DI/PPGI/UFES

2º Exercício Computacional de Algoritmos Numéricos II/Computação Científica - 2021 EARTE Método dos Gradientes Conjugados usando o Octave

Objetivos

• Observar o comportamento do Método dos Gradientes Conjugados para um conjunto de matrizes esparsas da SuiteSparse Matrix Collection¹.

Conceitos/comandos importantes:

O repositório de matrizes esparsas SuiteSparse Matrix Collection disponibiliza matrizes das mais variadas áreas do conhecimento. Um dos formatos disponíveis para as matrizes é <nome>.mat. Arquivo binário que armazena as informações para gerar uma matriz esparsa no formato Compressed Column Sparse(CCR) para o Octave:

A seguir você encontra um conjunto de comandos do Octave para gerar e resolver um sistema cuja matriz esparsa foi obtida da $SuiteSparse\ Matrix\ Collection$

- load <nome>.mat carrega dados da matriz em uma estrutura auxiliar A.
- A = Problem.A; Armazena os dados da estrutura A na matriz esparsa A no formato CCR.
- n = rows(A);
- b = A*ones(n,1);
- [x,flag,relres,iter,resvec] = pcg(A,b,tol,maxit)
 - A: Matriz dos coeficientes simétrica definida positiva²;
 - b: Vetor dos termos independentes;
 - tol: Tolerância relativa;

¹https://sparse.tamu.edu

² default: armazenamento na estrutura CCR (Compressed Column Sparse)

- maxit: número máximo de iterações;
- x: vetor solução aproximada;
- flag: 0 convergência atingida; 1 número máximo de iterações atingido; 3 estagnação do resíduo
- relres: valor final do resíduo relativo
- iter: número de iterações executadas
- resvec: vetor contendo o resíduo relativo em cada iteração

Acesse os dados das matrizes simétricas definidas positivas: mesh3em5, plat362, 662_bus, s1rmq4m1, bcsstk36, pdb1HYS e Dubcova3 da SuiteSparse Matrix Collection. Para cada uma das matrizes:

- 1. Resolva o sistema linear trivial Ax = b, sendo b = A*ones(n,1) pelo método dos Gradientes Conjugados, assumindo tol e maxit adequados. Considere a possibilidade de alterar tol e maxit para obter uma solução mais satisfatória. (Dica: considerar $10^{-6} \le \text{tol} \le 10^{-11}$ e maxit ≤ 10000)
- 2. Plote o gráfico do resíduo;
- 3. Discuta as características do processo iterativo, quanto a convergência, levando em consideração as características da matriz dos coeficientes e as características do método dos Gradientes Conjugados.
- 4. Construa uma tabela contendo métricas importantes como: ordem do sistema, número de elementos não nulos, flag, número de iterações, norma do máximo da solução, número de condicionamento da matriz, etc.

Relatório

Escreva um relatório suscinto com suas conclusões sobre os objetivos listados acima. Depositar uma cópia em pdf no Classroom até 20/07/2021.