교통 안전 시설 가시성 및 시인성 증진 방향

김지민

진행 과정

위치 파악 및 전처리

```
# 다각형 내부 판별 확인법 1: Shapely(Polygon)
from shapely.geometry import Polygon, Point

# Point 객체로 생성한 좌표가, Polygon 객체 내부에 있는지 판단하는 함수
def find_Polygon(lat, lng):
    # Point 객체 생성
    point_obj = Point([lat, lng])

# Polygon 내부에 존재하는지 여부 확인
for region_name, polygon_obj in all_polygon_obj:
    if polygon_obj.contains(point_obj):
        return region_name

else:
    return "Nowhere"
```

〈좌표를 통한 위치 판별 방법 1 >

- 경위도만 존재하는 데이터에서 지역 확인이 필요
- · Python의 shapely 라이브러리를 사용
- · 특정 polygon 안에 좌표가 있는지 판별하는 방법
- · GeoJSON 다각형을 사용하여 1차 판별

```
# 다각형 내부 판별 확인범 2: GeoCoding
from geopy.geocoders import Nominatim

# 좌표를 기반으로 지역을 찾는 함수
def geocoding_reverse(lat_lng_str):
    geo_loc_coder = Nominatim(user_agent = 'South Korea', timeout = None)
    address = geo_loc_coder.reverse(lat_lng_str)
    return address

# geocoding_reverse() 함수로 찾은 지역에서, 시군구 카테고리만 slicing하는 함수
def substring_address(address):
    address = list(address[0].split(', '))
    if address[-3][-1] == '도': return address[-4]
    else: return address[-3]
```

<좌표를 통한 위치 판별 방법 2>

- · Python의 geopy 라이브러리를 사용
- · Open Street Map 서비스를 기반으로 주소 체계 반환
- · 2023년 6월 기준 최신화 확인
- · 방법 1로 판별하지 못한 예외 데이터 2차 판별

위치 파악 및 전처리

	Unnamed: 0	발생일	위도	경도	지역
0	2638	2022-01-02	37.548112	126.942004	마포구
1	2633	2022-01-03	36.651417	127.488905	청주시 청원구
2	2636	2022-01-03	37.622394	127.086706	노원구
72570	189	2022-12-31	37.662941	126.725976	고양시일산서구
72571	183	2022-12-31	37.718803	127.016560	의정부시
72572	58	2022-12-31	37.893471	127.703420	춘천시

271267 rows × 5 columns

〈데이터프레임 제작〉

- ・ 앞서 언급한 2가지 위치 판별 방법 사용
- · 9개의 카테고리별 모든 csv 파일에서 올바르게 지역을 찾아, <mark>데이터프레임화 진행</mark>

[df_tailgate]	[df_stop_line_violation]
데이터 손실률 0.00%	데이터 손실률 0.00%
더미 데이터: 0 전체 데이터: 2664	더미 데이터: 0 전체 데이터: 21167
[df_illegal_u_turn]	[df_center_line_violation]
데이터 손실률 0.00%	데이터 손실률 0.00%
더미 데이터: 0 전체 데이터: 15396	더미 데이터: 0 전체 데이터: 26657
[df_illegal_left_turn]	[df_designated_lane_violation]
데이터 손실률 0.00%	데이터 손실률 0.00%
더미 데이터: 0 전체 데이터: 49842	더미 데이터: 0 전체 데이터: 9812
[df_signal_violation]	[df_improper_lane_change]
데이터 손실률 0.00%	데이터 손실률 0.00%
더미 데이터: 0 전체 데이터: 66019	더미 데이터: 0 전체 데이터: 72573
[df_wrong_way_driving] 데이터 손실률 0.00% 더미 데이터: 0 전체 데이터: 7137	

〈 결측치 확인 〉

· 단 한 건의 예외 데이터 없이 모든 데이터에 지역을 찾았음을 확인

결측치: 범위나 범주를 벗어나 수집되지 않은 데이터 손실

시각화 및 분석

시각화 및 분석

< TOP 10 민원 발생 지역 표시 >

데이터 수집

국토 교통부 통계 - 지역별 도로 현황 국토 교통부 통계누리 - 도로 현황 통계 국토 교통부 데이터 활용 정책 - 대전시 신호 교차로 혼잡도 분석 공공데이터포털 - 한국도로공사_전국_교통량 교통안전정보관리시스템(TMACS) - 운행기록 분석 교통안전정보관리시스템(TMACS) - 교통문화지수 통합 데이터지도 - SKT 마켓 인사이트: 이동 반경/거리 지수 경기도교통정보센터 - 통행속도 분석 보고서: 교통 분석 보고서

8개의 교통 관련 데이터 수집

+

'군집 클러스터 마커' 사용으로 국민권익위원회 제공 데이터 밀집 지역 확인

ļ

민원 밀집이 높고 교통량이 많은 구역 로드뷰로 확인

로드뷰 확인 날짜: 2022년 1월 ~ 2023년 3월

보이지 않는 표지판

지워진 노면 표시

지워진 노면 표시

대전광역시 서구 - 역주행 721건

지워진 노면 표시 + 진행 방향에서 보이지 않는 노면 표시

진행 방향에서 보이지 않는 표지판

대전광역시 서구 - 역주행 721건

좌회전 차선이 2개이지만, 존재하지 않는 표지판 직진 가능한 골목길

경기도 화성시 - 진로변경방법위반 97건

직진 금지 차선이지만, 분기점 직후 짧은 시인 거리

차선 설명 표지판 부재

경기도 화성시 - 진로변경방법위반 50건

문제점 확인

교통 안전 시설이 보이지 않는다.

문제점 확인

도로교통공단과 경찰청에서 사용하는 '교통 안전 시설'정의

교통 안전 시설 부재로 인한 민원 대량 발생

교통 노면 표시, 교통 안전 표지 2가지 측면에서 인사이트 도출

인사이트 도출 1 - 노면

재귀반사

반사체에 입사된 빛이 반사되어, 입사광 방향으로 되돌아오는 현상

인사이트

'도로 노면 표시'의 <mark>재귀반사 정도</mark>에 의해서 <mark>운전자 시인성</mark>이 달라진다. 운전자의 노면 시인성이 높아질수록 민원은 감소할 것이다. Sklearn의 '다중 선형 회귀 분석'으로 사용 기간을 예측한다.

다중 선형 회귀식 변수

- ㆍ 재설치가 필요한 도로 노면 재귀반사도 최솟값
- ㆍ 설치 직후 도로 노면 재귀반사도 측정값
- · 일일 도로 평균 교통량
- ㆍ 노면 설치 직후 도로 사용 기간

데이터 참조)

경찰청 - 2022 교통노면표시 설치 · 관리 업무편람

경찰청 - 교통노면표시 설치 · 관리 매뉴얼

학위논문(석사) - 도시 교통특성을 고려한 도로 노면표시 공용수명 예측(2020)

인사이트 도출 1 - 노면

 $R_m \le (0.538 * R_i) - (37.502 * Traffic) - (3.285 * Time) + 415.658$

 R_m : 최소 재귀반사도, R_i : 설치 재귀반사도, Traffic: 일 평균 교통량(log_e), Time: 도로 사용 기간

인사이트 도출 1 - 노면

일 평균 교통량 (단위: 대)	설치 후 교체 시기 (단위: 개월)
10,000	32
20,000	24
30,000	20
40,000	17
50,000	14
60,000	12
70,000	10
80,000	9
90,000	7
100,000	6

 $R_m \le (0.538 * R_i) - (37.502 * Traffic) - (3.285 * Time) + 415.658$

가정)

'도로교통공단 – 교통안전시설(노면표시) 설치 관리 업무 편람'에 의거 재설치를 위한 기준(R_m): 100 / 설치 시 최소 재귀반사도(R_i): 240

식 전개)

 $100 \le 0.538 * 240 - (37.502 * Traffic) - (3.285 * Time) + 415.658$

- \rightarrow (3.285 * Time) \leq 444.778 (37.502 * Traffic)
- \rightarrow Time \leq (444.778 (37.502 * Traffic)) / 3.285

예시)

일 평균 교통량이 3만 대라면, 17개월 사용 시 다시 그려야 한다. (Traffic = log_e(30000), Time ≤ 17.708)

인사이트 도출 2 - 표지판

지시표지

도로의 통행 방법 · 통행 구분 등 도로 사용자가 따를 수 있도록 알리는 표지

인사이트

'민원별 상위 3개 지역 TOP 10' 그래프를 살펴보면, 진로 변경 방법 위반 3건, 불법 좌회전 3건, 역주행 1건이다. 7개 항목이 올바르지 않은 도로로 주행함을 알 수 있다.

표지는 도로의 상태가 위험하여 규제하거나 제한하는 표지가 대부분이다. 대표적으로는 주의 표지, 규제 표지, 보조 표지 3개가 있다. 위의 표지들은 전부 '해당 도로로 갈 수 없음'을 나타내는 표지다. 운전자에게는 '어디로 가야하는지' 알려주는 표지가 필요하다.

데이터 참조)

도로교통공단 - 교통안전 · 연구자료실 # 경찰청 - 교통안전표지 설치 · 관리 업무편람 # 경찰청 - 2021 교통안전표지 설치 · 관리 매뉴얼 # 서울시 열린데이터 광장 - 서울시 안전표지 관련 정보

인사이트 도출 2 - 표지판

표지판 종류별 설치 현황

지시 표지는 전체의 약 1.2%의 비중만을 차지하고 있다. (지시표지 568 / 전체 48102)

인사이트 적용 및 정책 제안 1

인공지능 모델을 활용한 노면 재설치 기간 확립

- · '재귀반사도 다중 선형 회귀식'을 통하여, 교통량별 노면 재설치 구간 예측 가능
- · 실제로 23년 3월 천안시에서 KT와 한국기술교육대가 개발한 노면 훼손 판별 AI 기술을 도입
- ㆍ 개선 사항) 제공 데이터의 주야간 구분이 없음, 해당 데이터 보정 시 더 정확한 노면 훼손 판별 가능

인사이트 적용 및 정책 제안 2

정지선 기준 50m 전, 지시 표지 설치 의무화

- · 교통 안전 표지 설치만으로 줄어드는 사고 수 (해정안전부와 도로교통공단 통계 자료)
- · 17~19년 대비 21년에 36.6명에서 16명으로(56.3%), 2870건에서 1911건(33.4%) 감소
- · 운전자에게 도로 인식을 위한 '진행방향별통행구분' 지시 표지를 주로 설치

인사이트 적용 및 정책 제안 3

VMS(도로전광표지) 설치

- · 도로 폭이 넓어 지시 표지가 설치가 어려운 지역에 VMS 설치
- · 6차로 이상인 도로에 설치, 지방도 6%, 시도 10%, 구도 1.5% 비율에 해당 (국토교통부 통계누리)
- · 현재 차선 교통량, 지시 표지, 감응형 좌회전 등 다양한 도로 정보 제공 가능

지금의 민원이 다음의 사고 신고일 수 있습니다.