Business cycle facts Real Business Cycle (RBC) model

Applied Macroeconomics

Marcin Bielecki

University of Warsaw Faculty of Economic Sciences

Academic Year 2017/2018

- ▶ Between 1947 and 2017 per capita US GDP grew on average at around 2% annually
- ▶ There is substantial variation in GDP growth rate over time
- Recessions and expansions differ in size, length and frequency
- We would like to separate the trend (growth theory) from cycle (business cycle theory)

Trend vs cycle: exponential trend

Trend vs cycle: exponential trend

Trend vs cycle: Hodrick-Prescott filter

Trend vs cycle: Hodrick-Prescott filter

Trend vs cycle: Christiano-Fitzgerald filter

Trend vs cycle

- ▶ Most often used filter is the Hodrick-Prescott filter
- Christiano-Fitzgerald filter exhibits similar dynamics,
 but the cyclical component is "smooth" better for visualization

Business cycle facts: USA 1948Q1-2018Q1

Business cycle facts: USA 1948Q1-2018Q1

- ▶ Consumption is coincident, procyclical and less volatile than output
- ▶ Investment is coincident, procyclical and more volatile than output
- ▶ Price level can be procyclical or countercyclical
- ▶ Productivity and TFP are both procyclical and leading output
- ▶ Hours are just as volatile as output with a 1-2 quarters lag
- ▶ Real wage is procyclical when price level is countercyclical and countercyclical when price level is procyclical
- ► Capital stock is procyclical, mildly volatile and lags output
- ► Real interest rates are acyclical and the least volatile

 There are potentially large errors in this measurement of r

Business cycle facts: USA 1948Q1-2018Q1

		Std. Dev.	Rel. S. D.	Corr. w. y	Autocorr.
Output	У	1.60	1.00	1.00	0.85
Consumption	С	0.86	0.54	0.76	0.83
Investment	i	4.54	2.83	0.79	0.87
Capital	k	0.57	0.36	0.36	0.97
Hours	h	1.60	1.00	0.81	0.90
Wages	W	0.84	0.52	0.10	0.65
Interest rate	r	0.39	0.25	-0.01	0.40
TFP	Z	1.00	0.62	0.67	0.71
Productivity	$\frac{y}{h}$	1.30	0.81	0.51	0.65
Price level	P	0.89	0.55	-0.15	0.91

DSGE models

- Dynamic Stochastic General Equilibrium (DSGE) models aim to replicate business cycle behavior of real-world economies
 - Dynamic: forward-looking behavior of agents
 - Stochastic: the economy is subject to shocks
 - ▶ GE: what happens in one market influences other markets
- ▶ We can generate quantitative predictions on short-term movements of macroeconomic variables and compare them with the data
- We use those models to
 - Simulate counterfactual scenarios
 - Explain past developments (historical decomposition)
 - Construct forecasts (conditional and uncoditional)
 - Perform policy experiments
- ▶ Very active research on the frontier, but well established methods

Method

- All DSGE models are microfounded
- Usual setup
 - Households maximize utility subject to budget constraint
 - Firms maximize profits subject to technology
 - Markets clear
- ▶ Derive first order conditions for optimum
- Solve the system
- Check for stability
- Set parameters (calibration or estimation)
- Evaluate model's empirical performance
- ▶ Use the model to perform analyses of your choice

Dynare

- Set of instructions for Matlab (commercial) and GNU Octave (open source)
- ▶ Open source software under active development
- ▶ Solves, estimates, simulates DSGE models
- ► Good documentation, many example models available, active user forum with answers from developers

Basic Real Business Cycle model

- Ramsey model with endogenous labor supply and stochastic "technology" shocks
- Closed economy with no government
- ► Perfect competition
- ▶ Single final good with price normalized to 1 all other prices are real
- ▶ Two groups of representative agents
 - Households
 - Firms
- Rational expectations agents make no systematic forecast errors
- Despite simplicity and "unrealistic" assumptions, surprisingly good empirical performance

Households' problem

A representative household solves expected utility maximization problem

$$\max \quad U_0 = E_0 \left[\sum_{t=0}^{\infty} \beta^t \left(\log c_t + \phi \log \left(1 - h_t \right) \right) \right]$$
 subject to
$$a_{t+1} + c_t = \left(1 + r_t \right) a_t + w_t h_t + div_t$$

where

- β discount factor
- c per capita consumption
- ϕ relative preference for leisure
- per capita hours (as fraction of total available time)
- a per capita assets (physical capital)
- r real interest rate
- w real wage per hour
- div per capita dividends

Households' solution I

Lagrangian

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^t E_0 \left[\log c_t + \phi \log \left(1 - h_t \right) \right]$$

$$+ \sum_{t=0}^{\infty} \beta^t E_0 \left[\lambda_t \left[\left(1 + r_t \right) a_t + w_t h_t + div_t - a_{t+1} - c_t \right] \right]$$

First Order Conditions

$$\frac{\partial \mathcal{L}}{\partial c_{t}} = \beta^{t} E_{0} \left[\frac{1}{c_{t}} \right] - \beta^{t} E_{0} \left[\lambda_{t} \right] = 0 \qquad \rightarrow \qquad \lambda_{t} = \frac{1}{c_{t}}$$

$$\frac{\partial \mathcal{L}}{\partial h_{t}} = \beta^{t} \cdot E_{0} \left[-\frac{\phi}{1 - h_{t}} \right] + \beta^{t} E_{0} \left[\lambda_{t} w_{t} \right] = 0 \qquad \rightarrow \qquad \lambda_{t} = \frac{\phi}{w_{t} \left(1 - h_{t} \right)}$$

$$\frac{\partial \mathcal{L}}{\partial a_{t+1}} = -E_{0} \left[\lambda_{t} \right] + \beta E_{0} \left[\lambda_{t+1} \left(1 + r_{t+1} \right) \right] = 0$$

$$\rightarrow \qquad \lambda_{t} = \beta E_{t} \left[\lambda_{t+1} \left(1 + r_{t+1} \right) \right]$$

Households' solution II

First Order Conditions

$$c_{t} : \lambda_{t} = \frac{1}{c_{t}}$$

$$h_{t} : \lambda_{t} = \frac{\phi}{w_{t} (1 - h_{t})}$$

$$a_{t+1} : \lambda_{t} = \beta E_{t} [\lambda_{t+1} (1 + r_{t+1})]$$

Resulting

$$\begin{array}{lll} \text{Intertemporal condition} & (c+a) & : & \dfrac{1}{c_t} = \beta \mathsf{E}_t \left[\dfrac{1}{c_{t+1}} \left(1 + r_{t+1} \right) \right] \\ \\ \text{Intratemporal condition} & (c+h) & : & \dfrac{1}{c_t} = \dfrac{\phi}{w_t \left(1 - h_t \right)} \\ \\ & \longrightarrow & h_t = 1 - \phi \dfrac{c_t}{w_t} \end{array}$$

Firms' problem

A representative firm solves profit (dividend) maximization problem

$$\begin{array}{ll} \max & \textit{div}_t = y_t - r_t^k k_t - w_t h_t \\ \text{subject to} & y_t = z_t k_t^\alpha h_t^{1-\alpha} \\ & r_t^k = r_t + \delta \end{array}$$

where

div	per capita dividends
y	per capita output
r^k	capital rental rate
k	per capita physical capital stock
W	real wage per hour
h	per capita hours (as fraction of total available time)
Z	stochastic total factor productivity (TFP) level
α	physical capital share in output
r	real interest rate
δ	physical capital depreciation rate

Firms' solution

Rewritten problem

$$\max \quad div_t = z_t k_t^{\alpha} h_t^{1-\alpha} - (r_t + \delta) k_t - w_t h_t$$

First Order Conditions

$$\frac{\partial div_t}{\partial k_t} = \alpha z_t k_t^{\alpha - 1} h_t^{1 - \alpha} - (r_t + \delta) = 0 \quad \longrightarrow \quad r_t = \alpha z_t k_t^{\alpha - 1} h_t^{1 - \alpha} - \delta$$

$$\frac{\partial div_t}{\partial h_t} = (1 - \alpha) z_t k_t^{\alpha} h_t^{-\alpha} - w_t = 0 \quad \longrightarrow \quad w_t = (1 - \alpha) z_t k_t^{\alpha} h_t^{-\alpha}$$

Alternative expressions for factor prices

$$r_t = \alpha \frac{y_t}{k_t} - \delta$$

$$w_t = (1 - \alpha) \frac{y_t}{h_t}$$

Due to perfect competition economic profits equal zero

$$div_t = y_t - r_t^k k_t - w_t h_t = y_t - \alpha \frac{y_t}{k_t} \cdot k_t - (1 - \alpha) \frac{y_t}{h_t} \cdot h_t = 0$$

General equilibrium

Capital market clears

$$a_t = k_t$$

Households' budget constraint can be written as resource constraint

$$a_{t+1} + c_t = (1 + r_t) a_t + w_t h_t + div_t$$

$$k_{t+1} + c_t = \left(1 + \alpha \frac{y_t}{k_t} - \delta\right) k_t + (1 - \alpha) \frac{y_t}{h_t} \cdot h_t + 0$$

$$k_{t+1} + c_t = \alpha y_t + (1 - \delta) k_t + (1 - \alpha) y_t$$

$$k_{t+1} + c_t = y_t + (1 - \delta) k_t$$

If we define investment

$$i_t = k_{t+1} - (1 - \delta) k_t$$

We can rewrite the resource constraint as the GDP accounting equation

$$y_t = c_t + i_t$$

Stochastic total factor productivity

TFP evolves according to an AR(1) process (in logs)

$$\log z_t = \rho_z \log z_{t-1} + \varepsilon_t$$

where $ho_z < 1$ regulates shock persistence and arepsilon is zero-mean white noise

It is often assumed that $arepsilon \sim \mathcal{N}\left(0,\sigma_{z}^{2}\right)$

In the absence of shocks $\log z \rightarrow 0$ and $z \rightarrow 1$

In Dynare one can define shock variance in the following manner

```
shocks;
var epsilon = sigma_z^2;
end;
```

Full set of equilibrium conditions

System of 8 equations and 8 unknowns: $\{y, c, i, k, h, w, r, z\}$

Euler equation :
$$\frac{1}{c_t} = \beta E_t \left[\frac{1}{c_{t+1}} \left(1 + r_{t+1} \right) \right]$$
 (1)

Consumption-hours choice :
$$h_t = 1 - \phi \frac{c_t}{W_t}$$
 (2)

Production function :
$$y_t = z_t k_t^{\alpha} h_t^{1-\alpha}$$
 (3)

Real interest rate :
$$r_t = \alpha \frac{y_t}{k_t} - \delta$$
 (4)

Real hourly wage :
$$w_t = (1 - \alpha) \frac{y_t}{h_t}$$
 (5)

Investment :
$$i_t = k_{t+1} - (1 - \delta) k_t$$
 (6)

Output accounting :
$$y_t = c_t + i_t$$
 (7)

TFP AR(1) process :
$$\log z_t = \rho_z \log z_{t-1} + \varepsilon_t$$
 (8)

The first equation can also be written as $1 = \beta E_t \left[\frac{c_t}{c_{t+1}} (1 + r_{t+1}) \right]$ but not as $E_t \left[c_{t+1} \right] = \beta E_t \left[c_t (1 + r_{t+1}) \right]$

Equilibrium conditions in Dynare

```
model;
1 = \beta E_t \left[ c_t / c_{t+1} \left( 1 + r_{t+1} \right) \right]
                                 1 = beta * c/c(+1) * (1+r(+1)):
      h_t = 1 - \phi c_t / w_t
                                  h = 1 - phi * c/w;
      v_t = z_t k_t^{\alpha} h_t^{1-\alpha}
                                   y = z * k^alpha * h^(1-alpha);
      r_t = \alpha v_t / k_t - \delta
                            r = alpha * y/k - delta;
     w_t = (1 - \alpha) y_t / h_t
                               w = (1-alpha) * y/h;
   i_t = k_{t+1} - (1 - \delta) k_t
                              i = k(+1) - (1-delta)*k:
        y_t = c_t + i_t
                               y = c + i;
                                   log(z) = rho*log(z(-1)) + epsilon;
  \log z_t = \rho \log z_{t-1} + \varepsilon_t
                                   end:
```

Note that we did not have to specify the expectation operator in eq. 1 Dynare automatically applies E on both sides of equations Important rule: **never break the expectation operator**

Steady state: closed form solution

Start with the Euler equation

$$\frac{1}{c} = \beta \frac{1}{c} (1+r) \longrightarrow r = \frac{1}{\beta} - 1$$

From the interest rate equation obtain the k/h ratio

$$r = \alpha k^{\alpha - 1} h^{1 - \alpha} - \delta \longrightarrow \frac{k}{h} = \left(\frac{\alpha}{r + \delta}\right)^{\frac{1}{1 - \alpha}}$$

From the production function obtain the y/h ratio and use it to get wage

$$y = k^{\alpha} h^{1-\alpha} \longrightarrow \frac{y}{h} = \left(\frac{k}{h}\right)^{\alpha}$$
 and $w = (1-\alpha)\frac{y}{h}$

From investment and output accounting equations obtain the c/h ratio

$$i = \delta k \longrightarrow y = c + \delta k \longrightarrow \frac{c}{h} = \frac{y}{h} - \delta \frac{k}{h}$$

Get h from the consumption-hours choice. The rest follows from h

$$h = 1 - \phi \frac{c}{w} \longrightarrow 1 = \frac{1}{h} - \phi \frac{c}{h} \frac{1}{w} \longrightarrow h = 1/\left[1 + \phi \frac{c}{h} \frac{1}{w}\right]$$

Steady state in Dynare

```
steady_state_model;
      z=1 z=1;
   k/h = \left(\frac{\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}} k_h = (alpha/(r+delta))^(1/(1-alpha));
  y/h = (k/h)^{\alpha}  y_h = k_h^{\alpha};
 w = (1 - \alpha) y/h w = (1-alpha) * y_h;
c/h = v/h - \delta k/h c h = y h - delta * k h;
h = 1/[1 + \phi c/h/w] h = 1 / (1 + phi * c h / w);
    k = k/h \cdot h  k = k_h * h;
    c = c/h \cdot h  c = c h * h;
   y = y/h \cdot h y = y_h * h;
    i = y - c  i = y - c;
                    end;
```

Transition dynamics

- Our model is a system of non-linear difference equations
- ► There exist no closed form solutions for the transitional dynamics except for few very special (and uninteresting) cases
- ▶ We can solve quite easily an approximated version of the system
 - (log-)linearize by hand
 - ▶ let Dynare compute *n*-th order Taylor expansion
- Solving the DSGE model involves transforming the forward looking system into a VAR (backward looking) system
 - Many good methods: Blanchard-Kahn, Klein, Sims, etc.
- Dynare does that for you: stoch_simul;
- ▶ This is possible thanks to the Rational Expectations assumption

Dynare .mod file structure

- Preamble
 - endogenous variables: var y c i k h w r z;
 - exogenous variables: varexo epsilon;
 - parameters:

```
parameters alpha beta delta phi rho_z sigma_z;
```

- Model equations: model; ... end;
- Steady state equations or initial values
 - steady state: steady_state_model; ... end;
 - initial values: initval; ... end;
- ▶ Shocks: shocks; ... end;
- Computation

Dynare computation commands

- steady; solves the steady state of the model and displays it
- ▶ check; checks if the system has one unique solution
- stoch_simul; does a number of operations
 - performs n-th order approximation of the model
 - computes transition dynamics functions
 - calculates various statistics of model variables
 - mean and variance
 - correlation with other variables
 - autocorrelation
 - shock variance decomposition
 - plots impulse response functions
- estimation; estimates model parameters

Parameters

- We need to specify parameter values
 - ▶ tell Dynare the parameter values, e.g. alpha = 0.33;
- ▶ There is a variety of approaches on how to obtain those values
- ► Two most widely used are
 - Calibration picking parameter values to fit certain long-run (average) features of data. For example, we might want to pick the parameters so that the model's investment share in GDP matches the average share in the data
 - Estimation Dynare allows us to easily run a Bayesian estimation procedure on real data. It still needs as an input prior estimates of parameter values and their confidence intervals, which makes the calibration exercise very useful
- Most models in recent papers are estimated
- Today's toy model is calibrated

Parameter values

The following parameter values are standard in the literature

	Value justification	Mean	Conf. int.
α	Capital income share of GDP	0.33	± 0.05
β	From average real interest rate	0.99	± 0.005
δ	From investment share of GDP	0.025	± 0.05
ϕ	Work for $1/3$ of time endowment	1.75	± 0.05
ρ_{z}	Coefficient in TFP AR(1) regression	0.97	± 0.02
σ_{z}	Error term in TFP AR(1) regression	0.007	± 0.005

I am going to use $ho_z=0.9622$ from our estimation and $\sigma_z=0.00853$ to match the standard deviation of output in the data

Dynare conventions

- ► Notation: always end all lines with a semicolon; there are only a few exceptions to this rule
- ▶ **Timing**: Dynare uses end of period convention for stock variables If you have equation like $k_{t+1} = i_t + (1 \delta) k_t$, you can either
 - Write it as k(+1) = i + (1-delta)*k; and in the preamble declare predetermined_variables k;
 - Write it as k = i + (1-delta)*k(-1); and everywhere else replace k with k(-1)
- ► The reason for that is that Dynare treats variables without lead or lag as variables that can change in the current time period
- ▶ In this case the level of k_t was decided in period t-1!

Model evaluation

- Usually we match the behavior of model variables to real-world variables at quarterly (sometimes monthly, rarely annual) frequency
- ▶ To compare models with data we use
 - Moment matching
 - Impulse response functions matching
- ► Today we will use moment matching

Model impulse response functions

Percent deviations from steady state values (for r percentage points)

Model vs data comparison

		Std. Dev.		Corr. w. y		Autocorr.	
		Data	Model	Data	Model	Data	Model
Output	у	1.60	1.60	1.00	1.00	0.85	0.72
Consumption	С	0.86	0.57	0.76	0.92	0.83	0.80
Investment	i	4.54	5.14	0.79	0.99	0.87	0.71
Capital	k	0.57	0.46	0.36	0.08	0.97	0.96
Hours	h	1.60	0.73	0.81	0.98	0.90	0.71
Wage	W	0.84	0.73	0.10	0.99	0.65	0.75
Interest rate	r	0.39	0.06	-0.01	0.96	0.40	0.71
TFP	Z	1.00	1.15	0.67	1.00	0.71	0.72
Productivity	$\frac{y}{h}$	1.30	0.95	0.51	0.99	0.65	0.75

Model vs data comparison: consumption

Model vs data comparison: investment

Model vs data comparison: hours

Model vs data comparison

- ▶ Model performance is quite good it was a big surprise in the 1980s!
- ▶ There are some problems with it though
 - In the data, hours are just as volatile as output
 - In the model, hours are less than half as volatile as output
 - ▶ In the data, real wage can be either pro- or countercyclical
 - In the model, real wage is strongly procyclical
 - ▶ In the data TFP and productivity are mildly correlated with output
 - ▶ In the model both are 1:1 correlated with output
- ▶ These results suggest that
 - ▶ We need to focus more on labor market
 - should improve behavior of hours and real wage
 - Need some room for nominal variables
 - More shocks than just TFP are needed
- ▶ This is what we are going to do over the next lectures