

서울특별시 공공자전거, 따름이 대여 수 예측을 위한 탐색적 데이터 분석

서울특별시 마포구 따름이 데이터 EDA

데이터 전처리 및 탐색 시 유의사항

- 해당 도메인 및 프로젝트에 대한 이해 기반 문제 정의
- 분석 목적을 고려하여 머신러닝 모델을 왜곡할 우려가
 있는 결측값 대체 및 이상치 처리
- 변수 간 관계 파악 및 분석에 용이한 새로운 변수 파생
- 숫자 또는 문자로 발견하기 어려운 패턴을 직관적으로 전달하기 위한 데이터 시각화

- 시간대 범주형 파생변수
- 극단적 대기오염물질 농도 논리형 파생변수 timeZone, atomosphere

따릉이 데이터 결측값 처리

데이터 분석 목적

- 서울특별시 마포구의 시간별 기상상황 및
 따름이 대여수 데이터
- 1시간 전 기상상황 데이터로 1시간 후 시간대의 따름이 대여수 예측 목적의 데이터 분석

결측값 시각화 및 대체

- 결측값을 예측값으로 대체할 변수
 - pm10(117개) pm2.5(90개) 결측값을 회귀식 추정하여 예측값으로 대체
 - 1시간 전 오존(76개) 결측값을 다중대체법(mice function)*에 따라 여러 모델 동시에 사용하는 앙상블 기법 으로 예측한 값으로 대체
- 결측값이 발생하는 경우의 유형에 따라 처리 기준
 이 달라진다 (데이터 누락 | 0 | 무작위 발생)
 - *) Multiple Imputation by Chained Equations

따름이 데이터 이상치 처리

이상치 시각화 및 처리

- 이상치 검출
 - Ⅰ 박스플롯

Q1 - 1.5 * IQR 이하 Q3 + 1.5 * IQR 이상

표준정규분포를 이용한 두 값 사이의 확률에서 벗어난 확률변수

$$\mu$$
 - 2.58 * σ 이하 μ + 2.58 * σ 이상

쿡의 거리로 다중회귀식의 그래프 개형에 영향을 미치는 값

다중회귀모형에서 Cook's Distance 값(표준화된 잔차의 합) 확인

$$D_i = \frac{\sum_{j=1}^n (\hat{y}_j - \hat{y}_{j(i)})^2}{pMSE}$$

자연 발생적인 이상치로 판단되어 값에 대한 파악

▪ 풍속 변수의 이상치 존치 (예시)

오존 이상치, 풍속 이상치, 고온, 낮은 습도, 햇빛: 저녁 시간대 자전거 280대 대여

미세먼지 이상치, 풍속 이상치, 서늘한 기온, 낮은 습도, 햇빛: 저녁 시간대 자전거 106대 대여

I 대기오염물질 농도(오존, 미세먼지 입자) 관련 변수의 이상치 여부 관련 파생변수 생성 이상치와 분리하여 시각화 및 모델링 가능

따름이 데이터 이상치 처리

이상치 시각화 및 처리

이상치 검출 $D_i = \frac{\sum_{j=1}^n (\hat{y}_j - \hat{y}_{j(i)})^2}{pMSE}$

쿡의 거리로 다중회귀식의 그래프 개형에 영향을 미치는 **값의 행 제거**

```
Call:
```

lm(formula = count ~ hour_bef_temperature + hour_bef_windspeed +
hour_bef_humidity + hour_bef_ozone + hour_bef_pm10, data = train)

Residuals:

Min 1Q Median 3Q Max -174.354 -41.626 -8.728 35.187 226.245

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 8.25296 10.50492 0.786 hour_bef_temperature 6.56891 0.38108 17.238 < 2e-16 11.00362 1.38899 7.922 4.63e-15 hour_bef_windspeed hour_bef_humidity -0.62616 0.09385 -6.672 3.59e-11 hour_bef_ozone 443.72757 106.01214 4.186 3.02e-05 *** hour_bef_pm10 0.05105 -7.256 6.47e-13 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 59.68 on 1444 degrees of freedom (결측으로 인하여 9개의 관측치가 삭제되었습니다.)

Multiple R-squared: 0.4804, Adjusted R-squared: 0.4786 F-statistic: 267 on 5 and 1444 DF, p-value: < 2.2e-16

Fitted values count ~ hour_bef_temperature + hour_bef_windspeed + hour_bef_humidity +

count ~ hour_bef_temperature + hour_bef_windspeed + hour_bef_humidity

 $\verb|count-hour_bef_temperature+hour_bef_windspeed+hour_bef_humidity+count-hour_bef_temperature+hour_bef_windspeed+hour_bef_humidity+count-hour_bef_temperature+hour_bef_windspeed+hour_bef_humidity+count-hour_bef_temperature+hour_bef_windspeed+hour_bef_humidity+count-hour_bef_temperature+hour_bef_windspeed+hour_bef_humidity+count-hour_bef_temperature+hour_bef_windspeed+hour_bef_humidity+count-hour_bef_temperature+hour_bef_windspeed+hour_bef_humidity+count-hour_bef_temperature+hour_bef_windspeed+hour_bef_humidity+count-hour_bef_temperature+hour_bef_windspeed+hour_bef_humidity+count-hour_bef_temperature+hour_bef_windspeed+hour_bef_humidity+count-hour_bef_temperature+hour_bef_windspeed+hour_bef_humidity+hour_b$

pm2.5는 2p-value > 0.05로 상관계수 추정치가 통계적으로 유의하지 않은 바 다중회귀식 추정 시 pm2.5 제거

따름이 데이터 상관분석

변수 간 상관관계 분석

- temperature와 ozone 간 상관계수 r = 0.54
- ullet windspeed와 temperature 간 상관계수 r = 0.38
- windspeed와 ozone 간 상관계수 r = 0.52
- ullet pm10와 pm2.5 간 상관계수 r = 0.51
- humidity와 windspeed 상관계수 r = 0.43

이상치 검출을 위해 추정할 다중회귀식의 독립변수 선택 (feature selection)

따릉이 데이터 파생변수 생성

시간(hour)에서 시간대(timeZone) 범주형 파생변수 생성

극단적 대기오염물질 농도 여부(atmosphere) 논리형 파생변수 생성

이상치가 자전거 대여수에 영향을 미치는지 예측 목적

> table(train\$atomosphere)

general outlier 1365 94

따름이 데이터 시각화 EDA

기온(가로축), 대여수(세로축), 시간대(범주)로 구성된 산점도를 대기오염지수 이상치 여부로 면 분할

기온(가로축), 대여수(세로축), 시간대(범주)로 구성된 산점도를 비가 오는지 여부(0, 1)로 면 분할

서울특별시 마포구 따릉이 데이터 분석 목적

서울시민 따릉이 이용 시간, 위치 데이터 수집

이용권 결제대행 기업에 데이터 저장 데이터 분석

프로덕트 / BM 생산성 강화

만약 따름이의 시공간 데이터 수집 기능을 데이터 비즈니스에 활용한다면

- 탄소발자국 감소를 측정하는 데이터 웨어러블 기기, 서울특별시 공공자전거 따름이
- 신용카드회사, 결제대행기업 등 여신전문금융업계 중 마이데이터 인가 社의 고객에 대한 시공간, 소비, 거래, 생체 데이터 분석 및 활용
- 금융지주 그룹사의 경우 생명보험사에 대하여 데이터 거래하여 생태계 구축