Methods for sensitive genotyping in nonmodel organisms

Adam Orr **¥**@AdamJOrr

12/1/19

Why are somatic mutations difficult to detect?

Mutations are very rare, but sequencing errors are very common.

Sequencing error alone is $\sim 10^{-2}$ while mutation rate after error-checking is $\sim 10^{-9}$

- Errors accumulate during PCR prior to sequencing then propagate.
- $Taq \sim 10^{-4}$
- Technical error from sequencer

 $^{^{}m 0}$ Potapov V, Ong JL (2017) Examining Sources of Error in PCR by Single-Molecule Sequencing

Plants Grow Directionally

 The genetic structure of the plant should mirror its physical structure.

⁰Heidstra & Sabatini (2014) Plant and animal stem cells: similar yet different.

A Genetic Mosaic

- Edwards identified as mosaic in 1993¹
- Sheep pen in Yeoval, New South Wales
- Differential oil production gives protection from Christmas beetles

¹Edwards PB, Wanjura WJ, Brown WV. Oecologia 1993, 95:551–557.

Adam Orr

■ © Adam JOrr Sensitive Genotyping 12/1/19

4/23

Study Methodology

- Sequence 8 samples in triplicate
- ∼10X coverage for each replicate
- Align sequence to genome of Eucalyptus grandis
- Use replicates to remove false positives

Mutation Pattern Approximately Matches Tree Structure

6/23

Most Reads Are Not Mapped to the E. grandis Reference

Mapping Quality Score

Approximating a Genome

Use *E. melliodora* genome as a starting place, then generate a new reference and map to that reference.

"""unmapped_reads".pdf

Filtering Variants

Remove variants likely from alignment errors:

- at sites with excessive depth (>500).
- with excessive levels of heterozygosity.
- within 50 bases of an indel.
- in repeat regions

Filtering and Reference Refinement Improve Tree Topology

Using Tree Topology Gives Higher Recall Rate

- Thus, it's reasonable to assume the physical topology when inferring mutations
- *DeNovoGear* is a variant-calling method that uses information in the tree topology to call variants.
- By simulation, we introduced 14000 mutations on the tree

GATK	DeNovoGear
3859 mutations	4193 mutations
27%	30%

Mutation Rates

- Detected 90 mutations.
- 20 mutations in genes.
- Estimated recall of $\sim 30\%$.
- $90 \times \frac{1}{.3} = 300$ mutations.
- $ho \sim 3.3$ mutations per meter of length
- 2.7×10^{-9} mutations per base per meter
- Somatic mutations account for ~ 55 mutations per leaf tip.

Model Parameters

We studied *one* individual, but we can make conjectures about the population.

- The average height of a eucalypt is 22.5 M
- Mutation rate per base, per generation is 6.2×10^{-8}
- We estimated $\theta = 0.025$
- Since $\theta = 4N_e\mu$, $N_e = 102,000$

This per-generation rate is $\sim 10 \times$ larger than Arabidopsis, but Eucalyptus is $100 \times$ larger.

Errors make variant calling difficult - but we can predict them

- FASTQ format data has a quality score
- Quality scores represent P(error) on a phred scale.

$$P(error) = 10^{\frac{-Q}{10}}$$

$$Q = -10\log_{10}P(error)$$

Quality Score	P(error)
1	0.8
2	0.6
3	0.5
4	0.4
5	0.3
6	0.3
7	0.2
8	0.2
9	0.1
10	0.1
20	0.01
30	0.001
40	0.0001

Quality scores are predictions

- A quality score is a prediction about whether a base call is correct.
- Predictions are said to be calibrated if the predicted event occurs as often as predicted.
- The weather forecast contains a prediction about whether it will rain.
- If it rains on a day with a 30% chance of rain, what does that mean?

Measured Frequency

Quality scores aren't well-calibrated

- If quality scores were well-calibrated, it would be easier to identify errors
- Base Quality Score Recalibration can be done to fix calibration issues.
- Current GATK method for BQSR require a database of variable sites in your data then assumes mismatches at nonvariable sites are errors.

BQSR uses a linear model to determine how much to adjust each quality score

Alternative approaches get around using a database of variable sites

- Lacer uses singular value decomposition
- ReQON limits the number of errors there can be at a site
- Syntheic spike-ins

Error correctors can find some errors without a reference

- Error correction methods exist that use k-mers to identify errors rather than an alignment and reference.
- Most error correctors don't update quality scores.

K-mer-Based Base Quality score recalibration

- Combining error correction and BQSR is effective
- Method implemented in kbbq software

Future Plans

- Evaluate GATK's robustness to false-negative and false-positive rates
- Evaluate performance of other error correctors
- Evaluate downstream impact on quality of variant calls

Acknowledgements

Robert Lanfear, Australian National University

 \$\mathcal{Y}\$ @RobLanfear

Pipeline: O https://github.com/adamjorr/somatic-variation

KBBQ: https://github.com/adamjorr/kbbq Talk: https://github.com/adamjorr/talks

This work is supported by grants NIH R01-HG007178 and NSF DBI-1356548.