

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DA AMAZÔNIA CAMPUS CAPITÃO POÇO BACHARELADO EM SISTEMAS DE INFORMAÇÃO

INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL

Capitão poço – PA 2025 Relatório: Diagnóstico de Crescimento Vegetal com Redes Bayesianas

1. Objetivo do Código

O código implementa uma Rede Bayesiana para modelar a influência de variáveis ambientais (chuva, irrigação, sol, vento, temperatura e umidade) sobre o crescimento de plantas. O objetivo é realizar inferência probabilística para prever a probabilidade de crescimento adequado com base em diferentes condições climáticas.

2. Funcionamento do Código

As variáveis utilizadas como entrada para o modelo são:

- Chuva
- Irrigação
- Sol
- Temperatura
- Vento

Processamento:

A rede avalia como essas variáveis influenciam a umidade do solo, e como a umidade, sol e vento afetam o crescimento da planta. A inferência é realizada com a biblioteca pgmpy utilizando o método de eliminação de variáveis (VariableElimination).

3. Estrutura da Rede

A estrutura da rede modela as seguintes dependências:

- Chuva, Irrigação e Temperatura → Umidade
- Umidade, Sol e Vento → Crescimento da Planta

4. Definição das Probabilidades Condicionais (CPDs)

Cada variável foi definida com probabilidades iniciais (prioris) ou condicionais com base nos seus pais:

 P(Chuva), P(Irrigação), P(Sol), P(Temperatura), P(Vento): probabilidades simples.

- P(Umidade | Chuva, Irrigação, Temperatura): probabilidade condicional da umidade do solo.
- P(CrescimentoPlanta | Umidade, Sol, Vento): probabilidade do crescimento adequado da planta.

5. Verificação do Modelo

A função check_model() foi utilizada para validar a consistência matemática da rede. A saída indica que o modelo está consistente.

- 6. Inferência na Rede Bayesiana Foi realizada inferência para:
 - Calcular a probabilidade de crescimento da planta dado que houve chuva e irrigação.
 - Calcular a probabilidade da umidade do solo dado que não houve chuva.

Essas consultas permitem avaliar como as variáveis influenciam os resultados mesmo com informações parciais.

7. Visualização dos Resultados

As probabilidades obtidas foram representadas em gráficos de barras, com visualização separada para cada variável:

- Cada gráfico exibe os valores P(variável=0) e P(variável=1), facilitando a interpretação das probabilidades.
- As cores foram padronizadas para distinguir os estados (ex: azul claro e laranja).
- Valores foram anotados acima das barras para clareza.

Resultado:

8. Conclusão

O modelo implementado fornece uma representação probabilística eficaz de fatores ambientais sobre o crescimento das plantas. Por meio de inferência, é possível antecipar condições favoráveis ou desfavoráveis, otimizando práticas agrícolas. A visualização gráfica complementa o diagnóstico, tornando-o mais acessível para análise.