

Winning Space Race with Data Science

Hector Oliva 12 May 2025

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
- Summary of all results

Introduction

- Project background and context
- Problems you want to find answers

Methodology

Executive Summary

- Data collection methodology:
 - By API Lab Ungraded App
 - By Web Scraping
- Perform data wrangling
 - Perform some Exploratory Data Analysis (EDA) to find some patterns in the data and determine what would be the label for training supervised models. Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Describe how data sets were collected.
 - Using Api and web scraping
- You need to present your data collection process use key phrases and flowcharts

Data Collection – SpaceX API

- Present your data collection with SpaceX REST calls using key phrases and flowcharts
- Add the GitHub URL of the completed SpaceX API calls notebook (must include completed code cell and outcome cell), as an external reference and peer-review purpose

da	<pre>data.head()</pre>															
	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Long
0	1	2006- 03-24	Falcon 1	20.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin1A	167.74
1	2	2007- 03-21	Falcon 1	NaN	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin2A	167.74
2	4	2008- 09-28	Falcon 1	165.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin2C	167.74
3	5	2009- 07-13	Falcon 1	200.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin3C	167.74
4	6	2010- 06-04	Falcon 9	NaN	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B0003	-80.57

Data Collection - Scraping

- · Present your web scraping process using key phrases and flowcharts
- Add the GitHub URL of the completed web scraping notebook, as an external reference and peer-review purpose

: d	df.head(10)															
:	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitu
0	1	2010- 06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577
1	2	2012- 05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577
2	2 3	2013- 03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577
3	3 4	2013- 09-29	Falcon 9	500.000000	РО	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610
4	1 5	2013- 12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577
5	5 6	2014- 01-06	Falcon 9	3325.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1005	-80.577

EDA with Data Visualization

- Exploratory Data Analysis and Feature Engineering
- Create scatter plots and bar charts by writing Python code to analyze data in a Pandas data frame
- Write Python code to conduct exploratory data analysis by manipulating data in a Pandas data frame
- Create and execute SQL queries to select and sort data
- Utilize your data visualization skills to visualize the data and extract meaningful patterns to guide the modeling process

EDA with SQL

- Using bullet point format, summarize the SQL queries you performed
- Somenting.... For example:
 - %sql SELECT DISTINCT "Launch_Site" FROM SPACEXTABLE
 - %%sql SELECT * FROM SPACEXTABLE WHERE "Launch_Site" LIKE 'CCA%' LIMIT 5;
 - %%sql SELECT Date FROM SPACEXTABLEWHERE Landing_Outcome LIKE '%Success (ground pad)%'ORDER BY Date LIMIT 1
 - Others apply.

EDA with SQL

Build an Interactive Map with Folium

Predictive Analysis (Classification)

Find the best Hyperparameter for SVM, Classification Trees, and Logistic Regression.

lat	ta.head()															
	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longit
0	1	2010- 06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.57
1	2	2012- 05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.57
2	3	2013- 03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.57
3	4	2013- 09-29	Falcon 9	500.000000	PO	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610

Results

Flight Number vs. Launch Site

Payload vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Most important: ES – GEO – HEO SSO

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

Launch Site Names Begin with 'CCA'

Display 5 records where launch sites begin with the string 'CCA'

```
[43]: %%sql

SELECT * FROM SPACEXTABLE

WHERE "Launch_Site" LIKE 'CCA%'

LIMIT 5;
```

* sqlite:///my_data1.db

Done.

[43]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome
	2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success
	2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success
	2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success
	2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success
	2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success

Total Payload Mass

Task 3 Display the total payload mass carried by boosters launched by NASA (CRS) %%sql [63]: SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTABLE WHERE Payload LIKE '%CRS%'; * sqlite:///my_data1.db Done. [63]: SUM(PAYLOAD_MASS__KG_) 111268

Average Payload Mass by F9 v1.1

Task 4

Display average payload mass carried by booster version F9 v1.1

First Successful Ground Landing Date

```
Task 5
      List the date when the first succesful landing outcome in ground pad was acheived.
      Hint:Use min function
[77]: df['Landing_Outcome'].value_counts()
[77]: Landing Outcome
       Success
                                 38
                                 21
       No attempt
      Success (drone ship)
                                 14
      Success (ground pad)
       Controlled (ocean)
       Failure (drone ship)
       Failure
      Uncontrolled (ocean)
       Failure (parachute)
       Precluded (drone ship)
      No attempt
      Name: count, dtype: int64
```

```
[85]: %%sql
      SELECT Date FROM SPACEXTABLE
       WHERE Landing Outcome LIKE '%Success (ground pad)%' Limit 1;
       * sqlite:///my_data1.db
      Done.
[85]:
            Date
       2015-12-22
[89]: %%sql
      SELECT MIN(Date) FROM SPACEXTABLE
      WHERE Landing Outcome LIKE '%Success (ground pad)%';
       * sqlite:///my_data1.db
      Done.
[89]: MIN(Date)
      2015-12-22
[97]: %%sql
      SELECT Date FROM SPACEXTABLE
      WHERE Landing_Outcome LIKE '%Success (ground pad)%'
       ORDER BY Date LIMIT 1
       * sqlite:///my data1.db
       Done.
            Date
      2015-12-22
```

Successful Drone Ship Landing with Payload between 4000 and 6000

Task 6 List the names of the boosters which have success in drone ship %%sql [113]: SELECT Booster Version FROM SPACEXTABLE WHERE Landing Outcome LIKE '%Success (drone ship)%' AND PAYLOAD MASS KG BETWEEN 4000 AND 6000 * sqlite:///my_data1.db Done. [113]: Booster_Version F9 FT B1022 F9 FT B1026 F9 FT B1021.2 F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

Task 7
List the total number of successful and failure mission outcomes

[115]: df['Mission_Outcome'].value_counts().to_frame('Counts')

[115]:		Counts
	Mission_Outcome	
	Success	98
	Failure (in flight)	1
	Success (payload status unclear)	1
	Success	1

[129]:	<pre>%%sql SELECT Mission_Outcome, COUNT(*) as TOTAL FROM SPACEXTABLE WHERE Mission_Outcome LIKE 'Success%' or Mission_Outcome LIKE '%Failure%' GROUP BY Mission_Outcome ORDER BY TOTAL;</pre>										
	* sqlite:///my_data1.db Done.										
[129]:	Mission_Outcome	TOTAL	_								
	Failure (in flight)	1									
	Success	1									
	Success (payload status unclear)	1									
	Success	98									

Boosters Carried Maximum Payload

```
%sql SELECT MAX(PAYLOAD_MASS__KG_) FROM SPACEXTABLE
[139]:
        * sqlite:///my_data1.db
       Done.
[139]: MAX(PAYLOAD_MASS_KG_)
                           15600
       #%sql SELECT DISTINCT(PAYLOAD MASS KG ) FROM SPACEXTABLE
       %%sql
[157]:
       SELECT Booster_Version FROM SPACEXTABLE
       WHERE PAYLOAD_MASS__KG_ = (SELECT MAX(PAYLOAD_MASS__KG_)
        * sqlite:///my data1.db
       Done.
[157]:
       Booster_Version
          F9 B5 B1048.4
          F9 B5 B1049.4
          F9 B5 B1051.3
          F9 B5 B1056.4
```


<Folium Map Screenshot 1>

<Folium Map Screenshot 2>

<Folium Map Screenshot 3>

Classification Accuracy

```
# Mostrar resultados
       print("Logistic Regression Accuracy:", acc_lr)
       print("SVM Accuracy:", acc_svm)
       print("Decision Tree Accuracy:", acc tree)
       print("KNN Accuracy:", acc knn)
       Logistic Regression Accuracy: 0.8333333333333334
       SVM Accuracy: 0.833333333333334
       Decision Tree Accuracy: 0.83333333333333334
       KNN Accuracy: 0.8333333333333334
       best model = max(
[314]:
           [("Logistic Regression", acc_lr),
            ("SVM", acc svm),
            ("Decision Tree", acc_tree),
            ("KNN", acc knn)],
           key=lambda x: x[1]
       print(f"The best performing model is: {best model[0]} with accuracy of {best model[1]:.2f}")
```

The best performing model is: Logistic Regression with accuracy of 0.83

Confusion Matrix

Conclusions

- Launch Success Rate Increased Over TimeFrom 2013 onward, SpaceX significantly improved its launch success rate, with a notable upward trend in successful missions year by year.
- LEO Orbit Shows Highest Success CorrelationLaunches targeting Low Earth Orbit (LEO) demonstrate a higher success rate, possibly due to simpler mission profiles compared to more complex orbits like GTO.
- Launch Site Influences Success RateAmong the different launch sites, VAFB SLC-4E had a slightly lower success rate compared to KSC LC-39A and CCAFS LC-4O, suggesting environmental or logistical differences may impact outcomes.
- Payload Mass Has Limited Impact on SuccessThe payload mass alone does not strongly determine mission success; both heavy and light payloads have shown successful and failed outcomes depending on other variables.

