Chap. 3 – Analyse amortie, analyse d'algorithmes probabilistes HAI503I – Algorithmique 4

Bruno Grenet

Université de Montpellier - Faculté des Sciences

- 1.1 Exemple 1: le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2 : les tableaux dynamiques

2. Analyse d'algorithmes probabilistes

- 2.1 Exemple 1: QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

- 1.1 Exemple 1 : le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2: les tableaux dynamiques

- 2. Analyse d'algorithmes probabilistes
- 2.1 Exemple 1: QuickSelect
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

- 1.1 Exemple 1 : le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2: les tableaux dynamiques

- 2. Analyse d'algorithmes probabilistes
- 2.1 Exemple 1: QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Incrémenter un entier de $0 \text{ à } 2^k - 1$

Représentation

- ► Tableau *T* de *k* bits (ou *mot binaire de longueur k*)
- ► Entier *N* représenté : $\sum_{i=0}^{k-1} T_{[i]} 2^i$

Incrément (T):

Entrée: Tableau T de taille k représentant un entier N Sortie: Le même T, représentant N+1 modulo 2^k

$$(2^k-1)+1\to 0$$

- 1. $i \leftarrow 0$
- **2.** Tant que i < k et $T_{[i]} = 1$:
- 3. $T_{[i]} \leftarrow 0$
- 4. $i \leftarrow i + 1$
- 5. Si $i < k : T_{[i]}$ ← 1
- 6. Renvoyer T

Propriétés d'Incrément

Correction

Si T représente N, alors après INCRÉMENT, T représente $N' = N + 1 \mod 2^k$

Preuve

- ▶ Si $N = 2^k 1$, $T_{[i]} = 1$ pour tout i et après incrément $T_{[i]} = 0$ pour tout i
- ► Sinon, soit *i* tel que $T_{[i]} = 0$ et $T_{[j]} = 1$ pour j < i:
 - Après Incrément : $T_{[i]} = 1$, $T_{[j]} = 0$ pour j < i et $T_{[k]}$ inchangé pour k > i
 - ▶ Donc $N' = N + 2^i \sum_{j < i} 2^j = N + 1$

Complexité

► Incrément a complexité *O*(*k*)

Preuve

▶ Pire cas \rightarrow on parcourt une fois tout le tableau T

Peut-on dire mieux?

La complexité d'Incrément est-elle vraiment O(k)?

- ▶ 01...11 \rightarrow 10...00 : demande effectivement *k inversions* de bits
- ▶ $10...00 \rightarrow 10...01$: ne demande qu'une inversion de bit !

Comment prendre en compte les variations?

- Les Incréments peuvent coûter 1, 2, ..., k
- Lesquels sont les plus *fréquents*?
- → Fixer une suite d'Incréments

Suite d'Incréments

On incrémente T de 0 à N-1: quel est le coût *global*?

Analyse pire cas

- ▶ T est de taille $k \rightarrow$ chaque Incrément coûte O(k)
- ▶ On effectue N Incréments \rightarrow coût global O(Nk)
- ▶ Remarque : si $N \ll 2^k$, chaque Incrément coûte $O(\log N) \rightarrow O(N \log N)$

Analyse amortie

- $ightharpoonup T_{[0]}$ est inversé à chaque fois
- ► *T*_[1] est inversé une fois sur deux
- **.**..
- $ightharpoonup T_{[k-1]}$ est inversé une fois sur 2^{k-1}
- ightarrow Coût global : $\sum_{i=0}^{k-1} \lfloor \frac{N}{2^i} \rfloor < N \sum_{i=0}^{+\infty} \frac{1}{2^i} = 2N$

Bilan sur Incrément

Coût d'un appel à Incrément

- ▶ Pire cas : on doit parcourir tout le tableau $T \rightarrow O(k)$
- ► On ne peut pas dire mieux *a priori*!

Coût de N appels à Incréments

- ▶ Pire cas : $N \times O(k) = O(Nk)$
- Coût global : O(N) car certains INCRÉMENTS peu chers
- Remarque : valable aussi pour N Incréments quelconques

Coût amorti d'Incrément

Le coût amorti de l'algorithme Incrément est O(1) par appel à Incrément

1.1 Exemple 1: le compteur binaire

1.2 L'analyse amortie

1.3 Exemple 2: les tableaux dynamiques

2. Analyse d'algorithmes probabilistes

- 2.1 Exemple 1: QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Analyse pire cas et analyse amortie

Scénario

- Algorithme Algo de complexité C(n) pour une entrée de taille n, dans le pire cas
- Séquence de N appels à ALGO : coût $c_i \leq C(n)$ sur l'entrée n° i

Deux analyses possibles

- ► Analyse pire cas : le coût global est borné par $N \times C(n)$ ► Analyse amortie : le coût global est $\leq \sum_{i=1}^{N} c_i$

Remarques

- L'analyse pire cas reste valide ; l'analyse amortie est meilleure
- Estimation directe du coût c_i difficile, voire impossible
- Plusieurs méthodes d'analyse :
 - méthode de l'agrégat
 - méthode de l'accompte
 - méthode du potentiel

Méthode de l'agrégat

Idée: si le coût global pour N appels est $C^{tot}(N)$, le coût amorti est $C^{tot}(N)/N$

ightharpoonup Agrégat : mot compliqué pour une idée simple ightarrow on somme les coûts et on divise

Mise en œuvre

- ▶ Regarder globalement les *N* appels comme une seule exécution
- Regrouper des opérations venant de différents appels pour mieux compter

Exemple pour Incrément

► Compter le nombre total d'inversions du bit $T_{[0]}$, du bit $T_{[1]}$, etc.

Méthode de l'accompte

Idée: payer plus que le vrai coût à certains appels, et moins à d'autres

Accompte : on imagine que les coûts sont de l'argent, et le compte doit être en positif

Mise en œuvre

- À chaque appel,
 - fixer une taxe à payer (éventuellement nulle pour certains appels)
 - utiliser l'accompte pour payer le coût de l'appel
- L'accompte doit toujours rester positif
- Coût amorti par opération : taxe maximale payée
- Remarque : plus difficile que l'agrégat, mais plus puissant

Exemple pour Incrément

- ► Chaque passage de bit de 0 à 1 coûte 2, et chaque passage de 1 à 0 est gratuit
- À chaque appel : prélèvement de 1 par inversion de bits
- Coût amorti : 2

Méthode du potentiel

Idée: associer aux appels les plus chers une augmentation de potentiel

▶ Potentiel : métaphore de l'énergie potentielle en physique

Mise en œuvre

- ▶ Définir une *fonction potentiel* Φ ≥ 0 sur l'objet manipulé
 - Valeur initiale Φ₀
 - ► Valeur après *i* appels : $Φ_i ≥ Φ_0$
- ► Si le coût d'un appel est c_i , son *coût amorti* est $a_i = c_i + \Phi_i \Phi_{i-1}$
- Le coût total amorti de N appels est $\sum_{i=1}^{N} a_i = \sum_{i=1}^{N} c_i + \Phi_N \Phi_0$

Exemple pour Incrément

- Potentiel du tableau T : Φ(T) = nombre de 1 dans T
- ► Si Incrément(T) remet ℓ bits à 0 :
 - ightharpoonup coût $c_i = \ell + 1$
 - ▶ différence de potentiel : $\Phi_i \Phi_{i-1} = \ell 1$
 - coût amorti : $\ell + 1 (\ell 1) = 2$

Bilan sur les trois méthodes

Techniques plus ou moins faciles

- Méthode de l'agrégat : idée la plus évidente... mais demande une compréhension globale
- Méthodes de l'accompte et du potentiel : plus difficile à mettre en œuvre, mais compréhension locale

Idées communes aux méthodes de l'accompte et du potentiel

- Calcul direct d'un coût amorti pour chaque appel
- Preuve globale que le coût amorti défini est valide
- Forme d'analyse pire cas avec une notion de coût modifiée

Utilisation principale : structures de données

- ► Ensemble d'algorithmes de manipulation de la structure (ajout, suppression, etc.)
- ightharpoonup Coûts variables ightarrow analyse amortie pour avoir un *coût moyen par opérations*

- 1.1 Exemple 1: le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2: les tableaux dynamiques

- 2. Analyse d'algorithmes probabilistes
- 2.1 Exemple 1: QuickSelect
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Exemple des list en Python

```
def test(n):
    L = []
    for i in range(n): L.append(i)
    for i in range(n//2): L[i], L[n-i-1] = L[n-i-1], L[i]
```


Quelle structure de données ?

- ▶ Ajout en fin de liste en O(1) → liste chaînée ?
- Accès à $L_{[i]}$ en temps $O(1) \rightarrow$ tableau ?

Les tableaux dynamiques

Idée de base

- Structure de donnée sous-jacente : un tableau
- Deux tailles :
 - ► taille effective *N* du tableau en mémoire
 - nombre n d'éléments stockés

Conditions à respecter

- ► Il faut toujours $N \ge n$ pour avoir assez de place
- ► Il ne faut pas $N \gg n$: utilisation de place inutile

Objectifs

- Assurer $N = O(n) \rightarrow$ en pratique $n \le N \le 4n$
- Accès à un élément en temps O(1): immédiat
- Ajout et suppression en fin de tableau en O(1)

Ajout et suppression

Ajout d'un élément x à la fin

- ► Si N > n: $T_{[n]} \leftarrow x$; $n \leftarrow n+1$
- ► Sinon, doubler la taille de *T* :
 - ► Nouveau tableau *U* de taille 2*N*
 - Recopie de T dans U
 - ightharpoonup Ajout de x à U

Suppression d'un élément x à la fin

- ▶ Pas de difficulté : $n \leftarrow n-1$
- Pour éviter $N \gg n$, il faut (parfois) réduire la taille de T
 - ▶ Idée 1 : si n < N/2 on réduit de moitié \rightarrow mauvaise idée !
 - ► Idée 2 : si n < N/4 on réduit de moitié \rightarrow bonne idée !

Remarque

- ▶ N toujours ≥ 1
 - Suppression du dernier élément : pas de modification de T

Les algorithmes

AJOUT
$$(T, N, n, x)$$
:

- 1. Si n < N:
- 2. $T_{[n]} \leftarrow x$
- 3. $n \leftarrow n + 1$
- 4. Renvoyer (T, N, n)
- 5. $U \leftarrow \text{tableau de taille } 2N$
- 6. Pour i = 0 à N 1: $U_{[i]} \leftarrow T_{[i]}$
- 7. $U_{[n]} \leftarrow x$
- 8. $(N, n) \leftarrow (2N, n+1)$
- 9. Renvoyer (U, N, n)

Suppression(T, N, n):

- 1. Si n = 1 ou n > N/4:
- 2. $n \leftarrow n-1$
- 3. Renvoyer (T, N, n)
- 4. $U \leftarrow \text{tableau de taille } N/2$
- 5. Pour i = 0 à n 2: $U_{[i]} \leftarrow T_{[i]}$
- 6. $(N, n) \leftarrow (N/2, n-1)$
- 7. Renvoyer (U, N, n)

Dans le pire cas, Ajout et Suppression effectuent chacun O(n) affectations

Analyse amortie 1: uniquement des Ajouts

Coût de m Ajouts dans un tableau initialement vide?

Analyse pire cas

▶ Un Ajout dans un tableau de taille k coûte O(k) o coût total $O(m^2)$

Méthode de l'agrégat

- Deux types de coût :
 - Affectations $T_{[n]} \leftarrow x$ quand on Ajoute x
 - Réaffectations quand on double la taille de T
- N = 1 initialement, et on double la taille quand nécessaire $\rightarrow N = 2^k$
- ► Taille de *T* doublée quand *n* est une puissance de 2
- ightarrow coût total des réaffectations : $\sum_{k=1}^{\lfloor \log m \rfloor} 2^k < 2^{\lfloor \log m \rfloor + 1} \leq 2m$

Théorème

Le coût amorti de m Ajouts dans un tableau initialement vide est de 3 affectations par opération

Analyse amortie 2: Ajouts et Suppressions

Coût de *m* opérations AJOUT/SUPPRESSION dans un tableau initialement vide ?

Notations

Après la ième opération,

- ▶ *n_i* : nombre d'élément dans le tableau
- N_i: taille du tableau
- $ightharpoonup \alpha_i = n_i/N_i$: coefficient de remplissage
- $ightharpoonup c_i$: coût de la $i^{\text{ème}}$ opération (nombre d'affectations)

Fonction potentiel

$$\Phi_i = \begin{cases} 2n_i - N_i & \text{si } \alpha_i \ge \frac{1}{2} \\ N_i/2 - n_i & \text{si } 0 < \alpha_i \le \frac{1}{2} \\ 0 & \text{si } \alpha_i = 0 \end{cases}$$

Objectif: Montrer que le coût amorti $a_i = c_i + \Phi_i - \Phi_{i-1}$ de chaque opération est constant

Preuve de l'analyse amortie

Le coût amorti $a_i = c_i + \Phi_i - \Phi_{i-1}$ de la $i^{\text{ème}}$ opération est ≤ 3 pour tout i

$$\frac{4}{3007} \cdot n_{i} = n_{i-1} + 1$$

$$\frac{1}{1} \cdot x_{i-1} \cdot x_{i} < \frac{1}{2} \cdot 1 + \frac{n_{i}}{2} \cdot n_{i} - \frac{n_{i}}{2} \cdot n_{i-1} = 0$$

$$\frac{1}{2} \cdot x_{i-1} \cdot \frac{1}{2} \cdot x_{i} < \frac{1}{2} \cdot 1 + \frac{n_{i}}{2} \cdot n_{i} - \frac{n_{i}}{2} \cdot n_{i-1} = 3 + 3n_{i-1} - \frac{3}{2} \cdot n_{i-1} < 3$$

$$\frac{3}{4} \cdot x_{i-1} \cdot x_{i} > \frac{1}{2} \cdot x_{i} = \frac{3}{2} \cdot x_{i-1} \cdot x_{i} + \frac{3}{2} \cdot x_{i-1} +$$

Preuve de l'analyse amortie

Le coût amorti $a_i = c_i + \Phi_i - \Phi_{i-1}$ de la $i^{\text{ème}}$ opération est ≤ 3 pour tout i

Suppression
$$n_{i} = n_{i-1} - 1$$

1. $d_{i,1}d_{i-1} \ge 1/2$: $O + (2n_{i-1}-N_{i}) - (2n_{i-1}-N_{i-1}) = -2$

2. $\alpha_{i,n} \ge 1/2 > d_{i}$: $O + (N_{i}/2-n_{i}) - (2n_{i-1}-N_{i-1}) = 1-3n_{i-1}+\frac{3}{2}N_{i-1} \le 1$

3. $\alpha_{i-1}'d_{i} < 1/2$ mais de réduction: $O + (N_{i}/2-n_{i}) - (N_{i-1}-n_{i-1}) = 1$

4. $\alpha_{i-1}=1/4$, $\alpha_{i} \le 1/2$: $n_{i} + (N_{i}/2-n_{i}) - (N_{i-1}-n_{i-1}) = n_{i-1} - N_{i-1} = 0$

Bilan sur les tableaux dynamiques

Principes

- ► Tableau de taille variable
 - Mémoire *allouée* supérieure à celle utilisée
 - ► Remplissage : $\frac{1}{4} \le \alpha \le \frac{1}{2}$
 - ► Taille doublée ou divisée par deux quand nécessaire
- Accès direct et Αμουτ en fin de tableau en temps constant

Complexité amortie

- lacktriangle Chaque opération coûte \leq 3 affectations o coût constant par opération
- Mais tout de même : si on connaît à l'avance la taille, coût triplé!

Autres utilisations

- ightharpoonup Création de pile \rightarrow idem !
- ightharpoonup Création de file ightharpoonup travail supplémentaire, cf TD

Performance des list Python

Conclusion sur l'analyse amortie

Technique avancée d'analyse d'algorithmes

- Dépasser l'analyse pire cas
- ▶ Prendre en compte les variations de temps entre différents appels

Trois techniques

- Méthode de l'agrégat
- Méthode de l'accompte
- Méthode du potentiel

Utilisation principale : structures de données

- Chaque opération peut coûter cher
- Mais peu d'opérations coûtent cher
- ightharpoonup Si on utilise plusieurs fois la structure de donnée ightarrow coût amorti faible

- 1.1 Exemple 1: le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2: les tableaux dynamiques

2. Analyse d'algorithmes probabilistes

- 2.1 Exemple 1: QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

- 1.1 Exemple 1: le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2: les tableaux dynamiques

2. Analyse d'algorithmes probabilistes

- 2.1 Exemple 1: QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Problème de la sélection

QUICKSELECT(T, k):

Entrées: Tableau T de taille n d'entiers tous distincts; entier k entre 1 et n Sortie: Le $k^{\text{ème}}$ plus petit élément $T^{(k)}$ de T

- 1. $p \leftarrow T_{[i]}$ avec *i* choisi aléatoirement entre 0 et n-1 (pivot)
- 2. $n_0 \leftarrow$ nombre d'élément < p dans T (boucle Pour)
- 3. Si $n_0 = k 1$: Renvoyer *p*
- **4.** Si $n_0 \ge k$:
- 5. $T_0 \leftarrow \text{tableau des éléments de } T \text{ qui sont }$
- 6. Renvoyer QuickSelect(T_0, k)
- 7. $T_1 \leftarrow \text{tableau des éléments de } T \text{ qui sont } > p \text{ (boucle Pour)}$
- 8. Renvoyer QuickSelect $(T_1, k n_0 1)$

Correction

$$T^{(k)} = \begin{cases} p & \text{si } n_0 = k - 1 \\ T_0^{(k)} & \text{si } n_0 \ge k \\ T_1^{(k - n_0 - 1)} & \text{sinon} \end{cases}$$

Complexité de QUICKSELECT

Analyse en pire cas

- ▶ Deux boucles en O(n) + appel récursif sur un tableau de taille $\leq n-1$
- $ightharpoonup C_n \le C_{n-1} + O(n) o C_n = O(n^2)$ nombre de comparaisons

Peut-on dire mieux?

- Appel récursif en taille n-1 si $T_{[i]}$ est toujours le minimum ou toujours le maximum
- Est-ce que ça arrive en pratique?
 - ▶ Quelle est la taille *moyenne* (espérance) du tableau pour l'appel récursif ?
 - Quelle est l'espérance du nombre de comparaisons effectuées ?

Théorème

Soit C_n le nombre de comparaisons effectuées par QuickSelect(T,k) où T est de taille n. Alors $\mathbb{E}[C_n] \leq 4n$, quelque soit k.

Preuve par récurrence

-Cn = nb de comparaisons Æ[Cn] ≤4n n=1. ✓ - Cn ms n + appel récoment = n + Ct où t=taille du tableau de l'appel récompt

- ξ ? - ξ : $\xi = \frac{\tau(k)}{r}$: t = 0 $\xi = \tau(\delta)$ $\xi = \tau(\delta)$ E[Cn] < n+ 4(32-2)=n+3n-2 < 4n /

 $-\mathbb{E}\left[C_{n}\right] = \sum_{j=1}^{n} \mathbb{E}\left[C_{n} \mid p = T(\delta)\right] \frac{P_{n}\left[p = T(\delta)\right]}{\left(n + 4 \max(j-1, n-\delta)\right)} \leq n + 4 \sum_{j=1}^{n} \max(j-1, n-j)$ $\frac{\sup_{j=1}^{N} n_{j}}{\sum_{j=1}^{N} n_{j}} + \sum_{j=N/2+1}^{N} j^{-1} = \sum_{\ell=N/2}^{N+1} \ell + \sum_{\ell=N/2}^{N-1} \ell = 2 \left(\sum_{\ell=1}^{N-1} \ell - \sum_{\ell=1}^{N/2-1} \ell \right) = n(n-1) - \frac{n}{2} (n/2-1)$

Bilan sur QuickSelect

Nombre de comparaisons

- Si on est **très** malchanceux, QuickSelect effectue $\sim \frac{1}{2}n^2$ comparaisons
- L'espérance du nombre de comparaisons effectuées est $\leq 4n = O(n)$

Que veut dire *malchanceux*?

- ► Espérance valable *quelque soit l'entrée* (*T* et *k*)
 - Pas de chance ou malchance par rapport à l'entrée
 - La probabilité porte sur les choix aléatoires de l'algorithme
- ▶ On peut être *parfois* malchanceux au cours de l'algorithme
 - Pas besoin d'avoir de la chance à chaque étape...
 - ... simplement de ne pas être très malchanceux à chaque étape
- Exemple : proba. de faire toujours le pire choix = 1/n!
 - ightharpoonup si n = 10: 1/3 628 800
 - ightharpoonup si $n = 100 : < 1/10^{157}$

QuickSelect est toujours correct, l'espérance de sa complexité est O(n)

- 1.1 Exemple 1: le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2: les tableaux dynamiques

2. Analyse d'algorithmes probabilistes

- 2.1 Exemple 1: QuickSelect
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Coupe minimale dans un graphe

Définition

- ▶ Une *coupe* dans un graphe G = (S, A) est une partition de $S = S_1 \sqcup S_2$
- ▶ La *taille* de la coupe $S_1 \sqcup S_2$ est le nombre d'arêtes entre S_1 et S_2 :

$$|\{u_1u_2\in A: u_1\in S_1, u_2\in S_2\}|$$

Problème de la coupe minimale

Entrée : Graphe
$$G = (S, A)$$

Sortie : Coupe $S = S_1 \sqcup S_2$ de taille minimale

Généralisation nécessaire : multigraphes

- ▶ Un *multigraphe* est un graphe qui autorise plusieurs arêtes entre 2 sommets
- ▶ Coupe et problème de la coupe minimale définis de manière équivalente

Algorithme probabiliste pour la coupe minimale

COUPEMIN(G):

- 1. Tant que G possède au moins 3 sommets :
- 2. Choisir une arête de *G*, aléatoirement
- 3. Contracter l'arête G
- 4. Renvoyer la coupe définie par les deux sommets restants

Complexité de CoupeMin

G : multigraphe à *n* sommets

Fait admis

Si G est représenté par listes d'adjacence, la contraction d'une arête peut s'effectuer en temps O(n)

Théorème

L'algorithme Coupe Min renvoie une coupe de G en temps $O(n^2)$

Preuve

- lacktriangle À chaque itération, on contracte une arête ightarrow le nombre de sommets diminue de 1
- Le nombre d'itérations est donc $\leq n-2$
- La complexité totale est $O(n^2)$

La complexité ne dépend pas des choix probabilistes !

Correction de CoupeMin

Pourquoi cet algorithme fonctionnerait-il?

Lemme de correction

L'algorithme CoupeMin appliqué à un multigraphe à n sommets renvoie une coupe minimale avec probabilité $\geq \frac{2}{n(n-1)}$

Remarque

- Cette probabilité est très petite!
- Exemple pour $n = 100, \frac{2}{n(n-1)} \simeq 0,02\%...$

Preuve du lemme de correction

- Soit C* une coupe minimale: CoupeTIN renoic C* (=> ancune arête de C* n'est contractée pendant l'algo

. On se que à me étape su il reste le sommets et aucune arête de C'n'a été contractée.

La proba d'an contracter une maintenant est ≤ 2/k.

m = # arêtes dans C*. Alors le graphe possède > mk arêtes.

Car si bous la soundes out degre > m.

$$\Rightarrow pr > ba \leq \frac{m}{mh/2} - \frac{2}{12}$$

- Probe de ne jamais contracte me avôte de $C^* > (1-\frac{2}{n})(1-\frac{2}{n-1})\cdots(1-\frac{2}{3})$ $= \frac{n-3}{n-1} \frac{n-4}{n^2} \cdot \frac{1}{3} = \frac{2\cdot 1}{n(n-1)}$

Répétitions de CoupeMin

Probabilité de $\mathit{succès}$ très faible \to on répète l'algorithme pour améliorer cette probabilité

Lemme de répétition

Si on répète N fois CoupeMin et qu'on garde la plus petite coupe renvoyée, cette coupe est minimale avec probabilité $\geq 1 - e^{-2N/n(n-1)}$

Remarques

- Si on répète $N = 2n^2$ fois l'algorithme, on obtient
 - une complexité $O(n^4)$
 - ightharpoonup une coupe minimale avec probabilité $\geq 1-e^{-4} \simeq 98\%$

Preuve du lemme de répétition

Bilan sur CoupeMin

Complexité

- ► Un appel à CoupeMin coûte toujours $O(n^2)$
- ▶ On a besoin de $O(n^2)$ répétitions $\rightarrow O(n^4)$

Correction

- Un appel à CoupeMin renvoie une coupe minimale avec proba. $\geq \frac{2}{n(n-1)}$
- N appels à CoupeMin renvoient une coupe minimale avec proba. $\geq 1 e^{-2N/n(n-1)}$
- $ightharpoonup cn^2$ appels à CoupeMin renvoient une coupe minimale avec proba. $\geq 1 e^{-2c}$

CoupeMin répété est toujours en temps $O(n^4)$, et correct avec très bonne probabilité

1. Analyse amortie

- 1.1 Exemple 1: le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2: les tableaux dynamiques

2. Analyse d'algorithmes probabilistes

- 2.1 Exemple 1: QuickSelect
- 2.2 Exemple 2 : coupe minimale

2.3 Algorithmes probabilistes

2.4 Exemple 3 : analyse probabiliste du tri rapide

Définition

Un algorithme probabiliste est un algorithme qui effectue des choix aléatoires au cours de son exécution.

Remarque

Choix aléatoires : accès à un générateur de bits aléatoires, ou d'entiers aléatoires, etc.

Analyse d'un algorithme probabiliste

- Le comportement d'un algorithme probabiliste est une expérience probabiliste
- Le résultat renvoyé (correction) ou le nombre d'opérations effectuées (complexité) peuvent dépendre des choix aléatoires → deux familles d'algorithmes

Les algorithmes de type Las Vegas

Définition

- Un algorithme probabiliste est de type Las Vegas si
 - son résultat ne dépend pas des choix aléatoires
 - sa complexité dépend des choix aléatoires
- Étude de la complexité :
 - Modélisée par une variable aléatoire
 - Calcul de l'espérance de la variable aléatoire
- ► Exemple: QUICK SELECT

Signification de l'espérance de la complexité

- « L'espérance de la complexité est $O(n^2)$ »
 - ► On *s'attend* à avoir une exécution en temps $O(n^2)$
 - Si on exécute l'algorithme de nombreuses fois (sur la même entrée), le temps de calcul moyen sera $O(n^2)$

Las Vegas: « toujours correct, souvent rapide »

Les algorithmes de type *Monte Carlo*

Définition

- Un algorithme probabiliste est de type Las Vegas
 - si sa complexité ne dépend pas des choix aléatoires
 - son résultat dépend des choix aléatoires
- Étude de la correction :
 - probabilité de succès : probabilité que l'algorithme soit correct
- ► Exemple: COUPETIN repeté

Améliorer la probabilité de succès

Si la probabilité de succès est p et qu'on répète N fois l'algorithme

probabilité qu'une (au moins) des répétitions soit correcte est $1 - (1 - p)^N \ge 1 - e^{-pN}$

Monte Carlo: « toujours rapide, souvent correct »

Bilan sur les algorithmes probabilistes

Pourquoi des algorithmes probabilistes?

- ► Algorithmes souvent simples et efficaces
- ▶ Parfois : meilleure complexité que les algorithmes déterministes
- ightharpoonup *Et pourquoi pas ?* \rightarrow en pratique, ils fonctionnent très bien !

Analyse des algorithmes probabilistes

- Modélisation probabiliste, avec variable aléatoire
- Las Vegas : étude de l'espérance de la complexité
- Monte Carlo : étude de la probabilité de succès

Et ensuite?

- Atlantic City: « souvent correct, souvent rapide »
- Algorithmes quantiques : généralisation des algorithmes probabilistes

Algorithmes probabilistes parfois difficiles à analyser... mais indispensables!

1. Analyse amortie

- 1.1 Exemple 1: le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2: les tableaux dynamiques

2. Analyse d'algorithmes probabilistes

- 2.1 Exemple 1: QuickSelect
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Le tri rapide

TriRapide(T):

- 1. Si taille(T) = 1: renvoyer T
- 2. $p \leftarrow T_{[i]}$ avec *i* choisi aléatoirement entre 0 et n-1 (*pivot*)
- 3. $n_p \leftarrow$ nombre d'indices *i* tels que $T_{[i]} = p$ (boucle Pour)
- **4.** $T_0 \leftarrow \text{tableau des éléments de } T \text{ qui sont } \leq p \text{ (boucle Pour)}$
- 5. $T_1 \leftarrow$ tableau des éléments de T qui sont > p (boucle Pour)
- 6. $T_0 \leftarrow \text{TriRapide}(T_0)$
- 7. $T_1 \leftarrow \text{TriRapide}(T_1)$
- 8. Renvoyer la concaténation T_0 , n_p fois p, et T_1

Correction (idée)

- Par récurrence sur la taille n de T (n = 1: ok)
- ▶ T_0 et T_1 sont de taille $< n \rightarrow T_0$ et T_1 sont correctement triés
- donc le tableau renvoyé est correctement trié

Espérance du nombre de comparaisons

Théorème

L'espérance du nombre de comparaisons effetuées par TRIRAPIDE est $O(n \log n)$

Notations

- $ightharpoonup T^{(i)}$: $i^{\text{ème}}$ plus petit élément de T
- ► X: nombre total de comparaisons $\rightarrow X = \sum_{i < j} X_{ij}$

Lemme

Pour
$$1 \le i < j \le n$$
, $\mathbb{E}[X_{ij}] = \Pr[X_{ij} = 1] = 2/(j - i + 1)$

Preuve du théorème

- $\mathbb{E}[X] = \sum_{i < j} \mathbb{E}[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k} \le \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{2}{k}$
- ▶ Donc $\mathbb{E}[X] = O(n \log n)$

Preuve du lemme

Bilan sur le TRIRAPIDE

Propriétés du TriRapide

- L'algorithme est toujours correct
- L'espérance de sa complexité est $O(n \log n)$
- ► Type d'algorithme probabiliste : Las Veyes

Comportement pratique

- Le TriRapide est efficace en pratique, s'il est implanté en place
- ► Tri *stable*

Conclusion générale

Analyse amortie

- Analyse de plusieurs exécutions consécutives d'un même algorithme
- ► Complexité amortie = temps *moyen* pris par les exécutions successives
- ► Trois techniques de preuve : agrégat, accompte et potentiel

Analyse d'algorithmes probabilistes

- Analyse d'algorithmes qui font des choix aléatoires
- Étude de l'espérance de la complexité ou de la probabilité de succès
- Comportement *moyen* vis-à-vis des choix aléatoires

Conclusion générale

Analyse amortie

- Analyse de plusieurs exécutions consécutives d'un même algorithme
- ► Complexité amortie = temps *moyen* pris par les exécutions successives
- ► Trois techniques de preuve : agrégat, accompte et potentiel

Analyse d'algorithmes probabilistes

- Analyse d'algorithmes qui font des choix aléatoires
- Étude de l'espérance de la complexité ou de la probabilité de succès
- Comportement *moyen* vis-à-vis des choix aléatoires

Analyse en moyenne

- Analyse du comportement d'algorithmes sur des entrées aléatoires
- ► Calcul de l'espérance de la complexité sur une entrée aléatoire
- Question subtile : quelle distribution sur les entrées ?