Using LASSO to select features

6 试题

1 point

1.

We learn weights on the entire house dataset, using an L1 penalty of 1e10 (or 5e2, if using scikit-learn). Some features are transformations of inputs; see the reading.

Which of the following features have been chosen by LASSO, i.e. which features were assigned nonzero weights? (Choose all that apply)

	yr_renovated
	waterfront
<u> </u>	sqft_living
<u> </u>	grade
	floors

1 point

2.

We split the house sales dataset into training set, test set, and validation set and choose the l1_penalty that minimizes the error on the validation set.

In which of the following ranges does the best l1_penalty fall?

Between 0 and 100

Between 100 and 1000	
Between 1000 and 10000	
Between 10000 and 100000	
Greater than 100000	
1 point 3. Using the best value of l1_penalty as mentioned in the	
previous question, how many nonzero weights do you ha	ave?
1 point	
4. We explore a wide range of I1_penalty values to find a narrow region of I1_penaty values where models are likely to have the desired number of non-zero weights (max_nonzeros=7).	
What value did you find for l1_penalty_min?	
If you are using GraphLab Create, enter your answer in s decimals without commas (e.g. 1131000000), rounded to nearest millions.	simple
If you are using scikit-learn, enter your answer in simple decimals without commas (e.g. 4313), rounded to neares integer.	
127	
1 point	

5. We then explore the narrow range of I1_penalty values between I1_penalty_min and I1_penalty_max.		
What value of l1_penalty in our narrow range has the lowest RSS on the VALIDATION set and has sparsity <u>equal</u> to max_nonzeros?		
If you are using GraphLab Create, enter your answer in simple decimals without commas (e.g. 1131000000), rounded to nearest millions.		
If you are using scikit-learn, enter your answer in simple decimals without commas (e.g. 4342), rounded to nearest integer.		
127		
1 point 6. Consider the model learned with the l1_penalty found in the previous question. Which of the following features has non-zero coefficients? (Choose all that apply)		
✓ sqft_living		
bedrooms_square		
sqft_lot_sqrt		
✓ bathrooms		
floors		
我了解不是我自己完成的作业将永远不会通过该课程且我的 Coursera 帐号会被取消激活。了解荣誉准则的更多信息 沈伟臣		

提交测试