Exam Introduction Robotics (4L160)

23/4/2009, Thursday, 9.00-12.00

General

- You are allowed to use the book, the slides of the lectures, your notes, and your laptop.
- There are some typographical errors in the book. It is completely your responsibility to make sure that what you quote from the book is accurate.
- Grades:

problem	points
1	20
2	25
3	25
4	30
5	20
total	120

1

The matrix $\mathbf{R}_n^0(t)$ defines orientation of the coordinate frame $o_n x_n y_n z_n$, attached to the tip of a robot relative to the coordinate frame of the base $o_0x_0y_0z_0$. Variable t denotes time. Determine the vector of angular velocities ω_n^0 of the robot tip in the base frame if:

a)
$$\mathbf{R}_{n}^{0}(t) = \begin{bmatrix} \cos{(3t)} & 0 & \sin{(3t)} \\ 0 & 1 & 0 \\ -\sin{(3t)} & 0 & \cos{(3t)} \end{bmatrix},$$
b)
$$\mathbf{R}_{n}^{0}(t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos{(2t)} & \sin{(2t)} \\ 0 & -\sin{(2t)} & \cos{(2t)} \end{bmatrix},$$
c)
$$\mathbf{R}_{n}^{0}(t) = \begin{bmatrix} \cos(t) & \sin{(t)} & 0 \\ -\sin{(t)} & \cos{(t)} & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

c)
$$\mathbf{R}_{n}^{0}(t) = \begin{bmatrix} \cos(t) & \sin(t) & 0 \\ -\sin(t) & \cos(t) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

d)
$$\mathbf{R}_{n}^{0}(t) = \begin{bmatrix} \frac{1+3\cos(t)}{4} & \frac{1-\cos(t)}{4} - \frac{\sqrt{2}}{2}\sin(t) & \frac{\sqrt{2}}{4}(1-\cos(t)) + \frac{1}{2}\sin(t) \\ \frac{1-\cos(t)}{4} + \frac{\sqrt{2}}{2}\sin(t) & \frac{1+3\cos(t)}{4} & \frac{\sqrt{2}}{4}(1-\cos(t)) - \frac{1}{2}\sin(t) \\ \frac{\sqrt{2}}{4}(1-\cos(t)) - \frac{1}{2}\sin(t) & \frac{\sqrt{2}}{4}(1-\cos(t)) + \frac{1}{2}\sin(t) & \frac{1+\cos(t)}{2} \end{bmatrix}$$

Int: the time-derivative of a rotation matrix relates this matrix with the corresponding

Hint: the time-derivative of a rotation matrix relates this matrix with the corresponding vector of angular velocities.

Assign coordinate frames according to the Denavits-Hartenberg (DH) convention to the RRR robot manipulator shown in the figure below. Derive the forward kinematics equations (homogenous transformation matrix \mathbf{H}_3^0) for this manipulator.

For the manipulator considered in the problem 2, determine Jacobian matrix which relates the joint velocities with angular velocities of the coordinate frame $o_3x_3y_3z_3$ attached to the tip. For what manipulator configurations is this Jacobian matrix singular? What are the joint velocities in the following cases:

3

- a) the joint positions are $\mathbf{q} = [\pi/2 \quad \pi/2 \quad \pi/2]^T$, while the vector of angular velocities $\mathbf{\omega}_3^0$ of the tip is equal to the solution of problem 1 a)?
- b) the joint positions are $\mathbf{q} = [\pi \quad \pi/2 \quad \pi/2]^T$, while the vector of angular velocities of the tip $\mathbf{\omega}_3^0$ is equal to the solution of problem 1 b)?
- c) the joint positions are $\mathbf{q} = \begin{bmatrix} 0 & 0 & \pi/2 \end{bmatrix}^T$, while the vector of angular velocities of the tip $\mathbf{\omega}_3^0$ is equal to the solution of problem 1 c)?
- d) the joint positions are $\mathbf{q} = [\pi/4 \quad 3\pi/4 \quad \pi/2]^T$, while the vector of angular velocities $\boldsymbol{\omega}_3^0$ of the tip is equal to the solution of problem 1 d)?

For the manipulator considered in the problem 2, masses of links 1, 2, and 3 are equal to 2 [kg], 1 [kg], and 2 [kg], respectively. The inertia tensor \mathbf{I}_i of each link i (i=1,2,3), expressed relative to the coordinate frame attached to the link center of the mass, is equal to

$$\mathbf{I}_i = \begin{bmatrix} 0.1 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.1 \end{bmatrix}.$$

The coordinates of the link centers of masses C_i , i=1,2,3, as well as direction of the gravity vector \vec{g} (g=9.81 [m/s²]), are indicated in the figure shown in the problem 2.

- 1. Write down the total kinetic energy.
- 2. Write down the total potential energy.
- 3. Derive inertia matrix.
- 4. Derive elements of the vector of centripetal/Coriolis effects.
- 5. Derive elements of the gravity vector.

5

For the nonlinear system derived in the problem 4, determine an inverse dynamics control law so that the closed-loop system is linear and decoupled, with each subsystem having natural frequency of 2 [rad/s] and damping ratio of 0.1.