Problem 38.

Use mathematical induction to verify the correctness of the formula obtained. $t_k = t_{k-1} + 3k + 1$, for each integer $k \ge 1$

Proof. (by induction)

Let
$$P(n)$$
: $t_n = n + \frac{3n(n+1)}{2}$ for $n \ge 0$

$$P(n) \longrightarrow t_n = n + \frac{3n(n+1)}{2}$$

Basis step:
$$P(0) = 0 + \frac{3(0)(0+1)}{2}$$
. True since $t_0 = 0$

Inductive step: Let $k \in \mathbb{Z} \ni k \ge 0$. Assume P(k), that is $t_k = k + \frac{3k(k+1)}{2}$

[NTS:
$$P(k+1)$$
: $t_{k+1} = (k+1) + \frac{3(k+1)(k+1+1)}{2}$]

$$t_{k+1} = t_k + 3(k+1) + 1$$

$$= k + \frac{3k(k+1)}{2} + 3(k+1) + 1$$
 by substitution
$$= (k+1) + \frac{3k(k+1)}{2} + \frac{6(k+1)}{2}$$
 by algebra
$$= (k+1) + \frac{(k+1)}{2} \cdot 3(k+2)$$

$$= (k+1) + \frac{3(k+1)(k+2)}{2}$$