CS738: Advanced Compiler Optimizations

The Untyped Lambda Calculus

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

Reference Book

Types and Programming Languages by Benjamin C. Pierce

The Abstract Syntax

t := x - Variable $\begin{vmatrix} \lambda x.t & - \text{Abstraction} \\ t t & - \text{Application} \end{vmatrix}$

Parenthesis, (...), can be used for grouping and scoping.

Conventions

- $\lambda x.t_1t_2t_3$ is an abbreviation for $\lambda x.(t_1t_2t_3)$, i.e., the scope of x is as far to the right as possible until it is
 - terminated by a) whose matching (occurs to the left pf λ , OR
 - terminated by the end of the term.
- Applications associate to the left: t₁t₂t₃ to be read as (t₁t₂)t₃ and not as t₁(t₂t₃)
- \blacktriangleright λxyz .t is an abbreviation for $\lambda x \lambda y \lambda z$.t which in turn is abbreviation for $\lambda x.(\lambda y.(\lambda z.t))$.

α -renaming

- ► The name of a bound variable has no meaning except for its use to identify the bounding λ .
- ▶ Renaming a λ variable, including all its bound occurrences, does not change the meaning of an expression. For example, $\lambda x.x$ x y is equivalent to $\lambda u.u$ y
 - ▶ But it is not same as $\lambda x.x \times w$
 - Can not change free variables!

β -reduction (Execution Semantics)

- if an abstraction $\lambda x.t_1$ is applied to a term t_2 then the result of the application is
 - ▶ the body of the abstraction t_1 with all free occurrences of the formal parameter x replaced with t_2 .
- ► For example,

$$(\lambda f \lambda x. f(f x)) g \xrightarrow{\beta} \lambda x. g(g x)$$

Caution

- ▶ During β -reduction, make sure a free variable is not captured inadvertently.
- ► The following reduction is **WRONG**

$$(\lambda x \lambda y.x)(\lambda x.y) \xrightarrow{\beta} \lambda y.\lambda x.y$$

• Use α -renaming to avoid variable capture

$$(\lambda x \lambda y.x)(\lambda x.y) \xrightarrow{\alpha} (\lambda u \lambda v.u)(\lambda x.y) \xrightarrow{\beta} \lambda v.\lambda x.y$$

Exercise

- \triangleright Apply β -reduction as far as possible
- 1. $(\lambda x y z. x z (y z)) (\lambda x y. x) (\lambda y. y)$
- 2. $(\lambda x. x x)(\lambda x. x x)$
- 3. $(\lambda x \ y \ z . \ x \ z \ (y \ z)) \ (\lambda x \ y . \ x) \ ((\lambda x . \ x \ x)(\lambda x . \ x \ x))$

Church-Rosser Theorem

- ▶ Multiple ways to apply β -reduction
- Some may not terminate
- ► However, if two different reduction sequences terminate then they always terminate in the same term
 - ► Also called the *Diamond Property*
- Leftmost, outermost reduction will find the normal form if it exists

Programming in λ Calculus

- ▶ Where is the other stuff?
- ► Constants?
 - Numbers
 - Booleans
- ▶ Complex Types?
 - Lists
 - Arrays
- ▶ Don't we need data?

Abstractions act as functions as well as data!

Numbers: Church Numerals

- ▶ We need a "Zero"
 - "Absence of item"
- And something to count
 - "Presence of item"
- ► Intuition: Whiteboard and Marker
 - ► Blank board represents Zero
 - Each mark by marker represents a count.
 - ► However, other pairs of objects will work as well
- Lets translate this intuition into λ -expressions

Numbers

- \triangleright Zero = $\lambda m w. w$
 - No mark on the whiteboard
- ▶ One = $\lambda m w$. m w
 - One mark on the whiteboard
- ► Two = $\lambda m w \cdot m (m w)$
- **...**
- What about operations?
 - add, multiply, subtract, divide, . . . ?

Operations on Numbers

- ▶ $succ = \lambda x \ m \ w. \ m \ (x \ m \ w)$
 - ► Verify: succ N = N + 1
- ightharpoonup add = $\lambda x y m w. x m (y m w)$
 - ► Verify: add M N = M + N
- ► mult = $\lambda x y m w. x (y m) w$
 - ► Verify: mult M N = M * N

More Operations

- ▶ pred = λx m w. x (λg h. h (g m))(λu . w)(λu . u)
 - ► Verify: pred N = N 1
- ▶ nminus = λx y. y pred x
 - ► Verify: nminus M N = max(0, M N) natural subtraction

Church Booleans

- ▶ True and False
- Intuition: Selection of one out of two (complementary) choices
- ► True = $\lambda x y$. x
- False = $\lambda x y$. y
- Predicate:
 - ▶ isZero = λx . x (λu .False) True

Operations on Booleans

► Logical operations

and =
$$\lambda p q. p q p$$

or = $\lambda p q. p p q$
not = $\lambda p t f. p f t$

- ► The conditional operator *if*
 - ightharpoonup if c e_t reduces to e_t if c is True, and to e_t if c is False

$$if = \lambda c e_t e_t (c e_t e_t)$$

More...

- ► More such types can be found at https://en.wikipedia.org/wiki/Church_encoding
- ► It is fun to come up with your own definitions for constants and operations over different types
- or to develop understanding for existing definitions.

We are missing something!!

- ► The machinery described so far does not allow us to define Recursive functions
 - ► Factorial, Fibonacci, ...
- ► There is no concept of "named" functions
 - So no way to refer to a function "recursively"!
- ► Fix-point computation comes to rescue

Fix-point and *Y*-combinator

- A fix-point of a function f is a value p such that f p = p
- Assume existence of a magic expression, called Y-combinator, that when applied to a λ -expression, gives its fixed point

$$Y f = f (Y f)$$

 Y-combinator gives us a way to apply a function recursively

Recursion Example: Factorial

fact
$$= \lambda n$$
. if (isZero n) One (mult n (fact (pred n)))
 $= (\lambda f \ n$. if (isZero n) One (mult n (f (pred n)))) fact
fact $= g$ fact

fact is a fixed point of the function

$$g = (\lambda f \ n. \ if \ (isZero \ n)One \ (mult \ n \ (f \ (pred \ n))))$$

Using Y-combinator,

$$fact = Yg$$

Factorial: Verify

```
fact 2 = (Y g) 2

= g(Y g) 2 - by definition of Y-combinator

= (\lambda fn. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2

= (\lambda n. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2

= if (isZero 2) 1 (mult 2 ((Y g)(pred2)))

= (mult 2 ((Y g) 1))

...

= (mult 2 (mult 1 (if (isZero 0) 1 (...))))

= (mult 2 (mult 1 1))

= 2
```

Recursion and Y-combinator

- Y-combinator allows to unroll the body of loop once—similar to one unfolding of recursive call
- ► Sequence of *Y*-combinator applications allow complete unfolding of recursive calls

BUT, what about the existence of *Y*-combinator?

Y-combinators

Many candidates exist

$$Y_1 = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

 $Y = \lambda abcdefghijkImnopqstuvwxwzr.r(thisisafixedpointcombinator)$

$$Y_{funny} = TTTTT TTTTT TTTTT TTTTT TTTTT T$$

▶ Verify that (Y f) = f (Y f) for each

Summary

- ▶ A cursory look at λ -calculus
- ► Functions are data, and Data are functions!
- Not covered but important to know: The power of λ calculus is equivalent to that of Turing Machine ("Church Turing Thesis")