Decision Tree Coursework Report

Introduction

This report presents the results of our decision tree algorithm, which predicts the room number based on Wi-Fi signal strengths. The decision tree was built to handle continuous attributes and multiple labels, following guidelines provided in the coursework specification.

Decision Tree Visualisation

Below is the complete visualisation of the tree trained on the entire clean dataset (see next page).

Since the depth of the decision tree is large, the cropped version of the tree is displayed below:

Step 3: Evaluation

Cross-Validation Classification Metrics

A 10-fold cross-validation was conducted on both the clean and noisy datasets. The following averaged metrics were computed:

For clean datasets:

• Averaged Confusion Matrix:

	Predicted Room 1	Predicted Room 2	Predicted Room 3	Predicted Room 4
Room 1	49.4	0.	0.2	0.4
Room 2	0.	47.6	2.4	0.
Room 3	0.5	1.7	47.6	0.2
Room 4	0.4	0.	0.2	49.4

Averaged Accuracy:

0.97

• Averaged recall for each room:

	Average Recall
Room 1	0.98840876
Room 2	0.952233
Room 3	0.95248136
Room 4	0.98773702

• Averaged precision for each room:

Average precision

Room 1	0.98195881
Room 2	0.96587966
Room 3	0.94506849
Room 4	0.9872858

• Averaged F1-measure for each room:

Average F1-measure

Room 1	0.98503266
Room 2	0.95883303
Room 3	0.94858487
Room 4	0.98735266

For **noisy datasets**:

• Averaged Confusion Matrix:

	Predicted Room 1	Predicted Room 2	Predicted Room 3	Predicted Room 4
Room 1	39.2	2.5	3.4	3.9
Room 2	2.9	41.	3.4	2.4
Room 3	3.	3.3	42.4	2.8
Room 4	3.2	2.4	3.	41.2

• Averaged Accuracy:

0.819

• Averaged recall for each room:

Average Recall

Room 1	0.80373177
Room 2	0.82266353
Room 3	0.82165509
Room 4	0.83542975

• Averaged precision for each room:

Average precision

Room 1	0.81178536	

Average precision

Room 2	0.83360411
Room 3	0.81589391
Room 4	0.82077863

Averaged F1-measure for each room:

Average F1-measure

Room 1	0.80617139
Room 2	0.82532958
Room 3	0.81709598
Room 4	0.82499199

Result Analysis

In the clean dataset, all rooms are recognized with high accuracy, particularly Room 1 and Room 4, which show the least confusion with other rooms. Minor confusion appears between Rooms 2 and 3, but it does not significantly impact the overall accuracy. In the noisy dataset, there is greater confusion across all rooms. Accuracy dropped as signal overlaps caused more misclassifications, mainly between Rooms 1 & 4 and Rooms 2 & 3. This suggests noise weakened the model's boundary precision.

Dataset Differences

Yes, there is a noticeable difference in performance between the clean and noisy datasets. The clean dataset's accuracy was high (97%), while noisy dataset's accuracy reduced to 81.9%. Noise likely impacts classifier accuracy by introducing ambiguity in feature values, leading to increased misclassifications across all rooms (especially for adjacent rooms). This also results in a decrease in recalls, precisions, and F1-measures. Noise impacted the tree's ability to separate classes clearly, increasing errors across all metrics.

Conclusion

The decision tree algorithm achieved high accuracy on the clean dataset, with performance challenges on the noisy dataset. Future improvements could focus on implementing pruning methods to reduce overfitting and possibly integrating noise reduction preprocessing steps to enhance classification accuracy in noisy environments.