元素及其化合物·一·「钠 (Na) 及其化合物」

钠单质

化学性质

1. Na 与 氧气 反应: $\begin{cases} 4\operatorname{Na} + \operatorname{O}_2 &= 2\operatorname{Na}_2\operatorname{O} \\ 2\operatorname{Na} + \operatorname{O}_2 &\stackrel{\Delta}{==} \operatorname{Na}_2\operatorname{O}_2 \end{cases}$

2. Na 与 氯气 反应: $2 \operatorname{Na} + \operatorname{Cl}_2 \stackrel{\Delta}{=\!=\!=} 2 \operatorname{NaCl}$

3. Na 与 水 反应: 2 Na + 2 H₂O = 2 NaOH + H₂ ↑

现象: 「浮熔游响红」

钠的密度比水小,会浮在水面上;反应时,钠迅速熔化成小球(说明反应剧烈、大量放热、钠熔点偏

低);产生的氢气推动钠在水面上游动;发出响声;滴加酚酞后变红

4. Na 与 CuSO $_4$ 水溶液 反应: $\begin{cases} Frist. & 2\operatorname{Na} + 2\operatorname{H}_2\operatorname{O} = 2\operatorname{NaOH} + \operatorname{H}_2\uparrow \\ Second. & 2\operatorname{NaOH} + \operatorname{CuSO}_4 = \operatorname{Cu}(\operatorname{OH})_2\downarrow + \operatorname{Na}_2\operatorname{SO}_4 \end{cases}$

5. Na 与 乙醇 反应: $2 C_2 H_5 OH + 2 Na \longrightarrow 2 C_2 H_5 ONa + H_2 \uparrow$

现象: 钠沉于无水乙醇的底部(或因产生的氢气使得钠上下跳动),表面有气泡产生,慢慢消失; 放出的气体可在空气中安静地燃烧,火焰呈淡蓝色(H_2);烧杯壁上有水珠生成; 澄清石灰水未变浑浊(无 CO_2)

解释:由于烷基具有推电子作用($\overrightarrow{CH_3CH_2}$ -O-H),使得 O-H 键极性变弱,因此反应不会很剧烈

知识点

1.制取: 2 NaCl(熔融) ^{通电} 2 Na + Cl₂↑

2. 用途:钠、钾合金(液态)可用于原子反应堆的导热剂;冶炼某些金属(如钛金属);用作电光源,制作高压钠灯

3. 密度: $p(H_2O) > p(Na) > p(煤油)$ (密封保存,通常保存在石蜡油或煤油中)

4. 金属钠着火时用细沙覆盖灭火,不得使用水或二氧化碳灭火器

氧化钠与过氧化钠

	氧化钠 ()	过氧化钠 (
电子式	Na ⁺ [:Ö:] Na ⁺ (仅含有离子键)	Na ⁺ [:Ö:Ö:] ²⁻ Na ⁺ (含有离子键和非极性共价键)			
离子个数比4	${ m Na^+}:{ m O^{2-}}=2:1$	$\mathrm{Na^{+}:}\mathrm{O_{2}^{2-}}\mathrm{=2:1}$			
化合物类型1	离子化合物(碱性氧化物)	离子化合物(非碱性氧化物,为过氧化物)			

	氧化钠(Na ₂ O)	过氧化钠(Na ₂ O ₂)
颜色、状态	白色、固体	淡黄色、固体
主要性质	具有碱性氧化物的通性	具有强氧化性 ²
稳定性	不稳定,加热生成 $\mathrm{Na_2O_2}^{3}$	较稳定
与水反应	$\mathrm{Na_2O} + \mathrm{H_2O} = 2\mathrm{NaOH}$	$2\mathrm{Na_2}\mathrm{\overset{-1}{O}_2} + 2\mathrm{H_2O} \stackrel{2e^-}{=\!=\!=\!=} 4\mathrm{NaOH} + \overset{0}{\mathrm{O}_2} \overset{5}{\uparrow}$
与 CO ₂ 反应	$\mathrm{Na_2O} + \mathrm{CO_2} = \mathrm{Na_2CO_3}$	$2\operatorname{Na_2O_2}^{-1} + 2\operatorname{CO_2} \stackrel{2e^-}{=\!=\!=} 2\operatorname{Na_2CO_3} + \stackrel{0}{\operatorname{O}_2} \uparrow^5$
用途	制取烧碱	漂白剂、消毒剂、供氧剂

- 1. 碱性氧化物与酸反应生成盐和水: $Na_2O+2HCl=2NaCl+H_2O$ $(Na_2O_2$ 不是碱性氧化物: $2Na_2O_2+4HCl=4NaCl+2H_2O+O_2\uparrow$)
- 2. Na₂O₂ 具有强氧化性
 - Na_2O_2 加入品红溶液中,在水中生成 H_2O_2 ,利用其氧化性,使得品红溶液褪色
 - 如将其加入滴加酚酞的水中, Na_2O_2 会先变红,后褪色
 - 与 SO_2 反应: $Na_2O_2 + SO_2 \longrightarrow Na_2SO_4$
 - 投入 FeCl₂ 溶液中生成 Fe(OH)₃ 沉淀
 - 投入氢硫酸,氧化硫化氢成硫单质,溶液浑浊
 - 氧化 SO₃²⁻ 成 SO₄²⁻
- 3. Na $\xrightarrow{O_2}$ Na₂O $\xrightarrow{O_2}$ Na₂O₂ $\xrightarrow{H_2O}$ NaOH
- 4. 考点: $1 mol Na_2O + Na_2O_2$ 混合溶液的离子数为 $3N_A$
- 5. 考点: $\operatorname{Na_2O_2} + \operatorname{H_2O}(g) + \operatorname{CO_2}(g)$ 反应产生 $1 mol \ \operatorname{O_2}$, 即转移了 $2 mol \ e^-$
- 6. Na₂O₂ 与某水溶液反应与 Na 类似

例如: $\mathrm{NaHCO_3}$ 与 $\mathrm{Na_2O_2}$ 反应 $\left\{ egin{align*} Frist. & 2\,\mathrm{Na_2O_2} + 2\,\mathrm{H_2O} = 4\,\mathrm{NaOH} + \mathrm{O_2} \uparrow \\ Second. & \mathrm{NaOH} + \mathrm{NaHCO_3} = \mathrm{Na_2CO_3} + \mathrm{H_2O} \end{array}
ight.$

总方程式: 4 NaHCO₃ + 2 Na₂O₂ = 4 Na₂CO₃ + 2 H₂O + O₂ ↑

碳酸钠与碳酸氢钠

	碳酸钠(Na ₂ CO ₃)	碳酸氢钠(NaHCO ₃)				
俗名	纯碱、苏打	小苏打				
溶解度	易溶于水 $\qquad\qquad$ 在水中溶解度比 $\mathrm{Na_2CO_3}\ \mathrm{J}^1$					
热稳定性 ²	稳定,受热难分解	受热易分解: $2 \operatorname{NaHCO}_3 \stackrel{\Delta}{=\!\!=\!\!=} \operatorname{Na}_2 \operatorname{CO}_3 + \operatorname{CO}_2 \uparrow + \operatorname{H}_2 \operatorname{O}_3$				
与酸反应	$\mathrm{Na_{2}CO_{3}} \xrightarrow{\mathrm{H^{+}}} \mathrm{NaHCO_{3}^{-}} {>} [\mathrm{H^{+}}]\mathrm{CO_{2}} \uparrow^{3}$	$\mathrm{NaHCO_{3}^{-}}{>}[\mathrm{H^{+}]CO_{2}}\uparrow$				
与 CO ₂ 反应	$\mathrm{Na_{2}CO_{3}+CO_{2}\uparrow +H_{2}O_{2}=NaHCO_{3}}$	不反应4				
与 Ca(OH) ₂ 反应	$\mathrm{Ca^{2+}} + \mathrm{CO_3^{2-}} = \mathrm{CaCO_3} \downarrow$	NaHCO ₃ 少量: $\text{HCO}_3^- + \text{OH}^- + \text{Ca}^{2+} = \text{CaCO}_3 \downarrow + \text{H}_2\text{O}$ Ca(OH) ₂ 少量: $2 \text{HCO}_3^- + 2 \text{OH}^- + \text{Ca}^{2+} = \text{CaCO}_3 \downarrow + \text{CO}_3^{2-} + 2 \text{H}_2\text{O}$				
与 CaCl ₂ /BaCl ₂ 反 应	$\mathrm{Ca^{2+}} + \mathrm{CO_3^{2-}} = \mathrm{CaCO_3} \downarrow$	不沉淀				

- 1. 侯 氏 制 碱 法 中 , 向 饱 和 NaCl(aq) 中 依 次 通 入 NH₃ 和 CO₂ , 溶 液 中 存 在 NH₄⁺、Na⁺、Cl⁻、CO₃²⁻、HCO₃⁻,其中HCO₃最先析出,加热析出的NaHCO,得到Na₂CO₃
- 2. 实验: 比较碳酸钠与碳酸氢钠的热稳定性

碳酸钠在外层,温度高,碳酸氢钠在内层,温度低,II 的澄清石灰水变浑浊,证明碳酸钠的热稳定性更强

3. 实验:辨别 HCl 和 Na₂CO₃

互滴。如 HCl 逐滴滴入 Na_2CO_3 溶液中,开始时没有气泡,后来有;如 Na_2CO_3 逐滴滴入 HCl 溶液中,一开始就有气泡

4. 考点: 除去 CO₂ 中的 HCl

相互转化: Na₂CO₃ 加入NaOH/NaHCO₃(s)可用加热 NaHCO₃

除杂:

1. 固体 Na₂CO₃(NaHCO₃):加热至恒重

2. 水溶液 Na₂CO₃(NaHCO₃):加 NaOH

3. 水溶液 NaHCO₃(Na₂CO₃):加足量 CO₂

鉴别

物质 $\left\{ egin{array}{ll} % & \left\{ egin{array} {ll} % & \left\{ egin{array}{ll} % &$

焰色反应

物理反应,进行焰色反应应使用铂丝(镍丝、无锈铁丝)。把嵌在玻璃棒上的金属丝在稀盐酸里蘸洗后,放在酒精灯的火焰里灼烧,不同金属元素会使火焰变为各种颜色,这便是焰色反应。焰色反应的形成与原子光谱有关

离子	Li+	Na ⁺	K^+	Rb ⁺	Cs ⁺	Ca^{2+}	Cr^{2+}	Ba^{2+}	Cu^{2+}
焰色	红	黄	紫	紫红	紫红	橙红	洋红	黄绿	绿

1. 灼烧白色粉末,火焰呈黄色,证明原粉末中有 Na+ , 无 K+ (×)

解析:能证明有 Na^+ ,但无法确定是否有 K^+ ,因为 Na^+ 的黄光会遮盖 K^+ 的微弱紫光,因此必须透过蓝色钴玻璃过滤黄光,观察是否有紫光

2. 在火焰上灼烧搅拌过某无色溶液的玻璃棒,火焰出现黄色,说明溶液中含有 Na^+ (\times) 解析:不能用玻璃棒做焰色实验,因为玻璃棒中含有 Na_2SiO_3 ,其焰色会干扰实验