Gradient Boosting Machines

1. GBM Design

• Continuous response, $y \in R$:

- Gaussian L2 loss function
- Laplace L1 loss function
- Huber loss function, δ specified
- Quantile loss function, α specified

• Categorical response, $y \in \{0, 1\}$:

- Binomial loss function
- Adaboost loss function

Other families of response variable:

- Loss functions for survival models
- Loss functions counts data
- Custom loss functions

A. L2 squared loss function

B. L1 absolute loss function

$$\Psi(y, f)_{L_1} = |y - f|$$

· C. Huber loss function

$$\Psi(y, f)_{\text{Huber, }\delta} = \begin{cases} \frac{1}{2}(y - f)^2 & |y - f| \le \delta \\ \delta(|y - f| - \delta/2) & |y - f| > \delta \end{cases}$$

• D. Quantile loss function

$$\Psi(y,f)_{\alpha} = \begin{cases} (1-\alpha)|y-f| & y-f \le 0\\ \alpha|y-f| & y-f > 0 \end{cases}$$

• E. Original sinc(x) function

*
$$sinc(x) = \frac{\sin(\pi x)}{\pi x}$$

F. smooth GBM fitted with L2 and L1 loss

• G. smooth GBM fitted with Huber loss with δ = 4, 2, 1

• H. smooth GBM fitted with Quantile loss with α = 0.5, 0.1, 0.9

1.2 Loss functions for categorical response

A. Bernoulli loss function

$$\Psi(y, f)_{Bern} = \log(1 + \exp(-2\bar{y}f))$$

B. Adaboost loss function

1.2 Loss functions for categorical response

 C. GBM 2D classification with Bernoulli loss

 D. GBM 2D classification with Adaboost loss

1.2 Loss functions for categorical response

1.3 Base - learner models

Linear models:

- Ordinary linear regression
- Ridge penalized linear regression
- Random effects

Decision trees

- Decision tree stumps
- Decision trees with arbitrary interaction depth

Smooth models:

- P-splines
- Radial basis functions

Othermodels:

- Markov Random Fields
- Wavelets
- Custom base-learner functions

• A~D: P-Spline GBM model (M = 1, 10, 50, 100)

• E~H: Decision Tree GBM model (M = 1, 10, 50, 100)

2. Overfitting REGULARIZATION

2.1 subsampling

iteration을 하는 순간에 기존 데이터의 일부분만 가지고 random sampling (복원, 비복원 둘 다 가능)을 진행한 후, 모델을 학습시킨다.

-> 일반화 성능의 향상

2.2 SHRINKAGE

- -> 모델 복잡성을 제어하는 고전적인 접근법은 수축을 통한 정규화의 도입
- -> GBM의 맥락에서 수축은 각 iteration에 따른 모델의 영향을 줄이거나 축소하는 데 사용됨
- -> 수축에 의한 정규화의 가장 간단한 형태는 직접 비례 수축이다.
- -> 이러한 규제는 GBM 알고리즘의 마지막 단계에 적용된다.

$$\widehat{f}_t \leftarrow \widehat{f}_{t-1} + \lambda \rho_t h(x, \theta_t)$$

-> 매개 변수 [↑]가 작을수록, 축소된 부스트 증분이 낮을수록 일반화가 더 잘 이루어지는 것이 일반적이다.

〈 수축 정규화를 이용한 예 〉

* 여기서 파라미터 즉 사용자가 조절하는 것은 λ 에 해당.

2. Overfitting REGULARIZATION

2.3 early stopping

FIGURE 5 | Error curves for GBM fitting on sinc(x) data: (A) training set error; (B) validation set error. Error curves for learning simulations and number of base-learners M estimation: (C) error curves for cross-validation; (D) error curves for bootstrap estimates.

training data set iteration(M) ↑, error ↓

validation data set iteration(M) 일정 수준 ↑, error ↑ (∵overfitting)

∴ early stopping을 통해 overfitting regularization (딥러님에서도 응용)

Thank you

