TÓPICO 4 – FUNÇÃO EXPONENCIAL – EQUAÇÕES EXPONENCIAIS

CONTINUAÇÃO DA QUESTÃO 1

c)
$$5^{x+1} + 5^x + 5^{x-1} = 775$$

SOLUÇÃO

$$5^{x+1} + 5^{x} + 5^{x+1} = 775$$

$$5^{x+1} = 5^{x} \circ 5^{1}$$

$$5^{x} = 5^{x} \circ 5^{0}$$

$$5^{x+1} = 5^{x} \circ 5^{-1}$$

$$5^{x} \circ 5^{1} + 5^{x} \circ 5^{0} + 5^{x} \circ 5^{-1} = 775$$

$$5^{x} \circ (5^{1} + 5^{0} + 5^{-1}) = 775$$

$$5^{x} \circ (5 + 1 + \frac{1}{5}) = 775$$

$$5^{x} \circ (6 + \frac{1}{5}) = 775$$

$$5^{x} \circ 31 = 775 \circ 5$$

$$5^{x} \circ 31 = 775 \circ 5$$

$$5^{x} = 25 \circ 5$$

$$5^{x} = 125$$

$$9^{x} = 8^{3}$$

$$x = 3$$

d)
$$5^{2x-1} - 10 \circ 5^{x-1} - 75 = 0$$

SOLUÇÃO

$$5^{2x-1} = 5^{2x} \circ 5^{-1} = (5^{2})^{x} \circ 5^{-1} = (5^{x})^{2} \circ 5^{-1}$$

$$5^{x-1} = 5^{x} \circ 5^{-1}$$

$$5^{2x-1} - 10 \circ 5^{x-1} - 75 = 0$$

$$(5^{x})^{2} \circ 5^{-1} - 10 \circ 5^{x} \circ 5^{-1} - 75 = 0$$

$$y^{2} \circ 5^{-1} - 10 \circ y \circ 5^{-1} - 75 = 0$$

$$y^{2} \circ \frac{1}{5} - 10 \circ y \circ \frac{1}{5} - 75 = 0$$

$$y^{2} \circ \frac{1}{5} - 2y - 75 = 0 \circ 5$$
$$y^{2} - 10y - 375 = 0$$

$$\Delta$$
 = b^2 - $4ac$ = $(-10)^2$ - $4 \circ 1 \circ (-375)$ = 100 + 1500 = 1600 . Logo $\sqrt{\Delta} = \sqrt{1600} = 40$.

$$y = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$y' = \frac{-(-10)+40}{2} = \frac{10+40}{2} = 25$$

$$y'' = \frac{-(-10)-40}{2} = \frac{10-40}{2} = -15.$$

Se
$$5^x = y$$
, temos

Se y = 25
$$\rightarrow$$
 5^x = 25 \rightarrow 5^x = 5^2 \rightarrow x = 2.

Se y = -15
$$\rightarrow$$
 5 $^{\times}$ = -15 \rightarrow $X \notin \mathbb{R}$

R.:
$$S = \{ X \in \mathbb{R} \mid x = 2 \}$$

e)
$$10^{3+2x} = 0,0001$$

SOLUÇÃO

$$0,0001 = 10^{-4}$$

$$1/0^{3+2x} = 1/0^{-4}$$

$$3 + 2x = -4$$

$$2x = -4 - 3$$

$$x = \frac{-7}{2}$$

R.:
$$S = \{ X \in \mathbb{R} \mid x = \frac{-7}{2} \}$$