# DEEP LEARNING VIA SEMI-SUPERVISED EMBEDDING



Jason Weston NEC Labs America, Princeton, USA

Joint work with Ronan Collobert, Frederic Ratle, Hossein Mobahi, Pavel Kuksa and Koray Kavukcuoglu.

#### **Summary**



We pose deep learning as multi-tasking at different layers with auxiliary tasks.



Hinton, LeCun and Bengio approaches use encoder-decoder models as the auxiliary task.



We propose simple "encoder only" methods: easy, simple, fast, works well.



Experiments: can train very deep networks (15 layers) with better results than shallow networks ( $\leq 4$  layers) (including SVMs = 1 layer!)

#### Apply this to:



Video: unlabeled video helps object recognition.



Text: unlabeled text (600 million examples) helps tagging tasks.

#### Deep Learning with Neural Networks [Images: Y. Bengio, Y. LeCun]





Deep = lot of layers. Powerful systems.



Standard backpropagation doesn't always give great results.

#### **Some Deep Training Methods That Exist**

*Hinton*'s group: DBNs – special kind of an encoder+decoder.

Y. Bengio's group propose using "classical" autoencoders or denoising encoder+decoders.

LeCun's group: sparse encoder-decoders.

Pre-train with unlabeled data: "afterwards parameters in a region of space where good optimum can be reached by local descent."

Pre-training: greedy layer-wise [Image: Larochelle et al. 2007]



"Fine-tune" network afterwards using backprop.

#### **Deep and Shallow Research**

#### Deep Researchers (DRs) believe:



Learn sub-tasks in layers. Essential for hard tasks.



Natural for multi-task learning.



Non-linearity is efficient compared to  $n^3$  shallow methods.

#### Shallow Researchers believe:



NNs were already complicated and messy.



New deep methods are even more complicated and messy.



Shallow methods: clean and give valuable insights into what works.

 $My p.o.v. \rightarrow borrow from shallow research, place into deep algorithms$ 

## Deep NNs: Multitask with auxiliary unsupervised tasks

- Define "pseudo-supervised" tasks for unlabeled data [Ando & Zhang,
   2005] EXAMPLE: predict middle word given a window
- Multi-task labeled + unlabeled tasks, acts as regularizer

#### Convex learning:

• must train labeled + unlabeled at same time.

#### Non-convex:

- train sequentially, might still help  $\rightarrow$  explains autoencoders.
- multi-layer nets can be multitasked at each layer.

We will consider multi-tasking with a pairwise embedding algorithm...

#### **Existing Embedding Algorithms**

Many existing ("shallow") embedding algorithms optimize:

$$\min \sum_{i,j=1}^{U} L(f(x_i), f(x_j), W_{ij}), \quad f_i \in \mathbb{R}^d$$

MDS: minimize  $(||f_i - f_j|| - W_{ij})^2$ 

**ISOMAP**: same, but W defined by shortest path on neighborhood graph.

Laplacian Eigenmaps: minimize

$$\sum_{ij} W_{ij} ||f_i - f_j||^2$$

subject to "balancing constraint":  $f^{\top}Df = I$  and  $f^{\top}D1 = 0$ .

#### Siamese Networks: functional embedding

Similar to Lap. Eigenmaps but f(x) is a NN.

**DrLIM** [Hadsell et al., '06]:

$$L(f_i, f_j, W_{ij}) = \begin{cases} ||f_i - f_j||^2 & \text{if } W_{ij} = 1, \\ \max(0, m - ||f_i - f_j||)^2 & \text{if } W_{ij} = 0. \end{cases}$$

- $\rightarrow$  neighbors close, others have distance of at least m
- Avoid trivial solution using  $W_{ij} = 0$  case  $\rightarrow$  easy online optimization
- f(x) not just a lookup-table  $\rightarrow$  control capacity, add prior knowledge, no out-of-sample problem

#### **Shallow Semi-supervision**

SVM: 
$$\min_{w,b} \gamma ||w||^2 + \sum_{i=1}^{L} H(y_i f(x_i))$$

Add embedding regularizer: unlabeled neighbors have same output:

• LapSVM [Belkin et al.]:

$$SVM + \lambda \sum_{i,j=1}^{U} W_{ij} ||f(x_i^*) - f(x_j^*)||^2$$

e.g.  $W_{ij} = 1$  if two points are neighbors, 0 otherwise.

• "Preprocessing":

Using ISOMAP vectors as input to SVM [Chapelle et al.]...

#### New regularizer for NNs: Deep Embedding



- Define Neural Network:  $f(x) = h^3(h^2(h^1(x)))$
- Supervised Training: minimize  $\sum_{i} \ell(f(x_i), y_i)$
- Add Embedding Regularizer(s) to training:

Output:  $\sum_{i} L(f(x_i), f(x_j), W_{ij})$  or

Internal:  $\sum_{i} L(h^{2}(h^{1}((x_{i})), h^{2}(h^{1}(x_{j})), W_{ij}))$ 

Aux.:  $\sum_{i} L(e(x_i), e(x_j), W_{ij})$ , where  $e(x) = e^3(h^2(h^1(x)))$ 

#### **Deep Semi-Supervised Embedding**

```
Input: labeled data (x_i, y_i) and unlabeled data x_i^*, and matrix W
repeat
  Pick random labeled example (x_i, y_i)
  Gradient step for H(y_i f(x_i))
  for each embedding layer do
     Pick a random pair of neighbors x_i^*, x_i^*.
     Gradient step for L(x_i^*, x_i^*, 1)
     Pick a random pair x_i^*, x_k^*.
     Gradient step for L(x_i^*, x_k^*, 0)
  end for
until stopping criteria
```

## Pairwise Example Prior: more general than using k-NN



Standard way: k-nn with Euclidean distance.

many methods to make it fast.

L... but Euclid. might suck.



Sequences: text, images (video), speech (audio)

video: patch in frames  $t \& t + 1 \rightarrow$  same label

 $\blacktriangle$  audio: consecutive audio frames  $\rightarrow$  same speaker + word ...

**l** text: word + neighbors → same topic



#### Web data:

use links/click-through information to collect neighbors

images and text on same page

#### **Some Perspectives**

- General [Ando & Zhang '05] framework: sometimes difficult to define the task?
- Embedding is a class of auxiliary task, still free to define pairs.
- Encoder+Decoders= another class: learn regions of space that are densely populated (support of density?).
   Pairwise Embedding does something similar (encoder without decoder?).
- Pairwise Embedding has no decoder: for sparse inputs (e.g. bag of words) this is much faster than dense decoding.
- Another way: [Yu et al. '08] proposed NN auxiliary task approximating a *known* useful distance metric given by a hand-engineered kernel.

Our method should help when the "auxiliary" embedding matrix W is correlated to the supervised task.

#### **Some Experiments: Small Semi-Supervised Setup**

Typical *shallow semi-supervised* datasets:

| data set | classes | dims | points | labeled |
|----------|---------|------|--------|---------|
| g50c     | 2       | 50   | 500    | 50      |
| Text     | 2       | 7511 | 1946   | 50      |
| Uspst    | 10      | 256  | 2007   | 50      |
| Mnist1h  | 10      | 784  | 70k    | 100     |
| Mnist6h  | 10      | 784  | 70k    | 600     |
| Mnist1k  | 10      | 784  | 70k    | 1000    |

• First experiment: Only consider two-layer nets.

# **Deep Semi-Supervised Results**

|                    | g50c | Text  | Uspst |
|--------------------|------|-------|-------|
| SVM                | 8.32 | 18.86 | 23.18 |
| SVMLight-TSVM      | 6.87 | 7.44  | 26.46 |
| $ abla 	ext{TSVM}$ | 5.80 | 5.71  | 17.61 |
| LapSVM*            | 5.4  | 10.4  | 12.7  |
| NN                 | 8.54 | 15.87 | 24.57 |
| $Embed NN^O$       | 5.66 | 5.82  | 15.49 |

|                         | Mnist1h | Mnist6h | Mnist1k |
|-------------------------|---------|---------|---------|
| SVM                     | 23.44   | 8.85    | 7.77    |
| TSVM                    | 16.81   | 6.16    | 5.38    |
| RBM <sup>(*)</sup>      | 21.5    | -       | 8.8     |
| SESM <sup>(*)</sup>     | 20.6    | -       | 9.6     |
| DBN-rNCA <sup>(*)</sup> | -       | 8.7     | -       |
| NN                      | 25.81   | 11.44   | 10.70   |
| $Embed^{O}NN$           | 17.05   | 5.97    | 5.73    |
| $Embed^{I1}NN$          | 16.86   | 9.44    | 8.52    |
| $Embed^{A1}NN$          | 17.17   | 7.56    | 7.89    |
| CNN                     | 22.98   | 7.68    | 6.45    |
| $Embed^{O}CNN$          | 11.73   | 3.42    | 3.34    |
| $Embed^{I5}{ m CNN}$    | 7.75    | 3.82    | 2.73    |
| $Embed^{A5}{ m CNN}$    | 7.87    | 3.82    | 2.76    |

#### **Really Deep Results**

Same MNIST1h dataset, but training 2-15 layer nets (50HUs each):

| layers=                  | 2    | 4    | 6    | 8    | 10   | 15   |
|--------------------------|------|------|------|------|------|------|
| NN                       | 26.0 | 26.1 | 27.2 | 28.3 | 34.2 | 47.7 |
| $Embed\mathbf{NN}^O$     | 19.7 | 15.1 | 15.1 | 15.0 | 13.7 | 11.8 |
| $Embed\mathbf{NN}^{ALL}$ | 18.2 | 12.6 | 7.9  | 8.5  | 6.3  | 9.3  |

- EmbedNN<sup>O</sup>: auxiliary 10-dim embedding on output layer
- $EmbedNN^{ALL}$ : auxiliary 10-dim embedding on every layer.
- Trained jointly with supervised signal, as before.
- (NOTE: Train error of NN can easily achieve 0.)
- SVM: 23.4%, TSVM: 16.8%

#### **Conclusions (so far)**

EmbedNN generalizes shallow semi-supervised embedding.

- **Easy** to train.
- No pre-training, no decoding step = simple, fast.
- Seems to train very deep networks.

**NOW**... we will apply this to:

Video: unlabeled video helps object recognition.

Text: unlabeled text (600 million examples) helps tagging tasks.

# DEEP LEARNING FOR VIDEO









#### APPLICATION: LEARNING FROM VIDEO



- Two consecutive frames likely to contain the same object or objects.
- Improve deep layers (internal representation of images):

  learn invariance to pose, illumination, background or clutter,

  deformations (e.g. facial expressions) or occlusions.
- Video collections obtained without human annotation.
- We show this works for varying video sources.
- Biologically, supervised learning isn't so plausible, but this might be...



- COIL-100 database.
  - 100 objects, 72x72 pixels.
  - 72 different poses.
- COIL-Like database.
  - 40 objects, 72 views.
  - 4 types (fruits, cars, cups, cans).
  - videostream
  - collected to look like COIL.
- Animal database.
  - 60 animals (horses, rabbits,...)
  - videostream
  - no objects in common with COIL.

# **Experimental setup**

- Supervised task from COIL: 4 views for train, 68 for test. 30 or 100 objects for train/test following [Wersing, 2003].
- COIL video: transductive (100 objects) and semi-supervised (70 object) settings + COIL-Like and Animal videos.
- Methods:
  - Baseline methods: SVM, Nearest neighbors,....
  - Baseline CNN
  - strongly engineered Neural Net (VTU) [Wersing et. al., 2003]<sup>a</sup>
  - Our *video* CNN with different video sources.

<sup>&</sup>lt;sup>a</sup>The VTU method builds a hierarchy of biologically inspired feature detectors. It applies Gabor filters at four orientations, followed by spatial pooling, and learns receptive field profiles using a special type of sparse coding algorithm with invariance constraints.

Test Accuracy Performance on COIL100 in various settings.

| Method               | 30 objects | 100 objects |
|----------------------|------------|-------------|
|                      |            |             |
| Nearest Neighbor     | 81.8       | 70.1        |
| SVM                  | 84.9       | 74.6        |
| SpinGlass MRF        | 82.8       | 69.4        |
| Eigen Spline         | 84.6       | 77.0        |
| VTU                  | 89.9       | 79.1        |
| Standard CNN         | 84.88      | 71.49       |
| videoCNN V:COIL100   | -          | 92.25       |
| videoCNN V:COIL"70"  | 95.03      | -           |
| videoCNN V:COIL-Like | -          | 79.77       |
| videoCNN V:Animal    | -          | 78.67       |

Outperforms baselines without using engineered features.

# DEEP LEARNING FOR TEXT









#### **NLP Tasks**

- Part-Of-Speech Tagging (POS): syntactic roles (noun, adverb...)
- Chunking: syntactic constituents (noun phrase, verb phrase...)
- Name Entity Recognition (NER): person/company/location...
- Semantic Role Labeling (SRL): semantic role  $[John]_{ARG0}$   $[ate]_{REL}$   $[the apple]_{ARG1}$   $[in the garden]_{ARGM-LOC}$

Labeled data: Wall Street Journal ( $\sim 1M$  words)

#### The "Brain Way"

Deep learning seems radically different to the traditional NLP approach:

- Avoid building a parse tree. Humans don't need this to talk.
- We try to avoid all hand-built features  $\rightarrow$  monolithic systems.
- Humans implicitly learn these features. Neural networks can too...?



→ End-to-end system + Fast predictions (0.02 sec/sentence)

# The Deep Learning Way



**INPUT**: lower case words

LEARN: word feature vectors using auxiliary embedding.

# **Using Unlabeled Data**



Language Model: "is (part of) a sentence actually english or not?" Implicitly captures

- **★** syntax
- \* semantics

Trained over Wikipedia ( $\sim 631M$  words)



Bengio & Ducharme (2001)

Probability of next word given previous words



Pick word + neighborhood  $\to W_{ij} = 1$  (push together) +ve pair "The cat sat on the"  $\to \leftarrow$  "mat"



Same neighborhood + random word  $\rightarrow W_{ij} = 0$  (push apart)

"The cat sat on the"  $\leftarrow \rightarrow$  "DBN" -ve pair

# Language Model: Embedding

| FRANCE   | JESUS        | XBOX        | REDDISH   | SCRATCHED |
|----------|--------------|-------------|-----------|-----------|
| 454      | 1973         | 6909        | 11724     | 29869     |
| SPAIN    | CHRIST       | PLAYSTATION | YELLOWISH | SMASHED   |
| ITALY    | GOD          | DREAMCAST   | GREENISH  | RIPPED    |
| RUSSIA   | RESURRECTION | PS2         | BROWNISH  | BRUSHED   |
| POLAND   | PRAYER       | SNES        | BLUISH    | HURLED    |
| ENGLAND  | YAHWEH       | WII         | CREAMY    | GRABBED   |
| DENMARK  | JOSEPHUS     | NES         | WHITISH   | TOSSED    |
| GERMANY  | MOSES        | NINTENDO    | BLACKISH  | SQUEEZED  |
| PORTUGAL | SIN          | GAMECUBE    | SILVERY   | BLASTED   |
| SWEDEN   | HEAVEN       | PSP         | GREYISH   | TANGLED   |
| AUSTRIA  | SALVATION    | AMIGA       | PALER     | SLASHED   |

# **Deep Text Results**

WSJ for POS, CHUNK (CoNLL 2000) & SRL (CoNLL 2005)

Reuters (CoNLL 2003) for NER

| Approach     | POS     | CHUNK       | NER         | SRL                                    |
|--------------|---------|-------------|-------------|----------------------------------------|
|              | (% Err) | (F1)        | (F1)        | (F1)                                   |
| Top Systems  | 2.76    | 94.39/94.13 | 89.31/88.76 | 77.92 <sup>‡</sup> /74.76 <sup>†</sup> |
| CNN          | 3.15    | 88.82       | 81.61       | 51.16                                  |
| $Embed{CNN}$ | 2.78    | 94.18       | 88.88       | 71.81*/74.55 <sup>†</sup>              |

#### **Top Systems:**

Toutanova et al. ('03) for POS

Ando & Zhang ('05) and Florian et al. for NER,

Sha et al. ('03) for CHUNK

Punyakanok et al. (2005) for SRL

<sup>‡</sup> Uses the Charniak top-5 parse trees, and the Collins parse tree † Uses the Charniak parse tree only

# **Final Conclusion (really)**

- New Deep Learning Method:
  - Unsupervised pairwise embedding.
  - Improves internal representation in NN.
- Applications: images, text, ... web?
- Software: http://torch5.sourceforge.net



Thanks!