CS 772 – FINAL PROJECT EVALUATION

Lavinia Nongbri, 23D0383

Prateek Jain, 23M0760

Udhay Brahmi,23M2107

Hasmita Kurre, 23D0385

5th may, 2024

Evaluating Image Captioning Methods for Hindi

Input: An Image

Output: Hindi Caption

Problem Statement

➤ **Objective**: To evaluate and compare the effectiveness of two distinct approaches for generating Hindi image captions using BLEU scores.

> Methods:

- Direct Captioning in Hindi: Images are directly captioned in Hindi using a dedicated <u>image captioning model</u>.
- Two-Step Captioning via Translation:
 - Step 1: Images are initially captioned in English using an English image captioning model.
 - Step 2: These English captions are then translated into Hindi using Google Translate.

Motivation for the problem

- Cultural Relevance: Effective image captioning in Hindi enhances content accessibility for Hindi-speaking populations, promoting inclusivity in digital media.
- Technical Challenge: Developing accurate and context-aware captioning models poses significant computational challenges, especially in languages with fewer resources like Hindi.
- ➤ Research Contribution: Addresses a gap in current research focused predominantly on English, contributing to the diversification of language technologies in AI.

Literature Survey

- ➤ Rathi, Ankit. "Deep learning approach for image captioning in Hindi language." In 2020 international conference on computer, electrical & communication engineering (ICCECE), pp. 1-8. IEEE, 2020.
- Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. "Bleu: a method for automatic evaluation of machine translation." In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pp. 311-318. 2002.

Data Handling (1/2)

Dataset Overview and Preprocessing

- Utilizes the Hindi-vision-genome dataset, adapted for Hindi captions. (dataset link)
- Contains 29k images with hindi and english captions.
- Dataset format : <image_id, english caption, hindi caption>
- Preprocessing includes resizing images and tokenizing captions to prepare data for both direct and translated captioning methods.

Data Handling (2/2)

Dataset Sizes Evaluated

- Evaluated across different dataset sizes to assess scalability and robustness: 1k, 5k, 10k, 15k, 20k images and their corresponding hindi/english captions.
- Captions stored in .txt format for efficient processing and accessibility during training and evaluation.

Mathematical modelling of the problem

Feature Extraction Equation

$$f$$
eature = (W.I + b)

Where I represents the input image, W and b are the weights and biases of the model, and f eature denotes the feature vector extracted by the Inception v3 model.

Caption Generation Equation

$$C = RNN$$
(feature)

Here, *C* represents the generated caption, and *RNN* denotes the Recurrent Neural Network (likely LSTM) used to translate the feature vector into a coherent caption.

Mathematical modelling of the problem

Feature Extraction

```
inception = models.inception_v3(pretrained=<u>True</u>)
self.my_inception = <u>MyInceptionFeatureExtractor(inception)</u>
features = self.my_inception(images)
```

Caption Generation

```
features = self.encoder(images)

outputs = self.decoder(features, captions)
```

Methodology/architecture (1/2)

Using the Inception v3 Model:

- Purpose: To extract robust feature vectors from images.
- Configuration: Pre-trained on ImageNet, output feature vectors suitable for caption generation tasks.

Encoder Model:

- Implementation: Custom `Encoder` class that incorporates the Inception v3 model.
- Function: Transforms images into a consistent tensor format for feature extraction, crucial for subsequent decoding into captions.

Methodology/architecture (2/2)

Caption decoder:

- Architecture: Likely includes an RNN or LSTM to generate captions from the encoded image features.
- Integration: Works in tandem with the encoder, converting visual features into textual captions.

```
features = self.encoder(images)

outputs = self.decoder(features, captions)
```

Training Process (1/2)

Data Loaders

- Function: Facilitate the efficient loading, batching, and shuffling of image-caption pairs, crucial for training the neural network.
- Implementation: Customized to handle varying data sizes and ensure consistent input to the model.

Training Process (2/2)

> Training Loop

- Forward pass through the encoder to extract image features.
- Features fed into the decoder to generate captions.
- Loss calculation (typically cross-entropy) based on the difference between generated and actual captions.
- Backpropagation and parameter updates.

Experimental details (1/2)

Model Selection

- Primary Model: Inception v3 for feature extraction due to its proven effectiveness in handling complex image data.
- Decoder Model: Custom LSTM network designed to generate coherent captions based on the features provided by the encoder.

Hyperparameters

- Learning Rate: Initially set to 0.001, with adjustments made based on validation performance.
- Batch Size: 64 images per batch, balancing computational efficiency and training stability.

Experimental details (2/2)

 Epochs: Models are trained for up to 12 epochs with early stopping based on validation loss to prevent overfitting.

Metrics

- BLEU Scores: Used to quantitatively evaluate the quality of the captions at various n-gram levels, providing a comprehensive measure of linguistic accuracy and fluency.
- Loss Metric: Cross-entropy loss is used to measure the difference between the predicted captions and the actual captions, guiding the optimization of the model parameters.

Qualitative Analysis

- Adequacy: Measures whether the information in the image is conveyed in the generated caption, regardless if it is fluent or not.
- **Fluency:** Measures whether the generated caption is fluent, regardless of the correct meaning.
- Score of Adequacy: Poor, Bad, Moderate, Good, Excellent.

Qualitative Analysis

Generated Caption: एक लड़का एक छोटे से सफेद क्ते के साथ खेलता है।

- Adequacy: Bad
- Fluency: Excellent
- Descriptive phrases like एक छोटे से सफेद क्ते
- Misidentification of woman as लड़का and child as कुत्ते

Qualitative Analysis

Generated Caption: एक लाल शर्ट में एक महिला एक सफेद और सफेद कुत्ते के साथ एक सफेद बाड़ के पास एक मैदान

- Adequacy: Poor
- Fluency: Moderate
- Descriptive phrases like लाल शर्ट, सफेद बाड़
- None of the information in the image is preserved in the captions.

Quantitative Analysis

- ☐ **Purpose**: To quantitatively assess the quality of generated captions at various levels of granularity (BLEU-1 to BLEU-4).
- Methodology: Compares the machine-generated captions against reference captions to compute similarity scores, providing insights into the model's linguistic accuracy.

Hindi	BLUE-1	BLUE-2	BLUE-3	BLUE-4
1K	0.281254	0.011177	0.000000	0.000000
5K	0.291022	0.015300	0.003316	0.000000
10K	0.301174	0.014558	0.003301	0.000000
15K	0.304047	0.014600	0.000000	0.000000
20K	0.297185	0.145974	0.092793	0.000000

English	BLUE-1	BLUE-2	BLUE-3	BLUE-4
1K	0.341030	0.030419	0.000000	0.000000
5K	0.301900	0.016164	0.003545	0.000000
10K	0.311681	0.032676	0.000000	0.000000
15K	0.311688	0.025796	0.008030	0.001360
20K	0.297185	0.145974	0.092793	0.000000

Observation

> Higher Scores for Single-word Matches (BLEU-1)-

■ Both models perform best in BLEU-1, which measures the match of single words between the generated captions and references. This suggests that while the models capture common words well, they struggle with more complex linguistic structures.

Decline in Higher Order n-grams:

■ BLEU-2, BLEU-3, and BLEU-4 scores, which measure longer matching sequences of words, are significantly lower, indicating challenges in generating coherent longer phrases and sentences.

Consistency Across Different Sample Sizes:

■ As the number of samples increases, there isn't a consistent improvement in BLEU scores, suggesting that simply increasing dataset size doesn't linearly improve performance, especially for higher-order n-grams.

Graphs and Visuals

BLEU Scores for Hindi and English Captioning Models

Graphs and Visuals

Case studies

Generated Caption: एक छोटा कुत्ता एक बड़ी छड़ी के साथ खेलता है। Generated Caption: एक लाल शर्ट में एक महिला एक सफेद और सफेद कुत्ते के साथ एक सफेद बाड़ के पास एक मैदान

BONUS (Exceeds expectation)

- Advanced Technological Integration: The use of a pre-trained Inception v3 model combined with LSTM for generating captions in Hindi, which is less common in computational linguistics, especially for non-Western languages.
- Innovative Problem-Solving Approach: Addressing the challenge of direct Hindi captioning alongside a translation-based method, providing a comparative study that enhances understanding of multilingual captioning systems.

Thank You