

FIG. 1A

FIG. 1B

610 630 650
TGAAACACCAACTATACAAAAAGGATCTTACACATTGTCCATGGCTTCTCAGCTTTAA
E T P T I Q K G S Y T F V P W L L S F K
670 690 710
AAGGGGAAGTGCCTAGAAGAAAAAGAGAATAAAATATTGGTCAAAGAAACTGGTTACTT
R G S A L E E K E N K I L V K E T G Y F
730 750 770
TTTATATATGGTCAGGTTTATATACTGATAAGACCTACGCCATGGACATCTAATTCA
F I Y G Q V L Y T D K T Y A M G H L I Q
790 810 830
GAGGAAGAAGGTCCATGTCTTGGGATGAATTGAGTCTGGTACTTGTTCGATGTAT
R K K V H V F G D E L S L V T L F R C I
850 870 890
TCAAAATATGCCTGAAACACTACCAATAATTCTGCTATTAGCTGGCATGCAAAACT
Q N M P E T L P N N S C Y S A G I A K L
910 930 950
GGAAGAAGGAGATGAACCTCAACTTGCAATACCAAGAGAAAATGCACAAATATCACTGGA
E E G D E L Q L A I P R E N A Q I S L D
970 990 1010
TGGAGATGTCACATTTGGTGCATTGAAACTGCTGTGACCTACTTACACCATGTCTGT
G D V T F F G A L K L L
1030 1050 1070
AGCTATTTCTCCCTTCTGTACCTCTAAGAAGAAGAATCTAACTGAAAATACCAA
1090 1110 1130
AAAAAAAAAAAAAAAAAAAAAGTAGTTAAAAAAAAAAAAAA
1150 1170
AAAAAAAAAAAAAAACTCGGAGGGGG

FIG. 2A

FIG. 2B

610 630 650
AAAGGAACCTACACATTGTTCCATGGCTCTCAGCTTAAAAGAGGAAATGCCTGGAG
K G T Y T F V P W L L S F K R G N A L E
670 690 710
GAGAAAGAGAACAAAATAGGGTGAGGCCAACAGGCTATTCCTCATCTACAGGCCAGGTT
E K E N K I V V R Q T G Y F F I Y S Q V
730 750 770
CTATACACGGACCCCCTTTGCTATGGGTCACTGCATCCAGAGGAAGAAAGTACACGTC
L Y T D P I F A M G H V I Q R K K V H V
790 810 830
TTTGGGGACGAGCTGAGCCTGGTGACCCCTGGTCCGATGTATTCAAATATGCCAAAACA
F G D E L S L V T L F R C I Q N M P K T
850 870 890
CTGCCAACAAATTCTGCTACTCGGCTGGCATCGCGAGGCTGGAAGAAGGAGATGAGATT
L P N N S C Y S A G I A R L E E G D E I
910 930 950
CAGCTTGCAATTCTCGGGAGAACAGATTCACGCAACGGAGACGACACCTTCTTT
Q L A I P R E N A Q I S R N G D D T F F
970 990 1010
GGTGCCCTAAAATGCTGTAACTCACCTGCTGGAGTGCCTGATCCCTCGTCTTC
G A L K L L
1030 1050 1070
TCTGTACCTCCGAGGGAGAACAGACGACTGGAAAAACTAAAAGATGGGAAAGCCGTCA
1090 1110 1130
GCGAAAGTTCTCGTGACCCGTTGAATCTGATCCAAACCAGGAAATATAACAGACAGCC
1150 1170 1190

FIG. 3A

1	Hagp3	MDDSTER. EQ	SRLTSCLKKR	EEMKLKECVS	ILPRKESPSV	RSSKD GKLLA
	Magp3	MDESAKT LPP	PCLCFCSEKG	EDMKVG YDPI	TPQKEEGAWF	GICRDGRLLA
	cons	MD. S.....L..C..K.	E.MK.....E.....DG. LLA	
50						
51	Hagp3	ATLLLALLSC	<u>CLTVVSFYQV</u>	<u>AALQGDLASL</u>	RAELQGHAE	KLPAGAGAPK
	Magp3	<u>ATLLLALLSS</u>	<u>SETAMSLYOL</u>	<u>AALQADIMNL</u>	RMELQS YRGS	ATPAAGAPE
	cons	ATLLLALLS.	..T..S.YQ.	AALQ.DL..L.R.ELQ.....	..PA.	AGAP.
100						
101	Hagp3	AGLEEAPAVT	AGLKIFEPAA	PGEGNSSQNS	RNKRAVQGPE	ET.....
	Magp3LT	AGVKLLPAA	PRPHNSSRGH	RNRRAFQGPE	ETEQDVDLSA
	consT	AG.K...P.A.P...	NSS....	RN.RA.QGPE	ET.....
150						
151	Hagp3	B
	Magp3	PPAPCLPGCR	HSQHDDNGMN	LNNTI QDCLO	LIADSETPTI	QKGSYTFVPW
	cons
200						

FIG. 3B

B'	C'	C	D	E	250
Hagp3	LLSEFKRG SAL	<u>E</u> EKENK <u>L</u> VK	ETGY <u>FFF</u> IYQ <u>O</u>	VLYT <u>DK</u> T <u>Y</u> AM	<u>G</u> H <u>L</u> I <u>Q</u> R <u>K</u> KVH
Magp3	LLSEKRG N AL	<u>E</u> EKENK <u>L</u> V <u>R</u>	QTGY <u>FFF</u> IY <u>SO</u>	VLYT <u>DK</u> P <u>IE</u> AM	<u>G</u> H <u>V</u> I <u>Q</u> R <u>K</u> KVH
cons	LLSFKRG.	AL EEKENKI.V.	.TGYFFIY.Q	VLYTD..AM	GH.IQRKKVH

F	G	H	300	
251	VFGDE <u>LSLV</u> T	<u>L</u> ERC <u>CI</u> QNMP <u>E</u>	TIPNN <u>NSC</u> YSA	<u>G</u> IA <u>K</u> LE <u>E</u> EG <u>DE</u>
Hagp3	VFGDE <u>LSLV</u> T	<u>L</u> FRC <u>CI</u> QNMP <u>K</u>	TIPNN <u>NSC</u> YSA	<u>G</u> IA <u>R</u> LE <u>E</u> EG <u>DE</u>
Magp3	VFGDE <u>LSLV</u> T	<u>L</u> FRC <u>CI</u> QNMP.	TIPNN <u>NSC</u> YSA	<u>G</u> IA.u.LEE <u>G</u> DE
cons	VFGDE <u>LSLV</u> T	LFR <u>CI</u> QNMP.		.QLA <u>I</u> PRENA

I	301	317
Hagp3	QISLDG <u>DV</u> T <u>F</u>	<u>E</u> GALK <u>LL</u>
Magp3	QISRNG <u>DD</u> T <u>F</u>	<u>E</u> GALK <u>LL</u>
cons	QIS..GD.TF	FGALKLL

FIG. 4A

FIG. 4B

FIG. 5A

FIG. 5B

FIG. 5C

FIG. 5D

FIG. 5E

FIG. 5F

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 6D

FIG. 6E

FIG. 6F

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 7D

FIG. 7E

FIG. 7F

FIG. 8A

FIG. 8B

FIG. 8C

FIG. 9A

B' B' loop

B C C

D D/E loop

E

Consensus

139- EKKELRKVAHLLGKSN--	A-LS-GV-L-N--	L-W	-L-VV--	-GLYFIYSQV-F+GQ-CP-----	-V-L
137- EKKEPRSVAHLLTGPNPH--	SRS-MPLEWEDTYGI--VLLS-GVKYKK--	GGLVINNETGLYFVYSKVFQGOSCN-----	-NLPI	Human FasL	
136- ETKKPRSVAHLLTGNTGPR--	SRS-IPLWEWEDTYGT--ALIS-GVKYKK--	GGLVINNETGLYFVYSKVFQGOSCN-----	-NQPL	Mouse FasL	
116- GDQNPOQIAAHVISEASS--	SRS-IPLWEWEDTYGT--ALIS-GVKYKK--	GGLVINNETGLYFVYSKVFQGOSCN-----	-NQPL	Rat FasL	
115- GDEDPQIAAHVVSEANS--	KTT-SVLQWAEGYY--TMSNNNLVTLENG-KQLTVKRQGLYYIYAQVTFCSNREA-----	SSQAPF	Human CD40L		
142- ---VTQDCLOLIADSETPTIO-----	NAA-SVLQWAKGYY--TMKSNLVMLENG-KQLTVKREGLYYYTQVTFCSNREP-----	SSQRF	Mouse CD40L		
163- LRNIIQDCIQLIADSDTPTIR-----	KGSY--TFVPWLSEFKR-GSALE---EKEN--KIL-VKETGYFFIVGVLYT-DKT-----	YAMGHL	Human AGP3		
157- GKPEAQOPFAHTLTINAASIP-----	KGTY--TFVPWLSEFKR-GNALE---EKEN--KI-VVRQDGYFFIVGVLYT-DPI-----	FAMGHV	Mouse AGP3		
158- SKLEAQOPFAHTLTINATDIP-----	SGSHKVVLSSWYHDRGW--AKISN-MTLSNG-K-LRVNQDGFFYYLYANICFRHHETS-----	GSVPTD	Mouse OPGL		
116- ERGPQRVAAHITGTRGRSNTLSSPNSKNEKALGRKINSWESSRSGH-SFLSN-LHLRNG-E-LVIEKEKGFYIYSOTYFRFOEE-----	GDLATE	Human OPGL			
120- GGRPQKVAAHITGITRRSNSSALIPISKDGKTLGQKIESWESSRSRKH-SFLNH-VLFNRNG-E-LVIEQEGLYYIYSOTYFRFOEAEDASKMVSKD-----	I-KENT	Human TRAIL			
92- RAPFFKSWAYLQVAKH-----	LINK-TKLSWNKD-----ILH-GVRYQD--GNLVIQFPGLYFIVCQLQFLVQ-CP-----	NNSVDL	Mouse CD30L		
97- STPSKKSWAYLQVSKH-----	LNN-TKLSWNEDG-----TIH-GLIYQD--GNLIVQFPGLYFIVCQLQFLVQ-CS-----	NNSVDL	Mouse CD30L		
82- DLSPGLPAAHLLIGAP-----	LKGQ-GLGWETTKEQ--AFLITSGTOFSDA-EGLALPQDGGLYCLVGYGRAPPGGDPQGRSV	Human Lyt β			
148- DLNPELPAAHLLIGAW-----	MSGQ-GLSWEASQEE--AFLRSQAQSPT-HGLALPQDGVYLYCHVGYRGRTPPA-GRSRARS	Mouse Lyt β			
57- AHSTLKPAAHLLIGDP-----	SKQNS-LLMRANTDR--AFLQDGFSLSN--NSLLVPTSGIYFVYSQVVFSGECSSPRAIPTPIYL	Human TNFB			
54- THGILKPAAHLLGVYP-----	SKQNS-LLMRASTDR--AFLRHGFSLSN--NSLLIPTSGIYFVYSQVVFSGECSSPRAIPTPIYL	Mouse TNFB			
82- RTPSDKPVVAHVVANP-----	QAEQQ-LQWLNRRAN--ALLANGVELRD--NQLVVPSEGLYLISQVLFKGQGCP-----	Human TNF α			
85- QNSSDKPVVAHVVANH-----	QVEEQ-LEWLSQRAN--ALLANGMDLKD--NQLVVPADGLYLVYSQVLFKGQGCP-----	Mouse TNF α			

FIG. 9B

E	E/F loop	F	F/G loop	G	H	H	H/I loop	I
-H-V---V-	-Y P-----LLS---T--C-----	-W-----S-YLGGVF-L---GD-LYVN-----S-----F-----TFGGLFKL	Consensus					
08- SHKVYMRNS-----KYPQDLMMEGMMSYC-----	-T TGQMMWASSYLGAVFNLTSA DHLYVN VSELSLVNFEEESQ-TFFG LYKL	-281 Human FasL						
06- NHKVYMRNS-----KYPEDLVLMEEKRLNYC-----	-TTGQIWAHSSYLGAVFNLTSA DHLYVN VSI QSLINFEESK-TFFG LYKL	-279 Mouse FasL						
05- SHKVYMRNF-----KYPGDVLMEEKLN YC-----	-TTGQIWAHSSYLGAVFNLTVA DHLYVN VSI QSLINFEESK-TFFG LYKL	-278 Rat FasL						
90- IASLC LKS-----PGRFERILLRAANTHSSAKPC-----	-GQQSIHLGGVFELQGASV FNNTDPQSVSHGTGF-TSFGLLKL	-261 Human CD40L						
89- IVGLWLKP-----SIGSERILLKAANTHSSSQLC-----	-EQQS VHLLGGVFELQGASV FNNTASQV1H RVGF-SSFG LLKL	-260 Mouse CD40L						
12- IQRKKVHV-----FGDELSLVTLFRCIQNM PETL-----	-P-NNSCYSAGIAKLEEGDELQLAIPRENAQISLDGVTFGALKL L	-285 Human AGP3						
36- IQRKKVHV-----FGDELSLVTLFRCIQNM P KTL-----	-P-NNSCYSAGIAKLEEGDEIQLAIPRENAQISRN GDDTFGALKL L	-309 Mouse AGP3						
34- YLQLMVYVVKTSI-----KIPSSHNL MKGG STKN WSGN-----SE-----FH FY SINVGGFFKLRAGEEISIQVSNPSLLDPDQDA-TYFGAF KVQ DID	-316 Mouse OPL							
35- YLQLMVYVVKTSI-----KIPSSHTLMKGG STKYWSGN-----SE-----FH FY SINVGGFFKLRSGEEISIEVS NPSLLDPDQDA-TYFGAF KVQ DID	-317 Human OPL							
01- K-NDKOMVQYIYK YT SYPDPI LMK SARN SCWSKD-----AE-----Y GLY SIYQGGFIFELKENDRIFVSVTNEHLLIDMHEA-SFGAFLVG	-281 Human TRAIL							
10- KVRTKQLVQYIYK YT SYPDPI LMK SARN S CWSRD-----AE-----Y GLY SIYQGGFIFELKNDRI FVS VTNEHLLDQEA-SFGAFLIN	-291 Mouse TRAIL							
5.9- KLELLIN-----KHIKKOALTVTVCESGMOTK-----HYVQN LSQFLL DYLQVN TISVNVDTFOYIDTSTFPLENVLSI FLYNSND	-234 Human CD30L							
6.4- TLQLLIN-----SKIRKQTLTVTVCESGVQSK-----NIYQN LSQFLL HYLQVN STISVRVDNFOYVDTNTFP LDNVLSVFLYSSSD	-239 Mouse CD30L							
5.8- TIRSSLYRAGGA-----YGP GTPELLEGAETPVLD PARRQGYG PLWYTSVFGGGIVQLRRGERVYVNI SHP DMVDFARGK-TFFG A MVG	-244 Human Lytβ							
23- TLRSALYRAGGA-----YGRGSPELLEGAETVTPVVDPI-----GYGSLWYT SVFGGGLAQLRSGERVYVNI SHP DMVDRRGK-TFFG A MVG	-306 Mouse Lytβ							
32- AHEVQLFSS-----QYPFHVPLLSSQKMVY P-----GLQEPWLHSMYHGAAFQLTQGDQLS THTDGIPHLVLS PST-VFFG AF AL	-205 Human TNFβ							
2.9- AHEVQLFSS-----QYPFHVPLLSSA QKS VY P-----GLQGPWVRS MYQGAVFLLSKGDQLS THTDGISHLHFSPSS-VFFG AF AL	-202 Mouse TNFβ							
5.3- THTISRIV-----SYQTKVNLLSAIKSPC QRETE PEG-----AEAKPWEPIYLGGV FQLEKGDR LSAEINRPDYL DF AE SGQV YFGVIAL	-233 Human TNFa							
5.5- THTVSRFAI-----SYQE KVNLLS AVKSPCPKD TPEG-----AEIKPWEPIYLGGV FQLEKGDR LSAE VNLP KYLDFAE SGQV YFGVIAL	-235 Mouse TNFa							

FIG. 10A FIG. 10D FIG. 10G

FIG. 10B FIG. 10E FIG. 10H

FIG. 10C FIG. 10F FIG. 10I

FIG. 11A

FIG. 11B

FIG. 11C

FIG. 12A

FIG. 12B

FIG. 12C

FIG. 12D

FIG. 13A

FIG. 13D

FIG. 13G

FIG. 13B

FIG. 13H

FIG. 13E

FIG. 13F

FIG. 13I

FIG. 14A

FIG. 14B

FIG. 14C

FIG. 15

FIG. 16

Alignment of AGP3-binding pools 13B4 and 13H11
N-terminal sequence

1 GTCGACCCACCGTCCG.....ATCCTGAGTAATGAGTGGCCTGGGCC 43
||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
1 GTCGACCCACCGTCCGAATAAGCATCCTGAGTAATGAGTGGCCTGGGCC 50
||||| ||||| ||||| ||||| ||||| ||||| |||||
44 GGAGCAGGCAGGTGGCGGAGCCGTGTGGACCAGGAGGAGCGCTTCCA 93
||||| ||||| ||||| ||||| ||||| ||||| |||||
51 GGAGCAGGCAGGTGGCGGAGCCGTGTGGACCAGGAGGAGCGCTTCCA 100
||||| ||||| ||||| ||||| ||||| |||||
94 CAGGGCCTGTGGACAGGGTGGCTATGAGATCCTGCCCGAAGAGCAGTA 143
||||| ||||| ||||| ||||| ||||| |||||
101 CAGGGCCTGTGGACAGGGTGGCTATGAGATCCTGCCCGAAGAGCAGTA 150
||||| ||||| ||||| |||||
144 CTGGGATCCTCTGCTGGGTACCTGCATGTCCCTGCAAAACCATTGCAACC 193
||||| ||||| ||||| ||||| |||||
151 CTGGGATCCTCTGCTGGGTACCTGCATGTCCCTGCAAAACCATTGCAACC 200
||||| ||||| |||||
194 ATCAGAGCCAGCGCACCTGTGCAGCCTCTGCAGGTCACTCAGCTGCCGC 243
||||| ||||| |||||
201 ATCAGAGCCAGCGCACCTGTGCAGCCTCTGCAGGTCACTCAGCTGCCGC 250
|||||
244 AAGGAGCAAGGCAAGTTCTATGACCATCTCCTGAGGGACTGCATCAGCTG 293
||||| |||||
251 AAGGAGCAAGGCAAGTTCTATGACCATCTCCTGAGGGACTGCATCAGCTG 300
|||||
294 TGCCTCCATCTGTGGACAGCACCCCTAACGAAATGTGCATACTCTGTGAGA 343
||||| |||||
301 TGCCTCCATCTGTGGACAGCACCCCTAACGAAATGTGCATACTCTGTGAGA 350
|||||
344 ACAAGCTCAGGAGCCAGTGAACCTTCCACCAGAGCTCAGGAGACAGCGG 393
||||| |||||
351 ACAAGCTCAGGAGCCAGTGAACCTTCCACCAGAGCTCAGGAGACAGCGG 400

FIG. 17

Human AGP3 receptor sequence

GTCGACCCACCGTCCGATCCTGAGTAATGAGTGGCTGGGCCGGAGCAGGCAGGGTGGC
M S G L G R S R R G G
CGGAGCCGTGTGGACCAGGAGGAGCGCTTCCACAGGGCCTGTGGACAGGGGTGGCTATG
R S R V D Q E E R F P Q G L W T G V A M
AGATCCTGCCCGAAGAGCAGTACTGGGATCCTCTGCTGGTACCTGCATGTCCCTGCAAA
R S C P E E Q Y W D P L L G T C M S C K
ACCATTTGCAACCATCAGAGCCAGCGCACCTGTGCAGCCTCTGCAGGTCACTCAGCTGC
T I C N H Q S Q R T C A A F C R S L S C
CGCAAGGAGCAAGGAAGTTCTATGACCATCTCCTGAGGGACTGCATCAGCTGTGCCCTCC
R K E Q G K F Y D H L L R D C I S C A S
ATCTGTGGACAGCACCTAACGAAATGTGCATACTCTGTGAGAACAGTCAGGAGGCCA
I C G Q H P K Q C A Y F C E N K L R S P
GTGAACCTTCCACCAAGAGCTCAGGAGACAGCGGAGTGGAGAACATTAGAC
V N L P P E L R R Q R S G E V E N N S D
AACTCGGAAGGTACCAAGGACTGGAGCACAGAGGCTCAGAACAGTCAGCTCTCCG
N S G R Y Q G L E H R G S E A S P A L P
GGGCTGAAGCTGAGTGCAGATCAGGTGGCCCTGGTCTACAGCACGCTGGGCTCTGCC
G L K L S A D Q V A L V Y S T L G L C L
TGTGCCGTCCCTGCTGCTCTGGTGGCGGTGGCCTGCTTCCTCAAGATGAGGGGGAT
C A V L C C F L V A V A C F L K M R G D
CCCTGCTCCTGCCAGCCCCGCTCAAGGCCCCGTCAAAGTCCGCCAAGTCTTCCCAGGAT
P C S C Q P R S R P R Q S P A K S S Q D
CACCGCGATGGAAGCCGGCAGCCCTGTGAGCACATCCCCGAGCCAGTGGAGAAGCTGCAGC
H A M E A G S P V S T S P E P V E T C S
TTCTGCTTCCCTGAGTGCAGGGGCCACCGCAGGAGAGCGCAGTCACGCCCTGGGACCCCC
F C F P E C R A P T Q E S A V T P G T P
GACCCCACCTTGCTGGAAGGTGGGGGTGCCACACCAGGACCACAGTCCTGCAGCCTTG
D P T C A G R W G C H T R T T V L Q P C
CCACACATCCCAGACAGCGGCCCTGGCATTGTGTGCTGCCAGGAGGGGGCCCA
P H I P D S G L G I V C V P A Q E G G P
GGTGCATAAAATGGGGTCAGGGAGGGAAAGGAGGAGGAGAGAGATGGAGAGGGAG
G A
AGAGAAAGAGAGGGTGGGAGAGGGGAGAGAGATATGAGGAGAGAGAGACAGAGGGCAG
AGAGGGAGAGAAACAGAGGGAGACAGAGAGGGAGAGAGAGACAGAGGGAGAGAGACAGA
GAGGAAGAGAGGGAGAGAGGGAAAGAGGGAGAGAGAGAGAGAGAGACAGGCAGAGAAGGAGA
GAGGCAGAGAGGGAGAGAGGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG
GACAGAGAGAGATAGAGCAGGGAGGTGGGGCACTCTGAGTCCCAGTCCAGTGCAGCTG
TAGGTGTCATCACCTAACACACGTGCAATAAGTCCTCGTGCCTGCTCACAGCCC
CCGAGAGCCCCCTCCTCCTGG

FIG. 18

AGP3 receptor protein structure

MSGLGRSRRGGRSRVDQEERFPQGLWTGVAMR

SCPEEQYWDPPLLGTcmsCKTICNHQSORTCAAFCRSL	I
SCRKEQGKFYDHLLRDCISCASICGQHPKQCAYFCENK	II
LRSPVNLPPELRRQRSGEVENNSDNSGRYQGLEHRGSE ASPALPGLKLSADQVAVYS	stalk
<u>TLGLCLCAVLCCFLVAVACFL</u>	TM
KMRGDPCSCQPRSRPRQSPAKSSQDHAMEAGSPVSTSP EPVETCSFCFPECRAPTQESAFTPGBTPTCAGRWGCHT RTTVLQPCPHIPDSGLGIVCVPAQEGGPGA	IC

FIG. 19

Alignment of AGP3 receptor and TNFR1 extracellular domain

10	20	30	40	50	60	
LGRSRRGGRSRVDQEERFPQGLWTGVAMRSCPEEQYWDPLLGTTCMSCKTICNHQS-QR						AGP3R
: : :: :: :						
VLLELLVGIYPSGVIGLVPHLGDRKRDSCPQGKYIHPQNNNSIC--C-TKCHKGTYLYN						TNFR1
20	30	40	50	60	70	
70	80	90	100	110		
TCAAFCRSLSCRK-EQGKF-YDHLLRDCISCASICGQHPKQCAYFCENKLRS PVNL PPE						AGP3R
: : : : : : : :						
DCPGPGQDTDCRECESGSFTASENHLRHCLSC-SKCRKEMGQVEISSCTVDRDTVC GCRK						TNFR1
80	90	100	110	120		

FIG. 20

Human AGP3 receptor mRNA tissue distribution

FIG 21

A

B

