Market Unity Amidst Conflict: Price Integration Analysis in Yemen An Econometric and Spatial Approach

Mohammad al Akkaoui

December 2024

Research Context

Study Focus:

- Analysis of market integration between Aden and Sana'a
- Price transmission in staple commodity markets
- Impact of conflict on market dynamics

Key Challenges:

- Protracted conflict
- Institutional fragmentation
- Dual exchange rate regime
- Infrastructure limitations

Long-run Market Integration

Long-run Price Relationship:

$$P_{it} = \alpha_0 + \alpha_1 P_{jt} + u_t$$

Interpretation:

- Pit: Price in Aden at time t
- Pit: Price in Sana'a at time t
- α_0 : Transaction costs between markets
- α_1 : Price transmission elasticity
 - $\alpha_1 = 1$: Perfect market integration
 - $0 < \alpha_1 < 1$: Partial integration
 - $\alpha_1 = 0$: No integration
- u_t: Deviations from equilibrium

Error Correction Dynamics

Error Correction Model:

$$\Delta X_t = \alpha \beta' X_{t-1} + \sum_{i=1}^{p-1} \Gamma_i \Delta X_{t-i} + \delta Z_t + \varepsilon_t$$

- ΔX_t : Price changes in both markets
- α : Speed of adjustment to equilibrium
- β' : Long-run equilibrium relationship
- Γ_i : Short-term price responses
- Z_t : External factors (conflict, exchange rates)
- ε_t : Random shocks

Spatial Analysis Framework

1. Spatial Weights Matrix:

$$w_{ij} = egin{cases} 1 & ext{if } j ext{ is among } k ext{ nearest neighbors of } i \ 0 & ext{otherwise} \end{cases}$$

- w_{ij}: Market connectivity measure
- k: Number of connected markets
- Captures geographic market networks

Spatial Price Models

Spatial Models:

$$\begin{aligned} & \text{SLM: } y = \rho W y + X \beta + \varepsilon \\ & \text{SEM: } y = X \beta + u, \quad u = \lambda W u + \varepsilon \end{aligned}$$

- y: Vector of market prices
- W: Market connectivity matrix
- ρ : Strength of price spillovers
- λ : Spatial error correlation
- X: Market characteristics
- β : Impact of characteristics

Time-Varying Integration

Dynamic Integration Index:

$$\begin{aligned} y_t &= \alpha_t + \varepsilon_t, \quad \varepsilon_t \sim \textit{N}(0, \sigma_\varepsilon^2) \\ \alpha_t &= \alpha_{t-1} + \eta_t, \quad \eta_t \sim \textit{N}(0, \sigma_\eta^2) \end{aligned}$$

- y_t: Market price differential
- α_t : Time-varying integration level
- ε_t, η_t : Market shocks
- Captures evolving integration patterns

Price Differential Analysis

Price Gap Model:

$$\Delta P_{ijt} = \alpha + \beta_1 D_{ij} + \beta_2 C_{ijt} + \beta_3 E_t + \varepsilon_{ijt}$$

- ΔP_{ijt} : Price gap between markets
- \bullet D_{ij} : Transportation distance
- *C_{ijt}*: Conflict intensity
- E_t : Exchange rate differences
- Measures barriers to integration

Key Findings: Market Integration

Cointegration Results:

- Strong long-run equilibrium relationships
- Significant bidirectional price transmission
- Varying adjustment speeds across commodities

Price Transmission:

- Robust error correction mechanisms
- Asymmetric adjustment patterns
- Impact of exchange rate volatility

Commodity-Specific Results

Staple Foods:

- Beans: Strong cointegration ($\alpha \approx 0.896$)
- Eggs: Rapid adjustment ($\alpha = 1.224$)
- Wheat: Significant price transmission

Imported Goods:

- Fuel: Varying degrees of adjustment
- Rice: Significant ECM coefficients
- Impact of dual exchange rates

Policy Implications

Strategic Recommendations:

- Exchange rate unification efforts
- Infrastructure enhancement
- Market information systems

Integration Enhancement:

- Strengthen Aden-Sana'a corridor
- Reduce transaction costs
- Improve market efficiency

Conclusions

Key Contributions:

- Evidence of market resilience
- Quantification of integration patterns
- Framework for policy intervention

Future Directions:

- Enhanced market monitoring
- Targeted integration strategies
- Conflict-sensitive approaches