In []:

#3章 パーセプトロン				
	precision	recall	f1-score	support
0	0.94	1.00	0.97	15
1	1.00	0.93	0.97	15
2	1.00	1.00	1.00	15
accuracy			0.98	45
macro avg	0.98	0.98	0.98	45
weighted avg	0.98	0.98	0.98	45

In []:

ロジスティック回帰 2値				
	precision	recall	f1-score	support
0	0.94	1.00	0.97	15
1	1.00	0.93	0.97	15
2	1.00	1.00	1.00	15
accuracy			0.98	45
macro avg	0.98	0.98	0.98	45
weighted avg	0.98	0.98	0.98	45

In []:

	precision	recall	f1-score	support
0	0.94	1.00	0.97	15
1	1.00	0.93	0.97	15
2	1.00	1.00	1.00	15
accuracy			0.98	45
macro avg	0.98	0.98	0.98	45
weighted avg	0.98	0.98	0.98	45

In []:

In []:

```
#SVC
from sklearn.metrics import classification_report
import pandas as pd
import pprint

print(classification_report(y_test, y_pred))
print(type(classification_report(y_test, y_pred)))
```

	precision	recall	f1-score	support
0 1 2	0.94 1.00 1.00	1.00 0.93 1.00	0.97 0.97 1.00	15 15 15
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	45 45 45

<class 'str'>

In []:

In []:

```
from sklearn.metrics import classification_report
import pandas as pd
import pprint

print(classification_report(y_test, y_pred))
print(type(classification_report(y_test, y_pred)))
```

	precision	recall	f1-score	support
0 1 2	0.94 1.00 1.00	1.00 0.93 1.00	0.97 0.97 1.00	15 15 15
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	45 45 45

<class 'str'>

In []:

In []:

```
from sklearn.metrics import classification_report
import pandas as pd
import pprint

print(classification_report(y_test, y_pred))
print(type(classification_report(y_test, y_pred)))
```

	precision	recall	f1-score	support
0 1 2	0.94 1.00 1.00	1.00 0.93 1.00	0.97 0.97 1.00	15 15 15
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	45 45 45

<class 'str'>

```
from sklearn.tree import DecisionTreeClassifier
tree_model = DecisionTreeClassifier(criterion='gini',
                                    max_depth=4,
                                    random_state=1)
tree_model.fit(X_train, y_train)
X_combined = np.vstack((X_train, X_test))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X_combined, y_combined,
                      classifier=tree_model,
                      test_idx=range(105, 150))
plt.xlabel('petal length [cm]')
plt.ylabel('petal width [cm]')
plt.legend(loc='upper left')
plt.tight_layout()
#plt.savefig('images/03_20.png', dpi=300)
plt.show()
```


In []:

```
from sklearn.metrics import classification_report
import pandas as pd
import pprint

print(classification_report(y_test, y_pred))
print(type(classification_report(y_test, y_pred)))
```

	precision	recall	f1-score	support
0 1 2	0.94 1.00 1.00	1.00 0.93 1.00	0.97 0.97 1.00	15 15 15
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	45 45 45

<class 'str'>


```
from sklearn.metrics import classification_report
import pandas as pd
import pprint

print(classification_report(y_test, y_pred))
print(type(classification_report(y_test, y_pred)))
```

	precision	recall	f1-score	support
0	0.94	1.00	0.97	15
1	1.00	0.93	0.97	15
2	1.00	1.00	1.00	15
accuracy			0.98	45
macro avg	0.98	0.98	0.98	45
weighted avg	0.98	0.98	0.98	45

<class 'str'>

In []:

<ipython-input-11-5347af230dfc>:28: UserWarning: You passed a edgecolor/edgecolors
('black') for an unfilled marker ('x'). Matplotlib is ignoring the edgecolor in f
avor of the facecolor. This behavior may change in the future.
plt.scatter(x=X[y == cl, 0],


```
from sklearn.metrics import classification_report
import pandas as pd
import pprint

print(classification_report(y_test, y_pred))
print(type(classification_report(y_test, y_pred)))
```

	precision	recall	f1-score	support
0	0.94	1.00	0.97	15
1	1.00	0.93	0.97	15
2	1.00	1.00	1.00	15
accuracy			0.98	45
macro avg	0.98	0.98	0.98	45
weighted avg	0.98	0.98	0.98	45

<class 'str'>