Probability and Statistics (EPRST)

Lecture 5

Transformations of random variables

Let X - a random variable, and $g:\mathbb{R} \to \mathbb{R}$ - a function. We can define a new random variable Y=g(X) by

$$Y(\omega) = g(X(\omega)), \ \omega \in \Omega.$$

We will show in a few examples how to determine the distribution of the new random variable Y (knowing the distribution of X and the function g).

Example

Suppose the distribution of X is given by

$$\mathbb{P}(X = -1) = \mathbb{P}(X = 1) = \frac{1}{4}, \ \mathbb{P}(X = 0) = \frac{1}{2}.$$

Find the distribution of $Y = X^2$.

L05 3 / 1

Example

Let $X \sim geom(p)$, and Y = X - 1. What is the distribution of Y?

L05 4 / 12

Example

Let $X \sim \mathit{U}(-5,5)$. Find the distribution of $Y = \mathit{sign}(X)$, where

$$sign(x) = \begin{cases} -1, & x < 0, \\ 0, & x = 0, \\ 1, & x > 0. \end{cases}$$

L05 5 / 1:

Example

Say $X \sim \mathit{U}(0,1)$. What is the distribution of $Y = X^2$? Is it still uniform?

L05 6 / 1

Example

Let $X \sim \mathcal{N}(0,1)$. What is the distribution of $Y = X^2$?

L05 7 / 1:

Expectation

Definition

The expected value (the expectation or mean) of a random variable X is a number (denoted $\mathbb{E}X$) given by

$$\mathbb{E}X = \begin{cases} \sum_{x_i \in S} x_i \mathbb{P}(X = x_i), & \text{if } X \text{ is a discrete random variable,} \\ \int_{\mathbb{R}} x \cdot f(x) dx, & \text{if } X \text{ is continous random variable} \end{cases}$$

(S denotes the set of values of X in the discrete case, and f stands for the density in the continuous case).

The expectation is well-defined if the series (or the integral) are absolutely convergent. If $X \geq 0$ (that is, $\mathbb{P}(X \geq 0) = 1$), then if the series (or the integral) diverge to ∞ - then we define $\mathbb{E}X := \infty$.

8 / 1

The expectation - some examples

Example

- If $\mathbb{P}(X=-1)=0.2$, $\mathbb{P}(X=0)=0.4$, $\mathbb{P}(X=1)=0.4$, then $\mathbb{E}X=$
- If $\mathbb{P}(X=-1)=0.4$, $\mathbb{P}(X=0)=0.2$, $\mathbb{P}(X=1)=0.4$, then $\mathbb{E}X=$
- If $\mathbb{P}(X = -1) = 0.2$, $\mathbb{P}(X = 0) = 0.4$, $\mathbb{P}(X = 100) = 0.4$, then $\mathbb{E}X =$

Example

Compute the mean of $X \sim \mathcal{U}[0,1]$.

_05

The expectation - some examples

The expected value is not always finite:

Example

Let $\mathbb{P}(X=k)=c/k^2$ for $k\in\mathbb{N}$. What is the value of c? Does $\mathbb{E}X$ exist?

The expected value does not always exist:

Example

Let X - a random variable with a Cauchy distribution, that is, with the density

$$f(x) = \frac{1}{\pi(1+x^2)}, \quad x \in \mathbb{R}.$$

Does EX exist?

L05

The expectation - some properties

- $\mathbb{E}c = c$ for every $c \in \mathbb{R}$,
- $\mathbb{E}(c \cdot X) = c \cdot \mathbb{E}X$ for every $c \in \mathbb{R}$,
- $\mathbb{E}(X_1 + \ldots + X_n) = \mathbb{E}X_1 + \ldots + \mathbb{E}X_n$
- if X > 0, then $\mathbb{E}X > 0$.

In particular, for all $a, b \in \mathbb{R}$

$$\mathbb{E}(aX+b)=a\mathbb{E}X+b.$$

L05 11 / 1

The expectations of some important distributions

- if $X \sim \min(n, p)$, then $\mathbb{E}X = ?$,
- if $X \sim \text{geom}(p)$, then $\mathbb{E}X = ?$,
- if $X \sim \text{Poiss}(\lambda)$, then $\mathbb{E}X = ?$,
- if $X \sim \mathrm{U}(a,b)$, then $\mathbb{E}X = ?$,
- if $X \sim \operatorname{Exp}(\lambda)$, then $\mathbb{E}X = ?$,
- if $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\mathbb{E}X = ?$

L05 12 / :