Universität Innsbruck

Structural Breaks in Inflation Dynamics within the European Monetary Union

Thomas Windberger, Achim Zeileis

http://R-Forge.R-project.org/projects/glogis/

Overview

- Introduction
- Data
 - HICP
- Methods
 - Model
 - Test
 - Distribution reasoning
- Results

Introduction

- Did EMU change inflation dynamics ?
- Economic Reasons

Data

- 21 Monthly HICP series, unadjusted
- Source: OECD Statistics

HICP

First step: local sub–index of a specific price collected item R_{iv}^t :

$$R_{iy}^{t} = \frac{\left(\prod_{j=1}^{n} \rho_{iyj}^{t}\right)^{1/n}}{\left(\prod_{j=1}^{n} \rho_{iyj}^{0}\right)^{1/n}} \tag{1}$$

Second step: sub–index for whole country R_i^t :

$$R_i^t = \sum_{y=1}^m R_{iy}^t G_y \tag{2}$$

$$R_h^{t,T} = R_h^{12,T-1} \left[\frac{\sum_{i=1}^q w_i^T R_i^t / R_i^{12,T-1}}{\sum_{i=1}^q w_i^T} \right]$$
(3)

Third step: weighted average of all included individual subindices:

$$HICP_t = \sum_{i=1}^{n} \gamma_i R_h^{t,T}$$
 (4)

Model

$$H_0: \theta_i = \theta_0 \ (i = 1, ..., n)$$
 (5)

First order conditions $\psi(y_i, x_i, \theta_i) = \delta \psi(y_i, x_i, \theta_i) / \delta \theta$:

$$\underset{\theta \in \Theta}{\operatorname{argmin}} \sum_{i=1}^{n} \psi(y_i, x_i, \theta) = \hat{\theta},$$

$$\sum_{i=1}^{n} \psi(y_i, x_i, \hat{\theta}) = 0$$
(6)

(8)

Under certain assumptions, a central limit theorem holds:

$$\sqrt{n}(\hat{\theta}) \stackrel{d}{\rightarrow} \mathcal{N}(0, A_0^{-1}B_0A_0^{-1}),$$

$$A_0 = p \lim n^{-1} \sum_{i=1}^{n} E[-\psi'(y_i, x_i, \theta_0)], \tag{9}$$

$$B_0 = p \lim n^{-1} \sum_{i=1}^{n} VAR[-\psi(y_i, x_i, \theta_0)]$$
 (10)

Model

The empirical fluctuation process efp(.), defined as the decorrelated partial sum process of the empirical estimating functions, converges to a k-dimensional Brownian bridge $W^0(.)$ on the interval [0,1].

$$efp(t) = \hat{B}^{-1/2} n^{-1/2} \sum_{i=1}^{\lfloor nt \rfloor} \psi(y_i, x_i, \hat{\theta}) \ (0 \le t \le 1), \tag{11}$$

$$efp(.) \stackrel{d}{\rightarrow} W^0(.)$$
 (12)

GL–Distribution

$$f(\pi|\theta,\sigma,\delta) = \frac{\frac{\delta}{\sigma} \cdot \exp^{-\frac{\pi_i - \theta}{\sigma}}}{(1 + \exp^{-\frac{\pi_i - \theta}{\sigma}})^{(\delta+1)}}$$
(13)

with location (θ) , scale (σ) and shape (δ) . For $\delta=1$ the distribution simplifies to the logistic distribution, for $\delta<1$ it is skewed to the left and for $\delta>1$ it is skewed to the right.

Some examples

Test

We use Supremum of LM statistics:

$$S_{supLM} = \sup_{t \in [\pi, 1 - \pi]} \frac{\|efp(t)\|_2^2}{t(1 - t)}$$
 (14)

and also supply a χ^2 goodness of fit test for the GL–distribution.

Result Table

Country	Dates	Breakpoints	
Austria	1999–2002	Sep 2007	
Belgium	1999-2002	Dec 1999	
Czech Republic	no-no	Jul 1998	
Denmark	1999–no	Jun 2000	
Estonia	2004-2011	Mar 1998	
Finland	1999-2002	none	
France	1999-2002	Dec 2004	
Germany	1999-2002	May 2000	Dec 2004
Greece	2001-2002	none	
Hungary	no-no	May 1998	
Ireland	1999-2002	Mar 2008	
Italy	1999-2002	May 1996	Dec 2000
Luxembourg	1999–2002	Dec 1998	
Netherlands	1999-2002	none	
Poland	no-no	May 2001	
Portugal	1999-2002	Jul 1992	Mar 2004
Slovakia	2005-2009	Apr 1997	Feb 2004
Slovenia	2004-2007	Jul 2003	
Spain	1999-2002	May 1996	Dec 2000
Sweden	no-no	Jan 1993	
United Kingdom	no-no	Apr 1992	

Table: Dating of break points. First date: entry to ERM II, second date: EURO introduction.

Austria

Figure: Series and supLM test for Austria

Austria

Figure: Goodness of fit test for Austria

Austria

Economic Interpretation:

- Oil price increase
- Increase in mineral taxes
- No change following EURO introduction

Slovenia

Figure: Series and supLM test for Slovenia

Slovenia

Economic Interpretation:

- had to reach Maastricht criteria
- reached goal in 2005
- from 2003 onwards much lower mean, but higher variance
- most reforms regarding financial sector introduced in 2003
- strong contraction in money supply (M1) starting in 2003