

Observing Application

Date: Feb, 01 2010 Proposal ID: VLA/10B-153 Legacy ID: AB1358

PI : Shea Brown Type : Regular Category : Extragalactic

Total Time: 48.9

EVLA Deep Cluster Survey: Pilot Study

Abstract:

The overall goal of this project is to use the relativistic plasma in and around clusters of galaxies to probe the dynamics of cluster baryons during a critical epoch of large-scale structure formation. We propose moderately deep, 1.4~GHz polarized continuum observations of 30 high-redshift (z=0.35-0.9) clusters of galaxies from the Chandra Cluster Cosmology Project. The primary goals of this pilot survey are: 1)Characterize the Mpc-scale radio halo population in an unexplored redshift and X -ray luminosity regime, verifying theoretically important scaling relations down to lower cluster masses; 2) Directly test turbulent re-acceleration models of giant radio halos through independent confirmation of the bi-modal nature of the population; 3) Conduct a deep polarization search for external shocks in the outer infall regions of the clusters. These highmach shocks pre-accelerate cosmic-ray electrons and feed clusters long-lived and thermodynamically important CR protons; 4) Identify the most critical questions for the design of an EVLA Deep Cluster Survey to probe CR physics and the dynamic evolution of cluster baryons over cosmic time; 5) Identify interesting or extreme systems for multiwavelength study beyond the future deep survey parameters.

Authors:

Name	Institution	Email	Status
Shea Brown	Australia Telescope National Facility	brown@physics.umn.edu	
Nicholas Battaglia	Toronto, University of	battaglia@astro.utoronto.ca	Graduating: Thesis: false
Jean Eilek	National Radio Astronomy Observatory	jeilek@aoc.nrao.edu	
Thomas Jones	Minnesota, University of	twj@astro.umn.edu	
Rupal Mittal	Rochester Institute of Technology	rmittal@astro.rit.edu	
Frazer Owen	National Radio Astronomy Observatory	fowen@nrao.edu	
Christoph Pfrommer	Toronto, University of	pfrommer@cita.utoronto.ca	
Thomas Reiprich	Universitat Bonn	reiprich@astro.uni-bonn.de	
Ken Rines	Western Washington University	Ken.Rines@wwu.edu	
Lawrence Rudnick	Minnesota, University of	larry@astro.umn.edu	
Alexey Vikhlinin	Harvard-Smithsonian Center for Astrophysics	alexey@head.cfa.harvard.edu	

Principal Investigator: Shea Brown
Contact: Shea Brown
Telephone: +61 2 9372 4380

Email: brown@physics.umn.edu

Related proposals:

Joint:

Observing type(s):

Continuum, Polarimetry

VLA Resources

Name	Conf.	Frontend & Backend	Setup
B-array	В	L Band 20 cm 1000 - 2000 MHz WIDAR OSRO1: 2 Subbands/Full polz	Rest frequencies: 1350.0, 1664.0 MHz Bandwidth: 128.0 MHz No. of Channels: 64 Poln. products: 4.0 Channel Width: 2000.0 kHz
C-array	С	L Band 20 cm 1000 - 2000 MHz WIDAR OSRO1: 2 Subbands/Full polz	Rest frequencies: 1350.0, 1664.0 MHz Bandwidth: 128.0 MHz No. of Channels: 64 Poln. products: 4.0 Channel Width: 2000.0 kHz
BnA-array	BnA	L Band 20 cm 1000 - 2000 MHz WIDAR OSRO1: 2 Subbands/Full polz	Rest frequencies: 1350.0, 1664.0 MHz Bandwidth: 128.0 MHz No. of Channels: 64 Poln. products: 4.0 Channel Width: 2000.0 kHz
CnB-array	CnB	L Band 20 cm 1000 - 2000 MHz WIDAR OSRO1: 2 Subbands/Full polz	Rest frequencies: 1350.0, 1664.0 MHz Bandwidth: 128.0 MHz No. of Channels: 64 Poln. products: 4.0 Channel Width: 2000.0 kHz

Sources:

			,			
Name	Po	sition	Velocity		Group	
	Coordinate System	Equatorial	Convention	Radio		
	Equinox	J2000	Convention	Hadio		
CIC 101 F0 : 0020	Dight Assession	01:59:18.19	Ref. Frame	LSRK	LST 0	
CIGJ0159+0030	Right Ascension	00:00:00.0	nei. Fraille	LORK	LSTU	
	Declination	+00:30:11	Redshift	0.386		
	Decimation	00:00:00	neusiiii	0.386		
	Coordinate System	Equatorial	Convention	Radio	LST 0	
	Equinox	J2000		nauio		
CIGJ0926+1242	Dight Assension	09:26:36.6	Ref. Frame	LSRK		
CIGJ0920+1242	Right Ascension	00:00:00.0		LONK		
	Declination	+12:42:56	Redshift	0.489		
	Decimation	00:00:00	neusiiiit	0.489		
	Coordinate System	Equatorial	Convention	Radio		
	Equinox	J2000	Convention	Hadio	LST 0	
CIGJ0230+1836	Right Ascension	02:30:26.59	Ref. Frame	LSRK		
	night Ascension	00:00:00.0	nei. Fraiile	LONK		
	Declination	+18:36:21	Volocity	0.799		
	Decimation	00:00:00	Velocity			

Name	Po	sition		Velocity	Group
	Coordinate System	Equatorial	0	Dedia	-
	Equinox	J2000	Convention	Radio	
CIGJ0030+2618	Dight Assersion	00:30:33.19	Def From	LSRK	LST 0
CIG50030+2016	Right Ascension	00:00:00.0	Ref. Frame	LSHK	LS1 0
	Declination	+26:18:19	Dedebiff	0.500	
	Declination	00:00:00	Redshift	0.500	
	Coordinate System	Equatorial	Convention	Radio	
	Equinox	J2000	Convention	naulu	
CIGJ0809+2811	Right Ascension	08:09:40.99	Ref. Frame	LSRK	LST 0
01000009+2011	might Ascension	00:00:00.0	nei. i iaine	LOTIK	
	Declination	+28:11:57	Velocity	0.399	
		00:00:00	velocity	0.000	
	Coordinate System	Equatorial	Convention	Radio	
	Equinox	J2000			
CIGJ0956+4107	Right Ascension	09:56:03.4	Ref. Frame	LSRK	LST 0
	g	00:00:00.0			
	Declination	+41:07:14	Redshift	0.587	
		00:00:00			
	Coordinate System	Equatorial	Convention	Radio	
	Equinox	J2000			
CIGJ0958+4702	Right Ascension	09:58:19.39	Ref. Frame	LSRK	LST 0
		00:00:00.0			
	Declination	+47:02:11 00:00:00	Velocity	0.39	
	Coordinate System	Equatorial			
	Coordinate System Equinox	J2000	Convention	Radio	
	•	08:53:14.1		LSRK 0.475	
CIGJ0853+5759	Right Ascension	00:00:00.0	Ref. Frame		LST 0
		+57:59:39			
	Declination	00:00:00	Redshift		
	Coordinate System	Equatorial		Radio	
	Equinox	J2000	Convention		
010 100 1		03:18:17.29		LODIC	
CIGJ0318-0302	Right Ascension	00:00:00.0	Ref. Frame	LSRK	LST 0
	Dealination	-3:01:20	Dodobit	0.07	
	Declination	00:00:00	Redshift	0.37	
	Coordinate System	Equatorial	Convention	Commention	
	Equinox	J2000	Convention	ention Radio	
CIGJ0302-0423	Right Ascension	03:02:21.29	Ref. Frame	LSRK	LST 0
0100002 0420	Tilgili Ascension	00:00:00.0	Tici. I famic		
	Declination	-4:23:29	Velocity	0.3501	
		00:00:00		0.0001	
	Coordinate System	Equatorial	Convention	Radio	
	Equinox	J2000			
CIGJ0152-1358	Right Ascension	01:52:40.99	Ref. Frame	LSRK	LST 0
		00:00:00.0			
	Declination	-13:57:45	Redshift	0.8325	
	Coordinata Custam	00:00:00 Equatorial			
	Coordinate System	J2000	Convention	Radio	
	Equinox	17:01:30.22			
CIGJ1701+6414	Right Ascension	00:00:00.0	Ref. Frame	LSRK	LST 12
		+64:12:05			
	Declination	00:00:00	Redshift	0.4530	
	Coordinate System	Equatorial			
	Equinox	J2000	Convention	Radio	
	•	15:24:40.3			
CIGJ1524+0957	Right Ascension	00:00:00.0	Ref. Frame	LSRK	LST 12
		+09:57:38			
	Declination	00:00:00	Redshift	0.5160	

Name	Po	sition		Velocity	Group	
	Coordinate System	Equatorial	0	-	-	
	Equinox	J2000	Convention	Radio		
010 14 400 0000	•	11:20:57.9		1.0014	1.07.40	
CIGJ1120+2326	Right Ascension	00:00:00.0	Ref. Frame	LSRK	LST 12	
	Dealinetian	+23:26:40	Dadahitt	0.500		
	Declination	00:00:00	Redshift	0.562		
	Coordinate System	Equatorial	Convention	Radio		
	Equinox	J2000	Convention	Tiadio		
CIGJ1212+2733	Right Ascension	12:12:19.2	Ref. Frame	LSRK	LST 12	
0.00121212700	Thight Addenoion	00:00:00.0	Tion France	LOTIN		
	Declination	+27:33:14	Velocity	0.3533		
		00:00:00	,			
	Coordinate System	Equatorial	Convention	Radio		
	Equinox	J2000				
CIGJ1222+2709	Right Ascension	12:22:01.9	Ref. Frame	LSRK	LST 12	
		00:00:00.0				
	Declination	+27:09:19 00:00:00	Velocity	0.472		
	Coordinate Cyatam	Equatorial				
	Coordinate System Equinox	J2000	Convention	Radio		
	Equiliox	10:03:04.9				
CIGJ1003+3253	Right Ascension	00:00:00.0	Ref. Frame	LSRK	LST 12	
		+32:54:28				
	Declination	00:00:00	Redshift	0.4161		
	Coordinate System	Equatorial				
	Equinox	J2000	Convention	Radio		
	•	12:26:58.9		LSRK		
CIGJ1226+3332	Right Ascension	00:00:00.0	Ref. Frame		LST 12	
		+33:32:47				
	Declination	00:00:00	Redshift	0.8877		
	Coordinate System	Equatorial	0	Radio		
	Equinox	J2000	Convention			
CIGJ1312+3900	Right Ascension	13:12:19.39	Ref. Frame	LSRK 0.4037	LST 12	
CIG31312+3900	night Ascension	00:00:00.0	nei. Fraille		LS1 12	
	Declination	+39:00:57	Velocity			
		00:00:00	Velocity	0.4007		
	Coordinate System	Equatorial	Convention	Convention Radio		
	Equinox	J2000	Convention	Tiddlo		
CIGJ1641+4001	Right Ascension	16:41:52.5	Ref. Frame	LSRK LST 12	LST 12	
0.00.00.00.00.00.00.00.00.00.00.00.00.0		00:00:00.0	110111110			
	Declination	+40:01:28	Redshift			
	On a will want to O	00:00:00				
	Coordinate System	Equatorial J2000	Convention	Radio		
	Equinox	11:20:07.5				
CIGJ1120+4318	Right Ascension	00:00:00.0	Ref. Frame	LSRK	LST 12	
		+43:18:05				
	Declination	00:00:00	Velocity	0.600		
	Coordinate System	Equatorial				
	Equinox	J2000	Convention	Radio		
0.0.4.4.5		14:16:28.69		1.0=::	1.07 :-	
CIGJ1416+4446	Right Ascension	00:00:00.0	Ref. Frame	LSRK	LST 12	
		+44:46:41	Dodobit	0.400		
	Declination	00:00:00	Redshift	0.400		
	Coordinate System	Equatorial	Convention	Dodio		
	Equinox	J2000	Convention	Radio		
CIGJ1221+4918	Right Ascension	12:21:24.49	Ref. Frame	LSRK	LST 12	
01001221+4310	night Ascension	00:00:00.0	nei. Fiaille	LONK	LOT IZ	
	Declination	+49:18:12	Redshift	0.700		
	Domination	00:00:00		5.700		

Name	Name Position			Velocity	Group	
	Coordinate System	Equatorial	0	Darlia	-	
	Equinox	J2000	Convention	Radio		
CIGJ1334+5030	Diebt Assessing	13:34:19.99	D. (LODIC	107.40	
	Right Ascension	00:00:00.0	Ref. Frame	LSRK	LST 12	
	Darling Harr	+50:30:54	D. J. L.	0.000		
	Declination	00:00:00	Redshift	0.620		
	Coordinate System	Equatorial	Convention	Radio		
	Equinox	J2000	Convention	Hadio		
OIC 14000 - E7E4	Right Ascension	12:02:13.69	Ref. Frame	LSRK	L CT 10	
CIGJ1202+5751	Right Ascension	00:00:00.0	Hei. Fraille	Lonk	LST 12	
	Dealination	+57:51:52	Valacitu	0.0775		
	Declination	00:00:00	Velocity	0.6775		
	Coordinate System	Equatorial	O-museutien.	Dadia		
	Equinox	J2000	Convention	Radio		
010 14000 - 0050	Dight Assessing	10:02:07.69	Def Frome	LODK	1.07.40	
CIGJ1002+6858	Right Ascension	00:00:00.0	Ref. Frame	LSRK	LST 12	
	Da allocations	+68:58:48	Walas Was	0.5		
	Declination	00:00:00	Velocity			
	Coordinate System	Equatorial	0	Radio		
	Equinox	J2000	Convention			
010 14054 0004	District Assessments	13:54:16.9	D. (LSRK	107.40	
CIGJ1354-0221	Right Ascension	00:00:00.0	Ref. Frame		LST 12	
	5	-2:21:47	5 1 1 1 1 1 1	0.546		
	Declination	00:00:00	Redshift			
	Coordinate System	Equatorial	0	Radio		
	Equinox	J2000	Convention			
010 14057 - 0000	Dight Assessing	13:57:19.39	Def Frome	LSRK	107.40	
CIGJ1357+6232	Right Ascension	00:00:00.0	Ref. Frame		LST 12	
	Dealination	+62:32:42	Valacitu	0.505		
	Declination	00:00:00	Velocity	0.525		
	Coordinate System	Equatorial	O-museutien.	Dadia		
	Equinox	J2000	Convention	Radio		
010 10000 0450	Digital Assessing	03:33:10.19	Def Frome	LODK	LOT OLOW Doo	
CIGJ0333-2456	Right Ascension	00:00:00.0	Ref. Frame	LSRK	LST 0 Low-Dec	
	Da allocations	-24:56:40	V-124	0.4754		
	Declination	00:00:00	Velocity	0.4751		
	Coordinate System	Equatorial	Convention	D !!		
	Equinox	J2000	Convention	Radio		
CIC 10200 0140	Dight Assension	03:28:36.1	Dof Frame	LCDV	L ST O L SW Dog	
CIGJ0328-2140	Right Ascension	00:00:00.0	Ref. Frame	LSRK	LST 0 Low-Dec	
	Deelinetien	-21:40:04	Volocitu	0.5004		
	Declination	00:00:00	Velocity	0.5901		

Sessions:

Name	Session Time (hours)	Repeat	Separation	LST minimum	LST maximum	Elevation Minimum
0 LST C-array	0.90	11	0 day	00:00:00	24:00:00	0
0 LST CnB-array	0.90	2	0 day	00:00:00	24:00:00	0
0 LST B-array	0.73	11	0 day	00:00:00	24:00:00	0
0 LST BnA-array	0.73	2	0 day	00:00:00	24:00:00	0
12 LST C-array	0.90	17	0 day	00:00:00	24:00:00	0
12 LST B-array	0.73	17	0 day	00:00:00	24:00:00	0

Session Constraints:

Name	Constraints	Comments

Session Source/Resource Pairs:

Session Name	Source	Resource	Time	Figure of Merit	Subarray
0 LST C-array	CIGJ0159+0030 CIGJ0926+1242 CIGJ0230+1836 CIGJ0030+2618 CIGJ0809+2811 CIGJ0956+4107 CIGJ0958+4702 CIGJ0853+5759 CIGJ0318-0302 CIGJ0302-0423 CIGJ0152-1358	C-array	0.9 hour	21 mJy/bm	
0 LST CnB-array	CIGJ0333-2456 CIGJ0328-2140	CnB-array	0.9 hour	21 mJy/bm	
0 LST B-array	CIGJ0159+0030 CIGJ0926+1242 CIGJ0230+1836 CIGJ0030+2618 CIGJ0809+2811 CIGJ0956+4107 CIGJ0958+4702 CIGJ0853+5759 CIGJ0318-0302 CIGJ0302-0423 CIGJ0152-1358	B-array	0.73 hour	21 mJy/bm	
0 LST BnA-array	CIGJ0333-2456 CIGJ0328-2140	BnA-array	0.73 hour	21 mJy/bm	
12 LST C-array	CIGJ1701+6414 CIGJ1524+0957 CIGJ1120+2326 CIGJ1212+2733 CIGJ1222+2709 CIGJ1003+3253 CIGJ1226+3332 CIGJ1312+3900 CIGJ1641+4001 CIGJ1120+4318 CIGJ1120+4318 CIGJ1334+5030 CIGJ1202+5751 CIGJ1002+6858 CIGJ1354-0221 CIGJ1357+6232	C-array	0.9 hour	21 mJy/bm	

Session Name	Source	Resource	Time	Figure of Merit	Subarray
12 LST B-array	CIGJ1701+6414	B-array	0.73 hour	21 mJy/bm	
	CIGJ1524+0957				
	CIGJ1120+2326				
	CIGJ1212+2733				
	CIGJ1222+2709				
	CIGJ1003+3253				
	CIGJ1226+3332				
	CIGJ1312+3900				
	CIGJ1641+4001				
	CIGJ1120+4318				
	CIGJ1416+4446				
	CIGJ1221+4918				
	CIGJ1334+5030				
	CIGJ1202+5751				
	CIGJ1002+6858				
	CIGJ1354-0221				
	CIGJ1357+6232				

Present for observation: no Staff support: Consultation Plan of Dissertation: no

EVLA Deep Cluster Survey: Pilot Synchrotron Probes of High-Redshift Cluster Mergers

Summary

The overall goal of this project is to use the relativistic plasma in and around clusters of galaxies to probe the dynamics of cluster baryons during a critical epoch of large-scale structure formation. We propose moderately deep, full Stokes, 1.4 GHz continuum observations of 30 high-redshift (z =0.35 - 0.9) clusters of galaxies from the Chandra Cluster Cosmology Project (CCCP: Vikhlinin et al. 2008). The C-configuration observations proposed here have the critical combination of resolution and surface-brightness sensitivity to probe for large-scale synchrotron features at these redshifts, while the B configuration observations are critical to remove the cluster radio galaxies. The primary goals of this pilot survey are: 1) Characterize the Mpc-scale radio halo population in an unexplored redshift and Xray luminosity regime, verifying theoretically important scaling relations down to lower cluster masses; 2) Directly test turbulent re-acceleration models of giant radio halos (GRH) through independent confirmation of the bi-modal nature of the population (Brunetti et al. 2009; Venturi et al. 2007); 3) Conduct a deep polarization search for external shocks in the outer infall regions of the clusters. These high-mach shocks pre-accelerate cosmic-ray electrons (CRe) and feed clusters long-lived and thermodynamically important CR protons; 4) Identify the most critical questions for the design of an EVLA Deep Cluster Survey to probe CR physics and the dynamic evolution of cluster baryons over cosmic time; 5) Identify interesting systems (particularly bright or extended, polarized structure) for deep study beyond the future well-defined survey parameters.

These observations, when combined with the CCCP Chandra data and subsequent aggressive optical/infrared follow-up, will explore the diagnostic power of radio for non-thermal/non-equilibrium processes in clusters. This is of enormous interest to cluster cosmology studies; an important task of these observations will be to determine to what extent the radio band can aid in these efforts, in preparation for an EVLA DCS.

Science Justification

Current radio observations reveal spectacular Mpc-scale synchrotron emission associated with some massive clusters of galaxies, while other clusters of comparable mass show no sign of diffuse radio emission even at much lower luminosity limits. The origins of the cosmic-ray (CR) leptons and largescale μ G magnetic fields themselves are still an open question, though a clear correlation with merging or dynamically accreting clusters has emerged (e.g., Brunetti et al. 2009). This emission is an indicator of recent energy input into the intra-cluster medium (ICM), whether through merger/accretion shocks or AGN outflows, and its properties can be used to trace dynamical activity in low-density regions inaccessible at other wavelengths (e.g., Rudnick et al. 2009). However, interpretation of the synchrotron emission is model dependent, and relies heavily on an understanding of the origin of the CR electrons and magnetic fields. There are a variety of models for the acceleration and propagation of CR protons and electrons in large-scale structure; most predict a sea of low surface-brightness synchrotron emission permeating the cosmic-web, the peaks of which are in massive clusters of galaxies which we observe as GRHs. There are two broad potential sources for the cosmic-ray electrons (CRe) in the ICM; electrons directly accelerated by accretion/merger shocks and/or cluster turbulence (primary models), and electrons created from relativistic proton-proton collisions from cosmic-ray protons (CRp) that are accelerated during large-scale structure formation and trapped via magnetic fields in clusters for a Hubble time (secondary models, e.g., Basi et al 2007). There are variations in both models based on the details of where and how the CR are accelerated, though none of the models explain the recent observational data. Recent efforts to construct a "unified model" for GRHs and radio relics (Pfrommer et al. 2008) using both primary and secondary models represent the next step in complexity, though observational constraints are needed to limit the available parameter space.

This shortfall in our understanding is made even more poignant because the non-thermal energy/pressure and large-scale magnetic field have substantial influences on the thermal properties of the ICM (Maron et al. 2004), and indicate deviations from hydrostatic equilibrium which is a critical assumption for cosmological analysis. Diffuse radio emission in clusters of galaxies currently provide our *only* window into this relativistic particle population, although there are attempts with Fermi to observe the γ -rays from CRp collisions.

Pilot Observations: Filling in the L_R vs. L_X Plane

Recent observational attempts to use a large sample of clusters to constrain CR acceleration models and their relation to cluster dynamics have begun to yield results (e.g., Venturi et al. 2007, Donnert et al. 2009). Brunetti et al. (2009) used the GMRT Radio Halo Survey (RHS) (z = 0.2 - 0.4 clusters), along with observation taken from the literature, to show that X-ray clusters are bi-modal in their diffuse radio properties. They find that only $\sim 1/3$ of clusters host large-scale diffuse emission (with the radio luminosity correlated with the X-ray luminosity), while the rest are radio quiet (Fig. 1). This favors a turbulent re-acceleration model for the origin of radio halos, since the post-merger CRe have only \sim 100 Myr radiative lifetimes, though given the complexity of cluster physics, secondary models cannot be ruled out (e.g., Kushnir, Katz & Waxman 2009).

For an initial pilot, we propose moderately deep $(21~\mu\mathrm{Jy\,beam^{-1}})$, see below) 1.4 GHz C-configuration observations of the entire high-redshift sample of the Chandra Cluster Cosmology Project (Vikhlinin et al. 2008). The $\sim 15''$ resolution of the C-array (see Figure 2) is ideal for detecting halo emission at redshifts >0.3 (e.g., Bonafede et al. 2009), and the polariza-

Figure 1: Plot from Brunetti et al. (2009) showing cluster radio halo luminosity vs. X-ray luminosity. The open circles and upper limits are from the GMRT Radio Halo Survey. The grey line shows the 3σ detection threshold for the current proposal for a z=0.5 cluster, extending over the X-ray luminosity range of the CCCP sample.

tion observations will allow for the identification of shock-structures such as peripheral relics. However, these structures on scales of 250-1000 kpc must be distinguished from smaller, and possibly multiple radio galaxies, so B configuration are critical. The *CCCP* cluster sample will extend the *GMRT RHS* results into lower X-ray luminosity $(0.68-.42\times10^{44}~erg~s^{-1})$ and mass $(1.0-9.9\times10^{14}~M_{\odot})$ regime, which will verify to what extent the scaling relations, used as the underpinning of theoretical investigations of ICM physics (Figure 1), hold at lower mass (X-ray luminosity).

The issue of "contamination" from radio galaxies to the halo's total flux is important at these redshifts. For the immediate science goals of this pilot, we will need to separate extended radio galaxies from other sources of CRe (e.g., shocks and smooth turbulence driven halo emission). Therefore, we propose for a similarly shallow B-configuration (5"), full Stokes survey of the CCCP sample in order to appropriately deal with this issue. Figure 2 illustrates the angular scales involved. The *Chandra* color image is of cl1524+0927 (z=0.5) with FIRST (5"; green contours), NVSS (45"; white contours) and 15" C-array beam (white circle) overlaid. Over the z=0.35-0.9 redshift range of the CCCP sample,

5'' (15") is 25-39 kpc (74-117 kpc).

EVLA Deep Cluster Survey

In addition to the important science output described above, these observations serve as a pilot study for a much larger EVLA Deep Cluster Survey using the CCCP cluster sample. The EVLA DCS will be a deep, multi-resolution polarization survey (D, C, and B configurations, supplemented by A at the highest redshifts) over the entire 1-2 GHz range of the EVLA L-band, allowing high quality imaging of the halo structures.

The combination of deep polarization and multi-scale imaging is critical for disentangling the various sources of CRe, which in turn is necessary for relating synchrotron emission to the dynamics of the baryonic ICM. The EVLA DCS will also provide a versatile legacy data-set that can be used to address outstanding questions regarding the dynamics and evolution of the ICM. We outline a sample

Figure 2: Color: Chandra image of the z=0.5 cluster CL1524+0957; Green: FIRST image showing a narrow-angle tailed (NAT) radio galaxy whose jets are bent by ICM pressure; White: NVSS; White Circle: C-array beam.

of these questions below, along with why and larger EVLA DCS is necessary to achieve these goals:

Cluster Thermodynamics: When and how does the ICM become energized, e.g., through merger/accretion shocks, AGN, SNe? The answer will certainly depend on cluster mass and redshift; on the galaxy group scale, non-gravitational feedback processes will have a larger impact. Need a factor of ~ 10 improvement in polarized surface-brightness sensitivity in B and A-arrays to detect thermalizing internal shocks;

Cluster Cosmology: What are the implications of the type of energy injection on the cluster profiles (density/temperature/pressure/entropy)? This helps to understand the properties and formation of SZ/X-ray profiles and their redshift-evolution (where we have poorer data from SZ and X-rays). Answering this question will be crucial in inferring cosmological parameters from SZ/X-ray number counts, SZ power spectrum, and gas-fraction. Radio is completely complementary to these traditional probes. In particular, the primary radio emission serves as a snapshot of current structure formation, while the secondary hadronic one gives a time-integrated census of the non-thermal activity. Need as above for the internal shocks (primary emission), and 2-3× the sensitivity over all the arrays to separate radio galaxies from the core hadronic component;

ELECTRON SHOCK-ACCELERATION: What are the dominant acceleration processes? Recent work (e.g. Markevitch et al. 2005: Abell 520) shows that even weak shocks ($M < \sim 2$) can accelerate electrons. This is completely unexpected from the study of solar system and SNR shocks. *Need as above for internal shocks*;

Cluster Archeology: Radio information can help disentangle the history of individual clusters by taking into account the different cooling times of the underlying electron populations (primary, secondary, re-accelerated). Characterizing the AGN components of the radiation will be crucial in calibrating cosmological simulations with AGN feedback. The pilot observations will trace cluster AGN activity over the CCCP sample (e.g., Mittal et al. 2009), but we need the above improvements in sensitivity for separating different sources of CRe.

With the completeness and quality of the CCCP sample, we will be able to explore these properties as functions of cluster X-ray luminosity, redshift and dynamical state. The pilot study proposed here, in addition to its direct scientific contributions, will provide important input on such issues as optimum resolution, halo vs. AGN contrasts, polarization sensitivity, etc. for the design of the full survey.

Source Selection

The Chandra Cluster Cosmology Project (Vikhlinin et al. 2008), is a complete high-redshift sub-sample of the 400d survey (Burenin et al. 2007). The CCCP consists of 36 clusters at z=0.35-0.9 with $< z >\sim 0.5$ and 49 low-redshift clusters with z=0.025-0.2, all followed-up with moderately deep Chandra observations. Extensive optical and infrared follow-up projects on the CCCP sample include MMT weak lensing measurements (Israel et al. 2009) and Spitzer analysis of cluster star-formation (e.g., Rines et al. 2007).

We are limiting the $EVLA\ DCS$ pilot study to only the high-redshift sample with $\delta >$ -30, which totals 30 clusters. These observations will not provide the detailed structures of halos that can be done at low redshifts. However, this sample will be extremely valuable as a legacy data set because: 1) We are systematically exploring a *new* redshift, luminosity, mass regime; 2) We can be sure that typical GRH emission will be well within the primary beam, while also sampling the critical infall and super-cluster outer regions; 3) Clusters at redshifts >0.5 show increased fraction of mergers; 22 of the 30 clusters in our sample are designated as merging by Vikhlinin et al. (2008);

Technical Requirements

To meet the primary science goals we must achieve a detection threshold of $\sim 2\times 10^{23}$ Watt Hz⁻¹ at 1.4 GHz. It is sufficient to reach a $\sigma_{rms}=21~\mu{\rm Jy~beam^{-1}}$ (or $\sim 33.2~{\rm mK}$) in C-configuration with 2×128 MHz bands in the 1-2 GHz range (calculated assuming a centrally peaked halo with a 2.5σ core of diameter 0.25 Mpc and $\Lambda{\rm CDM}$ cosmology),

Figure 3: X-ray emission from the 12 of the highest redshift clusters (z>0.5) in the CCCP sample from Vikhlinin et al. (2008), which show a statically significant lower fraction of cooling-cores and higher fraction of merger activity.

to reach this threshold for a z=0.5 cluster, which is where the bulk of our source lay (18 out of 30 have 0.4 < z < 0.6). We should note that simplified detection threshold calculations (like we present here) tend to overestimate the threshold compared to those calculated with simulated halo emission (e.g., Venturi et al. 2007). This will take (0.7 source + 0.2 overhead) hours per cluster, for a total of 27 hours. For the B-configuration data, we would like to also reach $\sigma_{rms} = 21~\mu\text{Jy beam}^{-1}$, which will take (0.53 source + 0.2 overhead) hours per cluster, for a total of 21.9 hours. We therefore request a total of 48.9 hours spread out over C, CnB, B, and BnA configurations.

References

Battaglia, N., Pfrommer, C., Sievers, J. L., Bond, J. R., & Enßlin, T. A. 2009, MNRAS, 393, 1073

Brown, S., & Rudnick, L. 2009, AJ, 137, 3158

Brunetti, G., Cassano, R., Dolag, K., & Setti, G. 2009, A&A, 507, 661

Burenin, R. A., Vikhlinin, A., Hornstrup, A., Ebeling, H., Quintana, H., & Mescheryakov, A. 2007, ApJS, 172, 561

Donnert, J., Dolag, K., Brunetti, G., Cassano, R., & Bonafede, A. 2009, MNRAS, 1630

Israel, H., et al. 2009, arXiv:0911.3111

Kushnir, D., Katz, B., & Waxman, E. 2009, Journal of Cosmology and Astro-Particle Physics, 9, 24

Markevitch, M., Govoni, F., Brunetti, G., & Jerius, D. 2005, ApJ, 627, 733

Mittal, R., Hudson, D. S., Reiprich, T. H., & Clarke, T. 2009, A&A, 501, 835

Pfrommer, C., Enßlin, T. A., & Springel, V. 2008, MNRAS, 385, 1211

Rines, K., Finn, R., & Vikhlinin, A. 2007, ApJ, 665, L9

Venturi, T., Giacintucci, S., Brunetti, G., Cassano, R., Bardelli, S., Dallacasa, D., & Setti, G. 2007, A&A, 463, 937 Vikhlinin, A., et al. 2009, ApJ, 692, 1033