3D Distribution of Synapses in Cortex

Kelly Chang, Andrew Cheng, San-He Wu

Mar 10, 2016

Significance

 The ultimate goal of systems neuroscience is to fully map the human connectome

- Traditional neuroscience techniques involve studying individual neurons in isolation. This cannot capture:
 - Spatial Distribution
 - Connectivity
 - Information processing

Need/Gap

- Electron microscopy now affords the ability to map entire sections of cortex in detail
- It is now possible to assess the distribution of synapses in cortex
 - Also possible to assess Connectivity

 This project will focus on synaptic density across "layers" of cortex

Challenges

Annotation of neural markers

- Labeling of synapses
- Labeling of neurons / cell types
- Separating cortical layers

Stratifying synapses

- This project is focused on synaptic density across "layers"
- Resolving different cortical layers from the EM data is non-trivial.
- We considered different Z-layers instead of cortical

Formal Statement of Problem

$$N = \# \{ \text{Synapses} \}$$
 $X_i = X \text{ position}$
 $Y_i = Y \text{ position}$
 $X_i, Y_i, N \sim F := \{ F_{X,Y,N} \ (.;\theta) \colon \theta \in \Theta \}$

$$L = \sum_{-\infty}^{\infty} I(\hat{W} \neq W)$$

$$E[L] = \sum_{-\infty}^{\infty} I(\hat{W} \neq W) / N$$

- Z layers labeled (8 low, 3 high density)
- Classify grids by mean synapses per bin

1111

1150

1189

1228

1267

Get the expectation of loss function

Model Assumptions

• Grid means are independent of X, Y dimensions

$$X_i$$
, $Y_i \parallel U_i$

Grid means are i.i.d

$$(u_1, u_2, \dots, u_i) \sim F = \prod F_i, F_i = F_j, \forall i \neq j$$

Class conditional difference exist

$$f(x) = y + \varepsilon$$
, $\varepsilon \sim Normal(\mu, \sigma^2)$

Formal Statement of Algorithm

- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- K-Nearest Neighbors (kNN)
- Support Vector Machines (SVM)
- Random Forest (RF)

Results

<u>Algorithm</u>	Accuracy
Nearest Neighbors	0.74 ± 0.01
Linear SVM	0.78 ± 0.01
Random Forest	0.77 ± 0.01
LDA	0.78 ± 0.01
QDA	0.78 ± 0.01

- All classifiers performed similarly, with accuracy slightly above 73% (prior probability of low-density layer).
- Grid means don't seem to provide enough additional information.

Model Checking

- Grid means not independent across (X,Y)
- Grid means independent across Z
- Grid means identically distributed in both (X,Y) and Z
- Grid means aren't sufficient to distinguish between layers

Discussion / Future Work

- Framework for testing classifiers and identifying strengths/weaknesses
- Preliminary results indicate that more information is needed for successful classification of Z layers
 - Larger grids
 - Alternative metric (instead of means)
 - Quantify spatial organization
 - Clustering
- Functional information
 - Cortical layers vs. Z layers