

EXMC GROUND-BASED SPACE RADIATION ANALOG PILOT DRUG STABILITY STUDY: FINAL DATA REVIEW

Human Research Program

Exploration Medical Capability Element

February 7, 2022
Vernie Daniels, MS, RPh¹
Tina Bayuse, PharmD, RPh¹
Rebecca Blue, MD, MPH^{2, 3}
Erik Antonsen, MD, PhD⁴
Kris Lehnhardt, MD⁵

¹ KBR; ² GeoControl Systems; ³University of Texas Medical Branch; ⁴Translational Research Institute for Space Health; ⁵Baylor College of Medicine

"Expanding the Boundaries of Space Medicine and Technology"

Presentation Outline

- > Background & Research Objectives
- >Materials and Methods
- >Results
- > Discussions
- >Conclusion
- >Limitations and Forward Work

- Currently, the magnetosphere shields Earth from solar particle events (SPEs) and radiation caused by the sun and galactic cosmic rays (GCRs) produced by supernova fragments.
- Ionizing radiation, like GCR, can move through substances and alter them as it passes through.
- If the atoms within space e.g., spacecraft, crew member, or pharmaceuticals - are ionized upon collision with GCR particles, they may be irreversibly altered.

Study Background

- > Uncertainty remains regarding space radiation impacts on drug stability and shelf life. Radiation exposure to consumables is expected to increase with long duration exploration missions.
- > Space environmental analog and ground-based targeted radiation research could reveal valuable insight into drug safety and effectiveness.
 - Capability Shift: In 2018, the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) was commissioned to simulate the shielded radiation environment encountered by an astronaut within a typical exploration vehicle using mixed-species beam exposures.

Research Objectives

- > Evaluate if ground-based rapid-switching radiation beam exposures can effectively reproduce previously observed effects of spaceflight on drug stability and shelf life.
- ➤ Evaluate the utility of simulated GCR single beam exposures as an effective ground-based analog for predicting GCR impacts on drug stability and shelf life during spaceflight.

High Level Plan:

2017: Experimental Design

2018: Initial Testing

2019: Year One Evaluation 2020: Year Two Evaluation

Materials and Methods: Study Drugs

- > Four medications were prioritized and selected based on:
 - ❖Pharmaceutical stability profiles confirmed by previous research / literature
 - **❖ Clinical relevance** for exploration spaceflight

Table A. Experimental Drug List

Test Product Identifier	Drug
Α	*Acetaminophen 500 mg Tablets (APAP)
В	[†] Amoxicillin 500 mg Capsules (AMOX)
С	*Ibuprofen 400mg Tablets (IBU)
Е	[†] Promethazine 25mg Tablets (PMZ)

^{*}Repackaged; *Manufacturer Packaging

- ❖ Sets (identical brands / lots) of each drug product procured for each experimental arm
 - Sufficient quantities to provide a statistically significant number of replicates
 - 50-100 dosage units / package
 - 4 different drugs x 2 packages each x 4 different study conditions = 32 packages of drugs
- ❖Packaged (as closely as possible) to resemble flight medical systems operational packaging (e.g. drug flight bottles / plastic bags / unit-dose strips, etc.).

Materials & Methods: Irradiation Logistics

Irradiation:

- The first experiment at NSRL to utilize the Mixed-Species Simulator
- Exposure Dose: Two mixed-beam radiation doses supported by rapid-switching beam technology
 - **❖** 0.5Gy
 - **❖** 1.0Gy
- GCR-like beam profile:
 - ♣ ¹H, ⁴He, ¹²C, ¹6O, ²8Si, ⁴8Ti, and ⁵6Fe
- Dosimeters enclosed in clear gelatin capsules and attached to front and / or back, of each drug product package, to provide estimation of irradiation dose received.

Irradiation Dose Measurement TLD Placement

Drug Stability Analyses: USP monograph Test methods developed for all analyses

- ➤ API chemical content analysis using USP methods (UPLC H-Class System with PDA Detector)
 - ❖ Trial runs to validate USP method suitability
 - ❖Assay methods validated using commercial reference standards
- >Presence of formulation impurities or degradation products verification
 - Assessment of chromatographic peak percentages
 - Generation of drug formulation component chromatogram overlays
- > Dissolution testing to determine API release characteristics
 - ❖UV / Vis Spectrophotometer to assist with dissolution assessments

*Method development and analysis completed by third-party vendor

Materials and Methods: Summary

Actual Execution:

2017: Experiment al Design 2018: Initial Testing 2019: Year One Evaluation 2020: COVID Delays

2021: Year Three Evaluation

JSC CONTROL	Procured and repackaged (if necessary)	Shipped to Lab Vendor			Testing: Initial (T1), Year 1 (T2), Year 3 (T3)	Intermediate Storage: Environmental Chambers
TRAVEL CONTROL	Procured and repackaged (if necessary)	Shipped to NSRL	No treatment	Shipped to Lab Vendor	Testing: Initial (T1), Year 1 (T2), Year 3 (T3)	Intermediate Storage: Environmental Chambers
Irradiated Group 1	Procured and repackaged (if necessary)	Shipped to NSRL	Single dose of 0.5 Gy	Shipped to Lab Vendor	Testing: Initial (T1), Year 1 (T2), Year 3 (T3)	Intermediate Storage: Environmental Chambers
Irradiated Group 2	Procured and repackaged (if necessary)	Shipped to NSRL	Single dose of 1.0 Gy	Shipped to Lab Vendor	Testing: Initial (T1), Year 1 (T2), Year 3 (T3)	Intermediate Storage: Environmental Chambers

Results: API Content

➤ All APAP and IBU samples met USP potency requirements:

- APAP control / irradiated API content:
- 93 104%
- IBU control and irradiated API content:
- 95 109%

Most AMOX samples met USP potency requirements:

- T1 T3 control API content: 94 102%
- T1 T3* irradiated API content: 90* 102%, one replicate with API = 89.97

➤ T3 PMZ samples failed to meet the USP potency requirements:

- T1–T2 control / irradiated API content:
- 99 109%
- T3 control / irradiated API content: 87 89%

Results: Dissolution and Impurities

➢ Dissolution (API Release):

- Some samples revealed changes in release between the two timepoints
 - No demonstrated change in APAP or IBU
 - Apparent change consistent throughout all study conditions in PMZ
 - Variable apparent change in AMOX with the greatest change in Irradiation Group II
 - No third time-point dissolution analyses due to insufficient drug sample.

>Impurities:

Chromatogram assessments for all study drugs, at all 3 timepoints revealed no new or foreign peaks in any of the irradiated drug samples.

Discussion

- > Evidence suggests the simulated GCR exposure <u>did not precipitate</u> non-characteristic degradation, following three years post-radiation exposure.
 - ❖Although all 4 medications expired prior to T3:
 - All control and irradiated APAP and IBU met USP potency requirements
 - All control and 3 of 4 irradiated T3 samples of AMOX met USP potency requirements
 - *"Lag-time" degradation behavior consistent with some solid dosage forms observed in acetaminophen (APAP).
 - Little or no degradation during the initial phase of the degradation pathway (lag-time degradation behavior); followed by degrading at a rapid rate (Conners et al, 1986; Lakka, NS and Kuppan, C, 2019)

Concurrence with Stability Literature

APAP and IBU have robust drug stability profiles associated with chemical and formulation characteristics.

- ❖ Phenol ring makes APAP chemically stable and hard to degrade (Xu et al. 2018)
- FDA SLEP confirmed APAP potency 24 months beyond labeled expiration date (Lyons et al. 2006)
- ❖ APAP was one of eight medications confirmed as potent (99.7%) 28-40 years beyond expiration (Cantrel et al. 2012)
- ❖ No differences in dissolution, hardness and API potency were observed for acetaminophen tablets exposed to x-ray irradiation at 0.34 mGy, 0.1, 0.5, 300 Gy doses (Uehara et al. 2020)
- The Amneal Pharmaceuticals brand of IBU 400 mg tablets used in this BNL study is film coated.
 - Tablet film coating can protect product APIs from light, oxidation, and moisture leading to increased product stability (Seo et al. 2020)

Concurrence with Stability Literature

AMOX remains potent for more than a year post labeled expiration (19.5 months in this study).

- ❖ No loss of potency following 10.0 Mrad dose of gamma irradiation (Kabir et al. 2006)
- ❖ FDA SLEP confirmed AMOX potency 21-23 months beyond labeled expiration date (Lyons et al. 2006)

Concurrence with Stability Literature

Degradation of PMZ samples suggests a chemical or structural predisposition to degradation.

- Phenothiazines include vulnerable planar heterocyclic ring system (Smarandache et al. 2015)
- PMZ is a chiral compound, highly sensitive to oxidative, hydrolytic, and photolytic degradation (Saad et al. 2016; Takale et al. 2021)
 - Over 40 years of demonstrated oxidation of selected phenothiazines (e.g. PMZ) during analytical sample preparation (Campbel et al. 2018; Kojlo et al. 2001; Karpinska et al. 1996; Pankratov et al. 1993)

Concurrence with Drug Radiation Studies

The potency observations of this study concur with previous JSC spaceflight and beam irradiation drug stability studies:

- Sustained potency for APAP, IBU
 - ❖ (BCM Irradiation Study, L. Putcha et al. 2006), (NSRL Simulation Radiation Study, L. Putcha et al. 2006), (Wotring, 2016), (Du et al. 2011), (Cory et al., ExMC Report, Reference ID: 0923-000193, 2016)
- Declining potency for AMOX with radiation and time
 - ❖ (Du et al. 2011)
- Potency below USP thresholds for PMZ
 - ❖ (BCM Irradiation Study, L. Putcha et al. 2006), (NSRL Simulation Radiation Study, L. Putcha et al. 2006), (Du et al. 2011)

Inconclusive State

This study does not provide adequate evidence to support that the simulated GCR radiation had any effect on stability of the active ingredients, dissolution, or impurities of the 4 study drugs. The simulated GCR did not introduce any degradation effects in the 4 study drugs that were not evidenced in prior radiation or stability experiments. Because of the lack of comparable data from the actual space environment, it cannot be determined if there are no radiation effects on drug stability or if the analog is not reflective of space radiation.

Consequently, it is still unknown if space radiation will cause degradation in pharmaceutical products in a space mission beyond low Earth orbit.

Study Limitations

- The GCR profile may not have accurately represented the spectrum (or harshness) of radiation conditions that will be encountered during the mission.
- The experimental radiation was applied at a single time point (acute exposure of high dose) while space mission radiation will be chronic in nature (low dose over sustained period).
- The study drugs, a small subset of over 190 drugs used in space, is not reflective of the drugs most susceptible to radiation degradation.

Forward Work

- Follow-up studies to this pilot study are warranted.
 - 33-GCR, believed to be a higher fidelity analogue of space radiation, is now available at NSRL. The mixed-species beam composition has been shown to have impact on results in cellular studies.
 - Repeat study with additional replicates to verify reproducibility and capture confounding variations within starting drug lot and lab variability.
 - Test a larger and more chemically diverse pool of study drugs.
 - Liquid formulations are generally more sensitive to degradation.
 - Identify drugs sensitive to radiation specifically for next study.
 - Add a pharmacokinetics evaluation to verify drug efficacy in vivo.

Acknowledgements

- > Human Research Program and Exploration Medical Capabilities Element Management
- > Analytical Vendor: University of Maryland Baltimore, School of Pharmacy, Applied Pharmaceutics Lab
 - HRP Grant: TXS0143536
 - Analytical Team: Stephan Hoag, PhD Director; Ahmed Ibrahim, PhD; Fang Wang, PhD; Gary Hollenbeck,
 PhD; Shailaja Somaraju, PhD
- > Human Health and Performance Directorate Management
- > Biomedical Research and Environmental Sciences Division Management
- > NASA-JSC Biomedical Research and Environmental Sciences Division
- > NASA-JSC Space Radiation Analysis Group
 - Team: Honglu Wu, PhD, Ramona Gaza, PhD
- > NASA Space Radiation Laboratory scientists, Brookhaven National Laboratory
 - Team: Peter Guida, PhD; Tony Slaba, PhD
- > JSC Clinical Pharmacy Team
- > NASA Shipping and Receiving
- > ExMC Clinical & Science Team Lead
- > KBR Human Health and Performance Contracts
 - Logistics Team
 - Task Order Management Teams

The Question & Answer session for this talk will be handled asynchronously.

Please email questions to <u>tina.m.bayuse@nasa.gov</u> and an ExMC team member will respond to you as soon as possible.

Irradiation Dose

>Irradiation Dose Measurements

- ❖ Entrance dose for irradiated drugs at the 0.5 Gy dose: 422.7 ± 5.7 -465.3 ± 6.3 mGy
 - A measured dose of 7-15% lower than the expected nominal dose (500 mGy)
- ❖ Entrance dose for irradiated drugs at the 1.0 Gy dose: 856.8 ± 11.6 -932.4 ± 12.7 mGy
 - a measured dose of 7-14% lower than the expected nominal dose (1000 mGy)
- ❖ A dose-decreasing trend between the front and back TLDs of 7 – 16% was observed for each drug group.

Drug Type	Exposure	TLD-100	TLD-100	TLD-100	Nominal
		Measured	Mean Dose	Ratio	NSRL
		Dose	(mGy)	Back/Front	Dose
		(mGy)			(mGy)
Acetaminophen	A3a_Front	465.3 ± 6.3	448.1 ± 6.1	0.93 ± 0.02	500
500mg	A3a_Back	431.0 ± 5.9	448.1 ± 0.1		500
	A3b Back	412.7 ± 5.6	412.7 ± 8.8	N/A	500
Acetaminophen	A4a_Front	932.4 ± 12.7	899.2 ± 9.8	0.93 ± 0.02	1000
500mg	A4a_Back	866.0 ± 11.8	699.2 ± 9.6		1000
	A4b_Back	843.9 ± 11.5	843.9 ± 11.5	N/A	1000
Amoxicillin	B3a_Front	436.2 ± 5.9	400.7 ± 5.5	0.84 ± 0.02	500
500mg	B3a_Back	365.2 ± 5.0	400.7 ± 5.5		500
	B3b_Back	371.9 ± 5.1	371.9 ± 5.1	N/A	500
Amoxicillin	B4a_Front	864.4 ± 11.7	804.4 ± 9.0	0.86 ± 0.02	1000
500mg	B4a Back	744.4 ± 10.1	804.4 ± 9.0		1000
	B4b_Back	747.0 ± 10.2	747.0 ± 10.2	N/A	1000
Ibuprofen	C3a_Front	422.7 ± 5.7	405.7 ± 5.5	0.92 ± 0.02	500
400mg	C3a_Back	388.8 ± 5.3	405.7 ± 5.5		500
	C3b_Back	394.4 ± 5.4	394.4 ± 5.4	N/A	500
Ibuprofen	C4a_Front	871.5 ± 11.8	822.6 ± 9.2	0.89 ± 0.02	1000
400mg	C4a_Back	773.7 ± 10.5	822.0 ± 9.2		1000
	C4b_Back	733.3 ± 10.0	733.3 ± 10.0	N/A	1000
Levofloxacin	D3a_Front	432.0 ± 5.9	412.6 ± 5.6	0.91 ± 0.02	500
500mg	D3a_Back	393.2 ± 5.3	412.0 ± 5.0		500
	D3b_Back	384.0 ± 5.2	384.0 ± 5.2	N/A	500
Levofloxacin	D4a_Front	856.8 ± 11.6	855.5 ± 9.0	1.00 ± 0.02	1000
500mg	D4a_Back	854.2 ± 11.6	833.3 ± 9.0		1000
	D4b_Back	711.0 ± 9.7	711.0 ± 9.7	N/A	1000
Promethazine	E3a_Front	448.4 ± 6.1	413.8 ± 5.6	0.85 ± 0.02	500
25mg	E3a_Back	379.2 ± 5.2	415.6 ± 5.0		500
	E3b_Back	400.4 ± 5.4	400.4 ± 5.4	N/A	500
Promethazine	E4a_Front	923.6 ± 12.6	847.5 ± 9.7	0.84 ± 0.02	1000
25mg	E4a_Back	771.5 ± 10.5	047.J ± 3.7		1000
	E4b_Back	769.4 ± 10.5	769.4 ± 10.5	N/A	1000

Note: The TLD measured dose values include the control dose subtraction, no additional corrections needed.

References

- > Lyon RC, Taylor JS, Porter DA, Prasanna HR, Hussain AS. Stability profiles of drug products extended beyond labeled expiration dates, J. Pharm. Sci., vol. 95, no. 7, pp. 1549–1560, Jul. 2006.
- > Pankratov, AN, Uchaeva, IM, Stepanov, AN. (1993) Chemical and electrochemical oxidation of phenothiazine. Canadian Journal of Chemistry, 71, 674–677
- Putcha L, Boyd, J, Du B, Vaksman Z. Ground-based Analog Experiments for Radiation Effects on Pharmaceutical Stability in Space, Unpublished, Baylor College of Medicine Gamma and Nucleon Titanium Irradiation study, 2006
- ➤ Saad, R., Ali, H. S., Elhaj, B. M. A., & Al Ajaji, M. (2016). Antioxidant assessment on promethazinr HCl decomposition using RP-HPLC assay method. African Journal of Biotechnology, 15(40), 2272-2281.
- > Seo K-S, Bajracharya R, Lee SH, Han H-K. Pharmaceutical Application of Tablet Film Coating. Pharmaceutics. 2020; 12(9):853.
- ➤ Smarandache, A, Simon, A, Tozar, T, Nastasa, V, Pascu, ML. "Stability studies on Promethazine unexposed and exposed to UV laser radiation," Proc. SPIE 9549, Physical Chemistry of Interfaces and Nanomaterials XIV, 954916 (10 September 2015)
- > Takale1 N, Kaliyaperumal N, Mannathusamy G, Govindasamy R. Method Development and Validation for Quantitative Analysis of Anti-Histamine Promethazine Hydrochloride by RP-UPLC. Orient J Chem 2021;37(1).
- ➤ Uehara K, Tagami T, Miyazaki I, Murata N, Takahashi Y, Ohkubo H, Ozeki T. Effect of X-ray exposure on the pharmaceutical quality of drug tablets using X-ray inspection equipment, Drug Development and Industrial Pharmacy, 41:6, 953-958, 2015.
- ➤ Underberg, W.J.M. (1978) Oxidative degradation of pharmaceutically important phenothiaiznes I: isolation and identification of oxidation products of promethazine. Journal of Pharmaceutical Sciences, 67,1128–1131.
- ➤ Vaksman Z, Du B, Daniels V, Putcha L. The Use of Heavy Ion Radiation as an Analog for Space Radiation Environment and Its Effects on Drug Stability, Unpublished, NASA Space Radiation Facility at Brookhaven National Laboratory Iron and Proton Beam Irradiation Study, 2006.
- ➤ Wotring VE. Chemical Potency and Degradation Products of Medications Stored Over 550 Earth Days at the International Space Station. AAPS J 2016; 18:210–6.
- > Xu B, Zhan G, Xu B, Du H, Luo H, Wang T, Zhan C, Yang Y. Degradation of acetaminophen in aqueous solution by UV and UV-activated sludge processes. Water Sci Technol 21 December 2018; 78 (10): 2088–2095.

References

- ➤ Bahnemann, D, Asmus, KD, Willson, RL (1983) Free radical induced one-electron oxidation of the phenothiazines chlorpromazine and promethazine. Journal of the Chemical Society, Perkin Transactions, 2, 1661–1668
- ➤ Chignell, CF, Motten, AG, Buettner, GR (1985) Photoinduced free radicals from chlorpromazine and related phenothiazines: relationship to phenothiazine-induced photosensitization. Environmental Health Perspectives, 64, 103–110.
- ➤ Campbell C, Cornthwaite H, Watterson J, Oxidation of Selected Phenothiazine Drugs During Sample Preparation: Effects of Varying Extraction Conditions on the Extent of Oxidation, Journal of Analytical Toxicology, Volume 42, Issue 2, March 2018, Pages 99–114
- ➤ Cantrell L, Suchard JR, Wu A, Gerona RR. Stability of active ingredients in long-expired prescription medications, Arch. Intern. Med., vol. 172, no. 21, pp. 1685–1687, Nov. 2012.
- ➤ Connors, KA, Amidon, GL, Stella, VJ. Chemical Stability of Pharmaceuticals : a Handbook for Pharmacists . Second edition. New York: John Wiley & Sons, Inc., 1986.
- ➤ Cory, W et al, College of Charleston, "Analysis of Degradation of Pharmaceuticals Stored on the International Space Station," ExMC Report Reference ID: 0923-000193, 2016
- ➤ Cory, W, James, V, Lamas, A, Mangiaracina, K, Moon, J. Analysis of degradation of pharmaceuticals stored on the International Space Station. 2017; presented at the HRP Investigator's Workshop, Galveston, TX.
- > Du B, Daniels VR, Vaksman Z, Boyd JL, Crady C, Putcha L. Evaluation of physical and chemical changes in pharmaceuticals flown on space missions. AAPS J 2011; 13:299–308.
- > Kabir, MH, Khan, AR, Akhter, MZ, Malek, MA, Chowdhury, NA, Choudhury, N. Effect of Radiation Sterilization on the Physicochemical Properties and Microbial Load of Amoxicillin TriHydrate Powder. Bangladesh J Microbiol, Volume 23, Number 2, December 2006, pp 165-167
- Karpinska, J, Starczewska, B, Puzanowska-Tarasiewicz, H. (1996) Analytical properties of 2- and 10-disubstitutied phenothiazine derivatives. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry, 12, 161–170
- ➤ Kojlo, A, Karpinska, J, Kuzmicka, L, Misiuk, W, et al. (2001) Analytical study of the reaction of phenothiazines with some oxidants, metal ions, and organic substances (review article). Journal of Trace and Microprobe Techniques, 19, 45–70
- ➤ Lakka, NS, and Kuppan, C. Principles of Chromatography Method Development, Biochemical Analysis Tools Methods for Bio-Molecules Studies, Published: October 26th 2019 DOI: 10.5772/intechopen.89501.

Historical Significance

➤ Historical NASA drug stability studies suggested that spaceflight conditions compromise medication safety and efficacy (Putcha et al, 2001 – 2011).

➤ Historical NASA ground analog experiments designed to simulate the effects of high-energy radioactive particles on medications during spaceflight, suggested that radiation exposure during spaceflight could threaten drug quality and potency on long-duration exploration missions (Putcha et al, 2006).

> Follow-on NASA flight studies revealed reduced active pharmaceutical ingredient (API) concentrations, and altered drug release; when compared to matching ground controls (Putcha et al, 2006 – 2011).

Results: API Content

at <u>all</u> three time-points met the USP acceptance criteria for potency

				<u> </u>		-			
SAMPLE	Product Name	STUDY ARM	% LABELED API 2018 (T1)	% LABELED API 2019 (T2)	% CHANGE IN API (T2-T1/T1)	% LABELED API 2021 (T3)	RSD (%) N = 3 replicates / sample	% CHANGE IN API (T3-T1/T1)	USP %API REQUIREMENT (90-110%)
A1a	Acetaminophen 500 mg Tablets	Non-irradiated JSC Control	95.3	103.22	↑ 8.31	94.72	± 0.54	↓ 0.609	(T1, T2, T3) Pass
A1b	Acetaminophen 500 mg Tablets	Non-irradiated JSC Control	100.4	101.85	↑ 1.44	96.17	± 0.47	↓ 4.21	(T1, T2, T3) Pass
A2a	Acetaminophen 500 mg Tablets	Non-irradiated Travel Control	97.08	102.18	↑ 5.25	92.97	± 0.46	↓ 4.23	(T1, T2, T3) Pass
A 2b	Acetaminophen 500 mg Tablets	Non-irradiated Travel Control	97.73	102.81	↑ 5.2	93.24	± 0.40	↓ 4.59	(T1, T2, T3) Pass
A3a	Acetaminophen 500 mg Tablets	Irradiation Group I (Mixed-beam 0.5Gy	100.18	102.45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	94.36	± 0.71	√ 5.81	(T1, T2, T3) Pass
A3b	Acetaminophen 500 mg Tablets	Irradiation Group I (Mixed-beam 0.5Gy)	96.51	99.86	↑ 3.47	94.49	± 0.78	↓ 2.09	(T1, T2, T3) Pass
A4a	Acetaminophen 500 mg Tablets	Irradiation Group II (Mixed-beam 1.0Gy)	95.76	102.4	↑ 6.93	94.94	± 0.35	↓ 0.856	(T1, T2, T3) Pass
A4b	Acetaminophen 500 mg Tablets	Irradiation Group II (Mixed-beam 1.0Gy)	103.67	99.32	↓ 4.2	94.28	± 0.37	√ 9.06	(T1, T2, T3) Pass
SAMPLE	Product Name	STUDY ARM	% LABELED	% LABELED	% CHANGE IN	% LABELED	RSD (%) N = 3 replicates	% CHANGE IN	USP % API
			API 2018 (T1)	API 2019 (T2)	API (T1-T2 /T1)	API 2021 (T3)	/sample	API (T3-T1 /T1)	REQUIREMENT (90-110%)
C1a	Ibuprofen 400 mg Tablets	Non-irradiated Control Group	103.85	98.24	API (T1-T2 /T1)	97.01		API (T3-T1 /T1)	
C1a C1b		Non-irradiated					/sample	, ,	(90-110%) (T1, T2, T3)
	400 mg Tablets Ibuprofen	Non-irradiated Control Group Non-irradiated	103.85	98.24	↓ 5.4	97.01	/sample ±0.59	√ 6.59	(90-110%) (T1, T2, T3) Pass (T1, T2, T3)
C1b	1buprofen 400 mg Tablets 1buprofen	Non-irradiated Control Group Non-irradiated Control Group Non-irradiated	103.85	98.24 102.94	↓ 5.4 ↓ 3.43	97.01 96.81	/sample ±0.59 ±0.67	↓6.59 ↓9.18	(90-110%) (T1, T2, T3) Pass (T1, T2, T3) Pass (T1, T2, T3)
C1b C2a	Ibuprofen 400 mg Tablets	Non-irradiated Control Group Non-irradiated Control Group Non-irradiated Traveling Control Non-irradiated	103.85 106.6 109.32	98.24 102.94 97.21	↓5.4 ↓3.43 ↓11.08	97.01 96.81 97.22	/sample ±0.59 ±0.67 ±1.17	↓6.59 ↓9.18 ↓11.07	(90-110%) (T1, T2, T3) Pass
C1b C2a C2b	Ibuprofen 400 mg Tablets	Non-irradiated Control Group Non-irradiated Control Group Non-irradiated Traveling Control Non-irradiated Traveling Control Irradiation Group I	103.85 106.6 109.32 103.84	98.24 102.94 97.21 101.37	↓5.4 ↓3.43 ↓11.08 ↓2.38	97.01 96.81 97.22 97.55	/sample ±0.59 ±0.67 ±1.17 ±0.86	↓6.59 ↓9.18 ↓11.07 ↓6.06	(90-110%) (T1, T2, T3) Pass
C1b C2a C2b C3a	Ibuprofen 400 mg Tablets Ibuprofen	Non-irradiated Control Group Non-irradiated Control Group Non-irradiated Traveling Control Non-irradiated Traveling Control Irradiation Group I (Mixed-beam 0.5Gy) Irradiation Group I	103.85 106.6 109.32 103.84 106.6	98.24 102.94 97.21 101.37 96.98	↓5.4 ↓3.43 ↓11.08 ↓2.38 ↓9.02	97.01 96.81 97.22 97.55 97.67	/sample ±0.59 ±0.67 ±1.17 ±0.86 ±0.46	↓6.59 ↓9.18 ↓11.07 ↓6.06 ↓8.38	(90-110%) (T1, T2, T3) Pass (T1, T2, T3)

Results: API Content

(T1, T2) Pass

(T3) Fail

√18.65

acceptance criteria for potency at 13

Promethazine

25 mg Tablets

E4b

Irradiation Group II

(Mixed-beam 1.0Gy

SAMPLE	Product Name	STUDY ARM	% LABELED API 2018 (T1)	% LABELED API 2019 (T2)	% CHANGE IN API (T2-T1/T1)	% LABELED API 2021 (T3)	R SD (%) N = 3 replicates / sample	% CHANGE IN API (T3-T1/T1)	USP % API REQUIREMENT (90-120%)
B1a	Amoxicillin 500 mg Capsules	Non-irradiated JSC Control	100.16	102.08	↑ 1.92	96.42	± 0.36	↓ 3.73	(T1, T2, T3) Pass
B1b	Amoxicillin 500 mg Capsules	Non-irradiated JSC Control	97.44	98.58	↑ 1.17	93.83	± 0.33	↓ 3.70	(T1, T2, T3) Pass
B2a	Amoxicillin 500 mg Capsules	Non-irradiated Travel Control	100.96	101.51	↑ 0.54	94.64	± 0.55	√ 6.26	(T1, T2, T3) Pass
B2b	Amoxicillin 500 mg Capsules	Non-irradiated Travel Control	100.04	100.02	↓ 0.02	94.35	± 0.29	√ 5.69	(T1, T2, T3) Pass
ВЗа	Amoxicillin 500 mg Capsules	Irradiation Group I (Mixed-beam 0.5Gy	101.57	99.68	↓1 .86	89.97	± 0.14	↓ 11.42	(T1, T2) Pass (T3) Fail
B3b	Amoxicillin 500 mg Capsules	Irradiation Group I (Mixed-beam 0.5Gy)	99.31	97.11	↓ 2.22	95.26	± 0.63	↓ 4.08	(T1, T2, T3) Pass
B4a	Amoxicillin 500 mg Capsules	Irradiation Group II (Mixed-beam 1.0Gy)	98.74	98.97	↑ 0.23	95.23	± 0.37	↓ 3.55	(T1, T2, T3) Pass
B4b	Amoxicillin 500 mg Capsules	Irradiation Group II (Mixed-beam 1.0Gy)	102.42	93.72	√ 8.49	95.03	± 0.08	↓ 7.22	(T1, T2, T3) Pass
			•						
SAMPLE	Product Name	STUDY ARM	% LABELED API 2018 (T1)	% LABELED API 2019 (T2)	% CHANGE IN API (T1-T2 /T1)	% LABELED API 2021 (T3)	R SD (%) N = 3 replicates /sample	% CHANGE IN API (T3-T1 /T1)	USP % API REQUIREMENT (95-110%)
SAMPLE E1a	Product Name Promethazine 25 mg Tablets	STUDY ARM Non-irradiated JSC Control					N = 3 replicates		REQUIREMENT
	Promethazine	Non-irradiated	API 2018 (T1)	API 2019 (T2)	API (T1-T2 /T1)	API 2021 (T3)	N = 3 replicates /sample	API (T3-T1 /T1)	REQUIREMENT (95-110%) (T1, T2) Pass
E1a	Promethazine 25 mg Tablets Promethazine	Non-irradiated JSC Control Non-irradiated	API 2018 (T1) 99.17	API 2019 (T2) 100.2	API (T1-T2 /T1) ↑1.04	API 2021 (T3) 88.00	N = 3 replicates /sample ±1.15	API (T3-T1 /T1)	REQUIREMENT (95-110%) (T1, T2) Pass (T3) Fail (T1, T2) Pass
E1a E1b	Promethazine 25 mg Tablets Promethazine 25 mg Tablets Promethazine	Non-irradiated JSC Control Non-irradiated JSC Control Non-irradiated	99.17 104.66	100.2 101.39	API (T1-T2 /T1) ↑1.04 ↓3.12	88.00 88.86	N = 3 replicates /sample ±1.15 ±0.33	API (T3-T1 /T1) ↓11.26 ↓15.10	REQUIREMENT (95-110%) (T1, T2) Pass (T3) Fail (T1, T2) Pass (T3) Fail (T1, T2) Pass
E1a E1b E2a	Promethazine 25 mg Tablets Promethazine 25 mg Tablets Promethazine 25 mg Tablets Promethazine	Non-irradiated JSC Control Non-irradiated JSC Control Non-irradiated Traveling Control Non-irradiated	99.17 104.66 107.32	100.2 101.39 100.09	↑1.04 ↓3.12 ↓6.73	88.00 88.86 88.13	N = 3 replicates /sample ±1.15 ±0.33 ±0.64	API (T3-T1 /T1) ↓11.26 ↓15.10 ↓17.88	REQUIREMENT (95-110%) (T1, T2) Pass (T3) Fail (T1, T2) Pass (T3) Fail (T1, T2) Pass (T3) Fail (T1, T2) Pass
E1a E1b E2a E2b	Promethazine 25 mg Tablets Promethazine	Non-irradiated JSC Control Non-irradiated JSC Control Non-irradiated Traveling Control Non-irradiated Traveling Control Irradiation Group I	99.17 104.66 107.32 104.33	100.2 101.39 100.09 100.68	↑1.04 ↓3.12 ↓6.73 ↓3.49	88.00 88.86 88.13 87.67	N = 3 replicates /sample ±1.15 ±0.33 ±0.64 ±0.29	API (T3-T1 /T1) ↓11.26 ↓15.10 ↓17.88 ↓15.97	REQUIREMENT (95-110%) (T1, T2) Pass (T3) Fail (T1, T2) Pass (T3) Fail (T1, T2) Pass (T3) Fail (T1, T2) Pass (T3) Fail (T1, T2) Pass
E1a E1b E2a E2b E3a	Promethazine 25 mg Tablets Promethazine	Non-irradiated JSC Control Non-irradiated JSC Control Non-irradiated Traveling Control Non-irradiated Traveling Control Irradiation Group I (Mixed-beam 0.5Gy Irradiation Group I	99.17 104.66 107.32 104.33 103	100.2 101.39 100.09 100.68 104.02	↑1.04 ↓3.12 ↓6.73 ↓3.49 ↑0.99	88.00 88.86 88.13 87.67 87.23	N = 3 replicates /sample ±1.15 ±0.33 ±0.64 ±0.29 ±0.24	API (T3-T1 /T1) ↓11.26 ↓15.10 ↓17.88 ↓15.97 ↓15.31	REQUIREMENT (95-110%) (T1, T2) Pass (T3) Fail (T1, T2) Pass (T3) Fail

 $\sqrt{6.31}$

87.29

±0.90

100.53

107.3

Assay Chromatograms: Acetaminophen

Chromatogram assessments conducted for each timepoint, using USP chromatogram overlay assay methods, revealed no new or foreign peaks in any of the irradiated drug samples

2018 2019 2021

Assay Chromatograms: Amoxicillin

Assay Chromatograms: Ibuprofen

Assay Chromatograms: Promethazine

Results: API Release (Dissolution) Recap

➤ All samples met the USP requirement for Dissolution.

- Some samples revealed "significant changes" in release between the two time-points
- ❖ No third time-point dissolution analyses due to Insufficient drug sample

Acetaminophen:

Amoxicillin:

Sample	Product Name	Sample Name	% Dissolved	2018 Standard	% Dissolved	2019 Standard	% Change in	USP Standard
			2018	Deviation (n=6)	2019	Deviation (n=6)	Dissolution	(≥ 80%)
A1a	Acetaminophen	Non-irradiated JSC	99.51	1.10%	102.54	1.07%	3.04	Pass
Ala	500 mg Tablets	Control Group						
A1b	Acetaminophen	Non-irradiated JSC	100.71	3.56%	100.4	1.24%	0.31	Pass
7110	500 mg Tablets	Control Group						
۸۵۵	Acetaminophen	Non-irradiated	100.12	2.95%	101.09	1.49%	0.97	Pass
A2a	500 mg Tablets	Traveling Control Group						
A2b	Acetaminophen	Non-irradiated Traveling	100.77	4.48%	99.47	2.08%	1.29	Pass
AZU	500 mg Tablets	Control Group						
A3a	Acetaminophen	Irradiation Group I	102.75	4.01%	100.49	1.67%	2.2	Pass
Asa	500 mg Tablets	(Mixed-beam 0.5Gy						
A3b	Acetaminophen	Irradiation Group I	100.85	2.19%	101.19	0.86%	0.34	Pass
Aou	500 mg Tablets	(Mixed-beam 0.5Gy						
A4a	Acetaminophen	Irradiation Group II	99.51	2.81%	100.43	1.56%	0.92	Pass
₽ 4 a	500 mg Tablets	(Mixed-beam 1.0Gy						
A4b	Acetaminophen	Irradiation Group II	95.45	4.47%	100.74	2.08%	5.54	Pass
MHN	500 mg Tablets	(Mixed-beam 1.0Gy						

Sample	Product Name	Sample Name	% Dissolved	2018 Standard	% Dissolved	2019 Standard	% Change in	
			2018	Deviation (n=6)	2019	Deviation (n=6)	Dissolution	(≥ 80%)
B1a	Amoxicillin	Non-irradiated JSC	100.16	5.78%	93.43	2.12%	↓6.72	Pass
Dia	500 mg Capsules	Control Group						
B1b	Amoxicillin	Non-irradiated JSC	97.44	5.06%	92.18	4.53%	↓5.4	Pass
טוט	500 mg Capsules	Control Group						
B2a	Amoxicillin	Non-irradiated	100.96	4.63%	89.69	3.16%	↓11.16	Pass
DZQ	500 mg Capsules	Traveling Control Group						
B2b	Amoxicillin	Non-irradiated	100.04	4.70%	92.80	1.65%	↓7.24	Pass
DZU	500 mg Capsules	Traveling Control Group						
B3a	Amoxicillin	Irradiation Group I	101.57	6.17%	91.25	3.89%	↓10.16	Pass
Doa	500 mg Capsules	(Mixed-beam 0.5Gy Total						
B3b	Amoxicillin	Irradiation Group I	99.31	5.46%	91.05	5.43%	↓8.32	Pass
טטם	500 mg Capsules	(Mixed-beam 0.5Gy Total						
B4a	Amoxicillin	Irradiation Group II	00.74	A COO/	86.13	2.77%	↓12.78	Pass
D4a	500 mg Capsules	(Mixed-beam 1.0 Gy Total	98.74	4.53%				
DAh	Amoxicillin	Irradiation Group II	400.40	0.400/	88.59	5.18%	↓13.5	Pass
B4b	500 mg Capsules	(Mixed-beam 1.0 Gy Total	102.42	2.49%				

Results: API Release (Dissolution) Recap

Ibuprofen:

Promethazine:

Sample	Product Name	Sample Name	2018% Dissolved	2018 Standard Deviation (n=6)	2019% Dissolved	2019Standard Deviation (n=6)	% Change in Dissolution	USP Standard (≥ 80%)
C1a	lbuprofen 400 mg Tablets	Non-irradiated JSC Control Group	100.64	1.32%	98.23	0.20%	↓2.39	Pass
C1b	lbuprofen 400 mg Tablets	Non-irradiated JSC Control Group	100.97	0.95%	98.17	0.16%	↓2.77	Pass
C2a	lbuprofen 400 mg Tablets	Non-irradiated Traveling Control Group	100.38	1.52%	98.11	0.00%	↓2.26	Pass
C2b	lbuprofen 400 mg Tablets	Non-irradiated Traveling Control Group	100.58	2.39%	98.55	0.38%	↓2.02	Pass
C3a	lbuprofen 400 mg Tablets	Irradiation Group I (Mixed-beam 0.5Gy	100.49	1.92%	98.74	0.40%	↓1.74	Pass
C3b	lbuprofen 400 mg Tablets	Irradiation Group I (Mixed-beam 0.5Gy	100.59	3.26%	98.86	0.42%	↓1.72	Pass
C4a	lbuprofen 400 mg Tablets	Irradiation Group II (Mixed-beam 1.0 Gy	100.53	1.36%	98.99	0.71%	↓1.53	Pass
C4b	lbuprofen 400 mg Tablets	Irradiation Group II (Mixed-beam 1.0 Gy	100	2.66%	99.05	0.86%	↓0.95	Pass

Sample	Product Name	Sample Name	2018 %	2018 Standard	2019 %	2019 Standard	% Change in	USP Standard
			Dissolved	Deviation (N=6)	Dissolved	Deviation (N=6)	Dissolution	(≥ 80%)
E1a	Promethazine	Non-irradiated	98.48	0.92%	103.46	0.53%	↑5.05	Pass
	25 mg Tablets	JSC Control Group						
E1b	Promethazine	Non-irradiated	98.38	0.58%	103.95	0.68%	↑5.66	Pass
	25 mg Tablets	JSC Control Group						
E2a	Promethazine	Non-irradiated	98.21	2.13%	102.94	0.46%	↑4.82	Pass
	25 mg Tablets	Traveling Control Group						
E2b	Promethazine	Non-irradiated	98.69	1.35%	103.93	0.36%	<u>↑</u> 5.31	Pass
	25 mg Tablets	Traveling Control Group						
E3a	Promethazine	Irradiation Group I	98.12	1.69%	103.90	0.32%	↑5.89	Pass
	25 mg Tablets	(Mixed-beam 0.5Gy Total						
E3b	Promethazine	Irradiation Group I	98.58	0.80%	104.03	0.59%	↑5.53	Pass
	25 mg Tablets	(Mixed-beam 0.5Gy Total						
E4a	Promethazine	Irradiation Group II	98.41	1.47%	103.50	0.51%	<u>↑</u> 5.17	Pass
	25 mg Tablets	(Mixed-beam 1.0 Gy Total						
E4b	Promethazine	Irradiation Group II	98.48	0.62%	103.46	0.53%	↑5.05	Pass
	25 mg Tablets	(Mixed-beam 1.0 Gy Total						

Experimental Products / Impurities: Acetaminophenia

➤ Impurities peak percent calculations, and overlay chromatograms using USP impurities methods, revealed **no new or foreign peaks** in any of the irradiated drug samples

0.00e-	
0.004	
0.002	
2 0.000	
-0.002- 	
-0.006	
-0.008	
-0.010]
SampleName A4b; Vial 1:B,1; Injection 3 SampleName A4a; Vial 1:A,8; Injection 2 SampleName A3b; Vial 1:A,7; Injection 3 SampleName A3b; Vial 1:A,7; Injection 3 SampleName A3b; Vial 1:A,5; Injection 3 SampleName A2b; Vial 1:A,5; Injection 3 SampleName A2b; Vial 1:A,4; Injection 3 SampleName A1b; Vial 1:A,3; Injection 3 SampleName A1b; Vial 1:A,2; Injection 3	

2021

Degradation Peak#	Retention time	A1a	A1b	A2a	A2b	A3a	A3b	A4a	A4b	Standard Deviation
1	P-Aminophenol	ND								
2	3.738	0.11	0.12	0.15	0.11	0.11	0.12	0.1	0.130	0.016
3	4.946	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.04	0.005
4	7.369	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.03	0.005
5	8.32	0.15	0.15	0.15	0.15	0.14	0.15	0.15	0.13	0.007
6	8.935	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.000
7	9.4	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.000
8	9.872	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.000

Degradation Peak#	Retention time	A1a	A1b	A2a	A2b	A3a	A3b	A4a	A4b	Standard Deviation
1	P-Aminophenol	ND	ND	ND	ND	ND	ND	ND	ND	
2	3.665	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.00
3	4.817	0.02	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.0045
4	6.241	ND	ND	ND	ND	ND	0.01	ND	0.01	0.00
5	8.052	0.163	0.16	0.17	0.163	0.17	0.16	0.16	0.16	0.0052
6	9.34	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.0015

Degradation Peak#	Retention time	A1a	A1b	A2a	A 2b	A 3a	A3b	A4a	A4b	STD
1	P-Aminophenol	ND	223							
2	2.69	0.03	0.04	0.03	0.03	0.03	ND	0.05	0.03	0.0077
3	2.93	0.03	0.02	0.02	0.02	0.02	ND	0.02	0.03	0.0016
4	3.60	0.10	0.10	0.10	0.10	0.10	0.09	0.1	0.10	0.0035
5	4.69	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.0012
6	7.83	0.12	0.12	0.12	0.12	0.13	0.13	0.12	0.12	0.0044
7	8.97	0.01	0.03	0.03	0.03	0.03	0.04	0.03	0.03	0.0064
8	9.38	0.03	0.03	0.02	0.03	0.03	0.03	0.03	0.03	0.0041
9	10.38	0.01	0.01	0.01	0.02	0.02	ND	0.01	0.01	0.0049
10	11.50	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.0012

gradation Products / Impurities: Amoxicillin

2018 2021

Degradat	ion	Re	tention		D41		DOL	D2-	Dat-	D4-	D.41-	Standard
					Sample	eName B eName B	2a; Vial	1:A,5; Inje	ection 3			
					Sample	eName B	2b; Vial 2b; Vial	1:A,6; Inje 1:A,4; Inje	ection 3			
					- Sample - Sample	eName B eName B	3b; Vial 3a; Vial	1:A,8; Inje 1:A,7; Inje	ection 3 ection 3			
						eName B	4b; Vial					
-0.006	00	2	2.00	4.00	6.00		8.00 Minutes	10.0	00	12.00	14	00 16.00
0,000												
-0.004												
-0.002												
0.000	—(II M	- Jlus	μοφ		~414		1111					
0.002-		N		W.	M	1	Wh	M	W V	WW	Mhan	ahanda
- 1					299	-		Related C 9.50				
0.004-								89.88 89.88		4.4	13.2	
0.006								99		Relate	-	
0.008							Rel			ed Dir		
0.010							ated G		10.71	Related Dimer - 12.03		
0.012							Related G - 8.25		Ī	2.03		
0.014		<u>a</u>	Relate						41.17			
-	Ī	ated B	Related A - 2.05		Ш	ľ			å			
0.016	Relate	7	2.05		1				lated			
0.018-	+	4	2		6.78				1			
0.020	72		00		4		3		T.			

				Cumpicital	TO D'TO, VIGI	1.0, 1, 11 9001	uio			
Degradation Peak#	Retention Time (Avg.)	B1a	B1b	B2a	B2b	B3a	B3b	B4a	B4b	Standard Deviation
Related I	0.52	0.5	0.48	0.49	0.49	0.46	0.47	0.42	0.45	0.32
Related D	1.32	0.22	0.23	0.22	0.23	0.26	0.24	0.34	0.26	0.040
Related A	1.95	0.44	0.45	0.44	0.45	0.49	0.47	0.61	0.48	0.056
Related B	2.26	ND	ND	ND	ND	ND	ND	ND	ND	-
Related E	7.59	0.48	0.49	0.48	0.48	0.51	0.49	0.6	0.49	0.041
Related G	8.14	0.11	0.12	0.12	0.11	0.13	0.13	0.17	0.13	0.019
Related C	9.17	0.04	0.04	0.04	0.04	0.05	0.05	0.08	0.05	0.014
Related H	10.71	0.69	0.71	0.7	0.69	0.76	0.72	0.98	0.72	0.097
Dimer	11.90	0.07	0.08	0.06	0.08	0.09	0.08	0.12	0.09	0.018

Degradation Peak#	Retention Time (Avg)	B1a	B1b	B2a	B2b	ВЗа	B3b	B4a	B4b	Standard Deviation
Related I	0.50	0.46	0.47	0.46	0.46	0.46	0.47	0.51	0.51	0.022
Related D	1.32	0.32	0.33	0.29	0.29	0.28	0.28	ND	ND	0.020
Related A	1.95	0.42	0.43	0.42	0.42	0.41	0.43	0.38	0.43	0.016
Related B	2.26	ND								
Related E	7.78	0.59	0.61	0.60	0.59	0.59	0.59	0.72	0.72	0.084
Related G	8.14	ND	-							
Related C	9.3	ND	-							
Related H	10.57	0.59	0.62	0.61	0.61	0.63	0.62	0.69	0.68	0.036
Dimer	11.90	ND	12							

Degradation Peak#	Retention Time (Avg)	B1a	B1b	B2a	B2b	ВЗа	B3b	B4a	B4b	Standard Deviation
Related I	0.50	0.48	0.53	0.50	0.51	0.54	0.50	0.52	0.53	0.0190
Related D	1.32	0.38	0.33	0.37	0.37	0.32	0.38	0.36	0.36	0.0202
Related A	1.95	0.48	0.46	0.47	0.44	0.47	0.48	0.50	0.50	0.0219
Related B	2.26	ND								
Related E	7.78	1.07	1.04	1.08	1.05	0.98	1.07	1.03	1.02	0.0336
Related G	8.14	0.19	0.18	0.19	0.19	0.17	0.20	0.20	0.20	0.0090
Related C	9.30	ND	1221							
Related H	10.57	0.65	0.59	0.63	0.60	0.55	0.64	0.59	0.58	0.0340
Dimer	11.90	0.15	0.12	0.14	0.10	0.11	0.11	0.13	0.12	0.0163

Degradation Products / Impurities: Ibuprofen

Degradation Peak#	Retention Time (min)	C1a	C1b	C2a	C2b	C3a	C3b	C4a	C4b	Standard Deviation
1	ND	ND	ND	ND	ND	0.86	ND	ND	ND	ND
Related J	0.41	1.55	1.54	1.57	1.51	1.57	1.57	1.55	1.57	0.034
3	0.622	0.17	0.13	0.16	0.12	0.15	0.23	0.14	0.17	0.279
Related C	1.011	0.22	0.27	0.25	0.27	0.26	0.27	0.26	0.25	0.021

Degradation Peak#	Retention Time (min)	C1a	C1b	C2a	C2b	C3a	C3b	C4a	C4b	Standard Deviation
Related J	0.35	1.79	1.77	1.82	1.78	1.71	1.77	1.81	1.76	0.034775
3	0.55	0.12	0.115	0.125	0.12	0.11	0.11	0.12	0.12	0.0047
Related Ċ	0.90	0.29	0.34	0.35	0.35	0.33	0.33	0.34	0.33	0.0191

Degradation Peak#	Retention Time (min)	C1a	C1b	C2a	C2b	C3a	C3b	C4a	C4b	STD
Unknown1	0.55	0.12	0.12	0.13	0.12	0.11	0.11	0.12	0.12	0.0047
Unknown2	0.51	0.47	0.45	0.42	0.47	0.51	0.46	0.39	0.49	0.0370
Unknown3	0.62	1.91	1.90	1.87	1.90	1.98	1.89	1.82	1.97	0.0510
Related J	0.35	0.12	0.12	0.12	0.12	0.13	0.13	0.11	0.12	0.0064
Related C	0.90	0.31	0.35	0.38	0.38	0.39	0.39	0.36	0.33	0.0275

roducts / Impuritie

Promethazi

Degradation Peak#	Peak Retention Time (min)	E1a	E1b	E2a	E2b	E3a	E3b	E4a	E4b	Standard Deviation
1	1.71	0.08	0.03	ND	ND	ND	ND	ND	ND	0.035
2	3.577	0.21	0.19	0.2	0.18	0.15	0.15	0.19	0.22	0.026
3	3.651	0.05	0.05	0.06	0.05	0.03	0.06	0.07	0.05	0.012
4	3.956	0.12	0.03	0.14	0.03	0.12	0.16	0.11	0.19	0.057
5	4.026	0.02	0.12	0.03	0.13	ND	0.03	0.06	0.04	0.045
6	4.734	0.04	0.04	0.04	0.04	0.06	0.05	0.05	0.06	0.009
7	5.115	0.11	0.09	0.09	0.08	0.07	0.08	0.2	0.09	0.042
8	5.274	0.1	0.1	0.1	0.1	0.1	0.09	0.11	0.03	0.025
Related B	6.77	0.21	0.21	0.2	0.21	0.2	0.21	0.21	0.22	0.006
11	8.791	0.18	0.2	0.2	0.19	0.18	0.17	0.21	0.23	0.019
12	10.003	0.02	0.02	ND	0.03	0.03	ND	ND	ND	0.006

Degradation Peak#	Retention Time (min)	E1a	E1b	E2a	E2b	ЕЗа	E3b	E4a	E4b	Standard Deviation
1	3.32	0.02	0.02	0.02	0.2	0.02	0.02	0.04	0.02	0.063
2	3.52	0.03	0.03	0.03	0.3	0.03	0.03	0.1	0.03	0.095
3	4.03	0.02	0.02	0.02	0.01	0.02	0.02	0.03	0.02	0.005
4	4.57	0.03	0.03	0.02	0.025	0.02	0.02	0.16	0.02	0.048
5	4.82	0.12	0.12	0.11	0.11	0.11	0.11	0.236	0.12	0.043
6	4.95	0.33	0.32	0.33	0.33	0.33	0.33	0.566	0.32	0.085
Related B	6.14	0.45	0.45	0.45	0.45	0.45	0.45	0.48	0.45	0.01

Degradation Peak#	Retention Time (min)	E1a	E1b	E2a	E2b	E3a	E3b	E4a	E4b	STD
1	1.28	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.00119
2	1.39	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0
3	4.10	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.00388
4	5.59	0.01	0.02	0.01	0.02	0.02	0.01	0.02	0.01	0.00535
Related B	2.70	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.00118