## Data Mining and Machine Learning

Assignment Project Exam Help

Statistical Modelling (I)
Add WeChat powcoder

Peter Jančovič



## Objectives

- Review basic statistical modelling
- Review the notions of probability distribution and Assignment Project Exam Help probability density function (PDF)
- Gaussian PDhttps://powcoder.com
- Multivariate Gausvier Reforeder
- Parameter estimation for Gaussian PDFs



#### Discrete random variables

- Suppose that Y is a random variable which can take any value in a discrete set  $X = \{x_1, x_2, ..., x_M\}$
- Suppose that  $y_1, y_2, ..., y_T$  are samples of the random variable Y https://powcoder.com
- If  $c_m$  is the number of times that the  $y_n = x_m$  then an estimate of the probability that  $y_n$  takes the value  $x_m$  is given by:

$$P(x_m) = P(y_n = x_m) \approx \frac{c_m}{N}$$



#### Continuous Random Variables

- In most practical applications the data are not restricted to a finite set of values they can take any value in Assistant Project Exam Help
- Counting the https://occerrences of each value is no longer a viable way of estimating probabilities...
   Add WeChat powcoder
   ...but generalisations of this approach are applicable
- ...but generalisations of this approach are applicable to continuous variables – <u>non-parametric methods</u>



### Continuous Random Variables

- An alternative is to use a parametric model
- Probabilities are defined by a small set of <u>parameters</u>
   Assignment Project Exam Help

   Familiar example is a <u>normal</u>, or <u>Gaussian</u> model
- A (scalar/univariate) Gaussian probability density function (PDE) is the fine of the potygo parameters — its mean  $\mu$  and variance  $\sigma$
- For a multivariate Gaussian PDF defined on a vector space,  $\mu$  is the mean vector and  $\sigma$  is the covariance

matrix

### Gaussian PDF

• 'Standard' 1dimensional

$$P(a \le x \le b)$$

Gaussian PDF:

Assignment Project Exam Help mean μ=0

 variance σ=https://p/σ v oder.com



X



#### Gaussian PDF

• For a 1-dimensional Gaussian PDF p with mean  $\mu$  and variance  $\sigma$ :

Assignment Project Exam Help

$$p(x) = p(x \mid \mu, \sigma) = \frac{\text{wcbder.com}(x - \mu)^2}{\sqrt{2\pi\sigma}}$$
Add WeChat powcoder

Constant to ensure area under curve is 1

Defines 'bell' shape



### Standard Deviation

- Standard deviation is the square root of the variance
- For a Gaussian PDF:

   Assignment Project Exam Help
   68% of the area under the curve lies within one
  - 68% of the area under the curve lies within one standard dettation (w.d.) def demmean
  - 95% of the area was derathe curve lies within two s.ds of the mean
  - 99% of the area under the curve lies within three standard deviations of the mean



### Standard Deviation

• In other words, if  $s = \sqrt{\sigma}$  then:

$$P(\mu - s \text{ Assign thent})$$
 Project Exam Help  $P(\mu - 2s \le x_{\text{https://pow}} = 0.95 \text{coder.com}$   $P(\mu - 3s \le x_{\text{Add}} + 3s) = 0.99 \text{Add We Chat powcoder}$ 



#### Multivariate Gaussian PDFs

- A (univariate) Gaussian PDF assumes the random variable takes <u>scalar</u> values
- In the case where the randsh Fvariable takes N dimensional westor values the corresponding PDF is called a multivariate Gaussian PDF and is given by:

  Add WeChat powcoder

$$p(x) = \frac{1}{\sqrt{(2\pi)^N |\Sigma|}} \exp\left(\frac{-1}{2}(m-x)^T \Sigma^{-1}(m-x)\right)$$



# Visualising multivariate Gaussian PDFs

- It's easy to sketch a 1 dimensional Gaussian PDF, using the rules about the proportion of the area that lies withins signment Staircare would be of the mean and the hyplus for new other.com
- 2D Gaussian PDFs can be plotted using MATLAB's Add. WeChat powcoder
   3D plotting functions
- A simpler way to visualise a 2D Gaussian PDF is to plot the <u>1 standard deviation contour</u>. This is the set of points that lie 1 standard deviation from the mean

## Example



contour is an ellipse:



## Example 2:

Now suppose 
$$\Sigma = \begin{bmatrix} 7.75 & 2.17 \\ 2.17 & 5.25 \end{bmatrix}$$
 and  $m = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ 

Assignment Project Exam Help
 Calculate the eigenvalue decomposition of Σ https://powcoder.com

$$\Sigma = UDU^{T} = \begin{bmatrix} \sqrt{3} & -1 \\ 2 & 2 \\ \frac{1}{2} & \sqrt{3} \\ 2 & 2 \end{bmatrix} \begin{bmatrix} \sqrt{3} & \frac{1}{2} \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \sqrt{3} & \frac{1}{2} \\ -1 & \sqrt{3} \\ 2 & 2 \end{bmatrix}$$



## Example 2 (continued)

- Note *U* is a rotation through 30°
- Hence the one standard deviation contour is the Assignment Project Exam Help same as in the previous example, but rotated through 30° and translated: Mowcoder.com

Add WeChat powcoder

$$m = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$



## Example 2 (continued)





## Fitting a Gaussian PDF to Data

- Suppose  $y = y_1, ..., y_t, ..., y_T$  is a set of T data values
- For a Gaussian PDF p with mean μ and variance σ, define: Assignment Project Exam Help

https://powcoder.com
$$p(y | \mu, \sigma) = \prod_{t \in \mathcal{D}} p(y_t | \mu, \sigma)$$
Add Wechat powcoder

• How do we choose  $\mu$  and  $\sigma$  to maximise  $p(y|\mu, \sigma)$ ?



## Fitting a Gaussian PDF to Data

Good fit Poor fit

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder



## Maximum Likelihood Estimation

- The 'best fitting' Gaussian maximises  $p(y|\mu,\sigma)$
- Terminology:
  - p(y|\mu,\delta), signarant Property Fix the Probability (density) of typs://powcoder.com
  - $-p(y|\mu,\sigma)$ , a function of  $\mu,\sigma$  is the <u>likelihood</u> of  $\mu,\sigma$
- Maximising  $p(y|\mu,\sigma)$  with respect to  $\mu,\sigma$  is called Maximum Likelihood (ML) estimation of  $\mu,\sigma$



## ML estimation of $\mu$ , $\sigma$

- Intuitively:
  - The maximum likelihood estimate of  $\mu$  should be the average value of  $y_1, ..., y_T$ . (the sample mean)
  - The maximum intermediate of  $\sigma$  should be the variance of we chat powe oder (the sample variance)
- This is true:  $p(y|\mu, \sigma)$  is maximised by setting:

$$\mu = \frac{1}{T} \sum_{t=1}^{T} y_t, \quad \sigma = \frac{1}{T} \sum_{t=1}^{T} (y_t - \mu)^2$$



#### **Proof**

First note that maximising p(y) is the same as maximising  $\log(p(y))$ 

$$\log p(y \mid \mu, \sigma) = \log \prod_{t=1}^{T} p(y_t \mid \mu, \sigma) = \sum_{t=1}^{T} \log p(y_t \mid \mu, \sigma)$$
Assignment Project Example Help

Also

$$\log p(y_t \mid \mu, \frac{\text{https://box coder.com} y_t)^2}{2}$$

At a maximum: Add WeChat powcoder

$$0 = \frac{\partial}{\partial \mu} \log p(y \mid \mu, \sigma) = \sum_{t=1}^{T} \frac{\partial}{\partial \mu} \log p(y_t \mid \mu, \sigma) = \sum_{t=1}^{T} \frac{-2(\mu - y_t)(-1)}{\sigma}$$

So, 
$$T\mu = \sum_{t=1}^{T} y_t, \mu = \frac{1}{T} \sum_{t=1}^{T} y_t$$

#### Multi-modal distributions

- In practice the distributions of many naturally occurring phenomena do not follow the simple bell-shaped Gassignment Project Exam Help
- For example, hittiphe data arises from several difference sources, there may be several distinct peaks (e.g. distribution of heights of adults)
- These peaks are the <u>modes</u> of the distribution and the distribution is called <u>multi-modal</u>



## Summary

- Reviewed basic statistical modelling, probability distribution, probability density function
- Gaussian Appignment Project Exam Help
- Multivariate Gaussian PDFs https://powcoder.com Maximum likelihood (ML) parameter estimation

#### Add WeChat powcoder

In the next session we will introduce Gaussian mixture PDFs (GMMs) and ML parameter estimation for GMMs

