Système bielle manivelle

1 - Présentation

Le mécanisme plan présenté ci-dessous est constitué :

du vilebrequin S_1 en liaison pivot d'axe $(O, \vec{z}_{0,1})$ avec le carter moteur So,

Paramètre de mouvement 1/0 :

$$\theta = (\vec{x}_0, \vec{x}_1)$$

de la bielle S_2 en liaison pivot d'axe $(A, \vec{z}_{1,2})$ avec le vilebrequin S₁,

Paramètre de mouvement 2/1 :

$$\phi = (\vec{x}_1, \vec{x}_2)$$

du piston S_3 en liaison glissière d'axe (O, \vec{x}_0) avec le carter moteur So,

Paramètre de mouvement 3/0 :

Par ailleurs le piston S_3 est en liaison pivot d'axe $(B, \vec{z}_{2,3})$ avec la bielle S_2 .

2 - Graphe des liaisons et figures de changement de base

3 - Equations de liaison

La présence de la liaison 3/2 impose :

$$\overrightarrow{B_3B_2} = \overrightarrow{0}$$

Soit:
$$\overrightarrow{B_{3*}B_5} = -$$

$$\overrightarrow{B_{3*}B_5} = -x\,\vec{x}_0 + r\,\vec{x}_1 + l\,\vec{x}_2 = \vec{0}$$

Soit:

$$\begin{cases} x = r\cos\theta + l\cos(\theta + \phi) \\ r\sin\theta + l\sin(\theta + \phi) = 0 \end{cases}$$