CLAIMS

	1	A radiation curable resin composition comprising (A) reactive oxide particles,
		prepared by reacting particles of at least one oxide of an element selected
5		from the group consisting of silicon, aluminum, zirconium, titanium, zinc,
		germanium, indium, tin, antimony and cerium, with an organic compound that
		includes a polymerizable unsaturated group, (B) a radically polymerizable
		compound including two or more functional groups, (C) a salt of an inorganic
		acid and/or an organic acid, and optionally (D) an organic polymer including a
10		structural unit derived from an alkylene glycol.
	2	A radiation-curable resin composition according to claim 1, wherein the
		reactive oxide particles have been prepared from silica particles.
	3 .	The radiation-curable resin composition according to claim 1, wherein at least
		a part of the salt (C) of an inorganic acid and/or an organic acid is a salt
15		formed of one cation selected from the group consisting of a lithium ion,
	•	sodium ion, and tetraalkylammonium ion and a perchlorate ion.
	4	The radiation-curable resin composition according to any one of claims 1 to 3,
		comprising component D and wherein at least a part of the organic polymer
		(D) including a structural unit derived from an alkylene glycol is at least one
20		polymer selected from the group consisting of polyethylene glycol,
		polypropylene glycol, and a copolymer of polyethylene glycol and
		polypropylene glycol.
	5	The radiation-curable resin composition according to any of claims 1 to 4,
		wherein the organic polymer (D) including a structural unit derived from an
25		alkylene glycol includes a structure derived from (meth)acrylate.
	6	A radiation-curable resin composition according to any one of claims 1 to 5,
		comprising methanol, ethanol, isopropanol or butanol.
	7	A cured film obtained by curing the radiation-curable resin composition
		according to any of claims 1 to 6 by applying radiation.
30	8	A laminate comprising a substrate layer and a layer of the cured film according
		to claim 7.
	9	The laminate according to claim 8, comprising a first layer exhibiting
		conductivity between the substrate layer and a second layer formed of the
	•	cured film.
35	· 10	The laminate according to claim 9, wherein the second layer has surface

resistivity of 1×10^{12} ohm/square or less.

5

- The laminate according to claim 9 or 10, wherein the first layer includes 50 wt% or more of antimony-doped tin oxide particles.
- The laminate according to any of claims 9 to 11, wherein the first layer includes polyaniline.