1) Example 2.4-4 (Multiperiod Production Smoothing Model) Using Python Pulp

Code:

```
#pip install pulp
from pulp import LpProblem, LpMinimize, LpVariable, lpSum
model = LpProblem(name="Multiperiod Production Smoothing Model",
sense=LpMinimize)
x1 = LpVariable("x1", lowBound=0)
x2 = LpVariable("x2", lowBound=0)
x3 = LpVariable("x3", lowBound=0)
x4 = LpVariable("x4", lowBound=0)
S1 minus = LpVariable("S1 minus", lowBound=0)
S2 minus = LpVariable("S2 minus", lowBound=0)
S3 minus = LpVariable("S3 minus", lowBound=0)
S4 minus = LpVariable("S4 minus", lowBound=0)
S1 plus = LpVariable("S1 plus", lowBound=0)
S2 plus = LpVariable("S2 plus", lowBound=0)
S3 plus = LpVariable("S3 plus", lowBound=0)
S4_plus = LpVariable("S4_plus", lowBound=0)
I1 = LpVariable("I1", lowBound=0)
I2 = LpVariable("I2", lowBound=0)
I3 = LpVariable("I3", lowBound=0)
model += 50 * (I1 + I2 + I3) + 200 * (S1 minus + S2 minus + S3 minus +
S4_minus) + 400 * (S1_plus + S2_plus + S3_plus + S4_plus)
model += 10 * x1 == 400 + I1
model += I1 + 10 * x2 == 600 + I2
model += I2 + 10 * x3 == 400 + I3
model += I3 + 10 * x4 == 500
model += x1 == S1 minus - S1_plus
model += x2 == x1 + S2 minus - S2 plus
model += x3 == x2 + S3 minus - S3 plus
model += x4 == x3 + S4 minus - S4 plus
```

```
model.solve()
print(f"Optimal Solution:")
print(f"Objective Value (Z): ${model.objective.value():,.2f}")

for var in model.variables():
    print(f"{var.name}: {var.value()}")
```

Output:

```
Optimal Solution:
Objective Value (Z): $19,500.00
I1: 100.0, I2: 0.0, I3: 50.0
S1_minus: 50.0, S1_plus: 0.0
S2_minus: 0.0, S2_plus: 0.0
S3_minus: 0.0, S3_plus: 5.0
S4_minus: 0.0, S4_plus: 0.0
x1: 50.0, x2: 50.0, x3: 45.0, x4: 45.0
```

2) Example 2.4-5 (Bus Scheduling Model) Using Python Pulp

Code:

```
from pulp import LpProblem, LpMinimize, LpVariable, lpSum, LpStatus
model = LpProblem(name="Bus Scheduling", sense=LpMinimize)
x1 = LpVariable(name="x1", lowBound=0, cat="Integer")
x2 = LpVariable(name="x2", lowBound=0, cat="Integer")
x3 = LpVariable(name="x3", lowBound=0, cat="Integer")
x4 = LpVariable(name="x4", lowBound=0, cat="Integer")
x5 = LpVariable(name="x5", lowBound=0, cat="Integer")
x6 = LpVariable(name="x6", lowBound=0, cat="Integer")
model += lpSum([x1, x2, x3, x4, x5, x6]), "Total Buses"
model += x1 + x6 >= 4, "12:01 a.m.-4:00 a.m."
model += x1 + x2 >= 8, "4:01 a.m.-8:00 a.m."
model += x2 + x3 >= 10, "8:01 a.m.-12:00 noon"
model += x3 + x4 >= 7, "12:01 p.m.-4:00 p.m."
model += x4 + x5 >= 12, "4:01 p.m.-8:00 p.m."
model += x5 + x6 >= 4, "8:01 p.m.-12:00 p.m."
model.solve()
print(f"Status: {LpStatus[model.status]}")
print(f"Total Buses: {model.objective.value()}")
print("Optimal Schedule:")
print(f"x1 = {x1.value()}, buses starting at 12:01 a.m.")
print(f"x2 = {x2.value()}, buses starting at 4:01 a.m.")
print(f''x3 = \{x3.value()\}, buses starting at 8:01 a.m.'')
print(f"x4 = {x4.value()}, buses starting at 12:01 p.m.")
print(f"x5 = {x5.value()}, buses starting at 4:01 p.m.")
print(f"x6 = {x6.value()}, buses starting at 8:01 p.m.")
```

Output:

```
Status: Optimal
Total Buses: 26.0
Optimal Schedule:
x1 = 0.0, buses starting at 12:01 a.m.
x2 = 10.0, buses starting at 4:01 a.m.
x3 = 0.0, buses starting at 8:01 a.m.
x4 = 12.0, buses starting at 12:01 p.m.
x5 = 0.0, buses starting at 4:01 p.m.
x6 = 4.0, buses starting at 8:01 p.m.
```

3) Example 5.3-1 (SunRay Transport) Using Python Pulp

Code:

```
from pulp import LpProblem, LpMinimize, LpVariable, lpSum, value
supply = [15, 25, 10] # Supply at each source (Silo)
demand = [5, 15, 15, 15] # Demand at each destination (Mill)
costs = [
   [10, 2, 20, 11],
    [4, 14, 16, 18]
model = LpProblem(name="SunRayTransportation", sense=LpMinimize)
num sources = len(supply)
num destinations = len(demand)
x = [[LpVariable(f"x{i + 1}{j + 1}", lowBound=0)] for j in
range(num destinations)] for i in range(num sources)]
model += lpSum(x[i][j] * costs[i][j] for i in range(num sources) for j
in range(num destinations))
for i in range(num sources):
    model += lpSum(x[i][j] for j in range(num destinations)) ==
supply[i]
for j in range (num destinations):
   model += lpSum(x[i][j] for i in range(num sources)) == demand[j]
for i in range(num sources):
    for j in range(num destinations):
        quantity = min(supply[i], demand[j])
        model += x[i][j] == quantity
        supply[i] -= quantity
        demand[j] -= quantity
model.solve()
print("Status:", pulp.LpStatus[model.status])
print("Objective Value (Total Cost):", value(model.objective))
for i in range(num sources):
    for j in range(num destinations):
        if value(x[i][j]) != 0:
            print(f"Ship {x[i][j].name} = {value(x[i][j])}")
```

Output:

```
Status: Optimal
Objective Value (Total Cost): 520.0
Ship x11 = 5.0
Ship x12 = 10.0
Ship x22 = 5.0
Ship x23 = 15.0
Ship x24 = 5.0
Ship x34 = 10.0
```

4) Example 6.3-6 Using Excel Solver

В	C	ט	E	F	G	Н	l l	J
From	То	DVs	Distance		Nodes	LHS	Sign	RHS
1	2	0	100		1	1	=	1
1	3	1	30		2	-1	=	-1
2	3	0	20		3	0	=	0
3	4	1	10		4	0	=	0
3	5	0	60		5	0	=	0
4	2	1	15					
4	5	0	50					
				Distance	55			

Answer Report:

Sensitivity Report:

5) Example 9.1-2 (Installing Security Telephones)

Using Python Pulp Code:

```
import pulp
model = pulp.LpProblem("Minimize Telephones Installation",
pulp.LpMinimize)
x = pulp.LpVariable.dicts("Telephone Installed", range(1, 9), 0, 1,
pulp.LpBinary)
model += pulp.lpSum(x[j] for j in range(1, 9)),
model += x[1] + x[2] >= 1, "Street A"
model += x[2] + x[3] >= 1, "Street B"
model += x[4] + x[5] >= 1, "Street C"
model += x[7] + x[8] >= 1, "Street D"
model += x[6] + x[7] >= 1, "Street E"
model += x[2] + x[6] >= 1, "Street F"
model += x[1] + x[6] >= 1, "Street G"
model += x[4] + x[7] >= 1, "Street H"
model += x[2] + x[4] >= 1, "Street I"
model += x[5] + x[8] >= 1, "Street J"
model += x[3] + x[5] >= 1, "Street K"
model.solve()
print("Status:", pulp.LpStatus[model.status])
print("Optimal Solution:")
for j in range (1, 9):
    installation status = "1.0 (Telephone Installed)" if
pulp.value(x[j]) == 1.0 else f"{pulp.value(x[j]):.1f}"
    print(f"Intersection {j}: {installation status}")
print("Total Telephones Installed:", pulp.value(model.objective))
```

Output:

```
Status: Optimal
Optimal Solution:
Intersection 1: 1.0 (Telephone Installed)
Intersection 3: 0.0
Intersection 4: 0.0
Intersection 5: 1.0 (Telephone Installed)
Intersection 6: 0.0
Intersection 7: 1.0 (Telephone Installed)
Intersection 8: 0.0
Total Telephones Installed: 4.0
```

Using Excel Solver:

Decision Variables	x1	x2	x3	x4	x5	х6	x7	x8			
Quantity Produced	1	1	0	0	1		1				
									Total	Sign	RHS
Cost	1	1	1	1	1	1	1	1			
Street A	1	1	1	0	0	0	0	0	2	>=	1
Street B	0	1	0	0	0	0	0	0	1	>=	1
Street C	0	0	1	1	1	0	0	0	1	>=	1
Street D	0	0	0	0	0	0	1	1	1	>=	1
Street E	0	0	0	0	0	1	1	0	1	>=	1
Street F	0	1	0	0	0	1	0	0	1	>=	1
Street G	1	0	0	0	0	1	0	0	1	>=	1
Street H	0	0	0	1	0	0	1	0	1	>=	1
Street I	0	1	0	1	0	0	0	0	1	>=	1
Street J	0	0	0	0	1	0	0	1	1	>=	1
Street K	0	0	1	0	1	0	0	0	1	>=	1

Answer Report:

A B C Microsoft Excel 16.0 Answer Report

Worksheet: [9.1-2.xlsx]Sheet1

Report Created: 02/12/2023 6:55:42 pm

Result: Solver found a solution. All Constraints and optimality conditions are satisfied.

Solver Engine

Engine: Simplex LP

Solution Time: 0.016 Seconds. Iterations: 13 Subproblems: 0

Solver Options

Max Time Unlimited, Iterations Unlimited, Precision 0.000001

Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 0%, Assume NonNegativ

Objective Cell (Min)

Cell	Name	Original Value	Final Value
\$L\$6	Cost Total	4	4

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$D\$4	Quantity Produced x1	1	1	Contin
\$E\$4	Quantity Produced x2	1	1	Contin
\$F\$4	Quantity Produced x3	0	0	Contin
\$G\$4	Quantity Produced x4	0	0	Contin
\$H\$4	Quantity Produced x5	1	1	Contin
\$1\$4	Quantity Produced x6	0	0	Contin
\$J\$4	Quantity Produced x7	1	1	Contin
\$K\$4	Quantity Produced x8	0	0	Contin

1 Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$L\$7	Street A Total	2	\$L\$7>=\$N\$7	Not Binding	1
\$L\$8	Street B Total	1	\$L\$8>=\$N\$8	Binding	0
\$L\$9	Street C Total	1	\$L\$9>=\$N\$9	Binding	0
\$L\$10	Street D Total	1	\$L\$10>=\$N\$10	Binding	0
\$L\$11	Street E Total	1	\$L\$11>=\$N\$11	Binding	0
\$L\$12	Street F Total	1	\$L\$12>=\$N\$12	Binding	0
\$L\$13	Street G Total	1	\$L\$13>=\$N\$13	Binding	0
\$L\$14	Street H Total	1	\$L\$14>=\$N\$14	Binding	0
\$L\$15	Street Total	1	\$L\$15>=\$N\$15	Binding	0
\$L\$16	Street J Total	1	\$L\$16>=\$N\$16	Binding	0
\$L\$17	Street K Total	1	\$L\$17>=\$N\$17	Binding	0

Sensitivity Report:

Microsoft Excel 16.0 Sensitivity Report

Worksheet: [9.1-2.xlsx]Sheet1

Report Created: 02/12/2023 6:55:42 pm

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$D\$4	Quantity Produced x1	1	0	1	0	1
\$E\$4	Quantity Produced x2	1	0	1	0	1
\$F\$4	Quantity Produced x3	0	0	1	0	0
\$G\$4	Quantity Produced x4	0	0	1	1	0
\$H\$4	Quantity Produced x5	1	0	1	0	0
\$1\$4	Quantity Produced x6	0	0	1	1	0
\$J\$4	Quantity Produced x7	1	0	1	0	1
\$K\$4	Quantity Produced x8	0	0	1	1E+30	0

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$L\$7	Street A Total	2	0	1	1	1E+30
\$L\$8	Street B Total	1	0	1	0	1E+30
\$L\$9	Street C Total	1	0	1	0	0
\$L\$10	Street D Total	1	1	1	1E+30	0
\$L\$11	Street E Total	1	0	1	0	1E+30
\$L\$12	Street F Total	1	0	1	1	0
\$L\$13	Street G Total	1	1	1	1E+30	1
\$L\$14	Street H Total	1	0	1	0	1E+30
\$L\$15	Street Total	1	1	1	0	0
\$L\$16	Street J Total	1	0	1	0	1
\$L\$17	Street K Total	1	1	1	0	0

6) Example 9.1-3 (Choosing a Telephone company)

Using Python Pulp Code:

```
from pulp import LpProblem, LpMinimize, LpVariable, lpSum, LpStatus,
value
prob = LpProblem("TelephoneCompany", LpMinimize)
x1 = LpVariable("x1", lowBound=0, cat="Continuous")
x2 = LpVariable("x2", lowBound=0, cat="Continuous")
x3 = LpVariable("x3", lowBound=0, cat="Continuous")
y1 = LpVariable("y1", cat="Binary")
y2 = LpVariable("y2", cat="Binary")
y3 = LpVariable("y3", cat="Binary")
prob += 0.25 * x1 + 0.21 * x2 + 0.22 * x3 + 16 * y1 + 25 * y2 + 18 *
y3, "TotalCost"
prob += x1 + x2 + x3 == 200, "TotalMinutes"
prob += x1 <= 200 * y1, "MaBellConstraint"</pre>
prob += x2 <= 200 * y2, "PaBellConstraint"</pre>
prob += x3 <= 200 * y3, "BabyBellConstraint"</pre>
prob.solve()
print("Status:", LpStatus[prob.status])
print("Optimal Solution:")
print("x1 = ", value(x1))
print("x2 = ", value(x2))
print("x3 =", value(x3))
print("y1 =", value(y1))
print("y2 =", value(y2))
print("y3 =", value(y3))
print("Total Cost =", value(prob.objective))
```

Output:

```
Status: Optimal
Optimal Solution:
x1 = 0.0
x2 = 0.0
x3 = 200.0
y1 = 0.0
y2 = 0.0
y3 = 1.0
Total Cost = 62.0
```

Using Excel Solver:

Decision \	Variables	x1	x2	x3	y1	y2	у3			
Quantity I	Produced	0	0	200	0	0	1			
								Total	Sign	RHS
Cost		0.25	0.21	0.22	16	25	18	62		
		1	1	1	0	0	0	200	=	200
		1	0	0	0	0	0	0	<=	0
		0	1	0	0	0	0	0	<=	0
		0	0	1	0	0	0	200	<=	200

Answer Report:

Microsoft Excel 16.0 Answer Report

Worksheet: [9.1-3.xlsx]Sheet1

Report Created: 02/12/2023 8:14:19 pm

Result: Solver found a solution. All Constraints and optimality conditions are satisfied.

5 Solver Engine

Engine: Simplex LP

Solution Time: 0.015 Seconds. Iterations: 5 Subproblems: 0

9 Solver Options

Max Time Unlimited, Iterations Unlimited, Precision 0.000001, Use Automatic Scaling

Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative

Ce	ll Name	Original Value	Final Value
\$J\$6	Cost Total	62	62

Cell	Name	Original Value	Final Value	
\$J\$6	Cost Total	62	62	
ariable Cells	Name	Original Value	eta di Valua	
Cell	Name	Original Value		Inte
\$D\$4	Quantity Produced x1	0		Con
\$E\$4	Quantity Produced x2	0		Con
\$F\$4	Quantity Produced x3	200		Con
\$G\$4	Quantity Produced y1	0	0	Bina
\$H\$4	Quantity Produced y2	0	0	Bina
\$1\$4	Quantity Produced y3	1	1	Bina
onstraints Cell	Name	Cell Value	Formula	Sta
\$J\$7	Total	200	\$J\$7=\$L\$7	Bino
ا څرنې		0	\$J\$8<=\$L\$8	Bind
\$1\$8	Total	U	7570 1-7670	
	Total Total		\$J\$9<=\$L\$9	Bino

Cell		Name	Cell Value	Formula	Status	Slack
\$J\$7	Total		200	\$J\$7=\$L\$7	Binding	0
\$J\$8	Total		0	\$J\$8<=\$L\$8	Binding	0
\$J\$9	Total		0	\$J\$9<=\$L\$9	Binding	0
\$J\$10	Total		200	\$J\$10<=\$L\$10	Binding	0
\$G\$4:\$I\$4=E	Binary					

Sensitivity Report:

5	
6	Variable Cells
7	

Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$C\$2	Quantity Produced x1	0	0	0.25	0.06	0.02
\$D\$2	Quantity Produced x2	0	0	0.21	0.1	0.025
\$E\$2	Quantity Produced x3	200	0	0.22	0.02	0.06
\$F\$2	Quantity Produced y1	0	4	16	1E+30	4
\$G\$2	Quantity Produced y2	0	5	25	1E+30	5
\$H\$2	Quantity Produced y3	1	0	18	4	12

16 Constraints

Cell	Name	Final Value	Shadow Price	Constraint R.H. Side		Allowable Decrease
\$1\$5	TOTAL	200	0.31	200	1E+30	200
\$1\$6	TOTAL	0	-0.06	0	200	0
\$1\$7	TOTAL	0	-0.1	0	200	0
\$1\$8	TOTAL	200	-0.09	0	200	1E+30