

Generalized Permutations and Combinations

Section 6.5

Section Summary

- Permutations with Repetition(可重复)
- Combinations with Repetition
- Permutations with Indistinguishable Objects
- Distributing Objects into Boxes

Permutations with Repetition

Theorem 1: The number of r-permutations of a set of n objects with repetition allowed is n^r .

Proof: There are n ways to select an element of the set for each of the r positions in the r-permutation when repetition is allowed. Hence, by the product rule there are n^r r-permutations with repetition.

Example: How many strings of length *r* can be formed from the uppercase letters of the English alphabet?

Solution: The number of such strings is 26^r , which is the number of r-permutations of a set with 26 elements.

Example: How many ways are there to select five bills from a box containing the following denominations: \$1, \$2, \$5, \$10, \$20, \$50, and \$100? Assume that the order in which the bills are chosen does not matter, there are at least five bills of each type.

Solution:

 $continued \rightarrow$

Discrete Mathematics

 Some possible ways of selecting the five bills:

- The number of ways to select five bills corresponds to the number of ways to arrange six bars and five stars in a row.
- This is the number of unordered selections of 5 objects from a set of 11. Hence, there are

$$C(11,5) = \frac{11!}{5!6!} = 462$$

ways to choose five bills with seven types of bills.

Theorem 2: The number of *r*-combinations from a set with *n* elements when repetition of elements is allowed is

$$C(n+r-1,r) = C(n+r-1, n-1).$$

Proof: Each r-combination of a set with n elements with repetition allowed can be represented by a list of n-1 bars and r stars. The bars mark the n cells containing a star.

The number of such lists is C(n + r - 1, r), because each list is a choice of the r positions to place the stars, from the total of n + r - 1 positions to place the stars and the bars. This is also equal to C(n + r - 1, n - 1), which is the number of ways to place the n - 1 bars.

Discrete Mathematics

Example: Suppose that a cookie shop has four different kinds of cookies. How many different ways can six cookies be chosen?

Solution: The number of ways to choose six cookies is the number of 6-combinations of a set with four elements. By Theorem 2

$$C(9,6) = C(9,3) = \frac{9 \cdot 8 \cdot 7}{1 \cdot 2 \cdot 3} = 84$$

is the number of ways to choose six cookies from the four kinds.

Example: How many solutions does the equation

$$x_1 + x_2 + x_3 = 11$$

have, where x_1 , x_2 and x_3 are nonnegative integers?

Solution: Each solution corresponds to a way to select 11 items from a set with three elements; x_1 elements of type one, x_2 of type two, and x_3 of type three.

By Theorem 2 it follows that there are

$$C(3+11-1,11) = C(13,11) = C(13,2) = \frac{13\cdot 12}{1\cdot 2} = 78$$

solutions.

Example

How many solutions does the equation

$$x_1 + x_2 + x_3 = 11$$

have, where the variables are integers with $x1 \ge 1$, $x2 \ge 2$, and $x3 \ge 3$.

Solution: C(3 + 5 - 1, 5) = C(7, 5) = 21

Summarizing the Formulas for Counting Permutations and Combinations with and without Repetition

TABLE 1 Combinations and Permutations With and Without Repetition.		
Туре	Repetition Allowed?	Formula
<i>r</i> -permutations	No	$\frac{n!}{(n-r)!}$
r-combinations	No	$\frac{n!}{r!\;(n-r)!}$
<i>r</i> -permutations	Yes	n^r
<i>r</i> -combinations	Yes	$\frac{(n+r-1)!}{r! (n-1)!}$

Permutations with Indistinguishable Objects

Example: How many different strings can be made by reordering the letters of the word *SUCCESS*.

Solution: There are seven possible positions for the three Ss, two Cs, one U, and one E.

- The three Ss can be placed in C(7,3) different ways, leaving four positions free.
- The two Cs can be placed in C(4,2) different ways, leaving two positions free.
- The U can be placed in C(2,1) different ways, leaving one position free.
- The E can be placed in C(1,1) way.

By the product rule, the number of different strings is:

$$C(7,3)C(4,2)C(2,1)C(1,1) = \frac{7!}{3!4!} \cdot \frac{4!}{2!2!} \cdot \frac{2!}{1!1!} \cdot \frac{1!}{1!0!} = \frac{7!}{3!2!1!1!} = 420.$$

The reasoning can be generalized to the following theorem. \rightarrow

Permutations with Indistinguishable Objects

Theorem 3: The number of different permutations of n objects, where there are n_1 indistinguishable objects of type 1, n_2 indistinguishable objects of type 2,, and n_k indistinguishable objects of type k, is:

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$
 .

Distributing Objects into Boxes

- Many counting problems can be solved by counting the ways objects can be placed in boxes.
 - The objects may be either different from each other (distinguishable) or identical (indistinguishable).
 - The boxes may be labeled (distinguishable) or unlabeled (indistinguishable).

Distributing Objects into Boxes

- Distinguishable objects and distinguishable boxes.
 - There are $n!/(n_1!n_2!\cdots n_k!)$ ways to distribute n distinguishable objects into k distinguishable boxes.
- Indistinguishable objects and distinguishable boxes.
 - There are C(n + r 1, n 1) ways to place r indistinguishable objects into n distinguishable boxes.
 - Proof based on one-to-one correspondence between n-combinations from a set with k-elements when repetition is allowed and the ways to place n indistinguishable objects into k distinguishable boxes.

Distributing Objects into Boxes

- Distinguishable objects and indistinguishable boxes.
 - There is no simple closed formula for the number of ways to distribute n distinguishable objects into j indistinguishable boxes.
- Indistinguishable objects and indistinguishable boxes.
 - No simple closed formula exists for this number.

Homework

• § 6.5 13, 14, 16, 32, 38