MycoCosm: Secondary Metabolism Clusters Browser

In fungi, secondary metabolite (SM) genes are often organized in chromosomal clusters dedicated to that metabolite's biosynthetic pathway. Each portal's SM Clusters Browser facilitates display and discovery of MycoCosm's SM-annotated genes.

Scenario: You have identified a toxic SM produced by *Septoria musiva*, a pathogenic fungus that induces cankers in the poplar tree, but not produced by *Septoria populicola*, which infects a different species of poplar and does not induce cankers. The SM's structure suggests that its biosynthetic pathway may have as its core enzyme a hybrid PKS-NRPS (polyketide synthase-nonribosomal peptide synthetase). Use MycoCosm to find candidate gene clusters for this pathway.

1) Go to the MycoCosm Septoria PhyloGroup at mycocosm.jgi.doe.gov/Septoria. Both species are represented in the group:

										Info • Septoria
s	EAR	CH BLAST	ANNOTATIONS	→ MCL CLUSTER	S GEO	MAPPING	DOWNLO	AD INFO	HELP!	
	##	# Name		Assembly Length # Genes Published						
	1	Septoria musiva	SO2202 v1.0	29,352,103	10,233	Ohm RA et	al., 2012			
	2	Septoria populico	ola v1.0	33,188,813	9,739	Ohm RA et	al., 2012			

2) Click on 'Septoria musiva SO2202 v1.0' to go to its genome portal:

MCL CLUSTERS

Madison

Madison

Septoria musiva (sexual stage: Mycosphaerella populorum) causes leaf spots and cankers on poplars (Populus spp. and hybrids). On native North American poplars the pathogen mainly causes leaf spots that can lead to defoliation but generally do not kill the host. But S. musiva can also cause cankers on branches and primary stems. These can be lethal and are particularly severe on hybrid poplars in plantations. They often develop on the primary shoots of 2- to 3-year-old trees, leading to restrictions in the movement of water and nutrients and weakening the wood within a few feet of ground level. The weakened trunks collapse easily, greatly reducing the production of biomass. Cankers caused by S. musiva can greatly hamper the production of hybrid poplars in the eastern United States and Canada and threaten poplars in western North America.

INFO

Home • Septoria musiva SO2202 v1.0

STATUS

A major concern with *S. musiva* is with migration to new areas. The pathogen is endemic and appears to have originated on poplars in eastern North America, where it occurs commonly on leaves of the eastern cottonwood, *P. deltoides*. During the past 20 years *S. musiva* has appeared in South America and western Canada, where it is spreading rapidly on native and hybrid poplars causing economic damage as well as threatening native poplars in important riparian zones. It is not yet known in Europe or Asia but has the potential to cause extensive damage if introduced to those areas. Global warming and trade may facilitate the spread of the disease by making northern popular-growing areas more favorable to growth of the fungus.

Availability of a genome sequence for S. musiva will help with designing strategies to

3) Click on "ANNOTATIONS => SECONDARY METABOLISM CLUSTERS" to go to the portal's SM clusters browser:

4) Scroll through the 'Genomes' list box and select both 'Septoria musiva' and 'Septoria populica', and only those 2 species. Click the 'Refresh' button. Only the SM cluster core gene counts of the 2 Septoria sp. are shown, and may be directly compared. S. musiva has 2 hybrid core genes (PKS-NRPS genes) while S. populicola has none:

5) There is a total of 2 genes in the Hybrid column. Click on the number to show a graphical representation of the 2 *S. musiva* gene clusters. The 'Size' column displays each cluster's length, and the 'Genes' column displays each cluster's core PKS-NRPS gene (in color) and its accessory, decorator, and other genes (in gray). A core hybrid gene is typically very large, but the total cluster size can be highly variable. To resize the 2 clusters to scale to each other, go to the 'Scale' pull-down menu, select 'Across All Clusters', and click on the 'Refresh' button:

6) Each gene in the clusters is represented by an arrow with a single pair of fletching that indicates the gene's 5' to 3' direction. Mouse-over the top cluster's core gene to get more information about the PKS-NRPS hybrid. The listed domains are typical of a hybrid enzyme:

7) To get domain information about the other genes in the SM cluster, mouse-over them too. The next gene 3' to the core gene has a p450 domain:

- 8) To get more detailed information about a gene, click on it directly. Click on the gene with the p450 domain to see its 'protein page'. Examination of the protein page reveals that:
 - a) The gene is expressed. The blue bars represent UTRs, which can be inferred only from transcriptomic data.
 - b) The protein has p450 Pfam and other annotations indicative of a cytochrome p450 monooxygenase.
 - c) The best Blast hit in nr is a cytochrome p450 monooxygenase from *Aspergillus nidulans*, which belongs to a different class of fungi (Eurotiomycetes) from *Septoria* (Dothideomycetes).

9) Based on the annotations and top hits, it seems that this gene is indeed a cytochrome p450 monooxygenase, a class of enzymes that often modify core structures of SM biosynthetic pathways. Similar perusal of the other genes of the cluster says that this cluster is an excellent candidate for synthesis of your SM.

10) One explanation for *S. musiva* having this cluster and the congeneric *S. populica* not is that the former acquired the cluster by horizontal gene transfer from a phylogenetically distant source. The 'best Blast hit' of the cytochrome p450 enzyme supports this hypothesis. To see if the core enzyme can shed some light, click the web browser back button to go back to the SM CLUSTERS graphic, and click on the same PKS-NRPS core gene we moused over earlier. The protein page is rich in details, including domains and the top 10 hits. All of the hits are high quality and are from Eurotiomycetes. This cluster is an excellent candidate for horizontal gene transfer from the Eurotiomycetes!

References:

- Dhillon B, Feau N, Aerts AL, Beauseigle S, Bernier L, Copeland A, Foster A, Gill N, Henrissat B, Herath P, LaButti KM, Levasseur A, Lindquist EA, Majoor E, Ohm RA, Pangilinan JL, Pribowo A, Saddler JN, Sakalidis ML, de Vries RP, Grigoriev IV, Goodwin SB, Tanguay P, Hamelin RC. Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3451-6. doi: 10.1073/pnas.1424293112. Epub 2015 Mar 2. PubMed PMID: 25733908
- Schümann J, Hertweck C. Molecular basis of cytochalasan biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J Am Chem Soc. 2007 Aug 8;129(31):9564-5. Epub 2007 Jul 18. PubMed PMID: 17636916.