

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт радиоэлектроники и информатике Кафедра геоинформационных систем

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 11

Синтез четырехразрядного счетчика с параллельным переносом между разрядами двумя способами

по дисциплине «ИНФОРМАТИКА»

Выполнил студент группы И.	ил студент группы ИКБО-/4-23			
Принял ассистент кафедры ГІ	Корчемная А.И			
Практическая работа выполнена	« <u>7</u> » <u>декабря</u> 2023 г.			
«Зачтено»	«» <u>декабря</u> 2023 г.			

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	3
2 ТАБЛИЦА ПЕРЕХОДОВ СЧЁТЧИКА	4
3. ПРОЕКТИРОВАНИЕ ОПТИМАЛЬНЫХ СХЕМ УПРАВЛЕНИЯ	
ТРИГГЕРАМИ (ПРИ ПОМОЩИ КАРТ КАРНО)	5
3.1 Карты Карно для функции $Q_3(t+1)$	5
3.2 Карты Карно для функции $Q_2(t+1)$	7
3.3 Карты Карно для функции $Q_1(t+1)$	9
3.4 Карты Карно для функции $Q_0(t+1)$	11
4 РЕАЛИЗАЦИЯ СЧЁТЧИКА С ОПТИМАЛЬНОЙ СХЕМОЙ	
УПРАВЛЕНИЯ	13
5 РЕАЛИЗАЦИЯ СЧЁТЧИКА НА ПРЕОБРАЗОВАТЕЛЕ КОДОВ	14
6 ВЫВОД	15
7 ВЫВОЛ	16

1 ПОСТАНОВКА ЗАДАЧИ

Разработать счетчик с параллельным переносом на D-триггерах двумя способами:

- с оптимальной схемой управления, выполненной на логических элементах общего базиса;
- со схемой управления, реализованной на преобразователе кодов (быстрая реализация, но не оптимальная схема).

В качестве исходных данных использовать индикатор CNT лабораторного комплекса, на котором слева направо отображены:

- направление счета (0 сложение, 1 вычитание);
- максимальное значение счетчика (не путать с модулем счета);
- шаг счета.

Протестировать работу схемы и убедиться в ее правильности.

2 ТАБЛИЦА ПЕРЕХОДОВ СЧЁТЧИКА

В соответствии с персональным вариантом данные имеют следующий вид: CNT=1D6.

Из этого следует, что направление счётчика — сумма, максимальное значение счётчика — D(13), шаг счёта — 6.

По исходным данным построим таблицу переходов состояния счётчика(табл.1).

Таблица 1 - Таблица переходов счётчика.

$Q_3(t)$	Q ₂ (t)	$Q_1(t)$	Q ₀ (t)	$Q_3(t+1)$	$Q_2(t+1)$	$Q_1(t+1)$	$Q_0(t+1)$
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	1	1	0	1
1	0	1	1	0	0	0	0
1	1	0	0	0	0	0	1
1	1	0	1	0	0	1	0
1	1	1	0	*	*	*	*
1	1	1	1	*	*	*	*

Таблица переходов является частично определённой: состояния от 1110 до 1111 согласно исходным данным возникать не должны, поэтому очередные состояния для функций $Q_i(t+1)$ для этих случаев мы можем интерпретировать как нам удобно в целях минимизации управляющей логики.

З ПРОЕКТИРОВАНИЕ ОПТИМАЛЬНЫХ СХЕМ УПРАВЛЕНИЯ ТРИГГЕРАМИ (ПРИ ПОМОЩИ КАРТ КАРНО)

3.1 Карты Карно для функции Q₃(t+1)

Построим карты Карно для МДНФ(рис.1) и МКНФ(рис.2) функции $Q_3(t+1)$. Оценим сложность минимальных форм, которые для неё получатся, по количеству переменных, входящих в них, и выберем оптимальную форму.

Рисунок 1 – Карта Карно для МДНФ функции Q₃(t+1)

	$Q_1(t)$				
Q ₃ (t	$Q_1(t)$ $Q_0(t)$ $Q_2(t)$	00	01	11	10
	00	0	0	0	0
	01	0			
	11	0	0	*	*
	10			0	

Рисунок 2 — Карта Карно для МКН Φ функции $Q_3(t+1)$

Оценим сложность МДНФ и МКНФ. Вычислим, что при построении МДНФ потребуется 11 переменных, а для МКНФ - 10, следовательно, разумнее составлять формул по МКНФ (формула 1).

$$F_{\text{MKH}\Phi} = \overline{(Q_3(t) + \overline{Q_2(t)})} * (Q_3(t) + Q_2(t)) * (\overline{Q_3(t)} + \overline{Q_1(t)} + \overline{Q_0(t)}) *$$

$$* (\overline{Q_2(t)} + Q_1(t) + Q_0(t))$$

$$(1)$$

3.2 Карты Карно для функции $Q_2(t+1)$

Построим карты Карно для МДНФ (рис.3) и МКНФ (рис.4) функции $Q_2(t+1)$. Оценим сложность минимальных форм, которые для неё получатся, по количеству переменных, входящих в них, и выберем оптимальную форму.

Рисунок 3 — Карта Карно для МДН Φ функции $Q_2(t+1)$

Рисунок 4 – Карта Карно для МКНФ функции Q₂(t+1)

Оценим сложность МДНФ и МКНФ. Вычислим, что при построении МДНФ потребуется 13 переменных, а для МКНФ - тоже 13. Для удобства составим формул по МДНФ (формула 2).

$$F_{\text{MДН}\Phi} = \overline{Q_2(t)} * Q_1(t) * \overline{Q_0(t)} + \overline{Q_3(t)} * \overline{Q_2(t)} * Q_1(t) + \overline{Q_2(t)} * \overline{Q_1(t)} * Q_0(t) + \overline{Q_3(t)} * Q_2(t) * \overline{Q_1(t)} * \overline{Q_0(t)}$$

$$+ \overline{Q_3(t)} * Q_2(t) * \overline{Q_1(t)} * \overline{Q_0(t)}$$
(2)

3.3 Карты Карно для функции Q₁(t+1)

Построим карты Карно для МДНФ (рис.5) и МКНФ (рис.6) функции $Q_1(t+1)$. Оценим сложность минимальных форм, которые для неё получатся, по количеству переменных, входящих в них, и выберем оптимальную форму.

Рисунок 5 — Карта Карно для МДН Φ функции $Q_1(t+1)$

Рисунок 6 — Карта Карно для МКНФ функции $Q_1(t+1)$

Оценим сложность МДНФ и МКНФ. Вычислим, что при построении МДНФ потребуется 12 переменная, а для МКНФ тоже 11. Для удобства составим формул по МКНФ (формула 3).

$$F_{\text{MKH}\Phi} = \left(\overline{Q_1(t)} + Q_0(t)\right) * \left(\overline{Q_3(t)} + Q_2(t) + \overline{Q_0(t)}\right) *$$

$$* \left(\overline{Q_3(t)} + \overline{Q_2(t)} + Q_0(t)\right) * \left(Q_3(t) + Q_1(t) + \overline{Q_0(t)}\right)$$
(3)

3.4 Карты Карно для функции $Q_0(t+1)$

Построим карты Карно для МДНФ (рис.7) и МКНФ (рис.8) функции $Q_0(t+1)$. Оценим сложность минимальных форм, которые для неё получатся, по количеству переменных, входящих в них, и выберем оптимальную форму.

	$Q_1(t)$				
Q ₃ (t	$Q_1(t)$ $Q_0(t)$ $Q_2(t)$	00	01	11	10
	00	1			1
	01	1			1
	11	1		*	*
	10	1			1

Рисунок 7 — Карта Карно для МДНФ функции $Q_0(t+1)$

	$Q_1(t)$				
Q ₃ (t	$Q_1(t)$ $Q_0(t)$ $Q_2(t)$	00	01	11	10
	00		0	0	
	01		0	0	
	11		0	*	*
	10		0	0	

Рисунок 8 — Карта Карно для МКНФ функции $Q_0(t+1)$

Оценим сложность МДНФ и МКНФ. Вычислим, что при построении МДНФ потребуется 1 переменная, а для МКНФ тоже 1. Для удобства составим формул по МДНФ (формула 4).

$$F_{\rm MДH\Phi} = \overline{Q_0(t)} \tag{4}$$

4 РЕАЛИЗАЦИЯ СЧЁТЧИКА С ОПТИМАЛЬНОЙ СХЕМОЙ УПРАВЛЕНИЯ

Построим схему управления для триггеров счётчика в лабораторном комплексе при помощи полученных формул (рис. 9).

Рисунок 9 — Схема управления для триггеров счётчика

5 РЕАЛИЗАЦИЯ СЧЁТЧИКА НА ПРЕОБРАЗОВАТЕЛЕ КОДОВ

Выполним быструю реализацию счётчика при помощи преобразователя кодов в качестве схемы управления триггерами.

Здесь не требуется никакая минимизация, так как необходимо по таблице переходов правильно соединить выходы дешифратора со входами шифратора.

Построим схему счётчика, основываясь на таблице 1 (рис. 10).

Рисунок 10 – Схема счётчика, выполненный на преобразователе кодов

6 ВЫВОД

В ходе выполнения практической работы были выполнены следующие задачи:

- Построена таблица переходов счётчика
- Построены карты Карно и составлены формулы для каждой из функций
- Реализован счётчик с параллельным переносом на D-триггерах с оптимальной схемой управления, выполненной на логических элементах общего базиса,
- Реализован счётчик с параллельным переносом на D-триггерах со схемой управления, реализованной на преобразователе кодов,

Таким образом, главную цель практической работы, а именно построение карт Карно и составление формул, реализация в лабораторном комплексе счётчиков с параллельным переносом на D-триггерах двумя способами, можно считать выполненной.

7 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ

- 1. Информатика: Методические указания по выполнению практических работ / С.С. Смирнов, Д.А. Карпов М., РТУ МИРЭА Российский технологический университет, 2020. 102 с..
 - 2. Лекции по информатике Смирнов С.С. РТУ МИРЭА. 2023