CS 225

Symbols and Formulas

Fall 2020

Logic

 $\underline{\mathbf{Symbols:}} \geq \ \, \leq \ \, \neq \ \, \neg \ \, \sim \ \, \wedge \ \, \vee \ \, \oplus \ \, \equiv \ \, \rightarrow \ \, \hookrightarrow \ \, \Box \ \, \exists \ \, \forall$

Identities:

$\sim (\sim p) \equiv p$	Double Negation
$p \wedge \mathbb{T} \equiv p p \vee \mathbb{F} \equiv p$	Identity
$p \vee \mathbb{T} \equiv \mathbb{T} p \wedge \mathbb{F} \equiv \mathbb{F}$	Domination
$p \wedge p \equiv p p \vee p \equiv p$	Idempotent
$p \vee q \equiv q \vee p p \wedge q \equiv q \wedge p$	Commutative
$(p\vee q)\vee r\equiv p\vee (q\vee r)$	Associative
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	Associative
$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$	Distributive
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	Distributive
$\sim (p \land q) \equiv \sim p \lor \sim q$	DeMorgan's
$\sim (p \vee q) \equiv \sim p \wedge \sim q$	Demorgan's
$p \vee (p \wedge q) \equiv p$	Absorption
$p \land (p \lor q) \equiv p$	Absorption
$p \to q \equiv \sim q \to \sim p$	Contrapositive
$p \oplus q \equiv q \oplus p$	Contrapositive
$p \to q \equiv \sim p \vee q$	Implication
$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$	Biconditional Equivalence
$(p \land q) \to r \equiv p \to (q \to r)$	Exporation
$(p \to q) \land (p \to \sim q) \equiv \sim p$	Absurdity
$p\vee q\equiv\sim p\to q$	Alternate Implication
$p \wedge q \equiv \sim (p \to \sim q)$	Alternate Implication
$\sim (p \to q) \equiv p \land \sim q$	Alternate Implication
$\sim \ \forall \ x P(x) \equiv \ \exists \ x \sim P(x)$	DeMorgan's for Quantifiers
$\sim \exists x Q(x) \equiv \forall x \sim Q(x)$	DeMorgan's for Quantifiers

A conditional statement $p \to q$ can also be read as:

- If p then q
- p implies q
- If p, q
- p only if q
- *q* if *p*
- q unless $\sim p$
- q when p
- \bullet q whenever p
- q follows from p
- p is a sufficient condition for q (p is sufficient for q)
- q is a necessary condition for p (q is necessary for p)

Proofs:

- Direct: Assume P and prove Q.
- Contrapositive: Assume Not Q and prove Not P.
- Contradiction: Assume P and Not Q and prove a contradiction.
- Induction: Prove base(s), assume P(m), prove P(m+1).

$\underline{\mathbf{Sets}}$

Symbols: $\in \not\in \subseteq \subset \supseteq \supset \varnothing \cup \cap \times$

Common Sets:

$$\begin{split} \mathbb{N} &= \{0,1,2,3,\dots\} & \text{natural numbers} \\ \mathbb{Z} &= \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\} & \text{integers } (\mathbb{Z} \text{ for German Zahlen, meaning "integers"}) \\ \mathbb{Z}^+ &= \{1,2,3,\dots\} & \text{positive integers} \\ \mathbb{Q} &= \left\{\frac{p}{q} \;\middle|\; p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\right\} & \text{rational numbers} \\ \mathbb{U} &= \{*\} & \text{universal set} \end{split}$$

<u>Identities:</u>