Отчёт по лабораторной работе № 9 «Изучение характеристик баллистической установки»

Работу выполнили: студенты группы Б03-906 Кузьмичёва Евдокия Орифов Далер Петров Дмитрий Пыряев Евгений **Цель работы**: рассчитать параметры баллистической установки **В работе используются**: лабораторная баллистическая установка

Ход работы

Схема баллистической установки

Диафрагма позволяет создавать в ресивере необходимое для эксперимента давление. Время ее раскрытия пренебрежимо мало. Разрыв диафрагмы осуществляется при помощи иглы, приводимой в движение с помощью электромагнита. В этот момент фиксируется давление внутри ресивера.

При помощи частотометра и оптической схемы, состоящей из He-Ne лазера, фототранзистора и эмиттерного повторителя, определяется время за которое снаряд проходит расстояние, равное своей длине. Далее снаряд попадает в ловушку.

Эксперимент проводился для двух различных снарядов.

Экспериментальные данные

 p_0 — давление в ресивере

t — время пересечения пули лазерного луча, т.к. луч пренебрежимо тонкий, то это время перелета пулей собственной длины

Длина ствола – 0.5 м

Атмосферное противодавление – 1 атм

	Диаметр, мм	Длина, мм	Масса, г
Снаряд 1	7	7	0,38
Снаряд 2	7	12	0,65

Вариант №1

Снаряд 1		Снаряд 2	
р₀, атм	<i>t</i> , mkc	p_{θ} , атм	<i>t</i> , mkc
15	29,13	15	73,43
20	23,08	20	62,17
25	20,46	25	58,49
30	20,41	30	45,06
35	16,69	35	40,23
40	16,07	40	40,00

Вариант №2

Снаряд 1		Снаряд 2	
р₀, атм	<i>t</i> , mkc	p_{θ} , атм	<i>t</i> , mkc
15	25,00	15	73,41
20	22,67	20	65,95
25	20,50	25	58,73
30	19,01	30	52,31
35	17,38	35	45,74
40	16,14	40	40,14

Теоретический расчёт

1) Уравнение адиабаты Пуассона:

$$\frac{p_{st}}{p_0} = \left(\frac{\rho_{st}}{\rho_0}\right)^{\gamma};$$

отсюда и из уравнения

$$1 + \frac{\gamma - 1}{2} \left(\frac{u}{a}\right)^2 = \left(\frac{a_0}{a}\right)^2 = \left(\frac{\rho_{st}}{\rho_0}\right)^{-(\gamma - 1)}$$

следует выражение для статического давления в газе, толкающем снаряд, с учётом его вязкости и теплопроводности:

$$p_{st} = p_0 \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{-\frac{\gamma}{\gamma - 1}}.$$
 (1)

2) Воспользуемся уравнением энергии:
$$i + \frac{u^2}{2} = c_p T + \frac{u^2}{2} = const = \frac{u_{max}^2}{2} = c_p T_0 \ ,$$

где u — абсолютная скорость течения потока в произвольном сечении канала, i удельная энтальпия. Введя понятие скорости звука

$$a = \sqrt{\frac{dp}{d\rho}} = \sqrt{\gamma \frac{p}{\rho}} = \sqrt{\gamma RT} ,$$

уравнение энергии можно переписать в виде:

$$\frac{\gamma}{\gamma - 1} \frac{p}{\rho} + \frac{u^2}{2} = \frac{\gamma}{\gamma - 1} \frac{p_0}{\rho_0} \Rightarrow$$

$$\Rightarrow \frac{u^2}{2} + \frac{a^2}{\gamma - 1} = \frac{a_0^2}{\gamma - 1},$$
(2)

где a_0 — скорость звука в адиабатически заторможенном газе.

3) Из (1) и (2):

$$p_{st} = p_0 \left(1 + \frac{\gamma - 1}{2} \frac{u^2}{a_0^2 - \frac{\gamma - 1}{2} u^2} \right) - \frac{\gamma}{\gamma - 1} = p_0 \left(1 - \frac{\gamma - 1}{2} \frac{u^2}{a_0^2} \right)^{\frac{\gamma}{\gamma - 1}}$$

4) Противодавление, действующее на заряд, как давление торможения воздуха, набегающего на неподвижный снаряд со скоростью заряда:

$$p * = p_{atm} \left(1 + \frac{\gamma * - 1}{2} M^2 \right)^{\frac{\gamma *}{\gamma * - 1}}$$

Уравнение движения снаряда:

$$m\frac{du}{dt} = S(p_{st} - p^*).$$

Отсюда:

$$\frac{m}{p_0 S} u \frac{du}{dt} = \left(1 - \frac{\gamma - 1}{2} \frac{u^2}{a_0^2}\right)^{\frac{\gamma}{\gamma - 1}} - \frac{p_{atm}}{p_0} \left(1 + \frac{\gamma * - 1}{2} M^2\right)^{\frac{\gamma *}{\gamma * - 1}}.$$

 p_0 — давление в ресивере; a_0 — скорость звука в неподвижном толкающем газе; γ, γ *

— показатели адиабаты толкающего и внешнего газа соответственно.

5) В результате разложения в ряд правой части получено уравнение:

$$u(x) = \frac{\left(1 - \frac{p_{atm}}{p_0}\right)^{\frac{1}{2}}}{\alpha *} \left(1 - \exp\left[-2g_0\alpha * x^2\right]\right)^{\frac{1}{2}},$$
 где $\alpha *^2 = \frac{\gamma}{2a_0^2} + \frac{\gamma *}{2a_0 *^2} \frac{p_{atm}}{p_0}.$

При $p * = p_{atm}$:

$$u(x) = \frac{1}{\alpha} \sqrt{\frac{p_0 - p_{atm}}{p_0 + p_{atm}}} \cdot \sqrt{1 - \exp\left(-2g_0 \alpha^2 \left[1 + \frac{p_{atm}}{p_0}\right] x\right)}$$

Сравнение эксперимента с теорией

$$u(x) = \frac{1}{\alpha} \sqrt{\frac{p_0 - p_{atm}}{p_0 + p_{atm}}} \cdot \sqrt{1 - \exp\left(-2g_0 \alpha^2 \left[1 + \frac{p_{atm}}{p_0}\right] x\right)}$$

Зависимость скорости пули от давления газа в ресивере

Среднеквадратичное отклонение

	1 снаряд	2 снаряд
1 вариант	12%	8%
2 вариант	25%	29%