运筹学第十二次作业参考答案

- 1. (1) 用 Floyd 算法计算所有点间的最短路
 - (2) 用 Bellman-Ford-Moore 算法和 Dijkstra 算法求解 v1 点到 v6 点的最短路

(1)

	1	2	3	4	5	6
1	0 2 3 6 ∞	2	3	6	∞	∞
2	2	0	∞	∞	4	6
3	3	∞	0	2	∞	∞
4	6	∞	2	0	1	3
5	∞	4	∞	1	0	∞
6	∞	6	∞	3	∞	0

加入 2									
	1	2	3	4	5	6			
1	0	2	3	6	6	8			
2	2	0	5	8	4	6			
3	3	5	0	2	9	11			
4	6	8	2	0	1	3			
5	6	4	9	1	0	10			
6	8	6	11	3	10	0			

加入 1									
	1	2	3	4	5	6			
1	0	2	3	6	∞	∞			
2	2	0	5	8	4	6			
3	3	5	0	2	∞	∞			
4	6	8	2	0	1	3			
5 6	∞	4	∞	1	0	∞			
6	∞	6	∞	3	∞	0			
'									
	加入3								

加入 3									
	1	2	3	4	5	6			
1 2	0	2	3	5	6	8			
2	2	0	5	7	4	6			
3	3	5	0	2	9	11			
4	5	7	2	0	1	3			
5	6	4	9	1	0	10			
6	8	6	3 5 0 2 9 11	3	10	0			

加入 4								
	1	2	3	4	5			
1 2	0	2	3	5	6			
2	2	0	5	7	4			

7 2 0

JП	λ	5
IJΗ	$/ \setminus$	Э

	1	2	3	4	5	6
1	0	2	3	5 5 2 0 1 3	6	8
2	2	0	5	5	4	6
3	3	5	0	2	3	5
4	5	5	2	0	1	3
5	6	4	3	1	0	4
6	8	6	5	3	4	0

加入6

	1 0 2 3 5 6 8	2	3	4	5	6
1	0	2	3	5	6	8
2	2	0	5	5	4	6
3	3	5	0	2	3	5
4	5	5	2	0	1	3
5	6	4	3	1	0	4
6	8	6	5	3	4	0

(2)

Bellman-Ford-Moore:

			3					
k = 1 $k = 2$ $k = 3$	0	2	3	6				
k = 2	0	2	3	5	6	8		
k = 3	0	2	3	5	6	8		
$f_3(v_i) = f_2(v_i)$, $\forall i$,停止								

Dijkstra:

	1	2	3	4	5	6	加入
k = 1	0	2	3	6			v_1v_2
k = 2	0	2	3	6	6	8	v_1v_3
k = 3	0	2	_	5	6	8	v_3v_4
k = 4	0	2	3	5	6	8	v_4v_5 或 v_2v_5
k = 5	0	2	3	5	6	8	v_4v_6 或 v_2v_6

 v_1 到 v_6 的最短距离为 8,路径为 1->2->6 或 1->3->4->6

2. 分别用 Kruskal 算法和 Prim 算法求下图的最小生成树。

解:

Kruskal 算法:

Prim 算法:

	71 14.											
а	b	С	d	е	f	g	h	i	j	k	1	加入
0	3	∞	∞	1	6	8	∞	∞	∞	8	8	ae
0	3	∞	∞	1	4	8	∞	25	15	8	8	ab
0	3	15	∞	1	2	4	∞	25	15	8	8	bf
0	3	15	∞	1	2	4	6	25	7	10	∞	bg
0	3	5	∞	1	2	4	6	25	7	4	30	gk
0	3	5	∞	1	2	4	6	25	4	4	20	kj
0	3	5	∞	1	2	4	6	20	4	4	20	cg
0	3	5	2	1	2	4	6	20	4	4	20	cd
0	3	5	2	1	2	4	5	20	4	4	20	dh
0	3	5	2	1	2	4	5	20	4	4	10	hl
0	3	5	2	1	2	4	5	20	4	4	10	ij

3. 修改下图 Floyd 算法,使得 k 循环为最内层循环。使用修改后的算法重新计算 第 1 题的 (1),并解释修改后的算法为什么可行或为什么不可行。

```
1 int d[MAXN][MAXN]; // d[u][v] 表示从u -> v的权值 不存在的时候为0
2 int V; // 顶点个数
3 
4 void Floyd()
5 {
6 for(int k = 0;k < V;k++)
7 for(int i = 0;i < V;i++)
8 for(int j = 0;j < V;j++)
9 d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
10 }
```

修改后重新计算第1题的(1),结果不变。

但是这是因为图中任意两点间最短通路数≤ 2,对一般的图,d[i][j]计算时 k 相关的路径信息可能还未更新,从而导致计算错误。