Problem R-11U ($C_2H_3AsF_7NXe$). This problem requires you to interpret the ¹²⁹Xe and ¹⁴N spectra of $[CH_3C\equiv N-Xe-F]^+AsF_6^-$ (Emara, A. A. A; Schrobilgen, G. J. *Chem. Commun.* **1987**, 1644)

(a) Analyze Spectrum **1** and **2**. Spectrum **2** is of a compound labeled >99% with 13 C at the CN carbon. Report coupling constants. Use the form $^{n}J_{X-Y} = 00.0$ Hz.

(b) Analyze Spectrum **3**. Make sure you understand and explain the origin of all peaks. Why are the signals somewhat broadened?

Problem R-11U ($C_2H_3AsF_7NXe$). This problem requires you to interpret the ¹²⁹Xe and ¹⁴N spectra of $[CH_3C\equiv N-Xe-F]^+AsF_6^-$ (Emara, A. A. A; Schrobilgen, G. J. *Chem. Commun.* **1987**, 1644)

(a) Analyze Spectrum **1** and **2**. Spectrum **2** is of a compound labeled >99% with 13 C at the CN carbon. Report coupling constants. Use the form $^{n}J_{X-Y} = 00.0$ Hz.

 $\delta_{Xe} = 1708 \text{ ppm}$ Spectrum 1: a doublet (coupling to ¹⁹F) of 1:1:1 triplets (from coupling to ¹⁴N), J = 6000, 300 Hz Spectrum 2: a doublet of 1:1:1 triplets of doublets, J = 6000, 300, 79 Hz $^2J_{Xe-13C} = 79 \text{ Hz}$

- (b) Analyze Spectrum 3. Make sure you understand and explain the origin of all peaks. Why are the signals somewhat broadened?
- Central peak: all of the isotopes of Xe except ¹²⁹Xe
- Outer peaks: ¹²⁹Xe satelites due to ¹²⁹Xe ¹⁴N coupling, J ca 300 Hz
- The signals are broadened because ^{14}N T_1 is quite short due to quadrupolar relaxation. There are probably also broadening effects from unresolved coupling to F and CH₃.