Information Diffusion in Twitter

Marina von Steinkirch, steinkirch@gmail.com State University of New York at Stony Brook

June 29, 2012

Abstract

This report intends to be an initial research on the theory, methods, and open problems related to the study of the information diffusion in Twitter.

We start BY focusing on the theory and the available tools in the field, so that the first part of the paper, what would be called "low-dimensional analysis" is divided in two sections. In the first, we review the graph theory basics which form the basis of our analysis, and provide a simple model of information diffusion in a social network. In the second part, we report on methods for obtaining, processing, and parametrizing data using the Twitter API, and show some applications of graph theory to them. The source code of all the examples produced here are available in the git repository [9].

We are interested on how to represent the information diffusion of Twitter's high-dimensional space data. To this aim, in the second part of this paper, we report the status quo of the field, *i.e.*, how to represent large graphs and at multiple resolution, introducing the current research developments.

Contents

Ι	Theory and Data		3
1	Graph Theory in Social Networks 1.1 Graph Traversals		3
	1.2 Metrics		6
2	Information Diffusion 2.1 Critical Mass and Coast of Participation		9
3	Representing a Social Network	1	.1

4	Dat	a Acquisition from Twitter	12		
	4.1	The Twitter API	13		
	4.2	Gaining Access to Other User's Data	13		
	4.3	Extracting the Trending Topics	13		
	4.4	Extracting Tweet Entities	13		
	4.5	Extracting Specific Tweets	13		
	4.6	Extracting Retweet's Origins	13		
	4.7	Extracting Data for Large Amounts of Data	14		
	4.8	Extracting Friends and Followers	14		
5	Graph Representation for Information Diffusion in Twitter				
	5.1	Simple Graph Examples for Retweet	14		
	5.2	Crawling Followers to Find Potential Influence	14		
II	\mathbf{L}_{i}	arge Dimensional Graphs	16		
6	Stat	te if Art of the Field	16		

Part I

Theory and Data

Large quantities of valuable quantitative information can be learned from social networks. If we assume *event independence*, *i.e.*, *Poisson processes*, where every event can be treated as not having any relationship to others, the events are computed based on outside variables or characteristics. *Bayesian statistics* can create chains of dependence and probabilities of connected outcomes as well.

However, if we remove the independence assumption, we need to treat all ties as potentially dependent to each other, e.g., Markov chains and regression models. Methods in the context of information diffusion are powerful tools belonging to this category [2].

We could start by trying to build a *multivariate regression model* which can be controlled by some *variables* and then linking them to *outcomes*. This approach can be applied to the simple notion of *homophily*, *i.e.*, notion that similar tends to gather together. Evident questions would be, for example,

- What is the the content of the demographic data, e.g., age, race, religion, income, education, location?
- What kind of quantitative metrics can be derived?
- What kind of *quantitative outcomes* can be derived?

Furthermore relationships of people and groups can assume many characteristics. For instance, it can be *Binary*, *e.g.*, following someone's twitter, or *multi-valued*, *e.g.*, retweeting some tweets from someone. It also can *Symmetric*, *e.g.*, virtual friendships, or *asymmetric*, *e.g.*, with a direction, such as boss. In the context of information diffusion in social networks, the language of graph theory is the natural tool to represent such environment.

1 Graph Theory in Social Networks

A social network, *i.e.*, a social graph, is a collection that describe relationships, which are edge in the graph. The basic unit noun \rightarrow verb \rightarrow noun is called dyad. On the other hand, a triad is all the 16 ways of connecting 3 nodes, being closed, open, connected, semi-connected, unconnected, etc. The verbs are the semantics of a relationship. Moreover, in some instances, edges can have a numeric values, for example a "likable scale".

The nouns are called *vertices* or *nodes* and have a type: it can be a person, organization, blog posting, etc. If graphs contains nodes of one time, they are 1-mode graphs. If it contains relationships between two types, they are 2-mode or bimodal. In this report we continuously use the package networkx for python [3] to generate and manipulate our graphs, and an initial example can be seen in the Fig. 1. Interactive 3D graph visualization can be developed with Ubigraph [11].

Figure 1: Example of a graph generated with networkx [3].

1.1 Graph Traversals

An algorithm *crawls*, *i.e.*, walks, a graph when it starts from some starting point, following links to neighbors and neighbor's neighbors, etc, in some predetermined orders, *e.g.*, to find the shortest path or to sample the structure of the graph.

A walk is an alternating sequence of nodes and edges that connect them. It can be *open* if it starts and ends in different nodes, and *closed*, otherwise. A path is a open simple (no crossed node) walk. A closed simple walk is a *cycle*.

Depth-First Search

Depth-first search (DFS) is an uninformed search that transverses nodes until it finds a the goal, and it can produce a spanning tree of the nodes it has visited:

- 1. Start with some node n;
- 2. Mark n as visited;
- 3. Applies DFS to each neighbor n_i of n_m where n_i has not been visited.

Breadth-First Search

Breadth-first traversal (BFT) visits all the immediate neighbors first and then proceeds to their neighbors.

- 1. Start with node n;
- 2. Create queue Q;
- 3. Mark n as visited;

- 4. Enqueue n onto Q;
- 5. While Q is not empty, dequeue n from Q, mark n_i as visited, enqueue n_i onto Q.

Dijkstra's Search

For a given vertex, *Dijkstra algorithm* finds the lowest cost path (sum of all edge weights) to all other vertices.

Graph Distance

In social networks, graph distances shows how the information is likely to propagate. Graph distances between nodes of a graph are an abstraction of a walk: looking how far the nodes are. A graph *diameter* is the largest number of vertices that must be transversed to travel from some vertex to other. Examples of how to measure distances in graphs, as in Fig. 2, are:

Shortest path (underweight graph) number of edges to go from two points. In social networks, the distance is proportional to the ability of the information travel from two equal nodes.

The cost-based shorted path (weighted graph) same as above including the cost of each edge. In social networks, the graph can be weighted with the frequencies of individual communication between two nodes, and the distance tells how quickly the information can spread from these nodes.

The euclidean distance (vector similarity) the distance is proportional to the number of common neighbors shared between nodes. Grouping nodes by their relative distances creates *clusters*.

Figure 2: Examples of graph traversals [2].

1.2 Metrics

Centrality

Centrality metrics are point-measures on the network, allowing the first measurements of the power and influence of **individuals** in a social network.

Degree Centrality

The degree centrality measures which nodes are significantly more popular others (orders of magnitude more popular than a common node). For this, the node degree is defined as the number of connection that a node has, e.g., number of followers in Twitter.

Closeness

We name a central node as ego and the other connected nodes as alter. The ego's ability to get information from and send information to others depends on the distances between it and the rest of the network. The ability of seeing into the network, horizon of observality, is defined by levels. For example, if it is 2 levels, the ego has almost no idea about what is happening 3 or more steps ways. Moving from one side to another in the network shows how the perception of the world is shared and the distance to others, the inverse of closeness, defines the node's role in the network. In our example in the Fig. 1, the length of the ego network for Quarks is 8.

The calculation of closeness centrality can be done by:

- 1. Computing shortest paths between every pair of nodes;
- 2. For every node:
 - (a) Compute average distance to all nodes;
 - (b) Divide by maximum distances;
 - (c) Set closeness = 1/ average distance.

Betweeness

Betweeness centrality identifies boundary spanners, i.e., nodes that act as bridges between communities that would not be able to communicate to each other otherwise.

The calculation of betweeness centrality can be done by:

- 1. Computing shortest paths between every pair of nodes;
- 2. For every node I compute number of shortest paths that I is on;
- 3. Normalize the numbers to a 0-1 scale.

Combining the results of the centrality metrics, as in Table 1.2, gives first conclusions about the social network together to the results for our Physics examples, calculated with networkx [3].

Metric	Low Degree	Low Closeness	Low Betweeness
High Degree		Ego in a cluster far	Ego's connection are
		from the rest of network	redundant
High Closeness	Key player tied		Ego is in dense cluster
	to active others		at the center
Name	Degree	Centrality	Betweeness
Particles	4	0.58	0.69
Quarks	7	0.56	0.69
Gluons	4	0.45	0.39
Higgs	1	0.38	0

Table 1: Centrality metrics combined, as in [2].

Eigenvector Centrality

Instead of simply adding the number of links to compute degrees, we can weight each of the links by the degree of the node at the other end of the link to spot well-connected nodes. A node is central when it is connected to many other nodes that are central.

The calculation of eigenvector centrality can be done by:

- 1. Assigning a centrality score of 1 to all nodes;
- 2. Recomputing scores of each node as a weighted sum of centralities of all nodes in a node's neighborhood;
- 3. Normalizing by dividing by the largest value.

1.3 Clusters, Cliques, N-Mode Networks

Instead of focusing on individuals in a social network, we can look to larger chunks of the network, analyzing their connection patterns.

A *subgraph* is a subset of nodes in the network and all the edges liking these nodes. *Component* subgraphs are disconnected portions in the network. For example, in the Fig. 1, the average clustering of the ego network for Quarks is 0.

The Island Method

With the *island method* we can see the social network as an island where the height of each part of the terrain is defined by a value of the node (e.g., degree) or edge (e.g., number of retweets). Rising the level of the "water" splits the original island in smaller islands, in which a giant component gets splits into smaller pieces that can be analyzed separated.

Ego Networks

Ego networks are subnetworks centered on some node. Knowing the size of an ego network is useful to understand the reach of information that a node can transmit and access and it can be derived by running BFS to all links between node's neighbors, *i.e.*, building a horizon of observality.

In Twitter, the definition of a "friend" is loosely and the radius of the ego network becomes very useful. Running DFS instead can be used to determine the penetration of message by retweets.

Clustering Coefficient

The *clustering coefficient* measures the proportion of neighbor nodes that are connected (*e.g.*, friends that also friends with each other). In ego networks, it has a simple interpretation related to mutual trust among the nodes.

Cliques

Cliques are the maximal complete subgraph of a graph, *i.e.*, no node can be added without making it less connected. It consists of several overlapping closed triads, and inheres many of the culture-generating and amplification of closed triads.

2-Mode Networks

2-mode networks are complex networks with different types of nodes, with links that determine relationship between one set of nodes to other.

2 Information Diffusion

2.1 Critical Mass and Coast of Participation

We want to see how some information is diffused through twitter, *i.e.*, how does this information reach from some point A to another point B. At first, the only people who see it are in the immediate ego network of the first node (*i.e.*, friends). Growth in the number of views is very slow, being linear over time, *i.e.*, with views occurring over constant rates (Poisson process). In the end, the total number of views would be related to the number of followers, *i.e.*, the degree of centrality.

The quality shift from a thing that does not matter to a "must share" is a inflection in a *critical mass curve*. Once this critical mass is reached, it will grow exponentially until reaching the *saturation point* and then it will decline.

The information can reach saturation in some community and then move to another which it is unknown, through a common member, known as *boundary spanners*. In the new community, the information goes though the whole process again, with a new critical mass and saturation point.

If we suppose that the transition from linear to exponential propagation (viral) depends on triad closure (*i.e.*, friend of friend of friend), then the critical mass of connections can be estimated by measuring the probability that a randomly created link will form one of more triad with other nodes. This is proportional to the number of nodes already connected [4].

Another consideration to the critical mass is the idea of *cost of participation*. Critical mass will be reached when the benefits rise as a function of connections at a constant cost. There are many possibilities for a theory that qualitatively analyzes if a message will diffuse into a network. For example, one approach is to break the effect of a message within the social network into a number of variables such as relevance, resonance, immediacy, certainty, source, entertainment value, etc. Supposing these characteristics can be written as numbers (such as 0 through 1), then each message in the network can be evaluated as

$$v_m = \beta_1 \times \text{Relevance} + \beta_2 \times \text{Resonance} + \beta_3 \times \text{Immediacy...}$$

where

$$\beta_1 + \beta_2 + \beta_3 \dots = 1.$$

2.2 A Toy Model of Information Diffusion in a Network

Information shapes the network's structure, and the shape of the network controls where the information can be spread. A simple dynamic model of information diffusion in a social network was proposed in 1998 by Friedkin [5]. This model follows the premise that everyone accepts influence from their friends in the network to a degree and we can make the assumption that the information that the agents will be exchanging is a number between 0 and 1.

In this first model, we can define a class for a person, with an ID and three numbers related to the initial attitude, the acquired attitude, and the *gullibility factor* (which is initially assumed as equal for everyone). A first simulation of the shape of these network based on the gullibility factor can be seen in the Fig. 3. In a further optimization, we can make the gullibility factor heterogeneous.

Figure 3: Run of diffusion model for the gullibility constant equal to 0.1, 0.6 and 0.99, where the last means that all agents are perfectly gullible and accept everything their friends say (reaches consensus quickly).

We then define a network of person nodes and iterate through every possible combination of 2 nodes. In this simple model, an edge is added between 2 nodes with the probability equal to a *density parameter*, *i.e.*, Erdos-Renyi algorithm.

The simulation is initialized by inserting a function step into the person class, which updates a person's attitude on a weighted sum of his/her friends' attitudes and the person's gullibility.

We then compute the weights for the person's own opinion and the other's opinion and update the current opinion by supposing that a person's opinion at time t is the objective knowledge multiplied by gullibility factor, added to the weighted sum of his/her friends' opinion. Running this in a loop models how the network changes over the time, as can be seen in the first two columns in the Fig. 4.

In addition, we can suppose that there are some propaganda agents in the network. Each of these influencers has an immovable extreme position with attitude = 1 and the other agents have attitude from 0 to 1. Adding these new agents influences the network with an accelerate movement towards an extreme value. The more influencers are present, the more likely is the motion toward a consensus on an extreme value, as we can see in the two last columns in the same figure.

Figure 4: In the first column we see the network of agents of our initial simple toy model for information diffusion, with densities equal to 0.3, 0.6 and 0.9, respectively, no influence, time t=200, and a gullibility factor of 0.9. The shape of network derived from its information diffusion for these three cases can be seen in the second column. In the third and second columns we see the results of adding influencers to the previous cases.

2.3 Evolution of Networks and Information in the Toy Model

Following [4], we can modify the model of influence so that the network changes as the attitudes of individuals and information content of the network changes. For this, we introduce an interaction function that exchanges information of with one agent instead with the set of neighbors. The edge can be weighted by similarity and the more similar the nodes become, the stronger is their connection. Moreover the connection can decay after a certain period of time, e.g., with some decay rate, for example

$$v(t+1) = v(t) \times (1 - \text{decay rate}).$$

A well connected node builds a small groups of similar followers around him/her, while a less well connected nodes remains with contrary opinions. However, nodes can vary opinions and multiple consensus can emerge. A group of similar nodes will become better connected while dissimilar nodes are more peripheral.

This is a notion of homophily, where each person maintain a list of people that she/he follows and some idea of how similar is to them. There is a higher probability of choosing someone that is similar but a secondary peak in interest lets the agent talk to people that are different. Although some communication may be random, to allow the agent to pick partners with probability proportional to their similarity, we implement a function that set that the communication partner will be similar if with probability of 0.6, dissimilar if probability of 0.3, and random with probability of 0.1. The new network evolution for this toy model can be seen in the Fig. 5.

Further implementations to this toy model can add the influences from the last section; inspect when/if the network will split; inspect shock to the models (changes of opinion to extreme values); add agents with communication capabilities; etc.

3 Representing a Social Network

Adjacency matrices are the basic way to represent a social network is a binary matrix where 1 represents a relationship (edge) between nodes. For valued graphs, this matrix can carry values different of 0 and 1. The drawback is that cells with no edge (with 0) take the same amount of memory, and in social networks this kind of cell can represent the majority of the cells (low density).

Small graph data can be represented by flat files such as *edge-lists*, .net (pajek) formats, or XML-based formats. Edge-lists overcome the density problem by mapping database tables. However it only allows interacting over the edges, but not traversal search through the graphs.

 $Adjacency\ lists$ overcomes the above problem having a fast searching, removing and adding edges easy.

Figure 5: (top left) The initial network, with parameters: network size = 100, runtime t=200, decay constant = 0.01, density = 0.05, and gullibility = 0.9. (top right) The evolution of the information diffusion. (bottom left) The consensus plot displaying the mean opinion of everyone in the network: the network converges to a range of acceptable options but allows diversity. (Bottom right) Final network after evolution.

For medium data we can use database representation such as SQLite3 with JSON to serialize objects.

Big data and cloud computing are the appropriate volume for social network data and ways of dealing with it are NoSQL, which are designed to operated with structured text files that many typical social networks API (including Twitter) support, such as XML and JSON . Distributing computation can be done with Hive, with simple recipes for 2-mode networks in it.

4 Data Acquisition from Twitter

Twitter packs a rich data source in the 140 characters: we can extract many different network databases from it:

Retweet relationship which represents actual patterns of influence and information diffusion.

Coocurrence by harshtags, which represents relationship between harshtags to build a network of hashtags. If two harshtags occur together more than few times, one can make an inference that they are semantically similar.

Use relationship between people and harshtags or URLs, which represent 2-mode networks, computing a projected network between people.

Follower relationships.

4.1 The Twitter API

Twitter has an API with many degrees of freedom [7]. In this first report, we study its documentation and make use of some of the third part wrappers [8] to obtain and analyze Twitter's information diffusion. The snippets were written in Python with the following third party softwares:(easy-install) networkx, couchpy, couchdb, graphviz, pygraphviz, pydot, pyparsing.

Each of the following subsections refers to an implemented code based on the literature. The source code of this work can be seen at the git repository [9].

4.2 Gaining Access to Other User's Data

Twitter implements OAuth [10] as an authorization mechanism to allow third parties to access the data without having to log in their usernames, but using a consumer key and secret to get a access token and access token secret.

4.3 Extracting the Trending Topics

Using the Twitter API's /trends resources we can retrieve a list of trending topics (over a period of time) or sample results of a trending topics query, as a simple JSON object. When treating large volume of data, however, we can use SQLite or CouchDB/CouchPy.

4.4 Extracting Tweet Entities

Every tweet is divided into entities such as mentions, hashtags and URLs, and we can extract them into tweet entities, using for example the include_entities.

4.5 Extracting Specific Tweets

We can extract a sample of tweets from the public timeline for a specific (custom) query using the **search** resource, and save in a JSON object, for example. The results the trending topics search can also be feed into this search.

4.6 Extracting Retweet's Origins

In the context of information diffusion, we want to be able to extract the origin source of retweets. This information is given by the field retweet_count, which represents a retweet if it is greater than 0. Then, with regular expressions, we can extract the name of the user field.

4.7 Extracting Data for Large Amounts of Data

When it comes to large amounts of data, the Twitter API imposes rate limits and HTTP errors, scripts with robust Twitter requests can deal with these limitations.

The statuses timeline resource allows to fetch tweet by its id, being useful to reconstruct a discussion and fetch timeline data. CouchDB and CouchPy can be used for persistent storage. They natively store JSON data and allow my related analyses from the tweets harvested via timelines.

4.8 Extracting Friends and Followers

From friends and followers ids resources we can get up to 5,000 friends and follower ids at one request. With the limit of 350 requests per hour, it is possible to fetch a larger number of data in batch.

With the id data, we can perform setwise operations in the sets such as difference and intersection, e.g., finding mutual friends and followers. For large volume of data, we can use databases such as SQLite. Another approach is using Redis, which can perform operations in memory and store the results as key-values pair in a more efficient way.

5 Graph Representation for Information Diffusion in Twitter

5.1 Simple Graph Examples for Retweet

An initial analysis that can be made from the previous set of data extracted from the Twitter API is to construct a graph data structure of retweet relationships for some set of query results. The procedure queries for the custom topic, extracts the origins and then, looping over the tweets, uses the results to construct a graph representing the relationships, with NetworkX. We can represent the nodes on the graph as the originating authors at the most basic level, and the edges are the id of the tweet for the relationship.

NetworkX creates the graph structure making it possible to search for cliques, explore subgraphs, transform the graphs, etc, and to plot the results with Matplotlib, Fig. 6. This graphs would be very grainy on 2D (or even 3D) for the volume of data we aim to work with.

We can also visualize this graph by emitting an output in DOT and converting to a static image in Graphviz or in a JavaScript toolkit, as shown in the Fig. 7.

5.2 Crawling Followers to Find Potential Influence

We can analyze the influence of some user (node) based on its popularity and the popularity of its followers. For this we can use a breath-first traversal, as discussed in the section 1.1, setting the depth and the average branching factor of each node in the graph.

Figure 6: Examples of graphs showing a retweet relationship (with a one-page set of data only), generated with NetworkX and Matplotlib for the queries *higgs* and *physics*.

Figure 7: Graphs showing a retweet relationship (with a one-page set of data only), generated with Graphviz and Protovis for the queries *higgs* and *physics*.

The algorithm uses the <code>get_all_followers_ids</code> function (from setwise operations) into <code>crawl_followers</code>. The final total number of nodes in the graph is the indicator of the user's potential influence. An example of friendship graph is shown in the Fig. ??, together to the some of <code>Networkx</code>'s built analysis on cliques.

Part II

Large Dimensional Graphs

Visualization of large volume of high-dimensional space data refers to measurements and metrics to show adjacency, relationships, trends, co-occurrence, and conceptual distance [6].

Humm.... I want to load my data into a visualization program such as prefuse or pajek?

6 State if Art of the Field

References

- [1] 21 Recipes for Mining Twitter, M. Russell, 2011.
- [2] Social Network Analysis for Startups, M. Tsvetotat and A. Kouznetsov, 2011.
- $[3] \ \mathtt{http://www.ics.uci.edu/~eppstein}, \ 2012. \ 2011.$
- [4] Mining Social Networks, M. Tsvetotat and A. Kouznetsov, 2011.
- [5] Friedkin, 1998.
- [6] http://www.infonortics.com/sdv-12-post/hlava.pdf, 2012.
- [7] https://dev.twitter.com/, 2012.
- [8] https://github.com/sixohsix/twitter, 2011.
- [9] \$ gitclonegit@bucket.org:steinkirch/infdif.git\$, 2012.
- [10] https://dev.twitter.com/, 2012.
- [11] http://www.ubigraph.com, 2012.

\mathbf{Index}

Regression model, 3

Adjacency	Regular expressions, 13				
Lists, 11	Saturation Point, 8				
Matrices, 11	Search				
Bayesian statistics, 3	Breadth-First, 4, 8				
Centrality, 6	Depth-First, 4, 8 Dijkstra, 5				
Betweeness, 6	Subgraph, 7				
Closeness, 6	Ego Networks, 8				
Degree , 6 Eigenvector , 7	Triad, 3, 9				
Cliques, 8	Twitter API, 12				
Clusters, 5	,				
Coefficient, 8					
Components, 7					
Crawling, 4					
Critical Mass, 8					
Distance					
Cost-based shorted path, 5					
Euclidian, 5					
Shortest Path, 5 Dyad, 3					
Dyau, 5					
Edge-lists, 11					
Ego, 6					
Networks, 8					
Homophily, 3, 11					
Horizon of observality, 6, 8					
Island Method, 7					
JSON, 12, 13					
Markov chains, 3					
Metrics, 3					
Boundary spanners, 6					
* - :					
N-mode graphs, 3					
2-Mode Networks, 8, 12					
Poisson process, 3					