Einführung künstliche Intelligenz

Torben Friedrich Görner

Definition "Künstliche Intelligenz"

- Wir haben <u>keine</u> Definition für Intelligenz
- Häufig werden alle möglichen Buzzwords verwendet um Produkte zu bewerben (Maschinelles Lernen, Deep Learning)
 - Aber was steckt eigentlich dahinter ?
- Künstliche Intelligenz ist der Versuch bestimmte Entscheidungsstrukturen des Menschen nachzubilden
- John McCarthy definierte KI 1955 : Ziel der KI ist es Maschinen zu entwickeln, die sich so verhalten, als würden sie über Intelligenz verfügen

Starke KI vs schwache KI

Starke KI

- Übernimmt Aufgaben auf Augenhöhe mit menschlichen Fähigkeiten
- Ist allerdings noch Science Fiction

Schwache KI

- Kann nur konkrete Anwendungsfälle bearbeiten und lösen
 - o Beispiel: Schach-Computer, Bilder von Katzen erkennen ...

Starke KI vs schwache KI

- Teilgebiet der künstlichen Intelligenz
- Idee :
 - Lernen aus Beispielen
 - Lernen aus Erfahrungen
 - Ähnliches wie Menschen es tun
 - Ein Programm soll nicht explizit für ein
 Problem programmiert werden, sondern in der
 Lage sein auch neue Probleme lösen zu lernen

Überwachtes Lernen

- Füttern eines Lernalgorithmus mit Daten und dazugehörigen Ergebnissen
- Wir erstellen einen Datensatz mit Ergebnissen zum Lernen und einen Datensatz mit Ergebnissen zum Testen
- Was kann das Problem dabei sein, einen Algorithmus mit einem Datensatz an zu lernen?

Overfitting und Underfitting

- Hat der Algorithmus sich vielleicht zu sehr an die Trainingsdaten angepasst?
- Habe ich vielleicht zu kurz trainiert?

Überwachtes Lernen

Beispiel : Bilderkennung von Windkraftanlagen

Nicht Überwachtes Lernen

- Füttern de Lernalgorithmus mit Daten <u>ohne</u> ein bekanntes Ergebnis
- Merkmale und Muster müssen in den Daten selbst gefunden werden
- Anwendung : Wenn wir die Ergebnisse selbst nicht kennen und nur Rohdaten haben

Verstärktes Lernen

- Der Algorithmus erhält für seine Arbeit eine Belohnung oder eine Strafe
- Ziel des Algorithmus ist es seine Kosten niedrig zu halten oder seinen Gewinn zu maximieren
- Beispiel: Wir könnten eine KI mit diesem Verfahren auf die Strategiefindung für unsere Pilzsammler:inenn ansetzen.

<u>Anwendungsfelder</u>

- Gesichtserkennung
- Erkennung von Krankheiten
- Spam Filter
- Wetter Vorhersagen
- Finden von Schadsoftware
- Spracherkennung
- ...

Deep Learning

 Idee : Neuronale Netze bilden die Verknüpfung von Neuronen im menschlichen Gehirn nach

Deep Learning

Neuronale Netze

- Graphen aus Knoten mit Gewicht und Kanten
- Eingabe (blaue Knoten)
- Arbeitsschicht (rote Knoten)
- Ausgabe (grüne Knoten)
- Es kann viele Arbeitsschichten geben
- Verbindungen werden Synapsen genannt

Deep Learning

Und nun ein Quiz

- Ich stelle euch nun eine kleine Auswahl meiner Software-Projekte (Studium und Privat) vor.
- Alle Projekte kommen aus dem Feld der künstlichen Intelligenz
- Habe ich das Projekt mittels eines neuronalen Netzes gelöst oder nicht ?

Erkennung und Klassifizierung von Windkraftanlagen

Erkennung und Klassifizierung von Zähnen auf dem Schwert eines Segelfisches

Erkennung und Klassifizierung von Zähnen auf dem Schwert eines Segelfisches

Bergsteigeralgorithmus (suchen lokaler Maxima in einer CSV Datei)

DartZ - Darts Voice Counter

Tic Tac Toe mit Spracherkennung

Tic Tac Toe mit Spracherkennung

Verhaltensklassifikation von Fischen (Jagdverhalten)

Verhaltensklassifikation von Fischen (Jagdverhalten)

SAILFISH	approach	bill_use	prey_contact	open_mouth	ingest	leave
approach	0,007	0,507	0,007	0,023	0,007	0,444
bill_use	0,011	0,035	0,717	0,011	0,011	0,211
prey_contact	0,015	0,181	0,015	0,363	0,015	0,409
open_mouth	0,032	0,129	0,032	0,032	0,483	0,290
ingest	0,050	0,050	0,050	0,050	0,050	0,750
leave	0,166	0,166	0,166	0,166	0,166	0,166

MARLIN	approach	bill_use	prey_contact	open_mouth	ingest	leave
approach	0,007	0,174	0,015	0,373	0,023	0,404
bill_use	0,026	0,026	0,815	0,052	0,026	0,052
prey_contact	0,022	0,113	0,022	0,477	0,090	0,272
open_mouth	0,013	0,109	0,109	0,013	0,164	0,589
ingest	0,045	0,045	0,045	0,045	0,045	0,772
leave	0,166	0,166	0,166	0,166	0,166	0,166

