12ML:: EVALUATION AND TUNING

Set-Based Performance Metrics

 $J \in \{1, \ldots, n\}^m$: m-dimensional index vector for a dataset $\mathcal{D} \in \mathbb{D}_n$, which also induces $\mathcal{D}_J = \left(\mathcal{D}^{(J^{(1)})}, \ldots, \mathcal{D}^{(J^{(m)})}\right) \in \mathbb{D}_m$

$$\mathbf{y}_J = \left(y^{(J^{(1)})}, \dots, y^{(J^{(m)})}\right) \in \mathcal{Y}^m$$
 : vector of labels

 $\mathbf{F}_{J,f} = \left(f(\mathbf{x}^{(J^{(1)})}), \dots, f(\mathbf{x}^{(J^{(m)})}) \right) \in \mathbb{R}^{m \times g}$: matrix of prediction scores regarding a model f

General **performance measure**: $\rho: \bigcup_{m\in\mathbb{N}} (\mathcal{Y}^m \times \mathbb{R}^{m\times g}) \to \mathbb{R}$ maps every m-dimensional label vector \mathbf{y}_J and its matrix of prediction scores $\mathbf{F}_{J,f}$ to a scalar performance value.

 $\rho_L(\mathbf{y}, \mathbf{F}) = \sum_{i=1}^m L(\mathbf{y}^{(i)}, \mathbf{F}^{(i)})$: performance measure induced by an arbitrary point-wise loss L

Generalization Error

The **generalization error** GE is the performance of a model induced by \mathcal{I}_{λ} from datasets $\mathcal{D}_{\text{train}} \sim (\mathbb{P}_{\mathbf{x}y})^{n_{\text{train}}}$ evaluated with performance measure ρ over a dataset $\mathcal{D}_{\text{test}} \sim (\mathbb{P}_{\mathbf{x}y})^{n_{\text{test}}}$ when $n_{\text{test}} \to \infty$, i.e.,

$$ext{GE}(\mathcal{I}, \boldsymbol{\lambda}, \textit{n}_{ ext{train}},
ho) = ext{lim}_{\textit{n}_{ ext{test}} o \infty} \mathbb{E}\left[
ho\left(\mathbf{y}, \mathbf{F}_{J_{ ext{test}}, \mathcal{I}(\mathcal{D}_{ ext{train}}, \boldsymbol{\lambda})}
ight)
ight],$$

where the expectation is taken over both datasets $\mathcal{D}_{\mathsf{train}}$ and $\mathcal{D}_{\mathsf{test}}$.

Data Splitting and Resampling

 $\mathcal{J} = ((J_{\text{train},1}, J_{\text{test},1}), \dots, (J_{\text{train},B}, J_{\text{test},B}))$: resampling strategy consisting of B train-test-splits $(J_{\text{train},i}, J_{\text{test},i})$

Estimator of the generalization error $GE(\mathcal{I}, \lambda, n_{\text{train}}, \rho)$:

$$\widehat{\mathrm{GE}}(\mathcal{I}, \mathcal{J}, \boldsymbol{\lambda}, \rho) = \mathrm{agr}\Big(
ho\Big(\mathbf{y}_{J_{\mathrm{test},1}}, \mathbf{F}_{J_{\mathrm{test},1},\mathcal{I}(\mathcal{D}_{\mathrm{train},1},\boldsymbol{\lambda})}\Big),$$

$$\vdots$$

$$ho\Big(\mathbf{y}_{J_{\mathrm{test},K}}, \mathbf{F}_{J_{\mathrm{test},K},\mathcal{I}(\mathcal{D}_{\mathrm{train},B},\boldsymbol{\lambda})}\Big)\Big),$$

where the aggregating function agr is often the mean and $n_{\operatorname{train}} \approx n_{\operatorname{train},1} \approx \cdots \approx n_{\operatorname{train},B}$

Resampling Strategies

K-fold cross-validation: splits the data into K roughly equally-sized partitions. Uses each part once as test set and joins the others for training

Leave-one-out cross validation : n-fold cross-validation

Repeated **subsampling** / Monte Carlo cross-validation : for $p \in (0,1)$ randomly draws K training sets of size $\lfloor p \cdot n \rfloor$ without replacement from the data and uses the data not drawn as the corresponding K test sets

Bootstrap sampling: Similar to repeated subsampling but the training data is randomly drawn with replacement n times

Tuning

Tuner τ is a mapping which takes a dataset $\mathcal{D} \in \mathbb{D}$, an inducer \mathcal{I} , a search space $\tilde{\Lambda}$, a performance strategy ρ and a resampling strategy \mathcal{I} and return a hyperparameter configuration $\hat{\lambda} \in \tilde{\Lambda}$ such that

$$au(\mathcal{D}, \mathcal{I}, \boldsymbol{\lambda}, \rho, \mathcal{J}) = \hat{\boldsymbol{\lambda}} \approx \boldsymbol{\lambda}^* \in \mathop{\mathrm{arg\,min}}_{\boldsymbol{\lambda} \in \tilde{\Lambda}} \widehat{\mathrm{GE}}(\mathcal{I}, \mathcal{J}, \rho, \boldsymbol{\lambda}).$$

The search space $\tilde{\Lambda}$ is a bounded subspace of the hyperparameter space. If the inducer \mathcal{I} , the seach space $\tilde{\Lambda}$, the performance measure ρ and the sampling strategy \mathcal{J} are fixed, a self-tuning learner $\mathcal{T}_{\mathcal{I},\tilde{\Lambda},\rho,\mathcal{J}}:\mathbb{D}\to\mathcal{H}$, can be derived from a tuner τ such that

$$\mathcal{T}_{\mathcal{I}, ilde{\mathbf{\Lambda}},
ho,\mathcal{J}} = \mathcal{I}_{\hat{oldsymbol{\lambda}}}, ext{ i.e., } \mathcal{T}_{\mathcal{I}, ilde{\mathbf{\Lambda}},
ho,\mathcal{J}}(\mathcal{D}) = \mathcal{I}_{ au(\mathcal{D},\mathcal{J},\mathcal{I},
ho, ilde{\mathbf{\Lambda}})}(\mathcal{D}).$$

Black-Box Optimization Techniques

Random search: samples uniformly candidates from the search space

Grid search: (uniformly) discretizes the search space and samples without replacement candidates from it

Bayesian optimization: continuously learns a surrogate model of the objective function and leverages it to sample new candidates from the search space while balancing exploration and exploitation

Evolutionary algorithms: are stochastic optimization methods that aim to solve optimization problems by using ideas of natural evolution

Hyperband: is a multi-fidelity method which tries to allocate more budget to promising candidates based on Successive Halving

Nested Resampling

 $\mathcal{J}_{B_{\mathrm{outer}},B_{\mathrm{inner}}} = \left(\mathcal{J}_{\mathrm{outer}},\left(\mathcal{J}_{\mathrm{inner}}^{(1)},\ldots,\mathcal{J}_{\mathrm{inner}}^{(B_{\mathrm{outer}})}\right)\right)$: **nested resampling strategy** where the outer resampling strategy $\mathcal{J}_{\mathrm{outer}}$ is defined on \mathcal{D} and the inner resampling strategy $\mathcal{J}_{\mathrm{inner}}^{(i)}$ defined on $\mathcal{D}_{\mathrm{outer,train},i}$.

Estimator of the generalization error $GE(\mathcal{T}_{\mathcal{I},\tilde{\Lambda},\rho,\mathcal{J}},n_{\text{train}}) = GE(\mathcal{I},\hat{\lambda},n_{\text{train}},\rho)$:

$$\widehat{\mathrm{GE}}(\mathcal{T}_{\mathcal{I}, \tilde{\boldsymbol{\Lambda}},
ho, \mathcal{J}}, \mathcal{J}_{\mathcal{B}_{\mathrm{outer}}, \mathcal{B}_{\mathrm{inner}}}) = \mathrm{agr}\left(
ho\Big(\mathbf{y}_{J_{\mathrm{outer, test, 1}}}, \mathbf{F}_{J_{\mathrm{outer, test, 1}}}, f_{\mathcal{D}_{\mathrm{outer, train, 1}}}\Big), \right)$$

$$\vdots$$

$$ho\Big(\mathbf{y}_{J_{\mathrm{outer, test, B}}}, \mathbf{F}_{J_{\mathrm{outer, test, B}}}, f_{\mathcal{D}_{\mathrm{outer, train, B}}}\Big)\Big),$$

where $f_{\mathcal{D}_{\mathrm{outer,train},i}} = \mathcal{J}_{B_{\mathrm{outer}},B_{\mathrm{inner}}}(\mathcal{D}_{\mathrm{outer,train},i})$ and $\mathcal{J}_{\mathrm{inner}}^{(i)}$ has the same type of resampling strategy as \mathcal{J} and $n_{\mathrm{train}} \approx n_{\mathrm{outer,train},1} \approx \cdots \approx n_{\mathrm{outer,train},B_{\mathrm{outer}}}$

