SCHOOL OF COMPUTER SCIENCE A ARTIFICIAL INTELLIGENCE			DEPARTMENT OF COMPUTER SCIENCE ENGINEERING	
Program Name: B. Tech		Assignment Type: Lab Academic Year: 202		Academic Year: 2025-26
Course Coordin	nator Name	Dr. Vairachilai Shenbagavel		
Instructor(s) Na	ame	Srinivas Komakula		
Course Code	23CA201SE402	Course Title	Explainable & A	AI (P)
Year/Sem	III/V	Regulation	R24	
Date and Day of Assignment	28-07-2025	Time(s)	09:00AM -05:00	OPM .
Duration	2 Hours	Applicable to Batch	23CSBTB41	

Assignment Number: 01

Q. No.	Question	Expected Time to complete
1	Skill Boost – Coding Bootcamp	

Context:

Skill Boost sees that attending free webinars leads to higher course sign-ups.

Webinars Attended	Sign-ups
(x)	(y)
0	5
1	15
2	25
0	8
1	18

Objective:

Analyze the effect of attending free webinars on the number of sign-ups for Skill Boost's coding boot camp by performing Linear Regression and interpreting SHAP values.

Requirements:

1. Perform Linear Regression Analysis

- Use the given dataset where:
 - Independent Variable (x): Webinars Attended
 - Dependent Variable (y): Sign-ups

2. Calculate the Baseline Value

o Compute the mean of all sign-up values (y values).

3. Calculate SHAP Values

- o For each record, calculate the difference between the predicted value and the baseline.
- o This difference is the SHAP value, attributed to the number of webinars attended.

4. Compute Final Prediction

- Use the linear regression model to calculate predicted sign-ups for each webinar count.
- o Confirm that:

 $Final\ Prediction=Baseline+SHAP\ Value \ \{Final\ Prediction\} = \ \{Baseline\} + \ \{SHAP\ Value\} \\ Final\ Prediction=Baseline+SHAP\ Value\} \\$

5. Interpret the Results

- Explain how the number of webinars attended influenced each predicted sign-up count.
- o Compare the predicted value to the actual value for each row.
- o Identify under prediction or over prediction, and provide reasoning.

Deliverables:

- Linear regression implementation with coefficients
- Baseline (mean of y)
- Table of SHAP values and predictions
- Explanation of how each input influenced the prediction
- Comparison of predicted vs actual values, with over/under prediction notes
- Summary analysis covering:
 - Accuracy of the model
 - Trend analysis
 - SHAP interpretation insights

Q. No.	Question	Expected Time to complete
2	FinTrack – Investment Signup Prediction using Multiple Linear Regression and SHAP Analysis	

Objective:

Evaluate how the number of webinars and blog posts published influence new user signups using Multiple Linear Regression and explain the outcomes using SHAP value interpretation.

Given Dataset:

Webinar	Blog	Signu
s (x ₁)	$S(X_2)$	ps(y)
3	5	60
2	3	45
1	4	40
4	2	55
2	1	35

Tasks:

1. Perform Multiple Linear Regression Analysis

- o Use Webinars and Blogs as independent variables
- o Use Signups as the dependent variable

2. Calculate the Baseline Value

Compute the mean of all signup values

3. Calculate SHAP Values

- Calculate SHAP Value
- Distribute SHAP contributions between Webinars and Blogs based on model coefficients

4. Compute Final Prediction for Each Record

- Use the regression equation
- Verify: Prediction = Baseline + SHAP (Webinars) + SHAP (Blogs)

5. Interpret the Results

- o For each record, explain how webinars and blogs affected the prediction
- o Compare predicted vs actual signup values
- o Indicate if the model overpredicted or underpredicted and suggest possible causes

Q. No.		Expected Time to complete
3	Regression with Diabetes Dataset	

Objective:

Understand how patient features influence disease progression using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all available features from the Diabetes dataset as independent variables.

- Fit a Multiple Linear Regression model to predict disease progression.
- 2. Calculate the Baseline Value
 - Compute the **mean** of the target variable (disease progression scores) from the training data.
 - This will serve as the **baseline prediction**.
- 3. Calculate SHAP Values
 - Apply SHAP to compute **feature contributions** to each prediction.
 - Use model coefficients to proportionally attribute the difference from the baseline to each feature.
- 4. Compute Final Prediction for Each Record
 - For every test record, verify that:

Prediction = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For each patient record:
 - o Explain how each feature contributed to the predicted disease progression.
 - o Compare the **predicted value** vs the **actual observed value**.
 - o Comment on whether the model **overpredicted or underpredicted** and **why**, based on SHAP values.

Q. No.	Question	Expected Time to complete
4	Regression with Student Performance Dataset	

Objective:

Investigate how student background and behavior influence final exam scores using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all relevant student attributes (e.g., study time, parental education, absences, etc.) as independent variables.
 - Fit a regression model to predict the **final exam score**.
- 2. Calculate the Baseline Value
 - Compute the **mean of the final exam scores** from the training set.
 - This serves as the **baseline prediction** (expected value).
- 3. Calculate SHAP Values
 - Use SHAP to compute the contribution of each student attribute to the final exam score prediction.
 - Distribute the prediction deviation from the baseline among the features.
- 4. Compute Final Prediction for Each Record
 - For each student record, confirm:

Predicted Score = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For every prediction:
 - Explain how different features (e.g., study time, failures, health) impacted the exam score.
 - o Compare predicted score to actual score.
 - o Comment on overprediction or underprediction and possible reasons behind it.