Power Series

Tuesday, October 12, 2021 7

$$\sum_{n=1}^{\infty} u_n(x)$$

$$S_{n}(x) = \sum_{j=1}^{n} u_{j}(x)$$

$$\lim_{n \to \infty} S_{n}(x) = \sum_{n=1}^{\infty} u_{n}(x)$$

Question: can we represent an arbitrary function as a senes of functions?

Answer No!

But we can represent many useful functions as a senes of functions.

. power senes (Taylor senes / Maclaurn senes)

· Fourer seres

Definition (power senes)

A power senes is a senes of the form

$$\sum_{n=1}^{\infty} C_n \left(x - x_0 \right)^n$$

Examples $0 > \infty \times n$

$$\int_{n=0}^{\infty} x^{n}$$
geometric series
$$= \sum_{n=0}^{\infty} c_{n} x^{n}$$
coefficient $c_{n} = 1$

Domain of Convergence: |z| < 1

Domain of Convergence: |x| < 1 $\frac{\mathcal{L}_{n+1}(x)}{\mathcal{L}_{n}(x)} = \frac{(n+1)! \times^{n+1}}{n! \times^{n}} = (n+1) \times$ Ratio Test $\lim_{n\to\infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \lim_{n\to\infty} \left| \frac{(n+1)x}{x} \right| = \begin{cases} 0 & (x=0) \\ +\infty & (x\neq 0) \end{cases}$ So $\sum_{n=0}^{\infty} n \mid x^n$ converges when x = 0diverges when $x \neq 0$ Domain of Convergence {0} = {center} 3 $\sum_{n=0}^{\infty} \frac{1}{n!} \times^n$. Put $u_n(n) = \frac{x^n}{n!}$ $\frac{\mathcal{L}_{n+1}(x)}{\mathcal{L}_{n}(x)} = \frac{x^{n+1}/(n+1)!}{x^n/n!} = \frac{x}{n+1}$ Ratio Test $\lim_{n\to\infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \lim_{n\to\infty} \left| \frac{x}{n+1} \right| = 0 < 1$ $S_0 = \frac{x^n}{n!}$ converges for $x \in \mathbb{R}$ $(4) \sum_{n=1}^{\infty} (x-3)^n$ center x = 3 Put $u_n(x) = \frac{(x-3)^n}{n}$ $\frac{u_{n+1}(x)}{u_n(x)} = \frac{(x-3)^{n+1}(n+1)}{(x-3)^n/n} = (x-3) \cdot \frac{n}{n+1}$ Robo Test $\lim_{n\to\infty} \left| \left(x-3 \right) \frac{n}{n+1} \right| = \left| x-3 \right|$

Chapter 1 - Power Series Page 2

 $\lim_{n \to \infty} |(x-3)| = |x-1|$ $|x-3| < 1 \iff 2 < x < 4$ $|x-3| < 1 \iff 2 < x < 4$ $|x-3| < 1 \iff 2 < x < 4$ $|x-3| < 1 \iff 2 < x < 4$ $|x-3| < 1 \iff 2 < x < 4$ $|x-3| < 1 \iff 3$ $|x-3| < 1 \iff 3$ |x-3| < 3 |x-3

Domain of Convergence Tuesday, October 12, 2021 7:56 AM Theorem (Abel) $\sum_{n} C_{n} \left(\chi - \chi_{0} \right)^{n}$. There are 3 possibilities (1) the seres converges only when $x = x_0$ (2) the seres convoges when $|x-x_{\circ}| < R$ and diverges when $|x-x_0| > R$ (3) the series conveyes for all $x \in IR$ case (2), we say R is the radius of conveyence Domain of Convergence (R can be 0 or +00) convergent divergent divergent check the convergence Suppose ve have a power seres $\sum_{n} C_{n} \left(x - x_{o} \right)^{n}$ with radius of convergence $R \in [0, +\infty]$ Then $\sum_{n=0}^{\infty} c_n (x - x_0)^n$ converges unformly on $(x_0 - R, x_0 + R)$

interval of convergence

Derivative and Integral of Power Series Theorem: Suppose $p(x) = \sum_{n=1}^{\infty} c_n(x-x_0)^n$ has radius of convergence R > 0. Then (1) p(x) is continuous (hence integrable), and differentiable $u \qquad (x_0 - R, x_0 + R)$ (2). $p'(x) = \sum_{n=1}^{\infty} n c_n (x - x_0)^{n-1}$. p'(x) has radius of convergence R(so one can differentiate a power serves as many times as one likes) (3) $\int_{0}^{1} P(x) dx = c_{0} + \frac{1}{2} c_{1}(x - x_{0})^{2} + \frac{1}{3} c_{2}(x - x_{0})^{3}$ $= \sum_{n=1}^{\infty} C_n \cdot \frac{(x-x_0)^{n+1}}{n+1} + C_0$ Find a power senes representation for $\ln(1+x)$ $f(x) = \ln(1+x)$ $\int_{-1}^{1} (x) = \frac{1}{1+x} = 1-x+x^{2}-x^{3}+\dots -(|x|<1)$ $= \sum_{\infty} \left(-1\right)^{n} \chi^{n}$

$$f(x) = \int \frac{1}{1+x} dx$$

$$\int_{\Omega} \left(1+x\right) = \sum_{n=0}^{\infty} \left(-1\right)^{n} \frac{x^{n+1}}{n+1} + C_{o}$$

to compute c_o , we take x = 0 and deduce that $\frac{\infty}{2}$ $(-1)^n$ 0^{n+1} + 0^n

$$\bigcap_{n} \sum_{i=1}^{\infty} \bigcap_{n} \sum_{i=1}^{n} \bigcap_{n} \sum_{i=1}^{n} \bigcap_{n} \bigcap_{i=1}^{n} \bigcap_{i$$

To compute co, we take x = 0 and remark the conformal content of the solution of the conformal content of the conforma

Taylor Series and Maclaurin Series

Tuesday, October 12, 2021 8:32 AM

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

$$f'(x) = c_1 + 2c_2 x + 3c_3 x^2 + \cdots$$

$$50 f'(0) = c_1$$

$$f''(x) = 2c_2 + 6c_3 x + \cdots$$

So
$$\frac{1}{2}\int_{0}^{1}(0) = c_{2}$$

$$\int_{0}^{\infty} (x) = G_{3} + \dots$$

so
$$\frac{1}{6}\int^{11}(0)=C_3$$

General formula:
$$C_n = \frac{1}{n!} \int_{-n}^{(n)} (0)$$

Theorem: Let
$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$

$$C_n \left(x - x_o\right)^n$$

be a power senes with radius of convergence R > 0Then $C_n = \frac{f^{(n)}(\pi)}{n!}$

Then
$$C_n = \frac{\int_{-\infty}^{\infty} f^{(n)}(x_0)}{\int_{-\infty}^{\infty} f^{(n)}(x_0)}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (x) = c_{0} + c_{1}(x - x_{0}) + c_{2}(x - x_{0})^{2} + ---$$

$$= f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + - - -$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
 Laylor's formula

Let f(x) be an infinitely differentiable, function

Definition. Let f(x) be an infinitely differentiable function We call $\sum_{n=0}^{\infty} \int_{-n}^{(n)} (x_0)^n (x-x_0)^n$ the Laylor senes expansion of f(x) at $x = x_0$ If $x_0 = 0$, we call thus the Maclaum seres of f(x)Examples f(x) = ex Maclaurn seres $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot x^n$ $\int_{0}^{(a)} (x) = e^{x}$

 $f^{(n)}(0) = 1$

. Taylor senes at $x_0 = 2021$ $\sum_{n=0}^{\infty} \frac{f^{(n)}(2021)}{n!} (x-2021)^n = \sum_{n=0}^{\infty} \frac{e^{2021}}{n!} (x-2021)^n$ $\int_{0}^{(n)} (x) = e^{x}$ $f^{(n)}(2021) = e^{2021}$

Questions. Does the Taylor sones of ex converge?

2) Does it convege to ex?

Theoren: Suppose $|f^{(n)}(x)| < L (L > 0)$

for all
$$n \in \mathbb{N}$$
 and for $|x-x_0| < d (d > 0)$.

Then $\int_{x=0}^{\infty} \int_{n}^{(n)} (x_0) (x-x_0)^n = \int_{n}^{\infty} (x)$

when $|x-x_0| < d$

$$\int_{n=0}^{\infty} \frac{e^{2n21}}{n!} (x-2n)^n$$

$$\int_{n=0}^{\infty} \frac{e^{2n21}}{n!} (x-2n)^n = e^x < e^{2nn}$$

when $|x-2n| < 1$, $|f^{(n)}(x)| = e^x < e^{2nn}$

when $|x-2n| < 1$.

Repeating this argument, we deduce that

$$\int_{n=0}^{\infty} \frac{e^{2nn}}{n!} (x-x_0)^n = e^x$$

$$\int_{n=0}^{\infty} \frac{e^{2nn}}{n!} (x-x_0)^n = e^x$$

In particular, $\int_{n=0}^{\infty} \frac{1}{n!} x^n = e^x$

Examples:

$$sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots - \left(x \in \mathbb{R}\right)$$

$$cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots - \left(x \in \mathbb{R}\right)$$

 $\ln (1+2)$ (1+2) (1+2)

arctan X

(wikipedia)