

Principles of Compiler Construction

Prof. Wen-jun LI

School of Computer Science and Engineering Inslwj@mail.sysu.edu.cn

Lecture 3. Lexical Analysis

- Introduction
- 2. Scanner Construction
- 3. Lexical Specification
- 4. Finite Automata
- 5. Transformation and Equivalence
- 6. Limits of Regular Languages
- 7. Lexical Analysis in Practice

1. Introduction

Software Architecture: Pipes and Filters

Structure of a Scanner

Implicit lexical rules

Specific to some predefined language.

Structure of a Scanner (cont')

Explicit lexical rules (interpretation model)

No hard-coding of language-specific code.

Structure of a Scanner (cont')

Explicit lexical rules (compilation model)

Input Buffering

- Most runtime of the front end of a compiler is spent on scanning.
 - But the most time consuming stage is optimization.
- Buffer Pairs
 - 2-buffer scheme: each buffer is of size N.
 - Avoid overwriting: |lexeme| + |lookaheads| ≤ N

Output Tokens

- 5 kinds for most modern programming languages
 - Identifiers: getBalance, weight, ...
 - Reserved words: IF, ELSE, WHILE, ...
 - Constants: 10, 3.14, -1.26E-5, 'a', "abc", ...
 - Operators: +, -, *, /, <<, ...
 - Punctuation: (,), ;, :, ...
- Output
 - A Pair of <kind, associatedAttributeValues>
 - Some values are pointers to the symbol table.
 - Symbol (string) table
 - Array, LinkedList, HashSet, TreeSet, ...

Interaction with Parser

- Aim at reducing passes
- 2 levels of abstraction
 - Logically
 - A pipe through which tokens are transferred.
 - Physically
 - A disk file of the token sequence
 - Concurrent threads or co-routines
 - Method invocation

2. Scanner Construction

- Definition of lexical rules: 3 equivalent notations
 - Expressions
 - Regular expression
 - Regular definition
 - Grammars
 - Regular grammar
 - Left/right linear grammar
 - Finite automata
 - Deterministic Finite Automata (DFA)
 - Nondeterministic Finite Automata (NFA)

Begin with Formal Specification

- Specification of tokens
 - Regular definition
 - Hierarchical and brief, suitable for humans.
 - Then transferred to regular expressions.
 - Then transferred to finite automata.
 - Regular grammar
 - Compliant with the spec. of syntax rules.
 - Then transferred to finite automata.
- Transferring finite automata
 - NFA → DFA → Reduced DFA
 - Suitable for implementation on a machine.

Steps of Construction

Programming a Scanner

- Implicit transition diagram
 - A manual approach
 - State transitions are hard-coded in the program.
- Explicit transition diagram
 - A table-driven approach
 - No hard-coding of specific lexical rules
 - Lead to automatic scanner generation.

3. Lexical Specification

- Regular Expression
- Regular Definition
- Regular Grammar
- Transformation and Equivalence

Regular Expression

- Regular expression: constructively defined
 - Basis:
 - \circ ε is a regular expr; $L(ε) = {ε}$.
 - \circ **a** is a regular expr if $a \in \Sigma$; $L(a) = \{a\}$.
 - Induction: if r and s are regular expressions,
 - o **r** | **s** is a regular expr; $L(\mathbf{r} \mid \mathbf{s}) = L(\mathbf{r}) \cup L(\mathbf{s})$.
 - o $\mathbf{r} \mathbf{s}$ is a regular expr; $L(\mathbf{r} \mathbf{s}) = L(\mathbf{r}) L(\mathbf{s})$.
 - \circ **r*** is a regular expr; $L(\mathbf{r}^*) = (L(\mathbf{r}))^*$.
 - o (r) is a regular expr; L((r)) = L(r).
 - Extensions:

$$o r^{+} = r r^{*} = r^{*} r$$
 $r^{*} = r^{+} | \epsilon$

$$\circ \mathbf{r}^? = \mathbf{r} \mid \varepsilon$$

Regular Expression Language

- Regular expression: a language
 - Syntax
 - o a (a | b) b
 - o a (a | b)*
 - Semantics
 - o {aab, abb}
 - {a, aa, ab, aaa, aab, aba, abb, ...}
- Language is an alternative approach to problem solving.

Discussions

- Signature of an operator
 - true: → bool
 - +: int × int → int
 - +: real × real → real (overloading)
- What is the signature of the semantic function L in the previous slides?
 - Syntactic category
 - Semantic category
 - Mapping

Alphabet: Lexical vs. Syntax

- o Both scanner and parser are based over an alphabet Σ .
- o But the meaning (elements) of Σ is quite different.
 - Scanner: elements in Σ are characters in source programs.
 - o ASCII, EBCDIC, Unicode, ...
 - Parser: elements in Σ are tokens generated and passed by the scanner.

Algebraic Laws for Regular Expressions

Discussion: what does it mean that two regular expressions are equivalent?

Binding to Practice

Identifiers in Pascal

```
(a | b | ... | z | A | B | ... | Z) ( (a | b | ... | z | A | B | ... | Z) | (0 | 1 | ... | 9) )*
```

Hard to read and write

Regular Definition

- o In the form of
 - \bullet d₁ \rightarrow r₁
 - $d_2 \rightarrow r_2$
 - . . .
 - \bullet $d_n \rightarrow r_n$
 - o where $d_i \notin \Sigma \land (d_i = d_j \Rightarrow i = j)$, and
 - o r_i is a regular expr over $\Sigma \cup \{d_1, d_2, ..., d_{i-1}\}$

Binding to Practice

- Identifiers in Pascal (extended)
 - letter_ → A | B | ... | Z | a | b | ... | z | _
 - digit → 0 | 1 | ... | 9
 - id → letter_ (letter_ | digit)*
- Real numbers in Pascal
 - digit \rightarrow 0 | 1 | ... | 9
 - digits → digit digit*
 - optionalFraction \rightarrow . digits | ϵ
 - optionalExponent \rightarrow (E (+ | | ε) digits) | ε
 - real → digits optionalFraction optionalExponent
- Hierarchical representation of regular expression

Binding to Practice (cont')

- Writing a regular definition with extended operators
 - digit \rightarrow [0–9]
 - digits → digit⁺
 - real → digits (. digits)? (E [+-]? digits)?

Note the difference between '-' and '-'

Transforming between Regular Definitions and Regular Expressions

- Regular definition → regular expression
 - Top-down, stepwise substitution
 - Discussion: does the substitution process always terminate?
- Regular expression → regular definition
 - Simply add a new symbol and "→".
- Equivalence
 - Defined by the language they denote
 - Bi-direction

Transforming Regular Definitions to Regular Grammars

- Difficulties arise from the closure operator
 - Transform to a left/right recursive production.
- In regular definition
 - id → letter (letter | digit)*
- Introduce a right part
 - id → letter rid
 - rid \rightarrow rid (letter | digit) | ϵ (not permitted in Grammar) that is, rid \rightarrow rid letter | rid digit | ϵ
 - or right-linear, rid \rightarrow letter rid | digit rid | ϵ

Class 3 Grammars

- Right Linear (Regular) Grammar
 - A \rightarrow aB or A \rightarrow a, where A, B \in N \land a \in $\Sigma \cup \{\epsilon\}$.
- Left Linear Grammar
 - A \rightarrow Ba or A \rightarrow a, where A, B \in N \land a \in $\Sigma \cup \{\epsilon\}$.
- Extended Forms
 - Right Linear (Regular) Grammar $A \rightarrow \alpha B$ or $A \rightarrow \alpha$, where $A, B \in N \land \alpha \in \Sigma^*$.
 - Left Linear Grammar $A \rightarrow B\alpha$ or $A \rightarrow \alpha$, where $A, B \in N \land \alpha \in \Sigma^*$.

4. Finite Automata

- 3 types of finite automata
 - DFA (Deterministic Finite Automata)
 - NFA (Nondeterministic Finite Automata)
 - ε-NFA (Nondeterministic Finite Automata with empty transitions)
- Languages defined by a finite automaton
- Representation of finite automata
 - For humans: Transition Diagrams
 - For computers/machines: Transition Tables

Formal Definition

- \circ A finite automaton is a 5-tuple: M = (Σ , S, Δ , s₀, F), where
 - Σ is the input alphabet.
 - S $\cap \Sigma = \emptyset$ is a **finite** set of states.
 - A is a transition function.
 - $s_n \in S$ is the start (initial) state.
 - F ⊆ S is a set of final (accepting) states.
- \circ DFA, NFA, and ε -NFA only differ in
 - For a DFA,
 - For an NFA,

$$\delta: S \times \Sigma \to S$$

$$\delta: S \times \Sigma \rightarrow 2^S$$

• For an
$$\varepsilon$$
-NFA, δ : $S \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^S$

Language Defined by an FA

- Overloading the transition function
 - For any $a \in \Sigma$, $s \in S$ and $\omega \in \Sigma^*$,
 - $\circ \delta (s, \varepsilon) = s$
 - $\circ \delta (s, \omega a) = \delta (\delta (s, \omega), a)$
- Given a finite automaton M,
 - L(M) = $\{\omega \mid \omega \in \Sigma^* \land \exists s \in F. \ \delta(s_0, \omega) = s\}$

Transition Diagrams

Graphical representation of FA

Commonly Used in Practice

Description of the state transition of a

stateful object

- UML (Unified Modeling Language)
 - De facto standard for object-oriented modeling and design.
 - Statechart of a class.

Internal Representation

- Transition table
 - Rows
 - \circ DFA, NFA, and ε-NFA: State S
 - Columns
 - \circ DFA and NFA: Alphabet Σ
 - o ε-NFA: $\Sigma \cup \{\epsilon\}$
 - Cells
 - DFA: an element of S
 - NFA and ε-NFA: a subset of S
- That is why NFA & ε-NFA are not suitable for implementation.

5. Transformation and Equivalence

- Regular Grammar to ε-NFA
- Regular Expression to ε-NFA
- \circ Determination (of ε -NFA)
- Reduction (of DFA)

Regular Grammar to ε-NFA

- Algorithm
 - Add a new final state f
 - For any $a \in \Sigma \cup \{\epsilon\}$ and A, B \in N,
 - o If A → a where a ∈ $\Sigma \cup \{\epsilon\}$, let δ (A, a) = f
 - o If A \rightarrow aB, let δ (A, a) = B

An Example

Given a regular grammar

$$A \rightarrow 0 \mid 0B \mid 1D$$

$$B \rightarrow 0D \mid 1C$$

$$C \rightarrow 0 \mid 0B \mid 1D$$

$$D \rightarrow 0D \mid 1D$$

We have an equivalent ε-NFA

Regular Expression to ε-NFA

- Thompson's construction (McNaughton-Yamada-Thompson algorithm)
 - A constructive approach corresponding with the constructive definition of regular expressions
 - Basis:

• Induction:

- r = s | t2 new states4 new ε transitions
- o r = s t
 No new states
 or transitions

r = s*2 new states4 new ε transitions

An Example

- Given regular expression
 - (a | b)*abb
- We have
 - a | b
 - (a | b)*

ε-NFA to DFA

- Both 2 approaches are applied
 - Subset construction
 - ε-closure construction
- Subset
 - A state in the new DFA corresponds to a subset of states in the original NFA.
- o ε-closure
 - The empty transition does not consume any input.

An Example

A = $\{0\}$, B = $\{1, 2\}$, C = $\{3, 4, 5, 6, 8, 11\}$ D = $\{9, 10, 11, 5, 6, 8\}$, E = $\{7, 10, 11, 5, 6, 8\}$

Calculate the ε-closure

- \circ Let ε-closure($\{0\}$) = $\{0\}$ = A, then
 - $\delta(A, 1) = \epsilon$ -closure({1}) = {1, 2} = B
 - δ (B, 0) = ϵ -closure({3}) = {3, 4, 5, 6, 8, 11} = C
 - δ (C, 0) = ϵ -closure({9}) = {5, 6, 8, 9, 10, 11} = D
 - δ (C, 1) = ε -closure({7}) = {5, 6, 7, 8, 10, 11} = E
 - δ (D, 0) = ϵ -closure({9}) = D
 - δ (D, 1) = ϵ -closure({7}) = E
 - δ (E, 0) = ϵ -closure({9}) = D
 - δ (E, 1) = ϵ -closure({7}) = E

Reduction of DFA

- Find out equivalent classes of states
 - Approach 1:
 - Use a table to represent the equivalent relationship
 - Only a triangle is needed.
 - Approach 2:
 - Use partitions of the set of states

An Example

More Example

- \circ {1, 2, 4, 5, 6, 7, 8} {3} (final and non-final, that is from ε)
- {1, 4, 5, 6, 7} {2, 8} {3} (from 1 to final and non-final)
- {1, 5, 7} {4, 6} {2, 8} {3} (from 0 to final and non-final)
- {1, 5} {7} {4, 6} {2, 8} {3} (from 0 to state {2, 8} and {7}){1, 5} {7} {4, 6} {2, 8} {3} (or from 1 to state {6} and {5})
- No difference found, terminate.

6. Limits of Regular Languages

- Regular languages are not able to handle infinite counting and matching
 - e.g. $\{a^n b c^n \mid n \ge 1 \}$ is NOT a regular set.
- The matching of parentheses in most programming languages
 - Can not be described by regular expressions
 - Can not be generated by regular grammars
 - Can not be recognized by finite automata

7. Lexical Analysis in Practice

- Scanner in practice: trained in our labtime
 - Construct a scanner manually
 - Define the lexical rules
 - Construct a finite automaton
 - Write a scanner based on the blueprint of the finite automaton
 - Construct a scanner with a scanner generator
 - lex, Flex, and JFlex

String Processing

- Regular expression is a common way to describe a pattern in a string.
 - Trade-off and consequence in the implementation of regular expressions
 - Recognizing with an NFA
 - Regular expression to DFA directly

 Give the recognized tokens of the following program in Pascal.

```
function max(i, j: integer): integer;
{return the maximum of integers i and j}
begin
  if i > j then max := i else max := j
end;
```

- (DBv2, Ch.3, pp.125, ex.3.3.2) Describe the languages denoted by the following regular expressions:
 - a (a | b)* a
 - a* b a* b a* b a*

- (DBv2, Ch.3, pp.125, ex.3.3.4) Most Languages are case sensitive, so keywords can be written only one way, and the regular expressions describing their lexemes are very simple.
- However, some languages, like Pascal and SQL, are case insensitive. For example, the SQL keyword SELECT can also be written select, Select, or sELEcT.
- Show how to write a regular expression for a keyword in a case insensitive language. Illustrate your idea by writing the expression for SELECT in SQL.

- Given the following regular expression $1^*(0 \mid 01)^*$
 - (1) Transform it to an equivalent finite automaton.
 - (2) Construct an equivalent DFA for the result of exercise (1).
 - (3) Reduce the result of (2) and get a reduced DFA.

Exercise 3.5**

- Given the alphabet Σ = { z, o, / }, a comment in a program over Σ begins with "/o" and ends with "o/". Embedded comments are not permitted.
 - (1) Draw a DFA that recognizes nothing but all the comments in the source programs.
 - (2) Write a single regular expression that exactly describes all the comments in the source programs.

Further Reading

- Dragon Book, 2nd Edition (DBv2)
 - Comprehensive reading:
 - Section 2.6 and 3.1–3.2 for introduction to scanner.
 - Section 3.3 for regular expressions and regular definitions.
 - Section 3.6–3.7, 3.9.6 for finite automata and related transformation.
 - Skip reading:
 - Section 3.4–3.5 and 3.8 for scanner generator.
 - Section 3.9.1–3.9.5 for regular expressions directly to DFAs.

Enjoy the Course!

