

scienceinfus

Dossier de Physique

Formules de physique à l'usage du secondaire

Véronique Bouquelle

Faculté des Sciences

Diffusé par la Maison des Sciences

Formulaire de physique

à l'usage de l'enseignement secondaire

Courants alternatifs			
Rapport de transformation		$\frac{n_s}{n_p} = \frac{U_s}{U_p} = \frac{I_p}{I_s}$	n _{s,p} : nbre de spires au prim./sec. U _{s,p} : tension au prim./sec. I _{s,p} : intensité au prim./sec.
Valeurs efficaces	U _{eff} (V) I _{eff} (A)	$U_{eff} = \frac{U_{\max}}{\sqrt{2}}$ $I_{eff} = \frac{I_{\max}}{\sqrt{2}}$	U_{eff} : tension efficace (V) U_{max} : tension maximale (V) I_{eff} : intensité efficace (A) I_{max} : intensité maximale (A)
Puissance	P (W)	$P = U_{eff}.I_{eff}$	U _{eff} : tension efficace (V) I _{eff} : intensité efficace (A)
Dynamique			
Force de frottement	F _f (N)	$F_f = \mu.N$	μ: coefficient de frottement (sans unité, compris entre 0 et 1) N: force normale (N)
Coefficients de frottement statique et dynamique		$\mu_S > \mu_d$	
Lois de Newton			
1 ^{ère} loi		Si pas de force résultante, MRU ou immobile.	
2 ^{ème} loi	F (N)	F = ma	m : masse du corps (kg) a : accélération (m/s²)
3 ^{ème} loi		Action = Réaction ; sens opposés ; agissent sur des corps différents	
Impulsion	p (kg.m/s)	p = mv	p : impulsion (kg.m/s) m : masse (kg) v : vitesse (m/s)

Collisions inélastiques		Conservation de l'impulsion, mais pas de l'énergie cinétique qui se transforme en une autre forme d'énergie.	
Collisions élastiques		Conservation de l'impulsion et de l'énergie cinétique.	
Electricité			
loi de Coulomb	F (N)	$F = k_{\acute{e}l} \frac{Q_1 Q_2}{d^2}$	$k_{\'el}$: constante électrique = $\frac{1}{4\pi\epsilon_0}$ = 9.10^9 Nm²/ C^2 dans l'air ; ϵ_0 : permittivité électrique du vide Q: charge (C) d: distance entre les charges (m)
champ électrique	E (N/C ou V/m)	$\vec{E} = \frac{\vec{F}}{q}$ $E = \frac{kQ}{d^2}$	F: force à laquelle la charge q est soumise (N) q: charge soumise au champ électrique (C) Q: charge à l'origine du champ électrique (C) d: distance à la charge Q (m)
potentiel électrique	V (V)	$V = k \frac{Q}{d}$	Q : charge créant le potentiel (C) d : distance à la charge Q (m) avec la convention V = O à l'infini
intensité	I (A)	$I = \frac{q}{t}$	q : charge (C) t : temps (s)
tension ou différence de potentiel	U (V)	$U = \frac{P}{I}$	P : puissance (W) I : intensité (A)
		$U = \frac{W}{q}$	W : travail (J) q : charge (C)
résistance	R (Ω)	$R = \frac{U}{I}$ $R = \rho \frac{L}{S}$	U: tension (V) I: intensité (A) ρ: résistivité dépendant du matériau (Ωm) L: longueur du conducteur (m) S = πR²: section du conducteur (m²)

	1	T	T
puissance électrique	P (W)	$P = UI = RI^2 = \frac{U^2}{R}$	U: tension (V)
			I : intensité (A)
		A	R : résistance (Ω)
résistances en série		$R_{tot} = R_1 + R_2 + R_3$	R : résistance (Ω)
résistances en		1	R : résistance (Ω)
parallèle		$\frac{1}{R_{tot}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	R. resistance (12)
1ère I .: J. IV: I.I CC		en un nœud, ∑courants entrants =	
1 ^{ère} loi de Kirchhoff		\sum courants sortants	
tensions en série		$U_{tot} = U_1 + U_2 + U_3$	U: tension (V)
tensions en parallèle		$U_{tot} = U_1 = U_2 = U_3$	U: tension (V)
intensités en série		$I_{tot} = I_1 = I_2 = I_3$	I : intensité (A)
intensités en		-tot -1 -2 -3	,
parallèle		$I_{tot} = I_1 + I_2 + I_3$	I : intensité (A)
			Q : charge de l'une
capacité d'un	C (E)	Q	des plaques (C)
condensateur	C (F)	$C = \frac{Q}{U}$	U : tension entre les
			plaques (V)
			Q : charge de l'une
		$W = \frac{1}{2}QU = \frac{1}{2}CU^2 = \frac{1}{2}\frac{Q^2}{C}$	des plaques (C)
énergie d'un	W (J)		U : tension entre les
condensateur chargé	W (J)		plaques (V)
			C : capacité du
			condensateur (F)
			U: tension fournie
	U (V)	U = E - rI	par la pile (V)
			E: tension
			électromotrice de la
tension fournie par			pile (V)
une pile			r : résistance interne
			de la pile (Ω)
			I : intensité de courant dans le
			circuit (A)
			circuit (A)
Energie,			
thermodynamique			
mei moaynamique			F : force (N)
			d : distance sur
			laquelle elle s'applique
travail d'une force	\A/ (T)	$W = F.d.\cos\alpha$	(m)
	W (J)	$VV = F.u.\cos u$	a : angle entre le
			déplacement et la
			force
		La travail act écal à la verietien	10106
Théorème de		Le travail est égal à la variation	E _{c,f} : énergie cinétique
l'énergie cinétique		d'énergie cinétique :	finale (J)
		$W = E_{c,f} - E_{c,i}$	

	T		
Puissance d'une force	P (W)	$P = F \cdot v \cdot \cos \alpha$	F: force (N) dont le point d'application se déplace v: vitesse à laquelle le point d'application de la force se déplace (m/s) a: angle entre le déplacement et la force
énergie cinétique	E _c (J)	$E_c = \frac{mv^2}{2}$	m : masse du corps (kg) v : vitesse du corps (m/s)
énergie potentielle gravitationnelle	E _p (J)	$E_p = mgh$	m: masse du corps (kg) g: champ de pesanteur (m/s² ou N/kg) h: hauteur (m)
puissance	P (W)	$P = \frac{E}{t}$	E : énergie (J) t : intervalle de temps (s)
rendement	(%)	$rend. = \frac{\acute{e}nergie_obtenue}{\acute{e}nergie_fournie_au_d\acute{e}part} * 100$	
rendement d'une machine thermique	(%)	$rend. = 1 - \frac{T_{basse}}{T_{haute}} * 100$	T: température (K)
énergie thermique	Q (J)	$Q=cm\Delta\theta$ si pas de changement d'état Q=mL si changement d'état	c: chaleur massique J/(kg.°C) m: masse de la substance (kg) $\Delta\theta$: élévation de température (°C) L: chaleur latente (J/kg)
gaz parfaits		pV = nRT	p: pression (Pa) V: volume (m³) n: nombre de moles R = 8,31 J.kg ⁻¹ .°C ⁻¹ ; cste des gaz parfaits
théorie cinétique des gaz : énergie cinétique des molécules d'un gaz	EC _{moy} (J)	$EC_{moy} = \frac{3}{2}kT$	k = 1,38.10 ⁻²³ J/K; cste de Boltzmann T: température (K)
nombre de molécules dans une mole = nbre d'Avogadro	N _A	$N_A = 6,02.10^{23}$ molécules/mole	

énergie au repos	E ₀ (J)	$E_0 = m_0 c^2$	m ₀ : masse au repos (kg) c = 3.10 ⁸ m/s; vitesse de la lumière dans le
électron-volt		1 eV = 1,6.10 ⁻¹⁹ J	vide
température absolue	T (K)	T = θ + 273,15	θ : température en °C
dilatation linéaire	Δ L (m)	$\Delta L = \alpha L_0 \Delta T$	a : coef. de dilatation linéaire (K^{-1}) L_0 : longueur initiale (m) ΔT : variation de température (K)
dilatation superficielle	Δ S (m ²)	$\Delta S = bS_0 \Delta T$	b: coef. de dilatation superficielle (K ⁻¹); b = 2a V ₀ : volume initial (m ³) ΔT : variation de température (K)
dilatation volumique	Δ V (m ³)	$\Delta V = cV_0\Delta T$	c: coef. de dilatation volumique (K^{-1}) ; c = 3a V_0 : volume initial (m^3) ΔT : variation de température (K)
51 · 1			
Fluides			
Statique des fluides			
masse volumique	ρ (kg/m ³ ou g/cm ³)	$ \rho = \frac{m}{V} $	m : masse (kg) V : volume (m³)
densité	d	$d=rac{ ho_{corps}}{ ho_{eau}}$	ρ _{corps} : masse volumique du corps (kg/m³) ρ _{eau} : masse volumique de l'eau (1000 kg/m³ = 1 g/cm³)
pression	p (Pa)	$p = \frac{F}{S}$	F : force (N) S : surface (m²)
		1 atm = 1,013.10 ⁵ Pa 1 mbar = 100 Pa	

pression dans un fluide à une profondeur h	p (Pa)	$p = p_{externe} + ho g h$	p _{externe} : pression sur le fluide (Pa) ρ: masse volumique du fluide (kg/m³) g: champ de pesanteur (m/s² ou N/kg) h: profondeur (m)
poussée d'Archimède	F _{Archimède} (N)	Tout corps plongé dans un fluide subit une poussée égale au poids du volume de fluide déplacé : $F_{Archim\`{e}de}=\rho gV$	ρ: masse volumique du fluide (kg/m³) g: champ de pesanteur (m/s² ou N/kg) V: volume de fluide déplacé (m³)
		Si un corps flotte dans un fluide, son poids = la poussée d'Archimède.	
principe de Pascal		Une pression externe appliquée à un fluide se transmet à tout le fluide (dans une enceinte fermée).	
machine hydraulique		$p = \frac{F_f}{F_i} = \frac{S_f}{S_i} = \frac{y_f}{y_i}$	p: pression exercée sur le fluide (Pa) F: force exercée dans chaque cylindre (N) S: section de chaque cylindre (m²) y: hauteur de laquelle monte/descend le piston (m)
Dynamique des fluides			
équation de continuité		$S_1v_1 = S_2v_2$	S ₁ : section de la conduite à l'endroit 1 (m²) v ₁ : vitesse du fluide à l'endroit 1 (m/s) S ₂ : section de la conduite à l'endroit 2 (m²) v ₂ : vitesse du fluide à l'endroit 2 (m/s)

	T		
équation de Bernoulli		$p_1 + \rho g h_1 + \frac{1}{2} \rho v_1^2 = p_2 + \rho g h_2 + \frac{1}{2} \rho v_2^2$	p ₁ : pression du fluide à l'endroit 1 (Pa) ρ: masse volumique du fluide (kg/m³) g: champ de pesanteur (m/s² ou N/kg) h ₁ : hauteur de l'endroit 1 (m) v ₁ : vitesse du fluide à l'endroit 1 (m/s)
théorème de Torricelli : débit d'un liquide s'écoulant hors d'un récipient	D (m ³ /s)	$D = S\sqrt{2gh}$	S : section de l'ouverture (m²) h : hauteur d'eau au-dessus de l'ouverture (m)
Gravitation			
Gravitation			m : masse du corps
Poids, force de pesanteur	G (N)	G = mg	(kg) g: champ de pesanteur (m/s² ou N/kg)
Force d'attraction gravitationnelle	F (N)	$F = g \frac{m_1 m_2}{d^2}$	g = 6,67.10 ⁻¹¹ Nm²/kg²; constante universelle de gravitation m₁: masse du corps 1 (kg) m₂: masse du corps 2 (kg) d: distance entre les deux corps (m)
1 ^{ère} loi de Kepler		Trajectoire = ellipse	
2 ^{ème} loi de Kepler		Aires égales en des temps égaux ⇒	
L 101 de Replei		vitesse plus grande près de l'astre	
3 ^{ème} loi de Kepler	Lien période - rayon	$\frac{T^2}{R^3} = cstequi$ dépend de l'astre	T : période (unité de temps) R : rayon orbital moyen (unité de distance)
ellipses : excentricité	e (0 <e<1)< td=""><td>$r_{\min} = a(1 - e)$ $r_{\max} = a(1 + e)$</td><td>a : demi grand axe (m) r_{min} : dist. min. à l'astre (m) r_{max} : dist. max. à l'astre (m)</td></e<1)<>	$r_{\min} = a(1 - e)$ $r_{\max} = a(1 + e)$	a : demi grand axe (m) r _{min} : dist. min. à l'astre (m) r _{max} : dist. max. à l'astre (m)

Magnétisme			
champ magnétique dans un solénoïde	B (T)	$B = \mu \frac{N}{L} I$	μ: perméabilité magnétique du matériau à l'intérieur du solénoïde (Tm/A) (pour l'air : 4π.10 ⁻⁷) N: nbre de spires L: longueur du solénoïde (m) I: intensité dans les spires (A)
force magnétique sur une charge en mouvement (force de Lorentz)	F(N)	$F=QE+QvB{ m sin}lpha$ ${\sf F}={\sf O}\;{\sf si}\;ec{v}\;\ \;ec{B}\;{\sf et}\;{\sf E}={\sf O}$	Q : charge (C) v : vitesse de la charge (m/s) B:champ magnétique(T) E : champ électr. (N/C) α : angle entre \vec{v} et \vec{B}
force magnétique sur un courant (force de Laplace)	F (N)	$F = ILBsin\alpha$ $F = 0 si I \parallel \vec{B}$	I : intensité (A) L : longueur de fil dans le champ magnét. (m) B : champ magnétique (T) α : angle entre le fil parcouru par le courant et \overrightarrow{B}
flux magnétique à travers une surface	Φ (Wb)	$\Phi = NBS\cos\alpha$	N: nbre de spires du circuit B: champ magnétique présent (T) S: surface de la spire traversée par les lignes de champ magnétique (m²) a: angle entre le champ magnétique et la perpendiculaire au circuit

tension induite ou force électromotrice induite	U _{induite} (V)	$U_{induite} = -N \frac{\Delta \Phi}{\Delta t}$	N: nbre de spires du circuit ΔΦ: variation de flux magnétique Δt: intervalle de temps pendant lequel dure cette variation
MCU			
Période et fréquence		$T = \frac{1}{f}$ $2\pi R$	T : période (s) f : fréquence (Hz)
Vitesse linéaire	v (m/s)	$v = \frac{2\pi R}{T}$	R : rayon (m) T : période (s)
Vitesse angulaire	ω (rad/s)	$\omega = \frac{2\pi}{T} = \frac{v}{R}$	T : période (s) v : vitesse linéaire (m/s) R : rayon (m)
Accélération centripète	a _{cp} (m/s²)	$a_{cp} = \frac{v^2}{R} = \omega^2 R$	v : vitesse linéaire (m/s) R : rayon (m) w : vitesse angulaire (rad/s)
Force centripète	F _{cp} (N)	$F_{cp} = \frac{mv^2}{R} = m\omega^2 R$	m: masse du corps en rotation (kg) v: vitesse linéaire (m/s) R: rayon (m) w: vitesse angulaire (rad/s)
Virages horizontaux	v _{max} (m/s)	$v_{ m max} = \sqrt{\mu g R}$	v _{max} : vitesse maximale possible (m/s) μ: coefficient d'adhérence g: champ de pesanteur (m/s² ou N/kg) R: rayon du virage (m)
MRU			
MKU			d : distance
vitesse moyenne	v (m/s)	$v = \frac{d}{\Delta t}$	parcourue (m) Δt : intervalle de temps (s)
position instantanée	× (m)	$x(t) = x_0 + v_0 t$	x ₀ : position initiale (m) v ₀ : vitesse initiale (m/s) t: instant (s)
	<u> </u>		

MRUA			
distance parcourue	× (m)	$x(t) = x_0 + v_0 t + \frac{at^2}{2}$ $x(t) = x_0 + \frac{1}{2}(v_0 + v)t$	x ₀ : position initiale (m) v ₀ : vitesse initiale (m/s) a: accélération (m/s²) t: instant (s) v: vitesse à l'instant t (m/s)
vitesse instantanée	v (m/s)	$v(t) = v_0 + at$	v ₀ : vitesse initiale (m/s) a: accélération (m/s²) t: instant (s)
		$v^2 = v_0^2 + 2a(x - x_0)$	v ₀ : vitesse initiale (m/s) a : accélération (m/s²) x :distance parcourue (m)
vitesse moyenne	v _m (m/s)	$v_m = \frac{1}{2}(v_0 + v)$	v ₀ : vitesse initiale (m/s) v: vitesse atteinte à l'instant où l'on calcule la vitesse moyenne (m/s)
Chute libre	y (m)	$y(t) = \frac{gt^2}{2}$	g : champ de pesanteur (m/s² ou N/kg) t : instant (s)
	v (m/s)	$v(t) = gt$ $v(t) = \sqrt{2gy}$	g: champ de pesanteur (m/s² ou N/kg) t: instant (s) y: position à l'instant t
Nucléaire			
nombre de masse ou nombre de nucléons	А	A = Z + N	Z : nbre de protons N : nbre de neutrons
notation nucléaire		$_{Z}^{A}X$	X : symbole chimique de l'élément A : nbre de nucléons Z : nbre de protons
constante de désintégration radioactive	λ (/s)	$\lambda = \frac{\ln 2}{T_{1/2}}$	$T_{1/2}$: demi-vie (s)

loi de décroissance radioactive	nbre de noyaux N(†)	$N(t) = N_0 e^{-\lambda t}$	N ₀ : nbre initial de noyaux λ: constante de désintégration radioactive (/s) t: temps (s)
activité	A (Bq)	$A(t) = A_0 e^{-\lambda t}$ $A(t) = \lambda N(t)$	A ₀ : activité initiale (Bq) λ: constante de désintégration radioactive (/s) t: temps (s) N(t): nbre de noyaux au temps t
Ondes			
longueur d'onde	λ (m)	$\lambda = vT = \frac{v}{f}$	$f = \frac{1}{T}$: fréquence (Hz) T: période (s)
élongation d'un point à une distance d de la source	y _P (†)	$y_p(t) = A\sin(\omega t + \varphi - 2\pi \frac{d}{\lambda})$	A: amplitude (m) $w = 2\pi f$: vitesse angulaire (rad/s) $f = \frac{1}{T}$: fréquence (Hz) T: période (s) t: temps (s) φ : constante de phase (rad) A: longueur d'onde (m)
vitesse de propagation d'une onde sur une corde	v (m/s)	$v = \sqrt{\frac{T}{\mu}}$	T : tension dans la corde (N) μ : masse linéique de la corde (kg/m)
Fréquences des harmoniques - Onde stationnaire avec deux extrémités ouvertes ou fermées	f _n (Hz)	$f_n = \frac{nv}{2L}$	n: nombre naturel v: vitesse de propagation de l'onde (m/s) L: longueur du tuyau/corde, (m)
Fréquences des harmoniques - Onde stationnaire avec une extrémité fermée	f _n (Hz)	$f_n = \frac{nv}{4L}$	n: nombre naturel v: vitesse de propagation de l'onde (m/s) L: longueur du tuyau/corde, (m)
Fréquence de battement	f _{bat} (Hz)	$f_{bat} = f_1 - f_2 $	f _{1/2} : fréquence de chacune des ondes qui se superposent (Hz)

	1		Τ
Intensité sonore	I (W/m²)	$I = \frac{P}{S}$	P : puissance sonore (W) S : surface
		I décroît en 1/R²	recevant cette puissance (m²)
Niveau d'intensité sonore	β (dB)	$\beta = 10 \log \frac{I}{I_0}$	I: intensité sonore (W/m^2) $I_0 = 10^{-12} W/m^2$: seuil d'audition à 1000 Hz
Effet Doppler			
source en mouvement - observateur au repos	fréquence perçue f' (Hz)	$f'=f\left(rac{v}{v\mp v_{s}} ight)$ quand la source se rapproche/s'éloigne	f : fréquence émise par la source (Hz) v : vitesse de l'onde (m/s) v _s : vitesse de la source (m/s)
source au repos - observateur en mouvement	fréquence perçue f' (Hz)	$f'=f\left(rac{v\pm v_o}{v} ight)$ quand l'observateur se rapproche/s'éloigne	f : fréquence émise par la source (Hz) v : vitesse de l'onde (m/s) v _o : vitesse de l'observateur (m/s)
Optique géométrique			
réflexion		i = r	i : angle d'incidence r : angle de réflexion
miroir plan		p = q $h = h'$	p : distance objet- miroir (m) q : distance miroir- image (m) h : hauteur de l'objet (m) h' : hauteur de l'image (m)
réfraction	indice de réfraction	$n = \frac{c}{v}$	c = 3.10 ⁸ m/s, vitesse de la lumière dans le vide v : vitesse de la lumière dans le milieu considéré (m/s)

			i : angle d'incidence
			r : angle de réfraction
			v ₁ : vitesse de la
			lumière dans le milieu
			1 (m/s)
			v ₂ : vitesse de la
loi de Snell -		$\sin i = n$, λ , n	lumière dans le milieu
		$\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$	2 (m/s)
Descartes		$V_2 \lambda_2 n_1$	1 : longueur d'onde dans le milieu 1 (m)
			12: longueur d'onde
			dans le milieu 2 (m)
			n ₁ : indice de
			réfraction du milieu 1
			n ₂ : indice de
			réfraction du milieu 2
		En général, l'indice de réfraction	
		augmente avec la fréquence de la	
		lumière -> dispersion et milieu dit	
		« dispersif »	
		•	n ₁ : indice de
profondeur		$\frac{prof.apparente}{prof.r\'eelle} = \frac{n_2}{n_1}$	réfraction du milieu 1
apparente		${prof.r\acute{e}elle} \equiv {n_1}$	n ₂ : indice de
		- '	réfraction du milieu 2
réflexion totale		$\theta_l = \arcsin(\frac{n_2}{n_1})$	n ₁ : indice de
(angle de réfraction	angle limite		réfraction du milieu 1
= 90°)	θ_l		n ₂ : indice de
- 70)			réfraction du milieu 2
		$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$ $f: distance focc in a single index in the fraction delay and the following problem of the following problem in the following problem is a finite of the following problem in the following problem in the following problem is a finite of the following problem in the following pr$	f : distance focale (m)
équation du fabricant de lentilles			
			· ·
			p : distance de l'objet
équation de la lentille		1 1 1	(m)
= éq. de conjugaison = éq. de Gauss		$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$	q : distance de l'image
		$p \cdot q f$	(m)
			f : distance focale (m)
grossissement			h' : hauteur de l'image
		$m = \frac{h'}{q} = \frac{q}{q} \tag{m}$, ,
			h : hauteur de l'objet
	m		1 ' '
	'''	m=h=p	p : distance de l'objet
			(m)
			q : distance de l'image
			(m)

$\begin{array}{c} \text{systèmes de} \\ \text{lentilles}; \\ \text{grossissement} \end{array} \\ \text{m} \\ \text{grossissement} \\ \text{de lentille} \\ \text{m} \\ \text{m} \\ \text{grossissement} \\ \text{de lentille} \\ \text{m} \\ \text{m} \\ \text{grossissement} \\ \text{de lentille} \\ \text{m} \\ \text{m} \\ \text{grossissement} \\ \text{de lentille} \\ \text{ondulatoire} \\ \\ \text{Optique} \\ \text{ondulatoire} \\ \\ \text{ondulatoire} \\ \\ \text{diffraction par une} \\ \text{fente} \\ \text{extinction} \\ \text{sin} \theta = \frac{k\lambda}{a} \\ \\ \text{diffraction par une} \\ \text{fente} \\ \text{for an empty of the lentile} \\ \text{diffraction par une} \\ \text{franges} \\ \text{brillantes} \\ \text{brillantes} \\ \\ \text{sin} \theta = \frac{k\lambda}{a} \\ \\ \text{sin} \theta = \frac{k\lambda}{a} \\ \\ \text{diffraction par une} \\ \text{frange} \\ \text{brillante} \\ \text{for an empty of the lentile} \\ \text{diffraction par une} \\ \text{franges} \\ \text{brillantes} \\ \\ \text{brillantes} \\ \\ \text{sin} \theta = \frac{k\lambda}{a} \\ \\ \text{sin} \theta = \frac{k\lambda}{a} \\ \\ \text{diffraction par une} \\ \text{frange} \\ \text{brillante} \\ \text{for an empty of the lentile} \\ \text{du max central} \\ \text{λ : longueur d'onde} \\ \text{de la lumière} \\ \text{incidente} \\ \text{(m)} \\ \text{a: distance entre} \\ \text{les fentes du réseau (m)} \\ \text{λ : longueur d'onde} \\ \text{de la lumière} \\ \text{incidente} \\ \text{incidente} \\ \text{(m)} \\ \text{a: distance entre} \\ \text{les deux fentes} \\ \text{(m)} \\ \text{D: distance entre} \\ \text{les fentes et l'écran} \\ \text{(m)} \\ \\ \text{distance entre} \\ \text{les fentes} \\ \text{els fentes} \\ el$		1		
ondulatoire $\sin\theta = \frac{k\lambda}{a}$ $\text{diffraction par une fente}$ extinction $\sin\theta = \frac{k\lambda}{a}$ $\text{diffraction par une fente}$ $\text{diffraction par une fente}$ $\text{diffraction par une fente}$ $\text{diffraction par une franges}$ brillantes brillantes $\text{sin}\theta = \frac{k\lambda}{a}$ $\text{diffraction par une franges}$ brillantes brillantes $\text{sin}\theta = \frac{k\lambda}{a}$ du max central $\lambda : \text{longueur d'onde de la lumière incidente (m)}$ $\alpha : \text{diffraction par une franges}$ brillantes brillantes $\text{sin}\theta = \frac{k\lambda}{a}$ du max central $\lambda : \text{longueur d'onde de la lumière incidente (m)}$ $\alpha : \text{distance entre les fentes du réseau (m)}$ $y_k : \text{distance de la kime frange}$ $\text{brillante de part et d'autre du max central}$ $\lambda : \text{longueur d'onde de la lumière incidente de la lumière incidente (m)}$ $\alpha : \text{distance entre les deux fentes (m)}$ $\lambda : \text{longueur d'onde de la lumière incidente (m)}$ $\alpha : \text{distance entre les deux fentes (m)}$ $\lambda : \text{longueur d'onde de la lumière incidente (m)}$ $\alpha : \text{distance entre les deux fentes (m)}$ $\lambda : \text{longueur d'onde de la lumière incidente (m)}$ $\alpha : \text{distance entre les deux fentes entre les fentes et l'écran}$	lentilles;	m	$m=m_1.m_2$	total m1: grossissement de la lentille 1 m2: grossissement de
ondulatoire $\sin\theta = \frac{k\lambda}{a}$ $\text{diffraction par une fente}$ extinction $\sin\theta = \frac{k\lambda}{a}$ $\text{diffraction par une fente}$ $\text{diffraction par une fente}$ $\text{diffraction par une fente}$ $\text{diffraction par une franges}$ brillantes brillantes $\text{sin}\theta = \frac{k\lambda}{a}$ $\text{diffraction par une franges}$ brillantes brillantes $\text{sin}\theta = \frac{k\lambda}{a}$ du max central $\lambda : \text{longueur d'onde de la lumière incidente (m)}$ $\alpha : \text{diffraction par une franges}$ brillantes brillantes $\text{sin}\theta = \frac{k\lambda}{a}$ du max central $\lambda : \text{longueur d'onde de la lumière incidente (m)}$ $\alpha : \text{distance entre les fentes du réseau (m)}$ $y_k : \text{distance de la kime frange}$ $\text{brillante de part et d'autre du max central}$ $\lambda : \text{longueur d'onde de la lumière incidente de la lumière incidente (m)}$ $\alpha : \text{distance entre les deux fentes (m)}$ $\lambda : \text{longueur d'onde de la lumière incidente (m)}$ $\alpha : \text{distance entre les deux fentes (m)}$ $\lambda : \text{longueur d'onde de la lumière incidente (m)}$ $\alpha : \text{distance entre les deux fentes (m)}$ $\lambda : \text{longueur d'onde de la lumière incidente (m)}$ $\alpha : \text{distance entre les deux fentes entre les fentes et l'écran}$	0.1:			
trouve la frange brillante (°) $k: n^{\circ} \text{ de la frange de part et d'autre du max central}$ $\lambda: \text{ longueur d'onde de la lumière incidente (m)}$ $a: \text{ distance entre les fentes du réseau (m)}$ $y_k: \text{ distance de la } k^{\text{ème}} \text{ frange brillante de part et d'autre du max central}}$ $\lambda: \text{ longueur d'onde de la lumière incidente (m)}$ $a: \text{ distance entre les fentes du réseau (m)}$ $y_k: \text{ distance de la } k^{\text{ème}} \text{ frange brillante de part et d'autre du max central}}$ $\lambda: \text{ longueur d'onde de la lumière incidente (m)}$ $a: \text{ distance entre les deux fentes (m)}$ $0: \text{ distance entre les deux fentes (m)}$ $0: distance entre les fentes et l'écran les fentes $	-	extinction	$\sin\!\theta = \frac{k\lambda}{a}$	trouve l'extinction (°) k: n° de l'extinction de part et d'autre du max central \(\lambda:\) longueur d'onde de la lumière incidente (m) a: largeur de la
interférences $y_k = k \frac{\lambda D}{a}$ $y_k = k $	-	_	$\sin\theta = \frac{k\lambda}{a}$	 θ: angle auquel se trouve la frange brillante (°) k: n° de la frange de part et d'autre du max central λ: longueur d'onde de la lumière incidente (m) a: distance entre les fentes du
	interférences	_	$y_k = k \frac{\lambda D}{a}$	kième frange brillante de part et d'autre du max central λ: longueur d'onde de la lumière incidente (m) a: distance entre les deux fentes (m) D: distance entre les fentes et l'écran

Oscillations			
élongation de la source	y (m)	$y(t) = A\sin(\omega t + \varphi)$	A: amplitude (m) $w = 2\pi f$: vitesse angulaire (rad/s) $f = \frac{1}{T}$: fréquence (Hz) T: période (s) t: temps (s) φ : constante de phase (rad)
concordance de phase		$\Delta t = 2kT$	Δt : retard (s) Τ : période (s)
opposition de phase		$\Delta t = (2k+1)\frac{T}{2}$	Δt : retard (s) T : période (s)
ressort ; vitesse angulaire	w (rad/s)	$\omega = \sqrt{\frac{k}{m}}$	k: constante de raideur du ressort (N/m) m: masse de l'objet oscillant
loi de Hooke pour les objets élastiques	F(N)	F = -ky	k : constante de raideur (N/m) y : élongation (m)
énergie potentielle élastique	E _{pe} (J)	$E_{Pe} = \frac{1}{2} k y^2$	k : constante de raideur (N/m) y : élongation (m)
pendule simple ; vitesse angulaire	w (rad/s)	$\omega = \sqrt{\frac{g}{L}}$	g : champ de pesanteur (m/s² ou N/kg) L : longueur du pendule (m)
vitesse d'oscillation	v (m/s)	$v(t) = A\omega\cos(\omega t + \varphi)$	A: amplitude (m) $\omega = 2\pi f$: vitesse angulaire (rad/s) $f = \frac{1}{T}$: fréquence (Hz) T: période (s) t: temps (s) φ : constante de phase (rad)
accélération	a (m/s²)	$a(t) = -A\omega^2 \sin(\omega t + \varphi)$	A: amplitude (m) $w = 2\pi f$: vitesse angulaire (rad/s) $f = \frac{1}{T}$: fréquence (Hz) T: période (s) t: temps (s) φ : constante de phase (rad)

Statique			
Machines simples : poulies		Une poulie fixe change l'orientation d'une force. Un système de poulies fixes et de poulies mobiles divise la force à exercer pour soulever une charge par le nombre de cordes soutenant les poulies mobiles.	
avantage mécanique théorique	AMT	$AMT = \frac{F_f}{F_a} = \frac{x_a}{x_f}$	F_f = force fournie par la machine (N) F_a = force appliquée à la machine (N) x_a = dist. sur laquelle agit la force appliquée (m) x_f = dist. sur laquelle agit la force fournie (m)
leviers		$AMT = \frac{L_a}{L_f}$	L _a = longueur du bras où on applique la force (m) L _f = longueur du bras où on reçoit la force fournie par le levier (m)
équilibre de translation		$\sum \vec{F} = 0$	F : force (N)
équilibre de rotation		$ \sum_{\overrightarrow{M}} \overrightarrow{M} = 0 $ $ \overrightarrow{M} = \overrightarrow{r} \times \overrightarrow{F} = rF\sin\theta = \pm Fr_{\perp} $ $ M = I \alpha $	M: moment de la force (Nm) r: distance entre le point d'application de la force et l'axe de rotation (m) F: force (N) θ : le plus petit angle entre \vec{r} et \vec{F} (°) I: moment d'inertie (kg.m²) a: accélération angulaire (rad/s²)

Théorie quantique			
énergie d'un photon	E (J)	$E = hf = \frac{hc}{\lambda}$	h = 6,63.10 ⁻³⁴ J.s; constante de Planck f: fréquence de la lumière (Hz) c = 3.10 ⁸ m/s; vitesse de la lumière dans le vide λ: longueur d'onde de la lumière (m)
effet photoélectrique ; énergie cinétique des électrons	E _c (J)	$E_c = hf - W$ $W = hf_0$	h = 6,63.10 ⁻³⁴ J .s; constante de Planck f : fréquence de la lumière (Hz) W : travail d'extraction (J) f ₀ : fréquence seuil (Hz)
dualité onde- corpuscule pour la matière ; longueur d'onde	λ (m)	$\lambda = \frac{h}{mv}$	h = 6,63.10 ⁻³⁴ J .s; constante de Planck m : masse de la particule (kg) v : vitesse de la particule (m/s)
Tie ablique			
Tir oblique distance horizontale	× (m)	$x(t) = v_0 \cos\theta.t$	v ₀ : vitesse initiale (m/s) θ: angle de tir (°) t: instant (s)
distance verticale	y (m)	$y(t) = y_0 + v_0 \sin\theta \cdot t - \frac{gt^2}{2}$	y ₀ : hauteur initiale (m) v ₀ : vitesse initiale (m/s) θ: angle de tir (°) g: champ de pesanteur (m/s² ou N/kg) t: instant (s)
vitesse horizontale	v _x (m/s)	$v_x = v_0 \cos\theta$	v ₀ : vitesse initiale (m/s) θ : angle de tir (°)
vitesse verticale	v _y (m/s)	$v_y(t) = v_0 \sin\theta - gt$ $v_y^2 = v_0^2 \sin^2\theta - 2g(y - y_0)$	v ₀ : vitesse initiale (m/s) θ: angle de tir (°) g: champ de pesanteur (m/s² ou N/kg) t: instant (s)

vitesse totale	v (m/s)	$v = \sqrt{v_0^2 + v_y(t)^2}$	v ₀ : vitesse initiale (m/s) v _y : vitesse verticale (m/s) t: instant (s)
portée	R (m)	$R = \frac{v_0^2}{g} \sin 2\theta$	v ₀ : vitesse initiale (m/s) θ: angle de tir (°) g: champ de pesanteur (m/s² ou N/kg)
hauteur maximale	y _{max} (m)	$y_{\text{max}} = \frac{v_0^2 \sin^2 \theta}{2g}$	v ₀ : vitesse initiale (m/s) θ: angle de tir (°) g: champ de pesanteur (m/s² ou N/kg)
trajectoire	y en fct de ×	$y = x \tan \theta - \frac{g}{2} \cdot \frac{x^2}{v_0^2 \cos^2 \theta}$	x: distance horizontale (m) v ₀ : vitesse initiale (m/s) θ: angle de tir (°) g: champ de pesanteur (m/s² ou N/kg)
Tir horizontal			
		$x = v_0 t$	
		$y = h - \frac{1}{2}gt^2$	h : hauteur initiale (m)
		$x = v_0 t$ $y = h - \frac{1}{2}gt^2$ $y = h - \frac{1}{2}g\frac{x^2}{v_0^2}$	
		$v_x = v_0 = \text{cst}$	
		$v_y = -gt$	
		$v_y^2 = -2g\Delta y$	
		$R = v_0 \sqrt{\frac{2h}{g}}$	
Math			
		$\sin 2\alpha = 2\sin \alpha \cos \alpha$	
		$\sin^2\alpha + \cos^2\alpha = 1$	
périmètre d'un cercle	P (m)	$P=2\piR$	R : rayon du cercle (m)
surface d'un cercle	S (m ²)	$S = \pi R^2$	R : rayon du cercle (m)
surface d'une sphère	S (m ²)	$S = 4 \pi R^2$	R : rayon de la sphère (m)
volume d'une sphère	V (m ³)	$V = \frac{4}{3} \pi R^3$	R : rayon de la sphère (m)

Manual and the		
Nom des unités		
	V : volt	Bq : becquerel
	A: ampère	W: watt
	C: coulomb	rad : radian
	F: farad	Hz : hertz
	N: newton	K : kelvin
	kg: kilogramme	°C : degré Celsius
	m : mètre	T : tesla
	s: seconde	Wb:weber
	Pa: pascal	dB : décibel
	Ω : ohm	
	J: joule	