CheggSolutions - Thegdp

DC Circuit Analysis

Subject: Electrical Engineering

Topic: DC Circuit Analysis

Given and Introduction:

The circuit in question consists of a 12V DC source, a 1Ω resistor, a 5Ω resistor, an inductor of 2H, a 4Ω resistor, and a capacitor of 1F.

Solution Steps:

(a) To find the current \(i_L \) through the inductor:

1. Steady-State Current through Resistor Circuit (No Transient Components):

For a DC steady-state condition, the inductor will behave as a short circuit because the voltage across the inductor is zero in a steady state (\(\V_L = L \frac{d}{d} = 0 \))

2. Combining the Resistors:

At steady state, combine resistors to simplify the circuit:

• Combining 4Ω resistor in parallel with the short-circuited branch: Since the inductor acts like a short, the parallel combination of 4Ω and 0Ω results in 0Ω (effective resistance zero).

3. Effective Series Resistance:

Combine remaining resistances in series:

```
\( R_{\text{total}} = 1\Omega + 5\Omega = 6\Omega \\)
```

4. Applying Ohm's Law:

Calculate the current from the source \(I \) through the effective resistor:

```
\label{eq:linear_loss} $$ (I = \frac{V}{R_{\text{otal}}}) = \frac{12V}{6\Omega} = 2A )$$
```

Because of steady-state, the same current flows through the inductor since the inductor is treated as a short circuit in steady state.

Thus, the current (i_L) through the inductor is (2A).

(b) To find the current (i) through the 1Ω resistor:

As determined from the previous step, the same current \setminus (\mid \setminus) flows through the 1Ω resistor in series.

Thus, the current $\langle (i \rangle)$ through the 1Ω resistor is also $\langle (2A \rangle)$.

(c) To find the voltage \(v_C \) across the capacitor:

1. Applying Kirchhoff's Voltage Law:

At steady state, the voltage across the capacitor will be the same as across the 4Ω resistor since they are in parallel. Given that 4Ω is effectively bypassed by the short-circuited inductor.

2. Effective Voltage across Combined Resistor:

Calculate the potential difference across 5Ω resistor:

```
\( V_{5\Omega} = I \times 5\Omega = 2A \times 5\Omega = 10V \)
```

So, the remaining voltage drops across 1Ω resistor and battery terminations should add to 12V. Thus there is no drop across capacitor.

Thus, the voltage $\ (v_C \)$ across the capacitor is $\ (0V \)$.

(d) To find the energy stored in the inductor:

1. Using the formula for energy stored in the inductor:

Where (L = 2H) and $(i_L = 2A)$, 2. Substituting the values:

Thus, the energy stored in the inductor is \(4J \).

- (e) To find the energy stored in the capacitor:
 - 1. Using the formula for the energy stored in the capacitor:

$$\label{eq:w_C = frac{1}{2} C v_C^2 } $$ (W_C = \frac{1}{2} C v_C^2)$$$

Where $\ (C = 1F \)$ and $\ (v_C = \text{text}(0V) \)$,

2. Substituting the values:

Thus, the energy stored in the capacitor is \(0J \).

Final Solutions:

- (a) The current (i_L) through the inductor (= 2A)
- (b) The current \(i \) through the 1Ω resistor \(= $2A \setminus$)
- (c) The voltage $\ (v_C \)$ across the capacitor $\ (= 0V \)$
- (d) The energy stored in the inductor (= 4J)
- (e) The energy stored in the capacitor \(= 0J \)