Relación de ejercicios del tema 1

Topología II. Doble Grado en Matemáticas e Ingeniería Informática

Curso 2022/2023

Profesor: Rafael López Camino

Actualización: 06/10/2022, hora: 10:42:35

1. Si α es un arco y $\phi: \mathbf{I} \to \mathbf{I}$ es una aplicación continua con $\phi(0) = 0$ y $\phi(1) = 1$, probar que $\alpha \sim \alpha \circ \phi$.

- 2. En un conjunto estrellado de \mathbb{R}^n , probar que todo lazo desde el centro de la estrella es homotópico al lazo constante en dicho punto. Deducir que dos arcos con los mismos puntos iniciales y finales en otros puntos son homotópicos.
- 3. Sea X un espacio arcoconexo, $x, y \in X$ y γ, σ dos arcos que unen y con x. Denotamos por $\phi_{\gamma}, \phi_{\sigma} \colon \pi_1(X, y) \to \pi_1(X, x)$ los homeomorfismos inducidos. Probar que $\phi_{\gamma} = \phi_{\sigma}$ si y sólo si $[\gamma * \sigma^{-1}] \in Z(\pi_1(Y, y))$.
- 4. Probar que el cono de un espacio es arcoconexo.
- 5. En $\mathbb{R}^2 \setminus \{(0,0)\}$ se consideran los lazos con punto base $x_0 = (1,0)$ dados por $\alpha(t) = (\cos(2\pi t), \sin(2\pi t))$ y $c_{x_0}(t) = x_0$. Probar que α no es homotópico a c_{x_0} .
- 6. Probar que los siguientes espacios son simplemente conexos:
 - (a) Las letras T y H.
 - (b) En \mathbb{R}^n , dos bolas sólidas conectadas por un segmento $(n \geq 2)$.
 - (c) Dos planos paralelos de \mathbb{R}^3 conectados por un segmento.
 - (d) Dos esferas de \mathbb{R}^3 unidas por un segmento.
 - (e) El cono $x^2 + y^2 = z^2$.
 - (f) El paraboloide hiperbólico $z = x^2 y^2$.
- 7. Encontrar, si es posible, dos conjuntos de \mathbb{R}^n disjuntos y simplemente conexos que al unirlos por un segmento (éste sólo toca a cada conjunto en un único punto) no es un espacio simplemente conexo.

¹Denotamos por Z(G) al centro de un grupo G.

- 8. Describir los generadores del grupo fundamental del toro visto como superficie de revolución en \mathbb{R}^3 .
- 9. Sea $f: \mathbb{S}^1 \to \mathbb{S}^1$ una aplicación continua. Entonces, fijado cualquier punto $x_0 \in \mathbb{S}^1$, $f_*: \mathbb{Z} \to \mathbb{Z}$ es un homomorfismo de grupos, en particular, $f_*(x) = mx$ para algún $m \in \mathbb{Z}$. Se llama grado de f al número entero m. Hallar el grado de las aplicaciones: rotación de 90 grados, simetría respecto del eje x, aplicación antípoda y de $z \mapsto z^n$, $n \in \mathbb{N}$.
- 10. Sea (X,d) un espacio métrico compacto, $x,y \in X$. En $\Omega_{x,y}$ se define

$$d'(\alpha, \beta) = \sup\{d(\alpha(t), \beta(t)) : t \in \mathbf{I}\}.$$

Probar que d' es una distancia en $\Omega_{x,y}$. Probar que $\alpha \sim \beta$ si y sólo si existe un arco en $(\Omega_{x,y}, d')$ que une α con β .

- 11. Sean X e Y espacios arcoconexos y $f\colon X\to Y$ una aplicación continua. Probar o dar contraejemplos:
 - (a) Si f es inyectiva, también lo es f_* .
 - (b) Si f es sobreyectiva, también lo es f_* .
 - (c) Si f is biyectiva, también lo es f_* .
- 12. Sea $X = \mathbb{N} \cup \{\infty\}$ con la topología cuyos cerrados son X o los subconjuntos finitos de \mathbb{N} . Probar que es una topología y que es arcoconexa. Probar también que es simplemente conexa.
- 13. Probar que si X es arcoconexo, la suspensión SX es simplemente conexa². Para ello, sea $SX = X \times \mathbf{I}$ identificando $X \times \{0\}$ es un punto punto y $X \times \{1\}$ en otro. Tomamos $U = SX \setminus \{[(x,0)]\}$ y $V = \{[(x,1)]\}$ y probar que U y V son simplemente conexos (de manera parecida al cono) y que $U \cap V$ es arcoconexo porque es homeomorfo a $X \times \{0,1\}$.
- 14. Sabemos que $\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$, en particular

$$([\alpha],1)*(1,[\beta])=([\alpha],[\beta])=(1,[\beta])*([\alpha],1).$$

Hallar explícitamente una homotopía en $X \times Y$ que lleve ($[\alpha], 1$) en $(1, [\beta])$.

 $^{^2\}mathrm{Si}~X$ no es arcoconexa, el resultado no es cierto y dar un contraejemplo.

- 15. Supongamos que X no es necesariamente arcoconexo. Probar que si A es una componente arcoconexa y $a \in A$, entonces $\pi_1(A, a) \cong \pi_1(X, a)$.
- 16. Sabemos que $\mathbb{P}^1 \cong \mathbb{S}^1$. Usando dicho homeomorfismo queremos relacionar $\pi_1(\mathbb{P}^1, [1])$ con $\pi_1(\mathbb{S}^1, 1)$. Si $\alpha \in \Omega_1$, denotamos por γ_α el correspondiente lazo por el homeomorfismo con punto base [1]. Probar que si $\alpha \in \Omega_1$, entonces $\deg(\alpha) = 2\deg(\gamma_\alpha)$. Hallar $\deg(\beta)$, donde $\beta(t) = [(\cos \pi t, \sin \pi t)], t \in [0, 1/2]$.

RETRACCIONES

- 1. Probar que la banda (cerrada) de Möbius \mathbb{M} tiene como retracto de deformación a un conjunto homeomorfo a \mathbb{S}^1 . Hacer el ejercicio tanto viendo \mathbb{M} como subconjunto de \mathbb{R}^3 ('cinta doblada') o como cociente de un cuadrado de \mathbb{R}^2 . Como conclusión, su grupo fundamental es \mathbb{Z} . Plantear el mismo ejercicio con la banda abierta de Möbius.
- 2. Siguiendo con la banda (cerrada) de Möbius M, probar que la curva borde de la misma (definir cuál es) es homeomorfa a una circunferencia y que no es un retracto de deformación de M. Vista como lazo recorrido una vez ¿qué elemento es en el grupo fundamental de M?
- 3. Si $A \subset \mathbb{R}^n$ es compacto y convexo, entonces A es un retracto de deformación de \mathbb{R}^n . Para ello, definir para cada $x \in \mathbb{R}^n$, $r(x) = a_x \in A$ el único punto de A tal que $d(x, A) = d(x, a_x)$.
- 4. Probar que (0,0) en $\mathbb{R} \times [0,\infty)$ no tiene ningún entorno homeomorfo a \mathbb{R}^2 .
- 5. Probar que si 0 < r < s, entonces \mathbb{D}_r es retracto de deformación de \mathbb{B}_s .
- 6. Probar que $\{(0,0)\}$ es retracto de deformación de $\mathbb{S}^1_{(-1,0)} \cup \mathbb{S}^1_{(1,0)} \setminus \{(-2,0),(2,0)\}.$
- 7. Probar que los retractos y los retractos de deformación se preservan por homeomorfismos.
- 8. Probar que los retractos y los retractos deformación se preservan por transitividad en la inclusión de espacios.
- 9. Probar que los retractos y los retractos deformación se preservan por productos topológicos.
- 10. Sean A, B cerrados (o los dos abiertos) de un espacio X tal que $X = A \cup B$. Si $A \cap B$ es un retracto (resp. de deformación) de B, entonces A lo es de X.

- 11. Si A es un retracto de un espacio Hausdorff, probar que A es un cerrado.
- 12. Sea $Q \subset \mathbb{R}^n$ un compacto con una relación de equivalencia R e $I \subset \mathbb{R}^m$ otro conjunto compacto. Probar que

$$\left(\frac{Q}{R} \times \frac{I}{"="}, \frac{\tau_u}{R} \times \tau_u\right) = \left(\frac{Q \times I}{R \times "="}, \frac{\tau_u \times \tau_u}{R \times "="}\right).$$

13. Probar que el cono CX es simplemente conexo. Para ello, probar que es contráctil en el punto $\{[(x,1)]\}$. En primer lugar hay que probar el siguiente resultado:

Sea $f: X \to Y$ una identificación e I un espacio Hausdorff y localmente compacto³. Probar que

$$f \times 1_I \colon X \times I \to Y \times I$$

es una identificación.⁴

- 14. Probar que un plano proyectivo y una botella de Klein contiene una banda de Möbius.
- 15. Probar que un espacio (non necesariamente arcoconexo) contráctil es arcoconexo.
- 16. Se ha probado que $\mathbb{R}^n \setminus \{0\}$ tiene como retracto de deformación a \mathbb{S}^{n-1} . Queremos 'extender' este resultado del siguiente modo.

Consideramos la esfera \mathbb{S}^2 , el toro, la botella de Klein y el plano proyectivo considerados como conjuntos cocientes del cuadrado $Q = \mathbf{I}^2$ (o del disco, dependiendo). Tomamos el punto $p = [(\frac{1}{2}, \frac{1}{2})]$. Probar que cada uno de los espacios anteriores quitado el punto p tiene como retracto de deformación al borde de Q tomando cociente, es decir, $A = \frac{(\mathbf{I} \times \{0,1\}) \cup (\{0,1\} \times \mathbf{I})}{\sim}$.

- 17. Sean $x_0 \in X$, $y_0 \in Y$. Supongamos que $O_1 \subset X$ y $O_2 \subset Y$ son abiertos, $x_0 \in O_1$ y $y_0 \in O_2$. Si O_1 y O_2 son retractos de deformación de X e Y respectivamente, $O_1 \vee O_2$ lo es de $X \vee Y$.
- 18. La figura del ocho, $\mathbb{S}^1((-1,0)) \cup \mathbb{S}^1((1,0))$, es un retracto de deformación fuerte de $\mathbb{R}^2 \setminus \{(1,0),-1,0)\}$.
- 19. La figura ocho es un retracto por deformación fuerte del toro menos un punto.

³El espacio es localmente compacto si todo punto tiene una base de entornos compactos.

⁴El ejercicio anterior es un caso particular de éste (comprobar).

20. Consideramos el espacio peine

$$P = (\{0\} \times \mathbf{I}) \cup (K \times \mathbf{I}) \cup (\mathbf{I} \times \{0\}),$$

donde $K = \{\frac{1}{n} : n \in \mathbb{N}\}$. Probar que este conjunto es arcoconexo, no es localmente arcoconexo. Probar que $\{(0,0)\}$ es un retracto de deformación del espacio, pero no $\{(0,1)\}$ no lo es.

- 21. Probar que $\{(\frac{1}{2},0)\}$ es un retracto de deformación de $(\mathbb{S}^1 \times [0,1]) \cup (\mathbb{D}^2 \times \{0\})$.
- 22. Probar que $\mathbb{D}^2 \setminus (\{(\pm \frac{1}{2}, 0\}))$ tiene como retracto de deformación la figura del ocho.
- 23. Probar que $\mathbb{R}^2 \setminus \{(\pm 1, \pm 1)\}$ tiene como retracto de deformación una flor de 4 pétalos alrededor de los puntos eliminados.
- 24. Consideramos todos los espacios topológicos cocientes de $\mathbf{I} \times \mathbf{I}$ que han salido en clase identificando aristas. Sin usar que son homeomorfos a espacios 'conocidos', probar que son Hausdorff. Del mismo modo, probar que la retracción radial desde $(\frac{1}{2}, \frac{1}{2})$ prueba que las aristas (en el cociente) es un retracto de deformación del espacio punteado en $[(\frac{1}{2}, \frac{1}{2})]$. Generalizar ambos ejercicios a espacios topológicos que son cocientes de polígonos cerrados (junto con su interior) identificando aristas entre sí.
- 25. Extendemos el concepto de arcos homotópicos. Dos aplicaciones $f,g:X\to Y$ se llaman homotópicas, y escribimos $f\sim g$, si existe $H:X\times I\to Y$ continua tal que h(x,0)=f(x) y H(x,1)=g(x). Si f es homotópica a una aplicación constante, se dice que f es nulhomotópica.
 - (a) Si $X \subset \mathbb{R}^n$ es convexo y $f \colon X \to Y$ es continua, entonces f es nulhomotópica. Lo mismo si $f \colon Y \to X$.
 - (b) Si $f, g: X \to \mathbb{S}^n$ son continuas con $f(x) \neq -g(x)$ para todo $x \in X$, entonces $f \sim g$.
 - (c) Sea $f: X \to Y$ continua. Entonces f es nulhomotópica si y sólo si f admite una extensión continua al cono CX.
 - (d) Dar un ejemplo dos aplicaciones nulhomotópicas que no son homotópicas entre sí.
 - (e) Probar que ser homotópicas es una relación de equivalencia en el conjuntos de las aplicaciones continuas de X a Y.
 - (f) Dos espacios X e Y se dicen que son homotópicos si existe $f: X \to Y$ y $g: Y \to X$ continuas tales que $g \circ f \sim 1_X$ y $f \circ g \sim 1_Y$. Probar que en tal caso, los grupos fundamentales de X e Y coinciden.

- (g) Si A es un retracto de deformación de X, entonces A y X son homotópicos.
- (h) Probar que la figura del 8 es homotópica a dos cuadrados (sólo las aristas) pegados por un lado común.

TEOREMA DE SEIFERT-VAN KAMPEN

- 1. Hallar los grupos fundamentales de los siguiente espacios indicando los generadores:
 - (a) \mathbb{S}^2 junto con el segmento [N, S].
 - (b) \mathbb{S}^2 juntos dos circunferencias disjuntas entre ellas de \mathbb{R}^3 tangentes a \mathbb{S}^2 en N y S respectivamente.
 - (c) Unión de una esfera y un toro tangentes en un punto.
 - (d) Unión de dos toros tangentes.
 - (e) Un toro menos un punto, la botella de Klein menos un punto, el plano proyectivo menos un punto, la banda de Möbius menos un punto.
 - (f) Un toro de revolución junto una esfera que es tangente a lo largo del círculo interior.
 - (g) Un polígono regular de n lados identificando los lados de la siguiente forma:
 - i. n=3, aaa.
 - ii. n = 6, $aa^{-1}ba^{-1}a^{-1}b^{-1}$.
 - iii. n = 6, $ab^{-1}bccc$.
 - iv. n = 7, $abaaab^{-1}a^{-1}$.
 - (h) La suspensión de un espacio.
 - (i) Una corona circular sólida, donde puntos antípodas de cada uno de los círculos (por separado) están relacionados entre sí.
 - (j) Una corona circular sólida, donde puntos de cada uno de los círculos que están en la misma recta vectorial desde el centro están relacionados entre sí.
 - (k) $(\mathbb{S}^1 \times [0,1]) \cup (\mathbb{D}^2 \times \{0,1\}).$
 - (l) Cuatro circunferencias de radio 1 del plano, cuyos centros se encuentran en un cuadrado centrado en el origen con vértices $(\pm 1, \pm 1)$.
 - (m) Dos toros, uno de ellos es tangente al otro a lo largo de la circunferencia interior del mismo.
 - (n) Un toro sólido.

- (o) $\mathbb{S}^1(-1,0) \cup \mathbb{S}^1(1,0) \cup [(-1,0),(1,0)].$
- (p) Tres circunferencias del plano tangentes exteriormente cada una con las otras dos.
- (q) Lo mismo que antes pero cambiando circunferencias por esferas.
- (r) Una circunferencia del plano junto con un triángulo inscrito en ella.
- (s) Un triángulo del plano junto con un círculo inscrito en ella.
- (t) \mathbb{S}^2 junto con un disco de radio 1 en su interior.
- (u) S² junto con dos discos de radio 1 en su interior y perpendiculares entre sí.
- (v) Si $A = \{0, -1, 1\}$, el conjunto del plano dado por $(A \times \mathbb{R}) \cup (\mathbb{R} \times A)$.
- (w) $\mathbb{RP}^2 \vee \mathbb{RP}^2$
- (x) El espacio \mathbb{D}^2/\sim , donde $x\sim y$ si son iguales o hay un giro de 120 grados que me lleva uno en otro.
- (y) Tres esferas tangentes en un punto, una tras otra.
- (z) Un triángulo en \mathbb{R}^3 junto tres esferas disjuntas dos a dos y que cada una toca uno sólo de los vértices del triángulo.
- 2. Damos la definición del grado de un lazo de \mathbb{S}^1 en otro punto distinto de 1. Sea $z_0 = e^{2\pi\theta_0} \in \mathbb{S}^1$. Tenemos dos posibilidades de definir el grado. En primer lugar, y siguiendo la analogía de cómo se definió para lazos con punto base 1, si $\beta \in \Omega_{z_0}$, definimos $\deg(\beta) = \tilde{\beta}(1) \tilde{\beta}(0)$, donde $\tilde{\beta}$ es el único levantamiento de β con $\tilde{\beta}(0) = \theta_0$. La otra posibilidad es usar el isomorfismo $\pi_1(\mathbb{S}^1, 1) \cong \pi_1(\mathbb{S}^1, z_0)$. Si γ es un arco que une 1 con z_0 , definimos $\deg(\beta) = \deg \gamma * \beta * \gamma^{-1}$. Probar que ambas definiciones coinciden.
- 3. Hallar el grupo fundamental de:
 - (a) una camiseta y de una camisa desabrochada.
 - (b) Una taza de café con asa.
 - (c) Un volante de tres radios.