Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Фізико-технічний інститут

«Методи обчислень»

Лабораторна робота №3 Варіант 2

«Розв'язання СЛАР ітераційними методами»

Виконала:

студентка групи ФБ-95 Гурджия Валерія Вахтангівна

Завдання

Якщо матриця не ϵ матрицею із діагональною перевагою, привести систему до еквівалентної, у якій ϵ діагональна перевага (письмово). Реалізувати програму, що реалізу ϵ розв'язання за ітераційним методом, який відповіда ϵ заданому варіантові. Обчислення проводити з $\epsilon = 10^{-4}$. Для кожної ітерації розраховувати вектор нев'язки r = |b - Ax|, де x - отриманий розв'язок.

№ вар.	Матриця системи А	Вектор правої частини b
2	1,00 0,42 0,54 0,66	0,3
	0,42 1,00 0,32 0,44	0,5
	0,54 0,32 1,00 0,22	0,7
	0,66 0,44 0,22 1,00	0,9

Метод розв'язання: метод простої ітерації

Письмова частина

$$A = \begin{pmatrix} 1,00 & 0,42 & 0,54 & 0,66 \\ 0,42 & 1,00 & 0,32 & 0,44 \\ 0,54 & 0,32 & 1,00 & 0,22 \\ 0,66 & 0,44 & 0,22 & 1,00 \end{pmatrix}$$

1. Перевіримо, чи ϵ матриця матрицею з діагональною перевагою.

Означення матриці з діагональною перевагою:

$$\forall i \colon |a_{ii}| > \sum_{j \neq i} |a_{ij}|, i = 1, \dots, n$$

$$1 < 0.42 + 0.54 + 0.66$$

Як бачимо, матриця не ϵ виду з діагональною перевагою.

Перетворення на матрицю з діагональною перевагою:

1	0,42	0,54	0,66	0,3
0,42	1	0,32	0,44	0,5
0,54	0,32	1	0,22	0,7
0,66	0,44	0,22	1	0,9

Помножимо перший рядок на -0,42 та додамо до 2 рядка

1	0,42	0,54	0,66	0,3
0	0,8236	0,0932	0,1628	0,374
0,54	0,32	1	0,22	0,7
0,66	0,44	0,22	1	0,9

Помножимо перший рядок на -0,54 та додамо до 3 рядка

1	0,42	0,54	0,66	0,3
0	0,8236	0,0932	0,1628	0,374
0	0,0932	0,7084	-0,1364	0,538
0,66	0,44	0,22	1	0,9

Помножимо перший рядок на -0,66 та додамо до 4 рядка

1	0,42	0,54	0,66	0,3
0	0,8236	0,0932	0,1628	0,374
0	0,0932	0,7084	-0,1364	0,538
0	0,1628	-0,1364	0,5644	0,702

Помножимо другий рядок на -0,11316 та додамо до 3 рядка

1	0,42	0,54	0,66	0,3
0	0,8236	0,0932	0,1628	0,374
0	0	0,697853	-0,15482	0,495678
0	0,1628	-0,1364	0,5644	0,702

Помножимо другий рядок на -0,19767 та додамо до 4 рядка

1	0,42	0,54	0,66	0,3
0	0,8236	0,0932	0,1628	0,374
0	0	0,697853	-0,15482	0,495678
0	0	-0,15482	0,53222	0,628072

Помножимо третій рядок на 0,221856 та додамо до 4 рядка

1	0,42	0,54	0,66	0,3
0	0,8236	0,0932	0,1628	0,374
0	0	0,697853	-0,15482	0,495678
0	0	0	0,497871	0,738041

Помножимо другий рядок на -0,5 та додамо до 1 рядка

1	0,0082	0,4934	0,5786	0,113
0	0,8236	0,0932	0,1628	0,374
0	0	0,697853	-0,15482	0,495678
0	0	0	0,497871	0,738041

Помножимо третій рядок на -0,5 та додамо до 1 рядка

1	0,0082	0,144473	0,656011	-0,13484
0	0,8236	0,0932	0,1628	0,374
0	0	0,697853	-0,15482	0,495678
0	0	0	0,497871	0,738041

Перевіряємо:

$$1 > 0.0082 + 0.144473 + 0.656011 = 0.80868$$

$$0.8236 > 0 + 0.932 + 0.1628 = 0.256$$

$$0,697853 > 0 + 0 + 0,15482 = 0,15482$$

$$0,738041 > 0 + 0 + 0 + 0 = 0$$

Тепер це матриця з діагональною перевагою

Можемо застосовувати метод простої ітераціі.

Результат роботи програми

Итерация № 1	0 12494	0 454104	0. 71020	1 49220
Корни х:	-0.13484	0.454104		1.48239
Вектор невязки r:	1.078808	0.307533	0.229504	0.000000
:Итерация № 2				
Корни х:	-1.213648	0.080703	1.039162	1.482394
Вектор невязки r:	0.044451	0.030651	0.000000	0.000000
Итерация № 3				
Корни х:	-1.258099	0.043488	1.039162	1.482394
Вектор невязки r:	0.000305	0.000000	0.000000	0.000000
Итерация № 4				
Корни х:	-1.257794	0.043488	1.039162	1.482394
Вектор невязки r:	0.000000	0.000000	0.000000	0.000000
Итерация № 5				
Корни х:	-1.257794	0.043488	1.039162	1.482394
Вектор невязки r:	0.000000	0.000000	0.000000	0.000000
C:\Users\user\Desktop\l	abs\методы\	lab 3\метол	и лаб 3\Deb	oug\методи лаб 3.

Код програми

```
#include <iostream>
#include <cmath>
#include <vector>
using namespace std;
bool check(vector<vector<float>> matrix A) {
    for (int i = 0; i < matrix A.size(); i++) {</pre>
        float sum = 0;
        for (int j = 0; j < matrix A[i].size(); j++) {</pre>
            if (i != j) {
                 sum += abs(matrix_A[i][j]);
        if (abs(matrix A[i][i]) <= sum) {</pre>
             return false;
    return true;
}
void SimpleIterationMethod(vector<vector<float>> matrix A, vector<float> vector B, float
epsilon) {
    vector<vector<float>> X = \{ \{0, 0, 0, 0\} \};
    vector<float> Delta;
    vector<float> R;
    float maxDelta = 1;
    int count = 0;
    vector<float> answers;
    while (maxDelta > epsilon) {
        cout << "Итерация № " << count+1;
        for (int i = 0; i < matrix_A.size(); i++) {</pre>
            float sum = 0;
            for (int j = 0; j < matrix_A[i].size(); j++) {</pre>
                 if (i != j) {
                     sum += matrix_A[i][j] * X[count][j];
            float x = (vector_B[i] - sum) / matrix_A[i][i];
            answers.push_back(x);
        X.push back(answers);
        if (count > 0) {
            for (int j = 0; j < X[X.size() - 1].size(); j++) {</pre>
                 float delta = abs(X[X.size() - 1][j] - X[X.size() - 2][j]);
                 Delta.push_back(delta);
            maxDelta = 0;
            for (int i = 0; i < Delta.size(); i++) {</pre>
                 if (Delta[i] > maxDelta) {
                     maxDelta = Delta[i];
                 }
            }
        for (int i = 0; i < matrix_A.size(); i++) {</pre>
            float AX = 0;
            for (int j = 0; j < matrix_A[i].size(); j++) {</pre>
                 AX += matrix_A[i][j] * answers[j];
            float r = abs(vector_B[i] - AX);
            R.push_back(r);
        }
```

```
cout << "\nКорни х: \t\t";
        for (auto a : answers) {
            cout << a << " ";
        cout << "\nВектор невязки r: \t";
        for (auto r : R) {
           cout << fixed << r << " ";</pre>
        cout << endl << endl;</pre>
        R.clear();
        answers.clear();
        Delta.clear();
        count++;
    }
}
int main()
    setlocale(LC_ALL, "ru");
    vector<vector<float>> matrix_A = {
        {1, 0.0082, 0.144473, 0.656011},
        {0, 0.8236, 0.0932, 0.1628},
        \{0, 0, 0.697853, -0.15482\},\
        {0, 0, 0, 0.497871} };
    vector<float> vector_B = { -0.13484, 0.374, 0.495678, 0.738041 };
    float epsilon = 0.0001;
    if (!check(matrix A)) {
        cout << "Матрица не диагонально преобладающая!\n";
    }
    else {
        SimpleIterationMethod(matrix_A, vector_B, epsilon);
}
```