Alguns integrais impróprios

•
$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \frac{1}{\alpha - 1}$$
, se $\alpha > 1$ (divergente se $\alpha \le 1$).

•
$$\int_{1}^{+\infty} e^{\alpha x} dx = -\frac{1}{\alpha}$$
, se $\alpha < 0$ (divergente se $\alpha \ge 0$).

•
$$\int_{1}^{+\infty} \frac{1}{1+x^2} \, \mathrm{d}x = \frac{\pi}{2}$$
.

$$\bullet \int_{e}^{+\infty} \frac{1}{x \ln x^2} \, \mathrm{d}x = 1.$$

Aula 21: Propriedades dos Integrais Impróprios

Teorema 7.1. Sejam f e g duas funções definidas em $[a, +\infty[$ e integráveis em [a, t] para todo o $t \ge a$. Se os integrais impróprios $\int_{a}^{+\infty} f(x) dx$ e $\int_{a}^{+\infty} g(x) dx$ forem **convergentes** então, quaisquer $\alpha, \beta \in \mathbb{R}$, o integral impróprio $\int_{a}^{+\infty} (\alpha f(x) + \beta g(x)) dx$ é convergente e $\int_{a}^{+\infty} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{+\infty} f(x) dx + \beta \int_{a}^{+\infty} g(x) dx$.

Obs. 7.3. Se apenas um dos integrais $\int_a^{+\infty} f(x) dx$ ou $\int_a^{+\infty} g(x) dx$ for divergente, então $\int_a^{+\infty} (f(x) + g(x)) dx$ é divergente; contudo, se <u>ambos forem divergentes nada se pode concluir sobre a natureza</u> de $\int_{-\infty}^{+\infty} (f(x) + g(x)) dx$

Ex.7.6. $\int_{1}^{+\infty} \frac{1}{x} dx$ e $\int_{1}^{+\infty} -\frac{1}{x} dx$ são divergentes e $\int_{1}^{+\infty} \left(\frac{1}{x} - \frac{1}{x}\right) dx = \int_{1}^{+\infty} 0 dx = 0$ é convergente e $\int_{1}^{+\infty} \left(\frac{1}{x} + \frac{1}{x}\right) dx$ é divergente.

Obs. 7.4. Se $\alpha \neq 0$, então $\int_a^{+\infty} \alpha g(x) dx$ e $\alpha \int_a^{+\infty} g(x) dx$ são da mesma natureza $\int_a^{+\infty} \alpha g(x) dx = \alpha \int_a^{+\infty} g(x) dx$ caso convergen

• Os integrais impróprios $\int_{-\infty}^{b} f(x) dx$ e $\int_{-b}^{+\infty} f(-x) dx$ são da mesma natureza. Em caso de convergência, temos: $\int_{-\infty}^{b} f(x) dx = \int_{-b}^{+\infty} f(-x) dx.$

$$\int_{-\infty}^{b} f(x) dx = \int_{-b}^{+\infty} f(-x) dx.$$

Aula 20: Convergência Absoluta

Um integral impróprio $\int_{a}^{+\infty} f(x) dx$ diz-se **absolutamente convergente** quando o integral impróprio do módulo da função integranda, $\int_{-\infty}^{+\infty} |f(x)| dx$, for convergente.

Teorema 7.3. Seja $f:[a,+\infty[\to\mathbb{R} \ integrável \ em \ [a,t] \ para \ todo \ o \ t\geq a.$ Se o integral impróprio $\int_{-\infty}^{+\infty} |f(x)| dx$ for convergente então $\int_{-\infty}^{+\infty} f(x) dx$ é também convergente.

Resumindo, todo o integral impróprio absolutamente convergente é convergente.

• Se h(x) é limitada e $\int_{-\infty}^{+\infty} |f(x)| dx$ é convergente, então $\int_{-\infty}^{+\infty} h(x)f(x) dx$ é absolutamente convergente. (pelo critério da comparação)

Exemplo 7.9. O integral impróprio $\int_{-\infty}^{-\infty} \frac{\sin x}{x^2} dx$ é absolutamente convergente.

Exercício 7.11 Estude a natureza dos seguintes integrais impróprios:

$$2. \int_{2}^{+\infty} \frac{1}{\sqrt{x^5 + 2x}} \, dx$$

3.
$$\int_0^{+\infty} e^{-2x} \sin \sqrt{x} \, dx$$

2.
$$\int_{2}^{+\infty} \frac{1}{\sqrt{x^5 + 2x}} dx$$
 3. $\int_{0}^{+\infty} e^{-2x} \sin \sqrt{x} dx$ 4. $\int_{0}^{+\infty} \frac{xe^{-x}}{\sqrt{x^2 + x + 1}} dx$ 5. $\int_{1}^{+\infty} \frac{2 + \cos(3x)}{x^2 + 2} dx$

5.
$$\int_{1}^{+\infty} \frac{2 + \cos(3x)}{x^2 + 2} dx$$

$$8. \int_{2}^{+\infty} \frac{x^3 + 1}{x^2(x^2 + 1)} dx \qquad 9. \int_{0}^{+\infty} \frac{\sin^2 x}{x^{\frac{5}{2}}} dx \qquad 10. \int_{5}^{+\infty} \frac{1}{x \ln^3 x} dx \qquad 11. \int_{1}^{+\infty} \frac{x + 1}{\sqrt{x^3}} dx \qquad 13. \int_{1}^{+\infty} \frac{-1}{x^3 + 1} dx.$$

9.
$$\int_0^{+\infty} \frac{\sin^2 x}{x^{\frac{5}{2}}} dx$$

10.
$$\int_{5}^{+\infty} \frac{1}{x \ln^3 x} dx$$

11.
$$\int_{1}^{+\infty} \frac{x+1}{\sqrt{x^3}} dx$$

13.
$$\int_{1}^{+\infty} \frac{-1}{x^3 + 1} dx$$
.

Aula 21: Exercicios 1

Exercício 7.12 Seja
$$f(x) = \begin{cases} m & \text{se } |x| \leq 2 \\ 0 & \text{se } |x| > 2 \end{cases}$$
. Determine $m \in \mathbb{R}$ de modo a que $\int_{-\infty}^{+\infty} f(x) dx = 1$.

Exercício 7.15 Estude a natureza do integral impróprio seguinte, indicando o seu valor em caso de convergência:

$$\int_{-\infty}^{+\infty} \frac{1+x}{1+x^2} \, dx.$$

Exercício 7.16 Considere a função de domínio \mathbb{R} definida por $f(x) = \frac{\arctan(2x)}{1+4x^2}$.

- 1. Determine a família de primitivas $\int f(x) dx$.
- 2. Estude a natureza do integral impróprio $\int_0^{+\infty} f(x) dx$, indicando o seu valor em caso de convergência.

Formulário Derivadas e Primitivas quase imediatas

$$(u^p)' = p u^{p-1} u'$$
 $(\arcsin(u))' = \frac{u'}{\sqrt{1-u^2}}$

$$(\ln u)' = \frac{u'}{u} \qquad (\operatorname{arctg}(u))' = \frac{u'}{1 + u^2}$$

$$(\cos u)' = -u' \operatorname{sen} u$$
 $(\operatorname{sec} u)' = u' \operatorname{sec}(u)\operatorname{tg}(u)$

$$(\operatorname{sen} u)' = u' \operatorname{cos} u$$
 $(\operatorname{cosec} u)' = -u' \operatorname{cosec} (u) \operatorname{cotg} (u)$

$$(\operatorname{tg} u)' = u' \operatorname{sec}^2 u$$
 $(e^u)' = u' e^u$

$$(\cot u)' = -u' \operatorname{cosec}^2 u \ (a^u)' = \frac{u'a^u}{\ln a}, \ a \in \mathbb{R}^+ \setminus \{1\}$$

$$(\operatorname{senh}^{-1}u)' = \frac{u'}{\sqrt{1+u^2}} \quad (uv)' = u'v + uv'$$

$$(\operatorname{tgh} u)' = u' \operatorname{sech}^2 u$$
 $(\operatorname{sech} u)' = -u' \operatorname{sech} u \operatorname{tgh} u$

$$(\operatorname{senh}^{-1}u)' = \frac{u'}{\sqrt{1+u^2}} \qquad (\operatorname{tgh}^{-1}u)' = \frac{u'}{1-u^2}$$

$$\int u' u^p dx = \frac{u^{p+1}}{p+1} + C,$$
$$(p \neq -1)$$

$$\int \frac{u'}{\sqrt{1-u^2}} dx = \arcsin(u) + C$$

$$\int \frac{u'}{u} \, \mathrm{d}x = \ln|u| + C$$

$$\int \frac{u'}{1+u^2} \, \mathrm{d}x = \arctan(u) + C$$

$$\int u' \sin u \, dx = -\cos u + C$$

$$\int u' \sec u \tan u \, dx = \sec u + C$$

$$\int u' \cos u dx = \sin u + C$$

$$\int u' \csc u \cot y dx = -\csc u + C$$

$$\int u' \sec^2 u \, \mathrm{d}x = \tan u + C$$

$$\int u'e^u dx = e^u + C$$

$$\int u' \csc^2 u \, dx = -\cot g u + C$$

$$\int u'a^u \, dx = \frac{a^u}{\ln a} + C, \quad a \in \mathbb{R}^+ \setminus \{1\}$$

$$\int \frac{u'}{\sqrt{1+u^2}} \, \mathrm{d}x = \mathrm{senh}^{-1}u + C$$

$$\int u'v + uv' \, \mathrm{d}x = uv + C$$

$$\int u' \operatorname{sech}^2 u \, \mathrm{d}x = \operatorname{tgh} u + C$$

$$\int u' \operatorname{sech} u \operatorname{tgh} u \, dx = -\operatorname{sech} u + C$$

$$\int \frac{u'}{\sqrt{1+u^2}} dx = \operatorname{senh}^{-1}(u) + C$$

$$\int \frac{u'}{1-u^2} dx = \operatorname{tgh}^{-1} u + C$$

$$\int u' \sec u \, dx = \ln|\sec u + \operatorname{tg} u| + C$$

Transformadas de Laplace

Aula 21: Transformada de Laplace (definição e propriedades)

Seja $f:[0,+\infty[\longrightarrow \mathbb{R}.$ A transformada de Laplace de f é a função $\mathcal{L}\{f\}$ definida por

$$\mathcal{L}\lbrace f(t)\rbrace(s) = \int_0^{+\infty} e^{-st} f(t)dt,$$

para os valores de s em que o integral impróprio é convergente.

Propriedades lineares da transformadas de Laplace:

Prop. 3.1: A transformada de Laplace é uma transf. linear nas funções[†], isto é, se $\alpha \in \mathbb{R}, f, g : [0, +\infty[\longrightarrow \mathbb{R} \text{ e existem } \mathcal{L}\{f\}(s) \text{ para } s > s_f \text{ e } \mathcal{L}\{g\}(s) \text{ para } s > s_g,$ então

- (i) $\mathcal{L}{f+g}(s) = \mathcal{L}{f}(s) + \mathcal{L}{g}(s) \text{ para } s > \max{s_f, s_g}.$
- (i) $\mathcal{L}\{\alpha f\}(s) = \alpha \mathcal{L}\{f\}(s) \text{ para } s > s_f.$

[†] É possível provar que o conjunto das funções seccionalmente contínuas em $[0, +\infty[$ e de ordem exponencial constitui um espaço vectorial real (com a adição e multiplicação por números reais usuais) e que a transformada de Laplace é uma aplicação linear em tal espaço.

1.
$$\mathcal{L}\{1\}(s) = \frac{1}{s}$$
, para $s > 0$. **2.** $g(t) = \begin{cases} 1 & t \neq 2, 3 \\ 0 & t = 2 \\ 6 & t = 3 \end{cases}$, $\mathcal{L}\{g\}(s) = \frac{1}{s}$, $s > 0$.

3.
$$\mathcal{L}\{e^{at}\}(s) = \mathcal{L}\{1\}(s-a) = \frac{1}{s-a}, \text{ para } s > a \quad (a \in \mathbb{R}).$$

4.
$$\mathcal{L}\{t^n\}(s) = \frac{n}{s}\mathcal{L}\{t^{n-1}\}(s) = \frac{n!}{s^{n+1}}, \text{ para } s > 0.$$

5.
$$\mathcal{L}\lbrace sen(at)\rbrace(s) = \frac{a}{s}\mathcal{L}\lbrace cos(at)\rbrace(s) = \frac{a}{s^2+a^2}$$
, para $s>0$ $(a\in\mathbb{R})$.

6.
$$\mathcal{L}\{\cos(at)\}(s) = \frac{1}{s} - \frac{a}{s}\mathcal{L}\{\sin(at)\}(s) = \frac{s}{s^2 + a^2}, \text{ para } s > 0 \quad (a \in \mathbb{R}).$$

7.
$$\mathcal{L}\{c\}(s) = \mathcal{L}\{c\,1\}(s) = c\,\mathcal{L}\{1\}(s) = \frac{c}{s}$$
, para $s > 0$.

8.
$$\mathcal{L}\{\cosh(at)\}(s) = \mathcal{L}\{\frac{e^{at} + e^{-at}}{2}\}(s) = \frac{s}{s^2 - a^2}, \quad \text{para } s > |a| \quad (a \in \mathbb{R}).$$

9.
$$\mathcal{L}\{senh(at)\}(s) = \mathcal{L}\{\frac{e^{at} - e^{-at}}{2}\}(s) = \frac{a}{s^2 - a^2}, \text{ para } s > |a| \ (a \in \mathbb{R}).$$

Aula 21: Exercícios 2

Determine:

1.
$$\mathcal{L}\{sen^2(at)\}(s)$$

2.
$$\mathcal{L}\{\cos^2(at)\}(s)$$

3.
$$\mathcal{L}\{sen^3(at)\}(s)$$

4.
$$\mathcal{L}\{\cos^3(at)\}(s)$$

5.
$$\mathcal{L}\{at^3 + bt^2 + ct + d\}(s)$$

$$sen^2x = \frac{1}{2}(1 - cos(2x))$$

$$\cos^2 x = \frac{1}{2} (1 + \cos(2x))$$

$$sen^3x = \frac{1}{4}(3sen(x) - sen(3x))$$

$$\cos^3 x = \frac{1}{4} (3\cos(x) + \cos(3x))$$