P4 Applications Working Group

Kick-off Meeting, November 13, 2017

https://goo.gl/K7uNb3

Introductions

Attendees signed up for kick-off meeting

Xilinx - Gordon Brebner Cisco - Andy Fingerhut, Rajesh Sharma

Mellanox - Alan Lo Postech - Jonghwan Hyun

Alibaba Group - Jianwen Pi Netcope - Albert Ross

Bell Canada - Daniel Bernier

Ixia Communications - Chris Sommers

xFlow Research - Shabbir Khan

Working Group Charter

- Facilitate development and interoperability of P4 application components
- Forum for sharing open source modules and specifications
- Identify application requirements for language, architecture and API working groups
- Deliverables
 - Specifications
 - Open Source Modules
 - Test Cases

Processes

- Specifications will be posted to https://github.com/p4lang/p4-spec
 - Telemetry Specifications
 - Dataplane specification:
 p4-spec/applications/telemetry/SPEC Inband Network Telemetry.pdf
 - Report specification:
 p4-spec/applications/telemetry/DRAFT_Telemetry_Report_Format.pdf
 - Create github 'issues' to request changes/additions to the specifications
- Repository for Applications WG: https://github.com/p4lang/p4-applications.git
 - Meeting Minutes, Source Code, Test Cases
- Mailing List: <u>p4-apps@lists.p4.org</u>
 - Subscribe at http://lists.p4.org/mailman/listinfo/p4-apps_lists.p4.org

Specifications for interop of P4 apps

- What a spec means for p4 application?
 - Header formats
 - P4 expressions of the headers
 - Semantics of header fields
- Not a standard, rather open-source s/w library
 - We encourage fast revision cycles
 - Use version numbering to ensure interop
- Not necessarily common denominator across all architectures/targets
 - Model arch/target-dependent features as option or runtime-selectable
 - Avoid explosion of version numbers

P4 applications to discuss after telemetry

- Criteria
 - Apps that need interop
 - Design is not trivial, need community effort
- List of apps from the member survey
 - Connection load balancing
 - Segment/source routing
 - Security (stateless firewall, whitelisting, SYN-cookie authentication)
 - Packet broker (aggregation, filtering, tool load-balancing, protocol stripping)

Telemetry Application

What should we consider for dataplane telemetry?

- Dataplane telemetry is centered around data packets
- Which packets/flows to monitor?
 - ACL-like table to match on packet headers (e.g., flow spec)
- What metadata to report?
 - Slice of packet header, switch ID, timestamp, in/out port IDs, ...
- Where to monitor the packets?
 - o switch, port, queue
- When to generate reports?
 - Events/conditions experienced by packets to generate telemetry reports
 - E.g., flow forwarding path change event, queue congestion event
- How to monitor?
 - In-band (INT, iOAM), per-pkt postcard, dedicated probes (DPP)

Essential aspects for dataplane interoperability

- Telemetry wire format, semantics and network-wide operations
 - Essential for interop between network devices in the same telemetry domain
 - In-band telemetry: P4.org INT, IETF iOAM
 - Out-of-band telemetry: IETF DPP (Data-Plane Probe)
- Report format and semantics
 - Crucial for interop between reporting devices and collectors
 - May need query APIs for device-specific semantics: h/w-type, timestamp unit, queue length unit, ...
- In addition, unified configuration API can help interop between layers
 - e.g., Switch OS <-> dataplane
 - Not essential for dataplane interop
 - Being discussed in OCP SAI

In-band Network Telemetry (INT)

- Packets carry instructions to insert state into packet header
- Metadata added at any point in packet header, for example, after L4 header,

INT: device-level capabilities

INT Src device

- O Initiates INT by inserting "instruction header" and prepending its own local metadata to packets (that get matched on ACL-like "watch list", outside of current spec)
- INT Transit device
 - Prepends its own local metadata per INT instruction header
- INT Sink device
 - Terminates INT and, if necessary, generates a report (upon event of interest, outside of current spec)

INT: little history

- Sep 2015: initial release
 - Hop-by-hop type and Destination type
 - VXLAN-GPE, GENEVE as transportation protocols
- June 2016: minor revision
 - Correct length field of VXLAN GPE shim header
- Oct 2017: latest spec
 - Introduce INT over TCP/UDP
 - Removed BOS (Bottom-of-Stack) bit in each 4B metadata
 - INT header formats and reference code for INT Transit in p4_16

INT Metadata Header, added by INT Src

Instruction bitmap

- bit0 (MSB): Switch ID
- bit1: Ingress port ID + egress port ID
- bit2: Hop latency
- bit3: Queue ID + Queue occupancy
- bit4: Ingress timestamp
- bit5: Egress timestamp
- bit6: Queue ID + Queue congestion status
- bit7: Egress port tx utilization
- The remaining bits are reserved.

INT over L4

Ethernet

IPv4

TCP/UDP

INT Shim (4)

INT Metadata hdr (8)

INT Stack (n*4)

INT Tail (4)

TCP/UDP Payload

If IPv4.DSCP && bitmask == value

- Benefits:
 - Monitor both native and virtualized traffic
 - Easy to add INT stack into outer, inner, or even both layers
- Limitations:
 - May interrupt middlebox/proxy looking into L4 payload

INT over L4: Head

TCP/UDP Payload

Ethernet IPv4 Type (8b): 1: hop-by-hop, 2: destination type TCP/UDP rsvd0 (8b): INT Shim (4) length (8b): # words from head to tail INT Metadata hdr (8) rsvd1 (8b): INT Stack (n*4) INT Tail (4)

INT over L4: Tail

Ethernet IPv4 TCP/UDP INT Shim (4) INT Metadata hdr (8) INT Stack (n*4)

INT Tail (4)

TCP/UDP Payload

next_proto (8b): IPv4.proto
dest port (16b): tcp.dport, upd.dport

rsvd/DSCP (8b)

Feedbacks, questions on INT spec (1/2)

Path MTU

- Application must set MTU size as "PMTU minus max INT stack size"
- INT Src must set Max Hop Cnt not to exceed PMTU
- Basically same problem as VXLAN GW

Overlay-underlay

- Opt1) Encap and decap INT at tunnel encap/decap points
- Opt2) two layers of INT: inner AND outer
 - E.g, inner INT after Geneve/VxlanGPE (or inner L4); outer INT over outer UDP
- VNF as application server or INT transit?
 - Domain-specific
 - The answer determines whether SmartNIC/vswitch is INT src/sink or transit

Feedbacks, questions on INT spec (2/2)

- Port IDs (16b) can be either physical or logical, how to differentiate?
 - Opt1) API to query a device of the semantic of each field
 - Opt2) Separate INT metadata type for tunnel interfaces
- Destination-type metadata headers may need a different instruction bitmap
 - SmartNIC or vswitch may want to add application-specific info
- And more...

Logistics & Next Steps

Logistics & Next steps

- Communication over github and mailing list
- Working Group Meeting every two weeks
 - Doodle Poll to get an idea of day and time that works for most people
- P4.org Calendar https://goo.gl/Zyo87T
- Meeting minutes and reference INT dataplane code will be posted to p4-applications repository
- Next Meeting:
 - Continue where we left off on Telemetry Datapalne Spec
 - Discuss Telemetry Report Format
 p4-spec/applications/telemetry/DRAFT_Telemetry_Report_Format.pdf