```
#include <oxstd.h>
#include <oxdraw.h>
#include <oxfloat.h>
#include <quadpack.h>
#import <maximize>
#include <oxprob.h>
/* Global variables */
decl alpha=2;
decl lambda=-4;
decl beta=0.99;
decl ibar=8;
decl ps=1;
decl pr=4;
decl c=1;
decl gamma=1/2;
decl mF1,mF0,mS;
/* Simulated choices and states */
decl vPhat; /* Estimted choice-probalities Sx1 */
decl vY; /* Observed choices Nx1 */
decl vSid; /* Observed state IDs Nx1 */
/* State space indices */
enum{iI,iC,iP}; /* Columns identifiers for each state variable */
/* Parameter names */
enum{ilambda}; /* Row identifiers for parameter */
/* Question 1: Bellman equation */
/* Choice-specific value-function */
value(amV,const vEV)
  decl vU1=alpha*mS[][iC]-mS[][iP];
  decl vU0=alpha*mS[][iC].*(mS[][iI].>0)+lambda*(mS[][iC].>0).*(mS[][iI].==0);
  decl mV=(vU0+beta*mF0*vEV)~(vU1+beta*mF1*vEV);
  amV[0]=mV;
 return 1;
/* Expected value function */
emax(aEV,const vEV0)
{
  decl mV;
  value(&mV, vEV0);
  aEV[0]=log(sumr(exp(mV)))+M_EULER;
 return 1;
/* CCP mapping */
ccp(aEV,aP,const vP)
  decl vU1=alpha*mS[][iC]-mS[][iP];
  decl vU0=alpha*mS[][iC].*(mS[][iI].>0)+lambda*(mS[][iC].>0).*(mS[][iI].==0);
  decl vE1=M_EULER-log(vP);
  decl vE0=M_EULER-log(1-vP);
  decl mF=mF0.*(1-vP)+mF1.*vP;
```

```
decl vEU=(1-vP).*(vU0+vE0)+vP.*(vU1+vE1);
 decl vEVp=invert(unit(rows(vP))-beta*mF)*vEU;
 decl mV;
 value(&mV,vEVp);
 aP[0]=exp(mV[][1])./sumr(exp(mV));
 aEV[0]=vEVp;
 return 1;
}
                             **********************
/* Ouestion 3: Likelihood function full-solution vs two-step CCP estimator */
lfunc_ccp(const vP, const adFunc, const avScore, const amHessian)
 lambda=vP[ilambda];
 decl vCCP,vEV;
 ccp(&vEV,&vCCP,vPhat);
 vCCP=vCCP[vSid];
 decl vL=vCCP.*vY+(1-vCCP).*(1-vY);
 decl LLF;
 LLF=double(sumc(log(vL)));
 adFunc[0]=LLF;
 return 1;
lfunc_nfxp(const vP, const adFunc, const avScore, const amHessian)
 lambda=vP[ilambda];
 decl vCCP,vCCP0;
 decl it=0;
 decl eps=10^(-10);
 vCCP=vPhat;
 decl vEV=constant(0, rows(mS), 1), vEV0;
 /* CCP algorithm */
 do{
   vEV0=vEV:
   vCCP0=vCCP;
   ccp(&vEV,&vCCP,vCCP0);
   it+=1;
 }while(norm(vEV-vEV0)>eps);
 vCCP=vCCP[vSid];
 decl vL=vCCP.*vY+(1-vCCP).*(1-vY);
 decl LLF;
 LLF=double(sumc(log(vL)));
 adFunc[0]=LLF;
 return 1;
        *************************************
main()
 format(1000);
 decl mPi=<0.75,0.25;0.9,0.1>;
 decl mGamma=(gamma~(1-gamma))|(gamma~(1-gamma));
 println("Gamma: ",mGamma);
 decl vIgrid=range(0,ibar,c)';
```

/* Inverted value function */
Question 2: Comparison of true/estimated value function
using frequency estimator */

	&	C	&	Р	&	\$P(x)^\ast\$	& \$\hat{P}
(s)\$ \\							
0	&	0	&	4	&	0.534 &	0.525 &
1	&	0	&	4	&	0.399 &	0.392 &
2	&	0	&	4	&	0.323 &	0.317 &
3	&	0	&	4	&	0.272 &	0.28 &
4	&	0	&	4	&	0.233 &	0.227 &
5	&	0	&	4	&	0.199 &	0.172 &
6	&	0	&	4	&	0.163 &	0.176 &
7	&	0	&	4	&	0.11 &	0.182 &
8	&	0	&	4	&	0.018 &	0.001 &
0	&	1	&	4	&	0.881 &	0.885 &
1	&	1	&	4	&	0.534 &	0.531 &
2	&	1	&	4	&	0.399 &	0.389 &
3	&	1	&	4	&	0.323 &	0.327 &
4	&	1	&	4	&	0.272 &	0.219 &
5	&	1	&	4	&	0.233 &	0.257 &
6	&	1	&	4	&	0.199 &	0.164 &
7	&	1	&	4	&	0.163 &	0.128 &
8	&	1	&	4	&	0.11 &	0.273 &
0	&	0	&	1	&	0.96 &	0.999 &
1	&	0	&	1	&	0.932 &	0.933 &
2	&	0	&	1	&	0.907 &	0.917 &
3	&	0	&	1	&	0.884 &	0.92 &
4	&	0	&	1	&	0.861 &	0.846 &
5	&	0	&	1	&	0.836 &	0.783 &
6	&	0	&	1	&	0.801 &	0.667 &
7	&	0	&	1	&	0.728 &	0.714 &
8	&	0	&	1	&	0.269 &	0.001 &
0	&	1	&	1	&	0.993 &	0.999 &

	1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 8	1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &	1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &	0.96 & 0.932 & 0.907 & 0.884 & 0.861 & 0.836 & 0.801 & 0.728 &	0.955 & 0.948 & 0.9 & 0.903 & 0.824 & 0.714 & 0.833 & 0.667 &
	I &	C &	P &	\$EV\$ &	\hat{EV}\$
\\	0 &	0 &	4 &	61.1 &	60.9
\\	1 &	0 &	4 &	65 &	64.8
\\	2 &	0 &	4 &	68.5 &	68.3
\\	3 &	0 &	4 &	71.7 &	71.4
\\	4 &	0 &	4 &	74.6 &	74.4
\\	5 &	0 &	4 &	77.4 &	77.1
\\	6 &	0 &	4 &	80 &	79.6
\\	7 &	0 &	4 &	82.3 &	81.7
\\	8 &	0 &	4 &	84.1 &	83.4
\\	0 &	1 &	4 &	58.5 &	58.3
//	1 &	1 &	4 &	63.1 &	62.9
\\	2 &	1 &	4 &	67 &	66.8
\\	3 &	1 &	4 &	70.5 &	70.3

\\					
	4 &	1 &	4 &	73.7 &	73.4
\\	5 &	1 &	4 &	76.6 &	76.4
//	6 &	1 &	4 &	79.4 &	79.1
//	7 &	1 &	4 &	82 &	81.6
//	8 &	1 &	4 &	84.3 &	83.6
//	0 &	0 &	1 &	63.2 &	63
//	1 &	0 &	1 &	66.9 &	66.7
//	2 &	0 &	1 &	70.2 &	70
\\	3 &	0 &	1 &	73.3 &	73
\\	4 &	0 &	1 &	76.1 &	75.8
\\	5 &	0 &	1 &	78.8 &	78.4
\\	6 &	0 &	1 &	81.2 &	80.7
\\	7 &	0 &	1 &	83.3 &	82.7
\\	8 &	0 &	1 &	84.3 &	83.3
\\	0 &	1 &	1 &	61 &	60.8
\\	1 &	1 &	1 &	65.2 &	65
\\	2 &	1 &	1 &	68.9 &	68.7
\\	3 &	1 &	1 &	72.2 &	72
	<i>J</i> &	1 α	Ι (Χ	1 L . L Q	1 4

.	4 &	1 &	1 &	75.3 &	75
//	5 &	1 &	1 &	78.1 &	77.8
//	6 &	1 &	1 &	80.8 &	80.4
//	7 &	1 &	1 &	83.2 &	82.8
\\	8 &	1 &	1 &	85.3 &	84.7

Question 4: Estimation results

true 2-step True

CCP NFXP

lambda

-4.0000 -4.0337 -4.0235 -4.0244

Cannot show draw window!