CS 461

Programming Language Concepts

Gang Tan Computer Science and Engineering Penn State University

Lambda Calculus

Readings

- ◆Ch11.7 of the supplemental materials of the textbook
 - See the schedule page of the course website

History

- - Introduced by Alonzo Church, Stephen Kleene
 - Greek letter lambda, which is used to introduce functions
 - No significance to the letter lambda
 - Calculus means there is a way to
 - calculate the result of applying functions to arguments
- ◆ Most PLs are rooted in lambda calculus
 - It provides a basic mechanism for function abstraction and application
 - Functional PLs: Lisp, ML, Haskell, other languages
 - Java, C++, and C# all support lambda functions
- ◆ Important part of CS history and foundations
- ◆ Warning:
 - · We'll study formalism

Syntax

\blacklozenge t ::= x | λ x. t | t1 t2

- where x may be any variable
- Function abstraction (function definition): λx. t
 Define a new function whose parameter is x and whose body is t
 - Scheme: (lambda (x) t)
- Function application (function call): t1 t2
 - t1 should eval to a function; t2 is the argument to the function
 - Scheme: (t1 t2) Math: t1(t2)

Examples

◆ Function abstraction

- λx. x
 there is no need to write explicit returns; x is the returning result
- λx. (x+3)

- assume + is a built-in function
 λf. λx. f (f x)
 multi-parameter function, in curried notation
- ◆ Function application
 - $(\lambda x. x) 3 -> 3$ • (λx. (x+y)) 3
- (λx. λy. (x+y)) 3 4 • $(\lambda z. (x + 2*y + z)) 5 -> x + 2*y + 5$
- -> 3 + y -> 3 + 4

Parsing convention

◆The lambda-calculus grammar is ambiguous

- E.g., t1 t2 t3 can be parsed in different ways
- · We'll use parentheses and associativity to disambiguate

Convention

- function abstraction: the scope of functions extends as far to the right as possible (unless encountering parentheses)
 - $-\lambda f. f x = \lambda f.(f x), \text{ not } (\lambda f. f) x$
- function application is left associative
 - $f 2 3 = ((f 2) 3), \text{ not } f (2 3), \text{ suppose } f = \lambda x. \lambda y. x + y$

Reduction (Informally)

- $(\lambda x, x) 3 = 3$
- using 3 to replace x
 (λy. (y+1)) 3
- (λf. λx. f (f x)) (λy. y+1)
- = $\lambda x. (\lambda y. y+1) ((\lambda y. y+1) x)$
- = λx. (λy. y+1) (x+1)
- $= \lambda x. (x+1)+1$
- (λf. λx. f (f x)) (λy. y*y)
- (λx, x) (λz, z)
- (λx. x) (λx. x)

Review of Lam Calculus

◆Theoretical foundation of FP: Lambda calculus

- t ::= x | λx. t1 | t1 t2
- $\ \square$ λx . t is for function abstraction; x's scope is t
 - Functions in lambda calculus takes one parameter at a time \square $\lambda f. \lambda x. f (f x)$; in curried form
- t1 t2 for function application

◆Parsing convention

- Function application left associative: t1 t2 t3 = (t1 t2) t3
- Function's scope extends to the right as far as possible lambda x. f 3 = lambda x. (f 3)

Free and Bound Variables

- "λx, t" binds a new var x and its scope is t
 - Occurrences of x in t are said to be bound Variable x is bound in λx. (x+y)
 - Bound variable is a "placeholder" and can be renamed - Function λx. (x+y) is the same function as λz. (z+y)
- ◆ Names of free (=unbound) variables matter
 - Variable y is free in λx. (x+y)
 - Function λx . (x+y) is *not* the same as λx . (x+z)
- ◆ Example: λx. ((λy. y+2) x) + y
 - y in "y+2" is bound, while the second occurrence of y is free

Formal def. of free variables

Goal: define FV(t), the set of free variables of t

$$\begin{aligned} & \mathsf{FV}(\mathsf{x}) = \{\mathsf{x}\} \\ & \mathsf{FV}(\mathsf{t}_1 \ \mathsf{t}_2) = \mathsf{FV}(\mathsf{t}_1) \cup \mathsf{FV}(\mathsf{t}_2) \\ & \mathsf{FV}(\lambda \mathsf{x}. \ \mathsf{t}) = \mathsf{FV}(\mathsf{t}) - \{\mathsf{x}\} \end{aligned}$$

- $\Phi FV(\lambda x. x) = \{\}$
- $\blacktriangleright FV(\lambda f. \lambda x. f(g x)) = \{g\}$
- ◆ Exercise
 - FV((λx. x) (λx. x))
 - FV(λx . ((λy . y+2) x) + y)

Alpha renaming (rename bound variables)

$$\lambda x. t = \lambda y. [y/x] t$$
 (α) when y is not free in t

- $\triangle \lambda x. x = \lambda y. y$
- $\triangle \lambda x$. ((λy . y+2) x) + y, rename the first y to z
 - Becomes λx . ((λz . z+2) x) + y
- $\triangle \lambda x$. λy . $x y = \lambda y$. λx . y x, rename x to y and y to x

Capture-Avoiding Substitution

Reduction (operational semantics):

 $(\lambda x.~t')~t \quad \rightarrow \quad [t/x]~t'$

[t/x] y = y, where y is a variable different from x

[t/x] (t1 t2) = ([t/x] t1) ([t/x] t2)

[t/x] ($\lambda x. t1$) = $\lambda x. t1$

[t/x] $(\lambda y. t1) = \lambda y. ([t/x] t1)$, where y is not free in t

♦ [3/y] $(\lambda x. x + y) = \lambda x. x + 3$

Rename Bound Variables

◆Function application

($\lambda f. \lambda x. f(f x)$) ($\lambda y. y+x$)

apply twice add x to argument

◆Substitute "blindly" and wrong result Wrong step

 $[(\lambda y. y+x) / f] (\lambda x. f (f x))$

 $=\lambda x. [(\lambda y. y+x) ((\lambda y. y+x) x)] = \lambda x. x+x+x$

◆Rename bound variables

($\lambda f. \lambda z. f(fz)$) ($\lambda y. y+x$)

= λz . [(λy . y+x) ((λy . y+x) z))] = λz . z+x+x

Easy rule: always rename variables to be distinct

Reduction (Formal Semantics)

♦Basic computation rule is β-reduction $(\lambda x. t') t = [t/x] t'$

where substitution involves renaming as needed

- - Apply the β-reduction rule to any subexpression
 - Repeat until no β-reduction is possible
- ◆Normal form: a lambda-calculus term that cannot be further reduced

Reduction Maybe Nonderministic

- ◆An example of two beta-reduction sequences
 - $(\lambda y. y+1) ((\lambda y. y+1) 2) = (\lambda y. y+1) (2 + 1)$ = $(\lambda y. y+1) 3 = 3+1 = 4$
 - $(\lambda y. y+1) ((\lambda y. y+1) 2) = ((\lambda y. y+1) 2) + 1$ = (2+1) + 1 = 3+1 = 4
- ◆Confluence (Church-Rosser theorem):
 - Final result (if there is one) is uniquely determined

β -Reduction Example

Ω Combinator: λx.(x x)

Evaluate: $\Omega (\lambda v. v) = (\lambda x. (x x)) (\lambda v. v)$ $= (\lambda v. v) (\lambda v. v) = (\lambda v. v)$

Evaluate: $\Omega \Omega = (\lambda x. (x x)) (\lambda x. (x x))$ $= (\lambda x. (x x)) (\lambda x. (x x)) = \dots$

Infinite loop!

Programming in Lambda Calculus

Declarations as "Syntactic Sugar"

- ◆ Informal Examples
 - let x = 3 in x + 4
 - let x = 3 let y = 4 in x + y + y
 - let $f = \lambda x. x+1$ in f(3)
 - let $g = \lambda f. \lambda x. f(f(x))$ in let $h = \lambda x. x+1$ g h 2
- ◆ Encoding of let
 - let x = N in M same as $(\lambda x. M) N$
- ◆ Syntactic sugar: the let is sweeter to write, but we can think of it as a syntactic magic

Declarations as "Syntactic Sugar"

function f(x)

return x+2

end;

f(5);

• same as let $f = \lambda x$. x+2 in (f 5)

($\lambda f. \ f(5)$) ($\lambda x. \ x+2$)

block body declared function

> Extra reading: Tennent, Language Design Methods Based on Semantics Principles. Acta Informatica, 8:97-112, 197

Encoding: Boolean

Booleans

TRUE $\triangleq \lambda x. \lambda y. x$

FALSE $\triangleq \lambda x. \lambda y. y$

Encoding "if" so that

Spec: IF b t1 $t2 = \begin{cases} t1 \text{ when } b \text{ is TRUE} \\ t2 \text{ when } b \text{ is FALSE} \end{cases}$

Definition: IF $\triangleq \lambda b. \lambda t 1. \lambda t 2. (b t 1 t 2)$

Check IF TRUE t1 t2 = t1 and IF FALSE t1 t2 = t2

Encoding: Boolean

Booleans

TRUE $\triangleq \lambda x. \lambda y. x$

FALSE $\triangleq \lambda x. \lambda y. y$

Encoding of "and"

 $\mbox{Spec: AND } b_1 \ b_2 = \left\{ \begin{array}{l} \mbox{TRUE when } b_1, b_2 \mbox{ are both TRUE} \\ \mbox{FALSE otherwise} \end{array} \right.$

Definition: AND $\triangleq \lambda b_1 \cdot \lambda b_2 \cdot (b_1 (b_2 \text{ TRUE FALSE}) \text{ FALSE})$

Check AND TRUE TRUE = TRUE and AND FALSE TRUE = FALSE

Encoding: Boolean

Booleans

TRUE $\triangleq \lambda x. \lambda y. x$

FALSE $\triangleq \lambda x. \lambda y. y$

Encoding of "or"

 $\mbox{Spec: OR } b_1 \ b_2 = \left\{ \begin{array}{l} \mbox{TRUE when } either \ b_1 \ or \ b_2 \ \mbox{is TRUE} \\ \mbox{FALSE otherwise} \end{array} \right.$

Definition: OR $\triangleq \lambda b_1 \cdot \lambda b_2 \cdot (b_1 \text{ True } (b_2 \text{ TRUE FALSE}))$

Check OR TRUE TRUE = TRUE and OR FALSE FALSE = FALSE

Church Encoding of Numbers

Natural numbers

Church numerals: $n \triangleq \lambda f . \lambda z . f (f ... (f z) ...)$ n invocations of f

> $0 \triangleq \lambda f. \lambda z. z$ $1 \triangleq \lambda f. \lambda z. (f z)$ $2 \triangleq \lambda f. \lambda z. (f(fz))$

Church Numerals

```
Encoding of "+1":

SUCC \triangleq \lambda n. \lambda f. \lambda z. \ (f (n f z))
```

Check "SUCC 2"= 3

Encoding of PLUS $\text{PLUS} \triangleq \lambda n_1. \lambda n_2. \ \ (n_1 \, \text{SUCC} \, n_2)$

Check "PLUS 1 2" = 3

Multiplication and exponentiation can also be encoded.

Pure vs. Applied λ -Calculus

- ♦Pure λ-Calculus: the calculus discussed so far
- ◆Applied λ-Calculus:
 - Built-in values and data structures (e.g., 1, 2, 3, true, false, (1 2 3))
 - Built-in functions
 (e.g., +, *, /, and, or)
 - Named functions
 - Recursion