EE698V Mid-Semester Exam Solutions February 2022

03-05-2023

Lecturer: Subrahmanya Swamy Peruru

Scribe: Pranay Vandanapu

1 Question 1

1.1 (a)

1.2 (b)

For $\gamma = 1$, the optimal policy is:

S	(1, 1)	(1, 2)	(1, 3)	(2, 1)	(2, 2)	(2, 3)
π^*	UP	LEFT	NA	RIGHT	RIGHT	NA

The optimal policy depends on γ .

For low values of γ , UP might be the best action in state (1, 2).

1.3 (c)

$$V^*(s) = +5 \ \forall \ \mathbf{s} \notin \{(1,3),(2,3)\}$$

 $V_1(1,3) = V_1(2,3) = 0$. Since those are terminal states

1.4 (d)

$$V_0(s) = 0 \ \forall \ \mathbf{s} \in \mathbf{S}.$$

S	(1, 1)	(1, 2)	(1, 3)	(2, 1)	(2, 2)	(2, 3)
V_1	0	0	0	0	4	0
V_2	0	2.38	0	2.88	4.36	0

$$V_1(2,2) = 0.8 * 5 = 4$$

$$V_2(1,2) = 0.8(0 + 0.9 * 4) + 0.1(-5 + 0) = 2.38$$

$$V_2(2,1) = 0.8(0 + 0.9 * 4) = 2.88$$

$$V_2(2,2) = 0.8 * 5 + 0.1(0 + 0.9 * 4) = 4.36$$

1.5 (e)

$$V(1,1) = (-5+5+5)/3 = 5/3$$

$$V(2,2) = (5+5)/2 = 5$$

1.6 (f)

$$V(s) = V(s) + \alpha * (r + \gamma * V(s') - V(s))$$

$\underline{Trail\ 1}$

$$V(1,2) = 0 + 0.1(-5 + 0.9 * 0 - 0) = -0.5$$

No other updates.

$\underline{Trail\ 2}$

$$V(1,1) = 0 + 0.1(0 + 0.9 * -0.5 - 0) = -0.045$$

$$V(1,2) = -0.5 + 0.1(0 + 0.9 * 0 + 0.5) = -0.45$$

$$V(2,2) = 0 + 0.1(5 + 0.9 * 0 - 0) = 0.5$$

2 Question 2

2.1 (a)

$$G_t = R_{t+1} + \gamma * R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k * R_{t+k+1}$$

Adding c to each reward

$$\tilde{G}_t = R_{t+1} + \gamma*R_{t+2} + \ldots + c + \gamma*c + \ldots$$

$$\tilde{G}_t = G_t + c * \sum_{k=0}^{\infty} \gamma^k$$

$$\tilde{G}_t = G_t + c/(1 - \gamma)$$

$$V_{\pi}(s) = E[G_t | S_t = s]$$

$$\tilde{V}_{\pi}(s) = E[\tilde{G}_t | S_t = s]$$

$$\tilde{V}_{\pi}(s) = E[G_t | S_t = s] + c/(1 - \gamma)$$

$$\tilde{V}_{\pi}(s) = V_{\pi}(s) + V_c$$

⇒ c doesn't affect the relative difference among states.

2.2 (b)

In episodic tasks adding a constant could change the goal.

For example in the shortest path grid problem, if we increase the reward of '-1' per step to '1' and terminal reward to '2', the agent will not reach the goal state.

3 Question 3

3.1 Dynamic programming

DP Backup Diagram

Figure 1: DP Backup Diagram

3.2 Monte-Carlo

Monte Carlo Backup Diagram

Figure 2: Monte Carlo Backup Diagram

3.3 TD

TD Backup Diagram

Figure 3: TD Backup Diagram

4 Question 4

4.1 (a)

States: 2^n states (Binary vector of length n), 1/0 - chair occupied or not.

Action: Picking a chair to occupy from a set of available chairs.

Transition: When picking a chair, the status of the chair goes from unoccupied to occupied.

Upon taking action.

Reward:

- +1 if nobody is sitting on the chair and adjacent chairs.
- -100 if only one of the neighbouring chairs is filled.
- $\bullet \; -200$ if both the neighbouring chairs are filled.

4.2 (b)

There are 2^6 states.

Only 18 of those states are valid:

· no occupied chair.

- 6 cases of 1 occupied chair.
- 9 cases of 2 occupied chairs.
- 2 cases of 3 occupied chairs.

Terminal states:

- Chairs 1, 3, and 5 are occupied.
- Chairs 2, 4, and 6 are occupied.
- Chairs 1 and 4 are occupied.
- Chairs 2 and 5 are occupied.
- Chairs 2 and 6 are occupied.

4.3 (c)

The given state is a terminal state.