(Init - V:-

1. ANOVA - [Analytis of Variana]

Oneway Two way

Clackfication

Clackfication

2. Time nenes Analytis

Components Time sency

Maving averages

Years Your

Def: - [ANOVA]

Aloni			~	treatments
E,	t2	F3	Fy	
x1	۶۱ ۶۲	2 ₁	4	
*1 ₂	43	23	52	
жч	ጛዓ		sy	
15	45		75	
	96		الح مح	

Def. The main technique adopted for the analysis and interprete on of the data collected from an experiment is the analysis of Variance technique which executially consists of partitioning the total Variation (who components on cribable to different lowred of Variation due to the Controlled factors and crust;")

Sum of Squares)

Total (SST) = EE Yij -cf

Total (SST) = EE Yij -cf

Total (SST) = EE Yij -cf

Total (SST) = EE Yij -cf Sum of Squeres

Treatments (ISTA) = Eyil cof

(columns)

Sum of Squeres

(columns)

Sum of Squeres

(columns)

Sum of Squeres

Frod [SSE] = SST_SSTA

Wate:- All sum of Squeres

mino of observations

must be Positive: Mattematical Formula (); n: no of observations

ANOTA TABLE for one way classification: -

Source of Veriation (SV)	degrees of (d.f)	Sum of Squares	Mean Sum of Squery (MSS)	FCEL	Ftasle Y
Treatments (columns)	K-[S.STa	$M_{T_{k'}} = \frac{SST_{k'}}{k-1}$	F_ MG	F(K-1, n-K)
Error	= n-K	SSE	· · · E – /	(MFr)ME)	ъх F(n-k, k-1)
Total)	m-1 1	SST	_ /	- MTY	

Interence: - Since Fraj < Fraj at different def in different levely

Test the Lotal Veriations Wiltin the data wins ANDUA at 5%.

T_{l}	Tz	T3	T4
15	1	3	1
15	4	ō	7
П	4 5 &	5	9
4	6	1	9 5 4
3 6	7		9-
6			3
			1

Soli-
$$\Sigma T_1 = 47$$
 $\Sigma T_4 = 30$
 $\Sigma T_5 = 23$ $\Sigma T_5 = 109$

1. Correction factor =
$$\frac{(G \cdot T)^2}{m} = \frac{(109)^2}{22} = 540.0454$$

3.
$$5.5.76 = \frac{\sum \frac{1}{4}.^{2}}{7} - (.1)$$

$$= \frac{\left(\sum \frac{1}{1}\right)^{2}}{4} + \frac{\left(\sum \frac{1}{2}\right)^{2}}{6} + \frac{\left(\sum \frac{1}{2}\right)^{2}}{6} + \frac{\left(\sum \frac{1}{4}\right)^{2}}{7} - (.1)$$

$$= \frac{\left(\frac{1}{4}.^{2}\right)^{2}}{6} + \frac{\left(\frac{23}{2}\right)^{2}}{5} + \frac{\left(\frac{9}{4}\right)^{2}}{7} - \frac{540.0454}{7}$$

$$= \frac{368.166.105.8 + 20.25 + 128.5714}{7} - 540.0454$$

$$5577 = 622.7874 - 540.0484$$
 $5577 = 82'7426$
 $4.55E = 55T - 55Tr$
 $= 274'9546 - 82'7426$
 $= 192.2120$

ANOVA TABLE:-

HNOVA	1 431				F .	Flah
5.1	d.f	5.5	M. 2.5	x j	Fred	- 149
End	N-K-21-4	192,2120	11/6= 15	2120 - 10.678	ויינוציין [F(3,18)= 3.16
Total	722-1=2	274.957			-2.5828	

Interence: - Since Feat & Flat at (3,18) diffin 0.05 Los our Ho Will be accepted. i.e Here is no hignificancy differency b/W He treatments.

- x -

Test the total Variation within factors at 51. Los

Fi F2 F3 F4

T55

2.20 to
430 pm

Fi	F2	F3	F4
3	4	8	3
5	2	11	b
9	0	14	9
6	1	12	8

$$\Sigma F_1 = 23$$
 $\Sigma F_2 = 7$
 $\Sigma F_3 = 45$
 $\Sigma F_4 = 26$
 $\Sigma F_4 = 26$

$$\Sigma F_1 = 23$$
 $[Y_1 = Y_2 = Y_3 = Y_4 = 4] \Rightarrow n = 16$
 $\Sigma F_2 = 7$ Correction factor = $\frac{G^2}{n} = \frac{(101)^2}{16} = \frac{637.5625}{637.5625}$ observation
 $\Sigma F_3 = \frac{1}{16}$ $= \frac{1}{16$

Sum of Squeres of Trealmed
$$(SSTr)$$
 = $\frac{\sum y_1^2}{r}$ = $(cf)^2 + \frac{\sum f_2^2}{r_1} + \frac{\sum f_3^2}{r_2} + \frac{\sum f_3^2}{r_1} + \frac{\sum f_3^2}{r_1} - cf$

= $\frac{(cf)^2}{4} + \frac{7^2}{4} + \frac{(fs)^2}{4} + \frac{(2d)^2}{4} - 637.5625$

= $67.7f - 637.5625$

Sum of Squeres of $67.7f - 637.5625$

= $949/f375 - 982/1875$

= $949/f375 - 982/1875$

ANOVA TABLE [one way]

S. V	4.1	5.5	M.S.5	FC=1	Flab
Treat ments	16-1=	67.96	MT+ = 182-1875	Fool - MTF	F(3, (2) =
(column)	=12	67.25	$= 60.7291$ $M_{E} = \frac{67.25}{12}$	- 60.7291	= 3.49
Told	16-1=18	249.4375	= 5.60 41	5.6041 = 10.836	1

Inference: Since Fcal > Ftab at (3,12) dif in 0:05 Los
our Ho Will be rejetted.

i.e There is a vignificant differences within He factors.

Two Way ANOVA: -

	7	T2	T3	Ty
Bi	Til	712	713	914
B ₂	921	422	923	424
133	Y31	422	733	Ash

Formulae i-

ANOVA (Two way Tables)

5. V	d.f	5.5	MSS	Fral	Ftas:	
Treat went	K-1	SSTr	MTr. CSTr	Fr = Mr ME		LU-
Blocks (Colomb)	k-l	SSB	$M_B = \frac{SSB}{L-1}$	FB - MB	F(E-1, (K-1)(L-	·v)
Env	(K-1)(F-1)	Ss €	Me - SSE)(- 1)		
Total	7-1 (KE-1)	SST				

Inference: (Treal)

Feat a Flab at diff diff in diff levely Howill

be accepted. Otherwise shejature.

(Block) Feat < Frabat different defin diff levely to will be accepted offerings rejected.

Test the total variation between the cells at 5%. Los. Cf = 105.0909 (A)T) (RT) EA=13 (4) no of observative EX= 9 Sum Symet } = 13-3 EB = 8 (3) = EEYL2_Cf EB = 11 2-4 EY = 14 ZD=9_

Sum of Salvans of Trectriets
$$= \frac{[9]^2}{4} + \frac{[14]^2}{4} - C \cdot f$$

$$= [0 9.5833] - [05.0909]$$
Sum of Salvans of Mocial
$$(8005) = \frac{5933}{4} - C \cdot f$$

$$= \frac{[132 + 82 + 42 + 3]}{4} - [05.0909]$$

$$= \frac{[132 + 82 + 42 + 3]}{4} - [05.0909]$$

$$= \frac{[132 + 82 + 42 + 3]}{4} - [05.0909]$$

$$= \frac{[132 + 82 + 42 + 3]}{4} - [05.0909]$$

$$= \frac{[132 + 82 + 42 + 3]}{4} - [05.0909]$$

$$= \frac{[132 + 82 + 42 + 3]}{4} - [05.0909]$$

ANOVA Table (Two way)

5. 1	d.f	55	MSS	Fool	1 Flas
Treatnest	K-1=3-1=2	- 5577= 4.4924	Mr = SSTA	FEN - ME MEY	E((2) -
	E-1=41=3	The state of the s	4.4924	= 9.8069	=19.33
Enow	(1c-1)(b-1)=	SSE-58-841	$m_B = \frac{55B}{500} = \frac{7.575}{2}$	ME	F-(6,3) =
	KE-1=		= 2.525 = 2.525 (K-1)(1)	2 By Cal MB	6] = 8-94
	3		VCD4 1	6	

Inferences . -

(Treatme commu)

(ince Feel & Freb ail (6,12) dif in 0105 Los

ond Ho will be accepted. There is no mignificant

differentes with in the column.

(Procic | Rows).

Since France C Ftab at (6,3) dit in 0:05 Los out the will be accepted. There is no highilant difference with in the rows. Test He total Variation blw He cells at 5%. LOS?

	L	ß	~	8	RIT
4	3	5	7	2_	17
В	17	(4	17	16	58
c	9	8	7	5	29
D	3	1	2	Ð	ه.د
C-T	26	28	33	23	110

Sol:- $N = [6: G = [10] K = 4] + \frac{4}{4} \int_{-1}^{4} - cf$ $C \cdot f = \frac{G^2}{N} = \frac{(10)^2}{16} = 756.25$ Sum of square Tofal = $EE8is^2 - c \cdot f$ SST = 1182 - 756.25

$$SST = 1182 - 756.25$$

$$SST = 425.75 //$$

$$SST = 591.^{2} - (...)f$$

$$(sste) = 7$$

$$= (26)^{2} + (24)^{2} + (33)^{2} + (24)^{2} + (33)^{2} + (24)^{2} + (33)^{2} + (24)^{2} + (33)^{2} + (24)^{2} + (33)^{2} + (24)^{2} + (33)^{2} + (24)^{2} + (33)^{2} + (24)^{2} + (33)^$$

$$5.5.B = \frac{59.j^{2}}{5} - iC.f$$

$$-\left(\frac{(17)^{2}}{4} + \frac{(58)^{2}}{4} + \frac{(29)^{2}}{4} + \frac{(4)^{2}}{4}\right) - C.f$$

$$= \frac{1132.5 - 756.25}{50.25}$$

$$5.5.E = \frac{557}{50.25} - \frac{557}{50.25} - \frac{558}{50.25}$$

$$= \frac{425.75 - 13.25 - 376.25}{50.25}$$

SSE = 36.25/

ANOVA TABLE [Two way]

5.1	2.4	5.5	MSS	Fcal	Ftab
Treatment (Col)	K-1= 4-1	SST7-13-25	Mr= SSTr K-1	END = ME	
Block (Ras)	<u>├</u> ─1-५-1 ≂.3	SSB=376-7	1 11 -	= 4.027	7
Env	(K-1)(K-1)=	SCE: 36.25	ME- SCE = 36.25 9 = 4.0	HIGH E ME	F(3,9)
total	Kf-1=16-	SET = 425	=4.0		4167 = 3.86
				= 31	1364

Inference Since Feat < Flat de 3,9) dit in 0.05 Los our Ho Will be accepted. There is no highifican differences withinks treatment/solumn.

(PSTOCKE): Gince Frai > Frab at (3,9) of ino 65
Los or Ho will be rejected: There is a fignificant different within the PSTOCKS / 20WS.

__ X __

Time Senes:~ Meltod for analy sing Trend: -1. semi Average Mettod 2. Moving Averages Method Graph:

Time sens Graph

Time

Semi Averages Mettod: -Meltod . I:-GA GB M = 8 GA GR (middle year - skeip) n=9 Divided He data into two exqual parts. It is odd no skip middle year, and Make a data into two equal pasts and Hen take He average of each part, That gives He average trend.

Apply the semi average method and analyte trend condrut the graph.

	Year	Value	Yeur	Value	7
-	(1990	176	1997	1807	
	(99)	135	1798	190	
Crop.	1992	140	1999	161	Gray
dan.	1993	147	5000	172	
	1994	152	2001	140)	
	(995	621			
	(1996	1/61	l		

(a/;

group I	Nde		Group-		
1990	1716		1996	161 7)
91	135		97	189	
92	140	900	98	190	984
73	147		99	141)
94	152	1	2000	172	1
95	150	ı	20NJ	140	

Unit Semi Average Melty Total Value AVErage Year) 1991 19927 1993] 19925 900 1995

Apply remi querage meltod for analyting the data!

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	
Valu	148	156	160	150	170	176	187	185	119	
He	mid	die	of ye	KY	for 1	te g	suca	date	م: { عهر ربا	99
42	COUP-F	2.00	0, 200 [2002	. 2 40	2			36	Jee 4

Grosp-II: 2000, 2001, 2002, 2007, 2008

Year Total Value	Average
2 000	
(g) 2000 2001 32001.5 614 2003 2003	614 = 153.5
(2005) 2006]2006.5 652	452 - 163
2008	l .

Time Benes Graph

Moving Averages Meltod.

	To 104	Averge 1
(a17-91 (a1.92)	91792+22	3/52+53/-
(a2143,94) = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	291+92+9	,
44 (94195,96)	93+94+95	=
	9449: +56	
6- 46 (a6,97.98)	as + 06 + 07	=
46 (as) (as) (as)	a6 tc7 t98	=
18 (a8, 49, 9.0)	as tag tails	
6 ₁₀		

Apply the 3 years Moving Averages method for analysing the trend and construct the graph:

EVENA.								0- 1	1 00 01) cneal	2001	2400)
Vecx 1990 1	9911	1992	1993	1994/	1995	1996	1997	1598	15644	2000	2001	2002
Year 1990 11 Prod 175 1	80	210	2-60	300	210	2/8	22	210	205	195	197	206

50/1- 3 years Moving Average Mettod

- 1) Group 3 years runne ou a one set
- (2) Find total of prod (value) of each group)
- (3) Average of the prodution them construct graph b/w Year Vs actual data Year Vs Average prodution value

Year (Production	Group	Total	Average
1990	175	1		
1991	[89]	9(90-92)	565	565/3 = 188-33
1992	210	G (91-12)	650	120/3 = 519, 277
1993	260	9,92-941	770	770/3 = 256.64
1994	300	9(93-95)	170	110 3= 27 p. 1999
1915	210	9 [94-96]	728	728/3=242.66
1996	218	9,195-97	6 28	678/3 = 209.33
1997	250	9(96-98)	. 628	628/3: 209:333
1996	210	9(97-99)	615	615/3=205
		9[98-00]	613	650 3 = 203133
1999	265	G(99-1)	599	59913 = 199.66
200	195	G (2000-02)	6 80	600/3=200
2001	199	1		
2002	206			}

Analyse following Time series data wit 5-years Moving Averages Method and also construct the graph?

Year 1995 1976 1997 1999 2001 2002 2003 2004 2005 2006 2007 2008 2009

Produ 960 310 980 320 360 380 400 420 310 310 410 440 410 410 410 110

Projedue: (1) considu 5 conse years as a one group | set

- (2) Find total of each group, and write He total value at the middle of the year.
- (3) Find overege of each group and write value
- (9) constrail growth 5/W (Year Vs Syear Average)

Year	Prod	Grop set 5-yer	Total of Syear prod	Average
19957	260	2		
1996	310			1530/5 = 306
1997	280-	G(15-19) -	_ 1530	1650/5 = 330
1998	320	9 (95-00) -	1650	174%: 348
1999	360	997-04	1860	1880/5 = 376
2000	380	494-02)-	1910	1910/5 = 382
2001	400	6197-03)-	1900	1930/5 = 386
2002	420	9(00-04)-	1930	1970/5=394
2003	350	e (01-02) -	1970	200/5 = 400
2004	350	6(03-07)	2000	210015 = 420
2005	410 6 440	6(4-08)	2160	2160/1 = 432
70	1 450	4(05-09)	00 00	
3	2007 410	7	1	1

