§ 20. Неприводимые многочлены над основными числовыми полями

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Основная теорема алгебры

• В этом параграфе рассматриваются многочлены над тремя наиболее важными числовыми полями — \mathbb{C} , \mathbb{R} и \mathbb{Q} , а также над кольцом \mathbb{Z} . Мы интересуемся тем, как выглядят неприводимые множители у таких многочленов и что можно сказать о корнях этих многочленов.

Одним из мотивов расширения множества действительных чисел до множества комплексных чисел является то, что существуют многочлены с действительными коэффициентами, которые не имеют действительных корней. Таков, например, многочлен x^2+1 . Между тем, этот многочлен имеет два комплексных корня: i и -i (в этом легко убедиться, вычислив $\sqrt{-1}$ по формуле (3) из § 5). Возникает вопрос: всякий ли многочлен с комплексными коэффициентами имеет комплексный корень? При этом, разумеется, следует исключить из рассмотрения многочлены степени $\leqslant 0$ (т. е. элементы поля $\mathbb C$). Ответ на поставленный вопрос дает следующее утверждение.

Основная теорема высшей алгебры (теорема Гаусса)

Любой многочлен степени больше 0 над полем ${\mathbb C}$ имеет по крайней мере один комплексный корень.

Доказательство этой теоремы выходит за рамки нашего курса, и потому мы не будем его приводить.

P азложимость многочленов над $\mathbb C$

Многочлены степени 1 называются *линейными*. Пусть f — многочлен над $\mathbb C$ и $\deg f=n>0$. По теореме Гаусса многочлен f имеет некоторый корень α_1 . Но тогда, по следствию из теоремы Безу (см. § 18), $f(x)=(x-\alpha_1)g(x)$ для некоторого многочлена g. Ясно, что $\deg g=n-1$. Если n-1>0, то по теореме Гаусса многочлен g имеет некоторый корень α_2 , и потому

$$f(x) = (x - \alpha_1)g(x) = (x - \alpha_1)(x - \alpha_2)h(x)$$

для некоторого многочлена h степени n-2. Продолжая этот процесс, мы через n шагов представим f в виде произведения n линейных множителей и многочлена нулевой степени (т. е. элемента поля F). Иными словами,

$$f(x) = t(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n) = (tx - t\alpha_1)(x - \alpha_2) \cdots (x - \alpha_n),$$

где $t \in F$. Таким образом, справедливо

Следствие о разложении многочленов над $\mathbb C$

Любой многочлен степени n>0 над полем $\mathbb C$ разлагается в произведение n линейных многочленов над $\mathbb C$.

Число комплексных корней многочлена с комплексными коэффициентами

Кроме того, из следствия о разложении многочленов над $\mathbb C$ вытекает

Следствие о числе комплексных корней уравнения

Любое алгебраическое уравнение n-й степени с комплексными коэффициентами имеет ровно n комплексных корней, если каждый корень считать столько раз, какова его кратность.

То же самое утверждение можно переформулировать следующим образом:

!! сумма кратностей всех корней многочлена ненулевой степени над полем $\mathbb C$ равна степени этого многочлена.

Для того, чтобы доказать следствия из теоремы Гаусса, относящиеся к многочленам над полем \mathbb{R} , нам понадобится следующий факт.

Лемма о корнях и комплексной сопряженности

Если f(x) — многочлен над полем \mathbb{C} , все коэффициенты которого являются действительными числами, а γ — корень этого многочлена, то и число $\overline{\gamma}$ является корнем этого многочлена.

Доказательство. Пусть $f=\alpha_n x^n+\alpha_{n-1} x^{n-1}+\cdots+\alpha_1 x+\alpha_0$. Тогда $\alpha_n \gamma^n+\alpha_{n-1} \gamma^{n-1}+\cdots+\alpha_1 \gamma+\alpha_0=0$. Используя свойства операции сопряжения комплексных чисел и тот факт, что $\overline{\alpha}=\alpha$ для всякого $\alpha\in\mathbb{R}$, получаем:

$$f(\overline{\gamma}) = \alpha_{n}\overline{\gamma}^{n} + \alpha_{n-1}\overline{\gamma}^{n-1} + \dots + \alpha_{1}\overline{\gamma} + \alpha_{0} =$$

$$= \overline{\alpha_{n}} \cdot \overline{\gamma}^{n} + \overline{\alpha_{n-1}} \cdot \overline{\gamma}^{n-1} + \dots + \overline{\alpha_{1}} \cdot \overline{\gamma} + \overline{\alpha_{0}} =$$

$$= \overline{\alpha_{n}} \cdot \overline{\gamma}^{n} + \overline{\alpha_{n-1}} \cdot \overline{\gamma}^{n-1} + \dots + \overline{\alpha_{1}} \cdot \overline{\gamma} + \overline{\alpha_{0}} =$$

$$= \overline{\alpha_{n}} \gamma^{n} + \overline{\alpha_{n-1}} \gamma^{n-1} + \dots + \overline{\alpha_{1}} \gamma + \overline{\alpha_{0}} =$$

$$= \overline{\alpha_{n}} \gamma^{n} + \alpha_{n-1} \gamma^{n-1} + \dots + \alpha_{1} \gamma + \alpha_{0} = \overline{0} = 0,$$

что и требовалось доказать.

Следствие о разложении многочленов над $\mathbb R$

Любой многочлен степени > 0 над полем $\mathbb R$ разлагается на множители с действительными коэффициентами, каждый из которых либо линеен, либо является многочленом второй степени с отрицательным дискриминантом.

Доказательство. Пусть $f(x)\in\mathbb{R}[x]$. В силу следствия о разложении многочленов над \mathbb{C} , $f=\alpha(x-\gamma_1)\cdots(x-\gamma_n)$, где $\alpha,\gamma_1,\ldots,\gamma_n\in\mathbb{C}$. При этом $\alpha\in\mathbb{R}$, поскольку $f\in\mathbb{R}[x]$. Без ограничения общности будем считать, что $\gamma_1,\ldots,\gamma_m\in\mathbb{R}$ и $\gamma_{m+1},\ldots,\gamma_n\notin\mathbb{R}$. Пусть $m+1\leqslant k\leqslant n$ и $\gamma_k=\alpha+\beta i$. Ясно, что $\beta\neq 0$. По лемме о корнях и комплексной сопряженности число $\overline{\gamma_k}=\alpha-\beta i$ также является корнем многочлена f. Это означает, что $\overline{\gamma_k}=\gamma_\ell$ для некоторого $\ell>m$. Следовательно, многочлен f делится на

$$(x - \gamma_k)(x - \gamma_\ell) = (x - \gamma_k)(x - \overline{\gamma_k}) = (x - \alpha - \beta i)(x - \alpha + \beta i) =$$
$$= (x - \alpha)^2 - (\beta i)^2 = x^2 - 2\alpha x + \alpha^2 + \beta^2.$$

Полученный квадратный трехчлен над $\mathbb R$ имеет отрицательный дискриминант: $4\alpha^2-4(\alpha^2+\beta^2)=-4\beta^2<0$, поскольку $\beta\neq 0$. Таким образом, множители $(x-\gamma_{k+1}),\ldots,(x-\gamma_n)$ можно сгруппировать попарно таким образом, что каждая из пар после перемножения дает квадратный трехчлен над $\mathbb R$ с отрицательным дискриминантом.

Примитивные многочлены над $\mathbb Z$

Простого и удобного для применения критерия неприводимости многочленов над полем $\mathbb Q$ не существует. Есть только весьма сильное достаточное условие. Чтобы доказать его, нам понадобятся некоторые вспомогательные понятия и результаты. При этом нам часто надо будет рассматривать НОД конечного набора целых чисел. Как и в кольце многочленов над полем, НОД элементов в кольце $\mathbb Z$ определен не однозначно, а с точностью до умножения на обратимый множитель 1 .

Определение

Пусть $f(x)=lpha_nx^n+lpha_{n-1}x^{n-1}+\cdots+lpha_0$ — многочлен над кольцом $\mathbb Z$. НОД чисел $lpha_n,lpha_{n-1},\ldots,lpha_0$ называется содержанием многочлена f и обозначается через d(f). Если $d(f)\in\{1,-1\}$, то многочлен f называется примитивным.

Если в многочлене $f \in \mathbb{Z}[x]$ вынести за скобки НОД всех его коэффициентов, то в скобках будет стоять примитивный многочлен над \mathbb{Z} . Таким образом,

!! произвольный многочлен $f \in \mathbb{Z}[x]$ представим в виде $f = d(f) \cdot f_0$, где f_0 — примитивный многочлен над \mathbb{Z} .

 $^{^1}$ Фактически, с точностью до знака, поскольку обратимыми по умножению элементами кольца $\mathbb Z$ являются только числа 1 и -1.

Лемма Гаусса

Лемма Гаусса

Произведение двух примитивных многочленов над $\mathbb Z$ примитивно.

Доказательство. Пусть $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ и $g(x) = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_0$ — многочлены над \mathbb{Z} . Предположим, что многочлены f и g примитивны, а их произведение не примитивно. Следовательно, существует простое число p, делящее d(fg). В силу примитивности многочленов f и g, существуют индексы s и t такие, что p не делит a_s и b_t . Пусть s и t — минимальные индексы c такими свойствами. Коэффициент при x^{s+t} в многочлене fg будет равен

$$c_{s+t} = a_s b_t + a_{s+1} b_{t-1} + a_{s+2} b_{t-2} + \dots + a_{s-1} b_{t+1} + a_{s-2} b_{t+2} + \dots$$

$$(1)$$

В силу выбора индексов s и t, коэффициенты a_{s-i} и b_{t-i} при i>0 делятся на p, а из того, что p делит d(fg), вытекает, что p делит c_{s+t} . Отсюда и из равенства (1) вытекает, что p делит a_sb_t . Но тогда, будучи простым, число p делит либо a_s , либо b_t , что противоречит выбору p.

Эквивалентность неприводимости над $\mathbb Z$ и над $\mathbb Q$

Следствие о неприводимости над $\mathbb Z$ и над $\mathbb Q$

Многочлен $f\in \mathbb{Z}[x]$ неприводим над \mathbb{Z} тогда и только тогда, когда он неприводим над \mathbb{Q} .

Доказательство. Достаточность очевидна. Докажем необходимость. Предположим, что f неприводим над \mathbb{Z} , но приводим над \mathbb{Q} . Пусть f=gh, где $g,h\in\mathbb{Q}[x]$ и $\deg g,\deg h>0$. Обозначим через a наименьшее общее кратное знаменателей всех коэффициентов многочлена g, а через b — наименьшее общее кратное знаменателей всех коэффициентов многочлена h. Тогда $gh=\frac{1}{ab}\cdot g_1h_1$, где g_1 и h_1 — многочлены над \mathbb{Z} . Теперь положим $c=d(g_1)$ и $d=d(h_1)$. Тогда $g_1=cg_2$ и $h_1=dh_2$, где g_2 и h_2 — примитивные многочлены над \mathbb{Z} . Объединяя сказанное, имеем

$$f = gh = \frac{1}{ab} \cdot g_1 h_1 = \frac{cd}{ab} \cdot g_2 h_2.$$

Все коэффициенты многочлена f являются целыми числами. Следовательно, ab делит все коэффициенты многочлена cdg_2h_2 , т. е. ab делит $cd\cdot d(g_2h_2)$. В силу леммы Гаусса многочлен g_2h_2 примитивен. Это означает, что $d(g_2h_2)=1$, и потому ab делит cd. Положим $\frac{cd}{ab}=k$. В силу сказанного выше, k — целое число и $f=(kg_2)h_2$. Это означает, что многочлен f приводим над $\mathbb Z$ вопреки его выбору.

Критерий Эйзенштейна: формулировка

Если $f\in \mathbb{Q}[x]$, то умножив многочлен f на наименьшее общее кратное знаменателей всех его коэффициентов, мы получим многочлен g с целыми коэффициентами. Поскольку g=af, где $a\in \mathbb{Z}$, многочлен g неприводим над \mathbb{Q} тогда и только тогда, когда f неприводим над \mathbb{Q} . Таким образом,

• при изучении многочленов, неприводимых над \mathbb{Q} , можно ограничиться рассмотрением многочленов над \mathbb{Q} с целыми коэффициентами.

Следующее утверждение дает упомянутое выше достаточное условие неприводимости многочлена над \mathbb{Q} . По традиции оно называется критерием Эйзенштейна, хотя это и противоречит общепринятому в математике пониманию слова «критерий» как синонима слов «необходимое и достаточное условие».

Критерий Эйзенштейна

Пусть $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ — многочлен степени > 0 над $\mathbb Q$ с целыми коэффициентами и существует простое число p такое, что a_n не делится на p, a_{n-1},\dots,a_0 делятся на p и a_0 не делится на p^2 . Тогда f неприводим над $\mathbb Q$.

Критерий Эйзенштейна: доказательство

Доказательство. Предположим, что f приводим над \mathbb{Q} . Тогда, в силу следствия о неприводимости над \mathbb{Z} и над \mathbb{Q} , f приводим над \mathbb{Z} . Следовательно, f представим в виде f = gh, где $g(x) = b_k x^k + b_{k-1} x^{k-1} + \dots + b_0$ in $h(x) = c_m x^m + c_{m-1} x^{m-1} + \dots + c_0$ многочлены ненулевой степени над \mathbb{Z} . Ясно, что $a_0 = b_0 c_0$. Поскольку a_0 делится на p, но не делится на p^2 , из простоты числа p вытекает, что pделит одно из чисел b_0 и c_0 , но не оба одновременно. Предположим, что pделит b_0 , но не делит c_0 . Если p делит все коэффициенты многочлена g, то оно делит и все коэффициенты многочлена f, включая a_n . Следовательно, существует индекс i такой, что p не делит b_i . Пусть i минимальный индекс с таким свойством. Ясно, что $\deg g < \deg f$, и потому i < k < n. В частности, p делит a_i . По определению произведения многочленов имеем

$$a_i = b_i c_0 + b_{i-1} c_1 + \cdots$$
 (2)

Поскольку p делит a_i и b_j для всех j < i, из (2) вытекает, что p делит $b_i c_0$. \Box

Критерий Эйзенштейна: комментарий

Критерий Эйзенштейна показывает, что с точки зрения строения неприводимых многочленов поле $\mathbb Q$ разительно отличается от полей $\mathbb R$ и $\mathbb C$. В самом деле, как мы видели выше, всякий неприводимый над $\mathbb C$ многочлен линеен, а всякий неприводимый над $\mathbb R$ многочлен имеет степень $\leqslant 2$. В то же время, в силу критерия Эйзенштейна степень неприводимого над $\mathbb Q$ многочлена может быть любой. Например, неприводимым над $\mathbb Q$ является многочлен x^n-2 , где n — произвольное натуральное число (он удовлетворяет посылке критерия Эйзенштейна при p=2).

Рациональные корни многочленов с целыми коэффициентами

Следующее утверждение позволяет отыскивать рациональные корни многочленов с целыми коэффициентами (если они существуют, конечно).

Предложение о рациональных корнях многочленов

Пусть $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ — многочлен над $\mathbb Q$ с целыми коэффициентами, а $\frac{p}{q}$ — рациональное число и несократимая дробь. Если $\frac{p}{q}$ — корень многочлена f(x), то р является делителем a_0 , а q — делителем a_n . В частности, если $a_n \in \{1,-1\}$, то все рациональные корни многочлена f(x) являются целыми числами и делят свободный член a_0 .

Доказательство. Поскольку $\frac{p}{q}$ — корень многочлена f(x), имеем: $a_n(\frac{p}{q})^n+a_{n-1}(\frac{p}{q})^{n-1}+\cdots+a_1\cdot\frac{p}{q}+a_0=0$. Умножив обе части этого равенства на q^n , получим: $a_np^n+a_{n-1}p^{n-1}q+\cdots+a_1pq^{n-1}+a_0q^n=0$. Отсюда получаем: $a_0q^n=p(-a_np^{n-1}-a_{n-1}p^{n-2}q-\cdots-a_1q^{n-1})$. Поэтому p делит a_0q^n . Так как числа p и q взаимно просты, p делит a_0 . Аналогично, из равенства $a_np^n=q(-a_{n-1}p^{n-1}-\cdots-a_1pq^{n-2}-a_0q^{n-1})$ вытекает, что q делит a_n .