Tanım 6. Cebirsel olmayan elementer fonksiyonlara transandant fonksiyonlar denir.

Örneğin, üstel, logaritma, trigonometrik ve ters trigonometrik fonksiyonlar transandant fonksiyonlardır.

Hiperbolik fonksiyonlar denilen transandant fonksiyonları ayrıca gözden geçireceğiz.

Alıştırmalar (Bölüm 1.13 için)

 Temel elementer fonksiyonların özelliklerini inceleyip, grafiklerini çiziniz (çesitli α ve a için).

grafiklerini çiziniz (çeşitli α ve a için). 2. Temel elementer fonksiyonların grafiğine dayanarak, $y = x^2 + 3$, $y = \sin x - 3$, $y = \sqrt{x} - 1$, , $y = 2^x + 3$, $y = \log x + 2$, $y = \arctan x - 2$ fonksiyonlarının grafiğini ciziniz

 Aşağıdaki bileşik fonksiyonları, temel elementer fonksiyonların superpozisyonu şeklinde gösteriniz.

a)
$$y = a^{\sqrt{x}}$$
; **b)** $y = 3^{\cos x^2}$;
c) $y = \arccos e^{\sqrt{x}}$; **c)** $y = \sin 3^{x^2}$

d)
$$y = \frac{1}{\sqrt[5]{\cot^2 \log x}}$$
; **e)** $y = \log_a \sin^2 x$

 n. dereceden tam rasyonel fonksiyonun çiftliğe sahip olma koşullarını yazınız.

1.14. Hiperbolik Fonksiyonlar

Tanım. $y = \frac{e^x - e^{-x}}{2}$ ve $y = \frac{e^x + e^{-x}}{2}$ eşitlikleriyle tanımlanan

fonksiyonlara, sırasıyla hiperbolik sinüs ve hiperbolik kosinüs fonksiyonları denir ve $\sinh x$, $\cosh x$ şeklinde gösterilir.

$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}.$$
(1)

Tanımdan görüldüğü gibi, $D(\sinh x) = D(\cosh x) = (-\infty, \infty)$, $E(\sinh x) = (-\infty, \infty)$ $E(\cosh x) = [1, \infty)$ ve $\sinh(-x) = -\sinh x$, $\cosh(-x) = \cosh x$ 'dir. Yani, $y = \sinh x$ fonksiyonu tek, $y = \cosh x$ fonksiyonu ise çift fonksiyondur.

(1) eşitliklerinin karesini alıp, taraf tarafa çıkarırsak, $(-\infty,\infty)$ aralığındaki tüm x'ler için sağlanan

$$\cosh^2 x - \sinh^2 x = 1 \tag{2}$$

özdeşliğini buluruz. $\cosh x = u$, $\sinh x = v$ kabul edersek, (2) özdeşliğini $u^2 - v^2 = 1$ şeklinde yazabiliriz. Buradan, x değişkeni $(-\infty,\infty)$ aralığında değiştiğinde $(\cosh x, \sinh x)$ noktasının $u^2 - v^2 = 1$ ikizkenar hiperbolünü çizdiği görülür. Bu nedenle, değerler çifti $u^2 + v^2 = 1$ çemberini çizen dairesel $u = \cos x, v = \sin x$ fonksiyonlarına benzer olarak, değerler çifti $u^2 - v^2 = 1$ ikizkenar hiperbolünü çizen $u = \cosh x, v = \sinh x$ fonksiyonlarına sırasıyla hiperbolik kosinüs ve hiperbolik sinüs adı verilmiştir (Şekil 14). Trigonometrik fonksiyonlara benzer olarak, diğer hiperbolik fonksiyonlar aşağıdaki gibi tanımlanır:

$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \text{yani,} \quad \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \tag{3}$$

$$coth x = \frac{\cosh x}{\sinh x}, \quad \text{yani,} \quad \coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}} \quad (x \neq 0), \tag{4}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \quad \text{yani,} \quad \operatorname{sech} x = \frac{2}{e^x + e^{-x}},$$

$$\operatorname{csch} x = \frac{1}{\sinh x}, \quad \text{yani,} \quad \operatorname{csch} x = \frac{2}{e^x - e^{-x}} \quad (x \neq 0).$$
(6)

$$\operatorname{csch} x = \frac{1}{\sinh x}, \quad \text{yani,} \quad \operatorname{csch} x = \frac{2}{\rho^x - \rho^{-x}} \quad (x \neq 0). \tag{6}$$

Bu fonksiyonların tanımından, $D(\tanh x) = (-\infty, \infty), D(\coth x) =$ $(-\infty,0) \cup (0,\infty)$, $D(\operatorname{sec} h x) = (-\infty,\infty)$, $D(\operatorname{csc} h x) = (-\infty,0) \cup (0,\infty)$ ve E(sech x) = (0,1], $E(\tanh x) = (-1, 1),$ $E(\coth x) = (-\infty, -1) \cup (1, \infty),$ $E(\operatorname{csch} x) = (-\infty, 0) \cup (0, \infty)$ bulunur. $\tanh x$, $\coth x$, $\operatorname{csch} x$ fonksiyonlarının tek, sech x fonksiyonunun ise çift fonksiyon olduğu kolayca belirlenir. Tüm hiperbolik fonksiyonların grafikleri Şekil 15'te verilmiştir.

Hiperbolik fonksiyonların tanımından (2) özdeşliğinin yanısıra aşağıdaki eşitlikler de elde edilebilir:

a) Temel özdeşlikler:

$$\cosh x + \sinh x = e^x$$
, $\tanh x \cdot \coth x = 1$,

$$\cosh x - \sinh x = e^{-x}$$
, $\tanh^2 x + \operatorname{sech}^2 x = 1$,

$$\coth^2 x - \operatorname{csch}^2 x = 1;$$

b) Toplama teoremleri:

 $sinh(x \pm y) = sinh x cosh y \pm sinh y cosh x$,

 $\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y,$

$$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}, \quad \coth(x \pm y) = \frac{1 \pm \coth x \coth y}{\coth x \pm \coth x};$$

c) İki kat argüman formülleri:

 $\sinh 2x = 2\sinh x \cosh x, \cosh 2x = \cosh^2 x + \sinh^2 x,$

$$\tanh 2x = \frac{2\tanh x}{1+\tanh^2 x}, \coth 2x = \frac{1+\coth^2 x}{2\coth x};$$

d) Yarım argüman formülleri:

$$\sinh x = 2\sinh\frac{x}{2}\cosh\frac{x}{2}; \quad \cosh x = \cosh^2\frac{x}{2} + \sinh^2\frac{x}{2},$$

$$tanh x = \frac{2 \tanh \frac{x}{2}}{1 + \tanh^2 \frac{x}{2}}, \quad \coth x = \frac{1 + \cosh^2 \frac{x}{2}}{2 \cosh \frac{x}{2}}.$$

$$\sinh x = \frac{2\tanh\frac{x}{2}}{1-\tanh^2\frac{x}{2}}, \quad \cosh x = \frac{1+\tanh^2\frac{x}{2}}{1-\tanh^2\frac{x}{2}}, \quad \coth x = \frac{1+\tanh^2\frac{x}{2}}{2\tanh\frac{x}{2}}.$$

Şekil 15

Ayrıca, hiperbolik sinüs ve cosinüs fonksiyonları için de'Moivre² formülü olarak bilinen teorem elde edilir.

Teorem 1. $(\sinh x + \cosh x)^n = \sinh nx + \cosh nx$ formülü doğrudur.

 \Box $\sinh x + \cosh x = e^x$ özdeşliğinde x yerine nx konulursa $\sinh nx + \cosh nx = e^{nx}$ elde ederiz. Öte yandan, $(\sinh x + \cosh x)^n = e^{nx}$ olur.

² Abraham de'Moivre (1667 - 1754) - Fransız matematikçisi.

Son eşitliklerin karşılaştırılmasından $(\sinh x + \cosh x)^n = \sinh nx + \cosh nx$ elde edilir. \square

Benzer yolla aşağıdaki teorem de ispatlanır.

Teorem 2. $(\cosh x - \sinh x)^n = \cosh nx - \sinh nx$ formúlú doğrudur.

Alıştırmalar (Bölüm 1.14 için)

Aşağıdaki formüllerin doğruluğunu ispatlayınız.

- $1. \quad \sinh 2x = \frac{2\tanh x}{1-\tanh^2 x}$
- 2. $\sinh 3x = 4 \sinh^3 x + 3 \sinh x = \sinh x (4 \cosh^2 x 1)$.
- 3. $\sinh(n+1)x = 2\cosh x \sinh nx \sinh(n-1)x$.
- 4. $\cosh 2x = \frac{1 + \tanh^2 x}{1 \tanh^2 x}$
- 5. $\cosh 3x = 4 \cosh^3 x 3 \cosh x = \cosh x (4 \sinh^2 x + 1)$.
- 6. $\cosh(n+1)x = 2\cosh x \cosh nx \cosh(n-1)x$.
- 7. $\tanh 2x = \frac{2}{\tanh x + \coth x}$
- 8. $\tanh 3x = \frac{\tanh^3 x + 3\tan x}{3\tanh^2 x + 1}$
- 9. $coth 2x = \frac{\tanh x + \coth x}{2}$

- 10. $\tan \frac{x}{2} = \frac{\sinh x}{\cosh x + 1} = \frac{\cosh x 1}{\sinh x}$
- 11. $\frac{1}{\cosh x + \sinh x} = \cosh x \sinh x$.
- 12. $coth x \pm \tanh y = \frac{\cosh(x \pm y)}{\sinh x \cosh y}$
- 13. $\cosh 2x + \cosh 2y = 2 + 2(\sinh^2 x + \sinh^2 y) = 2(\sinh^2 x + \cosh^2 y)$.
- 14. $\cosh 2x \cosh 2y = 2(\sinh^2 x \sinh^2 y)$.
- 15. $\sinh^2 x \sinh^2 y = \sinh(x + y) \sinh(x y) = \cosh^2 x \cosh^2 y$.
- 16. $\sinh^2 x + \cosh^2 y = \cosh(x + y)\cosh(x y) = \cosh^2 x + \sinh^2 y$.

1.15. Elementer Olmayan Fonksiyonlar

Elementer fonksiyon tanımını sağlamayan fonksiyonlara elementer olmayan fonksiyonlar denir. Bu tür fonksiyonların ilerideki bölümlerde bize gerekli olacağını göz önüne alarak, bunlardan birkaçını gösterelim.

- 1. y = n! fonksiyonu³ (n keyfi doğal sayıdır).
- 2. y = |x| fonksiyonu.

Bu fonksiyon, aslında

$$y = \begin{cases} x, & \text{eğer } x \ge 0 \text{ ise,} \\ -x, & \text{eğer } x < 0 \text{ ise} \end{cases}$$

şeklinde iki eşitlikle de tanımlanır (Şekil 16).

3. Dirichlet fonksiyonu.

Bu fonksiyon

$$D(x) = \begin{cases} 1, & \text{eğer } x & \text{rasyonel ise,} \\ 0, & \text{eğer } x & \text{irrasyonel ise} \end{cases}$$

şeklinde tanımlanır (Bölüm 1.9'a bakınız).

³ n , keyfi doğal sayı olduğunda, $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n$ gibi tanımlanır. 0! = 1 kabul edilir.

NOT: Bu dört sayfalık not Literatür Yayınları arasında çıkan, Prof. Dr. H. Halilov, Prof. Dr. A. Hasanoğlu ve Prof. Dr. M. Cap tarafından hazırlanmış "YÜKSEK MATEMATİK Tek Değişkenli Fonksiyonlar Analizi" kitaptan alınmıştır.