Things to Remember

- a_{ij} is the *i*th row and *j*th column of A.
- $\pm 0.d_1d_2\dots d_k \times 10^n$ is the decimal floating point representation of a number.
- Chopping is cheaper than rounding.

Error

- Error: $p \hat{p}$
- Abs. Err: $|p \hat{p}|$
- Rel. Err: $\frac{|p-\hat{p}|}{p}$ (for accuracy)

Significant Digits

An aprxmtn \hat{p} has t significant digits if: $\frac{|p-\hat{p}|}{|p|} \le$

Catastrophic Cancellation (Roundoff)

When subtracting nearly equal numbers, the relative error is large, and you lose a lot of significant digits (and accuracy).

How to Reduce Errors

- Reformat the formula to avoid roundoff
- Reduce num. of ops (avoid rounding)
 - Nested Arithmetic: Rewrite polynomials to reduce operations $x^3 - 6.1x^2 + 3.2x \rightarrow ((x - 6.1)x + 3.2)x$

Algorithms and Convergence

- Stable \rightarrow errors grow linearly
- Unstable \rightarrow errors grow exponentially

Rate of Convergence

- For sequences, if $\alpha_n \to \alpha$ and $|\alpha_n \alpha| \le k\beta_n$, $\beta_n \to 0$ then α_n is $\mathcal{O}(\beta_n)$
- For functions, if $\lim_{h\to 0} f(h) = L$ and $|f(h)| \le$ kh^p then $f(h) = L + \mathcal{O}(h^p)$

Taylor Series

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} \quad \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots$$

$$(1+x)^{-p} = 1 - px + \frac{p(p+1)x^2}{2} - \frac{p(p+1)(p+2)x^3}{3!}$$
 The

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots$$

Error Term is the $(n+1)^{th}$ term.

Root Finding

• Find p such that f(p) = 0.

Generic Stopping Criterion

- 1. $\frac{|p_n p_{n-1}|}{|p_n|} \le \mathcal{E}; p_n \ne 0$: relative error
- - Ensures small $f(p_n)$
 - p_n may differ significantly from p
- 3. Have a fixed number of iterations
- 4. (bisection) $\frac{b_n a_n}{2} \leq \mathcal{E}$ or $|p_n p_{n-1}| < \mathcal{E}$
 - Ensures p_n is within \mathcal{E} of p
 - Does not ensure small $f(p_n)$

Bisection Method:

- Conditions: $f(x) \in C[a, b]$; f(a) and f(b) have opposite signs.
- Midpoint: $x = \frac{a+b}{2}$
- Procedure: Binary search for the root.
- Error: Guaranteed quadratic convergence
- Error Formula: $\frac{b-a}{2n}$

Newton's Method

- Faster than bisection, quadratic. We follow the tangent line at p_{n-1} to its x-intercept.
- Requires f'(p) to exist.
- Requires f''(p) for quadratic convergence.
- 1. Start with initial guess p_0 and p_1

2.
$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f'(p_{n-1})f(p_{n-2})}$$

Secant Method

- Does not require f'(p) to exist.
- Faster than Bisection, order $\phi \approx 1.618$ 1. Start with initial guess p_0 and p_1

2.
$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1}p_{n-2})}{f(p_{n-1})f(p_{n-2})}$$

False Position Method

- Linear or sublinear guaranteed convergence.
- Convergence can stall if the function has poor behaviour near the root.
 - 1. Start with initial guess p_0 and p_1

2.
$$p_n = p_{n-1}f(p_{n-1}) \cdot \frac{p_{n-1} - p_{n-2}}{f(p_{n-1}) - f(p_{n-2})}$$

Fixed Points

- 1. Start with initial guess p_0
- 2. Generate a sequence $p_n = g(p_{n-1})$
- 3. Stop when $|p_n p_{n-1}| < \mathcal{E}$
- A fixed point of f is a point p such that f(p) = p.
- Converges if:
 - $1. g: [a, b] \rightarrow [a, b]$ is continuous
 - $2. \forall x \in [a, b] : |g'(x)| \le k < 1$
 - 3. f(x) = 0 can be rewritten as g(x) = x
- Error: $\mathcal{O}(q^n)$, for some q, faster when q is small

Norms

Vector Norms

- $l_1: ||x||_1 = \sum x_i$
- $l_2: ||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$ (Euclidean)
- $l_{\infty} : ||x||_{\infty} = \max\{|x_1|, \cdots, |x_n|\} (\infty)$

- Scalability: $\|\alpha x\| = |\alpha| \|x\|$
- Triangle Inequality: $||x + y|| \le ||x|| + ||y||$

Vector Distances

• l_{α} distance: $||x-y||_{\alpha}$

Matrix Norms

- The Natural Norm $\|\cdot\|_*$ for $A, B \in \mathbb{R}^{n \times n}$; $\alpha \in \mathbb{R}$ is defined as a function that satisfies:
 - $1. \|A\| \ge 0$
- $2. \|A\| = 0 \iff A = 0$
- $3. \|\alpha A\| = |\alpha| \|A\|$
- $4. \, \|A + B\| \le \|A\| + \|B\|$
- **Def.** $||A||_* = \max_{||x||=1} ||Ax||_*$ where ||Ax|| is any
- $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$ (row sum)

Special Properties

- 1. For any natural norm $\|\cdot\|_{\alpha}: \rho(A) \leq \|A\|_{\alpha}$
- 2. For $l_2: ||A||_2 = \sqrt{\rho(A^T A)}$

Vector Sequence Convergence

• $\{x^{(k)}\}$ converges to x for any small $\mathcal{E} > 0$ eventually every $x^{(k)}$ is within \mathcal{E} of x

Eigenvalues and Eigenvectors

E.value (λ): Scalar s.t. $A\vec{x} = \lambda \vec{x}$

E.vector (\vec{x}) : Nonzero vector only scaled by A Spectral Radius: $\rho(A) = \max\{|\lambda_i|\}$

Properties

- $1. \det(A \lambda I) = 0 \iff \lambda$ is an eigenvalue. Solve the characteristic polynomial for λ .
- 2. $\forall \lambda [(A \lambda I)\vec{x} = 0 \iff \vec{x} \text{ is an eigenvector}]$
- 3. If $\rho A < 1$, A is <u>convergent</u> $\Longrightarrow \lim_{k \to \infty} A^k = 0$

Linear Systems - Pivoting Strategies

If the pivot is small, large errors can occur. Pivoting helps maintain numerical stability.

Partial Pivoting

Choose the largest element in the current column (below or at the pivot) to avoid dividing by a small number.

- 1. For $k = 1 \dots n 1$:
- Find $r = \arg \max\{|a_{ik}|\}$ $k \le i \le n$

- If $r \neq k$, swap rows: $E_k \leftrightarrow E_r$
- Continue Gaussian Elimination as usual

Scaled Partial Pivoting

Handles rows with vastly different magnitudes by normalizing.

- 1. For each row $i = 1 \dots n$, compute the scale factor: $s_i = \max_i |a_{ij}|$
- 2. For pivot column k, choose the row r such that $\frac{|a_{rk}|}{s_r}$ is maximal for $r \geq k$
- 3. If $r \neq k$, swap rows: $E_k \leftrightarrow E_r$
- 4. Proceed with Gaussian Elimination

Full Pivoting

Most stable but most expensive. Swap both rows and columns.

- 1. At step k, find the largest element $|a_{ij}|$ in the submatrix $A_{k:n,k:n}$
- 2. Swap row k with row i, and column k with column j
- 3. Update row and column permutations
- 4. Continue Gaussian Elimination

Linear Algebra

- To multiply $A \cdot B$, dot-product the rows of A by the columns of B.
- $AA^{-1} = A^{-1}A = I$
- To find A^{-1} , row reduce the aug. matrix [A|I].
- A^T is A flipped over the main diagonal.

Determinant

- $det(A) \neq 0 \implies \begin{cases} A^{-1} & \text{exists} \\ Ax = b & \text{has a unique solution} \end{cases}$
- Cofactor Expansion (Laplace Expansion): For an $n \times n$ matrix $A = [a_{ij}]$, the determinant

$$\det(A) = \sum_{i=1}^{n} a_{ij} C_{ij} \quad \text{(row expansion on row } i\text{)}$$

$$\det(A) = \sum_{i=1}^{n} a_{ij} C_{ij} \quad \text{(column expansion on column}$$

where $C_{ij}=(-1)^{i+j}\det(M_{ij})$ is the cofactor, and M_{ij} is the $(n-1)\times(n-1)$ minor formed by deleting the i-th row and j-th column of A.

Matrix Factorization

LU Decomposition

Row Swaps

Special Matrices

Permutation Matrices

Singular

Banded Matrices

Tridiagonal Matrices

Diagonally Dominant Matrices

Positive Definite Matrices

Iterative Methods for Linear Systems

Jacobi Method Gauss-Seidel Method