Set Theory cheat sheet

Hampus Weslien May 26, 2017

1 Sets

Cardinality: Cardinality is the number of elements in a set A, written #(A) or |A|. Useful formula for the number of combinations: $\frac{n!}{k!(n-k)!}$

Difference Difference, $x \in A \setminus B$ iff $x \in A$ or $x \in B$

Disjointness Two sets A and B are disjoint if they do not have any common elements: $A \cap B = \emptyset$

Inclusion: Inclusion refers to $A \subseteq B$, this means that if $x \in A$ then $x \in B$

Intersection Intersection, $x \in A \cap B$ iff $x \in A$ or $x \in B$

Poset (partially ordered set): A poset (A, <) is well-founded iff all nonempty subsets $X \subseteq A$ have a minimal element, i.e. for some $m \in X$ and all $a \in X, a \not< m$

Power set The power set of a set A is the set of all its subsets,

$$P(A) = \{s : s \subseteq A\} = 2^A$$

Union: The union, $x \in A \cup B$ iff $x \in A$ or $x \in B$

1.1 Syntax

Generalized union and intersection:

$$\bigcup S = \{x : x \in s \text{ for at least one } s \in S\}$$
$$\bigcap S = \{x : x \in s \text{ for all } s \in S\}$$

Example:

$$\bigcup \{A_i : i \in I\} \quad \bigcup \{A_i\}_{i \in I} \quad \bigcup_{i \in I} A_i \\
\bigcap \{A_i : i \in I\} \quad \bigcap \{A_i\}_{i \in I} \quad \bigcap_{i \in I} A_i$$

List comprehension:

flavor 1 flavor 2
$$\{n \in \mathbb{N}^+ : n \text{ is prime}\} \quad \{n : n \in \mathbb{N}^+, n \text{ is prime}\}$$
$$\{n \in \mathbb{N}^+ || n \text{ is prime}\} \qquad \{2n : n \in \mathbb{N}^+\}$$

Families of sets

$$\{N_i : i \in \mathbb{N}\} \text{ with } N_i = \{k \in \mathbb{N} : k \ge i\}$$

2 Relations

- **Antisymmetry:** A binary relation $R = A \times A$ is antisymmetric iff for all $a, b \in A$ if aRb and bRa then a = b
- **Asymmetry:** A binary relation $R = A \times A$ is asymmetric iff for all $a, b \in A$ if aRb then not bRa
- Cartesian product: The (cartesian) product of a pair of sets, or more generally a finite family of sets, is the set of all ordered pairs or n-tuples.

$$A_1 \times ... \times A_n = \{(a_1, ..., a_n) : a_1 \in A_1, ..., a_n \in A_n\}$$

- **Closure:** Given a relation $R \subseteq A \times A$ and a set $X \subseteq A$, the closure of X under R R[X] is defined as the smallest $Y \subseteq A$ such that $X \subseteq Y$ and $R(Y) \subseteq Y$
- Closure of relations, rules, generators: Given a set A, a family of relations on A $R = \{R_i \subseteq A^{n_i} : i \in I\}$ and a set $X \subseteq A$, the closure of X under R R[X] is defined as the smallest $Y \subseteq A$ such that $X \subseteq Y$ and $R_i(Y^{n_i}) \subseteq Y$ for all $i \in Y$.
- **Complement:** For a binary relation $R = A \times B$ its complement is the relation

$$\overline{R} = A \times B \backslash R$$

Composition: Given two binary relations $R = A \times B$ and $S = B \times C$ their composition is a binary relation on $A \times C$

$$S \circ R = \{(a, c) : aRb \text{ and } bSc \text{ for some } b \in B\}$$

Converse: For a binary relation $R = A \times B$ its converse (inverse) is the relation

$$R^{-1} = \{(b, a) : aRb\}$$

- Equinumerosity principle: #(A) = #(B) iff there is some bijection $f: A \to B$
- **Image:** Given a binary relation $R = A \times B$ from A to B, for any $a \in A$ its image under R, written R(a), is defined as $R(a) = \{b \in B : aRb\}$

Irreflexivity: A binary relation $R = A \times A$ is irreflexive iff there is no $a \in A$ aRa

N-tupels: $(a_1,...,a_n) = (b_1,...,b_n)$ iff $a_i = b_i$ for i = 1,...,n

Order relation, poset: A binary relation $\preceq \subseteq A \times A$ is an (inclusive or non-strict) (partial) order iff it is

- 1. Reflexive
- 2. Antisymmetric
- 3. Transitive

Ordered pairs, tupels: (a, b) = (x, y) iff a = x and b = y

Partitions: Given a set A, a partition of A is a set of pairwise disjoint sets $\{B_i : i \in I\}$, such that

$$A = \bigcup_{i \in I} B_i$$

Reflexivity: A binary relation $R = A \times A$ is reflexive iff for all $a \in A$ aRa

Similarity relationship: A similarity relationship had two properties,

- 1. Reflexive
- 2. Symmetric

Strict (partial) order A binary relation $\prec \subseteq A \times A$ is a strict (partial) order iff it is

- 1. Irreflexive
- 2. Transitive

Symmetric closure: The symmetric closure S of a relation R on a set X is given by $S = R \cup \{(x,y) : (y,x) \in R\}$. In other words, the symmetric closure of R is the union of R with its inverse relation, R^{-1} .

Symmetry: A binary relation $R = A \times A$ is symmetric iff for all $a, b \in A$ if aRb then bRa

Total (or linear) order A binary relation $\preceq \subseteq A \times A$ is a (non-strict) total (or linear) order iff it is

- 1. Irreflexive
- 2. Antisymmetric
- 3. Transitive
- 4. Total (complete): $a \leq b$ or $b \leq a$
- **Transitive clojure:** It's the smallest set R* in which R is a subset and we have added relations to make it transitive.
- **Transivity:** A binary relation $R = A \times A$ is transitive iff for all $a, b, c \in A$ if $aRb \wedge bRc \rightarrow aRc$

3 Functions

- **Bijection:** A function $f:A\to B$ is bijective iff it it is both injective and surjective Notation: $f:A\longleftrightarrow B$
- **Composition:** Given functions $f: A \to B$ and $g: B \to C$ their composition $g \circ f: A \to C$ defines as $g \circ f = g(f(a))$
- **Closure:** Given an endofunction $f:A\to A$ and a set $X\subseteq A$, the closure of X under f f[X] is defined as the smallest $Y\subseteq A$ such that $X\subseteq Y$ and $F(Y)\subseteq Y$
- **Equivalence relations:** A binary relation $\approx \subseteq A \times A$ is an equivalence relation iff it is
 - 1. Reflexive
 - 2. Symmetric
 - 3. Transitive
- **Image:** Given a function $f: A \to B$ and a set $X \subseteq A$, the image of X under f is defined as $f(X) = \{f(a) : a \in X\}$
- **Injection:** A function $f: A \to B$ is injective iff $a \neq b$ implies $f(a) \neq f(b)$ Notation: $f: A \hookrightarrow B$
- **Inverse:** given a function $f: A \to B$ its inverse (converse) $f^{-1} \subseteq B \times A$ is defined as: $f^{-1} = \{(F(a), a) : a \in A\}$

Restriction of a function: Given a function $f: A \to B$, its restriction to a set $X \subseteq A$ is defined as

$$f_X: X \to B$$
 $f|X$
 $a \mapsto f(a)$ alternative syntax

Set of all functions:
$$B^A \qquad \langle A \to B \rangle \qquad \#(B^A) = \#(B)^{\#(A)}$$

Surjection: A function
$$f: A \to B$$
 is surjective iff $f(A = B)$
Notation: $f: A \to B$

4 Notation

Equivalence class: [x] is the equivalence class containing all elements that are considered equal to x in a some predefined relation.

The set of all functions: B^A is the set of all functions from set A to set B

Weird naming:

5 Infinity

Cantor-Schrder-Bernstein theorem (CSB): For ant two sets A and B, if there are two injections $f:A\hookrightarrow B$ and $g:B\hookrightarrow A$ then there exists a bijection $h:B\longleftrightarrow B$

Corollary: if
$$\#(A) \leq \#(B)$$
 and $\#(B) \leq \#(A)$ then $\#(A) = \#(B)$

Denumerable: A is denumerable (countable) if it is equinumerous to the natural numbers, i.e. $S \sim \mathbb{N}$

The cardinality of the natural numbers $\#(\mathbb{N}) = \aleph_0$

Finite sequences/strings: Let A be a finite set of n symbols $A = \{a_1, ..., a_n\}$. The set of all finite sequences (strings) of these symbols is A^* . The empty sequence is $\epsilon \in A^*$

Infinite sequences: Let A be a finite set of n symbols $A = \{a_1, ..., a_n\}$. An infinite sequence in A is a function $s : \mathbb{N} \to A$. The set of all infinite sequences in A: $A^{\mathbb{N}}$

Infinity: A is infinite if it is equinumerous to a proper subset of itself. That is, there is some S such that $S \subset A$ and $S \sim A$

Rational numbers: 1 \mathbb{Q} is dense: between any two distinct $r, s \in \mathbb{Q}$ there is $\frac{r+s}{2} \in \mathbb{Q}$

2 Any non-empty open interval $[r, s] \subset \mathbb{Q}$ is equinumerous to \mathbb{Q}

Example: Bijection between a subset of the real numbers and the real numbers

$$p_{\mathbb{R}} :]0, 1[_{\mathbb{R}} \longleftrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} \frac{1}{x} - 2 \text{ for } x < \frac{1}{2} \\ 2 - \frac{1}{x - 1} \text{ for } x \ge \frac{1}{2} \end{cases}$$

6 Proofs

Contrapositive proof $(\neg C \implies \neg P)$:

Theorem: If $x^2 - 6x + 5$ is even, then x is odd.

Proof: Suppose x is even. There is an integer a such that $x=2a.x^2-6x+5=4a^2-12a+4+1=2(2a^2-6a+2)+1$ So there is an integer b s.t. $x^2-6x+5=2b+1$ Therefore x^2-6x+5 is not even.

Direct proof:

Theorem: If x is odd, then x^2 is odd

Proof: Suppose x is odd. Therefore, there is an integer k such that x = 2k + 1. Thus $x^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$. Note that $2k^2 + 2k$ is an integer. thus there is an integer n such that $x^2 = 2n + 1$. Therefore x^2 is odd.

Direct proof with cases:

Theorem: If $n \in \mathbb{N}$ then $1 + (-1)^n (2n - 1)$ is a multiple of 4.

Proof: Suppose $n \in \mathbb{N}$. Then n is either even or odd.

Case 1: Suppose n is even. Then n=2k for some $k \in \mathbb{Z}$. Thus $1+(-1)^{2k}(2(2k)-1)=1+1^k(4k-1)=4k$. That is a multiple of 4.

Case 2: Suppose *n* is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$. Thus $1 + (-1)^{2k+1}(2(2k+1) - 1) = 1 - (4k+2-1) = -4k$. That is also a multiple of 4.

Proof by contradiction:

Theorem: If $a, b \in \mathbb{Z}$ then $a^2 - 4b \neq 2$

Proof: Suppose there are $a,b\in\mathbb{Z}$ s.t. $a^2-4b=2$. Sinice this implies $a^2=4b+2=2(2b+1),\ a^2$ is even. Hence a is even, so a=2c for some integer c. Thus $4c^2-4b=2$, i.e. $2c^2-2b=1$. Therefore $2(c^2-b)=1$ with $c^2-bin\mathbb{Z}$. So 1 is even.

7 Induction and Recursion

Cumulative (complete) induction:

Hypothesis: P(n) Basis: P(0)

Induction step: Assuming that P(m) for all m < k show that P(k)

Simple induction:

Hypothesis: P(n) for all n

Basis: Show that P(1) (or P(0) or some other, depending on circumstances)

Induction step: Assuming that P(k) show that P(k+1)

Structural induction:

Hypothesis: P(x) for all xR[X]Basis: P(x) for all $x \in X$

Induction step: All rules $R_i \in R$ preserve the property: if their "input" objects have it, then so does their output object.

Structural recursion on domains:

$$R = \{R_1, R_2, R_3\}, \quad C = UTF - 16$$
 $R_1 = \{(s, "-"s) : s \in C^*\}$
 $V = \{"a", ..., "z"\} \setminus \{\epsilon\}$ $R_2 = \{(s_1, s_2, "("s_1" + "s_2")") : s_1, s_2 \in C^*\}$

$$eval_{E} : R[V] \to \mathbb{R}$$

$$eval_{E} : s \mapsto \begin{cases} E(s) & \text{for } s \in V \\ -eval_{E}(s') & \text{for } s = " - "s' \\ eval_{E}(s_{1}) + eval_{E}(s_{2}) & \text{for } s = "("s_{1}" + "s_{2}")" \\ eval_{E}(s_{1})\dot{e}val_{E}(s_{2}) & \text{for } s = "("s_{1}" * "s_{2}")" \end{cases}$$

- **Well-founded induction:** Given a well-founded set (A, <) and a property $P(a), a \in A$, if for all ainA : P(w) for all w < a implies P(a) then P(a) for all $a \in A$
- **Well-founded recursion:** Given a well-founded set (W, <) and a recursive function definition for a function $f: W \to X$, f is well-defined if it computes the value for every $w \in W$ only depending on values of f for v < w.

8 Trees and Graphs

- Binary search trees: Given a labelled binary tree (V, R), with labelling function $\lambda: T \to L$ and a totally ordered label set L. It is a binary search tree iff for all nodes their label is greater than any label in their left subtree, and less than any label in their right subtree.
- **Binary trees:** Given a tree (V, R) with root a, we say it is binary if every node has at most two children and there is a labeling function

$$\beta: T \setminus \{a\} \to \{left, right\}$$

such that no two children of the same node are labelled identically.

- **Cycles:** A cycle is a path $a_0, ..., a_n$ where $a_0 = a_n$. A graph that does not contain cycles is called acyclic.
- **Graphs:** A (directed) graph is a pair (V, E) where V is a finite set of vertices (or nodes) and a relation $EsubseteqV \times V$, a set of (directed) edges (or arcs).
- **Labeled trees:** Given a tree (V, R), and a set of labels L, a labelling is a function $\lambda: T \to L$. A tree with a labelling is called a labelled tree

Ordered trees: Given a tree (V, R) with root a, we say it is ordered if there is a function

$$\mu: T \setminus \{a\} \to \mathbb{N}^+$$

such that for every node its n children are labelled 1...n.

- **Paths:** Given a graph (V, E), a path is a finite sequence $a_0, ..., a_n$ in V with $n \ge 1$ such that for .The length of the path is n.
- **Spanning trees:** Given an undirected graph (T, S), an unrooted tree (T, R) is a spanning tree for it iff RsubsetegS

Trees: A (rooted) tree is a graph (T, R) such that T is empty or there is an $a \in T$ such that:

- (i) for every $x \in T$, $x \neq a$ there is exactly one path from a to x
- (ii) there is no path from a to a.

Properties:

- 1 Any non-empty tree has a unique root.
- 2 A root has no parent.
- 3 Every non-root has exactly one parent.
- 4 A tree with n nodes has n-1 links
- 5 A tree contains no cycles.
- **Undirected graphs:** An (undirected) graph is a pair (V, E) where V is a set of vertices (or nodes) and a symmetric relation $EsubseteqV \times V$, a set of (undirected) edges (or arcs).
- **Unrooted trees:** A structure (V, S) is an unrooted (undirected)tree iff (V, R) is a rooted tree and S is the symmetric closure of R.

Defining trees recursively:

- 1 The empty graph (\emptyset, \emptyset) is a tree.
- 2 Given a family of disjoint trees $(T_i, R_i)_i = 1...n$, i.e. $T_i \cap T_j = \emptyset$ when $i \neq j$, and with roots $B = \{b_i : 1 \leq i \leq n\}$, as well as a fresh $a \notin \bigcup_{i \in 1...n} R_i$ we can create a new tree with root a:

9 Propositional Logic

Assignments and valuations: Given a set of elementary letters E and an assignment v, a valuation is the recursive extension of v over the set F[E] of formulae in E generated by a set of rules F:

$$v^+F[E] \to \{1,0\}$$

Tautological implication: Given a set of formulae A and a formula β we say that A tautologically implies β if there is no valuation v such that

$$v(\alpha) = 1$$
 for all $\alpha \in A$ and $v(\beta) = 0$
$$A \models B \qquad A \vdash B$$

Tautological equivalence: Given two formulae α and β , we say that they are tautologically equivalent if they tautologically imply each other.

$$\alpha \dashv \vdash \beta$$

Name	LHS	RHS
Double negation	α	$\neg \neg \alpha$
Commutation for ∧	α∧β	β∧α
Association for ∧	$\alpha \wedge (\beta \wedge \gamma)$	(α∧β)∧γ
Commutation for ∨	α∨β	β∨α
Association for ∨	$\alpha \vee (\beta \vee \gamma)$	(α∨β)∨γ
Distribution of ∧ over ∨	α∧(β∨γ)	$(\alpha \land \beta) \lor (\alpha \land \gamma)$
Distribution of ∨ over ∧	$\alpha \vee (\beta \wedge \gamma)$	$(\alpha \lor \beta) \land (\alpha \lor \gamma)$
Absorption	α	$\alpha \wedge (\alpha \vee \beta)$
	α	$\alpha \vee (\alpha \wedge \beta)$
Expansion	α	$(\alpha \land \beta) \lor (\alpha \land \neg \beta)$
	α	$(\alpha \lor \beta) \land (\alpha \lor \neg \beta)$
de Morgan	$\neg(\alpha \land \beta)$	$\neg \alpha \lor \neg \beta$
	$\neg(\alpha \lor \beta)$	$\neg \alpha \land \neg \beta$
	α∧β	$\neg(\neg\alpha\lor\neg\beta)$
	α∨β	$\neg(\neg\alpha\land\neg\beta)$
Limiting cases	$\alpha \land \neg \alpha$	β∧¬β
	$\alpha \vee \neg \alpha$	$\beta \lor \neg \beta$

Name	LHS	RHS
Contraposition	$\alpha \rightarrow \beta$	$\neg \beta \rightarrow \neg \alpha$
	$\alpha \rightarrow \neg \beta$	$\beta \rightarrow \neg \alpha$
	$\neg \alpha \rightarrow \beta$	$\neg \beta \rightarrow \alpha$
Import/export	$\alpha \rightarrow (\beta \rightarrow \gamma)$	$(\alpha \land \beta) \rightarrow \gamma$
	$\alpha \rightarrow (\beta \rightarrow \gamma)$	$\beta \rightarrow (\alpha \rightarrow \gamma)$
Consequential mirabilis (miraculous consequence)	$\alpha \rightarrow \neg \alpha$	$\neg \alpha$
	$\neg \alpha \rightarrow \alpha$	α
Commutation for ↔	α↔β	β↔α
Association for ↔	$\alpha \leftrightarrow (\beta \leftrightarrow \gamma)$	$(\alpha \leftrightarrow \beta) \leftrightarrow \gamma$
¬ through ↔	$\neg(\alpha \leftrightarrow \beta)$	$\alpha \leftrightarrow \neg \beta$
Translations between connectives	α↔β	$(\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$
	$\alpha \leftrightarrow \beta$	$(\alpha \land \beta) \lor (\neg \alpha \land \neg \beta)$
	$\alpha \rightarrow \beta$	$\neg(\alpha \land \neg\beta)$
	$\alpha \rightarrow \beta$	$\neg \alpha \lor \beta$
	α∨β	$\neg \alpha \rightarrow \beta$
Translations of negations of connectives	$\neg(\alpha \rightarrow \beta)$	α∧¬β
	$\neg(\alpha \land \beta)$	$\alpha \rightarrow \neg \beta$
	$\neg(\alpha \leftrightarrow \beta)$	$(\alpha \land \neg \beta) \lor (\beta \land \neg \alpha)$

10 Quantificational Logic

Free and bound variable occurrences: A variable occurrence is bound iff it occurs inside the scope of a quantifier that binds that variable. It is free otherwise.

A formula with no free variable occurrences is called closed. A closed formula is a sentence.

Logic with quantifiers (informally): logic with quantifiers (informally)

 $\forall x(\alpha)$ represents for all x, α alt. notation $\wedge \alpha$

 $\exists x(\alpha)$ represents there exists an x, such that α alt. notation $\bigvee_{x} \alpha$

Quantifier scopes:

