1

AI5002 - Assignment 4

Tuhin Dutta ai21mtech02002

Download code and LaTeX from below hyperlinks

- 1. Codes/Binomial 3 3.py
- 2. LaTeX

Problem 3.3

Suppose X has binomial distribution. Show that X = 3 is the most likely outcome. (Hint: P (X=3) is the maximum among all P (x_i), $x_i = 0, 1, 2, 3, 4, 5, 6$)

Solution

We can write,

$$X \sim B (n, p)$$

where n is the number of independent trials, p is the probability of success for each trial and q is the probability of failure = 1 - p for each trial.

Then,

$$P(X = x) = \binom{n}{x}. q^{n-x}. p^{x} \qquad (0.0.1)$$

Putting value of x = 3 and assuming $p = \frac{1}{2}$ while $q = 1 - p = \frac{1}{2}$ in (0.0.1), we get

$$P(X = 3) = {n \choose 3} \cdot (\frac{1}{2})^{n-3} \cdot (\frac{1}{2})^3$$
 (0.0.2)

$$P(X=3) = \binom{n}{3} \cdot \left(\frac{1}{2}\right)^n$$
 (0.0.3)

From combinatorics we know for the term $\binom{n}{3}$ to be maximum, n value should be = 3 * 2 = 6.

For all given values of

$$x_i = (0, 1, 2, 3, 4, 5, 6)$$

we find the P $(X = x_i)$.

For $x_i = 0$,

$$P(X=0) = {6 \choose 0}. \left(\frac{1}{2}\right)^6 = \frac{1}{64} = P(X=6) (0.0.4)$$

For $x_i = 1$,

$$P(X = 1) = {6 \choose 1} \cdot (\frac{1}{2})^6 = \frac{6}{64} = P(X = 5) (0.0.5)$$

For $x_i = 2$,

$$P(X=2) = {6 \choose 2} \cdot (\frac{1}{2})^{6} = \frac{15}{64} = P(X=4) (0.0.6)$$

For $x_i = 3$,

$$P(X = 3) = {6 \choose 3}. (\frac{1}{2})^6 = \frac{20}{64} = 0.3125$$
 (0.0.7)

Comparing (0.0.4) through (0.0.7), we see X = 3 (0.0.3) (0.0.7) to be the most likely event.

From (0.0.3) we can see that for P (X = 3) to be maximum the term $\binom{n}{3}$ should be maximum.

Fig 1.1: Theoretical PMf plot

Fig 1.2: Simulation plot of PMf

Fig 1.4: Simulation plot of CDF

Fig 1.3: Theoretical CDF plot