WISDOM: Watering Intelligently at Scale with Distributed Optimization and Modeling

Daniel A. Winkler University of California, Merced dwinkler2@andes.ucmerced.edu Alberto E. Cerpa University of California, Merced acerpa@andes.ucmerced.edu

Figure 6.3: Prototype WISDOM device

Outline

- Background and Motivation
 - Centralized Control
 - Distributed Control
- WISDOM System
 - Modeling
 - Hardware
- Experiments and Results
 - o WISDOM vs. ET
 - o WISDOM vs. PICS
- Conclusions

Fresh Water is Not Abundant

Where is Earth's Water?

Credit: U.S. Geological Survey, Water Science School. https://www.usgs.gov/special-topic/water-science-school
Data source: Igor Shiklomanov's chapter "World fresh water resources" in Peter H. Gleick (editor), 1993, Water in Crisis:
A Guide to the World's Fresh Water Resources. (Numbers are rounded).

In continental U.S. alone:

- 128,000 square kilometers
 - Estimated 3x more than corn
- 9 billion gallons/day to irrigate
 - Landscaping 30% 70% of residential water use

Systems aren't great

It's easy to find irrigation systems that are not doing their jobs properly ...

Primary offenses:

- Under-watering
 - Bad quality
- Over-watering
 - Bad efficiency
 - Erode soil
 - Leeches fertilizer chemicals

Irrigation System Architecture

Depending on the size of the system, the values may be placed on each run, like

this:

No hierarchical control

Irrigation System Architecture

Water needs are not necessarily constant everywhere

Figure 5.10: Sources of water movement during irrigation (Short-term)

Different plants, soil type, soil depth, slop, shadowing,etc

Distributed Actuation and Centralized Control

Figure 4.1: DICTUM System Architecture

Each sprinkler head has a node with a solenoid for on/off control and a moisture sensor

Centralized Control - Single Point of Failure

Centralized Control - Controller Redundancy

Centralized Control - Communication

Centralized Control - Performance

WISDOM - Distributed Control

WISDOM - Distributed Control

Benefits of Distributed Control

Automatic neighborhood creation/maintenance

24-hour Soil Moisture Cycle

Modeling long-term moisture movement

Modeling long-term moisture movement

Modeling short-term water movement

Finding Optimal Schedules

Variable	Description	
t	Temporal index $\in \{0, \ldots, T\}$	
k	Sprinkler location index $\in \{1, \ldots, N_K\}$	
s_t	Vector of moisture levels at time t , size N_K	
\mathbf{f}_t	Vector of binary sprinkler actuation at time t , size N_K	
$f_{k,t}$	Sprinkler k actuation at time t , $\in \{0, 1\}$	
$s_{k,t}$	Volumetric water content (VWC) of location k at time t	
c_k	Flow rate of sprinkler k (Constant, known beforehand)	
θ_k	Measured VWC of sensor k (Constant, known beforehand	

Table 2: Optimization Variables

$$\min_{\{f_{k,t},s_{k,t}\}_{k=1,t=0}^{N_K}} \sum_{k=1}^{T} \sum_{t=0}^{C_k} c_k f_{k,t} \quad \text{s.t.}$$
 (3a) Minimize system water consumption

$$\begin{array}{lllll} 0 \leq f_{k,t} \leq 1 & k=1,\ldots,N_K & t=0,\ldots,T & \text{(3b)} & \text{Physical solenoid constraint} \\ s_{k,t} \geq \theta_{\text{pwp}} & k=1,\ldots,N_K & t=0,\ldots,T-1 & \text{(3c)} & \text{Quality of service} \\ s_{k,T} \geq \theta_{\text{goal},k} & k=1,\ldots,N_K & \text{(3d)} & \text{Goal state} \\ s_{k,t=0} = \theta_k & k=1,\ldots,N_K & \text{(3e)} & \text{Initial moisture measurements} \\ s_t = g(s_{t-1},f_{t-1}) & t=1,\ldots,T & \text{(3f)} & \text{Short-term water movement} \end{array}$$

Distributed Processing Pipeline

Current hardware platforms are insufficient

WISDOM co-processor hardware architecture

System Lifetime: Energy Harvesting

Micro-hydro water turbine enables perpetual system lifetime

WISDOM Contributions

- Distributed control
 - Local modeling and optimization on end devices
 - Data communication only required between neighbors
 - New co-processor architecture to facilitate distributed computation

 \circ

Energy harvesting enables perpetual system operation

Case Study

Case Study

ET: centralized + industrial state-of-the-art

PICS: centralized + data-driven WISDOM: distributed + data-driven

Results - Case study vs ET

System approaches steady state

Results - Case study vs ET

Figure 7: Water consumption of ET vs WISDOM

32.9%

Results - Case study vs PICS

Figure 6: Collected VWC data across deployment for all PICS (left) and WISDOM (right) nodes

Results - Case study vs PICS

Distributed optimization solve time
Centralized optimization solve time

20

20

40

60

80

100

120

140

Number of Sprinklers

Optimization time vs number of sprinklers

Figure 14: Time required to optimize schedules using centralized (PICS) and distributed (WISDOM) systems

Figure 8: Water consumption of PICS vs WISDOM

Within 4% of each other

Economic Analysis

Component	WISDOM	PICS [40]
Mote (includes M & A costs for WISDOM)	\$25.00	\$37.57
Raspberry pi zero	\$5.00	-
Battery and charge circuit	\$21.00	\$4.00
Harvesting turbine	\$12.00	_
Sealed enclosure	\$13.00	\$10.00
Moisture sensor	\$99.00	\$110.00
Latching solenoid	\$14.00	\$15.00
Manufacture and Assembly (only for PICS)	_	\$10.00
	\$189.00	\$186.57

Table 3: Sprinkler Node Manufacture Cost Comparison

Conclusions

- All QoS and efficiency benefits of PICS
- Distributed system removed limitations of previous work
 - Single point of failure
 - Communication problem
 - Performance
 - True scalability
- Energy harvesting allows perpetual system lifetime
- Flexible new hardware platform enables in-network computation

Backup

Figure 3: Node energy profile across (a) boot, (b) Julia initialization, (c) first optimization solve, (d) completion and return to idle, and (e) subsequent optimization

