Efficient compression of SIDH public keys

Craig Costello¹ David Jao² Patrick Longa¹ Michael Naehrig¹ Joost Renes³ David Urbanik²

¹Microsoft Research, Redmond, USA

²University of Waterloo, Ontario, Canada

³Radboud University, Nijmegen, The Netherlands

1 May 2017

- ▶ Post-quantum secure (ephemeral) key exchange [JF11]
- Based on hardness of finding large-degree isogenies
- ▶ Small keys (\approx 564 bytes public)
- Relatively slow compared to other PQ proposals
- ▶ Key compression (\approx 385 bytes), at very high cost [Aza+16]

- Post-quantum secure (ephemeral) key exchange [JF11]
- Based on hardness of finding large-degree isogenies
- ▶ Small keys (\approx 564 bytes public)
- Relatively slow compared to other PQ proposals
- ▶ Key compression (\approx 385 bytes), at very high cost [Aza+16]

This talk

- ▶ Key size reduced by 12.5% (≈ 330 bytes)
- ► Compression up to 66× faster
- ▶ Decompression up to 15× faster

$$p = 2^3 \cdot 3^2 - 1$$
, $E/\mathbb{F}_{p^2} : y^2 = x^3 + x$, $j(E) = 24$, $\ell = 2$

41

66

17

0

48

$$p = 2^3 \cdot 3^2 - 1$$
, $E/\mathbb{F}_{p^2} : y^2 = x^3 + x$, $j(E) = 24$, $\ell = 2$

$$p = 2^3 \cdot 3^2 - 1$$
, $E/\mathbb{F}_{p^2} : y^2 = x^3 + x$, $j(E) = 24$, $\ell = 2$

41

66

17

0

48

$$p = 2^3 \cdot 3^2 - 1$$
, $E/\mathbb{F}_{p^2} : y^2 = x^3 + x$, $j(E) = 24$, $\ell = 3$

Key generation

Key generation

= private party A, = private party B, = public key \nearrow = 2-graph walk, \searrow = 3-graph walk,

= private party
$$A$$
, = private party B , = public key \nearrow = 2-graph walk, \searrow = 3-graph walk,

= private party
$$A$$
, = private party B , = public key \nearrow = 2-graph walk, \searrow = 3-graph walk,

= private party
$$A$$
, = private party B , = public key \nearrow = 2-graph walk, \searrow = 3-graph walk,

$$E_{A}[\ell^{e}] = \langle R, S \rangle$$

$$E_{A}[\ell^{e}] = \langle P, Q \rangle \in \mathbb{F}_{p^{2}}^{2} \ (= 4 \log p \text{ bits})$$

$$E_{A} \in \mathbb{F}_{p^{2}} \ (= 2 \log p \text{ bits})$$

$$E_{A} \in \mathbb{F}_{p^{2}} \ (= 2 \log p \text{ bits})$$

= private party
$$A$$
, = private party B , = public key \nearrow = 2-graph walk, \searrow = 3-graph walk,

$$E_A[\ell^e] = \langle R, S \rangle$$
 $(\alpha, \beta, \gamma, \delta) \in \mathbb{Z}_{\ell^e}^4 \ (\approx 2 \log p \text{ bits})$
 $E_A \in \mathbb{F}_{p^2} \ (= 2 \log p \text{ bits})$

Public-key compression [Aza+16]

Compression

$$\langle P, Q \rangle \longrightarrow \langle \alpha R + \beta S, \gamma R + \delta S \rangle \longrightarrow (\alpha, \beta, \gamma, \delta)$$

Decompression

$$(\alpha, \beta, \gamma, \delta) \longrightarrow \langle R, S \rangle \longrightarrow \langle P, Q \rangle$$

Public-key compression [Aza+16]

Compression

$$\langle P, Q \rangle \longrightarrow \langle R, S \rangle \xrightarrow{\mathsf{Expensive}} (\alpha, \beta, \gamma, \delta)$$

Decompression

$$(\alpha, \beta, \gamma, \delta) \longrightarrow \langle R, S \rangle \longrightarrow \langle P, Q \rangle$$

Public-key compression [Aza+16]

Significantly improve efficiency (up to $66 \times$)

Decompression

$$(\alpha, \beta, \gamma, \delta) \xrightarrow{\langle R, S \rangle} (\alpha, \beta, \gamma, \delta) \xrightarrow{\langle P, Q \rangle}$$

Significantly improve efficiency (up to $15\times$)

Find
$$R, S$$
 such that $E[2^{372}] = \langle R, S \rangle$, where

$$\#E(\mathbb{F}_{p^2}) = (2^{372}3^{239})^2.$$

Find
$$R, S$$
 such that $E[2^{372}] = \langle R, S \rangle$, where

$$\#E(\mathbb{F}_{p^2}) = (2^{372}3^{239})^2.$$

Finding an element of order 2³⁷²

1 Deterministically pick $R \in E(\mathbb{F}_{p^2}) \setminus 2E(\mathbb{F}_{p^2})$

Find
$$R, S$$
 such that $E[2^{372}] = \langle R, S \rangle$, where

$$\#E(\mathbb{F}_{p^2}) = (2^{372}3^{239})^2.$$

Finding an element of order 2³⁷²

1 Deterministically pick $R \in E(\mathbb{F}_{p^2}) \setminus 2E(\mathbb{F}_{p^2})$

For
$$E: y^2 = x(x - \gamma)(x - \delta)$$
,

$$R \in 2E(\mathbb{F}_{p^2}) \iff x_R, x_R - \delta, x_R - \gamma \text{ are squares}$$

Find
$$R, S$$
 such that $E[2^{372}] = \langle R, S \rangle$, where

$$\#E(\mathbb{F}_{p^2}) = (2^{372}3^{239})^2.$$

Finding an element of order 2³⁷²

 $oldsymbol{1}$ Deterministically pick a non-square $x_R \in \mathbb{F}_{p^2}$

For
$$E: y^2 = x(x - \gamma)(x - \delta)$$
,

$$R \in 2E(\mathbb{F}_{p^2}) \iff x_R, x_R - \delta, x_R - \gamma$$
 are squares

Find R, S such that $E[2^{372}] = \langle R, S \rangle$, where

$$\#E(\mathbb{F}_{p^2}) = (2^{372}3^{239})^2.$$

Finding an element of order 2³⁷²

- **1** Deterministically pick a non-square $x_R \in \mathbb{F}_{p^2}$
- 2 If $x_R^3 + Ax_R^2 + x_R$ is not a square, goto 1

Find
$$R, S$$
 such that $E[2^{372}] = \langle R, S \rangle$, where

$$\#E(\mathbb{F}_{p^2}) = \left(2^{372}3^{239}\right)^2.$$

Finding an element of order 2³⁷²

- **1** Deterministically pick a non-square $x_R \in \mathbb{F}_{p^2}$
- 2 If $x_R^3 + Ax_R^2 + x_R$ is not a square, goto 1
- **3** Set $R \leftarrow (x_R, \sqrt{x_R^3 + Ax_R^2 + x_R})$

Find
$$R, S$$
 such that $E[2^{372}] = \langle R, S \rangle$, where

$$\#E(\mathbb{F}_{p^2}) = \left(2^{372}3^{239}\right)^2.$$

Finding an element of order 2³⁷²

- $oldsymbol{1}$ Deterministically pick a non-square $x_R \in \mathbb{F}_{p^2}$
- 2 If $x_R^3 + Ax_R^2 + x_R$ is not a square, goto 1
- $3 \text{ Set } R \leftarrow (x_R, \sqrt{x_R^3 + Ax_R^2} + x_R)$
- **4** Set R ← $[3^{239}]R$

Find
$$R, S$$
 such that $E[2^{372}] = \langle R, S \rangle$, where

$$\#E(\mathbb{F}_{p^2}) = (2^{372}3^{239})^2$$
.

Finding an element of order 2372

- **1** Deterministically pick a non-square $x_R \in \mathbb{F}_{p^2}$
- 2 If $x_R^3 + Ax_R^2 + x_R$ is not a square, goto 1
- **3** Set $R \leftarrow (x_R, \sqrt{x_R^3 + Ax_R^2 + x_R})$
- **4** Set R ← $[3^{239}]R$

Finding a canonical basis of $E[2^{372}]$

- **1** Pick $R \in E(\mathbb{F}_{p^2})$ of order 2^{372}
- **2** Pick $S \in E(\mathbb{F}_{p^2})$ of order 2^{372}
- **3** If $E[2^{372}] \neq \langle R, S \rangle$, goto 2.

Transfer the discrete logs to μ_n

$$e = e(R, S)$$
 $e^{\beta} = e(R, P)$ $e^{\delta} = e(R, Q)$ $e^{-\alpha} = e(S, P)$ $e^{-\gamma} = e(S, Q)$

Transfer the discrete logs to μ_n

$$e = e(R, S)$$
 $e^{\beta} = e(R, P)$ $e^{\delta} = e(R, Q)$ $e^{-\alpha} = e(S, P)$ $e^{-\gamma} = e(S, Q)$

$$e(R,S)$$
 $e(R,P)$ $e(R,Q)$ $e(S,P)$ $e(S,Q)$
 $f_0 \leftarrow f_{n,R}$
 $f_0 \leftarrow f_0(S)$

Transfer the discrete logs to μ_n

$$e = e(R, S)$$
 $e^{\beta} = e(R, P)$ $e^{\delta} = e(R, Q)$ $e^{-\alpha} = e(S, P)$ $e^{-\gamma} = e(S, Q)$

$$e(R,S) \qquad e(R,P) \qquad e(R,Q) \qquad e(S,P) \qquad e(S,Q)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$e(R,P) \qquad e(R,Q) \qquad e(S,P) \qquad e(S,Q)$$

$$e(S,P) \qquad e(S,Q)$$

$$e(S,P) \qquad e(S,Q)$$

$$e(S,P) \qquad e(S,Q)$$

$$f_0 \leftarrow f_0(S) \qquad f_1 \leftarrow f_0(P)$$

$$\vdots \qquad \vdots$$

Transfer the discrete logs to μ_n

$$e = e(R, S)$$
 $e^{\beta} = e(R, P)$ $e^{\delta} = e(R, Q)$ $e^{-\alpha} = e(S, P)$ $e^{-\gamma} = e(S, Q)$

$$e(R,S) \qquad e(R,P) \qquad e(R,Q) \qquad e(S,P) \qquad e(S,Q)$$

$$f_0 \leftarrow f_{n,R}$$

$$f_0 \leftarrow f_0(S) \qquad f_1 \leftarrow f_0(P)$$

$$\vdots \qquad \vdots$$

Transfer the discrete logs to
$$\mu_n$$

$$e = e(R, S)$$
 $e^{\beta} = e(R, P)$ $e^{\delta} = e(R, Q)$ $e^{-\alpha} = e(S, P)$ $e^{-\gamma} = e(S, Q)$

$$e(R,S) \qquad e(R,P) \qquad e(R,Q) \qquad e(S,P) \qquad e(S,Q)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$e(R,Q) \qquad e(S,P) \qquad e(S,Q) \qquad e(S,Q) \qquad \vdots$$

$$f_2 \leftarrow f_{n,R} \qquad f_2 \leftarrow f_{n,R} \qquad \vdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

Transfer the discrete logs to
$$\mu_n$$

$$e = e(R, S)$$
 $e^{\beta} = e(R, P)$ $e^{\delta} = e(R, Q)$ $e^{-\alpha} = e(S, P)$ $e^{-\gamma} = e(S, Q)$

Transfer the discrete logs to
$$\mu_n$$

$$e = e(R, S)$$
 $e^{\beta} = e(R, P)$ $e^{\delta} = e(R, Q)$ $e^{-\alpha} = e(S, P)$ $e^{-\gamma} = e(S, Q)$

$$e(R,S) \qquad e(R,P) \qquad e(R,Q) \qquad e(S,P) \qquad e(S,Q)$$

$$f_0 \leftarrow f_{n,R} \qquad \qquad f_3 \leftarrow f_{n,S}$$

$$f_0 \leftarrow f_0(S) \qquad f_1 \leftarrow f_0(P) \qquad f_2 \leftarrow f_0(Q) \qquad f_3 \leftarrow f_3(P)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

Transfer the discrete logs to
$$\mu_n$$

$$e = e(R, S)$$
 $e^{\beta} = e(R, P)$ $e^{\delta} = e(R, Q)$ $e^{-\alpha} = e(S, P)$ $e^{-\gamma} = e(S, Q)$

$$e(R,S) \qquad e(R,P) \qquad e(R,Q) \qquad e(S,P) \qquad e(S,Q)$$

$$f_0 \leftarrow f_{n,R} \qquad \qquad f_3 \leftarrow f_{n,S} \qquad f_4 \leftarrow f_{n,S}$$

$$f_0 \leftarrow f_0(S) \qquad f_1 \leftarrow f_0(P) \qquad f_2 \leftarrow f_0(Q) \qquad f_3 \leftarrow f_3(P) \qquad f_4 \leftarrow f_4(Q)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

Transfer the discrete logs to
$$\mu_n$$

$$e = e(R, S)$$
 $e^{\beta} = e(R, P)$ $e^{\delta} = e(R, Q)$ $e^{-\alpha} = e(S, P)$ $e^{-\gamma} = e(S, Q)$

$$e(R,S) \qquad e(R,P) \qquad e(R,Q) \qquad e(S,P) \qquad e(S,Q)$$

$$f_0 \leftarrow f_{n,R} \qquad \qquad f_3 \leftarrow f_{n,S}$$

$$f_0 \leftarrow f_0(S) \qquad f_1 \leftarrow f_0(P) \qquad f_2 \leftarrow f_0(Q) \qquad f_3 \leftarrow f_3(P) \qquad f_4 \leftarrow f_3(Q)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

Transfer the discrete logs to
$$\mu_n$$

$$e=e(R,S)$$
 $e^{eta}=e(R,P)$ $e^{\delta}=e(R,Q)$ $e^{-lpha}=e(S,P)$ $e^{-\gamma}=e(S,Q)$

$$e(R,S)$$
 $e(R,P)$ $e(R,Q)$ $e(S,P)$ $e(S,Q)$
 $f_0 \leftarrow f_{n,R}$ $f_3 \leftarrow f_{n,S}$
 $f_0 \leftarrow f_0(S)$ $f_1 \leftarrow f_0(P)$ $f_2 \leftarrow f_0(Q)$ $f_3 \leftarrow f_3(P)$ $f_4 \leftarrow f_3(Q)$
 \vdots \vdots \vdots \vdots \vdots \vdots

Efficient discrete logarithms (Pohlig-Hellman)

For
$$e_0, e_1, e_2, e_3, e_4 \in \mu_{\ell^e}$$
, compute $\alpha, \beta, \gamma, \delta$ such that

$$e_1 = e_0^{-lpha}, \qquad e_2 = e_0^{eta}, \qquad e_3 = e_0^{-\gamma}, \qquad e_4 = e_0^{\delta}$$

 $\mathsf{As}\ \mu_{\ell^e} \subset \mathsf{G}_{p+1} \subset \mathbb{F}_{p^2}, \quad \mathbf{I} \approx \mathbf{M}, \quad \mathbf{S} \approx 2\mathbf{s}, \quad \mathbf{C} \approx 2\mathbf{m} + 1\mathbf{s}$

Efficient discrete logarithms (Pohlig-Hellman)

For $e_0, e_1, e_2, e_3, e_4 \in \mu_{\ell^e}$, compute $\alpha, \beta, \gamma, \delta$ such that

$$e_1 = e_0^{-\alpha}, \qquad e_2 = e_0^{\beta}, \qquad e_3 = e_0^{-\gamma}, \qquad e_4 = e_0^{\delta}$$

As $\mu_{\ell^e} \subset G_{p+1} \subset \mathbb{F}_{p^2}$, $\mathbf{I} \approx \mathbf{M}$, $\mathbf{S} \approx 2\mathbf{s}$, $\mathbf{C} \approx 2\mathbf{m} + 1\mathbf{s}$

Nested Pohlig-Hellman

Comparison

#	windows			$\mathbb{F}_{\mathbf{p}^2}$		table size	
n	w_1	<i>w</i> ₂	W ₃	W ₄	М	S	$\mathbb{F}_{m{p}^2}$
0	_	_	_	_	372	69 378	375
1	19	_	-	-	375	7 445	43
2	51	7	-	-	643	4 437	25
3	84	21	5	-	716	3 826	25
4	114	35	11	3	1 065	3 917	27

Options for different time-memory trade-offs [Sut11]

Signature size reduction

▶ The quadruple $(\alpha, \beta, \gamma, \delta) \in \mathbb{Z}_{\ell^e}^4$ determines

$$P = \alpha R + \beta S$$
, $Q = \gamma R + \delta S$.

These determine $\langle P + \lambda Q \rangle$, for some $\lambda \in \mathbb{Z}_{\ell^e}^*$

▶ Thus we only need *P*, *Q* up to scalar, and compress to

$$[\alpha:\beta:\gamma:\delta]$$
.

As P,Q form a basis of $E[\ell^e]$, either α or β is invertible

lacksquare Normalizing, we represent it in $\mathbb{Z}_{\ell^e}^3 imes \mathbb{Z}_2$

Benchmarks (for $\ell = 2$)

	This work	[Aza+16]	Speed-up
Key size (bytes)	328	385	_
SIDH (cc $ imes 10^6$)	80	_	_
Compression (cc \times 10 6)	109	6 081	56×
Decompression (cc $ imes 10^6$)	42	539	13×
Full no comp. (cc \times 10 ⁶)	192	535	2.8×
Full comp. (cc $ imes 10^6$)	469	15 395	31×

Software available at

https://github.com/Microsoft/PQCrypto-SIDH

Thanks!

 $\mathsf{Questions} \, \widehat{\not}$

References I

- [Aza+16] Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel and Christopher Leonardi. "Key Compression for Isogeny-Based Cryptosystems". In: Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, AsiaPKC@AsiaCCS, Xi'an, China, May 30 June 03, 2016. Ed. by Keita Emura, Goichiro Hanaoka and Rui Zhang. ACM, 2016, pp. 1–10. DOI: 10.1145/2898420.2898421. URL: http://doi.acm.org/10.1145/2898420.2898421.
- [JF11] David Jao and Luca De Feo. "Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies". In: Post-Quantum Cryptography 4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November 29 December 2, 2011. Proceedings. 2011, pp. 19–34. DOI: 10.1007/978-3-642-25405-5_2. URL: http://dx.doi.org/10.1007/978-3-642-25405-5_2.

References II

[Sut11] Andrew V. Sutherland. "Structure computation and discrete logarithms in finite abelian *p*-groups". In: *Math. Comput.* 80.273 (2011), pp. 477–500. DOI: 10.1090/S0025-5718-10-02356-2. URL: http://dx.doi.org/10.1090/S0025-5718-10-02356-2.