```
In [1]:
         import numpy as np
          import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
In [2]:
         train_df=pd.read_csv(r"C:\Users\91903\Downloads\Mobile_Price_Classification_train.csv")
          train df
                                      7
                                                                                                            7
   2.2
              0
                  1
                          0
                                             0.6
                                                       188
                                                                  2 ...
                                                                               20
                                                                                        756 2549
                                                                                                      9
                                                                                                                     1 ^
   0.5
               1
                  0
                          1
                                     53
                                             0.7
                                                       136
                                                                  3 ...
                                                                              905
                                                                                       1988 2631
                                                                                                     17
                                                                                                            3
   0.5
               1
                  2
                                                                                             2603
                          1
                                     41
                                             0.9
                                                       145
                                                                  5 ...
                                                                             1263
                                                                                       1716
                                                                                                            2
   2.5
              0
                  0
                          0
                                     10
                                            8.0
                                                       131
                                                                  6 ...
                                                                             1216
                                                                                       1786 2769
                                                                                                     16
                                                                                                            8
                                                                                                                     1
   1.2
              0
                 13
                          1
                                     44
                                             0.6
                                                       141
                                                                  2 ...
                                                                             1208
                                                                                       1212
                                                                                             1411
                                                                                                      8
                                                                                                            2
                                                        ...
   0.5
                  0
                                      2
                                                       106
                                                                             1222
                                                                                       1890
                                                                                              668
                                                                                                                     1
               1
                          1
                                             8.0
                                                                  6 ...
                                                                                                     13
                                                                                                            4
   2.6
               1
                  0
                          0
                                     39
                                             0.2
                                                       187
                                                                              915
                                                                                       1965 2032
                                                                                                                     1
                                                                  4 ...
                                                                                                     11
                                                                                                           10
                          1
   0.9
               1
                  1
                                     36
                                            0.7
                                                       108
                                                                  8 ...
                                                                              868
                                                                                       1632
                                                                                             3057
                                                                                                            1
                                                                                                      9
                                                                  5 ...
   0.9
              0
                  4
                          1
                                     46
                                            0.1
                                                       145
                                                                              336
                                                                                        670
                                                                                              869
                                                                                                           10
                                                                                                                     1
                                                                                                     18
   2.0
               1
                  5
                          1
                                     45
                                            0.9
                                                       168
                                                                  6 ...
                                                                              483
                                                                                        754 3919
                                                                                                     19
                                                                                                            4
```

In [3]: test_df=pd.read_csv(r"C:\Users\91903\Downloads\Mobile_Price_Classification_test.csv")
 test_df

Out[3]:

	id	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	 рс	px_heig
0	1	1043	1	1.8	1	14	0	5	0.1	193	 16	22
1	2	841	1	0.5	1	4	1	61	0.8	191	 12	74
2	3	1807	1	2.8	0	1	0	27	0.9	186	 4	127
3	4	1546	0	0.5	1	18	1	25	0.5	96	 20	29
4	5	1434	0	1.4	0	11	1	49	0.5	108	 18	74
995	996	1700	1	1.9	0	0	1	54	0.5	170	 17	64
996	997	609	0	1.8	1	0	0	13	0.9	186	 2	11 (
997	998	1185	0	1.4	0	1	1	8	0.5	80	 12	47
998	999	1533	1	0.5	1	0	0	50	0.4	171	 12	:
999	1000	1270	1	0.5	0	4	1	35	0.1	140	 19	4!

1000 rows × 21 columns

In [4]: train_df.info()

int64

RangeIndex: 2000 entries, 0 to 1999 Data columns (total 21 columns): Column Non-Null Count Dtype # ----------0 battery_power 2000 non-null int64 2000 non-null int64 1 blue 2 2000 non-null float64 clock_speed 3 2000 non-null int64 dual sim 4 2000 non-null int64 fc four_g 5 2000 non-null int64 6 int_memory 2000 non-null int64 7 2000 non-null float64 m dep 8 2000 non-null mobile wt int64 9 n cores 2000 non-null int64 2000 non-null 10 int64 рс 2000 non-null int64 11 px_height 12 px width 2000 non-null int64 13 ram 2000 non-null int64 14 sc_h 2000 non-null int64 15 sc_w 2000 non-null int64 16 talk_time 2000 non-null int64 17 three g 2000 non-null int64 18 touch_screen 2000 non-null int64 19 wifi 2000 non-null int64

<class 'pandas.core.frame.DataFrame'>

20 price_range 2000 non-null dtypes: float64(2), int64(19)

memory usage: 328.2 KB

In [5]: test_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype				
0	id	1000 non-null	int64				
1	battery_power	1000 non-null	int64				
2	blue	1000 non-null	int64				
3	clock_speed	1000 non-null	float64				
4	dual_sim	1000 non-null	int64				
5	fc	1000 non-null	int64				
6	four <u>g</u>	1000 non-null	int64				
7	int_memory	1000 non-null	int64				
8	m_dep	1000 non-null	float64				
9	mobile_wt	1000 non-null	int64				
10	n_cores	1000 non-null	int64				
11	рс	1000 non-null	int64				
12	px_height	1000 non-null	int64				
13	px_width	1000 non-null	int64				
14	ram	1000 non-null	int64				
15	sc_h	1000 non-null	int64				
16	SC_W	1000 non-null	int64				
17	talk_time	1000 non-null	int64				
18	three <u>g</u>	1000 non-null	int64				
19	touch_screen	1000 non-null	int64				
20	wifi	1000 non-null	int64				
dtyp	es: float64(2),	int64(19)					
memo	ry usage: 164.2	КВ					

```
In [6]: x=train_df.drop('dual_sim',axis=1)
        y=train_df['dual_sim']
In [7]: x=test_df.drop('dual_sim',axis=1)
        y=test_df['dual_sim']
In [8]: train_df['blue'].value_counts()
Out[8]: blue
             1010
        0
              990
        1
        Name: count, dtype: int64
In [9]: |test_df['blue'].value_counts()
Out[9]: blue
        1
             516
        0
             484
        Name: count, dtype: int64
```

```
In [10]: T={"three_g":{'Yes':1,'No':0}}
train_df=train_df.replace(T)
print(train_df)
```

	battery_		blue	clock	_speed			four		nt_memo		
0		842	0		2.2		0 1		0		7 \	
1		1021	1		0.5		1 0		1		53	
2		563	1		0.5		1 2		1		41	
3		615	1		2.5		0		0		10	
4		1821	1		1.2	(0 13		1		44	
• • •					• • •	• •		•	• •	•	• •	
1995		794	1		0.5		1 0		1		2	
1996		1965	1		2.6		1 0		0		39	
1997		1911	0		0.9		1 1		1		36	
1998		1512	0		0.9		9 4		1		46	
1999		510	1		2.0		1 5		1		45	
	m_dep m	obile_	wt n	cores		px_height	px \	width	ram	sc h	SC_W	
0	_ 0.6		88	2		20	. –	756	2549	_	_ 7	\
1	0.7	1	36	3		905		1988	2631	17	3	
2	0.9		45	5		1263		1716	2603		2	
3	0.8		31	6		1216		1786	2769		8	
4	0.6		41	2		1208		1212	1411	8	2	
1995	0.8	1	06	6		1222		1890	668	13	4	
1996	0.2	1	87	4		915		1965	2032	11	10	
1997	0.7	1	08	8		868		1632	3057	9	1	
1998	0.1	1	45	5		336		670	869	18	10	
1999	0.9	1	68	6	• • •	483		754	3919	19	4	
	talk tim	e thr	ee_g	touch	screen	wifi p	rice ı	range				
0	_	.9	0	coucii_	0		. 100	1				
1		7	1		1			2				
2		, 9	1		1			2				
3	1	.1	1		0	_		2				
4		.5	1		1			1				
1995		• .9	1		1	0		0				
1996		.6	1		1			2				
1997	_	5	1		1			3				
1998	1	.9	1		1			0				
1999		2	1		1			3				
±222		-	_		_	-		,				

[2000 rows x 21 columns]

```
In [11]: T={"three_g":{'Yes':1,'No':0}}
          test_df=test_df.replace(T)
          print(test df)
                 id
                      battery_power
                                      blue clock_speed dual_sim fc
                                                                        four_g
                                                                                  int_memory
          0
                                1043
                                                     1.8
                                                                                            5
                  1
                                         1
                                                                  1
                                                                     14
                                                                               0
          1
                   2
                                         1
                                                     0.5
                                                                      4
                                                                               1
                                                                                           61
                                 841
                                                                  1
          2
                   3
                                1807
                                         1
                                                     2.8
                                                                  0
                                                                      1
                                                                               0
                                                                                           27
          3
                   4
                                                                                           25
                               1546
                                         0
                                                     0.5
                                                                  1
                                                                     18
                                                                               1
          4
                   5
                                                                     11
                                                                                           49
                               1434
                                         0
                                                     1.4
                                                                  0
                                                                               1
          995
                 996
                                1700
                                         1
                                                     1.9
                                                                  0
                                                                      0
                                                                               1
                                                                                           54
          996
                 997
                                609
                                                                      0
                                                                               0
                                                                                           13
                                                     1.8
                                                                  1
          997
                998
                               1185
                                         0
                                                     1.4
                                                                  0
                                                                      1
                                                                               1
                                                                                            8
          998
                                                                                           50
                999
                               1533
                                                     0.5
                                                                  1
                                                                      0
                                                                               0
                                         1
          999
               1000
                               1270
                                         1
                                                     0.5
                                                                  0
                                                                      4
                                                                               1
                                                                                           35
               m dep
                      mobile_wt ...
                                        pc px_height px_width
                                                                         sc_h
                                                                    ram
                                                                                SC W
          0
                             193 ...
                                                   226
                                                             1412
                                                                                   7
                 0.1
                                        16
                                                                   3476
                                                                            12
                                                                                       \
                 0.8
                                        12
                                                   746
                                                              857
                                                                   3895
                                                                                   0
          1
                             191
                                                                             6
          2
                 0.9
                              186
                                         4
                                                  1270
                                                             1366 2396
                                                                            17
                                                                                  10
                                  . . .
          3
                 0.5
                                                   295
                                                             1752 3893
                              96
                                        20
                                                                            10
                                                                                   0
                                  . . .
          4
                                                   749
                 0.5
                             108
                                                              810
                                                                   1773
                                                                            15
                                                                                   8
                                   . . .
                                        18
                              . . .
                                                                    . . .
                                                                           . . .
                                                                                  . . .
          995
                 0.5
                             170
                                   . . .
                                        17
                                                   644
                                                              913
                                                                   2121
                                                                            14
                                                                                   8
          996
                 0.9
                             186
                                         2
                                                  1152
                                                             1632
                                                                   1933
                                                                             8
                                   . . .
                                                                                   1
          997
                 0.5
                              80
                                                   477
                                                              825
                                                                   1223
                                                                             5
                                                                                   0
                                        12
          998
                 0.4
                              171
                                        12
                                                    38
                                                              832 2509
                                                                            15
                                                                                  11
          999
                 0.1
                             140
                                        19
                                                   457
                                                              608 2828
                                                                             9
                                                                                   2
                                  . . .
               talk_time
                           three_g touch_screen
                                                    wifi
          0
                        2
                                  0
                                                       0
                        7
          1
                                  1
                                                 0
                                                       0
          2
                       10
                                  0
                                                 1
                                                       1
          3
                        7
                                  1
                                                 1
                                                       0
          4
                        7
                                                 0
                                  1
                                                       1
          995
                       15
                                  1
                                                 1
                                                       0
          996
                       19
                                  0
                                                       1
                                                 1
          997
                       14
                                  1
                                                 0
                                                       0
          998
                                                       0
                        6
                                  0
                                                 1
          999
                        3
                                  1
                                                       1
          [1000 rows x 21 columns]
In [12]: x=train df.drop('dual sim',axis=1)
          y=train_df['dual_sim']
In [13]: x=test_df.drop('dual_sim',axis=1)
          y=test_df['dual_sim']
In [14]:
          from sklearn.model selection import train test split
          x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.7,random_state=42)
          x_train.shape,x_test.shape
Out[14]: ((700, 20), (300, 20))
```

```
from sklearn.ensemble import RandomForestClassifier
In [15]:
         rfc=RandomForestClassifier()
         rfc.fit(x train,y train)
Out[15]:
         ▼ RandomForestClassifier
         RandomForestClassifier()
In [16]: rf=RandomForestClassifier()
In [17]: params={'max_depth':[2,3,5,10,20],
                'min_samples_leaf':[5,10,20,50,100,200],
                'n_estimators':[10,25,30,50,100,200]}
In [18]: from sklearn.model selection import GridSearchCV
         grid search=GridSearchCV(estimator=rf,param grid=params,cv=2,scoring='accuracy')
         grid search.fit(x train,y train)
Out[18]:
                      GridSearchCV
          ▶ estimator: RandomForestClassifier
               ▶ RandomForestClassifier
In [19]: |grid_search.best_score_
Out[19]: 0.5557142857142857
In [20]: rf_best=grid_search.best_estimator_
         print(rf_best)
         RandomForestClassifier(max_depth=10, min_samples_leaf=100, n_estimators=50)
In [21]: from sklearn.tree import plot tree
         plt.figure(figsize=(80,40))
         plot_tree(rf_best.estimators_[5],feature_names=x.columns,class_names=['Yes','No'],filled=True)
                                                        sc w <= 5.5
                                                         aini = 0.5
                                                      samples = 451
                                                    value = [349, 351]
                                                         class = No
                                 clock speed <= 1.15
                                                                          gini = 0.489
                                      gini = 0.494
                                                                        samples = 186
                                    samples = 265
                                                                      value = [164, 122]
                                  value = [185, 229]
                                                                          class = Yes
                                       class = No
                    gini = 0.499
                                                        gini = 0.482
                  samples = 103
                                                      samples = 162
                                                    value = [107, 157]
                  value = [78, 72]
                     class = Yes
                                                         class = No
```

```
In [22]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
         plot tree(rf best.estimators [7],feature names=x.columns,class names=['Yes','No'],filled=True)
                                              ram <= 2363.5
                                                gini = 0.499
                                               samples = 441
                                             value = [338, 362]
                                                 class = No
                        m dep <= 0.55
                                                                  clock speed <= 1.45
                         gini = 0.497
                                                                       gini = 0.486
                        samples = 236
                                                                     samples = 205
                      value = [206, 178]
                                                                   value = [132, 184]
                          class = Yes
                                                                       class = No
               gini = 0.49
                                                           gini = 0.465
                                      gini = 0.5
                                                                                  gini = 0.498
             samples = 124
                                   samples = 112
                                                          samples = 102
                                                                                 samples = 103
            value = [118, 89]
                                   value = [88, 89]
                                                         value = [60, 103]
                                                                                value = [72, 81]
               class = Yes
                                      class = No
                                                            class = No
                                                                                   class = No
In [23]: rf best.feature importances
Out[23]: array([0.12286626, 0.09142475, 0.00586085, 0.06149513, 0.01066389,
                         , 0.04010012, 0.02808771, 0.03794905, 0.03386686,
                0.09825591, 0.05813986, 0.08247401, 0.0836773 , 0.06694268,
                0.10615992, 0.02096128, 0.
                                                , 0.04493514, 0.0061393 ])
```

```
In [24]: imp_df=pd.DataFrame({'Varname':x_train.columns,"Imp":rf_best.feature_importances_})
imp_df.sort_values(by="Imp",ascending=False)
```

Out[24]:

	Varname	Imp
0	id	0.122866
15	sc_w	0.106160
10	рс	0.098256
1	battery_power	0.091425
13	ram	0.083677
12	px_width	0.082474
14	sc_h	0.066943
3	clock_speed	0.061495
11	px_height	0.058140
18	touch_screen	0.044935
6	int_memory	0.040100
8	mobile_wt	0.037949
9	n_cores	0.033867
7	m_dep	0.028088
16	talk_time	0.020961
4	fc	0.010664
19	wifi	0.006139
2	blue	0.005861
5	four_g	0.000000
17	three_g	0.000000

In []: