TRƯỜNG ĐẠI HỌC MỎ - ĐỊA CHẤT ĐỀ CHÍNH THỰC

____************

ĐỀ THI CHỌN ĐỘI TUYỂN OLYMPIC TOÁN SINH VIÊN NĂM 2014

Môn: Giải tích Thời gian: 180 phút

Câu 1. (3 điểm) Cho dãy số x_n được xác định như sau $x_1 = a$, $x_2 = b$,

$$x_n = \frac{x_{n-1} + x_{n-2}}{2}, n = 3, 4, \dots$$

Tính: $\lim_{n\to\infty} x_n$.

Câu 2. (3 điểm)Chứng minh các đẳng thức sau:

- a) $C_n^0 + C_n^2 + C_n^4 + ... + C_n^{n-1} = 2^{n-1}$ với n lẻ.
- b) $C_n^0 + C_n^2 + C_n^4 + ... + C_n^n = 2^{n-1}$ với n chẫn.

Câu 3. (3 điểm) Tính giới hạn

$$\lim_{n\to\infty}\frac{1^{2013}+2^{2013}+3^{2013}...+n^{2013}}{n^{2014}}$$

Câu 4. (3 điểm) Tính tích phân $\int_{0}^{2\pi} \ln(\sin x + \sqrt{1 + \sin^2 x}) dx$.

Câu 5. (3 điểm) Cho f(x) là hàm có đạo hàm trên R thỏa mãn điều kiện $f(x+\sin x) \le f(x)$. Chứng minh rằng phương trình f'(x) = 0 có vô số nghiệm.

Câu 6. (3 điểm) $P_n(\mathbf{x}) = \mathbf{a}_0 \ x^n + \mathbf{a}_1 \ x^{n-1} + \mathbf{a}_2 \ x^{n-2} + ... + \mathbf{a}_{n-1} \ x^{n-1} + \mathbf{a}_n$, với $a_0 \neq 0$ được gọi là đa thức bậc n, trong đó $a_0, a_1, a_2, ..., a_{n-1}, a_n$ được gọi là hệ số của đa thức.

Cho đa thức $Q(x) = (2-4x+x^3)^{20}(3-5x+8x^2-6x^3)^{2014}$.

Hãy tính tổng những hệ số của đa thức Q(x).

Câu 7. (2 điểm)

Cho hàm số $f: R \to (-\infty, 0) \cup (0, +\infty)$ có đạo hàm tới cấp 2 và thỏa mãn: f(0) = 2; f'(0) = -2 f(1) = 1. Chứng minh rằng tồn tại số $c \in (0,1)$ sao cho: f(c)f'(c) + f''(c) = 0.

Cán bộ coi thi không giải thích gì thêm.