INTRODUÇÃO À COMUNICAÇÃO DE DADOS

INE 5602 Introdução à Informática Prof. Roberto Willrich

Introdução

Até o início da década de 60

- computadores eram utilizados apenas de forma isolada
 - sem oferecer oportunidade de exploração à qualquer usuário remoto

A partir dos anos 80

- Surgiram as redes de computadores
- Objetivos
 - Compartilhamento de recursos
 - Trocas de mensagens

Meios de Transmissão

- Transmissão de bits entre sistemas
 - via terrestre
 - cabos metálicos
 - fibra ótica
 - via aérea
 - transmissão de superfície
 - transmissão via satélite

Meios de Transmissão

Transmissão via terrestre

- diferem quanto aos seguintes parâmetros
 - capacidade
 - potencial para conexões ponto a ponto ou multiponto
 - limitação geográfica devido à atenuação característica do meio
 - imunidade a ruídos
 - custo
 - disponibilidade de componentes
 - e confiabilidade
- meios físicos mais utilizados em redes locais
 - par trançado
 - cabo coaxial
 - fibra ótica

Constituição

- condutor interno cilíndrico
 - no qual é injetado o sinal
- condutor externo
 - separado do condutor interno por um elemento isolante
- capa externa
 - evita irradiação e a captação de sinais

- Existe uma grande variedade de cabos coaxiais
 - cada uma com suas características específicas

Conector

Características

- cabos de mais alta qualidade não são maleáveis
 - são difíceis de instalar
- cabos de baixa qualidade
 - podem ser inadequados para altas velocidades e distâncias majores
- possui características elétricas que lhe permitem suportar velocidades da ordem de megabits por segundo
 - sem necessidade de regeneração do sinal e sem distorções ou ecos
- comparado ao par trançado
 - cabo coaxial tem uma imunidade a ruído bem melhor
 - cabo coaxial é mais caro do que o par trançado
 - mais elevado custo das interfaces para ligação ao cabo

Características

- Desvantagens
 - problema de mau contato nos conectores utilizados
 - difícil manipulação do cabo
 - como ele é rígido, dificulta a instalação em ambientes comerciais
 - por exemplo, passá-lo através de conduítes
 - problema da topologia
 - mais utilizada com esse cabo é a topologia linear (barramento)
 - faz com que a rede inteira saia do ar caso haja o rompimento ou mau contato de algum trecho do cabeamento da rede
 - fica difícil determinar o ponto exato onde está o problema
- No passado esse era o tipo de cabo mais utilizado
 - por causa de suas desvantagens está cada vez mais caindo em desuso

- Cabo coaxial para redes Ethernet
 - Cabo coaxial usado em rede possui impedância de 50 ohms
 - cabo coaxial utilizado em sistemas de antena de TV possui impedância de 75 ohms
 - Existem dois tipos básicos de cabo coaxial
 - fino (10Base2) e grosso (10Base5)

- Cabo Coaxial Fino (10Base2)
 - cabo coaxial mais utilizado
 - também chamado "Thin Ethernet" ou 10Base2
 - "10" significa taxa de transferência de 10 Mbps
 - "2" a extensão máxima de cada segmento da rede
 - 200 m (na prática 185 m)

Cabo Coaxial Grosso (10 Ethernet'')

pouco utilizado

- 10Base5

• "10" significa 10 Mbps de ta

 cada segmento da rede pode ter até 500 metros

 conectado à placa de rede através de um transceiver

Constituição

 dois fios de cobre são enrolados em espiral de forma a reduzir o ruído e manter constante as propriedades elétricas do meio através de todo o seu comprimento

> transmissão no par trançado pode ser tanto analógica quanto digital

CAT5

Pinagem

- par trançado é composto de oito fios (4 pares)
 - cada um com uma cor diferente
- cada trecho de cabo par trançado utiliza em suas pontas um conector do tipo RJ-45
 - possui 8 pinos, um para cada fio do cabo

Características

- taxas de transmissão podem chegar até a ordem de uma centena de megabits por segundo
 - dependendo da distância, técnica de transmissão e qualidade do cabo
- perda de energia aumenta com o aumento da distância
 - até chegar a um ponto onde o receptor não consegue mais reconhecer o sinal
 - energia pode ser perdida com a radiação ou o calor

Desvantagem

- é sua susceptibilidade a ruídos
 - podem ser minimizados com uma blindagem adequada
- provocados por interferência eletromagnética
 - se o cabo tiver de passar por fortes campos eletromagnéticos,
 - especialmente motores, quadros de luz, geladeiras, etc.
 - campo eletromagnético impedirá um correto funcionamento daquele trecho da rede
- se a rede for ser instalada em um parque industrial onde a interferência é inevitável
 - outro tipo de cabo deve ser escolhido para a instalação da rede
 - cabo coaxial ou a fibra ótica

- Tipos de par trançado
 - não blindado (UTP- Unshielded Twisted Pairs)
 - blindado (STP- Shielded Twisted Pairs)
 - blindagem ajuda a diminuir a interferência eletromagnética
 - aumenta a taxa de transferência obtida na prática

- UTP são classificados em cinco categorias
 - categoria 1: utilizado em sistemas de telefonia
 - categoria 2: utilizado em baixas taxas
 - categoria 3: cabos com velocidade de 10 Mbps
 - categoria 4: com velocidades de até 16 Mbps
 - categoria 5: com taxas típicas de até 100 Mbps

Pares trançados STP

- são confeccionados obedecendo a padrões industriais que definem suas características
- classificados em tipos: 1, 1A, 2, 2A, 6, 6A, 9 e 9A
 - apresentam diferenças de parâmetros tais como o diâmetro do condutor e material usado na blindagem

Vantagens

- par trançado é o meio de transmissão de menor custo por comprimento
- ligação de nós ao cabo é também extremamente simples, e portanto de baixo custo

- Permite conectar dois pontos de rede
 - conexão direta de dois computadores
 - senão é obrigatório a utilização de um dispositivo concentrador (hub ou switch)
 - o que dá uma maior flexibilidade e segurança à rede

- Tipos de par trançado na Ethernet
 - 10BaseT
 - taxa de transferência de 10 Mbps
 - 100BaseT
 - taxa de transferência de 100 Mbps

Constituição

- núcleo e a casca são feitos de sílica dopada ou plástico
 - no núcleo é injetado um sinal de luz proveniente de um LED ou laser que percorre a fibra se refletindo na casca
 - ao redor existem outras substâncias de menor índice de refração
 - faz com que os raios sejam refletidos internamente
 - minimizando assim as perdas de transmissão

Fibra Multimodo

- não necessita uso de amplificadores
- tem capacidade de transmissão da ordem de 100 Mbps a até cerca de 10 km
- mais empregadas em redes locais

Fibra Monomodo

- alcança velocidades em Gbps a uma distância de cerca de 100 km
- empregadas em redes de longa distância
- requer fonte de lazer

Conector

Vantagens

- características de transmissão superiores aos cabos metálicos
 - por utilizar luz tem imunidade eletromagnética
- ideal para instalação de redes em ambientes com muita interferência

Desvantagens

- seu custo é superior
- é mais frágil requerendo que seja encapsulada em materiais que lhe confiram uma boa proteção mecânica
- necessita de equipamentos microscopicamente precisos para sua instalação e manutenção
 - difícil de ser remendada

Transmissão aérea

Características

- fornecem conexões menos confiáveis que os cabos terrestres
 - sua taxa de erros de transmissão é mais alta

Transmissão de superfície (Microondas)

- sistema de rádio
- transmitindo em uma freqüência onde as ondas eletromagnéticas são muito curtas e se deslocam a alta velocidade

Transmissão via satélite

- gera um atraso de cerca de 270 ms
 - atrasos pode criar problemas para a comunicação interativa

Transmissão em Microondas

Transmissão em Microondas

Microondas em visibilidade

- sinal emitido por uma antena parabólica
- de alcance restrito a 50Km
- chega a seu destino através de repetições sucessivas por antenas colocadas no trajeto a cada 50Km

Microondas em tropodifusão

 sinal a transmitir é lançado na troposfera onde é refletido em direção ao destino

Transmissão Serial/Paralela

- Transmissão paralela
 - bits compondo uma palavra de dados são conduzidos ao longo de um conjunto de vias
 - sendo uma via para cada bit

Transmissão Serial/Paralela

Transmissão paralela

- Custo dos canais de transmissão são elevados
 - só pode ser empregado para curtas distâncias
- Terminais são mais baratos
 - não exigem circuitos que individualizem os diversos caracteres
- Exemplo:
 - comunicação entre computador e impressora
 - entre a CPU e memória

Transmissão Serial/Paralela

Transmissão Serial

- número de linhas necessárias à transmissão pode ser reduzida convertendo-se os dados a serem transmitidos num feixe serial de bits
 - são necessárias apenas duas vias para a transmissão do feixe de bits, uma para cada direção e uma linha de terra conectando os dois dispositivos

Transmissão Digital

- dados são transmitidos via sinais digitais
- empregada em linhas diretas (direct connect)
- método econômico
 - não requer conversões
- distorção do sinal torna-se sensível com o aumento da distância
 - recomenda-se um limite de 300 m (pode ser estendido com cabos e meios de conexão especiais)

Transmissão Digital

 geração de valores discretos pode ser produzida pela emissão de um sinal a partir de uma referência nula

ou por interrupção de um sinal

Transmissão Digital

 geração bipolar: inverte-se o sentido da corrente para passar da condição 0 à condição 1 ou viceversa

- Transmissão Digital
 - Exemplo: string ABA codificado em EBCDIC

Modos de Transmissão

Simplex

 quando a linha permite a transmissão em um único sentido

• Half-Duplex ou semiduplex

- quando a linha permite a transmissão nos dois sentidos, mas somente alternativamente
 - toda vez que inverte o sentido da comunicação existe um tempo de comutação da linha (100 a 400 ms)
- emprega-se dois fios

Full-Duplex ou duplex

- permite a transmissão nos dois sentidos simultaneamente
- emprega-se quatro fios ou dois fios com subdivisão de frequências

Transmissão Serial/Paralela

Transmissão Serial Assíncrona

- Transmissão é feita caractere a caractere
- Cada caractere é antecedido de um sinal de start e sucedido de um sinal de end

Start Data End

- Se o transmissor tem dados para transmitir, ele envia:
 - um sinal de partida, dados e um sinal de fim
 - enviados em uma taxa de bits fixa
- Caso não haja dados a transmitir, o meio de transmissão se mantém em um estado "ocioso"

Transmissão Serial/Paralela

Transmissão Serial Assíncrona

- Termo assíncrono refere-se a este caráter aleatório do tempo de transmissão de dados
 - a transmissão de dados pode começar a qualquer momento
- Parte considerável do que transmite não transporta informação útil
 - Utilizada quando não se necessita de transmissão frequente de informações
- Fornece baixas velocidade de transmissão

Transmissão Serial/Paralela

Transmissão Serial Síncrona

- Relógios no transmissor e no receptor estão sincronizados
- Tempo é dividido em intervalos de tamanho fixo
 - Um intervalo corresponde a um bit
 - Termo síncrono refere-se a este intervalo fixo de bit
 - Bits de dados são transmitidos continuamente sobre o meio de transmissão sem qualquer sinal de início e fim
- Vantagens
 - Mais eficiente
 - não há envio de sinais de partida e parada
 - Não é tão sensível à distorção e opera a velocidades bem mais altas

Transmissão Analógica

- Informações são enviadas sob a forma de quantidades continuamente variadas
 - exige a presença de um modulador e de um demodulador
 - sinal é adaptado a uma onda portadora

- Se sinais digitais fossem transmitidos em um meio analógico
 - ondas quadradas seriam distorcidas pelo meio analógico
 - receptor será incapaz de interpretar corretamente estes sinais
 - devem ser convertidos para sinais analógicos (modulação)

- Procedimento para transportar um sinal digital na forma de um sinal analógico
 - corresponde a uma variação no tempo de uma ou mais características de um sinal portador senoidal, segundo a informação a ser transmitida

Modalidades

- Modulação em freqüência
- Modulação em amplitude
- Modulação em fase

Faixas de Freqüência

Canal de Comunicação

meio físico pelo qual os sinais trafegam

Não se trafega qualquer sinal

 só os que possuem freqüência entre determinados valores limites (superior e inferior)

Banda

- faixa do espectro de freqüências em que ocorre uma transmissão
 - por exemplo: definida entre 16KHz e 20KHz

Banda Passante, largura de banda

 é a diferença entre a freqüência mais alta e a freqüência mais baixa

Faixas de Freqüência

- Faixa Estreita (Narrow Band)
 - linhas de baixa velocidade
- Faixa Média (Voice Band)
 - linhas telefônicas
 - voz humana
- Faixa Larga (Wide Band)
 - permite transmissões de alta velocidade

Moduladores/demoduladores

 equipamentos utilizados na conversão dos dados digitais em sinais modulados e na operação inversa

Canal Telefônico

- um canal analógico
- largura de banda muito limitada (3000Hz)
 - não é possível uma alta taxa de transmissão

- Modem para transmissão de dados (Data modem)
 - primeiros modems eram usados exclusivamente para transferir dados
- Fax modem
 - modems especiais para transferir fax.
- Data/Fax modem
 - capazes de transferir dados e fax
- Data/fax/voice modems
 - transmissão e recepção de sinais de áudio (voz)
 - mistura de modem com placa de som
 - usuário pode falar e ouvir, ao mesmo tempo em que está sendo feita uma transmissão ou recepção de dados

Modems de 14.400 bps

- Populares até 1994
- Praticamente todos os modelos eram capazes de transmitir e receber dados a 14.400 bps, e transmitir e receber fax a 9.600 bps

Modems de 28.800 bps

- Populares entre 1995 e 1996
 - transmissão e recepção de fax chega a 14.400 bps
 - dados são transmitidos a 28.800 bps.
- Utiliza o padrão V.34

Modems de 33.600 bps

- Revisão do V.34 (meados de 1996) permitiu um aumento de velocidade
- aumento de velocidade não requer alterações no projeto das placas
 - alterações no firmware (memória)

Modems de 56k bps

- ITU (International Telecommunications Union)
 padronizou em 1998 V.90
- 56k é obtido evitando uma conversão de digital para analógico na conexão entre o usuário e provedora
- Conexões ordinárias
 - iniciam sobre uma linha analógica
 - são convertidas para digital pela companhia telefônica
 - são convertidas para analógico na ligação com o provedor
- Conexões de 56k
 - começam analógicas
 - são convertidas em digital
 - não são convertidas para analógico na ligação com o provedor
 - requer que o provedor tenha uma conexão digital direta

Modems de 56k bps

- Não significa que o usuário obterá 56k
 - linhas telefônicas de baixa qualidade ou outras condições pode limitar a velocidade
- modems 56k baixam dados (download) na velocidade de até 56kbps, mas podem transferir (upload) a apenas 33.6kbps

 Parâmetros da onda que são levados em conta no processo de modulação

- Modulação em Amplitude
 - cada estado expresso por um bit corresponde uma amplitude diferente da outra

- Modulação em Amplitude
 - estado pode representar mais que um bit
 - diferentes amplitudes

Modulação em Amplitude

- Principal vantagem
 - é fácil produzir tais sinais e também detectá-los
- Desvantagens
 - velocidade da troca de amplitude é limitada pela largura de banda da linha
 - linhas telefônicas limitam trocas de amplitude em 3000 trocas por segundo
 - pequenas mudanças da amplitude tornam a detecção não confiável
 - sinal modulado torna-se mais sensível a interferências
 - faz-se necessário transmissores de alta potência
 - encarece demasiadamente o processo
- desvantagens fizeram com que esta técnica não fosse mais utilizada pelos modems
 - a não ser em conjunção com outras técnicas

- Modulação em Freqüência
 - cada estado expresso por um bit (ou conjunto de bits) corresponde uma freqüência diferente

Modulação em Freqüência

- Vantagens
 - boa imunidade a interferências
 - pouca sofisticação de equipamentos
- Desvantagens
 - taxa de mudança da freqüência é limitada pela largura de banda da linha
 - distorção causada nas linhas torna a detecção mais difícil do que na modulação de amplitude
 - Usada em modems de baixa velocidade

- Modulação em Fase
 - Alteração da fase do sinal indica mudança de valor de bit

Modulação em Fase

- Detecção com referência fixa
 - uma dada condição de fase valendo 1 e outra valendo 0
- Detecção diferencial
 - trocas de fase indicando troca de bits
- Vantagem
 - oferece boa tolerância a ruídos

- Modulação em Fase de Detecção com Referência Fixa
 - Desvantagem
 - para detectar a fase de cada símbolo requer sincronização de fase entre receptor e transmissor
 - complica o projeto do receptor

- Modulação Diferencial em Fase (PSK phase shift keying)
 - modem modifica a fase de cada sinal um certo número de graus para "0" (p.e. 90°) e um diferente número de graus para "1" (p.e. 270°)

- Modulação Diferencial em Fase (PSK phase shift keying)
 - Vantagem
 - é mais fácil fazer a detecção do que no anterior
 - receptor tem que detectar desvios de fase entre símbolos, e não absolutos

Resumo

	Tolerância a			
Tipo de Modulação	Ruído	Distorção por amplitude	Distorção por retardo	Distorção por freqüência
Amplitude	ruim	ruim	média	boa
Fase	boa	média	ruim	média
Freqüência	média	boa	boa	ruim

Canal Telefônico

- um canal analógico
- largura de banda muito limitada (3000Hz)
 - não é possível uma alta taxa de transmissão

Técnica de Modulação Multinível

- solução para aumentar a velocidade de transmissão
- manipula grupos de bits e não bit a bit

- Técnica de Modulação Multinível
 - Exemplo: técnica dibit

Codificação	Amplitude	Freqüência
00	A	f
01	A	2 f
10	A/2	f
11	A/2	2f

- Técnica de Modulação Multinível
 - Técnicas que modificam simultaneamente a amplitude e fase são chamadas de QAM (Quadrante Amplitude Modulation Modulação por Amplitude em Quadratura)

QAM - Quadrature Amplitude Modulation

- baseada na modulação de amplitude e aumenta seu desempenho
 - pois dois sinais portadoras são enviados simultaneamente
- Duas portadoras tem a mesma frequência com uma diferença de fase de 90 graus
 - fórmula matemática do sinal transmitido é o seguinte:
 - -S(t)=A*SIN(Wc*t)+B*COS(Wc*t)
- A e B são as amplitudes dos dois sinais portadores
 - receber um valor de um conjunto conhecido de valores
 - alguns bits podem ser enviados no período de um símbolo
- Por exemplo
 - considere o conjunto de valores {1,2,3,4} => 2 bits
 - durante o tempo de um símbolo, 4 bits serão transmitidos

TCM - Trellis Coded Modulation

- usa as técnicas discutidas (como QAM ou PSK)
 em conjunção com codificação a fim de aumentar as taxas de transmissão
- utilizada pelos MODEMS Modernos

Velocidade de Transmissão

- Pode ser expressa em bps ou bauds
 - Bps
 - número de bits transmitidos a cada segundo
 - exprime a taxa de transmissão da informação
 - Baud
 - mede o número de vezes que a condição da linha se altera por segundo (taxa de modulação)
 - usualmente exprime a taxa de transmissão serial

- Sempre que a banda passante de um meio físico for maior ou igual à banda passante necessária para um sinal
 - podemos utilizar este meio para a transmissão do sinal
- Em geral
 - banda passante do sinal é bem menor que a banda passante do meio físico

Banda passante Desperdício necessária para o sinal

Multiplexação

 técnica que permite transmitir mais de um sinal ao mesmo tempo no canal de comunicação

Duas formas

Multiplexação na freqüência (FDM)

C1 C2 C3

- Multiplexação no Tempo (TDM)
 - tempo de transmissão é compartilhado entre os sinais

Hz

- Multiplexação na freqüência (FDM)
 - Faixa de freqüência são deslocados (C2 e C3)
 - C1, C2 e C3 podem ser transmitidos ao mesmo tempo
 - ocupando uma banda ou canal distinto
 - Receptor deverá conhecer a faixa de frequências que está sendo usada para a transmissão (MODEM)
 - deve deslocar o sinal recebido de forma a fazer o sinal desejado ocupar novamente sua faixa original

- Multiplexação no Tempo (TDM)
 - tempo de utilização do suporte físico de transmissão
 - compartilhado pelos diversos nós de transmissão
 - baseado na idéia que a taxa suportada pelo meio físico excede a taxa média de geração de bits das estações conectadas ao meio físico
 - dois Tipos:
 - TDM Síncrono
 - TDM Assíncrono

- Multiplexação por divisão de tempo síncrona (TDM)
 - Tempo é dividido em frames de tamanho fixo que por sua vez são divididos em intervalos de tamanho fixo

- Canal
 - conjunto de intervalos em cada frame
 - canal 3 é o terceiro intervalo de cada frame
 - são alocados às estações que desejam transmitir

Exemplo de Multiplexação TDM

- Quadro de transmissão dividido em 10 intervalos que são numerados de 1 a 10
- Se o intervalo 1 é atribuído a uma estação, o emissor pode transmitir dados sob esta conexão apenas no intervalo 1
- Caso ela tiver mais dados a transmitir, ela deve aguardar novo quadro
- Se ele não usa este intervalo temporal, nenhuma outra conexão pode utilizá-lo

- Multiplexação por divisão de tempo síncrona (TDM)
 - canal pode ser alocado a uma fonte de transmissão
- Canal dedicado
 - se o canal é alocado durante todo o tempo para uma fonte
- Canais chaveados
 - se os canais podem ser alocados e desalocados dinamicamente

Deficiências do TDM

- uma conexão pode apenas usar o intervalo temporal de cada quadro dedicada a ela
- Multiplexação TDM é feita por reserva
 - um intervalo de tempo pode apenas ser usado pela conexão que o reservou durante o seu estabelecimento
 - Se a fonte não tem dados a transmitir durante o intervalo, o intervalo é perdido (não pode ser usado por outra conexão)
 - Caso o transmissor ter mais dados a transmitir, ele deve aguardar o próximo quadro (ou reservar mais que um intervalo em cada quadro)

Deficiências do TDM

- Exemplo: se cada intervalo corresponde a 64
 Kbps
 - conexão pode apenas ter um largura de banda múltiplo de 64 Kbps
 - se a conexão necessita apenas de 16 Kbps
 - um intervalo de tempo deve ser reservado, assim 48 Kbps são perdidos
 - se uma conexão necessita de 70 Kbps, dois intervalos (128 Kbps) em cada quadro deve ser reservado e 58 Kbps são desperdiçados

- Multiplexação por divisão de tempo assíncrona (ATDM)
 - não há alocação de canais para uma fonte
 - uma fonte pode usar qualquer intervalo de tempo se ele não está sendo utilizado por outra conexão
 - parcelas de tempo são alocadas dinamicamente sob demanda
 - nenhuma capacidade é desperdiçada
 - tempo não utilizado está disponível para outra fonte

- Multiplexação por divisão de tempo assíncrona (ATDM)
 - cada unidade de informação deve conter um cabeçalho
 - com endereços da fonte e destino

Técnicas de Transmissão

- Banda de Base (Baseband ou sinalização digital)
 - sinal é colocado na rede sem usar qualquer tipo de modulação
 - não aparecendo como deslocamentos de freqüência, fase ou amplitude de uma portadora de alta freqüência
 - não necessita de modem
 - possibilita alta velocidade
 - adequada para redes locais

Técnicas de Transmissão

- Banda Larga (Broadband ou sinalização analógica)
 - realiza a multiplexação em frequência
 - espectro do meio é dividido em vários canais
 - diferentes sinais podem ser enviados simultaneamente com diferentes frequências
 - várias comunicações podem ser multiplexadas alocando para cada uma freqüência portadora

Transmissões são susceptíveis a erros

 várias formas de deterioração do sinal acabam por provocar alguns erros na detecção da informação enviada

Taxa média de erros

- em canais de baixa e média velocidades situa-se em torno de 1 bit errado para cada 100.000 transmitidos
- algumas aplicações isto pode ser toleráveis, em outras não
 - transferência de arquivos

- Deve existir esquemas para prevenir erros
 - requer passar informações redundantes
 - quanto mais eficiente, mais cara é a sua implementação
 - menor é a eficiência da transmissão
- Eficiência em uma transmissão
 - E = Bits de informaçãoTotal de bits transmitidos

Teste de Paridade

- usado com freqüência para detectar erros
- é adicionado um bit adicional no final da mensagem
- Dois tipos de paridade: par e impar
- Paridade par
 - bit adicional terá valor 1 se o número de bits a 1 na mensagem é impar (mensagem sempre será par)
- Paridade impar
 - bit adicional terá valor 1 se o número de bits a 1 na mensagem é par (mensagem sempre será impar)

Teste de Paridade

- na recepção é recalculado o bit de paridade e comparado com o recebido
- incorreção de 2 bits em uma mesma mensagem pode levar à falha dessa vigilância
 - existem métodos mais sofisticados

Teste de Paridade

- Paridade longitudinal
 - consiste em acrescentar um caractere (BBC Block Character Check) que represente uma operação lógica sobre os bits dos diversos caracteres que compõem a mensagem

	C_1	\mathbb{C}_2	C ₃	C ₄	BCC
\mathbf{b}_{6}	1	1	1	1	0
\mathbf{b}_{5}	0	0	0	0	0
$\mathbf{b_4}$	1	0	1	0	0
\mathbf{b}_3	0	0	0	1	1
$\mathbf{b_2}$	1	1	0	0	0
\mathbf{b}_1	0	1	1	1	1
\mathbf{b}_0	1	0	0	0	1
P	0	1	1	1	1

Redundância cíclica (CRC)

- mais eficiente e muito utilizada
- para transmissão
 - representação binária da informação é dividida em módulo 2, por um número predeterminado
 - resto da divisão é acrescentado à mensagem como bits de verificação
- na recepção
 - mensagem recebida é dividida pelo mesmo número e o resto é comparado com o que foi recebido