Data Science Capstone

Problem Statement

The dataset used in this project is originally from NIDDK. The objective is to predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset.

Build a model to accurately predict whether the patients in the dataset have diabetes or not.

```
In [3]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          from matplotlib import style
          import seaborn as sns
          %matplotlib inline
In [4]:
          data = pd.read csv('health care diabetes.csv')
In [5]:
          data.head()
Out[5]:
            Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
         0
                     6
                                          72
                                                        35
                                                                 0 33.6
                                                                                                  50
                            148
                                                                                          0.627
         1
                     1
                            85
                                          66
                                                        29
                                                                 0 26.6
                                                                                                  31
                                                                                          0.351
         2
                     8
                            183
                                          64
                                                         0
                                                                0 23.3
                                                                                          0.672
                                                                                                  32
                     1
                            89
                                                        23
                                                                   28.1
                                                                                          0.167
                                                                                                  21
                                                                                                            0
                     0
                            137
                                          40
                                                        35
                                                              168 43.1
                                                                                          2.288
                                                                                                  33
In [6]:
          data.columns
```

```
Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
```

Out[6]: 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'], dtype='object')

In [7]:

data.corr()

Out[7]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outco
	Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683	-0.033523	0.544341	0.221
	Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	0.137337	0.263514	0.466
	BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	0.041265	0.239528	0.0650
	SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	0.183928	-0.113970	0.074
	Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	0.185071	-0.042163	0.130!
	ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	0.140647	0.036242	0.2920
	DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	1.000000	0.033561	0.173
	Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242	0.033561	1.000000	0.2383
	Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	0.173844	0.238356	1.0000

In [8]: data.describe().transpose()

Out[8]:		count	mean	std	min	25%	50%	75%	max
	Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.00000	17.00
	Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.0000	140.25000	199.00
	BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	72.0000	80.00000	122.00
	SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	23.0000	32.00000	99.00
	Insulin	768.0	79.799479	115.244002	0.000	0.00000	30.5000	127.25000	846.00
	ВМІ	768.0	31.992578	7.884160	0.000	27.30000	32.0000	36.60000	67.10
	DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.62625	2.42
	Age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.00000	81.00

50%

75%

max

25%

std

min

```
Outcome
                                 768.0
                                          0.348958
                                                    0.476951
                                                              0.000
                                                                     0.00000
                                                                              0.0000
                                                                                       1.00000
                                                                                                 1.00
 In [9]:
           data.Insulin.value counts(normalize = True).to frame().loc[0,:].values[0]*100
          48.69791666666667
 Out[9]:
In [10]:
           data.Glucose.value counts(normalize = True).to frame().loc[0,:].values[0]*100
          0.6510416666666667
Out[10]:
In [11]:
           data.BloodPressure.value counts(normalize = True).to frame().loc[0,:].values[0]*100
          4.557291666666666
Out[11]:
In [12]:
           data.SkinThickness.value counts(normalize = True).to frame().loc[0,:].values[0]*100
          29.55729166666668
Out[12]:
In [13]:
           data.BMI.value counts(normalize = True).to frame().loc[0,:].values[0]*100
          1.432291666666665
Out[13]:
In [14]:
           select_col = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']
           for i in select_col:
               median=data[data[i]!=0][i].median()
               data[i]=data[i].apply(lambda x: median if x==0 else x)
In [15]:
           data.head()
Out[15]:
             Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
```

count

mean

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148.0	72.0	35.0	125.0	33.6	0.627	50	1
1	1	85.0	66.0	29.0	125.0	26.6	0.351	31	0
2	8	183.0	64.0	29.0	125.0	23.3	0.672	32	1
3	1	89.0	66.0	23.0	94.0	28.1	0.167	21	0
4	0	137.0	40.0	35.0	168.0	43.1	2.288	33	1

```
In [16]: plt.hist(data['Glucose'])
```

Out[16]: (array([4., 19., 87., 149., 166., 125., 88., 54., 44., 32.]), array([44. , 59.5, 75. , 90.5, 106. , 121.5, 137. , 152.5, 168. , 183.5, 199.]), <BarContainer object of 10 artists>)


```
In [17]: plt.hist(data['BloodPressure'])
```

Out[17]: (array([3., 2., 35., 118., 261., 214., 105., 18., 10., 2.]), array([24., 33.8, 43.6, 53.4, 63.2, 73., 82.8, 92.6, 102.4, 112.2, 122.]), <BarContainer object of 10 artists>)


```
In [18]: plt.hist(data['SkinThickness'])
```


Out[19]: (array([142., 517., 55., 29., 7., 10., 4., 1., 2., 1.]), array([14. , 97.2, 180.4, 263.6, 346.8, 430. , 513.2, 596.4, 679.6, 762.8, 846.]), <BarContainer object of 10 artists>)


```
In [20]: plt.hist(data['BMI'])
```

Out[20]: (array([52., 161., 207., 193., 91., 48., 10., 4., 1., 1.]), array([18.2 , 23.09, 27.98, 32.87, 37.76, 42.65, 47.54, 52.43, 57.32, 62.21, 67.1]), <BarContainer object of 10 artists>)


```
In [21]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

```
Non-Null Count Dtype
               Column
               Pregnancies
                                         768 non-null
                                                          int64
          0
                                         768 non-null
          1
              Glucose
                                                         float64
          2
              BloodPressure
                                         768 non-null
                                                         float64
          3
              SkinThickness
                                         768 non-null
                                                         float64
              Insulin
                                         768 non-null
                                                         float64
          5
                                         768 non-null
              BMI
                                                         float64
              DiabetesPedigreeFunction 768 non-null
                                                         float64
                                         768 non-null
          7
              Age
                                                          int64
          8
              Outcome
                                         768 non-null
                                                          int64
         dtypes: float64(6), int64(3)
         memory usage: 54.1 KB
In [22]:
          data.dtypes.value counts()
         float64
                     6
Out[22]:
         int64
                     3
         dtype: int64
In [23]:
          data.Outcome.value counts(normalize=True)
               0.651042
Out[23]:
               0.348958
         Name: Outcome, dtype: float64
In [24]:
          Positive = data[data['Outcome']==1]
In [25]:
          BloodPressure = Positive['BloodPressure']
          Glucose = Positive['Glucose']
          SkinThickness = Positive['SkinThickness']
          Insulin = Positive['Insulin']
          BMI = Positive['BMI']
In [26]:
          g =sns.scatterplot(x= "Glucose" ,y= "BloodPressure",
                         hue="Outcome",
                         data=data);
```


In [29]: sns.heatmap(data.corr())

Out[29]: <AxesSubplot:>


```
plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True)
```

Out[30]: <AxesSubplot:>


```
In [31]: features = data.drop('Outcome',axis=1)
```

```
label = data['Outcome']
In [32]:
           from sklearn.model selection import train test split
In [34]:
           x train,x test,y train,y test = train test split(features,label,test size=.25,random state=42, stratify=label)
In [35]:
           from sklearn.ensemble import RandomForestClassifier
           model = RandomForestClassifier()
In [36]:
          model.fit(x train,y train)
          RandomForestClassifier()
Out[36]:
In [38]:
          model.score(x train,y train)
Out[38]:
In [40]:
           model.score(x_test,y_test)
          0.729166666666666
Out[40]:
In [41]:
          from sklearn.metrics import classification report
           print(classification report(label, model.predict(features)))
                                     recall f1-score
                        precision
                                                         support
                     0
                                                  0.95
                             0.94
                                       0.96
                                                             500
                     1
                             0.92
                                       0.89
                                                  0.90
                                                             268
                                                             768
                                                  0.93
              accuracy
             macro avg
                             0.93
                                       0.92
                                                  0.92
                                                             768
          weighted avg
                             0.93
                                       0.93
                                                  0.93
                                                             768
```

TO GO WITH F1 SCORE: It is imbalance class, Harmonic mean of precision and Recall.

```
#Preparing ROC Curve (Receiver Operating Characteristics Curve)
In [55]:
          from sklearn.metrics import roc curve
          from sklearn.metrics import roc auc score
          # predict probabilities
          probs = model.predict proba(features)
          # keep probabilities for the positive outcome only
          probs = probs[:, 1]
          # calculate AUC
          auc = roc_auc_score(label, probs)
          print('AUC: %.3f' % auc)
          # calculate roc curve
          fpr, tpr, thresholds = roc_curve(label, probs)
          # plot no skill
          plt.plot([0, 1], [0, 1], linestyle='--')
          # plot the roc curve for the model
          plt.plot(fpr, tpr, marker='.')
```

AUC: 0.974
Out[55]: [<matplotlib.lines.Line2D at 0x197f5f4a100>]


```
In [56]: #Applying Decission Tree Classifier
    from sklearn.tree import DecisionTreeClassifier
    model3 = DecisionTreeClassifier(max_depth=5)
    model3.fit(x_train,y_train)
```

Out[56]: DecisionTreeClassifier(max_depth=5)

```
In [45]:
          model3.score(x train,y train)
          0.84722222222222
Out[45]:
In [46]:
          model3.score(x_test,y_test)
          0.75
Out[46]:
In [47]:
          #Applying Random Forest
          from sklearn.ensemble import RandomForestClassifier
          model4 = RandomForestClassifier(n_estimators=11)
          model4.fit(x train,y train)
          RandomForestClassifier(n_estimators=11)
Out[47]:
In [48]:
          model4.score(x_train,y_train)
          0.994791666666666
Out[48]:
In [49]:
          model4.score(x_test,y_test)
          0.7395833333333334
Out[49]:
In [50]:
          #Support Vector Classifier
          from sklearn.svm import SVC
          model5 = SVC(kernel='rbf',
                      gamma='auto')
          model5.fit(x train,y train)
          SVC(gamma='auto')
Out[50]:
In [51]:
          model5.score(x_test,y_test)
          0.651041666666666
Out[51]:
```

```
In [52]:
          #Applying K-NN
          from sklearn.neighbors import KNeighborsClassifier
          model2 = KNeighborsClassifier(n neighbors=7,
                                       metric='minkowski',
                                       p = 2
          model2.fit(x train,y train)
         KNeighborsClassifier(n neighbors=7)
Out[52]:
In [53]:
          #Preparing ROC Curve (Receiver Operating Characteristics Curve)
          from sklearn.metrics import roc curve
          from sklearn.metrics import roc auc score
          # predict probabilities
          probs = model2.predict proba(features)
          # keep probabilities for the positive outcome only
          probs = probs[:, 1]
          # calculate AUC
          auc = roc auc score(label, probs)
          print('AUC: %.3f' % auc)
          # calculate roc curve
          fpr, tpr, thresholds = roc curve(label, probs)
          print("True Positive Rate - {}, False Positive Rate - {} Thresholds - {}".format(tpr,fpr,thresholds))
          # plot no skill
          plt.plot([0, 1], [0, 1], linestyle='--')
          # plot the roc curve for the model
          plt.plot(fpr, tpr, marker='.')
          plt.xlabel("False Positive Rate")
          plt.ylabel("True Positive Rate")
         AUC: 0.839
         True Positive Rate - [0.
                                          0.08955224 0.32089552 0.48507463 0.60820896 0.76492537
          0.90298507 0.9738806 1. ], False Positive Rate - [0. 0.004 0.024 0.062 0.152 0.246 0.424 0.658 1.
                                                                                                                         ] Thresho
         lds - [2.
                                      0.85714286 0.71428571 0.57142857 0.42857143
                           1.
          0.28571429 0.14285714 0.
         Text(0, 0.5, 'True Positive Rate')
Out[53]:
```


In [54]: #Precision Recall Curve for KNN from sklearn.metrics import precision_recall_curve from sklearn.metrics import f1 score from sklearn.metrics import auc from sklearn.metrics import average precision score # predict probabilities probs = model2.predict proba(features) # keep probabilities for the positive outcome only probs = probs[:, 1] # predict class values yhat = model2.predict(features) # calculate precision-recall curve precision, recall, thresholds = precision recall curve(label, probs) # calculate F1 score f1 = f1 score(label, yhat) # calculate precision-recall AUC auc = auc(recall, precision) # calculate average precision score ap = average precision score(label, probs) print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap)) # plot no skill plt.plot([0, 1], [0.5, 0.5], linestyle='--') # plot the precision-recall curve for the model plt.plot(recall, precision, marker='.')

f1=0.643 auc=0.752 ap=0.714

Out[54]: [<matplotlib.lines.Line2D at 0x197f5ef48b0>]

In []:

Diabetes / Non Diabetes

Body Mass Index Related to Age

Heat Map with Diff Variables

	Age new										
	20-25	25-30	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	80-85
Avg. BMI1	30.4	33.0	33.1	35.3	32.9	31.8	30.2	29.9	27.5	19.6	25.9
Avg. Blood Pressure	63.8	68.0	72.3	73.3	77.9	81.9	77.5	76.0	80.7	0.0	74.0
Avg. Glucose1	110.7	120.3	127.5	125.1	124.5	143.2	138.3	136.4	139.0	119.0	134.0
Avg. Insulin1	84.3	84.3	61.3	56.7	67.6	109.9	149.5	26.4	0.0	0.0	60.0
Avg. Skin Thickness	22.0	21.3	21.2	18.9	20.4	16.3	18.7	20.0	1.6	0.0	33.0

Measure Values

0.0

