CS1231S

AY20/21 Sem 1

01. PROOFS

sets of numbers

 \mathbb{N} : natural numbers ($\mathbb{Z}_{\geq 0}$)

 \mathbb{Z} : integers

① : rational numbers

R: real numbers

C: complex numbers

basic properties of integers

closure (under addition and multiplication)

 $x + y \in \mathbb{Z} \land xy \in \mathbb{Z}$

commutativity

 $a + b = b + a \wedge ab = ba$

associativity

a + b + c = a + (b + c) = (a + b) + cabc = a(bc) = (ab)c

distributivity

a(b+c) = ab + ac

trichotomy

 $(a < b) \lor (a > b) \lor (a = b)$

transitive law

 $(a < b) \land (b < c) \implies (a < c)$

definitions

even/odd

n is even $\leftrightarrow \exists k \in \mathbb{Z} \mid n = 2k$

 $n \text{ is odd} \leftrightarrow \exists k \in \mathbb{Z} \mid n = 2k + 1$

prime/composite

n is prime $\leftrightarrow n > 1$ and $\forall r, s \in \mathbb{Z}^+, n = rs \to (r = rs)$

 $n) \vee (r = s)$

n is composite $\leftrightarrow n > 1$ and $\exists r, s \in \mathbb{Z}^+ s.t.n =$ rs and 1 < r < n and 1 < s < n

divisibility (d divides n)

 $d \mid n \leftrightarrow \exists k \in \mathbb{Z} \mid n = kd$

rationality

r is rational $\leftrightarrow \exists a, b \in \mathbb{Z} \mid r = \frac{a}{1}$ and $b \neq 0$

floor/ceiling

|x|: largest integer y such that y < x

 $\lceil x \rceil$: smallest integer y such that y > x

rules of inference

generalisation
$p, \therefore p \lor q$
specialisation

 $p \wedge q$, : p

elimination transitivity

$p \vee q$; $\sim q$, $\therefore p$ $p \to q; q \to r; \therefore p \to r$

04. METHODS OF PROOF

Proof by Exhaustion/Cases

- 1. list out possible cases
- 1.1. Case 1: n is odd OR If n = 9, ...
- 1.2. Case 2: n is even OR If n = 16....
- 2. therefore ...

Proof by Contradiction

- 1. Suppose that ...
- 1.1. <proof>
- 1.2. ... but this contradicts ...
- 2. Therefore the assumption that ... is false. Hence

Proof by Contraposition

- 1. Contrapositive statement: $\sim q \rightarrow \sim p$
- 2. let $\sim q$
- 2.1. <proof>
- 2.2. hence $\sim p$
- 3. $p \rightarrow q$

Proof by Construction

- 1. Let x = 3, y = 4, z = 5.
- 2. Then $x, y, z \in \mathbb{Z}_{\geq 1}$ and
- $x^{2} + y^{2} = 3^{2} + 4^{2} = 9 + 16 = 25 = 5^{2}$. 3. Thus $\exists x, y, z \in \mathbb{Z}_{>1}$ such that $x^2 + y^2 = z^2$.

Proof by Induction

- 1. For each $n \in \mathbb{Z}_{\geq 1}$, let P(n) be the proposition "..."
- 2. (base step) P(1) is true because <manual method>
- 3. (induction step)
 - 3.1. let $k \in \mathbb{Z}_{>1}$ s.t. P(k) is true
 - 3.2. Then ...
 - 3.3. proof that P(k+1) is true e.g. $P(k+1) = P(k) + term_{k+1}$
 - 3.4. So P(k + 1) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geq 1} P(n)$ is true by MI.

Proofs for Sets

Equality of Sets (A=B)

- $1. (\Rightarrow)$
- 1.1. Take any $z \in A$.
- 1.2. . . .
- 1.3. $z \in B$.
- 2. (\(\phi\))
 - 2.1. Take any $z \in B$.
 - 2.2. . . .
 - 2.3. $\therefore z \in A$.

Element Method

- 1. $A \cap (B \setminus C) = \{x : x \in A \land x \in (B \setminus C)\}$ (by def. of \cap) 2. = $\{x : x \in A \land (x \in B \land x \notin C)\}$ (by def. of \)
- 3. ...
- 4. = $(A \cap B) \setminus C$ (by def. of \)

Other Proofs

iff $(A \leftrightarrow B)$

- 1. (\Rightarrow) Suppose A.
- 1.1. ... <proof> ...
- 1.2. Hence $A \rightarrow B$
- 2. (\Leftarrow) Suppose B. 2.1. ... <proof> ...
- 2.2. Hence $B \rightarrow A$

02. COMPOUND STATEMENTS

operations

- $1 \sim$: negation (not)
- 2 ∧ : conjunction (and)
- 2 \vee : disjunction (or) coequal to \wedge
- $3 \rightarrow : if-then$

logical equivalence

- · identical truth values in truth table
- definitions
- · to show non-equivalence:
 - truth table method (only needs 1 row)
 - · counter-example method

conditional statements

hypothesis → conclusion

 $antecedent \rightarrow consequent$

- · vacuously true : hypothesis is false
- implication law : $p \to q \equiv \sim p \lor q$
- · common if/then statements:
 - if p then q: $p \rightarrow q$
 - p if q:
 - p only if q:
 - p iff q: $p \leftrightarrow q$
- contrapositive : $\sim a \rightarrow \sim p$ converse ≡ inverse
- inverse : $\sim p \rightarrow \sim q$ • converse : $q \rightarrow p$
- statement = contrapositive
- r is a **necessary** condition for s: $\sim\!\!r\to\sim\!\!s$ and $s\to r$
- r is a **sufficient** condition for s: $r \rightarrow s$
- necessary & sufficient : ↔

valid arguments

- determining validity: construct truth table
 - valid \leftrightarrow conclusion is true when premises are true
- syllogism: (argument form) 2 premises, 1 conclusion
- modus ponens : $p \rightarrow q$; p; $\therefore q$
- modus tollens : $p \to q$; $\sim q$; $\therefore \sim p$
- sound argument: is valid & all premises are true

fallacies

converse error	inverse error
p o q	p o q
q	$\sim p$
$\therefore p$	$\therefore \sim q$

03. QUANTIFIED STATEMENTS

- truth set of $P(x) = \{x \in D \mid P(x)\}$
- $P(x) \Rightarrow Q(x) : \forall x (P(x) \rightarrow Q(x))$ • $P(x) \Leftrightarrow Q(x) : \forall x (P(x) \leftrightarrow Q(x))$
- relation between $\forall . \exists . \land . \lor$
- $\forall x \in D, Q(x) \equiv Q(x_1) \land Q(x_2) \land \cdots \land Q(x_n)$
- $\exists x \in D \mid Q(x) \equiv Q(x_1) \lor Q(x_2) \lor \cdots \lor Q(x_n)$

05. SETS

notation

- set roster notation [1]: $\{x_1, x_2, \ldots, x_n\}$ • set roster notation [2]: $\{x_1, x_2, x_3, \dots\}$
- set-builder notation: $\{x \in \mathbb{U} : P(x)\}$
- definitions
- equal sets : $A = B \leftrightarrow \forall x (x \in A \leftrightarrow x \in B)$
 - $A = B \leftrightarrow (A \subseteq B) \land (A \supset B)$
- empty set, ∅ : ∅ ⊂ all sets
- subset : $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$
- proper subset : $A \subseteq B \leftrightarrow (A \subseteq B) \land (A \neq B)$
- power set of A : $\mathcal{P}(A) = \{X \mid X \subseteq A\}$
 - $|\mathcal{P}(A)| = 2^{|A|}$, given that A is a finite set
- cardinality of a set, |A|: number of distinct elements
- singleton: sets of size 1
- disjoint : $A \cap B = \emptyset$

methods of proof for sets

- · direct proof
- · element method
- truth table

boolean operations

- union: $A \cup B = \{x : x \in A \lor x \in B\}$
- complement (of B in A): $A \setminus B = \{x : x \in A \land x \notin B\}$
- complement (of B): \bar{B} or $B^c = U \backslash B$ • set difference law: $A \backslash B = A \cap \bar{B}$

- ordered pair : (x, y)
- $A \times B = \{(x, y) : x \in A \text{ and } y \in B\}$

06. FUNCTIONS

- definitions
- to exactly one element of B.
- $f: x \rightarrow y$: "f maps x to y" • domain of f = A
- range/image of f = $\{f(x) : x \in A\}$
- identity function on A, $id_A : A \rightarrow A$
 - $id_A: x \to x$
- assigned to exactly one element in the codomain

- intersection: $A \cap B = \{x : x \in A \land x \in B\}$

- ordered pairs and cartesian products
- $(x,y) = (x',y') \leftrightarrow x = x'$ and y = y'
- · Cartesian product :
- $\bullet |A \times B| = |A| \times |B|$ • ordered tuples : expression of the form (x_1, x_2, \dots, x_n)

- function/map from A to B: assignment of each element of A
 - $f:A\to B$: "f is a function from A to B"
 - codomain of f = B
- $= \{ y \in B \mid y = f(x) \text{ for some } x \in A \}$
- range = domain = codomain = A• well-defined function : every element in the domain is
- equality of functions
- · same codomain and domain
- for all $x \in \text{codomain}$, same output

function composition

- $(g \circ f)(x) = g(f(x))$
- for $(g\circ f)$ to be well defined, codomain of f must be equal to the domain of g
- × commutative
- ✓ associative

image & pre-image

for $f:A\to B$

• if $X \subseteq A$, image of X,

$$f(X) = \{ y \in B : y = f(x) \text{ for some } x \in X \}$$

• if $Y \subseteq B$, pre-image of Y,

$$f^{-1}(Y) = \{x \in A : y = f(x) \text{ for some } y \in Y\}$$

injection & surjection

- surjective (onto) : codomain = range
 - $\forall y \in B, \exists x \in A (y = f(x))$
 - surjective test: $\forall Y \subseteq B, Y \subseteq f(f^{-1}(Y))$
- injective : one-to-one
 - $\forall x, x' \in A(f(x) = f(x') \Rightarrow x = x')$
 - injective test: $\forall X \subseteq A, X \subseteq f^{-1}(f(X))$
- bijective : both surjective & injective
 - · has an inverse

inverse

• $\forall x \in A, \forall y \in B(f(x) = y \Leftrightarrow g(y) = x)$

07. INDUCTION

mathematical induction

to prove that $\forall n \in \mathbb{Z}_{\geq m}(P(n))$ is true,

- base step: show that P(m) is true
- induction step: show that $\forall k \in \mathbb{Z}_{\geq m}(P(k) \Rightarrow P(k+1))$ is true.
 - induction hypothesis: assumption that P(k) is true

strong MI

to prove that $\forall n \in \mathbb{Z}_{\geq 0}(P(n))$ is true,

- base step: show that P(0), P(1) are true
- induction step: show that $\forall k \in \mathbb{Z}_{\geq 0}(P(0)\cdots \wedge P(k+1) \Rightarrow P(k+2))$ is true.
- $P(0) \wedge P(1)$ by base case
- $P(0) \wedge P(1) \rightarrow P(2)$ by induction with k=0
- $P(0) \wedge P(1) \wedge P(2) \rightarrow P(3)$ by induction with k=1
-

justification:

- we deduce that $P(0), P(1), \ldots$ are all true by a series of modus ponens

well-ordering principle

- every nonempty subset of $\mathbb{Z}_{\geq 0}$ has a smallest element.
- application: recursion has a base case

RECURSION

a sequence is **recursively defined** if the definition of a_n involves $a_0, a_1, \ldots, a_{n-1}$ for all but finitely many $n \in \mathbb{Z}_{\geq 0}$.

recursive definitions

e.g. recursive definition for \mathbb{Z}

- 1. (base clause) $0 \in \mathbb{Z}_{\geq 0}$
- 2. (recursion clause) If $x \in \mathbb{Z}_{\geq 0}$, then $x + 1 \in \mathbb{Z}_{\geq 0}$
- (minimality clause) Membership for Z≥0 can be demonstrated by (finitely many) successive applications of the clauses above

recursion vs induction

- · recursion to define the set
- induction to show things about the set

well-formed formulas (WFF)

in propositional logic

define the set of WFF(Σ) as follows

- 1. (base clause) every element ρ of Σ is in WFF(Σ)
- 2. (recursion clause) if x,y are in WFF(Σ), then $\sim x$ and $(x \wedge y)$ and $(x \vee y)$ are in WFF(Σ)
- (minimality clause) Membership for WFF(∑) can be demonstrated by (finitely many) successive applications of the clauses above

08. Number Theory

divisibility

• $n \mod d$ is always non-negative.

```
transitivity of divisibility If a \mid b and b \mid c, then a \mid c. closure lemma (non-standard name) Let a,b,d,m,n \in \mathbb{Z}. If d \mid m and d \mid n, then d \mid am+bn. division theorem \forall n \in \mathbb{Z} \text{ and } d \in \mathbb{Z}^+, \ \exists !q,r \in \mathbb{Z} \text{ s.t.} n = dq + r \text{ and } 0 \leq r < d q = n \ div \ d = \lfloor n/d \rfloor r = n \ mod \ d = n - dq
```

base-b representation

```
of positive integer n is (a_\ell a_{\ell-1}\dots a_0)_b where \ell\in\mathbb{Z}_{\geq 0} and a_0,a_1,\dots,a_\ell\in\{0,1,\dots,b-1\} s.t. n=a_\ell b^\ell+a_{\ell-1}b^{\ell-1}+\dots+a_0b^0 and a_\ell\neq 0
```

greatest common divisor

- $m \mod n$
- if $m \neq 0$ and $n \neq 0$, then gcd(m, n) exists and is positive.
- Euclidean Algorithm for finding gcd

Bezout's Lemma: For all $m,n\in\mathbb{Z}$ with $n\neq 0$, there exist $s,t\in\mathbb{Z}$ such that

```
gcd(m,n) = ms + nt.Euclid's Lemma:
```

Let $m, n \in \mathbb{Z}^+$. If p is prime and $p \mid mn$, then $p \mid m$ or $p \mid n$.

prime factorization

- Fundamental Theorem of Arithmetic: Every integer $n\geq 2$ has a unique prime factorization in which the prime factors are arranged in nondecreasing order.
 - aka Prime Factorisation Theorem

modular arithmetic

```
Let a,b,c\in\mathbb{Z} and n\in\mathbb{Z}^+. congruence a\equiv b\pmod n \Leftrightarrow a \bmod n=b \bmod n Then \exists k\in\mathbb{Z}\mid a=nk+b \text{ and } n\mid (a-b) reflexivity a\equiv a\pmod n symmetry a\equiv b\pmod n \to b\equiv a\pmod n transitivity a\equiv b\pmod n \to b\equiv a\pmod n additive inverse b is an additive inverse of a \bmod n \Leftrightarrow a+b\equiv 0\pmod n.
```

b is an additive inverse of $a \mod n \Leftrightarrow b \equiv -a \pmod n$.

multiplicative inverse b is a multiplicative inverse of $a \mod n \Leftrightarrow ab \equiv 1 \pmod n$.

b is a multiplicative inverse of $a \mod n \Leftrightarrow ab \equiv 1 \pmod n$. If b, b' are multiplicative inverses of a, then $b \equiv b' \pmod n$.

multiplicative inverse

- a has a multiplicative inverse modulo $n \Leftrightarrow \gcd(a, n) = 1$.
 - a, n are coprime

LOGICAL EQUIVALENC
$p \wedge q \equiv q \wedge p$
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
$p \wedge true \equiv p$
$p \wedge p \equiv p$
$p \vee true \equiv true$
$p\vee {\sim} p \equiv true$
$\sim (\sim p) \equiv p$
$p \lor (p \land q) \equiv p$
$\sim (p \lor q) \equiv \sim p \land \sim q$

5	
$p \vee q \equiv q \vee p$	
$(p \vee q) \vee r \equiv p \vee (q \vee r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	
$p \vee false \equiv p$	
$p ee p \equiv p$	
$p \wedge false \equiv false$	I
$p \wedge {\sim} p \equiv false$	
_	dou
$p \wedge (p \lor q) \equiv p$	
$\sim (p \land q) \equiv \sim p \lor \sim q$	

commutative laws
associative laws
distributive laws
identity laws
idempotent laws
universal bound laws
complement laws
uble complement law
absorption laws
De Morgan's Laws

SET IDENTITIES	
$A \cap B = B \cap A$	
$(A \cap B) \cap C = A \cap (B \cap C)$	$A \cup A$
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$A \cup (B \cap$
$A \cap U = A$	
$A \cap A = A$	
$A \cap \emptyset = \emptyset$	
$A \cap \overline{A} = \emptyset$	
$\overline{(\overline{A})} = A$	
$A \cup (A \cap B) = A$	1
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	
	'

	$A \cup B = B \cup A$
	$(A \cup B) \cup C = A \cup (B \cup C)$
C)	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
	$A \cup \emptyset = A$
	$A \cup A = A$
	$A \cup U = U$
	$A \cup \overline{A} = U$
	_
	$A \cap (A \cup B) = A$
	$\overrightarrow{A \cap B} = \overrightarrow{A} \cup \overline{B}$

proven:

- L1E1 the product of 2 consecutive odd numbers is always odd.
- L1E5 the difference between 2 consecutive squares is always odd
- L4E4 the sum of any 2 even integers is even
- · L4T4.6.1 there is no greatest integer
- L4T4.3.1 for all positive integers a and b, if a|b, then $a \le b$.
- L1P4.6.4 for all integers n, if n^2 is even then n is even
- L4T4.2.1 all integers are rational numbers
- L4T4.2.2 the sum of any 2 rational numbers is rational
- L1E7 there exist irrational numbers p and q such that p^q is rational
- L4T4.7.1 $\sqrt{2}$ is irrational.
- L4T4.3.2 the only divisors of 1 are 1 and -1.
- L4T4.3.3 transitivity of divisibility
 - if a|b and b|c, then a|c.
- L3T3.2.1 negation of a universal statement:
 - $\sim (\forall x \in D, P(x)) \equiv \exists x \in D \mid \sim P(x)$
- L3T3.2.2 negation of an existential statement:
 - $\sim (\exists x \in D \mid P(x)) \equiv \forall x \in D, \sim P(x)$
- L5T5.1.14 there exists a unique set with no element. It is denoted by ∅.
- L5E5.3.7 for all $A, B: (A \cap B) \cup (A \setminus B) = A$
- L5T5.3.11(1) let A, B be disjoint finite sets. Then $|A \cup B| = |A| + |B|$
- L5T5.3.11(2) let A_1, A_2, \ldots, A_n be pairwise disjoint finite sets. Then
- $|A_1 \cup A_2 \cup \cdots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|$
- L5T5.3.12 Inclusion-Exclusion Principle:
 - for all finite sets A and B, $|A \cup B| = |A| + |B| |A \cap B|$
- L6T6.1.26 associativity of function composition:
 - $f \circ (q \circ h) = (f \circ q) \circ h$
- L6P2.6.16 uniqueness of inverses:
 - If q, q' are inverses of $f: A \to B$, then q = q'.
- E6.1.24 $f \circ id_A = f$ and $id_A \circ f = f$
- T6.2.18 bijective ⇔ has an inverse
- L7.3.19 If $x\in {\sf WFF}^+(\Sigma)$, then assigning false to all elements of Σ makes x evaluate to false.
- T7.3.20 $\sim (\forall x \in \mathsf{WFF}(\Sigma), \exists y \in \mathsf{WFF}^+(\Sigma) \ y \equiv x) \equiv$
- $\exists x \in \mathsf{WFF}(\Sigma) \ \, \forall y \in \mathsf{WFF}^+(\Sigma) \ \, y \not\equiv x \text{ aka} \sim \text{(not) must be included in the definition of WFF.}$
- L8.1.5 Let $d, n \in \mathbb{Z}$ with $d \neq 0$. Then $d \mid n \Leftrightarrow n/d \in \mathbb{Z}$
- L8.1.9 Let $d, n \in \mathbb{Z}$. If $d \mid n$, then $-d \mid n$ and $d \mid -n$ and $-d \mid -n$
- L8.1.10 Let $d, n \in \mathbb{Z}$. If $d \mid n$ and $d \neq 0$, then $|d| \leq |n|$
- L8.2.5 Prime Divisor Lemma (non-standard name):
 - Let $n \in \mathbb{Z}_{\geq 2}$. Then n has a prime divisor.
- P8.2.6 sizes of prime divisors:
 - Let n be a composite positive integer. Then n has a prime divisor $p < \sqrt{n}$.
- T8.2.8 there are infinitely many prime numbers
- T8.3.13 $\forall n \in \mathbb{Z}^+, \exists ! \ell \in \mathbb{Z}_{\geq 0}$ and $a_0, a_1, \ldots, a_\ell \in \{0, 1, \ldots, b-1\}$ such that <the definition of base-b representation> holds.

- L8.4.11 If $x, y, r \in \mathbb{Z}$ such that $x \bmod y = r$, then $\gcd(x, y) = \gcd(y, r)$.
- Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$ s.t. $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.
 - P8.6.6 **addition:** Then $a + c \equiv b + d \pmod{n}$
 - P8.6.13 **multiplication**: Then $ac \equiv bd \pmod{n}$

abbreviations

- L lemma
- E example
- P proposition
- T theorem