

OR Gate				20Ho dust
complete and	Ir	puts	Output	sente about alunt A .
=>-		A	Q	Q = A + B
(Symbol)	0	0	0	(boolean equation)
	0	12 de 12	and an	slop tuped A 40.5
1-10 d 0 a	on onto	0		la date how I
			1	birth
	`			
NOR (NOT-O				NOT Gate
	Inp	uts	Output	
70	B	A O	Q	Q = A + B
(Symbol)	0	0	10	(boolean equation)
	0	10	0	
		0	0	
	1	1	0	
				AND Gata
Evas ac	A -	Dipil	Linguis	
EXOR Gate	Inp	uts 1	Output	
1	В	A	Q	0 1 - 0
	0	0	0	Q = A D B
(Symbol)	0	10		(bodean equation)
		0		
			0	
EXNOR (NOT	-EVAD)	Carla	11	(ONA-TOW) GUALA
LAMON (NOT	_		Output	CORRESTORY CHANGE
=100-	Inpl	A	(C)	Q = A DB
(Sumbal)	0	0	10	A .
(Symbol)	0	1	0	(boblean equation)
	1	0	0	
		0	U	

 $Q = (\overline{A} + C) + \overline{A} \cdot (\overline{C} + B) + (\overline{A} + \overline{B} \cdot C)$

 $= \overline{A}.\overline{C} + \overline{A}.\overline{C} + \overline{A}.B + \overline{A}.\overline{B}.\overline{C}$

= A.C + A.B + A.(B+c)

 $= \overline{A.C} + \overline{A.B} + \overline{A.B} + \overline{A.C}$

= A.B + A.C

= A. (B+C)

	WWW. Cwthompson. Com					
-	Systems and Devices Add Add (8)					
215	. The lage state processing space can now be combined with the bransduce					
	There are five key Stages to developing a system in electronics					
	A system is a number of units linked together to form a useful circuit					
	A complete System can accept inputs, carry out processes and produce outputs					
	The example used is a system that provides an output when the door is open					
	below a certain temperature					
	TA Testing Super					
	1) Selecting Transducers					
	Transducers convert external signals into electrical signals or vice versa					
	Input transducers could be a microswitch or temperature Sensor					
	Output transducer could be a buzzer					
blas	Microswitch (A) Simple block Sianal Simple block					
	511770 (Q) C					
	Temperature Sensor (B)					
	2) Design Processing Unit					
	Each transducer must have logic O and I under certain conditions					
	Temperature Sensor - logic O when cold Microswitch - logic O when door open					
	logic I when hot - logic I when door closed					
	The bruth table and boolean expression can then be completed					
	B A Q Buzzer on when door open (A=D) and					
	0 0 1 temperature cold (B=0)					
	0 1 0					
	$Q = \overline{A} \cdot \overline{B}$					
	1 1 0					
0	A Suitable logic System can then be designed					
	1 B Q Q 1					

Curtis Thompson WWW. Cwthompson. Com Zener Diodes Zener diodes are always used in resperse bias mode Current Zener Voltage 0.7 V Voltage The voltage across the diode will always be equal · Supply voltage larger than V2 · Current above minimum value A Zener diade will produce a Steady V+ voltage of 1/2, even if the Supply Voltage changes

Certis Thompson WWW. Cwthompson. Com · Somiconductor device like a diode * 3 terminals instead of 2 b= base c = collector e = emitter There are two types of transistors: npn type lused in ASI and pnp type Current always flows in the direction of the arrow Current can flow from base to emitter or collector to emitter The base-emitter current controls the collector-emitter current · A small current into the base can control a large current from the collector · Amplify an analogue Signal · Allow a low power subsigner turn on or off a high power device Current can only flow through the lamp (collector-enitter current) if a large enough current flows into the base (base-emiller current).

Three possible outcomes:

· Cut-off where no current flows hough the lamp (output is equal to supply voltage)

· Linear where the load current varies with the base-emilter current

· Saturation where the load current is constant

