1. (10 points) Prove that if a set S in R is sequentially compact, then it is bounded.

Proof. Suppose S is unbounded. Then forevery $n \in \mathbb{N}$, there is an element $s_n \in S$ such that $|s_n| > n$. As $n \to \infty$, $\{s_n\}$ diverges (though not necessarily to $+\infty$, for example, $\{1,-1,2,-2,3,-3,\cdots\}$ diverges but not to $+\infty$). If $\{s_n\}$ is any subsequence of $\{s_n\}$, then $|s_n| > n_k \ge k$,

So is not sequentially compact.

2. (10 points) Prove that if a set is sequentially compact,
than it is closed.
Proof. Suppose S is not closed. Then there is a convergent
_ segrence Sn ∈ S such that Sn converges to a number a € S.
_ Since every subsequence { 5 ng } of {5 n} converges to the
_ Same limit a \(\) \(\) Proposition 2.30 \), S cannot be
_ Sequentially compact. (The definition of S being sequentially
_ compact is that every sequence $s_n \in S$ has a convergent
_ Subsequence Inp that converges to a point of S.)

3. (15 points) **Square root rule**. Using the ε -N definition of the limit, prove that If $a_n \to a$, then $\lim \sqrt{a_n} = \sqrt{a}$. Solution Case 1: a = 0. For Nan to be defined, we must assume an ≥ 0 Suppose an -> a. To prove lim an = va, let E>0. We need to find NEN such that YnzN, 1 Jan - Jal < E Scratch work: $|\sqrt{a_n} - \sqrt{a}| = |(\sqrt{a_n} - \sqrt{a})(\sqrt{a_n} + \sqrt{a})|$ $= \frac{|a_n - a|}{\sqrt{a_n} + \sqrt{a}} \le \frac{|a_n - a|}{\sqrt{a_n}}$ because $\sqrt{a_n} + \sqrt{a} \ge \sqrt{a}$. $< \varepsilon$ iff $|a_n - a| < \sqrt{a} \varepsilon := \varepsilon$, Let ε, = Na ε > 0. Since a, → a, ∃ N∈N s.t. ∀ n≥N, $|a_n - a| < \varepsilon_1 = \sqrt{a} \varepsilon$ Thon $|\sqrt{a_n} - \sqrt{a}| = \frac{|a_n - a|}{\sqrt{a_n} + \sqrt{a}} \le \frac{|a_n - a|}{\sqrt{a}} < \frac{\sqrt{a} \varepsilon}{\sqrt{a}} = \varepsilon.$ This proves that Jan - Ja. Case 2: a=0, Assume an >0, an ≥0. To prove Jan >0, let E>0, We need to find NEN s.t. HnZN, $|\sqrt{\alpha_n} - 0| = \sqrt{a_n} < \varepsilon$ an < 82 Use $E_1 = E^2 > 0$ as our new E. Since $a_1 \to 0$, $\exists N \in \mathbb{N}$ s.t. $\forall n \ge N$, $|a_n - o| = a_n < \xi = \xi^2$. Then $|\sqrt{a_n} - o| < \xi$ This proves that Jan > 0, \perp

4 § 3. 1, p. 57, #6.
Define g: IR →IR by
$g(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ -x^2 & \text{if } x \text{ is irrational}. \end{cases}$
At what points is the function of continuous?
Justify your answer.
Let x be a nonzero rational number, and { xil a sequence
of irrational numbers that converges to & e.g.
$x_n = x + \frac{\sqrt{2}}{n}$. Then $g(x_n) = -x_n^2$ conserges to $-x_0^2 \neq$
g(x). Hence I is not continuous at any nonzero
rational number.
Similarly, let to be a nonzoro irrational number.
and {x, y a seg of rational numbers that converges
to to to. Then $g(x_n) = x_n^*$ converges $x_0^* \neq g(x_0)$.
Herce, g is not continuous at any nonzero
Trational number
We claim that of is continuous at x = 0.
Suppore x, -> 0. We will prove that g(xn) -> 0.
Let E70. We need to find an NEIN s.t. YNZN,
$ g(x_n) - g(o) = \pm x_n^2 - o = x_n^2 < \varepsilon$
ì.e.,
(xn) < √€.
5me x, →0, ∃Ns+, YnzN, /xn-0/<√€.
For this N, if n 2 N, then
$ g(x_n) - g(o) = \pm x_n^2 - o = x_n^2 < \epsilon$
Hence lim g(xn) = g(0). Thus, g is continuous
at x=0 and not continuous at all other points
in R.

í

#5.

(Sequential compactness) Which of the following are Sequentially compact? Justify.

(a) QN[0,1) NO, because not closed.

(b) Q \(\text{Lo,i]}\) No, not closed. A sequence of rational numbers in [0,i] can converge to an irrational number.

(c) [0,1] U[2,3] Yes, closed and bounded.

(d) I 1 [1,100] Yes, because closed and bounded.

(e) [0,∞) No, breauxe not bounded.

#6. § 3.1, p. 58, #11.

Suppose 9: R > IR is continuous and 9(x)=0 if x is rational. Prove that 9(x)=0 for all x in R.

Let x be any real number. By the density of the rational numbers, for every $n \in \mathbb{N}$, there is a rational number r_n in $(x, x + \frac{1}{n})$. By the sandwich lemma, $\lim_{n \to \infty} r_n = x$. So there is a sequence of rational numbers converging to x. Since g is continuous at x, $g(x) = \lim_{n \to \infty} g(r_n) = \lim_{n \to \infty} 0 = 0$.

Hence, g/x) = 0 for all x in IR.

#7. § 2.4, p.47, #4.

Find the peak indices.

(a) $\{\frac{1}{n}\}$ $\{1, 2, 3, 4, ...\}$

There are no peak

indices, because

there is a strictly

mereasing subsequence.