CS204: Discrete Mathematics

Ch 2. Basic Structures: Sets, Junctions Ch 9. Relations Equivalence Relations

Sungwon Kang

Acknowledgement

- [Rosen 19] Kenneth H. Rosen, for Discrete Mathematics & Its Applications (8th Edition), Lecture slides
- [Hunter 11] David J. Hunter, Essentials of Discrete Mathematics, 2nd Edition, Jones & Bartlett Publishers, 2011, Lecture Slides

Ch 9. Relations

- 9.1 Relations and Their Properties
- 9.2 n-ary Relations and Their Applications
- 9.3 Representing Relations
- 9.4 Closures of Relations
- 9.5 Equivalence Relations
- 9.6 Partial Orderings

Reflexivity, Symmetry and Transitivity of Relations

Definition

A relation R is called *reflexivity*, *symmetric* and *transitive* if it satisfies the following definitions, respectively.

Reflexivity. For any $a \in S$, aRa.

Symmetry. For any $a, b \in S$, $a R b \Leftrightarrow b R a$.

Transitivity. For any $a, b, c \in S$, if aRb and bRc, then aRc.

Reflexive relations: =, ≤, ⊆, "divides", ...

Symmetric relations: =, "is a sister of" but "divides", <, ≤ are not.

Transitive relations: =, \leq , <, \subseteq , "is a sister of", "divides" but "likes", ... are not.

Equivalence relations

Definition

A relation R on a set S is an <u>equivalence relation</u> if it satisfies all three of the following properties.

- **1** Reflexivity.
- 2 Symmetry.
- 3 Transitivity.

In other words, an equivalence relation is a relation that is reflexive, symmetric, and transitive.

Equivalence relations: examples

- **Example 1.** The relation on \mathbf{Z} defined by = is an equivalence relation.
- **Example 2.** Let S be the set of all symbols of the form $\frac{x}{y}$, where x and $y \neq 0$ are integers. In other words, $S = \left\{\frac{x}{y} \mid x, y \in \mathbf{Z}, y \neq 0\right\}$. Define a relation R on S as follows. For any elements $\frac{x}{y}$ and $\frac{z}{w}$ in S, $\frac{x}{v}$ R $\frac{z}{w}$ if xw = yz. Then R is an equivalence relation.
- **Example 3.** Given any function $f: X \to Y$, define a relation on X as follows. For any $a, b \in X$, $\underbrace{a R b}$ if f(a) = f(b). Then R is an equivalence relation. (I.e. "Map to the same element" relation .)

How can we prove that a certain relation is an equivalence relation?

Given any function f: X-Y, define R as follows:

For any $a, b \in X$, define aRb if f(a) = f(b). The proof that R is an equivalence relation has three parts:

Proof.

Given any function $f: X \rightarrow Y$, define R as follows:

For any $a, b \in X$, define aRb if f(a) = f(b). The proof that R is an equivalence relation has three parts:

Proof.

1 Reflexivity. Suppose that $a \in X$. Since f is a well-defined function, f(a) = f(a), so a R a.

Given any function f: $X \rightarrow Y$, define R as follows:

For any $a, b \in X$, define aRb if f(a) = f(b). The proof that R is an equivalence relation has three parts:

Proof.

- 1 Reflexivity. Suppose that $a \in X$. Since f is a well-defined function, f(a) = f(a), so a R a.
- 2 Symmetry. Suppose that $a, b \in X$ and that a R b. By the definition of R, this means that f(a) = f(b), which is the same thing as saying f(b) = f(a). Thus b R a, as required.

Given any function f: $X \rightarrow Y$, define R as follows:

For any $a, b \in X$, define aRb if f(a) = f(b). The proof that R is an equivalence relation has three parts:

Proof.

- 1 Reflexivity. Suppose that $a \in X$. Since f is a well-defined function, f(a) = f(a), so a R a.
- 2 Symmetry. Suppose that $a, b \in X$ and that a R b. By the definition of R, this means that f(a) = f(b), which is the same thing as saying f(b) = f(a). Thus b R a, as required.
- 3 Transitivity. Let $a, b, c \in X$ with a R b and b R c. Then f(a) = f(b) and f(b) = f(c), so by substitution, f(a) = f(c). This shows that a R c.

Exercise 1 We studied the "equivalence modulo n relation".

Is the "equivalence modulo 3 relation" an equivalence relation?

How can we prove it?

- 1) Directly proving the three properties of equivalence relation
 - 2) The theorem we will study shortly can be used for this.

Definition A *partition* of a set S is a set P of nonempty subsets of S with the following properties.

- 1. For any $a \in S$, there is some set $X \in P$ such that $a \in X$. The elements of P are called the *blocks* of the partition. (P is exhaustive.)
- 2. If $X, Y \in P$ are disjoint blocks, then $X \cap Y = \emptyset$. (P has no overlapping blocks.)

0, 3, 6, 9, ... are all equivalent modulo 3 because if they are divided by 3 they all have the same remainder 0. Call this set R0.

1, 4, 7, 10, ... are all equivalent modulo 3 because if they are divided by 3 they all have the same remainder 1. Call this set R1.

2, 5, 8, 11, ... are all equivalent modulo 3 because if they are divided by 3 they all have the same remainder 2. Call this set R2.

R0, R1 and R2 "partition" N.

Example 1 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Is {S1, S2, S3} a partition of U?

Example 2 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Is {S1, S2, S3} a partition of U?

Example 3 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Is {S1, S2, S3} a partition of U?

Theorem

Let R be an equivalence relation on a set S. For any element $x \in S$, define $R_x = \{a \in S \mid x R a\}$, the set of all elements related to x. Let P be the collection of distinct subsets of S formed in this way, that is, $P = \{R_x \mid x \in S\}$. Then P is a partition of S.

Example 4 $U = \{m1, m2, m3, m4, m5, m6, m7, m8, m9\}$

It is the set of 9 weird monkeys.

A relation that makes them weird is the following:

- 1) Each monkey likes itself.
- 2) If monkey A likes another one B, then B likes A, too.
- 3) If A likes B and B likes C, then A likes C.

In this world, is the "likes" relation an equivalence relation?

For example, we may know the following facts.

Theorem

Let R be an equivalence relation on a set S. For any element $x \in S$, define $R_x = \{a \in S \mid x R a\}$, the set of all elements related to x. Let P be the collection of distinct subsets of S formed in this way, that is, $P = \{R_x \mid x \in S\}$. Then P is a partition of S.

Theorem

Let R be an equivalence relation on a set S. For any element $x \in S$, define $R_x = \{a \in S \mid x R a\}$, the set of all elements related to x. Let P be the collection of distinct subsets of S formed in this way, that is, $P = \{R_x \mid x \in S\}$. Then P is a partition of S.

Proof)

- (1) For any $x \in S$, there is some set $T \in P$ such that $x \in T$. (P is exhaustive.)
- (2) If T1,T2 \in P and T1 \neq T2, then T1 \cap T2 = \emptyset . (P has no overlapping blocks.)

Theorem

Let R be an equivalence relation on a set S. For any element $x \in S$, define $R_x = \{a \in S \mid x R a\}$, the set of all elements related to x. Let P be the collection of distinct subsets of S formed in this way, that is, $P = \{R_x \mid x \in S\}$. Then P is a partition of S.

Proof)

(1) For any $x \in S$, there is some set $T \in P$ such that $x \in T$. Let $x \in S$. Then since R is reflexive, xRx, hence $x \in Rx$.

(2) If T1,T2 \in P and T1 \neq T2, then T1 \cap T2 = \emptyset .

Proof) (2) If T1,T2 \in P and T1 \neq T2, then T1 \cap T2 = \emptyset .

Suppose T1, T2 \in P and T1 \neq T2.

Assume T1 \cap T2 $\neq \emptyset$ for proof by contradiction.

Then there is $x \in T1$ and $x \in T2$.

Then since xRx, $x \in Rx$.

To prove T1 = T2, we will prove T1 \subseteq T2 and T2 \subseteq T1.

To show T1⊆Rx,

To show $Rx\subseteq T2$,

```
Lemma Let x,y \in S and T \in P where P is as defined in the Theorem.
          Then if x,y \in T, then xRy and yRx.
          Moreover, x \in Ry and y \in Rx.
```

Example

```
R: having the same remainder when divided by 3
           R1 = \{1, 4, 7, 10, 13, ...\} 4 \in R1
           R2 = \{2, 5, 8, 11, 14, ...\} 5 \in R2
           R3 = \{0, 3, 6, 9, 12, \dots\}
           R4 = \{1, 4, 7, 10, 13, ...\} 1 \in R3
           R5 = \{2, 5, 8, 11, 14, ...\} 2 \in R5
By Lemma,
         11, 23∈R2.
         So 11R23 and 23R11.
         Also 11 \in R23 and 23 \in R11.
         (Actually, R23 = R11 = R2 but we will not use this fact.)
```

Proof) (2) If T1,T2 \in P and T1 \neq T2, then T1 \cap T2 = \emptyset .

Suppose T1, T2 \in P and T1 \neq T2. Assume T1 \cap T2 \neq \varnothing for proof by \varnothing

Assume T1 \cap T2 $\neq \emptyset$ for proof by contradiction.

Then there is $x \in T1$ and $x \in T2$.

Then since xRx, $x \in Rx$.

To show T1 \subseteq Rx, let y \in T1. Since x \in T1, both x \in T1 and y \in T1 are true. So, by Lemma, xRy, hence y \in Rx.

To show $Rx \subseteq T2$, let $y \in Rx$. Then xRy. Since $x \in T2$, xRy implies $y \in T2$ because T2 is an equivalence class.

Similarly T2 \subseteq Rx \subseteq T1. So T1 = T2. \rightarrow \leftarrow .

Proof) (2) If T1,T2 \in P and T1 \neq T2, then T1 \cap T2 = \emptyset .

Suppose T1, T2 \in P and T1 \neq T2.

Assume T1 \cap T2 $\neq \emptyset$ for proof by contradiction.

Then there is $x \in T1$ and $x \in T2$.

Then since xRx, $x \in Rx$.

To show T1 \subseteq Rx, let y \in T1. Since x \in T1, both x \in T1 and y \in T1 are true. So, by Lemma, xRy, hence y \in Rx.

To show $Rx \subseteq T2$, let $y \in Rx$. Then xRy. Since $x \in T2$, xRy implies $y \in T2$ because T2 is an equivalence class.

Similarly T2 \subseteq Rx \subseteq T1. So T1 = T2. \rightarrow \leftarrow .

Rx

17∈T1. Since 11∈T1, both 17∈T1 and 17∈T1 are true. So, by Lemma, 11R17, hence 17∈R11.

23∈R11
Then 23R11.
Since 11∈T2,
23R11 implies 23∈T2 because
T2 is an equivalence class.

782
$$\rightarrow$$
 7+8+2 = 17 \rightarrow 1+7 = 8
x 564 \rightarrow 5+6+4 = 15 \rightarrow 1+5 = 6 \rightarrow 4+8=12
441048 \rightarrow 4+4+1+4+8 = 21 \rightarrow 3

Can call this "abstract computation".

Modular arithmetic

Let's read this equivalence class a

Fact: Let [a] and [b] be equivalence classes in \mathbb{Z}/n . Suppose that $x \in [a]$ and $y \in [b]$. Then $x + y \in [a + b]$ and $xy \in [ab]$. the operations of addition and multiplication on *equivalence classes* are well-defined:

$$[a] + [b] = [a+b]$$
$$[a] \cdot [b] = [a \cdot b]$$

This means we can add and multiply elements in \mathbf{Z}/n by adding and multiplying the numbers we use to represent the equivalence class. For example, in the modular arithmetic of $\mathbf{Z}/12$,

$$[6] + [8] = [2]$$

Modular arithmetic

$$\mathbb{Z}/3 = \{[0], [1], [2]\}$$

where

If $4 \in [1]$ and $5 \in [2]$, then $4+5 \in [9]=[3]=[0]$ and $4 \times 5 \in [20]=[2]$.

Modular arithmetic

```
Fact: Let [a] and [b] be equivalence classes in \mathbb{Z}/n. Suppose that x \in [a] and y \in [b]. Then x + y \in [a + b] and xy \in [ab].
```

To show $x + y \in [a + b]$:

How can we prove this?

```
By definition of \mathbb{Z}/n, 0 \le a, b < n. (Can prove [a-n] = [a].)
x = x1 * n + a \quad and \ y = y1 * n + b
x + y = (x1 + y1)* n + (a+b)
If a+b < n, then x + y \in [a+b].
If a+b >= n, then x + y = [a+b-n].
But in this case [a+b-n] = [a+b].
```

Exercise

Show xy∈[ab]:

Is this calculation correct?

$$365 \longrightarrow 3+6+5 = 14 \longrightarrow 1+4 \in [5] + = [6]$$

$$+ 217 \longrightarrow 2+1+7 = 10 \longrightarrow 1+0 \in [1]$$

$$592 \longrightarrow 5+9+2 = 16 \longrightarrow 1+6 \in [7]$$

Why 365
$$\in$$
 [5]?
$$365 \equiv_{9} 300 + 60 + 5$$

$$\equiv_{9} 3 \times (99+1) + 6 \times (9+1) + 5$$

$$\equiv_{9} 3 \times 1 + 6 \times 1 + 5$$

$$\equiv_{9} 14$$

$$\equiv_{9} 1 \times (9+1) + 4$$

$$\equiv_{9} 1+4$$

$$\equiv_{9} 5$$

Is this calculation correct?

That is, this particular checking method does **not guarantee** correctness.

Quiz 11-2

For the domain \mathbb{Z} , which of the following is NOT an equivalence relation?

- (a) \equiv_n for $n \in \mathbb{N}^+$
- (b) =
- (c) $\leq \cap \geq$
- (d) $\leq \cup \geq$
- (e) ≤ ∩ =
- (f) The "likes" relation for the domain of weird monkeys.
- (g) $< \cup >$