Progress Report Oct-Dec 2014

L. L. Strow & H. E. Motteler

UMBC Atmospheric Spectroscopy Lab Joint Center for Earth Systems Technology

January 11, 2015

cris tvac

- we show representative results from the CrIS TVAC tests, the PFL side 1 CO, CH₄, and CO₂ tests, and the MN side 1 NH₃ test
- ▶ the PFL tests show good agreement with calculated transmittances for CO, CH₄ and CO₂
- we also show and representative residuals across the test stages
- ▶ the CO and CH₄ side 1 residuals are consistent across the MN, PFH, and PFL tests
- there was a low-frequency component in residuals in some tests
- ▶ there was a significant difference between nominal and observed gas cell pressure in some tests

test methods

 there is a close parallel between our expression for transmittance

$$\tau_{\text{obs}} = f \cdot \text{SA}^{-1} \cdot f \cdot \frac{\text{FT}_2 - \text{FT}_1}{\text{ET}_2 - \text{ET}_1}$$

and our default CrIS calibration equation

$$r_{\text{obs}} = F \cdot r_{\text{ICT}} \cdot f \cdot \text{SA}^{-1} \cdot f \cdot \frac{\text{ES} - \text{SP}}{\text{IT} - \text{SP}}$$

- ▶ here f is a raised-cosine bandpass filter, SA⁻¹ the inverse of the ILS matrix, r_{ICT} is expected ICT radiance at the sensor grid, and F is Fourier interpolation from sensor to user grid.
- ▶ the same *f* is applied to the line-by-line transmittances before convolution to the CrIS sensor grid

CO obs and calc

Observed and calculated transmittance for all FOVs, over the fitting interval. At this level of detail we see all values are very close.

CO obs minus calc

Observed minus calculated transmittance for side and corner FOVs, over the fitting interval.

CH₄ obs and calc

Observed and calculated transmittance for all FOVs, over the fitting interval. At this level of detail we see all values are very close.

CH₄ obs minus calc

Observed minus calculated transmittance for side and corner FOVs, over the fitting interval.

NH₃ obs and calc

Observed and calculated transmittance for all FOVs, over the fitting interval. At this level of detail we see all values are close.

NH₃ obs minus calc

Observed minus calculated transmittance for side and corner FOVs, over the fitting interval.

CO₂ obs and calc

Observed and calculated transmittance for all FOVs, over the fitting interval. At this level of detail we see all values are close.

CO2 obs minus calc

Observed minus calculated transmittance for side and corner FOVs, over the fitting interval.

CO side 1 test comparison

"rms fit" is $1000 \cdot \text{RMS}(a \cdot \tau_{\text{obs}} + b - \tau_{\text{calc}})$ "met laser" is the metrology laser residual

	rms fit			met laser		
FOV	MN	PH	PL	MN	PH	PL
1	4.4	1.5	9.9	13.2	15.0	10.3
2	2.8	3.5	10.6	3.4	5.2	2.3
3	4.9	2.4	10.0	4.1	2.8	2.6
4	2.7	3.4	7.7	4.4	6.7	3.9
5	1.7	2.8	7.9	3.1	3.1	2.6
6	2.4	3.3	8.1	3.1	2.6	3.6
7	3.9	1.6	5.3	-0.5	-0.5	-0.8
8	2.4	3.3	6.5	-6.7	-6.7	-5.7
9	4.7	2.6	5.2	7.2	4.9	7.5

log torr: MN 40.5 PH 39.9 PL 45.0 obs torr: MN 41.0 PH 26.0 PL 45.0

CO₂ side 1 test comparison

"rms fit" is $1000 \cdot \text{RMS}(a \cdot \tau_{\text{obs}} + b - \tau_{\text{calc}})$ "met laser" is the metrology laser residual

	rms fit			met laser		
FOV	MN	PH	PL	MN	PH	PL
1	1.6	1.4	3.3	8.3	11.3	0.3
2	1.6	1.2	3.2	2.1	2.6	-6.2
3	2.8	1.9	4.0	1.3	-0.3	-4.1
4	1.8	1.8	3.0	3.6	5.4	-3.1
5	2.5	2.1	3.4	3.6	4.9	-1.8
6	2.5	1.6	3.0	2.1	1.8	-3.9
7	1.7	1.2	3.1	-6.2	-3.9	-13.4
8	1.8	2.4	3.1	-6.5	-4.9	-11.1
9	1.7	1.9	3.6	0.8	0.8	-6.2

log torr: MN 40.2 PH 40.0 PL 40.7 obs torr: MN 40.2 PH 40.0 PL 22.0

notes and comments

- we minimize ${\rm RMS}(a \cdot \tau_{\rm obs} + b \tau_{\rm calc})$ over the fitting interval as a function of the metrology laser wavelength. From this we get both a conventional residual and the difference of wavelength at the minima from the neon calibration value. The latter value is the "metrology laser residual"
- ▶ the CO and CH₄ side 1 residuals are consistent across the MN, PFH, and PFL tests
- comparing CO₂ tests, the MN and PFH tests were in reasonable agreement in comparison with the PFL tests
- our NH₃ residuals were generally larger than for CO₂
- all tests shown here were done using UMBC LBL for calculated transmittances
- to do: derive final focal plane geometery

ccast high res

- ▶ start with CCAST and NOAA high res data from 6–8 Dec 2014
- take the average and standard deviation of FOR 15 and 16 independently for each FOV, and compare these values with the values for FOV 5
- results shown here are for 32,186 CCAST and 32,120 NOAA descending FORs
- ▶ as a precaution, FORs where any LW channel was greater than 320K were discarded
- the intent is to show variation among FOVs, as might arise from varying nonlinearity or artifacts of the self-apodization correction

ccast MW mean

noaa MW mean

ccast MW fov groups

noaa MW fov groups

MW discussion

- ► FOV 7 is the least linear, and only partially corrected for with the CCAST first order adjustment
- the NOAA variation in FOV response is much greater than CCAST
- this may be due to problems with the nonlinearity correction
- ▶ a normalized frequency domain representation of the numeric filter needs a scaling factor to match the original nonlinearity measurements. We used 1.6047 for LW, 0.9826 for MW, and 0.2046 for SW

ccast SW mean

noaa SW mean

ccast SW fov groups

noaa SW fov groups

SW discussion

- CCAST and NOAA are generally in good agreement.
- residuals are significantly larger than for the LW band
- residuals and NOAA vs CCAST differences are generally greatest for the coldest lines and regions
- ► FOV 7 minus FOV 5 is significantly greater than for other FOVs at 2255 and 2359 cm⁻¹, for both CCAST and NOAA

conclusions

- there is significant convergence in the CCAST and NOAA processing. We are working with Yong Han's group on the MW differences.
- variation due to nonlinearity, especially for the MW band, is significantly greater than some of the more subtle effects we have been considering recently
- note again that these results are relative to FOV 5 and are not comparisons with with expected observed radiance from model data or radiance from other sounders