

Given x, a character position, consider the following. We know that x is a character position, which when moved up results in a character position, which when moved down results in a character position that we'll call P(x). We also know that x is a character position that we'll call Q(x). Fact: whenever x is a character position we will have P(x)=Q(x). Summary: [up, down] = []

know that x is a character position that we'll call Q(x). Fact: whenever x is a character position we will have P(x)=Q(x). **Summary: [down, up] = []**Given x, a character position, consider the following. We know that x is a character position, which when moved up results in a character position, which when moved right results in a character position that we'll call P(x). We also know that x is a character position, which when moved right results in a

Given x, a character position, consider the following. We know that x is a character position, which when moved down results in a character position, which when moved up results in a character position that we'll call P(x). We also

when moved right results in a character position that we'll call P(x). We also know that x is a character position, which when moved right results in a character position, which when moved up results in a character position that we'll call Q(x). Fact: whenever x is a character position we will have P(x)=Q(x). Summary: [up, right] = [right, up]

Given x, a character position, consider the following. We know that x is a character position, which when moved down results in a character position, which when moved right results in a character position that we'll call P(x). We also know that x is a character position, which when moved right results in a character position, which when moved down results in a character position that we'll call Q(x). Fact: whenever x is a character position we will have P(x)=Q(x). Summary: [down, right] = [right, down]