数学分析I习题课一

2022年10月19日

问题 1. 求极限 $\lim_{n\to\infty}\sin(\sin(\cdots(\sin x)))$ (n 次复合函数).

问题 2. 设 $f(x), g(x) \in C[a,b]$, 求证:

- (1) $|f(x)| \in C[a,b]$ (反过来是否成立?);
- (2) $\max\{f(x), g(x)\} \in C[a, b];$
- (3) $\min\{f(x), g(x)\} \in C[a, b].$

问题 3. 指出函数 $f(x) = \begin{bmatrix} \frac{1}{x} \end{bmatrix} (x > 0)$ 的间断点,并说明他们属于哪一类。

问题 4. 设对每个自然数 n,数集 $A_n \subset [0,1]$ 是有限集,而且 $A_i \cap A_j = \emptyset, \forall i,j \in \mathbb{N}_+, i \neq j$ 。定义函数

$$f(x) = \begin{cases} 1/n, & \text{若} x \in A_n; \\ 0, & \text{若} x \in [0, 1]$$
但不在任何 A_n 中.

对每个 $a \in [0,1]$, 求 $\lim_{x \to a} f(x)$ 。

提示:回忆 Riemann 函数。

问题 5. 设函数 f 在 x = 0 处连续,且对一切 x, y 有 f(x + y) = f(x) + f(y)。证明 f 在 \mathbb{R} 上 连续,且 f(x) = f(1)x.

问题 6. 设 $f \in C[a,b]$,且对于每一个 $x \in [a,b]$ 存在 $y \in [a,b]$,使得 $|f(y)| \leq \frac{1}{2}|f(x)|$. 证明: f 在 [a,b] 中存在零点.

问题 7. (1) 设 f(x) 在 x_0 的一个开邻域内有定义, 称

$$\omega_f(x_0, r) \equiv \sup\{|f(x_1) - f(x_2)| | x_1, x_2 \in O_r(x_0)\} \ (r > 0)$$

为 f 在区间 (x_0-r,x_0+r) 上的振幅. 显然 $\omega_f(x_0,r)$ 关于 $r\to 0^+$ 单调递减, 因此

$$\omega_f(x_0) \equiv \lim_{r \to 0^+} \omega_f(x_0, r)$$

存在 (不一定有限), 称为 f 在 x_0 处的振幅. 证明: f(x) 在 x_0 处连续当且仅当 $\omega_f(x_0)=0$.

(2) 设 f 定义在区间 I 中, r > 0, 定义

$$\omega_f(r) \equiv \sup\{|f(x_1) - f(x_2)| | \forall x_1, x_2 \in I, |x_1 - x_2| < r\},\$$

则 $\omega_f(r)$ 关于 $r \to 0^+$ 单调递减. 证明: f 在 I 中一致连续当且仅当 $\lim_{r \to 0^+} \omega_f(r) = 0$.

问题 8. 设 $f(x) \in C(-\infty, +\infty)$, 且 $\lim_{x \to \infty} f(f(x)) = \infty$. 求证: $\lim_{x \to \infty} f(x) = \infty$.

问题 9. 设 $f(x) \in C(a,b), x_1, x_2, \cdots, x_n \in (a,b)$. 求证: $\exists \xi \in (a,b)$ 使得

$$f(\xi) = \frac{1}{n} \sum_{k=1}^{n} f(x_k).$$

问题 10. 设 $f \in C[0,1], f(0) = f(1).$ 证明: $\forall n \in \mathbb{N}_+, \exists \xi \in [0,1],$ 使得 $f(\xi + \frac{1}{n}) = f(\xi).$