Recall:
Bosel - Cantella lemma
(r, 7,1P) - Probability space
lAk3kz, Ak E7
limsup An = { An occur infinitely} := 1 U d'An occurstr
limint An = {An happens all but] := 0 of Am occars}
(1) If \tilde{Z} $P(A_n) < \infty$ then $P(\{A_n \text{ occus (infinitely}\}) = 0$
(ii) If $\mathbb{Z}P(A_1) = \infty$, A_n 's are independent, then
P({An occur infinitely}) = 1
Kolmagom 0-1 law:
Recall: USn3, z randon walk.
· An = Set of absenable event upto time

An = (wer | wi= oi leient oiethint

time o

· An := take unions & complements of An Si) $\Omega \in A_n$, $\varphi \in A_n$ σ -algebra (ii) $A \in A_n$, $A^c \in A_n$ (iii) $(A_k)_{k \ge 1} \in A_n = 0$ $U = A_k \in A_n$ An := o(An: An as in @} · An = Ann + Mai = (Filtration) " observable by time " Tail o- field (lo-algebra): "events that depend on tail of the sequence" 8.9: I lim Sn =0} tail event € Sn → d or n→ort is not a let (s,7,1P) be a peobability space.

let & Antron be any sequence of event

of An, Aner, ..] = Somellest on algebra
that Contains An, Aner... J = tail 6-tield consesponding to (AIC) kg is O o < A, A, . } Example: d An occur i.o. + € J I An occup all but finitely ! E J

Probability space.

It (Arc) Res. E 7 and independent and

E E J Ctail ontell with (Arctury)

Kolmogoro o-1 law : let (1,7,P) be a

let E = J =) E = o(An, Anti...) Y N=1

Proof:

P(E) G (0,17-

ong event in Note: A, A, ..., Ann are independent of ofthe, Amer..... = A., A., .. , Am au independent of E. Note: E E o (A, Ay...) (x) E is independent of E -) RED = P(E) P(E) $P(E) = (P(E))^{\perp}$ =) P(E) & Co,1) P(E) E 20,17-Example: Percolation on 7d; d=2 d=2 PE [o,1] Bonds are independently Open wip. & and closed wip 1-P Declared

We enumerate the bond in some way. let Ai = of Bond i is sport · All [Ai]; are independent. Question of interest: For a given pe [01] E = of is there an intinte open cluster} of bond It E happens Itin we say per colation occui. (Requires Proof) E = (ac An, Antion) kolmogonv o-1 law = 1 Po(E) & {0,17 . (Require proof) P, < Pz = Coupling $P_{\alpha}(E) \leq P_{\alpha}(E)$. p -> Pp (E) is increasing in p

$$d=2; \qquad p_{c} = \frac{1}{2}, \qquad p_{e} (E) = 0$$

$$3 \leq d \leq 1 = - \cdots \quad \text{Open}$$

$$d \geq 11 \qquad \qquad p_{e} (E) = 0$$

$$p_{e} (E) = 0$$

 $\Theta_{p} = \mathbb{P}_{p}(o \text{ is in the open cluster})$ P, <P2 => OP, < OP P. (E) Op PR (E) E (0,17 ? ī $Q_1 \cdot Q_{p_2} = 0$, 10p - Ope / ~ 1p-8c) Y = ?