Counting Distinct Elements

Streaming Statistics

Applications

How many distinct people visit the website?

 How many different Web pages does each customer request in a week?

How many distinct products have we sold in the last week?

Counting Distinct Elements

Problem:

- Data stream consists of a universe of elements chosen from a set of size N
- Maintain a count of the number of distinct elements seen so far

What can we do?

Using Small Storage

- Approach with enough space:
 - Maintain the set of elements seen so far
 - E.g. keep a hash table of all the distinct elements seen so far
- Real problem: What if we do not have space to maintain the set of elements seen so far?

- Same philosophy as previous:
 - Estimate the count in an unbiased way
 - Accept that the count may have a little error, but limit the probability that the error is large

Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least log₂ N bits
- For each stream element a, let r(a) be the number of trailing 0s in h(a)
 - **r(a)** = position of first 1 counting from the right
 - E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
- Record R = the maximum r(a) seen
 - $R = max_a r(a)$, over all the items a seen so far
- Estimated number of distinct elements = 2^{R}

Why It Works: Intuition

- Rough and heuristic intuition:
 - h(a) hashes a with equal prob. to any of N values
 - Then h(a) is a sequence of log₂ N bits,
 where 2^{-r} fraction of all as have a tail of r zeros
 - About 50% of **a**s hash to *****0**
 - About 25% of as hash to **00
 - So, if we saw the longest tail of r=2 (i.e., item hash ending *100) then we have probably seen
 about 4 distinct items so far
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r

Why It Works: More formally

- What is the probability that a given h(a) ends in at least r zeros?
 - h(a) hashes elements uniformly at random
 - Probability that a random number ends in at least r zeros is 2^{-r}
- Then, the probability of **NOT** seeing a tail of length at least <u>r</u> among <u>m</u> elements:

Why It Works: More formally

- Note: $(1-2^{-r})^m = (1-2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}$
- Prob. of NOT finding a tail of length r is:

 - If $m << 2^r$, then prob. tends to 1 $(1-2^{-r})^m \approx e^{-m2^{-r}} = 1$ as $m/2^r \rightarrow 0$
 - So, the probability of finding a tail of length r tends to 0
 - If $m >> 2^r$, then prob. tends to 0
 - $(1-2^{-r})^m \approx e^{-m2^{-r}} = 0$ as $m/2^r \to \infty$
 - So, the probability of finding a tail of length r tends to 1
- Thus, 2^R will almost always be around m!

Issues to fix

- The estimation is biased
 - Estimated with $2^R/\Phi$, where $\Phi = 0.77351$ is a correction factor.
- Problems of high variance. Improve accuracy.
 - Use many hash functions with samples of R
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians

Further Readings

- Flajolet, Philippe; Fusy, Éric; Gandouet, Olivier; Meunier, Frédéric (2007). "Hyperloglog: The analysis of a near-optimal cardinality estimation algorithm". Discrete Mathematics and Theoretical Computer Science proceedings. Nancy, France. AH: 127–146.
- Kane, Daniel M.; Nelson, Jelani; Woodruff, David P. (2010). "An optimal algorithm for the distinct elements problem", Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems of data PODS '10. p. 41.

Computing Moments

Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values (say 1 to N)
- Let m_i be the number of times item i occurs in the stream
- The kth moment is

$$\sum_{i\in A} (m_i)^k$$

Special Cases

$$\sum_{i\in\mathcal{A}}(m_i)^k$$

- Othmoment = number of distinct elements (Flajolet-Martin)
- 1st moment = count of the numbers of elements
- 2nd moment = a measure of how uneven the distribution is (denoted as *S*)
 - E.g. Stream of length 100, 11 distinct values
 - Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9 S = 910
 - Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, S = 8,110

AMS(Alon-Matias-Szegedy) Method

- Gives an unbiased estimate for the 2^{nd} moment $S = \sum_i m_i^2$ by keeping track of just one variable X:
 - *X.el* corresponds to a item *i*
 - Pick some random time t(t < n) to start, equally likely in a stream of length n
 - If at time t the stream have item i, we set X.e/=i
 - X.val corresponds to the **count** of the chosen item i
 - Count c(X.val = c), the number of item i starting from the chosen time t

AMS(Alon-Matias-Szegedy) Method

• The estimate of the 2nd moment $(\sum_i m_i^2)$ is:

$$f(X) = n(2 \cdot c - 1)$$

- Note, we will keep track of multiple Xs, $(X_1, X_2, \cdots X_k)$ and our final estimate will be $S = 1/k \sum_{i}^{k} f(X_i)$
- Let's prove $\mathbf{E}[f(\mathbf{X})] = \sum_i (m_i)^2 = S$

Expectation Analysis

seen

- c_t ··· number of times item at time t appears from time t to n ($c_1 = m_a$, $c_2 = m_a 1$, $c_3 = m_b$)
- $E[f(X)] = \frac{1}{n} \sum_{t=1}^n n(2c_t 1)$ $m_i \dots$ total count of item i in the stream

Expectation Analysis

- $E[f(X)] = \frac{1}{n} \sum_{i} n (1 + 3 + 5 + \dots + 2m_i 1)$
 - calculation: $(1+3+5+\cdots+2m_i-1)=\sum_{i=1}^{m_i}(2i-1)=2\frac{m_i(m_i+1)}{2}-m_i=(m_i)^2$
- Then $\mathbf{E}[f(\mathbf{X})] = \frac{1}{n} \sum_{i} n (m_i)^2 = S$
- We have the second moment (in expectation)!

Higher-Order Moments

- For estimating kth moment we essentially use the same algorithm but change the estimate:
 - For k=2 we used $n(2\cdot c 1)$ (where c=X.val)
 - For **k=3**, can you try to find out what we use?
 - $n(3\cdot c^2 3c + 1)$

• Why?

- For k=2: Remember we had $(1+3+5+\cdots+2m_i-1)$ and we showed terms 2c-1 (for $c=1,\cdots,m$) sum to m^2
 - $\sum_{c=1}^{m} 2c 1 = \sum_{c=1}^{m} c^2 \sum_{c=1}^{m} (c-1)^2 = m^2$
 - So: $2c 1 = c^2 (c 1)^2$
- For k=3: $c^3 (c-1)^3 = 3c^2 3c + 1$
- Generally: Estimate = $n(c^k (c-1)^k)$

Combining Samples

In practice:

- Compute f(X) = n(2c 1) for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages

• Problem: Streams never end

- We assumed there was a number n, the number of positions in the stream
- But real streams go on forever, so *n* is a variable – the number of inputs seen so far

Streams Never End: Fixups

- (1) The variables X have n as a factor keep n separately; just hold the count in X
- (2) Suppose we can only store k counts. We must throw some Xs out as time goes on:
- Objective: Each starting time t is selected with probability k/n
- Solution: (fixed-size sampling)
 - Choose the first k times for k variables
 - When the n^{th} element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables **X** out, with equal probability

Summary of Streaming Algorithms

- Queries
 - Filtering a data stream
 - Queries over a sliding window
 - Estimating statistics
- Key techniques
 - Hashing functions
 - Approximation with sketch/summarization
 - Theoretical analysis