

Multimedia systems - M.EEC0057

M.EEC 2023-2024

Multimedia streaming protocols Part3: Challenges for HAS

What will we learn?

- Existing challenges for HAS
- The use of client buffers and consequences on the media presentation
- Advances in low latency ABR approaches
- Standardised solutions to reduce latency
- Client implementations

HTTP Adaptive Streaming (HAS)

- existing HTTP adaptive streaming technologies (aka HAS) share the same approach of
 - generating multiple variations of the content
 - fragmenting it in segments
 - assigning to the client the freedom of independently download and decode such segments
- support dynamic adaptation of the multimedia presentation according to network conditions
- require the generation of additional metadata (manifest files)
 - with bit rates and URIs to access the content segments
 - using the manifest file, the client issues HTTP requests for consecutive segments with a target bitrate, matching the present network conditions as found by an Adaptive Bitrate (ABR) algorithm

Goals & challenges of HAS

- What and How
 - maximise the user Quality of Experience (QoE)
 - minimise/avoid the most annoying aspects of traditional streaming
 - frozen images or jumps in the playout due to buffer over and underflow
 - no need for dedicated server
 - dynamically adapt to network variability
 - given that network conditions will vary from client to client,
 empower the clients to decide by themselves
 - use additional metadata files to enable this
- Challenges
 - large latency, especially in live content services, as clients can only request segments after they become available on the server

What is Quality of Experience (QoE) in video streaming?

- refers to the overall satisfaction and perceived quality of the user's experience when consuming multimedia content over a network
- it is a **subjective** measure that encompasses various aspects of the streaming service, considering the end user's perception, expectations, and enjoyment
 - QoE reflects how users actually experience the audiovisual content
 - handled at the application layer
 - by comparison, Quality of Service (QoS), focuses on technical metrics like bitrate, latency, and packet loss
 - handled at the transport, network and physical layer

23/2024 Multimedia Systems - M.EEC

Key factors impacting QoE in video streaming (1)

- Video Quality
 - resolution (spatial, temporal, quality), clarity, and absence of visual artifacts contribute to video quality
- Audio Quality
 - · clarity, fidelity, and consistency of audio playback are crucial
 - users expect high-quality audio that complements the video content
- Buffering and playback Smoothness
 - users prefer uninterrupted streaming with minimal buffering delays
 - smooth playback without stuttering or freezing is the great contributor to enhancing the viewing experience
- Start-up time/latency
 - time it takes for the video to start playing is a critical factor
 - fast start-up times contribute to a positive initial impression and overall satisfaction

2023/2024

Key factors impacting QoE in video streaming (2)

- Consistency
 - to ensure playout consistency/continuity, adaptive streaming technologies adjust video quality based on network conditions
 - but they ruin video quality consistency ···
- User Interface and Interactivity
 - the design and usability of the streaming application impact user satisfaction
 - intuitive interfaces and interactive features contribute positively to QoE
- Content Relevance
 - relevance and quality of the content influence the overall enjoyment of the streaming experience
 - personalization and content recommendations can enhance QoE
- Consistency Across Devices
 - users expect a consistent experience across different devices in terms of offered functionality and content quality

223/2024 Multimedia Systems - M.EEC

Assessing QoE

- subjective methods are normally used
 - user surveys, interviews
 - quality ratings provided by viewers (polls)
 - dedicated viewing sessions implementing the Mean Opinion Score (MOS) method which is a "double stimuli" procedure
 - a heterogeneous audience visualises images and classifies them in a scale from 1 to 5
 - each person visualises the original image (with full quality, uncompressed) immediately followed by a compressed (and reconstructed) version
 - the score is given in a relative way by comparing the two images
 - 1 if the two images are very dissimilar (low quality / high degradation)
 - 5 if the two images are very similar (high quality / imperceptible degradation)

2023/2024

Challenges of HAS

- high end-to-end latency in live services
 - long delay between the instant content is captured and the instant the content is presented to the user
 - typically there is a 30-90s time gap in relation to a terrestrial or satellite transmission
- end-to-end latency depends on the entire delivery chain
 - content capture, encoding, packaging, encryption
 - CDN distribution
 - buffering and rendering at the client
- but client buffering is the main contributor
 - and the differentiating factor in relation to traditional broadcasting

Client buffering and ABR

- a client buffer is necessary to absorb changes in network conditions
 - to queue some received segments targeting continuous playback,
 thus providing a good viewing experience
- but, only an infinite buffer would be able to cope with any amount of congestion ...
 - therefore, the client implements an Adaptive Bit Rate (ABR)
 that measures the network conditions periodically and adjusts
 the quality at which segments are requested
 - the size of the client buffer is defined according the the desired reaction time of the ABR algorithm and the maximum latency
 - how long does the algorithm have to evaluate the network conditions and react to deterioration before the client buffer underflows, freezing the presentation?

Client buffering and ABR (2)

- the maximum number of segments that are queued in the client buffer is determined based on the client's overall target latency
 - in live streaming, this latency will be the time-gap that will exist between broadcast and streaming services of the same live media program, so it should be as small as possible
 - because it is only possible to request segments in real-time
 ...
 - in offline services (VoD for example) there is not such a big problem of time-gap
- the minimum number of segments that need to be queued in the client dictates the minimum achievable latency
- therefore, to aim low-latency in live streaming, it is necessary to have sophisticated ABR algorithms that use very small buffers and thus are able to react very fast

Client buffering and ABR (3)

- the main goal of an ABR algorithm is to maximise viewer QoE
 - translated into maximising the average video quality
 - ensuring playout continuity
 - preventing freezing and jumps
- however, changes in quality are also annoying so they should be minimised

changes in quality ⇔ *rebuffering events*

- the number of times quality is changed and the periods during which quality drops should be minimised
 - the target is thus to comply with network variability whilst minimising frequency and duration of rebuffering events

Solutions to reduce latency

- Specifications:
 - MPEG Common Media Application Format (CMAF).
 - defines the format to fragment DASH segments into chunks
 - Low Latency DASH (LL-DASH)
 - Low Latency HLS (LL-HLS)
 - Extension to HLS developed by Apple in 2020
 - HTTP/I.I Chunked Transfer Encoding
 - An IETF RFC
- Player implementations:
 - DASH.js
 - HLS.js
 - Shaka player
 - Apple's AVPlayer

Low Latency solutions

- common design principles
 - each media segment is fragmented into smaller chunks
 - each chunk can be delivered as soon as it is available
 - a player can start rendering a segment right after its first chunk is received
 - the latency is thus reduced from the segment level to a chunk level
 - minimum latency was one complete segment period
 - which was 10 seconds for HLS
 - now it is only one chunk period
 - which can be a few hundred milliseconds

Low Latency solutions (2)

- reducing the segment size could be another possible approach,
 but
 - by definition in HAS, a segment is the unit that allows to switch between quality/bit rate
 - switching is possible to occur at the segment frontier given that each segment starts with an Intra frame
 - allowing a player to start the playback of a segment immediately, without the need to wait and download an earlier segment
 - and equally numbered segments of different versions correspond to the same point in time
 - to maintain such possibility, an I frame would have to be squeezed into a smaller number of bytes
 - quality deterioration

Low Latency solutions (2)

- Given that low-latency streams are delivered chunk by chunk
 - enabling to reduce the size of the buffer (and latency) at the client-side
- estimating the network bandwidth and making stream adaptation decisions becomes even more challenging

LL-HLS

- two approaches to reduce latency
 - enabling HTTP/I.I chunked transport for segments
 - announcing segments before they are available
- LL-HLS provides backwards compatibility with regular/legacy HLS
 - players that do not understand the protocol extension will still be able to play the same streams, but with a higher latency. . . .
 - a single optimised server solution can be used both for optimised and non-optimised players
- it could also use HTTP/2 features such as HTTP Push and Ping
 - but there is not yet sufficient support of such features namely in CDNs

LL-HLS (2)

- Introduces a new tag
 - #EXT-X-PRELOAD-HINT
 - used by a server offering a low latency live HLS stream to announce the most likely location of the next chunk needed to continue playing the video at the client side
 - allows a player client to perform a request in anticipation,
 allowing the data to flow in as soon as it is available
 - this process allows to further reduced latency caused by the round-trip time when requesting new media data
 - the intended use for use HTTP/2 push

LL-DASH

- LL-DASH uses CTE and is compatible with the Common Media
 Application Format (CMAF)
 - CMAF provides some tools that enable DASH to reduce latency
 - namely, it defines how to split up DASH media segments in smaller chunks and describe how such splitting was done
- sometimes LL-DASH is called DASH/CMAF/CTE ...

LL-DASH (2)

• Assumes media segments are not smaller than 2 seconds and that the minimum buffer size to ensure smooth layout is 3-4 segments

2023/2024 Multimedia Systems - M.EEC 20

LL-DASH (3)

2023/2024

HTTP\I.I CTE

- CTE is signalled by using the transfer-encoding HTTP response header
 - instead of the usual content-length header of HTTP packets
- CTE provides the means for a client to verify that all the chunks,
 and then the complete file, have been received
- the main advantage of CTE is that it eliminates the preparatory work and delay required when sending large files or segments of data

Useful sources of information

- https://www.wowza.com/blog/low-latency-cmaf-chunked-transfer-encoding
- https://www.wowza.com/blog/what-is-cmaf
- https://mpeg.chiariglione.org/standards/mpeg-a/common-media-application-format/text-isoiec-cd-23000-19-common-media-application
- Abdelhak Bentaleb, Bayan Taani, Ali C. Begen, Christian Timmerer, and Roger Zimmermann, "A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP". In IEEE Communications Surveys & Tutorials, Vol. 21, No. 1, first quarter 2019.
- Bo Zhang, Thiago Teixeira, and Yuriy Reznik. 2021. Performance of Low-Latency HTTP-based Streaming Players. In Proceedings of ACM Multimedia Systems conference (MMSys'21). ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/1234567890. Available at: https://dl.acm.org/doi/pdf/10.1145/3458305.3478442
- Video: https://www.facebook.com/watch/?v=616758079514649
- https://www.theoplayer.com/blog/evolution-of-ll-hls
- https://www.theoplayer.com/blog/low-latency-dash