Examenul național de bacalaureat 2024 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\frac{1}{2} + \frac{1}{4}\right) \cdot \frac{4}{3} = \left(\frac{2}{4} + \frac{1}{4}\right) \cdot \frac{4}{3} =$	2p
	$=\frac{3}{4}\cdot\frac{4}{3}=1$	3р
2.	f(a) = 2a - 8, pentru orice număr real a	2p
	2a-8=0, de unde obținem $a=4$	3р
3.	3x-2=1, de unde obținem $3x=3$	3 p
	x=1, care convine	2p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	2p
	Numerele, din mulțimea A, care au suma cifrelor egală cu 2 sunt 11 și 20, deci sunt 2 cazuri	
	favorabile, de unde obținem $p = \frac{2}{10} = \frac{1}{5}$	3р
5.	$OA = \sqrt{3^2 + 4^2} = 5$	2p
	$AB = \sqrt{3^2 + 4^2} = 5$, deci $OA = AB$	3 p
6.	AM = 6	2p
	$CM = \sqrt{AC^2 + AM^2} = 10$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2) = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} = 1 \cdot 2 - 1 \cdot 2 =$	3p
	=2-2=0	2p
b)	$A(3) + 2I_2 = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ 1 & 5 \end{pmatrix} =$	3р
	$= \begin{pmatrix} 5-1 & 2 \\ 1 & 5 \end{pmatrix} = A(5)$	2p
c)	$A(x) + xI_2 = \begin{pmatrix} x - 1 & 2 \\ 1 & x \end{pmatrix} + \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} = \begin{pmatrix} 2x - 1 & 2 \\ 1 & 2x \end{pmatrix}$ şi $\det(A(x) + xI_2) = 4x^2 - 2x - 2$, pentru	3р
	orice număr real x	
	$4x^2 - 2x - 2 = 0$, de unde obținem $x = 1$ sau $x = -\frac{1}{2}$	2p
2.a)	$2 \circ 1 = 2 \cdot 2 + 2 \cdot 1 - 1 =$	3p
	=4+2-1=5	2p
b)	$x \circ (x+1) = 2x + 2(x+1) - 1 = 4x + 1$, pentru orice număr real x	3p
	4x+1=5, de unde obținem $x=1$	2p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

_				
	c)	$x \circ x = 4x - 1$, pentru orice număr real x	2p	
		$4x-1 = -4x^2 + 4x - 1 + 4x^2 = -(2x-1)^2 + 4x^2 \le 4x^2$, pentru orice număr real x	3p	

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = x' - 2 \cdot (\ln x)' =$	2p
	$=1-2\cdot\frac{1}{x}=\frac{x-2}{x},\ x\in(0,+\infty)$	3 p
b)	f(1)=1, f'(1)=-1	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = -x + 2$	3p
c)	$f'(x) = 0 \Leftrightarrow x = 2$; $f'(x) \le 0$, pentru orice $x \in (0,2] \Rightarrow f$ este descrescătoare pe $(0,2]$; $f'(x) \ge 0$, pentru orice $x \in [2,+\infty) \Rightarrow f$ este crescătoare pe $[2,+\infty)$	3p
	$f(2)=2-2\ln 2$, deci $2-2\ln 2 \le f(x)$, pentru orice $x \in (0,+\infty)$, de unde obținem $\ln\left(\frac{x}{2}\right) \le \frac{x-2}{2}$, pentru orice $x \in (0,+\infty)$	2p
2.a)	$\int_{0}^{3} \frac{1}{f(x)} dx = \int_{0}^{3} (x^{2} + 1) dx = \left(\frac{x^{3}}{3} + x\right) \Big _{0}^{3} =$	3p
	$=\frac{27}{3}+3=12$	2p
b)	$\int_{2}^{3} 2xf(x) dx = \int_{2}^{3} \frac{2x}{x^{2} + 1} dx = \int_{2}^{3} \frac{(x^{2} + 1)'}{x^{2} + 1} dx = \ln(x^{2} + 1) \Big _{2}^{3} =$	3 p
	$= \ln 10 - \ln 5 = \ln 2$	2p
c)	$\left \int_{1}^{2} \frac{e^{x}}{f(x)} dx = \int_{1}^{2} e^{x} (x^{2} + 1) dx = e^{x} (x^{2} + 1) \left \int_{1}^{2} -\int_{1}^{2} 2x e^{x} dx = 5e^{2} - 2e - (2xe^{x} - 2e^{x}) \right ^{2} = 3e^{2} - 2e$	3 p
	e(3e-2) = e(ae-a+1), de unde obţinem $a=3$	2p