DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat

(c) 2004 EPO. All rts. reserv.

18580201

Basic Patent (No, Kind, Date): JP 2002372929 A2 20021226 <No. of Patents: 001>

BOTH-SIDE DISPLAY AND ELECTRONIC APPLIANCE (English)

Patent Assignee: NAMCO LTD

Author (Inventor): ISHII MOTOHISA

IPC: *G09F-009/40; G02B-027/22; G09F-009/00; H04N-013/04

Derwent WPI Acc No: G 03-191459 Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 2002372929 A2 20021226 JP 2001178705 A 20010613 (BASIC)

Priority Data (No,Kind,Date):

JP 2001178705 A 20010613

DIALOG(R)File 347:JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

07504409 **Image available**

BOTH-SIDE DISPLAY AND ELECTRONIC APPLIANCE

PUB. NO.:

2002-372929 [JP 2002372929 A]

PUBLISHED:

December 26, 2002 (20021226)

INVENTOR(s): ISHII MOTOHISA

APPLICANT(s): NAMCO LTD APPL. NO.:

2001-178705 [JP 2001178705]

FILED:

June 13, 2001 (20010613)

INTL CLASS:

G09F-009/40; G02B-027/22; G09F-009/00; H04N-013/04

ABSTRACT

BE SOLVED: To provide a both-side display **PROBLEM** capable of two-dimensional/three- dimensional display on the front and the back suited to use in portable information terminal equipment.

SOLUTION: The flat panel display of an LCD or the like capable of bothside display is adopted to the display part of the both-side display 120, one surface is turned to a two-dimensional display surface and the other surface is turned to a three-dimensional display surface provided with a lenticular lens 24a. Then, a front and back inversion means 150 capable of housing it at a prescribed position (for instance, a recessed part A) no matter which of the front and the back is to be the display surface is arranged. Thus, a portable telephone set 100 can be loaded with the both-side display 120 capable of two-dimensional/three-dimensional display without damaging a small external shape which is a distinctive quality.

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

-- 特開2002-372929

(P2002-372929A) (43)公開日 平成14年12月26日(2002.12.26)

(51) Int. C1. 7	識別記号	F I 7-73-}. (参考)
G09F 9/40	303	G09F 9/40 303 5C061	_ ,,
G02B 27/22		GO2B 27/22 5C094	
G09F 9/00	312	G09F 9/00 312 5G435	
H04N 13/04		H04N 13/04	
		審査請求 未請求 請求項の数17 〇L (全19頁	₹)
(21)出願番号	特願2001-178705(P2001-178705)	(71)出願人 000134855	
		株式会社ナムコ	
(22)出願日	平成13年6月13日(2001.6.13)	東京都大田区多摩川2丁目8番5号	
		(72)発明者 石井 源久	
		東京都大田区多摩川2丁目8番5号 株	大
		会社ナムコ内	
		(74)代理人 100090033	
		弁理士 荒船 博司 (外1名)	
		Fターム(参考) 5C061 AA07 AA25 AA27 AB12 AB14	
		AB18 AB24	
		5C094 AA01 BA43 CA21 DA08 HA08	
		5G435 AA01 BB12 CC11 EE16 EE17	
		LL07 LL08	

(54)【発明の名称】両面表示ディスプレイおよび電子機器

(57)【要約】

【課題】 携帯情報端末装置での使用に適した、表裏で2次元/3次元表示可能な両面表示ディスプレイを提供する。

【解決手段】 両面表示ディスプレイ120の表示部に 両面表示可能なLCD等のフラットパネル・ディスプレイを採用し、一面を2次元表示面、他面をレンチキュラレンズ24aを設けた3次元表示面とする。そして、表 裏どちらを表示面とする場合でも所定の位置 (例えば、凹部A) に収めることができる表裏反転手段150を備える。したがって、携帯電話機100は、持ち味である小さな外形を損なうことなく2次元/3次元表示可能な 両面表示ディスプレイ120を搭載できる。

【特許請求の範囲】

【請求項1】一面および他面の内、少なくとも一方が3 次元表示面である、両面表示可能なフラットパネル・デ ィスプレイを有する表示部と、

前記表示部の一面あるいは他面を表示面として保持する 保持部と、

を備えること、を特徴とする両面表示ディスプレイ。 【請求項2】請求項1において、

前記保持部が、所定位置で前記表示部の一面あるいは他 面のどちらを表示面とする場合であっても前記所定位置 での利用が可能な、両面表示ディスプレイ。

【請求項3】請求項1または2において、

前記保持部が、前記表示部を反転可能に保持することを 特徴とする両面表示ディスプレイ。

【請求項4】請求項1~3の何れかにおいて、

前記3次元表示面が、レンチキュラ方式による3次元表 示面である両面表示ディスプレイ。

【請求項5】請求項1~4の何れかにおいて、

前記フラットパネル・ディスプレイは透過光により発色 20 するものであって、

前記表示部の背面位置に発光部または鏡面部を備えるこ とを特徴とする両面表示ディスプレイ。

【請求項6】請求項1~4の何れかにおいて、

前記フラットパネル・ディスプレイは透過光により発色 するものであって、前記表示部と互いに回転自在に軸支 された発光部または鏡面部を有する蓋部を備え、

前記表示部の表示面として使用する面の背面位置に配置 されて透過光を供給すること、を特徴とする両面表示デ ィスプレイ。

【請求項7】請求項1~4の何れかにおいて、

前記フラットパネル・ディスプレイは自己発光により発 色するものであって、

前記表示部の背面位置に背景の透過を防ぐための遮蔽部 を備えることを特徴とする両面表示ディスプレイ。

【請求項8】請求項1~4の何れかにおいて、

前記フラットパネル・ディスプレイは自己発光により発 色するものであって、

前記表示部と互いに回転自在に軸支された遮蔽部を備

前記表示部の表示面として使用する面の背面位置に配置 されて背景の透過を防ぐこと、を特徴とする両面表示デ ィスプレイ。

【請求項9】請求項1~8の何れかにおいて、

前記保持部が前記表示部の一面および他面の何れを表示 面として保持しているかを検知する使用面検知部を備え ること、を特徴とする両面表示ディスプレイ。

【請求項10】請求項1~9の何れかにおいて、

前記表示部は表示特性に応じた操作部を各面に備えるこ と、を特徴とする両面表示ディスプレイ。

【請求項11】請求項1~10の何れかにおいて、

3次元表示面が表示面である場合に操作入力手段として 機能する3次元用操作部を備えること、を特徴とする両 面表示ディスプレイ。

【請求項12】請求項1~11の何れかに記載の両面表 示ディスプレイを備える電子機器。

【請求項13】天部と底部とを所定の軸により回転自在 に軸支する電子機器であって、

一面および他面の内、少なくとも一方が3次元表示面で 面を表示面として保持し、前記表示部の一面あるいは他 10 ある、両面表示可能なフラットパネル・ディスプレイを 有する表示部を備え、前記所定の軸により前記表示部が 軸支されること、を特徴とする電子機器。

【請求項14】請求項13において、

前記表示部の一面を表示面として保持する、前記天部に 配設された第1保持部と、前記表示部の他面を表示面と して保持する、前記底部に配設された第2保持部と、を 備え、

前記フラットパネル・ディスプレイは透過光により発色 するものであって、前記3次元表示面はレンチキュラ方 式または蝿の目(フライズアイズ)レンズ方式による3 次元表示面であり、前記第1保持部および前記第2保持 部は発光部または鏡面部を有すること、を特徴とする電 子機器。

【請求項15】請求項13において、

前記表示部の一面を表示面として保持する、前記天部に 配設された第1保持部と、前記表示部の他面を表示面と して保持する、前記底部に配設された第2保持部と、を 備え、

前記フラットパネル・ディスプレイは自己発光により発 30 色するものであって、前記3次元表示面はレンチキュラ 方式または蝿の目(フライズアイズ)レンズ方式による 3次元表示面であり、前記第1保持部および前記第2保 持部は背景の透過を防ぐための遮蔽部を有すること、を 特徴とする電子機器。

【請求項16】請求項14または15において、

前記表示部が第1保持部および第2保持部の何れかによ り保持されているかを検知する検知部を備えること、を 特徴とする電子機器。

【請求項17】請求項13~16の何れかにおいて、 前記天部および前記底部には、前記表示部の表示特性に 応じた操作部が配設されたこと、を特徴とする電子機

器。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、2次元表示と3次 元表示が可能な両面表示ディスプレイ等に関する。

[0002]

【従来の技術】従来から、2次元表示用ディスプレイの 面上に、レンチキュラレンズやパララックスバリアなど 50 の光学素子を配置して、3次元立体映像を表示させるた

1

めの装置がある。勿論、これらの表示装置を用いて、通常の2次元映像を表示することも可能である。この場合、通常の2次元映像であっても、3次元映像と同じ解像度で表示される。しかし、2次元映像については、3次元表示用光学素子を取り付けていない状態の方が、より高い解像度での表示が可能である。その為、3次元表示と、3次元表示用光学素子が取り付けられていない状態と同じ解像度での2次元表示を、両立させたいという要望がある。その解決法として、従来から考えられているものとしては、例えば、3次元表示用光学素子を着脱 10する方法や、2次元用と3次元用の表示部を別々に一つずつ用意する方法などがある。

[0003]

【本発明が解決しようとする課題】しかしながら、3次元表示と2次元表示を切り換えるたびに、レンチキュラレンズ等の光学素子を着脱する方法では、装着時の位置合わせが非常に困難であるという問題がある。さらに、装着時にはレンチキュラレンズと表示部を密着させる必要があるが、着脱の際に埃などが入り込むと、密着度が低下し表示内容が見づらくなるばかりでなく、表示面上20に傷が付き易くなるといった問題もあって、実用化の障害となっている。

【0004】また、2次元表示用のディスプレイ装置と3次元表示用のディスプレイ装置を別々に用意する、という方法では、コスト、重量および体積の増加を招く問題があり、特に、近年需要が高まりつつあるノート・パソコンよりも小型で軽量な携帯情報端末装置(例えば、インターネット接続可能な携帯電話機、PDA)などに適用する場合には、大きなデメリットとなる。

【0005】本発明は、上記課題に鑑みてなされたもの 30 であり、その目的とするところは、レンチキュラレンズを装着した状態での3次元表示と、レンチキュラレンズを装着していない状態と同等の解像度での2次元表示とを両立できるディスプレイ装置を提供することである。 【0006】

【課題を解決するための手段】以上の課題を解決するために、請求項1に記載の発明の両面表示ディスプレイは、一面および他面の内、少なくとも一方が3次元表示面である、両面表示可能なフラットパネル・ディスプレイを有する表示部(例えば、図2の20)と、前記表示 40部の一面あるいは他面を表示面として保持する保持部(例えば、図3の表裏反転手段150)と、を備えること、を特徴とする。

【0007】請求項1記載の発明によれば、表示部に両面表示可能なフラットパネル・ディスプレイを採用し、例えば、一面を2次元表示用、他面を3次元表示用として、用途に応じて表裏を切り換えて保持することで2次元表示と3次元表示の両立を実現する。

【0008】具体的には、フラットパネル・ディスプレイとは、例えば、LCD、有機EL、PDPなどであ

る。これらの方式のディスプレイは、通常一方向の面か らのみ観察する形で商品化されているが、原理的には、 画像を形成する素子(例えば、液晶など)が透明な電極 基板に挟まれた構造であるため、表裏両面から画像を観 察することができる。例えば、LCDは、そもそも透明 基板間に液晶を封止し、液晶による旋光を利用してバッ クライトからの透過光を制御することで各画素を発光さ せている。したがって、パックライトの位置によって表 裏どちらからでも表示画像を見ることができる。また、 PDPは、画像を形成する蛍光体層の背面にあたる電極 を(表示面側の電極と同様な)透明電極に変更し、ま た、発光した光を全面に反射して輝度を向上させるため に白色誘導体層を省略することで、蛍光体が発光した光 を表裏どちらにも放射させることができる。そして、例 えば、一面を従来のままで2次元表示用とし、他面に3 次元表示用の光学素子、例えば、レンチキュラレンズな どを設けることで、表裏で2次元/3次元表示させるこ とができる。

【0009】この場合、2次元表示と3次元表示を表裏に振り分けて両立させることによって、表示を切り換えるたびに、煩わしい3次元表示用光学素子の位置合わせや、2次元表示時に3次元表示光学素子越しに見ることによる画像解像度の劣化等の問題を起こすことなく、2次元/3次元表示の両立を実現できる。

【0010】さらに、請求項2記載の発明のように、請求項1記載の両面表示ディスプレイにおいて、前記保持部が、所定位置で前記表示部の一面あるいは他面を表示面として保持し、前記表示部の一面あるいは他面のどちらを表示面とする場合であっても前記所定位置での利用が可能であること、を特徴としても良い。

【0011】請求項2記載の発明によれば、請求項1と同様の効果を奏するとともに、表示面の位置を表裏どちらを使用する場合であっても変化させない。その為、例えば、本発明を携帯情報端末装置へ適用しても、表示の切り換えの際にノート型パソコンのように表示部が外に展開されて大きくなり、使い勝手が悪くなるといった不具合は起きない。したがって、携帯情報端末装置の持ち味である小さな外観を損なうことなく2次元/3次元の両面表示を利用することができる。

【0012】またさらに、請求項3記載の発明のように、請求項1または2に記載の両面表示ディスプレイであって、前記保持部が、前記表示部を反転可能に保持することを特徴としても良い。

【0013】請求項3記載の発明によれば、請求項1または2と同様の効果を奏するとともに、保持部が反転手段を備える。具体的には、例えば、小型液晶モニタを搭載したビデオカメラやデジタルカメラに見られるような、表示部への電気回路の接続を維持しつつ、所定の軸周りに回転自在な公知の回転機構によって実現できる。 そして、両面表示ディスプレイを、保持部を介して携帯 電話機、PDA等の装置本体に接続することで、切り換 えに伴って表示部と制御回路との接続を断つことなく使 用することができる。また、前記所定の軸を適宜に設定 することで、同時に表示部の表示角度を調整する機能を 持たせることもできる。

【0014】請求項4記載の発明のように、請求項1~ 3の何れかに記載の両面表示ディスプレイであって、前 記3次元表示面が、レンチキュラ方式による3次元表示 面(例えば、図2のレンチキュラレンズ24a)である こと、を特徴としても良い。

【0015】請求項4記載の発明によれば、請求項1~ 3の何れかと同様の効果を奏するとともに、3次元表示 の方法として、フラットパネル・ディスプレイの表示面 上にレンチキュラレンズを配置することで、レンチキュ ラ方式の利点を得られる。即ち、2つ以上の視野領域を 確保し、ユーザーの観察位置がずれても常に安定して立 体視を提供することができる。また、レンチキュラレン ズは、樹脂材のプリントによって形成することができる ので製造コストが安く済むメリットがある。さらに、レ ンチキュラレンズは、パララックスパリアの様にスリッ 20 トなどの遮光構造を有しないので、2次元表示時の際、 レンチキュラレンズ越しに透過光が供給される場合であ っても、液晶表示セルに十分な光を透過・供給すること ができる。また、レンズの存在によってわずかに光の濃 淡むらが発生するが、実用上問題無いレベルに抑えるこ とができる。したがって、2次元表示時の輝度や解像度 に影響を与えることが無く、2次元/3次元表示を両立 させることができる。

【0016】請求項5記載の発明は、請求項1~4の何 トパネル・ディスプレイは透過光により発色するもので あって、前記表示部の背面位置に発光部または鏡面部を 備えることを特徴とする。

【0017】あるいは、請求項6記載の発明のように、 請求項1~4の何れかに記載の両面表示ディスプレイに おいて、前記フラットパネル・ディスプレイは透過光に より発色するものであって、前記表示部と互いに回転自 在に軸支された発光部または鏡面部を有する蓋部を備 え、前記表示部の表示面として使用する面の背面位置に 配置されて透過光を供給すること、を特徴とするとして 40 る。 も良い。

【0018】請求項5および6記載の発明によれば、請 求項1~4の何れかと同様の効果を奏するとともに、フ ラットパネル・ディスプレイが透過光を必要とする場 合、所定位置の背面にあたる位置に、バックライトや鏡 などを設けて透過光を供給する。バックライト等は、両 面表示ディスプレイを搭載する装置本体と一体としても 良いし、あるいは表示面を保護する蓋部と一体としても 良い。例えば、発光部または鏡面部を、携帯電話機等の

定するならば、一つの光源でも2次元表示/3次元表示 の両方に対応できるので、装置の大型化を防ぐととも に、コストを抑制することができる。

6

【0019】請求項7記載の発明は、請求項1~4の何 れかに記載の両面表示ディスプレイにおいて、前記フラ ットパネル・ディスプレイは自己発光により発色するも のであって、前記表示部の背面位置に背景の透過を防ぐ ための遮蔽部を備えることを特徴とする。

【0020】或いは、請求項8記載の発明のように、請 求項1~4の何れかに記載の両面表示ディスプレイにお いて、前記フラットパネル・ディスプレイは自己発光に より発色するものであって、前記表示部と互いに回転自 在に軸支された遮蔽部を備え、前記表示部の表示面とし て使用する面の背面位置に配置されて背景の诱過を防ぐ こと、を特徴とするとしても良い。

【0021】請求項7および8記載の発明によれば、請 求項1~4の何れかと同様の効果を奏するとともに、フ ラットパネル・ディスプレイが自己発光する場合、所定 位置の背面にあたる位置に、表示と背景が重なるのを防 ぐ遮蔽部を設ける。したがって、表示内容を見やすくす ることができる。

【0022】請求項9に記載の発明は、請求項1~8の 何れかに記載の両面表示ディスプレイにおいて、前記保 持部が前記表示部の一面および他面の何れを表示面とし て保持しているかを検知する使用面検知部を備えるこ と、を特徴とする。

【0023】請求項9記載の発明によれば、請求項1~ 8の何れかと同様の効果を奏するとともに、ユーザーが ディスプレイの表裏どちらを表示面として使用している れかに記載の両面表示ディスプレイおいて、前記フラッ 30 かを検知し、2次元表示用、3次元表示用の適切な切り 換えをサポートすることで、画像本来の特性に合った正 しい表示を行って、十分な情報伝達を確保することがで きる。具体的な使用面検知の手段としては、例えば、両 面表示ディスプレイの表示面側にそれぞれ赤外線センサ を備え、ユーザーが表示面に向かった際の赤外線を検知 して、ユーザーのいる側を判断する。或いは、重力セン サを備えて、ディスプレイを傾斜させた方向を検知す る。或いは、ディスプレイの表裏反転に伴ってスイッチ 等が押される構造を設けるなどの種々の方法が挙げられ

> 【0024】請求項10記載の発明のように、請求項1 ~9の何れかに記載の両面表示ディスプレイにおいて、 前記表示部は表示特性に応じた操作部(例えば、図11 の操作パネル544、546)を各面に有することを特 徴とするとしても良い。

【0025】また、請求項11記載の発明のように、請 求項1~10の何れかに記載の両面表示ディスプレイに おいて、3次元表示面が表示面である場合に操作入力手 段として機能する3次元用操作部(例えば、図9の操作 前記所定位置の背面にあたる位置に装置本体と一体に固 50 パネル421)を備えることを特徴とするとしてもよ

63.

【0026】請求項10の発明によれば請求項1~9の 何れかと同様の効果を、および請求項11記載の発明に よれば請求項1~10の何れかと同様の効果を、奏する とともに、両面表示ディスプレイの表裏面に、2次元/ 3次元表示の内容にそれぞれ適した操作入力手段を備え ることで、操作性の向上を図ることができる。例えば、 2次元表示用としては、電話番号やメールなどのテキス ト入力に適したキーボード等が考えられる。3次元表示 用としては、トラックボール、ジョイスティック、十字 10 持部(例えば、図7の凹部A4)と、前記表示部の他面 キーなどの感覚的で微量なポインティングが可能な操作 入力手段が好ましい。なお、2次元表示の状態ではキー ボードからの操作のみを受け付け、3次元表示の状態で は十字キーからの操作のみを受け付けて、誤動作を防ぐ 手段を設けても良いことは勿論である。

【0027】請求項12記載の発明は、請求項1~11 の何れかに記載の両面表示ディスプレイを備える電子機 器である。

【0028】請求項12記載の発明によれば、請求項1 ~11の何れかと同様の効果を奏することができる。な 20 お、電子機器とは、デスクトップ型パソコン、ノート型 パソコン、PDA、店頭スタンド型のキオスク端末等の 情報端末類と、携帯用・アーケード用・アミューズメン ト施設用の各種ゲーム装置と、携帯電話、PHS、公衆 電話、FAX、据え置き型の電話機等の情報通信機器 と、CD-ROM、DVD、MO、磁気テープ、メモリ 一カードなどの画像記録メディアの再生機能を備えた液 晶ディスプレイ一体型の携帯型プレーヤおよびカメラな ど、である。

【0029】あるいは、請求項13記載の発明のよう に、天部(例えば、図7の通話装置140、図9の電話 機モジュール410)と底部(例えば、図7のゲーム操 作部350、図9のゲーム装置モジュール420)と、 を所定の軸(例えば、図7のヒンジ部390、図9の軸 部440)により回転自在に軸支する電子機器であっ て、一面および他面の内、少なくとも一方が3次元表示 面である、両面表示可能なフラットパネル・ディスプレ イを有する表示部(例えば、図3の両面表示ディスプレ イ120、図7の表示モジュール430)を備え、前記 所定の軸により前記表示部が軸支されること、を特徴と 40 しても良い。

【0030】請求項13記載の発明によれば、天部と底 部がそれぞれ異なる機能を有し、例えば、携帯電話機能 とゲーム機能、あるいは携帯電話機とナビゲーション機 能を備えた複合電子機器として機能する。この際、両機 能で一つの両面表示ディスプレイを利用することで、小 型化とコスト削減を図ることができる。具体的には、例 えば、表示部をはさむようにして天部と底部の操作パネ ル面が対向するように一つの軸で軸支された蝶着構造を 備える部位 (天部または底部) を手にとって使用する。 表示部も同じ軸で連結されているので、天部側あるいは 底部側に開く(倒す)ことで表示面を切り換え2次元/ 3次元を使い分けることができる。また、蝶着構造をと る場合は、未使用時に天部と底部を折りたたんで可搬性 を高めることができる。

8

【0031】また、請求項14記載の発明のように、請 求項13に記載の電子機器であって、前記表示部の一面 を表示面として保持する、前記天部に配設された第1保 を表示面として保持する、前記底部に配設された第2保 持部(例えば、図7の凹部A5)と、を備え、前記フラ ットパネル・ディスプレイは透過光により発色するもの であって、前記3次元表示面はレンチキュラ方式または 蝿の目(フライズアイズ)レンズ方式による3次元表示 面であり、前記第1保持部および前記第2保持部は発光 部または鏡面部を有することを特徴としても良い。

【0032】請求項14記載の発明によれば、請求項1 3と同様の効果を奏するとともに、天部と底部にそれぞ れ表示部が挿入・保持可能な部位を設けることで、例え ば、表示部をはさむようにして天部と底部の操作パネル 面が対向するように、一つの軸で軸支された蝶着構造を とる場合、未使用時に二つ折りにしたときに、各部が効 率良く収まり、小型化を促進することができる。

【0033】また、請求項15記載の発明のように、請 求項13に記載の電子機器において、前記表示部の一面 を表示面として保持する、前記天部に配設された第1保 持部と、前記表示部の他面を表示面として保持する、前 記底部に配設された第2保持部と、を備え、前記フラッ 30 トパネル・ディスプレイは自己発光により発色するもの であって、前記3次元表示面はレンチキュラ方式または 蝿の目(フライズアイズ)レンズ方式による3次元表示 面であり、前記第1保持部および前記第2保持部は背景 の透過を防ぐための遮蔽部を有すること、を特徴とする としても良い。

【0034】請求項15記載の発明によれば、請求項1 3と同様の効果を奏するとともに、表示と背景が重なる のを防ぐ遮蔽部を設けることで、表示内容を見やすくす ることができる。

【0035】さらに、請求項16記載の発明のように、 請求項14又は15に記載の電子機器において、前記表 示部が第1保持部および第2保持部の何れにより保持さ れているかを検知する使用面検知部を備えるとしても良 į,

【0036】請求項16記載の発明によれば、請求項1 4又は15と同様の効果を奏するとともに、ユーザーが ディスプレイの表裏どちらを表示面として使用している かを検知し、2次元表示用、3次元表示用の適切な切り 換えをサポートすることで、画像本来の特性に合った正 とる。ユーザーは、電子機器を開け広げ、必要な機能を 50 しい表示を行って、十分な情報伝達を確保することがで

10

きる。

【0037】また、請求項17記載の発明のように、請 求項13~16の何れかに記載の電子機器において、前 記天部および前記底部には、前記表示部の表示特性に応 じた操作部が配設されたことを特徴としても良い。

【0038】請求項17記載の発明によれば、請求項1 3~16の何れかと同様の効果を奏するとともに、天部 および底部それぞれに、2次元/3次元表示の内容にそ れぞれ適した操作入力手段を備えることで、操作性の向 上を図ることができる。例えば、2次元表示用として は、電話番号やメールなどのテキスト入力に適したキー ボード等が考えられる。3次元表示用としては、トラッ クボール、ジョイスティック、十字キーなどの感覚的で 微量なポインティングが可能な操作入力手段が好まし い。なお、2次元表示の状態ではキーボードからの操作 のみを受け付け、3次元表示の状態では十字キーからの 操作のみを受け付けて、誤動作を防ぐ手段を設けても良 いことは勿論である。

[0039]

【発明の実施の形態】まず、図1~図2を参照して、本 20 発明の概念を説明する。図1は、本発明における両面表 示ディスプレイの概念を説明する図である。図1に示す ように、両面表示ディスプレイの表示部20は、フラッ トパネル・ディスプレイ21の一面に2次元表示用の光 透過層22を設け(以下、この面を表面(表側の表示面 の意)と呼ぶ)、他面に3次元表示用の光透過層24を 設けて(以下、この面を裏面と呼ぶ)構成されている。 【0040】 フラットパネル・ディスプレイ21は、L CDの液晶層に相当し、有機EL、PDP等の同様の表 示素子部であってもよい。2次元表示用の光透過層22 30 とは、例えば、タッチパネルなどであって、表面をユー ザー8に向けることで、フラットパネル・ディスプレイ 21が本来有する解像度そのままに2次元表示ができ る。なお、光透過層22を設けないこととしても良いこ とは勿論である。3次元表示用の光透過層24とは、例 えば、立体視用の光学的特性を有するレンチキュラレン ズやパララックスパリアなどであって、フラットパネル ・ディスプレイ21に表示された画像を、右眼用・左眼 用の2枚の画像へ、あるいは更に複数の視差を有する画 ユーザー8に向けることで立体視を実現させることがで きるこのように、フラットパネル・ディスプレイ21 の表裏面のそれぞれが異なる表示特性を備え、用途に応 じて使用する面を選択することで、2次元表示/3次元 表示の共用が可能となる。

【0041】図2は、レンチキュラ方式によって3次元 表示する方法の概念を示す横断面図であり、ここでのフ ラットパネル・ディスプレイ21は透過型のLCD21 aである。図2に示すように、LCD21aの裏面には 3次元表示用の光透過層24としてレンチキュラレンズ 50

24 aが備えられ、表面側に光源6が配置される。光源 6から放射される略平行光は、LCD21aを通過し、 レンチキュラレンズ24aによって光の進行方向が曲げ られ、同図では4眼式であるので4つの映像V1~V4 に分解されてユーザー8に届いている。

【0042】より具体的に説明すると、LCD21aの 画面には、縦横にピクセル(ドット)が敷き詰められて いる。1ピクセルは、光の3原色であるRed (赤 色)、Green (緑色)、Blue (青色) の更に小 10 さなサブピクセルを1セットにして構成され、(R1. G1, B1) (R2, G2, B2) (R3, G3, B 3) (R4, G4, B4) …と並んでいる。そして、同 図においては4眼式のため、最右映像V4は[R1, G 2, B3]、右映像V3は[R4, G1, B2]、左映 像V2は [R3, G4, B1]、最左映像V1は [R 2, G3, B4] としてユーザー8の眼に届くことにな る。なお、詳細は「3次元画像コンファレンス '96」 講演論文『レンチキュラ板の標本化効果を考慮した3次 元画像処理アルゴリズム(著者:宮沢篤)』による。

【0043】 [第1の実施形態] 次に、図3~図5を参 照して、本発明の第1の実施形態について詳細に説明す る。第1の実施形態では、本発明を携帯電話機 (あるい はPHS)の表示画面に適用した場合を例とする。な お、本実施形態の携帯電話機は、電話としての機能のほ かに、内蔵する所与のプログラム、あるいはネットワー ク等からダウンロードしたプログラムによって、インタ ーネット上の画面を閲覧し情報の検索、音楽やムービー の再生、あるいはゲームをプレイするといった種々の機 能を実行することができる多機能携帯電話機である。

【0044】[構成の説明]図3は、第1の実施形態にお ける携帯電話機100の外観を示す斜視図である。携帯 電話機100は、図3に示すように、表裏でそれぞれ2 次元/3次元表示可能な両面表示ディスプレイ120 と、両面表示ディスプレイ120への透過光を供給する バックライト130と、電話機としてのマイク、スピー 力等の基本構成要素を備える通話装置140と、両面表 示ディスプレイ120と通話装置140とを回転自在に 支持する表裏反転手段150と、携帯電話機100の各 種機能を制御する制御装置160(装置内に内蔵されて 像に分離・分解する機能を有する。したがって、裏面を 40 いるので破線で図示)と、両面表示ディスプレイ120 の表裏どちらの面を表示面として使用しているかを検知 する使用面検知ボタン180、182 (図示略) と、を

> 【0045】両面表示ディスプレイ120は、図1に示 した例と同様に、フラットパネル・ディスプレイ21と して透過型のLCDを使用し、表面に2次元表示用の光 透過層22としてタッチパネル22aを備え、反対の裏 面には3次元表示用の光透過層24としてレンチキュラ レンズ24aを備える。

【0046】各光透過層22、24の取り付けは、表示

面の外縁部でビスや接着材などによって接合されても良 いし、樹脂プリントなどによって表面に直接形成されて も良く、大きさや用途に応じて種々の方法が適宜選択さ れる。また、各光透過層の種類が用途によって適宜選択 されるのは勿論である。そして、両面表示ディスプレイ 120は、樹脂や金属材料などによって表示面の外縁を 囲うようにケーシングされ、表裏反転手段150を介し て、通話装置140に接続されている。

【0047】パックライト130は、蛍光灯、LED、 ELなどの光源を備える両面表示ディスプレイ120へ 10 の透過光供給手段であって、通話装置140に固定され ている。尚、パックライト130は、電気的な光源を利 用する他、導光板を用いて環境光を導いて透過光として 供給しても良いし、鏡面加工された光反射板であっても 良い。また、発光体の位置に関しても、適宜設定可能で あり、例えば、発光面の側面に発光体を備え光の屈折・ 反射によっておよそ90°に光を曲げて透過光を供給す る、所謂サイドライトの構造であっても良い。

【0048】通話装置140は、電話機を構成する基本 ロフォン142と、通話相手の音声を出力するスピーカ 143と、電話番号等の入力や諸機能の切り換えを行う 操作パネル144と、電波の送受信アンテナ146と、 電源装置148(図示略)と、を備える。そして、通話 装置140は、制御装置160の制御によって、電波に よるデータの送受信で会話音声を主とした通信機能、即 ち携帯電話機としての機能を実現する。

【0049】また、通話装置140は、電話機能のほか に、制御装置160に内蔵されたプログラムや、通信に よって得ることのできる各種プログラム等によって、ア 30 ドレス帳の記憶と管理、電子メールの作成・送受信、イ ンターネットの閲覧、音楽や映像の再生、ゲームの実行 などの諸機能を実現する。各機能ごとに2次元表示をす るか3次元表示をするかは、プログラム製作者が適宜設 定する。上記のような通話装置140における各部の機 能および構造に関しては、既に携帯電話機やPHS等に おいて実用されており、公知であるのでここでの詳細な 説明は省略する。

【0050】また、本実施形態における特徴としては、 通話装置140が、両面表示ディスプレイ120が挿入 40 にならない凹部Aの底部外縁に、左側には使用面検知ボ ・取出し自在な凹部Aを備える点が挙げられる。凹部A は、保持部を構成する要素の一つである。通常の使用状 態では、両面表示ディスプレイ120が、使用する表裏 何れかの面を外側(図3上方)に向けた状態で凹部Aに 挿入され、携帯電話機100の造詣として操作パネル1 4 4 等と一体のフォルムを形成する。凹部Aの底にあた る部分、即ち表示部の所定位置の背面に相当する位置に は、パックライト130が固定されており、両面表示デ ィスプレイ120の背面側から透過光を供給する。

【0051】さらに、通話装置140の操作パネル14 50 【0056】図3の例では、両面表示ディスプレイ12

4には、使用面指示マークB、Cが備えられ、両面表示 ディスプレイ120に表示されている内容が、2次元表 示用の表面と3次元表示用の裏面どちらの使用に適して いるかを、ユーザーに知らせる。

【0052】図3の例では、使用面指示マークBは2次 元表示、Cは、3次元表示をイメージさせるシンボルマ ークをそれぞれ象り、制御装置160の制御にしたがっ てLED等によって発光する。例えば、3次元表示用の 内容なのに2次元表示用の表面を使用している場合は、 使用面指示マークCが赤色点灯し注意を促す。そして、 ユーザーが両面表示ディスプレイ120を表裏反転させ たならば、使用面指示マークCは緑色点灯に変化し、表 示内容の特性と両面表示ディスプレイ120の使用面特 性が一致していることをユーザーに知らせる。これによ って、より適切な情報伝達を図ることができる。なお、 使用面指示マークB、Cの発光色や発光パターン、音声 報知の追加等は、デザインや機能とコストなどの諸観点 から適宜選択されてかまわない。

【0053】表裏反転手段150は、保持部を構成する 要素であるところの、ユーザーの音声を取り込むマイク 20 要素の一つであって、両面表示ディスプレイ120と通 話装置140とを回転自在に支持するとともに、両面表 示ディスプレイ120への電源供給線と信号線等の回路 を、通話装置140側の回路と回転自在に接続できる公 知の回転機構を備える。回転機構については、既にノー ト型パソコンの液晶パネル部とキーボード部の接続、あ るいはモニタの向きを反転可能なビデオカメラなどで種 々の方法が採用されており、ここでの詳細な説明は省略 する。

> 【0054】図3の例では、表裏反転手段150は、携 帯電話機100の短辺方向に沿った第1の軸21と、第 1の軸21と略直交する第2の軸22を備える(図5参 照)。そして、表裏反転手段150が、第1の軸21周 りに回転することによって両面表示ディスプレイ120 が凹部Aへ挿入・取出しが可能となり、第2の軸Z2周 りに回転することによって両面表示ディスプレイ120 の表裏反転を可能にしている。

【0055】使用面検知ボタン180、182は、押下 ・接触等によって電気的特性の変化するスイッチ、セン サ等であって、バックライト130の透過光供給の妨げ タン180が、右側には使用面検知ボタン182が、そ れぞれ一つずつ設けられている。一方、両面表示ディス プレイ120には、表裏にそれぞれ一つずつ突起122 (図5に図示)と124が設けられ、通話装置140の凹 部Aに両面表示ディスプレイ120を挿入したときに、 突起122、124が使用面検知ボタン180または1 82の何れか一方を押下するように機能する。使用面検 知ボタン180、182は、制御装置160に接続され 電気的特性の変化を伝える。

0 の表面の突起122は表面側外縁の右隅に、裏面の突 起124は裏面外縁の左隅に、それぞれ設けられてい る。表面の2次元表示をする場合は、突起124によっ て右側の使用面検知ボタン180が押下され、裏面の3 次元表示をする場合は、突起122によって左側の使用 面検知ボタン182が押下され、使用面の識別が可能に なる。なお、使用面検知ボタンおよび突起の設置位置、 数、形状、構成等は適宜選択して構わない。

【0057】制御装置160は、両面表示ディスプレイ 120への画像表示、使用面指示マークB、Cの点灯を 10 はじめ、携帯電話機100が実現可能な種々の機能(電 話機能、電子メール機能、音声・映像再生機能など)の 制御を司り、LSI、CPU、ICメモリなどの種々の 電子部品およびプログラムよって実現され、通話装置1 40に内蔵される。

【0058】[機能プロックの説明]次に、第1の実施形 態の機能プロックについて説明する。図4は、第1の実 施形態における機能構成を説明するプロック図である。 携帯電話機100は、ユーザーが電話番号の入力や諸機 能の切換を入力する操作部1020と、両面表示ディス 20 れたICメモリ等の情報記憶媒体であって、携帯電話機 プレイ120の表裏どちらの面を使用しているかを検知 する使用面検知部1040と、2次元/3次元の画像を 表示する両面表示ディスプレイ120と、ユーザーが他 者と通話或いは種々のデータ等を送受信する通話部10 80と、携帯電話機100の機能を制御する制御部11 00と、各種プログラムやデータなどを記憶する記憶部 1120とを備える。

【0059】第1の実施形態では、操作部1020は操 作パネル144に相当し、使用面検知部1040は使用 面検知ボタン180、182および突起122、124 30 に相当する。また、通話部1080はマイクロフォン1 42とスピーカ143と送受信アンテナ146に相当 し、制御部1100は制御装置160に相当し、記憶部 1120は制御装置160の備えるICメモリ等の記憶 媒体に相当する。

【0060】制御部1100は、操作部1020からの 電話番号の入力等の操作信号を受けて、通話部1080 による無線通信や音声の入出力を司り、電話機能を実現 する。また、所与のプログラムやデータを、記憶部11 20から読み出し、あるいは通信によってダウンロード 40 して、電子メールの送受信、インターネットの閲覧、音 楽や映像の再生等の諸機能を両面表示ディスプレイ12 0や通話部1080を使って実現する。

【0061】また、制御部1100は、特にインターリ 一パー1106を備え、必要に応じて3次元表示用の画 像を生成する。即ち、制御部1100は、3次元表示の 際、3次元表示用画像が予め用意され記憶部1120に 画像データとして記憶されている場合、あるいは通信に よって3次元表示用画像がダウンロードされる場合に

に出力する。3次元表示用の画像が予め用意されていな い場合は、インダーリーパー1106で、視差の異なる 複数の2次元表示用の画像を縦方向の短冊に分解し再度 交互に組み合わせる、所謂インターリーブを行い、レン チキュラレンズ方式の3次元表示用の画像を逐次生成 し、両面表示ディスプレイ120に出力する。なお、イ ンターリーバー1106による画像生成のアルゴリズム 等の詳細は、「3次元画像コンファレンス'96」講演 論文『レンチキュラ板の標本化効果を考慮した3次元画 像処理アルゴリズム (著者;宮沢篤)』による。

【0062】また、制御部1100は、使用面指示部1 108を備える。そして、現在使用している機能、ある いはこれから使用しようとしている機能における表示方 法(2次元/3次元)に対して、両面表示ディスプレイ 120の向きが適当に選択されているかを、使用面検知 部1040からの検知信号から判断し、使用面指示マー クB、Cの点灯を司り、ユーザーに両面表示ディスプレ イ120の適切な使用を促す。

【0063】記憶部1120は、制御部160に備えら 100に諸機能を実行させる各種プログラムおよびデー 夕を記憶し、制御部1100によって適宜読み出し・書 き込みが行われる。記憶部1120には、特に、制御部 1100にインターリーバー1106と、使用面指示部 1108とをそれぞれ実現させる、3次元画像生成プロ グラム1124と、使用面指示プログラム1126と が、含まれる。

【0064】[使用方法の説明]次に、第1の実施形態の 使用方法と動作について説明する。図5は、両面表示デ ィスプレイ120の反転動作を模式的に表した動作説明 図である。

【0065】図5 (a) に示すように、ユーザーが2次 元表示で通話先の電話番号の表示や、電子メールをテキ スト表示させる場合は、両面表示ディスプレイ120 は、表面即ち2次元表示用の面を外側に向けた状態で使 用される。この状態では、両面表示ディスプレイ120 の裏面に設けられた突起124が、左側の使用面検知ボ タン180を押下する。使用面指示部1108は、現 在、ユーザーが2次元表示を使用していると判断し、2 次元表示用の画像を表示させるとともに、使用面指示マ ークBを緑色点灯させる。バックライト130の光は、 レンチキュラレンズ24aを通過し、透過光として両面 表示ディスプレイ120の裏面から供給される。ユーザ 一は、両面表示ディスプレイ120の備える解像度その ままに、2次元表示画面を見ることができるとともに、 タッチパネル22aを触ることで、簡単な操作で電話番 号の入力や電子メール等の閲覧をすることができる。

【0066】次に、3次元(立体視)画像の表示をさせ る場合について説明する。ユーザーは、操作パネル14 は、画像データをそのまま両面表示ディスプレイ120 50 4を操作して、例えば、メニュー画面で3次元画像表示 を選択し機能の切り換え操作を行う。制御部 1 1 0 0 は、操作パネル 1 4 4 からの操作信号を受けて、記憶部 1 1 2 0 から該当するプログラムを読み込み、使用面指示部 1 1 0 8 が、使用面指示マーク B を消灯し C を点灯させる。この時点では、両面表示ディスプレイ 1 2 0 は 2 次元表示のままなので、使用面指示マーク C は赤色点滅され、ユーザーに両面表示ディスプレイ 1 2 0 の反転動作を促す。

【0067】反転動作では、両面表示ディスプレイ120が、図5(b)に示すように、第1の軸21まわりに 10回転するようにして凹部Aから引出され、操作パネル144の面に対して略垂直になる程度まで起こされる。両面表示ディスプレイ120は、図5(c)に示すように、第2の回転軸22回りに180度回転された後に、図5(d)に示すように、第1の回転軸21まわりに回転するようにして、凹部Aにむけて倒され、凹部A内に挿入される。この状態では、両面表示ディスプレイ120の表面に設けられた突起122が、右側の使用面検知ボタン182を押下する。したがって、使用面指示部1108は、現在ユーザーが両面表示ディスプレイ12020の3次元表示を使用していると認識し、3次元用画像の表示をさせる。また、使用面指示部1108は、使用面指示マークCを赤色点滅から緑色点灯に変更する。

【0068】なお、第1の実施形態では、各構成要素は 適宜設計変更可能である。例えば、レンチキュラレンズ 24aを、画面縦方向に長いマイクロレンズの集合体と し、4つのサブピクセルを一つのマイクロレンズで対応 づけた所謂水平4眼式としてきたが、これに限定される ものではなく、5つのサブピクセルを一つのマイクロレ ンズで対応づける水平5眼式などの2眼式以上の任意の 多眼式であっても良い。あるいは蝿の目(フライズアイ ズ)レンズを用いるならば、水平方向だけでなく垂直方 向の視差を持たせることができる。

【0069】[第2の実施形態]次に、図6と図16を参照して、本発明の第2の実施形態を説明する。第2の実施形態は、本発明を携帯電話機に適用した例であって、特に、表示部に自己発光性を有するフラットパネル・ディスプレイを使用することを特徴とする。なお、第1の実施形態と同様の構成要素については、同じ番号の符号を付け、説明は省略するものとする。

【0070】図6は、第2の実施形態における携帯電話機200の外観の例を示した斜視図である。携帯電話機200は、図6に示すように、表裏でそれぞれ2次元/3次元表示可能な両面表示ディスプレイ220と、電話機としての基本機能を備える通話装置140と、両面表示ディスプレイ220と通話装置140とを回転自在に支持する表裏反転手段150と、帯電話機200の各種機能を制御する制御装置160と、両面表示ディスプレイ220の表裏どちらの面を表示面として使用しているかを検知する使用面検知ボタン180および滞部282

と、を備える。

【0071】両面表示ディスプレイ220は、有機EL、或いはPDPなどの自己発光性を備えたフラットバネル・ディスプレイ21に対して、図1に示した例と同様に、表面に2次元表示用の光透過層22であるタッチパネルを備え、反対の裏面には3次元表示用の光透過層24であるレンチキュラレンズを備える。

【0072】ただし、通常、PDP等のディスプレイ装置では、輝度を高めるために発光した光を一方の面からのみ放出しているが、両面表示をするためには発光した光が表裏両面に放出される構造でなければならない。そのため、例えば以下のような構造としても良い。図16は、PDPの動作原理を説明するPDPセルの一例を示す断面図である。図16(a)は、通常の商品に搭載されている構造の一例であって、(b)が両面表示のための構造の一例を示している。図16に示すように、表裏両面から光が放出させるために、表裏両面の電極(維持電極、アドレス電極)を透明電極とし、かつ、通常裏面側に設けられ光を全面に反射させる白色誘電体層を削除する。

【0073】使用面検知手段は、例えば図6(a)の例では、通話装置140の凹部Aの右内側に設けられた使用面検知ボタン180と、両面表示ディスプレイ120の通話装置140側の端面において左右何れか一方にのみに設けられた溝部282から構成される。使用面検知ボタン180は凹部Aに突出するよう付勢されている。溝部282は、使用面検知ボタン180を押下しないだけの十分なスペースを備える。したがって、両面表示ディスプレイ120を表裏反転させると、使用面検知ボタン180の一方のみが押下され、左右どちらの電気的特性が変化したかで、使用面の方向を検知することができる。

【0074】なお、表裏反転手段150の配置は適宜変更可能であって、例えば、図6(a)の例では、凹部Aが通話装置140の表裏面に貫通され、両面表示ディスプレイ120は、貫通部分で第2の軸Z2回りに回転して表裏反転をする。図6(b)の例では、操作パネル144を表裏反転手段150で反転させ、相対的に表示面を切り換える構成としている。或いは、図6(c)スピーカ143と送受信アンテナ146を両面表示ディスプレイ120と一体として、凹部Aを無くし、携帯電話機200の中央でねじって表裏反転する構成としても良い。【0075】第2の実施形態では、両面表示ディスプレイ220が、透過光を必要としないので、第1の実施形態で見られたバックライト130が省略されている。

示ディスプレイ220と通話装置140とを回転自在に 【0076】 [第3の実施形態] 次に、図7~図8を参支持する表裏反転手段150と、帯電話機200の各種 照して、本発明の第3の実施形態を説明する。第3の実機能を制御する制御装置160と、両面表示ディスプレ 施形態は、本発明を携帯電話機に適用した場合の例であ って、携帯電話機の操作パネルとは別に、ゲームプレイ かを検知する使用面検知ボタン180および構部282 50 や3次元表示時の画面操作に適した操作パネルを備える

ことを特徴とする。なお、第1または第2の実施形態と 同様の構成要素については、同じ番号の符号を付け、説 明は省略するものとする。

【0077】 [構成の説明] 図7は、第3の実施形態に おける携帯電話機300の外観を示す斜視図である。携 帯電話機300は、図7に示すように、電話機としての 基本機能を備える通話装置140とは別に、主にゲーム プレイ時や3次元表示時に適した操作キーを備えるゲー ム操作部350と、両面表示ディスプレイ120の使用 面を検知する使用面検知ボタン180と、携帯電話機3 10 00の種々の機能を司る制御部160とを備え、ヒンジ 部390によって、通話装置140と、ゲーム操作部3 50と、両面表示ディスプレイ120とが、開閉自在に 連結された蝶着構造を有する。

【0078】通話装置140とゲーム操作部350は、 ヒンジ部390を挟んで、互いの操作パネルに相当する 部分が向き合うように配置され、その間に両面表示ディ スプレイ120がヒンジ部390に回転自在に接続され ている。使用時には、蝶着構造を開いて携帯電話機ある いはゲーム装置として機能させ、未使用時には、蝶着構 20 造を折りたたんで閉じて可搬性を高める。

【0079】バックライト130は、第1の実施形態と 同様の透過光供給手段であるが、ヒンジ部390を挟ん で、通話装置140の凹部A4と、ゲーム操作部350 の凹部A5とに、それぞれパックライト130a、13 0 bが設けられている。

【0080】ゲーム操作部350は、ゲームプレイや3 次元表示をコントロールするのにより適した操作デバイ ス352と、通話装置140の操作パネル144と同様 に使用面指示マークB、Cが備えられている。操作デバ 30 イス352としては、例えば、家庭用ゲーム装置のコン トロール・キーとしてポピュラーな十字キーや、静電気 式のポインティングデバイス、アナログ式ジョイスティ 、 ック、および種々のボタン類などが適宜選択される。

【0081】使用面検知ボタン180は、凹部A4、A 5の操作パネル側の側面それぞれに、凹部側に突出する ように付勢されて設けられ、例えば、両面表示ディスプ レイ120を、凹部A4に挿入すると、通話装置140 側の使用面検知手段180が両面表示ディスプレイ12 0の外枠に押下されて電気的特性が変化し、使用面の方 40 向が検知される。

【0082】ヒンジ部390は、両面表示ディスプレイ 120と通話装置140とゲーム操作部350とを回転 自在に支持するとともに、両面表示ディスプレイ12 0、ゲーム操作部350への電源供給線や信号線と、通 話装置140側の回路とが切換自在に接続できる公知の 回転機構を備える。回転機構については、従来よりノー ト・パソコンの液晶表示部とキーボード部の接続、ある いはモニタの向きを反転可能なビデオカメラなどで種々 の方法が採用されており、ここでの詳細な説明は省略す 50 て、3つのモジュールから構成され、モジュールの配置

る。

【0083】[使用方法の説明]次に、第3の実施形態の 使用方法と動作について説明する。図8は、両面表示デ ィスプレイ120の反転動作示す動作説明図である。図 8 (a) に示すように、例えば、ユーザーが2次元表示 によって通話先の電話番号や電子メールをテキスト表示 させる場合には、両面表示ディスプレイ120を通話装 置140側に倒し、凹部A4に挿入して2次元表示用の 面を外側に向けて使用する。そして、ゲーム操作部35 0を上にして持って使用する。この状態では、両面表示 ディスプレイ120によって通話装置140側の使用面 検知ボタン180が押下される。制御装置160は、現 在ユーザーが2次元表示を使用していると認識し、2次 元表示用の画像を表示するとともに、使用面指示マーク Bを緑色点灯させる。また、通話装置140側のバック ライト130aのみが点灯され、レンチキュラレンズ2 4 a を通過し、透過光として両面表示ディスプレイ12 0の裏面から供給される。

【0084】3次元表示をさせる場合は、ユーザーは、 操作パネル144から、例えば、メニュー画面で3次元 画像表示を選択し、機能の切り換え操作を行う。制御部 160は、操作パネル144からの操作信号を受けて、 記憶部から該当するプログラムを読み込むとともに、使 用面指示マークBを消灯させ、Cを点灯させる。この時 点では、両面表示ディスプレイ120は、2次元表示の ままなので赤色点滅され、ユーザーに両面表示ディスプ レイ120の反転動作を促す。

【0085】反転動作では、両面表示ディスプレイ12 0が、図8(b)に示すように、ヒンジ部390まわり に回転するようにして凹部A4から引出され、そのまま 反対のゲーム操作部350側に倒しこまれ、図8 (c) に示すように、凹部A5内に挿入される。この状態で は、両面表示ディスプレイ120によってゲーム操作部 350側の使用面検知ボタン180が押下される。した がって、制御装置160は、現在ユーザーが両面表示デ ィスプレイ120の3次元表示を使用していると判断 し、3次元用画像の表示をさせる。また、制御装置16 0は、使用面指示マーク C を赤色点滅から緑色点灯に変 更させるとともに、通話装置140側のバックライト1 30 aを消灯させて、ゲーム操作部350側のバックラ イト130bを点灯させる。そして、ユーザーは、通話 装置140を上にするように持ち替えて、ゲーム操作部 350を操作して、3次元画像の閲覧を楽しむ。

【0086】この様に、3次元表示時の操作、入力に適 した操作部を設けることによって、より感覚にマッチし たより快適な操作を提供することができる。

[0087] [第4の実施形態] 次に、図9~図10を 参照して、本発明の第4の実施形態を説明する。第4の 実施形態は、本発明を携帯電話機に適用した例であっ

20

を変更することで2次元/3次元表示の使い分けをする 点を特徴とする。なお、第1~第3の実施形態と同様の 構成要素については、同じ番号の符号を付け、説明は省 略するものとする。

【0088】 [構成の説明] 図9は、第4の実施形態における携帯電話機400のモジュール構成を示す構成図である。第4の実施形態における携帯電話機400は、図9に示すように、携帯電話機としての構成要素が備えられた電話機モジュール410と、3次元ゲーム装置としての構成要素が備えられたゲーム装置モジュール42 100と、両面表示ディスプレイ120と電源部とを備えた表示モジュール430と、を備え、軸部440を介して3つのモジュールが回転自在な積層構造をなしている。そして、上記3つのモジュールは、それぞれが平板状の外形を備え、四隅を合わせると一体化した造詣を形成する。

【0089】上記3つのモジュール間の回路や電源供給は、電話機モジュール410の上下両辺部にヒンジ部390によって開閉自在に取り付けられた接続部450を介して行われる。接続部450は、複数の接点を備え、各モジュールに設けられた接点を連結することで、各種の信号や電源の供給回路を形成する。また同時に、各モジュールの上下両辺を連結して、モジュール間の位置決めを行うロック機構としての機能を有する。

【0090】電話機モジュール410は、バッテリー機能を除いた、電話機として機能させるための種々の構成要素、即ち、電話番号等の入力や諸操作を行う操作パネル411、マイクロフォン412、スピーカ413、アンテナ414、制御装置415等の公知の構成要素を備える。電話機モジュール410の上部には、保護ガラス30416をはめ込んだ開口部A1が備えられ、開口部A1を通して表示モジュール430の両面表示パネル120が見えるように構成されている。また、電話機モジュール410の背面には、バックライト130aが設けられている。

【0091】ゲーム装置モジュール420は、バッテリー機能を除く、ゲーム装置として機能するための、操作パネル421、スピーカ422、制御装置423等の公知の構成要素を備えている。ゲーム装置モジュール420の上部には、電話機モジュール410と同様に保護ガ40ラス426をはめ込んだ開口部A2が備えられている。また、ゲーム装置モジュール420の背面には、バックライト130bが設けられている。

【0092】表示モジュール430は、両面表示ディスプレイ120と、バッテリー431とを備える。両面表示ディスプレイ120は、電話機モジュール410側を2次元表示、ゲーム装置モジュール420側を3次元表示としている。

【0093】軸部440は、上記各モジュールのほぼ中 ように、両面表示ディスプレイ120と、両面表示ディ 心を貫くように配置され、各モジュールが軸周りに回転 50 スプレイ120に透過光を供給する反射板500と、両

自在に連結されている。軸部440は、操作切換手段である切換ボタン442を両端面に備え、それぞれ電話機モジュール410、ゲーム装置モジュール420の電源スイッチとして機能する。ユーザーは、電話機あるいはゲーム装置の使用したい方の切換ボタン442を押すことで、機能の切換を行う。

【0094】[使用方法の説明]次に、第4の実施形態の 使用方法と動作について説明する。図10は、携帯電話 機400における、機能切換方法を示す説明図である。 図10 (a) は、電話機モジュール410を機能させて いる場合である。表示モジュール430の両面表示ディ スプレイ120が、凹部A1から見える位置に配置さ れ、メニュー画面や電話番号、或いはコブタの画像など が2次元表示される。ここで、3Dゲームをやるために 機能を切り換えるとする。まず、図10(b)に示すよ うに、両端の接続部450をヒンジ部390回りに回転 させて連結を解除する。そして、図10(c)に示すよ うに、表示モジュール430を軸部440回りに回転さ せ、両面表示ディスプレイ120が凹部A2から見える ように配置する。そして、接続部450によって各モジ ュールを連結する。ユーザーがゲーム装置モジュール4 20側の切換ボタン442を押すと、ゲームをプレイす ることができる。

【0095】このように、電話機、ゲーム装置、および2次元/3次元表示可能なディスプレイをそれぞれモジュール化することで、一つの筐体に複数の構成要素を無理に詰め込むことなく、各機能に十分なスペックを備えることができる。また、上記モジュールは、着脱自在で組替え可能としても良く、大幅なスペックの変更にモジュール交換で対処し、装置寿命を延ばすことができる。さらには、例えば、ゲーム装置モジュール420の代りに、GPS機能を備えたナビゲーション・モジュールと組替えるならば、機能の組替えにも対応できる。

【0096】 [第5の実施形態] 次に、図11と図12を参照して、本発明の第5の実施形態を説明する。第5の実施形態は、本発明を携帯情報端末装置に適用した例であって、透過光供給手段を変更することによって、2次元/3次元表示の切換を行うことを特徴とする。ここでいう携帯情報端末装置とは、PDA、サブノート・パソコン等に分類される携帯を目的とした小型の携帯情報端末装置であって、所与のプログラムによって、スケジュール管理、電子メールの作成・送受信、音楽や映像の再生など、種々の機能が実行可能である。なお、第1~第5の実施形態と同様の構成要素については、同じ番号の符号を付け、説明は省略するものとする。

【0097】 [構成の説明] 図11は、第5の実施形態における携帯情報端末装置500の外観の一例を示す斜視図である。携帯情報端末装置500は、図11に示すように、両面表示ディスプレイ120と、両面表示ディスプレイ120に添過光を供給する反射板530と、両

面表示ディスプレイ120のケーシング部540と、操 作パネル544、546と、両面表示ディスプレイ12 0とケーシング部540とを開閉自在に支持するヒンジ 部390と、両面表示ディスプレイ120を制御する制 御装置560と、使用面検知ボタン180とを備える。

【0098】反射板530は、両面表示ディスプレイ1 20に面する側に、鏡面効果を有する反射層532を備 えた蓋部兼透過光供給手段であって、ヒンジ部390を 介してケーシング部540の側面に、両面表示ディスプ レイ120の表裏面にそれぞれ一つずつ取り付けられて 10 いる。使用時には、表示面側の反射板が開けられ、裏側 が閉じられた状態で使用される。反射層532は、アル ミニウム箔の貼設や所与の塗料による鏡面塗装によって 形成され、両面表示ディスプレイ120の表示面側から 入射した環境光を反射し、再び両面表示ディスプレイ1 20に入射させることで、透過光供給手段として機能す る。また、反射板530は外殻を樹脂等の硬質材料で形 成することで、液晶面の保護カバーとしても機能する

【0099】ケーシング部540は、プラスチック樹脂 材等によって両面表示ディスプレイ120の外縁を取り 20 囲むように設けられ、携帯情報端末装置500の基本骨 格を形成する。ケーシング部540は、両面表示ディス プレイ120の2次元表示側にメニューの選択や文字の 入力を目的とした操作パネル544を備え、裏面の3次 元表示側にはゲームや3次元表示における操作に適した 操作パネル546が備えられている。図11の例では、 操作パネル544には、2次元表示のメニュー選択操作 がしやすいジョグシャトル・キー、ボタン類、ペンタブ レット等が備えられ、操作パネル546には、上下左右 および押し込み可能なアナログコントローラ・キーやボ 30 る。 タン類が備えられている。

【0100】また、ケーシング部540の両面それぞれ のヒンジ部390付近には、押しボタン式の使用面検知 ボタン180が備えられ、反射板530を閉じると押下 され電気的特性が変化することで、使用面を検知可能と している。

【0101】制御装置560は、携帯情報端末として公 知のハードウェア構成を備え、携帯情報端末装置500 の種々の機能を司る。

すように、反射板530の代りに、ケーシング部540 に回転自在に指示された両面発光するバックライト53 0 bを設け、使用面の反対側に配置して使用するとして も良い。

【0103】 [第6の実施形態] 次に、図13~図15 を参照して、本発明の第6の実施形態を説明する。第6 の実施形態は、本発明をデスクトップ型のパソコンなど で使用されるモニタに適用した例であって、透過光供給 手段の位置を変更することを特徴とする。図13は、第 斜視図である。なお、第1~第5の実施形態と同様の構 成要素については、同じ番号の符号を付け、説明は省略 するものとする。

【0104】 [構成の説明] 第6の実施形態におけるモ 二夕600は、図13に示すように、両面表示ディスプ レイ120を立脚する台座640と、両面表示ディスプ レイ120と台座640とを回転自在に支持する表裏反 転手段650と、制御装置660と、を備える。

【0105】パックライト130a、130bは、両面 表示ディスプレイ120の上部でそれぞれヒンジ部39 0によって開閉自在に、両面表示ディスプレイ120の 表裏それぞれの側に一つずつ設けられている蓋部兼透過 光供給手段である。バックライト130a、130b は、両面表示ディスプレイ120に向き合う面に、蛍光 灯やLEDなどの光源をもとに略白色の略平行光を発す る発光面を備え、裏面は遮光される材料でケーシングさ れている。使用面側のバックライトが上方に開けられ手 元灯として機能し、背面側は閉じられた状態で使用面の 裏面側から透過光を供給するように機能する。

【0106】また、バックライト130a、130bの 外縁部には、使用面検知ボタン180が備えられ、バッ クライト130a、130bが閉じられると、両面表示 ディスプレイ120のケーシングとの間で押下され、電 気的特性が変化することによって、使用面の方向を検知 することができる。

【0107】台座640は、モニタ600を机上などに 設置するための台であって、外観上には、電源スイッチ 642と、使用面指示マークB、Cとを備え、内部に は、電源装置(図示略)と、制御装置660と、を備え

【0108】表裏反転手段650は、両面表示ディスプ レイ120と台座640とを回転自在に支持するととも に、両面表示ディスプレイ120への電源供給線および 制御装置660との信号線の電気的接続を常時保つこと できる公知の回転機構を備える。回転機構は、従来のノ ート型パソコンの液晶パネル部とキーボード部の接続、 あるいはモニタの向きを反転可能なビデオカメラなどに 種々の方法が採用されており、詳細な説明は省略する。 図13の例では、表裏反転手段650は略鉛直な軸23 【0102】なお、本実施形態においては、図12に示 40 周りに回転し、少なくとも180度の回転角を有する構 造になっている。

【0109】制御装置660は、CPU、LSI、IC メモリなどの各種電子部品と、所与の内蔵プログラムに よって実現され、信号ケーブル670によってパソコン 680と接続され、パソコン680からの画像信号にし たがって、両面表示ディスプレイ120への所与の画像 の表示、使用面指示マークB、Cの点灯を司る。制御装 置660は、第1の実施形態における制御装置160と 同様の機能プロック構成を有するが、インターリーバー 6の実施形態におけるモニタ600の外観の一例を示す 50 1106或いは使用面指示部1108を必ずしも制御装

24

置660で実現する必要はなく、パソコン680側で実現しても良い。

【0110】[使用方法の説明]次に、第6の実施形態の使用方法と動作について説明する。図14は、両面表示ディスプレイ120の反転動作を示す動作説明図である。

【0111】図14(a)に示すように、ユーザーが従 来のように2次元表示によって、画像加工や、ワード・ プロセッサなどでテキスト表示させる場合は、両面表示 ディスプレイ120の表面、即ち、2次元表示用の面が 10 手前(ユーサー側)に向けられ、使用面を覆っているバ ックライト130aが、ヒンジ部390で回転させて上 方に開けられる。この状態では、パックライト130b 側に設けられた使用面検知ボタン180のみが、両面表 示ディスプレイ120によって押下されている。制御装 置660は、現在ユーザーが2次元表示を使用している と認識し、2次元表示用の画像を表示させるとともに、 使用面指示マーク B を緑色点灯させる。 バックライト 1 30bの光は、レンチキュラレンズを通過し、透過光と して両面表示ディスプレイ120の裏面から供給され る。ユーザーは、両面表示ディスプレイ120の備える 解像度そのままに、2次元表示画面を見ることができる とともに、タッチパネル22aを触ることで、簡単な操 作でメニュー選択等の操作をすることができる。

【0112】次に、3次元(立体視)画像の表示をさせる場合について説明する。ユーザーは、パソコン680上で使用するソフトウェアを切り換え、例えば、メニュー画面で3次元画像表示を選択する。制御部660は、使用面指示マークBを消灯させ、Cを点灯させる。この時点では、両面表示ディスプレイ120は、2次元表示30のままなので使用面指示マークCは赤色点滅され、ユーザーに両面表示ディスプレイ120の反転動作を促す。【0113】反転動作では、図14(b)に示すように、バックライト130aが閉じられる。そして、両面表示ディスプレイ120が表裏反転手段650の軸23

に、バックライト130aが閉じられる。そして、両面表示ディスプレイ120が表裏反転手段650の軸Z3まわりに回転され、裏面即ち3次元表示用の面をユーザーに向ける(図14(c))。反転が終了したならば、図14(d)に示すように、3次元表示面側のバックライト130bが開けられる。この状態では、バックライト130a側に設けられた使用面検知ボタン180のみが、両面表示ディスプレイ120との間に挟まり押下されている。したがって、制御装置660は、現在ユーザーが両面表示ディスプレイ120の3次元表示を使用していると認識し、3次元用画像の表示をさせる。また、制御装置660は、使用面指示マークBを消灯させ、Cを緑色点灯させる。

【0114】なお、本実施形態においては、図15に示すように、バックライト130の変わりに、両面表示ディスプレイ120に回転自在に指示された両面発光するバックライト130cを設け、使用面の反対側に配置し 50

て使用するとしても良い。

【0115】以上、様々な形態の実施例を示したが、これらに限定されるものではなく、本発明の趣旨を逸脱しない範囲において適宜変更可能である。例えば、使用面指示マークB、Cをもってユーザーに使用面を知らせるとしたが、両面表示ディスプレイ120の画面にその旨、文字或いはアイコン等を表示するとしても良い。【0116】

【発明の効果】本発明によれば、表示部に両面表示可能なフラットパネル・ディスプレイを採用し、一面を2次元表示用、他面を3次元表示用として、用途に応じて表裏を切り換えて保持することで2次元表示と3次元表示の両立を実現することによって、表示を切り換えるたびに、煩わしい3次元表示用光学素子成位置合わせや、2次元表示時に3次元表示光学素子越しに見ることによる画像解像度の劣化等の問題を起こすことなく、2次元/3次元表示の両立を実現できる。

【0117】また、保持部が、表示面の位置を表裏どちらを使用する場合であっても変化させないようにすることで、例えば、本発明を携帯情報端末装置へ適用しても、表示の切り換えの際に表示部が外に展開されて大きくなり、使い勝手が悪くなるといった不具合は起きない。したがって、携帯情報端末装置の持ち味である小さな外観を損なうことなく2次元/3次元の両面表示を利用することができる。さらに、保持部が反転手段を備えることで、切り換えに伴って表示部と制御回路との接続を断つことなく使用することができる。また、前記所定の軸を適宜に設定することで、同時に表示部の表示角度を調整する機能を持たせることもできる。

【0118】特に3次元表示の方法としてレンチキュラ 方式を採用するならば、(1) フラットパネル・ディス プレイの表示面上にレンチキュラレンズを配置すること で、2つ以上の視野領域を確保し、ユーザーの観察位置 がずれても常に安定して立体視を提供することができ る、(2) 樹脂材のプリントによって形成することがで きるので製造コストが安く済む、(3)パララックスバ リアの様にスリットなどの遮光構造が無いので、2次元 表示時の際、レンチキュラレンズ越しに透過光が供給さ れる場合であっても、液晶表示セルに十分な光を透過・ 供給することができる、(4) レンズの存在によってわ ずかに光の濃淡むらが発生するが、実用上問題無いレベ ルに抑えることができる、等のメリットを得られる。 【0119】フラットパネル・ディスプレイが透過光を 必要とする場合には、所定位置の背面にあたる位置に、 バックライトや鏡などを設けて透過光を供給する。特 に、発光部または鏡面部を、携帯電話機等の前記所定位 置の背面にあたる位置に装置本体と一体に固定するなら ば、一つの光源でも2次元表示/3次元表示の両方に対 応できるので、装置の大型化を防ぐとともに、コストを 抑制することができる。

【0120】また、ユーザーがディスプレイの表算どち らを表示面として使用しているかを検知する使用面検知 手段を備えることで、2次元表示用、3次元表示用の適 切な切り換えをサポートすることで、画像本来の特性に 合った正しい表示を行って、十分な情報伝達を確保する ことができる。

【0121】操作入力手段としては、2次元/3次元表 示の内容にそれぞれ適した操作入力手段を備えること で、操作性の向上を図ることができる。特に、3次元表 示用である場合に3次元用操作部を行うに適した操作部 10 を設けることでさらに操作性・使い勝手を良くすること ができる。

【0122】また、装置を天部と底部戸から構成し、各 部がそれぞれ異なる機能を備えることで、例えば、携帯 電話機能とゲーム機能、あるいは携帯電話機とナビゲー ション機能を備えた複合電子機器として機能することが できる。この際、両機能で一つの両面表示ディスプレイ を利用することで、小型化とコスト削減を図ることがで きる。

【図面の簡単な説明】

【図1】本発明における、両面表示ディスプレイの概念 を説明する図である。

【図2】本発明における、レンチキュラ方式による3次 元表示(立体視)の原理を説明する原理図である。

【図3】第1の実施形態における携帯電話機の外観の一 例を示す斜視図である。

【図4】第1の実施形態の携帯電話機における、機能構 成を示すプロック図である。

【図5】第1の実施形態の携帯電話機における、両面表 示ディスプレイの表裏反転動作を示す動作説明図であ る。

【図6】第2の実施形態における携帯電話機の外観の例 を示す斜視図である。

【図7】第3の実施形態における携帯電話機の外観の一 例を示す斜視図である。

【図8】第3の実施形態の携帯電話機における、両面表 示ディスプレイの表裏反転動作を示す動作説明図であ

【図9】第4の実施形態における携帯電話機のモジュー ル構成を示す構成図である。

【図10】第4の実施形態の携帯電話機における、機能 切換方法を示す説明図である。

【図11】第5の実施形態における携帯情報端末装置の 外観の一例を示す外観図である。

【図12】第5の実施形態における携帯情報端末装置に おいて、両面発光のパックライトを使用する場合の外観 の一例を示す図である。

【図13】第6の実施形態におけるモニタの外観の一例 を示す斜視図である。

【図14】第6の実施形態のモニタにおける、両面表示 ディスプレイの表裏反転動作を示す動作説明図である。

【図15】第6の実施形態のモニタにおいて、両面発光 のパックライトを使用する場合の(a)外観の一例を示す 図、(b) 反転動作を説明する図である。

【図16】 両面表示するためのPDPの構造を説明する 断面図である。

【符号の説明】 20 表示部 2 1 フラットパネル・ディスプレイ 2 2 a タッチパネル 24 a レンチキュラレンズ 100 携帯電話機 120 両面表示ディスプレイ 122, 124 突起 130 パックライト 150 表裏反転手段 180, 182 使用面検知ポタン 200 携帯電話機 220 両面表示ディスプレイ 282 **溝部** 290 ヒンジ部 300 携帯電話機 350 ゲーム操作部 352 操作デバイス 400 携帯電話機 4 1 0 電話機モジュール 30 420 ゲーム装置モジュール 430 表示モジュール 500 携带情報端末装置 5 3 0 反射板 5 3 2 反射層 544, 546 操作パネル 600 モニタ

650 表裏反転手段

1020 操作部

1040 使用面検知部

1100 制御部

> 1106 インターリーパー

1108 使用面指示部

1 1 2 0 記憶部

1124 次元画像生成プログラム

1126 使用面指示プログラム

Α 凹部

B, C 使用面指示マーク

(a) (B) (B) (Refib) (

130b 180 390 130a 130a 130a 130a 130a 130a 130a 130a

[図14]

[図10] (図11) (a) ው) ********************************* (c) (c) 【図16】 (a)

アドレス電極(メタル電極)

[図12]

