Tabelle Fondamenti Logico Matematici

Deduzione Naturale Proposizionale Varie Logiche

connettivo/falso	introduzione	eliminazione
\wedge	$rac{A,B}{A\wedge B}i\wedge$	$\frac{A \wedge B}{A} e \wedge \frac{A \wedge B}{B} e \wedge$
V	$\frac{A}{A \lor B} i \lor \frac{B}{A \lor B} i \lor$	$\frac{A \lor B, \frac{A}{C}, \frac{B}{C'}}{C} e \lor$
\rightarrow	$rac{A}{\pi \over B}i ightarrow$	$\frac{A,A \rightarrow B}{B}e \rightarrow$
П	$\frac{\stackrel{\mathcal{A}}{\pi}}{\stackrel{\perp}{\lnot}A}i\lnot$	$\frac{A}{\frac{\pi}{A}}e$
<u></u>	$rac{A, eg A}{ot}iot$	$\frac{\pm}{B}e\pm$

- La regola dell'eliminazione del \perp non si può usare in logica minimale
- La regola dell'introduzione del \neg non si può usare in logica minimale
- La regola dell'eliminazione del \neg non si può usare in logica intuizionistica
- Le altre regole sono valide sia per la logica classica che per quella intuizionistica che per quella modale

Deduzione Naturale Predicativa Varie Logiche

quantificatore	introduzione	eliminazione
∃	$\frac{P(a)}{\exists x P(x)}i\exists$	$\frac{\exists x P(x), C}{C} e \exists$
\forall	$rac{P(a)}{orall xP(x)}iorall$	$\frac{\forall x P(x)}{P(a)} e \forall$

• Le regole valgono sia per logica classica che intuizionistica

Tableaux Logica Intuizionistica Proposizionale

connettivo	T-regola	F-regola
\land	$\frac{S,T(A \wedge B)}{S,TA,TB}T \wedge$	$\frac{S,F(A \wedge B)}{S,FA/S,FB}F \wedge$
V	$\frac{S,T(A\vee B)}{S,TA/S,TB}T\vee$	$\frac{S,F(A\vee B)}{S,FA,FB}F\vee$
\rightarrow	$\frac{S,T(A\to B)}{S,FA/S,TB}T\to$	$\frac{S,F(A\to B)}{S,TA,FB}F\to$
	$\frac{S,T(\neg A)}{S,FA}T\neg$	$\frac{S,F(\neg A)}{S,TA}F eg$

connettivo	T-regola con eventuale ripetizione
${\longrightarrow}$	$\frac{S,T(A \to B)}{S,FA,T(A \to B)/S,TB}T \to$
	$\frac{S,T(\neg A)}{S,FA,T(\neg A)}T eg$

Tableaux Ottimizzati Logica Intuizionistica Proposizionale

	T-regola	F-regola	F_C -regola
\land	$T \wedge = \frac{S, T(A \wedge B)}{S, TA, TB}$	$F \wedge = \frac{S, F(A \wedge B)}{S, FA/S, FB}$	$F_C \wedge = \frac{S, F_C(A \wedge B)}{S_C, F_C A/S_C, F_C B}$
V	$T \lor = \frac{S,T(A \lor B)}{S,TA/S,TB}$	$F \lor = \frac{S, F(A \lor B)}{S, FA, FB}$	$F_C \lor = \frac{S, F_C(A \lor B)}{S, F_C A, F_C B}$
\rightarrow	$T \rightarrow = \frac{S,T(A \rightarrow B)}{S,FA,T(A \rightarrow B)/S,TB}$	$F \rightarrow = \frac{S,F(A\rightarrow B)}{S_C,TA,FB}$	$F_C \rightarrow = \frac{S,F_C(A\rightarrow B)}{S_C,TA,F_CB}$
\neg	$T \neg = \frac{S, T(\neg A)}{S, F_C A}$	$F \neg = \frac{S, F(\neg A)}{S_C, TA}$	$F_C \neg = \frac{S, F_C(\neg A)}{S_C, TA}$

• S_C è definito come l'insieme S meno l'insieme delle formule segnate con FOttimizzazioni Implicazione Logica Intuizionistica Proposizionale

Antecedente Ant	$\mathbf{T} \rightarrow$
$Ant = A \ o \ Ant = \neg A$	$\frac{S,TA \to B}{S,FA/S,TB}T \to AN$
$Ant = A \wedge B$	$\frac{S,T(A \land B) \to C}{S,T(A \to (B \to C))}T \to \land$
$Ant = A \vee B$	$\frac{S,T(A\vee B)\to C}{S,TA\to C,TB\to C}T\to \vee$
$Ant = A \rightarrow B$	$\frac{S,T(A\to B)\to C}{S,FA\to B,TB\to C/S,TC}T\to \to$

Implicazione segnata (versione corretta ma non completa di $T \rightarrow)$

$$\frac{S,TA\to B}{S,F_CA/S_C,TB}\overline{T\to}$$