UNISONIC TECHNOLOGIES CO., LTD

LM2940

LINEAR INTEGRATED CIRCUIT

1A LOW-DROPOUT POSITIVE **VOLTAGE REGULATOR**

DESCRIPTION

The UTC LM2940 is a low dropout regulator designed to provide output current up to 1A with a typically 500mV dropout Voltage and a maximum of 1V. It is capable of reducing the ground current when the differential between the input voltage and the output voltage outrun 3V.

UTC LM2940 offers low quiescent current (typically 30mA at 1A and an input-output differential of 5V). Higher quiescent currents only exist when the regulator is in the dropout mode (V_{IN}-V_{OUT}≤3V).

FEATURES

- * 500mV typically dropout at 1A
- * Output current in excess of 1A
- * Low quiescent current
- * Reversed-battery protection
- * Current limit and thermal shutdown.
- * Mirror image insertion protection

TO-263 TO-263-3

TO-220

*Pb-free plating product number: LM2940L

■ ORDERING INFORMATION

Order	Order Number			Assignr	Dooking	
Normal	Lead Free Plating	Package	1	2	3	Packing
LM2940-xx-AA3- R	LM2940L-xx-AA3-R	SOT-223	I	G	0	Tape Reel
LM2940-xx-TA3-T	LM2940L-xx-TA3-T	TO-220	I	G	0	Tube
LM2940-xx-TN3-R	LM2940L-xx-TN3-R	TO-252	I	G	0	Tape Reel
LM2940-xx-TN3-T	LM2940L-xx-TN3-T	TO-252	I	G	0	Tube
LM2940-xx-TQ2-R	LM2940L-xx-TQ2-R	TO-263	I	G	0	Tape Reel
LM2940-xx-TQ2-T	LM2940L-xx-TQ2-T	TO-263	I	G	0	Tube
LM2940-xx-TQ3-R	LM2940L-xx-TQ3-R	TO-263-3	Ī	G	0	Tape Reel
LM2940-xx-TQ3-T	LM2940L-xx-TQ3-T	TO-263-3	I	G	0	Tube

Note: 1.xx: output voltage, refer to Marking Information.

2.Pin Assignment: I: VIN G: GND O: VOUT

- (1) R: Tape Reel, T: Tube
- (2) AA3: SOT-223, TA3: TO-220, TN3: TO-252,

TQ2: TO-263, TQ3: TO-263-3 (3) xx: refer to Marking Information

(4) L: Lead Free Plating, Blank: Pb/Sn

www.unisonic.com.tw 1 of 11

■ MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
SOT-223	10:10V 12:12V 15:15V 50:5V 80:8V 90:9V	LM2940 LEAD PLATING VOLTAGE CODE 1 2 3
TO-220 TO-252 TO-263 TO-263-3		VOLTAGECODE UTC LM2940 D DDDD DATE CODE 1 2 3

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Input Voltage		V_{IN}	26	V
Power Dissipation		P _D Internally limited		
Junction Temperature		T_J	+150	°C
Operating Temperature	TO-220/TO-263-3/TO-263	т	-40 ~ +125	°C
Operating Temperature SOT-223		I _{OPR}	-40 ~ +85	°C
Storage temperature		T _{STG}	-65 ~ + 150	°C

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

(T_a=T_J =25°C, V_{IN}=V_{OUT}+5V, I_{OUT}=1A and C_{OUT}=22 μ F, unless otherwise specified.)

For LM2940-5.0V

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage	V _{OUT}	$6.25V \le V_{IN} \le 26V, 5mA \le I_{OUT} \le 1A$	4.85	5.00	5.15	V
Line Regulation	V_{OUT}	$V_{OUT}+2V \le V_{IN} \le 26V$, $I_{OUT}=5mA$		20	50	mV
Load Regulation	V_{OUT}	50mA ≤ I _{OUT} ≤ 1A		35	50	mV
Output Impedance	Ro	100 mA DC and 20mArms, fo=120Hz		35		mΩ
Quiescent Current	ΙQ	$V_{OUT}+2V \le V_{IN} \le 26V$, $I_{OUT}=5mA$		10	15	mA
Output Noise Voltage	eN	10Hz-100kHz, I _{OUT} =5mA		150		μVrms
Ripple Rejection	RR	fo=120Hz, 1Vrms, I _{OUT} =100mA	60	72		dB
Long Term Stability				20		mV/ 1000Hr
Draw and Valtage		I _{OUT} =1A		0.5	0.8	V
Dropout Voltage	V_D	I _{OUT} =100mA		0.11	0.15	V
Short Circuit Current	I _{SC}	(Note)	1.6	1.9		Α
Maximum Line Transient	T _{IN}	Ro=100Ω, T ≤ 100ms	60	75		V
Reverse Polarity DC Input Voltage	V_{RIN}	Ro=100Ω	-15	-30		V
Reverse Polarity Transient Input Voltage	V_{TRRI}	Ro=100Ω, T ≤ 100ms	-50	-75		V

For LM2940-8.0V

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage	V _{OUT}	$9.4V \le V_{IN} \le 26V$, $5mA \le I_{OUT} \le 1A$	7.76	8.00	8.24	V
Line regulation	V_{OUT}	$V_{OUT} + 2V \le V_{IN} \le 26V$, $I_{OUT} = 5mA$		20	80	mV
Load Regulation	V_{OUT}	50mA ≤ I _{OUT} ≤1A		55	80	mV
Output Impedance	Ro	100 mA DC and 20mArms, fo=120Hz		55		mΩ
Quiescent Current	IQ	$V_{OUT} + 2V \le V_{IN} \le 26V$, $I_{OUT} = 5mA$		10	15	mA
Output Noise Voltage	eN	10Hz-100kHz, I _{OUT} =5mA		240		μVrms
Ripple Rejection	RR	fo=120Hz, 1Vrms, I _{OUT} =100mA	54	66		dB
Long Term Stability				32		mV/ 1000Hr
Drangut Voltage	\/	I _{OUT} =1A		0.5	8.0	\ \
Dropout Voltage	V_D	I _{OUT} =100mA		0.11	0.15	\ \
Short Circuit Current	I _{SC}	(Note)	1.6	1.9		Α
Maximum Line Transient	T _{IN}	Ro=100Ω, T ≤ 100ms	60	75		V
Reverse Polarity DC Input Voltage	V_{RIN}	Ro=100Ω	-15	-30		V
Reverse Polarity Transient Input Voltage	V_{TRRI}	Ro=100Ω, T ≤ 100ms	-50	-75		V

■ ELECTRICAL CHARACTERISTICS(Cont.)

For LM2940-9.0V

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage	V _{OUT}	$10.5V \le V_{IN} \le 26V$, $5mA \le I_{OUT} \le 1A$	8.73	9.00	9.27	V
Line regulation	V_{OUT}	V_{OUT} +2V \leq V_{IN} \leq 26V, I_{OUT} =5mA		20	90	mV
Load Regulation	V_{OUT}	50mA ≤ I _{OUT} ≤ 1A		60	90	mV
Output Impedance	Ro	100 mA DC and 20mArms, fo=120Hz		60		mΩ
Quiescent Current	IQ	V_{OUT} +2V \leq VIN \leq 26V, I_{OUT} =5mA		10	15	mA
Output Noise Voltage	eN	10Hz-100kHz, I _{OUT} =5mA		270		μVrms
Ripple Rejection	RR	fo=120Hz, 1Vrms, I _{OUT} =100mA	52	64		dB
Long Term Stability				34		mV/ 1000Hr
Drangut Voltage	\/	I _{OUT} =1A		0.5	0.8	
Dropout Voltage	V_D	I _{OUT} =100mA		0.11	0.15	V
Short Circuit Current	I _{SC}	(Note)	1.6	1.9		Α
Maximum Line Transient	T _{IN}	Ro=100Ω, T ≤ 100ms	60	75		V
Reverse Polarity DC Input Voltage	V_{RIN}	Ro=100Ω	-15	-30		٧
Reverse Polarity Transient Input Voltage	V_{TRRI}	Ro=100Ω, T ≤ 100ms	-50	-75		V

For LM2940-10V

	_			_		_
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage	V _{OUT}	$11.5V \le V_{IN} \le 26V$, $5mA \le I_{OUT} \le 1A$	9.70	10.00	10.30	V
Line regulation	V _{OUT}	V_{OUT} +2V $\leq V_{IN} \leq 26V$, I_{OUT} =5mA		20	100	mV
Load Regulation	V_{OUT}	50mA ≤ I _{OUT} ≤ 1A		65	100	mV
Output Impedance	Ro	100 mA DC and 20mArms, fo=120Hz		65		mΩ
Quiescent Current	IQ	V_{OUT} +2V $\leq V_{IN} \leq 26V$, I_{OUT} =5mA		10	15	mA
Output Noise Voltage	eN	10Hz-100kHz, I _{OUT} =5mA		300		μVrms
Ripple Rejection	RR	fo=120Hz, 1Vrms, I _{OUT} =100mA	51	63		dB
Long Term Stability				36		mV/ 1000Hr
Draw and Maltage	1/	I _{OUT} =1A		0.5	0.8	V
Dropout Voltage	V_D	I _{OUT} =100mA		0.11	0.15	V
Short Circuit Current	I _{SC}	(Note)	1.6	1.9		Α
Maximum Line Transient	T _{IN}	Ro=100Ω, T ≤ 100ms	60	75		V
Reverse Polarity DC Input Voltage	V_{RIN}	Ro=100Ω	-15	-30		V
Reverse Polarity Transient Input Voltage	V_{TRRI}	Ro=100Ω, T ≤ 100ms	-50	-75		V

■ ELECTRICAL CHARACTERISTICS(Cont.)

UTC LM2940-12V

2.2	0.4.50			->		
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage	V_{OUT}	$13.6V \le V_{IN} \le 26V$, $5mA \le I_{OUT} \le 1A$	11.64	12.00	12.36	V
Line regulation	V_{OUT}	V_{OUT} +2V \leq V_{IN} \leq 26V, I_{OUT} =5mA		20	120	mV
Load Regulation	V_{OUT}	50mA ≤ I _{OUT} ≤ 1A		55	120	mV
Output Impedance	Ro	100 mADC and 20mArms, fo=120Hz		80		mΩ
Quiescent Current	I_{Q}	V_{OUT} +2V $\leq V_{IN} \leq 26V$, I_{OUT} =5mA		10	15	mA
Output Noise Voltage	eN	10Hz-100kHz, I _{OUT} =5mA		360		μVrms
Ripple Rejection	RR	fo=120Hz, 1Vrms, I _{OUT} =100mA	54	66		dB
Long Term Stability				48		mV/ 1000Hr
Drangut Voltage	V	I _{OUT} =1A		0.5	0.8	V
Dropout Voltage	V_D	I _{OUT} =100mA		0.11	0.15	V
Short Circuit Current	I _{SC}	(Note)	1.6	1.9		Α
Maximum Line Transient	T_IN	Ro=100Ω, T ≤ 100ms	60	75		V
Reverse Polarity DC Input Voltage	V_{RIN}	Ro=100Ω	-15	-30		V
Reverse Polarity Transient Input Voltage	V_{TRRI}	Ro=100Ω, T≤100ms	-50	-75		V

UTC LM2940-15V

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage	V _{OUT}	$16.75V \le V_{IN} \le 26V$, $5mA \le I_{OUT} \le 1A$	14.55	15.00	15.45	V
Line regulation	V _{OUT}	V_{OUT} +2V $\leq V_{IN} \leq 26V$, I_{OUT} =5mA		20	150	mV
Load Regulation	V _{OUT}	50mA ≤ I _{OUT} ≤ 1A		70	150	mV
Output Impedance	Ro	100 mADC and 20mArms, fo=120Hz		100		mΩ
Quiescent Current	IQ	V_{OUT} +2V $\leq V_{IN} \leq 26V$, I_{OUT} =5mA		10	15	mA
Output Noise Voltage	eN	10Hz-100kHz, I _{OUT} =5mA		450		μVrms
Ripple Rejection	RR	fo=120Hz, 1Vrms, I _{OUT} =100mA	52	64		dB
Long Term Stability				60		mV/ 1000Hr
Draw out Valtage	\ /	I _{OUT} =1A		0.5	0.8	V
Dropout Voltage	V_D	I _{OUT} =100mA		0.11	0.15	V
Short Circuit Current	I _{SC}	(Note)	1.6	1.9		Α
Maximum Line Transient	T _{IN}	Ro=100Ω, T ≤ 100ms	60	75		V
Reverse Polarity DC Input Voltage	V_{RIN}	Ro=100Ω	-15	-30		V
Reverse Polarity Transient Input Voltage	V_{TRRI}	Ro=100Ω, T ≤ 100ms	-50	-75		V

Note: Output current will decrease with temperature increase but will not drop below 1A at the maximum specified temperature.

■ TYPICAL APPLICATION

Note: 1.C1 is required if regulator is located far from power supply filter.

 $2.C_{\text{OUT}}$ must be higher than $22\mu\text{F}$ for stability, and locate as close as possible to the regulator.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.