MATH 330 – HW #31

Cristobal Forno

December 9, 2017

Questions: Let G be a group and let $a \in G$. Prove that

(a) $C_G(a) = \{g \in G : ga = ag\}$ is a subgroup of G.

Proof: To show the set $C_G(a)$ is a group, it needs to be non-empty and satisfy if $g, h \in C_G(a)$ then $gh^{-1} \in C_G(a)$.

Let $g, h \in C_G(a)$. Then

$$ahg^{-1} = hg^{-1}g(h^{-1}ah)g^{-1} (1)$$

$$= hg^{-1}g(h^{-1}ha)g^{-1} (2)$$

$$= hg^{-1}(gag^{-1}) (3)$$

$$= hg^{-1}a \tag{4}$$

- (1) can be done because $hg^{-1}=(gh^{-1})^{-1}$. (3) is done since ah=ha and $hh^{-1}=1$. (4) is done since ag=ga and $gg^{-1}=1$. Since, $hg^{-1}a=ahg^{-1}$ and we have shown if $g,h\in C_G(a)$, then $hg^{-1}\in C_G(a)$ and we have a subgroup. So $C_G(a)$ is a subgroup of G. \square
- **(b)** Define $Z(G) = \{a \in G : ag = ga \text{ for all } g \in G\}$. Show that $Z(G) = \bigcap_{a \in G} C_G(a)$.

Proof: We want to show that $Z(G) \subseteq \cap_{a \in G} C_G(a)$ (1) and $\cap_{a \in G} C_G(a) \subseteq Z(G)$ (2), to prove that $Z(G) = \cap_{a \in G} C_G(a)$.

(1) Suppose that $a \in Z(G)$. From the definition of center, for all $g \in G$: ga = ag. By the definition of centralizer, this corresponds to for all $g \in G$: $a \in C_G(a)$. Therefore, we have, by set intersection, $a \in \cap_{a \in G} C_G(a)$. Thus, $Z(G) \subseteq \cap_{a \in G} C_G(a)$.

(2) Suppose now that $a \in \cap_{a \in G} C_G(a)$. Then by definition of intersection, for all $g \in G : a \in C_G(g)$. That is, for all $g \in G : ag = ga$, by the definition of centralizer. By the definition of the center, this means $a \in Z(G)$. Thus, $\cap_{a \in G} C_G(a) \subseteq Z(G)$.

From (1) and (2), we can say that $Z(G) = \bigcap_{a \in G} C_G(a)$. \square