

DELD – Tutorial 5

ECED SVNIT

 Write down the given expression in Canonical SOP Form.

$$Y = \overline{A}\overline{B}\overline{C}\overline{D} + AB\overline{C}\overline{D} + \overline{A}B\overline{C}D + A\overline{B}\overline{C}D + \overline{A}BCD + ABCD + ABCD$$

Represent the given expression in Canonical POS Form.

$$Y = (A + B + C + \bar{D})(A + B + \bar{C} + D) (A + B + \bar{C} + \bar{D})$$

$$(A + \bar{B} + C + D)(A + \bar{B} + \bar{C} + D) (\bar{A} + B + C + D)$$

$$(\bar{A} + B + \bar{C} + D)(\bar{A} + B + \bar{C} + \bar{D})(\bar{A} + \bar{B} + C + \bar{D})$$

Concept of Minterms & Maxterms

	Var	iable		Miniterm	Maxterm
\boldsymbol{A}	B	C	D	m_i	M_{i}
0	0	0	0	$\overline{AB}\overline{CD} = m_0$	$A+B+C+D=M_0$
0	0	0	1	$\overline{AB}\overline{C}D = m_1$	$A+B+C+\bar{D}=M_1$
0	0	1	0	$\overline{AB}C\overline{D} = m_2$	$A + B + \overline{C} + D = M_2$
0	0	1	1	$\overline{A}\overline{B}CD = m_3$	$A + B + \bar{C} + \bar{D} = M_3$
0	1	0	0	$\overline{A}B\overline{C}\overline{D} = m_4$	$A + \overline{B} + C + D = M_4$
0	1	0	1	$\overline{A}B\overline{C}D = m_5$	$A + \bar{B} + C + \bar{D} = M_5$
0	1	1	0	$\overline{A}BC\overline{D} = m_6$	$A + \overline{B} + \overline{C} + D = M_6$
0	1	1	1	$\overline{A}BCD = m_7$	$A + \overline{B} + \overline{C} + \overline{D} = M_7$
1	0	0	0	$A\overline{B}\overline{C}\overline{D} = m_8$	$\overline{A} + B + C + D = M_8$
1	0	0	1	$A\overline{B}\overline{C}D = m_9$	$\overline{A} + B + C + \overline{D} = M_9$
1	0	1	0	$A\bar{B}C\bar{D} = m_{10}$	$\overline{A} + B + \overline{C} + D = M_{10}$
1	0	1	1	$A\overline{B}CD = m_{11}$	$\overline{A} + B + \overline{C} + \overline{D} = M_{11}$
1	1	0	0	$AB\overline{C}\overline{D} = m_{12}$	$\overline{A} + \overline{B} + C + D = M_{12}$
1	1	0	1	$AB\overline{C}D = m_{13}$	$\overline{A} + \overline{B} + C + \overline{D} = M_{13}$
1	1	1	0	$ABC\overline{D} = m_{14}$	$\overline{A} + \overline{B} + \overline{C} + D = M_{14}$
1	1	1	1	$ABCD = m_{15}$	$\overline{A} + \overline{B} + \overline{C} + \overline{D} = M_{15}$

• Sketch the output Waveform. Assume Q=0 initially.

 Assuming Q=0 initially, Predict and draw the output waveform.

Assuming Q=0, Predict and draw the Output Waveform.

Predict and Draw the Output for D Latch and D-FF

To Be Continued...

