

ESP8266

Une puce magique pour le monde connecté ?

Rolf Ziegler, Oct. 2016

Agenda

- 1. Circuit ESP8266, contenu, brochage, boot
- 2. Logiciels de programmation
- 3. Programmer ESP avec IDE Arduino
- 4. Modes sans fil (WIFI) ??
- 5. Fonctions de base WIFI (Arduino ESP)
- 6. Exemple pratique
- 7. Futur circuit ESP32
- 8. Q&R

1.1 Circuit ESP8266

*Le chip a 12 GPIO (+ 6 utilisés par la mémoire)

** Max 16MBits Flash

1.2 Circuit ESP8266

- Espressif Systems (Shanghai) Pte. Ltd.
 - 32 pin Ultra Low Power
 - WIFI 2.4GHz b,g,n WPA/WPA2
 - 80/160Mhz (pll)
 - 32 bits RTOS inclus (pas visible)
 - 80% de la puissance disponible (non wifi)
 - MAC Interface Analog receive receive Registers SDIO Digital baseband CPU SPI Analog transmit transmit Sequencers **GPIO** Accelerator 12C PLL SRAM PMU PMU Crystal Bias circuits ~36k

- Home Appliances
- Home Automation
- Smart Plug and lights
- Mesh Network
- Industrial Wireless Control
- Baby Monitors
- IP Cameras
- Sensor Networks
- Wearable Electronics

- Flash externe: 512b-16Mb ARM Core: Tensilica LX106

ESP8266 Schéma

1.3 connexion de ESP8266

* GPIO connectés à la mémoire flash

- Reset (High=run, Low=reset)
- ADC
- CH PD, Enable (High=on, Low=off)
- GPIO16/D0/USER/WEAK
- GPIO14/D5/SPI-SCK
- GPIO12/D6/MISO
- GPIO13/D7/MOSI

- GPIO1/D10 TX0
- GPIO3/D9 RX0
- GPIO5 /D1/SCL(I2C)
- GPIO4 /D2/SDA(I2C)
- GPIO0/D3/FLASH
- GPIO2/D4
- GPIO15/D8/TX2/SPI-CS

Si 6 pins en bas, elles sont connectées au SPI interne / en parallèle sur la mémoire

ESP8266 boot mode

ESP-01 Connection Diagram

- Pour le mode normal,
 - GPIO15 est tenu à « 0 » par une résistance de 10k
 - GPIO 0 et GPIO 2 sont tenus à « 1 » par 10kOhm
- Mode Flash(par UART) GPIO0 est mis à 0 (Bouton,...)
- Seul avec une carte SD, GPIO2 doit être mise à 0 au démarrage (boot from SD card)

2. Logiciel de programmation

- Binary loader
- C code (linux)*
- Commandes AT
- Langage LUA**
- C code (Arduino)

^{*} a charger avec « binary loader »
**acronyme « love you always »

3. Programmer ESP avec IDE Arduino

 Un plug-in permet de faire l'extension Arduino-ESP8266, il suffit d'ajouter:

http://arduino.esp8266.com/stable/package_esp8266com_index.json (40MB)

Débuter avec NodeMCU

- -Grille 2.54
- -Régulateur plus puissant
- -Interface USB

- •De nombreuses **librairies** peuvent être ajoutée dans Arduino permettant le développement à partir d'exemples
- •Avec l'extension, les cartes sont alors visibles dans tools sous Arduino
- •Moyennant un interface USB (Node MCU/D1 ou avec FTDI) on peut alors flasher le ESP directement depuis l'environnement Arduino

FSP8266 Modules Generic ESP8266 Module Generic ESP8285 Module ESPDuino (ESP-13 Module) Adafruit HUZZAH ESP8266 ESPresso Lite 1.0 ESPresso Lite 2.0 Phoenix 1.0 Phoenix 2.0 NodeMCU 0.9 (ESP-12 Module) NodeMCU 1.0 (ESP-12E Module) Olimex MOD-WIFI-ESP8266(-DEV) SparkFun ESP8266 Thing SparkFun ESP8266 Thing Dev SweetPea ESP-210 WeMos D1 R2 & mini WeMos D1(Retired) ESPino (ESP-12 Module) ThaiEasyElec's ESPino WifInfo Core Development Module

3.1 Exemples Arduino

```
EEPROM
// lcd.init(EPSON);
  lcd.contrast(cont);
                             ESP8266
  Serial.println("LCD
                             ESP8266AVRISP
  lcd.clear(RED); //
                             ESP8266HTTPClient
// lcd.printLogo();
  testPattern(); // P
                             ESP8266httpUpdate
                                                         > een
  lcd.on();
                             ESP8266HTTPUpdateServer
                             ESP8266mDNS
#ifdef TESTLCDIO
                             ESP8266SSDP
// test data lines wit
while (1)
                             ESP8266WebServer
                             ESP8266WiFi
                                                               HTTPSRequest
    GPIO REG WRITE (GPI
                             ESP8266WiFiMesh
                                                               NTPClient
 delay(2);
    GPIO REG WRITE (GPI
                             Ethernet(esp8266)
                                                               WiFiAccessPoint
 delay(1);
                             GSM
                                                               WiFiClient
                                                               WiFiClientBasic
                             Hash
#endif
                             HC05-master
                                                               WiFiClientEvents
  Serial hegin/115200)
                             i2c t3-master
                                                               WiFiMulti
```

4. Modes sans fil (WIFI) ?? AP, SoftAP, STA

Niveau Connexion (Wifi)

const char* ssid = « MICRONET";
const char* password = « 1234";
WiFi.begin(ssid, pass);

Niveau Protocol (HTML, TCP, UDP)

Udp.begin(inPort)
Udp.read(buf,size);

••••

Niveau Périphérie I2C/I2S SPI UART GPIO

STA

SOFTAP

1

Client

12C/12S

SPI

UART

AP(server)

STA

4.1Modes WIFI

Connexion point-point sans PWD Ex: robot télécommandé

Connexion sur AP, puis requête du réseau. Ex. Horloge/Display Météo

Connexion point-point sans PWD puis Station sur AP

Connexion sur AP et répond aux requêtes du réseau Les clients de l'AP peuvent se connecter sur le server

https://www.gitbook.com/book/krzychb/esp8266wifi-library/details

- -On met le module ESP en mode « SoftAP » ou « Serveur * »
- -On prépare des fonctions qui seront envoyées au browser appelant
- -On attend un appel
- -Dès l'appel entrant on envoie la page
- -En boucle, on interagit avec l'appelant
- -Les périphériques sont activés selon besoins

On ouvre une instance UDP On se met en mode «SoftAP » ou « Server *» On attend une connexion

- -On lit instructions ou données entrantes
- -On réagit sur SPI/I2C/UART etc
- -On envoie les données vers l'application
- * Mode server par un AP(Routeur)

5.1 Niveau Application

6. Librairie exemple de code

```
#include <ESP8266WiFi.h>
void setup()
 Serial.begin(115200);
 Serial.println();
 WiFi.begin("network-name", "pass-to-network");
 Serial.print("Connecting");
 while (WiFi.status() != WL CONNECTED)
    delay(500);
   Serial.print(".");
 Serial.println();
 Serial.print("Connected, IP address: ");
 Serial.println(WiFi.localIP());
void loop() {}
```


On voit ici la connexion sur un AP
-wifi.begin(....) se connecte sur un AP
connu (SSID et PWD)
-puis attend que la connexion soit

établie avant de continuer ! il manque le code à exécuter après.

7. Future produits ESP3212

- 12-bit SAR ADC 18 canaux
- 2 × convertisseur 8-bit D/A
- 10 × capteurs « touch »
- Capteur de température
- 4 × SPI, 2 × I2S, 2 × I2C, 3 × UART
- 1 host (SD/eMMC/SDIO), 1 slave (SDIO/SPI)
- Interface Ethernet MAC avec DMA dédié et support IEEE 1588
- CAN 2.0
- Interface InfraRouge (TX/RX)
- PWM Moteur, LED PWM up to 16 channels
- Capteur de Hall
- Ultra low power analog pre-amplifier

!!!!! Pas encore supporté dans l'environnement Arduino !!!!
Prix ~ \$7.0

8. Questions/Réponses

Annexe A: Liens

https://nurdspace.nl/ESP8266#Technical Overview

http://benlo.com/esp8266/esp8266QuickStart.html

https://github.com/esp8266

https://github.com/esp8266/Arduino

<u>français</u>

http://easydomoticz.com/forum/viewtopic.php?t=1840

https://www.gitbook.com/book/krzychb/esp8266wifilibrary/details

Annexe B: Consommation

Mode	Min	Typical	Max	Units
802.11b, CCK 1Mbps, POUT=+19.5dBm		215		mA
802.11b, CCK 11Mbps, POUT=+18.5dBm		197		mA
802.11g, OFDM 54Mbps, POUT=+16dBm		145		mA
802.11n, MCS7, POUT =+14dBm		135		mΑ
802.11b, packet size of 1024 bytes, -80dBm		60		mA
802.11b, packet size of 1024 bytes, -70dBm		60		mA
802.11b, packet size of 1024 bytes, -65dBm		62		mA
Standby		0.9		uA
Deep sleep		10		mA
Saving mode DTIM 1		1.2		mA
Saving mode DTIM 3		0.86		mA
Shutdown		0.5		uA

Annexe C: Node MCU Schematic

Annexe D: AT commands

Commands \$	Description \$	Type \$	Set/Execute \$	Inquiry \$	test \$	Parameters \$	Examples \$
AT+RST	restart the module	basic	-	-	-	-	
AT+CWMODE	wifi mode	wifi	AT+CWMODE= <mode></mode>	AT+CWMODE?	AT+CWMODE=?	1= Sta, 2= AP, 3=both	
AT+CWJAP	join the AP	wifi	AT+ CWJAP = < ssid>, < pwd >	AT+ CWJAP?	2	ssid = ssid, pwd - wifi password	
AT+CWLAP	list the AP	wifi	AT+CWLAP				
AT+CWQAP	quit the AP	wifi	AT+CWQAP	-	AT+CWQAP=?		
AT+ CWSAP	set the parameters of AP	wifi	AT+ CWSAP= <ssid>, <pwd>,<chl>, <ecn></ecn></chl></pwd></ssid>	AT+ CWSAP?		ssid, pwd, chl = channel, ecn = encryption	Connect to your router: : AT+CWJAP="YOURSSID", "helloworld"; and check if connected: AT+CWJAP?
AT+ CIPSTATUS	get the connection status	TCP/IP	AT+ CIPSTATUS				
AT+CIPSTART	set up TCP or UDP connection	TCP/IP	1)single connection (+CIPMUX=0) AT+CIPSTART = <type>, <addr>,<port>; 2) multiple connection (+CIPMUX=1) AT+CIPSTART = <id> <type>,<addr>,<port></port></addr></type></id></port></addr></type>	-	AT+CIPSTART=?	id = 0-4, type = TCP/UDP, addr = IP address, port= port	Connect to another TCP server, set multiple connection first: AT+CIPMUX=1; connect: AT+CIPSTART=4,"TCP","X1.X2.X3.X4",9999
AT+CIPSEND	send data	TCP/IP	1)single connection(+CIPMUX=0) AT+CIPSEND= <length>; 2) multiple connection (+CIPMUX=1) AT+CIPSEND= <id>, <length></length></id></length>		AT+CIPSEND=?		send data: AT+CIPSEND=4,15 and then enter the data
AT+CIPCLOSE	close TCP or UDP connection	TCP/IP	AT+CIPCLOSE= <id> or AT+CIPCLOSE</id>		AT+CIPCLOSE=?		
AT+CIFSR	Get IP address	TCP/IP	AT+CIFSR		AT+ CIFSR=?		
AT+ CIPMUX	set mutiple connection	TCP/IP	AT+ CIPMUX= <mode></mode>	AT+ CIPMUX?		0 for single connection 1 for mutiple connection	
AT+ CIPSERVER	set as server	TCP/IP	AT+ CIPSERVER= <mode>[,<port>]</port></mode>			mode 0 to close server mode, mode 1 to open; port = port	turn on as a TCP server: AT+CIPSERVER=1,8888, check the self server IP address: AT+CIPSR=?

Annexe E: ESP3212 block diagram

