- 1. Let T be the triangle with vertices $z_1=(0,0), z_2=(1,0), z_3=(0,1)$. Construct the canonical basis $\{\lambda_j\}_{J=1}^3, \ \lambda_j \in P_1(T)$ satisfying $\lambda_j(z_k)=\delta_{jk}$. Show that $\{\lambda_j\}_{J=1}^3$ is a linearly independent set. Consider the interpolation $\Pi_T: C(T) \to P_1(T)$ by $\Pi_T u = \sum_{j=1}^3 u(z_j)\lambda_j$. Show that $\Pi_T v = v$ for all $v \in P_1(T)$.
- 2. Let T be the rectangle with vertices $z_1 = (0,0), z_2 = (1,0), z_3 = (1,1), z_4 = (0,1).$ Construct the canonical basis $\{\psi_j\}_{J=1}^4, \ \psi_j \in Q_1(T)$ satisfying $\lambda_j(z_k) = \delta_{jk}$. Show that $\{\lambda_j\}_{J=1}^4$ is a linearly independent set. Consider the interpolation $\Pi_T: C(T) \to Q_1(T)$ by $\Pi_T u = \sum_{j=1}^4 u(z_j)\lambda_j$. Show that $\Pi_T v = v$ for all $v \in Q_1(T)$.
- 3. Let \hat{T} be the triangle with vertices $\hat{a}_1 = (0,0), \hat{a}_2 = (1,0), \hat{a}_3 = (0,1)$). Let T be the triangle with vertices $a_1 = (x_1, y_1), a_2 = (x_2, y_2), a_3 = (x_3, y_3)$. Construct an affine map $F_T(x,y) = (b_{11}x + b_{12}y + d_1, b_{21}x + b_{22}y + d_2)$ mapping \hat{T} onto T by mapping $F_T(\hat{a}_j) = a_j, j = 1, 2, 3$. Find the inverse of the map F_T .
- 4. Let \mathcal{T}_h be the triangulation of unit square $\Omega = [0,1] \times [0,1]$ into triangles. Let $V_h = \{v_h \in C(\Omega) : v|_T \in P_1(T), T \in \mathcal{T}_h\}$ with dimension N and $\{\phi_j\}_{j=1}^N$ be the canonical basis of V_h such that $\phi_j(z_k) = \delta_{jk}, 1 \leq j, k \leq N$, where $\{z_k\}_{k=1}^N$ is the set of all vertices in \mathcal{T}_h . Recall $P_1(T) = \{a_0 + a_1x + a_2y : x, y \in T, a_0, a_1, a_2 \in \mathbb{R}\}$. Let n denote the unit outward normal vector to $\partial \Omega$, the boundary of Ω . Show that the solution $u \in C^2(\Omega)$ of $-\Delta u + u = f$ in Ω , $\nabla u \cdot n = g$ on $\partial \Omega$, satisfies

$$\int_{\Omega} \left(\nabla u \cdot \nabla v_h + u v_h \right) \, d\Omega = \int_{\Omega} f v_h \, d\Omega + \int_{\partial \Omega} g v_h \, dS, \text{ for all } v_h \in V_h,$$

where the integral on $\partial\Omega$ is the piece-wise line integration and ∇v_h is the piece-wise (triangle wise) gradient of v_h .