LectureNote2: CS221 (FALL2021, Stanford)

Linear Regression

The discovery of Ceres

- 1801: astronomer Piazzi discovered Ceres, made 19 observations of location before it was obscured by the sun
- September 1801: Gauss took Piazzi's data and created a model of Ceres's orbit, makes prediction
- December 7, 1801: Ceres located within 1/2 degree of Gauss's prediction, much more accurate than other astronomers
 - o METHOD: Least squares linear regression

Linear Regression Framework

 $egin{aligned} D_{train} - learning algorithm &
ightarrow prediction[f] \ x & y \ 1 & 1 \end{aligned}$

 $\begin{bmatrix} 2 & 3 \\ 4 & 3 \end{bmatrix}$

- Design decisions:
 - i. Which predictors are pssible? hypothesis class
 - ii. How good is a predictor? loss function
 - iii. How do we compute the the best predictor? optimization algorithm
- Hypothesis Class: which predictors?
 - $\circ \ f(x) = w_1 + w_2 x$
 - Vector Notation

 $egin{aligned} ec{w}_{weight \, vector} &= [w_1, w_2] \ \phi_{feature \, extractor} &= [1, x]_{feature \, vector} \ f_{ec{w}}(x) &= ec{w} \cdot \phi(x) \end{aligned}$

$$\circ~$$
 Hypothesis Class: $F = \{~f_{ec{w}}(x) : ec{w} \in \mathbb{R}^2~\}$

- Loss Function: how good is a predictor?
 - $\circ \ Loss(x,y,ec{w}) = \left(f_{ec{w}}(x) y
 ight)^2{}_{squared\ loss}$
 - lacktriangledown residual: $|f_{ec{w}}(x)-y|$
 - $\circ \; TrainLoss(ec{w}) = rac{1}{|D_{train}|} \sum_{(x,y) \in D_{train}} Loss(x,y,ec{w})$
- Optimization Algorithm: how to compute best?
 - $\circ~$ Goal: $min_{ec{w}}~TrainLoss(ec{w})$
 - o Definition: gradient
 - The gradient $\nabla_{\vec{w}} TrainLoss(\vec{w})$ is the direction that increases the training loss the most
 - o Algorithm: gradient descent
 - Initialize $\vec{w} = [0, \dots, 0]$
 - For t = 1, ..., T: epochs
 - $\vec{w} \leftarrow \vec{w} \eta_{stev \, size} \nabla_{\vec{w}} TrainLoss(\vec{w})$
 - initial weight = 0
 - we want to find the weight vector that minimizes the value of TrainLoss function
 - update weghit vector by going to the direction that decreases the TrainLoss function's
 value by substracting gradient
- Computing the gradient
 - $\circ \ \, \nabla_{\vec{w}} TrainLoss(\vec{w}) = \frac{1}{|D_{train}|} \sum_{(x,y) \in D_{train}} 2(\vec{w} \cdot \phi(x) y) \; \phi(x) = \\ \frac{1}{|D_{train}|} \sum_{(x,y) \in D_{train}} 2(residual) \; \phi(x)$
 - $\circ \ \ \text{if (prediction = target)} \rightarrow \text{gradient = 0} \\$
 - o if gradient at the end of iteration be 0, it means the gradient descent has converged

Linear Classification

- Design decisions:
 - i. Which classifiers are possible? hypothesis class
 - ii. How good is a classfier? loss function
 - iii. How do we compute the best classifier? optimization algorithm
- An example linear classifier

$$\circ \ \operatorname{sign}(z) = \begin{cases} +1 & (z>0) \\ -1 & (z<0) \\ 0 & (z=0) \end{cases}$$

- \circ if the angle between \vec{w} and $\phi(\vec{x})$ is **acute**, the sign of the dot product of these two is +
- \circ if the angle between $ec{w}$ and $\phi(ec{x})$ is **obtuse**, the sign of the dot product of these two is -
- $\circ~$ if the angle between \vec{w} and $\phi(\vec{x})$ is **perpendicular**, the dot product of these two is 0 \to

Decision Boundary

 \circ : linear classifier labels the inputs according to the angle of $\phi(\vec{x})_{input}$ with respect to $\vec{w}_{weight\ vector}$

- Hypothesis Class: which classifiers?
 - General binary classifier: $f_{\vec{w}}(\vec{x}) = \text{sign}(\vec{w} \cdot \phi(x))$
 - \circ Hypothesis class: $F = \{f_{ec{w}}(ec{x}) : ec{w} \in \mathbb{R}^2\}$
- Loss Function: how good is a classifier?
 - $\circ~Loss_{0-1}(ec{x},y,ec{w}) = \mathbb{1}[f_{ec{w}}(ec{x})
 eq y]$ zero-one loss

•
$$Loss_{0-1}(\vec{x},y,\vec{w}) = egin{cases} 1 & (f_{\vec{w}}(\vec{x})
eq y) \\ 0 & (f_{\vec{w}}(\vec{x}) = y) \end{cases}$$

- Score and Margin
 - predicted label: $f_{\vec{w}}(\vec{x}) = \text{sign}(\vec{w} \cdot \phi(\vec{x}))$
 - \circ target label: y
 - o Defition: score
 - The score on an example (x, y) is $\vec{w} \cdot \phi(\vec{x})$, how **confident** we are in predicting
 - raw output of the model before applying a decision threshhold
 - o Definition: margin
 - The margin on an example (x,y) is $(\vec{w}\cdot\phi(\vec{x}))y$, how **correct** our prediction is
 - lacksquare positive
 ightarrow correct
 - lacksquare negative
 ightarrow incorrect
 - |margin| = distance from the decision boundary

$$egin{aligned} \circ \; Loss_{0-1}(ec{x},y,ec{w}) = \mathbb{1}[f_{ec{w}}(ec{x})
eq y] = \mathbb{1}[margin \leq \; 0] = egin{cases} 1 & (margin \leq \; 0) \ 0 & (margin > \; 0) \end{cases} \end{aligned}$$

- o Optimization Algorithm: how to compute best?
 - $lacksquare
 abla_{ec{w}} TrainLoss(ec{w}) = \sum_{(x,y) \in D_{train}}
 abla Loss_{0-1}(ec{x},y,ec{w})$
 - $\nabla Loss_{0-1}(\vec{x}, y, \vec{w}) = \nabla [(\vec{w} \cdot \phi(\vec{x})) \ y \leq 0]$
 - $abla Loss_{0-1}(ec{x},y,ec{w})$ is zero almost everywhere! ightarrow we can't use gradient descent

- Solutions
 - a. Hinge loss
 - $Loss_{hinge}(\vec{x}, y, \vec{w}) = max\{1 margin, 0\}$

- The 1 can be any positive number, and the magnitude determines the regularization strength
- Hinge loss is the upper bound on the zero-one loss

$$\nabla_{\vec{w}} Loss_{hinge}(\vec{x}, y, \vec{w}) = \begin{cases} -\phi(\vec{x}) \ y & (1 > margin) \\ 0 & (otherwise) \end{cases}$$

 Even if an input is classified correctly, it can still generates loss if it didn't meet the threshhold (in this case, 1)

b. Logistic Regression

•
$$Loss_{hinge}(\vec{x}, y, \vec{w}) = \log(1 + e^{-margin})$$

Intuition: try to increase margin even when it already exceeds 1

Summary

# 5core: ν • φ(×)	Regression	Classification
Prediction fo(x)	score	sign of score
Relate to target y	residual (score-y)	marzin (score * z)
Loss functions	Squared Absolute deviation	zero-one hinge logistic
Algorithm	growlient descent	