Msc in Artificial Intelligence and Robotics

Thesis Presentation

Sparse LiDAR Odometry using intensity channel: a comparison

A real-time front-end SLAM system for odometry estimation of a vehicle

Candidate Francesco Starna

ID 1613660

Advisor prof. Giorgio Grisetti

Sapienza University of Rome

Motivations

Robot navigation system

exploration, smart farming, surveillance, military, autonomous driving ...

Modern sensors

laser scanners provide a dense representation of the environment

Variety of techniques

feature detection and matching, transform estimation

Project Goal

Methods comparison

highlighting differences between solutions available nowadays

Odometry estimation pipeline

building an entire tracking system which estimates the car trajectory along the path

Real-time performance

entire process within the sensor frequency

Sapienza

Pipeline

LiDAR Projection

Projection

Extraction

Association

Registration

Odometry

IPB Car dataset

acquired in urban environment, with LiDAR and GNSS sensors

Projection function

from 3D Euclidean space to 2D image

Conversion issues

- multiple points may fall in the same pixel
- empty pixel

$$\begin{split} r &= \sqrt{x^2 + y^2 + z^2} \in \mathbb{R} \\ \theta &= atan2(y, x) \in [-\pi/2, \pi/2] \\ \varphi &= asin(z/r) \in [-\pi, \pi] \\ \downarrow \\ \begin{pmatrix} u \\ v \end{pmatrix} &= \begin{pmatrix} \frac{W}{2}(1 + \frac{\theta}{\pi}) \\ H \frac{f_{up} - \varphi}{f_{up} - f_{down}} \end{pmatrix} \end{split}$$

(b) (c)

Feature Extraction

Projection

Extraction

Association

Registration

Odometry

Traditional vs Deep Learning

- Oriented FAST and Rotated BRIEF (ORB)
- SuperPoint

Detection

Multiscale and oriented FAST detection of surrounding pixels

Description

Gaussian kernel smoothing and binary test on image patch

128 bit vector

MagicPoint + Homographic Adaptation

semi-dense model + bi-cubic interpolation + L2 norm

256 float vector

Data Association

Projection

Extraction

Association

Registration

Odometry

Brute-force approach

matching each descriptor with all the others

K-nearest neighbor (k=2)

choice is made by a ratio test

Euclidean norm check

looking for geometrical consistency

$$L(m_{k=1}, m_{k=2}) = \begin{cases} \text{keep} & \text{if } m_{k=1}.distance < m_{k=2}.distance * \text{ threshold}) \\ \text{discard} & \text{otherwise} \end{cases}$$

Transform Registration - Method

Projection Extraction Association Registration Odometry

Incremental approach

Iterative Closest Point (ICP)

- State
- - Perturbation
- Operator
- Measurement function
- Error function
- Jacobian

$$\mathbf{X} = [\mathbf{R} \mid \mathbf{t}]$$

$$\Delta \mathbf{x} = (\Delta x \, \Delta y \, \Delta z \, \Delta \alpha_x \, \Delta \alpha_y \, \Delta \alpha_z)$$

$$\mathbf{X} \boxplus \Delta \mathbf{x} = v2t(\Delta \mathbf{x})\mathbf{X}$$

- $\mathbf{h}_{k}^{icp}(\mathbf{X}) = \mathbf{R}^{T}(p_{j(k)}^{m} \mathbf{t})$
- $\mathbf{e}_{k}^{icp}(\mathbf{X}) = \mathbf{h}_{k}^{icp}(\mathbf{X}) p_{i(k)}^{f}$

$$\mathbf{J}_k^{icp}(\mathbf{X}) = \left(\mathbf{I} - [p_{j(k)}^m]_{\times}\right)$$

Direct approach

Closed-form solution to Least-Square (SVD)

Algorithm 2 Closed-form Solution of Least-Squares Optimization

Require: point correspondences $\{\langle x_0, y_0 \rangle, ..., \langle x_K, y_K \rangle\}$

Ensure: closed-form solution of R and t

$$\boldsymbol{\mu}_x \leftarrow \frac{1}{k} \sum_{i=1}^k \mathbf{x}_i, \ \boldsymbol{\mu}_y \leftarrow \frac{1}{k} \sum_{i=1}^k \mathbf{y}_i$$

$$\sigma_x \leftarrow \frac{1}{k} \sum_{i=1}^k ||\mathbf{x}_i - \boldsymbol{\mu}_x||^2, \quad \sigma_y \leftarrow \frac{1}{k} \sum_{i=1}^k ||\mathbf{y}_i - \boldsymbol{\mu}_y||^2$$

$$\Sigma \leftarrow \frac{1}{k} \sum_{i=1}^{k} (\mathbf{y}_i - \boldsymbol{\mu}_y) (\mathbf{x}_i - \boldsymbol{\mu}_x)^T$$
$$\mathbf{U}\mathbf{D}\mathbf{V}^T \leftarrow SVD(\boldsymbol{\Sigma})$$

if
$$det(\mathbf{U})det(\mathbf{V}) = 1$$
 then

$$S = I_{3\times 3}$$

else

$$\mathbf{S} = diag(1, 1 - 1)$$

end if

$$\mathbf{R} \leftarrow \mathbf{U}\mathbf{S}\mathbf{V}^T$$

$$\mathbf{t} \leftarrow \boldsymbol{\mu}_{y} - \mathbf{R} \boldsymbol{\mu}_{x}$$

return R.t

Thesis project - Pipeline

Transform Registration - Outlier Rejection

P^m X

Projection Extraction Association Registration

Odometry

Incremental approach

Robust estimator

- L1 Omega norm of the error function
- New error term
- Reducing contributions of higher errors

$$\underset{X}{\operatorname{argmin}} \ \sum_{k=1}^{m} \rho(u_k(x))$$

$$\begin{aligned} \mathbf{e}_{k} &\leftarrow \mathbf{h}_{k}(\check{\mathbf{x}}) \boxminus \mathbf{z}_{k} \\ \mathbf{J}_{k} &\leftarrow \frac{\partial \mathbf{e}(\check{\mathbf{x}} \boxminus \Delta \mathbf{x})}{\partial \Delta \mathbf{x}} \big|_{\Delta x = 0} \\ u_{k} &\leftarrow \sqrt{\mathbf{e}_{k}(\mathbf{x})^{T} \Omega_{k} \mathbf{e}_{k}(\mathbf{x})} \\ \gamma_{k} &\leftarrow \frac{1}{u_{k}} \frac{\partial \rho_{k}(u)}{\partial u} \big|_{u = u_{k}} \\ \Omega_{k} &= \gamma_{k} \Omega_{k} \\ \mathbf{H} &\leftarrow \mathbf{H} + \mathbf{J}_{k} \Omega_{k} \mathbf{J}_{k} \\ \mathbf{b} &\leftarrow \mathbf{b} + \mathbf{J}_{k} \Omega_{k} \mathbf{e}_{k} \end{aligned}$$

Direct approach

Random Sample Consensus (RANSAC)

- 1. Randomly select a minimum amount of data
- 2. Compute a model (closed-form)
- 3. Evaluate the model (Euclidean distance)
- 4. Repeat the procedure k times

iterations:
$$k = \frac{log(1-p)}{log(1-w^n)}$$

Odometry Estimation

Projection Extraction Association Registration Odometry

Accumulation of transforms

frame by frame matrix multiplication

$$\mathbf{T}_k^0 = \mathbf{I}_{4\times 4} \ \mathbf{T}_1^0 \ \mathbf{T}_2^1 \ \dots \ \mathbf{T}_k^{k-1}$$

Experiments

/os1_cloud_node/points //ildar_odometry_publisher //ildar/odometry
/play_1665064204021351571 /gps/emlid/fix /gps/odometry_publisher /gps/odometry_publisher

Hardware

- Ubuntu 20.04, C++
- 8-core Intel core i9 without graphic card
- LiDAR OS1-64 vertical, 1024 horizontal,
 10Hz, 65536 points per frame

conversion from geodetic to geocentric coordinates

Robot Operating System

ROS middleware for playing dataset and run pipeline

Evaluation

Root Mean Square Error

$$RMSE = \sqrt{\frac{1}{k}\sum_{i=1}^{k}||\hat{\mathbf{t}}_k - \mathbf{t}_k^{GNSS}||^2}$$

 $x = R_{Heart}(\mathbf{P}) \cdot cos(long) \cdot cos(\mathbf{gLat}(lat))$

 $y = R_{Heart}(\mathbf{P}) \cdot sin(long) \cdot cos(\mathbf{gLat}(lat))$

 $z = R_{Heart}(\mathbf{P}) \cdot sin(\mathbf{gLat}(lat))$

Sapienza

Parameters Tuning

Feature Extraction			Tracking		
SuperPoint	nFeatures	300	BF Matcher	knnThreshold	0.7
	threshold	0.1		normType	L2/H
	nmsBlockSize	6		normThreshold	30
FAST	threshold	30	Registration		
ORB	nFeatures	300	IRLS	iterations	1
	scaleFactor	1.1		kernelThreshold	5e-5
	nLevels	8		damping	0.5
	edgeThreshold	15	RANSAC	iterations	30
	patchSize	15		inliersThreshold	$20\mathrm{cm}$

Results

Thesis project - Experiments

Comparison

SuperPoint > ORB (with ICP)

- SuperPoint detections sparse and repeatable
- ORB detections poorly distributed
- ORB 110HZ >> SuperPoint 20Hz

RANSAC > ICP (with SuperPoint)

- RANSAC more accurate
- ICP 70 kHz >> RANSAC 20kHz
- ICP no longer valid in global optimization
- RANSAC suitable for loop closure

Conclusions

Feature extraction
Machine learning is overcoming traditional approaches

Transform estimation probabilistic framework more accurate than least-square optimization and more suitable for other task in SLAM frameworks

Hardware requirements machine learning technique feasible also without graphic card

Future Work

- Use of LiDAR depth information in conjunction with intensity
- Registration in non-successive frame
- Loop closure detection and bundle adjustment

Thanks

