MoskaliovYV 30112024-110328

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.1	0.539	162.8	5.450	72.5	0.055	56.8	0.269	-44.5

Требуется выбрать согласованный аттенюатор с минимальным затуханием, подключения которого будет docmamoчнo, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 1.3 дБ, подключённый к плечу 2;
- 2) аттенюатор с затуханием 0 дБ, подключённый к плечу 2;
- 3) аттенюатор с затуханием 0.9 дБ, подключённый к плечу 1;
- 4) аттенюатор с затуханием 1.9 дБ, подключённый к плечу 1.

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -15.6$ дБ.

Ко входу этой цепи подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью 7.2 дБм.

Какая мощность рассеивается внутри цепи коррекции?

- 1) 0.2 mB_T
- 2) 0.1 mBT
- 3) 1.9 mBT
- 4) 5.1 mBT

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11}=0.39\text{-}0.49\mathrm{i}.$

Найти модуль (в дБ) коэффициента передачи s_{21} .

- 1) -0.6 дБ
- 2) -1.6 дБ
- 3) -4.3 дБ
- 4) -2.2 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.322	-156.3	13.493	93.2	0.037	68.9	0.353	-56.5
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
8.0	0.480	114.2	1.631	14.9	0.231	28.8	0.087	138.9

Выбрать Γ -образный четырёхполюсник (см. рисунок 1), который может обеспечить согласование со стороны плеча 2 на частоте 5.5 $\Gamma\Gamma$ ц.

Рисунок 1 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\rm h}=3.7$ ГГц и $f_{\rm b}=4.1$ ГГц, используя рисунок 2.

Рисунок 2 – Частотная характеристика усиления

- 1) 0.5 дБ
- 2) 0.7 дБ
- 3) 1.3 дБ
- 4) 1 дБ

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 3) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 3 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 4 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) а 2) b 3) с 4) d

Рисунок 4 – Различные реализаци и Г-образной цепи согласования