Convex Sets

why convexity?

Why convexity? Simply put: because we can broadly understand and solve convex optimization problems

Nonconvex problems are mostly treated on a case by case basis

a convex optimization problem is of the form

$$\min_{x \in D} f(x)$$
subject to $g_i(x) \le 0, i = 1, \dots m$

$$h_j(x) = 0, j = 1, \dots r$$

where f and g_i , $i=1,\ldots m$ are all convex, and h_j , $j=1,\ldots r$ are affine.

Outline

- Convex sets
- Examples
- Key properties
- Operations preserving convexity

Convex sets

Convex set: $C \subseteq \mathbb{R}^n$ such that

$$x,y\in C \implies tx+(1-t)y\in C \text{ for all } 0\leq t\leq 1$$

In words, line segment joining any two elements lies entirely in set

Convex combination of $x_1, \ldots x_k \in \mathbb{R}^n$: any linear combination

$$\theta_1 x_1 + \ldots + \theta_k x_k$$

with $\theta_i \geq 0$, $i=1,\ldots k$, and $\sum_{i=1}^k \theta_i = 1$. Convex hull of a set C, $\mathrm{conv}(C)$, is all convex combinations of elements. Always convex

Examples of convex sets

- Trivial ones: empty set, point, line
- Norm ball: $\{x: ||x|| \le r\}$, for given norm $||\cdot||$, radius r
- Hyperplane: $\{x: a^Tx = b\}$, for given a, b
- Halfspace: $\{x: a^T x \leq b\}$
- Affine space: $\{x: Ax = b\}$, for given A, b

• Polyhedron: $\{x: Ax \leq b\}$, where inequality \leq is interpreted componentwise. Note: the set $\{x: Ax \leq b, Cx = d\}$ is also a polyhedron.

Operations preserving convexity

- Intersection: the intersection of convex sets is convex
- Scaling and translation: if C is convex, then

$$aC + b = \{ax + b : x \in C\}$$

is convex for any a, b

• Affine images and preimages: if f(x) = Ax + b and C is convex then

$$f(C) = \{f(x) : x \in C\}$$

is convex, and if D is convex then

$$f^{-1}(D) = \{x : f(x) \in D\}$$

is convex

Convex Functions

Convex functions

Convex function: $f: \mathbb{R}^n \to \mathbb{R}$ such that $dom(f) \subseteq \mathbb{R}^n$ convex, and

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$
 for $0 \le t \le 1$

and all $x, y \in dom(f)$

In words, f lies below the line segment joining f(x), f(y)

Concave function: opposite inequality above, so that

$$f$$
 concave $\iff -f$ convex

Important modifiers:

• Strictly convex: $f\big(tx+(1-t)y\big) < tf(x)+(1-t)f(y)$ for $x \neq y$ and 0 < t < 1. In words, f is convex and has greater curvature than a linear function

Note: strictly convex \Rightarrow convex

(Analogously for concave functions)

Examples of convex functions

- Univariate functions:
 - **Exponential function**: e^{ax} is convex for any a over \mathbb{R}
 - Power function: x^a is convex for $a \ge 1$ or $a \le 0$ over \mathbb{R}_+ (nonnegative reals)
 - ▶ Power function: x^a is concave for $0 \le a \le 1$ over \mathbb{R}_+
 - ▶ Logarithmic function: $\log x$ is concave over \mathbb{R}_{++}
- Affine function: $a^Tx + b$ is both convex and concave
- Quadratic function: $\frac{1}{2}x^TQx + b^Tx + c$ is convex provided that $Q \succeq 0$ (positive semidefinite)

• Indicator function: if C is convex, then its indicator function

$$I_C(x) = \begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases}$$

is convex

ullet Support function: for any set C (convex or not), its support function

$$I_C^*(x) = \max_{y \in C} x^T y$$

is convex

• Max function: $f(x) = \max\{x_1, \dots x_n\}$ is convex

Key properties of convex functions

• First-order characterization: if f is differentiable, then f is convex if and only if $\mathrm{dom}(f)$ is convex, and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \text{dom}(f)$. Therefore for a differentiable convex function $\nabla f(x) = 0 \iff x$ minimizes f

• Second-order characterization: if f is twice differentiable, then f is convex if and only if $\mathrm{dom}(f)$ is convex, and $\nabla^2 f(x) \succeq 0$ for all $x \in \mathrm{dom}(f)$

Operations preserving convexity

- Nonnegative linear combination: $f_1, \ldots f_m$ convex implies $a_1 f_1 + \ldots + a_m f_m$ convex for any $a_1, \ldots a_m \geq 0$
- Pointwise maximization: if f_s is convex for any $s \in S$, then $f(x) = \max_{s \in S} f_s(x)$ is convex. Note that the set S here (number of functions f_s) can be infinite
- Partial minimization: if g(x,y) is convex in x,y, and C is convex, then $f(x) = \min_{y \in C} \ g(x,y)$ is convex

More operations preserving convexity

- Affine composition: f convex implies g(x) = f(Ax + b) convex
- General composition: suppose $f = h \circ g$, where $g : \mathbb{R}^n \to \mathbb{R}$, $h : \mathbb{R} \to \mathbb{R}$, $f : \mathbb{R}^n \to \mathbb{R}$. Then:
 - lacksquare f is convex if h is convex and nondecreasing, g is convex
 - lacksquare f is convex if h is convex and nonincreasing, g is concave
 - lacksquare f is concave if h is concave and nondecreasing, g concave
 - lacksquare f is concave if h is concave and nonincreasing, g convex

How to remember these? Think of the chain rule when n = 1:

$$f''(x) = h''(g(x))g'(x)^{2} + h'(g(x))g''(x)$$