

مبانی ترکیبیات

DISCRETE AND COMBINATORIAL MATHEMATICS

An Applied Introduction

FIFTH EDITION

استاد درس: مریم طهماسبی - گروه علوم کامپیوتر دانشگاه شهید بهشتی

RALPH P. GRIMALDI

Rose-Hulman Institute of Technology

Discrete and combinatorial mathematics, R. Grimaldi, 5th ed.

. 2 •

معرفی و سرفصل

منبع:

سرفصل درس

- ۱ مبانی شمارش (فصل ۱ کتاب)
- ۲- خواص اعداد صحیح: استقرای ریاضی (فصل ۴ کتاب)
 - ۳- تابعها (قسمتی از فصل ۵ کتاب)
 - ۴ رابطهها (قسمتی از فصل ۷ کتاب)
 - $(-\Delta 1)$ اصل شمول و طرد $(-\Delta 1)$
 - ۶- تابعهای مولد (فصل ۹ کتاب)
 - ۷- رابطه های بازگشتی (فصل ۱۰ کتاب)
 - ۸- نظریه گراف (فصلهای ۱۱و ۱۲)

اصل خوش ترتيبي

• مجموعه اعداد صحیح و رابطه > را در نظر بگیرید. در این مجموعه، هر دو عدد با رابطه > قابل مقایسه هستند، یعنی برای هر دو عدد صحیح x > y < x یا x > y < x

$$\mathbf{Z}^+ = \{ x \in \mathbf{Z} | x > 0 \} = \{ x \in \mathbf{Z} | x \ge 1 \}.$$

را نمی توان به صورت دوم نوشت، اما \mathbf{Q}^+ یا \mathbf{R}^+ را نمی توان \mathbf{Z}^+

$$\mathbf{Q}^+ = \{ x \in \mathbf{Q} | x > 0 \}$$
 and $\mathbf{R}^+ = \{ x \in \mathbf{R} | x > 0 \},$

اصل خوش ترتيبي

• اصل خوش ترتیبی: در Z^+ به ازای هر زیرمجموعه می توانیم عددی مانند Z^+ به ازای هر زیرمجموعه کوچکتر باشد. معمولا می Z^+ گوییم Z^+ خوش ترتیب است.

استقراي رياضي

قضیه (استقرای ریاضی): فرض کنید (s(n) عبارتی باشد که به ازای هر عدد صحیح مثبت n تعریف شده است و در شرایط زیر صدق می کند: الف) s(1) درست است. پایه استقرا

ب) هرگاه به ازای یک عدد صحیحs(k) درست باشد، بتوان نتیجه گرفت s(k+1) درست است. پله استقرا

در این صورت s(n) به ازای هر عدد صحیح نامنفی درست است.

استقراي رياضي

اثبات:

فرض کنید برای عبارت (s(n شرایط الف و ب برقرار باشند و

 $F = \{t \in \mathbf{Z}^+ | S(t) \text{ is false} \}$

نشان می دهیم F تهی است.

فرض کنید چنین نباشد. پس F به عنوان زیرمجموعهای از Z^+ دارای کوچکترین عضو z^+ است. حال، z^+ در z^+ نیست، پس z^+ برقرار است و بنا بر بند (ب)، باید z^+ هم درست باشد. که تناقض است.

Figure 4.1

استقراي قوي رياضي

- قضیه: فرکنید (n)3 (n3 گزاره ریاضی بر حسب n_0 4 باشد و $n_0, n_1 \in \mathbf{Z}^+$
- اگر $S(n_0), S(n_0+1), S(n_0+2), \ldots, S(n_1-1), \text{ and } S(n_1)$ همگی درست باشند،
 - اگر درستی $S(n_0), S(n_0+1), \ldots, S(k-1),$ and S(k) برای درستی S(k+1) برای ، $k \in \mathbb{Z}^+$, where $k \geq n_1$ آنگاه S(n) به ازای هر $n \geq n_0$ هر $n \geq n_0$ به ازای هر $n \geq n_0$ درست است.

• به مجموع های زیر دقت کنید:

$$14 = 3 + 3 + 8$$
 $15 = 3 + 3 + 3 + 3 + 3$ $16 = 8 + 8$

اعداد ۱۴ تا ۱۶ را می توان به صورت مجموع ۳ ها و ۸ ها نوشت. با استفاده از استقرای ریاضی نشان دهید برای هر 14 ها 15 where 14 ها 15 مجموع ۳ ها و ۸ ها نوشت.

• به مجموع های زیر دقت کنید:

$$14 = 3 + 3 + 8$$
 $15 = 3 + 3 + 3 + 3 + 3$ $16 = 8 + 8$

اعداد ۱۴ تا ۱۶ را می توان به صورت مجموع ۳ ها و ۸ ها نوشت. با استفاده از استقرای ریاضی نشان دهید برای هر 14, ۱4 و 14 where $n \ge 14$, ما نوشت.

- راه حل: حکم برای n=14,15,16 برقرار است و این پایه استقرا را می سازد.
- فرض کنید حکم برای همه اعداد از ۱۴ تا k که 16

 ابراقرار باشد. (فرض استقرا)
 - حال k+1 را در نظر بگیرید. k+1=(k-2)+3 است و حکم برای k+1 درست است، زیرا k+1 یس حکم برای k+1 هم درست است.

فرض کنید

$$a_0 = 1$$
, $a_1 = 2$, $a_2 = 3$, and

$$a_n = a_{n-1} + a_{n-2} + a_{n-3}$$
, for all $n \in \mathbb{Z}^+$ where $n \ge 3$.

$$a_n \leq 3^n$$
 for all $n \in \mathbb{N}$ - نشان دهید

• فرض کنید

$$a_0 = 1$$
, $a_1 = 2$, $a_2 = 3$, and

$$a_n = a_{n-1} + a_{n-2} + a_{n-3}$$
, for all $n \in \mathbb{Z}^+$ where $n \ge 3$.

$$a_n \leq 3^n$$
 for all $n \in \mathbb{N}$ -

i)
$$a_0 = 1 = 3^0 \le 3^0$$
;

ii)
$$a_1 = 2 \le 3 = 3^1$$
; and

iii)
$$a_2 = 3 \le 9 = 3^2$$
.

برقرار باشد $k \in \mathbf{Z}^+$ where $k \geq 2$. برقرار باشد k, k-1, k-2 برقرار باشد

$$a_{k+1} = a_k + a_{k-1} + a_{k-2}$$

$$\leq 3^k + 3^{k-1} + 3^{k-2}$$

$$\leq 3^k + 3^k + 3^k = 3(3^k) = 3^{k+1}$$

تعریف های بازگشتی

• دنباله ریر تعریف کرد: $a_0, a_1, a_2, a_3, \ldots$

$$a_0 = 1$$
, $a_1 = 2$, $a_2 = 3$, and

$$a_n = a_{n-1} + a_{n-2} + a_{n-3}$$
, for all $n \in \mathbb{Z}^+$ where $n \ge 3$.

• در این حالت جمله n ام دنباله به صورت صریح برحسب n داده نمی شود و از روی چند جمله قبل از خود ساخته می شود.

• دنباله فیبوناتچی

1)
$$F_0 = 0$$
, $F_1 = 1$; and

2)
$$F_n = F_{n-1} + F_{n-2}$$
, for $n \in \mathbb{Z}^+$ with $n \ge 2$.

$$F_2 = F_1 + F_0 = 1 + 0 = 1$$
 $F_4 = F_3 + F_2 = 2 + 1 = 3$

$$F_3 = F_2 + F_1 = 1 + 1 = 2$$
 $F_5 = F_4 + F_3 = 3 + 2 = 5.$

$$F_6 = 8$$
, $F_7 = 13$, $F_8 = 21$, $F_9 = 34$, $F_{10} = 55$, $F_{11} = 89$, and $F_{12} = 144$.

• دنباله فیبوناتچی

1)
$$F_0 = 0$$
, $F_1 = 1$; and

2)
$$F_n = F_{n-1} + F_{n-2}$$
, for $n \in \mathbb{Z}^+$ with $n \ge 2$.

1)
$$F_0^2 + F_1^2 = 0^2 + 1^2 = 1 = 1 \times 1$$

2)
$$F_0^2 + F_1^2 + F_2^2 = 0^2 + 1^2 + 1^2 = 2 = 1 \times 2$$

3)
$$F_0^2 + F_1^2 + F_2^2 + F_3^2 = 0^2 + 1^2 + 1^2 + 2^2 = 6 = 2 \times 3$$

$$\forall n \in \mathbf{Z}^+ \sum_{i=0}^n F_i^2 = F_n \times F_{n+1}.$$

مثال: ادامه

$$\forall n \in \mathbf{Z}^+ \sum_{i=0}^n F_i^2 = F_n \times F_{n+1}.$$

- در دنباله فیبوناتچی داریم:
 - اثبات: با استقرا
- $F_0^2 + F_1^2 = 1 \times 1$: \bullet
- $\sum_{k=0}^{k} F_k^2 = F_k \times F_{k+1}$ فرض استقرا: برای هر $k \ge 1$ هر این هر •

$$\sum_{i=0}^{k+1} F_i^2 = \sum_{i=0}^k F_i^2 + F_{k+1}^2 = (F_k \times F_{k+1}) + F_{k+1}^2 = F_{k+1} \times (F_k + F_{k+1}) = F_{k+1} \times F_{k+2}.$$

- فرض کنید مجموعه X به صورت بازگشتی زیر تعریف شده باشد:
- **1**) $1 \in X$; and
- 2) For each $a \in X$, $a + 2 \in X$.

نشان دهید X از همه اعداد صحیح فرد تشکیل شده است.

- فرض کنید مجموعه X به صورت بازگشتی زیر تعریف شده باشد:
- **1**) $1 \in X$; and
- 2) For each $a \in X$, $a + 2 \in X$.

نشان دهید X از همه اعداد صحیح فرد تشکیل شده است.

- راه حل: قرار میدهیم $X=Y=\{2n+1|n\in \mathbb{N}\}$ و نشان می دهیم $Y=\{2n+1|n\in \mathbb{N}\}$ یا به صورت معادل: $Y\subseteq X$ and $X\subseteq Y$
- برای اثبات $Y \subseteq X$ ، تعریف می کنیم Y = X و با استقرا ثابت می کنیم:
 - پایه استقرا: S(0)درست است.
 - فرض استقرا: S(k) for some $k \ge 0$; است

$$(2k+1)+2=2(k+1)+1\in X$$

- فرض کنید مجموعه X به صورت بازگشتی زیر تعریف شده باشد:
- **1**) $1 \in X$; and
- 2) For each $a \in X$, $a + 2 \in X$.

نشان دهید X از همه اعداد صحیح فرد تشکیل شده است.

- $X \subseteq Y$ راه حل: برعکس، باید نشان دهیم •
- است. یعنی \mathbf{Y} داریم \mathbf{Y} عضو \mathbf{Y} است. یعنی $\mathbf{A} \in \mathbf{X}$ داریم $\mathbf{A} \in \mathbf{X}$ ، برای هر $\mathbf{A} \in \mathbf{X}$.

$$a + 2 = (2r + 1) + 2 = (2r + 2) + 1 = 2(r + 1) + 1$$