# Baze de date

Limbajul SQL

Teams: FI-AIA-2-Baze de date-2022-2023



#### THE INFORMATION COMPANY

# Curs 4 Limbajul SQL



# Limbajul SQL

#### Interogări SELECT pe o singură tabelă (partea II)

- 4.1. Funcţii
- 4.2. Funcții referitoare la o singură înregistrare

#### Tabela DUAL

Tabela generica **DUAL** se foloseste pentru a *testa functii* si pentru a *evalua diferite expresii* care nu necesita preluarea datelor dintr-o tabela.

Această tabela este una specială, care conţine o singură coloană numită "DUMMY" şi o singură linie.



#### Tabela DUAL

Putem folosi tabela **DUAL** si atunci cand vrem sa realizăm diverse calcule.

#### Exemplu:

**SELECT (12/3 + 10) FROM dual;** 



Funcţiile sunt o caracteristică importantă a **SQL** si sunt utilizate pentru:

- √ a realiza calcule asupra datelor
- √ a modifica date
- √ a manipula grupuri de înregistrări(linii)
- √ a schimba formatul datelor
- ✓ sau pentru a converti diferite tipuri de date

# Funcții referitoare la o singură înregistrare

In documentatia **ORACLE** puteti gasi foarte multe funcţii care pot fi utilizate in expresii.

# Lista completa a acestor functii este la:

https://docs.oracle.com/cloud/help/r o/analytics-cloud/ACUBI/GUID-4CBCE8D4-CF17-43BD-AAEF-C5D614A8040A.htm#BILUG779

- Funcţiile de agregare
- · Funcţii pt. analize
- Funcţii dată şi oră
- Funcţiile de conversie
- Funcții de afișare
- Funcţiile de evaluare
- Funcţiile matematice
- Rularea funcţiilor de agregare
- Funcţii spaţiale
- Funcţii pt. şiruri
- Funcţii de sistem
- · Funcțiile pt. serii temporale

Funcțiile se pot clasifica în două categorii:

- 1. Funcţii referitoare la o singură înregistrare (single-row functions)
- 2. Funcţii referitoare la mai multe înregistrări (multiple-row functions)

- 1. Funcţii referitoare la o singură înregistrare (single-row functions):
- 1. Funcții pentru șiruri de caractere
- 2. Funcții de tip numeric
- 3. Funcții de tip dată calendaristică și oră
- 4. Funcții de conversie dintr-un tip în altul
- 5. Funcții generale
- 6. Funcții condiționale

- 2. Funcţii referitoare la mai multe înregistrări (multiple-row functions):
- Funcţii totalizatoare sau funcţii de grup

Diferența dintre cele două tipuri de funcții este numărul de înregistrări pe care acționează:

- Funcţiile referitoare la o singură înregistrare returnează un singur rezultat pentru fiecare rând al tabelei,
- ▶ pe când funcţiile referitoare la mai multe înregistrări returnează un singur rezultat pentru fiecare grup de înregistrări din tabela.

O observaţie importanta este faptul că dacă se apelează o funcţie **SQL** ce are un argument (parametru) egal cu valoarea Null, atunci în mod automat rezultatul va avea valoarea Null.

Singurele funcţii care nu respectă această regulă sunt:

- CONCAT
- DECODE
- DUMP
- NVL
- REPLACE



# Limbajul SQL

#### Interogări SELECT pe o singură tabelă (partea II)

- 4.1. Funcţii
- 4.2. Funcții referitoare la o singură înregistrare

# Funcții referitoare la o singură înregistrare

Funcţiile referitoare la o singură înregistrare pot fi folosite în:

- a) clauza **SELECT** pentru a modifica modul de afişare a datelor, pentru a realiza diferite calcule, etc.
- b) clauza WHERE pentru a scrie conditia pe baza careia se afișează înregistrările(liniile)
- c) clauza ORDER BY- pentru a afisa datele pe baza unor criterii de sortare





# Limbajul SQL

## Interogări SELECT pe o singură tabelă (partea II)

- 4.2. Funcții referitoare la o singură înregistrare
  - 4.2.1. Funcții pentru șiruri de caractere
  - 4.2.2. Funcţii de tip numeric
  - 4.2.3. Funcţii de tip dată calendaristică şi oră
  - 4.2.4. Funcţii de conversie dintr-un tip în altul
  - 4.2.5. Funcții generale
  - 4.2.6. Funcţii condiţionale

# Funcții referitoare la o singură înregistrare

#### 4.2.1. Funcții pentru șiruri de caractere

Aceste funcţii au ca argumente date de tip caracter şi returnează date de tip VARCHAR2, CHAR sau NUMBER.

Cele mai importante funcţii caracter sunt:

| Functie                                                 | Descriere                                                                                                                                                 |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOWER(column expression)                                | converteste alfa caracterele din caractere mari in caractere mici                                                                                         |
| UPPER(column expression)                                | converteste alfa caracterele din caractere mici in caractere mari                                                                                         |
| INITCAP(column expression)                              | converteste prima litera a fiecarui cuvant in caractere mari si restul cuvantului in caractere mici                                                       |
| CONCAT(column1 expression1, column2 expression2)        | functia este echivalentul operatorului de concantenare (  )                                                                                               |
| SUBSTR(column expression, m [, n])                      | returneaza un sir de $n$ caractere incepand cu caracterul aflat pe pozitia $m$                                                                            |
| LENGTH(column expression)                               | returneaza numarul de caractere dintr-o expresie                                                                                                          |
| <pre>INSTR(column expression, 'string', [m], [n])</pre> | returneaza pozitia unui anumit sir, optional se poate incepe cautarea cu pozitia $m$ sau cu a $n$ -a aparitie a sirului. $m$ si $n$ sunt prin definitie 1 |
| REPLACE(text, search_string, replacement_string)        | cauta un anumit text intr-un sir de caractere si<br>daca il gaseste il inlocuieste                                                                        |

Exemplu de utilizare a funcţiei LENGTH:

**SELECT LENGTH**(ename) **FROM** EMP;

| Column Name | Data Type    | Nullable | Default | <b>Primary Key</b> |
|-------------|--------------|----------|---------|--------------------|
| EMPNO       | NUMBER(4,0)  | No       |         | 1                  |
| ENAME       | VARCHAR2(50) | Yes      |         |                    |
| JOB         | VARCHAR2(50) | Yes      |         |                    |
| MGR         | NUMBER(4,0)  | Yes      |         |                    |
| HIREDATE    | DATE         | Yes      |         |                    |
| SAL         | NUMBER(7,2)  | Yes      |         |                    |
| сомм        | NUMBER(7,2)  | Yes      |         |                    |
| DEPTNO      | NUMBER(2,0)  | Yes      |         |                    |

| <b>EMPNO</b> | <b>ENAME</b> | JOB       | MGR  | HIREDATE   | SAL  | сомм | <b>DEPTNO</b> |
|--------------|--------------|-----------|------|------------|------|------|---------------|
| 7839         | KING         | PRESIDENT |      | 11/17/1981 | 5000 |      | 10            |
| 7698         | BLAKE        | MANAGER   | 7839 | 5/1/1981   | 2850 |      | 30            |
| 7782         | CLARK        | MANAGER   | 7839 | 6/9/1981   | 2450 |      | 10            |
| 7566         | JONES        | MANAGER   | 7839 | 4/2/1981   | 2975 |      | 20            |
| 7788         | SCOTT        | ANALYST   | 7566 | 12/9/1982  | 3000 |      | 20            |
| 7902         | FORD         | ANALYST   | 7566 | 12/3/1981  | 3000 |      | 20            |
| 7369         | SMITH        | CLERK     | 7902 | 12/17/1980 | 800  |      | 20            |
| 7499         | ALLEN        | SALESMAN  | 7698 | 2/20/1981  | 1600 | 300  | 30            |
| 7521         | WARD         | SALESMAN  | 7698 | 2/22/1981  | 1250 | 500  | 30            |
| 7654         | MARTIN       | SALESMAN  | 7698 | 9/28/1981  | 1250 | 1400 | 30            |
| 7844         | TURNER       | SALESMAN  | 7698 | 9/8/1981   | 1500 | 0    | 30            |
| 7876         | ADAMS        | CLERK     | 7788 | 1/12/1983  | 1100 |      | 20            |
| 7900         | JAMES        | CLERK     | 7698 | 12/3/1981  | 950  |      | 30            |
| 7934         | MILLER       | CLERK     | 7782 | 1/23/1982  | 1300 |      | 10            |

Exemplu de utilizare a funcţiei LENGTH – rezultatul obtinut: 1 SELECT LENGTH(ename)

2 FROM EMP;

```
Describe
                              Saved SQL
                                                                                                                                         LENGTH(ENAME)
14 rows returned in 0.03 seconds
```

#### Exemplu:

**SELECT** 'Numele functiei pentru '||**UPPER**(ename)||'este '||**LOWER**(job) AS "DETALII ANGAJAT"

FROM EMP;

| Column Name | Data Type    | Nullable | Default | <b>Primary Key</b> |
|-------------|--------------|----------|---------|--------------------|
| EMPNO       | NUMBER(4,0)  | No       |         | 1                  |
| ENAME       | VARCHAR2(50) | Yes      |         |                    |
| JOB         | VARCHAR2(50) | Yes      |         |                    |
| MGR         | NUMBER(4,0)  | Yes      |         |                    |
| HIREDATE    | DATE         | Yes      |         |                    |
| SAL         | NUMBER(7,2)  | Yes      |         |                    |
| сомм        | NUMBER(7,2)  | Yes      |         |                    |
| DEPTNO      | NUMBER(2,0)  | Yes      |         |                    |

| <b>EMPNO</b> | <b>ENAME</b> | JOB       | MGR  | HIREDATE   | SAL  | сомм | DEPTNO |
|--------------|--------------|-----------|------|------------|------|------|--------|
| 7839         | KING         | PRESIDENT |      | 11/17/1981 | 5000 |      | 10     |
| 7698         | BLAKE        | MANAGER   | 7839 | 5/1/1981   | 2850 |      | 30     |
| 7782         | CLARK        | MANAGER   | 7839 | 6/9/1981   | 2450 |      | 10     |
| 7566         | JONES        | MANAGER   | 7839 | 4/2/1981   | 2975 |      | 20     |
| 7788         | SCOTT        | ANALYST   | 7566 | 12/9/1982  | 3000 |      | 20     |
| 7902         | FORD         | ANALYST   | 7566 | 12/3/1981  | 3000 |      | 20     |
| 7369         | SMITH        | CLERK     | 7902 | 12/17/1980 | 800  |      | 20     |
| 7499         | ALLEN        | SALESMAN  | 7698 | 2/20/1981  | 1600 | 300  | 30     |
| 7521         | WARD         | SALESMAN  | 7698 | 2/22/1981  | 1250 | 500  | 30     |
| 7654         | MARTIN       | SALESMAN  | 7698 | 9/28/1981  | 1250 | 1400 | 30     |
| 7844         | TURNER       | SALESMAN  | 7698 | 9/8/1981   | 1500 | 0    | 30     |
| 7876         | ADAMS        | CLERK     | 7788 | 1/12/1983  | 1100 |      | 20     |
| 7900         | JAMES        | CLERK     | 7698 | 12/3/1981  | 950  |      | 30     |
| 7934         | MILLER       | CLERK     | 7782 | 1/23/1982  | 1300 |      | 10     |

#### Rezultat obtinut:

- 1 SELECT 'Numele functiei pentru '||UPPER(ename)||' este '||LOWER(job) AS "DETALII ANGAJAT"
- 2 FROM EMP;



#### Exemplu:

**SELECT** empno, **UPPER**(ename), job, deptno

**FROM** EMP

**WHERE** ename = 'MARTIN';

| Column Name | Data Type    | Nullable | Default | <b>Primary Key</b> |
|-------------|--------------|----------|---------|--------------------|
| EMPNO       | NUMBER(4,0)  | No       |         | 1                  |
| ENAME       | VARCHAR2(50) | Yes      |         |                    |
| JOB         | VARCHAR2(50) | Yes      |         |                    |
| MGR         | NUMBER(4,0)  | Yes      |         |                    |
| HIREDATE    | DATE         | Yes      |         |                    |
| SAL         | NUMBER(7,2)  | Yes      |         |                    |
| сомм        | NUMBER(7,2)  | Yes      |         |                    |
| DEPTNO      | NUMBER(2,0)  | Yes      |         |                    |

| <b>EMPNO</b> | <b>ENAME</b> | JOB       | MGR  | HIREDATE   | SAL  | сомм | DEPTNO |
|--------------|--------------|-----------|------|------------|------|------|--------|
| 7839         | KING         | PRESIDENT |      | 11/17/1981 | 5000 |      | 10     |
| 7698         | BLAKE        | MANAGER   | 7839 | 5/1/1981   | 2850 |      | 30     |
| 7782         | CLARK        | MANAGER   | 7839 | 6/9/1981   | 2450 |      | 10     |
| 7566         | JONES        | MANAGER   | 7839 | 4/2/1981   | 2975 |      | 20     |
| 7788         | SCOTT        | ANALYST   | 7566 | 12/9/1982  | 3000 |      | 20     |
| 7902         | FORD         | ANALYST   | 7566 | 12/3/1981  | 3000 |      | 20     |
| 7369         | SMITH        | CLERK     | 7902 | 12/17/1980 | 800  |      | 20     |
| 7499         | ALLEN        | SALESMAN  | 7698 | 2/20/1981  | 1600 | 300  | 30     |
| 7521         | WARD         | SALESMAN  | 7698 | 2/22/1981  | 1250 | 500  | 30     |
| 7654         | MARTIN       | SALESMAN  | 7698 | 9/28/1981  | 1250 | 1400 | 30     |
| 7844         | TURNER       | SALESMAN  | 7698 | 9/8/1981   | 1500 | 0    | 30     |
| 7876         | ADAMS        | CLERK     | 7788 | 1/12/1983  | 1100 |      | 20     |
| 7900         | JAMES        | CLERK     | 7698 | 12/3/1981  | 950  |      | 30     |
| 7934         | MILLER       | CLERK     | 7782 | 1/23/1982  | 1300 |      | 10     |

#### Rezultat obtinut:

- 1 SELECT empno, UPPER(ename), job, deptno
- 2 FROM EMP
- 3 WHERE ename = 'MARTIN';



Clauza WHERE a acestei cereri SQL compară numele din tabela Angajaţi cu 'Smith'.

Pentru comparaţie numele sunt convertite în litere mici şi din această cauză se obţine un rezultat. Exemplu:

```
SELECT empno, UPPER(ename), job, deptno FROM EMP WHERE INITCAP(ename) = 'Smith';
```

#### Rezultatul obtinut:

- 1 SELECT empno, UPPER(ename), job, deptno
- 2 FROM EMP
- 3 WHERE INITCAP(ename) = 'Smith';



#### Exemplu:

Pentru afişarea numelui cu majuscule de foloseşte funcţia **UPPER**.

```
SELECT empno, CONCAT(ename, job), ename,
    UPPER(ename)
FROM EMP;
```

#### Rezultatul obtinut:

- 1 SELECT empno, CONCAT(ename, job), ename, UPPER(ename)
- 2 FROM EMP;

| EMPNO | CONCAT(ENAME, JOB) | ENAME  | UPPER(ENAME) |
|-------|--------------------|--------|--------------|
| 1839  | KINGPRESIDENT      | KING   | KING         |
| 1698  | BLAKEMANAGER       | BLAKE  | BLAKE        |
| 7782  | CLARKMANAGER       | CLARK  | CLARK        |
| 7566  | JONESMANAGER       | JONES  | JONES        |
| 7788  | SCOTTANALYST       | SCOTT  | SCOTT        |
| 7902  | FORDANALYST        | FORD   | FORD         |
| 7369  | SMITHOLERK         | SMITH  | SMITH        |
| 1499  | ALLENSALESMAN      | ALLEN  | ALLEN        |
| 521   | WARDSALESMAN       | WARD   | WARD         |
| 7654  | MARTINSALESMAN     | MARTIN | MARTIN       |
| 7844  | TURNERSALESMAN     | TURNER | TURNER       |
| 1876  | ADAMSCLERK         | ADAMS  | ADAMS        |
| 7900  | JAMESCLERK         | JAMES  | JAMES        |
| 1934  | MILLERCLERK        | MILLER | MILLER       |

- ➤ Spre deosebire de alte funcţii, funcţiile caracter pot fi imbricate până la orice adâncime.
- ➤ Dacă funcţiile sunt imbricate, atunci ele sunt evaluate din interior spre exterior.
- Pentru a determina, de exemplu, de câte ori apare caracterul 'A' în câmpul ename vom folosi interogarea:

**SELECT** ename, **LENGTH** (ename) - LENGTH (**TRANSLATE**(ename, 'DA', 'D'))

FROM EMP;

| Column Name | Data Type    | Nullable | Default | <b>Primary Key</b> |
|-------------|--------------|----------|---------|--------------------|
| EMPNO       | NUMBER(4,0)  | No       |         | 1                  |
| ENAME       | VARCHAR2(50) | Yes      |         |                    |
| JOB         | VARCHAR2(50) | Yes      |         |                    |
| MGR         | NUMBER(4,0)  | Yes      |         |                    |
| HIREDATE    | DATE         | Yes      |         |                    |
| SAL         | NUMBER(7,2)  | Yes      |         |                    |
| сомм        | NUMBER(7,2)  | Yes      |         |                    |
| DEPTNO      | NUMBER(2,0)  | Yes      |         |                    |

| <b>EMPNO</b> | <b>ENAME</b> | JOB       | MGR  | HIREDATE   | SAL  | сомм | DEPTNO |
|--------------|--------------|-----------|------|------------|------|------|--------|
| 7839         | KING         | PRESIDENT |      | 11/17/1981 | 5000 |      | 10     |
| 7698         | BLAKE        | MANAGER   | 7839 | 5/1/1981   | 2850 |      | 30     |
| 7782         | CLARK        | MANAGER   | 7839 | 6/9/1981   | 2450 |      | 10     |
| 7566         | JONES        | MANAGER   | 7839 | 4/2/1981   | 2975 |      | 20     |
| 7788         | SCOTT        | ANALYST   | 7566 | 12/9/1982  | 3000 |      | 20     |
| 7902         | FORD         | ANALYST   | 7566 | 12/3/1981  | 3000 |      | 20     |
| 7369         | SMITH        | CLERK     | 7902 | 12/17/1980 | 800  |      | 20     |
| 7499         | ALLEN        | SALESMAN  | 7698 | 2/20/1981  | 1600 | 300  | 30     |
| 7521         | WARD         | SALESMAN  | 7698 | 2/22/1981  | 1250 | 500  | 30     |
| 7654         | MARTIN       | SALESMAN  | 7698 | 9/28/1981  | 1250 | 1400 | 30     |
| 7844         | TURNER       | SALESMAN  | 7698 | 9/8/1981   | 1500 | 0    | 30     |
| 7876         | ADAMS        | CLERK     | 7788 | 1/12/1983  | 1100 |      | 20     |
| 7900         | JAMES        | CLERK     | 7698 | 12/3/1981  | 950  |      | 30     |
| 7934         | MILLER       | CLERK     | 7782 | 1/23/1982  | 1300 |      | 10     |
|              |              |           |      |            |      |      |        |

#### Rezultatul obtinut:

- 1 SELECT ename, LENGTH (ename) LENGTH (TRANSLATE(ename, 'DA', 'D'))
- 2 FROM EMP;



#### Explicatii:

În exemplul anterior, funcţia TRANSLATE (nume, 'DA', 'D') va căuta în coloana "nume" primul caracter (caracterul 'D') din cel de-al doilea argument al funcţiei (şirul de caractere 'DA') şi îl va înlocui cu primul caracter (adică tot cu caracterul 'D') din cel de-al treilea argument al funcţiei (şirul de caractere 'D'), apoi va căuta cel de-al doilea caracter, adică caracterul 'A', şi îl va şterge din câmpul nume deoarece acesta nu are caracter corespondent în cel de-al treilea argument al funcţiei.

Am folosit acest artificiu deoarece şirul de caractere vid este echivalent cu valoarea Null, deci funcţia TRANSLATE (nume, 'A', ') ar fi înlocuit toate valorile câmpului "nume" cu valoarea Null.





# Limbajul SQL

## Interogări SELECT pe o singură tabelă (partea II)

- 4.2. Funcții referitoare la o singură înregistrare
  - 4.2.1. Funcții pentru șiruri de caractere
  - 4.2.2. Funcţii de tip numeric
  - 4.2.3. Funcţii de tip dată calendaristică şi oră
  - 4.2.4. Funcţii de conversie dintr-un tip în altul
  - 4.2.5. Funcţii generale
  - 4.2.6. Funcţii condiţionale

Aceste funcţii au ca argumente date de tip **NUMBER** şi returnează date de tip numeric.

Cele mai importante funcții pentru valori numerice sunt:

```
ABS(n)
SIN(n), COS(n), TAN(n)
ACOS(n), ASIN(n), ATAN(n)
POWER(m, n)
SQRT(x)
```

```
REMAINDER(x, y)
MOD(a, b)
SIGN(x)
CEIL(x)
FLOOR(x)
ROUND(a, b)
TRUNC(a, b)
```

ABS(n) returnează valoarea absolută a argumentului

#### Exemple:



SIN(n), COS(n), TAN(n), ACOS(n), ASIN(n), ATAN(n) - sunt funcţiile trigonometrice cu aceeaşi semnificaţie ca şi la matematică. Argumentul acestor funcţii trebuie precizat în radiani Exemple:

select sin(3.1415/4), cos(3.1415/4), tan(3.1415/4) from dual



#### select asin(3.1415/4), acos(3.1415/4), atan(3.1415/4) from dual



**POWER(m, n)** - calculează valoarea m<sup>n</sup>.

#### Exemple:

select power(2,5), power(2,0.5), power(2,-1), power(2,-0.75) from dual



SQRT(x) - calculează rădăcina pătrată a argumentului.

Apelul SQRT(x) returnează aceeași valoare ca și POWER(x, 0.5).

#### Exemple:

select sqrt(7), sqrt(49) from dual



REMAINDER(x,y) - în cazul în care ambii parametrii x şi y sunt numere întregi, funcţia calculează restul împărţirii lui x la y. Dacă cel puţin unul dintre parametrii este număr real, funcţia determină mai întâi acel multiplu a lui y care este cel mai apropiat de x, şi returnează apoi diferenţa dintre x şi acel multiplu

#### Exemple:

select remainder(10,3), remainder(5,3), remainder(10,3.5), remainder(-10,3.5) from dual

| 1 9     | <pre>select remainder(10,3), remainder(5,3), remainder(10,3.5), remainder(-10,3.5) from dual</pre> |                |                   |                    |  |
|---------|----------------------------------------------------------------------------------------------------|----------------|-------------------|--------------------|--|
| 2       |                                                                                                    |                |                   |                    |  |
| 3       |                                                                                                    |                |                   |                    |  |
|         |                                                                                                    |                | •                 |                    |  |
| Results | Results Explain Describe Saved SQL History                                                         |                |                   |                    |  |
| RE      | MAINDER(10,3)                                                                                      | REMAINDER(5,3) | REMAINDER(10,3.5) | REMAINDER(-10,3.5) |  |
| 1       |                                                                                                    | -1             | 5                 | .5                 |  |

MOD(a, b) - dacă cei doi parametrii sunt numere întregi, atunci funcția returnează același rezultat ca și funcția REMAINDER, adică restul împărțirii lui a la b.

Teorema împărțirii cu rest este extinsă de această funcție și pentru numerele reale.

Adică se ține cont de relația a = b \* cât + rest unde restul în modul, trebuie să fie strict mai mic decât b

Exemple: select mod(10,3), mod(5,3), mod(10,3.5), mod(-10,3), mod(-10,-3.5), mod(10,-3.5) from dual Results Explain Describe Saved SOL History

MOD(10,3) MOD(10,3.5) MOD(5,3) MOD(-10,3) MOD(-10,-3.5) MOD(10,-3.5) 3

3

MOD(a, b) (continuare)

#### Exemple:

select mod(10,3), mod(5,3), mod(10,3.5), mod(-10,3), mod(-10,-3.5), mod(10,-3.5) from dual

| 1 5     | select mod(10,3), mod(5,3), mod(10,3.5), mod(-10,3), mod(-10,-3.5), mod(10,-3.5) from dual |          |             |            |               |              |
|---------|--------------------------------------------------------------------------------------------|----------|-------------|------------|---------------|--------------|
| 2       |                                                                                            |          |             |            |               |              |
| 3       |                                                                                            |          |             |            |               |              |
|         |                                                                                            |          |             | ▼          |               |              |
| Results | Results Explain Describe Saved SQL History                                                 |          |             |            |               |              |
| MOD     | (10,3)                                                                                     | MOD(5,3) | MOD(10,3.5) | MOD(-10,3) | MOD(-10,-3.5) | MOD(10,-3.5) |
| 1       |                                                                                            | 2        | 3           | -1         | -3            | 3            |

- SIGN(x) returnează semnul lui x, adică 1 dacă x este număr pozitiv, respectiv -1 dacă x este număr negativ.
- **CEIL(x)** returnează cel mai mic număr întreg care este mai mare sau egal decât parametrul transmis.
- FLOOR(x) returnează cel mai mare număr întreg care este mai mic sau egal decât parametrul transmis.

Exemple: select ceil(6), ceil(-6), ceil(-6.7), ceil(6.7) from dual



select floor(2), floor(-2), floor(-8.9), floor(8.9) from dual



- ROUND(a, b) rotunjeşte valoarea lui a la un număr de cifre precizat prin parametrul b.
- Dacă al doilea parametru este un număr pozitiv, atunci se vor păstra din a primele b zecimale, ultima dintre aceste cifre fiind rotunjită, în funcție de următoarea zecimală.
- Al doilea argument poate fi o valoare negativă, rotunjirea făcându-se la stânga punctului zecimal.
- Cifra a |b|+1 din faţa punctului zecimal (numărând de la punctul zecimal spre stânga începând cu 1) va fi rotunjită în funcţie cifra aflată imediat la dreapta ei.
- Primele |b| cifre din stânga punctului zecimal vor deveni 0. Cel de al doilea argument este opţional, în cazul în care nu se precizează, este considerată implicit valoarea 0.

#### Exemple:

```
select round(789.123,2), round(789.126,2), round(789.126,-1), round(789.126,-2), round(789.126,-3), round(789.126,-4), round(789.126,0), round(789.826,0), round(789.826) from dual
```



**TRUNC(a, b)** - este asemănătoare cu funcţia ROUND, fără a rotunji ultima cifră.

#### Exemple:

```
select trunc(789.123,2), trunc(789.126,2), trunc(789.126,-1), trunc(789.126,-2), trunc(789.126,-3), trunc(789.126,-4), trunc(789.126,0), trunc(789.826,0), trunc(789.826) from dual
```





### Limbajul SQL

### Interogări SELECT pe o singură tabelă (partea II)

- 4.2. Funcții referitoare la o singură înregistrare
  - 4.2.1. Funcții pentru șiruri de caractere
  - 4.2.2. Funcţii de tip numeric
  - 4.2.3. Funcții de tip dată calendaristică și oră
  - 4.2.4. Funcţii de conversie dintr-un tip în altul
  - 4.2.5. Funcții generale
  - 4.2.6. Funcţii condiţionale

Aceste funcții au ca argumente date de tip DATE și returnează date de tip DATE.

Cele mai importante funcții de tip data calendaristica si timp sunt:

| Functie                                    | Descriere                                                          |  |
|--------------------------------------------|--------------------------------------------------------------------|--|
| ADD_MONTHS(column expression, n)           | Adauga un numar n de luni unei date calendaristice                 |  |
| LAST_DAY(column expression)                | Determina care este ultima zi dintr-o luna                         |  |
| MONTHS_BETWEEN(data_inceput, data_sfarsit) | Determina cate luni sunt intre doua date calendaristice            |  |
| NEXT_DAY(column expression, char)          | Returneaza ziua urmatoare datei transmise ca argument pe baza char |  |
| ROUND(column   expression)                 | Rotunjeste data calendaristica                                     |  |
| TRUNC(column   expression)                 | Trunchiaza data calendaristica                                     |  |
| SYSDATE                                    | Returneaza data calendaristica curenta                             |  |

https://docs.oracle.com/cloud/help/ro/analytics-cloud/ACUBI/GUID-4CBCE8D4-CF17-43BD-AAEF-C5D614A8040A.htm #GUID-1A697795-7D1E-4296-961A-1002FDBD4F47

Functia **ADD\_MONTHS** - exemplu:

**SELECT ADD\_MONTHS(SYSDATE,3)** 

FROM DUAL;



Functia **LAST\_DAY** - exemplu:

**SELECT LAST\_DAY(SYSDATE)** 

FROM DUAL;



Functia MONTHS\_BETWEEN - exemplu:

SELECT MONTHS\_BETWEEN (HIREDATE, SYSDATE)
FROM EMP;

Rezultatul va fi un numar negativ, deoarece primul parametru este o data calendaristica mai mica decat al doilea parametru.



Functia **MONTHS\_BETWEEN** - exemplu:

SELECT MONTHS\_BETWEEN (SYSDATE, HIREDATE) FROM EMP;

Pentru a afisa o valoare pozitiva, se pot inversa cei doi parametri:



Functia **NEXT\_DAY** - exemplu:

SELECT SYSDATE, NEXT\_DAY(SYSDATE,6),
NEXT\_DAY(SYSDATE,'FRIDAY')
FROM DUAL;







### Limbajul SQL

### Interogări SELECT pe o singură tabelă (partea II)

- 4.2. Funcții referitoare la o singură înregistrare
  - 4.2.1. Funcții pentru șiruri de caractere
  - 4.2.2. Funcţii de tip numeric
  - 4.2.3. Funcţii de tip dată calendaristică şi oră
  - 4.2.4. Funcţii de conversie dintr-un tip în altul
  - 4.2.5. Funcţii generale
  - 4.2.6. Funcţii condiţionale

### 4.2.4. Funcții de conversie dintr-un tip în altul

Aceste funcţii au ca argumente date de tip DATE, NUMBER, CHAR şi returnează date de tip DATE, NUMBER, CHAR.

Funcţiile de conversie din Oracle se pot folosi pentru a converti diverse formate:

- a)Conversia din dată calendaristică în şir de caractere
- b)Conversia din şir de caractere în dată calendaristică
- c) Conversia din număr în şir de caractere
- d)Conversia din şir de caractere în număr

a) Conversia din dată calendaristică în şir de caractere

Conversia unei date calendaristice în şir de caractere se poate realiza cu ajutorul funcţiei TO\_CHAR.

a) Conversia din dată calendaristică în şir de caractere

Sintaxa acestei funcţii este: TO\_CHAR (dt, format) dt poate avea unul din tipurile pentru date calendatistice:

- 1. DATE, TIMESTAMP
- 2. TIMESTAMP WITH TIME ZONE
- 3. TIMESTAMP
- 4. WITH LOCAL TIME ZONE
- 5. INTERVAL MONTH TO YEAR
- 6. INTERVAL DAY TO SECOND

Formatul poate conţine mai mulţi parametrii care pot afecta modul în care va arăta şirul returnat. Câţiva din aceşti parametri:

| Forma                                       | Parametru  | Descriere                                 | Exemplu                                              |
|---------------------------------------------|------------|-------------------------------------------|------------------------------------------------------|
| Secolul CC                                  |            | Secolul scris cu două cifre               | 21                                                   |
| Trimestrul Q Trimestrul din ar găsește data |            | Trimestrul din an în care se găsește data | 2                                                    |
|                                             | YYYY, RRRR | Anul scris cu patru cifre                 | 2023                                                 |
|                                             | YY, RR     | Ultimele două cifre din an                | 23                                                   |
| Anul                                        | Υ          | Ultima cifră din an                       | 3                                                    |
|                                             | YEAR, Year | Numele anului                             | TWO THOUSAND TWENTY-THREE, two thousand twenty-three |

| Forma     | Parametru       | Descriere                                     | Exemplu      |
|-----------|-----------------|-----------------------------------------------|--------------|
|           | MM              | Luna cu două cifre                            | 03           |
| Luna      | MONTH,<br>Month | Numele complet al lunii                       | MARCH, March |
|           | MON, Mon        | Primele trei litere ale denumirii lunii       | MAR, Mar     |
|           | RM              | Luna scrisă cu cifre romane                   | III          |
|           | ww              | Numărul săptămânii din an                     | 14           |
| Săptămâna | W               | Ultima cifră a numărului săptămânii din<br>an | 2            |

| Forma                            | Parametru                                   | Descriere                                  | Exemplu            |
|----------------------------------|---------------------------------------------|--------------------------------------------|--------------------|
|                                  | DDD                                         | Numărul zilei din cadrul anului            | 57                 |
|                                  | DD                                          | Numărul zilei în cadrul lunii              | 31                 |
| Ziua                             | D                                           | Numărul zilei în cadrul săptămânii         | 5                  |
|                                  | DAY, Day                                    | Numele complet al zilei din săptămână      | SATURDAY, Saturday |
|                                  | DY, Dy                                      | Prescurtarea denumirii zilei din săptămână | SAT, Sat           |
| Ora                              | HH24                                        | Ora în formatul cu 24 de ore               | 23                 |
| Ora                              | НН                                          | Ora în formatul cu 12 ore                  | 11                 |
| Minute MI Minutele cu două cifre |                                             | Minutele cu două cifre                     | 68                 |
| Secunde                          | ecunde SS Secundele cu două cifre           |                                            | 34                 |
| Sufixe                           | Sufixe AM sau PM AM sau PM după cum e cazul |                                            | AM                 |

În cadrul formatului se pot folosi oricare dintre următorii separatori - / , . ; :

Dacă în şirul returnat dorim să includem şi anumite texte acestea se vor scrie între ghilimele.

#### Exemplul 1:

select sysdate, to\_char(sysdate,'MONTH DD, YYYY'),
to\_char(sysdate,'Month DD, YYYY'), to\_char(sysdate,'Mon DD,
YYYY') from dual

| 1<br>2  | select sysdate, to_char(sysdate,'MONTH DD, YYYY'), to_char(sysdate,'Month DD, YYYY'), to_char(sysdate,'Mon DD, YYYY') from dual |                |                |              |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|--------------|--|--|
| 3       | 3                                                                                                                               |                |                |              |  |  |
|         |                                                                                                                                 |                | ▼              |              |  |  |
| Results | Results Explain Describe Saved SQL History                                                                                      |                |                |              |  |  |
| SY      | SYSDATE TO_CHAR(SYSDATE,'MONTHDD,YYYY') TO_CHAR(SYSDATE,'MONTHDD,YYYY') TO_CHAR(SYSDATE,'MONDD,YYYY')                           |                |                |              |  |  |
|         |                                                                                                                                 | ,,             | ,              | ,,           |  |  |
| 03/0    | 9/2023                                                                                                                          | MARCH 09, 2023 | March 09, 2023 | Mar 09, 2023 |  |  |

#### Exemplul 2:

select to\_char(sysdate,'"Trimestrul "Q "al anului
" Year')

#### from dual



#### Exemplul 3:

select to\_char(sysdate,'"Secolul "CC') from dual



#### Exemplul 4:

select to\_char(sysdate,'Day, dd.RM.YYYY') from dual



#### Exemplul 5:

select to\_char(sysdate,'Dy, D, DD, DDD'), sysdate from dual



#### Exemplul 6:

select to\_char(sysdate,'HH24:MI/HH:MI AM') from dual



Exemplul 7: select to\_char(sysdate+1,'ddth'), sysdate

from dual



#### Exemplul 8:

select to\_char(sysdate+1,'ddspth'), sysdate from dual



### Exemplul 9:

select to\_char(sysdate+2,'Ddspth'), sysdate from dual



#### Exemplul 10:

select to\_char(sysdate+10,'DDspth'), sysdate from dual



Exemplul 11: select to\_char(sysdate,'mmsp'), sysdate from dual



b) Conversia din şir de caractere în dată calendaristică

Folosind funcţia TO\_DATE se poate transforma un şir de caractere precum 'Match 09, 2023' într-o dată calendaristică.

Sintaxa funcţiei este: TO\_DATE(sir, format)

Formatul nu este obligatoriu, însă dacă nu este precizat, şirul trebuie să respecte formatul implicit al datei calendaristice DD-MON2YYYY sau DD-MON-YY.

Formatul poate folosi aceiaşi parametrii de format ca şi funcţia TO\_CHAR.

#### Exemple:

select to\_date('3.21.23', 'MM/DD/YY') from dual;



#### Exemple:

select to\_date('010123','ddmmyy') from dual



Formatele RR si YY

Stim ca în formatarea unei date calendaristice se pot folosi pentru an atât YY cât şi RR.

Diferența dintre aceste două formate este modul în care ele interpretează anii aparținând de secole diferite.

Oracle memorează toate cele patru cifre ale unui an, dar dacă sunt transmise doar două din aceste cifre, Oracle va interpreta secolul diferit în cazul celor două formate.

#### Formatele RR si YY

select to\_char(to\_date('09-MAR-95','DD-MON-YY'),
'DD-MON-YYYY') as "YY Format", to\_char(to\_date('09-MAR-95','DD-MON-RR'), 'DD-MON-RRRR') as "RR
Format"
from dual



Formatele RR si YY

Se observă modul diferit de interpretare a anului. Dacă utilizați formatul YY și anul este specificat doar prin două cifre, se presupune că anul respectiv face parte din același secol cu anul curent



c) Conversia din număr în şir de caractere

Pentru a transforma un număr într-un şir de caractere, se foloseşte funcţia TO\_CHAR, cu următoarea sintaxă:

**TO\_CHAR(numar, format)** 

format - poate conţine unul sau mai mulţi parametri de formatare dintre cei prezentaţi în tabelul următor

| Parametru<br>format | Exemplu  | Descriere                                                                                                  |
|---------------------|----------|------------------------------------------------------------------------------------------------------------|
| 9                   | 999      | Returnează cifrele numărului din pozițiile specificate, precedat de semnul minus dacă numărul este negativ |
| 0                   | 0999     | Completează cifrele numărului cu zerouri în față                                                           |
| •                   | 999.99   | Specifică poziția punctului zecimal                                                                        |
| ,                   | 9,999    | Specifică poziția separatorului virgulă                                                                    |
| \$                  | \$999    | Afişează semnul dolar                                                                                      |
| EEEE                | 9.99EEEE | Returnează scrierea științifică a numărului                                                                |

| Parametru<br>format | Exemplu  | Descriere                                                                                                           |
|---------------------|----------|---------------------------------------------------------------------------------------------------------------------|
| L                   | L999     | Afişează simbolul monetar                                                                                           |
| MI                  | 999MI    | Afişează semnul minus după număr dacă acesta este negativ                                                           |
| PR                  | 999PR    | Numerele negative sunt închise între paranteze unghiulare                                                           |
| RN<br>rn            | RN<br>Rn | Afişează numărul în cifre romane                                                                                    |
| V                   | 99V99    | Afişează numărul înmulțit cu 10 la puterea x, și rotunjit la ultima cifră, unde x este numărul de cifre 9 de după V |
| X                   | XXXX     | Afişează numărul în baza 16                                                                                         |

#### Exemplul 1:

select to\_char(123.45,'9999.99')

from dual



#### Exemplul 2:

select to\_char(123.45,'0000.000')

from dual



#### Exemplul 3:

select to\_char(123.45,'9.99EEEE') from dual



Exemplul 4:

select to\_char(-123.45,'999.999PR')

from dual



#### Exemplul 5:

select to\_char(1.2373,'99999V99') from dual



Exemplul 6:

select to\_char(1.2373,'L0000.000') from dual



#### Exemplul 7:

select to\_char(1234,'XXXXXX') from dual



Exemplul 8:

select to\_char(987,'RN')

from dual



d) Conversia din şir de caractere în număr

Transformarea inversă din şir de caractere într-o valoare numerică se realizează cu ajutorul funcţiei

TO\_NUMBER:

**TO\_NUMBER(sir, format)** 

Parametrii de formatare a sirulului ce se pot folosi sunt aceeaşi ca în cazul funcţiei TO\_CHAR

#### Exemplu 1:

select to\_number('123.45') + 18.3 from dual



#### Exemplu 2:

select to\_number('-\$98,765.43','\$99,999.99') from dual;







### Limbajul SQL

#### Interogări SELECT pe o singură tabelă (partea II)

- 4.2. Funcții referitoare la o singură înregistrare
  - 4.2.1. Funcții pentru șiruri de caractere
  - 4.2.2. Funcţii de tip numeric
  - 4.2.3. Funcţii de tip dată calendaristică şi oră
  - 4.2.4. Funcţii de conversie dintr-un tip în altul
  - 4.2.5. Funcții generale
  - 4.2.6. Funcţii condiţionale

#### Funcţii generale:

- 1. NVL
- 2. **NVL2**
- 3. NULLIF
- 4. COALESCE

Aceste funcții au ca argumente date de diferite tipuri și returnează date de tipuri diferite.

Aceste funcții precizează cum sunt prelucrate valorile de tip NULL.

1. Funcţia NVL cu formatul:

NVL(valoare1, valoare2)

Returneaza valoarea1, daca este nenula, sau returneaza valoarea2, daca valoare1 este NULL.

Funcţia prelucreaza date de tipurile caracter, numeric sau data calendaristica, cu precizarea ca ambele valori parametru sunt de acelasi tip.

#### Exemplu:

select ename, comm, NVL(comm,0.8) from emp

where empno between 7600 and 7800



2. Funcţia NVL2 cu formatul:

NVL2(valoare1, valoare2, valoare3)

returneaza valoare2, daca valoare1 este nenula, iar daca valoare1 este NULL, atunci returneaza valoare3.

#### Exemplu:

```
select ename, comm, NVL2(comm,'ARE COMISION','NU ARE COMISION')
from emp
where empno between 7600 and 7800
```

#### Rezultat afisat:



3. Funcţia **NULLIF** cu formatul:

**NULLIF(expresie1, expresie2)** 

Returneaza NULL, daca cele doua expresii sunt egale.

Daca cele doua espresii sunt diferite (valorile lor), atunci returneaza valoarea primei expresii – expresie1.

#### Exemplu:

```
select empno, ename, job,
NULLIF(length(ename),length(job))
from emp
where empno between 7300 and 7700
```

#### Rezultat afisat:



4. Funcţia **COALESCE** cu formatul:

**COALESCE**( expresie1, expresie2, ..., expresien)

Returneaza valoarea primei expresii nenule.

#### Exemplu:

select coalesce(null, null, '678', 'sir de test') from dual







### Limbajul SQL

#### Interogări SELECT pe o singură tabelă (partea II)

- 4.2. Funcții referitoare la o singură înregistrare
  - 4.2.1. Funcții pentru șiruri de caractere
  - 4.2.2. Funcţii de tip numeric
  - 4.2.3. Funcţii de tip dată calendaristică şi oră
  - 4.2.4. Funcţii de conversie dintr-un tip în altul
  - 4.2.5. Funcții generale
  - 4.2.6. Funcții condiționale

- SGBD-ul ORACLE pune la dispozitia programatorilor, in cadrul limbajului SQL, o functie si o expresie conditionala.
- ➤ Acestea sunt alternative foarte bune la structurile de tip IF-THEN-ELSE.
- Functia se numeste **DECODE**, iar expresia conditionala este **CASE**.

Funcţia **DECODE** cu formatul:

returna valoare.

```
DECODE(expresie, valoare1_1, valoare1_2, valoare2_1, valoare2_2, ..., valoaren_1, valoaren_2, valoare)
```

Compara valoarea expresiei cu fiecare din valoare1\_1, valoare2\_1, ..., valoaren\_1. Daca valoarea expresie este egala cu valoarei\_1, atunci va returna valoarei\_2. Daca nici una din valorile valoare1\_1, valoare2\_1, ..., valoaren\_1 nu este egala cu expresie, atunci va

#### Exemplu 1:

#### from dual



#### Exemplu 2:

#### from dual



```
Expresia conditionala CASE are urmatorul
 format:
CASE expresie
 WHEN valoare1 1 THEN valoare1 2
 WHEN valoare 2 1 THEN valoare 2 2
 WHEN valoaren 1 THEN valoaren 2
  ELSE valoare
END
```

- Expresia conditionala CASE foloseste cuvinte cheie WHEN, THEN, ELSE si END. Ca si regula generala orice expresie care poate fi scrisa cu ajutorul functiei DECODE, poate fi transcrisa si cu ajutorul expresiei conditionale CASE.
- Folosind expresia conditionala CASE obtinem un cod mai lung, dar mai usor de inteles si de depanat.

#### Exemplu 1:

```
select CASE 'PLSQL'
WHEN 'PLSQL' THEN 'Limbajul PLSQL'
WHEN 'SQL' THEN 'Limbajul de interogare SQL'
ELSE 'Limbaj de programare'
END
```

#### from dual

```
1 select CASE 'PLSQL'
2 | WHEN 'PLSQL' THEN 'Limbajul PLSQL'
3 | WHEN 'SQL' THEN 'Limbajul de interogare SQL'
4 | ELSE 'Limbaj de programare'
5 | END
6 | from dual
7 | 8 |

Results | Explain | Describe | Saved SQL | History

CASE'PLSQL'WHEN'PLSQL'THEN'LIMBAJULPLSQL'WHEN'SQL'THEN'LIMBAJULDEINTEROGARESQL'ELSE'LIMBAJDEPROGRAMARE'END
Limbajul PLSQL
```

#### Exemplu 2:

```
select CASE 'C++'
WHEN 'PLSQL' THEN 'Limbajul PLSQL'
WHEN 'SQL' THEN 'Limbajul de interogare SQL'
ELSE 'Limbaj de programare'
END
```

#### from dual

```
1 select CASE 'C++'
2 | WHEN 'PLSQL' THEN 'Limbajul PLSQL'
3 | WHEN 'SQL' THEN 'Limbajul de interogare SQL'
4 | ELSE 'Limbaj de programare'
5 | END
6 | from dual
7 | 8

Results | Explain | Describe | Saved SQL | History

CASE'C++'WHEN'PLSQL'THEN'LIMBAJULPLSQL'WHEN'SQL'THEN'LIMBAJULDEINTEROGARESQL'ELSE'LIMBAJDEPROGRAMARE'END
Limbaj de programare
```

### Referințe bibliografice

- 1) <a href="https://docs.oracle.com/cloud/help/ro/analytics-cloud/ACUBI/GUID-4CBCE8D4-CF17-43BD-AAEF-C5D614A8040A.htm#BILUG672">https://docs.oracle.com/cloud/help/ro/analytics-cloud/ACUBI/GUID-4CBCE8D4-CF17-43BD-AAEF-C5D614A8040A.htm#BILUG672</a>
- 2) <a href="https://www.tutorialspoint.com/sql\_certifica">https://www.tutorialspoint.com/sql\_certifica</a>
  te/using single row functions.htm
- 3) <a href="https://www.w3resource.com/sql-exercises/">https://www.w3resource.com/sql-exercises/</a>

### Întrebări?