A Current-Mode DRAM for CVNS

Report of A Work In Progress

Golnar Khodabandehloo Dr. M. Ahmadi Dr. M. Mir

June 13, 2008

Outline

2

- Motivation
- > CVNS
 - > Introduction
 - Digit Generation
 - Error Correction
- Current-Mode DRAM
 - > Introduction
 - Storage Cell
- DRAM for CVNS
 - Circuits, Simulations results
 - > XOR
 - D-Latch
 - CVNS to Binary
 - Binary to CVNS
 - Refresh Circuit

Future Work

Motivation

3

- Memory Design
 - Compactness
 - More than 1 bit storage on each cell
 - Low refreshing rate
 - Fast read/write

> CVNS, a potential candidate

Introduction to CVNS

- Continuous Valued Number System
- Non-integer modular arithmetic with positive radix
- Uses classical analog circuits for implementation
- Analog arithmetic advantages
 - High Speed
 - Limited interconnections
 - Reduced Area
 - > Reduced system and cross-talk noise
- Allows for arbitrary accuracy of arithmetic circuits

Digit Generation in CVNS

Cascade Digit Generation

Calculates the gadix-Beckins digits in serial, starting from MID

Digit Generation in CVNS

- Cascade Digit Generation
- Modular Digit Generation

Computes all of the radix- B CVNS digits in parallel, independent of each other

Error Correction in CVNS

7

- Digit Recovering
 - Chain-like relationship between digits (overlap)
- > Reverse Evolution (RE) Method
 - Increases the accuracy of analog digits
 - > A sequential process

Error Correction in CVNS (Cont.)

> RE method

```
((a))_{i} \text{ (original digit)} \qquad k \leq i \leq n
\downarrow \qquad ((a'))_{i} \text{ (errored digit)} = ((a))_{i} + \epsilon_{i}
\downarrow \qquad [((a'))_{i}]_{R} = [((a'))_{i} - ((a''))_{i-1} / B]_{R} \text{ mod}^{+}B \quad ((a')) \geq 0
[((a'))_{i}]_{R} = [((a'))_{i} - ((a''))_{i-1} / B]_{R} \text{ mod}^{-}B \quad ((a')) < 0
\downarrow \qquad \qquad ((a))_{i} \text{ (corrected digit)} = \begin{cases} [((a'))_{i}]_{R} + ((a''))_{i-1} / B & i > K \\ ((a'))_{i} & i = K \end{cases}
```

- (a)
$$mod^{+} B = (a \mod B + B) \mod B$$
 $0 \le (a) \mod^{+} B < B$

- (a)
$$mod^-B = (a \mod B - B) \mod B$$
 -B < (a) $mod^-B \le B$

Error Correction in CVNS (Cont.)

> Example for a random value; a = 9.9845, B= 10, error=±0.4

Introduction to Current-Mode DRAM

- Dynamic Random Access Memory
 - Memory cells requiring constant refreshing
 - Capacitor
 - > Transistor

- Current-Mode DRAM
 - > Fast sensing speed for the stored values
 - Capability of operating at lower power supply voltages

Storage Cell in Current-Mode DRAM

11

> Current Copier Cell as a Storage Element

Current-Mode DRAM for CVNS

Correction Using CVNS

 $a_{15} a_{14} a_{13} a_{12}$ \rightarrow ((a))₁₅ $a_{14} a_{13} a_{12} a_{11}' \rightarrow ((a))_{14}$ $a_{13} \ a_{12} \ a_{11} \ a_{10} \ \rightarrow ((a))_{13}$ $a_{12} \ a_{11} \ a_{10} \ a_{9} \ \rightarrow ((a))_{12}$ $a_{11} \ a_{10} \ a_9 \ a_8 \ a_7 \ \rightarrow ((a))_{11} \ \rightarrow ((a))_{10}$ $a_9 a_8 a_7 a_6 \rightarrow ((a))_9$ $a_8 a_7 a_6 a_5^7 o ((a))_8$ $a_7 a_8 a_5 a_4$ \rightarrow ((a))₇ $a_6^{\prime} a_5 a_4 a_3$ \rightarrow ((a))₆ $a_5 a_4 a_3 a_2 \rightarrow ((a))_5$ $a_4 a_3 a_2 a_1$ \rightarrow ((a))₄ $a_3^* a_2 a_1 a_0$ \rightarrow ((a))₃ $a_2 a_1 a_0$ \rightarrow ((a))₂ \rightarrow ((a))₁ \rightarrow ((a))₀

Current-Mode DRAM for CVNS (Cont.)

Storage Cells

1-Bit Latch

CVNS/Binary

Error

Correction Unit

- ➤ Block Diagram
- Synchronous Binary/CVNS
 - Less number of switches
 - More fault
- **>**Asynchronous
 - Faster
 - More switches
 - Better correction

XOR

14

➤ Circuit

> Simula

D-Latch

15)

- ➤ Circuit
- ➤ Simulation Result

Binary To CVNS

16

➤ Circuit

> Sim

Binary To CVNS (for 4-bit)

> Simulation Re

CVNS To Binary

CVNS To Binary (for 4-bit) > Circuit I_In= 16,25uA £ 400.0 B_2 B_3 £ 400.0

Refresh Circuit

➤ Simulated Circuit

Refresh Circuit (Cont.)

21)

> Simulation Result

Current-In

Current-Out

 V_{C}

Corrected-Current

Future Work

22)

- > Extend for 16-bit
- Draw the Layout

