CN Question Bank

Computer Network Question Bank Answers

1. What is a computer network? List out Advantages. (5 Marks)

Definition (1 Mark):

A computer network is a system where multiple computers and devices are connected to share resources, data, and applications. Networks can be wired or wireless.

Advantages (4 Marks):

- 1. **Resource Sharing** Users can share hardware (printers, scanners) and software.
- 2. **Communication** Enables emails, chats, and video conferencing.
- Centralized Data Management Data can be stored on a central server for easy access.
- 4. **Security & Backup** Data can be protected with encryption and regular backups.

2. What are the different types of computer networks? (5 *Marks*)

Definition (1 Mark):

A computer network can be categorized based on size and purpose.

Types (4 Marks):

- 1. Local Area Network (LAN) Covers a small area like offices or homes.
- 2. Metropolitan Area Network (MAN) Covers a city or large campus.
- 3. **Wide Area Network (WAN)** Spans large areas, such as different cities or countries.
- 4. **Personal Area Network (PAN)** Small-scale network for personal use (e.g., Bluetooth).

3. Difference between LAN, MAN, and WAN (5 Marks)

- 1. **LAN (Local Area Network)** Covers a small area like a home, office, or school. It has high speed and low latency. Example: Wi-Fi in a college.
- 2. **MAN (Metropolitan Area Network)** Covers a city or large area, often using fiber optics. Example: City-wide broadband network.
- 3. **WAN (Wide Area Network)** Covers a large geographical area, connecting multiple LANs and MANs. Example: The Internet.
- 4. Speed Comparison LAN > MAN > WAN in terms of speed.
- 5. **Ownership** LAN is privately owned, MAN is often by ISPs, WAN is public or privately owned.

4. What is an IP Address? Difference Between IPv4 and IPv6 (5 Marks)

IP Address: A **unique numerical label** assigned to devices for identification and communication over a network.

Difference Between IPv4 and IPv6:

- 1. **Address Length** IPv4 is **32-bit**, IPv6 is **128-bit**.
- 2. Address Format IPv4: 192.168.1.1, IPv6: 2001:db8::1.
- 3. Address Capacity IPv4 supports ~4.3 billion addresses, IPv6 supports trillions.
- 4. **Security** IPv6 has **built-in encryption**, IPv4 requires additional security measures.

5. What is a Router and How Does It Work? (5 Marks)

Router: A **networking device** that connects multiple networks and directs data packets between them.

Functions of a Router:

1. **Data Forwarding** – Routes data based on **IP addresses**.

- 2. **Best Path Selection** Uses algorithms to find the **fastest** and **most efficient** route.
- 3. **Network Segmentation** Separates networks for **better security and performance**.
- 4. **Provides Internet Access** Connects local networks to the **Internet**.

6. What is a Switch? Difference Between Switch and Hub (5 Marks)

Switch: A **networking device** that connects multiple devices in a LAN and forwards data only to the intended recipient.

Difference Between Switch and Hub:

- 1. **Data Handling Switch** uses **MAC addresses**, **Hub** broadcasts data to all.
- 2. **Efficiency Switch** reduces **network congestion**, **Hub** increases it.
- 3. Speed Switches are faster, Hubs cause delays.
- 4. **Network Type Switches** are used in **modern LANs**, **Hubs** are outdated.

7. Different Layers of the OSI Model (5 Marks)

The **OSI (Open Systems Interconnection) Model** has **7 layers**, each with a specific function:

- 1. **Physical Layer** Transmits raw bits over a physical medium (cables, wireless).
- 2. **Data Link Layer** Handles MAC addressing and error detection (e.g., Ethernet, switches).
- 3. **Network Layer** Manages IP addressing and routing (e.g., routers, IP protocol).
- 4. Transport Layer Ensures reliable data transmission using TCP/UDP.
- 5. **Session Layer** Manages and controls sessions between devices.
- 6. **Presentation Layer** Formats, encrypts, and compresses data.

7. **Application Layer** – Provides network services to users (e.g., HTTP, FTP, SMTP).

8. Function of the Transport Layer in the OSI Model (5 Marks)

The **Transport Layer** is responsible for **end-to-end communication** between devices.

Functions:

- 1. **Reliable Data Transfer** Uses **TCP** for error-free communication.
- 2. **Segmentation and Reassembly** Breaks data into segments and reassembles at the destination.
- 3. **Flow Control** Prevents data overflow using buffering techniques.
- 4. **Error Control** Ensures data integrity using acknowledgments and retransmissions.
- 5. **Multiplexing** Allows multiple applications to send/receive data simultaneously.

9. Purpose of the TCP/IP Model (5 Marks)

The **TCP/IP Model** is a networking framework that enables communication over the internet.

Purpose:

- 1. **Standardized Communication** Defines rules for data exchange between devices.
- 2. Interconnectivity Allows different networks to communicate globally.
- 3. **Reliability** Ensures accurate data transfer using **TCP** (**Transmission Control Protocol**).
- 4. **Scalability** Supports small and large networks (LAN, WAN, Internet).
- 5. **Efficiency** Uses **packet switching** for fast data transmission.

10. What is a Virtual LAN (VLAN)? Explain with an Example (5 Marks)

A VLAN (Virtual Local Area Network) is a logical segmentation of a physical network into multiple isolated networks.

Example:

- A company has **HR, IT, and Finance** departments on the same physical network.
- Using **VLANs**, the network is divided so HR cannot access IT data, improving **security** and **performance**.
- VLAN reduces broadcast traffic and improves network management.

11. What is the difference between TCP and UDP? (5 Marks)

Definition (1 Mark):

TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are transport layer protocols used for communication between devices.

Differences (4 Marks):

- 1. TCP Connection-oriented; UDP Connectionless.
- 2. TCP Ensures reliability; UDP Faster but unreliable.
- 3. TCP Uses error checking and retransmission; UDP No retransmission.
- 4. TCP Suitable for web browsing and emails; UDP Ideal for gaming and video streaming.

12. What is DNS, and how does it work? (5 Marks)

Definition (1 Mark):

DNS (Domain Name System) is a protocol that translates human-readable domain names (e.g., www.google.com) into IP addresses.

Working (4 Marks):

- 1. **User Request** The user enters a website URL in a browser.
- 2. **DNS Query** The request is sent to a DNS resolver.

- 3. **IP Resolution** The resolver queries a DNS server to find the corresponding IP address.
- 4. **Connection Establishment** The IP address is returned to the browser, and the connection is established.

13. DHCP (Dynamic Host Configuration Protocol) and Its Importance (5 Marks)

Definition (1 Mark):

DHCP (Dynamic Host Configuration Protocol) is a network protocol that automatically assigns IP addresses and other network configurations (such as subnet mask, gateway, and DNS) to devices on a network.

Importance (4 Marks):

- Automatic IP Assignment Reduces manual configuration errors and saves time.
- 2. **Efficient IP Management** Prevents IP conflicts by dynamically assigning and reusing addresses.
- 3. **Scalability** Ideal for large networks where assigning IPs manually is impractical.
- 4. **Network Connectivity** Ensures devices can connect to the network without manual setup.

14. What is a router and how does it work? (5 Marks)

Definition (1 Mark):

A router is a networking device that directs data between different networks and ensures efficient data transmission.

Working (4 Marks):

- 1. **Packet Examination** Examines data packets and determines the best route based on IP addresses.
- 2. **Routing Decisions** Uses routing tables and protocols (RIP, OSPF, BGP) to manage network paths.

- Network Connectivity Connects different types of networks (LAN, WAN, internet) securely.
- 4. **Data Forwarding** Filters and forwards packets to the correct destination.

15. What is subnetting, and why is it used? (5 Marks)

Definition (1 Mark):

Subnetting is the process of dividing a large network into smaller subnetworks to improve efficiency and security.

Uses (4 Marks):

- 1. **Efficient IP Address Utilization** Reduces wastage of IP addresses.
- 2. Improved Security Isolates network segments to enhance security.
- 3. **Better Network Performance** Reduces congestion by limiting broadcast traffic.
- 4. Simplifies Management Makes troubleshooting and maintenance easier.

16. What is a VPN, and how does it improve network security? (5 Marks)

Definition (1 Mark):

A VPN (Virtual Private Network) is a secure connection that encrypts data while transmitting over the internet, ensuring privacy.

Security Improvements (4 Marks):

- 1. **Data Encryption** Protects sensitive information from hackers.
- 2. **Anonymity** Hides the user's IP address to enhance privacy.
- 3. **Secure Remote Access** Allows employees to securely access a private network from anywhere.
- Prevents ISP Tracking Stops internet service providers from monitoring online activity.

17. What is a MAC address, and how is it different from an IP address? (5 Marks)

Definition (1 Mark):

A MAC (Media Access Control) address is a unique identifier assigned to a network interface card (NIC) of a device.

Differences (4 Marks):

- 1. MAC Address Physical identifier; IP Address Logical identifier.
- 2. MAC Address Unique to the device; IP Address Changes based on network.
- 3. MAC Address Works at the Data Link Layer; IP Address Works at the Network Layer.
- 4. MAC Address Remains constant; IP Address Can be reassigned dynamically.

18. Explain File Transfer Protocol in detail? (5 Marks)

Definition (1 Mark):

File Transfer Protocol (FTP) is a standard network protocol used to transfer files between a client and a server.

Features (4 Marks):

- 1. Uses TCP for Reliable Transfer Ensures data is delivered without loss.
- 2. Supports Authentication Users need credentials for secure access.
- 3. Allows File Upload & Download Enables bidirectional file transfer.
- 4. **Uses Active & Passive Modes** Provides flexibility in connection setup.

19. Discuss about Simple Network Management Protocol (SNMP)? (5 Marks)

Definition (1 Mark):

SNMP (Simple Network Management Protocol) is a protocol used for managing and monitoring network devices such as routers, switches, and servers.

Features (4 Marks):

- 1. **Monitors Network Performance** Helps in tracking bandwidth usage and uptime.
- 2. **Fault Detection** Identifies and reports network failures.
- Remote Device Management Allows administrators to control devices remotely.
- 4. **Uses Management Information Base (MIB)** Stores network data for easy access.

20. What do you mean by InterVLAN Routing? Explain with an example. (5 Marks)

Definition (1 Mark):

InterVLAN Routing is a technique used to enable communication between different VLANs within a network using a router or Layer 3 switch.

Example (4 Marks):

- 1. Scenario: A company has two VLANs VLAN 10 for HR and VLAN 20 for IT.
- 2. **Without InterVLAN Routing:** Devices in VLAN 10 cannot communicate with devices in VLAN 20.
- 3. **With InterVLAN Routing:** A Layer 3 switch or router is configured to allow traffic between VLANs.
- 4. **Implementation:** The router has sub-interfaces for each VLAN and routes traffic accordingly.

21. Explain the protocol used to send an email from one machine to another? (5 Marks)

Definition (1 Mark):

SMTP (Simple Mail Transfer Protocol) is the standard protocol used for sending emails between mail servers.

Working (4 Marks):

Sender's Email Client – Uses SMTP to send the email to the mail server.

- 2. **Mail Server Processing** The email is stored and forwarded to the recipient's mail server.
- 3. Recipient's Mail Server Uses SMTP to deliver the email.
- 4. **Email Retrieval** The recipient can download the email using POP3 or IMAP.

22. Explain Carrier Sense Multiple Access with Collision Detection (CSMA/CD) and Collision Avoidance (CSMA/CA)? (5 Marks)

Definition (1 Mark):

CSMA/CD (Collision Detection) and CSMA/CA (Collision Avoidance) are network access methods used in Ethernet and wireless networks to manage data transmission.

Working (4 Marks):

- 1. CSMA/CD (Used in Wired Networks):
 - Detects collisions in Ethernet networks.
 - If a collision occurs, devices stop transmitting and wait before retrying.
 - Used in older Ethernet (half-duplex communication).

2. CSMA/CA (Used in Wireless Networks):

- Avoids collisions by waiting for the channel to be free before transmitting.
- Uses an acknowledgment (ACK) system to confirm successful transmission.
- Used in Wi-Fi networks for better efficiency.

23. Write the functionality of the Physical Layer of the OSI Model. (5 Marks)

Definition (1 Mark):

The Physical Layer is the first layer of the OSI model responsible for transmitting raw data bits over a physical medium.

Functionality (4 Marks):

- 1. **Bit Transmission** Converts data into electrical, optical, or radio signals for transmission.
- 2. **Physical Media Handling** Defines connectors, cables, and transmission media (e.g., fiber optic, Ethernet).
- 3. **Data Rate Control** Manages the speed of data transmission between devices.
- 4. **Synchronization of Bits** Ensures sender and receiver are synchronized for accurate data transfer.

24. Write the functionality of the Data-Link Layer of the OSI Model. (5 Marks)

Definition (1 Mark):

The Data-Link Layer is the second layer of the OSI model that ensures reliable data transfer between two directly connected nodes.

Functionality (4 Marks):

- 1. **Framing** Divides data into frames for transmission.
- 2. **Error Detection & Correction** Uses CRC (Cyclic Redundancy Check) to detect transmission errors.
- 3. **MAC Addressing** Assigns unique MAC addresses to devices for identification.
- 4. Flow Control Regulates data flow to prevent congestion in the network.

25. Write the functionality of the Network Layer of the OSI Model. (5 Marks)

Definition (1 Mark):

The Network Layer is the third layer of the OSI model responsible for routing and forwarding data between different networks.

Functionality (4 Marks):

- 1. **Logical Addressing** Uses IP addresses to identify devices in different networks.
- 2. **Routing** Determines the best path for data to reach its destination.
- 3. **Packet Forwarding** Transfers data packets between source and destination networks.
- 4. **Fragmentation & Reassembly** Breaks large data packets into smaller ones for efficient transmission.

26. Write the functionality of the Application Layer of the OSI Model. (5 Marks)

Definition (1 Mark):

The Application Layer is the seventh and topmost layer of the OSI model that provides network services directly to end-users.

Functionality (4 Marks):

- 1. **User Interface Services** Provides protocols for email, web browsing, and file transfer (e.g., HTTP, FTP, SMTP).
- 2. **Data Formatting & Translation** Ensures compatibility between different devices and applications.
- 3. **Authentication & Encryption** Provides security mechanisms such as SSL/TLS.
- Session Management Manages user sessions and maintains connection integrity.

27. Write the functionality of the Session Layer of the OSI Model. (5 Marks)

Definition (1 Mark):

The Session Layer is the fifth layer of the OSI model responsible for establishing, managing, and terminating communication sessions between applications.

Functionality (4 Marks):

1. Session Establishment – Initiates communication between devices.

- 2. Session Maintenance Keeps the session active during data exchange.
- 3. **Synchronization** Uses checkpoints to resume communication in case of failure.
- 4. **Session Termination** Properly closes active sessions after data transfer.

28. Write the functionality of the Presentation Layer of the OSI Model. (5 Marks)

Definition (1 Mark):

The Presentation Layer is the sixth layer of the OSI model responsible for data formatting, encryption, and compression.

Functionality (4 Marks):

- 1. Data Translation Converts data formats between sender and receiver.
- 2. **Encryption & Decryption** Ensures secure data transmission using protocols like SSL/TLS.
- 3. **Data Compression** Reduces data size to optimize bandwidth usage.
- 4. Character Encoding Converts text formats such as ASCII and Unicode.

29. What do you mean by Virtual LAN (VLAN) Concept? (5 Marks)

Definition (1 Mark):

A Virtual LAN (VLAN) is a logically segmented network within a physical network, allowing devices to communicate as if they were on the same LAN, even if physically separated.

Features (4 Marks):

- 1. **Improves Security** Segregates sensitive data from other traffic.
- 2. **Enhances Performance** Reduces network congestion by limiting broadcast domains.
- 3. Flexibility Devices in different locations can be part of the same VLAN.
- 4. **Easy Management** Simplifies network administration without physical reconfiguration.

30. What is the Address Resolution Protocol (ARP)? It works on which layer of the OSI Model? (5 Marks)

Definition (1 Mark):

ARP (Address Resolution Protocol) is used to map an IP address to a MAC address in a local network.

Functionality (4 Marks):

- IP to MAC Mapping Converts logical IP addresses to physical MAC addresses.
- 2. **Broadcast Request** Sends a query to all devices asking for the MAC address of a given IP.
- 3. **Response Handling** The device with the matching IP address replies with its MAC address.
- 4. Works at Data Link Layer (Layer 2) Used for communication within a local network.

31. What is the Reverse Address Resolution Protocol (RARP)? It works on which layer of the OSI Model? (5 Marks)

Definition (1 Mark):

RARP (Reverse Address Resolution Protocol) is used to find an IP address associated with a given MAC address.

Functionality (4 Marks):

- 1. MAC to IP Mapping Helps diskless devices obtain an IP address.
- 2. **Request Mechanism** Sends a request to a RARP server to obtain an IP address.
- Server Response The RARP server replies with the corresponding IP address.
- 4. Works at Data Link Layer (Layer 2) Operates within local networks.

32. Explain Guided and Unguided Media? Write its advantages and disadvantages. (5 Marks)

Definition (1 Mark):

Transmission media in networking can be classified into **Guided Media** (wired) and **Unguided Media** (wireless).

Types & Features (4 Marks):

1. Guided Media (Wired):

- Uses cables like coaxial, fiber optic, and twisted pair.
- Advantages: High speed, reliable, secure.
- Disadvantages: Expensive, difficult to install.

2. Unguided Media (Wireless):

- Uses radio waves, microwaves, and infrared.
- Advantages: Flexible, easy to install.
- Disadvantages: Prone to interference, security risks.

33. What do you mean by Routing Information Protocol? How to make a configuration in Cisco Packet Tracer? (5 Marks)

Definition (1 Mark):

Routing Information Protocol (RIP) is a distance-vector routing protocol used to determine the best path for data transmission in small to medium-sized networks.

Configuration in Cisco Packet Tracer (4 Marks):

- 1. **Enable RIP** Use the command router rip in global configuration mode.
- 2. Specify Network Addresses Add networks using network [network address].
- 3. Enable RIP Version 2 Use version 2 for classless routing.
- 4. **Verify Configuration** Use show ip route to check RIP routes.

34. What do you mean by OSPF Protocol? How to make a configuration in Cisco Packet Tracer? (5 Marks)

Definition (1 Mark):

OSPF (Open Shortest Path First) is a link-state routing protocol used in large networks for efficient and scalable routing.

Configuration in Cisco Packet Tracer (4 Marks):

- 1. **Enable OSPF** Use the command router ospf [process-id].
- 2. Specify Network & Wildcard Mask Use network [network] [wildcard] area [area-id].
- 3. Assign Router IDs Use router-id [id] for unique identification.
- 4. Verify Configuration Use show ip ospf neighbor and show ip route.

35. What is the use of get, set commands in File Transfer Protocol? Give an example? (5 Marks)

Definition (1 Mark):

The get and set commands in FTP (File Transfer Protocol) are used for downloading and uploading files between a client and a server.

Example (4 Marks):

- 1. **GET Command (Download File)** get filename.txt downloads a file from the server.
- 2. **PUT Command (Upload File)** put filename.txt uploads a file to the server.
- 3. **LIST Command** Is or dir lists available files on the server.
- 4. **EXIT Command** bye or quit terminates the FTP session.

36. What do you mean by switching technique? How to do a demonstration in Cisco Packet Tracer? (5 Marks)

Definition (1 Mark):

Switching techniques determine how data is transferred between devices in a network. Types include circuit switching, packet switching, and message switching.

Demonstration in Cisco Packet Tracer (4 Marks):

- 1. Create a Network Topology Add switches, routers, and PCs.
- 2. **Assign IP Addresses** Configure devices with proper addressing.

- 3. Configure VLANs (If Required) Assign VLANs to separate traffic.
- 4. **Test Communication** Use ping to verify successful data transmission.

37. Explain Encryption Technique in detail? (5 Marks)

Definition (1 Mark):

Encryption is a technique used to convert plaintext data into unreadable ciphertext to protect it from unauthorized access.

Features (4 Marks):

- 1. **Symmetric Encryption** Uses a single key for encryption and decryption (e.g., AES, DES).
- 2. **Asymmetric Encryption** Uses a public key for encryption and a private key for decryption (e.g., RSA).
- 3. Hashing Converts data into a fixed-size hash value (e.g., SHA, MD5).
- 4. **End-to-End Encryption** Ensures data remains encrypted throughout transmission.

38. Differentiate between Symmetric and Asymmetric Encryption Techniques? (5 Marks)

Definition (1 Mark):

Symmetric encryption uses one key for both encryption and decryption, while asymmetric encryption uses a pair of public and private keys.

Differences (4 Marks):

- 1. Symmetric Faster; Asymmetric Slower due to key complexity.
- 2. Symmetric Uses one key; Asymmetric Uses two keys.
- 3. Symmetric Suitable for large data encryption; Asymmetric Used in secure key exchanges.
- 4. Examples: AES, DES (Symmetric); RSA, ECC (Asymmetric).

39. What is the difference between Static and Dynamic Routing technique? (5 Marks)

Definition (1 Mark):

Static routing uses manually configured routes, while dynamic routing uses protocols to automatically determine paths.

Differences (4 Marks):

- 1. Static Manually configured; Dynamic Automatically updated.
- 2. Static No overhead; Dynamic Uses processing resources.
- 3. Static Suitable for small networks; Dynamic Used in large, scalable networks.
- 4. **Examples:** RIP, OSPF (Dynamic); Manual IP route (Static).

40. What is the difference between Connectionless and Connection-Oriented Transmission technique? (5 Marks)

Definition (1 Mark):

Connection-oriented transmission establishes a dedicated connection before data transfer, while connectionless transmission sends data without prior setup.

Differences (4 Marks):

- 1. Connection-Oriented Reliable; Connectionless Unreliable but faster.
- 2. Connection-Oriented Uses handshaking (TCP); Connectionless No handshake (UDP).
- Connection-Oriented Used for file transfers, emails; Connectionless Used for video streaming, VoIP.
- 4. Examples: TCP (Connection-Oriented); UDP (Connectionless).