"သုညနဲ့ ဘာကြောင့်စားလို့မရတာလဲ" နဲ့ကိန်းစစ်များ၏ အယ်ဂျီဘရာ

"သုညနဲ့ ဘာလို့စားလို့မရတာလဲ။"

ဒီမေးခွန်းက သင်္ချာကိုပြီးပြီးရောမတွက်တဲ့ ကျောင်းသားတိုင်းက ဆရာကိုသွားမမေးရင်တောင် ကိုယ့်ဘာသာကိုယ် မေးကြည့်ကြမယ့်မေးခွန်းပါ။ ဒီမေးခွန်းကိုဖြေတဲ့အခါ လက်တွေ့လောကနဲ့နှိုင်းယှဉ်ပြီးဖြေတဲ့အဖြေတွေကိုပဲ တွေ့ရတာ များပါတယ်။ ဥပမာအားဖြင့် iPhone နဲ့ iPad တွေမှာပါတဲ့ Siri ကိုသွားမေးကြည့်ရင် ဒီလိုဖြေပါလိမ့်မယ်။

"Imagine that you have zero cookies," Siri's response begins, "and you split them evenly among zero friends.

How many cookies does each person get? See? It doesn't make sense.

"And Cookie Monster is sad that there are no cookies, and you are sad that you have no friends."

ဒါဟာ ကိန်းဂဏန်းတွေနဲ့ 'စားခြင်း' ဆိုတဲ့ operation ကို လက်တွေ့လောကနဲ့နှိုင်းယှဉ်ပြီး စဉ်းစားကြည့်လို့ထွက်လာတဲ့ အဖြေပဲဖြစ်ပါတယ်။ ဒီလိုပဲ "မယုံရင်စားအိမ်နဲ့ချစားကြည့်လိုက်လေ" ဆိုတဲ့ သိပ်ကျေနပ်စရာမကောင်းတဲ့ အဖြေတွေလည်း တွေ့ရပါတယ်။ ဒါပေမယ့် ဒီဆောင်းပါးမှာတော့ သုညနဲ့ဘာလို့စားလို့မရတာလဲဆိုတဲ့ မေးခွန်းကို လက်တွေ့လောကနဲ့ လုံးဝမဆက်စပ်ဘဲ သင်္ချာရှုထောင့်စစ်စစ်ကနေ အဖြေပေးပါမယ်။ ပိုပြီးတိတိကျကျပြောရရင် algebra ရှုထောင့်ကနေ အဖြေပေးမှာပါ။

အပေါင်းနဲ့ အမြောက်ရဲ့ ဂုဏ်သတ္တိများ

ကိန်းစစ်တွေရဲ့ algebra မှာထူးခြားတာတစ်ခုက အပေါင်းနဲ့အမြောက်ဟာ ဂုဏ်သတ္တိလှလှလေးတွေကို ပြေလည်နေတာပါ။ ဥပမာအားဖြင့် ဖလှယ်ရဂုဏ်သတ္တိတွေဖြစ်တဲ့ a+b=b+a နဲ့ $a\cdot b=b\cdot a$ လိုမျိုး၊ ဖြန့်ဝေရ ဂုဏ်သတ္တိဖြစ်တဲ့ $a\cdot (b+c)=a\cdot b+a\cdot c$ လိုမျိုးပေါ့။ ဒီနေရာမှာ အပေါင်းကိုလက်တွေ့လောကနဲ့ နှိုင်းမယှဉ်ဘဲနဲ့ ကိန်းစစ်နှစ်လုံး a နဲ့ b ရှိရင် a+b ဆိုတဲ့ကိန်းစစ်တစ်လုံးကို ပြန်ထုတ်ပေးတဲ့ "ဖန်ရှင်" (binary operation) တစ်ခုအဖြစ်ပဲ မြင်ပါ။ အမြောက်ကိုလည်း ဒီလိုပဲမြင်ပါ။

ဒီလိုမြင်လိုက်ပြီဆိုရင် အပေါင်းနဲ့ အမြောက်ကို ကိန်းစစ်တွေမှာမှမဟုတ်ဘဲ ကြိုက်ရာအစုတစ်ခု F အထိ ချဲ့ကားမြင်လို့ရပါပြီ။ ဆိုကြပါစို့ ဗလာမဟုတ်တဲ့အစုတစ်ခု F ရှိတယ် (F ထဲမှာပါတာ ကိန်းတွေဟုတ်ချင်မှဟုတ်မယ်)။ ပြီးရင် အပေါင်း (+) လို့ခေါ်တဲ့ binary operation တစ်ခုနဲ့ အမြောက် (·) လို့ခေါ်တဲ့ binary operation တစ်ခုကို F ပေါ် မှာသတ်မှတ်မယ်။ အကယ်၍ ဒီ operation နှစ်ခုဟာ အောက်ပါဂုဏ်သတ္တိငါးခုနဲ့ ပြည့်စုံနေရင် F ကို + နဲ့ \cdot ရဲ့ field တစ်ခုလို့ ခေါ်ပါမယ်။

F1. (ဖလှယ်ရဂုဏ်သတ္တိ) F ထဲကဘယ် element နှစ်ခု a နဲ့ b ကိုယူယူ

$$a+b=b+a$$
 & $a \cdot b=b \cdot a$

ဖြစ်တယ်။

F2. (ဖက်စပ်ရဂုဏ်သတ္တိ) F ထဲကဘယ် element သုံးခု a,b နဲ့ c ကိုယူယူ

$$(a+b)+c=a+(b+c)$$
 $\stackrel{\diamond}{\triangleright}$ $(a\cdot b)\cdot c=a\cdot (b\cdot c)$

ဖြစ်တယ်။

F3. (ဖြန့်ဝေရဂုဏ်သတ္တိ) F ထဲက ဘယ် element သုံးခု a,b နဲ့ c ကိုယူယူ

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c) \stackrel{\diamond}{\triangleright} (b+c) \cdot a = (b \cdot a) + (c \cdot a)$$

ဖြစ်တယ်။ $(a \cdot b) + (a \cdot c)$ ကို $a \cdot b + a \cdot c$ လို့ပဲအလွယ်ရေးလေ့ရှိတယ်။

F4. (ထပ်တူရဂုဏ်သတ္တိ) F ထဲက ဘယ် element a ကိုယူယူ

$$a + 0_F = 0_F + a = a$$
 & $a \cdot 1_F = 1_F \cdot a = a$

ဖြစ်နေစေမယ့် a ပေါ် မမှီခိုတဲ့ element အဆန်းနှစ်ခု 0_F နဲ့ 1_F တို့ရှိတယ်။

F5. (ပြောင်းပြန်ဂုဏ်သတ္တိ) F ထဲက ဘယ် element a ကိုယူယူ

$$a+b=b+a=0_F$$

ဖြစ်စေမယ့် a နဲ့သက်ဆိုင်ရာ element b ဆိုတာရှိတယ်။ ဒီ b ကို -a လို့သင်္ကေတပြုလေ့ရှိတယ်။

ဒီလိုပဲ F ထဲက 0_F မဟုတ်တဲ့ကြိုက်ရာ element a ကိုယူ။

$$a \cdot b = b \cdot a = 1_F$$

ဖြစ်စေမယ့် a နဲ့သက်ဆိုင်ရာ element b ဆိုတာရှိတယ်။ ဒီ b ကို a^{-1} လို့သင်္ကေတပြုလေ့ရှိတယ်။

သတိထားမိစရာကတော့ F5 မှာ $a\neq 0_F$ ဖြစ်တိုင်း a မှာအမြောက်ပြောင်းပြန်ကိန်း a^{-1} ရှိတယ်ပဲပြောတာပါ။ $a=0_F$ ဖြစ်သွားရင် အမြောက်ပြောင်းပြန်ကိန်း 0_F^{-1} က ရှိချင်လည်းရှိပါမယ်၊ မရှိချင်လည်းမရှိပါဘူး။ ကျွန်တော်တို့ စိတ်ဝင်စားနေတဲ့ "သူညနဲ့စားရင် ဘာဖြစ်မလဲ" ဆိုတဲ့မေးခွန်းဟာ " 0_F မှာအမြောက်ပြောင်းပြန်ကိန်းရှိနေရင် ဘာဆက်ဖြစ်မလဲ" ဆိုတဲ့ မေးခွန်းပါပဲ။ မေးခွန်းကိုမဖြေသေးခင် field တွေအတွက် ဥပမာအချို့ကြည့်ကြည့်ရအောင်။

ဥပမာ(1)။ ။ ကျွန်တော်တို့နဲ့ ရင်းနှီးနေပြီးသားဖြစ်တဲ့ ရာရှင်နယ်ကိန်းများအားလုံးအစု $\mathbb Q$ ဟာ မြင်တွေ့နေကျ + နဲ့ \cdot တို့ရဲ့ field တစ်ခုဖြစ်ပါတယ်။ Element ဆန်း $0_{\mathbb Q}$ ဟာပုံမှန်တွေ့နေကျ 0 ဖြစ်ပြီး $1_{\mathbb Q}$ ဟာလည်း ပုံမှန်တွေ့နေကျ 1 ပဲဖြစ်ပါတယ်။ F1 ကနေ F5 အထိကို မှန်မမှန်တစ်ခုချင်းတိုက်စစ်ကြည့်ပါ။

ဥပမာ(2)။ ။ ကိန်းစစ်များအားလုံးအစု $\mathbb R$ ဟာမြင်တွေ့နေကျ + နဲ့ \cdot တို့ရဲ့ field တစ်ခုဖြစ်ပါတယ်။ ဒီမှာလည်း $0_{\mathbb R}$ နဲ့ $1_{\mathbb R}$ တို့ဟာ ပုံမှန်တွေ့နေကျ 0 နဲ့ 1 ပဲဖြစ်ပါတယ်။ ဒီလိုပဲ ကိန်းထွေများအားလုံးအစု $\mathbb C$ ဟာလည်း field ပါပဲ။

ဥပမာ (3)။ ။ $A=\{a+b\sqrt{2}\mid a,b \text{ are rational}\}$ ဆိုတဲ့အစုကိုစဉ်းစားကြည့်ပါ။ ဥပမာ $\frac{1}{2}-3\sqrt{2}$ တို့ $3+2\sqrt{2}$ တို့လိုကိန်းမျိုးတွေရဲ့ အစုပေါ့။ ဒီပေါ် မှာ + နဲ့ \cdot ကိုတွေ့နေကျအတိုင်းသတ်မှတ်ရင်လည်းပဲ field ဖြစ်သွားပါတယ်။ Binary operation ဖြစ်မဖြစ်နဲ့ F1 to F4 ကို ပြေလည်မလည်က ကိုယ့်ဘာသာကိုယ်စစ်ကြည့်ပါ။ $0_F=0+0\sqrt{2}$ နဲ့ $1_F=1+0\sqrt{2}$ ဖြစ်ပါတယ်။ F5 အတွက်ကတော့ အောက်ပါညီမျှခြင်းနှစ်ကြောင်းကို ကြည့်လိုက်ရင် ရှင်းသွားမှာပါ။

$$a + b\sqrt{2} + (-a) + (-b)\sqrt{2} = 0$$

$$(a + b\sqrt{2})\left(\frac{a}{a^2 - 2b^2} + \frac{-b}{a^2 - 2b^2}\sqrt{2}\right) = 1$$

ဒုတိယညီမျှခြင်းကို ဘယ်လိုမျိုးရသလဲဆိုတာကိုတော့ ကိုယ့်ဘာသာပဲစဉ်းစားဖို့ချန်ထားလိုက်ပါဦးမယ်။ :V

ဥပမာ(4)။ ။ $F=\{x\}$ ဟာ element တစ်လုံးတည်းပါတဲ့အစုဖြစ်ပြီး + နဲ့ \cdot ကို x+x=x နဲ့ $x\cdot x=x$ လို့ သတ်မှတ်လိုက်ပါ။ ဒါဆိုရင် F ဟာ $0_F=1_F=x$ ပဲဖြစ်တဲ့ field ဖြစ်ပါတယ်။ F1 ကနေ F5 အထိမှန်မမှန် တစ်ခုချင်းစစ်ကြည့်ပါ။

ဥပမာ (5)။ ။ $F=\{0,1,2\}$ ပေါ်မှာ + နဲ့ \cdot ကို

a+b=ပုံမှန်အတိုင်းပေါင်းတဲ့ရလဒ်ကို 3 နဲ့စားရင်ကျန်တဲ့အကြွင်း

 $a\cdot b=$ ပုံမှန်အတိုင်းမြောက်တဲ့ရလဒ်ကို 3 နဲ့စားရင်ကျန်တဲ့အကြွင်း

လို့သတ်မှတ်ပါမယ်။ ဥပမာ 2+2=1 ဖြစ်ပြီး $(2\cdot 2)+2=1+2=0$ ဖြစ်ပါတယ်။ 3 နဲ့စားရင်ကျန်တဲ့အကြွင်းသည် 0,1,2 ပဲဖြစ်နိုင်လို့ + နဲ့ \cdot ဟာ binary operation တွေဖြစ်ပါတယ်။ 10 ကနေ 11 ကနေ 12 အထိက စစ်ရတာလွယ်ပါတယ်။ ကိုယ်တိုင် တစ်ခုချင်းလိုက်စစ်ကြည့်ပါ။ 13 နဲ့ 14 15 ပါ။

F5 ကတော့ စစ်ရနည်းနည်းခက်ပါတယ်။ 0+0=0 နဲ့ 1+2=0 ဖြစ်တဲ့အတွက် -0=0, -1=2 နဲ့ -2=1 ဖြစ်ပါတယ်။ ဒီလိုပဲ $1\cdot 1=1$ နဲ့ $2\cdot 2=1$ ဖြစ်လို့ $1^{-1}=1$ နဲ့ $2^{-1}=2$ ပဲဖြစ်ပါတယ်။ ဒါကြောင့် F5 ဟာလည်းမှန်နေတဲ့အတွက် F ဟာ field ဖြစ်သွားပါပြီ။

တကယ်တော့ သုဒ္ဓကိန်း p တိုင်းအတွက် $F=\{0,1,2,...,p-1\}$ လို့ထားပြီး + နဲ့ \cdot ကို ပုံမှန်ပေါင်းလဒ်နဲ့ မြောက်လဒ်တွေရဲ့ p နဲ့စားရင် ကျန်တဲ့အကြွင်းလို့ သတ်မှတ်ရင် F က field ဖြစ်ပါတယ်။ F1 to F4 ကစစ်ရလွယ်ပေမယ့် F5 ရဲ့ အမြောက်ပြောင်းပြန်ဂုဏ်သတ္တိကိုပြဖို့အတွက်က number theory အပိုင်းဖြစ်သွားပြီမို့ သက်သေတော့မပြတော့ပါဘူး။

ကဲ... ဒီလောက်ဆိုရင်တော့ field တွေရဲ့ဥပမာတွေကို နည်းနည်းပေါက်သွားလောက်ပြီထင်ပါတယ်။ Field တွေကို $\mathbb R$ ရဲ့ generalization လို့မြင်လို့ရပေမယ့် အဲ့သည်လိုမြင်တာနဲ့စာရင် $\mathbb R$ ရဲ့ အပေါင်းနဲ့ အမြောက်တို့ရဲ့ ဂုဏ်သတ္တိတွေကိုချည်း သီးသန့်ခွဲထုတ်ပြီး လေ့လာဖို့ကြိုးစားတယ်လို့ မြင်တာကပိုကောင်းပါလိမ့်မယ်။ ထားပါတော့... "field တစ်ခု F ရဲ့ အပေါင်းထပ်တူရကိန်း 0_F မှာ အမြောက်ပြောင်းပြန်ကိန်း 0_F^{-1} ရှိခဲ့ရင် ဘာဖြစ်မလဲ" တစ်နည်းအားဖြင့် "သုညနဲ့ စားလို့ရရင် ဘာဖြစ်မလဲ" ဆိုတဲ့မေးခွန်းကို ဆက်ဖြေကြည့်ရအောင်။ အရင်ဆုံး field တွေရဲ့ ဂုဏ်သတ္တိလေးတစ်ခုကို ပြချင်ပါတယ်။

Fact 1. For any $a \in F$, we have $0_F \cdot a = 0_F$.

Proof. F4 အရ 0_F ဟာဘာနဲ့ပေါင်းပေါင်း ပေါင်းလိုက်တဲ့ကောင်ပဲပြန်ရတဲ့အတွက်ကြောင့်

$$0_F + 0_F = 0_F$$

ဖြစ်ပါတယ်။ ဒါကြောင့် $0_F \cdot a = (0_F + 0_F) \cdot a$ ဖြစ်ပါတယ်။ ဒါဆိုရင် F3 အရ

$$(0_F + 0_F) \cdot a = 0_F \cdot a + 0_F \cdot a$$

ဖြစ်ပါတယ်။ ဒါဆိုရင်

$$0_F \cdot a = 0_F \cdot a + 0_F \cdot a$$

ကိုရပါပြီ။ အမြင်ရှင်းအောင် $0_F\cdot a=x$ လို့မြင်လိုက်ပါ။ ဒါဆိုရင် x=x+x ကိုရနေပါပြီ။

F5 အရ $x+(-x)=0_F$ ဖြစ်စေမယ့် element -x ဆိုတာရှိပါတယ်။ ဒီ element -x ကို နှစ်ဖက်စလုံးမှာ ပေါင်းထည့်လိုက်ရင်

$$x + (-x) = (x + x) + (-x) \implies 0_F = (x + x) + (-x)$$

ဖြစ်ပါတယ်။ ဒါဆိုရင် F2, F5 နဲ့ F4 အရ

$$0_F = x + (x + (-x)) = x + 0_F = x$$

ဖြစ်လို့ $0_F=0_F\cdot a$ ဆိုတာကိုရပါပြီ။ lacktriangle

ဒီ fact 1 တစ်ခုတည်းနဲ့တင် 0_F^{-1} ရှိရင်ဘာဖြစ်မလဲဆိုတာကို ဖြေလို့ရပါပြီ။ ကဲ \dots 0_F^{-1} ဆိုတာရှိတယ်ပဲဆိုကြပါစို့။ Fact 1 အရ F ထဲက ဘယ် a ကိုယူယူ

$$0_F = 0_F \cdot a$$

ဖြစ်တယ်။ နှစ်ဖက်စလုံးကို 0_F^{-1} နဲ့မြောက်လိုက်တဲ့အခါမှာ

$$0_F \cdot 0_F^{-1} = (0_F \cdot a) \cdot 0_F^{-1} \quad \Longrightarrow \quad 0_F \cdot 0_F^{-1} = (0_F \cdot 0_F^{-1}) \cdot a \quad \Longrightarrow \quad 1_F = 1_F \cdot a \quad \Longrightarrow \quad 1_F = a$$

ဆိုတာကိုရပါတယ်။ ဒါကြောင့် F ရဲ့ element a တိုင်းဟာ 1_F နဲ့သွားတူနေတာမို့ F ထဲမှာ element တစ်လုံးတည်းသာ ရှိရပါမယ်။ ဒါကြောင့် F ဟာ ဥပမာ(4) မှာပြခဲ့တဲ့ element တစ်လုံးတည်းပါဝင်သော field ပဲဖြစ်ရပါလိမ့်မယ်။ ဒါကြောင့် သုညနဲ့စားလို့ရတဲ့ field ဟာ စိတ်ဝင်စားစရာမကောင်းတဲ့ field ပဲဖြစ်ပါတယ်။ တစ်နည်းအားဖြင့် $\mathbb R$ ထဲမှာ သုညနဲ့ စားလို့မရပါဘူး။ အပိုလက်ဆောင်အနေနဲ့ အနုတ်နဲ့ အနုတ်နဲ့မြောက်ရင် ဘာလို့အပေါင်းရလဲဆိုတာကိုပါ သက်သေပြပေးသွားပါမယ်။

Fact 2. For any a in field F, we have $(-1_F) \cdot a = -a$.

Proof. $(-1_F)\cdot a$ ဟာ a ရဲ့အပေါင်းပြောင်းပြန်ကိန်းဖြစ်ကြောင်းပြရမှာပါ။ ဒါကြောင့် $(-1_F)\cdot a$ နဲ့ a ပေါင်းလို့ 0_F ရကြောင်း ပြနိုင်ရင်ရပါပြီ။ ဒါကိုပြရတာက ဂုဏ်သတ္တိတွေလိုမ့်သုံးလိုက်ရုံနဲ့ ရပါတယ်။

$$(-1_F) \cdot a + a = (-1_F) \cdot a + 1_F \cdot a = ((-1_F) + 1_F) \cdot a = 0_F \cdot a = 0_F$$

ဒါကြောင့် $(-1_F)\cdot a=-a$ ဖြစ်ပါတယ်။ lacktriangle

Fact 3. In any field F, $1 \cdot (-1_F) = -1_F$ and $(-1_F) \cdot (-1_F) = 1$.

Proof. $1\cdot (-1_F)=-1_F$ ရကြောင်းကလွယ်ပါတယ်။ Fact 2 မှာ $a=1_F$ ထည့်လိုက်ရုံပါပဲ။ $(-1_F)\cdot (-1_F)$ ကိုကြည့်ရအောင်။ Fact 2 မှာ $a=-1_F$ ယူလိုက်ရင်

$$(-1_F) \cdot (-1_F) = -(-1_F)$$

ကိုရပါတယ်။ $-(-1_F)$ ရဲ့အဓိပ္ပါယ်ဟာ " -1_F နဲ့ပေါင်းရင် 0_F ရတဲ့ကိန်း" ဖြစ်ပါတယ်။ ဒါကြောင့်

$$-(-1_F) + (-1_F) = 0_F$$

ဖြစ်တယ်။ နှစ်ဖက်စလုံးကို 1_F ပေါင်းလိုက်ရင် $(-1_F)+1_F=0_F$ ဖြစ်သွားမှာမို့လို့

$$-(-1_F) = 1_F$$

ကိုရပါလိမ့်မယ် (ကြားထဲကအဆင့်တွေကို အသေးစိတ်စဉ်းစားကြည့်ပါ)။ ဒါကြောင့် $(-1_F)\cdot (-1_F)=1_F$ ကိုရပါပြီ။ lacktriangle

ဒီလိုပဲ သုံးမိမှန်းမသိသုံးနေတဲ့ algebra ဆိုင်ရာကိန်းစစ်ဂုဏ်သတ္တိတွေကို သက်သေပြလို့ရပါတယ်။ လေ့ကျင့်ချင်ရင် အောက်ကလေ့ကျင့်ခန်းလေးတွေကို လေ့ကျင့်ကြည့်ပါ။

လေ့ကျင့်ခန်း (1)။ ။ $a\cdot (-b)=-(ab)$ နဲ့ $(-a)\cdot (-b)=ab$ ဖြစ်ကြောင်း သက်သေပြပါ။

လေ့ကျင့်ခန်း (2)။ ။ $a\cdot b=0_F$ ဖြစ်ပါက $a=0_F$ သို့မဟုတ် $b=0_F$ ဖြစ်ကြောင်း သက်သေပြပါ။

လေ့ကျင့်ခန်း (3)။ ။ $a\cdot b^{-1}$ ကို a/b လို့ရေးရင် $a/b+c/d=(a\cdot d+b\cdot c)/(b\cdot d)$ ဖြစ်ကြောင်းပြပါ။