Data structure ساختمان داده ها

اطلاعات درس

- مدرس: جعفر طهمورث نژاد tahmores@gmail.com
 - **T** تعداد واحد: **T**
- ◄ پيش نيازها: رياضيات گسسته برنامه سازي پيشرفته
- پیش نیاز برای: طراحی الگوریتم ها − نظریه زبان ها و ماشین ها − سیستم های عامل − هوش مصنوعی − طراحی کامپایلر − پایگاه داده ها

مراجع

■ محمد قدسی، داده ساختارها و مبانی الگوریتم ها، انتشارات فاطمی، 1393.

 Cormen, Thomas H. Introduction to algorithms. MIT press, 2009.

بارم بندی

- ■میان ترم: ۵ (بدون حذف برای پایان ترم)
 - پایان ترم: ۹
 - ■تكاليف: ٢
 - کوییزها: ۲
 - 🗕 پروژه ها: ۳
 - مجموع: ۲۱

سرفصل مطالب

1. روشهاي تحليل الگوريتم 5. درخت ها

2. آرایه ها

3. صف ها 7. درهم سازی

4. پشته ها

فصل یک روشـهاي تحليل الگوريتم

مثال مرتب سازي Sorting

مرتب کردن عناصر یك آرایه با ۱ عنصر به ترتیب صعودي

$$a[0] <= a[1] <= ... <= a[n-1]$$

8, 6, 9, 4, 3 \rightarrow 3, 4, 6, 8, 9

Insertion Sort

- با یك زیرمجموعه به اندازه 1 شروع كن
- هر بار عنصر بعدي از عناصر مرتب نشده را به زیرمجموعه مرتب شده اضافه کن (insert)

ا کردن 5 به Insert

مثال: مرتب کردن با insertion Sort

	Sorted			Unsor	ted		
	23	78	45	8	32	56	Original List
							_
	23	78	45	8	32	56	After pass 1
l	23	45	78	8	32	56	After pass 2
The state of the s	8	23	45	78	32	56	After pass 3
							_
	8	23	32	45	78	56	After pass 4
							_
	8	23	32	45	56	78	After pass 5

الگوریتم InsertionSort

11

تعداد دفعات اجرا × هزينه

cost × times executed

InsertionSort

for
$$k=2$$
 to length(A) ---- $c_1 \times n$

$$\ker = A[k]$$
 ----- $c_2 \times n-1$

$$i = k - 1 \longrightarrow c_3 \times n-1$$

while
$$(i > 0 \text{ and } A[i] > \text{key}) \longrightarrow c_4 \times \sum_{k=2}^{n} t_k$$

$$A[i+1] = A[i]$$
 ----- $c_5 \times \sum_{k=2}^{n} (t_k-1)$

$$i = i - 1$$
 ----- $c_6 \times \sum_{k=2}^{n} (t_k - 1)$

$$A[i+1] = \text{key}$$
 ---- $c_7 \times \text{n-1}$

$$T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 \sum_{k=2}^{n} t_k + c_5 \sum_{k=2}^{n} (t_k - 1) + c_6 \sum_{k=2}^{n} (t_k - 1) + c_7(n-1)$$

$$T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 \sum_{k=2}^{n} t_k + c_5 \sum_{k=2}^{n} (t_k - 1) + c_6 \sum_{k=2}^{n} (t_k - 1) + c_7(n-1)$$

$$T(n) = c_1 n + (c_2 + c_3 + c_7)(n-1) + c_4 \sum_{k=2}^{n} t_k + (c_5 + c_6) \sum_{k=2}^{n} (t_k - 1)$$
 $t_k = 1$:ہترین حالت: $t_k = 1$

$$T(n) = c_1 n + (c_2 + c_3 + c_7)(n-1) + c_4(n-1) = c_1 n + (c_2 + c_3 + c_4 + c_7)(n-1)$$

$$T(n) = A_1 n + B_1$$

 $t_k=k$:بدترین حالت

$$\sum_{k=2}^{n} t_k = \sum_{k=2}^{n} k = \frac{n(n+1)}{2} - 1 \qquad \sum_{k=2}^{n} (t_k - 1) = \sum_{k=2}^{n} (k-1) = \sum_{k=1}^{n-1} k = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + (c_2 + c_3 + c_7)(n-1) + c_4 \left(\frac{n(n+1)}{2} - 1\right) + (c_5 + c_6) \left(\frac{n(n-1)}{2}\right)$$

$$T(n) = A_2 n^2 + B_2 n + C_2$$

حالت متوسط: ترکیبهاي مختلف ممکن
$$T(n) = A \sum_{k=2}^{n} \overline{t_k} + Bn + C = A \sum_{k=2}^{n} \left(\frac{1}{k} \sum_{i=1}^{k} i \right) + Bn + C \qquad T(n) = A_3 n^2 + B_3 n + C_3$$

	T(n)	حداکثر اندازه مسئله قابل حل در 1000 ثانیه (n)	براي ماشين 10 برابر سريعتر	نسبت	نسبت، اگر ماشینی 1000 بر ابر سریعتر استفاده شود
	$ \begin{array}{c c} 100n \\ 5n^2 \\ n^3/2 \end{array} $				
	2^n				

		T(n)	حداکثر اندازه مسئله قابل حل در 1000 ثانیه (n)	براي ماشين 10 برابر سريعتر	نسبت	نسبت، اگر ماشینی 1000 بر ابر سریعتر استفاده شود
\prod	The second secon	100 <i>n</i>	10			
	Control of the state of the sta	$\sqrt{5}n^2$	14			
	HETEROGRAPHICS AND PROTOCOLOGICAL SERVICES	$n^3/2$	12			
	William Regulation of the Control of	2 ⁿ	10			

		T(n)	حداکثر اندازه مسئله قابل حل در 1000 ثانیه (n)	براي ماشين 10 برابر سريعتر	نسبت	نسبت، اگر ماشینی 1000 بر ابر سریعتر استفاده شود
	THE CLARK PROPERTY OF THE PROP	100 <i>n</i>	10	100	10	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ANTEROTERNO CONTRACTOR	$5n^2$	14	45	3.2	
	A CONTRACTOR AND A CONT	$n^3/2$	12	27	2.3	
	Tallanana and a state of the st	2 ⁿ	10	13	1.3	

		T(n)	حداکثر اندازه مسئله قابل حل در 1000 ثانیه	براي ماشين 10 برابر سريعتر	نسبت	نسب <i>ت، اگر</i> ماشینی 1000 بر ابر سریعتر
\setminus			(n)			استفاده شود
\prod	To have been a second	100 <i>n</i>	10	100	10	1000.00
	Water Control of the	$\int n^2$	14	45	3.2	31.94
	**************************************	$n^3/2$	12	27	2.3	10.50
	14-92 (ALEXANDER PRINTER)	2^n	10	13	1.3	2.00
		I	1		I	

 $1000*1000=10^{6}$ $n=1g_{2}10^{6}=20$ 20/10=2

	حداكثر اندازه (مسئله قابل حل در 1000 ثانیه	براي ماشين 10 برابر سريعتر	نسبت	نسبت، اگر ماشینی 1000 برابر سریعتر
	(n)			استفاده شود
O(n) 1001	10	100	10	1000.00
$O(n^2)$ $5n^2$	14	45	3.2	31.94
$O(n^3)/n^3/2$	12	27	2.3	10.50
$O(2^n/)$ 2 ⁿ	10	13	1.3	2.00

 $1000*1000=10^{6}$ $n=lg_{2}10^{6}=20$ 20/10=2

Running times for small inputs

Running times for moderate inputs

نرخ رشدهاي معمول Common growth rates

نرخ رشدهاي رايج

Function	Growth Rate Name
С	Constant
log N	Logarithmic
N	Linear
N log N	
N^2	Quadratic
N^3	Cubic
2 ^N	Exponential

- /		٠.	1	8
		,		
	/			/

256
.50
·Κ
4K
M
.56M
6G
.87E+10
74E+11
.09E+12
1.15E+18

تابع G(n)، G(n) است اگر ثابتهای O(g(n)) وجود داشته باشند $f(n) \leq cg(n)$ داشته باشیم: $f(n) \leq cg(n)$ داشته باشیم: $f(n) \leq cg(n)$

به عبارتي، براي تابع g(n), g(n) هجموعه اي از توابع است: $O(g(n)) = \{f(n) : \exists c, n_0 > 0 \text{ such that } \forall n \geq n_0 \text{ } 0 \leq f(n) \leq cg(n)\}$

به زبان ساده C.g(n) به ازاي f(n) به ازاي f(n) به ازاي f(n)

$$3n+2=O(n)$$

به زبان ساده C.g(n) به ازاي f(n) به ازاي f(n) به ازاي f(n) براي براي بردگ به براي به ازاي است

 $3n+2=O(n) /* 3n+2 \le 4n \text{ for } n \ge 2 */$

به زبان ساده C.g(n) به ازاي f(n) به ازاي f(n) به براي بردگ، يك حد بالايي براي براي براي براي بردگ

$$3n+2=O(n)$$
 /* $3n+2\le 4n$ for $n\ge 2$ */
 $3n+3=O(n)$
 $100n+6=O(n)$
 $10n^2+4n+2=O(n^2)$
 $6*2^n+n^2=O(2^n)$
 $3n^2+2n+1=O(n^2)$

```
به زبان ساده C.g(n) به ازای \squareهای بزرگ، یك حد بالایی
                                        برای f(n) است
3n+2=O(n) /* 3n+2 \le 4n \text{ for } n \ge 2 */
3n+3=O(n) /* 3n+3\leq 4n for n\geq 3 */
100n+6=O(n) /* 100n+6\le101n for n\ge10 */
10n^2+4n+2=O(n^2) /* 10n^2+4n+2\le 11n^2 for n\ge 5 */
6*2^n+n^2=O(2^n) /* 6*2^n+n^2 \le 7*2^n for n \ge 4*/
3n^2 + 2n + 1 = O(n^2)
2n=O(n^2) (it is also O(n)), 1000n^3=O(n^{10})
```

Algorithm Analysis: Omega

تابع G(n)، G(n) است اگر ثابتهای $\Omega(g(n))$ ، f(n) وجود داشته باشند به طوری که برای تمام $n \geq n_0$ داشته باشیم: $f(n) \geq cg(n)$

به عبارتي، براي تابع $\Omega(g(n))$, g(n) مجموعه اي از توابع است: $\Omega(g(n)) = \{f(n): \exists c, n_0 > 0 \text{ such that } \forall n \geq n_0 \text{ } 0 \leq cg(n) \leq f(n)\}$

Algorithm Analysis: Omega

به زبان ساده C.g(n) به ازای f(n) به ازای f(n) به ازای f(n)

Example:

$$2n+10=\Omega(n)$$

$$^{'}3n^{2}+2n+20=\Omega(n^{2})$$

$$3n^2+2n+20=\Omega(n)$$

an²+bn+c is
$$\Omega(n^2)$$

Algorithm Analysis: Omega

به زبان ساده C.g(n) به ازای f(n) به ازای f(n) به ازای f(n)

Example:

```
2n+10=\Omega(n) /* 2n+10 \ge 2n for n\ge 1 */ 3n^2+2n+20=\Omega(n^2) /* 3n^2+2n+20 \ge 3n^2 for n\ge 1 3n^2+2n+20=\Omega(n) an^2+bn+c is \Omega(n^2)
```

Algorithm Analysis: Theta

تابع G(g(n))، G(n) است اگر ثابتهای G(g(n)) وجود داشته باشند به طوری که برای تمام $n \ge n_0$ داشته باشیم:

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$

به عبارتي، براي تابع $\Theta(g(n))$ ، g(n) مجموعه اي از توابع است: $\Theta(g(n))=\{f(n):\exists c_1,c_2,n_0>0 \text{ s.t. } \forall n\geq n_0 \text{ } 0 \leq c_1g(n)\leq f(n)\leq c_2g(n)\}$

Algorithm Analysis: Theta

به زبان ساده g(n) و g(n) نرخ رشد یکسانی دارند g(n) است اگر هم $\Theta(g(n))$ و هم g(n) است اگر هم $\Theta(g(n))$ و هم $\Omega(g(n))$

Example:

$$f(n) = 2n+1$$
 is $\Theta(n)$

Algorithm Analysis: Little Oh

تابع $n_0>0$ است اگر براي هر ثابت C>0 يك ثابت O(g(n)) ، f(n) وجود داشته باشند به طوري كه براي تمام $n_0>0$ داشته باشیم:

$$0 \le f(n) < cg(n)$$

به عبارتي، براي تابع g(n), g(n) مجموعه اي از توابع است: g(n)

 $\phi(g(n)) = \{f(n) : \forall c > 0 \exists n_0 > 0 \text{ such that } \forall n \ge n_0 \text{ } 0 \le f(n) < cg(n)\}$

Algorithm Analysis: Little Oh

به زبان ساده C.g(n) به ازاي f(n) به ازاي محض براي f(n)

Example:

$$f(n) = 3n+4 \text{ is } o(n^2)$$

 $3n+4 < cn^2$

$$cn^2 - 3n - 4 > 0 \Rightarrow n_0 > \frac{3 + \sqrt{9 + 16c}}{2c}$$

$$f(n) = 2n \text{ is } o(n^2)$$

$$2n < cn^2 \Rightarrow n_0 > \frac{2}{c}$$

(it is also O(n) and $O(n^2)$ But is not o(n))

Algorithm Analysis: Little Omega

0>0 است اگر براي هر ثابت C>0 يك ثابت 0(g(n)) وجود داشته باشد بطوري كه براي تمام 0>0 داشته باشد بطوري كه براي تمام 0>0 داشته باشد

$$0 \le cg(n) < f(n)$$

به عبارتي، براي تابع g(n), g(n) مجموعه اي از توابع است:

 $\omega(g(n)) = \{f(n): \forall c>0 \exists n_0>0 \text{ such that } \forall n \geq n_0 \text{ } 0 \leq cg(n) < f(n)\}$

ے کے کی ہے۔ الزاماً کوچکتر

Algorithm Analysis: Little Omega

به زبان ساده CG(n) به ازای f(n) های بزرگ، یك حد پایینی محض برای f(n) است

Example:

 $f(n) = n^2/2$ is $\omega(n)$ But is not $\omega(n^2)$ $n^2/2>cn$, $n_0>2c$

برخي خواص

خاصیت تعدي (transitivity)

If
$$f(n)=\Theta(g(n))$$
 and $g(n)=\Theta(h(n))$ then $f(n)=\Theta(h(n))$ If $f(n)=O(g(n))$ and $g(n)=O(h(n))$ then $f(n)=O(h(n))$ If $f(n)=\Omega(g(n))$ and $g(n)=\Omega(h(n))$ then $f(n)=\Omega(h(n))$ If $f(n)=o(g(n))$ and $g(n)=o(h(n))$ then $f(n)=o(h(n))$ If $f(n)=\omega(g(n))$ and $g(n)=\omega(h(n))$ then $f(n)=\omega(h(n))$ (reflexivity) خاصیت بازتابی $f(n)=\Theta(f(n))$ $f(n)=O(f(n))$ خاصیت تقارنی (Symmetry) خاصیت تقارنی $f(n)=\Theta(g(n))$ if and only if $g(n)=\Theta(f(n))$

برخي خواص (ادامه)

تقارن ترانهاده (Transpose Symmetry)

$$f(n)=O(g(n))$$
 if and only if $g(n)=\Omega(f(n))$

$$f(n)=o(g(n))$$
 if and only if $g(n)=\omega(f(n))$

$$f_2(n) = O(g_2(n))$$
 و $f_1(n) = O(g_1(n))$ - اگر $(f_1 + f_2)(n) = O(\max(g_1(n), g_2(n)))$ و آنگاه

$$f_2(n) = O(g_2(n))$$
 و $f_1(n) = O(g_1(n))$ و $f_1(n)$

Runtime Analysis

■ قواعد مفید:

```
(ثابت) O(1): (read, write, assign) جملات ساده
```

(ثابت)
$$O(1): (+-*/==>>=<<=) مالیات ساده $O(1): (+-*/==>>=<<=)$$$

$$lacktriangle$$
 ترتیبی از جملات ساده و/یا عملیات ساده : $O(1)$ (قاعده جمع)

- جملات شرطي (if (cond) then body1 else body2 endif):

Running Time Example(1)

```
a = bi constant time, so it is \Theta(1).
```

```
sum = 0;
for (i=1; i<=n; i++)
sum += n;
```

Asymptotic Complexity: O(n)

Running Time Example(2)

```
sum = 0;
for (i=1; i<=n; i++)
  for (j=1; j<=i; j++)
    sum++;
for (k=0; k<n; k++)
  A[k] = k;</pre>
```

$$\int_{i=1}^{n} \sum_{j=1}^{i} 1 = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\int_{k=0}^{n-1} 1 = n$$

$$\int_{i=1}^{n} \sum_{j=1}^{n} 1 = \sum_{i=1}^{n} n = n^{2}$$

Asymptotic Complexity: O(n2)

Running Time Example(3)

```
for (i=1; i<n; i++)
  if A(i) > maxVal then
  maxVal= A(i);
  maxPos= i;
```

Running Time Example(3)

```
for (i=1; i<n; i++)
  if A(i) > maxVal then
  maxVal= A(i);
  maxPos= i;
```

Asymptotic Complexity: O(n)

Running Time Example(4)

```
for (i=1; i< n-1; i++)
  for (j=n; j>=i+1; j--)
     if (A(j-1) > A(j)) then
       temp = A(j-1);
       A(j-1) = A(j);
       A(j) = temp;
     endif
  endfor
endfor
```

Running Time Example(4)

```
for/(i=1; i<n-1; i++)
    for (j=n; j>=i+1; j--)
       if (A(j-1) > A(j)) then
          temp = A(j-1);
         A(j-1) = A(j);
         A(j) = temp;
       endif
    endfor
 endfor
• Asymptotic Complexity is O(n^2)
```

جستجوي دودويي


```
// Return position of element in sorted
// array of size n with value K.
int binary(int array[], int n, int K) {
  int l = -1;
  int r = n; // l, r are beyond array bounds
  while (l+1 != r) { // Stop when l, r meet
    int i = (l+r)/2; // Check middle
    if (K < array[i]) r = i; // Left half
    if (K == array[i]) return i; // Found it
    if (K > array[i]) l = i; // Right half
  }
  return n; // Search value not in array
}
```

جستجوي دودويي


```
Return position of element in sorted
// Return position of element in sorted
// array of size n with value K.
int binary(int array[], int n, int K) {
  int l = -1;
  int r = n; // l, r are beyond array bounds
  while (l+1 != r) { // Stop when l, r meet
    int i = (l+r)/2; // Check middle
    if (K < array[i]) r = i; // Left half
    if (K = array[i]) return i; // Found it
    if (K > array[i]) l = i; // Right half
  }
  return n; // Search value not in array
```

Asymptotic Complexity is O(Log₂n)

Max Subsequence Problem

- دنباله اي از اعداد صحیح A1, A2, ..., An داده شده، بیشترین حاصل جمع ترتیبی از اعداد (subsequence) در این دنباله را پیدا کنید.
 - اعداد مي توانند منفي باشند.
 - اگر همه اعداد منفي باشند، پاسخ عدد صفر است.

رسي مي كنيم با پيچيدگيهاي اين مسئله بررسي مي كنيم با پيچيدگيهاي $O(n^3)$ ($O(n^2)$, $O(n^3)$

return maxSum;

Given A_1, \dots, A_n , find the maximum value of $A_i + A_{i+1} + \dots + A_j$ O if the max value is negative

```
int maxSum = 0;
                                                          \int O(1)
for( int i = 0; i < a.size(); i++)
      for( int j = i; j < a.size( ); j++ )
          for (int k = i; k <= j; k++)
this Sum += a[k];
if (this Sum > maxSum)
maxSum = this Sum; O(1)

O(1)
O(j-i)
O(1)
```

■ Time complexity: $O(n^3)$

الگوريتم 2

- ایده اصلی: اگر مجموع اعداد از i تا j-1 محاسبه شده، مجموع i تا j در زمان ثابت قابل محاسبه است.
- به این ترتیب یکی از حلقه های داخلی حذف می شود و زمان اجرای الگوریتم به $O(n^2)$ کاهش می یابد.

الگوريتم 3

- استفاده از روش تقسیم و حل (Divide-and-Conquer)
 - ورودي را به دو قسمت (تقریباً) مساوي تقسیم مي کنیم
 - ترتیب اعداد مورد نظر
 - یا در نیمه سمت چپ است
 - یا در نیمه سمت راست است
- عا قسمتي از آن در نيمه سمت چپ و قسمتي از آن در نيمه سمت راست اسرت.
 - → مثال:

left half | right half 1 -3 5 2 | -1 2 6 -2

max in left: 7 max in right: 8

max: 14

الگوريتم 3 (ادامه)

◄ با استفاده از recursion، هريك از دو نيمه مورد جستجو قرار مي گيرند.

- براي پيدا كردن بيشينه اي كه قسمتي از آن در نيمه چپ و قسمتي از آن در نيمه راست باشد، حاصل جمع بيشينه در انتهاي راست نيمه سمت چپ و ابتداي چپ نيمه سمت راست بصورت خطي جستجو مي شود.

$$T(n) = \begin{cases} 2T(n/2) + cn & n>1 \\ 1 & n=1 \end{cases}$$

 $T(n) = O(n \log n)$

آناليز الگوريتم 3

$$T(1)=1$$

 $T(n) = 2T(n/2) + cn$
 $= 2.cn/2 + 4T(n/4) + cn$
 $= 4T(n/4) + 2cn$
 $= 8T(n/8) + 3cn$
 $=$
 $= 2^{i}T(n/2^{i}) + icn$
 $=$ (reach a point when $n = 2^{i}$ $i = log n$)
 $= n.T(1) + cnlog n$

الگوريتم 4

```
2, 3, -2, 1, -5, 4, 1, -3, 4, -1, 2
```

```
int maxSum = 0, thisSum = 0;
for(int j = 0; j < a.size(); j++)
  thisSum += a[i];
  if (thisSum > maxSum)
     /maxSum = thisSum;
  else if (thisSum < 0)
     thisSum = 0;
return maxSum;
```

- ترتیب اعداد مورد جستجو با عدد منفی شروع یا تمام نمی شود.
- ترتیب اعداد مورد جستجو نمي تواند پیشوندي با مجموع کمتر از صفر داشته باشد.
 - مثال: 2- 5- 13 -4 13 -6
- بنا براین اگر مجموع Ai..Aj کمتر از صفر شود، می توان i را تا j+1 جلو برد (و thisSum را صفر کرد).

هزينه الگوريتم: O(n)

خلاصه

- براي حل يك مسئله، چهار الگوريتم متفاوت با هزينه هاي زير ارائه شد.
 - $O(n^3)$
 - $O(n^2)$
 - O(n logn)►
 - O(n)
- براي مسئله اي با اندازه 10⁶، الگوريتم اول در زمان عمر ما تمام نمي شود و الگوريتم چهارم در حد ثانيه تمام مي شود.

تحليل الگوريتمهاي بازگشتي (recursive)

- بیان مي شود. K < n ، T(k) بیان مي شود. T(n)
 - $\mathsf{T}(1)$ یا $\mathsf{T}(0)$ یا $\mathsf{T}(0)$ یا $\mathsf{T}(0)$
 - - حدس و اثبات
 - تكرار با جايگذاري رابطه بازگشتي
 - درخت بازگشت
 - 🗖 قضیه اصلی
 - حل روابط بازگشتی

روش حدس و اثبات

- حدس جواب و اثبات آن، (معمولاً با استفاده از استقرا)
 - مثال: Merge Sort

Merge Sort مثال

```
MergeSort(A[i..j])
    if (i < j) {
      mid = (i+j)/2
      MergeSort(A[i..mid]);
      MergeSort(A[mid+1..j]);
      Merge(A[i..mid], A[mid+1..j]);
T(n)=2T(n/2)+n
```

How to merge two subarrays?

$$T(n)=2T(Ln/2L)+n$$
 مثال: $T(n)=O(n \ lgn)$ حدس: $T(n)=O(n \ lgn)$ باید ثابت کنیم ثابت C وجود دارد که

$$T(n) = 2T(\lfloor n/2 \rfloor) + n \le 2(c\lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)) + n$$

$$T(n) \le cn \lg(n/2) + n = cn \lg(n) - cn \lg(2) + n = cn \lg n - cn + n$$

$$\Rightarrow T(n) \le cn \lg n$$

$$c \ge 1 \le l \le l$$

روش تکرار با جایگذاری رابطه بازگشتی

رابطه بازگشتي تا رسيدن به جواب بسط داده مي شود. مثال:

$$T(n) = 2T(n/2) + n$$
, $T(1) = 1$

$$= 2(2T(n/4)+n/2) + n$$

$$= 4T(n/4) + n + n$$

$$= 4(2T(n/8) + n/4) + 2n$$

$$= 8T(n/8) + 3n$$

$$= 2^{1}T(n/2^{1}) + in$$

$$n=2^k$$
 با فرض

$$= 2^k T(1) + kn$$

Example: Factorial

```
T(n)
int factorial (int n) {
  if (n<=1) return 1;
                                                       =T(n-1)+d
 else return n * factorial(n-1);
                                                       = T(n-2) + d + d
                                                       = T(n-3) + d + d + d
factorial (n) = n*n-1*n-2*...*1 T(n)
                                                       = T(1) + (n-1) * d
      * factorial(n-1) T(n-1)
                                                       = c + (n-1) * d
                    * factorial(n-2) T(n-2)
                                                       = O(n)
                                   * factorial(n-3)
                                                      *factorial(1)
                                                2
                                                                      T(1)
```


سوال

$$T(n) = 2T(\sqrt[]{n}) + \lg n$$

$$T(n) = 2T(\sqrt{n}) + \lg n$$

$$T(2^m) = 2T(2^{m/2}) + m$$

$$S(m) = T(2^m)$$

$$S(m) = 2S(m/2) + m$$

$$S(m) = O(m \lg m)$$

$$T(n) = T(2^m) = S(m) = O(m \lg m) = O(\lg n \lg \lg n)$$

$$T(n) = \Upsilon T(\frac{n}{\Upsilon}) + n$$

 $T(n) = T(\frac{n}{r}) + T(\frac{r}{r}) + n$

$$T(n) = 2 T(n/2) + n^2, T(1) = 1$$

$$T(n) = 2 T(n/2) + n^2, T(1) = 1$$

$$T(n/2) \qquad T(n/2) \qquad (n/2)^{2} \qquad = \frac{n^{2}}{2}$$

$$T(n/4) \qquad T(n/4) \qquad T(n/4) \qquad T(n/4) \qquad (n/4)^{2} \qquad (n/4)^{2} \qquad (n/4)^{2} \qquad = \frac{n^{2}}{2^{2}}$$

$$T(n) = n^{2} \left(1 + 1/2 + 1/2^{2} + 1/2^{3} + ... + 1/2^{\lg n}\right)$$

$$T(n) = O(n^{2})$$

قضیه اصلی Master Theorem

:براي رابطه بازگشتي b>1 و T(n)=aT(n/b)+f(n) داريم

$$T(n) = \Theta\left(n^{\lg_b^a}\right)$$
 ، $\varepsilon > 0$ براي $f(n) = O\left(n^{\lg_b^{a-\varepsilon}}\right)$ اگر $f(n) = \Theta\left(n^{\lg_b^a} \lg n\right)$ براي ، $f(n) = \Theta\left(n^{\lg_b^a}\right)$ ع اگر 2

$$T(n) = \Theta(f(n))$$
 اگر $f(n) = \Omega(n^{\lg_b^{a+arepsilon}})$ براي $f(n) = \Omega(n^{\lg_b^{a+arepsilon}})$ 3

قضیه اصلی Master Theorem

$$\mathbf{g}(\mathbf{n}) = n^{\lg_b^a}$$
 آهنگ رشد \mathbf{G} آهنگ رشد \mathbf{F}

$$T(n) = \Theta(f(n))$$
 F > G

$$T(n) = \Theta(g(n))$$
 G > F

$$T(n) = \Theta(g(n) \lg n)$$
 $F = G$

$$F = G$$

73

$$T(n)=9T(n/3)+n$$
 $T(1)=c$
 $a=9, b=3, f(n)=n$
 $g(n)=n^2$

مثال (حالت 1)

$$T(n) = \Theta(n^2)$$

$$T(n)=T(2n/3)+1$$
 $T(1)=c$

مثال (حالت 2)

$$a=1, b=3/2, (f(n)-1)$$

$$\int g(n) = n^{\lg \frac{a}{b}} = n^{\lg \frac{1}{3/2}} = n^0 = 1$$
 $T(n) = \Theta(\lg n)$

$$T(n) = 3T(n/4) + nIgn T(1) = c$$

مثال (حالت 3)

$$a=3$$
, $b=4$, $f(n)=nIgn$

$$g(n) = n^{\lg_b^a} = n^{\lg_4^3} = n^{0.793}$$

$$\Rightarrow T(n) = \Theta(n \lg n)$$

تكليف 5

$$T(n)=7T(n/2)+n^2$$

 $T(n)=4T(n/2)+lgn$
 $T(n)=4T(n/2)+n^2$
 $T(n)=3T(n/3)+n/2$
 $T(n)=7T(n/3)+n^2$
 $T(n)=8T(n/3)+2^n$
 $T(n)=3T(n/3)+nlgn$
 $T(n)=T(n-1)+n$

حل روابط بازگشتی

Fibonacci numbers •

```
• F(0) = 0, F(1) = 1
F(n) = F(n-1) + F(n-2) for n > 2
  (0,1,1,2,3,5,8,13,21...)
int fib(int n){
 if (n<=2)
      return 1;
 else
      return (fib(n-1)+fib(n-2))
```

حل روابط بازگشتی همگن

$$F(n) = F(n-1) + F(n-2)$$

اگر c_i هاعددهای حقیقی باشند، به رابطهی بازگشتی زیر

k رابطهی بازگشتی همگن از درجهی

مي گوييم:

$$a_n = c_1 a_{n-1} + c_{\overline{1}} a_{n-\overline{1}} + \dots + c_k a_{n-k}$$

تابع g(n) یک جواب دنبالهی بازگشتی فوق است، اگر دنبالهی g(n) یک جواب دنبالهی بازگشتی صدق کند.

روش حل

اگر $g(n) = x^n$ جواب رابطهی بازگشتی همگن باشد، داریم:

$$x^{n} - c_{\mathsf{Y}}x^{n-\mathsf{Y}} - c_{\mathsf{Y}}x^{n-\mathsf{Y}} - \dots - c_{k}x^{n-k} = \circ$$

یا به عبارت دیگر،

$$x^k - c_1 x^{k-1} - \dots - c_k = \circ$$

یعنی x جواب معادله درجه k فوق است.

این معادله رامعادلهی مشخصه (characteristic equation) برای رابطهی بازگشتی می نامیم.

حل روابط بازگشتی همگن

Fibonacci numbers •

$$F(n) = F(n-1) + F(n-2)$$

$$x^{\mathsf{r}} - x - \mathsf{l} = \circ$$
 حل: معادلهی مشخصه:

$$x_{\mathsf{Y}} = rac{\mathsf{Y} - \sqrt{\Delta}}{\mathsf{Y}}$$
 و $x_{\mathsf{Y}} = rac{\mathsf{Y} + \sqrt{\Delta}}{\mathsf{Y}}$ ریشههای آن

$$f_n = t_1 \left(\frac{1 + \sqrt{\Delta}}{7} \right)^n + t_7 \left(\frac{1 - \sqrt{\Delta}}{7} \right)^n$$

و با توجه به مقادیر اولیه داریم:

$$\begin{cases} t_{1} + t_{7} = f_{\circ} = \circ \\ t_{1}(\frac{1+\sqrt{\Delta}}{7}) + t_{7}(\frac{1-\sqrt{\Delta}}{7}) = f_{1} = 1 \end{cases}$$

و از این معادلهها نتیجه میشود:

$$t_1 = \frac{1}{\sqrt{\Delta}}, t_7 = -\frac{1}{\sqrt{\Delta}}$$

$$f_n = \frac{1}{\sqrt{\Delta}} \left(\left(\frac{1 + \sqrt{\Delta}}{7} \right)^n - \left(\frac{1 - \sqrt{\Delta}}{7} \right)^n \right)$$

جمله ی $\frac{1-\sqrt{\Delta}}{2}$ با بزرگتر شدن n بسیار کوچک می شود و با توجه به اینکه $\frac{1}{2}$ عدد حسابی است، اگر $\frac{1}{2}$ را نزدیکترین عدد صحیح به x تعریف کنیم، داریم:

$$\langle x \rangle = \lfloor x + \frac{1}{7} \rfloor$$

و با این تعریف:

$$f_n = \left\langle \frac{1}{\sqrt{\Delta}} \left(\frac{1 + \sqrt{\Delta}}{1} \right)^n \right\rangle$$