Petroleum Engineering Handbook

Petroleum Engineering Handbook

Larry W. Lake, Editor-in-Chief

- I General Engineering John R. Fanchi, Editor
- II **Drilling Engineering** Robert F. Mitchell, Editor
- III Facilities and Construction Engineering Kenneth E. Arnold, Editor
- IV Production Operations Engineering Joe Dunn Clegg, Editor
- V Reservoir Engineering and Petrophysics Edward D. Holstein, Editor
- VI Emerging and Peripheral Technologies H.R. Warner Jr., Editor
- VII Indexes and Standards

Petroleum Engineering Handbook

Larry W. Lake, Editor-in-Chief U. of Texas at Austin

Volume VII

Indexes and Standards

© Copyright 2007 Society of Petroleum Engineers

All rights reserved. No portion of this book may be reproduced in any form or by any means, including electronic storage and retrieval systems, except by explicit, prior written permission of the publisher except for brief passages excerpted for review and critical purposes.

Printed in the United States of America.

The paper used in this book meets the minimum requirements of ANSI/NSIO Z39.48-1992 (R1997).

```
ISBN 978-1-55563-124-6 (print)
```

ISBN 978-1-55563-125-3 (CD)

ISBN 978-1-55563-134-5 (print and CD)

ISBN 978-1-55563-126-0 (Complete 7-Vol. Set, print)

ISBN 978-1-55563-127-7 (Complete 7-Vol. Set, CD)

ISBN 978-1-55563-135-2 (Complete 7-Vol. Set, print and CD)

07 08 09 10 11 12 13 14 / 9 8 7 6 5 4 3 2 1

Society of Petroleum Engineers 222 Palisades Creek Drive Richardson, TX 75080-2040 USA

http://store.spe.org/ service@spe.org 1.972.952.9393

Contents

Ma	nster Author Index 1
Ma	aster Subject Index
SP.	E Symbols Standard103
	Overview of the SPE Symbols Standard 103
	Basic Symbols in Alphabetical Order 107
	Economics Symbols in Alphabetical Order 114
	Symbols in Alphabetical Order
	Subscript Symbols in Alphabetical Order
SI	Metric Conversion Factors
	Alphabetical List of Units 142
	Conversion Factors for the Vara 150
	"Memory Jogger"—Metric Units
	Tables of Recommended SI Units
	Some Additional Application Standards 169

SPE Symbols Standard

Overview of the SPE Symbols Standard

Principles of Symbols Selection

Since the original reservoir *Symbols Standard* was established in 1956, the principles used in the selection of additional symbols have been as follows.

- 1. (A) Use single letters only for the main letter symbols. This is the universal practice of the American Natl. Standards Inst. (ANSI), the Intl. Organization for Standardization (ISO), and the Intl. Union of Pure and Applied Physics (IUPAP) in more then 20 formal standards adopted by them for letter symbols used in mathematical equations.
 - (B) Make available single and multiple subscripts to the main letter symbols to the extent necessary for clarity. Multiple letters, such as abbreviations, are prohibited for use as the main symbol (kernel) for a quantity. A few exceptions are some traditional mathematical symbols, such as log, ln, and lim. Thus, quantities that are sometimes represented by abbreviations in textual material, tables, or graphs are required in the *SPE Symbols Standard* to have single-letter kernels. Examples are gas/oil ratio (GOR), bottomhole pressure (BHP), spontaneous potential (SP), and static SP (SSP), which have the following SPE standard symbols: R, p_{bh} , E_{SP} , and E_{SSP} , respectively.
- 2. Adopt the letter symbols of original or prior author usage, where *not* in conflict with Principles 3 and 4.
- 3. Adopt letter symbols consistent or parallel with the existing SPE Symbols Standard, minimizing conflicts with that Standard.
- 4. Where pertinent, adopt the symbols already standardized by such authorities as ANSI, ISO, or IUPAP (see Principle 1); minimize conflicts with these standards.
- 5. Limit the list principally to basic quantities, avoiding symbols and subscripts for combinations, reciprocals, special conditions, etc.
- 6. Use initial letters of materials, phase, processes, etc., for symbols and subscripts; they are suggestive and easily remembered.
- 7. Choose symbols that can be readily handwritten, typed, and printed.

Principles of Letter Symbol Standardization

Requirements for Published Quantity.

- 1. Symbols should be standard where possible. In the use of published symbols, authors of technical works (including textbooks) are urged to adopt the symbols in this and other current standards and to conform to the principles stated here. An author should provide a Nomenclature list in which all symbols are listed and defined. For work in a specialized or developing field, an author may need symbols in addition to those already contained in standards. In such a case, the author should be careful to select simple, suggestive symbols that avoid conflict in the given field and in other closely related special fields. Except in this situation, the author should not introduce new symbols or depart from currently accepted notation.
- 2. Symbols should be clear in reference. One should not assign different meanings to a given symbol in such a manner as to make its interpretation in a given context ambiguous. Conflicts must be avoided. A listed alternative symbol or a modifying subscript is often available and should be adopted. Any symbol not familiar to the reading public should have its meaning defined. The units should be indicated whenever necessary.
- 3. Symbols should be easily identified. Because of the many numerals, letters, and signs that are similar in appearance, a writer should be careful in calling for separate symbols that in published form might be confused by the reader. For example, many letters in the Greek alphabet (lower case and

- capital) are practically indistinguishable from English letters, and the zero is easily mistaken for
- Symbols should be economical in publication. One should try to keep the cost of publishing symbols at a minimum: no one work should use a great variety of types and special characters; handwriting of inserted symbols, in copy largely typewritten and to be reproduced in facsimile, should not be excessive; and often a complicated expression appears as a component part of a given base. Instead, one may introduce, locally, a single nonconflicting letter to stand for such a complicated component. An explanatory definition should then appear in the immediate context.

Secondary Symbols. Subscripts and superscripts are widely used for a variety of conventional purposes. For example, a subscript may indicate the place of a term in a sequence or matrix; a designated state, point, part, time, or system of units; the constancy of one independent physical quantity among others on which a given quantity depends for its value; or a variable with respect to which the given quantity is a derivative. Likewise, for example, a superscript may indicate the exponent for a power, a distinguishing label, a unit, or a tensor index. The intended sense must be clear in each case. Several subscripts or superscripts, sometimes separated by commas, may be attached to a single letter. A symbol with a superscript such as prime (') or second (") or a tensor index should be enclosed in parentheses, braces, or brackets before an exponent is attached. So far as logical clarity permits, one should avoid attaching subscripts and superscripts to subscripts and superscripts. Abbreviations, themselves standardized, may appear among subscripts. A conventional sign or abbreviation indicating the adopted unit may be attached to a letter symbol or corresponding numeral. Reference marks, such as numbers in distinctive type, may be attached to words and abbreviations, but not to letter symbols.

Multiple Subscripts—Position Order. The wide variety and complexity of subject matter covered in the petroleum literature make it impossible to avoid use of multiple subscripts with many symbols. To make such usage less confusing, the following guides were used for the order of appearance of the individual letters in multiple subscripts in the symbols list. Use of the same rules is recommended when it becomes necessary to establish a multiple-subscript notation that has not been included in this list.

- When the subscript r for "relative" is used, it should appear first in subscript order. Examples: k_{ro}
- 2. When the subscript i for "injection," "injected," or "irreducible" is used, it should appear first in subscript order (but after r for "relative"). Examples: B_{ig} , formation volume factor of injected gas, and c_{ig} , compressibility of injected gas.
- Except for Cases 1 and 2 above (and symbols k_h and L_v), phase, composition, and system subscripts should generally appear first in subscript order. Examples: B_{gi} initial or original gas FVF; B_{ob} initial or original oil FVF; C_{Opb} initial or original oxygen concentration; B_{rb} initial or original total system formation volume factor; ρ_{sE} , density of solid particles making up experimental pack; and F_{aF} , G_{Lp} , G_{wgp} , and G_{Fi} .
- Abbreviation subscripts (such as "ext," "lim," "max," "min"), when applied to a symbol already subscripted, should appear last in subscript order and require that the basic symbol and its initial subscript(s) be first enclosed in parentheses. Examples: $(i_{a1})_{max}$ and $(S_{hr})_{min}$.
- Except for Case 4, numerical subscripts should appear last in subscript order. Examples: q_{oD3} , dimensionless oil-production rate during Time Period 3; p_{R2} , reservoir pressure at Time 2; and $(i_{a1})_{\text{max}}$, maximum air-injection rate during Time Period 1.
- Except for Cases 4 and 5, subscript D for "dimensionless" usually should appear last in subscript order. Examples: p_{tD} , q_{oD} , and $(q_{oD3})_{max}$.
- Except for Cases 4 through 6, the following subscripts usually should appear last in subscript order; regions such as bank, burned, depleted, front, swept, and unburned (b, b, d, f, s, and u); separation, differential, and flash (sp, d, and f); and individual component identification (I or other). Examples: E_{bD} , R_{sf} , and n_{pj} .

Typography. When appearing as lightfaced letters of the English alphabet, letter symbols for physical quantities and other subscripts and superscripts, whether upper case, lower case, or in small capitals, are printed in italic (slanted) type. Arabic numerals and letters of other alphabets used in mathematic expressions are normally printed in vertical type. When a special alphabet is required, boldface type is preferred over German, Gothic, or script type. It is important to select a typeface that has italic forms and clearly distinguished upper case, lower case, and small capitals. Typefaces with serifs are recommended.

Remarks. Quantity symbols may be used in mathematical expressions in any way consistent with good mathematical usage. The product of two quantities is indicated by writing *ab*. The quotient may be indicated by writing

$$\frac{a}{b}$$
, a/b , or ab^{-1} .

If more than one solidus (/) is used in any algebraic term, parentheses must be inserted to remove any ambiguity. Thus, one may write (a/b)/c, or a/bc, but not a/b/c.

Special Notes.

- 1. When the mobilities involved are on opposite sides of an interface, the mobility ratio will be defined as the ratio of the displacing phase mobility to the displaced phase mobility, or the ratio of the upstream mobility to the downstream mobility.
- 2. Abbreviated chemical formulas are used as subscripts for paraffin hydrocarbons: C_1 for methane, C_2 for ethane, C_3 for propane... C_n for C_nH_{2n+2} .
- 3. Complete chemical formulas are used as subscripts for materials: CO₂ for carbon dioxide, CO for carbon monoxide, O₂ for oxygen, N₂ for nitrogen, etc.
- 4. The letter R is retained for electrical resistivity in well logging usage. The symbol ρ is to be used in all other cases and is that preferred by ASA.
- 5. The letter C is retained for electrical conductivity in well logging usage. The symbol σ is to be used in all other cases and is that preferred by ASA.
- 6. Dimensions: L=length, m=mass, q=electrical charge, t=time, T=temperature, M=money, and n=amount of substance.
- 7. Dimensionless numbers are criteria for geometric, kinematic, and dynamic similarity between two systems. They are derived by one of three procedures used in methods of similarity: integral, differential, or dimensional. Examples of dimensionless numbers are Reynolds number, $N_{\rm Re}$, and Prandtl number, $N_{\rm Pr}$. For a discussion of methods of similarity and dimensionless numbers, see "Methods of Similarity," by R.E. Schilson, JPT (August 1964) 877–879.
- 8. The quantity x can be modified to indicate an average or mean value by an overbar, \bar{x} .

Distinctions Between and Descriptions of Abbreviations, Dimensions, Letter Symbols, Reserve Symbols, Unit Abbreviations, and Units

Confusion often arises as to the proper distinctions between abbreviations, dimensions, letter symbols, reserve symbols, unit abbreviations, and units used in science and engineering. SPE has adhered to the following descriptions.

Abbreviations. For use in textual matter, tables, figures, and oral discussions. An abbreviation is a letter or group of letters that may be used in place of the full name of a quantity, unit, or other entity. *Abbreviations are not acceptable in mathematical equations*.

Dimensions. Dimensions identify the physical nature or the general components of a specific physical quantity. SPE uses seven basic dimensions: mass, length, time, temperature, electrical charge, money, and amount (m, L, t, T, q, M, and n).*

Letter Symbols. For use in mathematical equations. A letter symbol is a *single* letter, modified when appropriate by one or more subscripts, used to represent a specific physical or mathematical quantity in a mathematical equation. A single letter may be used to represent a group of quantities, properly defined. The

same letter symbol should be used consistently for the same generic quantity, with special values being indicated by subscripts or superscripts.

Reserve Symbols. A reserve symbol is a single letter, modified when appropriate by one or more subscripts or superscripts, that can be used as an alternative when two quantities (occurring in some specialized works) have the same standard letter symbol. These conflicts may result from use of standard SPE symbols or subscript designations that are the same for two different quantities, or use of SPE symbols that conflict with firmly established, commonly used notation and signs from the fields of mathematics, physics, and chemistry.

To avoid conflicting designations in these cases, use of reserve symbols, reserve subscripts, and reserve-symbol/reserve-subscript combinations is permitted, *but only in cases of symbols conflict*. Author preference for the reserve symbols and subscripts does not justify their use.

In making the choice as to which of two quantities should be given a reserve designation, one should attempt to retain the standard SPE symbol for the quantity appearing more frequently in the paper; otherwise, the standard SPE symbol should be retained for the more basic item (temperature, pressure, porosity, permeability, etc.).

Once a reserve designation for a quantity is used, it must be used consistently throughout a paper. Use of an unsubscripted reserve symbol for a quantity requires use of the same reserve symbol designation when subscripting is required. Reversion to the standard SPE symbol or subscript is not permitted with a paper. For larger works, such as books, consistency within a chapter or section must be maintained.

The symbol nomenclature, which is a required part of each work, must contain each reserve notation used, together with its definition.

Unit Abbreviation. A unit abbreviation is a letter or group of letters (for example, cm for centimeter), or in a few cases a special sign, that may be used in place of the name of a unit. The Intl. Organization for Standardization (ISO) and many other national and international bodies concerned with standardization emphasize the special character of these designations and rigidly prescribe the manner in which the unit abbreviations shall be developed and treated.

Units. Units express the system of measurement used to quantify a specific physical quantity. In SPE usage, units have "abbreviations" but do not have "letter symbols." See the *SI Metric System of Units and SPE Metric Standard*.

*Electrical charge is current times time. ISO uses Mass (m), Length (L), Time (T), Temperature (θ), Electrical current (T), Amount of substance (n), and Luminous Intensity (J).

Basic Symbols in Alphabetical Order

Reserve SPE Letter Letter Symbol Symbol Quantity Dimensions English activity а F_a air requirement various а decline factor nominal а L_a, L_1 distance between like wells (injection or L а production) in a row Aamplitude various atomic weight Am mL^2/t^2 F Helmboltz function (work function) AY various b intercept f,F reciprocal formation volume factor, volume at b standard conditions divided by volume at reservoir conditions (shrinkage factor) L b width, breadth, or thickness (primarily in w fracturing) В Ccorrection term or correction factor (either additive or multiplicative) FВ formation volume factor, volume at reservoir conditions divided by volume at standard conditions Lt^2/m compressibility ck, ĸ a^2t^2/mL^2 Ccapacitance Ccapital costs or investments $I^{3-2n}t^{4n}/m^{2n}$ Ccoefficient of gas-well backpressure curve Ccomponents, number of n_C Cconcentration various c,nC tq^2/mL^3 conductivity (electrical logging) σ Cvarious c,n L^2/t^2T Cspecific heat capacity (always with phase or csystem subscripts) L^4t^2/m Cwaterdrive constant fracture conductivity, dimensionless C_{fD} condensate or natural gas liquids content various C_L c_L, n_L decline factor, effective d D L d L d L_d, L_2 distance between adjacent rows of injection and production wells L^3/t D deliverability (gas well) Dy,Hdepth L^2/t Ddiffusion coefficient μ, δ L^3/t influx (encroachment) rate i е oxygen utilization $E_{\rm O_2}$ e_{0} e^{z} exponential function exp z Е efficiency η , e

Letter Symbol	Symbol	Quantity	Dimensions
English			
$\stackrel{\circ}{E}$	V	electromotive force	mL^2/t^2q
E	U	energy	mL^2/t^2
E	Y	modulus of elasticity (Young's modulus)	M/Lt^2
E_A	$\eta_{\scriptscriptstyle A}, e_{\scriptscriptstyle A}$	areal efficiency (used in describing results of	
	,	model studies only): area swept in a model	
		divided by total model reservoir area (see E_p)	
E_c	Φ_c	electrochemical component of the SP	mL^2/t^2q
E_k	Φ_k	electrokinetic component of the SP	mL^2/t^2q
E_n	1 K	Euler number	
E_{SP}	$\Phi_{ ext{SP}}$	SP (measured SP) (self potential)	mL^2/t^2q
-Ei(-x)	Φ_{SP}	· · · · · · · · · · · · · · · · · · ·	mil /t q
Ei(x)		exponential integral, $\int_{x}^{\infty} \frac{e^{-t}}{t}$, dt, x positive	
Ei(x)		exponential integral, modified	
		$\lim_{\varepsilon \to 0+} \left(\int_{-x}^{-\varepsilon} \frac{e^{-t}}{t} dt + \int_{-\infty}^{\infty} \frac{e^{-t}}{t} dt \right), x \text{ positive}$	
f	F	fraction (such as the fraction of a flow stream	
ſ		consisting of a particular phase)	1/t
J	v	friequency friction factor	1/1
$f \\ f \\ f \\ f_s \\ F$		fugacity	m/Lt ²
J f	Or	quality (usually of steam)	111/ Lt
Js F	Q,x	degrees of freedom	
$\stackrel{r}{F}$	A,R,r	factor in general, including ratios (always	various
1	Α,π,	with identifying subscripts)	various
F	f	fluid (generalized)	various
$\overset{r}{F_R}$	J	formation resistivity factor—equals R_0/R_w	various
1 K		(a numerical subscript to F indicates the value R_w)	
F_{WV}	У	specific weight	mL^2/t^2
g	y	gradient	various
g	,	gravity, acceleration of	L/t^2
g_c		conversion factor in Newton's second law of	L/t
C		motion	L^3
G	g	gas in place in reservoir, total initial	
G	g	gas (any gas, including air), always with	various
C	ſ	identifying subscripts	
G	f_G	geometrical factor (multiplier)	
C	E	(electrical logging) shear modulus	m/Lt ²
G	E_s	condensate liquids in place in reservoir, initial	L ³
$egin{array}{c} G_L \ h \end{array}$	$egin{array}{c} g_L \ i \end{array}$	enthalpy, specific	L^2/t^2
$\stackrel{n}{h}$	h_h, h_T	heat transfer coefficient, convective	m/t ³ T
h	d,e	height (other than elevation)	L
$\stackrel{h}{h}$	u, c	hyperbolic decline constant (from equation)	L
11		•	
		$q=q_i/\left(1+\frac{a_it}{h}\right)^h$	

Reserve
SPE Letter

Letter Symbol	Symbol	Quantity	Dimensions
English			
h	d, e	thickness (general and individual bed)	L
H	Ι	enthalpy (always with phase or system subscripts)	mL^2/t^2
i		injection rate	L^3/t
i		interest rate	1/t
i_R		rate of return (earning power)	
\ddot{I}		income (net revenue minus expenses)	
I	i (script i), i	current, electric	q/t
I	I_T , $I_{ heta}$	heat transfer coefficient, radiation	m/t^3T
I	i	index (use subscripts as needed)	
I	i	injectivity index	L^4t/m
$\mathcal{J}(z)(\text{script }I)$		imaginary part of complex number z	
I_R	i_R	resistivity index (hydrocarbon)—equals R_t/R_0	
\vec{j}	i_R	reciprocal permeability	$1/L^2$
$\stackrel{\scriptscriptstyle J}{J}$	j	productivity index	L^4t/m
$\stackrel{\circ}{k}$	K	magnetic susceptibility	mL/q^2
k	K	permeability absolute (fluid flow)	L^2
k	r,j	reaction rate constant	L/t
k_h	λ	thermal conductivity (always with additional	mL/t^3T
·-n	, ·	phase or system subscripts)	
K	K_b	bulk modulus	m/Lt^2
K	V	coefficient in the equation of the electrochemical component of the SP	$mL^{2}_{\ /t}{}^{2}q$
		(spontaneous electromotive force)	
K	M	coefficient or multiplier	various
K	d	dispersion coefficient	L^2/t
K	$k, F_{\rm eq}$	equilibrium ratio (y/x)	270
$K_{ m ani}$	$M_{ m ani}$	anisotropy coefficient	
K_c	M_c , K_{ec}	electrochemical coefficient	mL^2/t^2q
K_R	M_R,a,C	formation resistivity factor coefficient $(F_R \phi^m)$	1
ln		natural logarithm, base e	
log		common logarithm, base 10	
\log_a		logarithm base a	
L	n_L	moles of liquid phase	
L_f	x_f	fracture half-length (specify "in the direction of" when using x_f)	L
L_s	s_s , ℓ_s (script l)	spacing (electrical logging)	L
L_{ν}	λ_{v}	latent heat of vaporization	L
$\mathcal{L}(y)$ (script L)		Laplace transform of y, $\int_0^\infty y(t)e^{-st}dt$	
m	F_F	fuel consumption	various
m	-	mass	m
m		porosity exponent (cementation) (in an	
		empirical relation between F_R and ϕ)	
m	F_{Fo} , F_{go}	ratio of initial reservoir free-gas volume to initial reservoir oil volume	
m	A	slope	various
M	Ι	magnetization	m/qt

Reserve

	SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			
M M	F_{λ}	mobility ratio, general ($\lambda_{\text{displacing}}/\lambda_{\text{displaced}}$)	
M	I'A	molecular weight	m
$\stackrel{M}{M}$	700.0	slope, interval transit time vs. density	tL^2/m
IVI	m_{θ_D}	(absolute value)	tL /III
M		volumetric heat capacity	m/Lt ² T
n	N	density (indicating "number per unit	$1/L^3$
"	11	volume")	1/ L
n		exponent of backpressure curve, gas well	
n	μ	index of refraction	
n	$\stackrel{ ightarrow}{N}$	number (of variables, components, steps,	
71	11	increments, etc.)	
n	n	number (quantity)	
n	**	saturation exponent	
n		number of compounding periods	1/t
n_t	N_t	moles, number of, total	
$\stackrel{\cdot }{N}$	n,C	count rate (general)	1/t
N	., -	neutron [usually with identifying subscript(s)]	various
N		number, dimensionless, in general (always	
		with identifying subscripts)	
N	n	oil (always with identifying subscripts)	various
N	$m_{\phi ND}$	slope, neutron porosity vs. density (absolute	L^3/m
	$m_{\phi ND}$	value)	
N_{GR}	N_{γ} , C_G	gamma ray count rate	1/t
N_R	N_F	fuel deposition rate	m/L^3t
Ô	•	operating expense	various
p	P	pressure	m/Lt^2
p		price	M
P		phases, number of	
P		profit total	M
P_c	P_c , p_c	capillary pressure	M/Lt^2
q	Q	production rate or flow rate	L^3/t
Q	q	charge (current times time)	$\frac{q}{mL^2/t^3}$
$egin{array}{c} Q \ Q \ Q_i \end{array}$	q,Φ	heat flow rate	mL^2/t^3
Q_i	$oldsymbol{q}_i$	pore volumes of injected fluid, cumulative	
		dimensionless	
Q_{LtD}	$Q_{\ell tD}$ (script l)	fluid influx function, linear aquifer,	
_		dimensionless	
Q_p	$Q_{\ell lD}$ (script l)	fluids, cumulative produced (where N_p and	
		W_p are not applicable)	
Q_{tD}		fluid influx function, dimensionless, at	
		dimensionless time t_D	
0	7	action avalance conceity per unit pers	
Q_V	Z_V	cation exchange capacity per unit pore volume	
u	R	radius	L
r r	R R	resistance	mL^2/tq^2
, R		electrical resistivity (electrical logging)	$mL^{7}tq^{2}$
R R	ρ , r	gas constant, universal (per mole)	mL^2/t^2T
R R	F_g , F_{go}	gas/oil ratio, producing	111L /t 1
R R	$N_{g,T_{go}}$	molecular refraction	L^3
Λ	1 ¥	morecular remaction	L

Letter Symbol	SPE Letter Symbol	Quantity	Dimensions
English			
$\mathcal{R}(z)$ (script R)		real part of complex number z	
S	L	displacement	L
S	σ	entropy, specific	L^2/t^2T
S	U	Laplace transform variable	2,01
S	S , σ	skin effect	various
S	5, 0	standard deviation of a random variable,	various
s^2		estimated variance of a random variable, estimated	
S	σ_t	entropy, total	mL^2/t^2T
S	ρ ,s	saturation	
t	au	time	t
$t_{\rm ma}({\rm script}\ t)$	$\Delta t_{ m ma}$	matrix interval transit time	t/L
$t_{1/2}$	-∆rma	half-life	t
$\overset{\scriptscriptstyle{7/2}}{T}$	Θ	period	t
T	θ	temperature	T
T	T	transmissivity, transmissibility	various
u	-	flux	various
u	$\psi \ \psi$	flux or flow rate, per unit area (volumetric velocity)	L/t
U	$U_{T}\!,U_{ heta}$	heat transfer coefficient, overall	m/t ³ T
v	V,u	acoustic velocity	L/t
$\stackrel{\scriptstyle v}{\scriptstyle v}$	v_s	specific volume	L^{3}/m
$\stackrel{\circ}{v}$	V,u	velocity	L/t
V	R, V_t, R_t	gross revenue ("value"), total	M
\overline{V}	n_{v}	moles of vapor phase	
\overline{V}	$\overset{\circ}{U}$	potential difference (electric)	mL^2/q^2
V	ν	volume	L^3
V	f_{V} , F_{V}	volume fraction or ratio (as needed, use same subscripted symbols as for "volumes"; note that bulk volume fraction is unity and pore volume fractions are ϕ)	various
w	z	Arrhenius reaction-rate velocity constant	L^3/m
w	m	mass flow rate	m/t
W	w	water (always with identifying subscripts)	various
W	w	water in place in reservoir, initial	L^3
W	w,G	weight (gravitational)	mL/t^2
W	w	work	mL^2/t^2
$\stackrel{X}{\rightarrow}$		mole fraction of a component in liquid phase	
\vec{x}		vector of x	
$\vec{ar{x}}$		tensor of x	
x_D		dimensionless quantity proportional to x	
\ddot{X}		reactance	mL^2/tq^2
у	f	holdup (fraction of the pipe volume filled by a given fluid: y_o is oil holdup; y_w is water holdup; sum of all holdups at a given level is one)	
У		mole fraction of a component in vapor phase	

	Reserve SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			
z z	Z	gas compressibility factor (deviation factor) $(z=pV/nRT)$	
z		mole fraction of a component in mixture	
z		valence	
Z		atomic number	
Z	D,h	elevation (height or fluid head) referred to datum	L
Z		impedance	various
Greek			
α	β, γ	angle	
α	m_{α}	attenuation coefficient	1/L
α	a, η_h	heat or thermal diffusivity	L^2/t
α		reduction ratio or reduction term	
α	a, η_h	thermal or heat diffusivity	L^2/t
β	γ	bearing, relative	
$\stackrel{\cdot}{eta}$	b	thermal cubic expansion coefficient	1/T
γ		Euler's constant=0.5772	
γ		gamma ray [usually with identifying subscripts(s)]	various
γ	s , F $_s$	specific gravity (relative density)	
γ	k	specific heat ratio	
γ	Es	strain, shear	
$\dot{\gamma}$	ė	shear rate	1/t
δ	Δ	decrement	various
δ		deviation, hole (drift angle)	
δ	F_d	displacement ratio	
δ	r_s	skin depth (logging)	L
Δ		difference or difference operator, finite $(\Delta x = x_2 - x_1 \text{ or } x_1 - x_2)$	
Δr	ΔR	radial distance (increment along radius)	L
arepsilon		dielectric constant	q^2t^2/mL^3
arepsilon	e, ε_n	strain, normal and general	
η		hydraulic diffusivity ($k/\phi c\mu$ or $\lambda/\phi c$)	L^2/t
heta	β, y	angle	
heta	$ heta_{\!\scriptscriptstyle V}$	strain, volume	
heta	$lpha_d$	angle of dip	
$ heta_{c}$	Γ_c, γ_c	contact angle	
λ	$\overset{\circ}{C}$	decay constant $(1/\tau_d)$	1/t
λ		mobility (k/μ)	L^3t/m
λ		wave length $(1/\sigma)$	L
μ	ν, σ	Poisson's ratio	
$\overset{\prime}{\mu}$	m	azimuth of reference on sonde	
μ	m	magnetic permeability	mL/q^2
v	N	kinematic viscosity	L^2/t
ho	D	density	m/L^3
ho	R	electrical resistivity (other than logging)	mL^3/tq^2
σ	Y	electrical conductivity (other than logging)	various

Letter Symbol	Symbol	Quantity	Dimensions
Greek σ		microscopic cross section	L^2
σ		standard deviation of a random variable	3.5/5.2
σ	\boldsymbol{S}	stress, normal and general	M/Lt^2
σ	<i>y</i> , <i>y</i>	surface tension, interfacial	m/t^2
σ	$ ilde{v}$	wave number $(1/\lambda)$	1/L
σ^2		variance of a random variable	
${f \Sigma}$	S	cross section, macroscopic	1/L
τ	S_S	stress, shear	m/Lt^2
au	$ au_c$	time constant	t
τ		tortuosity	
$\overline{ au}$	ī	lifetime, average (mean life)	t
τ_d	t_d	decay time (mean life) $(1/\lambda)$	t
ϕ	f, ε	porosity $(V_b - V_s)/V_b$	
Φ	β_d	dip, azimuth of	
Φ	f	potential or potential function	various
ψ		dispersion modulus (dispersion factor)	
Ψ		stream function	various
ω		angular frequency	1/t

Economics Symbols in Alphabetical Order

Letter Symbol	Quantity	Dimensions
English		
C	capital (costs) or investments	M
D	depletion, depreciation, or amortization (all	
	nonreal account entries)	
E	expense, total (except income taxes)	M
i	interest rate	1/t
I	income (net revenue minus expenses)	M
n	number of compounding periods	1/t
p	price	M
P	profit	M
r	royalty	various
R	revenue	M
t	time	t
T	tax on income	various
v	value (economic)	M
Subscripts		
ar	after royalty	
at	after taxes	
br	before royalty	
bt	before taxes	
f	future	
$\overset{\circ}{k}$	specific period	
p	present	
po	payout	
pv	present value	
\overline{R}	rate	
u	unit	
t	total	
Superscript		
• , •	real*	

^{*}Whether real or nominal moneys are being discussed must be indicated either through the use of a prime (') to indicate real figures or by clarifying in the text of the publication whether real or nominal amounts are being used.

Examples

C_k	capital investment in Period k
C_{pv}	investment at present value
$\hat{E_u}$	expenses per unit
i_R	rate of return (earning power)
I_{bt}	income before taxes
I_{pvk}	income at present value in Period k
p_{gk}	price of gas in Period k
p_k	price in Period k
P_{pvat}	profit at present value after tax
\vec{P}_{vatk}	profit at present value after tax in Period k
r_R	royalty rate
t_{poat}	payout time, after tax
t_{pvpobt}	payout time before tax at present value
T_k	tax in Period k
T_R	tax rate
V_p	net present value (NPV)
$\overline{V_{poat}}$	payout volume, after tax

Symbols in Alphabetical Order

Reserve SPE Letter

	SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			
а		activity	
а	F_a	air requirement	various
a		decline factor, nominal	
а	L_a , L_1	distance between like wells (injection or projection) in a row	L
a_E	F_{aE}	air requirement, unit, in laboratory experimental run, volumes of air per unit mass of pack	L ³ /m
a_R	F_{aR}	air requirement, unit, in reservoir, volumes of air per unit bulk volume of reservoir rock	
A		amplitude	various
A	S	area	L ²
A	2	atomic weight	m
A	S	cross section (area)	L^2
A	\tilde{F}	helmholtz function (work function)	mL^2/t^2
A_c	•	amplitude, compressional wave	various
$\stackrel{II_c}{A_r}$		amplitude, relative	various
A_s		amplitude, shear wave	various
b	W	breadth, width, or (primarily in fracturing) thickness	various
b	Y	intercept	various
b	f,F	reciprocal formation volume factor, volume at standard conditions divided by volume at reservoir conditions (shrinkage factor)	various
b	W	width, breadth, or (primarily in fracturing) thickness	L
b_g	f_g, F_g	reciprocal gas formation volume factor	
b_{gb}°	f_{gb} , F_{gb}	reciprocal gas formation volume factor at bubblepoint conditions	
b_o	f_o , F_o	reciprocal oil formation volume factor (shrinkage factor)	
В	C	correction term or correction factor (either additive or multiplicative)	
В	F	formation volume factor, volume at reservoir conditions divided by volume at standard conditions	
B_{g}	F_{g}	formation volume factor, gas	
B_{gb}°	F_{gb}°	bubblepoint formation volume factor, gas	
B_{gb}°	$F_{gb}^{s^{-}}$	formation volume factor at bubblepoint conditions, gas	
B_o	F_o	formation volume factor, oil	
B_{ob}	F_{ob}°	bubblepoint formation volume factor, oil	
		- · · · · · · · · · · · · · · · · · · ·	

Dimensions: L=length, m=mass, q=electrical charge, t=time, T=temperature, M=money, and n=amount of substance.

Reserve	
SPE Letter	•

	SPE Letter		·
Letter Symbol	Symbol	Quantity	Dimensions
English			
B_{ob}	F_{ob}	formation volume factor at bubblepoint conditions, oil	
B_t	F_T	formation volume factor, total (two-phase)	
B_w	F_w	formation volume factor, water	
$\overset{"}{c}$	k,κ	compressibility	Lt^2/m
c_f	k_f, κ_f	compressibility, formation or rock	Lt^2/m
c_g	k_g, κ_g	compressibility, gas	Lt^2/m
c_o	k_o, κ_o	compressibility, oil	Lt^2/m
c_{pr}	k_{pr}, κ_{pr}	compressibility, pseudoreduced	
c_w	k_w, κ_w	compressibility, water	Lt^2/m
$\stackrel{\circ}{C}$		capacitance	q^2t^2/mL^2
$\stackrel{\circ}{C}$	C_t	capital investments, summation of all	M
$\stackrel{\mathcal{C}}{C}$	C_l	coefficient of gas-well backpressure curve	$L^{3-2n}t^{4n}m^{2n}$
$\stackrel{\mathcal{C}}{C}$	n_C	components, number of	L t III
$\stackrel{\mathcal{C}}{C}$	c,n	concentration	various
$\stackrel{C}{C}$	σ	conductivity (electrical logging)	tq^2/mL^3
$\stackrel{C}{C}$	K	conductivity, other than electrical (with subscripts)	various
C	c,n	salinity	various
C	c	specific heat (always with phase or system subscripts)	L^2/t^2T
C		waterdrive constant	L^4t^2/m
C_a	σ_{lpha}	conductivity, apparent	tq^2/mL^3
C_{C_1} C_{fD}	$c_{C_1}^{"}$	concentration, methane (concentration of other paraffin hydrocarbons would be indicated similarly, C_{C_2} , C_{C_3} , etc.) conductivity, fraction, dimensionless	various
C_i		capital investment, initial	M
C_k		capital investment in period k	M
C_L^{κ}	c_L, n_L	content, condensate or natural gas liquids	various
C_L	L, L	waterdrive constant, linear aquifer	L^4t^2/m
C_m	$c_m n_m$	fuel concentration, unit (see symbol <i>m</i>)	various
$C_{\mathrm{O}_2}^{^{\mathrm{m}}}$	c_{O_2}	concentration, oxygen (concentration of other elements or compounds would be indicated similarly, C_{CO_2} , C_{N_2} , etc.)	
C_{pv}		investment at present value	M
C_{wg}^{P}	c_{wg} , n_{wg}	content, wet-gas	various
\ddot{d}°	"8" "8	decline factor, effective	
d	D	diameter	L
d	L_d , L_2	distance between adjacent rows of injection and production wells	L
d_h	d_H , D_h	diameter, hole	L
d_i	d_l , D_i	diameter, invaded zone (electrically equivalent)	L
\overline{d}_p	\overline{D}_p	diameter, mean particle	L
D	2 p	deliverability (gas well)	L^3/t

Letter Symbol	Symbol	Quantity	Dimensions
English D		depletion, depreciation, or amortization (all nonreal account entries)	various
D	y,H	depth	L
$\stackrel{\mathcal{D}}{D}$	μ,δ	diffusion coefficient	L^{2}/t
e	i i	encroachment or influx rate	L^3/t
e_g	i_g	encroachment or influx rate, gas	L^3/t
$\stackrel{\circ}{e_o}$	$\overset{\circ}{i_o}$	encroachment or influx rate, oil	L^3/t
e_{O_2}	E_{O_2}	oxygen utilization	
e_w	i_w	encroachment or influx rate, water	L^3/t
e^z	$\exp z$	exponential function	2,0
E	$\eta_{,e}$	efficiency	
E	V	electromotive force	mL^2/t^2q
$\stackrel{-}{E}$	U	energy	mL^2/t^2
E		expense, total (except income taxes)	M
E	Y	modulus of elasticity (Young's modulus)	m/Lt
E_A	η_A , e_A	efficiency, areal (used in describing results of model studies only): area swept in a model divided by total model reservoir area (see E_P)	
E_c	Φ_c	electrochemical component of the SP	mL^2/t^2q
E_D	η_D , e_D	efficiency, displacement: volume of hydrocarbons (oil or gas) displaced from individual pores or small groups of pores divided by the volume of hydrocarbon in the same pores just prior to	
E_{Db}	η_{Db} , e_{Db}	efficiency, displacement, from burned portion of in-situ combustion pattern	
E_{Du}	η_{Du}, e_{Du}	efficiency, displacement, from unburned portion of in-situ combustion pattern	
E_I	η_{l} , e_{l}	efficiency, invasion (vertical): hydrocarbon pore space invaded (affected, contacted) by the injection fluid or heat front divided by the hydrocarbon pore space enclosed in all layers behind the injected fluid or heat front	
E_k	Φ_k	electrokinetic component of the SP	mL^2/t^2q
E_k		kinetic energy	mL^2/t^2
E_n		Euler's number	
$E_{p\mathrm{SP}}$	$\Phi_{ ext{SP}}$	pseudo-SP	mL^2/qt^2
E_p	η_{P} , e_{P}	efficiency, pattern sweep (developed from areal efficiency by proper weighting for variations in net pay thickness, porosity, and hydrocarbon saturation): hydrocarbon pore space enclosed behind the injected fluid or heat front divided by total hydrocarbon pore space of the reservoir or project	
E_R	η_R, e_R	efficiency, overall reservoir recovery: volume of hydrocarbons recovered divided by volume of hydrocarbons in place at start of project $(E_R=E_PE_1E_D=E_VE_D)$	
$E_{ m SP}$	$\Phi_{ ext{SP}}$	SP (measured SP) (self-potential)	mL^2/t^2q

Reserve
SPE Letter

	SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			
$E_{ m SSP}$	$\Phi_{ ext{SSP}}$	SSP (static SP)	mL^2/t^2q
	ΨSSP		M M
E_u		expense per unit	1V1
E_V	η_V, e_V	efficiency, volumetric; product of pattern	
		sweep and invasion efficiencies	
E_{Vb}	η_{Vb} , e_{Vb}	efficiency, volumetric, for burned portion	
		only, in-situ combustion pattern	
-Ei(-x)			
(···)		exponential integral $\int_{-\infty}^{e} dt r positive$	
		exponential integral, $\int_{x}^{\infty} \frac{e^{-t}}{t} dt$, x positive	
		~	
Ei(x)		$\lim_{\varepsilon \to 0+} \left(\int_{-x}^{-\varepsilon} \frac{e^{-t}}{t} dt + \int_{-\infty}^{\infty} \frac{e^{-t}}{t} dt \right), x \text{ positive}$	
f	F	fraction (such as the fraction of a flow stream	
J		consisting of a particular phase)	
f	v	frequency	1/t
f	r	friction factor	1/ 0
J £			m/Lt^2
J	П	fugacity	III/Lt
J_{g}	F_g	fraction gas	
$f \\ f \\ f \\ f_{g} \\ f_{g} \\ f_{L}$	F_g	mole fraction gas, $V/(L+V)$	
f_L	$F_L,\!f_\ell$	fraction liquid	
	(script ℓ)		
f_L	$F_L,\!f_\ell$	mole fraction liquid, $L/(L+V)$	
	(script ℓ)		
$f_{\scriptscriptstyle \mathcal{S}}$	Q,x	quality (usually of steam)	
f_V	f_{Vb} , V_{bf}	fraction of bulk (total) volume	
$f_{s\phi h}$	$\phi_{ ext{ig/sh}}$	fraction of intergranular space ("porosity")	
$Js \varphi n$	Ψ ig/sii	occupied by all shales	
$f_{\phi shd}$	ϕ im f sh d	fraction of intermatrix space ("porosity")	
$J \phi$ shd	φ im f sh a	occupied by nonstructural dispersed shale	
ſ	1		
f_{\phiw}	$\phi_{ ext{ig} extit{fw}}$	fraction of intergranular space ("porosity")	
_		occupied by water	
F		degrees of freedom	
F	f	fluid (generalized)	various
F	$\stackrel{f}{\mathcal{Q}}$	force, mechanical	mL/t^2
F		ratio or factor in general (always with	
		identifying subscripts)	
F_{aF}		air/fuel ratio	various
F_B^{ar}		factor, turbulence	
F_R		formation resistivity factor—equals R_0/R_w	
1 R		(a numerical subscript to F indicates the	
П	-	value R_w)	
F_s	F_d	damage ratio or condition ratio (conditions relative to formation conditions unaffected by well operations)	
F_{wF}		water/fuel ratio	various
F_{wo}		water/oil ratio, producing, instantaneous	
F_{wop}		water/oil ratio, cumulative	
\overline{F}_{WV}	γ	specific weight	mL^2/t^2
g	/	acceleration of gravity	L/t^2
8		according of Brains	L/ t

Letter Symbol	SPE Letter Symbol	Quantity	Dimensions
English	Бушоот	Quantity	Difficusions
g	γ	gradient	various
g_c	/	conversion factor in Newton's second law of	, 6110 615
<i>6</i> t		motion	
g_G	g_g	gradient, geothermal	T/L
$\overset{33}{G}$	$\overset{\circ s}{F}$	free energy (Gibbs function)	mL^2/t^2
G	g	gas (any gas, including air), always with	various
	C	identifying subscripts	
G	g	gas in place in reservoir, total initial	L^3
G	f_G	geometric factor (multiplier)	
		(electrical logging)	•
G	E_s	shear modulus	m/Lt^2
$G_{ m an}$	$f_{G\mathrm{an}}$	factor, geometric (multiplier), annulus	
_		(electrical logging)	
$G_{ m an}$	$f_{G\mathrm{an}}$	geometric factor (multiplier), annulus	
		(electrical logging)	. 3
G_e	g_e	gas influx (encroachment), cumulative	L^3
G_{Fi}	g_{Fi}	free-gas volume, initial reservoir ($=mNB_{oi}$)	L^3
G_{Fp}	g_{Fp}	free gas produced, cumulative	L_2^3
G_i	g_i	gas injected, cumulative	L^3
G_{i}	f_{Gi}	geometric factor (multiplier), invaded zone	L^3
C		(electrical logging)	т 3
G_L	g_L	condensate liquids in place in reservoir, initial	${f L}^3 \ {f L}^3$
G_{Lp}	g_{Lp}	condensate liquids produced, cumulative	L^3
G_m	f_{Gm}	geometric factor (multiplier), mud	L
G_p	α	(electrical logging) gas produced, cumulative	L^3
G_p	g_p	geometric factor (multiplier), pseudo	L^3
G_p	f_{Gp}	(electrical logging)	L
G_{pa}	g_{pa}	gas recovery, ultimate	L^3
G_{pE}	g_{pE}	gas produced from experimental tube run	L^3
$\overset{-p_L}{G_t}$	f_{Gt}	geometric factor (multiplier), true	
•	<i>y</i> 0.	(noninvaded zone) (electrical logging)	
G_{wgp}	g_{wgp}	wet gas produced, cumulative	L^3
$G_{xo}^{\cdot \cdot \cdot}$	f_{Gxo}	geometric factor (multiplier), flushed zone	
		(electrical logging)	
h	d, e	bed thickness, individual	L
h	i	enthalpy, specific	L^2/t^2
h	h_h, h_T	heat-transfer coefficient, convective	$m/t^3/T$
h	d, e	height (other than elevation)	L
h		hyperbolic decline constant (from equation)	
		$q=q_i/\left(1+\frac{a_it}{h}\right)^h$	
h	d, e	thickness (general and individual bed)	L
h_{mc}	d_{mc} , e_{mc}	thickness, mud cake	L
h_n	d_n, e_n	thickness, net pay	L
h_t	d_{t} , e_{t}	thickness, gross pay (total)	L
H	I	enthalpy (always with phase or system	mL^2/t^2
		subscripts)	

	SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			
_	ī	anthalny (nat) of stoom or anthalny above	mL^2/t^2
H_s	I_s	enthalpy (net) of steam or enthalpy above	IIIL /t
		reservoir temperature	
i		discount rate	
i		injection rate	L^3/t
i		interest rate	1/t
			L^3/t
i_a		injection rate, air	
i_g		injection rate, gas	L^3/t
i_R		rate of return (earning power)	
i_w		injection rate, water	L^3/t
\H{I}	i (script i), i	current, electric	q/t
I	i (script i), i	electric current	q/t
I	I_T , $I_{ heta}$	heat transfer coefficient, radiation	m/t^3T
I		income (net revenue minus expenses)	M
I	i	index (use subscripts as needed)	
I	i	injectivity index	L^4t/m
$\mathcal{J}(z)$ (script I)	•	imaginary part of complex number z	_ ,
			M
I_{bt}		income before taxes	M
I_f	i_f, I_F, i_F	fracture index	
I_{Ff}	i_{Ff}	free fluid index	
I_H°	i_H°	hydrogen index	
I_{pwk}	-11	income at present value in period k	M
	i		141
I_R	i_R	hydrocarbon resistivity index R_t/R_0	L^3t/m
I_s	$i_{\scriptscriptstyle S}$	injectivity index, specific	L't/m
$I_{{ m sh}GR}$	$i_{\mathrm shGR}$	shaliness gamma ray index, $(\gamma_{log} - \gamma_{cn})/(\gamma_{sh} - \gamma_{cn})$	
I_{ϕ}	i_{ϕ}	porosity index	
,	ι_{φ}	-	
$I_{m{\phi}1}$	$i_{m{\phi}_{ m l}}$	porosity index, primary	
$I_{\phi 2}$	i_{ϕ_2}	porosity index, secondary	
$\overset{r}{J}$	ω	reciprocal permeability	$1/L^2$
J		productivity index	L^4t/m
	j		
J_{s}	J_s	productivity index, specific	L^3t/m
K	κ	magnetic susceptibility	mL/q^2
K	K	permeability, absolute (fluid flow)	L^{2}
K	r,j	reaction rate constant	L/t
k_g	$\overset{\circ}{K_g}$	effective permeability to gas	L^2
k_g/k_o	K_g/K_o	gas/oil permeability ratio	L
k_h	λ	thermal conductivity (always with additional	
		phase or system subscripts)	2
k_o	K_o	effective permeability to oil	L^2
k_{rg}	K_{rg}	relative permeability to gas	
k_{ro}	K_{ro}^{ro}	relative permeability to oil	
k_{rw}	K_{rw}	relative permeability to water	
			т 2
k_{w}	K_w	effective permeability to water	L^2
k_w/k_o	K_w/K_o	water/oil permeability ratio	2
K	K_b	bulk modulus	m/Lt^2
K		coefficient in the equation of the	mL^2/t^2q
		electrochemical component of the SP	. 1
77	3.6	(spontaneous electromotive force)	
K	M	coefficient or multiplier	various

	SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			
$\overset{\circ}{K}$	d	dispersion coefficient	L^2/t
K	$k, F_{\rm eq}$	equilibrium ratio (y/x)	
K	M	multiplier or coefficient	various
$K_{ m ani}$	$M_{ m ani}$	anisotropy coefficient	
K_c	M_c, K_{ec}	electrochemical coefficient	mL^2/t^2q
K_R	M_{R}, a, C		mb /t q
	M_R, u, C	formation resistivity factor coefficient $(F_{R\phi}^{m})$	
ln		natural logarithm, base e	
log		common logarithm, base 10	
\log_a		logarithm, base a	
L	s,ℓ (script l)	distance, length, or length of path	L
L	s,ℓ (script l)	distance, path length, or distance	L
L	n_L	liquid phase, moles of	
L	s,ℓ (script l)	path length, length, or distance	L
L_f	x_f	fracture half-length (specify "in the direction	L
2)	2.07	of' when using x_f)	_
L_s	s, ℓ (script l)	spacing (electrical logging)	L
$L_{v}^{L_{s}}$	λ_v	heat of vaporization, latent	L^2/t^2
$\mathcal{L}(y)$ (script L)	λ_{v}	- 0	L/t
$\mathcal{L}(y)$ (script L)		transform, Laplace of y , $\int_{-\infty}^{\infty} y(t)e^{-st}dt$	
		transform, Euplace or y , $\int_{0}^{\infty} y(t)e^{-t}dt$	
m		cementation (porosity) exponent (in an	
		empirical relation between F_R and ϕ)	
m	F_F	fuel consumption $f(x) = f(x) + f(x)$	various
m	1 F	mass	m
	F_{Fo} , F_{go}	ratio of initial reservoir free-gas volume to	111
m	Γ_{F_0} , Γ_{g_0}	initial reservoir oil volume	
m	A	slope	various
m_E	F_{FE}	fuel consumption in experimental tube run	m/L^3
m_{Eg}	F_{FEg}	fuel consumption in experimental tube run	m
· ·		(mass of fuel per mole of produced gas)	
k		amortization (annual write-off of unamortized	M
		investment at end of year k)	
m_R	F_{FR}	fuel consumption in reservoir	m/L^3
M	I	magnetization	m/qt
M	F_{λ}	mobility ratio, general ($\lambda_{\text{displacing}}/\lambda_{\text{displaced}}$)	m qt
$\stackrel{m}{M}$	F_{λ}	mobility ratio, sharp-front approximation	
171	1 λ	(λ_D/λ_d)	
M		molecular weight	m
$\stackrel{M}{M}$	700		m
IVI	m	number of compounding periods (usually per	m
1.6		year)	tL^2/m
M	$m_{ heta D}$	slope, interval transit time vs. density	tL/m
• •		(absolute value)	/ - 2
M		volumetric heat capacity	m/Lt ² T
M_f		magnetization, fraction	
M_L		molecular weight of produced liquids, mole-	m
		weighted average	

	SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			
$\overline{M}_{\overline{S}}$	M_{Dd} , M_{su}	mobility ratio, diffuse-front approximation $[(\lambda_D + \lambda_d)_{\text{swept}}/(\lambda_d)_{\text{unswept}}]$; mobilities are evaluated at average saturation conditions behind and ahead of front	
M_t	$F_{\lambda t}$	mobility ratio, total, $[(\lambda_t)_{\text{swept}}/(\lambda_t)_{\text{unswept}}]$; "swept" and "unswept" refer to invaded and uninvaded regions behind and ahead of leading edge of displacement front	
n	N	density (indicating "number per unit volume")	1/L ³
n		exponent of backpressure curve, gas well	
n	μ	index of refraction	
n	N	number (of variables, or components, or steps, or increments, etc.)	
n	N	number (quantity)	
n		number of compounding periods	1/t
n		saturation exponent	
n_j	N_{i}	moles of component <i>j</i>	
n_N	,	density (number) of neutrons	$1/L^3$
n_{pj}	N_{pj}	moles of component <i>j</i> produced, cumulative	
n_t	N_t	number of moles, total	
N	n, C	count rate (general)	1/t
N		neutron [usually with identifying subscript(s)]	various
N		number, dimensionless, in general (always with identifying subscripts)	
N	n	oil (always with identifying subscripts)	various
N	n	pump strokes, number of, cycles per unit of time	
N	$m_{ heta ND}$	slope, neutron porosity vs. density (absolute value)	L^3/m
N_e		oil influx (encroachment), cumulative	L^3
N_{GR}	N_{γ} , C_G	gamma ray count rate	1/t
N_i	n_i	oil in place in reservoir, initial	L^3
N_N	N_n, C_N	neutron count rate	1/t
N_p	n_p	oil produced, cumulative	L^3
N_{pa}	n_{pa}	oil recovery, ultimate	L^3
N_R	N_F	fuel deposition rate	m/L^3t
$N_{ m Re}$		Reynolds number (dimensionless number)	
p	P	pressure	m/Lt^2
p		price	M
p_a	P_a	pressure, atmospheric	m/Lt^2
p_b	p_s, P_s, P_b	pressure, bubblepoint (saturation)	m/Lt^2
p_{bh}	$P_{ m bh}$	pressure, bottomhole	m/Lt^2
p_c	P_c	pressure, critical	m/Lt^2
$p_{c\!f}$	P_{cf}	pressure, casing flowing	m/Lt^2
p_{cs}	P_{cs}	pressure, casing static	m/Lt^2
p_d	P_d	pressure, dewpoint	m/Lt ²
p_D	P_D	pressure, dimensionless	/T .2
p_e	P_e	pressure, external boundary	m/Lt^2

Letter Symbol	Symbol Symbol	Quantity	Dimensions
English			
$p_{\rm ext}$	$P_{ m ext}$	pressure, extrapolated	m/Lt^2
p_f	P_f	pressure, front or interface	m/Lt^2
p_{gk}	,	price of gas in period k	M
p_i	P_{i}	pressure, initial	m/Lt^2
p_{iwf}	$P_{iwf}^{'}$	pressure, bottomhole flowing, injection well	m/Lt^2
p_{iws}	P_{iws}^{iwj}	pressure, bottomhole static, injection well	m/Lt^2
p_k	- iws	price in period k	M
$p_{ m pc}$	$P_{ m pc}$	pressure, pseudocritical	m/L^2
$p_{ m pc}$	$P_{ m pc}$	pseudocritical pressure	m/Lt^2
p_{pr}	P_{pr}	pressure, pseudoreduced	111/120
p_r	$\stackrel{\scriptstyle P_r}{P_r}$	pressure, reduced	
p_{sc}	P_{sc}	pressure, standard conditions	m/Lt^2
$p_{ m sp}$	$\stackrel{r}{P}_{ m sp}$	pressure, separator	m/Lt^2
p_{tD}	$\overset{r}{P_{tD}}$	pressure function, dimensionless, at	111/12/
P^{1D}	1 1D	dimensionless time t_D	
$n_{\cdot c}$	P_{tf}	pressure, tubing flowing	m/Lt^2
p_{tf}	P_{ts}	pressure, tubing static	m/Lt^2
p_{ts}	P_w	pressure, bottomhole general	m/Lt^2
p_w	$\stackrel{r}{P_{wf}}$	pressure, bottomhole flowing	m/Lt^2
p_{wf}	P_{ws}	pressure, bottomhole static	m/Lt^2
p_{ws}		pressure, bottomhole, at any time after shut-in	m/Lt^2
$p_{\underline{ws}}$	$rac{P_{ws}}{P}$	average pressure	m/Lt ²
p			
$\frac{1}{p}$	\overline{P}	pressure, average or mean	m/Lt ²
$\frac{-}{p_R}$	\overline{P}_{R}	pressure, reservoir average	m/Lt^2
P		phases, number of	
P		profit	M
P_c	P_C, p_C	capillary pressure	m/Lt^2
P_{pvat}	010	profit at present value after tax	M
P_{pvatk}^{pvatk}		profit at present value after tax in period k	M
q	Q	production rate or flow rate	L^3/t
q_a	\widetilde{Q}_a	production rate at economic abandonment	L^3/t
$q_{ m dh}$	q_{wf} , $q_{ m DH}$, $Q_{ m dh}$	volumetric flow rate downhole	L^3/t
q_D	Q_D	production rate, dimensionless	
q_g	\widetilde{Q}_g	production rate, gas	L^3/t
q_{gD}	$\widetilde{Q}_{gD}^{\circ}$	production rate, gas dimensionless	
q_i	\widetilde{Q}_i	production rate at beginning of period	L^3/t
q_o	\widetilde{Q}_o	production rate, oil	L^3/t
q_{oD}	\widetilde{Q}_{oD}	production rate, oil, dimensionless	
$q_{\overline{p}}$	$\widetilde{Q}_{\overline{p}}$	production rate or flow rate at mean pressure	L^3/t
•	Q_s	segregation rate (in gravity drainage)	L^3/t
q_s	$q_{\sigma}Q_{sc}$	surface production rate	L^{3}/t
q_{sc}	$q_{\sigma}Q_{sc}$ $q_{\sigma}Q_{sc}$	volumetric flow rate, surface conditions	L^{3}/t
q_{sc}	Q_{w}	production rate, water	L^{3}/t
q_w	Qw O =	production rate, water production rate, water, dimensionless	L /t
$q_{\underline{w}D}$	$\frac{\mathcal{L}_{wD}}{O}$	production rate, water, unnersionless production rate or flow rate, average	L^3/t
q	$egin{array}{c} \overline{Q}_{wD} \ \overline{Q} \ Q \end{array}$		
$egin{array}{c} \mathcal{Q} \ \mathcal{Q} \end{array}$	$Q = q, \Phi$	charge heat flow rate	$\frac{q}{mL^2/t^3}$
\mathcal{Q}	q,Ψ	neat now rate	IIIL /t

Reserve	
SPE Letter	•

	SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English		<u> </u>	
Q_i	q_i	pore volumes of injected fluid, cumulative, dimensionless	mL^2/t^3
Q_{LtD}	$Q_{\ell tD}$ (script l)	influx function, fluid, linear aquifer, dimensionless	
Q_p	$Q_{\ell tD}$ (script l)	fluids, cumulative produced (where N_p and W_p are not applicable)	
Q_p		produced fluids, cumulative (where N_p and W_p are not applicable)	L^3
Q_{tD}		fluid influx function, dimensionless, a dimensionless time t_D	
Q_V	Z_V	cation exchange capacity per unit pore volume	
r	R	radius	L
r	R	resistance	ML^{2}/tq^{2}
r		royalty	various
r_d	R_d	drainage radius	L
r_D	R_D	radius, dimensionless	
r_e	R_e^D	external boundary radius	L
r_H	R_H^c	hydraulic radius	L
r_R	11	royalty rate	various
r_s	R_s	radius of well damage or stimulation (skin)	L
r_w	R_w	well radius	L
r_{ws}	$R_{wa}^{"}$	radius of wellbore, apparent or effective (includes effects of well damage or stimulation)	L
R	ρ , r	electrical resistivity (electrical logging)	mL^3/tq^2
R	•	gas constant, universal (per mole)	mL^2/t^2T
R	F_g , F_{go}	gas/oil ratio, producing	
R	N	molecular refraction	L^3
R		reaction rate	m/L^2
R		revenue	M
$\mathcal{R}(z)(\text{script }R)$		real part of complex number z	
R_a	$ ho_a$, r_a	apparent resistivity	mL^3/tq^2
R_F	F_{gF} , F_{goF}	free gas/oil ratio, producing (free-gas volume/oil volume)	
R_i	ρ_i , r_i	invaded zone resistivity	mL^3/tq^2
R_m	ρ_m, r_m	mud resistivity	mL^3/tq^2
R_{mc}	$ ho_{mc}, r_{mc}$	mudcake resistivity	mL^3/tq^2
R_{mf}	$ ho_{mf}$, r_{mf}	mud-filtrate resistivity	mL^3/tq^2
R_p	F_{gp} , F_{gop}	cumulative gas/oil ratio	•
R_s^r	F_{gs}^{r}, F_{gos}^{s}	solution gas/oil ratio (gas solubility in oil)	
$R_{sb}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\overset{_{gs}}{F}_{gsb}$	solution gas/oil ratio at bubblepoint conditions	
R_{sh}	$ ho_{\mathit{sh}}, r_{\mathit{sh}}$	shale resistivity	mL^3/tq^2
R_{si}^{sn}	F_{gsi}	solution gas/oil ratio, initial	1
R_{sw}	800	gas solubility in water	
R_t	$ ho_{t}$, r_{t}	true formation resistivity	mL^3/tq^2
R_w	ρ_w, r_w	water resistivity	mL^3/tq^2
••	, "	·	1

I -44 C1 - 1	SPE Letter	Occartita	D:
Letter Symbol	Symbol	Quantity	Dimensions
English			± 3 /. 2
R_{xo}	$ ho_{xo}$, r_{xo}	flushed-zone resistivity (that part of the	mL^3/tq^2
		invaded zone closest to the wall of the hole,	
D		where flushing has been maximum)	T 3 / 2
R_z	$ ho_z$, r_z	apparent resistivity of the conductive fluids in	mL^3/tq^2
D		an invaded zone (caused by fingering)	= 3 / 2
R_0	$ ho_0$, r_0	formation resistivity when 100% saturated	mL^3/tq^2
~		with water of resistivity R_w	
$\frac{S}{S}$	7	Laplace transform variable	т.
S	L	displacement	L - 2 / 2 m
S	\sum_{G}	entropy, specific	L^2/t^2T
S	S, σ	skin effect	various
S		standard deviation of a random variable,	
2		estimated	
s^2		variance of a random variable, estimated	T 2 / 2m
S	σ_t	entropy, total	mL^2/t^2T
S	ho,s	saturation	ě
S	s, σ	storage or storage capacity	various
S_{fD}	S_D	dimensionless fracture storage capacity	
S_g	$ ho_g$, s_g	gas saturation	
$S_{gc} \ S_{gr}$	$ ho_{gc}$, s_{gc}	gas saturation, critical	
S_{gr}	$ ho_{gr}$, s_{gr}	gas saturation, residual	
$\overset{\circ}{S_h}$	ρ_h, s_h	saturation, hydrocarbon	
S_{hr}	$ ho_{hr}$, s_{hr}	residual hydrocarbon saturation	
S_{iw}	$ ho_{iw}$, s_{iw}	irreducible (interstitial or connate) water	
C		saturation	
S_L	$ ho_L$, s_L	liquid saturation, combined total	
S_o	$ ho_o$, s_o	oil saturation	
S_{og}	$ ho_{og}$, s_{og}	gas-cap interstitial-oil saturation	
S_{or}	$ ho_{or}$, s_{or}	residual oil saturation	
S_w	$ ho_{\scriptscriptstyle W}$, $s_{\scriptscriptstyle W}$	water saturation	
S_{wc}	$ ho_{wc}$, s_{wc}	critical water saturation	
S_{wg}	$ ho_{wg}$, s_{wg}	interstitial-water saturation in gas cap	
S_{wi}	$ ho_{wi}$, s_{wi}	initial water saturation	
S_{wo}	S_{wb}	interstitial-water saturation in oil band	
$rac{S_{wr}}{T}$	$ ho_{wr}$, s_{wr}	residual water saturation	4
	$ au \Delta t$	time interval transit time	t t/L
\angle (script t)	Δt	intervar transit time	VL
t_d	$ au_d$	time, delay	t
t_{dN}		decay time, neutron (neutron mean life)	t
t_D	$ au_D$	time, dimensionless	
t_{Dm}	$ au_{Dm}$	time, dimensionless at condition <i>m</i>	
ζ_{ma} (script t)	Δt_{ma}	matrix interval transit time	t/L
t_N	$ au_N$, t_n	neutron lifetime	1/t
t_p	$ au_p$	time well was on production prior to shut-in,	t
Ρ	· <i>P</i>	equivalent (pseudotime)	
t_{poat}		payout time, after tax	t
t_{pypobt}		payout time, before tax at present value	t
$t_{\scriptscriptstyle S}$	$ au_{\scriptscriptstyle S}$	time for stabilization of a well	t
3	-3	** ** *	

Letter Symbol	Symbol	Quantity	Dimensions
English ζ_{sh} (script t)	Δt_{sh}	shale interval transit time	t/L
t_1	$ au_1$	relaxation time, proton thermal	t
$t_{1\!/_{\!2}}$		half-life	t
t_2	$ au_2$	relaxation time, free-precession decay	t
T	Θ	period	t
T		tax on income	various
T	heta	temperature	T
T	T	transmissivity, transmissibility	various
T_{bh}	$ heta_{BH}$	bottomhole temperature	T
T_c	$ heta_c$	critical temperature	T
T_f	$ heta_{\!f}$	formation temperature	T
T_k	ý	tax in period \vec{k}	various
T_{pr}	$ heta_{pr}$	pseudoreduced temperature	T
T_r	$\dot{ heta_r}$	reduced temperature	
T_R	$ heta_{R}$	reservoir temperature	T
T_R		tax rate	various
T_{sc}	$ heta_{sc}$	temperature, standard conditions	T
u	Ψ	flux	various
u	Ψ	flux or flow rate, per unit area (volumetric velocity)	L/t
u	Ψ	superficial phase velocity (flux rate of a particular fluid phase flowing in pipe; use appropriate phase subscripts)	
U	$U_{\it T}, U_{\it heta}$	heat transfer coefficient, overall	m/t^3T
v	V, u	acoustic velocity	L/t
$\stackrel{\scriptstyle v}{v}$	v_s	specific volume	L^{3}/m
$\stackrel{\scriptstyle v}{v}$	v_S	value (economic)	M
$\stackrel{r}{v}$	V,u	velocity	L/t
v_b	V_b, u_b	burning-zone advance rate (velocity of)	L/t
v_p	, 0,000	net present value (NPV)	M
$\overset{\cdot}{V}$	n_v	moles of vapor phase	
\overline{V}	$\overset{\cdot }{U}$	potential difference (electric)	mL^2/at^2
\overline{V}	v	volume	mL^2/qt^2 L^3
V	$f_{ u}\!F_{ u}$	volume fraction or ratio (as needed, use same subscripted symbols as for "volumes"; note that bulk volume fraction is unity and pore volume fractions are ϕ)	various
V_b	v_b	bulk volume	L_{2}^{3}
V_{bE}	v_{bE}	bulk volume of pack burned in experimental tube run	L^3
V_{bp}	v_{bp}	volume at bubblepoint pressure	L^3
V_e	V_{pe} , v_e	volume, effective pore	L_{a}^{3}
V_{gr}	v_{gr}	volume, grain (volume of all formation solids except shales)	L^3
$V_{i\mathrm{g}}$	v_{ig}	volume, intergranular (volume between grains; consists of fluids and all shales) $(V_v - V_{gr})$	
V_{im}	v_{im}	volume, intermatrix (consists of fluids and dispersed shale) (V_b – V_{ma})	L^3

	SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			
V_M	v_m	molal volume (volume per mole)	L^3
V_{ma}	v_{ma}	matrix (framework) volume (volume of all	L^3
· mu	· mu	formation solids except dispersed clay or	
		shale)	
V_{ma}	.,	volume, matrix (framework)(volume of all	L^3
v ma	v_{ma}		L
17		formation solids except dispersed shale)	L^3
V_p	v_p	pore volume $(V_b - V_s)$	L
V_{pD}	v_{pD}	pore volume, dimensionless	2
V_{poat}	v_{pD}	payout volume, after tax	L_2^3
V_{Rb}		volume of reservoir rock burned	L_{2}^{3}
V_{Ru}		volume of reservoir rock unburned	L^3
V_s	v_s	volume, solids(s) (volume of all formation	L^3
		solids)	
V_{sh}	v_{sh}	volume, shale(s)(volume of all shales:	L^3
571	<i>5.1</i>	structural and dispersed)	
V_{shd}	v_{shd}	volume, shale, dispersed	L^3
V_{shs}	v_{shs}	volume, shale, structural	L^3
w sns	z sns	Arrhenius reaction-rate velocity constant	L^{3}/m
w	m	mass flow rate	m/t
		rate, mass flow	m/t
W	m		
W	w	water (always with identifying subscripts)	various L ³
W	W	water in place in reservoir, initial	
W	w,G	weight (gravitational)	mL/t^2
W	w	work	mL^2/t^2
W_e	w_e	water influx (encroachment), cumulative	L_2^3
W_i	w_i	water injected, cumulative	L_2^3
W_p	w_p	water produced, cumulative	L^3
\boldsymbol{x}		mole fraction of a component in liquid phase	
\vec{x}		vector of x	
\vec{x} \vec{x}		tensor of x	
$\frac{x}{\overline{x}}$		mean value of a random variable, x , estimated	
X		reactance	ML^2/tq^2
	f	holdup (fraction of the pipe volume filled by	WIL / tq
У	J		
		a given fluid: y_o is oil holdup; y_w is water	
		holdup; sum of all holdups at a given level	
		is 1)	
\mathcal{Y}		mole fraction of a component in a vapor	
	-	phase	
\boldsymbol{z}	Z	gas compressibility factor (deviation factor)	
		(z=pV/nRT)	
\boldsymbol{z}		mole fraction of a component in mixture	
\boldsymbol{z}		valence	
$Z_{\overline{p}}$	$Z_{\overline{p}}$	gas deviation factor (compressibility factor) at	
1	1	mean pressure	
Z		atomic number	
Z	D,h	elevation referred to datum	L
\overline{Z}	D,h	height, or fluid head or elevation referred to a	L
_	- ,	datum	_
Z		impedance	various
2		·····p + warret	7 41 10 415

Letter Symbol	SPE Letter Symbol	Quantity	Dimensions
English	Symbol	Qualitity	Difficusions
Z_a		impedance, acoustic	m/L^2t
_ <i>u</i>			
Greek			
α	eta , γ	angle	
α	M_{lpha}	attenuation coefficient	1/L
α	a,η_h	heat or thermal diffusivity	L^2/t
α		reduction ratio or reduction term	_
α	a,η_h	thermal or heat diffusivity	L^2/t
$lpha_{SP_{sh}}$		reduction ratio, SP, caused by shaliness	
β	γ	bearing, relative	
β	b	thermal cubic expansion coefficient	1/T
γ		gamma ray [usually with identifying	various
		subscript(s)]	
γ	s , F $_s$	specific gravity (relative density)	
γ	k	specific heat ratio	
γ	\mathcal{E}_{S}	strain, shear	
γ̈́	ė	shear rate	1/t
γ_g	s_g, F_{gs}	specific gravity, oil	
γ_w	s_w, F_{ws}	specific gravity, water	
δ	Δ	decrement	various
δ		deviation, hole (drift angle)	
δ	F_d	displacement ratio	
δ	u.	drift angle, hole (deviation)	
δ	r_{s}	skin depth (logging)	L
δ_{ob}	$F_{dob}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	displacement ratio, oil from burned volume,	
	400	volume per unit volume of burned reservoir	
2	E	rock	
δ_{ou}	F_{dou}	displacement ratio, oil from unburned	
		volume, volume per unit volume of unburned reservoir rock	
δ_{wb}	F_{dwb}	displacement ratio, water from burned	
		volume, volume per unit volume of burned reservoir rock	
Δ		difference or difference operator, finite	
Δ		($\Delta x = x_2 - x_1$ or $x_1 - x_2$)	
ΔG_e	Δg_e	gas influx (encroachment) during an interval	L^3
ΔG_i	Δg_i	gas injected during an interval	$\overset{\mathbf{L}}{\mathrm{L}}^{3}$
ΔG_p	Δg_p	gas produced during an interval	$\overset{\mathbf{L}}{\mathrm{L}}^{3}$
ΔN_e	Δn_e	oil influx (encroachment) during an interval	L^3
ΔN_p	Δn_p	oil produced during an interval	L^3
Δr	ΔR	radial distance (increment along radius)	L
Δt_{wf}	Δau_{wf}	drawdown time (time after well is opened to	t
v	·	production) (pressure drawdown)	
Δt_{ws}	$\Delta au_{\scriptscriptstyle WS}$	buildup time; shut-in time (time afterwell is shut in) (pressure buildup, shut-in time)	t
ΔW_e	Δw_e	water influx (encroachment) during an	L^3
		interval	
ΔW_i	Δw_i	water injected during an interval	L_2^3
ΔW_p	Δw_p	water produced during an interval	L^3

Letter Symbol	SPE Letter Symbol	Quantity	Dimensions
	Бушоот	Quantity	Difficusions
$\operatorname*{Greek}_{\varepsilon}$		dielectric constant	q^2t^2/mL^3
ε	e, ε_n	strain, normal and general	4 (, , , , , , , , , , , , , , , , , ,
η	c, c_n	hydraulic diffusivity $(k/\phi c\mu \text{ or } \lambda/\phi c)$	L^2/t
$\overset{\eta}{ heta}$	β , γ	angle	L /t
$\overset{\circ}{ heta}$	$\overset{oldsymbol{ ho}_{V}}{ heta_{V}}$	strain, volume	
Θ	$lpha_d$	angle of dip	
Θ_a	\mathfrak{a}_{da}	dip, apparent angle of	
$\overset{{\mathcal G}_u}{\Theta_c}$	Γ_c, γ_c	contact angle	
λ	C	decay constant $(1/\tau_d)$	1/t
λ	C	mobility (k/μ)	$L^3 t/m$
λ		wavelength($1/\sigma$)	L
λ_g		mobility, gas	L^3t/m
$\lambda_o^{ m g}$		mobility, oil	L^3t/m
λ_t	Λ	mobility, total, of all fluids in a particular	L^3t/m
		region of the reservoir [e.g., $(\lambda_o + \lambda_g + \lambda_w)$]	2 0/111
λ_w		mobility, water	L^3t/m
μ	M	azimuth of reference on sonde	
μ	m	magnetic permeability	mL/q^2
μ		mean value of a random variable	
μ	v , σ	Poisson's ratio	
μ	η	viscosity, dynamic	m/Lt
μ_a	η_a	viscosity, air	m/Lt
μ_c	Įü	chemical potential	
μ_g	η_g	viscosity, gas	m/Lt
μ_{ga}	η_{ga}	viscosity, gas, at 1 atm	m/Lt
μ_o	η_o	viscosity, oil	m/Lt
$\mu \frac{1}{p}$	$\eta \frac{1}{p}$	viscosity at mean pressure	m/Lt
μ_w	$oldsymbol{\eta}_w$	viscosity, water	m/Lt
v	$\stackrel{\gamma_W}{N}$	kinematic viscosity	L^2/t
$\stackrel{\circ}{v}$	$\stackrel{\sim}{N}$	viscosity, kinematic	L^2/t
ho	D	density	m/L^3
ρ	$\stackrel{-}{R}$	resistivity, electrical (other than logging)	mL^3tq^2
$\overset{r}{ ho}_{a}$	D_a	density, apparent	m/L^3
$ ho_b$	D_b^a	density, bulk	m/L^3
$ ho_f$	D_f^{σ}	density, fluid	m/L^3
$\stackrel{r}{ ho_F}$	$D_F^{'}$	density, fuel	m/L^3
$ ho_g$	D_{g}	density, gas	m/L^3
$ ho_{ma}$	D_{ma}^{s}	density, matrix (solids, grain)	m/L^3
$ ho_o$	D_o	density, oil	m/L^3
$ ho_{sE}$	D_{sE}	density of solid particles making up	m/L^3
• "		experiment pack	
$ ho_t$	D_t	density, true	m/L^3
$ ho_w$	D_w	density, water	m/L^3
$ ho_{xo}$	D_{xo}	density, flushed zone	m/L^3
$\overline{ ho}_L$	${ar D}_L$	density of produced liquid, weight-weighted	m/L^3
		average conductivity, electrical (other than logging)	various
σ	γ	cross section, microscopic	various 1/L
σ	c c	cross section, inicroscopic cross section of a nucleus, microscopic	L^2
σ	S	cross section of a nucleus, interescopic	L

Reserve
SPE Letter

	SPE Letter		
Letter Symbol	Symbol	<u>Quantity</u>	Dimensions
Greek			•
σ	y,γ	interfacial surface tension	m/t^2
σ		microscopic cross section	L^2
σ		standard deviation of a random variable	
σ	S	stress, normal and general	m/Lt^2
σ	y,γ	surface tension, interfacial	m/t^2
σ	$ ilde{v}$	wave number $(1/\lambda)$	1/L
σ^2		variance of a random variable	
Σ	S	cross section, macroscopic	1/L
${f \Sigma}$		summation (operator)	
τ	S_S	stress, shear	m/Lt^2
τ	$ au_c$	time constant	t
$ au_d$	t_d	decay time (mean life) $(1/\lambda)$	t
$ au_d$	t_{dt}	mean life (decay time) $(1/\lambda)$	t
$ au_e$		tortuosity, electric	
$ au_H$		hydraulic tortuosity	
$ au_H$		tortuosity, hydraulic	
$\overline{ au}$	\overline{t}	lifetime, average (mean life)	t
$\phi \ \phi_a$	f, $arepsilon$	porosity $(V_b - V_s)/V_b$	
ϕ_a	f_a , $arepsilon_a$	porosity, apparent	
$\phi_{\it e} \ \phi_{\it E}$	f_e , $arepsilon_e$	porosity, effective (V_{pe}/V_b)	
	f_{E} , $arepsilon_{E}$	porosity of experimental pack	
ϕ_h	$f_h, arepsilon_h$	porosity, hydrocarbon-filled, fraction or	
		percent of rock bulk volume occupied by	
		hydrocarbons	
$\phi_{\it ig}$	f_{ig} , $arepsilon_{ig}$	"porosity" (space), intergranular	
		$(V_b - V_{gr})/V_b$	
$\phi_{\it im}$	f_{im} , $arepsilon_{im}$	"porosity" (space), intermatrix	
,		$(V_b - V_{ma})/V_b$	
ϕ_{ne}	f_{ne} , $arepsilon_{ne}$	porosity, noneffective $(V_{pne})/V_b$	
$\phi_{_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}}}}}}}$	f_R , $arepsilon_R$	porosity of reservoir or formation	
ϕ_t	f_t, ε_t	porosity, total	
Φ	eta_d	dip, azimuth of	
Φ	f	potential of potential function	various
ψ		dispersion modulus (dispersion factor)	
Ψ		stream function	various
ω		angular frequency (acentric factor)	1/t
Math			
∞ ×		proportional to	
_		average or mean (overbar)	
<		smaller than	
≤		equal to or smaller than	
>		larger than	
<		equal to or larger than	
~		asymptotically equal to	
≈		approximately equal to or is approximated by	
		(usually with functions)	
∇		del (gradient operator)	
\triangle ·		divergence operator	

Reserve
SPE Letter
Carrala a 1

	SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
Math	γ	Laplacian operator curl error function error function, complementary limit intercept Euler's number exponential integral, modified $\lim_{\varepsilon \to 0+} \left(\int_{-x}^{-\varepsilon} \frac{e^{-t}}{t} \mathrm{d}t + \int_{\varepsilon}^{\infty} \frac{e^{-t}}{t} \mathrm{d}t \right), x \text{ positive}$	various
-Ei(-x)		exponential integral, $\int_{x}^{\infty} \frac{e^{-t}}{t} dt$, x positive	
$e^z \ F$	exp z	exponential function ratio	
$egin{array}{c} f \ \mathcal{J}(z) \end{array}$	F	fraction imaginary part of complex number z	
$\mathcal{L}(y)$		Laplace transform of y, $\int_0^\infty y(t)e^{st}dt$	
$\ln \log \log_a \log_a m N n$	A	logarithm, natural, base <i>e</i> logarithm, common, base 10 logarithm, base <i>a</i> slope number, dimensionless number (of variables, or steps, or increments, etc.) real part of complex number <i>z</i>	various
$ \begin{array}{c} s \\ s \\ s \\ \hline \frac{s^2}{x} \\ \frac{\vec{x}}{x} \end{array} $		Laplace transform variable standard deviation of a random variable, estimated variance of a random variable, estimated mean value of a random variable, <i>x</i> , estimated	
		vector of x	
$\vec{\dot{\vec{x}}}$	0	tensor of x	
$egin{array}{c} lpha \\ \gamma \\ \Delta \\ \Delta \\ \mu \\ \sigma \\ \sigma^2 \end{array}$	β,γ	angle Euler's constant=0.5772 difference ($\Delta x = x_2 - x_1$ or $x_1 - x_2$) difference operator, finite mean value of a random variable standard deviation of a random variable variance of a random variable	
Φ Ψ	f	potential or potential function stream function	various various

Subscript Symbols in Alphabetical Order

Reserve SPE

Letter Subscript	Subscript	Subscript Definition
Greek and Numerical	•	
E	E	strain
η		diffusivity
$\overset{\cdot}{ heta}$		angle, angular, or angular coordinate
λ	M	mobility
ho		density
ϕ	f, $arepsilon$	porosity
ϕ	f,ε	porosity data, derived from tool-description subscripts: see individual entries such as "amplitude log," "neutron log," etc.
0 (zero)	zr	formation 100% saturated with water (used in R_0 only)
1	<i>p</i> ,pri	primary
1,2,3, etc.		location subscripts; usage is secondary to that for representing times or time periods
1,2,3, etc.		numerical subscripts (intended primarily to represent times or time periods; available secondarily as location subscripts or for other purposes)
1,2,3, etc.		times or time periods
1,2,3, etc.		half
2	s, sec	secondary
∞	5,500	conditions for infinite dimensions
English		
a	A	abandonment
а	A, α	acoustic
а		active, activity, or acting
а		altered
а	Ap	apparent (general)
а	\hat{A}	atmosphere, atmospheric
aF		air/fuel
an	AN	annulus apparent (from log readings: use tool description subscripts)
anh		anhydrite
ani		anisotropic
ar		after royalty
at		after taxes
A	а	amplitude log
A		areal
b	B	band or oil band
b		bank or bank region
$\overset{\circ}{b}$	r , β	base
$\stackrel{\circ}{b}$	· · ·	bubble
$\overset{\circ}{b}$	s,bp	bubblepoint (saturation)
$\overset{\circ}{b}$	B,t	bulk (usually with volume, V_b)
$\overset{\circ}{b}$	B	burned or burning
bE		burned in experimental tube run (usually with volume, V_{bE})

Reserve SPE

Letter Subscript	Subscript	Subscript Definition
English		
bh	w,BH	bottomhole
bp		bubblepoint or saturation (usually with volume, V_{bp})
Br		before royalty
Bt	B	before taxes
B		turbulence (used with F only, F_B)
BT	bt	breakthrough
c	C	capillary (usually with capillary pressure, P_c)
c	cg	casing or casinghead
c		chemical
С	C	compressional wave
С	C	constant
С	C	contact (usually with contact angle, θ_c)
C		conversion (usually with conversion factor in Newton's laws of motion, g_c)
c	C	core
c	cr	critical
С	ec	electrochemical
cap		capture
cb	CB	cement bond log
cf		casing, flowing (usually with pressure)
cl	cla	clay
cn	cln	clean
cor		corrected
cp		compaction
CS		casing, static (usually with pressure)
C	calc	calculated
C	С	caliper log
C	С	coil
C		components(s)
C	,	convective
CB	cb	bond log, cement
CD	cd	compensated density log
CL	cl	chlorine log
CN	cn	compensated neutron log
CO		carbon monoxide
CO_2		carbon dioxide
C_1		methane
C_2		ethane decay
$d \ d$	δ	delay
d	$rac{\delta}{\delta}$	depleted region, depletion
d	U	dewpoint
d		differential separation
d		dip (usually with angle, α_d)
d	D	dispersed dispersed
d	s,D	displaced
d	s,D	drainage (usually with drainage radius, r_d)
dh	DH	downhole
dol	DII	dolomite
401		wording

	Reserve SPE	
Letter Subscript	Subscript	Subscript Definition
English		
dy	dty	dirty (clayey, shaly)
D	d	density log
D		dimensionless quantity
D	s,σ	displacing or displacement (efficiency)
DI	di	dual induction log
DLL	dll(script ll)	dual laterolog
DM	dm	diplog, dipmeter
DR	dr	directional survey
DT	dt	differential temperature log
Db		displacement from burned portion of in-situ combustion pattern (usually with efficiency, E_{Db})
Dm		dimensionless quantity at condition m
Du		displacement from unburned portion of in-situ combustion
		pattern (usually with efficiency, E_{Du})
e	0	boundary conditions, external
e	i	cumulative influx (encroachment)
e	E	earth
e	-	effective (or equivalent)
e	E	electric, electrical
e	E	entry
e	0	external or outer boundary conditions
el	eℓ (script el)	electron
eq	EV	equivalent
ext		extrapolated
$\frac{E}{E}$	e EM	electrode
$rac{E}{E}$	EM	empirical estimated
E E	est	
	EX	experimental experimental value per mole of produced gas (usually with fuel
E_g		consumption, m_{Eg})
EL	el,ES	electrolog, electrical log, electrical survey
EL EP		electromagnetic pipe inspection log
f	ep F	finger or fingering
f	$\stackrel{r}{F}$	flash separation
f	fl	fluid
f	fm	formation (rock)
$\stackrel{\jmath}{f}$	R	fraction or fractional
$\stackrel{\jmath}{f}$	\overline{F}	fracture, fractured, or fracturing
$\stackrel{\jmath}{f}$	\overline{F}	front, front region, or interface
$\stackrel{\jmath}{d}$	•	future
f	fm	rock (formation)
$\overset{\jmath}{F}$	\overline{F}	fill-up
\overline{F}	f	free (usually with gas or gas/oil ration quantities)
\overline{F}	J	fuel (usually with fuel properties, such as ρ_F)
Ff		free fluid
Fi		free value, initial (usually with gas, G_{Fi})
F_{P}		cumulative produced free value (usually with gas G_{Fp})
$\overset{\circ}{G}$	G	gas

Reserve SPE

Letter Subscript	Subscript	Subscript Definition
English		
ga		gas at atmospheric conditions
$\overset{\circ}{g}b$		gas at bubblepoint conditions
gD		gas, dimensionless
gr		grain
gyp		gypsum
G		geometrical
ls	lst	limestone
$\stackrel{ au}{L}$	ℓ (script l)	lateral, lineal
$\stackrel{-}{L}$	ℓ (script ℓ)	lateral (resistivity log)
extstyle e	ℓ (script ℓ)	liquid or liquid phase
L_p	v (5 4 11 p 11)	cumulative produced liquid (usually with condensate, G_{Lp})
$\overset{-p}{\mathrm{LL}}$	$\ell\ell$ (script ll)	laterolog (add further tool configuration subscripts as needed)
LLD	$\ell\ell$ (script ll)	deep laterolog
LLS	$\ell\ell s$ (script ll)	shallow laterolog
LOG	log	log
L_p	108	liquid produced, cumulative (usually with condensate, G_{Lp})
$\stackrel{L_p}{LP}$	ℓp (script l)	light phase
\overline{M}	<i>T</i> (***- F ***)	mass of fuel (usually with fuel concentration, C_m)
M		mud
ma		grain (matrix, solids)
ma		matrix [solids except (nonstructural) clay or shale]
max		maximum
mc		mudcake
Mf		mud filtrate
min		minimum
M	z,m	mixture
M		molal (usually with volume, V_M)
M	m	Mth period or interval
M	z,m	slurry ("mixture")
ML	$m\ell$ (script l)	contact log, microlog, minilog
MLL	$m\ell\ell$ (script ll)	microlaterolog
n		net
n		normal
n	r,R	normalized (fractional or relative)
ne		noneffective
nw	NW	nonwetting
N	n	neutron
N	n	neutron log
N	n	normal (resistivity) log (add numerical spacing to subscript N;
		e.g., N16)
N_2		nitrogen
NA	na	neutron activation log
NE	ne	neutron log, epithermal
NF	nf	neutron log, fast
NL	$n\ell$ (script l)	neutron lifetime log, TDT
NM	nm	nuclear magnetism log
NT	nt	neutron log, thermal
0	N	oil (except when used with resistivity)

Reserve SPE Subscript

Letter Subscript	Subscript	Subscript Definition
English		
$\stackrel{\circ}{ob}$		oil at bubblepoint conditions (usually with formation volume factor, B_{ob})
ob		oil from burned volume (usually with displacement ratio, δ_{ob})
oD		oil, dimensionless
og		oil in gas cap (usually with saturation, S_{og})
ou		oil from unburned volume (usually with displacement ratio, δ_{ou})
O_2		oxygen
p		particle (usually with diameter, d_p)
p	P	pore (usually with volume, V_p)
P		present
p	P	produced
p		produced, cumulative
p	P	production period (usually with time, t_p)
p		pseudo
$\frac{p}{p}$		pressure, mean or average
pc		pseudocritical
$\stackrel{\cdot}{p}D$		pore value, dimensionless (usually with volume, V_{pD})
pD		pseudodimensionless
pE		produced in experiment
pj		produced component j (usually with moles, n_{pj})
po		payout
pr		pseudoreduced
pSP		pseudo-SP
pv		present value
P		pattern (usually with pattern efficiency, E_p)
P		phase or phases
P	p	proximity log
r	R	radius, radial, or radial distance
r		reduced
r	b, $ ho$	reference
r	R	relative
r	R	residual
R		rate
R		ratio
R		recovery (usually with recovery efficiency, E_R)
R	r	reservoir
R		resistivity
R	r, ρ	resistivity log
Rb		reservoir rock, burned
Ru		reservoir rock, unburned
Re		Reynolds (used with Reynolds number only, N_{Re})
S	d	damage or damaged (includes "skin" conditions)
S		formation, surrounding
S	_	gas/oil ratio, solution
S	S,σ	segregation (usually with segregation rate, q_s)
S	au	shear
S	au	shear wave
S	S	skin (stimulation or damage)
S	σ	slip or slippage

Reserve

	SPE	
Letter Subscript	Subscript	Subscript Definition
English	F .	
S	σ	solid (usually with volume or density)
S		solution (usually with gas/oil ratios)
S		spacing
S		specific (usually with J and I)
S	S	stabilization (usually with time)
S	S	steam or steam zone
S	S	stimulation (includes "skin" conditions)
S	σ	surface
S		surrounding formation
S	S , σ	swept or swept region
S	σ	system
sb		solution at bubblepoint conditions (usually with gas/oil ratio, R_{sb})
sc		scattered, scattering
SC	σ	standard conditions
sd	sa	sand
sE		solids in experiment
sh	sha	shale
si		solution, initial (usually with gas/oil ratio, R_{si})
sl	slt	silt
sp		separator conditions
sp		single payment
SS	sst	sandstone
st		stock-tank conditions
st	S	structural
SW		solution in water (usually with gas solubility in water, R_{sw})
$\frac{S}{S}$	SW	sidewall
$\frac{S}{}$	s,σ	storage or storage capacity
\overline{S}	\overline{s} , $\overline{ ho}$	saturation, mean or average
SN	sn	neutron log, sidewall
SP	sp	self potential
SSP		spontaneous self potential
SV	sv	sonic, velocity, or acoustic log
SWN	swn	sidewall neutron log
t	T	gross (total)
t	T	total
t	T	treatment or treating
t	tr	true (electrical logging) (opposed to apparent)
t	tg	tubing or tubinghead
tD +f		time, dimensionless
tf +:		tubing flowing (usually with pressure)
ti ts		total initial in place in reservoir tubing, static (usually with pressure)
ts T	h, heta	tubing, static (usually with pressure)
T = T	n,0 t,h	temperature log
T	t,n t	tool, sonde
T	t t	transmissibility
TV	tv	televiewer log, borehole
u	i V	unburned
u		MIIO MIII VII

Reserve
SPE

	SPE	
Letter Subscript	Subscript	Subscript Definition
English		
u	U	unit
u	U	unswept or unswept region
u	U	upper
ul	а	ultimate
ν	V	vaporization, vapor, or vapor phase
ν	V	velocity
V	ν	vertical
V	v	volume or volumetric
Vb		volumetric or burned portion of in-situ combustion pattern (usually with efficiency, E_{Vb})
VD	vd	microseismogram log, signature log, variable density log
w	W	water
w		well conditions
w	W	wetting
wa		wellbore, apparent (usually with wellbore radius, r_{wa})
wb		water from burned volume (usually with displacement ratio, δ_{wb})
wD		water, dimensionless
wf		bottomhole, flowing (usually with pressure or time)
wf	f	well, flowing conditions (usually with time)
wF		water/fuel
wg		water in gas cap (usually with saturation, S_{wg})
wg		wet gas (usually with composition or content, C_{wg})
wgp		wet gas produced
wh	th	wellhead
wo		water/oil (usually with instantaneous producing water/oil ratio, F_{wo})
wop		water/oil, produced (cumulative) (usually with cumulative water/oil ratio, F_{wop})
WS		static bottomhole (usually with pressure or time)
WS	S	well, static, or shut-in conditions (usually with time)
W	w	weight
xo		flushed zone
Y		Young's modulus, refers to
Z		conductive liquids in invaded zone
z		zone, conductive invaded

SI Metric Conversion Factors

The following conversion factors are taken from the SPE Metric Standard. The complete standard can be found at www.SPE.org/spe-site/spe/spe/papers/authors/Metric_Standard.pdf.

ALPHABETICAL LIST OF UNITS (symbols of SI units given in parentheses)

To Convert From	To	Mult	iply By**
abampere	ampere (A)	1.0*	E+01
abcoulomb	coulomb (C)	1.0*	E+01
abfarad	farad (F)	1.0*	E+09
abhenry	henry (H)	1.0*	E-09
abmho	Siemens (S)	1.0*	E+09
abohm	ohm (Ω)	1.0*	E-09
abvolt	volt (V)	1.0*	E-08
acre-foot (U.S. survey) ⁽¹⁾	meter ³ (m ³)	1.233 489	E+03
acre (U.S. survey) ⁽¹⁾	meter ² (m ²)	4.046 873	E+03
ampere hour	coulomb (C)	3.6*	E+03
are	meter ² (m ²)	1.0*	E+02
angstrom	meter (m)	1.0*	E-10
astronomical unit	meter (m)	1.495 979	E+11
atmosphere (standard)	pascal (Pa)	1.013 250*	E+05
atmosphere (technical=1 kgf/cm ²)	pascal (Pa)	9.806 650*	E+04
bar	pascal (Pa)	1.0*	E+05
barn	$meter^{2}(m^{2})$	1.0*	E-28
barrel (for petroleum, 42 gal)	meter ³ (m ³)	1.589873	E-01
board foot	meter ³ (m ³)	2.359 737	E-03
British thermal unit (International Table) ⁽²⁾	joule (J)	1.055 056	E+03
British thermal unit (mean)	joule (J)	1.055 87	E+03
British thermal unit (thermochemical)	joule (J)	1.054 350	E+03
British thermal unit (39°F)	joule (J)	1.059 67	E+03
British thermal unit (59°F)	joule (J)	1.054 80	E+03
British thermal unit (60°F)	joule (J)	1.054 68	E+03
Btu (International Table)-ft/(hr-ft ² -°F)	watt per meter Kelvin	1.730 735	E+00
(thermal conductivity)	[W/(m-K)]		
Btu (thermochemical)-ft/(hr-ft ² -°F)	watt per meter Kelvin	1.729 577	E+00
(thermal conductivity)	[W/(m-K)]		
Btu (International Table)-in./(hr-ft ² -°F)	watt per meter Kelvin	1.442 279	E-01
(thermal conductivity)	[W/(m-K)]		
Btu (thermochemical)-in./(hr-ft²-°F)	watt per meter Kelvin	1.441 314	E-01
(thermal conductivity)	[W/(m-K)]		
Btu (International Table)-in./(s-ft ² -°F)	watt per meter Kelvin	5.192 204	E+02
(thermal conductivity)	[W/(m-K)]		

^{*}An asterisk indicates that the conversion factor is exact using the numbers shown; all subsequent number are zeros.

⁽¹⁾Since 1893, the U.S. basis of length measurement has been derived from metric standards. In 1959, a small refinement was made in the definition of the yard to resolve discrepancies both in this country and abroad, which changed its length from 3600/3937 m to 0.9144 m exactly. This resulted in the new value being shorter by two parts in a million. At the same time, it was decided that any data in feet derived from and published as a result of geodetic surveys within the U.S. would remain with the old standard (1 ft=1200/3937 m) until further decision. This foot is named the U.S. survey foot. As a result, all U.S. land measurements in U.S. customary units will relate to the meter by the old standard. All the conversion factors in these tables for units referenced to this footnote are based on the U.S. survey foot, rather than the international foot. Conversion factors for the land measure given below may be determined from the following relationships:

¹ league=3 miles (exactly)

¹ rod=16½ ft (exactly)

¹ chain=66 ft (exactly)

¹ section=1 sq mile

¹ township=36 sq miles

⁽²⁾ This value was adopted in 1956. Some of the older International Tables use the value 1.055 04 E+03. The exact conversion factor is 1.055 055 852 62* E+03.

To Convert From	То	Mult	iply By**
Btu (thermochemical)-in./(s-ft ² -°F)	watt per meter Kelvin	5.188 732	E+02
(thermal conductivity)	[W/(m-K)]		
Btu (International Table)/hr	watt (W)	2.930 711	E-01
Btu (thermochemical)/hr	watt (W)	2.928 751	E-01
Btu (thermochemical)/min	watt (W)	1.757 250	E+01
Btu (thermochemical)/s	watt (W)	1.054 350	E+03
Btu (International Table)/ft ²	joule per meter ² (J/m ²)	1.135 653	E+04
Btu (thermochemical)/ft ²	joule per meter ² (J/m ²)	1.134 893	E+04
Btu (thermochemical)/(ft ² -hr)	watt per meter ² (W/m ²)	3.152 481	E+00
Btu (thermochemical)/(ft²-min)	watt per meter ² (W/m ²)	1.891 489	E+02
Btu (thermochemical)/(ft²-s)	watt per meter ² (W/m ²)	1.134 893	E+04
Btu (thermochemical)/(in. ² -s)	watt per meter ² (W/m ²)	1.634 246	E+06
Btu (International Table)/(hr-ft²-°F)	watt per meter ² kelvin	5.678 263	E+00
(thermal conductance)	$[W/(m^2-K)]$		_ ,,
Btu (thermochemical)/(hr-ft ² -°F)	watt per meter ² kelvin	5.674 466	E+00
(thermal conductance)	$[W/(m^2-K)]$		
Btu (International Table)/(s-ft ² -°F)	watt per meter ² kelvin	2.044 175	E+04
	$[W/(m^2-K)]$		
Btu (thermochemical)/(s-ft ² -°F)	watt per meter ² kelvin	2.042 808	E+04
($[W/(m^2-K)]$		
Btu (International Table)/lbm	joule per kilogram (J/kg)	2.326*	E+03
Btu (thermochemical)/lbm	joule per kilogram (J/kg)	2.324 444	E+03
Btu (International Table)/(lbm-°F)	joule per kilogram Kelvin	4.186 8*	E+03
(heat capacity)	[J/(kg-K)]		_ **
Btu (thermochemical)/(lbm-°F)	joule per kilogram Kelvin	4.184 000	E+03
(heat capacity)	[J/(kg-K)]		_ **
bushel (U.S.)	meter ³ (m ³)	3.523 907	E-02
caliber (inch)	meter (m)	2.54*	E-02
calorie (International Table)	joule (J)	4.186 8*	E+00
calorie (mean)	joule (J)	4.190 02	E+00
calorie (thermochemical)	joule (J)	4.184*	E+00
calorie (15°C)	joule (J)	4.185 80	E+00
calorie (20°C)	joule (J)	4.181 90	E+00
calorie (kilogram, International Table)	joule (J)	4.186 8*	E+03
calorie (kilogram, mean)	joule (J)	4.190 02	E+03
calorie (kilogram, thermochemical)	joule (J)	4.185*	E+03
cal (thermochemical)/cm ²	joule per meter ² (J/m ²)	4.184*	E+04
cal (International Table)/g	joule per kilogram (J/kg)	4.184*	E+03
cal (International Table)/(g-°C)	joule per kilogram	4.186 8*	E+03
	kelvin [J/(kg-K)]		
cal (thermochemical)/(g-°C)	joule per kilogram	4.184*	E+03
· · · · · · · · · · · · · · · · · · ·	Kelvin [J/(kg-K)]		_ **
cal (thermochemical)/min	watt (W)	6.973 333	E-02
cal (thermochemical)/s	watt (W)	4.184*	E+04
cal (thermochemical)/(cm ² -min)	watt per meter ² (W/m ²)	6.973 333	E+02
cal (thermochemical)/(cm ² -s)	watt per meter ² (W/m ²)	4.184*	E+04
cal (thermochemical)/(s-°C)	watt per meter kelvin	4.184*	E+02
(), ()	[W/(m-K)]		-
capture unit (c.u.= 10^{-3} cm ⁻¹)	per meter (m ⁻¹)	1.0*	E-01
carat (metric)	kilogram (kg)	2.0*	E-04
centimeter of mercury (0°C)	pascal (Pa)	1.333 22	E+03
centimeter of water (4°C)	pascal (Pa)	9.806 38	E+01
centipoises	pascal second (Pa·s)	1.0*	E-03
p 0.20 - 0	r		= v.

To Convert From	То	Multi	ply By**
centistrokes	meter ² per second (m ² /s)	1.0*	E-06
circular mil	meter ² (m ²)	5.067 075	E-10
cio	kelvin meter ² per watt	2.003 712	E-01
	$[K-m^2/W]$		
cup	meter ³ (m ³)	2.365 882	E - 04
eurie	becquerel (Bq)	3.7*	E+10
ycle per second	hertz (Hz)	1.0*	E+00
lay (mean solar)	second (s)	8.640 000	E+04
lay (sidereal)	second (s)	8.616 409	E+04
legree (angle)	radian (rad)	1.745 329	E-02
egree Celsius	kelvin (K)	$T_{\rm K} = T_{\rm ^{\circ}C} + 2.73$.	15
legree centigrade (see degree Celsius)			
egree Fahrenheit	degree Celsius	$T_{\rm C} = (T_{\rm F} - 32)$	
legree Fahrenheit	kelvin (K)	$T_{\rm K} = (T_{\rm F} + 459.$	67)/1.8
legree Rankine	Kelvin (K)	$T_{\rm K} = T_{\rm \circ F}/1.8$	
F-hr-ft ² /Btu (International Table)	kelvin meter ² per watt	1.781 102	E-01
thermal resistance)	$[(K-m^2)/W]$		
F-hr-ft ² /Btu (thermochemical)	kelvin meter ² per watt	1.762 250	E-01
thermal resistance)	$[(K-m^2)/W]$		
Denier	kilogram per meter	1.111 111	E-07
	(kg/m)		
Dyne	newton (N)	1.0*	E-05
lyne-cm	newton meter (N·m)	1.0*	E-07
lyne/cm ²	pascal (Pa)	1.0*	E-01
lectronvolt	joule (J)	1.602 19	E-19
EMU of capacitance	farad (F)	1.0*	E+09
EMU of current	ampere (A)	1.0*	E+01
EMU of electric potential	volt (V)	1.0*	E-08
EMU of inductance	henry (H)	1.0*	E-09
EMU of resistance	ohm (Ω)	1.0*	E-09
ESU of capacitance	farad (F)	1.112 650	E-12
ESU of current	ampere (A)	3.335 6	E-10
ESU of electric potential	volt (V)	2.997 9	E+02
ESU of inductance	henry (H)	8.987 554	E+11
ESU of resistance	$ohm(\Omega)$	8.987 554	E+11
Erg	joule (J)	1.0*	E-07
erg/cm ² -s	watt per meter ² (W/m ²)	1.0*	E-03
erg/s	watt (W)	1.0*	E-07
Caraday (based on carbon-12)	coulomb (C)	9.648 70	E+04
araday (chemical)	coulomb (C)	9.649 57	E+04
araday (physical)	coulomb (C)	9.652 19	E+04
athom	meter (m)	1.828 8	E+00
Permi (femtometer)	meter (m)	1.0*	E-15
luid ounce (U.S.)	meter ³ (m) ³	2.957 353	E-05
oot (II.C. (II.C. (II.C.)	meter (m)	3.048*	E-01
Coot (U.S. survey) ⁽¹⁾	meter (m)	3.048 006	E-01
Coot of water (39.2°F)	pascal (Pa)	2.988 98	E+03
q ft	$meter^2 (m^2)$	9.290 304*	E-02
t²/hr (thermal diffusivity)	meter ² per second (m ² /s)	2.580 640*	E-05
t^2/s	meter ² per second (m ² /s)	9.290 304*	E-02
eu ft (volume; section modulus)	$meter^{3} (m^{3})$	2.831 685	E-02
t ³ /min	meter ³ per second (m ³ /s)	4.719 474	E-04

To Convert From	То	To Multiply By**	
ft^3/s	meter ³ per second (m ³ /s)	2.831 685	E-02
ft ⁴ (moment of section) ⁽⁴⁾	meter per second (m /s)	8.630 975	E-03
ft/hr	meter (m') meter per second (m/s)	8.466 667	E-05
ft/min	meter per second (m/s)	5.080*	E-03
ft/s	meter per second (m/s)	3.048*	E-01
ft/s^2			
footcandle	meter per second ² (ms/s ²)	3.048*	E-01
	lux (lx)	1.076 391	E+01
footlambert	candela per meter ² (cd/m ²)	3.426 259	E+00
ft-lbf	ioule (J)	1.355 818	E+00
ft-lbf/hr	watt (W)	3.766 161	E-04
ft-lbf/min	watt (W)	2.259 697	E-02
ft-lbf/s	watt (W)	1.355 818	E+00
ft-poundal	joule (J)	4.214 011	E-02
free fall, standard (g)	meter per second ² (m/s^2)	9.806 650*	E+00
cm/s ²	meter per second ² (m/s^2)	1.0*	E-02
gallon (Canadian liquid)	$meter_{3}^{3}(m_{3}^{3})$	4.546 090	E-03
gallon (U.K. liquid)	$meter_{3}^{3} (m_{3}^{3})$	4.546 092	E-03
gallon (U.S. dry)	meter ³ (m ³)	4.404 884	E-03
gallon (U.S. liquid)	meter ³ (m ³)	3.785 412	E-03
gal (U.S. liquid)/day	meter ³ per second (m ³ /s)	4.381 264	E-08
gal (U.S. liquid)/min	meter ³ per second (m ³ /s)	6.309 020	E-05
(SFC, specific fuel consumption)	meter ³ per joule (m ³ /J)	1.410 089	E-09
gamma (magnetic field strength)	ampere per meter (A/m)	7.957 747	E-04
gamma (magnetic flux density)	tesla (T)	1.0*	E-09
gauss	tesla (T)	1.0*	E-04
gilbert	ampere (A)	7.957 747	E-01
gill (U.K.)	meter ³ (m ³)	1.420 654	E-04
gill (U.S.)	meter ³ (m ³)	1.182 941	E-04
grad	degree (angular)	9.0*	E-01
grad	radian (rad)	1.570 796	E-02
grain (1/7000 lbm avoirdupois)	kilogram (kg)	6.479 891*	E-05
grain (lbm avoirdupois/7000)/gal	kilogram per meter ³	1.711 806	E-02
(U.S. liquid)	(kg/m^3)		
gram	kilogram (kg)	1.0*	E-03
g/cm ³	kilogram per meter ³	1.0*	E+03
8 • • • •	(kg/m^3)	1.0	2 00
gram-force/cm ²	pascal (Pa)	9.806 650*	E+01
hectare	meter ² (m ²)	1.0*	E+04
horsepower (550 ft-lbf/s)	watt (W)	7.456999	E+02
horsepower (556 R-161/3)	watt (W)	9.809 50	E+03
horsepower (electric)	watt (W)	7.460*	E+02
horsepower (metric)	watt (W)	7.354 99	E+02 E+02
horsepower (U.K.)		7.4570	E+02 E+02
1 ,	watt (W)		
hour (mean solar)	second (s)	3.600 000 3.590 170	E+03
hour (sidereal)	second (s)		E+03
hundredweight (long)	kilogram (kg)	5.080 235	E+01
hundredweight (short)	kilogram (kg)	4.535 924	E+01
inch	meter (m)	2.54*	E-02
inch of mercury (32°F)	pascal (Pa)	3.386 38	E+03
inch of mercury (60°F)	pascal (Pa)	3.376 85	E+03
inch of water (39.2°F)	pascal (Pa)	2.490 82	E+02

 $^{^{(3)}}$ The exact conversion factor is 1.638 706 4*E-05.

inch of water (60°F) sq in. pascal (Pa) meter² (m²) (m²) 2.488 4 (m²) E-04 (d.58 meter² (m²)) cu in. (volume; section modulus)³³ meter² (m²) (m²) 1.638 706 (m²) E-05 (m²) in.²/min meter² (m²) (m²) 4.162 314 (m²) E-07 (m²) in.² (moment of section)⁴³ meter per second (m/s) 2.54* (m²) E-07 (m²) in.²s meter per second² (m/s²) 2.54* (m²) E-02 (m²) in./s² meter per second² (m/s²) 2.54* (m²) E-02 (m²) Kelvin degree Celsius Fc-(m²) (m²) F-02 (m²) Kelvin degree Celsius Fc-(m²) (m²) F-02 (m²) Kilocalorie (International Table) joule (J) 4.18 (m²) E+03 (m²) Kilocalorie (Intermochemical) (min watt (W) 4.18 (m²) E+03 (m²) Kilogram-force (kgf) newton (N) 9.806 (65* (m²) E+00 (m²) kgf·m newton meter (N·m) 9.806 (65* (m²) E+00 (m²) kgf/cm² pascal (Pa) 9.806 (65* (m²) E+00 (m²) kgf/mm² pascal (Pa) 9.806 (65* (m²) E+00 (m²) kgf/	To Convert From	То	Multipl	y By**
Sq in.	inch of water (60°F)	pascal (Pa)	2.488 4	E+02
cu in. (volume; section modulus) ⁽⁵⁾ meter ³ (m ¹) 1.638 706 E-05 in. 1/min meter ³ (m ⁴) 2.731 177 E-07 in. 1/moment of section) ⁽⁴⁾ meter per second (m/s) 2.54* E-07 in. /s meter per second (m/s) 2.54* E-02 kayser 1 per meter (1/m) 1.0* E+02 Kelvin degree Celsius Tc-T _k -273.15 E+02 kilocaloric (International Table) joule (J) 4.186 8* E+03 kilocaloric (Intermochemical) joule (J) 4.184* E+03 kilocaloric (thermochemical)/min watt (W) 6.973 333 E+01 kilogarm-force (kgf) watt (W) 4.184* E+03 kilogram-force (kgf) newton (N) 9.806 65* E+00 kgf*s'm (mass) kilogram (kg) 9.806 65* E+00 kgf*s'm (mass) kilogram (kg) 9.806 65* E+00 kgf/rm² pascal (Pa) 9.806 65* E+00 kgf/rm² pascal (Pa) 9.806 65* E+00 kgf/rm² <td></td> <td></td> <td></td> <td></td>				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	cu in. (volume; section modulus) ⁽³⁾	meter ³ (m ³)		
in.⁴ (moment of section)(⁴) meter⁴ (m⁴) 4, 162 314 E−07 in./s meter per second (m/s) 2,54* E−02 in./s² meter per second⁴ (m/s²) 2,54* E−02 kayser 1 per meter (1/m) 1,0* E+02 kelvin degree Celsius F₁ c−Tk−273.15 E+03 kilocalorie (mean) joule (J) 4,180 02 E+03 kilocalorie (thermochemical) joule (J) 4,184* E+03 kilocalorie (thermochemical)/min kilocalorie (thermochemical)/s watt (W) 4,184* E+03 kilogram-force (kgf) newton (N) 9,806 65* E+00 kgf·m newton (N) 9,806 65* E+00 kgf·m² pascal (Pa) 9,806 65* E+00 kgf/m² pascal (Pa) 9,806 65*	in. ³ /min		2.731 177	E-07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	in. (moment of section) (4)		4.162 314	E-07
in/s² meter per second² (m/s²) 2.54* E-02 kayser 1 per meter (1/m) 1.0* E+02 Kelvin degree Celsius $T_c=T_K=273.15$ kilocalorie (International Table) joule (J) 4.180 8* E+03 kilocalorie (thermochemical) joule (J) 4.184* E+03 kilocalorie (thermochemical)/min watt (W) 6.973 333 E+01 kilocalorie (thermochemical)/s watt (W) 4.184* E+03 kilocalorie (thermochemical)/s watt (W) 4.184* E+03 kilogram-force (kgf) newton (N) 9.806 65* E+00 kgf*s²/m (mass) kilogram (kg) 9.806 65* E+00 kgf*om² pascal (Pa) 9.806 65* E+00 kgf/m² pascal (Pa) 9.806 65* E+00 kgf/m² pascal (Pa) 9.806 65* E+00 kgf/m²² pascal (Pa) 9.806 65* E+00 kgf/m²² pascal (Pa) 9.806 65* E+00 kgf/m²² pascal (Pa) 9.806 65* E	· · · · · · · · · · · · · · · · · · ·		2.54*	E-02
Rayser 1 per meter (1/m) 1.0* E+02	in./s ²		2.54*	E-02
Kelvin degree Celsius T_{C} = T_{K} -273.15 kilocalorie (International Table) joule (J) 4.186 % E+03 kilocalorie (mean) joule (J) 4.184 % E+03 kilocalorie (thermochemical)/min kilocalorie (thermochemical)/sin kilocalorie (thermochemical)/s watt (W) 6.973 333 E+01 kilogram-force (kgf) newton (N) 9.806 65* E+00 kgf·s²/m (mass) kilogram (kg) 9.806 65* E+00 kgf·s²/m (mass) kilogram (kg) 9.806 65* E+00 kgf/m² pascal (Pa) 9.806 65* E+00 kgf/m² pascal (Pa) 9.806 65* E+00 kgf/m² pascal (Pa) 9.806 65* E+00 kgf/mm² pascal (Pa) 9.806 65* E+00 kgf/mm² pascal (Pa) 9.806 65* E+06 kgf/mm² pascal (Pa) 9	kayser		1.0*	E+02
kilocalorie (International Table) joule (J) 4.186 8* E+03 kilocalorie (mean) joule (J) 4.190 02 E+03 kilocalorie (thermochemical) joule (J) 4.184* E+03 kilocalorie (thermochemical)/s watt (W) 6.973 333 E+01 kilocalorie (thermochemical)/s watt (W) 4.184* E+03 kilogram-force (kgf) newton (N) 9.806 65* E+00 kgf-s²/m (mass) kilogram (kg) 9.806 65* E+00 kgf'cm² pascal (Pa) 9.806 65* E+00 kgf'm² pascal (Pa) 9.806 65* E+00 kgf'm² pascal (Pa) 9.806 65* E+00 kgf'm² pascal (Pa) 9.806 65* E+00 kgf'mn² pascal (Pa) 9.806 65* E+00 kgf'm² pascal (Pa) 9.806 65* E+00 kgf'mn² pascal (Pa) 9.806 65* E+00 kilowatt-hour (kW-hr) joule (J) 3.6* E+06 kip (1000 lb¹) newton (N) 4.448 222 <			$T_{\text{C}} = T_{\text{K}} - 273.15$	
kilocalorie (mean) kilocalorie (thermochemical) kilocalorie (thermochemical)/min kilocalorie (thermochemical)/min kilocalorie (thermochemical)/min kilocalorie (thermochemical)/min kilocalorie (thermochemical)/s kilogam-force (kgf) newton (N) 9.806 65* E+00 kgf·s²/m (mass) kilogram (kg) 9.806 65* E+00 kgf·s²/m (mass) kilogram (kg) 9.806 65* E+00 kgf/m² pascal (Pa) 9.806 65* E+04 kg/m² pascal (Pa) 9.806 65* E+06 km/h meter per second (m/s) 2.777 778 E-01 kilopond kilowath-hour (kW-hr) joule (J) 3.66* E+06 kip (1000 lbf) newton (N) 9.806 65* E+00 kip/in² kilogond newton (N) 9.806 65* E+00 kiloyand kilowath-hour (kW-hr) joule (J) 3.66* E+06 km/l kilomath-hour (kW-hr) joule (J) 3.66* E+06 kip (1000 lbf) newton (N) 4.448 222 E+03 kip/in² kip/in² E+04 lambert candela per meter² (cd/m²) langley langley langley league meter (m) 1.0* E+04 meter (m) 9.460 55 E+15 meter³ (m³) 1.0* E+08 mho microsecond/foot microsecond (µs/m) mil (international) meter (m) 1.0* E+08 mil meter (m) 1.0* E+08 mile (international) meter (m) 1.609 344* E+03 mile (international) mile (international) meter (m) 1.609 347 E+03 mile (international) mile (international) meter (m) 1.852* E+03 mile (U.S. survey) meter (m) 1.852* E+03 mile (U.S. nautical) meter (m) 1.852* E+03 mile (U.S. survey) meter² (m²) 2.589 988 E+06 mile/hr (international) meter (m²) 2.589 998 E+06 mile/hr (international) meter per second (m/s) 4.470 4* E-01 E+03 mile (U.S. survey) meter² (m²) 2.589 998 E+06 mile/hr (international) meter per second (m/s) 4.470 4* E-01 E+03 mile (U.S. survey) meter² (m²) 2.589 998 E+06 mile/hr (international) meter per second (m/s) 4.470 4* E-01 mile/hr (international) meter per second (m/s) 4.470 4* E-01 mile/hr (international) meter per second (m/s) 4.470 4* E-01 mile/hr (international) meter per second (m/s) 4.470 4* E-01 mile/hr (international) meter per second (m/s) 4.470 4* E-01 mile/hr (international) meter per second (m/s) 4.470 4* E-01 mile/hr (international) meter per	kilocalorie (International Table)	joule (J)		E+03
kilocalorie (thermochemical)/min kilocalorie (thermochemical)/min kilocalorie (thermochemical)/s yout (W) 6.973 333 E+03 E+03 E+03 kilocalorie (thermochemical)/s kilocalorie (thermochemical)/s kilogram-force (kgf) newton (N) 9.806 65* E+00 P+03 E+00 P+03 P+03 P+03 P+03 P+03 P+03 P+03 P	,		4.190 02	E+03
kilocalorie (thermochemical)/min kilocalorie (thermochemical)/s watt (W) 4.184* E+03 kilogram-force (kgf) newton (N) 9.806 65* E+00 kgf·m newton meter (N·m) 9.806 65* E+00 kgf·m newton meter (N·m) 9.806 65* E+00 kgf·m newton meter (N·m) 9.806 65* E+00 kgf·m² pascal (Pa) 9.806 65* E+00 kgf/cm² pascal (Pa) 9.806 65* E+00 kgf/mm² pascal (Pa) 9.806 65* E+00 km/h meter per second (m/s) 2.777 778 E-01 kilopond newton (N) 9.806 65* E+00 kilowatt-hour (kW-hr) joule (J) 3.6* E+06 kilowatt-hour (kW-hr) joule (J) 3.6* E+06 kilowatt-hour (kW-hr) joule (J) 3.6* E+06 kilomic (international) meter per second (m/s) 5.144 444 E-01 lambert candela per meter² (cd/m²) 1/π* E+06 knot (international) meter per second (m/s) 5.144 444 E-01 lambert candela per meter² (cd/m²) 1/π* E+04 lambert candela per meter² (cd/m²) 1/π* E+04 league meter (m) 9.460 55 E+15 litter(-5) meter (m) 1.0* E-08 mho siemens (S) 1.0* E-08 mho microsecond/foot microsecond (µs/m) 3.280 840 E+00 micronch meter (m) 1.0* E-08 millowater (m) 1.0* E-08 millowater (m) 1.0* E-08 millowater (m) 1.609 344* E+03 mille (U.S. survey) (1) meter (m) 1.852 + E+03 mille (U.S. survey) (1) meter (m) 1.852 + E+03 mille (U.S. nautical) meter (m) 2.589 988 E+06 mille/fir (international) meter (m²) 2.589 989 E+06 mille/fir (international) meter per second (m/s) 4.470 4* E-01 mille/fir (international) meter (m²) 2.589 999 E+06 mille/fir (international) meter (m²) 2.589 999 E+06 mille/fir (international) meter per second (m/s) 4.470 4* E-01 mille/fir (international) meter (m²) 2.589 999 E+06 mille/fir (international) meter per second (m/s) 4.470 4* E-01		3 \ /	4.184*	E+03
kilocalorie (thermochemical)/s kilogram-force (kgf) newton (N) p.806 65* E+00 kgf m newton meter (N·m) p.806 65* E+00 kgf s²/m (mass) kilogram (kg) p.806 65* E+00 kgf/cm² pascal (Pa) pas		•	6.973 333	E+01
kilogram-force (kgf) kgf's'm newton (N) newton meter (N·m) newton (R) pascal (Pa) pascal			4.184*	E+03
kgf·m newton meter (N·m) 9.806 65* E+00 kgf·s²/m (mass) kilogram (kg) 9.806 65* E+00 kgf/cm² pascal (Pa) 9.806 65* E+04 kg/m² pascal (Pa) 9.806 65* E+06 kgf/mm² pascal (Pa) 9.806 65* E+06 km/h meter per second (m/s) 2.777 778 E-01 kilopond newton (N) 9.806 65* E+06 kip/ni.² (ksi) pascal (Pa) 3.6* E+06 kip (1000 lbf) newton (N) 4.448 222 E+03 kip/ni.² (ksi) pascal (Pa) 6.894 757 E+06 knot (international) meter per second (m/s) 5.144 444 E-01 lambert candela per meter² (cd/m²) 1/π* E+04 lambert candela per meter² (cd/m²) 3.183 099 E+03 langley joule per meter² (m²) 3.183 099 E+03 langley meter (m) 9.460 55 E+15 liter¹5¹ meter² (m³) 1.0* E-08				
kgf·s²/m (mass) kilogram (kg) 9.806 65* E+00 kgf/cm² pascal (Pa) 9.806 65* E+04 kgf/m² pascal (Pa) 9.806 65* E+00 kgf/mm² pascal (Pa) 9.806 65* E+00 km/h meter per second (m/s) 2.777 778 E-01 kilopond newton (N) 9.806 65* E+00 kilowatt-hour (kW-hr) joule (J) 3.6* E+06 kip (1000 lbf) newton (N) 4.448 222 E+03 kip/in.² (ksi) pascal (Pa) 6.894 757 E+06 knot (international) meter per second (m/s) 5.144 444 E-01 lambert candela per meter² (cd/m²) 3.183 099 E+03 lamgley joule per meter² (J/m²) 4.184* E+04 league meter (m) 9.460 55 E+15 liter¹5³ meter (m) 9.460 55 E+15 liter¹5³ meter (Wb) 1.0* E-08 microinch meter (m) 2.54* E-08 m				E+00
kgf/cm² pascal (Pa) 9.806 65* E+04 kg/m² pascal (Pa) 9.806 65* E+00 kgf/mm² pascal (Pa) 9.806 65* E+06 km/h meter per second (m/s) 2.777 778 E-01 kilopond newton (N) 9.806 65* E+06 kilowatt-hour (kW-hr) joule (J) 3.6* E+06 kip/in.² (ksi) pascal (Pa) 6.894 757 E+06 kip/in.² (ksi) pascal (Pa) 6.894 757 E+06 knot (international) meter per second (m/s) 5.144 444 E-01 lambert candela per meter² (cd/m²) 3.183 099 E+03 langley joule per meter² (J/m²) 4.184* E+04 league meter (m) 9.460 55 E+15 liter³(5) meter³(m³) 1.0* E-03 Maxwell weber (Wb) 1.0* E-08 mho siemens (S) 1.0* E+00 microsecond/foot meter (m) 1.0* E-06 mil				
kg/m² pascal (Pa) 9.806 65* E+00 kgf/mm² pascal (Pa) 9.806 65* E+06 km/h meter per second (m/s) 2.777 778 E-01 kilopond newton (N) 9.806 65* E+00 kilowatt-hour (kW-hr) joule (J) 3.6* E+06 kip (1000 lbf) newton (N) 4.448 222 E+03 kip/in.² (ksi) pascal (Pa) 6.894 757 E+06 knot (international) meter per second (m/s) 5.144 444 E-01 lambert candela per meter² (cd/m²) 3.183 099 E+03 langley joule per meter² (J/m²) 4.184* E+04 league meter (m) (see Footnote 1) 1 light year meter (m) 9.460 55 E+15 litter ⁽⁵⁾ meter (m) 9.460 55 E+15 litter ⁽⁵⁾ meter (m) 1.0* E-03 Maxwell weber (Wb) 1.0* E-08 mho siemens (S) 1.0* E+00 microinch <td></td> <td></td> <td></td> <td>E+04</td>				E+04
kgf/mm² pascal (Pa) 9.806 65* E+06 km/h meter per second (m/s) 2.777 778 E-01 kilopond newton (N) 9.806 65* E+00 kilowatt-hour (kW-hr) joule (J) 3.6* E+06 kip (1000 lbf) newton (N) 4.448 222 E+06 kip/in.² (ksi) pascal (Pa) 6.894 757 E+06 knot (international) meter per second (m/s) 5.144 444 E-01 lambert candela per meter² (cd/m²) 1/π* E+04 lambert candela per meter² (cd/m²) 3.183 099 E+03 langley joule per meter² (cd/m²) 3.183 099 E+04 league meter (m) (see Footnote 1) (see Footnote 1) light year meter (m) 9.460 55 E+15 liter ⁽⁵⁾ meter³ (m³) 1.0* E-03 Maxwell weber (Wb) 1.0* E-08 microinch meter (m) 2.54* E-08 microsecond/foot microsecond (μs/m) 3.280 840 E				E+00
km/h meter per second (m/s) 2.777 778 E-01 kilopond newton (N) 9.806 65* E+00 kilowatt-hour (kW-hr) joule (J) 3.6* E+06 kip (1000 lbf) newton (N) 4.448 222 E+03 kip/in.² (ksi) pascal (Pa) 6.894 757 E+06 knot (international) meter per second (m/s) 5.144 444 E-01 lambert candela per meter² (cd/m²) 1/π* E+04 lambert candela per meter² (cd/m²) 3.183 099 E+03 langley joule per meter² (J/m²) 4.184* E+04 league meter (m) (see Footnote 1) see Footnote 1) light year meter (m) 9.460 55 E+15 liter¹ meter (m) 9.460 55 E+15 liter¹ meter (m) 1.0* E-08 mho siemens (S) 1.0* E-08 mho siemens (S) 1.0* E-08 microsecond/foot microsecond (μs/m) 3.280 840 E+00		• , ,		E+06
kilopond newton (N) 9.806 65* E+00 kilowatt-hour (kW-hr) joule (J) 3.6* E+06 kip (1000 lbf) newton (N) 4.448 222 E+03 kip/in.² (ksi) pascal (Pa) 6.894 757 E+06 knot (international) meter per second (m/s) 5.144 444 E-01 lambert candela per meter² (cd/m²) 1/π* E+04 lambert candela per meter² (cd/m²) 3.183 099 E+03 langley joule per meter² (J/m²) 4.184* E+04 league meter (m) (see Footnote 1) see Footnote 1) light year meter (m) 9.460 55 E+15 liter(5) meter³ (m³) 1.0* E-03 Maxwell weber (Wb) 1.0* E-08 mho siemens (S) 1.0* E+00 microsecond/foot microsecond (μs/m) 3.280 840 E+00 micron meter (m) 1.0* E-06 mile (international) meter (m) 1.609 344* E+03 <td></td> <td>• , ,</td> <td></td> <td>E-01</td>		• , ,		E-01
kilowatt-hour (kW-hr) joule (J) 3.6* E+06 kip (1000 lbf) newton (N) 4.448 222 E+03 kip/in² (ksi) pascal (Pa) 6.894 757 E+06 knot (international) meter per second (m/s) 5.144 444 E-01 lambert candela per meter² (cd/m²) 1/π* E+04 lambert candela per meter² (cd/m²) 3.183 099 E+03 langley joule per meter² (J/m²) 4.184* E+04 league meter (m) (see Footnote 1) (see Footnote 1) light year meter (m) 9.460 55 E+15 liter³(s) meter³ (m³) 1.0* E-03 Maxwell weber (Wb) 1.0* E-08 mho siemens (S) 1.0* E+00 microsecond/foot microsecond (μs/m) 3.280 840 E+00 microsecond/foot microsecond (μs/m) 3.280 840 E+00 mile (international) meter (m) 1.609 344* E+03 mile (international) meter (m) 1.609 34	kilopond		9.806 65*	E+00
kip (1000 lbf) newton (N) 4.448 222 E+03 kip/in.² (ksi) pascal (Pa) 6.894 757 E+06 knot (international) meter per second (m/s) 5.144 444 E-01 lambert candela per meter² (cd/m²) 1/π* E+04 lambert candela per meter² (cd/m²) 3.183 099 E+03 langley joule per meter² (J/m²) 4.184* E+04 league meter (m) (see Footnote 1) E+04 league meter (m) 9.460 55 E+15 liter. (5) meter (m) 9.460 55 E+15 liter. (5) meter (Wb) 1.0* E-08 mho siemens (S) 1.0* E-08 mho siemens (S) 1.0* E+00 microinch meter (m) 2.54* E-08 microsecond/foot microsecond (μs/m) 3.280 840 E+00 mile (international) meter (m) 1.609 344* E+03 mile (international) meter (m) 1.609 347 E+03 <t< td=""><td></td><td>* /</td><td>3.6*</td><td>E+06</td></t<>		* /	3.6*	E+06
kip/in.² (ksi) pascal (Pa) 6.894757 E+06 knot (international) meter per second (m/s) 5.1444444 E-01 lambert candela per meter² (cd/m²) $1/\pi^*$ E+04 lambert candela per meter² (cd/m²) 3.183099 E+03 langley joule per meter² (J/m²) $4.184*$ E+04 league meter (m) (see Footnote 1) light year meter³ (m³) $1.0*$ E-03 Maxwell weber (Wb) $1.0*$ E-08 mho siemens (S) $1.0*$ E-08 microsecond/foot microsecond (µs/m) 3.280840 E+00 micron meter (m) $2.54*$ E-06 mil (international) meter (m) $1.609344*$ E+03 mile (statute) meter (m) $1.609344*$ E+03 mile (U.S. survey) ⁽¹⁾ meter (m) $1.852*$ E+03 mile (U.S. nautical) meter (m) $1.852*$ E+03 mile (international) meter (m) $1.852*$ E+03 mile (U.S. nautical) meter (m) $1.852*$				
knot (international)			6.894 757	E+06
lambert candela per meter 2 (cd/m 2) $1/\pi^*$ E+04 lambert candela per meter 2 (cd/m 2) 3.183 099 E+03 langley joule per meter 2 (J/m 2) 4.184* E+04 league meter (m) (see Footnote 1) light year meter (m) 9.460 55 E+15 liter $^{(5)}$ meter 3 (m 3) 1.0* E-03 Maxwell weber (Wb) 1.0* E-08 mho siemens (S) 1.0* E+00 microinch meter (m) 2.54* E-08 microsecond/foot microsecond (μ s/m) 3.280 840 E+00 micron meter (m) 1.0* E-06 mil meter (m) 2.54* E-05 mile (international) meter (m) 1.609 344* E+03 mile (statute) meter (m) 1.609 3 44* E+03 mile (U.S. survey) $^{(1)}$ meter (m) 1.852* E+03 mile (U.K. nautical) meter (m) 1.852* E+03 mile (U.S. nautical) meter (m) 1.852* E+03 sq mile (international) meter (m) 1.852* E+03 sq mile (international) meter (m) 1.852* E+06 sq mile (U.S. survey) meter (m) 2.589 988 E+06 mile/hr (international) meter per second (m/s) 4.470 4* E-01			5.144 444	E-01
lambert candela per meter² (cd/m²) 3.183 099 E+03 langley joule per meter² (J/m²) 4.184* E+04 league meter (m) (see Footnote 1) light year meter (m) 9.460 55 E+15 liter¹(5) meter³ (m³) 1.0* E-03 Maxwell weber (Wb) 1.0* E-08 mho siemens (S) 1.0* E+00 microinch meter (m) 2.54* E-08 microsecond/foot microsecond (μs/m) 3.280 840 E+00 micron meter (m) 1.0* E-06 mil meter (m) 1.609 344* E+03 mile (international) meter (m) 1.609 344* E+03 mile (U.S. survey)(1) meter (m) 1.852* E+03 mile (U.K. nautical) meter (m) 1.852* E+03 mile (U.S. nautical) meter (m) 1.852* E+03 sq mile (international) meter² (m²) 2.589 988 E+06 sq mile (U.S survey) meter² (m²) 2.589 998 E+06 mile/hr (internationa	· · · · · · · · · · · · · · · · · · ·		$1/\pi*$	E+04
league meter (m) (see Footnote 1) light year meter (m) 9.460 55 E+15 liter ⁽⁵⁾ meter ³ (m ³) 1.0* E-03 Maxwell weber (Wb) 1.0* E+00 microinch meter (m) 2.54* E-08 microsecond/foot microsecond (µs/m) 3.280 840 E+00 micron meter (m) 1.0* E-06 mil meter (m) 2.54* E-05 mile (international) meter (m) 1.609 344* E+03 mile (statute) meter (m) 1.609 347 E+03 mile (U.S. survey) ⁽¹⁾ meter (m) 1.852* E+03 mile (U.S. nautical) meter (m) 1.852* E+03 mile (U.S. survey) meter ² (m ²) 2.589 988 E+06 sq mile (U.S. survey) meter ² (m ²) 2.589 998 E+06 mile/hr (international) meter per second (m/s) 4.470 4* E-01	lambert		3.183 099	E+03
light year meter (m) 9.460 55 E+15 liter(5) meter³ (m³) 1.0* E-03 Maxwell weber (Wb) 1.0* E-08 mho siemens (S) 1.0* E+00 microinch meter (m) 2.54* E-08 microsecond/foot microsecond (μs/m) 3.280 840 E+00 micron meter (m) 1.0* E-06 mil meter (m) 2.54* E-05 mile (international) meter (m) 1.609 344* E+03 mile (U.S. survey) ⁽¹⁾ meter (m) 1.609 347 E+03 mile (international nautical) meter (m) 1.852* E+03 mile (U.S. nautical) meter (m) 1.852* E+03 mile (international) meter (m) 1.852* E+03 sq mile (international) meter (m) 2.589 988 E+06 sq mile (international) meter² (m²) 2.589 998 E+06 mile/hr (international) meter per second (m/s) 4.470 4* E-01 <	langley	joule per meter ² (J/m ²)	4.184*	E+04
liter(5) meter³ (m³) 1.0* E-03 Maxwell weber (Wb) 1.0* E-08 mho siemens (S) 1.0* E+00 microinch meter (m) 2.54* E-08 microsecond/foot microsecond (μs/m) 3.280 840 E+00 micron meter (m) 1.0* E-06 mil meter (m) 1.609 344* E-05 mile (international) meter (m) 1.609 344* E+03 mile (U.S. survey) ⁽¹⁾ meter (m) 1.609 347 E+03 mile (international nautical) meter (m) 1.852* E+03 mile (U.S. nautical) meter (m) 1.853 184* E+03 mile (U.S. nautical) meter (m) 1.852* E+03 sq mile (international) meter² (m²) 2.589 988 E+06 sq mile (U.S survey) meter² (m²) 2.589 998 E+06 mile/hr (international) meter per second (m/s) 4.470 4* E-01	league	meter (m)	(see Footnote 1))
Maxwell weber (Wb) 1.0* E-08 mho siemens (S) 1.0* E+00 microinch meter (m) 2.54* E-08 microsecond/foot microsecond (μs/m) 3.280 840 E+00 micron meter (m) 1.0* E-06 mil meter (m) 2.54* E-05 mile (international) meter (m) 1.609 344* E+03 mile (U.S. survey) ⁽¹⁾ meter (m) 1.609 347 E+03 mile (international nautical) meter (m) 1.852* E+03 mile (U.K. nautical) meter (m) 1.853 184* E+03 mile (U.S. nautical) meter (m) 1.852* E+03 sq mile (international) meter ² (m ²) 2.589 988 E+06 sq mile (U.S survey) meter ² (m ²) 2.589 998 E+06 mile/hr (international) meter per second (m/s) 4.470 4* E-01	light year	meter (m)	9.460 55	E+15
mho siemens (S) 1.0* E+00 microinch meter (m) 2.54* E-08 microsecond/foot microsecond (μs/m) 3.280 840 E+00 micron meter (m) 1.0* E-06 mil meter (m) 2.54* E-05 mile (international) meter (m) 1.609 344* E+03 mile (statute) meter (m) 1.609 347 E+03 mile (international nautical) meter (m) 1.852* E+03 mile (U.K. nautical) meter (m) 1.853 184* E+03 mile (U.S. nautical) meter (m) 1.852* E+03 sq mile (international) meter (m) 2.589 988 E+06 sq mile (U.S survey) meter² (m²) 2.589 998 E+06 mile/hr (international) meter per second (m/s) 4.470 4* E-01	liter ⁽⁵⁾	meter ³ (m ³)	1.0*	E-03
microinch meter (m) $2.54*$ $E-08$ microsecond/foot microsecond (μ s/m) $3.280~840$ $E+00$ micron meter (m) $1.0*$ $E-06$ mil meter (m) $2.54*$ $E-05$ mile (international) meter (m) $1.609~344*$ $E+03$ mile (statute) meter (m) $1.609~347$ $E+03$ mile (U.S. survey) ⁽¹⁾ meter (m) $1.852*$ $E+03$ mile (international nautical) meter (m) $1.852*$ $E+03$ mile (U.S. nautical) meter (m) $1.852*$ $E+03$ sq mile (international) meter (m) $1.852*$ $E+03$ sq mile (international) meter (m) $2.589~988$ $E+06$ sq mile (U.S survey) meter ² (m ²) $2.589~998$ $E+06$ mile/hr (international) meter per second (m/s) $4.470~4*$ $E-01$	Maxwell	weber (Wb)	1.0*	E-08
$\begin{array}{llllllllllllllllllllllllllllllllllll$	mho	siemens (S)	1.0*	E+00
micron meter (m) 1.0* E-06 mil meter (m) 2.54* E-05 mile (international) meter (m) 1.609 344* E+03 mile (statute) meter (m) 1.609 3 E+03 mile (U.S. survey) ⁽¹⁾ meter (m) 1.852* E+03 mile (international nautical) meter (m) 1.852* E+03 mile (U.S. nautical) meter (m) 1.852* E+03 mile (international) meter (m) 1.852* E+03 sq mile (international) meter ² (m ²) 2.589 988 E+06 sq mile (U.S survey) meter ² (m ²) 2.589 998 E+06 mile/hr (international) meter per second (m/s) 4.470 4* E-01	microinch	meter (m)	2.54*	E-08
mil meter (m) 2.54* E-05 mile (international) meter (m) 1.609 344* E+03 mile (statute) meter (m) 1.609 3 E+03 mile (U.S. survey) ⁽¹⁾ meter (m) 1.609 347 E+03 mile (international nautical) meter (m) 1.852* E+03 mile (U.K. nautical) meter (m) 1.853 184* E+03 mile (U.S. nautical) meter (m) 1.852* E+03 sq mile (international) meter ² (m ²) 2.589 988 E+06 sq mile (U.S survey) meter ² (m ²) 2.589 998 E+06 mile/hr (international) meter per second (m/s) 4.470 4* E-01	microsecond/foot	microsecond (μs/m)	3.280 840	E+00
mile (international) meter (m) 1.609 344* E+03 mile (statute) meter (m) 1.609 3 E+03 mile (U.S. survey) ⁽¹⁾ meter (m) 1.609 347 E+03 mile (international nautical) meter (m) 1.852* E+03 mile (U.K. nautical) meter (m) 1.853 184* E+03 mile (U.S. nautical) meter (m) 1.852* E+03 sq mile (international) meter ² (m ²) 2.589 988 E+06 sq mile (U.S survey) meter ² (m ²) 2.589 998 E+06 mile/hr (international) meter per second (m/s) 4.470 4* E-01	micron	meter (m)	1.0*	E-06
mile (statute) meter (m) 1.609 3 E+03 mile (U.S. survey) ⁽¹⁾ meter (m) 1.609 347 E+03 mile (international nautical) meter (m) 1.852* E+03 mile (U.K. nautical) meter (m) 1.853 184* E+03 mile (U.S. nautical) meter (m) 1.852* E+03 sq mile (international) meter ² (m ²) 2.589 988 E+06 sq mile (U.S survey) meter ² (m ²) 2.589 998 E+06 mile/hr (international) meter per second (m/s) 4.470 4* E-01	mil	meter (m)	2.54*	E-05
mile (U.S. survey) ⁽¹⁾ meter (m) 1.609347 E+03 mile (international nautical) meter (m) $1.852*$ E+03 mile (U.K. nautical) meter (m) $1.853184*$ E+03 mile (U.S. nautical) meter (m) $1.852*$ E+03 sq mile (international) meter ² (m ²) 2.589988 E+06 sq mile (U.S survey) meter ² (m ²) 2.589998 E+06 mile/hr (international) meter per second (m/s) $4.4704*$ E-01	mile (international)	meter (m)	1.609 344*	E+03
$\begin{array}{llllllllllllllllllllllllllllllllllll$	mile (statute)	meter (m)	1.609 3	E+03
$\begin{array}{llllllllllllllllllllllllllllllllllll$	mile (U.S. survey) ⁽¹⁾	meter (m)	1.609 347	E+03
$\begin{array}{llllllllllllllllllllllllllllllllllll$		meter (m)	1.852*	E+03
sq mile (international) $meter^2$ (m²) $2.589 988$ $E+06$ sq mile (U.S survey) $meter^2$ (m²) $2.589 998$ $E+06$ mile/hr (international) $meter$ per second (m/s) $4.470 4*$ $E-01$	mile (U.K. nautical)	meter (m)	1.853 184*	E+03
sq mile (U.S survey) meter ² (m ²) 2.589 998 E+06 mile/hr (international) meter per second (m/s) $4.470 4*$ E-01	mile (U.S. nautical)		1.852*	E+03
mile/hr (international) meter per second (m/s) 4.470 4* E-01	• ,			
1 '	mile/hr (international)	kilometer per hour (km/h)	1.609 344*	E+00
mile/min (international) meter per second (m/s) 2.682 24* E+01	mile/min (international)	meter per second (m/s)	2.682 24*	E+01

⁽⁴⁾ This sometimes is called the moment of inertia of a plane section about a specified axis.
⁽⁵⁾ In 1964, the General Conference on Weights and Measures adopted the name "liter" as a special name for the cubic decimeter.

Prior to this decision, the liter differed slightly (previous value: 1.000 028 dm³), and in expression of precision volume measurement, this fact must be kept in mind.

To Convert From	То	Multiply By*	
mile/s (international)	meter per second (m/s)	1.609 344*	E+03
millibar	pascal (Pa)	1.0*	E+02
millimeter of mercury (0°C)	pascal (Pa)	1.333 22	E+02
minute (angle)	radian (rad)	2.908 882	E-04
minute (mean solar)	second (s)	6.0*	E+01
minute (sidereal)	second (s)	5.983 617	E+01
month (mean calendar)	second (s)	2.628 000	E+06
oersted	ampere per meter (A/m)	7.957 747	E+01
ohm centimeter	ohm meter $(\Omega \cdot m)$	1.0*	E-02
ohm circular-mil per ft	ohm millimeter ² per meter	1.66 426	E-03
omi encular mii per it	$[(\Omega \cdot \text{mm}^2/\text{m}]$	1.00 120	L 03
ounce (avoirdupois)	kilogram (kg)	2.834 952	E-02
ounce (troy or apothecary)	kilogram (kg)	3.110 348	E-02
ounce (U.K. fluid)	meter ³ (m ³)	2.841 307	E-05
	meter ³ (m ³)	2.957 353	E-05 E-05
ounce (U.S. fluid) ounce-force			E-03 E-01
	newton (N)	2.780 139	
ozf-in.	newton meter (N·m)	7.061 552	E-03
oz (avoirdupois)/gal (U.K. liquid)	kilogram per meter ³	6.236 021	E+00
(' 1 ')	(kg/m^3)	(22 (02 1	E : 00
oz (avoirdupois)/gal (U.S. liquid)	kilogram per meter ³	6.236 021	E+00
	(kg/m^3)	1.500.004	E : 02
oz (avoirdupois)/in. ³	kilogram per meter ³	1.729 994	E+03
	(kg/m^3)		
oz (avoirdupois)/ft²	kilogram per meter ²	3.051 517	E-01
	(kg/m^2)		
oz (avoirdupois)/yd²	kilogram per meter ²	3.390 575	E-02
	(kg/m^2)		
parsec	meter (m)	3.085 678	E+16
pack (U.S.)	meter ³ (m ³)	8.809 768	E-03
pennyweight	kilogram (kg)	1.555 174	E-03
perm (°C) ⁽⁶⁾	kilogram per pascal	5.721 35	E-11
	second meter ²		
	$[kg/(Pa\cdot s\cdot m^2)]$		
perm (23°C) ⁽⁶⁾	kilogram per pascal	5.745 25	E-11
	second meter ²		
	$[kg/(Pa\cdot s\cdot m^2)]$		
perm-in. $(0^{\circ}C)^{(7)}$	kilogram per pascal	1.453 22	E-12
	second meter		
	[kg/(Pa·s·m)]		
perm-in. (23°C) ⁽⁷⁾	kilogram per pascal	1.459 29	E-12
. , ,	second meter		
	$[km/(Pa\cdot s\cdot m)]$		
phot	lumen per meter ² (lm/m ²)	1.0*	E+04
pica (printer's)	meter (m)	4.217 518	E-03
pint (U.S. dry)	meter (m)	5.506 105	E-04
pint (U.S. liquid)	meter ³ (m ³)	4.731 765	E-04
point (printer's)	meter (m)	3.514 598*	E-04
point (printer's) poise (absolute viscosity)	pascal second (Pa·s)	1.0*	E-01
pound (lbm avoirdupois) ⁽⁸⁾		4.535 924	E-01 E-01
	kilogram (kg)	4.333 924 3.732 417	E-01 E-01
pound (troy or apothecary)	kilogram (kg)	3.134411	E VI

⁽⁶⁾ Not the same as reservoir "perm."
⁽⁷⁾ Not the same dimensions as "millidarcy-foot."
⁽⁸⁾ The exact conversion factor is 4.535 923 7*E-01.

To Convert From	То	Multip	ly By**
lbm-ft ² (moment of inertia)	kilogram meter ² (kg·m ²)	4.214 011	E-02
lbm-in ² (moment of inertia)	kilogram meter ² (kg·m ²)	2.926 397	E-04
lbm/ft-hr	pascal second (Pa·s)	4.133 789	E-04
lbm/ft-s	pascal second (Pa·s)	1.488 164	E+00
lbm/ft ²	kilogram per meter ²	4.882 428	E+00
	(kg/m^2)		
lbm/ft ³	kilogram per meter ³ (kg/m ³)	1.601 846	E+01
lbm/gal (U.K. liquid)	kilogram per meter ³ (kg/m ³)	9.977 633	E+01
lbm/gal (U.S. liquid)	kilogram per meter ³ (kg/m ³)	1.198 264	E+02
lbm/hr	kilogram per second (kg/s)	1.259 979	E-04
lbm/hr	kilogram per joule (kg/J)	1.689 659	E-07
lbm/(hp-hr)	imegram per jeune (ng.e)	1.009 009	2 0,
(SFC, specific fuel consumption)			
lbm/in. ³	kilogram per meter ³	2.767 990	E+04
	(kg/m^3)		
lbm/min	kilogram per second (kg/s)	7.559 873	E-03
lbm/s	kilogram per second (kg/s)	4.535 924	E-01
lbm/yd ³	kilogram per meter ³	5.932 764	E-01
•	(kg/m^3)		
poundal	newton (N)	1.382 550	E-01
poundal/ft ²	pascal (Pa)	1.488 164	E+00
poundal-s/ft ²	pascal second (Pa·s)	1.488 164	E+00
pound-force (lbf) ⁽⁹⁾	newton (N)	4.448 222	E+00
lbf-ft ⁽¹⁰⁾	newton meter (N·m)	1.355 818	E+00
lbf-ft ⁽¹¹⁾	newton meter per meter $[(N \cdot m)/m]$	5.337 866	E+01
lbf-in. ⁽¹¹⁾	newton meter (N·m)	1.129 848	E-01
lbf-in./in. ⁽¹¹⁾	newton meter per meter	4.448 222	E+00
	$[(N \cdot m)/m)]$		
lbf-s/ft ²	pascal second (Pa·s)	4.788 026	E+01
lbf/ft	newton per meter (N/m)	1.459 390	E+01
lbf/ft ²	pascal (Pa)	4.788 026	E+01
lbf/in.	newton per meter (N/m)	1.751 268	E+02
lbf/in. ² (psi)	pascal (Pa)	6.894 757	E+03
lbf/lbm (thrust/weight [mass] ratio)	newton per kilogram (N/kg)	9.806 650	E+00
quart (U.S. dry)	meter ³ (m ³)	1.101 221	E-03
quart (U.S. liquid)	meter ³ (m ³)	9.463 529	E-04
rad (radiation dose absorbed)	gray (Gy)	1.0*	E-02
rhe	1 per pascal second	1.0*	E+01
	[1/(Pa·s)]		
rod	meter (m)	(see Footnote 1	.)
roentgen	coulomb per kilogram	2.58	E-04
	(C/kg)		
second (angle)	radian (rad)	4.848 137	E-06
second (sidereal)	second (s)	9.972 696	E-01

⁽⁹⁾The exact conversion factor is 4.448 615 260 5*E+00. ⁽¹⁰⁾Torque unit; see text discussion of "Torque and Bending Moment." ⁽¹¹⁾Torque divided by length; see text discussion of "Torque and Bending Moment."

To Convert From	То	Multiply By**	
section	$meter^2(m^2)$	(see Footnote 1	.)
shake	second(s)	1.000 000*	E-08
slug/(ft-s)	pascal second (Pa·s)	4.788 026	E+01
slug/ft ³	kilogram per meter ³	5.153 788	E+02
	(kg/m^3)		
statampere	ampere (A)	3.335 640	E-10
statcoulomb	coulomb (C)	3.335 640	E-10
statfarad	farad (F)	1.112 650	E-12
stathenry	henry (H)	8.987 554	E+11
statmho	seimens (S)	1.112 650	E-12
statohm	ohm (Ω)	8.987 554	E+11
statvolt	volt (V)	2.997 925	E+02
stere	meter ³ (m ³)	1.0*	E+00
stilb	candela per meter ² (cd/m ²)	1.0*	E+04
strokes (kinematic viscosity)	meter ² per second (m ² /s)	1.0*	E-04
tablespoon	meter ³ (m ³)	1.478 676	E-05
teaspoon	meter ³ (m ³)	4.928 922	E-06
tex	kilogram per meter (kg/m)	1.0*	E-06
therm	joule (J)	1.055 056	E+08
ton (assay)	kilogram (kg)	2.916 667	E-02
ton (long, 2.240 lbm)	kilogram (kg)	1.016 047	E+03
ton (metric)	kilogram (kg)	1.0*	E+03
ton (nuclear equivalent of TNT)	joule (J)	4.184	$E+09^{(12)}$
ton (refrigeration)	watt (W)	3.516 800	E+03
ton (register)	meter ³ (m ³)	2.831 685	E+00
ton (short, 2,000 lbm)	kilogram (kg)	9.071 847	E+02
ton (long)/yd ³	kilogram per meter ³	1.328 939	E+03
	(kg/m^3)		
ton (short)/hr	kilogram per second (kg/s)	2.519 958	E-01
ton-force (2,000 lbf)	newton (N)	8.896 444	E+03
tonne	kilogram (kg)	1.0	E+03
torr (mm Hg, 0°C)	pascal (Pa)	1.333 22	E+02
township	meter ² (m ²)	(see Footnote 1	.)
unit pole	weber (Wb)	1.256 637	E-07
watthour (W-hr)	joule (J)	3.60*	E+03
$W \cdot s$	joule (J)	1.0*	E+00
W/cm ²	watt per meter ² (W/m ²)	1.0*	E+04
W/in. ²	watt per meter ² (W/m ²)	1.550 003	E+03
yard	meter (m)	9.144	E-01
yd^2	meter ² (m ²)	8.361 274	E-01
yd^3	meter ³ (m ³)	7.645 549	E-01
yd ³ /min	meter ³ per second (m ³ /s)	1.274 258	E-02
year (calendar)	second (s)	3.153 600	E+07
year (sidereal)	second (s)	3.155 815	E+07
year (tropical)	second (s)	3.155 693	E+07

⁽¹²⁾Defined (not measured) value.

CONVERSION FACTORS FOR THE VARA*

Location	Value of Vara in Inches	Conversion Factor, Varas to Meters	
Argentina, Paraguay	34.12	8.666	E-01
Cadiz, Chile, Peru	33.37	8.476	E-01
California,	33.3720	8.476 49	E-01
except San Francisco	33.3720	0.170 19	L VI
San Francisco	33.0	8.38	E-01
Central America	33.87	8.603	E-01
Colombia	31.5	8.00	E-01
Honduras	33.0	8.38	E-01
Mexico		8.380	E-01
Portugal, Brazil	43.0	1.09	E+00
Spain Cuba, Venezuela, Philippine Islands	33.38**	8.479	E-01
Texas,			
26 January 1801 to 27 January 1838	32.8748	8.350 20	E-01
27 January 1838 to 17 June 1919, for			
surveys of state land made for land office	$33^{1/_{3}}$	8.466 667	E-01
27 January 1838 to 17 June 1919,			
on private surveys (unless change to 33 ¹ / ₃			
by custom arising to dignity of law and			
overcoming former law)	32.8748	8.350 20	E-01
17 June 1919 to present	$33^{1/_{3}}$	8.466 667	E-01
-			

^{*}Per P.G. McElwee (The Texas Vara; available from the General Land Office, State of Texas, Austin, 30 April 1940) it is evident that accurate defined lengths of the vara vary significantly, according to historical data and locality used. For work requiring accurate conversions, the user should check closely into the date and location of the surveys involved, with due regard to what local practice may have been at that time and place.

^{**}This value quoted from Webster's New International Dictionary.

"MEMORY JOGGER"—METRIC UNITS

Customary Unit

"Ballpark" Metric Values (Do *Not* Use as Conversion Factors)

Customary Unit		(Do Not Use as Conversion Factors)			
acre	<u> </u>	4000	square meters		
	Į	0.4	hectare		
barrel		0.16	cubic meter		
British thermal unit		1000	joules		
British thermal unit per pound-mass	(2300	joules per kilogram		
	ĺ	2.3	kilojoules per kilogram		
calorie		4	joules		
centipoise		1*	millipascal-second		
centistokes		1*	square millimeter per second		
darcy		1	square micrometer		
degree Fahrenheit (temperature difference)		0.5	Kelvin		
dyne per centimeter		1*	millinewton per meter		
foot	5	30	centimeters		
	{	0.3	meter		
cubic foot (cu ft)		0.03	cubic meter		
cubic foot per pound-mass (ft³/lbm)		0.06	cubic meter per kilogram		
square foot (sq ft)		0.1	square meter		
foot per minute	5	0.3	meter per minute		
	1	5	millimeters per second		
foot-pound-force		1.4	joules		
foot-pound-force per minute		0.02	watt		
foot-pound-force per second		1.4	watts		
horsepower		750	watts (¾ kilowatt)		
horsepower, boiler		10	kilowatts		
inch		2.5	centimeters		
kilowatt-hour		3.6*	megajoules		
mile		1.6	kilometers		
ounce (avoirdupois)		28	grams		
ounce (fluid)		30	cubic centimeters		
pound-force		4.5	newtons		
pound-force per square inch (pressure, psi)		7	kilopascals		
pound-mass		0.5	kilogram		
pound-mass per cubic foot		16	kilograms per cubic meter		
		260	hectares		
section	3	2.6	million square meters		
		2.6	square kilometers		
ton, long (2240 pounds-mass)		1000	kilograms		
ton, metric (tonne)		1000*	kilograms		
ton, short		900	kilograms		

^{*}Exact equivalents

NOMENCLATURE FOR TABLES 1 AND 2 (see pages 153–170)

Unit			
Symbol	Name	Quantity	Type of Unit
A	ampere	electric current	base SI unit
a	annum (year)	time	allowable (not official SI) unit
Bq	becquerel	activity (of	derived SI unit =1/s
1	1	radionuclides)	
bar	bar	pressure	allowable (not official SI) unit,=10 ³ Pa
C	coulomb	quantity of electricity	derived SI unit, =1 A·s
cd	candela	luminous intensity	base SI unit
°C	degree Celsius	temperature	derived SI unit =1.0 K
0	degree	plane angle	allowable (not official SI) unit
d	day	time	allowable (not official SI) unit, =24 hours
F	farad	electric capacitance	derived SI unit, =1 A·s/V
G_{v}	gray	absorbed dose	derived SI unit, =J/kg
g	gram	mass	allowable (not official SI) unit, =10 ⁻³ kg
H	henry	inductance	derived SI unit, =1 V·s/A
h	hour	time	allowable (not official SI) unit, $=3.6 \times 10^3$ s
Hz	hertz	frequency	derived SI unit, =1 cycle/s
ha	hectare	area	allowable (not official SI) unit, =10 ⁴ m ²
J	joule	work, energy	derived SI unit, =1 N⋅m
K	kelvin	temperature	base SI unit
kg	kilogram	mass	base SI unit
kn	knot	velocity	allowable (not official SI) unit,
			$=5.144444\times10^{-1}$ m/s
_			=1.852 km/h
L	liter	volume	allowable (not official SI) unit, =1 dm ³
lm	lumen	luminous flux	derived SI unit, =1 cd·sr
lx	lux	illuminance	derived SI unit, =1 lm/m ²
m _.	meter	length	base SI unit
min	minute	time	allowable (not official SI) unit
	minute	plane angle	allowable cartography (not official SI) unit
N	newton	force	derived SI unit, =1 kg·m/s ²
naut. mile	U.S. nautical	length	allowable (not official SI) unit, = 1.852×10^3 m
0	mile	1 4	1 ' 101 ' 137/4
Ω	ohm	electric resistance	derived SI unit, =1 V/A
Pa	pascal	pressure	derived SI unit, =1 N/m ²
rad	radian	plane angle	supplementary SI unit
S	siemens	electrical conductance	derived SI unit, =1 A/V
S	second	time	base SI unit
	second steradian	plane angle	allowable cartography (not official SI) unit supplementary SI unit
sr T	tesla	solid angle magnetic flux density	derived SI unit, =1 Wb/m ²
t	tonne	mass	allowable (not official SI) unit, =10 ³ kg =1 Mg
ι V	volt	electric potential	derived SI unit, =1 W/A
V W	watt	-	derived SI unit, =1 J/s derived SI unit, =1 J/s
w Wb	weber	power magnetic flux	derived SI unit, =1 J/s derived SI unit, =1 V·s
WU	WCUCI	magnetic mux	derived of unit, -1 v o

TABLE 1—TABLES OF RECOMMENDED SI UNITS

	TABLET	TABLES OF R	ECOMMEND:	ED SI CIVIIS	Conversion	Factor:*
		Metric Unit		Multiply C		
		Customary	SPE	Other	Unit by Fa	
Quantity and SI	Unit	Unit	Preferred	Allowable	Get Metr	ric Unit
		SPACE	E,** TIME			
Length	m	naut mile	km		1.852*	E+00
		mile	km		1.609 344*	E+00
		chain	m		2.011 68*	E+01
		link	m		2.011 68*	E-01
		fathom	m		1.828 8*	E+00
		m	m		1.0*	E+00
		yd	m		9.144*	E - 01
		ft	m		3.048*	E - 01
				cm	3.048*	E+01
		in.	mm		2.54*	E+01
				cm	2.54*	E+00
		cm	mm		1.0*	E+01
				cm	1.0*	E+00
		mm	mm		1.0	E+00
		mil	μm		2.54*	E+01
		micron (µ)	μm		1.0*	E+00
Length/length	m/m	ft/mi	m/km		1.893 939	E-01
Length/volume	m/m^3	ft/U.S. gal	m/m^3		8.051 964	E+01
C		ft/ft ³	m/m^3		1.076 391	E+01
		ft/bbl	m/m^3		1.917 134	E+00
Length/temperature	m/K	see "Temperatur		cuum''		
Area	m^2	sq mile	km ²		2.589 988	E+00
		section	km ²		2.589 988	E+00
				ha	2.589 988	E+02
		acre	m^2		4.046 856	E+03
				ha	4.046 856	E-01
		ha	m^2		1.0*	E+04
		sq yd	m^2		8.361 274	E - 01
		sq ft	m^2		9.290 304*	E - 02
				cm^2	9.290 304*	E+02
		sq in.	mm^2		6.451 6*	E+02
		_		cm^2	6.451 6*	E+00
		cm ²	mm^2		1.0*	E+02
				cm^2	1.0*	E+00
		mm^2	mm^2		1.0*	E+00
Area/volume	m^2/m^3	ft^2	m^2/cm^3		5.699 291	E-03
Area/mass	m^2/kg	cm	m²/kg		1.0*	E-01
	-		m^2/g		1.0*	E-04

^{*}An asterisk indicates that the conversion factor is exact using the numbers shown; all subsequent number are zeros.

^{**}Conversion factors for length, area, and volume (and related quantities) in Table 1 are based on the international foot. See Footnote 1 in the Alphabetical List of Units.

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

			Conversion	Factor:*		
				ric Unit	Multiply C	
		Customary	SPE	Other	Unit by Fa	ictor To
Quantity and SI	Unit	Unit	Preferred	Allowable	Get Metr	ic Unit
		SPACE,	** TIME	•		
Volume, capacity	m ³	cubem	km ³		4.168 182	E+00 ⁽¹⁾
, oranie, emparenty		acre-ft	m^3		1.233 489	E+03
		4010 11	***	ha∙m	1.233 489	E-01
		m^3	m^3	114 111	1.0*	E+00
		cu yd	m^3		7.645 549	E-01
		bbl (42 U.S. gal)	m^3		1.589 873	E-01
		cu ft	m^3		2.831 685	E-02
		cu ii	dm ³	L	2.831 685	E+01
		U.K. gal	m^3	L	4.546 092	E-03
		O.K. gai	dm ³	L	4.546 092	E+00
		U.S. gal	m^3	L	3.785 412	E-03
		0.5. gai	dm ³	L	3.785 412	E+00
		liter	dm ³	L	1.0*	E+00
		U.K. qt	dm ³	L	1.136 523	E+00
		U.S. qt	dm ³	L	9.463 529	E-01
		U.S. pt	dm ³	L	4.731 765	E-01
T7 1 ',	3	_		L		
Volume, capacity	m^3	U.K. fl oz	cm ³		2.841 308	E+01
		U.S. fl oz	cm ³		2.957 353	E+01
		cu in.	cm ³		1.638 706	E+01
T. 1 /1 .1	3,	mL	cm ³		1.0*	E+00
Volume/length	m^3/m	bbl/in.	$\frac{m^3}{m}$		6.259 342	E+00
(linear displacement)		bbl/ft	$\frac{m^3}{m}$		5.216 119	E-01
		ft ³ /ft	$\frac{m^3}{m}$		9.290 304*	E-02
		U.S. gal/ft	m^3/m	_ ,	1.241 933	E-02
	3		dm ³ /m	L/m	1.241 933	E+01
Volume/mass	m ³ /kg	see "Density, Spec		Concentration,		
Plane angle	rad	rad	rad		1.0*	E+00
		deg (°)	rad		1.745 329	$E-02^{(2)}$
				0	1.0*	E+00
		min (')	rad		2.908 882	$E-04^{(2)}$
				•	1.0*	E+00
		sec (")	rad		4.848 137	$E-06^{(2)}$
				"	1.0*	E+00
Solid angle	sr	sr	sr		1.0*	E+00
Time	S	million years	Ma		1.0*	$E+00^{(4)}$
		(MY)				
		yr	a		1.0*	E+00
		wk	d		7.0*	E+00
		d	d		1.0*	E+00
		hr	h		1.0*	E+00
				min	6.0*	E+01
		min	S		6.0*	E+01
				h	1.666 667	E-02
				min	1.0*	E+00
		S	S		1.0*	E+00
		millimicrosecond	ns		1.0*	E+00

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

				ic Unit	Conversion F Multiply Cus	
Quantity and SI Unit		Customary Unit	SPE Preferred	Other Allowable	Unit by Fac Get Metric	
		MASS, AMOUN	T OF SUBSTA	NCE		
Mass	kg	U.K. ton	Mg	t	1.016 047	E+00
		(long ton)				
		U.S. ton	Mg	t	9.071 847	E-01
		(short ton)				
		U.K. ton	kg		5.080 235	E+01
		U.S. cwt	kg		4.535 924	E+01
		kg	kg		1.0*	E+00
		lbm	kg		4.535 924	E-01
		oz (troy)	g		3.110 348	E+01
		oz (av)	g		2.834 952	E+01
		g	g		1.0*	E+00
		grain	mg		6.479 891	E+01
		mg	mg		1.0*	E+00
		g	g		1.0*	E+00
Mass/length	kg/m	see "Mechanics"				
Mass/area	kg/m ²	see "Mechanics"				
Mass/volume	kg/m ³	see "Density, Sp	ecific Volume,	Concentration,	Dosage"	
Mass/mass	kg/kg	see "Density, Sp	ecific Volume,	Concentration,	Dosage"	
Amount of substance	mol	lbm mol	kmol		4.535 924	E-01
		g mol	kmol		1.0*	E-03
		std m ³	kmol		4.461 58	E-02
		(0°C, 1 atm)				(3, 13)
		std m ³	kmol		4.229 32	E-02
		(15°C, 1 atm)				(3, 13)
		std ft ³	kmol		1.195 3	E-03
		(60°F, 1 atm)				(3, 13)
(CALORIF	TIC VALUE, HEAT	, ENTROPY, HI	EAT CAPACIT	ΣΥ	
Calorific value	J/kg	Btu/lbm	MJ/kg		2.326	E-03
(mass basis)	Ü		kJ/kg	J/g	2.326	E+00
, ,			Ç	(kW·h)/kg	6.461 112	E-04
		cal/g	kJ/kg	J/g	4.184*	E+00
		cal/lbm	J/kg	Č	9.224 141	E+00
Calorific value	J/mol	kcal/g mol	kJ/kmol		4.184*	$C+03^{(13)}$
(mole basis)		Btu/lbm mol	MJ/kmol		2.326	$E-03^{(13)}$
,			kJ/kmol		2.326	E+00 ⁽¹³⁾

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

			Metr	ric Unit	Conversion Multiply C	
		Customary	SPE	Other	Unit by Fa	
Quantity and SI	Unit	Unit	Preferred	Allowable	Get Metr	
-						ic Omt
		IC VALUE, HEAT, I				F: 0.4
Calorific value	J/m ³	therm/U.K. gal	MJ/m^3	kJ/dm ³	2.320 80	E+04
(volume basis–			kJ/m ³	(1.117.1.)/1. 3	2.320 80	E+07
solids and liquids)		D. /II.C. 1	NAT/ 3	$(kW \cdot h)/dm^3$	6.446 660	E+00
		Btu/U.S. gal	MJ/m^3	kJ/dm ³	2.787 163	E-01
			kJ/m ³	(1.137.1.) / 3	2.787 163	E+02
		D4/III IZ1	NAT/3	$(kW \cdot h)/m^3$	7.742 119	E-02
		Btu/U.K. gal	MJ/m^3	kJ/dm ³	2.320 8	E-01
			kJ/m ³	(1.137.1.) / 3	2.320 8	E+02
		D. 103	NAT/ 3	$(kW \cdot h)/m^3$	6.446 660	E-02
		Btu/ft ³	MJ/m^3	kJ/dm ³	3.725 895	E-02
			kJ/m ³	(1.137.1.) / 3	3.725 895	E+01
		11/3	NAT/3	$(kW \cdot h)/m^3$	1.034 971	E-02
		kcal/m ³	MJ/m^3	kJ/dm ³	4.184*	E-03
		1/ т	kJ/m^3		4.184*	E-03
		cal/mL	MJ/m^3		4.184*	E+00
C 1 'C 1	T/ 3	ft-lbf/U.S. gal	kJ/m^3	T/1 3	3.581 692	E-01
Calorific value	J/m ³	cal/mL	kJ ³ /m	J/dm^3	4.184*	E+03
(volume basis–		kcal/m ³	kJ/m^3	J/dm^3	4.184*	E+00
gases)		Btu/ft ³	kJ/m ³	J/dm^3	3.725 895	E+01
g :c ,	T/1 TZ	D. /(11 0D)	1.1/117)	$(kW \cdot h)/m^3$	1.034 971	E-02
Specific entropy	J/kg·K	Btu/(lbm-°R)	$kJ(kg\cdot K)$	$J(g \cdot K)$	4.186 8*	E+00
		cal/(g-°K)	kJ(kg·K)	$J(g \cdot K)$	4.184*	E+00
G 'C 1	T/1 TZ	kcal/(kg-°C)	kJ(kg·K)	J(g·K)	4.184*	E+00
Specific heat	J/kg·K	kW-hr/(kg-°C)	$kJ(kg\cdot K)$	$J(g \cdot K)$	3.6*	E+03
capacity		Btu/(lbm-°F)	kJ(kg·K)	J(g·K)	4.186 8*	E+00
(mass basis)	1/ 1 17	kcal(kg-°C)	kJ(kg⋅K)	$J(g \cdot K)$	4.184*	E+00
Molar heat	J/mol·K	Btu/(lbm mol-°F)	kJ		4.186 8*	$E+00^{(13)}$
٠,		1// 1.00)	(kmol·K)		4 104*	E 00(12)
capacity		cal/(g mol-°C)	kJ		4.184*	$E-00^{(13)}$
			(kmol·K)			
	Т	EMPERATURE, PR	RESSURE, VA	CUUM		
Temperature	K	°R	K		5/9	
(absolute)		°K	K		1.0*	E+00
Temperature	K	°F	°C		(F-32)/1.8	
(traditional)		°C	°C		1.0*	E+00
Temperature	K	°F	K	°C	5/9	E+00
(difference)		°C	K	°C	1.0*	E+00
Temperature/length	K/m	°F/100 ft	mK/m	-	1.822 689	E+01
(geothermal gradient)		., = + + = +				
Length/temperature	m/K	ft°F	m/K		5.486 4*	E-01
(geothermal step)	· -					-

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

	Customary		Metric Unit SPE Other		Conversion Factor:* Multiply Customary Unit by Factor To	
		Unit	Preferred	Allowable	Get Metric	
	r	 ГЕМРЕRATURE, PRE	SSURE, VA	.CUUM	-	
Pressure	Pa	atm (760 mm Hg at	MPa		1.013 25*	E-01
		0°C or 14.696 (lbf/in.²)	kPa		1.013 25*	E+02
				bar	1.013 25*	E+00
		bar	MPa		1.0*	E-01
			kPa		1.0*	E+02
				bar	1.0*	E+00
		at (technical atm, kbf/cm ²)	MPa		9.806 65*	E-02
			kPa		9.806 65*	E+01
				bar	9.806 65*	E-01
Pressure	Pa	lbf/in. ² (psi)	MPa		6.894 757	E-03
			kPa		6.894 757	E+00
				bar	6.894 757	E-02
		in. Hg (32°F)	kPa		3.386 38	E+00
		in. Hg (60°F)	kPa		3.376 85	E+00
		in. H ₂ O (39.2°F)	kPa		2.490 82	E-01
		in. H_2O (60°F)	kPa		2.488 4	E-01
		Mm Hg $(0^{\circ}C)$ =torr	kPa		1.333 224	E-01
		$Cm H_2O (4^{\circ}C)$	kPa		9.806 38	E-02
		lbf/ft² (psf)	kPa		4.788 026	E-02
		μm Hg (0°C)	Pa		1.333 224	E-01
		μbar	Pa		1.0*	E-01
17 1 0	D	dyne/cm ²	Pa		1.0*	E-01
Vacuum, draft	Pa	in. Hg (60°F)	kPa		3.376 85	E+00
		in. H ₂ O (39.2°F)	kPa		2.490 82	E-01
		Mm Hg $(0^{\circ}C)$ =torr	kPa		1.333 224	E-01
Liquid hoot	122	Cm H ₂ O (4°C) ft	kPa m		9.806 38 3.048*	E-02 E-01
Liquid heat	m	in.	m mm		2.54*	E=01 E+01
		111,	mm	om	2.54*	E+00
Pressure drop/length	Pa/m	psi/ft	kPa/m	cm	2.262 059	E+01
r ressure drop/rength	1 α/111	psi/100 ft	kPa/m		2.262 059	E-01
		SPECIFIC VOLUME,		ATION, DOS	AGE	
Density (gases)	kg/m ³	lbm/ft ³	kg/m ³		1.601 846	E+01
			g/m^3		1.601 846	E+04
Density (liquids)	kg/m ³	lbm/U.S. gal	kg/m ³	2	1.198 264	E+02
			2	g/cm ³	1.198 264	E-01
		lbm/U.K. gal	kg/m ³	2	9.997 633	E+01
		11 /03	1 / 3	kg/dm ³	9.977 633	E-02
		lbm/ft ³	kg/m ³	, 3	1.601 846	E+01
		, 3	1 / 3	g/cm ³	1.601 846	E-02
		g/cm ³	kg/m ³	1 /1 3	1.0*	E+03
		°API	g/cm ³	kg/dm ³	1.0* 141.5/(131.5	E+00 5+°API)

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

		Customary	Metr SPE	ric Unit Other	Conversion F Multiply Cus Unit by Fact	tomary
Quantity and S	I Unit	Unit	Preferred	Allowable	Get Metric	
	ENSITY, S	SPECIFIC VOLUME,	CONCENTR	RATION, DOSA	AGE	
Density (solids)	kg/m ³	lbm/ft ³	kg/m ³		1.601 846	E+01
Specific volume	m^3/kg	ft ³ /lbm	m^3/kg		6.242 796	E-02
(gases)	2	2	m^3/g		6.242 796	E-05
Specific volume	m^3/kg	ft ³ /lbm	dm ³ /kg	3,	6.242 796	E+01
(liquids)		U.K. gal/lbm	dm^3/kg	cm^3/g	1.002 242	E+01
C : C 1	03/1	U.S. gal/lbm	dm^3/kg	cm ³ /g	8.345 404	E+00
Specific volume	ft ³ /mol	L/g mol	m³/kmol		1.0*	E+00
(mole basis)		ft ³ /lbm mol	m ³ /kmol		6.242 796	E-02
Specific volume	m^3/kg	bbl/U.S. ton	m_{2}^{3}/t		1.752 535	E-01
(clay yield)	2	bbl/U.K. ton	m^3/t		1.564 763	E-01
Yield (shale	m^3/kg	bbl/U.S. ton	dm^3/t	L/t	1.752 535	E+02
distillation)		bbl/U.K. ton	dm^3/t	L/t	1.564 763	E+02
		U.S. gal/U.S. ton	dm^3/t	L/t	4.172 702	E+00
C	1/1	U.S. gal/U.K. ton	dm^3/t	L/t	3.725 627	E+00
Concentration	kg/kg	wt%	kg/kg		1.0* 1.0*	E-02 E+01
(mass/mass)		wt nnm	g/kg mg/kg		1.0*	E+01
Concentration	kg/m ³	wt ppm lbm/bbl	kg/m ³	g/dm ³	2.853 010	E+00
(mass/volume)	Kg/III	g/U.S. gal	kg/m ³	g/uiii	2.641 720	E-01
(mass/vorame)		g/U.K. gal	kg/m ³	g/L	2.199 692	E-01
Concentration	kg/m ³	lbm/1,000 U.S. gal	g/m^3	mg/dm^3	1.198 264	E+02
(mass volume)	118/111	lbm/1,000 U.K. gal	g/m^3	mg/dm ³	9.977 633	E+01
(mass (erame)		grains/U.S. gal	g/m^3	mg/dm ³	1.711 806	E+01
		grains/ft ³	mg/m^3	Č	2.288 352	E+03
		lbm/1,000 bbl	g/m^3	mg/dm ³	2.853 010	E+00
		mg/U.S. gal	g/m^3	mg/dm^3	2.641 720	E-01
		grains/100 ft ³	mg/m^3		2.288 352	E+01
Concentration	m^3/m^3	bbl/bbl	m^3/m^3		1.0*	E+00
(volume/volume)		ft^3/ft^3	m^3/m^3		1.0*	E+00
		bbl/acre-ft	m^3/m^3	2	1.288 923	E - 04
			2 2	m³/ha·m	1.288 923	E+00
		vol %	m^{3}/m^{3}	2	1.0*	E-02
		U.K. gal/ft ³	dm^3/m^3	L/m_3^3	1.605 437	E+02
		U.S. gal/ft ³	dm^3/m^3	L/m^3	1.336 806	E+02
		mL/U.S. gal	dm^{3}/m^{3}	L/m^3	2.641 720	E-01
		mL/U.K. gal	dm^3/m^3	L/m^3	2.199 692	E-01
		vol ppm	cm^3/m^3 dm^3/m^3	L/m^3	1.0*	E+00
		II K gg1/1 000 kk1	cm ³ /m ³	L/m ²	1.0* 1.859 406	E-03 E+01
		U.K. gal/1,000 bbl U.S. gal/1,000 bbl	cm/m cm ³ /m ³		2.380 952	E+01 E+01
		U.K. pt/1,000 bbl	cm ³ /m ³		3.574 253	E+01
		C.IX. Pu 1,000 001	C111 / 111		5.577 255	L 100

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

				c Unit	Conversion F Multiply Cus	tomary
0 4:4	10111	Customary	SPE	Other	Unit by Fac	
Quantity an		Unit	Preferred	Allowable	Get Metric	Unit
		SPECIFIC VOLUME,		ATION, DOSA		
Concentration	mol/m ³	lbm mol/U.S. gal	kmol/m ³		1.198 264	E+02
		lbm mol/U.K. gal	kmol/m ³		9.977 633	E+01
		lbm mol/ft ³	kmol/m		1.601 846	E+01
		std ft^3 (60°F,	kmol/m ³		7.518 18	E-03
		1 atm)/bbl				
Concentration	m ³ /mol	U.S. gal/1,000 std ft ³ (60°F/60°F)	dm ³ /kmol	L/kmol	3.166 93	E+00
(volume/mole)		bbl/million std ft ³ (60°F/60°F)	dm ³ /kmol	L/kmol	1.330 11	E-01
		FACILITY THROUC	GHPUT, CAPA	CITY		
Throughput	kg/s	million lbm/yr	t/a	Mg/a	4.535 924	E+02
(mass basis)		U.K. ton/yr	t/a	Mg/a	1.016 047	E+00
		U.S. ton/yr	t/a	Mg/a	9.071 847	E-01
		U.K. ton/D	t/d	Mg/d	1.016 047	E+00
				t/h, Mg/h	4.233 529	E-02
		U.S. ton/D	t/d		9.071 847	E-01
				t/h, Mg/h	3.779 936	E-02
		U.K. ton/hr	t/h	Mg/h	1.016 047	E+00
		U.S. ton/hr	t/h	Mg/h	9.071 847	E-01
		lbm/hr	kg/h		4.535 924	E-01
Throughput	m^3/s	bbl/D	t/a		5.803 036	$E+01^{(7)}$
(volume basis)				m^3/d	1.589 873	E-01
			m^3/h		6.624 471	E-03
		ft ³ /D	m^3/d		2.831 685	E-02
		bbl/hr	m^3/h		1.589 873	E-01
		ft ³ /h	m^3/h		2.831 685	E-02
		U.K. gal/hr	m^3/h		4.546 092	E-03
				L/s	1.262 803	E - 03
		U.S. gal/hr	m^3/h		3.785 412	E - 03
			_	L/s	1.051 503	E - 03
		U.K. gal/min	m ³ /h		2.727 655	E-01
				L/s	7.576 819	E-02
		U.S. gal/min	m^3/h		2.271 247	E-01
				L/s	6.309 020	E-02
Throughput	mol/s	lbm mol/hr	kmol/h		4.535 924	E-01
(mole basis)				kmol/s	1.259 979	$E-04^{(6)}$

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

			Meti	ric Unit	Conversion Factor:* Multiply Customary	
		Customary	SPE	Other	Unit by Fac	
Quantity and	SI Unit	Unit	Preferred	Allowable	Get Metric	Unit
		FLOW :	RATE			
Pipeline capacity	m ³ /m	bbl/mile	m ³ /km		9.879 013	E-02
Flow rate	kg/s	U.K. ton/min	kg/s		1.693 412	E+01
(mass basis)		U.S. ton/min	kg/s		1.511 974	E+01
		U.K. ton/hr	kg/s		2.822 353	E-01
		U.S. ton/hr	kg/s		2.519 958	E-01
		U.K. ton/D	kg/s		1.175 980	E-02
		U.S. ton/D	kg/s		1.049 982	E-02
		million lbm/yr	kg/s		5.249 912	E+02
		U.K. ton/yr	kg/s		3.221 864	E-05
		U.S. ton/yr	kg/s		2.876 664	E-05
		lbm/s	kg/s		4.535 924	E-01
		lbm/min	kg/s		7.559 873	E-03
	2 .	lbm/hr	kg/s		1.259 979	E-04
Flow rate	m^3/s	bbl/D	m^3/d		1.589 873	E-01
(volume basis)		a 3 :	2	L/s	1.840 131	E-03
		ft ³ /D	m^3/d		2.831 685	E-02
			2 .	L/s	3.277 413	E-04
		bbl/hr	m^3/s		4.416 314	E-05
		23 4	2.	L/s	4.416 314	E-02
		ft ³ /hr	m^3/s		7.865 791	E-06
			. 3,	L/s	7.865 791	E-03
		U.K. gal/hr	dm^3/s	L/s	1.262 803	E-03
		U.S. gal/hr	dm^3/s	L/s	1.051 503	E-03
		U.K. gal/min	dm^3/s	L/s	7.576 820	E-02
		U.S. gal/min	dm^3/s	L/s	6.309 020	E-02
		ft ³ /min	dm^3/s	L/s	4.719 474	E-01
TI .	1/	ft^3/s	dm^3/s	L/s	2.831 685	E+01
Flow rate	mol/s	lbm mol/s	kmol/s		4.535 924	E-01 (13)
(mole basis)		lbm mol/hr	kmol/s		1.259 979	E-04
		million scf/D	kmol/s		1.383 449	E-02
Flow rate/length	kg/s⋅m	lbm/(s-ft)	kg/(s·m)		1.488 164	E+00
(mass basis)		lbm/(hr-ft)	kg/(s·m)		4.133 789	E-04
Flow rate/length	m^2/s	U.K. gal/(min-ft)	m^2/s	$m^3/(s \cdot m)$	2.485 833	E-04
		U.S. gal/(min-ft)	m^2/s	$m^3/(s \cdot m)$	2.069 888	E-04
		U.K. gal/(hr-in.)	m^2/s	$m^3/(s \cdot m)$	4.971 667	E-05
		U.S. gal/(hr-in.)	m^2/s	$m^3/(s \cdot m)$	4.139 776	E-05
		U.K. gal/(hr-ft)	m^2/s	$m^3/(s \cdot m)$	4.143 055	E-06
	_	U.S. gal/(hr-ft)	m^2/s	$m^3/(s \cdot m)$	3.449 814	E-06
Flow rate/area	kg/s·m ²	$lbm/(s-ft^2)$	$kg/s \cdot m^2$		4.882 428	E+00
(mass basis)		lbm/(hr-ft²)	kg/s·m ²		1.356 230	E-03

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metri SPE Preferred	c Unit Other Allowable	Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit	
		FLOW	RATE			
Flow rate/area	m/s	$ft^3/(s-ft^2)$	m/s	$m^3/(s \cdot m^2)$	3.048*	E-01
		$ft^3/(min-ft^2)$	m/s	$m^3/(s \cdot m^2)$	5.08*	E-03
		U.K. gal/(hr-in. ²)	m/s	$m^3/(s \cdot m^2)$	1.957 349	E-03
		U.S. gal/(hr-in. ²)	m/s	$m^3/(s \cdot m^2)$	1.629 833	E-03
		U.K. gal/(min-ft ²)	m/s	$m^3/(s \cdot m^2)$	8.155 621	E-04
		U.S. gal/(min-ft ²)	m/s	$m^3/(s \cdot m^2)$	6.790 972	E-04
		U.K. gal/(hr-ft ²)	m/s	$m^3/(s \cdot m^2)$	1.359 270	E-05
		U.S. gal/(hr-ft ²)	m/s	$m^3/(s \cdot m^2)$	1.131 829	E-05
Flow rate/ pressure drop (productivity index)	m ³ /s·Pa	bbl/(D-psi)	$m^3/(d\cdot kPa)$		2.305 916	E-02
		ENERGY, WO	RK, POWER			
Energy, work	J	quad	MJ		1.055 056	E+12
			TJ		1.055 056	E+06
			EJ		1.055 056	E+00
				$MW \cdot h$	2.930 711	E+08
				GW∙h	2.930 711	E+05
				TW∙h	2.930 711	E+02
		therm	MJ		1.055 056	E+02
			kJ		1.055 056	E+05
				kW∙h	2.930 711	E+01
		U.S. tonf-mile	MJ		1.431 744	E+01
		hp-hr	MJ		2.684 520	E+00
			kJ		2.684 520	E+03
				kW∙h	7.456 999	E-01
		ch-hr or CV-hr	MJ		2.647 796	E+00
			Kj		2.647 796	E+03
				kW∙h	7.354 99	E-01
		kW-hr	MJ		3.6*	E+00
			kJ		3.6*	E+03
		Chu	kJ		1.899 101	E+00
				kW∙h	5.275 280	E-04
		Btu	kJ		1.055 056	E+00
				kW∙h	2.930 711	E-04
		kcal	kJ		4.184*	E+00
		cal	kJ		4.184*	E-03
		ft-lbf	kJ		1.344 818	E-03
		lbf-ft	kJ		1.355 818	E-03
		J	kJ		1.0*	E-03
		$lbf-ft^2/s^2$	kJ		4.214 011	E-05
		erg	J		1.0*	E-07

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

			Metric Unit		Conversion Factor:*		
		C 4			Multiply Cust		
0 41 101	TT 1	Customary	SPE	Other	Unit by Fact		
Quantity and SI	Unit	Unit	Preferred	Allowable	Get Metric	Unit	
		ENERGY, WO	RK, POWER				
Impact energy	J	kgf∙m	J		9.806 650*	E+00	
		lbf-ft	J		1.355 818	E+00	
Work/length	J/m	U.S. tonf-mile/ft	MJ/m		4.697 322	E+01	
Surface energy	J/m^2	erg/cm ²	mJ/m^2		1.0*	E+00	
Specific impact	J/m^2	kgf·m/cm ²	J/cm ²		9.806 650*	E - 00	
energy		lbf·ft/in. ²	J/cm ²		2.101 522	E-01	
Power	W	quad/yr	MJ/a		1.055 056	E+12	
		1 2	TJ/a		1.055 056	E+06	
			EJ/a		1.055 056	E+00	
		erg/a	TW		3.170 979	E-27	
		J	GW		3.170 979	E-24	
		million Btu/hr	MW		2.930 711	E-01	
		ton of refrigeration	kW		3.516 853	E+00	
		Btu/s	kW		1.055 056	E+00	
		kW	kW		1.0*	E+00	
		hydraulic	kW		7.460 43	E-01	
		horsepower—hhp			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		hp (electric)	kW		7.46*	E-01	
		hp (550 ft-lbf/s)	kW		7.456 999	E-01	
		ch or CV	kW		7.354 99	E-01	
		Btu/min	kW		1.758 427	E-02	
		ft·lbf/s	kW		1.355 818	E-03	
		kcal/hr	W		1.162 222	E+00	
		Btu/hr	W		2.930 711	E-01	
		ft·lbf/min	W		2.259 697	E-02	
Power/area	W/m^2	Btu/s·ft ²	kW/m^2		1.135 653	E+01	
1 0 Wel/area	VV / 111	cal/hr·cm ²	kW/m^2		1.162 222	E-02	
		Btu/hr·ft ²	kW/m^2		3.154 591	E-03	
Haat Classical L.C.		μcal/s·cm ²	mW/m^2				
Heat flow unit—hfu (geothermics)		μcai/s·cm	mw/m		4.184*	E+01	
Heat release rate,	W/m^2	hp/ft ³	kW/m ³		2.633 414	E+01	
	VV / 111	cal/(hr·cm ³)	kW/m ³		1.162 222	E+00	
mixing power		Btu/ $(s \cdot ft^3)$	kW/m ³		3.725 895	E+00 E+01	
		Btu/(srt)	kW/m ³		1.034 971	E-02	
Uset generation		$cal/(s \cdot cm^3)$	$\mu W/m^3$		4.184*	E-02 E+12	
Heat generation unit—hgu		cai/(s·ciii)	μ w/111		4.104	E ⊤12	
(radioactive rocks)	W/W	Dtu/(bha ha)	W 7/1 -W 7		2 020 149	E 01	
Cooling duty	VV / VV	Btu/(bhp-hr)	W/kW		3.930 148	E-01	
(machinery)	lra/I	lhm/(hn hr)	ma/I	lca/MI	1 690 650	E_01	
Specific fuel	kg/J	lbm/(hp-hr)	mg/J	kg/MJ	1.689 659	E-01	
consumption (mass basis)				kg/(kW·h)	6.082 774	E-01	
	m^3/J	$m^3/(kW-hr)$	dm^3/MJ	mm^3/J	2.777 778	ETUS	
Specific fuel consumption	111 / J	111 / (K VV -111)	uiii / IVIJ	dm ³ /(kW·h)	2./// //8 1.0*	E+02 E+03	
consumption				uiii /(K W II)	1.0	E 103	

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Overetite and Cl	[] [Customary Unit	Metric SPE Preferred	Unit Other Allowable	Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit	
Quantity and SI	Ullit	· ——— ——— ———			Get Metric	Ollit
			ORK, POWER	3 1-		
(volume basis)		U.S. gal/(hp-hr)	dm ³ /MJ	mm^3/J	1.410 089	E+00
		IIV nt/(hn hr)	dm^3/MJ	dm ³ (kW·h) mm ³ /J	5.076 321	E+00 E-01
		U.K. pt/(hp-hr)	uiii / ivij	dm ³ /(kW·h)	2.116 809 7.620 512	E-01 E-01
Fuel consumption	m^3/m	IIV gol/mile	$dm^3/100 km$		2.824 811	E+02
Fuel consumption (automotive)	111 /111	U.K. gal/mile	dm ³ /100 km		2.352 146	E+02 E+02
(automotive)		U.S. gal/mile mile/U.S. gal	km/dm ³	km/L	4.251 437	E=02 E=01
		mile/U.K. gal	km/dm ³	km/L	3.540 060	E-01
		iiiic/O.K. gai	KIII/ GIII	KIII/ L	3.340 000	L UI
		MECH	ANICS			
Velocity (linear),	m/s	knot	km/h		1.852*	E+00
speed		mile/hr	km/h		1.609 344*	E+00
		m/s	m/s		1.0*	E+00
		ft/s	m/s		3.048*	E-01
				cm/s	3.048*	E+01
		0.7	,	m/ms	3.048*	E-04 ⁽⁸⁾
		ft/min	m/s	/-	5.08*	E-03
		ft/hr	mm/a	cm/s	5.08* 8.466 667	E-01 E-02
		11/111	mm/s	cm/s	8.466 667	E-02 E-03
		ft/D	mm/s	CIII/S	3.527 778	E-03
		10 D	111111/3	m/d	3.048*	E-01
		in.	mm/s	111/ 4	2.54*	E+01
				cm/s	2.54*	E+00
		in./min	mm/s		4.233 333	E-01
				cm/s	4.233 333	E-02
Velocity (angular)	rad/s	rev/min	rad/s		1.047 198	E-01
		rev/s	rad/s		6.283 185	E+00
		degree/min	rad/s		2.908 882	E-04
Interval transit time	s/m	s/ft	s/m	μs/m	3.280 840	$E+00^{(9)}$
Corrosion rate	m/s	in./yr (ipy)	mm/a		2.54*	E+01
The state of	,	mil/yr	mm/a		2.54*	E-02
Rotational	rev/s	rev/s	rev/s		1.0*	E+00
frequency		rev/min	rev/s		1.666 667	E-02
A 1	m/s^2	rev/min ft/s ²	rad/s m/s ²		1.047 198	E-01
Acceleration	m/s	It/S	III/S	cm/s ²	3.048*	E-01
(linear)		gal (cm/s ²)	m/s^2	CIII/S	3.048* 1.0*	E+01 E-02
Acceleration	rad/s ²	rad/s ²	rad/s ²		1.0*	E=02 E+00
(rotational)	rau/S	rpm/s	rad/s		1.047 198	E=00 E=01
Momentum	kg·m/s	lbm·ft/s	kg·m/s		1.382 550	E-01 E-01
1v10iiiciituiii	K5 111/3	10111 17/3	K5 111/3		1.502 550	L 01

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

					Conversion Factor:*	
		_	Metric		Multiply Cus	
		Customary	SPE	Other	Unit by Fac	
Quantity and S	SI Unit	Unit	Preferred	Allowable	Get Metric Unit	
		MECHA	ANICS			
Force	N	U.K. tonf	kN		9.964 016	E+00
		U.S. tonf	kN		8.896 443	E+00
		kgf (kp)	N		9.806 650*	E+00
		lbf	N		4.448 222	E+00
		N	N		1.0*	E+00
		pdl	mN		1.382 550	E+02
		dyne	mN		1.0*	E-02
Bending moment,	N·m	U.S. tonf-ft	kN∙m		2.711 636	$E+00^{(10)}$
torque		kgf-m	N·m		9.806 650*	$E+00^{(10)}$
		lbf-ft	N∙m		1.355 818	$E+00^{(10)}$
		lbf-in.	N·m		1.129 848	$E-01^{(10)}$
		pdl-ft	N·m		4.214 011	$E-02^{(10)}$
Bending moment/	N·m/m	(lbf-ft)/in.	$(N \cdot m)/m$		5.337 856	$E+01^{(10)}$
length		(kgf-m)/m	$(N \cdot m)/m$		9.806 650*	$E+00^{(10)}$
		(lbf-in.)/in.	$(N \cdot m)/m$		4.448 222	$E+00^{(10)}$
Elastic moduli (Young's, shear bulk)	Pa	lbf/in. ²	GPa		6.894 757	E-06
Moment of inertia	kg·m ²	lbm-ft ²	kg·m ²		4.214 011	E-02
Moment of section	m^4	in. ⁴	cm ⁴		4.162 314	E+01
Section modulus	m^3	cu in.	cm ³		1.638 706	E+01
		cu ft	cm ³		1.638 706	E+04
				mm^3	2.831 685	E+04
				m^3	2.831 685	E-02
Stress	Pa	U.S. tonf/in. ²	MPa	N/mm^2	1.378 951	E+01
		kgf/mm ²	MPa	N/mm^2	9.806 650*	E+00
		U.S. tonf/ft ²	MPa	N/mm^2	9.576 052	E-02
		lbf/in. ² (psi)	MPa	N/mm ²	6.894 757	E-03
		lbf/ft ² (psf)	kPa		4.788 026	E-02
		dyne/cm ²	Pa		1.0*	E-01
Yield point,		$lbf/100 ft^2$	Pa		4.788 026	E-01
gel strength						
(drilling fluid)						
Mass/length	kg/m	lbm/ft	kg/m		1.488 164	E+00
Mass/area	kg/m ²	U.S. ton/ft ²	Mg/m^2		9.764 855	E+00
structural loading, bearing capacity (mass basis)		lbm/ft²	kg/m ²		4.882 428	E+00
Coefficient of thermal expansion	m/(m·K)	in./(in°F)	mm/(mm·K)		5.555 556	E-01

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

			Metric Unit		Conversion Factor:* Multiply Customary	
		Customary	SPE	Other	Unit by Fac	-
Quantity and S	SI Unit	Unit	Preferred	Allowable	Get Metric	
		TRANSPORT P	ROPERTIES			
Diffusivity	m ² /s	ft ² /s	mm ² /s		9.290304*	E+04
•		cm ² /s	mm^2/s		1.0*	E+02
		ft ² /hr	mm^2/s		2.580 64*	E+01
Thermal resistance	$(k \cdot m^2)/W$	(°C-m ² ·hr)/kcal	$(K \cdot m^2)kW$		8.604 208	E+02
		(°F-ft² hr)/Btu	$(K \cdot m^2)kW$		1.761 102	E+02
Heat flux	W/m^2	Btu/(hr-ft ²)	kW/m^2		3.154 591	E-03
Thermal conductivity	$W/(m\cdot K)$	(cal/s-cm ² -°C/cm)	$W/(m \cdot K)$		4.184*	E+02
•		$Btu/(hr-ft^2-{}^\circ F/ft)$	$W/(m\cdot K)$	_	1.730 735	E+00
				$kJ \cdot m/(h \cdot m^2 \cdot K)$	6.230 646	E+00
		kcal/(hr-m ² -°C/m)	$W/(m\cdot K)$		1.162 222	E+00
		Btu/(hr-ft ² - $^{\circ}$ F/in.)	$W/(m\cdot K)$		1.442 279	E-01
		cal/(hr-cm ² -°C/cm)	$W/(m\cdot K)$		1.162 222	E-01
Heat transfer coefficient	$W/(m^2 \cdot K)$	$cal/(s-cm^2-{}^{\circ}C)$	$kW/(m^2 \cdot K)$		4.184*	E+01
		$Btu/(s-ft^2-{}^{\circ}F)$	$kW/(m^2 \cdot K)$		2.044 175	E+01
		cal/(hr-cm ² -°C)	$kW/(m^2 \cdot K)$		1.162 222	E-02
		$Btu/(hr-ft^2-\circ F)$	$kW/(m^2 \cdot K)$		5.678 263	E-03
		`	` ,	$kJ(h\cdot m^2\cdot K)$	2.044 175	E+01
		$Btu/(hr-ft^2-{}^{\circ}R)$	$kW/(m^2 \cdot K)$,	5.678 263	E-03
		kcal/(hr-m ² -°C)	$kW/(m^2 \cdot K)$		1.162 222	E-03
Volumetric heat	$kW/(m^3 \cdot K)$) Btu/(s-ft ³ - $^{\circ}$ F)	$kW/(m^3 \cdot K)$		6.706 611	E+01
transfer coefficient		$Btu/(hr-ft^3-\circ F)$	$kW/(m^3 \cdot K)$		1.862 947	E-02
Surface tension	N/m	dyne/cm	mN/m		1.0*	E+00
Viscosity	Pa·s	(lbf-s)/in. ²	Pa·s	$(N\cdot s)/m^2$	6.894 757	E+03
(dynamic)		$(lbf-s)/ft^2$	Pa·s	$(N \cdot s)/m^2$	4.788 026	E+01
,		$(kgf-s)/m^2$	Pa·s	$(N \cdot s)/m^2$	9.806 650*	E+00
		lbm/(ft-s)	Pa·s	$(N\cdot s)/m^2$	1.488 164	E+00
		(dyne-s)/cm ²	Pa·s	$(N \cdot s)/m^2$	1.0*	E-01
		ср	Pa·s	$(N \cdot s)/m^2$	1.0*	E-03
		lbm/(ft-hr)	Pa·s	$(N \cdot s)/m^2$	4.133 789	E - 04
Viscosity	m^2/s	ft^2/s	mm^2/s	,	9.290 304*	E+04
(kinematic)		in. ² /s	mm^2/s		6.451 6*	E+02
,		m ² /hr	mm^2/s		2.777 778	E+02
		cm^2/s	mm^2/s		1.0*	E+02
		ft ² /hr	mm^2/s		2.580 64*	E+01
		cSt	mm^2/s		1.0*	E+00
Permeability	m^2	darcy	μm^2		9.869 233	E-01
		millidarcy	μm^2		9.869 233	E-04
				$10^{-3}\mu\text{m}^2$	9.869 233	E-01

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit SPE Other Preferred Allowable		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit	
		ELECTRICITY,	MAGNETIS	M		
Admittance	S	S	S		1.0*	E+00
Capacitance	F	μF	μF		1.0*	E+00
Capacity, storage	C	A·hr	kC		3.6*	E+00
battery	a. 3	3	3		4.04	
Charge density	C/m ³	C/mm ³	C/mm ³		1.0*	E+00
Conductance	S	S	S		1.0*	E+00
	G.I	$\Omega(mho)$	S		1.0*	E+00
Conductivity	S/m	S/m	S/m		1.0*	E+00
		Ω/m	S/m		1.0*	E+00
	2	m Ω/m	mS/m		1.0*	E+00
Current density	A/m^2	A/mm^2	A/mm^2		1.0*	E+00
Displacement	C/m^2	C/cm ²	C/cm ²		1.0	E+00
Electric charge	C	C	C		1.0*	E+00
Electric current	A	A	A		1.0*	E+00
Electric dipole moment	C·m	C·m	C⋅m		1.0*	E+00
Electric field	V/m	V/m	V/m		1.0*	E+00
strength	V / 111	V / 111	V / III		1.0	1.00
Electric flux	С	С	C		1.0*	E+00
Electric	C/m^2	C/m^2	C/m^2		1.0*	E+00
polarization	C/III	C/III	C/III		1.0	Liou
Electric potential	V	V	V		1.0*	E+00
Licetife potential	•	mV	mV		1.0*	E+00
Electromagnetic	$A \cdot m^2$	$\mathbf{A} \cdot \mathbf{m}^2$	$A \cdot m^2$		1.0*	E+00
moment						
Electromotive force	V	V	V		1.0*	E+00
Flux of	C	C	С		1.0*	E+00
displacement			_			
Frequency	Hz	cycles/s	Hz		1.0*	E+00
Impedance	Ω	Ω	Ω		1.0*	E+00
Interval transit time	s/m	μs/ft	μs/m		3.280 840	E+00
Linear current	A/m	A/mm	A/mm		1.0*	E+00
density	7 1/ 111	<i>1</i> 1 / 111111	2 1/111111		1.0	1.00
Magnetic dipole	Wb⋅m	Wb⋅m	Wb⋅m		1.0*	E+00
moment	A /	A /	A /		1.0*	E+00
Magnetic field strength	A/m	A/mm	A/mm		1.0*	E+00
		oersted	A/m		7.957 747	E+01
		gamma	A/m		7.957 747	E-04
Magnetic flux	Wb	mWb	mWb		1.0*	E+00
Magnetic flux density	T	mT	mT		1.0*	E+00
•		gauss	T		1.0*	E-04
Magnetic induction	T	mT	mT		1.0*	E+00
Magnetic moment	A·m ²	A⋅m ²	$A \cdot m^2$		1.0*	E+00

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	SPE			actor:* tomary tor To Unit
		ELECTRICITY	, MAGNETISM		· ·	
Magnetic polarization	T	mT	mT		1.0*	E+00
Magnetic potential difference	A	A	A		1.0*	E+00
Magnetic vector potential	Wb/m	Wb/m	Wb/m		1	
Magnetization	A/m	A/mm	A/mm		1	
Modulus of admittance	S	S	S		1	
Modulus of impedance	Ω	Ω	Ω		1	
Mutual inductance	Н	Н	Н		1	
Permeability	H/m	μH/m	$\mu H/m$		1	
Permeance	Н	Ή	H		1	
Permittivity	F/m	μF/m	μF/m		1	
Potential difference	V	V	V		1	
Quantity of electricity	C	C	C		1	
Reactance	Ω	Ω	Ω		1	
Reluctance	H^{-1}	H^{-1}	H^{-1}		1	
Resistance	Ω	Ω	Ω		1	
Resistivity	Ω·m	Ω·cm	Ω·cm		1	
resistivity	111	Ω·m	Ω·m		1	(12)
Self inductance	Н	mH	mH		1	
Surface density of	C/m^2	mC/m^2	mC/m^2		1	
charge						
Susceptance	S C/3	S C/mm ³	S3		1	
Volume density of charge	C/m ³	C/mm [*]	C/mm ³		1	
			GHT, RADIATION			
Absorbed dose	Gy	rad	Gy		1.0*	E-02
Acoustical energy	J	J	J		1	
Acoustical intensity	W/m^2	W/cm ²	W/m^2		1.0*	E+04
Acoustical power	W	W	W		1	
Sound pressure	N/m^2	N/m^2	N/m^2		1	
Illuminance	lx	footcandle	lx		1.076 391	E+01
Illumination	lx	footcandle	lx		1.076 391	E+01
Irradiance	W/m^2	W/m^2	W/m^2		1	
Light exposure	lx·s	footcandle·s	lx·s		1.076 391	E+01
Luminance	cd/m ²	cd/m ²	cd/m ²		1	
Luminous efficacy	lm/W	lm/W	lm/W		1	
•						

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

			Metr	ric Unit	Conversion Factor:* Multiply Customary	
		Customary	SPE	Other	Unit by F	actor To
Quantity and SI	Unit	Unit	Preferred	Allowable	Get Met	ric Unit
	AC	COUSTICS, LI	GHT, RADIAT	ION		
Luminous exitance	lm/m ²	lm/m ²	lm/m ²		1	
Luminous flux	lm	lm	lm		1	
Luminous intensity	cd	cd	cd		1	
Quantity of light	ℓm·s	talbot	ℓm·s		1.0*	E+00
Radiance	$W/(m^2 \cdot sr)$	$W/(m^2 \cdot sr)$	$W/(m^2 \cdot sr)$		1	
Radiant energy	J	J	J		1	
Radiant flux	W	W	W		1	
Radiant intensity	W/sr	W/sr	W/sr		1	
Radiant power	W	W	W		1	
Wavelength	m	Å	nm		1.0*	E-01
Capture unit	\mathbf{m}^{-1}	10^{-3}cm^{-1}	m^{-1}		1.0*	E+01
				10^{-3}cm^{-1}	1	
		m^{-1}	\mathbf{m}^{-1}		1	
Radioactivity		curie	Bq		3.7*	E+10

TABLE 2—SOME ADDITIONAL APPLICATION STANDARDS

Quantity and SI Unit		Customary Unit	Metric Unit SPE Other Preferred Allowable		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit	
Capillary Compressibility of reservoir fluid	Pa Pa ⁻¹	ft (fluid) psi ⁻¹	m (fluid) Pa ⁻¹	kPa ⁻¹	3.048* 1.450 377 1.450 377	E-01 E-04 E-01
Corrosion allowance Corrosion rate	m m/s	in. mil/yr (mpy)	mm mm/a		2.54* 2.54*	E+01 E-02
Differential orifice pressure Gas-oil ratio	Pa m^3/m^3	in. H ₂ O (at 60°F) scf/bbl	kPa "standard"	cm H ₂ O	2.488 4 2.54* 1.801 175	E-01 E+00 E-01
Gas rate	m^3/s	scf/D	m ³ /m ³ "standard"		2.863 640	E-02
Geologic time Heat (fluid	s m	yr ft	m ³ /d Ma m		3.048*	E-01
mechanics) Heat exchange rate	W	Btu/hr	kW	cm	3.048* 2.930 711	E+01 E-04
Mobility	$m^2/Pa\cdot s$	d/cp	$\mu m^2/mPa\cdot s$	kJ/h μm²/Pa·s	1.055 056 9.869 233 9.869 233	E+00 E-01 E+02
Net pay thickness Oil rate	$\frac{m}{m^3/s}$	ft bbl/D short ton/yr	$\frac{m}{m^3/d}$ $\frac{mg}{a}$	ta	3.048* 1.589 873 9.071 847	E-01 E-01 E-01
Particle size Permeability-	$\frac{m}{m^3}$	micron md-ft	μm md·m	μm²·m	1.0* 3.008 142	E-04
thickness Pipe diameter (actual)	m	in.	cm		2.54*	E+00
Pressure buildup per cycle	Pa	psi	kPa	mm	2.54* 6.894 757	E+01 E+00
Productivity index	$m^3/Pa\cdot s$	bbl/(psi-D)	$m^3(kPa\cdot d)$		2.305 916	E-02
Pumping rate	m^3/s	U.S. gal/min	m ³ /h	L/s	2.271 247 6.309 020	E-01 E-02
Revolutions per minute	rad/s	rpm	rad/s		1.047 198	E-01
Recovery/unit volume (oil) Reservoir area	m^3/m^3	bbl/(acre-ft)	m^3/m^3	rad/m m³/ha·m ha	6.283 185 1.288 931 1.288 931	E+00 E-04 E+00
	m^2	sq mile acre	km ²		2.589 988 4.046 856	E+00 E-01

TABLE 2—SOME ADDITIONAL APPLICATION STANDARDS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit SPE Other Preferred Allowable		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit	
Reservoir volume	m ³	acre-ft	m ³	ha∙m	1.233 482 1.233 482	E+03 E-01
Specific productivity index	m ³ /Pa·s·m	bbl/(D-psi-ft)	m ³ /(kPa·d·	s)	7.565 341	E-02
Surface or interfacial tension in reservoir capillaries	N/m	dyne/cm	mN/m		1.0*	E+00
Torque	N·m	lbf-ft	N·m		1.355 818	E+00
Velocity (fluid flow) Vessel diameter	m/s m	ft/s	m/s		3.048*	E-01
1–100 cm above 100 cm		in. ft	cm m		2.54* 3.048*	E+00 E-01

^{*}An asterisk indicates the conversion factor is exact using the numbers shown; all subsequent numbers are zeros.