Notebook

March 15, 2025

League of Legends: Race to the Nexus

Name(s): Michael Luo, Santiago Cardenas Rey

Website Link: https://sancard1.github.io/LOL_Analysis/

```
[1]: #Imports libraries for data handling, visualization,
     #and machine learning.
     #pandas: Data loading and processing
     #matplotlib & seaborn: Static plots
     #numpy: Numerical operations
     #pathlib & os: File path handling
     #plotly: Interactive plotting
     #markdown: Renders markdown text
     #scikit-learn: Tools for model training & evaluation
     import pandas as pd
     import matplotlib.pyplot as plt
     import numpy as np
     from pathlib import Path
     import seaborn as sns
     import plotly.graph_objects as go
     import plotly.express as px
     import markdown
     import os
     pd.options.plotting.backend = 'plotly'
     from sklearn.model_selection import train_test_split
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.preprocessing import LabelEncoder, StandardScaler
     from sklearn.metrics import accuracy_score, classification_report
     from sklearn.pipeline import Pipeline
     from sklearn.metrics import precision_score
     # from dsc80_utils import * # Feel free to uncomment and use this.
```

0.1 Step 1: Introduction

```
[2]: # Loads the 2024 LoL esports data into a Pandas DataFrame.
     # 'low_memory=False' prevents dtype issues with large CSV files.
     # The data will be used to compare ADCs and Mid Laners
     # based on the metric DPM / (Deaths + 1).
     df = pd.read_csv("2024_LoL_esports_match_data_from_OraclesElixir.csv",
                       low_memory = False)
     df
     #Question: Which role-ADCs or Mid Laners-carries their team more
     #often based on DPM / (Deaths + 1)?
[2]:
                          gameid datacompleteness
     0
             10660-10660_game_1
                                           partial
     1
             10660-10660_game_1
                                           partial
     2
             10660-10660_game_1
                                           partial
     3
             10660-10660_game_1
                                           partial
             10660-10660_game_1
                                           partial
     117571
               LOLTMNT02_194401
                                          complete
     117572
               LOLTMNT02_194401
                                          complete
     117573
               LOLTMNT02 194401
                                          complete
     117574
               LOLTMNT02_194401
                                          complete
     117575
               LOLTMNT02 194401
                                          complete
                                                         url league
                                                                     year split
     0
                                                                     2023
             https://lpl.qq.com/es/stats.shtml?bmid=10660
                                                               DCup
                                                                             NaN
     1
             https://lpl.qq.com/es/stats.shtml?bmid=10660
                                                               DCup
                                                                     2023
                                                                             NaN
     2
             https://lpl.qq.com/es/stats.shtml?bmid=10660
                                                               DCup
                                                                     2023
                                                                             NaN
     3
             https://lpl.qq.com/es/stats.shtml?bmid=10660
                                                               DCup
                                                                     2023
                                                                             NaN
     4
             https://lpl.qq.com/es/stats.shtml?bmid=10660
                                                               DCup
                                                                     2023
                                                                             NaN
     117571
                                                         NaN KeSPA
                                                                     2025
                                                                             NaN
     117572
                                                         {\tt NaN}
                                                              KeSPA
                                                                     2025
                                                                             NaN
     117573
                                                              KeSPA
                                                                     2025
                                                                             NaN
                                                         \mathtt{NaN}
     117574
                                                         {\tt NaN}
                                                              KeSPA
                                                                     2025
                                                                             NaN
     117575
                                                         {\tt NaN}
                                                              KeSPA
                                                                     2025
                                                                             NaN
             playoffs
                                        date
                                              game patch ...
                                                               opp_csat25
     0
                     0
                        2024-01-01 05:13:15
                                                 1
                                                    13.24
                                                                      NaN
     1
                        2024-01-01 05:13:15
                                                 1 13.24 ...
                                                                      NaN
     2
                        2024-01-01 05:13:15
                                                 1 13.24
                                                                      NaN
     3
                        2024-01-01 05:13:15
                                                   13.24 ...
                                                 1
                                                                      NaN
                        2024-01-01 05:13:15
                                                    13.24 ...
     4
                                                                      NaN
     117571
                        2024-12-08 09:03:13
                                                    14.23
                                                                    211.0
     117572
                        2024-12-08 09:03:13
                                                    14.23 ...
                                                                    253.0
```

```
117573
                0 2024-12-08 09:03:13
                                             4 14.23 ...
                                                                  35.0
                                             4 14.23 ...
                                                                 847.0
117574
                0 2024-12-08 09:03:13
117575
                0 2024-12-08 09:03:13
                                             4 14.23 ...
                                                                 932.0
       golddiffat25 xpdiffat25 csdiffat25 killsat25 assistsat25 deathsat25
0
                 NaN
                             NaN
                                         NaN
                                                    NaN
                                                                 NaN
                                                                             NaN
1
                 NaN
                             NaN
                                         NaN
                                                    NaN
                                                                 NaN
                                                                             NaN
2
                 NaN
                             NaN
                                         NaN
                                                    NaN
                                                                 NaN
                                                                             NaN
3
                                                                 NaN
                 NaN
                             NaN
                                         NaN
                                                    NaN
                                                                             NaN
4
                             NaN
                                         NaN
                                                                 NaN
                 NaN
                                                    NaN
                                                                             NaN
117571
             -1050.0
                          1845.0
                                        36.0
                                                    0.0
                                                                 2.0
                                                                             2.0
117572
              -827.0
                          -702.0
                                        -3.0
                                                    1.0
                                                                 0.0
                                                                             0.0
117573
              -146.0
                          -383.0
                                        -5.0
                                                    0.0
                                                                 4.0
                                                                             2.0
                          3672.0
                                                                16.0
                                                                             7.0
117574
              3278.0
                                        85.0
                                                    8.0
             -3278.0
117575
                         -3672.0
                                       -85.0
                                                    7.0
                                                                 9.0
                                                                             8.0
       opp_killsat25 opp_assistsat25 opp_deathsat25
0
                  NaN
                                   NaN
                  NaN
                                   NaN
                                                    NaN
1
2
                  NaN
                                   NaN
                                                    NaN
3
                  NaN
                                                    NaN
                                   NaN
4
                                   NaN
                                                    NaN
                  NaN
                  4.0
                                                    2.0
117571
                                    1.0
117572
                  1.0
                                   5.0
                                                    0.0
117573
                  0.0
                                   5.0
                                                    2.0
117574
                  7.0
                                   9.0
                                                    8.0
117575
                  8.0
                                   16.0
                                                    7.0
```

[117576 rows x 161 columns]

0.2 Step 2: Data Cleaning and Exploratory Data Analysis

```
[3]: # This code analyzes League of Legends match data to compare the

# effectiveness of ADCs and Mid Laners based on DPM / (Deaths + 1).

# It filters key columns, calculates effectiveness, and saves both

# markdown and HTML summaries of the data. Additionally, it visualizes

# DPM distribution and effectiveness by role, exporting the plots as

# interactive HTML files.

assets_dir = "/Users/michaelluo/Desktop/LOL_Analysis/assets"

os.makedirs(assets_dir, exist_ok=True) # Ensure directory

columns_to_keep = [
    "gameid", "position", "dpm", "kills", "deaths",
    "assists", "result", "league"
]
```

```
df = df[columns_to_keep]
df = df[~df["position"].str.contains("team", case=False, na=False)]
df.index = range(len(df))
df["effectiveness"] = df["dpm"] / (df["deaths"] + 1)
df_markdown = df.head().to_markdown(index=False)
aggregates_md_path = os.path.join(
    assets_dir, "lol_aggregates.md"
with open(aggregates_md_path, "w") as f:
    f.write(df_markdown)
df_html = markdown.markdown(df_markdown, extensions=["tables"])
aggregates_html_path = os.path.join(
    assets_dir, "lol_aggregates.html"
with open(aggregates_html_path, "w") as f:
    f.write(
        f"<html><body><h1>League of Legends Data</h1>{df html}</body>"
        f"</html>"
    )
df.head()
fig = px.histogram(
    df, x="dpm", nbins=200,
    title="Distribution of Damage Per Minute (DPM)",
    labels={"dpm": "Damage Per Minute"}, opacity=0.7,
    marginal="box"
fig.update_layout(
    plot_bgcolor="#232323", paper_bgcolor="#232323",
    font=dict(color="white")
fig.show()
fig.write_html(
    "/Users/michaelluo/Desktop/LOL Analysis/"
    "assets/dpm_distribution.html",
    include_plotlyjs="cdn"
)
fig = px.box(
    df, x="position", y="effectiveness",
    title="Effectiveness (DPM / (Deaths + 1)) by Role",
    labels={"position": "Role", "effectiveness": "Effectiveness"},
```

```
color="position"
fig.update_layout(
    plot_bgcolor="#232323", paper_bgcolor="#232323",
    font=dict(color="white")
fig.show()
fig.write html(
    "/Users/michaelluo/Desktop/LOL_Analysis/"
    "assets/effectiveness boxplot.html",
    include_plotlyjs="cdn"
grouped_stats = df.groupby("position").agg({
    "dpm": ["mean", "median"],
    "kills": ["mean", "median"],
    "deaths": ["mean", "median"],
    "assists": ["mean", "median"],
    "effectiveness": ["mean", "median"]
})
grouped_markdown = grouped_stats.to_markdown()
grouped md path = os.path.join(assets dir, "lol grouped stats.md")
with open(grouped_md_path, "w") as f:
    f.write(grouped markdown)
grouped html = markdown.markdown(
    grouped_markdown, extensions=["tables"]
grouped_html_path = os.path.join(
    assets_dir, "lol_grouped_stats.html"
with open(grouped_html_path, "w") as f:
    f.write(
        f"<html><body><h1>Grouped Stats by Role</h1>"
        f"{grouped html}</body></html>"
    )
```

0.3 Step 3: Assessment of Missingness

```
[5]: # This script analyzes missing data in the LoL dataset.
# It calculates missing 'playername' & 'playerid' per role.
# A permutation test checks if 'playername' missingness
# significantly affects 'opp_killsat25'. Results are saved.
import pandas as pd, numpy as np, os
import plotly.graph_objects as go, plotly.express as px
```

```
a = pd.read_csv(
    "2024_LoL_esports_match_data_from_OraclesElixir.csv",
   low_memory=False
missing_data_analysis = a[[
    "position", "playername", "playerid", "opp_killsat25"
]]
playername_nan_counts = (
   missing_data_analysis.groupby("position")["playername"]
    .apply(lambda x: x.isnull().sum()).to_frame(name="playername")
)
playername_nan_proportions = (
   playername_nan_counts / playername_nan_counts["playername"].sum()
playerid_nan_counts = (
   missing_data_analysis.groupby("position")["playerid"]
    .apply(lambda x: x.isnull().sum()).to_frame(name="playerid")
)
playerid_nan_proportions = (
   playerid_nan_counts / playerid_nan_counts["playerid"].sum()
def permutation_test_missingness(
   df, col_x, col_y, num_permutations=1000
):
   observed_stat = (
       np.mean(df[df[col_x].isnull()][col_y]) -
       np.mean(df[df[col_x].notnull()][col_y])
   permuted_statistics = []
   for _ in range(num_permutations):
       permuted_x = df[col_x].sample(frac=1, replace=False).values
       permuted_df = df.copy()
       permuted_df[col_x] = permuted_x
       permuted_stat = (
            np.mean(permuted_df[permuted_df[col_x].isnull()][col_y]) -
            np.mean(permuted_df[permuted_df[col_x].notnull()][col_y])
       permuted_statistics.append(permuted_stat)
```

```
p_value = np.mean(
        np.abs(permuted_statistics) >= np.abs(observed_stat)
    return observed_stat, permuted_statistics, p_value
col_x, col_y = "playername", "opp_killsat25"
observed_stat, permuted_stats, p_val = (
    permutation_test_missingness(missing_data_analysis, col_x, col_y)
fig_perm = px.histogram(
    x=permuted_stats, nbins=50,
    title=f"Permutation Test: {col_y} when {col_x} is Missing"
)
fig_perm.add_vline(
    x=observed_stat, line_dash="dash", line_color="red",
    annotation_text=f"Observed Stat: {observed_stat:.2f}"
)
fig_perm.update_layout(
    paper_bgcolor="#232323", plot_bgcolor="#232323",
    font=dict(color="white")
)
fig_perm.show()
fig_perm.write_html(
    "/Users/michaelluo/Desktop/LOL_Analysis/assets/"
    "missing_permutation.html", include_plotlyjs="cdn"
)
print(f"Observed Statistic: {observed_stat:.4f}")
print(f"P-value: {p_val:.4f}")
if p_val < 0.05:</pre>
    print(
        f"Missingness of '{col_x}' significantly affects '{col_y}' "
        "(p < 0.05)."
else:
    print(
        f"Missingness of '{col_x}' does not significantly affect '{col_y}' "
        "(p >= 0.05)."
    )
y_missing = missing_data_analysis[
```

```
missing_data_analysis[col_x].isnull()
][col_y]
y_not_missing = missing_data_analysis[
    missing_data_analysis[col_x].notnull()
][col_y]
fig_dist = go.Figure()
fig_dist.add_trace(
    go.Histogram(x=y_missing, name=f"{col_y} when {col_x} is Missing")
fig_dist.add_trace(
    go.Histogram(x=y_not_missing, name=f"{col_y} when {col_x} is Not Missing")
fig_dist.update_layout(
    barmode="overlay",
    title=f"Distribution of {col_y} by Missingness of {col_x}",
    paper_bgcolor="#232323", plot_bgcolor="#232323",
    font=dict(color="white")
)
fig_dist.update_traces(opacity=0.75)
fig_dist.show()
fig_dist.write_html(
    "/Users/michaelluo/Desktop/LOL_Analysis/assets/"
    "distribution_missing.html", include_plotlyjs="cdn"
)
```


Observed Statistic: 7.1241
P-value: 0.0000
Missingness of 'playername' significantly affects 'opp_killsat25' (p < 0.05).

0.4 Step 4: Hypothesis Testing

```
[6]: # Conducts a permutation test to compare effectiveness between
     # mid and bot positions, visualizing the distribution of differences.
     df_mid = df[df["position"] == "mid"]["effectiveness"].values
     df_adc = df[df["position"] == "bot"]["effectiveness"].values
     obs_diff = np.mean(df_mid) - np.mean(df_adc)
     num_permutations = 1000
     perm_diffs = []
     for _ in range(num_permutations):
         shuffled = np.random.permutation(df["effectiveness"].values)
         mid_perm = shuffled[:len(df_mid)]
         adc_perm = shuffled[len(df_mid): len(df_mid) + len(df_adc)]
         perm_diffs.append(np.mean(mid_perm) - np.mean(adc_perm))
     p_value = np.mean(np.array(perm_diffs) >= obs_diff)
     fig = go.Figure()
     fig.add_trace(
         go.Histogram(
             x=perm_diffs, nbinsx=30, marker_color="blue",
             opacity=0.7, name="Permutation Differences"
         )
     )
     fig.add_trace(
         go.Scatter(
             x=[obs_diff, obs_diff], y=[0, 100], mode="lines",
             line=dict(color="red", dash="dash"),
             name=f"Observed Diff: {obs_diff:.3f}"
```

```
fig.update_layout(
    title="Permutation Test Distribution",
    xaxis_title="Difference in Means (Mid - ADC)",
    yaxis_title="Frequency",
    showlegend=True,
    plot_bgcolor="#232323",
    paper_bgcolor="#232323",
    font=dict(color="white")
)

fig.show()

fig.write_html(
    "/Users/michaelluo/Desktop/LOL_Analysis/assets/"
    "permutation_test.html",
    include_plotlyjs="cdn"
)
```


0.5 Step 5: Framing a Prediction Problem

```
[7]: #Prediction Problem: We want to identify the role of the player #given their post-game data. This will imply for us to do a #classification model.
```

0.6 Step 6: Baseline Model

```
[8]: # Loads and preprocesses LoL esports data, engineers an
# effectiveness feature, and trains a RandomForest model
# to classify player positions based on in-game stats.
df = pd.read_csv(
    "2024_LoL_esports_match_data_from_OraclesElixir.csv",
```

```
low_memory=False
)
df = df[~df["position"].str.contains(
    "team", case=False, na=False
)]
df.index = range(len(df))
df["effectiveness"] = df["dpm"] / (df["deaths"] + 1)
df.dropna(
    axis=1, thresh=int(0.7 * len(df)), inplace=True
target = "position"
selected_features = [
    "kills", "deaths", "effectiveness", "teamkills",
    "monsterkills", "minionkills"
]
X = df[selected_features]
y = df[target]
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
pipeline = Pipeline([
    ("scaler", StandardScaler()),
    ("classifier", RandomForestClassifier(
        n_estimators=100, random_state=42
    ))
])
pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.4f}")
print(classification_report(y_test, y_pred))
Accuracy: 0.6753
              precision recall f1-score
                                              support
                   0.47
                             0.48
                                       0.47
                                                 3928
         bot
                   1.00
                             1.00
                                       1.00
                                                 3962
         jng
```

0.40

3976

0.42

mid

0.39

sup	0.97	0.95	0.96	3899
top	0.51	0.56	0.53	3831
accuracy			0.68	19596
macro avg	0.68	0.68	0.67	19596
weighted avg	0.68	0.68	0.67	19596

0.7 Step 7: Final Model

```
[9]: # Loads and processes LoL esports data, engineers new features,
     # tunes a RandomForest model using GridSearchCV, evaluates it
     # with a confusion matrix, and saves predictions and reports.
     import pandas as pd
     import numpy as np
     from sklearn.pipeline import Pipeline
     from sklearn.preprocessing import StandardScaler
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.model_selection import (
         train_test_split, GridSearchCV
     from sklearn.metrics import (
         confusion_matrix, classification_report
     import plotly.figure_factory as ff
     import plotly.io as pio
     df = pd.read_csv(
         "2024_LoL_esports_match_data_from_OraclesElixir.csv",
         low_memory=False
     )
     df = df[~df["position"].str.contains(
         "team", case=False, na=False
     )]
     df.index = range(len(df))
     df["kill_participation"] = (
         (df["kills"] + df["assists"]) / df["teamkills"]
     df["gold_efficiency"] = df["earnedgold"] / (df["deaths"] + 1)
     df["wards_placed"] = df["wardsplaced"]
     target = "position"
     selected_features = [
         "kills", "deaths", "kill_participation",
         "gold_efficiency", "monsterkills",
```

```
"minionkills", "wards_placed"
]
df = df[selected_features + [target]]
X = df[selected_features]
y = df[target]
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
pipeline = Pipeline([
    ("scaler", StandardScaler()),
    ("classifier", RandomForestClassifier(random_state=42))
1)
param_grid = {
    "classifier_n_estimators": [100, 200],
    "classifier_max_depth": [None, 10, 20],
    "classifier_min_samples_split": [2, 5]
}
grid_search = GridSearchCV(
    pipeline, param_grid, cv=5, scoring="accuracy",
    n_jobs=-1, verbose=1
grid_search.fit(X_train, y_train)
tuned_pipeline = grid_search.best_estimator_
y_pred = tuned_pipeline.predict(X_test)
df_test = X_test.copy()
df_test["actual_position"] = y_test.values
df_test["predicted_position"] = y_pred
df_test.to_csv(
    "modified_LoL_esports_data_with_predictions.csv",
    index=False
)
cm = confusion_matrix(y_test, y_pred)
classes = list(np.unique(y_test))
fig = ff.create_annotated_heatmap(
    z=cm, x=classes, y=classes, colorscale="blues"
)
```

```
fig.update_layout(
   title="Confusion Matrix for Final Model",
   xaxis_title="Predicted",
   yaxis_title="Actual",
   paper_bgcolor="#232323",
   plot_bgcolor="#232323",
   font=dict(color="white")
)
pio.write_html(
   fig,
   file="/Users/michaelluo/Desktop/LOL_Analysis/assets/"
         "confusion_matrix.html",
   include_plotlyjs="cdn"
fig.show()
report = classification_report(y_test, y_pred)
print(report)
report_html = (
   f"f"color: white; background-color: #232323;"
   f" padding: 10px;'>{report}""
)
with open(
    "/Users/michaelluo/Desktop/LOL_Analysis/assets/"
   "classification_report.html", "w"
) as f:
   f.write(report_html)
```

Fitting 5 folds for each of 12 candidates, totalling 60 fits

		precision	recall	f1-score	support
	bot	0.53	0.51	0.52	3928
	jng	1.00	1.00	1.00	3962
	${\tt mid}$	0.47	0.35	0.40	3976
	sup	0.97	0.95	0.96	3899
	top	0.51	0.69	0.59	3831
accui	racy			0.70	19596
macro	avg	0.70	0.70	0.69	19596
weighted	avg	0.70	0.70	0.69	19596

0.8 Step 8: Fairness Analysis

```
[]: # Performs a permutation test to compare precision scores
     # between high and lower-performing groups, visualizing results.
     import pandas as pd
     import numpy as np
     from sklearn.metrics import precision_score
     import matplotlib.pyplot as plt
     import plotly.graph_objects as go
     a = pd.read_csv(
         "modified_LoL_esports_data_with_predictions.csv"
     def group_assignment(x):
         return ("high_performing" if x in ["sup", "jng"]
                 else "lower_performing")
     permutation_df = a.copy()
     permutation df["group"] = (
         permutation_df["actual_position"].apply(group_assignment)
     precision_high_performing = precision_score(
         permutation_df[permutation_df["group"] == "high_performing"]
         ["actual_position"],
         permutation_df[permutation_df["group"] == "high_performing"]
         ["predicted_position"],
         average="macro"
     )
     precision_low_performing = precision_score(
         permutation_df[permutation_df["group"] == "lower_performing"]
         ["actual_position"],
         permutation_df[permutation_df["group"] == "lower_performing"]
         ["predicted_position"],
         average="macro"
     )
     observed_difference = (
         float(precision_high_performing) -
         float(precision_low_performing)
     perm_num = 1000
     permutation_differences = []
```

```
for _ in range(perm_num):
    shuffled_groups = np.random.permutation(
        permutation_df["group"]
    permutation_df["shuffled_group"] = shuffled_groups
    precision_high_shuffled = precision_score(
        permutation_df[permutation_df["shuffled_group"]=="high_performing"]
        ["actual position"],
        permutation_df[permutation_df["shuffled_group"]=="high_performing"]
        ["predicted position"],
        average="macro"
    )
    precision_low_shuffled = precision_score(
        permutation_df[permutation_df["shuffled_group"] == "lower_performing"]
        ["actual_position"],
        permutation df[permutation df["shuffled group"] == "lower performing"]
        ["predicted_position"],
        average="macro"
    )
    perm_difference = (
        float(precision high shuffled) -
        float(precision_low_shuffled)
    permutation_differences.append(perm_difference)
p_value = np.mean(
    np.array(permutation_differences) >= observed_difference
)
plt.hist(permutation_differences, bins=30)
plt.axvline(x=observed_difference, color="r", linestyle="--")
plt.xlabel("Difference in Precision (Permuted)")
plt.ylabel("Frequency")
plt.title("Permutation Test Results")
plt.show()
fig = go.Figure()
fig.add_trace(go.Histogram(
    x=permutation differences, nbinsx=60,
    name="Permutation Differences"
))
fig.add_vline(
```

```
x=observed_difference, line_dash="dash",
    line_color="red", name="Observed Difference"
)

fig.update_layout(
    title="Permutation Test Results",
        xaxis_title="Difference in Precision (Permuted)",
        yaxis_title="Frequency",
        bargap=0.1
)

fig.show()

print(permutation_differences)
```

[]:

This notebook was converted with convert.ploomber.io