中国科学技术大学

第二十二届 RoboGame 机器人大赛报名表

院系	院系物理学院		学院	专业		物理学			
参赛内容 🖾 🗷		 :壶机器人			□变形机器人				
队伍名	名称	啊墩地	敦队	指导	姓	名		叶回春	老师签字
				老师信息		电子邮箱		uichun@ustc.edu.cn	叶回春
					参赛队信	言息			
职务		姓名	学与	<u>1</u> ,	手	机		学校邮箱	备注
队长	人长 王艺迪		PB2002	0512	151013	32839	0	yidi0820@mail .ustc.edu.cn	机器人整体 设计与组装
队员	队员 王乐泉		PB2002	0536	155393	33707	2	wlq253083547 0@mail.ustc.ed u.cn	电路设计与单片机设计
队员	员 唐皓		PB2002	0535	139073	34504'	7	th1051@mail.u stc.edu.cn	机械设计与 视觉模块设计
队员	队员 谢子晗		PB2002	0540	189212	205018	8	xzh1006@mail. ustc.edu.cn	机械设计与 电路硬件加 工
队员 岳祝成		PB2002	0516	152124		4	yz201274@mai l.ustc.edu.cn	配件选型与 电路焊接	

参赛承诺:

我们保证以本承诺为有约束力的协议,遵守中国科学技术大学第二十二届 RoboGame 组委会的有关规定, 认真进行机器人的设计制作等工作,就比赛相关问题积极与组委会交流,服从组委会的活动安排与最终裁判。

对于由本队引发的一切不良后果由本队承担相应责任。

所有参赛队员(签字): 王艺迪 玉礼成 麻醉 谢姆

备注:

- 1、请各参赛队负责填写此表格,电子版发送给 robogame@163.com。
- 2、每队参赛人员人数需在5名以内;
- 3、队员电子版签字用签名照片;电子版指导教师签名经过教师同意后输入姓名即可。
- 4、本次活动最终解释权归中国科学技术大学 RoboGame2022 组委会所有。

中国科学技术大学 RoboGame2022 机器人大赛组委会

2022年4月9日

参赛计划书

队伍名称:	啊墩墩队
系别(全称+代号):	物理学院 (203) 、信息学院 (210)
类别:	
☑冰壶机器人	
□变形机器人	

说明

- 1. 请参赛队伍在上方勾选自己的参赛类别。
- 2. 请参赛队伍在完成计划书撰写,并文档中的批注删除,导出 pdf 文件提交。

承诺书

组委会承诺:

我们组委会保证及时解决各参赛队就比赛相关问题提出的疑问,为各参赛队的制作计划 等保密,公正处理机器人比赛相关事务,选拔优秀成员担任比赛裁判,保证裁判的公正。

2022RoboGame 组委会

2022年4月9日

参赛者承诺:

我们队承诺对本人填写的各项内容保证是本队的原创,没有抄袭他人。

我们保证以本承诺为有约束力的协议,遵守中国科学技术大学第二十二届 RoboGame 组委会的有关规定,认真进行机器人的设计制作等工作,就比赛相关问题积极与组委会交流,服从组委会的活动安排与最终裁判。

对于由本队引发的一切不良后果由本队承担相应责任。

参赛队员(签字): 王艺迪 王乐泉 谢子晗 唐皓 岳祝成

中国科学技术大学

中国科学技术大学 RoboGame 2022

啊墩墩队

参赛计划书

小组成员: 王艺迪 王乐泉 唐皓 谢子晗 岳祝成

学科专业: 物理学院 信息学院

指导教师: 叶回春

完成时间: 2022 年 5 月 10 日

目录

1.	队任	五简介	5
	1.1	队名介绍	5
	1.2	成员介绍与分工	5
2.	机机	戒部分	6
	2.1	基本功能	6
	2.2	整车功能实现概述	6
	2.3	模块设计与选型	7
		2.3.1 底盘结构	7
		2.3.2 取壶结构	8
		2.3.3 发射结构	9
3.	电路	格部分	12
	3.1	电路框图	12
		机器人的总控制电路框图如图 3.1.1 所示。	12
	3.2	供电系统	13
		3.2.1 电源	13
		3.2.2 分电方案	14
		3.2.3 稳压方案	15
	3.3	主控模块	15
	3.4	执行系统	17
		3.4.1 电机及驱动	17
		3.4.2 巡线模块	18
4.	算剂	生部分	22
	4.1	主控程序设计方案	22
		4.1.1 流程规划	22
		4.1.2 控制算法	23
		P (Proportion)表示比例,就是输入偏差乘以一个系数(提高响应速度);	23
		I (Integration)表示积分,就是对输入偏差进行积分运算(减少误差);	23
	4.2	视觉方案	24
		4.3 比赛流程模拟	25
		4.3.1 启动及巡线	25
		4.3.2 识别己方冰壶	25
		4.3.3 取 1 号己方壶并发射	26
		4.3.4 取 2 号己方壶并发射	26

_		
	4.3.5 取 3 号、4 号己方壶并发射	27
	4.3.6 比赛结束	28
5.	5. 经费预算	29
6.	6. 时间安排	30

1. 队伍简介

1.1 队名介绍

提到冰壶比赛, 我们联想到了北京冬奥会上憨态可掬的冰墩墩, 认为在队名中融入冬奥 元素会给我们的比赛带来好运。我们化用谐音"啊对对对",不是向困难投降、对 deadline 躺平,而是表达一种灵感迸发时的激动,百折千回后的欣喜。

我们当然希望在总决赛中一"墩"到底,一战成名,但更希望享受过程、克服险阻、不 留遗憾!

1.2 成员介绍与分工

姓名	学号	负责工作
王艺迪	PB20020512	整体设计与机械加工组装
王乐泉	PB20020536	电路设计、程序设计调试
唐皓	PB20020535	机械结构设计、视觉处理
谢子晗	PB20020540	机械结构设计、电路结构优化
岳祝成	PB20020516	部件选型、机械组装与调试

2. 机械部分

2.1 基本功能

完成比赛需要机器人自主实现以下功能:移动(启动与暂停;行驶与原地转向)、巡线(全 程)、识别冰壶、抓取冰壶、发射冰壶;初步方案的最终效果图以及机器人三视图如图 2.1 所 示。

图 2.1 整车渲染图及三视图

2.2 整车功能实现概述

经组内详细讨论, 初步实现方案简述为:

- ▶ 移动: 使用 4 个对称分布的麦克纳姆轮驱动小车完成前进、后退与原地转向;
- ▶ 巡线: 利用红外循迹方式全程循迹, 通过姿态、角度传感器等调整循迹姿态;
- **冰壶识别**: 车体前端安装扫码器识别己方冰壶, 规避敌方冰壶;
- ▶ **冰壶抓取**: 通过自行设计的机械结构抓取和承载冰壶; 小车前端的 X 形升降台实现取壶

装置的升降以分别抓取低级壶和高级壶;

▶ 冰壶发射: 通过弹簧实现冰壶发射,借以电机、离合器与传动装置及相应传感器控制弹 簧的压缩和释放。

2.3 模块设计与选型

2.3.1 底盘结构

2.3.1.1 轮组

单个轮组由 1*麦克纳姆轮 (100mm 直径)、1*胀紧套、1*电机座和 1*带编码器的减速电 机组成,通过减速电机驱动麦克纳姆轮,渲染图如 2.3.1 所示。

图 2.3.1 轮组渲染图

2.3.1.2 底板

底板由 1*中碳板(520mm×430mm)、2*前后碳板(380mm×90mm)、2*铝型材(630mm ×20mm×20mm)、4*铝型材(170mm) 和 1*铝型材(400mm)。630mm 铝型材用于连接前后 中碳板, 其他铝型材用于稳固碳板。底板渲染图如图 2.3.2 所示。

图 2.3.2 底板渲染图

2.3.2 取売结构

2.3.2.1 升降装置

升降装置由 1*X 形升降台、1*电机、2*齿轮(套齿、实心齿)等零件组成,如图 2.3.3 所 示。套齿(图中下)套在原手动旋钮上,实心齿(图中上)用于电机和套齿间的传动。通过电机驱 动、齿轮传动将手动升降台改造成一个可控升降高度的电动升降台。

图 2.3.3(a) 升降台处于高位

图 2.3.3(b) 升降台处于低位

2.3.2.2 取売装置

抓取装置由 2*抓手、1*导轨、2*滑块、2*短矩形片(连接长矩形片和滑块)、1*长矩形片(连 接推杆和短矩形片)、1*推杆(图中与电机相连的黄色装置)等零件组成。通过控制推杆的行 程可以实现抓手在 20⁰到 90⁰之间的角度控制。图 2.3.4(a)、2.3.4(b) 分别是抓手打开和闭合 状态的渲染图, 取壶场景如图 2.3.5(a)、图 2.3.5(b)所示。

图 2.3.4(a) 抓手打开, 准备取壶

图 2.3.4(b) 抓手闭合, 取壶完成

图 2.3.5(a) 准备取壶时的机器人姿态

图 2.3.5(b) 取壶完成时的机器人姿态

2.3.3 发射结构

发射装置由 1*弹簧、1*推手杆、1*滑轮、1*绕线轮、2*传动轴、1*离合器、1*尼龙绳和 1*电机组成,如图 2.3.6 所示。具体发射结构如图 2.3.7(a)、图 2.3.7(b)所示。

图 2.3.6 发射装置仰视图

图 2.3.7(a) 发射装置侧视图 (压缩状态)

图 2.3.7(b) 发射装置侧视图 (弹出状态)

发射装置分为上下两部分,上部位于底板上方,由传动轴(两根)、绕线轮、离合器及 电机组成。绕线轮用于收绞尼龙绳;离合器作为传导动力的机械开关,用于实现弹簧的压缩、 自由释放与再压缩。下部由弹簧、推手、定滑轮及一大一小两圆筒组成。弹簧提供发射冰壶 所需的推力; 弧形推手与冰壶表面契合以减少冰壶在推动过程中可能产生的晃动, 同时确保 施力均匀;大小圆筒位于弹簧内部,起到准直支撑作用;定滑轮可以改变尼龙绳的走向,节 约车体长度。

发射壶的场景渲染如图 2.3.8(a)、图 2.3.8(b)所示。待发射状态时弹簧已压缩至一定长度 (由相应算法控制), 通过传感器保证发射全程推手与冰壶保持接触。

图 2.3.8(a) 待发射时的机器人姿态

图 2.3.8(b) 发射冰壶时的机器人姿态

3. 电路部分

3.1 电路框图

机器人的总控制电路框图如图 3.1.1 所示。

图 3.1.1 总控制电路框图

【驱动模块】

驱动模块负责控制 4 台直流减速电机,从而对麦克纳姆轮的运动进行精确控制。编码器 可以将轮系的运动信息反馈给单片机、让主控模块可以根据反馈及时调整轮系的运动。

【巡线模块】

利用红外传感器识别黑线,从而完成机器人的巡线,同时可以辅助定位。红外传感器收 集到的信号反馈给单片机进行处理,后者将处理后的信息输出给驱动模块以调整机器人的运 动状态。

【取壶模块--升降平台】

电源驱动推杆和升降台电机、利用单片机实现对该电机的控制、使得升降台可上升或下 降给定的距离。同时,单片机还需要控制升降台具体何时开始或结束升降。

【取壶模块--抓手控制】

推杆的伸缩实现了抓手的开合,推杆暂定使用固定行程的电磁推杆,若调试过程中出现 行程与实际需求不符的情况,则调整取壶装置前端两个短矩形片(见 2.3.2.2 小节)的安装位 置, 实现准确抓取冰壳。

【取壶模块--运输过程】

运输过程要求抓手始终保持闭合状态。即推杆始终处于完全缩回状态。在抓手上安装压 力传感器,通过单片机判断抓手受到的压力是否大于一个预设值,从而控制抓手在此过程中 保持缩回状态。同理, 当压力小于给定值后, 就可以进入发射模块了。

【发射模块】

主控模块控制电机的转过距离,从而控制弹簧的压缩距离,根据预先编写的程序,弹簧 压缩到预设距离后离合器工作,夹断压缩过程;反馈回路将该夹断告知主控模块,电机停止 旋转。当一次发射结束后,重复上述步骤进行下一次发射准备。

3.2 供电系统

3.2.1 电源

【锂电池】

为了满足功率需求,同时保证安全防止电流过大,我们考虑使用双电源供电。两个电池 都使用迪普威 DC-24680 的大容量锂聚合物电池,实物图如图 3.2.1 所示。电池重量约 565q. 输出电压在 24V 左右, 持续工作电流在 0-15A 之间, 电池容量 8Ah, 最大输出功率约为 360W.

图 3.2.1 供电电池选型

3.2.2 分电方案

机器人使用启动按钮与急停按钮实现仅需的两个场外人工控制模块。启动按钮选型如图 3.2.2 所示。采用自锁式开关,比赛开始后按下即锁住,直至比赛流程结束,再次按下后弹起。

图 3.2.2 启动按钮选型

急停按钮的设置可以保证机器人在比赛中出现异常时,参数队员能够即时关断机器人,使电路中无电流。我们选择的急停开关如图 3.2.3 所示。开关触点形式选择一开一闭,结构也选为自锁式,原理与启动按钮相同。开关工作的电流、电压上限均满足比赛要求,也符合机器人的电源、电路配置。

图 3.2.3 急停开关选型

3.2.3 稳压方案

降压模块用于给单片机、推杆等转换出合适的工作电压, 其实物图如图 3.2.4 所示, 参数 如表 3.2.3 所示。

3.2.4 降压模块实物图

模块性质	非隔离降压模块
输入电压	DC 4—38V
输出电压	DC 1.25—36V 连续可调
输出电流	0—5A
输出功率	≤ 75W
工作频率	180kHz
模块重量	16g

表 3.2.3 降压模块相关参数

3.3 主控模块

主控模块我们选用 STM32F103, 简介如下:

【内核】

ARM32 位 Cortex-M3 CPU , 最高工作频率 72MHz , 1.25DMIPS/MHz。可实现单周期 乘法和硬件除法。

【存储器】

芯片上集成 32-512KB 的 Flash 存储器。 6-64KB 的 SRAM 存储器。

【时钟、复位和电源管理】

2.0-3.6V 的电源供电和 I/O 接口的驱动电压。上电复位 (POR) 、掉电复位 (PDR) 和可 编程的电压探测器(PVD)。4-16MHz 晶振。内嵌出厂前调校的 8MHz RC 振荡电路。内部 40 kHz 的 RC 振荡电路。用于 CPU 时钟的 PLL。带校准用于 RTC 的 32kHz 的晶振。

【调试模式】

串行调试 (SWD和 JTAG 接口。

【支持的外设】

定时器、ADC、DAC、SPI、IIC 和 UART。

【最多 112 个快速 I/O 端口】

根据型号的不同, 有 26, 37, 51, 80 和 112 个 I/O 端口, 所有的端口都可以映射到 16 个外部中断向量。除模拟输入外都可以接受 5V 以内的输入。

【最多11个定时器】

4个16位定时器,每个定时器有4个IC/OC/PWM 或者脉冲计数器;2个16位的6道高 级控制定时器: 最多6个通道可用于 PWM 输出; 2个看门狗定时器(独立看门狗和窗口看门 狗); Systick 定时器: 24 位倒计数器; 2个16位基本定时器用于驱动 DAC。

【最多多达 13 个通信接口】

2个IIC接口(SMBus/PMBus); 5个USART接口(ISO7816接口, LIN, IrDA 兼 容, 调试控制); 3 个 SPI 接口(18 Mbit/s), 其中两个和 IIC 复用; CAN 接口(2.0B), USB 2.0 全速接口; SDIO 接口。

【原理图及实物图】

3.4 执行系统

3.4.1 电机及驱动

【轮系驱动与发射装置驱动的直流减速电机】

比赛中机器人不需进行绕障或爬坡、因此对于驱动轮系的电机、对扭矩的要求主要体现 在循迹过程的转向与取壶和发射壶之间的冰壶运输过程; 对于驱动绞盘以压缩弹簧发射冰壶 的电机,对扭矩的要求体现于对抗弹簧的劲度系数作功。我们的比赛方案最多只涉及一个冰 壶的运输,经过简单计算,轮系所需扭矩约为 12kg·cm,发射装置所需扭矩约为 8kg·cm。所 选电机实物图及标准参数外形图如图 3.4.1(a)(b)所示。

图 3.4.1(a) 直流减速电机实物图

图 3.4.1(b) 直流减速电机标准参数图

电机各参数如表 3.4.1 所示。

电压	额定转速	额定扭矩	空载电流	额定电流	堵转电流	重量
24V DC	122 <u>+</u> rpm	25.5kg·cm	0.3A	2.3A	7A	387g

表 3.4.1 电机参数

【直流电机驱动】

我们选用型号为 XY-160D 的电机驱动模块完成控制电机的转向及转速。产品实物图如 图 3.4.2 所示:

图 3.4.2 直流电机驱动模块

该产品具有以下优点:

- 双 H 桥, 可同时驱动两台直流电机, 单路 7A 电流, 大功率;
- 宽电压输入 6.5V~27V;
- 信号光耦隔离输入, 可 IO 口直接控制, 不受干扰;
- 欠压保护, 防止瞬间大电流烧毁模块;
- 大功率 TVS 及静电泄放电路,抑制了瞬态干扰脉冲和静电,增强了 EMC 性 能,产品稳定可靠。

3.4.2 取壶模块

【推杆】

按照图 2.3.4、图 2.3.5 中升降台的工作原理,需要推杆控制抓手的伸缩与开合。我们选 用的推杆如图 3.4.3 所示。其参数配置可以满足比赛需求。

图 3.4.3 升降台推杆的结构示意图

行程	50mm
最小安装距离	105mm
电压	12V
额定功率	50W
推力	700N
空载速度	12mm/s
空载电流	0.6A—0.9A
负载电流	3A

表 3.4.3 推杆参数配置

【升降台控制电机】

电机通过齿轮传动带动升降台升降,从而实现抓取不同高度的已方壶。升降高度需要根 据预先编码给定, 因此该电机不需要独立的反馈调节电路。选用的电机实物图如图 3.4.4 所示, 参数如表 3.4.4 所示。

图 3.4.4 升降台控制电机实物图

电压	24V
额定电流	≥200mA
额定扭矩	22kg · cm
额定转速	5rpm
最大功率	14W

表 3.4.4 升降台控制电机的相关参数

3.4.3 巡线模块

我们给出的巡线方案是:架设3个四路循迹模块。一个负责完成单路的循迹,剩余两个 用于判断是否存在岔路。红外循迹模块在整个比赛中起到至关重要的判断作用。模块参数及 实物图如图 3.4.5 所示.

图 3.4.5 红外循迹模块

4. 算法部分

4.1 主控程序设计方案

4.1.1 流程规划

根据比赛规则, 我们给出详细的流程规划框图, 如图 4.1.1 所示。

总流程说明

子程序 (取高级壶)

图 4.1.1 比赛总流程框图示意

4.1.2 控制算法

PID 算法是控制行业最经典、最简单、而又最能体现反馈控制思想的算法。PID、就是对 输入偏差进行比例积分微分运算,再将运算的结果叠加去控制执行机构的算法。其中,调节 器像人的大脑,是一个调节系统的核心。任何一个控制系统,只要具备了带有 PID 的大脑, 即控制方法,那它就可作为一个自动调节系统。

PID 基本的调节器具有两个输入量:被调量和设定。被调量就是反映被调节对象的实际 波动的量值(变化);设定就是人们预设的值,也就是人们期望被调量达到的值(事先给定)。 因此, 在编写 PID 控制的过程中只要记住这三个量: 设定值、被调量、输出指令。事实上, 为了描述方便、习惯上精简为两个量:输入偏差和输出指令、其中、输入偏差是被调量和设 定值之间的差值。

P (Proportion)表示比例,就是输入偏差乘以一个系数(提高响应速度);

I (Integration)表示积分,就是对输入偏差进行积分运算(减少误差);

D (Differentiation)表示微分,对输入偏差进行微分运算(抑制震荡)。

PID 算法的一般形式如图 4.1.2 所示, 各参数的含义见相应图注。

图 4.1.2 PID 算法流程示意图

注: 控制器本身就是比例、积分、微分三个环节的加和。这里我们规定(在 t 时刻):

①输入量: r(t); ②输出量: c(t); ③偏差量: e(t)=r_{in}(t)-r_{out}(t);

比例的作用在于成比例地反映控制系统的偏差信号。偏差一旦产生、立即产生控制作用 以减小偏差。比例控制器的输出 u(t) 与输入偏差 e(t) 成正比, 能迅速反映偏差, 从而减小偏 差,但不能消除静差(静差是指系统控制过程趋于稳定时,给定值与输出量的实测值之差)。 积分环节的作用主要是消除静差、提高系统的无差度。微分环节能反映偏差信号的变化趋势 (变化速率),并能在偏差信号的值变得太大之前,在系统中引入一个有效的早期修正信号, 从而加快系统的反应速度,减小调节时间。

4.2 视觉方案

我们采用 CCD 扫描模组来对冰壶上的条码进行识别, 简单调研后认为以下模组可以基本 满足比赛要求。扫码模组的实物图及结构如图 4.1.3 所示, 参数如图 4.1.4 所示。该类模组是 广泛应用于自动识别领域的核心识别部件, 它是对条码扫描器进行二次开发的关键零件之一, 具备完整独立的条码扫描与解码功能,并可以按需求写入各种行业应用功能程序,它具有体 积小,集成度高的优点,可以方便嵌入到手机、平板电脑、电脑、打印机、流水线设备、医 疗器械等设备中。

图 4.1.3 CCD 扫描模组实物图及结构示意图

商品名称:扫描模组MJ-2050	识读角度:旋转Roll: ±30°,倾斜Pitch:±60°,		
商品类型: 红光 (CCD)	偏斜Skew: ±60°		
物理特性	识读环境:强光下,室内,黑暗环境下皆可流畅识遗		
分辨率: 1600	识读模式:连续模式,感应模式, 手动模式,命令触发模式		
外观尺寸: 22mm x11.5mm x 15.9mm			
接口: TTL、RS232、USB (三种接口可选)	识读速度:10ms/次(连续无间隔下静态解码)		
提示方式:蜂鸣器、LED(外部电路)	识读精度:≥4mil		
电源电压: +3.3V DC ±5%	对比度:≥10%		
工作电流: 60mA	环境参数		
扫码性能	工作温度:-20℃ ~ 60℃		
光 源: 红色 LED 补光	存储温度:-40℃ ~ 70℃		
视 角: 水平 32°	工作湿度: 5%RH~95%RH (不凝结)		
识读景深: Code39 50~110mm (5mil) EAN13 40~310mm (13mil) Code128 30~430 mm (15mil)			

Interleaved 2 of 5, Industrial 2 of 5, Matrix 2 of 5, Code11, MSI-Plessey, Standard 2 of 5, Plessey, China Post, GS1 Databar(RSS-Expand, RSS-Limited, RSS-14)

图 4.1.4 该扫描模组的参数

4.3 比赛流程模拟

依据 4.2.1 节的流程规划, 我们对机器人实际比赛的流程做场景模拟如下:

4.3.1 启动及巡线

比赛开始前机器人位于启动区,整车中线与铺设的黑线对齐,如图 4.2.1 所示。比赛开 始后, 机器人沿黑线做红外循迹至取壶区, 如图 4.2.2 所示。

图 4.2.1 机器人位于启动区

图 4.2.2 机器人位于启动区 左: 机器人在巡线中 右: 机器人即将进入取壶区

4.3.2 识别已方冰壶

由于规则中并未完全限制冰壶的摆放,在比赛现场仍有相当大的随机性,因此在目前不 采用摄像头等识别方法的前提下, 我们的方案是: 机器人成功到达取壶区后, 采取先完成全 部己方低级壶的抓取、发射、再完成全部己方高级壶的抓取、发射方案、采用逐岔路口识别 方式。按照这种流程、对己方冰壶编号 1~4、如图 4.2.3 所示。

图 4.2.3 各个己方壶的编号

4.3.3 取 1 号已方壶并发射

机器人从图 4.2.2 (右) 状态进入取壶区后,通过预设直行距离,直接直行至图 4.2.3 中 右侧放大图的亮黄色标记处附近、即确保预设距离大于取壶区最后一个岔道位置。由于先取 低级壶、故只打开靠近低级壶的一排红外传感器。机器人原地转向后、沿主路(图 4.2.3 中 亮黄色直线) 直行至判断出首个岔道口, 然后首先进入支路 1, 如图 4.2.4 所示。利用红外传 感器判断无冰壶后,退出该岔路,进入主路,再次遇到岔路口,进入支路2;判断为己方冰 壶, 发射装置启动, 就绪后发射。

图 4.2.4 从进入取壶区至发射 1 号壶的流程示意图。右侧为渲染图

4.3.4 取 2 号已方壶并发射

1号壶发射完毕后, 重复过程: "遇到岔道口就进入相应支路并做一次判断", 则若按 照图 4.2.3 所示的敌方、己方壶的排列,则进入支路 3 判断无冰壶,支路 4 判断为己方冰壶, 执行取低级壶操作,运输至支路2后发射2号壶。流程如图4.2.5所示。

图 4.2.5 发射 2 号壶的流程示意图与渲染图

机器人先后进入支路 3、支路 4、从支路 4 抓取并运输至支路 2 后发射冰壶

4.3.5 取 3 号、4 号已方壶并发射

2号壶发射完毕后机器人处于支路 2、需先倒退回主路。此时已知发射了全部的己方低级 壶, 因此机器人自动关闭低级壶一侧的传感器, 而打开另一侧传感器。编写程序使该状态下 的机器人做左转90度动作后, 直行至图4.2.2中亮黄色圆形标记处附近, 重复1号壶的识别 流程(即依次识别三个岔道口,进入支路6、7、8并分别判断),只不过换成高级壶的取壶 方式。取壶流程如图 4.2.6 所示。发射壶的渲染图如图 4.2.7 所示。

图 4.2.6 取 3、4 号己方壶

图 4.2.7 发射冰壶渲染图

4.3.6 比赛结束

将 4 只己方壶全部发射后, 计数器告知单片机全部比赛流程结束, 单片机随即控制电路 停止工作, 比赛结束。

5. 经费预算

类别	项目	数量	预计单价	预计总价
	麦克纳姆轮	4	157	628
	直流减速电机	5	159	795
机 械	电动推杆	1	110	110
	电机(配升降台)	2	24	48
	离合器及其配件	1	400	400
	锂电池	2	178	356
电路	降压模块	4	31	124
	单片机	2	400	800
	红外循迹模块	6	10	60
传 感 器	姿态传感模块	4	10	40
HA	激光测距模块	2	220	440
	铝材及配件	若干		200
其他	碳纤维板	4	78	312
	配件	若干		800
合计	5113			

6. 时间安排

时间	进度
2022.4.17 ~ 2022.5.14	队员积极参加项目培训, 学习各自负责的相关 内容, 完成初步设计与零部件选型
2022.5.15 ~ 2022.7.12	参加培训,深入学习各自负责模块的知识,采购、加工零件
2022.7.12 ~ 2022.7.31	完成机械结构的安装与调试, 能够初步实现比赛动作
2022.8.1 ~ 2022.8.31	完成电路布置,测试控制程序,调整优化部分机械结构设计,机器人能够基本完成所有比赛动作
2022.9.1 ~ 2022.9.30	优化控制程序, 完善代码, 机器人能够流畅实现比赛全过程
2022.10.1 ~ 2022.10.15	根据场地调试机器人,准备比赛