```
SUK OF SOUARES DECOMPOSITION ( or PARTITION )
```

```
Imagine that we want to study (and make production) on a random voviable Y, and we observe (ye,...yn).
In the absence of other information, the "best" way to explain the data is through the overall mean y.
This corresponds to fitting the model
```

Yi = \$1 + Ei & NCO, 62) "NULL HODEL" which gives the estimate $\beta_1 = \overline{y}$ (\Rightarrow constant estimate)

If we predict y with this model we obtain $\ddot{y}_i = \ddot{y}$ for all i.

Hence the best prediction that we can do, in the obsence of additional information, is the overall mean.

Does it describe the data well? It depends on the voicobility of y

 \star example: imagine drawing $y_1...y_n$ from a N(2,0.5) and from a N(2,4)In the first case, the error we commit by predicting $(y_1,...,y_n)$ with \overline{y} is much smaller

we can look out the quantity

of the vovience SST = \(\hat{z}\) (y; -\frac{1}{y})2 TOTAL SUN OF SQUARES

IT THE US HOW KUCH VARIABILITY IS LEFT IN THE DATA AFTER WE SUMMARIZE THEM WITH THE ENERALL MEAN (the "total amount of voriability" of the data)

Imagine now that the additional variable $\underline{x} = (x_1,...,x_n)$ is introduced, and we git a simple linear model

With the inclusion of x, the prediction becomes

gi = By + B2 xi

and the error that we commit is yi-gi = ei.

We want to understand how much the inclusion of x improves the prediction of y.

We want to partition the variability of y (SST) into two posts:

1. the ADDITIONAL VARIABILITY that is accounted for by the model (How much better is \hat{y} : compared to \bar{y} at explaining y? or, equivalently: how useful is

the linear model composed to "no model"?)

→ REGRESSIGN sum of squares: S2R 2. the voriation that is left unexplained by the model

→ RESIDUAL (ERROR) sun of squares : SSE

We use the following quantities: - observed rolves yi i=1,..., n - predicted values ŷi i=1,...n

residuds ei=yi-ĝi i=1,...,n

= $\sum_{i=1}^{n} [(y_i - \overline{y})^2 + \hat{\beta}_2^2 (x_i - \overline{x})^2 - 2 \hat{\beta}_2 (y_i - \overline{y}) (x_i - \overline{x})]$

 $= \sum_{i=1}^{n} (x_i - \overline{y})^2 + \hat{\beta}_2^2 \sum_{i=1}^{n} (x_i - \overline{x})^2 - 2\hat{\beta}_2 \sum_{i=1}^{n} (x_i - \overline{x})$

 $= \sum_{i=1}^{n} (3i - \overline{3})^{2} + \hat{\beta}_{2}^{2} \sum_{i=1}^{n} (xi - \overline{x})^{2} - 2\hat{\beta}_{2}^{2} \sum_{i=1}^{n} (xi - \overline{x})^{2}$

 $= \sum_{i=1}^{\infty} (y_i - \overline{y})^2 - \hat{\beta}_2^2 \sum_{i=1}^{\infty} (x_i - \overline{x})^2$

recall that $\beta_2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$

 $\hat{\beta}_{x} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})$ $\Rightarrow \hat{\beta}^2 \tilde{Z}(x_i - \bar{x})^2 = \hat{\beta}_i \tilde{Z}(x_i - \bar{x})(y_i - \bar{y})$

Now, we notice that $\sum_{i=1}^{\infty} (\hat{y}_{i} - \bar{y})^{2} = \sum_{i=1}^{\infty} (\hat{\beta}_{4} + \hat{\beta}_{2} x_{i} - \bar{y})^{2} = \sum_{i=1}^{\infty} (\bar{y}_{i} - \hat{\beta}_{2} \bar{x}_{i} + \hat{\beta}_{2} x_{i} - \bar{y})^{2} = \sum_{i=1}^{\infty} [\hat{\beta}_{1} (x_{i} - \bar{x})]^{2} = \hat{\beta}_{2}^{2} \sum_{i=1}^{\infty} (x_{i} - \bar{x})^{2}$

Hence we obtain $\sum_{i=1}^{n} ei^2 = \sum_{i=1}^{n} (y_i - y_i)^2 - \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$ $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (\hat{y}_i - \hat{y}_i)^2 \quad \text{or equivalently},$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$SST = SSR + SSE$$
TOTAL SUM of : RECRESSION SUM + RESIDUAL/ SPEROR
SOURCES OF SOURCES SUM OF SOURCES

how much the data vory
eround the overall mean?

how much the predictions

vory council the overall mean?

We want to product y.

- · in the absence of covariates, the model is the NULL model Ye= β1+ & ⇒ the predicted values one y for all i=1,...,n $\rightarrow \stackrel{\sim}{\Sigma} (y; -\overline{y})^2$ is the total amount of voviation in y
- when I observe $x_1,...,x_n$, the model is $Y_i = \beta_1 + \beta_2 x_i + \epsilon_i \Rightarrow$ the predicted values one $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$, $i = \frac{1}{4}...,n$ $(\hat{y}_i - \hat{y}_i)$ is the discrepancy between unot I would have predicted in the obsence of covariates and what | actually predict when I have then. Hence, $\Sigma(\hat{y}_i-\bar{y})^2 = 58\%$ is the additional amount of voriability explained by the model compared to modeling the data only with their mean J.
- I still commit errors in my predictions: residuals $ei = \gamma_i \hat{\gamma}_i \rightarrow \sum_{i=1}^{\infty} (\gamma_i \hat{\gamma}_i)^2$ is the amount of voidability that I can not explain

Nice graph found on Stack Overflow https://stats.stackexchange.com/questions/524565/

 $SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$

bit-confused-on-the-concept-of-deviance

SST = SSR + SSE

SST = total gray area

(sum also the overlaps)

SSR = total red area

SSE = \(\hat{2}{\chi}(\hat{\chi} - \hat{\chi})^2\)

SSE = total blue area