Domain-Aware Prompting with LLMs for Data Science Notebooks

Sanjeet Chatterjee

Large Language Models (LLMs)

Transformer Architecture

Autoregressive neural networks that employ self-attention. This allows elements to interact directly and capture dependencies efficiently.

Emergent Capabilities

Scaling such models to billions of parameters has led to emergent behaviour such as in-context learning, multi-step reasoning and instruction following.

Coding Assistants

LLMs have demonstrated impressive results in translating natural language to code, giving rise to coding assistants such as GitHub Copilot.

Data Science Notebooks

Rapid Prototyping

Interactive Jupyter notebooks interleaving code and natural language markdown cells have become the standard for data science workflows.

Repetitive Workflows

Data scientists often go through repetitive workflows in data exploration and preparation.

Challenging for LLMs

Notebooks specifically offer additional challenges due to the multi-step nature of notebooks.

ARCADE: Exploratory Analysis

Table 2.1: Existing Datasets for Data Science Notebooks

Dataset	No. Notebooks	No. Tasks	Tasks / Notebook	Evaluation Method
JuICE	1457	3946	2.7	Exact Match + BLEU
MS DSP	305	1096	3.6	Unit Tests
ExeDS	277	534	1.9	Output Match
ARCADE	133	1082	8.55	Output Match

ARCADE: Exploratory Analysis

Table 2.1: Existing Datasets for Data Science Notebooks

Dataset	No. Notebooks	No. Tasks	Tasks / Notebook	Evaluation Method
JuICE	1457	3946	2.7	Exact Match + BLEU
MS DSP	305	1096	3.6	Unit Tests
ExeDS	277	534	1.9	Output Match
ARCADE	133	1082	8.55	Output Match

Table 2.4: Pandas Method Groups

Task Type	%	Methods
Aggregation	42.7	groupby, agg
Transformation	27.8	apply, pivot_table, explode, cut, pct_change
Combination	3.0	concat, merge, append, join
Selection	68.5	loc, query, nlargest, sort_values, filter, isnull
Cleaning	22.4	fillna, rename, drop_duplicates, to_numeric
Strings	23.7	extract, startswith, str, replace, contains
Computation	81.3	max, quantile, value_counts, div, corr
Datetime	2.7	to_datetime, strftime, period_range, to_timedelta
Visualization	5.9	plot, boxplot, barplot, scatter, hist

ARCADE: Exploratory Analysis

Table 2.1: Existing Datasets for Data Science Notebooks

Dataset	No. Notebooks	No. Tasks	Tasks / Notebook	Evaluation Method
JuICE	1457	3946	2.7	Exact Match + BLEU
MS DSP	305	1096	3.6	Unit Tests
ExeDS	277	534	1.9	Output Match
ARCADE	133	1082	8.55	Output Match

Table 2.4: Pandas Method Groups

Task Type	%	Methods
Aggregation	42.7	groupby, agg
Transformation	27.8	apply, pivot_table, explode, cut, pct_change
Combination	3.0	concat, merge, append, join
Selection	68.5	loc, query, nlargest, sort_values, filter, isnull
Cleaning	22.4	fillna, rename, drop_duplicates, to_numeric
Strings	23.7	extract, startswith, str, replace, contains
Computation	81.3	max, quantile, value _counts, div, corr
Datetime	2.7	to_datetime, strftime, period_range, to_timedelta
Visualization	5.9	plot, boxplot, barplot, scatter, hist

Figure 2.5: Tasks per Notebook

Figure 2.6: Pandas API Calls per Task

ARCADE: Sample Notebook

```
[5] u_3 For each month in that year, how many games that 
u_3
[1] import pandas as pd
                                                                     has a rating of more than four?
df = pd.read_csv('dataset/Gamepass_Games_v1.csv')
                                                                df[(df['ADDED'].dt.year== added_date.year) &
                                                                (df['RATING']>4)].groupby(
[2] oldsymbol{u}_1 Extract min and max hours as two columns
                                                                                 df["ADDED"].dt.month)['GAME'].count()
   def get_avg(x):
     try: return float(x[0]), float(x[1])
                                                             [6] u_{A} What is the average maximum completion time for
     except: return 0, 0
                                                                     all fallout games added in 2021?
                                                                 fallout=df[df['GAME'].str.contains('Fallout')]
   df['min'], df['max'] = zip(*df['TIME'].str.replace(
                                                                 fallout.groupby(fallout['ADDED'].dt.year).get_group(
      ' hours','').str.split("-").apply(get_avg))
                                                                 2021)['max'].mean()
[3] df['ADDED'] = pd.to_datetime(
                                                             [7] u_5 What is the amount of games added in each year
        df['ADDED'], format="%d %b %y", errors='coerce')
                                                                    for each month? (show a table with index as years,
c_3
                                                                    columns as months and fill null values with 0)
[4] oldsymbol{u}_2 In which year was the most played game added?
                                                                  pd.pivot_table(df, index=df['ADDED'].dt.year, ...,
   df['GAMERS']=df['GAMERS'].str.replace(
                                                                   aggfunc=np.count_nonzero.
                                         ').astype(int)
                                                                   fill_value='0').rename_axis(
c_4 added_year=df[df['GAMERS'].idxmax()]['ADDED'].year
                                                                      index='Year', columns='Month')
```

System Overview

Execution State Metadata

- → Imports
- → Variables
- → Functions

- -
 - → Code Cells

Markdown

→ Outputs

Python Runtime

Notebook

Cell

Cell execution results

DataFrame Variables

Pandas variables content

DataFrame Serialization

```
# Columns in df_anim with example values:
2 # theme ([School]), name (Kareshi Jijou), rating (7.60)

ORIGINAL
```

- Rounding Floats
- ☐ Truncating Strings
- Column Types

- ☐ Limit Rows
- String Quotes
- DataFrame Placement

DataFrame Dependency Graph

```
from pandas import Series, DataFrame
2 import pandas as pd
4 df = pd.read csv('NYC Restaurants.csv', dtvpe=str)
6 df_noduplicates = df.drop_duplicates(subset='RESTAURANT')
7 df_notchains = df_noduplicates.groupby("DBA").filter(lambda x: len(x) == 1)
s boro notchain pivot = pd.pivot table(df notchains. index = 'BORO'. values = '
      RESTAURANT', aggfunc = lambda x: len(x.unique()))
9 boro_restaurant_pivot = pd.pivot_table(df_noduplicates, index = 'BORO', values = '
      RESTAURANT', aggfunc = lambda x: len(x.unique()))
to boro notchain pivot['TOTAL RESTAURANTS'] = boro restaurant pivot
12 cuis = df_noduplicates['CUISINE DESCRIPTION'].value_counts()
mask = (df['VIOLATION CODE']).isnull()
14 no violations = df[mask]
no_violations[['CUISINE DESCRIPTION', 'RESTAURANT']]
17 cuisine_no_violations = no_violations['CUISINE DESCRIPTION'].value_counts()
18 mask = (df['VIOLATION CODE']).notnull()
violations = df[mask]
20 cuisine_violations = violations['CUISINE DESCRIPTION'].value_counts()
total_cuisine = pd.concat([cuisine_violations , cuisine_no_violations], axis = 1)
violations = pd.crosstab(df['BORO'], df['VIOLATION DESCRIPTION']).query('BORO != ["
      Missing"]')
25 vstack = violations.stack()
violations2 = vstack.unstack('BORO')
27 mostcommon = DataFrame({'Most Common Complaint': violations2.idxmax().'Number of
      Complaints': violations2.max()})
```


Abstract Syntax Tree (AST) Parsing

Library Imports

Imported modules and aliases.

Function Calls

Method call chains.

DataFrame variables identified by last return method call.

DataFrame Graphs

Modified & used DataFrames.

Parent & derived variables

with creation methods.

numpy as np	•	٠	٠	•	•	٠	٠	٠	٠	•	•	•	•	•	•	
numpy as np																
		n	u	m	1	2	/	a	5	n	p)				•
.					•	-	•									•
																•

Schema Serialization

Column Types

Aggregated Schemas

Prompting

- You are a genius Python data science assistant.
- Your task is to continue the notebook by answering the user question with the provided notebook context.
- You must output Pandas Python code that will be parsed and executed in a stateful Jupyter notebook environment.
- 4 Think carefully about the DataFrames, columns, methods and use sound logical reasoning in your response.
- 5 You must output your answer in the requested format.
- 6 If no format is specified, your output should be a DataFrame or Series.
- 7 I will tip \$10000000 if your code is clean and correct.

Listing 3.7: Default System Prompt

Prompting: Chain of Thought

- Detailed Instructions
- Message Tags
- Output Format

```
You are a genius AI programming data science expert.
2 Your goal is to output clear detailed steps such that a 5-year old can follow the
      steps to write Python code.
3 The current notebook code and markdown cells are provided in between the <
      notebook_context> tags.
4 Notebook variables with column information is provided in the <notebook_variables>
     tags.
6 <notebook_context>
s </notebook_context>
o <notebook_variables>
2 </notebook_variables>
4 My question is as follows:
5 <question>
6 . . .
7 </question>
9 For each natural language step, think carefully about the following:
o 1. All dataframes, series, column names, functions and variables should be in
2. Think carefully about column data types. Observe dataframe contents and data
      formats. Consider if parsing is required, such as dates. Ensure null/empty
      values are handled correctly.
3. Think carefully about every column in the dataframe and its relationship with the
       user's question.
8 4. Do not make assumptions. You have been given all context required. Ensure your
     steps match the question requirements.
s Write your steps in between (scratchpad) tags.
8 Write your code in between (python) tags.
7 Do not output any other text.
g Take a deep breath and work on this problem step-by-step.
```

Prompting: Chain of Thought

```
1 <scratchpad>
2 To find the average division population for different countries having events
      involving heavy rain, we need to follow these steps:
3 1. Extract the events involving heavy rain from the 'glc' dataframe.
4 2. Filter the events to only include those with a 'landslide_trigger' of 'Heavy Rain
5 3. Extract the 'country_name' and 'admin_division_population' columns from the
      filtered events.
6 4. Group the data by 'country_name' and calculate the average '
      admin_division_population' for each country.
7 </scratchpad>
8 <python>
9 heavy_rain_events = glc[glc.landslide_trigger == 'Heavy Rain']
10 avg_division_population = heavy_rain_events.groupby('country_name') \
      ['admin_division_population'].mean()
12 print (avg_division_population)
13 </python>
```

Prompting: Multi-Step

```
. ................
# Initial Prompt #
. .................
Convert Levy and Mileage columns from object to integer.
0 [...]
. .................
# Model Response #
< scratchpad >
s Step 1: Identify the columns that need to be converted from object to integer.
4 In this case, the columns are "Levy" and "Mileage".
Step 2: Remove any non-numeric characters from the "Levy" column.
We can use the "str.replace" method to remove any non-numeric characters.
Step 3: Convert the "Levy" column to integer.
We can use the "pd.to_numeric" function to convert the column to integer.
12 Step 4: Remove any non-numeric characters from the "Mileage" column.
We can use the "str.replace" method to remove any non-numeric characters.
Step 5: Convert the "Mileage" column to integer.
We can use the "pd.to_numeric" function to convert the column to integer.
8 Step 6: Assign the converted columns back to the original dataframe.
```

- Reflection
- Reflection + Error Messages
- Reflection + Solution Outputs

REFLECTION + ERROR MESSAGES

```
29 </scratchpad>
so <python>
m df['Levy'] = df['Levy'].str.replace('[^0-9]', '', regex=True).astype(int)
m2 df['Mileage'] = df['Mileage'].str.replace('[^0-9]', '', regex=True).astype(int)
25 ............
ss # Follow-Up Prompt with Error Feedback #
18 Your solution was executed in the stateful Jupyter notebook environment.
30 An error occurred during execution of the code you submitted:
RuntimeError: ValueError: invalid literal for int() with base 10: ''
40 [...]
4s # Corrected Model Response #
48 The error occurred because the code attempted to convert an empty string to an
      integer, which is not a valid operation. This is likely due to the presence of
      missing or empty values in the "Levy" or "Mileage" columns.
The question is asking to convert the "Levy" and "Mileage" columns from object type
      to integer type. However, the original code did not properly handle the
      possibility of missing or non-numeric values in these columns.
Upon re-examining the problem, it is clear that the code needs to handle these cases
      to ensure correctness. One way to do this is to use the "errors" parameter of
      the "pd.to_numeric" function to specify how to handle errors during the
      conversion process.
54 </analysis>
of ['Levy'] = df['Levy'].str.replace('[^0-9]', '', regex=True).apply(pd.to_numeric,
      errors='coerce')
sr df['Mileage'] = df['Mileage'].str.replace('[^0-9]', '', regex=True).apply(pd.
      to numeric, errors='coerce')
ss </python>
```

Experiment Setup

Model	No. Params	No. Training Tokens	Context Length
PaLM	62B	3.6T	2048
Llama 3 70B	70B	$15\mathrm{T}$	8192
Llama 3 8B	8B	$15\mathrm{T}$	8192

Table 4.1: Model Comparison

```
def extract_code_from_response(text):
    pattern = r'''(?:python\s+)?(.*?)(?:'('|$)|<code>(.*?)</|<python>(.*?)(?:</|$)'
    match = re.search(pattern, text, re.IGNORECASE | re.DOTALL)
    if match:
        code_block = next(group for group in match.groups() if group)
        return code_block.strip(), text
    return text, text</pre>
```

Listing 4.1: Code Extraction

$$pass@k := \mathbb{E}\left[1 - \left(\frac{C(n-c,k)}{C(n,k)}\right)\right]$$

Figure 2.10: The pass@k metric

Results: pass@5

Figure 4.1: pass@5 evaluation results on the ARCADE dataset

Results: Errors

Figure 4.2: Frequency of Evaluation Errors

Ablation Studies

Table 4.4: pass@5 evaluation results comparing DataFrame placement

Experiment	Existing	g Tasks	New Tasks			
Name	Llama 3 70B	Llama 3 8B	Llama 3 70B	Llama 3 8B		
CoT (Inline DataFrames)	58.8	50.8	40.1	23.3		
CoT (Appended DataFrames)	56.5	50.6	37.2	24.8		

Table 4.5: pass@5 evaluation results on the ARCADE dataset

Experiment	Existing	g Tasks	New Tasks		
Name	Llama 3 70B	Llama 3 8B	Llama 3 70B	Llama 3 8B	
CoT (*)	58.8	50.8	40.1	23.3	
+ Schema Information	58.4	54.0	42.1	27.7	
CoT + Schema Information	55.0	49.8	39.3	23.6	

^(*) includes DataFrames and Execution Outputs

Conclusion

Table 5.1: pass@30 baseline comparisons on the New Tasks dataset

Experiment	New Tasks (pass@30)							
Name	PaLM 62B (†)	PaChiNCo 62B (‡)	Llama 3 70B	Llama 3 8B				
Baseline Vanilla + FS	39.8	48.6	=	-				
Baseline $CoT + FS$		52.9	=	-				
CoT (*)	7 <u>7</u> 9.		52.5	43.3				
CoT (*) [Temp. Sampling]	24	<u> </u>	54.3	42.7				

^(*) includes DataFrames, Execution Outputs and Schemas

^(†) fine-tuned on Python

^(†) fine-tuned on Python and Notebooks

Future Work

Exemplars

Although adding exemplars to prompt has been shown to significantly boost results, our static crafted approach did not give good results.

Agentic Systems

Multi-step prompting naturally extends to agentic systems, unlocking potential for a more interactive, collaborative environment.