CS 241, Lecture 7 - Non-Deterministic Finite Automata

1 Quick review of regular languages

• For a formal language $L, L \cdot \varnothing$ is \varnothing ! This is as we define a concatenation as $L_1L_2 = \{xy : x \in L_1, y \in L_2\}$. If the set is empty, then nothing happens!

2 DFAs - cont.

• Warmup:

 $L = \{w : w \text{ ends with } bba\}$

• We extend our definition of $\delta:(Q\times\sigma)\to Q$ to a fn defined over $(Q\times\sigma^*)$ via:

$$\begin{split} \delta: (Q \times \sigma^*) &\to Q \\ (q, \epsilon) &\mapsto q \\ (q, aw) &\mapsto \delta^*(\delta(q, a), w) \end{split}$$

where $a \in \sigma$ and $w \in \sigma^*$. aw is the concatenation.

• A DFA given by $M=(\sigma,Q,q_0,A,\delta)$ accepts a string w iff $\delta^*(q_0,w)\in A$.

1

• For example:

$$\delta^*(q_0, abba) = \delta^*(\delta(q_0, a), bba)$$

$$= \delta^*(q_0, bba)$$

$$= \delta^*(q_1, ba)$$

$$= \delta^*(q_2, a)$$

$$= \delta^*(q_3, \epsilon)$$

$$= q_3$$

- Essentially, we define δ^* to be just δ but now, it supports more than one "character", allowing us to traverse the function.
- We define the language of a DFA, M, to be the set of all strings accepted by M, that is, $L(M) = \{w : M \text{ accepts } w\}.$
- Kleene's Theorem: L is regular iff L = L(M) for some DFA M. That is, the regular languages are precisely the languages that are accepted by DFAs.
- Implementing a DFA:

```
s = q_0
while not EOF do
    read character ch
    switch(s)
    case q_0:
         switch (ch)
         case ch = a_0:
              s = new_state_a_0
         case ch = a_1:
              s = new_state_a_1
         . . .
         case ch = a_{|\sigma|}:
              s = new_state_a_sigma
         end switch
    case q_1:
         . . .
    end switch
end while
```

• Alternatively, we could also use a LUT to store the appropriate states based on a_x and q_y .

- We can extend our DFAs to attach actions to arcs.
- For example, consider $L = \{ \text{binary numbers without leading zeros} \}$. We could create a DFA where we also compute the value of the number at the same time, then print the token.
- The regular language would be 1(0|1)*1.

- For example, start with 101001:
 - $-1 \to N = 1$
 - $-10 \rightarrow N = 2$
 - $-101 \rightarrow N = 2 * 2 + 1 = 5$
 - $-1010 \rightarrow N = 10$
 - $-10100 \rightarrow N = 20$
 - $-101001 \rightarrow N = 41$

3 Non-deterministic Finite Automata (NFAs)

- What if we are allowed more than one transition from a state? That is, from, say, q_0 , I could go to q_1 OR q_2 based solely on the value of, say, a?
- When we allow a state to thave multiple branches based on the same input, we say the machine *chooses* what path to go on this is called **non-determinism**.
- We then say the machine accepts a word w iff there exists **some** path that leads to an accepting state.

• We can simplify our warmup example by using an NFA:

$L = \{w : w \text{ ends with } bba\}$

 $L = \{w : w \text{ ends with } bba\}$

- This makes it very easy to extend if, for example, we wanted to extend this up to z, we can just say that the opening loop goes from a to z.
- An **NFA** is still a 5-tuple. Nothing changes, except δ .
- δ is now defined as $\delta:(Q\times\sigma)\to 2^Q$, which is our total transition function.
- 2^Q denotes the **power set** of Q, that is, the set of all subsets of Q. This allows us to go to multiple states at once.
- For example, if our language is just $\{1,2,3\}$, then $2^Q = \{\{\},\{1\},\{2\},\dots,\{2,3\},\{1,2,3\}\}$.
- Let M be an NFA. We say M accepts w iff there exists some path through M that leads to an accepting state.
- We denote the **language of an NFA** M to be the set of all strings accepted by M, that is, $L(M) = \{w : M \text{ accepts } w\}.$

• We extend δ for an NFA:

$$\delta^*: (2^Q \times \sigma^*) \to 2^Q$$
$$(S, \epsilon) \mapsto S$$
$$(S, aw) \mapsto \sigma^*(\bigcup_{q \in S} \sigma(q, a), w)$$

where $a \in \sigma$.

- In other words, an NFA given by $M=(\sigma,Q,q_0,A,\delta)$ accepts a string w iff $\delta^*(\{q_0\},w)\cap A\neq\varnothing$.
- To simulate an NFA:

$$S = \{q_0\}$$
 while not EOF do: $c = read_char()$ $S = \bigcup_{q \in S} \delta(q, c)$ end while if $S \cap A \neq \varnothing$ then Accept else Reject end if

• Let us try simulating our warmup example with a NFA:

Processed	Remaining	5
ϵ	abbba	$\{q_0\}$
a	bbba	$\{q_0\}$
ab	bba	$\{q_0, q_1\}$
abb	ba	$\{q_0, q_1, q_2\}$
abbb	a	$\{q_0, q_1, q_2\}$
abbba	ϵ	$\{q_0, q_3\}$

Since $\{q_0, q_3\} \cap \{q_3\} \neq \emptyset$, accept.