CSC 735 – Data Analytics

Chapter 15 How Spark Runs on a Cluster

The Architecture of a Spark Application

- A Spark application consists of:
 - 1. driver program
 - 2. a cluster manager
 - 3. workers
 - 4. executors, and
 - 5. tasks

Guller, Mohammed. Big data analytics with Spark: A practitioner's guide to using Spark for large scale data analysis. Apress, 2015

Application Execution Modes

- An application can run in one of three execution modes
- 1. Cluster mode
- 2. Client mode
- 3. Local mode

Spark's Cluster Mode

Spark's Client Mode

Spark's Client Mode

• gateway machines (aka edge nodes)

• The entire application runs on a single machine

- The entire application runs on a single machine
- Threads are used for parallelism

- The entire application runs on a single machine
- Threads are used for parallelism
- Good to learn Spark or to test your applications

- The entire application runs on a single machine
- Threads are used for parallelism
- Good to learn Spark or to test your applications
- Not recommended for production mode

Spark's Modes

- **Cluster Mode**: the driver runs on one of the worker nodes in the cluster.
 - the typical mode for running Spark applications in production because it ensures fault tolerance and scalability
- **Client Mode**: the driver runs on the machine where the Spark application is submitted.
 - used for debugging because the driver's output is shown in the client console; involve the REPL (e.g. Spark shell).
- Local Mode: Spark runs on a single machine as a single JVM (Java Virtual Machine).
 - used for development, debugging, and testing small-scale Spark applications

The Life Cycle of a Spark Application (Outside Spark)

- Assume an application is submitted to a cluster consisting of 4 nodes: a cluster manager driver and three worker nodes
- What is the Application's life cycle from initialization until program exit?

 You make a request to the cluster manager driver node to run an application

 requesting resources for the Spark driver process only

- You make a request to the cluster manager driver node to run an application
 - requesting resources for the Spark driver process only
- Cluster manager accepts the request

 You make a request to the cluster manager driver node to run an application

- requesting resources for the Spark driver process only
- Cluster manager accepts the request
- It places the Spark driver onto a worker node

- You make a request to the cluster manager driver node to run an application
 - requesting resources for the Spark driver process only
- Cluster manager accepts the request
- It places the Spark driver onto a worker node
- The client process that submitted the original job exits

- You make a request to the cluster manager driver node to run an application
 - requesting resources for the Spark driver process only
- Cluster manager accepts the request
- It places the Spark driver onto a worker node
- The client process that submitted the original job exits
- Your application is running on the cluster

• driver begins running user code

- driver begins running user code
- code must include a SparkSession

- driver begins running user code
- code must include a SparkSession
- SparkSession communicates with the cluster manager, asking it to launch executors

- driver begins running user code
- code must include a SparkSession
- SparkSession communicates with the cluster manager, asking it to launch executors
- cluster manager launches the executors
- it sends their locations to the Spark driver

- driver begins running user code
- code must include a SparkSession
- SparkSession communicates with the cluster manager, asking it to launch executors
- cluster manager launches the executors
- it sends their locations to the Spark driver
- After everything is hooked up correctly, you have

a Spark Cluster

Execution

- Spark executes the code
- The driver and the workers communicate among themselves, executing code and moving data around
 - driver schedules tasks onto the executors

 each executor responds with the status of those tasks and success or failure

Completion

 After application completes, the driver process exits with either success or failure

Completion

- After application completes, the driver process exits with either success or failure
- The cluster manager shuts down the executors allocated for the driver

 You can see the success or failure of the Spark Application

The Life Cycle of a Spark Application (Inside Spark)

- This is the life cycle of your Spark Application code
- It describes what happens inside Spark when we run an application
- Remember, an application consists of one or more Spark jobs

- SparkSession is the object that represents your entrance point to writing Spark code
- It manages your Spark application

- SparkSession is the object that represents your entrance point to writing Spark code
- It manages your Spark application
- In interactive mode, a SparkSession object, named spark, is created automatically for you

- SparkSession is the object that represents your entrance point to writing Spark code
- It manages your Spark application
- In interactive mode, a SparkSession object, named spark, is created automatically for you
- Old version code might use the SparkContext pattern. This should be avoided in favor of the builder method on the SparkSession

- SparkSession is the object that represents your entrance point to writing Spark code
- It manages your Spark application
- In interactive mode, a SparkSession object, named spark, is created automatically for you
- Old version code might use the SparkContext pattern. This should be avoided in favor of the builder method on the SparkSession

```
spark.stop() //stopping a SparkSession

// Creating a SparkSession
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder().getOrCreate()
```

The SparkContext

- A SparkContext object within the SparkSession represents a connection to the Spark cluster
- This class allows you to communicate with Spark's lower-level APIs, RDDs
- Through a SparkContext, you can create RDDs

The SparkContext

- A SparkContext object within the SparkSession represents a connection to the Spark cluster
- This class allows you to communicate with Spark's lower-level APIs, RDDs
- Through a SparkContext, you can create RDDs
- If you have to, you should create a SparkContext in the most general way as follows:

```
import org.apache.spark.SparkContext
val sc = SparkContext.getOrCreate()
```

Spark Tools and Libraries

Libraries & Structured Advanced Ecosystem Analytics Streaming Structured APIS Datasets SQL DataFrames Low-level APIS Distributed Variables RDDs

Logical Instructions to Physical Execution

- Spark code consists mainly of transformations and actions
- to understanding how Spark runs on a cluster:
 - Understand how a physical execution plans is generated

The Code

```
%python

df1 = spark.range(2, 10000000, 2)

df2 = spark.range(2, 10000000, 4)

step1 = df1.repartition(5)

step12 = df2.repartition(6)

step2 = step1.selectExpr("id * 5 as id")

step3 = step2.join(step12, ["id"])

step4 = step3.selectExpr("sum(id)")

step4.collect() # 2500000000000

step4.explain()
```

Output of step4.explain()

```
== Physical Plan ==
*HashAggregate(keys=[], functions=[sum(id#15L)])
+- Exchange SinglePartition
   +- *HashAggregate(keys=[], functions=[partial_sum(id#15L)])
      +- *Project [id#15L]
          +- *SortMergeJoin [id#15L], [id#10L], Inner
           :- *Sort [id#15L ASC NULLS FIRST], false, 0
              +- Exchange hashpartitioning(id#15L, 200)
                 +- *Project [(id#7L * 5) AS id#15L]
                     +- Exchange RoundRobinPartitioning(5)
                        +- *Range (2, 10000000, step=2, splits=8)
           +- *Sort [id#10L ASC NULLS FIRST], false, 0
               +- Exchange hashpartitioning(id#10L, 200)
                +- Exchange RoundRobinPartitioning(6)
                    +- *Range (2, 10000000, step=4, splits=8)
```

Output of step4.explain()

df1 = spark.range(2, 10000000, 2)

```
df2 = spark.range(2, 10000000, 4)
                                             step1 = df1.repartition(5)
                                             step12 = df2.repartition(6)
                                             step2 = step1.selectExpr("id * 5 as id")
                                             step3 = step2.join(step12, ["id"])
                                             step4 = step3.selectExpr("sum(id)")
== Physical Plan ==
                                             step4.collect() # 250000000000
*HashAggregate(keys=[], functions=[sum(id#15
                                             step4.explain()
+- Exchange SinglePartition
  +- *HashAggregate(keys=[], functions=[partial_sum(id#15L)])
      +- *Project [id#15L]
          +- *SortMergeJoin [id#15L], [id#10L], Inner
           :- *Sort [id#15L ASC NULLS FIRST], false, 0
             +- Exchange hashpartitioning(id#15L, 200)
                +- *Project [(id#7L * 5) AS id#15L]
                    +- Exchange RoundRobinPartitioning(5)
                       +- *Range (2, 10000000, step=2, splits=8)
           +- *Sort [id#10L ASC NULLS FIRST], false, 0
              +- Exchange hashpartitioning(id#10L, 200)
                +- Exchange RoundRobinPartitioning(6)
                   +- *Range (2, 10000000, step=4, splits=8)
```

Spark UI

 If code is run on the local machine, you can view Spark UI at url localhost:4040

A Spark Job

- This job breaks down into the following stages and tasks:
 - Stage 1 with 8 Tasks
 - Stage 2 with 8 Tasks
 - Stage 3 with 6 Tasks
 - Stage 4 with 5 Tasks
 - Stage 5 with 200 Tasks
 - Stage 6 with 1 Task

```
df1 = spark.range(2, 10000000, 2)
df2 = spark.range(2, 10000000, 4)
step1 = df1.repartition(5)
step12 = df2.repartition(6)
step2 = step1.selectExpr("id * 5 as id")
step3 = step2.join(step12, ["id"])
step4 = step3.selectExpr("sum(id)")
step4.collect() # 2500000000000
```

Stages

Stages

- A stage is a group of tasks that can be executed together to compute the same operation on multiple machines
- Spark will try to pack as much work as possible into the same stage
- starts new stages after shuffle operations
- A shuffle represents a physical repartitioning of the data
 - sorting or grouping by key
- keeps track of the order stages must run

 By default, when range is used to create a DF, it has eight partitions

- By default, when range is used to create a DF, it has eight partitions
- Repartitioning changes the number of partitions by shuffling the data

- By default, when range is used to create a DF, it has eight partitions
- Repartitioning changes the number of partitions by shuffling the data
- The DFs are shuffled into 5 and 6 partitions, corresponding to the number of tasks in stages 3 and 4

```
df1 = spark.range(2, 10000000, 2)
df2 = spark.range(2, 100000000, 4)
step1 = df1.repartition(5)
step12 = df2.repartition(6)

step2 = step1.selectExpr("id * 5 as id")
step3 = step2.join(step12, ["id"])
step4 = step3.selectExpr("sum(id)")
step4.collect() # 2500000000000

Stage 1 with 8 Tasks
Stage 2 with 8 Tasks
Stage 3 with 6 Tasks
Stage 4 with 5 Tasks

Stage 5 with 200 Tasks
Stage 6 with 1 Task
Stage 6 with 1 Task
```

• step2 is a value-by-value manipulation in stage 4

```
df1 = spark.range(2, 10000000, 2)
df2 = spark.range(2, 100000000, 4)
step1 = df1.repartition(5)
step12 = df2.repartition(6)

step2 = step1.selectExpr("id * 5 as id")
step3 = step2.join(step12, ["id"])
step4 = step3.selectExpr("sum(id)")
step4.collect() # 2500000000000
Stage 1 with 8 Tasks
Stage 2 with 8 Tasks
Stage 3 with 6 Tasks
Stage 4 with 5 Tasks
Stage 6 with 1 Task
```

- step2 is a value-by-value manipulation in stage 4
- step2.join(step12, ["id"]) is a join (shuffle)

- step2 is a value-by-value manipulation in stage 4
- step2.join(step12, ["id"]) is a join (shuffle)
- By default, when a shuffle is performed during execution, it outputs 200 shuffle partitions

- step2 is a value-by-value manipulation in stage 4
- step2.join(step12, ["id"]) is a join (shuffle)
- By default, when a shuffle is performed during execution, it outputs 200 shuffle partitions
- sum (id) aggregates individual partitions and brings results to 1 partition

- step2 is a value-by-value manipulation in stage 4
- step2.join(step12, ["id"]) is a join (shuffle)
- By default, when a shuffle is performed during execution, it outputs 200 shuffle partitions
- sum (id) aggregates individual partitions and brings results to 1 partition
- collect() sends the final result to the driver

Changing Number of Partitions for a Shuffle

- By default, a shuffle outputs 200 partitions
- This code changes that:

```
spark.conf.set("spark.sql.shuffle.partitions", "10")
```

Changing Number of Partitions for a Shuffle

- By default, a shuffle outputs 200 partitions
- This code changes that:

```
spark.conf.set("spark.sql.shuffle.partitions", "10")
```

- A good rule of thumb:
 - Typically, 2-4 partitions for each CPU in your cluster

• A stage consists of tasks

- A stage consists of tasks
- Each task corresponds to a set of transformations applied to a unit of data (the partition)

- A stage consists of tasks
- Each task corresponds to a set of transformations applied to a unit of data (the partition)
- A task runs on a single executor

- A stage consists of tasks
- Each task corresponds to a set of transformations applied to a unit of data (the partition)
- A task runs on a single executor
- If there is one big partition in our dataset, we will have one task

- A stage consists of tasks
- Each task corresponds to a set of transformations applied to a unit of data (the partition)
- A task runs on a single executor
- If there is one big partition in our dataset, we will have one task
- If there are many little partitions, we will have many tasks that can be executed in parallel

- A stage consists of tasks
- Each task corresponds to a set of transformations applied to a unit of data (the partition)
- A task runs on a single executor
- If there is one big partition in our dataset, we will have one task
- If there are many little partitions, we will have many tasks that can be executed in parallel
- Partitioning your data into a greater number of partitions means that more parallelism

 Pipelining is automatic optimization done by Spark

- Pipelining is automatic optimization done by Spark
- Any sequence of operations that feed data directly into each other, without needing to move it across nodes, is pipelined into a single stage of tasks

- Pipelining is automatic optimization done by Spark
- Any sequence of operations that feed data directly into each other, without needing to move it across nodes, is pipelined into a single stage of tasks
- Ex: a map/select operation followed by a filter followed by a map/select

- Pipelining is automatic optimization done by Spark
- Any sequence of operations that feed data directly into each other, without needing to move it across nodes, is pipelined into a single stage of tasks
- Ex: a map/select operation followed by a filter followed by a map/select
- Spark is fast as it performs as many steps as possible before writing data to memory or disk

Shuffle Persistence

- Another optimization technique done by Spark
- Whenever a shuffle operation is performed, Spark writes the result to permanent storage
- Any subsequent operation that depends on that shuffle will launch by reading the data from storage
- Shuffle operations do not need to be executed again
- This also makes Spark run faster