r_{leo1} is the radius of LEO-1 [Km] (Earth to EROS(433)) $i = \{0,2\}$ r_{leo2} is the radius of LEO-2 [Km] (EROS(433) to Earth) S.t. $160 \le \begin{bmatrix} r_{leo1} & r_{leo2} \end{bmatrix}^T \le 2000$ $|v_{i+2} - v_{i+1}| = \Delta V$ is the characteristic velocity [Km/s] $i = \{0,2\}$ $108 < \partial t_0 < 1000$ ∂t_0 time taken to complete Earth to EROS(433) transit [days] $92 < \partial t_1 < 1000$ ∂t_1 time taken to complete EROS(433) to Earth $0 \le \begin{bmatrix} i_1 & i_2 \end{bmatrix}^T \le \pi$ transit [days] i_1 inclination of LEO-1 [rads]

 μ_{leo2} true anomaly of LEO-2 [rads]

$$0 \leq \begin{bmatrix} i_1 & i_2 \end{bmatrix} \leq \pi$$
 transi
$$0 \leq \begin{bmatrix} \mu_{leo1} & \mu_{leo2} \end{bmatrix}^T \leq 2\pi$$
 transi
$$i_1 \text{ inclination of LEO-1 [rads]}$$

$$i_2 \text{ inclination of LEO-2 [rads]}$$

$$\mu_{leo1} \text{ true anomaly of LEO-1 [rads]}$$

 $\sum |v_{i+2} - v_{i+1}| > 0$

 $i = \{0, 2\}$

 $Min \sum_{i=1}^{n} |v_{i+2} - v_{i+1}|$

$$\begin{bmatrix} \mu_{leo1} & \mu_{leo2} \end{bmatrix}^T \le 2\pi$$