Approximation algorithms, vertex cover, and linear programming

Quality of output?

2. Round the LP solution

$$\mathbf{z_u} \in \{0, 1\}$$

3. Output $\{u:z_u=1\}$

Output
$$cost = \sum_{\mathbf{u}} \mathbf{w_u} \mathbf{z_u}$$

1. Solve the LP $(\mathbf{x_u^*})$

2. Round the LP solution

$$\mathbf{z_u} = \begin{cases} 1 & \text{if } \mathbf{x_u^*} \ge 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Observe:
$$z_u \leq 2x_u^*$$

1. Solve the LP

IP min: x(u)=1 iff u in optimum vertex cover

$$\min \sum_{\mathbf{u}} \mathbf{w}_{\mathbf{u}} \mathbf{x}_{\mathbf{u}}$$

$$\mathbf{x_u} + \mathbf{x_v} \geq 1$$

$$\mathbf{x_u} \in \{\mathbf{0}, \mathbf{1}\}$$

LP min: x*(u)

$$\min \sum_{\mathbf{u}} \mathbf{w}_{\mathbf{u}} \mathbf{x}_{\mathbf{u}}^*$$

$$\mathbf{x}^*_{\mathbf{u}} + \mathbf{x}^*_{\mathbf{v}} \geq 1$$

$$0 \leq x_u^* \leq 1$$

The LP is a relaxation of the IP

$$\sum_{\mathbf{u}} \mathbf{w}_{\mathbf{u}} \mathbf{x}_{\mathbf{u}}^* \leq \mathrm{OPT}$$

Combine

$$\begin{array}{l} \text{Output cost} = \sum_{\mathbf{u}} \mathbf{w_u z_u} \\ \leq 2 \sum_{\mathbf{u}} \mathbf{w_u x_u^*} \\ \leq 2 \mathrm{OPT} \end{array}$$

Thm: output is a vertex cover of value at most 2 OPT

OPT = 4.5 .5 (z_u) value = 8

Is the analysis tight?

How good is that?

Typical performance (hearsay): within 10% of optimum

How do we know?

Can compare output value to

$$\sum\nolimits_{u}w_{u}x_{u}^{*}$$

Approximation algorithms, vertex cover, and linear programming

