

Machbarkeitsstudie: Smart Warehouse

Echtzeit-Objektdetektoren im Vergleich Studienarbeit

im Rahmen der Prüfung zum Bachelor of Science (B.Sc.)

des Studienganges Angewandte Informatik an der Dualen Hochschule Baden-Württemberg Karlsruhe

von

Felix Hausberger und Robin Kuck

Oktober 2019 - Mai 2019

-Sperrvermerk-

Abgabedatum: 18. Mai 2020

Bearbeitungszeitraum: 30.09.2019 - 18.05.2020

Matrikelnummer, Kurs: 2773463, 4409176, TINF17B2

Ausbildungsfirma: SAP SE

Dietmar-Hopp-Allee 16

69190 Walldorf, Deutschland

Gutachter an der DHBW: PD Dr.-Ing. Markus Reischl

Eidesstattliche Erklärung

Wir versicheren hiermit, dass wir unsere Studienarbeit mit dem Thema:

Machbarkeitsstudie: Smart Warehouse

gemäß § 5 der "Studien- und Prüfungsordnung DHBW Technik" vom 29. September 2017 selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben. Die Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht.

Wir versicheren zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt

Karlsruhe, den 2. November 2019

Gez. Felix Hausberger und Robin Kuck

Hausberger, Felix und Kuck, Robin

Ι

Abstract

- English -

In this thesis the object detectors Regional Convolutional Neural Networks, You Only Look Once and Single Shot MultiBox Detector are compared for precision, reactivity and training behaviour and examined for their potential for industrial use. The background scenario of the Smart Warehouse offers live video data of a drone with goods in a warehouse, which are to be classified and localized in real time. In the future, this should make it possible to carry out inventories and inventory analyses of a warehouse in a time-and cost-efficient manner conserving resources.

The goal of this feasibility study is to find out whether the *Smart Warehouse* scenario is technically feasible and economically reasonable. In addition, the focus is also on the object detectors themselves and their differences in architecture and behavior in the *Smart Warehouse* environment.

Abstract

- Deutsch -

In dieser Arbeit werden die Objektdetektoren Regional Convolutional Neural Networks, You Only Look Once und Single Shot MultiBox Detector nach Präzision, Reaktionsvermögen und Trainingsverhalten miteinander verglichen und auf deren Potential zum industriellen Einsatz untersucht. Das Hintergrundszenario des Smart Warehouses bietet dabei Live-Video Daten einer Drohne mit Warengegenständen in einem Warenhaus, die in Echtzeit klassifiziert und lokalisiert werden sollen. Dadurch sollen in Zukunft in der Industrie Inventuren und Bestandsanalysen eines Warenhauses zeit- und kostengünstig sowie ressourcenschonend ermöglicht werden können.

Diese Machbarkeitsstudie hat zum Ziel herauszufinden, ob das Szenario des *Smart Warehouse* technisch umsetzbar sowie wirtschaftlich sinnvoll ist. Zusätzlich liegt der Fokus ebenso auf den Objektdetektoren selbst und deren Unterschiede hinsichtlich Architektur und Verhalten im *Smart Warehouse* Umfeld.

Inhaltsverzeichnis

A۱	ürzungsverzeichnis	VI
ΑI	ildungsverzeichnis	VII
Fo	nelverzeichnis	VIII
Li	enverzeichnis	IX
0	orwort /	1
1	inführung .1 Forschungsumfeld	2 2 3 3
2	Grundlagen und Forschungsstand.1 Neuronale Netze2 Hyperparameter3 Objektdetektoren4 Verwendete Bibliotheken5 Compute Unified Device Architecture	5 9 16 25 25
3	Konzeption .1 Bewertungskriterien	26 26 26 26
4	Realisierung 1 Trainieren der Objektdetektoren	27 27 27 27
5	rgohnisso	28

6 Bewertung	29
7 Zusammenfassung und Ausblick	30
Literaturverzeichnis	x
A Anhang	XI

Abkürzungsverzeichnis

ANN Artificial Neural Network

CNN Convolutional Neural Network

COCO Common Objects in Context

LReLU Leaky Rectified Linear Unit

PReLU Parametric Rectified Linear Unit

PascalVOC Pascal Visual Object Classes

R-CNN Regional Convolutional Neural Network

ReLU Rectified Linear Unit

SSD Single Shot MultiBox Detector

YOLO You Only Look Once

Abbildungsverzeichnis

2.1	Linear Threshold Unit	b
2.2	Das einschichtige Perzeptron	7
2.3	Gradientenverfahren	1
2.4	Auswirkung unterschiedlicher Lernraten	3
2.5	Sigmoid und Tangens Hyperbolicus	4
2.6	ReLU-Aktivierungsfunktionen	5
2.7	ELU 1	5
2.8	Convolutional Layer	7
2.9	Zero-Padding	8
2.10	Feature Maps	9
2.11	Pooling Layer	0
2.12	SSD Grundprinzip	1
2.13	Bounding Boxes	1
2.14	SSD Architektur	2
2.15	Intersection over Union	3
2.16	Vergleich SSD	4

Formelverzeichnis

2.1	Die Heaviside-Funktion	6
2.2	Die Softmax-Funktion	6
2.3	Die RMSE-Funktion	8
2.4	Neuberechnung der Gewichtungsmatrix durch partielle Differentiation	8
2.5	Superpositionsprinzip anhand der Varianz	10
2.6	Standardverteilung nach Xavier Initialisierung	10
2.7	Momentum Optimierung	13
2.8	Die Smooth L1 Funktion	22

Listenverzeichnis

Smart Warehouse Vorwort

0. Vorwort

Besonderen Dank ist an unseren Betreuer PD Dr. -Ing. Markus Reischl auszusprechen, ohne den die folgenden Forschungsergebnisse nicht zustande gekommen wären. Auch dem Informatik Labor unter Enrico Hühneborg der DHBW ist für die nötige finanzielle Unterstützung zum Erwerb der Drohne zu danken.

Smart Warehouse Einführung

1. Einführung

1.1. Forschungsumfeld

Einen Teilbereich des maschinellen Lernens (engl.: machine learning) stellt das *Deep Learning* dar, welches auf künstlichen neuronalen Netzen (engl.: artificial neural networks) (ANNs) basiert [1, S. 253]. Unter einer Vielzahl von Typen von ANNs wie Autoencodern, Deep Boltzmann Machines oder rekurrenten neuronale Netzen befindet sich ebenso die Klasse der *Convolutional Neural Networks* (CNNs), welche hauptsächlich zur Lösung von Klassifikationsproblemen in der Audio-, Text- und Bildverarbeitung genutzt werden [2].

Ein Forschungsfeld im *Deep Learning* stellen Objektdetektoren dar, welche basierend auf CNNs neben Bildklassifikationsproblemen ebenso in der Lage sind, Lokalisationsprobleme zu lösen. Solchen Objektdetektoren werden in der heutigen Zeit immer mehr Bedeutung zugesprochen angesichts neuer Herausforderungen wie autonomen Fahren, automatisierter industrieller Verarbeitung oder aber auch staatlicher Überwachung. Verschiedene Ansätze werden zur Realisierung von Objektdetektoren verwendet, unter anderem Netzarchitekturen wie *You Only Look Once* (YOLO), *Single Shot MultiBox Detector* (SSD) oder *Regional Convolutional Neural Networks* (R-CNN).

Gerade in Zeiten des industriellen Wandels in Richtung Industrie 4.0 können solche Objektdetektoren ein großes Optimierungspotential für bestehende Industrieszenarien bieten, beispielsweise in der Lagerhaltung und Logistik. Kombiniert mit einer autonomen Drohne können Objektdetektoren es ermöglichen, ohne menschliche Hilfe Inventuren und Bestandsprüfungen in einem Lager- oder Warenhaus durchzuführen. Start-up Unternehmen wie doks. innovation werben bereits mit ähnlichen Lösungen, die 80% Zeiteinsparung und 90%Kostensenkung versprechen [3]. Lösungen wie inventAIRyX beschränken sich allerdings speziell auf Lagerhäuser, in denen die verpackten Waren mittels Sensoren identifiziert werden, was Großhändler mit Warenhäusern wie Baumarkt oder Selgros ausschließt. Statt Waren mittels RFID Chips oder Barcodes zu identifizieren, soll in dieser Arbeit der Einsatz von Objektdetektoren für dieses Szenario evaluiert werden.

Smart Warehouse Einführung

Wie sich die unterschiedlichen Objektdetektoren unter Echtzeitvoraussetzungen im Betrieb verhalten, soll anhand des Industriebeispiels *Smart Warehouse* innerhalb dieser Arbeit untersucht werden.

1.2. Problemstellung und Motivation

Das Smart Warehouse beschreibt ein Warenhaus, welches unter Einsatz einer Drohne in der Lage sei soll, Inventuren und Bestandsprüfungen weitgehend ohne menschliche Hilfe durchzuführen. Das Live-Bild der Drohne soll von den Objektdetektoren dazu genutzt werden, Warengegenstände zu lokalisieren und klassifizieren.

Neben der Frage, ob ein solches Industrieszenario überhaupt umsetzbar und wirtschaftlich sinnvoll ist, sollen die Objektdetektoren in diesem Anwendungsszenario nach verschiedenen Kriterien miteinander verglichen und beurteilt werden. Diese Kriterien lassen sich hauptsächlich in die Kategorien Präzision, Reaktionsvermögen und Trainingsverhalten untergliedern und werden später genauer eingeführt. Dadurch lassen sich Aussagen darüber treffen, ob nach dem momentanen Forschungsstand um Objektdetektoren solche das Potential bieten, industriell eingesetzt zu werden.

Falls die Machbarkeitsstudie des *Smart Warehouse* glückt, so kann der Industrie ein kostengünstiges, zeitsparendes und ressourcenschonendes Modell zur Inventurverwaltung eines Warenhauses angeboten werden.

1.3. Vorgehensweise und Zielsetzung

Zunächst muss sich mit den theoretischen Grundlagen von CNNs und Objektdetektoren auseinander gesetzt werden. Hierzu ist zunächst eine Einführung in neuronale Netz erforderlich, darunter zu Perzeptronen, dem Gradientenverfahren, dem Backpropagation Algorithmus und Hyperparametern zum Trainieren eines neuronalen Netzes.

Nachdem kurz auf den Grundbaustein moderner Objektdetektoren eingegangen wird, den CNNs, können anschließend die Funktionsweisen und Architekturen der drei miteinander verglichenen Objektdetektoren YOLO, SSD und Detektoren der R-CNN Familie erläutert werden. Hier ist zu bemerken, dass unterschiedliche Evolutionsstufen der drei

Smart Warehouse Einführung

Detektoren zu betrachten sind.

Auch bisherige industrielle Einsatzfelder von Objektdetektoren sollen betrachtet werden, bevor technische Grundlagen zum Aufsetzen und Trainieren der drei Modelle näher betrachtet werden.

In der Konzeptionsphase sollen zunächst die Vergleichskriterien eingeführt werden und deren Metriken anschließend für initiale Benchmarkdatensätze für jeden Objektdetektor ermittelt werden. Hierzu wird auf die Datensätze Pascal Visual Object Classes (Pascal-VOC), Common Objects in Context (COCO) und ImageNet zurückgegriffen. Anschließend wird der Datensatz für das Smart Warehouse Szenario eingeführt.

In der Realisierung werden die Herausforderungen zur Steuerung und Anbindung der Drohne betrachtet und zudem die Objektdetektoren auf die realen Datensätze trainiert. Auch die Entwicklung der Webapplikation zur Visualisierung des Live-Bildes und der erkannten Objekte wird Bestandteil dieses Kapitels sein. Die Ergebnisse der Realisierungsphase werden im folgenden Kapitel dargestellt.

Ziel der Arbeit ist es Aussagen über die Fähigkeit von Objektdetektoren zum Einsatz in der Industrie zu treffen, indem eine Bewertung der Verhaltensweisen der Objektdetektoren nach den eingeführten Bewertungskriterien durchgeführt wird. Auch wirtschaftliche Gesichtspunkte werden in diesem Kapitel nicht außer Acht gelassen.

Zuletzt wird das Wesen der Arbeit nochmals kurz zusammengefasst und anschließend auf mögliche Verbesserungen und Ausblicke in die Zukunft aufmerksam gemacht.

2. Grundlagen und Forschungsstand

Im folgenden Kapitel soll sich speziell mit den Architekturen der unterschiedlichen Objektdetektoren auseinander gesetzt werden und wie sich diese voneinander abgrenzen. Außerdem wird grundlegendes Wissen über neuronale Netze und wie diese "lernen" vermittelt, um die späteren Optimierungsverfahren an den Objektdetektoren zu verstehen. Zuletzt werden technische Grundlagen für die Programmierung des *Smart Warehouse* Szenarios vermittelt.

2.1. Neuronale Netze

Ein neuronales Netz bildet die Grundlage des *Deep Learnings* [1, S. 253]. Zunächst soll die einfachste Architektur eines neuronalen Netzes, das Perzeptron [1, S. 257], exemplarisch erklärt werden als auch der Lernprozess eines maschinellen Lernmodells an sich, um darauf basierend die Auswirkungen von Hyperparametern auf den Lernprozess des Modells zu erklären.

Das Perzeptron

Der Aufbau eines typischen Perzeptrons besteht aus einer order mehreren Schichten sogenannter *Linear Threshold Units* (LTU) wie in Abbildung 2.1 dargestellt.

Es besteht aus n Eingängen mit $x_i \in \mathbb{Q}$, die im Inputvektor x zusammengefasst werden. Jeder Eingang wird mit einem Gewicht w_i aus dem Gewichtsvektor w versehen [1, S. 257 f.]. Die LTU berechnet das Skalarprodukt $w^T \circ x$ aller Eingänge x mit ihren Gewichten w und wendet anschließend auf das Ergebnis z eine Aktivierungsfunktion an [1, S. 257 f.]. Das Ergebnis $h_w(x)$ kann anschließend als Eingabe für ein weiteres Perzeptron dienen. Die einfachste Aktivierungsfunktion für ANNs ist die Heaviside-Funktion (siehe Formel 2.1) [1, S. 258 ff.]. Falls eine Klassifizierung mit Wahrscheinlichkeiten vorliegen soll, so ist die letzte Schicht eines Perzeptrons meist mit der Softmax-Funktion implementiert (siehe Formel 2.2), die den Wert des j-ten LTUs einer Schicht mit allen anderen n Werten

Abbildung 2.1.: Linear Threshold Unit [4]

der LTUs derselben Schicht ins Verhältnis setzt [1, S. 140 ff.]. Es gibt eine Vielzahl an möglichen Aktivierungsfunktionen, die im darauffolgenden Unterkapitel *Hyperparameter* betrachtet werden.

$$h_w(x) = heaviside(w^T \circ x) = heaviside(z) =$$

$$\begin{pmatrix} w_1 & w_2 & \dots & w_n \end{pmatrix} \circ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}) = \begin{cases} 1 & \text{wenn } z \ge 0 \\ 0 & \text{wenn } z < 0 \end{cases}$$

$$(2.1)$$

$$h_w(x) = \sigma(z)_j = \frac{e^{z_j}}{\sum_{i=0}^n e^{z_i}}$$
 (2.2)

Die Aktivierung einer LTU hängt zusätzlich von einem Schwellwert θ ab, der durch

einen sogenannten *Bias* festgelegt wird. Dies ist die Gewichtung des letzten Eingangs, der standardmäßig den Wert 1 liefert. Wählt man die Gewichtung negativ, so ist es schwieriger die LTU zu aktivieren, während eine positive Gewichtung die Aktivierung vereinfacht. [1, S. 258]

Nun bilden ein oder mehrere Schichten solcher LTUs ein Perzeptron. Jede einzelne LTU ist dabei mit allen LTUs der vorherigen Schicht verbunden (siehe Abbildung 2.2) [1, S. 258 f.]. Die beiden LTUs zur Ausgabe können dabei Aussagen über eine Klassifikation von Daten anhand der Eingangsdaten treffen, während die LTUs im Input Layer wesentlich die Daten weiter reichen. Die Verbindungen zur ersten Schicht des Hidden Layer sind stets mit Eins belegt. Existiert keine verborgene Schicht, so bezeichnet man das ANN als einschichtiges Perzeptron, ab einer oder mehr verborgenen Schichten spricht man bereits von einem Multi-Layer Perzeptron (MLP), einem mehrschichtigen Perzeptron [1, S. 261 f.]. Ist das neuronale Netz optimal trainiert, so ist am Ende nur eines der LTUs zur Ausgabe aktiviert. Das folgende ANN ist zudem ein Beispiel für ein sogenanntes Feed Forward Network, bei dem die Auswertung der Daten von einer Schicht zur nächsten weitergereicht wird, ohne zu bereits besuchten Schichte zurückzukehren [1, S. 263].

Abbildung 2.2.: Das einschichtige Perzeptron [5]

Gradientenverfahren und Backpropagation

Um zu verstehen, wie ein neuronales Netz durch Training lernt, muss zunächst der Begriff der Kostenfunktion (engl.: cost function) eingeführt werden. Die Kostenfunktion ist ein Qualitätsmaß dafür, wie weit die Ausgabe einer LTU vom erwarteten Wert abweicht [1,

S. 112 ff.]. Angenommen man übergibt dem neuronalen Netz also einen Datensatz zur Klassifikation, so ist am Ende meist nicht nur eine LTU zu Ausgabe aktiviert, was auf eine eindeutige Klassifikation schließen würde, sondern meist mehrere zu einem frühen Stadium des neuronalen Netzes.

Eine oft genutzte Kostenfunktion ist die *Root Mean Squared Error Funktion* (RMSE) (siehe Formel 2.3) [1, S. 37 f.].

$$E(z,o) = \sqrt{\frac{1}{n} \sum_{k=0}^{n} ||z_k - o_k||^2} = \sqrt{\frac{1}{n} \sum_{k=0}^{n} (z_k - o_k)^2}$$
 (2.3)

Hierbei ist z der erwartete Ausgabevektor des Perzeptrons, während o die momentane Ausgabe darstellt. Da der erwartete Ausgabewert bekannt ist, spricht man auch von sogenanntem überwachtem Lernen [1, S. 8 f.]. Den Fehler der Abweichung dieser beiden Werte gilt es nun schrittweise zu minimieren. Um dies zu erreichen können drei Parameter angepasst werden [1, S. 112 ff.].

- 1. Die Gewichtung der Verbindungen zum Perzeptron
- 2. Der Bias zur Aktivierung der LTUs des Perzeptrons
- 3. Die Stärke der Aktivierung des vorherigen Perzeptrons

Hierbei wird das sogenannte *Gradientenverfahren* eingesetzt. Es berechnet in einem iterativen Prozess über mehrere Testdaten das globale Minimum der Kostenfunktion nach den Gewichtungen der Verbindungen und damit auch nach den Bias Werten, die natürlich ebenso Gewichtungen darstellen. Ergebnis eines Durchlaufs im Gradientenverfahren ist die Gewichtungsmatrix, die die Änderung der Gewichtung jeder einzelnen Verbindung eines Perzeptrons zu jeder LTU des Folgeperzeptrons angibt (siehe Formel 2.4) [1, S. 112 ff.].

$$w_{ijt} = w_{ijt-1} - \eta \frac{\partial E}{\partial w_{ij}}$$
 [4]

Das Gradientenverfahren eignet sich allerdings nur für stetig differenzierbare Funktionen ohne Plateaus. Somit können beispielsweise bei der Heaviside-Funktion als Aktivierungs-

funktion Probleme auftreten, da eine Ableitung der Kostenfunktion stets Null betragen würde, wohingegen bei der später eingeführten Sigmoid-Funktion im gesamten Definitionsbereich immer kleine Änderung der Gewichtungen zu verzeichnen wären. [1, S. 262]

Nun stellt sich auch der Vorteil von MSE als Kostenfunktion gegenüber anderen, durchaus komplexeren Kostenfunktionen heraus. Während MSE genau ein Minimum, das zugleich das globale Minimum der Funktion darstellt, besitzt, haben andere Kostenfunktionen im Gradientenverfahren das Problem, dass anstelle des globalen Minimums auch nur lokale Minima erreicht werden können [1, S. 114 f.]. Dies hat zur Folge, dass mehrere iterative Durchlaufe mit mehreren Testdatensätzen nötig werden, um durch unterschiedliche Startkonfigurationen die unterschiedlichen Minima miteinander vergleichen zu können und damit das globale Minimum herauszustellen.

Durch das Gradientenverfahren werden somit nur diejenigen Verbindungen verstärkt, die zum richtigen Ergebnis führen.

Nun bleibt nur noch die dritte Möglichkeit zur Minimierung der Kostenfunktion übrig, die Anpassung der Stärke der Aktivierung des vorherigen Perzeptrons. Zu diesem Problem veröffentlichten David E. Rumelhart, Geoffrey E. Hinton und Ronald J. Williams 1985 den sogenannten *Backpropagation-Algorithmus* [6]. Dieser berechnet mit Hilfe des Gradientenverfahren welchen Anteil am Fehler der Ausgabe jede LTU des letzten Perzeptrons hat und anschließend welcher Anteil davon wiederum auf das vorherige Perzeptron der vergorenen Schicht zurück zu führen ist. Das Gradientenverfahren wird solange wiederholt, bis die Eingangsschicht erreicht wurde, es berechnet also für jede LTU deren Anteil am Fehler des Ergebnisses [1, S. 261 f.].

Mit Hilfe des Gradientenverfahren im Backpropagation Algorithmus wird nun also das neuronale Netz durch mehrere iterative Durchläufe trainiert, wobei das Training als Anpassung der Gewichtungen einzelner Verbindungen zu verstehen ist.

2.2. Hyperparameter

Als Hyperparameter versteht man die Parameter, die zur anfänglichen Konfiguration des neuronalen Netzes als auch zur Konfiguration des Lernprozesses heran gezogen werden. Um im Laufe der Arbeit verstehen zu können, wie die Objektdetektoren auf Seiten der Netzarchitektur und des Lernverhaltens optimiert wurden, ist demnach ein kurzer Einblick in den Themenbereich der Hyperparameter von Nöten.

Anzahl der LTUs

Die Anzahl der LTUs im ANN ist dafür ausschlaggebend, wie hoch der Komplexitätsanspruch eines Klassifizierungsproblems sein darf, um noch vom ANN gelöst werden zu
können. Die Anzahl der LTUs hängt hauptsächlich von den Eingangsdaten ab. Über die
optimalste Anzahl an LTUs pro Schicht lässt sich allerdings nur schwer etwas vorhersagen. Generell gilt, dass bei gleicher Anzahl an LTUs tiefere Netze eine weitaus höheren
Parametereffizienz aufweisen als breitere Netze, da diese schneller gegen den gewünschten
Zustand konvergieren. Zudem lassen sie sich somit schneller und kostengünstiger trainieren. So müssten bei einem 2x32 Netz 1024 Gewichtungen angepasst werden, während es
bei einem 32x2 Netz dies nur 128 sind. [1, S. 271 f.]

Initialisierung der Gewichtungen

Auch stellt die Initialisierung der Gewichte eines ANNs zu Beginn des Trainingsprozesses eine berechtigte Frage dar. Falls keine bereits trainierten ANNs für ein Klassifikationsproblem vorliegen, so werden die Gewichtungen meist zufällig nach einer Normalverteilung gewählt [1, S. 271].

Dies hat allerdings zur Folge, dass nach der Berechnung der gewichteten Summen aller LTUs die Werte der folgenden Schicht nicht mehr normalverteilt sind, da für die Varianz das Superpositionsprinzip gilt (siehe Formel 2.5)

$$Var(X+Y) = VAR(X) + VAR(Y)$$
(2.5)

$$W \sim U\left[-\frac{\sqrt{6}}{\sqrt{n_i + n_{i+1}}}, \frac{\sqrt{6}}{\sqrt{n_i + n_{i+1}}}\right]$$
 (2.6)

Durch die größer werdende Standardabweichung können demnach Werte entstehen, die

weit über den Mittelwert von Null hinaus gehen. Dies kann wiederum dazu führen, dass der Gradientenabstieg während des Backpropagation-Verfahrens nur langsam vollzogen werden kann, da der Gradient bei bestimmten Aktivierungsfunktionen (siehe Abbildung 2.5) gegen Null konvergiert [1, S. 275 f.].

Eine Xavier Initialisierung umgeht das Problem der sogenannten schwindenden Gradienten, indem die Gewichte nach 2.6 gleichverteilt werden, wobei nj die Anzahl an LTUs der j – ten Schicht sind. [7, S. 253]

Auswahl des Gradientenverfahrens

Generell unterscheidet man zwischen drei verschiedenen Arten das Gradientenverfahren durchzuführen (siehe Abbildung 2.3):

Abbildung 2.3.: Gradientenverfahren [8]

Beim Batch Verfahren werden in einem Trainingsdurchlauf, auch Epoche genannt, alle vorhandenen Daten des Trainingsdatensatzes herangezogen, um einen Gradientenabstieg zu vollziehen. Dies ist bei großen Trainingsdatensätzen auffällig langsam, dafür aber hinsichtlich der Erreichung des lokalen Minimums sehr zielstrebig. [1, S. 116]

Das stochastische Gradientenverfahren führt nach jedem einzelnen Dateneintrag im Trainingsdatensatz einen Gradientenabstieg durch. Da nur wenige Daten des ANNs verän-

dert werden müssen, ist dieses Verfahren deutlich schneller, dafür aber unregelmäßiger hinsichtlich der Erreichung des Minimums. Oft wird das stochastische Gradientenverfahren verwendet, wenn nicht der komplette Trainingsdatensatz in den Hauptspeicher oder Grafikspeicher geladen werden kann. Diese Fähigkeit wird oft als *Out-of-Core* Fähigkeit bezeichnet. Es hat auch den Vorteil, besser das globale Minimum der Kostenfunktion aufzufinden, da bei lokalen Minima die Chance besteht, durch den unregelmäßigen Gradientenabstieg das lokale Minima wieder zu überwinden. [1, S. 118 f.]

Ein Kompromiss der beiden Verfahren bietet das Mini-Batch Verfahren, bei dem wiederholt Teilmengen des gesamten Datensatzes für einen Gradientenabstieg verwendet werden. Genauso wie das Batch Verfahren bietet das Mini-Batch Verfahren den Vorteil, die partiellen Ableitungen als Matrizenoperationen auf die Grafikkarten auszulagern, um die Performanz durch Parallelisierung zu steigern. [1, S. 121]

Lernrate

Die Lernrate η (siehe Formel 2.4) gibt an, wie groß die Sprünge zum globalen Minimum sein sollen und damit indirekt wie viele Iterationen benötigt werden, um das globale Minimum der Kostenfunktion zu erreichen. Ziel der Anpassung einer Lernrate ist es, mit möglichst wenig Iterationen und Testdaten die optimale Konstellation des neuronalen Netzes zu berechnen. Deshalb wird sie standardmäßig zu Beginn der Iterationen groß gewählt um sich dem Minimum schnell zu nähern während sie am Ende immer kleiner gewählt wird, um nicht über das globale Minimum hinaus zu gehen. Dieses Vorgehen wird als Simulated Annealing bezeichnet, während das Funktion zum Festlegen der Lernrate als Learning Schedule betitelt wird. [1, S. 113f]

Eine Veranschaulichung der Anpassungen der Lernrate findet sich in Abbildung 2.4.

Die Anzahl der Durchläufe wird zu Beginn des Verfahrens zunächst hoch angesetzt, das Verfahren wird aber genau dann gestoppt, sobald der Gradientenvektor unter eine gewisse Abbruchgrenze fällt. Zwar ist das globale Minimum zu diesem Zeitpunkt noch nicht erreicht, allerdings kann es auch nie vollkommen erreicht werden, da die für das Gradientenverfahren genutzten Aktivierungsfunktionen nie einen partiellen Ableitungswert gleich Null zulassen [1, S. 118, S. 272]. In diesem Sinne wird auch von *Toleranz* gesprochen.

Abbildung 2.4.: Auswirkung unterschiedlicher Lernraten [9]

Moment

Das Gradientenverfahren kann beschleunigt werden, indem während des Gradientenabstiegs frühere Gradienten Einfluss auf den nächsten Gradientenschritt nehmen. Es wird ein "Momentum"aufgebaut. Damit das Momentum allerdings nicht zu groß wird, beschränkt der Hyperparameter $\beta \in [0,1]$ die Größe des Momentums (siehe Formel 2.7). [1, S. 296]

$$m_{x} = \beta \cdot m_{x-1} + \eta \frac{\partial E}{\partial w_{ij}}$$

$$w_{ijt} = w_{ijt-1} - m$$
(2.7)

Die Momentum Optimierung kann dazu benutzt werden, das stochastische Gradientenverfahren bzw. Mini-Batch Verfahren zu beschleunigen und lokale Minima besser zu überwinden.

Anzahl an Epochen

Die Anzahl der Epochen beschreibt die Durchläufe durch einen bestimmten Trainingsdatensatz während der Trainingsphase. Ist die Anzahl zu hoch gewählt wird Gefahr gelaufen sogenanntes *Overfitting* des ANNs zu erreichen. Dies bedeutet ein fehlendes Abstraktionsvermögen des ANNs zu erreichen und damit alleinig eine richtige Erkennung der Trainingsdatensätze zu ermöglichen.

Aktivierungsfunktionen

Zwei bekannte und ähnliche Aktivierungsfunktionen sind die Sigmoid-Funktion und die Tangens Hyperbolicus Funktion (siehe Abbildung 2.5).

Abbildung 2.5.: Sigmoid und Tangens Hyperbolicus [10]

Da diese allerdings anfällig für das Problem schwindender Gradienten sind [1, S. 276], wird die Rectified Linear Unit (ReLU) bzw. Parametric/Leaky Rectified Linear Unit (PReLU/LRelU) Aktivierungsfunktion bevorzugt (siehe Abbildung 2.6).

Bei ReLU kann es während des Trainingsprozesses dazu kommen, dass LTUs nach dem Gradientenabstieg einen negativen Wert aufweisen, weshalb sie nicht weiter aktiviert

Abbildung 2.6.: ReLU-Aktivierungsfunktionen [11]

werden und für den Rest der Trainingsdauer "tot" sind. Um dies zu verhindern wurde LReLU dazu genutzt, um eine Reaktivierung zu ermöglichen, da auch für negative LTU Werte ein Gradient der Aktivierungsfunktion bestimmt werden kann. Bei LReLU ist die Steigung der Funktion im zweiten Quadranten statisch gewählt, während sie bei PReLU dynamisch von neuronalen Netz während des Trainingsprozesses selbst gelernt werden kann. [1, S. 280 f.]

Eine letzte Variante der Aktivierungsfunktionen beschreibt die ELU Funktion (siehe Abbildung 2.7).

Abbildung 2.7.: ELU [11]

Sie besitzt nicht nur die Eigenschaft schwindende Gradienten und tote LTUs zu verhindern, sondern ist im gesamten Definitionsbereich ebenso eine stetig differenzierbare Funktion, was das Gradientenverfahren beschleunigt. Als Standardwert für α wird oft Eins verwendet. Nachteil der ELU Funktion ist der erhöhte Rechenaufwand, was aber durch die schnellere Konvergenz kompensiert wird. [1, S. 280 f.]

2.3. Objektdetektoren

2.3.1. Convolutional Neural Networks

Ein CNN besteht aus zwei grundlegenden Bausteinen, den sogenannten Convolutional Layern und Pooling Layern.

Ein Convolutional Layer zeichnen sich unter anderem dadurch aus, dass jede LTU dieser Schicht nicht mit allen vorherigen LTUs der vorgegangenen Schicht verbunden ist, sondern nur mit einer festen, beschränkten Anzahl. Es ist also kein vollständig verbundenes neuronales Netz. Dies macht es möglich, dass auch große Bilder klassifiziert werden können, ohne dass die Anzahl an nötigen Verbindungen im ANN unüberschaubar groß wächst. Die folgenden LTUs der zweiten Schicht sind ebenfalls wiederum nur mit einem Ausschnitt vorangegangener Neuronen verbunden und fassen die erkannten, kleinteiligen Merkmale der ersten Schicht zu übergeordneten, zusammengesetzten und komplexeren Merkmalen zusammen. [1, S. 361]

Um allerdings Convolutional Layer genauer zu verstehen, ist anstelle einer eindimensionalen Darstellung eines Layers eine dreidimensionale Darstellung besser geeignet.

Zunächst kann ein zweidimensionale Bild als Matrix dargestellt werden, bei der jedes Element der Matrix den Grauwert eines Pixels zwischen 0 und 255 trägt. Die dadurch entstandene zweidimensionale Schicht bildet den Input-Layer mit einer LTU pro Pixel. Anschließend werden auf diese Schicht mehrere Filter angewandt, die die Gewichte des CNNs tragen und Muster aus dem Bild extrahieren. Die Stellen, die dem Muster ähnlich sind werden verstärkt, während Stellen, die nicht dem Muster entsprechen durch eine Nullgewichtung ausgelöscht werden. In Abbildung 2.8 ist ein 3x3 Pixel Filter mit dessen Anwendung dargestellt. Ein Filter besitzt die Größe des künstlichen Wahrnehmungsfeldes einer LTU. [1, S. 362 f.]

Abbildung 2.8.: Convolutional Layer [12]

Ein Filter wird dazu verwendet, jeden Pixel der Eingabeschicht auf die folgende Schicht abzubilden. Um keine Informationen zu verlieren und den Filter ebenso auf Randbereich anwendbar zu machen, wird oft ein sogenanntes Zero-Padding auf eine Schicht angewandt, bei dem die Randbereiche mit LTUs des Wertes 0 aufgefüllt werden (siehe Abbildung 2.9). [1, S. 362]

Falls eine gleich große folgende Schicht gewünscht ist, wird eine Schrittweite (engl.: stride) von 1 gewählt. Dies dient vor allem dazu kleinere Strukturen noch zu erkennen. Der Filter wird von einem Pixel zum direkt benachbarten Pixel bewegt und angewandt. In tieferen, fortgeschritteneren Schichten kann die Schrittweite auch größer als 1 gewählt werden, da hier bereits nach dem Anwenden mehrerer Filter feinere Muster erkannt wurden und diese nun zu größeren zusammengesetzt werden. Dabei verkleinert sich die resultierende Schicht. [1, S. 362 f.]

Das Ergebnis der Anwendung eines Filters wird als Feature-Map bezeichnet. Da mehrere Filter auf die gleiche Schicht angewandt werden, entstehen ebenso mehrere Feature Maps der Schicht. Stellt man sich diese Feature Maps übereinander gelagert vor, so entsteht der dreidimensionale, "faltungsbedingte" (engl.: convolutional) Charakter eines Convolutional Layers. Eine Schicht eines Convolutional Layers ist mit den entsprechen-

0	0	0	0	0	0
0	35	19	9 25		0
0	13	22	16	53	0
0	4	3	7	10	0
0	9	8	1	3	0
0	0	0	0	0	0

Abbildung 2.9.: Zero-Padding [13]

den Wahrnehmungsbereichen aller vorhergehenden Feature Maps des vorhergehenden Convolutional Layers verbunden (siehe Abbildung 2.10). [1, S. 363 f.]

Falls zusätzlich eine Farberkennung gewünscht ist, besitzt der Input Layer für jeden der drei Farbkanäle des RGB-Schemas eine Schicht, die Werte zwischen 0 und 255 in ihren LTUs tragen und den Stärken des Rot-, Grün- und Blaukanals entsprechen. [1, S. 364 f.]

Der Lernprozess bei der Bilderkennung beruht nun darauf, die optimalsten Filter für die gegebene Aufgabe zu finden und diese zu komplexen Mustern zusammen setzen zu können. [1, S. 363 f.]

Der zweite Grundbaustein eines CNN sind Pooling Layer. Ähnlich zu den Convolutional Layern ist auch hier jede LTU nur mit einer begrenzten Anzahl an LTUs des vorhergegangenen Layers verbunden, also nur mit dem lokalen Wahrnehmungsfeld. Der Hauptunterschied liegt aber darin, das keine Filter existieren, die die Eingaben unterschiedlich gewichten und dabei Muster erkennen, sondern stattdessen Aggregatfunktionen wie MAX() oder MEAN() dazu benutzt werden, um Eingaben zu verkleinern. So wird beispielsweise bei einem MAX-Pooling Layer mit Schrittweite größer als 1 der jeweils größte Wert des lokalen Wahrnehmungsfeld weitergereicht und durch die gewählte Schrittweite das vorherige Ergebnis verkleinert (siehe Abbildung 2.11), was mit einem Informationsverlust verbunden ist. Dies ist allerdings ein wesentlicher Schritt, um weiter abstrahieren zu können. [1, S. 369 f.]

Abbildung 2.10.: Feature Maps [1]

Daneben ist ein Pooling über die Tiefe der Feature Maps möglich, hier bleibt die Größe der resultierenden Feature Maps gleich, die Anzahl verringert sich allerdings. [1, S. 370]

Nachdem nun beide Grundbausteine eines CNNs genauer erläutert wurden, lassen sich diese nun kombinieren um ein vollständiges CNN zu bauen. Hierbei gibt es unterschiedlichste Architekturen, größtenteils äußerst komplexe. Im Rahmen dieser Arbeit genügt es allerdings die grundlegende Architektur zu erläutern.

Diese beginnt mit einigen Convolutional Layern, die aufeinander folgen und am Ende durch eine ReLU-Funktion nochmals gefiltert und durch ein Pooling Layer abgeschlossen werden. Dies wird je nach Komplexität der zu erkennenden Muster und der Größe der Bilder einige Male wiederholt. Das ursprüngliche Bild wird durch die Pooling Layer zwar immer kleiner, allerdings auch durch die Convolutional Layer immer tiefer. Das CNN schließt mit einem normalen Feed-Forward ANN mit vollständig verbundenen Schichten ab und trifft durch eine Softmax-Funktion eine Klassifikationsaussage des Bildes. [1, S. 371]

Abbildung 2.11.: Pooling Layer [14]

Diese Architektur ermöglicht ebenso die Wiederverwendbarkeit einzelner Schichten und Gewichtungen für ähnliche Klassifikationsprobleme, bei denen gleiche Muster vorzufinden sind. [1, S. 271]

2.3.2. Mask Regional Convolutional Neural Network

2.3.3. You Only Look Once

2.3.4. Single Shot MultiBox Detector

Zwar liefern die oben genannten Objektdetektoren akkurate Ergebnisse, allerdings sind sie als zu rechenintensiv und langsam einzuordnen, als dass sie für Echtzeit Applikationen eingesetzt werden könnten. Der Single Shot MultiBox Detector (SSD) unterschiedet sich von den vorhergegangenen Modellen dahingehend, dass er bewusst auf den Schritt der Generierung von Bounding Box Vorschlägen und des Poolings verzichtet, um wesentlich schneller ablaufen zu können als andere Objektdetektoren. Die Präzision der Klassifikationen bleibt hierbei erhalten, selbst Bilder niedriger Auflösung können weiterhin verarbeitet werden. Dem SSD genügt also ein einziges tiefes neuronales Netz zum Lokalisieren und Klassifizieren von Objekten. Wie der SSD aufgebaut ist und welche Ansätze er verfolgt, soll in diesem Unterkapitel erläutert werden. [15, S. 1f.].

Die Architektur des *SSD* zielt zunächst darauf ab, ein Bild in mehrere unterschiedliche Gitterstrukturen zu unterteilen, die sich nach ihrer Skalierung unterscheiden. Dadurch ist es möglich Objekte unterschiedlicher Größe zu erkennen. Jede Lokation im Gitter be-

Abbildung 2.12.: SSD Grundprinzip [15, S. 3]

sitzt eine gleiche Anzahl an festen, vordefinierten Bounding Boxen, die unterschiedliche Seitenverhältnisse aufweisen (siehe Abbildung 2.12). So wird sichergestellt, dass sowohl horizontal als auch vertikal ausgeprägte Objekte in der selben Lokation gleichzeitig erkannt werden können (siehe Abbildung 2.13). [15, S. 3]

Abbildung 2.13.: Bounding Boxes [16]

Für jede dieser Bounding Boxen bestimmt der *SSD* Wahrscheinlichkeiten für Klassenzugehörigkeiten als auch Verschiebungen der vordefinierten Bounding Box zur wahren Bounding Box des Objekts für jede Klasse. Dies wird mit kleinen Faltungsfiltern erreicht,

die in den hinteren Schichten des Netzwerks eingesetzt werden. [15, S. 3]

Die Kostenfunktion ist durch die gewichtete Summe des Lokalisationsverlustes und des Klassifikationsverlustes bestimmt. Während der Klassifikationverlust durch eine Softmax Funktion bestimmt werden kann, wird der Lokalisationsverlust über die Smooth L1 Funktion bestimmt (siehe Formel 2.8). [15, S. 3]

$$L_{loc}(t^{u}, v) = \sum_{i \in (x, y, w, h)}^{n} smooth_{L1}(t_{i}^{u} - v_{i})$$

$$smooth_{L1}(t_{i}^{u} - v_{i}) = \begin{cases} 0.5x^{2} & \text{wenn } |x| < 1\\ |x| - 0.5 & \text{sonst} \end{cases}$$
(2.8)

Abbildung 2.14.: SSD Architektur [15, S. 4]

Der SSD benutzt ein VGG-16 Basis Netzwerk, um Klassifikationen zu ermöglichen. VGG-16 ist ein auf dem Datensatz von ImageNet basierendes neuronales Netz, das bis zu 1000 unterschiedliche Kategorien klassifizieren kann [17]. Unabhängig vom Basisnetzwerk werden Convolutional Layer als Hilfsstrukturen zur Objektdetektion eingesetzt. Diese verarbeiten die Bilder unterschiedlicher Gittergrößen, wobei die Gittergröße mit fortschreitenden Convolutional Layern abnimmt. Jeder Convolutional Layer kann eine feste Anzahl an Detektionen bestimmen. Eine Detektion wird durch eine Klassenangabe und die Lage einer vorhergesagten Bounding Box bestimmt. Eine Bounding Box wird durch einen Eckpunkt P(x,y) und eine Höhe und Breite bestimmt. Bei c Klassen hat der Ausgangsvektor demnach die Größe c+4. Für jede vordefinierte Bounding Box werden,

falls vorhanden, die Koordinaten der originalen Bounding Box ermittelt dabei relativ zur vordefinierten Bounding Box abgespeichert. Die Zuordnung einer Bounding Box zu einer vordefinierten Bounding Box erfolgt über die sogenannte *Intersection over Union* (IoU) (siehe Abbildung 2.15). Überschreitet diese einen Wert von 0.5, so ist diese der originalen Bounding Box zugeordnet [15, S. 5]. Demnach ist es möglich, dass eine originale Bounding Box mehreren vordefinierten Bounding Boxen zugeordnet werden kann. [15, S. 3]

Abbildung 2.15.: Intersection over Union [18]

Bei $m \cdot n$ Lokationen und k verschiedenen vordefinierten Bounding Boxen pro Lokation ergeben sich also $m \cdot n \cdot k \cdot (c+4)$ verschiedene Werte für eine Feature Map. Die Merkmalsextraktion zur Klassifikation wird durch Faltung mit 3x3 Filtern erreicht. [15, S. 3]

Dieser Vorgang wird für alle Feature Maps für alle Convolutional Layer durchgeführt. Die daraus folgende Menge an Detektionen wird durch ein Non Maximum Suppression Layer in ihrer Größe reduziert. Als Maß zur Filterung wird die sogenannte Intersection over Union (IoU) der detektierten Box zur wahren Box verwendet. [15, S. 3]

Während der Trainingsprozesses des $SSD300^{1}$ mit PASCAL VOC2007 wurde eine Lernrate von $\eta = 10^{-3}$ für das Mini-Batch Verfahren mit Batchgröße 32 und Moment $\beta = 0.9$

¹SSD300 verwendet Bilder der Auflösung 300x300 Pixel. Alternativ existiert ebenso SSD512 für Bilder der Auflösung 512x512 Pixel. Die Bilder können jedoch auch kleiner als die vorgegebene Auflösung gewählt werden.

verwendet. Die Gewichtungen wurden Xavier initialisiert. Nach 40.000 Iterationen wurde die Lernrate für 10.000 Iterationen auf $\eta = 10^{-4}$ reduziert und schließlich auf $\eta = 10^{-5}$. [15, S. 6]

Method	mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300	74.3	46	1	8732	300×300
SSD512	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512×512

Abbildung 2.16.: Vergleich SSD [15]

Nach obiger Grafik ist eindeutig festzustellen, dass SSD300 ein gutes Verhältnis zwischen Präzision und Reaktionsvermögen bewahrt. Durch den Verzicht auf den Schritt der Generierung von Bounding Box Vorschlägen und des Poolings kann SSD deutlich schneller ablaufen als die Vergleichsdetektoren, während durch das Vordefinieren von Bounding Boxen ebenso eine hohe Präzision erzielt werden kann. [15, S. 11]

Allerdings ergibt sich vor allem für kleine Objekte ein erschwertes Detektionsvermögen, da diese in den höherliegenden Convolutional Layern untergehen. Als Lösung hierfür kann eine erhöhte Inputgröße gewählt werden (vgl. SSD512) oder Daten-Augmentierung für den Lernprozess angewandt werden. Weitere mögliche Fehler können falsche Positivbefunde aufgrund von fehlerhafter Lokalisation sein, Verwechslung mit ähnlichen Kategorien oder dem Hintergrund sowie weitere. [15, S. 8 f.]

Letztendlich lässt sich SSD als schneller Objektdetektor beurteilen, der nicht nur einfach zu trainieren und integrieren ist, sondern ebenso ein gutes Verhältnis zwischen Lokalisationspräzision und Echtzeitvermögen schafft.

2.4. Verwendete Bibliotheken

- 2.4.1. PyTorch
- 2.4.2. OpenCV
- 2.4.3. Django

2.5. Compute Unified Device Architecture

- Methoden
- Literaturrecherche
- Herausarbeitung des Neuheitswertes

Smart Warehouse Konzeption

3. Konzeption

3.1. Bewertungskriterien

• Kriterien für spätere Bewertung einführen

3.2. Initialer Vergleich der Objektdetektoren

- Verfahren incl. Variantendiskussionen
- Funktionsweise an Benchmarkdatensatz erklären
- Parameter d. Methode diskutieren und u.U. bestimmen

3.3. Echtzeitumgebung

• Richtigen Datensatz beschreiben

Smart Warehouse Realisierung

4. Realisierung

4.1. Trainieren der Objektdetektoren

4.2. Drohnen Anbindung

4.3. Dashboard Entwicklung

- Herausforderungen bei der Drohne
- Trainieren auf die richtigen Datensätze
- Webapplikation

Smart Warehouse Ergebnisse

5. Ergebnisse

• Ergebnisse auswerten

Smart Warehouse Bewertung

6. Bewertung

- Ergebnisse bewerten und diskutieren
- Was liefert die Arbeit, was bisher noch nicht bekannt war?

7. Zusammenfassung und Ausblick

- Klare Darstellung, was die Arbeit geliefert hat
- Ca. 2-4 Anpunkte: Zukünftige Ziele

Literaturverzeichnis

- Aurélien Géron. Machine Learning mit Scikit-Learn & TensorFlow: Konzepte, Tools und Techniken für intelligente Systeme: Übersetzung von Kristian Rother.
 Aufl. Heidelberg: dpunkt.verlag GmbH, 2018.
- [2] MathWorks. Deep Learning: Drei Dinge, die Sie wissen sollten. MathWorks, 2019. URL: https://de.mathworks.com/discovery/deep-learning.html (Einsichtnahme: 12.10.2019).
- [3] doks. innovation. *inventAIRyX*. doks. innovation Homepage, 2019. URL: https://www.doks-innovation.com/inventairy-x/ (Einsichtnahme: 26.10.2019).
- [4] Philippe Lucidarme. Simplest perceptron update rules demonstration. Homepage Blog, 2017. URL: https://www.lucidarme.me/simplest-perceptron-update-rules-demonstration/ (Einsichtnahme: 26. 10. 2019).
- [5] Wikipedia. Deep Learning. Wikipedia, 2019. URL: https://de.wikipedia.org/wiki/ Deep_Learning (Einsichtnahme: 27.01.2019).
- [6] David E. Rumelhart/ Geoffrey E. Hinton/Ronald J. Williams. Learning Internal Representations by Error Propagation. Hrsg. von University of California, San Diego. 09/1985. URL: https://apps.dtic.mil/dtic/tr/fulltext/u2/a164453.pdf (Einsichtnahme: 26.10.2019).
- [7] Xavier Glorot, Y. B. "Understanding the difficulty of training deep feedforward neural networks". Diss. Montréal: Universite de Montréal, 2010. URL: http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf (Einsichtnahme: 26.10.2019).
- [8] Imad Dabbura. Gradient Descent Algorithm and Its Variants. Towards Data Science, 2017. URL: https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3 (Einsichtnahme: 26.10.2019).
- [9] Sebastian Heinz. Wie lernen neuronale Netze? STATWORX Blog, 2018. URL: h ttps://www.statworx.com/de/blog/wie-lernen-neuronale-netze/ (Einsichtnahme: 26. 10. 2019).

- [10] Ronny Restrepo. Calculating the derivative of Tanh: step by step. Ronny Restrepo Homepage, 2017. URL: http://ronny.rest/media/blog/2017/2017_08_16_tanh/tanh_v_sigmoid.jpg (Einsichtnahme: 26.10.2019).
- [11] Danqing Liu. A Practical Guide to ReLU. Medium, 2017. URL: https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7 (Einsichtnahme: 26. 10. 2019).
- [12] Daphne Cornelisse. An intuitive guide to Convolutional Neural Networks. freeCode-Camp Homepage, 2018. URL: https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050 (Einsichtnahme: 26. 10. 2019).
- [13] Abhineet Saxena. Convolutional Neural Networks (CNNs): An Illustrated Explanation. XRDS Crossroads The ACM Magazine for Students, 2016. URL: https://blog.xrds.acm.org/2016/06/convolutional-neural-networks-cnns-illustrated-explanation/ (Einsichtnahme: 26. 10. 2019).
- [14] Leonadro Araujo Santos. *Pooling Layer: Introduction*. GitBook, 2018. URL: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/pooling_layer. html (Einsichtnahme: 26. 10. 2019).
- [15] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Chang-Yang Fu, Alexander C. Berg. "SSD: Single Shot MultiBox Detector". Diss. 2016-12-29. URL: https://arxiv.org/pdf/1512.02325.pdf (Einsichtnahme: 02.11.2019).
- [16] Andrew Ng. Anchor Boxes. Coursera, 2019. URL: https://www.coursera.org/lecture/convolutional-neural-networks/anchor-boxes-yNwO0 (Einsichtnahme: 02.11.2019).
- [17] MathWorks. vgg16. MathWorks Homepage, 2019. URL: https://de.mathworks.com/help/deeplearning/ref/vgg16.html;jsessionid=bf0fea41a0c7700184672711881 f (Einsichtnahme: 02.11.2019).
- [18] Adrian Rosebrock. Intersection over Union (IoU) for object detection. pyimagese-arch, 2016. URL: https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/ (Einsichtnahme: 02.11.2019).

A. Anhang

Abbildungen