$

如果考虑粒子被一钢球散射,这相当于

$$V(r) = \begin{cases} \infty, & r < a \\ 0, & r > a \end{cases}$$

因此,

$$U_0 = \sqrt{\frac{2\mu \overline{V(r)}}{\hbar^2}} \rightarrow \infty, (r < a), \quad \tanh \infty \rightarrow 1$$
 $\sigma_T = 4\pi a^3$

这就是说,总散射截面等于球的表面积。

5. 一质量为 μ 的粒子被势 $V(r) = \frac{a}{r^2} (a 常数)$ 散射。试用分波 法计算 l 分波的相移。

解 l 分波的径向波函数 $R_l(r)$ 满足方程

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R_t}{\mathrm{d}r}\right) + \left(k^2 - \frac{l(l+1)}{r^2} - U(r)\right)R_t(r) = 0$$

其中,

$$U(r) = \frac{2\mu}{\hbar^2}V(r) = \frac{2\mu a}{\hbar^2} \frac{1}{r^2} = \frac{\lambda}{r^2}, \quad \lambda \equiv \frac{2\mu a}{\hbar^2}$$

因此方程变为

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R_l}{\mathrm{d}r}\right) + \left(k^2 - \frac{l(l+1) + \lambda}{r^2}\right)R_l(r) = 0$$

如果设 $l(l+1) + \lambda \equiv l'(l'+1)$,则上式变为球 Bessel 方程

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R_l}{\mathrm{d}r}\right) + \left(k^2 - \frac{l'(l'+1)}{r^2}\right)R_l(r) = 0$$

此方程在 r→ ∞ 时的渐近解为

$$R_i(r) \sim j_i(r) = \frac{\sin\left(kr - \frac{1}{2}\pi l'\right)}{kr}$$

其中, $j_i(r)$ 为球 Bessel 函数。此式与 $R_i(r)$ 的边界条件 $R_i(r)|_{r\to\infty}$

$$\frac{\sin\left(kr - \frac{\pi}{2}l + \delta_{t}\right)}{kr}$$
比较得
$$-\frac{1}{2}\pi l' = \delta_{t} - \frac{\pi}{2}l$$

所以

$$\delta_l = (l - l') \, \frac{\pi}{2}$$

由 $l'^2 + l' - l(l+1) - \lambda = 0$ 得

$$l' = -\frac{1}{2} \pm \sqrt{\left(l + \frac{1}{2}\right)^2 + \lambda}$$

所以

$$\delta_{t} = \left[t + \frac{1}{2} \mp \sqrt{\left(t + \frac{1}{2}\right)^{2} + \lambda}\right] \frac{\pi}{2}$$

可见, $\lambda = 0(V(r) = 0)$ 时, $\delta_l = 0$; $l \gg \lambda$ 时, $\delta_l = 0$ 或 $\delta_l = 2l + 1$ 。

6. 用 Born 近似法求一质量为m 的粒子被 coulomb 势 $V(r) = \frac{a}{r}(a > 0$ 斥力,a < 0 引力) 散射时的散射截面。

解 按 Born 近似,散射振幅

$$f(\theta) = -\frac{1}{4\pi} \int U(r) \mathrm{e}^{\mathrm{i} q \cdot r} \mathrm{d}^3 r$$
, $U(r) \equiv \frac{2m}{\hbar^2} V(r)$

把 $U(r) \equiv \frac{2m}{\hbar^2}V(r) = \frac{2ma}{\hbar^2} \frac{1}{r}$ 代人上式得

$$f(\theta) = -\frac{ma}{2\pi \hbar^2} \int \frac{1}{r} e^{i\mathbf{q}\cdot\mathbf{r}} d^3\mathbf{r}$$

利用公式:

$$\int \frac{1}{r} e^{i\mathbf{q}\cdot\mathbf{r}} d^3r = \frac{4\pi}{q^2}$$

散射振幅

$$f(\theta) = -\frac{ma}{2\pi \hbar^2} \cdot \frac{4\pi}{q^2} = -\frac{2ma}{\hbar^2 q^2}$$

因此,

$$\sigma(\theta) = |f(\theta)|^2 = \frac{4m^2a^2}{\hbar^4q^4} = \frac{4m^2a^2}{16\,\hbar^4k^4\sin^4\frac{\theta}{2}}$$
$$= \frac{a^2}{4m^2v^4\sin^4\frac{\theta}{2}} \quad \text{(Rutherford 散射公式)}$$

7. 用高能电子撞击原子时,电子不仅受到原子核的 coulomb 引力,而且还要受到核外电子群的 coulomb 斥力。为简单起见,设核外电子群的电荷分布密度为

$$\rho(r) = -e\rho_0 e^{-\frac{r}{a}} \quad (a 为原子半径)$$

则总的作用势 $V(r)=-\frac{Ze^2}{r}+e\int \frac{\rho(r')}{|r-r'|}\mathrm{d}^3r'$,试用 Born 近似法求散射截面。

解 散射振幅

$$f(\theta) = -\frac{1}{4\pi} \int U(r) e^{i\mathbf{q}\cdot\mathbf{r}} d^3\mathbf{r} \quad (U(r) = \frac{2m}{\hbar^2} V(r))$$

$$= -\frac{m}{2\pi \hbar^2} \int V(r) e^{i\mathbf{q}\cdot\mathbf{r}} d^3\mathbf{r}$$

$$= -\frac{m}{2\pi \hbar^2} \int e^{i\mathbf{q}\cdot\mathbf{r}} \left[-\frac{e^2Z}{r} + \int \frac{e\rho(r')}{|\mathbf{r} - \mathbf{r}'|} d^3\mathbf{r}' \right] d^3\mathbf{r}$$

第一项的积分

$$-e^{2}Z\int\frac{1}{r}e^{i\mathbf{r}\cdot\mathbf{r}}\mathrm{d}^{3}\mathbf{r}=-\frac{4\pi Ze^{2}}{q^{2}}$$

此处我们利用了公式 $\int \frac{1}{r} e^{iq\cdot r} d^3r = \frac{4\pi}{q^2}$ 。再利用公式 $\int \frac{e^{iq\cdot r}}{|r-r'|} d^3r = \frac{4\pi}{q^2} e^{iq\cdot r}$,第二项积分

$$\int \frac{\mathrm{e}^{\mathrm{i}\mathbf{q}\cdot\mathbf{r}}\rho(r')}{|\mathbf{r}-\mathbf{r}'|}\mathrm{d}^3\mathbf{r}\mathrm{d}^3\mathbf{r}' = \int \frac{4\pi}{q^2}\mathrm{e}^{\mathrm{i}\mathbf{q}\cdot\mathbf{r}'}\rho(r')\mathrm{d}^3\mathbf{r}'$$

因此,

$$f(\theta) = \frac{2me^2Z}{\hbar^2q^2} - \frac{2me}{\hbar^2q^2} \Big[e^{i\mathbf{q}\cdot\mathbf{r}'} \rho(\mathbf{r}') d^3\mathbf{r}' = \frac{2me^2}{\hbar^2q^2} [Z - F(\theta)] \Big]$$

其中, $F(\theta) = \rho_0 \int e^{i\mathbf{q}\cdot\mathbf{r}'} e^{-\frac{r'}{a}} d^3r'$ 代表核外电子的屏蔽作用,由于核外电子群的总电荷等于核电荷 Ze, $\rho(r)$ 满足 $\int_0^\infty \rho(r) 4\pi r^2 dr = Ze$ 即,

$$4\pi
ho_0 \int_0^\infty r^2 e^{-\frac{r}{a}} dr = Z_0$$
其中
$$\int_0^\infty r^2 e^{-\frac{r}{a}} dr = a^3 \Gamma(3) = 2a^2$$

由此得到

$$\rho_0 = \frac{Z}{8\pi a^3}$$

因此,由 $F(\theta) = \rho_0 \int e^{i\mathbf{q}\cdot\mathbf{r}'} e^{-\frac{\mathbf{r}'}{g}} d\mathbf{r}'$,求得

$$F(\theta) = \frac{Z}{(1 + a^2 q^2)^2} = \frac{Z}{\left(1 + 4a^2 k^2 \sin^2 \frac{\theta}{2}\right)^2}$$

从而得到散射振幅

$$f(\theta) = \frac{2me^{2}Z}{\hbar^{2}q^{2}} \left[1 - \frac{1}{\left(1 + 4a^{2}k^{2}\sin^{2}\frac{\theta}{2}\right)^{2}} \right]$$
$$= \frac{e^{2}Z}{2mv^{2}} \frac{1}{\sin^{2}(\theta/2)} \left[1 - \frac{1}{\left(1 + 4a^{2}k^{2}\sin^{2}\frac{\theta}{2}\right)^{2}} \right]$$

当入射粒子的动能很大 $(ka\gg 1)$ 时,

$$f(\theta) \approx \frac{e^2 Z}{2mv^2} \frac{1}{\sin^2(\theta/2)}$$
$$\sigma(\theta) = |f(\theta)|^2 = \frac{e^4 Z^2}{4m^2 v^4} \frac{1}{\sin^4(\theta/2)}$$

- 8. 对低能粒子的散射,求只考虑s波和p波时的微分散射截面。
 - 解 对低能粒子的散射,根据分波法,

$$\sigma(\theta) = |f(\theta)|^2 = \frac{4\pi}{k^2} \Big| \sum_{l=0}^{\infty} \sqrt{2l+1} e^{i\theta_l} \sin \delta_l Y_{l0} \Big|^2$$

因此,只考虑s波和 p 波时,

$$\sigma(\theta) = \frac{4\pi}{k^2} \left| e^{i\delta_0} \sin\!\delta_0 Y_{00} + \sqrt{3} e^{i\delta_1} \!\sin\!\delta_1 Y_{10} \right|^2$$

因为

$$Y_{00} = \frac{1}{\sqrt{4\pi}}, \quad Y_{10} = \sqrt{\frac{3}{4\pi}} \cos\theta$$

因此最后得散射截面

$$\begin{split} \sigma(\theta) &= \frac{1}{k^2} \left| e^{i\delta_0} \sin \delta_0 + 3 e^{i\delta_1} \sin \delta_1 \cos \theta \right|^2 \\ &= \frac{1}{k^2} \left\{ \left(e^{i\delta_0} \sin \delta_0 + 3 e^{i\delta_1} \sin \delta_1 \cos \theta \right) \right. \\ &\left. \left(e^{-i\delta_0} \sin \delta_0 + 3 e^{-i\delta_1} \sin \delta_1 \cos \theta \right) \right\} \\ &= \frac{1}{k^2} \left\{ \sin^2 \delta_0 + 3 \sin \delta_0 \sin \delta_1 \left(e^{i(\delta_1 - \delta_0)} + e^{-i(\delta_1 - \delta_0)} \right) \cos \theta + 9 \sin^2 \delta_1 \cos^2 \theta \right\} \\ &= \frac{1}{k^2} \left\{ \sin^2 \delta_0 + 6 \sin \delta_0 \sin \delta_1 \cos \left(\delta_1 - \delta_0 \right) \cos \theta + 9 \sin^2 \delta_1 \cos^2 \theta \right\} \end{split}$$

9. 设一个质量为 m,自旋为 $s_1 = \frac{1}{2}$ 的粒子束被固定在坐标原点的自旋 $s_2 = \frac{1}{2}$ 的粒子散射,两个粒子的相互作用势

$$V(\mathbf{r}) = V_0 \,\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 \delta^3(\mathbf{r})$$
, $V_0 \ll 1$

求粒子自旋非极化情况下的散射截面。

解 体系的 Schrödinger 方程为

$$\left[-\frac{\hbar^2}{2m}\nabla_r^2 + V_0 \,\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 \delta^3(\mathbf{r})\right] \psi(\mathbf{r}) = E\psi(\mathbf{r})$$

因为 $V_0 \ll 1$,可把 V(r) 当做微扰,用 Born 近似法计算。散射振幅

$$f(\theta) = -\frac{m}{2\pi \hbar^2} \int e^{i\mathbf{q}\cdot\mathbf{r}'} V_0 \,\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 \delta^3(\mathbf{r}') \mathrm{d}^3\mathbf{r}'$$

$$= -\frac{mV_0}{2\pi \hbar^2} \int_0^\infty e^{i\mathbf{q}\cdot\mathbf{r}'} \,\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 \delta^3(\mathbf{r}') \,\mathrm{d}^3\mathbf{r}'$$

$$= -\frac{mV_0}{2\pi \hbar^2} \,\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 = -\frac{mV_0}{4\pi \hbar^2} (\hat{\mathbf{S}}^2 - \hat{\mathbf{S}}_1^2 - \hat{\mathbf{S}}_2^2)$$

散射截面

$$\sigma(\theta) = \|f(\theta)\|^2 = \frac{m^2 V_0^2}{16\pi^2 \, \hbar^4} \|\hat{S}^2 - \hat{S}_1^2 - \hat{S}_2^2\|^2$$

两个粒子的自旋耦合以后, $s = s_1 + s_2 = 1$ 或 0。对 s = 1(三重态),

$$|\hat{S}^{2} - \hat{S}_{1}^{2} - \hat{S}_{2}^{2}|^{2}$$

$$= \left| 1(1+1)\hbar^{2} - \frac{1}{2} \left(\frac{1}{2} + 1 \right) \hbar^{2} - \frac{1}{2} \left(\frac{1}{2} + 1 \right) h^{2} \right|^{2} = \frac{\hbar^{4}}{4}$$

因此,

$$\sigma_1(\theta) = \frac{m^2 V_0^2}{16\pi^2 \, \hbar^4} \cdot \frac{\hbar^4}{4} = \frac{m^2 V_0^2}{64\pi^2}$$

对 s = 0(单态),

$$||\hat{S}^2 - \hat{S}_1^2 - \hat{S}_2^2||^2 = \left| -\frac{3}{4} \, \hbar^2 - \frac{3}{4} \, \hbar^2 \right|^2 = \frac{9 \, \hbar^4}{4}$$

因此,

$$\sigma_0(\theta) = \frac{9m^2V_0^2}{64\pi^2}$$

因此最后得

$$\sigma(\theta) = \frac{1}{4}\sigma_0(\theta) + \frac{3}{4}\sigma_1(\theta) = \frac{3m^2V_0^2}{64\pi^2}$$

第 11 章 量子信息论

1. 已知电子的自旋算符 \hat{S} 。的本征值为 $\frac{\hbar}{2}$ 和一 $\frac{\hbar}{2}$ 的本征矢量分别为

$$|\uparrow\rangle\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad |\downarrow\rangle\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

求:在自旋态 $|\psi\rangle = \frac{1}{\sqrt{2}} \binom{1}{1}$ 下, \hat{S}_{z} 和 \hat{S}_{z} 的可能测值和相应的几率。

解 把自旋态 | 4 > 写成

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] = \frac{1}{\sqrt{2}} \left[|\uparrow\rangle\rangle + |\downarrow\rangle\rangle \right]$$

可见,自旋态 $|\psi\rangle$ 是 \hat{S} 。的本征值为 $\frac{\hbar}{2}$ 和一 $\frac{\hbar}{2}$ 的本征态的叠加,因此,在自旋态 $|\psi\rangle$ 下, \hat{S} 。的可能测值为 $\frac{\hbar}{2}$ 或一 $\frac{\hbar}{2}$,相应的几率均为 $\frac{1}{2}$ 。

因自旋态 $|\psi\rangle = \frac{1}{\sqrt{2}} \binom{1}{1}$ 正是 \hat{S}_z 的本征值为 $\frac{\hbar}{2}$ 的本征态 $|\uparrow_z\rangle$,因此 \hat{S}_z 的测值为 $\frac{\hbar}{2}$,其几率为 1。

2. 一电子处于自旋态

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow_x\rangle + |\downarrow_x\rangle)$$

求:(1)在自旋态 $|\phi\rangle$ 下, \hat{S} ,的可能测值与相应的几率。

(2)在自旋态 $|\phi\rangle$ 下, \hat{S} 。的可能测值与几率。

解 (1)显然,由于 $|\psi\rangle$ 是 \hat{S}_* 的本征值为 $\frac{\hbar}{2}$ 和一 $\frac{\hbar}{2}$ 的本征态的叠加,在该态下 \hat{S}_* 的可能测值是 $\frac{\hbar}{2}$ 或一 $\frac{\hbar}{2}$,相应的几率均为 $\frac{1}{2}$ 。

(2)自旋态 | \$\psi\ 可以改写成

$$\begin{split} |\psi\rangle &= \frac{1}{\sqrt{2}}(|\uparrow\rangle\rangle + |\downarrow\rangle\rangle) = \frac{1}{\sqrt{2}} \left\{ \frac{1}{\sqrt{2}} \binom{1}{1} + \frac{1}{\sqrt{2}} \binom{1}{-1} \right\} \\ &= \frac{1}{2} \binom{2}{0} = \binom{1}{0} = |\uparrow\rangle\rangle \end{split}$$

这就是说,自旋态 $|\phi\rangle$ 正是 \hat{S}_* 的本征值为 $\hbar/2$ 的本征态,因此,在自旋态 $|\phi\rangle$ 下, \hat{S}_* 的测值为 $\hbar/2$,相应几率为 1。

3. 设一个二粒子体系处于纠缠态

$$\cos\theta |00\rangle_{12} + \sin\theta |11\rangle_{12}$$

求第一个粒子量子态的密度矩阵。

解 设体系的密度矩阵为 ρ ,则

$$\rho = |\psi\rangle\langle\psi|$$

因此,第一个粒子量子态的密度矩阵

$$\rho_{1} = \operatorname{Tr}_{2}\rho = {}_{2}\langle 0|\psi\rangle\langle\psi|0\rangle_{2} + {}_{2}\langle 1|\psi\rangle\langle\psi|1\rangle_{2}$$

$$= \cos^{2}\theta |0\rangle_{11}\langle 0| + \sin^{2}\theta |1\rangle_{11}\langle 1| = \begin{bmatrix} \cos^{2}\theta & 0\\ 0 & \sin^{2}\theta \end{bmatrix}$$

可见,求部分迹以后,体系的状态是混合态。

4. 一个二粒子体系在初时时刻处于 | 00) 12 态, 试利用适当的量子逻辑门, 制备 Bell 基

$$|\phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle_{12} + |11\rangle_{12})$$

解 先对第一个粒子进行局域的 Hadamard 门操作:

$$H|00\rangle_{12} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} |0\rangle_1 \otimes |0\rangle_2$$

$$= \frac{1}{\sqrt{2}} (|0\rangle_1 + |1\rangle_1) \otimes |0\rangle_2$$
$$= \frac{1}{\sqrt{2}} (|00\rangle_{12} + |10\rangle_{12})$$

接着再进行 C-Not 逻辑门操作,

$$C \frac{1}{\sqrt{2}} (|00\rangle_{12} + |10\rangle_{12}) = \frac{1}{\sqrt{2}} (C|00\rangle_{12} + C|10\rangle_{12})$$
$$= \frac{1}{\sqrt{2}} (|00\rangle_{12} + |11\rangle_{12}) = |\phi^{+}\rangle$$

5. 设一个量子体系在初时时刻制备成 Bell 基

$$|\psi^{+}\rangle = \frac{1}{\sqrt{2}}(|01\rangle_{12} + |10\rangle_{12})$$

试利用适当的量子逻辑门,制备 |01 >22 态。

解 先对 $|\phi^+\rangle$ 进行 C-Not 门操作:

$$C|\psi^{+}\rangle = \frac{1}{\sqrt{2}} (C|01\rangle_{12} + C|10\rangle_{12}) = \frac{1}{\sqrt{2}} (|01\rangle_{12} + |11\rangle_{12})$$
$$= \frac{1}{\sqrt{2}} (|0\rangle_{1} + |1\rangle_{1}) \otimes |1\rangle_{2}$$

接着对第一个粒子进行局域 Hadamard 门操作,则得

$$H \frac{1}{\sqrt{2}} (|0\rangle_1 + |1\rangle_1) \otimes |1\rangle_2$$

$$= \frac{1}{2} (|0\rangle_1 + |1\rangle_1 + |0\rangle_1 - |1\rangle_1) \otimes |1\rangle_2 = |01\rangle_{12}$$

这样我们就得到了 | 01 >12态。

- 6. 设包括力学量 \hat{A} 在内的一组力学量完全集的共同本征矢量为 $\{|n\rangle, n=1,2,3,\cdots\}$,投影算符 $P_n=|n\rangle\langle n|$,求证:
- (1) 力学量 \hat{A} 可以表示为 $\hat{A} = \sum_n a_n P_n$, 其中, a_n 表示算符 \hat{A} 的本征值。
- (2) 在任一态 $|\psi\rangle$ 下,力学量 \hat{A} 的测值为 a_n 的几率 $\rho_k = \langle \psi | P_k | \psi \rangle_a$

证明 (1) 将算符 \hat{A} 作用于 $|n\rangle$ 得

$$\hat{A} |n\rangle = \sum_{m} a_{m} P_{m} |n\rangle = \sum_{m} a_{m} |m\rangle \langle m|n\rangle$$
$$= \sum_{m} a_{m} |m\rangle \delta_{mn} = a_{n} |n\rangle$$

可见,算符 $\hat{A} = \sum a_n P_n$ 。

 $(2)\rho_n = \langle \psi | P_n | \psi \rangle = \langle \psi | n \rangle \langle n | \psi \rangle = c_n^* c_n = | c_n |^2$,其中, c_n 正是 $\psi = \sum_m c_n | n \rangle$ 的展开系数,可见, $\rho_n = \langle \psi | P_n | \psi \rangle$ 就是力学量 \hat{A} 的测值为 a_n 的几率。

7. 求证:纯态 $|\psi\rangle_{AB} = \sqrt{p_0} |0\rangle_A |0\rangle_B + \sqrt{p_1} |1\rangle_A |1\rangle_B$ 的部分迹是一个混态。

证明 体系的密度矩阵

$$\rho_{AB} = |\psi\rangle_{ABAB} \langle \psi|
= \left(\sqrt{p_0} |0\rangle_A |0\rangle_B + \sqrt{p_1} |1\rangle_A |1\rangle_B\right)
\left(\sqrt{p_0}_B \langle 0|_A \langle 0| + \sqrt{p_1}_B \langle 1|_A \langle 1|\right)
= p_0 |0\rangle_A |0\rangle_{BB} \langle 0|_A \langle 0| + \sqrt{p_0}_{P_1} |1\rangle_A |1\rangle_{BB} \langle 0|_A \langle 0| + \sqrt{p_0}_{P_1} |0\rangle_B |0\rangle_{AA} \langle 1|_B \langle 1| + p_1 |1\rangle_A |1\rangle_{BB} \langle 1|_A \langle 1|$$

因此,部分迹

$$\rho_B = \operatorname{Tr}_A(\rho_{AB}) = {}_{A}\langle 0 | \rho_{AB} | 0 \rangle_A + {}_{A}\langle 1 | \rho_{AB} | 1 \rangle_A$$
$$= p_0 | 0 \rangle_{BB}\langle 0 | + p_1 | 1 \rangle_{BB}\langle 1 |$$

其中, $p_0+p_1=1$ 。由此可见,

$$\operatorname{Tr}(\rho_B)^2 = p_0^2 + p_1^2 < 1$$

因此,ρε 描述混态。

同样可以证明

$$\rho_A = \operatorname{Tr}_B(\rho_{AB}) = p_0 |0\rangle_{AA} \langle 0| + p_1 |1\rangle_{AA} \langle 1|$$
$$\operatorname{Tr}(\rho_B)^2 = p_0^2 + p_1^2 \langle 1|$$

这些结果表明纯态的部分迹是混态。

8. 设一个自旋体系的 Hamilton 量为 $\hat{H} = \frac{\omega}{2}\sigma_z$, 在初始时刻 t=0 体系处于自旋态

$$|\psi(0)\rangle = \frac{1}{\sqrt{2}}(|\uparrow_z\rangle + |\downarrow_z\rangle)$$

求经时间 t 以后 $,\sigma_x$ 的测值为 $\pm \hbar/2$ 的几率。

解 利用 Hamilton 量 $\hat{H} = \frac{\omega}{2}\sigma_z$, 时间演化算符 $U = e^{-iHt} = e^{-\frac{i}{2}\omega t\sigma_z}$, 因此,

$$\begin{aligned} |\psi(t)\rangle &= U |\psi(0)\rangle = \mathrm{e}^{-\frac{\mathrm{i}}{2}\omega t \sigma_{x}} |\psi(0)\rangle \\ &= \mathrm{e}^{-\frac{\mathrm{i}}{2}\omega t \sigma_{x}} \frac{1}{\sqrt{2}} (|\uparrow\rangle + |\downarrow\rangle) \\ &= \frac{1}{\sqrt{2}} \left(|e^{\frac{\mathrm{i}}{2}\omega t}|\uparrow\rangle + |e^{-\frac{\mathrm{i}}{2}\omega t}|\downarrow\rangle \right) \end{aligned}$$

因此, σ_x 的测值为 $\hbar/2$ 和 $-\hbar/2$ 的几率分别为

$$\begin{split} \rho(\uparrow) &= |\langle \uparrow_x | \psi(t) \rangle|^2 \\ &= \frac{1}{4} \left| \langle \langle \uparrow_z | + \langle \downarrow_z | \rangle \left(e^{\frac{i}{2}\omega t} | \uparrow_z \rangle + e^{-\frac{i}{2}\omega t} | \downarrow_z \rangle \right) \right|^2 \\ &= \frac{1}{4} \left(e^{\frac{i}{2}\omega t} + e^{-\frac{i}{2}\omega t} \right)^2 = \cos^2 \frac{\omega t}{2} \\ \rho(\downarrow) &= |\langle \downarrow_x | \psi(t) \rangle|^2 \\ &= \frac{1}{4} \left| (\langle \uparrow_z | - \langle \downarrow_z | \rangle \left(e^{\frac{i}{2}\omega t} | \uparrow_z \rangle + e^{-\frac{i}{2}\omega t} | \downarrow_z \rangle \right) \right|^2 \\ &= \frac{1}{4} \left(e^{\frac{i}{2}\omega t} - e^{-\frac{i}{2}\omega t} \right)^2 = \sin^2 \frac{\omega t}{2} \end{split}$$

- 9. 量子比特 $|\phi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\theta}\sin\frac{\theta}{2}|1\rangle$ 描述单位球面(叫做 Bloch sphere)上的一个点。
 - (1)求密度矩阵 ρ;
 - (2)求证 Trρ=1。

解 (1)
$$\rho = |\psi\rangle\langle\psi\rangle = \left(\cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle\right) \times$$

$$\begin{split} &\left(\cos\frac{\theta}{2}\langle 0| + \mathrm{e}^{-\mathrm{i}\varphi}\sin\frac{\theta}{2}\langle 1|\right) \\ = &\cos^2\frac{\theta}{2}|0\rangle\langle 0| + \sin\frac{\theta}{2}\cos\frac{\theta}{2}\mathrm{e}^{\mathrm{i}\varphi}|1\rangle\langle 0| + \\ &\sin\frac{\theta}{2}\cos\frac{\theta}{2}\mathrm{e}^{-\mathrm{i}\varphi}|0\rangle\langle 1| + \sin^2\frac{\theta}{2}|1\rangle\langle 1| \end{split}$$

利用

$$|0\rangle\langle 0| = \begin{pmatrix} 1\\0 \end{pmatrix}(1 \quad 0) = \begin{pmatrix} 1&0\\0&0 \end{pmatrix} = \frac{1}{2}(1+\sigma_3)$$
$$|1\rangle\langle 1| = \frac{1}{2}(1-\sigma_3), |0\rangle\langle 1| = \frac{1}{2}(\sigma_1+i\sigma_2), |1\rangle\langle 0| = \frac{1}{2}(\sigma_1-i\sigma_2)$$

可以得到

$$\rho = \frac{1}{2} \left\{ \cos^2 \frac{\theta}{2} (1 + \sigma_3) + \sin \frac{\theta}{2} \cos \frac{\theta}{2} e^{i\varphi} (\sigma_1 - i\sigma_2) + \sin \frac{\theta}{2} \cos \frac{\theta}{2} e^{-i\varphi} (\sigma_1 + i\sigma_2) + \sin^2 \frac{\theta}{2} (1 - \sigma_3) \right\}
= \frac{1}{2} \left\{ 1 + \left\{ \cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2} \right\} \sigma_3 + \sin \frac{\theta}{2} \cos \frac{\theta}{2} (e^{i\varphi} + e^{-i\varphi}) \sigma_1 - \sin \frac{\theta}{2} \cos \frac{\theta}{2} (e^{i\varphi} - e^{-i\varphi}) \sigma_2 \right\}
= \frac{1}{2} \left\{ 1 + \cos \theta \sigma_3 + \sin \theta \cos \varphi \sigma_1 + \sin \theta \sin \varphi \sigma_2 \right\}
= \frac{1}{2} \left\{ 1 + n \cdot \sigma \right\}, \quad n = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)
(2) \text{Tr} \rho = \frac{1}{2} \text{Tr} (1 + n \cdot \sigma) = \frac{1}{2} \text{Tr} 1 = 1.$$
10. If $\rho_A = \frac{1}{2} (1 + n_A \cdot \sigma), \rho_B = \frac{1}{2} (1 + n_B \cdot \sigma), \text{ if if:}$

$$\text{Tr} (\rho_A \rho_B) = \frac{1}{2} (1 + n_A \cdot n_B)$$

证明 因为

$$\rho_A \rho_B = \frac{1}{4} (1 + n_A \cdot \sigma) (1 + n_B \cdot \sigma)$$

$$= \frac{1}{4} \{ 1 + n_A \cdot \sigma + n_B \cdot \sigma + (n_A \cdot \sigma) (n_B \cdot \sigma) \}$$

利用

$$\operatorname{Tr}(\mathbf{n}_A \cdot \boldsymbol{\sigma}) = \operatorname{Tr}(\mathbf{n}_B \cdot \boldsymbol{\sigma}) = 0$$
, (因为 $\operatorname{Tr}\boldsymbol{\sigma}_i = 0$)

我们得到

$$\operatorname{Tr}(\rho_A \rho_B) = \frac{1}{4} \operatorname{Tr} \left[1 + (n_A \cdot \sigma) (n_B \cdot \sigma) \right]$$
$$= \frac{1}{2} + \frac{1}{4} \operatorname{Tr} \left[(n_A \cdot \sigma) (n_B \cdot \sigma) \right]$$

在第8章习题中我们曾证明

$$(n_A \cdot \sigma)(n_B \cdot \sigma) = n_A \cdot n_B + i(n_A \times n_B) \cdot \sigma$$

因此最后得到

$$\operatorname{Tr}(\rho_A \rho_B) = \frac{1}{2} + \frac{1}{4} \operatorname{Tr}(\boldsymbol{n}_A \cdot \boldsymbol{n}_B)$$
$$= \frac{1}{2} + \frac{1}{4} \boldsymbol{n}_A \cdot \boldsymbol{n}_B \operatorname{Tr} 1 = \frac{1}{2} (1 + \boldsymbol{n}_A \cdot \boldsymbol{n}_B)$$

11. 设一个复合体系的密度矩阵为 ρ^{AB} , $|a_1\rangle$, $|a_2\rangle$ 是状态空间 A 中的两个二维矢量, $|b_1\rangle$, $|b_2\rangle$ 是状态空间 B 中的两个二维矢量。求证:

$$\operatorname{Tr}_{B}(\rho^{AB}) = \operatorname{Tr}_{B}(|a_{1}\rangle\langle a_{2}| \bigotimes |b_{1}\rangle\langle b_{2}|) = |a_{1}\rangle\langle a_{2}| \cdot \langle b_{2}|b_{1}\rangle$$
证明 因为

$$\operatorname{Tr}(|b_{1}\rangle\langle b_{2}|) = \operatorname{Tr}\left[\begin{bmatrix}b_{1}^{(1)}\\b_{1}^{(2)}\end{bmatrix}(b_{2}^{*(1)} & b_{2}^{*(2)})\right]$$

$$= \operatorname{Tr}\begin{bmatrix}b_{1}^{(1)}b_{2}^{*(1)} & b_{1}^{(1)}b_{2}^{*(2)}\\b_{1}^{(2)}b_{2}^{*(1)} & b_{1}^{(2)}b_{2}^{*(2)}\end{bmatrix}$$

$$= b_{1}^{(1)}b_{2}^{*(1)} + b_{1}^{(2)}b_{2}^{*(2)} = \langle b_{2}|b_{1}\rangle$$

因此

$$\rho^{A} = |a_{1}\rangle\langle a_{2}| \cdot \langle b_{2}|b_{1}\rangle$$

12. 设复合体系 $A \otimes B$ 处于状态 $|a\rangle |b\rangle$,其中, $|a\rangle$, $|b\rangle$ 分别为

子体系 Λ 和 B 中的二维态矢量(纯态)。求证,体系的约化密度矩阵 ρ^{Λ} 表示纯态。

证明 复合体系的密度矩阵

$$\rho^{AB} = |a\rangle |b\rangle \langle b| \langle a|$$

因此

 $\rho^A = \operatorname{Tr}_B(\rho^{AB}) = |a\rangle\langle a| \cdot \operatorname{Tr}(|b\rangle\langle b|) = |a\rangle\langle a| \cdot \langle b|b\rangle = |a\rangle\langle a|$ 因为 $|a\rangle$ 是纯态,体系 A 的约化密度矩阵 ρ^A 表示纯态。

模拟试题 A

一、填空题(本题 20 分)

1. 在量子力学中,体系的量子态用 Hilbert 空间中的来
描述,而力学量用描述。力学量算符必为算符,以保
证其为实数。当对体系进行某一力学量的测量时,测量结果
一般来说是不确定的。测量结果的不确定性来源于。
2. 在量子力学中,一个力学量是否是守恒量只决定于
的性质,也就是说,决定于该力学量是否与体系的对易,而
与体系的无关。一个力学量是否具有确定值,只决定于体系
的,也就是说,决定于体系是否处于该力学量的,无
论该力学量是否守恒量。
二.(本顯 15 分)

- 1. 设全同二粒子的体系的 Hamilton 量为 $\hat{H}(1,2)$,波函数为 $\psi(1,2)$,试证明交换算符 \hat{P}_{12} 是一个守恒量。
 - 2. 设 \hat{U} 是一个幺正算符,求证 $\hat{H}=i \hbar \frac{\mathrm{d} \hat{U}}{\mathrm{d}t} \cdot \hat{U}^{\dagger}$ 是厄米算符。
 - 3. 设σ, 为 Pauli 矩阵,
 - (1)求证: $e^{i\theta \theta_y} = \cos\theta + i\sigma_y \sin\theta$
 - (2)试求:Treiday

三(本题 10 分)

求证: $\psi(xyz) = x + y + z$ 是角动量平方算符 \hat{l}^2 的本征值为

 $2 h^2$ 的本征函数。

四、(本题 15 分)

设一量子体系处于用波函数 $\psi(\theta,\varphi) = \frac{1}{\sqrt{4\pi}} (e^{i\varphi} \sin\theta + \cos\theta)$ 所描述的量子态。

求:(1)在该态下, l, 的可能测值和各个值出现的几率。

(2) l, 的平均值。

如有必要可利用,

$$Y_{10} = \sqrt{\frac{3}{4\pi}}\cos\theta$$
, $Y_{1\pm 1} = \mp\sqrt{\frac{3}{8\pi}}\sin\theta e^{\pm i\varphi}$.

五、(本题 20 分)

已知,在一维无限深方势阱中运动粒子的能量本征值和本征 函数分别为

$$E_n = \frac{\pi^2 \hbar^2 n^2}{2ma^2}, \quad \psi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}, \quad (n = 1, 2, 3, \dots)$$

设粒子受到微扰:

$$\hat{H}'(x) = \begin{cases} \frac{2k}{a}x, & 0 < x < \frac{a}{2} \\ \frac{2k}{a}(a-x), & \frac{a}{2} < x < a \end{cases}$$

求基态(n=1)能量的一级近似值。

如有必要,可利用积分公式∫ycosydy = cosy + ysiny。

六、(本题 20 分)

设 $|n\rangle(n=1,2,3,\cdots)$ 表示一维谐振子的能量本征态,且已知

$$x|n\rangle = \frac{1}{\alpha} \left[\sqrt{\frac{n+1}{2}} |n+1\rangle + \sqrt{\frac{n}{2}} |n-1\rangle \right], \quad \alpha = \sqrt{\frac{m\omega}{\hbar}}$$

- (1)求矩阵元 $\langle m | x^2 | n \rangle$ 。
- (2)设该谐振子在 t=0 时处于基态 $|0\rangle$, 从 t>0 开始受微批 $II'=x^2\mathrm{e}^{-2t}$ 的作用。

求:经充分长时间 $(t\rightarrow\infty)$ 以后体系跃迁到 $|2\rangle$ 态的几率。

模拟试题 B

一、填空题(本题 20 分)
1. Planck 的量子假说揭示了微观粒子特性, Einstein
的光量子假说揭示了光的性。Bohr 的氢原子理论解决了经
典电磁场理论和原子的之间的矛盾,解决了原子的
起源问题。
2. 力学量算符必须是算符,以保证它的本征值为
。对一个量子体系进行某一力学量的测量时,所得到的测量
值肯定是当中的某一个,测量结果一般来说是不确定的,除
非体系处于。测量结果的不确定性来源于。两个力学
量同时具有确定值的条件是。
二、(本题 15 分)
1. 设算符 \hat{a} 具有性质 $\hat{a}^2 = 0$, $\{\hat{a}, \hat{a}^{\dagger}\} = 1$ 。求证:
$(1)\hat{N}$ $\equiv \hat{a}^{\dagger}$ \hat{a} 本征值必为实数。
$(2)\hat{N}^2 = \hat{N}$
(3) N 的本征值为 0 或者 1。

2. 利用对易式 $\sigma \times \sigma = 2i\sigma$,求证: $\{\sigma_i, \sigma_j\} = 0$, $\{i, j = x, y, z\}$, 其中,o,o,为 Pauli 矩阵。

三、(本题 15 分)

1. 设氦原子中的两个电子都处于 1s 态,(不简并)两个电子体

系的空间波函数为

$$\psi(\mathbf{r}_1,\mathbf{r}_2) = \psi_{100}(\mathbf{r}_1)\psi_{100}(\mathbf{r}_2)$$

- (1)写出两个电子体系的四个可能的自旋波函数 $\chi_1,\chi_2,\chi_3,\chi_4$ 。
- (2) 写出对两个电子的交换反对称的总体波函数 $\varphi(r_1,r_2,s_1,s_2,s_3)$ (同时考虑空间自由度和自旋自由度)。
 - 2. 一电子处于自旋态 $|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow_{\epsilon}\rangle + |\downarrow_{\epsilon}\rangle), 求$
 - (1)在自旋态 $|\psi\rangle$ 下, \hat{S} ,的可能测值与相应的几率。
 - (2)在自旋态 $|\psi\rangle$ 下, \hat{S} ,的可能测值与几率。

四、(本题 15 分)

设一个类氢离子的电荷数由 Z 变成 Z+1,试用微扰方法计算基态能量的一级近似值。已知:类氢离子的基态能量本征值和本征函数分别为

$$E_n = -\frac{Z^2 e^2}{2a}, \quad \psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a}\right)^{3/2} e^{-\frac{Zr}{a}}$$

计算时,可利用积分公式 $\int_0^\infty x e^{-2\alpha x} dx = \frac{1}{4\alpha^2}$.

五、(本题 20 分)

设一维谐振子的能量本征函数为 $\phi_n(x)$,求:

- (1)动量 $\hat{\rho}$ 在 $\phi_n(x)$ 态下的平均值。
- (2)动能 \hat{T} 在 $\phi_{u}(x)$ 态下的平均值。如有必要,可以利用

$$\frac{\mathrm{d}}{\mathrm{d}x}\psi_n(x) = \alpha \left[\sqrt{\frac{n}{2}} \psi_{n-1}(x) - \sqrt{\frac{n+1}{2}} \psi_{n+1}(x) \right]$$

六、(本题 15 分)

设一量子体系的 Hamilton 量为

$$\hat{H} = \begin{bmatrix} E_1 & a_1 & a_2 \\ a_1^* & E_2 & a_3 \\ a_2^* & a_3^* & E_3 \end{bmatrix}$$

而且, $|a_1|^2$, $|a_2|^2$, $|a_3|^2 \ll 1$,试利用微扰法计算体系能量的一,二级修正值。

模拟试题C

ー、填空题(本题 18 分)

	自由粒	子的能量	:算符ÎI =	,它是	<u></u>	畫。	$\psi = \cos k x$
是自	由粒子	能量算符	的本征值为_	的本	征函数	,它	是平面单
色波	· ·	和	的叠加态,在	该态下,_	具	有硝	角定值,但
	不具	有确定值	,它的可能测	值是	_或	0	
	二、(本	题 12 分)					

在下列两种情况下,求一维运动粒子的动量平均值p;

- (1)波函数 $\phi(x)$ 是实函数。
- (2)波函数 $\varphi(x) = \psi(x)e^{it_0x}$,其中, $\psi(x)$ 是归一化的实函数, k_0 是实常数。

三、(本题 10 分)

在氯化钠晶体内有些负离子空穴,每个空穴束缚一个电子,因此可将这些电子看成束缚在边长为晶格常数的立方体内的粒子。设在室温下电子处于基态,求处于基态的电子吸收电磁波跃迁到第一激发态时,所吸收电磁波的波长。

四、(本题 10 分)

一个电子在 t=0 时,观测到自旋沿z 轴正向。问在 t>0 时电子的自旋方向在 x-z 平面内与z 轴成 $\theta\left(\theta<\frac{\pi}{2}\right)$ 角的几率是多

少?

五、(本题 15 分)

设一个置于中心力场中的粒子,其轨道角动量量子数 /=2, 自旋角动量量子数 s=1。体系的自旋一轨道相互作用 Hamilton 量为

$$\hat{H} = A \hat{L} \cdot \hat{S}$$
 (A 为常数)

求体系的能级和各个能级的简并度。

六、(本题 15 分)

阱宽为a的一维无限深对称方势阱中 $\left(-\frac{a}{2} < x < \frac{a}{2}\right)$ 运动粒子的能量本征值和本征函数分别为

$$E_n = \frac{\hbar^2 \pi^2 n^2}{2ma^2}, \quad \psi_n(x) = \sqrt{\frac{2}{a}} \cos \frac{n\pi x}{a}, \quad n = 1, 3, 5, \dots$$

(只考虑偶宇称态)

设阱内粒子处于状态

$$\psi(x) = \sqrt{\frac{30}{a^5}} [(a/2)^2 - x^2]$$

- (1)求粒子处于各个能量本征态的几率。
- (2)利用所求得的几率,求体系的能量平均值。

如有必要可利用:

$$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots = \frac{\pi^4}{96},$$

$$\int_{-a/2}^{a/2} x^2 \cos \frac{n\pi x}{a} dx = (-1)^{(n-1)/2} \left(\frac{a^3}{2n\pi} - \frac{4a^3}{n^3\pi^3} \right), \quad n = 1, 3, 5, \dots$$

七、(本题 20 分)

- 一根长为 t 的细绳 (忽略它的质量)的一端固定,另一端系一质量为 m 的质点,在重力的作用下,质点在竖直平面内小角摆动(简谐振动)。用量子力学方法
- (1) 求质点的简谐振动能级(势能项关于摆动角 θ 的展开式取到 θ^2 项)。
- (2) 把小角近似带来的误差作为微扰,计算质点基态能量的一级近似值(把势能的 f* 项当作微扰计算)。

模拟试题 D

一、填空題(本题 25 分)
1. 自由粒子平面波函数 $\psi(x)=c\mathrm{e}^{\mathrm{i} kx}$ 的动量不确定度 $\Delta p=$
,坐标不确定度 Δx =。
2. 波函数 $\psi(x) = \cos kx$ 是否自由粒子的能量本征态? 答:
。如果是,能量本征值是。该波函数是否是动量本征
态? 答:,因为。
3. 设 \hat{A} , \hat{B} 是两个互为不对易的厄米算符。在下列算符
(1) $\hat{A}\hat{B}$; (2) $\hat{A}\hat{B} - \hat{B}\hat{A}$; (3) \hat{A}^2 ; (4) $\hat{A}\hat{B} + \hat{B}\hat{A}$
中,算符的本征值必为实数。
4. 设两个电子散射波的自旋波函数 $\chi = \frac{1}{\sqrt{2}} (↑ ↓) +$
↓↑⟩),则散射波的空间波函数应为。因此微分
散射截面。
5. 设一个二能级体系的两个能量本征值分别为 E ₁ 和 E ₂ , 相
应的本征矢量为 n ₁ >和 n ₂ >。则在能量表象中,体系 Hamilton 量
的矩阵表示是,体系的可能状态是,在各可能状态
下,能量的可能测值是,相应的几率是。
二、(本题 15 分)
1. 已知在坐标表象中,自由粒子的坐标本征函数为

$$\psi(x) = \delta(x - x_0)$$

求在动量表象中坐标的本征函数。

2. 氢原子中的电子在径向坐标 $r \to r + dr$ 的球壳内出现的几率为 $P_{nl}(r)dr = |R_{nl}(r)|^2 r^2 dr$ 。已知, $R_{10}(r) = 2\left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$,求 1S电子的径向几率最大的位置。

三、(本题 15 分)

- 1. 求证: $\psi_1 = y + iz$, $\psi_2 = z + ix$, $\psi_3 = x + iy$ 分别为角动量算符 \hat{l}_x , \hat{l}_y , \hat{l}_z 的本征值为 \hbar 的本征态。
- 2. 试证明:在电子的任意自旋态 $\chi = \begin{bmatrix} a \\ b \end{bmatrix}$ 下,只要 $|a|^2 = |b|^2$,则自旋角动量 \hat{S}_a 的平均值必为零。

四、(本题 15 分)

1. 已知 $(\sigma \cdot A)(\sigma \cdot B) = A \cdot B + i\sigma \cdot (A \times B)$,其中,A,B 为与 Pauli 矩阵 $\sigma_x,\sigma_y,\sigma_z$ 对易的任意两个矢量算符。试证明:

$$(\sigma \cdot p)^2 = p^2$$
, $(\sigma \cdot l)^2 = l^2 - \hbar \sigma \cdot l$

其中,p 为三维动量,l 为三维角动量。

2. 设力学量 \hat{A} (不显含时间)为守恒量。求证: \hat{A} 的平均值不随时间改变,即 $\frac{d\overline{A}}{dt}=0$ 。

五、(本题 15 分)

已知一维谐振子处于基态,坐标的不确定度

$$\Delta x = \sqrt{\overline{(x - \overline{x})^2}} = l$$

求该谐振子跃迁到第一激发态所需能量。

六、(本题 15 分)

设一电子在沿x方向的均匀磁场B中运动。在t=0时,电子的自旋向z轴的正向极化。求:

- (1)在任意时刻 t,电子的自旋波函数。
- $(2)\hat{S}_x$ 、 \hat{S}_y 、 \hat{S}_z 的平均值。
- $(3)\hat{S}$, 的测值为 $\hbar/2$ 和 $-\hbar/2$ 的几率。

模拟试题A参考答案

一、填空题

- 1. 矢量,算符,厄米,本征值,态的叠加
- 2. 力学量, Hamilton量, 状态, 状态, 本征态

_ \

1. 证明 全同粒子的不可区分性体现在体系 Hamilton 量的交换对称性。也就是说,

$$\hat{H}(1,2) = \hat{H}(2,1)$$

因此,

 $\hat{P}_{12}\hat{H}(1,2)\phi(1,2) = \hat{H}(2,1)\phi(2,1) = \hat{H}(1,2)\hat{P}_{12}\phi(1,2)$ 由此得到,

$$(\hat{P}_{12}\hat{H}(1,2) - \hat{H}_{12}\hat{P}_{12})\psi(1,2) = 0$$
$$[\hat{P}_{12}, \hat{H}(1,2)]\psi(1,2) = 0$$

所以

$$[\hat{P}_{12}, \hat{H}] = 0$$
, \hat{P}_{12} 为守恒量

2. 证明

$$\hat{H}^{\dagger} = \left(i \, \hbar \frac{\mathrm{d} \, \hat{U}}{\mathrm{d} t} \cdot \hat{U}^{\dagger} \, \right)^{\dagger} = -i \, \hbar \left(\hat{U} \frac{\mathrm{d} \, \hat{U}^{\dagger}}{\mathrm{d} t} \right)$$

$$= -i \, \hbar \left[\frac{\mathrm{d}}{\mathrm{d} t} (\hat{U} \, \hat{U}^{\dagger}) - \frac{\mathrm{d} \, \hat{U}}{\mathrm{d} t} \cdot \hat{U}^{\dagger} \, \right]$$

因为 \hat{H} 是幺正的,

$$\hat{U}\hat{U}^{\dagger}=1$$

所以

$$\frac{\mathrm{d}}{\mathrm{d}t}(\hat{U}\,\hat{U}^{\dagger}) = 0$$

因此

$$\hat{H}^{\dagger} = \mathrm{i} \, \hbar \frac{\mathrm{d} \, \hat{U}}{\mathrm{d} t} \cdot \hat{U}^{\dagger} = \hat{H}$$

可见Ĥ为厄米算符。

3. 证明(1)

$$e^{i\theta\sigma_{y}} = 1 + i\theta\sigma_{y} - \frac{1}{2!}\theta^{2}\sigma_{y}^{2} - \frac{i}{3!}\theta^{3}\sigma_{y}^{3} + \cdots$$

$$= \left(1 - \frac{1}{2!}\theta^{2} + \frac{\theta^{4}}{4!} - \cdots\right) + i\sigma_{y}\left(\theta - \frac{\theta^{3}}{3!} + \frac{\theta^{5}}{5!} + \cdots\right)$$

$$= \cos\theta + i\sigma_{y}\sin\theta$$

(2) 由于

$$\cos\theta + i\sigma_y \sin\theta = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

因此,

$$\operatorname{Tre}^{\mathrm{i}\theta\sigma_{y}} = \operatorname{Tr} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = 2\cos\theta$$

三、证明 因为

$$\hat{l}_{x}\phi = -i \hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right) \phi = -i \hbar (y - z)$$

$$\hat{l}_{y}\phi = -i \hbar \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right) \phi = -i \hbar (z - x)$$

$$\hat{l}_{z}\phi = -i \hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) \phi = -i \hbar (x - y)$$

由此得到

$$\hat{l}_{x}^{2}\psi = \hbar^{2}(y+z), \quad \hat{l}_{y}^{2}\psi = \hbar^{2}(z+x), \quad \hat{l}_{z}^{2}\psi = \hbar^{2}(x+y)$$

因此,

$$\hat{l}^2 \psi = \hat{l}_x^2 \psi + \hat{l}_y^2 \psi + \hat{l}_z^2 \psi = 2 \, \hbar^2 (x + y + z) = 2 \, \hbar^2 \psi$$

可见, $\phi=x+y+z$ 是 \hat{I}^2 的本征值为 $2\hbar^2$ 的本征函数。

四、解 先把 $\phi(\theta,\varphi)$ 用球谐函数展开如下:

$$\begin{split} \psi(\theta,\varphi) &= \frac{1}{\sqrt{4\pi}} (\mathrm{e}^{\mathrm{i}\varphi} \mathrm{sin}\theta + \mathrm{cos}\theta) \\ &= \frac{1}{\sqrt{3}} \left[\sqrt{2} \sqrt{\frac{3}{8\pi}} \mathrm{sin}\theta \mathrm{e}^{\mathrm{i}\varphi} + \sqrt{\frac{3}{4\pi}} \mathrm{cos}\theta \right] \\ &= \frac{1}{\sqrt{3}} \left(-\sqrt{2} Y_{11} + Y_{10} \right) = \frac{1}{\sqrt{3}} Y_{10} - \sqrt{\frac{2}{3}} Y_{11} \end{split}$$

可见,体系的 l=1, m=0,1。因此, \hat{l}_* 的可能测值为 0 或 \hbar ,出现 0 的几率为 $\frac{1}{3}$,出现 \hbar 的几率为 $\frac{2}{3}$ 。 \hat{l}_* 的平均值为

$$\bar{l}_z = \frac{2}{3}\hbar + \frac{1}{3} \cdot 0 = \frac{2}{3}\hbar$$

五、解 受到微批 \hat{H} 的作用后基态能量的一级修正值为 $E^{(1)}=H_{11}'=(\phi_1,\hat{H}'\phi_1)$

$$=\int_{0}^{\frac{\pi}{2}} \psi_{1}^{\star} \hat{H}' \psi_{1} \mathrm{d}x + \int_{\frac{a}{2}}^{a} \psi_{1}^{\star} \hat{H}' \psi_{1} \mathrm{d}x$$

$$= \frac{4k}{a^2} \int_{0}^{\frac{a}{2}} x \sin^2 \frac{\pi}{a} x dx + \frac{4k}{a^2} \int_{\frac{a}{2}}^{a} (a - x) \sin^2 \frac{\pi}{a} x dx$$

$$= \frac{2k}{a^2} \int_{0}^{\frac{a}{2}} x \left(1 - \cos\frac{2\pi}{a}x\right) dx + \frac{2k}{a^2} \int_{\frac{a}{2}}^{a} (a - x) \left(1 - \cos\frac{2\pi}{a}x\right) dx$$

$$= \frac{2k}{a^2} \left[\frac{a^2}{8} + \frac{a^2}{\pi^2} + \frac{a^2}{8} \right] = k \left(\frac{1}{2} + \frac{2}{\pi^2} \right)$$

六、解(1) 利用公式:

$$x\left|n\right\rangle = \frac{1}{\alpha} \left[\sqrt{\frac{n+1}{2}} \left| n+1 \right\rangle + \sqrt{\frac{n}{2}} \left| n-1 \right\rangle \right]$$

得到

$$x^{2}|n\rangle = \frac{1}{\alpha} \left[\sqrt{\frac{n+1}{2}} x |n+1\rangle + \sqrt{\frac{n}{2}} x |n-1\rangle \right]$$

$$= \frac{1}{\alpha^{2}} \sqrt{\frac{n+1}{2}} \left[\sqrt{\frac{n+2}{2}} |n+2\rangle + \sqrt{\frac{n+1}{2}} |n\rangle \right] +$$

$$\frac{1}{\alpha^{2}} \sqrt{\frac{n}{2}} \left[\sqrt{\frac{n}{2}} |n\rangle + \sqrt{\frac{n-1}{2}} |n-2\rangle \right]$$

$$= \frac{1}{2\alpha^{2}} \left[\sqrt{(n+1)(n+2)} |n+2\rangle + (2n+1) |n\rangle +$$

$$\sqrt{n(n-1)} |n-2\rangle \right]$$

因此,

$$\langle m | x^{2} | n \rangle = \frac{1}{2\alpha^{2}} \Big[\sqrt{(n+1)(n+2)} \langle m | n+2 \rangle + \\ (2n+1) \langle m | n \rangle + \sqrt{n(n-1)} \langle m | n-2 \rangle \Big]$$

$$= \frac{1}{2\alpha^{2}} \Big[\sqrt{(n+1)(n+2)} \delta_{m,n+2} + (2n+1) \delta_{m,n} + \\ \sqrt{n(n-1)} \delta_{m,n-2} \Big]$$

由此可见

$$\langle 2 | x^2 | 0 \rangle = \frac{\sqrt{2}}{2\alpha^2} = \frac{1}{\sqrt{2}} \frac{\hbar}{m\omega}$$

(2) 在一级近似下,体系从能级 E_0 跃迁到 E_n 的跃迁振幅为,

$$a_{n0}(t) = \frac{1}{\mathrm{i}\,\hbar} \int_0^t \langle n|H'|0\rangle \mathrm{e}^{\mathrm{i}\omega_{n0}t} \mathrm{d}t$$

其中, $\omega_{n0}=\frac{1}{\hbar}\langle E_n-E_0\rangle$ 。因此,从基态 $|0\rangle$ 跃迁到 $|2\rangle$ 态的跃迁振幅

$$\begin{split} a_{20}(t) &= \frac{1}{\mathrm{i} \, \hbar} \int_{0}^{t} \langle 2 \, | \, x^{2} \, | \, 0 \rangle \mathrm{e}^{(\mathrm{i}\omega_{20} - 2k)t} \mathrm{d}t = \frac{\langle 2 \, | \, x^{2} \, | \, 0 \rangle}{\mathrm{i} \, \hbar} \int_{0}^{t} \mathrm{e}^{(\mathrm{i}\omega_{20} - 2k)t} \mathrm{d}t \\ &= \frac{\langle 2 \, | \, x^{2} \, | \, 0 \rangle}{\mathrm{i} \, \hbar} \cdot \frac{\mathrm{e}^{(\mathrm{i}\omega_{20} - 2k)t}}{\mathrm{i}\omega_{20} - 2k} \, \Big|_{0}^{t} = \frac{\langle 2 \, | \, x^{2} \, | \, 0 \rangle \, (\mathrm{e}^{(\mathrm{i}\omega_{20} - 2k)t} - 1)}{\mathrm{i} \, \hbar \, (\mathrm{i}\omega_{20} - 2k)} \end{split}$$

经充分长时间后 $(t = \infty)$,

$$a_{20}(t \to \infty) = -\frac{\langle 2 | x^2 | 0 \rangle}{\mathrm{i} \, \hbar} \frac{1}{\mathrm{i} \omega_{20} - 2k}$$

因此,跃迁几率为

$$P_{20}(\infty) = |a_{20}(\infty)|^2 = \frac{1}{2m^2\omega^2} \cdot \frac{1}{4k^2 + \omega_{20}^2}$$

$$= \frac{1}{2m^2\omega^2} \cdot \frac{\hbar^2}{4k^2 \hbar^2 + (E_2 - E_0)^2}$$

$$= \frac{1}{2m^2\omega^2} \cdot \frac{\hbar^2}{4 \hbar^2 k^2 + 4 \hbar^2\omega^2} = \frac{1}{8m^2\omega^2(k^2 + \omega^2)}$$

模拟试题 B 参考答案

一、填空题

- 1. 能量的量子化,粒子,稳定性,线光谱
- 2. 厄米,实数,该力学量的本征值,该力学量的某一本征态,态的叠加,两个力学量算符对易
- 二、1. 证明 (1)因为 $\hat{N}^{\dagger} = (\hat{a}^{\dagger} \hat{a})^{\dagger} = \hat{a}^{\dagger} \hat{a} = \hat{N}$,所以 \hat{N} 是一个厄米算符,它的本征值必为实数。

$$(2)\hat{N}^2 = \hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} \hat{a} = \hat{a}^{\dagger} (1 - \hat{a}^{\dagger} \hat{a}) \hat{a} = \hat{a}^{\dagger} \hat{a} = \hat{N},$$

(3)设 \hat{N} 的本征值为n,本征矢量为 $|n\rangle$,则因为

$$\hat{N}^2|n\rangle = \hat{N}|n\rangle$$

所以

$$n^2 |n\rangle = n |n\rangle$$

从而得到 $n^2-n=0$,可见, \hat{N} 的本征值为 n=0 或 n=1。

2. 证明 由

$$\sigma \times \sigma = 2i \sigma$$

得

$$[\sigma_x, \sigma_y] = 2i\sigma_x$$

即

$$\sigma_x \sigma_y - \sigma_y \sigma_x = 2i\sigma_x \tag{1}$$

(1)式的两边左乘 σ_{ϵ} 得,

$$\sigma_y - \sigma_x \sigma_y \sigma_x = 2i\sigma_x \sigma_x$$

右乘σ,得,

$$\sigma_x \sigma_y \sigma_x - \sigma_y = 2i\sigma_x \sigma_x$$

两式相加得

$$2\mathrm{i}(\sigma_x\sigma_z+\sigma_z\sigma_x)=0$$

这就是说,

$$\{\sigma_z,\sigma_x\}=0$$

完全相同的方法可以证明,

$$\{\sigma_x,\sigma_z\}=0$$
, $\{\sigma_x,\sigma_y\}=0$

三、1.解 (1)四个可能的自旋态有,

$$\chi_{1} = |\uparrow \uparrow\rangle$$

$$\chi_{2} = \frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle + |\downarrow \uparrow\rangle)$$

$$\chi_{3} = |\downarrow \downarrow\rangle$$

$$\chi_{4} = \frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle - |\downarrow \uparrow\rangle)$$

(2)因为空间波函数对 r₁,r₂ 的交换对称,对两个电子的交换 反对称的总体波函数为:

$$\varphi = \psi_{100}(\mathbf{r}_1)\psi_{100}(\mathbf{r}_2)\chi_4 = \frac{1}{\sqrt{2}}\psi_{100}(\mathbf{r}_1)\psi_{100}(\mathbf{r}_2)(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

2. 解 (1)在自旋态 $|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow_z\rangle + |\downarrow_z\rangle)$ 下, \hat{S}_z 的可能 测值为 $\frac{\hbar}{2}$ 或一 $\frac{\hbar}{2}$,相应的几率分别为 $\frac{1}{2}$ 。

(2)把自旋态 |ψ>写成

$$|\psi\rangle\!=\!\frac{1}{\sqrt{2}}[|\uparrow_z\!+|\downarrow_z\rangle]\!=\!\frac{1}{\sqrt{2}}\!\left[\!\begin{bmatrix}1\\0\end{bmatrix}\!+\!\begin{bmatrix}0\\1\end{bmatrix}\!\right]\!=\!\frac{1}{\sqrt{2}}\!\begin{bmatrix}1\\1\end{bmatrix}\!=|\uparrow_x\rangle$$

可见,自旋态 $|\psi\rangle$ 正是 \hat{S}_x 的本征值为 $\frac{\hbar}{2}$ 的本征态 $|\uparrow_x\rangle$,因此 \hat{S}_x 的测值为 $\frac{\hbar}{2}$,几率为 1。

四、解 类氢离子的 Hamilton 量为

$$\hat{H}_0 = -\frac{\hbar^2}{2\mu} \nabla^2 - \frac{Ze^2}{r}$$

当 2→2+1 时,体系的 Hamilton 量变为

$$\hat{H} = -\frac{\hbar^2}{2\mu} \nabla^2 - \frac{(Z+1)e^2}{r} = -\frac{\hbar^2}{2\mu} \nabla^2 - \frac{Ze^2}{r} - \frac{e^2}{r} = \hat{H}_0 + \hat{H}'$$

其中

$$\hat{H}' = -\frac{e^2}{r}$$

因此,能量的一级修正值

$$E^{(1)} = \hat{H}_{11}' = (\psi_{100}, \hat{H}'\psi_{100})$$

$$= -\frac{e^2}{\pi} \frac{Z^3}{a^3} \iint \frac{1}{r} e^{-\frac{2Zr}{a}} d^3r$$

$$= -\frac{e^2 Z^3}{\pi a^3} \iint \frac{1}{r} e^{-\frac{2Zr}{a}} r^2 dr \sin\theta d\theta d\varphi$$

$$= -\frac{e^2 Z^3}{\pi a^3} 4\pi \int_0^\infty r e^{-\frac{2Zr}{a}} dr = -\frac{Ze^2}{a}$$

在计算中利用了积分公式

$$\int_0^\infty x \mathrm{e}^{-2\alpha x} \mathrm{d}x = \frac{1}{4\alpha^2}$$

因此,基态能量的一级近似值是

$$E = E^{(0)} + E^{(1)} = -\left(\frac{Z^2 e^2}{2a} + \frac{Z e^2}{a}\right) = -\frac{Z e^2}{a} \left(\frac{Z}{2} + 1\right)$$

五、解 (1)利用

$$\frac{\mathrm{d}}{\mathrm{d}x}\psi_n(x) = \alpha \left[\sqrt{\frac{n}{2}} \psi_{n-1}(x) - \sqrt{\frac{n+1}{2}} \psi_{n+1}(x) \right]$$

$$\overline{p} = (\psi_n, \tilde{p}, \psi_n) = -\mathrm{i} \, \hbar \left(\psi_n, \frac{\mathrm{d}}{\mathrm{d}x} \psi_n \right)$$

$$= -\mathrm{i} \, \hbar \alpha \sqrt{\frac{n}{2}} (\psi_n, \psi_{n-1}) + \mathrm{i} \, \hbar \alpha \sqrt{\frac{n+1}{2}} (\psi_n, \psi_{n+1}) = 0$$
(2) 谐振子的动能 $T = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2}$ 的平均值
$$\overline{T} = -\frac{\hbar^2}{2m} \left(\psi_n, \frac{\mathrm{d}^2}{\mathrm{d}x^2} \psi_n \right)$$

利用

$$\frac{\mathrm{d}}{\mathrm{d}x}\psi_n(x) = \alpha \left[\sqrt{\frac{n}{2}} \psi_{n-1}(x) - \sqrt{\frac{n+1}{2}} \psi_{n+1}(x) \right]$$

可以得到

$$\begin{split} \frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}} \psi_{n} &= \frac{\mathrm{d}}{\mathrm{d}x} \left[\alpha \left[\sqrt{\frac{n}{2}} \psi_{n-1} - \sqrt{\frac{n+1}{2}} \psi_{n+1} \right] \right] \\ &= \alpha \left[\sqrt{\frac{n}{2}} \frac{\mathrm{d}}{\mathrm{d}x} \psi_{n-1} - \sqrt{\frac{n+1}{2}} \frac{\mathrm{d}}{\mathrm{d}x} \psi_{n+1} \right] \\ &= \frac{\alpha^{2}}{2} \left[\sqrt{n(n+1)} \psi_{n-2} - (2n+1) \psi_{n} + \sqrt{(n+1)(n+2)} \psi_{n+2} \right] \end{split}$$

因此,

$$\overline{T} = \frac{\hbar^2}{2m} \left(\psi_n, \frac{\alpha^2}{2} (2n+1) \psi_n \right) = \frac{\hbar^2 \alpha^2}{4m} (2n+1) = \frac{1}{2} \left(n + \frac{1}{2} \right) \hbar \omega = \frac{1}{2} E_n$$

六、解 先把 Hamilton 量分解成 $\hat{H}=\hat{H}_0+\hat{H}'$,其中

$$\hat{H}_0 = \begin{bmatrix} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{bmatrix}, \quad \hat{H}' = \begin{bmatrix} 0 & a_1 & a_2 \\ a_1^* & 0 & a_3 \\ a_2^* & a_3^* & 0 \end{bmatrix}$$

很容易看出,能量的一级修正值

$$E_1^{(1)} = H_{11}' = 0$$
, $E_2^{(1)} = H_{22}' = 0$, $E_3^{(1)} = H_{33}' = 0$

二级修正值

$$E_{1}^{(2)} = \frac{|H'_{12}|^{2}}{E_{1} - E_{2}} + \frac{|H'_{13}|^{2}}{E_{1} - E_{3}} = \frac{|a_{1}|^{2}}{E_{1} - E_{2}} + \frac{|a_{2}|^{2}}{E_{1} - E_{3}}$$

$$E_{2}^{(2)} = \frac{|a_{1}|^{2}}{E_{2} - E_{1}} + \frac{|a_{3}|^{2}}{E_{2} - E_{3}}, \quad E_{3}^{(2)} = \frac{|a_{2}|^{2}}{E_{3} - E_{1}} + \frac{|a_{3}|^{2}}{E_{3} - E_{2}}$$

模拟试题 C 参考答案

一、填空题

$$-\frac{\hbar^2}{2m}\nabla^2$$
,守恒, $\frac{\hbar^2k^2}{2m}$, e^{ikx} , e^{-ikx} ,能量,动量, kh , $-k\hbar$

二、解 (1)由于 $\phi(x)$ 是实函数, $\phi^*(x) = \phi(x)$,因此,动量平均值

$$\overline{p} = -i \hbar \int_{-\infty}^{\infty} \psi^*(x) \frac{\mathrm{d}}{\mathrm{d}x} \psi(x) \mathrm{d}x = -i \hbar \int_{-\infty}^{\infty} \psi(x) \frac{\mathrm{d}}{\mathrm{d}x} \psi(x) \mathrm{d}x$$

进行分部积分得

$$\int_{-\infty}^{\infty} \psi(x) \frac{\mathrm{d}}{\mathrm{d}x} \psi(x) \mathrm{d}x = \psi^{2}(x) \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{\mathrm{d}}{\mathrm{d}x} \psi(x) \cdot \psi(x) \mathrm{d}x$$
$$= - \int_{-\infty}^{\infty} \psi(x) \frac{\mathrm{d}}{\mathrm{d}x} \psi(x) \mathrm{d}x$$

这就是说,

$$\overline{p} = -\overline{p}$$

由此得到动量平均值

$$\overline{p} = 0$$

(2) 由于 $\psi(x)$ 是实函数,动量的平均值

$$\overline{p} = \int_{-\infty}^{\infty} \varphi^{\bullet}(x) \, \hat{p} \, \varphi(x) \mathrm{d}x = \int_{-\infty}^{\infty} \psi(x) \mathrm{e}^{-\mathrm{i}k_0 x} \left(-\mathrm{i} \, \hbar \, \frac{\mathrm{d}}{\mathrm{d}x} \right) \psi(x) \mathrm{e}^{\mathrm{i}k_0 x} \mathrm{d}x$$

$$= -i \hbar \int_{-\infty}^{\infty} \psi(x) e^{-ik_0 x} \left(\frac{\mathrm{d}\psi(x)}{\mathrm{d}x} + ik_0 \psi(x) \right) e^{ik_0 x} \mathrm{d}x$$
$$= -i \hbar \int_{-\infty}^{\infty} \psi(x) \frac{\mathrm{d}\psi(x)}{\mathrm{d}x} \mathrm{d}x + \hbar k_0 \int_{-\infty}^{\infty} \psi^2(x) \mathrm{d}x$$

但前面已经证明,当 $\phi(x)$ 是实函数时,上式的第一项等于零。在上式的第二项中,由于 $\phi(x)$ 是归一化的,

$$\int_{-\infty}^{\infty} \psi^2(x) \mathrm{d}x = 1$$

因此最后得动量平均值

$$\overline{p} = \hbar k_0$$

三、解 空穴中电子的能量

$$E_{n_1,n_2,n_3} = \frac{\hbar^2 \pi^2}{2ma^2} (n_1^2 + n_2^2 + n_3^2), \quad n_1,n_2,n_3 = 1,2,3,\dots$$

基态和第一激发态的能量分别为

$$E_{111} = \frac{3 \hbar^2 \pi^2}{2ma^2}, \quad E_{211} = E_{121} = E_{112} = \frac{3 \hbar^2 \pi^2}{ma^2}$$

因此,电子从基态跃迁到第一激发态时所吸收电磁波的频率满足

$$\Delta E = E_{211} - E_{111} = h\nu$$

电磁波的波长

$$\lambda = \frac{c}{v} = \frac{hc}{\Delta E} = \frac{2ma^2hc}{3 h^2 \pi^2} = \frac{4ma^2c}{3 h\pi}$$

四、解 电子的自旋初态为 $|\phi_0\rangle=\begin{bmatrix}1\\0\end{bmatrix}$,自旋方向在 x-z 平面内 $(\varphi=0)$ 与 z 轴成 θ 角的态为

$$|\psi\rangle = \begin{bmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} \end{bmatrix}$$

因此,在 t>0 时,电子的自旋方向在 x-z 平面内与 z 轴成 θ 角的几率为

$$P(\theta) = |\langle \psi | \psi_0 \rangle|^2 = \left| \left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \right) \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right|^2 = \cos^2 \frac{\theta}{2}$$

五、解 选取 $\{\hat{H},\hat{J}^2,\hat{J}_s,\hat{L}^2,\hat{S}^2\}$ 为力学量完全集,设其共同本征矢量为 $\{j,m,l,s\}$,其中

$$\hat{J} = \hat{L} + \hat{S}$$

j,m 分别为 \hat{J} 和 \hat{J} 。的相应量子数。 $\hat{J}^2,\hat{J}_*,\hat{L}^2,\hat{S}^2$ 的本征值方程分别为

$$\hat{J}^{2}|j,m,l,s\rangle = j(j+1)\hbar^{2}|j,m,l,s\rangle$$

$$\hat{L}^{2}|j,m,l,s\rangle = l(l+1)\hbar^{2}|j,m,l,s\rangle$$

$$\hat{S}^{2}|j,m,l,s\rangle = s(s+1)\hbar^{2}|j,m,l,s\rangle$$

$$\hat{J}_{z}|j,m,l,s\rangle = m \hbar |j,m,l,s\rangle$$

由于

$$\hat{J}^2 = (\hat{L} + \hat{S})^2 = \hat{L}^2 + \hat{S}^2 + 2\hat{L} \cdot \hat{S}$$

相互作用 Hamilton 量及其本征值方程可以写成

$$\hat{H} = A \hat{L} \cdot \hat{S} = \frac{1}{2} A (\hat{J}^2 - \hat{L}^2 - \hat{S}^2)$$

$$\hat{H} | jmls \rangle = \frac{1}{2} A(\hat{J}^2 - \hat{L}^2 - \hat{S}^2) | jmls \rangle = E | jmls \rangle$$

同时,由于l=2,s=1,体系的总角动量量子数

$$j=l+s, l+s-1, \dots, |l-s|=3,2,1$$

因此,体系的能量为

j=3时,

$$E_3 = \frac{A}{2} \hbar^2 [j(j+1) - l(l+1) - s(s+1)]$$

$$= \frac{A}{2} \hbar^2 [3(3+1) - 2(2+1) - 1(1+1)] = 2A \hbar^2$$

j=2 时,

$$E_2 = \frac{A}{2} \hbar^2 [2(2+1) - 2(2+1) - 1(1+1)] = -A \hbar^2$$

j=1 时,

$$E_1 = \frac{A}{2} \hbar^z [1(1+1) - 2(2+1) - 1(1+1)] = -3A \hbar^z$$

简并度:j=3 时,f=2j+1=7,j=2 时,f=5,j=1 时,f=3.

六、解 (1)把波函数 $\phi(x)$ 用能量本征函数 $\phi_{\kappa}(x)$ 展开:

$$\psi(x) = \sum_{n} c_n \psi_n(x) = \sqrt{\frac{2}{a}} \sum_{n} c_n \cos \frac{n \pi x}{a}$$

因此

$$c_n = (\psi_n, \psi) = \frac{2\sqrt{15}}{a^3} \int_{-a/2}^{a/2} \left[(a/2)^2 - x^2 \right] \cos \frac{n\pi x}{a} dx$$
$$= (-1)^{(n-1)/2} \frac{8\sqrt{15}}{n^3 \pi^3}, \quad n = 1, 3, 5, \dots$$

由此得到粒子处于各个能级的几率

$$|c_*|^2 = \frac{960}{\pi^6 n^6}, \quad n = 1, 3, 5, \cdots$$

(2) 利用以上结果,能量平均值

$$\overline{E} = \sum_{n} |c_{n}|^{2} E_{n} = \frac{960}{\pi^{6}} \frac{\hbar^{2} \pi^{2}}{2ma^{2}} \left(\frac{1}{1^{4}} + \frac{1}{3^{4}} + \cdots \right) = \frac{5 \hbar^{2}}{ma^{2}}$$

七、解 (1)以质点运动的平衡位置作为势能零点,则在小角 近似下质点的势能

$$V = mg(l - l\cos\theta) = mgl - mgl\left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots\right) \approx \frac{1}{2} mgl\theta^2$$
(近似到 θ^2 项)

因此,体系的 Hamilton 量为

$$\hat{H} = \frac{1}{2}m(l \ \dot{\theta} \)^2 + \frac{1}{2}mgl\theta^2 = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

其中,

$$x=l\theta$$
, $\omega=\sqrt{\frac{g}{l}}$, $\hat{p}=ml\ \dot{\theta}$

由此可见,质点的简谐振动能级

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega, \quad n = 1, 2, 3, \cdots$$

(2)小角近似带来的势能的误差(精确到 & 项)

$$\Delta V = \hat{H}' = mg(l - l\cos\theta) - \frac{1}{2}mgl\theta^2 = -mgl\frac{\theta^4}{4!}$$
$$= -\frac{mgl}{24}\theta^4 = -\frac{mg}{24l^3}x^4$$

因此,基态能量的一级修正值

$$\Delta E = \hat{H}'_{00} = -\left\langle 0 \left| \frac{mg}{24l^3} x^4 \right| 0 \right\rangle = -\frac{mg}{24l^3} \langle 0 | x^2 \cdot x^2 | 0 \rangle$$

利用

$$x^{2}|n\rangle = \frac{1}{2\alpha^{2}} \left\{ \sqrt{(n+1)(n+2)} |n+2\rangle + \right.$$

$$(2n+1)|n\rangle + \sqrt{n(n-1)}|n-2\rangle$$
,

$$|x^2|0\rangle = \frac{1}{\alpha^2} \left[\sqrt{\frac{1}{2}} |2\rangle + \frac{1}{2} |0\rangle \right], \quad \alpha^2 = \frac{m\omega}{\hbar^2}$$

得到

$$\langle 0 | x^4 | 0 \rangle = \frac{\hbar^2}{m^2 \omega^2} \left(\frac{1}{2} + \frac{1}{4} \right) = \frac{3 \hbar^2}{4m^2 \omega^2}$$

因此,最后得到能量的一级修正值

$$\Delta E = -\frac{mg}{32l^3} \cdot \frac{\hbar^2}{m^2\omega^2} = -\frac{\hbar^2}{32ml^2}$$

能量的一级近似值

$$E = E_0 + \Delta E = \frac{1}{2}\hbar\omega - \frac{\hbar^2}{32ml^2}$$

模拟试题 D 参考答案

一、填空题

- $1.0,\infty$
- 2. 是, $\frac{\hbar^2 k^2}{2m}$,否, $\cos kx = \frac{1}{2} (e^{ikx} + e^{-ikx})$,可见,它是两个动量本征态 e^{ikx} 和 e^{-ikx} 的叠加态
 - 3. \hat{A}^2 , $\hat{A}\hat{B}+\hat{B}\hat{A}$
- 4. $\psi(r\theta) = \frac{1}{\sqrt{2}} \left\{ e^{i\mathbf{k}\cdot\mathbf{r}} e^{-i\mathbf{k}\cdot\mathbf{r}} + \left[f(\theta) f(\pi \theta) \right] e^{-i\mathbf{k}\mathbf{r}} / r \right\},$ $\sigma(\theta) = |f(\theta) f(\pi \theta)|^2$
 - 5. $\begin{bmatrix} E_1 & 0 \\ 0 & E_2 \end{bmatrix}, |n_1\rangle, |n_2\rangle, C_1|n_1\rangle + C_2|n_2\rangle, E_1, E_2, E_1 \not\otimes E_2, 1,$

1,
$$\frac{|C_1|^2}{|C_1|^2 + |C_2|^2}$$
 \oplus $\frac{|C_2|^2}{|C_1|^2 + |C_2|^2}$

二、1.解 可通过 Fourier 变换得到动量表象中坐标的本征函数:

$$\begin{split} \varphi_{x_0}(p) &= \frac{1}{(2\pi \hbar)^{1/2}} \int \!\! \psi(x) \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} p x} \mathrm{d}x \\ &= \frac{1}{(2\pi \hbar)^{1/2}} \!\! \int \!\! \delta(x - x_0) \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} p x} \mathrm{d}x \\ &= \frac{1}{(2\pi \hbar)^{1/2}} \!\! \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} p x_0} \end{split}$$

可见,在动量表象中,坐标的本征值为x。的本征函数是

$$\varphi_{x_0}(p) = \frac{1}{(2\pi \hbar)^{1/2}} e^{-\frac{i}{\hbar}\rho x_0}$$

2. 由于电子在 $r \rightarrow r + dr$ 的球壳内出现的几率为 $P_{nl}(r) dr = |R_{nl}(r)|^2 r^2 dr$,几率密度,即几率分布函数 $P_{nl}(r) = |R_{nl}(r)|^2 r^2$,对 1s 电子的径向几率最大的位置应有

$$\frac{\mathrm{d}P_{10}(r)}{\mathrm{d}r} = \frac{\mathrm{d}}{\mathrm{d}r} |R_{10}(r)|^2 r^2 = 0$$

把 R₁₀(r)代入上式得

可见, 1s 电子的径向几率最大的位置是 $r=a_0$ 。

三、1. 证明 因为

$$\begin{split} \hat{l}_x &= -\mathrm{i}\,\,\hbar\!\left(\,y\,\frac{\partial}{\partial\,z} - z\,\frac{\partial}{\partial\,y}\right)\,, \quad \hat{l}_y = -\mathrm{i}\,\,\hbar\!\left(\,z\,\frac{\partial}{\partial\,x} - x\,\frac{\partial}{\partial\,z}\right)\,, \\ \hat{l}_z &= -\mathrm{i}\,\,\hbar\!\left(\,x\,\frac{\partial}{\partial\,y} - y\,\frac{\partial}{\partial\,x}\right) \end{split}$$

因此,

$$\hat{l}_x \phi_1 = -i \hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right) (y + iz) = i \hbar z + \hbar y = h(y + iz) = \hbar \phi_1$$
可见, ϕ_1 是 \hat{l}_x 的本征值为 \hbar 的本征态。同理可证明,

$$\hat{l}_1 \psi_2 = \hbar \psi_2$$
, $\hat{l}_1 \psi_3 = \hbar \psi_3$

2. 证明 在自旋态 χ 下, \hat{S}_z 的平均值

$$\overline{S_z} = \chi^{\dagger} \hat{S}_z \chi = (a^* \quad b^*) \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \frac{\hbar}{2} (|a|^2 - |b|^2)$$

可见,只要 $|a|^2 = |b|^2$, \hat{S}_z 的平均值必为零。

四、1. 证明 由 $(\sigma \cdot A)(\sigma \cdot B) = A \cdot B + i\sigma \cdot (A \times B)$ 可看出, 当 A = B 时,

$$(\sigma \cdot A)^2 = A^2 + i\sigma \cdot (A \times A)$$

当 A 的三个分量 A_x , A_y , A_z 互为对易时,上式中的 $A \times A = 0$, 当 A 的三个分量 A_x , A_y , A_z 互为不对易时, $A \times A \neq 0$ 。

对
$$(\sigma \cdot p)^2$$
,由于 $p_i p_j = p_j p_i$ (对易),所以

$$(\boldsymbol{\sigma} \cdot \boldsymbol{p})^2 = \boldsymbol{p}^2$$

但对 $(\sigma \cdot I)^2$,由于I的三个分量不对易,且有 $I \times I = i \hbar I$,因此

$$(\sigma \cdot l) = l^2 + i\sigma \cdot (i h l) = l^2 - h\sigma \cdot l$$

2. 证明 根据平均值的定义,

$$\overline{A} = (\psi(t), \hat{A} \psi(t))$$

因此,

$$\begin{split} \frac{\mathrm{d}\overline{A}}{\mathrm{d}t} &= \left(\frac{\partial \psi}{\partial t}, \hat{A} \psi\right) + \left(\psi, \hat{A} \frac{\partial \psi}{\partial t}\right) \\ &= \left(\frac{\hat{H} \psi}{\mathrm{i} \, \hbar}, \hat{A} \psi\right) + \left(\psi, \hat{A} \frac{\hat{H} \psi}{\mathrm{i} \, \hbar}\right) \\ &= -\frac{1}{\mathrm{i} \, \hat{h}} (\hat{H} \psi, \hat{A} \psi) + \frac{1}{\mathrm{i} \, h} (\psi, \hat{A} \hat{H} \psi) \\ &= \frac{1}{\mathrm{i} \, \hbar} \{(\psi, [\hat{A}, \hat{H}] \psi)\} = \frac{1}{\mathrm{i} \, \hat{h}} [\hat{A}, \hat{H}] \end{split}$$

但由于 \hat{A} 是守恒量, $[\hat{A},\hat{H}]=0$,因此 $\frac{d\overline{A}}{dt}=0$, \hat{A} 的平均值不随时间改变。

五、解 我们已经知道,对一维谐振子

$$\overline{T} = \overline{V} = \frac{1}{2}E$$

对谐振子的基态,能量 $E_0 = \frac{1}{2}\hbar\omega$,因此,

$$\overline{V} = \frac{1}{2} m \omega^2 \overline{x^2} = \frac{1}{2} E_0 = \frac{\hbar \omega}{4}$$

由此得到

$$\omega = \frac{\hbar}{2m \, \overline{x^2}}$$

但由于

$$(\Delta x)^2 = \overline{(x - \overline{x^2})} = \overline{x^2} - \overline{x^2} = l^2, \quad (B \ \overline{x} = 0)$$

因此,由基态跃迁到第一激发态所需能量为

$$\Delta E = E_1 - E_0 = \hbar \omega = \frac{\hbar^2}{2m \ \overline{x^2}} = \frac{\hbar^2}{2m l^2}$$

六、解 (1)电子的自旋磁矩与外磁场的相互作用 Hamilton 量

$$\hat{H} = -\mu_s \cdot B = -\frac{e \, \hbar}{2m_e c} \boldsymbol{\sigma} \cdot B$$

因为,B = (B, 0, 0),

$$\hat{H} = -\frac{e \hbar}{2m_{e}c}\sigma_{x}B = \omega \hbar \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \omega = \frac{|e|B}{2m_{e}c}$$

设在任意时刻,电子的自旋波函数 $\chi = \begin{bmatrix} a(t) \\ b(t) \end{bmatrix}$,则Schrödinger 方程为

$$i \hbar \frac{\mathrm{d}}{\mathrm{d}t} \chi(t) = \hat{H} \chi(t)$$

或

$$i h \frac{d}{dt} \begin{bmatrix} a(t) \\ b(t) \end{bmatrix} = \omega h \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a(t) \\ b(t) \end{bmatrix}$$

由此得到

$$\frac{\mathrm{d}a(t)}{\mathrm{d}t} = -\mathrm{i}\omega b(t), \quad \frac{\mathrm{d}b(t)}{\mathrm{d}t} = -\mathrm{i}\omega a(t)$$

两式相加得

$$\frac{\mathrm{d}}{\mathrm{d}t}(a+b) = -\mathrm{i}\omega(a+b)$$

两式相减得

$$\frac{\mathrm{d}}{\mathrm{d}t}(a-b) = \mathrm{i}\omega(a-b)$$

因此

$$a(t)+b(t)=c_1e^{-iat}, \quad a(t)-b(t)=c_2e^{iat}$$

因初始时刻(t=0),电子的自旋向z轴的正向极化,

$$|\uparrow\rangle\rangle = \begin{bmatrix} a(0) \\ b(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$a(0)=1,b(0)=0$$

由此得到,

$$c_1=a(0)=1$$
, $c_2=a(0)=1$

因此,

$$\begin{cases} a(t) + b(t) = e^{-i\omega t} \\ a(t) - b(t) = e^{i\omega t} \end{cases}$$

$$\begin{cases} a(t) = \frac{1}{2} (e^{i\omega t} + e^{-i\omega t}) = \cos \omega t \\ b(t) = \frac{1}{2} (e^{-i\omega t} - e^{i\omega t}) = -i\sin \omega t \end{cases}$$

最后得到,电子在任意时刻的自旋波函数为

$$\chi = \begin{bmatrix} \cos \omega t \\ -i\sin \omega t \end{bmatrix} = \cos \omega t \begin{bmatrix} 1 \\ 0 \end{bmatrix} - i\sin \omega t \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

(2)在 $\chi(t)$ 状态下, \hat{S}_x , \hat{S}_y , \hat{S}_z 的平均值分别为

$$\overline{S}_x = \frac{\hbar}{2} \chi^{\dagger} \sigma_x \chi = \frac{\hbar}{2} (\cos \omega t, i \sin \omega t) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \cos \omega t \\ -i \sin \omega t \end{bmatrix} = 0$$

$$\overline{S}_{y} = \frac{\hbar}{2} \chi^{\dagger} \sigma_{y} \chi = \frac{\hbar}{2} (\cos \omega t, i \sin \omega t) \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} \cos \omega t \\ -i \sin \omega t \end{bmatrix} \\
= -\frac{\hbar}{2} \sin 2\omega t$$

$$\overline{S}_{z} = \frac{\hbar}{2} \chi^{\dagger} \sigma_{z} \chi = \frac{\hbar}{2} (\cos \omega t, i \sin \omega t) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos \omega t \\ -i \sin \omega t \end{bmatrix} = \frac{\hbar}{2} \cos 2\omega t$$

(3)在 $\chi(t)$ 态下 \hat{S}_t 的测值为 $\frac{\hbar}{2}$ 的几率是

$$P_{z}(\uparrow) = |\langle \uparrow_{z} | \chi(t) \rangle|^{2} = \left| (1 \quad 0) \begin{bmatrix} \cos \omega t \\ -i\sin \omega t \end{bmatrix} \right|^{2} = \cos^{2} \omega t$$

 \hat{S} , 的测值为一 $\frac{\hbar}{2}$ 的几率是

$$P_{z}(\downarrow) = |\langle \downarrow_{z} | \chi(t) \rangle|^{2} = \begin{vmatrix} \cos \omega t \\ -\sin \omega t \end{vmatrix} \Big|^{2} = \sin^{2} \omega t$$

因此,

$$P_{\epsilon}(\uparrow)+P_{\epsilon}(\downarrow)=1$$

附录 常用特殊函数及积分公式

1. Hermite 多项式

(1)Hermite 多项式 H₄(ξ)满足微分方程

$$\frac{\mathrm{d}^2 H_n}{\mathrm{d}\xi^2} - 2\xi \frac{\mathrm{d} H_n}{\mathrm{d}\xi} + 2n II_n = 0$$

(2)H,(f)满足递推关系(recursion relation)

$$H_{n+1} - 2\xi H_n + 2nH_{n-1} = 0$$

$$\frac{\mathrm{d}H_n(\xi)}{\mathrm{d}\xi} = 2nH_{n-1}(\xi)$$

(3)Hermite 多项式满足

$$\int_{-\infty}^{\infty} H_m(\xi) H_n(\xi) e^{-\xi^2} d\xi = \sqrt{\pi} \cdot 2^n \cdot n! \ \delta_{mn}$$

从而保证

$$(\psi_m,\psi_n) = \delta_{mn}$$

(4)H"(ξ)可以写成

$$H_n(\xi) = (-1)^n e^{\xi^2} \frac{\mathrm{d}^n}{\mathrm{d}\xi^n} (e^{-\xi^2})$$

(5)常用的前5个厄米多项式为

$$H_0(\xi) = 1$$
, $H_1(\xi) = 2\xi$
 $H_2(\xi) = 4\xi^2 - 2$, $H_3(\xi) = 8\xi^3 - 12\xi$
 $H_4(\xi) = 16\xi^4 - 48\xi^2 + 12$

(6)一维谐振子的前 4 个能量本征函数如下:

$$\psi_0(x) = \frac{\sqrt{\alpha}}{\pi^{1/4}} e^{-\frac{1}{2}a^2x^2}$$

$$\psi_1(x) = \frac{\sqrt{2\alpha}}{\pi^{1/4}} \alpha x e^{-\frac{1}{2}a^2x^2}$$

$$\psi_2(x) = \frac{1}{\pi^{1/4}} \sqrt{\frac{\alpha}{2}} (2\alpha^2x^2 - 1) e^{-\frac{1}{2}a^2x^2}$$

$$\psi_3(x) = \frac{\sqrt{3\alpha}}{\pi^{1/4}} \alpha x \left(1 - \frac{2}{3}\alpha^2x^2\right) e^{-\frac{1}{2}a^2x^2}$$

2. Legendre 多项式

(1)定义:

$$P_{l}(\zeta) = P_{l}^{0}(\zeta) = \frac{1}{2^{l} l!} \left(\frac{\mathrm{d}}{\mathrm{d}\zeta}\right)^{l} (\zeta^{2} - 1)^{l} \quad l = 0, 1, 2, \cdots$$

$$P_{l}^{m}(\zeta) = (1 - \zeta)^{m/2} \left(\frac{\mathrm{d}}{\mathrm{d}\zeta}\right)^{m} P_{l}(\zeta) \qquad 0 \leq m \leq l$$

(2)微分方程:

$$\left[(1 - \zeta^2) \frac{\mathrm{d}^z}{\mathrm{d}\zeta^2} + 2\zeta \frac{\mathrm{d}}{\mathrm{d}\zeta} + l(l+1) - \frac{m^2}{1 - \zeta^2} \right] P_I^m(\zeta) = 0$$

(3)正交归一性:

$$\int_{-1}^{1} P_{l}^{m}(\zeta) P_{l'}^{m}(\zeta) d\zeta = \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} \delta_{ll'}$$

(4)部分 Legendre 多项式:

$$P_{0}(\zeta) = 1, \quad P_{1}(\zeta) = \zeta, \quad P_{1}^{1}(\zeta) = \sqrt{1 - \zeta^{2}}$$

$$P_{2}(\zeta) = \frac{1}{2}(3\zeta^{2} - 1), \quad P_{2}^{1}(\zeta) = 3\zeta \sqrt{1 - \zeta^{2}},$$

$$P_{2}^{2}(\zeta) = 3(1 - \zeta^{2})$$

$$P_{3}(\zeta) = \frac{1}{2} (5\zeta^{3} - 3\zeta), \quad P_{3}^{1}(\zeta) = \frac{3}{2} \sqrt{1 - \zeta^{2}} (5\zeta^{2} - 1)$$

$$P_{3}^{2}(\zeta) = 15(1 - \zeta^{2})\zeta, \quad P_{3}^{3}(\zeta) = 15(1 - \zeta^{2})^{3/2}$$

3. 球谐函数

$$Y_{0}^{0} = \frac{1}{\sqrt{4\pi}}, \quad Y_{1}^{0} = \sqrt{\frac{3}{4\pi}}\cos\theta, \quad Y_{1}^{\pm 1} = \mp \sqrt{\frac{3}{8\pi}}\sin\theta e^{\pm i\phi}$$

$$Y_{2}^{0} = \sqrt{\frac{5}{16\pi}}(2\cos^{2}\theta - \sin^{2}\theta), \quad Y_{2}^{\pm 1} = \mp \sqrt{\frac{15}{8\pi}}\sin\theta\cos\theta e^{\pm i\phi}$$

$$Y_{2}^{\pm 2} = \sqrt{\frac{15}{32\pi}}\sin^{2}\theta e^{\pm 2i\phi}$$

$$Y_{3}^{0} = \sqrt{\frac{7}{16\pi}}(2\cos^{3}\theta - 3\cos\theta\sin^{2}\theta)$$

$$Y_{3}^{\pm 1} = \mp \sqrt{\frac{21}{64\pi}}(4\cos^{2}\theta\sin\theta - \sin^{3}\theta)e^{\pm i\phi}$$

$$Y_{3}^{\pm 2} = \sqrt{\frac{105}{32\pi}}\cos\theta\sin^{2}\theta e^{\pm 2i\phi}, \quad Y_{3}^{\pm 3} = \mp \sqrt{\frac{35}{64\pi}}\sin^{3}\theta e^{\pm 3i\phi}$$

4. Laguerre 多项式

(1)定义:

$$L_n(\zeta) = e^{\zeta} \frac{d^n}{d\zeta^n} (\zeta^n e^{-\zeta}) \quad (n = 0, 1, 2, \dots)$$

$$L_n^m(\zeta) = \frac{d^m}{d\zeta^m} L_n(\zeta) \quad (n \ge m > 0)$$

(2)部分 Laguerre 多项式

$$L_0(\zeta) = 1$$
, $L_1(\zeta) = 1 - \zeta$, $L_2(\zeta) = \zeta^2 - 4\zeta + 2$
 $L_3(\zeta) = -\zeta^3 + 9\zeta^2 - 18\zeta + 6$

5. 第 1 类球 Bessel 函数

$$j_0(z) = \frac{\sin z}{z}, \quad j_1(z) = \frac{\sin z - z \cos z}{z^2}$$

$$j_{2}(z) = \frac{(3-z^{2})\sin z - 3z\cos z}{z^{3}}$$

$$j_{3}(z) = \frac{(15-6z^{2})\sin z - z(15-z^{2})\cos z}{z^{4}}$$

$$j_{4}(z) = \frac{(105-45z^{2}+z^{4})\sin z - z(105-10z^{2})\cos z}{z^{5}}$$

6. 氢原子的波函数

(1)部分径向波函数

$$R_{10} = \left(\frac{1}{a_0}\right)^{\frac{3}{2}} 2e^{-\frac{r}{a_0}}, \quad R_{20} = \frac{1}{\sqrt{2}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \left(1 - \frac{r}{2a_0}\right) e^{-\frac{r}{2a_0}},$$

$$R_{21} = \frac{1}{2\sqrt{6}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \frac{r}{a_0} e^{-\frac{r}{2a_0}}$$

(2)相应的球谐函数

$$Y_{00} = \frac{1}{\sqrt{4\pi}}, \quad Y_{11} = -\sqrt{\frac{3}{8\pi}} \sin\theta e^{i\varphi}$$
 $Y_{10} = \sqrt{\frac{3}{4\pi}} \cos\theta, \quad Y_{1-1} = \sqrt{\frac{3}{8\pi}} \sin\theta e^{-i\varphi}$

(3)总的波函数

$$\psi_{100} = R_{10} Y_{00} = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0} \right)^{\frac{3}{2}} e^{-\frac{r}{a_0}}$$

$$\psi_{200} = R_{20} Y_{00} = \frac{1}{\sqrt{8\pi}} \left(\frac{1}{a_0} \right)^{\frac{3}{2}} \left(1 - \frac{r}{2a_0} \right) e^{-\frac{r}{a_0}}$$

$$\psi_{211} = R_{21} Y_{11} = -\frac{1}{8\sqrt{\pi}} \left(\frac{1}{a_0} \right)^{\frac{3}{2}} \frac{r}{a_0} e^{-\frac{r}{2a_0}} \sin\theta e^{i\varphi}$$

$$\psi_{210} = R_{21} Y_{10} = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0} \right)^{\frac{3}{2}} \frac{r}{a_0} e^{-\frac{r}{2a_0}} \cos\theta$$

$$\psi_{21-1} = R_{21} Y_{1-1} = \frac{1}{8\sqrt{\pi}} \left(\frac{1}{a_0} \right)^{\frac{3}{2}} \frac{r}{a_0} e^{-\frac{r}{2a_0}} \sin\theta e^{-i\varphi}$$

7. 常用积分公式

(1)Γ-函数:

$$\Gamma(x) = \int_{0}^{\infty} e^{-t} t^{x-1} dt$$

$$\Gamma(x+1) = x\Gamma(x), \quad \Gamma(n) = (n-1)!,$$

$$\Gamma\left(n+\frac{1}{2}\right) = \frac{(2n-1)!! \sqrt{\pi}}{2^n}, \quad \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

(2)
$$\int_{0}^{\infty} e^{-ax} \sin bx dx = \frac{b}{a^2 + b^2}$$
, $(a > 0)$

(3)
$$\int_{0}^{\infty} e^{-ax} \cos bx dx = \frac{a}{a^2 + b^2}, \quad (a > 0)$$

$$(4)\int_{0}^{\infty} e^{-ax} x^{n} \mathrm{d}x = \frac{n!}{a^{n+1}}$$

(5)
$$\int_{0}^{\infty} e^{-a^2x^2} dx = \sqrt{\pi/2a}, \quad (a > 0)$$

(6)
$$\int_{0}^{\infty} e^{-ax^{2}} x^{2n} dx = \frac{(2n-1)!!}{2^{n+1}} \sqrt{\frac{\pi}{a^{2n+1}}},$$

$$(a > 0, n!! = (2n-1)(2n-3)\cdots 3 \cdot 1)$$

$$(7) \int_{0}^{\infty} e^{-ax^{2}} x^{2n+1} dx = \frac{n!}{2a^{n+1}}, \quad (a > 0)$$

$$(8) \int_{-\infty}^{\infty} e^{-(x+a)^2} dx = \sqrt{\pi}$$

$$(9) \int_{-\infty}^{\infty} x^2 \mathrm{e}^{-x^2} \mathrm{d}x = \frac{\sqrt{\pi}}{2}$$