1

Random Numbers

AI1110: Probability and Random Variables

Indian Institute of Technology Hyderabad

Ankit Saha AI21BTECH11004

30 Jun 2022

1. Uniform Random Numbers

Let U be a uniform random variable between 0 and 1.

1.1 Generate 10^6 samples of U using a C program and save into a file called uni.dat

Solution: Download the C source code by executing the following commands

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/1.1.c

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/header.h

Compile and run the C program by executing the following

1.2 Load the uni.dat file into Python and plot the empirical CDF of *U* using the samples in uni.dat. The CDF is defined as

$$F_U(x) = \Pr\left(U \le x\right) \tag{1.1}$$

Solution: Download the following Python code that plots Fig. 1.2

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/1.2.py

Run the code by executing

1.3 Find a theoretical expression for $F_U(x)$

Fig. 1.2. The CDF of U

Solution: The PDF of *U* is given by

$$p_U(x) = \begin{cases} 1 & x \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$
 (1.2)

The CDF of U is given by

$$F_U(x) = \Pr(U \le x) = \int_{-\infty}^{x} p_U(x) dx$$
 (1.3)

If x < 0.

$$\int_{-\infty}^{x} p_U(x) \, dx = \int_{-\infty}^{x} 0 \, dx = 0 \tag{1.4}$$

If c,

$$\int_{-\infty}^{x} p_U(x) \, dx = \int_{-\infty}^{0} 0 \, dx + \int_{0}^{x} 1 \, dx \quad (1.5)$$

$$= 0 + x \tag{1.6}$$

$$= x \tag{1.7}$$

If x > 1,

$$\int_{-\infty}^{x} p_{U}(x) dx$$

$$= \int_{-\infty}^{0} 0 dx + \int_{0}^{1} 1 dx + \int_{1}^{x} 0 dx \quad (1.8)$$

$$\int_{-\infty}^{x} p_U(x) \, dx = 0 + 1 + 0 \qquad (1.9)$$

$$= 1 \qquad (1.10)$$

Therefore, we obtain the CDF of U as

$$F_U(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$$
 (1.11)

1.4 The mean of U is defined as

$$E[U] = \frac{1}{N} \sum_{i=1}^{N} U_i$$
 (1.12)

and its variance as

$$Var[U] = E[U - E[U]]^2$$
 (1.13)

Write a C program to find the mean and variance of U

Solution: Download the C source code by executing the following commands

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/1.4.c

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/header.h

Compile and run the C program by executing the following

The output of the code is

$$\mu_{\rm emp} = 0.500007 \tag{1.14}$$

$$\mu_{\text{the}} = 0.500000 \tag{1.15}$$

$$\sigma_{\rm emp}^2 = 0.083301 \tag{1.16}$$

$$\sigma_{\text{the}}^2 = 0.083333 \tag{1.17}$$

1.5 Verify your result theoretically given that

$$E\left[U^{k}\right] = \int_{-\infty}^{\infty} x^{k} dF_{U}(x) \tag{1.18}$$

Solution: The mean of U is given by

$$E[U] = \int_{-\infty}^{\infty} x \, \mathrm{d}F_U(x) \tag{1.19}$$

On differentiating the CDF of U, we get

$$dF_U(x) = \begin{cases} 0 & x < 0 \\ dx & 0 \le x \le 1 \\ 0 & x > 1 \end{cases}$$
 (1.20)

$$\therefore E[U] = \int_0^1 x \, dx = \frac{1}{2} = 0.5 \quad (1.21)$$

Similarly,

$$\therefore E[U^2] = \int_0^1 x^2 \, dx = \frac{1}{3}$$
 (1.22)

Now, the variance of U is given by

$$Var[U] \tag{1.23}$$

$$= E [U - E [U]]^{2}$$
 (1.24)

$$= E \left[U^2 - 2UE[U] + (E[U])^2 \right]$$
 (1.25)

By linearity of expectation, we have

$$E[U^{2}] + E[-2UE[U]] + E[(E[U])^{2}]$$
 (1.26)

$$= E[U^{2}] - 2E[U]E[U] + (E[U])^{2}$$
 (1.27)

$$= E[U^{2}] - (E[U])^{2}$$
 (1.28)

$$=\frac{1}{3} - \left(\frac{1}{2}\right)^2 \tag{1.29}$$

$$=\frac{1}{12}\approx 0.083333\tag{1.30}$$

2. Central Limit Theorem

2.1 Generate 10⁶ samples of the random variable

$$X = \sum_{i=1}^{12} U_i - 6 \tag{2.1}$$

using a C program, where U_i , i = 1, 2, ..., 12 are a set of independent uniform random variables between 0 and 1 and save in a file called gau.dat

Solution: Download the C source code by executing the following commands

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/2.1.c

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/header.h

Fig. 2.2. The CDF of X

Compile and run the C program by executing the following

2.2 Load gau.dat in Python and plot the empirical CDF of *X* using the samples in gau.dat. What properties does a CDF have?

Solution: Download the following Python code that plots Fig. 2.2

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/2.2.py

Run the code by executing

Every CDF is monotone increasing and right-continuous. Furthermore,

$$\lim_{x \to -\infty} F_X(x) = 0 \qquad \lim_{x \to \infty} F_X(x) = 1 \qquad (2.2)$$

Thus, every CDF is bounded between 0 and 1 and hence, convergent.

In this case, the CDF is also left-continuous. Therefore, *X* is a continuous random variable.

2.3 Load gau.dat in Python and plot the empirical PDF of *X* using the samples in gau.dat. The PDF of *X* is defined as

$$p_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_X(x) \tag{2.3}$$

What properties does the PDF have?

Solution: Download the following Python code that plots Fig. 2.2

Fig. 2.3. The PDF of X

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/2.3.py

Run the code by executing

python 2.3.py

Every PDF is bounded between 0 and 1 and

$$\int_{-\infty}^{\infty} p_X(x) \, \mathrm{d}x = 1 \tag{2.4}$$

In this case, the PDF is symmetric about x = 02.4 Find the mean and variance of X by writing a C program

Solution: Download the C source code by executing the following commands

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/2.4.c

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/header.h

Compile and run the C program by executing the following

The output of the code is

$$\mu_{\rm emp} = 0.000294 \tag{2.5}$$

$$\mu_{\text{the}} = 0.000000$$
 (2.6)

$$\sigma_{\rm emp}^2 = 0.999560 \tag{2.7}$$

$$\sigma_{\text{the}}^2 = 1.000000 \tag{2.8}$$

2.5 Given that

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty, (2.9)$$

repeat the above exercise theoretically

Solution: The mean of *X* is given by

$$E[X] = \int_{-\infty}^{\infty} x p_X(x) dx$$
 (2.10)

$$= \int_{-\infty}^{\infty} \frac{x}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx \qquad (2.11)$$

Now, let

$$g(x) = \frac{x}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \tag{2.12}$$

$$\implies g(-x) = \frac{-x}{\sqrt{2\pi}} \exp\left(-\frac{(-x)^2}{2}\right) \qquad (2.13)$$

$$= -\frac{x}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \qquad (2.14)$$

$$= -g(x) \tag{2.15}$$

Thus, g(x) is an odd function

$$\therefore E[X] = \int_{-\infty}^{\infty} g(x) dx = 0$$
 (2.16)

Now.

$$E\left[X^{2}\right] = \int^{\infty} x^{2} p_{X}(x) dx \qquad (2.17)$$

$$= \int_{-\infty}^{\infty} \frac{x^2}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx \qquad (2.18)$$

$$=2\int_0^\infty \frac{x^2}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx \qquad (2.19)$$

since $\frac{x^2}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$ is an even function Using integration by parts,

$$E\left[X^{2}\right] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} x \cdot x \exp\left(-\frac{x^{2}}{2}\right) dx \quad (2.20)$$

$$= \sqrt{\frac{2}{\pi}} \left(x \int x \exp\left(-\frac{x^2}{2}\right) dx \right) \Big|_0^{\infty}$$
$$- \sqrt{\frac{2}{\pi}} \int_0^{\infty} 1 \cdot \int x \exp\left(-\frac{x^2}{2}\right) dx \quad (2.21)$$

Substitute $t = \frac{x^2}{2} \implies dt = xdx$

$$\int x \exp\left(-\frac{x^2}{2}\right) dx = \int \exp(-t) dt \qquad (2.22)$$

$$= -\exp(-t) \tag{2.23}$$

$$= -\exp\left(-\frac{x^2}{2}\right) \qquad (2.24)$$

Now,

$$-x \exp\left(-\frac{x^2}{2}\right)\Big|_{0}^{\infty} = 0 - 0 = 0 \quad (2.25)$$

$$\lim_{x \to \infty} x \exp\left(-\frac{x^2}{2}\right) = \lim_{x \to \infty} \frac{x}{\exp\left(\frac{x^2}{2}\right)} = 0 \quad (2.26)$$

as exponential function grows much faster than a polynomial function Also,

$$\int_0^\infty -\exp\left(-\frac{x^2}{2}\right) \mathrm{d}x \tag{2.27}$$

$$\stackrel{x=t\sqrt{2}}{\longleftrightarrow} \int_0^\infty -\exp(-t^2) dt \sqrt{2}$$
 (2.28)

$$= -\sqrt{2} \int_0^\infty \exp(-t^2) dt \qquad (2.29)$$

$$=-\sqrt{2}\frac{\sqrt{\pi}}{2}\tag{2.30}$$

$$=-\sqrt{\frac{\pi}{2}}\tag{2.31}$$

Therefore,

$$E[X^2] = 0 - \sqrt{\frac{2}{\pi}} \left(-\sqrt{\frac{\pi}{2}} \right)$$
 (2.32)

$$= 1 \tag{2.33}$$

:. Var
$$[X] = E[X^2] - (E[X])^2$$
 (2.34)

$$=1-0$$
 (2.35)

$$= 1 \tag{2.36}$$

3. From Uniform to Other

3.1 Generate samples of

$$V = -2\ln(1 - U) \tag{3.1}$$

and plot its CDF

Solution: Download the C source code by executing the following commands

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/3.1.c

Fig. 3.1. The CDF of V

Compile and run the C program by executing the following

cc -lm 3.1.c ./a.out

Download the following Python code that plots Fig. 3.1

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/3.1.py

Run the code by executing

python 3.1.py

3.2 Find a theoretical expression for $F_V(x)$

Solution: We have

$$F_{V}(x) = \Pr(V \le x)$$

$$= \Pr(-2 \ln (1 - U) \le x)$$

$$= \Pr\left(\ln (1 - U) \ge -\frac{x}{2}\right)$$

$$= \Pr\left(1 - U \ge \exp\left(-\frac{x}{2}\right)\right)$$
(3.2)
(3.3)
(3.4)

$$= \Pr\left(U \le 1 - \exp\left(-\frac{x}{2}\right)\right) \tag{3.6}$$

$$= F_U \left(1 - \exp\left(-\frac{x}{2}\right) \right) \tag{3.7}$$

Now,

$$0 \le 1 - \exp\left(-\frac{x}{2}\right) < 1 \qquad \text{if } x \ge 0 \qquad (3.8)$$
$$1 - \exp\left(-\frac{x}{2}\right) < 0 \qquad \text{if } x < 0 \qquad (3.9)$$

Therefore,

$$F_V(x) = \begin{cases} 1 - \exp\left(-\frac{x}{2}\right) & x \ge 0\\ 0 & x < 0 \end{cases}$$
 (3.10)

4. Triangular Distribution

4.1 Generate

$$T = U_1 + U_2 \tag{4.1}$$

Solution: Download the C source code by executing the following commands

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/4.1.c

Compile and run the C program by executing the following

4.2 Find the CDF of T

Solution: The CDF of T is given by

$$F_T(t) = \Pr(T \le t) = \Pr(U_1 + U_2 \le t)$$
 (4.2)

Since $U_1, U_2 \in [0, 1] \implies U_1 + U_2 \in [0, 2]$ Therefore, if $t \ge 2$, then $U_1 + U_2 \le t$ is always true and if t < 0, then $U_1 + U_2 \le t$ is always false.

Now, fix the value of U_1 to be some x

$$x + U_2 \le t \implies U_2 \le t - x$$
 (4.3)

If $0 \le t \le 1$, then x can take all values in [0, t]

$$F_T(t) = \int_0^t \Pr(U_2 \le t - x) \, p_{U_1}(x) \mathrm{d}x \quad (4.4)$$

$$= \int_0^t F_{U_2}(t-x)p_{U_1}(x)\mathrm{d}x \tag{4.5}$$

$$0 \le x \le t \implies 0 \le t - x \le t \le 1$$
 (4.6)

$$\implies F_{U_2}(t-x) = t - x \qquad (4.7)$$

$$F_T(t) = \int_0^t (t - x) \cdot 1 \cdot \mathrm{d}x \tag{4.8}$$

$$= tx - \frac{x^2}{2} \bigg|_0^t \tag{4.9}$$

$$=\frac{t^2}{2}$$
 (4.10)

Fig. 4.2. The CDF of T

If 1 < t < 2, x can only take values in [0, 1] as $U_1 \le 1$

$$F_T(t) = \int_0^1 F_{U_2}(t - x) \cdot 1 \cdot dx$$
 (4.11)

$$0 \le x \le t - 1 \implies 1 \le t - x \le t$$

$$t - 1 \le x \le 1 \implies 0 < t - 1 \le t - x \le 1$$

$$(4.12)$$

$$(4.13)$$

$$F_T(t) = \int_0^{t-1} 1 dx + \int_{t-1}^1 (t - x) dx \qquad (4.14)$$

$$= t - 1 + t(1 - (t - 1)) - \frac{1}{2} + \frac{(t - 1)^2}{2}$$

$$= t - 1 + 2t - t^2 - \frac{1}{2} + \frac{t^2}{2} + \frac{1}{2} - t$$

$$= -\frac{t^2}{2} + 2t - 1 \qquad (4.17)$$

Therefore,

$$F_T(t) = \begin{cases} 0 & t < 0 \\ \frac{t^2}{2} & 0 \le t \le 1 \\ 2t - \frac{t^2}{2} - 1 & 1 < t < 2 \\ 1 & t \ge 2 \end{cases}$$
 (4.18)

Fig. 4.3. The PDF of T

Solution: The PDF of *T* is given by

$$p_T(t) = \frac{\mathrm{d}}{\mathrm{d}t} F_T(t) \tag{4.19}$$

$$\therefore p_T(t) = \begin{cases} 0 & t < 0 \\ t & 0 \le t \le 1 \\ 2 - t & 1 < t < 2 \\ 0 & t \ge 2 \end{cases}$$
 (4.20)

4.4 Find the theoretical expressions for the PDF and CDF of *T*

Solution: The theoretical expressions for the CDF and PDF have been found in problems 4.2 and 4.3 respectively

4.5 Verify your results through a plot

Solution: Download the following Python codes that plot Fig. 4.2 and Fig. 4.3

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/4.2.py

wget https://github.com/Ankit-Saha-2003/ AI1110/raw/main/Random-Numbers/ codes/4.3.py

Run the codes by executing

python 4.2.py python 4.3.py