Subcomplete Forcing, Trees, and Generic Absoluteness

Kaethe Minden (joint with Gunter Fuchs)

Marlboro College

Winter School in Abstract Analysis January 2018

Generic Absoluteness

Definition

Let $\mathbb P$ be a forcing notion, let n be a natural number, and let κ be a cardinal. Then $\mathbb P$ -generic $\Sigma^1_n(\kappa)$ -absoluteness states that for any model M of size κ for a countable first order language and every Σ^1_n -sentence φ over the language of M, for any finite list of finitary predicates \vec{A} ,

$$(\langle M, \vec{A} \rangle \models \varphi)^V \iff 1_{\mathbb{P}} \Vdash_{\mathbb{P}} (\langle \check{M}, \check{\vec{A}} \rangle \models \varphi).$$

For a class Γ of forcing notions, Γ -generic absoluteness is the statement that \mathbb{P} -generic absoluteness holds for every $\mathbb{P} \in \Gamma$.

One might wish to work with canonical models such as H_{ω_1} in the above. As far as we are concerned it turns out that Γ -generic $\mathbf{\Sigma}^1_1(H_{\omega_1})$ -absoluteness is equivalent to Γ -generic $\mathbf{\Sigma}^1_1(\kappa)$ -absoluteness, where $\kappa=2^\omega$, that is, as far as the classes of c.c.c, proper, semi-proper, stationary set preserving or subcomplete forcing are concerned.

Background on generic absoluteness

Observation

- For any poset \mathbb{P} , \mathbb{P} -generic $\Sigma_1^1(\omega)$ -absoluteness holds.
- If CH fails then $\mathcal{A}dd(\omega_1, 1)$ -generic $\Sigma_1^1(\omega_2)$ -absoluteness fails.
- $\operatorname{Col}(\omega_1, \omega_2)$ -generic $\Sigma_1^1(\omega_2)$ -absoluteness fails.
- If $\mathbb P$ is a forcing that adds a real, then $\mathbb P$ -generic $\mathbf \Sigma^1_1(2^\omega)$ -absoluteness fails.

Theorem ([?])

- Countably closed-generic $\Sigma^1_1(\omega_1)$ -absoluteness is provable in ZFC.
- The countably closed maximality principle implies countably closed-generic $\Sigma^1_2(H_{\omega_1})$ -absoluteness.

Dually to the situation with countably closed forcing, the underlying main question is whether subcomplete-generic $\Sigma_1^1(\omega_1)$ -absoluteness is provable in ZFC.

Generic absoluteness and trees

Lemma

Assume CH. Let \mathbb{P} be a forcing notion. Then the following are equivalent.

- **①** Whenever T is an $(\omega_1, \leq \omega_1)$ -Aronszajn tree, then it is not the case that $1_{\mathbb{P}}$ forces that \check{T} has a cofinal branch, and it is not the case that $1_{\mathbb{P}} \Vdash_{\mathbb{P}}$ "there is a new real".
- **2** P-generic $\Sigma_1^1(\omega_1)$ -absoluteness holds.

Thus we have a convenient rephrasing of our main question about whether subcomplete-generic $\Sigma_1^1(\omega_1)$ -absoluteness is provable in ZFC.

Question (Main)

Can subcomplete forcing add cofinal branches to $(\omega_1, \leq \omega_1)$ -Aronszajn trees?

Subcomplete forcing

Subcomplete forcing is a class of forcing notions defined by Ronald B. Jensen. Subcomplete forcing does not add reals, but may potentially alter cofinalities to ω .

Examples of subcomplete forcing

- Countably closed forcing.
- Namba forcing, denoted by \mathbb{N} , a forcing notion consisting of subtrees $T \neq \emptyset$ of $\omega_2^{<\omega}$ ordered by inclusion, such that T is downward closed in $\omega_2^{<\omega}$ and where each node in T has ω_2 -many eventual successors in T. Namba forcing adds a cofinal sequence $S:\omega\longrightarrow\omega_2^V$ to the extension. Under CH, Namba forcing adds no new reals and is subcomplete [?, Section 3.3].
- ullet Prikry forcing, which forces a measurable cardinal to have cofinality ω while preserving cardinalities.
- Generalized diagonal Prikry forcing

Subcomplete forcing

How subcompleteness fits in with other forcing classes which preserve stationary subsets of ω_1 :

Subcomplete forcing's effect on trees

Theorem

The following properties of an ω_1 -tree T are preserved by subcomplete forcing:

- T is Aronszajn
- T is not Kurepa
- T is Suslin
- T is Suslin and UBP
- **5** T is Suslin off the generic branch
- **1** T is n-fold Suslin off the generic branch (for $n \ge 2$)
- **②** T is (n-1)-fold Suslin off the generic branch and n-fold UBP (for $n \ge 2$)

Subcomplete forcing's effect on wider trees

Observation

- Subcomplete (or even countably closed) forcing may add a cofinal branch to an $(\omega_1, \leq 2^{\omega})$ -tree.
- Suppose that Friedman's Principle fails for ω_2 . Then subcomplete forcing may add a cofinal branch to an $(\omega_1, \leq \omega_2 \cdot 2^\omega)$ -Aronszajn tree.
- Subcomplete forcing cannot add (cofinal) branches to $(\omega_1, <2^{\omega})$ -trees.

Again we turn to the question stated earlier:

Question (Main)

Can subcomplete forcing add cofinal branches to $(\omega_1, \leq \omega_1)$ -Aronszajn trees?

By the third bullet point in the above observation, if $\it CH$ fails, then the answer to the main question is no.

Generic absoluteness and bounded forcing axioms

Theorem ([?, Theorem 5])

Let \mathbb{P} be a forcing notion. Then the following are equivalent:

- **1** The bounded forcing axiom holds for \mathbb{P} .
- **②** \mathbb{P} -generic $\Sigma_1(H_{\omega_2})$ -absoluteness holds, meaning: if $\varphi(\vec{x})$ is a Σ_1 -formula in the language of set theory and $\vec{a} \in H_{\omega_2}$, then $\langle H_{\omega_2}, \in \rangle \models \varphi(\vec{a})$ iff $\langle H_{\omega_2}, \in \rangle^{V^{\mathbb{P}}} \models \varphi(\vec{a})$.

Observation

Let ${\mathbb P}$ be a notion of forcing that does not add reals. Consider the following statements.

- **1** P-generic $\Sigma_1(H_{\omega_2})$ -absoluteness holds.
- **2** P-generic $\Sigma_1^1(2^{\omega})$ -absoluteness holds.

We have that $2\Longrightarrow 1$, and if CH holds, then $1\Longrightarrow 2$. In particular, under CH, the two are equivalent.

Answer to the main question

Theorem

Assuming CH, the following are equivalent.

- BSCFA.
- **2** Subcomplete generic $\Sigma_1^1(\omega_1)$ -absoluteness.
- **3** Subcomplete forcing preserves $(\omega_1, \leq \omega_1)$ -Aronszajn trees.

This puts us in a position to answer the main question asking whether subcomplete forcing may add a cofinal branch to an $(\omega_1, \leq \omega_1)$ -Aronszajn tree, completely.

Theorem

Splitting in two cases, we have:

- If CH fails, then subcomplete forcing preserves $(\omega_1, \leq \omega_1)$ -Aronszajn trees.
- $\textbf{ 0} \ \ \textit{If CH holds, then subcomplete forcing preserves } (\omega_1, \leq \omega_1) \text{-} \textit{Aronszajn trees iff BSCFA holds}.$

Other forcing classes

Observation

Let Γ be a class of forcings such that if $\mathbb{P} \in \Gamma$ and $p \in \mathbb{P}$, then $\mathbb{P}_{\leq p} \in \Gamma$. Then $1 :\Longrightarrow 2 :\Longrightarrow 3 ::$

- lacktriangle BFA $_{\Gamma}$.
- \bullet Γ -generic $\Sigma_1^1(\omega_1)$ -absoluteness.
- **3** Forcings in Γ preserve $(\omega_1, \leq \omega_1)$ -Aronszajn trees.

Observation

Let Γ contain all proper forcing notions or all subcomplete ones. Then 3. does not imply 1..

Proof.

It follows from MA_{ω_1} that every $(\omega_1, \leq \omega_1)$ -tree is special, and hence that every such tree is preserved by every ω_1 -preserving forcing. The consistency strength of MA_{ω_1} is the same as that of ZFC, while the consistency strength of BFA $_\Gamma$ is at least a reflecting cardinal, which is strictly higher.

Final remarks and questions

The general relationship between the pertinent properties is unclear.

Question

Let Γ be the class of proper, semi-proper, stationary set preserving or subcomplete forcings. Which implications hold between the following properties?

- lacktriangle BFA $_{\Gamma}$.
- **2** Γ -generic $\Sigma_1^1(\omega_1)$ -absoluteness.
- $\textbf{ § Forcings in } \Gamma \text{ preserve } (\omega_1, \leq \omega_1) \text{-Aronszajn trees}.$

There are some interesting questions about subcomplete-generic absoluteness when CH fails. In this case, BSCFA may still hold.

Question

What is the consistency strength of $\neg CH$ together with subcomplete-generic $\mathbf{\Sigma}^1_1(\omega_1)$ -absoluteness?

