

Fig. 1

Fig. 2

Fig. 3

Fig. 4A

Fig. 4B

Fig. 4C

2/17

Fig. 5A

Fig. 5B

Fig. 6

Fig. 7

Fig. 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

3/17

Fig. 10B

Fig. 10A

Fig. 10 C

Fig. 9

4/17

I_{Q_3}

Fig. 10 D

90 Chip

Fig. 11

101

Fig. 10 I

5/17

Fig. 10E

Fig. 10F I_3

Fig. 10 G

Fig. 10 H

6/17

Fig. 12

Fig. 14D

Fig. 13

101

Fig. 14C

Fig. 14A

101

Fig. 14B

Fig. 15

7/17

Fig. 10K

Fig. 10J

Fig. 10L

Fig. 10M

81, 17

Fig. 10 N

chip

Fig. 10 P

Fig. 10 Q

9/17

Fig. 16 A

(Part of Internet or Intranet or other net)

Fig. 16 B

Fig. 16 C

Fig. 16 D

Fig. 16 A-Q & 16 V-AA:

③ indicates either master PC 1 or master microprocessor 30 chip within a PC 1.

Like wise, ④ indicates either a slave PC 1 or a slave microprocessor 40 chip within a PC 1.

Either microprocessor 30 or microprocessor 40 can be a microprocessor 90, a PC 1 or a microchip

Note 100: mix of 100 & 94

Fig. 16 G

Master PC off-loads operation to slave PC's until function is over

Fig. 16 H

Unavailable S21 off-loads results of S31 & S32 to S21, which takes over

Fig. 16 I

Fig. 16 J

Like Fig. 16 D
S21 replaces S21

10/17

Fig. 16 E

Fig. 16 F

Fig. 16 K

Fig. 16 L

Fig. 16 M

Fig. 16 N

Fig. 16 O

Fig. 16 Q

Fig. 16 P

Figs. 16 O-Q
are sections
of Fig. 16 F
Net (left upper)

Fig. 16X

Fig. 16Y

Fig. 16Z

Fig. 16AA

13/17

Fig. 16R

Like Fig. 10C:
"Personal Computer
on a chip"
(Figs. 16R-16U)

Fig. 16S

Fig. 16T

Fig. 16U

Microprocessor 90
can be entire
PC1. on a single
microchip

14/17

Fig. 16V

Fig. 16W - X
Follows Fig.
16Q-Q &
are also sections
of Fig. 16F net

Fig. 16W

Fig. 17C

Fig. 17A

Fig. 17B

Fig. 17D

15/17

Fig 18B design can allow simultaneous use of PC 1 for both digital & quantum computations

Fig. 18 like Fig. 16A & similarly VQ could be substituted for 3D & 4D in Figs. 16B-16Q & 16V-16AA and in earlier Figures

Note 99 & 100 mix

of VQ can be scaled to any size Quantum Computer QC

16/17

Fig. 19

Fig. 20A

Fig. 20B

