Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	3	/	0	1	Signature	

Paper Reference(s)

6663/01

Edexcel GCE

Core Mathematics C1 Advanced Subsidiary

Friday 5 June 2009 – Afternoon

Time: 1 hour 30 minutes

Exam	iner's us	e only
Team L	eader's u	ise onl

Materials	required	for	examinatio
Mathamati	aal Earman	1100	

 $\frac{\textbf{Items included with question papers}}{\text{Nil}}$

Mathematical Formulae

(Orange or Green)

Calculators may NOT be used in this examination.

Question Number	Leave Blank
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 11 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

H34262A
W850/R6663/57570 3/5/4

Turn over

advancing learning, changing lives

. Simplify	
(a) $(3\sqrt{7})^2$	
	(1)
(b) $(8+\sqrt{5})(2-\sqrt{5})$	(3)
	(Total 4 marks)

2. Given that $32\sqrt{2} = 2^a$, find the value of a.	(2)	Leave blank
	(3)	
		Q2
	otal 2 maular	
(10	otal 3 marks)	

Given that $y = 2x^3 + \frac{3}{x^2}$, $x \ne 0$, find	
(a) $\frac{dy}{dx}$	
dx	(3)
(b) $\int y dx$, simplifying each term.	
(b) Jy ax, simplifying each term.	(3)

	1	Lea
puestion 3 continued		
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	0	23

		Leave
4.	Find the set of values of x for which	Otalii
	(a) $4x - 3 > 7 - x$	
	(2)	
	(h) 2·2 5· 12 < 0	
	(b) $2x^2 - 5x - 12 < 0$ (4)	
	(c) both $4x - 3 > 7 - x$ and $2x^2 - 5x - 12 < 0$ (1)	
		-1

Question 4 continued	Leave
	-
	_
	_
	_
	-
	_
	-
	-
	-
	-
	_
	-
	_
	_
	-
	-
	_
	-
	-
	-
	_
	_
	-
	_
	-
	-
	- Q4

A 40-year building programme for new houses began in Oldtown in the year 1951 (Year and finished in 1990 (Year 40).	ar 1)
The numbers of houses built each year form an arithmetic sequence with first term a common difference d .	and
Given that 2400 new houses were built in 1960 and 600 new houses were built in 19find	990,
(a) the value of d ,	(3)
(b) the value of a,	(2)
(c) the total number of houses built in Oldtown over the 40-year period.	(3)

Question 5 continued	Lea
Question 5 continued	

Find the value of n	
Find the value of p .	(4)

Duration (continued	b
Question 6 continued	
	-
	.
	.
	.
	-
	.
	.
	.
	.
	Q

A sequence a_1, a_2, a_3, \dots is defined by	
$a_1 = k$,	
$a_{n+1} = 2a_n - 7, \qquad n \geqslant 1,$	
where k is a constant.	
(a) Write down an expression for a_2 in terms of k .	
	(1)
(b) Show that $a_3 = 4k - 21$.	(2)
Given that $\sum_{n=0}^{4} a_n = 43$	
Given that $\sum_{r=1}^{4} a_r = 43$,	
(c) find the value of k .	(4)
	(4)

Question 7 continued	Leave blank
	Q7

8.

Figure 1

The points A and B have coordinates (6, 7) and (8, 2) respectively.

The line l passes through the point A and is perpendicular to the line AB, as shown in Figure 1.

(a) Find an equation for l in the form ax + by + c = 0, where a, b and c are integers.

(4)

Leave blank

Given that l intersects the y-axis at the point C, find

(b) the coordinates of C,

(2)

(c) the area of $\triangle OCB$, where O is the origin.

(2)

Question 8 continued	Leave blank

Question 8 continued	b
	1

Question 8 continued	Le bl
	-
	-
	_
	.
	-
	-
	-
	-
	-
	-
	-
	-
	-
	.
	-
	-
	. 0
	Q8

9. $f(x) = \frac{(3 - 4\sqrt{x})^2}{\sqrt{x}}, x > 0$	
(a) Show that $f(x) = 9x^{-\frac{1}{2}} + Ax^{\frac{1}{2}} + B$, where A and B are constant	ts to be found. (3)
(b) Find $f'(x)$.	(3)
(c) Evaluate f'(9).	(2)

Question 9 continued	Leave blank
	-
	-
	-
	- -
	-
	-
	-
	-
	- -
	-
	-
	-
	-

Question 9 continued	

Question 9 continued	Leave blank
	Q9
(Total 8 marks)	

10. (a) Factorise completely $x^3 - 6x^2 + 9x$	(3)	Leav
(b) Sketch the curve with equation		
$y = x^3 - 6x^2 + 9x$		
showing the coordinates of the points at which the curve meets the <i>x</i> -axis.	(4)	
Using your answer to part (b), or otherwise,		
(c) sketch, on a separate diagram, the curve with equation		
$y = (x-2)^3 - 6(x-2)^2 + 9(x-2)$		
showing the coordinates of the points at which the curve meets the <i>x</i> -axis.	(2)	
		1

Question 10 continued	Leave blank

Question 10 continued	Leave blank

11.	The	curve	C has	equation
,	1110	00110	CIICO	e quarto

$$y = x^3 - 2x^2 - x + 9, \quad x > 0$$

The point P has coordinates (2, 7).

(a) Show that P lies on C.

(1)

(b) Find the equation of the tangent to C at P, giving your answer in the form y = mx + c, where m and c are constants.

(5)

The point Q also lies on C.

Given that the tangent to C at Q is perpendicular to the tangent to C at P,

(c) show that the x-coordinate of Q is $\frac{1}{3}(2+\sqrt{6})$.

(5)

Question 11 continued	Leave

(Total 11 marks)