BASES DE DATOS

CLASE 7

Costo de ejecución de una consulta

- Costo de acceso a almacenamiento secundario
 - Buscar, leer y escribir bloques de datos que residen en disco
- Costo de almacenamiento
 - Almacenar archivos intermedios que generan una estrategia de ejecución
- Costo de cómputo
 - Costo de realizar las operaciones
- Costo de comunicación
 - Costo de enviar la consulta y los resultados (sist. distribuidos)

Costo de ejecución de una consulta

 Dada una consulta hay varios métodos para llegar a la respuesta

OPTIMIZADOR

USUARIO → CONSULTA → CONSULTA OPTIMIZADA

Más eficiente

Pasos de la optimización

- Analizador sintáctico (parser) → convierte la consulta en una estructura tipo árbol
- Finalmente, se toma en cuenta el estado actual de la BD y los índices definidos para resolver la consulta

Estado temporal de una tabla de la BD

- CT _{tabla1} → cantidad de tuplas de tabla1
- CB _{tabla1} → tamaño en bytes de una tupla de tabla1
- CV _(a, tabla1) → cantidad de valores diferentes que existen de a en tabla1

Estimación de costo de consultas

- Estadísticas de la BD \rightarrow CT_R, CB_R, CV_(a, R)
 - Son útiles para decidir rápidamente el costo de cada alternativa de solución y así elegir la mejor
 - Están **parcialmente** actualizadas
- Ej. de costo de una consulta: Producto cartesiano R x T
 - Cantidad de tuplas = CT_R * CT_T
 - Cantidad de bytes por tupla = CB_R + CB_T

- Optimización lógica
 - Expresiones equivalentes en Álgebra Relacional
 - El **AR** es un lenguaje procedural, por lo que cuando se escribe una consulta existe una **secuencia de resolución**
 - Se puede encontrar que algunas expresiones son más eficientes que otras equivalentes

Optimización lógica

- Selección
 - Hacerlas lo antes posible

•
$$\sigma_{p}(R \times T) \rightarrow \sigma_{p}(R) \times \sigma_{p}(T)$$

•
$$\sigma_P(R \cup T) \rightarrow \sigma_P(R) \cup \sigma_P(T)$$

•
$$\sigma_{p}(R - T) \rightarrow \sigma_{p}(R) - \sigma_{p}(T)$$

Descomponer la condición

Optimización lógica

Alumnos

Idalumno	NombreAlumno	Dni	Idlocalidad	Idcarrera
1	García	23456876	1	1
2	Perez	17876234	2	1
3	Gomez	33009876	1	2
4	Pizarro	25678965	1	2
5	Castelli	14239034	2	1
6	Pettorutti	19023487	3	2
7	Montenzanti	23434564	2	3
8	Suarez	30212305	3	1

Localidades

Idlocalidad	NombreLocalidad	
1	General Pico	
2	La Plata	
3	Tres Arroyos	

Carreras

Idcarrera	NombreCarrera	Duración_años	
1	Informatica	5	
2	Quimica	3	
3	Contador	4	

Optimización lógica

• Ej1: obtener los DNI de alumnos de 'La Plata'

 π_{dni} ($\sigma_{Localidades.nombre = "La Plata"}$ (Alumnos |×| Localidades))

Alumnos |x | Localidades

Idalumno	NombreAlumno	DNI	Idlocalidad	Idcarrera	Idlocalidad	NombreLocalidad
1	García	23456876	1	1	1	General Pico
2	Perez	17876234	2	1	2	La Plata
3	Gomez	33009876	1	2	1	General Pico
4	Pizarro	25678965	1	2	1	General Pico
5	Castelli	14239034	2	1	2	La Plata
6	Pettorutti	19023487	3	2	3	Tres Arroyos
7	Montenzanti	23434564	2	3	2	La Plata
8	Suarez	30212305	3	1	3	Tres Arroyos

Optimización lógica

• Ej1: obtener los DNI de alumnos de 'La Plata'

```
\pi_{dni} ((Alumnos |×| \sigma_{nombre = "La Plata"} (Localidades))
```

- Solo genera 3 tuplas, contra las 8 de la consulta anterior
- La operación de selección debe realizarse antes de un producto, una unión o una diferencia

Optimización lógica

• Ej1: obtener los DNI de alumnos de 'La Plata'

Optimización lógica

• Ej2: nombre de alumnos con idLocalidad=1 e idCarrera=3

```
\pi_{\text{nombre}} (\sigma_{\text{idCarrera=3 AND idLocalidad=1}} (Alumnos))
```

- Supongamos que la tabla ALUMNOS tiene 1000 tuplas
 - Se aplican ambas comparaciones resolviéndose 2000 expresiones lógicas
 - Luego se resuelve el operador AND entre los resultados → 1000 expresiones lógicas adicionales
 - TOTAL: 3000 expresiones lógicas

Optimización lógica

• Ej2: nombre de alumnos con idLocalidad=1 e idCarrera=3

```
\pi_{\text{nombre}} (\sigma_{\text{idCarrera=3}} (\sigma_{\text{idLocalidad=1}} (Alumnos)))
```

- Supongamos que la tabla ALUMNOS tiene 1000 tuplas
 - Se resuelve la selección de localidad.
 - Peor caso: todos son de Idlocalidad = 1. Quedan 1000 tuplas
 - Caso esperable: un 20% son de esa localidad. Quedan 200 tuplas
 - Se resuelve la selección de carrera.
 - TOTAL peor caso: 1000 + 1000 = 2000 expresiones lógicas
 - TOTAL caso esperable: 1000 + 200 = 1200 expresiones lógicas

Optimización lógica

- Proyección
 - Resolver las proyecciones lo antes posible
- Producto natural
 - Resolver en pasos: $R | x | T | x | S \rightarrow R | x | (T | x | S)$
 - Orden: R | x | T vs T | x | R

Optimización lógica

 El atributo A en común entre ambas tablas es clave primaria en T1, y clave foránea en T2.

• T1 =
$$(\underline{A}, B, C, D)$$
 T2 = (\underline{G}, F, A)

Resolver T2 |x| T1 → más eficiente

Optimización lógica

 El atributo A en común entre ambas tablas no es clave primaria en ninguna de las tablas

```
• T1 = (\underline{B}, C, D, E, A) T2 = (\underline{G}, F, A)
```

- Es más eficiente resolver el producto sobre la tabla que tenga mayor cantidad de valores diferentes del atributo común (CV_A)
 - Si por ej. $CV_{\Delta}(T2) > CV_{\Delta}(T1)$ entonces T1 |X| T2 es más eficiente

Optimización física

- Técnicas de acceso adecuadas
 - Dispersión / Índices
- Procesadores paralelos
 - Mayor capacidad de computo
- Redes
 - Separar el trabajo entre distintas computadoras