

Московский государственный университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики

Павлишин Кирилл Юрьевич 608 группа 15 вариант

Численное интегрирование многомерных функций методом Монте-Карло

1 Введение

В качестве модельной задачи предлагается задача вычисления многомерного интеграла методом Монте-Карло.

Программная реализация должна быть выполнена на языке C или C++ с использованием библиотеки параллельного программирования MPI.

Требуется исследовать масштабируемость параллельной MPI-программы на параллельной вычислительной системе BMK MГУ IBM Polus.

2 Математическая постановка задачи

Функция f(x, y, z) — непрерывна в ограниченой замкнутой области $G \subset \mathbb{R}^3$. Требуется вычислить определённый интеграл:

$$I=\iiint_G f(x,\,y,\,z)\,dx\,dy\,dz\ ,$$
 где функция $f(x,\,y,\,z)=\sqrt{y^2+z^2}$, область $G=\{(x,\,y,\,z):\,0\leqslant x\leqslant 2\,,\,y^2+z^2\leqslant 1\}$

3 Численный метод решения задачи

Пусть область G ограниченна параллелепипедом

$$\Pi : \begin{cases} a_1 \leqslant x \leqslant b_1, \\ a_2 \leqslant y \leqslant b_2, \\ a_3 \leqslant z \leqslant b_3 \end{cases}$$

Рассмотрим функцию:

$$F(x,y,z) = \begin{cases} f(x,y,z), & (x,y,z) \in G \\ 0, & (x,y,z) \notin G \end{cases}$$

Преобразуем искомый интеграл:

$$I = \iiint_G f(x, y, z) dx dy dz = \iiint_{\Pi} F(x, y, z) dx dy dz$$

Пусть $p_1(x_1, y_1, z_1), p_2(x_2, y_2, z_2), \dots$ — случайные точки, равномерно распределённые в Π . Возьмём n таких случайных точек. В качестве приближённого значения интеграла предлагается использовать выражение:

$$I \approx |\Pi| \cdot \frac{1}{n} \sum_{i=1}^{n} F(p_i),$$

где $|\Pi|$ - объём параллеленинеда Π . $|\Pi|=(b_1-a_1)(b_2-a_2)(b_3-a_3)$

4 Нахождение точного значения интеграла аналитически

$$I = \iiint_G \sqrt{y^2 + z^2} \, dx \, dy \, dz = \{x = x, \, y = r \cos \phi, \, z = r \sin \phi\} = \int_0^2 dx \int_0^{2\pi} d\phi \int_0^1 r^2 dr = \frac{4\pi}{3}$$

5 Описание программной реализации

Параллельная MPI-программа принимает на вход требуемую точность и генерирует случайные точки до тех пор, пока требуемая точность не будет достигнута. Программа вычисляет точность как модуль разности между приближённым значением, полученным методом Монте-Карло, и точным значением, вычислинным аналитически.

Программа считывает в качестве аргумента командной строки требуемую точность ϵ и выводит четыре числа:

- Посчитанное приближённое значение интеграла
- Ошибка посчитанного значения: модуль разности между приближённым и точным значениями интеграла
- Количество сгенерированных случайных точек
- Время работы программы в секундах

Время работы программы измеряется следующим образом. Каждый MPI-процесс, кроме процесса-мастера, измеряет своё время выполнения, затем среди полученных значений берётся максимум.

В моём варианте реализована парадигма «мастер-рабочие»: один из процессов («мастер») генерирует по очереди для каждого из остальных процессов («рабочих») n / (количество процессов—1) случайных точек и передаёт их. Все процессы—рабочие получают свой набор точек и вычисляют свою часть суммы. Затем в процессе-мастере вычисляется общая сумма с помощью операции редукции. После чего в «мастере» вычисляется ошибка (разность между посчитанным значением и точным значением, вычисленным аналитически). В случае если ошибка выше требуемой точности, которую подали на вход программе, то генерируются дополнительные n / (количество процессов — 1) точек для каждого процесса-рабочего и расчёт продолжается.

6 Исследование мастшабируемости программы на системе Polus

Для корректного исследования мастшабируемости программы было выбрано n=16740 и зерно для генератора случайных чисел, равное 14251, одинаковые для всевозможных комбинаций ϵ и числа MPI-процессов.

Таблица 1: Таблица с результатами расчётов для системы Polus

Γ очность ϵ	Число МРІ- процессов	Время работы программы (с)	Ускорение	Ошибка
$3.0 \cdot 10^{-5}$	2	0.0271082	1	8.40508e-06
	4	0.0109136	2.483891	8.40508e-06
	16	0.00542482	4.997069	8.40508e-06
	32	0.00197079	13.754991	8.40508e-06
$5.0 \cdot 10^{-6}$	2	0.0482266	1	4.01898e-06
	4	0.0166731	2.8924795	4.01898e-06
	16	0.00475759	10.13677	4.01898e-06
	32	0.00371255	12.990155	4.01898e-06
$1.5 \cdot 10^{-6}$	2	1.6383	1	1.15689e-06
	4	0.547051	2.99478476	1.15689e-06
	16	0.116177	14.1017585	1.15689e-06
	32	0.0591486	27.698035	1.15689e-06

Рис. 1: График зависимости ускорения программы от числа используемых МРІ-процессов для каждого значения ϵ

Таблица 2: Таблица с результатами расчётов для системы Polus с усреднением по сидам 2, 22, 222, 2222;

а - ускорение, рассчитанное по среднему времени;

b - сначала считаются ускорения, а затем они усрдняются

Γ Очность ϵ	Число МРІ- процессов	Время работы программы (c)	Ускорение (a/b)	Ошибка	Число то- чек
	2	0.2179797	1/1	9.2030575e-07	14132745
$1.5 \cdot 10^{-6}$	4	0.0742319	2.936469/2.87525066	9.2030575e-07	14132745
	16	0.018988955	11.47929/10.0627162	9.2030575e-07	14132745

Рис. 2: График зависимости ускорения программы от числа используемых МРІ-процессов с усреднением по сидам 2, 22, 222, 2222 для $\epsilon=1.5\cdot 10^{-6}$;

а - ускорение, рассчитанное по среднему времени; b - сначала считаются ускорения, а затем они усрдняются