UYGULAMA HAFTA 11

Section 13.2-Kısıtlı Bölgelerde Tanımlı Fonksiyonların Uç Değerleri Section 13.3-Lagrange Çarpanları 2) f(x,y) = xy - 2x forksiyonum -16x61,06y61 dikdörtgeni üzerindeki məksimum ve minimum degerleri bulunuz.

Sol.

f screkli ve bölge, kapalı bir dikdörtgen olduğundan faksiyon bu bölgenin bazı noktalarında mutlak maksimuna ve mutlak minimuna sahiptir.

Kritik noktolon orostrolim.

$$f_x = y - 2 = 0$$

$$f_y = x = 0$$

O holde f-nin veriler bölge üzerholeki maksimum ve minimum degerleri dikdörtgenin dört sınır doğru parqalarından birinin üzerihde bulunur

- x=-1 "service $0 \le y \le 1$ icin f(-1,y)=-y+2 elde edilir. Burada maksimum deger 2, minimum deger 1 olur.
- x=1 üzerinde 0 < y < 1 iain f(1, y) = y-2 elde edilir. Bursds maksimum deger -1, minimum deger -2 olur
- · y=0 üzernde -1 \(\times \text{\in} \) icin \(\text{(x,0)} = -2x \) elle edllir. Burada maksimum deger 2, minimum deger -2 alur.
- edilir. Bursda maksimum deger 1, minimum deger ise
 -1 plur.
 - Taksiyonun bölgedeki moksimum degeri 2,
 minimum degeri -2-din

4) f(x,y) = x+2y faksiyonum x2ty2 &1 diski üzerndeki moksimum ve mnimum degerlerini bulunuz.

501.

Oncelikie kritik noktolori osstirolim.

$$f_x = 1$$
 $g = f_{-nin}$ kritik noktosi yoktur.
 $f_y = 2$

O halde maksimum, minimum degerleri bölgenim sınır noktalarında (yani x2+y2=1 cemberi "zerinde) arayacağız. (f-nin sürekliliği ænk)

Genberi $x=\cos t$, $y=\sin t$ ile parametrize edebiliriz. $(x^2+y^2=\cos^2 t+\sin^2 t=1)$

Buno gore,

f(xy) = f(cost, sint) = ost + 2 sint := g(+) diyelim.

g-nm britik noktolori icini

7) f(x,y) = sinxosy -nin, koordinat eksenleri ve x+y=2TT dogrusu toofinden sinirlaan üggen üzenhelli massimum ve minimum degerlerini bulunus.

Biliyouz ki -1 = t(xiA) = = iux coad = T -qic. Acikassi (\$\frac{\pi}{2},0) ve (\$\frac{3\pi}{2},0) noktoları üggenin sınır doğru parasarı üzerindedir ve

O holde foksiyonun maksimum deger I , minimum degori -1 -dir.

deger:
$$-1 - dir.$$

(0) $f(x,y) = \frac{x-y}{1+x^2+y^2}$ -nin y > 0 åst yer dåzlen åzerindeki moksimum ve minimum degerlerini bulunuz.

Oncelikle kritik noktolori orostirolim.

$$\int_{x}^{x} \int_{x}^{x} \frac{1 + x^{2} + y^{2} - (x - y)(2x)}{(1 + x^{2} + y^{2})^{2}} = \frac{1 - x^{2} + y^{2} + 2xy}{(1 + x^{2} + y^{2})^{2}} = 0$$

$$\int_{y}^{x} \int_{y}^{x} \frac{1 + x^{2} + y^{2} - (x - y)(2y)}{(1 + x^{2} + y^{2})^{2}} = \frac{1 - x^{2} + y^{2} - 2xy}{(1 + x^{2} + y^{2})^{2}} = 0$$

$$\int_{y}^{x} \int_{y}^{x} \frac{1 + x^{2} + y^{2}}{(1 + x^{2} + y^{2})^{2}} = 0$$

$$\int_{y}^{x} \frac{1 + x^{2} + y^{2}}{(1 + x^{2} + y^{2})^{2}} = 0$$

=)
$$\int_{-1-x^2+y^2+2xy=0}^{1-x^2+y^2+2xy=0}$$
 =) $\int_{-1-x^2+y^2-2xy=0}^{1-x^2+y^2+2xy=0}$ iki dalleni $\int_{-1-x^2+y^2-2xy=0}^{1-x^2+y^2-2xy=0}$ iki dalleni $\int_{-1-x^2+y^2-2xy=0}^{1-x^2+y^2-2xy=0}$

y=0 siniri "serinde $f(x,0)=\frac{x}{1+x^2}:=g(x)$, $-\infty Lx L\infty$ elde edilir.

$$g'(x) = \frac{1-x^2}{(1+x^2)^2} = 0 \Rightarrow x=\pm 1 \Rightarrow g(\pm 1) = \pm \frac{1}{2}$$

O holde y70 üst yarı düalerinde fin moksimum ve minimum degerleri sırosıylo 1 ve - 1 - dir.

2) (3,0) noktosindan y=x² parabolüne en kisa uzaklığı
a) tek değişkenli kosulsuz bir probleme indirgeyerek
b) Logrange carpanları yöntemini kullanarak bulunuz.

501.

a) $y = x^2$ parabolů üzerindeki bir (x,y) noktasinin (3,0) noktasina olan en uzakligi D olsun.

$$D = \sqrt{(x-3)^2 + (y-0)^2} = D^2 = (x-3)^2 + y^2$$

$$= D^2 = (x-3)^2 + x^4$$

$$y=x^2$$

Minimum iam;

$$0 = \frac{d0^{2}}{dx} = 2(x-3) + 4x^{3}$$
=) $2x^{3} + x - 3 = 0$, $x = 1$ bir käktür.

$$\frac{2 \times^3 + \times -3}{\times -1} = 2 \times^2 + 2 \times +3$$
 olup $\Delta = -2\sqrt{5} \angle 0$ -dig.

Dologisiyla x=1 tek reel köktür.

O holde minimum uzaklik;

$$D = \sqrt{(1-3)^2 + 14} = \sqrt{5}.$$

b) Logrange fork: g(x,y) = 0 egris: iserinde f(x,y) = ninmoreonum yo do minimum olduğu notto odoyları için $L(x,y,\lambda) = f(x,y) + \lambda g(x,y)$

20grange faksiyonum kritik noktobrini oranamis gerekir.

$$y = x^2 \left(g(x,y) = x^2 - y \right)$$
 Eisitlomasina togli obrak

 $D^2=(x-3)^2+y^2$ ($f(x,y)=(x-3)^2+y^2$) - yi minimize etmek istiyou 2.

2-nin britik noktolorini bulolim.

$$L_{x} = \frac{\partial L}{\partial x} = 2(x-3) + 2\lambda x = 0$$
 (1)

$$L_y = \frac{\partial L}{\partial y} = 2y - \lambda = 0$$
 (2)

$$2x = \frac{\partial L}{\partial \lambda} = x^2 - y = 0 \quad (3)$$

(1) ve (2) - de l yde edilirse x + 2xy-3=0 elde edilir.

(1)
$$\sqrt{2}$$
 (2) - $\sqrt{2}$ (2) - $\sqrt{2}$ (3) - $\sqrt{2}$ (2) - $\sqrt{2}$ (3) - $\sqrt{2}$ (3) - $\sqrt{2}$ (4) - $\sqrt{2}$ (3) - $\sqrt{2}$ (3) - $\sqrt{2}$ (4) - $\sqrt{2}$ (3) - $\sqrt{2}$ (4) - $\sqrt{2}$ (5) - $\sqrt{2}$ (5) - $\sqrt{2}$ (6) - $\sqrt{2}$ (7) - $\sqrt{2}$ (7) - $\sqrt{2}$ (8) - $\sqrt{2}$ (9) - $\sqrt{2}$ (9) - $\sqrt{2}$ (10) - $\sqrt{2}$ (11) - $\sqrt{2}$ (12) - $\sqrt{2}$ (12) - $\sqrt{2}$ (13) - $\sqrt{2}$ (14) - $\sqrt{2}$ (15) - $\sqrt{$

bulunur.

=) x=1 =) $y=x^2=1$ olup (1,1) tek kritik noktodir.

4) f(x,y,z) = x+y-z forksiyonum $x^2+y^2+z^2=1$ Eŭresi üzerinde moksimum ve minimum deĝerlermi bulunuz.

Sal.

-yi mnimize re maksimize etnek letiyaruz.

Logrange fiksiyonu: L = x+y-2+x(x2+y2+22-1). Logrange fiksiyonu: L = x+y-2+x(x2+y2+22-1).

$$2x = \frac{\partial L}{\partial x} = 1 + 2x = 0$$
 (13)

$$Ly = \frac{\partial L}{\partial y} = 1 + 2\lambda y = 0$$
 (2)

$$L_2 = \frac{\partial L}{\partial z} = -1 + 2\lambda z = 0 \quad (3)$$

$$L_{\lambda} = \frac{\partial L}{\partial \lambda} = x^2 + y^2 + 2^2 - 1 = 0 \quad (4)$$

(1,2,3) $2\lambda x = 2\lambda y = -2\lambda \pm .$ Bu durando yo $\lambda = 0$ yo do x = y = -4-dir. Ancor $\lambda = 0$ alirsak 1 = 0 delickisi elde edilir. =) x = y = -2-dir.

$$(4)$$
-ten $3x^2=1 \Rightarrow x=\pm \frac{1}{\sqrt{3}}$ olw.

O holde 1-nin kritik noktolori;

12) $2^2 = x^2 + y^2$ knisi ve x - 22 = 3 düzlenin kesiziminden olugan elips üzerinde $f(x,y,z) = x^2 + y^2 + z^2 - nin$ maksimum ve minimum degerlerini bulunuz.

Sol.

 $2^2 = x^2 + y^2$ ve x - 2z = 3 Lisitlandona bogil olark $f(x,y,z) = x^2 + y^2 + z^2 - y$; minimize ve makamize etmek istiyoruz.

Lagrange forksiyonu: $L=x^2+y^2+2^2+\lambda(x^2+y^2-2^2)+\mu(x-2z-3)$. L-nin kritik noktalarını bulalım.

$$1_{X} = \frac{\partial L}{\partial x} = 2x(1+\lambda) + M = 0 \qquad (1)$$

$$\lambda_{2} = \frac{\partial L}{\partial 2} = 22(1-\lambda) - 2M = 0$$
 (3)

$$2 = \frac{\partial L}{\partial \lambda} = x^2 + y^2 - 2^2 = 0$$
 (4)

$$2\mu = \frac{3L}{3M} = x - 22 - 3 = 0$$
 (5)

Durum 1: 4=0.

0 holde, (4) - ten x = ± 2.

•
$$x=2$$
 ise (5) - ten $2=-3$. =) No++3 (-3,0,-3).

•
$$X = \mathcal{L}$$
 ise (5) - ten $\mathcal{L} = 1$. =) Nok+a (1,0,-1).

Durum 2: \ = -1.

O holde (1)-den
$$M=0$$
, (3)-ten $2=0$. Bu holde (4)-ten $x=y=0$. Bu durum (5) ile qeligir. $(-3=0)$

22) $x^2+y^2+2^2 \le 1$ yuvar úzerinde $xy+2^2-nin$ maksimum ve minimum degerlerini bulunuz. Sınır durumu için lagrange carpalarını kullanınızı

Sal.

 $3 = 2(x,y,\pm): x^2 + y^2 + 2^2 \le 17 \quad \text{if coinde} \quad f(x,y,\pm) = xy + 2^2.$ Litik noktolon ordetrolim.

$$f_x = y = 0$$

Tek bitik nokto ne bir moksimum

 $f_y = x = 0$
 $f_z = 2z = 0$

Tek bitik nokto ne bir moksimum

ne de bir minimum olan (0,0,0)

iq noktosidir

0 holde motorum ve minimum B-nin sinirindo yoni

 $x^2+y^2+z^2=1$ kisitlanosino bogli dook $f(x_1y_1z)=xy+z^2-y_1$ minimize re moksimize etne problemi.

Lagrange foksiyonu: $L = xy + z^2 + \lambda(x^2 + y^2 + z^2 - 1)$. L-nin kritik noktobrini bulolim.

$$2x = \frac{3x}{3L} = 3 + 2x = 0 \quad (1)$$

$$2y = \frac{\partial L}{\partial y} = x + 2\lambda y = 0$$
 (2)

$$L_{2} = \frac{\partial L}{\partial 2} = 22(1+\lambda) = 0$$
 (3)

$$2x = \frac{\partial L}{\partial x} = x^2 + y^2 + 2^2 - 1 = 0$$
 (4)

Durum 1: 2=0.

Excelible (1), (2) ve (4)-ten y2=x2= 1 - dir.

O holde 4 with nocto dusur.

Duran 2: \ = -1.

(1) ve (2) geregi
$$x=y=0$$
 =) (4) geregi $\pm = \pm 1$.

$$f(0,0,\pm 1) = 1.$$