Homework 11: Due Thursday, November 17

Reading: Chapters 17, 18, 19

Problem 1: Let R be a ring. Show that the following hold in R:

- (1) If $a \in R$, then $0 \cdot a = 0$
- (2) For all $a \in R, (-1) \cdot a = -a$.
- (3) The multiplicative identity 1 is unique.

Problem 2: Show that a finite integral domain is a field.

Problem 3: Let $f: R \to R'$ denote a ring homomorphism. Show that ker(f) is an ideal.

Problem 4: List all the ideals of \mathbb{Z}_{12} .

Problem 5: Let R be a ring and $I \subset R$ an ideal. An element $a \in R$ is invertible if a has a multiplicative inverse. Show that if an element $a \in I$ is invertible, then I = R.

Problem 6: Let $f: R \to R'$ be a homomorphism. Show that the induced map $\phi: R[x] \to R'[x]$, where $\phi(a_n x^n + \cdots + a_0) := f(a_n) x^n + \cdots + f(a_0)$, is a ring homomorphism.

Problem 7: Let R be a ring. Show that there is exactly one homomorphism $\phi: \mathbb{Z} \to R$.

Problem 8: Describe the kernel of the map $\mathbb{Z}[x] \to \mathbb{R}$ defined by sending a polynomial f(x) to $f(1+\sqrt{2})$.