Module MAU34403 Quantum mechanics I (Frolov) Homework Sheet 2

Each set of homework questions is worth 100 marks

Use Mathematica if necessary

Compulsory Questions

Problem 1. Consider two sets of creation and annihilation operators whose action on basis vectors is defined by

$$\hat{a}|n\rangle = \sqrt{n} e^{i\phi_{n-1}}|n-1\rangle , \quad \hat{a}^{\dagger}|n\rangle = \sqrt{n+1} e^{-i\phi_n}|n+1\rangle$$

$$a|n\rangle = \sqrt{n} |n-1\rangle , \quad a^{\dagger}|n\rangle = \sqrt{n+1} |n+1\rangle$$
(0.1)

Find a unitary operator which relates the two sets, i.e. an operator such that

$$\hat{a} = \hat{U}a\hat{U}^{\dagger}, \quad \hat{a}^{\dagger} = \hat{U}a^{\dagger}\hat{U}^{\dagger}, \quad (0.2)$$

and write it in the form $\hat{U} = \sum_{i,j=0}^{\infty} U_{ij} |i\rangle\langle j|$

Problem 2. Let \hat{a} and \hat{a}^{\dagger} satisfy the canonical commutation relations $[\hat{a}, \hat{a}^{\dagger}] = \hat{I}$ Consider the following anti-hermitian operators

$$\hat{L}_{1} = \frac{i}{2} \left(\hat{a} \hat{a} + \hat{a}^{\dagger} \hat{a}^{\dagger} \right), \quad \hat{L}_{2} = i \, \hat{a}^{\dagger} \hat{a} + \frac{i}{2} \hat{I}, \quad \hat{L}_{3} = \frac{1}{2} \left(\hat{a} \hat{a} - \hat{a}^{\dagger} \hat{a}^{\dagger} \right)$$
(0.3)

The operators \hat{L}_i provide a unitary (by anti-hermitian operators) representation of the $sl(2,\mathbb{R})$ algebra in the Fock space created by \hat{a}^{\dagger} from the vacuum state $|0\rangle$.

- A. Show that \hat{L}_i are anti-hermitian operators.
- B. Find how \hat{L}_i act on the basis vectors $|n\rangle$.
- C. Is the representation irreducible? If not, can it be written as the direct sum of irreducible representations?

Problem 3. Consider the following operator

$$\hat{C} = \hat{L}_1^2 - \hat{L}_2^2 + \hat{L}_3^2 \tag{0.4}$$

Any operator made of \hat{a} and \hat{a}^{\dagger} can be reduced to the form where all creation operators are to the left of the annihilation operators, e.g.

$$\hat{a}\hat{a}\hat{a}^{\dagger} = \hat{a}(\hat{a}^{\dagger}\hat{a} + \hat{I}) = (\hat{a}^{\dagger}\hat{a} + \hat{I})\hat{a} + \hat{a} = \hat{a}^{\dagger}\hat{a}\hat{a} + 2\hat{a}$$
(0.5)

It is called the normal-ordered form.

Write \hat{L}_i^2 in the normal-ordered form for each i=1,2,3, and use it to show that $\hat{C}=-\frac{3}{4}\hat{I}$.

Problem 4. Consider the following three families of unitary operators

$$\hat{U}_k(t) = e^{-it\hat{H}_k}, \quad t \in \mathbb{R}$$
(0.6)

where the hermitian operators are given by

$$\hat{H}_{1} = \frac{1}{2} \left(\hat{a}\hat{a} + \hat{a}^{\dagger}\hat{a}^{\dagger} \right), \quad \hat{H}_{2} = \hat{a}^{\dagger}\hat{a} + \frac{1}{2}\hat{I}, \quad \hat{H}_{3} = \frac{i}{2} \left(\hat{a}^{\dagger}\hat{a}^{\dagger} - \hat{a}\hat{a} \right)$$
(0.7)

Show that the operators

$$\hat{b}_1(t) = \hat{U}_1(t) \,\hat{a} \,\hat{U}_1^{\dagger}(t) \,, \quad \hat{b}_1^{\dagger}(t) = \hat{U}_1(t) \,\hat{a}^{\dagger} \,\hat{U}_1^{\dagger}(t) \tag{0.8}$$

are expressed through \hat{a} and \hat{a}^{\dagger} as

$$\hat{b}_1(t) = c_1(t)\,\hat{a} + d_1(t)\,\hat{a}^{\dagger}\,, \quad \hat{b}_1^{\dagger}(t) = c_1^*(t)\,\hat{a}^{\dagger} + d_1^*(t)\,\hat{a} \tag{0.9}$$

and find how $c_1(t)$ and $d_1(t)$ are expressed through t. Use the formula to check explicitly that $\hat{b}_1(t)$ and $\hat{b}_1^{\dagger}(t)$ satisfy the canonical commutation relation. It is an example of the Bogoliubov transformation.

Hint. Differentiate the relations (0.8) with respect to t, and derive a system of first-order linear differential equations on $\hat{b}_1(t)$ and $\hat{b}_1^{\dagger}(t)$ which can be easily solved.

Practice Questions

Problem 1. Consider two sets of creation and annihilation operators whose action on basis vectors is defined by

$$\hat{a}|n\rangle = \sqrt{n} e^{i\phi_{n-1}}|n-1\rangle , \quad \hat{a}^{\dagger}|n\rangle = \sqrt{n+1} e^{-i\phi_n}|n+1\rangle$$

$$a|n\rangle = \sqrt{n} |n-1\rangle , \quad a^{\dagger}|n\rangle = \sqrt{n+1} |n+1\rangle$$
(0.10)

Find a unitary operator which relates the two sets, i.e. an operator such that

$$\hat{a} = \hat{U}a\hat{U}^{\dagger}, \quad \hat{a}^{\dagger} = \hat{U}a^{\dagger}\hat{U}^{\dagger},$$
 (0.11)

and write it in the form $\hat{U} = \sum_{i,j=1}^{\infty} U_{ij} |i\rangle\langle j|$

Problem 2. Let \hat{a} and \hat{a}^{\dagger} satisfy the canonical commutation relations $[\hat{a}, \hat{a}^{\dagger}] = \hat{I}$

(a) Consider the following anti-hermitian operators

$$\hat{L}_{1} = \frac{i}{2} \left(\hat{a}\hat{a} + \hat{a}^{\dagger}\hat{a}^{\dagger} \right), \quad \hat{L}_{2} = i\,\hat{a}^{\dagger}\hat{a} + \frac{i}{2}\hat{I}, \quad \hat{L}_{3} = \frac{1}{2} \left(\hat{a}\hat{a} - \hat{a}^{\dagger}\hat{a}^{\dagger} \right) \tag{0.12}$$

Compute commutators between the operators, and show that the operators form a real Lie algebra.

(b) The $sl(2,\mathbb{R})$ algebra is the space of real traceless matrices. Choose as its basis the matrices

$$L_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad L_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad L_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
 (0.13)

and verify that they satisfy the same commutation relations as \hat{L}_i do.

Problem 3. Consider the following operator

$$\hat{C} = \hat{L}_1^2 - \hat{L}_2^2 + \hat{L}_3^2 \tag{0.14}$$

Use the commutation relations to show that \hat{C} commutes with any \hat{L}_i .

An operator commuting with all elements of a Lie algebra is called a Casimir operator.

Problem 4. Consider the following three families of unitary operators

$$\hat{U}_k(t) = e^{-it\,\hat{H}_k}\,, \quad t \in \mathbb{R} \tag{0.15}$$

where the hermitian operators are given by

$$\hat{H}_{1} = \frac{1}{2} \left(\hat{a}\hat{a} + \hat{a}^{\dagger}\hat{a}^{\dagger} \right), \quad \hat{H}_{2} = \hat{a}^{\dagger}\hat{a} + \frac{1}{2}\hat{I}, \quad \hat{H}_{3} = \frac{i}{2} \left(\hat{a}^{\dagger}\hat{a}^{\dagger} - \hat{a}\hat{a} \right)$$
(0.16)

(a) Show that the operators

$$\hat{b}_2(t) = \hat{U}_2(t) \,\hat{a} \,\hat{U}_2^{\dagger}(t) \,, \quad \hat{b}_2^{\dagger}(t) = \hat{U}_2(t) \,\hat{a}^{\dagger} \,\hat{U}_2^{\dagger}(t) \tag{0.17}$$

are expressed through \hat{a} and \hat{a}^{\dagger} as

$$\hat{b}_2(t) = c_2(t)\,\hat{a} + d_2(t)\,\hat{a}^{\dagger}\,, \quad \hat{b}_2^{\dagger}(t) = c_2^*(t)\,\hat{a}^{\dagger} + d_2^*(t)\,\hat{a} \tag{0.18}$$

and find how $c_2(t)$ and $d_2(t)$ are expressed through t. Use the formula to check explicitly that $\hat{b}_2(t)$ and $\hat{b}_2^{\dagger}(t)$ satisfy the canonical commutation relation. It is an example of the Bogoliubov transformation.

Hint. Differentiate the relations (0.17) with respect to t, and derive a system of first-order linear differential equations on $\hat{b}_2(t)$ and $\hat{b}_2^{\dagger}(t)$ which can be easily solved.

(b) Do the same for
$$\hat{b}_3(t) = \hat{U}_3(t) \, \hat{a} \, \hat{U}_3^{\dagger}(t)$$
, $\hat{b}_3^{\dagger}(t) = \hat{U}_3(t) \, \hat{a}^{\dagger} \, \hat{U}_3^{\dagger}(t)$