

目录

第一章	集合与映射	5
1.1	微积分简介	5
1.2	集合与映射	6
1.3	实数	8
	1.3.1 确界	10
第二章	极限	13
2.1	数列的极限	13
2.2	计算极限的方法	15
	2.2.1 直接用定义验证	15
	2.2.2 夹逼定理	15
	2.2.3 极限的四则运算	16
2.3	数列极限的存在性	16
	2.3.1 Weierstrass 定理	16
	2.3.2 Cauchy 收敛原理	19
2.4	函数极限的定义	20
2.5		21
2.6	计算极限的方法	22
	2.6.1 直接用定义验证	22
	2.6.2 夹逼定理	22
	2.6.3 极限的四则运算	22
	2.6.4 复合函数的极限	23
第三章	连续性	25
3.1	连续函数	25

3.2	连续函数的局部性质	26
3.3	连续函数的整体性质	27
	3.3.1 实数的完备性	27
	3.3.2 介值定理	28
	3.3.3 有界性定理与最值定理	29
	3.3.4 有关连续函数的整体性质的现代观点	30
3.4	列紧性定理	31
	3.4.1 一致连续	32
3.5	应用	33
3.6	反函数定理	34
3.7	无穷小量与无穷大量	36
第四章	导数与微分	37
4.1	导数	37
	4.1.1 Motivation	37
	4.1.2 导数的定义	37
4.2	导函数的计算方法	38
4.3	复合函数的导数	39
4.4	微分	40
	4.4.1 微分保持函数的复合	42
4.5	反函数的导数	44
4.6	高阶导数	45
第五章	一元函数微分学	47
5.1	微分中值定理	47
5.2	洛必达 (L'Hopital) 法则	50
5.3	带 Peano 余项的 Taylor 公式	52
5.4	带 Lagrange 余项的 Taylor 公式	57
5.5	Taylor 公式的应用	60

第一章 集合与映射

1.1 微积分简介

问题 1.1.1. 给定非负函数 h, 称之为 "高度函数" 考虑由曲线 y = h(x) 与 x 轴, y 轴以及直线 x = a 所围成的图形

$$D = \{(x, y) | 0 \le x \le a, 0 \le y \le h(x) \}.$$

计算 D 的面积 S(a), 称之为"面积函数".

早在 2000 多年前, 阿基米德等人就知道如何求面积: 用竖直的分割线把 D 剖分成一些小块的并, 每一小块近似于矩形, 可估算其面积, 把所有小块的近似面积求和, 得到 S(a) 的一个近似. 当剖分越来越细时, 我们将得到越来越好的近似.

例 1.1.2. 设 $h(x) = x^2$, 求面积函数 S(a).

解. 用 (n-1) 条直线 $x=\frac{i\alpha}{n}(1 \le i \le n-1)$ 将 D 剖分成 n 小块, 从左至右的第 i 块可以近似为底边长为 $\frac{\alpha}{n}$, 高为 $h(\frac{i\alpha}{n})$ 的矩形. 由此可得 S(a) 的近似

$$S(a) \simeq \sum_{i=1}^{n} \frac{a}{n} \cdot h(\frac{ia}{n}) = \frac{a^3}{n^3} \sum_{i=1}^{n} i^2 = \frac{(n+1)(2n+1)}{6n^2} a^3 = (\frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2})a^3,$$

当 n 越来越大时,上式右边越来越接近 $\frac{1}{3}a^3$,阿基米德由此得出 $S(a)=\frac{1}{3}a^3$.

例 1.1.3. 一般的, 如果 $h(x) = x^k$, 则需要研究当 n 越来越大时, 表达式

$$x_n = \frac{1^k + 2^k + \dots + n^k}{n^{k+1}}$$

是否越来越接近某个与 n 无关的数. 这就是数列的极限.

牛顿 (Newton) 考虑问题1.1.1的反问题: 如何由面积函数求高度函数? 设 o 是接近 0 的数,则有近似式 $S(x+o)-S(x)\simeq o\cdot h(x)$,可得 h(x) 的近似值

$$h(x) \simeq \frac{S(x+o) - S(x)}{o}.$$

当 o 越来越接近 0 时, 上式给出 h(x) 的越来越好的近似, 由此可确定高度函数 h.

例 1.1.4. 设面积函数为 $S(x) = x^m$, 其中 m 是给定的正整数, 则

$$\frac{S(x+o) - S(x)}{o} = \frac{(x+o)^m - x^m}{o} = \sum_{i=1}^m \binom{m}{i} x^{m-i} o^{i-1},$$

当 o 越来越接近 0 时,上式右边越来越接近 $\binom{m}{1}x^{m-1}$,故对应的高度函数为 $h(x) = mx^{m-1}$. Newton 把这个方法称为 "流数法",现代数学中称之为求导.

Newton 注意到,"由高度函数求面积函数"与"由面积函数求高度函数"互为逆操作. 具体的说,一方面,如果从高度函数 h(x) 出发,算得对应的面积函数为 S(x),则从面积函数 S(x) 出发,算得的高度函数应为 h(x);另一方面,如果从面积函数 S(x) 出发,算得对应的高度函数为 h(x),则从高度函数 h(x) 出发,算得的面积函数应为 h(x). 基于这个原因, Newton 把前述"由高度函数求面积函数"的方法称为"反流数法",现代数学中称之为积分. 由此, Newton 可以对一般的高度函数 h,计算出对应的面积函数.

例 1.1.5. 设高度函数为 $h(x) = x^k$, 求对应的面积函数.

解. 由例1.1.4, 如果面积函数为 $S_0(x) = \frac{x^{k+1}}{k+1}$, 则对应的高度函数为 $h_0(x) = x^k$. 这样, 如果已知高度函数为 $h_0(x)$, 则对应的面积函数应为 $S_0(x)$.

以上就是一元函数微积分的主体内容:

- 极限理论. 研究当 n 越来越大时, 数列 $\{x_n\}_{n=1}^{\infty}$ 的项是否越来越接近某个固定的数.
- 微分理论. 研究函数的变化率 (导数), 并用导函数刻画函数的性质.
- 积分理论. 研究前述由高度函数计算面积函数的运算.
- 微分与积分的关系. 微分与积分互为逆运算, 这就是所谓的微积分基本定理.

1.2 集合与映射

我们经常会听说,几何学研究形状,代数学研究运算,而微积分研究函数的连续变化.为了描述函数,我们采用集合与映射的语言.

定义 1.2.1 (映射). 给定集合 X,Y, 从 X 到 Y 的一个映射 $f: X \to Y$ 是指: 对每个 $x \in X$, 都指定唯一确定的 $y \in Y$ 与之对应. 把 Y 中与 x 对应的元素记作 f(x), 称为 f 在 x 处的值 (或像).

1.2 集合与映射 7

例 1.2.2 (恒同映射). 给定集合 X, 定义 X 的恒同映射 $id_X: X \to X$ 为

$$id_X(x) = x, \quad \forall x \in X.$$

定义 1.2.3 (映射的复合). 给定映射 $f: X \to Y, g: Y \to Z$, 定义它们的复合映射 $g \circ f: X \to Z$ 为

$$g \circ f(x) = g(f(x)), \quad \forall x \in X.$$

例 1.2.4 (恒同映射是复合的单位). 设 $f: X \to Y$, 则 $f \circ id_X = f = id_Y \circ f$.

命题 1.2.5 (映射的复合满足结合律). 设 $f: X \to Y, g: Y \to Z, h: Z \to W, 则$

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

定义 1.2.6. (1) 设 $f: X \to Y$ 是映射. 令

$$f(X) = \{ y \in Y | \exists x \in X, \text{ def}(x) = y \},$$

称为 f 的像集 (image).

(2) 对于 Y 的子集 V, 今

$$f^{-1}(V) = \{ x \in X | f(x) \in V \},\$$

称为 V(在 f 下) 的原像集 (pre-image).

定义 1.2.7. 设 $f: X \to Y$ 是映射.

- (1) 称 f 是满射, 如果 f(X) = Y.
- (2) 称 f 为单射, 如果 $\forall x \neq x'$, 有 $f(x) \neq f(x')$.
- (3) 称 f 为双射 (或一一对应, 可逆映射), 如果 f 既单又满.

命题 1.2.8. f 是双射的充分必要条件是存在映射 $g:Y\to X$ 使得 $g\circ f=id_X, f\circ g=id_Y$.

如果上述 g 存在的话, 则是唯一的, 称之为 f 的逆映射, 记作 $f^{-1}: Y \to X$.

定义 1.2.9 (函数). 设 $X,Y \subset \mathbf{R}$, 从 X 到 Y 的映射 $f: X \to Y$ 称为从 X 到 Y 的函数. 称 X 为 f 的定义域 (domain), 称 Y 为 f 的值域 (co-domain).

例 1.2.10 (Dirichlet 函数). 定义 Dirichlet 函数 $D: \mathbf{R} \to \mathbf{R}$ 为

$$D(x) = \begin{cases} 0, & \text{m} \mathbb{R} x \in \mathbf{Q}, \\ 1, & \text{m} \mathbb{R} x \notin \mathbf{Q}. \end{cases}$$

练习 1.2.11. 证明: 每一个函数 $f: \mathbf{R} \to \mathbf{R}$ 都可以表示成为一个奇函数与一个偶函数的和.

1.3 实数

".....the complex numbers are much more beautiful. But in another sense the real numbers are truly fundamental as they incarnate the idea of a bound, of a control of abstract algebraic structures. In a deep sense we are all geometers."

Maxim Kontsevich, beyond numbers.

为了计数,人们引入了自然数 0,1,2,...,把由所有自然数所构成的集合记为 $\mathbf{Z}_{\geq 0}$,其上有加 法和乘法两种运算. 在 $\mathbf{Z}_{>0}$ 上,加法运算不一定有逆运算.

为了保证加法运算有逆运算,人们对每个自然数 $k \neq 0$ 引入了负整数 "-k",它满足

$$"-k" + (n+k) = n, \quad \forall n \in \mathbf{Z}_{\geq 0}.$$

把由所有自然数和所有负整数所构成的集合记为 \mathbf{Z} , 称为整数集合, 把其中每个元素称为一个整数. 在 \mathbf{Z} 上, 加法运算有逆运算, 乘法运算不一定有逆运算.

为了保证乘法运算有逆运算, 人们对每个整数对 $(m, n \neq 0)$ 引入了分数 " $\frac{m}{n}$ ", 它满足

"
$$\frac{m}{n}$$
" $\times n = m$,

并约定

$$"\frac{m}{n}" = "\frac{mk}{nk}", \quad \forall k \in \mathbf{Z} \setminus \{0\}.$$

把由所有分数所构成的集合记为 \mathbf{Q} , 称为有理数集合, 把其中每个元素称为一个有理数. 在 \mathbf{Q} 上, 加法运算与乘法运算都有逆运算.

例 1.3.1. 有理数就是有限小数或者无限循环小数.

证明: (1) 先证明有限或无限循环小数是有理数. 对于有限或无限循环小数 x, 设其 10 进制表示为

$$x = a_n a_{n-1} \dots a_1 a_0 \cdot a_{-1} \cdots a_{-m} \dot{a}_{-m-1} \cdots \dot{a}_{-m-k},$$

则有

$$x = \sum_{i=-m}^{n} a_i \cdot 10^i + \left(a_{-m-1}10^{-m-1} + \dots + a_{-m-k}10^{-m-k}\right) \cdot \left(1 + 10^{-k} + 10^{-2k} + \dots\right)$$
$$= 10^{-m} \left(b + \frac{c}{10^k - 1}\right),$$

其中

$$b = \sum_{i=-m}^{n} a_i \cdot 10^{i+m}, \quad c = \sum_{j=-m-k}^{-m-1} a_j \cdot 10^{j+m+k}$$

1.3 实数

都是整数, 由此可知 x 是有理数.

(2) 其次我们证明有理数可以表示为有限或无限循环小数. 设 $x = \frac{p}{q}$, 其中 q 是正整数, 考虑 q 中 2 和 5 因子, 设

$$q = 2^{\alpha} \cdot 5^{\beta} \cdot q_1$$

其中 q_1 与 10 互素. 利用数论中的 Euler 定理, 存在正整数 k, 使得 $10^k - 1$ 能被 q_1 整除, 设

$$10^k - 1 = q_1 \cdot L$$
.

记 $m = \max\{\alpha, \beta\}$, 则

$$x = \frac{pL}{2^{\alpha}5^{\beta}q_1L} = \frac{pL}{2^{\alpha}5^{\beta}(10^k - 1)},$$

可以进一步写成 $x = \frac{p_1}{10^m(10^k-1)}$ 的形式, 其中 p_1 是整数. 假设 p_1 除以 10^k-1 的商为 b, 余数为 c, $0 \le c < 10^k-1$, 则

$$x = 10^{-m} \left(b + \frac{c}{10^k - 1} \right),$$

结合 (1) 中的计算, 这就把 x 表示成有限或无限循环小数.

例 1.3.2. $\sqrt{2}$ 不是有理数.

证明: 用反证法, 假设 $\sqrt{2}$ 是有理数, 则可表示为 $\sqrt{2} = \frac{n}{m}$, 其中 m,n 是互素的整数. 这样, 有 $2m^2 = n^2$, 可得 n 是偶数 (因为奇数的平方除以 2 所得的商不是整数). 设 $n = 2n_1$, 则有 $m^2 = 2n_1^2$, 故 m 也是偶数. 这样, m 与 n 有公因子 2, 与前述假设 m,n 互素矛盾!

例1.3.2表明,在几何中人们会碰到一些量不能用有理数描述,例1.3.1启发人们用无限不循环小数来描述这样的量.这样,人们"定义"一个实数为一个十进制小数,即形如

$$a_n a_{n-1} \dots a_1 a_0 \dots a_{-1} a_{-2} \dots, \quad a_i \in \{0, 1, \dots, 9\}, \forall i, j \in \{0, 1, \dots, 9\}, \forall i$$

的符号,它代表数值

$$x = a_n \cdot 10^n + ... + a_0 \cdot 10^0 + a_{-1} \cdot 10^{-1} + a_{-2} \cdot 10^{-2} + ...$$

注意到,对无限小数,上述表达式是无限的和,因此只有当我们建立好级数的基本理论之后,才能定义好小数.如果该小数是有限的或者无限循环的,则它代表一个有理数,否则的话称它代表一个无理数.把由所有实数所构成的集合记为 R,它是微积分所研究的主要对象.

1872年, 戴德金利用有理数给出了实数的严格定义, 这种定义实数的方法称之为戴德金分割.

定义 1.3.3. 一个戴德金分割是指如下有序对 (A, B), 要求它们满足如下条件:

- (1) A, B 是有理数集合 **Q** 的非空子集.
- (2) $A \cap B = \emptyset \coprod A \cup B = \mathbf{Q}$.
- (3) 对任何 $a \in A$ 及任何 $b \in B$, 有 a < b.
- (4) A 没有最大元素.

这样,可定义一个实数为一个戴德金分割,把所有戴德金分割所构成的集合记为 **R**,称之为实数集合. 进一步,还可定义实数之间的大小关系以及加法和乘法运算.

- (i) $(A_1, B_1) < (A_2, B_2)$ 当且仅当 $A_1 \subset A_2$ 且 $A_1 \neq A_2$.
- (ii) $\mathbb{Z}X$ $(A_1, B_1) + (A_2, B_2) = (A_1 + A_2, \mathbf{Q} \setminus (A_1 + A_2)).$
- (iii) 对两个戴德金正数 $(A_1, B_1), (A_2, B_2),$ 令

$$A = \{a_1 a_2 | a_1 > 0, a_2 > 0, a_1 \in A_1, a_2 \in A_2\} \cup \{a : a \in \mathbf{Q} \coprod a \leq 0\},\$$

则可定义

$$(A_1, B_1) \cdot (A_2, B_2) = (A, \mathbf{Q} - A).$$

(iv) (A,B) 代表一个有理数, 如果 B 有最小元素.

这里, 对于两个有限集合 $X,Y \subset \mathbf{Q}$, 定义

 $X + Y = \{z : \exists x \in X, \exists y \in Y$ 使得 $z = x + y\}, \quad XY = \{z : \exists x \in X, \exists y \in Y$ 使得 $z = xy\}.$

1.3.1 确界

定义 1.3.4. 设 $E \in \mathbb{R}$ 的非空子集. 称 $a \in E$ 是集合 E 的最大值 (最小值), 如果对任何 $x \in E$, 都有 $x \leq a$ (都有 $x \geq a$). 将集合 E 的最大值 (最小值) 记作 $\max E$ (记作 $\min E$).

例 1.3.5. 令 E = [0,1), 则 $\min E = 0$, $\max E$ 不存在.

定义 1.3.6. 设 $E \in \mathbb{R}$ 的非空子集. 称 E 是有上界的 (有下界的), 如果存在实数 c, 使得对任何 $x \in E$, 都有 $x \le c$ (都有 $x \ge c$). 称满足上述条件的实数 c 为 E 的一个上界 (下界).

称 E 是有界的, 如果 E 既有上界又有下界. 换句话说, E 是有界的, 当且仅当存在实数 K, 使得对任何 $x \in E$, 有 $|x| \le K$.

定义 1.3.7. 设 E 有上界. 如果 E 的所有上界中有一个最小的数, 则称 E 有上确界. 把 E 的最小的上界称之为 E 的上确界, 记作 $\sup E$.

类似的, 称 E 有下确界, 如果 E 的所有下界中有一个最大的数. 把 E 的最大的下界称之为 E 的下确界, 记作 $\inf E$.

1.3 实数

可用符号表示上(下)确界为:

 $\sup E = \min\{c | x \le c, \forall x \in E\}, \quad \inf E = \max\{c | x \ge c, \forall x \in E\}.$

命题 1.3.8. $c \in E$ 的上确界的充分必要条件是:

- (1) $\forall x \in E, x \leq c$.
- $(2) \forall c' < c, \exists x \in E$ 使得 x > c'.

例 1.3.9. \diamondsuit E = [0,1), 则 $\sup E = 1$, $\inf E = 0$.

定理 1.3.10 (实数的完备性). (1) 有上界的非空实数集必有上确界.

(2) 有下界的非空实数集必有下确界.

证明:设 $E = \{x_{\alpha}\},$ 每个实数 x_{α} 有如下的戴德金分割表示

$$x_{\alpha} = (A_{\alpha}, B_{\alpha}).$$

设 $c \in E$ 的一个上界, 且有戴德金分割表示 $c = (A_0, B_0)$. 由 $x_{\alpha} \leq c$ 可知

$$A_{\alpha} \subset A_0, \quad \forall \alpha,$$

从而有 $\bigcup_{\alpha} A_{\alpha} \subset A_{0}$. 特别的, $\bigcup_{\alpha} A_{\alpha} \neq \mathbf{Q}$ 的非空子集且不等于 \mathbf{Q} . 考虑如下有序对

$$(\cup_{\alpha} A_{\alpha}, \mathbf{Q} \setminus (\cup_{\alpha} A_{\alpha})),$$

容易验证它满足戴德金分割的四个要求,因而代表一个实数,进一步可验证它是 E 的上确界.

下面我们给出实数完备性定理的一个应用.

命题 1.3.11. (1) 对任何实数 x, 存在 $n \in \mathbb{Z}$, 使得 x < n.

(2) 对任何实数 a < b, 存在有理数 $\frac{m}{n}$, 使得 $a < \frac{m}{n} < b$.

证明: (1) 用反证法, 假设每个整数都小于等于 x, 则 x 是 \mathbf{Z} 的上界. 由定理1.3.10, \mathbf{Z} 有上确界, 设为 $M = \sup \mathbf{Z}$. 注意到, M - 1 不是 \mathbf{Z} 的上界, 存在整数 n 使得 M - 1 < n, 由此可得整数 n + 1 严格大于 M, 与 M 是 \mathbf{Z} 的上确界矛盾!

(2) 由 (1) 的结论, 存在整数 n 满足 $n>\frac{1}{b-a}$. 取定这样的 n, 再次利用 (1) 的结论, 存在整数 k_0,k_1 满足

$$-k_0 > -na$$
, $k_1 > na$,

即有 $\frac{k_0}{n} < a < \frac{k_1}{n}$. 设 m 是整数 $k_0, k_0 + 1, ..., k_1$ 之中满足 $a < \frac{m}{n}$ 的最小的数, 则

$$\frac{m-1}{n} \le a < \frac{m}{n},$$

由此可得

$$\frac{m}{n} = \frac{m-1}{n} + \frac{1}{n} \le a + \frac{1}{n} < a + (b-a) = b,$$

这就找到了
$$m$$
 使得 $a < \frac{m}{n} < b$.

第二章 极限

2.1 数列的极限

定义 2.1.1. 一个数列是指一个映射 $x: \mathbf{Z}_+ \to \mathbf{R}$. 令 $x_n = x(n)$, 称为该数列的第 n 项. 我们把这个数列记作 $\{x_n\}_{n=1}^{\infty}$.

定义 2.1.2 (ϵ -N 语言). 称 $L \in \mathbf{R}$ 是数列 $\{x_n\}_{n=1}^{\infty}$ 的极限, 记作 $\lim_{n \to \infty} x_n = L$, 如果对任何 $\epsilon > 0$, 都存在正整数 N, 使得 $\forall n \geq N$, 有 $|x_n - L| < \epsilon$.

如果存在满足上述条件的 L, 则称数列 $\{x_n\}_{n=1}^{\infty}$ 收敛到 L; 否则的话, 则称数列 $\{x_n\}_{n=1}^{\infty}$ 发散.

例 2.1.3. $\lim_{n\to\infty}\frac{1}{n}=0$.

证明: 对任何 $\epsilon > 0$, 由命题1.3.11, 存在整数 $N > \frac{1}{\epsilon}$, 对任何 n > N, 有

$$\left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \frac{1}{N} < \epsilon,$$

这就证明了 $\lim_{n\to\infty} \frac{1}{n} = 0$.

例 2.1.4. 给定 a > 0, 则 $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

证明: 当 $a \ge 1$ 时, 对任何 $\epsilon > 0$, 取正整数 $N > \frac{a-1}{\epsilon}$, 则对任何整数 n > N, 有

$$(1+\epsilon)^n \ge 1 + n\epsilon > 1 + \frac{a-1}{\epsilon} \cdot \epsilon = a,$$

从而有 $1 \le \sqrt[n]{a} < 1 + \epsilon$. 特别的,有 $|\sqrt[n]{a} - 1| < \epsilon$. 这就验证了 $\lim_{n \to \infty} \sqrt[n]{a} = 1$. 当 0 < a < 1 时,利用定理2.2.4转化成上述情形.

可以用符号语言将极限的定义叙述成:

由定义可知, 极限只与数列中下标充分大的各项有关, 与数列前面有限项的行为无关. 换句话说, 如果只改变数列前面有限项的值, 则数列的收敛发散性质不变, 数列的极限 (如果存在的话) 也不变.

命题 2.1.5. 设 $\lim_{n \to \infty} a_n = A$, $\lim_{n \to \infty} b_n = B$. 如果 A < B, 则存在正整数 N, 使得对任何 $n \ge N$ 有 $a_n < b_n$.

证明: 取 $\epsilon = \frac{B-A}{2}$. 由极限的定义, 存在正整数 N_1, N_2 , 使得对任何 $n \geq N_1$, 有 $|a_n - A| < \frac{B-A}{2}$; 对任何 $n \geq N_2$, 有 $|b_n - B| < \frac{B-A}{2}$. 这样, 取 $N = \max\{N_1, N_2\}$, 则对任何 $n \geq N$, 有

$$a_n < A + \frac{B-A}{2} = B - \frac{B-A}{2} < b_n.$$

推论 2.1.6. 如果数列收敛,则其极限是唯一的.

证明: 用反证法, 假设 $\{x_n\}_{n=1}^{\infty}$ 收敛到两个极限 A < B, 由命题2.1.5, 存在 N 使得对 n > N 有 $x_n > x_n$, 矛盾!

定义 2.1.7. 称数列 $\{a_n\}_{n=1}^{\infty}$ 是有上 (下) 界的, 如果存在实数 c, 使得对任何正整数 n 都有 $a_n \leq c(a_n \geq c)$. 称数列 $\{a_n\}_{n=1}^{\infty}$ 是有界的, 如果它既有上界又有下界.

推论 2.1.8. 收敛的数列都是有界的.

证明: 设 $\lim_{n\to\infty}x_n=L$. 由 $\lim_{n\to\infty}x_n=L<\lim_{n\to\infty}(L+1)$ 及命题2.1.5, 存在 N 使得对 n>N 有 $x_n< L+1$. 这样, 就有

$$x_n \le \max\{L+1, x_1, ..., x_N\}, \quad \forall n \in \mathbf{Z}_+,$$

这就证明了数列 $\{x_n\}_{n=1}^{\infty}$ 有上界. 类似的可证明它也有下界.

例 2.1.9. 给定实数 q, 则有

$$\lim_{n \to \infty} q^n = \begin{cases} 0, & \text{如果}|q| < 1 \\ 1, & \text{如果}q = 1 \\ \text{不存在}, & \text{其他} \end{cases}$$

2.2 计算极限的方法 15

例 2.1.10. 给定实数 α , 求极限 $\lim_{n\to\infty} n^{\alpha}$.

推论 2.1.11 (极限不等式). 设 $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$. 如果存在正整数 N, 使得对任何 $n \geq N$ 有 $a_n \leq b_n$, 则 $A \leq B$.

证明:用反证法,假设 A > B,则由命题2.1.5,存在 N_0 使得对 $n > N_0$ 有 $a_n > b_n$,矛盾!

注 2.1.12. 在上述推论中,由 $a_n < b_n (\forall n \geq N)$ 只能推出 $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$,不能保证 $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n$.

2.2 计算极限的方法

2.2.1 直接用定义验证

例 2.2.1. 设 a > 1, 则 $\lim_{n \to \infty} \frac{n^k}{a^n} = 0$.

解. 注意到, 当 n > 2k 时, 有

$$\frac{n^k}{a^n} \le \frac{n^k}{\binom{n}{k+1}(a-1)^{k+1}} = \frac{(k+1)!}{(a-1)^{k+1}} \cdot (\prod_{i=1}^k \frac{n}{n-i}) \cdot \frac{1}{n} \cdot < \frac{(k+1)!}{(a-1)^{k+1}} \cdot 2^k \cdot \frac{1}{n}$$

2.2.2 夹逼定理

定理 2.2.2 (夹逼定理). 设存在正整数 N, 使得对任何 $n \ge N$ 有

$$a_n < b_n < c_n$$
.

如果 $\lim_{n\to\infty}a_n, \lim_{n\to\infty}c_n$ 存在且都等于 L, 则 $\{b_n\}_{n=1}^\infty$ 也以 L 为极限.

证明: 对任何 $\epsilon>0$, 由极限 $\lim_{n\to\infty}a_n=L$ 与 $\lim_{n\to\infty}c_n=L$ 的定义, 存在正整数 N_0,N_1 使得

$$|a_n - L| < \epsilon, \quad \forall n > N_0; \quad |c_n - L| < \epsilon, \quad \forall n > N_1.$$

$$L - \epsilon < a_n < b_n < c_n < L + \epsilon$$

特别的对 n > M 有 $|b_n - L| < \epsilon$, 这就证明了 $\{b_n\}_{n=1}^{\infty}$ 以 L 为极限.

例 2.2.3. 设 $a_1, ..., a_m$ 是给定的正数,则

$$\lim_{n \to \infty} (a_1^n + \dots + a_m^n)^{1/n} = \max\{a_i | i = 1, \dots, m\},$$

$$\lim_{n \to \infty} (a_1^{-n} + \dots + a_m^{-n})^{-1/n} = \min\{a_i | i = 1, \dots, m\}.$$

16 第二章 极限

2.2.3 极限的四则运算

定理 2.2.4 (极限的四则运算). 设 $\lim_{n\to\infty}a_n=A, \lim_{n\to\infty}b_n=B,$ 则如下论断成立.

- $(1) \lim_{n \to \infty} (a_n + b_n) = A + B.$
- $(2) \lim_{n \to \infty} a_n b_n = AB.$
- (3) 如果 $B \neq 0$, 则 $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$.

推论 2.2.5. 设 k 是固定的正整数,则

$$\lim_{n \to \infty} \left(\sum_{i=1}^{k} x_{i,n} \right) = \sum_{i=1}^{k} \lim_{n \to \infty} x_{i,n},$$

$$\lim_{n \to \infty} (\prod_{i=1}^k x_{i,n}) = \prod_{i=1}^k \lim_{n \to \infty} x_{i,n}.$$

例 2.2.6. 给定正整数 k 以及实数 $a_0, a_1, ..., a_k$,则 $\lim_{n\to\infty} \frac{a_k n^k + ... + a_0}{n^k} = a_k$.

例 2.2.7. 设 k, m 是给定的正整数, $a_k, b_m \neq 0$, 则

$$\lim_{n \to \infty} \frac{a_k n^k + \dots + a_0}{b_m n^m + \dots + b_0} = \begin{cases} 0, & \text{ml} \ \# k < m \\ \frac{a_k}{b_m}, & \text{ml} \ \# k = m \\ \text{representation} \end{cases}$$

例 2.2.8. 给定 |q| < 1, 则有 $\lim_{n \to \infty} (1 + q + ... + q^n) = \frac{1}{1 - q}$.

例 2.2.9. 设 a, b 是正数. 求极限 $\lim_{n\to\infty} \frac{1+a+...+a^n}{1+b+...+b^n}$.

2.3 数列极限的存在性

2.3.1 Weierstrass 定理

定义 2.3.1. 称数列 $\{x_n\}_{n=1}^{\infty}$ 是递增的, 如果对任何正整数 n 都有 $a_n < a_{n+1}$. 称数列 $\{x_n\}_{n=1}^{\infty}$ 是不减的, 如果对任何正整数 n 都有 $a_n \leq a_{n+1}$.

类似的,可以定义递减的数列与不增的数列.人们将这四类数列统称为单调数列.

定理 2.3.2 (Weierstrass). 不减的且有上界的实数数列必有极限.

证明: 设 $\{x_n\}_{n=1}^{\infty}$ 是不减的且有上界的数列. 考虑集合 $X = \{x_1, x_2, ...\}$, 它有上界, 则必有上确界 $\sup X = s$. 我们来证明 $\lim_{n \to \infty} x_n = s$. 为此, 对任何 $\epsilon > 0$, 由于 $s - \epsilon$ 不再是 X 的上界, 存在 $N \in \mathbf{Z}_+$ 使得 $x_N > s - \epsilon$. 这样, 对任何 $n \ge N$ 有

$$s \ge x_n \ge x_N > s - \epsilon$$
,

特别的, 有 $|x_n - s| < \epsilon$. 这就证明了 $\lim_{n \to \infty} x_n = s$.

例 2.3.3. 数列 $\{x_n=(1+\frac{1}{n})^n\}_{n=1}^{\infty}$ 收敛.

证明: (1) 数列 $\{x_n\}_{n=1}^{\infty}$ 有上界. 首先, 注意到

$$(1+\frac{1}{n})^n = \sum_{k=0}^n \binom{n}{k} (\frac{1}{n})^k = \sum_{k=0}^n \frac{n...(n-k+1)}{k! \cdot n^k} \le \sum_{k=0}^n \frac{1}{k!}.$$

令 $y_n = \sum_{i=0}^n \frac{1}{i!}$, 则 $x_n \le y_n$. 其次, 数列 $\{y_n\}_{n=1}^{\infty}$ 是有上界的, 这是因为

$$y_n \le 1 + 1 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n}$$
$$= 1 + 1 + (\frac{1}{1} - \frac{1}{2}) + \dots + (\frac{1}{n-1} - \frac{1}{n})$$
$$= 3 - \frac{1}{n} < 3.$$

这就证明了数列 $\{x_n\}_{n=1}^{\infty}$ 有上界.

(2) 数列 $\{x_n\}_{n=1}^{\infty}$ 是不减的. 利用算数-几何平均不等式, 可得

$$\sqrt[n+1]{(1+\frac{1}{n})^n \cdot 1} \le \frac{n(1+\frac{1}{n})+1}{n+1} = 1 + \frac{1}{n+1},$$

由此可得 $x_n \leq x_{n+1}$.

结合
$$(1),(2)$$
, 由 Weierstrass 定理可知极限 $\lim_{n\to\infty}(1+\frac{1}{n})^n$ 存在.

Euler 把上述极限记作 $e:=\lim_{n\to\infty}(1+\frac{1}{n})^n$, 这是数学中最重要的常数之一. 人们可以估算出

$$e \simeq 2.718281828459.....$$

但如果用定义式 $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$ 来计算的话, 收敛速度特别慢, 如下表所示:

n	1	2	3	4	5	100	1000	10000	100000
x_n	2	2.25	2.370	2.441	2.488	2.7048	2.7169	2.7181	2.718268

例 2.3.4. 可用如下方法计算 e:

$$e = \lim_{n \to \infty} (1 + \frac{1}{1!} + \dots + \frac{1}{n!}).$$

证明: (1) $\{y_n\}_{n=1}^{\infty}$ 是递增且有上界的数列, 由 Weierstrass 定理可知其极限存在, 设为 $\lim_{n\to\infty}y_n=Y$.

(2) 由例2.3.3, 有 $x_n \le y_n$, 利用极限不等式可得

$$e = \lim_{n \to \infty} x_n \le \lim_{n \to \infty} y_n = Y.$$

(3) 对固定的 k, 当 $n \ge k$ 时有

$$x_n = (1 + \frac{1}{n})^n \ge 1 + \frac{1}{1!} \cdot \frac{n}{n} + \frac{1}{2!} \cdot \frac{n}{n} \cdot \frac{n-1}{n} + \ldots + \frac{1}{k!} \cdot \frac{n}{n} \cdot \ldots \cdot \frac{n-k+1}{n},$$

由极限不等式可得

$$e = \lim_{n \to \infty} x_n \ge 1 + \frac{1}{1!} + \dots + \frac{1}{k!} = y_k,$$

再一次利用极限不等式, 得 $e \ge \lim_{k \to \infty} y_k = Y$.

结合 (2), (3), 可得

$$e = \lim_{n \to \infty} y_n = \lim_{n \to \infty} (1 + \frac{1}{1!} + \dots + \frac{1}{n!}).$$

用这个方法估算 e, 收敛速度快得多, 如下表所示:

n	1	2	3	4	5	6	7	8	9	10
y_n	2	2.5	2.666	2.708	2.7166	2.71805	2.71825	2.71827	2.71828	2.7182818

例 2.3.5. 设 *n* 是正整数. 证明:

$$0 < e - \left(1 + \frac{1}{1!} + \dots + \frac{1}{n!}\right) \le \frac{2}{(n+1)!}.$$

命题 2.3.6. *e* 不是有理数.

例 2.3.7. 给定正整数 $k \ge 2$ 与实数 a > 0. 定义数列为:

$$x_1 > 0$$
, $x_{n+1} = \frac{k-1}{k} x_n + \frac{a}{k x_n^{k-1}}$, $\forall n \ge 1$.

证明极限 $\lim_{n\to\infty} x_n$ 存在, 并求出该极限.

解. 由几何-算术平均不等式, 对任何 $n \ge 1$, 有:

$$x_{n+1} = \frac{1}{k} \left(\underbrace{x_n + \dots + x_n}_{(k-1)\uparrow} + \frac{a}{x_n^{k-1}} \right)$$

$$\geq \sqrt{\underbrace{x_n \cdot \dots \cdot x_n}_{(k-1)\uparrow} \cdot \frac{a}{x_n^{k-1}}}$$

$$= \sqrt[k]{a},$$

由此可知, 对任何 $n \geq 2$, 有 $\frac{a}{x_n^{k-1}} \leq x_n$. 从而有:

$$x_{n+1} = \frac{(k-1)x_n + \frac{a}{x_n^{k-1}}}{k} \le \frac{(k-1)x_n + x_n}{k} = x_n, \quad \forall n \ge 2.$$

这样, 数列 $\{x_n\}_{n=2}^{\infty}$ 单调递减且有下界, 由 Weierstrass 定理知极限 $\lim_{n\to\infty} x_n$ 存在, 记作 $\lim_{n\to\infty} x_n = A$. 利用极限不等式可知, $A \geq \sqrt[6]{a} > 0$.

最后, 对 $x_{n+1} = \frac{k-1}{k} x_n + \frac{a}{kx_n^{k-1}}$ 两边取极限, 可得

$$A = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \frac{k-1}{k} x_n + \frac{a}{k x_n^{k-1}} = \frac{k-1}{k} A + \frac{a}{k A^{k-1}},$$

解得 $A = \sqrt[k]{a}$. 这样我们就证明了 $\lim_{n \to \infty} x_n = \sqrt[k]{a}$.

2.3.2 Cauchy 收敛原理

定理 2.3.8 (Cauchy 收敛原理). 实数序列 $\{x_n\}_{n=1}^{\infty}$ 收敛的充分必要条件是: 对任何 $\epsilon>0$,存在正整数 $N(\epsilon)$ 使得只要 $m,n\geq N(\epsilon)$,则 $|x_n-x_m|<\epsilon$.

证明: (1) 先证明 $\{x_n\}_{n=1}^{\infty}$ 有界. 取 $\epsilon=1$, 由假设存在整数 N_0 , 使得对任何 $m,n\geq N_0$, 有 $|x_m-x_n|<1$. 特别的, 有

$$|x_n - x_{N_0}| < 1, \quad \forall n \ge N_0$$

这表明数列 $\{x_n\}_{n=1}^{\infty}$ 有界.

(2) 对每个正整数 n, 由 (1) 的结论可知 $\{x_i: i \geq n\}$ 有界, 因而有上确界与下确界. 设

$$a_n = \inf\{x_i : i \ge n\}, \quad b_n = \inf\{x_i : i \ge n\}.$$

显然有

$$a_1 \le a_2 \le \cdots a_n \le b_n \le b_{n-1} \le \cdots \le b_1.$$

20 第二章 极限

特别的, $\{a_n\}_{n=1}^{\infty}$ 递增且有上界, $\{b_n\}_{n=1}^{\infty}$ 递减且有下界, 由 Weierstrass 定理可知这两个数列都收敛. 设 $\lim_{n\to\infty}a_n=A$, $\lim_{n\to\infty}b_n=B$, 则 $A\leq B$. 另一方面, 对每个正数 ϵ , 存在正整数 N, 使得对任何 $m,n\geq N$, 有 $|x_m-x_n|<\epsilon$. 由此可得, 对任何 n>N, 有

$$\sup\{x_i - x_i | i \ge n, j \ge n\} \le \epsilon.$$

容易直接验证

$$\sup\{x_i - x_j | i \ge n, j \ge n\} = \sup\{x_i | i \ge n\} - \inf\{x_j | j \ge n\} = b_n - a_n,$$

则对 n > N 有 $b_n - a_n \le \epsilon$. 利用极限不等式可得 $B - A \le \epsilon$. 由前述 $A \le B$ 以及 ϵ 的任意性, 有 A = B, 记它们的值为 L.

(3) 最后, 注意到对每个正整数 n, 有 $a_n \le x_n \le b_n$, 利用夹逼定理可得 $\lim_{n \to \infty} x_n = L$.

例 2.3.9. 给定实数 θ , 则极限 $\lim_{n\to\infty}\sum_{k=1}^n \frac{\sin(k\theta)}{k^2}$ 存在.

2.4 函数极限的定义

我们已经定义了数列的极限. 数列是一类特殊的函数 $f: \mathbf{Z}_+ \to \mathbf{R}$, 所谓数列的极限是指当自变量 $n \to +\infty$ 时, 函数值 f(n) 的 "最终" 趋向. 容易把数列极限的定义推广到一般函数.

定义 2.4.1. 给定 $a \in \mathbf{R}$, 称 $B_r(a) = \{x : |x - a| < r\}$ 为 a 的半径为 r 的开球邻域; 称 $B_r(a) \setminus \{a\}$ 为 a 的半径为 r 的空心开球邻域.

定义 2.4.2 $(\epsilon - \delta$ 语言). 设函数 f 在 a 的某个空心邻域 $B_r(a)\setminus\{a\}$ 上有定义. 如果对任何 $\epsilon > 0$,存在 (依赖于 ϵ 的) 实数 $\delta > 0$,使得对任何 $0 < |x - a| < \delta$ 都有 $|f(x) - A| < \epsilon$,则称当 x 趋于 a 时,函数 f 的极限为 A,记作 $\lim_{x \to a} f(x) = A$.

- **注 2.4.3.** (1) 当 $x \to a$ 时 f 的极限与 f(a) 无关 (事实上, f 在 a 点可以没有定义), 只与 f 在 a 的某个空心邻域上的行为有关.
 - (2) 如果有极限,则极限是唯一的.

例 2.4.4.
$$\lim_{x\to 0} x \sin \frac{1}{x} = 0$$
.

定义 2.4.5 (单侧极限). 设函数 f 在 (a, a + r) 上有定义. 如果对任何 $\epsilon > 0$, 存在 (依赖于 ϵ 的) 实数 $\delta > 0$, 使得对任何 $0 < x - a < \delta$ 都有 $|f(x) - A| < \epsilon$, 则称当 x 从右侧趋于 a 时, 函数 f 的右极限为 A, 记作 $\lim_{x \to a^+} f(x) = A$.

2.5 函数极限的性质 21

类似的, 设函数 f 在 (a-r,a) 上有定义. 如果对任何 $\epsilon>0$, 存在 (依赖于 ϵ 的) 实数 $\delta>0$, 使得对任何 $-\delta< x-a<0$ 都有 $|f(x)-A|<\epsilon$, 则称当 x 从左侧趋于 a 时, 函数 f 的左极限为 A, 记作 $\lim_{x\to a} f(x)=A$.

例 2.4.6. 设 f(x) = sgn(x), 则 $\lim_{x \to 0^{-}} f(x) = -1$, $\lim_{x \to 0^{+}} f(x) = 1$.

命题 2.4.7. 设函数 f 在 a 的某个空心邻域 $B_r(a)\setminus\{a\}$ 上有定义,则 $\lim_{x\to a}f(x)$ 存在的充分必要条件是单侧极限 $\lim_{x\to a^-}f(x)$ 与 $\lim_{x\to a^+}f(x)$ 存在且相等.

定义 2.4.8 (自变量趋于无穷时的极限). 设 f 在区间 $(a, +\infty)$ 上有定义, 如果对任何 $\epsilon > 0$, 存 在 M > 0, 使得对任何 x > M, 有 $|f(x) - A| < \epsilon$, 则称当 x 趋近于 $+\infty$ 时 f(x) 的极限为 A, 记作 $\lim_{x \to +\infty} f(x) = A$.

类似的, 可以定义当 x 趋近于 $-\infty$ 或 ∞ 时 f(x) 的极限:

命题 2.4.9. 极限 $\lim_{x\to\infty} f(x)$ 存在的充分必要条件是极限 $\lim_{x\to-\infty} f(x)$ 与 $\lim_{x\to+\infty} f(x)$ 存在且相等.

2.5 函数极限的性质

命题 2.5.1. 设函数 f,g 在 a 的某个空心邻域 $B_r(a)\setminus\{a\}$ 上有定义. 如果 $\lim_{x\to a}f(a)<\lim_{x\to a}g(x)$,则存在正数 δ ,使得对任何 $0<|x-a|<\delta$,都有 f(x)< g(x).

推论 2.5.2 (极限不等式). 设函数 f,g 在 a 的某个空心邻域 $B_r(a)\setminus\{a\}$ 上有定义,并且极限 $\lim_{x\to a} f(x) = A, \lim_{x\to a} g(x) = B$ 都存在. 如果存在正数 δ 使得对任何 $0 < |x-a| < \delta$ 都有 $f(x) \le g(x)$,则 $A \le B$.

命题 2.5.3. 设函数 f 在 a 的某个空心邻域 $B_r(a)\setminus\{a\}$ 上有定义, 且极限 $\lim_{x\to a} f(x)$ 存在, 则 f 在 a 附近有界, 即存在 $\delta>0$ 与 M>0, 使得对任何 $0<|x-a|<\delta$ 都有 $|f(x)|\leq M$.

可以用数列极限刻画函数极限.

定理 2.5.4 (Heine). 设函数 f 在 a 的某个空心邻域 $B_r(a)\setminus\{a\}$ 上有定义,则 $\lim_{x\to a} f(x) = A$ 充分必要条件是: 对任何数列 $\{x_n\}_{n=1}^{\infty}$,只要 $\forall n$ 有 $x_n \in B_r(a)\setminus\{a\}$ 且 $\lim_{n\to\infty} x_n = a$,则有 $\lim_{n\to\infty} f(x_n) = A$.

例 2.5.5. 当 $x \to 0$ 时, $\sin \frac{1}{x}$ 没有极限.

2.6 计算极限的方法

2.6.1 直接用定义验证

例 2.6.1. 给定实数 α , 求极限 $\lim_{x\to a^+} (x-a)^{\alpha}$.

例 2.6.2. 给定实数 α , 求极限 $\lim_{x\to +\infty} x^{\alpha}$.

引理 2.6.3. 设 $0 < x < \frac{\pi}{2}$, 则 $\sin x < x < \tan x$.

例 2.6.4. $\lim_{x\to a} \sin x = \sin a$, $\lim_{x\to a} \cos x = \cos a$.

2.6.2 夹逼定理

定理 2.6.5 (夹逼定理). 设函数 f,g,h 在 a 的某个空心邻域 $B_r(a)\setminus\{a\}$ 上有定义,且存在正数 δ 使得

$$f(x) \le g(x) \le h(x), \quad \forall 0 < |x - a| < \delta.$$

如果 $\lim_{x \to a} f(x), \lim_{x \to a} h(x)$ 存在且都等于 L, 则 $\lim_{x \to a} g(x)$ 也存在且等于 L.

例 2.6.6. $\lim_{x\to 0} \frac{\sin x}{x} = 1.$

2.6.3 极限的四则运算

定理 2.6.7 (极限的四则运算). 设 $\lim_{x\to a}f(x)=A,\lim_{x\to a}g(x)=B$,则如下论断成立.

- (1) $\lim_{x \to a} f(x) + g(x) = A + B$.
- (2) $\lim_{x \to a} f(x)g(x) = AB.$
- (3) 如果 $B \neq 0$, 则 $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$.

例 2.6.8. 设 $b_0 \neq 0$. 求极限

$$\lim_{x \to a} \frac{a_0 + a_1(x-a) + \dots + a_k(x-a)^k}{b_0 + b_1(x-a) + \dots + b_l(x-a)^l}.$$

例 2.6.9. 设 $a_k, b_l \neq 0$. 求极限

$$\lim_{x \to +\infty} \frac{a_k x^k + \dots + a_0}{b_l x^l + \dots + b_0}.$$

例 2.6.10. 求极限 $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.

2.6.4 复合函数的极限

- **定理 2.6.11** (复合函数的极限). 设 $\lim_{x\to x_0} f(x) = y_0$, $\lim_{y\to y_0} g(y) = z_0$. (1) 如果在 x_0 的某个空心邻域内总有 $f(x)\neq y_0$, 则 $\lim_{x\to x_0} g(f(x)) = z_0$.
 - (2) 如果 $g(y_0) = \lim_{y \to y_0} g(y)$, 则 $\lim_{x \to x_0} g(f(x)) = z_0$.

当上述定理中 f 是数列时 (视为定义域为 \mathbf{Z}_+ 的函数), 则得到如下结果.

命题 2.6.12. 设 $\lim_{n\to\infty} a_n = y_0$, $\lim_{y\to y_0} g(y) = z_0$.

- (1) 如果存在正整数 N, 使得对任何 $n \geq N$ 都有 $a_n \neq y_0$, 则 $\lim_{n \to \infty} g(a_n) = z_0$.
- (2) 如果 $g(y_0) = \lim_{y \to y_0} g(y)$, 则 $\lim_{n \to \infty} g(a_n) = z_0$.

例 2.6.13.
$$\lim_{x\to 0} \frac{\sin 2x}{2x} = 1.$$

例 2.6.14.
$$\lim_{x \to +\infty} (1 + \frac{1}{[x]})^{[x]+1} = e = \lim_{x \to +\infty} (1 + \frac{1}{[x]+1})^{[x]}$$
.

例 2.6.15.
$$\lim_{x\to +\infty} (1+\frac{1}{x})^x = e = \lim_{x\to -\infty} (1+\frac{1}{x})^x$$
. 可以把这两个结果统一写成

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e.$$

例 2.6.16.
$$\lim_{t\to 0} (1+t)^{1/t} = e$$
.

例 2.6.17.
$$\lim_{x\to 0} (1+\tan x)^{\cot x} = e$$
.

例 2.6.18.
$$\lim_{x\to 0} \frac{\sin(\tan x)}{\sin x} = 1.$$

例 2.6.19. 设
$$\lim_{x \to x_0} u(x) = a > 0$$
, $\lim_{x \to x_0} v(x) = b$, 则 $\lim_{x \to x_0} u(x)^{v(x)} = a^b$.

例 2.6.20.
$$\lim_{x\to 0} (\cos 2x)^{1/x^2} = e^{-2}$$
.

24 第二章 极限

第三章 连续性

3.1 连续函数

定义 3.1.1 (一点处的连续性). 设 f 在 x_0 的某个开球邻域内有定义, 称 f 在 x_0 处连续, 如果如下彼此等价的命题成立.

- (1) $\lim_{x \to x_0} f(x) = f(x_0).$
- (2) 对任何 $\epsilon > 0$, 存在 $\delta > 0$, 使得对任何 $|x x_0| < \delta$, 有 $|f(x) f(x_0)| < \epsilon$.
- (3) 对 $f(x_0)$ 的任何邻域 $N(f(x_0), \epsilon)$, 存在 x_0 的邻域 $N(x_0, \delta)$, 使得 $f(N(x_0, \delta)) \subset N(f(x_0), \epsilon)$.

注 3.1.2. 所谓 f 在 x_0 处连续,是指对于任何事先给定的误差范围 $\epsilon > 0$,只要 x 与 x_0 隔的充分 近,则 f(x) 与 $f(x_0)$ 的距离小于 ϵ . 粗略的说,即 f 把 x_0 某个附近的点都映射到 $f(x_0)$ 的附近. 更加粗略的说,即 f 在 x_0 处 "没有撕裂". 从几何图像上看,即 f 的图像 $\Gamma_f := \{(x, f(x)|x \in X\}$ 在 $(x_0, f(x_0))$ 处 "没有断开".

命题 3.1.3 (用序列极限刻画连续性). f 在 x_0 处连续的充分必要条件是: 对任何数列 $\{x_n\}_{n=1}^{+\infty}$, 如果 $\lim_{n\to\infty} x_n = x_0$, 则 $\lim_{n\to\infty} f(x_n) = f(x_0)$.

定义 3.1.4. 如果 f 在 x_0 处连续,则称 x_0 为 f 的连续点,否则称之为 f 的间断点.

从上述定义可知:

xo是间断点

$$\iff \exists \epsilon > 0, \forall \delta > 0, \text{ 存在}|x - x_0| < \delta, \text{ 使得}|f(x) - f(x_0)| \ge \epsilon$$

 \iff 或者 $\lim_{x \to x_0} f(x)$ 不存在, 或者 $\lim_{x \to x_0} f(x)$ 存在但不等于 $f(x_0)$.

例 3.1.5. 考虑如下函数在 x = 0 处是否连续

$$f(x) = \begin{cases} \sin\frac{1}{x}, & \text{ un} x \neq 0 \\ 0, & \text{ un} x = 0. \end{cases}$$

26 第三章 连续性

例 3.1.6. 如果 $\lim_{x\to a_0} f(x)$ 存在但不等于 $f(x_0)$, 则称 x_0 为可去间断点, 因为可以把 f 修改成

$$\widetilde{f}(x) = \begin{cases} f(x), & \text{mR} x \neq x_0 \\ \lim_{x \to x_0} f(x), & \text{mR} x = x_0 \end{cases}$$

则 \widetilde{f} 在 x_0 处连续.

定义 3.1.7 (整体连续). 如果 f 在 (a,b) 上每一点处都连续,则称 f 在区间 (a,b) 上连续,或称 f 是区间 (a,b) 上的连续函数,记作 $f \in C((a,b))$.

如果 f 的定义域是闭区间 [a,b], 如何定义连续性呢?

定义 3.1.8. 设 f 在 D = [a, a+r) 上有定义, 称 f 在点 a 处右连续, 如果如下彼此等价的命题成立.

- (1) $\lim_{x \to a^{+}} f(x) = f(a)$.
- (2) 对任何 $\epsilon > 0$, 存在 $\delta > 0$, 使得对任何 $0 \le x a < \delta$, 有 $|f(x) f(a)| < \epsilon$.
- (3) 对 f(a) 的任何邻域 $N(f(a),\epsilon)$, 存在 a 的某个邻域 $D\cap N(a,\delta)$, 使得 $f(D\cap N(a,\delta))\subset N(f(a),\epsilon)$.

类似的, 如果 f 在 (b-r,b] 上有定义, 则可以定义 f 在点 b 处是否左连续.

容易看出,上述第三种定义比较便于推广. 当 f 的定义域是任意集合 $D \subset \mathbf{R}$ 时,也可以定义连续性.

定义 3.1.9. 设 $f: D \to \mathbf{R}$ 的定义域为 $D, x_0 \in D$. 如果对 $f(x_0)$ 的任何邻域 $N(f(x_0), \epsilon)$,都 存在 x_0 的某个邻域 $D \cap N(x_0, \delta)$,使得 $f(D \cap N(x_0, \delta)) \subset N(f(x_0), \epsilon)$,则称 f 在点 x_0 处连续.

定义 3.1.10 (整体连续). 设 $f: D \to \mathbf{R}$ 的定义域为 D. 如果 f 在 D 上每一点都连续,则称 f 是 D 上的连续函数,记作 $f \in C(D)$.

注 3.1.11. $f \in C([a,b])$ 的含义是: f 在 a 处右连续, 在 b 处左连续, 且在内部每个点 $x \in (a,b)$ 处连续.

3.2 连续函数的局部性质

定理 3.2.1 (四则运算保持连续性). 设 f,g 在 x_0 处连续, 则 $f+g,f\cdot g$ 在 x_0 处连续. 如果 $g(x_0)\neq 0$, 则 $\frac{f}{g}$ 在 x_0 处也连续.

推论 3.2.2. 设 $f,g \in C((a,b))$, 则 $f+g,f\cdot g \in C((a,b))$. 如果令 $V=\{x \in (a,b)|g(x)=0\}$, 则 $\frac{f}{a}$ 在 $(a,b)\setminus V$ 上连续.

例 3.2.3 (有理函数). 设 $P(x) = \sum_{i=0}^{n} a_i x^i, Q(x) = \sum_{j=0}^{m} b_j x^j$ 是多项式函数, 则 $P, Q \in C(\mathbf{R})$. 令 $V_Q = \{x \in \mathbf{R} : Q(x) = 0\}$ 为 Q 的零点的集合,则有理函数 $\frac{P}{Q}$ 是 $\mathbf{R} \setminus V_Q$ 上的连续函数.

定理 3.2.4 (复合函数的连续性). 设 f 在 (a,b) 上有定义, g 在 (c,d) 上有定义, 且 $f((a,b)) \subset (c,d)$. 如果 f 在 x_0 处连续, g 在 $f(x_0)$ 处连续, 则复合函数 $g \circ f$ 在 x_0 处连续.

推论 3.2.5 (连续函数的复合是连续的). 设 $f: D \to E, g: E \to F$ 都是连续函数,则 $g \circ f: D \to F$ 是连续函数.

例 3.2.6. 设函数 u(x), v(x) 在 x_0 处都连续, 且 $u(x_0) > 0$, 则函数 $u(x)^{v(x)}$ 在 x_0 处也连续.

3.3 连续函数的整体性质

3.3.1 实数的完备性

以下三个定理彼此等价, 它们描述了实数集 R 的完备性.

定理 3.3.1. 不减且有上界的数列一定收敛.

定理 3.3.2 (区间套原理). 设一族闭区间满足

$$[a_1,b_1]\supset [a_2,b_2]\supset\ldots\supset [a_n,b_n]\supset\ldots$$

且长度趋近于 0, 即 $\lim_{n\to\infty}(b_n-a_n)=0$, 则 $\lim_{n\to\infty}a_n$ 与 $\lim_{n\to\infty}b_n$ 都存在且相等. 更进一步,记 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c$, 则 $\bigcap_{n=1}^{\infty}[a_n,b_n]=\{c\}$.

定理 3.3.3. 有上界的非空实数集一定有上确界.

"定理3.3.1⇒ 定理3.3.2". 对每个正整数 n, 有

$$a_1 \le a_2 \le \dots \le a_n \le b_n \le \dots \le b_2 \le b_1$$

特别的, $\{a_n\}_{n=1}^{\infty}$ 不減且有上界 b_1 , $\{b_n\}_{n=1}^{\infty}$ 不增且有下界 a_1 . 由 Weierstrass 定理, $\{a_n\}_{n=1}^{\infty}$ 与 $\{b_n\}_{n=1}^{\infty}$ 都收敛. 设 $\lim_{n\to\infty}a_n=A$, $\lim_{n\to\infty}b_n=B$, 由 $\lim_{n\to\infty}(b_n-a_n)=0$ 可得 A=B. 设 A=B=c, 我们来证明 $\bigcap_{n=1}^{\infty}[a_n,b_n]=\{c\}$. 一方面,对固定的 n, 对每个 $m\geq n$ 有 $a_n\leq a_m$,则 $a_n\leq\lim_{m\to\infty}a_m=c$,类似的可得 $c\leq b_n$. 这表明 $\{c\}\subset\bigcap_{n=1}^{\infty}[a_n,b_n]$. 另一方面,如果 $x\in\bigcap_{n=1}^{\infty}[a_n,b_n]$,则对每个 n 都有 $a_n\leq x\leq b_n$,由极限不等式可得 $c=\lim_{n\to\infty}a_n\leq x\leq \lim_{n\to\infty}b_n=c$,故 x=c,由此可得 $\bigcap_{n=1}^{\infty}[a_n,b_n]\subset\{c\}$. 结合这两方面,我们证明了 $\bigcap_{n=1}^{\infty}[a_n,b_n]=\{c\}$.

28 第三章 连续性

"定理3.3.2 定理3.3.3". 设 $X \subset \mathbf{R}$ 有上界 b 且非空, 我们来证明 $\sup X$ 存在. 任取 $x_0 \in X$ 与 $a < x_0$. 我们构造一族闭区间

$$[a_1,b_1]\supset [a_2,b_2]\supset ...\supset [a_n,b_n]\supset ...$$

使得 $b_n - a_n = \frac{1}{2}(b_{n-1} - a_{n-1})$,且 a_n 不是 X 的上界, b_n 是 X 的上界.为此,令 $a_1 = a, b_1 = b$. 假设已经构造出 a_n, b_n ,考虑 $\frac{a_n + b_n}{2}$ 是否为 X 的上界.如果 $\frac{a_n + b_n}{2}$ 是 X 的上界,则令 $a_{n+1} = a_n, b_{n+1} = \frac{a_n + b_n}{2}$;如果 $\frac{a_n + b_n}{2}$ 不是 X 的上界,则令 $a_{n+1} = \frac{a_n + b_n}{2}$, $b_{n+1} = b_n$. 这样,我们就递归的构造出一族满足前述条件的区间.注意到 $\lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} \frac{b_1 - a_1}{2^{n-1}} = 0$,由定理3.3.2可知 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = c$.最后,我们来证明 $c = \sup X$.一方面,对任何 $x \in X$,对任何正整数 n 有 $x \le b_n$,利用极限不等式可得 $x \le \lim_{n \to \infty} b_n = c$,这表明 c 是 X 的上界.另一方面,对任何 c' < c,由于 $c' < \lim_{n \to \infty} a_n$,存在 n 使得 $c' < a_n$. 又由之前的构造方式, a_n 不是 X 的上界,存在 $x \in X$ 使得 $a_n < x$,这样就找到了 $x \in X$ 使得 c' < x,这表明 c' 不是 x 的上界.结合这两方面,我们证明了 $x \in X$

"定理3.3.3⇒ 定理3.3.1". 在之前的讲义中已经完成这部分的证明.

3.3.2 介值定理

定理 3.3.4 (介值定理, Bolzano-Cauchy). 设 $f:[a,b] \to \mathbf{R}$ 是连续函数. 如果 f(a) 与 f(b) 符号相反,则存在 $c \in (a,b)$ 使得 f(c) = 0.

证明: 用反证法, 假设对任何 $c \in (a,b)$ 都有 $f(c) \neq 0$. 不妨设 f(a) < 0 < f(b). 我们构造一族闭区间

$$[a_1,b_1]\supset [a_2,b_2]\supset\ldots\supset [a_n,b_n]\supset\ldots$$

使得 $b_n - a_n = \frac{1}{2}(b_{n-1} - a_{n-1})$,且 $f(a_n) < 0 < f(b_n)$. 为此,令 $a_1 = a, b_1 = b$. 假设已经构造出 a_n, b_n ,考虑 $f(\frac{a_n + b_n}{2})$. 如果 $f(\frac{a_n + b_n}{2}) > 0$,则令 $a_{n+1} = a_n, b_{n+1} = \frac{a_n + b_n}{2}$;如果 $f(\frac{a_n + b_n}{2}) < 0$,则令 $a_{n+1} = \frac{a_n + b_n}{2}$;如果 $f(\frac{a_n + b_n}{2}) < 0$,则令 $a_{n+1} = \frac{a_n + b_n}{2}$, $b_{n+1} = b_n$. 这样,我们就递归的构造出一族满足前述条件的区间.注意到 $\lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} \frac{b_1 - a_1}{2^{n-1}} = 0$,由定理3.3.2可知 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = c$. 利用定理3.3.2,由 f 的连续性及极限不等式,可得 $f(c) = \lim_{n \to \infty} f(a_n) \le 0$.类似的,也有 $f(c) = \lim_{n \to \infty} f(b_n) \ge 0$.结合这两方面可知 f(c) = 0,这与假设矛盾!

推论 3.3.5. 设 $f:[a,b]\to \mathbf{R}$ 是连续函数. 则对任何中间值 v

$$\min\{f(a), f(b)\} \le v \le \max\{f(a), f(b)\},\$$

总存在 $c \in [a,b]$ 使得 f(c) = v.

推论 3.3.6. 设 f 是开区间 I 上的连续函数. 则对任何 $a,b \in I$ 以及介于 f(a),f(b) 之间的任何值 v

$$\min\{f(a), f(b)\} \le v \le \max\{f(a), f(b)\},\$$

总存在 $c \in [a,b]$ 使得 f(c) = v.

3.3.3 有界性定理与最值定理

定理 3.3.7 (有界性定理). 有界闭区间上的连续函数是有界的. 具体的说, 设 $f \in C([a,b])$, 则存在正实数 M 使得 $|f(x)| \le M, \forall x \in [a,b]$.

定理 3.3.8 (最大最小值定理). 有界闭区间上的连续函数能取到最大值与最小值. 具体的说, 设 $f \in C([a,b])$, 则存在 $x_1, x_2 \in [a,b]$ 使得

$$f(x_1) \le f(x) \le f(x_2), \quad \forall x \in [a, b].$$

为了证明这两个结果, 我们需要用到如下的

定理 3.3.9 (有限覆盖定理, Borel). 任意给定一族开区间 $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$. 如果 $[a,b]\subset \cup_{{\lambda}\in\Lambda}U_{\lambda}$,则可从这族开区间中选取有限个, 使得它们的并集包含 [a,b].

证明: 如果能从 $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ 中选出有限个, 使得它们的并集包含 [c,d], 则称 [c,d] 能被"有限覆盖". 用反证法, 假设 [a,b] 不能被有限覆盖. 我们构造一族闭区间

$$[a_1,b_1]\supset [a_2,b_2]\supset ...\supset [a_n,b_n]\supset ...$$

使得 $b_n - a_n = \frac{1}{2}(b_{n-1} - a_{n-1})$,且 $[a_n, b_n]$ 不能被有限覆盖. 为此,令 $a_1 = a, b_1 = b$. 假设已经构造好 $[a_n, b_n]$,考虑 $[a_n, b_n] = [a_n, \frac{a_n + b_n}{2}] \cup [\frac{a_n + b_n}{2}, b_n]$. 由于 $[a_n, b_n]$ 不能被有限覆盖, $[a_n, \frac{a_n + b_n}{2}]$ 与 $[\frac{a_n + b_n}{2}, b_n]$ 中一定有一个也不能被有限覆盖,把它记作 $[a_{n+1}, b_{n+1}]$. 这样,我们就递归的构造出一族满足前述条件的区间.注意到 $\lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} \frac{b_1 - a_1}{2^{n-1}} = 0$,由定理3.3.2可知 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = c$. 显然 $c \in [a, b]$,则存在 $\alpha \in \Lambda$ 使得 $c \in U_\alpha$. 设 $U_\alpha = (x_\alpha, y_\alpha)$,则 $x_\alpha < c < y_\alpha$. 此即 $x_\alpha < \lim_{n \to \infty} a_n$ 且 $\lim_{n \to \infty} b_n < y_\alpha$,从而存在 n 使得 $x_\alpha < a_n < b_n < y_\alpha$. 这样, $[a_n, b_n] \subset U_\alpha$,与 $[a_n, b_n]$ 不能被有限覆盖矛盾! 这就完成了定理的证明.

定理3.3.7的证明. 取 $\epsilon = 1$, 对每个 $x \in [a,b]$, 由 f 在 x 处连续的定义, 存在 $\delta(x) > 0$, 使得对任何 $y \in N(x,\delta(x)) \cap [a,b]$, 有 |f(x) - f(y)| < 1. 令 $U_x = N(x,\delta(x))$, $M_x = \max\{|f(x) - 1|, |f(x) + 1|\}$, 则对任何 $y \in U_x \cap [a,b]$, 有 $|f(y)| < M_x$. 考虑这一族开区间 $\{U_x\}_{x \in [a,b]}$, 注意到

$$[a,b] = \bigcup_{x \in [a,b]} \{x\} \subset \bigcup_{x \in [a,b]} U_x,$$

30 第三章 连续性

利用定理3.3.14, 存在有限个 $x_1,...,x_n \in [a,b]$, 使得

$$[a,b] \subset \bigcup_{i=1}^n U_{x_i}$$
.

这样, 对任何 $y \in [a,b]$, 存在 $1 \le i \le n$, 使得 $y \in U_{x_i}$, 由前述有

$$|f(y)| \le M_{x_i} \le \max\{M_{x_1}, ..., M_{x_n}\},\$$

这就证明 f 在 [a,b] 上有上界 $M = \max\{M_{x_1},...,M_{x_n}\}$.

定理 3.3.8的证明. 设 $f \in C([a,b])$,则由有界性定理可知像集 f([a,b]) 有上界,因而有上确界,设为 $M = \sup f([a,b])$. 我们来证明 $M \in f([a,b])$. 用反证法,假设对每个 $x \in [a,b]$ 都有 $f(x) \neq M$,则 $f(x) < \frac{f(x)+M}{2}$. 由 f 在 x 处连续,存在 $\delta(x) > 0$,使得对任何 $y \in N(x,\delta(x)) \cap [a,b]$,有 $f(y) < \frac{f(x)+M}{2}$. 令 $U_x = N(x,\delta(x))$, $M_x = \frac{f(x)+M}{2}$,则对任何 $y \in U_x \cap [a,b]$,有 $|f(y)| < M_x$. 与定理 3.3.7的证明类似,存在有限个 $x_1, ..., x_n \in [a,b]$,使得

$$[a,b] \subset \bigcup_{i=1}^n U_{x_i}.$$

这样, 对任何 $y \in [a,b]$, 有

$$f(y) < \max\{M_{x_1}, ..., M_{x_n}\}.$$

这表明 $M' = \max\{M_{x_1}, ..., M_{x_n}\}$ 是 f([a, b]) 的上界, 但 M' < M, 这与假设 M 是上确界矛盾! 这就完成了证明.

注 3.3.10. 从上述证明中我们看到, 有限覆盖定理是从局部构造过渡到整体构造的桥梁.

3.3.4 有关连续函数的整体性质的现代观点

例 3.3.11. 对连续函数 $f:[a,b]\cup[c,d]\to \mathbf{R}$, 介值定理不再成立.

定理 3.3.12 (介值定理的一般形式). 如果 $f: D \to \mathbf{R}$ 是连续函数且 D 是连通的,则 f(D) 也是连通的.

例 3.3.13. 对于开区间 $(a,b), (-\infty,a), (b,+\infty)$,半开半闭区间 (a,b], [a,b) 或者无界闭区间 $(-\infty,a], [b,+\infty)$ 上的连续函数,有界性定理与最值定理都不再成立. 这表明有界闭区间 [a,b] 与开区间,半开半闭区间或者无界闭区间有着显著的区别.

定理 3.3.14 (有限覆盖定理, Borel). 任意给定一族开区间 $\{U_{\lambda}\}_{\lambda\in\Lambda}$. 如果 $[a,b]\subset \cup_{\lambda\in\Lambda}U_{\lambda}$,则可从这族开区间中选取有限个,使得它们的并集包含 [a,b].

注 3.3.15. 证明的关键是注意到如果点 c 被某个 $U \cap [a,b]$ 盖住, 则 $U \cap [a,b]$ 还会往 c 两边多盖一点 (如果 c 是区间 [a,b] 端点的话, 则 $U \cap [a,b]$ 至少会往一边多盖一点).

3.4 列紧性定理 31

定义 3.3.16. 称 **R** 的子集 *D* 是紧致的 (*compact*), 如果对任意一族开区间 $\{U_{\lambda}\}_{\lambda \in \Lambda}$, 只要 $D \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$, 则一定可从这族开区间中选取有限个, 使得它们的并集包含 *D*.

例 3.3.17. (1) 由定理3.3.14, 有界闭区间 [a,b] 是紧致的.

(2) 开区间 $(a,b),(-\infty,a),(b,+\infty)$,半开半闭区间 (a,b],[a,b),无界闭区间 $(-\infty,a],[b,+\infty)$ 都不是紧致的.

定理 3.3.18 (有界性定理, 最值定理的一般形式). 如果 $f: D \to \mathbf{R}$ 是连续函数, D 是紧致的, 则像集 f(D) 也是紧致的.

3.4 列紧性定理

有限覆盖定理有如下应用.

命题 3.4.1. 设 $X \subset [a,b]$ 是无限集合,则存在 $x \in [a,b]$,使得对于 r > 0,有 $(B_r(x) \setminus \{x\}) \cap X \neq \emptyset$.

证明: 用反证法, 假设对任何 $x \in [a,b]$, 存在它的某个开球邻域 $U_x = B_{r(x)}(x)$, 使得 $U_x \cap (X \setminus \{x\}) = \emptyset$, 则有 $|U_x \cap X| \leq 1$. 考虑这族开区间 $\{U_x\}_{x \in [a,b]}$, 它们的并集包含 [a,b], 由有限覆盖定理, 存在有限个点 $x_1, ..., x_n \in [a,b]$, 使得

$$[a,b] \subset \bigcup_{i=1}^n U_{x_i}.$$

由此可得

$$|X| = |X \cap [a, b]| \le \sum_{i=1}^{n} |X \cap U_{x_i}| \le n,$$

这与 X 是无限集矛盾!

定理 3.4.2 (有界闭区间的列紧性). 有界闭区间中的任何无穷数列都有收敛到该区间中某点的子序列. 具体地说, 设数列 $\{x_n\}_{n=1}^{\infty} \subset [a,b]$, 则存在子序列 $\{x_{i_k}\}_{k=1}^{\infty}$, 使得极限 $\lim_{k\to\infty} x_{i_k}$ 存在且属于 [a,b].

证明: 令 $X = \{x | \text{存在}n$ 使得 $x_n = x\}$. 如果 X 是有限集, 则数列 $\{x_n\}_{n=1}^{\infty}$ 中存在无限多项取同一个值, 由这些项构成的子列收敛, 此时命题成立. 以下假设 X 是无限集合. 由命题3.4.1, 存在 $y \in [a,b]$, 使得对 y 的任何邻域 $B_r(y)$, 有 $B_r(y) \cap (X \setminus \{y\}) \neq \emptyset$. 我们来构造子列 $\{x_{i_n}\}_{n=1}^{\infty}$ 满足 $x_{i_m} \neq y$ 且 $|x_{i_{m+1}} - y| \leq \frac{1}{2}|x_{i_m} - y|$. 为此, 任取 $x_{i_1} \neq y$. 假设已经构造好 $x_{i_1}, ..., x_{i_k}$, 令

$$d = \frac{1}{2} \min\{|x_j - y| : 1 \le j \le i_k \ \text{\mathbb{L}} x_j \ne y\}.$$

由于 $B_d(y) \cap (X \setminus \{y\}) \neq \emptyset$,任取 $x_{i_{k+1}} \in B_d(y) \cap (X \setminus \{y\})$. 显然有 $i_{k+1} > i_k$, $x_{i_{k+1}} \neq y$ 且 $|x_{i_{k+1}} - y| \leq \frac{1}{2} |x_{i_k} - y|$. 这样,我们就递归的构造了满足前述条件的子列. 注意到,

$$0 \le |x_{i_n} - y| \le \frac{1}{2^{n-1}} |x_{i_1} - y|,$$

由夹逼定理可知 $\lim_{n\to\infty}|x_{i_n}-y|=0$, 这表明 $\lim_{n\to\infty}x_{i_n}=y$. 这就完成了证明.

例 3.4.3. 如果把有界闭区间换成开区间,半开半闭区间或无界闭区间,则定理3.4.2的结论不再成立.

定理 3.4.4 (Cauchy 收敛准则). 实数列 $\{x_n\}_{n=1}^{\infty}$ 收敛的充分必要条件是: 对任何 $\epsilon > 0$, 存在 $N \in \mathbf{Z}_+$, 使得对任何 $m, n \geq N$, 有 $|x_m - x_n| < \epsilon$.

证明: " \leftarrow " 取 $\epsilon = 1$, 由假设可知存在 $N_0 \in \mathbf{Z}_+$, 使得对任何 $m, n \geq N_0$, 有 $|x_m - x_n| < 1$. 特别的, 有

$$x_{N_0} - 1 \le x_n \le x_{N_0} + 1, \quad \forall n \ge N_0.$$

由此可知

$$\min\{x_1,...,x_{N_0},x_{N_0}-1\} \le x_n \le \max\{x_1,...,x_{N_0},x_{N_0}+1\}, \quad \forall n \in \mathbf{Z}_+,$$

这表明数列 $\{x_n\}_{n=1}^{\infty}$ 是有界的, 由定理3.4.2可知它有收敛的子列, 设为 $\{x_{i_k}\}_{k=1}^{\infty}$, 且 $\lim_{k\to\infty}x_{i_k}=L$. 我们来证明 $\lim_{n\to\infty}x_n=L$. 为此, 对任何 $\epsilon>0$, 由假设可知存在 $N\in\mathbf{Z}_+$, 使得对任何 $m,n\geq N$, 有 $|x_m-x_n|<\epsilon$. 特别的, 对固定的 $n\geq N$, 有

$$|x_n - x_{i_k}| < \epsilon, \quad \forall i_k \ge N,$$

当 $k \to \infty$ 时, 利用极限不等式可得

$$|x_n - L| = \lim_{k \to \infty} |x_n - x_{i_k}| \le \epsilon.$$

这就验证了 $\lim_{n\to\infty} x_n = L$.

3.4.1 一致连续

定义 3.4.5. 设 f 在区间 I 上有定义. 称 f 在 I 上一致连续, 如果对任何 $\epsilon > 0$, 存在 $\delta > 0$, 使得对任何 $x_1, x_2 \in I$, 只要 $|x_1 - x_2| < \delta$, 则有 $|f(x_1) - f(x_2)| < \epsilon$.

注 3.4.6. 如果 f 在 I 上一致连续, 则 f 在 I 上连续.

3.5 应用

例 3.4.7. 函数 $f(x) = \frac{1}{x}$ 在区间 (0,1) 上连续, 但不一致连续.

定理 3.4.8. 设 $f \in C([a,b])$, 则 f 在 [a,b] 上一致连续.

证明: 用反证法, 假设存在 $\epsilon > 0$, 对任何 $\delta > 0$, 都存在 $|x - y| < \delta$, 使得 $|f(x) - f(y)| \ge \epsilon$. 特别的, 对每个 $\delta = \frac{1}{n}$, 存在 $|x_n - y_n| < \frac{1}{n}$, 且 $|f(x_n) - f(y_n)| \ge \epsilon$. 这样, 得到无穷数列 $\{x_n\}_{n=1}^{\infty} \subset [a,b]$, 由定理3.4.2可知它有收敛的子序列 $\{x_{i_k}\}_{k=1}^{\infty}$, 设 $\lim_{k \to \infty} x_{i_k} = x \in [a,b]$. 注意到

$$x_{i_k} - \frac{1}{i_k} < y_{i_k} < x_{i_k} + \frac{1}{i_k}, \quad \forall k,$$

利用夹逼定理可得 $\lim_{k\to\infty}y_{i_k}=x\in[a,b]$. 最后, 在不等式 $|f(x_{i_k})-f(y_{i_k})|\geq\epsilon$ 中对 $k\to\infty$ 取极限, 利用 f 的连续性, 可得

$$0 = |f(x) - f(x)| = \lim_{k \to \infty} |f(x_{i_k}) - f(y_{i_k})| \ge \epsilon,$$

矛盾! 这就完成了证明.

3.5 成用

例 3.5.1. 奇数次实系数多项式一定有实根.

例 3.5.2 (不动点定理). 设 $f:[0,1] \to [0,1]$ 是连续函数, 则存在 $x \in [0,1]$ 使得 f(x) = x.

例 3.5.3. 设 $f \in C([0, +\infty))$ 且极限 $\lim_{x \to +\infty} f(x) = L$ 存在. 证明: 如果存在 x_0 使得 $f(x_0) \ge L$, 则 f 在 $[0, +\infty)$ 上有最大值.

证明:分两种情况讨论. (1) 假设存在 $x_1 \in [0, +\infty)$ 使得 $f(x_1) > L$. 由于 $\lim_{x \to +\infty} f(x) = L < f(x_1)$, 存在 M > 0,使得对任何 x > M 有 $f(x) < f(x_1)$. 由最值定理,f 在 [0, M] 上有最大值,设为 $f(x_2)$. 注意到 $x_1 \in [0, M]$,则 $f(x_1) \le f(x_2)$. 由此可知对任何 x > M,有 $f(x) < f(x_1) \le f(x_2)$,这表明 $f(x_2)$ 是 f 在 $[0, +\infty)$ 上的最大值. (2) 假设对任何 $x \in [0, +\infty)$ 都有 $f(x) \le L$,则 $f(x_0) = L$ 且它是 f 在 $[0, +\infty)$ 上的最大值. 在上述两种情况下我们都证明了 f 在 $[0, +\infty)$ 上有最大值,这就完成了证明.

例 3.5.4. 设 $f \in C([0,+\infty))$ 且极限 $\lim_{x\to +\infty} f(x) = L$ 存在. 证明: f 在 $[0,+\infty)$ 上一致连续.

证明: 令 $I_1 = [0, +\infty), I_2 = [0, 1)$. 定义映射 $h: I_1 \to I_2$ 为 $h(x) = \frac{x}{1+x}$, 它的逆映射为 $h^{-1}(t) = \frac{t}{1-t}$, $h \in h^{-1}$ 都是连续映射. 考虑复合映射 $g = f \circ h^{-1}: I_2 \to \mathbf{R}$, 由 f, h^{-1} 连

34 第三章 连续性

续可知 $g \in C(I_2)$. 由 $\lim_{x \to +\infty} f(x) = L$ 及复合函数的极限定理, 可得 $\lim_{t \to 1^-} g(t) = L$. 定义函数 $\widetilde{g}: [0,1] \to \mathbf{R}$ 为

$$\widetilde{g}(t) = \begin{cases} g(t), & \text{如果} t \in [0, 1) \\ L, & \text{如果} t = 1 \end{cases}$$

则 $\tilde{g} \in C([0,1])$. 利用定理3.4.8的结论, \tilde{g} 在 [0,1] 上一致连续, 我们以此证明 f 在 I_1 上一致连续. 为此, 对任何 $\epsilon > 0$, 由 \tilde{g} 一致连续的定义, 存在 $\delta > 0$, 使得对任何 $|t_1 - t_2| < \delta$, 有 $|\tilde{g}(t_1) - \tilde{g}(t_2)| < \epsilon$. 注意到, 对任何 $x_1, x_2 \in I_1$, 只要 $|x_1 - x_2| < \delta$, 则有

$$|h(x_1) - h(x_2)| = \frac{|x_1 - x_2|}{(1 + x_1)(1 + x_2)} < |x_1 - x_2| < \delta,$$

由此可得

$$|\widetilde{g}(h(x_1)) - \widetilde{g}(h(x_2))| < \epsilon,$$

此即 $|f(x_1) - f(x_2)| < \epsilon$, 这就证明了 f 在 I_1 上一致连续.

3.6 反函数定理

引理 3.6.1. 设 $f:[x,z] \to \mathbf{R}$ 是连续的单射,则对任何 $y \in (x,z)$,或者 f(x) < f(y) < f(z),或者 f(x) > f(y) > f(z).

证明: 只需在条件 f(x) < f(z) 下证明 f(x) < f(y) < f(z).

如果 $f(y) \le f(x)$, 则 f(y) < f(x)(因为 f 单). 注意到 f 是区间 [y,z] 上的连续函数, f(x) 介于 f(y), f(z) 之间,则由介值定理知存在 $w \in (y,z)$ 使得 f(w) = f(x), 这与 f 是单射矛盾! 所以只能有 f(x) < f(y).

类似的, 如果 $f(y) \ge f(z)$, 则 f(y) > f(z). 注意到 f 是区间 [x,y] 上的连续函数, f(z) 介于 f(x), f(y) 之间, 则由介值定理知存在 $w' \in (x,y)$ 使得 f(w') = f(z), 这与 f 是单射矛盾! 所以只能有 f(y) < f(z).

这样, 我们就在条件 f(x) < f(z) 下证明 f(x) < f(y) < f(z). 类似的, 当 f(x) > f(z) 时有 f(x) > f(y) > f(z).

命题 3.6.2. 设 D = [a, b]或(a, b). 如果 $f: D \to \mathbf{R}$ 是连续的单射, 则 f 严格单调.

证明: (1) 当 D = [a, b] 时,不妨设 f(a) < f(b). 对区间中的任何两点 a < x < y < b, 先对 a < y < b 使用引理可得 f(a) < f(y) < f(b), 再对 a < x < y 引理可得 f(a) < f(x) < f(y). 因此有 f(a) < f(x) < f(b), 这表明 f 严格单调递增. 类似的, 当 f(a) > f(b) 时 f 严格单调递减.

3.6 反函数定理 35

(2) 当 D = (a, b) 时, 对任何正整数 $n > \frac{2}{b-a}$, 令 $D_n = [a + \frac{1}{n}, b - \frac{1}{n}]$, 则已经证明了 f 在 D_n 上严格单调. 注意到

$$D_N \subseteq D_{N+1} \subseteq D_{N+2} \subseteq ..., \quad \sharp \pitchfork N = \left[\frac{2}{b-a}\right] + 1,$$

则 f 在所有 D_n 上有相同的单调性. 而 $\cup_n D_n = (a,b)$, 所以 f 在 (a,b) 上严格单调.

总结一下, 我们证明了如下定理.

定理 3.6.3. 设 D = [a,b]或(a,b), $f: D \to \mathbf{R}$ 是连续映射, 则

$$f$$
有反函数 \iff f 单 \iff f 严格单调.

在上述条件下, f 有反函数 $f^{-1}: f(D) \to D$. 一个自然的问题是:

问题 3.6.4. f^{-1} 的定义域是什么? f^{-1} 是否连续?

定理 3.6.5 (反函数定理). 设 D = [a, b] 或 (a, b), $f: D \to \mathbf{R}$ 是连续映射, 则

- (1) f有反函数 \iff f单 \iff f严格单调.
- (2) 如果上述条件成立,则当 D = [a,b] 时, f 的值域为有界闭区间 [f(a),f(b)] 或 [f(b),f(a)]; 当 D = (a,b) 时, f 的值域为如下四种区间之一: (m,M), $(-\infty,M)$, $(m,+\infty)$, $(-\infty,+\infty)$.
 - (3) 如果上述条件成立, 则 f 的反函数 $f^{-1}: f(D) \to D$ 是连续函数.
- **例 3.6.6** (幂函数). (1) 当 $\alpha \in \mathbf{Z}_+$ 时, 定义 x^{α} 为 α 个 x 的乘积. 此时幂函数 x^{α} 是 **R** 上的 连续函数.
- (2) 当 $\alpha = 0$ 时, 定义 $x^{\alpha} \equiv 1, \forall x \neq 0$. 此时幂函数 x^{α} 是 $\mathbf{R} \setminus \{0\}$ 上的连续函数.
- (3) 当 $\alpha \in \mathbf{Z}_-$ 时, 定义 $x^{\alpha} = \frac{1}{x-\alpha}, \forall x \neq 0$, 此时幂函数 x^{α} 是 $\mathbf{R} \setminus \{0\}$ 上的连续函数.
- (4) 当 $\alpha = \frac{1}{k}$, $k \in \mathbb{Z}_+$ 时,考虑函数 $f(x) = x^k$,容易证明 $f: [0, +\infty) \to [0, +\infty)$ 是严格单调递增的连续函数,由反函数定理可知它有连续的反函数,记作 $f^{-1}(y) = y^{\frac{1}{k}}$. 此时幂函数 $x^{\alpha} \in \mathbb{R}_{\geq 0}$ 上的连续函数.
- (5) 当 $\alpha = \frac{m}{n}, m \in \mathbf{Z}, n \in \mathbf{Z}_+$ 时, 定义 $x^{\alpha} = (x^{\frac{1}{n}})^m, \forall x > 0$. 此时幂函数 x^{α} 是 \mathbf{R}_+ 上的连续函数.
- (6) 当 α 是无理数时, 取一个单调递增的有理数列 $\{a_n\}$ 使得 $\lim_{n\to\infty}a_n=\alpha$, 则定义

$$x^{\alpha} = \lim_{n \to \infty} x^{a_n}.$$

不难验证上述定义是良好的, 且幂函数 x^{α} 是 \mathbf{R}_{+} 上的连续函数.

例 3.6.7 (单调性). (1) 如果 x > 1, 则对任何实数 $\alpha < \beta$, 有 $x^{\alpha} < x^{\beta}$.

(2) 设 $\alpha > 0$, 则对任何 0 < x < y, 有 $x^{\alpha} < y^{\alpha}$.

例 3.6.8 (对数函数). 考虑 $f(x) = e^x : \mathbf{R} \to \mathbf{R}_+$, 它有连续的反函数 $f^{-1}(x) = \ln x : \mathbf{R}_+ \to \mathbf{R}$, 称为对数函数.

例 3.6.9 (反三角函数). $f(x) = \sin x : [-\frac{\pi}{2}, \frac{\pi}{2}] \to \mathbf{R}$ 是严格单调递增的连续函数, 由反函数定理知它有连续的反函数, 记作 $f^{-1}(x) = \arcsin x : [-1, 1] \to [-\frac{\pi}{2}, \frac{\pi}{2}].$

类似的可定义其他反三角函数.

3.7 无穷小量与无穷大量

例 3.7.1. 当 $x \to 0$ 时, 有

$$\sin x \sim x$$
, $\tan x \sim x$, $1 - \cos x \sim \frac{x^2}{2}$.

例 3.7.2. 给定正整数 k. 当 $x \to 0$ 时, 有

$$(1+x)^k - 1 \sim kx$$
, $(1+x)^{1/k} - 1 \sim \frac{1}{k}x$.

例 3.7.3. 当 $x \to 0$ 时, 有

$$\ln(1+x) \sim x$$
, $e^x - 1 \sim x$.

例 3.7.4. 当 $x \to +\infty$ 时, $\ln x, x^{\alpha}(\alpha > 0), a^{x}(a > 1)$ 都是无穷大, 其中 $\ln x$ 的阶最低, a^{x} 的阶最高.

第四章 导数与微分

4.1 导数

4.1.1 Motivation

问题 4.1.1 (曲线的切线). 求曲线 y = f(x) 在点 $P_0(x_0, f(x_0))$ 处的切线 L.

在 P_0 附近取一点 $P(x_0+h,f(x_0+h))$, 则割线 P_0P 给出 L 的近似. 当 h 越来越接近 0 时, 上述割线给出越来越好的近似. 这启发人们定义 L 为 $\lim_{h\to 0} P_0P$. 特别的, L 的斜率为

$$k_L = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

L 的方程为 $y - f(x_0) = k_L(x - x_0)$.

问题 4.1.2 (质点的速度). 设质点在直线上运动, t 时刻质点位于点 x(t). 如何描述 t_0 时刻质点运动的快慢程度?

时间间隔 $[t_0,t_0+h]$ 内质点运动的平均速度为 $\frac{x(t_0+h)-x(t_0)}{h}$. 当 h 越来越接近 0 时,上述平均速度越来越准确的描述了质点在 t_0 时刻的运动快慢程度,因此物理学中定义 t_0 时刻的瞬时速度为 $\lim_{h\to 0}\frac{x(t_0+h)-x(t_0)}{h}$.

4.1.2 导数的定义

定义 4.1.3. 设 f 在 x_0 的某个邻域内有定义, 如果极限

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

存在, 则称 f 在 x_0 处可导, 并把上述极限称为 f 在 x_0 处的导数 (derivative), 记作 $f'(x_0)$ 或者 $\frac{d}{dx}|_{x=x_0}$.

注 4.1.4 (导数的几何意义). $f'(x_0)$ 描述了在 x_0 处 f 随 x 的变化率. 具体的说, 函数图像 $\Gamma_f = \{(x, f(x)) | x \in D\}$ 在 $(x_0, f(x_0))$ 处切线的斜率为 $f'(x_0)$, 切线方程为 $y - f(x_0) = f'(x_0)(x - x_0)$.

注 **4.1.5.** (1) 如果 f 只在 x_0 的一侧有定义,则可定义单侧导数

$$f'_{-}(x_0) := \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0},$$

$$f'_{+}(x_0) := \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x^{\pm}} \frac{f(x) - f(x_0)}{x - x_0}.$$

(2) f 在 x_0 处可导当且仅当 f 在 x_0 处左右导数都存在且相等.

定义 4.1.6 (导函数). 如果 f 在 (a,b) 内每一点处都可导,则称 f 是区间 (a,b) 上的可导函数. 此时,如下对应

$$(a,b) \ni x \to f'(x) \in \mathbf{R},$$

定义了 (a,b) 上的一个函数, 称为 f 的导函数, 记作 f'.

例 4.1.7. (1) 常值函数, c'=0.

- (2) 多项式函数, $(x^n)' = nx^{n-1}$.
- (3) 指数函数, $(e^x)' = e^x$, $(a^x)' = a^x \ln a$.
- (4) 三角函数, $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$.
- (5) 对数函数, $(\ln x)' = \frac{1}{x}$, $(\log_a x)' = \frac{1}{x \ln a}$.

命题 4.1.8 (可导一定连续). 如果 f 在 x_0 处可导,则 f 在 x_0 处连续.

注 **4.1.9** (连续不一定可导). f(x) = |x|.

4.2 导函数的计算方法

定理 4.2.1 (四则运算). 设 f,g 在 x_0 处可导,则

- (1) f + g 在 x_0 处可导, 且 $(f + g)'(x_0) = f'(x_0) + g'(x_0)$.
- (2) $f \cdot g$ 在 x_0 处可导, 且 $(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$.
- (3) 如果 $g'(x_0) \neq 0$, 则 $\frac{f}{g}$ 在 x_0 处可导,且 $(\frac{f}{g})'(x_0) = \frac{f'(x_0)g(x_0) f(x_0)g'(x_0)}{g(x_0)^2}$.

推论 4.2.2 (导函数的四则运算法则). (1) (f+g)' = f' + g'.

- (2) Leibniz 法则 (fg)' = f'g + fg'.
- (3) 在 $g(x) \neq 0$ 处, 有 $(\frac{f}{g})' = \frac{f'g fg'}{g^2}$.

4.3 复合函数的导数 39

推论 4.2.3. $(f_1f_2...f_n)' = f'_1f_2...f_n + f_1f'_2...f_n + ... + f_1f_2...f'_n$.

例 4.2.4.
$$(\tan x)' = \frac{1}{\cos^2 x}, (\cot x)' = \frac{-1}{\sin^2 x}.$$

例 4.2.5. 设 $P(x) = \sum_{i=0}^{n} a_i x^i$, 则 $P'(x) = \sum_{i=1}^{n} i a_i x^{i-1}$. 如果 P(x) 能分解成 $P(x) = a_n \prod_{i=1}^{n} (x - x_i)$, 则

$$P'(x) = P(x) \sum_{i=1}^{n} \frac{1}{x - x_i}.$$

4.3 复合函数的导数

定理 4.3.1 (复合函数的导数). 如果 f 在 x_0 处可导, g 在 $f(x_0)$ 处可导, 则复合函数 $g \circ f$ 在 x_0 处可导, 且导数为 $(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$.

证明: (a) 由 $g'(f(x_0))$ 的定义可知, 对任何 $\epsilon_1 > 0$, 存在 $\delta_1 > 0$, 使得:

$$\left| \frac{g(y) - g(f(x_0))}{y - f(x_0)} - g'(f(x_0)) \right| < \epsilon_1, \quad \forall 0 < |y - f(x_0)| < \delta_1,$$

则有

$$|y - f(x_0)| < \delta_1 \Rightarrow |g(y) - g(f(x_0)) - g'(f(x_0)) \cdot (y - f(x_0))| \le \epsilon_1 \cdot |y - f(x_0)|. \tag{4.1}$$

(b) f 在 x_0 处可导,则 f 在 x_0 处连续. 特别的,对给定的 $\delta_1 > 0$,存在 $\delta_2 > 0$,使得

$$|x - x_0| < \delta_2 \Rightarrow |f(x) - f(x_0)| < \delta_1,$$
 (4.2)

结合 (1), (2) 两式子可得, 对任何 $|x-x_0| < \delta_2$ 有:

$$|g(f(x)) - g(f(x_0)) - g'(f(x_0)) \cdot (f(x) - f(x_0))| \le \epsilon_1 \cdot |f(x) - f(x_0)|. \tag{4.3}$$

(c) 由 $f'(x_0)$ 的定义可知, 对任何 $\epsilon_2 > 0$, 存在 $\delta_3 > 0$, 使得

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \right| < \epsilon_2, \quad \forall 0 < |x - x_0| < \delta_3,$$

则有

$$|x - x_0| < \delta_3 \Rightarrow |f(x) - f(x_0) - f'(x_0) \cdot (x - x_0)| \le \epsilon_2 \cdot |x - x_0|. \tag{4.4}$$

结合 (3), (4) 两式子可得, 对任何 $|x-x_0| < \min(\delta_2, \delta_3)$ 有:

$$|g(f(x)) - g(f(x_0)) - g'(f(x_0))f'(x_0) \cdot (x - x_0)|$$

$$\leq |g(f(x)) - g(f(x_0)) - g'(f(x_0)) \cdot (f(x) - f(x_0))| + |g'(f(x_0))| \cdot |f(x) - f(x_0) - f'(x_0) \cdot (x - x_0)|$$

$$\leq \epsilon_1 \cdot |f(x) - f(x_0)| + |g'(f(x_0))| \cdot \epsilon_2 \cdot |x - x_0|$$

$$\leq \epsilon_1 \cdot (\epsilon_2 + |f'(x_0)|) \cdot |x - x_0| + |g'(f(x_0))| \cdot \epsilon_2 \cdot |x - x_0|,$$

所以, 对任何 $0 < |x - x_0| < \min(\delta_2, \delta_3)$, 有

$$\left|\frac{g(f(x)) - g(f(x_0))}{x - x_0} - g'(f(x_0))f'(x_0)\right| \le \epsilon_1(\epsilon_2 + |f'(x_0)|) + |g'(f(x_0))|\epsilon_2. \tag{4.5}$$

(d) 对任何 $\epsilon > 0$, 选取 $\epsilon_2 = \frac{\epsilon}{2|g'(f(x_0))|+1}$, 由 (c) 确定 δ_3 . 再选取 $\epsilon_1 = \frac{\epsilon}{2(\epsilon_2 + |f'(x_0)|)}$, 由 (a) 确定 δ_1 , 再由 (b) 确定 δ_2 . 最后取 $\delta = \min(\delta_2, \delta_3)$, 则 (5) 表明: 对任何 $0 < |x - x_0| < \delta$, 有

$$\left| \frac{g(f(x)) - g(f(x_0))}{x - x_0} - g'(f(x_0))f'(x_0) \right| < \epsilon,$$

这就证明了 $g \circ f$ 在 x_0 处可导, 且导数为 $(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$.

推论 4.3.2 (复合函数求导的锁链法则, chain rule). 如果 $f:(a,b) \to (c,d), g:(c,d) \to \mathbf{R}$ 都是可导函数,则 $(g \circ f)'(x) = g'(f(x))f'(x)$.

推论 4.3.3. 设 $f_1, ..., f_n$ 都是可导函数, 则

$$(f_n \circ f_{n-1} \circ \ldots \circ f_1)'(x) = f_n'(f_{n-1}f_{n-2}\ldots(x)) \cdot f_{n-1}'(f_{n-2}\ldots(x)) \cdot \ldots \cdot f_2'(f_1(x)) \cdot f_1'(x).$$

例 4.3.4. x^{α} , $\ln |x|$, $\ln |f|$, $u(x)^{v(x)}$ 的导函数.

4.4 微分

Leibniz 用记号 $\frac{df}{dx}$ 表示导数, 他希望赋予 df, dx 意义 (并称之为微分), 使得导数 f'(x) 是两者的商 (称之为微商).

4.4 微分 41

回忆导数的定义.

f在 x_0 处可导

 \iff 存在实数A, 使得 $f(x_0 + h) = f(x_0) + A \cdot h + \alpha(h)$, 且 $\lim_{h \to 0} \frac{\alpha(h)}{h} = 0$.

粗略的说,可以把上述最后那个断言叙述成: 在 h = 0 的某个邻域内, $f(x_0 + h)$ 可以表示成某个一次函数 $f(x_0) + A \cdot h$ 与某个误差项 $\alpha(h)$ 的和, 且 (当 h 趋近于 0 时) 误差项 $\alpha(h)$ 与 h 相比非常小 (因为要求 $\lim_{h\to 0} \frac{\alpha(h)}{h} = 0$).

更加粗略的说, 即在 h=0 附近, 可以用某个一次函数 $f(x_0)+A\cdot h$ 逼近 $f(x_0+h)$. 或者等价的说: 在 x_0 附近, 可以用某个一次函数 $f(x_0)+A\cdot (x-x_0)$ 逼近 f(x).

定义 4.4.1. 称映射 $L: \mathbf{R} \to \mathbf{R}$ 是线性映射 (linear map), 如果

$$L(x+y) = L(x) + L(y), \quad L(k \cdot x) = k \cdot L(x), \forall x, y \in \mathbf{R}, \forall k \in \mathbf{R}.$$

L 可以表示成: L(x) = Ax, 其中系数 A 表示 L 伸缩的倍数.

定义 4.4.2 (可微, 微分). 设 f 在 x_0 的某个邻域内有定义. 称 f 在 x_0 处可微 (differentiable), 如果存在线性映射

$$\mathbf{R} \to \mathbf{R},$$
 $h \to A \cdot h.$

使得在 h=0 的某个邻域中 $f(x_0+h)=f(x_0)+A\cdot h+\alpha(h)$, 且 $\lim_{h\to 0}\frac{\alpha(h)}{h}=0$. 称这个线性映射为 f 在 x_0 处的微分 (differential), 记作 $df_{x_0}:\mathbf{R}\to\mathbf{R}$.

命题 4.4.3. f 在 x_0 处可微当且仅当 f 在 x_0 处可导, 且微分为 $df_{x_0}(h) = f'(x_0)h$.

注 4.4.4. 粗略的说, 所谓 f 在 x_0 处可微是指 f 在 x_0 附近可以用一次函数近似:

$$f(x) \sim f(x_0) + f'(x_0) \cdot (x - x_0),$$
 (在 $x = x_0$ 附近)
$$f(x_0 + h) \sim f(x_0) + f'(x_0) \cdot h,$$
 (在 $h = 0$ 附近)

一次 (线性) 项系数为 $f'(x_0)$, 反映了 f 在 x_0 处伸缩的倍数. 因此, 人们经常说"微分就是线性近似".

定义 4.4.5. 如果 f 在 (a,b) 上处处可微,则每点处的微分给出一族线性映射 $\{df_x: \mathbf{R} \rightarrow$ \mathbf{R} $_{x\in(a,b)}$, 称这一族线性映射为 f 在 (a,b) 上的微分, 并记作 df.

例 4.4.6. 恒同映射 $Id: \mathbf{R} \to \mathbf{R}$ 的微分为 $d(Id)_x(h) = h$. 人们经常把恒同函数 Id 写作函数 x, 对应的将其微分记作 dx. 在这种记号下, $dx_x(h) = h, \forall h \in \mathbf{R}$.

例 4.4.7. 设 f 处处可微, 则它的微分 df 为 $df_x(h) = f'(x)h, \forall h \in \mathbf{R}$.

从上面两个例子可以看出, f 的微分与恒同函数 x 的微分有如下关系:

$$df_x = f'(x) \cdot dx_x, \quad \forall x \in D,$$

其中 D 是定义域. 略去 x, 则可写作: $df = f'(x) \cdot dx$. 换句话说, f 的导函数处处可以表示成微 分的商:

$$f'(x) = \frac{df_x}{dx_x},$$

或者略去 x, 有 $f' = \frac{df}{dx}$, 这就实现了 Leibniz 的愿望.

4.4.1 微分保持函数的复合

定理 4.4.8 (复合函数的微分等于微分的复合). 设 $f: \mathbf{R} \to \mathbf{R}$ 在 x 处可微, $g: \mathbf{R} \to \mathbf{R}$ 在 f(x) 处可微. 则 $g \circ f : \mathbf{R} \to \mathbf{R}$ 在 x 处可微, 且有

$$d(g \circ f)_x = dg_{f(x)} \circ df_x.$$

证明: 由定义, 设在 x 附近有

$$f(x+h) = f(x) + Ah + \alpha(h),$$

设在 f(x) 附近有

$$g(f(x) + v) = g(f(x)) + Bv + \beta(v),$$

其中 $\lim_{h\to 0}\frac{\alpha(h)}{h}=0$, $\lim_{v\to 0}\frac{\beta(v)}{v}=0$. 所以在 x 附近有

$$(g \circ f)(x+h) = g(f(x) + Ah + \alpha(h)) = g(f(x)) + B(Ah + \alpha(h)) + \beta(Ah + \alpha(h))$$
$$= g(f(x)) + BAh + B\alpha(h) + \beta(Ah + \alpha(h)).$$

我们断言

$$\lim_{h\to 0}\frac{B\alpha(h)+\beta(Ah+\alpha(h))}{h}=0,$$

这表明 $g\circ f$ 在 x 处可微, 且 $d(g\circ f)_x(h)=BAh=dg_{f(x)}\circ df_x(h)$. 只需证明 $\lim_{h\to 0}\frac{B\alpha(h)}{h}=0$ 与 $\lim_{h\to 0}\frac{\beta(Ah+\alpha(h))}{h}=0$. 前者是显然的, 下面我们来证明后者.

4.4 微分

(1) 由于 $\lim_{h\to 0} \frac{\alpha(h)}{h} = 0$,存在 δ_0 使得对任何 $0 < |h| < \delta_0$,有 $|\alpha(h)| < |h|$,从而 $|Ah + \alpha(h)| < (|A| + 1)|h|$, $\forall 0 < |h| < \delta_0$.

(2) 由于 $\lim_{v\to 0}\frac{\beta(v)}{v}=0$, 对任何 $\epsilon>0$, 存在 δ_1 使得: 对任何 $0<|v|<\delta_1$ 都有 $|\beta(v)|<\epsilon|v|$. 因此

$$|\beta(v)| \le \epsilon |v|, \quad \forall |v| < \delta_1.$$

取 $\delta = \min(\delta_0, \frac{\delta_1}{|A|+1})$, 则对任何 $0 < |h| < \delta$, 由 (1) 知 $|Ah + \alpha(h)| < \delta_1$, 再由 (2) 得:

$$|\beta(Ah + \alpha(h))| \le \epsilon |Ah + \alpha(h)| \le \epsilon (|A| + 1)|h|,$$

这就验证了
$$\lim_{h\to 0} \frac{\beta(Ah+\alpha(h))}{h} = 0.$$

注 4.4.9. 可以把上述定理粗略的解释成: 如果 f 在 x_0 处可以线性近似成 L, g 在 $f(x_0)$ 处可以线性近似成 L', 则复合函数 $g \circ f$ 在 x_0 处可以线性近似成 $L' \circ L$. 更进一步, 人们叙述成:

线性近似 (这种操作) 保持映射的复合.

例 4.4.10 (*Chain rule*). 把微分的具体表达式代入上述定理, 可得:

$$(g \circ f)'(x_0) \cdot h = d(g \circ f)_{x_0}(h) = (dg_{f(x_0)} \circ df_{x_0})(h) = g'(f(x_0))f'(x_0) \cdot h, \quad \forall h \in \mathbf{R},$$

这就是求导的 *Chain rule*: $(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$. 现在我们对此有了直观的解释: f 在 x_0 处伸缩了 $f'(x_0)$ 倍, g 在 $f(x_0)$ 处伸缩了 $g'(f(x_0))$ 倍, 则 $g \circ f$ 在 x_0 处伸缩了 $g'(f(x_0))f'(x_0)$ 倍.

当然, 更早前人们采用更加朴素或更加形式化的解释. 令 y = f(x), 它是 x 的函数; 令 z = g(y), 它是 y 的函数. 结合这两点, 可以把 z 视为 x 的函数: z = g(f(x)). 粗略的说,

$$(g \circ f)'(x) = \lim \frac{\Delta z}{\Delta x}, \quad g'(y) = \lim \frac{\Delta z}{\Delta y}, \quad f'(y) = \lim \frac{\Delta y}{\Delta x},$$

可以期望有如下关系:

$$\lim \frac{\Delta z}{\Delta x} = \lim \frac{\Delta z}{\Delta y} \cdot \lim \frac{\Delta y}{\Delta x},$$

此即 Chain rule. 基于这个解释, 人们也把 Chain rule 写作:

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dz} = \frac{dz}{d(\text{中间变量})} \cdot \frac{d(\text{中间变量})}{dx}.$$

但我们倾向于认为: 利用微分 (或线性近似或伸缩倍数) 给出的解释更加直观:

4.5 反函数的导数

设 D = [a,b] 或 (a,b), $f: D \to \mathbf{R}$ 是连续的单射, 我们证明了 f 有连续的反函数 $f^{-1}: f(D) \to D$.

问题 4.5.1. 如果 f 可导, 它的反函数 $f^{-1}: f(D) \to D$ 是否可导? 如何计算反函数的导函数? **定理 4.5.2** (反函数的导数). 设 $f: (a,b) \to (c,d)$ 是连续的一一对应 (既单且满). 如果 f 在点 x_0 可导且 $f'(x_0) \neq 0$, 则 f^{-1} 在点 $f(x_0)$ 处可导, 且有

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}.$$

证明: 等价于证明极限 $\lim_{y\to f(x_0)} \frac{f^{-1}(y)-f^{-1}(f(x_0))}{y-f(x_0)}$ 存在且等于 $\frac{1}{f'(x_0)}$. 定义函数 $g(x)=\frac{x-x_0}{f(x)-f(x_0)}$,则 g 在 x_0 的某个去心邻域中有定义. 注意到如下事实:

- (1) 由反函数定理知 f^{-1} 是连续映射, 从而有 $\lim_{y \to f(x_0)} f^{-1}(y) = x_0$.
- (2) 由于 f 在 x_0 处可导且导数非零,则

$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}} = \frac{1}{f'(x_0)}.$$

(3) 当 $y \neq f(x_0)$ 时, $f^{-1}(y) \neq x_0$. 这样, 由复合函数的极限定理可得:

$$\lim_{y \to f(x_0)} g \circ f^{-1}(y) = \frac{1}{f'(x_0)},$$

此即 $\lim_{y \to f(x_0)} \frac{f^{-1}(y) - f^{-1}(f(x_0))}{y - f(x_0)} = \frac{1}{f'(x_0)}$,这就完成了证明.

推论 4.5.3. 设 f 有反函数 f^{-1} . 如果 f 是可导函数, 则在 $f'(x) \neq 0$ 处有

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)},$$

换而言之, 在 $f'(f^{-1}(x)) \neq 0$ 处有

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

例 4.5.4. $\arcsin' x = \frac{1}{\sin'(\arcsin x)} = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1-x^2}},$ 其中 $x \in (-1,1)$. $\arccos' x = \frac{1}{\cos'(\arccos x)} = \frac{1}{-\sin(\arccos x)} = \frac{-1}{\sqrt{1-x^2}},$ 其中 $x \in (-1,1)$. $\arctan' x = \frac{1}{\tan'(\arctan x)} = \cos^2(\arctan x) = \frac{1}{1+x^2},$ 其中 $x \in \mathbf{R}$.

4.6 高阶导数 45

4.6 高阶导数

求导运算

$$D: \{ \Pi \in \Delta \} \to \{ \Delta \},$$
 $f \to f',$

满足如下性质:

- (1) D(f+g) = D(f) + D(g).
- (2) Leibniz 法则 D(fg) = D(f)g + fD(g).
- (3) D(c) = 0, 其中 c 表示取值为 c 的常值函数.

如果 f 处处可导,则可以考虑导函数 f' 的导数,称为 f 的二阶导数. 依此可以递归的定义高阶导数.

定义 4.6.1. 定义 f 的 0 阶导函数为 $f^{(0)} = f$. 设 f 已有 (n-1) 阶导函数 $f^{(n-1)}$, 如果 $f^{(n-1)}$ 在 x_0 处可导,则令 $f^{(n)}(x_0) = (f^{(n-1)})'(x_0)$, 称之为 f 在 x_0 处的 n 阶导数.

如果 f 在 D 上处处有 n 阶导数, 则称由对应 $x \to f^{(n)}(x)$ 给出的函数为 f 的 n 阶导函数, 记作 $f^{(n)}$ 或 $\frac{d^n f}{dx^n}$.

定义 4.6.2. 如果 f 在 D 上的高阶导数 $f^{(1)},...,f^{(k)}$ 都存在且连续, 则称 f 是 D 上的 C^k 光 滑函数, 记作 $f \in C^k(D)$.

如果 f 在 D 上的各个高阶导数 $f^{(1)}, f^{(2)}...$,都存在且连续,则称 f 是 D 上的 C^{∞} 光滑函数,简称为光滑函数,记作 $f \in C^{\infty}(D)$.

例 4.6.3. 求 $a^x, e^x, \sin x, \cos x, (1+x)^\alpha, x^\alpha, \log_a |x|, \ln |x|$ 的高阶导数.

命题 4.6.4 (Leibniz 公式).
$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)}$$
.

例 4.6.5.
$$P(x) = \sum_{i=0}^{n} a_i x^i$$
 的高阶导数.

例 4.6.6. 设 $f(x) = \arctan x$, 计算 $f^{(n)}(0)$.

第五章 一元函数微分学

5.1 微分中值定理

定义 5.1.1. 设 f 在 x_0 的某个开球邻域内有定义. 称 x_0 是 f 的局部极小值点, 如果存在 r > 0 使得

$$f(x) \ge f(x_0), \quad \forall x \in N(x_0, r).$$

类似的,可以定义局部极大值点.把局部极小值点与局部极大值点统称为局部极值点.

定理 5.1.2 (Fermat). 设 x_0 是 f 的局部极值点. 如果 f 在 x_0 处可导,则 $f'(x_0) = 0$.

证明:不妨设 x_0 是 f 的局部极小值点. 由极限不等式,可得

$$f'(x_0-) = \lim_{x \to x_0-} \frac{f(x) - f(x_0)}{x - x_0} \le 0, \quad f'(x_0+) = \lim_{x \to x_0+} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

由于 $f'(x_0) = f'(x_0-) = f'(x_0+)$, 故 $f'(x_0) = 0$.

注 5.1.3. 如果 f 可导,则称满足方程 f'(x) = 0 的点为 f 的临界点 (*critical point*). Fermat 定理说如果 f 可导,则局部极值点一定是临界点.

定理 5.1.4 (Rolle's theorem). 设 $f:[a,b] \to \mathbf{R}$ 在 [a,b] 上连续且在 (a,b) 上可导. 如果 f(a) = f(b), 则存在 $c \in (a,b)$ 使得 f'(c) = 0.

证明: 由最值定理, 连续函数 f 在 [a,b] 上有最大值与最小值. 如果最大值点与最小值点都在区间 [a,b] 的端点, 由 f(a) = f(b) 可知 f 是常值函数, 此时 f' 在 (a,b) 上恒等于零; 如果 f 有一个最值点 x_0 位于区间内部 (a,b), 则 x_0 是 f 的极值点, 由定理5.1.2可得 $f'(x_0) = 0$. 这样, 在每种情况下都存在 $c \in (a,b)$ 使得 f'(c) = 0.

例 5.1.5. 设 f 在 **R** 上处处可导. 如果 f(x) 有 m 个不同的零点,则 f'(x) 至少有 (m-1) 个不同的零点.

证明: 设 $x_1 < ... < x_m$ 是 f 的零点. 对每个 $1 \le i \le m-1$, $f(x_i) = f(x_{i+1})$, 由罗尔定理 (定 理5.1.4) 可知存在 $y_i \in (x_i, x_{i+1})$ 使得 $f'(y_i) = 0$. 这样, $y_1 < ... < y_{m-1}$ 就是 f' 的 (m-1) 个不同的零点.

例 5.1.6. 给定实数 $a_1 < a_2 < ... < a_n$,令 $f(x) = \prod_{i=1}^n (x - a_i)$. 由罗尔定理 (定理5.1.4),对每个 i = 1, ..., n - 1,存在 $b_i \in (a_i, a_{i+1})$ 使得 $f'(b_i) = 0$. 这样,f'(x) 就有 (n - 1) 个互不相同的实数根 $b_1 < ... < b_{n-1}$,从而有

$$f'(x) = n(x - b_1)...(x - b_{n-1}).$$

由此可得

$$\begin{split} \frac{\sum_{i=1}^{n} a_i}{\binom{n}{1}} &= \frac{\sum_{i=1}^{n-1} b_i}{\binom{n-1}{1}}, \\ \frac{\sum_{1 \leq i < j \leq n} a_i}{\binom{n}{2}} &= \frac{\sum_{1 \leq i < j \leq n-1} b_i b_j}{\binom{n-1}{2}}, \end{split}$$

.

$$\frac{\sum_{1 \leq i_1 < i_2 < \ldots < i_{n-1} \leq n} a_{i_1} a_{i_2} \ldots a_{i_{n-1}}}{\binom{n}{n-1}} = \frac{b_1 b_2 \ldots b_{n-1}}{\binom{n-1}{n-1}}.$$

在此基础上,利用归纳法及算术-几何平均不等式可证明如下的不等式

$$\sqrt[k-1]{\frac{\sum_{i_1 < \dots < i_{k-1}} a_{i_1} \dots a_{i_{k-1}}}{\binom{n}{k-1}}} \ge \sqrt[k]{\frac{\sum_{i_1 < \dots < i_k} a_{i_1} \dots a_{i_k}}{\binom{n}{k}}}, \quad \forall k = 2, \dots, n.$$

定理 5.1.7 (微分中值定理, Lagrange 中值定理). 设 $f:[a,b] \to \mathbf{R}$ 在 [a,b] 上连续且在 (a,b) 上可导, 则存在 $\xi \in (a,b)$ 使得

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

证明: 定义函数

$$g(x) = f(x) - \left(\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right),$$

则 g(a)=g(b)=0,由罗尔定理 (定理5.1.4) 可知,存在 $\xi\in(a,b)$ 使得 $g'(\xi)=0$,即有 $f'(\xi)=\frac{f(b)-f(a)}{b-a}$.

注 5.1.8. (1) 如果用几何的语言,则 Lagrange 中值定理可以叙述成: f 的图像上存在一点,使得该点处的切线平行与端点 (a, f(a)), (b, f(b)) 的连线. 如果用物理的语言,则 Lagrange 中值定理可以叙述成: 质点在直线上运动,则平均速度一定等于某个时刻的瞬时速度.

5.1 微分中值定理 49

(2) 我们经常把 Lagrange 中值定理的结论写成: 存在 $\xi \in (a,b)$ 使得

$$f(b) = f(a) + f'(\xi)(b - a),$$

它把 f 的改变量 f(b) - f(a) 与 f 在某点处的导数联系起来.

推论 5.1.9. 设 $f \in C([a,b])$ 且在 (a,b) 上导数处处为 0, 则 f 在 [a,b] 上是常值函数.

推论 5.1.10. 设 f,g 是 [a,b] 上的连续函数, 如果它们的导数在 (a,b) 上处处相等, 则 f-g 是常值函数.

推论 5.1.11 (判断函数的单调性). 设 $f:[a,b]\to \mathbf{R}$ 在 [a,b] 上连续且在 (a,b) 上可导. 如果

$$f'(x) \ge 0, \quad \forall x \in (a, b),$$

则 f 在 [a,b] 上递增. 如果

$$f'(x) > 0, \quad \forall x \in (a, b),$$

则 f 在 [a,b] 上严格递增.

命题 5.1.12. 设 x > 0, 则 $\frac{1}{x+1} < \ln \frac{x+1}{x} < \frac{1}{x}$.

例 5.1.13. 函数 $f(x) = (1 + \frac{1}{x})^x$ 在 $(0, +\infty)$ 上严格单调递增.

例 5.1.14. 定义数列 $\{a_n\}_{n=1}^{\infty}$ 为

$$a_n = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} - \ln n.$$

Euler 证明了 $\{a_n\}_{n=1}^{\infty}$ 是收敛的. 人们把上述数列的极限 $\gamma = \lim_{n \to \infty} \left(\sum_{i=1}^n \frac{1}{i} - \ln n\right)$ 称为 Euler 常数, 约等于 0.5772156649.

定理 5.1.15 (Cauchy 中值定理). 设 f,g 都在 [a,b] 上连续且在 (a,b) 上可导,则存在 $\xi \in (a,b)$ 使得

$$g'(\xi) \cdot (f(b) - f(a)) = f'(\xi) \cdot (g(b) - g(a)).$$

更进一步, 如果对任何 $t \in (a,b)$ 都有 $g'(t) \neq 0$, 则 $g(a) \neq g(b)$, 因此可以把上述等式写成:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

证明: 对函数

$$h(x) := (f(x) - f(a)) \cdot (g(b) - g(a)) - (f(b) - f(a)) \cdot (g(x) - g(a))$$

使用 Rolle's theorem.

注 5.1.16. 当 g'(t) 处处非零时,我们可以按如下方式理解 Cauchy 中值定理. 此时,由 Rolle's theorem 知 g 是单射,再由反函数的导数定理可知 g 有可导的反函数 g^{-1} . 考虑映射 $f \circ g^{-1}$, 对它使用 Lagrange 中值定理,可知存在 c 严格介于 g(a), g(b) 之间,使得:

$$\frac{f\circ g^{-1}(g(b))-f\circ g^{-1}(g(a))}{g(b)-g(a)}=(f\circ g^{-1})'(c)=f'(g^{-1}(c))\frac{1}{g'(g^{-1}(c))},$$

令 $\xi = g^{-1}(c)$, 此即 Cauchy 中值定理.

5.2 洛必达 (L'Hopital) 法则

定理 5.2.1 $(\frac{0}{0}$ 型洛必达法则). 设 f,g 在 a 的某个去心邻域上处处可导, g' 在该邻域中处处非零. 设 $\lim_{x\to a} f(x) = 0$, $\lim_{x\to a} g(a) = 0$. 如果 $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ 存在, 则 $\lim_{x\to a} \frac{f(x)}{g(x)}$ 也存在, 且有

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

注 5.2.2. 还有很多其他版本的洛必达法则.

- (1) 设 f, g 在 (a, a+r) 上可导, g' 处处非零, $\lim_{x\to a+} f(x) = \lim_{x\to a+} g(x) = 0$. 如果 $\lim_{x\to a+} \frac{f'(x)}{g'(x)}$ 存在, 则 $\lim_{x\to a+} \frac{f(x)}{g(x)} = \lim_{x\to a+} \frac{f'(x)}{g'(x)}$.
 - (2) 对左极限 $\lim_{x\to a-} \frac{f(x)}{g(x)}$ 有类似的结论.
- (3) 设 f,g 在某个 $\mathbf{R} \setminus [-A,A]$ 上可导,g' 处处非零, $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$. 如果 $\lim_{x \to \infty} \frac{f'(x)}{g'(x)}$ 存在,则 $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$.

使用洛必达法则计算极限,要依照如下顺序:

- (1) 验证 $\lim_{x\to a} f(x) = 0$, $\lim_{x\to a} g(a) = 0$, 从而是 $\frac{0}{0}$ 型的.
- (2) 验证极限 $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ 存在.
- (3) 由洛必达法则得到 $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$.

例 5.2.3. 设 $x_1,...,x_n$; $\alpha_1,...,\alpha_n$ 是给定的正实数,且 $\alpha_1+...+\alpha_n=1$.则有

$$\lim_{t \to 0} (\alpha_1 x_1^t + \dots + \alpha_n x_n^t)^{1/t} = x_1^{\alpha_1} \dots x_n^{\alpha_n}.$$

事实上, 由洛必达法则, 有

$$\lim_{t \to 0} \frac{\ln(\alpha_1 x_1^t + \dots + \alpha_n x_n^t)}{t}$$

$$= \lim_{t \to 0} \frac{\alpha_1 x_1^t \ln x_1 + \dots + \alpha_n x_n^t \ln x_n}{\alpha_1 x_1^t + \dots + \alpha_n x_n^t}$$

$$= \ln(x_1^{\alpha_1} \dots x_n^{\alpha_n}).$$

函数 $g(y) = e^y$ 处处连续, 利用复合函数的极限定理, 有

$$\lim_{t \to 0} (\alpha_1 x_1^t + \dots + \alpha_n x_n^t)^{1/t}$$

$$= \lim_{t \to 0} \exp\left(\frac{\ln(\alpha_1 x_1^t + \dots + \alpha_n x_n^t)}{t}\right)$$

$$= \exp\left(\lim_{t \to 0} \frac{\ln(\alpha_1 x_1^t + \dots + \alpha_n x_n^t)}{t}\right)$$

$$= x_1^{\alpha_1} \dots x_n^{\alpha_n}.$$

例 5.2.4. 对 $\frac{0}{0}$ 型的极限, 如果 $\lim_{x\to a}\frac{f'(x)}{g'(x)}$ 不存在, 我们不能断言 $\lim_{x\to a}\frac{f(x)}{g(x)}$ 也不存在. 例如, 令

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{m} x \neq 0, \\ 0, & \text{m} x = 0, \end{cases}$$

定理 5.2.5 $(\frac{?}{\infty})$ 型洛必达法则). 设 f,g 在 (a,a+r) 上可导,g' 处处非零, $\lim_{x\to a+}|g(x)|=+\infty$. 如果 $\lim_{x\to a+}\frac{f'(x)}{g'(x)}$ 存在,则 $\lim_{x\to a+}\frac{f(x)}{g(x)}=\lim_{x\to a+}\frac{f'(x)}{g'(x)}$.

证明: 设 $\lim_{x\to a+} \frac{f'(x)}{g'(x)} = A$, 则对任何 $\epsilon > 0$, 存在 $\delta_1 > 0$ 使得:

$$\left| \frac{f'(y)}{g'(y)} - A \right| < \epsilon, \quad \forall a < y < a + \delta_1.$$

取 $c = a + \delta_1$, 则由 Cauchy 中值定理知对任何 a < x < c, 存在 $\xi_x \in (x, c)$, 使得:

$$\frac{f(x) - f(c)}{g(x) - g(c)} = \frac{f'(\xi_x)}{g'(\xi_x)},$$

因此有

$$\frac{f(x)}{g(x)} = \frac{f(c)}{g(x)} + \left(1 - \frac{g(c)}{g(x)}\right) \frac{f'(\xi_x)}{g'(\xi_x)}.$$
 (5.1)

由于 $\lim_{x\to a^{\perp}}|g(x)|=+\infty$, 存在 $\delta_2>0$ 使得:

$$\left| \frac{f(c)}{g(x)} \right| < \epsilon, \quad \left| \frac{g(c)}{g(x)} \right| < \epsilon, \quad \forall a < x < a + \delta_2.$$

令 $\delta = \min(\delta_1, \delta_2)$, 则对任何 $a < x < a + \delta$, 有:

$$|\frac{f(x)}{g(x)} - A| \le |\frac{f(c)}{g(x)}| + |(1 - \frac{g(c)}{g(x)})(\frac{f'(\xi_x)}{g'(\xi_x)} - A)| + |\frac{g(c)}{g(x)}A|$$

$$< \epsilon + (1 + \epsilon)\epsilon + |A|\epsilon.$$

这就证明了 $\lim_{x\to a+} \frac{f(x)}{g(x)} = A$.

例 5.2.6. 给定 $\alpha > 0$, 则 $\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = 0$.

例 5.2.7. 给定 q > 1,则对任何实数 α ,有 $\lim_{x \to +\infty} \frac{x^{\alpha}}{q^x} = 0$.

例 5.2.8. 设 f 处处可导, 且 $\lim_{x\to +\infty} f'(x)$ 存在, 则有 $\lim_{x\to +\infty} \frac{f(x)}{x} = \lim_{x\to +\infty} f'(x)$.

例 5.2.9. 求极限 $\lim_{x\to 0} \frac{\arcsin x - x}{x^3}$.

5.3 带 Peano 余项的 Taylor 公式

回忆可导 (可微) 的定义. 如果 f 在 x_0 处可导, 则 f 在 x_0 附近可用一次函数逼近:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \alpha(x),$$

其中 α 满足 $\lim_{x\to x_0}\frac{\alpha(x)}{x-x_0}=0$,是比 1 次更小的误差项 (当 $x\to x_0$) 时. 为了叙述方便,人们引入如下的术语.

定义 5.3.1. 设 g 在 x_0 的某个去心邻域内有定义,如果 $\lim_{x\to x_0} \frac{g(x)}{(x-x_0)^n} = 0$,则称当 $x\to x_0$ 时,g 是比 $(x-x_0)^n$ 更高阶的无穷小,记作

$$g(x) = o((x - x_0)^n), \quad \stackrel{\text{def}}{=} x \to x_0$$
 by

这样, f 在 x_0 处可导 (严格的说, 可微) 可以叙述成:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0), \quad \exists x \to x_0$$
 $\exists t.$

问题 5.3.2. 能否用高次多项式逼近 f? 具体的说, 是否存在 n 次多项式 $P(x) = c_0 + c_1(x - x_0) + ... + c_n(x - x_0)^n$ 使得:

$$f(x) = P(x) + o((x - x_0)^n), \quad \exists x \to x_0 \text{ bt }?$$

为此, 需要 (1) 确定各个系数; (2) 证明上式成立.

命题 5.3.3 (多项式逼近的唯一性). 如果存在多项式 $P(x) = c_0 + c_1(x - x_0) + ... + c_n(x - x_0)^n$ 使得:

$$f(x) = P(x) + o((x - x_0)^n), \quad \exists x \to x_0 \text{ bt.}$$

则满足上述条件的多项式 P 是唯一的.

证明: $c_0, c_1, ..., c_n$ 由如下公式给出:

$$c_0 = \lim_{x \to x_0} f(x),$$

$$c_1 = \lim_{x \to x_0} \frac{f(x) - c_0}{x - x_0},$$
.....
$$c_n = \lim_{x \to x_0} \frac{f(x) - (c_0 + \dots + c_{n-1}(x - x_0)^{n-1})}{(x - x_0)^n}.$$

利用这个命题及洛必达法则可知:

- (1) 如果 f 在 x_0 处连续, 则 $c_0 = f(x_0)$.
- (2) 如果 f 在 x_0 处可导, 则 $c_1 = f^{(1)}(x_0)$.
- (3) 如果 f 在 x_0 处有 2 阶导数, 则 $c_2 = \frac{f^{(2)}(x_0)}{2!}$.

.

(n) 如果 f 在 x_0 处有 n 阶导数, 则 $c_n = \frac{f^{(n)}(x_0)}{n!}$.

推论 5.3.4 (局部 Taylor 展开的唯一性). 设 f 在 x_0 处有 n 阶导数, 如果常数 $c_0,...,c_n$ 满足

$$f(x) = c_0 + c_1(x - x_0) + \dots + c_n(x - x_0)^n + o((x - x_0)^n), \quad \exists x \to x_0$$
 时.

则有

$$c_i = \frac{f^{(i)}(x_0)}{i!}, \quad i = 0, 1, ..., n.$$

定理 5.3.5 (带 Peano 余项的 Taylor 公式, n 阶局部 Taylor 公式). 设 f 在 x_0 处有 n 阶导数,则

$$f(x) = f(x_0) + \frac{f^{(1)}(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n), \quad \exists x \to x_0 \text{ if } .$$

证明: 连续使用 (n-1) 次洛必达法则, 再用 $f^{(n)}(x_0)$ 的定义, 可得

$$\lim_{x \to x_0} \frac{f(x) - (f(x_0) + \frac{f^{(1)}(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n}{(x - x_0)^n}$$

$$= \left(\lim_{x \to x_0} \frac{f(x) - (f(x_0) + \frac{f^{(1)}(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n-1)}(x_0)}{(n-1)!}(x - x_0)^{n-1})}{(x - x_0)^n}\right) - \frac{f^{(n)}(x_0)}{n!}$$

$$= \left(\lim_{x \to x_0} \frac{f^{(1)}(x) - \sum_{i=1}^{n-1} \frac{f^{(i)}(x_0)}{i!}i(x - x_0)^{i-1}}{n(x - x_0)^{n-1}}\right) - \frac{f^{(n)}(x_0)}{n!}$$

$$= \dots$$

$$= \left(\lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{n \dots 2(x - x_0)}\right) - \frac{f^{(n)}(x_0)}{n!}$$

$$= \frac{f^{(n)}(x_0)}{n!} - \frac{f^{(n)}(x_0)}{n!}$$

$$= 0.$$

例 5.3.6. 如果 f 在 x = 0 处有 n 阶导数, 则

$$f(x) = f(0) + \frac{f^{(1)}(0)}{1!}x + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n), \quad \stackrel{\text{def}}{=} x \to 0$$
 by.

人们经常把 x = 0 处的 Taylor 公式称为 MacLaurin 公式.

例 5.3.7. 求如下函数在 x=0 处的局部 Taylor 公式.

(1)
$$e^x = 1 + \frac{x}{1!} + \dots + \frac{x^n}{n!} + o(x^n), \quad \stackrel{\text{def}}{=} x \to 0 \text{ fr}.$$

(2)
$$a^x = 1 + \frac{x \ln a}{1!} + \dots + \frac{(x \ln a)^n}{n!} + o(x^n), \quad \stackrel{\text{def}}{=} x \to 0 \text{ bf}.$$

(3)
$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots + (-1)^n \frac{1}{(2n+1)!}x^{2n+1} + o(x^{2n+2}), \quad \not \equiv x \to 0$$
 b.

(4)
$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \dots + (-1)^n \frac{1}{(2n)!}x^{2n} + o(x^{2n+1}), \quad \stackrel{\text{def}}{=} x \to 0 \text{ B}.$$

(5)
$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1}x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^n + o(x^n)$$
, 当 $x \to 0$ 时. 引人记号 $\binom{\alpha}{k} = \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!}$,则

$$(1+x)^{\alpha}=1+\binom{\alpha}{1}x+\binom{\alpha}{2}x^2+\ldots+\binom{\alpha}{n}x^n+o(x^n),\quad \ \underline{ \ \, }\ \, \underline{ \ \, }\ \, x\to 0$$
时.

例如, 分别取 $\alpha = -1, \frac{1}{2}, -\frac{1}{2}$ 可得

(6)
$$\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n), \quad \stackrel{\text{def}}{=} x \to 0$$
 F.

例 5.3.8. 定义函数 $f:(-1,+\infty)\to \mathbf{R}$ 为

$$f(x) = \begin{cases} (1+x)^{1/x}, & \text{m} \Re x \neq 0 \\ e, & \text{m} \Re x = 0. \end{cases}$$

其中 $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$. 计算 f'(0), f''(0).

解答. (1) 利用洛必达法则进行计算, 可得

$$f'(0) = \lim_{x \to 0} \frac{(1+x)^{1/x} - e}{x}$$

$$= \lim_{x \to 0} \frac{(1+x)^{1/x} \frac{\frac{x}{1+x} - \ln(1+x)}{x^2}}{1}$$

$$= \lim_{x \to 0} (1+x)^{1/x} \cdot \lim_{x \to 0} \frac{\frac{x}{1+x} - \ln(1+x)}{x^2}$$

$$= e \cdot \lim_{x \to 0} \frac{\frac{1}{(1+x)^2} - \frac{1}{1+x}}{2x}$$

$$= e \cdot \lim_{x \to 0} \frac{-1}{2(1+x)^2}$$

$$= -\frac{1}{2}e.$$

(2) 当 $x \neq 0$ 时,

$$f'(x) = (1+x)^{1/x} \frac{\frac{x}{1+x} - \ln(1+x)}{x^2},$$

由高阶导数的定义可知

$$f''(0) = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = \lim_{x \to 0} \frac{(1+x)^{1/x} \frac{\frac{x}{1+x} - \ln(1+x)}{x^2} + \frac{1}{2}e}{x}.$$
 (5.2)

为了计算上述极限, 需要用到如下两个函数在 x=0 附近带 Peano 余项的 Taylor 公式

$$\frac{x}{1+x} = 1 - \frac{1}{1+x} = x - x^2 + x^3 + o(x^3),$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3),$$

由此可得

$$\frac{\frac{x}{1+x} - \ln(1+x)}{x^2} = -\frac{1}{2} + \frac{2}{3}x + o(x). \tag{5.3}$$

另外, 由第(1)问的计算结果, 有

$$(1+x)^{1/x} = e - \frac{1}{2}ex + o(x). (5.4)$$

将(2),(3) 式代入(1) 式,即得

$$f''(0) = \lim_{x \to 0} \frac{\left(e - \frac{1}{2}ex + o(x)\right) \cdot \left(-\frac{1}{2} + \frac{2}{3}x + o(x)\right) + \frac{1}{2}e}{x}$$
$$= \frac{2}{3}e + \frac{1}{4}e = \frac{11}{12}e.$$

命题 5.3.9. 给定正整数 k. 设函数 f 在 x=0 处的局部 Taylor 公式为

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n), \quad \exists x \to 0 \text{ bt},$$

则函数 $f(x^k)$ 在 x=0 处的局部 Taylor 公式为

$$f(x^k) = a_0 + a_1 x^k + \dots + a_n x^{kn} + o(x^{kn}), \quad \exists x \to 0 \text{ off.}$$

命题 5.3.10. 设函数 f' 在 $x = x_0$ 处的局部 Taylor 公式为

$$f'(x) = a_0 + a_1(x - x_0) + ... + a_n(x - x_0)^n + o((x - x_0)^n), \quad \exists x \to x_0 \text{ bt},$$

则函数 f(x) 在 $x = x_0$ 处的局部 Taylor 公式为

$$f(x) = f(x_0) + \sum_{i=0}^{n} \frac{a_i}{i+1} (x - x_0)^{i+1} + o((x - x_0)^{n+1}), \quad \pm x \to x_0$$
 时.

例 5.3.11. 求 $\arctan x$ 在 x = 0 处的局部 Taylor 公式.

命题 5.3.12. 设 f(0) = 0, 且 f = 0 在 x = 0 处的 Taylor 级数分别为

$$f(x) \sim a_1 x + a_2 x^2 + \dots$$

$$g(x) \sim b_0 + b_1 x + b_2 x^2 + \dots$$

则复合函数 $g \circ f$ 在 x = 0 处的 n 阶局部泰勒公式可由在如下级数中删去所有 $x^m(m > n)$ 次项得到

$$b_0 + b_1(a_1x + a_2x^2 + ...) + b_2(a_1x + a_2x^2 + ...)^2 + ...$$

注 5.3.13. 命题5.3.12的证明并不容易.

5.4 带 Lagrange 余项的 Taylor 公式

带 Peano 余项的 Taylor 公式	带 Lagrange 余项的 Taylor 公式
$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$	$f(x) = f(x_0) + f'(\xi)(x - x_0)$
$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + o((x - x_0)^2)$?

事实上, 有如下的结果.

定理 5.4.1 (带 Lagrange 余项的 Taylor 公式). 设 I 是开区间, $f:I \to \mathbf{R}$ 在 I 上处处有 n 阶 导数, 则对 I 中任何两点 a,b, 存在 ξ 介于 a,b 之间, 使得

$$f(b) = f(a) + \frac{f^{(1)}(a)}{1!}(b-a) + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(b-a)^{n-1} + \frac{f^{(n)}(\xi)}{n!}(b-a)^n.$$

证明: 定义函数

$$R(x) = f(x) - \left(f(a) + \frac{f^{(1)}(a)}{1!}(x-a) + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1}\right),$$

称之为 Taylor 公式的余项. 注意到,

$$R(a) = 0, \quad R^{(1)}(a) = \dots = R^{(n-1)}(a) = 0.$$

使用 n 次 Cauchy 中值定理, 可得

$$\begin{split} &\frac{R(b)}{(b-a)^n} = \frac{R(b) - R(a)}{(b-a)^n - (a-a)^n} \\ &= \frac{R^{(1)}(\xi_1)}{n(\xi_1 - a)^{n-1}} = \frac{R^{(1)}(\xi_1) - R^{(1)}(a)}{n(\xi_1 - a)^{n-1} - n(a-a)^{n-1}} \\ &= \frac{R^{(2)}(\xi_2)}{n(n-1)(\xi_2 - a)^{n-2}} = \frac{R^{(2)}(\xi_2) - R^{(2)}(a)}{n(n-1)(\xi_2 - a)^{n-2} - n(n-1)(a-a)^{n-2}} \\ &= \dots \\ &= \frac{R^{(n-1)}(\xi_{n-1})}{n(n-1)\dots 2(\xi_{n-1} - a)} = \frac{R^{(n-1)}(\xi_{n-1}) - R^{(n-1)}(a)}{n(n-1)\dots 2(\xi_{n-1} - a) - n(n-1)\dots 2(a-a)} \\ &= \frac{R^{(n)}(\xi_n)}{n!}, \end{split}$$

这就完成了证明.

例 5.4.2. 考虑 $f(x) = e^x$, 对任何 x, 存在 ξ_x 介于 0 与 x 之间, 使得

$$e^x = 1 + \frac{x}{1!} + \dots + \frac{x^n}{n!} + \frac{e^{\xi_x}}{(n+1)!}x^{n+1},$$

由此可得

$$|e^x - (1 + \frac{x}{1!} + \dots + \frac{x^n}{n!})| = \frac{e^{\xi_x}}{(n+1)!} |x|^{n+1} \le \frac{\max(1, e^x)}{(n+1)!} |x|^{n+1}.$$

注意到 $\lim_{n\to\infty} \frac{|x|^{n+1}}{(n+1)!} = 0$, 则有

$$\lim_{n \to \infty} \left(1 + \frac{x}{1!} + \dots + \frac{x^n}{n!} \right) = e^x,$$

人们把这个极限式记作

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots$$

取 $x = y \ln a$, 则有

$$e^{y \ln a} = \lim_{n \to \infty} \left(1 + \frac{y \ln a}{1!} + \dots + \frac{y^n \ln^n a}{n!} \right),$$

此即

$$a^y = \lim_{n \to \infty} \left(1 + \frac{y \ln a}{1!} + \ldots + \frac{y^n \ln^n a}{n!} \right) = 1 + \frac{y \ln a}{1!} + \frac{y^2 \ln^2 a}{2!} + \ldots$$

例 5.4.3. (1) 考虑 $f(x) = \sin x$, 对任何 x, 存在 ξ_x 介于 0 与 x 之间, 使得

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^n \frac{1}{(2n+1)!}x^{2n+1} + \frac{(-1)^{n+1}\sin\xi_x}{(2n+2)!}x^{2n+2},$$

由此可得

$$\sin x = \lim_{n \to \infty} \left(x - \frac{1}{3!} x^3 + \dots + (-1)^n \frac{1}{(2n+1)!} x^{2n+1} \right) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}.$$

(2) 考虑 $f(x) = \cos x$, 对任何 x, 存在 ξ_x 介于 0 与 x 之间, 使得

$$\cos x = 1 - \frac{1}{2!}x^2 + \dots + (-1)^n \frac{1}{(2n)!}x^{2n} + \frac{(-1)^{n+1}\sin\xi_x}{(2n+1)!}x^{2n+1},$$

由此可得

$$\cos x = \lim_{n \to \infty} \left(1 - \frac{1}{2!} x^2 + \dots + (-1)^n \frac{1}{(2n)!} x^{2n} \right) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} x^{2n}.$$

(3) 考虑 $f(x) = \ln(1+x)$, 对任何 x, 存在 ξ_x 介于 0 与 x 之间, 使得

$$\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + \frac{(-1)^n (1+\xi_x)^{-n-1}}{n+1} x^{n+1}.$$

(4) 考虑 $f(x) = (1+x)^{\alpha}$, 对任何 x, 存在 ξ_x 介于 0 与 x 之间, 使得

$$(1+x)^{\alpha}=1+\binom{\alpha}{1}x+\binom{\alpha}{2}x^2+\ldots+\binom{\alpha}{n}x^n+\binom{\alpha}{n+1}(1+\xi_x)^{-\alpha-n-1}x^{n+1}.$$

例 5.4.4. 当 $|x| \le 1$ 时, 计算 $\sin x$, 要求误差不超过 10^{-3} .

证明: 注意到 $\sin^{(k)}(x) = \sin(x + \frac{\pi}{2}k)$, 由带 Lagrange 余项的 Taylor 公式, 对任何 $x \in \mathbf{R}$, 存在 ξ_x 介于 0, x 之间, 使得

$$\sin x = \sum_{k=0}^{n} \frac{\sin \frac{k\pi}{2}}{k!} x^{k} + \frac{\sin(\xi_{x} + \frac{(n+1)\pi}{2})}{(n+1)!} x^{n+1},$$

由此可知, 对 $|x| \leq 1$, 有

$$|\sin x - \sum_{k=0}^{n} \frac{\sin\frac{k\pi}{2}}{k!} x^{k}| = \left| \frac{\sin(\xi_{x} + \frac{(n+1)\pi}{2})}{(n+1)!} x^{n+1} \right| \le \frac{1}{(n+1)!},$$

特别的,

$$|\sin x - (x - \frac{x^3}{3!} + \frac{x^5}{5!})| \le \frac{1}{7!} < 10^{-3}, \quad \forall |x| \le 1.$$

5.5 Taylor 公式的应用

例 5.5.1. 设 $f: \mathbf{R} \to \mathbf{R}$ 处处有 2 阶导数, 且满足

$$|f(x)| \le A$$
, $|f''(x)| \le B$, $\forall x \in \mathbf{R}$.

证明: 对任何 $x \in \mathbf{R}$, 有 $|f'(x)| \le 2\sqrt{AB}$.

证明: 对任何给定的 x, 由该点处带 Lagrange 余项的 Taylor 公式可知, 对任何 $h \neq 0$, 存在 ξ_h 介于 0, h 之间, 使得

$$f(x+h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x+\xi_h)}{2!}h^2,$$

由此可得

$$|f'(x)| = \left| \frac{f(x+h) - f(x)}{h} - \frac{f''(x+\xi_h)}{2}h \right| \le \frac{2A}{|h|} + \frac{B|h|}{2}.$$

特别的, 取 $h=2\sqrt{\frac{A}{B}}$, 可得

$$|f'(x)| \le 2\sqrt{AB}.$$

例 5.5.2. 设 $f: \mathbf{R} \to \mathbf{R}$ 处处有 3 阶导数, 且满足

$$|f(x)| \le M_0, \quad |f'''(x)| \le M_3, \quad \forall x \in \mathbf{R}.$$

证明: 对任何 $x \in \mathbf{R}$, 有

$$|f'(x)| \le \sqrt[3]{\frac{9M_0^2M_3}{8}}, \quad |f''(x)| \le \sqrt[3]{3M_0M_3^2}.$$

证明: 设 h > 0, 利用带 Lagrange 余项的 Taylor 公式可知, 存在 ξ 与 η , 使得

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2!}h^2 + \frac{f'''(\xi)}{3!}h^3,$$

$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)}{2!}h^2 - \frac{f'''(\eta)}{3!}h^3.$$

将上述两式相减,可得

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{f'''(\xi) + f'''(\eta)}{12}h^2,$$

由此可得

$$|f'(x)| \le \frac{M_0}{h} + \frac{M_3}{6}h^2.$$

特别的, 取 $h = \sqrt[3]{\frac{3M_0}{M_3}}$, 可得

$$|f'(x)| \le \sqrt[3]{\frac{9M_0^2 M_3}{8}}.$$

例 5.5.3. 设 $f: \mathbf{R} \to \mathbf{R}$ 有连续的二阶导函数, 且 f(0) = f(1) = 0. 证明: 对任何 $a \in (0,1)$, 有

$$|f(a)| \le \frac{1}{8} \max_{x \in [0,1]} |f''(x)|.$$

证明: 由假设, f 与 f'' 是连续函数, 在有界闭区间 [0,1] 上有最值, 设 $M = \max_{x \in [0,1]} |f''(x)|$. 我们只需证明, 对于 f 的最值点 x_0 , 有 $|f(x_0)| \leq \frac{M}{8}$. 不妨设 $x_0 \in (0,1)$, 由 Fermat 定理可知 $f'(x_0) = 0$. 利用带 Lagrange 余项的 Taylor 公式, 存在 ξ , η 使得

$$f(0) = f(x_0) + f'(x_0) \cdot (-x_0) + \frac{f''(\xi)}{2} x_0^2,$$

$$f(1) = f(x_0) + f'(x_0) \cdot (1 - x_0) + \frac{f''(\xi)}{2} (1 - x_0)^2.$$

从而有

$$f(x_0) = -\frac{f''(\xi)}{2}x_0^2 = -\frac{f''(\eta)}{2}(1-x_0)^2,$$

由此可得

$$|f(x_0)| \le \min\{\frac{M}{2}x_0^2, \frac{M}{2}(1-x_0)^2\} \le \frac{M}{8},$$

这就完成了证明.