Problem Set 6

Student Name: Noah Reef

Problem 7.9

Let $\Omega \subseteq \mathbb{R}^d$ be bounded and suppose that $f_j \in H^2(\Omega)$ is such that $f_j \rightharpoonup f$ in $H^1(\Omega)$ and $D^{\alpha}f_j \rightharpoonup g_{\alpha}$ in $L^2(\Omega)$ for all $|\alpha| = 2$. Without loss of generality, we will assume that Ω is Lipschitz, since we can always find a bounded extension operator from Ω to a Lipschitz domain and the results will still hold.

Since $f_j \in H^2(\Omega)$, we have that $||f_j||_{H^2(\Omega)} < \infty$ and thus we have that there exists a subsequence $\{f_{j_k}\}_{k=1}^{\infty}$ such that $f_{j_k} \to f_{H^2}$ in $H^2(\Omega)$. Additionally, we have that since $f_j \to f$ in $H^1(\Omega)$, then we have that $||f_j||_{H^1(\Omega)}$ is bounded and thus there exists a subsequence $\{f_{j_k}\}_{k=1}^{\infty}$ such that $f_{j_k} \to f$ in $H^1(\Omega)$. Since $H^2 \to H^1$ and we have that the weak limit is unique, we get that $f_{j_k} \to f$ in $H^2(\Omega)$. Thus we have that

$$\langle f_{j_k}, h \rangle_{H^1} = \sum_{|\alpha| \le 2} \langle D^{\alpha} f_{j_k}, D^{\alpha} h \rangle_{L^2} \to \sum_{|\alpha| \le 2} \langle D^{\alpha} f, D^{\alpha} h \rangle_{L^2} = \langle f, h \rangle_{H^2}$$

which implies that

$$\langle D^{\alpha} f_{j_k}, D^{\alpha} h \rangle_{L^2} \to \langle D^{\alpha} f, h \rangle_{L^2}$$

but since $D^{\alpha}f_{j_k} \rightharpoonup g_{\alpha}$ in $L^2(\Omega)$, we have that $g_{\alpha} = D^{\alpha}f$ and hence $f \in H^2(\Omega)$. Additionally since $H^2(\Omega) \hookrightarrow H^1(\Omega)$, we have that $f_j \rightharpoonup f$ in $H^2(\Omega)$ and thus there exists a subsequence $f_{j_k} \to f$ in $H^1(\Omega)$.

Problem 7.10

Suppose that $\Omega \subset \mathbb{R}^d$ is bounded with a Lipschitz boundary and $f_j \rightharpoonup f$ and $g_j \rightharpoonup g$ in $H^1(\Omega)$. Note that for $\varphi \in \mathcal{D}(\Omega)$, we have that

$$\langle \nabla (f_j g_j), \varphi \rangle = \int_{\Omega} g_j \nabla f_j \cdot \varphi \, dx + \int_{\Omega} f_j \nabla g_j \cdot \varphi \, dx$$

$$= \int_{\Omega} (g_j - g) \nabla f_j \cdot \varphi \, dx + \int_{\Omega} g \nabla f_j \cdot \varphi \, dx + \int_{\Omega} (f_j - f) \nabla g_j \cdot \varphi \, dx + \int_{\Omega} f \nabla g_j \cdot \varphi \, dx$$

$$= \langle (g_j - g) \nabla f_j, \varphi \rangle_{L^2(\Omega)} + \langle g \nabla f_j, \varphi \rangle_{L^2(\Omega)} + \langle (f_j - f) \nabla g_j, \varphi \rangle_{L^2(\Omega)} + \langle f \nabla g_j, \varphi \rangle_{L^2(\Omega)}$$

then by Corollary 7.23, we have that there exists $f_{j_k} \to f$ and $g_{j_k} \to g$ in $L^2(\Omega)$ and thus by using the subsequences above we get that

$$\langle (g_{j_k} - g)\nabla f_{j_k}, \varphi \rangle_{L^2(\Omega)} + \langle g\nabla f_{j_k}, \varphi \rangle_{L^2(\Omega)} + \langle (f_{j_k} - f)\nabla g_{j_k}, \varphi \rangle_{L^2(\Omega)} + \langle f\nabla g_{j_k}, \varphi \rangle_{L^2(\Omega)}$$

which becomes $\langle g\nabla f_{j_k} + f\nabla g_{j_k}, \varphi\rangle_{L^2(\Omega)} \to \langle \nabla(fg), \varphi\rangle$ and hence we have that there is a subsequence such that $\nabla(f_{j_k}g_{j_k}) \to \nabla(fg)$ in $L^2(\Omega)$. To have the sequence weakly converge in $L^p(\Omega)$, we require that the sequence is uniformly bounded in $L^p(\Omega)$ and so we first note that by Holder's Inequality, we have that

$$||f_{j}\nabla g_{j} + g_{j}\nabla f_{j}||_{L^{p}} \leq ||f_{j}\nabla g_{j}||_{L^{p}} + ||g_{j}\nabla f_{j}||_{L^{p}} \leq ||f_{j}||_{L^{q}} ||\nabla g_{j}||_{L^{2}} + ||g_{j}||_{L^{q}} ||\nabla f_{j}||_{L^{2}}$$

where 1/p = 1/q + 1/2. Note that since $f_j, g_j \in H^1(\Omega)$ we get that the sequence $||\nabla g_j||_{L^2}$ and $||\nabla f_j||_{L^2}$ are bounded.

In the case of $d \geq 3$, we have that for $p^* = 2d/(d-2)$ that $H^1(\Omega) \hookrightarrow L^{p^*}(\Omega)$. Then by taking $q = p^*$ we have that

$$\frac{1}{p} = \frac{d-2}{2d} + \frac{1}{2} = \frac{d-2+2d}{2d} = \frac{d-1}{d}$$

and thus for $d \geq 3$ we have weak convergence in $L^{d/(d-1)}(\Omega)$. Next for d=2, we have that $H^1(\Omega) \hookrightarrow L^{\infty}(\Omega)$ and thus we have that $q=\infty$ and thus we have that

$$\frac{1}{p} = 0 + \frac{1}{2} = \frac{1}{2}$$

and hence we have weak convergence in $L^2(\Omega)$.

Problem 7.11

Part a

Since $\Omega \subset \mathbb{R}^d$ is bounded with Lipschitz boundary, and $\{u_j\} \subseteq H^{2+\epsilon}(\Omega) = W^{2+\epsilon,2}(\Omega)$, we have that there exists a subsequence $\{u_{j_k}\} \subseteq W^{2,q}(\Omega)$ for $q < 2 < 2d/(d-2\epsilon)$ that converges. Thus by the Rellich-Kondrachov Theorem we have that $W^{2,q}(\Omega) \hookrightarrow W^{2,2}(\Omega) = H^2(\Omega)$ and hence we have that there exists a subsequence $\{u_{j_k}\} \subseteq H^2(\Omega)$ that converges.

Part b

To find such q and $s \ge 0$ such that we have $u_{j_k} \to u$ in $W^{s,q}(\Omega)$ we need that $W^{2+\epsilon,2}(\Omega) \Longrightarrow W^{s,q}(\Omega)$. This means that $s+m=2+\epsilon$ with q<2d/(d-2m), thus we have

$$q < \frac{2d}{d - 2(2 + \epsilon - s)} \implies s < 2 + \epsilon + \frac{d}{q} - \frac{d}{2}$$

and we have that

Part c

Suppose we have a subsequence $|u_{j_k}|^r \nabla u_{j_k} \to |u|^r \nabla u$ in $L^2(\Omega)$ for some $r \geq 1$. Then we see that

$$\begin{aligned} |||u_{j_k}|^r \nabla u_{j_k} - |u|^r \nabla u||_{L^2} &= ||(|u_{j_k}|^r - |u|^r) \nabla u_{j_k} - |u|^r (\nabla u - \nabla u_{j_k})||_{L^2} \\ &\leq ||(|u_{j_k}|^r - |u|^r) \nabla u_{j_k}||_{L^2} + |||u|^r (\nabla u - \nabla u_{j_k})||_{L^2} \end{aligned}$$

then by Holder's Inequality we have that

$$\left|\left|\left(|u_{j_k}|^r - |u|^r\right)\nabla u_{j_k}\right|\right|_{L^2} + \left|\left|\left|u\right|^r(\nabla u - \nabla u_{j_k})\right|\right|_{L^2} \leq \left|\left|\left|u_{j_k}\right|^r - |u|^r\right|\right|_{L^\infty} \left|\left|\nabla u_{j_k}\right|\right|_{L^2} + \left|\left|\left|u\right|^r\right|\right|_{L^\infty} \left|\left|\nabla u - \nabla u_{j_k}\right|\right|_{L^2}$$

since $[u_{j_k}]$ is bounded in $W^{2,2}(\Omega)$, we have that $||\nabla u_{j_k}||_{L^2}$ is bounded, similarly

$$||\nabla u - \nabla u_{j_k}||_{L^2} \to 0$$

and thus we need to check if $|||u_{j_k}|^r - |u|^r||_{L^{\infty}} \to 0$, which requires that $H^2(\Omega) \hookrightarrow L^{\infty}(\Omega)$. Note we have the following inequality,

$$s < 2 + \frac{d}{q} - \frac{d}{2}$$

and thus for $d \leq 4$ choosing s = 0 and $q = \infty$ satisfies that above inequality and hence $|||u_{j_k}|^r - |u|^r||_{L^{\infty}} \to 0$ and thus we have that $|u_{j_k}|^r \nabla u_{j_k} \to |u|^r \nabla u$ in $L^2(\Omega)$ for any $r \geq 1$. For d > 4 we could have instead applied Holder's as

$$\left|\left|\left(|u_{j_{k}}|^{r}-|u|^{r}\right)\nabla u_{j_{k}}\right|\right|_{L^{2}}+\left|\left|\left|u\right|^{r}\left(\nabla u-\nabla u_{j_{k}}\right)\right|\right|_{L^{2}}\leq \left|\left|\left|u_{j_{k}}\right|^{r}-|u|^{r}\right|\right|_{L^{s}}\left|\left|\nabla u_{j_{k}}\right|\right|_{L^{t}}+\left|\left|\left|u\right|^{r}\right|\right|_{L^{s}}\left|\left|\nabla u-\nabla u_{j_{k}}\right|\right|_{L^{2}}$$

and here we make the choice that $s = \frac{2d}{d-4}$ and t = d/2 to see that $H^2(\Omega) \hookrightarrow L^t(\Omega)$ and thus we have that ∇u_{j_k} converges in $L^t(\Omega)$. Then lastly

$$|||u_{j_k}|^r - |u|^r||_{L^s} \to 0$$

which we can achieve for $r \leq \frac{2}{d-4}$