LaPIS Diagnostic Test Workbook - Mathematics

Name : Dharmesh S

Class: 7

Section : A

School : AKV Public School

Login ID : AKV103

Dharmesh S's Performance Report

Score: 34/40 Percentage: 85.0%

Dharmesh S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	ipal Signature	

Data handling

Topics to be Improved					
Arithmetic mean, mode and median	Mean, Median and Mode				
Chance of probability	Basis of probability				

Hi, here in this video you will learn Mean, Median, Mode

Question: 1

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations.

Arranging the data in ascending order: _____ occurs most number of times. Then, mode of the given data is _____

Question: 2

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

......

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____

Central value of the given data is ______ and it is the _____ of a data.

$\underline{Question: \ 3}$

Marks scored	100	90	80	70
Number of students	4	5	2	1

 $Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$.

Answer:
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation = , number of observation = Therefore, mean =
Arrange the data in ascending order:
Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.
Hi, here in this video you will learn Basics of probability
Question: 4
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events.
Here, The sun rises in the west is event. Water is colourless is event.
Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 5
Probability of sure events is (greater / smaller) than probability of impossible events
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number).
Therefore, Probability of sure event Probability of impossible event.
Question: 6
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have

Geometry

Topics to be Improved Right angle triangle and Basics of Pythagoras property pythagoras property

Hi, here in this video you will learn Pythagoras property

Question: 7

In a right angled triangle, square of the _____ = sum of the squares of the legs.

......

Answer:

Pythagoras theorem is only applicable for ______ triangle. Longest side of the triangle is _____ (hypotenuse/legs) and other two sides are called ____(hypotenuse/ legs).

Pythagoras theorem states that _____

......

Question: 8

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

Given: Base = _____, Altitude = _____,

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

Therefore, hypotenuse of the triangle is _____.

Question: 9

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = ______, length of diagonal = _____

By Pythagoras theorem, $(____)^2 = (___)^2 + (___)^2$ $= __ + ___$

Therefore, diagonal of the rectangle is _____

Number system

Topics to be Improved

Operations on rational numbers

Subtraction of rational numbers

Hi, here in this video you will learn **Operation on rational numbers**

Question: 10

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$$

.....

Question: 11

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$.

Number of shaded square in box A =

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box B =______. Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$

Question: 12

Find the missing values in the given figure.

$$= \begin{array}{c} \\ \\ \\ \\ \\ \end{array}$$

Answer:

One litre =
$$\underline{\hspace{1cm}}$$
 ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given:
$$1 = \frac{7}{10} +$$
 ____ Transposing $\frac{7}{10}$ to other sides, 1 ____ $\frac{7}{10} =$ ____ Therefore, result is ____.

Algebra

Topics to be Improved						
Monomials, binomials, trinomials and polynomials	Types of algebraic expression					
subtraction of algebraic expressions	subtraction of algebraic expressions					

	Hi,	here i	in	this	video	you	will	learn	Types	\mathbf{of}	expression
--	-----	--------	----	------	-------	-----	------	-------	--------------	---------------	------------

Question: 13

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

......

......

The terms in the expression are _______, ______, and _______.

Therefore, there are _____ terms in the expression.

Question: 14

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

\overline{Que}	stion: 15				
$5m^2$	+ m + 0 is a	expression	. (Monomial/ E	Binomial/Trinomia	1)
\underline{Ans}	wer:				
		on $5m^2 + m + 0$ are ter		led a	_ expression.
Hi,	here in this vi	deo you will learn	Subtraction	n on expression	n 2515 - • • • • • • • • • • • • • • • • • • •
Que	stion: 16				
Find	the sum of two ex	xpressions a + b + c a	and $b + c + d$		
\underline{Ans}	<u>wer:</u>				
The The	two terms will get sum of two expres answer is		re(Like	,	
\overline{Que}	<u>stion: 17</u>				
			School A	School B	
		Number of boys	100b	250b	
		Number of girls	150g	200g	
		Number of teachers	25t	45t	
(i)	Total number of	boys in school A and	B is		
(ii)	Total number of	students in school B i	s		
(iii)	How many more	teachers are there in s	school B than se	chool A?	
\underline{Ans}	wer:				
(i)	Number of boys	in school A = in school B = boys in school A and		+ = _	
(ii)	Number of girls i	in school B = in school B = students in school B i	-•	=	

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 18

Solve the following:

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 -2a - \underline{\hspace{1cm}}
 \end{array}$$