Лекция 4

Ilya Yaroshevskiy

11 марта 2021 г.

Содержание

I	1аоличные модели	1
2	Модели Крипке	1
3	Доказательство нетабличности	2

Определение. Предпорядок — транзитивное, рефлексивнре

Определение. Отношение порядка (частичный) — антисимметричное, транзитивное, рефлексивное

Определение. Линейный порядок — порядок в котором $a \leq b$ или $b \leq a$

Определение. Полный порядок — линейный, каждое подмножество имеет наименьший элемент.

 $\Pi puмер$. \mathbb{N} — вполне упорядоченное множество

 Π ример. \mathbb{R} — не вполне упорядоченной множество

- \bullet (0,1) не имееи наименььшего
- \bullet $\mathbb R$ не имеет наименьшего

1 Табличные модели

Определение. Назовем модель табличной для ИИВ:

- V множество истинностных значений $f_{\to}, f_{\&}, f_{V}: V^{2} \to V, \ f_{\neg}: V \to V$ Выделенные значения $T \in V$ $+i \cbar{l} \in V \ f_{p}: p_{i} \to V$
- $p_i = f_{\mathcal{P}}(p_i)$ $[\![\alpha \star \beta]\!] = f_{\star}([\![\alpha]\!], [\![\beta]\!])$ $[\![\neg \alpha]\!] = f_{\neg}([\![\alpha]\!])$

 $Если \vdash \alpha$, то $\models \alpha$ означает, что $\llbracket \alpha \rrbracket = T$, при любой $f_{\mathcal{P}}$

Определение. Конечная модель: модель где V — конечно

Теорема 1.1. У ИИВ не существует полной табличной модели

2 Модели Крипке

все банки лопнут, RSA сломают!!!

- 1. $W = \{W_i\}$ множество миров
- 2. частичный порядок(≿)
- 3. отношение вынужденности: $W_j \Vdash p_i$ (\Vdash) $\subseteq W \times \mathcal{P}$ При этом, если $W_j \Vdash p_i$ и $W_j \preceq W_k$, то $W_j \Vdash p$

Определение.

1. $W_i \Vdash \alpha$ и $W_i \Vdash \beta$, тогда (и только тогда) $W_i \Vdash \alpha \& \beta$

2. $W_i \Vdash \alpha$ или $W_i \Vdash \beta$, то $W_i \Vdash \alpha \vee \beta$

3. Пусть во всех $W_i \preceq W_j$ всегда когда $W_j \Vdash \alpha$ имеет место $W_j \Vdash \beta$ Тогда $W_i \Vdash \alpha \to \beta$

4. $W_i \Vdash \alpha - \alpha$ не вынуждено нигде, начиная с W_i : $W_i \preceq W_j$, то $W_j \not \Vdash \alpha$

Теорема 2.1. Если $W_i \Vdash \alpha$ и $W_i \preceq W_j$, то $W_j \Vdash \alpha$

Определение. Если $W_i \Vdash \alpha$ при всех $W_i \in W$, то $\models \alpha$

Теорема 2.2. ИИВ корректна в модели Крипке

Доказательство. 1. $\langle W, \Omega \rangle$ — топология, где $\Omega = \{ w \subseteq W | \text{если } W_i \in w, \ W_i \preceq W_j, \ \text{то } W_j \in w \}$

2. $\{W_k|W_k\Vdash p_j\}$ — открытое множество Примем $[\![p_j]\!]=\{W_k|W_k\Vdash p_j\}$ Аналогично $[\![\alpha]\!]=\{W_k|W_k\Vdash \alpha\}$

3 Доказательство нетабличности

Пусть существует конечная табличная модель |V|=n

$$\varphi_n = \bigvee_{\substack{1 \le i, j \le n+1 \\ i \ne j}} (p_i \to p_j \& p_j \to p_i)$$

1. $\not\vdash \varphi$

 $W_1 \not\Vdash (p_i \to p_k) \& (p_k \to p_1), \ k \neq 1$

Значит

$$\forall (p_i \to p_j) \& (p_j \to p_i)
\forall \bigvee (p_i \to p_j) \& (p_j \to p_i)
\forall \varphi_n$$

2. $\models_V \varphi_n$: по признаку Дирихле найдутся $i \neq j: \llbracket p_i \rrbracket = \llbracket p_j \rrbracket$ $\llbracket p_i \to p_j \rrbracket = \mathrm{H}$ и $\llbracket \varphi_n \rrbracket = \mathrm{H}$ Значит $\vdash \varphi_n$ — противоречие

Определение. Дизъюнктивность ИИВ: $\vdash \alpha \lor \beta$ влечет $\vdash \alpha$ или $\vdash \beta$

Определение. Гёделева алгебра — алгебра Гейтинга, такая что из $\alpha+\beta=1$ следует что $\alpha=1$ или $\beta=1$

Определение. Пусть $\mathcal{A}-$ алгебра Гейтинга, тогда:

1. $\Gamma(\mathcal{A})$

$$\begin{pmatrix}
1 \\
A
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
\omega \\
A
\end{pmatrix}$$

Добавим новый элемент $1_{\Gamma(\mathcal{A})}$ перенеименуем $1_{\mathcal{A}}$ в ω

Теорема 3.1.

- $\Gamma(\mathcal{A})$ алгебра Гейтинга
- $\Gamma(\mathcal{A})$ Геделева

Определение. Гомоморфизм алгебр Гейтинга

- $\varphi: \mathcal{A} \to \mathcal{B}$
- $\varphi(a \star b) = \varphi(a) \star \varphi(b)$
- $\varphi(1_{\mathcal{A}}) = 1_{\mathcal{B}}$
- $\varphi(0_A) = 0_B$

Теорема 3.2. $a \le b$, то $\varphi(a) \le \varphi(b)$

Определение.

- \bullet α формула ИИВ
- f, g: оценки ИИВ
- $f: \text{ИИВ} \to \mathcal{A}$
- $g: \text{ИИВ} \to \mathcal{B}$

 φ согласованы f,g,если $\varphi(f(\alpha))=g(\alpha)$

Теорема 3.3. если $\varphi: \mathcal{A} \to \mathcal{B}$ согласована с f, g и оценка $[\![\alpha]\!]_g \neq 1_{\mathcal{B}}$, то $[\![\alpha]\!]_f \neq 1_{\mathcal{A}}$

Теорема 3.4. ИИВ дизъюнктивно

Доказательство. Рассмторим алгебру Линденбаума: $\mathcal L$ Рассмотрим $\Gamma(\mathcal L)$

• $\varphi:\Gamma(\mathcal{L})\to\mathcal{L}$

$$\varphi(x) = \begin{cases} 1_{\mathcal{L}} &, x = \omega \\ x &, \text{иначе} \end{cases}$$

 φ — гомоморфизм

Пусть $\vdash \alpha \lor \beta$, тогда $[\![\alpha \lor \beta]\!]_{\Gamma(\mathcal{L})} = 1_{\Gamma(\mathcal{L})}$

 $\llbracket \alpha + \beta \rrbracket = 1$, и т.к. $\Gamma(\mathcal{L}) - \Gamma$ еделева то $\llbracket \alpha \rrbracket = 1$ или $\llbracket \beta \rrbracket = 1$

Пусть $ot \vdash \alpha$ и $ot \vdash \beta$, тогда $ot \varphi(\llbracket \alpha \rrbracket) \neq 1_{\mathcal{L}}$ и $ot \varphi(\llbracket \beta \rrbracket) \neq 1_{\mathcal{L}}$, т.е. $ot \llbracket \alpha \rrbracket_{\mathcal{L}} \neq 1_{\mathcal{L}}$ и $ot \llbracket \beta \rrbracket_{\mathcal{L}} \neq 1_{\mathcal{L}}$, тогда $ot \llbracket \alpha \rrbracket_{\Gamma(\mathcal{L})} \neq 1_{\Gamma(\mathcal{L})}$ и $ot \llbracket \beta \rrbracket_{\Gamma(\mathcal{L})} \neq 1_{\Gamma(\mathcal{L})} \Rightarrow \Pi$ ротиворечие