Latent Factor Methods in Neuroimaging Data

Valerie Bradley, Ana Ignatieva, Yuxi Jiang, James Thornton

University of Oxford University of Warwick

16 November 2018

PCA, CCA and ICA

- Observed data $\mathbf{X} \in \mathbb{R}^{n \times d}$
- Linear transformation to underlying latent variable Y = XP
- $\mathbf{Y} \in \mathbb{R}^{n \times k}$; generally k << d
- Choose P to optimize some objective function $f_{\mathbf{X}}(\cdot)$
 - PCA: f_X(·) describes the amount of variance explained by a latent variable
 - ICA: $f_{\mathbf{X}}(\cdot)$ describes the independence of latent factors within a data set
 - CCA: $f_{\mathbf{X}}(\cdot)$ describes the correlation of latent factors derived from two data sets

Miller et al. (2016) Review

Bayesian CCA

Generative model:

- $\mathbf{Y} \sim N(0, \mathbf{I})$
- $Y^{(m)} \sim N(0, I)$
- $\mathbf{X}^{(m)} \sim N(\mathbf{A}^{(m)}\mathbf{Y} + \mathbf{B}^{(m)}\mathbf{Y}^{(m)}, \boldsymbol{\Sigma}^{(m)})$

Issues

Multiple modalities (views):

$$\Lambda = \left[\begin{array}{cccc} A^{(1)} & B^{(1)} & 0 & \cdots & 0 \\ A^{(2)} & 0 & B^{(2)} & \cdots & 0 \\ \vdots & \vdots & & \ddots & \\ A^{(m)} & 0 & \cdots & & B^{(m)} \end{array} \right]$$

Unidentifiable models:

rotational invariance:

$$\Lambda Q^T Q Y = \Lambda Y, \quad \forall \ Q^T Q = I$$

- scale invariance
- label switching (ignore)

BASS and GFA

BCCA with:

- multiple modalities
- different methods for inducing sparsity via priors
- invariance: non-sparse rotations violate prior structure

GFA:

- Automatic Relevance Determination (ARD) prior on Λ
- automatically selects number of LFs
- elements → 0

BASS:

- hierarchical *Three Parameter Beta* priors on Λ
- global, factor and local shrinkage
- automatically selects number of LFs
- elements $\rightarrow 0$

Data

- Brain imaging data:
 - DTI (43 variables)
 - rFMRI (105)
 - Structural thickness (68)
- Behavioural data (90)
- Matched by subject:
 - removed missing data
 - 335 observations

Objective: Use BASS/GFA to look for underlying relationships between different modalities

BASS Results

Imaging + behavioural data:

- 2 modalities (imaging + non-imaging)
- initial # latent factors = 50

Sparsity of loading matrix Lambda

Latent factors

BASS Results

Imaging data only:

- 3 modalities (DTI + rFMRI + structural)
- initial # latent factors = 50

k = 5

k = 15

k = 30

k = 50, only 48 latent factors identified

BASS Results - Multi-modal factors

Cross-Modality Loadings

Figure: Heat map showing values of loadings for latent factors 4, 16, 31 and 34 which span both behavioural and imaging modalities

GFA Results

Imaging + behavioural data:

- 2 modalities
- 46 latent factors identified (initial # latent factors =50)
- 9 latent factors active for both modes

GFA Results

Imaging + behavioural data:

- $\bullet \ 4 \ modalities \ (\mathsf{DTI} + \mathsf{rFMRI} + \mathsf{structural}(\mathsf{thickness}) + \mathsf{behavioural})$
- 47 latent factors identified (initial # latent factors =50)
- 1 latent factor active for all four modes

Method Comparison

- BASS identified only 3 cross-mode latent factors compared to 9 with GFA (on 2-mode imaging + behavioral applications).
- Similar global sparsity results (k = 50 identified similar number of latent factors)
- BASS seems to impose more local and factor sparsity than GFA
- Both were tricky to implement (lack of documentation) and could handle limited amount of data

Conclusion & Extensions

- Able to recover both sparse and dense latent factors, and factors spanning modes
- Both BASS and GFA improve upon PCA-CCA-ICA approach
- Limitations:
 - highly exploratory hard to interpret and validate
 - implementation and documentation
- Extensions:
 - linear modeling
 - non-linear latent factors

Questions

Thank you! Questions?

