

Motivation

- Venture into Interdisciplinary Project
- Project Domain Advanced Manufacturing Technologies

3

Problem Definition

- Visual Inspection of Hot Strip
- Surface Defects

Objectives

- Best way to encode image features of surface inspection data of hot strip mills
- Proper choice of neural networks (NN) model
- Optimal clustering (if required) and separability of defect classes.
- NN reliability of diagnosed defect class.
- Finally demonstrate the developed system for automatic surface inspection for hot strip mills

Data Collection Phase

Leading Steel Industry of India

Image Processing

- Standard Format 600 X 400 pixels
- Binary Binary images creation from indexed, intensity, or RGB images. These are images with only black and white pixels

9

Image Processing (Contd.)

- Morphing majority morphing to take care of noise in the image.
- It sets a pixel to 1 if five or more pixels in its 3-by-3 neighborhood are 1's; otherwise, it sets the pixel to 0

Original image

Morphed with
"majority morphing"

Image Processing (Contd.)

Salt & pepper:

Original image

Image with added 'salt and pepper' noise

11

Image Processing (Contd.)

- Speckle: It is a multiplicative noise added to the image I, using the equation J (noisy image) = I+n*I, where n is uniformly distributed random noise with mean 0 and variance v.
- Gaussian: Gaussian white noise of mean m and variance v is added to the image.

Feature Extraction

- Number of Objects
- Euler Number
- Perimeter
- Area

Feature Extraction (Contd.)

Euler Number: is a scalar whose value is the total number of objects in the image minus the total number of holes in those objects. It can have a 4-connected objects and 8connected objects.

Feature Extraction (Contd.)

Perimeter: The image is changed to a perimeter image. A pixel is part of the perimeter if its value is 1 and there is at least one zero-valued pixel in its neighborhood.

Feature Extraction (Contd.)

- Area: It is the area of all of the on pixels in an image. The area of an individual pixel is determined by looking at its 2-by-2 neighborhood.
- Patterns with zero on pixels (area = 0)
- Patterns with one on pixel (area = 1/4)
- Patterns with two adjacent on pixels (area = 1/2)
- Patterns with two diagonal on pixels (area = 3/4)
- Patterns with three on pixels (area = 7/8)
- Patterns with all four on pixels (area = 1)

1

Example of Noise Removal

Image Processing

Example

Standard image (Without noise)

7 116.0

After 'salt and pepper'

noise P

Area = 2600.2, Perimeter = 1986.2, No. of objects = 203

Euler. no. = 195

After processing with 'majority morphing' Area = 2028
Perimeter = 1255,
No. of objects = 63
Euler no. = 63

Dataset Details

Dataset	Data Processing	Samples
Dataset A	The images chosen for modeling from the images collected from the mill.	15
Dataset B	Dataset A + "salt and pepper" noise.	30
Dataset C	Dataset A + "Speckle" noise	30
Dataset D	Dataset A with three different intensity of the "salt and pepper" noise.	45
Dataset E	Dataset A with three different intensity of the "Speckle" noise	45
Dataset F	Dataset D + Dataset E.	90

Results

Training	Testing	Misclassification	% Accuracy	Remarks on misclassification
Dataset A	Dataset B	0 of 15	100	-
Dataset B	Dataset A	1 of 15	93.33	Correct answer included
Dataset D	Dataset A	1 of 45	97.77	Correct answer included
Dataset E	Dataset A	0 or 45	100	-
Dataset F	Dataset A	0 of 90	100	-

2

Validation of Model

Cross-validation – Leave-one-out

Leave-one-out (Dataset F) Tested on Dataset A					
Exercise number	Number of Misclassification				
1	24				
2	15				
3	15				
4	15				
5	24				
6	15				
7	15				
8	15				
9	15				
10	15				
Total misclassification out of (90*15)*10 =13500 images	168 Accuracy = 98.75 %				

Discussion

- Data collection difficulty from the field
- Understanding the problem for various mills
- Model Performance Image Processing
- Image capturing at such a high speed of 10-15 m/sec
- Wavelet analysis in image processing

25

Commercial Applications

- Guidelines
- Integrated Decision Support System

