Lexical Analyzer (Scanner)

Lexical Analyzer

- Lexical Analyzer reads the source program character by character to produce tokens.
- Normally a lexical analyzer doesn't return a list of tokens at one shot, it returns a
 token when the parser asks a token from it.

Why to separate Lexical Analyzer And parsing

- Simplicity of design
- Improving compiler efficiency
- Enhancing compiler portability

Tokens, Lexemes, Patterns

- A token is a pair a token name and an optional token value
 - For example: id and num
- Lexemes are sequence of characters in the source program that matches pattern for a token
 - For example: abc and 1233
- Patterns are rules describing the set of lexemes belonging to a token
 - For example: "letter followed by letters and digits" and "non-empty sequence of digits"

Example

Token	Informal description	Sample lexemes
if	Characters I ,f	If
Comparison	<,>,<=,>=	<= . !=
Number	Any numeric constant	3.14,0
literal	Anything but "surrounded by"	"core dumped"
id	Letters followed by letters and digit	Pi,D2

Example

```
E = M * C * * 2
```

- <id, symbol table entry for E>
- $\langle assign op \rangle$
- <id, symbol table entry for M>
- < mult op >
- <id, symbol table entry for C>
- $\langle \exp op \rangle$
- < number, interger value 2 >

Lexical Errors

- Unterminated comments
- Length of longest identifier
- Invalid identifiers
- Invalid constants
- Invalid symbols

Lexical Errors

- Delete one character from the remaining input
- Insert a missing character into the remaining input
- Replace a character by another character

Specification of Token

- Any language has an alphabet which defines the characters or symbols that language can have.
- In theory of compilation regular expression are used to formalize the specification of tokens
- Example:
 - letter(letter | digit)*
- Each regular expression is a pattern specifying the form of strings

Regular Expressions

- We use regular expressions to describe tokens of a programming language.
- A regular expression is built up of simpler regular expressions (using defining rules)
- Each regular expression denotes a language.
- A language denoted by a regular expression is called as a **regular set**.

Terminology of Languages

- Alphabet : a finite set of symbols (ASCII characters)
- String:
 - Finite sequence of symbols on an alphabet
 - Sentence and word are also used in terms of string
 - ϵ is the empty string
 - |s| is the length of string s.
- Language: sets of strings over some fixed alphabet
 - \emptyset the empty set is a language.
 - { ϵ } the set containing empty string is a language
 - The set of well-formed C programs is a language
 - The set of all possible identifiers is a language.

Operations on Languages

• Concatenation:

$$-L_1L_2 = \{ s_1s_2 | s_1 \in L_1 \text{ and } s_2 \in L_2 \}$$

• Union

$$-L_1 \cup L_2 = \{ s | s \in L_1 \text{ or } s \in L_2 \}$$

Example

•
$$L_1 = \{a,b,c,d\}$$
 $L_2 = \{1,2\}$

• $L_1L_2 = \{a1,a2,b1,b2,c1,c2,d1,d2\}$

- $L_1 \cup L_2 = \{a,b,c,d,1,2\}$
- L_1^3 = all strings with length three (using a,b,c,d)
- L_1^* = all strings using letters a,b,c,d and empty string
- L_1^+ = doesn't include the empty string

Regular Expressions (Rules)

Regular expressions over alphabet Σ

Reg. Expr	Language it denotes
3	{3}
$a \in \Sigma$	{a}
$(\mathbf{r}_1) \mid (\mathbf{r}_2)$	$L(r_1) \cup L(r_2)$
$(\mathbf{r}_1) (\mathbf{r}_2)$	$L(r_1) L(r_2)$
$(r)^*$	$(L(r))^*$
(r)	L(r)

- $\bullet \quad (\mathbf{r})^+ = \ (\mathbf{r})(\mathbf{r})^*$
- (r)? = $(r) \mid \epsilon$

Regular Expressions (cont.)

• Ex:

- $$\begin{split} &- \Sigma = \{0,1\} \\ &- 0|1 => \{0,1\} \\ &- (0|1)(0|1) => \{00,01,10,11\} \\ &- 0^* => \{\epsilon,0,00,000,0000,....\} \end{split}$$
- $-(0|1)^* =>$ all strings with 0 and 1, including the empty string
- $-0(0|1)*0 \Rightarrow$ All binary strings of length at least 2, starting and ending with 0's
- -(0|1)*0(0|1)(0|1)(0|1): All binary strings with at least three characters in which the 3^{rd} last character is always 0

Recognition of tokens

- Digit [0-9]
- Digits digit+
- Letter [A-Za-z_]
- Id letter(letter|digit)*
- If -if
- Then then
- Else else
- Relop < | > | <= | >= | = | < >

Recognition of tokens

Disambiguation Rules

- 1) longest match rule: from all tokens that match the input prefix, choose the one that matches the most characters
- **2) rule priority:** if more than one token has the longest match, choose the one listed first

Examples:

for8 is it the for-keyword, the identifier "f", the identifier

"fo", the identifier "for", or the identifier "for8"?

Use rule 1: "for8" matches the most characters.

• for is it the for-keyword, the identifier "f", the identifier

"fo", or the identifier "for"?

Use rule 1 & 2: the for-keyword and the "for"

identifier have the longest match but the

for-keyword is listed first.

How Scanner Generators Work

- Translate REs into a finite state machine
- Done in three steps:
 - 1) translate REs into a no-deterministic finite automaton (NFA)
 - 2) translate the NFA into a deterministic finite automaton (DFA)
 - 3) optimize the DFA (optional)

Finite Automata

- A *recognizer* for a language is a program that takes a string x, and answers "yes" if x is a sentence of that language, and "no" otherwise.
- We call the recognizer of the tokens as a *finite automaton*.
- A finite automaton can be: deterministic(DFA) or non-deterministic (NFA)
- This means that we may use a deterministic or non-deterministic automaton as a lexical analyzer.
- Both deterministic and non-deterministic finite automaton recognize regular sets.
- Which one?
 - deterministic faster recognizer, but it may take more space
 - non-deterministic slower, but it may take less space
 - Deterministic automatons are widely used lexical analyzers.
- First, we define regular expressions for tokens; Then we convert them into a DFA to get a lexical analyzer for our tokens.
 - Algorithm1: Regular Expression → NFA → DFA (two steps: first to NFA, then to DFA)
 - Algorithm2: Regular Expression → DFA (directly convert a regular expression into a DFA)

Deterministic Finite Automaton (DFA)

- A Deterministic Finite Automaton (DFA) is a special form of a NFA.
 - no state has ε- transition
 - for each symbol a and state s, there is at most one labeled edge a leaving s.
 i.e. transition function is from pair of state-symbol to state (not set of states)

The language recognized by this DFA is also (a|b)* a b

Non-Deterministic Finite Automaton (NFA)

- A non-deterministic finite automaton (NFA) is a mathematical model that consists of:
 - S a set of states
 - $-\Sigma$ a set of input symbols (alphabet)
 - − move − a transition function move to map state-symbol pairs to sets of states.
 - s₀ a start (initial) state
 - F a set of accepting states (final states)
- ε- transitions are allowed in NFAs. In other words, we can move from one state to another one without consuming any symbol.
- A NFA accepts a string x, if and only if there is a path from the starting state to one of accepting states such that edge labels along this path spell out x.

Converting A Regular Expression into A NFA (Thomson's Construction)

- This is one way to convert a regular expression into a NFA.
- There can be other ways (much efficient) for the conversion.
- Thomson's Construction is simple and systematic method.

 It guarantees that the resulting NFA will have exactly one final state, and one start state.
- Construction starts from simplest parts (alphabet symbols). To create a NFA for a complex regular expression, NFAs of its sub-expressions are combined to create its NFA,

Thomson's Construction (cont.)

• To recognize an empty string ε

ullet To recognize a symbol a in the alphabet Σ

- If $N(r_1)$ and $N(r_2)$ are NFAs for regular expressions r_1 and r_2
 - For regular expression $r_1 | r_2$

NFA for $r_1 \mid r_2$

Thomson's Construction (cont.)

• For regular expression $r_1 r_2$

Final state of $N(r_2)$ become final state of $N(r_1r_2)$

NFA for $r_1 r_2$

• For regular expression r*

Thomson's Construction (Example - (a|b) * a)

Converting a NFA into a DFA (subset construction)

```
put \varepsilon-closure(\{s_0\}) as an unmarked state into the set of DFA (DS)
while (there is one unmarked S_1 in DS) do
                                                                \varepsilon-closure(\{s_0\}) is the set of all states can be accessible
   begin
                                                                from s_0 by \epsilon-transition.
        mark S<sub>1</sub>
        for each input symbol a do
                                                            set of states to which there is a transition on
                                                             a from a state s in S_1
           begin
              S_2 \leftarrow \varepsilon-closure(move(S_1,a))
              if (S_2 \text{ is not in DS}) then
                   add S2 into DS as an unmarked state
              transfunc[S_1,a] \leftarrow S_2
           end
      end
```

- a state S in DS is an accepting state of DFA if a state in S is an accepting state of NFA
- the start state of DFA is ε -closure($\{s_0\}$)

Converting a NFA into a DFA (Example)

Converting a NFA into a DFA (Example – cont.)

 S_0 is the start state of DFA since 0 is a member of $S_0 = \{0,1,2,4,7\}$ S_1 is an accepting state of DFA since 8 is a member of $S_1 = \{1,2,3,4,6,7,8\}$

