MATH 137 Fall 2020: Practice Assignment 8

Q01. Find $\frac{dy}{dx}$ for $\arcsin(x^2y) + xy = 1$.

Solution. We implicitly differentiate with respect to x:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\arcsin(x^2y) + xy\right) = \frac{\mathrm{d}}{\mathrm{d}x}(1)$$

$$\frac{1}{\sqrt{1 - (x^2y)^2}} \frac{\mathrm{d}}{\mathrm{d}x}(x^2y) + \frac{\mathrm{d}}{\mathrm{d}x}(xy) = 0$$

$$\frac{2xy + x^2 \frac{\mathrm{d}y}{\mathrm{d}x}}{\sqrt{1 - x^4y^2}} + x \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} \left(\frac{x^2}{\sqrt{1 - x^4y^2}} + x\right) = -y - \frac{2xy}{\sqrt{1 - x^4y^2}}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2xy + y\sqrt{1 - x^4y^2}}{x^2 + x\sqrt{1 - x^4y^2}}$$

Q02. Find the equation of the tangent line at the point (0,-1) to the curve defined by

$$xy + y^3 = \arctan(x) - 1.$$

Solution. We apply the point-slope form of a line: $y = y_0 + m(x - x_0)$. To find the slope, implicitly differentiate with respect to x:

$$\frac{\mathrm{d}}{\mathrm{d}x}(xy+y^3) = \frac{\mathrm{d}}{\mathrm{d}x}(\arctan x - 1)$$

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + y + (3y^2)\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+x^2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x}(x+3y^2) = \frac{1-y(1+x^2)}{1+x^2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1-y-x^2y}{(1+x^2)(x+3y^2)}$$

We can now find m by substituting x = 0 and y = -1:

$$m = \frac{1 - (-1) - (0)^2 (-1)}{(1 + (0)^2)((0) + 3(-1)^2)}$$
$$= \frac{2}{3}$$

Therefore, the equation of the tangent line is $y = -1 + \frac{2}{3}(x-0) = \frac{2}{3}x - 1$.

Q03. Use the logarithmic differentiation to find $\frac{dy}{dx}$

(a)
$$y = x^{\sin x}$$
 with $x > 0$.

Solution. We may take the logarithm of both sides, then implicitly differentiate with

respect to x:

$$\ln y = \sin x \ln x$$

$$\frac{d}{dx}(\ln y) = \frac{d}{dx}(\sin x \ln x)$$

$$\frac{1}{y}\frac{dy}{dx} = \cos x \ln x + \frac{\sin x}{x}$$

$$\frac{dy}{dx} = \frac{y}{x}(x\cos x \ln x + \sin x)$$

(b) $y = (2x)^{x^{1/3}}$.

Solution. Likewise,

$$\ln y = x^{\frac{1}{3}} \ln 2x$$

$$\frac{1}{y} \frac{dy}{dx} = \frac{1}{3x^{\frac{2}{3}}} \cdot \ln 2x + x^{\frac{1}{3}} \cdot \frac{1}{x}$$

$$\frac{dy}{dx} = \frac{y(\ln 2x + 3)}{3x^{\frac{2}{3}}}$$

Q04. Find all critical points for the following functions.

(a)
$$f(x) = x + \frac{1}{x}$$
.

Solution. Calculate that $f'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}$. Recall that critical points are defined as those where the derivative is zero or undefined. Since this is a rational function, we may say that all zeroes are zeroes of the denominator, and all undefined points are zeroes of the numerator. The numerator is zero at $x = \pm 1$, and the denominator is zero at x = 0.

Therefore, critical points occur at x = -1, 0, 1.

(b)
$$f(x) = \frac{(x-1)^3}{(x+1)^4}$$
.

Solution. Likewise, the numerator is zero at x = 1, and the denominator at x = -1. Therefore, critical points occur at x = -1, 1.

Q05. Find the global maximum and minimum of $f(x) = 2\cos x + \sin 2x$ for $x \in [0, \frac{\pi}{2}]$.

Solution. Global extrema can either occur on the endpoints or on the open interval. We can calculate f(0) = 2(1) + 0 = 2 and $f(\frac{\pi}{2}) = 2(0) + 0 = 0$.

Local extrema on an open interval are given by points where f'(x) = 0. Taking the derivative, $f'(x) = -2\sin x + 2\cos 2x$. We can solve the trigonometric equation $0 = \cos 2x - \sin x$ using the double angle formula:

$$0 = \cos 2x - \sin x$$

= 1 - 2 \sin^2 x - \sin x
= 2 \sin^2 x + \sin x - 1
= (2 \sin x - 1)(\sin x + 1)

So we must have either $\sin x = \frac{1}{2}$ or $\sin x = -1$. Limited to the domain $x \in (0, \frac{\pi}{2})$, our only solution is $x = \frac{\pi}{6}$. We check $f'(\frac{\pi}{6})$ and notice it is $2(\frac{\sqrt{3}}{2}) + \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2} \approx 2.6$.

Of these three, we have the global minimum 0 at $x = \frac{\pi}{2}$ and maximum $\frac{3\sqrt{3}}{2}$ at $x = \frac{\pi}{6}$.

Q06. Let us use the Mean Value Theorem to compare the geometric and arithmetic means.

(a) Use the MVT to show that

$$\sqrt{b} - \sqrt{a} < \frac{b - a}{2\sqrt{a}}$$

for 0 < a < b.

Proof. Consider the function $f(x) = \sqrt{x}$. Since \sqrt{x} is both continuous and differentiable on [a, b], we may apply the MVT. There exists a $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
$$\frac{1}{2\sqrt{c}} = \frac{\sqrt{b} - \sqrt{a}}{b - a}$$

Now, c > a so $\frac{1}{2\sqrt{a}} > \frac{1}{2\sqrt{c}}$. We multiply through b - a, which is positive since b > a:

$$\frac{1}{2\sqrt{a}} > \frac{1}{2\sqrt{c}}$$

$$> \frac{\sqrt{b} - \sqrt{a}}{b - a}$$

$$\frac{b - a}{2\sqrt{a}} > \sqrt{b} - \sqrt{a}$$

completing the proof.

(b) Use part (a) to show that, for 0 < a < b, the geometric mean \sqrt{ab} is always smaller than the arithmetic mean $\frac{1}{2}(a+b)$, that is, show that

$$\sqrt{ab} < \frac{a+b}{2}.$$

Proof. Manipulate the result from above, knowing that \sqrt{a} is a positive number:

$$\sqrt{b} - \sqrt{a} < \frac{b-a}{2\sqrt{a}}$$
$$2\sqrt{a}\sqrt{b} - 2a < b-a$$
$$2\sqrt{ab} < a+b$$
$$\sqrt{ab} < \frac{a+b}{2}$$

as desired.

Q07. Show that the function $f(x) = 2x^5 + 2x + 1$ has exactly one root without sketching the graph of the function.

Hint: Assume there is more than 1 root and use the MVT to build a contradiction.

Proof. Notice that f(0) = 1 and f(-1) = -3. Since polynomials are continuous, we may apply the IVT. Therefore, a root exists on $x \in (-1,0)$.

Suppose for a contradiction that $f(x) = 2x^5 + 2x + 1$ has more than one root. Then, by Rolle's Theorem, there exists some point where f'(x) = 0. However, $f'(x) = 10x^4 + 2$ which is positive for all real x. Therefore, by contradiction, f(x) has at most one root. \Box

Q08. Let f(x) be differentiable on (a, b) and f'(x) be continuous on (a, b). Assume there are three points $x_1, x_2,$ and x_3 with each $x_i \in (a, b)$ and with $x_1 < x_2 < x_3$ such that

$$f(x_1) < f(x_2)$$
 and $f(x_2) > f(x_3)$.

Use the MVT and the IVT to show that there must be a point $c \in (x_1, x_3)$ such that f'(c) = 0.

Proof. Since f is differentiable on both $[x_1, x_2]$ and $[x_2, x_3]$, we may apply the MVT. As $f(x_1) < f(x_2)$, the mean slope is a positive value. Therefore, there exists a $c_1 \in (x_1, x_2)$ where $f'(c_1)$ is that positive value. As $f(x_2) > f(x_3)$, the mean slope is a negative value. Therefore, there also exists a $c_2 \in (x_2, x_3)$ where $f'(c_2)$ is that negative value.

We are also given that f' is continuous on $[x_1, x_3]$, so we may apply the IVT. From above, $f'(c_2) < 0 < f'(c_1)$, so there must exist a $c \in (c_1, c_2)$ where f'(c) = 0. Since $(c_1, c_2) \subseteq (x_1, x_3)$, we may say that $c \in (x_1, x_3)$, completing the proof.