The marginal efficiency of active search

Christopher Huckfeldt¹

¹Cornell (through 11:59am tonight)

SED meetings

June 30, 2022

Background

- Two types of non-employed workers willing to accept a job (BLS)
 - Passive searchers: e.g., waits for an employer to contact them
 - ► Active searchers: e.g., contacts an employer about a position

Active searchers find jobs at higher rate, but expend effort

Background

- Two types of non-employed workers willing to accept a job (BLS)
 - Passive searchers: e.g., waits for an employer to contact them
 - Active searchers: e.g., contacts an employer about a position Active searchers find jobs at higher rate, but expend effort
- Existing literature treats active and passive search as perfect substitutes, e.g. Blanchard and Diamond (1990)
 - Marginal efficiency of active and passive search are fixed
 - Constant micro-elasticity of unemployment w/r.t. UI benefits

Background

- Two types of non-employed workers willing to accept a job (BLS)
 - Passive searchers: e.g., waits for an employer to contact them
 - Active searchers: e.g., contacts an employer about a position

Active searchers find jobs at higher rate, but expend effort

- Existing literature treats active and passive search as perfect substitutes, e.g. Blanchard and Diamond (1990)
 - Marginal efficiency of active and passive search are fixed
 - Constant micro-elasticity of unemployment w/r.t. UI benefits
- This paper:
 - Study standard DMP model with active and passive search
 - Identify restriction implied by perfect substitutability (and reject)
 - ► Estimate elasticity of substitution < 1, explore implications

What I do, 1/2

(constant marginal efficiency of active search?)

- ► Formulate standard DMP model w/ active & passive search
 - Active searcher expends effort to find job, passive does not
 - Returns to active and passive search given by fixed parameters
- Derive restriction: active-passive ratio of job-finding probabilities has unit elasticity in average search effort
- ► Time-series data: elasticity is negative & statistically significant
- Rejection of perfect substitutability in DMP

What I do, 1/2

(constant marginal efficiency of active search?)

- ► Formulate standard DMP model w/ active & passive search
 - Active searcher expends effort to find job, passive does not
 - Returns to active and passive search given by fixed parameters
- Derive restriction: active-passive ratio of job-finding probabilities has unit elasticity in average search effort
- ► Time-series data: elasticity is negative & statistically significant
- Rejection of perfect substitutability in DMP
- ▶ Show from individual-level data: when aggregate active search is high,
 - Active search effort is less effective
 - Penalty from purely passive search is lower

Suggestive of crowding-out via diminishing returns

What I do, 2/2

(diminishing marginal efficiency of active search.)

- Back to theory: allow for crowding-out via CES aggregator
 - ightharpoonup Relax assumption that elas. of subst. btwn active/passive $=\infty$
 - Marginal efficiency of active search no longer constant
- Establish that CES search aggregator is equivalent to linear aggregator with separate matching functions for active and passive search
- Estimate "new" equation for active-passive ratio from the data
 - Recover parameters of aggregator w/ finite elasticity
 - ► Elasticity of substitution less than one
- Application 1: Optimal policy under Bailey-Chetty formula
- Application 2: Failure of Hosios condition

Why care? Unemployment Insurance during a recession

- Active search of the non-employed is higher during recessions
 - ► Along both extensive and intensive margins
 - See also Shimer (2004), Mukoyama et al. (2018), etc.
- ► Elast'y of subst. $< \infty \Rightarrow$ marginal efficiency of active search falls
- UI is less distortionary when marginal efficiency of active search is low
 - Microelasticity falls
 - Independent of surplus splitting mechanism (& wage elasticity)
 - Bailey-Chetty formula says you can support a higher level of UI
- Rationalizes estimates indicating only moderate responses of unemployment from recessionary expansions of UI

Theory

(to generate restriction)

Setting

- ightharpoonup All jobs generate y_t units of output
- Large measure of firms post v_t vacancies
- Representative family à la Andolfatto (1995) and Merz (1996)
 - Unit measure of workers indexed by i within each family
 - $ightharpoonup u_t$ workers are non-employed and search $1 u_t$ are employed Allows for curvature in marginal utility of consumption
- Search of non-employed can be passive and/or active
- Contacts generated through matching function m_t
 - ▶ Note: matching efficiency can vary with *t*

Active and passive search

- Non-employed inelastically provide one unit of passive search
- Non-employed workers choose $s_{i,t}^A$ units of active search, subject to
 - Fixed costs, $\varsigma_{i,t} \sim \Gamma$ drawn *iid* at rate λ
 - ightharpoonup Convex costs, $c\left(s_{i,t}^A\right)$
- Flexible to different notions of active search:
 - ► Intensive & extensive margin: $s_{i,t}^A \in \mathbb{R}_+$ (FMST 2022)
 - Extensive margin only: $s_{i,t}^A \in \{0,1\}$ (KMRS 2017)

Matching function and job-finding probabilities

▶ Job-finding rate, $f_{i,t}$

$$f_{i,t} = \mathbf{s}_{i,t} \cdot \left(\frac{m_t(\mathbf{s}_t, \mathbf{v}_t)}{\mathbf{s}_t}\right) \tag{*}$$

with CRS matching function, $m_t(s_t, v_t)$

► Search efficiency, *s_{i,t}*

$$\mathbf{S}_{i,t} = \alpha_1 \cdot \mathbf{S}_{i,t}^{\mathbf{A}} + \alpha_0 \tag{**}$$

ightharpoonup Aggregate search efficiency, s_t

$$s_t = \int_i s_{i,t} d\Gamma_t^u$$

Optimal active search

- Flow surplus of employment is increasing in fixed cost of search $\varsigma_{i,t}$
- Can show
 - Active search $s_{i,t}^A$ increasing in fixed cost $\varsigma_{i,t}$ up to some $\zeta_t > 0$
 - Workers with $\varsigma_{i,t} > \zeta_t \text{ set } s_{i,t}^A = 0$
- ▶ Generates endogenous distributions Γ_t^u and Γ_t^e of workers over $\varsigma_{i,t}$
- ► Thus, $\Gamma_t^u(\zeta_t)$ of non-employed are engaged in active search

Restriction: active-passive ratio and average active search

▶ Restriction in active-passive ratio: $\bar{t}_t^{\rm A}/\bar{t}_t^{\rm P}$ and \bar{s}_A^*

$$\frac{\overline{f}_t^A}{\overline{f}_t^P} - 1 = \frac{\left(\alpha_1 \cdot \overline{s}_t^{A,*} + \alpha_0\right) \left(\frac{m_t(s_t, v_t)}{s_t}\right)}{\alpha_0 \left(\frac{m_t(s_t, v_t)}{s_t}\right)} - 1 = \left(\frac{\alpha_1}{\alpha_0}\right) \cdot \overline{s}_t^{A,*}$$

from eqn's (*) and (**)

- ► Unit elasticity in $\bar{\mathbf{s}}_{t}^{A,*}$
- All other aggregate quantities drop out!
 - ► Note: match efficiency differenced out
- ➤ Similar restriction appears in Krusell, Mukoyama, Rogerson, and Sahin (2017, AER) & Faberman, Mueller, Sahin, and Topa (2022, ECTA) & ...

the data

Bringing the restriction to

CPS, 1996-2019

- Starting in 1996, CPS records following for jobless respondents:
 - Whether the respondent would be willing to accept a job
 - ▶ Whether the worker is engaged in nine methods of active search
 - ▶ If # search methods = 0, why no active search?
- Non-employed worker willing to accept a job is
 - Active searcher if # search methods > 0
 - Passive searcher: if # search methods = 0 & "able" to accept work
- # of search methods highly correlated with time spent searching (Mukoyama, Patterson, and Sahin 2018) ⇒ measure of search effort
- Note: excluding temporary-layoff for practical and conceptual reasons

Search and job-finding probabilities

The active-passive ratio of job-finding prob's and aggregate search

	Frac.	# search	A-P ratio
	searching	methods	in JFP's
mean(x)	0.8	1.9	1/0.75
std(x)/std(Y)	1.7	2.8	9.2
corr(x, Y)	-0.69	-0.60	0.50

- ▶ Both frac. searching & # of search methods is countercyclical
 - ➤ See also Shimer (2004), Faberman and Kudlyak (2016), Mukoyama, Patterson, and Sahin (2018)
- Active-passive ratio is procyclical

Search and job-finding probabilities

Testing the restriction

Recall restriction:

$$\log\left(\frac{\overline{f}_t^A}{\overline{f}_t^P} - 1\right) = \log\left(\frac{\alpha_1}{\alpha_0}\right) + \log\overline{\mathbf{S}}_t^{A,*}$$

Theory predicts unit elasticity

- **Estimated elasticity from data:** -5.47 (SE= 0.765)
- Robust to:
 - Restricting active searchers to low duration of unemployment
 - Disaggregating by gender, age, education, region, marital status ...
- Qualitative rejection of DMP w/ perfect substitution of active & passive

An unrestricted CES search aggregator

What went wrong

- Reject restriction from perfect substitution of active/passive
 - ightharpoonup Perfect substitutes \iff CES with elasticity of subst. $= \infty$
- Additional findings from micro-level data:
 - Active search less effective when aggregate search is higher
 - Penalty to passive searchers decreasing in aggregate search
- Suggests efficiency of active search diminishing in aggr. active search
 - ightharpoonup w/ CES, requires elasticity of subst. $< \infty$
- Next: estimate parameters of CES over active/passive ratio with unrestricted elasticity

CES aggregator for search effort

▶ Aggregate search effort s_t given by CES aggregator over $s_{A,t}$ and $s_{P,t}$

$$\mathbf{s}_t = \left(\omega \ \mathbf{s}_{A,t}^{\rho} + (\mathbf{1} - \omega) \mathbf{s}_{P,t}^{\rho}\right)^{\frac{1}{\rho}}$$

Aggregate active & passive search satisfy

$$s_{A,t} = \int^{\zeta_t} s_{i,t}^A d\Gamma_t^u = (\Gamma_t^u(\zeta_t)u_t) \cdot \overline{s}_{A,t}^*, \quad s_{P,t} = \int d\Gamma_t^u = u_t$$

 \blacktriangleright $ME_{A,t}$ and $ME_{P,t}$ are marginal efficiencies of active and passive search

$$extit{ME}_{ extit{A},t} = rac{\partial extit{s}_t}{\partial extit{s}_{ extit{A},t}} = \omega \cdot \left(rac{ extit{s}_t}{ extit{s}_{ extit{A},t}}
ight)^{1-
ho}, \quad extit{ME}_{ extit{P},t} = rac{\partial extit{s}_t}{\partial extit{s}_{ extit{P},t}} = (1-\omega) \cdot \left(rac{ extit{s}_t}{ extit{s}_{ extit{P},t}}
ight)^{1-
ho}$$

What is a CES search aggregator?

Equivalence: separate submarkets for active and passive search

$$m_t(s_t, v_t) = m_t(ME_{A,t} \cdot s_{A,t}, \alpha_t \cdot v_t) + m_t(ME_{P,t} \cdot s_{P,t}, (1 - \alpha_t) \cdot v_t)$$

with

$$lpha_t = lpha(s_{A,t}/s_{P,t}) = rac{ extit{ME}_{A,t} \cdot s_{A,t}}{s_t} = rac{s_{A,t}^
ho}{s_{A,t}^
ho + s_{P,t}^
ho}, \quad
ho \leq 1$$

- Result obtains through constant returns
- ▶ Vacancy share of active search α_t analogous to factor share

Returns to search

▶ The job-finding probability $f_{i,t}$ of a worker with search efficiency $s_{i,t}$ is

$$f_{i,t} = \mathbf{s}_{i,t} \cdot \left(\frac{m_t\left(\mathbf{s}_t, \mathbf{v}_t\right)}{\mathbf{s}_t} \right)$$

▶ The search efficiency $s_{i,t}$ of a worker supplying $s_{i,t}^A$

$$s_{i,t} = ME_{A,t} \cdot s_{i,t}^A + ME_{P,t} \cdot 1$$

by linear homogeneity of the CES search aggregator

Nests prior case when $\rho = 1$:

$$\mathbf{s}_{i,t} = \left(\underbrace{\omega}_{\equiv \alpha_1} \mathbf{s}_{i,t}^{\mathbf{A}} + \underbrace{(1-\omega)}_{\equiv \alpha_0}\right).$$

Restriction from theory, redux

▶ Relative job-finding probabilities, active vs. passive search

$$\frac{\bar{f}_{t}^{A}}{\bar{f}_{t}^{P}} - 1 = \frac{\left(ME_{A,t} \cdot \bar{s}_{t}^{A,*} + ME_{P,t}\right) \left(\frac{m_{t}(s_{t},v_{t})}{s_{t}}\right)}{ME_{P,t} \left(\frac{m_{t}(s_{t},v_{t})}{s}\right)} - 1$$

$$= \left(\frac{\omega}{1 - \omega}\right) \left(\frac{1}{\Gamma_{t}^{U}(\xi_{t})\bar{s}_{t}^{A,*}}\right)^{1-\rho} \cdot \bar{s}_{t}^{A,*}$$

► Thus,

$$\log\left(\frac{\overline{f}_t^A}{\overline{f}_t^P} - 1\right) = \log\left(\frac{\omega}{1 - \omega}\right) + (\rho - 1) \cdot \log\Gamma_t^u(\zeta_t) + \rho \cdot \log\overline{S}_t^{A,*}$$

Proof. Return to data, estimate ω and ρ , test restriction in ρ

Regression estimates

	(1)	(2)	(3)		
Fraction searching	−7.31 −5.281		-3.819		
	(1.426)	(1.606)	(0.5549)		
# of search methods	_	-1.927	-2.812		
	_	(0.8609)	(0.5549)		
Constant	-0.684	0.489	1.140		
	(0.4257)	(0.6392)	(0.1547)		
Additional controls	Time trend				
Constrain $\beta_{\rm Frac} - 1 = \beta_{\rm \#}$?	N/A	No	Yes		
F-test	p(ho=1)	$p(\rho = 1)$ $p(\beta_{Frac} + 1 = \beta_{\#})$			
	=0.0000	=0.2799	=0.0000		
N	261	261	261		
Implied ρ	-8.308		-2.819		
Implied ω	0.335	_	0.758		
Elasticity of substitution	0.107		0.268		
CPS, 1996-20019					

19/26

Backing out the marginal efficiency of active search

Takeaway

$$\log\left(\frac{\overline{f}_t^A}{\overline{f}_t^P} - 1\right) = \log\left(\frac{\omega}{1 - \omega}\right) + (\rho - 1) \cdot \log\Gamma_t^u(\zeta_t) + \rho \cdot \log\overline{S}_t^{A,*}$$

- **Reject** restriction $\rho = 1$ (i.e., existing framework)
- ► Fail to reject restriction $\beta_{\Gamma(\zeta)} + 1 = \beta_{\overline{s}^{A,*}}$ (i.e., unrestricted framework)
- ► Elasticity of substitution $\frac{1}{1-\rho}$ falls in range $(\frac{1}{10}, \frac{1}{4})$
 - Indicates that active and passive search are "complements"
 - Thus active search vacancy share declining in active search

Application 1: Bailey-Chetty Formula

Appl. 1) Bailey-Chetty formula

Consider simple Bailey-Chetty formula,

$$\epsilon_{R} = \left(\frac{U'(c^{u})}{U'(c^{e})} - 1\right) \tag{BC}$$

where ϵ_R is the micro-elasticity of unempl. w/r.t. replacement rate R

- Existing result: if wages are perfectly rigid (+ other conditions), macro-elasticity equals micro, and constant R is optimal
 - e.g., Landais et al. (2018)
 - lacktriangle Constant R depends on assumption of constant micro-elasticity ϵ_R
- ▶ But ϵ_R is proportional to marginal efficiency of active search
- Thus, microelasticity decreases during recessions ⇒ R↑

Appl. 1) Bailey-Chetty Formula, cont.

- Assume $U(c) = \log c$
- ▶ Define the consumption decline upon job-loss: $\Delta_t = \frac{c_t^e c_t^u}{c_t^e}$
- ightharpoonup Optimal Δ_t lower than average during recessions via microelasticity

Application 2:

Unexplored externality

Appl. 2) Unexplored externality

$$rU_{i} = \max_{\boldsymbol{s}_{i}^{A}} \left\{ \frac{b - \varsigma_{i} \cdot \mathbb{I} \left\{ \boldsymbol{s}_{i}^{A} > 0 \right\} - c \left(\boldsymbol{s}_{i}^{A} \right)}{\mu} + \left(M\boldsymbol{E}_{A} \cdot \boldsymbol{s}_{i}^{A} + M\boldsymbol{E}_{P} \right) \cdot \left(\frac{m(\boldsymbol{s}, \upsilon)}{\boldsymbol{s}} \right) \cdot \left(\boldsymbol{V}_{i} - \boldsymbol{U}_{i} \right) - \dot{\boldsymbol{U}}_{i} \right\}$$

- ▶ Congestion externality: searchers fail to internalize how $S_{A,i}$ affects S
- ► Here: searchers also fail to internalize how $S_{A,i}$ affects ME_A and ME_P
- $ightharpoonup s_{A,i}^* \uparrow \Rightarrow ME_A \downarrow \text{ and } ME_P \uparrow$

Appl. 2) Unexplored externality, con't

Optimal search, worker's problem:

$$\mathbf{s}_{A,i}^* = (\mathbf{c}')^{-1} \left(M \mathbf{E}_A \cdot \mathbf{f}(\theta) \cdot \psi_i \right)$$

where ψ_i is the marginal value to the HH of having agent i employed

Optimal search, Planner's problem:

$$\boldsymbol{s_{A,i}^{SP}} = (c')^{-1} \left(\boldsymbol{ME_{A}^{SP}} \cdot \boldsymbol{f}(\theta^{SP}) \cdot \psi_{i}^{SP} + \underbrace{\frac{\partial \boldsymbol{ME_{A}^{SP}}}{\partial \boldsymbol{s_{A}}} \cdot \boldsymbol{cov}(\boldsymbol{s_{A,i}^{SP}}, \psi_{i}^{SP})}_{<0} \right)$$

where ψ_i^{SP} is the marginal social value of having agent *i* employed

- Two allocations only coincide if
 - 1. No persistent heterogneity in fixed cost of search ($\lambda \to \infty$)
 - 2. Constant marginal efficiency of active search, ME_A

Concluding remarks

Conclusion

- Finite elasticity of substitution between active and passive search
- ► Thus, dynamics of unemployment and job-finding rates depend on aggregate composition of active/passive search
- Reinforces message from Elsby, Hobijn, and Sahin (2015), Krusell et al. (2017), Faberman et al. (2022), and more:

We need to incorporate non-participation & passive search into more of our models to better understand unemployment

Extra slides

Problem of the unemployed

Annuity value of unemployment:

$$rU_{i,t} = \max_{\boldsymbol{s}_{i,t}^{A}} \left\{ \frac{b_{t} - \varsigma_{i} \cdot \mathbb{I}\left\{\boldsymbol{s}_{i,t}^{A} > 0\right\} - c\left(\boldsymbol{s}_{i,t}^{A}\right)}{\mu_{t}} + (\alpha_{0} + \alpha_{1} \cdot \boldsymbol{s}_{i,t}^{A}) \cdot \left(\frac{m_{t}\left(\boldsymbol{s}_{t}, \boldsymbol{v}_{t}\right)}{\boldsymbol{s}_{t}}\right) \cdot (\boldsymbol{V}_{i,t} - \boldsymbol{U}_{i,t}) - \dot{\boldsymbol{U}}_{i,t} \right\}$$

- Marginal utility of consumption, μ_t
- Flow value of leisure, b_t
- \triangleright Values of employment and unemployment, $V_{i,t}$ and $U_{i,t}$
- $\dot{U}_t \neq 0$ given jump process for $\varsigma_{i,t}$, etc

Optimal active search

▶ Optimal quantity of active search (intensive margin):

$$\mathbf{s}_{i,t}^{\mathbf{A},*} = (\mathbf{c}')^{-1} \left(\mu_t \cdot \alpha_1 \cdot \left(\frac{m_t(\mathbf{s}_t, \mathbf{v}_t)}{\mathbf{s}_t} \right) (V_{i,t} - U_{i,t}) \right) \quad \text{ when } \varsigma_{i,t} < \zeta_t$$

Optimal participation in active search (extensive margin):

$$\varsigma_{i,t} \leq -c(\mathbf{s}_{i,t}^{A,*}) + \alpha_1 \cdot \mathbf{s}_{i,t}^{A,*} \cdot \left(\frac{m_t(\mathbf{s}_t, v_t)}{\mathbf{s}_t}\right) \cdot \mu_t \cdot (V_{i,t} - U_{i,t})$$
 (†)

where ζ_t defined by $\zeta_{i,t}$ s.t. (†) holds with equality

When is active search most effective?

Indicator variable for moving to employment in subsequent period					
	(1)	(2)	(3)	(4)	
# of search methods	-0.002	0.113	0.057	_	
	(0.0004)	(0.0058)	(0.0079)		
# of search methods \times	_	-0.060	-0.031	_	
aggr. active search		(0.0030)	(0.0041)		
$\mathbb{I}\{\text{\# search methods} = 0\}$	-0.040	-0.036	-0.261	-0.414	
	(0.0013)	(0.0013)	(0.0192)	(0.0215)	
$\mathbb{I}\{\text{\# search methods} = 0\} \times\\$	_	_	0.120	0.479	
aggr. active search			(0.0101)	(0.0270)	
N	865079	865079	865079	865079	
Time fixed effects?	Yes	Yes	Yes	Yes	
Region fixed effects?	Yes	Yes	Yes	Yes	

Sample of active and passive searchers, 1996-2019

Incl. controls for education, quartic for age, gender, race, and marital status

- Search is less effective when aggregate search is higher
- ▶ Penalty to to purely passive search lower when aggregate search is higher