Moth 1432 Exam 2 Review

1. (a)
$$^{\circ}$$
fox)= $x^{3}+1$, \Rightarrow $f(x)=3x^{2}>0 \Rightarrow 1-1 \vee

Find f^{1} , \Rightarrow $x=y^{3}+1 \Rightarrow $y^{3}=x-1$, \Rightarrow $y=3x-1$$$

(b)
$$0 + x = 3x + 10$$
, $f(x) = 3 > 0$ $4x = 1 - 10$.
 $0 + x = 3x + 10$ $\Rightarrow 4 = \frac{1}{3}(x - 10)$

$$GFndf'$$
 $X=3y+10 \Rightarrow y=\frac{1}{3}(X-10)$

(c)
$$O(x) = \sqrt{9-x^2}(-3x \times -3)$$
 $\Rightarrow f(x) = \frac{7}{19x} \Rightarrow not 1-1$

2. By Thm. if f has an inverse and
$$f(a)=b$$
, $f'(a)\neq 0$

Then $[f'(b)]'=f'(a)$

Now $f(3)=[-1, f'(3)=\frac{2}{3}, -1]$

Then $[f'(3)=\frac{2}{3}, -1]$

Then $[f'(3)=\frac{2}{3}, -1]$

3. By Thm above, Since
$$f$$
 passes through $(-1,2)$, that is, $f(-1)=2$, and the slope of tangent lime to the graph of f at $x=-1$ is $\frac{1}{5}$? $\frac{1}{5}$ that is $\frac{1}{5}$

Then
$$(f)(2) = \frac{2}{f(1)} = \frac{2}{2}$$

4. First, Find x sit.
$$f(x) = 9$$
, we have $x^{2}+1=9 \Rightarrow x^{3}=f$, $x=2$

$$\Rightarrow f(2) = 9$$
, Then we have $f(2) = 3(2)^{2}=12$

Thus,
$$(f^{-1})(9) = \frac{1}{f(2)} = \frac{1}{12}$$

5. Find the diffictive.

a.
$$y = \ln \sqrt{8} + 4x \Rightarrow y = \frac{8}{2} + 4x$$
.

(or $y = \ln (8^{2} + 4x^{2})$)

b. $y = \sin(\ln (5 - x)^{6}) = \sin(6 \ln (5 - x))$
 $\Rightarrow y' = -6 \cos(6 \ln (5 - x))$

C. $y = x^{2} e^{3x} + \ln e^{3x} \Rightarrow y' = 2x e^{3x} + 2x^{2} e^{2x} + 2$.

d. $y = e^{3x} \cos(3x)$, $\Rightarrow y = x e^{3x} + 2x^{2} e^{3x} + 2$.

d. $y = e^{3x} \cos(3x)$, $\Rightarrow y = x e^{3x} + 2x^{2} e^{3x} + 2$.

d. $y = e^{3x} \cos(3x)$, $\Rightarrow y = x e^{3x} + 2x^{2} e^{3x} + 2$.

e. $f(x) = \ln(5ee \sin x) \Rightarrow f(x) = \frac{1}{5ee \cos x} \cdot (5ec \sin x)$
 $= \frac{1}{5ee \cos x} \cdot (5ec \sin x) \Rightarrow \frac{1}{5ee \cos x} \cdot (5ec \sin x)$
 $= \frac{1}{5ee \cos x} \cdot (5ec \sin x) \Rightarrow \frac{1}{5ee \cos x$

 $f(x) = \ln(5x) + e^{6x} + \arctan(5-2x).$ $f(x) = \frac{(0x)}{5x^2} + 6e^{6x} + \frac{-2}{(1+(5-2x)^2)}.$

 $f(x) = log_7(3x^2) = \frac{ln(3x)^2}{2n7} = \frac{l}{ln7} \cdot 2ln(3x)$

1(X)= 2 . 1 2n7 X

 $y = 6^{-2x} = e^{2n6^{-2x}} = e^{2x \ln 6}$. $y' = -2(\ln 6) 6^{-2x}$

 $f(x) = arctan(2x^3) = f(x) = \frac{1}{1 + (2x^3)^2} \cdot 6x^2$

6. Integrate:

(12 / dx = 2n/x/ /e = 2n4e-2ne =

-eax) dx = (cscx dx - Jeax)

Vet u=245cotx == 1 dy - 1 e9x +c. du= - 5cs2xdx

=- = - = mul - = = ex+c.

= - In 2+5 cotx - + e + C

$$\begin{aligned} & (\partial t \ u = z + c + c + c) \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = 2e^{3x} + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = 2e^{3x} + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = 2e^{3x} + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = 4f \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int \frac{du}{u} = -4 \ln |u| + c \\ & (\partial t) \int \frac{z^{2}}{1 x^{2}} dx = -4 \int$$

 $\frac{1}{\sqrt{1+x^2}}dX = SMX = \frac{1}{3} - 0 = \frac{1}{3}$ $\cos^4 x \sin^3 x dx = \int \cos^4 x (1 - \cos^2 x) \sin x dx$. (let $u = \cos^3 x$) = \(u^{(1-u^2)} du = - \frac{4}{2} + \frac{4}{2} + C $= -\frac{(\infty x)^5}{5} + \frac{(\infty x)^2}{2} + C$ COSX Sinx dx = (cosx (1-sinx) sinxdx (let u=sinx $= \int (1-u^2)u^2 du = \int u^2 (u^4 - 2u^2 + 1) du.$ = 47 - 345 + 43 + C = 57 - 7 (SINX) + (MX) (n) $\cot^3 x dx = \cot x \cdot (\csc^2 x - 1) dx = \cot x \cdot \cot x - \cot x dx$ $=-\frac{1}{2}(\cot x)^2-\ln|\sin x|+C$ (a) $\int x \ln(2x) dx = \frac{1}{x} \ln(2x) - \int \frac{1}{x} dx$ $dx = dx = \sqrt{x^2} = \frac{x^2}{4} \ln(2x) - x^2 + C$ $dx = dx = \sqrt{x^2} = \frac{x^2}{4} \ln(2x) - x^2 + C$

7.
$$\frac{dy}{dx} = \frac{(y+5)(x+e)}{(x+2)dx} \Rightarrow \frac{dy}{y+5} = \frac{x}{2} + 2x + C'$$
 $\frac{dy}{y+5} = \frac{y+5}{2} = \frac{x}{2} + 2x + C'$
 $\frac{dy}{dx} = \frac{y+2}{2} = \frac{x}{2} + 2x + C'$
 $\frac{dy}{dx} = \frac{y+2}{2} = \frac{x}{2} + 2x + C'$
 $\frac{dy}{dx} = \frac{y+2}{2} = \frac{x}{2} + 2x + C'$
 $\frac{dy}{dx} = \frac{y+2}{2} = \frac{x}{2} + 2x + C'$
 $\frac{dy}{dx} = \frac{y+2}{2} = \frac{x}{2} + 2x + C'$
 $\frac{dy}{dx} = \frac{y+2}{2} = \frac{x}{2} + 2x + C'$
 $\frac{dy}{dx} = \frac{y+2}{2} = \frac{x}{2} + 2x + C'$
 $\frac{dy}{dx} = \frac{y+2}{2} = \frac{x}{2} + 2x + C'$
 $\frac{dy}{dx} = \frac{y+2}{2} = \frac{x}{2} + 2x + C'$
 $\frac{dy}{dx} = \frac{y+2}{2} = \frac{x}{2} + 2x + C'$
 $\frac{dy}{dx} = \frac{x}{2} +$

11, Initeral-po > Pot=Poexx Double Thisyears > P(15)=2Po)>2Po=P(15)=Poet 15 => ln(2)= k.15. => k= 10.

 $(2, fx) = \ln(2x-5) + e^{x-3}$

f(x)====+ ex-3

(2(311), > Slope of langent like (3 f (3) = 2+1+3

Slope of normal line is - for = - 1

Equation of tangent: (y-1)=3(X-3)

normal $(y-1)=-\frac{1}{3}(x-3)$