Name (print): Sagar Kalauni

Instruction:

Write you answers clearly on **separate sheets** of paper, which means one question per sheet. Show all your steps. You may not use notes, your textbook, etc. You are to work completely independently on this exam. You have 75 minutes to complete the exam. Good luck.

Points

Q1	(20	points	total):	20
-C T	(20	pomis	with.	

Total (100 points):

 $1, X_1, X_2, \cdots, X_n$ are i.i.d N(0, 1) random variables. Let

$$Y_n = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (Z_i + 1/n) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (Z_i + 1/n)$$

Find the limiting distribution of Y_n . (Hint: using MGF.) $=\frac{1}{NG}(\sum Z_i^2+1)$

2. Suppose X_1, X_2, \dots, X_n is an i.i.d sample with mean μ_1 and variance σ_1^2 and Y_1, Y_2, \dots, Y_n is an i.i.d sample with mean μ_2 , and variance σ_2^2 . The X's and Y's are independent. Let \bar{X} and \bar{Y} denote the corresponding sample means. Find the asymptotic distribution of $\bar{X} - \bar{Y}$.

3 Suppose that Whis an iid-sample from $\chi^2(n)$ distribution. Give a normal approximation of Y_n use CLT, when n is large. State the mean and variance of your limiting normal distribution.

4 X_1 and X_2 are i.i.d $\chi^2(2)$ random variables. Recall the pdf a $\chi^2(\nu)$ random variable is

$$f_X(x) = \frac{1}{2^{\nu/2}\Gamma(\nu/2)}x^{\nu/2-1}e^{-x/2}$$
, for $x > 0$ and 0 otherwise.

(a) $U_1 = X_1 + X_2$ and $U_2 = X_1/X_2$. What is the marginal distribution of U_1 and U_2 ? (b) Let Z be a standard normal random variable that is independent of X_1 and X_2 . What is the distribution of $U_3 = 2Z/\sqrt{X_1 + X_2}$? (c) What is the distribution of $U_4 = U_3^2$?

5A. (This is for undergraduate student) Suppose that X_1, X_2, \dots, X_n is an i.i.d sample with CDF $F(x) = 1 - (1+x)^{-1}$, for x > 0. Find the limiting distribution of $Y_n = nX_{1:n}$. Note: $\lim_{n\to\infty} (1+\frac{a}{n})^n = e^a$

This is for graduate student) Suppose that X_1, X_2, \dots, X_n is an i.i.d sample with CDF $F(x) = (1 + e^{-x})^{-1}$, for x > 1. Find the limiting distribution of $Y_n = X_{n:n} - \ln(n)$. Note: $\lim_{n\to\infty} (1 + \frac{a}{n})^n = e^a$

m3/m= 6(6, 3/5)

given
$$X_1, X_2, ..., X_n \stackrel{\text{iid}}{\sim} N(0,1)$$

$$Y_n = \frac{1}{Nn} \Sigma (Z_i + V_n)$$

$$= \frac{1}{Nn} (\Sigma Z_i + 1)$$

$$m_{Y_n}(x) = E(e^{tY_n})$$

$$= E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

$$= e^{t \cdot \frac{1}{Nn}} E(e^{t \cdot \frac{1}{Nn}}(\Sigma z_i + 1))$$

01 $n \rightarrow \infty$ $M_{Y_n}(1) \rightarrow e^{\frac{12}{2}}$ $m_{y_1} o_{y_1} N(0,1)$

2.) $X_{1}, X_{2}, ..., X_{n} \stackrel{\text{iid}}{\longrightarrow} D(J_{1}, \sigma_{1}^{2})$ $Y_{1}, Y_{2}, ..., Y_{n} \stackrel{\text{iid}}{\longrightarrow} D(J_{2}, \sigma_{2}^{2})$ $\overline{X} \sim D(J_{1}, \sigma_{1}^{2})$ $\overline{Y} \sim D(J_{1}, \sigma_{2}^{2})$ $\overline{Y} \sim D(J_{1}, \sigma_{2}^{2})$

CIT: Xi-Yi $D(M_1-M_2, \sigma_1^2 + \sigma_2^2)$ then Xi-Yi $d > N(M_1-M_2)$ $o_1^2 + o_2^2$ Xi-Yi $d > N(M_1-M_2)$ $o_1^2 + o_2^2$ Xi-Y $o_1^2 + o_2^2$ $o_1^2 + o_2^2$ o_2^2 $o_1^2 + o_2^2$ $o_1^2 + o_$

 $\frac{\overline{X} - \overline{Y} - (\mathcal{H}_1 - \mathcal{H}_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n}}} \longrightarrow N(0,1)$

 $AN(M_1-M_2, \frac{57^2}{n} + \frac{55^2}{n})$

$$(1) X_1, X_2 \xrightarrow{11d} X^2(2)$$

$$U = 2, \sigma^2 = 2x_2$$

$$= 4$$

given
$$U_1 = X_1 + X_2$$
 $U_2 = \frac{X_1}{X_2}$

$$U_2 = \frac{X_1}{X_2} = \frac{\frac{X_1}{2}}{\frac{X_2}{2}}$$
 $F(2,2)$ $\longrightarrow F$ distribution.

$$V_3 = 2Z$$

$$\sqrt{X_1 + X_2}$$

$$= \frac{Z}{\frac{1}{2}\sqrt{X_1 + X_2}}$$

$$F(x) = (1 + e^{-x})^{-1}$$
, $x > 1$

CDF of Yn:

$$F_m(y) = P(Y_m \leq y)$$

$$= P(X_{n:n} - J_n(n) \leq y)$$

$$= P(X_1 \leq y + ln(n), ..., X_n \leq y + ln(n))$$

=
$$P(X_1 \leq y + Jn(n)) \dots P(X_n \leq y + Jn(n))$$

$$= (1 + e^{-\xi} \cdot e^{-\ln(n)})^{-n}$$

$$=(1+e^{-t}.\frac{1}{n})^{-n}$$

$$=\left(1+\frac{e^{-4}}{n}\right)^{-n}$$

as
$$n \rightarrow \infty$$
 $F_{K}(y) \rightarrow e^{-e^{-y}}$, $y > 1 - Ln(n)$.
 $= exp(-e^{-y}) = F(y)$

For support set

dommay netales

$$y = x - \ln(n)$$

given x21

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

$$\Rightarrow \qquad \chi \qquad \chi^2(1)$$

$$Y_n \sim \chi^2(n)$$

X, X2, --, Xn iid X2(1)

ZX: ~ X2(n.)

Then, the normal approximation of You

$$\Rightarrow \frac{\gamma_n - n}{2n} \xrightarrow{d} N(0,1)$$

Whole mean = n Volume = 4n2