Exam questions

10893, Rasmus Bækgaard

Nov. 22th, 2013

${\bf Contents}$

1	1.1 Subset	2 3
2	Logic	4
3	Proofs techniques	5
4	Direct and contrapositive proof techniques 4.1 Her mangler	7
5	Counterexamples and contradictive proof techniques	8
6	Induction proof techniques	9
7	Functions	11
8	Relations	12

1 Set

Symbols

- N natural number (positive integers)
- \mathbb{Z} integers whole numbers.
- \mathbb{Q} rational numbers $\frac{m}{n}$ where $m, n \in \mathbb{Z}$
- \mathbb{I} irrational numbers like $\sqrt{2}, \pi$
- \mathbb{R} real numbers Everything with and without comma.
- \mathbb{C} complex numbers $a + b \cdot i$
- \emptyset Empty set nothing

Disposition

- Symbols
- Sets/subsets
- Powersets
- Set operations

Cardinal number / cardinality

The amount of elements in a set:

$$|S| = \{2, -3, \emptyset\} = 3$$

1.1 Subset

Basic

- A set within a set: $S = \{a, b, c\}, T = \{a, b\}, U = \{a, b, c\}, V = \{c\}$
- Can be written as $T \subseteq S$
 - Pronounced: "T is a proper subset of S".
- Can be written as $S \subseteq U$
 - Pronounced: "S is a subset of U".
- If a set is not in another set it's written as $T \not\subseteq V$

Intervals

- Open, $(a, b) = \{x \in \mathbb{R} : a < x < b\}$
- Closed, $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$
- Half open (bottom closed), $[a, b) = \{x \in \mathbb{R} : a \le x < b\}$
- Half closed (top closed), $(a, b] = \{x \in \mathbb{R} : a < x \le b\}$

Power set

• A combination of all elements as **subsets**:

$$A = \emptyset, B = \{a, b\}, C = \{1, 2, 3\}$$

- $\mathcal{P}(A) = \{\emptyset\}$
- $\mathcal{P}(B) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
- $\bullet \ \mathcal{P}(C) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- Cardinality: $|\mathcal{P}(A)| = 2^{|A|}$
- $\mathcal{P}(set) = \{subset : subset \subseteq set\}$

1.2 Set operations

Union

- Means "in total"
- Written as $A \cup B$
- \bullet $\mathrm{SQL} \colon \mathtt{SELECT}$ A, B IN Sets

Intersection

- Means "in common"
- Written as $A \cap B$
- If nothing is in common it's called **disjoint** and written $A \cap B = \emptyset$
- Can be written as $A \cap B = \{x \in A \lor x \in B : x \in A \land x \in B\}$

• SQL:

SELECT A, B
FROM SetA
INNER JOIN SetB
ON A.a = b.a

Difference

- Means "What does A have which B does not"
- Written as A B
- Can also be written as $A \setminus B$
- SQL:

SELECT A, B FROM SetA INNER JOIN SetB ON A.a = b.a

2 Logic

Basic

- True or false
- Truth table
- Open sentence 1 or more variables, x, y in a domain
- Open sentence over the domain P(x)
 - $-P(x): x+1 \ge 1$ is over the domain \mathbb{Z} (integers)
- Negation means "not"

Disposition

- Basic
- Dis- and con-junction: \vee, \wedge
- Implies and biconditional: $\Rightarrow \& \Leftrightarrow$
- Logical equivalence:
- De Morgan's laws
- Quantifiers: ∀,∃

Disjunctions and conjunctions

- **Disjunction** "or", written as $P \vee Q$. Any of them true?
 - Exclusive or xor
- Conjunction "and", written as $P \wedge Q$. "Are both true?"

Implies and biconditional

- $P \Rightarrow Q$ politician logic.
- P is also called a hypothesis / premesis
- ullet Q is the **conclusion**
- $Q \Rightarrow P$ is a **converse**
- Biconditional, written as $P \Leftrightarrow Q$ and said "P is equivalent to Q" or "If and only if"

Ρ	Q	$P \Rightarrow Q$
\overline{T}	Τ	T
${ m T}$	\mathbf{F}	F
\mathbf{F}	\mathbf{T}	T
\mathbf{F}	\mathbf{F}	T

Logical equivalence and fundamental properties

- $P \lor Q \equiv Q \lor P$ (Commutative law)
- $P \vee (Q \vee R) \equiv (P \vee Q \vee R)$ (Associative law)
- $P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$ (Distributive law)

De Morgan's laws

- Proof by truth table
- $\neg (P \lor Q) \equiv (\neg P) \land (\neg Q)$
- $\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$

- $\begin{array}{c|cccc} P & Q & \neg(P \land Q) & (\neg P) \lor (\neg Q) \end{array}$

Quantifiers

- Universal quantifier $\forall \forall x \in \mathbb{N}, x \geq 0$
- Existential quantifier $-\exists -\exists x \in \mathbb{N}, x < 2$
- Can be written as: $\exists x \in \mathbb{Z}, P(x)$, where $P(x): x^2 < 1$

3 Proofs techniques

Basic

- **Axiom** statement whose truth is accepted without proof.
- **Theorem** statement which can be verified.
- Corollary a consequence of some earlier result and to be deduced from.
- Lemma –a result used as help for another statement.

Disposition

- Basic
- Conjecture
- Trivial proof
- Vacuous proof
- Direct proof
- Indirect / contrapositive
- Proof by cases

Conjecture

• A conjecture is something we **believe to be** 1 = 1, **true**, normally based on examples. 1 + 2 =

1+2=3,1+2+3=6.

Conjecture: $1 + ... + n = \sum_{k=1}^{n} n = \frac{n(n+1)}{2}$

Trivial proof

- Something that is true no need to prove it.
- Let $n \in \mathbb{Z}$. If $n^3 > 0$ then 3 is odd

Vacuous proof

- If something is always proven wrong:
- Let $n \in \mathbb{Z}$. If **3** is even, then $n^3 > 0$ Clearly wrong!

Direct proof

• Show only what needs to be shown

• $\forall x \in S, P(x) \Rightarrow Q(x)$

Show only that this is true also when Q is false.

• Is shown from lemmas and other proofs.

 $\begin{array}{c|ccc} P & Q & P \Rightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \\ \end{array}$

Indirect proof / proof by contrapositive

• Reverse the result and means.

• Let $x \in S$. If Q(x), then $P(x) \Rightarrow$

Let $x \in S$. If $\neg Q(x)$, then $\neg P(x)$

Politician	statement
r omucian	statement

 $\begin{array}{c|ccc} P & Q & \neg P \Rightarrow \neg Q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$

Proof by cases

- Do subcases and show they span the result.
- Case 1: n is even (U). Case 2: n is odd (L). $\mathbb{Z} = U \cup L$
- Case 1: $n \geq 0$ (U). Case 2: n < 0 (L). $\mathbb{Z} = U \cup L$

${\bf Contradiction}$

$$P \Rightarrow \neg Q$$

"Assume there's no smallest number" – flip it:

"Assume there's a smallest number called r – what about $0 < \frac{r}{2} < r$ "

Induction

- Base case P(1), assuming P(k) sticks
- Induction, P(k+1)

Counter example

$$P(k) \not\Rightarrow Q$$

$$\forall x \in \mathbb{N}, n > 2 \to n = 1 \not > 2$$

4 Direct and contrapositive proof techniques

Basic

- Axiom statement whose truth is accepted without proof.
- **Theorem** statement which can be verified.
- Corollary a consequence of some earlier result and to be deduced from.
- Lemma –a result used as help for another statement.

Disposition

- Basic
- Deduction
- Direct proof
- Counter example

Direct proof

- Show only what needs to be shown
- $\forall x \in S, P(x) \Rightarrow Q(x)$

Show only that this is true also when Q is false.

• Is shown from lemmas and other proofs.

Polit	iciar	statement
Ρ	Q	$P \Rightarrow Q$
Т	Τ	T
${\rm T}$	\mathbf{F}	F
\mathbf{F}	Τ	${ m T}$
\mathbf{F}	\mathbf{F}	${ m T}$

Deduction

- given P show Q
 - Direct proof $P \Rightarrow Q$
 - Proof by cases $P(1) \Rightarrow Q, P(2) \Rightarrow Q$
 - Proof by contrapositive $\neg Q \Rightarrow \neg P$

Indirect proof / proof by contrapositive

- Reverse the result and means.
- Let $x \in S$. If Q(x), then $P(x) \Rightarrow$

Let $x \in S$. If $\neg Q(x)$, then $\neg P(x)$

Politician statement				
Ρ	Q	$\neg P \Rightarrow \neg Q$		
Т	Τ	T		
\mathbf{T}	\mathbf{F}	\mathbf{F}		
\mathbf{F}	Τ	${ m T}$		
F	\mathbf{F}	${ m T}$		

4.1 Her mangler

5 Counterexamples and contradictive proof techniques

Counterexample

- A counterexample is **one case** that proves a statement **wrong**
- $$\begin{split} \bullet & \text{ Example} \\ & \forall x \in \mathbb{N}, x < x^2 \\ & x = 1 \Leftrightarrow 1 < 1^2 \Leftrightarrow 1 \not< 1 \end{split}$$

Disposition

- Counterexample
- Contradiction
- Existence proof
- Existence disproof

Proof by contradiction

• A contradiction, $\neg Q$, is assumed to be false so that Q is true.

$$(P \Rightarrow Q) = true \text{ becomes } (P \Rightarrow \neg Q) = false$$

$$(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$$

• Example:

Let $x, y \in \mathbb{R}^+$. Use a proof by contradiction to prove that if x < y then $\sqrt{x} < \sqrt{y}$

Lets rewrite the statement:

$$\forall x, y \in \mathbb{R}^+, P \Rightarrow Q \qquad \qquad P = x < y \text{ and } Q = \sqrt{x} < \sqrt{y}$$
 (1)

$$\exists x, y \in \mathbb{R}^+, P \Rightarrow \neg Q \tag{2}$$

$$\neg Q = \neg(\sqrt{x} < \sqrt{y}) \tag{3}$$

$$\neg \sqrt{x} < \neg \sqrt{y} \tag{4}$$

$$\sqrt{x} \ge \sqrt{y}$$
 Remove negation (5)

$$x \ge y$$
 Square both sides (6)

Since x < y and $x \ge y$ is clearly not the same, the statement is proven.

Existence proofs

There are two kinds:

• Witness: A single example

Example: $\exists x \in \mathbb{R}, x > 0$ and pick x = 1

• General/abstract:

Example: $\exists p \in \text{room}, \forall p' \in \text{room}, \text{Hairlenght}(p) \geq \text{Hairlenght}(p')$

Someone in the room has longer or equal long hair than everyone else - remember more than 1 in room.

Existence Disproofs

- Just like a contradiction, but for existential it's a property that never holds:
- $\neg (\exists x \in S, R(x)) \equiv \forall x \in S, \neg R(x)$

6 Induction proof techniques

Well-ordered

- Nonempty subset with a least element
 - The smallest element in a subset of a set.
 - If all numbers in the set can be listed, you can find a least element
 - If you do not have, $x \in \mathbb{Q}, x < 0$ can have a subset (0, 10] and that has no listed minimum.

Disposition

- Well-ordered
- Basic
- Induction hypothesis
- Strong induction
- Minimum counterexample

Basic

- Proves a statement P(n) holds for P(n+1).
- Make base step: p(1) is true

This is also called **the induction hypothesis**.

- Make induction step: $\forall k \in \mathbb{N}, P(k) \Rightarrow P(k+1)$ is true.
- Make conclusion: P(n) is true for all natural numbers, n.

Induction hypothesis

- Induction step is $P(k) \Rightarrow P(k+1)$
- Remember to depend on P(k)
- Without this no induction
 - $-\forall n \in \mathbb{Z}^+, 2^n \geq n$ (For every nonnegative integer n...)
 - Base step: n = 0 is true since $2^0 > 0$. Assume $2^k > k$ gives the same.
 - Induction Step: $2^{k+1} = k+1$. When k = 0, we have $2^{0+1} = 2 > 0+1 = 1$. Assume $k \ge 1$.
 - Then $2^{k+1} = 2 \cdot 2^k > 2k = k + k \ge k + 1$.

Strong induction

- We don't have to start at 1 or natural numbers.
- We have a base (proved elsewhere), a gap where some example should be, and a prior, k which will imply k + 1.
- Base set: $\forall n \in \mathbb{N}, P(n)$ where $n \geq 10$. This gives us P(10) as base case.
- Induction step: If P(i) for every integer i with $10 \le i \le k$, then P(k+1) is true for every positive integer k above or equal to 10.
 - Not just P(10) and P(k) but also all in between: P(i), P(i+1), P(i+2)...
- Conclusion: P(k+1) is true.

${\bf Minimum\ counterexample}$

- $\bullet\,$ Assume a statement is false.
- $\bullet\,$ Make it a contradiction, showing it is ${\bf not}$ false.
- A way of getting more information for the proof.

7 Functions

Basic

- $f: A \to B$ "Function f from A to B"
- Domain: dom(f) Entire input
- Codomain: codom(f) Entire output
- Image and map: b = f(a) b is the image and f maps a into b.
- Inverse image: $b = f(a) a \underline{\text{can}}$ be the output, but not necessarily.
- Range: range(f) What is output (not all)
- Onto: range(f) = codom(f)
- One-to-one: Every element n the target is only hit once

- Disposition
- Basic
- Onto and one-to-one
- Identity function
- Composition
- Inverse function

Onto and one-to-one

- Onto or surjective: Multiple f(x) gives f(y)
- One-one or **injective**: Straight over.
- One-one is also called **bijective** or **one-to-one correspondence** if it is both one-to-one and onto (If range and codomain is equal)

Identity function

- \bullet If R is equivalence relation it's, reflective, symmetric and transitive
- If the function is $A \to A$ it's called **Identity**.
- this means $R : \{(a, a), (b, b), (c, c) \dots\}$
 - This is only used *once* on each side

Composition

- $A \to f \to B \to g \to C$
- $(g \circ f)(x) : A \to C$
- $(g \circ f)(x) = g(f(x)) \forall a \in A$

Inverse function

- A set with pairs where the pairs are inverted.
- $\begin{array}{l} \bullet \ \ R = \{(a,1),(b,2)\} \\ R^{-1} = \{(1,a),(2,b)\} \end{array}$
- $R^{-1} = \{(b, a) : (a, b) \in R\}$

8 Relations

Basic

• R is a **relation** from A to B: $R \subseteq A \times B$

$$-A = \{x, y, z\}, B = \{1, 2\}$$
$$R = \{(x, 2), (y, 1), (y, 2)\}$$

- If $(a, b) \in R$ then a is **related** to b
- **Domain**: R dom(R) is the subset of A

$$- dom(R) = \{ a \in A : (a, b) \in R \text{ for some } b \in B \}$$

• Range: R - range(R) is a subset of B.

$$-\ range(R) = \{b \in B : (a,b) \in R \text{ for some } a \in A\}$$

• Inverse relation: $R = R^{-1}$

$$- R^{-1} = \{(b, a) : (a, b) \in R\}$$

- Example:
$$R = \{(x,2),(y,1),(y,2)\} \rightarrow R^{-1} = \{(2,x),(1,y),(2,y)\}$$

 • Relation on a set: If $A=\{1,2\}$ then $A\times A=\{(1,1),(1,2),(2,1),(2,2)\}$

Disposition

- Basic
- Reflection
- Symmetric
- Transitive
- Distance
- Equivalence relation and -class
- Congruence modulon

Reflection

• Reflection: $\forall x, a \in A : xRa \Rightarrow aRx$

Symmetric

• Symmetric: $\forall x, y \in A, xRy \Rightarrow yRx$

Transitive

- Transitive: $\forall x, y, z \in A, xRy \land yRz \Rightarrow xRz$
 - $-A = \{1\}$ is also transitive, since (1,1) and (1,1) you can go to (1,1).

Distance

• The distance between two numbers: |a-b| is the numeric value.

Equivalence-relation and -class

- A relation is equivalence when reflexive, symmetric and transitive is all applied.
- \bullet Write up R and write a class as

$$[a] = \{x \in A : xRa\}$$

Example:
$$[a] = \{a, b\}$$

• If a set has already been described, it is written:

$$[b] = [a]$$

$$[c] = \{c\}$$

Congruence Modulon

- $\bullet\,$ Like modulus with modifications
- For a, b where $n \geq 2$, a is **congruent to** b **modulo** n.

Example: $24 \equiv 6 \pmod{9}$

$$\{0, 9, 18\} + 6 = 24$$

Example: