# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

#### OPIC Oppice de la propriété

INTELLECTUELLE DU CANADA



# (12) (19) (CA) Demande-Application

CIPO
CANADIAN INTELLECTUAL
PROPERTY OFFICE

(21)(A1) **2,271,718** 

(86) 1997/11/13

(87) 1998/05/22

(72) HARRINGTON, Lea A., CA (72) ROBINSON, Murray O., US

(71) AMGEN INC., US

(71) AMGEN CANADA INC., CA

(51) Int.Cl. 6 C12N 15/54, C12N 15/85, A61K 31/70, A01K 67/027, C12Q 1/68, C12Q 1/48, A61K 38/45, C07K 16/40, C12N 1/21, C12N 1/19, C12N 9/12, C12N 15/11

(30) 1996/11/15 (08/751,189) US

(30) 1997/06/11 (08/873,039) US

(30) 1997/10/16 (08/951,733) US

(54) GENES CODANT DES PROTEINES DE TELOMERASE

(54) GENES ENCODING TELOMERASE PROTEINS

(57) L'invention concerne des molécules d'acide nucléique, qui codent des polypeptides du complexe télomérase. L'invention se rapporte également à des procédés de préparation desdites molécules d'acide nucléique et desdits polypeptides et à des procédés d'utilisation desdites molécules.

(57) Disclosed are nucleic acid molecules encoding polypeptides of the telomerase complex. Also disclosed are methods of preparing the nucleic acid molecules and polypeptides, and methods of using these molecules.

### **PCT**

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| 51) International Patent Classification <sup>6</sup> :  C12N 15/54, 9/12, C12Q 1/68, 1/48, C12N 15/11, 15/85, A01K 67/027, C07K 16/40, A61K 38/45, 31/70, C12N 1/21, 1/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>A1</b>                                         | (11) International Publication Number: WO 98/2134 (43) International Publication Date: 22 May 1998 (22.05.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22) International Application Number: PCT/USS 22) International Filing Date: 13 November 1997 (130) Priority Data:  08/871,189 08/873,039 11 June 1997 (11.06.97) 08/951,733 16 October 1997 (16.10.97)  71) Applicants: AMGEN INC. [US/US]; Amgen Central De Havilland Drive, Thousand Oaks, CA 913 (US). AMGEN CANADA INC. [CA/CA]; Suite 30 (US). Toronto, Ontario M5R 1S9 (CA). ROBINSON, O.; 22623 Pacific Coast Highway, Malibu, CA 9020 (VS). | 13.11.9  5) [ [ [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ | BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, G GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, L LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, N NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TI TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (G KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, A BY, KG, KZ, MD, RU, TJ, TM) European patent (AT, B CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, N PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, Gi ML, MR, NE, SN, TD, TG).  Published  With international search report. With amended claims and statement: 30 July 1998 (30.07.9) |

#### (57) Abstract

Disclosed are nucleic acid molecules encoding polypeptides of the telomerase complex. Also disclosed are methods of preparing the nucleic acid molecules and polypeptides, and methods of using these molecules.

15

- 103 -

#### AMENDED CLAIMS

[received by the International Bureau on 19 June 1998 (19.06.98); new claims 33-56 added; remaining claims unchanged (7 pages)]

- 1. A TP2 nucleic acid molecule encoding a polypeptide selected from the group consisting of:
- (a) the nucleic acid molecule of SEQ ID NO:13;
- (b) the nucleic acid molecule that is nucleotides 1920-2820 of SEQ ID NO:13;
  - (c) the nucleic acid molecule of SEQ ID NO:19
- (d) a nucleic acid molecule encoding the polypeptide of SEQ ID NO:14, or a biologically active fragment thereof;
  - (e) a nucleic acid molecule encoding the polypeptide of SEQ ID NO:20, or a biologically active fragment thereof;
  - (f) a nucleic acid molecule that encodes a polypeptide that is at least 90 percent identical to the polypeptide of SEQ ID NO:14;
- (g) a nucleic acid molecule that encodes a 20 polypeptide that is at least 90 percent identical to the polypeptide of SEQ ID NO:20;
  - (h) a nucleic acid molecule that hybridizes under stringent conditions to any of (a)-(g) above; and
- (i) a nucleic acid molecule that is the 25 complement of any of (a)-(g) above.
  - 2. The nucleic acid molecule that is SEQ ID NO:13 or SEQ ID NO:19.
- 3. The nucleic acid molecule that is nucleotides 1920-2820 of SEQ ID NO:13.
  - 4. A nucleic acid molecule encoding the polypeptide of SEQ ID NO:14 of SEQ ID NO:20.

- 5. A nucleic acid molecule selected from the group consisting of: nucleotides 1-1689 of SEQ ID NO:13, nucleotides 1-1920 of SEQ ID NO:13, nucleotides 1920-2820 of SEQ ID NO:13, nucleotides 2089-2820 of SEQ ID NO:13, and nucleotides 2089-2859 of SEQ ID NO:13.
  - 6. A nucleic acid molecule encoding amino acids 640-940 of the polypeptide of SEQ ID NO:14.
- 7. A vector comprising the nucleic acid molecule of claim 1.
  - 8. A vector comprising the nucleic acid molecule of claim 2.

- 9. A vector comprising the nucleic acid molecule of claim 3.
- 10. A vector comprising the nucleic acid 20 molecule of claim 4.
  - 11. A vector comprising the nucleic acid molecule of claim 5.
- 25 12. A vector comprising the nucleic acid molecule of claim 6.
  - 13. A host cell comprising the vector of claim 7.

30

- 14. A host cell comprising the vector of claim 8.
- 15. A host cell comprising the vector of 35 claim 9.

AMENDED SHEET (ARTICLE 19)

- 16. A host cell comprising the vector of claim 10.
- 5 17. A host cell comprising the vector of claim 11.
  - 18. A host cell comprising the vector of claim 12.

- 19. A process for producing a TP2 polypeptide comprising the steps of:
- (a) expressing a polypeptide encoded by the nucleic acid of claim 1 in a suitable host; and
- 15 (b) isolating the polypeptide.
  - 20. The process of claim 19 wherein the polypeptide is SEQ ID NO:14 or SEQ ID NO:20.
- 20 21. The process of claim 19 wherein the polypeptide is amino acids 640-940 of SEQ ID NO:14.
  - 22. A TP2 polypeptide selected from the group consisting of:
  - (a) the polypeptide of SEQ ID NO:14;
  - (b) the polypeptide that is amino acids 640-940 of SEQ ID NO:14;
    - (c) the polypeptide of SEQ ID NO:20; and
- (d) a polypeptide that is at least 90 percent 30 identical to any of the polypeptides of (a)-(c).
  - 23. A TP2 polypeptide that is the polypeptide of SEQ ID NO:14, SEQ ID NO:20, or a biologically active fragment thereof.

35

- 24. A TP2 polypeptide selected from the group consisting of: amino acids 1-563 of SEQ ID NO:14; amino acids 1-640 of SEQ ID NO:14; amino acids 640-940 of SEQ ID NO:14; amino acids 696-940 of SEQ ID NO:14; and amino acids 696-953 of SEQ ID NO:14.
- 25. The TP2 polypeptide of claim 22 that does not possess an amino terminal methionine.
- 26. A method of increasing proliferation of a cell, comprising expressing a nucleic acid encoding TP2 or a biologically active fragment thereof, in the cell.
- 27. A method of increasing telomerase activity in a cell, comprising expressing a TP2 gene, or a biologically active fragment thereof, in the cell.
- 28. A method of decreasing telomerase in a 20 cell, comprising expressing a TP2 mutant in a cell, wherein the mutant does not have TP2 biological activity.
- 29. A nucleic acid molecule encoding a
  25 mutant TP2 polypeptide, wherein the codon for aspartic
  acid at amino acid position 868 or 869 is changed to a
  codon for alanine.
- 30. A nucleic acid molecule encoding a
  30 mutant TP2 polypeptide, wherein the codons for aspartic
  acid at amino acid positions 868 and 869 are changed to
  codons for alanine.
- 31. A polypeptide encoded by the nucleic acid molecule of claim 29.

- 32. A polypeptide encoded by the nucleic acid molecule of claim 30.
- 5 33. A TRIP1 nucleic acid molecule encoding a polypeptide selected from the group consisting of:
  - (a) the nucleic acid molecule of SEQ ID NO:1;
  - (b) the nucleic acid molecule of SEQ ID NO:2;
- (c) a nucleic acid molecule encoding the polypeptide of SEQ ID NO:3, SEQ ID NO:4, or a biologically active fragment thereof;
  - (d) a nucleic acid molecule that encodes a polypeptide that is at least 70 percent identical to the polypeptide of SEQ ID NO:3 or SEQ ID NO:4;
- (e) a nucleic acid molecule that hybridizes under stringent conditions to any of (a)-(d) above; and (f) a nucleic acid molecule that is the complement of any of (a)-(e) above.
- 20 34. The nucleic acid molecule that is SEQ ID NO:1.
  - 35. The nucleic acid molecule that is SEQ ID NO:2.
  - 36. A nucleic acid molecule encoding the polypeptide of SEQ ID NO:3.
- 37. A nucleic acid molecule encoding the 30 polypeptide of SEQ ID NO:4.
  - 38. A nucleic acid molecule encoding amino acids 1-871 of the polypeptide of SEQ ID NO:3.

- 39. A vector comprising the nucleic acid molecule of claim 33.
- 40. A vector comprising the nucleic acid molecule of claim 34.
  - 41. A vector comprising the nucleic acid molecule of claim 35.
- 10 42. A vector comprising the nucleic acid molecule of claim 36.
  - 43. A vector comprising the nucleic acid molecule of claim 37.
  - 44. A vector comprising the nucleic acid molecule of claim 38.
- 45. A host cell comprising the vector of 20 claim 39.
  - $$46.\ A$$  host cell comprising the vector of claim  $40.\$
- 25 47. A host cell comprising the vector of claim 41.
  - 48. A host cell comprising the vector of claim 42.
    - 49. A host cell comprising the vector of claim 43.
- 50. A host cell comprising the vector of 35 claim 44.

- 51. A process for producing a TRIP1 polypeptide comprising the steps of:
- (a) expressing a polypeptide encoded by the5 nucleic acid of claim 1 in a suitable host; and(b) isolating the polypeptide.
  - 52. The process of claim 51 wherein the polypeptide is SEQ ID NO:3.
  - 53. The process of claim 51 wherein the polypeptide amino acids 1-871 of SEQ ID NO:3.
- 54. A TRIP1 polypeptide selected from the 15 group consisting of:
  - (a) the polypeptide of SEQ ID NO:3;
  - (b) the polypeptide that is amino acids 1-871 of SEQ ID NO:3; and
- (c) a polypeptide that is at least 70 percent 20 identical to the polypeptide of (a) or (b).
  - 55. A TRIP1 polypeptide that is the polypeptide of SEQ ID NO:3 or a biologically active fragment thereof.
  - 56. The TRIP1 polypeptide of claim 52 that does not possess an amino terminal methionine.

WO 98/21343

PCT/US97/21248

- 110 -

### STATEMENT UNDER ARTICLE 19

The claims of International Application WO 98/21248, published 22 May 1998, have been amended. Original claims 1 through 32 have not been amended, however, new claims 33 through 56 have been added. Claims 33 through 56 are directed to an aspect of the invention not originally claimed by Applicants. Specifically, claims 33 through 56 encompass telomerase protein 1 and DNA encoding therefor. Such claims are fully supported by the written description and the drawings.

# FIG.1A

ATGGAAAAACTCCATGGGCATGTGTCTGCCCATCCAGACATCCTCCT TGGAGAACCGGTGCCTGGCTATGCTCCCTGACTTACAGCCCTTGGAGAA ACTACATCAGCATGTATCTACCCACTCAGATATCCTCTCCTTGAAGAAC CAGTGCCTAGCCACGCTTCCTGACCTGAAGACCATGGAAAAACCACATG GATATGTGTCTGCCCACCCAGACATCCTCTCCTTGGAGAACCAGTGCCT GGCCACACTTTCTGACCTGAAGACCATGGAGAAACCACATGGACATGTT TCTGCCCACCCAGACATCCTCTCCTTGGAGAACCGGTGCCTGGCCACCC TCCCTAGTCTAAAGAGCACTGTGTCTGCCAGCCCCTTGTTCCAGAGTCT ACAGATATCTCACATGACGCAAGCTGATTTGTACCGTGTGAACAACAGC AATTGCCTGCTCTCTGAGCCTCCAAGTTGGAGGGCTCAGCATTTCTCTA AGGGACTAGACCTTTCAACCTGCCCTATAGCCCTGAAATCCATCTCTGC CACAGAGACAGCTCAGGAAGCAACTTTGGGTCGTTTGGTTTGATTCAGAA GAGAAGAAAGGGGCAGAGACCCAAATGCCTTCTTATAGTCTGAGCTTGG GAGAGGAGGAGGTGGAGGATCTGGCCGTGAAGCTCACCTCTGGAGA CTCTGAATCTCATCCAGAGCCTACTGACCATGTCCTTCAGGAAAAGAAG ATGGCTCTACTGAGCTTGCTGTGCTCTACTCTGGTCTCAGAAGTAAACA TGAACAATACATCTGACCCCACCCTGGCTGCCATTTTTGAAATCTGTCG TGAACTTGCCCTCCTGGAGCCTGAGTTTATCCTCAAGGCATCTTTGTAT GCCAGGCAGCAGCTGAACGTCCGGAATGTGGCCAATAACATCTTGGCCA

# FIG.1B

TTGCTGCTTTCTTGCCGGCGTGTCGCCCCCCCCCGGCGACGATATTTCTG TGCCATTGTCCAGCTGCCTTCTGACTGGATCCAGGTGGCTGAGCTTTAC CAGAGCCTGGCTGAGGGAGATAAGAATAAGCTGGTGCCCCTGCCCGCCT GTCTCCGTACTGCCATGACGGACAAATTTGCCCAGTTTGACGAGTACCA GCTGGCTAAGTACAACCCTCGGAAGCACCGGGCCAAGAGACACCCCCGC CGGCCACCCGCTCTCCAGGGATGGAGCCTCCATTTTCTCACAGATGTT TTCCAAGGTACATAGGGTTTCTCAGAGAAGAGCAGAGAAAGTTTGAGAA GGCCGGTGATACAGTGTCAGAGAAAAAGAATCCTCCAAGGTTCACCCTG AAGAAGCTGGTTCAGCGACTGCACATCCACAAGCCTGCCCAGCACGTTC AAGCCCTGCTGGGTTACAGATACCCCTCCAACCTACAGCTCTTTTCTCG AAGTCGCCTTCCTGGGCCTTGGGATTCTAGCAGAGCTGGGAAGAGGATG AAGCTGTCTAGGCCAGAGACCTGGGGAGCGGGAGCTGAGCCTACGGGGGA ACAAAGCGTCGGTCTGGGAGGAACTCATTGAAAATGGGAAGCTTCCCTT CATGGCCATGCTTCGGAACCTGTGCAACCTGCTGCGGGTTGGAATCAGT TCCCGCCACCATGAGCTCATTCTCCAGAGACTCCAGCATGGGAAGTCGG TGATCCACAGTCGGCAGTTTCCATTCAGATTTCTTAACGCCCATGATGC CATTGATGCCCTCGAGGCTCAACTCAGAAATCAAGCATTGCCCTTTCCT TCGAATATAACACTGATGAGGCGGATACTAACTAGAAATGAAAAGAACC GTCCCAGGCGGAGGTTTCTTTGCCACCTAAGCCGTCAGCAGCTTCGTAT

# FIG.1C

GGCAATGAGGATACCTGTGTTGTATGAGCAGCTCAAGAGGGAGAAGCTG AGAGTACACAAGGCCAGACAGTGGAAATATGATGGTGAGATGCTGAACA GGTACCGACAGGCCCTAGAGACAGCTGTGAACCTCTCTGTGAAGCACAG CCTGCCCTGCTGCCAGGCCGCACTGTCTTGGTCTATCTGACAGATGCT AATGCAGACAGGCTCTGTCCAAAGAGCAACCCACAAGGGCCCCCGCTGA ACTATGCACTGCTGTTGATTGGGATGATCACGAGGGCGGAGCAGGT GGACGTCGTGTGTGGAGGTGACACTCTGAAGACTGCAGTGCTTAAG GCAGAAGAAGCATCCTGAAGACTGCCATCAAGCTCCAGGCTCAAGTCC AGGAGTTTGATGAAAATGATGGATGGTCCCTGAATACTTTTTGCGAAATA CCTGCTGTCTCTGGCTGGCCAAAGGGTTCCTGTGGACAGGGTCATCCTC CTTGGCCAAAGCATGGATGATGATAAATGTGGCCAAACAGCTTT ACTGGCAGCGTGTGAATTCCAAGTGCCTCTTTGTTGGTATCCTCCTAAG AAGGGTACAATACCTGTCAACAGATTTGAATCCCAATGATGTGACACTC TCAGGCTGTACTGATGCGATACTGAAGTTCATTGCAGAGCATGGGGCCT CCCATCTTCTGGAACATGTGGGCCAAATGGACAAAATATTCAAGATTCC ACCACCCCAGGAAAGACAGGGGTCCAGTCTCTCCGGCCACTGGAAGAG GACACTCCAAGCCCCTTGGCTCCTGTTTCCCAGCAAGGATGGCGCAGCA TCCGGCTTTTCATTTCATCCACTTTCCGAGACATGCACGGGGAGCGGGA CCTGCTGCTGAGGTCTGTGCTGCCAGCACTGCAGGCCCGAGCGGCCCCT

# FIG.1D

CACCGTATCAGCCTTCACGGAATCGACCTCCGCTGGGGCGTCACTGAGG AGGAGACCCGTAGGAACAGACAACTGGAAGTGTGCCTTGGGGAGGTGGA GAACGCACAGCTGTTTGTGGGGATTCTGGGCTCCCGTTATGGATACATT CCCCCAGCTACAACCTTCCTGACCATCCACACTTCCACTGGGCCCAGC AGTACCCTTCAGGGCGCTCTGTGACAGAGATGGAGGTGATGCAGTTCCT GAACCGGAACCAACGTCTGCAGCCCTCTGCCCAAGCTCTCATCTACTTC CGGGATTCCAGCTTCCTCAGCTCTGTGCCAGATGCCTGGAAATCTGACT TTGTTTCTGAGTCTGAAGAGGCCGCATGTCGGATCTCAGAACTGAAGAG CTACCTAAGCAGACAGAAAGGGATAACCTGCCGCAGATACCCCTGTGAG TGGGGGGTGTGGCAGCTGGCCGGCCTATGTTGGCGGGCTGGAGGAGT TTGGGCAGTTGGTTCTGCAGGATGTATGGAATATGATCCAGAAGCTCTA CCTGCAGCCTGGGGCCCTGCTGGAGCAGCCAGTGTCCCATCCCAGACGAT GACTTGGTCCAGGCCACCTTCCAGCAGCTGCAGAAGCCACCGAGTCCTG CCCGGCCACGCCTTCTTCAGGACACAGTGCAACAGCTGATGCTGCCCCA CGGAAGGCTGAGCCTGGTGACGGGCAGTCAGGACAGGCCAAGACAGCC TTCCTGGCATCTCTTGTGTCAGCCCTGCAGGCTCCTGATGGGGCCAAGG TGGCACCATTAGTCTTCTTCCACTTTTCTGGGGCTCGTCCTGACCAGGG TCTTGCCCTCACTCTGCTCAGACGCCTCTGTACCTATCTGCGTGGCCAA CTAAAAGAGCCAGGTGCCCTCCCCAGCACCTACCGAAGCCTGGTGTGGG

# FIG.1E

AGCTGCAGCAGAGGCTGCTGCCCAAGTCTGCTGAGTCCCTGCATCCTGG CCAGACCCAGGTCCTGATCATCGATGGGCTGATAGGTTAGTGGACCAG AATGGGCAGCTGATTTCAGACTGGATCCCAAAGAAGCTTCCCCGGTGTG TACACCTGGTGCTGAGTGTCTAGTGATGCAGGCCTAGGGGAGACCCT TGAGCAGAGCCAGGGTGCCACGTGCTGGCCTTGGGGCCTCTGGAGGCC TCTGCTCGGGCCCGGCTGGTGAGAGAGGAGCTGGCCCTGTACGGGAAGC GGCTGGAGGAGTCACCATTTAACAACCAGATGCGACTGCTGCTGGTGAA GCGGGAATCAGCCGGCCGCTCTACCTGCGCTTGGTCACCGATCACCTG AGGCTCTTCACGCTGTATGAGCAGGTGTCTGAGAGACTCCGGACCCTGC CTGCCACTGTCCCCTGCTGCAGCACATCCTGAGCACACTGGAGAA GGAGCACGGCCTGATGTCCTTCCCCAGGCCTTGACTGCCCTAGAAGTC ACACGGAGTGGTTTGACTGTGGACCAGCTGCACGGAGTGCTGAGTGTGT GGCGGACACTACCGAAGGGGACTAAGAGCTGGGAAGAAGCAGTGGCTGC CAGAGTCTGCGCAGTTTGCTAGGGGAGGGCCCTCTGGAGCGCCCTGGTG CCCGCTGTGCCTCCTGATGGGCCCCTGAGAACAGCAGCTAAACGTTG CTATGGGAAGAGGCCAGGGCTAGAGGACACGCCACACCTCATTGCA GCTCAGCTCTGGAAGACATGTGACGCTGATGCCTCAGGCACCTTCCGAA GTTGCCCTCCTGAGGCTCTGGGAGACCTGCCTTACCACCTGCTCCAGAG

### FIG.1F

CGGGAACCGTGGACTTCTTTCGAAGTTCCTTACCAACCTCCATGTGGTG GCTGCACACTTGGAATTGGGTCTCGGTCTCTCGGCTCTTGGAGGCCCATG CCCTCTATGCTTCTTCAGTCCCCAAAGAGGAACAAAAGCTCCCCGAGGC TGACGTTGCAGTGTTTCGCACCTTCCTGAGGCAGCAGGCTTCAATCCTC AGCCAGTACCCCGGCTCCTGCCCCAGCAGCAGCCAACCAGCCCCTGG ACTCACCTCTTTGCCACCAAGCCTCGCTGCTCTCCCGGAGATGGCACCT CCAACACACTACGATGGCTTAATAAACCCCGGACCATGAAAAATCAG CAAAGCTCCAGCCTGTCTCTGGCAGTTTCCTCATCCCCTACTGCTGTGG CCTTCTCCACCAATGGGCAAAGAGCAGCTGTGGGCACTGCCAATGGGAC AGTTTACCTGTTGGACCTGAGAACTTGGCAGGAGGAGAAGTCTGTGGTG AGTGGCTGTGATGGAATCTCTGCTTGTTTGTTCCTCTCCGATGATACAC TCTTTCTTACTGCCTTCGACGGGCTCCTGGAGCTCTGGGACCTGCAGCA TGGTTGTCGGGTGCTGCAGACTAAGGCTCACCAGTACCAAATCACTGGC TGCTGCCTGAGCCCAGACTGCCGGCTGCTAGCCACCGTGTGCTTGGGAG GATGCCTAAAGCTGTGGGACACAGTCCGTGGGCAGCTGGCCTTCCAGCA CACCTACCCAAGTCCCTGAACTGTGTTGCCTTCCACCCAGAGGGGCAG GTAATAGCCACAGGCAGCTGGGCTGGCAGCATCAGCTTCTTCCAGGTGG ATGGGCTCAAAGTCACCAAGGACCTGGGGGCACCCGGAGCCTCTATCCG TACCTTGGCCTTCAATGTGCCTGGGGGGGTTGTGGCTGTGGGCCGGCTG

# FIG.1G

CCTTCCCTGCCACCATGGCTTTGTTGCTGCTGCGCTTTTCCTGCATGC GGGTTGCCAGTTACTGACGGCTGGAGAGGATGGCAAGGTTCAGGTGTGG TCAGGGTCTCTGGGTCGGCCCCGTGGGCACCTGGGTTCCCTTTCTCTCT CTCCTGCCCTCTGTGGCACTCAGCCCAGATGGTGATCGGGTGGCTGT TGGATATCGAGCGGATGGCATTAGGATCTACAAAATCTCTTCAGGTTCC CAGGGGGCTCAGGGCACTGGATGTGGCAGTGTCCGCCCTGGCCT GGCTAAGCCCCAAGGTATTGGTGAGTGGTGCAGAAGATGGGTCCTTGCA GGGCTGGGCACTCAAGGAATGCTCCCTTCAGTCCCTCTGGCTCCTGTCC AGATTCCAGAAGCCTGTGCTAGGACTGGCCACTTCCCAGGAGCTCTTGG CTTCTGCCTCAGAGGATTTCACAGTGCAGCTGTGGCCAAGGCAGCTGCT GACGCGGCCACACAGGCAGAAGACTTTCCCTGTGGCACTGAGCTGCGG GGACATGAGGGCCCTGTGAGCTGCTGTAGTTTCAGCACTGATGGAGGCA GCCTGGCCACCGGGGCCGGGATCGGAGTCTCCTCTGCTGGGACGTGAG GACTGGGTCACTGGCTGTGCCTGGACCAAAGATAACCTACTGATATCCT GCTCCAGTGATGGCTCTGTGGGGCTCTGGGACCCAGAGTCAGGACAGCG CCTTCGTCACTTCCTGCGTCATCAGAGTCCTGTGAGCCCTGTGCCAGCT GTGGAGGAGCACGTGTGTCTGTGAGCCGGGATGGGACCTTGAAAGTGT

### FIG.1H

CATTAGCCACTGTGCAGCTGCCATGGAGCCCCGTGCAGCTGGACAGCCT GGGTCAGAGCTTCTGGTGGTAACCGTCGGGCTAGATGGGGCCACACGGT TATGGCATCCACTCTTGGTGTGCCAAACCCACACCCTCCTGGGACACAG CGGCCAGTCCGTGCTGCTGTTTCAGAAACCTCAGGCCTCATGCTG ACCGCCTCTGAGGATGGTTCTGTACGGCTCTGGCAGGTTCCTAAGGAAG CAGATGACACATGTATACCAAGGAGTTCTGCAGCCGTCACTGCTGTGGC TTGGGCACCAGATGGTTCCATGGCAGTATCTGGAAATCAAGCTGGGGAA GCCACATTGGTGCTCTGATCTGGTCCTCGGCACACCCTTTTTTTGTCCT CAGTGCTGATGAGAAAATCAGCGAGTGGCAAGTGAAACTGCGGAAGGGT TCGCCACCCGGAAATTTGAGTCTTCACCTGAACCGAATTCTACAGGAGG ACTTAGGGGTGCTGACAAGTCTGGATTGGGCTCCTGATGGTCACTTTCT CATCTTGGCCAAAGCAGATTTGAAGTTACTTTGCATGAAGCCAGGGGAT GCTCCATCTGAAATCTGGAGCAGCTATACAGAAAATCCTATGATATTGT CCACCACAAGGAGTATGGCATATTTGTCCTGCAGCCCAAGGATCCTGG AGTTCTTTCTTGAGGCAAAAGGAATCAGGAGAGTTTGAAGAGAGG CTGAACTTTGATATAAACTTAGAGAATCCTAGTAGGACCCTAATATCGA TAACTCAAGCCAAACCTGAATCTGAGTCCTCATTTTTGTGTGCCAGCTC

# FIG.11

TGATGGGATCCTATGGAACCTGGCCAAATGCAGCCCAGAAGGAGAATGG
ACCACAGGTAACATGTGGCAGAAAAAAAGCAAACACTCCAGAAACCCAAA
CTCCAGGGACAGACCCATCTACCTGCAGGGAATCTGATGCCAGCATGGA
TAGTGATGCCAGCATGGATAGTGAGCCAACACCACATCTAAAGACACGG
CAGCGTAGAAAGATTCACTCGGGCTCTGTCACAGCCCTCCATGTGCTAC
CTGAGTTGCTGGTGACAGCTTCGAAGGACAGATGTTAAGCTATGGGA
GAGACCCAGTATGCAGCTGCTGGGCCTGTTCCGATGCGAAGGGTCAGTG
AGCTGCCTGGAACCTTGGGCGCCTAACTCCACCCTGCAGCTTGCCG

# FIG.2A

ATGGAGAAGCTCTGTGGGCATGTGCCTGGCCATTCAGACATCCTCTCT TGAAGAACCGGTGCCTGACCATGCTCCCTGACCTCCAGCCCCTGGAGAA AATACATGGACATAGATCTGTCCACTCAGACATCCTTTCCTTGGAGAAC CAGTGTCTGACCATGCTCTCTGACCTCCAGCCCACGGAGAGAATAGATG GGCATATATCTGTCCACCCAGACATCCTCTCTTGGAGAATCGGTGCCT GACCATGCTCCCTGACCTCCAGCCTCTGGAGAAGCTATGTGGACATATG TCTAGTCATCCAGACGTCCTTTCTTTGGAAAACCAATGTCTAGCTACTC TCCCCACTGTAAAGAGCACTGCATTGACCAGCCCCTTGCTCCAGGGTCT TCACATATCTCĀTACGGCACAAGCTGATCTGCATAGCCTGAAAACTAGC AACTGCCTGCTCCTGAGCTTCCTACCAAGAAGACTCCATGTTTCTCTG AGGAACTAGACCTTCCACCTGGACCCAGGGCCCTGAAATCCATGTCTGC TACAGCTCAAGTCCAGGAAGTAGCCTTGGGTCAATGGTGTCTCCAAA GAAAAGGAATTTCAAGAAGAAGAAGCACAGAAGTCCCRATGCCTTTGT ACAGTCTAAGCTTGGAAGAAGAAGTGGAGGCACCGGTCTTAAAACT CACATCTGGAGACTCTGGCTTTCATCCTGAAACCACTGACCAGGTCCTT TGAAGTCTGTAGTGCCCTGGCCTCCTTGGAACCGGAGTTCATCCTTAAG GCATCTTTGTATGCTCGGCAGCAACTTAACCTCCGGGACATCGCCAATA

# FIG.2B

CAGTTCTGGCTGTGGCTGCCCTCTTGCCAGCCTGCCGCCCCCATGTACG ACGGTATTACTCCGCCATTGTTCACCTGCCTTCAGACTGGATCCAGGTA GCCGAGTTCTACCAGAGCCTGGCAGAAGGGGGATGAGAAGAAGTTGGTGT CCCTGCCTGCCTCTCCGAGCTGCCATGACCGACAATTTGCCGAGTT TGATGAGTACCAGCTAGCTAAGTACAACCCACGGAAACATCGGTCCAAG AGGCGGTCCCGCCAGCCACCCCGCCCTCAAAAGACAGAACGTCCATTTT CAGAGAGAGGGAAATGTTTTCCAAAGAGCCTTTGGCCCCTTAAAAATGA ACAGATTACGTTTGAAGCAGCTTATAATGCAATGCCAGAGAAAAACAGG CTACCACGGTTCACTCTGAAGAAGTTGGTAGAGTATCTACATATCCACA AGCCTGCTCAGCACGTCCAGGCCCTGCTGGGCTACAGGTACCCAGCCAC CCTAGAGCTCTTTTCTCGGAGTCACCTCCCTGGGCCGTGGGAGTCTAGC AGAGCTGGTCAGCGGATGAAGCTCCGAAGGCCAGAGACCTGGGAGCGGG AGCTGAGTTTACGGGGAAACAAAGCTTCTGTGTGGGAGGAGCTCATAGA CAATGGGAAACTGCCCTTCATGGCCATGCTCCGGAACCTGTGTAACCTG CTGCGGACTGGGATCAGTGCCCGCCACCATGAACTCGTTCTCCAGAGAC TCCAGCATGAGAAATCTGTGGTTCACAGTCGGCAGTTTCCATTCAGATT CCTTAATGCTCATGACTCTATCGATAAACTTGAGGCTCAGCTCAGAAGC AAAGCATCACCCTTCCCAATACAACATTGATGAAACGGATAATGA TTAGAAACTCAAAAAAAAATAGGAGGCCTGCCAGTCGGAAGCACCTGTG

### FIG.2C

CACCCTGACGCGCCGGCAGCTTCGGGCAGCAATGACTATACCTGTGATG TATGAGCAGCTCAAGCGGGAGAAACTGAGGCTGCACAAGGCCAGACAAT GGAACTGTGATGTTGAGTTGCTGGAGCGCTATCGCCAGGCCCTGGAAAC AGCTGTGAACCTCTCAGTAAAGCACAACCTATCCCCGATGCCTGGCCGA ACCCTCTTGGTCTATCTCACAGATGCAAATGCCGACAGGCTCTGTCCCA AGAGTCACTCACAAGGGCCTCCCCTGAACTATGTGCTGCTGCTGATCGG AATGATGGTGGCTCGAGCCGAGCAAGTGACTGTTTGCTTGTGTGGGGGGA GGATTTGTGAAGACACCGGTACTTACAGCCGATGAAGGCATCCTGAAGA CTGCCATCAAACTTCAGGCTCAAGTCCAGGAGTTAGAAGGCAATGATGA GTGGCCCCTGGACACTTTTGGGAAGTATCTGCTGTCTCTGGCTGTCCAA AGCTCCTGAAAGTAGCCAAACAGATTATCTGGCAGCATGTGAATTCCAA GTGCCTCTTTGTTGGTGTCCTCCTACAGAAAACACAGTACATATCACCA AATTTGAATCCCAACGATGTGACGCTCTCAGGCTGCACTGACGGGATCC TGAAATTCATTGCCGAACATGGAGCCTCTCGTCTCCTGGAACATGTGGG ACAACTAGATAAACTATTCAAGATCCCCCCACCCCCAGGAAAGACACAG GCACCGTCTCCCGGCCGCTGGAGGAGAACATCCCTGGTCCCTTGGGTC CTATTTCCCAGCATGGATGGCGCAATATCCGGCTTTTCATTTCATCCAC TTTCCGTGACATGCATGGGGAGCGAGATTTGCTGATGAGATCTGTTCTG

### FIG.2D

CCCGCACTGCAGGCCAGAGTGTTCCCCCACCGCATCAGTCTTCACGCCA TTGACCTGCGCTGGGGTATCACAGAGGAAGAGACCCGCAGGAACAGACA ACTGGAAGTGTGCCTTGGGGAGGGGGAGAACTCACAGCTGTTCGTGGGG ATTCTGGGCTCCCGCTATGGCTACATTCCCCCCAGCTATGATCTTCCTG ATCATCCCCACTTCACTGGACCCATGAGTACCCTTCAGGGCGATCCGT GACAGAGATGGAGGTGATGCAATTCCTGAACCGTGGCCAACGCTCGCAG CCTTCGGCCCAAGCTCTCATCTACTTCCGAGATCCTGATTTCCTTAGCT CTGTGCCAGATGCCTGGAAACCTGACTTTATATCTGAGTCAGAAGAAGC TGCACATCGGGTCTCAGAGCTGAAGAGATATCTACACGAACAGAAAGAG GTTACCTGTCGCAGCTACTCCTGTGAATGGGGAGGTGTAGCGGCTGGCC GGCCCTATACTGGGGGCCTGGAGGAGTTTGGACAGTTGGTTCTCCAGGA TGTGTGGAGCATGATCCAGAAGCAGCACCTGCAGCCTGGGGCCCAGTTG GAGCAGCCAACATCCATCTCAGAAGACGATTTGATCCAGACCAGCTTTC AGCAGCTGAAGACCCCAACGAGTCCGGCACGGCCACGCCTTCTTCAGGA TACAGTGCAGCAGCTGTTGCTGCCCCATGGGAGGCTGAGCCTAGTGACT GGGCAGGCAGGACAGGGAAAGACTGCCTTTCTGGCATCCCTTGTGTCTG CTTTGCAGCAGCCCGCCCTGACCAGTGTCTTGCTCTCAACCTCCTCAGA CGCCTCTGTACCCATCTGCGTCAAAAACTGGGAGAGCTGAGTGCCCTCC

# FIG.2E

CCAGCACTTACAGAGGCCTGGTGTGGGAACTGCAGCAGAAGTTGCTCCT CAAATTCGCTCAGTCGCTGCAGCCTGCTCAGACTTTGGTCCTTATCATC GATGGGGCAGATAAGTTGGTGGATCGTAATGGGCAGCTGATTTCAGACT GGATCCCCAAGTCTCTTCCGCGGCGAGTACACCTGGTGCTGAGTGTGTC CAGTGACTCAGGCCTGGGTGAGACCCTTCAGCAAAGTCAGGGTGCTTAT GTGGTGGCCTTGGGCTCTTTGGTCCCATCTTCAAGGGCTCAGCTTGTGA GAGAAGAGCTAGCACTGTATGGGAAACGACTGGAGGAGTCACCTTTTAA CAACCAGATGCGGCTGCTGCCAAAGCAGGGTTCAAGCCTGCCATTG TACCTGCACCTTGTCACTGACTACCTGAGGCTCTTCACACTGTATGAAC AGGTGTCTGAGAGACTTCGAACCCTGCCCGCCACTCTCCCACTGCTCTT GCAGCACATCCTGAGCACCTTGGAGCAAGAACATGGCCATGATGTCCTT CCTCAGGCTTTGACTGCCCTTGAGGTCACACGAAGTGGTCTGACTGTGG ACCAGCTACATGCAATCCTGAGCACATGGCTGATCTTGCCCAAGGAGAC TAAGAGCTGGGAAGAAGTGCTGGCTGCCAGTCACAGTGGAAACCCTTTC CCCTTGTGTCCATTTGCCTACCTTGTCCAGAGTCTACGCAGTTTACTAG GGGAGGCCCAGTGGAGCGCCCTGGTGCCCGTCTCTGCCTCTGATGG GCCCCTGAGGACAACAATTAAACGTCGCTATGGGAAAAGGCTGGGGCTA GAGAAGACTGCGCATGTCCTCATTGCAGCTCACCTCTGGAAGACGTGTG ATCCTGATGCCTCGGGCACCTTCCGAAGTTGCCCTCCTGAGGCTCTGAA

# FIG.2F

AGATTTACCTTACCACCTGCTCCAGAGCGGGAACCATGGTCTCCTTGCC GAGTTTCTTACCAATCTCCATGTGGTTGCTGCATATCTGGAAGTGGGTC TAGTCCCCGACCTCTTGGAGGCTCATGTGCTCTATGCTTCTTCAAAGCC TGAAGCCAACCAGAAGCTCCCAGCGGCAGATGTTGCTGTTTTCCATACC TTCCTGAGACAACAGGCTTCACTCCTTACCCAGTATCCTTTGCTCCTGC TCCAGCAGGCAGCTAGCCAGCCTGAAGAGTCACCTGTTTGCTGCCAGGC CCCCCTGCTCACCCAGCGATGGCACGACCAGTTCACACTGAAATGGATT AATAAACCCCAGACCCTGAAGGGTCAGCAAAGCTTGTCTCTGACAATGT CCTCATCCCCAACTGCTGTGGCCTTCTCCCCGAATGGGCAAAGAGCAGC TGTGGGGACCGCCAGTGGGACAATTTACCTGTTGAAAACCTGG CAGGAGAGAAGGCTGTGGTGAGTGGCTGTGACGGGATTTCCTCTTTTG CATTCCTTTCGGACACTGCCCTTTTCCTTACTACCTTCGACGGCACCT AGAGCTTTGGGACCTGCAACATGGTTGTTGGGTGTTTCAGACCAAGGCC CACCAGTACCAAATCACTGGCTGCTGCCTGAGCCCAGACCGCCGCCTGC TGGCCACTGTGTGTTTGGGAGGATACCTAAAGCTGTGGGACACAGTCCG AGGACAGCTGGCTTTTCAGTACACCCATCCAAAGTCTCTCAACTGCGTT GCCTTCCACCCAGAGGGGCAGGTGGTAGCCACAGGCAGCTGGGCA GCATTACCTTCTTCCAGGCAGATGGACTCAAAGTCACCAAGGAACTAGG GGCCCCCGGACCCTCTGTCTGTAGTTTGGCATTCAACAAACCTGGGAAG

# FIG.2G

ATTGTGGCTGTGGGCCGGATAGATGGGACAGTGGAGCTGTGGGCCTGGC AAGAGGGTGCCCGGCTGGCGCCTTCCCTGCACAGTGTGGCTGTGTCTC TGCTGTTCTTTCTTGCATGCTGGAGACCGGTTCCTGACTGCTGGAGAA GCCTGGGCTCTCTTCTCTTTCTCCTGCACTCTCGGTGGCTCTCAACCC AGACGGTGACCAGGTGGCTGTTGGGTACCGAGAAGATGGCATTAACATC TACAAGATTTCTTCAGGTTCCCAGGGGCCTCAGCATCAAGAGCTAAATG TGGCGGTGTCTGCACTGGTGTGGCTGAGCCCTAGTGTTTTGGTGAGTGG TGCAGAAGATGGATCCCTGCATGGTTGGATGTTCAAGGGAGACTCCCTT CATTCCCTGTGGCTGTTGTCGAGATACCAGAAGCCTGTGCTGGGACTGG CTGCCTCCCGGGAACTCATGGCTGCTGCCTCAGAGGACTTCACTGTGAG ACTGTGGCCCAGACAGCTGCTGACACAGCCACATGTGCATGCGGTAGAG TTGCCCTGTTGTGCTGAACTCCGGGGACACGAGGGGCCAGTGTGCTGCT GTAGCTTCAGCCCTGATGGAGGCATCTTGGCCACAGCTGGCAGGGATCG GAATCTCCTTTGCTGGGACATGAAGATAGCCCAAGCCCCTCTCCTGATT CACACTTTCTCGTCCTGTCATCGTGACTGGATCACTGGCTGTGCGTGGA CCAAAGACAACATCCTGGTCTCCTGCTCGAGTGATGGCTCTGTGGGACT CTGGAACCCAGAGGCAGGCAGCAACTTGGCCAGTTCTCAGGCCACCAG AGTGCCGTGAGCGCCGTGGTTGCTGTGGAGGAACACATTGTATCTGTGA

# FIG.2H

GCCGAGATGGGACCTTGAAAGTGTGGGACCATCAGGGTGTGGAGCTGAC CAGCATCCCTGCCCATTCCGGACCCATCAGCCAGTGTGCAGCTGCTCTG GAGCCCCGCCCAGGGGGACAGCCTGGATCAGAGCTTCTGGTGGTGACTG TTGGACTAGATGGGGCCACAAAGTTGTGGCATCCCCTGTTGGTGTGCCA AATACGTACTCTCCAGGGACACAGTGGCCCAGTCACAGCAGCTGCTGCT TCAGAGGCCTCAGGCCTCCTGCTGACCTCAGATGATAGCTCTGTACAGC TCTGGCAGATACCAAAGGAAGCAGATGATTCATACAAACCTAGGAGTTC TGTGGCCATCACTGCTGTGGCATGGCACCGGATGGTTCTATGGTGGTG TCCGGAAATGAAGCCGGGGAACTGACACTGTGGCAGCAAGCCAAGGCTG TGGCTACCGCACAGGCTCAGGCCGCGTCAGTCACCTGATCTGGTACTC GGCAAATTCATTCTTCGTTCTCAGTGCTAATGAAAACGTCAGCGAGTGG CAAGTGGGACTGAGGAAAGGTTCAACGTCCACCAGTTCCAGTCTTCATC TGAAGAGAGTTCTGCAGGAGGACTGGGGAGTCTTGACAGGTCTGGGTCT GGCCCCTGATGGCCAGTCTCTCATCTTGATGAAAGAGGATGTGGAATTA CTAGAGATGAAGCCTGGGTCTATTCCATCTTCTATCTGCAGGAGGTATG GAGTACATTCTTCAATACTGTGCACCAGCAAGGAGTACGGCTTGTTCTA CCTGCAGCAGGGGACTCCGGATTACTTTCTATATTGGAGCAAAAGGAG TCAGGGGAGTTTGAAGAGATCCTGGACTTCAATCTGAACTTAAATAATC CTAATGGGTCCCCAGTATCAATCACTCAGGCCAAACCTGAGTCTGAATC

WO 98/21343

PCT/US97/21248

18/46

# FIG.21

ATCCCTTTTGTGCGCCACCTCTGATGGGATGCTGTGGAACTTATCTGAA
TGTACCTCAGAGGGAGAATGGATCGTAGATAACATTTGGCAGAAAAAAG
CAAAAAAACCTAAAACTCAGACTCTGGAGACAGAGTTGTCCCCGCACTC
AGAGTTGGATTTTTCCATTGATTGCTGGATTGATCCCACAAATTTAAAG
GCACAGCAGTGTAAAAAGATCCACTTGGGCTCTGTCACAGCCCTCCATG
TGCTTCCGGGATTGCTGGTGACAGCTTCGAAGGACAGAGTGTTAAGCT
GTGGGAGAGACCCAGTATGCAGCTGCTGGGCTTGTTCCGATGTGAAGGG
CCAGTGAGCTGTTGGAACCTTGGATGTGAAGGG
TTGCTGTGGGACCCTTGGAACCCTTCCCCTGCAGC

# FIG.3A

MEKLHGHVSAHPDILSLENRCLAMLPDLQPLEKLHQHVSTHSDILSLKN QCLATLPDLKTMEKPHGYVSAHPDILSLENQCLATLSDLKTMEKPHGHV SAHPDILSLENRCLATLPSLKSTVSASPLFQSLQISHMTQADLYRVNNS NCLLSEPPSWRAQHFSKGLDLSTCPIALKSISATETAQEATLGRWFDSE EKKGAETQMPSYSLSLGEEEEVEDLAVKLTSGDSESHPEPTDHVLQEKK MALLSLLCSTLVSEVNMNNTSDPTLAAIFEICRELALLEPEFILKASLY ARQQLNVRNVANNILAIAAFLPACRPHLRRYFCAIVQLPSDWIQVAELY **QSLAEGDKNKLVPLPACLRTAMTDKFAQFDEYQLAKYNPRKHRAKRHPR** RPPRSPGMEPPFSHRCFPRYIGFLREEQRKFEKAGDTVSEKKNPPRFTL KKLVQRLHIHKPAQHVQALLGYRYPSNLQLFSRSRLPGPWDSSRAGKRM KLSRPETWERELSLRGNKASVWEELIENGKLPFMAMLRNLCNLLRVGIS SRHHELILQRLQHGKSVIHSRQFPFRFLNAHDAIDALEAQLRNQALPFP SNITLMRRILTRNEKNRPRRRFLCHLSRQQLRMAMRIPVLYEQLKREKL RVHKARQWKYDGEMLNRYRQALETAVNLSVKHSLPLLPGRTVLVYLTDA NADRLCPKSNPQGPPLNYALLLIGMMITRAEQVDVVLCGGDTLKTAVLK AEEGILKTAIKLQAQVQEFDENDGWSLNTFGKYLLSLAGQRVPVDRVIL LGQSMDDGMINVAKQLYWQRVNSKCLFVGILLRRVQYLSTDLNPNDVTL SGCTDAILKFIAEHGASHLLEHVGQMDKIFKIPPPPGKTGVQSLRPLEE DTPSPLAPVSQQGWRSIRLFISSTFRDMHGERDLLLRSVLPALQARAAP

# FIG.3B

HRISLHGIDLRWGVTEEETRRNRQLEVCLGEVENAQLFVGILGSRYGYI PPSYNLPDHPHFHWAQQYPSGRSVTEMEVMQFLNRNQRLQPSAQALIYF RDSSFLSSVPDAWKSDFVSESEEAAXRISELKSYLSRQKGITCRRYPCE WGGVAAGRPYVGGLEEFGQLVLQDVWNMIQKLYLQPGALLEQPVSIPDD DLVQATFQQLQKPPSPARPRLLQDTVQXLMLPHGRLSLVTGQSGQGKTA FLASLVSALQAPDGAKVAXLVFFHFSGARPDQGLALTLLRRLCTYLRGQ LKEPGALPSTYRSLVWELQQRLLPKSAESLHPGQTQVLIIDGADRLVDQ NGQLISDWIPKKLPRCVHLVLSVSSDAGLGETLEQSQGAHVLALGPLEA SARARLVREELALYGKRLEESPFNNQMRLLLVKRESGRPLYLRLVTDHL RLFTLYEQVSERLRTLPATVPLLLQHILSTLEKEHGPDVLPQALTALEV TRSGLTVDQLHGVLSVWRTLPKGTKSWEEAVAAGNSGDPYPMGPFACLV QSLRSLLGEGPLERPGARLCLPDGPLRTAAKRCYGKRPGLEDTAHILIA AQLWKTCDADASGTFRSCPPEALGDLPYHLLQSGNRGLLSKFLTNLHVV AAHLELGLVSRLLEAHALYASSVPKEEQKLPEADVAVFRTFLRQQASIL SQYPRLLPQQAANQPLDSPLCHQASLLSRRWHLQHTLRWLNKPRTMKNQ QSSSLSLAVSSSPTAVAFSTNGQRAAVGTANGTVYLLDLRTWQEEKSVV SGCDGISACLFLSDDTLFLTAFDGLLELWDLQHGCRVLQTKAHQYQITG CCLSPDCRLLATVCLGGCLKLWDTVRGQLAFQHTYPKSLNCVAFHPEGQ VIATGSWAGSISFFQVDGLKVTKDLGAPGASIRTLAFNVPGGVVAVGRL

# FIG.3C

DSMVELWAWREGARLAAFPAHHGFVAAALFLHAGCQLLTAGEDGKVQVW SGSLGRPRGHLGSLSLSPALSVALSPDGDRVAVGYRADGIRIYKISSGS QGAQGQALDVAVSALAWLSPKVLVSGAEDGSLQGWALKECSLQSLWLLS RFQKPVLGLATSQELLASASEDFTVQLWPRQLLTRPHKAEDFPCGTELR GHEGPVSCCSFSTDGGSLATGGRDRSLLCWDVRTPKTPVLIHSFPACHR DWVTGCAWTKDNLLISCSSDGSVGLWDPESGQRLGQFLGHQSAVSAVAA VEEHVVSVSRDGTLKVWDHQGVELTSIPAHSGPISHCAAAMEPRAAGQP GSELLVVTVGLDGATRLWHPLLVCQTHTLLGHSGPVRAAAVSETSGLML TASEDGSVRLWQVPKEADDTCIPRSSAAVTAVAWAPDGSMAVSGNQAGE LILWQEAKAVATAQAPGHIGALIWSSAHTFFVLSADEKISEWQVKLRKG SAPGNLSLHLNRILQEDLGVLTSLDWAPDGHFLILAKADLKLLCMKPGD APSEIWSSYTENPMILSTHKEYGIFVLQPKDPGVLSFLRQKESGEFEER LNFDINLENPSRTLISITQAKPESESSFLCASSDGILWNLAKCSPEGEW TTGNMWQKKANTPETQTPGTDPSTCRESDASMDSDASMDSEPTPHLKTR QRRKIHSGSVTALHVLPELLVTASKDRDVKLWERPSMQLLGLFRCEGSV SCLEPWLGANSTLQLAVGDVQGNVYFLNWE

# FIG.4A

MEKLCGHVPGHSDILSLKNRCLTMLPDLQPLEKIHGHRSVHSDILSLEN QCLTMLSDLQPTERIDGHISVHPDILSLENRCLTMLPDLQPLEKLCGHM SSHPDVLSLENQCLATLPTVKSTALTSPLLQGLHISHTAQADLHSLKTS NCLLPELPTKKTPCFSEELDLPPGPRALKSMSATAQVQEVALGQWCVSK EKEFQEEESTEVPMPLYSLSLEEEEVEAPVLKLTSGDSGFHPETTDQVL QEKKMALLTLLCSALASNVNVKDASDLTRASILEVCSALASLEPEFILK ASLYARQQLNLRDIANTVLAVAALLPACRPHVRRYYSAIVHLPSDWIQV **AEFYQSLAEGDEKKLVSLPACLRAAMTDKFAEFDEYQLAKYNPRKHRSK** RRSRQPPRPQKTERPFSERGKCFPKSLWPLKNEQITFEAAYNAMPEKNR LPRFTLKKLVEYLHIHKPAQHVQALLGYRYPATLELFSRSHLPGPWESS RAGQRMKLRRPETWERELSLRGNKASVWEELIDNGKLPFMAMLRNLCNL LRTGISARHHELVLQRLQHEKSVVHSRQFPFRFLNAHDSIDKLEAQLRS KASPFPSNTTLMKRIMIRNSKKNRRPASRKHLCTLTRRQLRAAMTIPVM YEQLKREKLRLHKARQWNCDVELLERYRQALETAVNLSVKHNLSPMPGR TLLVYLTDANADRLCPKSHSQGPPLNYVLLLIGMMVARAEQVTVCLCGG GFVKTPVLTADEGILKTAIKLQAQVQELEGNDEWPLDTFGKYLLSLAVQ RTPIDRVILFGQRMDTELLKVAKQIIWQHVNSKCLFVGVLLQKTQYISP NLNPNDVTLSGCTDGILKFIAEHGASRLLEHVGQLDKLFKIPPPPGKTQ APSLRPLEENIPGPLGPISQHGWRNIRLFISSTFRDMHGERDLLMRSVL

# FIG.4B

PALQARVFPHRISLHAIDLRWGITEEETRRNRQLEVCLGEVENSQLFVG ILGSRYGYIPPSYDLPDHPHFHWTHEYPSGRSVTEMEVMQFLNRGQRSQ PSAOALIYFRDPDFLSSVPDAWKPDFISESEEAAHRVSELKRYLHEQKE VTCRSYSCEWGGVAAGRPYTGGLEEFGQLVLQDVWSMIQKQHLQPGAQL EQPTSISEDDLIQTSFQQLKTPTSPARPRLLQDTVQQLLLPHGRLSLVT GOAGOGKTAFLASLVSALKVPDQPNEPPFVFFHFAAARPDQCLALNLLR RLCTHLROKLGELSALPSTYRGLVWELQQKLLLKFAQSLQPAQTLVLII DGADKLVDRNGQLISDWIPKSLPRRVHLVLSVSSDSGLGETLQQSQGAY VVALGSLVPSSRAQLVREELALYGKRLEESPFNNQMRLLLAKQGSSLPL YLHLVTDYLRLFTLYEQVSERLRTLPATLPLLLQHILSTLEQEHGHDVL POALTALEVTRSGLTVDQLHAILSTWLILPKETKSWEEVLAASHSGNPF PLCPFAYLVOSLRSLLGEGPVERPGARLCLSDGPLRTTIKRRYGKRLGL EKTAHVLIAAHLWKTCDPDASGTFRSCPPEALKDLPYHLLOSGNHGLLA **EFLTNLHVVAAYLEVGLVPDLLEAHVLYASSKPEANOKLPAADVAVFHT** FLRQQASLLTQYPLLLLQQAASQPEESPVCCQAPLLTQRWHDQFTLKWI NKPQTLKGQQSLSLTMSSSPTAVAFSPNGORAAVGTASGTIYLLNLKTW QEEKAVVSGCDGISSFAFLSDTALFLTTFDGHLELWDLQHGCWVFOTKA HQYQITGCCLSPDRRLLATVCLGGYLKLWDTVRGQLAFQYTHPKSLNCV AFHPEGQVVATGSWAGSITFFQADGLKVTKELGAPGPSVCSLAFNKPGK

# FIG.4C

IVAVGRIDGTVELWAWQEGARLAAFPAQCGCVSAVLFLHAGDRFLTAGE DGKAQLWSGFLGRPRGCLGSLPLSPALSVALNPDGDQVAVGYREDGINI YKISSGSQGPQHQELNVAVSALVWLSPSVLVSGAEDGSLHGWMFKGDSL HSLWLLSRYQKPVLGLAASRELMAAASEDFTVRLWPRQLLTQPHVHAVE LPCCAELRGHEGPVCCCSFSPDGGILATAGRDRNLLCWDMKIAQAPLLI HTFSSCHRDWITGCAWTKDNILVSCSSDGSVGLWNPEAGQQLGQFSGHQ SAVSAVVAVEEHIVSVSRDGTLKVWDHQGVELTSIPAHSGPISQCAAAL EPRPGGQPGSELLVVTVGLDGATKLWHPLLVCQIRTLQGHSGPVTAAAA SEASGLLLTSDDSSVQLWQIPKEADDSYKPRSSVAITAVAWAPDGSMVV SGNEAGELTLWQQAKAVATAQAPGRVSHLIWYSANSFFVLSANENVSEW QVGLRKGSTSTSSSLHLKRVLQEDWGVLTGLGLAPDGQSLILMKEDVEL LEMKPGSIPSSICRRYGVHSSILCTSKEYGLFYLQQGDSGLLSILEQKE SGEFEEILDFNLNLNNPNGSPVSITQAKPESESSLLCATSDGMLWNLSE CTSEGEWIVDNIWQKKAKKPKTQTLETELSPHSELDFSIDCWIDPTNLK AQQCKKIHLGSVTALHVLPGLLVTASKDRDVKLWERPSMQLLGLFRCEG PVSCLEPWMEPSSPLQLAVGDTQGNLYFLSWE

# FIG.5A

CACGCGTCCGGCAGCGCTGCGTCCTGCTGCGCACGTGGGAAGCCCTGG CCCCGGCCACCCCGCGATGCCGCGCGCTCCCCGCTGCCGAGCCGTGCG CTCCCTGCTGCGCAGCCACTACCGCGAGGTGCTGCCGCTGGCCACGTTC GTGCGGCGCCTGGGGCCCCAGGGCTGGCGGCGGGGGACC CTGAAGGAGCTGGTGGCCGAGTGCTGCAGAGGCTGTGCGAGCGCGGCG CGAAGAACGTGCTGGCCTTCGGCTTCGCGCTGGACGGGCCCGCGG GGGCCCCCCGAGGCCTTCACCACCAGCGTGCGCAGCTACCTGCCCAAC GCCGCGTGGGCGACGACGTGCTGGTTCACCTGCTGGCACGCTGCGCGCT CTTTGTGCTGGTGGCTCCCAGCTGCGCCTACCAGGTGTGCGGGCCGCCG GTGGACCCCGAAGGCGTCTGGGATGCGAACGGGCCTGGAACCATAGCGT CAGGGAGGCCGGGTCCCCCTGGGCCTGCCAGCCCCGGGTGCGAGGAGG CGCGGGGCAGTGCCAGCCGAAGTCTGCCGTTGCCCAAGAGGCCCAGGC GTGGCGCTGCCCCTGAGCCGGAGCGGCCCCGTTGGGCAGGGGTCCTG GGCCCACCCGGGCAGGACGCGTGGACCGAGTGACCGTGGTTTCTGTGTG GTGTCACCTGCCAGACCCGCCGAAGAAGCCACCTCTTTGGAGGGTGCGC

### FIG.5B

TCTCTGGCACGCCACTCCCACCCATCCGTGGGCCGCCAGCACCACGC GGGCCCCCATCCACATCGCGGCCACCACGTCCCTGGGACACGCCTTGT CCCCCGGTGTACGCCGAGACCAAGCACTTCCTCTACTCCTCAGGCGACA AGGAGCAGCTGCGGCCCTCCTTCCTACTCAGCTCTCTGAGGCCCAGCCT GACTGGCGCTCGGAGGCTCGTGGAGACCATCTTTCTGGGTTCCAGGCCC TGGATGCCAGGGACTCCCCGCAGGTTGCCCCGCCTGCCCCAGCGCTACT GGCAAATGCGGCCCCTGTTTCTGGAGCTGCTTGGGAACCACGCGCAGTG CCCCTACGGGGTGCTCCTCAAGACGCACTGCCGCTGCGAGCTGCGGTC ACCCCAGCAGCCGGTGTCTGTGCCCGGGAGAAGCCCCAGGGCTCTGTGG CGGCCCCGAGGAGGAGGACACAGACCCCCGTCGCCTGGTGCAGCTGCT CCGCCAGCACAGCAGCCCTGGCAGGTGTACGGCTTCGTGCGGGCCTGC CTGCGCCGGCTGGTGCCCCAGGCCTCTGGGGCTCCAGGCACAACGAAC GCCGCTTCCTCAGGAACACCAAGAAGTTCATCTCCCTGGGGAAGCATGC CAAGCTCTCGCTGCAGGAGCTGACGTGGAAGATGAGCGTGCGGGACTGC GCTTGGCTGCGCAGGGCCCAGGGGTTGGCTGTTCCGGCCGCAGAGC ACCGTCTGCGTGAGGAGATCCTGGCCAAGTTCCTGCACTGGCTGATGAG TGTGTACGTCGAGCTGCTCAGGTCTTTCTTTTATGTCACGGAGACC ACGTTTCAAAAGAACAGGCTCTTTTTCTACCGGAAGAGTGTCTGGAGCA AGTTGCAAAGCATTGGAATCAGACAGCACTTGAAGAGGGTGCAGCTGCG

## FIG.5C

GGAGCTGTCGGAAGCAGAGGTCAGGCAGCATCGGGAAGCCAGGCCCGCC CTGCTGACGTCCAGACTCCGCTTCATCCCCAAGCCTGACGGCTGCGGC CGATTGTGAACATGGACTACGTCGTGGGAGCCAGAACGTTCCGCAGAGA AAAGAGGCCCGAGCGTCTCACCTCGAGGGTGAAGGCACTGTTCAGCGTG CTCAACTACGAGCGGGCGCGCGCCCCGGCCTCTGTGC TGGGCCTGGACGATATCCACAGGGCCTGGCGCACCTTCGTGCTGCGTGT GCGGGCCCAGGACCCGCCTGAGCTGTACTTTGTCAAGGTGGATGTG ACGGGCGCGTACGACACCATCCCCCAGGACAGGCTCACGGAGGTCATCG CCAGCATCATCAAACCCCAGAACACGTACTGCGTGCGTCGGTATGCCGT GGTCCAGAAGGCCGCCCATGGGCACGTCCGCAAGGCCTTCAAGAGCCAC GTCTCTACCTTGACAGACCTCCAGCCGTACATGCGACAGTTCGTGGCTC ACCTGCAGGAGACCAGCCCGCTGAGGGATGCCGTCGTCATCGAGCAGAG CTCCTCCTGAATGAGGCCAGCAGTGGCCTCTTCGACGTCTTCCTACGC TTCATGTGCCACCACGCCGTGCGCATCAGGGGCAAGTCCTACGTCCAGT GCCAGGGGATCCCGCAGGGCTCCATCCTCTCCACGCTGCTCTGCAGCCT GTGCTACGGCGACATGGAGAACAAGCTGTTTGCGGGGGATTCGGCGGGAC GGGCTGCTCCTGCGTTTGGTGGATGATTTCTTGTTGGTGACACCTCACC TCACCCACGCGAAAACCTTCCTCAGGACCCTGGTCCGAGGTGTCCCTGA GTATGGCTGCGTGAACTTGCGGAAGACAGTGGTGAACTTCCCTGTA

PCT/US97/21248

28/46

# FIG.5D

GAAGACGAGGCCCTGGGTGGCACGGCTTTTGTTCAGATGCCGGCCCACG GCCTAT

# FIG.6A

HASGQRCVLLRTWEALAPATPAMPRAPRCRAVRSLLRSHYREVLPLATF VRRLGPQGWRLVQRGDPAAFRALVAQCLVCVPWDARPPPAAPSFRQVSC LKELVARVLQRLCERGAKNVLAFGFALLDGARGGPPEAFTTSVRSYLPN TVTDALRGSGAWGLLLRRVGDDVLVHLLARCALFVLVAPSCAYQVCGPP LYQLGAATQARPPPHASGPRRRLGCERAWNHSVREAGVPLGLPAPGARR RGGSASRSLPLPKRPRRGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCV VSPARPAEEATSLEGALSGTRHSHPSVGRQHHAGPPSTSRPPRPWDTPC PPVYAETKHFLYSSGDKEQLRPSFLLSSLRPSLTGARRLVETIFLGSRP WMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGVLLKTHCPLRAAV TPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGFVRAC LRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDC AWLRRSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTET TFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPA LLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKALFSV LNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPPELYFVKVDV TGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRKAFKSH VSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLR FMCHHAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRD

PCT/US97/21248

30/46

FIG.6B

GLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPV EDEALGGTAFVQMPAHGL

PCT/US97/21248

31/46 FIG. 7

TCCCCTGGTGCGGCCTGCTGGATACCCGGACCCTGGAGGTGCAGAGCGACT ACTCCAGCTATGCCCGGACCTCCATCAGAGCCAGTCTCACCTTCAACCGCGGCT TCAAGGCTGGGAGGAACATGCGTCGCAAACTCTTTGGGGTCTTGCGGCTGAAGT GTCACAGCCTGTTTCTGGATTTGCAGGTGAACAGCCTCCAGACGGTGTGCACCA ACATCTACAAGATCCTCCTGCTGCAGGCGTACAGGTTTCACGCATGTGTGCTGC AGCTCCCATTTCATCAGCAAGTTTGGAAGAACCCCACATTTTTCCTGCGCGTCA TCTCTGACACGGCCTCCCTCTGCTACTCCATCCTGAAAGCCAAGAACGCAGGGA TGTCGCTGGGGGCCAAGGGCGCCCCCCCCCTCCCGAGGCCGTGCAGT GGCTGTGCCACCAAGCATTCCTGCTCAAGCTGACTCGACACCGTGTCACCTACG TGCCACTCCTGGGGTCACTCAGGACAGCCCAGACGCAGCTGAGTCGGAAGCTCC CGGGGACGACGCTGACTGCCCTGGAGGCCGAGCCAACCCGGCACTGCCCTCAG ACTTCAAGACCATCCTGGACTGATGGCCACCCGCCCACAGCCAGGCCGAGAGCA CCACACCCAGGCCGCACCGCTGGGAGTCTGAGGCCTGAGTGTTTTGGCCG AGGCCTGCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAGCCAGTGT CCAGCCAAGGGCTGAGTGTCCAGCACACCTGCCGTCTTCACTTCCCCACAGGCT GGCGCTCGGCTCCACCCCAGGGCCAGCTTTCCTCACCAGGAGCCCGGCTTCCA CTCCCCACATAGGAATAGTCCATCCCCTGAT

# <sup>32/46</sup> FIG.8A

CCACGCGTCCGGGCAGCGTGCGTCCTGCTGCGCACGTGGGAAGCCCTGGCCCC GGCCACCCCGCGATGCCGCGCGCGCTCCCCGCTGCCGAGCCGTGCGCTCCCTGCT GCGCAGCCACTACCGCGAGGTGCTGCCGCTGGCCACGTTCGTGCGGCGCCTGGG GCCCAGGGCTGGCGGTGCAGCGCGGGGACCCGGCGGCTTTCCGCGCGCT CCCCTCCTTCCGCCAGGTGTCCTGCCTGAAGGAGCTGGTGGCCCGAGTGCTGCA GAGGCTGTGCGAGCGCGCGAAGAACGTGCTGGCCTTCGGCTTCGCGCTGCT GGACGGGGCCCGGGGGCCCCCCGAGGCCTTCACCACCAGCGTGCGCAGCTA GCTGCGCGCGTGGGGGACGACGTGCTGGTTCACCTGCTGGCACGCTGCGCGCT CTTTGTGCTGGTGGCTCCCAGCTGCGCCTACCAGGTGTGCGGGCCGCCGCTGTA CCAGCTCGGCGCCACTCAGGCCCGGCCCCCCCCACACGCTAGTGGACCCCG AAGGCGTCTGGGATGCGAACGGGCCTGGAACCATAGCGTCAGGGAGGCCGGGGT CCCCTGGGCCTGCCAGCCCGGGTGCGAGGAGGCGCGGGGGCAGTGCCAGCCG AAGTCTGCCGTTGCCCAAGAGGCCCAGGCGTGGCGCTGCCCCTGAGCCGGAGCG GACGCCCGTTGGGCAGGGTCCTGGGCCCACCCGGGCAGGACGCGTGGACCGAG TGACCGTGGTTTCTGTGTGTGTCACCTGCCAGACCCGCCGAAGAAGCCACCTC TTTGGAGGGTGCGCTCTCTGGCACGCGCCACTCCCATCCGTGGGCCGCCA GCACCACGCGGCCCCCATCCACATCGCGCCACCACGTCCCTGGGACACGCC TTGTCCCCCGGTGTACGCCGAGACCAAGCACTTCCTCTACTCCTCAGGCGACAA

## 3 3 / 4 6 FIG.8B

GGAGCAGCTGCGGCCCTCCTTCCTACTCAGCTCTCTGAGGCCCAGCCTGACTGG CGCTCGGAGGCTCGTGGAGACCATCTTTCTGGGTTCCAGGCCCTGGATGCCAGG GACTCCCGCAGGTTGCCCCGCCTGCCCCAGCGCTACTGGCAAATGCGGCCCCT GTTTCTGGAGCTGCTTGGGAACCACGCGCAGTGCCCCTACGGGGTGCTCCTCAA GACGCACTGCCGCTGCGAGCTGCGGTCACCCCAGCAGCCGGTGTCTGTGCCCG GGAGAAGCCCCAGGGCTCTGTGGCGGCCCCCGAGGAGGAGGACACAGACCCCCG TCGCCTGGTGCAGCTCCCGCCAGCACAGCAGCCCCTGGCAGGTGTACGGCTT CGTGCGGCCTGCCTGCCGGCTGGTGCCCCCAGGCCTCTGGGGCTCCAGGCA CAACGAACGCCGCTTCCTCAGGAACACCAAGAAGTTCATCTCCCTGGGGAAGCA TGCCAAGCTCTCGCTGCAGGAGCTGACGTGGAAGATGAGCGTGCGGACTGCGC TTGGCTGCGCAGGAGCCCAGGGGTTGGCTGTTCCGGCCGCAGAGCACCGTCT GCGTGAGGAGATCCTGGCCAAGTTCCTGCACTGGCTGATGAGTGTGTACGTCGT CGAGCTGCTCAGGTCTTTCTTTTATGTCACGGAGACCACGTTTCAAAAGAACAG GCTCTTTTTCTACCGGAAGAGTGTCTGGAGCAAGTTGCAAAGCATTGGAATCAG ACAGCACTTGAAGAGGGTGCAGCTGCGGGAGCTGTCGGAAGCAGAGGTCAGGCA GCATCGGGAAGCCAGGCCCGCCTGCTGACGTCCAGACTCCGCTTCATCCCCAA GCCTGACGGGCTGCGGCCGATTGTGAACATGGACTACGTCGTGGGAGCCAGAAC GTTCCGCAGAGAAAAGAGGCCCGAGCGTCTCACCTCGAGGGTGAAGGCACTGTT CAGCGTGCTCAACTACGAGCGGGCGCGCGCGCCCCGGCCTCCTGT GCTGGGCCTGGACGATATCCACAGGGCCTGGCGCACCTTCGTGCTGCGTGTGCG

# 34/46 FIG.8C

GGCCCAGGACCCGCCTGAGCTGTACTTTGTCAAGGTGGATGTGACGGCGC GTACGACACCATCCCCAGGACAGGCTCACGGAGGTCATCGCCAGCATCATCAA ACCCCAGAACACGTACTGCGTGCGTCGGTATGCCGTGGTCCAGAAGGCCGCCCA TGGGCACGTCCGCAAGGCCTTCAAGAGCCACGTCTCTACCTTGACAGACCTCCA GCCGTACATGCGACAGTTCGTGGCTCACCTGCAGGAGACCAGCCCGCTGAGGGA TGCCGTCGTCATCGAGCAGAGCTCCTCCTGAATGAGGCCAGCAGTGGCCTCTT CGACGTCTTCCTACGCTTCATGTGCCACCACGCCGTGCGCATCAGGGGCAAGTC CTACGTCCAGTGCCAGGGGATCCCGCAGGGCTCCATCCTCTCCACGCTGCTCTG CAGCCTGTGCTACGGCGACATGGAGAACAAGCTGTTTGCGGGGGATTCGGCGGGA CGGGCTGCTCCTGCGTTTGGTGGATGATTTCTTGTTGGTGACACCTCACCTCAC CCACGCGAAAACCTTCCTCAGGACCCTGGTCCGAGGTGTCCCTGAGTATGGCTG CGTGGTGAACTTGCGGAAGACAGTGGTGAACTTCCCTGTAGAAGACGAGGCCCT GGGTGGCACGGCTTTTGTTCAGATGCCGGCCCACGGCCTATTCCCCTGGTGCGG CCTGCTGCTGGATACCCGGACCCTGGAGGTGCAGAGCGACTACTCCAGCTATGC CCGGACCTCCATCAGAGCCAGTCTCACCTTCAACCGCGGCTTCAAGGCTGGGAG GAACATGCGTCGCAAACTCTTTGGGGTCTTGCGGCTGAAGTGTCACAGCCTGTT TCTGGATTTGCAGGTGAACAGCCTCCAGACGGTGTGCACCAACATCTACAAGAT CCTCCTGCTGCAGGCGTACAGGTTTCACGCATGTGTGCTGCAGCTCCCATTTCA TCAGCAAGTTTGGAAGAACCCCACATTTTTCCTGCGCGTCATCTCTGACACGGC CTCCCTCTGCTACTCCATCCTGAAAGCCAAGAACGCAGGGATGTCGCTGGGGGC

PCT/US97/21248

# 35/46 FIG.8D

CAAGGCCCCGCCCGCCCTCTGCCCTCCGAGGCCGTGCAGTGGCTGTGCCACCA
AGCATTCCTGCTCAAGCTGACTCGACACCGTGTCACCTACGTGCCACTCCTGGG
GTCACTCAGGACAGCCCAGACGCAGCTGAGTCGGAAGCTCCCGGGGACGACGCT
GACTGCCCTGGAGGCCGCAGCCAACCCGGCACTGCCCTCAGACTTCAAGACCAT
CCTGGACTGATGGCCACCCGCCCACAGCCAGGCCGAGAGCAGCACCCAGCCC
CTGTCACGCCGGGCTCTACGTCCCAGGGAGGGGGGGGCCCACACCCAGGCC
CGCACCGCTGGGAGTCTGAGGCCTGAGTGTTTTGGCCGAGGCCTGCATGTC
CGGCTGAAGGCTGAGTGTCCGGCTGAGGCCTGAGGCGTTCCAGCCAAGGGCT
GAGTGTCCAGCACACCTGCCGTCTTCACTTCCCCACAGGCTTGGCCTCCCACACGGCTCC
ACCCCAGGGCCAGCTTTTCCTCACCAGGAGCCCGGCTTCCACTCCCCACATAGG

### FIG.9A

HASGORCVLLRTWEALAPATPAMPRAPRCRAVRSLLRSHYREVLPLATF VRRLGPQGWRLVQRGDPAAFRALVAQCLVCVPWDARPPPAAPSFRQVSC LKELVARVLQRLCERGAKNVLAFGFALLDGARGGPPEAFTTSVRSYLPN TVTDALRGSGAWGLLLRRVGDDVLVHLLARCALFVLVAPSCAYQVCGPP LYQLGAATQARPPPHASGPRRLGCERAWNHSVREAGVPLGLPAPGARR RGGSASRSLPLPKRPRRGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCV VSPARPAEEATSLEGALSGTRHSHPSVGRQHHAGPPSTSRPPRPWDTPC PPVYAETKHFLYSSGDKEQLRPSFLLSSLRPSLTGARRLVETIFLGSRP WMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGVLLKTHCPLRAAV TPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGFVRAC LRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDC AWLRRSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTET TFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPA LLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKALFSV LNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPPELYFVKVDV TGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRKAFKSH VSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLR FMCHHAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRD GLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPV

PCT/US97/21248

37/46

FIG.9B

EDEALGGTAFVQMPAHGLFPWCGLLLDTRTLEVQSDYSSYARTSIRASL
TFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQVNSLQTVCTNIYKILLL
QAYRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKNAGMSL
GAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSR
KLPGTTLTALEAAANPALPSDFKTILD

38/46 FIG. 10



PCT/US97/21248



FIG.11A





FIG.11B

FIG.11C

PCT/US97/21248

40146



FIG. 12A



FIG.12B

PCT/US97/21248



FIG.13A



FIG.13B

|            | μg RNA      |                |          |
|------------|-------------|----------------|----------|
| hTR only   | 1.0         | 52             |          |
|            | 10.0        | 54             |          |
|            | 300.0       | 53.            |          |
|            | 100.0       | 55             |          |
| 7P2 + mTR  | 1.0         | SI             |          |
|            | 10.0        | SO             |          |
|            | 300.0       | 61             |          |
|            | 100.0       | 81             |          |
| TP2 + tRNA | 1.0         | ۷۱             |          |
|            | \$0.0       | 91             |          |
|            | 200.0       | 12             | <b>*</b> |
|            | 100.0       | bl             | Err      |
| ø:         | 1.0         | 13             | Ö        |
| TP2 + chTR | 50.0        | រទ             | CASSELL  |
| 6)<br>4.   | 300.0       | 11             | 11.      |
| 유          | 0.001       | Oî             |          |
|            | 0.1+ RNase  | 6              |          |
| E.         | 1.0         | 8              |          |
| +          | 10.0        | ž 4            |          |
| TP2 + hTR  | 300.0       | 9              |          |
|            | 100.0       | § S            |          |
|            | yno S9T     | Þ              |          |
| 20         | HeLa + RNas | 3              |          |
| 9.         | Hela - Pha  | 5              |          |
|            | , PM        | • " " <b>t</b> |          |

PCT/US97/21248

43/46

|      | <b>a</b>                           |       | WT TP2                    |     |            | 5-1   |       |      | 5-2 |       |       | 5-1,2 |     |       |       |      |     |        |
|------|------------------------------------|-------|---------------------------|-----|------------|-------|-------|------|-----|-------|-------|-------|-----|-------|-------|------|-----|--------|
| HeLa | HeLa + RNase<br>no DNA<br>TP2 only | 0.001 | 0.00 <del>5</del><br>0.01 | Ó.1 | 0.1+ RNase | 0.001 | 90.00 | 0.01 | 0.1 | 0.001 | 0.005 | 0.01  | 0.1 | 0.001 | 0.005 | 0.01 | 0.1 | μg hTR |

FIG. 15A

WT TP2 5-1 5-2 5-1,2 no DNA

- 200 kDa

- 116 kDa

FIG.15B

PCT/US97/21248



FIG. 16A



FIG.16B

PCT/US97/21248



f 2 3 4 5 6 7 8 FIG.17A



FIG.17B

PCT/US97/21248

46/16

1 2 3 4 5 6

FIG.18