Table S1: Seesaw domain level sequences. Here and elsewhere all sequences start from the 5' end.

С	=	CA	t	=	TCT			
C*	=	TG	t*	=	AGA			
S1	=	CATCCATTCCACTCA	S2	=	CAAAACAAAACCTCA	S3	=	CACCCTAAAATCTCA
S1*	=	TGAGTGGAATGGATG	S2*	=	TGAGGTTTTGTTTTG	S3*	=	TGAGATTTTAGGGTG
S4	=	CACATAACAACCACA	S5	=	CACCACCAAACTTCA	S6	=	CATAACACAATCACA
S4*	=	TGTGGTTGTTATGTG	S5*	=	TGAAGTTTGGTGGTG	S6*	=	TGTGATTGTGTTATG
S7	=	CAACATATCAATTCA	S8	=	CACTAACATACAACA	S9	=	CACCATCAAATAACA
S7*	=	TGAATTGATATGTTG	S8*	=	TGTTGTATGTTAGTG	S9*	=	TGTTATTTGATGGTG
S10	=	CATACAACATCTACA	S11	=	CAATATCCATAACCA	S12	=	CATCAATCAACACCA
S10*	=	TGTAGATGTTGTATG	S11*	=	TGGTTATGGATATTG	S12*	=	TGGTGTTGATTGATG
S13	=	CACAACTCATTACCA	S14	=	CATTATTCAAACCCA	S15	=	CACACTATAATTCCA
S13*	=	TGGTAATGAGTTGTG	S14*	=	TGGGTTTGAATAATG	S15*	=	TGGAATTATAGTGTG
S16	=	CACTTCATAAATCCA	S17	=	CAACTCCTAATATCA	S18	=	CATCTTCTAACATCA
S16*	=	TGGATTTATGAAGTG	S17*	=	TGATATTAGGAGTTG	S18*	=	TGATGTTAGAAGATG
S19	=	CACCTCTTAAACACA	S20	=	CAATCTAACACTCCA	S21	=	CAACCATACTAAACA
S19*	=	TGTGTTTAAGAGGTG	S20*	=	TGGAGTGTTAGATTG	S21*	=	TGTTTAGTATGGTTG
S22	=	CATTCCTACATTTCA	S23	=	CAAATCTTCATCCCA	S24	=	CACTCATCCTTTACA
S22*	=	TGAAATGTAGGAATG	S23*	=	TGGGATGAAGATTTG	S24*	=	TGTAAAGGATGAGTG
S25	=	CAATTCACTCAATCA	S26	=	CATTCATTACCTCCA	S27	=	CAAACACTCTATTCA
S25*	=	TGATTGAGTGAATTG	S26*	=	TGGAGGTAATGAATG	S27*	=	TGAATAGAGTGTTTG
S28	=	CATCTACAATTCACA	S29	=	CACCAATACTCCTCA	S30	=	CACCATTACAATCCA
S28*	=	TGTGAATTGTAGATG	S29*	=	TGAGGAGTATTGGTG	S30*	=	TGGATTGTAATGGTG
S31	=	CAATCCACACTTCCA	S32	=	CACACTTCAAACTCA	S33	=	CAACTCAAACATACA
S31*	=	TGGAAGTGTGGATTG	S32*	=	TGAGTTTGAAGTGTG	S33*	=	TGTATGTTTGAGTTG
S34	=	CACATAACAAAACCA	S35	=	CACTCTCCATCACCA	S36	=	CAAACTAAACAACCA
S34*	=	TGGTTTTGTTATGTG	S35*	=	TGGTGATGGAGAGTG	S36*	=	TGGTTGTTTAGTTTG
S37	=	CACCTCTTCCCTTCA	S38	=	CATACCCTTTTCTCA	S39	=	CACTATACACACCCA
S37*	=	TGAAGGGAAGAGGTG	S38*	=	TGAGAAAAGGGTATG	S39*	=	TGGGTGTGTATAGTG
S40	=	CAATACAAATCCACA	S41	=	CAACAAACCATTACA	S42	=	CACTTTTCACTATCA
S40*	=	TGTGGATTTGTATTG	S41*	=	TGTAATGGTTTGTTG	S42*	=	TGATAGTGAAAAGTG
S43	=	CATCATACCTACTCA	S44	=	CAAAACTCTCTCTCA	S45	=	CACCCAAAACCCACA
S43*	=	TGAGTAGGTATGATG	S44*	=	TGAGAGAGAGTTTTG	S45*	=	TGTGGGTTTTGGGTG
S46	=	CAAACCCAACTCACA	S47	=	CATTCTCCCACCTCA	S48	=	CATCACCACTATACA
S46*	=	TGTGAGTTGGGTTTG	S47*	=	TGAGGTGGGAGAATG	S48*	=	TGTATAGTGGTGATG
S49	=	CATCCTTAACTCCCA	S50	=	CATTACCAACCACCA	S51	=	CACAAACTACATCCA
S49*	=	TGGGAGTTAAGGATG	S50*	=	TGGTGGTTGGTAATG	S51*	=	TGGATGTAGTTTGTG
S52	=	CACTTCACAACTACA	S53	=	CATATCTAATCTCCA	Sf	=	CATTTTTTTTTCA
S52*	=	TGTAGTTGTGAAGTG	S53*	=	TGGAGATTAGATATG			

Table S2: Seesaw small circuit sequences (part one). Shading indicates which strands were used in which circuits. P indicates PAGE purification by IDT, used only for input strands. H indicates HPLC purification by IDT, used only for reporter strand with fluorophores or quenchers. All other strands were ordered without any purification. See Fig. S16 for details of the clamp design that modifies the toehold T implementation.

		Circuit number	1	2	3	4	5 6	7	8	9
W _{5,6}	= S6 T S5	= CATAACACAATCACA TCT CACCACCAAACTTCA								
G ₅ -b	= T* S5* T*	= TG AGA TGAAGTTTGGTGGTG AGA TG								
W _{5,7}	= S7 T S5	= CAACATATCAATTCA TCT CACCACCAAACTTCA								
Th _{2,5:5} -t	= S5	= CACCACCAAACTTCA								
Th _{2,5:5} -b	= s2* T* S5*	= TGTTTTG AGA TGAAGTTTGGTGGTG								
$W_{2,5}$	= S5 T S2	= CACCACCAAACTTCA TCT CAAAACAAAACCTCA	P	Р						
G ₂ -b	= T* S2* T*	= TG AGA TGAGGTTTTGTTTTG AGA TG								
W _{1,2}	= S2 T S1	= CAAAACAAAACCTCA TCT CATCCATTCCACTCA			Р					
G ₁ -b	= T* S1* T*	= TG AGA TGAGTGGAATGGATG AGA TG								
W _{1,10}	= S10 T S1	= CATACAACATCTACA TCT CATCCATTCCACTCA								
Th _{4,1:1} -t	= S1	= CATCCATTCCACTCA								
Th _{4,1:1} -b	= s4* T* S1*	= TTATGTG AGA TGAGTGGAATGGATG								
W _{4,1}	= S1 T S4	= CATCCATTCCACTCA TCT CACATAACAACCACA								
G ₄ -b	= T* S4* T*	= TG AGA TGTGGTTGTTATGTG AGA TG								
W _{3,2}	= S2 T S3	= CAAAACAAAACCTCA TCT CACCCTAAAATCTCA			Р	Р	P F	•		
G ₃ -b	= T* S3* T*	= TG AGA TGAGATTTTAGGGTG AGA TG								
W _{3,11}	= S11 T S3	= CAATATCCATAACCA TCT CACCCTAAAATCTCA								
Th _{12,3:3} -t	= S3	= CACCCTAAAATCTCA								
Th _{12,3:3} -b	= s12* T* S3*	= ATTGATG AGA TGAGATTTTAGGGTG								
W _{12,3}	= S3 T S12	= CACCCTAAAATCTCA TCT CATCAATCAACACCA								
G ₁₂ -b	= T* S12* T*	= TG AGA TGGTGTTGATTGATG AGA TG								
W _{8,4}	= S4 T S8	= CACATAACAACCACA TCT CACTAACATACAACA				Р				
G ₈ -b	= T* S8* T*	= TG AGA TGTTGTATGTTAGTG AGA TG								
W _{8,15}	= S15 T S8	= CACACTATAATTCCA TCT CACTAACATACAACA								
Th _{16,8:8} -t	= S8	= CACTAACATACAACA								
Th _{16,8:8} -b	= s16* T* S8*	= TGAAGTG AGA TGTTGTATGTTAGTG								
W _{16,8}	= S8 T S16	= CACTAACATACAACA TCT CACTTCATAAATCCA								
G ₁₆ -b	= T* S16* T*	= TG AGA TGGATTTATGAAGTG AGA TG								
W _{17,16}	= S16 T S17	= CACTTCATAAATCCA TCT CAACTCCTAATATCA					Р			
G ₁₇ -b	= T* S17* T*	= TG AGA TGATATTAGGAGTTG AGA TG								
W _{17,19}	= S19 T S17	= CACCTCTTAAACACA TCT CAACTCCTAATATCA								
Th _{20,17:17} -t	= S17	= CAACTCCTAATATCA								
Th _{20,17:17} -b	= s20* T* S17*	= TAGATTG AGA TGATATTAGGAGTTG								
W _{20,17}	= S17 T S20	= CAACTCCTAATATCA TCT CAATCTAACACTCCA								
G ₂₀ -b	= T* S20* T*	= TG AGA TGGAGTGTTAGATTG AGA TG								

Table S3: Seesaw small circuit sequences (part two). Shading indicates which strands were used in which circuits. P indicates PAGE purification by IDT, used only for input strands. H indicates HPLC purification by IDT, used only for reporter strand with fluorophores or quenchers. All other strands were ordered without any purification. See Fig. S16 for details of the clamp design that modifies the toehold T implementation.

		Circuit number	1 2 3 4 5 6 7 8 9
W _{21,20}	= S20 T S21	= CAATCTAACACTCCA TCT CAACCATACTAAACA	PPPP
W _{22,20}	= S20 T S22	= CAATCTAACACTCCA TCT CATTCCTACATTTCA	PPP
W _{18,16}	= S16 T S18	= CACTTCATAAATCCA TCT CATCTTCTAACATCA	PPPP
W _{9,4}	= S4 T S9	= CACATAACAACCACA TCT CACCATCAAATAACA	PPPPP
W _{13,12}	= S12 T S13	= CATCAATCAACACCA TCT CACAACTCATTACCA	PPP
W _{14,12}	= S12 T S14	= CATCAATCAACACCA TCT CATTATTCAAACCCA	PPP
W _{8,2}	= S2 T S8	= CAAAACAAAACCTCA TCT CACTAACATACAACA	
W _{17,2}	= S2 T S17	= CAAAACAAAACCTCA TCT CAACTCCTAATATCA	
W _{23,4}	= S4 T S23	= CACATAACAACCACA TCT CAAATCTTCATCCCA	P
W _{24,16}	= S16 T S24	= CACTTCATAAATCCA TCT CACTCATCCTTTACA	P
W _{3,4}	= S4 T S3	= CACATAACAACCACA TCT CACCCTAAAATCTCA	
W _{3,16}	= S16 T S3	= CACTTCATAAATCCA TCT CACCCTAAAATCTCA	
w _{3,20}	= S20 T S3	= CAATCTAACACTCCA TCT CACCCTAAAATCTCA	
W _{1,23}	= S23 T S1	= CAAATCTTCATCCCA TCT CATCCATTCCACTCA	
W _{8,24}	= S24 T S8	= CACTCATCCTTTACA TCT CACTAACATACAACA	
W _{17,25}	= S25 T S17	= CAATTCACTCAATCA TCT CAACTCCTAATATCA	
W _{22,2}	= S2 T S22	= CAAAACAAAACCTCA TCT CATTCCTACATTTCA	P
Rep ₆ -t	= RQ S6	= /5IAbRQ/ CATAACACAATCACA	HHHHHHHH
Rep ₆ -b	= T* S6* ROX	= TG AGA TGTGATTGTGTTATG /3ROXN/	нннннннн
Rep ₂₃ -t	= FQ S23	= /5IAbFQ/ CAAATCTTCATCCCA	н
Rep ₂₃ -b	= T* S23* FAM	= TG AGA TGGGATGAAGATTTG /36-FAM/	н
Rep ₂₄ -t	= RQ S24	= /5IAbRQ/ CACTCATCCTTTACA	н
Rep ₂₄ -b	= T* S24* TYE563	= TG AGA TGTAAAGGATGAGTG /3TYE563/	н
Rep ₂₅ -t	= RQ S25	= /5IAbRQ/ CAATTCACTCAATCA	н
Rep ₂₅ -b	= T* S25* TYE665	= TG AGA TGATTGAGTGAATTG /3TYE665/	н

Table S4: Seesaw square root circuit sequences (part one).

Gate strands (IDT unpurified)									
W _{1,23}	= S23 T S1	= CAAATCTTCATCCCA TCT CATCCATTCCACTCA							
$W_{1,f}$	= Sf T S1	= CATTTTTTTTTCA TCT CATCCATTCCACTCA							
G ₁ -b	= T* S1* T*	= TG AGA TGAGTGGAATGGATG AGA TG							
Th _{10,1:1} -t	= S1	= CATCCATTCCACTCA							
Th _{10,1:1} -b	= s10* T* S1*	= TTGTATG AGA TGAGTGGAATGGATG							
W _{10,1}	= S1 T S10	= CATCCATTCCACTCA TCT CATACAACATCTACA							
G ₁₀ -b	= T* S10* T*	= TG AGA TGTAGATGTTGTATG AGA TG							
$W_{5,6}$	= S6 T S5	= CATAACACAATCACA TCT CACCACCAAACTTCA							
$W_{5,f}$	= Sf T S5	= CATTTTTTTTTCA TCT CACCACCAAACTTCA							
G ₅ -b	= T* S5* T*	= TG AGA TGAAGTTTGGTGGTG AGA TG							
Th _{53,5:5} -t	= S5	= CACCACCAAACTTCA							
Th _{53,5:5} -b	= s53* T* S5*	= AGATATG AGA TGAAGTTTGGTGGTG							
W _{53,5}	= S5 T S53	= CACCACCAAACTTCA TCT CATATCTAATCTCCA							
G ₅₃ -b	= T* S53* T*	= TG AGA TGGAGATTAGATATG AGA TG							
W _{8,25}	= S25 T S8	= CAATTCACTCAATCA TCT CACTAACATACAACA							
$W_{8,f}$	= Sf T S8	= CATTTTTTTTTCA TCT CACTAACATACAACA							
G ₈ -b	= T* S8* T*	= TG AGA TGTTGTATGTTAGTG AGA TG							
Th _{20,8:8} -t	= S8	= CACTAACATACAACA							
Th _{20,8:8} -b	= s20* T* S8*	= TAGATTG AGA TGTTGTATGTTAGTG							
W _{20,8}	= S8 T S20	= CACTAACATACAACA TCT CAATCTAACACTCCA							
G ₂₀ -b	= T* S20* T*	= TG AGA TGGAGTGTTAGATTG AGA TG							
W _{13,24}	= S24 T S13	= CACTCATCCTTTACA TCT CACAACTCATTACCA							
W _{13,f}	= Sf T S13	= CATTTTTTTTTCA TCT CACAACTCATTACCA							
G ₁₃ -b	= T* S13* T*	= TG AGA TGGTAATGAGTTGTG AGA TG							
Th _{26,13:13} -t	= S13	= CACAACTCATTACCA							
Th _{26,13:13} -b	= s26* T* S13*	= ATGAATG AGA TGGTAATGAGTTGTG							
W _{26,13}	= S13 T S26	= CACAACTCATTACCA TCT CATTCATTACCTCCA							
G ₂₆ -b	= T* S26* T*	= TG AGA TGGAGGTAATGAATG AGA TG							
W _{18,53}	= S53 T S18	= CATATCTAATCTCCA TCT CATCTTCTAACATCA							
W _{18,f}	= Sf T S18	= CATTTTTTTTTCA TCT CATCTTCTAACATCA							
G ₁₈ -b	= T* S18* T*	= TG AGA TGATGTTAGAAGATG AGA TG							
Th _{34,18:18} -t	= S18	= CATCTTCTAACATCA							
Th _{34,18:18} -b	= s34* T* S18*	= TTATGTG AGA TGATGTTAGAAGATG							
W _{34,18}	= S18 T S34	= CATCTTCTAACATCA TCT CACATAACAAAACCA							
G ₃₄ -b	= T* S34* T*	= TG AGA TGGTTTTGTTATGTG AGA TG							

Table S5: Seesaw square root circuit sequences (part two).

W _{21,10}	= S10 T S21	= CATACAACATCTACA TCT CAACCATACTAAACA
W _{21,f}	= Sf T S21	= CATTTTTTTTTCA TCT CAACCATACTAAACA
G ₂₁ -b	= T* S21* T*	= TG AGA TGTTTAGTATGGTTG AGA TG
Th _{36,21:21} -t	= S21	= CAACCATACTAAACA
Th _{36,21:21} -b	= s36* T* S21*	= TAGTTTG AGA TGTTTAGTATGGTTG
W _{36,21}	= S21 T S36	= CAACCATACTAAACA TCT CAAACTAAACAACCA
G ₃₆ -b	= T* S36* T*	= TG AGA TGGTTGTTTAGTTTG AGA TG
W _{22,53}	= S53 T S22	= CATATCTAATCTCCA TCT CATTCCTACATTTCA
W _{22,f}	= Sf T S22	= CATTTTTTTTTCA TCT CATTCCTACATTTCA
G ₂₂ -b	= T* S22* T*	= TG AGA TGAAATGTAGGAATG AGA TG
Th _{39,22:22} -t	= S22	= CATTCCTACATTTCA
Th _{39,22:22} -b	= s39* T* S22*	= TATAGTG AGA TGAAATGTAGGAATG
W _{39,22}	= S22 T S39	= CATTCCTACATTTCA TCT CACTATACACACCCA
G ₃₉ -b	= T* S39* T*	= TG AGA TGGGTGTGTATAGTG AGA TG
W _{27,10}	= S10 T S27	= CATACAACATCTACA TCT CAAACACTCTATTCA
W _{27,f}	= Sf T S27	= CATTTTTTTTTCA TCT CAAACACTCTATTCA
G ₂₇ -b	= T* S27* T*	= TG AGA TGAATAGAGTGTTTG AGA TG
Th _{40,27:27} -t	= S27	= CAAACACTCTATTCA
Th _{40,27:27} -b	= s40* T* S27*	= TGTATTG AGA TGAATAGAGTGTTTG
W _{40,27}	= S27 T S40	= CAAACACTCTATTCA TCT CAATACAAATCCACA
G ₄₀ -b	= T* S40* T*	= TG AGA TGTGGATTTGTATTG AGA TG
W _{28,34}	= S34 T S28	= CACATAACAAAACCA TCT CATCTACAATTCACA
W _{28,40}	= S40 T S28	= CAATACAAATCCACA TCT CATCTACAATTCACA
$W_{28,f}$	= Sf T S28	= CATTTTTTTTTCA TCT CATCTACAATTCACA
G ₂₈ -b	= T* S28* T*	= TG AGA TGTGAATTGTAGATG AGA TG
Th _{41,28:28} -t	= S28	= CATCTACAATTCACA
Th _{41,28:28} -b	= s41* T* S28*	= TTTGTTG AGA TGTGAATTGTAGATG
W _{41,28}	= S28 T S41	= CATCTACAATTCACA TCT CAACAAACCATTACA
G ₄₁ -b	= T* S41* T*	= TG AGA TGTAATGGTTTGTTG AGA TG
W _{29,36}	= S36 T S29	= CAAACTAAACAACCA TCT CACCAATACTCCTCA
W _{29,39}	= S39 T S29	= CACTATACACACCCA TCT CACCAATACTCCTCA
$W_{29,f}$	= Sf T S29	= CATTTTTTTTTCA TCT CACCAATACTCCTCA
G ₂₉ -b	= T* S29* T*	= TG AGA TGAGGAGTATTGGTG AGA TG
Th _{42,29:29} -t	= S29	= CACCAATACTCCTCA
Th _{42,29:29} -b	= s42* T* S29*	= AAAAGTG AGA TGAGGAGTATTGGTG
W _{42,29}	= S29 T S42	= CACCAATACTCCTCA TCT CACTTTTCACTATCA
G ₄₂ -b	= T* S42* T*	= TG AGA TGATAGTGAAAAGTG AGA TG

Table S6: Seesaw square root circuit sequences (part three).

W _{30,40}	= S40 T S30	= CAATACAAATCCACA TCT CACCATTACAATCCA
W _{30,f}	= Sf T S30	= CATTTTTTTTTCA TCT CACCATTACAATCCA
G ₃₀ -b	= T* S30* T*	= TG AGA TGGATTGTAATGGTG AGA TG
Th _{43,30:30} -t	= S30	= CACCATTACAATCCA
Th _{43,30:30} -b	= s43* T* S30*	= TATGATG AGA TGGATTGTAATGGTG
W _{43,30} :30	= S30 T S43	= CACCATTACAATCCA TCT CATCATACCTACTCA
G ₄₃ -b	= T* S43* T*	= TG AGA TGAGTAGGTATGATG AGA TG
W _{31.39}	= S39 T S31	= CACTATACACACCCA TCT CAATCCACACTTCCA
W _{31,f}	= Sf T S31	= CATTTTTTTTTCA TCT CAATCCACACTTCCA
G ₃₁ -b	= T* S31* T*	= TG AGA TGGAAGTGTGGATTG AGA TG
Th _{44,31:31} -t	= S31	= CAATCCACACTTCCA
Th _{44,31:31} -b	= s44* T* S31*	
W _{44,31}	= S31 T S44	= CAATCCACACTTCCA TCT CAAAACTCTCTCTCA
G ₄₄ -b	= T* S44* T*	= TG AGA TGAGAGAGAGTTTTG AGA TG
	= S34 T S33	= CACATAACAAAACCA TCT CAACTCAAACATACA
W _{33,34}	= S43 T S33	= CATCATACCTACTCA TCT CAACTCAAACATACA
W _{33,43}	= S26 T S33	= CATTCATTACCTCCA TCT CAACTCAAACATACA
W _{33,26}	= Sf T S33	= CATTTTTTTTTCA TCT CAACTCAAACATACA
W _{33,f} G ₃₃ -b	= T* S33* T*	= TG AGA TGTATGTTTGAGTTG AGA TG
Th _{49.33:33} -t	= \$33	= CAACTCAAACATACA
Th _{49,33:33} -b	= s49* T* S33*	= AAGGATG AGA TGTATGTTTGAGTTG
,	= S36 T S35	= CAAACTAAACAACCA TCT CACTCTCCATCACCA
W _{35,36}	= S44 T S35	= CAAAACTCTCTCA TCT CACTCTCCATCACCA
W _{35,44}	= S20 T S35	= CAATCTAACACTCCA TCT CACTCTCCATCACCA
W _{35,20}	= Sf T S35	= CATTTTTTTTTCA TCT CACTCTCCATCACCA
W _{35,f} G ₃₅ -b	= T* S35* T*	= TG AGA TGGTGATGGAGAGTG AGA TG
Th _{50.35:35} -t	= S35	= CACTCTCCATCACCA
Th _{50,35:35} t	= s50* T* S35*	= GGTAATG AGA TGGTGATGGAGAGTG
	= S34 T S37	= CACATAACAAAACCA TCT CACCTCTTCCCTTCA
W _{37,34} W _{37,44}	= S44 T S37	= CAAAACTCTCTCA TCT CACCTCTTCCCTTCA
	= S26 T S37	= CATTCATTACCTCCA TCT CACCTCTTCCCTTCA
W _{37,26}	= Sf T S37	= CATTTTTTTTTCA TCT CACCTCTTCCCTTCA
W _{37,f} G ₃₇ -b	= T* S37* T*	= TG AGA TGAAGGGAAGAGTG AGA TG
Th _{51,37:37} -t	= S37	= CACCTCTTCCCTTCA
	= s51* T* S37*	= GTTTGTG AGA TGAAGGGAAGAGGTG
Th _{51,37:37} -b	- 301 1 001	DIDDADDDANDI AOA DIDIIID

Table S7: Seesaw square root circuit sequences (part four).

W _{38,36}	= S36 T S38	= CAAACTAAACAACCA TCT CATACCCTTTTCTCA
$W_{38,43}$	= S43 T S38	= CATCATACCTACTCA TCT CATACCCTTTTCTCA
W _{38,20}	= S20 T S38	= CAATCTAACACTCCA TCT CATACCCTTTTCTCA
$W_{38,f}$	= Sf T S38	= CATTTTTTTTTCA TCT CATACCCTTTTCTCA
G ₃₈ -b	= T* S38* T*	= TG AGA TGAGAAAAGGGTATG AGA TG
Th _{52,38:38} -t	= S38	= CATACCCTTTTCTCA
Th _{52,38:38} -b	= s52* T* S38*	= TGAAGTG AGA TGAGAAAAGGGTATG
	Reporter	strands (IDT HPLC purified)
Rep ₆ -t	= RQ S6	= /5IAbRQ/ CATAACACAATCACA
Rep ₆ -b	= T* S6* ROX	= TG AGA TGTGATTGTGTTATG /3ROXN/
Rep ₂₃ -t	= FQ S23	= /5IAbFQ/ CAAATCTTCATCCCA
Rep ₂₃ -b	= T* S23* FAM	= TG AGA TGGGATGAAGATTTG /36-FAM/
Rep ₂₄ -t	= RQ S24	= /5IAbRQ/ CACTCATCCTTTACA
Rep ₂₄ -b	= T* S24* TYE563	= TG AGA TGTAAAGGATGAGTG /3TYE563/
Rep ₂₅ -t	= RQ S25	= /5IAbRQ/ CAATTCACTCAATCA
Rep ₂₅ -b	= T* S25* TYE665	= TG AGA TGATTGAGTGAATTG /3TYE665/
	Input st	rands (IDT PAGE purified)
$x_1^0: w_{45,42}$	= S42 T S45	= CACTTTTCACTATCA TCT CACCCAAAACCCACA
x ₁ ¹ : w _{46,41}	= S41 T S46	= CAACAAACCATTACA TCT CAAACCCAACTCACA
x_2^0 : $W_{47,42}$	= S42 T S47	= CACTTTTCACTATCA TCT CATTCTCCCACCTCA
$x_2^0: W_{47,42}$ $x_2^1: W_{48,41}$	= S42 T S47 = S41 T S48	= CAACAAACCATTACA TCT CATCACCACTATACA
$x_2^1: w_{48,41}$	= S41 T S48	= CAACAAACCATTACA TCT CATCACCACTATACA
$x_2^1 : w_{48,41}$ $x_3^0 : w_{49,33}$	= S41 T S48 = S33 T S49	= CAACAAACCATTACA TCT CATCACCACTATACA = CAACTCAAACATACA TCT CATCCTTAACTCCCA
$x_2^1 : W_{48,41}$ $x_3^0 : W_{49,33}$ $x_3^1 : W_{50,35}$	= S41 T S48 = S33 T S49 = S35 T S50	= CAACAAACCATTACA TCT CATCACCACTATACA = CAACTCAAACATACA TCT CATCCTTAACTCCCA = CACTCTCCATCACCA TCT CATTACCAACCACCA
$x_2^1: W_{48,41}$ $x_3^0: W_{49,33}$ $x_3^1: W_{50,35}$ $x_4^0: W_{51,37}$	= S41 T S48 = S33 T S49 = S35 T S50 = S37 T S51 = S38 T S52	= CAACAAACCATTACA TCT CATCACCACTATACA = CAACTCAAACATACA TCT CATCCTTAACTCCCA = CACTCTCCATCACCA TCT CATTACCAACCACCA = CACCTCTTCCCTTCA TCT CACAAACTACATCCA
$x_2^1: W_{48,41}$ $x_3^0: W_{49,33}$ $x_3^1: W_{50,35}$ $x_4^0: W_{51,37}$	= S41 T S48 = S33 T S49 = S35 T S50 = S37 T S51 = S38 T S52	= CAACAAACCATTACA TCT CATCACCACTATACA = CAACTCAAACATACA TCT CATCCTTAACTCCCA = CACTCTCCATCACCA TCT CATTACCAACCACCA = CACCTCTTCCCTTCA TCT CACAAACTACATCCA = CATACCCTTTTCTCA TCT CACTTCACAACTACA
$X_2^1: W_{48,41}$ $X_3^0: W_{49,33}$ $X_3^1: W_{50,35}$ $X_4^0: W_{51,37}$ $X_4^1: W_{52,38}$	= S41 T S48 = S33 T S49 = S35 T S50 = S37 T S51 = S38 T S52 Internal fan-out s	= CAACAAACCATTACA TCT CATCACCACTATACA = CAACTCAAACATACA TCT CATCCTTAACTCCCA = CACTCTCCATCACCA TCT CATTACCAACCACCA = CACCTCTTCCCTTCA TCT CACAAACTACATCCA = CATACCCTTTTCTCA TCT CACTTCACAACTACA strands for readout (IDT unpurified)
$X_2^1: W_{48,41}$ $X_3^0: W_{49,33}$ $X_3^1: W_{50,35}$ $X_4^0: W_{51,37}$ $X_4^1: W_{52,38}$	= S41 T S48 = S33 T S49 = S35 T S50 = S37 T S51 = S38 T S52 Internal fan-out s = S32 T S21	= CAACAAACCATTACA TCT CATCACCACTATACA = CAACTCAAACATACA TCT CATCCTTAACTCCCA = CACTCTCCATCACCA TCT CATTACCAACCACCA = CACCTCTTCCCTTCA TCT CACAAACTACATCCA = CATACCCTTTTCTCA TCT CACTTCACAACTACA Strands for readout (IDT unpurified) = CACACTTCAAACTCA TCT CAACCATACTAAACA
$X_2^1: W_{48,41}$ $X_3^0: W_{49,33}$ $X_3^1: W_{50,35}$ $X_4^0: W_{51,37}$ $X_4^1: W_{52,38}$ $W_{21,32}$ $W_{28,32}$	= S41 T S48 = S33 T S49 = S35 T S50 = S37 T S51 = S38 T S52 Internal fan-out s = S32 T S21 = S32 T S28 = S32 T S32	= CAACAAACCATTACA TCT CATCACCACTATACA = CAACTCAAACATACA TCT CATCCTTAACTCCCA = CACTCTCCATCACCA TCT CATTACCAACCACCA = CACCTCTTCCCTTCA TCT CACAAACTACATCCA = CATACCCTTTTCTCA TCT CACTTCACAACTACA strands for readout (IDT unpurified) = CACACTTCAAACTCA TCT CAACCATACTAAACA = CACACTTCAAACTCA TCT CATCTACAATTCACA
$X_2^1: W_{48,41}$ $X_3^0: W_{49,33}$ $X_3^1: W_{50,35}$ $X_4^0: W_{51,37}$ $X_4^1: W_{52,38}$ $W_{21,32}$ $W_{28,32}$	= S41 T S48 = S33 T S49 = S35 T S50 = S37 T S51 = S38 T S52 Internal fan-out s = S32 T S21 = S32 T S28 = S32 T S32	= CAACAAACCATTACA TCT CATCACCACTATACA = CAACTCAAACATACA TCT CATCCTTAACTCCCA = CACTCTCCATCACCA TCT CATTACCAACCACCA = CACCTCTTCCCTTCA TCT CACAAACTACATCCA = CATACCCTTTTCTCA TCT CACTTCACAACTACA Strands for readout (IDT unpurified) = CACACTTCAAACTCA TCT CAACCATACTAAACA = CACACTTCAAACTCA TCT CATCTACAATTCACA = CACACTTCAAACTCA TCT CAATCCACACTTCCA
$X_2^1: W_{48,41}$ $X_3^0: W_{49,33}$ $X_3^1: W_{50,35}$ $X_4^0: W_{51,37}$ $X_4^1: W_{52,38}$ $W_{21,32}$ $W_{28,32}$ $W_{31,32}$	= S41 T S48 = S33 T S49 = S35 T S50 = S37 T S51 = S38 T S52 Internal fan-out s = S32 T S21 = S32 T S28 = S32 T S32 Internal readout r	= CAACAAACCATTACA TCT CATCACCACTATACA = CAACTCAAACATACA TCT CATCCTTAACTCCCA = CACTCTCCATCACCA TCT CATTACCAACCACCA = CACCTCTTCCCTTCA TCT CACAAACTACATCCA = CATACCCTTTTCTCA TCT CACTTCACAACTACA Strands for readout (IDT unpurified) = CACACTTCAAACTCA TCT CAACCATACTAAACA = CACACTTCAAACTCA TCT CATCTACAATTCACA = CACACTTCAAACTCA TCT CATCTACAATTCACA eporter strands (IDT HPLC purified) = /5IAbRQ/ CACACTTCAAACTCA

Table S8: Seesaw sequences without clamps.

			Do	om	ain level sequences				
Т	= C	CTCT	T*		AGAG				
S1	= C	CATCCATTCCACTAT	S2	=	CCAAACAAAACCTAT		S3	=	CACCCTAAAATCTAT
S1*	= A	ATAGTGGAATGGATG	S2*	-	ATAGGTTTTGTTTGG				
S4	= A	AACAAAACAACCACT	S5	=	AACCACCAAACTTAT		S6	=	CCTAACACAATCACT
S4*	= A	AGTGGTTGTTTTGTT	S5*	=	ATAAGTTTGGTGGTT		S6*	=	AGTGATTGTGTTAGG
S7	= 0	CCACAAAACAAAACT	S8	=	CCCAAATAAACAACT		S9	=	CACCATCAAATAACT
S10	= T	CAAAACCAACTACT							
			Gate	st	rands (IDT unpurifie	d)			
W _{5,6}		= S6 T S5		=	CCTAACACAATCACT	CTC	Г АА	CCA	CCAAACTTAT
G ₅ -b		= T* S5* T*		=	AGAG ATAAGTTTGG	TGGT'	Γ AG.	AG	
W _{5,7}		= S7 T S5		=	CCACAAAACAAAACT	CTC	Г АА	CCA	CCAAACTTAT
Th _{2,5:5}	₅ -t	= S5		=	AACCACCAAACTTAT				
Th _{2,5:5}	₅ -b	= s2* T* S5*		=	TTTGG AGAG ATAA	GTTT	GGTG	GTT	
$W_{2,5}$		= S5 T S2		=	AACCACCAAACTTAT	CTC	r cc.	AAA	CAAAACCTAT
G ₂ -b		= T* S2* T*		=	AGAG ATAGGTTTTG	TTTG	G AG.	AG	
$W_{1,2}$		= S2 T S1		=	CCAAACAAAACCTAT	CTC	r ca	TCC	ATTCCACTAT
G ₁ -b		= T* S1* T*		=	AGAG ATAGTGGAAT	GGAT	G AG.	AG	
W _{1,10}		= S10 T S1		=	TCAAAACCAACTACT	CTC	r ca	TCC	ATTCCACTAT
Th _{4,1:1}	₁ -t	= S1		=	CATCCATTCCACTAT				
Th _{4,1:1}	₁ -b	= s4* T* S1*		=	TTGTT AGAG ATAG	TGGA	ATGG.	ATG	
W _{4,1}		= S1 T S4		=	CATCCATTCCACTAT	CTC	Г АА	CAA	AACAACCACT
G ₄ -b		= T* S4* T*		=	AGAG AGTGGTTGTT	TTGT	Γ AG.	AG	
		Re	eporte	r st	trands (IDT HPLC pu	rified)		
Rep _{5,6}	₆ -t	= RQ S6 T		=	/5IAbRQ/ CCTAAC	ACAA'	rcac'	T C	TCT
Rep _{5,6}	₆ -b	= s5* T* S6* RC	X	=	TGGTT AGAG AGTG	ATTG'	rgtt.	AGG	/3ROXN/
			Input s	tra	ands (IDT PAGE puri	fied)			
$W_{3,2}$		= S2 T S3		=	CCAAACAAAACCTAT	CTC	Г СА	CCC	TAAAATCTAT
W _{8,4}		= S4 T S8		=	AACAAAACAACCACT	CTC	r cc	CAA	ATAAACAACT
W _{9,4}		= S4 T S9		=	AACAAAACAACCACT	CTC	ГСА	CCA	TCAAATAACT

Table S9: Seesaw hairpin sequences.

Domain level sequences								
T =	TGAGG	T*	=	CCTCA				
S1 =	TAGTTGGAAGAGGC	S3	=	GATGTAAGTATTTGC	S4	=	AGTATGTAGTGTGGC	
S1* =	GCCCTCTTCCAACTA	S3*	=	GCAAATACTTACATC	S4*	=	GCCACACTACATACT	
S2 =	GGATTAGGGGGTAGC							
Excised hairpin sequences with restriction enzyme recognition sites								
EH-Hgal			=	NNNNNNNNNGCGTCNTT	TNGA	CGC	NNNN	
EH-Mlyl			=	NNNNNGACTCNTTTTNGAC	GTCNNI	NNN	1	
	Gate strands (IDT unpurified)							
G _{3:3,1} -h	G _{3:3,1} -h = S1 T S3 EH-Hgal T* S3* T* = TAGTTGGAAGAGGGC TGAGG GATGTAAGTATTTGC TGAGGCGCTGGCGTCGTTTTCGACGCCAGCG CCTCA GCAAATACTTACATC CCTCA							
W _{3,2}	= S2 T S3		=	GGATTAGGGGGTAGC TGA	AGG GA	ATG	TAAGTATTTGC	
Th _{4,3:3} -h	= s4* T* S3* EH-Mlyl S	3	=	ACT CCTCA GCAAATACT			GATGTAAGTATTTGC	
	R	eporte	r st	trands (IDT HPLC purifie	d)			
Rep ₁ -t	= TET S1		=	/5TET/ TAGTTGGAAGAC	GGC			
Rep ₁ -b	= T* S1* BHQ		=	CCTCA GCCCTCTTCCAAC	CTA /3	ЗВН	Q_1/	
	Input strands (IDT unpurified)							
W _{4,3}	= S3 T S4		=	GATGTAAGTATTTGC TGA	AGG AG	GΤA	TGTAGTGTGGC	