MATH 272, HOMEWORK 1 Due January 31st

Problem 1. Plot the following complex functions as vector fields. Then explain the differences between them.

- (a) f(z) = z;
- (b) g(z) = iz.

You can, for example, use the plotter here: https://www.desmos.com/calculator/eijhparfmd or find your own (Matlab for example can plot vector fields quite easily). Note that you will have to convert from the complex numbers to 2-dimensional real vectors (i.e., vectors in \mathbb{R}^2).

Problem 2. Let $\Psi(x)$ be a complex function with domain [0, L]. Show that multiplication by a global phase $e^{i\theta}$ does not affect the norm of $\Psi(x)$ under the Hermitian (integral) inner product. In more generality, this shows that you cannot fully determine a quantum state – there will always be an undetermined phase.

Problem 3. Consider the real function f(x) = 1 on the domain [0, L].

- (a) What is the norm of f, ||f||?
- (b) Normalize f(x).
- (c) Find a nonzero normalized polynomial of degree ≤ 1 that is orthogonal to f(x).

Problem 4. A wavefunction $\Psi(x)$ for a particle in the 1-dimensional box [0, L] could be written as a superposition of normalized states

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right).$$

That is,

$$\Psi(x) = \sum_{n=1}^{\infty} a_n \psi_n(x),$$

for some choice of the coefficients a_n .

- (a) Let $a_n = \frac{\sqrt{6}}{n\pi}$. Show that $\Psi(x)$ is normalized. Hint: first, use orthogonality of the states $\psi_n(x)$ to your advantage. Then you will need to know what an infinite series evaluates to. Use a tool like WolframAlpha to evaluate this series.
- (b) Note that we can approximate $\Psi(x)$ by taking a finite sum approximation up to some chosen N by

$$\Psi(x) \approx \sum_{n=1}^{N} a_n \psi_n(x).$$

Plot the approximation of $\Psi(x)$ for N=1,5,50,100. Hint: you can modify my Desmos examples.

Problem 5. Suppose we have two vectors $\vec{\boldsymbol{u}}, \vec{\boldsymbol{v}} \in \mathbb{R}^3$. We can compute the distance between the vectors

$$d(\vec{\boldsymbol{u}}, \vec{\boldsymbol{v}}) = \|\vec{\boldsymbol{u}} - \vec{\boldsymbol{v}}\| = \sqrt{(\vec{\boldsymbol{u}} - \vec{\boldsymbol{v}}) \cdot (\vec{\boldsymbol{u}} - \vec{\boldsymbol{v}})}.$$

That is to say, we inherit not only a norm from an inner product, but a distance function from a norm! Intuitively, we are finding the length (or norm) of the vector extending from the head of $\vec{\boldsymbol{v}}$ to the head of $\vec{\boldsymbol{v}}$.

(a) Show that

$$d(\vec{\boldsymbol{u}}, \vec{\boldsymbol{v}}) = \sqrt{\|\vec{\boldsymbol{u}}\|^2 + \|\vec{\boldsymbol{v}}\|^2 - 2\vec{\boldsymbol{u}} \cdot \vec{\boldsymbol{v}}}.$$

- (b) Compute the distance between vectors $\vec{u} = \hat{x} + \hat{z}$ and $\vec{v} = \hat{x} \hat{y}$.
- (c) Extend this notion to compute the distance between the Legendre polynomials $f_1, f_2 : [-1, 1] \to \mathbb{R}$ where $f_1(x) = x$ and $f_2(x) = \frac{1}{2}(3x^2 1)$. Hint: make sure you use the correct integral inner product for this domain!