Definition: Identity Element

An **identity element** for a Binary Operation is an element that leaves any other element unchanged when combined with it.

Formal Definition

Let (S, *) be a set S with a binary operation *. An element $e \in S$ is called:

Left Identity

If for all $a \in S$:

e * a = a

Right Identity

If for all $a \in S$:

a * e = a

Two-Sided Identity (or simply Identity)

If e is both a left identity and a right identity.

Uniqueness

If an identity element exists, it is unique:

Proof: Suppose e and e' are both identities. Then: -e = e * e' (since e' is a right identity) -e * e' = e' (since e is a left identity) - Therefore e = e'

Examples

Arithmetic Operations

- Addition on \mathbb{R} : Identity is 0, since a + 0 = 0 + a = a
- Multiplication on \mathbb{R} : Identity is 1, since $a \cdot 1 = 1 \cdot a = a$

Matrix Operations

- Matrix addition: The zero matrix ${\bf 0}$
- Matrix multiplication: The identity matrix I with 1s on diagonal

Set Operations

- Union: The empty set \emptyset , since $A \cup \emptyset = A$
- Intersection: The universal set U, since $A \cap U = A$

Function Composition

• In the set of functions $f: X \to X$, the identity function $\mathrm{id}_X(x) = x$

Non-Examples

- Subtraction on \mathbb{R} : No identity element exists
 - No right identity: a e = a implies e = 0
 - But 0 is not a left identity: $0 a = -a \neq a$

Related Concepts

- Group: Requires an identity element
- Monoid: A set with an associative operation and identity
- Inverse elements: Defined relative to an identity element
- Uniqueness of Identity: Proves uniqueness in group context

Properties

- 1. In a Group, every element has an inverse with respect to the identity
- 2. The identity element is its own inverse: e * e = e
- 3. Identity elements are preserved by homomorphisms between algebraic structures

Dependency Graph

Local dependency graph