

mos integrated circuit $\mu PD42S4800$, 424800

4 M-BIT DYNAMIC RAM 512 K-WORD BY 8-BIT, FAST PAGE MODE

Description

The µPD42S4800, 424800 are 524 288 words by 8 bits dynamic CMOS RAMs. The fast page mode capability realize high speed access and low power consumption.

Besides, the μ PD42S4800 can execute \overline{CAS} before \overline{RAS} self refresh.

These devices are packed in 28-pin plastic TSOP(II) and 28-pin plastic SOJ.

Features

• 524 288 words by 8 bits organization

• Single +5.0 V ± 10 % power supply

· Fast access and cycle time

Part number	Power consumption Active (MAX.)	Access time (MAX.)	R/W cycle time (MIN.)	Fast page mode cycle time (MIN.)
μPD42S4800-70, 424800-70	577.5 mW	70 ns	140 ns	45 ns

• The μPD42S4800 can execute CAS before RAS self refresh

Part number	Refresh cycle	Refresh	Power consumption at standby (MAX.)
μPD42S4800	1 024 cycles/128 ms	CAS before RAS self refresh, CAS before RAS refresh, RAS only refresh, Hidden refresh	0.825 mW (CMOS level input)
μPD424800	1 024 cycles/16 ms	CAS before RAS refresh, RAS only refresh, Hidden refresh	5.5 mW (CMOS level input)

[•] Multiplexed address inputs ··· Row address : A0 to A9, Column address : A0 to A8

The information in this document is subject to change without notice.

Ordering Information

Part number	Access time (MAX.)	Package	Røfresh
μPD42S4800G5-70	70 ns		
		28-pin Plastic TSOP (II) (400 mil)	CAS before RAS self refresh
μPD42S4800LE-70	70 ns	29 min Blassia SO I	RAS only refresh
		28-pin Plastic SOJ (400 mil)	Thousan Follows
μPD424800G5-70	70 ns	28-pin Plastic TSOP (II)	
		(400 mil)	CAS before RAS refresh
μPD424800LE-70	70 ns	28-pin Plastic SOJ	RAS only refresh
	(400 mil)		

Quality Grade

Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number LEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Pin Configurations (Marking side)

28-pin Plastic TSOP(II) (400 mil)

Vcc o ⊸ GND 28 I/O1 📯 2 27 ÷0 I/O8 26 **-**0 1/07 1/02 0+ **-**○ I/O6 1/03 0-25 μPD42S4800G5 μPD424800G5 1/04 0 5 24 **→**0 I/O5 NC O-6 ⊸ CAS 23 WE ∽ 22 ⊸ ŌĒ RAS ⇔ 8 21 ⊸ NC A9 o-9 20 -o A8 A0 ≎--**-** 10 19 -o A7 A1 0-411 18 -o A6 A2 0-12 17 -o A5 A3 0-13 16 -o A4 Vcc ↔ 15 - GND

28-pin Plastic SOJ (400 mil)

A0 to A9

: Address Inputs

I/O1 to I/O8

: Data Inputs/Outputs

RAS

: Row Address Strobe

CAS

. How Address Offices

٥٨٥

: Column Address Strobe

WE

: Write Enable

ŌĒ

: Output Enable

Vcc

: Power Supply

GND

: Ground

NC

: No Connection

Block Diagram

Input/Output Pin Functions

The μ PD42S4800, 424800 have input pins \overline{RAS} , \overline{CAS} , \overline{WE} , \overline{OE} , A0 to A9 and input/output pins I/O1 to I/O8.

Pin Name	Input/ Output	Function
RAS (Row address strobe)	Input	RAS activates the sense amplifier by latching a row address and selecting a corresponding word line. It refreshes memory cell array of one line selected by the row address. It also selects the following function. • CAS before RAS refresh
CAS (Column address strobe)		CAS activates data input/output circuit by latching column address and selecting a digit line connected with the sense amplifier.
A0 to A9 (Address inputs)		Address bus. Input total 19-bit of address signal, upper 10-bit and lower 9-bit in sequence (address multiplex method). Therefore, one word is selected from 524 288-word by 8-bit memory cell array. In actual operation, latch row address by specifying row address and activating RAS. Then, switch the address bus to column address and activate CAS. Each address is taken into the device when RAS and CAS are activated. Therefore, the address input setup time (tase, tasc) and hold time (trah, tcah) are specified for the activation of RAS and CAS.
WE (Write enable)		Write control signal. Write operation is executed by activating RAS, CAS and WE.
OE (Output enable)		Read control signal. Read operation can be executed by activating RAS, CAS and OE. If WE is activated during read operation, OE is to be ineffective in the device. Therefore, read operation cannot be executed.
I/O1 to I/O8 (Data inputs/outputs)	Input/ Output	8-bit data bus. I/O1 to I/O8 are used to input/output data.

Electrical Specifications

- · All voltages are referenced to GND.
- After power up, wait more than 100 μs and then, execute eight CAS before RAS or RAS only refresh
 cycles as dummy cycles to initialize internal circuit.

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Voltage on Any Pin Relative to GND	VT		-1.0 to +7.0	٧
Supply Voltage	Vcc		-1.0 to +7.0	٧
Output Current	lo		50	mA
Power Dissipation	Po		1	w
Operating Temperature	Topt		0 to +70	°C
Storage Temperature	Tstg		-55 to +125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc		4.5	5.0	5.5	V
High Level Input Voltage	ViH		2.4		Vcc +1.0	>
Low Level Input Voltage	VIL		-1.0		+0.8	>
Ambient Temperature	Ta		0		70	°C

Capacitance ($T_a = 25 \, ^{\circ}\text{C}$, $f = 1 \, \text{MHz}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input Capacitance	C11	Address			5	pF
	C12	RAS, CAS, WE, OE			7	рF
Data Input/Output Capacitance	C1/0	1/0			7	рF

DC Characteristics (Recommended operating conditions unless otherwise noted)

Par	rameter	Symbol	Test Condition		MIN.	TYP.	MAX.	Unit	Notes
Operating cu	urrent	lcc1	RAS, CAS Cycling	trac = 70 ns			105	mA	1, 2, 3
		ì	trc = trc (MIN.)						
			lo = 0 mA						
Standby	μPD42S4800	lcc2	RAS, CAS ≥ VIH (MIN.) , 10 = 0 mA				2	mA	
current			RAS, CAS ≥ Vcc - 0.2 V, lo = 0 m	Α			0.15		
	μPD424800		RAS, CAS ≥ VIH (MIN.) , Io = 0 mA				2		
			RAS, CAS ≥ Vcc - 0.2 V, lo = 0 m	Α			1		
RAS only ref	fresh current	Іссз	RAS Cycling, CAS ≥ VIH (MIN.)	trac = 70 ns			105	mA	1,2,3,4
			trc = trc (MIN.), lo = 0 mA						
Operating cu	urrent	lcc4	RAS ≤ VIL (MAX.), CAS Cycling	trac = 70 ns			80	mA	1, 2, 5
(Fast page m	node)		tPC = tPC (MIN.), Io = 0 mA						
								L	
ÇAS before	RAS	Icc5	RAS Cycling	trac = 70 ns			105	mA	1, 2
refresh curre	ent		TRC = TRC (MIN.)						
			10 = 0 mA						
CAS before	RAS	Icc6	CAS before RAS refresh :	tras ≦			200	μА	1, 2
long refresh	current		1 024 Cycles / 128 ms	200 ns				ļ	
(1 024 Cycles			RAS, CAS:	1]				
only for the	μPD42S4800)		V_{CC} =0.2 $V \le V_{IH} \le V_{IH}$ (MAX) 0 $V \le V_{IL} \le 0.2 V$)					
			Standby:		<u> </u>				
			RAS, CAS ≥ Vcc-0.2 V	tras ≦ 1 μs		}	300	}	
			Address : VIH or VIL	Ι μ5					
			WE, OE : VIH						
			lo = 0 mA						
Self refresh	current	Icc7	RAS, CAS:				150	μА	2
(CAS before	RAS self		Vcc-0.2 V ≦ Vih ≦ Vih (MA	iX.)	ĺ				
refresh, only)	0 V ≦ Vil ≦ 0.2 V] ,		
μPD42S480	0)		10 = 0 mA					_	
Input leakag	e current	Ir (L)	Vt = 0 to 5.5 V		-10		+10	μΑ	
			All other pins not under test = 0 V						
Output leaka	ige current	lo (L)	Vo = 0 to 5.5 V		-10		+10	μΑ	
			Output is disabled (Hi-Z)						
High level or	utput voltage	Vон	lo = -5.0 mA		2.4			٧	
Low level ou	tput voltage	Vol	lo = +4.2 mA				0.4	V	

Notes 1. lcc1, lcc3, lcc4, lcc5 and lcc6 depend on cycle rates (tRC and tPC).

- 2. Specified values are obtained with outputs unloaded.
- 3. Icc1 and Icc3 are measured assuming that address can be changed once or less during $\overline{RAS} \le V_{\text{IL}(MAX)}$ and $\overline{CAS} \ge V_{\text{IH}(MIN)}$.
- 4. lcc3 is measured assuming that all column address inputs are held at either high or low.
- lcc4 is measured assuming that all column address inputs are switched only once during each fast page cycle.

AC Characteristics (Recommended Operating Conditions unless otherwise noted)

AC Characteristics Test Conditions

(1) Input timing specification

(2) Output timing specification

(3) Loading conditions are 100 pF + 2 TTLs.

Common to Read, Write, Read Modify Write Cycle

		trac =	70 ns			
Parameter			MIN.	MAX.	Unit	Notes
Read / Write Cycle Time	Read / Write Cycle Time			-	ns	
RAS Precharge Time		trp	60	-	nş	
CAS Precharge Time		tcpn	10	-	ns	
RAS Pulse Width		TRAS	70	10 000	ns	
CAS Pulse Width		tcas	20	10 000	ns	
RAS Hold Time		trsH	20	-	ns	
CAS Hold Time		tсsн	70	-	ns	
RAS to CAS Delay Time			20	50	ns	1
RAS to Column Address Delay Time			15	35	ns	1
CAS to RAS Precharge Time		tcrp	5	-	ns	2
Row Address Setup Time		tasr	0	-	ns	
Row Address Hold Time		trah	10	_	ns	
Column Address Setup Time		tasc	0		ns	
Column Address Hold Time		tcan	15	_	ns	
OE Lead Time Referenced to RAS		toes	0	-	ns	
CAS to Data Setup Time		tclz	0	-	ns	
OE to Data Setup Time		tolz	0	-	ns	
OE to Data Delay Time		toed	15	-	ns	
Transition Time (Rise and Fall)		tт	3	50	ns	
Refresh Time	μPD42S4800	tref	-	128	ms	3
	μPD424800].	-	16	ms	

Notes 1. For read cycles, access time is defined as follows:

Input Conditions	Access Time	Access Time from RAS
trad ≤ trad (MAX.) and trcd ≤ trcd (MAX.)	TRAC (MAX.)	TRAC (MAX.)
trad > trad (MAX.) and trcd ≤ trcd (MAX.)	TAA (MAX.)	TRAD + TAA (MAX.)
TRCD > TRCD (MAX.)	TCAC (MAX.)	trcd + tcac (MAX.)

tradimax.) and tradimax.) are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time(trac, taa or tcac) is to be used for finding out when output data will be available. Therefore, the input conditions trad \geq tradimax.) and tradestructions will not cause any operation problems.

- 2. tchp(Min.) requirement is applied for RAS, CAS cycles preceded by any cycle.
- 3. This specification is applied only for the μ PD42S4800.

Read Cycle

Parameter		trac =	= 70 ns		
		MIN.	MAX.	Unit	Notes
Access Time from RAS	trac	-	70	ns	1
Access Time from CAS	tcac		20	ns	1
Access Time from Column Address	taa	-	35	ns	1
Access Time from OE	t OEA	1	20	ns	
Column Address Lead Time Referenced to RAS	TRAL	35	-	ns	
Read Command Setup Time	trcs	0	_	ns	
Read Command Hold Time Referenced to RAS	trrh	0	-	ns	2
Read Command Hold Time Referenced to CAS	trcH	0	-	ns	2_
Output Buffer Turn-off Delay Time from OE	toez	0	15	ns	3
Output Buffer Turn-off Delay Time from CAS	toff	0	15	ns	3

Notes 1. For read cycles, access time is defined as follows:

Input Conditions	Access Time	Access Time from RAS
$trad \le trad (max.)$ and $trcd \le trcd (max.)$	TRAC (MAX.)	TRAC (MAX.)
$trad > trad (max.)$ and $trcd \le trcd (max.)$	TAA (MAX.)	trad + taa (MAX.)
tRCD > tRCD (MAX.)	TCAC (MAX.)	trcd + tcac (MAX.)

thadimax.) and trodimax.) are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time(trac, taa or tcac) is to be used for finding out when output data will be available. Therefore, the input conditions trad \geq tradimax.) and trod \geq trodimax.) will not cause any operation problems.

- 2. Either trich(MIN.) or trank(MIN.) should be met in read cycles.
- 3. toff(MAX.) and toez(MAX.) define the time when the output achieves the condition of Hi Z and is not referenced to VoH or VoL.

Write Cycle

Parameter		trac = 70 ns			
		MIN.	MAX.	Unit	Notes
WE Hold Time Referenced to CAS	twch	10	-	ns	1
WE Pulse Width	twp	10	-	ns	1
WE Lead Time Referenced to RAS	tawı	20	-	ns	
WE Lead Time Referenced to CAS	tcwL	15	-	ns	
WE Setup Time	twcs	0	_	ns	2
OE Hold Time	toen	0	-	ns	
Data-in Setup Time	tos	0	-	ns	3
Data-in Hold Time	tон	15	_	กร	3

Notes 1. twp:min.) is applied for late write cycles or read modify write cycles. In early write cycles, twc+(min.) should be met.

- 3. tosimino and tohimino are referenced to the $\overline{\text{CAS}}$ falling edge in early write cycles. In late write cycles and read modify write cycles, they are referenced to the $\overline{\text{WE}}$ falling edge.

Read Modify Write Cycle

D		trac = 70 ns			
Parameter	Symbol	MIN.	MAX.	Unit	Note
Read Modify Write Cycle Time	tawc	185	-	ns	
RAS to WE Delay Time	tawd	90	-	ns	1
CAS to WE Delay Time	tcwp	40	-	ns	1
Column Address to WE Delay Time	tawo	55	-	ns	1

Note 1. If twcs ≥ twcs(MIN.), the cycle is an early write cycle and the data out will remain Hi - Z through the entire cycle. If truck ≥ truck(MIN.), tcwc ≥ tcwc(MIN.), tawc ≥ tawc(MIN.), and tcruck ≥ tcrwc(MIN.), the cycle is a read modify write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is met, the state of the data out is indeterminate.

Fast Page Mode

		trac = 70 ns			
Parameter	Symbol	MIN.	MAX.	Unit	Note
Fast Page Mode Cycle Time	tPC	45		ns	
Access Time from CAS Precharge	TACP	-	40	ns	
RAS Pulse Width	trasp	70	125 000	ns	
CAS Precharge Time	tcp	10		ns	
RAS Hold Time from CAS Precharge	TRHCP	40		ns	
Read Modify Write Cycle Time	tPRWC	90	-	ns	
CAS Precharge to WE Delay Time	tcpwb	60	_	ns	1

Note 1. If twcs ≥ twcs(MIN.), the cycle is an early write cycle and the data out will remain Hi - Z through the entire cycle. If trwb ≥ trwb(MIN.), tcwb ≥ tcwb(MIN.), tawb ≥ tawb(MIN.), and tcpwb ≥ tcpwb(MIN.), the cycle is a read modify write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is met, the state of the data out is indeterminate.

Refresh Cycle

Parameter		trac = 70 ns		11-74	N-4-
rarameter	Symbol	MIN.	MAX.	Onit	Note
CAS Setup Time	tcsr	5	-	ns	
CAS Hold Time (CAS before RAS Refresh)	tcha	10	-	ns	
RAS Precharge CAS Hold Time	TRPC	5	-	ns	
RAS Pulse Width	trass	100	-	μs	1
(CAS before RAS Self Refresh Cycle)					
RAS Precharge Time	trps	130	-	ns	1
(CAS before RAS Self Refresh Cycle)					
CAS Hold Time	tcHs	-50	-	ns	1
(CAS before RAS Self Refresh Cycle)					
WE Hold Time	twnr	15	_	ns	

Note 1. This specification is applied only for the μ PD42S4800.

Read Cycle

Early Write Cycle

Remark OE : Don't care

Late Write Cycle

Read Modify Write Cycle

Fast Page Mode Read Cycle

Remark In the fast page mode, read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle.

Fast Page Mode Early Write Cycle

Remark OE : Don't care

In the fast page mode, read, write and read modify write cycles are available for each of the consecutive $\overline{\text{CAS}}$ cycles within the same $\overline{\text{RAS}}$ cycle.

Fast Page Mode Late Write Cycle

Remark In the fast page mode, read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle.

Fast Page Mode Read Modify Write Cycle

Remark In the fast page mode, read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle.

CAS Before RAS Self Refresh Cycle (Only for the µPD42S4800)

Remark Address, WE, OE: Don't care I/O: Hi - Z

Cautions on Use of CAS Before RAS Self Refresh

CAS before RAS self refresh can be used independently when used in combination with distributed CAS before RAS long refresh; However, when used in combination with burst CAS before RAS long refresh or with burst long RAS only refresh, the following cautions must be observed.

- (1) Normal Combined Use of CAS Before RAS Self Refresh and Burst CAS Before RAS Long Refresh
 When CAS before RAS self refresh and burst CAS before RAS long refresh are used in combination, please
 perform CAS before RAS refresh 1 024 times within a 16 ms interval just before and after setting CAS before
 RAS self refresh.
- (2) Normal Combined Use of CAS Before RAS Self Refresh and Burst Long RAS Only Refresh

When CAS before RAS self refresh and burst RAS only refresh are used in combination, please perform RAS only refresh 1 024 times within an interval of 16 ms or less just before and after setting CAS before RAS self refresh.

For details, please refer to How to use DRAM User's Manual.

CAS Before RAS Refresh Cycle

Remark Address, WE, OE: Don't care 1/0: Hi - Z

RAS Only Refresh Cycle

Remark WE, OE : Don't care I/O : Hi - Z

Hidden Refresh Cycle (Read)

Hidden Refresh Cycle (Write)

Remark OE : Don't care

Package Drawings

28 PIN PLASTIC TSOP(II) (400 mil)

detail of lead end

NOTE

Each lead centerline is located within 0.21 mm (0.009 inch) of its true position (T.P.) at maximum material condition.

S28G5-50-7JD-2

ITEM	MILLIMETERS	INCHES
Α	18.81 MAX.	0.741 MAX.
В	1.15 MAX.	0.046 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	0.40±0.10	0.016+0.004
E	0.05±0.05	0.002±0.002
F	1.1 MAX.	0.044 MAX.
G	0.97	0.038
Н	11.76±0.2	0.463±0.008
1	10.16±0.1	0.400±0.004
J	0.8±0.2	0.031+0.009
Κ	0.125+0.10	0.005+0.004
L	0.5±0.1	0.020+0.004
М	0.21	0.009
N	0.10	0.004

28PIN PLASTIC SOJ (400 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

P28LA-400A-1

ITEM	MILLIMETERS	INCHES	
В	18.67 - 8.35	0.735 ^{±8898}	
С	10.16	0.400	
D	11.18 ^{±0.2}	0.440 ^{±8,888}	
E	1.08 ^{±0.15}	0.043 18,889	
F	0.6	0.024	
G	3.5 ^{±02}	O.138 ^{±8,888}	
н	2.4 ^{±02}	0.094-8889	
1	0.8 MIN.	0.031 MIN.	
J	2.6	0.102	
к	1.27 (T.P.)	0.050 (T.P.)	
М	0.40 ^{±0.10}	0.016 + 8.885	
N	0.12	0.005	
Р	9.40 ^{±0.20}	0.370-8889	
Q	0.15	0.006	
Т	RO.85	R0.033	
U	0.20-8.05	0.008±8.882	

Recommended Soldering Conditions

The following conditions (see tables below and next page) must be met for soldering conditions of the μ PD42S4800, 424800.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

Please consult with our sales offices in case other soldering process is used, or in case the soldering is done under different conditions.

Types of Surface Mount Device

μPD42S4800G5, 424800G5 : 28-pin plastic TSOP (II) (400 mil)

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak temperature of package surface: 235 °C or below, Reflow time: 30 seconds or below (210 °C or higher), Number of reflow processes: MAX. 2 Exposure limit **Note: 7 days	IR35-107-2
VPS	Peak temperature of package: 215 °C or below, Reflow time: 40 seconds or below (200 °C or higher), Number of reflow processes: MAX. 2 Exposure limit** (10 hours pre-baking is required at 125 °C afterwards) [Remark] (1) Please start the second reflow process after the temperature, raised by the first reflow process, returns to normal. (2) Please avoid removing the residual flux with water after the first reflow process.	VP15-107-2
Partial heating method	Terminal temperature: 300 °C or below, Time: 3 seconds or below (Per one side of the device).	

Note Exposure limit before soldering after dry-pack package is opened.

Storage conditions: 25 °C and relative humidity at 65 % or less.

Caution Do not apply more than one soldering method at any one time, except for "Partial heating method".

 μ PD42S4800LE, 424800LE : 28-pin plastic SOJ (400 mil)

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak temperature of package surface: 235 °C or below, Reflow time: 30 seconds or below (210 °C or higher), Number of reflow processes: MAX. 2 Exposure limit**ob: 7 days (20 hours pre-baking is required at 125 °C afterwards) [Remark] (1) Please start the second reflow process after the temperature, raised by the first reflow process, returns to normal. (2) Please avoid removing the residual flux with water after the first reflow process.	IR35-207-2
VPS	Peak temperature of package: 215 °C or below, Reflow time: 40 seconds or below (200 °C or higher), Number of reflow processes: MAX. 2 Exposure limit**ote: 7 days (20 hours pre-baking is required at 125 °C afterwards) [Remark] (1) Please start the second reflow process after the temperature, raised by the first reflow process, returns to normal. (2) Please avoid removing the residual flux with water after the first reflow process.	VP15-207-2
Partial heating method	Terminal temperature: 300 °C or below, Time: 3 seconds or below (Per one side of the device).	

Note Exposure limit before soldering after dry-pack package is opened.

Storage conditions: 25 °C and relative humidity at 65 % or less.

Caution Do not apply more than one soldering method at any one time, except for "Partial heating method".