

TD de Thermodynamique-Série n° 1

Licence d'éducation-Informatique : S1

Exercice 1

Déterminer les dérivées partielles des fonctions suivantes :

$$f(x, y) = \exp(xy); \quad f(x, y) = x^{3} Ln(x+3y); \quad f(x, y, z) = 4x^{3} y + 2xz + yz^{2};$$

$$f(x, y, z) = y \sin x + x \cos y + y \sin z; \quad P(V, T) = \frac{nRT}{V - nb} - \frac{n^{2} a}{TV^{2}}$$

Exercice 2

Soient les formes différentielles suivantes. Indiquer dans chaque cas s'il s'agit d'une différentielle totale exacte.

1-
$$df_1 = (x^2 - y^2) dx + 2xy dy$$

$$2- df_2 = y dx + x dy$$

$$3- df_3 = y dx$$

3-
$$df_3 = y dx$$

4- $df_4 = x(a^2 + z^2) dx + y(a^2 + z^2) dy + z(x^2 + y^2) dz$. a est une constante

Exercice 3

Soit df une forme différentielle telle que :

$$df = yz \ dx + xz \ dy + xydz$$

- a. Montrer que df est une forme différentielle totale exacte (d. t. e):
- b. Déterminer la fonction f(x, y, z) correspondant

Exercice 4

Le coefficient de dilatation à pression constante d'une substance est $\alpha_P = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = \frac{3aT^3}{V}$; son coefficient de compressibilité isotherme est $\chi_T = -\frac{1}{V} (\frac{\partial V}{\partial P})_T = \frac{b}{V}$ où a et b sont des constantes.

Trouver l'équation d'état f(P, V, T) = 0 de la substance

Exercice 5

On considère une mole d'un gaz obéissant à l'équation de Van der Waals:

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$

- Déterminer les coefficients de dilatation isobare $\alpha = \frac{1}{V} (\frac{\partial V}{\partial T})_P$, et de compressibilité isotherme $\chi_T = -\frac{1}{V} (\frac{\partial V}{\partial P})_T$
- **b.** Déterminer le coefficient d'augmentation de pression isochore $\beta = \frac{1}{P} \left(\frac{\partial P}{\partial T} \right)_{\nu}$
- Déterminer la relation entre les coefficients α , β et $\chi_{\scriptscriptstyle T}$
- d. Que deviennent les coefficients thermoélastiques α , β et χ_T pour a=0 et b=0.

TD de Thermodynamique-Série nº 2 Licence d'éducation-Informatique : S1

Soit T la valeur de température en échelle Celsius (°C), et F la valeur de température en Exercice 1 échelle Fahrenheit (°F). On admet qu'il existe entre T et F une relation de la forme :

$$F = a T + b$$

La température de la glace fondante correspond à 0 degré Celsius (°C) et à 32 degrés Fahrenheit (°F). La température d'ébullition de l'eau correspond à 100°C et à 212°F.

- Déterminer les coefficients a et b
- A quelle température les thermomètres aux deux échelles indiquent-ils la même valeur ?
- Quelle est la température Fahrenheit correspondant à la température normale du corps humain de-37°C?

Un calorimètre contient une masse m₁=250 g d'eau. La température initiale de l'ensemble est Exercice 2 θ 1=18°C. On ajoute une masse m2=300 g d'eau à la température θ 2=80°C.

- Quelle serait la température d'équilibre thermique $\theta_{\,\mathrm{e}}$ de l'ensemble si la capacité thermique du calorimètre et de ses accessoires était négligeable?
- On mesure en fait une température d'équilibre thermique θ_e =50°C. Déterminer la capacité thermique C du calorimètre et de ses accessoires, sachant que la chaleur massique de l'eau est: 2. $c_e = 4185 \text{ J.kg}^{-1}.\text{K}^{-1}$

On met $m_e = 100$ g d'eau à $T_1 = 18$ °C dans un calorimètre porté à une température initiale Exercice 3 T_2 =20°C. La température finale à l'équilibre est Te_i = 18,6°C.

1. Calculer la capacité thermique C du calorimètre.

On ajoute $m_g=10$ g de glace à Tg=-10°C dans le calorimètre. La température d'équilibre après la fusion de la glace est Te₂= 11,8°C. Calculer la chaleur latente de fusion de la glace L_f.

On donne : Chaleur massique de l'eau $c_e = 4,18 \text{ J.g}^{-1}\text{K}^{-1}$ Chaleur massique de la glace $c_g = 2, 1 \text{ J.g}^{-1}\text{K}^{-1}$

- Une mole de gaz parfait subit une détente isotherme, à T= 300 K, de la pression initiale P₁, Exercice 4 jusqu'à la pression finale P₂. Déterminer le travail fourni dans les deux cas:
 - 1- Détente quasi-statique,
 - 2- La pression passe brutalement de P_1 à P_2 .

Application numérique : $P_1=10$ atm et $P_2=3$ atm.

- II-Soit une mole de gaz subissant une compression quasi statique et isotherme de (Po, To) à (2Po,
 - T₀). Donner l'expression du travail reçu par le gaz selon qu'il s'agit:
- 1. d'un gaz parfait (on exprimera W en fonction de T_0);
- 2. d'un gaz de Van der Waals : $\left(P + \frac{a}{V^2}\right)(V b) = RT$ (on exprimera W en fonction de V_t et V_f les volumes dans l'état initial et l'état final).