Задача 11-3 Эффект Мёссбауэра и эффект Доплера

1.1 Запишем уравнения законов сохранения импульса и энергии для снаряда и пушки

$$\begin{cases} mv = Mu \\ \frac{mv^2}{2} + \frac{Mu^2}{2} = \frac{mv_0^2}{2} \end{cases}$$
 (1)

 $\frac{mv_0^2}{2}$ - энергия сжатой пружины, которая одинакова при выстреле из закрепленной и незакрепленной пушки.

Разделив оба уравнения на массу пушки получим

$$\begin{cases} \mu \, v = u \\ \frac{\mu \, v^2}{2} + \frac{u^2}{2} = \frac{\mu \, v_0^2}{2} \end{cases} \tag{2}$$

Подставляя выражения для скорости отдачи из первого уравнения во второе, найдем искомую скорость снаряда

$$\mu v^2 + \mu^2 v^2 = \mu v_0^2 \quad \Rightarrow \quad v = \frac{v_0}{\sqrt{1+\mu}}.$$
 (3)

1.2 Если μ мало, то для скорости наряда можно записать

$$v = \frac{v_0}{\sqrt{1+\mu}} \approx v_0 \left(1 - \frac{1}{2}\mu\right). \tag{4}$$

Тогда относительное изменение скорости снаряда определяется выражением

$$\frac{\Delta v}{v_0} = \frac{v - v_0}{v_0} = -\frac{1}{2}\mu \ . \tag{5}$$

1.3 Потеря энергии снаряда равна кинетической энергии, преобретаемой стволом при отдаче

$$\Delta E = -\frac{Mu^2}{2} \,. \tag{6}$$

Следовательно, относительное изменение энергии фотона в следствие отдачи равно

$$\frac{\Delta E}{E_0} = -\frac{Mu^2}{mv_0^2} = -\frac{\mu v^2}{v_0^2} = -\frac{\mu}{1+\mu} \,. \tag{7}$$

При малых μ можно пренебречь этой малой величиной в знаменателе, тогда

$$\frac{\Delta E}{E_0} = -\frac{\mu}{1+\mu} \approx -\mu \tag{8}$$

1.4 Законы сохранения импульса и энергии в данном случае выражаются уравнениями

$$Mu = \frac{hv}{c},\tag{9}$$

$$hv_0 = hv + \frac{Mu^2}{2} \,. {10}$$

Выражая из уравнения (9) $u = \frac{h v}{Mc}$ и подставляя в уравнение (10), получим

$$h\nu_0 = h\nu + \frac{M}{2} \left(\frac{h\nu}{Mc}\right)^2. \tag{11}$$

Для упрощения алгебраических выкладок разделим на это уравнение на Mc^2 :

$$\frac{hv_0}{Mc^2} = \frac{hv}{Mc^2} + \frac{1}{2} \left(\frac{hv}{Mc^2}\right)^2.$$

Используя предложенные параметры, получаем простое квадратное уравнение:

$$\varepsilon_0 = \varepsilon + \frac{\varepsilon^2}{2}. \tag{12}$$

положительное решение которого

$$\varepsilon = \sqrt{1 + 2\varepsilon_0} - 1. \tag{13}$$

возвращаясь к обычным единицам, получим.

$$hv = Mc^{2} \left(\sqrt{1 + 2\frac{hv_{0}}{Mc^{2}}} - 1 \right).$$
 (14)

В релятивистском подходе систему уравнений законов сохранения импульса и энергии имеет вид

$$p = \frac{hv}{c}$$

$$hv_0 + Mc^2 = hv + E_n$$
(15)

где E_n . \mathcal{P}_n - энергия и импульс, приобретенные ядром. Она связанна с импульсом ядра соотношением

$$E_n^2 = M^2 c^4 + p^2 c^2 \,. \tag{16}$$

Выражая из системы (15) импульс и энергию ядра и подставляя в уравнение (16), получим

$$(hv_0 - hv + Mc^2)^2 = (Mc^2)^2 + (hv)^2.$$
 (17)

Как и ранее разделим это уравнение на $(Mc^2)^2$ и используем относительные единицы, в результате чего получим квадратное уравнение:

$$\left(\varepsilon_0 - \varepsilon + 1\right)^2 = 1 + \varepsilon^2 \tag{18}$$

Решение этого уравнение не сложно

$$(\varepsilon_0 + 1)^2 - 2\varepsilon(\varepsilon_0 + 1) + \varepsilon^2 = 1 + \varepsilon^2 \implies$$

$$\varepsilon = \frac{(\varepsilon_0 + 1)^2 - 1}{2(\varepsilon_0 + 1)} \qquad (19)$$

1.5 При $\varepsilon_0 << 1$ относительное изменение энергии гамма-кванта также будет малым. Поэтому приближенные выражения можно получить непосредственно из уравнений для величины ε . Так из уравнения (12) следует:

$$\Delta \varepsilon = \varepsilon - \varepsilon_0 = -\frac{\varepsilon^2}{2} \approx -\frac{\varepsilon_0^2}{2} \implies \frac{\Delta \varepsilon}{\varepsilon_0} \approx -\frac{\varepsilon_0}{2}. \tag{20}$$

А из уравнения (18) получим

$$(1 - \Delta \varepsilon)^{2} = 1 + \varepsilon^{2} \implies 1 - 2\varepsilon \cdot \Delta \varepsilon + (\Delta \varepsilon)^{2} = 1 + \varepsilon^{2} \implies -2\varepsilon \cdot \Delta \varepsilon \approx \varepsilon^{2} \implies \frac{\Delta \varepsilon}{\varepsilon_{0}} \approx -\frac{1}{2}\varepsilon_{0}$$
(21)

Как следует из полученных формул, в первом приближении оба подхода дают одинаковые результаты.

1.6 Энергия покоя ядра Ir^{191} равна

$$E = \frac{Mc^2}{e} = \frac{191 \cdot 1,7 \cdot 10^{-27} \cdot (3,0 \cdot 10^8)^2}{1,6 \cdot 10^{-19}} = 1,79 \cdot 10^{11} \, 9B$$
 (22)

Следовательно, введенный параметр равен

$$\varepsilon_0 = \frac{129 \cdot 10^3}{1.79 \cdot 10^{11}} \approx 7.2 \cdot 10^{-7} \,. \tag{23}$$

Что значительно меньше 1, поэтому классическое приближение вполне применимо. Энергия отдачи в соответствии с формулой (19) равна

$$\Delta \varepsilon \approx -\frac{\varepsilon_0^2}{2} \implies \frac{Mv^2}{2} = Mc^2 \frac{\varepsilon_0^2}{2} \implies v = c\varepsilon_0 \approx 2, 2 \cdot 10^2 \frac{M}{c}.$$
 (24)

- **1.7** Относительный сдвиг энергии гамма кванта равен $\frac{\Delta \varepsilon}{\varepsilon_0} \approx -\frac{1}{2} \varepsilon_0 \approx 3.6 \cdot 10^{-6}$.
- **1.8** Энергия гамма кванта должна быть больше, чем E_0 , так как часть энергии кванта перейдет в кинетическую энергию движения ядра. Запишем уравнения законов сохранения импульса и энергии, при условии, что гамма-квант поглотился

$$\frac{hv}{c} = Mu$$

$$hv = hv_0 + \frac{Mu^2}{2}.$$
(25)

Так как разность энергий является малой, то эти уравнения модно решать приближенно (и быстро):

$$\begin{cases} \frac{h_{\parallel}}{c} = Mu \\ h_{\parallel} = h_{\parallel_0} + \frac{Mu^2}{2} \end{cases} \Rightarrow \int_{0}^{\infty} (h_{\parallel}) = \frac{Mu^2}{2} = \frac{|Mu|^2}{2M} = \frac{|h_{\parallel}|^2}{2Mc^2} = \frac{|h_{\parallel}|^2}{2Mc^2} \Rightarrow \frac{|h_{\parallel}|^2}{2Mc^2} \Rightarrow \frac{|h_{\parallel}|^2}{2} = \frac{|h_{\parallel}|^2}{2} = \frac{|h_{\parallel}|^2}{2Mc^2} \Rightarrow \frac{|h_{\parallel}|^2}{2} = \frac{|h_{\parallel}|^2}{2} = \frac{|h_{\parallel}|^2}{2Mc^2} \Rightarrow \frac{|h_{\parallel}|^2}{2} = \frac{|h_{\parallel}|^2}{$$

Таким образом, относительный сдвиг, который приведет к поглощению гамма-кванта, равен сдвигу при отдаче, только направлен в другую сторону (в сторону увеличения частоты).

Часть 2. Эффект Доплера.

2.1 Если источник движется, то длина испущенной волны уменьшится на расстояние, которой проходит источник за один период волны. Следовательно, длина волны, испущенной движущимся источником, будет равна

$$\lambda = \lambda_0 - V_0 T_0 \,. \tag{27}$$

Переходя к частотам волны, получим

$$\frac{c}{v} = \frac{c}{v_0} - \frac{V_0}{v_0} \,. \tag{28}$$

Откуда следует, что частота и ее относительный сдвиг (при скоростях источника, значительно меньше скорости волны) определяются по формулам

$$v = v_0 \frac{c}{c - V_0} \approx v_0 \left(1 + \frac{V_0}{c} \right) \implies \frac{\Delta v}{v_0} \approx \frac{V_0}{c}. \tag{29}$$

Часть 3. За что дают Нобелевские премии?

3.1 Для резонансного поглощения необходимо, чтобы сдвиг отдачи (как при испускании, так и при поглощении) был скомпенсирован доплеровским сдвигом, откуда следует, что должно выполняться условие

$$\frac{V_0}{c} \approx 2 \frac{\varepsilon_0}{2} \quad \Rightarrow \quad V_0 \approx \varepsilon_0 c \approx 2, 2 \cdot 10^2 \frac{M}{c}. \tag{30}$$

Что равно скорости ядра при отдаче.

- **3.2** Повышение температуры должно приводить к усилению поглощения, так как в этом случае разброс скоростей теплового движения атомов становится больше. Следовательно, для больших пар атомов (один в источнике, другой в поглотителе) доплеровский сдвиг компенсирует сдвиг отдачи.
- 3.3 По графику можно найти, что поглощение практически прекращается, при изменении скорости на величину $\Delta V \approx \pm 2c M/c$. Этому интервалу соответствует интервал частот $\Delta v \approx v_0 \frac{\Delta V}{c} = \frac{E_0}{h} \frac{\Delta V}{c}$, или интервал энергий $\Delta E \approx E_0 \frac{\Delta V}{c}$. Отсюда с помощью соотношения неопределенности получаем оценку времени жизни ядра в возбужденном состоянии

$$\tau \approx \frac{hc}{E_0 \Delta V} \approx \frac{6,64 \cdot 10^{-34} \cdot 3 \cdot 10^8}{129 \cdot 10^3 \cdot 1,6 \cdot 10^{-19} \cdot 4 \cdot 10^{-2}} \approx 2 \cdot 10^{-10} c$$

¹ Внимательные могут заметить на графике и шкалу изменения энергии ΔE !