Unit #6: AVL Trees

CPSC 221: Basic Algorithms and Data Structures

Anthony Estey, Ed Knorr, and Mehrdad Oveisi

2016W2

Skip slide 28

Unit Outline

- Binary search trees
- ► Balance implies shallow (shallow is good)
- How to achieve balance
- Single and double rotations
- AVL tree implementation

Learning Goals

- Compare and contrast balanced/unbalanced trees.
- Describe and apply rotation to a BST to achieve a balanced tree.
- Recognize balanced binary search trees (among other tree types you recognize, e.g., heaps, general binary trees, general BSTs).

Dictionary ADT Implementations

Worst Case time	insert	find	delete (after find)
Linked list	0(1)	0(n)	0(1)
Unsorted array	0(1)	A (n)	0(1)
Sorted array	O(n)	O(lgn)	$\theta(n)$
Hash table	chaining Oly open Oly) ddr.	$\theta(n)$	θ(1) with θ(1) tonbrtones key already exist
Known-to-bé	u rique value	does the	key already exist

Binary Search in a Sorted List

Binary Search Tree as Dictionary Data Structure

Binary tree property

ightharpoonup each node has ≤ 2 children

Search tree property

all keys in left subtree smaller than node's key

► all keys in right subtree larger than node's key Worst case

Result: easy to find any given key

In-, Pre-, Post-Order Traversal

3 M Post-order: 2,7,9,5,17,30,20,15,10 vilit

Beauty is Only $O(\log n)$ Deep

PST insert 2,3,7,11,15

Binary Search Trees are fast if they're shallow. Know any shallow trees?

- perfectly complete
- perfectly complete except the last level (like a heap)
- anything else?

Oln) (1) search (1)

What matters here?

Siblings should have about the same height.

Trodes that have the same parent

Balance

If for all nodes x,

- ▶ balance(x) = 0 then perfectly balanced.
- ▶ |balance(x)| is small then balanced enough. c
- ▶ $-1 \le \text{balance}(x) \le 1$ then tree height $\le c$ g n where c < 2.

AVL (Adelson-Velsky and Landis) Tree

Binary tree property

ightharpoonup each node has ≤ 2 children

Search tree property

- all keys in left subtree smaller than node's key
- all keys in right subtree larger than node's key

Balance property

For all nodes x, $-1 \le \text{balance}(x) \le 1$

Result: height is $\Theta(\log n)$.

Is this an AVL tree? No height (Nucl) = -1 height = path balance = L, -R, heights of children Node

> No, because of node 17; its out of balance.

An AVL Tree

How Do We Stay Balanced?

Suppose we start with a balanced search tree (an AVL tree),

It's no longer an AVL tree. What can we do?

ROTATE!

Note that y subtree's values are $\geq A$ & $\leq B$

Single Rotation - elample

newroot

rotateRight is shown. There's also a symmetric rotateLeft.

After rotation, subtree's height is the same as before insert.

So heights of ancestors don't change from before the Invert.

So?

confusing but compare slide
12 to 15 s RHS to
-height are the same 16/29

Double Rotation

Start with

A single rotation won't fix this.

DOUBLE ROTATE! (L ~R too

Double Rotation

Double Rotation

doubleRotateLeft is shown. There's also a symmetric doubleRotateRight.

Either x or y increased to height h-1 after insert. After rotation, subtree's height is the same as before insert. So height of ancestors doesn't change.

Insert Algorithm

- 1. Find location for new key.
- 2. Add new leaf node with new key.
- 3. Go up tree from new leaf searching for imbalance.
- 4. At lowest unbalanced ancestor:

The case names are the first two steps on the path from the unbalanced ancestor to the new leaf.

Insert: No Imbalance

Insert: Imbalance Case RR

Insert(33)

Case RR: rotateLeft

Single Rotation Code

Insert: Imbalance Case RL

Insert(18)

Case RL: doubleRotateLeft

Double Rotation Code

Delete

- 1. Delete as for general binary search tree. (This way we reduce the problem to deleting a node with 0 or 1 child.)
- 2. Go up tree from deleted node searching for imbalance (and fixing heights).
- 3. Fix all unbalanced ancestors (bottom-up)

Thinking about AVL trees

Observations

- AVL trees are binary search trees that allow only slight imbalance
- ▶ Worst-case $O(\log n)$ time for find, insert, and delete
- Elements (even siblings) may be scattered in memory

Realities

For large data sets, disk accesses dominate runtime

Could we have perfect balance if we relax binary tree restriction?