

Exam Question Paper

College/ Institute	CEDPS					
Department	Electronic and Computer Engineering					
Exam Author(s)	Prof J. Stonham & Dr H Meng					
Module Code	EE1055					
Module Title	Digital Systems and Microprocessors					
Month	May	Year	2019			
Paper Type	Full / Re-sit					
Duration	3 Hours					
Question Instructions						
	Answer-ALL questions: Section A and B have equal marks					
Are Calculators Permitted?	Yes / No					
Permitted Reference Materials						
	None					
Required Stationery						
	Please answer section A and section B using separate answer books					

SECTION A

2. Devise a "2 in 4" code for Base 6 numbers and convert the base 6 number

How can this code be used for error detection?

[5 marks]

3. Use Truth Table Equivalence to determine whether the following equations are true or false.

a)
$$\overline{AB} + ABC + BC = (A + B)(\overline{A} + C)(B + C)$$

 $(AC + \overline{AB} + BC)(B + C)$
b) $(A \oplus C) + (B \oplus C) + (A \oplus B) = 1$
[5 marks]

4. Obtain the MINIMAL 1st and 2nd Canonical forms of the following equation

$$F = \sum (0, 1, 2, 3, 8, 9, 12)$$

with Don't care inputs (13, 14, 15)

[5 marks]

5. The following equation is in its minimal NOR form. Obtain its MINIMAL 1st Canonical (AND/OR/NOT) form.

$$F = (\overline{\overline{A} + B}) + (\overline{\overline{A}} + \overline{B}) + (\overline{\overline{C}} + D)$$

[5 marks]

6. A 4-bit shift register Q₃Q₂Q₁Q₀ has EXCLUSIVE-OR feedback. The feedback function is

$$I_0 = Q3 \oplus Q2$$

If the initial state is 0001, what sequence of 4-bit numbers does the register generate when clocked?

[5 marks]

7. Design a sequential circuit to continuously output in binary, the sequence

Include a detailed block diagram in your answer and obtain any necessary logic functions in their MINIMAL forms.

[5 marks]

8. Design a combinational logic system in its minimal 1st Canonical Form, which will convert 3-bit pure binary inputs into Gray code.

[5 marks]

9. Programme the following function into a 16 to 1 multiplexer.

$$F = \Sigma (0, 1, 2, 4, 6, 9, 10, 12, 14)$$

Re-programme the same function into a two-layer system of 4 to 1 multiplexers.

Present you final answers in the form of circuit diagrams with all the inputs and outputs appropriately labelled.

[5 marks]

10. An incompetent engineer has produced the following circuit, which although it performs the function correctly, takes up too much silicon area and consumes excessive power. Redesign the circuit to obtain the best possible design in terms of power consumption, speed and size.

FIGURE Q10

SECTION B

- 11. Read the statements about the PIC16F877A microcontroller from the list below and judge it is true or false with a brief explanation.
 - a) The Program Counter inside this PIC chip has 13 bits.
 - b) The size of the code memory is 8k Bytes.
 - c) The PICmicro instructions take up to 3 lines of code each.
 - d) The size of the data memory is 512k bytes.
 - e) It is a Von Neumann architecture.
 - f) NOP instruction does nothing apart from generating a bit of delay.
 - g) It has 35 instructions.
 - h) It has 28 pins.
 - i) STATUS register is used for monitoring the system and it has 8 bits.
 - j) The BTFSC instruction is typically used for making programs run faster.

[10 marks]

12. The piece of code below is written for a PIC16F877A chip in assembly language:

BSF STATUS,5

CLRF TRISB

BCF STATUS,5

MOVLW H'07'

MOVWF PORTB

a) With reference to the attached datasheet at the end of the question 15, write down the 14-bit binary machine code for each row of the code.

[5 marks]

b) Explain the meaning of each instruction and give the final value of the W register in the PIC microcontroller.

[5 marks]

13. With reference to the attached instruction set (Datasheet 1), the following is a subroutine written for a PIC16F877A chip in assembly language:

DELAY MOVLW 0x2F

MOVWF COUNT

LOOP DECFSZ COUNT,F

GOTO LOOP

RETURN

a) Calculate the total number of PIC instructions that will be executed by calling this subroutine once.

[5 marks]

b) Assume that each PIC instruction takes 1µs to execute, except for CALL, RETURN and GOTO instructions that each take 2µs to execute. Calculate the total execution time that results from calling this subroutine once.

[5 marks]

14.

The values in the data memory (8-bits registers) of a PIC microcontroller are stored in their two's complement form. Please give the hexadecimal and binary representations of the following decimal values in the data memory.

- a) 60
- b) -78
- c) 45
- d) -10
- e) 98

[10 marks]

a) What is meant by switch bounce and explain why it is a problem for a microcontroller system.

[4 marks]

b) A keypad as shown in FIGURE Q15 is to be interfaced to PORT A of a PIC microcontroller. Assume that the column pins (PA4..6) are inputs and the row pins (PA0..3) are outputs, describe (using words or a flowchart) how a subroutine can scan the keypad and return the ASCII value of any key pressed. If no key is pressed, a null character should be returned.

FIGURE Q15

[6 marks]

TABLE 15-2: PIC16F87XA INSTRUCTION SET

Mnemonic,		Description	Cycles	14-Bit Opcode				Status	Notes
Oper	ands	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		
NOP	_	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE REGIST	ER OPER	RATION	NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERAT	IONS					
ADDLW	k	Add Literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND Literal with W	1	11		kkkk		Z	
CALL	k	Call Subroutine	2	10		kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to Address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR Literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move Literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from Interrupt	2	00	0000	0000	1001		
RETLW	k	Return with Literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from Literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR Literal with W	1	11		kkkk		Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF_PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is
executed as a NOP.

FIGURE 2-3: PIC16F876A/877A REGISTER FILE MAP

A	File Address		File Address		File Address		Fi Addi
Indirect addr. (*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	18
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	18
PCL	02h	PCL	82h	PCL	102h	PCL	18
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	18
FSR	04h	FSR	84h	FSR	104h	FSR	18
PORTA	05h	TRISA	85h		105h		18
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	18
PORTC	07h	TRISC	87h		107h		18
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		18
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		18
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18
T1CON	10h		90h		110h		19
TMR2	11h	SSPCON2	91h		111h		19
T2CON	12h	PR2	92h		112h		19
SSPBUF	13h	SSPADD	93h		113h		19
SSPCON	14h	SSPSTAT	94h		114h		19
CCPR1L	15h		95h		115h		19
CCPR1H	16h		96h	General	116h	General	19
CCP1CON	17h		97h	Purpose	117h	Purpose	18
RCSTA	18h	TXSTA	98h	Register	118h 119h	Register	18
TXREG	19h 1Ah	SPBRG	99h	16 Bytes	119h	16 Bytes	18
RCREG			9Ah		11An 11Bh		19
CCPR2L	1Bh 1Ch	CMCON	9Bh		11Ch		19
CCPR2H	1Dh	CVRCON	9Ch		11Dh		19
ADRESH	1Eh	ADRESL	9Dh		11Eh		19
	1Eh		9Eh 9Fh		11Fh		18
ADCON0	20h	ADCON1			120h		1
	2011		A0h		12011		1/
General		General Purpose Register		General Purpose Register		General Purpose Register	
Purpose Register		80 Bytes		80 Bytes		80 Bytes	
96 Bytes			EFh		16Fh		1E
	751-	accesses 70h-7Fh	F0h	accesses 70h-7Fh	170h	accesses 70h - 7Fh	1F
Bank 0	7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 3	11

Unimplemented data men
 Not a physical register.

Note 1: These registers are not implemented on the PIC16F876A.

2: These registers are reserved; maintain these registers clear.