Computer Architecture -Performance Metrics

What is the Performance?

Plane	DC to Paris	Speed	Passengers	passengers X mph
Boeing 747	6.5 hours	610 mph	470	286,700
Concorde	3 hours	1350 mph	132	178,200

Which of the planes has better performance

What is the Performance?

- The plane with the highest speed is Concorde
- The plane with the largest capacity is Boeing 747

- •Time of Concorde vs. Boeing 747?
 - •Concord is 1350 mph / 610 mph = 2.2 times faster
- Throughput of Concorde vs. Boeing 747?
 - ■Boeing is 286,700 pmph / 178,200 pmph = 1.6 times faster
- Boeing is 1.6 times faster in terms of throughput
- Concord is 2.2 times faster in terms of flying time
- •When discussing processor performance, we will focus primarily on execution time for a single job - why?

Definitions of Time

- Time can be defined in different ways, depending on what we are measuring:
 - Response time: The time between the start and completion of a task. It includes time spent executing on the CPU, accessing disk and memory, waiting for I/O and other processes, and operating system overhead. This is also referred to as execution time.
 - Throughput :The total amount of work done in a given time.
 - CPU execution time: Total time a CPU spends computing on a given task (excludes time for I/O or running other programs). This is also referred to as simply CPU time.

Performance Definition

- For some program running on machine X, Performance = 1 / Execution timex
- "X is n times faster than Y" Performance_x / Performance_y = n

Problem:

- machine A runs a program in 20 seconds
- machine B runs the same program in 25 seconds
- how many times faster is machine A?

$$\frac{25}{20} = 1.25^{3}$$

Basic Measurement

- Comparing Machines
 - Metrics
 - Execution time
 - Throughput
 - CPU time
 - MIPS millions of instructions per second

Comparing Machines

- Metrics
 - Execution time
 - Throughput
 - CPU time
 - MIPS millions of instructions per second
 - MFLOPS millions of floating point operations per second
- Comparing Machines Using Sets of Programs
 - Arithmetic mean, weighted arithmetic mean

- Execution time
- Throughput
- CPU time
- MIPS millions of instructions per second
- MFLOPS millions of floating point operations per second
- Comparing Machines Using Sets of Programs
 - Arithmetic mean, weighted arithmetic mean
 - Benchmarks

Computer

A computer clock runs at a constant rate and determines when events take placed in hardware.

- The clock cycle time is the amount of time for one clock period to elapse (e.g. 5 ns).
- The clock rate is the inverse of the clock cycle time.
- For example, if a computer has a clock cycle time of 5 ns, the clock rate is:

when events take placed in hardware.

- The clock cycle time is the amount of time for one clock period to elapse (e.g. 5 ns).
- The clock rate is the inverse of the clock cycle time.
- For example, if a computer has a clock cycle time of 5
 ns, the clock rate is:

$$\frac{1}{5 \times 10^{-9}} = 200 \text{ MHz}$$

Prefix	Symbol		Multiplier
еха	E	1018	1,000,000,000,000,000,000
peta	P	1015	1,000,000,000,000,000
tera	T	1012	1,000,000,000,000
giga	G	109	1,000,000,000
mega	M	106	1,000,000
kilo	k	10 ³	1,000
hecto	h	10 ²	100
deka	da	10 ¹	10
deci	d	10.1	0.1
centi	С	10.2	0.01
milli	m	10 ⁻³	0.001
micro	μ	10-6	0.000,001
nano	n	10 ⁻⁹	0.000,000,001
pico micro micro	Ρ μμ	10-12	0.000,000,000,001
femto	f	10-15	0.000,000,000,000,001
atto	a	10.18	0.000,000,000,000,000,001

peta	P	10	1,000,000,000,000,000
tera	T	1012	1,000,000,000,000
giga	G	10°	1,000,000,000
mega	M	106	1,000,000
kilo	k	10 ³	1,000
hecto	h	10 ²	100
deka	da	10 ¹	10
deci	d	10.1	0.1
centi	С	10.2	0.01
milli	m	10-3	0.001
micro	μ	10-6	0.000,001
nano	n	10.9	0.000,000,001
pico micro micro	Ρ μμ	10-12	0.000,000,000,001
femto	f	10-15	0.000,000,000,000,001
atto	a	10-18	0.000,000,000,000,000,001
		1	The same and the s

How Many Cycles are Required for Program?

Could assume that # of cycles = # of instructions

 This assumption is incorrect, different instructions take different amounts of time on different machines.

Different Numbers of Cycles for Different Instructions

- Division takes more time than addition
- Floating point operations take longer than integer ones
- Accessing memory takes more time than accessing registers

- A given program will require
 - some number of instructions (machine instructions)
 - some number of clock cycles
 - some number of seconds
- We have a vocabulary that relates these quantities:
 - clock cycle time (seconds per cycle)
 - clock rate (cycles per second)
 - CPI (cycles per instruction)
 - a floating point intensive application might have a higher CPI

Computing CPU Time

- The time to execute a given program can be computed as CPU time = CPU clock cycles x clock cycle time
- Since clock cycle time and clock rate are reciprocals
 CPU time = CPU clock cycles / clock rate
- The number of CPU clock cycles can be determined by CPU clock cycles = (instructions/program) x (clock cycles/instruction) = Instruction count x CPI

which gives

CPU time = Instruction count x CPI x clock cycle time CPU time = Instruction count x CPI / clock rate

The units for CPU time are

- The time to execute a given program can be computed as CPU time = CPU clock cycles x clock cycle time
- Since clock cycle time and clock rate are reciprocals
 CPU time = CPU clock cycles / clock rate
- The number of CPU clock cycles can be determined by
 CPU clock cycles = (instructions/program) x (clock cycles/instruction)

= Instruction count x CPI

which gives

CPU time = Instruction count x CPI x clock cycle time CPU time = Instruction count x CPI / clock rate

The units for CPU time are

CPU Time Example

Example 1:

- CPU clock rate is 1 MHz
- Program takes 45 million cycles to execute
- What's the CPU time?

```
45,000,000 * (1 / 1,000,000) = 45 seconds
```

Example 2:

Example 1:

- CPU clock rate is 1 MHz
- Program takes 45 million cycles to execute
- What's the CPU time?

45,000,000 * (1 / 1,000,000) = 45 seconds

Example 2:

- CPU clock rate is 500 MHz
- Program takes 45 million cycles to execute
- What's the CPU time

- Program takes 45 million cycles to execute
- What's the CPU time?

```
45,000,000 * (1 / 1,000,000) = 45 seconds
```

Example 2:

- CPU clock rate is 500 MHz
- Program takes 45 million cycles to execute
- What's the CPU time

```
45,000,000 * (1 / 500,000,000) = 0.09 seconds
```


following?

	instr. Count	CPI	clock rate
Program	x		
Compiler	x	х	
Instr. Set Arch.	x	х	
Organization		х	, x
Technology			x

CPI Example

Example: Let assume that a benchmark has 100 instructions:

25 instructions are loads/stores (each take 2 cycles)

50 instructions are adds (each takes 1 cycle)

25 instructions are square root (each takes 50 cycles)

What is the CPI for this benchmark?

instructions:

25 instructions are loads/stores (each take 2 cycles)

50 instructions are adds (each takes 1 cycle)

25 instructions are square root (each takes 50 cycles)

What is the CPI for this benchmark?

$$CPI = ((0.25 * 2) + (0.50 * 1) + (0.25 * 50)) = 13.5$$

Computing CPI

- The CPI is the average number of cycles per instruction.
- If for each instruction type, we know its frequency and number of cycles need to execute it, we can compute the overall CPI as follows:

$$CPI = \sum CPI \times F$$

For example

Op	F	CPI	CPI x F	% Time
ALU	50%	1	.5	23%
Load	20%	5	1 0	45%

overall CPI as follows:

$$CPI = \sum CPI \times F$$

For example

Op	F	CPI	CPI x F	% Time
ALU	50%	1	.5	23%
Load	20%	5	1.0	45%
Store	10%	3	.3	14%
Branch	20%	2	.4	18%
Total	100%		2.2	100%

 Suppose we have two implementations of the same instruction set architecture (ISA).

For some program,

Machine A has a clock cycle time of 10 ns. and a CPI of 2.0 Machine B has a clock cycle time of 20 ns. and a CPI of 1.2

Which machine is faster for this program, and by how much?

Assume that # of instructions in the program is 1,000,000,000.

CPU Time_A =
$$10^9 * 2.0 * 10 * 10^{-9} = 20$$
 seconds

CPU Time_B =
$$10^9 * 1.2 * 20 * 10^{-9} = 24$$
 seconds

$$\frac{24}{20}$$
 = 1.2 times

A compiler designer is trying to decide between two code sequences for a particular machine. Based on the hardware implementation, there are three different classes of instructions: Class A, Class B, and Class C, and they require one, two, and three cycles (respectively).

The first code sequence has 5 instructions: 2 of A, 1 of B, and 2 of C.

The second sequence has 6 instructions: 4 of A, 1 of B, and 1 of C.

- Which sequence will be faster? How much?
- What is the CPI for each sequence?

of cycles for first code =
$$(2 * 1) + (1 * 2) + (2 * 3) = 10$$
 cycles

of cycles for second code =
$$(4 * 1) + (1 * 2) + (1 * 3) = 9$$
 cycles

(respectively).

The first code sequence has 5 instructions: 2 of A, 1 of B, and 2 of C.

The second sequence has 6 instructions: 4 of A, 1 of B, and 1 of C.

- Which sequence will be faster? How much?
- What is the CPI for each sequence?

of cycles for first code =
$$(2 * 1) + (1 * 2) + (2 * 3) = 10$$
 cycles

of cycles for second code =
$$(4 * 1) + (1 * 2) + (1 * 3) = 9$$
 cycles

$$CPI$$
 for first code = 10 / 5 = 2
 CPI for second code = 9 / 6 =

2. CPI Example

Assume a processor with instruction frequencies and costs

· Integer ALU: 50%, 1 cycle

Load: 20%, 5 cycle

Store: 10%, 1 cycle

Branch: 20%, 2 cycle

Which change would improve performance more?

A: "Branch prediction" to reduce branch cost to 1 cycle?

B: "Cache" to reduce load cost to 3 cycles?

Compute CPI

	INT	LD	ST	BR	CPI
Base					
A					
В					

- Assume a processor with instruction frequencies and costs
 - Integer ALU: 50%, 1 cycle
 - Load: 20%, 5 cycle
 - Store: 10%, 1 cycle
 - Branch: 20%, 2 cycle
- Which change would improve performance more?
 - A. "Branch prediction" to reduce branch cost to 1 cycle?
 - B. "cache" to reduce load cost to 3 cycles?
- Compute CPI
 - Base = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*2 = 2 CPI
 - A = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*1 = 1.8 CPI
 - B = 0.5*1 + 0.2*3 + 0.1*1 + 0.2*2 = 1.6 CPI (winner)

Compute CPI

	INT	LD	ST	BR	CPI
Base					
A		4.11			
Ö					

3 Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for a program, and machine B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program. Which machine is faster for this program, and by how much?

4

Instruction	class	CPI for this instru	iction class	
A		1		
B C		3		
Code sequence	A	B	G	

- λ α α α α

- Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for a program, and machine B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program. Which machine is faster for this program, and by how much?
 - (1) CPU clock cyclesA=I x 2.0
 CPU clock cyclesB=I x 1.2
 # I is the number of instructions for this program
 - (2) CPU timeA=I x 2.0 x 250 ps= 500 x I psCPU timeB=I x 1.2 x 500 ns = 600 x I ps
 - (3) CPU performanceA= 1 / timeA CPU performanceB= 1 / timeB
 - (4) Speedup= performanceA/ performanceB=1.2

